Fonctions vectorielles

Cette section a deux objectifs:

- étendre rapidement le programme d'analyse réelle de première année au cadre des fonctions vectorielles;
- fournir des outils pour l'étude des équations différentielles linéaires et du calcul différentiel.

Les fonctions sont définies sur un intervalle I de $\mathbb R$, à valeurs dans un espace normé de dimension finie E.

CONTENUS

CAPACITÉS & COMMENTAIRES

a) Dérivabilité en un point

Dérivabilité en un point.

Définition par le taux d'accroissement, caractérisation par le développement limité à l'ordre 1. Interprétation cinématique. Traduction en termes de coordonnées dans une base.

Dérivabilité à droite et à gauche.

b) Opérations sur les fonctions dérivables

Combinaison linéaire de fonctions dérivables. Dérivabilité et dérivée de L(f), où \dot{L} est linéaire. Dérivabilité et dérivée de B(f,g), où B est bilinéaire, de $M(f_1,\ldots,f_p)$, où M est multilinéaire.

Cas du produit scalaire, du déterminant.

CONTENUS

Dérivabilité et dérivée de $f \circ \varphi$ où φ est une fonction réelle de variable réelle et f une fonction vectorielle. Applications de classe \mathscr{C}^k . Opérations sur les applications de classe \mathscr{C}^k .

CAPACITÉS & COMMENTAIRES

c) Intégration sur un segment

Intégrale d'une fonction vectorielle continue par morceaux sur un segment de \mathbb{R} .

Linéarité de l'intégrale. Relation de Chasles.

Pour L linéaire, intégrale de L(f).

Inégalité triangulaire. $\left\| \int_a^b f \right\| \le \int_a^b \|f\|$.

Sommes de Riemann associées à une subdivision régulière.

Notations $\int_{[a,b]} f$, $\int_a^b f$, $\int_a^b f(t) dt$.

d) Intégrale fonction de sa borne supérieure

Dérivation de $x \mapsto \int_{a}^{x} f(t) dt$ pour f continue.

Inégalité des accroissements finis pour une fonction de classe \mathscr{C}^1 .

e) Formules de Taylor

Formule de Taylor avec reste intégral.

Inégalité de Taylor-Lagrange à l'ordre n pour une fonction de classe \mathcal{C}^n .

Formule de Taylor-Young à l'ordre n pour une fonction de classe \mathcal{C}^n .