МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

	КАФЕДРА №51	
ОТЧЕТ ЗАЩИЩЕН С ОЦЕН	Г ОЙ	
отчет защищей с оцей	KOII	
ПРЕПОДАВАТЕЛЬ		
Доцент, КТН		А.В.Окатов
должность, уч. степень, звание	подпись, дата	инициалы, фамилия
ОТЧЕ	Т О ЛАБОРАТОРНОЙ РАБОТ	ГЕ №7
ИСС	ГЛЕДОВАНИЕ ДЕШИФРАТО	POB
	по курсу: СХЕМОТЕХНИКА	
СТУДЕНТ ГР. № 5912	2	И.К. Лобач
номер группп	о подпись, ы дата	инициалы, фамилия

Цель работы: синтез и анализ схем дешифрации двоичных кодов.

1. Привести таблицу истинности дешифратора на 4 входа, полученные логические выражения. Построить схему дешифратора на 4 входа с прямыми выходами. Построить временные диаграммы работы дешифратора и проверить по ним правильность работы схемы дешифратора и описать логику его работы.

Дешифратор – комбинационная логическая схема, имеющая N входов и 2^N выходов (для полного дешифратора), функционально осуществляющая преобразование двоичного кода в унитарный код. Логику работы дешифратора можно описать так: величина числа определяется положением только одного логического сигнала на множестве выходов.

Таблица истинности имеет следующий вид:

Таблица 1 - Таблица истинности дешифратора на 4 входа

No	x_3	x_2	<i>x</i> ₁	x_0	<i>y</i> ₁₅	<i>y</i> ₁₄	<i>y</i> ₁₃	<i>y</i> ₁₂	<i>y</i> ₁₁	<i>y</i> ₁₀	y_9	y_8	<i>y</i> ₇	y_6	y_5	y_4	y_3	y_2	y_1	y_0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
3	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
4	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
5	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
6	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
7	0	1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
8	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
9	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
10	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
11	1	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
12	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
13	1	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
14	1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Тогда логические выражения имею вид:

$$y_{0} = \overline{x}_{3}\overline{x}_{2}\overline{x}_{1}\overline{x}_{0}$$

$$y_{1} = \overline{x}_{3}\overline{x}_{2}\overline{x}_{1}x_{0}$$

$$y_{2} = \overline{x}_{3}\overline{x}_{2}x_{1}\overline{x}_{0}$$

$$y_{3} = \overline{x}_{3}\overline{x}_{2}x_{1}x_{0}$$

$$y_{4} = \overline{x}_{3}x_{2}\overline{x}_{1}\overline{x}_{0}$$

$$y_{5} = \overline{x}_{3}x_{2}\overline{x}_{1}x_{0}$$

$$y_{6} = \overline{x}_{3}x_{2}x_{1}\overline{x}_{0}$$

$$y_{7} = \overline{x}_{3}x_{2}x_{1}\overline{x}_{0}$$

$$y_{9} = x_{3}\overline{x}_{2}\overline{x}_{1}\overline{x}_{0}$$

$$y_{10} = x_{3}\overline{x}_{2}x_{1}\overline{x}_{0}$$

$$y_{11} = x_{3}\overline{x}_{2}x_{1}\overline{x}_{0}$$

$$y_{12} = x_{3}x_{2}\overline{x}_{1}\overline{x}_{0}$$

$$y_{13} = x_{3}x_{2}\overline{x}_{1}\overline{x}_{0}$$

$$y_{14} = x_{3}x_{2}x_{1}\overline{x}_{0}$$

$$y_{15} = x_{3}x_{2}x_{1}x_{0}$$

Схема дешифратора на 4 входа с прямыми выходами:

Схема 1 - Схема полного дешифратора на 4 входа с прямыми выходами

График 1 - Временная диаграмма дешифратора на 4 входа

По временной диаграмме можно сделать вывод о правильности работы схемы, т.к. значения каждого выхода совпадают со значениями в таблице истинности.

2. С помощью построенного дешифратора на 4 входа реализовать свой вариант произвольной булевой функции. По временной диаграмме проверить правильность.

Пусть таблица истинности для G выглядит следующим образом:

Таблица 2 - Таблица истинности произвольной функции

2	ν.	~	~	G
x_3	x_2	x_1	x_0	u
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1

1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Тогда логическое выражение выглядит следующим образом:

$$G = \overline{x}_3 x_2 \overline{x}_1 x_0 + x_3 \overline{x}_2 x_1 \overline{x}_0 + x_3 \overline{x}_2 x_1 x_0 + x_3 x_2 \overline{x}_1 \overline{x}_0 + x_3 x_2 x_1 x_0$$

Или

$$G = y_5 + y_{10} + y_{11} + y_{12} + y_{15}$$

Схема будет выглядеть следующим образом:

Схема 2 - Схема произвольной функции на основе дешифратора

График 2 - Временная диаграмма произвольной функции

По временной диаграмме можно сделать вывод о правильности работы схемы, т.к. значения функции на диаграмме и в таблице истинности совпадают.

3. Синтезировать дешифратор на 10 выходов (для выделения 10-и наборов входных двоичных переменных), промоделировать работу схемы.

Логические выражения имею вид:

$$y_0 = \overline{x}_3 \overline{x}_2 \overline{x}_1 \overline{x}_0$$

$$y_1 = \overline{x}_3 \overline{x}_2 \overline{x}_1 x_0$$

$$y_2 = \overline{x}_3 \overline{x}_2 x_1 \overline{x}_0$$

$$y_3 = \overline{x}_3 \overline{x}_2 x_1 x_0$$

$$y_4 = \overline{x}_3 x_2 \overline{x}_1 \overline{x}_0$$

$$y_5 = \overline{x}_3 x_2 \overline{x}_1 x_0$$

$$y_6 = \overline{x}_3 x_2 x_1 \overline{x}_0$$

$$y_7 = \overline{x}_3 x_2 x_1 \overline{x}_0$$

$$y_8 = x_3 \overline{x}_2 \overline{x}_1 \overline{x}_0$$

$$y_9 = x_3 \overline{x}_2 \overline{x}_1 x_0$$

Попробуем минимизировать с помощью карт Карно:

x_0x_1	00	01	11	10
$\chi_3 \chi_4$				
00	y_0	y_2	y_3	y_1
01	$\overline{\mathcal{Y}_8}$	-		<i>y</i> ₉
11			-	<u> </u>
10	y_4	y_6	y_7	y ₅

После склейки получаем:

$$y_0 = \overline{x}_3 \overline{x}_2 \overline{x}_1 \overline{x}_0$$

$$y_1 = \overline{x}_3 \overline{x}_2 \overline{x}_1 x_0$$

$$y_2 = \overline{x}_2 x_1 \overline{x}_0$$

$$y_3 = \overline{x}_2 x_1 x_0$$

$$y_4 = x_2 \overline{x}_1 \overline{x}_0$$

$$y_5 = x_2 \overline{x}_1 x_0$$

$$y_6 = x_2 x_1 \overline{x}_0$$

$$y_7 = x_2 x_1 x_0$$

$$y_8 = x_3 \overline{x}_0$$

$$y_9 = x_3 x_0$$

Схема 3 - Схема неполного дешифратора на 10 выходов

График 3 - Временная диаграмма неполного дешифратора на 10 выходов

По временной диаграмме можно сделать вывод о правильности работы схемы, т.к. значения каждого выхода совпадают со значениями в таблице истинности.

Вывод: в ходе выполнения лабораторной работы привела таблицу истинности дешифратора на 4 входа и получила логические выражения для него.

Построила схему дешифратора на 4 входа с прямыми выходами, временные диаграммы работы дешифратора и сделала вывод о правильности работы схемы.

С помощью построенного дешифратора на 4 входа реализовала свой вариант произвольной булевой функции. По временной диаграмме проверила правильность и сделала вывод о корректной работе схемы.

Для ранее построенной схемы полного 4-разрядного дешифратора синтезировала дешифратор на 10 выходов (для выделения 10-и наборов входных двоичных переменных), промоделировать работу схемы и убедилась в правильности работы, сравнив таблицу истинности и временную диаграмму.