Table:
$$T_2^{(\gamma)}(4.9 < \gamma < 5.0)$$

							105	1 00	4.07			
T		4.90 -6.48	4.91	4.92	4.93	4.94	4.95	4.90	4.91	4.98	4.99	5.00
,t		1.00					_2 89			-0.59	0.20	3.00
f(x)	:	-6.48	-5.79			Lara H	2.00		July Out	_	0.20	
2 ()					Charles better	A STATE OF THE PARTY OF THE PAR		_				

Here $f(4.98) \cdot f(4.99) < 0$, γ between 4.98 and 4.99. Again we compute f(x) for successive values of x starting with 4.98 and with step length 0.001.

Table:
$$T_3^{(\gamma)}(4.98 < \gamma < 4.99)$$

								1.000	1.007	1 000	4 080.
7		4.980	4.981	4.982	4.983	4.984	4.985	4.986	4.987	4.900	4.909
f(r)	Ċ	-0.59		1.002			-0.201		-0.042	0.037	
1(2)		0.00									

As $f(4.987) \times f(4.988) < 0$, γ lies within the interval (4.987, 4.988). Thus, $\gamma = 4.99$ is a root of f(x) = 0, up to two decimal places.

NOTE 6.2.1 As the method is laborious and we are only interested in finding an expected sufficiently small interval in which f(x) changes sign, we use a short-cut approach on and from table $T_3^{(\alpha)}$. In table $T_2^{(\alpha)}$, it is confirmed that only one root G_3 lies in (1.76, 1.77). For table $T_3^{(\alpha)}$, we first write f(1.760) = -0.07 < 0 from table $T_2^{(\alpha)}$, then f(1.765) = -0.03 < 0 and f(1.769) = 0.005 > 0 are computed, shows the change of sign. Now we calculate f(1.768) = -0.003 which indicates that the root G_3 lies in the interval G_3 lies in the int

6.3 Method of Bisection

It is an iterative method and is based on a well known theorem which states that if f(x) be a continuous function in a closed interval [a,b] and f(a)f(b) < 0, then there exists at least one real root of the equation f(x) = 0, between a and b. If further f'(x) exists and f'(x) maintains same sign in [a,b], i.e., f(x) strictly monotonic, then there is only one real root of f(x) = 0, in [a,b]. The method of Bisection is nothing but a repeated applications of the above theorem.

We shall determine a sufficiently small interval $[a_0, b_0]$, by Graphical or Tabulation method, in which $f(a_0)f(b_0) < 0$ and f'(x) maintains same sign in $[a_0, b_0]$, so that there is only one real root of f(x) = 0. Now we shall find a sequence $\{x_n\}$, each member of which is a successive better approximation of a root say, α of f(x) = 0, in $[a_0, b_0]$ as follows. Let the interval $[a_0, b_0]$ be divided in two equal parts by x_1 , i.e., $x_1 = \frac{a_0 + b_0}{2}$ and $f(x_1)$ is calculated. If $f(x_1) = 0$, then x_1 is an exact root of f(x) = 0. If $f(x_1) \neq 0$, then either $f(a_0)f(x_1) < 0$ or $f(x_1)f(b_0) < 0$. If $f(a_0)f(x_1) < 0$, then the root α lies in $[a_0, x_1]$, otherwise α lies in $[x_1, b_0]$. For convenience we assume that α lies in $[x_1, b_0]$ and we re-name the interval as $[a_1, b_1]$ so that $b_1 - a_1 = \frac{1}{2}(b_0 - a_0)$. Now we take $x_2 = \frac{a_1 + b_1}{2}$ and $f(x_2)$ is computed, then either $f(a_1)f(x_2) < 0$ or $f(x_2)f(b_1) < 0$, provided $f(x_2) = 0$ where x_2 is the exact root of f(x) = 0. We assume here that $f(a_1)f(x_2) < 0$, then the root α of f(x) = 0 lies in $[a_1, x_2]$ and we call it as $[a_2, b_2]$, where $b_2 - a_2 = \frac{1}{2}(b_1 - a_1) = \frac{1}{2^2}(b_0 - a_0)$. Proceeding in this manner, we find $x_{n+1} = \frac{a_n + b_n}{2}$ which is the (n+1)th approximation of the root α of f(x) = 0 and lies in the interval $[a_n, b_n]$ where

 $b_n - a_n = \frac{1}{2^n}(b_0 - a_0)$ and $a_0 \le a_n < b_n \le b_0$ for all n. If ε_{n+1} be the error in approximating α by x_{n+1} then $\varepsilon_{n+1} = |\alpha - x_{n+1}| < b_n - a_n < \frac{b_0 - a_0}{2^n} \to 0$, as $n \to \infty$. Thus, this iterative process surely converges. To get a root of f(x) = 0 correct to p significant figures, we are to go up to qth iteration so that x_q and x_{q+1} have the same p significant figures.

6.3.1 Computation Scheme

- 1. Find an interval $[a_0, b_0]$ where $f(a_0)f(b_0) < 0$ and f'(x) maintains same sign.
- 2. Write, n (number of iteration), $a_n, b_n, x_{n+1} = \frac{a_n + b_n}{2}$ and $f(x_{n+1})$ horizontally.
- 3. Insert +ve or -ve sign with a_n , as $a_n(+ve)$ or $a_n(-ve)$ according as $f(a_0) > 0$ or $f(a_0) < 0$ and -ve or +ve sign with b_n , as $b_n(-ve)$ or $b_n(+ve)$ according as $f(b_0) < 0$ or $f(b_0) > 0$.
- 4. In (r+1)th iteration, write $x_{r+1} \left(= \frac{a_r + b_r}{2} \right)$ in the column of $a_n(+ve)$, if $f(x_{r+1}) > 0$ keeping b_r fixed in the column of $b_n(-ve)$. Otherwise, write $x_{r+1} \left(= \frac{a_r + b_r}{2} \right)$ in the column of $b_n(-ve)$, if $f(x_{r+1}) < 0$, keeping a_r fixed in the column of $a_n(+ve)$.

Scheme 6.1

When $f(a_0) > 0$ and $f(b_0) < 0$

n	$a_n(+ve)$	$b_n(-ve)$	$x_{n+1} \left(= \frac{a_n + b_n}{2} \right)$	$f(x_{n+1})$
. 0	a_0	b_0	$x_1 \left(=rac{a_0+b_0}{2} ight)$	$f(x_1) > 0$
1	$x_1(=a_1)$	$b_0(=b_1)$	$x_2 \left(= \frac{a_1 + b_1}{2} \right)$	$f(x_2) > 0$
2	$x_2(=a_2)$	$b_0(=b_2)$	$x_3 \left(= \frac{a_2 + b_2}{2}\right)$	$f(x_3) < 0$
3	$a_2(=a_3)$	$x_3(=b_3)$	$x_4 \left(= \frac{a_3+b_3}{2} \right)$	$f(x_4) < 0$
. 4	$a_2(=a_4)$.	$x_4(=b_4)$	$x_5 \left(= \frac{a_4 + b_4}{2} \right)$	$f(x_5) > 0$
5	$x_5(=a_5)$	$b_4(=b_5)$	$x_6 \left(= \frac{a_5 + b_5}{2}\right)$	$f(x_6) < 0$
6	$a_5(=a_6)$	$x_6(=b_6)$	$x_7 \left(=rac{a_6+b_6}{2} ight)$.	$f(x_7) < 0$
7	$a_6(=a_7)$	$x_7(=b_7)$	$x_8 \left(= rac{a_7 + b_7}{2} \right)$.	THE STATE OF THE S
	and so on.	e projection de la constitución	And all Colors and	ab avector

Scheme 6.2

When $f(a_0) < 0$ and $f(b_0) > 0$,

		N.		
n	$a_n(-ve)$	$b_n(+ve)$	$x_{n+1} \left(= \frac{a_n + b_n}{2} \right)$	$f(x_{n+1})$
0	a_0	b_0	$x_1 \left(= \frac{a_0 + b_0}{2} \right)$	$f(x_1) > 0$
1	$a_0 (= a_1)$	$x_1 (= b_1)$	$x_2 \left(= \frac{a_1 + b_1}{2} \right)$	$f(x_2) > 0$
2	$a_0 (=a_2)$	$x_2(=b_2)$	$x_3 \left(= \frac{a_2 + b_2}{2}\right)$	$f(x_3) > 0$
3	$a_0 (= a_3)$	$x_3 (= b_3)$	$x_4 \left(= \frac{a_3 + b_3}{2} \right)$	$f(x_4) < 0$
4	$x_4(=a_4)$	$b_3(=b_4)$	$x_5 \left(= \frac{a_4 + b_4}{2}\right)$	$f(x_5) < 0$
5	$x_5(=a_5)$	$b_3(=b_5)$	$x_6 \left(= \frac{a_5 + b_5}{2} \right)$	$f(x_6) > 0$
6	$a_5 (= a_6)$	$x_6(=b_6)$	$x_7 \left(= \frac{a_6 + b_6}{2} \right)$	$f(x_7) < 0$
7	$x_7 (= a_7)$	$b_6(=b_7)$	$x_8 \left(= \frac{a_7 + b_7}{2} \right)$	
	and so on.	And the same		
			The language for the s	and the state of the

Solved Problems 6.4

EXAMPLE 6.4.1 Find the positive roots of the equation $x^3 - 3x + 1.06 = 0$, by method of bisection, correct to three decimal places.

Solution: Let $f(x) = x^3 - 3x + 1.06$. By Descartes' rule of signs, the maximum number of positive roots is two.

Now f(0) = 1.06 > 0, f(1) = -0.94 < 0, f(2) = 3.06 > 0. Thus, one positive root α lies in (0,1) and other β lies in (1,2).

(i) Computation of $\alpha(0 < \alpha < 1)$

 $x_{n+1} \left(= \frac{a_n + b_n}{2} \right)$ $b_n(-ve)$ $f(x_{n+1})$ $a_n(+ve)$ 0.5 -0.321... 0 0 0.250.5 0.330. 1 0.3750.5 -0.0120.25 2 0.312 0.3750.1543 0.250.343 0.3750.0710.3124 . 0.3590.3750.0290.3435 0.375 0.3670.0080.3596 0.3710.375-0.0020.3670.3690.3710.0030.3678 0.3710.3700.00060.3699 0.37050.371-0.00060.37010 0.370250.37050.0000060.37011 0.370375 0.3705-0.00030.3702512 0.3703120.370375 0.37025

 $\therefore \alpha = 0.370$, correct to three decimal places.

13

check

(ii) (Computation	of A	3(1	<	B	< 2).	Here	f(1)) =	-0.94	and	f(2)	= 3.06
--------	-------------	------	-----	---	---	-------	------	------	-----	-------	-----	------	--------

	\overline{n}	$a_n(-ve)$	$b_n(+ve)$	$\dot{x}_{n+1} \left(= \frac{a_n + b_n}{2} \right)$	$f(x_{n+1})$
	0	1	2	1.5	-0.06
	1	1.5	2	1.75	1.17
	2	1.5	1.75	1.62	0.45
	3	1.5	1.62	1.56	0.17
	4	1.5	1.56	1.53	0.05
	5	1.5	1.53	1.515	-0.007
	6	1.515	1.53	1.5225	0.0217
	7	1.515	1.5225	1.5188	0.0067
	8	1.515	1.5188	1.5169	-0.0003
	9	1.5169	1.5188	1.51785	0.0034
	10	1.5169	1.51785	1.517375	0.0015
	11	1.5169	1.517375	1.517138	0.0006
check	12	1.5169	1.517138	1.517019	0.0001

 $\beta = 1.517$, correct to three decimal places. Here a_n, b_n and x_{n+1} are equal up to three decimal places at the 11th step.

EXAMPLE 6.4.2 Solve the equation $x^3 - 9x + 1 = 0$ for the root lying between 2 and 3, correct to 3-significant figures. [CH '87]

SOLUTION: Let
$$f(x) = x^3 - 9x + 1$$
, Here $f(2) = -9$, $f(3) = 1$.
 $f(2) \cdot f(3) < 0$

Plants Age	\overline{n}	$a_n(-ve)$	$b_n(+ve)$	$x_{n+1} \left(= \frac{a_n + b_n}{2} \right)$	$f(x_{n+1})$
		$\frac{a_n(-cc)}{2}$	3	2.5	-5.8
	0	2.5	3	2.75	-2.9
	2	2.75	3	2.88	-1.03
	3	2.13	3	2.94	-0.05
	4	2.94	3	2.97	0.47
	5	2.94	2.97	2.955	0.21
	6	2.94	2.955	2.9475	0.08
	7	2.94	2.9475	2.9438	0.017
	8	2.94	2.9438	2.9419	-0.016
check	9	2.9419	2.9438	2.9428	-0.003

In the 8th step, a_n, b_n and x_{n+1} are equal up to three significant figures, \therefore 2.94 is the root, up to three significant figures.

▶ Example 6.4.3 Compute one positive root of $2x - 3\sin x - 5 = 0$, by the bisection method, correct to three significant figures.

SOLUTION: Let $f(x) = 2x - 3\sin x - 5$. Here f(0) = -5, f(1) = -5.5, f(2) = -3.7, f(3) = 0.57, $f(2) \cdot f(3) < 0$. Thus, only one root lies between 2 and 3, since $f'(x) = 2 - 3\cos x > 0$ for $x \in [2, 3]$.

7	ı	$\overline{a_n(-ve)}$	$b_n(+ve)$	$x_{n+1} \left(= \frac{a_n + b_n}{2} \right)$	$f(x_{n+1})$
(0	2.0	3.0	2.5	-1.79
	1	2.5	3.0	2.75 •	-0.64
	2	2.75	3.0	2.875	0.04
	3	2.875	3.0	2.938	0.27
	4	2.875	2.938	2.906	0.11
	5	2.875	2.906	2.8905	0.036
	6	2.875	2.8905	2.8828	-0.0021 0.0165
Table U	7	2.8828	2.8905	2.8866	0.0103
	8	2.8828	2.8866	2.8847	0.0072
	9	2.8828	2.8847	2.8838	0.0023
check 10	0	2.8828	2.8838	2.8833	0.0000

In 9th step, a_n, b_n and x_{n+1} are equal up to three significant figures.

: 2.88 is the root, correct to three significant figures.

EXAMPLE 6.4.4 Find one root of $10^x + \sin x + 2x = 0$, by the bisection method, up to three significant figures.

SOLUTION: Let $f(x) = 10^x + \sin x + 2x$, f(0) = 1, f(1) = 12.8, f(-1) = -2.74, and $f(-1) \cdot f(0) < 0$. Also, $f'(x) = 10^x \log_e x + \cos x + 2 > 0$ for $x \in [-1, 0]$.

 \therefore Only one root between -1 and 0.

Omy one rees				
$\frac{1}{n}$	$a_n(-ve)$	$b_n(+ve)$	$x_{n+1} \left(= \frac{a_n + b_n}{2} \right)$	$f(x_{n+1})$
		0.0	-0.5	-1.16
0	-1.0		-0.25	-0.18
1,	-0.5	0.0	-0.125	0.37
2	-0.25	0.0	-0.125	0.088
3	-0.25	-0.125	-0.1870 -0.2187	-0.050
4	-0.25	-0.1875	-0.2187 -0.2031	0.018
5	-0.2187	-0.1875		-0.016
6	-0.2187	-0.2031	-0.2109	0.001
7	-0.2109	-0.2031	-0.2070	
8	-0.2109	-0.2070	-0.20895	-0.007
9	-0.20895	-0.2070	-0.20798	-0.003
10	-0.20798	-0.2070	-0.20749	-0.0008
11	-0.20749	-0.2070	-0.20724	0.0003
check 12	-0.20749	-0.20724	-0.20736	-0.0002

Here in the 11th stage, a_n, b_n and x_{n+1} are same up to three significant figures. Thus, -0.207 is a root of $10^x + \sin x + 2x = 0$, correct to three significant figures.

► EXAMPLE 6.4.5 Compute a real root of $x^3 - 1.1x^2 + 4x - 4.4 = 0$, correct to two significant figures, by method of bisection.

SOLUTION: Let $f(x) = x^3 - 1.1x^2 + 4x - 4.4$. Here f(0) = -4.4, f(1) = -0.6, f(2) = 16 > 0. $f(1) \cdot f(2) < 0$. Thus, only one root between 1 and 2, since $f'(x) = 3x^2 - 2.2x + 4 > 0$ for $x \in [1, 2]$.

n	$a_n(-ve)$	$b_n(+ve)$	$x_{n+1} \left(= \frac{a_n + b_n}{2} \right)$	$f(x_{n+1})$
0	1	2	1.5	2.5
1	1	1.5	1.25	0.83
2	1	1.25	1.125	0.13
3	1	1.125	1.062	-0.195
4	1.062	1.125	1.094	-0.031
5	1.094	1.125	1.1095	0.049
6	1.094	1.1095	1.1018	0.0093
check 7	1.094	1.1018	1.0979	-0.0109

In the 6th step, a_n, b_n and x_{n+1} are equal up to two significant figures.

- : 1.1 is a root of the equation, correct to two significant figures.
- ► EXAMPLE 6.4.6 Compute one root of $x + \ln x 2 = 0$ correct to two decimal places with lies between 1 and 2.

SOLUTION: Let $f(x) = x + \ln x - 2 = 0$. Here f(1) = -1 and f(2) = 0.69. ... Only one root between 1 and 2, since $f'(x) = 1 + \frac{1}{x} > 0$ for $x \in [1, 2]$.

•	Section 1				
	n	$a_n(-ve)$	$b_n(+ve)$	$x_{n+1} \left(= \frac{a_n + 1}{2} \right)$	$f(x_{n+1})$
	0	1.0	2.0	1.5	-0.09
	1	1.5	2.0	1.75	0.31
	2	1.5	1.75	1.625	0.11
	3	1.5	1.625	1.562	0.008
	4	1.5	1.562	1.531	-0.043
sharks	5	1.531	1.562	1.5465	-0.017
020.	6	1.5465	1.562	1.5542	-0.0048
EAL	° 7	1.5542	1.562	1.5581	0.0016
	8	1.5542	1.5581	1.5562	-0.0015
	9	1.5562	1.5581	1.55715	0.000007
check	10	1.5562	1.55715	1.55668	-0.00076
				A	

In the 9th step, a_n, b_n and x_{n+1} are equal to two decimal places.

- .. 1.56 is a root of the equation, correct to two decimal places.
- Example 8.4.7 Compute one root of $\sin x = 10(x-1)$, correct to three significant figures.

Solution: Let $f(x) = \sin x - 10x + 10$. Here f(1) = 0.84, f(1.5) = -4.002, f(1.1) = -0.108. Thus, only one root of f(x) = 0 lies in [1, 1.1], since $f'(x) = \cos x - 10 < 0$ for $x \in [1, 1.1]$.

n	$a_n(-ve)$	$b_n(+ve)$	$x_{n+1} \left(= \frac{a_n + b_n}{2} \right)$	$f(x_{n+1})$
0	1.0	1.1	1.05	0.37
1	1.05	1.1	1.08	0.082
2	1.08	1.1	1.09	-0.013
3	1.08	1.09	1.085	0.034
4	1.085	1.09	1.0875	0.0104
short 6	1.0875	1.09	1.08875	-0.00145
check 6	1.0875	1.08875	1.08812	0.0046

In the 5th step, a_n, b_n and x_{n+1} are equal up to three significant figures. x = 1.09 is a root of f(x) = 0, correct to three significant figures.

► EXAMPLE 6.4.8 Compute one root of $e^x - 3x = 0$, correct to two decimal places which between 1 and 2.

SOLUTION: Let $f(x) = e^x - 3x$. Here f(1) = -0.28, f(1.5) = -0.02, f(1.6) = 0.15. Thus, only one root of f(x) = 0 between 1.5 and 1.6, since $f'(x) = e^x - 3 > 0$ for $x \in [1.5, 1.6]$.

7	ı	$a_n(-ve)$	$b_n(+ve)$	$x_{n+1} \left(= \frac{a_n + b_n}{2} \right)$	$f(x_{n+1})$
)	1.5	1.6	1.55	0.06
ia riso ai	1	1.5	1.55	1.525	0.02
	2	1.5	1.525	1.5125	0.00056
	3	1.5	1.5125	1.5062	-0.00904
a du sa	1	1.5062	1.5125	1.50935	-0.00426
check !	5	1.50935	1.5125	1.51092	-0.00184

In the 4th step, a_n , b_n and x_{n+1} are equal up to two decimal places. Thus, x = 1.51 is a root of f(x) = 0, correct up to two decimal places.

▶ Example 6.4.9 Compute the root of $\log x = \cos x$, correct to two decimal places, which between 1 and 2.

SOLUTION: Let $f(x) = \log_e x - \cos x$. Here f(1) = -0.54, f(1.5) = 0.33, f(1.3) = -0.005, f(1.4) = 0.166. Thus, one root of f(x) = 0 between 1.3 and 1.4.

880.00 C	n	$a_n(-ve)$	$b_n(+ve)$	$x_{n+1} \left(= \frac{a_n + b_n}{2} \right)$	$f(x_{n+1})$
	0	1.3	1.4	1.35	0.08
T. T. T.	1	1.3	1.35	1.325	0.038
	2	1.3	1.325	1.3125	0.0165
	3	1.3	1.3125	1.3062	0.0056
والمثار	4 .	1.3	1.3062	1.3031	0.00024
	5	1.3	1.3031	1.3016	-0.0024
check	6	1.3016	1.3031	1.3024	-0.00098

In the 5th step, a_n , b_n and x_{n+1} are equal up to two decimal places. Thus, x = 1.30 is root of f(x) = 0, correct up to two decimal places.

EXAMPLE 6.4.10 Find the root of $\tan x + x = 0$, up to two decimal places, which between 2 and 2.5.

SOLUTION: Let $f(x) = \tan x + x$. Here f(2) = -0.18, f(2.2) = 0.82, f(2.1) = 0.39. Thus, the root between 2.0 and 2.1.

n	$a_n(-ve)$	$b_n(+ve)$	$x_{n+1} \left(= \frac{a_n + b_n}{2} \right)$	$f(x_{n+1})$
		2.1	2.05	0.12
0	2.0	2.05	2.025	-0.023
1	2.0	2.05	2.0375	0.053
2	2.025	2.0375	2.03125	0.0152
3	2.025 2.025	2.0313	2.02812	-0.0039
4 5	2.023	2.03125	2.02968	0.0056
check 6	2.02813	2.02968	2.02890	0.00087

In the 5th step, a_n, b_n and x_{n+1} are equal up to two decimal places. x = 2.03 is a root of f(x) = 0, correct up to two decimal places.

Example 6.4.11 Find a root of the equation $x^x + 2x - 6 = 0$, by method of bisection, correct to two decimal places.

SOLUTION: Let $f(x) = x^x + 2x - 6$. Here f(1) = -3 and f(2) = 2. Thus, only one root of f(x) between 1 and 2. Since $f'(x) = x^x(1 + \log_e x) + 2 > 0$ for $x \in [1, 2]$.

n	$a_n(-ve)$	$b_n(+ve)$	$x_{n+1} \left(= \frac{a_n + b_n}{2} \right)$	$f(x_{n+1})$
0	1.0	2.0	1.5	-1.16
1	1.5	2.0	1.75	0.16
2	1.5	1.75	1.625	-0.55
3	1.625	1.75	1.6875	-0.207
4	1.6875	1.75	1.71875	-0.026
5	1.71875	1.75	1.73438	0.067
6	1.71875	1.73438	1.72656	0.0206
7	1.71875	1.72656	1.72266	-0.0026
8	1.72266	1.72656	1.72461	0.00898
9	1.72266	1.72461	1.723635	0.00318
check 10	1.72266	1.72335	1.723148	0.00028

In the 9th step, a_n, b_n and x_{n+1} are equal up to two decimal places. Thus, x = 1.72 is a root, correct up to two decimal places.

6.5 Method of Iteration or Fixed-Point Iteration

This iteration method is based on the principle of finding a sequence $\{x_n\}$ each element of which successively approximates a real root α of the equation f(x) = 0, in [a, b]. We re-write f(x) = 0 as:

$$x = \phi(x). \tag{6.5.1}$$