Mid-semester examination

BT 501: Biotechniques (July-Nov, 2022)

September 22, 2022

Maximum marks: 60 (to be normalized to 30)

Time: 2 hours (9-11 A.M.)

Instructions:

- 1. This question paper is divided into two parts: Part A and Part B.
- 2. There are 9 questions.
- 3. Attempt all the questions.

Part A

 ${f Q1.}$ In a hypothetical experiment, you are given the task of determining the concentration of six different proteins. Only the following details are provided about those proteins:

- (a) Short amino acid stretches of these proteins are known, and incidentally they resemble the names
 - P1. SANAWASTHI
 - P2. AARITHDAMIANDAVIS
 - P3. ISHITAMATHR
 - P4. SWATHÝGPALN
 - P5. NIRMALSARKAR
- (b) 2. Molar extinction coefficients of Tryptophan and Tyrosine at 280 nm are 5600 M-1cm 1 and
- (c) All the proteins that absorb at 280 nm have a uniform Absorbance of 0.34 in a 1 cm path length

Answer the following questions with this information

- (a) Concentration of which all proteins can be accurately estimated with the information provided?
- (b) Estimate the concentrations of as many proteins possible with the information provided.

Q2.8 M urea or 6 M guanidine hydrochloride are very commonly used to denature a protein. Assume that you only have an IR Spectrophotometer to monitor the denaturation of SH3 domain protein (PDB ID: 1SHG.pdb). Structure of the protein is given below. Design an experiment to monitor the completion of this experiment. Explain the rationale.

5

2

SH3 domain (PDB ID: 1SHG.pdb)

Q3. Absorption and emission spectra of three aromatic amino acids, F, Y and W are shown in the following figure 1A. Draw an approximate absorption spectrum of the two molecules in figure 1B and 1C, with x axis and y axis properly labeled. Are they (1B or 1C) likely to have any color? If YES, why?

Q4. The vibration frequency of ²H³⁵Cl is 2144 cm⁻¹. Which among the following molecules, ¹H³⁵Cl, and ²H³⁷Cl, can be clearly distinguished from ²H³⁵Cl, in an IR spectrum recorded with identical parameters. Rationalize your answer after estimating the frequency for ¹H³⁵Cl, and ²H³⁷Cl.

Notes: Isotopes can have different masses; IR spectrum is usually reported in wave numbers, with a unit of cm^{-1} .

Q5. The transmittance of an aqueous solution of $KMnO_4$ at a certain wavelength is 1 percent (0.01) for 10^{-3} M solution in 1 cm cell. What are (a) its absorbance and (b) the molar absorption coefficient.

5

Q6. The following compound has a λ max of 453 nm.

What is the color of this compound?

The extinction coefficient of this molecule is 139,500 cm $^{-1}M^{-1}$. Write all your inferences with regard to allowed and forbidden transitions at λ_{max} 453 in the absorption spectrum of the above molecule.

 $\{2 \times 5 = 10 \text{ marks}\}$

Q.7 Answer the following questions:

(a) The far-UV CD spectrum recorded for a protein in water is shown below. What can you say about the protein structure from the spectrum? (mention only the most predominant conformation).

- (b) Arrange the following processes with decreasing rate constants (increasing lifetime): Fluorescence, internal conversion, absorption, phosphorescence
- (c) How is circularly polarized light generated using plane polarized light?
- (d) What is the difference between circular dichroism and circular birefringence?
- (e) Folding/unfolding of a protein can be studied using circular dichroism spectroscopy. Why such experiments are usually carried out at 220 nm?
- Q.8 Bovine rhodopsin is a photoreceptor protein present in retinal rod cells and plays a key role in vision. It has a tightly bound 11-cis-retinal that has a strong absorbance at about 500 nm. The protein has a molecular weight of around 35 kDa. Three sites (sites A, B, and C) were labeled on the protein with fluorescent probes, A, B, and C, respectively. Resonance energy transfer was measured for each pair i.e. from $A \rightarrow 11$ -cis-retinal, $B \rightarrow 11$ -cis-retinal, and $C \rightarrow 11$ -cis-retinal, $A \rightarrow B$, $A \rightarrow C$, $B \rightarrow C$. The results of the experiments are summarized here:

Energy donor		Transfer Efficiency	R ₀ (Å)	
	11 <i>-cis-</i> retinal	0.09	51	P PARA
B	11-cis-retinal	0.36	52	
	11 <i>-cis-</i> retinal	0.12	33	
	B	0.90	51	364 P
	C substitutes and the contractive and the cont	0.92	48	
B	C	0.92	47	The state of the s

(a) Calculate the distances between these six sites.

{6 marks}

(b) A protein of molecular weight 35 kDa that is spherical has a radius of 40 Å. What can you say about the shape of rhodopsin? {2 marks}

An amphipathic helical peptide contains a tryptophan residue on its hydrophobic face. The Q.9 peptide binds to the lipid vesicles. The tryptophan fluorescence quenching data by the aqueous dynamic quencher acrylamide for the peptide is given below:

Acrylamide (M)	Fluorescence intensity in buffer without lipid vesicles	Fluorescence intensity in the	
0	114	buffer containing lipid vesicles	
0.02	The state of the s	114	
0.04	78	103	
0.06	60	95	
	50	90	
0.08	45	83	
0.1	38		
0.12	33	80	
0.14	The state of the s	75	
0.16	29	72	
	27	69	

(a) Construct a neat, labeled Stern-Volmer plot for both the data (both the data plotted together {6 marks}

(b) Determine the Stern-Volmer constant for both the cases.

{2 marks}

(c) If fluorescence lifetime of the unquenched tryptophan is 3 ns for both free and lipid-bound peptide, determine the bimolecular quenching constants (k_q) for both the cases.

{2 marks}

(d) If k_0 for tryptophan-acrylamide fluorophore-quencher pair is $0.8\times10^{10}\,M^{\text{-1}}\text{cm}^{\text{-1}}$, determine the efficiency of quenching for both the cases. {2 marks}