Assessing Fluid Responsiveness in the MICU

Eric W. Robbins

Last updated: March 19, 2022

Table of Contents

- Overview
 - Scenario
 - The Goal
 - Physiology
 - Some Thoughts
- Strategies
 - Overview
- The Evidence
 - Pulse Pressure Variation
 - Passive Leg Raise
 - End-Expiratory Occlusion Test
 - IVC Ultrasound
- Workflows
- Conclusions

A Common Scenario

- Middle of the night in MICU.
- Patient who has been in the ICU for several days with shock has increasing vasopressors requirements.
- Senior (or fellow?) tells you to "go ultrasound the IVC".
- Why?

The Goal

- Increase DO_2 and tissue perfusion / oxygenation
 - $DO_2 = (CO) \cdot (CaO_2)$

The Goal

- ullet Increase DO_2 and tissue perfusion / oxygenation
 - $DO_2 = (CO) \cdot (CaO_2)$
 - $DO_2 = (HR \cdot SV) \cdot (1.34 \cdot [Hgb] \cdot SpO_2)$

The Goal

- Increase DO_2 and tissue perfusion / oxygenation
 - $DO_2 = (CO) \cdot (CaO_2)$
 - $DO_2 = (HR \cdot SV) \cdot (1.34 \cdot [Hgb] \cdot SpO_2)$
- if \uparrow SV, we (may) \uparrow CO and (may) get \uparrow DO₂
- Notice all the "mays" in there.

Physiology

Fig. 1 Frank–Starling relationship. The slope of the Frank–Starling curve depends on the ventricular systolic function. Then, one given level of cardiac preload does not help in predicting fluid responsiveness. By contrast, dynamic tests include a preload challenge (either spontaneous, induced by mechanical ventilation or provoked, by passive leg raising, end-expiratory occlusion or fluid infusion). Observing the resulting effects on stroke volume allows for the detection of preload responsiveness. EEO end-expiratory occlusion, PLR passive leg raising

Some Thoughts

- ullet Fluid responsiveness \neq patient should be get fluids!
 - e.g., no shock

Some Thoughts

- Fluid responsiveness ≠ patient should be get fluids!
 - e.g., no shock
- However, if \downarrow CO and requires correction: fluid responsiveness $\Longrightarrow \uparrow SV$ (and usually $\uparrow CO$, unless HR falls) if fluids are given

Strategies

Overview

Static	Dynamic
vital signs	passive leg raise
CVP / PCWP	end-expiratory occlusion test
"one off lactate / VBG"	IVC ultrasound
pulse pressure variation	LVOT velocity time index

7/11

Strategies

Overview 1

 Static
 Dynamic

 vital signs
 passive leg raise

 CVP / PCWP
 end-expiratory occlusion test

 "one off" lactate / VBG
 IVC ultrasound

 pulse pressure variation
 LVOT velocity time index

8/11

Strategies

Overview 2

Heart-Lung Interaction	Independent
pulse pressure variation	passive leg raise
end-expiratory occlusion test	
IVC ultrasound	
LVOT velocity time index	

Fig. 2 Fluid strategy. "The variation in inferior/superior vena cava diameters can be used in case of cardiac arrhythmias. ARDS acute respiratory distress syndrome, IVC inferior vena cava, PCO, gap veno-arterial difference in carbon dioxide tension, SVC superior vena cava

content...

11 / 11