Lecture 6 Quiz Question+Solution and RL and RC Circuits

Quiz Question

Using Thevenin's voltage (Vth) and equivalent resistance (Rth) across a-b, find maximum power delivered to the load \mathbf{R}_{L} .

Solution

After removing the load resistor RL, let the mesh current be 'i' in clockwise direction.

Applying KVL in the mesh, one gets Vs - 4Vx - Ri = 0.

But,
$$Vx = Ri$$
, therefore $Vs - 5Ri = 0$ giving $i = Vs / (5R)$ (1)

$$Vth = Vab = 3 Ri + Ri = 4Ri = (4/5) Vs = 0.8 Vs Volt(2)$$

The following figure is used to determine equivalent resistance.

Applying KVL in the LHS mesh yields Ry - (1-y)R + 3 Ry = 0 giving y = 0.2(3)

Voltage across the externally connected 1A source is Ve = Ry + 4.

Therefore, from (3) Req = Ve/1 = (0.2R + 4) Ohm(4)

Finally, maximum power delivered, $Pm = (Vth)^2/(4Req)$ Watt(5)

Response of RL Series Circuit

Find i(t)

For t < 0, i(t) = 0

$$Ri + L\frac{di}{dt} = V_0$$
 for $t > 0$ and using KVL

or,
$$L \frac{di}{dt} = V_0 - Ri$$

or,
$$\frac{Ldi}{V_0 - Ri} = dt$$

Integrating, we get

$$\int \frac{L di}{V_0 - Ri} = \int dt$$

$$-\frac{L}{R}\ln(V_0 - Ri) = t + K$$

Integrating, we get

$$\int \frac{L di}{V_0 - Ri} = \int dt$$

$$-\frac{L}{R}\ln(V_0 - Ri) = t + K$$

Setting i = 0 at t = 0, we have

$$-\frac{L}{R}lnV_0 = K$$

Hence, we have
$$-\frac{L}{R}\ln(V_0 - Ri) = -\frac{L}{R}\ln V_0 + t$$

$$or, -\frac{L}{R} \ln \left(\frac{V_0 - Ri}{V_0} \right) = t$$

or,
$$\ln\left(\frac{V_0 - Ri}{V_0}\right) = -\frac{Rt}{L}$$

$$or, \ \frac{V_0 - Ri}{V_0} = e^{-\frac{Rt}{L}}$$

$$V_{0} - Ri = V_{0}e^{-\frac{R}{L}t}$$

$$or, Ri = V_{0} - V_{0}e^{-\frac{R}{L}t}$$

$$or, i = \frac{V_{0}}{R} - \frac{V_{0}}{R}e^{-\frac{R}{L}t}$$

The expression for the response for all t is

$$i(t) = \left(\frac{V_0}{R} - \frac{V_0}{R}e^{-\frac{R}{L}t}\right)$$

$$\frac{L}{R} = \tau = \text{Time Constant}$$

Response of RC Series Circuit

Find v(t)

First order Differential Equation: dx(t)/dt+ax(t)=b

Can also be written as: dx(p)/dp + ax(p) = b

Multiplying both sides by eap gives:

$$e^{ap} dx(p)/dp + e^{ap} ax(p) = e^{ap} b$$

$$\Rightarrow$$
 $d(e^{ap} x(p))/dp = e^{ap} b$

$$\Rightarrow$$
 $d(e^{ap} x(p)) = e^{ap} b dp$

$$=> \int_0^t d(e^{ap} x(p)) = \int_0^t e^{ap} b dp$$

$$=> e^{ap} x(p) |_{0}^{t} = (b/a) e^{ap} |_{0}^{t}$$

Substitution of limits of integral $=> e^{at} x(t) - x(0) = (b/a) (e^{at} - 1)$

$$=> e^{at} x(t) = x(0) + (b/a) (e^{at} - 1)$$

Multiplying both sides of above equation by e-at

$$\Rightarrow$$
 x(t) = e^{-at} x(0) + (b/a) (1- e^{-at})
= (x(0) - b/a) e^{-at} + b/a

Solution of first order DE
$$\dot{x}(t) + ax(t) = b$$
 is $x(t) = [x(0) - (b/a)] e^{-at} + (b/a)$

For series RL circuit: x(t) = i(t), a = R/L and $b = V_0/L$

So,
$$i_L(t) = [i(0) - (V_0/R)] e^{-Rt/L} + (V_0/R)$$

For series RC circuit : x(t) = v(t), a = 1/(RC) and $b = V_0/(RC)$

Then,
$$v_c(t) = [v_c(0) - V_0] e^{-t/(RC)} + V_0$$

Determine and plot voltage $v_c(t)$ across the capacitor for $0 \le t \le 2$ sec.

$$V_0=12 \text{ V}, R = 1 \text{ k}\Omega, C = 470 \text{ μF}$$

and $v_c(0) = 5 \text{ V}$

$$v_c(t) = [v_c(0) - V_0] e^{-t/(RC)} + V_0 = (-7) e^{-t/0.47} + 12$$

Determine and plot inductor current $i_L(t)$ for $t \le 0.1$ sec.

$$Vo = 100 V, R = 8\Omega, L = 0.2 H$$

$$i_L(t) = [0 - 12.5] e^{-40t} + 12.5 = 12.5(1 - e^{-40t})$$

Find expression for Vc(t) for t > 0.

Vc(0) = V2, Rth = R1||R2||R3, $V_0 = Vth = Rth(V1/R1 + V2/R3)$

Feedback

• Go slow

Move faster

More examples

Tutorial problems (easy/tough)