Table of Contents

MATH2019 / G12ISC (2018-2019) Coursework 1	1
Question 2	1
Question 3	
Question 5	2
Question 6	3
Question 7	4
Question 9	5
Ouestion 10	6

MATH2019 / G12ISC (2018-2019) Coursework 1

NAME: LAN SHUI STUDENT ID: 4336432

clear all;
close all;
clc

Question 2

% The code produces a table containing n, pn and f(pn) during the bisection method.

```
format long
f=@(x)x.^3+4*x.^2-10;
[p_vec,fp_vec]=bisect(f,1,2,20);
n=[1:20]';
table(n,p_vec,fp_vec)
```

ans =

20×3 table

n	p_vec	fp_vec
	·	
1	1.5	2.375
2	1.25	-1.796875
3	1.375	0.162109375
4	1.3125	-0.848388671875
5	1.34375	-0.350982666015625
6	1.359375	-0.0964088439941406
7	1.3671875	0.032355785369873
8	1.36328125	-0.0321499705314636
9	1.365234375	7.20247626304626e-05
10	1.3642578125	-0.0160466907545924
11	1.36474609375	-0.0079892628127709
12	1.364990234375	-0.00395910152292345
13	1.3651123046875	-0.00194365901006677

```
14
      1.36517333984375
                           -0.000935847281880342
15
      1.36520385742188
                           -0.000431918799250752
16
      1.36521911621094
                           -0.000179948903227256
      1.36522674560547
                           -5.39625415285627e-05
17
                            9.03099274296437e-06
18
      1.36523056030273
19
       1.3652286529541
                           -2.24658038447956e-05
      1.36522960662842
                            -6.7174129139147e-06
20
```

% The code creates a figure ploting the error versus n during the bisection method.

```
p=1.365230013;
for i=1:20
    e=abs(p-p_vec(i));
    semilogy(i,e,'bo')
    hold on
end
```


Question 5

% The code produces a table containing n and pn during the fixed-point iteration.

```
clear all;
close all;
clc
format long
f=@(x)x.^3+4*x.^2-10;
q=@(x)x-1/12*f(x);
p_vec=fpiter(g,1,20);
n=[1:20]';
table(n,p_vec)
ans =
  20×2 table
    n
               p_vec
          1.41666666666667
     1
     2
          1.34408757716049
     3
           1.3728812557799
          1.36231272240944
     5
          1.36632151543739
          1.36481867753577
     7
          1.36538460952031
     8
          1.36517185112966
     9
          1.36525188693197
    10
          1.36522178609837
          1.36523310779837
    11
    12
          1.36522884955838
    13
          1.36523045115863
          1.36522984877099
    14
          1.36523007533908
    15
          1.36522999012308
    16
    17
          1.36523002217423
    18
          1.36523001011926
    19
          1.36523001465334
```

1.365230012948

Question 6

end

20

```
% The code creates a figure ploting the error versus n during the
fixed- point iteration.

p=1.365230013;
for i=1:20
    e=abs(p-p_vec(i));
    semilogy(i,e,'bo')
    hold on
```



```
% This code produces the pmax that for any p0 >= pmax, the fixed-point iteration won't converge.
```

```
% A general fixed-point method converges linearly if it converges. So
```

```
a=1.37;
```

 $\ ^{\circ}$ The experimental data $\{an\}$ being chosen is an arithmetic progression with

```
% a0=1.37, d=0.5 and n=10.
```

for i=1:10

```
p_vec=fpiter(g,a,20);
if abs(p-p_vec(20,1))>0.001
```

[%] criterion that can be taken to judge if the iteration converges is the

[%] difference between p and p20 after 20 iterations. If it's large, say large

 $[\]mbox{\ensuremath{\$}}$ than 0.001, the iteration doesn't converge.

[%] This experimental method isn't accurate enough as 0.001 and 20 don't
% have a very strong theoretical basis. The accuracy is also
influenced by

[%] the amount of data being chosen.

```
% This code produces a table containing n and pn during Newton's
method.
clear all;
close all;
clc
format long
f=@(x)x.^3+4*x.^2-10;
df = @(x)3*x.^2+8*x;
p_vec=newton(f,df,1,40,1e-10);
n=[1:size(p_vec,1)]';
table(n,p_vec)
% The code creates a figure ploting the error versus n during Newton's
method.
p=1.365230013;
for i=1:size(p_vec,1)
    e=abs(p-p_vec(i));
    semilogy(i,e,'bo')
    hold on
end
ans =
  5×2 table
              p_vec
         1.45454545454545
         1.36890040106952
    3
         1.36523660020212
    4
         1.36523001343537
    5
          1.3652300134141
```



```
% This part invesgates the convergence behaviour of Newton's method
 for values
% of p0 that approach 0 from above.
a=0.1;
% The experimental data {an} being chosen is an arithmetic progression
with
% a0=0.1, d=0.5 and n=10.
% The code produces figures ploting pn versus n during the iteration
for each p0.
for i=1:10
    p_vec=newton(f,df,a,40,1e-10);
    n=size(p_vec,1);
    subplot(2,5,i);
    for j=1:n
        semilogy(j,p_vec(j),'bo')
        hold on
    end
    a=a+0.5;
end
```

- % From the gragh, it can be figured out that the Newton's method converges
- % quite quickly for p0 near 0 from above.

Published with MATLAB® R2017a