Probabilities-of-Conditionals-as-Conditional Probabilities and Desire-as-Belief

Alan Hájek

- "Stalnaker's Hypothesis", "the Equation" (bad names!)
- Some parallels to Desire-as-Belief (Lewis, quantifiers, triviality results, fighting back, more triviality results...)
- Why care about the Equation?
 - Stalnaker
 - o Adams
 - o de Finetti
 - o Judy Benjamin
- Why believe the Equation?
 - o It sounds right
 - o Ramsey's test
 - o Adams' thesis
 - Stalnaker validity
 - o Adams' probabilistic soundness
- Why disbelieve: sources of suspicion
 - o Material conditional
 - o Probabilistic conditional excluded middle
 - o Causal decision theory, and my suspicions
- Four quantified versions
- Lewis' triviality results
- Fighting back:
 - Import-export
 - o van Fraassen, and indexicality
 - o Domain-shrinking
 - o Approximate equality, going vague
- Hájek's perturbation argument
- Fighting back:
 - Radical indexicality
 - Restrictions on compounds involving →
- Hájek's wallflower argument: an example, and overview
- Desire-as-Belief
 - o Lewis
 - o Indexical Desire-as-Belief
 - o Hájek's perturbation argument
 - o Radical indexicality can save the day
 - o Hájek's cardinality argument
- Most counterfactuals are false

${\bf Probabilities-of-Conditionals-as-Conditional\ Probabilities}$

and Desire-as-Belief

(PCCP) $P(A \rightarrow B) = P(B|A)$ for all A, B in the domain of P, with P(A) > 0.

 $("\rightarrow"$ is a conditional connective.)

Universal version: There is some \rightarrow such that for all P, (PCCP) holds.

Rational Probability Function version: There is some \rightarrow such that for all P that could represent a rational agent's system of beliefs, (PCCP) holds.

Universal Tailoring version: For each P there is some \rightarrow such that (PCCP) holds.

Rational Probability Function tailoring version: For each P that could represent a rational agent's system of beliefs, there is some \rightarrow_{\square} such that (PCCP) holds.

We will say that a probability function P_C is derived from P by *conditionalizing* if there is some proposition C such that for all X, $P_C(X) = P(X|C)$. If (PCCP) holds, we will say that \rightarrow is a *PCCP-conditional for* P. If (PCCP) holds for each member P of a class of probability functions \mathcal{P} , we will say that \rightarrow is a *PCCP-conditional for* \mathcal{P}

Lewis (1976):

First triviality result: There is no PCCP-conditional for the class of all probability functions.

Second triviality result: There is no PCCP-conditional for any class of probability functions closed under conditionalizing, unless the class consists entirely of trivial functions.

Hájek (1994) gives a perturbation argument that strengthens these results further.

Hájek (1989, here slightly strengthened):

Finite models result: Any non-trivial probability function with finite range has no PCCP-conditional.

Desire as Belief

(Desire-as-Belief)
$$\forall A \ \exists A^{\circ} \ \forall < P, \ V> \ V(A) = P(A^{\circ}).$$
 (Indexical Desire-as-Belief) $\forall < P, \ V> \ \forall A \ \exists \ A_{< P, V>}{}^{\circ} \ V(A) = P(A_{< P, V>}{}^{\circ}).$