

广工资源在线

更多试卷、资料尽在公众号

广东工业大学试卷用纸, 共 4 页 第一页

[公司地址]

俳

广	东工业大学考试试卷	(A)
•	ハーニーエン・ファーフ かんかん じょ	(, ,	/

课程名称: 概率论与数理统计 C 试卷满分_100_分

考试时间: 2011 年 12 月 16 日 (第 16 周星期五)

166 只	_		三					当八	
题 号			1	2	3	4	5		总分
评卷得分									
评卷签名									
复核得分									
复核签名									

- 一. 选择题(20分,每题4分)
- 1 . 将一枚均匀硬币掷两次, A 为"至少有一次为正面", 事件 B 为"两次掷 出同一面",则 p(B|A) = [

$$A \frac{1}{3}$$

$$B = \frac{1}{2}$$

$$A = \frac{1}{3}$$
 $B = \frac{1}{2}$ $C = \frac{1}{4}$ $D = \frac{3}{4}$

$$D = \frac{3}{4}$$

2. .设 X 服从 (-1, 1) 上的均匀分布,则方程 $y^2 - 3Xy + 1 = 0$ 有实 根的概率为()

$$A = 1/3$$

$$B = 1/4$$

$$B = 1/4$$
 $C = 2/3$

- D = 1/2
- 3.设随机变量 X~B(10, 1/2), Y~N(2, 10), 又 E(XY)=14, 则 X 与 Y 的相关系 ρ_{xy} = (D)

- D. 0. 8
- 4. .设 F(x)和 f(x)分别为某随机变量的分布函数和概率密度,则必有()

A
$$f(x)$$
单调不减 B
$$\int_{-\infty}^{+\infty} F(x) dx = 1$$

$$C F(-\infty) = 0$$

C
$$F(-\infty) = 0$$
 D $F(x) = \int_{-\infty}^{+\infty} f(x) dx$

5.. 设
$$X_i = \begin{cases} 0 & \square & A \square \\ 1 & \square & A \square \end{cases}$$
 (i=1, 2 …10000),且 P(A)=0.9,

 $X_1, X_2, ..., X_{10000}$ 相互独立,令 Y= $\sum_{i=1}^{10000} X_i$,则由中心极限定理知 Y 近

似服从的分布是()

A N(0,1) B N(9000,30) C N(900,9000) D N(9000,900)

二. 填空题(20分,每题4分)

- 1. 若事件 A、B 相互独立, 且 P(A)=0.5, P(B)=0.25, 则 P(AUB)=
- 2. 随机变量 $\xi \sim \varphi(x) = \frac{1}{1+x^2}$,则 2 ξ 的概率密度函数为______
- 3. 设随机变量 X 与 Y 相互独立, 且 X~B(16, 0.5), Y 服从于参数为 9 的 泊松分布, 则 D(X-2Y+1) = _____
 - 4. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} ke^{-x} & x > 0 \\ 0 & x \le 0 \end{cases}$ 则 k= _____
 - 5. 已知二元离散型随机变量(X,Y)的概率分布如下表:

且 X 与 Y 相互独立,则 α = ______, β = ______。

三. 计算题 (60分)

- 1. (12分) 设股票购买者中有主力,大户和散户,它们占得份额分别为 0. 5,
 - 0.3, 0.2, 且造成股票上涨的概率分别为 0.65, 0.25, 0.1, 试求:
 - 1) 该股票上涨的概率是多少?
 - 2) 如果该股票已上涨,则它是由主力造成的概率是多少?

2. (12 分)
$$\xi \sim \varphi(x) = \begin{cases} ax + b & 0 \le x \le 1 \\ 0 &$$
其他 , 且 E $\xi = 7/12$,求:

- (1) a,b的值
- (2) 分布函数 F(x)
- 3. (10 分) 型号电子元件的寿命 X (以小时计) 具有概率密度

$$f(x) = \begin{cases} \frac{1000}{x^2}, & x > 1000 \\ 0, & \text{其他} \end{cases}$$
。现有一大批这种元件,设各元件损坏与否相互独立。

任取5只元件,求5只中恰有1只寿命大于1500小时的概率。

- 4. (12 分) 设随机变量 X 与 Y 相互独立,已知 X 服从标准正态分布,Y 服从(π ,+ π)上的均匀分布,试求 Z=X+Y 的概率密度函数 $\mathbf{f}(z)$
- 5. (14 分)设二维随机向量(X,Y)的联合概率密度为

$$f(x,y) = \begin{cases} kxy & x \le y \le 1, 0 \le x \le 1 \\ 0 & \blacksquare \end{cases}$$

- (1) 常数 k
- (2) 求(X,Y)分别关于 X 和 Y 的边缘概率密度 $f_X(x), f_Y(y)$
- (3) 判断 X 与 Y 是否相互独立,并说明理由;
- (4) 计算 P {X+Y≤1}。
- (5) E(XY)