第1章

モノイダル圏・フュージョン圏・高次群

この章では標数 0 の体 账 のみを考える.

1.1 加法圏

定義 1.1: 加法圏・アーベル圏

圏 \mathcal{C} が体 \mathbb{K} 上の加法圏 (additive category) であるとは、以下を充たすこと:

(add-1)

任意の Hom 集合 $\operatorname{Hom}_{\mathcal{C}}(X,Y)$ が \mathbb{K} -ベクトル空間の構造をもち、かつ射の合成

$$\circ: \operatorname{Hom}_{\mathcal{C}}(Y, Z) \times \operatorname{Hom}_{\mathcal{C}}(X, Y) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(X, Z)$$

が 派-双線形写像である.

(add-2)

零対象 a (zero object) $\mathbf{0} \in \mathrm{Ob}(\mathcal{C})$ が存在し、 $\forall X \in \mathrm{Ob}(\mathcal{C})$ に対して $\mathrm{Hom}_{\mathcal{C}}(\mathbf{0},X) = \mathrm{Hom}_{\mathcal{C}}(\mathbf{X},0) = 0$ を充たす b .

(add-3)

有限の余積が常に存在する.

加法圏 C は、以下の条件を充たすとき**アーベル圏** (abelian category) と呼ばれる:

(Ab-1)

任意の射 $f \in \operatorname{Hom}_{\mathcal{C}}(X,Y)$ が核 $\ker f \colon \operatorname{Ker} f \longrightarrow X$ および余核 $\operatorname{coker} f \colon Y \longrightarrow \operatorname{Coker} f$ を持つ.

(Ab-2)

 $\operatorname{Ker} f = \mathbf{0}$ ならば $f = \ker(\operatorname{coker} f)$, かつ $\operatorname{Coker} f = \mathbf{0}$ ならば $f = \operatorname{coker}(\ker f)$

以下では加法圏 \mathcal{C} , \mathcal{D} の間の関手 $F: \mathcal{C} \longrightarrow \mathcal{D}$ には, $F_{X,Y}: \operatorname{Hom}_{\mathcal{C}}(X,Y) \longrightarrow \operatorname{Hom}_{\mathcal{D}}(F(X),F(Y))$, $f \longmapsto$

^a 始対象かつ終対象

 $[^]b$ 最右辺は (add-1) の意味で零ベクトル空間.

F(f) が \mathbb{K} -線型写像となることを常に要請する.

【例 1.1.1】表現の圏

G を群とする. このとき

- G の表現 (ρ, V) を対象とする
- G-同変な \mathbb{K} -線型写像 $(\rho, V) \xrightarrow{f} (\rho', V')$ を射とする

圏を $\mathbf{Rep}(G)$ と書く. $\mathbf{Rep}(G)$ はアーベル圏である.

定義 1.2: 単純・半単純

- アーベル圏 C の対象 $X \in C$ が**単純** (simple) であるとは,任意のモノ射 $i: U \hookrightarrow X$ が 0 であるか同型射であることを言う.
- アーベル圏 $\mathcal C$ が**半単純** (semisimple) であるとは、 $\forall X\in\mathcal C$ が単純対象の有限余積と同型であることを言う。i.e. 単純対象の族 $\left\{V_i\in \mathrm{Ob}(\mathcal C)\right\}_{i\in I}$ および有限個を除いて 0 であるような非負整数の族 $\left\{N_i\in\mathbb Z_{\geq 0}\right\}_{i\in I}$ が存在して

$$X \cong \bigoplus_{i \in I} N_i X_i$$

が成り立つこと.

1.2 モノイダル圏

これまでも何回か登場したが、モノイダル圏についてまとめておく:

定義 1.3: モノイダル圏

モノイダル圏 (monidal category) は、以下の5つのデータからなる:

- 圏 C
- テンソル積 (tensor product) と呼ばれる関手 \otimes : $\mathcal{C} \times \mathcal{C} \longrightarrow \mathcal{C}$
- 単位対象 (unit object) $I \in Ob(\mathcal{C})$
- associator と呼ばれる自然同値

$$\left\{a_{X,\,Y,\,Z}\colon (X\otimes Y)\otimes Z\xrightarrow{\cong} X\otimes (Y\otimes Z)\right\}_{X,\,Y,\,Z\in \mathrm{Ob}(\mathcal{C})}$$

• left/right unitors と呼ばれる自然同値

$$\begin{aligned} & \left\{ l_X \colon I \otimes X \xrightarrow{\cong} X \right\}_{X \in \mathrm{Ob}(\mathcal{C})}, \\ & \left\{ r_X \colon X \otimes I \xrightarrow{\cong} X \right\}_{X \in \mathrm{Ob}(\mathcal{C})} \end{aligned}$$

これらは $\forall X, Y, Z, W \in Ob(\mathcal{C})$ について以下の 2 つの図式を可換にする:

(triangle diagram) $(X\otimes I)\otimes Y \xrightarrow{a_{X,\,I,\,Y}} X\otimes (I\otimes Y)$ $X\otimes Y$ $X\otimes Y$ (pentagon diagram)

モノイダル圏 $\mathcal C$ が**厳密** (strict) であるとは、 $\forall X, Y, Z \in \mathrm{Ob}(\mathcal C)$ に対して

$$(X \otimes Y) \otimes Z = X \otimes (Y \otimes Z),$$

 $I \otimes X = X, \quad X \otimes I = X$

が成り立ち、かつ $a_{X,Y,Z}$, l_X , r_X が恒等射であることを言う.

定義 1.3 で言うモノイダル圏を、弱いモノイダル圏 (weak monoidal category) と呼ぶこともある.

定義 1.4: 組紐付きモノイダル圏

組紐付きモノイダル圏 (braided monoidal category) とは、以下の2つからなる:

- モノイダル圏 C
- 組紐 (braiding) と呼ばれる自然同型

$$\{b_{X,Y}\colon X\otimes Y\xrightarrow{\cong} Y\otimes X\}_{X,Y\in\mathrm{Ob}(\mathcal{C})}$$

これらは $\forall X, Y, Z \in Ob(\mathcal{C})$ について以下の図式を可換にする:

(hexagon diagrams)

$$X \otimes (Y \otimes Z) \xrightarrow{a_{X,Y,Z}^{-1}} (X \otimes Y) \otimes Z \xrightarrow{b_{X,Y} \otimes \operatorname{Id}_{Z}} (Y \otimes X) \otimes Z$$

$$\downarrow^{b_{X,Y \otimes Z}} \qquad \qquad \downarrow^{a_{Y,X,Z}}$$

$$(Y \otimes Z) \otimes X \xleftarrow{a_{Y,Z,X}^{-1}} Y \otimes (Z \otimes X) \xrightarrow{\operatorname{Id}_{X} \otimes b_{X,Z}} Y \otimes (X \otimes Z)$$

$$(X \otimes Y) \otimes Z \xrightarrow{a_{X,Y,Z}} X \otimes (Y \otimes Z) \xrightarrow{\operatorname{Id}_{X} \otimes b_{Y,Z}} X \otimes (Z \otimes Y)$$

$$\downarrow^{b_{X \otimes Y,Z}} \qquad \qquad \downarrow^{a_{X,Z,Y}^{-1}}$$

$$Z \otimes (X \otimes Y) \xleftarrow{a_{Z,X,Y}} (Z \otimes X) \otimes Y \xleftarrow{b_{X,Z} \otimes \operatorname{Id}_{Y}} (X \otimes Z) \otimes Y$$

組紐付きモノイダル圏 $\mathcal C$ であって, $\mathcal C$ の組紐が $b_{X,Y}=b_{Y,X}^{-1}$ を充たすもののことを**対称モノイダル**圏 (symmetric monoidal category) と呼ぶ.

定義 1.5: 双対

モノイダル圏 $\mathcal C$ およびその任意の対象 $X,X^*\in \mathrm{Ob}(\mathcal C)$ を与える. X^* が X の**右双対** (right dual) であり,かつ X が X^* の**左双対** (left dual) であるとは,

• unit と呼ばれる射

$$i_X: I \longrightarrow X^* \otimes X$$

• counit と呼ばれる射

$$e_X : X \otimes X^* \longrightarrow I$$

が存在して以下の図式を可換にすることを言う:

(zig-zag equations)

定義 1.6: rigid なモノイダル圏

モノイダル圏 \mathcal{C} が rigid であるとは、 $\forall X \in \mathrm{Ob}(\mathcal{C})$ が左・右双対を持つことを言う.

これまでは圏 $\mathcal C$ の対象を大文字で書いてきたが、以下では文脈によっては小文字で書くことがある.

定義 1.7: モノイダル関手

2 つのモノイダル圏 C, D の間の関手

$$F \colon \mathcal{C} \longrightarrow \mathcal{D}$$

が弱いモノイダル関手 (lax monoidal functor) であるとは、

射

$$\varepsilon\colon I_{\mathcal{D}}\longrightarrow F(I_{\mathcal{C}})$$

• 自然変換

$$\{\mu_{X,Y} \colon F(X) \otimes_{\mathcal{D}} F(Y) \longrightarrow F(X \otimes_{\mathcal{C}} Y)\}_{X,Y \in \text{Ob}(\mathcal{C})}$$

があって、 $\forall X, Y, Z \in \mathrm{Ob}(\mathcal{C})$ に対して以下の図式が可換になること:

(associatibity)

$$(F(X) \otimes_{\mathcal{D}} F(Y)) \otimes_{\mathcal{D}} F(Z) \xrightarrow{\overline{\partial}_{F(X), F(Y), F(Z)}} F(X) \otimes_{\mathcal{D}} (F(Y) \otimes_{\mathcal{D}} F(Z))$$

$$\downarrow^{\operatorname{Id}_{F(X)} \otimes \mu_{Y, Z}} \downarrow^{\operatorname{Id}_{F(Z)}} \downarrow^{\operatorname{Id}_{F(X)} \otimes \mu_{Y, Z}}$$

$$F(X \otimes_{\mathcal{C}} Y) \otimes_{\mathcal{D}} F(Z) \qquad F(X) \otimes_{\mathcal{D}} F(Y \otimes_{\mathcal{C}} Z)$$

$$\downarrow^{\mu_{X, Y} \otimes_{\mathcal{C}} Z} \downarrow^{\mu_{X, Y} \otimes_{\mathcal{C}} Z}$$

$$F((X \otimes_{\mathcal{C}} Y) \otimes_{\mathcal{C}} Z) \xrightarrow{F(a_{X, Y, Z}^{\mathcal{C}})} F(X \otimes_{\mathcal{C}} (Y \otimes_{\mathcal{C}} Z))$$

(unitality)

$$I_{\mathcal{D}} \otimes_{\mathcal{D}} F(X) \xrightarrow{\varepsilon \otimes \operatorname{Id}_{F(X)}} F(I_{\mathcal{C}}) \otimes_{\mathcal{D}} F(X)$$

$$\downarrow^{\mathcal{D}}_{F(X)} \downarrow \qquad \qquad \downarrow^{\mu_{I_{\mathcal{C}}, X}}$$

$$F(X) \longleftarrow F(I_{\mathcal{C}}^{c}) \qquad F(I_{\mathcal{C}} \otimes_{\mathcal{C}} X)$$

$$F(X) \otimes_{\mathcal{D}} I_{\mathcal{D}} \xrightarrow{\operatorname{Id}_{F(X)} \otimes \varepsilon} F(X) \otimes_{\mathcal{D}} F(I_{\mathcal{C}})$$

$$\downarrow^{\mu_{X, I_{\mathcal{C}}}}$$

$$F(X) \longleftarrow F(X) \longleftarrow F(X_{\mathcal{C}}^{c}) \qquad \downarrow^{\mu_{X, I_{\mathcal{C}}}}$$

- 弱いモノイダル関手 F の ε と $\mu_{X,Y}$ が全て同型射ならば, F は強いモノイダル関手 (strong monoidal functor) と呼ばれる.
- 弱いモノイダル関手 F の ε と $\mu_{X,Y}$ が全て恒等射ならば,F は**厳密なモノイダル関手** (strict monoidal functor) と呼ばれる.

定義 1.8: モノイダル自然変換

2 つのモノイダル圏 \mathcal{C},\mathcal{D} の間の 2 つの弱いモノイダル関手 $\left(F_i\colon\mathcal{C}\longrightarrow\mathcal{D},\varepsilon_i\colon I_{\mathcal{D}}\longrightarrow F(I_{\mathcal{C}}),\left\{\mu_{iX,Y}\colon F_i(X)\otimes F_i(Y)\longrightarrow F_i(X\otimes Y)\right\}_{X,Y\in\mathrm{Ob}(\mathcal{C})}\right)$ w/ i=1,2 の間の自然変換

が**モノイダル自然変換** (monidal natural transformation) であるとは, $\forall X, Y \in \mathcal{C}$ に対して以下の図式が可換になること:

(テンソル積の保存)

$$F_{1}(X) \otimes_{\mathcal{D}} F_{1}(Y) \xrightarrow{\boldsymbol{\tau}_{X} \otimes_{\mathcal{D}} \boldsymbol{\tau}_{Y}} F_{2}(X) \otimes_{\mathcal{D}} F_{2}(Y)$$

$$\downarrow^{\mu_{1}X,Y} \qquad \qquad \downarrow^{\mu_{2}X,Y}$$

$$F_{1}(X \otimes_{\mathcal{C}} Y) \xrightarrow{\boldsymbol{\tau}_{X} \otimes_{\mathcal{C}} Y} F_{2}(X \otimes_{\mathcal{C}} Y)$$

(単位対象の保存)

1.3 フュージョン圏

定義 1.9: フュージョン圏

圏 C がフュージョン圏 (fusion category) であるとは,

- C は半単純な K-上のアーベル圏
- C は rigid なモノイダル圏
- Cの単純対象の同型類が有限個
- 単位対象 $I \in Ob(\mathcal{C})$ について, $Hom_{\mathcal{C}}(I, I) = \mathbb{K}$

が成り立つこと.

フュージョン圏 $\mathcal C$ が組紐付きフュージョン圏 (braided fusion category) であるとは、 $\mathcal C$ が組紐付き モノイダル圏でもあることを言う.

1.4 2-群

[?] に倣い **2-群** (2-group) を導入する.

定義 1.10: 弱い逆対象

モノイダル圏 \mathcal{C} の対象 $x \in \mathrm{Ob}(\mathcal{C})$ を 1 つとる.

- 対象 $y \in \mathrm{Ob}(\mathcal{C})$ が X の弱い逆対象 (weak inverse) であるとは、対象の同型の意味で $x \otimes y \cong 1$ かつ $y \otimes x \cong 1$ が成り立つことを言う.
- x が弱可逆 (weakly invertible) であるとは、x が弱い逆対象を持つことを言う.
- a 自然同型ではない

定義 1.11: 弱い 2-群・コヒーレントな 2-群

- 弱い 2-群 (weak 2-group) とは、モノイダル圏 G であって、任意の対象が弱可逆でかつ任意の射が同型射であるもののこと.
- コヒーレントな 2-群 (coherent 2-group) とは、モノイダル圏 $\mathcal G$ であって、任意の対象 $x\in \mathrm{Ob}(\mathcal G)$ が可逆な unit、counit $(x,\bar x,i_x,e_x)$ を持ち、かつ任意の射が同型射であるもののこと.

定理 1.1: 弱い 2-群はコヒーレントな 2-群

任意の弱い 2-群はコヒーレントな 2-群にすることができる.

<u>証明</u> 勝手な弱い 2-群 \mathcal{G} を 1 つ固定する. このとき $\forall x \in \mathrm{Ob}(\mathcal{G})$ に対してある $\bar{x} \in \mathrm{Ob}(\mathcal{G})$ および同型射 $i_x' \colon 1 \longrightarrow x \otimes \bar{x}, \ e_x' \colon \bar{x} \otimes x \longrightarrow 1$ が存在する.

ここで $e_x := e'_x$ とおき,

$$i_x \coloneqq (l_x \otimes \operatorname{Id}_{\bar{x}}) \circ a_{1,x,\bar{x}}^{-1} \circ ({i'_x}^{-1} \otimes \operatorname{Id}_{x \otimes \bar{x}}) \circ a_{x,\bar{x},x \otimes \bar{x}}^{-1} \circ (\operatorname{Id}_x \otimes a_{\bar{x},x,\bar{x}}) \circ (\operatorname{Id}_x \otimes {e'_x}^{-1} \otimes \operatorname{Id}_{\bar{x}}) \circ (\operatorname{Id}_x \otimes l_{\bar{x}}^{-1}) \circ {i'_x}^{-1} \otimes \operatorname{Id}_{\bar{x}} \otimes \operatorname{Id}$$

とおくと組 (x, \bar{x}, i_x, e_x) が zig-zag equation を充たすことを示す。実際, i_x の定義をストリング図式で書くと

 $i_x =$

となるから,

定理 1.1 を踏まえ、以下ではコヒーレントな 2-群のことを単に 2-群 (2-group) と呼ぶ.

定義 1.12: 2-群の準同型

2-群 $\mathcal{G}, \mathcal{G}'$ の間の**準同型**とは,モノイダル関手 $f: \mathcal{G} \longrightarrow \mathcal{G}'$ のこと.