

planetmath.org

Math for the people, by the people.

characterization of field

Canonical name CharacterizationOfField

Date of creation 2013-03-22 13:57:03

Last modified on 2013-03-22 13:57:03

Owner alozano (2414) Last modified by alozano (2414)

Numerical id 7

Author alozano (2414)

Entry type Theorem Classification msc 12E99

Synonym a field only has two ideals

Related topic Field Related topic Ring Related topic Ideal **Proposition 1.** Let $\mathcal{R} \neq 0$ be a commutative ring with identity. The ring \mathcal{R} (as above) is a field if and only if \mathcal{R} has exactly two ideals: $(0), \mathcal{R}$.

Proof. (\Rightarrow) Suppose \mathcal{R} is a field and let \mathcal{A} be a non-zero ideal of \mathcal{R} . Then there exists $r \in \mathcal{A} \subseteq \mathcal{R}$ with $r \neq 0$. Since \mathcal{R} is a field and r is a non-zero element, there exists $s \in \mathcal{R}$ such that

$$s \cdot r = 1 \in \mathcal{R}$$

Moreover, \mathcal{A} is an ideal, $r \in \mathcal{A}, s \in \mathcal{S}$, so $s \cdot r = 1 \in \mathcal{A}$. Hence $\mathcal{A} = \mathcal{R}$. We have proved that the only ideals of \mathcal{R} are (0) and \mathcal{R} as desired.

(\Leftarrow) Suppose the ring \mathcal{R} has only two ideals, namely (0), \mathcal{R} . Let $a \in \mathcal{R}$ be a non-zero element; we would like to prove the existence of a multiplicative inverse for a in \mathcal{R} . Define the following set:

$$\mathcal{A} = (a) = \{ r \in \mathcal{R} \mid r = s \cdot a, \text{ for some } s \in \mathcal{R} \}$$

This is clearly an ideal, the ideal generated by the element a. Moreover, this ideal is not the zero ideal because $a \in \mathcal{A}$ and a was assumed to be non-zero. Thus, since there are only two ideals, we conclude $\mathcal{A} = \mathcal{R}$. Therefore $1 \in \mathcal{A} = \mathcal{R}$ so there exists an element $s \in \mathcal{R}$ such that

$$s \cdot a = 1 \in \mathcal{R}$$

Hence for all non-zero $a \in \mathcal{R}$, a has a multiplicative inverse in \mathcal{R} , so \mathcal{R} is, in fact, a field.