

## Comp Chem Kitchen

# Using Valence Bond Theory to Model (Bio) Chemical Reactivity

Fernanda Duarte

Department of Chemistry

CCK-2, June 14<sup>th</sup> 2016



## Motivation

## Quantum Mechanics

Electrons, breaking/forming bond processes, exited state reactions

Computationally demanding  $(N^4-N^7)$ : DFT





## Molecular Dynamics

Explicit incorporation of environment effects

Most FFs (AMBER, OPLSAA, CHARMM) assume the same atomic connectivity throughout simulation. **No Chemistry!!!** 

## QM/MM

Aims to combine the best of each world...

Sampling/computational cost still an issue

$$E = \langle \Psi | \hat{H}^{QM} + \hat{H}_{el}^{QM/MM} | \Psi \rangle + E_{van}^{QM/MM} + E^{MM}$$





## Valence Bond (VB) Approach



## Valence bond Approach

VB looks for probability of finding a given molecular state

$$\Psi = c_1 \psi_1 + c_2 \psi_2 + .... c_i \psi_i$$

$$\mathbf{H} = \begin{bmatrix} V_{11} & V_{12} & V_{1j} \\ \vdots & \ddots & \vdots \\ V_{i1} & V_{i2} & V_{ij} \end{bmatrix}$$

## Empirical Valence Bond (EVB)



**Reaction Coordinate** 

$$\Psi = c_1 \psi_1 + c_2 \psi_2$$

$$\mathbf{H} = \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{bmatrix}$$

$$V_{12} = V_{21} = \langle \psi_1 | \hat{H} | \psi_2 \rangle,$$

$$\begin{split} V_{11} &= \langle \psi_1 | \hat{H} | \psi_1 \rangle, \\ V_{22} &= \langle \psi_2 | \hat{H} | \psi_2 \rangle \end{split}$$



## Diagonal Elements (Vii)/Coupling Element (Vij)

$$\begin{aligned} V_{11} &= \langle \psi_1 | \hat{H} | \psi_1 \rangle, \\ V_{22} &= \langle \psi_2 | \hat{H} | \psi_2 \rangle \end{aligned}$$

#### **Bond Stretch**

$$V_{\text{stretch}} = \frac{1}{2} k_R \left( R - R_0 \right)^2 \implies V_{\text{stretch}} = D_e \left[ 1 - \exp \left( \beta \left( R - R_0 \right) \right) \right]^2$$

#### Non-bonding potentials:

$$V_{\text{Coulomb}} = \frac{q_i q_j e^2}{R_{ij}} \qquad V_{\text{Lennard-Jones}} = \frac{A_{ij}}{R_{ij}^{12}} - \frac{C_{ij}}{R_{ij}^{6}}$$

$$V_{\text{soft}} = C_i \cdot C_j \cdot e(-a_i \cdot a_j \cdot r_{i,j})$$

### Bending and Torsional potentials:

$$V_{\text{bend}} = \frac{1}{2} k_{\theta} (\theta - \theta_0)^2 \qquad V_{\text{torsion}} = V_n [1 + s \cos(n\phi)]; \quad s = \pm 1$$

$$V_{12} = V_{21} = \langle \psi_1 | \hat{H} | \psi_2 \rangle,$$

#### Barrier Height

$$V_{12} = A \exp\{-a(r_1 - r_1^0)^2\}$$
 Warshel, 1980

$$V_{12} = A \exp\{-(a(r_1 - r_1^0)^2 + 2b(r_1 - r_1^0)(r_2 - r_2^0) + c(r_2 - r_1^0)^2)\}$$

Glowacki, 2011

#### Position and frequencies of the TS

$$V_{12} = A \exp\{\mathbf{B}^T \Delta \mathbf{q} - 0.5 \Delta \mathbf{q}^T \cdot C \cdot \Delta \mathbf{q}\}, \quad \Delta \mathbf{q} = \mathbf{q} - \mathbf{q}_{TS}$$

Chang-Miller, 1990



## Potential Energy Surface

$$\Psi = c_1 \psi_1 + c_2 \psi_2$$

$$\mathbf{H} = \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{bmatrix}$$



- 2) Fit  $V_{12}$  to reproduce experimental or (QM) data
- 3) Diagonalize V adiabatic states. The minimal value is the ground state.

$$V = \frac{1}{2}(V_{11} + V_{22}) - \sqrt{\left[\frac{1}{2}(V_{11} - V_{22})\right]^2 + V_{12}^2}$$





## Empirical Valence Bond (EVB): Enzyme Catalysis



### Phopshate Hydrolysis (s<sub>N</sub>2 type reaction)



## DOMI MINA THO MEA TO MEAT TO MEAT.

## Different Flavours of VB

| Program    | Capabilities                                                  | Website                                                 | Comments                                                     | Reference             |
|------------|---------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|-----------------------|
| MOLARIS-XG | EVB, FEP, AC                                                  | http://laetro.usc.edu/<br>software.html                 | Available for purchase from the USC                          | Warshel and coworkers |
| Q          | EVB, FEP, LIE                                                 | http://xray.bmc.uu.se/~aqwww/<br>q/                     | Free for academic use.<br>Available upon request             | Åqvist and coworkers  |
| V2000      | VBSCF, BOVB, VBCI,<br>SCVB, CASVB GVB                         | http://www.scinetec.com                                 | Integrated into GAMESS                                       | McWeeny and coworkers |
| TURTLE     | VBSCF                                                         | http://tc5.chem.uu.nl/ATMOL/<br>turtle/turtle_main.html | Integrated into GAMESS-UK                                    | van Lenthe et al.     |
| VM/MM      | VB/MM<br>DE-VB/MM                                             | Available upon request avitalsh@ekmd.huji.ac.il.        | Interface program that communicates between XMVB and MOLARIS | Shurki and coworkers  |
| MS-EVB     | MS-EVB                                                        |                                                         | In house implementation in LAMMPS MD package                 | Voth and coworkers    |
| AMBER      | Distributed Gaussian<br>EVB                                   | http://ambermd.org/                                     | AMBER license is required for GPU version                    | Case and coworkers    |
| XMVB       | VBSCF, BOVB, VBCI,<br>VBPT2, DFVB, VBPCM,<br>VBEFP, VBEFP/PCM | http://ftcc.xmu.edu.cn/xmvb/<br>index.html              | Integrated into GAMESS                                       | Wu and coworkers      |