Знакомство с In-Memory Data Grid

Яков Жданов

Committer, PMC member Apache Ignite project

І ПЛАН

- Распределенные системы обзор.
- Apache Ignite обзор.
- Распределенный кеш:
 - основные понятия;
 - афинити-функции и балансировка;
 - распределенные транзакции протокол и восстановление после сбоев.
- Вопросы и ответы.

Веб-сервер + сервер БД

Балансировка нагрузки между вебсерверами + репликация БД

- Offline (batch) обработка
 - Data Warehouse;
 - Наdоор экосистема;
- Online обработка
 - Дисковые системы Cassandra, Mongo DB...
 - In-memory системы Apache Ignite,
 Hazelcast, Gigaspaces...

APACHE IGNITE

- Старт в 2014 году http://ignite.apache.org
- На основе открытой версии GridGain.
- Top Level Project в сентябре 2015.
- Оообщество:
 - http://ignite.apache.org/community.html
 - 25 коммиттеров.
 - 26 контрибьюторов.
 - Ежедневно 10-15 активных тем на user-list и dev-list.
 - Приглашаем принять участие!

I APACHE IGNITE

- In-Memory Data Grid
 - Get(), put(), remove(), commit(), rollback()
- SQL-доступ
 - Select, avg(), sum(), having, order by
- Binary Objects
 - Классы на сервере не нужны!
- Compute grid
 - Map-reduce, zero deployment, failover, etc.
- Streaming

APACHE IGNITE

- Распределенная система:
 - Больше одного процесса;
 - Больше одного хоста.
- Все в памяти:
 - Быстрый доступ.
 - А, может, и не все или не только в памяти.
- Отказоустойчивость
- Масштабируемость

ДАВАЙТЕ ВЗГЛЯНЕМ ПОБЛИЖЕ!

APACHE IGNITE

С ЧЕГО НАЧАТЬ?

APACHE IGNITE

- Важнейшие компоненты
 - Обнаружение узлов (discovery)
 - Обмен сообщениями (communication)
- 🔵 Это база для
 - Compute grid
 - Data grid
 - И всего остального...

- Обнаружение узлов
 - вход (старт) нового узла
 - выход узла из топологии (graceful)
- Детектирование отказов
 - Crash процесса (-ов), сетевые сбои
- Обмен метриками (heartbeat exchange)
- Актуальная топология
 - Узлы и их свойства
 - Версионирование топологии (topology version)
- О Дополнительные требования
 - Нет специальных ролей все равны
 - Возможность изменения протокола и обратная совместимость

- Выбор транспорта
 - TCP + Java Serialization? Yes!
- Какая топология самая эффективная?
 - Полносвязная?
 - Звезда?
 - Кольцо!
 - Имплементация
 - org.apache.ignite.spi.discovery.tcp.TcpDiscoverySpi

КАКИЕ ПРОБЛЕМЫ?

- **1.** Длительные GC-паузы.
- 2. Полуоткрытые соединения (half-open sockets).
- 3. Сегментация топологии (topology segmentation).

МЫ ПОСТРОИЛИ КЛАСТЕР!

СЛЕДУЮЩИЙ ШАГ?

Научим узлы «общаться» между собой!

- Эффективный обмен сообщениями:
 - Отправка и получение
- Эффективная сериализация:
 - Избегать копирования данных.
 - Избегать лишних инстанциаций.
 - Сжимать, если возможно.
- Протокол может меняться:
 - Проблема совместимости версий
- Восстановление после разрывов соединения

- Транспорт?
 - TCP & NIO!
- Сериализация?
 - JDK? No!
 - Другие идеи?
- Имплементация
 - org.apache.ignite.spi.communication.tcp.TcpCommunicationSpi

Сериализация сообщений в потоках-обработчиках

Прямая сериализация (direct marshalling)

КАКИЕ ПРОБЛЕМЫ?

- 1. Длительные GC-паузы.
- 2. Полуоткрытые соединения (half-open sockets).
- Большое число асинхронных сообщений может спровоцировать ООМЕ.

APACHE IGNITE

Двигаемся дальше!

APACHE IGNITE: DATA GRID

JCache (JSR 107)

- Базовые операции над кешем
- ConcurrentMap APIs
- Колокация логики и данных (EntryProcessor APIs)
- Ивенты и метрики
- Персистентный слой (read&write through)

Ignite Data Grid

- Распределенное хранилище ключ-значение
- ACID транзакции
- SQL запросы (ANSI 99)
- Бинарные объекты (Binary Objects)
- Индексирование данных
- Интеграция с RDBMS

APACHE IGNITE: DATA GRID

APACHE IGNITE: DATA GRID

APACHE IGNITE: DATA GRID - AFFINITY

Распределение данных

- [равномерное] распределение по партициям;
- [равномерное] распределение по узлам;

при изменениях топологии.

Node A

APACHE IGNITE: REBALANCING

- Меняется топология необходима балансировка данных
- Балансировка
 - распределение данных «отстает» от изменений топологии – необходим «обмен картами» распределения
 - следующий шаг обмен данными
 - операции над не прерываются

Транзакция – пример кода.

```
try (Transaction tx = Ignition.ignite().transactions().txStart(
               PESSIMISTIC,
               REPEATABLE READ)) {
               // Get account from cache.
               // This will acquire lock.
               Account acct1 = cache.get(acctId1);
               Account acct2 = cache.get(acctId2);
               // Deposit into account.
10
               acctl.update(acct2.balance());
11
               // Store updated accounts in cache.
12
13
               cache.put(acctId1, acct1);
14
               cache.put(acctId2, acct2);
15
               tx.commit();
16
17
```

Транзакция – 2 phase commit протокол.

Phase 1 - Prepare

Phase 2 - Commit

Транзакция – восстановление после сбоя.

Транзакция с участием персистентного хранилища.

Phase I - Prepare (acquire locks)

Phase 2 - Commit (write to DB, write to cache)

Транзакция с участием персистентного хранилища – восстановление после сбоя.

2-Phase-Commit Recovery Protocol with Database Present

І ЗАКЛЮЧЕНИЕ

- Распределенные системы
- Важнейшие компоненты
 - Обнаружение узлов (discovery)
 - Обмен сообщениями (communication)
- Обзор IMDG функционал, режимы и афинити
- Транзакции
 - Протокол
 - Восстановление после сбоев

І ВОПРОСЫ?

