Preference Trees over Combinatorial Domains

Xudong Liu

Ph.D. Candidate
Department of Computer Science
College of Engineering
University of Kentucky
Lexington, KY, USA

Preferences Are Ubiquitous

Figure: Preferences of different forms

Describing Preferences

Figure: How to express it?

- On scale of 0 to 99, how will I rate these two cars?
 - I give Car1 44 points and Car2 78 points; thus, I prefer Car2 to Car1.
- Which one to me is better than the other?
 - I prefer Car1 to Car2. (Strict preference)
 - I like Car1 and Car2 equally. (Indifference/Equivalence)
 - I cannot decide. (Incomparability)

Describing Preferences

Figure: How to express it?

- On scale of 0 to 99, how will I rate these two cars? (Quantitative)
 - I give Car1 44 points and Car2 78 points; thus, I prefer Car2 to Car1.
- Which one to me is better than the other? (Qualitative)
 - I prefer Car1 to Car2. (Strict preference)
 - I like Car1 and Car2 equally. (Indifference/Equivalence)
 - I don't know. (Incomparability)

Binary Relations

Let O be a set of elements. A binary relation \leq over O is a collection of ordered pairs of elements in O; that is,

$$\preceq \subseteq O \times O$$
.

Properties of binary relations:

- **1** Reflexivity: $\forall o \in O, o \leq o$.
- 2 Irreflexivity: $\forall o \in O, o \not \leq o$.
- **3** Totality: $\forall o_1, o_2, o_1 \leq o_2 \text{ or } o_2 \leq o_1$.
- Transitivity: $\forall o_1, o_2, o_3$, if $o_1 \leq o_2$ and $o_2 \leq o_3$, then $o_1 \leq o_3$.
- **5** Symmetricity: $\forall o_1, o_2$, if $o_1 \leq o_2$, then $o_2 \leq o_1$.
- **1** Antisymmetricity: $\forall o_1, o_2$, if $o_1 \leq o_2$ and $o_2 \leq o_1$, then $o_1 = o_2$.

Binary Relations

 \leq is a partial preorder if it is reflexive and transitive, a total preorder if it is a partial preorder and total, a partial order if it is a partial preorder and antisymmetric, and a total order if it is a partial order and total.

(a) partial (pre)order

(b) total (pre)order

Binary Relations

 \leq is a partial preorder if it is reflexive and transitive, a total preorder if it is a partial preorder and total, a partial order if it is a partial preorder and antisymmetric, and a total order if it is a partial order and total.

(a) partial preorder

(b) total preorder

Binary Relations

Let \leq be a preference relation that is a partial preorder over O. We say that o_2 is weakly preferred to o_1 if $o_1 \leq o_2$, that o_2 is strictly preferred (\prec) to o_1 if $o_1 \leq o_2$ and $o_2 \not \leq o_1$, that o_1 is indifferent (\approx) from o_2 if $o_1 \leq o_2$ and $o_2 \leq o_1$, and that o_1 is incomparable (\sim) with o_2 if $o_1 \not \leq o_2$ and $o_2 \not \leq o_1$.

(a) partial preorder

 $o_1 \leq o_5$

 $o_4 \prec o_2$,

 $o_4 \approx o_8$,

 $o_6 \sim o_7$.

(b) preferences

Binary Relations

Let \leq be a preference relation that is a partial preorder over O. We say that o_2 is weakly preferred to o_1 if $o_1 \leq o_2$, that o_2 is strictly preferred (\prec) to o_1 if $o_1 \leq o_2$ and $o_2 \not \leq o_1$, that o_1 is indifferent (\approx) from o_2 if $o_1 \leq o_2$ and $o_2 \leq o_1$, and that o_1 is incomparable (\sim) with o_2 if $o_1 \not \leq o_2$ and $o_2 \not \leq o_1$.

- $o_1 \leq o_5$,
- $o_4 \prec o_2$,
- $o_4 \approx o_8$,

(a) total preorder

(b) preferences

Combinatorial Domains

Combinatorial Domains

Let V be a finite set of variables $\{X_1, \ldots, X_p\}$, D a set of finite domains $\{Dom(X_1), \ldots, Dom(X_p)\}$ for each variable X_i . A combinatorial domain CD(V) is a set of outcomes described by combinations of values from $Dom(X_i)$:

$$CD(V) = \prod_{X_i \in V} Dom(X_i).$$

Combinatorial Domains: Example

Domain of cars over set V of p binary variables:

```
• BodyType: {mvan, sedan}.
```

:

$$CD(V) = \{ \langle \text{sedan, 4, blue, } \dots \rangle, \langle \text{mvan, 6m, gray, } \dots \rangle, \dots \}.$$

$$2^p \text{ outcomes, too many!}$$

Computational Complexity

- P (NP): decision problems solvable by a deterministic (nondeterministic, resp.) TM in poly time in the size of the input.
 - We typically believe that $P \subset NP$.
- 2 coNP: problems whose complements are in NP.

- SPACE: decision problems solvable by a TM in poly space in the size of the input.
- **1** A decision problem L is C-hard if $L' \leq_p L$ for every L' in class C.
- $oldsymbol{0}$ A decision problem L is C-complete if L is in class C and L is C-hard.

Computational Complexity

Figure: Computational complexity diagram

Combinatorial Domains: Example

Domain of cars (cf. the Car Evaluation Dataset¹)

- **1 BodyType**: {mvan, sedan, sport, suv}.
- **2** Capacity: {2, 5, 7m}.
- Color: {black, blue, gray, red, white}.
- LuggageSize: {big, med, small}.
- **Make**: {bmw, ford, honda, and vw}.
- Price: {low, med, high, vhigh}.
- Safety: {low, med, high}.

14 / 66

 $^{^1}$ http://www.cs.uky.edu/~liu/preflearnlib.php, slightly adapted in the talk.

Qualitative Preferences

Individual:

<sedan, 5, blue, med, vw, med, med>

Figure: Dominance Testing

Qualitative Preferences

Collective:

Figure: Social Choice and Welfare

Research Problems of Interest

- Preference representation formalisms to model qualitative preferences over combinatorial domains.
- Preference learning methods to cast preferences of agents in a formalism.
- Preference reasoning tasks:
 - Dominance and optimization
 - Manipulation: better off by misreporting preferences untruthfully.

Preference Modeling

Q: How do we represent qualitative preferences over combinatorial domains?

- Answer-Set Optimization Theories²
- Ceteris Paribus Networks (e.g., CP-nets³, TCP-nets⁴, Cl-nets⁵)
- Conditional Preference Theories⁶

Preferences Research Overview UNF, 1/8 18 / 66

²Gerhard Brewka, Ilkka Niemelä, and Miroslaw Truszczynski. "Answer Set Optimization". In: <u>IJCAI</u>. 2003

³C. Boutilier et al. "CP-nets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements". In: <u>Journal of Artificial Intelligence Research</u> (2004)

⁴Ronen I. Brafman and Carmel Domshlak. "Introducing Variable Importance Tradeoffs into CP-Nets". In: <u>UAI</u>. 2002

⁵Sylvain Bouveret, Ulle Endriss, and Jérôme Lang. "Conditional importance networks: A graphical language for representing ordinal, monotonic preferences over sets of goods". In: (2009)

⁶Nic Wilson. "Extending CP-Nets with Stronger Conditional Preference Statements". In: <u>AAAI-04</u>. 2004

Preference Modeling

Q: How do we represent qualitative preferences over combinatorial domains?

Preference Trees (e.g., LP-trees^{16,20}, CLP-trees¹⁷, PLP-trees¹⁸, P-trees^{11,21})

Preferences Research Overview UNF, 1/8 19 / 66

⁷Richard Booth et al. "Learning conditionally lexicographic preference relations". In: ECAI. 2010

⁸Xudong Liu and Miroslaw Truszczynski. "Aggregating Conditionally Lexicographic Preferences Using Answer Set Programming Solvers". In: <u>Proceedings of the 3rd International Conference on Algorithmic Decision Theory (ADT)</u>. 2013

⁹Michael Bräuning and H Eyke. "Learning Conditional Lexicographic Preference Trees". In: Preference learning: problems and applications in AI (2012)

¹⁰Xudong Liu and Miroslaw Truszczynski. "Learning Partial Lexicographic Preference Trees over Combinatorial Domains".
In: Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI).
2015

¹¹Niall M Fraser. "Ordinal preference representations". In: <u>Theory and Decision</u> (1994)

¹²Xudong Liu and Miroslaw Truszczynski. "Preference Trees: A Language for Representing and Reasoning about Qualitative Preferences". In: Proceedings of the 8th Multidisciplinary Workshop on Advances in Preference Handling (MPREF). 2014

Preference Learning

Q: How do we learn predictive qualitative preference models over combinatorial domains?

- Ceteris Paribus Networks (e.g., CP-nets^{13,14,15})
- 2 Preference Trees (e.g., LP-trees¹⁶, CLP-trees¹⁷, **PLP-trees**¹⁸)
- **3** Preference Forests¹⁹

Preferences Research Overview UNF, 1/8

20 / 66

¹³ Jérôme Lang and Jérôme Mengin. "The complexity of learning separable ceteris paribus preferences". In: (2009)

¹⁴Frédéric Koriche and Bruno Zanuttini. "Learning conditional preference networks". In: <u>Artificial Intelligence</u> (2010)

 $^{^{16}}$ Richard Booth et al. "Learning conditionally lexicographic preference relations". In: $\underline{\text{ECAI}}$. 2010

¹⁷Michael Bräuning and H Eyke. "Learning Conditional Lexicographic Preference Trees". In: <u>Preference learning: problems and applications in Al</u> (2012)

¹⁸Xudong Liu and Miroslaw Truszczynski. "Learning Partial Lexicographic Preference Trees over Combinatorial Domains".
In: Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI). 2015

¹⁹ Xudong Liu and Miroslaw Truszczynski. "Learning Preference Trees and Forests". In: IJCAI-16 (In Preparation)

Preference Reasoning

Q: How do we reason about preferences over combinatorial domains?

- **1** Preference Optimization^{20,21,22}:
 - Dominance testing: $o_1 \succ_P o_2$?
 - Optimality testing: $o_1 \succ_P o_2$ for all $o_2 \neq o_1$?
 - Optimality computing: what is the optimal outcome wrt *P*?
 - Ranking: how are the outcomes ordered wrt P?
- Preference Misrepresentation²³:
 - Control
 - Manipulation²⁴
 - Bribery

²⁰Xudong Liu and Miroslaw Truszczynski. "Aggregating Conditionally Lexicographic Preferences Using Answer Set Programming Solvers". In: <u>Proceedings of the 3rd International Conference on Algorithmic Decision Theory (ADT)</u>. 2013

²¹Xudong Liu and Miroslaw Truszczynski. "Preference Trees: A Language for Representing and Reasoning about Qualitative Preferences". In: Preference Handling (MPREF). 2014

²²Xudong Liu and Miroslaw Truszczynski. "Reasoning with Preference Trees over Combinatorial Domains". In: Proceedings of the 4th International Conference on Algorithmic Decision Theory (ADT). 2015

²³Felix Brandt, Vincent Conitzer, and Ulle Endriss. "Computational social choice". In: Multiagent systems (2012)

²⁴Xudong Liu and Miroslaw Truszczynski. "Complexity of Manipulation in Elections Where Votes Are Lexicographic Preference Trees". In: AAMAS-17 (In Preparation)

Preference Applications

Q: What fields can we apply preferences to?

- Game Theory:
 - Hedonic games²⁵
- Automated Planning and Scheduling:
 - Trip planning²⁶
- Oata-Driven Decision Making:
 - Predictive decisions²⁷

22 / 66

²⁵Matthew Spradling et al. "Roles and Teams Hedonic Game". In: Proceedings of the 3rd International Conference on Algorithmic Decision Theory (ADT). 2013

²⁶Xudong Liu et al. "On Personalizability and Extensibility of Multi-Modal Trip Planning". In: PARC Symposium. 2015

²⁷Xudong Liu and Miroslaw Truszczynski. "Learning Preference Trees and Forests". In: IJCAl-16 (In Preparation)

Outline

- 1 The languages of P-trees, PLP-trees, and LP-trees
- Learning of preference models (PLP-trees and P-forests)
- 3 Reasoning with preferences:
 - Computing winners and "strong" outcomes when votes are LP-trees
 - Application in trip planning
- Future research directions

Outline

- The languages of P-trees, PLP-trees, and LP-trees
- Learning of preference models (PLP-trees and P-forests)
- Reasoning with preferences:
 - Computing winners and "strong" outcomes when votes are LP-trees
 - Application in trip planning
- Future research directions

Preferences Preference Modeling UNF, 1/8 24 / 66

- Let $\mathcal{I} = \{X_1, \dots, X_p\}$ be a set of attributes, and $D(\mathcal{I}) = \{Dom(X_1), \dots, Dom(X_p)\}$ a set of finite domains for \mathcal{I} .
- ② A *literal* is an assignment to an attribute. We denote by $X_i := x_{i,j}$ the literal that assigns value $x_{i,j} \in Dom(X_i)$ to X_i . When no confusion, we write $x_{i,j}$, instead of $X_i := x_{i,j}$, as a literal. We then denote by $\mathcal{L} = \{x_{i,j} \in Dom(X_i) : X_i \in \mathcal{I}\}$ the set of literals given \mathcal{I} and $D(\mathcal{I})$.
- **3** The combinatorial domain $CD(\mathcal{I})$ is defined as earlier.

- **4** A P-tree T over $CD(\mathcal{I})$ is a binary tree whose nodes, other than the leaves, are labeled with propositional formulas over \mathcal{L} .
- Given an outcome $M \in CD(\mathcal{I})$, the **leaf** $I_{\mathcal{T}}(M)$ is the leaf reached by traversing the tree \mathcal{T} according to M. When at a node N labeled with φ , if $M \models \varphi$, we descend to the left child of N; otherwise, to the right.
- **⊙** For $M, M' \in CD(\mathcal{I})$, we have $M \succ_T M'$ if $I_T(M) \succ_T I_T(M')$, and $M \approx_T M'$ if $I_T(M) = I_T(M')$. Outcome M is **optimal** if there exists no M' such that $M' \succ_T M$.

- **9 BodyType**(X_1): {mvan($x_{1,1}$), sedan($x_{1,2}$), sport($x_{1,3}$), suv($x_{1,4}$)}.
- **2** Capacity(X_2): {2, 5, 7m}.
- **3** Color(X_3): {black, blue, gray, red, white}.
- **1** LuggageSize(X_4): {big, med, small}.
- **Make**(X_5): {bmw, ford, honda, and vw}.
- **o** Price(X_6): {low, med, high, vhigh}.
- **Safety**(X_7): {low, med, high}.

Example: Preference Trees over Cars

```
BodyType(X_1): {mvan(x_{1,1}), sedan(x_{1,2}), sport(x_{1,3}), suv(x_{1,4})}. Color(X_3): {black, blue, gray, red, white}. Price(X_6): {low, med, high, vhigh}.
```


Figure : A P-tree over cars²⁸

 $^{^{28}\}varphi = (x_{1,1} \wedge x_{3,5}) \vee (x_{1,2} \wedge x_{3,2}).$

Example: Preferences over Cars

BodyType(X_1): {mvan($x_{1,1}$), sedan($x_{1,2}$), sport($x_{1,3}$), suv($x_{1,4}$)}. **Color**(X_3): {black, blue, gray, red, white}. **Price**(X_6): {low, med, high, vhigh}.

Figure : A P-tree over cars²⁸ $Car2 \succ Car1$

 $^{^{28}\}varphi = (x_{1,1} \wedge x_{3,5}) \vee (x_{1,2} \wedge x_{3,2}).$

Compact Representation of P-trees

Figure : Compact P-trees

30 / 66

Compact Representation of P-trees

A compact P-tree over $CD(\mathcal{I})$ is a binary tree where

- lacktriangle every node is labeled with a Boolean formula over \mathcal{I} , and
- ② every non-leaf node t labeled with φ has either two outgoing edges (Figure (a)), or one outgoing edge pointing left (Figure (b)), right (Figure (c)), or straight-down (Figure (d)).

Figure: Compact P-trees

Relative Expressivity of Preference Languages

```
 \begin{array}{c} \mathsf{LP\text{-}trees} \\ & \cap \\ \mathsf{PLP\text{-}trees} \\ & \cap \\ \mathsf{Poss\text{-}theories} = \mathsf{ASO\text{-}rules} \subset \ \mathsf{P\text{-}trees} \ \subset \ \mathsf{ASO\text{-}theories} \end{array}
```

Preferences Preference Modeling UNF, 1/8 32 / 66

Computational Complexity Results

DOMTEST: is it that $o \succeq_T o'$ in P-tree T? OPTTEST: is outcome o optimal w.r.t T?

OPTPROP: is there an optimal outcome o w.r.t T st $o \models \alpha$?

	DomTest	OptTest	ОртРкор
LP-tree	Р	Р	Р
ASO-rule/	P	coNP-c	$\Delta_2^P(P^{NP})$
Poss-theory	•		_ , ,
P-tree	Р	coNP-c ²⁹	$\Delta_2^P(P^{NP})$ -c ³⁰
ASO-theory	Р	coNP-c	$\Sigma_2^P(NP^{NP})$ -c

Figure : Computational complexity results

UNF, 1/8

33 / 66

 $^{^{29} {\}sf The}$ complement problem is reduced from the SAT problem.

 $^{^{30}\}mbox{The}$ problem is reduced from the Maximum Satisfying Assignment (MSA) problem.

Partial Lexicographic Preference Trees (PLP-Tree)

A *PLP-tree* over $CD(\mathcal{I})$ is a tree, where

- every node t is labeled with an attribute Attr(t) in \mathcal{I} and a conditional preference table CPT(t),
- every non-leaf node t has either one unlabeled outgoing edge or multiple outgoing edges labeled, each labeled by some value in Dom(Attr(t)), and
- **3** every attribute appears at most once on every branch.

Partial Lexicographic Preference Trees (PLP-Tree)

Figure: A UIUP PLP-tree

According to this UIUP PLP-tree, Car1 is preferred to Car2.

Partial Lexicographic Preference Trees (PLP-Tree)

Figure: A UICP PLP-tree

According to this UICP PLP-tree, Car2 is preferred to Car1.

Partial Lexicographic Preference Trees (PLP-Tree)

Figure: A CIUP PLP-tree

According to this CICP PLP-tree, Car1 is preferred to Car2.

Partial Lexicographic Preference Trees (PLP-Tree)

Figure: A CICP PLP-tree

According to this CICP PLP-tree, Car1 is preferred to Car2.

38 / 66

Lexicographic Preference Trees (LP-Trees)

- **1** An *LP-tree* \mathcal{L} over $CD(\mathcal{I})$ is a PLP-tree, where
 - each attribute appears exactly once on every path from the root to a leaf.

Preferences Preference Modeling UNF, 1/8 39 / 66

Outline

- The languages of P-trees, PLP-trees, and LP-trees
- Learning of preference models (PLP-trees and P-forests)
- Reasoning with preferences:
 - Computing winners and "strong" outcomes when votes are LP-trees
 - Application in trip planning
- Future research directions

Learning Problems on PLP-trees

Consistent Learning (CONSLEARN)

Given an example set \mathcal{E} , decide whether there exists a PLP-tree T (of a particular type) such that T is consistent with \mathcal{E} .

Small Learning (SMALLLEARN)

Given an example set \mathcal{E} and a positive integer I ($I \leq |\mathcal{E}|$), decide whether there exists a PLP-tree T (of a particular type) such that T is consistent with \mathcal{E} and $|T| \leq I$.

Maixmal Learning (MAXLEARN)

Given an example set $\mathcal E$ and a positive integer k ($k \le m$), decide whether there exists a PLP-tree $\mathcal T$ (of a particular type) such that $\mathcal T$ satisfies at least k examples in $\mathcal E$.

Complexity Results on PLP-trees

	UP	CP
UI	Р	Р
CI	NPC ³¹	Р

	UP	СР
UI	NPC	NPC
CI	NPC	NPC

(a) Conslearn

(b) SMALLLEARN

UNF, 1/8

42 / 66

	UP	CP
UI	NPC ³²	NPC
CI	NPC	NPC

(c) MaxLearn

Figure : Complexity results for passive learning problems

³¹Booth et al., Learning Conditionally Lexicographic Preference Relations, 2010.

³²Schmitt and Martignon, On the Complexity of Learning Lexicographic Strategies, 2006.

Experimental Results on PLP-trees

Figure: Learning curve for UIUP using ASP and greedy heuristic

Experimental Results on PLP-trees

Figure: Learning curve for all four classes using greedy heuristic

Preference Forests (P-Forests)

- **1** A preference forest F is a collection of PLP-trees $F = \{T_1, \ldots, T_n\}$.
- ② Denote by $N_F(o_1, o_2) = |\{T \in F : o_1 \succ_T o_2\}|$.
- **③** Given a preference forest F, and two outcomes o_1 and o_2 , we say that $o_1 \succ_F^{Maj} o_2$ iff $N_F(o_1, o_2) > N_F(o_2, o_1)$, and that $o_1 \approx_F^{Maj} o_2$ iff $N_F(o_1, o_2) = N_F(o_2, o_1)$.
 - Pro: intuitive, decided in polynomial time.
 - Con: Condorcet paradox.
 - Other aggregating rules: positional scoring rules, Copeland's method, etc.

Experimental Results on P-Forests

Figure: Learning UIUP using ASP and greedy heuristic

Experimental Results on P-Forests

Figure : Learning all four classes using greedy heuristic

Outline

- The languages of P-trees, PLP-trees, and LP-trees
- Learning of preference models (PLP-trees and P-forests)
- Reasoning with preferences:
 - Computing winners and "strong" outcomes when votes are LP-trees
 - Application in trip planning
- Future research directions

Positional Scoring Rules

- k-approval: $(1, \ldots, 1, 0, \ldots, 0)$ with k being the number of 1's and m k the number of 0's where $m = 2^p$.
- (k, l)-approval: $(a, \ldots, a, b, \ldots, b, 0 \ldots, 0)$, where a and b are constants (a > b) and the numbers of a's and b's equal to k and l, respectively.
- b-Borda: $(b, b-1, \ldots, 0)$, where if b>m-1, b-Borda is reduced to the regular Borda rule with $(m-1, m-2, \ldots, 1, 0)$.

The Evaluation and Winner Problems

The Evaluation Problem

Let r be a positional scoring rule with a scoring vector w, \mathcal{C} a class of LP-trees. Given a \mathcal{C} -profile P of n LP-trees over p attributes and a positive integer R, the *evaluation* problem is to decide whether there exists an alternative $o \in \mathcal{X}$ such that $s_w(o, P) \geq R$.

The Winner Problem

Let r be a positional scoring rule with a scoring vector w, \mathcal{C} a class of LP-trees. Given a \mathcal{C} -profile P of n LP-trees over p attributes, the winner problem is to compute an alternative $o \in \mathcal{X}$ with the maximum score $s_w(o, P)$.

Complexity of the Evaluation Problem: k-Approval

	UP	CP
UI	Р	Р
CI	Р	Р

	UP	CP
UI	NPC	NPC
CI	NPC	NPC

(a)
$$k = 2^{p-1} \pm f(p)$$
, $f(p)$ is a poly

(b)
$$k = 2^{p-c}$$
, $c > 1$ is a const

Figure : k-Approval

Complexity of the Evaluation Problem: (k, l)-Approval

	UP	CP
UI	Р	Р
CI	Р	Р

(a)
$$k = l = 2^{p-1}$$

	UP	CP
UI	NPC	NPC
CI	NPC	NPC

(b)
$$k = l = 2^{p-c}$$
, $c > 1$ is a const

Figure : (k, l)-Approval ³³

³³ Liu and Truszczynski, Aggregating Conditionally Lexicographic Preferences Using Answer Set Programming, ADT, 2013.

Complexity of the Evaluation Problem: b-Borda

	UP	CP
UI	Р	NPC
CI	NPC	NPC

(a)
$$b = 2^p - 1$$

	UP	СР
UI	NPC	NPC
CI	NPC	NPC

(b)
$$b = 2^{p-c} - 1$$
, $c \ge 1$ is a const

Figure : b-Borda

Modeling the Problems in ASP

Figure : The winner problem

• Solvers: clingo³⁴, clingcon³⁵

 $^{^{34}}$ M. Gebser et al. "Potassco: The Potsdam Answer Set Solving Collection". In: $\underline{\text{Al Communications}}$ (2011)

 $^{^{35}}$ Max Ostrowski and Torsten Schaub. "ASP modulo CSP: The clingcon system". In: $\underline{\text{TPLP}}$ (2012)

Modeling the Problems in W-MAXSAT

Figure: The winner problem

Solver: toulbar³⁶

 $^{^{36}\}text{M}$ Sanchez et al. "Max-CSP competition 2008: toulbar2 solver description" . In: the Third International CSP Solver Competition (2008)

Random LP Profiles

 To experiment with LP profiles, we developed methods to randomly generate encodings of a special type of CI-CP LP-tree of size linear in the number of attributes

Varying p and n: 2^{p-2} -approval

Figure: Solving the winner problem

Varying p and n: $(2^{p-2}, 2^{p-2})$ -approval ³⁷

Figure: Solving the winner problem

 $^{^{37}}$ scoring vector: $(2,\ldots,2,1,\ldots,1,0,\ldots,0)$ with the numbers of 2's and 1's equal to 2^{p-2}

Varying p and n: Borda

Figure: Solving the winner problem

Outline

- The languages of P-trees, PLP-trees, and LP-trees
- Learning of preference models (PLP-trees and P-forests)
- Reasoning with preferences:
 - Computing winners and "strong" outcomes when votes are LP-trees
 - Application in trip planning
- Future research directions

Personalization in Trip Planning

- Important to incorporate user constraints and preferences into trip planning systems.
- Collaboration with experts (in AI, planning, optimization, multi-agent systems) at PARC.
- Oeveloped a hipergraph-based trip planner that accommodates constraints specified as *linear temporal logic* and preferences expressed as preferential cost function to compute optimal routes using A^{*38} .
- Available later for trip planning in the Bay Area, LA, and Denver.

³⁸ Xudong Liu et al. "On Personalizability and Extensibility of Multi-Modal Trip Planning". In: PARC Symposium. 2015

Personalization in Trip Planning

- From SJC, to Pier 39, Monday, 9am.
- 2 Constraints: never drive a car, and bike for 1 to 2 hours.
- **③** Preferences: bike = public (0.25) > wait(2) > walk(3), and 30\$/hr.

Outline

- The languages of P-trees, PLP-trees, and LP-trees
- Learning of preference models (PLP-trees and P-forests)
- Reasoning with preferences:
 - Computing winners and "strong" outcomes when votes are LP-trees
 - Application in trip planning
- Future research directions

Data-Driven Preference Engineering

- Recommender Systems³⁹:
 - Collaborative
 - Ontent-based
 - Hybrid
- Machine Learning:
 - Supervised learning (e.g., decision trees, random forests)
 - 2 Label ranking⁴⁰
- Preference Elicitation (Human-in-the-Loop):
 - Context-based
- Preference Learning:
 - Conditional Preference Networks, Preference Trees
 - Stochastic Models (e.g., Choquet integral⁴¹, TOPSIS-like models⁴²)

 $^{^{39}}$ Gediminas Adomavicius and Alexander Tuzhilin. "Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions". In: Knowledge and Data Engineering, IEEE Transactions on (2005)

 $^{^{40}}$ Eyke Hüllermeier et al. "Label ranking by learning pairwise preferences". In: <u>Artificial Intelligence</u> (2008)

 $^{^{41}}$ Agnes Leroy, Vincent Mousseau, and Marc Pirlot. "Learning the parameters of a multiple criteria sorting method". In: Algorithmic decision theory. 2011

⁴²Manish Agarwal, Ali Fallah Tehrani, and Eyke Hüllermeier. "Preference-based Learning of Ideal Solutions in TOPSIS-like Decision Models". In: Journal of Multi-Criteria Decision Analysis (2014)

Preference Reasoning and Applications

- Social Choice and Welfare⁴³:
 - Voting
 - Pair devision
 - Strategyproof Social Choice
- Automated Planning and Scheduling:
 - Travel scheduling
 - Manufacturing
 - Traffic control
- Computer Vision and Image Processing:
 - Image retrieval
 - Image and video understanding

65 / 66

⁴³Kenneth J Arrow, Amartya Sen, and Kotaro Suzumura. Handbook of Social Choice and Welfare. Vol. 1 & 2. 2010

Questions?

Thank you!

Preferences Conclusion UNF, 1/8 66 / 66