The National Academies of SCIENCES - ENGINEERING - MEDICINE

CONSENSUS STUDY REPORT

NUTRIENT REQUIREMENTS OF DAIRY CATTLE

Eighth Revised Edition

ANIMAL NUTRITION SERIES

Loss in feces (30%)

Nutrition Facts

??????????????

255555555555555

??????????????

Figure 2: Degradable versus Degraded CP in the rumen.

			Absorbed (RDP)	Passes (RUP)	
	Α	Absorbs or passes instantaneously Fixed percentages absorbed vs. passing	93.6	6.4	
Feed CP	В	Competitive absorption and passage	$\frac{Kd_c}{Kd_c + Kp_c}$	$\frac{Kp_c}{Kd_c + Kp_c}$	
	С	None absorbed, all passes	0.0	100.0	

Absorbed (RDP)	NPN + 93.6*ProteinA	$\frac{Kd_c}{Kd_c + Kp_c} * \mathbf{B}$	0.0 * C
Passes (RUP) 6.4*ProteinA		$\frac{Kp_c}{Kd_c + Kp_c} * \mathbf{B}$	100.0 * C
	Absorbs or passes instantaneously. Fixed percentages of A absorbed vs. passing	Competitive absorption and passage	None absorbed, all passes

Partitioning of CP into A, B, C, and sub-fractions

Kinetic parameters

Kp are specific to the feed type t $Kp_{forage} = 4.87$ $Kp_{concentrate} = 5.28$

Kd are specific to each feed ingredient i (see Feed Tables, NASEM). For example, there is a Kd for "Corn Silage, Typical."

Calculation of RDP and RUP from A, B, C, and sub-fractions and kinetic parameters

Absorbed (RDP)	RDP from A = NPN + 93.6* TPA	RDP from B $= \frac{Kd_i}{Kd_i + Kp_t} * \mathbf{B}$	RDP from C = 0.0 * C	RDP total = (RDP from A) + (RDP from B)
Passes (RUP)	RUP from A = 6.4* TPA	RUP from B $= \frac{Kp_i}{Kd_i + Kp_t} * \mathbf{B}$	RUP from C = 100.0 * C	RUP total = (RUP from A) + (RUP from B) + (RUP from C)
Notes	Absorbs or passes instantaneously. Fixed percentages of A absorbed vs. passing	Competitive absorption and passage of B fraction.	None absorbed, all C passes	It should always be true that: CP = (RDP total) + (RUP total) and CP = A + B + C

Kp are specific to the feed type t $Kp_{forage} = 4.87$ $Kp_{concentrate} = 5.28$

Kd are specific to each feed ingredient i (see Feed Tables, NASEM). For example, there is a Kd for "Corn Silage, Typical."

Absorbed (RDP)	RDP from A = NPN + 93.6* TPA	RDP from B $= \frac{Kd_i}{Kd_i + Kp_t} * \mathbf{B}$	RDP from C = 0.0 * C	RDP total = (RDP from A) + (RDP from B)	
Passes (RUP) RUP from A = 6.4*TPA		Kn.	RUP from C = 100.0 * C	RUP total = (RUP from A) + (RUP from B) + (RUP from C)	
Notes	Absorbs or passes instantaneously. Fixed percentages of A absorbed vs. passing	Competitive absorption and passage of B fraction.	None absorbed, all C passes	It should always be true that: CP = (RDP total) + (RUP total) and CP = A + B + C	

f\$Fd_RUPIn <- (f\$Fd_CPAIn-f\$Fd_NPNCPIn) * fCPAdu

Kd are specific to FEEDS not category. Should have a different subscript.

- Ingestion
- Rumen degradation and passage
- Intestinal digestion and absorption
- Assimilation and/or use

The model describes the core sequences of nutritional processes (ingestion, digestion, absorption, assimilation/use) with respect to protein.

$$O$$
 \parallel
 C
 NH_2

B.

$$-O-P-O$$

$$OH$$

$$OH$$

$$OH$$

$$OH$$

$$OH$$

$$OH$$

$$OH$$

$$O$$
 \parallel
 C
 NH_2

B.

