Miller Indices Questions

Latest Miller Indices MCQ Objective Questions

Top Miller Indices MCQ Objective Questions

Question 1 View this Question Online >

In a Triclinic crystal, a lattice plane makes intercepts at a length a, 2b and $-\frac{3c}{2}$. The Miller indices of the plane are

0014.001

1. 3:6:4

2. 6:3:4

3. 6:3:-4

4. 6:3:-2

Answer (Detailed Solution Below)

Option 3:6:3:-4

Miller Indices Question 1 Detailed Solution

Concept:

Miller Indices:

- Miler indices is a symbolic representation of vector for the orientation of an atomic plane in the crystal lattice.
- It is defined as the reciprocal of fractional intercept which the plane makes with the crystallographic axes.

Procedure to find Miller Indices:

- 1. Determine the intercept of the plane along each of three crystallographic directions.
- Taking reciprocal of intercept.
- Taking LCM of the fraction and multiply it by reciprocal of intercept.

Calculation:

Given.

Intercepts of plane = (a, 2b, $-\frac{3c}{2}$)

Intercept = $(1, 2, -\frac{3}{2})$

Reciprocal of intercept = 1, $\frac{1}{2}$, $-\frac{2}{3}$)

LCM = 6

Miller indicates of the plane = LCM × Reciprocal of intercept

:. Miller indicates of the plane = (6, 3, -4)

Question 2

View this Question Online >

30K.COM

A plane intersects the coordinate axes at $x=\frac{z}{3},\ y=\frac{1}{3}$ and $z=\frac{1}{2}$ what is the Miller index of this plane?

- 1. 9,3,2
- 2. 4,3,2
- 3. 4,2,3
- 4. 3,6,4

Answer (Detailed Solution Below)

Option 4: 3,6,4

Miller Indices Question 2 Detailed Solution

Explanation:

Miller indices are rationalized reciprocal of fractional intercepts taken along the crystallographic directions.

Calculation:

Given:

Plane intercepts are $x=\frac{2}{3}, y=\frac{1}{3}$ and $z=\frac{1}{2}$

Plane ABCD	х	у	Z
Intercept	$x = \frac{2}{3}$	$x = \frac{1}{3}$	$x=rac{1}{2}$
Reciprocal	3 2	3 †	2
Rationalization	$egin{array}{c} x = \ 3 \times \ 2 = \ 3 \end{array}$	$x = \frac{3}{1}$ $\times 2$ $= 6$	$x = \frac{2}{2} \times 2 \stackrel{=}{=} 4$
Indices	3	6	4

: Miller index of this plane will be 3,6,4

18511

Question 3

View this Question Online >

In the figure shown below, Miller indices [0 2 1] have the direction of

1. B

4. C

Answer (Detailed Solution Below)

Option 3: D

Miller Indices Question 3 Detailed Solution

Concept:

Miller Indices:

Miller Indices are used to specify directions and planes.

These directions and planes could be in a lattice or in crystals.

If two points $M(x_1, y_1, z_1)$ and $N(x_2, y_2, z_2)$ then the direction is given by $[(x_2 - x_1)(y_2 - y_1)(z_2 - z_1)]$

- Negative numbers can be represented by a bar sign.
- The common factor can be ignored.

Calculation:

Given:

A₁ (1, 0, 0) and A₂ (0, 0,1)

Direction of A [(0 - 1) (0 - 0) (1 - 0)] \Rightarrow [-1 0 1]

$$\therefore A [\bar{1} \ 0 \ 1]$$

$$B_1\left(\frac{1}{2},1,0\right)$$
 and $B_2\left(1,0,1\right)$

Direction of
$$B\left[\left(1-\frac{1}{2}\right)\left(0-1\right)\left(1-0\right)\right] \Rightarrow \left[\frac{1}{2}-1\right]$$

$$\therefore B \left[\begin{smallmatrix} 1 \\ \overline{2} \end{smallmatrix} \bar{1} \ 1 \right] \Rightarrow B \left[1 \ \bar{2} \ 2 \right]$$

$$C_1\left(0,\frac{3}{4},1\right)$$
 and $C_2\left(1,\;0,\;0\right)$

Direction of
$$C\left[\left(1-0\right)\left(0-\frac{3}{4}\right)\left(0-1\right)\right] \Rightarrow \left[1-\frac{3}{4}\right]$$

$$\therefore C \left[1 \ \tfrac{\bar{3}}{4} \ \bar{1} \right] \Rightarrow \left[4 \ \bar{3} \ \bar{1} \right]$$

$$D_1$$
 (0, 0, 0) and D_2 (0, 1, $\frac{1}{2})$

Direction of
$$D\left[\left(0-0\right)\left(1-0\right)\left(\frac{1}{2}-0\right)\right]\Rightarrow\left[0\ 1\ \frac{1}{2}\right]$$

. D [0 0 1]

Option 3: [220]

Miller Indices Question 4 Detailed Solution

Concept:

Crystallographic plane:

- · It is a plane located within the unit cell, the crystallographic planes are represented in terms of Miller indices. esiloool
- Representation of a single plane is [xyz].
- Representation of a family of a plane is ={xyz}

Calculation:

Given:

Now, let, 'a' be the side of the given cube and plane intersects in the middle of the x and y-axis.

So, the plane fractions are = $\frac{a}{2}$, $\frac{a}{2}$, ∞

Reciprocal of plane fraction = $\frac{2}{\pi}$, $\frac{2}{\pi}$, 0

To convert reciprocal into least integer, multiply by a

.: Miller indices = [220]

Question 5

iew this Question Online >

A plane in a unit cell is described by its miller indices a (632). The plane intersects x, y

and z respectively at a point whose distances from origin are

1. 6, 3 and 2 units

2.
$$\frac{1}{6}$$
, $\frac{1}{3}$ and $\frac{1}{2}$ units

3.
$$\frac{2}{3}$$
, $\frac{1}{3}$ and 1_{units}

4.
$$\frac{1}{2}$$
, 1 and $\frac{2}{3}$ units

Answer (Detailed Solution Below)

Option 2:
$$\frac{1}{6}$$
, $\frac{1}{3}$ and $\frac{1}{2}$ units

Miller Indices Question 5 Detailed Solution

Concept:

- Miller indices are the styles to designate the planes and directions in the unit cells and crystals.
- Miller indices (hkl) are expressed as a reciprocal of intercepts p, q, and r made by the plane on the three rectangular axes x, y, and z respectively.
- These are the unit distances from the origin along the three axes. Thus

$$h = \frac{1}{p}, \ k = \frac{1}{q}, \ l = \frac{1}{\tau}$$

Where p = intercept of the plane on the x-axis, q = intercept of the plane on the y-axis, and r = intercept of the plane on the z-axis.

Calculation:

Given:

Miller indices of a plane = (632)

Since, Miller indices are obtained by reciprocal of intercept p, q, and r made by the plane on the three rectangular axes x, y, and z respectively. Hence the reciprocal of miller indices will give the intercepts.

Distances from the origin to points at which the plane intersects = $\frac{1}{6}$, $\frac{1}{3}$ and $\frac{1}{2}$ units

View this Ouestion Online >

Question 6

Miller indices are same for:

- Crystal planes
- Parallel planes
- Perpendicular planes
- Three crystallographic planes.

Answer (Detailed Solution Below)

Option 2 : Parallel planes

Miller Indices Question 6 Detailed Solution

CONCEPT:

- Miller indices are the styles to designate the planes and directions in the unit cells and crystals.
- Miller indices (hkl) are expressed as a reciprocal of intercepts p, q, and r made by the plane on the three rectangular axes x, y, and z respectively.
- · These are the unit distances from the origin along the three axes. Thus

$$h=\frac{1}{p},\;k=\frac{1}{q},\;l=\frac{1}{r}$$

Where p = intercept of the plane on the x-axis, q = intercept of the plane on the y-axis, and r = intercept of the plane on the z-axis.

EXPLANATION:

 Consider the plane in pink, which is one of an infinite number of the parallel plane each a consistent distance ("a") away from the origin (purple planes)

- · The plane intersects the x-axis at point a.
- · It runs parallel along y and z axes.
- Thus, this plane can be designated as (1,∞,∞)

1) Likewise, the yellow plane can be designated as $(\infty,1,\infty)$

And the green plane can be written as $(\infty,\infty,1)$

Miller Indices are the reciprocals of the parameters of each crystal face. Thus:

estipool

- Pink Face = $(1/1, 1/\infty, 1/\infty) = (100)$
- Green Face = (1/∞, 1/∞, 1/1) = (001)
- Yellow Face = $(1/\infty, 1/1, 1/\infty) = (010)$

Procedure for Miller indices

Step 1: locate the origin '0', and axis x, y, z

Step 2: find the plane fractions (plane dimensions) = P, Q, R

Step 3: Calculate the reciprocals of plane fractions = $\frac{1}{P}$, $\frac{1}{Q}$,

[h, k, l] is the miller indices.

For parallel planes

The distance will be the **same** for **all directions** from the origin. So, reciprocals of those also will be the same

For parallel planes, miller indices will be the same

Example:

Here plane is intersecting x and y axes at a and a respectively and extending along the z-direction.

Plane fractions [P, Q, R] = [a, a, ∞]

Plane fractions [P, Q, R] = $[1, 1, \infty]$

Reciprocals of plane fractions:

$$\begin{bmatrix} \frac{1}{P}, \frac{1}{Q}, \frac{1}{R} = \frac{1}{1}, \frac{1}{1}, \frac{1}{\infty} \end{bmatrix}$$

$$[h, k, l] = [1, 1, 0]$$

Question 7

View this Question Online >

The Miller indices of a material in a plane are proportional to

1. The reciprocal of numerical parameters of the intercepts

- 2. The square of unit cell dimensions
- 3. The intercepts of the planes on the coordinate axes
- 4. The interplanar spacing

Option 1: The reciprocal of numerical parameters of the intercepts

Miller Indices Question 7 Detailed Solution

Concept:

Miller indices are the styles to designate the planes and directions in the unit cells and crystals.

Miller indices (hkl) are expressed as a reciprocal of intercepts p, q, and r made by the plane on the three rectangular axes x, y and z respectively. These are the unit distances from the origin along the three axes. Thus

COM

$$h = \frac{1}{p}, \ k = \frac{1}{q}, \ l = \frac{1}{r}$$

where, p = intercept of the plane on the x-axis, q = intercept of the plane on the y-axis, and r = intercept of the plane on the z-axis.

Reciprocal of these intercepts are then converted into whole numbers. This can be done by multiplying each reciprocal by a number obtained after taking LCM of the denominator.

This gives the Miller indices of the required plane. The Miller indices are expressed by three smallest integers.

Question 8 View this Question Online >

If (3 2 6) are the Miller indices of a plane the intercepts made by the plane on the three

- 1. (a, b, c)
- 2. (2a, 3b, c)
- 3. (a, 2b, 3c)
- 4. (2a, b, 3c)

Option 2: (2a, 3b, c)

Miller Indices Question 8 Detailed Solution

Concept:

Miller indices are the styles to designate the planes and directions in the unit cells and crystals.

Miller indices (h, k, l) are expressed as a reciprocal of intercepts p, q, and r made by the plane on the three rectangular axes x, y, and z respectively.

0014.6011

These are the unit distances from the origin along the three axes. Thus

$$h=rac{1}{p},\;k=rac{1}{q},\;l=rac{1}{r}$$

where, p = intercept of the plane on the x-axis, q = intercept of the plane on the y-axis, and r = intercept of the plane on the z-axis.

Reciprocal of these intercepts are then converted into whole numbers. This can be done by multiplying each reciprocal by a number obtained after taking LCM of the denominator.

This gives the Miller indices of the required plane. The Miller indices are expressed by the three smallest integers.

Calculation:

Given:

Miller indices (3 2 6) = (h, k, l)

$$h=rac{1}{p},\; k=rac{1}{q},\; l=rac{1}{r}$$

$$p=rac{1}{\pi},\;q=rac{1}{\kappa},\;r=rac{1}{t}$$

$$(p,q,r)\Rightarrow\left(rac{1}{\hbar},rac{1}{\hbar},rac{1}{t}
ight)$$

$$(p,q,r)\Rightarrow \left(\frac{1}{3},\frac{1}{2},\frac{1}{6}\right)$$

Taking LCM = 6 and multiplying with all the terms

$$(p,q,r)\Rightarrow (2,3,1)\Rightarrow (2a,3b,1c)$$

Question 9:

View this Question Online >

A unit cell of a crystal is shown in the figure. The miller indices of the direction (arrow) shown in the figure is

- 1. [120]
- 2. [0 2 1]
- 3. [0 1 2]

Option 1: [1 2 0]

Miller Indices Question 9 Detailed Solution

Concept:

Procedure To find Miller Indices:

To find miller indices of direction, take the given direction vector as resultant and find its component along the x, y and z-axis.

If components are in fraction, then convert it to an integer.

Calculation:

Given:

Question 10:

View this Question Online >

In a Triclinic crystal, a lattice plane makes intercepts at a length a, 2b and $-\frac{3c}{2}$. The Miller indices of the plane are

- 1. 3:6:4
- 2. 6:3:4
- 3. 6:3:-4
- 4. 6:3:-2

Answer (Detailed Solution Below)

Option 3:6:3:-4

