Pre-Galois Connection on Coalgebras for Generic Component Refinement

Sun Meng

CWI, Amsterdam, The Netherlands http://www.cwi.nl/~sun

October 23, 2007

Outline

- Motivation
- Components as Coalgebras
- Refinement
- Pre-Galois Connection
- **6** Conclusions and Future work

Motivation

- Component based software development as a promising paradigm to deal with the increasing complexity in software design.
- Components must be specified and implemented before it can be analyzed and used.
- Coalgebras can be used as a mathematical model for components.
- Galois connection has been widely used to ensure the correctness of refinement relations.
- Do we have a notion like Galois connections between coalgebras to witness refinement of components?

Motivation

- Component based software development as a promising paradigm to deal with the increasing complexity in software design.
- Components must be specified and implemented before it can be analyzed and used.
- Coalgebras can be used as a mathematical model for components.
- Galois connection has been widely used to ensure the correctness of refinement relations.
- Do we have a notion like Galois connections between coalgebras to witness refinement of components?

What will we show?

We will show how to...

- ... unify the behavior model and transition types into one functor over the Kleisli category for the coalgebra model of components
- ... rebuild refinement relationship between coalgebraic structures
- ... use pre-Galois connection in reasoning about refinement of components

Components can be specified in a generic way which means that the underlying behavior model is taken as a specification parameter, and abstracted to a monad B.

- *Identity*, B = Id, which retrieves the simple total and
- Partiality, B = Id + 1, i.e., the maybe monad, capturing the partial behavior which describes the possibility of deadlock
- Non-determinism, $B = \mathcal{P}$, modeling the non-deterministic

Components can be specified in a generic way which means that the underlying behavior model is taken as a specification parameter, and abstracted to a monad B.

Some useful possibilities:

- Identity, B = Id, which retrieves the simple total and deterministic behavior.
- Partiality, B = Id + 1, i.e., the maybe monad, capturing the partial behavior which describes the possibility of deadlock or failure.
- Non-determinism, $B = \mathcal{P}$, modeling the non-deterministic branching behavior.

The type of state transitions of the component is described by a functor T. For example, if we take I and O be sets acting as component input and output interfaces, then T can be defined as the **Set** endofunctor

Pre-Galois Connection

$$\mathsf{T} = (\mathsf{Id} \times \mathsf{O})^I$$

coalgebra ($u \in U, \alpha : U \to BTU$) in **Set** with

- B a monad.
- T a functor,
- a distributive law TB ⇒ BT implicit, that describes the way represented by T.
- the point u being taken as the "initial" or "seed" state.

The type of state transitions of the component is described by a functor T. For example, if we take I and O be sets acting as component input and output interfaces, then T can be defined as the **Set** endofunctor

$$\mathsf{T} = (\mathsf{Id} \times \mathsf{O})^I$$

A state-based component can be modeled as a pointed coalgebra ($u \in U, \alpha : U \to BTU$) in **Set** with

- B a monad.
- T a functor,
- a distributive law TB ⇒ BT implicit, that describes the way how B's effect is distributed over the transition type represented by T.
- the point u being taken as the "initial" or "seed" state.

Kleisli Category

- For each monad B on Set, the Kleisli category for B, denoted by K(B), can be constructed as follows:
 - Objects in $\mathcal{K}(B)$ are the same as in **Set**. They are just sets.
 - An arrow $U \to V$ in $\mathcal{K}(B)$ is a function $U \to BV$ in **Set**.
 - Composition of arrows in $\mathcal{K}(\mathsf{B})$ is defined using multiplication $\mu_U : \mathsf{BB}U \to \mathsf{B}U$.
 - Identity arrow id : $U \rightarrow U$ in $\mathcal{K}(\mathsf{B})$ is the unit $\eta_U : U \rightarrow \mathsf{B}U$ in **Set**.
- The functor T can be lifted to a functor \(\mathcal{K}(T) \) on the Kleisli category \(\mathcal{K}(B) \) via the distributive law.
- Considering the component model, a component is just a pointed coalgebra (u ∈ U, α : U → ℋ(T)U) in the Kleisli category ℋ(B).

Kleisli Category

- For each monad B on Set, the Kleisli category for B, denoted by $\mathcal{K}(B)$, can be constructed as follows:
 - Objects in $\mathcal{K}(B)$ are the same as in **Set**. They are just sets.

Pre-Galois Connection

- An arrow $U \to V$ in $\mathcal{K}(B)$ is a function $U \to BV$ in **Set**.
- Composition of arrows in \(\mathcal{K}(B) \) is defined using multiplication μ_{II} : BB $U \rightarrow BU$.
- Identity arrow id : $U \rightarrow U$ in $\mathcal{K}(B)$ is the unit $\eta_U : U \rightarrow BU$ in Set.
- The functor T can be lifted to a functor \(\mathcal{K}(T) \) on the Kleisli category $\mathcal{K}(B)$ via the distributive law.
- Considering the component model, a component is just a

Kleisli Category

- For each monad B on Set, the Kleisli category for B, denoted by $\mathcal{K}(B)$, can be constructed as follows:
 - Objects in $\mathcal{K}(B)$ are the same as in **Set**. They are just sets.
 - An arrow $U \to V$ in $\mathcal{K}(B)$ is a function $U \to BV$ in **Set**.
 - Composition of arrows in \(\mathcal{K}(B) \) is defined using multiplication μ_U : BB $U \rightarrow BU$.
 - Identity arrow id : $U \rightarrow U$ in $\mathcal{K}(B)$ is the unit $\eta_U : U \rightarrow BU$ in Set.
- The functor T can be lifted to a functor \(\mathcal{K}(T) \) on the Kleisli category $\mathcal{K}(B)$ via the distributive law.
- Considering the component model, a component is just a pointed coalgebra ($u \in U, \alpha : U \to \mathcal{K}(T)U$) in the Kleisli category $\mathcal{K}(B)$.

Order

 For a Kleisli category \(\mathcal{K}(B) \) and any functor T, an order $\leq_{\mathcal{K}(\mathsf{T})}$ on $\mathcal{K}(\mathsf{T})$ is defined as a collection of preorders $\leq_{\mathsf{BT}U} \subseteq \mathsf{BT}U \times \mathsf{BT}U$, for each set U, such that the following diagram commutes:

• and for any $f: U \to V$, $\mathcal{K}(\mathsf{T})f$ preserves the order, i.e.,

$$u_1 \leq_U u_2 \Rightarrow \mathcal{K}(\mathsf{T}) f(u_1) \leq_{\mathsf{BTV}} \mathcal{K}(\mathsf{T}) f(u_2)$$

Order

 For a Kleisli category \(\mathcal{K}(B) \) and any functor T, an order $\leq_{\mathscr{K}(\mathsf{T})}$ on $\mathscr{K}(\mathsf{T})$ is defined as a collection of preorders $\leq_{\mathsf{BT}U} \subseteq \mathsf{BT}U \times \mathsf{BT}U$, for each set U, such that the following diagram commutes:

• and for any $f: U \to V$, $\mathcal{K}(T)f$ preserves the order, i.e.,

$$u_1 \leq_{IJ} u_2 \Rightarrow \mathcal{K}(T)f(u_1) \leq_{BTV} \mathcal{K}(T)f(u_2)$$

Some Possible Examples

The first example is:

$$x \subseteq_{\mathsf{Id}} y \text{ iff } x = y$$

 $x \subseteq_{\mathscr{D}} y \text{ iff } \forall_{e \in x} \exists_{e' \in y} .e \subseteq_{\mathsf{Id}} e'$

The order $\subseteq_{\mathscr{P}}$ captures the classical notion of nondeterministic reduction and can be turned into more specific cases. For example, the failure forcing variant $\subseteq_{\mathscr{P}}^{E}$, where E stands for emptyset, guarantees that the first component fails no more than the second one. It is defined by replacing the clause for $\subseteq_{\mathscr{P}}$ by

$$x \subseteq_{\mathscr{P}}^{\mathsf{E}} y$$
 iff $(x = \emptyset \Rightarrow y = \emptyset) \land \forall_{e \in x} \exists_{e' \in y} .e \subseteq_{\mathsf{Id}} e'$

 Consider the partiality monad B = Id + 1. The set BU carry the familiar "flat" order:

$$x \subseteq_{\mathsf{B}} y \text{ iff } x \neq * \Rightarrow x = y \land x = * \Rightarrow y = *$$

 A possible (and intuitive) way of considering component p as a refinement of another component q is to consider that p-transitions are simply preserved in q. For example, for non-deterministic components this means set inclusion.

Pre-Galois Connection

Homomorphism can be used to relate two coalgebras.

$$U \xrightarrow{\alpha} \mathcal{K}(\mathsf{T})U$$

$$\downarrow \downarrow \mathcal{K}(\mathsf{T})h$$

$$V \xrightarrow{\beta} \mathcal{K}(\mathsf{T})V$$

- From homomorphisms we can only derive bisimulations!
- To build a witness for refinement relations, we separate the

Motivation

- A possible (and intuitive) way of considering component p as a refinement of another component q is to consider that p-transitions are simply preserved in q. For example, for non-deterministic components this means set inclusion.
- Homomorphism can be used to relate two coalgebras.

$$\begin{array}{ccc} U & \stackrel{\alpha}{\longrightarrow} & \mathcal{K}(\mathsf{T})U \\ h^{\downarrow} & & \downarrow \mathcal{K}(\mathsf{T})h \\ V & \stackrel{\beta}{\longrightarrow} & \mathcal{K}(\mathsf{T})V \end{array}$$

- From homomorphisms we can only derive bisimulations!
- To build a witness for refinement relations, we separate the

 A possible (and intuitive) way of considering component p as a refinement of another component q is to consider that p-transitions are simply preserved in q. For example, for non-deterministic components this means set inclusion.

Pre-Galois Connection

Homomorphism can be used to relate two coalgebras.

$$\begin{array}{ccc} U & \stackrel{\alpha}{\longrightarrow} & \mathcal{K}(\mathsf{T})U \\ h^{\downarrow} & & \downarrow \mathcal{K}(\mathsf{T})h \\ V & \stackrel{\beta}{\longrightarrow} & \mathcal{K}(\mathsf{T})V \end{array}$$

- From homomorphisms we can only derive bisimulations!
- To build a witness for refinement relations, we separate the

- A possible (and intuitive) way of considering component p
 as a refinement of another component q is to consider that
 p-transitions are simply preserved in q. For example, for
 non-deterministic components this means set inclusion.
- Homomorphism can be used to relate two coalgebras.

$$\begin{array}{ccc} U & \stackrel{\alpha}{\longrightarrow} & \mathcal{K}(\mathsf{T})U \\ h^{\downarrow} & & \downarrow \mathcal{K}(\mathsf{T})h \\ V & \stackrel{\beta}{\longrightarrow} & \mathcal{K}(\mathsf{T})V \end{array}$$

- From homomorphisms we can only derive bisimulations!
- To build a witness for refinement relations, we separate the preservation and reflection aspects in homomorphism.

For a Kleisli category $\mathscr{K}(\mathsf{B})$ and two coalgebras $p = (U, \alpha : U \to \mathscr{K}(\mathsf{T})U)$ and $q = (V, \beta : V \to \mathscr{K}(\mathsf{T})V)$. A forward morphism $h : p \to q$ with respect to an order \leq on $\mathscr{K}(\mathsf{T})$ is an arrow $h : U \to V$ such that

$$\mathscr{K}(\mathsf{T})\mathsf{h}\cdot\alpha \leq \beta\cdot\mathsf{h}$$

Dually, *h* is called a backward morphism if the following conditions are satisfied:

$$\beta \cdot h \leq \mathcal{K}(\mathsf{T})h \cdot \alpha$$

Component Refinement

Components as Coalgebras

The existence of a forward (backward) morphism connecting two components p and q witnesses a refinement situation whose symmetric closure coincides, as expected, with bisimulation.

Component Refinement

The existence of a forward (backward) morphism connecting two components p and q witnesses a refinement situation whose symmetric closure coincides, as expected, with bisimulation.

Component p is a behavior refinement of q, written $p \sqsubseteq_B q$, if there exist components r and s such that $p \sim r$, $q \sim s$ and a (seed preserving) forward morphism from r to s.

Components as Coalgebras

The existence of a forward (backward) morphism connecting two components p and q witnesses a refinement situation whose symmetric closure coincides, as expected, with bisimulation.

Component p is a behavior refinement of q, written $p \sqsubseteq_B q$, if there exist components r and s such that $p \sim r$, $q \sim s$ and a (seed preserving) forward morphism from r to s.

A forward morphism is a "behavior preserving" mapping, but lying inside it is a more fundamental concept: to relate two coalgebras, one must show that all the transitions in one coalgebra are "mimicked" by the other. Such an intuition is formalized by the notion of simulation.

Simulation

Components as Coalgebras

 For a given Kleisli category K(B), a functor T and a refinement preorder <, a lax relation lifting is an operation $Rel_{<}(\mathcal{K}(\mathsf{T}))$ mapping relation R to $\leq Rel(\mathcal{K}(\mathsf{T}))(R) \leq 1$ where $Rel(\mathcal{K}(T))(R)$ is the lifting of R to $\mathcal{K}(T)$ defined, as usual, as the $\mathcal{K}(\mathsf{T})$ -image of inclusion.

Pre-Galois Connection

• Given coalgebras (U, α) and (V, β) , a simulation is a $Rel_{<}(\mathcal{K}(\mathsf{T}))$ -coalgebra over α and β , i.e., a relation R such that, for all $u \in U$, $v \in V$,

$$(u, v) \in R \implies (\alpha u, \beta v) \in Rel_{\leq}(\mathcal{K}(\mathsf{T}))(R)$$

$$U \stackrel{\pi_1}{\longleftarrow} R \stackrel{\pi_2}{\longleftarrow} V$$

$$\downarrow \qquad \qquad \downarrow \beta$$

$$\mathcal{K}(\mathsf{T})U \stackrel{\leq}{\longleftarrow} \mathcal{K}(\mathsf{T})\pi_1 \qquad Rel(\mathcal{K}(\mathsf{T}))(R) \stackrel{\leq}{\longrightarrow} \mathcal{K}(\mathsf{T})V$$

For two coalgebras p and q,

Theorem (soundness)

To prove $p \sqsubseteq_B q$ it is sufficient to exhibit a simulation R relating p and q.

Theorem (completeness)

If $p \sqsubseteq_B q$ and h is the witness forward morphism, then $\sim Graph(h) \sim is$ a simulation between p and q.

Soundness and Completeness Results

For two coalgebras p and q,

Theorem (soundness)

To prove $p \sqsubseteq_B q$ it is sufficient to exhibit a simulation R relating p and q.

Theorem (completeness)

If $p \sqsubseteq_B q$ and h is the witness forward morphism, then $\sim \cdot Graph(h) \cdot \sim$ is a simulation between p and q.

Soundness and Completeness Results

For two coalgebras p and q,

Theorem (soundness)

To prove $p \sqsubseteq_B q$ it is sufficient to exhibit a simulation R relating p and q.

Theorem (completeness)

If $p \sqsubseteq_B q$ and h is the witness forward morphism, then $\sim \operatorname{Graph}(h) \sim \operatorname{is}$ a simulation between p and q.

Pre-Galois Connection

For a Kleisli category $\mathcal{K}(B)$ and functor T, let \leq be an order on $\mathcal{K}(\mathsf{T})$, a pre-Galois connection between two $\mathcal{K}(\mathsf{T})$ -coalgebras (U, α) and (V, β) is a pair of arrows $f: U \to V$ and $g: V \to U$, such that for all $u \in U$ and $v \in V$.

$$\alpha(u) \leq_{\mathcal{K}(\mathsf{T})U} \mathcal{K}(\mathsf{T})g \cdot \beta(v) \text{ iff } \mathcal{K}(\mathsf{T})f \cdot \alpha(u) \leq_{\mathcal{K}(\mathsf{T})V} \beta(v)$$

We say that f is the lower adjoint and g is the upper adjoint of the pre-Galois connection.

Composition and Identity for Pre-Galois Connections

- If (f, g) is a pre-Galois connection between two coalgebras $(U, \alpha: U \to \mathcal{K}(\mathsf{T})U)$ and $(V, \beta: V \to \mathcal{K}(\mathsf{T})V)$, and (h, k)is a pre-Galois connection between two coalgebras $(V, \beta: V \to \mathcal{K}(T)V)$ and $(W, \gamma: W \to \mathcal{K}(T)W)$, then $(h \cdot f, g \cdot k)$ is a pre-Galois connection between $(U, \alpha: U \to \mathcal{K}(\mathsf{T})U)$ and $(W, \gamma: W \to \mathcal{K}(\mathsf{T})W)$.
- (id, id) where id denotes the identity function on U is a

Composition and Identity for Pre-Galois Connections

- If (f, g) is a pre-Galois connection between two coalgebras $(U, \alpha: U \to \mathcal{K}(\mathsf{T})U)$ and $(V, \beta: V \to \mathcal{K}(\mathsf{T})V)$, and (h, k)is a pre-Galois connection between two coalgebras $(V, \beta: V \to \mathcal{K}(T)V)$ and $(W, \gamma: W \to \mathcal{K}(T)W)$, then $(h \cdot f, g \cdot k)$ is a pre-Galois connection between $(U, \alpha: U \to \mathcal{K}(\mathsf{T})U)$ and $(W, \gamma: W \to \mathcal{K}(\mathsf{T})W)$.
- (id, id) where id denotes the identity function on U is a pre-Galois connection between a coalgebra $(U, \alpha : U \to \mathcal{K}(\mathsf{T})U)$ and itself.

Cancellation

If we introduce an order \lessdot_U on U for $(U, \alpha: U \to \mathcal{K}(\mathsf{T})U)$ as $u \lessdot_U u'$ iff $\alpha(u) \leq_{\mathcal{K}(\mathsf{T})U} \alpha(u')$, i.e., we assume that \lessdot reflects the transition structure \to . In other words, the functor $\mathcal{K}(\mathsf{T})$ is order-preserving, then

Lemma (Cancellation)

If (f,g) is a pre-Galois connection between two coalgebras $(U,\alpha:U\to \mathcal{K}(\mathsf{T})U)$ and $(V,\beta:V\to \mathcal{K}(\mathsf{T})V)$, then we have

$$f \cdot g \lessdot_V \operatorname{id}_V$$
 and $\operatorname{id}_U \lessdot_U g \cdot f$

and

Lemma

If (f,g) is a pre-Galois connection between two coalgebras $(U,\alpha:U\to \mathcal{K}(\mathsf{T})U)$ and $(V,\beta:V\to \mathcal{K}(\mathsf{T})V)$, then f and g are both monotonic with respect to \leqslant_U and \leqslant_{V} .

Refinement

Cancellation

If we introduce an order \lessdot_U on U for $(U,\alpha:U\to \mathcal{K}(\mathsf{T})U)$ as $u\lessdot_U u'$ iff $\alpha(u)\leq_{\mathcal{K}(\mathsf{T})U}\alpha(u')$, i.e., we assume that \lessdot reflects the transition structure \to . In other words, the functor $\mathcal{K}(\mathsf{T})$ is order-preserving, then

Lemma (Cancellation)

If (f,g) is a pre-Galois connection between two coalgebras $(U,\alpha:U\to \mathcal{K}(\mathsf{T})U)$ and $(V,\beta:V\to \mathcal{K}(\mathsf{T})V)$, then we have

$$f \cdot g \lessdot_V \operatorname{id}_V$$
 and $\operatorname{id}_U \lessdot_U g \cdot f$

and

Lemma

If (f,g) is a pre-Galois connection between two coalgebras $(U,\alpha:U\to \mathcal{K}(\mathsf{T})U)$ and $(V,\beta:V\to \mathcal{K}(\mathsf{T})V)$, then f and g are both monotonic with respect to $g\in \mathcal{M}$ and $g\in \mathcal{M}$.

Cancellation

If we introduce an order \lessdot_U on U for $(U,\alpha:U\to \mathcal{K}(\mathsf{T})U)$ as $u\lessdot_U u'$ iff $\alpha(u)\leq_{\mathcal{K}(\mathsf{T})U}\alpha(u')$, i.e., we assume that \lessdot reflects the transition structure \to . In other words, the functor $\mathcal{K}(\mathsf{T})$ is order-preserving, then

Lemma (Cancellation)

If (f,g) is a pre-Galois connection between two coalgebras $(U,\alpha:U\to \mathcal{K}(\mathsf{T})U)$ and $(V,\beta:V\to \mathcal{K}(\mathsf{T})V)$, then we have

$$f \cdot g \lessdot_V \operatorname{id}_V$$
 and $\operatorname{id}_U \lessdot_U g \cdot f$

and

Lemma

If (f,g) is a pre-Galois connection between two coalgebras $(U,\alpha:U\to \mathcal{K}(\mathsf{T})U)$ and $(V,\beta:V\to \mathcal{K}(\mathsf{T})V)$, then f and g are both monotonic with respect to \leqslant_U and \leqslant_V .

Theorem

If (f,g) is a pre-Galois connection between two coalgebras $(U,\alpha:U\to \mathcal{K}(\mathsf{T})U)$ and $(V,\beta:V\to \mathcal{K}(\mathsf{T})V)$, for the orders \lessdot_U and \lessdot_V on U and V, (f,g) is a Galois connection.

Two-way Similarity

Theorem

If (f,g) is a pre-Galois connection between two coalgebras $(U,\alpha:U\to \mathscr{K}(\mathsf{T})U)$ and $(V,\beta:V\to \mathscr{K}(\mathsf{T})V)$, then $f\cdot g\cdot f\overline{\sim} f$ and $g\cdot f\cdot g\overline{\sim} g$.

The adjoints in a pre-Galois connection uniquely determine each other when the order < is a partial order and $\mathcal{K}(\mathsf{T})$ is a faithful functor.

The adjoints in a pre-Galois connection uniquely determine each other when the order < is a partial order and $\mathcal{K}(\mathsf{T})$ is a faithful functor.

Theorem

If the order < is a partial order, and (f, g) and (f, h) are pre-Galois connections between two coalgebras $(U, \alpha : U \to \mathcal{K}(\mathsf{T})U)$ and $(V, \beta : V \to \mathcal{K}(\mathsf{T})V)$ where $\mathcal{K}(\mathsf{T})$ is faithful, then g = h (similarly for the dual case).

The adjoints in a pre-Galois connection uniquely determine each other when the order \leq is a partial order and $\mathcal{K}(\mathsf{T})$ is a faithful functor.

Theorem

Motivation

If the order \leq is a partial order, and (f,g) and (f,h) are pre-Galois connections between two coalgebras $(U,\alpha:U\to \mathcal{K}(\mathsf{T})U)$ and $(V,\beta:V\to \mathcal{K}(\mathsf{T})V)$ where $\mathcal{K}(\mathsf{T})$ is faithful, then g=h (similarly for the dual case).

Corollary

If \leq is a preorder, and (f,g) and (f,h) are pre-Galois connections between two coalgebras $(U,\alpha:U\to \mathcal{K}(\mathsf{T})U)$ and $(V,\beta:V\to \mathcal{K}(\mathsf{T})V)$ where $\mathcal{K}(\mathsf{T})$ is faithful, then $g\overline{\sim}h$ (similarly for the dual case).

Properties for Adjoints

Components as Coalgebras

Theorem

If the order < is a partial order, and (f, g) is a pre-Galois connection between two coalgebras $(U, \alpha : U \to \mathcal{K}(T)U)$ and $(V, \beta : V \to \mathcal{K}(T)V)$ where $\mathcal{K}(T)$ is faithful, then

- f is monic iff q is epic iff $q \cdot f = id_{II}$:
- q is monic iff f is epic iff $f \cdot q = id_V$.

- f(g) is monic $\Rightarrow g \cdot f = id_U (f \cdot g = id_V)$;
- f(a) is epic $\Rightarrow f \cdot a = id_V (a \cdot f = id_U)$.

Components as Coalgebras

Theorem

If the order < is a partial order, and (f, g) is a pre-Galois connection between two coalgebras $(U, \alpha : U \to \mathcal{K}(T)U)$ and $(V, \beta : V \to \mathcal{K}(T)V)$ where $\mathcal{K}(T)$ is faithful, then

- f is monic iff q is epic iff $q \cdot f = id_{II}$:
- q is monic iff f is epic iff $f \cdot q = id_V$.

Corollary

If \leq is a preorder, and (f, g) is a pre-Galois connection between $(U, \alpha : U \to \mathcal{K}(\mathsf{T})U)$ and $(V, \beta : V \to \mathcal{K}(\mathsf{T})V)$ where $\mathcal{K}(\mathsf{T})$ is faithful, then

- f(g) is monic $\Rightarrow g \cdot f = id_U (f \cdot g = id_V)$;
- f(g) is epic $\Rightarrow f \cdot g \approx id_V (g \cdot f \approx id_U)$.

Linking Pre-Galois Connection with Refinement

Given a pre-Galois connection $(f: U \rightarrow V, g: V \rightarrow U)$, we can extract the relation $R_{(f,\sigma)} \subseteq U \times V$ as follows:

$$R_{(f,g)} = \{(u,v) \mid \mathscr{K}(\mathsf{T})f \cdot \alpha(u) \leq_{\mathscr{K}(\mathsf{T})V} \beta(v)\}$$

or equivalently

$$R_{(f,g)} = \{(u,v) \mid \alpha(u) \leq_{\mathcal{K}(\mathsf{T})U} \mathcal{K}(\mathsf{T})g \cdot \beta(v)\}$$

Linking Pre-Galois Connection with Refinement

Given a pre-Galois connection $(f: U \rightarrow V, g: V \rightarrow U)$, we can extract the relation $R_{(f,g)} \subseteq U \times V$ as follows:

$$R_{(f,g)} = \{(u,v) \mid \mathscr{K}(\mathsf{T})f \cdot \alpha(u) \leq_{\mathscr{K}(\mathsf{T})V} \beta(v)\}$$

or equivalently

$$R_{(f,g)} = \{(u,v) \mid \alpha(u) \leq_{\mathscr{K}(\mathsf{T})U} \mathscr{K}(\mathsf{T})g \cdot \beta(v)\}$$

Theorem

The relation $R_{(f,q)}$ is a simulation.

Linking Pre-Galois Connection with Refinement

Given a pre-Galois connection $(f: U \rightarrow V, g: V \rightarrow U)$, we can extract the relation $R_{(f,g)} \subseteq U \times V$ as follows:

$$R_{(f,g)} = \{(u,v) \mid \mathscr{K}(\mathsf{T})f \cdot \alpha(u) \leq_{\mathscr{K}(\mathsf{T})V} \beta(v)\}$$

or equivalently

$$R_{(f,g)} = \{(u,v) \mid \alpha(u) \leq_{\mathcal{K}(\mathsf{T})U} \mathcal{K}(\mathsf{T})g \cdot \beta(v)\}$$

Theorem

The relation $R_{(f,q)}$ is a simulation.

Corollary

If the preorder \leq be equality =, then $R_{(f,q)}$ is a bisimulation.

Conclusions

- The coalgebraic model for state based components is rebuilt in the Kleisli category.
- The refinement theory for generic state-based components is re-examined for coalgebras in the Kleisli category.
- The notion of pre-Galois connection is defined and some properties are proved.

Future work

- Go deeper into the concept itself
 - Existence of the adjoints in a pre-Galois connection
 - Completeness of pre-Galois connection for refinement
- Application of pre-Galois connection in refinement examples

Thank you!