Амплитудная диффракционная решетка. Работа 4.4.1

Каспаров Николай, Б01-304

February 27, 2025

Цель работы:

- Знакомство с работой и настройкой гониометра Г5;
- Определение спектральных характеристик амплитудной решётки.

В работе используются:

- Гониометр;
- Дифракционная решётка;
- Ртутная лампа.

1 Теоретическое введение

1.1 Основное соотношение

Наблюдение изображения спектра проводится с помощью зрительной трубы, настроенной на бесконечность. В этом случае амплитуда и интенсивность поля световой волны определяются углом ϕ между нормалью к решётке и направлением дифрагировавших лучей. Будем считать, что амплитуды всех интерферирующих волн одинаковы, т. е. фиксирована амплитуда падающей волны и постоянна площадь всех штрихов. Интенсивность дифрагированного света максимальна для углов ϕ_m , при которых волны, приходящие в точку наблюдения от всех щелей, оказываются в фазе:

$$d\sin\phi_m = m\lambda\tag{1}$$

Величина $m=0,\pm 1,\pm 2,\pm 3,...$ называется порядком спектра.

1.2 Угловая дисперсия

Выражение для угловой дисперсии дифракционной решётки следует из (1):

$$D = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi} = \frac{m}{\sqrt{d^2 - m^2\lambda^2}}.$$
 (2)

1.3 Разрешающая способность

Рассмотрим изображения спектра для двух узких спектральных линий с длинами волн λ и $\lambda + \delta \lambda$. Для минимального значения $\lambda + \delta \lambda$, которое может быть определено по результатам измерений, вводят важнейшую характеристику спектрального прибора — разрешающую способность:

$$R = \frac{\lambda}{\delta \lambda}.\tag{3}$$

2 Экспериментальная установка

В данной работе будем измерять углы, при которых наблюдаются максимумы для разнычных длин волн. Схема экспериментальной установки представлена на рисунке 1.

Рисунок 1: Экспериментальная установка

Цвет	Порядок	d, нм	$\sin \alpha$
Синий	1	435.8	0.220
Голубой	1	491.6	0.248
Фиолетовый	1	404.7	0.203
Зеленый	1	546.1	0.275
Желтый 1	1	577.0	0.292
Желтый 2	1	579.1	0.292
Красный	1	623.4	0.314

Таблица 1: Зависимость угла максимума от длины волны

3 Экспериментальная часть

3.1 Определение параметров решетки

Рисунок 2: Зависимость угла максимума от длины волны

Вычислив угол наклона, мы сможем определить шаг решетки d, используя формулу (1):

$$d = (1.96 \pm 0.04) \text{ MKM}, \tag{4}$$

что совпадает на значение, указанное на приборе: $d_{th} = 2$ мкм.

3.2 Определение угловой дисперсии

Порядок	ϕ	$\Delta \phi$
1	16°56′	2'20"
2	35°59′	10'00"
3	60°39′	20'36"

Таблица 2: Зависимость разности угла желтого цвета от её порядка

Рисунок 3: Угловая дисперсия для разных порядков

Из-за малости разности углов, получилась достаточно высокая погрешность.

3.3 Определение разрешающей способности

Определим также разрешающую способность по формуле 3, используя первый порядок жёлтой линии:

$$R = 510 \pm 10$$
 (5)

Число рабочих штрихов $N=m\cdot R=510\pm 10,$ а размер освещенной части $l=Nd=(1.0\pm 0.1)$ мм

4 Вывод

В ходе работы была исследована амплитудная дифракционная решётка, определены её спектральные характеристики, угловая дисперсия и разрешающая способность. Полученные значения шага решётки и разрешающей способности согласуются с теоретическими данными в пределах погрешности. При более аккуратных измерениях можно добиться ещё большей точности результатов.