MATEMATIKA ANGOL NYELVEN

EMELT SZINTŰ ÍRÁSBELI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Instructions to examiners

Formal requirements:

- 1. Mark the paper **legibly**, in ink, different in colour from that used by the candidate.
- 2. The first of the rectangles next to each problem shows the maximum attainable score on that problem. The **score** given by the examiner is to be entered **into the rectangle** next to this.
- 3. **If the solution is perfect**, enter maximum score and, with a checkmark, indicate that you have seen each item leading to the solution and consider them correct.
- 4. If the solution is incomplete or incorrect, please **mark the error** and also indicate the individual **partial scores**. It is also acceptable to indicate the points lost by the candidate if it makes grading the paper easier. After correcting the paper, it must be clear about every part of the solution whether that part is correct, incorrect or unnecessary.
- 5. Please, use the following symbols when correcting the paper:
 - correct calculation: *checkmark*
 - principal error: double underline
 - calculation error or other, not principal, error: single underline
 - correct calculation with erroneous initial data: dashed checkmark or crossed checkmark
 - incomplete reasoning, incomplete list, or other missing part: missing part symbol
 - unintelligible part: question mark and/or wave
- 6. Do not assess anything written in pencil, except for diagrams

Assessment of content:

- 1. The answer key may contain more than one solution for some of the problems. If the **solution given by the candidate is different**, allocate the points by identifying parts of the solution equivalent to those given in the answer key.
- 2. Subtotals may be **further divided**, **unless stated otherwise in the answer key**. However, scores awarded must always be whole numbers.
- 3. If there is a **calculation error** or inaccuracy in the solution, take points off only for the part where the error occurs. If the reasoning remains correct and the error is carried forward while the nature of the problem remains unchanged, points for the rest of the solution must be awarded.
- 4. **In case of a principal error**, no points should be awarded at all for that section of the solution, not even for steps that are formally correct. (These logical sections of the solutions are separated by double lines in the answer key.) However, if the erroneous information obtained through principal error is carried forward to the next section or the next part of the problem, and it is used there correctly, the maximum score is due for that part, provided that the error has not changed the nature of the task to be completed.
- 5. Where the answer key shows a **unit** or a **remark** in brackets, the solution should be considered complete without that unit or remark as well.

- 6. If there are more than one different approach to a problem, assess only the one indicated by the candidate. Please, mark clearly which attempt was assessed.
- 7. **Do not give extra points** (i.e. more than the score due for the problem or part of problem).
- 8. The score given for the solution of a problem, or part of a problem, may never be negative.
- 9. **Do not take points off** for steps or calculations that contain errors but are not actually used by the candidate in the solution of the problem.
- 10. The use of calculators in the reasoning behind a particular solution may be accepted without further mathematical explanation in case of the following operations: addition, subtraction, multiplication, division, calculating powers and roots, n!, $\binom{n}{k}$, replacing the tables found in the 4-digit Data Booklet (sin, cos, tan, log, and their inverse functions), approximate values of the numbers π and e, finding the solutions of the standard quadratic equation. No further explanation is needed when the calculator is used to find the mean and the standard deviation, as long as the text of the question does not explicitly require the candidate to show detailed work. In any other cases, results obtained through the use of a calculator are considered as unexplained and points for such results will not be awarded.
- 11. Using **diagrams** to justify a solution (e.g. reading data off diagrams by way of direct measurement) is unacceptable.
- 12. **Probabilities** may also be given in percentage form (unless stated otherwise in the text of the problem).
- 13. If the text of the problem does not instruct the candidate to round their solution in a particular way, any solution **rounded reasonably and correctly** is acceptable even if it is different from the one given in the answer key.
- 14. **Assess only four out of the five problems in part II of this paper**. The candidate was requested to indicate in the appropriate square the number of the problem not to be assessed and counted towards their total score. Should there be a solution to that problem, it does not need to be marked. However, if the candidate did not make a selection and neither is their choice clear from the paper, assume automatically that it is the last problem in the examination paper that is not to be assessed.

I.

1. a)		
As the log function is strictly increasing, $x < 100$.		These points are also due
(From the domain of the log function:) $x > 0$.	1 point	for a correct diagram.
The solution: $0 < x < 100$.	1 point	The solution set is]0; 100[
Total:	3 points	

1. b)		
In standard form: $x^2 + 4x - 5 < 0$.	1 point	
The solutions of the equation $x^2 + 4x - 5 = 0$ are 1 and -5.	1 point	
As the quadratic coefficient is positive,	1 point	This point is also due for a correct diagram or for factoring into (x+5)(x-1) < 0 form.
so $-5 < x < 1$.	1 point	
Total:	4 points	

1. c)		
$0.5^{ x-3 } < 0.5^2$	1 point	
The base 0.5 exponential function is strictly decreasing.	1 point	
x-3 > 2.	1 point	
This happens if either $x - 3 > 2$ or $x - 3 < -2$,	1 point	
so $x > 5$ or $x < 1$.	1 point	
Total:	5 points	

Note: Award a maximum of 3 points if the candidate solves the inequality |x-3| < 2.

2. a)		
(Assuming Noémi receives x percent on her oral presentation) the final percentage of the exam is calculated as $\frac{2 \cdot 73 + 5 \cdot 64 + 3x}{2 + 5 + 3}$.	1 point	This point is also due if the correct reasoning is reflected only by the solu- tion.
According to the text of the question: $\frac{2 \cdot 73 + 5 \cdot 64 + 3x}{2 + 5 + 3} \ge 70.$	1 point	
$x \ge 78$	1 point	
Noémi needs to receive at least 78% on her oral presentation.	1 point	
Total:	4 points	

Note: Award maximum score if the candidate finds the correct answer by solving an equation instead of an inequality.

2. b) Solution 1		
(Assuming there are <i>n</i> first-year students) the num-		
ber of boys is $n - 75$, the number of students not	1 point	
staying at the university hall is $n - 40$.		These points are also due
The average on the one hand is $\frac{75 \cdot 70 + (n-75) \cdot 62}{n}$	1	if the correct reasoning is reflected only by the solu-
and also on the other hand it is $\frac{40 \cdot 71 + (n-40) \cdot 65}{n}$.	1 point	tion.
The equation		
$\frac{75 \cdot 70 + (n - 75) \cdot 62}{2} = \frac{40 \cdot 71 + (n - 40) \cdot 65}{2}$	1 point	
n n	1	
is to be solved.		
n = 120	2 points	These 2 points are due for solving the equation.
There are 120 first-year students taking the exam.	1 point	
Checking against the original text (the average of all	1 point	
120 students is 67% in both cases).		
Total:	7 points	

2. b) Solution 2		
Let f be the number of boys, and k the number of stu-		
dents staying at the university hall.		This point is also due if
In this case the average result is $\frac{75 \cdot 70 + f \cdot 62}{f + 75}$ on	1 point	the correct reasoning is reflected only by the solu-
the one hand, and also $\frac{40 \cdot 71 + k \cdot 65}{k + 40}$ on the other.		tion.
According to the text of the question: $f + 75 = k + 40$,	1 point	
and $\frac{75 \cdot 70 + f \cdot 62}{f + 75} = \frac{40 \cdot 71 + k \cdot 65}{k + 40}$.	1 point	
f = 45 (and k = 80).	2 points	These 2 points are due for solving the equation system.
There is a total of $(75 + 45 =) 120$ students taking the exam.	1 point	
Checking against the original text (the average of all 120 students is 67% in both cases).	1 point	
Total:	7 points	

3. a)		
The median is 83.5 (kg),	1 point	
the mean is 79.75 (kg),	1 point	
the standard deviation is $\sqrt{\frac{2.25^2 + 5.75^2 + 10.25^2 + 8.25^2 + 2 \cdot 5.25^2 + 16.75^2 + 8.75^2}{8}} =$	1 point	This point is also due if the candidate uses a calculator and gives the correct answer without further explanation.
$(=\sqrt{77.9375}) \approx 8.83$ (kg).	1 point	
Total:	4 points	

3. b)		
As 90 + 88 = 178,	1 point	
85 + 82 + 63 = 230 and $85 + 71 + 74 = 230$,	1 point	
it can really be done in 3 rounds.	1 point	
Total:	3 points	

3. c)		
(The total mass of any three people is less than 300 kg.) One possibility is 2 people per round (in 4 rounds), or 2 people in one round and 3-3 people in two more rounds (3 rounds total).	1 point	This point is also due if the correct reasoning is reflected only by the solution.
In case of two people per round in 4 rounds the number of different possibilities is: $\binom{8}{2} \cdot \binom{6}{2} \cdot \binom{4}{2} \cdot \binom{2}{2} (= 2520).$	1 point	Arrange the 8 people in a line. Order within the 4 groups of two is not considered. The number of possibilities is $\frac{8!}{(2!)^4} (= 2520).$
Possible arrangements in case of three rounds: $2 + 3 + 3$, or $3 + 2 + 3$, or $3 + 3 + 2$.	1 point	This point is also due if the correct reasoning is reflected only by the solu- tion.
Each case is possible in $\binom{8}{2} \cdot \binom{6}{3} \cdot \binom{3}{3}$ (= 560) different ways.	1 point	$\frac{8!}{2! \cdot (3!)^2}$
so, there are $3 \cdot {8 \choose 2} \cdot {6 \choose 3} \cdot {3 \choose 3}$ (= 1680) different possibilities.	1 point	
The total number of different possibilities is then $\binom{8}{2} \cdot \binom{6}{2} \cdot \binom{4}{2} \cdot \binom{2}{2} + 3 \cdot \binom{8}{2} \cdot \binom{6}{3} \cdot \binom{3}{3} =$	1 point	
= 4200. Total:	1 point 7 points	

4. a)		
The points of intersection between the two graphs are obtained by solving the equation system $y = -x^2 + x + 6$ $0 = x - y + 2$	1 point	y
Express y from the second equation: $-x^2 + x + 6 = x + 2$	1 point	
(Rearrange: $x^2 = 4$) $x_1 = -2$ and $x_2 = 2$.	1 point	$A \downarrow -2 \qquad 0 \qquad 2 \qquad x$
(As the parabolic arc is above the line over the interval [-2; 2]) $T = \int_{-2}^{2} ((-x^2 + x + 6) - (x + 2)) dx =$	1 point*	
$= \int_{-2}^{2} (-x^2 + 4) dx =$	1 point*	
$= \left[-\frac{x^3}{3} + 4x \right]_{-2}^2 =$	1 point*	
$= \left(-\frac{2^3}{3} + 4 \cdot 2\right) - \left(-\frac{(-2)^3}{3} + 4 \cdot (-2)\right) = \frac{16}{3} - \left(-\frac{16}{3}\right) =$	1 point*	
$=\frac{32}{3}$	1 point*	
Total:	8 points	

*Note: The 5 points marked by * may also be given for the following reasoning:*

$\int_{-2}^{2} (-x^2 + x + 6) dx = \left[-\frac{x^3}{3} + \frac{x^2}{2} + 6x \right]_{-2}^{2} =$	1 point	
$=\frac{34}{3}-\left(-\frac{22}{3}\right)=\frac{56}{3}$	1 point	
$\int_{-2}^{2} (x+2)dx = \left[\frac{x^2}{2} + 2x\right]_{-2}^{2} =$	1 point	
=6-(-2)=8	1 point	
(As the parabolic arc is above the line over the interval [-2; 2]) $T = \frac{56}{3} - 8 = \frac{32}{3}$.	1 point	

4. b)		
At the point of intersection on the x-axis $y = 0$, and	1 point	
so $-x^2 + x + 6 = 0$.	1 point	
$x_1 = -2, x_2 = 3.$	1 point	
Since the first coordinate of <i>B</i> is positive, it is	1 point	
B(3; 0).	1 point	
The derivative of the function		
$f(x) = -x^2 + x + 6$ ($x \in \mathbf{R}$) is $f'(x) = -2x + 1$	1 point*	
$(x \in \mathbf{R}).$		
The gradient of the tangent line drawn at point <i>B</i> is	1	
f'(3)=	1 point*	
$(=-2\cdot 3+1)=-5.$	1 point*	
Total:	6 points	

*Note: The 3 points marked by * may also be given for the following reasoning:*

The equation of any line through point <i>B</i> , not parallel		
to the axis of the parabola, may be written as	1 point	
y = mx - 3m, where m is the gradient of such line.		
This line has a single common point with the		
parabola if the discriminant of the equation	1 point	
$x^{2} + (m-1)x - 3(m+2) = 0$ is 0.	1	
The discriminant is $(m-1)^2 + 12(m+2) = (m+5)^2$,	1 point	
so the gradient of the tangent is -5 .	1 point	

II.

5. a)		
Triangle ABE is right and isosceles,	1 point	
so $ABE \angle = 45^{\circ}$.	1 point	
Cut a regular triangle of side 2 units along one of its axes of symmetry. The triangles obtained will be congruent to triangle <i>BCD</i> (two sides and the angle between them are equal),	1 point	Connect the midpoint of side CB to vertex D. This segment divides triangle BCD into a regular triangle of unit sides and an isosceles triangle.
so $DBC \angle = 30^{\circ}$.	1 point	
The angle between the two diagonals is therefore: $EBD \angle = ABC \angle - ABE \angle - DBC \angle = 75^{\circ}$.	1 point	
Total:	5 points	

5. b) Solution 1		
$\cos 75^{\circ} = \cos (30^{\circ} + 45^{\circ}) = = \cos 30^{\circ} \cdot \cos 45^{\circ} - \sin 30^{\circ} \cdot \sin 45^{\circ} = $	1 point	
$=\frac{\sqrt{3}}{2}\cdot\frac{\sqrt{2}}{2}-\frac{1}{2}\cdot\frac{\sqrt{2}}{2}=$	1 point	
$= \frac{\sqrt{6} - \sqrt{2}}{4}$ (and so the statement is proven).	1 point	
Total:	3 points	

Note: Do not accept calculations with approximate figures.

5. b) Solution 2		
$\cos^2 75^\circ = \frac{1 + \cos 150^\circ}{2} =$	1 point	
$=\frac{1-\frac{\sqrt{3}}{2}}{2}=\frac{2-\sqrt{3}}{4}.$	1 point	
As $\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)^2 = \frac{8-2\sqrt{12}}{16} = \frac{2-\sqrt{3}}{4}$, the statement is proven (as $\cos 75^\circ > 0$).	1 point	
Total:	3 points	

Note: Do not accept calculations with approximate figures.

5. c)		
$BE = \sqrt{2}$	1 point	
$BD = \sqrt{3}$	1 point	
Apply the Law of Cosines in triangle <i>EBD</i> : $DE^{2} = 2 + 3 - 2 \cdot \sqrt{2} \cdot \sqrt{3} \cdot \frac{\sqrt{6} - \sqrt{2}}{4} =$	1 point	
$=2+\sqrt{3}.$	1 point	
And so $DE = \sqrt{2 + \sqrt{3}}$.	1 point	
Total:	5 points	

5. d)		
$\left(\frac{\sqrt{6} + \sqrt{2}}{2}\right)^2 = \frac{8 + 2\sqrt{12}}{4} =$	1 point	$\sqrt{2 + \sqrt{3}} = \sqrt{\frac{4 + 2\sqrt{3}}{2}} =$
$=2+\sqrt{3}\left(=\left(\sqrt{2+\sqrt{3}}\right)^2\right)$	1 point	$\sqrt{\frac{(\sqrt{3}+1)^2}{2}} = \frac{\sqrt{3}+1}{\sqrt{2}} =$
Both of these numbers are positive and their squares are equal, so the statement is proven.	1 point	$=\frac{\sqrt{6}+\sqrt{2}}{2}$
Total:	3 points	

Note: Award 0 points if the candidate uses approximate figures.

6. a)			
(1) true			Award 2 points for 4 cor-
(2) false			rect answers, 1 point for
(3) true		3 points	3 correct answers,
(4) true			0 points for less than
(5) false			3 correct answers.
	Total:	3 points	

6. b)		
The statement is false.	1 point	
Any proper counterexample (10-point, simple graph with 8 edges, that contains a circuit).	2 points	
Total:	3 points	

6. c)		
The converse: If a (10-point, simple) graph does not contain a circuit then it has no more than 8 edges.	1 point	
The converse is false.	1 point	
Any proper counterexample (10-point tree graph).	2 points	
Total:	4 points	

6. d) Solution 1		
A 10-point complete graph has $\left(\frac{10.9}{2}\right) = 45$ edges.	1 point	
Selecting three edges is possible in $\binom{45}{3}$ (= 14 190)	1 point	
different ways (all of which are equally likely).		
A circuit of three edges means that the endpoints of the three selected edges are exactly three vertices of the graph, i.e. selecting any three different vertices of the graph is equivalent to selecting three edges form- ing a circuit.	1 point	
The number of favourable cases: $\binom{10}{3}$ (= 120).	1 point	
The probability: $\frac{\binom{10}{3}}{\binom{45}{3}} \approx$	1 point	
≈ 0.0085 .	1 point	
Total:	6 points	

6. d) Solution 2		
A 10-point complete graph has $\left(\frac{10.9}{2}\right) = 45$ edges.	1 point	
The first selected edge may be any one of these. It is necessary, however, that the second selected edge has a common endpoint with the first one.	1 point	
From both endpoints of the first edge there are 8-8 different edges drawn. Select any one of these from the remaining 44 edges. The probability of correctly selecting the second edge is therefore $\frac{16}{44}$.	1 point	
For the third edge, select the one out of the remaining 43 that connects the "free" endpoints of the two edges already selected. The probability of a correct selection is therefore $\frac{1}{43}$.	1 point	
(As the selection of each edge is independent from the selection of the others) the probability we are looking for is $\frac{16}{44} \cdot \frac{1}{43} =$	1 point	
$\left(=\frac{4}{473}\right)\approx 0.0085.$	1 point	
Total:	6 points	

6. d) Solution 3		
A 10-point complete graph has $\left(\frac{10.9}{2}\right) = 45$ edges.	1 point	
Selecting three edges is possible in $\binom{45}{3}$ (= 14 190)	1 point	
different ways (each of which is equally likely).		
Draw one edge. This is possible in 45 different ways. Draw the edges from the endpoints of the first edge to any of the remaining 8 points of the graph, thereby creating a circuit. This means there are a total 45.8 (= 360) circuits of three edges in the graph,	1 point	
every one of which has been counted exactly three times though, therefore the correct number of different circuits of three edges is 120.	1 point	
The probability is: $\frac{120}{\binom{45}{3}} \approx$	1 point	
≈ 0.0085 .	1 point	
Total:	6 points	

7. a)		
With all the given conditions, it is enough to examine the angles of the triangle only. Let a be the middle angle of the triangle and d be the common difference of the arithmetic sequence $(d > 0)$. In this case the three angles are $a - d$, a , and $a + d$ (a and d are both integers).	1 point	This point is also due if the correct reasoning is reflected only by the solution.
(a-d)+a+(a+d)=180, which means $a=60$ (this is the middle angle of the triangle).	1 point	
Given that the triangle is acute (and d is a positive integer), the largest angle is at least 61°, at most 89°.	1 point	
Therefore, there are 29 different such triangles.	1 point	
Total:	4 points	

7. b) Solution 1		
The sum of the interior angles (measured in degrees) of such a regular polygon is n^2 , so $n^2 = (n-2) \cdot 180$	1 point	
$n^2 - 180 n + 360 = 0 \ (n \in \mathbb{N} \text{ and } n \ge 3).$	1 point	
The solutions of the quadratic equation are not integers (≈ 177.98 , and ≈ 2.02).	1 point	
Therefore, there really isn't any such polygon.	1 point	
Total:	4 points	

7. b) Solution 2		
If one interior angle of a regular polygon is 179°	1 point	
than it has 360 sides (not 179), so $n \neq 179$.	- Point	
If one interior angle of a regular polygon is 178°		
than it has 180 sides (not 178), so $n \ne 178$. Similarly,	1 point	
if one interior angle of a regular polygon is 177° than	т роші	
it has 120 sides (not 177), so $n \neq 177$.		
The exterior angle of a regular polygon, $\left(\frac{360^{\circ}}{n}\right)$, is		
inversely proportional to n . If the measure of the in-		
terior angle decreases then (as the exterior angle in-	1 point	
creases) the number of sides will decrease, too. Simi-		
larly, if the number of sides increases, the measure of		
the interior angle will increase, too.		
The only possible option is when $n < 120$, but only		
the regular triangle, the square and the regular penta-		
gon has interior angles below 120° and neither com-	1 point	
plies with the given conditions. Hence, the statement		
given is true.		
Total:	4 points	

Note: Full points may be given if the candidate (with adequate reasoning) lists every possible regular polygon whose angles, in degrees, are integers and thereby correctly argues that the polygon indicated by the question does not exist. (A table that lists possible cases is attached to the solution of question 7c.)

7. c)		
The degree measure of one interior angle of the n -sided regular polygon $(n \ge 3)$ is: $\frac{(n-2)\cdot 180}{n}$, which is now equal to a certain k positive integer.	1 point*	If the degree measure of one interior angle of the regular n-sided polygon is $k \ (k \in \mathbb{N}^+)$, then the measure of one exterior angle is $180 - k$.
So $nk = n \cdot 180 - 360$,	1 point*	The sum of the exterior angles is 360° , and so $\frac{360}{n} = 180 - k$.
i.e. $k = 180 - \frac{360}{n}$.	1 point*	
As $n \ge 3$, all positive divisor of 360 that are greater than 2 are possible values of n (as these will all give a positive integer value less than 180 for k).	1 point*	This point is also due if the correct reasoning is reflected only by the solution.
Divisor-pairs of 360 are: (1; 360), (2; 180), (3; 120), (4; 90), (5; 72), (6; 60), (8; 45), (9; 40), (10; 36), (12; 30), (15; 24), (18; 20).	2 points**	As $360 = 2^3 \cdot 3^2 \cdot 5$, the number of positive divisors of 360 is
360 has 24 positive divisors.	1 point	$4 \cdot 3 \cdot 2 = 24.$
(1 and 2 are not suitable divisors, therefore) there are 22 different possible values for <i>n</i> .	1 point	
Total:	8 points	

Notes:

1. The table below contains all possible values of n and the corresponding values of k.

n	k (°)	n	k (°)	n	k (°)	n	k (°)	n	k (°)
3	60	9	140	20	162	40	171	90	176
4	90	10	144	24	165	45	172	120	177
5	108	12	150	30	168	60	174	180	178
6	120	15	156	36	170	72	175	360	179
8	135	18	160						

2. Award 0 points of the 2 marked by ** if the candidate finds no more than 9 divisor-pairs. Award 1 point if the candidate finds 10 or 11 pairs.

3. The 4 points marked by * may also be given for the following reasoning:

The degree measure of one interior angle of a regular polygon is an integer if and only if the same is true for the external angle. Let us examine one interior	1 point	
angle of the polygon.		
The degree measure of one exterior angle of the n -sided regular polygon ($n \ge 3$) is $\frac{360}{n}$,	1 point	
The degree measure of one interior angle will be an integer only if $\frac{360}{n}$ is an integer (less than 180), too.	1 point	

As $n \ge 3$, all positive integer divisors of 360, greater than 2, are possible values of n .	1 point	This point is also due if the correct reasoning is reflected only by the solution.
---	---------	--

8. a) Solution 1		
The probability that a randomly selected person is not infected is 0.998.	1 point	
P(at least 1 person is infected out of the 80) = 1 - P(nobody is infected) =	1 point	
$=1-0.998^{80}\approx$	1 point	
≈ 0.15.	1 point	Do not award this point if the solution is not rounded or rounded incorrectly.
Total:	4 points	

8. a) Solution 2		
The probability that a randomly selected person is not infected is 0.998.	1 point	
$P(1 \text{ person is infected}) = {80 \choose 1} \cdot 0.002 \cdot 0.998^{79} \approx$ $0.1366. \text{ Similarly, } P(2 \text{ people infected}) \approx 0.0108,$ $P(3 \text{ people infected}) \approx 0.0006.$	1 point	
As $P(4 \text{ people infected}) \approx 0.00002$ (and further probabilities decrease rapidly) the rest of the terms in the total probability may be omitted which will not influence the final result (within the required accuracy).	1 point	
This gives $P(\text{at least 1 person is infected out of } 80) \approx $ $\approx 0.1366 + 0.0108 + 0.0006 \approx 0.15.$	1 point	Do not award this point if the solution is not rounded or rounded incorrectly.
Total:	4 points	

8. b)		
The proportion of those infected within the population of the city grows by a factor of 1.05 each day.	1 point	This point is also due if the correct reasoning is reflected only by the solution.
Let x be the number of days we are looking for. In this case $0.2 \cdot 1.05^x = 1$.	1 point	
$1.05^x = 5$	1 point	
$x = \frac{\log 5}{\log 1.05} \approx 32.99$	1 point	$x = \log_{1.05} 5$
(As the number of people infected increases) it takes about 33 days until 1% of the population becomes infected.	1 point	
Total:	5 points	

Note: Full score may be awarded if the candidate gives the correct answer by solving an inequality instead of an equation.

8. c) Solution 1		
Let n be the number of people living in the city.	1 point	The answer to this question does not depend on the actual population of the city. Let it, for example, be $n = 1000000$.
The number of people infected is $0.002n$, the number of those not infected is $0.998n$.	1 point	In this case, there are 2000 people infected, and 998 000 people not infected in the city.
Assuming everyone took the test, $0.002 n \cdot 0.99 = 0.00198n$ people would turn out positive, while in the case of the other $0.00002n$ people the test would turn out negative.	1 point	Out of 2000 infected people (2000 · 0.99 =) 1980 would give positive test results, while the other 20 would be negative.
Out of $0.998n$ people not infected $0.998n \cdot 0.04 = 0.03992n$ would give positive results, while the other $0.95808n$ would be negative.	1 point	Out of 998 000 people not infected, (998 000 · 0.04 =) 39 920 people would give positive test results, while the remaining 958 080 people would be negative.
The total number of those with positive test result is $0.00198n + 0.03992n = 0.0419n$, out of whom $0.00198n$ are truly infected.	1 point	The total number of those with positive test result is 39 920 + 1980 = 41 900, out of whom 1980 are truly infected.
$\frac{0.00198n}{0.0419n} \approx 0.0473,$	1 point	$\frac{1980}{41900} \approx 0.0473$
which means the probability of being infected is less than 0.05 despite a positive test result.	1 point	
Total:	7 points	

8. c) Solution 2		
Let A be the event that the test is positive, and let B be the event that the user is infected. The probability $P(B A)$ is to be determined.	1 point	This point is also due if the correct reasoning is reflected only by the solution.
The probability that an infected person took the test and it turned out positive is: $P(AB) = 0.002 \cdot 0.99 \ (= 0.00198).$	1 point	
The probability that an uninfected person took the test and it turned out positive is: $P(A\overline{B}) = 0.998 \cdot 0.04 \ (= 0.03992).$	1 point	
(Events AB and \overline{AB} are mutually exclusive, and so the probability that a randomly selected person living in the city is showing positive test results is the sum of the above probabilities:) $P(A) = 0.998 \cdot 0.04 + 0.002 \cdot 0.99 \ (= 0.0419)$.	1 point	
$P(B A) = \frac{P(AB)}{P(A)} =$	1 point	
$= \frac{0.002 \cdot 0.99}{0.002 \cdot 0.99 + 0.998 \cdot 0.04} \approx 0.0473,$	1 point	$\frac{0.00198}{0.0419} \approx 0.0473$
which means the probability of being infected is less than 0.05 despite a positive test result.	1 point	
Total:	7 points	

9. a) Solution 1		
Let x be the mass of one of the parts $(0 < x < 350)$. The mass of the other part is $350 - x$, the total cost of transportation is $k(x) = \frac{x^2}{10} + 205 + \frac{(350 - x)^2}{10} + 205 \text{ (Euros)}.$	1 point	
Rearranged: $k(x) = \frac{1}{5}(x^2 - 350x + 63300)$.	1 point	$k'(x) = \frac{1}{5}(2x - 350)$
As $k(x) = \frac{1}{5}(x-175)^2 + 6535$ (or $k'(175) = 0$), function k has a minimum when $x = 175$, which makes the statement true.	2 points	
Total:	4 points	

9. a) Solution 2		
Let the mass of one part be $175 - x$ tons $(0 \le x < 175)$, in which case the mass of the other part is $175 + x$ tons. The total cost of transportation: $k(x) = \frac{(175 - x)^2}{10} + 205 + \frac{(175 + x)^2}{10} + 205$ (Euros).	1 point	
Rearranged: $k(x) = \frac{1}{5}x^2 + 6535$.	1 point	
This is minimal when $x = 0$, so the statement is true.	2 points	
Total:	4 points	

9. a) Solution 3		
Let x be the mass of one of the parts $(0 \le x \le 350)$.		
The total cost of transportation is		
$k(x) = \frac{x^2}{10} + 205 + \frac{(350 - x)^2}{10} + 205$ (Euros).	1 point	
It is minimal when $x^2 + (350 - x)^2$ is minimal.	1 point	
Use the relation between the Quadratic and the		
Arithmetic Means:		
$x^{2} + (350 - x)^{2} \ge 2 \cdot \frac{(x + 350 - x)^{2}}{4} = \frac{350^{2}}{2}.$	1 point	
The two means are equal when	1 noint	
x = 350 - x, and so the statement is true.	1 point	
Total:	4 points	

9. b)		
The cost of transportation by rail: 350^2	2 points	Award 1 point for each term of the sum.
$n \cdot \frac{350^2}{10n^2} + 205n \ .$	2 points	term of the sum.
Doing the square and division, it really is equal to		
$\frac{12\ 250}{n} + 205n$.	1 point	
n		
Total:	3 points	

9. c) Solution 1		
The total cost of transportation (including the separation into parts): $\frac{12\ 250}{n} + 205n + 400(n-1) \ (n \in \mathbb{N}^+).$	1 point	
(Examine function f that is defined over the set of positive real numbers, where) $f(x) = \frac{12 250}{x} + 605x - 400$. Function f is differentiable and $f'(x) = -\frac{12 250}{x^2} + 605$.	1 point	
Function f is differentiable and $f'(x) = -\frac{12\ 250}{x^2} + 605$.	1 point	
(Function f has an extreme wherever f' is zero:) $-\frac{12\ 250}{x^2} + 605 = 0.$	1 point	
(As $x > 0$) $x = \sqrt{\frac{12250}{605}}$ (≈ 4.4998).	1 point	
As $f''(x) = \frac{24500}{x^3}$ $(x \in \mathbf{R}^+)$ is positive on its domain, the function f has an absolute minimum at $\sqrt{\frac{12250}{605}}$.	1 point	Other reasons are also acceptable, e.g. reference to the change of sign of the first derivative.
As this number is not an integer, (considering the monotonicity of the function <i>f</i>) there are two options: the load must be divided into either 4 or 5 parts.	1 point	Function f is (strictly) monotone decreasing on]0; 4.4997[, (strictly) monotone increasing on]4.4998; $+\infty$ [.
If $n = 4$, the total cost is 5082.5 Euros, if $n = 5$, the total cost is 5075 Euros.	1 point	
The total cost is lowest possible if the load is divided into 5 parts of equal mass.	1 point	
Total:	9 points	

9. c) Solution 2		
$f(1) = 12 455, f(2) = 6935, f(3) \approx 5498,$ $f(4) = 5082.5, f(5) = 5075, f(6) \approx 5272.$	2 points	
The lowest cost seems to belong to the case when the load is divided into 5 parts.	1 point	This point is also due if the correct reasoning is reflected only by the solution.
Examine the inequality $\frac{12\ 250}{n} + 605n - 400 < 5075$ (that is defined over the set of real numbers).	2 points	
(Because $n > 0$) the above inequality is equivalent to $12 \ln^2 -1095n + 2450 < 0$.	1 point	
The solution set of which is $\frac{490}{121}$; 5,	1 point	
However, there are no integers within this interval.	1 point	
The total cost is therefore minimal if the load is divided into 5 parts of equal mass.	1 point	
Total:	9 points	