CHƯƠNG 6. BÀI TOÁN LUÔNG CỰC ĐẠI TRONG MẠNG

NỘI DUNG:

- Giới thiệu bài toán
- Định lý Ford-Fulkerson
- Thuật toán tìm luồng cực đại trong mạng
- Một số bài toán luồng tổng quát
- Úng dụng

6.1 Giới thiệu bài toán

1. Mang

Mạng là đồ thị có hướng G = (V, E) thỏa mãn:

- Có duy nhất đỉnh s không có cung đi vào gọi là điểm phát;
- Có duy nhất đỉnh t không có cung đi ra gọi là điểm thu;
- Mỗi cung $e = (u, v) \in E$ có trọng số không âm c(e) = c(u, v) gọi là khả năng thông qua của cung e.

2. Luồng trong mạng

Luồng f trong mạng G = (V, E) là ánh xạ f: $E \to R$ gán mỗi cung $e = (u, v) \in E$ một số thực không âm f(e) = f(u, v) gọi là luồng trên cung e thỏa mãn các điều kiện:

(1) Luồng trên mỗi cung $e \in E$ không vượt quá khả năng thông qua:

$$0 \le f(e) \le c(e);$$

(2) Điều kiện cân bằng luồng tại mỗi đỉnh $v \in V$, $v \neq s$, t: Tổng luồng trên các cung đi vào v bằng tổng luồng trên các cung đi ra khỏi v.

Ký hiệu
$$\Gamma(v) = \{u \in V: (u, v) \in E\},$$

$$\Gamma(v) = \{w \in V: (v, w) \in E\}.$$

$$Div_f(v) = \sum_{u \in \Gamma(v)} f(u, v) - \sum_{w \in \Gamma(v)} f(v, w) = 0.$$

3. Giá trị luồng

Giá trị của luồng f là val(f) = $\sum_{v \in \Gamma^+(s)} f(s, v) = \sum_{u \in \Gamma^-(t)} f(u, t)$.

4. Bài toán luồng cực đại

Input: Mang G = (V, E);

Output: Luồng f* có giá trị luồng val(f*) lớn nhất;

Ví dụ về luồng:

- Hệ thống ống dẫn dầu bơm từ tàu chở dầu vào bể chứa dầu.
 Hệ thống các tuyến đường giao thông nối sân bay Nội bài về Hồ Hoàn kiếm.

6.2 Định lý Ford-Fulkerson

1. Lát cắt:

Cho X là tập các đỉnh và $X^* = V \setminus X$ với $s \in X$ và $t \in X^* \Rightarrow (X, X^*)$ gọi là một lát cắt. Khả năng thông qua của lát cắt:

$$c(X, X^*) = \sum_{u \in X, v \in X^*} c(u, v).$$

Lát cắt có khả năng thông qua nhỏ nhất gọi là lát cắt hẹp nhất.

Bổ đề 1. Giá trị của mọi luồng f không vượt quá khả năng thông qua của lát cắt bất kỳ: $val(f) \le c(X, X^*)$.

⇒ Giá trị luồng cực đại không vượt quá khả năng thông qua của lát cắt hẹp nhất.

2. Một số khái niệm

- Cho luồng f trong mạng G = (V, E). Xét đồ thị có trọng số G_f như sau:
- (1) Nếu $e = (u, v) \in E \text{ với } f(u, v) = 0 \Rightarrow e = (u, v) \in E_f \text{ với trọng số } c(u, v);$
- (2) Nếu $e = (u, v) \in E$ với $f(u, v) = c(u, v) \Rightarrow e = (v, u) \in E_f$ với trọng số f(u, v);
- (3) Nếu $e = (u, v) \in E$ với $0 < f(u, v) < c(u, v) \Rightarrow e = (u, v) \in E_f$ với trọng số c(u, v) f(u, v) và $e = (v, u) \in E_f$ với trọng số f(u, v).
- Các cung của G_f cũng là cung của G gọi là cung thuận.
- Các cung của G_f không là cung của G gọi là cung nghịch.
- G_f gọi là đồ thị tăng luồng.

- Gọi $P=(s=v_0,\,v_1,\,...,\,v_k=t)$ là một đường đi từ s đến t trên G_f và δ là giá trị nhỏ nhất của các trọng số trên các cung thuộc P. Xây dựng luồng f':
- (1) Nếu $(u, v) \in P$ là cung thuận thì $f'(u, v) = f(u, v) + \delta$;
- (2) Nếu (u, v) \in P là cung nghịch thì f'(u, v) = f(u, v) δ ;
- (3) Nếu $(u, v) \notin P$ thì f'(u, v) = f(u, v).

$$\Rightarrow$$
 val(f*) = val(f) + δ

- ⇒ Thủ tục tăng luồng dọc theo P.
- Mọi đường đi từ s đến t trên G_f là đường tăng luồng f.

<u>Định lý Ford-Fullkerson</u>

Các mệnh đề sau là tương đương:

- (1) f là luồng cực đại trong mạng;
- (2) Không tìm được đường tăng luồng;
- (3) Giá trị luồng f bằng khả năng thông qua của một lát cắt nào đó: $val(f) = c(X, X^*)$.

6.3 Thuật toán tìm luồng cực đại trong mạng

Input: Mạng G = (V, E) cho bởi ma trận trọng số c[i][j];

Đỉnh phát s; Đỉnh thu t;

Output: Luồng cực đại f; giá trị luồng val(f);

```
Thuật toán Max_Flow {
// Khởi tạo
for u \in V
  for v \in V \{f(u, v) = 0; \}
//Lặp
Stop = 0;
while (!Stop) {
if (Tìm được được đường tăng luồng P) {
   <Tăng luồng f dọc theo P>;
 else Stop = 1;
 return (f, val(f));
```

```
void FindPath(){
int cq, dq, u, v;
int Stop = 1;
for (u = 1; u \le n; u++) vs[u] = 0;
cq = 1; dq = 1; q[cq] = s; vs[s] = 1; p[s] = 0; d[s] = 10000;
  while (dq \le cq)
     u = q[dq]; dq++;
     for (v = 1; v \le n; v++)
      if (!vs[v]) {
            if (c[u][v] > 0 && fl[u][v] < c[u][v]) {
             p[v] = u; d[v] = Min(d[u], c[u][v] - fl[u][v]);
             cq++; q[cq] = v; vs[v] = 1;
             if (v = t) return;
         if (c[v][u] > 0 \&\& fl[v][u] > 0) {
            p[v] = -u; d[v] = Min(d[u], fl[v][u]); cq++; q[cq] = v; vs[v] = 1;
             if (v = t) return;
   Stop = 0;
```

┢┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍

6.4 Một số bài toán luồng tổng quát

1. Mạng có nhiều điểm phát, nhiều điểm thu

Xét mạng G có p điểm phát $s_1, ..., s_p$ và q điểm thu $t_1, ..., t_q$. Một luồng có thể xuất phát từ một đỉnh phát bất kỳ đến một trong các đỉnh thu và được định nghĩa tương tự như trên.

- Bài toán luồng cực đại trên G được đưa về bài toán trên bằng cách bổ sung 1 đỉnh phát giả s và 1 đỉnh thu giả t.
- Từ đỉnh phát giả s có cạnh nối đến các đỉnh phát $s_1, ..., s_p$ với khả năng thông qua là vô cùng lớn.
- Từ các đỉnh thu $t_1, ..., t_q$ có cạnh nối đến đỉnh thu giả t với khả năng thông qua là vô cùng lớn.

Thuật toán tìm luồng cực đại:

- Tìm luồng cực đại f^* trên mạng $G \cup \{s, t\}$ bằng thuật toán Max_Flow;
- Bỏ hai đỉnh giả s và $t \Rightarrow$ có luồng cực đại f^* trên G với $val(f^*)$.

2. Bài toán với khả năng thông qua của đỉnh và cạnh

Xét mạng G.

Ngoài khả năng thông qua c[u][v] trên cạnh $(u, v) \in E$, còn có khả năng thông qua của đỉnh v là số nguyên không âm d[v], $v \in V$.

Luồng f trên mạng G phải thỏa mãn thêm điều kiện: tổng luồng đi vào đỉnh v không vượt quá d[v].

Yêu cầu: Tìm luồng cực đại giữa s và t.

- (1) Xây dựng mạng G'sao cho mỗi $v \in G$ tương ứng hai đỉnh v^+ , v^- trong G' với khả năng thông qua:
- $c[u^{-}][v^{+}] = c[u][v]; c[v^{-}][w^{+}] = c[v][w]; c[v^{-}][v^{+}] = d[v];$
- (2) Tìm luồng cực đại f* trên G';
- (3) Xuất f* trên G và val(f*);

3. Mạng có khả năng thông qua bị chặn hai phía

Xét mạng G.

Khả năng thông qua trên cạnh $(u, v) \in E$ có cận trên là c[u][v] và cận dưới là d[u][v]. Luồng f trên mạng G phải thỏa mãn thêm điều kiện:

 $d[u][v] \le f[u][v] \le c[u][v].$

Yêu cầu: Tìm luồng cực đại giữa s và t.

(1) Đưa vào hai đỉnh phát giả s_u và thu giả t_u;

Xây dựng mạng G_u sao cho mỗi cung (u, v) có $d[u][v] \neq 0$ tương ứng hai cung (s_u, v) và (u, t_u) với khả năng thông qua d[u][v]; khả năng thông qua của (u, v) là c[u][v] - d[u][v];

- (2) $d^* = \sum_{(u, v) \in E} d[u][v];$
- (3) Tìm luồng cực đại f* trên G_u;
- (4) Nếu val $(f^*) = d^* \Rightarrow Xuất luồng f tương thích <math>f^*$ trên G và val(f);

6.5 Úng dụng

1. Bộ ghép cực đại

Cho đồ thị hai phía G với $V = X \cup Y$, $X \cap Y = \emptyset$; Bộ ghép M trên G là các cặp (x, f(x)) với đơn ánh $f: X \to Y$. **Yêu cầu**: Tìm M có số lượng phần tử lớn nhất.

Ví du:

- 1) Bài toán phân việc;
- 2) Bài toán đám cưới vùng quê.

(1) Đưa vào hai đỉnh phát giả s_u và thu giả t_u;

Xây dựng mạng G_u gồm các cung $(u, v) \in E$ và thêm các cung (s_u, u) và $(v, t_u), u \in X$ và $v \in Y$ với khả năng thông qua 1;

- (2) Tìm luồng cực đại f trên G_u;
- (3) Xuất các cặp (u, v) nếu f[u][v] > 0, $u \in X$ và $v \in Y$ và val(f);

Ghi chú

- Xét đồ thị hai phía có trọng số không âm;
- Tìm bộ ghép M có số cặp lớn nhất và tổng trọng số lớn nhất;
- Thuật toán tương tự trên.

2. Hệ đại diện chung

Cho $X = \{z_1, z_2, ..., z_m\}$ và hai dãy tập con của $X: \langle A_1, ..., A_n \rangle$ và $\langle B_1, ..., B_n \rangle$; Dãy n phần tử khác nhau của $X: (a_1, ..., a_n)$ gọi là hệ đại diện chung của hai dãy trên \Leftrightarrow tồn tại hoán vị của các số $\{1, ..., n\}$ là $(h_1, ..., h_n)$ thỏa mãn $a_i \in A_i \cap B_{hi}$, với i = 1, ..., n.

Yêu cầu: Tìm hệ đại diện chung $(a_1, ..., a_n)$.

- (1) Xây dựng mạng G = (V, E) với:
- $V = \{s, t\} \cup \{x_1, ..., x_n\} \cup \{u_1, ..., u_m\} \cup \{v_1, ..., v_m\} \cup \{y_1, ..., y_n\};$

trong đó x_i tương ứng A_i , y_i tương ứng B_i , u_i , v_i tương ứng z_i ;

$$E = \{(s, x_i) | i = 1, ..., n\} \cup \{(x_i, u_j | z_j \in A_i\} \cup \{(u_i, u_j)\} \cup \{v_j, y_i)\} \cup \{(y_i, t)\};$$

khả năng thông qua trên các cung là 1;

- (2) Tìm luồng cực đại f trên G;
- (3) Nếu val(f) = n \Rightarrow Xuất (a₁, ..., a_n), với a_i tương ứng z_i;