

4

Introduction In 1796, Gauss, 19, successfully constructed a 17 sided regular pentagon using a compass and a straight edge. Subsequently, the Gauss-Wantzel Theorem was discovered, which stated that some n-gons could be drawn with a compass and a straight edge, but others could not

3

5 6

11 12

Background Knowledge S is the arclength of a circle, defined as $S = r\theta$ For our case, $\frac{ds}{dt} = r \frac{d\theta}{dt}$ Which can be written as: $v = r\omega$ Circle followed And in extension, $a_t = \frac{dv}{dt} = r \frac{d^2\theta}{dt^2} =$ Angular acceleration, $\alpha=\ddot{\theta}$, the rate of change of angular velocity, hence $a_t = r\alpha$

16

17 18

Background Knowledge	
Translational	Rotational
Velocity, $v = \frac{dx}{dt}$ where x is displacement	Angular Velocity, $\omega = \frac{d\theta}{dt}$ where θ is angular displacement
Acceleration, $a = \frac{dv}{dt}$	Angular Acceleration, $\alpha = \frac{d\omega}{dt}$
Mass, m	Moment of Inertia, I
Force, $F = ma$	Moment of Inertia, $\tau = I\omega$
Kinetic Energy , $K = \frac{1}{2} mv^2$	Kinetic Energy, $K = \frac{1}{2}I\omega^2$
Work done, W = Fs	Work done, $W = \tau \theta$
Power, $P = Fv$	Power, $P = \tau \omega$