CS 5806 Machine Learning II

Lecture 9 - Statistical Learning 2: Maximum Likelihood Estimation & Maximum A-Posteriori September 25th, 2023
Hoda Eldardiry

Recommended Reading

- [7] Sec 20.1, 20.2
- [8] Sec. 2.2, 3.2
- References are listed on canvas /pages/textbook-resources

Conditional, Chain & Bayes

Conditional $P(A \mid B) = P(A \land B)/P(B)$

Conditional Joint Marginal

Chain $P(A \wedge B) = P(A \mid B)P(B)$

Joint Conditional Marginal

 $P(B \mid A) = [P(A \mid B)P(B)] / P(A)$

Conditional Conditional Marginals

Using Bayes Rule for inference

- Form a hypothesis about the world based on what we observe
 - Prior of hypothesis: captures prior belief/uncertainty (before observing)
 - Observe data e
 - Likelihood: probability of observing e given H
- Bayes rule: states belief of hypothesis H, given evidence e
- Posterior: after observing, reduce uncertainty, revised distribution

Bayesian Learning

ML from a statistical perspective:
 Use Bayes rule to reduce uncertainty
 Find best/correct hypothesis

- Start with a **Prior** P(H)
 - Observe dataset/evidence e = <e1, e2, ..., eN>
 - Likelihood distribution P(e|H) Likelihood of obtaining a certain dataset (or evidence) given each hypothesis
 - Use Bayes rule to compute a posterior (encodes what's learned)

$$P(H \mid \mathbf{e}) = k P(\mathbf{e} \mid H)P(H)$$

Assume equal probability of e for each hypothesis (normalizing constant k)

Bayesian Prediction

To make a prediction about unknown quantity X

hi: model

weighted average of predictions of individual hypotheses

- Posterior of h is used as a weight of h's prediction
- Prediction: weighted average of predictions of individual hypothesis
- Hypotheses serve as "intermediaries" between raw data & prediction

Bayesian Learning

Bayesian learning properties

- **Optimal** (i.e. given prior, no other prediction is correct more often than the Bayesian one)
- No overfitting (all hypotheses considered and weighted)

Limitation

- When hypothesis space is large, may be intractable
- sum (or integral) over hypotheses often intractable

Solution

- "approximate" Bayesian learning

Maximum a posteriori (MAP)

- The first approximation is MAP
- Key idea
 - Instead of working directly with posterior distribution
 - Pick hypothesis with highest probability in the posterior
 - Then make predictions based on chosen hypothesis
- Intuition
 - Problem: too many hypotheses
 - Instead of considering all & taking a weighted combination
 - Only take hypothesis with highest probability
 - Assuming it may be good enough
 - Then make prediction based on that hypothesis

Maximum a posteriori (MAP)

MAP:

Make prediction based on most probable hypothesis h_{MAP}

most probable hypothesis
$$h_{MAP} = argmax_{h_i} P(h_i \mid \mathbf{e})$$
 max a-posteriori hypothesis
$$P(X \mid \mathbf{e}) \approx P(X \mid h_{MAP})$$
 approximate prediction

Bayesian learning

Make prediction based on <u>all hypotheses weighted by</u> their (posterior) probability

MAP properties

Computation/Accuracy tradeoff

MAP relies only on one hypothesis h_{MAP}

- + + simpler computationally
- - MAP prediction less accurate than Bayesian prediction [maybe chosen hypothesis is not the best: fitting data very well or overfit]

Convergence

MAP & Bayesian predictions converge as data increases

Overfitting

- may not be able to get rid of overfitting completely
- but we can control overfitting using the prior
- to avoid hypotheses that are: flexible, complex, can easily capture noise in data
- prior can be used to penalize such hypotheses [give them lower prior probability]
- give simpler hypotheses a higher prior probability
- there is still a chance of overfitting since we only return one hypothesis
- if the returned hypothesis still captures some noise in the data, then there will be overfitting

Tractability

- + + working with a single hypothesis is a big win computationally
- - finding hypothesis with highest probability requires solving an optimization problem: look for hypothesis that maximizes: $h_{MAP} = argmax_h P(h \mid \mathbf{e})$
- - finding h_{MAP} may be intractable [optimization may be difficult]

Did not solve the tractability problem

We just changed it!

Maximum Likelihood (ML)

- The second approximation is ML
 - instead of finding hypothesis with highest probability a-posteriori (in the posterior)
 - find hypothesis that best fits data: hypothesis w/ highest likelihood of generating data (evidence e)
- ML simplifies MAP by assuming uniform prior i.e., $P(h_i) = P(h_j) \, \forall_{i,j}$ uniform prior assumption

$$h_{MAP} = argmax_h P(h) P(\mathbf{e} \mid h)$$
prior likelihood

$$h_{ML} = argmax_h P(\mathbf{e} \mid h)$$

- Make prediction based on h_{ML} only: $P(X \mid \mathbf{e}) pprox P(X \mid h_{ML})$
- ML: an approximation because we eliminate prior
- ML: a simplification because no need to set prior prior: distribution over all hypotheses, if there are too many hypotheses, prior is complex to encode

Maximum Likelihood (ML)

- What does maximizing likelihood accomplish?
- There is only a finite amount of probability mass (i.e. sum-to-one constraint)
- ML tries to allocate as much probability mass as possible to the things we have observed
- At the expense of the things we have not observed

ML properties

Computation/Prediction Accuracy tradeoff

ML ignores prior info & relies only on one hypothesis $\it h_{ML}$

- + + Simpler computation
- - ML prediction less accurate than Bayesian & MAP predictions

Convergence

ML, MAP & Bayesian predictions converge as data increases

Overfitting

- Subject to overfitting
- Pick hypothesis that best fits data [risk: fit everything including noise]
- No prior to penalize complex hypotheses that can exploit statistically insignificant data patterns

Tractability

- Still have an optimization problem
- Could still be intractable
- Finding h_{ML} is often easier than h_{MAP}
- Many ML algorithms maximize likelihood (solving this optimization)

$$h_{ML} = argmax_h \sum_{n} logP(e_n | h)$$
 likelihood

Infinite Data?

- Bayesian learning, MAP & ML converge to same prediction given infinite data
- Bayesian Learning
 - start with a prior that captures current uncertainty
 - more data reduces uncertainty
 - more confidence in a hypothesis being the right one
- In the limit, w/ infinite data, we converge
 - Bayesian Learning: all mass of posterior distribution centers on one hypothesis that explains data well (or a few equally good hypotheses)
 - Same hypothesis has highest probability in the posterior
 - Same hypothesis is most consistent with data
- Since they are all equivalent, then given sufficient data, use ML

How much data is sufficient?

- Different problems require different amounts of data
- Large hypothesis space, need more data to find best hypothesis
- Small hypothesis space, less data may be okay
- Answering this Q requires a full course on learning theory!

Is this a realizable problem?

- Is there a true underlying function as a hypothesis inside our hypothesis space?
- We do not make this assumption
- Candy example:
 - we set 5 hypotheses for 5 types of bags
 - if store sells other types, then we don't have a realizable solution
- Discussed approaches will work
 by converging to hypothesis that is best at making a prediction within my space

Principles: MAP vs. ML

MAP Estimation

Choose hypothesis to **maximize posterior of hypothesis** given data

$$h_{MAP} = argmax_h P(h \mid \mathbf{e})$$

ML Estimation

Choose hypothesis to maximize likelihood of data

$$h_{ML} = argmax_h P(\mathbf{e} \mid h)$$

Principles: MAP vs. ML

MAP Estimation

Choose hypothesis to **maximize posterior of hypothesis** given data

$$h_{MAP} = argmax_h P(h)P(\mathbf{e} \mid h)$$

Prior Likelihood

ML Estimation

Choose hypothesis to maximize likelihood of data

$$h_{ML} = argmax_h P(\mathbf{e} \mid h)$$

Bayesian, MAP & ML

	Bayesian	MAP	ML
	$P(H \mathbf{e}) = k P(\mathbf{e} H)P(H)$ $P(X \mathbf{e}) = \sum_{i} P(X h_{i})P(h_{i} \mathbf{e})$	$h_{MAP} = argmax_{h_i} P(h_i \mathbf{e})$ $P(X \mathbf{e}) \approx P(X h_{MAP})$	$h_{ML} = argmax_h P(\mathbf{e} \mid h)$ $P(X \mid \mathbf{e}) \approx P(X \mid h_{ML})$
Accuracy	Optimal	Less accurate than Bayesian	Less accurate than Bayesian & MAP
Overfitting	No overfitting	Controlled overfitting	Overfitting
Choosing h	All hypotheses are used	Solve optimization to find h _{MAP} (Intractable)	 Solve optimization to find h_{ML} (Intractable) Finding h_{ML} easier than h_{MAP}
Making predictions	Intractable to compute prediction	Prediction computed using one hypothesis	Prediction computed using one hypothesis

Conditional, Chain & Bayes

Conditional $P(A \mid B) = P(A \land B)/P(B)$

Conditional Joint Marginal

Chain $P(A \wedge B) = P(A \mid B)P(B)$

Joint Conditional Marginal

 $P(B \mid A) = [P(A \mid B)P(B)] / P(A)$

Conditional Marginals

Takeaways

- One view of what ML is trying to accomplish is function approximation
- The principle of maximum likelihood estimation provides an alternate view of learning
- Probability distributions can be used to model real data that occurs in the world