06 (CO1,

PO1) 05

(CO1, POI)

12 (CO1, PO1)

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Semester Final Examination

Winter Semester, A. Y. 2021-2022

Course No.: EEE 4383

Time: 3 Hours

Course Title: Electronic Devices and Circuits

 $I_{DSS}=10 \text{ mA}$ and $V_{P}=-4V$.

three operating regions.

a) Write down at least five applications of UJT.

Full Marks: 150

There are 6 (six) questions. Answer all 6 (six) questions. The symbols have their usual meanings.

Pro	gram	mable calculators are not allowed. Marks of each question and corresponding COs and the brackets.	POs are				
1.	a)	Write down the three most important characteristics of an ideal operational amplifier.					
V.	b)	Calculate V_0 and i_0 in the Op-amp circuit of fig. 1(b).	10 (CO3, PO3)				
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100,				
		Fig. 1(b) Using the ideal Op-amp, design a circuit that will take V ₁ , V ₂ & V ₃ as inputs and	09				
	c)	will produce the following output:	(CO3, PO3)				
		$V_{out} = 5V_1 - 10 dV_2 / dt + 2 \int V_3 dt$	04				
2	. a)	 a) Write down the significant difference between the construction of an enhancement type MOSFET and a depletion type MOSFET. 					
	b)	at a shappel enhancement-type MOSFET with the proper biasing applied	15 (CO1, PO1)				
		MOSFET with	06				

c) Sketch the transfer characteristics for an n-channel depletion-type MOSFET with

b) Sketch UJT static emitter characteristic curve with proper labeling and explain its

	c)	For a	a unij = 0.7	unction tran	nsistor with V_{BB} = 20V, η =0.65, R_{BI} = 2k Ω (I ϵ =0), and ne:	08 (CO3, PO3)
		i.				
*		ii.	R	58		
		iii.	٧	RB1		
		iv.	· V	P		10000
4.	a)	Wr (BJ	ite do	wn at least d Field effe	five major differences between the Bipolar junction transistor et transistor (FET).	05 (CO1, PO1)
	b)) De	sign :	a CMOS inv lain how CM	verter using a P-channel MOSFET and an N-channel MOSFET MOS works as an inverter.	10 (CO3, PO3)
	c	+h	a surve	ring princip	construction of a P-channel JFET. For V _{GS} = 0V, briefly describe the of P-channel JFET. Apply the proper biasing between drain the drain characteristics curve for different values of V _{GS} .	10 (CO2, PO2)
	5. ε				fan increasing level of R_e on the load line and the Q point in the es curve of BJT.	05 (CO1, PO1)
	ŀ	o) E	xplair haract	three types eristics.	of equivalent circuits of a diode and sketch their corresponding	06 (CO1, PO1)
			nalyz arame		using small signal remodel of fig. 5(c) and find the following	14 (CO2, PO2)

- i. Calculate IB, IC, and re.
- ii. Determine Z_i and Z_o .
- iii. Calculate Av.
- iv. Determine the effect of $r_o = 30 \text{ k}\Omega$ on A_v .

a) Sketch the output voltage wave shape (V₀) of fig. 6(a) and show the necessary calculation.

Fig. 6(a)

b) Write down the different modes of operation of BJT and the working principle of BJT for common emitter configuration.

10 (CO1, PO1)

c) For the emitter-bias network of fig. 6(c), determine

10

i. la

(CO2,

ii. Ic iii. Vcs PO2)

iv. Vc

v. VE

vi. Vs

vii. V_{BC}

Fig. 6(c)

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Semester Final Examination

Winter Semester, A. Y. 2022-2023

Course No.: EEE 4383

Time: 3 Hours

Course Title: Electronic Devices and Circuits

Full Marks: 150

There are 6 (six) questions. Answer all 6 (six) questions. The symbols have their usual meanings. Programmable calculators are not allowed. Marks of each question and corresponding COs and POs are written in the brackets.

- a) Explain the purpose of incorporating negative feedback in op-amp designs.
 b) Using the ideal op-amp, design a circuit that will take V₁, V₂ & V₃ as inputs and will produce the following output:
 V_{out} = V₁ 6 dV₂/dt + 9 \int V₃ dt
 - c) Determine Vo in the op-amp circuit of Fig. 1(c)

12 (CO3,

PO3)

Fig. 1(c)

a) Write down the three most important characteristics of an ideal operational amplifier.

(CO1, PO1)

b) Determine V₀ in the op-amp circuit of Fig. 2(b)

07 (CO3,

PO3)

10 kΩ

20 kΩ

10 kΩ

2 mA

Fig. 2(b)

Page 1 of 3

c) An op-amp integrator with R= 4 M Ω and C = 1 μ F has the input waveform shown in fig. 2(c). Sketch the output waveform. (Show necessary calculation)

15 (CO3, PO3)

05

(CO1,

05

(CO1, PO1)

20

PO2)

- 3. a) Write down at least five major differences between the Bipolar junction transistor (BJT) and Field effect transistor (FET).
 - PO1) b) Sketch a CMOS inverter using a P-channel MOSFET and an N-channel MOSFET 10 and explain how CMOS works as an inverter. (CO3, PO3)
 - Illustrate the basic construction of an N-channel JFET. For V_{GS}= 0V, briefly describe 10 the working principle of N-channel JFET. Apply the proper biasing between drain (CO1, and source and sketch the drain characteristics curve for different values of Vos. PO1)
- Sketch an n-channel enhancement-type MOSFET with the proper biasing applied 13 (VDS>0 V, VGS> VT) and indicate the channel, the direction of electron flow, and the (CO1. resulting depletion region. Briefly describe the basic operation of an enhancement-PO1) type MOSFET.
 - b) Using the data provided in fig 4(b) and an average threshold voltage of V_{GS(TH)} = 3V, 12 (CO1, Determine the resulting value of k for the N-channel enhancement type PO1) MOSFET.
 - Sketch the transfer characteristic curve. (Show necessary calculation)

Characteristics	Symbol	Min	Max	Unit
Gate Threshold Voltage (V _{DS} = 10 V, I _D = 10 μA)	V _{GS(TH)}	1.0	5.0	V _{dc}
Drain-Source On-Voltage (I _D = 2.0 mA, V _{GS} = 10 V)	V _{DS(on)}	•	1.0	V
On-State Drain Current (V _{GS} = 10 V, V _{DS} = 10 V)	I _{D(on)}	3.0	180	mAdo

Fig. 4(b)

- Illustrate the effect of lower values of Vcc on the load line and the Q point in output characteristics curve of BJT.
 - b) Analyze the circuit using small signal re model for the common emitter configuration given in Fig. 5(b) and find the following parameters. (CO2.
 - Determine re i.
 - Calculate Z_i and Z_o . ii.

- iii. Find A_v
- iv. Repeat parts (ii) and (iii) with $r_0 = 25 \text{ k}\Omega$.

Fig. 5(b)

a) Sketch Output Voltage (V₀) for the given network shown in figure 6(a). Also, show
the necessary calculation.
 12
(CO2,
PO2)

Fig. 6(a)

- b) For the network of Fig. 6(b2):
 - i. Calculate 5_T

(CO2,

ii. Compare 5τ to half the period of the signal

PO2)

13

iii. Sketch Vo (show necessary calculation)

Page 3 of 3