Aula 2 - Lista 2.2 de exercícios de Programação e Estruturas de Dados II

Problema 1

Leia uma palavra e verifique se é um palíndromo, isto é, se sua leitura, a partir de qualquer direção, sempre apresenta a mesma sequência. Ex.:

SATOR

AREPO

TENET

OPERA

ROTAS

Problema 2

O determinante de uma Matriz é dado pelo valor numérico resultante da subtração entre o somatório do produto dos termos da diagonal principal e do somatório do produto dos termos da diagonal secundária. Nas matrizes quadradas de ordem 3x3 esses cálculos podem ser efetuados repetindo-se a 1ª e a 2ª coluna, aplicando em seguida a regra de Sarrus. Lembrando que uma matriz é quadrada quando o número de linhas é igual ao número de colunas.

Observe o cálculo de determinantes nas seguintes matizes quadradas de ordem 2x2 e 3x3:

Determinante de uma matriz A de ordem 2 x 2.

$$Det_{A} = \begin{vmatrix} 2 & 9 \\ -1 & 6 \end{vmatrix}$$

Diagonal principal: 2 * 6 = 12

Diagonal secundária: 9 * (-1) = -9

 $Det_A = 12 - (-9)$

 $Det_A = 12 + 9$

 $Det_A = 21$

Determinante de uma matriz B de ordem 3 x 3.

Diagonal principal	Soma	Diagonal secundária	Soma	
2 * 6 * 3 = 36 5 * 7 * (-1) = - 35 6 * 1 * 2 = 12	36 + (-35) + 12 36 - 35 + 12 48 - 35 13	6 * 6 * (-1) = -36 2 * 7 * 2 = 28 5 * 1 * 3 = 15	-36 + 28 + 15 -36 + 43 7	$Det_B = 13 - 7$ $Det_B = 6$

Faça um programa que calcule o Determinante de uma matriz de ordem 3 usando a regra de Sarrus.

Problema 3

Leia um vetor de 20 posições e em seguida um valor X qualquer. Seu programa deverá fazer uma busca do valor de X no vetor lido e informar a posição em que foi encontrado ou se não foi encontrado.

Problema 4

Leia uma matriz quadrada e escreva a localização (linha e a coluna) do maior valor.

Problema 5

Leia uma matriz 8 x 8 e a transforme numa matriz triangular inferior , atribuindo zero a todos os elementos acima da diagonal principal, escrevendo-a ao final.

Problema 6

Leia uma matriz 5 x 5 e faça uma troca entre as triangulares superior e inferior. Escreva-a ao final.

Problema 7

Leia uma matriz 8x 8 e escreva o maior elemento da diagonal principal e a soma dos elementos da diagonal secundaria.

Problema 8

Leia uma matriz 6 x 6 e atribua o valor 0 para os valores negativos encontrados fora das diagonais principal e secundaria.

Problema 9

Leia duas matrizes quadradas e escreva os valores da primeira que ocorrem em qualquer posição da segunda.

Problema 10

Faça a soma e multiplicação de 2 matrizes quadradas. Para a multiplicação, considere:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \times b_{kj}$$