Suport Vector Regression Machine - SVRM

Comparando com outros modelos

Prof. Dr. Pedro Rafael D. Marinho

2023-07-24

Carregando bibliotecas necessárias

```
library(tidymodels)
-- Attaching packages ----- tidymodels 1.1.0 --
         1.0.5 v recipes
                              1.0.6
v broom
v dials
           1.2.0 v rsample
                                 1.1.1
v dplyr 1.1.2 v tibble
v ggplot2 3.4.2 v tidyr
v infer 1.0.4 v tune
                                 3.2.1
                                1.3.0
                                 1.1.1
v modeldata 1.1.0 v workflows
                                 1.1.3
v parsnip 1.1.0 v workflowsets 1.0.1
            1.0.1 v yardstick 1.2.0
v purrr
-- Conflicts ----- tidymodels_conflicts() --
x purrr::discard() masks scales::discard()
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
x recipes::step() masks stats::step()
* Use tidymodels_prefer() to resolve common conflicts.
```

library(tidyverse)

```
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v forcats
          1.0.0
                     v readr
                                  2.1.4
v lubridate 1.9.2
                     v stringr
                                  1.5.0
-- Conflicts ----- tidyverse_conflicts() --
x readr::col_factor() masks scales::col_factor()
x purrr::discard()
                     masks scales::discard()
x dplyr::filter()
                     masks stats::filter()
x stringr::fixed()
                     masks recipes::fixed()
x dplyr::lag()
                     masks stats::lag()
x readr::spec()
                     masks yardstick::spec()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
  library(GGally)
Registered S3 method overwritten by 'GGally':
 method from
        ggplot2
  +.gg
  library(skimr)
  # Resolvendo possíveis conflitos entre o tidymodels e outras bibliotecas
  tidymodels::tidymodels_prefer()
```

Importando a base de dados

Utilizando os dados de vinho vermelho , disponíveis aqui, faça uma pequena análise exploratória dos dados. No link do Kaggle você consegue uma explicação sobre o que significa cada uma das variáveis.

Os dados, no meu caso, estão no diretório "../dados/winequality-red.csv". Você deverá alterar o *path* para o diretório encontra-se a base que deverá ser obtida no link acima.

```
dados <- readr::read_csv(file = "../dados/winequality-red.csv")</pre>
```

Rows: 1599 Columns: 12

-- Column specification -----

Delimiter: ","

dbl (12): fixed acidity, volatile acidity, citric acid, residual sugar, chlo...

i Use `spec()` to retrieve the full column specification for this data.

i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Uma exploração rápida dos dados

É sempre importante olhar os dados antes de tentar modelar. Uma análise exploratória sempre será útil para identificarmos possíveis inconsistências.

visdat::vis_dat(dados)

O gráfico acima mostra que temos uma base de dados sem informações faltantes e todas as *features* presentes na base são numéricas. É uma situação confortável, haja vista que, aqui, não precisaremos nos preocupar com imputação de dados faltantes.

Um resumo dos dados poderá ser obtido utilizando a função glimpse do pacote dplyr que é carregado com a biblioteca tidyverse de R.

dados |> dplyr::glimpse()

```
Rows: 1,599
Columns: 12
$ `fixed acidity`
                         <dbl> 7.4, 7.8, 7.8, 11.2, 7.4, 7.4, 7.9, 7.3, 7.8, 7~
$ `volatile acidity`
                         <dbl> 0.700, 0.880, 0.760, 0.280, 0.700, 0.660, 0.600~
$ `citric acid`
                         <dbl> 0.00, 0.00, 0.04, 0.56, 0.00, 0.00, 0.06, 0.00,~
                         <dbl> 1.9, 2.6, 2.3, 1.9, 1.9, 1.8, 1.6, 1.2, 2.0, 6.~
$ `residual sugar`
                         <dbl> 0.076, 0.098, 0.092, 0.075, 0.076, 0.075, 0.069~
$ chlorides
$ `free sulfur dioxide`
                         <dbl> 11, 25, 15, 17, 11, 13, 15, 15, 9, 17, 15, 17, ~
$ `total sulfur dioxide` <dbl> 34, 67, 54, 60, 34, 40, 59, 21, 18, 102, 65, 10~
$ density
                         <dbl> 0.9978, 0.9968, 0.9970, 0.9980, 0.9978, 0.9978,~
                         <dbl> 3.51, 3.20, 3.26, 3.16, 3.51, 3.51, 3.30, 3.39,~
#q#
$ sulphates
                         <dbl> 0.56, 0.68, 0.65, 0.58, 0.56, 0.56, 0.46, 0.47,~
                         <dbl> 9.4, 9.8, 9.8, 9.8, 9.4, 9.4, 9.4, 10.0, 9.5, 1~
$ alcohol
                         <dbl> 5, 5, 5, 6, 5, 5, 5, 7, 7, 5, 5, 5, 5, 5, 5, 5, ~
$ quality
```

É possível todas as correlações entre todas as variáveis da base, com a função data_vis_cor. Um gráfico útil com as correlações poderá ser obtido usando a função vis_cor, conforme abaixo:

visdat::data_vis_cor(dados)

```
# A tibble: 144 x 3
  row_1
                 row 2
                                         value
                 <chr>
   <chr>>
                                         <dbl>
 1 fixed acidity fixed acidity
                                        1
2 fixed acidity volatile acidity
                                       -0.256
 3 fixed acidity citric acid
                                        0.672
 4 fixed acidity residual sugar
                                        0.115
 5 fixed acidity chlorides
                                        0.0937
 6 fixed acidity free sulfur dioxide
                                       -0.154
 7 fixed acidity total sulfur dioxide -0.113
8 fixed acidity density
                                        0.668
 9 fixed acidity pH
                                       -0.683
10 fixed acidity sulphates
                                        0.183
# i 134 more rows
```

visdat::vis_cor(dados)

As bibliotecas **GGally** e **skimr** também possuem funções úteis que podem nos auxiliar no processo de exploração dos dados.

dados |> GGally::ggpairs()

dados |>

skimr::skim()

Tabela 1: Data summary

Name	dados
Number of rows	1599
Number of columns	12
Column type frequency:	
numeric	12
Group variables	None

Variable type: numeric

skim_var	iab <u>le</u> mis s i	ng ple	te <u>ne</u> antsed	p0	p25	p50	p75	p100 hist
fixed	0	1	8.32 1.74	4.60	7.10	7.90	9.20	15.90
acidity								
volatile	0	1	$0.53 \ 0.18$	0.12	0.39	0.52	0.64	1.58
acidity								
citric	0	1	0.27 0.19	0.00	0.09	0.26	0.42	1.00
acid	0	1	0 5 4 1 41	0.00	1.00	0.00	0.00	15 50
residual	0	1	2.54 1.41	0.90	1.90	2.20	2.60	15.50
sugar chlorides	0	1	0.09 0.05	0.01	0.07	0.08	0.00	0.61
free	0	1	15.8710.4					
sulfur	O	1	10.0110.1	01.00	1.00	11.0	021.0	012.00
dioxide								
total	0	1	46.4732.9	06.00	22.0	038.0	062.0	0289.00
sulfur								
dioxide								
density	0	1	1.00 0.00	0.99	1.00	1.00	1.00	1.00
pН	0	1	$3.31 \ 0.15$					
sulphates	0	1	$0.66 \ 0.17$	0.33	0.55	0.62	0.73	2.00
alcohol	0	1	10.421.07	8.40	9.50	10.2	011.1	014.90
quality	0	1	$5.64\ 0.81$	3.00	5.00	6.00	6.00	8.00

Construindo os workflows dos modelos

Iremos comparar os modelos de regressão linar utilizando elastic net, com o método kNN e suport vector regression machine - SVRM. Buscaremos pelo melhor modelo de cada uma das metodologias consideradas. Posteriormente iremos escolher o melhor modelo entre os melhores de cada uma das classes. A ideia é escolher o melhor modelo que consiga prever melhor a qualidade do vinho, i.e., prever a variável quality.

Partição dos dados

Como sabemos, precisamos dividir nossa base de dados em conjunto de treinamento, em que nesse conjunto iremos será realizado o procedimento de validação cruzada e uma base de dados de teste para a avaliação final dos nossos modelos. Deixaremos 80% para o treniamento do modelo e 20% para teste. Iremos estratificar nossa amostra usando a variável quality, variável que queremos estimar (label/rótulo).

```
divisao <- rsample::initial_split(dados, prop = 0.8, strata = "quality")
treinamento <- rsample::training(divisao)
teste <- rsample::testing(divisao)</pre>
```

Definindo os modelos

O código que segue faz a configuração realiza a configuração dos modelos que serão comparados. O código tune::tune() especifica que o respectivo parâmetro de sintonização será obtido no processo de validação cruzada, particularmente, um grid search.

```
modelo_elastic <-
  parsnip::linear_reg(penalty = tune::tune(), mixture = tune::tune()) |>
  parsnip::set_mode("regression") |>
  parsnip::set_engine("glmnet")

modelo_knn <-</pre>
```

```
parsnip::nearest_neighbor(
   neighbors = tune::tune(),
   dist_power = tune::tune(),
   weight_func = "gaussian"
) |>
   parsnip::set_mode("regression") |>
   parsnip::set_engine("kknn")

modelo_svm <-
   parsnip::svm_rbf(
      cost = tune::tune(),
      rbf_sigma = tune::tune(),
      margin = tune::tune()
) |>
   parsnip::set_mode("regression") |>
   parsnip::set_engine("kernlab")
```