Final Exam

- Time
 - in class (8:15-9:45am) on May 30 (Thu)
 - ▶ 90 minutes
- Location
 - ▶ 教学中心 201 (this classroom)
 - Seat arrangement will be announced later
- Format
 - Similar to homework
 - Closed-book. You can bring an A4-size cheat sheet and nothing else.
 - ▶ TBA: 涂卡笔、计算器
- Grade
 - ▶ 60% of the total grade

Final Review

Disclaimer

- Topics covered in this review may not appear in the exam.
- ▶ Topics not covered in this review may appear in the exam.

Text Normalization

- Word tokenization
 - Regular expression, BPE
- Word normalization
 - Lemmatization, stemming
- Sentence segmentation

Text Representation

- Word representation
 - Sparse vector: word-word matrix, PPMI
 - Dense vector: word2vec (skip-gram)
- Document representation
 - Sparse vector: term-document matrix, TF-IDF
 - Dense vector: LSA, neural methods

Text Classification

- Rule-based methods
 - Regular expression
- Machine learning methods
 - Generative classifiers
 - Naive Bayes
 - Discriminative classifiers
 - Logistic regression
- Evaluation
 - Precision, recall, F-measure
 - Macro-/micro-averaging

Text Clustering

- Mixture of Gaussian
- Unsupervised Naive Bayes
- Topic models
 - pLSA, LDA
- Learning
 - Expectation-maximization
- Evaluation

Language Modeling

- Compute the probability of a sentence
 - Chain rule: predicting the next word
 - Evaluation: perplexity
- n-gram LM
 - Probability of each word is conditioned on the preceding n-1 words.
- Recurrent neural networks (LSTM, GRU, +Attention)
 - Probability of each word is conditioned on a hidden vector summarizing all the preceding words
- Transformers
 - Probability of each word is computed by attending to preceding words

Sequence to Sequence

- Many applications
 - MT, paraphrase, summarization, ...
- Methods: encoder-decoder
 - Recurrent neural network (+attention)
 - Transformer: cross-attention
- Learning
 - Maximizing conditional likelihood on a parallel corpus
- Decoding
 - Greedy, beam-search, non-autoregressive
- Extensions
 - Pointer Net / Copy Mechanism
 - Seq2Set, X2Seq

Pretrained LM

- Pretraining: the new paradigm
- Encoder (auto-encoding)
 - ELMo: two LSTMs + LM
 - BERT: Transformer + MLM
- Encoder-Decoder
 - ▶ BART, T5
- Decoder (auto-regressive)
 - GPT: Transformer + LM + ...
 - LLM
- Utilizing PLMs
 - Finetuning, parameter efficient tuning
 - Prompting

Sequence Labeling

- Many applications
- Hidden Markov model (HMM)
 - Inference: Viterbi, Forward, Backward
 - Learning: Maximum Likelihood Estimate, Expectation-Maximization / SGD
- Conditional random filed (CRF)
 - Undirected discriminative models
 - Inference: Viterbi, Forward, Backward
 - Learning: conditional likelihood, margin-based loss, CRF-AE
- Neural models
 - Neural softmax, neural CRF

Constituency Parsing

- Concepts, evaluation
- Span-based Parsing
 - Tree score = sum of constituent scores
 - Parsing: CYK
 - Learning: discriminative methods
- (Probabilistic) Context-Free Grammars
 - Tree score = product of rule probabilities
 - Parsing: CYK
 - Learning
 - Supervised: generative & discriminative methods
 - Unsupervised: EM with inside-outside algorithm / SGD
- Transition-based parsing
 - Tree score = product of action probabilities
 - Bottom-up parsing

Dependency Parsing

- Concepts, evaluation
- Relation to constituency parsing
- Graph-based parsing
 - 1st-order: Eisner
 - Learning
 - Supervised: discriminative methods
 - Unsupervised: EM, CRF-AE
- Transition-based parsing
 - Arc-standard

Semantics

- Vector vs. symbolic representation
- Lexical Semantics
 - Word Senses
 - WordNet: organizing word senses according to semantic relations
 - Word Sense Disambiguation

Semantics

- Sentence Semantics
 - Formal Meaning Representation
 - Special/general-purpose representations (logic, semantic graph)
 - Syntax-Driven Semantic Parsing
 - \triangleright λ -Calculus, Semantic Attachments to CFG
 - Neural Semantic Parsing
 - Seq2seq, parsing to graph
 - Semantic Role Labeling
 - PropBank, FrameNet
 - Methods: sequence labeling, graph-based methods, seq2seq
 - Information Extraction
 - ▶ NER, Entity Linking, Relation Extraction, Event Extraction

Discourse Analysis

- A discourse is a coherent structured group of sentences.
 - Text spans are connected with coherence relations.
 - These relations form a hierarchical structure.
 - Discourse parsing: EDU segmentation + RST parsing
- Coreference Resolution
 - Mention Detection
 - Mention Clustering
 - Mention ranking

Final Remarks

Topics covered in this course...

- Basics
 - Text normalization
 - Text representation
 - Text classification
 - Text clustering
- Sequences
 - Language modeling
 - Sequence to sequence
 - Pretrained language models
 - Sequence labeling

- Structures
 - Constituency parsing
 - Dependency parsing
 - Semantics
 - Discourse analysis

Topics not covered

- Information Retrieval
- Multilingual and Cross-Lingual NLP
- Multimodal NLP (language+X)
- Interpretability
- Biases & ethics in NLP
- Adversarial NLP
- Pragmatics
- . . .

Topics not covered in detail

- Machine Translation
- Question answering
- Dialog
- Sentiment Analysis
- Summarization
- ...

Where to learn more...

- ▶ Text books: SLP3, INLP, <u>动手学NLP, ...</u>
- Online lectures: Stanford CS224n, ...
- Research papers
 - Conferences
 - ACL: Meeting of the Association for Computational Linguistics
 - EMNLP: Conference on Empirical Methods in Natural Language Processing
 - NAACL: Conference of the North American Chapter of the Association for Computational Linguistics
 - COLING, EACL, AACL, CoNLL, SemEval, ...
 - AI/ML conferences
 - Journals
 - Computational linguistics (CL)
 - Transactions of the Association for Computational Linguistics (TACL)

Doing NLP research at SIST... (for undergraduates)

- My research group
 - Combining symbolic, probabilistic and neural approaches to the representation, learning and utilization of linguistic structures
 - Integrating linguistic structures into transformers and LLMs
- Other groups
 - CV+language (He, Yang, etc.)
 - NLP safety (Wang, etc.)

The past 1+ year

- The revolution of LLM!
 - Huge impact not only in NLP, but also spreading to other fields
- Near future
 - Rise of general purpose NLP: one model for all tasks
 - Improvements & innovations in foundation models
- Long term
 - Integrating symbolic & statistic NLP into neural NLP
 - Incorporating linguistic structures in foundation models
 - Towards better performance, efficiency, theoretical foundation, interpretability, ...

That's all! Good luck in your project and final exam!

CS274A Spring 2024