Линейная алгебра

Илья Панов

31 июля 2025 г.

Содержание

1	Введение	2
2	Аналитическая геометрия	2
3	Векторные пространства и матрицы	7
4	Линейные операторы	11
5	Определители	15

1 Введение

Конспект в основном составлялся по лекциям Поступашек для подготовки к поступлению в ШАД и АІ Masters. Читать конспект в отрыве от лекций не особо имеет смысл, потому что в лекциях всё сильно подробнее и с рисунками, но в целом можете попробовать: интернет и нейросети творят чудеса. Записи лекций у вас есть (я их пронумеровал, смотрите по порядку), домашки есть в конце каждой секции (курс рекомендует выполнять хотя бы по 10 заданий из дз), учебники и сборники задач в репозитории.

2 Аналитическая геометрия

Сейчас мы начнём с повторения 10-11 класса школы, повыводим всякое для плоскости, потом заметим, что для пространства у нас особо ничего не меняется.

Теорема

Три вектора (a, b, c) на плоскости всегда линейно зависимы

Доказательство:

Можем просто составить систему уравнений, решить её по Гауссу (или как Вам угодно).

$$\begin{cases} x \cdot x_a + y \cdot x_b = x_c \\ x \cdot y_a + y \cdot y_b = y_c \end{cases}$$

Получим, что решения у нас есть, если вектора не коллинеарны (в конце получим $x_a \cdot y_b - x_b \cdot y_a$ в знаменателе, если это выражение равно 0, то это равносильно коллинеарности векторов а и b без ограничения общности). Если какие-то два коллинеарны (а третий не коллинеарен), то колинеарные вектора связаны каким-то коэффициентом k, а третий вектор можем взять с нулевым коэффициентом.

Определение

Метод Гаусса, также известный как метод исключения Гаусса, это алгоритм решения систем линейных алгебраических уравнений (СЛАУ) путем последовательного исключения переменных. В основе метода лежит преобразование системы уравнений к равносильной ступенчатой (треугольной) форме (то есть нолики у нас снизу выстраиваются), из которой затем последовательно находятся значения переменных.

Теорема

Угол между двумя векторами и равносильность определений скалярного произведения

Доказательство:

Если есть равносильность определений, то косинус угла выражается очевидно. Равносильность следует из теоремы косинусов: пусть хотим найти угол между векторами а и b, тогда проведем третий - с такой, что он соединяет концы двух других векторов. Пишем теорему косинусов для c, как раз получаем искомый угол и связь определений скалярного.

Теорема

Неравенство КБШ: произведение длин векторов не меньше, чем модуль их скалярного произведения: $|a|\cdot|b|\geq |(a,b)|$

Доказательство:

Рассмотрим $t \in \mathbb{R}$, теперь возьмем скалярное произведение (x-ty,x-ty), оно ≥ 0 по свойствам. По линейности раскрываем, получаем квадратный трёхчлен, который ≥ 0 , значит у него $D \geq 0$ - это в точности неравенство КБШ.

Теорема

Пусть даны два вектора а и b, отложенные от одной точки, тогда проекция вектора а на вектор b можно найти по формуле $a^{`}=\frac{(a,b)}{(b,b)}\cdot b$

Доказательство:

Что такое проекция, надеюсь, все представляют (просто уронили перпендикуляр). Длина проекция очевидным образом находится из прямоугольного треугольника $|a'| = |a| \cdot \cos \phi$

Теперь попробуем выразить сам вектор a, он лежит на b, тогда чтобы получить вектор проекции, мы хотим использовать направление вектора b (единичный вектор) и умножить получившийся вектор на длину проекции: a = $\frac{b}{|b|} \cdot |a$. Подставляем |a, |a, |a заменяем на $\frac{(a,b)}{|a|\cdot|b|}$, получили требуемое.

Теорема

Точка (x,y) принадлежит прямой l (прямая задана точкой (x_0,y_0) и направляющим вектором (α,β)) тогда и только тогда, когда $\frac{x-x_0}{\alpha}=\frac{y-y_0}{\beta}$. Это равенство мы будем называть каноническим уравнением прямой. В эту же теорему включим вывод других способов задать прямую

Доказательство:

Очев: если у нас точка (x,y) лежит на прямой, тогда у нас вектора $(x-x_0,y-y_0)$ и (α,β) колинеарны, тогда $\exists \ k \in \mathbb{R} \mid (x-x_0,y-y_0)=k \cdot (\alpha,\beta)$. Рассмотрев это равенство покоординатно, получим требуемое отношение. В обратную сторону аналогично, просто введём k, скажем про коллинеарность, дальше принадлежность точки прямой очевидна.

Из получившегося уравнения очевным образом получаем параметрическое уравнение прямой:

$$\begin{cases} x = x_0 + t \cdot \alpha \\ y = y_0 + t \cdot \beta \end{cases}$$

По сути заменили k на t. Далее получим общее уравнение прямой Ax+By+C=0. Просто возьмём каноническое и крест-накрест перемножим. Получим $\beta x-\alpha y-x_o\beta+y_o\alpha=0$. Дальше мы просто занимаемся переобозначением.

Замечание

Также заметим, что вектор с координатами (A, B) (читать как $(\beta, -\alpha)$) - это нормаль-вектор-нашей прямой. Проверяется через скалярное произведение (помним, что (α, β) - это направляющий вектор нашей прямой).

Теорема

Прямая l:Ax+By+C=0 разбивает плоскость на 2 полуплоскости. Если мы возьмём какие-то 2 точки I_1,I_2 из разных полуплоскостей, тогда $l(I_1)\cdot l(I_2)<0$

Доказательство:

Зафиксируем точку $(x_0, y_0) \in l$. Теперь рассмотрим скалярное произведение нормаль-вектора и $(x_1 - x_0, y_1 - y_0)$ (если считать, что у точки I_1 координаты (x_1, y_1)). Аналогично для второй точки I_2 . Тогда одно скалярное произведение будет > 0, а другое < 0 в силу свойства скалярного (если точнее, то просто пользуемся, что косинус тупого угла отрицательный).

Например, подробнее для точки I_1 из верхней полуплоскости (БОО): $A(x_1-x_0)+B(y_1-y_0)>0$, раскроем скобки, обозначим $C=-Ax_0-By_0$. Потом мы всё это перемножим с выражением для второй точки: $Ax_2+Bx_2+C<0$. Получим то, что и хотели: $l(I_1)\cdot l(I_2)<0$.

Теорема

Формула расстояния от точки (x_0,y_0) до прямой l:Ax+By+C=0 - это $d(x_0,y_0)=\frac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}}$

Доказательство:

Рассмотрим точку $(x,y) \in l$. Теперь построим вектор (x_0-x,y_0-y) , спроецируем его на нормаль вектор (точнее мы хотим посмотреть на длину проекции): $|(A,B)| \cdot |\frac{A(x_0-x)+B(y_0-y)}{A^2+B^2}|$. |(A,B)| - это внезапно $\sqrt{A^2+B^2}$. Сокращаем, вводим обозначение С, получаем требуемое.

Замечание

Обсудим взаимное расположение прямых: совпадают, параллельны или пересекаются. В терминах коэффициентов это соответственно $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}, \frac{A_1}{A_2} = \frac{B_1}{B_2}$ или никакое из предыдущих равенств не выполняется.

В терминах матриц совпадение это:

$$rk \begin{pmatrix} A_1 & B_1 \\ A_2 & B_2 \end{pmatrix} = 1$$

$$rk\begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix} = 1$$

Аналогично для параллельности у нас ранг большой матрицы будет 2, а в случае пересечения у нас ранг и маленькой, и большой матрицы будет 2.

Определение

Ранг матрицы (rk) - это максимальный порядок минора матрицы, отличный от-нуля. Иными-словами, это число, равное максимальному количеству линейно независимых строк (или столбцов) в матрице. Ранг матрицы показывает размерность подпространства, натянутого на строки (или столбцы) матрицы.

Теорема

Площадь параллелограмма, построенного на векторах (a,c) и (b,d) - это определитель:

 $\begin{vmatrix} a & c \\ b & d \end{vmatrix}$

Доказательство:

 $S = |a| \cdot |b| \cdot \sin \phi$. Меняем синус на косинус по ОТТ, заносим всё под корень, раскрываем скобки, там у нас получается полный квадрат: $\sqrt{(ad-bc)^2}$, а это в точности определитель.

Замечание

Из такого геометрического смысла определителя становятся очевидны всякие свойства про линейность по строке, иммутабельность при транспонировании.

Такую же формулу, кстати, можно вывести для \mathbb{R}^3 , но это будет просто более глиномесно:

$$V = \begin{vmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Вот теперь мы плавно перешли к пространствам. Будем волшебным образом перетаскивать формулы из плоскости, натягивать их на пространство, также будем что-то новое вводить.

Замечание

Каноническое уравнение прямой в \mathbb{R}^3 - это $\frac{x-x_0}{\alpha} = \frac{y-y_0}{\beta} = \frac{z-z_0}{\gamma}$.

Уравнение плоскости можно построить по трём точкам, зафиксируем первую

точку, от неё проведём 2 вектора к двум оставшимся, теперь возьмём какую-то точку (x,y,z), вектор от первой точки к новой должен быть ЛНЗ. Получили 3 вектора, которые образовали плоскость. Объём, натянутый на эти 3 вектора, равен 0, тогда мы просто пишем объём через определитель, раскрываем, получаем: Ax + By + Cz + D = 0.

Давайте до кучи напишем параметрическое уравнение плоскости:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \lambda \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} + \mu \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

где и и v - базисные векторы плоскости, а (x_0, y_0, z_0) - какая-то начальная точка.

Теорема

Формула перехода к новому базису.

Доказательство:

Рассмотрим вектор (x,y) в базисе $\{e_1,e_2\}$. Тогда наш вектор $a=xe_1+ye_2$, а в другом базисе наш вектор - это $a=x^{'}e_1^{'}+y^{'}e_2^{'}$. Хотим узнать $(x_1^{'},y_2^{'})$. $e_1^{'}=a_{11}e_1+a_{21}e_2$ и $e_2^{'}=a_{12}e_1+a_{22}e_2$. Подставим и преобразуем, потом воспользуемся единственностью представления вектора в данном базисе, тогда $x=x^{'}a_{11}+y^{'}a_{12}$, аналогично для у.

Замечание

Вопрос исследования взаимного расположения прямой и плоскости, плоскости и плоскости довольно тривиальный, просто пользуемся параметрическим уравнением плоскости и прямой, а дальше очев: сводим задачу к исследованию расположения направляющего вектора прямой и нормаль-вектора плоскости и тд и тп, просто системы уравнений.

Определение

Угол между прямой и плоскостью - это угол между прямой и проекцией прямой на данную плоскость.

Теорема

Формула расстояния от точки (x_0,y_0,z_0) до плоскости $\alpha:Ax+By+Cz+D=0$ - это $d(x_0,y_0,z_0)=\frac{|Ax_0+By_0+Cz_0+D)|}{\sqrt{A^2+B^2+C^2}}$

Доказательство:

Выводится также, как и для двумерного случая.

Замечание

Расстояние между плоскостями или прямыми, или прямыми и плоскостями - это длина общего перпендикуляра. Задача сводится к расстоянию от точки до плоскости/прямой.

Домашнее задание

Из Смирнова (smirnov.pdf) решайте все задачи из 3.1-3.4, 4.1-4.4 и 474-482. Не обяз решать всё, решайте пока не почувствуете, что прониклись. Задачи халява, все идеи есть в лекциях.

3 Векторные пространства и матрицы

Определение

Пусть у нас есть векторное пространство размерности n, тогда набор векторов $\{e_1,\ldots,e_n\}$ будет называться **базисом** этого пространства, если они все линейно независимы: $\sum \lambda_i \cdot e_i = 0 \Rightarrow \lambda_i = 0$.

Теорема

У любого конечномерного векторного пространства сущестувет базис.

Доказательство:

Просто предъявляем алгоритм. Возьмём $e_1=v_1\neq 0$, потом возьмём $e_2=v_2\in V$ такой, что $\lambda_1\cdot e_1+\lambda_2\cdot e_2=0\Rightarrow \lambda_1=0, \lambda_2=0.$ Если такой не нашёлся, тогда у нас базис из 1 вектора, имеем просто одномернопространство. Потом возьмём $e_3=v_3\in V$... и тд.

Замечание

Система векторов обладает единственным базисом только в случае 0-мерного пространства.

Определение

Векторное пространство W представимо в виде **прямой суммы** пространств U и V, если $\exists w \in W \exists u \in U \& \exists v \in V \mid w = u + v$. Очень важно, что U и V пересекаются только по нулевому вектору.

Теорема

- а) Размерность подпространства не превосходит размерности пространства.
- б) W векторное пространство, U его подпространство, тогда $\exists V$ такое, что W = U + V.

Доказательство:

 ${\bf a})$ очевидно, пытливый читатеть может самостоятельно привести доказательство этого пункта.

б) Выбираем базис в U, потом дополняем его до всего базиса W, тогда $\forall w \in W \ w = \sum_{i=1}^k w_i \cdot e_i + \sum_{i=k+1}^n w_i \cdot e_i$, где k = dimU, n = dimV. Тогда первая сумма у нас лежит в U, а вот то, что осталось мы определим как V, тогда базис нового пространства - это просто те, вектора, которыми мы дополнили базис U до базиса W.

Замечание

Если V - в.п. (dimV=n) над полем из q элементов, тогда всего векторов у нас q^n (потому что $v=\sum q_i\cdot v_i$), а способов выбрать базис - $(q^n-1)(q^n-q)\dots(q^n-q^{n-1})$ (первым берём любой **ненулевой** вектор, потом берем вектор, который ЛНЗ с первым, то есть $e_2 \neq \lambda_1 \cdot e_1$, на место лямбды q вариантов и тд).

Теорема

Ранг матрицы A|B (это приписывание матрицы B справа от матрицы A) не превосходит-суммы рангов матриц A и B.

Доказательство:

A|B=A|0+0|B, тогда $rk(A|B)=rk((A|0)+(0|B))\leq rk(A|0)+rk(0|B)=rk(A)+rk(B).$

Теорема

Всякую матрицу ранга г можно представить в виде суммы г матриц ранга 1, но нельзя представить в виде суммы меньшего числа таких матриц.

Доказательство:

 $rkA = r, A = \sum A_i$. Без ограничения общности будем считать, что у нас ЛНЗ первые г строчек матрицы:

$$\begin{pmatrix} A_1 \\ A_2 \\ \dots \\ A_r \\ A_{r+1} \\ \dots \\ A_n \end{pmatrix} = \begin{pmatrix} A_1 \\ 0 \\ \dots \\ 0 \\ \lambda_1^{r+1} A_1 \\ \lambda_1^{r+2} A_1 \\ \dots \end{pmatrix} + \begin{pmatrix} 0 \\ A_2 \\ \dots \\ 0 \\ \lambda_2^{r+1} A_2 \\ \lambda_2^{r+2} A_2 \\ \dots \end{pmatrix} + \dots$$

 $rkA = rk(\sum A_k) \leq \sum rk(A_k) = k,$ если
 к < r, тогда rkA < r - противоречие.

Теорема

$$A^{T}A = AA^{T} \Rightarrow (A^{-1})^{T} = A^{-1}.$$

Доказательство:

 $A^{-1}A=E$, транспонируем $(A^{-1}A)^T=E^T\Leftrightarrow A^T(A^{-1})^T=E^T$, домножим слева на A^{-1} , получим $(A^{-1})^T=A^{-1}$

Далее в лекции разобраны несколько опорных задач, связанных с коммутативно-

стью и обратимостью матрицы. Доказательства как правило проводились через **след матрицы**, потому что работать с числами куда приятнее и понятнее, чем с матрицами. Не считаю нужным конспетировать эти задачи. Может быть кто-то захочет продолжить моё дело и откроет пул реквест.

Определение

 \mathbf{C} ледом квадратной матрицы \mathbf{A} $(\dim \mathbf{A} = \mathbf{n})$ мы будем называть $tr(A) = \sum_{i=1}^n a_{ii}.$

След становится удобным инструментом в доказательстве теорем про матрицы благодаря ряду свойств:

- 1. $tr(\alpha A + \beta B) = \alpha \cdot tr(A) + \beta \cdot tr(B)$
- 2. $tr(C^{-1}AC) = tr(A)$, в частности tr(AB) = tr(BA)
- 3. $tr(A) = tr(A^T)$
- 4. След матрицы равен сумме её собственных значений.

Замечание

Строковый и столбцовый ранг совпадают.

Определение

Симметрические матрицы: $A = A^T$, кососимметрические матрицы: $A^T = -A$. Также заметим, что в последнем случае у нас обязательно на диагонали должны быть нули, т.к. $a_{ii} = -a_{ii} \Leftrightarrow a_{ii} = 0$, а остальные элементы $a_{ij} = -a_{ji}$.

Замечание

Рассмотрми пространства симметрических матриц (U) и кососимметрических матриц (V). Размерность первого пространства - это $\frac{n^2+n}{2}$ (потому что такая матрицы задаётся с помощью п чисел на диагонали + количество чисел над диагональю, для этого нужно из всех чисел матрицы вычесть диагональ и поделить пополам - $\frac{n^2-n}{2}$. Размерность второго пространства тогда - это $\frac{n^2-n}{2}$ (раз на диагонали только нули).

Теперь сложим эти размерности $\frac{n^2+n}{2}+\frac{n^2-n}{2}=\frac{2n^2}{2}=n^2$. Получили размерность всего пространства квадратных матриц $M_n(\mathbb{R})$. Также заметим, что пространства симметрических и кососимметрических матриц пересекаются только по нулевой матрице (то есть A=-A). Тогда $A\in M_n(\mathbb{R}) \Rightarrow \exists U,V\ A=U\oplus V$ причём U - симметрическая матрица, а V - кососимметрическая матрица.

Теорема

$$rk(A+B) \le rk(A) + rk(B)$$

Доказательство:

Идейно: $rk(A+B) = rk(A) + rk(B) - rk(A\cap B) \le rk(A) + rk(B)$

Замечание

$$tr(AB) = tr(BA)$$
, но $rk(AB) \neq rk(BA)$

Определение

 $\mathbb{R}_n[x]$ - пространство многочленов, базисом которого может быть, например, $\{1, x, x^2, \dots, x^n\}$.

Скалярное произведение двух функций f и g - это $(f,g) = \int_a^b f(x)g(x)dx$.

Замечание

А скалярное произведение матриц - это tr их произведения. Можете прогнать по свойствам скалярного произведения и убедиться в этом.

Теорема

Рассмотрим набор векторов $\{e_1, e_2, \dots, e_n\}$ со следующим свойством:

$$\begin{cases} (e_i, e_i) = 1\\ (e_i, e_j) = 0 \end{cases}$$

Докажем, что этот набор векторов является базисом.

Доказательство:

Проверим ЛНЗ. Хотим $\sum \lambda_i e_i = 0 \Rightarrow \forall i \ \lambda_i = 0$. Рассмотрим скалярное произведение $\forall i \ (e_i, \sum \lambda_i e_i) = 0$, раскроем по свойству линейности, получим что-то такое: $\sum \lambda_i (e_i, e_i) = \lambda_i (e_i, e_i) = 0 \Rightarrow \lambda_i = 0$.

Определение

Набор векторов из теоремы выше называется ортонормированным базисом.

Определение

$$W^{\perp} := \{ w^{\perp} \in W^{\perp} \mid \forall w \in W \ (w^{\perp}, w) = 0 \}$$

Замечание

 $V=W\oplus W^{\perp}$. Очевидно, что W и W^{\perp} пересекаются только по нулю, если бы мы нашли-какой-то- $x\in W,W^{\perp}$, то получили бы что-то в духе (x,x)=0, а отсюда по свойству скалярного произведения получаем, что x=0.

Теорема

Метод Грама—**Шмидта**: Любой базис $\{e_1, ..., e_n\}$ евклидова пространства можно преобразовать в ортонормированный базис $\{f_1, ..., f_n\}$ следующим образом:

$$u_{1} = e_{1},$$

$$u_{2} = e_{2} - \frac{(e_{2}, u_{1})}{(u_{1}, u_{1})} u_{1},$$

$$u_{3} = e_{3} - \frac{(e_{3}, u_{1})}{(u_{1}, u_{1})} u_{1} - \frac{(e_{3}, u_{2})}{(u_{2}, u_{2})} u_{2},$$

$$\vdots$$

$$f_{i} = \frac{u_{i}}{\|u_{i}\|}.$$

Теорема

Пусть A - матрица размера $n \times n$. Если для любой матрицы X размера $n \times n$ справедливо равенство tr(AX) = 0, то A = 0.

Доказательство:

Попробуем $X = A^T$. $tr(AA^T) = \sum a_{ij}^2 = 0 \Rightarrow \forall i,j \ a_{ij} = 0$. Либо можно сказать, что у нас tr(AX) - это скалярное произведение на пространстве матриц, причём у нас $\forall X \ tr(AX) = 0$, то есть A перпендикулярно любому вектору, а это возможно в том случае, если A - это нулевой вектор.

Домашнее задание

Домашка есть в 2-vector-spaces-102.pdf

4 Линейные операторы

Определение

Отображение $f:V\to V$ мы будем называть **линейным**, если оно удовлетворяет следующим–свойствам:

- 1. f(u+v) = f(u) + f(v)
- 2. $f(\lambda v) = \lambda f(v)$

Замечание

Если отображение задаётся матрицей, то оно линейно.

Стобцы в матрице линейного отображения - это образы базисных векторов.

Определение

Движением мы будем называть отображение $f: \mathbb{R}^2 \to \mathbb{R}^2$, которое сохраняет расстояние между образами: d(x,y) = d(f(x),f(y)).

Теорема

Движение - это биекция и у него всегда есть обратное отображение-движение.

Доказательство:

Пусть у нас есть две точки x_1, x_2 (различные), они не могут перейти в какую-то одну точку $f(x_1) = f(x_2)$, иначе у нас нарушится свойство движения: $d(x_1, x_2) \neq d(f(x_1), f(x_2)) = 0$.

Теорема

Движение сохраняет углы.

Доказательство:

Рассмотрим треугольник. Он перейдёт в какой-то другой треугольник, причём равный изначальному по трём сторонам. Раз треугольники равны, то равны и углы.

Теорема

Теорема Шаля: Идейно - всякое движение есть поворот, симметрия или композиция симметрий и поворотов.

Доказательство:

Начнём с частного случая теоремы, разберем движения, которые сохраняют точку (0,0). Рассмотрим куда у нас перейдут базисные вектора (e_1,e_2) . По сути мы хотим получить матрицу:

$$(f(e_1) \quad f(e_2))$$

Пусть у нас угол между e_1 и $f(e_1)$ будет равен ϕ . Тогда:

$$f(e_1) \to \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix}$$

Аналогично для вектора e_2 . Заметим, что раз $e_1 \perp e_2$, то $f(e_1) \perp f(e_2)$, поэтому угол между $f(e_2)$ и e_2 также выражается через ϕ . С учётом ориентации получаем:

$$f(e_2) \to \begin{pmatrix} -\sin\phi\\ \cos\phi \end{pmatrix}$$

По итогу просто имеем матрицу поворота :)

$$\begin{pmatrix}
\cos\phi & -\sin\phi \\
\sin\phi & \cos\phi
\end{pmatrix}$$

НО! У нас ведь $f(e_2)$ мог "смотреть" в противоположную сторону, тогда матрица для $f(e_1)$ остаётся такой же, а вот вторая немного меняется, имеем внезапно матрицу симметрии:

$$\begin{pmatrix}
\cos\phi & \sin\phi \\
\sin\phi & -\cos\phi
\end{pmatrix}$$

12

Если какое-то отображение не сохраняет точку ноль, то нам ничто не мешает начать откладывать базисные вектора относительно f(0), таким образом, все движения, которые сохраняют 0 выражаются примерно так: $f(x) = Ax + \binom{x_0}{y_0}$, где $\binom{x_0}{y_0}$ - это координаты точки f(0).

Определение

Обратным отображением в терминах матриц мы будем называть такое отображение A^{-1} , что $A \circ A^{-1} = A^{-1} \circ A = E$.

Теорема

Матрица обратима, если ее определитель отличен от нуля.

Доказательство:

Можем переформулировать $\exists A^{-1} \Leftrightarrow \{f(e_1), f(e_2)\}$ — тоже базис. Тогда из этого следует, что у нас есть обратное отображение. Почему? См. доказательство про обратимость движения. Также берём различные вектора и и v, а потом внезапно получаем f(u) = f(v), тогда $u_1 f(e_1) + u_2 f(e_2) = v_1 f(e_1) + v_2 f(e_2) \Rightarrow (u_1 - v_1) f(e_1) + (u_2 - v_2) f(e_2) \Rightarrow u_1 - v_1 = u_2 - v_2 = 0$ - противоречие с различностью и и v. Стрелочка влево доказана.

Теперь в другую сторону. От противного, $f(e_1), f(e_2)$ не образуют базис. Тогда $\lambda_1 f(e_1) + \lambda_2 f(e_2) = 0$, причём коэффициенты не равны 0. По линейности такжем имеем $f(\lambda_1 e_1 + \lambda_2 e_2) = 0$, но f(0) = 0. То есть какие-то 2 различных вектора перешли в один. Противоречие.

Таким образом у нас есть обратная матрица тогда и только тогда, когда вектора $f(e_1), f(e_2)$ не коллинеарны, а это значит, что определитель не равен 0.

Замечание

У нас определитель равен 0 может быть, если он состоит из линейно зависимых векторов. Разберём на примере 2×2 :

$$\begin{vmatrix} a & c \\ b & d \end{vmatrix} = ad - cb = 0 \Rightarrow \frac{a}{b} = \frac{c}{d} = k$$

Получили условие коллинеарности. Этим свойством определителя мы и пользуемся в теореме выше.

Замечание

Алгоритм поиска обратной матриц довольно прост, если хотим найти A^{-1} , тогда рассмотрим матрицу A|E и с помощью элементарных преобразований пытаемся превратить нашу матрицу в E|X, тогда $X=A^{-1}$.

Замечание

$$(AB)^{-1} = B^{-1}A^{-1}$$

Теорема

$$det(AB) = detA \cdot detB$$

Доказательство:

С геометрической точки зрения определитель - это просто площадь параллелограмма, натянутого на базисные вектора. C = AB - это же просто композиция. Сначала В как-то растянул нашу площадь, потом А. Соответственно $detA \cdot detB$ - это то же самое, сначала мы растягиваемся в А раз, потом в В раз.

Замечание

Замена базиса линейного отображения. Пусть у нас есть $f:V\to W,\, x=C_1x^{`},y=C_2y^{`},\, y=A_fx$, где C_1,C_2 - матрицы замены координат, после подстановки получим $y^{`}=C_2^{-1}A_fC_1x^{`}.$

Определение

Пусть дано $f:V\to W$, тогда $Kerf=\{v\in V\mid f(v)=0\}$ называется **ядром** f, а $Imf=\{w\in W\mid \exists v\in V\ f(v)=w\}$ называется **образом** f.

Замечание

$$rk(A_f) = dim(Imf)$$

Полезное замечание, выводится оно из $dim(\langle f(e_1), f(e_2), \dots, f(e_n) \rangle)$ - линейная оболочка, состоящая из образов базисных векторов. Теперь получим ещё более интересные свойства:

- 1. $rkAB \leq rkA$ и $rkAB \leq rkB,$ в частности $rk(C^{-1}AC) = rkA$
- $2. rk(A+B) \le rkA + rkB$

Определение

Диагональной матрицей мы будем называть матрицы вида:

$$\begin{pmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ & & \dots & & \\ 0 & 0 & 0 & 0 & \lambda_n \end{pmatrix}$$

Определение

Хотим научиться преобразовывать нашу матрицу к диагональному виду. Помним, что столбцы у нас - это образы базисных векторов, тогда имеем:

14

$$\begin{cases} f(e_1) = \lambda_1 e_1 \\ f(e_2) = \lambda_2 e_2 \\ \dots \\ f(e_n) = \lambda_n e_n \end{cases}$$

В общем виде хотим научиться такие λ и v такие, что $Av = \lambda v$. Такие числа λ мы будем называть **собственными числами**, а вектора v - **собственными векторами**.

 $Av = \lambda v \Leftrightarrow Av = \lambda Ev \Leftrightarrow (A - \lambda E)v = 0$, также будем считать, что $v \neq 0$, иначе уж совсем неинтересно. Тогда у нас v принадлежит ядру, а значит матрица у нас вырожденная, то есть $det(A - \lambda E) = 0$.

Полученное уравнение мы будем называть **характеристическим многочленом**. Решаем его, получаем λ (возможно несколько), подставляем их в исходное, решаем уравнение на v. Теперь мы имеем и новый базис (матрица перехода по сути), и диагональный вид.

Замечание

Если существует ненулевой вектор v, такой что $(A-\lambda E)v=0$, то это означает, что у матрицы $A-\lambda E$) есть ненулевое решение однородной системы, то есть её ядро непусто, а раз у матрицы ненулевое ядро, то она не обратима, то есть вырождена.

Теорема

Теорема о ядре и образе: dimkerA + dimImA = dimA

Замечание

Матрица диагонализуема, если существует базис из собственных векторов.

5 Определители

Чтобы разобраться с темой определители, надо сначала познакомиться с перестановками, потом поймёте почему. Сейчас ВЫ НЕ ГОТОВЫ.

Определение

Перестановкой называется биективное отображение множества первых n натуральных чисел на себя. Формально:

Перестановкой степени n называется любая биекция:

$$\sigma \colon \{1, 2, \dots, n\} \to \{1, 2, \dots, n\}.$$

Множество всех перестановок степени n обозначается S_n и называется cummem-puчeckoй группой степени n.

Перестановки, на мой взгляд, - довольно непростая тема, потому что легко за-

путаться, поэтому давайте разберём примеры, поймём как это вообще всё работает: что и куда переходит.

Пример

Матричная запись перестановки и как мы можем сократить запись с помощью **циклических перестановок**

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = (1\ 3)(2\ 4)$$

Вот эта сокращённая запись означает **цикл**, (1 3) - это 1 перешла в 3, а 3 перешла в 1, цикл закончился, потом мы описываем второй цикл. Если элемент статичен (никуда не переходит), мы считаем, что он переходит в себя.

Пример

Умножение перестановок выполняется справа налево (как композиция функций).

$$\tau = (1\ 3\ 5)(2\ 4\ 6\ 7), \quad \sigma = (1\ 4\ 7)(2\ 3\ 5\ 6)$$

Вычисляем $\tau \circ \sigma$:

- 1. Для элемента 1: $\sigma(1) = 4$, $\tau(4) = 6 \Rightarrow 1 \to 6$
- 2. Для элемента 2: $\sigma(2) = 3$, $\tau(3) = 5 \Rightarrow 2 \to 5$
- 3. Для элемента 3: $\sigma(3) = 5, \, \tau(5) = 1 \Rightarrow 3 \to 1$
- 4. Для элемента 4: $\sigma(4) = 7$, $\tau(7) = 2 \Rightarrow 4 \rightarrow 2$
- 5. Для элемента 5: $\sigma(5) = 6$, $\tau(6) = 7 \Rightarrow 5 \to 7$
- 6. Для элемента 6: $\sigma(6) = 2$, $\tau(2) = 4 \Rightarrow 6 \to 4$
- 7. Для элемента 7: $\sigma(7) = 1$, $\tau(1) = 3 \Rightarrow 7 \rightarrow 3$

Результат:

$$\tau \circ \sigma = (1 \ 6 \ 4 \ 2 \ 5 \ 7 \ 3)$$

Определение

Транспозиция - это перестановка длины 2: $(i_1 i_2)$

Теорема

Любую перестановку можно представить как произведение транспозиций.

Определение

Знак перестановки можно задать так:

$$sgn(i_1 \ i_2) = -1$$

 $sgn(\tau \ \sigma) = sgn(\tau) \cdot sgn(\sigma)$

Замечание

Знак **цикла** - это число транспозиций, в которое он раскладывается. Имеется в виду $(-1)^k$, где k - число транспозиций.

Вот теперь, маслята, вы готовы к детерминанту.

Определение

Определитель (или детерминант) - это:

$$\frac{\det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ & \dots & \dots & \\ \overline{a_{n1}} & a_{n2} & \dots & a_{nn} \end{pmatrix} = \sum_{\sigma \in S_n} sgn(\sigma) a_{1p_1} a_{2p_2} \dots a_{np_n}$$

На всякий случай уточню, что $\sigma = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ p_1 & p_2 & p_3 & \dots & p_n \end{pmatrix}$

Страшно? Видимо не были готовы, давайте разберём пример, чтобы стало хоть немного потятнее, и эта формула выглядела осмысленнее. Возьмём матрицу 2×2 :

Пример

Заметьте, что первый индекс - это у нас строки, а второй индекс - это столбец, перестановки именно по столбцу! Запись a_{1p_1} означает, что 1 переходит в p_1 . e - это тождественная перестановка, которая оставляет всё на своих местах.

$$\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = sgn(e) \cdot a_{11}a_{22} + sgn(1\ 2) \cdot a_{12}a_{21}$$

 $\sigma \in S_2 = \{e, (1\ 2)\}$, потому что $n=2,\ S_1$ нет смысла рассматривать.

Теорема

Свойства определителя:

- 1. Определитель линеен по строкам
- $2. \det(A) = \det(A^T)$
- 3. Определитель кососимметричен
- 4. Если у нас есть линейно зависимые строки, то определитель равен нулю

Доказательство:

1.

$$\begin{vmatrix} A_1 + B_1 \\ A_2 \\ \dots \\ A_n \end{vmatrix} = \begin{vmatrix} A_1 \\ A_2 \\ \dots \\ A_n \end{vmatrix} + \begin{vmatrix} B_1 \\ A_2 \\ \dots \\ A_n \end{vmatrix}$$

Просто пользуемся дистрибутивностью: $\sum_{\sigma \in S_n} sgn(\sigma)(a_{1p_1} + b_{1p_1})a_{2p_2} \dots a_{np_n} = \sum_{\sigma \in S_n} sgn(\sigma)a_{1p_1}a_{2p_2} \dots a_{np_n} + \sum_{\sigma \in S_n} sgn(\sigma)b_{1p_1}a_{2p_2} \dots a_{np_n}$

Аналогично доказывается для домножения на скаляр λ . '

- 2. Пользуемся всё тем же определением, при A^T у нас просто a_{1p_1} превращается в a_{p_11} , но мы всё также получаем суммы по всем перестановкам. Нетрудно убедиться на примере, что мы получили действительно одно и то же.
- 3. Иными словами перестановка двух строк определителя приводит к смене знака. Лучше смотреть док-во в лекции, но на самом деле всё по определению.
- 4. Очевидно из линейности + кососимметричности: $f(A,\lambda A)=\lambda f(A,A)=-\lambda f(A,A)\Rightarrow f(A,A)=0$

Замечание

$$\begin{vmatrix} A & B \\ 0 & C \end{vmatrix} = detA \cdot detC$$

Потому что мы просто приводим A и C к треугольному виду как-то (мы точно знаем, что это возможно), а дальше просто берём произведение диагонали, а это и есть $detA \cdot detC$

$$\begin{vmatrix} A & B \\ & 0 \end{vmatrix} = (-1)^n \begin{vmatrix} B & A \\ 0 & C \end{vmatrix} = (-1)^n det B \cdot det C$$

По аналогии, $(-1)^n$ возникает, потому что мы переставляем столбцы, а у нас det кососимметричен

Теорема

$$\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}^2 \le (x_1^2 + y_1^2 + z_1^2)(x_2^2 + y_2^2 + z_2^2)(x_3^2 + y_3^2 + z_3^2)$$

Доказательство:

Доказывается геометрически, помним, что определитель - это по сути объём фигуры, натянутый на три вектора (вектора - это наши столбцы). Дальше просто оцениваем объём и возводим обе части неравенства в квадрат.

Определение

Алгебраическое дополнение $A_{ij} = (-1)^{i+j} M_{ij}$, где M_{ij} - это минор матрицы, полученный вычёркиванием і-й строки и j-го столбца.

Теорема

Разложение по строке (столбцу): $det A = \sum_{i=1}^{n} a_{ij} A_{ij}$

Доказательство:

См. лекция, там довольно тяжело. Начало примерно 1:10:00.

Теорема

$$A^{-1} = \frac{1}{\det A} A^{ad}$$
, где A^{ad} - матрица алгебраических дополнений.