Задание: требуется решить задачу сегментации долей мозга (20 классов, перечислены в таблице ниже):

Left hemisphere	
Label 1	C (Caudate)
Label 2	L (Lentiformis)
Label 3	IC (Internal capsule)
Label 4	I (Island)
Label 5	M4
Label 6	M5
Label 7	M6
Label 8	M1
Label 9	M2
Label 10	M3
Right hemisphere	
Label 11	C (Caudate)
Label 12	L (Lentiformis)
Label 13	IC (Internal capsule)
Label 14	I (Island)
Label 15	M4
Label 16	M5
Label 17	M6
Label 18	M1
Label 19	M2
Label 20	M3

Данные:

- 7 КТ исследований мозга (3D снимков):
 - #.nii.gz исходные исследования;
 - #.txt соответствующие им углы поворота;
 - #-seg.nii.gz (или #-seg.nii) разметка на 20 долей мозга.

Вследствие того, что исследования изначально были сделаны не под тем углом, под которым обычно врач смотрит на подобные исследования, врач перед разметкой исходные снимки повернул. Соответственно, данные углы поворота определяют, как нужно повернуть снимок мозга, чтобы ему соответствовала разметка.

Несколько полезных ссылок, чтобы начать:

- http://www.itksnap.org/pmwiki/pmwiki.php для просмотра исходных объемов. Для того, чтобы в программе повернуть снимок, нужно сначала загрузить его (open main image), потом add another image его же, затем tools -> registration -> в нижнем правом углу load transformation from file
- https://nipy.org/nibabel/
- https://pypi.org/project/SimpleITK/

P.S.

Для построения моделей можно можно использовать любой удобный фреймворк. Цель ТЗ - показать свои скилы в анализе исходных данных, их препроцессинг, обосновать выбор той или иной архитектуры. По итогам необходимо написать отчетик с метриками, визуализацией результатов и всем прочим, что считается необходимым показать, в jupyter notebook, либо отдельным документом.