Pontificia Universidad Católica del Perú Escuela de Posgrado Doctorado en Matemáticas

Superficies de Riemann TAREA 1: segunda parte 2020-I

Indicaciones Generales:

• La segunda parte de la TAREA 1 debe ser subida a la plataforma Paideia a más tardar a las 11:59 pm. el domingo 10 de mayo.

1. Compactificaciones

- Compactificación por un punto de \mathbb{R}^n . Introducimos la siguiente topología en $X := \mathbb{R}^n \cup \{\infty\}$: un conjunto $U \subset X$ se dice abierto si se cumple alguna de las siguientes condiciones.
 - a) $\infty \notin U$ y U es abierto en \mathbb{R}^n con respecto a la topología usual de \mathbb{R}^n .
 - b) $\infty \in U$ and $K := X \setminus U$ es compacta en \mathbb{R}^n con respecto a la topología usual de \mathbb{R}^n . Muestre que X es un espacio topológico compacto Haussdorf.
- Proyección stereográfica Considere la esfera unitaria S^n

$$S^{n} = \{(x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : x_{1}^{2} + \dots + x_{n+1}^{2} = 1\}$$

y la proyección estereográfica

$$\sigma: S^n \to \mathbb{R}^n \cup \{\infty\}$$

dada por

$$\sigma(x_1, \dots, x_{n+1}) := \begin{cases} \frac{1}{1 - x_{n+1}} (x_1, \dots, x_n), & \text{if } x_{n+1} \neq 1 \\ \infty, & \text{if } x_{n+1} = 1 \end{cases}$$

Muestre que σ es un homeomorfismo de S^n sobre X. Esto prueba en particular que \mathbb{P}^1 es homeomorfa a S^2 (después de idenitficar \mathbb{R}^2 con \mathbb{C} de una manera natural).

2. La recta compleja proyectiva

La recta compleja proyectiva es definida como el cociente $\mathbb{CP}^1 := (\mathbb{C}^2 - \{0\}) / \sim$ donde $(z_1, z_2) \sim (\alpha z_1, \alpha z_2)$ para todo $\alpha \in \mathbb{C}^*$, y corresponde al conjunto de todas las rectas que pasan por origen en \mathbb{C}^2 .

ullet Prueba que \mathbb{CP}^1 dotado de la topología cociente es una superficie topológica.

• Sea $U_i := \{(z_1, z_2) : z_i \neq 0\}, i = 1, 2, y$ considere las aplicaciones

$$\varphi_1:U_1\longrightarrow\mathbb{C}$$

dada por $(z_1, z_2) \longrightarrow z_2/z_1 =: z y$

$$\varphi_2:U_2\longrightarrow\mathbb{C}$$

dada por $(z_1, z_2) \longmapsto z_1/z_2 =: z'$.

Muestre que $\mathcal{U} := \{(U_1, \varphi_1), (U_2, \varphi_2)\}$ es una atlas holomorfo sobre \mathbb{CP}^1 , induciendo así una estructura compleja J_0 sobre \mathbb{CP}^1 .

• Muestre que (\mathbb{CP}^1, J_0) es isomorfa a la esfera de Riemann \mathbb{P}^1 .

3. Operadores ∂ y $\bar{\partial}$.

• Sea f(z) una función compleja continua con parte real u e imaginaria v. Recuerde que f es holomorfa en z_0 si y solo si las parciales de u and v existen y satisfacen las condiciones de Cauchy-Riemann.

$$u_x = v_y, u_y = -v_x$$

en algún abierto de z_0 (teorema de Looman-Menchoff's). Note que $x=\frac{1}{2}(z+\bar{z})$ y $y=\frac{1}{2i}(z-\bar{z})$, asi que u y v pueden ser consideradas funciones de z y \bar{z} . Verifique que

$$\bar{\partial}f = \frac{\partial f}{\partial \bar{z}} = \frac{1}{2}(u_x - v_y) + \frac{i}{2}(u_y + v_x)$$

y concluya que f es holomorfa en z_0 si y solo si $\partial f/\partial \bar{z} = 0$ en una vecindad de z_0 .

• Usando como modelo el item anterior, define un operador ∂ tal que para f holomorfa

$$\partial \bar{f} = 0.$$

(aquí \bar{f} es la conjugada de f, esto es, \bar{f} es antiholomorfa.)

4. Retículos y toros.

Sean $\Gamma = \{m\omega_1 + n\omega_2 : m, n \in \mathbb{Z}\}\ y\ \Gamma' = \{m\omega_1' + n\omega_2' : m, n \in \mathbb{Z}\}\ dos\ retículos\ en\ \mathbb{C}$

 \bullet Muestre que \mathbb{C}/Γ es homeomorfo a $S^1\times S^1$ vía

$$\lambda\omega_1 + \mu\omega_2 \mapsto \left(e^{2\pi i\lambda}, e^{2\pi i\mu}\right)$$

con $\lambda, \mu \in \mathbb{R}$. Aquí $S^1 \times S^1 \subset \mathbb{C} \times \mathbb{C}$ es considerado con la topología métrica inducida dada por : $\{(e^{2\pi i\lambda}, e^{2\pi i\mu}) : \lambda, \mu \in \mathbb{R}\}$. Más aún , dado que ω_1, ω_2 son \mathbb{R} -linealmente independientes se tiene $\mathbb{C} = \{\lambda\omega_1 + \mu\omega_2 : \lambda, \mu \in \mathbb{R}\}$.

• Muestre que $\Gamma = \Gamma'$ si y sol si existe una matriz

$$A \in SL(2,\mathbb{Z}) := \{A \in GL(2,\mathbb{Z}) : \det A = 1\}$$

tal que

$$\begin{pmatrix} \omega_1' \\ \omega_2' \end{pmatrix} = A \begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix} \text{ or } \begin{pmatrix} \omega_1' \\ \omega_2' \end{pmatrix} = A \begin{pmatrix} \omega_2 \\ \omega_1 \end{pmatrix}$$

- Suponga que $\alpha \in \mathbb{C}^*$ es tal que $\alpha\Gamma \subset \Gamma'$. Muestre que la aplicación $\mathbb{C} \to \mathbb{C}$, $z \mapsto \alpha z$ induces una aplicación holomorfa $\mathbb{C}/\Gamma \to \mathbb{C}/\Gamma'$ la cual es biholomorfa si y solo si $\alpha\Gamma = \Gamma'$.
- Muestre que todo toro $X = \mathbb{C}/\Gamma$ es isomorfo a un toro de la forma

$$X(\tau) := \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$$

donde τ satisface $Im(\tau) > 0$.

■ Suponga $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$ y Im $(\tau) > 0$. Sea

$$\tau' := \frac{a\tau + b}{c\tau + d}$$

Muestre que el toro $X(\tau)$ y $X(\tau')$ son isomorfos.

5. Orientabilidad de la superficie de Riemann

Una superficie topológica X es **suave** si admite un atlas

$$\mathcal{U} = \left\{ \left(U_{\alpha}, \varphi_{\alpha} : U_{\alpha} \to \varphi_{\alpha} \left(U_{\alpha} \right) \subset \mathbb{R}^{2} \right) : \alpha \in A \right\}$$

tal que

$$\varphi_{\alpha} \circ \varphi_{\beta}^{-1} : \varphi_{\beta} \left(U_{\alpha} \cap U_{\beta} \right) \to \varphi_{\alpha} \left(U_{\alpha} \cap U_{\beta} \right)$$

es suave para todo $\alpha, \beta \in A$, y el atlas \mathcal{U} es llamado una **estructura diferenciable** en X.

Si X admite una estructura diferenciable \mathcal{U} tal que det $\left(\operatorname{Jac}\left(\varphi_{\alpha}\circ\varphi_{\beta}^{-1}\right)\right)>0$ para todo $\alpha,\beta\in A$, entonces X se dice **orientable** (con la orientación dada por \mathcal{U}). Pruebe que toda superficie de Riemann es orientable.

6. Continuación analítica.

• (A propósito de la la pregunta de David.) Para los siguientes dos ejercicios concerniente a *continuación analítica*, use como guía las siguientes dos definiciones tomadas textualmente del libro: a course in complex anaylsis and Riemann surfaces de W. Schlag (Sección 2.4 páginas 56 y 57):

Definición 1 Suppose $\gamma:[0,1] \to \Omega$ is a continuous curve inside a region Ω . We say that $D_j = D\left(\gamma\left(t_j\right), r_j\right) \subset \Omega, 0 \leq j \leq J$, is a chain of disks along γ in Ω if $0 = t_0 < t_1 < t_2 < \ldots < t_N = 1$ and $\gamma\left([t_j, t_{j+1}]\right) \subset D_j \cap D_{j+1}$ for all 0 < j < N-1

Definición 2 Let $\gamma:[0,1] \to \Omega$ be a continuous curve inside Ω . Suppose $f \in \mathcal{H}(U)$ and $g \in \mathcal{H}(V)$ where $U \subset \Omega$ and $V \subset \Omega$ are neighborhoods of $p := \gamma(0)$ and $q := \gamma(1)$, respectively. Then we say that g is an analytic continuation of f along γ if there exists a chain of disks $D_j := D(\gamma(t_j), r_j)$ along γ in Ω where $0 \le j \le J$, and f_j in $\mathcal{H}(D_j)$ such that $f_j = f_{j+1}$ on $D_j \cap D_{j+1}$ and $f_0 = f$ and $f_J = g$ locally around p and q, respectively.

- Muestre en detalle el Lema 2.18 dado en la referencia mencionada: La continuación analítica g de f a lo largo de γ solo depende de f y γ , mas no de la cadena de círculos elegida. En particular es única.
- Sea $f(z) = \sum_{n=0}^{\infty} a_n z^{2^n}$ una serie con radio de convergencia R = 1. Muestre que f muestre que f no puede ser extendida analíticamente a ningún disco centrado z_0 con $|z_0| = 1$ (asuma que puede hacer esto para una vecindad de z = 1 y substituya $z = aw^2 + bw^3$ donde 0 < a < 1 and a + b = 1).

7. Ramificaciones.

■ Describa (similar a lo hecho en clase) las superficies de Riemann asociadas a la siguiente lista de funciones. Esto es, haga un listado de los puntos de branch/puntos de ramificación, el índice u orden de ramificación y los cortes requeridos y le posible pegado para describir la superficie de Riemann. (¿Será la aplicación $z \mapsto R/z$, para $z \in \{z\mathbb{C} : |z-z_0| < R\}$, útil en alguno de los argumentos?)

$$z^{2/3}$$
, $\sqrt{(z^2-1)(z^2-4)}$, $\sqrt[3]{z^3-z}$, $\sqrt{z^3-3z}$, $\log(z)$, $\log(z^2+i)$ $z^{5/7}(z-3)^{2/7}$.

- Dessin d'enfant versión coquito: https://mathoverflow.net/questions/ 1909/what-are-dessins-denfants
 - Considere las funciones holomorfas

$$f_n: \mathbb{C} \longrightarrow \mathbb{C}, \quad f_n(z) = z^n$$

Describa/dibuje los siguientes conjuntos del dominio \mathbb{C} : $f^{-1}(0)$ es etiquetado con puntos blancos, $f^{-1}(1)$ es etiquetado con puntos negros y la pre-imagen $f^{-1}[0,1]$ es indicada con aristas rojas conectando los puntos. Por ejemplo, para $f_4(z)=z^4$ este dibujo cualitativo es mostrado en Figura 1. Dibuje el diagrama correspondiente a $f_n(z)=z^n$.

Figura 1: Schematics for z^4 .

• Considere las funciones holomorfas $g_1, g_2 : \mathbb{C} \longrightarrow \mathbb{C}$ dadas por

$$g_1(z) = \frac{27z^2(1-z)}{4}, \quad g_2(z) = 16z^2(1-z)^2$$

Calcule los puntos de ramificación (branch) g_1 y g_2 y dibuje los respectivos diagramas.

• Recíprocamente, halle una función holomorfa h(z) cuyo diagrama este dado, al menos cualitativamente, por el diagrama mostrado en la Figura 2.

Figura 2: Schematics for h(z).

• Sea $T_n(z)$ el n-ésimo polinomio de Tchebychev, dado por $T_n(\cos \theta) = \cos(n\theta)$ Dibuje el diagrama asociado para la función holomorfa $T_n^2(z)$.

Prof. del curso: Jaime Cuadros.

San Miguel, abril, 2020.