FYS-MEK 1110 / Vår 2018 / Ukesoppgaver #13 (2.-8.5.)

Test deg selv: (Disse oppgavene bør du gjøre hjemme før du kommer på gruppetimen.)

- T1. En massiv kule med masse m og radius R ruller uten å skli ned et skråplan med helningsvinkel θ . Treghetsmomentet til kulen om massesenteret er $I=\frac{2}{5}mR^2$. Finn akselerasjonen til kulen.
- T2. Tyngdeakselerasjonen på nordpolen av Neptun er 11.25 m/s². Neptun har radius 24764 km, og fullfører en full rotasjon om aksen sin i løpet av 16 timer, 6 minutter og 36 sekunder. Hva er akselerasjonen på et legeme ved ekvatoren til Neptun?
- T3. Et stupebrett med lengde L er festet i den ene enden og støttet nedenfra i et punkt som ligger i en avstand $\frac{1}{3}L$ fra den fastspente enden (se figur). Brettet er stivt og har masse m. En person med masse M står på den frie enden av brettet.

- a. Tegn et frilegeme diagram for stupebrettet og navngi alle kreftene.
- b. Finn kraften som virker på støttepunktet og kraften på den fastspente enden av brettet. Skriv kreftene som funksjon av massene m og M og tyngdeakselerasjonen g.

Gruppeoppgaver: (Disse oppgaver skal du jobbe med i gruppetimen.)

G1. En bjelke med vekt $m_Bg=100~{\rm N}$ og lengde $L=2~{\rm m}$ er festet horisontal med to vertikale kabler, en på hver side. Det maksimale snordraget som kabel A tåler er 300 N, for kabel B er det maksimal 200 N.

- a. Hvor mye vekt kan du legge på bjelken uten at en av de to kabler svikter?
- b. Hvor på bjelken må du legge denne vekten?

G2. En sylinder som roterer om massesenteret sitt er satt ned på et skråplan med helningsvinkel θ . Sylinderen har masse m, radius R og treghetsmomentet om massesenteret er $I = \frac{1}{2}mR^2$. Vi definerer x aksen

langs skråplanet som vist i figuren.

Sylinderen roterer med klokken med en initial vinkelhastighet $\vec{\omega} = -\omega_0 \hat{k}$. (z aksen peker ut av papirplanet.) Den dynamiske friksjonskoeffisienten mellom sylinderen og overflaten til skråplanet er μ_d . Når den er satt ned på skråplanet ruller og sklir sylinderen samtidlig i en blandet bevegelse. I denne oppgaven er vi interessert i den første perioden fram til det blir en ren rullebevegelse. Du kan se bort fra luftmotstanden.

- a. Tegn et frilegemediagram for sylinderen og uttrykk alle kreftene ved hjelp av m, g, μ_d , og θ .
- b. Finn akselerasjonen til sylinderen langs skråplanet.
- c. Diskuter bevegelsen for forskjellige verdier for vinkelen θ . I hvilken retning beveger sylinderen seg i følgende tilfelle?
 - i. $\tan \theta < \mu$: liten helning eller mye friksjon
 - ii. $\tan \theta > \mu$: stor helning eller liten friksjon
 - iii. $\tan \theta = \mu$

I det følgende antar vi at $\tan \theta = \mu$.

- d. Sammenlign friksjonskraften med komponenten til tyngdekraften som er langs skråplanet.
- e. Finn netto kraftmoment på sylinderen.
- f. Finn vinkelakselerasjon til sylinderen. Hvilken retning har vinkelakselerasjonen og hva betyr det for rotasjonsbevegelsen til sylinderen?
- g. Etter hvor mye tid stopper rotasjonen og hva skjer etterpå?

Fasit:

T1.
$$a = -\frac{5}{7}g\sin\theta$$

T2.
$$10.96 \text{ m/s}^2$$

T3. b) ved stigen:
$$N_1 = \frac{1}{2}mg + 2Mg$$
, ved støttepunktet: $N_2 = \frac{3}{2}mg + 3Mg$

G1. a) 400 N b) 0.75 m fra kabel A G2. b)
$$a_x = \mu_d g \cos(\theta) - g \sin(\theta)$$
 e)

e)
$$\vec{\tau} = \mu_d mgR \cos(\theta) \hat{k}$$

f)
$$\vec{\alpha} = \frac{2g\sin(\theta)}{R}\hat{k}$$

g)
$$t = \frac{R\omega_0}{2g\sin(\theta)}$$