Introducción a la Lógica y la Computación

Mariana Badano Facundo Bustos Mauricio Tellechea Gonzalo Zigarán

FaMAF, 25 de septiembre de 2024

Ejes de Contenidos

Estructuras Ordenadas

2 Lógica Proposicional

$$\frac{[\varphi \wedge \psi]_1}{\psi} \wedge E \quad \frac{[\varphi \wedge \psi]_1}{\varphi} \wedge I$$

$$\frac{\psi \wedge \varphi}{\varphi \wedge \psi \rightarrow \psi \wedge \varphi} \rightarrow I_1$$

Lenguajes y Autómatas

Parte 2: Lógica Proposicional

Tres componentes de la lógica

Sintaxis

Qué objetos usamos: **proposiciones**, cómo se escriben.

Semántica

Cómo asignamos significado a las proposiciones: valor de verdad.

Cálculo

Cómo se **deducen** proposiciones a partir de otras y se obtienen **teoremas**

Estudiaremos especialmente la interrelación entre los dos últimos conceptos.

Sintaxis: El lenguaje

Los símbolos que usaremos:

$$\Sigma := \{), (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots)\}.$$

Con Σ^* denotamos el conjunto de todas las cadenas de símbolos en Σ .

Ejemplo

$$\boxed{p_{18}((((\vee), p_7p_0p_0 \to) \mathbf{y} \land \land) \bot} \text{ pertenecen a } \Sigma^*.$$

Llamaremos variables proposicionales a los elementos del conjunto

$$\mathcal{V} := \{p_0, p_1, \dots, p_n, p_{n+1}, \dots\} \subseteq \Sigma$$

y llamaremos átomos a los elementos del conjunto

$$At := \{\bot\} \cup \mathcal{V} = \{\bot, p_0, p_1, \dots, p_n, p_{n+1}, \dots\} \subseteq \Sigma$$

Sintaxis: El lenguaje

Nos interesan algunas cadenas en Σ^* , que llamaremos proposiciones

Ejemplo

$$(p_1 \wedge p_2)$$
, $(p_0 \vee (p_7 \to p_3))$ y $(\bot \to \bot)$ son proposiciones.

Nos interesa definir un subconjunto de Σ^* que

(*) contenga a todas las variables proposicionales, a \bot , y que cada vez que dos palabras α y β estén en ese conjunto, las palabras $(\alpha \lor \beta)$, $(\alpha \land \beta)$ y $(\alpha \to \beta)$ también estén en ese conjunto. Nos gustaría que además no tuviera

otras cosas, que sólo tuviera palabras construídas de esta forma. En algún sentido buscamos "el menor" conjunto que satisfaga (*). ¿Qué significa el menor conjunto que satisface algo entre una familia de conjuntos?

Inducción en PROP

Lema

La familia de conjuntos que satisfacen (*) es no vacía y cerrada por intersecciones arbitrarias.

Definición

PROP es **el menor** subconjunto de Σ^* (según \subseteq) que cumple con:

 $\boxed{\varphi \in At}$ Para todo $\varphi \in At$, $\varphi \in PROP$.

 $(arphi
ightarrow \psi)$ Para todas $arphi, \psi$ en *PROP*, $(arphi
ightarrow \psi)$ está en *PROP*.

 $(\varphi \lor \psi)$ Para todas φ, ψ en *PROP*, $(\varphi \lor \psi)$ está en *PROP*.

 $\overline{(\varphi \wedge \psi)}$ Para todas φ, ψ en *PROP*, $(\varphi \wedge \psi)$ está en *PROP*.

Teorema (inducción en subfórmulas)

Sea A un predicado sobre PROP. Luego $A(\varphi)$ es verdadero para toda $\varphi \in PROP$ si y sólo si:

$$Si \varphi$$
 es atómica, $A(\varphi)$ vale. $\}$ Caso Base

$$\mathit{Si}\, \underbrace{A(\varphi) \; \mathit{y}\, A(\psi)}_{\text{uniform}} \; \mathit{entonces}\, A((\varphi \rightarrow \psi)), A((\varphi \lor \psi)) \; \mathit{y}\, A((\varphi \land \psi))$$

Demostración.

Sea $X=\{\varphi\in PROP: A(\varphi)\}$. Quiero ver que X=PROP. $X\subseteq PROP$ por definición.

Y además $PROP \subseteq X$ por minimalidad.

Inducción en PROP: ¿Para qué la usamos?

Definición

Una sucesión de proposiciones $\varphi_1, \ldots, \varphi_n$ es una **serie de formación** (sdf) de $\varphi \in PROP$ si $\varphi_n = \varphi$ y para todo $i \leq n$, φ_i es:

- atómica, o bien
- igual a $(\varphi_j \to \varphi_k)$, $(\varphi_j \lor \varphi_k)$ o $(\varphi_j \land \varphi_k)$ con j, k < i.

Teorema

Toda $\varphi \in PROP$ tiene una serie de formación.

Demostración.

 $\boxed{\varphi \in At} \ \text{``}\varphi\text{''} \text{ es una sdf de }\varphi\text{ (tenemos }n=1,\,\varphi_1:=\varphi\text{)}.$

 $(\varphi \odot \psi)$ Por HI, φ y ψ tienen sdf $\varphi_1, \ldots, \varphi_n (=\varphi)$ y $\psi_1, \ldots, \psi_m (=\psi)$. Luego

$$\varphi_1,\ldots,\varphi_n,\psi_1,\ldots,\psi_m,(\varphi\odot\psi)$$
 es sdf de $(\varphi\odot\psi)$.

Recursión en PROP

Teorema (definición por recursión en subfórmulas)

Sea A un conjunto y supongamos dadas funciones

 $H_{At}: At \rightarrow A \text{ y } H_{\odot}: A^2 \rightarrow A \text{ para cada } \odot.$

Entonces hay exactamente una función $F: PROP \rightarrow A$ tal que

$$\begin{cases} F(\varphi) &= H_{At}(\varphi) \text{ para } \varphi \text{ en } At \\ F((\varphi \odot \psi)) &= H_{\odot}\big(F(\varphi), F(\psi)\big) \end{cases}$$

Recursión

Otras versiones equivalentes útiles ---> Pizarrón

Recursión en PROP: Ejemplo

Definición

El grado de una proposición, $gr(\cdot)$, es la función definida de la siguiente manera.

Introducción a la Lógica y la Computación

Mariana Badano Facundo Bustos Mauricio Tellechea Gonzalo Zigarán

FaMAF, 27 de septiembre de 2024

Contenidos estimados para hoy

- Repaso
- Semántica de la lógica proposicional
 - Asignaciones y valuaciones
 - Teorema de Extensión
 - Abreviaciones: Conectivos nuevos
 - La relación de consecuencia y tautologías
 - Lema de Coincidencia
 - Tablas de verdad
- 3 Sustitución

Repaso

Tres componentes de la lógica

- Sintaxis: qué objetos usamos: proposiciones (= "fórmulas proposicionales", "fórmulas"), cómo se escriben.
 - Símbolos/variables proposicionales: $\mathcal{V} := \{p_0, p_1, \dots, p_n, p_{n+1}, \dots\}$
 - **Conectivos**: \bot , \land , \lor , \rightarrow .
 - $At := \{\bot\} \cup \mathcal{V}; \Sigma := At \cup \{\ \}, (, \land, \lor, \rightarrow\}; PROP \subseteq \Sigma^*$.
- Semántica: cómo asignamos significado a las proposiciones: valor de verdad.

 Ahora
- Cálculo: cómo se **deducen** proposiciones a partir de otras y se obtienen **teoremas**.

Asignaciones y valuaciones/semánticas

Nuestras proposiciones son sólo cadenas de símbolos.

Definición

Una **asignación** es una función $f:\{p_0,p_1,\dots\}\to\{0,1\}$.

Definición

Una **valuación** es una función $[\![\cdot]\!]: PROP \rightarrow \{0,1\}$ que satisface:

- $[\![\bot]\!] = 0.$
- $2 \hspace{-0.2cm} \llbracket (\varphi \wedge \psi) \rrbracket = \min \{ \llbracket \varphi \rrbracket, \llbracket \psi \rrbracket \}.$
- $\qquad \qquad \mathbb{I}\left[(\varphi \vee \psi) \right] = \max\{ \llbracket \varphi \rrbracket, \llbracket \psi \rrbracket \}.$
- $\hspace{-0.8in} \boxed{\hspace{-0.8in} 4 \hspace{-0.8in} [\hspace{-0.8in} [\varphi \rightarrow \psi)]\hspace{-0.8in} = 0 \text{ si y s\'olo si } [\hspace{-0.8in} [\hspace{-0.8in} \varphi]\hspace{-0.8in}] = 1 \text{ y } [\hspace{-0.8in} [\hspace{-0.8in} \psi]\hspace{-0.8in}] = 0. }$

Extensión de asignaciones

Teorema (de Extensión)

Para toda asignación f, existe una única valuación $[\![\cdot]\!]_f$ tal que $[\![\varphi]\!]_f=f(\varphi)$ para toda $\varphi\in\mathcal{V}$.

Demostración.

Definimos la valuación $[\cdot]_f$ por recursión en subfórmulas.

$$otag ec{arphi \in At} \mid \llbracket p_n
Vert_f := f(p_n) \text{ para } n \in \mathbb{N}_0 \text{ y } \llbracket \bot
Vert_f := 0.$$

 H_{At}

$$\boxed{(\varphi \wedge \psi)} \ \llbracket (\varphi \wedge \psi) \rrbracket_f := \min \{ \llbracket \varphi \rrbracket_f, \llbracket \psi \rrbracket_f \}.$$

 H_{\wedge}

$$\boxed{ (\varphi \to \psi) } \ [\![(\varphi \to \psi)]\!]_f := 0 \text{ si } [\![\varphi]\!]_f = 1 \text{ y } [\![\psi]\!]_f = 0, \text{y } [\![(\varphi \to \psi)]\!]_f := 1 \text{ encase contrarion}$$

 $H_{
ightarrow}$

$$\boxed{(\varphi \vee \psi)} \ \llbracket (\varphi \vee \psi) \rrbracket_f := \max\{\llbracket \varphi \rrbracket_f, \llbracket \psi \rrbracket_f\}.$$

 H_{\vee}

Extensión de asignaciones

Teorema (de Extensión)

Para toda asignación f, existe una única valuación $[\![\cdot]\!]_f$ tal que $[\![\varphi]\!]_f = f(\varphi)$ para toda $\varphi \in \mathcal{V}$.

Demostración.

Por el *Teorema de definición por recursión en subfórmulas*, **existe** una función $[\![\cdot]\!]_f$ que satisce las condiciones anteriores **y es única**.

Sólo queda ver que $[\![\cdot]\!]_f$ es efectivamente una valuación y que restringida a $\mathcal V$ coincide $\operatorname{con} f$.

Pero ambas cosas son inmediatas de la definición de $[\cdot]_f$.

Extensión de asignaciones

Teorema (de Extensión)

Para toda asignación f, existe una única valuación $[\![\cdot]\!]_f$ tal que $[\![\varphi]\!]_f=f(\varphi)$ para toda $\varphi\in\mathcal{V}$.

Corolario

$$[\![p]\!]=[\![p]\!]'$$
 para toda $p\in\mathcal{V}\implies [\![arphi]\!]=[\![arphi]\!]'$ para toda $arphi\in\mathit{PROP}$.

Demostración.

Por la unicidad en el Teorema de Extensión: ambas valuaciones son extensiones de la misma asignación $\|\cdot\| \upharpoonright \mathcal{V} = \|\cdot\|' \upharpoonright \mathcal{V}$.

Conectivos nuevos

Introducimos nueva notación.

Abreviaturas

- \blacksquare $(\neg \varphi)$ denotará $(\varphi \to \bot)$.
- \blacksquare $(\varphi \leftrightarrow \psi)$ denotará $((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$.

Ejercicio

Para toda valuación $\lceil \cdot \rceil$:

La relación de consecuencia y tautologías

Sea $\Gamma \subseteq PROP$ y f una asignación.

Definición

- f valida Γ sii para toda $\psi \in \Gamma$, $\llbracket \psi \rrbracket_f = 1$.
- lacksquare arphi es **consecuencia lógica** de Γ sii para toda asignación f que valida Γ , $[\![arphi]\!]_f=1$ (**notación**: $\Gamma\modelsarphi$)

Ejercicio

$$\models \varphi \iff \emptyset \models \varphi.$$

Ejemplos

- $\begin{tabular}{l} $\models (\varphi \to \varphi).$ \\ Tenemos que ver que para toda asignación f, $$[(\varphi \to \varphi)]_f = 1.$ \\ Equivalentemente, $$[(\varphi \to \varphi)]_f \ne 0.$ \\ \end{tabular}$
- $\models ((\neg(\neg\varphi)) \to \varphi) \text{ (Ejercicio)}.$
- 3 $\{\varphi, (\varphi \to \psi)\} \models \psi$. Debemos ver que si f valida $\{\varphi, (\varphi \to \psi)\}$, entonces $[\![\psi]\!]_f = 1$:

$$\llbracket \varphi \rrbracket_f = \llbracket (\varphi \to \psi) \rrbracket_f = 1 \implies \llbracket \psi \rrbracket_f = 1.$$

Sale negando la definición: p_1 no es una tautología \iff existe alguna f tal que $[\![p_1]\!]_f=0$.

Lema de Coincidencia

La verdad de una proposición se determina localmente.

Lema (de Coincidencia)

 $Sif(p_i) = f'(p_i)$ para todos los p_i que ocurran en φ , entonces $[\![\varphi]\!]_f = [\![\varphi]\!]_{f'}$.

Demostración.

 $\boxed{arphi \in At}$ Si $arphi = p_n$, sólo ocurre p_n en arphi. Luego $\llbracket arphi
rbracket_f = f(arphi) = f'(arphi) = \llbracket arphi
rbracket_{f'}$. Además, $\llbracket ot
rbracket_f = \llbracket ot
rbracket_{f'} = 0$ siempre.

 $(arphi\odot\psi)$ El resto de los casos queda como ejercicio.

Tablas de verdad

Recordemos que una asignación es una función de $V = \{p_0, p_1, \dots, p_n, p_{n+1}, \dots\}$ en $\{0, 1\}$.

Pregunta

¿Cuántas asignaciones posibles hay?

Demasiadas.

¿Hay que chequear todas para saber si $\models ((p_0 \land p_2) \rightarrow p_2)$? Por el Lema de Coincidencia, no.

Tablas de verdad

	p_0	p_1	p_2	p_3		$(p_0 \wedge p_2)$	$((p_0 \land p_2) \to p_2)$
f_1	1	0	1	1		1	1
						0	1
f_3	1	0	1	0		1	1
f_4	0	0	1	1		0	1
f_5	0	1	0	0		0	1
:			:		٠		

Tablas de verdad

	p_0	p_2	$(p_0 \wedge p_2)$	$((p_0 \wedge p_2) \to p_2)$
f_1	1	1	1	1
f_2	1	0	0	1
f_4	0	1	0	1
f_5	0	0	1 0 0 0	1

Sustitución

Definición

 $\underline{\varphi[\psi/p]}:=$ sustitución del símbolo proposicional p por la proposición ψ en φ :

$$(\varphi\odot\chi)$$
 $(\varphi\odot\chi)[\psi/p]:=(\varphi[\psi/p]\odot\chi[\psi/p]).$

Ejemplo

- $p_1[(p_1 \wedge p_2)/p_3] = p_1.$
- $p_1[(p_1 \wedge p_2)/p_1] = (p_1 \wedge p_2).$
- $(p_1 \wedge p_2)[(p_3 \wedge p_4)/p_1] = ((p_3 \wedge p_4) \wedge p_2).$

Ejercicio

Introducción a la Lógica y la Computación

Mariana Badano Facundo Bustos Mauricio Tellechea Gonzalo Zigarán

FaMAF, 2 de octubre de 2024

Contenidos estimados para hoy

Repaso

- 2 Deducción natural
 - Reglas de inferencia
 - $lue{}$ Cancelación de hipótesis: introducción de ightarrow
 - Ejemplos con cancelación
 - Reducción al absurdo y de eliminación de ∨
 - Ejemplos con RAA y $\lor E$

Repaso

Tres componentes de la lógica

- Sintaxis: descripción simbólica de los objetos que estudiamos: proposiciones (= "fórmulas proposicionales", "fórmulas").
 - Conjunto inductivo *PROP*: **inducción** y **recursión**.
 - Abreviaturas $(\neg \varphi)$, $(\varphi \leftrightarrow \psi)$.
 - Operaciones simbólicas: **sustitución** $\varphi[\psi/p]$.
- Semántica: cómo asignamos significado a las proposiciones.
 - *Modelos* para dar sentido: **asignaciones** $v : V \rightarrow \{0, 1\}$.
 - Se extienden a **valuaciones**: $\llbracket \cdot \rrbracket_f : PROP \to \{0, 1\}$.
 - La verdad de una proposición se determina localmente: Lema de Coincidencia y tablas de verdad.
- Cálculo: cómo se deducen proposiciones a partir de otras y se obtienen teoremas.

 Ahora

El cálculo en primer año

 $p \lor q \equiv q \lor p,$ Este cáculo involucra ciertos axiomas $p \lor q \equiv p \lor p,$ $p \land q \equiv p \equiv q \equiv p \lor q$ \vdots

y ciertas reglas Regla de Leibniz

Transitividad de la equivalencia

Una demostración de Introducción a los Algoritmos.

```
 \equiv \{ \begin{array}{l} \underline{p} \Rightarrow \underline{q} \vee \underline{p} \\ \text{Definición de} \Rightarrow \\ \underline{p} \vee \underline{q} \vee \underline{p} \equiv \underline{q} \vee \underline{p} \\ \equiv \{ \begin{array}{l} \text{Conmutativa} \vee \\ \underline{p} \vee \underline{p} \vee \underline{q} \equiv \underline{q} \vee \underline{p} \end{array} \right.
```


Deducción natural

Deducción natural: un cálculo más parecido a los razonamientos "intuitivos". Sólo involucra reglas.

Notación. Usaremos precedencia para eliminar paréntesis:

$$\neg \varphi \land (\psi \lor \varphi) \to \chi := \big(((\neg \varphi) \land (\psi \lor \varphi)) \to \chi \big).$$

Algunas reglas de inferencia

$$\begin{array}{cccc} \frac{\varphi & \psi}{\varphi \wedge \psi} \wedge I & & \frac{\varphi \wedge \psi}{\varphi} \wedge E & & \frac{\varphi \wedge \psi}{\psi} \wedge E \\ & & \frac{\varphi}{\varphi \vee \psi} \vee I & & \frac{\psi}{\varphi \vee \psi} \vee I \\ & & \frac{\varphi & \varphi \rightarrow \psi}{\psi} \rightarrow E \end{array}$$

Ejemplo

De $\{\varphi, \varphi \lor \psi \to \chi\}$ se deduce χ .

$$\frac{\varphi \quad \psi}{(\varphi \wedge \psi)} \wedge I$$

Derivaciones: árboles punteados decorados

- Las hojas son las **hipótesis**. Las relevantes son las **hipótesis** no canceladas (Hip): { φ , ψ }.
- Nodo (raíz) distinguido conclusión (Concl): $(\varphi \land \psi)$

"De
$$\{\varphi, \psi\}$$
 deduce $(\varphi \land \psi)$ " $\{\varphi, \psi\} \vdash (\varphi \land \psi)$.

Cancelación de hipótesis

Pensemos en una demostración matemática simple.

Prueba de "(n es múltiplo de 4) implica (n es par)"

- **Supongamos** que *n* es múltiplo de 4.
- Luego, $n = 4 \cdot k$ para algún k.
- Luego, $n = 2 \cdot (2 \cdot k)$.
- Luego, $n = 2 \cdot k'$ para cierto k'.
- Luego, n es par.

Luego, (n es múltiplo de 4) implica (n es par).

Cancelación de hipótesis

$$\begin{array}{c}
[\varphi]_1 \\
\vdots \\
\psi \\
\varphi \to \psi
\end{array} \to I_1$$

Introducción de la implicación

■ Hipótesis cancelada: φ .

Cancelación de hipótesis

$$D := \frac{\frac{[\psi \wedge \chi]_1}{\psi} \wedge E}{\frac{\psi}{\psi \wedge \chi \to \psi} \to I_1}$$

Introducción de la implicación

- Hipótesis cancelada: $\psi \wedge \chi$. **Hipótesis no canceladas** $Hip(D) = \emptyset$.
- Conclusión $Concl(D) = \psi \land \chi \rightarrow \psi$.

" $\psi \land \chi \to \psi$ es un **teorema**". $\vdash \psi \land \chi \to \psi$.

Ejemplos de derivaciones

$$\vdash \varphi \land \psi \rightarrow \psi \land \varphi$$

$$\frac{\frac{[\varphi \wedge \psi]_1}{\psi} \wedge E \quad \frac{[\varphi \wedge \psi]_1}{\varphi} \wedge E}{\frac{\psi \wedge \varphi}{\varphi \wedge \psi \rightarrow \psi \wedge \varphi} \rightarrow I_1}$$

1 $\varphi \wedge \psi \rightarrow \psi \wedge \varphi$ es un teorema. **2** De $\{\varphi \rightarrow \psi, \neg \psi\}$ se deduce $\neg \varphi$.

$$\{\varphi \to \psi, \neg \psi\} \vdash \neg \varphi$$

$$\frac{ \begin{array}{ccc} [\varphi]_1 & \varphi \to \psi \\ \hline & \frac{\psi}{ } & \xrightarrow{\neg \psi} & \downarrow \\ \hline & \frac{\bot}{\neg \varphi} \to I_1 \\ \end{array}$$

Más reglas con cancelación de hipótesis

Son las reglas de *reducción al absurdo* y de *eliminación de* ∨.

Ejemplo usando RAA

De $\{\varphi, \neg \psi \to \neg \varphi\}$ se deduce ψ .

$$\frac{\varphi \qquad \dfrac{[\neg \psi]_1 \quad \neg \psi \rightarrow \neg \varphi}{\neg \varphi} \rightarrow E}{\dfrac{\bot}{\psi} \mathit{RAA}_1}$$

Ejemplo usando $\vee E$

Introducimos la última regla, con \perp como protagonista:

$$\frac{\perp}{\varphi} \perp$$

Veamos ahora que de $\neg \varphi \lor \psi$ se deduce $\varphi \to \psi$.

$$\frac{ \frac{[\varphi]_1 \quad [\neg \varphi]_2}{\bot} \to E}{\frac{\bot}{\psi} \bot} \frac{[\psi]_2}{[\psi]_2} \lor E_2$$

$$\frac{\psi}{\varphi \to \psi} \to I_1$$

Introducción a la Lógica y la Computación

Mariana Badano Facundo Bustos Mauricio Tellechea Gonzalo Zigarán

FaMAF, 4 de octubre de 2024

Contenidos estimados para hoy

- Deducción natural
 - \blacksquare Definición inductiva de \mathcal{D}
 - Inducción y recursión en derivaciones
 - Relación de deducción y teoremas

- Corrección y completitud de la lógica proposicional
 - Relación entre verdad y demostrabilidad
 - Teorema de corrección

El conjunto \mathcal{D} de las derivaciones

Definimos el conjunto de las **derivaciones** de manera recursiva.

 \mathcal{D} es el menor conjunto de árboles decorados con proposiciones con pares (proposición, regla) y con una raíz distinguida que satisface que:

Los árboles de un sólo nodo φ , con $\varphi \in PROP$, pertenecen a \mathcal{D} .

$$\blacksquare \ \ \text{Si} \ \ \frac{\vdots}{\varphi \wedge \varphi'} D \ \ \text{entonces} \ \ D_1 := \frac{\vdots}{\varphi \wedge \varphi'} \Delta E \in \mathcal{D} \ \ \ \text{y}$$

$$D_2 := rac{\dot{\cdot} D}{arphi \wedge arphi'} \wedge E \in \mathcal{D}.$$

El conjunto $\mathcal D$ de las derivaciones

$$\blacksquare \ \ \text{Si} \ \ \overset{:}{\overset{:}{\psi}} D \in \mathcal{D} \ \ \text{entonces} \ \ D' := \ \frac{\overset{:}{\psi}}{\dfrac{\varphi}{\varphi \to \psi} \to I} \in \mathcal{D}.$$

$$\blacksquare \ \ \text{Si} \ \ \dot{\overset{\cdot}{\varphi}}^{D_1} \in \mathcal{D} \ \ \text{y} \quad \ \dot{\overset{\cdot}{\varphi}}^{D_2} \in \mathcal{D} \ \ \text{entonces} \ \ D := \ \frac{\dot{\overset{\cdot}{\varphi}}^{D_1} \quad \ \dot{\overset{\cdot}{\varphi}}^{D_2}}{\varphi \to \psi} \to E$$

El conjunto $\mathcal D$ de las derivaciones

 $\quad \blacksquare \ \ \mathop{\mathrm{Si}} \ \mathop{\dot{:}}\limits_{\varphi}^{:\, D} \in \mathcal{D} \quad \text{entonces} \quad \quad$

$$D_1 := rac{\dot{\cdot}}{arphi} rac{\dot{\cdot}}{arphi ee arphi'} ee I \in \mathcal{D} \; \; \mathsf{y} \qquad D_2 := rac{\dot{\cdot}}{arphi'} rac{\dot{\cdot}}{arphi ee arphi'} ee I.$$

 $\blacksquare \ \ \text{Si} \ \ \dot{\overset{\cdot}{\overset{\cdot}{\overset{\cdot}{\cdot}}}} D_1 \in \mathcal{D}, \ \ \dot{\overset{\cdot}{\overset{\cdot}{\overset{\cdot}{\cdot}}}} D_2 \in \mathcal{D} \quad \text{y} \quad \dot{\overset{\cdot}{\overset{\cdot}{\overset{\cdot}{\cdot}}}} D_3 \in \mathcal{D} \quad \text{entonces}$

El conjunto $\mathcal D$ de las derivaciones

$$\blacksquare \ \ \text{Si} \ \ \overset{:}{\underset{\bot}{:}} D \in \mathcal{D} \ \ \text{entonces} \ \ D' := \ \dfrac{\overset{:}{\underset{\smile}{:}} D}{\underset{\varphi}{:}} RAA \in \mathcal{D}.$$

$$\blacksquare \ \ \text{Si} \ \ \vdots \ D \in \mathcal{D} \ \ \text{entonces} \ \ \ \frac{\vdots}{\omega} D \\ \bot \ \ \bot \ \in \mathcal{D}.$$

Al igual que con PROP, se puede hacer inducción y recursión en \mathcal{D} .

Definimos recursivamente el conjunto de las **hipótesis no canceladas** ${\it Hip}(D)$ de una derivación D.

$$\begin{cal}PROP\end{cal}$$
 Si $\varphi\in PROP$, $Hip(\varphi):=\{\varphi\}.$

 $\wedge I$

$$\mathit{Hip}\left(\frac{\vdots D \quad \vdots D'}{\varphi \quad \varphi'} \atop \varphi \wedge \varphi' \land I\right) := \mathit{Hip}(D) \cup \mathit{Hip}(D').$$

 $\wedge E$

$$\operatorname{Hip}\left(\frac{\vdots D}{\varphi \wedge \varphi'} \wedge E\right) = \operatorname{Hip}\left(\frac{\vdots D}{\varphi \wedge \varphi'} \wedge E\right) := \operatorname{Hip}(D).$$

$$\rightarrow I$$

$$\mathit{Hip}\left(\frac{\vdots D}{\psi} \atop \varphi \to \psi \to I\right) := \mathit{Hip}(D) \smallsetminus \{\varphi\}.$$

$$\rightarrow E$$

$$\mathit{Hip}\left(egin{array}{ccc} \vdots D_1 & \vdots D_2 \ arphi & arphi
ightarrow \psi \ \hline \psi & arphi
ightarrow \psi \end{array}
ight) := \mathit{Hip}(D_1) \cup \mathit{Hip}(D_2)$$

 $\vee I$

$$\mathit{Hip}\left(\frac{\vdots D}{\varphi} \bigvee_{\varphi \wedge \varphi'} \lor I\right) = \mathit{Hip}\left(\frac{\vdots D}{\varphi'} \bigvee_{\varphi \wedge \varphi'} \lor I\right) := \mathit{Hip}(D).$$

 $\vee E$

$$\begin{array}{cccc} Hip\left(\begin{array}{cccc} \vdots D_1 & \vdots & D_2 & \vdots & D_3 \\ \varphi \lor \psi & \chi & \chi & \chi \\ \hline & \chi & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

RAA

$$\mathit{Hip}\left(\frac{\dot{\cdot}\,D}{\bot}\atop \varphi\mathit{RAA}\right) := \mathit{Hip}(D) \smallsetminus \{\neg\varphi\}.$$

T

$$\mathit{Hip}\left(egin{array}{c} \vdots D \\ \bot \\ \hline arphi \end{array} \right) := \mathit{Hip}(D).$$

Relación de deducción y teoremas

Sea $\Gamma \subseteq PROP$ y $\varphi \in PROP$.

Definición

- φ se **deduce** de Γ ($\Gamma \vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $Hip(D) \subseteq \Gamma$ y $Concl(D) = \varphi$.
- $m{\varphi}$ es un **teorema** ($\vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $\mathit{Hip}(D) = \emptyset$ y $\mathit{Concl}(D) = \varphi$.

Ejemplo

- **■** *Tertium non datur* o tercero excluido: $\vdash \varphi \lor \neg \varphi$.
 - $\blacksquare \{\psi, \neg \varphi \rightarrow \neg \psi\} \vdash \varphi$ (en video de 2021).
- Principio de no contradicción: $\vdash \neg(\varphi \land \neg \varphi)$.

Relación entre verdad y demostrabilidad

¿Cómo se comparan las nociones semánticas con la de derivabilidad?

Semántica	Cálculo
Tautologías (valuar 1)	Teoremas (derivable)
=	⊢
Asignaciones (modelo)	Derivaciones (pruebas formales)

Completitud y Corrección de la Lógica Proposicional

Para todos $\Gamma \subseteq PROP$ y $\varphi \in PROP$, se tiene

$$\Gamma \models \varphi \iff \Gamma \vdash \varphi$$

La implicación (\Rightarrow) es la **Completitud** y (\Leftarrow) es la **Corrección**.

Teorema de corrección

Teorema (Corrección)

Si
$$\Gamma \vdash \varphi$$
, entonces $\Gamma \models \varphi$.

Demostración.

Probamos por inducción en $D \in \mathcal{D}$:

"Para todo Γ tal que $Hip(D) \subseteq \Gamma$, se da $\Gamma \models Concl(D)$ ".

Prueba del teorema de corrección, caso base

Para todo
$$\Gamma$$
, $Hip(D) \subseteq \Gamma \implies \Gamma \models Concl(D)$

¡Ojo! Estamos probando algo de la forma " $\forall \Gamma : \dots$ ": tanto la tesis como la HI tendrán esa forma.

$$PROP \mid D = \varphi$$
. Sea $\Gamma \subseteq PROP$.

$$Hip(D) = \{\varphi\} \subseteq \Gamma \implies \varphi \in \Gamma \implies \Gamma \models \varphi = Concl(D).$$

Prueba del teorema de corrección, caso $(\land I)$

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- - **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
 - 2 para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models \varphi_2$,

probamos

Sea f una asignación que valide $\Gamma \Longrightarrow \llbracket \varphi_1 \rrbracket_f = 1$ y $\llbracket \varphi_2 \rrbracket_f = 1$. Luego $\llbracket \varphi_1 \land \varphi_2 \rrbracket_f = \min\{\llbracket \varphi_1 \rrbracket_f, \llbracket \varphi_2 \rrbracket_f\} = 1$.

Prueba del teorema de corrección, caso $(\rightarrow I)$

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

 $\blacksquare \ \, \text{para todo} \,\, \Gamma, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi.$

Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$. Sea f una asignación que valide Γ . Casos en $\llbracket \varphi \rrbracket_f$:

- $\begin{array}{l} \text{ 1 } & [\![\varphi]\!]_f = 1 \text{ entonces } f \text{ valida } \Gamma \cup \{\varphi\} \implies [\![\psi]\!]_f = 1 \\ & \Longrightarrow [\![\varphi \to \psi]\!]_f = 1. \end{array}$

Introducción a la Lógica y la Computación

Mariana Badano Facundo Bustos Mauricio Tellechea Gonzalo Zigarán

FaMAF, 9 de octubre de 2024

Contenidos estimados para hoy

- Completitud de la lógica proposicional
 - Relación entre verdad y demostrabilidad
- 2 Consistencia
 - No derivación
- 3 Conjuntos consistentes maximales
- Teorema de Completitud

Relación entre verdad y demostrabilidad

¿Cómo se comparan las nociones semánticas con la de derivabilidad?

Semántica	Cálculo
Tautologías (valuar 1)	Teoremas (derivable)
=	
Asignaciones (modelo)	Derivaciones (pruebas formales)

Completitud y Corrección de la Lógica Proposicional

Para todos $\Gamma \subseteq PROP$ y $\varphi \in PROP$, se tiene

$$\Gamma \models \varphi \iff \Gamma \vdash \varphi$$

La clase pasada vimos la implicación (\Leftarrow) **Corrección**.

Hoy vamos por la implicación (\Rightarrow) : **Completitud**.

(In)Consistencia

Definición

Dado un conjunto $\Gamma \subseteq PROP$ diremos que

$$\Gamma$$
 es inconsistente $\iff \Gamma \vdash \bot$;

 Γ es **consistente** \iff **no** es inconsistente (o sea, $\Gamma \nvdash \bot$).

Lema

- **1** $\Gamma \vdash \varphi \iff \Gamma \cup \{\neg \varphi\}$ es inconsistente.

Corrección y sus usos

Léxico: Dado un conjunto Γ , si f es una asignación que valida a Γ decimos que f es un *modelo* de Γ .

Lema (de No Derivación)

Sif es un modelo de Γ y $[\![\varphi]\!]_f=0$, entonces $\Gamma \nvdash \varphi$.

Ejemplo $\{p_1 \lor p_4\} \nvdash p_1$.

Lema (Criterio de Consistencia)

Si Γ tiene un modelo, entonces Γ es consistente.

Ejemplo

- 1. $\{(\neg p_4 \lor p_0), p_4\}$ es consistente.
- 2. Dada f una asignación, $\mathrm{Th}(f):=\{\varphi\in PROP: [\![\varphi]\!]_f=1\}$ es consistente.

Conjuntos consistentes maximales

Definición

 Γ es **consistente maximal** si es consistente y, para todo $\Delta \subseteq PROP$, si $\Gamma \subseteq \Delta$ entonces Δ es inconsistente.

lacksquare C es consistente maximal si es maximal en el poset

(Conjuntos consistentes, \subseteq).

Lema

Para toda asignación f, $\mathrm{Th}(f):=\{\varphi\in PROP: [\![\varphi]\!]_f=1\}$ es un conjunto consistente maximal.

Realización de conectivos

Lema (Consistentes maximales son cerrado por derivaciones)

Sea Γ consistente maximal.

$$\Gamma \vdash \varphi \Rightarrow \varphi \in \Gamma$$
.

Lema (Consistentes maximales realizan conectivos)

Sea Γ consistente maximal. Para todas $\varphi, \psi \in PROP$,

- $(\varphi \lor \psi) \in \Gamma \iff [\varphi \in \Gamma \circ \psi \in \Gamma].$

Lema

Si Γ es consistente maximal existe una asignación f tal que $\Gamma = \operatorname{Th}(f)$.

Teorema

Si Γ es consistente existe Γ^* consistente maximal tal que $\Gamma \subseteq \Gamma^*$.

Demostración.

- El conjunto de **todas** las proposiciones se puede enumerar: $PROP = \{\varphi_0, \varphi_1, \varphi_2, \dots\}$. (esquema de numeración "por pisos")
- Empezando con Γ , vamos agregándole proposiciones de a una cuidando que no se vuelva inconsistente. Para cada $n \in \mathbb{N}_0$ definimos

$$\Gamma_0 := \Gamma$$

$$\Gamma_{n+1} := \left\{ \begin{array}{ll} \Gamma_n \cup \{\varphi_n\} & \text{si } \Gamma_n \cup \{\varphi_n\} \text{ es consistente;} \\ \Gamma_n & \text{caso contrario} \end{array} \right.$$

y definimos $\Gamma^*:=\bigcup_{n\in\mathbb{N}_0}\Gamma_n$. Probamos que Γ^* es consistente maximal.

Corolario

Si Γ es consistente tiene un modelo.

Prueba de Completitud

Corolario

 $\Gamma \vDash \bot$ implica $\Gamma \vdash \bot$.

Ejercicio: $\Gamma \vDash \varphi$ implica $\Gamma \cup \{\neg \varphi\} \vDash \bot$.

Prueba de Completitud

$$\begin{array}{c} \Gamma \vDash \varphi \implies \\ \Gamma \cup \{\neg \varphi\} \vDash \bot \implies \\ \Gamma \cup \{\neg \varphi\} \vdash \bot \implies \\ \Gamma \vdash \varphi. \end{array}$$

