МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФГАОУ ВО «Нижегородский государственный университет им. Н.И. Лобачевского»

Институт информационных технологий, математики и механики Кафедра программной инженерии

«УТВЕРЖДАН)»
Руководитель	
исследовательс	кой практики
	D 4 D
	Зорин А.В.

ОТЧЕТ ПО ИССЛЕДОВАТЕЛЬСКОЙ ПРАКТИКЕ

по теме:

«Достаточное условие существования стационарного режима очередей первичных требований в тандеме систем массового обслуживания»

Аспиранта 4 года обучения Кочеганова В.М.

Содержание

1	Информация об исследовательской практике	2
2	Введение	3
3	Постановка задачи на содержательном уровне	4
4	Математическая модель	8
5	Очереди первичных требований	13
6	Заключение	20

1 Информация об исследовательской практике

- 1. Сроки прохождения исследовательской практики: с 02.10.2017 по 31.01.2018.
- 2. База исследовательской практики: кафедра программной инженерии, Нижегородский государственный университет им. Н.И. Лобачевского, г. Нижний Новгород

2 Введение

В связи со стремительным ростом числа машин в современных городах все больший интерес стала представлять теория потоков транспортных средств. Результаты ранних исследований по этой тематике собраны, например, в книгах [1–3]. В этих монографиях потоки машин моделируются с помощью традиционных стохастических потоков событий, весьма полно изученных в классической теории массового обслуживания. Однако классические модели не удается использовать для адекватного описания реальных потоков машин (см. [4–6]). В работах [7–9] предлагается учитывать не только вероятностные свойства последовательности моментов пересечения машинами так называемой виртуальной стоп-линии, но и определять свойства случайных конфигураций автомобилей на дороге. В указанных работах изучается возникновение так называемых пачек машин. Каждая пачка состоит из медленной головной машины и ожидающих возможности обгона машин за ней. Динамика длины пачки определяется возможностью обгона машинами из хвоста всей пачки. Другая динамика, обусловленная возможностью съезда машин с трассы, рассматривается в работах [10–12]. Основным объектом изучения в этих работах является плотность потока машин как функция от расстояния, а знание плотности, в свою очередь, позволяет делать выводы о пропускной способности перекрестков.

Тандемы систем массового обслуживания широко используются при моделировании компьютерных и коммуникационных систем, колл-центров, аварийных служб, при планировании их мощностей, производительности и последующей оптимизации работы. Тандем является простейшей сетью из нескольких приборов, в которой заявка после обслуживания на одном устройстве поступает в очередь на обслуживание следующим устройством. Одной из первых работ, посвященная тандемам систем массового обслуживания, является работа [13]. В ней изучается распределение времени пребывания требования в системе с двумя обслуживающими устройствами. В предположении, что промежутки времени между поступлением заявок в систему и времени обслуживания независимы и имею экпоненциальные законы распределения, было показано, что время ожидания требования в очереди первого прибора стохастически не зависит от его времени ожидания в очереди второго прибора.

Основные результаты теории тандемов в случае простейших стационарных входных потоков и экспоненциального времени обслуживания широко представлены, например, в работах [14–16]. Модели с неэкспоненциальным временем обслуживания рассмотрены в статьях [17–19]. Более общие модели включают в себя так называемые входные ВМАР (Batch Markovian Arrival Process) потоки, особенностью которых является наличие корреляции количества пришедших требований в различные моменты времени. Системы обслуживания с входными потоками типа ВМАР рассмотрены, например, в работах [20–22], где проведены аналитические рассчеты условий стационарности и изучено поведение характеристик обслуживания для двухфазных (тандемных) систем, в том числе с повторными попытками и нетерпеливыми требованиями. Модель последовательных перекрестков с немгновенным перемещением машин между ними была впервые предложена в работах [23,24]. В этих работах динамика перемещения машин от одного перекрестка к другому задается бернулиевской случайной величиной: каждая машина с некоторой фиксированной вероятностью 0 успевает доехать до следующего перекрестка и с противоположной вероятностью <math>1-p остается «между» перекрестками.

Статья [25] отличается от работ [23, 24] введением продления в алгоритм обслуживания во второй системе. В данной работе рассматривается тандем из двух систем массового обслуживания. В первой системе управление осуществляется по циклическому алгоритму. После обслуживания в первой системе, требования немгновенно поступают на вторую, где

обслуживаются по циклическому алгоритму с продлением. Целью этой статьи является исследование условий существования стационарного режима очередей первичных требований, то есть требований, генерируемых внешней средой.

3 Постановка задачи на содержательном уровне

Рассмотрим систему массового обслуживания следующего вида (рис. 1). Пусть в систему с

Рис. 1: Структурная схема системы обслуживания

одним обслуживающим устройством поступают потоки Π_1 , Π_2 , Π_3 и Π_4 . Требования по потоку Π_j становятся в соответствующую очередь O_j с неограниченной вместимостью, $j \in \{1,2,3,4\}$. Для $j \in \{1,2,3\}$ дисциплина очереди O_j , поддерживаемая устройством δ_j , имеет тип FIFO (First In First Out). Таким образом, для обслуживания из соответствующей очереди выбирается то требование, которое пришло раньше. Дисциплина очереди O_4 будет описана ниже. Входные потоки Π_1 и Π_3 формируются внешней средой, которая, будем предполагать, имеет только одно состояние, то есть вероятностная структура потоков не меняется с течением времени. Требования потоков Π_1 и Π_3 формируют независимые между собой неординарные пуассоновские потоки, то есть стационарные, без последействия и ординарные потоки групп требований. Интенсивности соответствующих простейших потоков для Π_1 и Π_3 будем обозначать λ_1 и λ_3 , а распределение числа заявок в группе по потоку Π_j будем описывать производящей функцией

$$f_j(z) = \sum_{\nu=1}^{\infty} p_{\nu}^{(j)} z^{\nu}, \quad j \in \{1, 3\},$$
 (1)

которая предполагается аналитической при любом $z \in \mathbb{C}$ таком, что $|z| < (1+\varepsilon)$, $\varepsilon > 0$. Величина $p_{\nu}^{(j)}$ определяет вероятность того, что по потоку Π_j число требований в группе равно ν . Обслуженные требования потока Π_1 поступают на повторное обслуживание, формируя на выходе поток Π_4 . Обслуженные требования потока Π_4 в свою очередь поступают на повторное

Рис. 2: Класс графов переходов. Незакрашенные вершины являются выходными вершинами, большие черные вершины — входные, небольшие черные — нейтральные, наполовину закрашенным вершинам соответствуют состояния продления

обслуживание, формируя при этом поток Π_2 . Потоки Π_2 и Π_3 являются конфликтными, что означает запрет на одновременное обслуживание требований этих потоков и, следовательно, исследование системы не может быть сведено к задаче с меньшим числом потоков.

Смена состояний обслуживающего устройства осуществляется по следующему правилу. Множество состояний $C_k = \{\Gamma^{(k,r)} : r = \overline{1,n_k}\}$ будем называть k-м циклом, $k = \overline{1,d}$ (Рис. 2). Состояние вида $\Gamma^{(0,r)}$ будем называть состоянием продления, $r = \overline{1,n_0}$. Положим $r \oplus_k 1 = r+1$ для $r = \overline{1,n_k-1}$ и $r \oplus_k 1 = 1$ при $r = n_k$, $k = \overline{0,d}$. В цикле C_k выделим подмножества C_k^O выходных, C_k^I входных и $C_k^N = C_k \setminus (C_k^O \cup C_k^I)$ нейтральных состояний. Тогда после состояния $\Gamma^{(k,r)} \in C_k \setminus C_k^O$ обслуживающее устройство переходит в состояние $\Gamma^{(k,r\oplus_k 1)}$ того же цикла C_k . При $\Gamma^{(k,r)}$ принадлежащем множеству C_k^O прибор переходит в состояние $\Gamma^{(k,r\oplus_k 1)}$, если число требований в очереди O_3 в момент переключения больше заданного порога L. В противном случае, то есть если число требований в очереди O_3 меньше либо равно L, новое состояние прибора будет состоянием продления $\Gamma^{(0,r_1)}$, где $r_1 = h_1(\Gamma^{(k,r)})$ и $h_1(\cdot)$ — заданное отображение множества $\bigcup_{k=1}^d C_k^O$ во множество $\{1,2,\ldots,n_0\}$. После состояния $\Gamma^{(0,r)}$ выбирается состояние того же вида $\Gamma^{(0,r_2)}$, если число требований в очереди O_3 меньше или равно L, где $r_2 = h_2(r)$ и

Рис. 3: Пример: тандем перекрестков

 $h_2(\cdot)$ — заданное отображение множества $\{1,2,\dots,n_0\}$ на себя; в противном случае включается входное состояние $\Gamma^{(k,r_3)} \in C_k^{\mathrm{I}}$, где $\Gamma^{(k,r_3)} = h_3(r)$ и $h_3(\cdot)$ — заданное отображение множества $\{1,2,\dots,n_0\}$ на множество $\bigcup_{k=1}^d C_k^{\mathrm{I}}$. Считается, что все состояния продления $\Gamma^{(0,r)}$ принадлежат множеству ${}^2\Gamma$, а также верны соотношения $C_k^{\mathrm{O}} \subset {}^2\Gamma$ и $C_k^{\mathrm{I}} \subset {}^3\Gamma$. Также будем предполагать, что все циклы имеют ровно одно входное и одно выходное состояние. И последним предположением является то, что все вершины продления образуют один цикл, то есть можем положить $h_2(r) = r \oplus_0 1$.

Таким образом, смена состояний обслуживающего устройства задается соотношением:

$$h(\Gamma^{(k,r)}, y) = \begin{cases} \Gamma^{(k,r \oplus_k 1)}, & \text{если } (\Gamma^{(k,r)} \in C_k \setminus C_k^{\mathcal{O}}) \text{ или } (\Gamma^{(k,r)} \in C_k^{\mathcal{O}} \& y > L); \\ \Gamma^{(0,h_1(\Gamma^{(k,r)}))}, & \text{если } \Gamma^{(k,r)} \in C_k^{\mathcal{O}} \text{ и } y \leqslant L; \\ \Gamma^{(0,r \oplus_0 1)}, & \text{если } k = 0 \text{ и } y \leqslant L; \\ h_3(r), & \text{если } k = 0 \text{ и } y > L. \end{cases}$$
 (2)

В качестве наглядной физической интерпретации можно привести тандем из двух перекрестков (рис. 3). В роли потоков требований, формируемых внешней средой, выступают потоки прибывающих на перекрестки машин: конфликтные потоки Π_1 , Π_5 на первом перекрестке, а также поток Π_3 на втором. Каждая машина из потока Π_1 , проезжая первый перекресток, становится в очередь O_4 потока Π_4 и затем с некой вероятностью ($p_{k,r}$ для состояния $\Gamma^{(k,r)}$ обслуживающего устройства) доезжает до следующего перекрестка, или же не успевает это сделать и остается в очереди O_4 до следующего такта обслуживания. В случае, если машина из очереди O_4 успевает доехать до второго перекрестка, она становится в очередь O_2 и ждет своей очереди для его прохождения.

Предполагается, что светофор на первом перекрестке имеет лишь два состояния $\{g_{1,1},g_{1,2}\}$: в состоянии $g_{1,1}$ машины потока Π_1 пропускаются фиксированное количество времени $\widetilde{T}^{(1,1)}$ («зеленый» свет для Π_1); в состоянии $g_{1,2}$ — простаивают в течение времени $\widetilde{T}^{(1,2)}$ («красный» свет для Π_1). Светофор на втором перекрестке обслуживает по алгоритму с продлением: дополнительно к состоянию обслуживания потока Π_3 (состояние $g_{2,1}$), также имеется два состояния обслуживания потока Π_2 (состояния $\{g_{2,2},g_{2,3}\}$). Первое из них включается всегда после завершения обслуживания потока Π_3 , а второе включается, если после очередного такта обслуживания потока Π_2 длина очереди O_3 не превосходит уровня L. Длительности пребывания светофора на втором перекрестке в каждом из состояний суть $\widetilde{T}^{(2,1)}$, $\widetilde{T}^{(2,2)}$ и $\widetilde{T}^{(2,3)}$.

Рис. 4: Числовой пример тандема перекрестков. Левый граф соответствует первому перекрестку, правый — второму

Рассматривая тандем из двух перекрестков как единую систему массового обслуживания и предполагая наблюдение за ней только в (дискретные) моменты переключения состояния хотя бы одного из светофоров, можно показать, что количество различных состояний у полученной системы конечно. Действительно, положим, например, за состояние объединенной системы вектор $(g^{(1)}, g^{(2)}, s, t)$, где $g^{(1)} \in \{g_{1,1}, g_{1,2}\}$ — состояние 1—го перекрестка, $g^{(2)} \in \{g_{2,1}, g_{2,2}, g_{2,3}\}$ — состояние 2—го перекрестка, $s \in \{0,1,2\}$ — номер последнего сменившего состояние перекрестка (принимает значение 0 в случае, если сменили состояние оба перекрестка) и $t \in \{0,1,2,\ldots,T\}$ — количество времени, оставшееся у продолжающего обслуживание с прошлого такта перекрестка (принимает значение 0, если принимает значение 0 величина s). Здесь T — максимальная длительность нахождения каждого из светофоров в одном состоянии. Тогда количество различных состояний не трудно посчитать и оно не будет превышать величины $2 \times 3 \times 3 \times T$.

В завершение построения примера отметим, что при прохождении перекрестков машины предполагаются движущимися только в прямом направлении, то есть перемешивания конфликтных потоков не допускается. Таким образом, поток Π_5 не представляет интереса для дальнейшего исследования системы и может быть отброшен и, следовательно, построенный пример целиком удовлетворяет структурной схеме на рис. 1.

Теперь продемонстрируем на конкретном числовом примере выделение циклов и состояний продления. Пусть изменение состояний перекрестков и время пребывания (в секундах для определнности) в каждом из состояний задается графами на рис. 4.

За начальное состояние объединенной системы примем $\Gamma_0 = (g_{1,1}, g_{2,1}, 0, 0)$, то есть первый перекресток находится в состоянии $g_{1,1}$, второй — в состоянии $g_{2,1}$, и оба только начали свою работу в своем состоянии (этот факт моделируется равенствами s=0 и t=0). Следующая смена состояний случится у обоих перекрестков одновременно и приведет к следующему состоянию $(g_{1,2}, g_{2,2}, 0, 0)$. Далее смена состояний произойдет также у первого и второго перекрестков, однако второй перекресток может перейти как в состояние $g_{2,1}$, так и в состояние продления $g_{2,3}$. Таким образом следущим состоянием тандема будет либо опять $(g_{1,1}, g_{2,1}, 0, 0)$, либо $(g_{1,1}, g_{2,3}, 0, 0)$. Продолжая рассуждения аналогичным образом, получим следущий список всех возможных состояний системы:

$$(g_{1,1}, g_{2,1}, 0, 0) = \Gamma^{(1,1)}, \qquad (g_{1,2}, g_{2,2}, 0, 0) = \Gamma^{(1,2)}, \qquad (g_{1,1}, g_{2,3}, 0, 0) = \Gamma^{(0,1)},$$

$$(g_{1,1}, g_{2,3}, 15, 2) = \Gamma^{(0,2)}, \qquad (g_{1,2}, g_{2,3}, 0, 0) = \Gamma^{(0,3)}, \qquad (g_{1,2}, g_{2,3}, 15, 2) = \Gamma^{(0,4)},$$

$$(g_{1,2}, g_{2,1}, 15, 2) = \Gamma^{(4,1)}, \qquad (g_{1,1}, g_{2,1}, 15, 1) = \Gamma^{(4,2)}, \qquad (g_{1,1}, g_{2,2}, 15, 2) = \Gamma^{(4,3)},$$

$$(g_{1,2}, g_{2,2}, 15, 1) = \Gamma^{(4,4)}, \qquad (g_{1,2}, g_{2,3}, 15, 2) = \Gamma^{(0,5)}, \qquad (g_{1,2}, g_{2,1}, 0, 0) = \Gamma^{(3,1)},$$

$$(g_{1,1}, g_{2,2}, 0, 0) = \Gamma^{(3,2)}, \qquad (g_{1,1}, g_{2,1}, 15, 2) = \Gamma^{(2,1)}, \qquad (g_{1,2}, g_{2,1}, 15, 1) = \Gamma^{(2,2)},$$

$$(g_{1,2}, g_{2,1}, 15, 1) = \Gamma^{(2,2)}, \qquad (g_{1,2}, g_{2,2}, 15, 1) = \Gamma^{(2,2)},$$

В соответсвии с приведенными выше обозначениями, множества C_1 , C_2 , C_3 , C_4 , а также множество состояний продления строятся однозначным образом. Множествами входных состояний будут $C_1^{\rm I} = \{\Gamma^{(1,1)}\}$, $C_2^{\rm I} = \{\Gamma^{(2,1)}\}$, $C_3^{\rm I} = \{\Gamma^{(3,1)}\}$ и $C_4^{\rm I} = \{\Gamma^{(4,1)}\}$. Множествами выходных состояний будут $C_1^{\rm O} = \{\Gamma^{(1,2)}\}$, $C_2^{\rm O} = \{\Gamma^{(2,4)}\}$, $C_3^{\rm O} = \{\Gamma^{(3,2)}\}$ и $C_4^{\rm O} = \{\Gamma^{(4,4)}\}$. Функции $h_1(\cdot)$, $h_2(\cdot)$ и $h_3(\cdot)$ задаются поточечно:

$$h_1(\Gamma^{(1,2)}) = 1$$
, $h_1(\Gamma^{(2,4)}) = 2$, $h_1(\Gamma^{(3,2)}) = 3$, $h_1(\Gamma^{(4,4)}) = 5$,
 $h_2(1) = 2$, $h_2(2) = 3$, $h_2(3) = 4$ $h_2(4) = 1$, $h_2(5) = 1$,
 $h_3(1) = \Gamma^{(2,1)}$, $h_3(2) = \Gamma^{(3,1)}$, $h_3(3) = \Gamma^{(4,1)}$ $h_3(4) = \Gamma^{(1,1)}$, $h_3(5) = \Gamma^{(1,1)}$.

Этим завершается построение числового примера.

4 Математическая модель

Описанная в предыдущем разделе на содержательном уровне система массового обслуживания должна рассматриваться как кибернетическая управляющая система обслуживания (см. [26]). Схема управляющей системы приведена на Рис. 1. На схеме присутствуют следующие блоки: 1) внешняя среда с одним состоянием; 2) входные полюса первого типа — входные потоки Π_1 , Π_2 , Π_3 , Π_4 ; 3) входные полюса второго типа — потоки насыщения Π_1^{hac} , Π_2^{hac} , Π_3^{hac} , Π_4^{hac} ; 4) внешняя память — очереди O_1 , O_2 , O_3 , O_4 ; 5) устройство по переработке информации внешней памяти — устройства по поддержанию дисциплины очереди δ_1 , δ_2 , δ_3 , δ_4 ; 6) внутренняя память — обслуживающее устройство (ОУ); 7) устройство по переработке информации во внутренней памяти — граф смены состояний; 8) выходные полюса $\Pi_1^{\text{вых}}$, $\Pi_2^{\text{вых}}$, $\Pi_3^{\text{вых}}$, $\Pi_4^{\text{вых}}$. Координатой блока является номер этого блока на схеме.

Для задания информации блоков введем следующие величины и элементы, а также укажем множества их возможных значений. В качестве дискретной временной шкалы выберем последовательность $\tau_0=0,\,\tau_1,\,\tau_2,\,\ldots$ моментов смены состояния обслуживающего устройства. Обозначим $\Gamma_i,\,i\geqslant 1$, из множества Γ состояние обслуживающего устройства в течение времени $(\tau_{i-1};\tau_i]$ и $\Gamma_0\in\Gamma$ — в момент времени τ_0 , количество $\varkappa_{j,i}\in\mathbb{Z}_+,\,i\geqslant 0$, требований в очереди O_j в момент времени τ_i , количество $\eta_{j,i}\in\mathbb{Z}_+,\,i\geqslant 0$, требований, поступивших в очередь O_j по потоку Π_j в течение времени $(\tau_i;\tau_{i+1}]$, количество $\xi_{j,i}\in\mathbb{Z}_+,\,i\geqslant 0$, требований по потоку насыщения Π_j^{hac} в течение времени $(\tau_i;\tau_{i+1}]$, количество $\xi_{j,i}\in\mathbb{Z}_+,\,i\geqslant 0$, реально обслуженных требований по потоку Π_j в течение времени $(\tau_i;\tau_{i+1}]$; $j=\overline{1,4}$.

Закон изменения состояния обслуживающего устройства будем предполагать заданным соотношением

$$\Gamma_{i+1} = h(\Gamma_i, \varkappa_{3,i}), \tag{3}$$

где отображение $h(\cdot,\cdot)$ определено в (2). Для определения длительности T_{i+1} состояния обслуживающего устройства в течение времени $(\tau_i; \tau_{i+1}]$ удобно ввести функцию $h_T(\cdot,\cdot)$:

$$T_{i+1} = h_T(\Gamma_i, \varkappa_{3,i}) = T^{(k,r)},$$
 где k и r таковы, что $\Gamma^{(k,r)} = \Gamma_{i+1} = h(\Gamma_i, \varkappa_{3,i}).$

Функциональная зависимость

$$\overline{\xi}_{j,i} = \min\{\varkappa_{j,i} + \eta_{j,i}, \xi_{j,i}\}, \quad j \in \{1, 2, 3\},$$
(4)

между величиной $\overline{\xi}_{j,i}$ и величинами $\varkappa_{j,i},\,\eta_{j,i},\,\xi_{j,i}$ реализует стратегию механизма обслуживания требований. Далее, поскольку

$$\varkappa_{j,i+1} = \varkappa_{j,i} + \eta_{j,i} - \overline{\xi}_{j,i}, \quad j \in \{1, 2, 3\},$$

то из выражения (4) следует соотношение

$$\varkappa_{j,i+1} = \max\{0, \varkappa_{j,i} + \eta_{j,i} - \xi_{j,i}\}, \quad j \in \{1, 2, 3\}.$$
(5)

Из формулировки поставленной задачи (см. также структурную схему на Рис. 1) следуют соотношения для потока Π_4 :

$$\eta_{4,i} = \min\{\xi_{1,i}, \varkappa_{1,i} + \eta_{1,i}\}, \quad \varkappa_{4,i+1} = \varkappa_{4,i} + \eta_{4,i} - \eta_{2,i}, \quad \xi_{4,i} = \varkappa_{4,i}.$$
(6)

Нелокальное описание входных потоков и потоков насыщения заключается в указании некоторых свойств условных распределений выделенных дискретных компонент η_i и ξ_i маркированных процессов $\{(\tau_i,\nu_i,\eta_i);i\geqslant 0\}$ и $\{(\tau_i,\nu_i,\xi_i);i\geqslant 0\}$ при фиксированных значениях метки $\nu_i=(\Gamma_i;\varkappa_i),$ где $\eta_i=(\eta_{1,i},\eta_{2,i},\eta_{3,i},\eta_{4,i}),\ \xi_i=(\xi_{1,i},\xi_{2,i},\xi_{3,i},\xi_{4,i})$ и $\varkappa_i=(\varkappa_{1,i},\varkappa_{2,i},\varkappa_{3,i},\varkappa_{4,i}).$ Введем функции $\varphi_1(\cdot,\cdot)$ и $\varphi_3(\cdot,\cdot)$ из разложений

$$\sum_{\nu=0}^{\infty} z^{\nu} \varphi_j(\nu, t) = \exp\{\lambda_j t (f_j(z) - 1)\},\,$$

где $f_j(z)$ определены выражением (1), $j \in \{1,3\}$. Функция $\varphi_j(\nu,t)$ по своему смыслу есть вероятность поступления $\nu=0,\,1,\,\ldots$ требований по потоку Π_j за время $t\geqslant 0$. Положим $\varphi_j(\nu,t)$ равной нулю при $\nu<0$. Функцию $\psi(\cdot,\cdot,\cdot)$ зададим формулой

$$\psi(k; y, u) = C_u^k u^k (1 - u)^{y - k}.$$

По своему смыслу $\psi(k;y,u)$ есть вероятность поступления k требований по потоку Π_2 при условии, что очередь O_4 содержит y требований и обслуживающее устройство находится в состоянии $\Gamma^{(k,r)}$, так что $u=p_{k,r}$. При нарушении условия $0\leqslant k\leqslant y$ положим $\psi(k;y,u)$ равной нулю.

Пусть $a=(a_1,a_2,a_3,a_4)\in\mathbb{Z}_+^4$ и $x=(x_1,x_2,x_3,x_4)\in\mathbb{Z}_+^4$. Тогда из постановки задачи на содержательном уровне следует, что при фиксированном значении метки $\nu_i=(\Gamma^{(k,r)};x)$ вероятность $\varphi(a,k,r,x)$ одновременного выполнения равенств $\eta_{1,i}=a_1,\ \eta_{2,i}=a_2,\ \eta_{3,i}=a_3,\ \eta_{4,i}=a_4$ есть

$$\varphi_1(a_1, h_T(\Gamma^{(k,r)}, x_3))\psi(a_2, x_4, p_{\tilde{k}, \tilde{r}})\varphi_3(a_3, h_T(\Gamma^{(k,r)}, x_3))\delta_{a_4, \min\{\ell(\tilde{k}, \tilde{r}, 1), x_1 + a_1\}},\tag{7}$$

где \tilde{k} и \tilde{r} таковы, что $\Gamma^{(\tilde{k},\tilde{r})}=h(\Gamma^{(k,r)},x_3)$ и $\delta_{i,j}$ есть символ Кронекера:

$$\delta_{i,j} = \begin{cases} 1, & \text{если } i = j, \\ 0, & \text{если } i \neq j. \end{cases}$$

Пусть $b=(b_1,b_2,b_3,b_4)\in\mathbb{Z}_+^4$. Из содержательной постановки задачи также следует, что вероятность $\zeta(b,k,r,x)$ одновременного выполнения равенств $\xi_{1,i}=b_1,\ \xi_{2,i}=b_2,\ \xi_{3,i}=b_3,\ \xi_{4,i}=b_4$ при фиксированном значении $(\Gamma^{(k,r)};x)$ метки ν_i есть

$$\delta_{b_1,\ell(\tilde{k},\tilde{r},1)} \times \delta_{b_2,\ell(\tilde{k},\tilde{r},2)} \times \delta_{b_3,\ell(\tilde{k},\tilde{r},3)} \times \delta_{b_4,x_4}. \tag{8}$$

Из формулы (8) следует для $j \in \{1, 2, 3\}$, что вероятность события $\xi_{j,i} = 0$ равна 1 в случае $h(\Gamma^{(k,r)}, x_3) \notin {}^j\Gamma$ и что вероятность события $\xi_{j,i} = \ell(\tilde{k}, \tilde{r}, j)$ равна 1, если $\Gamma^{(\tilde{k}, \tilde{r})} = h(\Gamma^{(k,r)}, x_3) \in {}^j\Gamma$.

Содержательный смысл следующей теоремы состоит в том, что сформулированные выше функциональные связи и вероятностные свойства введенных объектов непротиворечивы и могут быть реализованы на некотором вероятностном пространстве.

Теорема 1. Пусть $\gamma_0 = \Gamma^{(k_0,r_0)} \in \Gamma$ и $x^0 = (x_{1,0}, x_{2,0}, x_{3,0}, x_{4,0}) \in \mathbb{Z}_+^4$ фиксированы. Тогда существует вероятностное пространство $(\Omega, \mathcal{F}, \mathbf{P}(\cdot))$ и заданные на нем случайные величины $\eta_{j,i} = \eta_{j,i}(\omega)$, $\xi_{j,i} = \xi_{j,i}(\omega)$, $\varkappa_{j,i} = \varkappa_{j,i}(\omega)$ и случайные элементы $\Gamma_i = \Gamma_i(\omega)$, $i \geqslant 0$, $j = \overline{1,4}$, такие, что 1) имеют место равенства $\Gamma_0(\omega) = \gamma_0$ и $\varkappa_0(\omega) = x^0$; 2) выполняются соотношения (3), (5), (6); 3) для любых $a \in \mathbb{Z}_+^4$, $b \in \mathbb{Z}_+^4$ и любых $x^t = (x_{1,t}, x_{2,t}, x_{3,t}, x_{4,t}) \in \mathbb{Z}_+^4$, $\Gamma^{(k_t, r_t)} \in \Gamma$, $t = 1, 2, \ldots$, таких, что $\mathbf{P}\left(\bigcap_{t=0}^i \{\omega \colon \Gamma_t = \Gamma^{(k_t, r_t)}, \varkappa_t = x^t\}\right) > 0$, условное распределение векторов η_i и ξ_i , $i \geqslant 0$, имеет вид

$$\mathbf{P}\bigg(\{\omega \colon \eta_i = a, \xi_i = b\} \bigg| \bigcap_{t=0}^i \{\omega \colon \Gamma_t = \Gamma^{(k_t, r_t)}, \varkappa_t = x^t\} \bigg) = \varphi(a, k_i, r_i, x^i) \times \zeta(b, k_i, r_i, x^i), \quad (9)$$

где функции $\varphi(\cdot,\cdot,\cdot,\cdot)$ и $\zeta(\cdot,\cdot,\cdot,\cdot)$ определяются формулами (7) и (8).

Доказательство. Для построения вероятностного пространства $(\Omega, \mathcal{F}, \mathbf{P}(\cdot))$ воспользуемся теоремой И. Тулчи (см. [27], с. 348).

Введем последовательность измеримых пространств $(\Omega_0, \mathcal{F}_0)$, $(\Omega_1, \mathcal{F}_1)$,..., где $\Omega_i = \mathbb{Z}_+^3$, $\omega_i = (\omega_{1,i}, \omega_{2,i}, \omega_{3,i}) \in \Omega_i$, а σ -алгебра $\mathcal{F}_i = 2^{\Omega_i}$ есть множество всех подмножеств множества Ω_i . Пусть $\Gamma^{(\tilde{k},\tilde{r})} = h(\Gamma^{(k_0,r_0)}, x_{3,0})$. Зададим на измеримом пространстве $(\Omega_0, \mathcal{F}_0)$ вероятностную меру $P_0(\cdot)$ ее значениями на одноточечных множествах:

$$P_0(\{(a_1, a_2, a_3)\}) = \varphi_1(a_1, h_T(\Gamma^{(k_0, r_0)})) \times \psi(a_2, x_{2,0}, p_{\tilde{k}, \tilde{r}}) \times \varphi_3(a_3, h_T(\Gamma^{(k_0, r_0)})). \tag{10}$$

Для $j \in \{1, 2, 3\}$ определим величины

$$\tilde{\Gamma}_0(\omega_0) = \gamma_0, \quad \tilde{\varkappa}_{j,0}(\omega_0) = x_{j,0}, \quad \tilde{\xi}_{j,0}(\omega_0) = l(\tilde{k}, \tilde{r}, j), \quad \tilde{\eta}_{j,0}(\omega_0) = \omega_{j,0}, \tag{11}$$

И

$$\tilde{\varkappa}_{4,0}(\omega_0) = x_{4,0}, \quad \tilde{\xi}_{4,0}(\omega_0) = x_{4,0}, \quad \tilde{\eta}_{4,0}(\omega_0) = \min\{\tilde{\xi}_{1,0}(\omega_0), \tilde{\varkappa}_{1,0}(\omega_0) + \tilde{\eta}_{1,0}(\omega_0)\}.$$
 (12)

Теперь предположим, что заданы вероятностные меры $P_i(\omega_0, \omega_1, \dots, \omega_{i-1}; \cdot)$ на измеримом пространстве $(\Omega_i, \mathcal{F}_i)$, $i = \overline{0, n}$, и фиксирован набор $(\omega_0, \omega_1, \dots, \omega_n)$. Положим для $j \in \{1, 2, 3\}$ и $i = \overline{0, n}$

$$\tilde{\Gamma}_{i+1} = \Gamma^{(k^*,r^*)} = h(\tilde{\Gamma}_i, \tilde{\varkappa}_{3,i}), \quad \tilde{\varkappa}_{j,i+1} = \max\{0, \tilde{\varkappa}_{j,i} + \tilde{\eta}_{j,i} - \tilde{\xi}_{j,i}\}, \tag{13}$$

$$\tilde{\varkappa}_{4,i+1} = \tilde{\varkappa}_{4,i} + \tilde{\eta}_{4,i} - \tilde{\eta}_{2,i}, \quad \tilde{\xi}_{j,i+1} = l(k^*, r^*, j), \quad \tilde{\eta}_{j,i+1} = \omega_{j,i+1}$$
 (14)

$$\tilde{\eta}_{4,i+1} = \min\{\tilde{\xi}_{1,i+1}, \tilde{\varkappa}_{1,i+1} + \tilde{\eta}_{1,i+1}\}, \quad \tilde{\xi}_{4,i+1} = \tilde{\varkappa}_{4,i+1}. \tag{15}$$

Заметим, что значения $\tilde{\Gamma}_{j,i}$, $\tilde{\xi}_{j,i}$, $\tilde{\eta}_{j,i}$, $\tilde{\varkappa}_{j,i}$, найденные по формулам (13)–(15) по наборам $(\omega_0,\omega_1,\ldots,\omega_n)$ и $(\omega_0,\omega_1,\ldots,\omega_i)$, $n\geqslant i$, совпадают. Определим на измеримом пространстве $(\Omega_{n+1},\mathcal{F}_{n+1})$ вероятностную меру $P_{n+1}(\omega_0,\omega_1,\ldots,\omega_n;\cdot)$ ее значениями на одноточечных множествах $\{(a_1,a_2,a_3)\}$, $(a_1,a_2,a_3)\in\mathbb{Z}_+^3$:

$$P_{n+1}(\omega_0, \omega_1, \dots, \omega_n; \{(a_1, a_2, a_3)\}) =$$

$$= \varphi_1(a_1, h_T(\tilde{\Gamma}_n, \tilde{\varkappa}_{3,n})) \times \psi(a_2, \tilde{\varkappa}_{4,n}, p_{k^*,r^*}) \times \varphi_3(a_3, h_T(\tilde{\Gamma}_n, \tilde{\varkappa}_{3,n})). \quad (16)$$

Тогда (в соответствии с теоремой Ионеску Тулчи) для декартова произведения $\Omega = \prod_{i=0}^{\infty} \Omega_i$ пространств элементарных исходов и произведения σ -алгебр $\mathcal{F} = \bigotimes_{i=0}^{\infty} \mathcal{F}_i$ на (Ω, \mathcal{F}) будет существовать единственная вероятностная мера $\mathbf{P}(\cdot)$ такая, что для любого $i \geqslant 0$ верно равенство

$$\mathbf{P}(\{\omega \colon \omega_0 \in A_0, \omega_1 \in A_1, \dots, \omega_i \in A_i\}) = P_i(A_0 \times A_1 \times \dots \times A_i),\tag{17}$$

где

$$P_i(A_0 \times A_1 \times \ldots \times A_i) = \int_{A_0} P_0(d\omega_0) \int_{A_1} P_1(\omega_0; d\omega_1) \dots \int_{A_i} P_i(\omega_0, \omega_1, \ldots, \omega_{i-1}; d\omega_i), \tag{18}$$

для любого A_i из \mathcal{F}_i . Итак, вероятностное пространство $(\Omega, \mathcal{F}, \mathbf{P}(\cdot))$ построено.

Теперь введем на пространстве $(\Omega, \mathcal{F}, \mathbf{P}(\cdot))$ следующие случайные величины и элементы, $i \geqslant 0, j = \overline{1,4}$:

$$\Gamma_i(\omega) = \tilde{\Gamma}_i, \quad \varkappa_{j,i}(\omega) = \tilde{\varkappa}_{j,i}, \quad \xi_{j,i}(\omega) = \tilde{\xi}_{j,i}, \quad \eta_{j,i}(\omega) = \tilde{\eta}_{j,i}.$$

и докажем, что они удовлетворяют условиям теоремы. Для сокращения записи зависимость от ω в обозначении случайных элементов и случайных величин далее будем опускать. Из формулы (13) следует, что случайные элементы Γ_i удовлетворяют соотношению (3), а случайные величины $\varkappa_{j,i}$ для $j \in \{1,2,3\}$ удовлетворяют соотношению (5). Из формулы (14) заключаем, что $\varkappa_{4,i}$ удовлетворяет соотношению (6). Далее, из условий (12) и (15) следует справедливость соотношений (6) для величин $\eta_{4,i}$ и $\xi_{4,i}$.

Перейдем к доказательству равенства (9). Для сокращения записи введем множества $B_i = \bigcap_{t=0}^i \{\omega \colon \Gamma_t = \Gamma^{(k_t,r_t)}, \varkappa_t = x^t\}, i \geqslant 0$. Найдем явное выражение для условной вероятности $\mathbf{P}(\{\omega \colon \eta_i = a, \xi_i = b\} | B_i)$. Пусть $\Gamma^{(\tilde{k}_i, \tilde{r}_i)} = h(\Gamma^{(k_i, r_i)}, x^i)$. Запишем по определению условной вероятности, предполагая, что $\mathbf{P}(B_i) > 0$:

$$\mathbf{P}(\{\omega \colon \eta_i = a, \xi_i = b\} \mid B_i) = \mathbf{P}(\{\omega \colon \eta_i = a, \xi_i = b\} \cap B_i) \times (\mathbf{P}(B_i))^{-1}.$$
(19)

Далее из соотношений (17), (18) и того факта, что значения Γ_i и \varkappa_i зависят только от ω_0 , ω_1 , ..., ω_{i-1} , но не от ω_i , (этот факт следует из формул (11) – (14)), получим выражение для второго сомножителя последнего выражения

$$\mathbf{P}(B_{i}) = \sum_{\substack{\omega_{0}, \omega_{1}, \dots, \omega_{i-1}:\\ \Gamma_{t} = \Gamma^{(k_{t}, r_{t})}, \, \varkappa_{t} = x^{t},\\ t = 0 \ i = 1}} P_{0}(\omega_{0}) \times P_{1}(\omega_{0}; \{\omega_{1}\}) \times \dots \times P_{i-1}(\omega_{0}, \omega_{1}, \dots, \omega_{i-2}; \{\omega_{i-1}\}).$$
(20)

Преобразуем множество $\{\omega \colon \eta_i = a, \xi_i = b\} \cap \{\omega \colon \Gamma_i = \Gamma^{(k_i, r_i)}, \varkappa_i = x^i\}$, учитывая соотношения (11) – (15):

$$\{\omega \colon \eta_{i} = a, \xi_{i} = b\} \cap \left\{\omega \colon \Gamma_{i} = \Gamma^{(k_{i}, r_{i})}, \varkappa_{i} = x^{i}\right\} = \left\{\omega \colon \Gamma_{i} = \Gamma^{(k_{i}, r_{i})}, \varkappa_{i} = x^{i}\right\} \cap \left\{\omega \colon \eta_{j,i} = a_{j}, j = \overline{1,3}\right\} \cap \left\{\omega \colon \xi_{j,i} = b_{j}, j = \overline{1,3}\right\} \cap \left\{\omega \colon \xi_{4,i} = b_{4}\right\} \cap \left\{\omega \colon \eta_{4,i} = a_{4}\right\} = \left\{\omega \colon \Gamma_{i} = \Gamma^{(k_{i}, r_{i})}, \varkappa_{i} = x^{i}\right\} \cap \left\{\omega \colon \omega_{j,i} = a_{j}, j = \overline{1,3}\right\} \cap \left\{\omega \colon b_{j} = \ell(\tilde{k}_{i}, \tilde{r}_{i}, j), j = \overline{1,3}\right\} \cap \left\{\omega \colon b_{4} = x_{4,i}\right\} \cap \left\{\omega \colon a_{4} = \min\left\{\ell(\tilde{k}_{i}, \tilde{r}_{i}, 1), x_{1,i} + a_{1}\right\}\right\}.$$

Тогда для второго множителя из правой части выражения (19) имеем:

$$\mathbf{P}(\{\omega \colon \eta_{i} = a, \xi_{i} = b\} \cap B_{i}) = \\
= \mathbf{P}(\{\omega \colon \eta_{i} = a, \xi_{i} = b\} \cap \{\omega \colon \Gamma_{i} = \Gamma^{(k_{i}, r_{i})}, \varkappa_{i} = x^{i}\} \cap B_{i-1}) = \\
= \delta_{b_{4}, x_{4, i}} \times \delta_{a_{4}, \min\{\ell(\tilde{k}_{i}, \tilde{r}_{i}, 1), x_{1, i} + a_{1}\}} \times \prod_{j=1}^{3} \delta_{b_{j}, \ell(\tilde{k}_{i}, \tilde{r}_{i}, j)} \times \\
\times \mathbf{P}(\{\omega \colon \omega_{j, i} = a_{j}, j = \overline{1, 3}\} \cap \{\omega \colon \Gamma_{i} = \Gamma^{(k_{i}, r_{i})}, \varkappa_{i} = x^{i}\} \cap B_{i-1}). \tag{21}$$

И по аналогии со вторым множителем в выражении (20) преобразуем последний сомножитель правой части равенства (21):

$$\mathbf{P}(\{\omega : \omega_{j,i} = a_j, j = \overline{1,3}; \Gamma_i = \Gamma^{(k_i,r_i)}, \varkappa_i = x^i\} \cap B_{i-1}) = \sum_{\substack{\omega_0,\omega_1,\dots,\omega_{i-1}:\\ \Gamma_t = \Gamma^{(k_t,r_t)}, \varkappa_t = x^t,\\ t = \overline{0,i-1}}} P_0(\omega_0) \times P_1(\omega_0; \{\omega_1\}) \times \dots \times P_{i-1}(\omega_0,\omega_1,\dots,\omega_{i-2}; \{\omega_{i-1}\}) \times \times P_i(\omega_0,\omega_1,\dots,\omega_{i-1}; \{(a_1,a_2,a_3)\})$$

и, учитывая выражение (16), получим

$$\mathbf{P}(\{\omega : \omega_{j,i} = a_j, j = \overline{1,3}; \Gamma_i = \Gamma^{(k_i,r_i)}, \varkappa_i = x^i\} \cap B_{i-1}) = \\
= \varphi_1(a_1, h_T(\Gamma_i, x_{3,i})) \times \psi(a_2, x_{4,i}, p_{\tilde{k}_i, \tilde{r}_i}) \times \varphi_3(a_3, h_T(\Gamma_i, x_{3,i})) \times \\
\times \sum_{\substack{\omega_0, \omega_1, \dots, \omega_{i-1} : \\ \Gamma_t = \Gamma^{(k_t, r_t)}, \varkappa_t = x^t, \\ t = \overline{0, i-1}} P_0(\omega_0) \times P_1(\omega_0; \{\omega_1\}) \times \dots \times P_{i-1}(\omega_0, \omega_1, \dots, \omega_{i-2}; \{\omega_{i-1}\}). \quad (22)$$

Подставляя выражение (22) в правую часть равенств (21), а затем выражения (21) и (20) в равенство (19), получим:

$$\mathbf{P}(\{\omega : \eta_{i} = a, \xi_{i} = b\} | B_{i}) = \\
= \delta_{b_{4},x_{4,i}} \times \delta_{a_{4},\min\{\ell(\bar{k}_{i},\bar{r}_{i},1),x_{1,i}+a_{1}\}} \times \prod_{j=1}^{3} \delta_{b_{j},\ell(\bar{k}_{i},\bar{r}_{i},j)} \times \varphi_{1}(a_{1},h_{T}(\Gamma_{i},x_{3,i})) \times \\
\times \psi(a_{2},x_{4,i},p_{\bar{k}_{i},\bar{r}_{i}}) \times \varphi_{3}(a_{3},h_{T}(\Gamma_{i},x_{3,i})) \times \\
\times \sum_{\substack{\omega_{0},\omega_{1},\ldots\omega_{i-1}:\\ \Gamma_{t}=\Gamma^{(k_{t},r_{t})},\varkappa_{t}=x^{t},\forall 0 \leqslant t \leqslant i-1}} P_{0}(\omega_{0}) \times P_{1}(\omega_{0};\{\omega_{1}\}) \times \ldots \times P_{i-1}(\omega_{0},\omega_{1},\ldots,\omega_{i-2};\{\omega_{i-1}\}) \times \\
\times \left(\sum_{\substack{\omega_{0},\omega_{1},\ldots\omega_{i-1}:\\ \Gamma_{t}=\Gamma^{(k_{t},r_{t})},\varkappa_{t}=x^{t},\forall 0 \leqslant t \leqslant i-1}} P_{0}(\omega_{0}) \times P_{1}(\omega_{0};\{\omega_{1}\}) \times \ldots \times \\
\times P_{i-1}(\omega_{0},\omega_{1},\ldots,\omega_{i-2};\{\omega_{i-1}\})\right)^{-1}$$

и после сокращения одинаковых сумм получаем требуемое равенство (9).

5 Очереди первичных требований

Рассмотрим случайную последовательность

$$\{(\Gamma_i, \varkappa_{1,i}, \varkappa_{3,i}); i \geqslant 0\},$$

включающую в себя состояния $\varkappa_{1,i}$ и $\varkappa_{3,i}$ очередей O_1 и O_3 первичных требований в момент τ_i . Приведем ниже несколько результатов, касающихся этой последовательности.

Утверждение 1. Пусть $\Gamma_0 = \Gamma^{(k,r)} \in \Gamma$ и $(\varkappa_{1,0}, \varkappa_{3,0}) = (x_{1,0}, x_{3,0}) \in \mathbb{Z}_+^2$ фиксированы. Тогда последовательность $\{(\Gamma_i, \varkappa_{1,i}, \varkappa_{3,i}); i \geqslant 0\}$ является однородной счетной цепью Маркова.

Обозначим для $\gamma \in \Gamma$ и $(x_1, x_3) \in \mathbb{Z}_+^2$

$$Q_{1,i}(\gamma, x_1, x_3) = \mathbf{P}(\Gamma_i = \gamma, \varkappa_{1,i} = x_1, \varkappa_{3,i} = x_3), \tag{23}$$

а также введем множество

$$\mathbb{H}_{-1}(\Gamma^{(k,r)}, x_3) = \{ \gamma \in \Gamma \colon h(\gamma, x_3) = \Gamma^{(k,r)} \}.$$

Положим $r\ominus_k 1=r-1$ для $r=\overline{2,n_k}$ и $r\ominus_k 1=n_k$ при $r=1,\ k=\overline{0,d}$. Из определения (2) находим явный вид множества для различных $\Gamma^{(k,r)}$ и x_3 :

$$\mathbb{H}_{-1}(\Gamma^{(k,r)}, x_3) = \begin{cases} \{\Gamma^{(k_1,r_1)}, \Gamma^{(0,r\ominus_01)}\}, & \text{если } (k=0 \& x_3 \leqslant L); \\ \{\Gamma^{(k,r\ominus_k1)}, \Gamma^{(0,r_2)}\}, & \text{если } (\Gamma^{(k,r)} \in C_k^{\mathbf{I}} \& x_3 > L); \\ \{\Gamma^{(k,r\ominus_k1)}\}, & \text{если } (\Gamma^{(k,r)} \in C_k^{\mathbf{O}}) \text{ или } (\Gamma^{(k,r)} \in C_k^{\mathbf{N}}); \\ \varnothing, & \text{если } (k=0 \& x_3 > L) \\ & \text{или } (\Gamma^{(k,r)} \in C_k^{\mathbf{I}} \& x_3 \leqslant L), \end{cases}$$
(24)

где k_1, r_1 таковы, что $h_1(\Gamma^{(k_1, r_1)}) = r$, и r_2 таково, что $h_3(r_2) = \Gamma^{(k, r)}$.

Важным шагом при исследовании стационарного режима цепи $\{(\Gamma_i, \varkappa_{1,i}, \varkappa_{3,i}); i \geqslant 0\}$ является нахождение множества ее существенных состояний. Введем множества

$$S_{0,r}^1 = \left\{ (\Gamma^{(0,r)}, x_1, x_3) \colon (x_1, x_3) \in Z_+^2, \ x_3 > L - \max_{k=1,2,\dots,d} \left\{ \sum_{t=1}^{n_k} \ell(k, t, 3) \right\} \right\},$$

для $1\leqslant r\leqslant n_0$ и множества

$$S_{k,r}^1 = \left\{ (\Gamma^{(k,r)}, x_1, x_3) \colon (x_1, x_3) \in Z_+^2, \ x_3 > L - \sum_{t=1}^r \ell(k, t, 3) \right\},\,$$

для $1\leqslant k\leqslant d,\, 1\leqslant r\leqslant n_k.$ Тогда верно следующее

Утверждение 2. Множество существенных состояний марковской цепи $\{(\Gamma_i, \varkappa_{1,i}, \varkappa_{3,i}); i \geqslant 0\}$ имеет вид $\left(\bigcup_{1 \leqslant r \leqslant n_0} S_{0,r}^1\right) \cup \left(\bigcup_{\substack{1 \leqslant k \leqslant d \\ 1 \leqslant r \leqslant n_k}} S_{k,r}^1\right)$.

Пусть k и r таковы, что $\Gamma^{(k,r)} \in \Gamma$. Введем частичные производящие функции

$$\mathfrak{M}^{(1,i)}(k,r,v_1,v_3) = \sum_{w_1=0}^{\infty} \sum_{w_3=0}^{\infty} Q_{1,i}(\Gamma^{(k,r)},w_1,w_3) v_1^{w_1} v_3^{w_3},$$

и вспомогательные функции

$$q^{(1)}(k,r,v_1) = v_1^{-\ell(k,r,1)} \sum_{w=0}^{\infty} \varphi_1(w,T^{(k,r)}) v_1^w;$$

$$q^{(3)}(k,r,v_3) = v_3^{-\ell(k,r,3)} \sum_{w=0}^{\infty} \varphi_3(w,T^{(k,r)}) v_3^w.$$

В введенных обозначениях верна следующая

Лемма 1. Пусть $\tilde{\gamma} = \Gamma^{(\tilde{k},\tilde{r})} \in \Gamma$. Тогда верно следующее рекуррентное соотношение:

$$\mathfrak{M}^{(1,i+1)}(\tilde{k},\tilde{r},v_{1},v_{3}) = \sum_{w_{1}=0}^{\infty} \sum_{w_{3}=0}^{\infty} \sum_{\Gamma^{(k,r)} \in \mathbb{H}_{-1}(\tilde{\gamma},w_{3})} Q_{1,i}(\Gamma^{(k,r)},w_{1},w_{3}) \times \\ \times \left[v_{1}^{w_{1}}q^{(1)}(\tilde{k},\tilde{r},v_{1}) + I(\tilde{\gamma} \in \Gamma^{\mathrm{I}}) \sum_{a=0}^{\ell(\tilde{k},\tilde{r},1)-w_{1}} \varphi_{1}(a,T^{(\tilde{k},\tilde{r})})(1-v_{1}^{w_{1}+a-\ell(\tilde{k},\tilde{r},1)}) \right] \times \\ \times \left[v_{3}^{w_{3}}q^{(3)}(\tilde{k},\tilde{r},v_{3}) + I(\tilde{\gamma} \in \Gamma^{\mathrm{III}}) \sum_{a=0}^{\ell(\tilde{k},\tilde{r},3)-w_{3}} \varphi_{3}(a,T^{(\tilde{k},\tilde{r})})(1-v_{3}^{w_{3}+a-\ell(\tilde{k},\tilde{r},3)}) \right].$$

Доказательство. Пусть $\Gamma^{(k,r)} \in \Gamma$. Учитывая соотношения (5) и вид условных распределений (9) для η_i и ξ_i , $i \geqslant 0$, запишем по формуле повторного математического ожидания:

$$\mathfrak{M}^{(1,i+1)}(\tilde{k},\tilde{r},v_{1},v_{3}) =
= E[v_{1}^{\varkappa_{1,i+1}}v_{3}^{\varkappa_{1,i+1}}I(\Gamma_{i+1} = \tilde{\gamma})] = \sum_{w_{1}=0}^{\infty}\sum_{w_{3}=0}^{\infty}\sum_{\Gamma^{(k,r)}\in\Gamma}Q_{1,i}(\Gamma^{(k,r)},w_{1},w_{3}) \times
\times E[v_{1}^{\varkappa_{1,i+1}}v_{3}^{\varkappa_{1,i+1}}I(\Gamma_{i+1} = \tilde{\gamma})|\varkappa_{1,i} = w_{1},\varkappa_{3,i} = w_{3},\Gamma_{i} = \Gamma^{(k,r)}] =
= \sum_{w_{1}=0}^{\infty}\sum_{w_{3}=0}^{\infty}\sum_{\Gamma^{(k,r)}\in\mathbb{H}_{-1}(\tilde{\gamma},x_{3})}Q_{1,i}(\Gamma^{(k,r)},w_{1},w_{3}) \times
\times E[v_{1}^{\max\{0,w_{1}+\eta_{1,i}-\ell(\tilde{k},\tilde{r},1)\}}v_{3}^{\max\{0,w_{3}+\eta_{3,i}-\ell(\tilde{k},\tilde{r},3)\}}|\varkappa_{1,i} = w_{1},\varkappa_{3,i} = w_{3},\Gamma_{i} = \Gamma^{(k,r)}] =
= \sum_{w_{1}=0}^{\infty}\sum_{w_{3}=0}^{\infty}\sum_{\Gamma^{(k,r)}\in\mathbb{H}_{-1}(\tilde{\gamma},x_{3})}Q_{1,i}(\Gamma^{(k,r)},w_{1},w_{3}) \times
\times E[v_{1}^{\max\{0,w_{1}+\eta_{1,i}-\ell(\tilde{k},\tilde{r},1)\}}|\varkappa_{1,i} = w_{1},\varkappa_{3,i} = w_{3},\Gamma_{i} = \Gamma^{(k,r)}] \times
\times E[v_{3}^{\max\{0,w_{3}+\eta_{3,i}-\ell(\tilde{k},\tilde{r},3)\}}|\varkappa_{1,i} = w_{1},\varkappa_{3,i} = w_{3},\Gamma_{i} = \Gamma^{(k,r)}]. \quad (25)$$

В случае $\tilde{\gamma} \notin \Gamma^{\text{I}}$ очередь O_1 не обслуживается и, следовательно, $\ell(\tilde{k}, \tilde{r}, 1) = 0$. Поэтому $\max\{0, w_1 + \eta_{1,i} - \ell(\tilde{k}, \tilde{r}, 1)\} = w_1 + \eta_{1,i} - \ell(\tilde{k}, \tilde{r}, 1)$. Аналогично при $\tilde{\gamma} \notin \Gamma^{\text{III}}$ очередь O_3 не обслуживается и $\ell(\tilde{k}, \tilde{r}, 3) = 0$. Откуда получаем, что $\max\{0, w_3 + \eta_{3,i} - \ell(\tilde{k}, \tilde{r}, 3)\} = w_3 + \eta_{3,i} - \ell(\tilde{k}, \tilde{r}, 3)$.

Рассмотрим подробнее случай $\tilde{\gamma} \in \Gamma^{\mathrm{I}}$:

$$\begin{split} E[v_{1}^{\max\{0,w_{1}+\eta_{1,i}-\ell(\tilde{k},\tilde{r},1)\}}|\varkappa_{1,i} &= w_{1},\varkappa_{3,i} = w_{3}, \Gamma_{i} = \Gamma^{(k,r)}] = \\ &= E[v_{1}^{w_{1}+\eta_{1,i}-\ell(\tilde{k},\tilde{r},1)}|\varkappa_{1,i} = w_{1},\varkappa_{3,i} = w_{3}, \Gamma_{i} = \Gamma^{(k,r)}] + \\ &+ E[v_{1}^{\max\{0,w_{1}+\eta_{1,i}-\ell(\tilde{k},\tilde{r},1)\}} - v_{1}^{w_{1}+\eta_{1,i}-\ell(\tilde{k},\tilde{r},1)}|\varkappa_{1,i} = w_{1},\varkappa_{3,i} = w_{3}, \Gamma_{i} = \Gamma^{(k,r)}] = \\ &= v_{1}^{w_{1}}q^{(1)}(\tilde{k},\tilde{r},v_{1}) + \sum_{a=0}^{\ell(\tilde{k},\tilde{r},1)-w_{1}} \varphi_{1}(a,T^{(\tilde{k},\tilde{r})})(1-v_{1}^{w_{1}+a-\ell(\tilde{k},\tilde{r},1)}), \quad (26) \end{split}$$

поскольку при $\tilde{\gamma} \in \Gamma^{\mathrm{I}}$ величина $\max \{0, w_1 + \eta_{1,i} - \ell(\tilde{k}, \tilde{r}, 1)\}$ отличается от величины $w_1 + \eta_{1,i} - \ell(\tilde{k}, \tilde{r}, 1)$ только при $0 \leqslant \eta_{1,i} < \ell(\tilde{k}, \tilde{r}, 1) - w_1$.

C помощью аналогичных рассуждений получим для $\tilde{\gamma} \in \Gamma^{\mathrm{III}}$:

$$E[v_3^{\max\{0,w_3+\eta_{3,i}-\ell(\tilde{k},\tilde{r},3)\}}|\varkappa_{1,i}=w_1,\varkappa_{3,i}=w_3,\Gamma_i=\Gamma^{(k,r)}]=$$

$$=v_3^{w_1}q^{(3)}(\tilde{k},\tilde{r},v_3)+\sum_{a=0}^{\ell(\tilde{k},\tilde{r},3)-w_3}\varphi_3(a,T^{(\tilde{k},\tilde{r})})(1-v_3^{w_3+a-\ell(\tilde{k},\tilde{r},3)}) \quad (27)$$

и подставляя полученные выражения (26), (27) в выражение (25), получаем утверждение леммы.

Из этой леммы следует существование величин $\mathfrak{M}^{(1,i)}(k,r,v_1,v_3)$ хотя бы в некоторой окресности точки $(v_1,v_3)=(1,1),$ для i>0, $k=\overline{0;d},$ $r=\overline{1;n_k}.$

В работе [25] доказана ограниченность частичных производящих функций $\mathfrak{M}^{(3,i)}(k,r,v_3)=E[v_3^{\varkappa_{3,i}}I(\Gamma_i=\Gamma^{(k,r)})]$ по $i\geqslant 0$ для всех $v_3\in [1,1+\varepsilon_3]$, при некотором $0<\varepsilon_3<\varepsilon$, где $\varepsilon>0$ определено в (1). Причем заметим, что в наших обозначениях $\mathfrak{M}^{(3,i)}(k,r,v_3)=\mathfrak{M}^{(1,i)}(k,r,1,v_3)$. Цель следующей леммы — доказать аналогичный результат для величин $\mathfrak{M}^{(1,i)}(k,r,v_1,1)$, $i\geqslant 0$.

Лемма 2. Если

$$\min_{k=\overline{0,d}} \frac{\sum_{r=1}^{n_k} \ell(k,r,1)}{\lambda_1 f_1'(1) \sum_{r=1}^{n_k} T^{(k,r)}} > 1,$$

то числовая последовательность $\{\mathfrak{M}^{(1,i)}(k,r,v,1); i \geqslant 0\}$ ограничена при $v \in [1,1+\varepsilon_1]$, для некоторого $0 < \varepsilon_1 < \varepsilon$, где $\varepsilon > 0$ определено в (1).

Доказательство. Введем случайные последовательности $\{\varkappa_1^{(1)}(i); i \geqslant 0\}$ и $\{\varkappa_1^{(2)}(i); i \geqslant 0\}$ следующим образом. Положим для i=0: $\varkappa_1^{(1)}(0)=0$ и $\varkappa_1^{(2)}(0)=\varkappa_{1,0}$. Далее введем рекуррентные соотношения:

$$\varkappa_1^{(1)}(i+1) = \begin{cases}
\max\{0, \varkappa_1^{(1)}(i) + \eta_{1,i} - \xi_{1,i}\}, & \text{если } \Gamma_{i+1} = \Gamma^{(k,r)}, k > 0, r = \overline{1, n_k}; \\
\varkappa_1^{(1)}(i), & \text{если } \Gamma_{i+1} = \Gamma^{(0,r)}, r = \overline{1, n_0}; \\
\varkappa_1^{(2)}(i+1) = \begin{cases}
\varkappa_1^{(2)}(i), & \text{если } \Gamma_{i+1} = \Gamma^{(k,r)}, k > 0, r = \overline{1, n_k}; \\
\max\{0, \varkappa_1^{(2)}(i) + \eta_{1,i} - \xi_{1,i}\}, & \text{если } \Gamma_{i+1} = \Gamma^{(0,r)}, r = \overline{1, n_0}.
\end{cases}$$

Тогда последовательность $\varkappa_{1,i}^+ = \varkappa_1^{(1)}(i) + \varkappa_1^{(2)}(i)$ является мажорирующей для последовательности $\varkappa_{1,i}$, т.е. $\varkappa_{1,i}(\omega) \leqslant \varkappa_{1,i}^+(\omega)$, $\forall \omega \in \Omega$. Доказательство этого факта проводится по индукции и в данной статье его приводить не будем. Заметим только, что из него следует для $v \geqslant 1$ неравенство

$$E[v^{\varkappa_{1,i}}] \leqslant E[v^{\varkappa_1^{(1)}(i)}v^{\varkappa_1^{(2)}(i)}]. \tag{28}$$

Наблюдение за вновь введенными величинами $\varkappa_1^{(1)}(i)$ и $\varkappa_1^{(2)}(i)$ будем осуществлять в случайные моменты времени $\theta_i^{(1)}$ и $\theta_i^{(2)}$, соответственно, определяемые следующими соотношениями:

$$\theta_0^{(1)} = 0; \quad \theta_{i+1}^{(1)} = \theta_i^{(1)} + \min\{s > 0: \Gamma_{\theta_i^{(1)} + s} = \Gamma^{(k, n_k)}, k > 0\};$$

$$\theta_0^{(2)} = 0; \quad \theta_{i+1}^{(2)} = \theta_i^{(2)} + \min\{s > 0: \Gamma_{\theta_i^{(2)} + s} = \Gamma^{(0, r)}, r = \overline{1, n_0}\}.$$

$$(29)$$

Также нам понадобятся следующие обозначения:

$$\hat{\varkappa}_{1,i}^{(1)} = \varkappa_1^{(1)}(\theta_i^{(1)}), \quad \hat{\varkappa}_{1,i}^{(2)} = \varkappa_1^{(2)}(\theta_i^{(2)}). \tag{30}$$

Пусть $k>0,\ r\in\{2,3,\ldots,n_k\}$. В веденных обозначениях рассмотрим выражение для $E[v^{\varkappa_1^{(1)}(i+1)}I(\Gamma_{i+1}=\Gamma^{(k,r)})]$:

$$\begin{split} E[v^{\varkappa_{1}^{(1)}(i+1)}I(\Gamma_{i+1} &= \Gamma^{(k,r)})] &= \\ &= \sum_{w_{1}\geqslant 0} \sum_{w_{3}\geqslant 0} \sum_{\gamma \in \Gamma} E[v^{\varkappa_{1}^{(1)}(i+1)}I(\Gamma_{i+1} &= \Gamma^{(k,r)}, \varkappa_{1}^{(1)}(i) = w_{1}, \varkappa_{3,i} = w_{3}, \Gamma_{i} = \gamma)] = \\ &= \sum_{w_{1}\geqslant 0} \sum_{w_{3}\geqslant 0} E[v^{w_{1}+\eta_{1,i}-\ell(k,r,1)}I(\varkappa_{1}^{(1)}(i) = w_{1}, \varkappa_{3,i} = w_{3}, \Gamma_{i} = \Gamma^{(k,r-1)})] + \widetilde{C}_{1} = \\ &= \sum_{w_{1}\geqslant 0} v^{w_{1}}\mathbf{P}(\varkappa_{1}^{(1)}(i) = w_{1}, \Gamma_{i} = \Gamma^{(k,r-1)})q^{(1)}(k,r,v) + \widetilde{C}_{1} = \\ &= q^{(1)}(k,r,v)E[v^{\varkappa_{1}^{(1)}(i)}I(\Gamma_{i} = \Gamma^{(k,r-1)})] + \widetilde{C}_{1}. \end{split}$$

И далее по индукции:

$$E[v^{\varkappa_1^{(1)}(i+n_k-1)}I(\Gamma_{i+n_k-1}=\Gamma^{(k,n_k)})] = \prod_{r=2}^{n_k} q^{(1)}(k,r,v)E[v^{\varkappa_1^{(1)}(i)}I(\Gamma_i=\Gamma^{(k,1)})].$$

Для $w_1, w_3 \in Z_+, \gamma, \gamma_1, \gamma_2 \in \Gamma, C \subset [0, +\infty)$ введем множества

$$\begin{split} A_i^{(1)}(w_1,w_3,\gamma) &= \{\omega \colon \varkappa_1^{(1)}(\theta_i^{(1)}) = w_1; \varkappa_{3,\theta_i^{(1)}} = w_3, \Gamma_{\theta_i^{(1)}} = \gamma\}; \\ A_i^{(1)}(w_1,C,\gamma) &= \bigcup_{w_3 \in C} A_i^{(1)}(w_1,w_3,\gamma); \quad B_i^{(1)}(\gamma) = \{\omega \colon \Gamma_{\theta_i^{(1)}} = \gamma\}; \\ C_i^{(1)}(\gamma_1,w_1,w_3,\gamma_2) &= B_{i+1}^{(1)}(\gamma_1) \cap A_i^{(1)}(w_1,w_3,\gamma_2). \end{split}$$

Пусть $\tilde{k} > 0$. Тогда

$$\begin{split} E[v^{\hat{\varkappa}_{1,i+1}^{(1)}}I(\Gamma_{\theta_{i+1}^{(1)}} &= \Gamma^{(\tilde{k},n_{\tilde{k}})})] = \\ &= E[v^{\hat{\varkappa}_{1,i+1}^{(1)}}I(B_{i+1}^{(1)}(\Gamma^{(\tilde{k},n_{\tilde{k}})}))] = E[v^{\varkappa_{1}^{(1)}(\theta_{i+1}^{(1)})}I(B_{i+1}^{(1)}(\Gamma^{(\tilde{k},n_{\tilde{k}})}))] = \\ &= \prod_{\tilde{r}=2}^{n_{\tilde{k}}} q^{(1)}(\tilde{k},\tilde{r},v)E[v^{\varkappa_{1}^{(1)}(\tau)}I(B_{i+1}^{(1)}(\Gamma^{(\tilde{k},n_{\tilde{k}})}))] + \tilde{C}_{1} = \\ &= \prod_{\tilde{r}=2}^{n_{\tilde{k}}} q^{(1)}(\tilde{k},\tilde{r},v)\sum_{\substack{w_{1}\geqslant 0,\\w_{3}\leqslant L}}\sum_{k=1}^{d} E[v^{\varkappa_{1}^{(1)}(\tau)}I(C_{i}^{(1)}(\Gamma^{(\tilde{k},n_{\tilde{k}})},w_{1},w_{3},\Gamma^{(k,n_{k})}))] + \\ &+ \prod_{\tilde{r}=2}^{n_{\tilde{k}}} q^{(1)}(\tilde{k},\tilde{r},v)\sum_{\substack{w_{1}\geqslant 0,\\w_{3}>L}} E[v^{\varkappa_{1}^{(1)}(\tau)}I(C_{i}^{(1)}(\Gamma^{(\tilde{k},n_{\tilde{k}})},w_{1},w_{3},\Gamma^{(\tilde{k},n_{\tilde{k}})}))] + \tilde{C}_{1}, \end{split}$$

где мы обозначили для краткости $au = heta_{i+1}^{(1)} - n_{\tilde{k}} + 1$. Далее поскольку

$$\varkappa_1^{(1)}(\tau) = \max\{0; \varkappa_1^{(1)}(\theta_i^{(1)}) + \eta_{1,\tau} - \ell(1,\tilde{k},1)\},\$$

то продолжим цепочку рассуждений:

$$E[v^{\hat{\varkappa}_{1,i+1}^{(1)}}I(\Gamma_{\theta_{i+1}^{(1)}} = \Gamma^{(\tilde{k},n_{\tilde{k}})})] = \prod_{\tilde{r}=2}^{n_{\tilde{k}}} q^{(1)}(\tilde{k},\tilde{r},v) \sum_{\substack{w_{1}\geqslant 0,\\w_{3}\leqslant L}} \sum_{k=1}^{d} v^{w_{1}}v^{-\ell(1,\tilde{k},1)} \times \\ \times E[v^{\eta_{1,\tau}}I(C_{i}^{(1)}(\Gamma^{(\tilde{k},n_{\tilde{k}})},w_{1},w_{3},\Gamma^{(k,n_{k})}))] + \prod_{\tilde{r}=2}^{n_{\tilde{k}}} q^{(1)}(\tilde{k},\tilde{r},v) \times \\ \times \sum_{\substack{w_{1}\geqslant 0,\\w_{3}>L}} v^{w_{1}}v^{-\ell(1,\tilde{k},1)}E[v^{\eta_{1,\tau}}I(C_{i}^{(1)}(\Gamma^{(\tilde{k},n_{\tilde{k}})},w_{1},w_{3},\Gamma^{(\tilde{k},n_{\tilde{k}})}))] + \tilde{C}_{2} = \\ = Q_{1}(v,\tilde{k}) \left(\sum_{w_{1}\geqslant 0} \sum_{k=1}^{d} v^{w_{1}}\mathbf{P}(C_{i}^{(1)}(\Gamma^{(\tilde{k},n_{\tilde{k}})},w_{1},[0;L],\Gamma^{(k,n_{k})})) + \\ + \sum_{w_{1}\geqslant 0} v^{w_{1}}\mathbf{P}(C_{i}^{(1)}(\Gamma^{(\tilde{k},n_{\tilde{k}})},w_{1},(L;\infty),\Gamma^{(\tilde{k},n_{\tilde{k}})}))\right) + \tilde{C}_{2}, \quad (31)$$

где $Q_1(v,\tilde{k})=\prod_{\tilde{r}=1}^{n_{\tilde{k}}}q^{(1)}(\tilde{k},\tilde{r},v)$. Просуммируем по \tilde{k} получившийся в (31) результат:

$$\begin{split} \sum_{\tilde{k}=1}^{d} E[v^{\hat{\varkappa}_{1,i+1}^{(1)}}I(\Gamma_{\theta_{i+1}^{(1)}} = \Gamma^{(\tilde{k},n_{\tilde{k}})})] &= E[v^{\hat{\varkappa}_{1,i+1}^{(1)}}] = \\ &= \sum_{\tilde{k}=1}^{d} Q_{1}(v,\tilde{k}) \left(\sum_{w_{1}\geqslant 0} \sum_{k=1}^{d} v^{w_{1}} \mathbf{P}(C_{i}^{(1)}(\Gamma^{(\tilde{k},n_{\tilde{k}})},w_{1},[0;L],\Gamma^{(k,n_{k})})) + \right. \\ &+ \sum_{w_{1}\geqslant 0} v^{w_{1}} \mathbf{P}(C_{i}^{(1)}(\Gamma^{(\tilde{k},n_{\tilde{k}})},w_{1},(L;\infty),\Gamma^{(\tilde{k},n_{\tilde{k}})})) \right) + \tilde{C}_{3} \leqslant \\ &\leqslant \max_{\tilde{k}=\overline{1;d}} \left\{Q_{1}(v,\tilde{k})\right\} \sum_{w_{1}\geqslant 0} v^{w_{1}} \left(\sum_{\tilde{k}=1}^{d} \sum_{k=1}^{d} \mathbf{P}(C_{i}^{(1)}(\Gamma^{(\tilde{k},n_{\tilde{k}})},w_{1},[0;L],\Gamma^{(k,n_{k})})) + \right. \\ &+ \sum_{\tilde{k}=1}^{d} \mathbf{P}(C_{i}^{(1)}(\Gamma^{(\tilde{k},n_{\tilde{k}})},w_{1},(L;\infty),\Gamma^{(\tilde{k},n_{\tilde{k}})})) \right) + \tilde{C}_{3} = \\ &= \max_{\tilde{k}=\overline{1;d}} \left\{Q_{1}(v,\tilde{k})\right\} \sum_{w_{1}\geqslant 0} v^{w_{1}} \mathbf{P}(\hat{\varkappa}_{1,i}^{(1)} = w_{1}) + \tilde{C}_{3} = \max_{\tilde{k}=\overline{1;d}} \left\{Q_{1}(v,\tilde{k})\right\} E[v^{\hat{\varkappa}_{1,i}^{(1)}}] + \tilde{C}_{3}. \end{split}$$

Для $\hat{\varkappa}_{1,i}^{(2)}$ можно провести похожие рассуждения и в итоге получить оценки:

$$E[v^{\hat{\varkappa}_{1,i+1}^{(1)}}] \leqslant \max_{\tilde{k}=\overline{1:d}} \{Q_1(v,\tilde{k})\} E[v^{\hat{\varkappa}_{1,i}^{(1)}}] + \widetilde{C}_3; \tag{32}$$

$$E[v^{\hat{\varkappa}_{1,i+n_0}^{(2)}}] \leqslant Q_1(v,0)E[v^{\hat{\varkappa}_{1,i}^{(2)}}] + \widetilde{C}_4, \tag{33}$$

где $r=\overline{1,n_0}$. Для $k=\overline{0;d}$ верны равенства $Q_1(1,k)=1$. Предположив выполненным условие $\min_{k=\overline{0,d}} \frac{\sum_{r=1}^{n_k}\ell(k,r,1)}{\lambda_1f_1'(1)\sum_{r=1}^{n_k}T^{(k,r)}}>1$, получим, что величины

$$(Q_{1}(v,k))'|_{v_{1}=1} = \left(\prod_{r=1}^{n_{k}} v^{-\ell(k,r,1)} \sum_{w=0}^{\infty} \varphi_{1}(w,T^{(k,r)})v^{w}\right)'|_{v_{1}=1} =$$

$$= \left(\prod_{r=1}^{n_{k}} v^{-\ell(k,r,1)} \exp(\lambda_{1}T^{(k,r)}(f_{1}(v)-1))\right)'|_{v_{1}=1} =$$

$$= \left(v^{-\sum_{r=1}^{n_{k}} \ell(k,r,1)} \exp(\lambda_{1}(f_{1}(v)-1) \sum_{r=1}^{n_{k}} T^{(k,r)})\right)'|_{v_{1}=1} =$$

$$= \lambda_{1}f'_{1}(1) \sum_{r=1}^{n_{k}} T^{(k,r)} - \sum_{r=1}^{n_{k}} \ell(k,r,1), \quad (34)$$

определяющие знак производной, отрицательны. Поэтому $|Q_1(v,k)| < 1$ для всех $k = \overline{1;d}$ хотя бы в некоторой правой окрестности $1 \le v \le (1+\varepsilon_1)^{1/2}$ точки v = 1. Этот факт, в свою очередь, обеспечивает ограниченность в этой же окрестности величин $E[v^{\hat{x}_{1,i}^{(1)}}]$ и $E[v^{\hat{x}_{1,i}^{(2)}}]$ равномерно по i

Далее из определений (29) и (30) следует, что для любого $i \geqslant 0$ существуют такие j_1 и j_2 , что

$$\mu_1^{(1)}(i) \leqslant \hat{\mu}_{1,j_1}^{(1)}, \quad \mu_1^{(2)}(i) \leqslant \hat{\mu}_{1,j_2}^{(2)}.$$

Следовательно, из (28) и неравенства Коши-Буняковского заключаем, что

$$\mathfrak{M}^{(1,i)}(k,r,v,1) \leqslant \left(E[v^{2\varkappa_1^{(1)}(i)}] E[v^{2\varkappa_1^{(2)}(i)}] \right)^{1/2} \leqslant \left(E[v^{2\hat{\varkappa}_{1,j_1}^{(1)}}] E[v^{2\hat{\varkappa}_{1,j_2}^{(2)}}] \right)^{1/2}$$

и, значит, для любого v хотя бы из окрестности $[1, 1 + \varepsilon_1]$ исходная последовательность $\{\mathfrak{M}^{(1,i)}(k,r,v,1); i \geqslant 0\}$ ограничена равномерно по i.

Основным результатом работы является достаточное условие существования стационарного режима последовательности $\{(\Gamma_i, \varkappa_{1,i}, \varkappa_{3,i}); i \geq 0\}$.

Теорема 2. Для того, чтобы марковская цепь $\{(\Gamma_i, \varkappa_{1,i}, \varkappa_{3,i}); i \geq 0\}$ имела стационарное распределение $Q_1(\gamma, x_1, x_3), (\gamma, x_1, x_3) \in \Gamma \times \mathbb{Z}_+^2$, достаточно выполнения неравенств

$$\min_{k=0,d} \frac{\sum_{r=1}^{n_k} \ell(k,r,1)}{\lambda_1 f_1'(1) \sum_{r=1}^{n_k} T^{(k,r)}} > 1, \quad \min_{k=\overline{1,d}} \frac{\sum_{r=1}^{n_k} \ell(k,r,3)}{\lambda_3 f_3'(1) \sum_{r=1}^{n_k} T^{(k,r)}} > 1.$$
(35)

Доказательство. Предположим обратное, а именно, что при выполнении условия (35) марковская цепь $\{(\Gamma_i, \varkappa_{1,i}, \varkappa_{3,i}); i \geqslant 0\}$ не имеет стационарного распределения. Тогда для любого состояния $(\gamma, x_1, x_3) \in \Gamma \times \mathbb{Z}_+^2$ и независимо от начального распределения $\mathbf{P}(\Gamma_0 = \Gamma^{(k,r)}, \varkappa_{1,0} = x_1, \varkappa_{3,0} = x_3), (\Gamma^{(k,r)}, x_1, x_3) \in \Gamma \times \mathbb{Z}_+^2$, имеют место предельные равенства

$$\lim_{i \to \infty} \mathbf{P}(\Gamma_i = \Gamma^{(k,r)}, \varkappa_{1,i} = x_1, \varkappa_{3,i} = x_3) = 0, \quad (\Gamma^{(k,r)}, x_1, x_3) \in \Gamma \times \mathbb{Z}_+^2.$$
 (36)

Для доказательства этого факта достаточно рассмотреть все возможные случаи, предполагая апериодичность рассматриваемой цепи (см. рассуждения [27, гл. 3, \S 3-4]):

- 1. все состояния цепи $\{(\Gamma_i, \varkappa_{1,i}, \varkappa_{3,i}); i \geq 0\}$ невозвратные, тогда предельные соотношения выполняются в силу [27, с. 541, лемма 2];
- 2. существует хотя бы одно возвратное состояние, тогда все состояния возвратные (поскольку все состояния сообщающиеся); и пусть все состояния нулевые, тогда предельное соотношение также выполняется [27, с. 541, лемма 3];
- 3. все состояния возвратные и существует хотя бы одно положительное, тогда все состояния положительные и пределы $\lim_{i\to\infty} \mathbf{P}(\Gamma_i = \Gamma^{(k,r)}, \varkappa_{1,i} = x_1, \varkappa_{3,i} = x_3) > 0$ являются стационарными вероятностями ([27, с. 549, теорема 1]), что противоречит предположению.

Для периодической цепи приведенные рассуждения достаточно провести для циклических подклассов.

Выберем начальное распределение так, что при некоторых $v_1 > 1$, $v_3 > 1$ будут выполнены неравенства $\mathfrak{M}^{(1,0)}(k,r,v_1,1) < \infty$, $\mathfrak{M}^{(1,0)}(k,r,1,v_3) < \infty$ для всех $\Gamma^{(k,r)} \in \Gamma$. Это ограничение, в силу леммы (2) и результатов работы [25], обеспечивает при любом конечном $i \geq 0$ существование функций

$$\mathfrak{M}^{(1,i)}(k,r,v_1,1), \quad \mathfrak{M}^{(1,i)}(k,r,1,v_3)$$
 (37)

$$\frac{d}{dv_1} \left[\mathfrak{M}^{(1,i)}(k,r,v_1,1) \right], \quad \frac{d}{dv_3} \left[\mathfrak{M}^{(1,i)}(k,r,1,v_3) \right]$$
 (38)

по крайней мере в некоторой окрестности точек $v_1 = 1, v_3 = 1.$

В силу равенств (36) для любого натурального N найдется некоторое число \mathfrak{I} , что для всех $i>\mathfrak{I}$ будет выполнено условие

$$1 > (1+N) \sum_{x_1=0}^{N} \sum_{x_3=0}^{N} \sum_{\Gamma^{(k,r)} \in \Gamma} \mathbf{P}(\Gamma_i = \Gamma^{(k,r)}, \varkappa_{1,i} = x_1, \varkappa_{3,i} = x_3)$$

и, значит, $1>(1+N)\sum_{x_1=0}^N\sum_{x_3=0}^N\mathbf{P}(\varkappa_{1,i}=x_1,\varkappa_{3,i}=x_3)$. Тогда

$$E[\varkappa_{3,i} + \varkappa_{1,i}] = \sum_{x_1=0}^{\infty} \sum_{x_3=0}^{\infty} (x_1 + x_3) \mathbf{P}(\varkappa_{1,i} = x_1, \varkappa_{3,i} = x_3) \geqslant$$

$$\geqslant \sum_{x_1=0}^{\infty} \sum_{x_3=N+1}^{\infty} x_3 \mathbf{P}(\varkappa_{1,i} = x_1, \varkappa_{3,i} = x_3) + \sum_{x_1=N+1}^{\infty} \sum_{x_3=0}^{\infty} x_1 \mathbf{P}(\varkappa_{1,i} = x_1, \varkappa_{3,i} = x_3) \geqslant$$

$$\geqslant \sum_{x_1=0}^{\infty} \sum_{x_3=N+1}^{\infty} (N+1) \mathbf{P}(\varkappa_{1,i} = x_1, \varkappa_{3,i} = x_3) + \sum_{x_1=N+1}^{\infty} \sum_{x_3=0}^{\infty} (N+1) \times$$

$$\times \mathbf{P}(\varkappa_{1,i} = x_1, \varkappa_{3,i} = x_3) \geqslant (N+1) \left[\sum_{x_1=0}^{\infty} \sum_{x_3=N+1}^{\infty} \mathbf{P}(\varkappa_{1,i} = x_1, \varkappa_{3,i} = x_3) + \sum_{x_1=N+1}^{\infty} \sum_{x_3=0}^{\infty} \mathbf{P}(\varkappa_{1,i} = x_1, \varkappa_{3,i} = x_3) \right] \geqslant (N+1)(1 - \mathbf{P}(\varkappa_{1,i} \leqslant N, \varkappa_{3,i} \leqslant N)) \geqslant$$

$$\geqslant (N+1) \left(1 - \frac{1}{N+1} \right) = N.$$

Следовательно, $E[\varkappa_{3,i}+\varkappa_{1,i}]$ неограниченно возрастает при $i\to\infty$.

Другое рассуждение, однако, приводит к противоположному результату. Действительно, поскольку последовательность $\{E[\varkappa_{3,i}]; i\geqslant 0\}$ ограничена, и нетрудно проверить, что

$$E[\varkappa_{1,i}] = \sum_{\Gamma^{(k,r)} \in \Gamma} \frac{d}{dv} \left(\mathfrak{M}^{(1,i)}(k,r,v_1,1) \right) \Big|_{v_1=1},$$

где величина справа в силу интегральной формулы Коши и леммы 2 равномерно по i ограничена некоторой постоянной величиной. Поэтому принятое предположение не будет справедливым. Доказательство этим завершается.

6 Заключение

В работе рассмотрен тандем систем массового обслуживания. При помощи кибернетического подхода было построено вероятное пространство и заданы случайные величины и элементы, описывающие тандем. Была исследована стохастическая последовательность $\{(\Gamma_i, \varkappa_{1,i}, \varkappa_{3,i}); i \geq 0\}$, состоящая из состояния обслуживающего устройства и длин очередей первичных требований. Проведена классификация ее состояний и выделено множество существенных состояний. При помощи рекуррентных соотношений для вероятностей состояний и частичных производящих функций было найдено достаточное условие существования стационарного распределения цепи $\{(\Gamma_i, \varkappa_{1,i}, \varkappa_{3,i}); i \geq 0\}$.

Список литературы

- [1] Haight F.A. Mathematical Theories of Traffic Flow. New York: Academic Press, 1963. 242 p.
- [2] Drew D.R. Traffic Flow Theory and Control. New York: McGraw-Hill, 1968. 467 p.
- [3] Иносэ Х., Хамада Т. Управление дорожным движением. Москва: Транспорт. 1983. 248 с.
- [4] Bartlett M.S., The Spectral Analysis of Point Processes // Journal of the Royal Statistical Society. Series B (Methodological). Vol. 25. № 2. 1963. Pp. 264–296.
- [5] Кокс Д.Р., П. Льюис. Статистический анализ последовательности событий. М.: Мир, 1969. $312~\mathrm{c}.$
- [6] D.L. Jagerman, B. Melamed, W. Willinger Stochastic modeling of traffic process // In: Frontiers in queuing: models and applications in science and engineering / edited by J.H. Dshalalov. Boca Raton: CRC Press. 1997. Pp. 271–320.
- [7] Fedotkin M.A., Kudryavtsev E.V., Rachinskaya M.A. About correctness of probabilistic models of traffic flows dynamics on a motorway // Proceedings of 36 International Workshop «Distributed computer and communication networks» (DCCN-2010). Moscow. 2010. Pp. 86–93.
- [8] Fedotkin M.A., Rachinskaya M.A. Investigation of Traffic Flows Characteristics in Case of the Small Density // Queues: Flows, Systems, Networks. Proceedings of the International Conference «Modern Probabilistic Methods for Analysis and Optimization of Information and Telecommunication Networks». Minsk: BSU-RIVH. 2011. № 21. Pp. 82–87.
- [9] Fedotkin M., Rachinskaya M. Parameters Estimator of the Probabilistic Model of Moving Batches Traffic Flow // Distributed Computer and Communication Networks. Springer International Publishing, «Communications in Computer and Information Science» series. 2014. V. 279. Pp. 154–168.
- [10] Afanasyeva L.G., Bulinskaya E.V. Estimation of transport systems capacity // Traffic and Granular Flow '11. Springer-Verlag Berlin, Heidelberg. 2013. Pp. 63–77.
- [11] Афанасьева Л.Г., Булинская Е.В. Математические модели транспортных систем, основанные на теории очередей // Труды Московского физико-технического института (государственного университета). 2010. Т. 2. № 4. С. 6–21.
- [12] Afanasyeva L.G., Bulinskaya E.V. Asymptotic analysis of traffic lights performance under heavy traffic assumption // Methodology and Computing in Applied Probability, Springer. 2013. V. 15. № 4. Pp. 935–950.
- [13] Reich E. Waiting times when queues are in tandem // The Annals of Mathematical Statistics. 1957. V.28. №3. Pp. 768-773.
- [14] Balsamo S., Persone V.D.N., Inverardi P. A review on queueing network models with finite capacity queues for software architectures performance prediction // Performance Evaluation 51. 2003. Pp. 269–288.
- [15] Gnedenko B.W., Konig D. Handbuch der Bedienungstheorie. Berlin: Akademie Verlag. 1983.

- [16] Perros H.G. Queuing networks with blocking, in: Exact and Approximate Solutions. New York: Oxford University Press, 1994. 358 p.
- [17] Gomez-Corral A. A tandem queue with blocking and Markovian arrival process // Queuing Systems 41. 2002. Pp. 343–370.
- [18] Gomez-Corral A. On a tandem G-network with blocking // Advances in Applied Probability 34 (3). 2002. Pp. 626–661.
- [19] Gomez-Corral A. A matrix-geometric approximation for tandem queues with blocking and repeated attempts // Operations Research Letters 30. 2002. Pp. 360–374.
- [20] Klimenok V.I., Breuer L., Tsarenkov G.V., Dudin A.N. The $BMAP/G/1/N \rightarrow PH/1/M$ system with losses // Performance Evaluation 61. 2005. Pp. 17–40.
- [21] Клименок В.И., Тарамин О.С. Двухфазная система обслуживания с групповым марковским потоком и повторными вызовами // Автоматика и телемеханика. 2010. № 1. С. 3–17 .
- [22] Клименок В.И., Савко Р.Ч. Двухфазная система с повторными попытками и нетерпеливостью запросов // Автоматика и телемеханика. 2015. № 8. С. 78–93.
- [23] Zorine A.V. Stability of a tandem of queuing systems with Bernoulli noninstantaneous transfer of customers // Theory of Probability and Mathematical Statistics. 2012. V. 84. Pp. 173–188.
- [24] Zorine A.V. Study of Queues' Sizes in Tandem Intersections under Cyclic Control in Random Environment // Modern Probabilistic Methods for Analysis of Telecommunication Networks. Communications in Computer and Information Science. 2013. V. 356. Pp. 206-215.
- [25] Кочеганов В.М., Зорин А.В. Достаточное условие существования стационарного режима низкоприоритетной очереди в тандеме систем массового обслуживания // Вестник Волжской государственной академии водного транспорта. 2017. Выпуск 50. С. 47–55.
- [26] Яблонский С.В. Основные понятия кибернетики // Проблемы кибернетики. Выпуск 2. М.: Физматгиз, 1959. С. 7–38.
- [27] Ширяев А.Н. Вероятность: в 2-х кн. Кн. 1. М.: Наука, 2007. 552 с.