Lab Work: Geometric and Radiometric Characterization of a Camera

Meldrick Reimmer

1 Objective

The purpose of this lab is to:

- 1. Characterize the **geometric** properties of a digital camera, including intrinsic parameters such as focal length, principal point, lens distortion, and field of view.
- 2. Characterize the **radiometric** response of the camera, including its Spectral Sensitivity Functions (SSFs) and noise characteristics.

2 Equipment and Materials

- Digital camera (DSLR or spectral sensor)
- Printed checkerboard calibration target
- Uniform light source (LED panel or integrating sphere)
- Reflectance targets (e.g., Spectralon)
- Spectrophotometer or monochromator
- Camera calibration toolbox (e.g., OpenCV)

3 Geometric Characterization

3.1 Intrinsic Parameter Calibration

Figure.1, depicts the process below;

- 1. Mount the camera securely on a tripod.
- 2. Capture 15–20 images of a checkerboard pattern from various angles and distances.
- 3. Use a calibration toolbox to estimate:
 - Focal length (f_x, f_y)
 - Principal point (c_x, c_y)
 - Radial and tangential distortion coefficients

4. Evaluate the reprojection error and calibration accuracy.

Expected Outcome:

- Camera intrinsic matrix
- Distortion coefficients
- Reprojection error plot

Figure 1: From left, camera mounted on tripod, with calibration pattern in scene

4 Radiometric Characterization

4.1 Spectral Sensitivity Function

- 1. Illuminate the sensor using a monochromator to provide narrowband light at discrete wavelengths.
- 2. Record and save each image at a given wavelength as seen in Fig.3.
- 3. Derive the response of each color channel (R, G, B).
- 4. Plot the normalized spectral sensitivity curves for each channel, as seen in Fig.4.

The measurement process to attain the sensors SSF can be model as follows:

$$R_k = \int_{\Omega} C_k(\lambda) L(\lambda) d\lambda, \tag{1}$$

where,

- λ : wavelength.
- R_k : photons received by the camera at channel k.

- $L(\lambda)$: spectral power distribution of the illuminant at wavelength λ .
- $C_k(\lambda)$: spectral sensitivity function of the camera at channel k at wavelength λ .
- k: a channel of the sensor.
- Ω : spectral range over which the integration is performed.

Hence, the measured SSF at a given wavelength is:

$$C_k(\lambda) = \frac{\text{mean value of pixels}}{\text{exposure time}}.$$
 (2)

Figure 2: An example of camera sensor mounted on tripod in directly align infromt of the monochromator.

Figure 3: Acquired color chart of sensor from 360 to 750 nm using monochromator as seen on Fig.2

Figure 4: An example of recovered Spectral Sensitivity Funtion (SSF) of the camera sensor

4.2 Noise Analysis

- 1. Capture a series of static images (e.g., 30 frames) under constant lighting and exposure conditions.
- 2. For each pixel, compute the mean and standard deviation across the series.
- 3. Estimate and visualize:
 - Temporal noise (standard deviation over time)
 - Fixed-pattern noise (pixel-specific deviations from the mean)

Expected Outcome:

- Signal-to-noise ratio (SNR) plot
- Noise histogram or map

5 References

• Zhang, Z. (2000). A flexible new technique for camera calibration. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 22(11), 1330–1334.