ECE GY-6143 ML Homework 3 Solution

Yogya Sharma

(ys5250@nyu.edu)

1.

Mucur Kern	$\mu \Rightarrow k(x, \tilde{x}) = \langle \phi(x), \phi(\tilde{x}) \rangle$	>
	(p(x) p (x) p - pini	te
	$\int_{t} \phi(a,t) \phi(\tilde{x},t) dt$	
Gram Maria	\Rightarrow $k_{i,j} = k(x_i, x_j)$	
Muler Kernu	that will be using is!	
	$\mu(x, \widetilde{x}) = \phi(x) \phi(\widetilde{x})$	
	(1) x) - y (n) y (x)	
Inputs S →	{n, n2, n3 2n}	
Gram Malnia	$c = k (x_1, x_1) k (x_1, x_2) \dots k(x_1, x_n)$	<u></u>
	$(\kappa(x_2,x_2))$ $(\kappa(x_2,x_1))$	
	1	
	, ,	_
	k(2n,2) - · · · · $k(2n,2n)$	()
		X
	=	X
		X
	=	X
	=	X

We know	that c		w c	be a mx1 matrix
	C =	Ta, T		aj er"
		an-1		
	CT = Q	i, az, a	3	a _{m-1} , a _m
To prove	. kernu	matrix	L is	sumi dynite
		ctre	>0	
ctk=[a	1,92	2m-1, 9m]		$\begin{array}{cccc} \varphi(z_1)^{T} \varphi(\widetilde{z}_2) & & & \varphi(z_1)^{T} \varphi(\widetilde{z}_n)^{T} \\ \varphi(x_2)^{T} \varphi(\widetilde{x}_2) & & & \varphi(x_2)^{T} \varphi(\widetilde{x}_n) \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & $
=[\sum_{i=}^{\text{r}}	α; φ(x;)	φαι) <u>Σ</u>		$\int_{0}^{\infty} \phi(x_{2})$ $\int_{0}^{\infty} \phi(x_{m}) \int_{0}^{\infty} \phi(x_{m}) \int_{0}^{\infty} \phi(x_{m}) \int_{0}^{\infty} \phi(x_{m}) dx$

CKC _ m	a
$= \sum_{i=1}^{n} a_i \varphi(x_i) \varphi(x_i) \geq a_i \varphi(x_i) \varphi(x_i)$	a ₂
$C^{T} k \; C = \left[\sum_{i=1}^{m} a_i \; \phi(x_i)^{T} \phi(x_i) \; \sum_{i=1}^{m} a_i \; \phi(x_i)^{T} \phi(x_i) \right]$ $= \left[\sum_{i=1}^{m} a_i \; \phi(x_i)^{T} \phi(x_i) \; \sum_{i=1}^{m} a_i \; \phi(x_i)^{T} \phi(x_m) \right]$ $= \left[\sum_{i=1}^{m} a_i \; \phi(x_i)^{T} \phi(x_i) \; \sum_{i=1}^{m} a_i \; \phi(x_i)^{T} \phi(x_m) \right]$ $= \left[\sum_{i=1}^{m} a_i \; \phi(x_i)^{T} \phi(x_i) \; \sum_{i=1}^{m} a_i \; \phi(x_i)^{T} \phi(x_m) \right]$ $= \left[\sum_{i=1}^{m} a_i \; \phi(x_i)^{T} \phi(x_i) \; \sum_{i=1}^{m} a_i \; \phi(x_i)^{T} \phi(x_m) \right]$	a 3
isl was	,
	1
	1
	1
	an _
200	
= $\left[a_1 \phi(x_i)\right] \stackrel{\mathcal{H}}{\leq} a_i \phi(x_i)^{T} + a_2 \phi(\widehat{x}_2) \stackrel{\mathcal{H}}{\leq} a_i$	6 (ni) T
i=1	T
$+ \cdots + a_{m} \phi(\widehat{x_{m}}) \overset{\mathcal{Z}}{\underset{i=1}{\overset{(z)}{=}}} a_{i}$ $= \left[\overset{\mathcal{Z}}{\underset{j=1}{\overset{(z)}{=}}} a_{i}^{*} \phi(\widehat{x_{i}})^{T} \right] \overset{(z)}{\underset{i=1}{\overset{(z)}{=}}} a_{i}^{*} \phi(\widehat{x_{i}})^{T} $ $= \sum_{j=1}^{n} a_{j}^{*} \phi(\widehat{x_{j}}) \overset{\mathcal{Z}}{\underset{i=1}{\overset{(z)}{=}}} a_{i}^{*} \phi(\widehat{x_{i}})^{T} $ $= \sum_{j=1}^{n} a_{j}^{*} \phi(\widehat{x_{j}}) \overset{\mathcal{Z}}{\underset{i=1}{\overset{(z)}{=}}} a_{i}^{*} \phi(\widehat{x_{i}})^{T} $	(ni) 77
(=)	IXI
= [\(\alpha \cdot \delta \cdo	
j=1	
$= \left\langle \sum_{j=1}^{m} a_j \phi(x_j) \sum_{i=1}^{m} a_i \phi(x_i)^T \right\rangle$	
$= \mathcal{E}_{\alpha_j} \circ (x_j) ^2 \text{which will of } $	14201.4
J=1	S CUIS
11 V 11 ME > 0.	
The matrix K	hi os
The matrix k, hence, is semi depinite, t	nus procus
the Mercer Thussum.	

```
(a) k(x,\tilde{x}) = \alpha k_1(x,\tilde{x}) + \beta k_2(x,\tilde{x}) for -0
\alpha,\beta \ge 0
              K(x, \tilde{x}) = \langle \phi(x), \phi(\tilde{x}) \rangle = \phi(x)^T \phi(\tilde{x})

where \phi is finite
            \alpha \, \kappa_1(x, \tilde{x}) = \alpha \, \phi_{\alpha}(x) \, \phi_{\alpha}(\tilde{x})
                                        = \langle \sqrt{\alpha} \phi_{1}(x), \sqrt{\alpha} \phi_{1}(\tilde{x}) \rangle - 2
             \beta K_2(x, \tilde{x}) = \beta \phi_2(x) \phi_2(\tilde{x})
                                              < \( \bar{B} \phi_2(\bar{n}) , \( \bar{B} \phi_2(\bar{n}) > -3 \)
    Substituting values from @ and 3 in O
  k(x, \tilde{x}) = \alpha \phi_{1}(x) \phi_{1}(\tilde{x}) + \beta \phi_{2}(x) \phi_{1}(\tilde{x})
                        = \sqrt{\alpha} \phi_{1}(x) \sqrt{\alpha} \phi_{1}(x) \sqrt{\beta} \phi_{2}(x)
                            1β φ2(n)
 \phi(x)^{2} = \phi(x) or they are symmetric \int_{a}^{b} \left[ \sqrt{\alpha} \phi(x) \right] \left[ \sqrt{\alpha} \phi(x) \right] \left[ \sqrt{\alpha} \phi(x) \right]
 Hence proved that this is also a murrer 

Kerner of type [ \sqrt{\alpha} \phi_1(x)] \sqrt{\beta} \phi_2(x)]
```

```
(b) K(x, x) = K(x x, ) x K2(x, x)
      K(x, \tilde{x}) = \langle \phi(x), \phi(\tilde{x}) \rangle = \phi(x)^{T} \phi(\tilde{x})

where \phi is finite
    K_{1}(x_{1}\widetilde{x}) = \langle \phi_{1}(x), \phi_{2}(\widetilde{x}) \rangle = \phi_{1}(x_{1})^{T} \phi_{1}(\widetilde{x})
K_{2}(x_{1}\widetilde{x}) = \langle \phi_{2}(x), \phi_{2}(\widetilde{x}) \rangle = \phi_{2}(x_{1})^{T} \phi_{2}(\widetilde{x})
    \kappa_1(n_1\tilde{x}) \times \kappa_2(n_1\tilde{x}) = \phi_1(x)^{\dagger}\phi_1(\tilde{x}) \phi_2(x)^{\dagger}\phi_1(\tilde{x})
                                            = \left[\phi_{1}(x)^{T}\phi_{2}(n)^{T}\right]\left[\phi_{1}(x)\phi_{2}(x)\right]
        given that all the above matrices are semi definite
       and symmetric
                                                = \left[\phi_{1}(\mathbf{x})\phi_{2}(\mathbf{x})\right]^{T}\left[\phi_{1}(\widetilde{\mathbf{x}})\phi_{2}(\widetilde{\mathbf{x}})\right]
                                                 = < [\(\phi_1(x)\phi_2(x)\)] \(\phi_1(x)\phi_2(x)\)]>
   Thus e_1(x_1^{\frac{1}{n}}) \times \kappa_2(x_1^{\frac{1}{n}}) (an be expresented as a
      valid winu
 (c) k(x, \tilde{x}) = f(k_1(x, \tilde{x})) where fix any polynomial with positive coefficients.
        K(x, \tilde{x}) = \langle \phi(x), \phi(\tilde{x}) \rangle = \phi(x)^{T} \phi(\tilde{x})

where \phi is finite
                        know that I has all positive conficients
```

(B) $k(x,y) = \exp(-\frac{1}{2}||x-y||^2) = \varphi(x) \cdot \varphi(y)$ Assuming 2 and y are scalar $||x-y||^2 = (x-y)^2 = x^2 - 2xy + y^2$ $k(x,y) = \exp(-\frac{1}{2}(x^2 - 2xy + y^2))$ = $e^{-x^2/2}e^{-y^2/2}$ ery Taylor expansion $g e^n = 1 + x + x^2 + \dots \infty$ So, Toylor expansion of end can be uniter as: $\frac{1 + xy + (xy)^2 + \alpha y^3}{3!} \sim \infty$ This can be represented as? $\frac{1}{x^2/\sqrt{2}i} = \frac{1}{y^3/\sqrt{3}i}$ k(x,y) can be uniter as? e-22/2.

=	e-22/2		e 3/2	
7	e-x2/2		y e-y2/2	
7.	2e-22/2	,	$y^{2}e^{-y^{2}/2}$	= ((a). p(y)
_	Be-24/2		43 e- 21/2	(, ()
	131		131	
	•		•	
	0			
	•			
	r a n			
	00		02	

and	these	can be	represented	as p(n). ply)
where	(x) =	e-22/2	and $\varphi(y) =$	e 3/2
		x e-x2/2	1 1	y e-y2/2
		$x e^{-x^2/2}$ $x^2 e^{-t^2/2}$		y2 e-y2/2
		V21		•
		x3e-21/2		43 e-21/2
		V31		V31
		1 : 1		
		•		
				08

2. When we have a nonlinear SVM problem, we can translate the problem from L space to Hilbert space. This can be done using basis functions, phi(x) feature vectors.

For example, a quadratic classifier:

$$\boldsymbol{x}_{\!\scriptscriptstyle i} \to \! \boldsymbol{\Phi}\!\left(\boldsymbol{x}_{\!\scriptscriptstyle i}\right) \ via \quad \boldsymbol{\Phi}\!\left(\vec{\boldsymbol{x}}\right) = \! \left[\begin{array}{c} \vec{\boldsymbol{x}} \\ vec\!\left(\vec{\boldsymbol{x}}\vec{\boldsymbol{x}}^T\right) \end{array} \right]$$

This leads the problem to become as:

$$L_{\!\scriptscriptstyle D}:\; \max \sum\nolimits_i \alpha_i - \tfrac{1}{2} \sum\nolimits_{i,j} \alpha_i \alpha_j y_i y_j \varphi \Big(x_i \Big)^{\!\scriptscriptstyle T} \, \varphi \Big(x_j \Big) \quad \textit{s.t.} \;\; \alpha_i \in \left[0, C \right], \sum\nolimits_i \alpha_i y_i = 0$$

Which gives a nonlinear classifier in original space:

$$f(\mathbf{x}) = \frac{sign\left[\sum_{i} \alpha_{i} y_{i} \phi(\mathbf{x})^{T} \phi(\mathbf{x}_{i}) + b\right]}{\left[\sum_{i} \alpha_{i} y_{i} \phi(\mathbf{x})^{T} \phi(\mathbf{x}_{i}) + b\right]}$$

This involves solving for the inner product, which can be done using the help of kernels.

Mercer Kernel:

$$kig(x, ilde{x}ig) = ig\langle ig(xig), igoplus ig(ilde{x}ig)ig
angle = \left\{egin{array}{ll} ig\phiig(xig)^T igoplusig(ilde{x}ig) & for \ finite igoplus \ \int_t igoplusig(x,tig) igoplusig(ilde{x},tig) dt & otherwise \end{array}
ight.$$

Here we use linear, polynomial and RBF kernels:

Polynomial Kernel:
$$k(x, \tilde{x}) = (x^T \tilde{x} + 1)^p$$

$$k\left(x, ilde{x}
ight) = \exp\left(-\frac{1}{2\sigma^2}\left\|x- ilde{x}
ight\|^2
ight)$$
RBF Kernel :

In python we import sym from the sklearn library, and use different kernels. Train the sym over the training data and then fit the test data over it to get predictions. We then compare these predictions with the true label in the test data and calculate the accuracy of the obtained classifier.

```
import scipy.io
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train test split
dataset = scipy.io.loadmat('dataset.mat')
#creating a dataframe
df1 = pd.DataFrame(dataset['X'], columns = ['x1', 'x2', 'x3', 'x4'])
df2 = pd.DataFrame(dataset['Y'] , columns = ['y'])
X = pd.DataFrame(df1.iloc[:,:4])
Y = pd.DataFrame(df2.iloc[:,:1])
X Train, X Test, Y Train, Y Test = train test split(X, Y, random state = 1, test size
= 0.5)
test len = len(Y Test)
fl Y Train = np.ravel(Y Train)
fl Y Test = np.ravel(Y Test)
C = [0.01*i \text{ for i in range}(1,1000,20)]
linear accuracy = list()
 prediction = linear classifier.predict(X Test)
 linear accuracy.append((np.sum(prediction == fl Y Test))/test len)
poly accuracy = [[] for i in range(4)]
```

```
for exp in range (2, 6):
    poly classifier = svm.SVC(kernel = 'poly', C = c, degree = exp, random state = 1)
    poly classifier.fit(X Train, fl Y Train)
    prediction = poly classifier.predict(X Test)
    poly accuracy[exp-2].append((np.sum(prediction == fl Y Test))/test len)
Gamma = [0.01, 0.1, 0.7, 1, 3, 7, 21]
rbf_accuracy = [[] for i in range(len(Gamma))]
 for sig in range(len(Gamma)):
    rbf classifier = svm.SVC(kernel = 'rbf', C = c, gamma = Gamma[sig] , random state
= 1)
    prediction = rbf classifier.predict(X Test)
    rbf accuracy[sig].append((np.sum(prediction == fl Y Test))/test len)
print('Maximum accuracy for linear kernel:', np.max(linear accuracy), 'for C=',
C[linear accuracy.index(np.max(linear accuracy))] )
fig1, linear = plt.subplots(1, 1)
linear.plot(C, linear accuracy,'x')
linear.grid()
linear.set(xlabel='C', ylabel='Linear Kernel Test Accuracy')
linear.set title('Accuracy for Linear SVM')
plt.show()
fig2, poly1 = plt.subplots(1, 1)
print('Maximum accuracy for polynomial kernel with degree: 2
is',np.max(poly accuracy[0]), 'for C=',
C[poly accuracy[0].index(np.max(poly accuracy[0]))])
poly1.plot(C, poly accuracy[0],'x')
poly1.grid()
poly1.set(xlabel='C', ylabel='Polynomial Kernel Test Accuracy')
poly1.set title('Accuracy for Polynomial SVM with degree 2')
plt.show()
fig3, poly2 = plt.subplots(1, 1)
```

```
print('Maximum accuracy for polynomial kernel with degree: 3
is',np.max(poly accuracy[1]), 'for C=',
C[poly accuracy[1].index(np.max(poly accuracy[1]))])
poly2.plot(C, poly accuracy[1],'x')
poly2.grid()
poly2.set(xlabel='C', ylabel='Polynomial Kernel Test Accuracy')
poly2.set title('Accuracy for Polynomial SVM with degree 3')
plt.show()
fig4, poly3 = plt.subplots(1, 1)
print('Maximum accuracy for polynomial kernel with degree: 4
is',np.max(poly accuracy[2]), 'for C=',
C[poly accuracy[2].index(np.max(poly accuracy[2]))])
poly3.plot(C, poly accuracy[2],'x')
poly3.grid()
poly3.set(xlabel='C', ylabel='Polynomial Kernel Test Accuracy')
poly3.set title('Accuracy for Polynomial SVM with degree 4')
plt.show()
fig5, poly4 = plt.subplots(1, 1)
print('Maximum accuracy for polynomial kernel with degree: 5
is', np.max(poly accuracy[3]), 'for C=',
C[poly accuracy[3].index(np.max(poly accuracy[3]))])
poly4.plot(C, poly accuracy[3],'x')
poly4.grid()
poly4.set(xlabel='C', ylabel='Polynomial Kernel Test Accuracy')
poly4.set title('Accuracy for Polynomial SVM with degree 5')
plt.show()
fig2, rbf1 = plt.subplots(1, 1)
print('Maximum accuracy for RBF kernel with gamma 0.01 is',np.max(rbf accuracy[0]),
'for C=', C[rbf accuracy[0].index(np.max(rbf accuracy[0]))])
rbf1.plot(C, rbf accuracy[0],'x')
rbf1.grid()
rbf1.set(xlabel='C', ylabel='RBF Kernel Test Accuracy')
rbf1.set title('Accuracy for RBF SVM with gamma 0.01')
plt.show()
fig3, rbf2 = plt.subplots(1, 1)
print('Maximum accuracy for RBF kernel with gamma 0.1 is', np.max(rbf accuracy[1]),
'for C=', C[rbf accuracy[1].index(np.max(rbf accuracy[1]))])
rbf2.plot(C, rbf accuracy[1],'x')
rbf2.grid()
rbf2.set(xlabel='C', ylabel='RBF Kernel Test Accuracy')
rbf2.set title('Accuracy for RBF SVM with gamma 0.1')
plt.show()
```

```
fig4, rbf3 = plt.subplots(1, 1)
print('Maximum accuracy for RBF kernel with gamma 0.7 is',np.max(rbf accuracy[2]),
'for C=', C[rbf accuracy[2].index(np.max(rbf accuracy[2]))])
rbf3.plot(C, rbf accuracy[2],'x')
rbf3.grid()
rbf3.set(xlabel='C', ylabel='RBF Kernel Test Accuracy')
rbf3.set title('Accuracy for RBF SVM with gamma 0.7')
plt.show()
fig5, rbf4 = plt.subplots(1, 1)
print('Maximum accuracy for RBF kernel with gamma 1 is',np.max(rbf accuracy[3]), 'for
C=', C[rbf accuracy[3].index(np.max(rbf accuracy[3]))])
rbf4.plot(C, rbf accuracy[3],'x')
rbf4.grid()
rbf4.set(xlabel='C', ylabel='RBF Kernel Test Accuracy')
plt.show()
fig6, rbf5 = plt.subplots(1, 1)
print('Maximum accuracy for RBF kernel with gamma 3 is',np.max(rbf accuracy[4]), 'for
C=', C[rbf accuracy[4].index(np.max(rbf accuracy[4]))])
rbf5.plot(C, rbf accuracy[4],'x')
rbf5.grid()
rbf5.set(xlabel='C', ylabel='RBF Kernel Test Accuracy')
plt.show()
fig7, rbf6 = plt.subplots(1, 1)
print('Maximum accuracy for RBF kernel with gamma 7 is',np.max(rbf accuracy[5]), 'for
C=', C[rbf accuracy[5].index(np.max(rbf accuracy[5]))])
rbf6.plot(C, rbf accuracy[5],'x')
rbf6.grid()
rbf6.set(xlabel='C', ylabel='RBF Kernel Test Accuracy')
rbf6.set title('Accuracy for RBF SVM with gamma 7')
plt.show()
fig7, rbf7 = plt.subplots(1, 1)
print('Maximum accuracy for RBF kernel with gamma 21 is',np.max(rbf accuracy[6]),
'for C=', C[rbf accuracy[6].index(np.max(rbf accuracy[6]))])
rbf7.plot(C, rbf accuracy[6],'x')
rbf7.grid()
rbf7.set(xlabel='C', ylabel='RBF Kernel Test Accuracy')
rbf7.set title('Accuracy for RBF SVM with gamma 21')
plt.show()
```

Plot for Linear SVM:

Plots for Polynomial SVM:

Plots for RBF SVM for various gamma values:

Hence, we have plotted the performance for SVM for Linear Kernel, RBF Kernel for varying values of C and Gamma (Gamma is inversely proportional to sigma) and Polynomial Kernel with varying C values and degrees ranging from 2 to 5.

From the above plots we can see that the maximum accuracy of 0.94 is obtained for the Polynomial Kernel of degree 3.

Answer 3) population with the probability distribution function (PDF) as: $f(x/\alpha) = \alpha^{-2} x e^{-1/\alpha}$ when x > 0, $\alpha > 0$ To find the maximum einelihood estimator for the given PDF: $e = \iint_{x=1}^{N} f(x/\alpha) = \left(\alpha^{-2} x_1 e^{-x_1/\alpha}\right) \left(\alpha^{-2} x_2 e^{-x_2/\alpha}\right)$ $= \alpha^{-2N} \left(\frac{\alpha^{-2} x_N e^{-x_N/\alpha}}{\sqrt{\alpha} \frac{N}{11} x_i^2} \right)$ (a) ulating log likelihood, L= log(e) L= -2N log x-1 \subseteq \frac{1}{\sigma} \sigma \sigma \sigma \sigma \frac{1}{\sigma} \sigma \simp \sigma \sigma \simp \sigma \sigma \sigma \simp \sin Differentiating the whove cauation and equatery to o, to manimise the likely hood. $\frac{\partial L}{\partial A} = \frac{-2N + 1}{\alpha} = \frac{2N}{\alpha^2} = 0$

This is the maximum eiterlihood estimator for the given probability distribution function.

$$\frac{1}{2N} = \frac{1}{2N} \times \frac{1}{2N}$$
This is the maximum eiterlihood estimator for the given probability distribution function.

$$\frac{1}{2N} = -\frac{1}{2N} + \frac{1}{2N} \times \frac{1}{2N}$$

$$\frac{1}{2N} = +\frac{1}{2N} \times \frac{1}{2N} \times \frac{1}{2N}$$

$$\frac{1}{2N} = +\frac{1}{2N} \times \frac{1}{2N} \times \frac{1}{2N}$$
Thus is the maximum eiterlihood estimator for the given probability distribution function.

$$\frac{1}{2N} = -\frac{1}{2N} \times \frac{1}{2N} \times \frac{1}{2N}$$

$$\frac{1}{2N} = -\frac{1}{2N} \times \frac{1}{2N} \times \frac{1}{2N}$$
Thus is the maximum eiterlihood estimator for the given probability distribution function.

$$\frac{1}{2N} = -\frac{1}{2N} \times \frac{1}{2N}$$
Thus is the maximum eiterlihood estimator for the given probability distribution function.

$$\frac{1}{2N} = -\frac{1}{2N} \times \frac{1}{2N}$$
Thus is the maximum eiterlihood estimator for the given probability distribution function.

$$\frac{1}{2N} = -\frac{1}{2N} \times \frac{1}{2N}$$
Thus is the maximum eiterlihood estimator for the given probability distribution function.

$$\frac{1}{2N} = -\frac{1}{2N} \times \frac{1}{2N}$$
Thus is the maximum eiterlihood estimator for the given probability distribution function.

$$\frac{1}{2N} = -\frac{1}{2N} \times \frac{1}{2N}$$
Thus is the maximum eiterlihood estimator for the given probability distribution function.

$$\frac{1}{2N} = -\frac{1}{2N} \times \frac{1}{2N}$$
Thus is the maximum eiterlihood estimator for the given probability distribution function.

$$\frac{1}{2N} = -\frac{1}{2N} \times \frac{1}{2N}$$
Thus is the maximum eiterlihood estimator for the given probability distribution function.

$$\frac{1}{2N} = -\frac{1}{2N} \times \frac{1}{2N}$$
Thus is the maximum eiterlihood estimator for the given probability distribution function.

$$\frac{1}{2N} = -\frac{1}{2N} \times \frac{1}{2N}$$
Thus is the maximum estimator for the given probability distribution function.

$$\frac{1}{2N} \times \frac{1}{2N} \times \frac{1}{2N}$$
Thus is the maximum estimator for the given probability distribution function.

$$\frac{1}{2N} \times \frac{1}{2N} \times \frac{1}{2N}$$
Thus is the maximum estimator for the given probability distribution function.

$$\frac{1}{2N} \times \frac{1}{2N} \times \frac{1}{2N}$$
Th