Лабораторная работа № 1.3.3

Измерение вязкости воздуха по течению в тонких трубках

1 Аннотация

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

В работе используются: система подачи воздуха (компрессор, поводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер.

2 Теоретические сведения

Согласно закону вязкости Ньютона:

$$\tau_{xy} = \eta \frac{\partial v_x}{\partial y},$$

где η - коэффициент динамической вязкости.

Характер течения может быть ламинарным или турбулентным, определяется числом Рейнольдса:

$$Re = \frac{\rho ua}{\eta},\tag{1}$$

где ρ - плотность среды, u - характерная скорость потока, a - характерный размер системы

Из опыта известно, что переход к турбулентному течению по трубкам круглого сечения наблюдается при $Re_{\rm kp}\approx 10^3$. Здесь в качестве характерного размера выбран радиус трубы R, а в качестве характерной скорости u выбрана средняя скорость потока, определяемая через полный расход Q:

$$\bar{u} = \frac{Q}{\pi R^2}. (2)$$

Формула Пуазейля позволяет найти вязкость газа по зависимости расхода от перепада давления в трубе и используется в качестве основной расчётной формулы в данной работе:

$$Q = \frac{\pi R^4 \Delta P}{8\eta l},\tag{3}$$

Длину установления ламинарного течения можно оценить по формуле:

$$l_{\text{VCT}} \approx 0.2R \cdot Re$$
 (4)

3 Используемое оборудование

Экспериментальная установка

Схема экспериментальной установки изображена на рисунке. Поток воздуха под давлением, немного превышающим атмосферное, поступает через газовый счётчик в тонкие металлические трубки. Воздух нагнетается компрессором, интенсивность его подачи регулируется краном К. Трубки снабжены съёмными заглушками на концах и рядом миллиметровых отверстий, к которым можно подключать микроманометр. В рабочем состоянии открыта заглушка на одной (рабочей) трубке, микроманометр подключён к двум её выводам, а все остальные отверстия плотно закрыты пробками.

Перед входом в газовый счётчик установлен водяной U-образный манометр. Он служит для измерения давления газа на входе, а также предохраняет счётчик от выхода из строя. При превышении максимального избыточного давления на входе счётчика (≈ 30 см вод. ст.) вода выплёскивается из трубки в защитный баллон Б, создавая шум и привлекая к себе внимание экспериментатора.

Рис. 1: Экспериментальная установка

Газовый счётчик

В работе используется газовый счётчик барабанного типа, позволяющий измерять объём газа ΔV , прошедшего через систему. Измеряя время Δt при помощи секундомера, можно вычислить средний объёмный расход газа $Q = \Delta V/\Delta t$ (для получения массового расхода [кг/с] результат необходимо домножить на плотность газа ρ). Работа счётчика основана на принципе вытеснения: на цилиндрической ёмкости жёстко укреплены лёгкие чаши (см. рис. 2, где для упрощения изображены только две чаши), в которые поочередно поступает воздух из входной трубки расходомера. Когда чаша наполняется, она всплывает и её место занимает следующая и т.д. Вращение оси предаётся на счётно-суммирующее устройство. Для корректной работы счётчика он должен быть заполнен водой и установлен горизонтально по уровню (подробнее см. техническое описание установки).

Рис. 2: Принцип работы барабанного газосчётчика

Микроманометр

В работе используется жидкостный манометр с наклонной трубкой. Разность давлений на входах манометра измеряется по высоте подъёма рабочей жидкости (как правило, этиловый спирт). Регулировка наклона позволяет измерять давление в различных диапазонах.

На крышке прибора установлен трехходовой кран, имеющий два рабочих положения — (0) и (+). В положении (0) производится установка мениска жидкости на ноль, что необходимо сделать перед началом работы (в процессе работы также рекомендуется периодически проверять положение нуля). В положении (+) производятся измерения.

При работе с жидкостным манометром важно не допустить его «зашкаливания» — перелива рабочей жидкости в подводящие трубки (в этом случае работу придется приостановить для просушки трубок, долива спирта и т.д.). Все манипуляции по перестановке измерительных трубок следует проводить, когда манометр находится в положении (0). Подачу газа в систему, наоборот, следует осуществлять в положении (+), чтобы контролировать величину давления и иметь возможность вовремя перекрыть поток.

Перед началом работы с микроманометром необходимо убедиться, что в нём залито достаточное количество спирта, а сам манометр установлен строго горизонтально по уровням. Подводящие трубки, заполненные спиртом, не должны содержать пузырьков воздуха, а в трубках, заполненных воздухом, не должно быть капель спирта. Подробнее инструкцию по подготовке прибора к работе см. в техническом описании установки.

4 Результаты измерений

Параметры окружающей среды

 $T = (299.25 \pm 0.10) \text{ K}$

 $P = (97610 \pm 10) \; \Pi a$

Ламинарное и турбулентное течение

$\Delta t, c$	N	ΔP , Πa	<i>Q</i> , мл/с	$\Delta t, c$	\overline{N}	ΔP , Πa	<i>Q</i> , мл/с
12.8 17.3 19.9 24.2	63 47 40 34	122.5 91.4 77.7 66.1	78.1 57.8 50.3 41.3	9.6 9.1 8.5 8.0	101 120 154 171	196.3 233.2 299.3 332.4	104.2 109.9 117.6 125.0
26.6 33.7 41.7 52.8 84.2	30 24 20 15 10	58.3 46.6 38.9 29.2 19.4	37.6 29.7 24.0 18.9 11.9	7.8 7.4 6.7 6.2	171 186 206 247 277	361.5 400.4 480.1 538.4	123.0 128.2 135.1 149.3 161.3

Таблица 1: $d = (3.95 \pm 0.05)$ мм, $l = (50.0 \pm 1.0)$ см

$\Delta t, c$	N	ΔP , Πa	Q, мл/с	$\Delta t, c$	N	ΔP , Πa	Q, мл/с
16.6	93	180.8	60.2	12.1	130	252.7	82.6
19.2	80	155.5	52.1	11.1	143	277.9	90.1
22.0	70	136.1	45.5	10.5	155	301.3	95.2
25.3	60	116.6	39.5	10.2	165	320.7	98.0
30.8	50	97.2	32.5	9.9	176	342.1	101.0
42.9	35	68.0	23.3	9.7	185	359.6	103.1
78.6	20	38.9	12.7	9.4	212	412.1	106.4

Таблица 2: $d = (3.95 \pm 0.05)$ мм, $l = (90.0 \pm 1.0)$ см

$\Delta t, c$	N	ΔP , Πa	Q, мл/с	_	$\Delta t, c$	N	ΔP , Πa	<i>Q</i> , мл/с
7.0	35	68.0	142.9		6.3	53	103.0	158.7
7.5	30	58.3	133.3		5.4	75	145.8	185.2
8.8	25	48.6	113.0		4.6	102	198.3	217.4
10.9	20	38.9	91.7		3.8	142	276.0	263.2
13.9	15	29.2	71.9		3.6	166	322.7	277.8

Таблица 3: $d = (5.30 \pm 0.05)$ мм, $l = (40.0 \pm 1.0)$ см

5 Обработка данных

Графики

Обработка данных

$\Delta P_{\rm \kappa p}^{\rm виз}, \Pi a$ R^2	126.34	194.37	69.97
R^2	1.00	1.00	0.91
η , $\Pi a \cdot c$	$(1.92 \pm 0.11) \times 10^{-5}$	$(2.00 \pm 0.10) \times 10^{-5}$	$(2.06 \pm 0.11) \times 10^{-5}$
$Re_{\mathrm{\kappa p}}$	747 ± 50	551 ± 36	947 ± 56

5.1 Обсуждение результатов

Для каждой трубки по графику определена граница перехода от ламинарного участка к турбулентному. Для первых двух участков реузльтаты сошлись с теоретическими и теми, что были определны визуально в процессе снятия измерений. Для последнего участка выявлено отклонение, причной которого может быть большой диаметр трубки.

Зависимость $Q(\Delta P)$ на ламинарном участке соответствует линейной. Исключением являются последние две точки на последнем участке.

Пользуясь формулой Пуазейля, по угловым коэффициентам линейных участков определена взякость воздуха, которая в пределах погрешности сходится с табличными знаениями для всех участков.

Рассчитано критическое число Рейнольдса, которое по порядку сошлось с предполагаемым значением для все участков.