Clase 3/22/2018

Si X es V.A.C.

Algunas definiciones de repaso

$$R_x = (a,b) \ o \ R_x = \cup_i (a_i,b_i)$$

Se denomina $f_x(x)$ funcion densidad de probabilidad

Se define

$$P(X\epsilon(c,d)) = \int_c^d f_x(x) dx = F_x(d) - F_x(c)$$

Por otro lado vale que

$$egin{cases} f_x(x) \geq 0 & orall x \epsilon R \ \int_{-\infty}^{\infty} f_x(x) dx = 1 \end{cases}$$

Se define

$$F_x(x) = \int_{-\infty}^{\infty} f_x(t) dt$$

Valor esperado

$$E_x = \int_{-\infty}^{\infty} x f_x(x) dx$$

En general

$$E(G(X)) = \int_{-\infty}^{\infty} G(x) f_x(x) dx$$

Varianza

$$V(X) = E(X^2) - (E(X))^2 = \int_{-\infty}^{\infty} x^2 f_x(x) dx - (E(X))^2$$

Si X tiene distribucion uniforme vemos algunas cosas que suceden

Es decir, si

$$X \sim U(a,b)$$

$$X \sim Exp(b) \;\;\; b>0$$

Cuando

$$f_x(x)=Ce^{-bx}I_{(0,+\infty)}=egin{cases} Ce^{-bx} & x>0 \ 0 & x\leq 0 \end{cases}$$

entonces vale que

$$E(x) = \int_a^b \frac{x dx}{a - b} = \frac{b^2 - a^2}{2(b - a)} = \frac{a + b}{2}$$

$$V(X) = \int_a^b \frac{x^2 dx}{b - a} - \frac{b^3 - a^3}{3(b - a)} = \frac{b^3 - a^3}{3(b - a)} - \frac{(a + b)^2}{4} = \frac{(b - a)^2}{12}$$

$$\sigma(X) = \sqrt{V(X)} = \frac{b - a}{\sqrt{12}} \approx 0.289(b - a)$$

Un caso facil, funcion triangular

$$f_x(x)=(1-|x|)I_{(-1,1)}(x) \ E(X)=0 \ V(X)=E(X^2)=2\int_0^1 x^2(1-x)dx=2(rac{1}{3}-rac{1}{4})=rac{1}{6} \ \sigma(X)=rac{1}{\sqrt{6}}=pprox 0.408$$

Otro ejemplo

$$X\sim Exp(\lambda) \quad \lambda>0 \ f_x(x)=Ce^{-b\lambda}I_{(0,+\infty)}=egin{cases} Ce^{-\lambda x} & x>0 \ 0 & x\leq 0 \ \end{bmatrix} \ \int_0^\infty e^{-\lambda x}dx=rac{1}{\lambda}, \quad \lambda>0 \ \int_0^\infty xe^{-\lambda x}dx=rac{1}{\lambda^2} \ \end{cases}$$

Por lo tanto

$$E(X) = \int_0^\infty x e^{-\lambda x} dx = rac{1}{\lambda}$$

Seguimos haciendo calculos para sacar la varianza

$$\int_0^\infty x^2 e^{-\lambda x} dx = \frac{1}{\lambda^3}$$

Por lo tanto

$$V(X)=\int_0^\infty x^2\lambda e^{-\lambda x}dx-rac{1}{\lambda^2}=rac{2}{\lambda^2}-rac{1}{\lambda^2}=rac{1}{\lambda^2}$$

Se puede probar por induccion que dado $n \ \epsilon \ N$

$$\int_0^\infty x^{n-1}e^{-\lambda x}dx=rac{(n-1)!}{\lambda^n}$$

Propiedad

$$\int_0^\infty x^{n-1} e^{-x} dx = (n-1)!$$

Definicion en base a la propiedad

Dado $z \in R$, se define la funcion gamma como

$$\Gamma(z) = \int_0^\infty x^{n-1} e^{-\lambda x} dx$$

Entonces usando la propiedad anterior, si en particular, $z \in N$, value que

$$\Gamma(z) = (z-1)!$$

La funcion gamma la pensamos como on factorial generalizado

Ejemplo de aplicacion

Definimos la variable aleatoria

T: Tiempo hasta la ocurrencia de la falla de un equipo

Que cumple que

$$T \sim Exp(\lambda)$$

$$E(T) = \frac{1}{\lambda}$$

A esta esperanza se la denomina **MTBF**: la media de los tiempos del bueno funcionamiento mean time between failures en ingles

Otras caractersiticas de T

$$\sigma(T) = rac{1}{\lambda}$$

$$P(E(T) - \sigma(T) < T < E(T) + \sigma(T)) = P(0 < T < 2/\lambda) = \underbrace{F_T(2/\lambda)}_{1 - e^{-\lambda(2/\lambda)}} - \underbrace{F_T(0)}_{0} = 1 - e^{-2} pprox 0.865$$

Ejemplo

Si

$$\lambda = 10^3$$

El tiempo medio hasta que falla 1000 horas o ocurre una falla cada 1000 horas

Definicion conceptual acerca de la variable anterior

 $\lambda(t)$: Promedio de falla por unidad de tiempo\$

(Dibujo 4)

El dibujo muestra que en el primer sector hay

- Fallas infantiles (Γ alto), (Sector inicial)
- Fallas al azar (Γ muy bajo) (Sector medio)
- Fallas por envegecimiento (Γ alto) (Sector final)

Se dio un ejemplo con computadoras acer que fallan seguido

Se dio un ejemplo de la utilizacion del acronimo MTBF para discos rigidos

Propiedad ejercicio 8

Dice que

$$P(X > x_0 + d/X > x_0) = k \ \ \forall x_0$$

Es decir, la probabilidad de que un equipo no falle en un intervalo $(x_0, x_0 + d)$ es la misma sin importar el lugar del intervalo sino tan solo su tamanio

Demostracion de la propiedad

Por definicion

$$f_X(x) = P(X \le x)$$

Sea

$$G_X(x) = P(X \geq x) = 1 - f_x(x)$$

Como

$$x \sim Exp(b)$$

Luego

$$F_x(x)=1-e^{-bx}\quad x>0$$

$$G_X(x) = e^{-bx}$$

Por lo tanto

$$P(X>x_0+d/X>x_0) = rac{P(X>x_0+d)}{P(X>x_0)} = rac{e^{-b(x_0+d)}}{e^{-bx_0}} = e^{-bd}$$

Ejercicio 10 (guia 4)

Notar $E(x) = 1000 \ h$

Se plantea

$$P(X>X_g)=e^{-rac{X_g}{1000}}=0.95 \implies X_gpprox 5.13~h$$

Item B

Necesitamos que funcione 100 o mas horas

$$[G_x(100)]^5 = (e^{-rac{100}{1000}})^2 = e^{-rac{5}{10}} pprox 0.61$$

Vale hacer el producto de ambos lados porque hay Independencia

 A_k : el displositivo k dura 100h como minimo

B: el sistema dura 100h como minimo

$$B = A_1 \cap A_2 \cap A_3 \cap A_4 \cap A_5$$
 $P(A_k) = e^{rac{100}{1000}}$ $P(B) = \prod_{k=1}^5 P(A_k)$

Y: Numero de sistemas que duran mas de 100 hs

$$Y \sim Bin(n=5, p=e^{-1})$$
 $P(Y \geq 3)$

lo deja para nosotros el calculo

Nota

El Ejercicio 13 es una generalizacion del 10

Lo comenzamos a resolver

 A_k : el displositivo k dura t como minimo

B: el sistema dura t como minimo

$$k=1,2,...,n$$
 $B=\cap A_i$ $P(A_k)=e^{-0.01t}, k=1,2,...,n$ $P(B)=\prod_{k=1}^5 P(A_k)=1-F(t)$

Por lo tanto

$$e^{-0.1nt}=1-F(t)$$
 $F(t)=1-e^{-(0.01n)t}, \ \ t>0$ $T\sim Exp(0.01n)$ $E(T)=rac{1}{0.01n}=(rac{1}{0.01})rac{1}{n}$

Suponemos en paralelo (ejercicio adicional)

El sistema falla antes de T si todos fallan antes de T

$$\overline{B} = igcup_{i=1}^n \overline{A_k}$$

$$P(\overline{A_k}) = 1 - e^{-0.01t}$$

Por independencia

$$\underbrace{P(\overline{B})}_{P(T < t)} = (1 - e^{-0.01t})^2$$

$$F(t) = (1 - e^{-0.01t})^n$$

Ejercicio 15 (guia 4)

Se hace un cociente de probabilidad, la fraccion de que la falla este en $(t, \triangle t)$ sabiendo que ya fallo despues de t

$$rac{t < T < t + riangle t}{ riangle t * P(T > t)} = rac{\int_t^{t + riangle t} f(x) dx}{ riangle t (1 - F(t))} = (1)$$

Notar que

$$t < \zeta < t + \triangle t$$

Entonces vale que

$$f(1) = rac{f(\zeta) riangle t}{ riangle t (1 - F(t))}
ightarrow rac{f(t)}{1 - F(t)}$$