Bayes' Nets: Sampling

> Leaning: Get Samples from a distribution
you don't know.

SInferme: Getting a Sample is foote than

Lo Inference: Getting a Sample is foote than Computing the original answers.

* Sampling from givan distribution

- * Step1: Get sample u from uniform distribution over [0,1]
- * Step 2: Convert this sample u into an outcome for the given distribution by having each target outcome associated with a sub-interval of [0,1] with sub-sinterval size early to Probability of the outcome.

* Sampling in Bayes' Nets

- 1 Penion Sampling
- @ Rejection Sampling
- 3 Likelihood Weighting
- (9) Gibbs Sampling

* Parion Sampling

- · For i=1,2,-, M
 - · Sample X; Gran P(X; IPanb (X;))
- · Rotum (X, X2, -- Xn)

This process generates samples with probability:

$$S_{ps}(\alpha, \alpha_n) = T_{p(\alpha, |P_{mals}(x_i))} = P(\alpha, -\alpha_n)$$

=> Lat the number of Samples of an event be Nps (a, -- an)

$$\lim_{N\to\infty} \widetilde{P}(\alpha, -\alpha_n) = \lim_{N\to\infty} N_{ps}(\alpha, -\alpha_n) N$$

$$= S_{ps}(\alpha, -\alpha_n)$$

$$= P(\alpha, -\alpha_n)$$

=> I.e., the Sampling procedure is Consistent.

* Rejection Sampling

Impul: evidence instantiation

- Sample X: form P(X: | Parents (X:))
- · If x, not consistent with evidence
 - Reject: oreture no sample is generated in this cycle

Petern (XXX2---Xn)

×	Likelihood	Weight	ſ
		The state of the s	

Poroblem with origination Sampling:

Fif evidence is unlikely orejects lots
of Saples. Lo Evidence not exploited as you sple

Idea: Fix evidence vanidales and sample the onest.

-> Robbem: Sample distribution not consistat.

La Solution: Weight by probability of evidence giver

- * Imput: evidence instartichen
- # foon i=1,2,--. M
 - * If x, is an evidence variable b> x: = Observation x: for X; L> Set W = W * P(x: | Panets(x:))
- e oneturn (\alpha, \alpha_2 -- \alpha_n), W

⇒ Sampling distribution if z sampled and e fixed evidence

=> Now, saples have weights

$$\omega(z,e) = \prod_{i=1}^{m} P(e_i | P_{enats}(E_i))$$

=> Together, weighted sanding distribution is consistent

Sws(z,e).
$$\omega(z,e) = \prod_{i=1}^{n} P(z_i | Panets(z_i)) \prod_{i=1}^{m} P(e_i | Panets(e_i))$$

=> Likelihood weighting obesnit solve all our problems:

Evidence influences the choice of down stream variables, but not upstream ones
La we would like to Consider evidence when we

Sample every varieble (leads to Gibbs sampling)

Mibbs Sampling

Penadure

Keep track of a full instantiation X, X2, -- Xm.

Stant with an arbitrary instantiation Consistent
with the evidence.

Sample one variable at a time, conditioned and the mest, but keep evidence fixed. > Keep snapeating this for a long time.

Poroperty

Los The limit of suspecting this infinitely many times the resulting samples comes from the Carroct clistribution.

3 Rationale

Los Both apstream & downstream varieble condition on avidonce.

=> Cibbs sampling is a special case of more general methodo called Markor chair Monte (ando (M(MC)) mahads