Supplementary information Genetically similar temperate phages differentially affect the physiology of their shared host Jonelle T. Basso¹, Nana Y. D. Ankrah^{1‡}, Matthew J. Tuttle¹, Alex S. Grossman¹, Ruth-Anne Sandaa² and Alison Buchan^{1*} ¹University of Tennessee Knoxville, Department of Microbiology, 1311 Cumberland Avenue, 307 Ken and Blaire Mossman Bldg., Knoxville TN 37996, USA. ²University of Bergen, Department of Biological Sciences, PO 7803, N-5020, Bergen, Norway ‡ Current address: 5136 Comstock Hall, Cornell University, Ithaca, NY, 14853 * Corresponding author: University of Tennessee Knoxville, Department of Microbiology, 1311 Cumberland Avenue, 307 Ken and Blaire Mossman Bldg., Knoxville TN 37996, USA. Tel: 865-974-5234; Email: abuchan@utk.edu

Table S1. Oligonucleotides used in this study

Primer name	Primer sequence (5'-3')	Gene target	Purpose/experiment
alaS_577for	GGAGAGAGTGACGCATGGAT	alanine tRNA hydrolase	Host reference gene
alaS_719rev	CAGCTGTCGAGATGGACGTA	alanine tRNA hydrolase	Host reference gene
map_164for	TCACGCAGATGATCGAAGAC	methionine aminopeptidase	Host reference gene
map_334rev	CATCGACAATTACGGTGACG	methionine aminopeptidase	Host reference gene
rpoC_3196for	AAAAAGTCCGTCGTGGTGAC	RNA polymerase	Host reference gene
rpoC_3356rev	AACGGCATGTCTTCCATAGG	RNA polymerase	Host reference gene
2047LexA_for	ACTCGATCTGCTGGCCTTTA	lexA transcriptional regulator	Host SOS response
2047LexA_rev	TCGGGCAGTTTCACTACCTC	lexA transcriptional regulator	Host SOS response
2047RecA_for	CTGATTTCCCAGCCTGACAC	recombinase recA	Host SOS response
2047RecA_rev	AGCCTGTCAGCTTACGCATT	recombinase recA	Host SOS response
Pro PEPG_for	CTATGAAGGCATGGGCGATA	endolysin	φ-NYA Induction
Pro PEPG_rev	GGCGATCGATCCAACACT	endolysin	φ-NYA Induction
Pro Rad_for	TGGCCCTCTACGACAAAGAC	Rad52/22 dsDNA break repair	φ-NYA Induction
Pro Rad_rev	TCGTTTAGTTCGTGCTGCAT	Rad52/22 dsDNA break repair	φ-NYA Induction
Pro SSB_for	GCCTTGGAACGTCAATTCAT	ssDNA binding protein (ssb)	φ-NYA Induction
Pro SSB_rev	ACAACGCCAAGGACAAGAAC	ssDNA binding protein (ssb)	φ-NYA Induction
Pro rep_rev	CCGTGCCATTATTTGGCTAT	phage repressor	φ-NYA Induction
Pro rep_rev	GCTAATGTGCTGGGCCTTAG	phage repressor	φ-NYA Induction
			Phage lysogeny
int772_for	TGGGTCATTCTAACGCTGGT	integrase	establishment
			Phage lysogeny
int937_rev	ATTCCACAATCTCAAGCGCC	integrase	establishment
			φ-47A lysogeny
47AHTH_XRE_for	CAAAAGCTGACGCAGACTCA	phage repressor	establishment
			φ-47A lysogeny
47AHTH_XRE_rev	ATATCCCGCATCAGCTCAAC	phage repressor	establishment
47A PEPG_for	GTGTTTGCATAATCGGCAAG	endolysin	φ-47A replication
47A PEPG_rev	CGGATCTGGAAAACCAGCTT	endolysin	φ-47A replication
2047PP1_for	TATTCATAGCGAGGCGCAGT	endolysin	φ-NYA enumeration
2047PP1_rev	ATACCTGCCCAACGTCACAG	endolysin	φ-NYA enumeration
2047A-C_for	CCCATGTGTATGTCGCCTCT	endolysin	φ-47A enumeration
2047A-C_rev	CAGCGTTGAAAAAGGCTCTG	endolysin	φ-47A enumeration

			Phage Integration
jxn761U_for	GGCCAGCATAACCGTTTCC	histidine kinase	site identification
			Phage Integration site
int937_rev	ATTCCACAATCTCAAGCGCC	integrase	identification
			Phage Integration site
jxn1105D_rev	TGTCGCCAACACCTCTACC	HTH transcriptional regulator	identification
			Phage Integration site
jxn1105D_for	GGGAGGCATGAGCGTAGAA	hypothetical protein	identification

Table S2. Frequency (percentage) of φ-A PCR positive colonies from superinfection studies (MOI 0.06)

Time (h.p.i.)	Replicate 1	Replicate 2	Replicate 3	Average
4	0	5	20	8
8	15	10	30	18

Table S3. Comstat2 data analysis

	Biomass	Maximum thickness	Roughness coefficient	Thickness distribution	39
Organism name and Z stack field of view number	Biomass (μm^3/μm^2):	Maximum thickness (μm):	Roughness Coefficient (Ra*):	Average thickness (Entire area) (μm):	Average 40 thickness (Biomass) (μm);
Sulfitobacter sp. strain CB-A. Z stack					·-
field of view: 1	1.18876	5.4879	1.00278	2.46208	4.91842
Sulfitobacter sp. strain CB-A. Z stack field of view: 2	1.46763	6.1336	1.00804	2.03385	3.78813
Sulfitobacter sp. strain CB-A. Z stack field of view: 3	1.71986	5.4879	0.7344	3.01986	4.72083
Sulfitobacter sp. strain CB-A. Z stack field of view: 4	0.11164	13.2356	1.90794	0.32584	7.07645
Sulfitobacter sp. strain CB-D. Z stack field of view: 1	0.53438	3.5706	1.28152	0.63001	1.73872
Sulfitobacter sp. strain CB-D. Z stack	0.55 150	3.3700	1.20132	0.03001	1.75072
field of view: 2	0.32996	5.6534	1.73059	0.60152	4.44958
Sulfitobacter sp. strain CB-D. Z stack field of view: 3	0.53916	5.6534	1.36748	0.74707	2.34794
Sulfitobacter sp. strain CB-D. Z stack	0.55710	3.0334	1.30740	0.74707	2.54774
field of view: 4	0.22374	5.6534	1.73358	0.66207	4.95401
Sulfitobacter sp. strain CB-D. Z stack field of view: 5	2.31132	5.6534	0.22504	4.5969	4.82112
Sulfitobacter sp. strain CB-D. Z stack field of view: 6	0.34321	5.6534	1.56043	0.39356	1.78002
Sulfitobacter sp. strain CB-D. Z stack					
field of view: 7	0.14941	5.6534	1.85548	0.29573	4.09248
Sulfitobacter sp. strain CB-D. Z stack					
field of view: 8	0.32476	5.6534	1.68187	0.73548	4.58514
Sulfitobacter sp. strain CB-D. Z stack field of view: 9	0.31593	5.6534	1.62062	0.47826	2.51737

Table S4. Optical density (OD 540 nm) data for φ-A infected, φ-D infected, and uninfected, *Sulfitobacter* sp. CB-D cells as shown in Fig 2A

	Control					Φ-A Infected				Φ-D Infected					
Time p.i. (h)	Rep 1	Rep 2	Rep 3	Average	Std dev	Rep 1	Rep 2	Rep 3	Average	Std Dev	Rep 1	Rep 2	Rep 3	Average	Std dev
0	0.170	0.170	0.173	0.171	0.002	0.183	0.172	0.171	0.175	0.007	0.171	0.170	0.172	0.171	0.001
1	0.238	0.234	0.237	0.236	0.002	0.247	0.237	0.234	0.239	0.007	0.221	0.220	0.219	0.220	0.001
2	0.291	0.294	0.289	0.291	0.003	0.300	0.286	0.285	0.290	0.008	0.274	0.273	0.272	0.273	0.001
3	0.348	0.346	0.350	0.348	0.002	0.362	0.340	0.341	0.348	0.012	0.327	0.323	0.325	0.325	0.002
4	0.411	0.411	0.414	0.412	0.002	0.426	0.404	0.411	0.414	0.011	0.390	0.384	0.386	0.387	0.003
5	0.482	0.480	0.479	0.480	0.002	0.484	0.462	0.466	0.471	0.012	0.456	0.451	0.452	0.453	0.003
6	0.537	0.541	0.536	0.538	0.003	0.524	0.506	0.505	0.512	0.011	0.509	0.505	0.506	0.507	0.002
7	0.585	0.581	0.577	0.581	0.004	0.554	0.532	0.538	0.541	0.011	0.551	0.546	0.545	0.547	0.003
8	0.636	0.631	0.640	0.636	0.005	0.527	0.503	0.506	0.512	0.013	0.598	0.586	0.584	0.589	0.008
9	0.630	0.626	0.625	0.627	0.003	0.457	0.438	0.439	0.445	0.011	0.643	0.645	0.630	0.639	0.008
10	0.622	0.614	0.618	0.618	0.004	0.431	0.410	0.413	0.418	0.011	0.640	0.634	0.642	0.639	0.004
11	0.613	0.617	0.618	0.616	0.003	0.410	0.397	0.392	0.400	0.009	0.637	0.624	0.634	0.632	0.007
12	0.612	0.613	0.616	0.614	0.002	0.398	0.380	0.377	0.385	0.011	0.637	0.624	0.633	0.631	0.007
24	0.595	0.594	0.599	0.596	0.003	0.248	0.231	0.221	0.233	0.014	0.614	0.604	0.609	0.609	0.005

Table S5. Optical density (OD 540 nm) data for φ-A infected, φ-D infected, and uninfected, *Sulfitobacter* sp. CB-A cells as shown in Fig 2B

	Control					Φ-A Infected					Φ-D Infe	ected			
Time p.i. (h)	Rep 1	Rep 2	Rep 3	Uninfected controls	Stdv	Rep 1	Rep 2	Rep 3	Φ-A infected	Stdv	Rep 1	Rep 2	Rep 3	Φ-D infected	Stdv
0	0.151	0.153	0.175	0.16	0.013	0.154	0.153	0.156	0.154	0.002	0.154	0.155	0.157	0.155	0.002
1	0.213	0.214	0.244	0.224	0.018	0.214	0.215	0.216	0.215	0.001	0.192	0.186	0.189	0.189	0.003
2	0.263	0.262	0.292	0.272	0.017	0.263	0.269	0.268	0.267	0.003	0.226	0.224	0.223	0.224	0.002
3	0.323	0.319	0.349	0.33	0.016	0.319	0.323	0.326	0.323	0.004	0.254	0.254	0.256	0.255	0.001
4	0.385	0.381	0.415	0.394	0.019	0.38	0.382	0.386	0.383	0.003	0.247	0.243	0.249	0.246	0.003
5	0.452	0.45	0.48	0.461	0.017	0.447	0.439	0.452	0.446	0.007	0.245	0.245	0.241	0.244	0.002
6	0.502	0.497	0.536	0.512	0.021	0.494	0.499	0.502	0.498	0.004	0.251	0.256	0.248	0.252	0.004
7	0.547	0.535	0.577	0.553	0.022	0.54	0.54	0.543	0.541	0.002	0.247	0.267	0.242	0.252	0.013
8	0.604	0.594	0.642	0.613	0.025	0.601	0.595	0.602	0.599	0.004	0.243	0.271	0.255	0.256	0.014
9	0.609	0.597	0.637	0.614	0.021	0.598	0.596	0.612	0.602	0.009	0.261	0.279	0.258	0.266	0.011
10	0.592	0.589	0.63	0.604	0.023	0.586	0.594	0.597	0.592	0.006	0.235	0.264	0.247	0.249	0.015
11	0.59	0.586	0.62	0.599	0.019	0.581	0.591	0.596	0.589	0.008	0.255	0.246	0.234	0.245	0.011
12	0.586	0.582	0.625	0.598	0.024	0.582	0.585	0.595	0.587	0.007	0.242	0.243	0.253	0.246	0.006
24	0.579	0.562	0.605	0.582	0.022	0.562	0.591	0.566	0.573	0.016	0.258	0.292	0.285	0.278	0.018

Table S6. qPCR data (A phage primer set) for data shown in Fig 2C and D.

			Rep A		Rep B		Rep C	
		Time	average	Stdv	average	Stdv	average	Stdv
CB-D	A only	T0	2.54E+07	3.35E+06	1.76E+07	3.83E+06	1.36E+07	4.14E+06
		T6	6.27E+10	3.71E+09	1.26E+10	3.10E+09	2.21E+10	1.73E+09
		Т9	1.08E+12	9.20E+10	1.17E+11	2.14E+10	1.93E+11	7.07E+09
		T24	2.13E+12	2.88E+11	1.86E+11	1.31E+10	3.52E+11	5.09E+10
CB-A	A only	T0	1.92E+08	2.05E+07	1.32E+08	1.58E+07	7.09E+07	5.95E+06
		Т6	2.96E+08	4.53E+07	2.57E+08	5.41E+07	1.81E+08	2.49E+07
		Т9	1.63E+08	3.44E+07	7.47E+07	2.18E+07	8.14E+07	2.15E+07
		T24	1.61E+08	1.01E+07	9.69E+07	2.99E+07	4.40E+07	5.36E+06
CB-A	Control	T0	1.66E+08	1.37E+07	9.28E+07	2.65E+07	4.99E+07	1.82E+06
		T6	3.68E+08	1.91E+07	1.84E+08	1.88E+07	2.53E+08	1.52E+07
		Т9	1.06E+08	5.31E+06	9.38E+07	8.96E+06	5.15E+07	6.81E+06
		T24	9.62E+07	1.34E+07	5.69E+07	3.38E+06	2.97E+07	3.47E+06
CB-A	D only	T0	1.49E+08	3.80E+07	3.21E+07	5.07E+06	3.40E+07	4.79E+06
		Т6	1.36E+10	5.45E+08	7.78E+09	1.22E+09	4.61E+09	7.71E+07
		Т9	4.54E+10	3.83E+09	7.23E+09	1.67E+09	1.30E+10	2.12E+09
		T24	4.43E+10	2.46E+09	8.87E+09	2.02E+09	6.99E+09	1.51E+08

Table S7. qPCR data (D phage primer set) for data shown in Fig 2C and D.

			Rep A		Rep B		Rep C	
		time	average	Stdv	average	Stdv	average	Stdv
CB-D	A only	T0	1.74E+08	1.54E+07	5.97E+07	7.96E+06	1.31E+08	3.69E+07
		T6	1.97E+09	5.14E+08	1.21E+09	7.53E+07	1.65E+09	1.23E+08
		Т9	1.49E+10	2.71E+09	1.68E+10	6.32E+08	1.18E+10	3.23E+08
		T24	2.37E+10	2.76E+09	2.38E+10	3.59E+09	1.53E+10	8.55E+08
CB-D	Control	T0	2.40E+08	2.66E+07	6.59E+07	6.65E+06	1.18E+08	7.95E+06
		T6	4.91E+08	1.08E+08	1.10E+08	1.53E+07	2.91E+08	4.22E+07
		Т9	1.53E+08	3.11E+06	9.39E+07	1.26E+07	7.25E+07	7.97E+06
		T24	1.41E+08	1.42E+07	9.70E+07	6.63E+06	9.14E+07	6.05E+06
CB-D	D only	T0	1.22E+09	8.24E+07	3.26E+08	5.17E+07	4.65E+08	5.27E+07
		T6	1.52E+09	1.31E+08	4.25E+08	7.62E+07	5.85E+08	1.06E+08
		Т9	1.05E+09	2.23E+08	5.70E+08	5.71E+07	4.86E+08	5.23E+07
		T24	1.17E+09	7.96E+07	6.77E+08	1.03E+08	4.48E+08	9.67E+07
CB-A	D only	T0	5.78E+08	6.59E+07	1.53E+08	1.28E+07	2.85E+08	3.16E+07
		T6	1.88E+11	2.75E+10	7.36E+10	4.61E+09	7.52E+10	1.23E+09
		Т9	1.78E+11	4.15E+10	1.77E+11	1.63E+10	1.94E+11	2.46E+10
		T24	1.43E+11	3.55E+10	1.65E+11	1.43E+10	8.34E+10	6.09E+08

Table S8. RT qPCR data for Fig 3
phiA infected CB-D cultures

time			time			time		
point			point			point		
(-rep)	gene	C(t)	(-rep)	gene	C(t)	(-rep)	gene	C(t)
T0-1	1 map	23.03	T3-1	1 map	22.9	T6-1	1 map	27.83
T0-1	1 map	22.49	T3-1	1 map	22.5	T6-1	1 map	27.68
T0-1	1 map	22.33	T3-1	1 map	22.5	T6-1	1 map	27.5
T0-1	2 alaS	23.67	T3-1	2 alaS	23.3	T6-1	2 alaS	28.03
T0-1	2 alaS	23.49	T3-1	2 alaS	23.2	T6-1	2 alaS	27.8
T0-1	2 alaS	23.10	T3-1	2 alaS	22.9	T6-1	2 alaS	27.77
T0-1	3 rpoC	17.99	T3-1	3 rpoC	20.1	T6-1	3 rpoC	24.32
T0-1	3 rpoC	17.68	T3-1	3 rpoC	20	T6-1	3 rpoC	24.22
T0-1	3 rpoC	17.66	T3-1	3 rpoC	20.1	T6-1	3 rpoC	24.27
T0-1	4 RecA	21.80	T3-1	4 RecA	20.5	T6-1	4 RecA	25.36
T0-1	4 RecA	21.69	T3-1	4 RecA	20.1	T6-1	4 RecA	25.13
T0-1	4 RecA	21.54	T3-1	4 RecA	20	T6-1	4 RecA	25.09
T0-1	5 LexA	24.65	T3-1	5 LexA	22.1	T6-1	5 LexA	26.74
T0-1	5 LexA	24.05	T3-1	5 LexA	21.4	T6-1	5 LexA	26.45
T0-1	5 LexA	23.50	T3-1	5 LexA	21.3	T6-1	5 LexA	25.94
T0-1	6 47A-PEPG	26.03	T3-1	6 47A-PEPG	16.2	T6-1	6 47A-PEPG	19.98
T0-1	6 47A-PEPG	25.66	T3-1	6 47A-PEPG	15.6	T6-1	6 47A-PEPG	19.35
T0-1	6 47A-PEPG	25.16	T3-1	6 47A-PEPG	15.2	T6-1	6 47A-PEPG	18.93
T0-1	7 47A-XRE	25.75	T3-1	7 47A-XRE	19.2	T6-1	7 47A-XRE	23.47
T0-1	7 47A-XRE	25.03	T3-1	7 47A-XRE	18.5	T6-1	7 47A-XRE	22.94
T0-1	7 47A-XRE	25.32	T3-1	7 47A-XRE	19.1	T6-1	7 47A-XRE	23.37
T0-1	8 47A-EXO	23.69	T3-1	8 47A-EXO	16.5	T6-1	8 47A-EXO	20.94

T0-1	8 47A-EXO	22.69	T3-1	8 47A-EXO	15.9	T6-1	8 47A-EXO	20.34	
T0-1	8 47A-EXO	22.72	T3-1	8 47A-EXO	15.7	T6-1	8 47A-EXO	20.24	
T0-1	9 Pro PEPG	23.05	T3-1	9 Pro PEPG	19	T6-1	9 Pro PEPG	22.66	
T0-1	9 Pro PEPG	22.71	T3-1	9 Pro PEPG	18.6	T6-1	9 Pro PEPG	22.06	
T0-1	9 Pro PEPG	22.36	T3-1	9 Pro PEPG	18.1	T6-1	9 Pro PEPG	21.85	
T0-1	10 Pro Rad	25.41	T3-1	10 Pro Rad	19.8	T6-1	10 Pro Rad	23.75	
T0-1	10 Pro Rad	24.59	T3-1	10 Pro Rad	18.9	T6-1	10 Pro Rad	22.89	
T0-1	10 Pro Rad	24.83	T3-1	10 Pro Rad	19.1	T6-1	10 Pro Rad	23.14	
T0-1	11 Pro SSB	25.19	T3-1	11 Pro SSB	18.7	T6-1	11 Pro SSB	23.07	
T0-1	11 Pro SSB	24.72	T3-1	11 Pro SSB	18.3	T6-1	11 Pro SSB	22.51	
T0-1	11 Pro SSB	24.34	T3-1	11 Pro SSB	18.2	T6-1	11 Pro SSB	22.28	
T0-2	1 map	21.60	T3-2	1 map	21.9	T6-2	1 map	26.64	
T0-2	1 map	21.17	T3-2	1 map	21.7	T6-2	1 map	26.71	
T0-2	1 map	22.20	T3-2	1 map	22.3	T6-2	1 map	27.28	
T0-2	2 alaS	22.69	T3-2	2 alaS	22.8	T6-2	2 alaS	27.27	
T0-2	2 alaS	22.74	T3-2	2 alaS	22.9	T6-2	2 alaS	26.95	
T0-2	2 alaS	22.92	T3-2	2 alaS	23	T6-2	2 alaS	27.11	
T0-2	3 rpoC	17.13	T3-2	3 rpoC	19.7	T6-2	3 rpoC	23.38	
T0-2	3 rpoC	16.78	T3-2	3 rpoC	19.4	T6-2	3 rpoC	22.92	
T0-2	3 rpoC	16.97	T3-2	3 rpoC	19.7	T6-2	3 rpoC	23.37	
T0-2	4 RecA	21.00	T3-2	4 RecA	19.9	T6-2	4 RecA	24.22	
T0-2	4 RecA	20.72	T3-2	4 RecA	19.6	T6-2	4 RecA	24.21	
T0-2	4 RecA	21.20	T3-2	4 RecA	20.1	T6-2	4 RecA	24.6	
T0-2	5 LexA	23.47	T3-2	5 LexA	21.1	T6-2	5 LexA	25.33	
T0-2	5 LexA	23.81	T3-2	5 LexA	21.4	T6-2	5 LexA	25.71	
T0-2	5 LexA	23.48	T3-2	5 LexA	21.4	T6-2	5 LexA	25.13	
T0-2	6 47A-PEPG	26.06	T3-2	6 47A-PEPG	15	T6-2	6 47A-PEPG	18.39	
T0-2	6 47A-PEPG	25.86	T3-2	6 47A-PEPG	15	T6-2	6 47A-PEPG	18.35	
T0-2	6 47A-PEPG	26.05	T3-2	6 47A-PEPG	15	T6-2	6 47A-PEPG	18.22	
T0-2	7 47A-XRE	24.01	T3-2	7 47A-XRE	18.7	T6-2	7 47A-XRE	22.8	
T0-2	7 47A-XRE	24.24	T3-2	7 47A-XRE	18.9	T6-2	7 47A-XRE	22.85	

T0-2	7 47A-XRE	24.48	T3-2	7 47A-XRE	19.2	T6-2	7 47A-XRE	23.05
T0-2	8 47A-EXO	22.53	T3-2	8 47A-EXO	15.5	T6-2	8 47A-EXO	19.46
T0-2	8 47A-EXO	22.45	T3-2	8 47A-EXO	15.3	T6-2	8 47A-EXO	19.39
T0-2	8 47A-EXO	22.67	T3-2	8 47A-EXO	15.5	T6-2	8 47A-EXO	19.54
T0-2	9 Pro PEPG	22.82	T3-2	9 Pro PEPG	18.7	T6-2	9 Pro PEPG	21.75
T0-2	9 Pro PEPG	22.95	T3-2	9 Pro PEPG	18.9	T6-2	9 Pro PEPG	21.97
T0-2	9 Pro PEPG	22.95	T3-2	9 Pro PEPG	18.7	T6-2	9 Pro PEPG	21.82
T0-2	10 Pro Rad	24.85	T3-2	10 Pro Rad	18.7	T6-2	10 Pro Rad	22.79
T0-2	10 Pro Rad	24.09	T3-2	10 Pro Rad	18.5	T6-2	10 Pro Rad	21.92
T0-2	10 Pro Rad	24.95	T3-2	10 Pro Rad	19.2	T6-2	10 Pro Rad	22.68
T0-2	11 Pro SSB	24.79	T3-2	11 Pro SSB	18.6	T6-2	11 Pro SSB	22.18
T0-2	11 Pro SSB	24.56	T3-2	11 Pro SSB	18.2	T6-2	11 Pro SSB	21.86
T0-2	11 Pro SSB	24.68	T3-2	11 Pro SSB	18.5	T6-2	11 Pro SSB	22.08
T0-3	1 map	22.82	T3-3	1 map	23	T6-3	1 map	27.52
T0-3	1 map	23.34	T3-3	1 map	23.3	T6-3	1 map	27.9
T0-3	1map	23.08	T3-3	1 map	23.14	T6-3	1 map	27.71
T0-3	2 alaS	23.35	T3-3	2 alaS	23.2	T6-3	2 alaS	27.93
T0-3	2 alaS	23.74	T3-3	2 alaS	23.8	T6-3	2 alaS	27.72
T0-3	2 alaS	23.55	T3-3	2 alaS	23.52	T6-3	2 alaS	27.83
T0-3	3 rpoC	17.89	T3-3	3 rpoC	20.5	T6-3	3 rpoC	23.9
T0-3	3 rpoC	18.05	T3-3	3 rpoC	20.7	T6-3	3 rpoC	24.1
T0-3	3 rpoC	17.97	T3-3	3 rpoC	20.59	T6-3	3 rpoC	24.00
T0-3	4 RecA	23.08	T3-3	4 RecA	21.4	T6-3	4 RecA	25.4
T0-3	4 RecA	21.23	T3-3	4 RecA	20.2	T6-3	4 RecA	24.52
T0-3	4 RecA	22.03	T3-3	4 RecA	21.3	T6-3	4 RecA	25.13
T0-3	5 LexA	24.90	T3-3	5 LexA	21.9	T6-3	5 LexA	25.99
T0-3	5 LexA	23.99	T3-3	5 LexA	21.4	T6-3	5 LexA	25.61
T0-3	5 LexA	24.83	T3-3	5 LexA	21.8	T6-3	5 LexA	26.82
T0-3	6 47A-PEPG	27.53	T3-3	6 47A-PEPG	16.1	T6-3	6 47A-PEPG	18.77
T0-3	6 47A-PEPG	27.04	T3-3	6 47A-PEPG	15.6	T6-3	6 47A-PEPG	18.63
T0-3	6 47A-PEPG	27.62	T3-3	6 47A-PEPG	16.2	T6-3	6 47A-PEPG	19.05

T0-3	7 47A-XRE	23.70	T3-3	7 47A-XRE	18.2	T6-3	7 47A-XRE	22.08	
T0-3	7 47A-XRE	24.90	T3-3	7 47A-XRE	19.4	T6-3	7 47A-XRE	23.49	
T0-3	7 47A-XRE	25.38	T3-3	7 47A-XRE	19.9	T6-3	7 47A-XRE	23.62	
T0-3	8 47A-EXO	23.37	T3-3	8 47A-EXO	15.8	T6-3	8 47A-EXO	19.7	
T0-3	8 47A-EXO	23.36	T3-3	8 47A-EXO	16	T6-3	8 47A-EXO	19.89	
T0-3	8 47A-EXO	24.51	T3-3	8 47A-EXO	17.2	T6-3	8 47A-EXO	20.77	
T0-3	9 Pro PEPG	23.47	T3-3	9 Pro PEPG	19	T6-3	9 Pro PEPG	22.11	
T0-3	9 Pro PEPG	23.76	T3-3	9 Pro PEPG	19.5	T6-3	9 Pro PEPG	22.29	
T0-3	9 Pro PEPG	23.23	T3-3	9 Pro PEPG	18.8	T6-3	9 Pro PEPG	21.78	
T0-3	10 Pro Rad	25.61	T3-3	10 Pro Rad	19.5	T6-3	10 Pro Rad	22.92	
T0-3	10 Pro Rad	26.16	T3-3	10 Pro Rad	20.1	T6-3	10 Pro Rad	23.54	
T0-3	10 Pro Rad	26.11	T3-3	10 Pro Rad	20.2	T6-3	10 Pro Rad	23.37	
T0-3	11 Pro SSB	25.10	T3-3	11 Pro SSB	18.8	T6-3	11 Pro SSB	22.3	
T0-3	11 Pro SSB	26.09	T3-3	11 Pro SSB	19.5	T6-3	11 Pro SSB	23.17	
T0-3	11 Pro SSB	26.30	T3-3	11 Pro SSB	19.8	T6-3	11 Pro SSB	23.57	
	Non-infected contro	ols							
time			time			time			
point	gana	C(+)	point	70no	C(+)	point	gono	C(+)	
(-rep)	gene	C(t)	(-rep)	gene	C(t)	(-rep)	gene	C(t)	_
T0-1	1 map	26.34	T3-1	1 map	25.10	T6-1	1 map	25.25	
T0-1	1 map	26.09	T3-1	1 map	24.98	T6-1	1 map	25.05	
T0-1	1 map	26.03	T3-1	1 map	24.80	T6-1	1 map	24.95	
T0-1	2 alaS	26.34	T3-1	2 alaS	26.23	T6-1	2 alaS	25.05	
T0-1	2 alaS	25.72	T3-1	2 alaS	26.19	T6-1	2 alaS	24.58	
T0-1	2 alaS	25.52	T3-1	2 alaS	26.19	T6-1	2 alaS	24.46	
T0-1	3 rpoC	21.50	T3-1	3 rpoC	21.79	T6-1	3 rpoC	20.31	
T0-1	3 rpoC	21.17	T3-1	3 rpoC	21.59	T6-1	3 rpoC	20.10	
T0-1	3 rpoC 4 RecA	21.34 25.32	T3-1	3 rpoC	21.69 23.38	T6-1 T6-1	3 rpoC	20.08 23.55	
T0-1	4 ΚΡΓΔ	75 37	T3-1	4 RecA	73.38	ı Ib-T	4 RecA	74 55	
T0-1	4 RecA	24.78	T3-1	4 RecA	23.19	T6-1	4 RecA	22.96	

T0-1	4 RecA	24.83	T3-1	4 RecA	23.23	T6-1	4 RecA	23.20
T0-1	5 LexA	26.91	T3-1	5 LexA	26.92	T6-1	5 LexA	25.17
T0-1	5 LexA	26.27	T3-1	5 LexA	26.29	T6-1	5 LexA	24.80
T0-1	5 LexA	25.84	T3-1	5 LexA	25.45	T6-1	5 LexA	24.12
T0-1	8 47A-EXO	25.76	T3-1	8 47A-EXO	25.89	T6-1	8 47A-EXO	20.95
T0-1	8 47A-EXO	25.00	T3-1	8 47A-EXO	24.92	T6-1	8 47A-EXO	20.66
T0-1	8 47A-EXO	25.08	T3-1	8 47A-EXO	25.06	T6-1	8 47A-EXO	20.36
T0-1	9 Pro PEPG	25.01	T3-1	9 Pro PEPG	25.01	T6-1	9 Pro PEPG	21.49
T0-1	9 Pro PEPG	24.51	T3-1	9 Pro PEPG	24.48	T6-1	9 Pro PEPG	21.10
T0-1	9 Pro PEPG	24.32	T3-1	9 Pro PEPG	24.13	T6-1	9 Pro PEPG	20.47
T0-1	10 Pro Rad	27.14	T3-1	10 Pro Rad	27.84	T6-1	10 Pro Rad	24.24
T0-1	10 Pro Rad	26.26	T3-1	10 Pro Rad	26.99	T6-1	10 Pro Rad	23.79
T0-1	10 Pro Rad	26.39	T3-1	10 Pro Rad	27.57	T6-1	10 Pro Rad	24.23
T0-1	11 Pro SSB	26.71	T3-1	11 Pro SSB	28.06	T6-1	11 Pro SSB	23.88
T0-1	11 Pro SSB	25.85	T3-1	11 Pro SSB	27.11	T6-1	11 Pro SSB	23.32
T0-1	11 Pro SSB	25.67	T3-1	11 Pro SSB	26.58	T6-1	11 Pro SSB	23.29
T0-2	1 map	25.76	T3-2	1 map	23.49	T6-2	1 map	23.61
T0-2	1 map	25.49	T3-2	1 map	23.02	T6-2	1 map	23.39
T0-2	1 map	26.45	T3-2	1 map	24.11	T6-2	1 map	24.48
T0-2	2 alaS	26.19	T3-2	2 alaS	24.14	T6-2	2 alaS	23.69
T0-2	2 alaS	25.88	T3-2	2 alaS	24.24	T6-2	2 alaS	23.99
T0-2	2 alaS	26.04	T3-2	2 alaS	24.19	T6-2	2 alaS	23.92
T0-2	3 rpoC	21.00	T3-2	3 rpoC	20.61	T6-2	3 rpoC	19.58
T0-2	3 rpoC	20.98	T3-2	3 rpoC	20.19	T6-2	3 rpoC	19.44
T0-2	3 rpoC	21.13	T3-2	3 rpoC	20.45	T6-2	3 rpoC	19.61
T0-2	4 RecA	24.82	T3-2	4 RecA	21.95	T6-2	4 RecA	22.22
T0-2	4 RecA	24.79	T3-2	4 RecA	21.64	T6-2	4 RecA	23.25
T0-2	4 RecA	25.13	T3-2	4 RecA	22.22	T6-2	4 RecA	22.58
T0-2	5 LexA	26.12	T3-2	5 LexA	24.49	T6-2	5 LexA	23.50
T0-2	5 LexA	26.24	T3-2	5 LexA	25.02	T6-2	5 LexA	23.66
T0-2	5 LexA	26.80	T3-2	5 LexA	24.92	T6-2	5 LexA	23.64

T0-2	8 47A-EXO	25.33	T3-2	8 47A-EXO	23.99	T6-2	8 47A-EXO	20.98
T0-2	8 47A-EXO	25.15	T3-2	8 47A-EXO	23.70	T6-2	8 47A-EXO	21.02
T0-2	8 47A-EXO	25.33	T3-2	8 47A-EXO	23.79	T6-2	8 47A-EXO	21.00
T0-2	9 Pro PEPG	25.26	T3-2	9 Pro PEPG	23.64	T6-2	9 Pro PEPG	20.15
T0-2	9 Pro PEPG	25.37	T3-2	9 Pro PEPG	23.80	T6-2	9 Pro PEPG	20.00
T0-2	9 Pro PEPG	25.18	T3-2	9 Pro PEPG	23.79	T6-2	9 Pro PEPG	20.23
T0-2	10 Pro Rad	27.00	T3-2	10 Pro Rad	26.63	T6-2	10 Pro Rad	23.83
T0-2	10 Pro Rad	26.28	T3-2	10 Pro Rad	26.02	T6-2	10 Pro Rad	24.37
T0-2	10 Pro Rad	27.61	T3-2	10 Pro Rad	27.03	T6-2	10 Pro Rad	24.56
T0-2	11 Pro SSB	26.74	T3-2	11 Pro SSB	26.53	T6-2	11 Pro SSB	23.79
T0-2	11 Pro SSB	26.41	T3-2	11 Pro SSB	26.46	T6-2	11 Pro SSB	23.62
T0-2	11 Pro SSB	26.94	T3-2	11 Pro SSB	26.73	T6-2	11 Pro SSB	23.67
T0-3	1 map	23.66	T3-3	1 map	24.62	T6-3	1 map	24.20
T0-3	1 map	24.36	T3-3	1 map	24.77	T6-3	1 map	24.62
T0-3	1 map	24.01	T3-3	1 map	24.70	T6-3	1 map	24.17
T0-3	2 alaS	24.28	T3-3	2 alaS	24.68	T6-3	2 alaS	24.25
T0-3	2 alaS	24.60	T3-3	2 alaS	24.98	T6-3	2 alaS	24.86
T0-3	2 alaS	24.97	T3-3	2 alaS	25.20	T6-3	2 alaS	23.88
T0-3	3 rpoC	19.06	T3-3	3 rpoC	21.02	T6-3	3 rpoC	20.12
T0-3	3 rpoC	19.42	T3-3	3 rpoC	21.27	T6-3	3 rpoC	20.18
T0-3	3 rpoC	19.52	T3-3	3 rpoC	21.50	T6-3	3 rpoC	19.97
T0-3	4 RecA	23.38	T3-3	4 RecA	23.48	T6-3	4 RecA	22.14
T0-3	4 RecA	22.19	T3-3	4 RecA	22.53	T6-3	4 RecA	22.75
T0-3	4 RecA	22.93	T3-3	4 RecA	22.88	T6-3	4 RecA	24.45
T0-3	5 LexA	24.98	T3-3	5 LexA	25.84	T6-3	5 LexA	23.97
T0-3	5 LexA	24.52	T3-3	5 LexA	25.40	T6-3	5 LexA	25.16
T0-3	5 LexA	25.82	T3-3	5 LexA	26.12	T6-3	5 LexA	21.39
T0-3	8 47A-EXO	23.76	T3-3	8 47A-EXO	24.30	T6-3	8 47A-EXO	21.74
T0-3	8 47A-EXO	23.90	T3-3	8 47A-EXO	24.46	T6-3	8 47A-EXO	21.70
T0-3	8 47A-EXO	25.33	T3-3	8 47A-EXO	25.58	T6-3	8 47A-EXO	22.07
T0-3	9 Pro PEPG	23.30	T3-3	9 Pro PEPG	23.81	T6-3	9 Pro PEPG	20.84

T0-3	9 Pro PEPG	23.70	T3-3	9 Pro PEPG	24.18	T6-3	9 Pro PEPG	21.59
T0-3	9 Pro PEPG	23.98	T3-3	9 Pro PEPG	24.52	T6-3	9 Pro PEPG	25.34
T0-3	10 Pro Rad	26.44	T3-3	10 Pro Rad	27.21	T6-3	10 Pro Rad	25.44
T0-3	10 Pro Rad	27.15	T3-3	10 Pro Rad	27.82	T6-3	10 Pro Rad	25.91
T0-3	10 Pro Rad	26.92	T3-3	10 Pro Rad	27.95	T6-3	10 Pro Rad	25.64
T0-3	11 Pro SSB	26.06	T3-3	11 Pro SSB	26.83	T6-3	11 Pro SSB	24.60
T0-3	11 Pro SSB	26.82	T3-3	11 Pro SSB	27.89	T6-3	11 Pro SSB	25.97
T0-3	11 Pro SSB	26.91	T3-3	11 Pro SSB	27.85	T6-3	11 Pro SSB	22.01
						No RT	SBG1	29.88
						No RT	SBG1	28.14
						No RT	SBG1	28.57
						No RT	SBG1	28.88
						No RT	SBG1	29.12
						No RT	SBG1	28.31
						No RT	SBG1	28.65
						No RT	SBG1	29.09

Table S9. Optical density (OD 540 nm) for Fig 4A

		CF	3-D		CB-A						
Time (hours)	Rep 1	Rep 2	Rep 3	CB-D av	Stdev	Time	Rep 1	Rep 2	Rep 3	CB-A av	Stdev
-1	0.064	0.07	0.069	0.068	0.003	-1	0.063	0.065	0.077	0.068	0.008
-2	0.109	0.118	0.116	0.114	0.005	-2	0.105	0.106	0.117	0.109	0.007
0	0.173	0.187	0.179	0.180	0.007	0	0.168	0.164	0.166	0.166	0.002
1	0.267	0.275	0.275	0.272	0.005	1	0.248	0.242	0.245	0.245	0.003
2	0.359	0.388	0.384	0.377	0.016	2	0.325	0.325	0.319	0.323	0.003
3	0.465	0.512	0.506	0.494	0.026	3	0.417	0.441	0.406	0.421	0.018
4	0.63	0.646	0.664	0.647	0.017	4	0.525	0.567	0.523	0.538	0.025
5	0.748	0.792	0.766	0.769	0.022	5	0.628	0.659	0.615	0.634	0.023
6	0.852	0.893	0.866	0.870	0.021	6	0.758	0.791	0.712	0.754	0.040
7	0.928	0.966	0.957	0.950	0.020	7	0.835	0.843	0.776	0.818	0.037
8	1.018	1.054	1.016	1.029	0.021	8	0.9	0.914	0.848	0.887	0.035
27	1.426	1.445	1.46	1.444	0.017	27	0.967	0.978	0.981	0.975	0.007
28	1.448	1.451	1.452	1.450	0.002	28	1.182	0.952	0.951	1.028	0.133
29	1.45	1.46	1.452	1.454	0.005	29	1.228	0.941	0.935	1.035	0.167
30	1.448	1.454	1.432	1.445	0.011	30	1.224	0.946	0.923	1.031	0.168

Table S10. Optical density (OD 600 nm) for Fig 4B

	CB-D	CB-A
Rep1	0.043	0.0873
	0.0442	0.0975
	0.0355	0.0682
Rep 2	0.0315	0.0769
	0.0464	0.0826
	0.0421	0.0689
Rep 3	0.0249	0.0917
	0.049	0.0839
	0.0481	0.0796

Table S11. Optical density (OD 540nm) readings for Fig 5A.

	СВ-А	CB-D	Со-
			Culture
	0.825	1.266	0.681
	0.807	1.122	0.863
	0.888	1.068	0.722
Av	0.84	1.152	0.7553
Stdv	0.02456	0.05909	0.05512

28.00

24.82

10

100

D phage

D phage

10

100

28.86

26.66

A phage

A phage

Standard

Standard

	Standard	A phage	24.10	100	D phage	27.34	100
	Standard	A phage	21.68	1000	D phage	23.47	1000
	Standard	A phage	22.30	1000	D phage	23.67	1000
	Standard	A phage	18.70	1.00E+04	D phage	20.24	1.00E+04
	Standard	A phage	18.40	1.00E+04	D phage	20.47	1.00E+04
	Standard	A phage	16.10	1.00E+05	D phage	17.11	1.00E+05
	Standard	A phage	15.70	1.00E+05	D phage	17.15	1.00E+05
	Standard	A phage	12.40	1.00E+06	D phage	13.21	1.00E+06
	Standard	A phage	12.60	1.00E+06	D phage	13.51	1.00E+06
	Standard	A phage	9.41	1.00E+07	D phage	9.48	1.00E+07
	Standard	A phage	9.64	1.00E+07	D phage	9.55	1.00E+07
	Standard	A phage	5.58	1.00E+08	D phage	6.04	1.00E+08
	Standard	A phage	6.33	1.00E+08	D phage	5.96	1.00E+08
	Blank	A phage	30.50	1.33	D phage	28.70	24.48
	Blank	A phage	30.20	1.683	D phage	28.81	22.67
	Blank	A phage	29.30	3.352	D phage	28.13	36.22
biofilm	Α	A phage	6.58		D phage	5.65	
biofilm	Α	A phage	5.41		D phage	5.78	
biofilm	Α	A phage	6.34		D phage	5.83	
biofilm	В	A phage	4.77		D phage	4.27	
biofilm	В	A phage	4.99		D phage	4.23	
biofilm	В	A phage	4.61		D phage	5.38	
biofilm	С	A phage	4.71		D phage	3.11	
biofilm	С	A phage	4.59		D phage	2.95	
biofilm	С	A phage	4.36		D phage	4.09	

Table S13. Biofilm Crystal Violet assay optical density (OD 600nm) readings for Fig 5B.

48hr	biofilm as	say										
rep	Neg-1	Neg-2	Neg-3	CB-D-1	CB-D-2	CB-D-3	CB-A-1	CB-A-2	CB-A-3	Comp-1	Comp-2	Comp-3
A	0.185	0.188	0.193	0.317	0.359	0.326	0.395	0.384	0.398	0.494	0.486	0.493
В	0.18	0.18	0.179	0.299	0.33	0.288	0.357	0.349	0.365	0.466	0.429	0.442
C	0.186	0.19	0.193	0.313	0.337	0.313	0.405	0.382	0.379	0.493	0.441	0.434
D	0.183	0.182	0.187	0.3	0.349	0.311	0.41	0.377	0.386	0.464	0.442	0.434
E	0.194	0.194	0.205	0.332	0.397	0.348	0.429	0.424	0.425	0.500	0.455	0.441
F	0.194	0.188	0.19	0.336	0.374	0.329	0.404	0.419	0.363	0.468	0.416	0.453
G	0.202	0.201	0.214	0.329	0.403	0.356	0.433	0.426	0.417	0.503	0.469	0.458
Н	0.2	0.196	0.201	0.35	0.368	0.318	0.382	0.407	0.375	0.473	0.417	0.45

179	
180	Fig S1. Quantification of each phage during superinfection resistance tests. (A) φ-A and (B) φ-D gene copies during infection of
181	Sulfitobacter sp. strain CB-D. (C) ϕ -A and (D) ϕ -D gene copies during infection of Sulfitobacter sp. strain CB-A. Averages of biological
182	triplicates are reported for all treatments. Error bars represent the standard deviation of the mean. Different letters denote columns with
183	significantly different (p<0.05) phage gene copy numbers within a given plot.
184	
185	
186	
187	
188	
189	
190	
191	

Fig S2. 3D analysis of (A) CB-D and (B) CB-A biofilms. Overnight cultures of each strain were sub-cultured, diluted, and grown to early exponential phase (OD_{540nm} = 0.17). 3 mL of each strain was added to FlouroDish glass dishes (World Precision Instruments, Inc.) and incubated without agitation overnight at room temperature. Planktonic bacteria were removed by gentle inversion of the glass dishes and washed twice with standard marine media (SMM). Dishes were left to dry for 15 min, then stained with 3mL 25X SYBR Gold (ThermoFisher Scientific SYBR™ Gold Nucleic Acid Gel Stain) for 30 min. Images were generated using confocal laser microscopy and visualized using a Leica SP8 white light Laser Confocal System. Biofilm reconstruction was performed with the Leica Application Suite X (Las X) software. Confocal microscopy methods were greatly adapted from previously described literature (Townsley and Yildiz 2015) and data were analyzed using Comstat2 (Heydorn et al 2000, Vorregaard 2008). Images were taken from biological triplicate cultures and at least three images were generated per sample.

Fig S3. Comstat2 analysis of CB-D and CB-A biofilm confocal microscopy data. Biofilm (A) biomass, (B) average thickness, (C) Comstat max thickness, (D) roughness coefficient, and (E) average thickness. Each data point represents a separate Z stack field of view of the FlouroDish. All parameters showed no significant difference (Student's t-tests; p<0.05).

Fig S4. Recruitment of reads from ME-08-09 (\sim 35kb size fraction virome reads) using either ϕ -A or ϕ -D as reference genomes. Read recruitments were done using CLC, default parameters. Single reads mapping in their forward direction are green. Those mapping in reverse direction are red. Non-specific matches are yellow.

230	REFERENCES
231	
232 233 234	Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK <i>et al</i> (2000). Quantification of biofilm structures by the novel computer program COMSTAT. <i>Microbiology-Uk</i> 146: 2395-2407.
235 236 237	Townsley L, Yildiz FH (2015). Temperature affects c-di-GMP signalling and biofilm formation in Vibrio cholerae. <i>Environmental Microbiology</i> 17: 4290-4305.
238 239 240	Vorregaard M (2008). Comstat2 - a modern 3D image analysis environment for biofilms, in Informatics and Mathematical Modelling.
241	
242	
243	