다현, 서진: 3-1 제곱근-절댓값 관련 문제들

2018년 3월 16일

유형 1)

 $a>0,\quad b<0$ 일 때, $\sqrt{a^2}+\sqrt{4b^2}$ 을 간단히 하여라.

풀이

$$\sqrt{a^2} + \sqrt{4b^2} = \sqrt{a^2} + \sqrt{(2b)^2}$$

= $|a| + |2b|$
= $a + (-2b) = a - 2b$

문제 1-1)

a>0, b>0일 때, $\sqrt{a^2}+\sqrt{b^2}$ 을 간단히 하여라.

문제 1-2)

a < 0, b < 0일 때, $\sqrt{a^2} + \sqrt{(-b)^2}$ 을 간단히 하여라.

문제 1-3)

a < 0, b > 0일 때, $\sqrt{4a^2} + \sqrt{(9b)^2}$ 을 간단히 하여라.

문제 1-4) 개념+유형, 유형편 p8 #20

 $a>0, \quad b<0$ 일 때, $\sqrt{16a^2}-\sqrt{(-3b)^2}+\sqrt{b^2}$ 을 간단히 하여라.

유형 2) 개념+유형, 개념편 p26 #8

 $a>0, \quad ab<0$ 일 때, $\sqrt{(-a)^2}+\sqrt{9a^2}-\sqrt{4b^2}$ 을 간단히 하여라.

풀이

a > 0이고 b < 0이다. 따라서

$$\sqrt{(-a)^2} + \sqrt{9a^2} - \sqrt{4b^2} = |-a| + |3a| - |2b|$$
$$= -(-a) + (3a) - (-2b) = 4a + 2b$$

문제 2-5)

a > 0, ab > 0일 때, $\sqrt{4a^2} - \sqrt{9b^2}$ 를 간단히 하여라.

문제 2-6)

a < 0 < b일 때, $\sqrt{(-3a)^2} + \sqrt{b^2} + (\sqrt{a})^2$ 를 간단히 하여라.

문제 2-7) 개념+유형, 유형편 p8 #20

a > b, ab < 0일 때, $(-\sqrt{a})^2 - \sqrt{(-a)^2} + \sqrt{9b^2}$ 을 간단히 하면?

문제 2-8)

a < b < 0일 때, $\sqrt{(-b)^2} + \sqrt{4a^2}$ 를 간단히 하여라.

문제 2-9)

a < b, ab < 0일 때, $\sqrt{\frac{1}{4}a^2} + \sqrt{(-b)^2} - \sqrt{4a^2}$ 을 간단히 하면?

유형 3) 개념+유형, 유형편 p9 #24

a > b, ab < 0일 때, $\sqrt{a^2} + \sqrt{(-2a)^2} + \sqrt{(b-a)^2}$ 을 간단히 하여라.

풀이

a > 0, b < 0이다. 또 b - a < 0이다. 따라서

$$\sqrt{a^2} + \sqrt{(-2a)^2} + \sqrt{(b-a)^2} = |a| + |-2a| + |b-a|$$
$$= a - (-2a) - (b-a) = 4a - b$$

문제 3-10)

a > b, a > 0일 때, $\sqrt{(-a)^2} + \sqrt{(b-a)^2}$ 을 간단히 하여라.

문제 3-11) 개념+유형, 유형편 p21~#14

a-b>0, ab<0일 때, $\sqrt{(-2a)^2}-\sqrt{(b-a)^2}+\sqrt{9b^2}$ 을 간단히 하여라.

문제 3-12)

 $a < b, \quad ab < 0$ 일 때, $\sqrt{(a-b)^2} + \sqrt{a^2} + (\sqrt{b})^2$ 을 간단히 하여라.

문제 3-13)

 $a-b < 0, \quad ab < 0$ 일 때, $\sqrt{(a-b)^2} + \sqrt{(b-a)^2} + (-\sqrt{b})^2$ 을 간단히 하여라.

유형 4) 개념+유형, 유형편 p9 #25

a>b>c>0일 때,

$$\sqrt{(a-b)^2} - \sqrt{(b-a)^2} - \sqrt{(c-a)^2}$$
을 간단히 하면?

풀이

$$a-b > 0$$
, $b-a < 0$, $c-a < 0$ 이므로

$$\begin{split} \sqrt{(a-b)^2} - \sqrt{(b-a)^2} - \sqrt{(c-a)^2} &= |a-b| - |b-a| - |c-a| \\ &= (a-b) - \{-(b-a)\} - \{-(c-a)\} \\ &= a-b+b-a+c-a = c-a \end{split}$$

문제 4-14)

a > b > c > 0일 때,

$$\sqrt{(a-b)^2} + \sqrt{(b-c)^2} + \sqrt{(c-a)^2}$$
을 간단히 하면?

문제 4-15)

a < b < c일 때,

$$\sqrt{(a-b)^2} + \sqrt{(b-c)^2} - \sqrt{(c-a)^2}$$
을 간단히 하면?

문제 4-16)

a < b < c < 0일 때,

$$\sqrt{a^2} + \sqrt{b^2} + \sqrt{(c-b)^2}$$
을 간단히 하면?

문제 4-17)

$$a < 0 < b < c$$
일 때,

$$(-\sqrt{b})^2 + \sqrt{(c-a)^2} - \sqrt{(b+c)^2}$$
을 간단히 하면?

유형 5) 개념+유형, 개념편 p28~#28

$$0 < a < 1$$
일 때,
$$\sqrt{\left(a + \frac{1}{a}\right)^2} - \sqrt{\left(a - \frac{1}{a}\right)^2} - \sqrt{(2a)^2}$$
을 간단히 하여라.

풀이

a > 0이므로

$$a + \frac{1}{a} > 0 \tag{1}$$

0 < a < 1이므로 $\frac{1}{a} > 1$ 이고, 따라서 $\frac{1}{a} > a$. 그러므로

$$a - \frac{1}{a} < 0 \tag{2}$$

또한

그러므로

$$\sqrt{\left(a+\frac{1}{a}\right)^2} - \sqrt{\left(a-\frac{1}{a}\right)^2} - \sqrt{(2a)^2} = \left|a+\frac{1}{a}\right| - \left|a-\frac{1}{a}\right| - |2a|$$

$$= \left(a+\frac{1}{a}\right) - \left\{-\left(a-\frac{1}{a}\right)\right\} - 2a$$

$$= \left(a+\frac{1}{a}\right) + \left(a-\frac{1}{a}\right) - 2a$$

$$= 0$$

문제 5-18)

$$0 < a < 1$$
일 때,
$$\sqrt{\left(\frac{1}{a} + a\right)^2} + \sqrt{\left(\frac{1}{a} - a\right)^2}$$
을 간단히 하여라.

문제 5-19)

$$a>1$$
일 때,
$$\sqrt{a^2}-\sqrt{\left(a-\frac{1}{a}\right)^2}$$
를 간단히 하여라.

유형 6) 개념+유형, 유형편 p21 #21

$$a < 0 < b < 1$$
일 때, $\sqrt{(a-b)^2} + \sqrt{\left(b - \frac{1}{b}\right)^2} - \sqrt{\left(b + \frac{1}{b}\right)^2} - \sqrt{(-a)^2}$ 을 간단히 하여라.

풀이

a < b로부터

$$a - b < 0 \tag{1}$$

0 < b < 1로부터 $\frac{1}{b} > 1$. 따라서 $b < \frac{1}{b}$. 그러므로

$$b - \frac{1}{b} < 0 \tag{2}$$

b > 0으로부터

$$b + \frac{1}{b} > 0 \tag{3}$$

a < 0 으로부터

$$-a > 0 \tag{4}$$

따라서

$$\begin{split} \sqrt{(a-b)^2} + \sqrt{\left(b - \frac{1}{b}\right)^2} - \sqrt{\left(b + \frac{1}{b}\right)^2} - \sqrt{(-a)^2} &= |a-b| + \left|b - \frac{1}{b}\right| - \left|b + \frac{1}{b}\right| - |-a| \\ &= -(a-b) - \left(b - \frac{1}{b}\right) - \left(b + \frac{1}{b}\right) - (-a) \\ &= -a + b - b + \frac{1}{b} - b - \frac{1}{b} + a = -b \end{split}$$

문제 6-20)

$$a<0< b<1$$
일 때, $\sqrt{a^2}+\sqrt{\left(rac{1}{b}-b
ight)^2}+\sqrt{\left(rac{1}{b}+b
ight)^2}$ 을 간단히 하여라.

문제 6-21)

$$0 < a < 1 < b$$
일 때, $\sqrt{b^2} - \sqrt{(a-b)^2} + \sqrt{\left(a - \frac{1}{a}\right)^2}$ 을 간단히 하여라.

답

	문제 3-11)
	ŕ
문제 1-1)	a-2b
,	
a + b	문제 3-12)
	-2a+2b
문제 1-2)	-2a + 2b
-a-b	T
	문제 3-13)
□ चौ । ०\	-2a + 3b
문제 1-3)	
-2a+3b	문제 4-14)
	,
문제 1-4)	2a-2c
,	
4a + 2b	문제 4-15)
_	0
문제 2-5)	O
2a-3b	T = 11 (4 a)
	문제 4-16)
무계 2.6)	-a-2b+c
문제 2-6)	
-2a+b	문제 4-17)
	•
문제 2-7)	-a
-3b	
-30	문제 5-18)
	$\frac{2}{a}$
문제 2-8)	a
-2a-b	T =11 = 40)
	문제 5-19)
문제 2-9)	$\frac{1}{a}$
	w .
$\frac{3}{2}a+b$	문제 6-20)
	,
문제 3-10)	$-a + \frac{2}{b}$
2a-b	
2u - v	문제 6-21)
	-a