# Classification automatique

TP 2

## Clustering sur données continues

On dipose du jeu de données suivant, l'objectif est d'effectuer une classificatuon des types de véhicules en fonction de leur motorisation.

xtable(mtcars, auto = TRUE)

|                     | mpg  | $\operatorname{cyl}$ | $\operatorname{disp}$ | hp  | $\operatorname{drat}$ | wt    | qsec  | VS | am | gear | carb |
|---------------------|------|----------------------|-----------------------|-----|-----------------------|-------|-------|----|----|------|------|
| Mazda RX4           | 21.0 | 6                    | 160.0                 | 110 | 3.90                  | 2.620 | 16.46 | 0  | 1  | 4    | 4    |
| Mazda RX4 Wag       | 21.0 | 6                    | 160.0                 | 110 | 3.90                  | 2.875 | 17.02 | 0  | 1  | 4    | 4    |
| Datsun 710          | 22.8 | 4                    | 108.0                 | 93  | 3.85                  | 2.320 | 18.61 | 1  | 1  | 4    | 1    |
| Hornet 4 Drive      | 21.4 | 6                    | 258.0                 | 110 | 3.08                  | 3.215 | 19.44 | 1  | 0  | 3    | 1    |
| Hornet Sportabout   | 18.7 | 8                    | 360.0                 | 175 | 3.15                  | 3.440 | 17.02 | 0  | 0  | 3    | 2    |
| Valiant             | 18.1 | 6                    | 225.0                 | 105 | 2.76                  | 3.460 | 20.22 | 1  | 0  | 3    | 1    |
| Duster 360          | 14.3 | 8                    | 360.0                 | 245 | 3.21                  | 3.570 | 15.84 | 0  | 0  | 3    | 4    |
| Merc 240D           | 24.4 | 4                    | 146.7                 | 62  | 3.69                  | 3.190 | 20.00 | 1  | 0  | 4    | 2    |
| Merc 230            | 22.8 | 4                    | 140.8                 | 95  | 3.92                  | 3.150 | 22.90 | 1  | 0  | 4    | 2    |
| Merc 280            | 19.2 | 6                    | 167.6                 | 123 | 3.92                  | 3.440 | 18.30 | 1  | 0  | 4    | 4    |
| Merc 280C           | 17.8 | 6                    | 167.6                 | 123 | 3.92                  | 3.440 | 18.90 | 1  | 0  | 4    | 4    |
| Merc 450SE          | 16.4 | 8                    | 275.8                 | 180 | 3.07                  | 4.070 | 17.40 | 0  | 0  | 3    | 3    |
| Merc 450SL          | 17.3 | 8                    | 275.8                 | 180 | 3.07                  | 3.730 | 17.60 | 0  | 0  | 3    | 3    |
| Merc 450SLC         | 15.2 | 8                    | 275.8                 | 180 | 3.07                  | 3.780 | 18.00 | 0  | 0  | 3    | 3    |
| Cadillac Fleetwood  | 10.4 | 8                    | 472.0                 | 205 | 2.93                  | 5.250 | 17.98 | 0  | 0  | 3    | 4    |
| Lincoln Continental | 10.4 | 8                    | 460.0                 | 215 | 3.00                  | 5.424 | 17.82 | 0  | 0  | 3    | 4    |
| Chrysler Imperial   | 14.7 | 8                    | 440.0                 | 230 | 3.23                  | 5.345 | 17.42 | 0  | 0  | 3    | 4    |
| Fiat 128            | 32.4 | 4                    | 78.7                  | 66  | 4.08                  | 2.200 | 19.47 | 1  | 1  | 4    | 1    |
| Honda Civic         | 30.4 | 4                    | 75.7                  | 52  | 4.93                  | 1.615 | 18.52 | 1  | 1  | 4    | 2    |
| Toyota Corolla      | 33.9 | 4                    | 71.1                  | 65  | 4.22                  | 1.835 | 19.90 | 1  | 1  | 4    | 1    |
| Toyota Corona       | 21.5 | 4                    | 120.1                 | 97  | 3.70                  | 2.465 | 20.01 | 1  | 0  | 3    | 1    |
| Dodge Challenger    | 15.5 | 8                    | 318.0                 | 150 | 2.76                  | 3.520 | 16.87 | 0  | 0  | 3    | 2    |
| AMC Javelin         | 15.2 | 8                    | 304.0                 | 150 | 3.15                  | 3.435 | 17.30 | 0  | 0  | 3    | 2    |
| Camaro Z28          | 13.3 | 8                    | 350.0                 | 245 | 3.73                  | 3.840 | 15.41 | 0  | 0  | 3    | 4    |
| Pontiac Firebird    | 19.2 | 8                    | 400.0                 | 175 | 3.08                  | 3.845 | 17.05 | 0  | 0  | 3    | 2    |
| Fiat X1-9           | 27.3 | 4                    | 79.0                  | 66  | 4.08                  | 1.935 | 18.90 | 1  | 1  | 4    | 1    |
| Porsche 914-2       | 26.0 | 4                    | 120.3                 | 91  | 4.43                  | 2.140 | 16.70 | 0  | 1  | 5    | 2    |
| Lotus Europa        | 30.4 | 4                    | 95.1                  | 113 | 3.77                  | 1.513 | 16.90 | 1  | 1  | 5    | 2    |
| Ford Pantera L      | 15.8 | 8                    | 351.0                 | 264 | 4.22                  | 3.170 | 14.50 | 0  | 1  | 5    | 4    |
| Ferrari Dino        | 19.7 | 6                    | 145.0                 | 175 | 3.62                  | 2.770 | 15.50 | 0  | 1  | 5    | 6    |
| Maserati Bora       | 15.0 | 8                    | 301.0                 | 335 | 3.54                  | 3.570 | 14.60 | 0  | 1  | 5    | 8    |
| Volvo 142E          | 21.4 | 4                    | 121.0                 | 109 | 4.11                  | 2.780 | 18.60 | 1  | 1  | 4    | 2    |

## 1. Data: stats descriptives

```
distinct_values = sapply(mtcars, function(x) paste0(length(unique(x)))),
    row.names = NULL)
z
```

| variable              | classe | first_values                             | distinct_values |
|-----------------------|--------|------------------------------------------|-----------------|
| mpg                   | double | 21, 21, 22.8, 21.4, 18.7, 18.1           | 25              |
| cyl                   | double | 6, 6, 4, 6, 8, 6                         | 3               |
| disp                  | double | 160, 160, 108, 258, 360, 225             | 27              |
| hp                    | double | 110, 110, 93, 110, 175, 105              | 22              |
| $\operatorname{drat}$ | double | 3.9, 3.9, 3.85, 3.08, 3.15, 2.76         | 22              |
| wt                    | double | 2.62, 2.875, 2.32, 3.215, 3.44, 3.46     | 29              |
| qsec                  | double | 16.46, 17.02, 18.61, 19.44, 17.02, 20.22 | 30              |
| vs                    | double | 0, 0, 1, 1, 0, 1                         | 2               |
| am                    | double | 1, 1, 1, 0, 0, 0                         | 2               |
| gear                  | double | 4, 4, 4, 3, 3, 3                         | 3               |
| carb                  | double | 4, 4, 1, 1, 2, 1                         | 6               |
|                       |        |                                          |                 |

```
#statistiques élémentaires
dtf <- round(sapply(mtcars, each(min, max, mean, sd, var, median, IQR)),3)
xtable(dtf,digits = 2)</pre>
```

|                     | mpg    | cyl   | disp      | hp       | drat  | wt    | qsec   | vs    | am    | gear  | carb  |
|---------------------|--------|-------|-----------|----------|-------|-------|--------|-------|-------|-------|-------|
| min                 | 10.400 | 4.000 | 71.100    | 52.000   | 2.760 | 1.513 | 14.500 | 0.000 | 0.000 | 3.000 | 1.000 |
| max                 | 33.900 | 8.000 | 472.000   | 335.000  | 4.930 | 5.424 | 22.900 | 1.000 | 1.000 | 5.000 | 8.000 |
| mean                | 20.091 | 6.188 | 230.722   | 146.688  | 3.597 | 3.217 | 17.849 | 0.438 | 0.406 | 3.688 | 2.812 |
| $\operatorname{sd}$ | 6.027  | 1.786 | 123.939   | 68.563   | 0.535 | 0.978 | 1.787  | 0.504 | 0.499 | 0.738 | 1.615 |
| var                 | 36.324 | 3.190 | 15360.800 | 4700.867 | 0.286 | 0.957 | 3.193  | 0.254 | 0.249 | 0.544 | 2.609 |
| median              | 19.200 | 6.000 | 196.300   | 123.000  | 3.695 | 3.325 | 17.710 | 0.000 | 0.000 | 4.000 | 2.000 |
| IQR                 | 7.375  | 4.000 | 205.175   | 83.500   | 0.840 | 1.029 | 2.008  | 1.000 | 1.000 | 1.000 | 2.000 |

## 2. Visualitation en fonction des variables wt et qsec.





Les illustrations suivant les axes ci-dessus laissent penser qu'une segmentation en deux ou trois classes semble appropriée.

### 3. K-means: méthode de mac queen

```
# kmeans avec les attributs wt et qsec k=3
cars <- mtcars
kmeans.1 <- kmeans(cbind(cars$wt,cars$qsec), centers=3, algorithm=c("MacQueen"))</pre>
kmeans.1
## K-means clustering with 3 clusters of sizes 5, 15, 12
##
## Cluster means:
##
        [,1]
                [,2]
## 1 3.384000 15.17000
## 2 3.628467 17.32267
## 3 2.633750 19.62250
##
## Clustering vector:
   ##
##
## Within cluster sum of squares by cluster:
## [1] 2.08912 21.42988 20.60248
##
   (between_SS / total_SS = 65.7 %)
##
```

```
## Available components:
##
## [1] "cluster"
                       "centers"
                                       "totss"
                                                      "withinss"
## [5] "tot.withinss" "betweenss"
                                       "size"
                                                      "iter"
## [9] "ifault"
cars$cluster <- factor(kmeans.1$cluster)</pre>
cars$cyl <- factor(cars$cyl, labels = c('Four cylinder', 'Six cylinder', 'Eight cylinder'))</pre>
# Centres des classes
centres <- data.frame(cluster = factor(seq(1:3)),kmeans.1$centers)</pre>
colnames(centres) <- c("cluster", "wt", "qsec")</pre>
centres
```

| cluster | wt       | qsec     |
|---------|----------|----------|
| 1       | 3.384000 | 15.17000 |
| 2       | 3.628467 | 17.32267 |
| 3       | 2.633750 | 19.62250 |

```
# Variances inter-classes et intra-classe
var tot <-kmeans.1$totss</pre>
var_intra <-kmeans.1$tot.withinss</pre>
var inter <-kmeans.1$betweenss</pre>
print(paste("Variance totale: ",var_tot))
## [1] "Variance totale: 128.666898"
print(paste("Variance inter: ",var_inter))
## [1] "Variance inter: 84.5454136833333"
print(paste("Variance intra: ",var_intra))
## [1] "Variance intra: 44.1214843166667"
var_inter+var_intra
## [1] 128.6669
#Calculer le R2.
R2=var_inter/var_tot
\# Visualiser le nuage de points, en affectant à chaque individu une couleur propre à sa classe
#d'affectation, les centres des classes devront se disntinquer des autres points.
gg <- ggplot(cars, aes(x = wt,y = qsec,color=cluster))+
 geom_point() +
  geom text(data = cars,
            aes(x = wt,
                y = qsec,
                label = row.names(cars),
                color = cluster),
            nudge_y = .2,
            check_overlap = TRUE) +
  geom_point(data = centres,
             mapping = aes(x = wt,
```

```
y = qsec,
color = cluster),
size = 7,
pch = 1)
gg
```



#Donner la matrice de confusion et commenter les résultats obtenus.(NE pas en tenir compte)
xtable(table(cars\$cluster, cars\$cyl))

| Four cylinder | Six cylinder | Eight cylinder |
|---------------|--------------|----------------|
| 0             | 1            | 4              |
| 2             | 3            | 10             |
| 9             | 3            | 0              |

#### #Décrire et analyser les classes obtenues.

La segmentation obenue distingue les véhicules à faible motorisation(classe 3) des véhicule à forte motorisation(classe 2).

#### 4 cf. deuxième partie question 5

5

```
res <- c()
for (i in 1:10) {
   restmp=kmeans(cbind(cars$wt,cars$qsec),centers=i,algorithm="MacQueen")
   res[i]=restmp$betweenss/restmp$totss
}
plot(1:10,res,type='b')</pre>
```



```
n_class <- 3
cars <- mtcars
kmeans.2 <- kmeans(cbind(cars$wt,cars$mpg), centers=n_class, algorithm=c("MacQueen"))</pre>
## K-means clustering with 3 clusters of sizes 5, 14, 13
## Cluster means:
##
        [,1]
                [,2]
## 1 1.819600 30.88000
## 2 3.971714 14.95714
## 3 2.942308 21.46923
##
## Clustering vector:
  ##
## Within cluster sum of squares by cluster:
## [1] 25.00212 79.18771 57.12002
   (between_SS / total_SS = 86.0 %)
##
## Available components:
```

| cluster | wt       | qsec     |
|---------|----------|----------|
| 1       | 1.819600 | 30.88000 |
| 2       | 3.971714 | 14.95714 |
| 3       | 2.942308 | 21.46923 |

```
# Variances inter-classes et intra-classe
var tot <-kmeans.2$totss</pre>
var intra <-kmeans.2$tot.withinss</pre>
var_inter <-kmeans.2$betweenss</pre>
print(paste("Variance totale: ",var_tot))
## [1] "Variance totale: 1155.7259355"
print(paste("Variance inter: ",var_inter))
## [1] "Variance inter: 994.416078651648"
print(paste("Variance intra: ",var_intra))
## [1] "Variance intra: 161.309856848352"
var_inter+var_intra
## [1] 1155.726
#Calculer le R2.
R2=var_inter/var_tot
# Visualiser le nuage de points, en affectant á chaque individu une couleur propre à sa classe
#d'affectation, les centres des classes devront se disntinquer des autres points.
gg <- ggplot(cars, aes(x = wt,y = qsec,color=cluster))+
  geom_point() +
  geom_text(data = cars,
            aes(x = wt,
                y = qsec,
                label = row.names(cars),
                color = cluster),
            nudge_y = .2,
            check_overlap = TRUE) +
  geom_point(data = centres,
             mapping = aes(x = wt,
                           y = qsec,
```

```
color = cluster),
size = 7,
pch = 1)
gg
```



xtable(table(cars\$cluster, cars\$cyl))

| Four cylinder | Six cylinder | Eight cylinder |
|---------------|--------------|----------------|
| 5             | 0            | 0              |
| 0             | 2            | 12             |
| 6             | 5            | 2              |

```
cars <- mtcars
k7=kmeans(cbind(cars$wt,cars$mpg),3,nstart=30,algorithm="MacQueen")
k7

## K-means clustering with 3 clusters of sizes 14, 12, 6

##
## Cluster means:
## [,1] [,2]
## 1 3.072143 20.64286
## 2 4.058667 14.45833
## 3 1.873000 30.06667
##</pre>
```

```
## Clustering vector:
## Within cluster sum of squares by cluster:
## [1] 51.48262 57.60729 44.93300
## (between_SS / total_SS = 86.7 %)
## Available components:
##
## [1] "cluster"
                  "centers"
                               "totss"
                                            "withinss"
## [5] "tot.withinss" "betweenss"
                               "size"
                                            "iter"
## [9] "ifault"
km.forgy=kmeans(cbind(cars$wt,cars$mpg),3,algorithm="Forgy")
km.forgy
## K-means clustering with 3 clusters of sizes 12, 14, 6
## Cluster means:
##
               [,2]
       [,1]
## 1 4.058667 14.45833
## 2 3.072143 20.64286
## 3 1.873000 30.06667
##
## Clustering vector:
## Within cluster sum of squares by cluster:
## [1] 57.60729 51.48262 44.93300
## (between_SS / total_SS = 86.7 %)
##
## Available components:
##
## [1] "cluster"
                  "centers"
                               "totss"
                                            "withinss"
## [5] "tot.withinss" "betweenss"
                               "size"
                                            "iter"
## [9] "ifault"
km.nuee=kmeans(cbind(cars$wt,cars$mpg),3)
km.nuee
## K-means clustering with 3 clusters of sizes 14, 6, 12
## Cluster means:
       [,1]
               [,2]
## 1 3.072143 20.64286
## 2 1.873000 30.06667
## 3 4.058667 14.45833
## Clustering vector:
## Within cluster sum of squares by cluster:
## [1] 51.48262 44.93300 57.60729
## (between_SS / total_SS = 86.7 %)
##
## Available components:
```

```
##
## [1] "cluster" "centers" "totss" "withinss"
## [5] "tot.withinss" "betweenss" "size" "iter"
## [9] "ifault"
```