# **LOGIT E PROBIT**

# Marcus Antonio Cardoso Ramalho Claudia Regina da Costa de Souza Ben Hur Correia

# 2025 - 06 - 25

# Índice

| 1 | Intr | odução 2                                          |
|---|------|---------------------------------------------------|
|   | 1.1  | Variáveis Dependentes Limitadas                   |
|   |      | 1.1.1 Por que não usar modelo linear?             |
|   | 1.2  | Especificação dos Modelos                         |
|   |      | 1.2.1 Modelo Logit                                |
|   |      | 1.2.2 Modelo Probit                               |
| 2 | Exe  | mplo Prático: Participação no Mercado de Trabalho |
|   | 2.1  | Descrição dos Dados                               |
|   |      | 2.1.1 Variáveis Explicativas:                     |
|   | 2.2  | Modelo Teórico                                    |
|   | 2.3  | Análise Exploratória dos Dados                    |
|   |      | 2.3.1 Interpretação da Análise Exploratória       |
|   |      | 2.3.2 Análise dos Gráficos Exploratórios          |
|   | 2.4  | Estimação dos Modelos                             |
|   |      | 2.4.1 Modelo Logit                                |
|   |      | 2.4.2 Interpretação do Modelo Logit               |
|   |      | 2.4.3 Modelo Probit                               |
|   |      | 2.4.4 Interpretação do Modelo Probit              |
|   | 2.5  | Efeitos Marginais                                 |
|   |      | 2.5.1 Fórmulas Teóricas                           |
|   |      | 2.5.2 Interpretação dos Efeitos Marginais         |
|   | 2.6  | Qualidade da Previsão                             |
|   |      | 2.6.1 Análise da Qualidade Preditiva              |
|   | 2.7  | Pseudo-R <sup>2</sup>                             |
|   |      | 2.7.1 Interpretação do Pseudo- $\mathbb{R}^2$     |

| 2.8 | Razão de Chances (Odds Ratio)           | 18 |
|-----|-----------------------------------------|----|
|     | 2.8.1 Interpretação da Razão de Chances | 19 |

# 1 Introdução

#### 1.1 Variáveis Dependentes Limitadas

Os modelos Logit e Probit (abreviação de regressão logística e probabilística) nos auxiliam na inferência de probabilidade de ocorrência de eventos onde nossa variável dependente é binária (Y ocorre ou não ocorre), e nosso objetivo é compreender como outras variáveis influenciam a ocorrência ou não desses eventos.

#### 1.1.1 Por que não usar modelo linear?

Em uma regressão linear, P(Y=1|x) é dado por uma especificação linear dos regressores, o que pode resultar em valores menores que 0 ou maiores que 1, que não fazem sentido com a interpretação probabilística dos parâmetros.

Os modelos não lineares permitem que a média condicional de Y dado X seja expressa pela probabilidade de Y acontecer dado X:

$$E(Y|X) = P(Y = 1|X)$$

#### 1.2 Especificação dos Modelos

#### 1.2.1 Modelo Logit

A função de distribuição logística é dada por:

$$F(X'\beta) = \frac{e^{X'\beta}}{1 + e^{X'\beta}} = \frac{1}{1 + e^{-X'\beta}}$$

#### 1.2.2 Modelo Probit

A função de distribuição normal padrão é dada por:

$$F(X'\beta) = \Phi(X'\beta) = \int_{-\infty}^{X'\beta} \phi(z)dz$$

onde  $\phi(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$  é a densidade da normal padrão.

# 2 Exemplo Prático: Participação no Mercado de Trabalho

#### 2.1 Descrição dos Dados

Consideramos inlf ("no mercado de trabalho") como uma variável binária que indica a participação no mercado de trabalho por uma mulher casada durante 1975:

- $\bullet\,\,$ inlf $\,=\,1$ se a mulher relata ter trabalhado por um salário fora de casa
- inlf = 0 caso contrário

#### 2.1.1 Variáveis Explicativas:

- nwifeinc: outras fontes de renda (milhares de dólares)
- educ: anos de educação
- exper: anos de experiência no mercado de trabalho
- expersq: experiência ao quadrado
- age: idade
- kidslt6: número de filhos menores de 6 anos
- kidsge6: número de filhos entre 6 e 18 anos

#### 2.2 Modelo Teórico

 $inlf = \beta_0 - \beta_1 \cdot nwifeinc + \beta_2 \cdot educ + \beta_3 \cdot exper - \beta_4 \cdot exper^2 - \beta_5 \cdot age - \beta_6 \cdot kidslt6 + \beta_7 \cdot kidsge6 - \beta_6 \cdot kidslt6 - \beta_7 \cdot kidsge6 - \beta_7 \cdot k$ 

```
options(scipen = 999) # desliga a notação científica

# Pacotes necessários
library(tidyverse) # análise de dados
library(magrittr) # operador pipe
library(mfx) # efeitos marginais e odds ratio
```

```
library(wooldridge)  # base de dados
library(gridExtra)  # múltiplos gráficos
library(knitr)  # tabelas
library(ggplot2)  # gráficos
library(plotly)  # gráficos interativos
```

#### 2.3 Análise Exploratória dos Dados

```
# Visualizar estrutura dos dados
glimpse(mroz)
```

```
Rows: 753
Columns: 22
$ inlf
          $ hours
          <int> 1610, 1656, 1980, 456, 1568, 2032, 1440, 1020, 1458, 1600, 19~
$ kidslt6
          <int> 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
$ kidsge6
          <int> 0, 2, 3, 3, 2, 0, 2, 0, 2, 2, 1, 1, 2, 2, 1, 3, 2, 5, 0, 4, 2~
          <int> 32, 30, 35, 34, 31, 54, 37, 54, 48, 39, 33, 42, 30, 43, 43, 3~
$ age
$ educ
          <int> 12, 12, 12, 12, 14, 12, 16, 12, 12, 12, 12, 11, 12, 12, 10, 1~
          <dbl> 3.3540, 1.3889, 4.5455, 1.0965, 4.5918, 4.7421, 8.3333, 7.843~
$ wage
$ repwage
          <dbl> 2.65, 2.65, 4.04, 3.25, 3.60, 4.70, 5.95, 9.98, 0.00, 4.15, 4~
          <int> 2708, 2310, 3072, 1920, 2000, 1040, 2670, 4120, 1995, 2100, 2~
$ hushrs
          <int> 34, 30, 40, 53, 32, 57, 37, 53, 52, 43, 34, 47, 33, 46, 45, 3~
$ husage
$ huseduc
          <int> 12, 9, 12, 10, 12, 11, 12, 8, 4, 12, 12, 14, 16, 12, 17, 12, ~
          <dbl> 4.0288, 8.4416, 3.5807, 3.5417, 10.0000, 6.7106, 3.4277, 2.54~
$ huswage
$ faminc
          <dbl> 16310, 21800, 21040, 7300, 27300, 19495, 21152, 18900, 20405,~
          <dbl> 0.7215, 0.6615, 0.6915, 0.7815, 0.6215, 0.6915, 0.6915, 0.691~
$ mtr
$ motheduc <int> 12, 7, 12, 7, 12, 14, 14, 3, 7, 7, 12, 14, 16, 10, 7, 16, 10,~
$ fatheduc <int> 7, 7, 7, 7, 14, 7, 7, 3, 7, 7, 16, 10, 7, 10, 7, 12, 7,~
          <dbl> 5.0, 11.0, 5.0, 5.0, 9.5, 7.5, 5.0, 5.0, 3.0, 5.0, 5.0, 5.0, ~
$ unem
$ city
          <int> 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0~
          <int> 14, 5, 15, 6, 7, 33, 11, 35, 24, 21, 15, 14, 0, 14, 6, 9, 20,~
$ exper
$ nwifeinc <dbl> 10.910060, 19.499981, 12.039910, 6.799996, 20.100058, 9.85905~
          <dbl> 1.21015370, 0.32851210, 1.51413774, 0.09212332, 1.52427220, 1~
$ lwage
$ expersq
          <int> 196, 25, 225, 36, 49, 1089, 121, 1225, 576, 441, 225, 196, 0,~
```

```
# Estatísticas descritivas
summary(mroz[c("inlf", "nwifeinc", "educ", "exper", "age", "kidslt6", "kidsge6")])
```

```
nwifeinc
     inlf
                                           educ
                                                           exper
Min.
       :0.0000
                  Min.
                         :-0.02906
                                      Min.
                                             : 5.00
                                                       Min.
                                                              : 0.00
1st Qu.:0.0000
                  1st Qu.:13.02504
                                      1st Qu.:12.00
                                                       1st Qu.: 4.00
Median :1.0000
                  Median :17.70000
                                      Median :12.00
                                                       Median: 9.00
Mean
       :0.5684
                  Mean
                         :20.12896
                                      Mean
                                             :12.29
                                                       Mean
                                                              :10.63
3rd Qu.:1.0000
                  3rd Qu.:24.46600
                                      3rd Qu.:13.00
                                                       3rd Qu.:15.00
       :1.0000
                         :96.00000
                                      Max.
                                             :17.00
                                                       Max.
                                                              :45.00
     age
                    kidslt6
                                      kidsge6
Min.
       :30.00
                Min.
                        :0.0000
                                  Min.
                                          :0.000
1st Qu.:36.00
                 1st Qu.:0.0000
                                   1st Qu.:0.000
Median :43.00
                Median :0.0000
                                   Median :1.000
Mean
       :42.54
                Mean
                        :0.2377
                                   Mean
                                          :1.353
3rd Qu.:49.00
                 3rd Qu.:0.0000
                                   3rd Qu.:2.000
Max.
       :60.00
                 Max.
                        :3.0000
                                   Max.
                                          :8.000
```

```
# Proporção de mulheres no mercado de trabalho
prop_trabalho <- mean(mroz$inlf)
cat("Proporção de mulheres no mercado de trabalho:", round(prop_trabalho, 3))</pre>
```

Proporção de mulheres no mercado de trabalho: 0.568

#### 2.3.1 Interpretação da Análise Exploratória

Os dados revelam informações importantes sobre o perfil das 753 mulheres casadas na amostra:

- Participação no mercado de trabalho: 56,8% das mulheres trabalhavam fora de casa em 1975
- Perfil demográfico: Idade média de 42,5 anos, com 12,3 anos de educação em média
- Experiência profissional: 10,6 anos de experiência média no mercado de trabalho
- Composição familiar: Em média, 0,24 filhos menores de 6 anos e 1,35 filhos entre 6-18 anos
- Renda familiar: Outras fontes de renda (além do trabalho da mulher) de US\$ 20,13 mil em média

```
theme minimal()
# Boxplots das variáveis contínuas por grupo
p2 <- mroz %>%
  select(inlf, nwifeinc, educ, exper, age) %>%
  pivot_longer(-inlf, names_to = "variavel", values_to = "valor") %%
  ggplot(aes(x = factor(inlf), y = valor, fill = factor(inlf))) +
  geom_boxplot(alpha = 0.7) +
  facet_wrap(~variavel, scales = "free_y") +
  labs(title = "Distribuição das Variáveis por Participação no Mercado",
       x = "Participação (0 = Não, 1 = Sim)",
       y = "Valor",
       fill = "Participação") +
  theme_minimal() +
  theme(legend.position = "bottom")
# Histograma dos filhos
p3 <- ggplot(mroz, aes(x = kidslt6, fill = factor(inlf))) +
  geom_histogram(position = "dodge", bins = 5, alpha = 0.7) +
  labs(title = "Distribuição de Filhos < 6 anos",
       x = "Número de filhos < 6 anos",
       y = "Frequência",
       fill = "Participação") +
  theme_minimal()
p4 <- ggplot(mroz, aes(x = kidsge6, fill = factor(inlf))) +
  geom_histogram(position = "dodge", bins = 8, alpha = 0.7) +
  labs(title = "Distribuição de Filhos 6-18 anos",
       x = "Número de filhos 6-18 anos",
       y = "Frequência",
       fill = "Participação") +
  theme_minimal()
grid.arrange(p1, p2, p3, p4, layout_matrix = rbind(c(1,1), c(2,2), c(3,4)))
```



### 2.3.2 Análise dos Gráficos Exploratórios

Os gráficos revelam padrões importantes:

- 1. **Distribuição equilibrada**: Há uma distribuição relativamente equilibrada entre mulheres que trabalham (57%) e que não trabalham (43%)
- 2. Diferenças por grupo:
  - Mulheres que trabalham tendem a ter mais educação e mais experiência
  - Mulheres que **não trabalham** tendem a ter **mais filhos pequenos** e outras fontes de renda maiores
  - A idade apresenta distribuição similar entre os grupos
- 3. **Impacto dos filhos**: A presença de filhos menores de 6 anos mostra clara associação negativa com a participação no mercado de trabalho

#### 2.4 Estimação dos Modelos

#### 2.4.1 Modelo Logit

```
mlogit <- glm(inlf ~ nwifeinc + educ + exper + expersq + age + kidslt6 + kidsge6,</pre>
           data = mroz,
           family = binomial(link = "logit"))
summary(mlogit)
Call:
glm(formula = inlf ~ nwifeinc + educ + exper + expersq + age +
   kidslt6 + kidsge6, family = binomial(link = "logit"), data = mroz)
Coefficients:
          Estimate Std. Error z value
                                      Pr(>|z|)
(Intercept) 0.425452 0.860365 0.495
                                       0.62095
nwifeinc -0.021345 0.008421 -2.535
                                       0.01126 *
educ
         exper
        -0.003154 0.001016 -3.104
expersq
                                       0.00191 **
         age
kidslt6
         0.060112 0.074789 0.804
                                       0.42154
kidsge6
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1029.75 on 752 degrees of freedom
Residual deviance: 803.53 on 745 degrees of freedom
AIC: 819.53
Number of Fisher Scoring iterations: 4
```

#### 2.4.2 Interpretação do Modelo Logit

```
# Tabela formatada dos resultados do Logit
logit_results <- data.frame(
    Variável = c("(Intercepto)", "nwifeinc", "educ", "exper", "expersq", "age", "kidslt6", "kidslt6
```

Tabela 1: Resultados do Modelo Logit

| Variável     | Coeficiente | Erro.Padrão | Valor.z | p.valor | Significância |
|--------------|-------------|-------------|---------|---------|---------------|
| (Intercepto) | 0.4255      | 0.8604      | 0.495   | 0.621   |               |
| nwifeinc     | -0.0213     | 0.0084      | -2.535  | 0.011   | *             |
| educ         | 0.2212      | 0.0434      | 5.091   | < 0.001 | ***           |
| exper        | 0.2059      | 0.0321      | 6.422   | < 0.001 | ***           |
| expersq      | -0.0032     | 0.0010      | -3.104  | 0.002   | **            |
| age          | -0.0880     | 0.0146      | -6.040  | < 0.001 | ***           |
| kidslt6      | -1.4434     | 0.2036      | -7.090  | < 0.001 | ***           |
| kidsge6      | 0.0601      | 0.0748      | 0.804   | 0.422   |               |

#### Principais achados do modelo Logit:

- AIC: 819.53 | Deviance residual: 803.53 | 4 iterações para convergência
- Variáveis significativas: nwifeinc, educ, exper, expersq, age, kidslt6
- Variável não significativa: kidsge6 (p = 0.422)

#### 2.4.3 Modelo Probit

```
Call:
glm(formula = inlf ~ nwifeinc + educ + exper + expersq + age +
   kidslt6 + kidsge6, family = binomial(link = "probit"), data = mroz)
Coefficients:
           Estimate Std. Error z value
                                        Pr(>|z|)
(Intercept) 0.2700736 0.5080782 0.532
                                         0.59503
nwifeinc -0.0120236 0.0049392 -2.434
                                         0.01492 *
educ
         0.1309040 0.0253987 5.154 0.000000255045646 ***
          exper
expersq
         -0.0018871 0.0005999 -3.145
                                         0.00166 **
         age
         kidslt6
         0.0360056 0.0440303 0.818
kidsge6
                                         0.41350
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1029.7 on 752 degrees of freedom
Residual deviance: 802.6 on 745 degrees of freedom
AIC: 818.6
```

#### 2.4.4 Interpretação do Modelo Probit

Number of Fisher Scoring iterations: 4

```
# Tabela formatada dos resultados do Probit
probit_results <- data.frame(
    Variável = c("(Intercepto)", "nwifeinc", "educ", "exper", "expersq", "age", "kidslt6", "kidsl
```

Tabela 2: Resultados do Modelo Probit

| Variável     | Coeficiente | Erro.Padrão | Valor.z | p.valor | Significância |
|--------------|-------------|-------------|---------|---------|---------------|
| (Intercepto) | 0.2701      | 0.5081      | 0.532   | 0.595   |               |
| nwifeinc     | -0.0120     | 0.0049      | -2.434  | 0.015   | *             |
| educ         | 0.1309      | 0.0254      | 5.154   | < 0.001 | ***           |
| exper        | 0.1233      | 0.0188      | 6.575   | < 0.001 | ***           |
| expersq      | -0.0019     | 0.0006      | -3.145  | 0.002   | **            |
| age          | -0.0529     | 0.0085      | -6.246  | < 0.001 | ***           |
| kidslt6      | -0.8683     | 0.1184      | -7.335  | < 0.001 | ***           |
| kidsge6      | 0.0360      | 0.0440      | 0.818   | 0.414   |               |

#### Principais achados do modelo Probit:

- AIC: 818.6 (ligeiramente melhor que Logit) | Deviance residual: 802.6
- Mesma estrutura de significância que o modelo Logit
- Coeficientes menores em magnitude (característica do modelo Probit)

### 2.5 Efeitos Marginais

#### 2.5.1 Fórmulas Teóricas

**Probit:** 

$$\frac{\delta E(Y|X)}{\delta X} = \Phi(X'\beta) \cdot \beta$$

onde 
$$\Phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$
 e  $Z \sim N(0, 1)$ 

Logit:

$$\frac{\delta\Lambda(X'\beta)}{\delta(X'\beta)} = \frac{d\Lambda(X'\beta)}{d(X'\beta)} \cdot \frac{d(X'\beta)}{dX}$$

onde 
$$\Lambda(X'\beta) = \frac{e^{X'\beta}}{1 + e^{X'\beta}}$$

[1] "Efeitos Marginais - Modelo Logit:"

#### logit.mfx\$mfxest

```
dF/dx
                         Std. Err.
                                                              P>|z|
                                             7.
nwifeinc -0.0051900534 0.002048203 -2.5339550 0.011278321458344539
          0.0537773087 \ 0.010560739 \ 5.0921916 \ 0.000000353948085410
educ
          0.0500569282 0.007824616 6.3973658 0.000000000158080347
exper
expersq -0.0007669166 0.000247676 -3.0964511 0.001958521715452269
         -0.0214030205 0.003539731 -6.0465107 0.000000001480163962
age
kidslt6 -0.3509498193 0.049638966 -7.0700469 0.000000000001548813
kidsge6
          0.0146162143 0.018188316 0.8036046 0.421625358800103267
# Efeitos marginais - Probit
probit.mfx <- probitmfx(inlf ~ nwifeinc + educ + exper + expersq + age + kidslt6 + kidsge6,</pre>
                        data = mroz)
print("Efeitos Marginais - Modelo Probit:")
```

## [1] "Efeitos Marginais - Modelo Probit:"

#### probit.mfx\$mfxest

#### 2.5.2 Interpretação dos Efeitos Marginais

```
# Tabela comparativa dos efeitos marginais
mfx_table <- data.frame(
   Variável = c("nwifeinc", "educ", "exper", "expersq", "age", "kidslt6", "kidsge6"),
   `Logit (dF/dx)` = c(-0.0052, 0.0538, 0.0501, -0.0008, -0.0214, -0.3509, 0.0146),
   `Probit (dF/dx)` = c(-0.0047, 0.0511, 0.0482, -0.0007, -0.0206, -0.3391, 0.0141),
   `Diferença` = c(-0.0005, 0.0027, 0.0019, -0.0001, -0.0008, -0.0118, 0.0005)</pre>
```

```
kable(mfx_table, digits = 4, caption = "Comparação dos Efeitos Marginais: Logit vs Probit")
```

Tabela 3: Comparação dos Efeitos Marginais: Logit vs Probit

| Variável | LogitdF.dx. | ProbitdF.dx. | Diferença |
|----------|-------------|--------------|-----------|
| nwifeinc | -0.0052     | -0.0047      | -0.0005   |
| educ     | 0.0538      | 0.0511       | 0.0027    |
| exper    | 0.0501      | 0.0482       | 0.0019    |
| expersq  | -0.0008     | -0.0007      | -0.0001   |
| age      | -0.0214     | -0.0206      | -0.0008   |
| kidslt6  | -0.3509     | -0.3391      | -0.0118   |
| kidsge6  | 0.0146      | 0.0141       | 0.0005    |
|          |             |              |           |

#### Interpretação prática dos efeitos marginais:

- nwifeinc: Cada US\$ 1.000 adicionais em outras fontes de renda reduz a probabilidade de trabalhar em ~0,5 pontos percentuais
- educ: Cada ano adicional de educação aumenta a probabilidade de trabalhar em ~5,4 pontos percentuais
- **exper**: Cada ano adicional de experiência **aumenta** a probabilidade de trabalhar em ~5,0 pontos percentuais
- age: Cada ano adicional de idade reduz a probabilidade de trabalhar em ~2,1 pontos percentuais
- **kidslt6**: Cada filho adicional menor de 6 anos **reduz** a probabilidade de trabalhar em ~35 pontos percentuais
- kidsge6: Efeito não significativo (~1,4 pontos percentuais)

```
# Comparação dos efeitos marginais
mfx_comparison <- data.frame(
    variavel = rownames(logit.mfx$mfxest),
    logit = logit.mfx$mfxest[,1],
    probit = probit.mfx$mfxest[,1]
) %>%
    filter(variavel != "(Intercept)") %>%
    pivot_longer(cols = c(logit, probit), names_to = "modelo", values_to = "efeito")

ggplot(mfx_comparison, aes(x = variavel, y = efeito, fill = modelo)) +
    geom_col(position = "dodge", alpha = 0.7) +
    labs(title = "Comparação dos Efeitos Marginais: Logit vs Probit",
```

```
x = "Variáveis",
y = "Efeito Marginal",
fill = "Modelo") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
```



**Observação importante**: Os efeitos marginais são muito similares entre os modelos Logit e Probit, confirmando a robustez dos resultados.

### 2.6 Qualidade da Previsão

```
# Logit
logit.fitted <- as.numeric(mlogit$fitted.values >= 0.5)
corr.pred.logit <- mean(logit.fitted == mroz$inlf)

# Probit
probit.fitted <- as.numeric(mprobit$fitted.values >= 0.5)
corr.pred.probit <- mean(probit.fitted == mroz$inlf)

cat("Acurácia do Modelo Logit:", round(corr.pred.logit, 4))</pre>
```

```
cat("\nAcurácia do Modelo Probit:", round(corr.pred.probit, 4))
```

Acurácia do Modelo Probit: 0.7344

#### 2.6.1 Análise da Qualidade Preditiva

```
# Tabela de acurácia
accuracy_table <- data.frame(
   Modelo = c("Logit", "Probit"),
   `Acurácia (%)` = c(73.57, 73.44),
   `Observações Corretas` = c(554, 553),
   `Total de Observações` = c(753, 753)
)
kable(accuracy_table, digits = 2, caption = "Comparação da Acurácia Preditiva dos Modelos")</pre>
```

Tabela 4: Comparação da Acurácia Preditiva dos Modelos

| Modelo | Acurácia | Observações.Corretas | Total.de.Observações |
|--------|----------|----------------------|----------------------|
| Logit  | 73.57    | 554                  | 753                  |
| Probit | 73.44    | 553                  | 753                  |

Interpretação da acurácia: - Ambos os modelos apresentam acurácia similar ( $\sim 73,5\%$ ) - Classificam corretamente cerca de 554 de 753 observações - Performance superior ao acaso (que seria  $\sim 57\%$  para esta amostra balanceada)

```
# Distribuição das probabilidades preditas
pred_data <- data.frame(
  obs = 1:nrow(mroz),
  real = mroz$inlf,
  logit_prob = mlogit$fitted.values,
   probit_prob = mprobit$fitted.values
)

p1 <- ggplot(pred_data, aes(x = logit_prob, fill = factor(real))) +</pre>
```



Análise dos histogramas de probabilidades: - Ambos os modelos mostram boa separação entre os grupos - Mulheres que não trabalham concentram-se em probabilidades baixas (<0,4) - Mulheres que trabalham apresentam distribuição mais dispersa - Sobreposição indica casos de difícil classificação

#### 2.7 Pseudo-R<sup>2</sup>

O pseudo- $R^2$  (McFadden) calcula a razão entre a log-verossimilhança do modelo sem preditores e a log-verossimilhança do modelo completo:

$$pseudo\text{-}R^2 = 1 - \frac{\ln(L_{max})}{\ln(L_{max0})}$$

```
# Modelo nulo (apenas intercepto)
logit_null <- glm(inlf ~ 1, data = mroz, family = binomial(link = "logit"))
probit_null <- glm(inlf ~ 1, data = mroz, family = binomial(link = "probit"))

# Pseudo-R²
pseudo_r2_logit <- 1 - (logLik(mlogit) / logLik(logit_null))
pseudo_r2_probit <- 1 - (logLik(mprobit) / logLik(probit_null))

cat("Pseudo-R² Logit:", round(as.numeric(pseudo_r2_logit), 4))</pre>
```

Pseudo-R<sup>2</sup> Logit: 0.2197

```
cat("\nPseudo-R2 Probit:", round(as.numeric(pseudo_r2_probit), 4))
```

Pseudo-R<sup>2</sup> Probit: 0.2206

```
# Log-verossimilhança
cat("\n\nLog-verossimilhança:")
```

Log-verossimilhança:

```
cat("\nLogit:", round(as.numeric(logLik(mlogit)), 4))
```

Logit: -401.7652

```
cat("\nProbit:", round(as.numeric(logLik(mprobit)), 4))
```

Probit: -401.3022

#### 2.7.1 Interpretação do Pseudo-R<sup>2</sup>

```
# Tabela de ajuste dos modelos
fit_table <- data.frame(
    Modelo = c("Logit", "Probit"),
    `Pseudo-R² (McFadden)` = c(0.2204, 0.2206),
    `Log-verossimilhança` = c(-401.77, -401.30),
    AIC = c(819.53, 818.60),
    `Interpretação` = c("Ajuste moderado", "Ajuste moderado")
)
kable(fit_table, digits = 4, caption = "Medidas de Ajuste dos Modelos")</pre>
```

Tabela 5: Medidas de Ajuste dos Modelos

| Modelo          | ${\bf Pseudo.RMcFadden.}$ | Log.verossimilhança | AIC | Interpretação                      |
|-----------------|---------------------------|---------------------|-----|------------------------------------|
| Logit<br>Probit | 0.2204 $0.2206$           | -401.77<br>-401.30  |     | Ajuste moderado<br>Ajuste moderado |

Interpretação do ajuste: - Pseudo-R<sup>2</sup> 0,22: Indica que os modelos explicam cerca de 22% da variação na decisão de participar do mercado de trabalho - Valores considerados adequados para modelos de escolha binária (tipicamente entre 0,2-0,4) - Probit ligeiramente superior em termos de log-verossimilhança e AIC

#### 2.8 Razão de Chances (Odds Ratio)

```
Call:
logitor(formula = inlf ~ nwifeinc + educ + exper + expersq +
    age + kidslt6 + kidsge6, data = mroz)
Odds Ratio:
         OddsRatio Std. Err.
                                                 P>|z|
nwifeinc 0.9788810 0.0082435 -2.5346
                                              0.011256 *
         1.2475360 0.0541921 5.0915 0.000000355273436 ***
educ
         1.2285929 0.0393847 6.4220 0.00000000134459 ***
exper
expersq 0.9968509 0.0010129 -3.1041
                                              0.001909 **
         0.9157386 0.0133450 -6.0403 0.000000001538446 ***
age
kidslt6  0.2361344  0.0480729  -7.0898  0.00000000001343 ***
kidsge6 1.0619557 0.0794229 0.8038
                                              0.421539
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

#### 2.8.1 Interpretação da Razão de Chances

```
# Tabela de odds ratios com interpretação
or_interpretation <- data.frame(</pre>
 Variável = c("nwifeinc", "educ", "exper", "expersq", "age", "kidslt6", "kidsge6"),
  `Odds Ratio` = c(0.979, 1.248, 1.229, 0.997, 0.916, 0.236, 1.062),
  `IC 95% (inferior)` = c(0.963, 1.140, 1.153, 0.995, 0.890, 0.190, 0.908),
  Interpretação = c(
   "2,1% menor chance por US$ 1k",
   "24,8% maior chance por ano de educação",
   "22,9% maior chance por ano de experiência",
   "0,3% menor chance por ano<sup>2</sup> de experiência",
   "8,4% menor chance por ano de idade",
   "76,4% menor chance por filho < 6 anos",
   "6,2% maior chance (não significativo)"
 )
)
kable(or_interpretation, digits = 3, caption = "Interpretação das Razões de Chances (Odds Ra
```

Tabela 6: Interpretação das Razões de Chances (Odds Ratios)

| Variável | Odds.Ratio | IC.95inferior. | IC.95superior. | Interpretação                                         |
|----------|------------|----------------|----------------|-------------------------------------------------------|
| nwifeinc | 0.979      | 0.963          | 0.995          | 2,1% menor chance por US\$ 1k                         |
| educ     | 1.248      | 1.140          | 1.365          | 24,8% maior chance por ano de educação                |
| exper    | 1.229      | 1.153          | 1.309          | 22,9% maior chance por ano de experiência             |
| expersq  | 0.997      | 0.995          | 0.999          | 0,3% menor chance por ano <sup>2</sup> de experiência |
| age      | 0.916      | 0.890          | 0.943          | 8,4% menor chance por ano de idade                    |
| kidslt6  | 0.236      | 0.190          | 0.295          | 76,4% menor chance por filho $< 6$ anos               |
| kidsge6  | 1.062      | 0.908          | 1.243          | 6,2% maior chance (não significativo)                 |

Principais insights dos Odds Ratios: