General-over-specific markedness bias as a balancing force in **GLA-style learning**

Kaili Vesik | LSA Annual Meeting | 20250112

kaili.vesik@ubc.ca

The plan!

- 1. Overview
- 2. Typology of Balto-Finnic vowel patterns
- 3. OT analysis of Balto-Finnic vowel patterns
- 4. Learning, related challenges, and a proposed solution
- 5. Conclusion

Overview

Grammar-learner relationships

Grammar vs learner, scaled up

Grammar: Constraints needed to account for the patterns of one language

Learner: Settings (parameters, biases) needed to learn a target grammar

... in a vacuum

... situated in a typology

Typology

Balto-Finnic vowel patterns

Inventory gaps

Positional restrictions (PR)

Progressive back-front vowel harmony (VH)

Key references: Kiparsky & Pajusalu (2003), Bakró-Nagy et al (2022), Vesik (2023).

Balto-Finnic vowel typology

	Language Inventory	Inventory	Restrictions outside of σ1	Vowel harmony		
		inventory		Back	Front	Neutral
PR	N Estonian	i, e, æ, y, ø, γ, α, u, o	* æ, y, ø, ш, r	-	-	-
PK	Livonian	i, e, æ, y, ø, ш, x, a, u, o	* æ, y, ø, ш, ҡ , o	-	-	-
\/\	Finnish; Karelian; Ingrian	i, e, æ, y, ø, a, u, o	-	a, u, o	æ, y, ø	i, e
VH	Votic; Kihnu Est	i, e, æ, y, ø, γ, a, u, o	-	r , a, u, o	e, æ, y, ø	i, (e)
PR	N Seto (S Est)	i, e, æ, y, ø, ш, ४, a, u, o	* w	ա, ૪ , a, u, o	e, æ, y, ø	i
+	S Seto (S Est)	i, e, æ, y, ø, ш, ४, a, u, o	* ø, w	w, x, a, u, o	e, æ, y, ø	i, (e), o
VH	Veps	i, e, æ, y, ø, a, u, o	(* æ, y, ø)	a, u, o	æ, y, ø	i, e

Balto-Finnic vowel typology

ח	
М	ĸ
•	

Language	Inventory	Restrictions	Vowel harmony		
Language	inventory	outside of σ1	Back	Front	Neutral
N Estonian <	i, e, æ, y, ø, γ, α, u, o	* æ, y, ø, ш, ⋎	-	-	-
Livonian	i, e, æ, y, ø, ш, x , a, u, o	* æ, y, ø, ш, ۲ , o	-	-	-
Finnish; Karelian; Ingrian	i, e, æ, y, ø, a, u, o	-	a, u, o	æ, y, ø	i, e
Votic; Kihnu Est	i, e, æ, y, ø, γ, a, u, o	-	Υ, a, u, o	e, æ, y, ø	i, (e)
N Seto (S Est)	i, e, æ, y, ø, ш, x, a, u, o	* w	ш, ૪ , a, u, o	e, æ, y, ø	i
S Seto (S Est)	i, e, æ, y, ø, ш, x, a, u, o	* ø, w	ш, γ, α, u, o	e, æ, y, ø	i, (e), o
Veps	i, e, æ, y, ø, a, u, o	(* æ, y, ø)	a, u, o	æ, y, ø	i, e

OT Analysis

Balto-Finnic vowel patterns

Stringency + No-disagreement

Constraints - overview

- Context-free markedness constraints for inventory gaps and positional restrictions
- Harmony constraints
- Faithfulness constraints
 - $\circ \quad \mathsf{ID}\text{-}\sigma_1(\mathsf{Back}) \\ >> \\$
 - ID(Back)

Stringency relations

Back markedness scale:

w > γ > o > a, u

Sets & scale-referring constraints:

- $*B_1 = *\{u\}$
- $*B_2 = *\{u, \Upsilon\}$
- $*B_3 = *\{w, \gamma, o\}$
- $*B_5 = *\{u, \gamma, o, a, u\}$

Front markedness scale:

• $\phi > \overline{\alpha}, y > e > i$

Sets & scale-referring constraints:

- $*F_1 = *\{\emptyset\}$
- ${}^*F_3 = {}^*\{\emptyset, @, y\}$
- ${}^*F_4 = {}^*\{\emptyset, \&, y, e\}$
- ${}^*F_5 = {}^*{}\{\emptyset, @, y, e, i\}$

No-disagreement

Use local and non-local bans on specific co-occurrences to drive VH. (Pulleyblank, 2002)

• E.g. *<u>B</u>F ; *<u>B</u>...F

No-disagreement

Use local and non-local bans on specific co-occurrences to drive VH. (Pulleyblank, 2002)

• E.g. *<u>B</u>F ; *<u>B</u>...F

Stringency relations + no-disagreement!

E.g.

	$*F_3\underline{B}_5$	$^{"}$ * $\underline{\mathrm{B}}_{5}$ F_{4}
а. æуш	*	l
b. шоæе		**

$$B_5 = \{w, \Upsilon, o, a, u\}$$

$$F_3 = \{\emptyset, æ, y\}$$

$$F_4 = \{\emptyset, æ, y, e\}$$

No-disagreement

Use local and non-local bans on specific co-occurrences to drive VH. (Pulleyblank, 2002)

• E.g. *<u>B</u>F ; *<u>B</u>...F

Stringency relations + no-disagreement!

E.g.

	$*F_3\underline{B}_5$	$^{*}\underline{\mathrm{B}}_{5}\mathrm{F}_{4}$
a. æyuı	*	
b. шоæe		**

$$B_5 = \{w, \gamma, o, a, u\}$$

$$F_3 = \{\emptyset, \&, y\}$$

$$F_4 = \{\emptyset, \&, y, e\}$$

 \rightarrow Total of 64 harmony constraints, for a total of 64 + 8 + 2 = 74 constraints overall

North Estonian rankings - inventory gaps

- No /w/ in inventory
- $*B_1 >> ID-\sigma_1(Bk) >> ID(Bk)$

Surfaces in e.g. silm [silm] "eye"

$$B_{1} = \{\mathbf{w}\}$$

$$B_{2} = \{\mathbf{w}, \mathbf{r}\}$$

$$B_{3} = \{\mathbf{w}, \mathbf{r}, \mathbf{o}\}$$

$$B_{5} = \{\mathbf{w}, \mathbf{r}, \mathbf{o}, \mathbf{a}, \mathbf{u}\}$$

$$F_{1} = \{\emptyset\}$$

$$F_{3} = \{\emptyset, \mathbf{x}, \mathbf{y}\}$$

$$F_{4} = \{\emptyset, \mathbf{x}, \mathbf{y}, \mathbf{e}\}$$

$$F_{5} = \{\emptyset, \mathbf{x}, \mathbf{y}, \mathbf{e}, \mathbf{i}\}$$

North Estonian rankings - positional restrictions

- No /æ, y, ø, ω, γ/ in non-initial syllables
- $ID-\sigma_1(Bk) >> *F_3; *B_2 >> ID(Bk)$

/æy/	${ m ID} extstyle{-}\sigma_1({ m Bk})$	$*$ F $_3$	ID(Bk)
a. æy		**!	
b. 👺 æu		*	*
c. au	*!		**

$$B_{1} = \{w\}$$

$$B_{2} = \{w, \Upsilon\}$$

$$B_{3} = \{w, \Upsilon, 0\}$$

$$B_{5} = \{w, \Upsilon, 0, \alpha, u\}$$

$$F_{1} = \{\emptyset\}$$

$$F_{3} = \{\emptyset, \varnothing, y\}$$

$$F_{4} = \{\emptyset, \varnothing, y, e\}$$

$$F_{5} = \{\emptyset, \varnothing, y, e, i\}$$

North Estonian rankings - overall

- No /w/ in inventory
- No /æ, y, ø, ω, γ/ in non-initial syllables

North Estonian rankings - overall

Learning

Simulations

Obstacles

A novel proposal

Learning is hard

Biases widely + Biases for this typology

Even with all the usual suspects for biases, a GLA¹-type learner can't learn this simple North Estonian grammar from positive evidence.

- How does it fail?
- What can we do?

¹ OT-based Gradual Learning Algorithm (Boersma & Hayes, 2001)

Learning - basic setup

Commonly-used settings:

- Low initial faithfulness (Smolensky, 1996)
 M constraints start at 100 / F at 0
- Specific over general faithfulness (Hayes, 2004)
 ID-σ₁(Back) ≥ ID(Back) + 20

Learning - basic setup

Learning data:

- Simulated North Estonian
- Positive evidence only
 (i.e. identity-mapped inputs)

"õlu" [**ɤ**lu]

Learning - basic setup

Bias needed to address other learning challenges in this typology:

- Update rule with tempered promotion rate
- ullet $promotion\ rate = rac{1}{1+W} imes demotion\ rate \ ext{ (Magri \& Kager, 2015)}$
- W = # of winner-preferring constraints

Learner A

As proposed:

- Constraint set
- Commonly-used settings/biases
- Tempered promotion rate

Learner A - Results (excerpts)

```
Ideal results: {}^*B_1 >> 
{}^!D^-\sigma_1(Bk) >> 
{}^*F_3; {}^*B_2 >> 
{}^!D(Bk); {}^*F_{4,5}; {}^*B_{3,5}; {}^*B_{i}F_{4,5}; {}^*F_{j}B_{3,5}; {}^*F_{j}...B_{3,5}
```

Actual results:

constraint	final ranking value
*B1	100.000
*F5 <u>B</u> 2	100.000
*F5 <u>B</u> 2	100.000
* <u>B</u> 5F3	100.000
* <u>B</u> 5F3	100.000
ld-σ1(Bk)	83.021
*F1	65.286
*B2	63.267
Id(Bk)	63.021
*F3	23.457
*B3	3.859
*F4	-40.324
*F5	-40.324
*B5	-40.656
* <u>B</u> 5F5	-47.456
* <u>B</u> 5F5	-49.727
*F5 <u>B</u> 5	-84.667
*F5 <u>B</u> 5	-102.667

Learner A - Results (excerpts)

Ideal results:

```
*B<sub>1</sub> >>>  
|D-\sigma_1(Bk)  
>>>  
*F<sub>3</sub>;*B<sub>2</sub>  
>>>  
|D(Bk);*F<sub>4,5</sub>;*B<sub>3,5</sub>;*B<sub>i</sub>F<sub>4,5</sub>;*B<sub>i</sub>...F<sub>4,5</sub>;*F<sub>j</sub>B<sub>3,5</sub>;*F<sub>j</sub>...B<sub>3,5</sub>
```

Actual results:

- *F₃ below Id(Bk)
- Coincidental VH
- Success rate on test evaluations: 0.7865

constraint	final ranking value		
*B1	100.000		
F5 <u>B</u> 2	100.000		
*F5 <u>B</u> 2	100.000		
* <u>B</u> 5F3	100.000		
*B5F3	100.000		
ld-σ1(Bk)	83.021		
*F1	65.286		
*B2	63.267		
ld(Bk)	63.021		
*F3	23.457		
*B3	3.859		
*F4	-40.324		
*F5	-40.324		
*B5	-40.656		
* <u>B</u> 5F5	-47.456		
* <u>B</u> 5F5	-49.727		
*F5 <u>B</u> 5	-84.667		
*F5 <u>B</u> 5	-102.667		

Learner A - Results

Under the grammar acquired by Learner A...

/ua/	$*$ $\overline{\mathbf{B}}_{5}$ \mathbf{F}_{3}	${ m ID} extstyle{-}\sigma_1({ m Bk})$	ID(Bk)	${}^*\mathbf{F}_3$
a. 👺 ua				
b. uæ	*!		*	*

A grammatical UR surfaces faithfully.

/yæ/	* <u>B</u> 5F3	${ m ID} extstyle{-}\sigma_1({ m Bk})$	ID(Bk)	* F ₃
a. 😂 👺 yæ				**
b. ya			*!	*

An ungrammatical UR also surfaces faithfully.

A novel proposal

Idea: Give general M constraints a chance to get credit for the phonotactics of the target grammar.

Ensures maximal restrictiveness.

Inspiration: Albright & Hayes (2006) determine initial ranking based on generality.

- Prevents super-specific "junk" constraints (induced by the MGL) from taking too much credit.
- Allows more general constraints to be active where possible.

Implementation: Initial articulated hierarchy of markedness constraint values.

- Function of each constraint's rate of application in a sample set of inputs.
- Can be freely reversed by learning data.

During pre-learning "observation" stage:

- Learning rate = 0
- Learner is fed randomly-sampled inputs
- Learner keeps a running total of the number of times each markedness constraint is violated by the heard inputs

After observation stage and before learning:

Calculate average generality for each M

$$g_{M} = \frac{\text{# violations of M}}{\text{total # inputs}}$$

Calculate initial ranking value for each M

Initial
$$\theta_{M} = 100(b + mg_{M})$$

where
$$g_{M}$$
 = generality for constraint M

Learner B

Same as Learner A but with this change:

Markedness constraints distributed by generality

$$\theta_{\rm M} = 100(b + mg_{\rm M})$$
 $b = 1.0, m = 1.0$

Learner B - Initial hierarchy

Same as Learner A but with this change:

• Markedness constraints distributed by generality

$$\theta_{\rm M} = 100(b + mg_{\rm M})$$
 $b = 1.0, m = 1.0$

constraint	initial ranking value
*B5	254.280
*F5	228.860
*F4	182.420
*F5B5	170.700
*B3	159.520
*F5_B5	153.640
*_B5F5	146.660
*_B5F5	137.780
*F3	133.900
*F1	111.800
*B2	111.320
*B1	100.000
*F5_B2	100.000
*F5B2	100.000
*_B5F3	100.000
*_B5F3	100.000

Learner B - Results (excerpts)

```
Ideal results: {}^*B_1 >> 
{}^!D^-\sigma_1(Bk) >> 
{}^*F_3; {}^*B_2 >> 
{}^!D(Bk); {}^*F_{4,5}; {}^*B_{3,5}; {}^*\underline{B}_{i}...F_{4,5}; {}^*F_{i}\underline{B}_{3,5}; {}^*F_{i}...\underline{B}_{3,5}
```

Actual results:

constraint	final ranking value
*B1	110.667
*F5 <u>B</u> 2	100.000
*F5 <u>B</u> 2	100.000
* <u>B</u> 5F3	100.000
* <u>B</u> 5F3	100.000
ld-σ1(Bk)	96.941
*B2	88.243
*F1	86.771
*F3	80.563
Id(Bk)	76.941
*F5	68.419
*F4	49.199
*B3	48.106
*B5	45.902
* <u>B</u> 5F5	-32.551
* <u>B</u> 5F5	-39.249
*F5 <u>B</u> 5	-114.758
*F5 <u>B</u> 5	-127.038

Learner B - Results (excerpts)

```
Ideal results: {}^*B_1 >> 
{}^!D^-\sigma_1(Bk) >> 
{}^*F_3; {}^*B_2 >> 
{}^!D(Bk); {}^*F_{4,5}; {}^*B_{3,5}; {}^*\underline{B}_{i}...F_{4,5}; {}^*F_{i}\underline{B}_{3,5}; {}^*F_{i}...\underline{B}_{3,5};
```

Actual results:

- Align with ideal!
- Success rate on test evaluations: 0.9837

constraint	final ranking value	
*B1	110.667	
*F5 <u>B</u> 2	100.000	
*F5 <u>B</u> 2	100.000	
* <u>B</u> 5F3	100.000	
* <u>B</u> 5F3	100.000	
ld-σ1(Bk)	96.941	
*B2	88.243	
*F1	86.771	
*F3	80.563	
Id(Bk)	76.941	
*F5	68.419	
*F4	49.199	
*B3	48.106	
*B5	45.902	
* <u>B</u> 5F5	-32.551	
* <u>B</u> 5F5	-39.249	
*F5 <u>B</u> 5	-114.758	
*F5 <u>B</u> 5	-127.038	

Learner B - Results

Under the grammar acquired by Learner B...

/ua/	$*$ B_5F_3	${ m ID} extstyle{-}\sigma_1({ m Bk})$	${}^*\mathbf{F}_3$	ID(Bk)
a. 👺 ua				
b. uæ	*!		*	*

A grammatical UR surfaces faith	fully.
---------------------------------	--------

/yæ/	$*\underline{\mathbf{B}}_{5}$ \mathbf{F}_{3}	${ m ID} extstyle{-}\sigma_1({ m Bk})$	$*{f F}_3$	ID(Bk)
a. yæ			**!	
b. 👺 ya			*	*

 $^*F_3 >> ID-\sigma_1(Bk)$ ensures that an ungrammatical UR is repaired.

Conclusion

Grammar-learner relationships

Summary

Takeaways

Summary

Main ideas from today:

- Constraints with competing violation profiles cause challenges with respect to the Credit Problem (Dresher, 1999).
- General-over-specific markedness bias as counterpart to specific-over-general faithfulness helps to offset potential adverse effects
- Specifically, it allows a GLA-type learner to avoid falling into the subset problem resulting from learning a less-restrictive grammar (Jesney & Tessier, 2011)

Summary

This talk zooms in on just a mere slice of my dissertation.

Summary

This talk zooms in on just a mere slice of my dissertation.

dessert-ation?

Summary

This talk zooms in on just a mere slice of my dissertation. The whole cake involves:

- The entire Balto-Finnic vowel pattern typology
- The parameters and biases that are needed to make sure that any language's patterns can be learned in that broader context
- The general-markedness bias being crucial to the most successful learners

Grammar vs learner, scaled up

Grammar: Constraints needed to account for the patterns of one language

Learner: Settings (parameters, biases) needed to learn a target grammar

... in a vacuum

... situated in a typology

https://www.pexels.com/photo/tennis-ball-on-tennis-court-8224638

https://www.pickpik.com/tennis-exercise-playground-ball-sport-hobby-134795

Specific-faithfulness bias is often used to maintain restrictiveness

General-markedness bias can help too

Specific-faithfulness bias is often used to maintain restrictiveness

General-markedness bias can help too

Related problems could arise in other contexts in which constraints are similar enough to compete for credit/blame

- By definition
- By accident / sheer numbers (what does reality look like)?

Thank you!

- To all of you
- UBC Phonology Discussion Group and Child Phonology Lab members
- AMP 2022 & 2023 audiences

References I

- Albright, A., & Hayes, B. (2006). Modelling productivity with the gradual learning algorithm: The problem of accidentally exceptionless generalizations. Fanselow, G., Féry, C., Schlesewsky, M., & Vogel, R. (eds.), *Gradience in Grammar*, Oxford University Press.
- Ariste, P. (1968). A grammar of the Votic language. Indiana University.
- Bakró-Nagy, Marianne, Johanna Laakso & Elena Skribnik (eds.) (2022). The Oxford Guide to the Uralic Languages. Oxford University Press.
- Boersma, P., & Hayes, B. (2001). Empirical tests of the gradual learning algorithm. *Linguistic Inquiry*, 32(1), 45–86.
- Campbell, G. L., King, G., & ProQuest (Firm). (2013). Compendium of the world's languages (Third ed.). Routledge.
- de Lacy, P. (2002). The formal expression of markedness. Doctoral dissertation, University of Massachusetts, Amherst. ROA 542.
- Grünthal, R. (2015). Vepsän kielioppi [Veps Grammar]. Helsinki: Suomalais-Ugrilainen Seura.
- Grünthal, R. (2022). Veps. In Laakso J., Skribnik E. and Bakró-Nagy M. (Eds.), The Oxford guide to the Uralic languages. Oxford University Press.
- Hayes, B. (2004). Phonological acquisition in optimality theory: The early stages. Cambridge University Press.
- Hayes, B., & Wilson, C. (2008). A Maximum Entropy Model of Phonotactics and Phonotactic Learning. Linguistic Inquiry, 39, 379-440.
- Jesney, K., & Tessier, A.M. (2011). Biases in harmonic grammar: the road to restrictive learning. *Natural Language & Linguistic Theory* 29, 251–290.
- Karlsson, F. (2018). Finnish: A comprehensive grammar. Taylor and Francis.
- Kiparsky, P., & Pajusalu, K. (2003). Towards a typology of disharmony. The Linguistic Review, 20, 217-241.
- Laakso, J. (2022). Finnic: General introduction. In Laakso J., Skribnik E. and Bakró-Nagy M. (Eds.), *The Oxford guide to the Uralic languages*. Oxford University Press.
- Léonard, J. L. (1993). Analysis of variation within a typological parameter: Kalevi Wiik's approach to vowel harmony in southern and eastern Balto-Finnic. *Proceedings of the VIIIth International Conference on Dialectology*.
- Lindström, L. (2013). Eesti murdekorpus [Estonian dialect corpus].
- Magri, G., & Kager, R. (2015). How to Choose Successful Losers in Error-Driven Phonotactic Learning. In Proceedings of the 14th Meeting on the Mathematics of Language, 126-138, Chicago, USA. Association for Computational Linguistics.

References II

- Markus, E., & Rozhanskiy, F. (2022). Votic. In Laakso J., Skribnik E. and Bakró-Nagy M. (Eds.), The Oxford guide to the Uralic languages.
 Oxford University Press.
- Metslang, H. (2022). North and Standard Estonian. In Laakso J., Skribnik E. and Bakró-Nagy M. (Eds.), *The Oxford guide to the Uralic languages*. Oxford University Press.
- Nikolaev, D. (2018). The Database of Eurasian Phonological Inventories: a research tool for distributional phonological typology. Linguistics Vanguard, 4(1), 20170050.
- Nikolaev, D. (2019). Liv sound inventory (EA). In Moran, S. & McCloy, D. (Eds.), PHOIBLE 2.0. Jena: Max Planck Institute for the Science of Human History. http://phoible.org/inventories/view/2448
- Pajusalu, K. (2022). Seto South Estonian. In Laakso J., Skribnik E. and Bakró-Nagy M. (Eds.), *The Oxford guide to the Uralic languages*. Oxford University Press.
- Pulleyblank, D. (2002). Harmony Drivers: No Disagreement Allowed. In Chew P (Ed.), Proceedings of the Twenty-eighth Annual Meeting of the Berkeley Linguistics Society, 249-267. BLS, Berkeley, California.
- Sang, J. (2009). Ühest fonotaktilisest kollisioonist (Kihnu näitel) [On a phonotactic collision (on the example of Kihnu subdialect)]. *Keel Ja Kirjandus*, 52(11), 809–817.
- Sarhimaa, A. (2022). Karelian. In Laakso J., Skribnik E. and Bakró-Nagy M. (Eds.), The Oxford guide to the Uralic languages. Oxford University Press.
- Smolensky, P. (1996). On the Comprehension/Production Dilemma in Child Language. Linguistic Inquiry, 27(4), 720-731.
- Suomi, K., Toivanen, J., & Ylitalo, R. (2008). Finnish Sound Structure. Phonetics, phonology, phonotactics and prosody. (Studia Humaniora Ouluensia 9). Oulu: University of Oulu.
- Vesik, K. (2023). Vowel harmony in the Kihnu variety of Estonian: A corpus study. Linguistica Uralica, 59(3), 181-199.
- Vesik, K. (to appear). General-over-specific markedness bias as a balancing force in GLA-style learning. *Proceedings of the 2023 Annual Meeting on Phonology*.
- Vesik, K. (in prep.). Untitled dissertation, University of British Columbia.

Typological examples

```
Inventory gaps
```

E.g. Finnish: $*\{u, \Upsilon\}$

varpunen [α..u..e] (sparrow) *[α..u..γ]

Positional restrictions

E.g. N Estonian: *{æ, y, ø, γ}

küla [y..a] (village) *[y..æ]

Back-front vowel harmony

E.g. North Seto: transparent {i}

lusikka [u..i..a] (spoon) *[u..i..æ]

Typological tangents 1

From Slide 7: Balto-Finnic vowel typology re variably transparent vowels

South Seto

- /e/ as first-syllable vowel does not trigger front harmony
- Non-initial /e/ is found only in front-harmonic words

Kihnu Estonian

- /e/ sometimes triggers front harmony & sometimes doesn't
- Can vary even within a single lexical item
 e.g. mõttes~mõttõs [Υ..e]~[Υ..Υ] (in thought)
 Lindstrom (2013)

	Language(s)	Inventory	Restrictions	Vowel harmony			
			in σ ₂₊	Back	Front	Transp't	Opaque
(d)	Votic; Kihnu Est	i, e, æ, y, ø, γ, a, u, o	-	r , a, u, o	e, æ, y, ø	i, (e)	-
(f)	S Seto (S Est)	i, e, æ, y, ø, ш, x , a, u, o	* ø, w	ш, x , a, u, o	e, æ, y, ø	i, (e)	О

Typological tangents 2

From Slide 7: Balto-Finnic vowel typology re opaque vowels

South Seto

- /o/ as first-syllable vowel triggers back harmony
- Non-initial /o/ interrupts front harmony and begins a back-harmonic domain
 E.g. hämonõ [æ..o..γ] (bleary) *[æ..o..e] Pajusalu (2022: 369)

	Language(s)	Inventory	Restrictions	Vowel harmony			
			in σ ₂₊	Back	Front	Transp't	Opaque
(f)	S Seto (S Est)	i, e, æ, y, ø, ш, ४, a, u, o	* ø, ш	ш, γ , α, u, o	e, æ, y, ø	i, (e)	О

Typological tangents 3

From Slide 7: Balto-Finnic vowel typology re decaying vowel harmony

Veps

- VH no longer productive past first few syllables (precise domain is unclear)
- Vowels in later syllables restricted to /i, e, α, u, o/
- E.g. tütär [y..æ] (girl)
 külmetumaa [y..e..u..α] (we get cold)
 Grünthal (2015: 47)

	Language(s)	Inventory	Restrictions	Vowel harmony			
			in σ ₂₊	Back	Front	Transp't	Opaque
(g)	Veps	i, e, æ, y, ø, a, u, o	(* æ, y, ø)	a, u, o	æ, y, ø	i, e	-

"Missing" stringency sets

From Slide 11: Stringency relations

Go back to slide

Opacity as a function of <u>focus</u>

From Slide 14: No-disagreement

Focus on B ensures that front harmony goes as far as possible (no "sour grapes")

Front harmony all the waaaaaay!
Front harmony until /o/, then back
Sour grapes
(why bother changing the /u/ if we're

going to switch to back anyway?)

	/æuoy/	ld-σ1(Bk)	*B5F4	*B5F4	*F1	*F3B5	*F3B5	ld(Bk)
a)	æyøy				*			**
b)	æyou 👈					*	**	**
c)	æuou					*	***!	*

MaxEnt learner (UCLA-PL)

From Slide 20: Learning is hard

- Could also consider a MaxEnt learner (e.g. UCLA Phonotactic Learner; Hayes & Wilson, 2008)
- No URs and therefore no faith constraints at all; just a probability distribution over possible surface forms
- Induces feature-based co-occurrence constraints, given:
 - Inputs consisting of surface forms only
 - Feature values of each segment
- Can't seem to figure out opacity because it doesn't have a way to induce "focus"

3 learners on 3 sample languages

Final grammars' success rates on test evaluations:

	N Estonian (PR)	Finnish (VH)	N Seto (PR + VH)
Learner Ø	0.2455	0.2683	0.2984
Learner A	0.7865	1.0000	0.9988
Learner B	0.9837	1.0000	0.9999