분자 구조와 반응 속도

2018. 03. 00

CONTENTS

- I 분자 구조
- Ⅲ 반응 속도
- Ⅲ 기출 문제

출제 포인트

- 이 섹션에서는 전자쌍 반발 원리를 이용하여 분자 구조를 예측하고 분자의 극성 정도를 비교하는 문제가 자주 출제된다.
- 출제되었던 분자의 구조가 또 출제될 수 있으므로 몇 가지 분 자의 구조는 암기하여 두고 반응 속도와 관련된 기본 개념과 반응 속도에 영향을 미치는 요인을 잘 알아 두자.

분자 구조

- 분자 구조
 - 전자쌍 반발의 원리: 분자 중심 원자에 있는 전자쌍들이 모두 음전하를 띠고 있어 서로 반발하므로 가능한 멀리 떨어져 있으려 한다는 원리로 분자 구조를 예측하는 데 유용함
- 분자의 구조와 결합각
 - 2원자 분자의 경우 : 두 원자핵이 동일한 직선상에 존재하므로 직선 형을 이룬다.

분자식	H ₂	O ₂	Cl ₂	HCI
결합각	180°	180°	180°	180°

■ 중심 원자에 2개의 원자가 결합된 경우 : 직선형

분자식	CO ₂	BeF ₂	HCN
결합각	180°	180°	180°

분자 구조

- 분자의 구조와 결합각
 - 중심 원자에 3개의 원자가 결합된 경우 : 평면 삼각형

분자식	BeF ₃	BCl ₃	CH ₂ O
결합각	120°	120°	120°

■ 중심 원자에 통일한 4개의 원자가 결합된 경우: 정사면체

분자식	CH ₄	CF ₄
결합각	109.5°	109.5°

■ 중심 원자에 비공유 전자쌍을 가지는 경우:삼각뿔 형(피라미드)

분자식	NH ₃	NF ₃
결합각	107°	107°

분자 구조

- 분자의 극성
 - 극성 공유결합 : 전기 음성도가 다른 원자가 공유 결합하여 분자 내에 부분 음전하(δ-)와 부분 양전하(δ+)를 띠는 결합
 - 무극성 공유 결합 . 주로 전기 음성도가 같은 원자 사이의 결합으로 부분 전하의 분리가 없는 결합
 - 쌍극자 모멘트(µ) : 극성의 크기를 나타내는 물리량
 - 극성 분자와 무극성 분자

극성 분자 (µ≠0)	HCI, HF, CS ₂ , H ₂ O, NH ₃ , CO
무극성 분자 (μ=0)	H ₂ , CO ₂ , BF ₃ , CH ₄ , CCl ₄ , CF ₄ , C ₆ H ₆

반응 속도

- 반응 속도
 - 반응 속도 : 화학 반응이 일어나는 빠르기로 생성물과 반응물의 변화 량을 단위 시간으로 나타낸 것
 - 반응 속도 표현 : 단위 시간에 따른 반응물의 농도 변화 또는 생성물 의 농도 변화로 나타낸다.
 - ❖ A → B의 반응에서

$$v = -\frac{\Delta[A]}{\Delta t} = \frac{\Delta[B]}{\Delta t}$$

❖(단, []는 몰 농도이며 단위는 mol / L이다)

반응 속도

- 반응속도식
 - 반응 물질의 농도로 표현하며 물질 A와 B가 반응하여 물질 C와 D가 생성되는 반응에서 반응 속도식은 다음과 같다.
 - $aA + bB \rightarrow cC + dD$
 - $v = k[A]^m[B]^n$ m,n. 반응 차수 k: 반응 속도 상수
 - ▶ (계수 a, b와 무관하며 실험에 의해 구함)
 - ❖ 전체 반응 차수 : (m+n)차 반응
 - ➤ (A에 대해 m차, B에 대해 n차 반응)

반응 속도

- 활성화 에너지(Ea)
 - 의미: 반응물이 유효 충돌하여 반응을 일으키는 데 필요한 최소한의 에너지로서 활성화 에너지가 작을수록 반응 속도가 빠르고, 활성화 에너지가 클수록 반응속도가 느리다.
 - 온도와 반응 속도 : 온도가 증가하면 분자들의 평균 운동 에너지가 증가하여 활성화 에너지보다 큰 에너지를 갖는 분자 수가 증가하므로 반응 속도가 빨라진다.
 - 촉매와 반응속도

정촉매	화학 반응에서 자신은 변하지 않으면서 활성 화에너지의 크기를 감소시켜 반응 속도를 증 가시키는 물질
부촉매	화학 반응에서 자신은 변하지 않으면서 활성 화 에너지의 크기를 증가시켜 반응 속도를 감 소시키는 물질

1.	다음 중 ① CH ₄	비공유 전자(② NH ₃		많이 가지 ③ H ₂ O	기고 있는	는 것은? (10 ④ CO ₂	6-02)
2.	암모니아 ① 평면	분자의 구조	는? (13-02 ② 선형	2)	③ 피라	밋	④ 사각형
3.		'물 중에서 기 ② NH ₃				것 은? (08- ④ BeCl ₂	02)
4.	다음 중 = ① CO ₂	극성 분자에 혀	해당하는 7 ② CCI₄		- 02)		④ NH ₃
5.	비극성 분 ① CO	·자에 해당하	는 것은? (② CO ₂	15-02)	③ NH ₃		④ H ₂ O

- 6. 쌍극자 모멘트의 합이 0 인 것으로만 나열된 것은? (09-01)
 - ① H_2O , CS_2 ② NH_3 , HCI ③ HF, H_2S ④ C_6H_6 , CH_4

- 7. 분자구조에 대한 설명을 옳은 것은? (16-02)
 - ① BF₃는 삼각 피라미드형이고, NH₃는 선형이다.
 - ② BF3는 평면 정삼각형이고, NH3는 삼각 피라미드형이다.
 - ③ BF₃는 굽은형(V형)이고, NH₃는 삼각 피라미드형이다.
 - ④ BF3평면 정삼각형이고, NH3는 선형이다.
- 8. BF_3 는 무극성 분자이고 NH_3 는 극성 분자이다. 이 사실과 가장 관계가 있는 것은? (08-02)
 - ① 비공유 전자쌍은 BF, 에는 있고 NH, 에는 없다.
 - ② BF₃는 공유 결합 물질이고 NH₃는 수소 결합 물질이다.
 - ③ BF₃는 평면 정삼각형이고 NH₃는 피라미드형 구조이다.
 - ④ BF_3 는 sp3 혼성 오비탈을 하고 있고 NH_3 는 sp2 혼성 오비탈을 하고 있다.

- NH4CI에서 배위결합을 하고 있는 부분을 옳게 설명한 것은? (16-02)
 - ① NH₃의 N-H 결합

③ NH₄⁺과 Cl⁻과의 결합

② NH₃와 H⁺과의 결합

④ H⁺과 Cl⁻과의 결합

- 10. 활성화에너지에 대한 설명으로 옳은 것은? (15-04)
 - ① 물질이 반응 전에 가지고 있는 에너지이다.
 - ② 물질이 반응 후에 가지고 있는 에너지이다.
 - ③ 물질이 반응 전과 후에 가지고 있는 에너지의 차이이다.
 - ④ 물질이 반응을 일으키는 데 필요한 최소한의 에너지이다.
- 11. 일정한 온도하에서 물질 A 와 B 가 반응을 할 때 A 의 농도만 2배로 하면 반 응속도가 2배가 되고 B의 농도만 2배로 하면 반응속도가 4배로 된다. 이 반응 의 속도식은? (단, 반응속도 상수는 K 이다.) (13-01)
 - (1) $V = k [A][B]^2$ (2) $V = k [A]^2[B]$
- - (3) $V = k [A][B]^{0.5}$ (4) V = k [A][B]

- 12. 화학 반응의 속도에 영향을 미치지 않는 것은? (12-02)
 - ① 촉매의 유무

- ② 반응계의 온도의 변화
- ③ 반응 물질의 농도의 변화 ④ 일정한 농도하에서의 부피의 변화
- 13. t°C에서 수소와 요오드가 다음과 같이 반응하고 있을 때에 대한 설명 중 틀린 것은? (단, 정반응만 일어나고, 정반응속도식 V₁=K₁[H₂][I₂]이다.) (10-01)

$$H_2(g) + I_2(g) \rightarrow 2HI(g)$$

- ① K₁은 정반응의 속도상수 이다.
- ② []는 몰농도(mol/L)를 나타낸다.
- ③ [H₂]와 [I₂]는 시간이 흐름에 따라 감소한다.
- ④ 온도가 일정하면 시간이 흘러도 V₁은 변하지 않는다.
- 14. A+2B→3C+4D와 같은 기초반응에서 A, B의 농도를 각각 2배로 하면 반응속 도는 몇 배로 되겠는가? (09-01)
 - (1) 2

(2) **4**

(3) 8

(4) 16

Thank you