2ª PROVA DE TERMODINÂMICA (EQE-363) Prof. Frederico W. Tavares

1) (50 Ptos) Uma mistura em estado de **líquido saturado** (P=2atm) contendo 45%, em mols, de **A**, 35% de **B** e o restante de um polímero não volátil **C** entra em um flash, que opera a $T=130~^{0}C$ e $\beta=50\%$. Sabendo-se que o comportamento da fase líquida pode ser considerado como de mistura ideal e tendo os seguintes dados a seguir:

$$P_A^{SAT}(atm) = exp[10 - (3610/T(K))], P_B^{SAT}(atm) = exp[12 - (4445/T(K))] e P_C^{SAT} = 0$$

Subst.	C _P ^L (cal/gmolK)	C _P ^V (cal/gmolK)	ΔH ^{vap} (cal/gmol)
A	25	18	5020
В	31	23	5850
C	40	-	-

- a) Calcule as composições das correntes de saída do flash.
- b) Calcule a temperatura da corrente de entrada e o calor envolvido no processo.
- 2) (30 Ptos) Etanol pode ser produzido via hidrogenação de acetaldeído de acordo com a seguinte reação: CH₃CHO (g) + H₂ (g) == C₂H₅OH (g) . Supondo-se que a alimentação, em fase gasosa, contenha 2mols/s de CH₃CHO, 1mols/s de C₂H₅OH, 3mols/s de H₂ e 4mols/s de N₂, **calcule a composição de equilíbrio e a taxa de calor** a 500 K e 4 bar. Os seguintes dados da reação são conhecidos: ΔG^0 (300K, 1 bar, gás ideal) = 200 cal/gmol, ΔH^0 (300K, 1 bar, gás ideal) = 400 cal/gmol e ΔC_P (1 bar, gás ideal) = 10 cal/gmol K.
- 3) (20 Ptos) Misturam-se de duas correntes em um tanque. Uma de 10Kg/s de solução aquosa contendo 20% de ácido sulfúrico (em peso) a 30 °C e outra de 30Kg/s de solução aquosa contendo 80% de ácido sulfúrico a 220 °C. **Qual é a taxa de calor** que deve ser retirado para que a temperatura de saída seja de 21.1 °C.

Algumas fórmulas

$$y_{i}P = x_{i}\gamma_{i}P_{i}^{SAT}$$

$$\hat{a}_{i} = \frac{\hat{f}_{i}}{f_{i}^{0}}$$

$$\hat{f}_{i} = x_{i}\hat{\phi}_{i}P = x_{i}\gamma_{i}f_{i}^{0}$$

$$K = \exp\left(\frac{-\Delta G^{0}}{RT}\right) = \prod_{i}\hat{a}_{i}^{\nu_{i}}$$

$$\left(\frac{\partial G/T}{\partial T}\right)_{P} = -\frac{H}{T^{2}}$$

$$R = 1,987 \frac{cal}{gmolK}$$