MATH620 - Algebraic Number Theory

Taught by Niranjan Ramachandran Notes taken by Haoran Li $2020 \,\, \mathrm{Spring}$

Department of Mathematics University of Maryland

Contents

1	Disciminant	2
2	Minkowski's theorem	5
3	Dirichlet's unit theorem	6
In	Index	

1 Disciminant

Definition 1.1. An algebraic number field K is a finite field extension of \mathbb{Q} , its ring of algebraic integers is denoted \mathcal{O}_K

$$\begin{array}{ccc}
\mathbb{O}_K & \longrightarrow & K \\
\uparrow & & \uparrow \\
\mathbb{Z} & \longrightarrow & \mathbb{O}
\end{array}$$

More generally, if E/F is a finite separable field extension, B,A are their ring of integers

$$\begin{array}{ccc}
B & \longrightarrow & E \\
\uparrow & & \uparrow \\
A & \longrightarrow & F
\end{array}$$

Definition 1.2. [E:F]=n, then $B \cong A^n$ as an A module, assume β_1, \dots, β_n is a basis, define

$$D(\beta_1, \dots, \beta_n) = \det(\operatorname{Tr}_{B/A}(\beta_i \beta_i)) \in A$$

The discriminant $\operatorname{disc}(B/A) = D(\beta_1, \dots, \beta_n)$ is well-defined in $A/(A^{\times})^2$. In particular, $\operatorname{disc}(O_K/\mathbb{Z})$ is a well-defined integer

Lemma 1.3. $\gamma_1, \dots, \gamma_n \in \mathcal{O}_K$ is an \mathbb{Z} -basis for \mathcal{O}_K iff $D(\gamma_1, \dots, \gamma_n) = \operatorname{disc}(\mathcal{O}_K/\mathbb{Z})$. More generally, if A is integrally closed and Noetherian, $\gamma_1, \dots, \gamma_n \in B$ is an A-basis of B iff $D(\gamma_1, \dots, \gamma_n) = \operatorname{disc}(B/A)$

Proof. Write $\gamma_i = \sum c_{ji}\beta_j$, then $\det(\operatorname{Tr}(\gamma_i\gamma_j)) = (\det C)^2\operatorname{disc}(\mathcal{O}_K/\mathbb{Z})$. Thus $D(\gamma_1,\cdots,\gamma_n) = \operatorname{disc}(\mathcal{O}_K/\mathbb{Z}) \Leftrightarrow \det C = \pm 1 \Leftrightarrow C \in \operatorname{GL}_n(\mathbb{Z}) \Leftrightarrow \gamma_1,\cdots,\gamma_n \text{ is an } \mathbb{Z}\text{-basis}$

Example 1.4. $K = \mathbb{Q}(\sqrt{d})$, d is square free. \mathcal{O}_K has $\{1, \sqrt{d}\}$ as an \mathbb{Z} -basis if $d \equiv 2, 3 \mod 4$

$$\operatorname{disc}(\mathbb{O}_K/\mathbb{Z}) = \operatorname{det} \operatorname{Tr}_{\mathbb{O}_K/\mathbb{Z}} \begin{pmatrix} 1 & \sqrt{d} \\ \sqrt{d} & d \end{pmatrix} = \operatorname{det} \begin{pmatrix} 2 & 0 \\ 0 & 2d \end{pmatrix} = 4d$$

 O_K has $\{1, \frac{1+\sqrt{d}}{2}\}$ as an \mathbb{Z} -basis if $d \equiv 1 \mod 4$

$$\mathrm{disc}(\mathbb{O}_K/\mathbb{Z}) = \det \mathrm{Tr}_{\mathbb{O}_K/\mathbb{Z}} \begin{pmatrix} 1 & \frac{1+\sqrt{d}}{2} \\ \frac{1+\sqrt{d}}{2} & \frac{1+2\sqrt{d}+d}{4} \end{pmatrix} = \det \begin{pmatrix} 2 & 1 \\ 1 & \frac{2+2d}{4} \end{pmatrix} = d$$

Therefore 7 can never be a discriminant

Proposition 1.5. $\gamma_1, \dots, \gamma_n \in \mathcal{O}_K$, $N = \mathbb{Z}\gamma_1 + \dots + \mathbb{Z}\gamma_n \leq \mathcal{O}_K$ has finite index in \mathcal{O}_K iff $D(\gamma_1, \dots, \gamma_n) \neq 0$, $D(\gamma_1, \dots, \gamma_n) = [\mathcal{O}_K : N]^2 \operatorname{disc}(\mathcal{O}_K/\mathbb{Z})$

Proof. Suppose β_1, \dots, β_n is an \mathbb{Z} -basis, $D(\beta - 1, \dots, \beta_n) = \operatorname{disc}(\mathcal{O}_K/\mathbb{Z}), \ \gamma_i = \sum c_{ji}\beta_j, \ \det C = [\mathcal{O}_K : N]$

Proposition 1.6. If $D(\gamma_1, \dots, \gamma_n)$ is square free, then $\gamma_1, \dots, \gamma_n$ is an \mathbb{Z} -basis

Example 1.7. $K = \mathbb{Q}(\alpha)$, α is a root of irreducible polynomial $x^3 - x - 1$, $D(1, \alpha, \alpha^2) = -23$ which is square free, hence $\mathcal{O}_K = \mathbb{Z} + \mathbb{Z}\alpha + \mathbb{Z}\alpha^2 = \mathbb{Z}[\alpha]$

Proposition 1.8. [E:F]=n is separable, Ω is the Galois closure of E, $\operatorname{Hom}_F(E,\Omega)=\{\sigma_1,\cdots,\sigma_n\}$ are distinct F-embeddings of E

$$\begin{array}{ccc}
B & \longrightarrow & E \\
\uparrow & & \uparrow \\
A & \longrightarrow & F
\end{array}$$

If β_1, \dots, β_n is an F-basis of E, then $D(\beta_1, \dots, \beta_n) = \det(\sigma_i(\beta_j))^2 \neq 0$

Proof. Deonte $Q = \sigma_i(\beta_i)$, then

$$\begin{split} D(\beta_1, \cdots, \beta_n) &= \det(\mathrm{Tr}_{E/F}(\beta_i \beta_j)) \\ &= \det(\sum \sigma_k(\beta_i \beta_j)) \\ &= \det(\sum \sigma_k(\beta_i) \sigma_k(\beta_j)) \\ &= \det(Q^T Q) \\ &= \det(\sigma_i(\beta_j))^2 \\ &\stackrel{\mathrm{Theorem \ 1.9}}{\neq} 0 \end{split}$$

Dedekind's theorem

Theorem 1.9 (Dedekind's theorem). G is group, Ω is a field, $\sigma_1, \dots, \sigma_n$ are distinct homomorphisms $G \to \Omega^{\times}$, then σ_i 's are linear independent over Ω

Definition 1.10. Assume A, B are integrally closed in $F, E, \beta_1, \dots, \beta_n \in B$ is an F-basis of E, $C = A\beta_1 + \dots + A\beta_n \leq B$, $C^* = \{\beta \in E | \operatorname{Tr}_{E/F}(\beta\beta_i) \in A\}$, $\beta \in B \Rightarrow \beta\beta_i \in B \Rightarrow \operatorname{Tr}(\beta\beta_i) \in A \Rightarrow C \leq B \leq C^*$, $C^* = A\beta_1' + \dots + A\beta_n'$, β_1' , \dots , β_n' is a dual basis. For $\alpha \in E$, $\alpha = \sum \operatorname{Tr}_{E/F}(\alpha\beta_i)\beta_i'$

$$\begin{array}{ccc}
B & \longrightarrow & E \\
\uparrow & & \uparrow \\
A & \longrightarrow & F
\end{array}$$

Example of dual basis

Example 1.11. $E = F(\beta), f \in A[x]$ is the minimal polynomial of $\beta \in B$, $\deg f = n$, $C = A[\beta] \leq B$, Euler discovered

$$\operatorname{Tr}_{E/F}(oldsymbol{eta}^i/f'(oldsymbol{eta})) = egin{cases} 0 & 0 \leq i \leq n-1 \ 1 & i = n-1 \end{cases}$$
 , $\operatorname{det} \operatorname{Tr}_{E/F}(rac{oldsymbol{eta}^ioldsymbol{eta}^j}{f'(oldsymbol{eta})}) = (-1)^n$

 $\frac{\beta^{n-1-i}}{f'(\beta)}$ is the dual basis of β^i

Proposition 1.12. In Example 1.11, suppose $f(x) = \prod_{i=1}^n (x-\beta_i) \in \bar{E}[x], f'(x) = \sum_{i=1}^n \prod_{j\neq i} (x-\beta_j)$. Then

$$D(1,\beta,\cdots,\beta^{n-1}) = \prod_{1 \leq i < j \leq n} (\beta_i - \beta_j)^2 = (-1)^{\frac{n(n-1)}{2}} = N_{E/F}(f'(\beta))$$

Proof.

$$\begin{split} D(1,\beta,\cdots,\beta^{n-1}) &= \det(\sigma_i(\beta^j))^2 \\ &= \det(\beta^j_i)^2 \\ &= \prod_{1 \leq i < j \leq n} (\beta_i - \beta_j)^2 \\ &= (-1)^{\frac{n(n-1)}{2}} \prod_i \prod_{j \neq i} (\beta_i - \beta_j) \\ &= (-1)^{\frac{n(n-1)}{2}} \prod_i f'(\beta_i) \\ &= (-1)^{\frac{n(n-1)}{2}} N(f'(\beta)) \end{split}$$

Remark 1.13. $\Delta = \prod_{1 \le i \le j \le n} (\beta_i - \beta_j)^2$ is the determinant $\operatorname{disc}(f) = \operatorname{disc}(E/F)$

Lemma 1.14. $f(x) = x^n + ax + b$, $\operatorname{disc}(f) = (-1)^{\frac{n(n-1)}{2}} (n^n b^{n-1} + (-1)^n (n-1)^{n-1} a^n)$

3

Example 1.15. $K = \mathbb{Q}(\beta)$, β is a root of $f(x) = x^5 - x - 1 \in \mathbb{Z}[x]$, $\operatorname{disc}(f) = 2869 = 19 \times 151$ is square free, hence $[\mathcal{O}_K : \mathbb{Z}[\beta]] = 1$, $\mathcal{O}_K = \mathbb{Z}[\beta]$

Definition 1.16. $K = \mathbb{Q}(\alpha), f(x)$ is the minimal polynomial of α , thus $K \otimes_{\mathbb{Q}} \mathbb{R} \stackrel{\cong}{=} \frac{\mathbb{R}[x]}{(f)} \stackrel{\text{Chinese remainder theorem}}{\cong} \mathbb{R}^r \times \mathbb{C}^s, \alpha_1, \cdots, \alpha_r \text{ are the real roots of } f, \alpha_{r+1}, \bar{\alpha}_{r+1}, \cdots, \alpha_{r+s}, \bar{\alpha}_{r+s}$ are complex roots of f. $\mathcal{O}_K \hookrightarrow K_{\mathbb{R}} \stackrel{\cong}{=} \mathbb{R}^n$ is a lattice

Example 1.17. $\mathbb{Q}(\sqrt{5}) \hookrightarrow \mathbb{R} \times \mathbb{R}$ give the two real embeddings. $\mathbb{Q}(\sqrt{-5}) \hookrightarrow \mathbb{C}$ give the two complex embeddings

Proposition 1.18.

- (1) $K = \mathbb{Q}(\alpha)$, $\operatorname{sgn}\operatorname{disc}(K/\mathbb{Q}) = (-1)^s$
- (2) (Stickelberger) $\operatorname{disc}(\mathbb{O}_K/\mathbb{Z}) \equiv 0, 1 \mod 4$

Proof.

- (1) $1, \alpha, \dots, \alpha^n$ is a basis for K, since $disc(K/\mathbb{Q}) \in \mathbb{Q}^\times/(\mathbb{Q}^\times)^2 \operatorname{sgn} D(1, \alpha, \dots, \alpha^n) = \operatorname{sgn} \det(\sigma_j(\alpha^i))^2 = \operatorname{sgn} \prod_{1 \leq i < j \leq n} (\alpha_i \alpha_j)^2 = \operatorname{sgn} \prod_{1 \leq j \leq s} (\alpha_{r+j} \bar{\alpha}_{r+j})^2 = (-1)^s$
- (2) β_1, \dots, β_n is an \mathbb{Z} -basis of \mathbb{O}_K , $\operatorname{disc}(\mathbb{O}_K/\mathbb{Z}) = \operatorname{det}(\sigma_i(\beta^j))^2$, $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on $\operatorname{Hom}(K, \overline{\mathbb{Q}})$, $K \overset{\sigma}{\hookrightarrow} \overline{\mathbb{Q}} \overset{\tau}{\to} \overline{\mathbb{Q}}$. $\operatorname{det} A = \sum_{\tau \in S_n} \operatorname{sgn}(\tau) \prod_{i=1}^n a_{i\tau(i)} = P N$, P for those $\tau \in A_n$, N for those aren't, so $\operatorname{disc}(\mathbb{O}_K/\mathbb{Z}) = (P N)^2 = (P + N)^2 4PN$, $\eta \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ induce a permutation π_η on $\operatorname{Hom}(K, \overline{\mathbb{Q}})$, if π_η is even, $\pi_\eta(P) = P$, $\pi_\eta(N) = N$, if π_η is odd, then π_η swich P, P, and P + N, PN are integral over \mathbb{Z} , thus P + N, $PN \in \mathbb{Z}$, hence $\operatorname{disc}(\mathbb{O}_K/\mathbb{Z}) \equiv 0.1 \operatorname{mod} 4$

Definition 1.19. For any nonzero ideal $I \leq \mathcal{O}_K$, since $I \cap \mathbb{Z} = m\mathbb{Z}$, $\mathcal{O}_K/m\mathcal{O}_K \cong (\mathbb{Z}/m\mathbb{Z})^m \to \mathcal{O}_K/I$ is surjective, hence the *norm* $N(I) = |\mathcal{O}_K/I| < \infty$. The *Dedekind zeta function* of an algebraic number field is $\zeta_K(s) = \sum_{I \neq 0} \frac{1}{N(I)^s} = \prod_p \frac{1}{1 - N(p)^{-s}}$

2 Minkowski's theorem

Definition 2.1. $L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n \leq \mathbb{R}^n$ is a lattice, take $D = \{c_1v_1 + \cdots + c_nv_n | 0 \leq c_i \leq 1\}$ L, the *covolume* covol(L) = vol(\mathbb{R}^n/L) = vol(D), $\pi : D \to \mathbb{R}^n/L$ is the quotient map, covol(L)² = det((v_i, v_i))

Theorem 2.2. If $B \subseteq \mathbb{R}^n$ is bounded, convex, symmetric (i.e. B = -B) subset such that either

- 1. $vol(B) > 2^n covol(L)$ or
- 2. $vol(B) \ge 2^n \operatorname{covol}(L)$ and B is closed

Then $(B \cap L) \setminus \{0\} \neq \emptyset$

Proof.

- 1. $\mathbb{R}^2 \to \mathbb{R}^2/2L$ is not injective by volume, thus $\exists x \neq y \in B$ such that $x y \in 2L \Rightarrow \frac{1}{2}(x y) \in B \cap L$ since B is convex and symmetric
- 2. $C_k = L \cap (1 + \frac{1}{k})B \setminus \{0\} \neq \emptyset$, C_k is discrete and closed, $\bigcap_{k=1}^{\infty} C_k \neq \emptyset$, thus contains a limit point of B, but B is closed

Proposition 2.3. $D_K = \operatorname{disc}(O_K/\mathbb{Z}) \in \mathbb{Z}$

- 1. The image of \mathcal{O}_K in $K_{\mathbb{R}}$ is a lattice
- 2. $\operatorname{covol}(O_K) = \sqrt{|D_K|}$
- 3. If I is an ideal of \mathcal{O}_K , $\operatorname{covol}(I) = [\mathcal{O}_K : I] \sqrt{|D_K|}$ (union of all members in the coset)

Proof.

- 1. Need $\mathcal{O}_K \cap B_r$ is finite. $x \in \mathcal{O}_K \cap B_r \Rightarrow |\sigma(x)| \leq r$, for all complex embeddings $\sigma \Rightarrow f_{K/\mathbb{Q},x}(t) = \prod_{\sigma} (t \sigma(x))$, the characteristic monomial with \mathbb{Z} coefficients of degree $[K:\mathbb{Q}]$, since coefficients are bounded, so only finitely many f, finitely many x since conjugates are roots
- 2. $\alpha_1, \dots, \alpha_n$ is an \mathbb{Z} -basis of \mathcal{O}_K , $\operatorname{covol}(\mathcal{O}_K)^2 = \det(\langle \alpha_i, \alpha_j \rangle) = \det(M^T \bar{M})$, $M = (\sigma_i(\alpha_j))$, thus $\operatorname{covol}(\mathcal{O}_K) = \sqrt{|D_K|}$

Lemma 2.4. For $m \geq 1$, the number of ideals of \mathcal{O}_K of index less than m is finite, if $[\mathcal{O}_K : I] \leq m$, then \mathcal{O}_K/I is killed by m!, thus $m!\mathcal{O}_K \subseteq I \subseteq \mathcal{O}_K$, but $\mathcal{O}_K/m!\mathcal{O}_K \cong \mathbb{Z}^n/m!\mathbb{Z}^n \cong (\mathbb{Z}/m!)^n$ is finite

Theorem 2.5. For any $g \in \text{Cl}(\mathcal{O}_K)$, $\exists I \subseteq \mathcal{O}_K$ such that $NI = [\mathcal{O}_K : I] \leq (\frac{2}{\pi})^s \sqrt{D_K} \Rightarrow \text{Cl}(\mathcal{O}_K)$ is finite

Proof. J be an ideal representation for g^{-1} , if $0 \neq \alpha \in J$, then $0 \neq (\alpha) \subseteq J \Rightarrow \exists I$ ideal of O_K such that $(\alpha) = IJ$, so I represents g, $N\alpha = NI \cdot NJ$, for $c = (c_1, \dots, c_r, c_{r+1}, \dots, c_{r+s}), c_i > 0$

$$B(c) = \{(x_1, \dots, x_r, x_{r+1}, \dots, x_{r+s}) \in \mathbb{R}^r \times \mathbb{C}^s | |x_i| \le c_i\}$$

 $\begin{array}{l} \operatorname{vol}(B(c)) = (2c_1) \cdots (2c_r)(2\pi c_{r+1}^2) \cdots (2\pi c_{r+s}^2) = 2^n (\frac{\pi}{2})^s c_1 \cdots c_r c_{r+1}^2 \cdots c_{r+s}^2 = 2^n (\frac{\pi}{2})^s \xi. \ \ \operatorname{Pick} \ c \\ \operatorname{such} \ \operatorname{that} \ \operatorname{vol}(B(c)) = 2^n \operatorname{covol}(J), \ \operatorname{by} \ \operatorname{Minkowski's} \ \operatorname{theorem}, \ B(c) \cap J \setminus \{0\} \neq \varnothing, \ \operatorname{pick} \ \alpha \in B(c) \cap J \setminus \{0\}, \ |N(\alpha)| = |\sigma_1(\alpha)| \cdots |\sigma_n(\alpha)| \leq \xi, \ \operatorname{thus} \ N\alpha = NI \cdot NJ \leq \xi = (\frac{2}{\pi})^s \operatorname{covol} J = (\frac{2}{\pi})^s [\mathcal{O}_K : J] \sqrt{|D_K|}, \\ \operatorname{hence} \ NI \leq (\frac{2}{\pi})^s \sqrt{|D_K|} \end{array}$

3 Dirichlet's unit theorem

Example 3.1.
$$K = \mathbb{Q}(\zeta_p), p \nmid rs, \text{ then } \frac{\zeta^r - 1}{\zeta^s - 1} \in \mathbb{Z}[\zeta]^{\times}$$

Proposition 3.2. For $\alpha \in \mathcal{O}_K$, $\alpha \in \mathcal{O}_K^{\times} \Leftrightarrow N_{K/\mathbb{Q}}(\alpha) = \pm 1$

Proof. Let $f = x^m + \cdots + a_0$ be the characteristic polynomial of α , $N\alpha = a_0$, if $N\alpha = \pm 1$, then $g(x) = x^m + a_0^{-1}a_1x^{m-1} + \cdots + a_0^{-1}a_{m-1}x + a_0^{-1} \in \mathbb{Z}[x]$ has α^{-1} as a root, thus $\alpha \in \mathcal{O}_K^{\times}$ \square

Lemma 3.3. $\mu(K)$ is the set of roots of unity in K which is also the torsion subgroup of \mathcal{O}_K^{\times} . $\mu(K)$ is finite, hence cyclic, $\mathcal{L}_m \in K \Rightarrow \varphi(m)[[K:\mathbb{Q}] \Rightarrow \text{only finitely many such } m$

Example 3.4. If $K \hookrightarrow \mathbb{R}$, then $\mu(K) = \{\pm 1\}$. If $K = \mathbb{Q}(\zeta_p)$, then $\mu(K) = \{\pm 1\} \times \langle \zeta_p \rangle$. If $K = \mathbb{Q}(\sqrt{d})$, d < 0, then $\zeta_m \in K \Rightarrow \varphi(m) \leq 2 \Rightarrow m = 2, 3, 4, 6$

Proposition 3.5. $\alpha \in \mathcal{O}_K$, $|\sigma(\alpha)| = 1$ for all $K \stackrel{\sigma}{\hookrightarrow} \mathbb{C}$, then $\alpha \in \mu(K)$

Proof. Fix C, D > 0

$$E_{C,D} = \{ \beta \in \overline{\mathbb{Z}} | \deg(\beta) \le C, |\sigma(\beta)| \le D, \forall \mathbb{Q}(\beta) \stackrel{\sigma}{\hookrightarrow} \mathbb{C} \}$$

 $f_{\beta}(x) \in \mathbb{Z}[x]$ is the monic irreducible polynomial of β . $\deg f_{\beta} \leq C \Rightarrow \deg f_{\beta}$ has finitely many choice and coefficients of f_{β} is bounded by function of $D \Rightarrow$ finitely many choices for $f_{\beta} \Rightarrow E_{C,D}$ is finite. $\alpha \in E_{n,1}, n = [K : \mathbb{Q}], \alpha^2, \alpha^3, \dots \in E_{n,1} \Rightarrow \alpha \in \mu(K)$ since $E_{n,1}$ is finite, α^n repeats \square

Definition 3.6. Define logarithm

$$\mathcal{L}: K_{\mathbb{R}}^{\times} = (\mathbb{R}^{\times})^{r} \times (\mathbb{C}^{\times})^{s} \to \mathbb{R}^{r+s}$$
$$(x_{1}, \dots, x_{r+s}) \mapsto (\log |x_{1}|, \dots, \log |x_{r}|, 2\log |x_{r+1}|, \dots, 2\log |x_{r+s}|)$$

Note that $1 = |N_{K/\mathbb{Q}}(\alpha)| = |\sigma_1(\alpha)| \cdots |\sigma_r(\alpha)| |\sigma_{r+1}(\alpha)| |\overline{\sigma_{r+1}(\alpha)}| \cdots |\sigma_{r+s}(\alpha)| |\overline{\sigma_{r+s}(\alpha)}|$, thus the image of α is contained in the hyperplane $H = \{\alpha_1 + \cdots + \alpha_{r+s} = 0\}$

Theorem 3.7. (i) $\ker \mathcal{L} = \mu(K) = \operatorname{Tor}(\mathcal{O}_K^{\times})$

- (ii) $\mathcal{L}(O_K^{\times})$ is a lattice in H
- (iii) $\mathcal{O}_K^{\times} \cong \mathbb{Z}^{r+s-1} \times \mu(K)$, \mathcal{O}_K^{\times} is finitely generated

Proof. $\mathbb{C} \xrightarrow{|\cdot|} \mathbb{R}_{>0}$ is a homomorphism, compact \Leftrightarrow image compact, $\mathbb{C}^{\times} \cong U(1) \times \mathbb{R}^{\times}$, $\log : \mathbb{R}_{>0} \to \mathbb{R}$, compact \Leftrightarrow image compact

$$\mathfrak{O}_{K}^{\times} \longleftrightarrow K_{\mathbb{R}}^{\times} \cong (\mathbb{R}^{\times})^{r} \times (\mathbb{C}^{\times})^{s} \overset{\mathcal{L}}{\longleftrightarrow} \mathbb{R}^{r} \times \mathbb{R}^{s}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Show $\mathcal{L}(\mathcal{O}_K^{\times})$ is discrete in $\mathbb{R}^r \times \mathbb{R}^s$, $\Rightarrow \operatorname{rank}_{\mathbb{Z}} \mathcal{O}_K^{\times} \leq r + s$. Let $B \subseteq \mathbb{R}^r \times \mathbb{R}^s$ be open bounded, $\mathcal{L}(\mathcal{O}_K^{\times}) \cap B$ is finite since $\mathcal{L}^{-1}(B)$ is open bounded in $K_{\mathbb{R}} \Rightarrow \mathcal{L}^{-1}(B) \cap \mathcal{O}_K$ is finite $\Rightarrow \mathcal{L}^{-1}(B) \cap \mathcal{O}_K^{\times}$ is finite $\Rightarrow \mathcal{L}(\mathcal{O}_K^{\times}) \cap B$ is finite. Two lattices, \mathcal{O}_K is an additive group scheme, \mathcal{O}_K^{\times} is a multiplicative group scheme

References

Index

Algebraic number field, 2 Discriminant, 2

Dedekind zeta function, 4 Ideal norm, 4