59. The sets of planes with the next five smaller interplanar spacings (after a_0) are shown in the diagram that follows.

- (a) In terms of a_0 , the second largest interplanar spacing is $a_0/\sqrt{2} = 0.7071a_0$.
- (b) The third largest interplanar spacing is $a_0/\sqrt{5} = 0.4472a_0$.
- (c) The fourth largest interplanar spacing is $a_0/\sqrt{10} = 0.3162a_0$.
- (d) The fifth largest interplanar spacing is $a_0/\sqrt{13} = 0.2774a_0$.
- (e) The sixth largest interplanar spacing is $a_0/\sqrt{17} = 0.2425a_0$.
- (f) Since a crystal plane passes through lattice points, its slope can be written as the ratio of two integers. Consider a set of planes with slope m/n, as shown in the diagram that follows. The first and last planes shown pass through adjacent lattice points along a horizontal line and there are m-1 planes between. If h is the separation of the first and last planes, then the interplanar spacing is d=h/m. If the planes make the angle θ with the horizontal, then the normal to the planes (shown dashed) makes the angle $\phi = 90^{\circ} \theta$. The distance h is given by $h = a_0 \cos \phi$ and the interplanar spacing is $d = h/m = (a_0/m) \cos \phi$. Since $\tan \theta = m/n$, $\tan \phi = n/m$ and

$$\cos \phi = 1/\sqrt{1 + \tan^2 \phi} = m/\sqrt{n^2 + m^2}$$
.

Thus,

$$d = \frac{h}{m} = \frac{a_0 \cos \phi}{m} = \frac{a_0}{\sqrt{n^2 + m^2}}.$$

Kommentarer till föregående figurer.

I likhet med den hexagonala strukturen vi stöter på under elektrondiffraktionslabben, där två olika avstånd d_{10} och d_{11} diskuterades, så kan en för olika periodiska mönster (här tvådimensionella) skapa olika avstånd för vilka ett mönster upprepar sig.

I den aktuella uppgiften utgår vi från punkter i ett kvadratiskt 'grundmönster' med det horisontella/vertikala avståndet a_0 mellan två punkter.

Vi ser då att ett nytt mönster av linjer (som är relevanta i interferensexperiment) tex kan bildas genom att studera 'diagonalen' på grundkvadraterna. Då Pytagoras sats säger att diagonalen i varje kvadrat har längden $\sqrt{2}a_0$ kan en se i första figuren att avståndet mellan två närliggande linjer är en halv diagonal dvs $a_0/\sqrt{2}$, detta är således svaret på uppgift a).

För nästa figur har vi två a_0 i vertikalled och en a_0 i horisontalled för att bilda den triangel som beskriver lutningen. En hypotenusa i en sådan triangel $\sqrt{5}a_0$ motsvarar 5 st linjeavstånd, varför avståndet mellan två närliggande linjer är $\frac{1}{5}\sqrt{5}a_0 = a_0/\sqrt{5}$, detta är således svaret på uppgift b).

I uppgift f) ombeds vi verifiera en allmän formel för dessa avstånd

$$d = \frac{a_0}{\sqrt{h^2 + k^2}},\tag{1}$$

där h och k är relativt prima.

Tex får vi för h = k = 1 resultatet i a) och för h = 1, k = 2 resultatet i b).

För att visa formeln allmänt används trigonometri på den sista figuren där vinklarna θ och ϕ är definierade.