

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
9. September 2005 (09.09.2005)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2005/083363 A2

(51) Internationale Patentklassifikation⁷: **G01D 5/00**

[DE/DE]; Dreibergstr. 74, 91056 Erlangen (DE). **LUDWIG, Klaus** [DE/DE]; Geschwister-Scholl-Str. 3, 91058 Erlangen (DE).

(21) Internationales Aktenzeichen: PCT/EP2005/050631

(74) Gemeinsamer Vertreter: **SIEMENS AKTIENGESELLSCHAFT**; Postfach 22 16 34, 80506 München (DE).

(22) Internationales Anmeldedatum:
14. Februar 2005 (14.02.2005)

(81) Bestimmungsstaaten (*soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(25) Einreichungssprache: Deutsch

(81) Bestimmungsstaaten (*soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(26) Veröffentlichungssprache: Deutsch

(81) Bestimmungsstaaten (*soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(30) Angaben zur Priorität:
10 2004 009 868.9 1. März 2004 (01.03.2004) DE

(81) Bestimmungsstaaten (*soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): **SIEMENS AKTIENGESELLSCHAFT** [DE/DE]; Wittelsbacherplatz 2, 80333 München (DE).

(81) Bestimmungsstaaten (*soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): **HAUCH, Jens**

[Fortsetzung auf der nächsten Seite]

(54) Title: MEASURING DEVICE FOR LINEAR POSITION RECORDING

(54) Bezeichnung: MESSEINRICHTUNG ZUR LINEAREN POSITIONSERFASSUNG

(57) Abstract: The measuring device (5), for a linear non-contact recording of the position of a movable object, comprises a field device (6), generating a magnetic field, which undergoes a displacement (x), from a reference position (x₀), along a measuring run (2), corresponding to the movement of the object. The measuring run (2) is formed from a strip-like track (3) with magneto-resistive properties, contacting on the longitudinal side with resistance tracks (4a, 4b) made from normal resistive material. Connectors (A to D) are provided at the ends of the resistive tracks (4a, 4b) at which measured signals correlated to the position (x) of the field device (6) can be tapped.

(57) Zusammenfassung: Die Messeinrichtung (5) zu einer linearen, berührungslosen Erfassung der Position eines ortsveränderlichen Objektes enthält eine ein Magnetfeld erzeugende Feldeinrichtung (6), die eine der Ortsveränderung des Objektes entsprechende Auslenkung (x) aus einer Bezugsposition (x₀) längs einer Messstrecke (2) erfährt. Die Messstrecke (2) soll durch eine streifenförmige Bahn (3) mit magnetoresistiven Eigenschaften gebildet sein, die längsseitig mit Widerstandsbahnen (4a, 4b) aus normalem resistivem Material kontaktiert ist. An den Enden der Widerstandsbahnen (4a, 4b) sind Anschlüsse (A bis D) vorgesehen, an denen mit der Position (x) der Feldeinrichtung (6) korrelierte Messsignale abgreifbar sind.

WO 2005/083363 A2

- (84) **Bestimmungsstaaten** (*soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart*): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- *ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts*

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Messeinrichtung zur linearen Positionserfassung

5 Die Erfindung bezieht sich auf eine Messeinrichtung zu einer
linearen, berührungslosen Erfassung der Position eines ortsv-
eränderlichen Objektes mit einer mit dem Objekt starr ver-
bundenen, ein Magnetfeld erzeugenden Feldeinrichtung, die
eine der Ortsveränderung des Objekts entsprechende Auslenkung
10 aus einer Bezugsposition längs einer Messstrecke erfährt.
Eine entsprechende Messeinrichtung geht aus der
DE 100 44 839 A1 hervor.

Für eine kontaktlose lineare Positionsmessung von größeren
15 Längen, insbesondere über 0,5 cm, sind verschiedene Messein-
richtungen bekannt. So ist der eingangs genannten DE-A1-
Schrift ein Positionssensor zu entnehmen, der eine über eine
Leiterschleifeneinrichtung zu führende, magnetfelderzeugende
Ffeldeinrichtung umfasst. Die Schleifeneinrichtung weist dabei
20 mindestens eine Spule mit sich gegenseitig umschließenden
Leiterwindungen und sich von einer Breitseite zu einer
Schmalseite verjüngenden Außenkontur, eine an die Auslenkung
der Feldeinrichtung angepasste Ausdehnung sowie eine Abde-
ckung durch eine weichmagnetische Schicht auf. Es sind Mittel
25 zur Signalauswertung der an der Schleifeneinrichtung gewonne-
nen, von der Änderung der magnetischen Sättigung abhängigen
Signale vorgesehen.

Aus einem Firmenprospekt der Fa. Tyco Electronics (CH) ist
30 ein sogenannter PLCD (Permanentmagnetic Linear Contactless
Displacement)-Wegsensor bekannt, der zwei Spulen mit weich-
magnetischem Kern und einen Gebermagneten aufweist. Hier er-
folgt die Auswertung über ein eigenes ASIC (Application Spe-
cific Integrated Circuit). Der bekannte Wegsensor muss dabei
35 mindestens zweimal so groß wie die Messstrecke ausgedehnt
sein. Sein Aufbau ist ebenso wie der Messeinrichtung gemäß
der eingangs genannten DE-A1-Schrift verhältnismäßig komplex.

Aufgabe der vorliegenden Erfindung ist es deshalb, die Messeinrichtung mit den eingangs genannten Merkmalen dahingehend auszugestalten, dass ihr Aufbau gegenüber dem Stand der Technik vereinfacht ist.

Diese Aufgabe wird erfindungsgemäß mit den in Anspruch 1 angegebenen Merkmalen gelöst. Dementsprechend soll die eingangs definierte Messeinrichtung dahingehend ausgestaltet sein, dass ihre Messstrecke durch eine streifenförmige Bahn mit magnetoresistiven Eigenschaften gebildet ist, die an ihren beiden gegenüberliegenden Längsseiten jeweils mit einer Widerstandsbahn aus normalem resistiven Material kontaktiert ist, wobei an den Enden der Messstrecke das normale resistive Material mit Anschlüssen versehen ist, an denen mit der Position der Feldeinrichtung korrelierte Messsignale abgreifbar sind.

Bei der erfindungsgemäßen Messeinrichtung wird das magnetoresistive Material durch die Feldeinrichtung lokal an der jeweiligen Messposition gesättigt, wodurch sich in diesem Bereich der Widerstand der Leiterbahn entsprechend verringert. Die jeweilige Position der Feldeinrichtung kann dann durch Messung der Widerstände zwischen den einzelnen Anschlüssen auf einfache Weise bestimmt werden.

Die Vorteile dieser Ausbildung der Messeinrichtung sind in einer einfachen Messwerteermittlung durch das Messen von Widerständen, durch eine flache Bauweise und durch eine Länge gegeben, die zumindest annähernd gleich der Ausdehnung der Messstrecke ist.

Vorteilhafte Ausgestaltungen der erfindungsgemäßen Messeinrichtung gehen aus den von Anspruch 1 abhängigen Ansprüchen hervor. Dabei kann die Ausführungsform nach Anspruch 1 mit den Merkmalen eines der Unteransprüche oder vorzugsweise auch denen aus mehreren Unteransprüchen kombiniert werden. Demge-

mäß kann die Messeinrichtung zusätzlich noch folgende Merkmale aufweisen:

- So kann die streifenförmige Bahn aus dem magnetoresistiven Material ein magnetoresistives Schichtensystem entsprechend einem XMR- oder CMR-Element aufweisen.
- Stattdessen kann die streifenförmige Bahn auch mindestens eine Schicht aus einem granularen magnetoresistiven Material oder einer magnetoresistiven Suspension aufweisen.
- Insbesondere können sich die beiden längsseitigen Widerstandsbahnen über die gesamte lineare Ausdehnung der Messstrecke erstrecken.
- Die lineare Ausdehnung der Messstrecke kann dabei vorteilhaft über 0,5 cm liegen.

Die Erfindung wird nachfolgend anhand eines bevorzugten Ausführungsbeispiels unter Bezugnahme auf die Zeichnung noch weiter erläutert. Dabei zeigt deren

Figur 1 eine Aufsicht auf eine Messstrecke einer erfindungsgemäßen Messeinrichtung sowie

Figur 2 in Schrägansicht eine Messeinrichtung mit der Messstrecke nach Figur 1.

Dabei sind in den Figuren sich entsprechende Teile jeweils mit denselben Bezugszeichen versehen.

Beim Aufbau einer Messeinrichtung nach der Erfindung wird von an sich bekannten Ausführungsformen ausgegangen. Nachfolgend wird nur auf ihre erfindungsgemäß ausgestalteten Teile eingegangen. Alle übrigen Teile sind in diesem Zusammenhang Stand der Technik.

Gemäß Figur 1 umfasst eine Messstrecke zwei einer erfindungsgemäßen Messeinrichtung eine streifenförmige Bahn 3 aus

magnetoresistivem Material. Insbesondere kommen hierfür Schichtensysteme in Frage, wie sie von XMR-Dünnschichtelementen oder CMR-Dünnschichtelementen bekannt sind (vgl. z.B. den Band „XMR-Technologien“-Technologieanalyse: Magnetismus; Bd. 5 2, VDI-Technologiezentrum „Physikalische Technologien“, Düsseldorf (DE), 1997, Seiten 11 bis 46). Es kann aber auch jedes andere Material verwendet werden, welches in Abhängigkeit von einem Magnetfeld seine Leitfähigkeit ändert. So sind z.B. granulare magnetische Materialien bekannt (vgl. z.B. DE 10 44 25 356 C2). Auch Suspensionen zur Bildung einer entsprechenden Schicht sind möglich, welche sehr kleine in einem flüssigen Medium dispers verteilte Teilchen mit magnetischen und elektrischen Eigenschaften, z.B. aus dem vorerwähnten granularen Material, aufweisen. An den gegenüberliegenden Längsseiten der Bahn 3 ist jeweils ein Streifen oder eine Bahn 4a bzw. 4b aus einem normalen resistiven Material in elektrisch leitender Verbindung angebracht. Diese Widerstandsbahnen sind an den gegenüberliegenden stirnseitigen Enden der Messstrecke jeweils mit elektrischen Anschlüssen A, C 15 bzw. B, D versehen.

Aus Figur 2 ist eine Messeinrichtung 5 mit der in Figur 1 gezeigten Messstrecke 2 einer linearen Ausdehnung bzw. Länge L ersichtlich. Die Einrichtung 5 weist eine ein Magnetfeld erzeugende Feldeinrichtung insbesondere in Form eines Gebermagneten 6 auf. Dieser Gebermagnet ist in Längsrichtung berührungslos über die vorzugsweise gesamte Ausdehnung L der Messstrecke 2 von insbesondere über 0,5 cm zu führen. Er ist starr mit einem nicht näher ausgeführten Objekt verbunden, 25 dessen Position bezüglich der Messstrecke erfasst werden soll. Die Position entspricht dabei einer Auslenkung x bezüglich einer Bezugsposition x_0 . Durch den Gebermagneten 6 wird an der Messposition x das magnetoresistive Material der streifenförmigen Bahn 3 in einem Bereich 3a gesättigt, wo- 30 durch sich an dieser Stelle der Widerstand entsprechend ver- ringert. Über diesen Bereich 3a wird so eine Verbindung mit 35

geringerem Widerstand zwischen den Widerstandsbahnen 4a und 4b geschaffen.

Zur Positionserfassung werden zwischen den Messanschlüssen A 5 und B bzw. C und D Widerstandsmessungen vorgenommen. Die entsprechenden Messpfade sind in Figur 2 mit M1 bzw. M2 durch gestrichelte Linien veranschaulicht. Des Weiteren kann als dritter Strompfad noch der Widerstand zwischen den Anschlüssen A und D oder B und C vermessen werden. Aus den entsprechenden drei Messwerten lässt sich dann die Position x des Gebermagneten eindeutig ermitteln. Bei günstiger Auslegung 10 der Messeinrichtung genügen gegebenenfalls sogar nur die Werte aus den beiden Messpfaden M1 und M2 zur Positionsermittlung.

Bei der erfindungsgemäßen Messeinrichtung 5 wird als lineare Ausdehnung L der Messstrecke 2 der Teil angesehen, der von dem Gebermagneten 6 linear überstrichen wird. D.h., die Widerstandsbahnen 4a und 4b und/oder die magnetoresistive Bahn 20 3 können eine von der Ausdehnung L abweichende Länge aufweisen.

Patentansprüche

1. Messeinrichtung (5) zu einer linearen, berührungslosen Erfassung der Position eines ortsveränderlichen Objektes mit einer mit dem Objekt starr verbundenen, ein Magnetfeld erzeugenden Feldeinrichtung (6), die eine der Ortsveränderung des Objektes entsprechende Auslenkung (x) aus einer Bezugsposition (x_0) längs einer Messstrecke (2) erfährt, dadurch gekennzeichnet, dass die Messstrecke (2) durch eine streifenförmige Bahn (3) mit magnetoresistiven Eigenschaften gebildet ist, die an ihren beiden gegenüberliegenden Längsseiten jeweils mit einer Widerstandsbahn (4a, 4b) aus normalem resistiven Material kontaktiert ist, wobei an den Enden der Messstrecke (2) das normale resistive Material mit Anschlässen (A bis D) versehen ist, an denen mit der Position (x) der Feldeinrichtung (6) korrelierte Messsignale abgreifbar sind.
2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die streifenförmige Bahn (3) mit magnetoresistiven Eigenschaften ein magnetoresistives Schichtensystem entsprechend einem XMR- oder CMR-Element aufweist.
3. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die streifenförmige Bahn (3) mit magnetoresistiven Eigenschaften eine Schicht mit einem granularen magnetoresistiven Material enthält.
4. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die streifenförmige Bahn (3) mit magnetoresistiven Eigenschaften eine Schicht aufweist, die aus einer Suspension von Teilchen mit den Eigenschaften gebildet ist.
5. Einrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass sich die beiden längsseitigen Widerstandsbahnen (4a, 4b) über die gesamte lineare Ausdehnung (L) der Messstrecke (2) erstrecken.

6. Einrichtung nach einem der vorangehenden Ansprüche, gekennzeichnet durch eine lineare Ausdehnung (L) der Messstrecke (2) von über 0,5 cm.

1/1

FIG 1

FIG 2

