Seminarul 13 de Algebră II

Grupele 103 și 104 - 2020-2021

1 Metoda lui Cardano de rezolvare a ecuaţiilor algebrice de grad 3

Fie ecuația $x^3 + ax^2 + bx + c = 0$. Prin schimbarea de variabilă $y = x + \frac{a}{3}$, putem să preupunem că termenul de grad 2 este nul, deci vrem să găsim, prin formule cu radicali, rădăcinile ecuației

$$x^3 + px + q = 0.$$

Dacă p = 0, atunci $x = \sqrt[3]{-q} \cdot e^{i\frac{2k\pi}{3}}$, $0 \le k \le 2$.

Presupunem $p \neq 0$. Scriem x = u + v. Atunci

$$0 = (u+v)^3 + p(u+v) + q = u^3 + v^3 + (u+v)(3uv + p) + q.$$

Dacă 3uv + p = 0, atunci $u^3 + v^3 = -q$. Căutăm atunci soluții u, v ale sistemului

$$\begin{cases} u^3 + v^3 &= -q \\ uv &= -\frac{p}{3} \end{cases}$$

Atunci u^3 și v^3 sunt rădăcinile ecuației de gradul 2

$$z^2 + qz - \frac{p^3}{27} = 0.$$

Aşadar

$$u^3 = \frac{-q + \sqrt{q^2 + \frac{4p^3}{27}}}{2} \tag{1.1}$$

(prin $\sqrt{q^2 + \frac{4p^3}{27}}$ întelegem oricare din cele două numere complexe ce au pătratul $q^2 - 4p^3$, de vreme ce u și v sunt interschimbabile).

Pentru fiecare din cele 3 valori posibile ale lui u ce rezultă din (1.1), $u_k = re^{i\frac{2k\pi}{3}}$, $0 \le k \le 2$, cu $r^3 = \frac{-q + \sqrt{q^2 + \frac{4p^3}{27}}}{2}$, rezultă o rădăcină x_k a ecuației inițiale.

2 Rezolvarea ecuațiilor algebrice

Exercițiul 2.1: Rezolvați în \mathbb{C} ecuațiile:

a)
$$z^3 = 1 + i\sqrt{3}$$
;

b)
$$z^2 = 1 + 2i$$
.

Exercițiul 2.2: Arătați că $\sqrt[3]{45 + 29\sqrt{2}} + \sqrt[3]{45 - 29\sqrt{2}} = 6$.

Exercițiul 2.3: Rezolvați următoarele ecuații de gradul 3 folosind metoda lui Cardano și, acolo unde este posibil, direct:

a)
$$x^3 - 9x - 12 = 0$$
;

d)
$$x^3 - 3x^2 + 9x - 5 = 0$$
;

b)
$$x^3 - 3x = 0$$
;

e)
$$x^3 - 3x - 52 = 0$$
;

c)
$$x^3 + 2x^2 + 1 = 0$$
;

f)
$$x^3 - 21x + 20 = 0$$
.

Exercițiul 2.4: Determinați a astfel încât -1 este rădăcină multiplă a polinomului $X^5 - aX^2 - aX + 1$.

Exercițiul 2.5: Fie K corp și $R:K[X] \to K[X]$,

$$R(a_0 + a_1X + \dots + a_nX^n) = a_n + a_{n-1}X + \dots + a_0X^n.$$

Un polinom se numește reciproc dacă R(f(X)) = f(X).

- a) Demonstrați că, dacă $f(0) \neq 0$, atunci f(X) ireductibil dacă și numai dacă R(f)(X) este ireductibil.
- b) Demonstrați că, dacă f este reciproc și $\deg f = 2n$, atunci $f(X) = X^n g\left(X + \frac{1}{X}\right)$ cu g un polinom de grad n.
- c) Demonstrați că, dacă f este reciproc și deg f = 2n+1, atunci $f(X) = (X+1)f_1(X)$ cu $f_1(X)$ reciproc de grad par.

Exercițiul 2.6: Rezolvați în C ecuațiile:

a)
$$z^8 + 4z^6 - 10z^4 + 4z^2 + 1 = 0$$
;

b)
$$4z^{11} + 4z^{10} - 21z^9 - 21z^8 + 17z^7 + 17z^6 + 17z^5 + 17z^4 - 21z^3 - 21z^2 + 4z + 4 = 0$$
.

Exercițiul 2.7: Rezolvați în \mathbb{C} ecuația $x^4 + a^4 - 3ax^3 + 3a^3x = 0$.

Exercițiul 2.8: Rezolvați, pentru $x \in \mathbb{C}$, ecuația $(x-a)^4 + (x-b)^4 = (a-b)^4$.

Exercițiul 2.9: Fie n > 1 natural. Demonstrați că polinomul $X^n + 5X^{n-1} + 3$ este ireductibil în $\mathbb{Q}[X]$.

2