# Multimodal architecture

Jannik Gut

## Overview

- Example
- Overleaf
- Papers
- Research
- Questions



## **NeuroMatch**

- Message Passing
- Curriculum training



- Check all neighbourhoods and try to match them in embedding space
  - The amount of neighbourhoods does not change
- Much faster compared to combinatorial

Custom Hinge loss in embeddings

$$\mathcal{L}(z_q, z_u) = \sum_{(z_q, z_u) \in P} E(z_q, z_u) + \sum_{(z_q, z_u) \in N} \max\{0, \alpha - E(z_q, z_u)\},$$
where

$$E(z_q, z_u) = ||\max\{0, z_q - z_u\}||_2^2$$

# **Graph Auto Encoder**

- Exists
  - by Kipf & Welling
- Try to model the adjacency matrix A
  - Amount of nodes given
- $\mu,\sigma$  estimated with GCN
- Every node has a z
- p(Z) was a weakness
  - Keep graph sparse

$$\begin{split} q(\mathbf{Z} \,|\, \mathbf{X}, \mathbf{A}) &= \prod_{i=1}^N q(\mathbf{z}_i \,|\, \mathbf{X}, \mathbf{A}) \,, \ \, \text{with} \quad q(\mathbf{z}_i \,|\, \mathbf{X}, \mathbf{A}) = \mathcal{N}(\mathbf{z}_i \,|\, \boldsymbol{\mu}_i, \text{diag}(\boldsymbol{\sigma}_i^2)) \,. \\ \\ p\left(\mathbf{A} \,|\, \mathbf{Z}\right) &= \prod_{i=1}^N \prod_{j=1}^N p\left(A_{ij} \,|\, \mathbf{z}_i, \mathbf{z}_j\right) \,, \ \, \text{with} \quad p\left(A_{ij} = \mathbf{1} \,|\, \mathbf{z}_i, \mathbf{z}_j\right) = \sigma(\mathbf{z}_i^\top \mathbf{z}_j) \,, \\ \\ \mathcal{L} &= \mathbb{E}_{q(\mathbf{Z} \mid \mathbf{X}, \mathbf{A})} \left[\log p\left(\mathbf{A} \,|\, \mathbf{Z}\right)\right] - \text{KL} \left[q(\mathbf{Z} \,|\, \mathbf{X}, \mathbf{A}) \,||\, p(\mathbf{Z})\right] \,, \\ \\ \hat{\mathbf{A}} &= \sigma(\mathbf{Z}\mathbf{Z}^\top) \,, \quad \text{with} \quad \mathbf{Z} = \text{GCN}(\mathbf{X}, \mathbf{A}) \,. \end{split}$$



### **Neural Relational Inference**

 $\begin{array}{c} x \\ v \rightarrow e \\ \hline \end{array}$ 

Legend: ■: Node emb. ■ : Edge emb. → : MLP 1 : Concrete distribution --> : Sampling

- Message passing
- Fully connected graph
  - But some edges are "no edge"
- Edges have types, which enforce a different cell architecture

Encoder is a GNN, as in the image

- Z has an entry for each edge
- Z is a graph
- Decoder predicts multiple timesteps from a single latent representation
  - Also is a GNN, can be extended with RNN cells

The ELBO objective, Eq. 3, has two terms: the reconstruction error  $\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})]$  and KL divergence  $\mathrm{KL}[q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z})]$ . The reconstruction error is estimated by:

$$-\sum_{j}\sum_{t=2}^{T}\frac{||\mathbf{x}_{j}^{t}-\boldsymbol{\mu}_{j}^{t}||^{2}}{2\sigma^{2}} + \text{const}$$
 (18)

while the KL term for a uniform prior is just the sum of entropies (plus a constant):

$$\sum_{i \neq j} H(q_{\phi}(\mathbf{z}_{ij}|\mathbf{x})) + \text{const.}$$
 (19)

## **Papers**

- Graph Transformer Networks
  - Learn metapaths, no metanodes, Laplacian method
- Dynamic joint variational graph autoencoders
  - Already know all next timesteps and predict them jointly
- Data-driven graph construction and graph learning: A review
  - Data points (e.g. patients) are embedded in a high dimensional space as nodes
  - Create edges based on kNN-ish approaches
  - Create edge weights
    - Similarity
    - Pearson correlation
    - OLS recreation of center with neighbours
  - Multigraph learning tries to combine some graphs with the same nodes to give each graph one weight for the edges
- <u>Latent-Graph Learning for Disease Prediction</u>
  - Different patients act as nodes, edges based on similarity, use a GCN to predict afterwards.
- A comprehensive Survey of Graph Embedding: Problems, Techniques and Applications
  - A graph can be embedded
    - Each node
    - Each edge
    - Each substructure (node with extra steps)
    - Global
    - No graph
- <u>Hierarchical graph embedding in vector space by graph pyramid</u>
  - Paywall

#### Research

- Matrix autoencoder
  - Smaller, quadratic matrix
  - PCA vectors are not quadratic and have other constraints
- Image that uses a smaller latent image
  - Convolution/spatial special kind of graph

# Graph actions

- Structure
  - Add/remove edges
  - Add/remove nodes
- Content
  - Update edges
  - Update nodes
  - (Update universal graph)

## Add/Remove Edges

- Add edges
- Remove edges
- → Fully connected graph with typed edges
  - "No edge"-type (separate neural net/gate for that)
- → otherwise not all new connections always possible
  - Neighbourhood assumptions
    - Neighbours of my neighbours have bigger chance of being my neighbour
      - Assumption data dependent (?)
    - Only look at some types
      - Assumption data dependent (?)
  - Sampling
    - What policy?

#### Add/Remove Nodes

- Add nodes
  - Where?
- Remove nodes
  - Tell neighbours?
- → Actions on edges
  - Add → Transform edge into new node
    - Node (+ adjacent edge) properties from original edge ends
    - How to add edge on the perimeter of the graph?
      - Self-edge?
  - Remove → Edge contraction
    - Node (+ adjacent edge) properties from original edge ends
    - How to deal with multiple neighbouring contractions?
- $\rightarrow$  Ordering, in general
  - Only one round of actions
    - Implications on amount of layers vs. size(difference) of graphs
  - Actions on new nodes+edges as well?
    - Sequential computation
  - → Test out, I guess

## Content updates

- "As usual"
  - How to take new entities into account?
    - Compute structure gates before content
  - Different handling for new entities?
    - Pre-update?
  - Possible to implement "as usual"?
    - Changing graph structure

# Expansion/Clumping layers

- Clumping → Summarising (supplementary information)
  - Clumping nodes
  - Removing edges
- Expansion → Generation (complementary information)
  - Adding nodes
  - Adding edges
- Stack together to form one layer
- Differentiation needed?
  - Makes some assumptions/computations easier

## Assumptions/Support

- Contractions/Additions can and should utilise neighbourhood
- Scaling, either
  - The size progression of the graph is known in logarithmic measure
    - 4 layers → one edge can turn into maximally 7 nodes
  - Sequential computation works and is feasible
- We have enough resources for a fully connected graph

Supports heterogeneity (as part of the state/features) and directions

# Questions / Open problems for model

- How to exactly incorporate structural change?
  - Two phases
    - Structure
    - Update
- Ordering of actions
- How to deal with multiple adjacent contractions?
  - Has to be unordered
  - (Scalability) an issue in practice?
- Expanding and concatenation of same edge a problem?
- Exact implementation
  - Which GNN implementation?
  - More problems to follow, for sure

#### Losses

- Structure
  - Graph edit distance
    - NP hard to check
  - Predict adjacency matrix
    - Not a graph problem, but a matrix problem
    - Use 0-padding?
- Content
  - "As usual"
    - Cross-entropy, LS etc.
  - How to enforce good matching to structure
    - E.g. what in a ring
    - Given in an ordered matrix
- What do if not correct structure?
  - Take best graph edit distance and those, that can't be mapped have bad luck?
- Balance structure vs. content loss with hyperparameter

#### **Dataset**

- NLP annotations
  - Dependency parsing vs. constituency parsing
    - Possibly same type, but different systems
  - Big enough, should be able to find easier and harder sentences
- More research

# Other questions

- Good, easy dataset
  - NLP annotations
    - Too many edge types?
- How to tackle losses
  - Something instead of GED?
  - Matching
  - Bad structure?
- Adjacency matrix reasonable?
  - Padding?