الإجابة النموذجية وسلم التنقيط

امتحان شهادة البكالوريا دورة: 2010

اختبار مادة: العلوم الفيزيائية الشعب(ة): علوم تجريبية

مجموع	مجزأة	عناصر الإجابة								المحاور
الموضوع الأول										
			_				نقاط)	ل : (04	التمرين الأوا	
									1- جدول ا	
		2	المعانل	Zn	(s) +	2H*(aq)	<u> </u>	Zn ²⁺ (aq)-	+ H ₂ (g)	
	0.75	ح/ الجملة	التقدم	~		(mol)	ية المادة	کم		
		ح/ ابند	0	1,5	4×10 ⁻²	2×1	0-2	0	0	
01		ح/ إنتقا	x	1,54	$\times 10^{-2} - x$	2×10 ⁻²	-2x	x	х	
		ح/ نها	x_f	1,54×	$(10^{-2} - x_f)$	2×10 ⁻²	$-2x_f$	x_f	\mathbf{x}_f	
								V		
	0.25					*	$n_{H_1} = x =$	$\frac{V_{H_2}}{V_M}$:3	- ألعلاق	
								چدول: جدول:	2- إكمال الـ	
			(s)	0	50	100	150	200		
05	0.5	$x \times 10^{-3} (ma)$		0	1,44	2,56	3,44	16,4	ļ	
			(s)	250	300	400	500	750	·	
		$x \times 10^{-3} (mc)$	(l)	4,80	5,28	6,16	6,80	8,00)	
0.5	0.5									
					(8/2	لر الصفحة	. = x (أنظ	f(t) :ان	3- رسم البي	
	0.25	$v = \frac{1}{V} \cdot \frac{dx}{dt}$ السرعة الحجمية: -4								
	0.25	$V dt$ $v_1 \approx 4.7 \times 10^{-4} mol \ s^{-1} . L^{-1} : t_1 = 100 s$ قي اللحظة –								
01	0.25						•		- في اللحظ - في اللحظ	
	0.25	نصد ر	سسس نة	_					مي سخط يلاحظ أن قيد	
		-	* * *	- سريس					وحصر المتفا تراكيز المتفا	
	2×0.25	، المحد هو	المتفاعل	ير ومنه	$_{\rm max} = 10^{-2} mc$	ل التقدم اد	: من جدو		5/ أ- المتفاء	
	-					•	يدروجين	, كلور اله	حمض	
01		(م التفاعل	فيها تقد	ية التي يبلغ	المدة الزمن	: t _{1/2} هو	ب التفاعل	- زمن نصف	
O1	0.25	$x_{(i_{12})} = \frac{x_{\text{max}}}{2}$ نصف قيمة تقدمه الأعظمي								
	0.75	$t_{1/2} \approx 270s \Leftrightarrow x_{(1/2)} = 5 \times 10^{-3} mol$ من البيان:								
	0.25				11/2 ~ 2	703 🛶 x	(_{1/2}) = 3 ^	io moi	من سبيان،	
	:									

الشعب (ة): علوم تجريبية

تابع الإجابة التموذجية اختبار مادة : العلوم الفيزيائية

مجموع	مجزأة	عناصر الإجابة المعودية المعجودة المعجودة). عوم	المحاور
]			
	:		ļ
		(List 04) - 250 - 20	
	0.25	<u>التمرين الثاتي: (04 نقاط)</u> 1- تركيب نواة الكريون 14: عدد البروتونات: 6 = Z	
0.5	0.25	۲ ترخیب دوره شدریون ۱۰ تصد عبروسوت. ۷ = ۸ عدد النیترونات: N = A - Z = 8	
		$A = 14 \iff A + 1 = 14 + 1$ النواة بتطبيق قانوني الإنحفاظ: $A = 14 \iff A = 14$	
	0.25 0.25	$Z=6 \Leftarrow 7+0=Z+1$	
01	0.25	$_{6}^{14}C={}_{2}^{4}Y_{1}$ ومنه:	
	0.25	$^{14}_{7}N = ^{14}_{2}N_{2} + ^{14}_{10}C \rightarrow ^{14}_{7}N_{-1}e^{-1}$ بـ/ المعادلة: $^{14}_{7}N + ^{0}_{11}e^{-1}$ ومنه $^{14}_{7}N = ^{14}_{7}N_{-1}e^{-1}$	
	0.25	N(t) : عدد الأنوية غير المتفككة في العينة في اللحظة 1.	
	0.25	N_0 : عدد الانوية غير متفككة في العينة في اللحظة N_0	
	0.25	λ: ثابت التفكك الاشعاعي.	
1.75	0.25	$N(t) = N_0/2$ براثبات المعلاقة: عندما $t = t_{1/2}$ يكون: $t = t_{1/2}$	
1,72	0.75	$\lambda = \frac{\ln 2}{t}$: ومنه $-\ln 2 = -\lambda t_{1/2} \leftarrow 1/2 = e^{-\lambda t_{1/2}} \leftarrow N_0/2 = N_0 e^{-\lambda t_{1/2}}$	
	0.25	t _{1/2}	
		(s^{-1}) ج $[T]^{-1}=[T]^{-1}$ اي أن وحدة قياس λ هي مقلوب وحدة الزمن	
	0.25	L 3	
		$\lambda=1,244\times10^{-4}ans^{-1}$ ومنه: $\lambda=rac{ln2}{t_{1/2}}:\lambda$	
	0.25	₩	
[$A(t) = -\frac{dN}{dt} \Rightarrow A(t) = N_0 \lambda e^{-\lambda t} = A_0 e^{-\lambda t}$ عبارة النشاط: -4	
	0.25		
	0.25	$rac{A}{A_0} = e^{-\lambda t} \iff \ln rac{A}{A_0} = -\lambda t$ حساب عمر العينة:	
0.75	0.43	$t = -\frac{\ln A / A_0}{\lambda} = 1489, 28 ans$	
0.75	0.07	76	
	0.25	تم قطع الشجرة التي انحدرت منها القطعة عام: 511 = 510,72 = 1489,28 - 2000	
لى <u>نىت ــــــــــــــــــــــــــــــــــــ</u>	****		<u></u>

تابع الإجابة النموذجية اختبار مادة : العلوم الفيزيائية الشعب (ة): علوم تجريبية

مجموع	مجزاة	عناصر الإجابة	المحاور
		التمرين الثالث: (04 نقاط)	
01	2×0.5	$u_b = r.i + L\frac{di}{dt}$, $u_R = R.i - 1$	
0.5	2×0.25	an and an	
		$E = (R+r)i + L\frac{di}{dt} \Leftrightarrow \frac{di}{dt} + \frac{(R+r)}{L}i = \frac{E}{L}$	
0.5	0.5	-3 باشتقاق عبارة التيار والتعويض في المعادلة التفاضلية تتحقق المساواة.	
	2×0.25 0.5	$i_{\text{max}} = \frac{E}{R+r} \Leftrightarrow r = 2\Omega / -4$	
1.5	0.5	$t = 0$ باستعمال ميل المماس في اللحظة $ au \approx 10ms$ بناء من المدينة النائدة المدينة ا	
	2×0.25	$i_{ m max}$ أو طريقة النسبة المئوية (63%) من I_0 أي L	
		$\tau = \frac{L}{R+r} \Leftrightarrow L = 1, 2 \times 10^{-1} H$	
0.5	2×0.25	5- الطاقة المخزنة في الوشيعة في حالة النظام الدائم: 	
		$E_{b} = \frac{1}{2}L.i_{\text{max}}^{2}; E_{b} = 1,5 \times 10^{-2}J$	
		التمرين الرابع: (04 نقاط)	
		1- عملية التمديد:	
	0.25	$n_1 = n_2 \qquad c_1 V_1 = c_2 V_2$	
01	0.25	$V_{2}=rac{c_{_{1}}V_{_{1}}}{c_{_{2}}}=rac{c_{_{1}}V_{_{1}}}{rac{c_{_{1}}}{10}}=10V_{_{1}}$	
	0.5	الشرح : نأخذ $20 ext{mL}$ من المحلول $\left(S_{\scriptscriptstyle 0} ight)$ ونضعها في حوجلة قياسية (عيارية) سعتها $200 ext{mL}$	
		نضيف الماء المقطر حتى الخط العياري 200mL (إضافة 180mL من الماء المقطر).	
_		2- معادلة التفاعل المنمذج:	
0.5	0.5	$OH^{-}(aq) + HCOOH(aq) = HCOO^{-}(aq) + H_2O(l)$	
	0.5	$E(20mL\;;\;8,2)$: نقطة التكافؤ من البيان -3	
1.25		تركيز الحمض الممدد:	
	0.25	$c_a V_a = c_b V_b \Rightarrow c_a = \frac{c_b V_b}{c_b}$	
	2×0.25	$c_a = \frac{0.02 \times 20}{20} = 0.02 mol/L$	
	3×0.25	20	
0.75		$pH = pK_a = 3.8$: نقطة نصف التكافؤ: $K_a = 10^{-3.8} = 1.58 \times 10^{-4}$	
0.5	0.5	(S_0) تركيز المحلول الأصلي (S_0) :	
	0.0	$c_0 = 10c_a \Rightarrow c_0 = 10 \times 0,02 = 0,2mol/L$	

تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية الشعب(ة): علوم تجريبية

e	- 	نابع الإجابة النمودجية اختبار ماده: العلوم الفيزيانية الشعب(ه): علوم	. 1. 11
مجموع	مجراة	عناصر الإجابة	المحاور
		التمرين التجريبي: (04 نقاط)	
	0.25	ات للبيان $f(t) = v = v$ يعبر عن نظامين أحدهما انتقالي والآخر دائم.	
0.75	0.25	النظام الانتقالي: $0 \leq t \leq 7s$ ح.م. مشارعة $-$	
	0.25	v=Cte ح.م. منتظمة $t>7s$ - النظام الدائم $-$	
	0.25	$v_{ m lim}=19.6m/s$ السرعة الحدية -2	
0.75	0.25	t=0 عند $t=0$ يتمثل في حساب ميل المماس عند $t=0$	
		$a_0 = \frac{\Delta v}{\Delta t} = \frac{19.6 - 0.6}{2 - 0} = 9.5 m.s^{-2}$	
0.5	0.25	3- الشكل ، الحجم ، الكتلة	
0.5	0.5	$\vec{f} + \vec{P} = m.\vec{a}$ -4	
	0.25	4 7	
1.25	0.25	-f + P = m.a	
1.25	ا ل رسم 0.5	$-Kv + m.g = m\frac{dv}{dt}$	
	0.25	$g = \frac{K}{m}v + \frac{dv}{dt}$	
		5– بيان السرعة بدلالة الزمن يكون خطيا.	
	0.25	ومنه $g = \frac{dv}{dt} = a$ ومنه $g = \frac{dv}{dt}$	
	0.25		
0.75			
	0.25		
		<i>t</i> (s)	

23

صفحة 4 من 8

الجديد و الحصري فقط على موقع الأستاذ otphilosophie

sites.google.com/site/lotphilosophie

الشعب(ة): علوم تجريبية

تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية الشعب

مجموع		عناصر الإجابة	المحاور
		الموضوع الثاني	
		التمرين الأول: (04 نقاط)	
	<u> </u>	^{14}C معادلة التفكك ^{14}C :	
		${}^{14}_{6}C \rightarrow {}^{A}_{7}Y + {}^{0}_{1}e$	
	0.25 0.25	, , ,	
01	0.25	$ \begin{array}{rcl} & 14 = A + 0, & A = 14 \\ & 6 = Z - 1, & Z = 7 \end{array}, {}_{2}^{A}Y = {}_{7}^{14}N $	
	0.25	$^{14}_{6}C \rightarrow ^{14}_{7}N + ^{0}_{-1}e$	
	0.25	$t_{\frac{1}{2}},t,A_0$ بدلالة $A(t)$ علقة (2)	
0.75	0.25	$A = A_0 e^{-\lambda t}$	
		$A = A_0 e^{-\frac{\ln 2}{l_{VI}}}$	
	0.25		
		(3)	
		$\ln\frac{A}{A_0} = -\frac{\ln 2}{t_{1/2}}t$	
	0.25	$t = \frac{t_{\frac{1}{2}}}{\ln 2} \cdot \ln \frac{A_0}{A}$	
	2×0.25	i	
	2.40.25	$t_A = \frac{5570}{0.693} \ln \frac{5000}{6000}$ الفريق الأول:	
1.5		$t_A = 1458,57 ans$	
	2×0.25	$t_B = \frac{5570}{0.639} \ln \frac{4500}{6000}$ الفريق الثاني:	
		$t_B \simeq 2301,45 ans$	
	0.25	$ t_A - t_B = 842,88 \text{ ans}$	
		الجمجمتان لا تتتميان لنفس الحقبة الزمنية.	
 	0.25	$E_{t}({}^{14}_{6}C) = \Delta mC^{2} \tag{4}$	
0.75	0.25	$E_{I}({}^{14}_{6}C) = ([6 \times 1,00728 + (14-6) \times 1,00866] - 14,00324)C^{2} \times \frac{931,5}{C^{2}}$	
	0.25	$E_{I} = 102, 2MeV = 102, 2 \times 10^{6} eV$	
		التمرين الثاني: (04 نقاط)	
	0.5	$C_6H_5COOH(aq) + HO^-(aq) = C_6H_5COO^-(aq) + H_2O(l) / -1$	
		ب/ نقطة التكافؤ: (E(10mL;8)	
1.5	0.5	تحدد E بيانيا باستعمال طريقة المماسات المتوازية.	

تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية الشعب(ة): علوم تجريبية

مجموع	3	سبع الإجابة التمودجية العلي مادة: العلوم القيريانية المعهدة): علوم الاجابة المعهدة العلام المعهدة العلوم الإجابة								
	0.25	$C_a = rac{C_b V_{bE}}{V_a}$ ومنه: $C_a V_a = C_b V_{bE}$: غند التكافؤ								
	0.25	$C_a = 2,0 \times 10^{-2} \text{ mol.} L^{-1}$								
	0.25	2-أ-جدول التقدم:								
		المعادلة	$C_6H_sCOOH(aq)$		$= C_6 H_5 COO(aq)$	······ ·				
	0.5		$C_a V_a = 10^{-3} mol$			بزيادة	ı			
	0.5	ح/نها		$10^{-3} - x_E$		بزيادة				
	0.25	1.O- <i>Pi</i>	- '	$_3COOH$ $_3O^+$ $_3O^+$	میه مادة کل من	ا نب— حسانب ک				
02	0.23	$n_{(H_3O^*)} = 10^{-pH} \times (V_a + V_b) = 10^{-8} \times (50 + 10)10^{-3}$								
	0.25	$n_{(H_3O^+)} = 6 \times 10$								
	0.25	` ′	$^{4)} \times (50+10)10^{-3}$		2					
	0.25	$n_{(HO^+)} = 6 \times 10$	$0^{-8} mol \Leftrightarrow 10^{-3} - x_0$	$x = 6 \times 10^{-3} \Rightarrow x_E =$	$=10^{-3} mol$					
				· ()						
	2×0.25	"(C ₆ H ₂ COOH _(aq))	$=C_{a}V_{a}-x_{E}=10^{-3}$		lelä Siue ä	* تقال الأحاد				
0.5	0.6	* تقبل الإجابة عند ذكر تفاعل المعايرة تام وبالتالي $n_{(C_6H,COOH)} = 0$ 4 الكاشف المناسب هو فينول فتاليين لأن مجال تغيره اللوني يحوي								
0.5	0.5		, , , , , , , , , , , , , , , , , , ,		rٍ نقطة التكافق.	1				
					(04 نقاط)	التمرين الثالث				
0.75	0.75		ì		:6_	ا مخطط الدار				
			A		_					
	0.5	E ($u_{AB} = C$	au=1	, من البيان ms	2) ثابت الذمن				
			↑ ↑ B		, من سبول لازم لتشحن الما	`				
1.5	0.5		$u_R \mid R$							
		0.5 K		تنتها العظمى. -10 -	_					
				$\tau = RC =$	$\Rightarrow C = \frac{r}{R} = \frac{10^{-1}}{100}$	سعة المكثقة (
	0.5			$C = 10^{-5} I$						
0.5	250.05	$Q_{\text{max}} = q_0 = EC$ عند النظام الدائم:	ثقة عند النظام ا	ا أ 3) شحن المك						
0.5	2×0.25		$q_0 = 5.10^{-}$	Coulomb		, , , , , , , , , , , , , , , , , , ,				
		♠ u _e (v)		ئى	4) شكل المنحا				
		5		······································						
	0.5	T								
1.25				t(s)						
	0.75			-	$\tau' = 2\tau \Leftarrow \frac{\tau}{\tau'} =$	$rac{RC}{2RC}:$ التعليل				
L.,				***************************************						

25

تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية الشعب (ة): علوم تجريبية مجزأة مجموع عناصر الإجاية المحاور التمرين الرابع (04) نقاط) $\sum \vec{F}_{ext} = m.\vec{a}$: القانون الثاني لنيونن في مرجع غالبلي -1 0.25 $\vec{P} = m\vec{a}$ 0.25 $x=v_0\coslpha.t$: على $a_x=0$ حمد منتظمة معادلتها $a_x=0$ 2.5 3×0.25 $y=-rac{1}{2}gt^2+v_0\sinlpha t$ على $y=-rac{1}{2}gt^2+v_0\sinlpha t$ على خرم.م. بإنتظام معادلتها $a_y=-g$ 3×0.25 معادلة المسار : $y = \frac{-g}{2v_{cos}^{2}\alpha}x^{2} + \tan \alpha.x$ وهو عبارة عن قطع مكافئ. 0.5 y=h , x=d :سجل الهدف لما -20.25 $h = \frac{-g}{2a^2 \cos^2 \alpha} d^2 + \tan \alpha . d$ 01 0.25 $v_{
m e} \simeq 18,6 ms^{-1}$ بالتعویض نجد: $x = v_0 \cos \alpha t = d$ t = 1.55s2×0.25 $v_A = \sqrt{(v_0 \cos \alpha)^2 + (-qt + v_0 \sin \alpha)^2}$ $v_{A} = 17,26 m.s^{-1}$ y=0 و x=d و x=0 $0 = \frac{-g}{2v_c^2 \cos^2 \alpha} d^2 + \tan \alpha d$ 0.25 0.5 $v_0^{-1} = 17 m s^{-1}$ 0.25 التمرين التجريبي: (04 نقاط). $Zn(s) = Zn^{2+}(aa) + 2e^{-}$ 0.25 $I_2(aq) + 2e^- = 2I^-(aq)$ 0.75 0.25 $Zn(s) + I_2(aq) = Zn^{2+}(aq) + 2I^{-}(aq)$ 0.25 2- أ) البروتوكول التجريبي: المواد والأدوات وطريقة العمل والرسم. ب) تعريف السرعة الحجمية: هي سرعة النفاعل من أجل وحدة الحجم للوسط النفاعلى. 0.5 0.25 $v = \frac{1}{V} \frac{dx}{dx}$ $v = -\frac{d[I_2]}{dt}$ 1.75 0.25 t نحسب السرعة بيانيا بميل المماس للمنحنى في كل لحظة 0.25 ج) السرعة الحجمية تتناقص مع مرور الزمن بسبب تناقص التركيز وبالتالي 0.5 نقص الاصطدامات الفعالة .

الشعب(ة): علوم تجريبية مجزأة مجموع تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية عناصر الإجابة المحاور 3 -3 شكل المنحنى: 20 0.5 0.5 السرعة عند t=0 أقل من السرعة في التجربة (1) عند نفس اللحظة بسبب التناقص في التركيز الابتدائي. $\Lambda[I_2]$ 20 0.5 0.5 5- العوامل الحركية هي: 0.5 0.5 - التركيز المولى للمتفاعلات. - درجة الحرارة