**ELEC2400** 

## **ELECTRONIC CIRCUITS**

FALL 2021-22

## **HOMEWORK 3**

Issued on Nov. 7, 2021 (Sunday)
Due date: Nov. 16, 2021 (Tuesday), 11:59pm
[Please submit your homework online https://canvas.ust.hk]

Q1. Assuming ideal op amp, find the voltage  $V_o$ , (a) when the switch,  $S_1$ , is open, and (b) when  $S_1$  is closed.



- Q2. Assuming ideal op amp,
  - (a) Find the expression for  $V_0$  as a function of  $V_1$  and  $V_2$ .
  - (b) Find  $V_0$  when  $V_1 = 4 V$ ,  $V_2 = 4 V$ .
  - (c) Find  $V_0$  when  $V_1 = 4 V$ ,  $V_2 = 8 V$ .



Q3. Find  $I_1$ ,  $I_S$ ,  $I_o$  and  $V_o$  assuming ideal op amps.



- Q4. Assuming ideal op amps,
  - (a) Find the expression for  $V_0$  as a function of  $V_1$  and  $V_2$ .
  - (b) Find  $V_0$  when  $V_1 = 3 V$ ,  $V_2 = 4 V$ ,  $R_1 = R_2 = R_3 = 1 k\Omega$ .



Q5. Plot the waveform of  $v_o(t)$  assuming ideal op amp.







Q6. Assuming ideal op amp, find  $v_o(t)$ .



## Q7. Assuming ideal op amp, find $v_{\text{in}}(t)$ .

