Tópicos de Matemática

Licenciatura em Ciências da Computação - 1° ano

exame de recurso - 29 janeiro 2016

Duração: 2 horas

- 1. Diga, justificando, se as afirmações seguintes são verdadeiras ou falsas:
 - (a) Sejam p,q e r proposições. Se a proposição $r\Rightarrow (p\Rightarrow q)$ é falsa, então, a proposição $\sim q\Rightarrow (\sim p\Rightarrow\sim r)$ é verdadeira.
 - (b) Sejam X e A conjuntos. Se $A\subseteq X$, então, $R=\omega_A\cup\omega_{X\setminus A}$ é uma relação de equivalência em X.
 - (c) Sejam (A, \leq) um c.p.o. Se existe supremo de \emptyset em A então A admite um elemento minimal.
 - (d) Sejam A, B e C conjuntos. Se $A \times C \sim B \times C$ então $A \sim B$.
- 2. Dê exemplo, ou justifique que não existe, de:
 - (a) conjuntos A, B e C tais que $A \in B$, $\{A, B\} \in C$ e $\{A, B\} \subseteq C$;
 - (b) uma família de conjuntos $(A_i)_{i\in\mathbb{N}}$ tal que $\bigcup_{i\in\mathbb{N}}A_i=[0,2]$ e $\bigcap_{i\in\mathbb{N}}A_i=\{1\};$
 - (c) uma relação de equivalência $\mathcal R$ em $A=\{1,2,3,4\}$ tal que $(1,3)\in\mathcal R$ e $2\in[1]_{\mathcal R}\cap[4]_{\mathcal R}$;
 - (d) um conjunto A e uma função $f:\mathcal{P}(A)\to A$ injetiva.
- 3. Usando indução matemática, prove que, para todo o natural $n \geq 2$, $\sum_{k=1}^{n} (2k-3) = n(n-2)$.
- 4. Considere a aplicação $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, definida por f(m,n) = nm, para todo $(m,n) \in \mathbb{Z} \times \mathbb{Z}$.
 - (a) Se $A = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid x = y\}$, determine f(A). Justifique.
 - (b) Se $B = \{7\}$, determine $f^{\leftarrow}(B)$. Justifique.
 - (c) Diga, justificando, se f é sobrejetiva e/ou é injetiva.
 - (d) Considere a relação de equivalência associada à igualdade de imagem por f, definida por

$$(x,y) \mathcal{R}_f(a,b) \Leftrightarrow f(x,y) = f(a,b).$$

Para $k \in \mathbb{Z}$, determine $[(1,k)]_{\mathcal{R}_f}$.

- 5. Considere o c.p.o. (A, \leq) definido pelo seguinte diagrama de Hasse:
 - (a) Indique, caso exista:
 - i. Maj $\{7,4\}$;
 - ii. min ∅;
 - iii. um subconjunto X de A que não admita supremo nem ínfimo.
 - (b) Justifique que (A, \leq) não é um reticulado.

