PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of Toshinori NAKAYAMA

Application No.: New U.S. Patent Application

Filed: July 26, 2000

Docket No.: 106364

For:

SUBSTRATE FOR SEMICONDUCTOR DEVICE, SEMICONDUCTOR CHIP MOUNTING SUBSTRATE, SEMICONDUCTOR DEVICE AND METHOD OF

FABRICATION THEREOF, AND CIRCUIT BOARD, TOGETHER WITH ELECTRONIC

EQUIPMENT

CLAIM FOR PRIORITY

Director of the U.S. Patent and Trademark Office Washington, D.C. 20231

Sir:

The benefit of the filing dates of the following prior foreign applications filed in the following foreign country(ies) is hereby requested for the above-identified patent application and the priority provided in 35 U.S.C. §119 is hereby claimed:

Japanese Patent Application No. 11-213184 filed July 28, 1999. Japanese Patent Application No. 2000-173294 filed June 9, 2000

X	are filed herewith.			
		•		
	were filed on	in Parent Application No.	filed	

In support of this claim, certified copies of said original foreign applications:

It is requested that the file of this application be marked to indicate that the requirements of 35 U.S.C. §119 have been fulfilled and that the Patent and Trademark Office kindly acknowledge receipt of these documents.

Respectfully submitted,

James A. Oliff Registration No. 27,075

Joel S. Armstrong Registration No. 36,430

JAO:JSA/cmm Date: July 26, 2000

OLIFF & BERRIDGE, PLC P.O. Box 19928 Alexandria, Virginia 22320 Telephone: (703) 836-6400 DEPOSIT ACCOUNT USE AUTHORIZATION Please grant any extension necessary for entry; Charge any fee due to our Deposit Account No. 15-0461

HC.

日本国特許庁 PATENT OFFICE

JAPANESE GOVERNMENT
別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1999年 7月28日

出 願 番 号 Application Number:

平成11年特許願第213184号

セイコーエプソン株式会社

2000年 5月12日

特 許 庁 長 官 Commissioner, Patent Office

特平11-213184

•

【書類名】

特許願

【整理番号】

EP196401

【提出日】

平成11年 7月28日

【あて先】

特許庁長官殿

【国際特許分類】

H01L 21/48

【発明者】

【住所又は居所】

山形県酒田市十里塚166番地3 東北エプソン株式会

社内

【氏名】

中山 敏紀

【特許出願人】

【識別番号】

000002369

【氏名又は名称】

セイコーエプソン株式会社

【代理人】

【識別番号】

100090479

【弁理士】

【氏名又は名称】

井上 一

【電話番号】

03-5397-0891

【選任した代理人】

【識別番号】

100090387

【弁理士】

【氏名又は名称】

布施 行夫

【電話番号】

03-5397-0891

【選任した代理人】

【識別番号】

100090398

【弁理士】

【氏名又は名称】 大渕 美千栄

【電話番号】

03-5397-0891

【手数料の表示】

【予納台帳番号】 039491

特平11-213184

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9402500

【プルーフの要否】

【書類名】 明細書

【発明の名称】 半導体装置用基板、半導体チップ搭載基板、半導体装置及びその製造方法、回路基板並びに電子機器

【特許請求の範囲】

【請求項1】 切削切断可能な材料からなり、半導体チップの搭載領域を有し、個々の半導体装置用の個片に切断するための切削ラインが交差する位置に、 少なくとも1つの穴又は凹部が形成された半導体装置用基板。

【請求項2】 請求項1記載の半導体装置用基板において、

前記切削ラインが交差する位置に1つの前記穴又は凹部が形成され、

前記穴又は凹部は、前記切削ラインの交差部を含む大きさで形成されている半 導体装置用基板。

【請求項3】 請求項1記載の半導体装置用基板において、

前記切削ラインが交差する位置に複数の前記穴又は凹部が形成され、

それぞれの穴又は凹部の端部が、前記切削ラインの交差部に重なる半導体装置 用基板。

【請求項4】 請求項3記載の半導体装置用基板において、

前記複数の穴又は凹部は、前記切削ラインのうち、前記交差部における最後に 切削が行われる切削ラインを挟んで形成されている半導体装置用基板。

【請求項5】 請求項4記載の半導体装置用基板において、

前記複数の穴又は凹部は、前記切削ラインの交差部よりも、前記最後に切削が 行われる切削ラインの上流側に形成されている半導体装置用基板。

【請求項6】 請求項4又は請求項5記載の半導体装置用基板において、

前記最後に切削が行われる切削ラインを挟んで、一方の側に形成された1つの 前記穴又は凹部と、他方の側に形成された1つの前記穴又は凹部との間隔は、切 削ツールの切削部の厚みよりも小さい半導体装置用基板。

【請求項7】 請求項1から請求項6のいずれかに記載の半導体装置用基板において、

少なくとも1つの前記穴が形成され、

前記穴は、シール材によって開口が塞がれてなる半導体装置用基板。

【請求項8】 請求項7記載の半導体装置用基板において、

配線パターンが形成されており、

前記シール材は、前記配線パターンと同じ材料で形成されている半導体装置用 基板。

【請求項9】 切削切断可能な材料からなり、複数の個片に切断するための 切削ラインが交差する位置に、少なくとも1つの穴又は凹部が形成された基板と

前記基板に搭載された複数の半導体チップと、

を含む半導体チップ搭載基板。

【請求項10】 請求項9記載の半導体チップ搭載基板において、

前記複数の半導体チップが樹脂によって一括封止されてなる半導体チップ搭載 基板。

【請求項11】 請求項10記載の半導体チップ搭載基板において、

前記穴又は凹部に、前記樹脂が充填されてなる半導体チップ搭載基板。

【請求項12】 請求項9から請求項11のいずれかに記載の半導体チップ 搭載基板において、

前記基板として、請求項2から請求項8のいずれかに記載の半導体装置用基板が使用されてなる半導体チップ搭載基板。

【請求項13】 請求項10記載の半導体チップ搭載基板において、

前記基板として、請求項7又は請求項8記載の半導体装置用基板が使用され、

前記半導体装置用基板における前記シール材が設けられた面に、前記樹脂が設けられてなる半導体チップ搭載基板。

【請求項14】 半導体チップと、

前記半導体チップが搭載され、切削切断により形成された基板と、

前記半導体チップを封止する樹脂と、

を含み、

角部を有する外形をなし、

前記角部において、前記基板の一部が、前記樹脂の端面よりも内側に入り込ん

でいる半導体装置。

【請求項15】 請求項14記載の半導体装置において、

前記角部において、前記基板が、前記角部の突出方向とは反対方向に入り込む 形状をなすことで、前記基板の端面が、前記樹脂の端面よりも内側に入り込んで いる半導体装置。

【請求項16】 請求項14記載の半導体装置において、

前記角部において、前記基板に薄肉部が形成されることで、前記基板の前記薄 肉部の面が、前記樹脂の端面よりも内側に入り込んでいる半導体装置。

【請求項17】 請求項14から請求項16のいずれかに記載の半導体装置において、

前記角部において、前記樹脂の端面よりも内側に入り込んでいる前記基板の前 記一部は、前記樹脂にて覆われている半導体装置。

【請求項18】 請求項14から請求項16のいずれかに記載の半導体装置において、

前記角部において、前記基板と前記樹脂との間にシール材が設けられ、

前記樹脂の端面よりも内側に入り込んでいる前記基板の前記一部は、露出してなる半導体装置。

【請求項19】 請求項14から請求項18のいずれかに記載の半導体装置が搭載された回路基板。

【請求項20】 請求項14から請求項18のいずれかに記載の半導体装置を備える電子機器。

【請求項21】 切削ラインが交差する位置に少なくとも1つの穴又は凹部が形成された基板に複数の半導体チップを搭載し、前記複数の半導体チップを樹脂で一括封止する第1工程と、

前記切削ラインに沿って、前記穴又は凹部の少なくとも一部を通って、前記基板及び樹脂を切削して個片に切断する第2工程と、

を含む半導体装置の製造方法。

【請求項22】 請求項21記載の半導体装置の製造方法において、

前記第1工程で、前記穴又は凹部に前記樹脂を充填する半導体装置の製造方法

【請求項23】 請求項21記載の半導体装置の製造方法において、

前記基板には、少なくとも1つの前記穴が形成され、

前記第1工程前に、前記穴の開口を塞ぐシール材を設け、

前記第1工程で、前記樹脂を、前記シール材によって前記穴への流入を防止して設ける半導体装置の製造方法。

【請求項24】 請求項23記載の半導体装置の製造方法において、

前記第1工程前に、前記基板に配線パターンを形成する工程を含み、

前記シール材を、配線パターンを形成する工程で形成する半導体装置の製造方法。

【請求項25】 請求項21から請求項24のいずれかに記載の半導体装置の製造方法において、

前記切削ラインが交差する位置に1つの前記穴又は凹部が形成され、

前記第2工程で、前記穴又は凹部の内側を通って、前記基板及び樹脂を切削する半導体装置の製造方法。

【請求項26】 請求項21から請求項24のいずれかに記載の半導体装置の製造方法において、

前記切削ラインが交差する位置に複数の前記穴又は凹部が形成され、

前記複数の穴又は凹部は、前記切削ラインのうち、前記切削ラインが交差する 位置で最後に切削が行われる切削ラインを挟んで形成され、

前記第2工程で、それぞれの穴又は凹部の端部を通って、前記基板及び樹脂を 切削する半導体装置の製造方法。

【請求項27】 請求項26記載の半導体装置の製造方法において、

前記最後に切削が行われる切削ラインを挟んで、一方の側に形成された1つの 前記穴又は凹部と、他方の側に形成された1つの前記穴又は凹部と、の間隔より も厚みの大きい切削ツールで、前記基板及び樹脂を切削する半導体装置の製造方 法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、半導体装置用基板、半導体チップ搭載基板、半導体装置及びその製造方法、回路基板並びに電子機器に関する。

[0002]

【発明の背景】

CSP (Chip Scale/Size Package) のような小型パッケージを供給するために、フレキシブル基板に複数の半導体チップを搭載し、これらを一括して樹脂封止する方法が開発されている。一括封止された製品は、切削で個片化される。

[0003]

この場合、フレキシブル基板をブレードやルータ等で切削すると、個片の角部 に切削くずが生じるという問題があり、一層の改良が求められている。

[0004]

本発明は、この問題点を解決するものであり、その目的は、切削くずの発生を減らす半導体装置用基板、半導体チップ搭載基板、半導体装置及びその製造方法、回路基板並びに電子機器を提供することにある。

[0005]

【課題を解決するための手段】

(1)本発明に係る半導体装置用基板は、切削切断可能な材料からなり、半導体チップの搭載領域を有し、個々の半導体装置用の個片に切断するための切削ラインが交差する位置に、少なくとも1つの穴又は凹部が形成されている。

[0006]

本発明に係る半導体装置用基板は、切削により個々の半導体装置用の個片に切断できるものである。切削は、切削ラインに沿って行われる。切削ラインは、実際には、幅を有するラインであって帯状をなす。切削ラインが交差する位置では、個片の角部が形成される。

[0007]

切削ラインが交差する位置に、穴が形成されていれば、個片の角部では、半導体装置用基板の一部が、内側に入り込んだ形状となる。切削ラインが交差する位置に、凹部が形成されていれば、個片の角部では、半導体装置用基板の一部が薄

肉になる。

[0008]

したがって、交差する切削を行っても、個片の角部では、半導体装置用基板の 一部が内側に入り込んだ形状あるいは薄肉になっているので、切削くずを減少さ せることができる。

[0009]

(2) この半導体装置用基板において、

前記切削ラインが交差する位置に1つの前記穴又は凹部が形成され、

前記穴又は凹部は、前記切削ラインの交差部を含む大きさで形成されていてもよい。

[0010]

これによれば、穴の内壁面又は凹部の形成による薄肉部によって、個片の角部が形成される。そして、個片の角部では、半導体装置用基板の一部が、内側に入り込んだ形状あるいは薄肉になっている。

[0011]

(3) この半導体装置用基板において、

前記切削ラインが交差する位置に複数の前記穴又は凹部が形成され、

それぞれの穴又は凹部の端部が、前記切削ラインの交差部に重なっていてもよい。

[0012]

これによれば、穴の内壁面又は凹部の形成による薄肉部によって、個片の角部が形成される。そして、個片の角部では、半導体装置用基板の一部が、内側に入り込んだ形状あるいは薄肉になっている。

[0013]

しかも、穴又は凹部の一部分が、切削ラインの交差部に重なればよいため、それぞれの穴又は凹部を小さく形成することができる。

[0014]

(4) この半導体装置用基板において、

前記複数の穴又は凹部は、前記切削ラインのうち、前記交差部における最後に

切削が行われる切削ラインを挟んで形成されていてもよい。

[0015]

(5) この半導体装置用基板において、

前記複数の穴又は凹部は、前記切削ラインの交差部よりも、前記最後に切削が 行われる切削ラインの上流側に形成されていてもよい。

[0016]

(6) この半導体装置用基板において、

前記最後に切削が行われる切削ラインを挟んで、一方の側に形成された1つの 前記穴又は凹部と、他方の側に形成された1つの前記穴又は凹部との間隔は、切 削ツールの切削部の厚みよりも小さくてもよい。

[0017]

こうすることで、穴又は凹部の一部を切り欠いて切削を行うことができ、穴の 内壁面や凹部によって形成された薄肉部で、個片の角部を形成することができる

[0018]

(7)この半導体装置用基板において、

少なくとも1つの前記穴が形成され、

前記穴は、シール材によって開口が塞がれていてもよい。

[0019]

これによれば、穴に封止樹脂が流入することを防止でき、穴を介して封止樹脂が、半導体装置用基板の一方の面から他方の面に回り込むことを防止できる。

[0020]

(8) この半導体装置用基板において、

配線パターンが形成されており、

前記シール材は、前記配線パターンと同じ材料で形成されていてもよい。

[0021]

これによれば、製造工程を増やすことなく、シール材を形成することができる

[0022]

(9)本発明に係る半導体チップ搭載基板は、切削切断可能な材料からなり、 複数の個片に切断するための切削ラインが交差する位置に、少なくとも1つの穴 又は凹部が形成された基板と、

前記基板に搭載された複数の半導体チップと、

を含む。

[0023]

本発明で、複数の半導体チップが搭載された基板は、切削により複数の個片に 切断できるものである。切削は、切削ラインに沿って行われる。切削ラインは、 実際には、幅を有するラインであって帯状をなす。切削ラインが交差する位置で は、個片の角部が形成される。

[0024]

切削ラインが交差する位置に、穴が形成されていれば、個片となった基板の角部は、内側に入り込んだ形状となる。切削ラインが交差する位置に、凹部が形成されていれば、個片となった基板の角部は薄肉になる。

[0025]

したがって、交差する切削ラインに沿って切削を行っても、個片となった基板 の角部は、内側に入り込んだ形状あるいは薄肉になっているので、切削くずを減 少させることができる。

[0026]

(10)この半導体チップ搭載基板において、

前記複数の半導体チップが樹脂によって一括封止されていてもよい。

[0027]

これによれば、基板を切削切断するときに、樹脂も同時に切削切断する。

[0028]

(11) この半導体チップ搭載基板において、

前記穴又は凹部に、前記樹脂が充填されていてもよい。

[0029]

これによれば、切削ラインの交差部に樹脂が設けられる。基板に穴が形成されている場合は、基板及び樹脂の個片の角部は、樹脂で形成される。基板に凹部が

形成されている場合は、基板及び樹脂の個片の角部は、薄肉の基板と樹脂とで形成される。

[0030]

(12) この半導体チップ搭載基板において、

前記基板として、請求項2から請求項8のいずれかに記載の半導体装置用基板が使用されていてもよい。

[0031]

(13) この半導体チップ搭載基板において、

前記基板として、上記半導体装置用基板が使用され、

前記半導体装置用基板における前記シール材が設けられた面に、前記樹脂が設けられていてもよい。

[0032]

これによれば、樹脂が穴に流入することを防止でき、穴を介して基板の一方の 面から他方の面に樹脂が回り込むことを防止できる。

[0033]

(14) 本発明に係る半導体装置は、半導体チップと、

前記半導体チップが搭載され、切削切断により形成された基板と、

前記半導体チップを封止する樹脂と、

を含み、

角部を有する外形をなし、

前記角部において、前記基板の一部が、前記樹脂の端面よりも内側に入り込んでいる。

[0034]

本発明によれば、角部において、基板を交差して切削切断したときに生じてそのまま基板に残る切削くずが減少した構造となっている。

[0035]

(15) この半導体装置において、

前記角部において、前記基板が、前記角部の突出方向とは反対方向に入り込む 形状をなすことで、前記基板の端面が、前記樹脂の端面よりも内側に入り込んで いてもよい。

[0036]

(16) この半導体装置において、

前記角部において、前記基板に薄肉部が形成されることで、前記基板の前記薄 肉部の面が、前記樹脂の端面よりも内側に入り込んでいてもよい。

[0037]

(17) この半導体装置において、

前記角部において、前記樹脂の端面よりも内側に入り込んでいる前記基板の前記の部でである。 記一部は、前記樹脂にて覆われていてもよい。

[0038]

これによれば、角部において、基板の一部が樹脂にて覆われているので、交差 する切削による基板の切削くずが生じていない。

[0039]

(18) この半導体装置において、

前記角部において、前記基板と前記樹脂との間にシール材が設けられ、

前記樹脂の端面よりも内側に入り込んでいる前記基板の前記一部は、露出していてもよい。

[0040]

(19) 本発明に係る回路基板には、上記半導体装置が搭載されている。

[0041]

(20) 本発明に係る電子機器は、上記半導体装置を備える。

[0042]

(21)本発明に係る半導体装置の製造方法は、切削ラインが交差する位置に 少なくとも1つの穴又は凹部が形成された基板に複数の半導体チップを搭載し、 前記複数の半導体チップを樹脂で一括封止する第1工程と、

前記切削ラインに沿って、前記穴又は凹部の少なくとも一部を通って、前記基板及び樹脂を切削して個片に切断する第2工程と、

を含む。

[0043]

本発明で、複数の半導体チップが搭載された基板は、切削により複数の個片に 切断される。切削は、切削ラインに沿って行われる。切削ラインは、実際には、 幅を有するラインであって帯状をなす。切削ラインが交差する位置では、基板及 び樹脂の個片の角部が形成される。

[0044]

切削ラインが交差する位置に、穴が形成されていれば、基板及び樹脂の個片の 角部では、基板の一部が、内側に入り込んだ形状となる。切削ラインが交差する 位置に、凹部が形成されていれば、基板及び樹脂の個片の角部では、基板の一部 が薄肉になる。

[0045]

したがって、交差する切削ラインに沿って切削を行っても、基板及び樹脂の個 片の角部では、基板の一部が内側に入り込んだ形状あるいは薄肉になっているの で、切削くずを減少させることができる。

[0046]

(22) この半導体装置の製造方法において、

前記第1工程で、前記穴又は凹部に前記樹脂を充填してもよい。

[0047]

これによれば、切削ラインの交差部に樹脂が設けられる。基板に穴が形成されている場合は、基板及び樹脂の個片の角部は樹脂で形成される。基板に凹部が形成されている場合は、基板及び樹脂の個片の角部は、薄肉の基板と樹脂とで形成される。

[0048]

(23) この半導体装置の製造方法において、

前記基板には、少なくとも1つの前記穴が形成され、

前記第1工程前に、前記穴の開口を塞ぐシール材を設け、

前記第1工程で、前記樹脂を、前記シール材によって前記穴への流入を防止して設けてもよい。

[0049]

これによれば、樹脂が穴に流入することを防止でき、さらに、穴を介して基板

の反対側に樹脂が回り込むことを防止できる。

[0050]

(24) この半導体装置の製造方法において、

前記第1工程前に、前記基板に配線パターンを形成する工程を含み、

前記シール材を、配線パターンを形成する工程で形成してもよい。

[0051]

これによれば、工程を増やすことなくシール材を設けることができる。

[0052]

(25) この半導体装置の製造方法において、

前記切削ラインが交差する位置に1つの前記穴又は凹部が形成され、

前記第2工程で、前記穴又は凹部の内側を通って、前記基板及び樹脂を切削してもよい。

[0053]

これによれば、穴の内壁面又は凹部の形成による薄肉部によって、基板の角部 を形成することができる。

[0054]

(26) この半導体装置の製造方法において、

前記切削ラインが交差する位置に複数の前記穴又は凹部が形成され、

前記複数の穴又は凹部は、前記切削ラインのうち、前記切削ラインが交差する 位置で最後に切削が行われる切削ラインを挟んで形成され、

前記第2工程で、それぞれの穴又は凹部の端部を通って、前記基板及び樹脂を 切削してもよい。

[0055]

これによれば、穴の内壁面又は凹部の形成による薄肉部によって、基板の角部を形成することができる。しかも、穴又は凹部の一部分が、切削ラインの交差部に重なればよいため、それぞれの穴又は凹部を小さく形成することができる。

[0056]

(27) この半導体装置の製造方法において、

前記最後に切削が行われる切削ラインを挟んで、一方の側に形成された1つの

前記穴又は凹部と、他方の側に形成された1つの前記穴又は凹部と、の間隔より も厚みの大きい切削ツールで、前記基板及び樹脂を切削してもよい。

[0057]

こうすることで、穴又は凹部の一部を切り欠いて切削を行うことができ、穴の 内壁面や凹部によって形成された薄肉部で、個片の角部を形成することができる

[0058]

【発明の実施の形態】

以下、本発明の実施の形態を、図面を参照して説明する。

[0059]

(第1の実施の形態)

図1は、本発明を適用した第1の実施の形態に係る半導体装置用基板を示す図である。半導体装置用基板(以下、基板という)10は、図2に示すように、複数の半導体チップ20を搭載した後、複数の個片に切断して、複数の半導体装置30(図8参照)を製造するためのものである。基板10は、個片になると半導体装置のインターポーザとなる。

[0060]

基板10は、切削切断可能な材料からなる。特に、切削切断によって角部が形成されたときに、その角部に切削くずが生じやすい材料で基板10が形成されているときに、本発明は効果的である。例えば、基板10が弾力性のある材料で形成されているときには、本発明を適用することが好ましい。基板10の材料は、無機系の材料又は無機系の材料を含むものであってもよいが、有機系の材料が好ましい。有機系の材料から形成された基板10として、例えばポリイミド樹脂からなるフレキシブル基板が挙げられる。

[0061]

基板10には、複数の半導体チップ20を搭載するために、複数の搭載領域12が設けられている。各搭載領域12の少なくとも一方の面(多くの場合一方の面のみであるが両面であってもよい)には、配線パターン13(図8参照)が形成されていてもよい。基板10には、一方の面と他方の面とを電気的に接続する

ための複数の貫通孔14が形成されていてもよい。各搭載領域12に、複数の貫通孔14が形成されていてもよい。貫通孔14は、内壁面が銅や金などの導電材料でメッキされてスルーホールとなっていてもよいし、導電材料で埋められてもよい。

[0062]

基板10には、貫通孔14とは別に、少なくとも1つの穴16が形成されている。詳しくは、複数の切削ラインLが交差する位置に、少なくとも1つ(図1では1つのみ)の穴16が形成されている。穴16の形状は限定されず、丸穴又は角穴のいずれでもよい。穴16の直径は、切削ラインLの幅、すなわち切削ツールの刃の厚み以上である。例えば、切削ツールの刃の厚みが100~300μm(一般的には100~200μmで好ましくは150μm程度)であるとき、切削ラインLの位置の誤差が50~200μmあると考えて、穴16の直径を150~500μmとすることが好ましい。

[0063]

切削ラインLは、基板10を切断する位置を示し、基板10から得られる複数の個片を区画する位置に設定されている。図1に示す例では、複数の切削ラインLは、平行な複数の切削ラインLからなる第1のグループと、第1のグループの各切削ラインLとは直角に延びる複数の切削ラインLからなる第2のグループと、に分けられる。

[0064]

切削ラインLは、基板10を所定幅で削りながら切断する領域を示すので、実際には所定幅の帯状をなす。例えば、切削ラインLは、切削ツールの刃の厚みの幅を有する。したがって、複数の切削ラインLの交差部18は、実際には点ではなく所定の面積を有する領域である。

[0065]

穴16は、複数の切削ラインLの交差部18を内側に含む大きさ、すなわち、 交差部18よりも大きく形成されている。交差部18の全体が、穴16の内側に 位置すれば、交差部18によって、基板10の個片の角部が形成されない。基板 10の個片の角部は、穴16の内壁面によって形成される。したがって、基板1 ○ を切削切断して複数の個片を形成したときに、各個片の角部に、切削くずが生 じない。

[0066]

本実施の形態では、基板10の外周端部を切除して、その内側の領域から複数の個片を形成する。切除される外周端部に切削くずが生じてもかまわないときには、交差部18の一部が、外周端部の方向に穴16からはみだしてもよい。この場合、基板10の個片の角部は上述したように穴16の内壁面で形成されるが、切除される外周端部の角部は、交差する切削によって形成されて、切削くずが生じることがあり得る。

[0067]

本実施の形態に係る半導体装置用基板は、上述したように構成されており、以下これを用いた半導体装置の製造方法を説明する。半導体装置の製造方法は、半導体チップ搭載基板の製造工程(第1の工程)と、半導体チップ搭載基板の切削切断工程(第2の工程)と、を含む。

[0068]

(半導体チップ搭載基板の製造工程)

図2~図4は、半導体チップ搭載基板の製造工程を示す図である。図2に示すように、基板10の複数の搭載領域12のそれぞれに、半導体チップ20を搭載する。本実施の形態では、半導体チップ20をフェースアップボンディングする。半導体チップ20を接着剤21等で基板10に接着してもよい。基板10には、配線パターン13(図8参照)が形成されている。半導体チップ20を、基板10における配線パターン13が形成された面に搭載し、後述する工程で、貫通孔14を介して反対側の面に複数の外部端子26を設けてもよい。

[0069]

次に、半導体チップ20と配線パターン13と電気的に接続する。例えば、図3に示すように、ワイヤ22によって両者の電気的な接続を図ってもよい。あるいは、本実施の形態とは異なり、フェースダウンボンディングによって半導体チップ20を基板10に実装してもよい。その場合、電気的な接続には、異方性導電材料やハンダや導電ペースト等を用いたり、超音波を使用した金属接合を適用

してもよい。超音波には、熱や圧力を加えてもよい。

[0070]

次に、図4に示すように、複数の半導体チップ20を、樹脂24によって一括 封止する。封止には、金型を使用すればよい。金型を使用した場合には、樹脂2 4をモールド樹脂と称してもよい。基板10における半導体チップ20が搭載された面に配線パターン13が形成されていれば、樹脂24によって配線パターン 13が覆われて保護される。樹脂24は、基板10に形成された穴16に入り込んでもよい。

[0071]

以上の工程によって、図4に示す半導体チップ搭載基板が得られる。半導体チップ搭載基板は、複数の半導体装置を製造するための中間製品であり、複数の半導体チップ20は、樹脂24によって一括封止されている。半導体チップ搭載基板の基板10の構成については、上述した通りである。基板10の穴16には、樹脂24が充填されていてもよい。

[0072]

半導体チップ搭載基板を切断する前に、図5に示すように、基板10に複数の外部端子26を設けてもよい。この時点では、複数の半導体装置に対応する外部端子26を同時に設けることができる。外部端子26は、ハンダボールであってもよい。外部端子26は、基板10に形成されたランド部上に設けてもよい。配線パターン13が樹脂24が設けられた面に形成されている場合は、貫通孔14内に設けられたハンダ等の導電材料や、貫通孔14内を銅などの導電材料でメッキして形成されたスルーホールを介して、外部端子26と配線パターン13との電気的な接続が図られる。

[0073]

(半導体チップ搭載基板の切削切断工程)

次に、図6に示すように、基板10、複数の半導体チップ20及び樹脂24を含む半導体チップ搭載基板を切削切断する。切削切断には、シリコンウエーハを切断するときに使用されるブレード28などの切削ツールを使用してもよい。切削の位置は、図1に示す切削ラインLである。すなわち、穴16の内側を通って

1 6

、基板10及び樹脂24を切削切断して、個片としての半導体装置30が得られる。穴16に樹脂24が充填されていれば、樹脂24によって半導体装置30の 角部32(図7参照)が形成される。したがって、基板10の切削くずが生じない。

[0074]

図7には、基板10及び樹脂24の切断面が示されている。図7の例では、半導体装置30の角部32において、基板10の一部が樹脂24の端面よりも内側に入り込んでいる。上述したように、基板10は、穴16の内側に切削ラインLの交差部18が位置するので、基板10の角部は、穴16の内壁面で形成されている。したがって、半導体装置30の角部32において、基板10の穴16の内壁面が、角部32の突出方向とは反対方向に入り込んだ形状をなしている。また、半導体チップ搭載基板の製造工程で、基板10の穴16に樹脂24が充填されたので、穴16の内壁面は、樹脂24で覆われている。

[0075]

図8は、本実施の形態に係る半導体装置30を示す図である。半導体装置30は、半導体チップ20と、半導体チップ20が搭載され、切削切断により形成された基板10の個片と、半導体チップ20を封止し、切削切断により形成された樹脂24の個片と、を含む。その他の特徴は、上述した通りである。

[0076]

図8では、半導体装置30が、回路基板34に実装されている。回路基板34には例えばガラスエポキシ基板等の有機系基板を用いることが一般的である。回路基板34には例えば銅からなる配線パターン36が所望の回路となるように形成されていて、それらの配線パターン36と半導体装置30の外部端子26とを接続することでそれらの電気的導通が図られている。

[0077]

(第2の実施の形態)

図9は、本発明を適用した第2の実施の形態に係る半導体装置用基板を示す図である。図9に示す半導体装置用基板(以下基板という)40には、複数の穴46が形成されている。基板40は、穴16を除いて図1に示す基板10と同じ構

成であってもよい。

[0078]

本実施の形態では、複数の切削ライン L_1 、 L_2 が交差する位置に、複数の穴46が形成されている。切削ライン L_1 と切削ライン L_2 とは直角に交差する。切削ライン L_1 、 L_2 は、第1の実施の形態で説明した切削ラインLと同じである。したがって、図10に示すように、切削ライン L_1 、 L_2 は、所定幅の帯状をなす。それぞれの穴46は、その一部(端部)が、切削ライン L_1 、 L_2 の交差部48に重なって形成されている。

[0079]

本実施の形態では、切削ライン L_1 、 L_2 のそれぞれを挟んで、複数の穴4.6が形成されている。また、図1.0に示すように、切削ライン L_1 、 L_2 の交差部4.8の角部と穴4.6とが重複している。

[0080]

図9に拡大して示すように、切削ライン L_1 、 L_2 のいずれか1つを挟む一対の 穴46の間隔Dは、切削ライン L_1 、 L_2 の幅、すなわち切削ツール(例えばブレード28)の厚みよりも小さいことが好ましい。例えば、切削ツールの刃の厚みが100~300 μ m(一般的には100~200 μ mで好ましくは150 μ m 程度)であるとき、間隔Dは、それ未満であることが好ましい。また、穴46の直径は、切削ラインLの位置の誤差に応じた大きさでよく、例えば50~200 μ m程度でよい。本実施の形態によれば、第1の実施の形態よりも、穴46の直径を小さくすることができる。その結果、穴46に入り込んだ樹脂が、基板40の表面にはみ出す状態を減少させることができる。

[0081]

本実施の形態では、複数の交差する切削ライン L_1 、 L_2 のうち、先に一方の切削ライン L_1 に沿って切削が行われ、その後(最後に)、他方の切削ライン L_2 に沿って切削が行われる。最後に行われる切削によって、基板40の個片の角部に切削くずが生じるので、少なくとも個片の角部となる位置に穴46が形成されていることが好ましい。基板40の外周端部を切除して、それ以外の領域から複数の個片を形成するときには、切除される外周端部において角部となる位置には穴

46は必ずしも必要ではない。

[0082]

また、複数の交差する切削ライン \mathbf{L}_1 、 \mathbf{L}_2 によって、複数の個片の角部が形成されるときでも、最後の切削が行われる切削ライン \mathbf{L}_2 を挟んで穴 $\mathbf{4}$ 6が形成されていればよい。

[0083]

また、図11に示すように、複数の切削ライン L_1 、 L_2 の交差部48よりも、最後の切削が行われる切削ライン L_2 の上流側に穴46が形成されていればよい。なお、図11において、図の上から下に向かって、切削ライン L_2 に沿った切削が行われる。最後の切削が行われる切削ライン L_2 の下流側は、既に切削ライン L_1 に沿って切削されて形成された辺に対して切削を開始する部分であるから切削くずが生じない。これに対して、交差部48よりも上流側では、既に先に切削されて形成された辺に対して切削が終了する部分であるから切削くずが生じる。そこで、この部分には穴46が必要である。

[0084]

本実施の形態は、上記のように構成されており、第1の実施の形態で説明した 内容を可能な限り適用することができる。また、本実施の形態に係る基板40を 使用した半導体チップ搭載基板についても、基板40の構成の相違を除いて、第 1の実施の形態で説明した内容を適用できる。

[0085]

本実施の形態に係る基板40を使用した半導体装置の製造方法では、それぞれの穴46の端部を通って、基板40及び樹脂を切削する。また、切削工程では、一対の穴46の間隔Dよりも厚みの大きい切削ツールで、基板40及び樹脂を切削する。その他の詳細は、第1の実施の形態で説明した内容を適用できる。

[0086]

(第3の実施の形態)

図12は、本発明を適用した第3の実施の形態に係る半導体装置を示す図である。図12に示す半導体装置は、個片となった基板50と、基板50に搭載された複数の半導体チップを一括封止する樹脂52と、を含む。半導体装置の角部5

4において、基板50には薄肉部56が形成されている。薄肉部56は、基板50の表裏面の少なくともいずれか一方がくぼんで形成される。例えば、薄肉部56の厚みは、基板50の厚みの1/3~1/4程度であることが好ましい。図12に示すように、くぼんだ面が樹脂52を向いていれば、このくぼんだ面を樹脂52が覆っていてもよい。あるいは、くぼんだ面が樹脂52とは反対側を向いていてもよい。そして、薄肉部56が形成されることで、基板50のくぼんだ面が、樹脂52の端面よりも内側に入り込んでいる。

[0087]

本実施の形態に係る半導体装置で使用される個片の基板50も、複数の半導体チップの搭載領域を有する半導体装置用基板から形成することができる。詳しくは、第1又は第2の実施の形態で説明した基板10、40の穴16、46を、凹部に変えた構造の半導体装置用基板を使用すればよい。ここで、凹部は切断されて、上述した薄肉部56を形成する。

[0088]

本実施の形態に係る半導体装置用基板は、穴の代わりに凹部が形成されているので、樹脂を設けても反対側に樹脂が回り込むことがない。この半導体装置用基板を使用して半導体チップ搭載基板を製造してもよい。また、半導体チップ搭載基板を切削切断して半導体装置を製造してもよい。これらの方法については、上述した実施の形態で説明した内容を適用することができる。そして、穴の代わりに凹部を通って切削切断するので、薄肉になった部分で切削が終了するため、切削くずが小さくなる。

[0089]

また、半導体装置用基板に凹部を形成するときは、化学的なハーフエッチングを行えばよい。その場合は、樹脂を設ける面又はその反対側の面のいずれに凹部を形成してもよい。あるいは、半導体装置用基板を使用して半導体チップ搭載基板を製造してから、その一部を構成する半導体装置用基板に凹部を形成してもよい。その場合、樹脂が既に設けられている面とは反対側に凹部を形成する。

[0090]

(第4の実施の形態)

図13は、本発明を適用した第4の実施の形態に係る半導体装置を説明する図である。本実施の形態に係る半導体装置は、第1又は第2の実施の形態で説明した半導体装置の構成に、シール材66を付加したものである。

[0091]

すなわち、半導体装置の角部64において、基板60と樹脂62の間にシール材66が設けられている。そして、角部64において、基板60が角部64の突出方向とは反対方向に入り込んで形成された端面68が露出している。端面68は、樹脂62の端面よりも内側に入り込んでいる。なお、端面68を覆うために樹脂などの材料を設けてもよい。

[0092]

本実施の形態に係る半導体装置は、第1又は第2の実施の形態で説明した基板 10、40の穴16、46の開口をシール材66で塞いだ半導体装置用基板を使用して製造することができる。シール材66の材料は、樹脂であっても銅などの金属であってもよい。例えば、半導体装置用基板に配線パターンを形成するときに、同一の材料(銅などの導電材料)でシール材66を形成してもよい。しかも、配線パターンを形成するときに同時にシール材66を形成すれば、工程を増やさなくて済む。あるいは、配線パターンとは反対側の面にシール材66を設けてもよい。あるいは、配線パターンとは反対側の面にシール材66を設けてもよい。あるいは、液状のコーティング剤を穴16、46に充填し、これを固化させてもよい。なお、シール材66の色が、半導体装置用基板と異なるときには、穴16、46を通してシール材66の色を認識できる。すなわち、穴16、46を、シール材66の色によって認識できる。穴16、46は、切削ラインし、10、11、12が通るので、切削の目印となる。

[0093]

本実施の形態に係る半導体装置用基板を使用し、シール材66が設けられた面に樹脂を設ければ、穴16、46から樹脂が流出して反対側に回り込むことがなくなる。

[0094]

その他の詳細については、第1及び第2の実施の形態で説明した内容を適用することができる。

[0095]

そして、本発明を適用した半導体装置を有する電子機器として、図14には、 ノート型パーソナルコンピュータ100が示されている。

[0096]

なお、上記本発明の構成要件「半導体チップ」を「電子素子」に置き換えて、 半導体チップと同様に電子素子(能動素子か受動素子かを問わない)を、基板に 実装して電子部品を製造することもできる。このような電子素子を使用して製造 される電子部品として、例えば、光素子、抵抗器、コンデンサ、コイル、発振器 、フィルタ、温度センサ、サーミスタ、バリスタ、ボリューム又はヒューズなど がある。

【図面の簡単な説明】

【図1】

図1は、本発明を適用した第1の実施の形態に係る半導体装置用基板を示す図 である。

【図2】

図2は、本発明を適用した第1の実施の形態に係る半導体装置の製造方法を示す図である。

【図3】

図3は、本発明を適用した第1の実施の形態に係る半導体装置の製造方法を示す図である。

【図4】

図4は、本発明を適用した第1の実施の形態に係る半導体装置の製造方法を示す図である。

【図5】

図5は、本発明を適用した第1の実施の形態に係る半導体装置の製造方法を示す図である。

【図6】

図6は、本発明を適用した第1の実施の形態に係る半導体装置の製造方法を示す図である。

【図7】

図7は、本発明を適用した第1の実施の形態に係る半導体装置を示す図である

【図8】

図8は、本発明を適用した第1の実施の形態に係る半導体装置を示す図である

【図9】

図9は、本発明を適用した第2の実施の形態に係る半導体装置用基板を示す図である。

【図10】

図10は、本発明を適用した第2の実施の形態に係る半導体装置の製造方法を 示す図である。

【図11】

図11は、本発明を適用した第2の実施の形態に係る半導体装置用基板の変形 例を示す図である。

【図12】

図12は、本発明を適用した第3の実施の形態に係る半導体装置を示す図である。

【図13】

図13は、本発明を適用した第4の実施の形態に係る半導体装置を示す図である。

【図14】

図14は、本発明に係る方法を適用して製造された半導体装置を備える電子機 器を示す図である。

【符号の説明】

- 10 半導体装置用基板
- 12 搭載領域
- 16 穴
- 18 交差部

特平11-213184

- 20 半導体チップ
- 24 樹脂
- 30 半導体装置
- 32 角部
- 34 回路基板
- 40 半導体装置用基板
- 46 穴
- 4 8 交差部
- 50 基板
- 52 樹脂
- 54 交差部
- 5 6 薄肉部
- 60 半導体装置用基板
- 62 樹脂
- 64 角部
- 66 シール材
- 68 端面

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9]

【図10】

【図11】

【図12】

【図13】

【図14】

【書類名】

要約書

【要約】

【課題】 切削くずの発生を減らす半導体装置用基板、半導体チップ搭載基板、 半導体装置及びその製造方法、回路基板並びに電子機器を提供することにある。

【解決手段】 半導体装置用基板10は、切削切断可能な材料からなり、複数の 半導体チップの搭載領域12を有し、複数の個片に切断するための複数の切削ラ インLが交差する位置に、少なくとも1つの穴16が形成されている。

【選択図】

図 1

出 願 人 履 歴 情 報

識別番号

[000002369]

1. 変更年月日

1990年 8月20日

[変更理由]

新規登録

住 所

東京都新宿区西新宿2丁目4番1号

氏 名

セイコーエプソン株式会社