Vademecum di spirometria per la sorveglianza sanitaria dei lavoratori

Franco Roscelli¹, Andrea Innocenti², Augusto Quercia³
¹Azienda USL di Parma; ²Azienda USL 3 Pistoia; ³Azienda USL Viterbo

Bozza ottobre 2010

1. Introduzione

Il termine spirometria è convenzionalmente considerato sinonimo di misure derivate dall'esecuzione di manovre di espiratorie forzata. I parametri ottenibili sono i volumi polmonari dinamici cioè la Capacità Vitale Forzata (CVF), il Volume Espiratorio Massimo al primo Secondo (VEMS) e il rapporto VEMS/CVF x 100, rispettivamente *Forced Vital Capacity* (FVC), *Forced Expiratory Volume in one second* (FEV₁) ed FEV₁/FVC *percent ratio* degli autori anglosassoni. Inoltre, con la registrazione flusso-volume della espirazione forzata si determinano i flussi espiratori massimali all'inizio dell'espirazione [Picco Espiratorio di Flusso (PEF)] e a diversi volumi polmonari [rispettivamente al 25, 50 e 75 percento della CVF (FEF₂₅, FEF₅₀, FEF₇₅)].

Questi parametri sono alla base della sorveglianza sanitaria dei lavoratori esposti a rischio respiratorio in quanto fondamentali per la misura della capacità polmonare e per la valutazione della pervietà delle vie aeree. Essi permettono di identificare l'esistenza di un deficit funzionale di tipo ostruttivo e di suggerire un deficit di tipo restrittivo o misto; inoltre la ripetizione periodica della spirometria consente di seguire nel tempo l'andamento della funzione ventilatoria.

Nella figura 1 viene esemplificata la rappresentazione grafica delle curve Volume-tempo (V/t) e Flusso-Volume (F/V). Nel primo caso sono rappresentati il valore in litri del volume complessivo espirato (sull'ordinata) e il tempo in secondi dall'inizio della prova (in ascissa). L'altra curva riporta i valori istantanei di flusso (in litri al secondo) e il contemporaneo volume polmonare (in litri), rispettivamente sull'asse y e x; nel grafico cartesiano bidimensionale non è presente il tempo, che dovrebbe essere rappresentato nell'asse z.

Figura 1 - Curve Flusso-Volume (sinistra) e Volume-tempo (destra)

Si tratta di un esame - apparentemente - di semplice effettuazione; in realtà differisce da molte altre indagini mediche, in quanto la validità dei suoi risultati dipende dal rispetto di diversi fattori. Infatti, è richiesta una stretta cooperazione tra lavoratore e sanitario esaminatore, oltre al rispetto di requisiti di qualità nella strumentazione e di protocolli operativi standardizzati nell'esecuzione delle manovre respiratorie.

Se qualcuno di questi fattori è assente, i risultati possono essere falsamente *aumentati* o *ridotti*. Questo può avere un impatto rilevante sull'interpretazione delle prove di funzionalità respiratoria dei lavoratori, che può portare a conclusioni scorrette.

Il presente documento presenta sinteticamente i criteri per la standardizzazione della tecnica di esecuzione della spirometria. Vengono anche fornite indicazioni per la corretta interpretazione dei valori di volume e flusso polmonare delle spirometrie effettuate ai fini della sorveglianza sanitaria nei luoghi di lavoro. La finalità prettamente didattica, rivolta ai medici del lavoro, rende ragione di alcune semplificazioni presenti nella trattazione. Il vademecum si basa essenzialmente su tre fonti bibliografiche:

- la serie "ATS/ERS Task Force: Standardisation of lung function testing", in particolare le considerazioni generali sui test di funzionalità polmonare, le raccomandazioni sulla standardizzazione della spirometria e le strategie di interpretazione dei test;
- i documenti sulla spirometria elaborati dall'American College of Occupational and Environmental Medicine (ACOEM);
- le Linee Guida SIMLII "Sorveglianza sanitaria dei lavoratori esposti ad agenti irritanti e tossici per l'apparato respiratorio" nella versione presentata a Firenze durante il 72° Congresso nazionale della Società.

Si fa riferimento, inoltre, al materiale didattico dei corsi tenuti dagli autori in varie regioni dal 2008 al 2010, predisposti sulla falsariga dello "Spirometry Training Program" del NIOSH.

2. Strumentazione

Gli spirometri si dividono in due grandi categorie: quelli con segnale primario di volume, cioè spirometri a circuito chiuso (campane ad acqua, a pistone, a soffietto) e quelli con segnale primario di flusso (a circuito aperto) da cui viene calcolato il volume (pneumotacografi, ventole, ...).

I primi sono meno soggetti a errore, in quanto eseguono direttamente la misura dei volumi derivandone i flussi, ma hanno dimensioni maggiori che ne ostacolano la portabilità.

Negli apparecchi portatili (misuratori primari di flusso) un programma di elaborazione interna trasforma il segnale di flusso in segnale di volume (flusso = volume/tempo; volume = flusso×tempo): le caratteristiche intrinseche di questi strumenti (come l'inerzia della turbina), le vibrazioni, gli urti durante il trasporto, possono alterare sensibilmente l'accuratezza delle loro misure.

Le raccomandazioni ATS/ERS e una recente norma tecnica (UNI EN ISO 26782:2009) stabiliscono i requisiti minimi che gli spirometri devono rispettare per garantire la correttezza delle misure. È fortemente raccomandato che tutti gli spirometri utilizzati in medicina del lavoro siano corredati di una certificazione di conformità del produttore, attestante la rispondenza della strumentazione a tali requisiti minimi.

Rimandando per i dettagli alle pubblicazioni originali citate in bibliografia, si possono fornire alcune esemplificazioni:

- rispetto dei criteri di qualità relativi a resistenza del circuito (<1.5 cm H₂O per litro al secondo), accuratezza, precisione, linearità e risoluzione dei segnali di flusso e di volume, etc;
- idonea presentazione grafica delle curve volume-tempo e flusso-volume sia nello schermo che nella stampa cartacea (tabella 1);
- possibilità di salvare tutti i dati delle prove eseguite dal lavoratore, con un minimo di 8 per sessione;

- possibilità di stampare un rapporto contenente tutte le curve volume-tempo e flussovolume e tutti i valori delle prove eseguite o almeno delle tre migliori;
- registrazione permanente nello strumento delle tarature e dei controlli di taratura effettuati.

Tabella 1 – Dimensioni minime per una idonea presentazione grafica delle curve volume-tempo e flusso-volume (da Maestrelli 2009)

M.R. Miller et al. Eur Respir J 2005; 26 pag 322 Fattori minimi di scala raccomandati per il volume, il flusso ed il tempo nell'output grafico nel monitor del computer e nella copia cartacea							
	Monitor del computer		Copia cartacea				
Parametro	Risoluzione richiesta	Fattore di scala	Risoluzione richiesta	Fattore di scala			
Volume *	0.050 L	5 mm.L ⁻¹	0.025 L	10 mm.L ⁻¹			
Flusso *	0.200 L.s ⁻¹	2.5 mm.L ⁻¹ .s ⁻¹	0.100 L.s ⁻¹	5 mm.L ⁻¹ .s ⁻¹			
Tempo	0.2 s	10 mm.s ⁻¹	0.2 s	20 mm.s ⁻¹			

Gli standard ATS/ERS prevedono un adeguato controllo di qualità degli strumenti con periodiche verifiche, da giornaliere a settimanali a trimestrali, del volume e dei flussi e della loro linearità in un range compreso tra 0 e 8 litri per il volume e tra 0 e 14 litri per secondo per il flusso. Viene raccomandato che il controllo di taratura degli spirometri portatili venga eseguito giornalmente e comunque dopo ogni trasporto, utilizzando una siringa da 3 litri.

Anche gli strumenti a circuito chiuso devono essere verificati quotidianamente, per verificare eventuali perdite dal circuito applicando una pressione costante di $3~{\rm cm}~{\rm H}_2{\rm O}$ al sistema.

Per garantire la confrontabilità delle misure i volumi vanno riportati alle condizioni corporee, BTPS (Body Temperature Pressure Satured) a partire dalla pressione barometrica e dalla temperatura ambientale e/o della campana spirometrica, che deve essere rilevata con l'accuratezza di ± 1 grado centigrado. Questa correzione viene fatta automaticamente dalla maggior parte degli strumenti che possiedono un idoneo software di calcolo oppure il fattore di correzione può essere desunto da apposite tabelle BTPS.

3. Gestione dell'ambulatorio e del lavoratore

L'ambulatorio all'interno del quale viene effettuato l'esame spirometrico deve essere un ambiente tranquillo, di cui si conoscano temperatura, pressione atmosferica e umidità relativa, fattori fisici che hanno una ripercussione diretta sui gas.

La temperatura, inoltre, deve essere adeguata e confortevole, per consentire al soggetto esaminato di indossare indumenti leggeri che non ostacolino l'espansione della gabbia toracica.

L'altezza (ed eventualmente il peso) deve essere rilevata personalmente dall'operatore e non riferita dal soggetto da esaminare; insieme alla data di nascita e all'etnia di provenienza è necessaria per ottenere i valori teorici di riferimento. Nella pratica conviene, dopo i 25 anni e fino a 50-60 anni, non misurare più l'altezza ad ogni successivo controllo ma tenere per buona quella misurata correttamente alla prima visita. È preferibile, infatti, un errore sistematico di un centimetro piuttosto che aumenti di statura improvvisi a 40 anni (non ci capiremmo più nulla sull'andamento della funzionalità polmonare).

Per contestualizzare gli esiti dell'esame è importante raccogliere tra i dati anamnestici anche informazioni sull'abitudine al fumo o sulla recente assunzione di farmaci.

La principale controindicazione all'esecuzione spirometria eseguita sul luogo di lavoro è l'emottisi. Altre condizioni (pneumotorace, recente intervento addominale o toracico, trauma al torace, recente intervento agli occhi, infarto miocardico acuto entro 3 mesi, angina instabile, aneurisma toracico) sono controindicazioni importanti soprattutto in clinica.

Il lavoratore deve essere preventivamente informato delle istruzioni per la riuscita ottimale dell'esame spirometrico: non effettuare sforzi intensi nei 30 minuti precedenti la prova; non fumare almeno un'ora prima; non consumare un pasto abbondante almeno 2 ore prima e non bere alcol almeno 4 ore prima. Inoltre, anche se nel normale la variazione circadiana non ha grandi influenze sul risultato, è consigliabile eseguire la spirometria al mattino, tra 9 e le 12,30.

Le prove possono essere eseguite sia in posizione seduta che eretta; la posizione deve essere documentata nel referto e mantenuta nelle prove successive. In genere i lavoratori preferiscono la postura eretta, che favorisce anche valori più elevati di FVC, specialmente nei soggetti obesi. Tuttavia l'espirazione forzata diminuisce il ritorno venoso e può provocare vertigini o, raramente, una sincope. Per sicurezza si può collocare una sedia (senza ruote!) dietro il soggetto, che deve essere aiutato a sedersi appena compaia un malessere. Se il lavoratore ha una storia positiva per vertigini è raccomandata la posizione seduta.

Occorre assicurarsi che il soggetto mantenga il busto eretto con la muscolatura rilasciata e posizioni il boccaglio correttamente, per evitare perdite ai lati della bocca o di ostruire il foro con la lingua. È raccomandato l'uso di uno stringinaso.

L'operatore deve essere ben addestrato e in grado di fornire una semplice e breve spiegazione della finalità dell'esame e dell'importanza di una corretta esecuzione della prova, descrivendo le modalità con espressioni chiare e termini semplici. Può essere utile, soprattutto per i lavoratori con scarsa conoscenza della lingua italiana, effettuare personalmente la manovra a scopo dimostrativo.

4. Esecuzione della manovra di espirazione forzata

Dopo le istruzioni preliminari si esegue la manovra secondo la sequenza:

- respirazione tranquilla a volume corrente;
- inspirazione massimale veloce e decisa (controllata sullo schermo o sul soggetto);
- comando semplice e breve (giù!!; fuori!!);
- espirazione massimale forzata, con inizio brusco a glottide aperta;
- espirazione completa e prolungata, per una durata minima di 6 secondi;
- inspirazione rapida e completa.

L'operatore deve seguire attentamente sia il tracciato che il soggetto che esegue l'esame, dando ordini precisi e chiari per ciascuna manovra, incoraggiando a proseguire nello sforzo muscolare, senza interruzioni e fino a completa espirazione.

Il controllo visivo del grafico flusso-volume e volume-tempo da parte dell'operatore durante lo svolgimento dell'esame è fondamentale per verificare elementi come la buona partenza, il picco di flusso, l'irregolarità nell'espirazione, eventuali colpi di tosse, ecc.

È buona norma determinare, oltre a FVC, FEV₁ e flussi espiratori forzati, anche i volumi e i flussi massimali forzati ottenuti con manovre inspiratorie, che possono seguire e/o precedere l'esecuzione della FVC.

Se necessario, le prove saranno ripetute dopo aver spiegato come correggere gli errori commessi; tuttavia, è opportuno sospendere l'esame dopo 8 tentativi errati.

5. Validità dell'esame spirometrico

Le raccomandazioni ATS/ERS 2005 stabiliscono la validità di un esame spirometrico basandosi sul rispetto di due requisiti:

- a) almeno 3 curve esenti da difetti tecnici di esecuzione (definite curve "accettabili");
- b) valori di FVC e FEV₁ coerenti tra le curve (definiti risultati "ripetibili").

I criteri per stabilire la validità delle spirometrie sono sintetizzati nella tabella 2 e descritti più estesamente nei paragrafi successivi, con alcune esemplificazioni.

Tabella 2 – Criteri di validità ATS/ERS 2005

Accettabilità	Per essere accettabile ogni manovra di espirazione forzata deve	
	rispettare i seguenti criteri:	
	Buon inizio	
	partenza esplosivavolume estrapolato < 150 ml e/o < 5% di FVC	
	Svuotamento completo	
	 durata ≥ 6 sec. e/o plateau finale nella curva V/t o 	
	impossibilità del soggetto a proseguire l'espirazione	
	Assenza di artefatti quali:	
	- inspirazione non massimale	
	- tosse nel primo secondo	
	- chiusura della glottide	
	- interruzione precoce	
	- sforzo submassimale o variabile	
	- perdite del sistema	
	- ostruzione del boccaglio	
Ripetibilità	Dopo aver ottenuto 3 prove accettabili, applicare i seguenti	
	criteri:	
	- differenza fra i due migliori valori di FVC ≤150 mL	
	- differenza fra i due migliori valori di FEV₁ ≤150 mL	
	• Se entrambi i criteri sono rispettati l'esame spirometrico può	
	essere terminato	
	• In caso contrario, eseguire altre prove fino a quando:	
	- sono rispettati entrambi i criteri con le nuove manovre	
	espiratorie	
	- viene raggiunto un totale di 8 manovre espiratorie	
	- il soggetto non è più in grado di proseguire	

6. Criteri di accettabilità

Per un esaminatore esperto, l'osservazione delle curve flusso-volume e volume-tempo, durante e subito dopo la prova, consente di valutare i caratteri che ne determinano l'accettabilità: inspirazione massimale, inizio esplosivo dell'espirazione e svuotamento completo dei polmoni.

Come illustrato nella figura 2, la curva F/V fornisce maggiori indicazioni per quanto riguarda l'accettabilità della prima parte della manovra di espirazione forzata, mentre la curva V/t è più informativa sull'ultima parte della stessa.

Figura 2 - Principali elementi da valutare per l'accettabilità della spirometria

In dettaglio, la prova di capacità vitale forzata può essere considerata correttamente eseguita quando rispetta i criteri sotto indicati.

a) Esplosività dell'espirazione

Per valutare se l'avvio dell'espirazione forzata è avvenuto in maniera esplosiva e senza esitazioni si osserva la forma della curva flusso-volume: la manovra è accettabile visivamente se la curva sale rapidamente e il PEF è ben riconoscibile, con aspetto appuntito e non arrotondato (figura 3). Un debole inizio dell'espirazione altera il FEV₁ in misura significativa e può simulare erroneamente un quadro ostruttivo.

Figura 3 - Esempio di esplosività accettabile

Come già sottolineato, la validità della manovra dipende dalla collaborazione del soggetto che, all'inizio dell'espirazione, deve fare il massimo sforzo per buttar fuori l'aria alla massima velocità possibile. Dipende dall'operatore valutare l'impegno del soggetto e capire quale è il limite tra la sua volontà ed una eventuale patologia.

Il ritardo di volume al raggiungimento del PEF (1* in figura 3) è un robusto indicatore del ritardo temporale del PEF (DtPEF, osservabile nella curva flusso-tempo non raffigurata), che è correlato al volume estrapolato; consente quindi il controllo visivo della esplosività. Le raccomandazioni ATS/ERS 2005 non prevedono il DtPEF tra i criteri di accettabilità; è consigliabile, tuttavia, che questo sia indicato dallo strumento e rimanga al di sotto di 120 msec. La figura 4 mostra un esempio di spirometria non accettabile per fase iniziale non esplosiva.

M 41anni 171cm 69Kg 271ug2009 08:18 24°C 784mmHg n.5096 12-9 6 3 15 20 5 migl. Vext 215 ml (4.6%) -7 DtPEF 170 Msec FUC 4.64 5.05 FEU1 4.01 4.12 -2 FET 2.0 sec PEF Plat 0.1 sec

Figura 4 - Esempio di mancata esplosività

b) Volume di estrapolazione retrograda < 150 ml e/o < 5% FVC

Dal momento che l'interpretazione della spirometria si basa in modo particolare sul primo secondo di espirazione, è fondamentale individuare un valido tempo zero per il calcolo del FEV₁, applicando il criterio illustrato nella figura 5.

Sul grafico Volume/tempo, a partire dal punto di massima pendenza (picco di flusso) si traccia la retta di massima pendenza, che va ad incontrarsi con il prolungamento della retta orizzontale di apnea. Il punto così definito diventa il punto teorico di inizio dell'espirazione.

Figura 5 – Volume di estrapolazione retrograda (EV): ingrandimento della parte iniziale della curva V/t (da Lange 2009).

L'estrapolazione retrograda ha lo scopo di minimizzare l'imprecisione del FEV_1 causata da un'esitazione nella fase iniziale dell'espirazione, ma determina un aumento non reale del FEV_1 . Può essere visibile sul tracciato V/t, ma è opportuno che il valore esatto sia fornito dallo spirometro.

Il criterio viene rispettato quando il volume di estrapolazione retrograda è inferiore a 150 ml; se superiore, la prova è comunque accettabile se EV rimane al di sotto del 5% di FVC. Le figure 6 e 7 mostrano esempi di spirometrie con volume di estrapolazione retrograda (Vext) rispettivamente accettabile e non accettabile.

Figura 6 - Esempio di estrapolazione retrograda accettabile

Figura 7 - Esempio di estrapolazione retrograda non accettabile

c) Durata dell'espirazione sufficiente

Per ottenere un completo svuotamento dei polmoni, l'espirazione deve durare di norma non meno di 6 secondi. È importante che lo spirometro segnali la durata dell'espirazione forzata (*Forced expiratory time*: FET), sia graficamente nella curva volume-tempo che come valore esatto nella tabella dei risultati.

Se il soggetto è giovane, astenico o di corporatura minuta, tuttavia, l'espirazione completa può avvenire molto rapidamente. In questo caso si può accettare la prova, anche se la durata è inferiore a 6 secondi, qualora la curva V/t mostri un *plateau* ben evidente (v. punto successivo). Al contrario, un soggetto ostruito può necessitare di un tempo superiore (fino a 15-20 secondi) per completare l'espirazione.

Va sottolineato che i risultati di una espirazione terminata precocemente, pur non soddisfacendo i criteri di accettabilità per la FVC, non devono necessariamente essere eliminati, in quanto possono essere utilizzati per recuperare il miglior valore di FEV₁. Le figure 8 e 9 mostrano esempi di spirometrie con durata della prova rispettivamente accettabile e non accettabile.

Figura 8 - Esempio di durata accettabile

d) Plateau di fine espirazione

È importante che i soggetti siano incoraggiati dall'esaminatore a svuotare i polmoni fino al massimo possibile. La parte finale delle curve deve mostrare un andamento graduale, senza brusche variazioni o interruzioni. Lo svuotamento completo può essere verificato ricercando il *plateau* finale nella curva V/t, che viene raggiunto quando nella curva volume-tempo non si verifica una variazione di volume superiore a 0,025 L per la durata di almeno 1 secondo (figure 10 e 11).

Figura 11 - Esempio di plateau assente

A questo punto sorge spontanea la domanda "FET> 6 sec e plateau di 1 sec sono alternativi o devono essere entrambi presenti?" In effetti nella tabella 5 di pag 325 delle raccomandazioni ATS/ERS si usa *or* fra tempo >6 sec e plateau, ma a pagina 324 nel testo si

usa *and*. Nella pratica della sorveglianza sanitaria è opportuno utilizzare il buonsenso: se il soggetto è giovane/longilineo/basso verosimilmente la durata della espirazione sarà inferiore ai 6 secondi e quindi va considerato l'*or*, mentre negli altri casi sarebbe bene fossero entrambi presenti.

e) Assenza di artefatti nella curva F/V

Per l'accettabilità della manovra di FVC non devono verificarsi colpi di tosse nel primo secondo, che alterano il FEV₁, o successivamente se, a giudizio dell'operatore, interferiscono con la misura di risultati accurati, non deve verificarsi la chiusura della glottide (manovra di Valsalva) né un'esitazione durante la manovra che causi l'interruzione del flusso espiratorio.

La prova non è accettabile anche nel caso si verifichino perdite dal naso o dal boccaglio, come pure se questo viene ostruito dalla lingua o dai denti. Infine, non devono verificarsi inspirazioni aggiuntive durante la manovra di espirazione. Un errore frequente nelle spirometrie di screening è il mancato riempimento fino alla capacità polmonare totale, fatto che può erroneamente dar luogo a un "quadro restrittivo".

La figura 12 mostra schematicamente la differenza tra una curva F/V accettabile (a) e altre non accettabili: tosse nel primo secondo (b), espirazione terminata prematuramente (c), sforzo submassimale (d) ed esitazione nella partenza (e).

Figura 12 – Esempi schematici di curve F/V accettabili e non (da Lange 2009)

7. Criteri di ripetibilità

Per un esame spirometrico adeguato sono richieste di norma 3 manovre di FVC accettabili.

Successivamente, è necessario verificarne la rispondenza ai criteri di ripetibilità, che si conferma quando la differenza fra i due migliori valori di FVC e quella tra i due migliori valori di FEV $_1$ sono ≤ 150 mL. Se questi criteri non sono soddisfatti in tre prove, occorre eseguirne altre, indicativamente fino a un massimo di otto o fino a quando il soggetto non riesce più ad eseguire la manovra espiratoria per eccessivo affaticamento.

Nella spirometria di screening la mancata ripetibilità è spesso causata da una inspirazione non massimale. Inoltre, negli spirometri con misurazione primaria del flusso una ripetibilità molto bassa può essere indice di contaminazione o blocco dei sensori (da parte di vapore condensato, muco o dita).

La mancata ripetibilità deve essere utilizzata solo per stabilire se sono necessarie più di tre manovre accettabili, ma non deve determinare di per sé l'esclusione dei dati relativi a quei soggetti. Nel caso, si raccomanda di annotare nel referto la mancata ripetibilità.

L'applicazione rigida dei criteri di ripetibilità porterebbe, infatti, alla selettiva esclusione di individui affetti da malattie polmonari, auspicabile in sede di elaborazione di teorici di riferimento, ma possibile sorgente di errore in studi epidemiologici sugli effetti di un agente ambientale sul polmone. Per tale motivo, nel corso della sorveglianza sanitaria in azienda, sarebbe opportuno valutare i tracciati con un metodo standardizzato come quello riportato in tabella 3, ripreso dallo studio PLATINO, elaborando i dati dei soggetti con punteggio >2 ed approfondendo le motivazioni che hanno portato a valori inferiori.

Tabella 3 - Punteggio per il controllo di qualità della spirometria

Grado	Criteri rispettati	Punti
A	3 manovre accettabili / 2 FEV ₁ e FVC entro 150 ml (ATS/ERS 2005)	5
В	3 manovre accettabili / 2 FEV ₁ e FVC entro 200 ml (ATS 1994)	4
С	2 o 3 manovre accettabili con ripetibilità entro 200-250 ml	3
D	2 o 3 manovre accettabili senza ripetibilità entro 250 ml	2
Е	1 manovra accettabile	1
F	nessuna manovra accettabile	0

8. Presentazione dei risultati della spirometria

Al termine dell'esame spirometrico lo strumento deve presentare i valori e le curve di tutte le prove accettabili, per permettere una valutazione complessiva di qualità. Per l'interpretazione, vengono scelti i valori più alti di FVC e di FEV₁, anche se ricavati da curve differenti. Il rapporto FEV₁/FVC viene calcolato utilizzando questi due risultati.

I valori dei flussi espiratori forzati (FEF) vanno invece derivati dalla manovra in cui si osserva il valore più elevato della somma FVC + FEV₁. Va sottolineato, tuttavia, che le raccomandazioni ATS/ERS 2005 scoraggiano fortemente l'uso clinico dei FEF₂₅₋₇₅ e dei flussi istantanei massimi a bassi volumi polmonari, per la loro eccessiva variabilità inter- e intraindividuale.

9. Interpretazione della spirometria

L'interpretazione di una spirometria inizia con l'analisi della qualità della prova spirometrica. Anche le prove non ottimali dal punto di vista dell'accettabilità o della ripetibilità possono contenere informazioni utili, ma è necessario prima di tutto identificare i problemi e valutare entità e tipologia dei possibili errori. Un malinteso frequente, specie tra chi si affida alla diagnosi automatica del computer, consiste nell'ignorare il controllo di qualità, basandosi esclusivamente sui risultati numerici per l'interpretazione del test.

La valutazione della spirometria si basa tradizionalmente sul confronto con i valori di riferimento, misurati in soggetti sani. Spesso l'interpretazione si limita a questa analisi trasversale: ogni anno viene precisato soltanto se i risultati sono all'interno della normale variabilità. Ma non bisogna dimenticare che spirometrie ripetute periodicamente, come nel caso della sorveglianza sanitaria di un lavoratore, permettono anche una valutazione longitudinale, misurando le modificazioni della funzione polmonare nel tempo. Particolare attenzione deve essere posta nella scelta dei teorici, la cui fonte deve essere sempre indicata nel referto.

Seguendo le indicazioni della task-force ATS/ERS del 2005, i criteri maggiori per definire l'esistenza di significative alterazioni spirometriche si devono basare sul confronto tra i valori osservati e i limiti inferiori di normalità (LIN) dei valori di riferimento adottati per il soggetto in esame. Gli spirometri, quindi, devono indicare il limite inferiore del teorico per poter definire correttamente un deficit spirometrico.

In mancanza di tale indicazione si possono utilizzare per il limite inferiore valori fissi rispetto al teorico: FVC, VC e FEV₁ -20% del teorico; FEV₁/VC -10 punti rispetto al teorico (tabella 4). Questi valori fissi possono tuttavia dar luogo a errori non trascurabili nell'interpretazione della spirometria negli adulti molto giovani o negli anziani.

Tabella 4 - Riepilogo dei limiti inferiori di normalità (LIN)

- FVC, VC: 5° percentile (in subordine 80% del teorico);
- FEV₁: 5° percentile (in subordine 80% del teorico);
- FEV₁/VC: 5° percentile (in subordine 10 punti in meno del teorico)

Dopo aver verificato la validità della spirometria, per discriminare le spirometrie anormali da quelle normali, conviene esaminare dapprima se VC rientra nell'ambito del teorico e quindi il rapporto FEV₁/VC, al fine di determinare la presenza o meno di un deficit ostruttivo. Se VC è inferiore al LIN e il rapporto FEV₁/VC molto alto si deve prendere in considerazione un possibile deficit restrittivo, come indicato in figura 13.

Importanza dei criteri decisionali

Le linee-guida GOLD (per BPCO) utilizzate anche per l'ASMA (linee guida GINA) indicano, indipendentemente dal sesso, età ed altezza, il livello fisso di rapporto FEV1/FVC% <70 come indice di ostruzione bronchiale al fine di una semplificazione, ma questo *cut-off fisso* può portare a notevoli misclassificazioni.

Infatti tale valore è fisiologico nei soggetti fra 50 e 55 anni e poiché l'asma è una malattia dei giovani molti asmatici possono risultare falsamente "normali" pur avendo una ostruzione bronchiale (con rapporto FEV1/FVC% >70), mentre la BPCO è una

malattia dell'età avanzata e viceversa molti anziani possono risultare falsamente ostruiti avendo un rapporto FEV1/FVC% <70

a) Ostruzione delle vie aeree

La spirometria è da considerare indicativa di una ostruzione delle vie respiratorie quando sia il rapporto FEV₁/VC che FEV₁ sono inferiori al LIN, mentre VC è nella normale variabilità (una certa attenzione deve essere posta quando l'apparecchio esprime solo il rapporto FEV1/FVC e non permette l'effettuazione di una VC inspiratoria lenta).

Quando, invece, il rapporto FEV₁/VC è inferiore al LIN mentre FEV₁ è nella normale variabilità, si può sospettare una ostruzione *borderline* oppure la presenza di una "variante fisiologica normale". Le raccomandazioni ATS/ERS mettono in guardia sul fatto che un rapporto FEV₁/VC anormale, associato a VC e FEV₁ entrambi superiori al 100%, può essere riscontrato a volte in soggetti sani non fumatori. Il quadro è denominato "variante fisiologica normale" e non è infrequente in soggetti atletici, quali vigili del fuoco o soccorritori

d'emergenza. Se, tuttavia, questi lavoratori sani sono esposti a tossici o irritanti noti, occorre considerare la possibilità di un deficit ostruttivo quando si osserva la riduzione di FEV₁/VC.

Il grado di ostruzione è misurato in base alla riduzione del FEV_1 (vedi oltre); con il proseguire della ostruzione e il conseguente aumento del VR, infatti, vi è una riduzione anche della VC e il rapporto FEV_1/VC può ritornare normale. Una concomitante diminuzione del FEV_1 e della VC è più comunemente causata da uno sforzo insufficiente durante l'espirazione, ma può raramente essere espressione di un'ostruzione del flusso aereo. La conferma dell'ostruzione delle vie aeree richiede la misura dei volumi polmonari statici.

Misure dei volumi polmonari assoluti possono aiutare nella diagnosi di enfisema, asma bronchiale e bronchite cronica e misure della resistenza del flusso aereo possono essere utili nei pazienti che non sono in grado di eseguire correttamente l'esame spirometrico.

Figura 13 - Algoritmo di interpretazione della spirometria

In ragione della grande variabilità del FEF_{25-75%} e dei flussi istantanei nei soggetti sani, le raccomandazioni ATS/ERS consigliano fortemente di non utilizzare questi indici per diagnosticare una patologia delle piccole vie aeree nei singoli casi, quando FEV₁/VC e FEV₁ sono nella normale variabilità. Viceversa, l'analisi degli indici di flusso forzato di fine espirazione può essere utilizzato nel confronto di gruppi di soggetti fumatori o esposti ad irritanti e tossici respiratori con gruppi di riferimento non esposti a rischi per l'apparato respiratorio.

A fronte di volumi polmonari nella norma e flussi ridotti in un fumatore, è utile sottolineare gli effetti nocivi dell'abitudine al fumo (e soprattutto i benefici della cessazione), piuttosto che tentare "pindarici voli" interpretativi sulle alterazioni funzionali delle piccole vie aeree. I flussi, tuttavia, possono essere utili per confermare la presenza di un'ostruzione delle vie aeree in presenza di un rapporto FEV₁/VC ai limiti inferiori della normalità.

b) Restrizione polmonare

La spirometria è da considerare indicativa di una *possibile* restrizione polmonare quando VC è ridotto e FEV_1 è compreso entro il limite inferiore del teorico. Un ridotto VC da solo non prova un deficit polmonare di tipo restrittivo, ma può essere suggestivo per una restrizione quando il rapporto FEV_1/VC è normale o aumentato. Tuttavia, accanto alla riduzione di VC si ha spesso una consensuale riduzione di FEV_1 , per cui il rapporto FEV_1/VC % deve essere interpretato con cautela. La certezza di alterazione restrittiva si ha soltanto con la valutazione della capacità polmonare totale ($TLC < 5^{\circ}$ percentile o in subordine < 80% teorico).

c) Deficit misto

Raro da vedere nella pratica della sorveglianza sanitaria, consiste nella contemporanea riduzione del rapporto FEV1/VC% e della TLC

d) Interpretazione della morfologia della curva flusso-volume

La morfologia della curva flusso/volume, oltre che per valutare l'accettabilità della manovra di espirazione forzata, può essere utile all'interpretazione della spirometria. Inoltre, alcuni aspetti di limitazione dei flussi inspiratori maggiore di quella dei flussi espiratori possono suggerire la localizzazione dell'ostruzione nelle vie aeree extratoraciche. La figura 14 presenta alcuni esempi di curve flusso/volume indicative di alterazioni ventilatorie (linea tratteggiata: teorico; linea intera: osservato).

Figura 14 - Curve F/V esemplificative (da Maestrelli 2009)

Nella figura 15 sono presentate altre esemplificazioni di alterazioni ventilatorie, riprese dal documento della task force ATS/ERS sulle strategie di interpretazione delle prove di funzionalità respiratoria (Pellegrino 2005).

- a) Deficit polmonare ostruttivo con riduzione del rapporto FEV₁/VC: FEV₁ 38% del teorico; FEV₁/VC 46%; PEF 48%; TLC 101%.
- b) Deficit polmonare ostruttivo con normale rapporto FEV₁/VC: FEV1 57%; FEV₁/VC 73%; PEF 43%; TLC 96%. In entrambi i casi a) e b) TLC è normale e i flussi sono ridotti rispetto agli attesi sull'intero ambito volumetrico.
- c) Deficit restrittivo tipico: FEV₁ 66%; FEV₁/VC 80%; PEF 79%; TLC 62%. TLC è ridotta e il flusso è maggiore dell'atteso per un dato volume polmonare.
- d) Deficit misto caratterizzato da una diminuita TLC e un ridotto rapporto FEV₁/VC: FEV₁ 64%; FEV₁/VC 64%; PEF 82%; TLC 72%.

Figura 15 - Curve F/V esemplificative (da Pellegrino 2005)

e) Valutazione della gravità del deficit spirometrico

La gravità di qualsiasi alterazione spirometrica può essere classificata basandosi sul valore del FEV_1 rispetto al predetto. La giustificazione di questo approccio è che il valore del FEV_1 risulta il maggiore fattore predittivo indipendente di mortalità per qualsiasi causa o per malattie respiratorie.

Le categorie di gravità proposte dalla task-force ATS/ERS del 2005 sono definite da intervalli arbitrari basati sul valore del FEV₁ in percentuale del teorico medio, similmente a quanto proposto dalle linee guida GOLD per la classificazione di gravità della BPCO (tabella 5). Anche in questo caso i livelli di gravità sono arbitrari. Poiché i criteri GOLD si riferiscono solo alla BPCO e riguardano il VEMS post-broncodilalatore, per uniformare i criteri di refertazione delle spirometrie risulta preferibile usare le indicazioni della task-force ATS/ERS del 2005.

Tabella 5 - Classificazione di gravità del deficit spirometrico secondo i criteri ATS/ERS 2005 e GOLD

	ATS/ERS 2005	GOLD 2009
Grado di severità	$FEV_1(\%\ teorico)$	FEV_1 post-broncodilat. (% teorico)
Lieve	>70	>80
Moderata	60-69	50-79
Mediamente grave	50-59	-
Grave	35-49	30-49
Gravissima	<35	<30

Bibliografia essenziale

- ACOEM Position Statement. Spirometry in the Occupational Health Setting 2010 Update. http://www.acoem.org/uploadedFiles/Policies_And_Position_Statements/ACOEM_Spirometry_Statement.pdf (accesso 18/10/2010)
- Bosch D, Criée C-P. Prove di funzionalità respiratoria. Milano, Springer Verlag Italia 2009. Eisen EA, Robins JA, Greaves IA, Wegman DH. Selection effects of repeatability criteria applied to lung spirometry. Am J Epidemiol 1984; 120: 734-742
- Innocenti A, Quercia A, Roscelli F. Appunti di Spirometria per la sorveglianza sanitaria dei lavoratori e dei fumatori. Azienda USL di Parma Azienda USL Viterbo 2008 http://www.ausl.pr.it/page.asp?IDCategoria=626&IDSezione=6052&ID=282757 (accesso 18/10/2010)
- Lange NE, Mulholland M, Kreider ME. Spirometry. Don't Blow it! Chest 2009; 136: 608-614 http://chestjournal.chestpubs.org/content/136/2/608.long (accesso 18/10/2010)
- Maestrelli P *et al*. Linee Guida SIMLII per la sorveglianza sanitaria di lavoratori esposti ad irritanti e tossici per l'apparato respiratorio. Bozza novembre 2009 http://www.simlii.net/joomla_simlii/images/linee_guida/lg-irritantitossicirespiratori.pdf (accesso 18/10/2010)
- Miller MR, Crapo R, Hankinson J *et al*. General considerations for lung function testing. Eur Respir J. 2005; 26: 153-161 http://www.ers-education.org/pages/default.aspx?id=2006&idBrowse=37467&det=1 (accesso 18/10/2010)
- Miller MR, Hankinson J, Brusasco V *et al.* Standardisation of spirometry. Eur Respir J. 2005; 26: 319-338 http://www.ers-education.org/pages/default.aspx?id=2006&idBrowse=37466&det=1 (accesso 18/10/2010)
- NIOSH. Spirometry Training Program. http://www.cdc.gov/niosh/topics/spirometry/ (accesso 18/10/2010)
- Perez-Padilla R, Vazquez-Garcia JC, Marquez MN, Menezes AMB on behalf of the PLATINO Group. Spirometry Quality-Control Strategies in a Multinational Study of the Prevalence of Chronic Obstructive Pulmonary Disease. Respir Care 2008; 53: 1019-1026
- Pellegrino R, Viegi G, Brusasco V *et al.* Interpretative strategies for lung function tests. Eur Respir J. 2005; 26: 948-968 http://www.ers-
- <u>education.org/pages/default.aspx?id=2006&idBrowse=37463&det=1</u> accesso 18/10/2010) UNI EN ISO 26782:2009. Apparecchiature per anestesia e ventilazione polmonare -
 - Spirometri destinati alla misurazione dei volumi forzati espirati al secondo nelle persone.