Sprawozdanie 3

Jan Bronicki

1 Cel ćwiczenia

Cel ćwiczenia to obliczenie parametrów, przeprowadzenie symulacji oraz wyznaczenie wykresów charakteryzujączych układy sterowania NPN i PNP (4-20 mA).

Dobrane 3 różne wartości R_{pom} to $10\Omega,50\Omega,250\Omega.$ Rezystancja obiciążenie $R_{obc}=1k\Omega.$

2 Moduł 4-20mA, Tranzystor NPN

2.1 R_{pom}

Napięcia do sterowania:

 $U_{pom,4mA} = 4mA \cdot 10\Omega = 0.04V$

 $U_{pom,20mA} = 20mA \cdot 10\Omega = 0.2V$

Dobranie rezystorów (prad $I_1 = 4mA$):

$$R_1 = \frac{23.8V}{4mA} = 5.95k\Omega$$

$$R_2 = \frac{0.04V}{4mA} = 10\Omega$$

$$R_{ptm} = \frac{0.16V}{4mA} = 40\Omega$$

$$R_{MAX,4mA} = \frac{24V - 0.1V - 0.04V}{4mA} = 5965\Omega$$

$$R_{MAX,20mA} = \frac{24V - 0.1V - 0.2V}{20mA} = 1193\Omega$$

Rysunek 1: Schemat NPN

Rysunek 2: $U_{ster}(U_{ce})$

Rysunek 3: $U_{ce}(R_{obc})$

Rysunek 4: $R_{obc}(P_{diss})$

2.2 $R_{pom} = 50\Omega$

Napięcia sterujące układem:

$$U_{pom,4mA}=4mA\cdot 50\Omega=0.2V$$

$$U_{pom,20mA} = 20mA \cdot 50\Omega = 1V$$

Dobranie rezystorów (przyjmuję prąd $I_1 = 4mA$):

$$R_1 = \frac{23V}{4mA} = 5.75k\Omega$$

$$R_2 = \frac{0.2V}{4mA} = 50\Omega$$

$$R_{ptn} = \frac{0.8V}{4mA} = 200\Omega$$

$$R_{MAX,4mA} = \frac{24V - 0.1V - 0.2V}{4mA} 5925\Omega$$

$$R_{MAX,20mA} = \frac{24V - 0.1V - 1V}{20mA} 1145\Omega$$

Rysunek 5: $U_{strer}(U_{ce})$

Rysunek 6: $U_{ce}(R_{obc})$

Rysunek 7: $R_{obc}(P_{diss})$

$R_{pom} = 250\Omega$

Napięcia sterujące:

 $U_{pom,4mA} = 4mA \cdot 250\Omega = 1V$ $U_{pom,20mA} = 20mA \cdot 250\Omega = 5V$ Dobranie rezystorów $(I_1 = 4mA)$:

$$R_1 = \frac{19V}{4mA} = 4.75k\Omega$$

$$R_2 = \frac{1V}{4mA} 250\Omega$$

$$R_{ptn} = \frac{4V}{4mA} = 1k\Omega$$

$$R_{MAX,4ma} = \frac{24V - 0.1V - 1V}{4mA} = 5725\Omega$$

$$R_{MAX,20mA} = \frac{24V - 0.1V - 5V}{20mA} = 945\Omega$$

Rysunek 8: $U_{strer}(U_{ce})$

Rysunek 9: $U_{ce}(R_{obc})$

Rysunek 10: $R_{obc}(P_{diss})$

3 Moduł 4-20mA, Tranzystor PNP

Rysunek 11: Układ z tranzystorem PNP

3.1 $R_{pom} = 10\Omega$

Napięcia sterujące:

 $U_{pom,4mA} = 24V - 4mA \cdot 10\Omega = 23.96V$

 $U_{pom,20mA} = 24V - 20mA \cdot 10\Omega = 23.98V$

Dobranie rezystorów ($I_1 = 4mA$):

$$R_1 = \frac{0.04V}{4mA} = 10\Omega$$

$$R_2 = \frac{23.8V}{4mA} = 5.95k\Omega$$

$$R_{ptn} = \frac{0.16}{4mA} = 40\Omega$$

$$R_{MAX,4mA} = \frac{24V - 0.1V - 0.04V}{4mA} = 5965\Omega$$

$$R_{MAX,20mA} = \frac{24V - 0.1V - 0.2V}{20mA} = 1193\Omega$$

Rysunek 12: $U_{strer}(U_{ce})$

Rysunek 13: $U_{ce}(R_{obc})$

Rysunek 14: $R_{obc}(P_{diss})$

$R_{pom} = 50\Omega$ 3.2

Napięcia sterowania:

$$U_{\text{norm 4m A}} = 24V - 4mA \cdot 50\Omega = 23.80V$$

$$\begin{split} U_{pom,4mA} &= 24V - 4mA \cdot 50\Omega = 23.80V \\ U_{pom,20mA} &= 24V - 20mA \cdot 50\Omega = 23V \end{split}$$

Dobranie rezystorów $(I_1 = 4mA)$:

$$R_1 = \frac{0.02V}{4mA} = 50\Omega$$

$$R_2 = \frac{23V}{4mA} = 5.75k\Omega$$

$$R_{ptn} = \frac{0.8V}{4mA} = 200\Omega$$

$$R_{MAX,4mA} = \frac{24V - 0.1V - 0.2V}{4mA} = 5925\Omega$$

$$R_{MAX,20mA} = \frac{24V - 0.1V - 1V}{20mA} = 1145\Omega$$

Rysunek 15: $U_{strer}(U_{ce})$

Rysunek 16: $U_{ce}(R_{obc})$

Rysunek 17: $R_{obc}(P_{diss})$

3.3 $R_{pom} = 250\Omega$

Napięcia sterowania:

 $U_{pom,4mA} = 24V - 4mA \cdot 250\Omega = 23V$

$$U_{pom,20mA} = 24V - 20mA \cdot 250\Omega = 19V$$

Dobranie rezystorów $(I_1 = 4mA)$:

$$R_1 = \frac{1V}{4mA} = 250\Omega$$

$$R_2 = \frac{19V}{4mA} = 4.75k\Omega$$

$$R_{ptn} = \frac{4V}{4mA} = 1k\Omega$$

$$R_{MAX,4mA} = \frac{24V - 0.1V - 1V}{4mA} = 5725\Omega$$

$$R_{MAX,20mA} = \frac{24V - 0.1V - 5V}{20mA} = 945\Omega$$

Rysunek 18: $U_{strer}(U_{ce})$

Rysunek 19: $U_{ce}(R_{obc})$

Rysunek 20: $R_{obc}(P_{diss})$

4 Wnioski

Układami z tranzystorami NPN można dobrze sterować na niższych napięciach niż układami z tranzystorami PNP. Maxymalne wartości rezystancji obciążenia dla R_{pom} są identyczne dla układów z tranzystorem NPN i PNP, dlatego układy są symetryczne. Sterowanie potencjometrem jest odwrotne w zależności od użytego tranzystora.