Assignment Date	
Student Name	AMARA DHANUSH
Student Roll Number	111519104005
Maximum Marks	2 Marks

Problem Statement: Abalone Age Prediction

Description:

Predicting the age of abalone from physical measurements. The age of abalone is determined by cutting the shell through the cone, staining it, and counting the number of rings through a microscope -- a boring and time-consuming task. Other measurements, which are easier to obtain, are used to predict age. Further information, such as weather patterns and location (hence food availability) may be required to solve the problem.

In [1]:

In []:

Out[12]:

Importing Modules

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
```

1. Dataset has been downloaded

#Name of the dataset: abalone.csv

2. Load the dataset into the tool

```
data=pd.read_csv("abalone.csv")
data.head()
```

Length Diameter Height Whole weight Shucked weight Viscera weight 0.455 0.365 0.095 0.5140 0.2245 0.1010 0.150 0.350 0.265 0.090 0.2255 0.0995 0.0485 0.070 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.210 0.440 0.365 0.125 0.5160 0.2155 0.1140 0.155

	SCA	Length	Diameter	Height	Whole weight	Shacked weight	viscera weight	Silen weight	Kings
									-
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

Let's know the shape of the data

Out[13]:

One additional task is that, we have to add the "Age" column using "Rings" data. We just have to add '1.5' to the ring data

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age	
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5	
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5	
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5	
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5	
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5	

3. Perform Below Visualizations.

(i) Univariate Analysis

#

The term univariate analysis refers to the analysis of one variable. You can remember this because the prefix "uni" means "one." There are three common ways to perform univariate analysis on one variable: 1. Summary statistics – Measures the center and spread of values.

Histogram

sns.displot(data["Age"], color='darkorange')

In [16]: Out[16]:

<seaborn.axisgrid.FacetGrid at 0x7fd3f837a430>

sns.histplot(y=data.Age,color='pink')

<AxesSubplot:xlabel='Count', ylabel='Age'>

In [103]:

Out[103]:

sns.histplot(x=data.Age,color='green')

<AxesSubplot:xlabel='Age', ylabel='Count'>

Boxplot

sns.boxplot(x=data.Age,color='pink')

In [106]:

Out[106]:

In [52]:

<AxesSubplot:xlabel='Age'>

Countplot

sns.countplot(x=data.Age)

<AxesSubplot:xlabel='Age', ylabel='count'>

In [51]:

Out[51]:

(ii) Bi-Variate Analysis

#

Image result for bivariate analysis in python It is a methodical statistical technique applied to a pair of variables (features/ attributes) of data to determine the empirical relationship between them. In order words, it is meant to determine any concurrent relations (usually over and above a simple correlation analysis).

Barplot

sns.barplot(x=data.Height,y=data.Age)

Out[50]:

<AxesSubplot:xlabel='Height', ylabel='Age'>

In [50]:

Linearplot

sns.lineplot(x=data.Age,y=data.Height, color='purple')

<AxesSubplot:xlabel='Age', ylabel='Height'>

Scatterplot

sns.scatterplot(x=data.Age,y=data.Height,color='green')
<AxesSubplot:xlabel='Age', ylabel='Height'>

1.0 - 0.8 - HD 0.6 - 0.4 - 0.2 - 0.0 - 5 10 15 20 25 30 Age

In [42]:

Out[42]:

Pointplot

sns.pointplot(x=data.Age, y=data.Height, color="blue")
<AxesSubplot:xlabel='Age', ylabel='Height'>

Regplot

sns.regplot(x=data.Age,y=data.Height,color='orange')
<AxesSubplot:xlabel='Age', ylabel='Height'>

In [45]:

Out[45]:

In [48]:

Out[48]:

(iii) Multi-Variate Analysis

#

Multivariate analysis is based in observation and analysis of more than one statistical outcome variable at a time. In design and analysis, the technique is used to perform trade studies across multiple dimensions while taking into account the effects of all variables on the responses of interest.

#

Pairplot

sns.pairplot(data=data[["Height","Length","Diameter","Age","Whole_weight","Shucked_weight","Viscera_weight","Shell_weight"]])

<seaborn.axisgrid.PairGrid at 0x7fd3d93e1040>

sns.pairplot(data=data[["Height","Length","Diameter","Age","Whole_weight","Shucked_weight","Viscera_weight","Shell_weight"]],kind="kde")

Out[62]:

<seaborn.axisgrid.PairGrid at 0x7fd39840c790>

4. Perform descriptive statistics on the dataset

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
top	М	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
freq	1528	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
mean	NaN	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	11.433684
std	NaN	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	NaN	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	2.500000
25%	NaN	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	9.500000
50%	NaN	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	10.500000
75%	NaN	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	12.500000
max	NaN	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	30.500000

5. Check for Missing values and deal with them

data.isnull().sum()

Sex 0

Length 0

Diameter 0

Height 0

Whole_weight 0

Shucked_weight 0

Viscera_weight 0

Shell_weight 0

Age 0

dtype: int64

6. Find the outliers and replace them outliers

outliers=data.quantile(q=(0.25,0.75)) outliers

In [64]:

Out[64]:

In [65]:

Out[65]:

```
Shucked_weight
              Height
                    Whole_weight
                                    Viscera_weight
                                            Shell_weight
                                                                                        In [66]:
a = data.Age.quantile(0.25)
b = data.Age.quantile(0.75)
c = b - a
lower limit = a - 1.5 * c
data.median(numeric only=True)
                                                                                        Out[66]:
                      0.5450
Length
Diameter
                      0.4250
Height
                      0.1400
Whole weight
                      0.7995
Shucked weight
                      0.3360
Viscera weight
                      0.1710
Shell weight
                      0.2340
                     10.5000
Age
dtype: float64
                                                                                        In [67]:
data['Age'] = np.where(data['Age'] < lower limit, 7, data['Age'])</pre>
sns.boxplot(x=data.Age, showfliers = False)
                                                                                        Out[67]:
<AxesSubplot:xlabel='Age'>
```


7. Check for Categorical columns and perform encoding

data.head()

Out[68]:

In [68]:

```
Length
         Diameter
                      Height
                                Whole_weight Shucked_weight Viscera_weight
                                                                                  Shell weight
 0.455
             0.365
                        0.095
                                       0.5140
                                                        0.2245
                                                                         0.1010
                                                                                         0.150
 0.350
                                       0.2255
                                                                         0.0485
             0.265
                        0.090
                                                        0.0995
                                                                                         0.070
 0.530
             0.420
                       0.135
                                       0.6770
                                                        0.2565
                                                                         0.1415
                                                                                         0.210
                        0.125
                                       0.5160
                                                        0.2155
                                                                                         0.155
             0.365
0.330
                                       0.2050
                                                        0.0895
                                                                                         0.055
             0.255
                       0.080
```

from sklearn.preprocessing import LabelEncoder

```
lab = LabelEncoder()
data.Sex = lab.fit_transform(data.Sex)
```

data.head()

	Sta	z.c.igui	Danietei	g.ii.	"" "" " " " " " " " " " " " " " " " "	Saucacu_weight	· Beer u_weight	onci_, reight	
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	12
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	4
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	6
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	7
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	4

8. Split the data into dependent and independent variables

```
y = data["Sex"]
y.head()
                                                                                      Out[84]:
     2
1
     2
2
     0
Name: Sex, dtype: int64
                                                                                      In [85]:
x=data.drop(columns=["Sex"],axis=1)
x.head()
```

Out[83]:

In [84]:

Out[85]:

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	12
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	4
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	6
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	7
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	4

9. Scale the independent variables

from sklearn.preprocessing import scale
X_Scaled = pd.DataFrame(scale(x), columns=x.columns)
X_Scaled.head()

Diameter Whole weight Shucked weight Viscera weight Length Height Shell weight -0.574558 -0.641898 -0.607685 -0.432149 -1.064424 -0.726212 -0.638217 1.555152 -1.170910 -1.448986 -1.439929 -1.183978 -1.230277 -1.205221 -1.212987 -0.884841 0.050033 0.122130 -0.107991 -0.309469 -0.463500 -0.356690 -0.207139 -0.274842 -0.648238 -0.699476 -0.432149 -0.347099 -0.637819 -0.607600 -0.602294 0.030157 -1.215968 -1.423087 -1.272086 -1.287337 -0.884841 -1.615544 -1.540707 -1.320757

10. Split the data into training and testing

```
from sklearn.model_selection import train_test_split
X_Train, X_Test, Y_Train, Y_Test = train_test_split(X_Scaled, y,
test_size=0.2, random_state=0)

X_Train.shape, X_Test.shape

((3341, 8), (836, 8))

Y_Train.shape, Y_Test.shape

Out(89):
((3341,), (836,))
```

In [86]:

Out[86]:

X_Train.head()									
	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age	
3141	-2.864726	-2.750043	-1.423087	-1.622870	-1.553902	-1.583867	-1.644065	-1.799838	
3521	-2.573250	-2.598876	-2.020857	-1.606554	-1.551650	-1.565619	-1.626104	-1.494839	
883	1.132658	1.230689	0.728888	1.145672	1.041436	0.286552	1.538726	1.555152	
3627	1.590691	1.180300	1.446213	2.164373	2.661269	2.330326	1.377072	0.030157	
2106	0.591345	0.474853	0.370226	0.432887	0.255175	0.272866	0.906479	1.250153	
ХГ	rest.	nead()							
**_				Whole	Shuakad	Viscous	Shall	.	
	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age	
668	0.216591	0.172519	0.370226	0.181016	-0.368878	0.569396	0.690940	0.945154	
1580	-0.199803	-0.079426	-0.466653	-0.433875	-0.443224	-0.343004	-0.325685	-0.579842	
3784	0.799543	0.726798	0.370226	0.870348	0.755318	1.764639	0.565209	0.335156	
463	-2.531611	-2.447709	-2.020857	-1.579022	-1.522362	-1.538247	-1.572219	-1.799838	
2615	1.007740	0.928354	0.848442	1.390405	1.415417	1.778325	0.996287	0.640155	
Y_:	Train.	head (()						
314		1							
352 883 362	3	1 2 2							
210	06	2	wne.	int64					
	rest.			111001					
668		2							
158 378	3 4	1 2							
463 263		1 2		in+6/					

11. Build the Model

Name: Sex, dtype: int64

```
In [94]:
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n estimators=10,criterion='entropy')
                                                                                       In [95]:
model.fit(X Train, Y Train)
                                                                                      Out[95]:
RandomForestClassifier(criterion='entropy', n_estimators=10)
                                                                                       In [96]:
y predict = model.predict(X Test)
                                                                                       In [97]:
y predict train = model.predict(X Train)
12. Train the Model
                                                                                       In [98]:
from sklearn.metrics import
accuracy_score,confusion_matrix,classification_report
                                                                                       In [99]:
print('Training accuracy: ',accuracy score(Y Train,y predict train))
Training accuracy: 0.9787488775815624
13. Test the Model
                                                                                      In [100]:
print('Testing accuracy: ',accuracy score(Y Test,y predict))
Testing accuracy: 0.5526315789473685
14. Measure the performance using Metrics
                                                                                      In [101]:
pd.crosstab(Y Test, y predict)
                                                                                      Out[101]:
col_0 0 1 2
 0 122 29 98
 2 120 53 123
                                                                                      In [102]:
print(classification_report(Y_Test,y_predict))
                precision recall f1-score support

    0.44
    0.49
    0.46
    249

    0.73
    0.75
    0.74
    291

    0.48
    0.42
    0.44
    296
```

1

accuracy			0.55	836
macro avg	0.55	0.55	0.55	836
weighted avg	0.55	0.55	0.55	836