Unidad 4 – Cálculo integral para campos escalares

Integrales dobles sobre rectángulos.

Idea intuitiva: Se tratará de dar un sentido al "volumen" del cuerpo C prismoide limitado por los planos x = a, x = b, y = c, y = d, z = 0 y la superficie de ecuación z = f(x, y).

Consideremos prismas de base R_{jk} y altura $f\left(c_{jk}\right)$ para cierto $c_{jk}\in R_{jk}$. El volumen de cada uno de estos prismas P_{jk} será

$$V_{jk} = \operatorname{vol}(P_{jk}) = a(R_{jk}) \cdot f(c_{jk})$$

y aproximamos el volumen del cuerpo C por $V = \operatorname{vol}(C) \simeq \sum_{j,k} V_{jk}$.

Definición (Campo escalar integrable en un rectángulo): Sea $R=[a,b]\times [c,d]\subset \mathbb{R}^2$. Una partición regular \mathcal{P} de R de orden n es un conjunto de $(n+1)^2$ puntos $(x_i, y_k) \in \mathbb{R}^2$ tales que

partición regular
$$\mathcal{P}$$
 de R de orden n es un conjunto de $(n+1)^2$ punto $a = x_0 < x_1 < \ldots < x_n = b, \ c = y_0 < y_1 < \ldots < y_n = d$

$$con \qquad \Delta x_j = x_{j+1} - x_j = \frac{b-a}{n} \qquad \text{y} \qquad \Delta y_k = y_{k+1} - y_k = \frac{d-c}{n}.$$
La norma de la partición \mathcal{P} está dada por $\|\mathcal{P}\| = \max_{j,k=0,1,\ldots,n-1} \{|\Delta x_j|, |\Delta y_k|\}.$
Formamos rectángulos $R_{N} = [x_1, x_2, \dots] \times [y_1, y_2, \dots].$ Elegimos $c_N \in R_N$

Formamos rectángulos $R_{jk} = [x_j, x_{j+1}] \times [y_k, y_{k+1}]$. Elegimos $c_{jk} \in R_{jk}$, y para el campo escalar $f: R \subset \mathbb{R}^2 \to \mathbb{R}$, consideramos las sumas

$$V_n = \sum_{j,k=0}^{n-1} f(c_{jk}) \Delta x_j \Delta y_k$$

Entonces V_n es la suma de Riemann de f y si existe el $\lim_{n\to\infty}V_n=\lim_{\|\mathcal{P}\|\to 0}V_n=V$, independientemente de la elección de los c_{jk} , decimos que f es integrable en R y que

$$\int\limits_R f = V$$

Notamos

$$\int_{R} f = \int_{R} f(x, y) dA = \int_{R} f(x, y) dA = \iint_{R} f(x, y) dxdy$$

donde dA es el **diferencial de área.**

Definición (Volumen de un prismoide): Si $f \geq 0$ e integrable en R se define volumen del prismoide C al número

$$\operatorname{vol}(C) = V = \int_{R} f dA$$

Ejemplos: 1) Si f(x,y) = q = cte en $R = [a,b] \times [c,d]$. Entonces el prismoide es un prisma!! $V_n = \sum_{j,k=0}^{n-1} f\left(c_{jk}\right) \Delta x_j \Delta y_k = \sum_{j,k=0}^{n-1} q \frac{b-a}{n} \frac{d-c}{n} = q\left(b-a\right)\left(d-c\right) \text{ entonces, independient emente de la elección de } c_{jk}, \ \exists \lim_{n\to\infty} V_n = q\left(b-a\right)\left(d-c\right) \text{ entonces } f \text{ es integrable en } R \text{ y } \int_R f = \text{vol(prisma)} = q\left(b-a\right)\left(d-c\right) \text{ entonces } f \text{ es integrable en } R \text{ y } \int_R f = \text{vol(prisma)} = q\left(b-a\right)\left(d-c\right) \text{ entonces } f \text{ es integrable en } R \text{ y } \int_R f = \text{vol(prisma)} = q\left(b-a\right)\left(d-c\right) \text{ entonces } f \text{ es integrable en } R \text{ y } \int_R f = \text{vol(prisma)} = q\left(b-a\right)\left(d-c\right) \text{ entonces}$ qa(R). En particular, si f=1 es $\int_{R} f=a(R)$.

2) Función de Dirichlet, sea $f:[0,1]\times[0,1]\to\mathbb{R}$ definida por

$$f\left(x,y\right) = \left\{ \begin{array}{ll} 1 & \text{si } \left(x,y\right) \in \mathbb{Q} \times \mathbb{Q} \\ 0 & \text{si no} \end{array} \right.$$

 $V_n = \sum_{j,k=0}^{n-1} f(c_{jk}) \Delta x_j \Delta y_k = \begin{cases} 1 \ a(R) & \text{si } c_{jk} \in \mathbb{Q}^2 \\ 0 \ a(R) & \text{si no} \end{cases}$ como depende de la elección de c_{jk} no existe $\lim V_n$ entonces f no es integrable en R

De la definición y de los teoremas sobre límites podemos deducir algunas propiedades fundamentales de $\int_R f$:

Teorema: Si f, g son integrables en $R = [a, b] \times [c, d]$ y $\alpha \in \mathbb{R}$ entonces

- a) Linealidad:
- f+g es integrable en R y $\int_{R}^{R} (f+g) = \int_{R}^{R} f + \int_{R}^{R} g$ αf es integrable en R y $\int_{R}^{R} \alpha f = \alpha \int_{R}^{R} f$ b) Homogeneidad:
- i) Si $f \ge 0$ en $R \implies \int_R f \ge 0$ c) Monotonía: ii) Si $f \ge g$ en $R \Rightarrow \int_{R}^{n} f \ge \int_{R} g$
- iii) $R_1 \subset R_2$ y $f \geq 0$ en $R_2 \Rightarrow \int_{R_1} f \leq \int_{R_2} f$ ditividad: Si R_i , $i=1,\ldots,m$, son rectángulos disjuntos, tales que f es integrable sobre cada R_i y si $R=R_1 \cup R_2 \cup \ldots \cup R_m$ es un rectángulo, entonces una función acotada $f:R \to \mathbb{R}$ es integrable sobre R y $\int_R f = \sum_{i=1}^m \int_{R_i} f$. d) Aditividad:

Integrabilidad de funciones continuas. Teorema de Fubini.

Teorema de Fubini: Si f es continua en $R = [a, b] \times [c, d]$ entonces f es integrable en R. Y además vale Fubini

$$\int_{R} f = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy$$

Cada una de estas integrales se llaman integrales iteradas.

Interpretación geométrica.

Sea $R = [a, b] \times [c, d]$. Dada la superficie de ecuación z = f(x, y), para cada $x \in [a, b]$ consideramos las regiones rayadas que se obtienen de la intersección de planos paralelos al plano coordenado yzcon el prismoide P en los puntos de abscisa x, cuya área es $A(x) = \int_{c}^{d} f(x, y) dy$, así

$$vol(prismoide) = \int_{a}^{b} A(x) dx$$

De manera análoga, si para cada $y \in [c, d]$ consideramos las regiones rayadas que se obtienen de la intersección de planos paralelos al plano coordenado xz con el prismoide P en los puntos de ordenada y, cuya área es $A(y) = \int_a^b f(x,y) dx$, así

$$\operatorname{vol}(P) = \int_{c}^{d} A(y) \, dy$$

Definición (Conjunto de contenido nulo): Llamamos conjunto de contenido nulo a un conjunto que es a lo sumo unión finita de gráficas de funciones continuas.

Teorema: Sea $R = [a, b] \times [c, d]$. Sea $f : R \to \mathbb{R}$ acotada y tal que el conjunto de puntos de discontinuidades de f es un conjunto de contenido nulo. Entonces f es integrable en R y vale Fubini (supuesto que existan las integrales iteradas).

Ejemplos: a) Sean C_1, C_2 dos curvas, será $C_1 \cup C_2$ un conjunto de contenido nulo, luego si f es continua en $R - (C_1 \cup C_2)$ resulta f integrable en R y vale Fubini. Más aún, vale si f es continua en R salvo una cantidad finita de curvas.

b) $f(x,y) = x^2y^3 + 3x$ y $R = [-1,2] \times [-3,1]$. f es continua en R entonces f es integrable en R y vale Fubini, luego $\int_R f = \int_{-1}^2 \underbrace{\left(\int_{-3}^1 \left(x^2y^3 + 3x\right) dy\right)}_{A(x)} dx = \int_{-1}^2 \left(x^2\frac{y^4}{4} + 3xy\Big|_{-3}^1\right) dx = \int_{-1}^2 \left(-20x^2 + 12x\right) dx = -20\frac{x^3}{3} + 12\frac{x^2}{2}\Big|_{-3}^2 = -42$

c) $f(x,y) = xe^{xy}$ y $R = [-3,3] \times [0,1]$. f es continua en R entonces f es integrable en R y vale Fubini, luego $\int_{R} f = \int_{-3}^{3} \underbrace{\left(\int_{0}^{1} xe^{xy}dy\right)}_{A(x)} dx = \int_{-3}^{3} \left(x\frac{e^{xy}}{x}\Big|_{0}^{1}\right) dx = \int_{-3}^{3} (e^{x}-1) dx = e^{3} - e^{-3} - 6$

d) $f(x,y) = \begin{cases} 0 & \text{si } 2x < y \\ 1 & \text{si } 2x \ge y \end{cases}$ y $R = [0,1] \times [0,2]$. f es acotada en R (las discontinuidades de f son un conjunto de contenido nulo) entonces f es integrable en R y vale Fubini, luego

$$\int_{R} f = \int_{0}^{1} \underbrace{\left(\int_{0}^{2} f(x, y) \, dy\right)}_{A(x)} dx = \int_{0}^{1} 2x dx = 1$$

siendo $A(x) = \int_0^2 f(x, y) dy = \int_0^{2x} 1 dy + \int_{2x}^2 0 dy = 2x$

$$\mathbf{e)} \ f(x,y) = \begin{cases} x - y & \text{si } y \le \sqrt{x} \\ x + y & \text{si } y > \sqrt{x} \end{cases} \ \text{y } R = [0,2] \times [0,\sqrt{2}].$$

f es acotada en R (las discontinuidades de f son un conjunto de contenido nulo) entonces f es integrable en R y vale Fubini, luego

1°)
$$\int_{R} f = \int_{0}^{2} \underbrace{\left(\int_{0}^{\sqrt{2}} f(x, y) dy\right)}_{A(x)} dx$$

= $\int_{0}^{2} \left(\int_{0}^{\sqrt{x}} (x - y) dy + \int_{\sqrt{x}}^{\sqrt{2}} (x + y) dy\right) dx = \dots = 2\sqrt{2}$

$$\mathbf{2}^{\circ}) \int_{R} f = \int_{0}^{\sqrt{2}} \underbrace{\left(\int_{0}^{2} f(x,y) \, dx\right)}_{A(y)} dy = \int_{0}^{\sqrt{2}} \left(\int_{0}^{y^{2}} (x+y) \, dx + \int_{y^{2}}^{2} (x-y) \, dx\right) dy = \dots = 2\sqrt{2}$$

Teorema: Si f es integrable en $R = [a, b] \times [c, d]$ también lo es |f| y vale

$$\left| \int_{R} f \right| \le \int_{R} |f|$$

Extensión de la integral a regiones de \mathbb{R}^2 más generales. Teorema del Valor Medio. **Definición** (Regiones elementales en \mathbb{R}^2): Sea $D \subset \mathbb{R}^2$ decimos que la región

- D es de **tipo 1** si $D = \{(x, y) : x \in [a, b] \text{ y } \varphi_1(x) \leq y \leq \varphi_2(x)\}$ con φ_1, φ_2 continuas en [a, b].
- D es de **tipo 2** si $D = \{(x, y) : y \in [c, d] \text{ y } w_1(y) \le x \le w_2(y)\}$ con w_1, w_2 continuas en [c, d].
- D es de tipo 3 o normal si D es de tipo 1 y 2.
- D es elemental si es de tipo 1, 2 o 3. Toda región elemental es cerrada y acotada.

Ejemplo: $D = \{(x,y) : (x-x_0)^2 + (y-y_0)^2 \le r^2\}$ es de tipo 3. En efecto, si definimos $\varphi_1(x) = y_0 + \sqrt{r^2 - (x-x_0)^2}$ y $\varphi_2(x) = y_0 - \sqrt{r^2 - (x-x_0)^2}$ ambas son continuas en $[x_0 - r, x_0 + r]$, resulta entonces D de tipo 1. Si ahora definimos $w_1(y) = x_0 + \sqrt{r^2 - (y-y_0)^2}$ y $w_2(y) = x_0 - \sqrt{r^2 - (y-y_0)^2}$ ambas continuas en $[y_0 - r, y_0 + r]$, resulta entonces D de tipo 2. **Definición (Integral sobre una región elemental):** Sea D una región elemental y R un rectángulo tal que $D \subset R$. Si $f: D \to \mathbb{R}$ es continua en D (entonces acotada) se define $f^*: R \to \mathbb{R}$ por

$$f^{*}(x,y) = \begin{cases} f(x,y) & \text{en } D \\ 0 & \text{en } R - D \end{cases}$$

decimos que f^* es una extensión acotada de f a R y definimos

$$\int_D f = \int_R f^*$$

Observemos que por el teorema anterior el 2° miembro está bien definido, las discontinuidades de f^* están en un conjunto de contenido nulo.

Propiedad de aditividad: Sea $D = D_1 \cup D_2$ donde $D_1 \cap D_2 = A$ es un conjunto de contenido nulo entonces

$$\int_D f = \int_{D_1} f + \int_{D_2} f$$

Teorema: Si D es elemental (por ejemplo de tipo 1, hay un teorema análogo si D es de tipo 2) y

f continua en D entonces

$$\int_{D} f = \int_{a}^{b} \left(\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x, y) dy \right) dx$$

Observación: Si f = 1 en D, es integrable y $\int_D f = a(D)$.

Teorema del Valor Medio para integrales dobles: Sea f continua en una región D elemental, entonces existe $(x_0, y_0) \in D$ tal que

$$\int_{D} f = f(x_0, y_0) \ a(D) \tag{9}$$

Demostración: Como D cerrado y acotado y f es continua en D, el teorema de Weierstrass garantiza la existencia de extremos de f, es decir $\exists m, M \ y \ (x_1, y_1), \ (x_2, y_2) \in D$ tales que

$$m = \min_{D} f(x, y) = f(x_1, y_1)$$
 $M = \max_{D} f(x, y) = f(x_2, y_2)$

Luego para cada $(x, y) \in D$ se tiene

$$m \le f(x, y) \le M$$

Si $m \ge 0$, por linealidad y monotonía o comparación tenemos

$$m a(D) \le \int_{D} f \le M a(D)$$

 $m \le \frac{\int_{D} f}{a(D)} \le M$

Por teorema de los valores intermedios, f alcanza cada uno de los valores entre m y M, en particular $\frac{\int_D f}{a(D)}$. Luego existe $(x_0, y_0) \in D$ tal que $f(x_0, y_0) = \frac{\int_D f}{a(D)}$. Si m < 0, podemos considerar la función g definida en D por g(x,y) = f(x,y) + 2|m|, ésta resulta continua y acotada en D. Su mínimo será no negativo, y por lo recién demostrado, será válido el teorema para g, es decir, existe $(x_0, y_0) \in D$ tal que $g(x_0, y_0) = \frac{\int_D g}{a(D)}$ entonces

$$f(x_0, y_0) + 2|m| = \frac{\int_D f + \int_D 2|m|}{a(D)} = \frac{\int_D f}{a(D)} + 2|m|$$

De donde vale el teorema.

Dominios de Integración más generales.

Si D no es elemental pero es unión de dos regiones elementales (por ejemplo dos de tipo 1) cuya intersección es un conjunto de contenido nulo, vale

$$\int_D f = \int_{D_1} f + \int_{D_2} f$$

En general si D es unión finita de n regiones elementales que no tienen en común sino puntos frontera (puntos que pertenecen a conjuntos de contenido nulo) entonces se define

$$\int_{D} f = \sum_{i=1}^{n} \int_{D_{i}} f$$

Integral triple sobre un cubo.

Definición (Campo escalar integrable en un cubo): Sea $Q = [a, b] \times [c, d] \times [e, h] \subset \mathbb{R}^3$. Una partición regular \mathcal{P} de Q de orden n es un conjunto de $(n+1)^3$ puntos $(x_i, y_j, z_k) \in \mathbb{R}^3$ tales que $a = x_0 < x_1 < \ldots < x_n = b,$

$$c = y_0 < y_1 < \dots < y_n = d, \ e = z_0 < z_1 < \dots < z_n = h;$$

 $\cot \Delta x_i = x_{i+1} - x_i = \frac{b-a}{n}, \quad \Delta y_j = y_{j+1} - y_j = \frac{d-c}{n} \quad \text{y} \quad \Delta z_k = z_{k+1} - z_k = \frac{h-e}{n}.$

La norma de la partición \mathcal{P} está dada por $\|\mathcal{P}\| = \max_{i,j,k=0,1,\dots,n-1} \{|\Delta x_i|,|\Delta y_j|,|\Delta z_k|\}.$

Formamos cubos $Q_{ijk} = [x_i, x_{i+1}] \times [y_j, y_{j+1}] \times [z_k, z_{k+1}]$. Elegimos $c_{ijk} \in Q_{ijk}$, entonces para el campo escalar $f: Q \subset \mathbb{R}^3 \to \mathbb{R}$, consideramos las sumas

$$S_n = \sum_{i,j,k=0}^{n-1} f(c_{ijk}) \Delta x_i \Delta y_j \Delta z_k$$

Entonces S_n es la suma de Riemann de f y si existe el $\lim_{n\to\infty} S_n = \lim_{\|\mathcal{P}\|\to 0} S_n$, independientemente de la elección de los c_{ijk} , decimos que f es integrable en Q y que

$$\int_{O} f = \lim_{n \to \infty} S_n$$

Notamos

$$\int_{Q} f = \int_{Q} f dV = \iiint_{Q} f dV = \iiint_{Q} f(x, y, z) dx dy dz$$

donde dV es el **diferencial de volumen.**

Ejemplos: a) Sea f(x, y, z) = k = cte en Q, $S_n = \sum_{i.i.k=0}^{n-1} k \frac{b-a}{n} \frac{d-c}{n} \frac{h-e}{n} = k (b-a) (d-c) (h-e)$, luego existe $\lim_{n\to\infty} S_n$ y vale

$$\iiint\limits_{Q} f dV = \iiint\limits_{Q} k dV = k (b - a) (d - c) (h - e) = k \text{vol}(Q)$$

En particular, si f = 1 es integrable sobre Q y $\iiint 1 dV = \text{vol}(Q)$.

b) Función de Dirichlet, $f(x, y, z) = \begin{cases} 1 & \text{si } (x, y, z) \in \mathbb{Q}^3 \\ 0 & \text{si no} \end{cases}$, f no es integrable en cualquier cubo.

Valen teoremas análogos a los teoremas anteriores:

Teorema: Sean f, g integrables en $Q = [a, b] \times [c, d] \times [e, h]$ y sean $\alpha \in \mathbb{R}$ entonces:

- a) Linealidad:
- f+g es integrable en Q y $\int_Q (f+g) = \int_Q f + \int_Q g$ αf es integrable en Q y $\int_Q \alpha f = \alpha \int_Q f$ b) Homogeneidad:

c) Monotonía:
 i) Si
$$f \ge 0$$
 en $Q \Rightarrow \int\limits_Q f \ge 0$
 ii) Si $f \ge g$ en $Q \Rightarrow \int\limits_Q f \ge \int\limits_Q g$
 iii) $Q_1 \subset Q_2$ y $f \ge 0$ en $Q_2 \Rightarrow \int_{Q_1} f \le \int_{Q_2} f$

iii) $Q_1 \subset Q_2$ y $f \geq 0$ en $Q_2 \Rightarrow \int_{Q_1} f \leq \int_{Q_2} f$ Si Q_i , $i=1,\ldots,m$, son prismas o cubos disjuntos, tales que f es inted) Aditividad: grable sobre cada Q_i y si $Q=Q_1\cup Q_2\cup\ldots\cup Q_m$ es un prisma o cubo, entonces una función acotada $f:Q\to\mathbb{R}$ es integrable sobre Q y $\int\limits_Q f=\sum\limits_{i=1}^m\int\limits_{Q_i}f.$ Corolario: Si f es integrable en Q también lo es |f| y vale

$$\left| \int_{Q} f \right| \le \int_{Q} |f|$$

Teorema de Fubini: Si f continua en Q (o f acotada en Q y f continua salvo en un conjunto de contenido nulo) entonces f es integrable en Q y vale Fubini

$$\int_{Q} f = \iiint_{Q} f dV = \int_{a}^{b} \left(\int_{c}^{d} \left(\int_{e}^{h} f(x, y, z) dz \right) dy \right) dx \quad \text{(integrales iteradas)}$$

$$= \iiint_{D} \left(\int_{e}^{h} f(x, y, z) dz \right) dA \quad \text{(otras 5 formas, 1 por cada cara del cubo)}$$

Integral triple sobre conjuntos más generales.

Definición (Regiones elementales en \mathbb{R}^3): Sea $D \subset \mathbb{R}^3$ decimos que la región

- D es de **tipo 1** si y sólo si $D = \{(x, y, z) : (x, y) \in S \text{ elemental en } \mathbb{R}^2 \text{ y } \varphi_1(x, y) \leq z \leq \varphi_2(x, y)\}$
- D es de **tipo 2** si y sólo si $D = \{(x, y, z) : (y, z) \in S \text{ elemental en } \mathbb{R}^2 \text{ y } \varphi_1(y, z) \leq x \leq \varphi_2(y, z)\}$
- D es de **tipo 3** si y sólo si $D = \{(x, y, z) : (x, z) \in S \text{ elemental en } \mathbb{R}^2 \text{ y } \varphi_1(x, z) \leq y \leq \varphi_2(x, z)\}$ Siendo en cada caso los campos φ_1, φ_2 continuos en S.
- D es de tipo 4 o normal si y sólo si es de tipo 1, 2 y 3.
- D es elemental si es de tipo 1 o 2 o 3 o 4. Toda región elemental es cerrada y acotada.

Definición (Integral de un campo escalar en una región elemental): Si f es continua en D región elemental y $D \subset Q$ definimos f^* extensión acotada por cero de f a todo Q y definimos

$$\int_D f = \int_Q f^*$$

Teorema: Si D es elemental (por ejemplo de tipo 1) y f es continua en D entonces

$$\int_{D} f = \iint_{S} \left(\int_{\varphi_{1}(x,y)}^{\varphi_{2}(x,y)} f(x,y,z) dz \right) dA$$

(análogos para D de tipo 2 o 3).

Ejemplos:

a) Si D es elemental entonces $vol(D) = \int_D 1 \ dV$.

b) Si queremos calcular el volumen de $E_a = \text{esfera de radio } a$. E_a es de tipo 1, pues consideramos S =círculo de radio a y $\varphi_1(x,y) = \sqrt{a^2 - (x^2 + y^2)}$, $\varphi_2(x,y) = -\sqrt{a^2 - (x^2 + y^2)}$ funciones continuas en S. Entonces

Vol
$$(E_a) = \int_{E_a} 1 dV = \iint_S dA \int_{-\sqrt{a^2 - (x^2 + y^2)}}^{\sqrt{a^2 - (x^2 + y^2)}} 1 dz \dots$$
muy complicado

Aplicaciones de las integrales dobles y triples.

A) ÁREA DE UNA REGIÓN D. VOLUMEN DE UN SÓLIDO E.

$$a(D)=\iint\limits_D 1\ dA \qquad V(E)=\iiint\limits_E 1\ dV$$
 Si $f(x,y)=k\geq 0$ entonces $V(E)=\iint\limits_D kdA=ka(D)$ Si $f\geq 0$ en D y E es el sólido $E=\{(x,y,z):(x,y)\in D,\ 0\leq z\leq f(x,y)\}$ entonces
$$V(E)=\iint\limits_D f(x,y)dA$$

B) VALOR MEDIO DE UN CAMPO ESCALAR.

$$\iint\limits_D f(x,y)dA = f(x_0,y_0)a(D) \qquad \qquad \iiint\limits_E f(x,y,z)dV = f(x_0,y_0,z_0)V(E)$$

C) Masa de un cuerpo.

 ${\it Masa:}$ resistencia al desplazamiento, $\vec{F}=m\vec{a}$, $\vec{P}=m\vec{g}.$ Sea D (placa o lámina) y E (sólido).

Se define $densidad \delta = \frac{m(D)}{a(D)}$ (caso de una placa) o $\delta = \frac{m(E)}{Vol(E)}$ (caso de un sólido). Luego $m(D) = \delta \cdot a(D) \qquad \text{o} \qquad m(E) = \delta \cdot Vol(E)$

1° CASO: $\delta = cte$, entonces el cuerpo se dice **homogéneo** y su masa viene dada por

$$m(D) = \delta \cdot a\left(D\right) = \delta \iint\limits_{D} dA$$
 $m(E) = \delta \cdot Vol\left(E\right) = \delta \iiint\limits_{E} dV$

2° CASO: δ variable $\delta(x,y)$ continua en el dominio D, (análogamente si $\delta(x,y,z)$ es la densidad puntual para un sólido E)

Tenemos entonces

$$\boxed{m(D) = \iint\limits_D \delta\left(x,y\right) dA} \qquad \qquad \text{masa de una placa } D$$

$$\boxed{m(E) = \iiint\limits_E \delta\left(x,y,z\right) dV} \qquad \qquad \text{masa de un s\'olido } E$$

Una vez definida la masa de una placa o de un sólido es posible definir centro de masa o centro de gravedad del cuerpo.

D) CENTRO DE MASA O CENTRO DE GRAVEDAD.

Para el caso de una lámina (placa) D con densidad (superficial) puntual dada por $\delta(x, y)$ las fórmulas para las coordenadas del centro de masa de una placa D son:

$$x_g = \frac{\iint\limits_D x\delta\left(x,y\right)dA}{m(D)}$$

$$y_g = \frac{\iint\limits_D y\delta\left(x,y\right)dA}{m(D)}$$

$$y_g = \frac{\iint\limits_{D} y\delta(x,y) \, dA}{m(D)}$$

Para un sólido E con densidad (superficial) puntual dada por $\delta(x, y, z)$ las fórmulas para las **coor**denadas del centro de masa de un sólido E son:

$$x_g = \frac{\iiint\limits_E x\delta\left(x, y, z\right) dV}{m(E)} \qquad y_g = \frac{\iiint\limits_E y\delta\left(x, y, z\right) dV}{m(E)} \qquad z_g = \frac{\iiint\limits_E z\delta\left(x, y, z\right) dV}{m(E)}$$

$$y_g = \frac{\iiint\limits_E y\delta\left(x, y, z\right) dV}{m(E)}$$

$$z_g = \frac{\iiint\limits_E z\delta\left(x, y, z\right) dV}{m(E)}$$