PROJETO FINAL

Processador Fluminense

Alunos: Felipe Borges, Luiz Gustavo, Yan Siqueira

Sobre Fluminense:

Fluminense, construído no Logisim, sendo composto de 9 circuitos principais: PC, Banco de Registradores, Unidade de Controle, Seletor de Entrada, ULA – Controle, ULA, Processador principal, Pré-Seletor, Memória RAM e Valor de Memória.

Possui 5 formatos de instrução de 16 bits cada, R, RN, I, J e M. O processador possui capacidade de suportar 16 instruções, porém só são utilizadas 14, sendo elas: AND, OR, NAND, NOR, SOMA, SUB, SOMAN, SUBN, BEQ, BNQ, J, LOAD, LOADN e STORE.

5 formatos de instruções de 16 bits cada, Instruções do tipo R, RN, I, J e M.

O número de bits do campo Opcode das instruções é igual a quatro, sendo assim obtemos um total (Bit(0e1)^NúmeroTotalDeBitsDoOpcode ... 2^X = X) de 16, porém só utilizamos 14 Opcodes (0010-1111) que são distribuídos entre as instruções

Opcode	Nome	Formato	Breve Descrição	Exemplo	
0010	AND	R	Conjunção bit a bit	And r0, r1	
0011	OR	R	Disjunção bit a bit	Or r0, r1	
0100	NAND	R	Negação da	Nandr0 r1	
			conjunção bit a bit	Nand r0, r1	
0101	NOR	R	Negação da	Nor r0, r1	
			disjunção bit a bit		
0110	SOMA	R	Soma entre reg	Soma r0, r1	
0111	SUB	R	Subtração entre reg	Sub r0, r1	
1000	SOMAN	RN	Soma entre reg e	Soman r0, 15	
1000			número natural	30man 10, 13	
1001	SUBN	RN	Subtração entre reg	Subn r0, 11	
1001			e número natural	Subil 10, 11	
1010	BEQ	I	Efetua jump se	Reg r0 r1 · 2	
1010			igualdade entre regs	Beq r0, r1:3	
	BNQ	I	Efetua jump se		
1011			desigualdade entre	Bnq r0, r1 : 11	
			regs		
1100	J	J	Efetua jump	J:9	
1101	LOAD	М	Armazena valor da	Load r0 : 15	
			memória em reg		
1110	LOADN	RN	Armazena número		
			natural em reg	Loadn r0, 10	
1111	STORE	М	Armazena valor de	Store r0 : 6	
			reg na memória	3.016 10 . 0	

Descrição de Hardware -Unidade Lógica Aritmética

- A ULA recebe como entrada três valores: A dado de 8bits para operação; B - dado de 8bits para operação e OP – identificador da operação que será realizada de 4bits.
- A ULA também possui duas saídas: Resultado que é o valor que será enviado para ser armazenado no banco de registradores; Boolean – que é o valor que determinará se ocorrerá ou não um jump, nas instruções BNQ e BEQ.

Descrição de Hardware - Banco de Registradores

- O Banco de Registradores tem como principal objetivo armazenar valores para uso imediato, ele possui quatro entradas: R1 – enderenço do primeiro registrador e de certas instruções do registrador destino; R2 – enderenço do segundo registrador; ATIV – Booleano que determina se ocorrerá a escrita ou leitura no BR; Clock – Possibilita a mudança de estado.
- BR também possui duas saídas: **RS** que é o valor do primeiro registrador; **RT** que é o valor do segundo.

Descrição de Hardware - Unidade de Controle

- O componente Unidade de Controle tem como objetivo realizar o controle de todos os componentes do processador de acordo com o opcode.
- Esse controle é feito através das flags de saída abaixo:
 - ULAcontrol: 0-1.
 - Jump: 0-1.
 - BRcontrol: 0-1.
 - ClockBR: 0-1.
 - ClockRAM: 0-1.
 - RAMcontrol: 0-1.

Detalhes das Flags de controle do processador.

Comando	ULA control	Jump	BRcontrol	ClockBR	ClockRAM	RAMcontrol
And	1	0	0	1	1	0
Or	1	0	0	1	1	0
Nand	1	0	0	1	1	0
Nor	1	0	0	1	1	0
Soma	1	0	0	1	1	0
Sub	1	0	0	1	1	0
Soman	1	0	0	1	1	0
Subn	1	0	0	1	1	0
Beq	1	0	0	0	0	0
Bnq	1	0	0	0	0	0
J.	0	1	0	0	0	0
Load	0	0	1	1	0	0
Loadn	0	0	1	1	0	0
Store	0	0	0	0	1	1

Descrição de Hardware - Memória RAM

- A memória RAM tem como principal função armazenar dados de maneira mais permanente do que o banco de registradores.
- Possui o subcomponente Valor de Memória, que ajuda no processamento dos 16 bits de dados, também é integrada no componente de Controle
- Apenas uma saída, sendo o Output que é o valor lido pela RAM.

Descrição de Hardware - Valor de Memória 16 bits

- Subcomponente da memória RAM, armazena as instruções que serão executadas.
- Incorporado com linha de comando 16 bits, Flip Flop D, Output, Clock, Set e Reset.

Descrição de Hardware - PC

• Tem como principal função controlar a execução das instruções e possibilitar o salto.

Descrição de Hardware -Seletor de Entrada

 Seletor de entrada tem como principal função determinar qual valor será enviado ao banco de registradores. Possui 5 entradas: Termo – um valor obtido diretamente da instrução; ULA IN – valor obtido da ULA; RAM IN – valor obtido da RAM; Sinal ULA – valor que sinaliza preferência da ULA; Sinal RAM – valor que sinaliza preferência da RAM.

Possui um valor de saída, sendo o Selecionado – que seria o valor selecionado

Datapath

É a conexão entre as unidades funcionais formando um único caminho de dados e acrescentando uma unidade de controle responsável pelo gerenciamento das ações que serão realizadas para diferentes classes de instruções...

Simulação e Teste

- Foi efetuado alguns testes analisando cada componente do processador em específico, em seguida efetuados testes de cada instrução que o processador implementa. Para demonstrar o funcionamento do processador Fluminense utilizou-se como exemplo o código que guarda valores nos registradores, insere-os na memória RAM.
- Esse teste alocou valores a cada um dos registradores e então os guardou em lugares determinados da memória.

		Binário			
Endereço	Linguagem de Alto	Opcode	Reg2	Reg1	
Liluereço	Nível	Endereço			
			Dado		
0	Loadn r0 : 13	1101	00	00	
0	LOAUII 10 . 15	00001101			
1	Loadn r1 : 16	1101	01	00	
1	LOAUII 11 . 10	00010000			
2	Loadn r2 : 11	1101	11	00	
	Loadn 12:11	00001011			
3	Loadn r3 : 10	1101	10	00	
		00001010			
4	Store r0:6	1111	00	00	
4		00000100			
5	Store r1:3	1111	01	00	
		00000011			
-	Store r2:1	1111	10	00	
6		0000001			
7	Stone v3 · 0	1111	11	00	
	Store r3 : 0	00000000			

