计算机组成与体系结构

磁盘存储用来描述设计的对象模型和对象之间的关系

1. 在磁盘上存储蝶的排列方式会影响 I/O 服务的总时间。假设每磁道划分成 10 个物理块,每块存放 1 个逻辑记录。逻辑记录 R1, R2, ..., RIO 存放在同一个磁道上, 记录的安排顺序如下表所示:

物理块	1	2	3	4	5	6	7	8	9	10
逻辑记录	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10

假定磁盘的旋转速度为 30ms/周,磁头当前处在 R1 的开始处。若系统顺序处理这些记录,使用单缓冲区,每个记录处理时间为 6ms,则处理这 10 个记录的最长时间为 ();若对信息存 储进行优化分布后,处理 10 个记录的最少时间为()。

A. 189ms B.208ms C.289ms

D.306ms

A. 60 ms B.90 ms

D.180ms

【解析】

根据题意"每磁道划分成10个物理块,每块存放1个逻辑记录"和"磁盘的旋转速度为30ms/周"得,系统读取每一个逻辑记录的时间t1=30ms/10=3ms。

109ms

本题是一个较为复杂的磁盘原理问题, 我们可以通过模拟磁盘的运行来进行分析求解。 运作过程为:

- 1、读取 R1: 耗时 3ms。读取完、磁头位于 R2 的开始位置。
- 2、处理 R1: 耗时 6ms。处理完, 磁头位于 R4 的开始位置。
- 3、旋转定位到 R2 开始位置: 耗时 24ms(间隔 8 个)。
- 4、读取 R2: 耗时 3ms。读取完、磁头位于 R3 的开始位置。
- 5、处理 R2: 耗时 6ms。处理完, 磁头位于 R5 的开始位置。
- 6、旋转定位到 R3 开始位置: 耗时 24ms。

.

从以上分析可以得知,读取并处理 R1 一共需要 9ms。而从 R2 开始,多了一个旋转定位时间, R2 旋转定位到读取并处理一共需要 33ms,后面的 R3 至 R10 与 R2 的情况一致。 所以一共耗时:

9+33*9=306ms_o

本题后面一问要求计算处理 10 个记录的最少时间。其实只要把记录间隔存放,就能达到这个目标。在物理块 1 中存放 R1,在物理存 4 中存放 R2,在物理块 7 中存放 R3,依此类推,这样可以做到每条记录的读取与处理时间之和均为 9ms,所以处理 10 条记录一共90ms。

【答案】: D、B。

- 2. 某磁盘磁头从一个磁道移至另一个磁道需要 10ms。文件在磁盘上非连续存放,逻辑上相邻数据块的平均移动距离为 10 个磁道,每块的旋转延迟时间及传输时间分别为 100ms 和 2ms,则读取一个 100 块的文件需要()ms 的时间。
 - A. 10200
 - B. 11000
 - C. 11200
 - D. 20200

【解析】

根据题目描述,读取一个连续数据需要的时间包括磁道移动时间、旋转延迟时间和传输

时间三个部分,总时间花费为 $(10\times10)+100+2=202ms$,因此读取一个100 块文件需要的时间为 $202\times100=20200ms$ 。

CISC 与 RISC

- 1. RISC(精简指令系统计算机)的特点不包括: ()。
 - A.指令长度固定,指令种类尽量少
 - B.寻址方式尽量丰富,指令功能尽可能强
 - C.增加寄存器数目,以减少访存次数
 - D.用硬布线电路实现指令解码,以尽快完成指令译码

【解析】

RISC 与 CISC 的对比表所示:

指令系统类型	指令	寻址方式	实现方式	其他
CISC(复杂)	数量多,使用频率差别	支持多种	微程序控	研制周期
	大, 可变长格式		制技术	长
RISC(精简)	数量少,使用频率接近,	支持方式少	增加了通	优化编译,
	定长格式,大部分为单周		用寄存器;	有效支持
	期指令,操作寄存器,只		硬布线逻	高级语言
	有 Load/Store		辑控制为	
			主;适合采	
			用流水线	

寻址方式尽量丰富不是 RISC 的特点, 而是 CISC 的特点。

【答案】: B。

- 2. 以下关于 CISC(Complex Instruction Set Computer,复杂指令集计算机)和 RISC(Reduced Instruction Set Computer,精简指令集计算机)的叙述中,错误的是() 。
 - A. 在 CISC 中, 其复杂指令都采用硬布线逻辑来执行
 - B. 采用 CISC 技术的 CPU, 其芯片设计复杂度更高
 - C. 在 RISC 中, 更适合采用硬布线逻辑执行指令
 - D. 采用 RISC 技术,指令系统中的指令种类和寻址方式更少

【解析】

指令系统类型	指令	寻址方式	实现方式	其他
CISC(复杂)	数量多,使用频率差别	支持多种	微程序控	研制周期
	大, 可变长格式		制技术	长
RISC(精简)	数量少,使用频率接近,	支持方式少	增加了通	优化编译,
	定长格式,大部分为单周		用寄存器;	有效支持
	期指令,操作寄存器,只		硬布线逻	高级语言
	有 Load/Store		辑控制为	
			主;适合采	
			用流水线	

由于 RISC 处理器指令简单、采用硬布线控制逻辑、处理能力强、速度快,世界上绝大部分 UNIX 工作站和服务器厂商均采用 RISC 芯片作 CPU 用。

【答案】A。

内存

- 1. 内存按字节编址,利用 8K×4bit 的存储器芯片构成 84000H 到 8FFFFH 的内存,共需 ()片。
 - A. 6
 - B. 8
 - C. 12
 - D. 24

【解析】

根据题目描述,采用该存储器芯片需要构成 8FFFFH - 84000H + 1 = C000H 的空间, 且内存按照字节(8bit)编码、需要的容量是 C000H×8bit。

 $C000H \times 8bit = 49152 \times 8bit = 48 \times 1024 \times 8bit = 48K \times 8bit$,一片存储芯片的容量是 $8K \times 4bit$,两者相除得 12。

Cache

- 1. 以下关于 cache 的叙述中,正确的是()。
 - A. 在容量确定的情况下,替换算法的时间复杂度是影响 cache 命中率的关键因素
 - B. cache 的设计思想是在合理成本下提高命中率
 - C. cache 的设计目标是容量尽可能与主存容量相等
 - D. CPU 中的 cache 容量应大于 CPU 之外的 cache 容量

【解析】

cache 的性能是计算机系统性能的重要方而。命中率是 cache 的一个重要指标,但不是最主要的指标。cache 设计的主要目标是在成本允许的情况下达到较高的命中率,使存储系统具有最短的平均访问时间。cache 的命中率和 cache 容量的关系是: cache 容量越大,则命中率越高,随着容量的增加,其失效率接近0%(命中率接近100%)。但是,增加 cache 容量意味着增加 cache 的成本和增加 cache 的命中时间。

【答案】Ba

- 2. 在嵌入式系统设计时,下面几种存储结构中对程序员是透明的是()。
 - A. 高速缓存
 - B. 磁盘存储器
 - C. 内存
 - D. flash 存储器

【解析】

本题主要考查嵌入式系统程序设计中对存储结构的操作。对照 4 个选项,可以立即看出高速缓存(Cache)对于程序员来说是透明的,因为其他几种存储器我们编写代码时存储数据,需要知道地址,存放空间等,但是高速缓存就不会,我们直接拿来用,它内部的细节不需要知道。

【答案】A。

其他

- 1. 挂接在总线上的多个部件,下列说法正确的是()。
 - A. 只能分时向总线发送数据,并只能分时从总线接收数据
 - B. 只能分时向总线发送数据,但可同时从总线接收数据
 - C. 可同时向总线发送数据,并同时从总线接收数据

D. 可同时向总线发送数据,但只能分时从总线接收数据

【解析】

本题考查考生对总线概念的理解。总线是一个大家都能使用的数据传输通道,大家都可以使用这个通道,但发送数据时,是采用的分时机制,而接收数据时可以同时接收,也就是说,同一个数据,可以并行的被多个客户收取。如果该数据不是传给自己的,数据包将被丢弃。

【答案】B。

- 2. 计算机执行程序时,在一个指令周期的过程中,为了能够从内存中读指令操作码,首先是将()的内容送到地址总线上。
 - A. 程序计数器 PC
 - B. 指令寄存器 IR
 - C. 状态寄存器 SR
 - D. 通用寄存器 GR

【解析】

计算机执行程序时,在一个指令周期的过程中,为了能够从内存中读指令操作码,首先 是将程序计数器(PC)的内容送到地址总线上。

操作系统

嵌入式系统设计

- 1. 在嵌入式操作系统中,板级支持包 BSP 作为对硬件的抽象,实现了()。
 - A.硬件无关性,操作系统无关性
- B.硬件有关性,操作系统有关性
- C.硬件无关性,操作系统有关性
- D.硬件有关性,操作系统无关性

【解析】

本题考查嵌入式系统的基础知识。 在嵌入式系统中, 板级支持包 Board Support

Package(简称 BSP)是对硬件抽象层的实现,是介于主板的硬件和操作系统驱动程序之间的一层,为整个软件系统提供底层硬件支持,是介于底层硬件和上层软件之间的底层软件开发包,它主要的功能是给上层提供统一接口,同时屏蔽各种硬件底层的差异,以及提供操作系统的驱动及硬件驱动。简单地说,就是 BSP 包含了所有与硬件有关的代码,为操作系统提供了硬件平台有关性。

【答案】B。

嵌入式操作系统

- 1. ()不是反映嵌入式实时操作系统实时性的评价指标。
 - A. 任务执行时间
 - B. 中断响应和延迟时间
 - C. 任务切换时间
 - D. 信号量混洗时间

【解析】

一个嵌入式实时操作系统(RTOS)的评价要从很多角度进行,如体系结构、API的丰富程度、网络支持、可靠性等。其中,实时性是RTOS评价的最重要的指标之一,实时性的优劣是用户选择操作系统的一个重要参考。

严格地说,影响嵌入式操作系统实时性的因素有很多,如常用系统调用平均运行时间、任务切换时间、线程切换时间、信号量混洗时间(指从一个任务释放信号量到另一个等待该

信号量的任务被激活的时间延迟)、中断响应时间等。任务执行时间不是反映RTOS实时性的评价指标。

【答案】A。

- 2. 以下关于 RTOS (实时操作系统)的叙述中,不正确的是()。
 - A.RTOS 不能针对硬件变化进行结构与功能上的配置及裁剪
 - B.RTOS 可以根据应用环境的要求对内核进行裁剪和重配
 - C.RTOS 的首要任务是调度一切可利用的资源来完成实时控制任务
 - D.RTOS 实质上就是一个计算机资源管理程序,需要及时响应实时事件和中断

【解析】

实时系统的正确性依赖于运行结果的逻辑正确性和运行结果产生的时间正确性,即实时 **系统必须在规定的时间范围内正确地响应外部物理过程的变化**。

实时多任务操作系统是根据操作系统的工作特性而言的。实时是指物理进程的真实时间。实时操作系统是指具有实时性,能支持实时控制系统工作的操作系统。首要任务是调度一切可利用的资源来完成实时控制任务,其次才着眼于提高计算机系统的使用效率,重要特点是要满足对时间的限制和要求。

一个实时操作系统可以在不破坏规定的时间限制的情况下完成所有任务的执行。任务执 行的时间可以根据系统的软硬件的信息而进行确定性的预测。也就是说,如果硬件可以做这 件工作,那么实时操作系统的软件将可以确定性的做这件工作。

实时操作系统**可根据实际应用环境的要求对内核进行裁剪和重新配置**,根据不同的应用,其组成有所不同。

【答案】: A。

- 3. 以下关于嵌入式系统开发的叙述,正确的是()。
 - A.宿主机与目标机之间只需要建立逻辑连接
 - B.宿主机与目标机之间只能采用串口通信方式
 - C.在宿主机上必须采用交叉编译器来生成目标机的可执行代码
 - D.调试器与被调试程序必须安装在同一台机器上

【解析】

在嵌入式系统开发中,由于嵌入式设备不具备足够的处理器能力和存储空间,程序开发一般用PC(宿主机)来完成,然后将可执行文件下载到嵌入式系统(目标机)中运行。

- A 选项: 宿主机与目标机之间既要有逻辑连接, 还要有物理连接。
- B选项: 串口只是其中一种标准,还可采用其他方式,比如并口、以太网或者 JTAG。
- C 选项: 当宿主机与目标机的机器指令不同时,就需要交叉工具链(指编译、汇编、链接等一整套工具)。

【答案】: C。

- 4. 以下关于嵌入式系统硬件抽象层的叙述,错误的是()。
 - A. 硬件抽象层与硬件密切相关,可对操作系统隐藏硬件的多样性
 - B. 硬件抽象层将操作系统与硬件平台隔开
 - C. 硬件抽象层使软硬件的设计与调试可以并行
 - D. 硬件抽象层应包括设备驱动程序和任务调度

【解析】

硬件抽象层是位于操作系统内核与硬件电路之间的接口层,其目的在于将硬件抽象化。 它隐藏了特定平台的硬件接口细节,为操作系统提供虚拟硬件平台,使其具有硬件无关性, 可在多种平台上进行移植。

【答案】D。

- 5. 以下嵌入式处理器类型中不具备内存管理单元(MMU)的是(),嵌入式操作系统()可以运行在它上面。
 - A. PowerPC750
 - B. ARM920T
 - C. Cortex-M3
 - D. MIPS32 24K
 - A. Linux
 - B. VxWorks653
 - C. uC/OS-II
 - D. Windows CE

【解析】

ARM Cortex-M3 处理器结合了多种突破性技术,令芯片供应商提供超低费用的芯片,仅33000 门的内核性能可达1.2DMIPS/MHz。该处理器还集成了许多紧耦合系统外设,令系统能满足下一代产品的控制需求。Cortex 的优势在于低功耗、低成本、高性能3者的结合。这种处理器是不带MMU的。

【答案】C、C、纯记忆、战术性掌握。

- 6. 嵌入式系统中采用中断方式实现输入输出的主要原因是()。在中断时, CPU 断点信息一般保存到()中。
 - (1)A. 速度最快
 - B. CPU 不参与操作
 - C. 实现起来比较容易
 - D. 能对突发事件做出快速响应
 - (2) A. 通用寄存器
 - B. 堆
 - C. 栈
 - D. I/O 接口

【解析】

本题主要考查嵌入式系统中断的基础知识。嵌入式系统中采用中断方式实现输入输出的主要原因是**能对突发事件做出快速响应**。在中断时,CPU 断点信息一般保存到**栈**中(栈有一个先入后出的特点、保持了断点信息、以后查看从最近的断点开始处理、非常有效。)

- 7. 系统间进行异步串行通信时,数据的串/并和并/串转换一般是通过()实现的。
 - A. I/O 指令
 - B. 专用的数据传送指令
 - C. CPU 中有移位功能的数据寄存器
 - D. 接口中的移位寄存器

【解析】

本题主要考查嵌入式系统间进行异步串行通信时数据的串/并和并/串转换方式。一般来说,嵌入式系统通常采用接口中的移位寄存器来实现数据的串/并和并/串转换操作。

微内核操作系统

- 1. 采用微内核结构的操作系统提高了系统的灵活性和可扩展性,()。
 - A. 并增强了系统的可靠性和可移植性,可运行于分布式系统中
 - B. 并增强了系统的可靠性和可移植性,但不适用于分布式系统
 - C. 但降低了系统的可靠性和可移植性,可运行于分布式系统中

D. 但降低了系统的可靠性和可移植性,不适用于分布式系统

【解析】

本题考查操作系统基本概念。在设计微内核 OS 时,采用了面向对象的技术,其中的"封装","继承","对象类"和"多态性",以及在对象之间采用消息传递机制等,都十分有利于提高系统的"正确性"、"可靠性"、"易修改性"、"易扩展性"等,而且还能显著地减少开发系统所付出的开销。采用微内核结构的操作系统与传统的操作系统相比,其优点是提高了系统的灵活性、可扩充性,增强了系统的可靠性,提供了对分布式系统的支持。其原因如下:

- ① 灵活性和可扩展性:由于微内核 OS 的许多功能是由相对独立的服务器软件来实现的,当开发了新的硬件和软件时,微内核 OS 只须在相应的服务器中增加新的功能,或再增加一个专门的服务器。与此同时,也必然改善系统的灵活性,不仅可在操作系统中增加新的功能,还可修改原有功能,以及删除已过时的功能,以形成一个更为精干有效的操作系统。
- ② 增强了系统的可靠性和可移植性:由于微内核是出于精心设计和严格测试的,容易保证其正确性;另一方面是它提供了规范而精简的应用程序接口(API),为微内核外部的程序编制高质量的代码创造了条件。此外,由于所有服务器都是运行在用户态,服务器与服务器之间采用的是消息传递通信机制,因此,当某个服务器出现错误时,不会影响内核,也不会影响其它服务器。另外,由于在微内核结构的操作系统中,所有与特定 CPU 和 I/O 设备硬件有关的代码,均放在内核和内核下面的硬件隐藏层中,而操作系统其它绝大部分(即各种服务器)均与硬件平台无关,因而,把操作系统移植到另一个计算机硬件平台上所需作的修改是比较小的。
- ③ 提供了对分布式系统的支持:由于在微内核 OS 中,客户和服务器之间以及服务器和服务器之间的通信,是采用消息传递通信机制进行的,致使微内核 OS 能很好地支持分布式系统和网络系统。事实上,只要在分布式系统中赋予所有进程和服务器惟一的标识符,在微内核中再配置一张系统映射表(即进程和服务器的标识符与它们所驻留的机器之间的对应表),在进行客户与服务器通信时,只需在所发送的消息中标上发送进程和接收进程的标识符,微内核便可利用系统映射表、将消息发往目标、而无论目标是驻留在哪台机器上。

【答案】A。

信号量与 PV 操作

- 1. 在实时操作系统中,两个任务并发执行,一个任务要等待另一个任务发来消息,或建立某个条件后再向前执行,这种制约性合作关系被称为任务的()。
 - A. 同步
 - B. 互斥
 - C. 调度
 - D. 执行

【解析】

由于资源共享与进程合作,并发执行的任务(进程)之间可能产生相互制约关系,这些制约关系可分为两类: 竞争与协作。

并发进程之间的竞争关系为互斥,并发进程之间的协作关系体现为同步。同步是因合作进程之间协调彼此的工作而控制自己的执行速度,即因相互合作,相互等待而产生的制约关系。而互斥是进程之间竞争临界资源而禁止两个以上的进程同时进入临界区所发生的制约关系。题目中一个任务要等待另一个任务发来消息,或建立某个条件后再向前执行,显然体现的制约关系是任务的同步。

2. 进程 P1、P2、P3、P4 和 P5 的前趋图如下:

若用 PV 操作控制进程 P1~P5 并发执行的过程,则需要设置 5 个信号量 S1、S2、S3、S4 和 S5, 进程间同步所使用的信号量标注在上图中的边上,且信号量 S1~S5 的初值都等于零,初始状态下进程 P1 开始执行。下图中 a、b 和 c 处应分别填写(); d 和 e 处应分别填写(),f 和 g 处应分别填写()。

【解析】

最简单的理解方式: 箭头出就是 V 操作, 箭头入就是 P 操作。

答案: V(S1)V(S2)、P(S1)和 V(S3)V(S4); P(S2)和 V(S5); P(S3)和 P(S4)P(S5)

3. 试题(1)、(2) 假设系统中有 n 个进程共享 3 台打印机,任一进程在任一时刻最多只能使用 1 台打印机。若用 PV 操作控制 n 个进程使用打印机,则相应信号量 S 的取值范围为(); 若信号量 S 的值为-3,则系统中有()个进程等待使用打印机。

 $(1)A. 0, -1, \cdots, -(n-1)$

B. 3, 2, 1, 0, -1, ···, -(n-3)

C. 1, 0, -1, ···, -(n-1)

D. 2, 1, 0, -1, ···, -(n-2)

(2)A.0 B.1 C.2 D.3

【解析】

根据题意,假设系统中有 n 个进程共享 3 台打印机,意味着每次只允许 3 个进程进入互斥段,那么信号量的初值应为 3。可见,根据排除法只有选项 B 中含有 3。

选项二的正确答案为选项 D。信号量 S 的物理意义为: 当 $S \ge 0$ 时,表示资源的可用数; 当 S < 0 时,其绝对值表示等待资源的进程数。

【答案】B、D。

输入输出控制方式

3. DMA (直接存储器访问)工作方式是在()之间建立起直接的数据通路。

A.CPU 与外设

B.CPU 与主存

C.主存与外设

D.外设与外设

【解析】

直接主存存取(Direct Memory Access, DMA)是指数据在主存与 I/O 设备间的直接成块传送,即在主存与 I/O 设备间传送数据块的过程中,不需要 CPU 作任何干涉,只需在过程开始启动(即向设备发出"传送一块数据"的命令)与过程结束(CPU 通过轮询或中断得知过程是否结束和下次操作是否准备就绪)时由 CPU 进行处理,实际操作由 DMA 硬件直接完成,CPU 在传送过程中可做其它事情。

【答案】: C。

前趋图

1. 某计算机系统中有一个 CPU、一台扫描仪和一台打印机。现有三个图像任务,每个任务有三个程序段:扫描 Si,图像处理 Ci 和打印 Pi(i=1,2,3)。图为三个任务各程序段并发执行的前趋图,其中,(1)可并行执行,(2)的直接制约,(3)的间接制约。

- (1)A. "C1S2", "P1C2S3", "P2C3"
 - B. "C1S1", "S2C2P2", "C3P3"
 - C. "S1C1P1", "S2C2P2", "S3C3P3"
 - D. "S1S2S3", "C1C2C3", "P1P2P3"
- (2)A. S1 受到 S2 和 S3、C1 受到 C2 和 C3、P1 受到 P2 和 P3
 - B. S2 和 S3 受到 S1、C2 和 C3 受到 C1、P2 和 P3 受到 P1
 - C. C1 和 P1 受到 S1、C2 和 P2 受到 S2、C3 和 P3 受到 S3
 - D. C1和S1受到P1、C2和S2受到P2、C3和S3受到P3
- (3)A. S1 受到 S2 和 S3、C1 受到 C2 和 C3、P1 受到 P2 和 P3
 - B. S2 和 S3 受到 S1、C2 和 C3 受到 C1、P2 和 P3 受到 P1
 - C. C1 和 P1 受到 S1、C2 和 P2 受到 S2、C3 和 P3 受到 S3
 - D. C1 和 S1 受到 P1、C2 和 S2 受到 P2、C3 和 S3 受到 P3

【解析】

如图所示,当 S1 执行完毕后,计算 C1 与扫描 S2 可并行执行; C1 与 S2 执行完毕后,打印 P1、计算 C2 与扫描 S3 可并行执行; P1、C2 与 S3 执行完毕后,打印 P2 与计算 C3 可并行执行。

根据题意,系统中有三个任务,每个任务有三个程序段,从前趋图中可以看出,系统要先进行扫描 Si,然后再进行图像处理 Ci,最后进行打印 Pi,所以 C1 和 P1 受到 S1 直接制约、C2 和 P2 受到 S2 的直接制约、C3 和 P3 受到 S3 的直接制约。

系统中有一台扫描仪,因此S2和S3不能运行是受到了S1的间接制约。如果系统中有三台扫描仪,那么S2和S1能运行;同理,C2和C3受到C1的直接制约、P2和P3受到P1的间接制约。

【答案】A、C、B。

段页式存储管理

1. 某操作系统采用分页存储管理方式,下图给出了进程 A 和进程 B 的页表结构。如果物

理页的大小为 512 字节,那么进程 A 逻辑地址为 1111(十进制)的变量存放在()号物理内存页中。假设进程 A 的逻辑页 4 与进程 B 的逻辑页 5 要共享物理页 8,那么应该在进程 A 页表的逻辑页 4 和进程 B 页表的逻辑页 5 对应的物理页处分别填()。

				物理页
进租	A 页表	## ## ## ## ## ## ## ## ## ## ## ## ##	B页表	0
近往.	A. 贝表	2011年1	5 贝衣	1
逻辑页	物理页	逻辑页	物理页	2
0	9	0	1	3
1	2	1	3	4
2	4	2	5	5
3	6	3	7	6
4		4	2	7
5		5	119. 11212.15	8
	W Ed	18/44 12/4	Will Last file	9

【解析】

第一问:

十进制数 1111 转化为二进制数为: 100010101111。物理页的大小为 512 字节, 这说明页内地址为 9 个二进制位($2^9=512$)。

进程 A 的逻辑址中,右边的 9 位是页内地址,左边的 2 位是页号,即:10001010111。页号为二进制的 10,即十进制的 2,对应的物理页号为 4。

第二问:

若 A 页表的逻辑页 4 和进程 B 页表的逻辑页 5 共享物理页 8,则说明他们都对应物理页 8,所以均填 8(**物理页可以在进程间共享**)。

- 2. 虚拟存储器发生页面失效时,需要进行外部地址变换,即实现()的变换。
 - A. 虚地址到主存地址
 - B. 主存地址到 Cache 地址
 - C. 主存地址到辅存物理地址
 - D. 虚地址到辅存物理地址

【解析】

虚拟存储器(Virtual Memory): 在具有层次结构存储器的计算机系统中,自动实现部分装入和部分替换功能,能从逻辑上为用户提供一个比物理贮存容量大得多,可寻址的"主存储器"。虚拟存储区的容量与物理主存大小无关,而受限于计算机的地址结构和可用磁盘容量。其页面的置换依据相应的页面置换算法进行,当页面失效时,需要进行数据交换,此时涉及到逻辑地址(虚地址)到辅存物理地址的变换,所以本题应选 D。

页面置换算法

1. 某虚拟存储系统采用最近最少使用(LRU)页面淘汰算法,假定系统为每个作业分配 4 个页面的主存空间,其中一个页面用来存放程序。现有某作业的程序如下:

Var A: Array[1..100, 1..100] OF integer;

i, j: integer;

FOR i:=1 to 100 DO

FOR j:=1 to 100 DO

A[i, j] := 0;

设每个页面可存放 200 个整数变量,变量 i、j 存放在程序页中。初始时,程序及 i、

j 均已在内存,其余 3 页为空。若矩阵 A 按行序存放,那么当程序执行完后共产生()次缺页中断;若矩阵 A 按列序存放,那么当程序执行完后共产生()次缺页中断。

A.50	B.100	C.5000	D.10000
A.50	B.100	C.5000	D.10000

【解析】

解析一:

矩阵 A[100][100]总共有 100 行、100 列,若矩阵 A 按行序存放,那么每一个页面可以存放 2 行,也就是说矩阵的 2 行刚好放在 1 页内,访问他们需要中断 1 次,这样 100 行总共需要中断 50 次。

若矩阵 A 按列序存放,那么每一个页面可以存放 2 列,也就是说矩阵的 2 列刚好放在 1 页内,由于内循环 "FOR j:=1 to 100 DO"是按列序变化,访问他们需要中断 50 次,这样 100 行总共需要中断 50 × 100 次。

解析二:

从题干可知,作业共有 4 个页面的主存空间,其中一个已被程序本身占用,所以在读取变量时可用的页面数只有 3 个。每个页面可存放 200 个整数变量,程序中 A 数组共有 100*100=10000 个变量。按行存放时,每个页面调入的 200 个变量刚好是程序处理的 200 个变量,所以缺页次数为 10000/200=50。而按列存放时,虽然每个页面调取数据时,同样也读入了 200 个变量,但这 200 个变量中,只有 2 个是近期需要访问的(如第 1 个页面调入的 是 A[*,1]与 A[*,2],但程序近期需要访问的变量只有 A[1,1]和 A[1,2]),所以缺页次数为 10000/2=5000。

【答案】A、C。

文件系统

1. 某计算机系统输入/输出采用双缓冲工作方式,其工作过程如下图所示,假设磁盘块与缓冲区大小相同,每个盘块读入缓冲区的时间 T 为 $10\,\mu_{\rm s}$,缓冲区送用户区的时间 M 为 $6\,\mu_{\rm s}$,系统对每个磁盘块数据处理时间 C 为 $2\,\mu_{\rm s}$ 。若用户需要将大小为 10 个磁盘块的 Docl 文件逐块从磁盘读入缓冲区,并送用户区进行处理,那么采用双缓冲需要花费的时间为() $\mu_{\rm s}$,比使用单缓冲节约了() $\mu_{\rm s}$ 时间。

A. 100	B. 108	C. 162	D. 180
A. 0	B. 8	C. 54	D. 62

【解析】

单缓冲区:

假定从磁盘把一块数据输入到缓冲区的时间为T,操作系统将该缓冲区中的数据传送到用户区的时间为M,而CPU对这一块数据处理的时间为C。

由于T和C是可以并行的,当T>C时,系统对每一块数据的处理时间为M+T,反之则为M+C,故可把系统对每一块数据的处理时间表示为max(C,T)+M。

单缓冲区执行时间: $(10+6+2)+(10-1)*(10+6)=162\mu_s$

双缓冲区:

系统处理一块数据的时间可以粗略地认为是 $\max(C, T)$ 。 双缓冲区执行时间: $(10+6+2)+(10-1)*10=108 \mu$ 。

双缓冲比单缓冲节省 162-108=54 μ_s。

设文件索引结点中有8个地址项,每个地址项大小为4字节,其中5个地址项为直接地 址索引,2个地址项是一级间接地址索引,1个地址项是二级间接地址索引,磁盘索引 块和磁盘数据块大小均为1KB。则可表示的单个文件最大长度是多少KB?

【解析】

磁盘索引块为 1KB 字节,每个地址项大小为 4 字节,故每个磁盘索引块可存放 1024/4=256 个物理地址块。

又因为文件索引节点中有8个地址项,其中5个地址项为直接地址索引,这意味着逻辑 块号为0-4的为直接地址索引。

2个地址项是一级间接地址索引,这意味着其中第一个地址项指出的物理块中存放逻辑 块号为5-260的物理块号、其中第二个地址项指出的物理块中存放逻辑块号为261-516

1个地址项是二级间接地址索引,该地址项指出的物理块存放了256个间接索引表的地 址, 这 256 个间接索引表存放逻辑块号为 517—66052 的物理块号(256*256=65536 个)。

单个文件的逻辑块号范围是 0—66052、而磁盘数据块大小为 1KB、所以单个文件最大 长度为: 66053KB。

某文件系统文件存储采用文件索引节点法。假设文件索引节点中有8个地址项 iaddr[0]~iaddr[7],每个地址项大小为4字节,其中地址项iaddr[0]~iaddr[5]为直接地 址索引,iaddr[6]是一级间接地址索引,iaddr[7]是二级间接地址索引,磁盘索引块和磁 盘数据块大小均为 4KB。该文件系统可表示的单个文件最大长度是()KB。若要访问 iclsClient.dll 文件的逻辑块号分别为 6、520 和 1030,则系统应分别采用()。

A. 1030 B. 65796

C. 1049606

D. 4198424

【解析】

第一问:

因为磁盘索引块和磁盘数据块大小均为 4KB, 每个地址项大小为 4 字节, 所以每个磁 盘索引块和磁盘数据块可存放 4KB/4=1024 个物理地址块。

计算直接地址索引, 0-5 存放 6 个物理块号, 对应文件长度 6*4KB, 对应逻辑块号 0—5。

计算一级间接地址索引, 1024*4KB, 对应逻辑块号 5+1—1024+5=6—1029。

计算二级间接地址索引,1024*1024*4KB,对应逻辑块号1030及以上。

总计 6*4KB+1024*4KB+1024*1024*4KB=4198424KB。

第二问:

由第一问对应的逻辑号,可得逻辑块号6、520和1030分别对应一级间接地址索引、一 级间接地址索引、二级间接地址索引。

4. 假设文件系统采用索引节点管理,且索引节点有 8 个地址项 iaddr[0]~iaddr[7],每个地址项大小为 4 字节,iaddr[0]~iaddr[4]采用直接地址索引,iaddr[5]和 iaddr[6]采用一级间接地址索引,iaddr[7]采用二级间接地址索引。假设磁盘索引块和磁盘数据块大小均为 1KB 字节,文件 Filel 的索引节点如图所示。若用户访问文件 Filel 中逻辑块号为 5和 261的信息,则对应的物理块号分别为(); 101号物理块存放的是()。

- (1)A.89和90
 - B. 89 和 136
 - C. 58 和 187
 - D. 90 和 136
- (2)A. File1 的信息
 - B. 直接地址索引表
 - C. 一级地址索引表
 - D. 二级地址索引表

【解析】

根据题意,磁盘索引块为1KB字节,每个地址项大小为4字节,故每个磁盘索引块可存放1024/4=256个物理块地址。又因为文件索引节点中有8个地址项,其中5个地址项为直接地址索引,这意味着逻辑块号为0~4的为直接地址索引;2个地址项是一级间接地址索引,其中第一个地址项指出的物理块中是一张一级间接地址索引表,存放逻辑块号为5~260对应的物理块号,第二个地址项指出的物理块中是另一张一级间接地址索引表,存放逻辑块号为261~516对应的物理块号。经上分析,从题图不难看出,逻辑块号为5的信息应该存放在58号物理块中,逻辑块号为261的信息应该存放在187号物理块中。

由题中可知, iaddr[7] 采用二级间接地址索引,且 iaddr[7]中存放的物理块号为 101,故 101 号物理块存放的是二级间接地址索引表。另外从示意图可以看出,101 号物理块对应的空间存储着一系列地址,而这些地址对应的物理块中存储的仍然是地址,再到下一层才是文件内容,所以101 号物理块存放的是二级地址索引表。

【答案】C、D。

其他

- 1. 以下关于实时操作系统(RTOS)任务调度器的叙述中,正确的是()。
 - A. 任务之间的公平性是最重要的调度目标
 - B. 大多数 RTOS 调度算法都是抢占方式(可剥夺方式)
 - C. RTOS 调度器都采用了基于时间片轮转的调度算法
 - D. 大多数 RTOS 调度算法只采用一种静态优先级调度算法

【解析】

本题考查实时操作系统基础知识。

任务是 RTOS 中最重要的操作对象,每个任务在 RTOS 的调度下由 CPU 分时执行。任务的调度目前主要有时间分片式、轮流查询式和优先抢占式三种,不同的 RTOS 可能支持其中一种或几种,其中优先抢占式对实时性的支持最好。

在非实时系统中,调度的主要目的是缩短系统平均响应时间,提高系统资源的利用率,或优化某一项指标;而实时系统中调度的目的则是要尽可能地保证每个任务满足他们的时间约束,及时对外部请求做出响应。

【答案】B。

- 2. 以下关于层次化网络设计原则的叙述中,错误的是()。
 - A.层次化网络设计时,一般分为核心层、汇聚层、接入层三个层次
 - B.应当首先设计核心层,再根据必要的分析完成其他层次设计
 - C.为了保证网络的层次性,不能在设计中随意加入额外连接
 - D.除去接入层,其他层次应尽量采用模块化方式,模块间的边界应非常清晰

【解析】

本题考察网络层次化设计的知识。

进行网络层次化设计时,一般分为核心层、汇聚层、接入层三个层次、为了保证网络的层次性,不能在设计中随意加入额外连接、除去接入层,其他层次应尽量采用模块化方式,模块间的边界应非常清晰。

先设计接入层,再试汇聚层,最后才是核心层。

【答案】B。

- 3. 计算机系统中,在()的情况下一般应采用异步传输方式。
 - A. CPU 访问内存
 - B. CPU与I/O 接口交换信息
 - C. CPU 与 PCI 总线交换信息
 - D. I/O 接口与打印机交换信息

【解析】

本题考查计算机系统中数据传输的方式。CPU 访问内存通常是同步方式,CPU 与 I/O 接口交换信息通常是同步方式,CPU 与 PCI 总线交换信息通常是同步方式,I/O 接口与打印机交换信息则通常采用基于缓存池的异步方式,因此答案为 D。

- 4. 操作系统为用户提供了两类接口:操作一级和程序控制一级的接口,以下不属于操作一级的接口是()。
 - A. 操作控制命令
 - B. 系统调用
 - C. 菜单
 - D. 窗口

【解析】

本题考查操作系统的基本概念。

操作系统是管理计算机硬件与软件资源的程序,同时也是硬件与用户之间的接口。操作系统既提供了与用户交互的接口,也提供了与应用程序交互的接口。用户可以通过菜单,命令,窗口与操作系统进行交互,而应用程序可以通过系统调用(如调用系统 API)来与操作系统交互。

【答案】B。

- 5. 在嵌入式系统设计中,用来进行 CPU 调试的常用接口是()。
 - A. PCI 接口
 - B. USB接口
 - C. 网络接口
 - D. JTAG 接口

【解析】

JTAG(Joint Test Action Group; 联合测试工作组)是一种国际标准测试协议(IEEE 1149.1 兼容),主要用于芯片内部测试。现在多数的高级器件都支持 JTAG 协议,如 DSP、FPGA器件等。标准的 JTAG 接口是 4 线: TMS、TCK、TDI、TDO,分别为模式选择、时钟、数据输入和数据输出线。

扩展: PCI 是 Peripheral Component Interconnect(外设部件互连标准)的缩写,它是目前个人电脑中使用最为广泛的接口,几乎所有的主板产品上都带有这种插槽。

【答案】: D。

6. 计算机系统中硬件层之上的软件通常按照三层来划分,如下图所示,图中①②③分别表示()。

- A. 操作系统、应用软件和其他系统软件
- B. 操作系统、其他系统软件和应用软件
- C. 其他系统软件、操作系统和应用软件
- D. 应该软件、其他系统软件和操作系统

【解析】

从上图可以看出,操作系统是裸机上的第一层软件,是对硬件系统功能的首次扩充。它在计算机系统中占据重要而特殊的地位,其他系统软件属于第二层,如编辑程序、汇编程序、编译程序和数据库管理系统等系统软件; 大量的应用软件属于第三层,例如银行账务查询、股市行情和机票预定系统等。其他系统软件和应用软件都是建立在操作系统基础之上的,并得到它的支持和取得它的服务。从用户角度看,当计算机配置了操作系统后,用户不再直接使用计算机系统硬件,而是利用操作系统所提供的命令和服务去操纵计算机,操作系统已成为现代计算机系统中必不可少的最重要的系统软件,因此把操作系统看作是用户与计算机之间的接口。

【答案】B。

- 7. 若操作系统文件管理程序正在将修改后的()文件写回磁盘时系统发生崩溃,对系统的 影响相对较大。
 - A. 用户数据
 - B. 用户程序
 - C. 系统目录
 - D. 空闲块管理

【解析】

本题考查操作系统基本概念。操作系统为了实现"按名存取",必须为每个文件设置用于描述和控制文件的数据结构,专门用于文件的检索,因此至少要包括文件名和存放文件的物理地址,该数据结构称为文件控制块(File Control Block, FCB),文件控制块的有序集合称为文件目录,或称系统目录文件。若操作系统正在将修改后的系统目录文件写回磁盘时系统发生崩溃,则对系统的影响相对较大。

【答案】C。

系统配置与性能评价

性能指标

1. 峰值 MIPS(每秒百万次指令数)用来描述计算机的定点运算速度,通过对计算机指令集中基本指令的执行速度计算得到。假设某计算机中基本指令的执行需要 5 个机器周期,每个机器周期为 3 微秒,则该计算机的定点运算速度为()MIPS。

A. 8

B. 15

C. 0.125

D. 0.067

【解析】

本题主要考查考生对计算机的定点运算速度描述的理解与掌握。根据题干描述,假设某计算机中基本指令的执行需要 5 个机器周期,每个机器周期为 3 微秒,则该计算机每完成一个基本指令需要 5*3=15 微秒,根据峰值 MIPS 的定义,其定点运算速度为 1/15=0.067MIPS,特别需要注意单位"微秒"和"百万指令数",在计算过程中恰好抵消。

性能评价方法

- 1. 以下关于基准测试的叙述中,正确的是()。
 - A. 运行某些诊断程序,加大负载,检查哪个设备会发生故障
 - B. 验证程序模块之间的接日是否正常起作用
 - C. 运行一个标准程序对多种计算机系统进行检查,以比较和评价它们的性能
 - D. 根据程序的内部结构和内部逻辑,评价程序是否正确

【解析】

用户希望能有一些公正的机构采用公认的评价方法来测试计算机的性能。这样的测试称为基准测试,基准测试采用的测试程序称为基准程序(Benchmark)。基准程序就是公认的标准程序,用它能测试多种计算机系统,比较和评价它们的性能,定期公布测试结果,供用户选购计算机时参考。

对计算机进行负载测试就是运行某种诊断程序,加大负载,检查哪个设备会发生故障。 在程序模块测试后进行的集成测试,主要测试各模块之间的接口是否正常起作用。 白盒测试就是根据程序内部结构和内部逻辑,测试其功能是否正确。

【答案】C。

- 2. 以下关于计算机性能改进的叙述中,正确的是()。
 - A. 如果某计算机系统的 CPU 利用率已经达到 100%则该系统不可能再进行性能改进
- B. 使用虚存的计算机系统如果主存太小,则页面交换的频率将增加,CPU 的使用效率就会降低,因此应当增加更多的内存
 - C. 如果磁盘存取速度低,引起排队,此时应安装更快的 CPU 以提高性能
 - D. 多处理机的性能正比于 CPU 的数目,增加 CPU 是改进性能的主要途径

【解析】

- 计算机运行一段时间后、经常由于应用业务的扩展、发现计算机的性能需要改进。
- 计算机性能改进应针对出现的问题, 找出问题的瓶颈, 再寻求适当的解决方法。
- 计算机的性能包括的面很广,不单是CPU的利用率。即使CPU的利用率已经接近100%,这只说明目前计算机正在运行大型计算任务。其他方面的任务可能被外设阻塞着,而改进外设成为当前必须解决的瓶颈问题(A选项)。

如果磁盘存取速度低,则应增加新的磁盘或更换使用更先进的磁盘。安装更快的 CPU 不能解决磁盘存取速度问题(C 选项)。

多处理机的性能并不能正比于 CPU 的数目,因为各个 CPU 之间需要协调,需要花费一定的开销(D 选项)。

使用虚存的计算机系统如果主存太小,则主存与磁盘之间交换页面的频率将增加,业务处理效率就会降低,此时应当增加更多的内存。这就是说,除 CPU 主频外,内存大小对计算机实际运行的处理速度也密切相关(B 选项)。

【答案】B。

系统可靠性分析与设计

系统容错

- 1. 随着业务的增长,信息系统的访问量和数据流量快速增加,采用负载均衡(LoadBalance)方法可避免由此导致的系统性能下降甚至崩溃。以下关于负载均衡的叙述中,错误的是()。
 - A. 负载均衡通常由服务器端安装的附加软件来实现
 - B. 负载均衡并不会增加系统的吞吐量
 - C. 负载均衡可在不同地理位置、不同网络结构的服务器群之间进行
 - D. 负载均衡可使用户只通过一个 IP 地址或域名就能访问相应的服务器

【解析】

负载均衡(LoadBalance)建立在现有网络结构之上,它提供了一种廉价、有效、透明的方法,来扩展网络设备和服务器的带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。

负载均衡一般由服务端安装的附加软件来实现,通过采用负载均衡技术,系统的吞吐量会得到增加。负载均衡可以在不同地理位置、不同网络结构的服务器集群之间进行,采用负载均衡技术,用户可以仅通过 IP 地址或域名访问相应的服务器。

【答案】B。

计算机网络

网络存储

1. 假如有 3 块容量是 80G 的硬盘做 RAID 5 阵列,则这个 RAID 5 的容量是();而如果有 2 块 80G 的盘和 1 块 40G 的盘,此时 RAID 5 的容量是()。

A.240G B.160G C.80G D.40G A.40G B.80G C.160G D.200G

【解析】

RAID 5 是一种存储性能、数据安全和存储成本兼顾的存储解决方案。这种方案中数据信息与校验信息的配比是 N+1 方案,即 N 份数据,1 份校验信息。

所以用 3 块容量为 80G 的硬盘实际数据容量为 160G。

当3盘不同容量的盘做 RAID 时,会以最小容量的盘为准,所以2块80G和1块40G的盘视为3块40G的盘,所以容量为(3-1)*40=80G。

- 2. 以下关于网络存储的叙述,正确的是()
 - A. DAS 支持完全跨平台文件共享,支持所有的操作系统
 - B. NAS 通过 SCSI 连接至服务器,通过服务器网卡在网络上传输数据
 - C. FCSAN 的网络介质为光纤通道,而 IPSAN 使用标准的以太网
 - D. SAN 设备有自己的文件管理系统, NAS 中的存储设备没有文件管理系统

【解析】

DAS(Direct Attached Storage,直接附加存储)即直连方式存储。在这种方式中,存储设备是通过电缆(通常是 SCSI 接口电缆)直接连接服务器。I/O(输入/输入)请求直接发送到存储设备。DAS 也可称为 SAS(Server-Attached Storage,服务器附加存储)。它依赖于服务器,其本身是硬件的堆叠,不带有任何存储操作系统,DAS 不能提供跨平台文件共享功能(A 选项,错误),各系统平台下文件需分别存储。

NAS 是(Network Attached Storage)的简称,中文称为网络附加存储。在 NAS 存储结构中,存储系统不再通过 I/O 总线附属于某个特定的服务器或客户机,而是直接**通过网络接口与网络直接相连**(B 选项,错误),由用户通过网络来访问。

NAS设备有自己的OS,其实际上是一个带有瘦服务的存储设备,其作用类似于一个专用的文件服务器(D选项,错误),不过把显示器,键盘,鼠标等设备省去,NAS用于存储服务,可以大大降低了存储设备的成本,另外NAS中的存储信息都是采用RAID方式进行管理的,从而有效的保护了数据。

SAN 是通过专用高速网将一个或多个网络存储设备和服务器连接起来的专用存储系统,未来的信息存储将以SAN 存储方式为主。SAN 主要采取数据块的方式进行数据和信息的存储,目前主要使用于以太网(IP SAN)和光纤通道(FC SAN)(C 选项,正确)两类环境中。

D 选项后半部分错误, 前半部分正确。

【答案】C。

IPV6

- 1. IPv6 地址分为 3 种类型,它们是()。
 - A. A 类地址、B 类地址、C 类地址
 - B. 单播地址、组播地址、任意播地址
 - C. 单播地址、组播地址、广播地址
 - D. 公共地址、站点地址、接口地址

[解析]

IPv6 地址分为单播地址、组播地址和任意播地址。单播地址又包括可聚合全球单播地址、链路本地地址、站点本地地址和其他特殊单播地址。

- 2. 以下关于 IPv6 地址的描述中, 正确的是()。
 - A. 单播地址和组播地址均可以用做源地址或目的地址
 - B. 组播地址和任意播(或泛播)地址均可以用做源地址和目的地址
 - C. 特殊地址::不能用做目的地址,也不能用在 IPv6 路由头标中
 - D. 特殊地址::1 可以由用户分配给本机网卡,以用于用户回环测试

【解析】

组播地址和任意播地址均不可用做 IPv6 分组的源地址;同时组播地址也不能用做任何寻路头抵任意播地址绝不可以分配给 IPv6 主机,即它只能分配给 IPv6 路由器。

特殊地址::不能分配给任何节点,只能在 IPv6 分组的源地址字段中出现,不能用做目的地址,也不能用在 IPv6 路由头标中。

特殊地址::1 用于用户回环测试, 但不能分配给任何物理接口。

【答案】: C。

3. 以下关于 IPv6 的论述中, 正确的是()。

A.IPv6 数据包的首部比 IPv4 复杂 C.IPv6 的地址长度为 128 比特 B.IPv6 的地址分为单播、广播和任意播 3 种

D.每个主机拥有唯一的 IPv6 地址

【解析】

选项 A 分组头格式得到简化: IPv4 头中的很多字段被丢弃, IPv6 头中字段的数量从 12 个降到了 8 个, 中间路由器必须处理的字段从 6 个降到了 4 个, 这样就简化了路由器的处理过程, 提高了路由选择的效率。

选项 B: IPv6 地址分为单播地址、组播地址和任意播地址。

选项 C: IPv6 的地址长度为 128 比特, IPv4 为 32 比特。

选项 D: 不一定每个主机拥有唯一的 IPv6 地址。

【答案】C。

TCP/IP 协议族

- 1. 以下关于域名服务器的叙述,错误的是()。
 - A. 本地缓存域名服务不需要域名数据库
 - B. 顶级域名服务器是最高层次的域名服务器
 - C. 本地域名服务器可以采用递归查询和迭代查询两种查询方式
 - D. 权限服务器负责将其管辖区内的主机域名转换为该主机的 IP 地址

【解析】

根域名服务器是最高层次的域名服务器。

2. 主机 PC 对某个域名进行查询,最终由该域名的授权域名服务器解析并返回结果,查询过程如下图所示。这种查询方式中不合理的是()。

- A.根域名服务器采用递归查询,影响了性能
- B.根域名服务器采用迭代查询,影响了性能
- C.中介域名服务器采用迭代查询,加重了根域名服务器负担
- D.中介域名服务器采用递归查询,加重了根域名服务器负担

【解析】

在域名解析过程中,一般有两种查询方式: 递归查询和迭代查询。

递归查询:服务器必需回答目标 IP 与域名的映射关系。

迭代查询:服务器收到一次迭代查询回复一次结果,这个结果不一定是目标IP与域名的映射关系,也可以是其它DNS服务器的地址。

在本题中,本地域名服务器向根域名服务器发出查询请求后,根域名服务器会一层一层的进行查询,将最终结果告诉本地域名服务器,这种方式属于递归查询,这种方式增加了根域名服务器的负担,影响了性能。

【答案】A。

- 3. 以下关于网络控制的叙述,正确的是()。
 - A. 由于 TCP 的窗口大小是固定的, 所以防止拥塞的方法只能是超时重发
 - B. 在前向纠错系统中, 当接收端检测到错误后就要请求发送端重发出错分组
 - C. 在滑动窗口协议中,窗口的大小以及确认应答使得可以连续发送多个数据
 - D. 在数据报系统中, 所有连续发送的数据都可以沿着预先建立的虚通路传送

【解析】

TCP 采用可变大小的滑动窗口协议进行流量控制。

在前向纠错系统中, 当接收端检测到错误后就**根据纠错编码的规律自行纠错**(B 选项); 在后向纠错系统中,接收方会请求发送方重发出错分组。

IP 协议**不预先建立虚电路**(D 选项), 而是对每个数据报独立地选择路由并一站一站地进行转发, 直到送达目标地。

【答案】C。

网络规划与设计

1. 某高校欲构建财务系统,使得用户可通过校园网访问该系统。根据需求,公司给出如下 2 套方案。

方案一:

- 1)出口设备采用一台配置防火墙板卡的核心交换机,并且使用防火墙策略将需要对校园网做应用的服务器进行地址映射;
- 2)采用4台高性能服务器实现整体架构,其中3台作为财务应用服务器、1台作为数据备份管理服务器;
 - 3)通过备份管理软件的备份策略将3台财务应用服务器的数据进行定期备份。

方案二:

- 1)出口设备采用1台配置防火墙板卡的核心交换机,并且使用防火墙策略将需要对校园网做应用的服务器进行地址映射:
- 2)采用2台高性能服务器实现整体架构,服务器采用虚拟化技术,建多个虚拟机满足财务系统业务需求。当一台服务器出现物理故障时将业务迁移到另外一台物理服务器上。

与方案一相比,方案二的优点是(1)。方案二还有一些缺点,下列不属于其缺点的是(2)。

(1)A.网络的安全性得到保障

B.数据的安全性得到保障

C.业务的连续性得到保障

D.业务的可用性得到保障

- (2) A.缺少企业级磁盘阵列,不能将数据进行统一的存储与管理
 - B.缺少网闸,不能实现财务系统与 Internet 的物理隔离
 - C.缺少安全审计,不便于相关行为的记录、存储与分析
 - D.缺少内部财务用户接口,不便于快速管理与维护

【解析】

与方案一相比,方案二服务器采用虚拟化技术,当一台服务器出现物理故障时将业务迁移到另外一台物理服务器上,保障了业务的连续性。网络的安全性、数据的安全性、业务的可用性都没有发生实质性变化。

当然方案二还有一些缺陷。首先缺少将数据进行统一的存储鱼管理的企业级磁盘阵列; 其次缺少安全审计,不便于相关行为的记录、存储与分析;而且缺少内部财务用户接口,不 便于快速管理与维护。但是如果加网闸,就不能实现对财务系统的访问。不能实现用户可通 过校园网对财务系统的访问。

【答案】: C、B。

- 2. 网络开发过程中,物理网络设计阶段的任务是()。
 - A.依据逻辑网络设计的功能要求,确定设备的具体物理分布和运行环境
 - B.分析现有网络和新网络的各类资源分布,掌握网络所处状态
 - C.根据需求规范和通信规范,实施资源分配和安全规划
 - D.理解网络应该具有的功能和性能, 最终设计出符合用户需求的网络

【解析】

网络的生命周期至少包括网络系统的构思计划、分析设计、实时运行和维护的过程。对于大多数网络系统来说,由于应用的不断发展,这些网络系统需要不断重复设计、实施、维护的过程。

网络逻辑结构设计是体现网络设计核心思想的关键阶段,在这一阶段根据需求规范和通信规范,选择一种比较适宜的网络逻辑结构,并基于该逻辑结构实施后续的资源分配规划、安全规划等内容。C选项。

物理网络设计是对逻辑网络设计的物理实现,通过对设备的具体物理分布、运行环境等的确定,确保网络的物理连接符合逻辑连接的要求。在这一阶段,网络设计者需要确定具体的软硬件、连接设备、布线和服务。A 选项。

现有网络体系分析的工作目的是描述资源分布,以便于在升级时尽量保护已有投资,通过该工作可以使网络设计者掌握网络现在所处的状态和情况。B 选项。

需求分析阶段有助于设计者更好地理解网络应该具有什么功能和性能,最终设计出符合用户需求的网络、它为网络设计提供依据。D选项。

【答案】A。

3. 网络需求分析包括网络总体需求分析、综合布线需求分析、网络可用性与可靠性分析、 网络安全性需求分析,此外还需要进行()。

A.工程造价估算 B.工程进度安排 C.硬件设备选型 D.IP 地址分配分析

【解析】

本题考查网络规划设计中的需求分析阶段的内容。

网络需求分析应该确定网络的投资规模,也就是工程造价的估算。

- 4. 面向服务系统构建过程中,()用于实现 Web 服务的远程调用,()用来将分散的、功能单一的 Web 服务组织成一个复杂的有机应用。
 - (1), A.UDDI(Universal Description, Discovery and Integration)
 - B.WSDL(Web Service Description Language)
 - C.SOAP(Simple Object Access Protocol)
 - D.BPEL(Business Process Execution Language)
 - (2), A.UDDI(Universal Description, Discovery and Integration)
 - B.WSDL(Web Service Description Language)
 - C.SOAP(Simple Object Access Protocol)
 - D.BPEL(Business Process Execution Language)

【解析】

UDDI 用于 Web 服务注册和服务查找;

WSDL 用于描述 Web 服务的接口和操作功能;

SOAP 为建立 Web 服务和服务请求之间的通信提供支持。

BPEL 翻译成中文的意思是面向 Web 服务的业务流程执行语言,也有的文献简写成BPEL4WS,它是一种使用 Web 服务定义和执行业务流程的语言。使用 BPEL,用户可以通过组合、编排和协调 Web 服务自上而下地实现面向服务的体系结构(SOA)。BPEL 提供了一种相对简单易懂的方法,可将多个 Web 服务组合到一个新的复合服务(称作业务流程)中。

【答案】: C、D。

- 5. 以下关于网络核心层的叙述中,正确的是()。
 - A. 为了保障安全性,应该对分组进行尽可能多的处理
 - B. 将数据分组从一个区域高速地转发到另一个区域
 - C. 由多台二、三层交换机组成
 - D. 提供多条路径来缓解通信瓶颈

【解析】

核心层: 提供不同区域或者下层的高速连接和最优传输路径。

汇聚层:将网络业务连接到接入层、并且实施与安全、流量负载和路由相关的策略。

接入层: 为局域网接入广域网或者终端用户访问用户网络提供接入。

在设计核心层设备的功能时,应尽量避免使用数据包过滤、策略路由等降低数据包转发 处理的特性,以优化核心层获得低延迟和良好的可管理性。

由于核心层的目标是快速传递分组,因此不宜集成控制功能和分组处理功能,而且传输带宽必须是千兆或万兆级的。核心层交换机一般都是三层交换机或者三层以上的交换机。提供多条路径是为了高效性和可靠性。

【答案】: B。

- 6. 某企业通过一台路由器上联总部,下联 4 个分支机构,设计人员分配给下级机构一个连续的地址空间,采用一个子网或者超网段表示。这样做的主要作用是()。
 - A.层次化路由选择
 - B.易于管理和性能优化
 - C.基于故障排查
 - D.使用较少的资源

【解析】

层次化路由的含义是指对网络拓扑结构和配置的了解是局部的,一台路由器不需要知道 所有的路由信息,只需要了解其管辖的路由信息,层次化路由选择需要配合层次化的地址编码。而子网或超网就属于层次化地址编码行为。

【答案】: A。

- 7. 核心层交换机应该实现多种功能,下面选项中,不属于核心层特性的是()。
 - A. 高速连接
 - B. 冗余设计
 - C. 策略路由
 - D. 较少的设备连接

【解析】

【答案】: C。

- 8. 网络设计过程包括逻辑网络设计和物理网络设计两个阶段,下面的选项中,()应该属于逻辑网络设计阶段的任务。
 - A. 选择路由协议
 - B. 设备选型
 - C. 结构化布线
 - D. 机房设计

【解析】

逻辑网络设计包括:网络结构设计、物理层技术选择、局域网技术选择与应用、广域网技术选择与应用、地址设计与命名模型、路由选择协议、网络管理、网络安全、逻辑网络设计文档、侧重点为逻辑结构。

物理网络设计的内容包括:设备选型、结构化布线、机房设计及物理网络设计相关的文档规范(如:软硬件清单,费用清单),**侧重点为物理设备**。

【答案】A。

- 9. 网络逻辑结构设计的内容不包括()。
 - A.逻辑网络设计图
 - B.IP 地址方案
 - C.具体的软硬件、广域网和基本服务
 - D.用户培训计划

【解析】

利用需求分析和现有网络体系分析的结果来设计逻辑网络结构,最后得到一份逻辑网络设计文档,输出内容包括以下几点:

1、逻辑网络设计图 2、IP 地址方案 3、安全方案 4、招聘和培训网络员工的具体说明 5、对软硬件、服务、员工和培训的费用初步估计

物理网络设计是对逻辑网络设计的物理实现,通过对设备的具体物理分布、运行环境等确定,确保网络的物理连接符合逻辑连接的要求。

输出如下内容: 1、网络物理结构图和布线方案 2、设备和部件的详细列表清单 3、软硬件和安装费用的估算 4、安装日程表,详细说明服务的时间以及期限 5、安装后的测试计划 6、用户的培训计划 由此可以看出 D 选项的工作是物理网络设计阶段的任务。

- 10. 大型局域网通常划分为核心层、汇聚层和接入层,以下关于各个网络层次的描述中,不正确的是()。
 - A. 核心层进行访问控制列表检查
 - B. 汇聚层定义了网络的访问策略
 - C. 接入层提供局域网络接入功能

D. 接入层可以使用集线器代替交换机

【解析】

本题主要考查大型局域网的层次和各个层次的功能,大型局域网通常划分为核心层、汇聚层和接入层,其中核心层在逻辑上只有一个,它连接多个分布层交换机,通常是一个园区中连接多个建筑物的总交换机的核心网络设备;汇聚层定义的网络的访问策略;接入层提供局域网络接入功能,可以使用集线器代替交换机。

【答案】A。

- 11. 网络系统设计过程中,逻辑网络设计阶段的任务是()。
 - A. 依据逻辑网络设计的要求,确定设备的物理分布和运行环境
 - B. 分析现有网络和新网络的资源分布,掌握网络的运行状态
 - C. 根据需求规范和通信规范,实施资源分配和安全规划
 - D. 理解网络应该具有的功能和性能,设计出符合用户需求的网络

【解析】

本题主要考查网络设计方面的基础知识。根据网络系统设计的一般规则,在逻辑网络设计阶段的任务通常是根据需求规范和通信规范,实施资源分配和安全规划。其他几个选项都不是逻辑网络设计阶段的任务。

【答案】C。

- 12. 网络系统生命周期可以划分为 5 个阶段,实施这 5 个阶段的合理顺序是()。
 - A. 需求规范、通信规范、逻辑网络设计、物理网络设计、实施阶段
 - B. 需求规范、逻辑网络设计、通信规范、物理网络设计、实施阶段
 - C. 通信规范、物理网络设计、需求规范、逻辑网络设计、实施阶段
 - D. 通信规范、需求规范、逻辑网络设计、物理网络设计、实施阶段

【解析】

本题主要考查网络系统生命周期的基础知识。网络系统生命周期可以划分为 5 个阶段,实施这 5 个阶段的合理顺序是需求规范、通信规范、逻辑网络设计、物理网络设计、实施阶段。

- 13. 系统应用架构设计中,网络架构数据流图的主要作用是将处理器和设备分配到网络中。 ()不属于网络架构数据流图的内容。
 - A. 服务器、客户端及其物理位置
 - B. 处理器说明信息
 - C. 单位时间的数据流大小
 - D. 传输协议

【解析】

应用架构建模中要绘制的第一个物理数据流图(PDFD)是网络架构 DFD,它们不显示单位时间的数据流量,需要显示的信息包括**服务器及其物理位置;客户端及其物理位置;处理器说明;传输协议**。

【答案】C。

其它

- 1. 下列说法中正确的是()。
 - A. 半双工总线只在一个方向上传输信息,全双工总线可在两个方向上轮流传输信息
 - B. 半双工总线只在一个方向上传输信息,全双工总线可在两个方向上同时传输信息
 - C. 半双工总线可在两个方向上轮流传输信息, 全双工总线可在两个方向上同时传输信息
 - D.半双工总线可在两个方向上同时传输信息, 全双工总线可在两个方向上轮流传输信息

【解析】

对端到端通信总线的信号传输方向与方式的分类定义如下:

单工是指 A 只能发信号, 而 B 只能接收信号, 通信是单向的。

半双工是指 A 能发信号给 B, B 也能发信号给 A, 但这两个过程不能同时进行。

全双工比半双工又进了一步,在 A 给 B 发信号的同时, B 也可以给 A 发信号,这两个过程可以同时进行互不影响。

【答案】: C。

- 2. 建筑物综合布线系统中的垂直子系统是指()。
 - A. 由终端到信息插座之间的连线系统
 - B. 楼层接线间的配线架和线缆系统
 - C. 各楼层设备之间的互连系统
 - D. 连接各个建筑物的通信系统

【解析】

综合布线分六大子系统。

- 1. 工作区子系统(Worklocation): 目的是实现工作区终端设备与水平子系统之间的连接,由终端设备连接到信息插座的连接线缆所组成。工作区常用设备是计算机、网络集线器(Hub或 Mau)、电话、报警探头、摄像机、监视器、音响等。
- 2. 水平子系统(Horizontal): 目的是实现信息插座和管理子系统(跳线架)间的连接,将用户工作区引至管理子系统,并为用户提供一个符合国际标准,满足语音及高速数据传输要求的信息点出口。该子系统由一个工作区的信息插座开始,经水平布置到管理区的内侧配线架的线缆所组成。
- 3. 管理子系统(Administration): 本子系统由交连、互连配线架组成。管理间为连接其他子系统提供连接手段。交连和互连允许将通信线路定位或重定位到建筑物的不同部分,以便能更容易地管理通信线路,使在移动终端设备时能方便地进行插拔。互连配线架根据不同的连接硬件分楼层配线架(箱)IDF 和总配线架(箱)MDF, IDF 可安装在各楼层的干线接线间,MDF 一般安装在设备机房。
- 4. 垂直干线子系统(Backbone): 目的是实现计算机设备、程控交换机(PBX)、控制中心与各管理子系统问的连接,是建筑物干线电缆的路由。该子系统通常是两个单元之间,特别是在位于中央点的公共系统设备处提供多个线路设施。系统由建筑物内所有的垂直干线多对数电缆及相关支撑硬件组成,以提供设备间总配线架与干线接线问楼层配线架之间的干线路由。常用介质是大对数双绞线电缆和光缆。
- 5. 设备室子系统(: Equipment): 本子系统主要由设备中的电缆、连接器和有关的支撑硬件组成,作用是将计算机、PBX、摄像头、监视器等弱电设备互连起来并连接到主配线架上。设备包括计算机系统、网络集线器(Hub)、网络交换机(Switch)、程控交换机(PBX)、音响输出设备、闭路电视控制装置和报警控制中心等。
- 6. 建筑群子系统(Campus): 该子系统将一个建筑物的电缆延伸到建筑群的另外一些建筑物中的通信设备和装置上,是结构化布线系统的一部分,支持提供楼群之间通信所需的硬件。它由电缆、光缆和入楼处的过流过压电气保护设备等相关硬件组成,常用介质是光缆。【答案】: C。
- 3. 结构化布线系统分为六个子系统,其中水平子系统()。
 - A. 由各种交叉连接设备以及集线器和交换机等设备组成
 - B. 连接了干线子系统和工作区子系统,
 - C. 由终端设备到信息插座的整个区域组成
 - D. 实现各楼层设备间子系统之间的互连

【解析】

水平子系统是指的,从楼层管理间到信息插口这一段,它连接了垂直干线子系统与工作区子系统。

数据库系统

规范化理论

- 某商场商品数据库的商品关系模式 P(商品代码,商品名称,供应商,联系方式,库存量),函数依赖集 F={商品代码→商品名称,(商品代码,供应商)→库存量,供应商→联系方式)。商品关系模式 P 达到();该关系模式分解成()后,具有无损连接的特性,并能够保持函数依赖。
 - A. 1NF B. 2NF C. 3NF D. BCNF
 - A.P1(商品代码, 联系方式), P2(商品名称, 供应商, 库存量)
 - B.P1(商品名称, 联系方式), P2(商品代码, 供应商, 库存量)
 - C.P1(商品代码,商品名称,联系方式),P2(供应商,库存量)
 - D.P1(商品代码,商品名称),P2(商品代码,供应商,库存量),P3(供应商,联系方式)

【解析】

本题考查的是应试者关系数据库方面的基础知识。

根据题意,零件P关系中的(商品代码,供应商)可决定的零件P关系的所有属性,所以零件P关系的主键为(商品代码,供应商);又因为,根据题意(商品代码,供应商)→商品名称,而商品代码→商品名称,供应商→联系方式,可以得出商品名称和联系方式都部分依赖于码(存在非主属性对码的部分函数依赖),所以,该关系模式属于1NF。

关系模式 P 属于 1NF, 1NF 存在冗余度大、修改操作的不一致性、插入异常和删除异常四个问题。所以需要对模式分解,其中选项 A、选项 B 和选项 C 的分解是有损且不保持函数依赖。例如,选项 A 中的分解 P1 的函数依赖集 $F1=\Phi$,分解 P2 的函数依赖集 $F2=\Phi$,丢失了 F 中的函数依赖,即不保持函数依赖。

【答案】A、D。

- 2. 假设关系模式 R(U, F),属性集 $U=\{A, B, C\}$,函数依赖集 $F=\{A\to B, B\to C\}$ 。若将 其分解为 $\rho=\{R1(U1, F1), R2(U2, F2)\}$,其中 $U1=\{A, B\}$, $U2=\{A, C\}$ 。那么,关系模式 R、R1、R2 分别达到了(1);分解 ρ (2)。
 - (1)A. 1NF, 2NF, 3NF
 - B. 1NF、3NF、3NF
 - C. 2NF, 2NF, 3NF
 - D. 2NF, 3NF, 3NF
 - (2)A. 有损连接但保持函数依赖
 - B. 既无损连接又保持函数依赖
 - C. 有损连接且不保持函数依赖
 - D. 无损连接但不保持函数依赖

【解析】

R有函数依赖集 $F=\{A\rightarrow B, B\rightarrow C\}$ 。由于 A 可确定 B 和 C,所以 A 为主键,单个属性的主键不可能有部分依赖关系,所以 R 已符合 2NF。进一步分析是否为 3NF 时,需要识别 R 中是否存在传递依赖。 $A\rightarrow B$, $B\rightarrow C$ 属于典型的传递依赖,所以 R 最高只到 2NF。

当 R 被拆分为 R1 与 R2 后, R1 与 R2 分别只有两个属性,此时的关系模式不可能存在部分依赖,也没法传递依赖(至少3 个属性才可能传递),所以都达到了 3NF。

接下来判断是否无损分解,由于: U1∩U2=A, U1-U2=B, U2-U1=C。

而 R 中有函数依赖: A→B, 所以分解是无损分解。

最后判断是否保持函数依赖:

R1 中包含 A 与 B 两个属性, 所以 A→B 依赖关系被 R1 保持下来了。

而 R2 中的 A 与 C 两个属性,没有保持任何函数依赖,导致函数依赖 B→C 丢失,所以

分解没有保持函数依赖。

【答案】: D、D。

4. 给定关系模式 R(U, F), 其中: 属性集 U={A1,A2,A3,A4,A5,A6}, 函数依赖集 F={A1→A2, A1→A3, A3→A4, A1A5→A6}。关系模式 R 的候选码为(), 由于 R 存 在非主属性对码的部分函数依赖, 所以 R 属于()。

B.A1A4 C. A1A5 A.A1A3 **D.A1A6** A.1NF B.2NF C.3NF D.BCNF

【解析】

要求关系模式的候选码,可以先将函数依赖画成图的形式:

从图很直观的可以看出,入度为零的结点是 A1 与 A5,从这两个结点的组合出发,能 遍历全图, 所以A1A5组合键为候选码。

题目后一问是一个概念性问题, 2NF 的规定是消除非主属性对码的部分函数依赖。本题 已明确告知未消除该依赖,说明未达到 2NF,只能选 1NF。

- 5. 设关系模式 R(U, F), 其中 R 上的属性集 U={A, B, C, D, E}, R 上的函数 依赖集 $F=\{A\rightarrow B, DE\rightarrow B, CB\rightarrow E, E\rightarrow A, B\rightarrow D\}$ 。() 为关系 R 的候选关键字。 分解()是无损连接,并保持函数依赖的。
 - (1)A. AB
- B. DE
- C. CE D. DB
- (2) A. $p=\{R1(AC), R2(ED), R3(B)\}$
 - B. $p=\{R1(AC), R2(E), R3(DB)\}$
 - C. $p=\{R1(AC), R2(ED), R3(AB)\}$
 - D. $p=\{R1(ABC), R2(ED), R3(ACE)\}$

【解析】

第一问:

C只出现在左边,是候选候选键;只有C选项包含C,经验证CE能推导出U。

因为 $E \to A \to B \to D$,则 DE→B 也可推导出,CE→CE。则 ABCDE 都可被推导出,即 CE 的闭包为 U。

第二问: 以此题为例

(1): 判断分解 p 是否为无损连接: 若关系模式 R(U,F)中, 被分解为 p={R1, R2} 是 R 的 一个分解,若R1∩R2 → R1-R2 或者R1∩R2 → R2-R1,则为无损连接,此方法只适用 于分解后的关系模式只有两个。

(2): 当关系模式是多个时候。

A 选项:

第一步:构造一个初始的二维表,模式中含有属性值的,记为α;,i为所在列数;不含 有属性值的、记为 b_{ii} 、其中i为所在行数、i为所在列数。

属性	A	В	C	D	Е		
模式							
R1(AC)	al	b13	a3	b14	b15		
R2(E)	b21	b22	b23	b24	a5		

R3(DB) b31 a2	b33 a4	b35
---------------	--------	-----

第二步:

根据 $F=\{A\rightarrow B, DE\rightarrow B, CB\rightarrow E, E\rightarrow A, B\rightarrow D\}$ 依次进行标识法判断。例如: $A\rightarrow B$ 判断首先标识出 AB 所在列,发现 $A\rightarrow B$ 中的决定因素 A 没有两行是相同的。再继续判断 $DE\rightarrow B$, $CB\rightarrow E$, $E\rightarrow A$, $B\rightarrow D$ 。

由于 $A \rightarrow B$, $DE \rightarrow B$, $CB \rightarrow E$, $E \rightarrow A$, $B \rightarrow D$ 的决定因素中没有两行是相同的, 因此选项 A 是有损连接的。B 选项类似。

C 选项:

€ ∧ •					
属性	A	В	С	D	Е
模式					
R1(AC)	a1	b13	a3	b14	b15
R2(E)	b21	b22	b23	a4	a5
R3(DB)	a1	a2	b33	b34	b35

发现 $A \rightarrow B$ 中的决定因素 A 的第 1 行与第 3 行的值相同,将列 B 第 1 行变成 a2(这里的判断依据是:列 B 第 1 行与第 3 行中如果有 α_i ,则 B 第 1 行与第 3 行都变成 α_i ;如果没有,则取行号最小值,假如列 B 第 3 行为 b32,则 B 第 1 行与第 3 行都变成 b13(行号最小))。通过规则转换如下:

属性	A	В	С	D	Е
模式					
R1(AC)	a1	a2	a3	b14	b15
R2(E)	b21	b22	b23	a4	a5
R3(DB)	a1	a2	b33	b34	b35

再变换 $DE \rightarrow B$ 决定因素中没有两行是相同的;继续判断 $CB \rightarrow E$,发现决定因素中没有两行是相同的;再判断 $E \rightarrow A$,发现 $E \rightarrow A$ 决定因素中没有两行是相同的;继续判断 $B \rightarrow D$,发现列 B 的第 1 行与第 3 行的值相同。则将 D 的第 3 行变成 b14(依据为:没有 α_i 就取行号最小的值)。转换为

-) - 1 - 1 - 1					
属性 模式	A	В	С	D	Е
R1(AC)	a1	a2	a3	b14	b15
R2(E)	b21	b22	b23	a4	a5
R3(DB)	a1	a2	b33	b14	b35

第三步:

反复检查函数依赖集F,无法修改上表,发现上表中没有一行为a1,a2,a3,a4,a5。则是有损连接。

D 选项:

○ /\ ·					
属性	A	В	С	D	Е
模式					
R1(ABC)	a1	a2	a3	b14	b15
R2(ED)	b21	b22	b23	a4	a5
R3(ACE)	a1	b32	a3	b34	a5

发现 $A \rightarrow B$ 中的决定因素 A 的第 1 行与第 3 行的值相同,将列 B 第 3 行变成 a2(依据为:没有 α ;就取行号最小的值)。

属性	A	В	С	D	Е
模式					

R1(ABC)	a1	a2	a3	b14	b15
R2(ED)	b21	b22	b23	a4	a5
R3(ACE)	al	a2	a3	b34	a5

再变换 $DE \rightarrow B$,发现决定因素中没有两行是相同的;继续判断 $CB \rightarrow E$,发现 $CB \rightarrow E$ 中的决定因素 CB 的第 1 行与第 3 行的值相同,则将 A 的第 1 行变成 a5(依据为: 没有 α_i 就取行号最小的值)。转换成如下:

属性 模式	A	В	С	D	Е
R1(ABC)	a1	a2	a3	b14	a5
R2(ED)	b21	b22	b23	a4	a5
R3(ACE)	a1	a2	a3	b34	a5

继续判断 $E \rightarrow A$, 发现 $E \rightarrow A$ 中的决定因素 E 的第 2 行与第 3 行的值相同,则将 A 的第 2 行变成 al (依据为:没有 α ;就取行号最小的值)。转换成如下:

	,		. ,		
属性	A	В	C	D	Е
模式					
R1(ABC)	a1	a2	a3	b14	a5
R2(ED)	a1	b22	b23	a4	a5
R3(ACE)	a1	a2	a3	b34	a5

再判断 B→D, 发现发现 B→D 中的决定因素 B 的第 1 行与第 3 行的值相同,则将列 D 第 3 行变成 b14(依据为:没有 α;就取行号最小的值)。

^	- 100 OI (10-100 > 4 ·	\sim 13 α_1	100-P-11 1 4C	1 "1 EL)		
	属性	A	В	С	D	Е
	模式					
	R1(ABC)	a1	a2	a3	b14	a5
	R2(ED)	a1	b22	b23	a4	a5
	R3(ACE)	a1	a2	a3	b14	a5

发现上表中没有一行为 a1,a2,a3,a4,a5。

反复检查函数依赖集 $F=\{A\to B, DE\to B, CB\to E, E\to A, B\to D\}$,看根据已知是否能推导出其他关系。发现由 $\{A\to B, CB\to E\}$ 可推导出 $AC\to E$; $\{E\to A, A\to B, B\to D\}$ 可推导出 $E\to D$ 。

首先看 $AC \rightarrow E$ 中的决定因素 AC 的第 1 行与第 3 行的值相同(同时为 a1,a3),则将列 E 第 1 行变成 a5(依据为:没有 α_i 就取行号最小的值)。

(, , , , , , , , , , , , , , , , , , ,		- 1			
属性	A	В	С	D	Е
模式					
R1(ABC)	a1	a2	a3	b14	a5
R2(ED)	a1	b22	b23	a4	a5
R3(ACE)	a1	a2	a3	b14	a5

再看 $E \rightarrow D$ 中的决定因素 E 的第 1、2、3 行的值相同,则将列 D 第 1、2、3 行变成 a4(依据为:没有 α ;就取行号最小的值)。

属性 模式	A	В	С	D	Е
R1(ABC)	a1	a2	a3	a4	a5
R2(ED)	a1	b22	b23	a4	a5

R3(ACE) a1 a2 a3 a4 a5

发现上表中第1行为 a1,a2,a3,a4,a5。判断为无损连接,其实第3行 a1,a2,a3,a4,a5,只要有一行满足条件即可。

I:保持函数依赖的分解保持函数依赖,就是指原来有哪些函数依赖,当进行拆分以后, 这些函数依赖在新的关系模式中,是否依然存在。

如原来有关系模式 P(C, S, T, R, G), 函数依赖为: $F=\{C\rightarrow T, ST\rightarrow R, TR\rightarrow C, SC\rightarrow G\}$ 。分解成 P1(C, T, R), P2(C, S, G),

其中保持了P1(C, T, R): C→T、TR→C 函数依赖。

P2(C, S, G)保持了: SC→G 函数依赖。

结果函数依赖: ST→R 就丢了。所以没有保持。

此题函数依赖有问题, 不具体解析。

【答案】C、D。

某企业工程项目管理数据库的部分关系模式如下所示,其中带实下划线的表示主键,虚下划线表示外键。

其中供应关系是(1)的联系。若一个工程项目可以有多个员工参加,每个员工可以参加多个项目,则项目和员工之间是(2)联系。对项目和员工关系进行设计时,(3)设计成一个独立的关系模式。

- (1)A. 2 个实体之间的 1:n
 - B.2 个实体之间的 n:m
 - C.3 个实体之间的 1:n:m
 - D.3 个实体之间的 k:n:m
- (2)A. 1:1
 - B. 1:n
 - C. n:m
 - D. n:1
- (3)A.多对多的联系在向关系模型转换时必须
 - B.多对多的联系在向关系模型转换时无须
 - C.只需要将一端的码并入多端, 所以无须
 - D.不仅需要将一端的码并入多端,而且必须

【解析】

题目虽然有多个问题,但实际上只考查了一个知识点——实体之间的联系。

供应关系中,有属性:项目号,零件号,供应商号。这些属于分别来自供应商、项目、零件这三个关系,并且,一个供应商可以向多个项目供应零件,一个供应商可以供应多种零件,一个项目可以由多个供应商供应零件,一个项目可以使用多种零件,而一种零件可以由多个不同供应商来提供,一种零件可用于不同项目。这说明供应关系涉及3个实体,这3个实体之间的关系是 k:n:m。

从题目的描述"若一个工程项目可以有多个员工参加,每个员工可以参加多个项目"可以得知,项目和员工的关系是 n:m。

在实体转关系模式过程中,存在3种类型的联系,他们的处理方式如下:

1:1 联系:在两个关系模式中的任意一个模式中,加入另一个模式的键和联系类型的属性;

1:n 联系:在 n 端实体类型对应的关系模式中加入 1 端实体类型的键和联系类型的属性; m:n 联系:将联系类型也转换成关系模式,属性为两端实体类型的键加上联系类型的属性。

试题中是 m:n 联系,所以需要把联系单独转成一个关系模式。

【答案】D、C、A。

- 7. 在数据库设计的()阶段进行关系规范化。
 - A. 需求分析
 - B. 概念设计
 - C. 逻辑设计
 - D. 物理设计

【解析】

数据库设计分为用户需求分析、概念设计、逻辑设计和物理设计四个主要阶段。将抽象的概念模型转化为与选用的 DBMS 产品所支持的数据模型相符合的逻辑模型,它是物理设计的基础。包括模式初始设计、子模式设计、应用程序设计、模式评价以及模式求精。

逻辑设计阶段的任务是将概念模型设计阶段得到的基本 E-R 图,转换为与选用的 DBMS 产品所支持的数据模型相符合的逻辑结构。如采用基于 E-R 模型的数据库设计方法,该阶段就是将所设计的 E-R 模型转换为某个 DBMS 所支持的数据模型;如采用用户视图法,则应进行模式的规范化,列出所有的关键字以及用数据结构图描述表集合中的约束与联系,汇总各用户视图的设计结果,将所有的用户视图合成一个复杂的数据库系统。

【答案】C。

数据库完整性约束

- 1. 某数据库中有员工关系 E(员工号,姓名,部门,职称,月薪);产品关系 P(产品号,产品名称,型号,尺寸,颜色);仓库关系 W(仓库号,仓库名称,地址,负责人);库存关系 I(仓库号,产品号,产品数量)。
 - A. 若数据库设计中要求:
 - ①仓库关系 W 中的"负责人"引用员工关系的员工号
 - ②库存关系 I 中的"仓库号,产品号"惟一标识 I 中的每一个记录
 - ③员工关系 E 中的职称为"工程师"的月薪不能低于 3500 元
 - 则①②③依次要满足的完整性约束是()。
 - B.若需得到每种产品的名称和该产品的总库存量,则对应的查询语句为:

SELELCT 产品名称, SUM(产品数量

FROM P, I

WHERE P.产品号 = I.产品号();

- (1)A. 实体完整性、参照完整性、用户定义完整性
 - B. 参照完整性、实体完整性、用户定义完整性
 - C. 用户定义完整性、实体完整性、参照完整性
 - D. 实体完整性、用户定义完整性、参照完整性
- (2)A. ORDER BY 产品名称
 - B. ORDER BY 产品数量
 - C. GROUP BY 产品名称
 - D. GROUP BY 产品数量

【解析】

关系模型的完整性规则是对关系的某种约束条件。关系模型中可以有三类完整性约束: 实体完整性、参照完整性和用户定义的完整性。实体完整性规定基本关系的主属性不能取空 值。

由于①仓库关系 W 中的"负责人"引用员工关系的员工号,所以应满足参照完整性约束;② 库存关系 I 中的"仓库号,产品号"惟一标识 I 中的每一个记录,所以应满足实体

完整性约束;③ 职称为"工程师"的月薪不能低于3500元,是针对某一具体关系数据库的约束条件,它反映某一具体应用所涉及的数据必须满足的语义要求,所以应满足用户定义完整性约束。因此,试题(1)的正确答案为B。

SQL 查询是数据库中非常重要的内容。该 SQL 查询要求对查询结果进行分组,即具有相同名称的产品的元组为一组,然后计算每组的库存数量。由此可排除 A、B 和 D,所以试 题(2)正确答案为 C。

- 2. 设有职务工资关系 P(职务,最低工资,最高工资),员工关系 EMP(员工号,职务,工资),要求任何一名员工,其工资值必须在其职务对应的工资范围之内,实现该需求的方法是(6)。A.建立"EMP.职务"向"P.职务"的参照完整性约束
 - B. 建立 "P.职务"向 "EMP.职务"的参照完整性约束
 - C. 建立 EMP 上的触发器程序审定该需求
 - D. 建立 P 上的触发器程序审定该需求

【解析】

本题考查对数据完整性约束方面基础知识的掌握。完整性约束为实体完整性约束、参照完整性约束和用户自定义完整性约束三类。其中实体完整性约束可以通过 Primary Key 指定,参照完整性约束通过 Foreign Key 指定,某些简单的约束可以通过 Check、Assertion 等实现。针对复杂的约束,系统提供了触发器机制,通过用户编程实现。本题中的约束条件只能通过编写职工表上的触发器,在对工资进行修改或插入新记录时触发,将新工资值与工资范围表中职工职务对应的工资范围对比,只有在范围内才提交,否则回滚。

【答案】C。

数据库设计阶段

- 1. 在数据库设计的需求分析阶段应当形成(),这些文档可以作为()阶段的设计依据。
 - (1)A. 程序文档、数据字典和数据流图
 - B. 需求说明文档、程序文档和数据流图
 - C. 需求说明文档、数据字典和数据流图
 - D. 需求说明文档、数据字典和程序文档
 - (2)A.逻辑结构设计
 - B.概念结构设计
 - C.物理结构设计
 - D.数据库运行和维护

【解析】

数据库设计主要分为用户需求分析、概念结构、逻辑结构和物理结构设计四个阶段。其中,在用户需求分析阶段中,数据库设计人员采用一定的辅助工具对应用对象的功能、 性能、限制等要求所进行的科学分析,并形成需求说明文档、数据字典和数据流程图。用户需求分析阶段形成的相关文档用以作为概念结构设计的设计依据。

【答案】C、B

- 8. 在数据库设计的需求分析阶段应完成包括() 在内的文档。
 - A. E-R 图
 - B. 关系模式
 - C. 数据字典和数据流图
 - D. 任务书和设计方案

【解析】

需求分析阶段的任务是对现实世界要处理的对象(组织、部门和企业等)进行详细调查, 在了解现行系统的概况,确定新系统功能的过程中收集支持系统目标的基础数据及处理方法。需求分析是在用户调查的基础上,通过分析,逐步明确用户对系统的需求。在需求分析 阶段应完成的文档是数据字典和数据流图。

关系代数

- 1. 给定学生 S(学号,姓名,年龄,入学时间,联系方式)和选课 SC(学号,课程号,成绩) 关系,若要查询选修了 1 号课程的学生学号、姓名和成绩,则该查询与关系代数表达式 (8)等价。
 - $A. \pi_{1,2,8}(\sigma_{1=6\wedge 7='1'}(S \bowtie SC))$
 - $_{\text{B.}} \pi_{\text{1.2.7}}(\sigma_{\text{6='1'}}(\text{S} \bowtie \text{SC}))$
 - C. $\pi_{1,2,7}(\sigma_{1=6}(S \bowtie SC))$
 - $D^{\pi_{1,2,8}}(\sigma_{7=1}(S \bowtie SC))$

【解析】

解答本题需要对关系代数中的自然连接有一定了解。自然连接操作会自动以两个关系模式中共有属性值相等作为连接条件,对于连接结果,将自动去除重复的属性。所以在本题中,连接条件为两个表的学号相等,当连接操作完成以后,形成的结果表,有属性"学号,姓名,年龄,入学时间,联系方式,课程号,成绩",此时要选择1号课程的学生记录,应使用条件6="1",其含义是表中的第6个属性值为"1"。所以本题应选B。

数据备份与恢复

- 1. 数据备份是信息系统运行管理时保护数据的重要措施。()可针对上次任何一种备份进行,将上次备份后所有发生变化的数据进行备份,并将备份后的数据进行标记。
 - A.增量备份
 - B.差异备份
 - C.完全备份
 - D.按需备份

【解析】

数据备份从备份量来分,可以分为完全备份、增量备份、差异备份。

完全备份:备份所有数据。即使两个备份时间点之间数据没有任何变动,所有数据还是 会被备份下来。

增量备份: 跟完全备份不同, 增量备份在做数据备份前会先判断数据的最后修改时间是 否比上次备份的时间晚。如果不是, 则表示该数据并没有被修改过, 这次不需要备份。所以 该备份方式, 只记录上次备份之后的变动情况, 而非完全备份。

差异备份:差异备份与增量备份一样,都只备份变动过的数据。但**增量备份是针对上次** 完整备份后,曾被更新过的。

从以上对备份方式的分析可以得知:增量备份可针对上次任何一种备份进行。

【答案】A。

数据仓库与数据挖掘

- 1. 数据挖掘是从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程,主要任务有()。
 - A. 聚类分析、联机分析、信息检索等
 - B. 信息检索、聚类分析、分类分析等
 - C. 聚类分析、分类分析、关联规则挖掘等

D. 分类分析、联机分析、关联规则挖掘等

【解析】

数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析,等等。

并发控制

- 1. 分布式数据库两阶段提交协议中的两个阶段是指()。
 - A.加锁阶段、解锁阶段
 - B.获取阶段、运行阶段
 - C.表决阶段、执行阶段
 - D.扩展阶段、收缩阶段

【解析】

所谓的两个阶段是指:第一阶段:准备阶段(表决阶段)和第二阶段:提交阶段(执行阶段)。 准备阶段(表决阶段):事务协调者(事务管理器)给每个参与者(资源管理器)发送 Prepare 消息,每个参与者要么直接返回失败(如权限验证失败),要么在本地执行事务,写本地的 redo 和 undo 日志,但不提交,到达一种"万事俱备,只欠东风"的状态。

提交阶段(执行阶段):如果协调者收到了参与者的失败消息或者超时,直接给每个参与者发送回滚(Rollback)消息;否则,发送提交(Commit)消息;参与者根据协调者的指令执行提交或者回滚操作,释放所有事务处理过程中使用的锁资源。(注意:必须在最后阶段释放锁资源)

【答案】: C。

1. 在数据库系统中, "事务"是访问数据库并可能更新各种数据项的一个程序执行单元。 为了保证数据完整性,要求数据库系统维护事务的原子性、一致性、隔离性和持久性。 针对事务的这 4 种特性,考虑以下的架构设计场景:

假设在某一个时刻只有一个活动的事务,为了保证事务的原子性,对于要执行写操作的数据项,数据库系统在磁盘上维护数据库的一个副本,所有的写操作都在数据库副本上执行,而保持原始数据库不变,如果在任一时刻操作不得不中止,系统仅需要删除副本,原数据库没有受到任何影响。这种设计策略称为()。

事务的一致性要求在没有其它事务并发执行的情况下,事务的执行应该保证数据库的一致性。数据库系统通常采用()机制保证单个事务的一致性。

事务的隔离性保证操作并发执行后的系统状态与这些操作以某种次序顺序执行(即可串行化执行)后的状态是等价的。两阶段锁协议是实现隔离性的常见方案,该协议()。

持久性保证一旦事务完成,该事务对数据库所做的所有更新都是永久的,如果事务完成后系统出现故障,则需要通过恢复机制保证事务的持久性。假设在日志中记录所有对数据库的修改操作,将一个事务的所有写操作延迟到事务提交后才执行,则在日志中(),当系统发生故障时,如果某个事务已经开始,但没有提交,则该事务应该()。

- (1)A.主动冗余
 - B.影子拷贝
 - C.热备份
 - D.多版本编程
- (2)A.逻辑正确性检查
 - B.物理正确性检查
 - C.完整性约束检查
 - D.唯一性检查
- (3)A.能够保证事务的可串行化执行,可能发生死锁

- B.不能保证事务的可串行化执行,不会发生死锁
- C.不能保证事务的可串行化执行,可能发生死锁
- D.能够保证事务的可串行化执行,不会发生死锁
- (4)A.无需记录"事务开始执行"这一事件
 - B.无需记录"事务已经提交"这一事件
 - C.无需记录数据项被事务修改后的新值
 - D.无需记录数据项被事务修改前的原始值
- (5)A.重做
 - B.撤销
 - C.什么都不做
 - D.抛出异常后退出

【解析】

本题主要考查数据库系统架构设计知识。在数据库系统中,"事务"是访问并可能更新各种数据项的一个程序执行单元。为了保证数据完整性,要求数据库系统维护事务的原子性、一致性、隔离性和持久性。

题干中第1个架构设计场景描述了数据库设计中为了实现原子性和持久性的**最为简单的策略:"影子拷贝"**。该策略假设在某一个时刻只有一个活动的事务,首先对数据库做副本(称为影子副本),并在磁盘上维护一个 dp_pointer 指针,指向数据库的当前副本。对于要执行写操作的数据项,数据库系统在磁盘上维护数据库的一个副本,所有的写操作都在数据库副本上执行,而保持原始数据库不变,如果在任一时刻操作不得不中止,系统仅需要删除新副本,原数据库副本没有受到任何影响。

题干中的第2个架构设计场景主要考查考生对事务一致性实现机制的理解。事务的一致 性要求在没有其它事务并发执行的情况下,事务的执行应该保证数据库的一致性。数据库系 统通常采用**完整性约束**检查机制**保证单个事务的一致性**。

题干中的第3个架构设计场景主要考查数据库的锁协议。两阶段锁协议是实现事务隔离性的常见方案,该协议通过定义锁的增长和收缩两个阶段约束事务的加锁和解锁过程,能够保证事务的串行化执行,但由于事务不能一次得到所有需要的锁,因此该协议会可能会导致死锁。

题干中的第4个架构设计场景主要考查数据库的恢复机制,主要描述了基于日志的延迟修改技术(deferred-modification technique)的设计与恢复过程。该技术通过在日志中记录所有对数据库的修改操作,将一个事务的所有写操作延迟到事务提交后才执行,日志中需要记录"事务开始"和"事务提交"时间,还需要记录数据项被事务修改后的新值,无需记录数据项被事务修改前的原始值。当系统发生故障时,如果某个事务已经开始,但没有提交,则该事务对数据项的修改尚未体现在数据库中,因此无需做任何恢复动作。

【答案】B、C、A、D、C。

其他

1. 给定元组演算表达式 $R^*=\{t \mid (\Im u)(R(t) \land S(u) \land t[3] \le u[2])\}$,若关系 $R \setminus S$ 如下图所示,则(_)。

A	В	C
1	2	3
4	5	6
7	8	9
10	11	12

A	В	C
3	7	11
4	5	6
5	9	13
6	10	14

R

S

 $A.R*=\{(3,7,11),(5,9,13),(6,10,14)\}$

 $B.R*=\{(3,7,11),(4,5,6),(5,9,13),(6,10,14)\}$

 $C.R*=\{(1,2,3),(4,5,6),(7,8,9)\}$

 $D.R*=\{(1,2,3),(4,5,6),(7,8,9),(10,11,12)\}$

【解析】

题目中表达式:存在从关系 R 中选择的元组 t 的 C 列上的分量,大于关系 S 中的一个元组 u 在 B 列上的分量。

t[3]<u[2]: R 中每行的第三个分量(R 的第 3 列)<S 中每行的第二个分量

 $t[3]={3,6,9,12}, u[2]={7,5,9,10}$

t[3]中的 3<{7,5,9,10}中的 7,5,9,10,满足要求。

t[3]中的6<{7,5,9,10}中的7,9,10,满足要求。

t[3]中的 9<{7,5,9,10}中的 10,满足要求。

t[3]中的 12 不满足要求。存在:只要满足 u[2]中一个分量就行。

所以 $t[3] < u[2] = \{(1,2,3),(4,5,6),(7,8,9)\}$

【答案】: C。

- 2. 以下关于嵌入式数据库管理系统的描述不正确的是()。
 - A.嵌入式数据库管理系统一般只为前端应用提供基本的数据支持
 - B.嵌入式数据库管理系统一般支持实时数据的管理
 - C.嵌入式数据库管理系统一般不支持多线程并发操作
 - D.嵌入式数据库管理系统一般只提供本机服务接口

【解析】

嵌入式数据库管理系统(Embedded DataBase Management System, EDBMS)就是在嵌入式设备上使用的 DBMS。由于用到 EDBMS 的嵌入式系统多是移动信息设备,例如,掌上电脑、PDA、车载设备等移动通信设备,位置固定的嵌入式设备很少用到,因此,嵌入式数据库也称为移动数据库或嵌入式移动数据库。

EDBMS 的作用主要是解决移动计算环境下数据的管理问题,移动数据库是移动计算环境中的分布式数据库。嵌入式数据库管理系统一般只提供本机服务接口且只为前端应用提供基本的数据支持。

【答案】C。

- 3. 以下关于 RDBMS 数据分布的叙述中,错误的是()。
 - A. 数据垂直分割是将不同表的数据存储到不同的服务器上
 - B. 数据水平分割是将不同行的数据存储到不同的服务器上
 - C. 数据复制是将数据的多个副本存储到不同的服务器上
 - D. 数据复制中由 RDBMS 维护数据的一致性

数据分割和数据复制是数据分布的两种重要方式。数据分割有垂直分割和水平分割两种模式,前者是将表中不同字段的数据存储到不同的服务器上;后者是将表中不同行的数据存储到不同的服务器上。数据复制是为了提升数据访问效率而采用的一种增加数据冗余的方法,它将数据的多个副本存储到不同的服务器上,由 RDBMS 负责维护数据的一致性。

【答案】A。

软件架构设计

软件架构的概念

1. ANSI/IEEE 1471-2000 是对软件密集型系统的架构进行描述的标准。在该标准中,() 这一概念主要用于描述软件架构模型。在此基础上,通常采用()描述某个利益相关人(Stakeholder)所关注架构模型的某一方面。()则是对所有利益相关人关注点的响应和回答。

A.上下文	B.架构风格	C.组件	D.视图
A.环境	B.资源	C.视角	D.场景
A.架构	B.系统	C.模型	D.使命

【解析】

本题主要考查 ANSI/IEEE 1471-2000 标准的相关知识。在 ANSI/IEEE 1471-2000 标准中,系统是为了达成利益相关人(Stakeholder)的某些使命(Mission),在特定环境(Enviroment)中构建的。每一个系统都有一个架构(Architecture)。

架构(Architecture)是对所有利益相关人的关注点(Concern)的响应和回答,通过架构描述(Architecture Description)来说明。每一个利益相关人都有各自的关注点。这些关注点是指对其重要的,与系统的开发、运营或其它方面相关的利益。架构描述(Architecture Description)本质上是多视图的。

每一个视图(View)是从一个特定的视角(Viewpoint)来表述架构的某一个独立的方面。 试图用一个单一的视图来覆盖所有的关注点当然是最好的,但实际上这种表述方式将很难理解。

视角(Viewpoint)的选择,基于要解决哪些利益相关人的哪些关注点。它决定了用来创建视图的语言、符号和模型等,以及任何与创建视图相关的建模方法或者分析技术。一个视图(View)包括一个或者多个架构模型(Model),一个模型也可能参与多个视图。模型较文本的表述的好处在于,可以更容易的可视化、检查、分析、管理和集成。

【答案】: D、C、A。

2. 软件架构设计包括提出架构模型,产生架构设计和进行设计评审等活动,是一个迭代的过程。架构设计主要关注软件组件的结构、属性和(),并通过多种()全面描述特定系统的架构。

A.实现方式	B.交互作用	C.设计方案	D.测试方式
A.对象	B.代码	C.文档	D.视图

【解析】

软件架构设计包括提出架构模型、产生架构设计和进行设计评审等活动,是一个迭代的过程。架构设计主要关注软件组件的结构、属性和交互作用,并通过多种视图全面描述特定系统的架构。

3. 特定领域软件架构(Domain Specific Software Architecture, DSSA)是在一个特定应用领域中,为一组应用提供组织结构参考的标准软件体系结构。DSSA通常是一个具有三个层次的系统模型,包括()环境、领域特定应用开发环境和应用执行环境,其中()主要在领域特定应用开发环境中工作。

A.领域需求

B.领域开发

C.领域执行

D.领域应用

A.操作员

B.领域架构师

C.应用工程师

D.程序员

【解析】

DSSA 通常是一个具有三个层次的系统模型,包括领域开发环境、领域特定应用开发环境和应用执行环境。

【答案】: B、C。

- 4. 以下叙述, ()不是软件架构的主要作用。
 - A.在设计变更相对容易的阶段,考虑系统结构的可选方案
 - B.便于技术人员与非技术人员就软件设计进行交互
 - C.展现软件的结构、属性与内部交互关系
 - D.表达系统是否满足用户的功能性需求

【解析】

软件架构能够在设计变更相对容易的阶段,考虑系统结构的可选方案,便于技术人员与非技术人员就软件设计进行交互,能够展现软件的结构、属性与内部交互关系。但是软件架构与用户对系统的功能性需求没有直接的对应关系。

- 5. 软件架构设计包括提出架构模型、产生架构设计和进行设计评审等活动,是一个迭代的过程。以下关于软件架构设计活动的描述,错误的是()。
 - A. 在建立软件架构的初期,一般需要选择一个合适的架构风格
 - B. 将架构分析阶段已标识的构件映射到架构中,并分析这些构件之间的关系
 - C. 软件架构设计活动将己标识构件集成到软件架构中,设计并实现这些构件
 - D. 一旦得到了详细的软件架构设计,需要邀请独立于系统开发的外部人员对系统进行评审

【解析】

软件架构设计包括提出架构模型、产生架构设计和进行设计评审等活动,是一个迭代的过程,在建立软件架构的初期,一般需要选择一个合适的架构风格,将架构分析阶段已标识的构件映射到架构中,并分析这些构件之间的关系,一旦得到了详细的软件架构设计,需要邀请独立于系统开发的外部人员对系统进行评审。一般来说,软件架构设计活动将已标识构件集成到软件架构中,设计这些构件,但不予以实现,C选项错误。

- 6. 在 RUP 中采用"4+1"视图模型来描述软件系统的体系结构。在该模型中,最终用户侧重于 (), 系统工程师侧重于()。
 - A. 实现视图
- B. 进程视图
- C. 逻辑视图 D. 部署视图

- A. 实现视图
- B. 进程视图 C. 逻辑视图 D. 部署视图

在 RUP 中采用"4+1"视图模型来描述软件系统的体系结构。"4+1"视图包括逻辑视 图、实现视图、进程视图、部署视图和用例视图。

分析人员和测试人员关心的是系统的行为,因此会侧重于用例视图;

最终用户关心的是系统的功能,因此会侧重于逻辑视图;

程序员关心的是系统的配置、装配等问题, 因此会侧重于实现视图;

系统集成人员关心的是系统的性能、可伸缩性、吞吐率等问题,因此会侧重于进程视图; 系统工程师关心的足系统的发布、安装、拓扑结构等问题、因此会侧重于部署视图。

- 7. ()是一个独立可交付的功能单元,外界通过接口访问其提供的服务。
 - A. 面向对象系统中的对象(Object)
 - B. 模块化程序设计中的子程序(Subroutine)
 - C. 基于构件开发中的构件(Component)
 - D. 系统模型中的包(Package)

【解析】

在基于构件的开发中,构件包含并扩展了模块化程序设计中子程序、面向对象系统中对 象或类和系统模型中包的思想, 它是系统设计、实现和维护的基础。构件定义为通过接口访 问服务的一个独立可交付的功能单元。

【答案】: C。

- 8. 软件系统架构是关于软件系统的结构、()和属性的高级抽象。在描述阶段,主要描述 直接构成系统的抽象组件以及各个组件之间的连接规则,特别是相对细致地描述组件的 ()。在实现阶段,这些抽象组件被细化为实际的组件,比如具体类或者对象。软件系 统架构不仅指定了软件系统的组织和()结构,而且显示了系统需求和组件之间的对应 关系,包括设计决策的基本方法和基本原理。
 - (1)A. 行为
- B. 组织
- C. 性能
- D. 功能
- (2)A. 交互关系
 B. 实现关系
 C. 数据依赖
 D. 功能依赖

 (3)A. 进程
 B. 拓扑
 C. 处理
 D. 数据

- (3)A. 进程
- B. 拓扑
- C. 处理
- D. 数据

【解析】

软件系统架构是关于软件系统的**结构、行为和属性**的高级抽象。在描述阶段、其对象是 直接构成系统的抽象组件以及各个组件之间的连接规则,特别是相对细致地描述组件之间的 通讯。在实现阶段,这些抽象组件被细化为实际的组件,比如具体类或者对象。软件系统架 构不仅指定了软件系统的组织结构和拓扑结构,而且显示了系统需求和构成组件之间的对应 关系,包括设计决策的基本方法和基本原理。

【答案】A、A、B。

- 9. 以下叙述,()不是软件架构的主要作用。
 - A. 在设计变更相对容易的阶段, 考虑系统结构的可选方案
 - B. 便于技术人员与非技术人员就软件设计进行交互
 - C. 展现软件的结构、属性与内部交互关系
 - D. 表达系统是否满足用户的功能性需求

【解析】

软件架构能够在设计变更相对容易的阶段,考虑系统结构的可选方案,便于技术人员与 非技术人员就软件设计进行交互,能够展现软件的结构、属性与内部交互关系。但是软件架 构与用户对系统的功能性需求没有直接的对应关系。

【答案】D。

- 10. 将系统需求模型转换为架构模型是软件系统需求分析阶段的一项重要工作,以下描述中,()是在转换过程中需要关注的问题。
 - A.如何通过多视图模型描述软件系统的架构
 - B.如何确定架构模型中有哪些元素构成
 - C.如何采用表格或用例映射保证转换的可追踪性
 - D.如何通过模型转换技术,将高层架构模型逐步细化为细粒度架构模型

【解析】

从本质上看,需求和软件架构设计面临的是不同的对象:一个是问题空间;另一个是解空间。保持两者的可追踪性和转换,一直是软件工程领域追求的目标。从软件需求模型向SA模型的转换主要关注两个问题:

- 1、如何根据需求模型构建软件架构模型;
- 2、如何保证模型转换的可追踪性。

本题中选项 $A \to B$ 是软件架构设计阶段需要考虑的问题,而选项 D 是软件架构实现阶段中需要考虑的问题。

【答案】C。

- 11. 特定领域软件架构(Domain Specific Software Architecture, DSSA)是在一个特定应用领域中,为一组应用提供组织结构参考的标准软件体系结构。DSSA 的基本活动包括领域分析、领域设计和领域实现。其中领域分析的主要目的是获得(),从而描述领域中系统之间共同的需求,即领域需求;领域设计的主要目标是获得(),从而描述领域模型中表示需求的解决方案;领域实现的主要目标是开发和组织可重用信息,并对基础软件架构进行实现。
 - (1)A.领域边界
 - B.领域信息
 - C.领域对象
 - D.领域模型
 - (2)A.特定领域软件需求
 - B.特定领域软件架构
 - C.特定领域软件设计模型
 - D.特定领域软件重用模型

【解析】

特定领域软件架构(Domain Specific Software Architecture, DSSA)以一个特定问题领域为对象,形成由领域参考模型、参考需求、参考架构等组成的开发基础架构,其目标是支持一个特定领域中多个应用的生成。DSSA 的基本活动包括领域分析、领域设计和领域实现。其中领域分析的主要目的是获得领域模型,领域模型描述领域中系统之间共同的需求,即领域需求;领域设计的主要目标是获得 DSSA, DSSA 描述领域模型中表示需求的解决方案;领域实现的主要目标是依据领域模型和 DSSA 开发和组织可重用信息,并对基础软件架构进行实现。

【答案】D、B。

- 12. 软件架构贯穿于软件的整个生命周期,但在不同阶段对软件架构的关注力度并不相同,在()阶段,对软件架构的关注最多。
 - A. 需求分析与设计
 - B. 设计与实现
 - C. 实现与测试
 - D. 部署与变更

软件架构贯穿于软件的整个生命周期,但在不同的阶段对软件架构的关注力度并不相 同。

需求分析阶段主要关注问题域;

设计阶段主要将需求转换为软件架构模型;

软件实现阶段主要关注将架构设计转换为实际的代码;

软件部署阶段主要通过组装软件组件提高系统的实现效率。

其中设计与实现阶段在软件架构上的工作最多,也最重要,因此关注力度最大。

- 13. 1995 年 Kruchten 提出了著名的"4+1"视图, 用来描述软件系统的架构。在"4+1"视 图中,()用来描述设计的对象模型和对象之间的关系;()描述了软件模块的组织 与管理;()描述设计的并发和同步特征。
 - A. 逻辑视图 B. 用例视图
- C. 过程视图
- D. 开发视图

- A. 逻辑视图 B. 用例视图 C. 过程视图 D. 开发视图
- A. 逻辑视图

- B. 用例视图 C. 过程视图 D. 开发视图

【解析】

本题考查"4+1"视图。

"4+1"视图中的"4",指的是:逻辑视图、开发视图、进程视图、物理视图,"1" 指的是场景视图。

场景视图又称为用例视图,显示外部参与者观察到的系统功能。

逻辑视图从系统的静态结构和动态行为角度显示系统内部如何实现系统的功能。

开发视图又称为实现视图、显示的是源代码以及实际执行代码的组织结构。

处理视图又称为进程视图、显示程序执行时并发的状态。

物理视图展示软件到硬件的映射。

【答案】A、D、C。

- 14. 对象管理组织(OMG)基于 CORBA 基础设施定义了四种构件标准。其中, ()的状态 信息是由构件自身而不是由容器维护。

- A. 实体构件 B. 加工构件 C. 服务构件 D. 会话构件

【解析】

对象管理组织(OMG)基于 CORBA 基础设施定义了四种构件标准。实体(Entity)构件需 要长期持久化并主要用于事务性行为,由容器管理其持久化。加工(Process)构件同样需要容 器管理其持久化,但没有客户端可访问的主键。会话(Session)构件不需要容器管理其持久化, 其状态信息必须由构件自己管理。服务(Service)构件是无状态的。

【答案】D。

- 15. 软件架构是降低成本、改进质量、按时和按需交付产品的关键因素。以下关于软件架构 的描述,错误的是()。
 - A. 根据用户需求,能够确定一个最佳的软件架构,指导整个软件的开发过程
 - B. 软件架构设计需要满足系统的质量属性,如性能、安全性和可修改性等
 - C. 软件架构设计需要确定组件之间的依赖关系, 支持项目计划和管理活动
 - D. 软件架构能够指导设计入员和实现人员的工作

【解析】

软件架构是降低成本、改进质量、按时和按需交付产品的关键因素, 软件架构设计需要 满足系统的质量属性、如性能、安全性和可修改性等、软件架构设计需要确定组件之间的依 赖关系,支持项目计划和管理活动,软件架构能够指导设计人员和实现人员的工作。一般在 设计软件架构之初,会根据用户需求,确定多个候选架构,并从中选择一个较优的架构,并 随着软件的开发,对这个架构进行微调,以达到最佳效果,A选项错误。

- 16. 软件架构设计是降低成本、改进质量、按时和按需交付产品的关键活动。以下关于软件 架构重要性的叙述中,错误的是()。
 - A. 架构设计能够满足系统的性能、一可维护性等品质
 - B. 良好的架构设计能够更好地捕获并了解用户需求
 - C. 架构设计能够使得不同的利益相关人(stakeholders) 达成一致的目标
 - D. 架构设计能够支持项目计划和项目管理等活动

软件架构设计是降低成本、改进质量、按时和按需交付产品的关键因素。架构设计能够满足系统的性能、可维护性等品质;能够使得不同的利益相关人(stakeholders)达成一致的目标;能够支持项目计划和项目管理等活动;能够有效地管理复杂性;等等。然而系统架构的给出必须建立在需求明确的基础上,架构的设计应该是在需求明确之后才能开始,有先后顺序,B选项错误。

软件架构评估

1. 体系结构权衡分析方法(Architecture Tradeoff Analysis Method, ATAM)是一种常见的系统架构评估框架,该框架主要关注系统的(),针对性能、()、安全性和可修改性,在系统开发之前进行分析、评价与折中。

A.架构视图

B.架构描述

C.需求说明

D.需求建模

A.可测试性

B.可用性

C.可移植性

D.易用性

【解析】

本题主要考查考生对基于场景的架构分析方法(Scenarios-based Architecture Analysis Method, SAAM)的掌握和理解。SAAM 是卡耐基梅隆大学软件工程研究所的 Kazman 等人于 1983 年提出的一种非功能质量属性的架构分析分析方法,是最早形成文档并得到广泛应用的软件架构分析方法。SAAM 的主要输入是问题描述、需求说明和架构描述,其分析过程主要包括场景开发、架构描述、单个场景评估、场景交互和总体评估。

【答案】: C、B。

2. 基于场景的架构分析方法(Scenarios-based Architecture Analysis Method, SAAM)是卡耐基梅隆大学软件工程研究所的 Kazman 等人于 1983 年提出的一种非功能质量属性的架构分析方法,是最早形成文档并得到广泛应用的软件架构分析方法。SAAM 的主要输入是问题描述、()和架构描述文档,其分析过程主要包括场景开发、()、单个场景评估、场景交互和总体评估。

A.问题说明

B.问题建模

C.需求说明

D.需求建模

A.架构需求

B.架构描述

C.架构设计

D.架构实现

【解析】

本题主要考查考生对基于场景的架构分析方法(Scenarios-based Architecture Analysis Method, SAAM)的掌握和理解。SAAM 是卡耐基梅隆大学软件工程研究所的 Kazman 等人于 1983 年提出的一种非功能质量属性的架构分析方法,是最早形成文档并得到广泛应用的软件架构分析方法。SAAM 的主要输入是问题描述、需求说明和架构描述,其分析过程主要包括场景开发、架构描述、单个场景评估、场景交互和总体评估。

【答案】C、B。

- 3. 架构权衡分析方法(ATAM)是一种常用的软件架构评估方法,下列关于该方法的叙述中, 正确的是(__)。
 - A. ATAM 需要对代码的质量进行评估
 - B. ATAM 需要对软件系统需求的正确性进行评价
 - C. ATAM 需要对软件系统进行集成测试
 - D. ATAM 需要对软件质量属性进行优先级排序

ATAM 是评价软件构架的一种综合全面的方法。这种方法不仅可以揭示出构架满足特定质量目标的情况,而且(因为它认识到了构架决策会影响多个质量属性)可以使我们更清楚地认识到质量目标之间的联系——即如何权衡诸多质量目标。

ATAM 是针对软件架构的评估方法,其层次较高,不会涉及具体代码质量的评估,所以 A 选项不正确。而对于软件系统需求的正确性评价,应是需求验证的主要工作,也非 ATAM 所关注的内容。集成测试是在软件开发的测试阶段需要完成的任务,此时,架构设计、架构评审(即用 ATAM, SAAM 进行软件架构评审)、软件详细设计、编码、单元测试工作都已完成,所以该工作,也非 ATAM 所关注的内容。只有 D 选项的属性优先级排序是 ATAM 所要做的。

- 4. 正确识别风险点、非风险点、敏感点和权衡点是进行软件架构评价的关键步骤。其中() 是实现一个特定质量属性的关键特征,该特征为一个或多个软件构件所共有。"改变加密的级别可能会对安全性和性能都产生显著的影响",这是一个对系统()的描述。
 - A. 风险点
- B. 非风险点
- C. 敏感点
- D. 权衡点

- A. 风险点
- B. 非风险点
- C. 敏感点
- D. 权衡点

【解析】

本题主要考查软件架构评价的理解和应用。正确识别风险点、非风险点、敏感点和权衡点是进行软件架构评价的关键步骤。其中敏感点是实现一个特定质量属性的关键特征,该特征为一个或多个软件构件所共有。系统权衡点会影响一个或多个属性,并对于多个属性来说都是敏感点。基于该定义,可以看出"改变加密的级别可能会对安全性和性能都产生显著的影响"正是一个对系统权衡点的描述。

- 5. Architecture Tradeoff Analysis Method (ATAM) 是一种软件架构的评估方法,以下关于该方法的叙述中,正确的是()。
 - A. ATAM 是一种代码评估方法
 - B. ATAM 需要评估软件的需求是否准确
 - C. ATAM 需要对软件系统进行测试
 - D. ATAM 不是一种精确的评估工具

【解析】

ATAM 是软件体系结构评估中的一种方法,主要对软件体系结构的设计结果进行评估。评估是软件系统详细设计、实现和测试之前的阶段工作,因此评估不涉及系统的实现代码和测试,因为评估是考查软件体系结构是否能够合适地解决软件系统的需求,并不对软件需求自身是否准确进行核实,而软件需求是否准确是需求评审阶段的工作。ATAM 并不是一种精确的评估方法,该方法表现的主要形式是评审会议。

【答案】D。

- 6. 识别风险点、非风险点、敏感点和权衡点是 ATAM 方法中的关键步骤。己知针对某系统所做的架构设计中,提高其加密子系统的加密级别将对系统的安全性和性能都产生非常大的影响,则该子系统一定属于()。
 - A. 风险点和敏感点
 - B. 权衡点和风险点
 - C. 权衡点和敏感点
 - D. 风险点和非风险点

加密子系统的加密级别会对安全性和性能产生影响,一般而言,加密程度越高,安全性 越好、但是其性能会降低;而加密程度越低、安全性越差、但性能一般会提高。因此该子系 统将在安全性和性能两个方面产生冲突、所以该子系统一定属于权衡点和敏感点。

软件架构风格

概念:软件架构风格是描述特定软件系统组织方式的惯用模式。组织方式描述了系统的组 成构件和这些构件的组织方式,惯用模式则反映众多系统共有的结构和语义。

 软件架构风格是描述某一特定应用领域中系统组织方式的惯用模式。架构风格反映领域 中众多系统所共育的结构和(),强调对架构()的重用。

A.语义特性

B.功能需求

C.质量属性

D.业务规则

A.分析

B.设计

C.实现

D.评估

【解析】

软件架构设计的一个核心问题是能否使用重复的架构模式,即能否达到架构级的软件重 用。也就是说,能否在不同的软件系统中,使用同一架构。基于这个目的,学者们开始研究 和实践软件架构的风格和类型问题。

软件架构风格是描述某一特定应用领域中系统组织方式的惯用模式。 它反映了领域中众 **多系统所共有的结构和语义特性**,并指导如何将各个模块和子系统有效地组织成一个完整的 系统。按这种方式理解,软件架构风格定义了用于描述系统的术语表和一组指导构件系统的 规则。

对软件架构风格的研究和实践促进了对设计的复用,一些经过实践证实的解决方案也可 以可靠地用于解决新的问题。架构风格的不变部分使不同的系统可以共享同一个实现代码。 只要系统是使用常用的、规范的方法来组织、就可使别的设计者很容易地理解系统的架构。 例如、如果某人把系统描述为"客户/服务器"模式、则不必给出设计细节、我们立刻就会明 白系统是如何组织和工作的。

【答案】: A、B。

2. 软件架构风格是描述某一特定应用领域中系统组织方式的惯用模式。架构风格定义了一 类架构所共有的特征,主要包括架构定义、架构词汇表和架构()。

A. 描述

- B. 组织 C. 约束 D. 接口

【解析】

软件架构风格是描述某一特定应用领域中系统组织方式的惯用模式。架构风格定义一个 系统家族,即一个架构定义一个词汇表和一组约束。

- 3. 以下关于软件架构风格与系统性能的关系叙述中,错误的是()。
 - A.对于采用层次化架构风格的系统,划分的层次越多,系统的性能越差
 - B.对于采用隐式调用架构风格的系统,可以通过处理函数的并发调用提高系统处理性能
 - C.采用面向对象架构风格的系统,可以通过引入对象管理层提高系统性能
- D.对于采用解释器架构风格的系统,可以通过部分解释代码预先编译的方式提高系统性 能

【解析】

引入对象管理层不但不能提高性能、反而会降低系统性能。这个道理与分层模型中增加 层次是一样的。

【答案】C。

- 4. 以下关于软件架构风格与系统性能关系的叙述,错误的是()。
 - A. 对于采用层次化架构风格的系统,划分的层次越多,系统的性能越差
 - B. 对于采用管道一过滤器架构风格的系统,可以通过引入过滤器的数据并发处理提高

系统性能

- C. 对于采用面向对象架构风格的系统,可以通过减少功能调用层次提高系统性能
- D. 对于采用过程调用架构风格的系统,可以通过将显式调用策略替换为隐式调用策略 提高系统性能

【解析】

本题主要考查对软件架构风格与系统性能之间关系的理解。

对于采用层次化架构风格的系统、划分的层次越多、系统完成某项功能需要的中间调用 操作越多, 其性能越差。

对于采用管道-过滤器架构风格的系统,可以通过引入过滤器的数据并发处理可以有效 提高系统性能。

对于采用面向对象架构风格的系统、可以通过减少功能调用层次提高系统性能。

对于采用过程调用架构风格的系统,将显式调用策略替换为隐式调用策略能够提高系统 的灵活性, 但会降低系统的性能。

【答案】C。

- 5. () 描述了一类软件架构的特征,它独立于实际问题,强调软件系统中通用的组织结 构选择。垃圾回收机制是 Java 语言管理内存资源时常用的一种 ()。

- A. 架构风格 B. 开发方法 C. 设计模式 D. 分析模式
- A. 架构风格
- B. 开发方法
- C. 设计模式
- D. 分析模式

【解析】

本题主要考查对软件架构风格和设计模式两个概念的掌握与区分。

架构风格描述了一类软件架构的特征,它独立于实际问题,强调软件系统中通用的组织 结构选择。

垃圾回收机制是 Java 语言管理内存资源时常用的一种设计模式。

6. 软件架构风格描述某一特定领域中的系统组织方式和惯用模式,反映了领域中众多系统所)特征。对于语音识别、知识推理等问题复杂、解空间很大、求解过程不确定的 这一类软件系统,通常会采用()架构风格。对于因数据输入某个构件,经过内部处理, 产生数据输出的系统,通常会采用()架构风格。

A.语法和语义 B.结构和语义 C.静态和动态

D.行为和约束

A.管道-过滤器 B.解释器

C.黑板

D.过程控制

A.事件驱动系统 B.黑板

C.管道-过滤器

D.分层系统

【解析】

体系结构风格反映了领域中众多系统所共有的结构和语义特性,并指导如何将各个模块 和子系统有效地组织成一个完整的系统。

语音识别是黑板风格的经典应用场景。

输入某个构件,经过内部处理,产生数据输出的系统,正是数据流架构风格,选项中属 于数据流风格的只有管道-过滤器。

【答案】B、C、C。

7. 某公司拟开发了个轿车巡航定速系统,系统需要持续测量车辆当前的实时速度,并根据 设定的期望速度启动控制轿车的油门和刹车。针对上述需求,采用()架构风格最为合 适。

A.解释器

B.过程控制

C.分层

D.管道-过滤器

【解析】

过程控制又称闭环风格、该风格的最大特点是设定参数、并不断测量现有的实际数据、 将实际值与设定值进行比较,以确定接下来的操作。在本题中,定速巡航的场景正好符合这 个模式。

8. 某公司拟开发一套在线游戏系统,该系统的设计目标之一是支持用户自行定义游戏对象 属性,行为和对象之间的交互关系。为了实现上述目标,公司应该采用()架构风格最 为合适。

A.管道-过滤器

B.隐式调用

C.主程序-子程序

D.解释器

【解析】

依据题目要求拟开发的在线游戏需要自定义对象之间的交互,这样必须有机制能支持系 统对新定义的规则进行解析,这需要用到虚拟机风格,构造一个虚拟机对规则进行解析,所 以在此应选择归属于虚拟机风格的解释器。

9. 某公司拟开发一个 VIP 管理系统,系统需要根据不同商场活动,不定期更新 VIP 会员 的审核标准和 VIP 折扣系统。针对上述需求,采用()架构风格最为合适。

A.规则系统

B.过程控制

C.分层

D.管道-过滤器

【解析】

根据题目的意思,拟开发的 VIP 管理系统中 VIP 会员审核标准要能随时改变,灵活定 义。在这方面虚拟机风格最为擅长,而属于虚拟机风格的只有 A 选项。

10. 某公司拟开发一个新闻系统,该系统可根据用户的注册兴趣,向用户推送其感兴趣的新 闻内容,该系统应该采用()架构风格最为合适。

A.事件驱动系统

B.主程序-子程序 C.黑板

D.管道-过滤器

【解析】

根据题目的意思, 用户会注册自己的兴趣, 然后系统也会把新闻按兴趣分类, 如果某个 新闻事件发生,可以通过事件来触发推送动作,将新闻推送给对其感兴趣的用户。这是典型 的事件驱动系统应用场景。

11. 系统中的构件和连接件都有一个顶部和一个底部,构件的顶部应连接到某连接件的底 部,构件的底部则应连接到某连接的顶部,构件和构件之间不允许直接连接,连接件直 接连接时,必须由其中一个的底部连接到另一个的顶部。上述构件和连接件的组织规则 描述的是()架构风格。

A.管道-过滤器 B.分层系统

C.C2

D.面向对象

【解析】

C2 体系结构风格可以概括为: 通过连接件绑定在一起按照一组规则运作的并行构件网 络。C2 风格中的系统组织规则如下。

【答案】C。

12. "编译器"是一种非常重要的基础软件, 其核心功能是对源代码形态的单个或一组源程序 依次进行预处理、词法分析、语法分析、语义分析、代码生成、代码优化等处理,最终 生成目标机器的可执行代码。考虑以下与编译器相关的软件架构设计场景:传统的编译 器设计中,上述处理过程都以独立功能模块的形式存在,程序源代码作为一个整体,依 次在不同模块中进行传递,最终完成编译过程。针对这种设计思路,传统的编译器采用 ()架构风格比较合适。

随着编译、链接、调试、执行等开发过程的一体化趋势发展,集成开发环境(IDE) 随之出现。IDE 集成了编译器、连接器、调试器等多种工具,支持代码的增量修改与处 理,能够实现不同工具之间的信息交互,覆盖整个软件开发生命周期。针对这种需求, IDE 采用()架构风格比较合适。IDE 强调交互式编程,用户在修改程序代码后,会同 时触发语法高亮显示、语法错误提示、程序结构更新等多种功能的调用与结果呈现,针 对这种需求,通常采用()架构风格比较合适。

某公司已经开发了一款针对某种嵌入式操作系统专用编程语言的 IDE,随着一种新 的嵌入式操作系统上市并迅速占领市场,公司决定对 IDE 进行适应性改造,支持采用 现有编程语言进行编程,生成符合新操作系统要求的运行代码,并能够在现有操作系统 上模拟出新操作系统的运行环境,以支持代码调试工作。针对上述要求,为了使 IDE 能够生成符合新操作系统要求的运行代码,采用基于()的架构设计策略比较合适;为了模拟新操作系统的运行环境,通常采用()架构风格比较合适。

B.顺序批处理 (1)A.管道-过滤器 C.过程控制 D.独立进程 (2)A.规则引擎 B.解释器 C.数据共享 D.黑板 (3)A.隐式调用 B.显式调用 C.主程序-子程序 D.层次结构 (4)A.代理 B.适配 C.包装 D.模拟 C.基于规则 (5)A.隐式调用 B.仓库结构 D.虚拟机

【解析】

传统的编译器一般采用数据流架构风格,在这种架构中,每个构件都有一组输入和输出,数据输入构件,经过内部处理,然后产生数据输出。编译处理过程中,会分步将源代码一次一次的处理,最终形成目标代码,这与数据流架构风格相当吻合。但选项中有两个数据流风格的架构供选择,即:"管道-过滤器"和"顺序批处理",这就需要进一步分析哪个更合适,由于题目中提到"程序源代码作为一个整体,依次在不同模块中进行传递",而顺序批处理是强调把数据整体处理的、所以应选用顺序批处理风格。

IDE 是一种集成式的开发环境,在这种环境中,多种工具是围绕同一数据进行处理,这种情况适合用数据共享架构风格。

在题目中提到 IDE 环境是一种交互式编程,用户在修改程序代码后,会同时触发语法高亮显示、语法错误提示、程序结构更新等多种功能的调用与结果呈现。在做一件事情时,同时触发一系列的行为,这是典型的隐式调用风格(事件驱动系统)

"使 IDE 能够生成符合新操作系统要求的运行代码",这一要求是可以通过适配策略满足的,像设计模式中的适配器模式便是采用适配的方式,形成一致的接口。"模拟新操作系统的运行环境"是典型的虚拟机架构风格的特长。

【答案】: B、C、A、B、D。

- 13. 某公司研发一种语音识别软件系统,需要对用户的语音指令进行音节分割、重音判断、语法分析和语义分析,最终对用户的意图进行推断。针对上述功能需求,该语音识别软件应该采用()架构风格最为合适。
 - A. 隐式调用
 - B. 管道一过滤器
 - C. 解释器
 - D. 黑板

【解析】

本题考查经典架构风格。其实从应用的角度来看,这些经典的架构风格提得越来越少了, 但这些架构风格有一些经典的应用是要求掌握的。

例如:管道-过滤器风格常常用于实现编译器。以规则为中心的虚拟机系统适合于实现 专家系统。黑板风格适合于自然语言处理、语音处理、模式识别、图像处理。

【答案】D。

- 14. 某企业内部现有的主要业务功能已经封装为 Web 服务。为了拓展业务范围,需要将现有的业务功能进行多种组合,形成新的业务功能。针对业务灵活组合这一要求,采用() 架构风格最为合适。
 - A. 管道-过滤器
 - B. 解释器
 - C. 显式调用
 - D. 黑板

【解析】

解释器是指在程序语言定义的计算和有效硬件操作确定的计算之间建立对应的联系。完成信息识别和转换工作。题目中的场景需要用到信息的识别和转换,所以可以用解释器风格。

- 15. 编译器的主要工作过程是将以文本形式输入的代码逐步转化为各种形式,最终生成可执行代码。现代编译器主要关注编译过程和程序的中间表示,围绕程序的各种形态进行转化与处理。针对这种特征,现代编译器应该采用()架构风格最为合适。
 - A. 数据共享
 - B. 虚拟机
 - C. 隐式调用
 - D. 管道-过滤器

根据题干描述,现代编译器主要关注编译过程和程序的中间表示,围绕程序的各种形态进行转化与处理。这种情况下,可以针对程序的各种形态构建数据库,通过中心数据库进行转换与处理。根据上述分析,选项中列举的架构风格中,数据共享风格最符合要求。

- 16. 在基于客户机/服务器架构模式的信息系统开发中,采用()时,应将数据层和数据处理 层放置于服务器,应用逻辑层、表示逻辑层和表示层放置于客户机。
 - A. 分布式表示结构
 - B. 分布式应用结构
 - C. 分布式数据和应用结构
 - D. 分布式数据结构

【解析】

客户机/服务器系统开发时可以采用不同的分布式计算架构:

- ①分布式表示架构是将表示层和表示逻辑层迁移到客户机,应用逻辑层、数据处理层和数据层仍保留在服务器上:
- ②分布式数据架构是将数据层和数据处理层放置于服务器,应用逻辑层、表示逻辑层和表示层放置于客户机;
- ③分布式数据和应用架构是将数据层和数据处理层放置在数据服务器上,应用逻辑层放置在应用服务器上,表示逻辑层和表示层放置在客户机上。

【答案】D。

- 17. 分布式系统开发中,通常需要将任务分配到不同的逻辑计算层。业务数据的综合计算分析任务属于()。
 - A. 表示逻辑层
 - B. 应用逻辑层
 - C. 数据处理层
 - D. 数据层

【解析】

分布式系统开发分为五个逻辑计算层:表示层实现用户界面;表示逻辑层为了生成数据表示而必须进行的处理任务,如输入数据编辑等;应用逻辑层包括为支持实际业务应用和规则所需的应用逻辑和处理过程,如信用检查、数据计算和分析等;数据处理层包括存储和访问数据库中的数据所需的应用逻辑和命令,如查询语句和存储过程等;数据层是数据库中实际存储的业务数据。

- 18. 某游戏公司欲开发一个大型多人即时战略游戏,游戏设计的目标之一是能够支持玩家自行创建战役地图,定义游戏对象的行为和之间的关系。针对该目标,公司应该采用() 架构风格最为合适。
 - A. 管道-过滤器
 - B. 隐式调用
 - C. 主程序-子程序
 - D. 解释器

本题主要考查软件架构设计策略与架构风格问题。根据题干描述,该软件系统特别强调用户定义系统中对象的关系和行为这一特性,这需要在软件架构层面提供一种运行时的系统行为定义与改变的能力,根据常见架构风格的特点和适用环境,可以知道最合适的架构设计风格应该是解释器风格。

19. 某公司欲为某种型号的示波器开发内置软件。该公司的架构师设计了如下图所示的软件架构。在软件架构评审时,专家认为该架构存在的问题是()。

- A. 在功能划分上将各个模块独立起来
- B. 在硬件构件的混合和替换方面不是很灵活
- C. 没有清晰地说明用户怎样与其交互
- D. 没有明确的层次关系,没有强调功能之间的交互

【解析】

本题主要考查架构评审和软件架构设计的应用。根据图中示波器的功能描述,结合示波器常见的功能和使用方式,可以看出图中系统设计最大的缺陷在于没有建模系统与外界,特别是用户之间的交互方式。而与用户的交互无疑是示波器的一个十分重要的功能。

【答案】C。

- 20. 某公司承接了一个开发家用空调自动调温器的任务,调温器测量外部空气温度,根据设定的期望温度控制空调的开关。根据该需求,公司应采用()架构风格最为合适。
 - A. 解释器
 - B. 过程控制
 - C. 分层
 - D. 管道-过滤器

【解析】

本题主要考查架构风格与架构设计策略。根据题目描述,调温器需要实时获取外界的温度信息,并与用户定义的温度进行比较并做出动作。根据该系统的应用领域和实际需求,可以看出这是一个典型的过程控制架构风格的应用场景。

- 21. 某公司欲开发一个漫步者机器人,用来完成火星探测任务。机器人的控制者首先定义探测任务和任务之间的时序依赖性,机器人接受任务后,需要根据自身状态和外界环境进行动态调整,最终自动完成任务。针对这些需求,该机器人应该采用()架构风格最为合适。
 - A. 解释器
 - B. 主程序-子程序
 - C. 隐式调用
 - D. 管道-过滤器

【解析】

本题主要考查架构风格与架构设计策略。本题出题本就不严谨,从描述来看多种架构风格均合适:过程控制,虚拟机,隐式调用。当次考试参考答案为C,但从此后的同类问题来看,答案修改为"虚拟机(解释器,规则系统)",所以再次出现该类问题,建议首选虚拟机类风格。

【答案】A。

- 22. 某公司欲开发一个语音识别系统,语音识别的主要过程包括分割原始语音信号、识别音素、产生候选词、判定语法片断、提供语义解释等。每个过程都需要进行基于先验知识的条件判断并进行相应的识别动作。针对该系统的特点,采用()架构风格最为合适。
 - A. 解释器
 - B. 面向对象
 - C. 黑板
 - D. 隐式调用

本题主要考查架构风格与架构设计策略。根据题目描述,语音识别系统是一个十分典型的专家系统,其特点是求解的正确结果不止一个,求解过程比较复杂,需要通过专家知识和反馈逐步得到正确结果。因此对比4个候选项,黑板结构特别适合求解这类问题,语音识别是黑板架构风格的典型应用。

- 23. 在一个典型的基于 MVC(Model-View-Controller) 的 J2EE 应用中,分发客户请求、有效组织其它构件为客户端提供服务的控制器由() 实现。
 - A. Entity Bean
 - B. Session Bean
 - C. Servlet
 - D. JSP

【解析】

在一个典型的基于 MVC(Model View Controlle)的 J2EE 应用中,系统的界面由 JSP 构件实现,分发客户请求、有效组织其他构件为客户端提供服务的控件器由 Servlet 构件实现,数据库相关操作由 Entity Bean 构件实现,系统核心业务逻辑由 Session Bean 构件实现。

- 24. Windows 操作系统在图形用户界面处理方面采用的核心架构风格是() 风格。Java 语言宣传的"一次编写,到处运行"的特性,从架构风格上看符合() 风格的特点。
 - (1) A. 虚拟机
 - B. 管道-过滤器
 - C. 事件驱动
 - D. 微内核-扩展
 - (2) A. 虚拟机
 - B. 管道-过滤器
 - C. 事件驱动
 - D. 微内核-扩展

【解析】

Windows 操作系统在图形用户界面处理方面采用的是典型的"事件驱动"的架构风格。首先注册事件处理的是回调函数,当某个界面事件发生时(例如键盘敲击、鼠标移动等),系统会查找并选择合适的回调函数处理该事件。Java 语言是一种解释型语言,在 Java 虚拟机上运行,这从架构风格上看是典型的"虚拟机"风格,即通过虚拟机架构屏蔽不同的硬件环境。

- 25. 某软件开发公司负责开发一个 Web 服务器服务端处理软件,其核心部分是对客户端请求消息的解析与处理,包括 HTTP 报头分离、SOAP 报文解析等功能。该公司的架构师决定采用成熟的架构风格指导整个软件的设计,以下() 架构风格,最适合该服务端处理软件。
 - A. 虚拟机
 - B. 管道-过滤器
 - C. 黑板结构
 - D. 分层结构

根据题干描述,Web服务器服务端的核心功能是数据处理,由于Web服务在数据传输方面具有协议分层的特征,即底层协议会包装上层协议(HTTP协议体中包含整个SOAP消息内容),因此需要数据内容的逐步分解与分阶段处理。比较选项中的架构风格,由于管道-过滤器的架构风格支持分阶段数据处理、因此特别适合该服务端处理软件的要求。

- 26. 某公司欲开发一个基于图形用户界面的集成调试器。该调试器的编辑器和变量监视器可以设置调试断点。当调试器在断点处暂停运行时,编辑程序可以自动卷屏到断点,变量监视器刷新变量数值。针一对这样的功能描述,采用()的架构风格最为合适。
 - A. 数据共享
 - B. 虚拟机
 - C. 隐式调用
 - D. 显式调用

【解析】

根据题干描述,调试器在设置端点时,其本质是在断点处设置一个事件监听函数,当程序执行到断点位置时,会触发并调用该事件监听函数,监听函数负责进行自动卷屏、刷新变量数值等动作。这是一个典型的回调机制,属于隐式调用的架构风格。

- 27. 某公司欲开发一种工业机器人,用来进行汽车零件的装配。公司的架构师经过分析与讨论,给出了该机器人控制软件的两种候选架构方案:闭环控制和分层结构。以下对于这两种候选架构的选择理由,错误的是()。
- A. 应该采用闭环控制架构,因为闭环结构给出了将软件分解成几个协作构件的方法, 这对于复杂任务特别适合
- B. 应该采用闭环控制结构,因为闭环控制架构中机器人的主要构件监控器、传感器、发动机等)是彼此分开的,并能够独立替换
- C. 应该采用分层结构,因为分层结构很好地组织了用来协调机器人操作的构件,系统结构更加清晰
- D. 应该采用分层结构,因为抽象层的存在,满足了处理不确定性的需要:在较低层次不确定的实现细节在较高层次会变得确定

【解析】

采用闭环结构的软件通常由几个协作构件共同构成,且其中的主要构件彼此分开,能够进行替换与重用,但闭环结构通常适用于处理简单任务(如机器装配等),并不适用于复杂任务。分层结构的特点是通过引入抽象层,在较低层次不确定的实现细节在较高层次会变得确定,并能够组织层间构件的协作,系统结构更加清晰。

【答案】A。

- 28. 一个软件的架构设计是随着技术的不断进步而不断变化的。以编译器为例,其主流架构 经历了管道-过滤器到数据共享为中心的转变过程。以下关于编译器架构的叙述中,错误的是()。
- A. 早期的编译器采用管道一过滤器架构风格,以文本形式输入的代码被逐步转化为各种形式,最终生成可执行代码
- B. 早期的编译器采用管道一过滤器架构风格,并且大多数编译器在词法分析时创造独立的符号表,在其后的阶段会不断修改符号表,因此符号表并不是程序数据的一部分
- C. 现代的编译器采用以数据共享为中心的架构风格,主要关心编译过程中程序的中间表示
- D. 现代的编译器采用以数据共享为中心的架构风格,但由于分析树是在语法分析阶段结束后才产生作为语义分析的输入,因此分析树不是数据中心的共享数据

一个软件的架构设计是随着技术的不断进步而不断变化的。以编译器为例,其主流架构经历了管道-过滤器到数据共享为中心的转变过程。早期的编译器采用管道-过滤器架构风格,以文本形式输入的代码被逐步转化为各种形式,最终生成可执行代码。

早期的编译器采用管道-过滤器架构风格,并且大多数编译器在词法分析时创造独立的符号表,在其后的阶段会不断修改符号表,因此符号表并不是程序数据的一部分。

现代的编译器采用以数据共享为中心的架构风格,主要关心编译过程中程序的中间表示。

现代的编译器采用以数据共享为中心的架构风格,分析树是在语法分析阶段结束后才产生作为语义分析的输入,**分析树是数据中心中重要的共享数据**,为后续的语义分析提供了帮助。

【答案】D。

- 29. (1)的选择是开发一个软件系统时的基本设计决策; (2)是最低层的模式,关注软件系统的设计与实现,描述了如何实现构件及构件之间的关系。引用一计数是 C++管理动态资源时常用的一种(3)。
 - (1) A. 架构模式
 - B. 惯用法
 - C. 设计模式
 - D. 分析模式
 - (2) A. 架构模式
 - B. 惯用法
 - C. 设计模式
 - D. 分析模式
 - (3) A. 架构模式
 - B. 惯用法
 - C. 设计模式
 - D. 分析模式

【解析】

架构模式是软件设计中的高层决策,例如 C/S 结构就属于架构模式,**架构模式反映了**开发软件系统过程中所作的**基本设计决策**;设计模式主要关注软件系统的设计,与具体的实现语言无关:惯用法则是实现时通过某种特定的程序设计语言来描述构件与构件之间的关系,例如引用-计数就是 C++语言中的一种惯用法。

【答案】A、B、B。

架构描述语言(ADL)

1. 架构描述语言(Architecture Description Language, ADL)是一种为明确说明软件系统的概念架构和对这些概念架构建模提供功能的语言。ADL主要包括以下组成部分:组件、组件接口、()和架构配置。

A.架构风格

B.架构实现

C.连接件

D.组件约束

【解析】

架构描述语言(Architecture Description Language, ADL)是一种为明确说明软件系统的概念架构和对这些概念架构建模提供功能的语言。

ADL 主要包括以下组成部分:组件、组件接口、连接件和架构配置。ADL 对连接件的重视成为区分 ADL 和其他建模语言的重要特征之一。

【答案】C

特定领域软件架构

特定领域软件架构(Domain Specific Software Architecture, DSSA)是在一个特定应用领 域中,为一组应用提供组织结构参考的标准软件体系结构。参加 DSSA 的人员可以划 分为多种角色,其中()的任务是控制整个领域分析过程,进行知识获取,将获取的 知识组织到领域模型中; ()的任务是根据领域模型和现有系统开发出 DSSA,并对 DSSA 的准确性和一致性进行验证。

A.领域专家 B.领域分析者

C.领域设计者 D.领域实现者

A.领域专家

B.领域分析者

C.领域设计者

D.领域实现者

【解析】

参与 DSSA 的人员可以划分为四种角色:领域专家、领域分析师、领域设计人员和领 域实现人员。

领域专家

领域专家可能包括该领域中系统的有经验的用户、从事该领域中系统的需求分析、设计、 实现以及项目管理的有经验的软件工程师等。

领域专家的主要任务包括提供关于领域中系统的需求规约和实现的知识、帮助组织规范 的、一致的领域字典,帮助选择样本系统作为领域工程的依据,复审领域模型、DSSA 等领 域工程产品, 等等。

领域专家应该熟悉该领域中系统的软件设计和实现、硬件限制、未来的用户需求及技术 走向等。

领域分析人员

领域分析人员应由具有知识工程背景的有经验的系统分析员来担任。

领域分析人员的主要任务包括控制整个领域分析过程、进行知识获取、将获取的知识组 织到领域模型中、根据现有系统、标准规范等验证领域模型的准确性和一致性、维护领域模 型。

领域分析人员应熟悉软件重用和领域分析方法; 熟悉进行知识获取和知识表示所需的技 术、语言和工具; 应具有一定的该领域的经验, 以便于分析领域中的问题及与领域专家进行 交互; 应具有较高的进行抽象、关联和类比的能力; 应具有较高的与他人交互和合作的能力。

领域设计人员

领域设计人员应由有经验的软件设计人员来担任。

领域设计人员的主要任务包括控制整个软件设计过程,根据领域模型和现有的系统开发 出 DSSA,对 DSSA 的准确性和一致性进行验证,建立领域模型和 DSSA 之间的联系。

领域设计人员应熟悉软件重用和领域设计方法; 熟悉软件设计方法; 应有一定的该领域 的经验,以便于分析领域中的问题及与领域专家进行交互。

领域实现人员

领域实现人员应由有经验的程序设计人员来担任。

领域实现人员的主要任务包括根据领域模型和 DSSA,或者从头开发可重用构件,或者 利用再工程的技术从现有系统中提取可重用构件,对可重用构件进行验证,建立 DSSA 与 可重用构件间的联系。

领域实现人员应熟悉软件重用、领域实现及软件再工程技术; 熟悉程序设计; 具有一定 的该领域的经验。

特定领域软件架构(DSSA)是在一个特定应用领域为一组应用提供组织结构参考的标准 软件架构。实施 DSSA 的过程中包括一系列基本的活动,其中()活动的主要目的 是为了获得 DSSA。该活动参加人员中,() 的主要任务是提供关于领域中系统的需 求规约和实现的知识。

A.领域需求

B.领域分析

C.领域设计

D.领域实现

A.领域专家

B.领域分析者

C.领域设计者 D.领域实现者

本题主要考查特定领域软件架构的基本定义和基本活动。特定领域软件架构(DSSA)是 在一个特定应用领域为一组应用提供组织结构参考的标准软件架构。

实施 DSSA 的过程中包括一系列基本的活动,其中领域设计活动的主要目的是为了获 得 DSSA。该活动参加人员中,领域专家的主要任务是提供关于领域中系统的需求规约 和实现的知识。特定领域软件架构(Domain Specific Software Architecture, DSSA)以一个 特定问题领域为对象,形成由领域参考模型,参考需求,(1)等组成的开发基础架构, 支持一个特定领域中多个应用的生成。DSSA 的基本活动包括领域分析、领域设计和领 域实现。其中领域分析的主要目的是获得(2),从而描述领域中系统之间共同的需求, 即领域需求; 领域设计的主要目标是获得(3), 从而描述领域模型中表示需求的解决方 案; 领域实现的主要目标是开发和组织可重用信息, 并实现基础软件架构。

(1)A.参考设计

B.参考规约

C.参考架构

D.参考实现

(2)A.领域边界

B.领域信息

C.领域对象

D.领域模型

(3)A.特点领域软件需求

B.特定领域软件架构

C.特定领域软件设计模型

D.特定领域软件重用模型

【解析】

特定领域软件架构(Domain Specific Software Architecture, DSSA)以一个特定问题领域 为对象,形成由领域参考模型、参考需求、参考架构等组成的开发基础架构,其目标是支持 一个特定领域中多个应用的生成。

DSSA 的基本活动包括领域分析、领域设计和领域实现。其中领域分析的主要目的是获 得领域模型, 领域模型描述领域中系统之间共同的需求, 即领域需求; 领域设计的主要目标 是获得 DSSA, DSSA 描述领域模型中表示需求的解决方案; 领域实现的主要目标是依据领 域模型和 DSSA 开发和组织可重用信息,并对基础软件架构进行实现。

【答案】: C、D、B。

基干架构的软件开发方法

1. 采用以架构为核心的软件开发方法,在建立软件架构的初期,首要任务是选择一个合适),在此基础上,开发人员通过架构模型,可以获得关于上()的理解,为将来 的架构实现与演化过程建立了目标。

A.分析模式

B.设计模式

C.架构风格

D.架构标准

A.架构需求

B.架构属性

C.架构优先级

D.架构约束

【解析】

本题主要考查以架构为核心的软件系统开发方法。在该方法中, 架构用来激发和调整设 计策略, 不同的视图用来表达与质量目标有关的信息。 架构设计是一个迭代过程, 在建立软 件架构的初期,选择一个合适的架构风格是首要的,在此基础上,开发人员通过架构模型, 可以获得关于软件架构属性的理解、为将来的架构实现与演化过程建立了目标。

【答案】C、B。

基于架构的软件开发(Architecture Based Software Development, ABSD)强调由商业、质 量和功能需求的组合驱动软件架构设计。它强调采用()描述软件架构,用()来描述 需求。

(1)A.类图和序列图

B.视角与视图

C.构建和类图 D.构建与功能

(2)A.用例与类图

B.用例与视角

C.用例与质量场景

D.视角与质量场景

【解析】

根据定义,基于软件架构的开发(Architecture Based Software Development, ABSD)强调 由商业、质量和功能需求的组合驱动软件架构设计。它强调采用视角和视图来描述软件架构、 采用用例和质量属性场景来描述需求。

【答案】: B、C。

- 某公司采用基于架构的软件设计(Architecture-BasedSoftwareDesign, ABSD)方法进行软 件设计与开发。ABSD 方法有三个基础,分别是对系统进行功能分解、采用()实现质 量属性与商业需求、采用软件模板设计软件结构。ABSD 方法主要包括架构需求等 6 个主要活动,其中()活动的目标是标识潜在的风险,及早发现架构设计中的缺陷和错 误;()活动针对用户的需求变化,修改应用架构,满足新的需求。小王是该公司的一 位新任架构师,在某项目中主要负责架构文档化方面的工作。小王()的做法不符合架 构文档化的原则。架构文档化的主要输出结果是架构规格说明书和()。
 - (1)A. 架构风格
- B. 设计模式
- C. 架构策略
- D. 架构描述

- (2)A. 架构设计
- B. 架构实现
- C. 架构复审
- D. 架构演化
- (3)A. 架构设计 B. 架构实现 C. 架构复审 D. 架构演化

- (4)A. 从使用者的角度书写文档
 - B. 随时保证文档都是最新的
 - C. 将文档分发给相关人员
 - D. 针对不同背景的人员书写文档的方式不同
- (5)A. 架构需求说明书
 - B. 架构实现说明书
 - C. 架构质量说明书
 - D. 架构评审说明书

【解析】

基于架构的软件设计(Achitecture-Based Software Design, ABSD)方法有三个基础,分别 是对系统进行**功能分解、采用架构风格**实现质量属性与商业需求、采用软件模板设计软件结 构。ABSD 方法主要包括架构需求等 6 个主要活动, 其中架构复审活动的目标是标识潜在的 风险,及早发现架构设计中的缺陷和错误;架构演化活动针对用户的需求变化,修改应用架 构,满足新的需求。

软件架构文档应该从使用者的角度进行书写,针对不同背景的人员采用不同的书写方 式,并将文档分发给相关人员。架构文档要保持较新,但不要随时保证文档最新,要保持文 档的稳定性。架构文档化的主要输出结果是架构规格说明书和架构质量说明书。

【答案】: A、C、D、B、A。

- 4. 体系结构文档化有助于辅助系统分析人员和程序员去实现体系结构。体系结构文档化过 程的主要输出包括()。
 - A. 体系结构规格说明、测试体系结构需求的质量设计说明书
 - B. 质量属性说明书、体系结构描述
 - C. 体系结构规格说明、软件功能需求说明
 - D. 多视图体系结构模型、体系结构验证说明

【解析】

体系结构文档化过程的主要输出结果是体系结构规格说明和测试体系结构需求的质量 设计说明书这两个文档。软件体系结构的文档要求与软件开发项目中的其他文档是类似的。 文档的完整性和质量是软件体系结构成功的关键因素。文档要从使用者的角度进行编写,必 须分发给所有与系统有关的开发人员,且必须保证开发者手上的文档是最新的。

【答案】: A。

5. 在基于体系结构的软件设计方法中,采用()来描述软件架构,采用()但来描述功能 需求,采用()来描述质量需求。

A.类图和序列图

B.视角与视图 C.构件和类图

D.构件与功能

A.类图

B.视角

C.用例

D.质量场景

A.连接件

B.用例

C.质量场景

D.质量属性

根据基于软件架构的设计的定义,基于软件架构的设计(Architecture Based Software Development, ABSD)强调由商业、质量和功能需求的组合驱动软件架构设计。它强调采用视角和视图来描述软件架构,采用用例和质量属性场景来描述需求。进一步来说,用例描述的是功能需求、质量属性场景描述的是质量需求(或侧重于非功能需求)。

【答案】B、C、C。

- 6. 基于架构的软件设计(ABSD)强调由商业、质量和功能需求的组合驱动软件架构设计。 ABSD 方法有三个基础:功能分解、()和软件模板的使用。
 - A. 对需求进行优先级排列
 - B. 根据需求自行设计系统的总体架构
 - C. 选择架构风格实现质量及商业需求
 - D. 开发系统原型用于测试

【解析】

ABSD 方法有三个基础:

- (1)功能的分解。使用已有的基干模块的内聚和耦合技术。
- (2)通过选择体系结构风格来实现质量和商业需求。
- (3)软件模板的使用。软件模板是一个特殊类型的软件元素,包括描述所有这种类型的元素在共享服务和底层构造的基础上如何进行交互。软件模板还包括属于这种类型的所有元素的功能,这些功能的例子有:每个元素必须记录某些重大事件,每个元素必须为运行期间的外部诊断提供测试点等。
- 7. 组合驱动软件架构设计。以下关于 ABSD 的叙述中,错误的是()。
 - A.使用 ABSD 方法,设计活动可以从项目总体功能框架明确就开始
 - B.ABSD 方法是一个自顶向下, 递归细化的过程
- C.ABSD 方法有三个基础:功能分解、选择架构风格实现质量和商业需求以及软件模板的使用
 - D.使用 ABSD 方法,设计活动的开始意味着需求抽取和分析活动可以终止

【解析】

基于架构的软件设计(ABSD)强调由商业、质量和功能需求的组合驱动软件架构设计。 使用 ABSD 方法,设计活动可以从项目总体功能框架明确就开始,并且设计活动的开始并不意味着需求抽取和分析活动可以终止,而是应该与设计活动并行。

ABSD 方法有三个基础:

第一个基础是功能分解,在功能分解中使用已有的基于模块的内聚和耦合技术。

第二个基础是通过选择体系结构风格来实现质量和商业需求。

第三个基础是软件模板的使用。ABSD 方法是一个自顶向下,递归细化的过程,软件系统的架构通过该方法得到细化,直到能产生软件构件的类。

【答案】D。

- 8. 软件架构需求是指用户对目标软件系统在功能、行为、性能、设计约束等方面的期望。 以下活动中,不属于软件架构需求过程范畴的是()。
 - A. 设计构件
 - B. 需求获取
 - C. 标识构件
 - D. 架构需求评审

【解析】

软件架构需求是指用户对目标软件系统在功能、行为、性能和设计约束等方面的期望。 需求过程主要是获取用户需求,标识系统中所要用到的构件,并进行架构需求评审。其中标 识构件又详细分为生成类图、对类图进行分组和将类打包成构件三步。软件架构需求并不应 该包括设计构件的过程。

【答案】A。

- 9. 架构复审是基于架构开发中一个重要的环节。以下关于架构复审的叙述中,错误的是()。
 - A. 架构复审的目标是标识潜在的风险,及早发现架构设计的缺陷和错误
 - B. 架构复审过程中,通常会对一个可运行的最小化系统进行架构评估和测试
 - C. 架构复审人员由系统设计与开发人员组成
 - D. 架构设计、文档化和复审是一个迭代的过程

【解析】

架构复审是基于架构开发中一个重要的环节。架构设计、文档化和复审是一个迭代的过程。从这个方面来说,在一个主版本的软件架构分析之后,要安排一次由外部人员(用户代表和领域专家)参加的复审。架构复审过程中,通常会对一个可运行的最小化系统进行架构评估和测试。架构复审的目标是标识潜在的风险,及早发现架构设计的缺陷和错误。

构件与中间件技术

- 1. 以下关于软件中间件的叙述,错误的是()。
 - A. 中间件通过标准接口实现与应用程序的关联,提供特定功能的服务
 - B. 使用中间件可以提高应用软件可移植性
 - C. 使用中间件将增加应用软件设计的复杂度
 - D. 使用中间件有助于提高开发效率

【解析】

中间件是一种独立的系统软件或服务程序,分布式应用软件借助这种软件在不同的技术 之间共享资源,中间件位于客户机服务器的操作系统之上,管理计算资源和网络通信。

软件中间件的作用是为处于自己上层的应用软件提供运行与开发的环境,帮助用户开发和集成应用软件。它不仅仅要实现互连,还要实现应用之间的互操作。

【答案】: C。

- 2. 为了使一个接口的规范和实现该接口的构件得到广泛应用,需要实现接口的标准化。接口标准化是对()的标准化。
 - A.保证接口唯一性的命名方案
 - B.接口中消息模式、格式和协议
 - C.接口中所接收的数据格式
 - D.接口消息适用语境

【解析】

接口标准化是对接口中消息的模式、格式和协议的标准化。它不是要将接口格式化为参数化操作的集合,而是关注输入输出的消息的标准化,它强调当机器在网络中互连时,标准的消息模式、格式、协议的重要性。这也是因特网(IP, UDP,TCP,SNMP,等等)和 Web(HTTP, HTML,等等)标准的主要做法。为了获得更广泛的语义,有必要在一个单一通用的消息格式语境中标准化消息模式。这就是 XML 的思想。XML 提供了一种统一的数据格式。

【答案】B。

- 3. 软件构件是一个独立可部署的软件单元,与程序设计中的对象不同,构件()。
 - A.是一个实例单元, 具有唯一的标志
 - B.可以利用容器管理自身对外的可见状态
 - C.利用工厂方法(如构造函数)来创建自己的实例
 - D.之间可以共享一个类元素

构件的特性是:

- (1)独立部署单元;
- (2)作为第三方的组装单元;
- (3)没有(外部的)可见状态。
- 一个构件可以包含多个类元素,但是一个类元素只能属于一个构件。将一个类拆分进行 部署通常没什么意义。

对象的特性是:

- (1)一个实例单元,具有唯一的标志。
- (2)可能具有状态,此状态外部可见。
- (3)封装了自己的状态和行为。

【答案】C。

4. OMG 接口定义语言 IDL 文件包含了六种不同的元素,()是一个 IDL 文件核心的内容,()将映射为 Java 语言中的包 (package)或 C++语言中的命名空间(Namespace)。

A.模块定义

B.消息结构

C.接口描述

D.值类型

A.模块定义

B.消息结构

C.接口描述

D.值类型

【解析】

暂无。

【答案】D、A。

5. CORBA(Common Object Request Broker Architecture,公共对象请求代理体系结构,通用对象请求代理体系结构)构件模型中,()的作用是在底层传输平台与接收调用并返回结果的对象实现之间进行协调,()是最终完成客户请求的服务对象实现。

A.伺服对象激活器 B.适配器激活器 C.伺服对象定位器 D.可移植对象适配器 POA A.CORBA 对象 B.分布式对象标识 C.伺服对象 Servant D.活动对象映射表

【解析】

POA 是对象实现与 ORB 其它组件之间的中介,它将客户请求传送到伺服对象,按需创建子 POA,提供管理伺服对象的策略。

CORBA 对象可看作是一个具有对象标识、对象接口及对象实现的抽象实体。

之所以称为抽象的,是因为并没有硬性规定 CORBA 对象的实现机制。由于独立于程序设计语言和特定 ORB 产品,一个 CORBA 对象的引用又称可互操作的对象引用(Interoperable Object Reference)。从客户程序的角度看,IOR 中包含了对象的标识、接口类型及其他信息以查找对象实现。

伺服对象(servant)是指具体程序设计语言的对象或实体,通常存在于一个服务程序进程之中。

客户程序通过对象引用发出的请求经过 ORB 担当中介角色,转换为对特定的伺服对象的调用。在一个 CORBA 对象的生命期中,它可能与多个伺服对象相关联,因而对该对象的请求可能被发送到不同的伺服对象。

对象标识(Object ID)是一个用于在 POA 中标识一个 CORBA 对象的字符串。

它既可由程序员指派, 也可由对象适配器自动分配, 这两种方式都要求对象标识在创建它的对象适配器中必须具有唯一性。

【答案】D、C。

- 6. 面向构件的编程(Component Oriented Programming, COP)关注于如何支持建立面向构件的解决方案。面向构件的编程所需要的基本支持包括()。
 - A.继承性、构件管理和绑定、构件标识、访问控制
 - B.封装性、信息隐藏、独立部署、模块安全性
 - C.多态性、模块封装性、后期绑定和装载、安全性
 - D.构件抽象、可替代性、类型安全性、事务管理

面向构件的编程(COP)关注于如何支持建立面向构件的解决方案。一个基于一般 OOP 风格的 COP 定义如下(Szyperski, 1995): "面向构件的编程需要下列基本的支持:

- ——多态性(可替代性);
- ——模块封装性(高层次信息的隐藏);
- ——后期的绑定和装载(部署独立性);
- ——安全性(类型和模块安全性)。"

【答案】C。

软件质量属性

1. 某公司欲开发一个在线交易系统,在架构设计阶段,公司的架构师识别出3个核心质量属性场景。其中"当系统面临断电故障后,需要在1小时内切换至备份站点并恢复正常运行"主要与()质量属性相关,通常可采用()架构策略实现该属性;"在并发用户数量为1000人时,用户的交易请求需要在0.5秒内得到响应"主要与()质量属性相关,通常可采用()架构策略实现该属性;"对系统的消息中间件进行替换时,替换工作需要在5人/月内完成"主要与()质量属性相关,通常可采用()架构策略实现该属性。

A.	性能	В.	安全性	C.	可用性	D.	可修改性
A.	操作隔离	В.	资源调度	C.	心跳	D.	内置监控器
A.	性能	В.	易用性	C.	可用性	D.	互操作性
A.	主动冗余	В.	资源调度	C.	抽象接口	D.	记录/回放
A.	可用性	В.	安全性	C.	可测试性	D.	可修改性

A. 接口-实现分离 B. 记录/回放 C. 内置监控器 D. 追踪审计

【解析】

本题主要考查考生对质量属性的理解和质量属性实现策略的掌握。

对于题干描述: "当系统面临断电故障后,需要在1小时内切换至备份站点并恢复正常运行"主要与可用性质量属性相关,通常可采用心跳、Ping/Echo、主动冗余、被动冗余、选举等架构策略实现该属性; "在并发用户数量为1000人时,用户的交易请求需要在0.5秒内得到响应",主要与性能这一质量属性相关,实现该属性的常见架构策略包括: 增加计算资源、减少计算开销、引入并发机制、采用资源调度等。"对系统的消息中间件进行替换时,替换工作需要在5人/月内完成"主要与可修改性质量属性相关,通常可采用接口-实现分离、抽象、信息隐藏等架构策略实现该属性。

2. 某公司欲开发一个智能机器人系统,在架构设计阶段,公司的架构师识别出3个核心质量属性场景。其中"机器人系统主电源断电后,能够在10秒内自动启动备用电源并进行切换,恢复正常运行"主要与(1)质量属性相关,通常可采用(2)架构策略实现该属性;"机器人在正常运动过程中如果发现前方2米内有人或者障碍物,应在1秒内停止并在2秒内选择一条新的运行路径"主要与(3)质量属性相关,通常可采用(4)架构策略实现该属性;"对机器人的远程控制命令应该进行加密,从而能够抵挡恶意的入侵破坏行为,并对攻击进行报警和记录"主要与(5)质量属性相关,通常可采用(6)架构策略实现该属性。

(1)	A.可用性	B.性能	C.易用性	D.可修改性
(2)	A.抽象接口	B.信息隐藏	C.主动冗余	D.记录/回放
(3)	A.可测试性	B.易用性	C.互操作性	D.性能
(4)	A.资源调度	B.操作串行化	C.心跳	D.内置监控器
(5)	A.可用性	B.安全性	C.可测试性	D.可修改性
(6)	A.内置监控器	B B.追踪审计	C.记录/回放	D.维护现有接口

"机器人系统主电源断电后,能够在10秒内自动启动备用电源并进行切换,恢复正常运行"属于可用性,通常可采用心跳、Ping/Echo、主动冗余、被动冗余、选举。

"对机器人的远程控制命令应该进行加密,从而能够抵挡恶意的入侵破坏行为,并对攻击进行报警和记录"属于安全性,常见的策略是追踪审计。

答案: A、C、D、A、B、B。

3. 某公司欲开发一个在线交易网站,在架构设计阶段,公司的架构师识别出 3 个核心质量属性场景。其中"网站正常运行时,用户发起的交易请求应该在 3 秒内完成"主要与()质量属性相关,通常可采用()架构策略实现该属性; "在线交易主 站宕机后,能够在 3 秒内自动切换至备用站点并恢复正常运行"主要与()质量属 性相关,通常可采用()架构策略实现该属性; "系统应该具备一定的安全保护措施, 从而能够抵挡恶意的入侵破坏行为,并对所有针对网站的攻击行为进行报警和记录"主要与()质量属性相关,通常可采用()架构策略实现该属性。

A.可用性	B. 性能	C. 易用性	D.	可修改性
A.抽象接口	B.信息隐藏	C. 主动冗余	D.	资源调度
A.可测试性	B.易用性	C. 可用性	D.	互操作性
A.记录/回放	B. 操作串行	C. 心跳	D.	增加计算资源
A.可用性	B. 安全性	C. 可测试性	D.	可修改性
A.追踪审计	B.Ping/Echo	C.选举	D.	维护现有接口

【解析】

"网站正常运行时,用户发起的交易请求应该在3秒内完成"属于性能,常见架构策略包括:增加计算资源、减少计算开销、引入并发机制、采用资源调度等。

"在线交易主站宕机后,能够在3秒內自动切换到备用站点并恢复正常运行"属于可用性,因为场景描述的是故障恢复问题。通常可采用心跳、Ping/Echo、主动冗余、被动冗余、选举。

"系统应该具备一定的安全保护措施,从而能够抵挡恶意的入侵破坏行为,并对所有针对网站的攻击行为进行报警和记录"属于安全性,常见的策略是追踪审计。

4. 架构权衡分析方法(ArchitectureTradeoffAnalysisMethod, ATAM)是一种系统架构评估方法,主要在系统开发之前,针对性能、()、安全性和可修改性等质量属性进行评价和折中。ATAM可以分为4个主要的活动阶段,包括需求收集、()描述、属性模型构造和分析、架构决策与折中,整个评估过程强调以()作为架构评估的核心概念。

某软件公司采用 ATAM 进行软件架构评估,在评估过程中识别出了多个关于质量属性的描述。其中,"系统在进行文件保存操作时,应该与 Windows 系统的操作方式保持一致,主要与()质量属性相关:"系统应该提供一个开放的 API 接口,支持远程对系统的行为进行控制与调试,主要与()质量属性相关。在识别出上述描述后,通常采用()对质量属性的描述进行刻画与排序。在评估过程中,()是一个会影响多个质量属性的架构设计决策。

)丙 工	无构设计状况。						
(1)A.	可测试性	В.	可移植性	C.	可用性	D.	易用性
(2)A.	架构视图	В.	架构排序	C.	架构风格	D.	架构策略
(3)A.	用例	В.	视图	C.	属性	D.	模型
(4)A.	可测试性	В.	互操作性	C.	可移植性	D.	易用性
(5)A.	可测试性	В.	互操作性	C.	可移植性	D.	易用性
(6)A.	期望管理矩阵	В.	决策表	C.	优先队列	D.	效用树
(7)A.	风险点	В.	决策点	C.	权衡点	D.	敏感点

【解析】

架构权衡分析方法是一种系统架构评估方法,主要在系统开发之前,针对**性能、可用性、安全性和可修改性**等质量属性进行评价和折中。

ATAM 可以分为 4 个主要的活动阶段,包括需求收集、架构视图描述、属性模型构造

和分析、架构决策与折中,整个评估过程强调以属性作为架构评估的核心概念。

题目中提到"某软件公司采用 ATAM 进行软件架构评估,在评估过程中识别出了多个 关于质量属性的描述。其中,系统在进行文件保存操作时,应该与 Windows 系统的操作方 式保持一致。"与用户所熟悉的操作方式,操作界面保持一致,这是一种减轻用户记忆负担, 降低学习成本的做法,这有利于提高系统的易用性。

"系统应该提供一个开放的 API 接口,支持远程对系统的行为进行控制与调试"、在 此处,我们注意到描述的核心落在"支持远程对系统的行为进行控制与调试"上了,而调试 是在测试之后精确定位系统错误的一种机制,所以这种做法有利于提高系统的可测试性。

最后的两空也是考概念: 在识别出上述描述后, 通常采用效用树对质量属性的描述进行 刻画与排序。在评估过程中,权衡点是一个会影响多个质量属性的架构设计决策。

【答案】: C、A、C、D、A、D、C。

- 5. 某公司在对一家用车库门嵌入式软件系统进行架构设计时,识别出两个关键的质量属性 场景, 其中"当车库门正常下降时, 如果发现下面有障碍物, 则系统停止下降的时间需 要控制在 0.1 秒内"与()质量属性相关; "系统需要为部署在远程 PC 机上的智能家 居系统留有控制接口,并支持在智能家居系统中对该系统进行远程错误诊断与调试"与 ()质量属性相关。
 - A. 可用性
- B. 性能
- C. 可修改性
- D. 可测试性

- A. 可用性
- B. 性能
- C. 可修改性
- D. 可测试性

【解析】

【答案】B、D。

扩展:

作为系统组成部分的软件不是独立存在的,经常与其他系统或自身环境相互作用。为了 支持互操作性(inter-operation)、软件体系结构必须为外部可视的功能特性和数据结构提供精 心设计的软件人口。程序和用其他编程语言编写的软件系统的交互作用就是互操作性的问 题,这种互操作性也影响应用的软件体系结构。

- 6. 软件质量属性通常需要采用特定的设计策略实现。例如,()设计策略能提高该系统的 可用性,()设计策略能够提高该系统的性能,()设计策略能够提高该系统的安全性。
 - A. 心跳机制
- B. 数据驱动 C. 关注点分离
- D. 信息隐藏

- A. 引入中间层 B. 事务机制
- C. 主动冗余
- D. 优先级队列

- A. 信息隐藏
- B. 内置监控器 C. 限制访问
- D. 检查点

【解析】

本题考查提高质量属性的常见手段。

提高可用性的手段包括:命令/响应机制、心跳机制、异常处理机制、冗余机制等。

提高性能的手段包括:引入并发、维持数据或计算的多个副本、增加可用资源、控制采 样频度、限制执行时间、固定优先级调度等。

提高安全性的手段包括:身份认证、限制访问、检测攻击、维护完整性等。

【答案】A、D、C。

- 7. 以下关于系统性能的叙述中,不正确的是()。
 - A. 常见的 Web 服务器性能评估方法有基准测试、压力测试和可靠性测试
 - B. 评价 Web 服务器的主要性能指标有最大并发连接数、响应延迟和吞吐量
 - C. 对运行系统进行性能评估的主要目的是以更好的性能/价格比更新系统
 - D. 当系统性能降到基本水平时,需要查找影响性能的瓶颈并消除该瓶颈

【解析】

本题主要考查系统性能评估的主要方法和需要注意的问题。对运行系统进行评估的主要 目的是评价信息系统在性能方面的表现,找出系统可能存在的性能瓶颈。其中,常见的 Web 服务器性能评估方法有基准测试、压力测试和可靠性测试等,评价 Web 服务器的主要性能 指标有最大并发连接数、响应延迟和吞吐量等。当系统性能降到基本水平时、需要查找影响

性能的瓶颈并消除该瓶颈。

【答案】C。

- 某服务器软件系统对可用性(Availability)、性能(Performance)和可修 改性(Modification)的要求较高,()设计策略能提高该系统的可用性,()设计策略能 够提高该系统的性能,()设计策略能够提高该系统的可修改性。
 - A. Ping/Echo
- B. 限制访问
- C. 运行时注册
- D. 接口-实现分离

- A. 分层结构
- B. 事务机制 C. 主动冗余
- D. 队列调度

- A. 信息隐藏
- B. 记录/回放
- C. 任务模型
- D. 回滚

【解析】

本题主要考查质量属性以及实现质量属性的一般策略,不同策略主要针对一个或多个软 件质量属性, 其中 Ping/Echo 主要提高系统的可用性; 限制访问主要提高系统的安全性; 运 行时注册主要提高系统的可修改性;接口-实现分离主要提高系统的可修改性;主动冗余提 高系统的可靠性; 队列调度主要提高系统的性能; 信息隐藏主要提高系统的可修改性; 记录 -回放主要提高系统的可测试性,等等。

【答案】A、D、A。

- 9. 某服务器软件系统能够正确运行并得出计算结果,但存在"系统出错后不能在要求的时 间内恢复到正常状态"和"对系统进行二次开发时总要超过半年的时间"两个问题,上 述问题依次与质量属性中的()相关。
 - A. 可用性和性能
 - B. 性能和可修改性
 - C. 性能和可测试性
 - D. 可用性和可修改性

【解析】

本题主要考查软件质量属性的判断与应用。"系统出错后不能在要求的时间内恢复到正 常状态",这是对系统错误恢复能力的描述,属于系统可用性的范畴。"对系统进行二次开 发时总要超过半年的时间",这是对系统进行调整和维护方面能力的描述,属于系统可修改 性的范畴。

其他

- 1. 软件架构文档是对软件架构的正式描述,能够帮助与系统有关的开发人员更好地理解软 件架构。软件架构文档的写作应该遵循一定的原则。以下关于软件架构文档写作原则的 叙述中,错误的是()。
 - A.架构文档应该从架构设计者的角度进行编写
 - B.应该保持架构文档的即时更新, 但更新不要过于频繁
 - C.架构文档中的描述应该尽量避免不必要的重复
 - D.每次架构文档修改,都应该记录修改的原则

【解析】

软件架构文档是对软件架构的一种描述,帮助程序员使用特定的程序设计语言实现软件 架构。软件架构文档的写作应该遵循一定的原则,这些原则包括: 文档要从使用者的角度进 行编写;必须分发给所有与系统有关的开发人员;应该保持架构文档的即时更新,但更新不 要过于频繁; 架构文档中描述应该尽量避免不必要的重复: 每次架构文档修改都应该记录进 行修改的原则。

【答案】A。

软件工程

UML 图

- 2. 面向对象的分析模型主要由()、用例与用例图、领域概念模型构成;设计模型则包含以包图表示的软件体系结构图、以交互图表示的()、完整精确的类图、针对复杂对象的状态图和描述流程化处理过程的()等。
 - (1).A. 业务活动图
 - B. 顶层架构图
 - C. 数据流模型
 - D. 实体联系图
 - (2).A. 功能分解图
 - B. 时序关系图
 - C. 用例实现图
 - D. 软件部署图
 - (3).A. 序列图
 - B. 协作图
 - C. 流程图
 - D. 活动图

【解析】

面向对象的分析模型主要由**顶层架构图、用例与用例图、领域概念模型**构成;设计模型则包含以**包图**表示的**软件体系结构图、以交互图**表示的用例实现图、完整精确的类图、针对 复杂对象的状态图和用以描述流程化处理过程的活动图等。

【答案】: B、C、D。

UML 关系

1. 在 UML 提供的系统视图中,()是逻辑视图的一次执行实例,描述了并发与同步结构; ()是最基本的需求分析模型。

 A.进程视图
 B.实现视图
 C.部署视图
 D.用例视图

 A.进程视图
 B.实现视图
 C.部署视图
 D.用例视图

【解析】

UML 对系统架构的定义是系统的组织结构,包括系统分解的组成部分,以及它们的关联性、交互机制和指导原则等提供系统设计的信息。具体来说,就是指以下 5 个系统视图:

逻辑视图:逻辑视图也称为设计视图,它表示了设计模型中在架构方面具有重要意义的部分,即类、子系统、包和用例实现的子集。

进程视图:进程视图是可执行线程和进程作为活动类的建模,它是逻辑视图的一次执行 实例,描述了并发与同步结构。

实现视图:实现视图对组成基于系统的物理代码的文件和构件进行建模。

部署视图:部署视图把构件部署到一组物理节点上,表示软件到硬件的映射和分布结构。

用例视图:用例视图是最基本的需求分析模型。

【答案】: A、D。

2. 用例(use case)用来描述系统对事件做出响应时所采取的行动。用例之间是具有相关性的。在一个会员管理系统中,会员注册时可以采用电话和邮件两种方式。用例"会员注册"和"电话注册"、"邮件注册"之间是()关系。

A.包含(include) B.扩展(extend) C.泛化(generalize) D.依赖(depends on)

【解析】

包含: 当可以从两个或两个以上的用例中提取公共行为时, 应该使用包含的关系来表示它们。

扩展:如果一个用例明显地混合了两种或者两种以上的不同场景,即根据情况可能发生多种分支,则可以将这个用例分为一个基本用例和一个或多个扩展用例,这样可能会使描述更加清晰。这种情况下才是扩展关系。比如导出数据模块,有导出 excel,导出 word 等,这些导出与模块之间是扩展。

泛化: 当多个用例共同拥有一种类似的结构和行为时,可以将他们的共性抽象成为父用例泛化关系是从另一个角度来看的继承关系,也就是说,当两个用例之间可能存在父子关系时,可判定为泛化关系。

在本题中, "电话注册"与"邮件注册"都属于"会员注册", 他们是"会员注册"的 具体形式, 所以存在父子关系, 可判定为泛化关系。

【答案】: C。

3. 用例(use case)用来描述系统对事件做出响应时所采取的行动。用例之间是具有相关性的。在一个"订单输入子系统"中,创建新订单和更新订单都需要核查用户帐号是否正确。用例"创建新订单"、"更新订单"与用例"核查客户帐号"之间是()关系。

A.包含(include) B.扩展(extend) C.泛化(generalize) D.依赖(depends on)

【解析】

用例是在系统中执行的一系列动作,这些动作将生成特定参与者可见的价值结果。它确定了一个和系统参与者进行交互,并可由系统执行的动作序列。用例模型描述的是外部执行者(Actor)所理解的系统功能。用例模型用于需求分析阶段,它的建立是系统开发者和用户反复讨论的结果,表明了开发者和用户对需求规格达成的共识。

两个用例之间的关系主要有两种情况:一种是用于重用的包含关系,用构造型 include 表示;另一种是用于分离出不同行为的扩展,用构造型 extend 表示。

包含关系: 当可以从两个或两个以上的原始用例中提取公共行为,或者发现能够使用一个构件来实现某一个用例的部分功能是很重要的事时,应该使用包含关系来表示它们。

扩展关系:如果一个用例明显地混合了两种或两种以上的不同场景,即根据情况可能发生多种事情,可以断定将这个用例分为一个主用例和一个或多个辅用例描述可能更加清晰。

【答案】: A。

界面设计

- 1. 系统输入设计中应尽可能考虑人的因素,以下关于输入设计的一般原理中,错误的是()。
 - A.只让用户输入变化的数据
 - B.使用创新的模式吸引用户的眼球
 - C.表格中各个数据项应有提示信息
 - D.尽可能使用选择而不是键盘输入的方式获取数据

【解析】

本题考查应用系统输入设计的基本知识。

人的因素在系统输入设计中扮演了很重要的角色。输入应该尽可能地简单,以降低错误发生的可能性,如对于范围可控的数据,使用选择的方式替代用户输入;只输入变化的数据等。输入应该尽可能使用已有含义明确的设计,需要采用模仿的方式而非创新。为了避免用户理解的二义性,应该对表格中输入的数据给出提示信息。

【答案】B。

- 2. 系统输入设计中,采用内部控制方式以确保输入系统数据的有效性,()用于验证数据 是否位于合法的取值范围。
 - A. 数据类型检查
 - B. 自检位
 - C. 域检查
 - D. 格式检查

【解析】

系统输入设计中, 通常通过内部控制的方式验证输入数据的有效性。数据类型检查确保 输入了正确的数据类型; 自检位用于对主关键字进行基于校验位的检查; 域检查用于验证数 据是否位于合法的取值范围;格式检查按照已知的数据格式对照检查输入数据的格式。

设计模式

1. 某软件公司欲开发一个绘图软件,要求使用不同的绘图程序绘制不同的图形。在明确用 户需求后,该公司的架构师决定采用 Bridge 模式实现该软件,并设计 UML 类图如下图 所示。图中与 Bridge 模式中的 "Abstraction" 角色相对应的类是(), 与 "Implementor" 角色相对应的类是()。

A.Shape A.Shape

B.Drawing

C.Rectangle

D.V2Drawing

【解析】

桥接模式将抽象部分与它的实现部分分离、使它们都可以独立地变化。它是一种对象结 构型模式,又称为柄体(Handle and Body)模式或接口(Interface)模式。桥接模式类似于多 重继承方案, 但是多重继承方案往往违背了类的单一职责原则, 其复用性比较差, 桥接模式 是比多重继承方案更好的解决方法。

桥接模式的结构如下图所示, 其中:

图中与 Bridge 模式中的 "Abstraction" 角色相对应的类是 Shape,与 "Implementor" 角色相对应的类是 Drawing。

【答案】: A、B。

- 2. 某系统中的文本显示类(TextView)和图片显示类(PictureView)都继承了组件类(Component),分别显示文本和图片内容,现需要构造带有滚动条或者带有黑色边框,或者既有滚动条又有黑色边框的文本显示控件和图片显示控件,但希望最多只增加3个类。那么采用设计模式()可实现该需求,其优点是()。
 - (1)A. 外观
- B. 单体
- C. 装饰
- D. 模板方法
- (2)A. 比静态继承具有更大的灵活性
 - B. 提高已有功能的重复使用性
 - C. 可以将接口与实现相分离
 - D. 为复杂系统提供了简单接口

【解析】

装饰模式: 动态地给一个对象添加一些额外的职责。它提供了用子类扩展功能的一个灵活的替代, 比派生一个子类更加灵活。

在本题中,"现需要构造带有滚动条或者带有黑色边框,或者既有滚动条又有黑色边框的文本显示控件和图片显示控件",从此处可以看出需要能为构件灵活附加功能的机制,这与装饰模式的情况是吻合的。这样做比静态继承具有更大的灵活性。

- 3. 某软件公司正在设计一个图像处理软件,该软件需要支持用户在图像处理过程中的撤销和重做等动作,为了实现该功能,采用()最为合适。
 - A. 单例模式
 - B. 命令模式
 - C. 访问者模式
 - D. 适配器模式

【解析】

根据题干描述,系统需要支持用户在图像处理过程中的撤销和重做的动作,因此可以将用户动作封装成对象,通过对象之间的传递和转换实现撤销和重做等动作。根据上述分析,选项中列举的设计模式中,命令模式最符合要求。

- 4. 某互联网公司正在设计一套网络聊天系统,为了限制用户在使用该系统时发表不恰当言论,需要对聊天内容进行特定敏感词的过滤。针对上述功能需求,采用______能够灵活配置敏感词的过滤过程。
 - A. 责任链模式
 - B. 工厂模式
 - C. 组合模式

D. 装饰模式

【解析】

本题考查常见设计模式的特点。

Abstract Factory(抽象工厂模式):提供一个创建一系列相关或相互依赖对象的接口,而 无需指定它们具体的类。

Chain of Responsibility: 为解除请求的发送者和接收者之间耦合,而使多个对象都有机会处理这个请求。将这些对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理它。

Composite: 将对象组合成树形结构以表示"部分-整体"的层次结构。它使得客户对单个对象和复合对象的使用具有一致性。

Decorator: 动态地给一个对象添加一些额外的职责。就扩展功能而言, 它比生成子类方式更为灵活。

依据题意,需要限制用户在使用聊天系统时发表不恰当言论,需要对聊天内容进行特定 敏感词的过滤,最为关键的一点是需要灵活配置过滤关键字。如果本系统采用责任链模式, 即可达到这一点。

5. 按照设计模式的目的进行划分,现有的设计模式可以分为三类。其中创建型模式通过采用抽象类所定义的接口,封装了系统中对象如何创建、组合等信息,其代表有()模式等;()模式主要用于如何组合己有的类和对象以获得更大的结构,其代表有 Adapter模式等;()模式主要用于对象之间的职责及其提供服务的分配方式,其代表有()模式等。

A.Decorator	B.Flyweight	C.Command	D.Singleton
A.合成型	B.组合型	C.结构型	D.聚合型
A.行为型	B.交互型	C.耦合性	D.关联型
A.Prototype	B.Facade	C.Proxy	D.Visitor

【解析】

设计模式包括: 创建型、结构型、行为型三大类别。

Singleton 是单例模式,属于创建型设计模式。

Adapter 是适配器模式, 属于结构型设计模式。

Visitor 是访问者模式、属于行为型设计模式。

【答案】D、C、A、B。

6. 某软件公司欲设计一款图像处理软件,帮助用户对拍摄的照片进行后期处理。在软件需求分析阶段,公司的系统分析师识别出了如下3个关键需求。

图像处理软件需要记录用户在处理照片时所有动作,并能够支持用户动作的撤销与重做等行为。

图像处理软件需要根据当前正在处理的照片的不同特征选择合适的处理操作,处理操作与照片特征之间具有较为复杂的逻辑关系。

图像处理软件需要封装各种图像处理算法,用户能够根据需要灵活选择合适的处理算法:软件还要支持高级用户根据一定的规则添加自定义处理算法。

在系统设计阶段,公司的架构师决定采用设计模式满足上述关键需求中对系统灵活性与扩展性的要求。具体来说,为了支持灵活的撤销与重做等行为,采用()最为合适;为了封装图像操作与照片特征之间的复杂逻辑关系,采用()最为合适;为了实现图像处理算法的灵活选择与替换,采用()最为合适。

	., ,,,,,,,,		
A.工厂模式	B.责任链模式	C.中介者模式	D.命令模式
A.状态模式	B.适配器模式	C.组合模式	D.单例模式
A.模板方法模式	B.访问者模式	C.策略模式	D.观察者模式

本题主要考查设计模式知识。题干描述了某软件公司一款图像处理软件的需求分析与设计过程,并明确指出采用设计模式实现关键需求对系统灵活性与扩展性的要求。

针对需求 1,为了支持灵活的撤销与重做等行为,采用命令模式最为合适,因为命令模式可以将一个请求封装为一个对象,从而使你可用不同的请求对客户进行参数化,还可以对请求排队,或记录请求日志,以及支持可撤消的操作。

针对需求2,为了封装图像操作与照片特征之间的复杂逻辑关系,采用状态模式最为合适,因为状态模式将每一个条件分支放入一个独立的类中,这样就可以根据对象自身的情况将对象的状态作为一个对象,这一对象可以不依赖于其他对象而独立变化;

针对需求3,为了实现图像处理算法的灵活选择与替换,采用**策略模式**最为合适,因为 **策略模式定义一系列的算法,把它们封装起 来,并且使它们可相互替换,使得算法可独立** 于使用它的客户而变化。

【答案】D、A、C。

- 7. 若系统中的某子模块需要为其他模块提供访问不同数据库系统的功能,这些数据库系统 提供的访问接口有一定的差异,但访问过程却都是相同的,例如,先连接数据库,再打 开数据库,最后对数据进行查询。针对上述需求,可以采用()设计模式抽象出相同的 数据库访问过程,该设计模式()。
 - (1)A.外观
- B.装饰
- C.桥接
- D.享元
- (2)A.可以动态、透明地给单个对象添加职责
 - B.为子系统定义了一个高层接口,这个接口使得这一子系统更加容易使用
 - C.通过运用共享技术,有效支持大量细粒度的对象
 - D.将抽象部分与它的实现部分分离,使它们都可以独立地变化

【解析】

外观(façade)模式是对象的结构模式,要求外部与一个子系统的通信必须通过一个统一的外观对象进行,为子系统中的一组接口提供一个一致的界面,外观模式定义了一个高层接口,这个接口使得这一子系统更加容易使用。

【答案】A、B。

扩展:这个题本身出题有问题,这个场景最合适的,其实是模板方法,因为固定了流程但没有固定里面的内容。但给出的选项中,没有这个选项,所以已然没有最合适的了。也就这个原因才选到 A。其实如果说外观也算能行,用桥接也是可以的。把过程作为抽象,把里面要处理的内容作为实现部分。

8. 某公司欲开发一门户网站,将公司的各个分公司及办事处信息进行整合。现决定采用 composite 设计模式来实现公司的组织结构关系,并设计了如图所示的 UML 类图。图 中与 Composite 模式中的 "Component" 角色相对应的类是(1), 与 "Composite" 角色 相对应的类是(2)。

- (1)A. Company
 - B. Finance Department
 - C. HRDepartment

- D. ConcreteCompany
- (2)A. Company
 - B. Finance Department
 - C. HRDepartment
 - D. ConcreteCompany

本题考查组合模式相关的知识。下图为组合模式的 UML 图例。与题目给出的图例进行 匹配可得出答案。

【答案】A、D。

- 9. 某软件公司正在设计一个通用的嵌入式数据处理平台,需要支持各种数据处理芯片之间的数据传递与交换。该平台的核心功能之一要求能够屏蔽芯片之间的数据交互,使其耦合松散,并且可以独立改变芯片之间的交互过程。针对上述需求,采用()最为合适。
 - A.抽象工厂模式
 - B.策略模式
 - C.中介者模式
 - D.状态模式

【解析】

本题主要考查对设计模式的理解和掌握。根据题干描述,该系统需要能够支持不同芯片之间的数据交互,并能够独立改变芯片之间的数据交互过程。这种情况下,可以引入一个中介层,通过中介层屏蔽不同芯片之间的两两交互。根据上述分析,选项中列举的设计模式中,中介者模式最符合要求。

- 10. 某软件公司基于面向对象技术开发了一套图形界面显示构件库 VisualComponent。在使用该库构建某图形界面时,用户要求为界面定制一些特效显示效果,如带滚动条、能够显示艺术字体的透明窗体等。针对这种需求,公司采用()最为灵活。
 - A. 桥接模式
 - B. 命令模式
 - C. 组合模式
 - D. 装饰模式

【解析】

根据题干描述,可以看出其基础是一个图形界面,并要求为图形界面提供一些定制的特效,例如带滚动条的图形界面,能够显示艺术字体且透明的图形界面等。这要求能够动态地对一个对象进行功能上的扩展,也可以对其子类进行功能上的扩展。对照选项中的4种设计模式,装饰模式最符合这一要求。

- 11. 某软件公司承接了为某工作流语言开发解释器的工作。该工作流语言由多种活动节点构成,具有类 XML 的语法结构。用户要求解释器工作时,对每个活动节点进行一系列的处理,包括执行活动、日志记录、调用外部应用程序等,并且要求处理过程具有可扩展能力。针对这种需求,公司采用()最为恰当。
 - A. 适配器模式
 - B. 迭代器模式
 - C. 访问者模式
 - D. 观察者模式

根据题干描述,可以看出本题的核心在于对某个具有固定结构的活动节点需要多种处理能力,且处理能力可扩展,也就是说要求在不改变原来类结构(活动节点)的基础上增加新功能。对照4个选项,发现访问者模式最符合要求。

12. 某银行系统采用 Factory Method 方法描述其不同账户之间的关系,设计出的类图如下 所示。其中与 Factory Method 中的 "Creator" 角色相对应的类是(); 与 "Product" 角色相对应的类是()。

- A. Bank
- B. Account
- C. Checking
- D. Savings

- A. Bank
- B. Account
- C. Checking
- D. Savings

【解析】

Factory Method 模式的意图是,定义一个用于创建对象的接口,让子类决定实例化哪一个类。Factory Method 是一个类的实例化延迟到其子类。Factory Method 模式的类图如下图所示。

- 其中, 类 Product 定义了 Factory Method 所创建的对象的接口;
- 类 ConcreteProduct 用于实现 Product 接口;
- 类 Creator 声明了工厂方法,该方法返回一个 Product 类型的对象。Creator 也可以定义

一个工厂方法的缺省实现,它返回一个缺省的 ConcreteProduct 对象。

类 Concrete Creator 重定义了工厂方法,以返回一个 Concrete Product 实例。

对照两张类图可以看出,与 "Creator" 角色相对应的类是 Bank; 与 "Product" 角色相对应的类是 Accout。

【答案】A、B。

13. 某软件公司欲开发一个 Windows 平台上的公告板系统。在明确用户需求后,该公司的 架构师决定采用 Command 模式实现该系统的界面显示部分,并设计 UML 类图如下 图 所示。 图中与 Command 模式中的"Invoker"角色相对应的类是(),与"ConcreteCommand"角色相对应的类是()。

- A. Command
- B. MenuItem
- C. Open
- D. ButktinBoardScreen

- A. Command
- B. MenuItem
- C. Open
- D. BulktinBoardScreen

【解析】

Command(命令)模式是设计模式中行为模式的一种,它将"请求"封装成对象,以便使用不同的请求、队列或者日志来参数化其他对象。Command模式也支持可撤销的操作。Command模式的类图如下所示。

对于题目所给出的图,与"Invoker"角色相对应的类是 MenuItem,与"Concrete Command" 角色相对应的类是 Open。

- 14. 某公司欲开发一个软件系统的在线文档帮助系统,用户可以在任何一个查询上下文中输入查询关键字,如果当前查询环境下没有相关内容,则系统会将查询按照一定的顺序转发给其他查询环境。基于上述需求,采用()最为合适。
 - A. 责任链模式
 - B. 桥接模式
 - C. 装饰模式
 - D. 适配器模式

本题主要考查设计模式的理解与应用。根据题干描述,在线文档系统需要根据用户的查询需求逐步将查询请求依次传递,对比4个候选项,其中在责任链模式里,很多对象由每一个对象对其下家的引用而连接起来形成一条链。请求在这个链上传递,直到链上的某一个对象决定处理此请求。因此责任链模式是能够满足该要求的最好模式。

- 15. 某公司欲开发一套窗体图形界面类库。该类库需要包含若干预定义的窗格(Pane)对象,例如 TextPane、ListPane 等,窗格之间不允许直接引用。基于该类库的应用由一个包含一组窗格的窗口组成,并需要协调窗格之间的行为。基于该类库,在不引用窗格的前提下实现窗格之间的协作,应用开发者应采用()最为合适。
 - A. 备忘录模式
 - B. 中介者模式
 - C. 访问者模式
 - D. 迭代器模式

【解析】

本题主要考查设计模式的理解与应用。根据题干描述,应用系统需要使用某公司开发的 类库,该应用系统是一组窗格组成,应用需要协调窗格之间的行为,并且不能引用窗格自身, 在这种要求下,对比4个候选项,其中中介者模式用一个中介对象封装一系列的对象交互。 中介者使用各对象不需要显式的相互调用,从而使其耦合松散。可以看出该模式最符合需求。

- 16. 某公司开发一个文档编辑器,该编辑器允许在文档中直接嵌入图形对象,但开销很大。 用户在系统设计之初提出编辑器在打开文档时必须十分迅速,可以暂时不显示当前页面 以外的图形。针对这种需求,公司可以采用()避免同时创建这些图形对象。
 - A. 代理模式
 - B. 外观模式
 - C. 桥接模式
 - D. 组合模式

【解析】

本题主要考查设计模式的理解与应用。根据题干描述,该编辑器需要在文档中嵌入显示开销很大的图形对象,为了能够提高系统效率,需要避免同时创建这些图像。这对这些要求,对比候选项,可以发现代理模式可以解决直接访问对象时带来的问题,例如:要访问的对象在远程的机器上;对象创建开销很大,或者某些操作需要安全控制,或者需要进程外的访问等。因此代理模式是最为合适的设计模式。

信息系统开发方法

- 1. 以下关于自顶向下开发方法的叙述中,正确的是()。
 - A. 自顶向下过程因为单元测试而比较耗费时间
 - B. 自顶向下过程可以更快地发现系统性能方面的问题
 - C. 相对于自底向上方法, 自顶向下方法可以更快地得到系统的演示原型
- D. 在自顶向下的设计中,如发现了一个错误,通常是因为底层模块没有满足其规格说明(因为高层模块已经被测试过了)

【解析】

自顶向下方法的优点是:

- 1、可为企业或机构的重要决策和任务实现提供信息。
- 2、支持企业信息系统的整体性规划,并对系统的各子系统的协调和通信提供保证。
- 3、方法的实践有利于提高企业人员整体观察问题的能力,从而有利于寻找到改进企业组织的途径。

自顶向下方法的缺点是:

- 1、对系统分析和设计人员的要求较高。
- 2、开发周期长,系统复杂,一般属于一种高成本、大投资的工程。
- 3、对于大系统而言自上而下的规划对于下层系统的实施往往缺乏约束力。
- 4、从经济角度来看,很难说自顶向下的做法在经济上是合算的。

【答案】C。

- 2. 以下关于软件开发方法的叙述,错误的是()。
 - A. 对于较为复杂的应用问题,适合采用形式化方法进行需求分析
 - B. 形式化方法的优势在于能够精确地表述和研究应用问题及其软件实现
 - C. 净室软件工程将正确性验证作为发现和排除错误的主要机制
 - D. 净室软件工程强调统计质量控制技术,包括对客户软件使用预期的测试

【解析】

软件开发方法是指软件开发过程所遵循的办法和步骤,从不同的角度可以对软件开发方法进行不同的分类。

形式化方法是一种具有坚实数学基础的方法,从而允许对系统和开发过程做严格处理和论证,适用于那些系统安全级别要求极高的软件的开发。形式化方法的主要优越性在于它能够数学地表述和研究应用问题及软件实现(B选项)。但是它要求开发人员具备良好的数学基础。用形式化语言书写的大型应用问题的软件规格说明往往过于细节化,并且难于为用户和软件设计人员所理解。由于这些缺陷,形式化方法在目前的软件开发实践中并未得到普遍应用。

净室软件工程(Cleanroom Software Engineering, CSE)是软件开发的一种形式化方法,可以开发较高质量的软件。它使用盒结构规约进行分析和建模,并且将**正确性验证作为发现和排除错误的主要机制**(C 选项),使用统计测试来获取认证软件可靠性所需要的信息。CSE 强调在规约和设计上的严格性,还强调统计质量控制技术,包括基于客户对软件的预期使用测试(D 选项)。

【答案】A。

- 3. 下列关于各种软件开发方法的叙述中,错误的是()。
 - A. 结构化开发方法的缺点是开发周期较长,难以适应需求变化
- B. 可以把结构化方法和面向对象方法结合起来进行系统开发,使用面向对象方法进行 自顶向下的划分,自底向上地使用结构化方法开发系统
- C. 与传统方法相比,敏捷开发方法比较适合需求变化较大或者开发前期需求不是很清晰的项目,以它的灵活性来适应需求的变化
- D. 面向服务的方法以粗粒度、松散耦合和基于标准的服务为基础,增强了系统的灵活性、可复用性和可演化性

【解析】

本题考查开发相关的一系列知识。B选项中"自底向上地使用结构化方法开发系统"显然是错误的,因为结构化方法的一个核心特色为:"自顶向下,逐步求精",而非自底向上。

- 4. 下列关于不同软件开发方法所使用的模型的描述中,正确的是()。
 - A. 在进行结构化分析时,必须使用数据流图和软件结构图这两种模型
 - B. 采用面向对象开发方法时,可以使用状态图和活动图对系统的动态行为进行建模
 - C. 实体联系图(E-R 图)是在数据库逻辑结构设计时才开始创建的模型
 - D. UML 的活动图与程序流程图的表达能力等价

【解析】

【答案】B。ACD 选项说法绝对。

开发模型

- 1. 快速迭代式的原型开发能够有效控制成本,()是指在开发过程中逐步改进和细化原 型直至产生出目标系统。
 - A. 可视化原型开发
 - B. 抛弃式原型开发
 - C. 演化式原型开发
 - D. 增量式原型开发

【解析】

原型开发分两大类:快速原型法(又称抛弃式原型法)和演化式原型法。其中快速原型 法是快速开发出一个原型,利用该原型获取用户需求,然后将该原型抛弃。而演化式原型法 是将原型逐步进化为最终的目标系统。所以本题应选C。

- 2. RUP 强调采用(1)的方式来开发软件,这样做的好处是(2)。
 - (1)A.原型和螺旋
- B.螺旋和增量
- C.迭代和增量
- D.快速和迭代
- (2)A.在软件开发的早期就可以对关键的,影响大的风险进行处理
 - B.可以避免需求的变更
 - C.能够非常快速地实现系统的所有需求
 - D.能够更好地控制软件的质量

【解析】

RUP(统一软件开发过程, Rational Unified Process), RUP 的三个核心特点是: 以架构 为中心, 用例驱动, 增量与迭代。

其中增量与迭代的好处是:

降低了在一个增量上的开支风险。如果开发人员重复某个迭代,那么损失只是这一个开 发有误的迭代的花费。

降低了产品无法按照既定进度进入市场的风险。通过在开发早期就确定风险, 可以尽早 来解决而不至于在开发后期匆匆忙忙。

加快了整个开发工作的进度。因为开发人员清楚问题的焦点所在, 他们的工作会更有效 率。

由于用户的需求并不能在一开始就作出完全的界定,它们通常是在后续阶段中不断细化 的。因此, 迭代过程这种模式使适应需求的变化会更容易些。

【答案】: C、A。

3. RUP 是一个二维的软件开发模型,其核心特点之一是 ()。RUP 将软件开发生存周期 划分为多个循环(cycle),每个循环由4个连续的阶段组成,每个阶段完成确定的任务。 设计及确定系统的体系结构,制订工作计划及资源要求是在 ()阶段完成的。

A.数据驱动

- B.模型驱动
- C.用例驱动
- D.状态驱动

A.初始(inception) B.细化(elaboration)

- C.构造(construction) D.移交(transition)

【解析】

RUP 也称为 UP、统一过程、其核心特点是: 以架构为中心、用例驱动、迭代与增量。 该开发模型分4个阶段,分别为:初始、细化、构造、移交。其中题干所述的"确定系统的 体系结构"是细化阶段的主要工作,所以该空应填细化。

【答案】C、B。

4. 快速应用开发(Rapid Application Development, RAD)通过使用基于()的开发方法获得 快速开发。当()时,最适合于采用 RAD 方法。

- (1)A.用例
- B.数据结构
- C.剧情
- D.构件

(2)A. 一个新系统要采用很多新技术

- B. 新系统与现有系统有较高的互操作性
- C. 系统模块化程度较高
- D. 用户不能很好地参与到需求分析中

快速应用开发(Rapid Application Development, RAD)是一种比传统生存周期法快得多的开发方法,它强调极短的开发周期。RAD模型是瀑布模型的一个高速变种,通过使用基于构件的开发方法获得快速开发。如果需求理解得很好,且约束了项目范围,利用这种模型可以很快地开发出功能完善的信息系统。

但是 RAD 也具有以下局限性:

- ①、并非所有应用都适合 RAD。RAD 对模块化要求比较高,如果有哪一项功能不能被模块化,那么 RAD 所需要的构建就会有问题;如果高性能是一个指标,且该指标必须通过调整接口使其适应系统构件才能获得、则 RAD 也有可能不能奏效。
- ②、开发者和客户必须在很短的时间完成一系列的需求分析,任何一方配合不当,都会导致 RAD 项目失败。
- ③、RAD只能用于管理信息系统的开发,不适合技术风险很高的情况。例如,当一个新系统要采用很多新技术,或当新系统与现有系统有较高的互操作性时,就不适合使用RAD。

【答案】D、C。

- 5. 以下关于软件生存周期模型的叙述,正确的是()。
 - A. 在瀑布模型中, 前一个阶段的错误和疏漏会隐蔽地带到后一个阶段
 - B. 在任何情况下使用演化模型,都能在一定周期内由原型演化到最终产品
 - C. 软件生存周期模型的主要目标是为了加快软件开发的速度
 - D. 当一个软件系统的生存周期结束之后,它就进入到一个新的生存周期模型

【解析】

【答案】A。

- 6. 以下关于敏捷方法的叙述中,()是不正确的。
 - A.敏捷型方法的思考角度是"面向开发过程"的
 - B.极限编程是著名的敏捷开发方法
 - C.敏捷型方法是"适应性"而非"预设性"
 - D.敏捷开发方法是迭代增量式的开发方法

【解析】

敏捷方法是面向对象的, 而非面向过程。

- 7. 以下关于敏捷方法的叙述中,不正确的是()。
 - A. 相对于过程和工具, 更强调个人和交互
 - B. 相对于严格的文档, 更重视可工作的软件
 - C. 相对于与客户的合作, 更注重合同谈判
 - D. 相对于遵循计划, 更专注于对变化的响应

【解析】

客户合作: 高于合同谈判。

【答案】C。

- 8. 基于 RUP 的软件过程是一个迭代过程。一个开发周期包括初始、细化、构建和移交四个阶段,每次通过这四个阶段就会产生一代软件,其中建立完善的架构是())阶段的任务。采用迭代式开发,()。
 - (1)A. 初始 B. 细化 C. 构建 D. 移交
 - (2)A. 在每一轮迭代中都要进行测试与集成

- B. 每一轮迭代的重点是对特定的用例进行部分实现
- C. 在后续迭代中强调用户的主动参与
- D. 通常以功能分解为基础

RUP 包括四个阶段:初始阶段、细化阶段、构建阶段、交付阶段。

初始阶段的任务是为系统建立业务模型并确定项目的边界。

细化阶段的任务是分析问题领域、建立完善的架构、淘汰项目中最高风险的元素。

在构建阶段,要开发所有剩余的构件和应用程序功能,把这些构件集成为产品,并进行详细测试。

交付阶段。交付阶段的重点是确保软件对最终用户是可用的。

RUP中的每个阶段可以进一步分解为迭代。一个迭代是一个完整的开发循环。

【答案】B、A。

- 9. 软件过程是制作软件产品的一组活动以及结果,这些活动主要由软件人员来完成,主要包括()。软件过程模型是软件开发实际过程的抽象与概括,它应该包括构成软件过程的各种活动。软件过程有各种各样的模型,其中,()的活动之间存在因果关系,前一阶段工作的结果是后一段阶段工作的输入描述。
 - (1)A.软件描述、软件开发和软件测试
 - B.软件开发、软件有效性验证和软件测试
 - C.软件描述、软件设计、软件实现和软件测试
 - D.软件描述、软件开发、软件有效性验证和软件进化
 - (2)A.瀑布模型
 - B.原型模式
 - C.螺旋模型
 - D.基于构建的模型

【解析】

软件过程模型的基本概念:软件过程是制作软件产品的一组活动以及结果,这些活动主要由软件人员来完成,软件活动主要有:

- (1)软件描述。必须定义软件功能以及使用的限制。
- (2)软件开发。也就是软件的设计和实现、软件工程人员制作出能满足描述的软件。
- (3)软件有效性验证。软件必须经过严格的验证,以保证能够满足客户的需求。
- (4)软件进化。软件随着客户需求的变化不断地改进。

瀑布模型的特点是因果关系紧密相连,前一个阶段工作的结果是后一个阶段工作的输入。或者说,每一个阶段都是建筑在前一个阶段正确结果之上,前一个阶段的错漏会隐蔽地带到后一个阶段。这种错误有时甚至可能是灾难性的。因此每一个阶段工作完成后,都要进行审查和确认,这是非常重要的。历史上,瀑布模型起到了重要作用,它的出现有利于人员的组织管理,有利于软件开发方法和工具的研究。

【答案】D、A。

- 10. 以下关于敏捷方法的叙述中,()是不正确的。
 - A.敏捷型方法的思考角度是"面向开发过程"的
 - B.极限编程是著名的敏捷开发方法
 - C.敏捷型方法是"适应性"而非"预设性"
 - D.敏捷开发方法是迭代增量式的开发方法

【解析】

敏捷方法是面向对象的, 而非面向过程。

- 11. 螺旋模型将整个软件开发过程分为多个阶段,每个阶段都由目标设定、()、开发和有效性验证以及评审 4 个部分组成。
 - A. 需求分析
 - B. 风险分析
 - C. 系统设计
 - D. 架构设计

螺旋模型是在快速原型的基础上扩展而成的一种生存周期模型。这种模型将整个软件开 发流程分成多个阶段,每个阶段都由4部分组成,它们是:

- ① 目标设定。为该项目进行需求分析,定义和确定这一个阶段的专门目标,指定对过程和产品的约束,并且制定详细的管理计划。
- ② 风险分析。对可选方案进行风险识别和详细分析,制定解决办法,采取有效的措施避免这些风险。
- ③ 开发和有效性验证。风险评估后,可以为系统选择开发模型,并且进行原型开发,即开发软件产品。
- ④ 评审。对项目进行评审,以确定是否需要进入螺旋线的下一次回路,如果决定继续,就要制定下一阶段计划。

螺旋模型的软件开发过程实际是上述 4 个部分的迭代过程,每迭代一次,螺旋线就增加一周,软件系统就生成一个新版本,这个新版本实际上是对目标系统的一个逼近。经过若干次的迭代后,系统应该尽快地收敛到用户允许或可以接受的目标范围内,否则也可能中途夭折。

【答案】B。

- 12. 螺旋模型在()的基础上扩展而成。
 - A. 瀑布模型
 - B. 原型模型
 - C. 快速模型
 - D. 面向对象模型

【解析】

螺旋模型是在快速原型的基础上扩展而成的、快速原型属于原型模型、B正确。

- 13. () 方法以原型开发思想为基础,采用迭代增量式开发,发行版本小型化,比较适合需求变化较大或者开发前期对需求不是很清晰的项目。
 - A. 信息工程
 - B. 结构化

- C. 面向对象
- D. 敏捷

敏捷方法以原型开发思想为基础,采用迭代增量式开发,发行版本小型化,比较适合需求变化较大或者开发前期对需求不是很清晰的项目。

- 14. ()把整个软件开发流程分成多个阶段,每一个阶段都由目标设定、风险分析、开发和 有效性验证以及评审构成。
 - A. 原型模型
 - B. 瀑布模型
 - C. 螺旋模型
 - D. V 模型

【解析】

原型模型又称快速原型。原型模型主要有两个阶段: ① 原型开发阶段。软件开发人员根据用户提出的软件系统的定义,快速地开发一个原型。该原型应该包含目标系统的关键问题和反映目标系统的大致面貌,展示目标系统的全部或部分功能、性能等。② 目标软件开发阶段。在征求用户对原型的意见后对原型进行修改完善,确认软件系统的需求并达到一致的理解,进一步开发实际系统。

瀑布模型可以说是最早使用的软件生存周期模型之一。由于这个模型描述了软件生存的一些基本过程活动,所以它被称为软件生存周期模型。这些活动从一个阶段到另一个阶段逐次下降,形式上很像瀑布。瀑布模型的特点是因果关系紧密相连,前一个阶段工作的结果是后一个阶段工作的输入。

螺旋模型是在快速原型的基础上扩展而成的。这个模型把整个软件开发流程分成多个阶段,每个阶段都由4部分组成,它们是:①目标设定。为该项目进行需求分析,定义和确定这一个阶段的专门目标,指定对过程和产品的约束,并且制定详细的管理计划。②风险分析。对可选方案进行风险识别和详细分析,制定解决办法,采取有效的措施避免这些风险。③开发和有效性验证。风险评估后,可以为系统选择开发模型,并且进行原型开发,即开发软件产品。④评审。对项目进行评审,以确定是否需要进入螺旋线的下一次回路,如果决定继续,就要制定下一阶段计划。

V 模型是一种典型的测试模型。在 V 模型中测试过程被加在开发过程的后半部分,分别包括单元测试、集成测试、系统测试和验收测试。

【答案】C。

- 15. 基于构件的开发模型包括软件的需求分析定义(1)、(2)、(3)以及测试和发布5个顺序执行的阶段。
 - (1) A. 构件接口设计
 - B. 体系结构设计
 - C. 元数据设计
 - D. 集成环境设计
 - (2) A. 数据库建模
 - B. 业务过程建模
 - C. 对象建模
 - D. 构件库建立
 - (3) A. 应用软件构建
 - B. 构件配置管理
 - C. 构件单元测试
 - D. 构件编码实现

【解析】

基于构件的开发模型利用模块化方法将整个系统模块化,并在一定构件模型的支持下复用构件库中的一个或多个软件构件,通过组合手段高效率、高质量地构造应用软件系统的过程。基于构件的开发模型融合了螺旋模型的许多特征,本质上是演化形的,开发过程是迭代的。基于构件的开发模型由软件的需求分析定义、体系结构设计、构件库建立、应用软件构建以及测试和发布5个阶段组成。

- 16. 在基于构件的软件开发中,()描述系统设计蓝图以保证系统提供适当的功能; ()用来了解系统的性能、吞吐率等非功能性属性。
 - (1)A. 逻辑构件模型
 - B. 物理构件模型
 - C. 组件接口模型
 - D. 系统交互模型
 - (2)A. 逻辑构件模型
 - B. 物理构件模型
 - C. 组件接口模型
 - D. 系统交互模型

【解析】

在基于构件的软件开发中,逻辑构件模型用功能包描述系统的抽象设计,用接口描述每个服务集合,以及功能之间如何交互以满足用户需求,它作为系统的设计蓝图以保证系统提供适当的功能。物理构件模型用技术设施产品、硬件分布和拓扑结构、以及用于绑定的网络和通信协议描述系统的物理设计,这种架构用于了解系统的性能、吞吐率等许多非功能性属性。

17. 在构件组装过程中需要检测并解决架构失配问题。其中()失配主要包括由于系统对构件基础设施、控制模型和数据模型的假设存在冲突引起的失配。()失配包括由手系统对构件交互协议、构件连接时数据格式的假设存在冲突引起的失配。

A.构件

B.模型

C.协议

D.连接子

A.构件 B.模型

C.协议

D.连接子

【解析】

检测并消除体系结构失配:体系结构失配问题由 David Garlan 等人在 1995 年提出。 失配是指在软件复用的过程中,由于待复用构件对最终系统的体系结构和环境的假设 (assumption)与实际状况不同而导致的冲突。在构件组装阶段失配问题主要包括:

- (1)由构件引起的失配,包括由于系统对构件基础设施、构件控制模型和构件数据模型的假设存在冲突引起的失配;
- (2)由连接子引起的失配,包括由于系统对构件交互协议、连接子数据模型的假设存在冲突引起的失配;
- (3)由于系统成分对全局体系结构的假设存在冲突引起的失配等。要解决失配问题,首 先需要检测出失配问题,并在此基础上通过适当的手段消除检测出的失配问题。

【答案】A、D。

- 18. ()适用于程序开发人员在地域上分布很广的开发团队。()中,编程开发人员分成首席程序员和"类"程序员。
 - (1) A.水晶系列(Crystal)开发方法
 - B.开放式源码(Open source)开发方法
 - C. SCRUM 开发方法
 - D.功用驱动开发方法(FDD)
 - (2) A. 自适应软件开发(ASD)
 - B.极限编程(XP)开发方法
 - C.开放统一过程开发方法(OpenUP)

D.功用驱动开发方法(FDD)

【解析】

- (1) XP (Extreme Programming, 极限编程)在所有的敏捷型方法中, XP 是最引人瞩目的。它源于 Smalltalk 圈子, 特别是 Kent Beck 和 Ward Cunningham 在 20 世纪 80 年代末的密切合作。XP 在一些对费用控制严格的公司中的使用,已经被证明是非常有效的。
- (2) Cockburn 的水晶系列方法,水晶系列方法是由 Alistair Cockburn 提出的。它与 XP 方法一样,都有以人为中心的理念,但在实践上有所不同。Alistair 考虑到人们一般很难严格遵循一个纪律约束很强的过程,因此,与 XP 的高度纪律性不同,Alistair 探索了用最少纪律约束而仍能成功的方法,从而在产出效率与易于运作上达到一种平衡。也就是说,虽然水晶系列不如 XP 那样的产出效率,但会有更多的人能够接受并遵循它。
- (3) 开放式源码,这里提到的开放式源码指的是开放源码界所用的一种运作方式。开放式源码项目有一个特别之处,就是程序开发人员在地域上分布很广,这使得它和其他敏捷方法不同,因为一般的敏捷方法都强调项目组成员在同一地点工作。开放源码的一个突出特点就是查错排障(debug)的高度并行性,任何人发现了错误都可将改正源码的"补丁"文件发给维护者。然后由维护者将这些"补丁"或是新增的代码并入源码库。
- (4) SCRUM。SCRUM 已经出现很久了,像前面所论及的方法一样,该方法强调这样一个事实,即明确定义了的可重复的方法过程只限于在明确定义了的可重复的环境中,为明确定义了的可重复的问题。
 - (5) Coad 的功用驱动开发方法(FDD-Feature Driven Development)
- FDD 是由 Jeff De Luca 和大师 Peter Coad 提出来的。像其他方法一样,它致力于短时的 迭代阶段和可见可用的功能。在 FDD 中,一个迭代周期一般是两周。
- 在 FDD 中,编程开发人员分成两类: 首席程序员和"类"程序员(class owner)。首席程序员是最富有经验的开发人员,他们是项目的协调者、设计者和指导者,而"类"程序员则主要做源码编写。
 - (7) ASD 方法, ASD (Adaptive Software Development)方法由 Jim Highsmith 提出, 其核心是三个非线性的、重叠的开发阶段:猜测、合作与学习。

面向对象基础

- 1. 在面向对象设计中,用于描述目标软件与外部环境之间交互的类被称为(),它可以 ()。
 - A.实体类 B.边界类 C.模型类 D.控制类
 - A. 表示目标软件系统中具有持久意义的信息项及其操作
 - B. 协调、控制其他类完成用例规定的功能或行为
 - C. 实现目标软件系统与外部系统或外部设备之间的信息交流和互操作
 - D. 分解任务并把子任务分派给适当的辅助类

【解析】

面向对象技术中的类分为三种:实体类、边界类、控制类。

实体类是用于对必须存储的信息和相关行为建模的类。实体对象(实体类的实例)用于保存和更新一些现象的有关信息,例如:事件、人员或者一些现实生活中的对象。实体类通常都是永久性的,它们所具有的属性和关系是长期需要的,有时甚至在系统的整个生存期都需要。

边界类是一种用于对系统外部环境与其内部运作之间的交互进行建模的类。这种交互包括转换事件,并记录系统表示方式(例如接口)中的变更。

常见的边界类有窗口、通信协议、打印机接口、传感器和终端。如果您在使用 GUI 生成器,您就不必将按钮之类的常规接口部件作为单独的边界类来建模。通常,整个窗口就是最精制的边界类对象。边界类还有助于获取那些可能不面向任何对象的 API(例如遗留代码)的接口。

控制类用于对一个或几个用例所特有的控制行为进行建模。控制对象(控制类的实例)通 常控制其他对象,因此它们的行为具有协调性质。控制类将用例的特有行为进行封装。

【答案】B、C。

- 2. 在面向对象设计中,()可以实现界面控制、外部接口和环境隔离。()作为完成用例 业务的责任承担者,协调、控制其他类共同完成用例规定的功能或行为。
 - A. 实体类
- B. 控制
- C. 边界类
- D. 交互类

- A. 实体类
- B. 控制 C. 边界类 D. 交互类

【解析】

实体类是用于对必须存储的信息和相关行为建模的类。实体对象(实体类的实例)用于 保存和更新一些现象的有关信息、例如:事件、人员或者一些现实生活中的对象。实体类通 常都是永久性的, 它们所具有的属性和关系是长期需要的, 有时甚至在系统的整个生存期都 需要。

边界类是一种用于对系统外部环境与其内部运作之间的交互进行建模的类。这种交互包 括转换事件、并记录系统表示方式(例如接口)中的变更。

常见的边界类有窗口、通信协议、打印机接口、传感器和终端。如果您在使用 GUI 生 成器、您就不必将按钮之类的常规接口部件作为单独的边界类来建模。通常、整个窗口就是 最精制的边界类对象。边界类还有助于获取那些可能不面向任何对象的 API(例如遗留代 码)的接口。

控制类用于对一个或几个用例所特有的控制行为进行建模。控制对象(控制类的实例) 通常控制其他对象、因此它们的行为具有协调性质。控制类将用例的特有行为进行封装。

【答案】C、B。

- 3. 面向对象的分析模型主要由顶层架构图、用例与用例图和()构成:设计模型则包含以 ()表示的软件体系机构图、以交互图表示的用例实现图、完整精确的类图、描述复杂 对象的()和用以描述流程化处理过程的活动图等。
 - (1)A.数据流模型
 - B.领域概念模型
 - C.功能分解图
 - D.功能需求模型
 - (2)A.模型试图控制器
 - B.组件图
 - C.包图
 - D.2 层、3 层或 N 层
 - (3)A.序列图
 - B.协作图
 - C.流程图
 - D.状态图

【解析】

面向对象的分析模型主要由顶层架构图、用例与用例图、领域概念模型构成;设计模型 则包含以包图表示的软件体系结构图、以交互图表示的用例实现图、完整精确的类图、针对 复杂对象的状态图和用以描述流程化处理过程的活动图等。

面向对象设计原则

- 1. 在面向对象设计的原则中、()原则是指抽象不应该依赖予细节,细节应该依赖于抽象, 即应针对接口编程, 而不是针对实现编程。
 - A.开闭
- B. 里氏替换
- C.最少知识
- D.依赖倒置

单一职责原则:设计目的单一的类。

开放-封闭原则:对扩展开放,对修改封闭。

李氏(Liskov)替换原则:子类可以替换父类。

依赖倒置原则:要依赖于抽象,而不是具体实现;针对接口编程,不要针对实现编程。

接口隔离原则:使用多个专门的接口比使用单一的总接口要好。

组合重用原则:要尽量使用组合,而不是继承关系达到重用目的。

迪米特(Demeter)原则(最少知识法则):一个对象应当对其他对象有尽可能少的了解。

- 2. 对于违反里氏替换原则的两个类 A 和 B, 可以来用的候选解决方案中, 正确的是()。
 - A. 尽量将一些需要扩展的类或者存在变化的类设计为抽象类或者接口,并将其作为基 类,在程序中尽量使用基类对象进行编程
 - B. 创建一个新的抽象类 C, 作为两个具体类的超类, 将 A 和 B 共同的行为移动到 C 中, 从而解决 A 和 B 行为不完全一致的问题
 - C. 将 B 到 A 的继承关系改成组合关系
 - D. 区分是"Is-a"还是"Has-a"。如果是 Is-a,可以使用继承关系,如果是 Has-a, 应该改成组合或聚合关系

【解析】

里氏替换原则是面向对象设计原则之一,由 Barbara liskov 提出,其基本思想是,一个软件实体如果使用的是一个基类对象,那么一定适用于其子类对象,而且觉察不出基类对象和子类对象的区别,即把基类都替换成它的子类,程序的行为没有变化。反过来则不一定成立,如果一个软件实体使用的是一个子类对象,那么它不一定适用于基类对象。在运用里氏替换原则时,尽量将一些需要扩展的类或者存在变化的类设计为抽象类或者接口,并将其作为基类,在程序中尽量使用基类对象进行编程。由于子类继承基类并实现其中的方法,程序运行时,子类对象可以替换基类对象,如果需要对类的行为进行修改,可以扩展基类,增加新的于类,而无需修改调用该基类对象的代码。

【答案】A。

- 3. 最少知识原则(也称为迪米特法则)是面向对象设计原则之一,是指一个软件实体应当尽可能少地与其他实体发生相互作用。这样,当一个实体被修改时,就会尽可能少地影响其他的实体。下列叙述中,"()"不符合最少知识原则。
 - A. 在类的划分上,应当尽量创建松耦合的类
 - B. 在类的设计上,只要有可能,一个类型应当设计成不变类
 - C. 在类的结构设计上,每个类都应当尽可能提高对其属性和方法的访问权限
 - D. 在对其他类的引用上,一个对象对其他对象的引用应当降到最低

【解析】

面向对象设计原则包括:

单一职责原则:设计目的单一的类

开放-封闭原则:对扩展开放,对修改封闭李氏(Liskov)替换原则:子类可以替换父类

依赖倒置原则:要依赖于抽象,而不是具体实现;针对接口编程,不要针对实现编程

接口隔离原则:使用多个专门的接口比使用单一的总接口要好组合重用原则:要尽量使用组合,而不是继承关系达到重用目的

迪米特(Demeter)原则(最少知识法则):一个对象应当对其他对象有尽可能少的了解 迪米特法则的应用准则:

- 1) 在类的划分上,应当创建有弱耦合的类。类之间的耦合越弱,就越有利于复用。
- 2) 在类的结构设计上,每一个类都应当尽量降低成员的访问权限。一个类不应当 public 自己的属性,而应当提供取值和赋值的方法让外界间接访问自己的属性。

- 3) 在类的设计上,只要有可能,一个类应当设计成不变类。
- 4) 在对其它对象的引用上,一个类对其它对象的引用应该降到最低。

其中迪米特原则的主要理念是让一个对象尽可能少的了解其它对象,这样,就能尽可能少的产生违规操作,让设计出来的系统更稳定。在本题中,C选项提到"尽可能提高对其属性和方法的访问权限"违背了迪米特原则。

【答案】C。

需求工程

- 1. 下列叙述中,不满足好的需求陈述要求的是()。
 - A.每一项需求都必须完整、准确地描述即将要开发的功能
 - B.需求必须能够在系统及其运行环境的能力和约束条件内实现
 - C.每一项需求记录的功能都必须是用户的真正的需要
 - D.所有需求都应被视为同等重要

【解析】

所有需求不应被视为同等重要的,不同干系人,提出的不同需求重要程度不一样,如果 同样对待,会导致系统最终无法满足需求。

- 2. 通常有两种常用的需求定义方法:严格定义方法和原型方法。下述的各种假设条件中, ()不适合使用严格定义方法进行需求定义。
 - A. 所有需求都能够被预先定义
 - B. 开发人员与用户之间能够准确而清晰地交流
 - C. 需求不能在系统开发前被完全准确地说明
 - D. 采用图形(或文字)充分体现最终系统

【解析】

需求定义方法包括严格定义方法和原型方法两种。严格定义方法适用于需求已全面获取,需求较为明确的情况。如果达不到这个要求,则适宜用原型方法。

【答案】C。

- 3. 下列关于软件需求管理或需求开发的叙述中,正确的是()。
 - A. 所谓需求管理是指对需求开发的管理
 - B. 需求管理包括: 需求获取、需求分析、需求定义和需求验证
 - C. 需求开发是将用户需求转化为应用系统成果的过程
 - D. 在需求管理中,要求维持对用户原始需求和所有产品构件需求的双向跟踪

【解析】

需求管理是一种用于查找、记录、组织和跟踪系统需求变更的系统化方法。而非对需求 开发的管理。需求开发包括:需求获取、需求分析、需求定义和需求验证,而非需求管理。 需求的跟踪属于需求管理的范畴。

C选项是程序实现过程。

【答案】D。

4. 一个好的变更控制过程,给项目风险承担者提供了正式的建议变更机制。如下图所示的需求变更管理过程中,①②③处对应的内容应分别是()。

- A.问题分析与变更描述、变更分析与成本计算、变更实现
- B.变更描述与成本计算、变更分析、变更实现
- C.问题分析与变更分析、成本计算、变更实现
- D.变更描述、变更分析与变更实现、成本计算

【解析】

在需求管理过程中需求的变更是受严格管控的,其流程为:

- 1、问题分析和变更描述。这是识别和分析需求问题或者一份明确的变更提议,以检查它的有效性,从而产生一个更明确的需求变更提议。
- 2、变更分析和成本计算。使用可追溯性信息和系统需求的一般知识,对需求变更提议进行影响分析和评估。变更成本计算应该包括对需求文档的修改、系统修改的设计和实现的成本。一旦分析完成并且确认,应该进行是否执行这一变更的决策。
- 3、变更实现。这要求需求文档和系统设计以及实现都要同时修改。如果先对系统的程序做变更,然后再修改需求文档,这几乎不可避免地会出现需求文档和程序的不一致。

【答案】A。

- 5. 基于 UML 的需求分析过程的基本步骤为: 利用()表示需求; 利用()表示目标软件系统的总体架构。
 - (1)A.用例及用例图
 - B.包图及类图
 - C.剧情及序列图
 - D.组件图及部署图
 - (2)A.用例及用例图
 - B.包图及类图
 - C.剧情及序列图
 - D.组件图及部署图

【解析】

在初步的业务需求描述已经形成的前提下,基于 UML 的需求分析过程大致可分为以下步骤:

- (1)、**利用用例及用例图表示需求**。从业务需求描述出发获取执行者和场景;对场景进行汇总、分类、抽象,形成用例;确定执行者与用例、用例与用例图之间的关系,生成用例图
- (2)、利用包图和类图表示目标软件系统的总体框架结构。根据领域知识、业务需求描述和既往经验设计目标软件系统的顶层架构;从业务需求描述中提取"关键概念",形成领域概念模型;从概念模型和用例出发,研究系统中主要的类之间的关系,生成类图。

6. 利用需求跟踪能力链(traceabilitylink)可以跟踪一个需求使用的全过程,也就是从初始需求到实现的前后生存期。需求跟踪能力链有4类:追溯到需求、从需求追溯、回溯到需求、从需求回溯,如图所示。

其中的①和②分别是()

- A. 客户需求、软件需求
- B. 软件需求、客户需求
- C. 客户需求、当前工作产品
- D. 软件需求、当前工作产品

【解析】

本题考查需求跟踪相关内容。需求跟踪时,是分层次进行的,**首先需要确认从用户方获取的需求**,是否与**软件需求**能一一对应,然后再看软件需求到下一级工作产品之间是对存在一一对应的关系。这样层层传递的方式,可以尽量避免开发不需要的功能,以及遗漏该开发的内容。

【答案】A。

逆向工程

1. 逆向工程导出的信息可以分为 4 个抽象层次,其中()可以抽象出程序的抽象语法树、符号表等信息;()可以抽象出反映程序段功能及程序段之间关系的信息。

A. 实现级

B. 结构级

C. 功能级

D. 领域级

A. 实现级

B. 结构级

C. 功能级

D. 领域级

【解析】

逆向工程导出的信息可分为如下4个抽象层次。

实现级:包括程序的抽象语法树、符号表等信息。

结构级:包括反映程序分量之间相互依赖关系的信息、例如调用图、结构图等。

功能级:包括反映程序段功能及程序段之间关系的信息。

领域级:包括反映程序分量或程序与应用领域概念之间对应关系的信息

- 应用系统构建中可以采用多种不同的技术,()可以将软件某种形式的描述转换为更高级的抽象表现形式,而利用这些获取的信息,()能够对现有系统进行修改或重构,从而产生系统的一个新版本。
 - (1)A.逆向工程((Reverse Engineering)
 - B.系统改进 (System Improvement)
 - C.设计恢复 (DesignRecovery)
 - D. 再工程 (Re-engineering)
 - (2)A.逆向工程((Reverse Engineering)
 - B.系统改进 (System Improvement)
 - C.设计恢复 (Design Recovery)
 - D. 再工程 (Re-engineering)

【解析】

所谓软件的逆向工程就是分析已有的程序,寻求比源代码更高级的抽象表现形式。一般认为,凡是在软件生命周期内将软件某种形式的描述转换成更为抽象形式的活动都可称为逆向工程。与之相关的概念是:重构(restructuring),指在同一抽象级别上转换系统描述形式;

设计恢复(design recovery), 指借助工具从已有程序中抽象出有关数据设计、总体结构设

计和过程设计的信息(不一定是原设计);

再工程(re-engineering),也称修复和改造工程,它是在逆向工程所获信息的基础上修改 或重构已有的系统,产生系统的一个新版本。

【答案】A、D。

业务流程设计

- 4. 处理流程设计是系统设计的重要内容。以下关于处理流程设计工具的叙述中,不正确的是()。
 - A.程序流程图(PFD)用于描速系统中每个模块的输入,输出和数据加工
 - B.N-S 图容易表示嵌套关系和层次关系,并具有强烈的结构化特征
 - C.IPO 图的主体是处理过程说明,可以采用流程图、判定树/表等来进行描述
 - D.问题分析图(PAD)包含 5 种基本控制结构,并允许递归使用

【解析】

程序流程图(Program How Diagram, PFD), N-S 图与 PFD 类似, IPO 图是由 IBM 公司发起并逐步完善的一种流程描述工具。

用于描述系统中每个模块的输入,输出和数据加工的图是 IPO 图,而非程序流程图。 【答案】A。

软件开发环境

- 1. 软件开发环境应支持多种集成机制。根据功能不同,可以将集成机制分为三个部分:
 - (1),用以存储与系统开发有关的信息,并支持信息的交流与共享;(2),是实现过程集成和控制集成的基础;(3),它的统一性和一致性是软件开发环境的重要特征。
 - (1)A. 算法模型库 B. 环境信息库 C. 信息模型库 D. 用户界面库
 - (2)A. 工作流与日志服务器
 - B. 进程通信与数据共享服务器
 - C. 过程控制与消息服务器
 - D. 同步控制与恢复服务器
- (3)A. 底层数据结构 B. 数据处理方法 C. 业务过程模型 D. 环境用户界面【解析】

软件开发环境(Software Development Environment, SDE)是指支持软件的工程化开发和维护而使用的一组软件,由软件工具集和环境集成机制构成。

软件开发环境应支持多种集成机制,根据功能的不同,集成机制可以划分为**环境信息库、** 过程控制与消息服务器、环境用户界面三个部分。

环境信息库。环境信息库是软件开发环境的核心,用以存储与系统开发有关的信息,并支持信息的交流与共享。环境信息库中主要存储两类信息,一类是开发过程中产生的有关被开发系统的信息,例如分析文档、设计文档和测试报告等;另一类是环境提供的支持信息,如文档模板、系统配置、过程模型和可复用构件等。

过程控制与消息服务器。过程控制与消息服务器是实现过程集成和控制集成的基础。过程集成时按照具体软件开发过程的要求进行工具的选择与组合,控制集成使各工具之间进行并行通信和协同工作。

环境用户界面。环境用户界面包括环境总界面和由它实行统一控制的各环境部件及工具的界面。统一的、具有一致性的用户界面是软件开发环境的重要特征,是充分发挥环境的优越性、高效地使用工具并减轻用户的学习负担的保证。

【答案】B、C、D。

- 2. 软件系统工具的种类繁多,通常可以按照软件过程活动将软件工具分为()。
 - A.需求分析工具、设计工具和软件实现工具
 - B.软件开发工具、软件维护工具、软件管理工具和软件支持工具
 - C.需求分析工具、设计工具、编码与排错工具和测试工具
 - D.设计规范工具、编码工具和验证工具

软件系统工具的种类繁多,很难有统一的分类方法。通常可以按软件过程活动将软件工 具分为**软件开发工具、软件维护工具 、软件管理和软件支持工具**。

软件开发工具: 需求分析工具、设计工具、编码与排错工具。

软件维护工具: 版本控制工具、文档分析工具、开发信息库工具、逆向工程工具、再工程工具。

软件管理和软件支持工具:项目管理工具、配置管理工具、软件评价工具、软件开发工 具的评价和选择。

【答案】B。

- 3. 软件开发环境是支持软件产品开发的软件系统,它由软件工具集和环境集成机制构成。 环境集成机制包括:提供统一的数据模式和数据接口规范的数据集成机制;支持各开发 活动之间通信、切换、调度和协同的();为统一操作方式提供支持的()。
 - (1)A. 操作集成机制
 - B. 控制集成机制
 - C. 平台集成机制
 - D. 界面集成机制
 - (2)A. 操作集成机制
 - B. 控制集成机制
 - C. 平台集成机制
 - D. 界面集成机制

【解析】

软件开发环境(software development environment)是支持软件产品开发的软件系统。它由软件工具集和环境集成机制构成,前者用来支持软件开发的相关过程、活动和任务年;后者为工具集成和软件开发、维护和管理提供统一的支持,它通常包括数据集成、控制集成和界面集成。数据集成机制提供了存储或访问环境信息库的统一的数据接口规范;界面集成机制采用统一的界面形式,提供统一的操作方式;控制集成机制支持各开发活动之间的通信、切换、调度和协同工作。

【答案】B、D。

软件设计

- 1. 结构化程序设计采用自顶向下、逐步求精及模块化的程序设计方法,通过()三种基本的控制结构可以构造出任何单入口单出口的程序。
 - A.顺序、选择和嵌套
 - B.顺序、分支和循环
 - C.分支、并发和循环
 - D.跳转、选择和并发

【解析】

结构化程序设计的三种基本控制结构就是:顺序、分支和循环。

- 2. 系统设计是软件开发的重要阶段,(__)主要是按系统需求说明来确定此系统的软件结构,并设计出各个部分的功能和接口。
 - A. 外部设计
 - B. 内部设计
 - C. 程序设计
 - D. 输入/输出设计

在软件开发中,外部设计又称为概要设计,其主要职能是设计各个部分的功能、接口、相互如何关联。内部设计又称为详细设计,其主要职能是设计具体一个模块的实现。所以本题应选 A。

软件过程改进

- 1. 需求管理是 CMM 可重复级中的 6 个关键过程域之一,其主要目标是()。
 - A. 对于软件需求,必须建立基线以进行控制,软件计划、产品和活动必须与软件需求 保持一致
 - B. 客观地验证需求管理活动符合规定的标准、程序和要求
 - C. 策划软件需求管理的活动,识别和控制已获取的软件需求
 - D. 跟踪软件需求管理的过程、实际结果和执行情况

【解析】

过程能力成熟度模型(Capability Maturity Model, CMM)在软件开发机构中被广泛用来指导软件过程改进。该模型描述了软件成立能力的 5 个成熟级别,每一级都包含若干关键过程域(Key Process. Areas, KPA)。

CMM 的第二级为可重复级,它包括 6 个关键过程域,分别是:需求管理、软件项目计划、软件项目跟踪和监督、软件分包合同管理、软件质量保证和软件配置管理。

需求管理的目标是为软件需求建立一个基线,提供给软件工程和管理使用;软件计划、 产品和活动与软件需求保持一致。

【答案】A。

- 2. ()在软件开发机构中被广泛用来指导软件过程改进。
 - A.能力成熟度模型(Capacity Maturity Model)
 - B.关键过程领域(Key Process Areas)
 - C.需求跟踪能力链(Traceability Link)
 - D.工作分解结构(Work Breakdown Structure)

【解析】

CMM 即软件开发能力成熟度模型,是用来指导软件过程改进的。

软件测试

- 1. 系统测试将软件、硬件、网络等其它因素结合,对整个软件进行测试。()不是系统测试的内容。
 - A. 路径测试 B. 可靠性测试 C. 安装测试 D. 安全测试

【解析】

系统测试是根据系统方案说明书来设计测试用例,常见的系统测试主要有恢复测试、安全性测试、压力测试、性能测试、可靠性测试、可用性测试、可维护性测试和安装测试。

- 2. 系统测试由若干个不同的测试类型组成,其中()检查系统能力的最高实际限度,即软件在一些超负荷情况下的运行情况;()主要是检查系统的容错能力。
 - A. 强度测试 B. 性能测试 C. 恢复测试 D. 可靠性测试

A. 强度测试 B. 性能测试 C. 恢复测试 D. 可靠性测试

【解析】

系统测试是根据系统方案说明书来设计测试例子的,常见的系统测试主要有以下内容:恢复测试:恢复测试监测系统的容错能力。

安全性测试:系统的安全性测试是检测系统的安全机制、保密措施是否完善,主要是为了检验系统的防范能力。

强度测试:是对系统在异常情况下的承受能力的测试,是检查系统在极限状态下运行时, 性能下降的幅度是否在允许的范围内。

性能测试:检查系统是否满足系统设计方案说明书对性能的要求。。

可靠性测试:通常使用以下两个指标来衡量系统的可靠性:平均失效间隔时间 MTBF(mean time between failures)是否超过了规定的时限,因故障而停机时间 MTTR(mean time to repairs)在一年中不应超过多少时间。

安装测试:在安装软件系统时,会有多种选择。安装测试就是为了检测在安装过程中是 否有误、是否容易操作等。

【答案】A、C。

- 3. 以下关于软件测试工具的叙述,错误的是()。
- A. 静态测试工具可用于对软件需求、结构设计、详细设计和代码进行评审、走查和审查
- B. 静态测试工具可对软件的复杂度分析、数据流分析、控制流分析和接口分析提供支持
- C. 动态测试工具可用于软件的覆盖分析和性能分析
- D. 动态测试工具不支持软件的仿真测试和变异测试

【解析】

测试工具根据工作原理不同可分为静态测试工具和动态测试工具。

其中静态测试工具是对代码进行语法扫描,找到不符合编码规范的地方,根据某种质量模型评价代码的质量,生成系统的调用关系图等。它直接对代码进行分析,不需要运行代码,也不需要对代码编译链接和生成可执行文件,静态测试工具可用于对软件需求、结构设计、详细设计和代码进行评审、走审和审查,也可用于对软件的复杂度分析、数据流分析、控制流分析和接口分析提供支持;

动态测试工具与静态测试工具不同,它需要运行被测试系统,并设置探针,向代码生成的可执行文件中插入检测代码,可用于软件的覆盖分析和性能分析,也可用于软件的模拟、建模、仿真测试和变异测试等。

【答案】D。

- 4. 以下关于白盒测试方法的叙述中,错误的是()。
 - A. 语句覆盖要求设计足够多的测试用例, 使程序中每条语句至少被执行一次
 - B. 与判定覆盖相比,条件覆盖增加对符合判定情况的测试,增加了测试路径
 - C. 判定/条件覆盖准则的缺点是未考虑条件的组合情况
- D. 组合覆盖要求设计足够多的测试用例,使得每个判定中条件结果的所有可能组合最 多出现一次

【解析】

组合覆盖主要特点:要求设计足够多的测试用例,使得每个判定中条件结果的所有可能 组合至少出现一次。

- 5. 以下关于面向对象软件测试的叙述中,正确的是()。
- A. 在测试一个类时,只要对该类的每个成员方法都进行充分的测试就完成了对该类充分的

测试

- B. 存在多态的情况下, 为了达到较高的测试充分性, 应对所有可能的绑定都进行测试
- C. 假设类 B 是类 A 的子类,如果类 A 已经进行了充分的测试,那么在测试类 B 时不

必测 试任何类 B 继承自类 A 的成员方法

D. 对于一棵继承树上的多个类,只有处于叶子节点的类需要测试

【解析】

本题考查面向对象的软件测试,与传统的结构化系统相比,面向对象系统具有三个明显特征,即封装、继承性与多态性。封装性决定了面向对象系统的测试必须考虑到信息隐蔽原则对测试的影响,以及对象状态与类的测试序列,因此在测试一个类时,仅对该类的每个方法进行测试是不够的;继承性决定了面向对象系统的测试必须考虑到继承对测试充分性的影响,以及误用引起的错误;多态性决定了面向对象系统的测试必须考虑到动态绑定对测试充分性的影响、抽象类的测试以及误用对测试的影响。

【答案】B。

- 6. 软件确认测试也称为有效性测试,主要验证()。确认测试计划通常是在需求分析阶段 完成的。根据用户的参与程度不同,软件确认测试通常包括()。
 - (1)A.系统中各个单元模块之间的协作性
 - B.软件与硬件在实际运行环境中能否有效集成
 - C.软件功能、性能及其它特性是否与用户需求一致
 - D.程序模块能否正确实现详细设计说明中的功能、性能和设计约束等要求
 - (2)A.黑盒测试和白盒测试
 - B.一次性组装测试和增量式组装测试
 - C.内部测试、Alpha、Beta 和验收测试
 - D.功能测试、性能测试、用户界面测试和安全性测试

【解析】

软件确认测试一种针对需求的测试,是用户参与的测试。它主要验证软件功能、性能及 其它特性是否与用户需求一致。

【答案】C、C。

- 7. 以下关于黑盒测试用例设计方法的叙述,错误的是()。
- A. 边界值分析通过选择等价类边界作为测试用例,不仅重视输入条件边界,而且也必须考虑输出域边界
- B. 因果图方法是从用自然语言书写的程序规格说明的描述中找出因(输入条件)和果(输出或程序状态的改变),可以通过因果图转换为判定表
- C. 正交试验设计法,就是使用已经造好了的正交表格来安排试验并进行数据分析的一种方法,目的是用最少的测试用例达到最高的测试覆盖率
- D. 等价类划分法根据软件的功能说明,对每一个输入条件确定若干个有效等价类和无效等价类,但只能为有效等价类设计测试用例

【解析】

黑盒测试也称为功能测试,主要用于集成测试,确认测试和系统测试阶段。黑盒测试根据软件需求规格说明所规定的功能来设计测试用例,一般包括功能分解、等价类划分、边界值分析、判定表、因果图、状态图、随机测试、错误推测和正交试验法等。

在设计测试用例时,等价类划分是用得最多的一种黑盒测试方法。所谓等价类就是某个输入域的集合,对每一个输入条件确定若干个有效等价类和若干个无效等价类,分别设计覆盖有效等价类和无效等价类的测试用例。无效等价类是用来测试非正常的输入数据的,所以要为每个无效等价类设计一个测试用例。D 选项"但只能为有效等价类设计测试用例"错误。

边界值分析通过选择等价类边界作为测试用例,不仅重视输入条件边界,而且也必须考虑输出域边界。在实际测试工作中,将等价类划分法和边界值分析结合使用,能更有效地发现软件中的错误。

因果图方法是从用自然语言书写的程序规格说明的描述中找出因(输入条件)和果(输出或程序状态的改变),可以通过因果图转换为判定表。

正交试验设计法,就是使用已经造好了的正交表格来安排试验并进行数据分析的一种方法,目的是用最少的测试用例达到最高的测试覆盖率。

【答案】D。

- 8. 静态分析通过解析程序文本从而识别出程序语句中可能存在的缺陷和异常之处;静态分析所包含的阶段中,()的主要工作是找出输入变量和输出变量之间的依赖关系。
 - A. 控制流分析
 - B. 数据使用分析
 - C. 接口分析
 - D. 信息流分析

【解析】

静态分析通过解析程序文本从而识别出程序语句的各个部分,审查可能的缺陷和异常之处,静态分析包括五个阶段:

控制流分析阶段找出并突出显示那些带有多重出口或入口的循环以及不可达到的代码段;

数据使用分析阶段突出程序中变量的使用情况;

接口分析阶段检查子程序和过程声明及它们使用的一致性;

信息流分析阶段找出输入变量和输出变量之间的依赖关系;

路径分析阶段找出程序中所有可能的路径并画出在此路径中执行的语句。

【答案】D。

- 9. 确认测试主要用于验证软件的功能、性能和其他特性是否与用户需求一致。下述各种测试中,(__)为确认测试。
 - A. 负载测试和压力测试
 - Β. α测试和β测试
 - C. 随机测试和功能测试
 - D. 可靠性测试和性能测试

【解析】

本题考查确认测试的相关概念。

确认测试中,需要"确认"的,是用户需求。所以这种测试有一个显著的特点,就是测试必须要有用户的参与。所有选项中,只有 B 选项涉及的测试都有用户参与。

Alpha测试(α测试)是由一个用户在开发环境下进行的测试,也可以是公司内部的用户在模拟实际操作环境下进行的受控测试,Alpha测试不能由程序员或测试员(有的地方又说可以让测试人员进行)完成。

Beta 测试(β测试)是软件的多个用户在一个或多个用户的实际使用环境下进行的测试。 开发者通常不在测试现场,Beta 测试不能由程序员或测试员完成。因而,Beta 测试是在开发者无法控制的环境下进行的软件现场应用。

【答案】B。

- 10. 软件测试是为了发现错误而执行程序的过程。黑盒测试法主要根据()来设计测试用例。
 - A. 程序内部逻辑
 - B. 程序外部功能
 - C. 程序数据结构
 - D. 程字流程图

【解析】

软件测试是为了发现错误而执行程序的过程。黑盒测试也称为功能测试,是根据规格说明所规定的功能来设计测试用例,它不考虑程序的内部结构和处理过程。常用的黑盒测试技术有等价类划分、边值分析、错误猜测和因果图等。

【答案】B。

软件配置管理

- 1. 项目配置管理中,产品配置是指一个产品在其生命周期各个阶段所产生的各种形式和各种版本的文档、计算机程序、部件及数据的集合。该集合中的每一个元素称为该产品配置中的一个配置项,()不属于产品组成部分工作成果的配置项。
 - A.需求文档
 - B.设计文档
 - C.工作计划
 - D.源代码

【解析】

配置项是构成产品配置的主要元素,配置项主要有以下两大类:

- 1)属于产品组成部分的工作成果:如需求文档、设计文档、源代码和测试用例等;
- 2)属于项目管理和机构支撑过程域产生的文档:如工作计划、项目质量报告和项目跟踪报告等。

这些文档虽然不是产品的组成部分,但是值得保存。所以选项 C 的工作计划虽可充当配置项,但不属于产品组成部分工作成果的配置项。

- 2. 配置项是构成产品配置的主要元素,其中()不属于配置项。
 - A. 设备清单
 - B. 项目质量报告
 - C. 源代码
 - D. 测试用例

【解析】

配置项是构成产品配置的主要元素,配置项主要有以下两大类:

- (1)属于产品组成部分的工作成果:如需求文档、设计文档、源代码和测试用例等;
- (2)属于项目管理和机构支撑过程域产生的文档:如工作计划、项目质量报告和项目跟踪报告等。

这些文档虽然不是产品的组成部分,但是值得保存。设备清单不属于配置项。

遗留系统

1. 对于遗留系统的评价框架如下图所示,那么处于"高水平、低价值"区的遗留系统适合于采用的演化策略为()。

A.淘汰

【解析】

C.改造

D.集成

- 2. 系统移植也是系统构建的一种实现方法,在移植工作中,()需要最终确定移植方法。
 - A.计划阶段
 - B.准备阶段
 - C.转换阶段
 - D.验证阶段

【解析】

移植工作大体上分为计划阶段、准备阶段、转换阶段、测试阶段、验证阶段。

- 1、计划阶段,在计划阶段,要进行现有系统的调查整理,从移植技术、系统内容(是否进行系统提炼等)、系统运行三个方面,探讨如何转换成新系统,决定移植方法,确立移植工作体制及移植日程。
- 2、准备阶段,在准备阶段要进行移植方面的研究,准备转换所需的资料。该阶段的作业质量将对以后的生产效率产生很大的影响。

- 3、转换阶段,这一阶段是将程序设计和数据转换成新机器能根据需要工作的阶段。提高转换工作的精度,减轻下一阶段的测试负担是提高移植工作效率的基本内容。
- 4、测试阶段,这一阶段是进行程序单元、工作单元测试的阶段。在本阶段要核实程序能否在新系统中准确地工作。所以,当有不能准确工作的程序时,就要回到转换阶段重新工作。
 - 5、验证阶段,这是测试完的程序使新系统工作,最后核实系统,准备正式运行的阶段。 【答案】A。

维护类型

- 1. 软件()是指改正产生于系统开发阶段而在系统测试阶段尚未发现的错误。
 - A. 完善性维护
 - B. 适应性维护
 - C. 正确性维护
 - D. 预防性维护

【解析】

在系统交付使用后,改变系统的任何工作,都可以被称为维护。在系统运行过程中,软件需要维护的原因是多样的,根据维护的原因不同,可以将软件维护分为以下4种:

- ①正确性(改正性)维护。改正在系统开发阶段已发生而系统测试阶段尚未发现的错误。
- ②适应性维护。在使用过程中,外部环境(新的硬、软件配置)、数据环境(数据库、数据格式、数据输入/输出方式、数据存储介质)可能发生变化。为使软件适应这种变化,而去修改软件的过程就称为适应性维护。
- ③完善性维护。在软件的使用过程中,用户往往会对软件提出新的功能与性能要求。为了满足这些要求,需要修改或再开发软件,以扩充软件功能、增强软件性能、改进加工效率、提高软件的可维护性。这种情况下进行的维护活动称为完善性维护。
- ④预防性维护。这是指为了适应未来的软硬件环境的变化,应主动增加预防性的新的功能,以使应用系统适应各类变化而不被淘汰。

【答案】A。

其它

- 1. 软件重用是指在两次或多次不同的软件开发过程中重复使用相同或相似软件元素的过程。软件元素包括()、测试用例和领域知识等。
 - A. 项目范围定义、需求分析文档、设计文档
 - B. 需求分析文档、设计文档、程序代码
 - C. 设计文档、程序代码、界面原型
 - D. 程序代码、界面原型、数据表结构

【解析】

本题考查的是教程"4.5 软件的重用"原话:

软件重用是指在两次或多次不同的软件开发过程中重复使用相同或相似软件元素的过程。软件元素**包括需求分析文档、设计过程、设计文档、程序代码、测试用例、领域知识**等。对于新的软件开发项目而言,它们或者是构成整个目标软件系统的部件,或者在软件开发过程中发挥某种作用。通常将这些软件元素称为软部件。

【答案】B。

- 2. 用户文档主要描述所交付系统的功能和使用方法。下列文档中,()属于用户文档。
 - A. 需求说明书
 - B. 系统设计文档

- C. 安装文档
- D. 系统测试计划

用户文档主要描述所交付系统的功能和使用方法,并不关心这些功能是怎样实现的。用户文档是了解系统的第一步,它可以让用户获得对系统准确的初步印象。

用户文档至少应该包括下述5方面的内容。

- ① 功能描述:说明系统能做什么。
- (2) 安装文档:说明怎样安装这个系统以及怎样使系统适应特定的硬件配置。
- ③ 使用手册: 简要说明如何着手使用这个系统(通过丰富的例子说明怎样使用常用的系统功能,并说明用户操作错误是怎样恢复和重新启动的)。
- ④ 参考手册: 详尽描述用户可以使用的所有系统设施以及它们的使用方法,并解释系统可能产生的各种出错信息的含义(对参考手册最主要的要求是完整,因此通常使用形式化的描述技术)。
- ⑤ 操作员指南(如果需要有系统操作员的话): 说明操作员应如何处理使用中出现的各种情况。

系统文档是从问题定义、需求说明到验收测试计划这样一系列和系统实现有关的文档。 描述系统设计、实现和测试的文档对于理解程序和维护程序来说是非常重要的。

【答案】C。

- 3. 软件的横向重用是指重用不同应用领域中的软件元素。()是一种典型的、原始的横向 重用机制。
 - A. 对象
 - B. 构件
 - C. 标准函数库
 - D. 设计模式

【解析】

软件重用是指在两次或多次不同的软件开发过程中重复使用相同或相似软件元素的过程。按照重用活动是否跨越相似性较少的多个应用领域,软件重用可以区别为横向重用和纵向重用。横向重用是指重用不同应用领域中的软件元素,例如数据结构、分类算法和人机界面构建等。标准函数是一种典型的、原始的横向重用机制。纵向重用是指在一类具有较多公共性的应用领域之间进行软部件重用。纵向重用活动的主要关键点是域分析:根据应用领域的特征及相似性预测软部件的可重用性。

【答案】C。

项目管理

范围管理

- 1. 项目范围管理中,范围定义的输入包括()。
 - A.项目章程、项目范围管理计划、产品范围说明书和变更申请
 - B.项目范围描述、产品范围说明书、生产项目计划和组织过程资产
 - C.项目章程、项目范围管理计划、组织过程资产和批准的变更申请
 - D.生产项目计划、项目可交付物说明、信息系统要求说明和项目质量标准

【解析】

在初步项目范围说明书中已文档化的主要的可交付物、假设和约束条件的基础上准备详细的项目范围说明书、是项目成功的关键。范围定义的输入包括以下内容:

① 项目章程。如果项目章程或初始的范围说明书没有在项目执行组织中使用、同样的

信息需要进一步收集和开发,以产生详细的项目范围说明书。

- ② 项目范围管理计划。
- ③ 组织过程资产。
- ④ 批准的变更申请。

【答案】C。

- 2. 详细的项目范围说明书是项目成功的关键。()不应该属于范围定义的输入。
 - A. 项目章程
 - B. 项目范围管理计划
 - C. 批准的变更申请
 - D. 项目文档管理方案

【解析】

在初步项目范围说明书中已文档化的主要的可交付物、假设和约束条件的基础上准备详细的项目范围说明书,是项目成功的关键。范围定义的输入包括以下内容:

- ① 项目章程。如果项目章程或初始的范围说明书没有在项目执行组织中使用,同样的信息需要进一步收集和开发,以产生详细的项目范围说明书。
 - ② 项目范围管理计划。
 - ③ 组织过程资产。
 - ④ 批准的变更申请。

所以项目文档管理方案不属于范围定义的输入。

- 3. 在实际的项目开发中,人们总是希望使用自动工具来执行需求变更控制过程。下列描述中,()不是这类工具所具有的功能。
 - A. 可以定义变更请求的数据项以及变更请求生存期的状态转换图
 - B. 记录每一种状态变更的数据,确认做出变更的人员
 - C. 可以加强状态转换图使经授权的用户仅能做出所允许的状态变更
 - D. 定义变更控制计划,并指导设计入员按照所制定的计划实施变更

【解析】

对许多项目来说,系统软件总需要不断完善,一些需求的改进是合理的而且不可避免,要使得软件需求完全不变更,也许是不可能的,但毫无控制的变更是项目陷入混乱、不能按进度完成或者软件质量无法保证的主要原因之一。

一个好的变更控制过程,给项目风险承担者提供了正式的建议需求变更机制。可以通过需求变更控制过程来跟踪已建议变更的状态,使已建议的变更确保不会丢失或疏忽。在实际中,人们总是希望使用自动工具来执行变更控制过程。有许多人使用商业问题跟踪工具来收集、存储、管理需求变更;可以使用工具对一系列最近提交的变更建议产生一个列表给变更控制委员会开会时做议程用。问题跟踪工具也可以随时按变更状态分类包裹变更请求的数目。

挑选工具时可以考虑以下几个方面:

- ① 可以定义变更请求的数据项。
- ② 可以定义变更请求生存期的状态转换图。
- ③ 可以加强状态转换图使经授权的用户仅能做出所允许的状态变更。
- ④ 记录每一种状态变更的数据,确认做出变更的人员。
- ⑤ 可以定义在提交新请求或请求状态被更新后应该自动通知的设计人员。
- ⑥ 可以根据需要生成标准的或定制的报告和图表。
- D选项变更控制计划是需要人为指定的。

【答案】D。

- 4. 一个大型软件系统的需求通常是会发生变化的。以下关于需求变更策略的叙述中,错误的是()。
 - A. 所有需求变更必须遵循变更控制过程

- B. 对于未获得核准的变更,不应该做变更实现工作
- C. 完成了对某个需求的变更之后,就可以删除或者修改变更请求的原始文档
- D. 每一个集成的需求变更必须能追溯到一个经核准的变更请求

- 一个大型软件系统的需求通常是会发生变化的。在进行需求变更时,可以参考以下的需求变更策略:
- (1)所有需求变更必须遵循变更控制过程;
- (2)对于未获得批准的变更,不应该做设计和实现工作;
- (3)变更应该由项目变更控制委员会决定实现哪些变更;
- (4)项目风险承担者应该能够了解变更数据库的内容;
- (5)决不能从数据库中删除或者修改变更请求的原始文档;
- (6)每一个集成的需求变更必须能跟踪到一个经核准的变更请求。

【答案】C。

时间管理

- 1. 项目时间管理包括使项目按时完成所必需的管理过程,活动定义是其中的一个重要过程。通常可以使用()来进行活动定义。
 - A. 鱼骨图
 - B. 工作分解结构(WBS)
 - C. 层次分解结构
 - D. 功能分解图

【解析】

项目时间管理包括使项目按时完成所必需的管理过程。项目时间管理中的过程包括:活动定义、活动排序、活动的资源估算、活动历时估算、制定进度计划以及进度控制。

为了得到工作分解结构(Work Breakdown Structure, WBS)中最底层的交付物,必须执行一系列的活动。对这些活动的识别以及归档的过程就是活动定义。

鱼骨图(也称为 Ishikawa 图)是一种发现问题"根本原因"的方法,通常用来进行因果分析。

【答案】B。

- 2. 活动定义是项目时间管理中的过程之一,()是进行活动定义时通常使用的一种工具。
 - A. Gantt 图
 - B. 活动图
 - C. 工作分解结构(WBS)
 - D. PERT 图

【解析】

活动定义的常用工具包括:

分解、滚动式规划、模板、专家判断。

【答案】C。

软件质量管理

- 1. 软件质量保证是软件项目控制的重要手段,()是软件质量保证的主要活动之一。
 - A. 风险评估
 - B. 软件评审
 - C. 需求分析

D. 架构设计

【解析】

软件质量保证是软件质量管理的重要组成部分。软件质量保证主要是从软件产品的过程 规范性角度来保证软件的品质。其主要活动包括:质量审计(包括软件评审)和过程分析。

而 A 选项风险评估是属于项目管理中的风险管理维度。

【答案】B。

成本管理

1. 项目的成本管理中,()将总的成本估算分配到各项活动和工作包上,来建立一个成本的基线。

A.成本估算

B.成本预算

C.成本跟踪

D.成本控制

【解析】

题干为成本预算的定义。

软件配置管理

- 1. 软件产品配置是指一个软件产品在生存周期各个阶段所产生的各种形式和各种版本的 文档、计算机程序、部件及数据的集合。该集合的每一个元素称为该产品配置中的一个 配置项。下列不应该属于配置项的是()。
 - A. 源代码清单
 - B. 设计规格说明书
 - C. 软件项目实施计划
 - D. CASE 工具操作手册

【解析】

本题考查软件产品配置项的相关知识。源代码清单、设计规格说明书、软件项目实施计划均可以成为配置项。而工具操作手册是指导开发人员使用 CASE 工具来做开发的一个说明文档,它与软件产品并无直接关联,不宜作为配置项。

- 2. UNIX 的源代码控制工具(source Code control System, SCCS)是软件项目开发中常用的()。
 - A.源代码静态分析工具
 - B.文档分析工具
 - C.版本控制工具
 - D.再工程工具

【解析】

版本控制软件提供完备的版本管理功能,用于存储、追踪目录(文件夹)和文件的修改历史,是软件开发者的必备工具,是软件公司的基础设施。版本控制软件的最高目标,是支持软件公司的配置管理活动,追踪多个版本的开发和维护活动,及时发布软件。SCCS是元老级的版本控制软件,也叫配置管理软件。

【答案】C。

其他

- 1. 某软件公司开发某种软件产品时花费的固定成本为 16 万元,每套产品的可变成本为 2 元,设销售单价为 10 元,则需要销售()套才能达到盈亏平衡点。
 - A. 13000
- B. 16000
- C. 18000
- D. 20000

设共销售了n套、则总成本=固定成本+每套产品的可变成本×n=160000+2n。销售总收 入=单价×n=10n。盈亏平衡时,总成本=销售总收入,所以,160000+2n=10n,从而, n=20000(套)。当销售量低于2万套时,会有亏损;当销售量超过2万套时就会有盈利。

【答案】D。

信息安全

数字证书

1. 下图所示 PKI 系统结构中,负责生成和签署数字证书的是(),负责验证用户身份的是 ().

A.证书机构 CA B.注册机构 RA

C.证书发布系统

D. PKI 策略

A.证书机构 CA B.注册机构 RA

C.证书发布系统

D. PKI 策略

【解析】

在 PKI 系统体系中,证书机构 CA 负责生成和签署数字证书,注册机构 RA 负责验证申 请数字证书用户的身份。

【答案】A、B。

网络安全

- 1. 所谓网络安全漏洞是指()。
 - A. 用户的误操作引起的系统故障
 - B. 网络节点的系统软件或应用软件在逻辑设计上的缺陷
 - C. 网络硬件性能下降产生的缺陷
 - D. 网络协议运行中出现的错误

【解析】

本题主要考查网络安全漏洞的基本概念,网络安全漏洞通常是指网络节点的系统软件或 应用软件在逻辑上的缺陷,因此本题应该选择B。

- 2. ARP 攻击造成网络无法跨网段通信的原因是()。
 - A. 发送大量 ARP 报文造成网络拥塞
 - B. 伪造网关 ARP 报文使得数据包无法发送到网关
 - C. ARP 攻击破坏了网络的物理连通性
 - D. ARP 攻击破坏了网关设备

【解析】

本题主要考查 ARP 攻击的定义和特点。ARP 攻击是针对以太网地址解析协议(ARP)的

一种攻击技术,此种攻击可让攻击者取得局域网上的数据封包甚至可篡改封包,且可让网络上特定计算机或所有计算机无法正常连接。ARP攻击造成网络无法跨网段通信的原因是伪造网关ARP报文使得数据包无法发送到网关。

网络安全协议

- 1. 下列安全协议中()是应用层安全协议。
 - A. IPSec
 - B. L2TP
 - C. PAP
 - D. HTTPS

【解析】

【答案】A。

2. 下面可提供安全电子邮件服务的是()。

A.RSA B.SSL C.SET D.S/MIME

【解析】

MIME(Multipurpose Internet Mail Extensions)中文名为: 多用途互联网邮件扩展类型。 S/MIME (Secure Multipurpose Internet Mail Extensions)是对 MIME 在安全方面的扩展。它可以把 MIME 实体(比如数字签名和加密信息等)封装成安全对象。增强安全服务,例如具有接收方确认签收的功能,这样就可以确保接收者不能否认已经收到过的邮件。还可以用于提供数据保密、完整性保护、认证和鉴定服务等功能。

S/MIME 只保护邮件的邮件主体,对头部信息则不进行加密,以便让邮件成功地在发送者和接收者的网关之间传递。

【答案】: D。

3. 在网络规划中,政府内外网之间应该部署网络安全防护设备。在下图中部署的设各 A 是(),对设备 A 的作用描述错误的是()。

- (1)A.IDS B.防火墙 网闸 D.UTM
- (2)A. 双主机系统,即使外网被黑客攻击瘫痪也无法影响到内网
 - B.可以防止外部主动攻击
 - C.采用专用硬件控制技术保证内外网的实时链接
 - D.设备对外网的任何响应都是对内网用户请求的应答

IDS: 即入侵检测系统,这个系统会根据操作行为的特征或是异常行径来判断,是不是一次入侵行为。像杀毒软件就用到了入侵检测系统的原理,通过特征识别病毒。

防火墙:作用是内外网之间的隔离。外网的请求要到内网,必须通过防火墙,所以防火墙能使用一些判断规则来把一些恶意行为拒之门外。但如果攻击本身来自内网,防火墙就无能为力了。

网闸:一个物理离隔离装置,与IDS与防火墙不同,网闸连接的两个网络是不相通的。 网闸与内网相联时,会断开与外网的连接,与外网相联时,会断开与内网的连接。

UTM 安全设备的定义是指一体化安全设备,它具备的基本功能包括网络防火墙、网络入侵检测/防御和网关防病毒功能,但这几项功能并不一定要同时得到使用,不过它们应该是 UTM 设备自身固有的功能。

对于政务网的安全需求是在公网和外网之间实行逻辑隔离,在内网和外网之间实行物理隔离。

网闸其实就是模拟人工数据倒换,利用中间数据倒换区,分时地与内外网连接,但一个时刻只与一个网络连接,保持"物理的分离",实现数据的倒换。

【答案】C、C。

- 4. 在网络管理中要防止各种安全威胁。在 SNMP 中,无法预防的安全威胁是()。
 - A. 篡改管理信息: 通过改变传输中的 SNMP 报文实施未经授权的管理操作
 - B. 通信分析: 第三者分析管理实体之间的通信规律, 从而获取管理信息
 - C. 假冒合法用户: 未经授权的用户冒充授权用户, 企图实施管理操作
 - D. 消息泄露: SNMP 引擎之间交换的信息被第三者偷听

【解析】

在网络管理中要防止各种安全威胁。安全威胁分为主要和次要两类,其中主要的威胁有:

- (1)篡改管理信息:通过改变传输中的 SNMP 报文实施未经授权的管理操作。
- (2)假冒合法用户: 未经授权的用户冒充授权用户。

企图实施管理操作次要的威胁为:

- (1)消息泄露: SNMP 引擎之间交换的信息被第三者偷听。
- (2)修改报文流:由于 SNMP 协议通常是基于无连接的传输服务,重新排序报文流、延迟或重放报文的威胁都可能出现。这种威胁的危害性在于通过报文流的修改可能实施非法的管理操作。

另外有两种威胁是安全体系结构不必防护的,因为不重要或者是无法预防。

- (1)拒绝服务:因为很多情况下拒绝服务和网络失效是无法区别的,所以可以由网络管理协议来处理,安全系统不必采取措施。
 - (2)通信分析: 第三者分析管理实体之间的通信规律, 从而获取管理信息。

【答案】B。

- 5. 以下安全协议中,用来实现安全电子邮件的协议是()。
 - A. IPsec
 - B. L2TP
 - C. PGP
 - D. PPTP

PGP (Pretty Good Priracy)是一个完整的电子邮件安全软件包,包括加密、鉴别、电子签名和压缩等技术。PGP 并没有使用什么新的概念,它只是将现有的一些算法(如 MD5、RSA及 IDEA)等综合在一起而已。PGP 提供数据加密和数字签名两种服务。

【答案】C。

对称加密与非对称加密

- 1. 公司总部与分部之间需要传输大量数据,在保障数据安全的同时又要兼顾密钥算法效率,最合适的加密算法是()。
 - A. RC-5
- B. RSA
- C. ECC
- D. MD5

【解析】

公司总部与分部之间通过 Internet 传输数据,需要采用加密方式保障数据安全。加密算法中,对称加密比非对称加密效率要高。RSA 和 ECC 属于非对称加密算法,MD5 为摘要算法、故选择 RC-5。

其他

- 1. 下列攻击方式中,()不是利用 TCP/IP 漏洞发起的攻击。
 - A. SOL 注入攻击
 - B. Land 攻击
 - C. Ping of Death
 - D. Teardrop 攻击

【解析】

1、SQL 注入攻击

SQL 注入攻击是黑客对数据库进行攻击的常用手段之一。随着 B/S 模式应用开发的发展,使用这种模式编写应用程序的程序员也越来越多。但是由于程序员的水平及经验也参差不齐,相当大一部分程序员在编写代码的时候,没有对用户输入数据的合法性进行判断,使应用程序存在安全隐患。用户可以提交一段数据库查询代码,根据程序返回的结果,获得某些他想得知的数据,这就是所谓的 SQL Injection,即 SQL 注入。该种攻击方式与 TCP/IP 漏洞无关。

2、Land 攻击

land 攻击是一种使用相同的源和目的主机和端口发送数据包到某台机器的攻击。结果通常使存在漏洞的机器崩溃。

在 Land 攻击中,一个特别打造的 SYN 包中的源地址和目标地址都被设置成某一个服务器地址,这时将导致接受服务器向它自己的地址发送 SYN 一 ACK 消息,结果这个地址又发回 ACK 消息并创建一个空连接,每一个这样的连接都将保留直到超时掉。对 Land 攻击反应不同,许多 UNIX 系统将崩溃,而 Windows NT 会变的极其缓慢(大约持续五分钟)。

3、Ping of Death 攻击

在因特网上, ping of death 是一种拒绝服务攻击,方法是由攻击者故意发送大于 65535字节的 ip 数据包给对方。 TCP/IP 的特征之一是碎裂;它允许单一 IP 包被分为几个更小的数据包。在 1996年,攻击者开始利用那一个功能,当他们发现一个进入使用碎片包可以将整个 IP 包的大小增加到 ip 协议允许的 65536 比特以上的时候。当许多操作系统收到一个特大号的 ip 包时候,它们不知道该做什么,因此,服务器会被冻结、当机或重新启动。

4、Teardrop 攻击

Teardrop 攻击是一种拒绝服务攻击。是基于 UDP 的病态分片数据包的攻击方法,其工作原理是向被攻击者发送多个分片的 IP 包(IP 分片数据包中包括该分片数据包属于哪个数据包以及在数据包中的位置等信息),某些操作系统收到含有重叠偏移的伪造分片数据包时将

会出现系统崩溃、重启等现象。

- 2. 信息安全策略应该全面地保护信息系统整体的安全,网络安全体系设计是网络逻辑设计工作的重要内容之一,可从物理线路安全、网络安全、系统安全、应用安全等方面来进行安全体系的设计与规划。其中,数据库的容灾属于()的内容。
 - A.物理线路安全与网络安全
 - B.网络安全与系统安全
 - C.物理线路安全与系统安全
 - D.系统安全与应用安全

【解析】

网络安全体系设计是逻辑设计工作的重要内容之一,数据库容灾属于系统安全和应用安全考虑范畴。

企业信息化战略与实施

信息系统战略规划

- 1. 以下关于企业信息化方法的叙述中,正确的是()。
- A. 业务流程重构是对企业的组织结构和工作方法进行重新设计,SCM(供应链管理) 是一种重要的实现手段
- B. 在业务数量浩繁且流程错综复杂的大型企业里,主题数据库方法往往形成许多"信息孤岛",造成大量的无效或低效投资
 - C. 人力资源管理把企业的部分优秀员工看作是一种资本,能够取得投资收益
 - D. 围绕核心业务应用计算机和网络技术是企业信息化建设的有效途径

【解析】

本题考查信息化相关知识。

选项 A 描述错误, 因为 SCM 不是业务流程重构的实现手段。

选项 B 描述错误, 因为**事务型数据库容易形成信息孤岛**, 而主题数据库不容易形成"信息孤岛"。

选项 C 描述错误, 因为人力资源是把所有员工看作是一种资本, 而非部分员工。

- 2. 用于管理信息系统规划的方法有很多,其中()将整个过程看成是一个"信息集合",并 将组织的战略目标转变为管理信息系统的战略目标。()通过自上而下地识别企业目 标、企业过程和数据,然后对数据进行分析,自下而上地设计信息系统。
 - (1)A.关键成功因素法
 - B.战略目标集转化法
 - C.征费法
 - D.零线预算法
 - (2)A.企业信息分析与集成法
 - B.投资回收法
 - C.企业系统规划法
 - D.阶石法

【解析】

用于管理信息系统规划的方法很多,主要是关键成功因素法(Critical Success Factors, CSF)、战略目标集转化法(Strategy Set Transformation, SST)和企业系统规划法(Business System Planning, BSP)。其它还有企业信息分析与集成技术(BIAIT)、产出/方法分析(E/MA)、投资回收法(ROI)、征费法(chargout)、零线预算法、阶石法等。用得最多的是前面三种。

1. 关键成功因素法(CSF)

在现行系统中,总存在着多个变量影响系统目标的实现,其中若干个因素是关键的和主要的(即关键成功因素)。通过对关键成功因素的识别,找出实现目标所需的关键信息集合,从而确定系统开发的优先次序。

关键成功因素来自于组织的目标,通过组织的目标分解和关键成功因素识别、性能指标识别,一直到产生数据字典。

识别关键成功因素,就是要识别联系于组织目标的主要数据类型及其关系。不同的组织的关键成功因素不同,不同时期关键成功因素也不相同。当在一个时期内的关键成功因素解决后,新的识别关键成功因素又开始。

关键成功因素法能抓住主要矛盾,使目标的识别突出重点。由于经理们比较熟悉这种方法,使用这种方法所确定的目标,因而经理们乐于努力去实现。该方法最有利于确定企业的管理目标。

2.战略目标集转化法(SST)

把整个战略目标看成是一个"信息集合",由使命、目标、战略等组成,管理信息系统的规划过程即是把组织的战略目标转变成为管理信息系统的战略目标的过程。

战略目标集转化法从另一个角度识别管理目标,它反映了各种人的要求,而且给出了按 这种要求的分层,然后转化为信息系统目标的结构化方法。它能保证目标比较全面,疏漏较 少,但它在突出重点方面不如关键成功因素法。

3. 企业系统规划法(BSP)

信息支持企业运行。通过自上而下地识别系统目标、企业过程和数据,然后对数据进行分析,自下而上地设计信息系统。该管理信息系统支持企业目标的实现,表达所有管理层次的要求,向企业提供一致性信息,对组织机构的变动具有适应性。

企业系统规划法虽然也首先强调目标,但它没有明显的目标导引过程。它通过识别企业"过程"引出了系统目标,企业目标到系统目标的转化是通过企业过程/数据类等矩阵的分析得到的。

【答案】B、C。

- 2. 企业信息化涉及到对企业管理理念的创新,按照市场发展的要求,对企业现有的管理流程重新整合,管理核心从对(1)的管理,转向对(2)的管理,并延伸到对企业技术创新、工艺设计、产品设计、生产制造过程的管理,进而还要扩展到对(3)的管理乃至发展到电子商务。
 - (1)A. 人力资源和物资
 - B. 信息技术和知识
 - C. 财务和物料
 - D. 业务流程和数据
 - (2)A. 业务流程和数据
 - B. 企业信息系统和技术
 - C. 业务流程、数据和接口
 - D. 技术、物资和人力资源
 - (3)A. 客户关系和供应链
 - B. 信息技术和知识
 - C. 生产技术和信息技术
 - D. 信息采集、存储和共享

【解析】

管理科学的核心就是应用科学的方法实施管理,按照市场发展的要求,对企业现有的管理流程重新整合,从作为管理核心的财务、资金管理,向技术、物资、人力资源的管理,并延伸到企业技术创新、工艺设计、产品设计、生产制造过程的管理,进而扩展到客户关系管理、供应链的管理乃至发展电子商务,形成企业内部向外部扩散的全方位管理。

企业信息化注重企业经营管理方面的信息分析和研究,信息系统所蕴含的管理思 想也 可帮助企业建立更为科学规范的管理运作体系,提供准确及时的管理决策信息。

【答案】C、D、A。

- 3. 企业信息化程度是国家信息化建设的基础和关键,企业信息化方法不包括(
 - A. 业务流程重组
 - B. 组织机构变革
 - C. 供应链管理
 - D. 人力资本投资

【解析】

企业信息化程度是国家信息化建设的基础和关键,企业信息化就是企业利用现代信息技 术,通过信息资源的深入开发和广泛利用,实现企业生产过程的自动化、管理方式的网络化、 决策支持的智能化和商务运营的电子化、不断提高生产、经营、管理、决策的效率和水平、 进而提高企业经济效益和企业竞争力的过程。

企业信息化方法主要包括业务流程重构、核心业务应用、信息系统建设、主题数据库、 **资源管理和人力资本投资方法**。企业战略规划是指依据企业外部环境和自身条件的状况及其 变化来制定和实施战略,并根据对实施过程与结果的评价和反馈来调整,制定新战略的过程。 【答案】B。

- 4. 企业战略数据模型可分为两种类型:()描述日常事务处理中的数据及其关系;()描 述企业管理决策者所需信息及其关系。
 - A. 元数据模型 B. 数据库模型 C. 数据仓库模型
- D. 组织架构模型

- A. 元数据模型 B. 数据库模型 C. 数据仓库模型 D. 组织架构模型

【解析】

企业中使用的数据模型分两大类,一类针对于处理日常事务的应用系统,即数据库。另 一类针对高层决策分析的,即数据仓库。

【答案】B、C。

企业信息化与电子商务

- 1. 电子政务的主要应用模式中不包括()。
 - A.政府对政府(Government To Government)
 - B.政府对客户(Government To Customer)
 - C.政府对公务员(Government To Employee)
 - D.政府对企业(Government To Business)

【解析】

电子政务的主要模式有4种:

政府对政府(Government To Government);

政府对公务员(Government To Employee);

政府对企业(Government To Business);

政府对公民(Government To Citizen)。

- 2. 与电子政务相关的行为主体主要有三个,即(),政府的业务活动也主要围绕着这三个 行为主体展开。
 - A. 政府、数据及电子政务系统
 - B. 政府、企(事)业单位及中介
 - C. 政府、服务机构及企事业单位
 - D. 政府、企(事)业单位及公民

【解析】

本题属于纯概念题,与电子政务相关的行为主体包括:政府、企(事)业单位及公民。常 见的电子政务形式包括: G2G、G2B、G2C, 其中的 G 是政府、B 是企(事)业单位、C 是公

3. 供应链中的信息流覆盖了从供应商、制造商到分销商,再到零售商等供应链中的所有环 节,其信息流分为需求信息流和供应信息流,()属于需求信息流,()属于供应信息

A.库存记录

B.生产计划

C.商品入库单

D.提货发运单

A.客户订单

B.采购合同

C.完工报告单

D.销售报告

【解析】

当需求信息(如客户订单、生产计划和采购合同等)从需方向供方流动时、便引发物流。 同时,供应信息(如入库单、完工报告单、库存记录、可供销售量和提货发运单等)又同物 料一起沿着供应链从供方向需方流动。

【答案】B、C。

4. 电子商务系统中参与电子商务活动的实体包括()。

A.客户、商户、银行和认证中心 B.客户、银行、商户和政府机构

C.客户、商户、银行和物流企业 D.客户、商户、政府和物流企业

【解析】

电子商务分五个方面、即电子商情广告、电子选购与交易、电子交易凭证.的交换、电 子支付与结算, 以及网上售后服务等。

参与电子商务的实体有4类:客户(个人消费者或集团购买)、商户(包括销售商、制造 商和储运商)、银行(包括发行和收单行)及认证中心。

- 5. 电子政务是对现有的政府形态的一种改造,利用信息技术和其他相关技术,将其管理和 服务职能进行集成, 在网络上实现政府组织结构和工作流程优化重组。与电子政务相关 的行为主体有三个,即政府、()及居民。国家和地方人口信息的采集、处理和利用, 属于()的电子政务活动。
 - (1)A. 部门
 - B. 企(事)业单位
 - C. 管理机构
 - D. 行政机关
 - (2).A. 政府对政府
 - B. 政府对居民
 - C. 居民对居民
 - D. 居民对政府

【解析】

电子政务的行为主体包括:政府、企(事)业单位及居民。 国家和地方人口信息的采集、处理和利用、属于政府对居民的电子政务活动。

6. ERP 中的企业资源包括()。

A.物流、资金流和信息流

B.物流、工作流和信息流

C.物流、资金流和工作流

D.资金流、工作流和信息流

【解析】

ERP 中的企业资源包括企业的"三流"资源, 即物流资源、资金流资源和信息流资源。 ERP 实际上就是对这"三流"资源进行全面集成管理的管理信息系统。

- 7. CRM 是一套先进的管理思想及技术手段,它通过将()进行有效的整合,最终为企业 涉及到的各个领域提供了集成环境。CRM 系统的四个主要模块包括()。
 - (1)A. 员工资源、客户资源与管理技术
 - B. 销售资源、信息资源与商业智能
 - C. 销售管理、市场管理与服务管理
 - D. 人力资源、业务流程与专业技术
 - (2)A. 电子商务支持、呼叫中心、移动设备支持、数据分析
 - B. 信息分析、网络应用支持、客户信息仓库、工作流集成
 - C. 销售自动化、营销自动化、客户服务与支持、商业智能
 - D. 销售管理、市场管理、服务管理、现场服务管理

CRM 是一套先进的管理思想及技术手段,它通过将人力资源、业务流程与专业技术进行有效的整合,最终为企业涉及到客户或者消费者的各个领域提供了完美的集成,使得企业可以更低成本、更高效率地满足客户的需求,并与客户建立起基于学习性关系基础上的一对一营销模式,从而让企业可以最大程度提高客户满意度和忠诚度。CRM 系统的主要模块包括销售自动化、营销自动化、客户服务与支持、商业智能。

【答案】D、C。

- 8. 客户关系管理(CRM)系统将市场营销的科学管理理念通过信息技术的手段集成在软件上,能够帮助企业构建良好的客户关系。以下关于 CRM 系统的叙述中,错误的是()。
 - A. 销售自动化是 CRM 系统中最基本的模块
 - B. 营销自动化作为销售自动化的补充,包括营销计划的编制和执行、计划结果分析等
 - C. CRM 系统能够与 ERP 系统在财务、制造、库存等环节进行连接,但两者关系相对松散,一般不会形成闭环结构
 - D. 客户服务与支持是 CRM 系统的重要功能。目前,客户服务与支持的主要手段是通过呼叫中心和互联网来实现

【解析】

客户关系管理(CRM)系统将市场营销的科学管理理念通过信息技术的手段集成在软件上,能够帮助企业构建良好的客户关系。在客户管理系统中,销售自动化是其中最为基本的模块,营销自动化作为销售自动化的补充,包括营销计划的编制和执行、计划结果分析等功能。客户服务与支持是 CRM 系统的重要功能。目前,客户服务与支持的主要手段有两种,分别是呼叫中心和互联网。CRM 系统能够与 ERP 系统在财务、制造、库存等环节进行连接,两者之间虽然关系比较独立,但由于两者之间具有一定的关系,因此会形成一定的闭环反馈结构。

【答案】C。

商业智能

1. 商业智能系统的处理过程包括四个主要阶段:数据预处理通过 (1)实现企业原始数据的 初步整合;建立数据仓库是后续数据处理的基础;数据分析是体现系统智能的关键,主要采用(2)和(3)技术,前者能够实现数据的上卷、下钻和旋转分析,后者利用隐藏的 知识,通过建立分析模型预测企业未来发展趋势;数据展现主要完成数据处理结果的可 化。

(1)A.数据映射和关联

B.数据集市和数据立方体

C.数据抽取、转换和装载

D.数据清洗和数据集成

(2)A.知识库

B.数据挖掘

C.联机事务处理

D.联机分析处理

(3)A.知识库

B.数据挖掘

C.联机事务处理

D.联机分析处理

【解析】

商业智能系统的处理过程包括数据预处理、建立数据仓库、数据分析及数据展现 4 个主要阶段。

数据预处理是整合企业原始数据的第一步,包括数据的抽取、转换和装载三个过程。建立数据仓库则是处理海量数据的基础。数据分析是体现系统智能的关键,一般采用 OLAP 和数据挖掘技术。联机分析处理不仅进行数据汇总/聚集,同时还提供切片、切块、下钻、上卷和旋转等数据分析功能,用户可以方便地对海量数据进行多维分析。数据挖掘的目标则是挖掘数据背后隐藏的知识,通过关联分析、聚类和分类等方法建立分析模型,预测企业未来发展趋势和将要面临的问题。在海量数据和分析手段增多的情况下,数据展现则主要保障系统分析结果的可视化。

【答案】C、D、B

- 2. 商业智能是指利用数据挖掘、知识发现等技术分析和挖掘结构化的、面向特定领域的存储与数据仓库的信息。它可以帮助用户认清发展趋势、获取决策支持并得出结论。以下()活动,并不属于商业智能范畴。
 - A. 某大型企业通过对产品销售数据进行挖掘,分析客户购买偏好
 - B. 某大型企业查询数据仓库中某种产品的总体销售数量
 - C. 某大型购物网站通过分析用户的购买历史记录, 为客户进行商品推荐
 - D. 某银行通过分析大量股票交易的历史数据,做出投资决策

【解析】

商业智能是利用数据挖掘技术、知识发现等技术分析和挖掘结构化的、面向特定领域的存储与数据仓库的信息,它可以帮助用户认清发展趋势、识别数据模式、获取能决策支持并得出结论。商务智能技术主要体现在"智能"上,即通过对大量数据的分析,得到趋势变化等重要知识,并为决策提供支持。选项 A、C、D 都是对数据进行分析,获得知识的过程;选项 B 仅仅是获取数据,并没有对数据进行分析,因此不属于商业智能范畴。

企业应用集成

- 1. 某公司欲对其内部的信息系统进行集成,需要实现在系统之间快速传递可定制格式的数据包,并且当有新的数据包到达时,接收系统会自动得到通知。另外还要求支持数据重传,以确保传输的成功。针对这些集成需求,应该采用()的集成方式。
 - A. 远程过程调用
 - B. 共享数据库
 - C. 文件传输
 - D. 消息传递

【解析】

根据题干描述,该公司需要在应用集成后实现采用可定制的格式频繁地、立即地、可靠 地、异步地传输数据包。远程过程调用一般是基于同步的方式,效率较低,而且容易失败; 共享数据库和文件传输的集成方式在性能方面较差,系统不能保持即时数据同步,而且容易 造成应用与数据紧耦合;消息传递的集成方式能够保证数据的异步、立即、可靠传输,恰好 能够满足该公司的集成需求。

- 2. 共享数据库是一种重要的企业应用集成方式。以下关于共享数据库集成方式的叙述中, 错误的是()。
 - A. 共享数据库集成方式通常将应用程序的数据存储在一个共享数据库中,通过制定统 一的数据库模式来处理不同应用的集成需求
 - B. 共享数据库为不同的应用程序提供了统一的数据存储与格式定义,能够解决不同应 用程序中数据语义不一致的问题
 - C. 多个应用程序可能通过共享数据库频繁地读取和修改相同的数据,这会使共享数据 库成为一个性能瓶颈
 - D. 共享数据库集成方式的一个重要限制来自外部的已封装应用,这些封装好的应用程 序只能采用自己定义的数据库模式,调整和集成余地较小

【解析】

共享数据库是一种重要的企业应用集成方式,它通常将应用程序的数据存储在一个共享 数据库中, 通过制定统一的数据库模式来处理不同应用的集成需求。 共享数据库为不同的应 用程序提供了统一的数据存储与格式定义、能够在一定程度上缓解数据语义不一致的问题, 但无法完全解决该问题。在共享数据库集成中、多个应用程序可能通过共享数据库频繁地读 取和修改相同的数据,这会使数据库成为一个性能瓶颈。共享数据库集成方式的一个重要限 制来自外部的已封装应用,这些封装好的应用程序只能采用自己定义的数据库模式,调整和 集成余地较小。

【答案】: B。

- 3. 企业信息资源集成管理的前提是对企业()的集成,其核心是对企业()的集成。
 - (1)A.信息功能
 - B.信息设施
 - C.信息活动
 - D.信息处理
 - (2)A.业务流
 - B.内部信息流
 - C.外部信息流
 - D.内部和外部信息流

【解析】

集成管理是企业信息资源管理的主要内容之一。实行企业信息资源集成的前提是对企业 历史上形成的企业信息功能的集成, 其核心是对企业内部和外部信息流的集成, 其实施的基 础是各种信息手段的集成。通过集成管理实现企业信息系统各要素的优化组合, 使信息系统 各要素之间形成强大的协同作用,从而最大限度地放大企业信息的功能,实现企业可持续发 展的目的。

- 某企业欲对内部的数据库进行数据集成。如果集成系统的业务逻辑较为简单,仅使用数 据库中的单表数据即可实现业务功能,这时采用()方式进行数据交换与处理较为合 适;如果集成系统的业务逻辑较为复杂,并需要通过数据库中不同表的连接操作获取数 据才能实现业务功能,这时采用()方式进行数据交换与处理较为合适。
 - A. 数据网关
- B. 主动记录 C. 包装器
- D. 数据映射

- A. 数据网关
- B. 主动记录
- C. 包装器
- D. 数据映射

【解析】

本题主要考查数据集成的相关知识。关键要判断在进行集成时, 需要数据库的单表还是

多表进行数据整合。

如果是**单表**即可完成整合,则可以将该表**包装为记录**,采用**主动记录**的方式进行集成;如果需要**多张表**进行数据整合,则需要采用**数据映射**的方式完成数据集成与处理。 【答案】B、D。

- 5. 某大型商业公司欲集成其内部的多个业务系统,这些业务系统的运行平台和开发语言差异较大,而且系统所使用的通信协议和数据格式各不相同,针对这种情况,采用基于()的集成框架较为合适。除此以外,集成系统还需要根据公司的新业务需要,灵活、动态地定制系统之间的功能协作关系,针对这一需求,应该选择基于()技术的实现方式更为合适。
 - (1)A.数据库
 - B.文件系统
 - C.总线
 - D.点对点
 - (2)A. 分布式对象
 - B. 远程过程调用
 - C. 进程间通信
 - D. 工作流

【解析】

本题主要考查企业应用集成的理解和掌握。针对题干描述,该企业进行系统集成时,"业务系统的运行平台和开发语言差异较大,而且系统所使用的通信协议和数据格式各不相同"。在这种情况下,需要采用总线技术对传输协议和数据格式进行转换与适配。当需要集成并灵活定义系统功能之间的协作关系时,应该采用基于工作流的功能关系定义方式。

【答案】C、D。

6. 基于 JavaEE 平台的基础功能服务构建应用系统时,()可用来集成遗产系统。

A.JDBC、JCA 和 Java IDL

B.JDBC、JCA 和 JMS

C.JDBC、JMS 和 Java IDL

D.JCA、JMS 和 Java IDL

【解析】

JCA 标准化连接子是由 J2EE 1.3 首先提出的,它位于 J2EE 应用服务器和企业信息系统(EIS)之间,比如数据库管理、企业资源规划(ERP)、企业资产管理(EAM)和客户关系管理(CRM)系统。不是用 Java 开发的企业应用或者在 J2EE 框架内的应用都可以通过 JCA 连接。

JMS 是 Java 对消息系统的访问机制,但它本身并不实现消息。JMS 支持点对点分发的消息队列,也支持多个目标订阅的消息主题。当消息发布给一个主题的适合,消息就会发送给所有那个主题的订阅者。JMS 支持各种消息类型(二进制、流、名—值表、序列化的对象和文本)。通过声明与 SQL 的 WHERE 相近的句段,可以建立消息的过滤器。

Java IDL 即 idltojava 编译器就是一个 ORB, 可用来在 Java 语言中定义、实现和访问 CORBA 对象。 Java IDL 支持的是一个瞬间的 CORBA(Common Object Request Broker Architecture,公共对象请求代理体系结构,通用对象请求代理体系结构)对象,即在对象服务器处理过程中有效。实际上,Java IDL 的 ORB 是一个类库而已,并不是一个完整的平台软件,但它对 Java IDL 应用系统和其他 CORBA 应用系统之间提供了很好的底层通信支持,实现了 OMG 定义的 ORB 基本功能。

【答案】: D。

- 7. 某大型公司欲开发一个门户系统,该系统以商业流程和企业应用为核心,将商业流程中不同的功能模块通过门户集成在一起,以提高公司的集中贸易能力、协同能力和信息管理能力。根据这种需求,采用企业()门户解决方案最为合适。
 - A. 信息
 - B. 知识

- C. 应用
- D. 垂直

企业门户是一个信息技术平台,这个平台可以提供个性化的信息服务,为企业提供一个单一的访问企业各种信息资源和应用程序的入口。现有的企业门户大致可以分为企业信息门户、企业知识门户和企业应用门户三种。

其中企业信息门户重点强调为访问结构数据和无结构数据提供统一入口,实现收集、访问、管理和无缝集成。

企业知识门户提供了一个创造、搜集和传播企业知识的平台,通过企业知识门户,员工可以与工作团队中的其他成员取得联系,寻找能够提供帮助的专家。

企业应用门户是一个用来提高企业的集中贸易能力、协同能力和信息管理能力的平台。 它以商业流程和企业应用为核心,将商业流程中功能不同的应用模块通过门户集成在一起, 提高公司的集中贸易能力、协同能力和信息管理能力。

【答案】C。

- 8. 企业应用集成通过采用多种集成模式构建统一标准的基础平台,将具有不同功能和目的 且独立运行的企业信息系统联合起来。其中,面向()的集成模式强调处理不同应用 系统之间的交互逻辑,与核心业务逻辑相分离,并通过不同应用系统之间的协作共同完 成某项业务功能。
 - A. 数据
 - B. 接口
 - C. 过程
 - D. 界面

【解析】

企业应用集成通过采用多种集成模式,构建统一标准的基础平台,将具有不同功能和目的而又独立运行的企业信息系统联合起来。目前市场上主流的集成模式有三种,分别是面向信息的集成、面向过程的集成和面向服务的集成。

其中面向过程的集成模式强调处理不同应用系统之间的交互逻辑,与核心业务逻辑相分离,并通过不同应用系统之间的协作共同完成某项业务功能。

【答案】C。

其他

- 1. 为了加强对企业信息资源的管理,企业应按照信息化和现代化企业管理要求设置信息管理机构,建立信息中心。信息中心的主要职能不包括()。
 - A.处理信息,确定信息处理的方法
 - B.用先进的信息技术提高业务管理水平
 - C.组织招聘信息资源管理员
 - D.建立业务部门期望的信息系统和网络

【解析】

为了加强对企业信息资源的管理,企业应按照信息化和现代化企业管理要求设置信息管理机构,建立信息中心,确定信息主管,统一管理和协调企业信息资源的开发、收集和使用。信息中心是企业的独立机构,直接由最高层领导并为企业最高管理者提供服务。其主要职能是处理信息,确定信息处理的方法(选项 A),用先进的信息技术提高业务管理水平(选项 C),建立业务部门期望的信息系统和网络并预测未来的信息系统和网络(选项 D),培养信息资源的管理人员等。

【答案】C。

- 2. 运用信息技术进行知识的挖掘和()的管理是企业信息化建设的重要活动。
 - A. 业务流程
 - B. IT 基础设施
 - C. 数据架构
 - D. 规章制度

企业信息化建设是通过 IT 技术的部署来提高企业的生产运维效率,从而降低经营成本。 这个过程中**业务流程的管理与知识的挖掘是重要的活动**。因为在进行信息化过程中,由于计 算机技术的引入,使得企业原本手工化的业务流程需要优化,从而适应计算机化的快速处理。 同时从企业已积累的资源库中,挖掘有价值的信息,也是信息化建设的重点,这些知识的挖掘,能给企业带来丰厚的利润。

- 3. 电子数据交换(EDI)是电子商务活动中采用的一种重要的技术手段。以下关于 EDI 的叙述中,错误的是()。
 - A. EDI 的实施需要一个公认的标准和协议,将商务活动中涉及的文件标准化和格式化
 - B. EDI 的实施在技术上比较成熟,成本也较低
 - C. EDI 通过计算机网络,在贸易伙伴之间进行数据交换和自动处理
 - D. EDI 主要应用于企业与企业、企业与批发商之间的批发业务

【解析】

电子数据交换是电子商务活动中采用的一种重要的技术手段。EDI的实施需要一个公认的标准和协议,将商务活动中涉及的文件标准化和格式化;EDI通过计算机网络,在贸易伙伴之间进行数据交换和自动处理;EDI主要应用于企业与企业、企业与批发商之间的批发业务;EDI的实施在技术上比较成熟,但是实施EDI需要统一数据格式,成本与代价较大。【答案】B。

数学与经济管理

1. 某类产品 n 种品牌在某地区的市场占有率常用概率向量 u=(u1, u2, ..., un)表示(各分量分别表示各品牌的市场占有率,值非负,且总和为 1)。市场占有率每隔一定时间的变化常用转移矩阵 $P_{n\times n}$ 表示。设初始时刻的市场占有率为向量 u,则下一时刻的市场占有率就是 uP,再下一时刻的市场占有率就是 uP个2, ...。如果在相当长时期内,该转移矩阵的元素 s 均是常数,则市场占有率会逐步稳定到某个概率向量 z,即出现 zP=z0。这种稳定的市场占有率体现了转移矩阵的特征,与初始时刻的市场占有率无关。假设占领某地区市场的冰箱品牌 z0。每月市场占有率的变化可用如一下常数转移矩阵来描述:

$$P = \left[\begin{array}{cc} 0.8 & 0.2 \\ \\ 0.4 & 0.6 \end{array} \right]$$

则冰箱品牌 A 与 B 在该地区最终将逐步稳定到市场占有率()。

- A. (1/4, 3/4)
- B. (1/3, 2/3)
- C. (1/2, 1/2)
- D. (2/3, 1/3)

【解析】

根据题意,该地区冰箱品牌 A 与 B 每月占有率的变化描述为常数转移矩阵 P。不管初始时刻这两种品牌的市场占有率(以概率向量来描述)如何,最终将稳定到概率向量 Z,而且有关系式 ZP=Z。这表明, Z 的下一时刻仍然是 Z。

设 Z=(Z1, Z2), 其中 Z1≥0, Z2≥0, Z1+Z2=1, 从 ZP=Z 可以列出方程:

0.8Z1+0.4Z2=Z1

0.2Z1+0.6Z2=Z2

根据上述条件, 求解该方程, 得到 Z1=2/3, Z2=1/3。

因此,冰箱品牌 A 与 B 在该地区最终将逐步稳定到市场占有率(2/3, 1/3)。品牌 A 将占有 2/3 的市场,品牌 B 将占有 1/3 的市场。

2. 某企业拟生产甲、乙、丙、丁四个产品。每个产品必须依次由设计部门、制造部门和检验部门进行设计、制造和检验,每个部门生产产品的顺序是相同的。各产品各工序所需的时间如下表所示:

项目	设计(天)	制造(天)	检验(天)
甲	13	15	20
乙	10	20	18
丙	20	16	10
丁	8	10	15

只要适当安排好项目实施顺序,企业最快可以在()天全部完成这四个项目。

- A. 84
- B. 86
- C. 91
- D. 93

【解析】

做这类题,有一个基本的原则:把多个任务中,第1步耗时最短的安排在最开始执行,再把最后1步耗时最短的安排在最后完成。所以在本题中最先应执行的是丁项目,最后执行的是丙项目。这样所有的安排方案只有两个:

- 1、丁甲乙丙
- 2、丁乙甲丙

通过画时空图可知丁甲乙丙执行时间如图所示,总执行时间为84天,而题目最小选项为84天,所以该方案已达最优,可以不计算方案2。

- 3. 1路和2路公交车都将在10分钟内均匀随机地到达同一车站,则它们相隔4分钟内到达该站的概率为()。
 - A. 0.36
 - B. 0.48
 - C. 0.64
 - D. 0.76

【解析】

本题考查数学应用能力(概率)。

设 1 路和 2 路公交车将分别在 x 和 y 分钟内到达该站,则 x 和 y 是在 [0, 10] 内独立均 匀分布的随机变量。本题需要计算 [x-y] <=4 的概率。

平面上的点(x,y)必然在正方形[0,10;0,10]内均匀分布。|x-y|<=4 的概率应当等于该正方形

中|x-y|<=4的部分面积的比例。

该正方形的面积为 100, 其中|x-y|<=4 部分的面积为 64(如下图),

因此, |x-y|<=4 的概率为 0.64。

4. 九个项目 A11、A12、A13、A21、A22、A23、A31、A32、A33 的成本从 1 百万、2 百万、…,到 9 百万各不相同,但并不顺序对应。已知 A11 与 A21、A12 与 A22 的成本都有一倍关系,A11 与 A12、A21 与 A31、A22 与 A23、A23 与 A33 的成本都相差 1 百万。由此可以推断,项目 A22 的成本是()百万。

A. 2

B. 4

C. 6

D. 8

【解析】

本题考查应用数学基础知识。

为便于直观分析, 题中的叙述可以用下图来表示:

九个项目 Aij(i=1, 2, 3; j=1, 2, 3)的成本值(单位为百万,从1到9各不相同)将分别填入i行j列对应的格中。格间的黑点表示相邻格有一倍关系,白点表示相邻格相差 1。

已知 A22 与 A12 的值有一倍关系, 那就只可能是 1-2, 2-4, 3-6 或 4-8, 因此 A22 的值只可能是 1, 2, 3, 4, 6, 8。

如果 A22=1, 则 A23=A12=2, 出现相同值, 不符合题意。

如果 A22=2, 则 A12 只能是 4(A12=1 将导致 A11=A22=2 矛盾), A23 只能为 3(A23=1 将导致 A33=A22=2 矛盾), A33 出现矛盾。

如果 A22=3, 则 A12=6, A11=5 或 7, 不可能与 A21 有一倍关系。

如果 A22=4,则 A12=2 或 8。A12=8 将导致 A11=7 或 9,不可能与 A21 有成倍关系。因此 A12=2,A23 只能是 5(A23=3 将导致 A33 矛盾),A33=6,而 A11=1 或 3 都将导致 A21 矛盾。

如果 A22=8, 则 A12=4, A23 只能是 7(A23=9 将导致 A33=8 矛盾), A33 只能是 6, A11 只能是 3(A11=5 将导致 A21 矛盾), A21=6 矛盾。

因此, A22 只可能为 6。

实际上,当 A22=6 时,A12=3,A23 只能为7(A23=5 将最终导致矛盾),A33=8。此时,A11、A21、A31 可能分别是2、4、5,也可能是4、2、1。

【答案】C。

5. 研究表明,肿瘤细胞的生长有以下规律: 当肿瘤细胞数目超过 1011 时才是临床可观察的;在肿瘤细胞生长初期,几乎每隔一定时间就会观测到肿瘤细胞数量翻一番;在肿瘤细胞生长后期,肿瘤细胞的数目趋向某个稳定值。为此,图()反映了肿瘤细胞的生长趋势。

【解析】

用函数曲线来表示事物随时问变化的规律十分常见。我们可以用函数 f(t)表示肿瘤细胞数量随时间变化的函数。那么,当肿瘤细胞数目超过 $10^{^{\prime}}11$ 时才是临床可观察的,可以表示为 f(0)=1011。在肿瘤生长初期,几乎每隔一定时间就会观测到肿瘤细胞数量翻一番,可以表示为 t<t0 时,f(t+c)=2f(t)。符合这种规律的函数是指数函数:f(t)=at,其曲线段呈凹形上升态。在肿瘤生长后期,肿瘤细胞的数目趋向某个稳定值,表示当 t>T 时,f(t)逐渐逼近某个常数,即函数曲线从下往上逐渐靠近直线 y=L。

A 选项, 可以看出增加倍数依次减少。

B选项, 最后没有趋于稳定值。

C选项,每隔一段时间翻倍,是2,4,8,16,32这种,不是线性。

【答案】D。

- 6. 对实际应用问题建立数学模型并求得结果后,还需要根据建模的目的和要求,利用相关 知识,结合研究对象的特点,进行模型分析。模型分析工作一般不包括()。
 - A. 模型的合理性分析
 - B. 模型的误差分析
 - C. 模型的先进性分析
 - D. 参数的灵敏性分析

【解析】

本题主要考查数学建模的基本过程、在对实际应用问题建立数学模型并求得结果后、还 需要根据建模的目的和要求, 利用相关知识, 结合研究对象的特点, 进行模型分析。模型分 析工作主要包括模型的合理性分析、模型的误差分析和参数的灵敏性分析等,一般不包括模 型的先进性分析。

法律法规与标准化

知识产权人确定

1. 用户提出需求并提供经费,委托软件公司开发软件。双方商定的协议(委托开发合同) 中未涉及软件著作权归属,其软件著作权应由()享有。

A.用户

B.用户、软件公司共有 C.软件公司 D.经裁决所确认的一方

【解析】

《计算软件保护条例》第二章,第十一条规定:

接受他人委托开发的软件,其著作权的归属由委托人与受托人签订书面合同约定; 无书 面合同或者合同未作明确约定的、其著作权由受托人享有。

【答案】: C。

某摄影家创作一件摄影作品出版后,将原件出售给了某软件设计师。软件设计师不慎将 原件毁坏;则该件摄影作品的著作权()享有。

A.仍然由摄影家

B.由摄影家和软件设计师共同

C.由软件设计师

D.由摄影家或软件设计师申请的一方

【解析】

《著作权法实施条例》第十七条规定:"著作权法第十八条关于美术作品原件所有权的 转移不视作作品著作权的转移的规定适用于任何原件所有权可能转移的作品。作品原件的合 法所有人如不是著作权人,他要想将作品发表,必须经过著作权人的许可。"。

摄影作品属于美术作品的一类,这种作品的著作权不会因为原件所有权的转移而转移、 所以由始至终, 著作权一直由摄影家享有。

【答案】: A。

软件设计师王某在其公司的某一综合信息管理系统软件开发项目中、承担了大部分程序 设计工作。该系统交付用户,投入试运行后,王某辞职离开公司,并带走了该综合信息管理 系统的源程序,拒不交还公司。王某认为综合信息管理系统源是他独立完成的,他是综合信 息管理系统源程序的软件著作权人。王某的行为()。

A.侵犯了公司的软件著作权

B.未侵犯公司的软件著作权

C.侵犯了公司的商业秘密权

D.不涉及侵犯公司的软件著作权

【解析】

王某完成的软件由于是公司安排的任务、在公司完成的、所以会被界定为职务作品、这

个作品的软件著作权归公司拥有。

【答案】: A。

- 4. 张某是 M 国际运输有限公司计算机系统管理员。任职期间,根据公司的业务要求开发了"空运出口业务系统",并由公司使用。随后,张某向国家版权局申请了计算机软件著作权登记,并取得了《计算机软件著作权登记证书》,证书明确软件名称是"空运出口业务系统 V1.0",著作权人为张某。以下说法中,正确的是()。
 - A.空运出口业务系统 V1.0 的著作权属于张某
 - B.空运出口业务系统 V1.0 的著作权属于 M 公司
 - C.空运出口业务系统 V1.0 的著作权属于张某和 M 公司
 - D.张某获取的软件著作权登记证是不可以撤销的

【解析】

【答案】: B。

- 5. 甲、乙软件公司同日就其财务软件产品分别申请"用友"和"用有"商标注册。两财务软件相似,且甲、乙第一次使用"用友"和"用有"商标时间均为 2015 年 7 月 12 日。此情形下,()能获准注册。
 - A."用友"
 - B."用友"与"用有"都
 - C."用有"
 - D.由甲、乙抽签结果确定谁

【解析】

商标注册是指商标所有人为了取得商标专用权,将其使用的商标,依照法律的注册条件、原则和程序,向商标局提出注册申请,商标局经过审核,准予注册的法律制度。 注册商标时使用的商标标识须具备可视特征,且不得与他人先取得的合法权力相冲突,不得违反公序良俗。 具备可视性(显著性),要求必须为视觉可感知,可以是平面的文字、图形、字母、数字,也可以是三维立体标志或者颜色组合以及上述要素的组合。显著性要求商标的构成要素必须便于区别。但怎样的文字、图形和三维标志是具有显著特征的,我国商标法一般是从反面作出禁止性规定,凡是不含有禁用要素的商标(如同中华人民共和国的国旗、国徽相同或相近似的标识),就被视为具备显著性。显著性特征一般是指易于识别,即不能相同或相似。相同是指用于同一种或类似商品上的两个商标的文字、图形、字母、数字、三维标志或颜色组合相同。读音相同也属于相同商标,如"小燕"与"小雁"、"三九"与"999"属于相同商标。近似是指在文字的字形、读音、含义或者图形的构图及颜色或者文字与图形的整体结构上,与注册商标相比,易使消费者对商品的来源产生误认的商标。如虎、豹、猫图案外观近似;"娃哈哈"与"娃娃哈"读音近似;"长城"与"八达岭",虽然读音、文字都不近似,但其所指的事物非常近似,其思想主题相同,也会引起消费者的误认。

所以在本题中"用有"与"用友"属于相同商标。相同商标注册遵循的原则是谁先申请 谁拥有,同时(同一天)申请则看谁先使用,如果无法判断可以通过协商来确定归属,协商不 成可抽签决定结果。

【答案】D。

- 6. M 公司的程序员在不影响本职工作的情况下,在 L 公司兼职并根据公司项目开发出一项与 M 公司业务无关的应用软件。该应用软件的著作权应由()享有。
 - A. M 公司
 - B. L 公司
 - C. L 公司与 M 公司共同
 - D. L 公司与程序员共同

【解析】

依据题意,该应用软件是程序员在L公司兼职,并按L公司的工作要求开发出的软件,

应属于L公司的职务作品,所以著作权归L公司所有。

保护范围与对象

- 1. 以下关于软件著作权产生时间的表述中,正确的是()。
 - A. 自软件首次公开发表时
 - B. 自开发者有开发意图时
 - C. 自软件开发完成之日时
 - D. 自获得软件著作权登记证书时

【解析】

一般来讲,一个软件只有开发完成并固定下来才能享有软件著作权。如果一个软件一直处于开发状态中,其最终的形态并没有固定下来,则法律无法对其进行保护。因此,条例(法律)明确规定软件著作权自软件开发完成之日起产生。当然,现在的软件开发经常是一项系统工程,一个软件可能会有很多模块,而每一个模块能够独立完成某一项功能。自该模块开发完成后就产生了著作权。

- 2. 软件商标权的保护对象是指()。
 - A. 商业软件
 - B. 软件商标
 - C. 软件注册商标
 - D. 已使用的软件商标

【解析】

【答案】C。

- 3. 某软件企业开发了一套能够同硬件结合以提高设备性能的软件产品,向国家专利局申请方法发明专利,获得了专利权,并为该软件产品冠以"昆仑"商品专用标识,但未进行商标注册上市销售。此情况下,该软件产品不可能得到我国()的保护。
 - A. 著作权法
 - B. 专利法
 - C. 商标法
 - D. 刑法

【解析】

【答案】C。

- 4. 以下作品中,不适用或不受著作权法保护的作品是()。
 - A. 国务院颁布的《计算机软件保护条例》
 - B. 某作家的作品《绿化树》
 - C. 最高人民法院组织编写的《行政诉讼案例选编》
 - D. 某人在公共场所的即兴演说

【解析】

著作权法不适用于: 法律、法规,国家机关的决议、决定、命令和其他具有立法、行政、司法性质的文件,及其官方正式译文。而 A 选项中的"国务院颁布的《计算机软件保护条例》"属于该情况,所以不受著作权法保护。

《著作权法》第三条 本法所称的作品,包括以下列形式创作的文学、艺术和自然科学、社会科学、工程技术等作品:

- (一)文字作品
- (二)口述作品;
- (三)音乐、戏剧、曲艺、舞蹈、杂技艺术作品;

- (四)美术、建筑作品;
- (五)摄影作品;
- (六)电影作品和以类似摄制电影的方法创作的作品;
- (七)工程设计图、产品设计图、地图、示意图等图形作品和模型作品;
- (八)计算机软件;
- (九)法律、行政法规规定的其他作品。
- D选项在公共场所的即兴演说属于口述作品。

【答案】A。

- 5. 王某买了二幅美术作品原件,则他享有该美术作品的()。
 - A.著作权
 - B.所有权
 - C.展览权
 - D.所有权与其展览权

【解析】

著作权法规定,美术作品著作权不由原件的转移而转移,原件卖出或赠出后,原作者仍有该画的著作权,原件持有人仅有所有权与展览权。

【答案】D。

- 6. 利用()可以对软件的技术信息、经营信息提供保护。
 - A. 著作权
 - B. 专利权
 - C. 商业秘密权
 - D. 商标权

【解析】

本题考查商业秘密相关概念。商业秘密是《反不正当竞争法》中提出的,商业秘密 (Business Secret),按照我国《反不正当竞争法》的规定,是指不为公众所知悉、能为权利人带来经济利益、具有实用性并经权利人采取保密措施的技术信息和经营信息。

【答案】C。

- 7. ()不属于我国著作权法所保护的内容。
 - A. 为保护其软件著作权而采取的技术措施
 - B. 软件权利电子信息
 - C. 通过信息网络传播的软件
 - D. 采用反编译技术获得的软件

【解析】

【答案】D。

保护期限

- 1. 以下著作权权利中,()的保护期受时间限制。
 - A. 署名权
 - B. 发表权
 - C. 修改权
 - D. 保护作品完整权

【解析】

在著作权法中规定:署名权、修改权、保护作品完整权的保护期是不受时间限制的。而发表权、使用权和获得报酬权的保护期限为:作者终生及其死亡后的50年(第50年的12月

31日)。

【答案】B。

- 2. 我国的《著作权法》对一般文字作品的保护期是作者有生之年和去世后 50 年,德国的《版权法》对一般文字作品的保护期是作者有生之年和去世后 70 年。假如某德国作者已去世 60 年,以下说法中正确的是()。
- A. 我国 M 出版社拟在我国翻译出版该作品,需要征得德里作者继承人的许可方可在 我国出版发行
- B. 我国 M 出版社拟在我国翻译出版该作品,不需要征得德国作者继承人的许可,就可在我国出版发行
- C. 我国 M 出版社未征得德国作者继承人的许可,将该翻译作品销售到德国,不构成 侵权
- D. 我国 M 出版社未征得德国作者继承人的许可,将该翻译作品在我国销售,构成侵权

【解析】

依据我国著作权法的规定,该德国作者的作品已经超过法定版权保护期,不再受到版权保护。因此,出版社不需要征得德国作者继承人的许可,即可在我国出版发行该德国作者的作品。如果将该翻译出版作品未征得德国作者继承人的许可销售到德国,已构成侵权。这是因为德国的《版权法》规定作品的版权保护期是作者有生之年和去世后70年,作者去世60年,作品的保护期尚未超过,所以我国出版社若将该翻译出版作品未征得德国作者继承人的许可销售到德国,则构成侵权。

我国的《著作权法》对一般文字作品的保护期是作者有生之年和去世后50年,该作者已去世60年,超过了我国《著作权法》对一般文字作品的保护期,在我国也不再受著作权保护。所以我国M出版社不需要征得德国作者继承人的许可,即可在我国出版发行该德国作者的作品。

【答案】B。

侵权判断

- 1. 以下关于为撰写学术论文引用他人资料的叙述中,错误的是()。
 - A. 既可引用发表的作品,也可引用未发表的作品
 - B. 只能限于介绍、评论或为了说明某个问题引用作品
 - C. 只要不构成自己作品的主要部分,可引用资料的部分或全部
 - D. 不必征得著作权人的同意,不向原作者支付合理的报酬

【解析】

未发表的不能引用,写论文的时候引用是需要发表的。

在看完著作权法的条款之后,唯一可能有疑虑的是 C 选项"只要不构成自己作品的主要部分,可引用资料的部分或全部",其实"全部引用"是有可能的,例如引用一个公式,虽然是全部,但个体本身非常小,所以也属于合理引用的范围。

【答案】A。

- 2. 某人持有盗版软件,但不知道该软件是盗版的,该软件的提供者不能证明其提供的复制品有合法来源。此情况下,则该软件的()应承担法律责任。
 - A.持有者
 - B.持有者和提供者均
 - C.提供者
 - D.持有者和提供者均不

【解析】

【答案】C。

- 3. M 画家将自己创作的一幅美术作品原件赠与了 L 公司。L 公司未经该画家的许可,擅自将这幅美术作品作为商标注册,且取得商标权,并大量复制用于该公司的产品上。L 公司的行为侵犯了 M 画家的()。
 - A. 著作权
 - B. 发表权
 - C. 商标权
 - D. 展览权

【解析】

M 画家并未将其美术作品实施商标注册,不享有其美术作品的商标权,因此 L 公司的行为未侵犯 M 画家的商标权,而是侵犯了 M 画家的在先权利。在先权利包括著作权、外观设计专利权、商号权、地理标志权、姓名权等。展览权是将作品原件或复制件公开陈列的权利。公开陈列的作品既可以是已经发表的作品,也可以是尚未发表的作品。画展、书法展、摄影展等都是公开陈列。

【答案】A。

- 4. 中国的 M 公司与美国的 L 公司分别在各自生产的平板电脑产品上使用 iPad 商标,且分别享有各自国家批准的商标专用权。中国 Y 手电筒经销商,在其经销的手电筒高端产品上也使用 iPad 商标,并取得了注册商标。以下说法正确的是()。
 - A. L 公司未经 M 公司许可在中国市场销售其产品不属于侵权行为
 - B. L 公司在中国市场销售其产品需要取得 M 公司和 Y 经销商的许可
 - C. L公司在中国市场销售其产品需要向 M公司支付注册商标许可使用费
 - D. Y 经销商在其经销的手电筒高端产品上使用 iPad 商标属于侵权行为

【解析】

B选项: 商标申请是分行业领域的。即M公司申请了国内平板电脑 ipad 的商标权,与Y公司申请国内手电筒 ipad 的商标权不冲突,不会相互侵权。所以当美国的L公司要把他的平板放在中国市场来卖时,与其冲突的,只有M公司,与Y无关。所以有M公司的许可就行了。不用管Y公司。

D选项:依据我国商标法规定,不同类别商品(产品)是可以使用相同或类似商标的,那么手电筒使用 ipad 不算侵权。

【答案】C。

- 5. 甲公司的某个注册商标是乙画家创作的绘画作品,甲申请该商标注册时未经乙的许可, 乙认为其著作权受到侵害。在乙可采取的以下做法中,错误的是()。
 - A. 向甲公司所在地人民法院提起著作权侵权诉讼
 - B. 请求商标评审委员会裁定撤销甲的注册商标
 - C. 首先提起诉讼,如对法院判决不服再请求商标评审委员会进行裁定
 - D. 与甲交涉, 采取许可方式让甲继续使用该注册商标

【解析】

本题看似是考著作权与商标权相关内容。但实际上是在考查一般争议处理的流程。对于任何争议基本上都是采取的,先找主管行政管理部门进行仲裁,仲裁不成功再进行诉讼,而 C 选项的说法,刚好弄反了。

【答案】C。

- 6. 王某原是 X 公司的项目经理,在 X 公司任职期间主持开发了某软件,但未与 X 公司签定劳动合同及相应的保密协议。X 公司对该软件进行了软件著作权登记并获准。王某随后离职并将其在 X 公司任职期间掌握的该软件技术信息、客户需求及部分源程序等秘密信息提供给另一软件公司。王某的行为()。
 - A. 既侵犯了科技公司的商业秘密权,又侵犯了科技公司的软件著作权

- B. 既未侵犯科技公司的商业秘密权,又未侵犯科技公司的软件著作权
- C. 侵犯了科技公司的商业秘密权
- D. 侵犯了科技公司的软件著作权

王某作为公司的职员,在任职期间主存开发的软件为职务软件,公司对该软件享有软件著作权。公司未与王某签定劳动合同及相应的保密协议,可以认为科技公司主观上没有保守商业秘密的意愿,客观上没有采取相应的保密措施,那么公司的软件技术秘密和软件经营秘密就不具有保密性。所以,不认为王某侵犯了公司的商业秘密权。

【答案】D。

标准的分类

- 1. 以下我国的标准代码中,()表示行业标准。
 - A. GB
 - B. SJ
 - C. DB11
 - D. O

【解析】

此类题,采用排除法。

GB(国标: 国家标准);

DB(地标:地方标准),再加上斜线 T组成推荐性地方标准(DBXX/T),不加斜线 T为强制性地方标准(DBXX)。

Q(企业标准),企业代号可用大写拼音字母或阿拉数字或两者兼用所组成(Q/XXX),按中央所属企业和地方企业分别由国务院有关行政主管部门或省、自治区、直辖市政府标准化行政主管部门会同同级有关行政主管部门加以规定。企业标准的编号由企业标准代号,发布顺序号和发布年代号组成,即Q/XXX XXXX— XXXX。

【答案】B。

专业英语

1. An architectural Style. defines as a family of such systems in terms of a (1) of structural organization. More specifically an architectural style. defines a vocabulary of (2) and connector types, and a set of (3) on how they can be combined. For many styles there may also exist one or more (4) that specify how to determine a system's overall properties from the properties of its parts. Many of architectural styles have been developed over the years. The best-known examples of (5) architectures are programs written in the Unix shell.

A.pattern B.data flow C.business process D.position level

A.metadata B.components C.models D.entities

A.functions B.code segments C.interfaces D.constraints

A.semantic models B.weak entities C.data schemas D.business models

A.event-based B.object-oriented C.pipe-and-filter D.layered

【解析】

架构风格以一种结构化组织模式定义一组这样的系统。具体来说,一种架构风格定义了一个构件及连接器类型的词汇表,以及一组关于它们如何能够被关联的约束对于许多风格来说,可能也存在一个或多个语义模型,从系统部件的特性来确定系统的整体特性。许多架构风格已经发展了很多年,众所周知的管道-过滤器架构的例子就是用 UNIX shell 编写的程序。

pattern: 模式 metadata: 元数据 segments: 部分 constraints: 约束 semantic: 语义 schemas: 模式, 图式, 计划 layered: 分层的

- 2. Software architecture reconstruction is an interpretive, jnteractive, and iterative process including many activities. () involves analyzing a system's existing design and implementation artifacts to construct a model of it. The result is used in the following activities to construct(结构) a view of the system. The database construction activity converts the () contained in the view into a standard format for storage in a database. The () activity involves defining and manipulating(控制) the information stored(存储的) in database to reconcile, augment(增强), and establish(建立) connections between the elements. Reconstruction consists of two primary activities: () and (). The former provides a mechanism for the user to manipulate architectural elements, and the latter provides facilities for architecture reconstruction.
 - (1)A. Reverse engineering
 - B. Information extraction
 - C. Requirements analysis
 - D. Source code analysis
 - (2)A. actors and use cases
 - B. processes and data
 - C. elements and relations
 - D. schemas and tables
 - (3)A. database normalization
 - B. schema definition
 - C. database optimization
 - D. view fusion
 - (4)A. architecture analysis and design
 - B. domain analysis and static modeling
 - C. visualization and interaction
 - D. user requirements modeling
 - (5)A. pattern definition and recognition
 - B. architecture design and implementation
 - C. system architecture modeling
 - D. dynamic modeling and reconstruction

软件架构重用是一个解释性、交互式和反复迭代的过程,包括了多项活动。信息提取通过分析系统现有设计和实现工件来构造它的模型。其结果用于在后续活动中构造系统的视图。数据库构建活动把模型中包含的元素和关系转换为数据库中的标准存储格式。视图融合活动包括定义和操作数据库中存储的信息,理顺、加强并建立起元素之间的连接。重构由两个主要活动组成;可视化和交互及模式定义和识别。前者提供了一种让用户操作架构元素的机制,后者则提供了用于架构重构的设施。

【答案】B、C、D、C、A。

3. A system's architecture is a representation of a system in which there is a mapping of (1) onto hardware and software components, a mapping of the (2) onto the hardware architecture. and a concern for the human interaction with these components. That is, system architecture is concerned with a total system, including hardware. software, and humans.

Software architectural structures can be divided into three major categories, depending on the broad nature of the elements they show.

- I):(3) embody decisions as a set of code or data units that have to be constructed or procured.
- II): (4) embody decisions as to how the system is to be structured as set of elements that have runtime behavior and interactions.
- III): (5) embody decisions as to how the system will relate to nonsoftware structures in its environment(such as CPUs, file systems, networks, development teams, etc.).

- (1)A. attributes B. constraint
- C. functionality
- D. requirements

- (2)A. physical components
 - B. network architecture
 - C. software architecture
 - D. interface architecture
- (3)A. Service structures
 - B. Module structures
 - C. Deployment structures
 - D. Work assignment structures
- (4)A. Decompostion structures
 - B. Layer structures
 - C. Implementation structures
 - D. Component-and-connector structures
- (5)A. Allocation structures
 - B. Class structures
 - C. Concurrency structures
 - D. Uses structures

系统架构是一个系统的一种表示,包含了**功能**到软硬件构件的映射、**软件架构**到硬件架构的映射以及对于这些组件人机交互的关注。也就是说,系统架构关注于整个系统,包括硬件、软件和使用者。软件架构结构根据其所展示元素的广义性质,可以被分为三个主要类别。

- 1) 模块结构将决策体现为一组需要被构建或采购的代码或数据单元。
- 2)**构件连接器结构**将决策体现为系统如何被结构化为一组具有运行时行为和交互的元素。
- 3)分配结构将决策体现为系统如何在其环境中关联到非软件结构,如 CPU、文件系统、 网络、开发团队等。

【答案】: C、C、B、D、A。

Constraint: 约束。 Structure: 架构。 Concurrency: 并发。

- 4. The architecture design specifies the overall architecture and the placement of software and hardware that will be used. Architecture design is a very complex process that is often left to experienced architecture designers and consultants. The first step is to refine the () into more detailed requirements that are then employed to help select the architecture to be used and the software components to be placed on each device. In a (), one also has to decide whether to use a two-tier,three-tier,or n-tier architecture. Then the requirements and the architecture design are used to develop the hardware and software specification. There are four primary types of nonfunctional requirements that can be important in designing the architecture. () specify the operating environment(s) in which the system must perform and how those may change over time. () focus on the nonfunctional requirements issues such as response time, capacity, and reliability. () are the abilities to protect the information system from disruption and data loss, whether caused by an intentional act. Cultural and political requirements are specific to the countries in which the system will be used.
 - (1)A. functional requirements
 - B. nonfunctional requirements
 - C. system constraint
 - D. system operational environment
 - (2)A. client-based architecture

- B. server-based architecture
- C. network architecture
- D. client-server architecture
- (3)A. Operational requirements
 - B. Speed requirement
 - C. Access control requirements
 - D. Customization requirements
- (4)A. Environment requirements
 - B. Maintainability requirements
 - C. Performance requirements
 - D. Virus control requirements
- (5)A. Safety requirements
 - B. Security requirements
 - C. Data management requirements
 - D. System requirements

架构设计指定了将要使用的软件和硬件的总体架构和布局。架构设计是一个非常复杂的过程,往往留给经验丰富的架构设计师和顾问。第一步是将(71)细化为更详细的要求,然后用于帮助选择要使用的体系结构以及要放置在每个设备上的软件组件。

在(72)中,还必须决定是使用两层,三层还是 n 层架构。然后使用需求和体系结构设计来开发硬件和软件规范。有四种主要的非功能需求类型可能在设计架构时非常重要。 (73)指定系统必须执行的操作环境以及这些操作环境如何随时间变化。(74)注重非功能性要求是特定于系统将被使用的国家。

在(72)中,还必须决定是使用两层,三层还是 n 层架构。 然后使用需求和体系结构设计来开发硬件和软件规范。有四种主要的非功能需求类型可能在设计架构时非常重要。(73)指定系统必须执行的操作环境以及这些操作环境如何随时间变化。(74)侧重于非功能性需求问题,如响应时间,容量和可靠性。(75)是否有能力保护信息系统免受故意行为造成的破坏和数据丢失。文化和政治要求是特定于系统将被使用的国家。

- 71 A functional requirements(功能需求)
 - B nonfunctional requirements (非功能需求)
 - C system constraint (系统约束)
 - D system operational environment (系统操作环境)
- 72 A client-based architecture (基于客户端的架构)
 - B server-based architecture(基于服务器的架构)
 - C network architecture (网络架构)
 - D client-server architecture (客户端-服务器架构)
- 73 A operational requirements (操作要求)
 - B speed requirements (速度要求)
 - C Access control requirements (访问控制要求)
 - D customization requirements (用户要求)
- 74 A environment requirements (环境要求)
 - B Maintainability requirements (可维护性要求)
 - C performance requirements (性能要求)
 - D virus control requirements(病毒控制要求)
- 75 A safety requirements (安全要求)
 - B security requirements(安全要求)
 - C Data management requirements (数据管理要求)
 - D system requirements(系统要求)

【答案】B、D、A、C、B。

- 5. An application architecture specifies the technologies to be used to implement one or more information systems. It serves as an outline for detailed design, construction, and implementation. Given the models and details, include(), we can distribute data and processes to create a general design of application architecture. The design will normally be constrained by architecture standards, project objectives, and (). The first physical DFD to be drawn is the(). The next step is to distribute data stores to different processors. Data() are two types of distributed data which most RDBMSs support. There are many distribution options used in data distribution. In the case of ()we should record each table as a data store on the physical DFD and connect each to the appropriate server.
 - (1)A.logical DFDs and ERD

B.ideal object model and analysis class model

C.use case models and interface prototypes

D.physical DFDs and database schema

(2)A.the database management system

B.the feasibility of techniques used

C.the network topology and technology

D.the user interface and process methods

(3)A.context DFD

B.system DFD

C.network architecture DFD

D.event-response DFD

- (4)A.vertical partitioning and horizontal replication
 - B. vertical replication and horizontal partitioning

C.integration and distribution

D.partitioning and replication

(5)A.storing all data on a single server

B.storing specific tables on different servers

C.storing subsets of specific tables on different servers

D.duplicating specific tables or subsets on different servers

【解析】

应用架构说明了实现一个或多个信息系统所使用的技术,它作为详细设计、构造和实现的一个大纲。给定了包括**逻辑数据流图和实体联系图**在内的模型和详细资料,我们可以分配数据和过程以创建应用架构的一个概要设计。概要设计通常会受到架构标准、项目目标和**所使用技术的可行性**的制约。需要绘制的第一个物理数据流图是**网络架构数据流图**。接下来是分配数据存储到不同的处理器。数据分区和复制是大多数关系型数据库支持的两种分布式数据形式。有许多分配方法用于数据分布。在不同服务器上存储特定表的情况下,我们应该将每个表记为物理数据流图中的一个数据存储,并将其连接到相应的服务器。

【答案】A、B、C、B、D。

- 6. Information systems design is defined as those tasks that focus on the specification of a detailed computer-based solution. Typically, there are four systems design tasks for in-house development.
- 1) The first task is to specify (1), which defines the technologies to be used by one, more, or all information systems in terms of their data, processes, interfaces, and network components. This task is accomplished by analyzing the data models and process models that are initially created during requirements analys16.

- 2) The next systems design task is to develop the (2). The purpose of this task is to prepare technical design specifications for a database that will be adaptable to future requirements and expansion.
- 3) Once the database prototype has been built, the systems designer can work closely with system users to develop input, output and dialogue specifications. The (3) must be specified to ensure that the outputs are not lost, misrouted, misused, or incomplete.
- 4) The fourth design task involves packaging all the specifications from the previous design tasks into a set of specifications that will guide the (4) activities during the following phases of the systems development methodology.

Finally, we should (5) and update the project plan accordingly. The key deliverable should include a detailed plan for the construction phase that should follow.

- (1)A. an application architecture
 - B. a distributed system
 - C. a system scope
 - D. a system physical model
- (2)A. database design specifications
 - B. database organization decisions
 - C. data structure specifications
 - D. data distribution decisions
- (3)A. format and layout
 - B. transaction details
 - C. additional instructions
 - D. internal controls
- (4)A. system administrator's
 - B. system analyst's
 - C. computer programmer's
 - D. system designer's
- (5)A. adjust the project schedule
 - B. reevaluate project feasibility
 - C. evaluate vendor proposals
 - D. select the best vendor proposal

【解析】

参考译文:

信息系统设计被定义为一些任务,它们主要关注一个详细的计算机解决方案的规格说明。通常来说,内部开发有四种系统设计任务。

- (1)第一项任务是确定一个**应用程序架构**,它以数据、过程、接口和网络组件的方式定义一个、多个或所有信息系统要使用的技术。完成这项任务需要分析最初创建于需求分析期间的数据模型和过程模型。
- (2)下一项系统设计任务是开发**数据库设计的规格**说明。该任务的目的是准备一个数据库技术设计规格说明,以适应将来的需求和扩展。
- (3)一旦建成了数据库原型,系统设计入员能够和系统用户密切合作开发输入、输出和对话框规格说明。必须指定**内部控件**来确保输出不会丢失、误传、滥用或不完整。
- (4)第四项设计任务包括把之前所有设计任务的规格说明打包为一套规格说明,将在系统开发方法的后续阶段中指导**计算机程序员**的活动。

最后,我们应该**重新评估项目的可行性**并相应地更新项目计划。主要交付成果将包括构建阶段应该遵循的一个详细计划。

Specifications(规格) internal(内部的)

【答案】A、A、D、C、B。

- 7. The software architecture is a set of software components, subsystems, relationships, interactions, the properties of each of these elements, and the set of guiding principles that together constitute the fundamental properties and constraints of a software system or set of systems. (1) defines a general set of element types and their interactions. The examples include Pipes and Filters, Model-View-Controller, and Reflection. A (2) in software architecture is a representation used to understand or document one or more aspects of a problem or solution. Architecture is usually used in conjunction with many adjunct terms. The (3) defines the key strategies, organization, goals and related processes of the enterprise. At the enterprise level, the (4) may be more of a set of guidelines on how the various software architectures should be constructed consistently across the enterprise. The (5), which describes the high-level set of elements involved in application from a particular domain along with their Interactions, is often used to focus on subsystem definition rather than application process level definition.
 - (1)A. Architectural pattern
 - B. Architectural description
 - C. Architectural view
 - D. Architectural viewpoint
 - (2)A. model
 - B. domain
 - C. component
 - D. subsystem
 - (3)A. enterprise architecture
 - B. technical architecture
 - C. infrastructure architecture
 - D. business architecture
 - (4)A. enterprise architecture
 - B. data architecture
 - C. application architecture
 - D. information architecture
 - (5)A. product-line architecture
 - B. reference architecture
 - C. technology architecture
 - D. infrastructure architecture

【解析】

软件架构是一组软件构件、子系统、关联关系、交互关系以及其中每个元素的特性和一组指导原则,这些共同构成一个软件系统或一组系统的基本特性和约束。**架构模式**定义了一组通用的元素类型及其交互关系。其中的例子包括 Pipes and Filters、MVC 和 Reflection。软件架构中的模型是一种表现形式,用于从一个或多个方面理解或记录一个问题或解决方案。架构通常会与一些附属词结合起来使用。业务架构定义了企业的关键策略、组织、目标和相关过程。在企业层面,应用架构可能更多的是一组关于应该如何在整个企业一致地构建各种软件架构的指导原则。参考架构描述了源自特定领域的应用涉及的高层元素集合及其交互关系,通常用于关注子系统的定义而不是应用过程级别定义。

Infrastructure: 基础设施

【答案】A、A、D、C、B。