Groupe fondamental et revêtement

Correspondance de

Galois

Question 1/3

Lien entre $\Pi_1^{\text{rev}}(B,b),\,\widetilde{B}$ et B

Réponse 1/3

L'action
$$\operatorname{Gal}(p) = \Pi_1^{\text{rev}}(B, b) \curvearrowright \widetilde{B}$$
 est libre et
$$\Pi_1^{\text{rev}}(B, b) \backslash \widetilde{B} \cong B$$

Question 2/3

Correspondance de Galois Par les treillis

Réponse 2/3

Les treillis de Rev(B,b) et de $\Delta(\Pi_1^{\text{rev}}(B,b))$ sont isomorphes $\Delta(G)$ désigne les sous groupes de G

Question 3/3

Correspondance de Galois avec les morphismes

Réponse 3/3

$$\varphi : \Delta(\Pi_1^{\text{rev}}(B, b)) \longrightarrow \text{Rev}(B, b) \text{ et}$$

$$\Gamma \longmapsto \Gamma \backslash B$$

$$\psi : \text{Rev}(B, b) \longrightarrow \Delta(\Pi_1^{\text{rev}}(B, b)) \text{ sont deux}$$

$$(Y, y) \longmapsto \Pi_1^{\text{rev}}(Y, y)$$
bijections décroissantes réciproques
$$[\Pi_1^{\text{rev}}(B, b) : \Gamma] = d \text{ ssi } \varphi(\Gamma) \text{ est de degré } d$$

$$\Gamma \vartriangleleft \Pi_1^{\text{rev}}(B, b) \text{ ssi } \varphi(\Gamma) \text{ est galoisien}$$