

FACULTAD REGIONAL RESISTENCIA

INGENIERÍA EN SISTEMAS DE INFORMACIÓN

GESTIÓN DE DATOS TRABAJO PRÁCTICO INTEGRADOR

ETAPA 1

Profesora de Teoría: Ing. Carolina Orcola

Jefe de T. P.: Ing. Luis Eiman

Auxiliar de T.P.: Juan Carlos Fernández

Grupo Nro. 8

Integrantes:

- Acevedo, Ariel.
- Barboza, Facundo.
- Deppeler, Eric.
- Obregón, Elias Javier.
- Wolhein, Angelo Nicolas.
- Ruiz Díaz, Javier A.

Introducción

En dicho trabajo dejaremos presentaremos el SGBD elegido, el escenario estudiado con su diagrama Entidad-Relación y las consideraciones tomadas. A su vez también se presentará el Esquema Relacional y el diccionario de Datos que se utiliza en el SGBD elegido.

Escenario

BASURA ESPACIAL

Desde los inicios de la era espacial hasta nuestros días, la basura espacial se ha convertido en un problema que dificulta la realización de misiones espaciales. Por este motivo, se crea una comisión internacional para el tratamiento del problema. Una de las primeras medidas de esta comisión es la de crear un sistema de información para el seguimiento de la misma. El análisis realizado es el siguiente:

Basura espacial es cualquier objeto desprendido de (o producido por) alguna nave, que no sea de utilidad y cuyo diámetro sea superior a una micra o su peso superior a un miligramo. A cada uno de estos objetos se le asigna un identificador secuencial numérico y se pretende registrar tanto su tamaño, como su peso, velocidad, última órbita conocida (que puede no coincidir con aquella en que se lanzó la nave que la produjo) y las distintas posiciones del mismo (coordenadas polares r y δ respecto al centro de la tierra) registradas en determinados momentos.

Cada nave es una clase de nave en concreto y se identifica por una matrícula que contiene el código de la clase de nave a la que pertenece. Las naves pueden tener tripulantes, recogiéndose sólo el nombre de cada tripulante, que se supone único. Toda nave tiene una misión (científica, militar o espía) y es propiedad de una agencia espacial. Una nave, a lo largo de su vida útil, puede cambiar de órbita. Se registrarán todas las órbitas de cada nave, así como las fechas (día y hora) inicial y final de permanencia en cada órbita.

Para cada clase de nave se registrarán todos los tipos de componentes que posee; a cada uno de ellos se le asigna un código y se recoge su diámetro y peso.

Las órbitas pueden ser circulares o elípticas y geoestacionarias o no; se identifican por su altura, su sentido (coordenadas polares r y δ) y su excentricidad (τ). Una órbita circular tiene excentricidad 0.

Se registran los lanzamientos que realizan las agencias espaciales de una nave y las órbitas iniciales en las que las posicionan (en caso de que la nave esté en órbita). Se desea almacenar la fecha en la que la agencia lanzó la nave.

Las agencias espaciales pueden ser de dos tipos: públicas o privadas; para las públicas se recoge el nombre de los Estados que las mantienen, mientras que para

las privadas se recogen las empresas (CIF, nombre, capital, etc.) que las financian. Ninguna agencia pública puede recibir financiación de empresas, ni ninguna agencia privada puede recibir aportación de ningún estado. Se desea recoger la proporción (en tanto por ciento) de la participación de cada empresa en la contribución a la agencia. Las agencias espaciales tendrán un nombre y un número de personas trabajando en ellas. Toda agencia privada tiene que ser supervisada por una agencia pública.

Una agencia espacial es responsable de limpiar la basura que produce cualquiera de sus naves; para ello, una de las técnicas más empleadas es el uso de un rayo láser para la fragmentación del objeto (basura) hasta que deje de resultar peligroso. El problema de esta técnica es que, aunque reduce el tamaño de los objetos, aumenta su número, por lo que, cada vez que se fragmenta un objeto, se desea registrar el objeto del cual proceden los nuevos objetos producidos y la fecha en la que ha tenido lugar la fragmentación.

Sist. Gestor de Base de Datos

Sistema elegido

MySQL.

Razones: Se optó por este gestor de base de datos ya que es el usado en clases y al estar basado en código abierto es fácilmente accesible y al ser tan extendido en la comunidad ofrece mayor soporte para los usuarios.

Características

- Arquitectura Cliente y Servidor: MySQL basa su funcionamiento en un modelo
 cliente y servidor. Es decir, clientes y servidores se comunican entre sí de manera
 diferenciada para un mejor rendimiento. Cada cliente puede hacer consultas a través
 del sistema de registro para obtener datos, modificarlos, guardar estos cambios o
 establecer nuevas tablas de registros, por ejemplo.
- Compatibilidad con SQL: SQL es un lenguaje generalizado dentro de la industria.
 Al ser un estándar MySQL ofrece plena compatibilidad por lo que si has trabajado en otro motor de bases de datos no tendrás problemas en migrar a MySQL.
- Vistas: Desde la versión 5.0 de MySQL se ofrece compatibilidad para poder configurar vistas personalizadas del mismo modo que podemos hacerlo en otras bases de datos SQL. En bases de datos de gran tamaño las vistas se hacen un recurso imprescindible.
- Procedimientos almacenados: MySQL posee la característica de no procesar las tablas directamente sino que a través de procedimientos almacenados es posible incrementar la eficacia de nuestra implementación.
- Desencadenantes: MySQL permite además poder automatizar ciertas tareas dentro de nuestra base de datos. En el momento que se produce un evento otro es lanzado para actualizar registros o optimizar su funcionalidad.
- Transacciones: Una transacción representa la actuación de diversas operaciones en la base de datos como un dispositivo. El sistema de base de registros avala que todos los procedimientos se establezcan correctamente o ninguna de ellas. En caso por ejemplo de una falla de energía, cuando el monitor falla u ocurre algún otro inconveniente, el sistema opta por preservar la integridad de la base de datos resguardando la información.

Aplicación de MySQL de conceptos vistos en la unidad 1

"Acceso eficiente a los datos","Integridad y seguridad de los datos","Administración de archivos".

MySQL utiliza el motor de almacenamiento InnoBD. Cumple con el modelo ACID.

Atomicidad: Lo gestiona y cumple con las instrucciones COMMIT y ROLLBACK.

<u>Consistencia:</u> InnoBD posee búfer de doble reescritura y cuenta con recuperación por bloqueo.

<u>Aislamiento:</u> Lo realiza con niveles de aislamiento de transacciones con la instrucción SET TRANSACTION. También cuenta con detalles de bajo nivel de bloqueo.

<u>Durabilidad</u>: InnoBD cuenta con búfer de escritura de almacenamiento, una caché respaldada por una batería en un dispositivo de almacenamiento, una fuente de alimentación ininterrumpida(UPS) que protege la energía eléctrica de todos los servidores informáticos y dispositivos de almacenamiento que ejecutan servidores MySQL y almacenan datos MySQL. También con la estrategia de copia de seguridad, la frecuencia y los tipos de copias y los períodos de retención de copia de seguridad.

"Autorización de acceso a los datos"

MySQL cuenta con la restricción de privilegios mediante revocaciones parciales utilizando la instrucción PARTIAL_REVOKES.

"Lenguaje de Consultas"

MySQL utiliza índices para realizar la consultas, tales índices se utilizan para buscar filas con valores de la columna específica. En caso de no contar con índices, MySQL debe comenzar con la primera fila y, a continuación, leer toda la tabla para encontrar las filas relevantes. Cuanto más grande la tabla, más tiempo llevaría.

Diagrama Entidad Relación

Consideraciones del escenario para DER

- Consideramos que para identificar el tipo de nave en solitario solo utilizamos el número que da la matrícula.
- Interpretamos que cada nave produce al menos una basura espacial.
- Consideramos que una órbita debe tener si o si, una nave (o más).

Esquema Relacional

```
Empresa:(nombre: varchar(45), cif: varchar(25), capital: real)
       CP: nombre
       CF:---
       VNN: cif, capital.
Agencia espacial(nombre: varchar(30), cant per: int)
       CP: nombre
       CF: ---
       VNN: ---
Pública(nombre: varchar(45), estado: varchar(45))
       CP: nombre
       CF: nombre → Agencia espacial(nombre)
       VNN: estado.
Privada(nombre: varchar(45), publica n: varchar(45))
       CP: nombre, publica n
       CF: nombre → Agencia espacial(nombre)
           publica n \rightarrow Pública(nombre)
       VNN: ---.
Financia(P nombre: varchar(45), e nombre: varchar(45), participacion: real)
       CP: ---
       CF: p nombre \rightarrow Privada(nombre)
           e nombre → Empresa(nombre)
       VNN: P nombre, e nombre, participacion.
Orbita(radio: real, delta: real, altura: real, excentricidad: real, forma: varchar(8),
geoestacionaria: varchar(2))
       CP: radio, delta
       CF:---.
       VNN: geoestacionaria.
Nave(matricula: varchar(30), f lanzamiento: datetime, mision: varchar(10), agencia:
varchar(45))
       CP: matricula, agencia
       CF: agencia → agencia_espacial(nombre)
       VNN: f lanzamiento, mision.
Basura espacial(id num: int, peso: real, diámetro: real, velocidad: real, tamaño: real,
o radio: real, o delta: real, nave: varchar(30))
       CP: id num
       CF: o_radio → orbita(radio)
           o delta → orbita(delta)
           nave → nave(matrícula)
       VNN: id num, o radio, o delta, nave.
Fragmenta(id origen: int, id producido: int, f origen: datetime)
       CP: id producido
       CF: id_origen → basura_espacial (id_num)
           id producido → basura espacial(id num)
       VNN: id origen, f origen.
```

Orbita_actual(f_inicial: datetime, f_final: datetime, nave: varchar(30), o_radio:real, o_delta:

real)

CP: f inicial, o radio, o delta CF: nave → nave(matrícula) o_radio → orbita(radio) o_delta → orbita(delta)

VNN: nave.

Componente(codigo: int, tipo: varchar(30), peso: real, diametro: real, nave: varchar(30))

CP: código

CF: nave → nave(matrícula)

VNN: nave.

Tripulantes(nombre: varchar(45), nave: varchar(30))

CP: nombre

 $CF: nave \rightarrow nave (matrícula)$

VNN: nave.

Diccionario de Datos

Nombre campo	Descripción	Entidad a la que pertenece	Función	Dominio/Longitu d	¿Acepta nulos?
Altura	Atributo de órbita	Orbita		REAL	SI
Agencia	La agencia a cargo de la nave	Nave	PK,NN	VARCHAR(45)	NO
Cant_per	Cantidad de personas trabajando en la agencia	Agencia_espacial		INT	SI
Capital	Dinero que posee la empresa	Empresa	NN	REAL	NO
CIF	Código de identificación fiscal	Empresa	NN	VARCHAR(25)	NO
Código	Identifica componente de la nave	Componente	PK,NN	INT	NO
Delta	Coordenada polar delta	Orbita	PK, NN	REAL	NO
Diametro	Atributo del componente de la nave	Componente		REAL	SI
Diámetro	Atributo de la basura espacial	Basura_espacial		REAL	SI
E_Nombre	Nombre de la empresa que financia a la agencia	Financia	NN	VARCHAR(45)	NO
Estado	Estado que financia a la	Pública	NN	VARCHAR(45)	NO

	agencia pública				
Excentricidad	Excentricidad de la órbita	Orbita		REAL	SI
F_final	Fecha final de permanencia en órbita de la nave	O_actual		DATETIME	SI
F_inicial	Fecha inicial de permanencia en la órbita de la nave	O_actual	PK,NN	DATETIME	NO
F_lanzamiento	Fecha de lanzamiento de la nave	Nave	NN	DATETIME	NO
F_Origen	Fecha donde se produjo el fragmento de la basura	Fragmenta	NN	DATETIME	NO
Forma	Atributo de la órbita	Orbita		VARCHAR(8)	SI
Geoestacionaria	Atributo de la órbita	Orbita	NN	VARCHAR(2)	NO
id_Num	ldentificador de la basura	Basura_espacial	PK, NN	INT	NO
ID_origen	Identificar de la basura que produce el fragmento	Fragmenta	NN	INT	NO
ID_producido	Identificador del fragmento se originó	Fragmenta	PK, NN	INT	NO
Matrícula	Identificador de la nave	Nave	PK, NN	VARCHAR(30)	NO
Misión	Atributo de la nave	Nave	NN	VARCHAR(10)	NO
Nave	Matrícula de la nave que se encuentra en dicha órbita	O_actual	NN	VARCHAR(30)	NO
Nave	Matrícula de la nave a la que pertenecen los componentes	Componente	NN	VARCHAR(30)	NO
Nave	Matrícula de nave que produjo la basura	Basura_espacial	NN	VARCHAR(30)	NO
Nave	Matrícula de la nave tripulada	Tripulantes	NN	VARCHAR(30)	NO
Nombre	Identificador de agencia	Agencia_espacial	PK,NN	VARCHAR(45)	NO
Nombre	Identificar de tripulante	Tripulantes	PK,NN	VARCHAR(45)	NO
Nombre	Identificador de agencia pública	Pública	PK,NN	VARCHAR(45)	NO
Nombre	Identificador de agencia	Privada	PK,NN	VARCHAR(45)	NO

	privada				
Nombre	Nombre de empresa	Empresa	PK,NN	VARCHAR(45)	NO
O_delta	Coordenada polar delta de órbita actual	O_actual	PK,NN	REAL	NO
O_radio	Coordenada polar radio de órbita actual	O_actual	PK,NN	REAL	NO
O_radio	Coordenada polar radio de basura	Basura_espacial	NN	REAL	NO
O_delta	Coordenada polar delta de basura	Basura_espacial	NN	REAL	NO
Participación	Porcentaje de participación de la empresa en la agencia	Financia	NN	REAL	NO
P_Nombre	Nombre agencia privada	Financia	NN	VARCHAR(45)	NO
Peso	Atributo de basura	Basura_espacial		REAL	SI
Peso	Atributo de componente	Componente		REAL	SI
Publica_N	Agencia pública que regula agencia privada	Privada	PK,NN	VARCHAR(45)	NO
radio	Coordenada polar radio	Orbita	PK, NN	REAL	NO
Tamaño	Atributo de basura	Basura_espacial		REAL	SI
Tipo	Atributo de componente	Componente		VARCHAR(30)	SI
Velocidad	Atributo de basura	Basura_espacial		REAL	SI

Impresión de consultas

empresa 1 ×

