Day 6 Spectral methods

- 6.1 Power spectrum
- 6.2 Summary and additional questions

Recap of Day 5

5.1 Curve-fitting

Linear fit

Polynomial fit

5.2 Stochastic time-series models

Autoregressive model

Mean, variance and autocovariance

6.1 Power spectrum

- 6.1.1 Ornstein-Uhlenbeck process
- 6.1.2 O-U variance and cross-correlation
- 6.1.3 Power spectrum and Wiener-Khinchin theorem

6.1.1 Ornstein-Uhlenbeck model

• The autoregressive model is discrete in time.

$$X_k = c + \phi X_{k-1} + \epsilon_k$$
 where $\langle \epsilon \rangle = 0$ and $\langle \epsilon^2 \rangle = \sigma_{\epsilon}^2$.

ullet Does a continuum limit exist? Assume time-step Δ_t so $t = \Delta_t k$.

Meaning shorter time steps tend to some limit independent of

Question:

- uestion: $^{\text{not obsorping}}_{\text{between three }\tau \text{ is a time constant.}}$ Let $\phi=1-\Delta_t/ au$ where au is a time constant.
- And call $\langle X \rangle = \mu$ and $\text{Var}(X) = \sigma^2$, neither of which are dependent on Δ_t to leading order. To satisfy this restriction...
- Show that $c = \mu \Delta_t / \tau$
- Show that $\sigma_{\epsilon}^2 = \sigma^2 2\Delta_t/\tau$ to leading order in Δ_t .
- And finally show that in the continuum limit

$$\tau \frac{dX}{dt} = \mu - X + \sigma \sqrt{2\tau} \xi(t)$$

where $\langle \xi(t) \rangle = 0$ and $\langle \xi(t)\xi(t') \rangle = \delta(t-t')$.

Show of = or Zat

$$\langle X \rangle = \mu$$
 $\stackrel{\xi}{} \langle X \rangle = \frac{c}{1-\phi}$ (from yesterday)

$$\mu = \frac{c}{1-\phi}$$

$$C = \mu (1-\phi)$$

$$X_{t} = C + \phi X_{t-1} + \varepsilon_{t}$$

Let
$$\mathcal{E}_{k} = \mathcal{Y}_{k} \sigma_{\epsilon}$$
, $\mathcal{Y}_{k} \sim \mathcal{N}(0,1)$

$$\sigma^{2} = \frac{\sigma_{\varepsilon}^{2}}{1 - \left(1 - \frac{\lambda^{2}}{2}\right)^{2}} - \frac{\sigma_{\varepsilon}^{2}}{2 \frac{\delta^{2}}{2} + O(\Delta t^{2})}$$

$$X_{t} = \mu \stackrel{\Delta t}{\tau} + (1 - \stackrel{\Delta t}{\tau}) X_{t-1} + \Upsilon_{k} \sigma_{\epsilon}$$

$$X_{t} = \mu \stackrel{\Delta t}{\tau} + (\frac{\tau - \Delta t}{\tau}) X_{t-1} + \Upsilon_{k} \sigma_{\epsilon}$$

$$Y_{t} = \mu \Delta t + (\tau - \Delta t) X_{t-1} + \tau \Upsilon_{k} \sigma_{\epsilon}$$

$$X_{K} = C + \phi X_{K-1} + \mathcal{E}_{K}$$

$$X_{K} = M + (1 - \frac{\Delta t}{T}) X_{K-1} + Y_{K} \sqrt{\frac{2\Delta t}{T}}$$

$$X_{K} = M + (1 - \frac{\Delta t}{T}) X_{K-1} + Y_{K} \sqrt{\frac{2\Delta t}{T}}$$

$$X_{k-1} = \mu \stackrel{\text{de}}{\Sigma} - \stackrel{\text{de}}{\Sigma} X_{k-1} + Y_{k} \stackrel{\text{odt}}{\sqrt{\Delta t}} \sqrt{\frac{2}{L}}$$

$$X_{k-1} = X_{k} + O(\Delta t) \text{ so can write it as } X_{k}$$

$$\frac{X_{k}-X_{k-1}}{\Delta t} = \frac{\mu}{T} - \frac{X_{k}}{T} + \frac{T_{k}}{\sqrt{\Delta t}} = \sqrt{\frac{2}{T}}$$

$$\frac{dX}{dt} = \frac{u - X}{2} + \sqrt{\frac{2}{3}} \left(\frac{3}{4} \right)$$

$$\frac{3}{4} \left(\frac{1}{2} \right) = \frac{4}{16} \times \frac{1}{2} \times \frac{1}{2$$

Show
$$\langle \ell(t) \rangle = 0$$

discrete

 $\langle \ell(t) \rangle \Rightarrow \langle \ell(t) \rangle \Rightarrow$

WoW from Magnus

 $\frac{dx}{dt} = f(x) + g(x) (t)$ Be careful if have form

changes violently enough like dirac delta function

 $\frac{dx}{dt} = a \times (t) \delta(t)$

x=1 on $[-\infty,0]$

Îto calculus Stratonovich calculus

matematicians would write g(x(t-E))

What happens after X=0?

 $\frac{dx}{dt} = dx \delta(t)$

 $\int \frac{1}{x} dx = \lambda \int \delta(t) dt$

ln(x) = d + C?

x=e d

if wrote
$$\frac{dx}{dt} = \alpha \chi(t-\epsilon) \delta(t)$$

then $\chi(t-0) = 1+\alpha$

6.1.2 O-U variance

• Differential equation make sure you can solve

$$\tau \frac{dX}{dt} = \mu - X + \sigma \sqrt{2\tau} \xi(t)$$

• Straightforward to solve $\langle \frac{d^{2}x}{dt} \rangle = \frac{d}{dt} \langle x \rangle$

$$X(t) = \mu + \sigma \sqrt{2\tau} \int_{-\infty}^{t} \frac{ds}{\tau} e^{-(t-s)/\tau} \xi(s)$$

Mean straightforward. Check the variance...

 republic

$$\langle (X(t) - \mu)^2 \rangle = \sigma^2 2\tau \int_{-\infty}^t \frac{ds}{\tau} \int_{-\infty}^t \frac{ds'}{\tau} e^{-(t-s)/\tau} e^{-(t'-s')/\tau} \langle \xi(s)\xi(s') \rangle$$

• Use the correlator for white noise $\langle \xi(t)\xi(t')\rangle = \delta(t-t')$ to give

$$\langle (X(t) - \mu)^2 \rangle = \sigma^2 2 \int_{-\infty}^t \frac{ds}{\tau} e^{-2(t-s)/\tau} = \sigma^2$$

• What about the autocovariance?

6.1.2 O-U covariance throw how to do all of this really fact

• The solution to the O-U model

$$\tau \frac{dX}{dt} = \mu - X + \sigma \sqrt{2\tau} \xi(t) \text{ is}$$

$$X(t) = \mu + \sigma \sqrt{2\tau} \int_{-\infty}^{t} \frac{ds}{\tau} e^{-(t-s)/\tau} \xi(s)$$

• So the covariance can be written as follows (using $x = X - \mu$).

$$\langle x(t)x(t+T)\rangle = \sigma^2 2\tau \int_{-\infty}^t \frac{ds}{\tau} \int_{-\infty}^{t+T} \frac{ds'}{\tau} e^{-(t-s)/\tau} e^{-(t+T-s')/\tau} \langle \xi(s)\xi(s') \xi(s') \xi$$

- The calculation is similar to the autoregression model.
- Assume $T \ge 0$, because the T < 0 follows by symmetry.
- Non-zero part of integral runs up to T only, leaving...

So that the autocovariance becomes

$$\langle x(t)x(t+T)\rangle = \sigma^2 e^{-|T|/\tau}.$$

6.1.3 Power spectrum and Wiener-Khinchin theorem

• Consider the Fourier transform of a zero-mean signal over a finite range.

$$\hat{x}_T(\omega) = \frac{1}{\sqrt{T}} \int_{-T/2}^{T/2} dt \ x(t) e^{-i\omega t}$$

• Power spectrum (expectation of squared amplitude) $S(\omega) = \langle |\hat{x}_T(\omega)|^2 \rangle$ so $e^{i\omega t} e^{i\omega t}$

$$S(\omega) = \frac{1}{T} \int_{-T/2}^{T/2} \int_{-T/2}^{T/2} dt dt' e^{-i\omega(t-t')} \langle x(t)x(t') \rangle$$

$$\text{Alterial}$$

• But $\langle x(t)x(t')\rangle = A(t-t')$ is just the autocovariance

- ullet Consider the region of integration for large T.
- If $A(T) \rightarrow 0$ for large T then a good approximation is

$$S(\omega) \approx \frac{1}{T} \int_{-T/2}^{T/2} dr \int_{-\infty}^{\infty} dt'' \ e^{-i\omega t''} A(t'') = \hat{A}(\omega)$$

- The power-spectrum is the Fourier transform of the autocovariance.
- This is the Wiener-Khinchin theorem.

$$S(\omega) = \hat{A}(\omega)$$
 as $\lim_{t \to \infty}$

6.3 Summary and additional questions

Day 5 Basic time-series analysis

- 6.1 Power spectrum
- 6.2 Summary and additional questions

Questions

Make sure you have understood and done all the questions in the lectures.

The questions below are to be handed in for marking by 10am Monday 3rd December 2018.

- **Q6.1** Power spectrum for the Ornstein-Uhlenbeck process.
- Q6.2 Correlated Ornstein-Uhlenbeck processes.

Q6.1 Power-spectrum for the O-U process

 Consider the Ornstein-Uhlenbeck process described in the lecture notes.

Use it's autocovariance to provide the form of the power spectrum $S(\omega)$.

Q6.2 Correlated O-U processes

• Consider two O-U processes driven by the same Gaussian white noise $\xi(t)$ Same VAL, But with two different time constants τ_x and τ_y so that

$$\tau_x \frac{dx}{dt} = -x + \sigma \sqrt{2\tau_x} \xi(t)$$
 and $\tau_y \frac{dy}{dt} = -y + \sigma \sqrt{2\tau_y} \xi(t)$

- What is the same-time correlation $\langle x(t)y(t)\rangle$?
- Calculate the cross-covariance $\langle x(t)y(t+T)\rangle$ and be sure to provide the forms for both positive and negative T.

In []: