EXPOSÉ III

EXTENSIONS INFINITÉSIMALES

par M. Demazure

Dans cet exposé, on se place dans la situation générale suivante. On a un schéma S et un idéal cohérent nilpotent \mathcal{I} sur S. On désigne par S_n le sous-schéma fermé de S défini par l'idéal \mathcal{I}^{n+1} ($n \geq 0$). En particulier S_0 est défini par \mathcal{I} . Comme \mathcal{I} est nilpotent, S_n est égal à S pour n assez grand et les S_i ont même espace topologique sous-jacent. Un exemple typique de cette situation est le suivant : S est le spectre d'un anneau artinien local S0 est le spectre du corps résiduel de S1.

Dans la situation précédente, on se donne un certain nombre de données au-dessus de S_0 et on cherche au-dessus de S des données qui les relèvent, c'est-à-dire qui les redonnent par changement de base de S à S_0 . Ceci se fait de proche en proche, par l'intermédiaire des S_n . À chaque pas, on se propose de définir les obstructions rencontrées et de classifier, lorsqu'elles existent, les solutions obtenues.

Le passage de S_n à S_{n+1} peut se généraliser ainsi : on a un schéma S, deux idéaux \mathcal{I} et \mathcal{J} avec $\mathcal{I} \supset \mathcal{J}$, et $\mathcal{I} \cdot \mathcal{J} = 0$ (dans le cas précédent S, \mathcal{I} et \mathcal{J} sont respectivement S_{n+1} , $\mathcal{I}/\mathcal{I}^{n+2}$, $\mathcal{I}^{n+1}/\mathcal{I}^{n+2}$). On note S_0 (resp. $S_{\mathcal{J}}$) le sous-schéma fermé de S défini par \mathcal{I} (resp. \mathcal{J}) et on se pose un problème d'extension de $S_{\mathcal{I}}$ à S.

Dans SGA 1 III ont été traités les problèmes d'extension de morphismes de schémas et d'extension de schémas. Nous nous poserons ici les problèmes d'extension de morphismes de groupes, d'extension de structures de groupes et d'extension de sousgroupes.

Nous avons rassemblé dans un n°0 les résultats de SGA 1 III qui nous seront utiles, pour les mettre sous la forme la plus pratique pour notre propos, et pour éviter au lecteur d'avoir à se reporter constamment à SGA 1 III. (1) Le n°1 rassemble des calculs de cohomologie des groupes utiles par la suite et qui n'ont rien à voir avec la théorie des schémas. Les numéros 2 et 3 traitent respectivement de l'extension des morphismes de groupes et de l'extension des structures de groupes. Dans le n°4, nous avons rappelé

83

 $^{^{(1)}}$ N.D.E. : Le lecteur pourra préférer commencer par la lecture de la section 1, plus facile, qui peut servir de motivation et de guide pour les résultats obtenus dans la section 0.

rapidement la démonstration d'un résultat énoncé dans TDTE IV concernant l'extension des sous-schémas et appliqué ce résultat au problème d'extension des sous-groupes. Pour la suite du Séminaire, seul le résultat du n°2, concernant l'extension des morphismes de groupes, sera indispensable. (2)

L'idée de ramener les problèmes d'extensions infinitésimales aux calculs habituels de cohomologie dans les extensions de groupes a été suggérée par J. Giraud lors de l'exposé oral (dont les calculs étaient nettement plus compliqués et moins transparents). Malheureusement, il semble que cette méthode ne s'applique bien qu'aux deux premiers problèmes étudiés, et nous n'avons pu échapper à des calculs assez pénibles dans le cas des extensions de sous-groupes.

Pour simplifier le langage, nous appellerons Y-foncteur, resp. Y-schéma, etc., un foncteur, resp. schéma, etc., muni d'un morphisme dans le foncteur Y, étendant ainsi les définitions de l'exposé I (qui ne concernaient que le cas d'un Y représentable).

0. Rappels de SGA 1 III et remarques diverses

Énonçons d'abord une définition générale.

Définition 0.1. — Soient \mathscr{C} une catégorie, X un objet de $\widehat{\mathscr{C}}$, G un $\widehat{\mathscr{C}}$ -groupe opérant sur X. On dit que X est formellement principal homogène $^{(3)}$ sous G si les conditions équivalentes suivantes sont satisfaites :

- (i) pour chaque objet S de \mathscr{C} , l'ensemble X(S) est vide ou principal homogène sous G(S) ;
- (ii) le morphisme de foncteurs $G \times X \to X \times X$ défini ensemblistement par $(g,x) \mapsto (gx,x)$ est un isomorphisme.

Ceci fait, nous allons mettre les résultats de SGA 1 III $\S 5^{(4)}$ sous la forme qui nous sera la plus utile. Nous emploierons les notations générales suivantes dans tout ce numéro. On a un schéma S et sur S deux idéaux quasi-cohérents \mathcal{I} et \mathcal{J} tels que

$$\mathcal{I} \supset \mathcal{J}$$
 et $\mathcal{I} \cdot \mathcal{J} = 0$.

On aura donc en particulier $\mathcal{J}^2=0$. On notera S_0 (resp. $S_{\mathcal{J}}$) le sous-schéma fermé de S défini par l'idéal \mathcal{I} (resp. \mathcal{J}). Pour tout S-foncteur X, on désignera systématiquement par X_0 et $X_{\mathcal{J}}$ les foncteurs obtenus par changement de base de S à S_0 et $S_{\mathcal{J}}$. Mêmes notations pour un morphisme.

⁽²⁾ N.D.E.: Toutefois, 3.10 est utilisé dans XXIV, 1.13. D'autre part, 4.37 est utilisé dans la preuve de IX, 3.2 bis et 3.6 bis, mais ceux-ci se déduisent aussi de résultats de l'Exp. X, n'utilisant pas 4.37.
(3) N.D.E.: On dit aussi « pseudo-torseur », cf. EGA IV₄, 16.5.15. D'autre part, la notion plus générale d'objet formellement homogène (pas nécessairement principal homogène), est définie dans l'Exp. IV, 6.7.1.

⁽⁴⁾ N.D.E.: voir aussi EGA IV4, 16.5.14-18.

Définition 0.1.1. — $^{(5)}$ Soit X un S-foncteur. Définissons un foncteur X^+ au-dessus de S par la formule :

$$\operatorname{Hom}_{S}(Y, X^{+}) = \operatorname{Hom}_{S, \mathcal{I}}(Y_{\mathcal{J}}, X_{\mathcal{J}}) = \operatorname{Hom}_{S}(Y_{\mathcal{J}}, X)$$

pour un S-schéma variable Y. Dans les notations de Exp. II, 1, on a

$$X^+ \simeq \prod_{S_{\mathcal{J}}/S} X_{\mathcal{J}}.$$

Le morphisme identique de $X_{\mathcal{J}}$ définit par construction un S-morphisme :

$$p_{\mathbf{X}}: \mathbf{X} \longrightarrow \mathbf{X}^{+}.$$

(6) Explicitement, pour tout S-schéma Y, l'application

$$p_{\mathbf{X}}(\mathbf{Y}): \operatorname{Hom}_{\mathbf{S}}(\mathbf{Y}, \mathbf{X}) \longrightarrow \operatorname{Hom}_{\mathbf{S}}(\mathbf{Y}, \mathbf{X}^{+}) = \operatorname{Hom}_{\mathbf{S}}(\mathbf{Y}_{\mathcal{J}}, \mathbf{X})$$

est l'application induite par le morphisme $Y_{\mathcal{J}} \to Y$.

Remarque 0.1.2. — Remarquons maintenant que si X est un S-foncteur en groupes, $X_{\mathcal{J}}$ est un $S_{\mathcal{J}}$ -foncteur en groupes; alors la formule de définition de X^+ le munit d'une structure de S-foncteur en groupes, et la description de p_X ci-dessus montre que $p_X : X \to X^+$ est un morphisme de S-foncteurs en groupes.

Remarque 0.1.3. — D'autre part, pour tout S-foncteur en groupes Y, on a :

$$\operatorname{Hom}_{\operatorname{S-gr.}}(Y,X^+) = \operatorname{Hom}_{\operatorname{S}_{\mathcal{J}}\text{-gr.}}(Y_{\mathcal{J}},X_{\mathcal{J}}).$$

En effet, soit $f \in \operatorname{Hom}_{S}(Y, X^{+})$, correspondant à $f_{\mathcal{J}} \in \operatorname{Hom}_{S_{\mathcal{J}}}(Y_{\mathcal{J}}, X_{\mathcal{J}})$; la condition pour que $f \in \operatorname{Hom}_{S-\operatorname{gr.}}(Y, X^{+})$ est que, pour tout $T \to S$ et $y, y' \in Y(T)$, on ait $f(y \cdot y') = f(y) \cdot f(y')$, et ceci équivaut à

$$f_{\mathcal{J}}(y_{\mathcal{J}}) \cdot f_{\mathcal{J}}(y'_{\mathcal{J}}) = f_{\mathcal{J}}((y \cdot y')_{\mathcal{J}});$$

comme $(y \cdot y')_{\mathcal{J}} = y_{\mathcal{J}} \cdot y'_{\mathcal{J}}$ (puisque $Y(T) \to Y(T_{\mathcal{J}}) = Y_{\mathcal{J}}(T_{\mathcal{J}})$ est un morphisme de groupes), ceci est la condition pour que $f_{\mathcal{J}}$ soit un morphisme de groupes. Appliquant ceci à Y = X, on retrouve que p_X , qui correspond à $id_{X_{\mathcal{J}}}$, est un morphisme de Sfoncteurs en groupes.

Revenons maintenant au cas général, mais supposons que X soit un S-schéma. Un S-morphisme d'un S-schéma variable Y dans X^+ étant par définition un $S_{\mathcal{J}}$ -morphisme $g_{\mathcal{J}}$ de $Y_{\mathcal{J}}$ dans $X_{\mathcal{J}}$, on va définir un X^+ -foncteur en groupes abéliens L_X comme suit.

Scholie 0.1.4. — $^{(7)}$ Si $\pi: Y \to S$ est un morphisme de schémas et \mathscr{M} un \mathscr{O}_S -module, on note $\mathscr{M} \otimes_{\mathscr{O}_S} \mathscr{O}_Y$ l'image inverse $\pi^*(\mathscr{M})$. Si \mathscr{J} est un idéal de \mathscr{O}_S , on note $\mathscr{J}\mathscr{O}_Y$ l'idéal de \mathscr{O}_Y , image du morphisme

$$\pi^*(\mathcal{J}) = \mathcal{J} \otimes_{\mathscr{O}_S} \mathscr{O}_Y \longrightarrow \mathscr{O}_Y.$$

 $^{^{(5)}}$ N.D.E. : On a ajouté la numérotation $0.1.1, \ldots, 0.1.13$ pour mettre en évidence les définitions et résultats qui s'y trouvent.

⁽⁶⁾ N.D.E.: On a ajouté la phrase suivante, et détaillé les deux remarques qui suivent.

 $^{{\}sc(7)}$ N.D.E. : On a ajouté ce scholie.

Notons que, pour tout morphisme de S-schémas $f: \mathbf{Z} \to \mathbf{Y},$ on a un épimorphisme de $\mathscr{O}_{\mathbf{Z}}$ -modules :

$$(0.1.4) f^*(\mathcal{J}\mathcal{O}_{Y}) \longrightarrow \mathcal{J}\mathcal{O}_{Z},$$

comme il résulte du diagramme commutatif ci-dessous :

Définition 0.1.5. — ⁽⁸⁾ Soit X un S-schéma. Pour tout X⁺-schéma Y, donné par un morphisme $g_{\mathcal{J}}: Y_{\mathcal{J}} \to X_{\mathcal{J}}$, on pose :

$$\operatorname{Hom}_{X^{+}}(Y, L_{X}) = \operatorname{Hom}_{\mathscr{O}_{Y_{0}}}(g_{0}^{*}(\Omega_{X_{0}/S_{0}}^{1}), \mathcal{J}\mathscr{O}_{Y}),$$

où $\Omega^1_{X_0/S_0}$ désigne le module des différentielles relatives de X_0 par rapport à S_0 (cf. SGA 1, I.1 ou EGA IV₄, 16.3), et où on regarde $\mathcal{J}\mathscr{O}_Y$ comme un \mathscr{O}_{Y_0} -module grâce au fait qu'il est annulé par \mathcal{I} .

Alors, L_X est un X^+ -foncteur en groupes abéliens. ⁽⁹⁾ En effet, pour tout X^+ -morphisme $f: Z \to Y$, le foncteur f_0^* et le morphisme $f_0^*(\mathcal{J}\mathscr{O}_Y) \to \mathcal{J}\mathscr{O}_Z$ de (0.1.4) induisent un morphisme naturel de groupes abéliens $L_X(f)$:

$$\begin{aligned} \operatorname{Hom}_{\mathscr{O}_{Y_0}}(g_0^*(\Omega^1_{X_0/S_0}), \mathcal{J}\mathscr{O}_Y) &\longrightarrow \operatorname{Hom}_{\mathscr{O}_{Z_0}}(f_0^*g_0^*(\Omega^1_{X_0/S_0}), f_0^*(\mathcal{J}\mathscr{O}_Y)) \\ &\longrightarrow \operatorname{Hom}_{\mathscr{O}_{Z_0}}(f_0^*g_0^*(\Omega^1_{X_0/S_0}), \mathcal{J}\mathscr{O}_Z). \end{aligned}$$

Enfin, remarquons que $L_X(f)$ se décrit de manière locale simplement comme suit. Notons d'abord que Y et $Y_{\mathcal{J}}$ ont même espace topologique sous-jacent, et il en est de même de V et $V_{\mathcal{J}}$, si V est un ouvert de Y. Soient alors $U = \operatorname{Spec}(A)$ un ouvert affine de X au-dessus d'un ouvert affine $\operatorname{Spec}(\Lambda)$ de S, $V = \operatorname{Spec}(B)$ un ouvert affine de Y tel que $g_{\mathcal{J}}(V_{\mathcal{J}}) \subset U$, et $W = \operatorname{Spec}(C)$ un ouvert affine de $f^{-1}(V)$. Soient J et I les idéaux de Λ correspondant à \mathcal{J} et \mathcal{I} . Alors f (resp. $g_{\mathcal{J}}$) induit un morphisme de Λ -algèbres $\theta : B \to C$ (resp. $\phi : A \to B/JB$), et l'on a évidemment $\theta(JB) \subset JC$. D'autre part, $m \in \operatorname{Hom}_{\mathscr{O}_{Y_0}}(g_0^*(\Omega^1_{X/S}, \mathcal{J}\mathscr{O}_Y))$ induit un élément D de

$$\operatorname{Hom}_{\mathscr{O}_{V_0}}(g_0^*(\Omega^1_{U/S}), \mathscr{J}\mathscr{O}_{V}) = \operatorname{Hom}_{B/\operatorname{IB}}(\Omega^1_{A/\Lambda} \otimes_A B/\operatorname{IB}, \operatorname{JB}) = \operatorname{D\acute{e}r}_{\Lambda}(A, \operatorname{JB}),$$

et l'image de $L_X(f)(m)$ dans

$$\operatorname{Hom}_{\mathscr{O}_{W_0}}(f_0^*g_0^*(\Omega^1_{U/S}), \mathscr{JO}_Z) = \operatorname{Hom}_{C/IC}(\Omega^1_{A/\Lambda} \otimes_A C/IC, JC) = \operatorname{D\acute{e}r}_{\Lambda}(A, JC)$$
n'est autre que $\theta \circ D$.

 $^{^{(8)}}$ N.D.E. : L'introduction du foncteur L_X conduit à une extension « fonctorielle en Y » (et en X) de SGA 1, III, Prop. 5.1 ; voir plus bas 0.1.8 et 0.1.9, ainsi que 0.1.10 et 0.2. De plus, lorsque X est un S-foncteur en groupes, L_X donne naissance, sous certaines hypothèses, à un S-foncteur en groupes L_X' et à une suite exacte $1 \to L_X' \to X \to X^+$ (cf. 0.4, 0.9 et 0.11), qui jouent un rôle essentiel dans cet exposé (cf. Théorèmes 2.1, 3.5 et 4.21).

⁽⁹⁾ N.D.E.: On a ajouté ce qui suit.

Remarque 0.1.6. — ⁽¹⁰⁾ Soit $f: X \to W$ un S-morphisme. Il induit un S-morphisme $f^+: X^+ \to W^+$ défini comme suit : si g est un élément de $\operatorname{Hom}_S(Y, X^+)$, correspondant à un S-morphisme $g_{\mathcal{J}}: Y_{\mathcal{J}} \to X$, alors $f^+(g)$ est l'élément $f \circ g_{\mathcal{J}}$ de $\operatorname{Hom}_S(Y, W^+)$. Il est clair que le diagramme suivant est commutatif :

Rappels 0.1.7. — ⁽¹¹⁾ Dans ce paragraphe, étant donné un S-schéma X, on « rappelle » certaines propriétés fonctorielles du module des différentielles $\Omega^1_{\rm X/S}$ et du premier voisinage infinitésimal de la diagonale, $\Delta^{(1)}_{\rm X/S}$, propriétés qui découlent facilement de EGA IV₄, §§ 16.1–16.4, mais qui n'y figurent pas explicitement.

a) Commençons par rappeler les faits suivants (cf. EGA II, §§ 1.2–1.5). Soient $g: Y \to X$ un morphisme de schémas, $\pi: X' \to X$ un X-schéma affine, \mathscr{B} la \mathscr{O}_X -algèbre quasi-cohérente $\pi_*(\mathscr{O}_{X'})$; alors le Y-schéma $Y \times_X X'$ est affine et correspond à la \mathscr{O}_Y -algèbre quasi-cohérente $g^*(\mathscr{B})$, et l'on a un diagramme commutatif de bijections :

De plus, ces bijections sont fonctorielles en le couple (X,X'), c.-à-d., si W' est un W-schéma affine, correspondant à la \mathscr{O}_W -algèbre quasi-cohérente \mathscr{A} , si l'on a un diagramme commutatif de morphismes de schémas :

$$X' \xrightarrow{f'} W'$$

$$Y \xrightarrow{g} X \xrightarrow{f} W$$

et si l'on note $\phi: \mathscr{A} \to f_*(\mathscr{B})$ et $\phi^{\sharp}: f^*(\mathscr{A}) \to \mathscr{B}$ (resp. $\theta: \mathscr{B} \to g_*(\mathscr{O}_Y)$ et $\theta^{\sharp}: g^*(\mathscr{B}) \to \mathscr{O}_Y$) les morphismes d'algèbres associés à f' (resp. à un X-morphisme variable $g': Y \to X'$), alors on a le diagramme commutatif suivant (où Y est vu

 $^{^{(10)}}$ N.D.E. : On a détaillé cette remarque.

⁽¹¹⁾ N.D.E.: On a ajouté ce paragraphe (voir aussi [**DG70**], § I.4, nos 1-2).

comme W-schéma via $f \circ g$) :

b) Soit maintenant X un S-schéma. Soient $\Omega^1_{X/S}$ le module des différentielles de X sur S, et $\Delta^{(1)}_{X/S}$ le premier voisinage infinitésimal de l'immersion diagonale $\delta_X: X \to X \times_S X$; c'est un sous-schéma de $X \times_S X$, dont la diagonale $\Delta_{X/S}$ est un sous-schéma fermé. On note pr^i_X (i=1,2) les deux projections $X \times_S X$, et π_X la restriction de pr^1_X à $\Delta^{(1)}_{X/S}$.

D'une part, tout morphisme $f: X \to W$ de S-schémas induit un S-morphisme $\Delta^{(1)}f: \Delta^{(1)}_{X/S} \to \Delta^{(1)}_{W/S}$ tel que le diagramme suivant soit commutatif :

$$\begin{array}{c|c} X \xrightarrow{\delta_X} & \Delta_{X/S}^{(1)} & \longrightarrow X \times_S X \xrightarrow{\operatorname{pr}_X^i} & X \\ f \middle| & & & \downarrow \Delta^{(1)} f & & \downarrow f \times f & & \downarrow f \\ W \xrightarrow{\delta_W} & \Delta_{W/S}^{(1)} & \longrightarrow W \times_S W \xrightarrow{\operatorname{pr}_W^i} & W. \end{array}$$

D'autre part, $\Delta_{X/S}^{(1)}$ est, via la projection π_X , un X-schéma affine, spectre de la \mathscr{O}_X -algèbre quasi-cohérente augmentée

$$\mathscr{P}^1_{X/S} = \mathscr{O}_X \oplus \Omega^1_{X/S}$$
,

où $\Omega^1_{X/S}$ est un idéal de carré nul; l'augmentation est le morphisme de \mathscr{O}_X -algèbres $\varepsilon_X: \mathscr{P}^1_{X/S} \to \mathscr{O}_X$ qui s'annule sur $\Omega^1_{X/S}$ et qui correspond à l'immersion fermée $\delta_X: X \hookrightarrow \Delta^{(1)}_{X/S}$. Alors, tout morphisme de S-schémas $f: X \to W$ induit un morphisme de \mathscr{O}_X -algèbres augmentées

$$f^*(\mathscr{P}^1_{\mathrm{W/S}}) = \mathscr{O}_{\mathrm{X}} \oplus f^*(\Omega^1_{\mathrm{W/S}}) \longrightarrow \mathscr{P}^1_{\mathrm{X/S}} = \mathscr{O}_{\mathrm{X}} \oplus \Omega^1_{\mathrm{X/S}}$$

c.-à-d., de façon équivalente, un morphisme de \mathscr{O}_X -modules

$$f_{\rm X/W/S}: f^*(\Omega^1_{\rm W/S}) \longrightarrow \Omega^1_{\rm X/S},$$

cf. EGA IV₄ (16.4.3.6) (et (16.4.18.2) pour la notation $f_{X/W/S}$).

Comme $\pi_X: \Delta_{X/S}^{(1)} \to X$ est affine alors, d'après a), $\Delta^{(1)}f$ est entièrement déterminé par $f_{X/W/S}$ et, pour tout X-schéma $g: Y \to X$, l'ensemble

$$\operatorname{Hom}_{\mathrm{X}}(\mathrm{Y}, \Delta_{\mathrm{X/S}}^{(1)}) \simeq \operatorname{Hom}_{\mathscr{O}_{\mathrm{Y}}\text{-alg.}}(\mathscr{O}_{\mathrm{Y}} \oplus g^{*}(\Omega_{\mathrm{X/S}}^{1}), \mathscr{O}_{\mathrm{Y}})$$

s'identifie à un sous-ensemble de $\mathrm{Hom}_{\mathscr{O}_{\mathbf{Y}}}(g^*(\Omega^1_{\mathbf{X}/\mathbf{S}}),\mathscr{O}_{\mathbf{Y}}),$ à savoir le sous-ensemble

$$\operatorname{Hom}_{\mathscr{O}_{\mathbf{Y}}}^{\square}(g^*(\Omega^1_{\mathbf{X}/\mathbf{S}}), \mathscr{O}_{\mathbf{Y}})$$

formé des \mathscr{O}_Y -morphimes $\psi: g^*(\Omega^1_{X/S}) \to \mathscr{O}_Y$ tels que $\operatorname{Im}(\psi)$ soit un idéal de \mathscr{O}_Y de carré nul. (12)

Par conséquent, appliquant a) au diagramme :

$$\Delta_{X/S}^{(1)} \xrightarrow{\Delta^{(1)} f} \Delta_{W/S}^{(1)}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Y \xrightarrow{g} X \xrightarrow{f} W$$

et tenant compte du fait que $\Delta^{(1)}f$ est la restriction à $\Delta^{(1)}_{X/S}$ de $f \times f$, on obtient le diagramme commutatif suivant, fonctoriel en le X-schéma Y \xrightarrow{g} X :

Remarque 0.1.7.1. — Terminons ce paragraphe avec la remarque suivante, qui sera utile plus loin (cf. 0.1.10). Si on note L_X^\square le X-foncteur qui à tout X-schéma $g:Y\to X$ associe $\operatorname{Hom}_{\mathscr{O}_Y}^\square(g^*(\Omega^1_{X/S}),\mathscr{O}_Y)$, et $L_f^\square:L_X^\square\to L_W^\square$ le morphisme de foncteurs défini plus haut (qui à tout $\psi\in L_X^\square(Y)$ associe $\psi\circ g^*(f_{X/W/S})$), ce qui précède montre que l'on a un diagramme commutatif de foncteurs :

$$\begin{split} \mathbf{X} \times_{\mathbf{X}} \mathbf{L}_{\mathbf{X}}^{\square} &\stackrel{\sim}{\longleftarrow} \Delta_{\mathbf{X}/\mathbf{S}}^{(1)} \stackrel{\longleftarrow}{\longleftarrow} \mathbf{X} \times_{\mathbf{S}} \mathbf{X} \\ f \times \mathbf{L}_{f}^{\square} & & & & & \downarrow^{f \times f} \\ \mathbf{W} \times_{\mathbf{W}} \mathbf{L}_{\mathbf{W}}^{\square} &\stackrel{\sim}{\longleftarrow} \Delta_{\mathbf{W}/\mathbf{S}}^{(1)} \stackrel{\longleftarrow}{\longleftarrow} \mathbf{W} \times_{\mathbf{S}} \mathbf{W}. \end{split}$$

 $^{^{(12)}}$ N.D.E. : Dans la démonstration de SGA 1, III 5.1, il faut corriger en conséquence la phrase « Or les homomorphismes d'algèbres $\mathscr{A} \to \mathscr{O}_{Y}$ correspondent . . . » (la suite de *loc. cit.* étant inchangée).

Théorème 0.1.8. — (SGA 1, III 5.1) ⁽¹³⁾ Soient Y, X deux S-schémas, \mathfrak{J} un idéal quasi-cohérent de \mathscr{O}_{Y} de carré nul, $Y_{\mathfrak{J}}$ le sous-schéma fermé de Y défini par \mathfrak{J} , et $g_{\mathfrak{J}}: Y_{\mathfrak{J}} \to X$ un S-morphisme.

a) L'ensemble $P(g_{\mathfrak{J}})$ des S-morphismes $g: Y \to X$ qui prolongent $g_{\mathfrak{J}}$ est soit vide, soit principal homogène sous le groupe abélien

$$\operatorname{Hom}_{\mathscr{O}_{Y_{\mathfrak{I}}}}(g_{\mathfrak{J}}^{*}(\Omega_{X/S}^{1}),\mathfrak{J}).$$

b) Si $i: Y_0 \hookrightarrow Y_{\mathfrak{J}}$ est l'immersion fermée définie par un idéal quasi-cohérent $\mathfrak{I} \supset \mathfrak{J}$ tel que $\mathfrak{I}\mathfrak{J} = 0$, et si $g_0 = g_{\mathfrak{J}} \circ i$, le groupe abélien précédent est isomorphe à

$$\operatorname{Hom}_{\mathscr{O}_{Y_0}}(g_0^*(\Omega^1_{X/S}),\mathfrak{J}).$$

 $D\'{e}monstration$. (b) se déduit aussitôt de (a). En effet, \mathfrak{J} , étant annulé par \mathfrak{I} , peut être considéré comme un \mathscr{O}_{Y_0} -module, d'où, par adjonction :

$$\operatorname{Hom}_{\mathscr{O}_{\mathbf{Y}_{\mathfrak{I}}}}(g_{\mathfrak{J}}^{*}(\Omega_{\mathbf{X}/\mathbf{S}}^{1}),\mathfrak{J}) = \operatorname{Hom}_{\mathscr{O}_{\mathbf{Y}_{0}}}(i^{*}g_{\mathfrak{J}}^{*}(\Omega_{\mathbf{X}/\mathbf{S}}^{1}),\mathfrak{J}).$$

Pour démontrer (a), on peut supposer $P(g_{\mathfrak{J}}) \neq \emptyset$, i.e. qu'il existe un S-morphisme $g: Y \to X$ prolongeant $g_{\mathfrak{J}}$. Notons j l'immersion $Y_{\mathfrak{J}} \hookrightarrow Y$. Alors, $P(g_{\mathfrak{J}})$ est l'ensemble des S-morphismes $g': Y \to X$ tels que $g' \circ j = g_{\mathfrak{J}}$. La donnée d'un tel g' équivaut à la donnée d'un S-morphisme

$$h: Y \longrightarrow X \times_S X$$

tel que pr₁ \circ h=g et $h_{\mathfrak{J}}=\delta\circ g_{\mathfrak{J}},$ où $h_{\mathfrak{J}}=h\circ j$ et δ est l'immersion diagonale X \hookrightarrow X $\times_{\mathbf{S}}$ X :

$$\begin{array}{c|c} X \times_S X \stackrel{h_{\mathfrak{J}} = \delta \circ g_{\mathfrak{J}}}{\longleftarrow} Y_{\mathfrak{J}} \\ pr_1 & & \downarrow j \\ X \stackrel{g}{\longleftarrow} Y. \end{array}$$

Comme $h_{\mathfrak{J}}$ se factorise par δ et que Y est dans le premier voisinage infinitésimal de l'immersion $j: Y_{\mathfrak{J}} \to Y$ (puisque $\mathfrak{J}^2 = 0$), alors, par fonctorialité (cf. EGA IV₄, 16.2.2 (i)), les h cherchés se factorisent, de façon unique, par $\Delta^{(1)}_{X/S}$ (cf. 0.1.7). Posons

$$Y' = \Delta_{X/S}^{(1)} \times_X Y \qquad \text{et} \qquad Y'_{\mathfrak{J}} = Y' \times_Y Y_{\mathfrak{J}} = \Delta_{X/S}^{(1)} \times_X Y_{\mathfrak{J}}.$$

Alors les h cherchés sont en bijection avec les sections u de $Y' \to Y$ qui prolongent la section $u_{\mathfrak{J}} = (\delta \circ g_{\mathfrak{J}}, \mathrm{id})$ de $Y'_{\mathfrak{J}} \to Y_{\mathfrak{J}}$. D'autre part, Y' (resp. $Y'_{\mathfrak{J}}$) est un schéma affine sur Y (resp. $Y_{\mathfrak{J}}$), correspondant à l'algèbre quasi-cohérente

$$\mathscr{A} = \mathscr{O}_{\mathrm{Y}} \oplus g^*(\Omega^1_{\mathrm{X/S}}), \quad \text{resp.} \quad \mathscr{A}_{\mathfrak{J}} = \mathscr{A} \otimes_{\mathscr{O}_{\mathrm{Y}}} \mathscr{O}_{\mathrm{Y}_{\mathfrak{J}}} = \mathscr{O}_{\mathrm{Y}_{\mathfrak{J}}} \oplus g^*_{\mathfrak{J}}(\Omega^1_{\mathrm{X/S}}).$$

Notons $\varepsilon: \mathscr{A} \to \mathscr{O}_Y$ l'augmentation canonique de \mathscr{A} (i.e. le morphisme de \mathscr{O}_Y -algèbres $\mathscr{A} \to \mathscr{O}_Y$ qui s'annule sur $g^*(\Omega^1_{X/S})$), et définissons de même $\varepsilon_{\mathfrak{J}}: \mathscr{A}_{\mathfrak{J}} \to \mathscr{O}_{Y_{\mathfrak{J}}}$. Alors,

$$\Gamma(Y'/Y) \simeq \operatorname{Hom}_{\mathscr{O}_{Y}\text{-alg.}}(\mathscr{A}, \mathscr{O}_{Y}) \qquad , \qquad \Gamma(Y'_{\mathfrak{J}}/Y_{\mathfrak{J}}) \simeq \operatorname{Hom}_{\mathscr{O}_{Y_{\mathfrak{J}}}\text{-alg.}}(\mathscr{A}_{\mathfrak{J}}, \mathscr{O}_{Y_{\mathfrak{J}}})$$

 $^{^{(13)}}$ N.D.E.: On a repris ici l'énoncé et la démonstration de SGA 1, III 5.1, dont on a besoin pour démontrer la proposition 0.2 plus loin (voir déjà le corollaire 0.1.9 qui suit). D'autre part, \mathfrak{J} (resp. \mathfrak{I}) est une autre calligraphie de la lettre J (resp. I); revenant aux notations antérieures ($\mathcal{J} \subset \mathcal{I}$ idéaux de \mathscr{O}_{S} tels que $\mathcal{I} \mathcal{J} = 0$), on appliquera ceci à $\mathfrak{J} = \mathcal{J}\mathscr{O}_{Y}$ (resp. $\mathfrak{I} = \mathcal{I}\mathscr{O}_{Y}$).

et, via ces isomorphismes, la section $u = (\delta \circ g, \mathrm{id})$ (resp. $u_{\mathfrak{J}}$) correspond à ε (resp. $\varepsilon_{\mathfrak{J}}$). Par conséquent, $P(g_{\mathfrak{J}})$ est en bijection avec l'ensemble des morphismes d'algèbres $\mathscr{A} \to \mathscr{O}_{Y}$ qui se réduisent selon $\varepsilon_{\mathfrak{J}}$, et via cette bijection, g correspond à ε .

Posons $\mathscr{M}=g^*(\Omega^1_{X/S})$. Alors $\operatorname{Hom}_{\mathscr{O}_{Y}\text{-alg.}}(\mathscr{A},\mathscr{O}_{Y})$ s'identifie à l'ensemble des \mathscr{O}_{Y} -morphismes $\psi:\mathscr{M}\to\mathscr{O}_{Y}$ tels que $\operatorname{Im}(\psi)$ soit un idéal de carré nul, et l'on s'intéresse à ceux qui induisent le morphisme nul $\mathscr{M}\to\mathscr{O}_{Y_{\mathfrak{J}}}=\mathscr{O}_{Y}/\mathfrak{J}$, i.e. qui appliquent \mathscr{M} dans \mathfrak{J} . Réciproquement, comme $\mathfrak{J}^2=0$, tout \mathscr{O}_{Y} -morphisme $\phi:\mathscr{M}\to\mathfrak{J}$ provient d'un (unique) morphisme d'algèbres $\mathscr{A}\to\mathscr{O}_{Y}$, se réduisant selon $\varepsilon_{\mathfrak{J}}$. Enfin, on a $\operatorname{Hom}_{\mathscr{O}_{Y}}(g^*(\Omega^1_{X/S}),\mathfrak{J})=\operatorname{Hom}_{\mathscr{O}_{Y_{\mathfrak{J}}}}(g^*_{\mathfrak{J}}(\Omega^1_{X/S}),\mathfrak{J})$ puisque $\mathfrak{J}^2=0$ (cf. la démonstration de (b) déjà vue). On obtient donc une bijection

$$P(g_{\mathfrak{J}}) \simeq \operatorname{Hom}_{\mathscr{O}_{Y_{\mathfrak{J}}}}(g_{\mathfrak{J}}^{*}(\Omega_{X/S}^{1}), \mathfrak{J})$$

par laquelle g correspond au morphisme nul.

Pour tout $m \in \operatorname{Hom}_{\mathscr{O}_{Y_{\mathfrak{J}}}}(g_{\mathfrak{J}}^{*}(\Omega_{X/S}^{1}), \mathfrak{J})$, notons $m \cdot g$ l'élément de $P(g_{\mathfrak{J}})$ associé à g et m par la bijection précédente. On a déjà vu que $0 \cdot g = g$; il reste à voir que

$$(0.1.8(*)) m' \cdot (m \cdot g) = (m + m') \cdot g.$$

Ceci se vérifie localement. $^{(14)}$ En effet, les deux morphismes $Y \to X$ précédents induisent la même application continue que g entre les espaces topologiques sous-jacents; il suffit donc de vérifier que pour tout ouvert affine $U = \operatorname{Spec}(A)$ de X au-dessus d'un ouvert affine $\operatorname{Spec}(\Lambda)$ de X0, et tout ouvert affine X1 especX2 de X3 de X4. The X5 de X6 de X6 de X6 de X6 de X6 de X7 de X8 de X9 d

Soit $J = \Gamma(V, \mathfrak{J})$ et soient ϕ, ψ et η les morphismes $A \to B$ induits par $g, m \cdot g$ et $m' \cdot (m \cdot g)$ respectivement; ils coïncident modulo J. On peut écrire de façon unique $\psi = \phi + D$ (resp. $\eta = \psi + D'$), où D (resp. D') est un élément de

$$\operatorname{D\acute{e}r}_{\phi}(A, J) = \{ \delta \in \operatorname{Hom}_{\Lambda}(A, J) \mid \delta(ab) = \phi(a)\delta(b) + \phi(b)\delta(a) \}$$

(resp. $D\acute{e}r_{\psi}(A,J)$). Mais $D\acute{e}r_{\phi}(A,J)=D\acute{e}r_{\psi}(A,J)$ puisque $J^2=0,$ et tous deux s'identifient à

$$\operatorname{Hom}_{B/J}(\Omega^1_{A/\Lambda} \otimes_A B/J, J),$$

et via cette identification D correspond à m et D' à m'. Alors, $\eta = \phi + D + D'$ et D + D' correspond à m + m', d'où l'égalité (*).

Corollaire 0.1.9. — $^{(15)}$ Soit X un S-schéma; reprenons les notations de 0.1.5. Alors X est muni d'une opération (à gauche) du X⁺-groupe abélien L_X , qui fait de X un objet formellement principal homogène sous L_X au-dessus de X⁺, i.e. on a un isomorphisme de X⁺-foncteurs :

$$L_X \underset{X^+}{\times} X \xrightarrow{\sim} X \underset{X^+}{\times} X$$

(défini ensemblistement par $(m, x) \mapsto (x, m \cdot x)$).

⁽¹⁴⁾N.D.E.: Ce qui précède est repris presque mot-à-mot de SGA 1, III 5.1; on a détaillé ce qui suit. ⁽¹⁵⁾N.D.E.: On a ajouté ce corollaire de SGA 1, III 5.1, qui démontre le point (i) de la proposition 0.2 plus loin.

 $D\acute{e}monstration$. Soit i_0 l'immersion $X_0 \hookrightarrow X$. Notons d'abord que, comme $X_0 = X \times_S S_0$, on a $i_0^*(\Omega^1_{X/S}) \simeq \Omega^1_{X_0/S_0}$ (cf. EGA IV, 16.4.5).

Soit Y un X⁺-schéma, donné par un S-morphisme $g_{\mathcal{J}}: Y_{\mathcal{J}} \to X$, et soit $g_0: Y_0 \to X_0$ le morphisme obtenu par changement de base. D'après 0.1.8, si $\operatorname{Hom}_{X^+}(Y,X)$ est non vide, c'est un ensemble principal homogène sous le groupe

$$\operatorname{Hom}_{\mathscr{O}_{Y_0}}(g_0^*i_0^*(\Omega^1_{X/S}), \mathscr{J}\mathscr{O}_Y),$$

lequel s'identifie à $\operatorname{Hom}_{\mathscr{O}_{Y_0}}(g_0^*(\Omega^1_{X_0/S_0}), \mathscr{J}\mathscr{O}_Y) = L_X(Y)$. On a donc une bijection

$$L_X(Y) \times Hom_{X^+}(Y, X) \xrightarrow{\sim} Hom_{X^+}(Y, X \times_{X^+} X)$$

donnée par $(m,g) \mapsto (g, m \cdot g)$. Montrons que ceci est « fonctoriel en Y ».

Soit $f: \mathbf{Z} \to \mathbf{Y}$ un morphisme de S-schémas. Il s'agit de montrer que le diagramme ci-dessous est commutatif :

$$\begin{array}{c|c} L_X(Y) \times \operatorname{Hom}_{X^+}(Y,X) \stackrel{\sim}{\longrightarrow} \operatorname{Hom}_{X^+}(Y,X \times_{X^+} X) \\ \\ L_X(f) \times f & & \downarrow f \times f \\ \\ L_X(Z) \times \operatorname{Hom}_{X^+}(Z,X) \stackrel{\sim}{\longrightarrow} \operatorname{Hom}_{X^+}(Z,X \times_{X^+} X). \end{array}$$

Si $\operatorname{Hom}_{X^+}(Y,X) = \emptyset$, il n'y a rien à montrer. Il suffit donc de voir que, pour tout S-morphisme $g: Y \to X$ prolongeant $g_{\mathcal{J}}$ et tout $m \in L_X(Y)$, on a :

$$(0.1.9(*)) \qquad (m \cdot g) \circ f = L_{\mathbf{X}}(f)(m) \cdot (g \circ f).$$

Ces deux S-morphismes $Z \to X$ coïncident sur $Z_{\mathcal{J}}$ avec $g_{\mathcal{J}} \circ f_{\mathcal{J}}$; en particulier, ils induisent la même application continue que $g \circ f$ entre les espaces topologiques sous-jacents. Par conséquent, il suffit de voir que, si $z \in Z$, y = f(z), x = g(y), et si A, B, C désignent respectivement les anneaux locaux $\mathscr{O}_{X,x}$, $\mathscr{O}_{Y,y}$, $\mathscr{O}_{Z,z}$, alors les morphismes $A \to C$ induits par $(m \cdot g) \circ f$ et $L_X(f)(m) \cdot (g \circ f)$ coïncident. Notons s l'image de x dans S, $\Lambda = \mathscr{O}_{S,s}$, J et I les idéaux de Λ correspondants à \mathcal{J} et \mathcal{I} , et soient $\phi, \psi : A \to B$ et $\theta : B \to C$ les morphismes de Λ -algèbres induits par $g, m \cdot g$ et f. Alors, m induit un élément D de

$$\operatorname{Hom}_{B/IB}(\Omega^1_{A/\Lambda} \otimes_A B/IB, JB) = \operatorname{D\acute{e}r}_{\Lambda}(A, JB)$$

et l'on a $\psi = \phi + D$; donc $(m \cdot g) \circ f$ correspond à $\theta \circ \psi = \theta \circ \phi + \theta \circ D$. Or, on a vu en 0.1.5 que $\theta \circ D$ est l'image de $L_X(f)(m)$ dans

$$\operatorname{Hom}_{C/IC}(\Omega^1_{A/\Lambda} \otimes_A C/IC, JC) = \operatorname{D\acute{e}r}_{\Lambda}(A, JC);$$

par conséquent, $\theta \circ \phi + \theta \circ D$ est l'image de $L_X(f)(m) \cdot (g \circ f)$. Ceci prouve l'égalité $(0.1.9 \, (*))$.

Corollaire 0.1.10. — ⁽¹⁶⁾ a) L_X dépend fonctoriellement de X: pour tout S-morphisme $f: X \to W$, il existe un S-morphisme $L_f: L_X \to L_W$ qui est un morphisme de groupes

⁽¹⁶⁾ N.D.E.: On a détaillé la « fonctorialité en X » de L_X, en particulier le point b) ci-dessous.

abéliens « au-dessus de f^+ », c.-à-d., le diagramme

$$\begin{array}{ccc} L_{X} & \xrightarrow{L_{f}} & L_{W} \\ \downarrow & & \downarrow \\ X^{+} & \xrightarrow{f^{+}} & W^{+} \end{array}$$

est commutatif et, pour tout $Y \to X^+$,

$$\mathcal{L}_f(\mathcal{Y}): \quad \mathrm{Hom}_{\mathcal{X}^+}(\mathcal{Y},\mathcal{L}_{\mathcal{X}}) \longrightarrow \mathrm{Hom}_{\mathcal{W}^+}(\mathcal{Y},\mathcal{L}_{\mathcal{W}})$$

(où Y est au-dessus de W^+ via f^+) est un morphisme de groupes abéliens.

b) De plus, le diagramme suivant est commutatif :

 $D\'{e}monstration$. a) L_f est induit par le morphisme de \mathscr{O}_{X_0} -modules $f_{X_0/W_0/S_0}$: $f_0^*(\Omega^1_{W_0/S_0}) \to \Omega^1_{X_0/S_0}$ (cf. 0.1.7 b)) : pour tout X^+ -schéma Y, donné par un S-morphisme $g_{\mathcal{J}}: Y_{\mathcal{J}} \to X$, on a un diagramme commutatif, fonctoriel en Y:

$$\operatorname{Hom}_{\mathscr{O}_{Y_0}}(g_0^*(\Omega^1_{X_0/S_0}), \mathcal{J}\mathscr{O}_Y) \xrightarrow{L_f(Y)} \operatorname{Hom}_{\mathscr{O}_{Y_0}}(g_0^*f_0^*(\Omega^1_{W_0/S_0}), \mathcal{J}\mathscr{O}_Y)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

où $L_f(Y)$ est l'application $\psi \mapsto \psi \circ g_0^*(f_{X_0/W_0/S_0})$, qui est bien un morphisme de groupes abéliens. (17)

Démontrons (b). Soit Y un X⁺-schéma; si $\operatorname{Hom}_{X^+}(Y,X) = \emptyset$ il n'y a rien à montrer. Soit donc $g \in \operatorname{Hom}_{X^+}(Y,X)$; il faut voir que pour tout $m \in L_X(Y)$, on a .

$$(0.1.10(*)) f \circ (m \cdot g) = L_f(Y)(m) \cdot (f \circ g).$$

Or, g étant fixé, $\mathrm{Hom_X}(Y,X\times_{X^+}X)$ est un sous-ensemble de $\mathrm{Hom_X}(Y,\Delta^{(1)}_{X/S})$ et

$$L_X(Y) = \operatorname{Hom}_{\mathscr{O}_{Y_0}}(g_0^*(\Omega^1_{X_0/S_0}), \mathscr{J}\mathscr{O}_Y) = \operatorname{Hom}_{\mathscr{O}_Y}(g^*(\Omega^1_{X/S}), \mathscr{J}\mathscr{O}_Y)$$

un sous-ensemble de $L_X^{\square}(Y)$ (cf. 0.1.7), enfin $L_f(Y)$ est la restriction à $L_X(Y)$ de l'application $L_f^{\square}(Y)$. De plus, la bijection

$$L_X(Y) \xrightarrow{\sim} Hom_X(Y, X \times_{X^+} X), \qquad m \mapsto (q, m \cdot q)$$

est (l'inverse de) la restriction à $L_X(Y) \subset L_X^{\square}(Y)$ de la bijection $\operatorname{Hom}_X(Y, \Delta_{X/S}^{(1)}) \xrightarrow{\sim} \{g\} \times L_X^{\square}(Y)$ considérée dans 0.1.7.1. Par conséquent, l'égalité (0.1.10 (*)) résulte de

 $^{^{(17)}}$ N.D.E. : On notera que L $_f$ ne dépend que de $f_0: X_0 \to W_0.$

 $(0.1.7\,(*))$; en effet, si l'on note g' le X-morphisme $Y \to \Delta_{X/S}^{(1)}$ défini par $(g, m \cdot g)$, alors l'élément de $L_W(Y)$ correspondant à $(f \circ g, f \circ g')$ est $L_f^{\square}(Y)(m) = L_f(Y)(m)$, c.-à-d., on a bien

$$L_f(m) \cdot (f \circ g) = f \circ (m \cdot g).$$

Lemme 0.1.11. — Soient X, X' deux S-schémas. On a un diagramme commutatif :

 $^{(18)}$ Démonstration. D'abord, pour tout S-schéma Y, $\operatorname{Hom}_S(Y,X^+\times_S X'^+)$ égale $\operatorname{Hom}_S(Y,X^+)\times\operatorname{Hom}_S(Y,X'^+)$ et celui-ci est isomorphe à

$$\operatorname{Hom}_S(Y_{\mathcal{J}},X) \times \operatorname{Hom}_S(Y_{\mathcal{J}},X') = \operatorname{Hom}_S(Y,(X \times_S X')^+);$$

ceci prouve que $X^+ \times_S X'^+ \simeq (X \times_S X')^+$.

Ensuite, soit Y un schéma au-dessus de X⁺ ×_S X'⁺ via un morphisme $h: Y_{\mathcal{J}} \to X \times_S X'$; posons $f = p \circ h$ et $g = q \circ h$, où l'on a noté p, q les projections de $X \times_S X'$ vers X et X'. Puisque $\Omega^1_{(X_0 \times_{S_0} X_0')/S_0} \cong p_0^*(\Omega^1_{X_0/S_0}) \oplus q_0^*(\Omega^1_{X_0/S_0})$ (cf. EGA IV₄, 16.4.23), on obtient un isomorphisme naturel :

$$\begin{aligned} \operatorname{Hom}_{\mathscr{O}_{Y_0}}(f_0^*(\Omega^1_{X_0/S_0}), \mathcal{J}\mathscr{O}_Y) \times \operatorname{Hom}_{\mathscr{O}_{Y_0}}(g_0^*(\Omega^1_{X_0'/S_0}), \mathcal{J}\mathscr{O}_Y) \\ & \simeq \operatorname{Hom}_{\mathscr{O}_{Y_0}}(h_0^*(\Omega^1_{(X_0 \times_{S_0} X_0')/S_0}), \mathcal{J}\mathscr{O}_Y) \end{aligned}$$

c.-à-d.,
$$L_X(Y) \times L_{X'}(Y) \simeq L_{X \times_S X'}(Y)$$
.

Remarque 0.1.12. — ⁽¹⁹⁾ Soient $\mathscr C$ une catégorie stable par produits fibrés, S un objet de $\mathscr C$, T_1, T_2 deux objets au-dessus de S et, pour $i=1,2,\ L_i$ et X_i deux objets au-dessus de T_i :

Alors, on a un isomorphisme naturel:

$$(L_1 \times_{T_1} X_1) \times_S (L_2 \times_{T_2} X_2) \simeq (L_1 \times_S L_2) \times_{T_1 \times_S T_2} (X_1 \times_S X_2).$$

Par conséquent, on déduit du lemme précédent le :

 $^{^{(18)}}$ N.D.E. : On a détaillé la démonstration.

⁽¹⁹⁾ N.D.E. : On a ajouté cette remarque, ainsi que le corollaire qui suit.

Corollaire 0.1.13. — Soient X_1, X_2 deux S-schémas. On a un diagramme commutatif d'isomorphismes :

$$\begin{array}{c|c} L_{X_1\times_S X_2}\times_{(X_1\times_S X_2)^+}(X_1\times_S X_2)\\ & (0.1.11) \Big|\simeq \\ \\ (L_{X_1}\times_S L_{X_2})\times_{(X_1^+\times_S X_2^+)}(X_1\times_S X_2) \xrightarrow[(0.1.12)]{\sim} (L_{X_1}\times_{X_1^+} X_1)\times_S (L_{X_2}\times_{X_2^+} X_2). \end{array}$$

Nous pouvons maintenant énoncer :

Proposition 0.2. — Pour tout S-schéma X, on peut définir une opération (à gauche) du X^+ -groupe abélien L_X sur le X^+ -objet X, telle que :

(i) cette opération fasse de X un objet formellement principal homogène sous L_X au-dessus de X^+ , i.e. le morphisme

$$L_X \underset{X^+}{\times} X \longrightarrow X \underset{X^+}{\times} X$$

est un isomorphisme de X⁺-foncteurs;

(ii) cette opération soit fonctorielle en le S-schéma X, c.-à-d., pour tout S-morphisme $f: X \to W$, le diagramme suivant est commutatif:

$$\begin{array}{ccc} L_{X} \times_{X^{+}} X & \longrightarrow & X \\ L_{f} \times f & & f \\ & & L_{W} \times_{W^{+}} W & \longrightarrow & W \end{array}$$

(iii) cette opération « commute au produit fibré », i.e. pour tous S-schémas X_1 et X_2 , le diagramme suivant est commutatif :

$$\begin{array}{c|c} L_{X_1\times_S X_2}\times_{(X_1\times_S X_2)^+}(X_1\times_S X_2) &\longrightarrow X_1\times_S X_2 \\ & \simeq & & & & \\ (L_{X_1}\times_S L_{X_2})\times_{(X_1\times_S X_2)^+}(X_1\times_S X_2) &\xrightarrow{\sim} (L_{X_1}\times_{X_1^+} X_1)\times_S (L_{X_2}\times_{X_2^+} X_2). \end{array}$$

 $D\'{e}monstration$. (20) (i) et (ii) découlent respectivement des corollaires 0.1.9 et 0.1.10. Pour prouver (iii), notons $P(X) = L_X \times_{X^+} X$, pour tout S-schéma X. Alors, d'après (ii) appliqué aux projections $p_i : X_1 \times_S X_2 \to X_i$, on obtient des carrés commutatifs

$$P(X_1 \times_S X_2) \longrightarrow X_1 \times_S X_2$$

$$L_{p_i} \times p_i \downarrow \qquad \qquad \downarrow^{p_i}$$

$$P(X_i) \longrightarrow X_i$$

⁽²⁰⁾ N.D.E. : On a modifié et détaillé l'original, en tenant compte des ajouts faits précédemment ; ceux-ci incorporent, en le détaillant, le contenu de la page 89 de l'original.

91

pour i = 1, 2, et donc un carré commutatif :

Combinant ceci avec le corollaire 0.1.13, on obtient que la flèche verticale est un isomorphisme, et que l'on a le diagramme commutatif annoncé dans (iii).

Remarque 0.3. — Supposons le X⁺-schéma Y plat sur S (cf. SGA 1, IV). On peut écrire alors

$$\operatorname{Hom}_{X^+}(Y, L_X) = \operatorname{Hom}_{\mathscr{O}_{Y_0}}(g_0^*(\Omega^1_{X_0/S_0}), \ \mathcal{J} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_{Y_0}).$$

Remarque 0.4. — Notons $\pi_0: X_0 \to S_0$ le morphisme structural et supposons qu'il existe un \mathscr{O}_{S_0} -module $\omega^1_{X_0/S_0}$ tel que $\Omega^1_{X_0/S_0} \simeq \pi_0^*(\omega^1_{X_0/S_0})$ (le cas se présentera en particulier lorsque X_0 sera un S_0 -groupe, cf. II, 4.11). Si on définit un foncteur L_X' au-dessus de S par la formule

$$(0.4.1) \qquad \operatorname{Hom}_{S}(Y, L'_{X}) = \operatorname{Hom}_{\mathscr{O}_{Y_{0}}}(\omega^{1}_{X_{0}/S_{0}} \otimes_{\mathscr{O}_{S_{0}}} \mathscr{O}_{Y_{0}}, \mathscr{J}\mathscr{O}_{Y}),$$

on a alors $\operatorname{Hom}_{X^+}(Y, L_X) = \operatorname{Hom}_S(Y, L_X')$ pour tout X^+ -schéma Y, c'est-à-dire

$$L_X = L'_X \underset{S}{\times} X^+.$$

(21) Alors, puisque $L_X \times_{X^+} X = L_X' \times_S X$, l'opération de L_X sur X induit une opération de L_X' sur X, et cette opération respecte le morphisme $p_X : X \to X^+$; en effet, si Y est un S-schéma, $h : Y \to X$ un S-morphisme et m un élément de $L_X'(Y)$, alors h et $m \cdot h$ ont même restriction à $Y_{\mathcal{J}}$, i.e. $p_X(m \cdot h) = p_X(h)$.

Remarque 0.5. — Conservons les hypothèses et notations de 0.4 et supposons de plus que Y soit un S-schéma *plat* sur S. On a alors

$$\text{Hom}_{X^{+}}(Y, L_{X}) = \text{Hom}_{S}(Y, L'_{X}) = \text{Hom}_{S_{0}}(Y_{0}, L_{0X}),$$

où le S_0 -foncteur en groupes abéliens L_{0X} est défini par l'identité (par rapport au S_0 -schéma variable T) suivante :

$$(0.5.1) \qquad \operatorname{Hom}_{S_0}(T, L_{0X}) = \operatorname{Hom}_{\mathscr{O}_T}(\omega^1_{X_0/S_0} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_T, \ \mathcal{J} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_T).$$

Dans les notations de II, 1, on a donc montré que les foncteurs L_X' et $\prod_{S_0/S} L_{0X}$ ont même restriction à la sous-catégorie pleine de $(\mathbf{Sch})_{/S}$ dont les objets sont les S-schémas Y plats sur S.

Remarque 0.6. — Conservons les hypothèses et notations de 0.5 ⁽²²⁾ et supposons de plus qu'il existe une section ε_0 de $\pi_0: X_0 \to S_0$, on a alors $\omega^1_{X_0/S_0} \simeq \varepsilon^*_0(\Omega^1_{X_0/S_0})$. D'abord, on a (indépendamment de l'hypothèse précédente) :

$$\operatorname{Hom}_{S_0}(T, L_{0X}) = \Gamma(T, \operatorname{\mathscr{H}\!\mathit{om}}_{\mathscr{O}_T}(\omega^1_{X_0/S_0} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_T, \ \mathcal{J} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_T)).$$

 $^{{}^{(21)}{\}rm N.D.E.}$: On a détaillé ce qui suit.

⁽²²⁾ N.D.E.: On a ajouté l'hypothèse qui suit, implicite dans l'original.

Supposons maintenant que ω_{X_0/S_0}^1 admette une présentation finie (cf. EGA 0_I , 5.2.5), ce qui sera en particulier le cas si X_0 est localement de présentation finie sur S_0 (cf. EGA IV_4 , 16.4.22). Alors, si T est plat sur S_0 , il résulte de EGA 0_I , 6.7.6 que

$$\mathscr{H}\!\mathit{om}_{\mathscr{O}_{\mathrm{T}}}(\omega^1_{X_0/S_0}\otimes_{\mathscr{O}_{S_0}}\mathscr{O}_{\mathrm{T}},\ \mathcal{J}\otimes_{\mathscr{O}_{S_0}}\mathscr{O}_{\mathrm{T}})\cong \mathscr{H}\!\mathit{om}_{\mathscr{O}_{S_0}}(\omega^1_{X_0/S_0},\mathcal{J})\otimes_{\mathscr{O}_{S_0}}\mathscr{O}_{\mathrm{T}},$$

d'où

$$\operatorname{Hom}_{S_0}(T,L_{0X}) = \Gamma(T, \operatorname{\mathscr{H}\!\mathit{om}}_{\mathscr{O}_{S_0}}(\omega^1_{X_0/S_0}, \mathcal{J}) \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_T).$$

Introduisant la notation W($\,$) de I, 4.6.1, on a donc prouvé que pour tout S₀-schéma T plat sur S₀, on a

$$\operatorname{Hom}_{S_0}(T,L_{0X}) = \operatorname{Hom}_{S_0}(T,W(\operatorname{\mathscr{H}\!\mathit{om}}_{\mathscr{O}_{S_0}}(\omega^1_{X_0/S_0},\mathcal{J}))).$$

En résumé, si $\omega^1_{X_0/S_0}$ admet une présentation finie, et si on se restreint à la catégorie $\,$ 9 des S-schémas plats sur S, on a

$$(0.6.1) \qquad \qquad L_{X}' = \prod_{S_{0}/S} W(\mathscr{H}om_{\mathscr{O}_{S_{0}}}(\omega_{X_{0}/S_{0}}^{1}, \mathcal{J})),$$

et $\mathscr{H}om_{\mathscr{O}_{S_0}}(\omega^1_{X_0/S_0},\mathcal{J}))$ est un \mathscr{O}_{S_0} -module quasi-cohérent, par EGA I, 9.1.1.

Remarquons enfin que si ω_{X_0/S_0}^1 est en outre localement libre (de rang fini), par exemple si X_0 est *lisse* sur S_0 (auquel cas il est automatiquement localement de présentation finie sur S_0), on a

$$(0.6.2) \mathcal{H}om_{\mathscr{O}_{S_0}}(\omega^1_{X_0/S_0}, \mathcal{J}) \simeq \mathscr{L}ie(X_0/S_0) \otimes_{\mathscr{O}_{S_0}} \mathcal{J},$$

où on note par abus de langage (X₀ n'étant pas nécessairement un S₀-groupe) $\mathscr{L}ie(X_0/S_0)$ le dual du \mathscr{O}_{S_0} -module $\omega^1_{X_0/S_0}$. (23)

La proposition 0.2 (et sa démonstration) a deux corollaires importants. (24)

Corollaire 0.7. — Soit X un S-schéma.

- a) Tout S-endomorphisme de X induisant l'identité sur $X_{\mathcal{J}}$ est un automorphisme.
- b) On a une suite exacte de groupes :

$$0 \longrightarrow \operatorname{Hom}_{\mathscr{O}_{X_0}}(\Omega^1_{X_0/S_0}, \mathscr{J}\mathscr{O}_X) \stackrel{i}{\longrightarrow} \operatorname{Aut}_S(X) \longrightarrow \operatorname{Aut}_{S_{\mathscr{J}}}(X_{\mathscr{J}}).$$

c) De plus, si on fait opérer $\operatorname{Aut}_S(X)$ sur le premier groupe par transport de structure, on a, pour tous $u \in \operatorname{Aut}_S(X)$ et $m \in \operatorname{Hom}_{\mathscr{O}_{X_0}}(\Omega^1_{X_0/S_0}, \mathscr{JO}_X)$:

$$i(um) = u i(m) u^{-1}.$$

 $^{^{(23)}}$ N.D.E. : Ceci est justifié par II, 3.3 et 4.11. En effet, le foncteur $L_{X_0/S_0}^{\varepsilon_0}$, « espace tangent à X_0 sur S_0 au point ε_0 », est représenté par la fibration vectorielle $\mathbb{V}(\varepsilon_0^*(\Omega^1_{X_0/S_0}))=\mathbb{V}(\omega^1_{X_0/S_0})$ sur S_0 , dont le faisceau des sections est le module dual $\operatorname{Hom}_{\mathscr{O}_{S_0}}(\omega^1_{X_0/S_0},\mathscr{O}_{S_0})$; celui-ci est $\mathscr{Lie}(X_0/S_0)$ lorsque X_0 est un S_0 -groupe et ε_0 la section unité.

 $^{^{(24)}}$ N.D.E. : On a ajouté à 0.7 le corollaire 0.7.bis, qui était utilisé implicitement dans la démonstration de 0.8. Signalons ici que les numéros 0.8 à 0.12, ainsi que 0.17, qui jouent un rôle technique important dans la suite de cet exposé, sont des conséquences de 0.7 et 0.7.bis .

 $D\acute{e}monstration$. D'après 0.2 (i), $Hom_{X^+}(X,X)$ est un ensemble principal homogène sous $Hom_{X^+}(X,L_X)$, car il est certainement non vide; il contient en effet un point marqué : l'automorphisme identique de X. ⁽²⁵⁾ Par conséquent, l'application $m \mapsto m \cdot id_X$ induit une bijection

$$\operatorname{Hom}_{\mathscr{O}_{X_0}}(\Omega^1_{X_0/S_0}, \mathscr{J}\mathscr{O}_X) = L_X(X) \stackrel{\sim}{\longrightarrow} \operatorname{Hom}_{X^+}(X, X).$$

Soit $m \in L_X(X)$ et soit $f = m' \cdot id_X$ un élément de $Hom_{X^+}(X, X)$. Appliquant 0.2 (ii) à f, on obtient que :

$$f \circ (m \cdot id_X) = L_f(X)(m) \cdot f = L_f(X)(m) \cdot (m' \cdot id_X).$$

D'autre part, comme f est un X⁺-endomorphisme de X, on a $f_{\mathcal{J}} = \mathrm{id}_{X_{\mathcal{J}}}$ et donc $f_0 = \mathrm{id}_{X_0}$; comme L_f ne dépend que de f_0 (cf. N.D.E. (17) dans 0.1.10), on a donc $L_f(X)(m) = m$. Par conséquent, l'égalité ci-dessus se récrit :

$$(m' \cdot id_X) \circ (m \cdot id_X) = m \cdot (m' \cdot id_X) = (m + m') \cdot id_X.$$

Ceci montre que la bijection $m \mapsto m \cdot \mathrm{id}_X$ transforme la loi de groupe de $\mathrm{Hom}_{X^+}(X, L_X)$ en la loi de composition des X^+ -endomorphismes de X.

Il en résulte d'abord que tout élément de $\operatorname{Hom}_{X^+}(X,X)$ est inversible, ce qui est la première assertion de l'énoncé, puis que l'on a une suite exacte

$$0 \longrightarrow \operatorname{Hom}_{X^+}(X,L_X) \stackrel{i}{\longrightarrow} \operatorname{Aut}_S(X) \longrightarrow \operatorname{Aut}_{S_{\mathcal{J}}}(X_{\mathcal{J}}),$$

ce qui est la seconde.

Remarquons maintenant que le morphisme i défini ci-dessus est fonctoriel en X pour les isomorphismes, car il est défini en termes structuraux à partir de l'opération de L_X sur X au-dessus de X^+ , elle-même fonctorielle en X d'après l'assertion (ii) de la proposition 0.2. (26) Donc tout automorphisme u de X au-dessus de S induit par transport de structure des isomorphismes

$$h: \operatorname{Hom}_{X^+}(X, L_X) \stackrel{\sim}{\longrightarrow} \operatorname{Hom}_{X^+}(X, L_X)$$

et $f: \operatorname{Aut}_{S}(X) \xrightarrow{\sim} \operatorname{Aut}_{S}(X)$ tels que le diagramme suivant soit commutatif :

$$\begin{array}{ccc} \operatorname{Hom}_{X^+}(X, L_X) \xrightarrow{i} & \operatorname{Aut}_S(X) \\ h & & f \\ \downarrow & & \\ \operatorname{Hom}_{X^+}(X, L_X) \xrightarrow{i} & \operatorname{Aut}_S(X) \end{array}$$

i.e. tels que $f \circ i = i \circ h$. D'autre part, f est donné par le diagramme commutatif :

$$\begin{array}{c|c} X & \xrightarrow{a} & X \\ u & & \downarrow \\ Y & \xrightarrow{f(a)} & X \end{array}$$

 $^{^{(25)}}$ N.D.E. : On a détaillé ce qui suit.

⁽²⁶⁾ N.D.E. : On a détaillé ce qui suit.

c.-à-d., $f(a) = u \circ a \circ u^{-1}$, pour tout $a \in \text{Aut}_{S}(X)$. En écrivant i(h(m)) = f(i(m)), on trouve la formule cherchée.

Corollaire 0.7.bis. — Soit X un S-schéma tel que $X_{\mathcal{J}}$ soit un $S_{\mathcal{J}}$ -monoïde. Alors L_X est muni d'une structure de S-monoïde, on a une suite exacte scindée de S-monoïdes :

$$1 \longrightarrow L'_X \stackrel{i}{\longrightarrow} L_X \stackrel{p}{\Longleftrightarrow} X^+ \longrightarrow 1$$

et la loi de monoïde induite sur L_X' coïncide avec sa structure de groupe abélien. En particulier, si $X_{\mathcal{J}}$ est un $S_{\mathcal{J}}$ -groupe, alors L_X est un S-groupe et est le produit semi-direct de X^+ et de L_X' .

 $D\acute{e}monstration$. En effet, comme $X_{\mathcal{J}}$ est un $S_{\mathcal{J}}$ -monoïde, alors $X^+ = \prod_{S_{\mathcal{J}}/S} X_{\mathcal{J}}$ est un S-monoïde (en effet, on a $X^+(Y) = X_{\mathcal{J}}(Y_{\mathcal{J}})$ pour tout $Y \to S$). Pour tout S-schéma Y, notons $\widetilde{Y}_{\mathcal{J}}$ le $Y_{\mathcal{J}}$ -schéma affine correspondant à la $\mathscr{O}_{Y_{\mathcal{J}}}$ -algèbre quasi-cohérente $\mathscr{O}_{Y_{\mathcal{J}}} \oplus \mathscr{J}\mathscr{O}_{Y}$ (i.e. l'algèbre graduée associée à la filtration $\mathscr{O}_{Y} \supset \mathscr{J}\mathscr{O}_{Y}$). Alors $L_X(Y)$ s'identifie à $X_{\mathcal{J}}(\widetilde{Y}_{\mathcal{J}})$ et $L_X'(Y)$ au noyau du morphisme $p: X_{\mathcal{J}}(\widetilde{Y}_{\mathcal{J}}) \to X_{\mathcal{J}}(Y_{\mathcal{J}})$ induit par la « section nulle » $Y_{\mathcal{J}} \to \widetilde{Y}_{\mathcal{J}}$ (i.e. par le morphisme de $\mathscr{O}_{Y_{\mathcal{J}}}$ -algèbres $\mathscr{O}_{\widetilde{Y}_{\mathcal{J}}} \to \mathscr{O}_{Y_{\mathcal{J}}}$ s'annulant sur l'idéal $\mathscr{J}\mathscr{O}_{Y}$). On a donc, pour tout $Y \to S$, une suite exacte scindée de monoïdes, fonctorielle en Y:

$$1 \longrightarrow L_X'(Y) \xrightarrow{i} L_X(Y) \xrightarrow{p \atop \longleftarrow} X^+(Y) \longrightarrow 1 \ .$$

Il reste à voir que loi de monoïde induite sur L_X' coïncide avec sa structure de groupe abélien. Notons μ la loi de monoïde de L_X et e sa section unité; il faut montrer que pour tout $m, m' \in L_X'(Y)$, on a

$$\mu(m \cdot e, m' \cdot e) = (m + m') \cdot e.$$

Ceci peut se voir de l'une ou l'autre des façons suivantes. D'une part, on peut reprendre la démonstration de l'égalité (0.1.10 (*)) en remplaçant le morphisme $f: X \to W$ qui y figure par le morphisme $\mu: L_X \times_S L_X \to L_X$. Identifiant $X^+(Y) = X_{\mathcal{J}}(Y_{\mathcal{J}})$ à son image par s dans $L_X(Y) = X_{\mathcal{J}}(\widetilde{Y}_{\mathcal{J}})$ on obtient que, pour tout $g, g' \in X_{\mathcal{J}}(Y_{\mathcal{J}})$ et $m, m' \in L'_X(Y)$, on a

$$(\star) \qquad \qquad \mu(m \cdot g, m' \cdot g') = \mathcal{L}_{\mu}^{(g,g')}(m, m') \cdot \mu(g, g'),$$

où $L_{\mu}^{(g,g')}$ désigne le morphisme dérivé de μ au point (g,g') (i.e. $\widetilde{Y}_{\mathcal{J}}$ est au-dessus de $L_X \times_S L_X$ via (g,g')). En particulier, on a $\mu(m \cdot e, m' \cdot e) = L_{\mu}^{(e,e)}(m,m') \cdot e$; or $L_{\mu}^{(e,e)}(m,m') = L_{\ell_e}(m') + L_{r_e}(m)$, où ℓ_e (resp. r_e) désigne la translation à gauche (resp. à droite) par e, qui est l'application identique de $X_{\mathcal{J}}$, d'où $L_{\mu}^{(e,e)}(m,m') = m + m'$.

Ou bien, on peut procéder comme suit (cf. la démonstration de $[\mathbf{DG70}]$, § II.4, Th. 3.5). D'après le lemme 0.1.11, la formation de X^+ et de L_X « commute au produit » et il en donc de même de L_X' ; il en résulte que le morphisme $\mu': L_X' \times L_X' \to L_X'$, induit par μ , est un homomorphisme pour la structure de groupes abéliens. On déduit alors du lemme 3.10 de l'Exp. II que μ' coïncide avec la loi de groupe abélien.

0.8. $^{(27)}$ Soit maintenant X un S-schéma tel que $X_{\mathcal{J}}$ soit un $S_{\mathcal{J}}$ -groupe. Supposons qu'il existe un S-morphisme

$$P: X \underset{S}{\times} X \longrightarrow X$$

tel que le morphisme obtenu par changement de base

$$P_{\mathcal{J}}: X_{\mathcal{J}} \underset{S_{\mathcal{J}}}{\times} X_{\mathcal{J}} \longrightarrow X_{\mathcal{J}}$$

soit la loi de groupe de $X_{\mathcal{J}}$. (Un cas particulier important de la situation précédente sera le cas où X est un S-groupe et où on prend pour P sa loi de groupe). On en déduit un morphisme

$$L_P: L_X \underset{S}{\times} L_X \cong L_{X \times_S X} \longrightarrow L_X$$

qui, en fait, ne dépend pas de P, car il se calcule à l'aide de la loi de groupe $P_{\mathcal{J}}$ de $X_{\mathcal{J}}$ comme nous allons le voir maintenant. ⁽²⁸⁾ En effet, d'après (ii) et (iii) de 0.2, pour tout $Y \to S$ et $x, x' \in X(Y)$, $m, m' \in L'_X(Y)$, on a

$$\mathbf{P}(m \cdot x, m' \cdot x') = \mathbf{P}\big((m, m') \cdot (x, x')\big) = \mathbf{L}_{\mathbf{P}}^{(x, x')}(m, m') \cdot \mu(g, g')$$

où g (resp. g') est l'image de x (resp. x') dans $X^+(Y)$. De plus (cf. la démonstration de 0.10), $L_P^{(x,x')}$ égale $L_\mu^{(g,g')}$ et, d'après 0.7.bis (\star), celui-ci est l'élément de $L_X'(Y)$ défini par l'égalité suivante dans $L_X(Y)$:

$$L_{\mu}^{(g,g')}(m,m') \cdot \mu(g,g') = \mu(m \cdot g, m' \cdot g'),$$

c.-à-d., si on note \times (au lieu de μ) la loi de groupe de L_X et Ad « l'opération adjointe » de X^+ sur L_X' (qui se factorise par X_0 et qui est induite par l'opération adjointe de X_0 sur $\omega^1_{X_0/S_0}$), on obtient que

$$\mathrm{L}_{u}^{(g,g')}(m,m')\times g\times g'=m\times g\times m'\times g'=(m\times \mathrm{Ad}(g)(m'))\times g\times g'$$

d'où finalement $L_{\mathcal{P}}^{(x,x')}(m,m')=m\times \mathrm{Ad}(g)(m')$. On obtient donc la :

Proposition 0.8. — Soit $P: X\times_S X \to X$ un S-morphisme tel que $P_{\mathcal{J}}$ munisse $X_{\mathcal{J}}$ d'une structure de $S_{\mathcal{J}}$ -groupe. Notons \times la loi de groupe de L_X' et $(m,x) \mapsto m \cdot x$ le morphisme $L_X' \times_S X \to X$ définissant l'action de L_X' sur X, et soit $Ad: X^+ \to Aut_{S-gr.}(L_X')$ « l'opération adjointe » de X^+ sur L_X' (qui est induite par l'opération adjointe de X_0 sur ω_{X_0/S_0}^1). Alors, pour tout $S' \to S$ et $x, x' \in X(S')$, $m, m' \in L_X'(S')$, on a :

(0.8.1)
$$P(m \cdot x, m' \cdot x') = (m \times \operatorname{Ad} p_{X}(x)(m')) \cdot P(x, x').$$

Si X est un S-groupe, on notera * sa loi, e sa section unité, et i le S-morphisme défini par :

$$i(m) = m \cdot e \,,$$

pour tout $S' \to S$ et $m \in L'_X(S')$.

 $^{^{(27)}}$ N.D.E. : On a ajouté ici le numéro 0.8 pour marquer le retour à l'original.

⁽²⁸⁾ N.D.E.: On a détaillé l'original dans ce qui suit.

Corollaire 0.9. — Soit X un S-groupe. Alors X^+ est muni naturellement d'une structure de S-groupe, et p_X est un morphisme de S-groupes. De plus, le S-morphisme

$$i: L'_{\mathbf{X}} \longrightarrow \mathbf{X}, \qquad m \mapsto m \cdot e$$

est un isomorphisme de S-groupes de L'_X sur Ker(p_X), et l'on a, pour tous S' \to S, $x' \in X(S')$, $m \in L'_X(S')$:

$$(0.9.1) m \cdot x' = (m \cdot e) * x' = i(m) * x'.$$

Les deux premières assertions ont déjà été démontrées en 0.1.2. Comme X est formellement principal homogène au-dessus de X^+ sous $L_X = L_X' \times_S X^+$, le morphisme i est bien un isomorphisme de S-foncteurs de L_X' sur le noyau de p_X . Le fait que i soit un morphisme de groupes et la formule (0.9.1) résultent de la formule (0.8.1) appliquée respectivement à x = x' = e, et à x = e, m' = 1.

Corollaire 0.10. — Soit X un S-groupe. Avec les notations précédentes, pour tout $S' \to S$ et tous $x \in X(S')$ et $m' \in L_X'(S')$, on a

(0.10.1)
$$x * i(m') * x^{-1} = i(\operatorname{Ad} p_{X}(x)(m')).$$

Cela résulte de l'égalité $i(m')*x^{-1}=m'\cdot x^{-1}$ et de (0.8.1) appliquée à m=1 et $x'=x^{-1}$.

Lorsque X est un S-groupe, nous avons donc déterminé explicitement le noyau de $X \to X^+$ et l'opération des automorphismes intérieurs de X sur ce noyau. Nous allons maintenant voir que l'on peut faire de même pour certains S-foncteurs en groupes non nécessairement représentables. Un cas nous sera utile, celui des foncteurs $\underline{\mathrm{Aut}}$ (I 1.7). Énonçons tout de suite :

Proposition 0.11. — Soit E un S-schéma. Notons $X = \underline{Aut}_S(E)$. Le noyau du morphisme de S-foncteurs en groupes

$$p_X: X \longrightarrow X^+$$

s'identifie canoniquement au S-foncteur en groupes commutatifs $L_{\rm X}'$ défini par

$$\operatorname{Hom}_S(Y,L_X')=\operatorname{Hom}_{\mathscr{O}_{E_0\times_{S_0}Y_0}}(\Omega^1_{E_0/S_0}\otimes_{\mathscr{O}_{S_0}}\mathscr{O}_{Y_0},\ \mathcal{J}\mathscr{O}_{E\times_SY}),$$

où Y désigne un S-schéma variable.

En effet, si Y est un S-schéma variable, on a $\operatorname{Hom}_S(Y,X)=\operatorname{Aut}_Y(E\times_SY),$ et

$$\operatorname{Hom}_S(Y,X^+)=\operatorname{Hom}_S(Y_{\mathcal{J}},X)=\operatorname{Aut}_{Y_{\mathcal{J}}}(E\underset{S}{\times}Y_{\mathcal{J}})=\operatorname{Aut}_{Y_{\mathcal{J}}}((E\underset{S}{\times}Y)\underset{Y}{\times}Y_{\mathcal{J}}).$$

En appliquant 0.7 b) au Y-schéma ${\rm E}\times_{\rm S}{\rm Y},$ on obtient un isomorphisme de groupes :

$$\operatorname{Hom}_{S}(Y, L'_{X}) \simeq \operatorname{Ker} \left(\operatorname{Hom}_{S}(Y, X) \longrightarrow \operatorname{Hom}_{S}(Y, X^{+}) \right),$$

isomorphisme que l'on vérifie aisément être fonctoriel en le S-schéma Y. On obtient donc un isomorphisme de S-groupes

$$L'_{X} \simeq Ker(X \longrightarrow X^{+}),$$

ce qui achève la démonstration de la proposition 0.11.

96

97

Corollaire 0.12. — ⁽²⁹⁾ On conserve les notations de 0.11 : E est un S-schéma et $X = \underline{Aut}_S(E)$. On a une opération naturelle f de X sur L_X' définie de la manière suivante. Pour tout S-schéma Y, on a

$$\begin{split} \operatorname{Hom}_S(Y,X) &= \operatorname{Aut}_Y(E \times_S Y) \\ \mathit{et} &\quad \operatorname{Hom}_S(Y,L_X') &= \operatorname{Hom}_{\mathscr{O}_{E_0} \times_{S_0} Y_0}(\Omega^1_{E_0 \times_{S_0} Y_0/Y_0}, \mathscr{JO}_{E \times_S Y}) \end{split}$$

(N. B. $\Omega^1_{E_0/S_0} \otimes_{S_0} \mathscr{O}_{Y_0} \simeq \Omega^1_{E_0 \times_{S_0} Y_0/Y_0}$, cf. EGA IV₄, 16.4.5); le premier groupe opère sur le second par transport de structure et cette opération est bien fonctorielle en Y. On a alors la formule :

$$(0.12.1) x i(m) x^{-1} = i(f(x)m),$$

pour tout $Y \to S$ et tous $x \in \text{Hom}_S(Y, X)$, $m \in \text{Hom}_S(Y, L'_X)$.

En effet, ceci résulte de 0.7 c) appliqué au Y-schéma E \times_S Y.

Rappel 0.13. — L'image directe d'un module quasi-cohérent par un morphisme de *présentation finie* est quasi-cohérente. Sous les mêmes conditions, la formation de l'image directe commute au changement de base *plat*: dans la situation

$$T \stackrel{g'}{\longleftarrow} T' = T \times_{S} S'$$

$$f \downarrow \qquad \qquad f' \downarrow \qquad \qquad f' \downarrow$$

$$S \stackrel{g}{\longleftarrow} S'$$

si on suppose f (et donc f') de présentation finie et g (et donc g') plat, on a pour tout $\mathcal{O}_{\mathbf{T}}$ -module quasi-cohérent \mathscr{F}

$$f_*(\mathscr{F}) \otimes_{\mathscr{O}_{\mathcal{S}}} \mathscr{O}_{\mathcal{S}'} = f'_*(\mathscr{F} \otimes_{\mathscr{O}_{\mathcal{S}}} \mathscr{O}_{\mathcal{S}'}),$$

où, de manière plus esthétique

$$g^*(f_*(\mathscr{F})) = f'_*(g'^*(\mathscr{F})).$$

Ces deux faits sont plus généralement valables pour un morphisme f quasi-compact et quasi-séparé, cf. EGA I, 9.2.1 et EGA III₁, 1.4.15 dans le cas quasi-compact séparé (compte tenu de EGA III₂, Err_{III} 25) et EGA IV₁, 1.7.4 et 1.7.21.

Remarque 0.14. — $^{(30)}$ Reprenons les notations de 0.11 : soient E un S-schéma, $X = \underline{Aut}_S(E)$ et L_X' le S-foncteur en groupes commutatifs défini par :

$$\begin{split} L_X'(Y) &= \operatorname{Hom}_{\mathscr{O}_{E_0 \times_{S_0} Y_0}}(\Omega^1_{E_0/S_0} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_{Y_0}, \ \mathscr{J}\mathscr{O}_{E \times_S Y}) \\ &= \operatorname{Hom}_{\mathscr{O}_{E \times_S Y}}(\Omega^1_{E/S} \otimes_{\mathscr{O}_S} \mathscr{O}_Y, \ \mathscr{J}\mathscr{O}_{E \times_S Y}) \\ &= \Gamma\big(E \times_S Y, \mathscr{H}om_{\mathscr{O}_{E \times_S Y}}(\Omega^1_{E/S} \otimes_{\mathscr{O}_S} \mathscr{O}_Y, \ \mathscr{J}\mathscr{O}_{E \times_S Y})\big). \end{split}$$

⁽²⁹⁾ N.D.E. : On a changé « Remarque » en « Corollaire ».

⁽³⁰⁾ N.D.E.: On a détaillé la première partie de cette remarque, et l'on a ajouté une deuxième partie.

Supposons Y plat sur S, alors on a des isomorphismes:

$$\mathcal{J}\mathscr{O}_{E\times_SY} \xleftarrow{\sim} (\mathcal{J}\mathscr{O}_E) \otimes_{\mathscr{O}_S} \mathscr{O}_Y \xrightarrow{\sim} (\mathcal{J}\mathscr{O}_E) \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_{Y_0}.$$

Supposons de plus E de présentation finie sur S; alors $\Omega^1_{E/S}$ est un \mathscr{O}_E -module de présentation finie (cf. EGA IV₄, 16.4.22) et donc, d'après EGA 0_I , 6.7.6, on a :

$$\mathscr{H}om_{\mathscr{O}_{\mathrm{E}\times_{\mathrm{S}}\mathrm{Y}}}(\Omega^{1}_{\mathrm{E}/\mathrm{S}}\otimes_{\mathscr{O}_{\mathrm{S}}}\mathscr{O}_{\mathrm{Y}},\;(\mathcal{J}\mathscr{O}_{\mathrm{E}})\otimes_{\mathscr{O}_{\mathrm{S}}}\mathscr{O}_{\mathrm{Y}})\simeq \mathscr{H}om_{\mathscr{O}_{\mathrm{E}}}(\Omega^{1}_{\mathrm{E}/\mathrm{S}},\;\mathcal{J}\mathscr{O}_{\mathrm{E}})\otimes_{\mathscr{O}_{\mathrm{S}}}\mathscr{O}_{\mathrm{Y}}.$$

Notons $\pi: \mathcal{E} \to \mathcal{S}$ et $g: \mathcal{Y} \to \mathcal{S}$ les morphismes structuraux ; appliquant 0.13 au diagramme

$$\begin{array}{ccc}
E & \xrightarrow{g'} E \times_S Y \\
\pi \downarrow & & \pi' \downarrow \\
S & \xrightarrow{g} Y
\end{array}$$

et au \mathscr{O}_{E} -module $\mathscr{F} = \mathscr{H}om_{\mathscr{O}_{\mathrm{E}}}(\Omega^{1}_{\mathrm{E/S}}, \ \mathscr{J}\mathscr{O}_{\mathrm{E}})$, on obtient

$$\Gamma(E \times_S Y, g'^* \mathscr{F}) = \Gamma(Y, \pi'_* g'^* \mathscr{F}) = \Gamma(Y, g^* \pi_* \mathscr{F}) = W(\pi_* \mathscr{F})(Y).$$

On a donc montré que, si E est de présentation finie sur S, on a

(0.14.1)
$$L_{X}' = W(\pi_{*} \mathcal{H}om_{\mathscr{O}_{E}}(\Omega_{E/S}^{1}, \mathcal{J}\mathscr{O}_{E}))$$

sur la catégorie des S-schémas *plats* sur S. Notons de plus que le module dont on prend le W est *quasi-cohérent*, d'après EGA I, 9.1.1 et 9.2.1.

 $^{(31)}$ Notons L_0 le S_0 -foncteur

$$W(\pi_{0*} \mathcal{H}om_{\mathscr{O}_{E_0}}(\Omega^1_{E_0/S_0}, \mathcal{J}\mathscr{O}_E)).$$

Alors, revenant à la définition de $L_X'(Y)$ et tenant compte de l'isomorphisme

$$\mathcal{J}\mathscr{O}_{\mathrm{E}\times_{\mathrm{S}}\mathrm{Y}}\simeq (\mathcal{J}\mathscr{O}_{\mathrm{E}})\otimes_{\mathscr{O}_{\mathrm{S}_{0}}}\mathscr{O}_{\mathrm{Y}_{0}},$$

on obtient, en raisonnant comme plus haut, que

$$L'_X(Y) = L_0(Y_0) = L_0(Y \times_S S_0) = \Big(\prod_{S_0/S} L_0\Big)(Y).$$

Donc, sur la catégorie des S-schémas plats sur S, on a :

$$L_X' = \prod_{S_0/S} W \big(\pi_{0*} \operatorname{\mathscr{H}\!\mathit{om}}_{\mathscr{O}_{E_0}} (\Omega^1_{E_0/S_0}, \mathcal{J} \mathscr{O}_E) \big).$$

Il n'est pas évident que l'action de X sur L'_X définie en 0.12 provienne d'une action de $X_0 = \underline{\mathrm{Aut}}_{S_0}(E_0)$ sur L_0 ; c'est toutefois le cas lorsque, de plus, E est *plat* sur S.

 $^{^{(31)}}$ N.D.E. : On a ajouté ce qui suit.

En effet, on a dans ce cas des isomorphismes canoniques:

$$\begin{split} \mathcal{J}\mathscr{O}_{E} &\simeq \mathcal{J} \otimes_{\mathscr{O}_{S}} \mathscr{O}_{E} \simeq \mathcal{J} \otimes_{\mathscr{O}_{S_{0}}} \mathscr{O}_{E_{0}}. \\ L_{0} &\simeq W \big(\pi_{0*} \, \mathscr{H}\!\mathit{om}_{\mathscr{O}_{E_{0}}} \big(\Omega^{1}_{E_{0}/S_{0}}, \, \mathcal{J} \otimes_{\mathscr{O}_{S_{0}}} \mathscr{O}_{E_{0}} \big) \big), \\ (0.14.2) & L'_{X} &= \prod_{S_{0}/S} W \big(\pi_{0*} \, \mathscr{H}\!\mathit{om}_{\mathscr{O}_{E_{0}}} \big(\Omega^{1}_{E_{0}/S_{0}}, \, \mathcal{J} \otimes_{\mathscr{O}_{S_{0}}} \mathscr{O}_{E_{0}} \big) \big). \end{split}$$

Alors, pour tout S₀-schéma T, on a

$$L_0(T) \simeq \operatorname{Hom}_{\mathscr{O}_{E_0 \times_{S_0} T}}(\Omega^1_{E_0 \times_{S_0} T/T}, \mathcal{J} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_{E_0 \times_{S_0} T})$$

et $\operatorname{Hom}_{S_0}(T,X_0) = \operatorname{Aut}_T(E_0 \times_{S_0} T)$ agit par transport de structure sur $L_0(T)$, de façon fonctorielle en T, enfin pour tout S-schéma Y plat sur S, l'action par transport de structure de $\operatorname{Hom}_S(Y,X) = \operatorname{Aut}_Y(E \times_S Y)$ sur $L_X'(Y) = L_0(Y_0)$ se factorise par $\operatorname{Aut}_{Y_0}(E_0 \times_{S_0} Y_0)$.

Extrayons enfin de SGA 1 III les deux propositions suivantes.

Proposition 0.15. — (SGA 1 III, 6.8) ⁽³²⁾ Pour tout $S_{\mathcal{J}}$ -schéma Y lisse sur $S_{\mathcal{J}}$ et affine, il existe un S-schéma X lisse sur S tel que $X \times_S S_{\mathcal{J}} \simeq Y$, et un tel X est unique à isomorphisme (non unique) près.

Proposition 0.16. — (SGA 1 III, 5.5) ⁽³³⁾ Soit X un S-schéma lisse sur S. Pour tout S-schéma Y affine, l'application canonique

$$p_{\mathbf{X}}(\mathbf{Y}): \operatorname{Hom}_{\mathbf{S}}(\mathbf{Y}, \mathbf{X}) \longrightarrow \operatorname{Hom}_{\mathbf{S}}(\mathbf{Y}, \mathbf{X}^{+}) = \operatorname{Hom}_{\mathbf{S}_{\mathcal{I}}}(\mathbf{Y}_{\mathcal{I}}, \mathbf{X}_{\mathcal{I}})$$

est surjective.

Corollaire 0.17. — Soit E un S-schéma lisse sur S et affine; notons $X = \underline{Aut}_S(E)$. Pour tout S-schéma Y affine, l'application canonique

$$\operatorname{Aut}_Y(E\times_SY)=\operatorname{Hom}_S(Y,X)\longrightarrow \operatorname{Hom}_S(Y,X^+)=\operatorname{Aut}_{Y,\mathcal{I}}(E_{\mathcal{J}}\times_{S_{\mathcal{I}}}Y_{\mathcal{J}})$$

est surjective.

100

En effet, $Y \times_S E$ est affine sur Y, lui-même affine, donc affine. Appliquant 0.16, on en déduit que tout $S_{\mathcal{J}}$ -morphisme $Y_{\mathcal{J}} \times_{S_{\mathcal{J}}} E_{\mathcal{J}} \to E_{\mathcal{J}}$ se prolonge en un S-morphisme $Y \times_S E \to E$.

 $^{(34)}$ En d'autres termes, tout $Y_{\mathcal{J}}$ -endomorphisme de $Y_{\mathcal{J}} \times_{S_{\mathcal{J}}} E_{\mathcal{J}}$ se relève en un Y-endomorphisme de $Y \times_{S} E$. Alors, 0.7 a) montre que tout $Y_{\mathcal{J}}$ -automorphisme de $Y_{\mathcal{J}} \times_{S_{\mathcal{J}}} E_{\mathcal{J}}$ se relève en un Y-automorphisme de $Y \times_{S} E$, ce qui est la propriété annoncée.

 $^{^{(32)}}$ N.D.E. : Ce résultat de relèvement « global » utilise le résultat de relèvement « local » de loc. cit., 4.1, qui est énoncé pour S localement noethérien ; voir EGA IV $_4$ 18.1.1 pour le cas général.

 $^{^{(33)}}$ N.D.E. : Ceci est une conséquence immédiate de la définition de (formellement) « lisse » adoptée dans EGA IV $_4$, 17.3.1 (et 17.1.1).

⁽³⁴⁾ N.D.E.: On a légèrement modifié l'original, pour être exactement sous les hypothèses de 0.7.

1. Extensions et cohomologie

1.1. Soit \mathscr{C} une catégorie stable par produits fibrés. ⁽³⁵⁾ Soient S un objet de \mathscr{C} , G un S-groupe (représentable) et F un S-foncteur en groupes commutatifs sur lequel G opère. On a défini en I, 5.1 les groupes de cohomologie $H^n(G,F)$. On rappelle que ce sont les groupes d'homologie d'un complexe noté $C^*(G,F)$ où, notant $(G/S)^n = G \times_S \cdots \times_S G$ (n facteurs),

$$C^n(G, F) = Hom_S((G/S)^n, F).$$

Comme G et donc $^{(35)}$ les $(G/S)^n$ sont représentables, on a aussi

$$C^n(G, F) = F((G/S)^n);$$

de ceci, et de la définition de l'opérateur bord, on voit que le complexe $C^*(G,F)$ ne dépend que de la restriction de F à la sous-catégorie pleine de $\mathscr{C}_{/S}$ dont les objets sont les puissances cartésiennes de G sur S. En conséquence, on a le

Lemme 1.1.1. — Soient \mathscr{C} une catégorie stable par produits fibrés ⁽³⁵⁾, S un objet de \mathscr{C} , G un S-groupe représentable. Notons $\mathscr{C}(G)$ la sous-catégorie pleine de $\mathscr{C}_{/S}$ dont les objets sont les puissances cartésiennes de G sur S. Soient F et F' deux S-foncteurs en groupes commutatifs sur lesquels G opère. Si F et F' ont même restriction à $\mathscr{C}(G)$, on a un isomorphisme canonique

$$H^*(G,F) \xrightarrow{\sim} H^*(G,F').$$

1.1.2. Cohomologie et restriction des scalaires. — $^{(36)}$ Énonçons un autre résultat de comparaison. Soit maintenant $T \to S$ un morphisme de \mathscr{C} . Si F est un T-foncteur en groupes commutatifs, alors le foncteur obtenu par « restriction des scalaires » (cf. Exp. II, 1)

$$F_1 = \prod_{T/S} F$$

est un S-foncteur en groupes commutatifs et on a un morphisme de S-foncteurs en groupes

$$u: \prod_{T/S} \underline{Aut}_{T-gr.}(F) \longrightarrow \underline{Aut}_{S-gr.}(F_1).$$
 (37)

Soit maintenant G un S-foncteur en groupes et soit

$$G_T \longrightarrow \underline{Aut}_{T-gr}(F)$$

101

 $^{^{(35)}}$ N.D.E. : On a ajouté l'hypothèse que $\mathscr C$ soit stable par produits fibrés (ce qui est le cas dans les applications où $\mathscr C$ est la catégorie des schémas (**Sch**) ou celle des foncteurs (**Sch**) $^{\circ} \to (\mathbf{Ens})$). Si on omet cette hypothèse, il faut supposer dans la suite que les produits fibrés $G \times_S \cdots \times_S G$ sont représentables.

⁽³⁶⁾ N.D.E. : On a ajouté le titre de ce paragraphe.

 $[\]begin{array}{l} {\rm (37)N.D.E.: En \ effet, \ soient \ S' \to S \ et \ \alpha \in Aut_{(T \times_S S')-gr.}(F_{T \times_S S'}), \ pour \ tout \ U \to T \times_S S', \ notons \ \alpha_U \in Aut_{gr.}(F_{T \times_S S'}(U)) \ l'élément \ défini \ par \ \alpha; \ alors \ u(S')(\alpha) \ est \ l'élément \ \beta \ de \ \underline{Aut_{S-gr.}}(F_1)(S') = Aut_{S'-gr.}\left(\prod_{T \times_S S'/S'} F_{T \times_S S'}\right) \ tel \ que \ \beta_{S''} = \alpha_{T \times_S S''} \ pour \ tout \ S'' \to S'. \end{array}$

une opération de G_T sur F. Par définition du foncteur $\prod_{T/S}$, on en déduit un morphisme de S-foncteurs en groupes

$$G \longrightarrow \prod_{T/S} \underline{\operatorname{Aut}}_{T\text{-}\mathrm{gr.}}(F)$$

d'où, par composition avec u, une opération de G sur $F_1 = \prod_{T/S} F$. (38)

Lemme 1.1.2. — Sous les conditions précédentes, on a un isomorphisme canonique

$$H^*(G,\prod_{T/S}F)\simeq H^*(G_T,F).$$

En effet, d'après la définition de la cohomologie, les complexes standard sont canoniquement isomorphes.

1.2. Relèvement de morphismes de groupes. — ⁽³⁹⁾ Suivant les principes généraux, on pose la définition suivante :

Définition 1.2.1. — Soit $1 \to M \xrightarrow{u} E \xrightarrow{v} G$ une suite de morphismes de $\widehat{\mathscr{C}}$ -groupes. On dit qu'elle est *exacte* si les conditions équivalentes suivantes sont vérifiées :

(i) pour tout $S \in Ob \mathcal{C}$, la suite de groupes ordinaires ci-dessous est exacte :

$$1 \longrightarrow \mathcal{M}(\mathcal{S}) \xrightarrow{u(\mathcal{S})} \mathcal{E}(\mathcal{S}) \xrightarrow{v(\mathcal{S})} \mathcal{G}(\mathcal{S})$$

(ii) pour tout objet H de $\widehat{\mathscr{C}}$, la suite de groupes ordinaires ci-dessous est exacte :

$$1 \longrightarrow \operatorname{Hom}(\mathbf{H},\mathbf{M}) \xrightarrow{u(\mathbf{H})} \operatorname{Hom}(\mathbf{H},\mathbf{E}) \xrightarrow{v(\mathbf{H})} \operatorname{Hom}(\mathbf{H},\mathbf{G})$$

Faisant en particulier H = G dans (ii), on voit que l'ensemble des sections de v (ne respectant pas a priori les structures de groupes) est vide ou principal homogène sous Hom(G, M). Supposons-le non vide; soit donc

$$s: \mathbf{G} \longrightarrow \mathbf{E}$$

une section de v. Alors pour tout $S \in Ob \mathscr{C}$ et tout $x \in G(S)$, l'élément s(x) de E(S) définit un automorphisme intérieur de E_S qui normalise M_S (plus correctement l'image de M_S par u_S), donc un automorphisme de M_S .

 $^{^{(38)}}$ N.D.E.: Explicitement, pour tout $S' \to S$, l'opération de G(S') sur $F_1(S') = F(T \times_S S')$ est donnée par l'opération de $G_T(T \times_S S') = G(T \times_S S')$ sur $F(T \times_S S')$ et le morphisme de groupes $G(S') \to G(T \times_S S')$ correspondant à la projection $T \times_S S' \to S'$. On peut aussi dire que l'opération de G_T sur F est donnée par un morphisme $G_T \times_T F \to F$; appliquant le foncteur $\prod_{T/S} e^{-1} e^{-1} f^{-1} e^{-1} f$

Scholie 1.2.1.1. — $^{(40)}$ Si M est commutatif, on voit « ensemblistement » que cet automorphisme ne dépend pas de la section choisie, mais seulement de x, et qu'il en dépend multiplicativement. En résumé, à toute suite exacte

$$(E) 1 \longrightarrow M \xrightarrow{u} E \xrightarrow{v} G$$

telle que M soit commutatif et que v $poss\`ede$ une section, est associée un morphisme de $\widehat{\mathscr{C}}\text{-groupes}$

$$G \longrightarrow \underline{\operatorname{Aut}}_{\widehat{\mathscr{C}}\text{-}\mathrm{gr.}}(M)$$

que l'on appelle l'opération de G sur M définie par l'extension (E).

Définition 1.2.1.2. — On a vu en I, 2.3.7 que v possède une section qui est un morphisme de $\widehat{\mathscr{C}}$ -groupes si et seulement si l'extension (E) est isomorphe (« en tant qu'extension ») au produit semi-direct de M par G relativement à l'opération précédente. Une telle section de v sera appelée section de l'extension (E), ou simplement section de (E).

Si s est une section de (E) et si $m \in \Gamma(M) \simeq \text{Ker}(\Gamma(E) \to \Gamma(G))$ (pour la définition de Γ , voir I, 1.2), alors le morphisme $G \to E$ défini par ⁽⁴¹⁾

$$x \mapsto u(m) s(x) u(m)^{-1}$$

est également une section de (E) dite déduite de s par l'automorphisme intérieur défini par m (ou par u(m)).

Lemme 1.2.2. — Soit (E) : $1 \to M \xrightarrow{u} E \xrightarrow{v} G$ une suite exacte de $\widehat{\mathscr{C}}$ -groupes telle que M soit commutatif et que v possède une section. Faisons opérer G sur M de la manière définie par (E).

- (i) L'extension (E) définit canoniquement une classe $c(E) \in H^2(G, M)$ dont l'annulation est nécessaire et suffisante à l'existence d'une section de (E).
- (ii) Si c(E) = 0, l'ensemble des sections de (E) est principal homogène sous le groupe $Z^1(G,M)$, et l'ensemble des sections de (E) modulo l'action des automorphismes intérieurs définis par les éléments de $\Gamma(M)$ est principal homogène sous le groupe $H^1(G,M)$.
- (iii) (42) Soit s une section de (E), l'ensemble des conjugués de s par les automorphismes intérieurs définis par $\Gamma(M)$ est en bijection avec $\Gamma(M)/H^0(G,M)$.

La démonstration se fait exactement comme dans le cas des groupes ordinaires, le fait que l'on parte d'une section de v assurant la fonctorialité des calculs ensemblistes. Indiquons brièvement les principales étapes de la démonstration.

a) À toute section s de v on associe le morphisme

$$Ds : G \times G \longrightarrow M$$
,

 $^{^{(40)}}$ N.D.E. : On a ajouté la numérotation 1.2.1.1 et 1.2.1.2 pour mettre en évidence les notions qui v sont introduites.

 $^{^{(41)}}$ N.D.E. : Dans le terme de droite, on a corrigé x en s(x).

 $^{^{(42)}}$ N.D.E. : On a ajouté ce point, pendant de 1.2.4 (iii). Notons d'autre part que l'assertion est valable pour toute section de v, cf. la démonstration.

défini ensemblistement par

$$u(Ds(x,y)) = s(xy)s(y)^{-1}s(x)^{-1}.$$

On montre que Ds est un 2-cocycle par le calcul suivant. $^{(43)}$ D'après la définition de la différentielle du complexe standard (I, 5.1), l'on a :

$$(\partial^2 \mathrm{D} s)(x,y,z) = (s(x)\mathrm{D} s(y,z)s(x)^{-1}) \cdot \mathrm{D} s(x,y)^{-1} \cdot \mathrm{D} s(xy,z)^{-1} \cdot \mathrm{D} s(x,yz);$$

il suffit de reporter la définition de Ds dans cette formule pour trouver (sans utiliser aucune commutativité) $Ds \in Z^2(G, M)$.

b) Si s et s' sont deux sections de v, il existe $f: G \to M$ tel que s(x) = f(x)s'(x). On a alors

$$Ds'(x,y) = f^{-1}(xy)Ds(x,y)s(x)f(y)s(x)^{-1}f(x),$$

= Ds(x,y) \cdot f^{-1}(xy) \cdot (s(x)f(y)s(x)^{-1}) \cdot f(x),

105 soit

$$Ds' = Ds \cdot \partial^1 f$$
.

- (44) Ceci montre que la classe de Ds dans $H^2(G, M)$ ne dépend pas de la section s de v choisie; c'est la classe c(E) de l'extension (E).
- c) Soient s et s' deux sections de v et soit $m \in \Gamma(M)$. Alors, l'égalité s(x) = $m^{-1}s'(x)m$ (pour tout $x \in G(S)$, $S \in Ob\mathscr{C}$) équivaut à

$$s(x) = m^{-1}s'(x)m s'(x)^{-1}s'(x),$$
 i.e. $s = \partial^0 m \cdot s'.$

En particulier, le stabilisateur de s dans $\Gamma(M)$ est le sous-groupe des $m \in \Gamma(M)$ tels que $\partial^0 m = e_{\rm M}$, i.e. le sous-groupe ${\rm H}^0({\rm G},{\rm M})$. Ceci prouve déjà (iii).

d) Le raisonnement est maintenant habituel : $^{(45)}$ Soit s_0 une section arbitraire de v; il existe une section s, nécessairement de la forme $s=f\cdot s_0$, qui est un morphisme de groupes, i.e. qui vérifie Ds = 0, si et seulement si $(Ds_0)^{-1} = \partial^1 f$, c.-à-d., si et seulement si la classe c(E) est nulle. Ceci prouve (i).

Dans ce cas, l'ensemble des sections de (E) est formé des sections $s' = h \cdot s$, où $h: \mathcal{G} \to \mathcal{M}$ vérifie $\partial^1 h = 0$, i.e. $h \in \mathcal{Z}^1(\mathcal{G},\mathcal{M})$. De plus, d'après le point c), deux telles sections $h_1 \cdot s$ et $h_2 \cdot s$ sont conjuguées sous $\Gamma(M)$ si et seulement si h_1 et h_2 ont même image dans $H^1(G, M)$. Ceci prouve (ii).

Soit toujours

$$1 \longrightarrow M \xrightarrow{u} E \xrightarrow{v} G$$

une suite exacte de $\widehat{\mathscr{C}}$ -groupes avec M commutatif. Soit

$$f: \mathbf{H} \longrightarrow \mathbf{G}$$

un morphisme de $\widehat{\mathscr{C}}$ -groupes. Considérons $\mathcal{E}_f = \mathcal{H} \times_{\mathcal{G}} \mathcal{E}$; c'est un $\widehat{\mathscr{C}}$ -groupe et la projection $v_f: \mathcal{E}_f \to \mathcal{H}$ est un morphisme de $\widehat{\mathscr{C}}$ -groupes. De même pour $e_f: \mathcal{E}_f \to \mathcal{E}$. D'autre part, si on envoie M dans E par u et dans H par le morphisme unité, on

 $^{{}^{(43)}{\}rm N.D.E.}$: on a corrigé l'original, pour le rendre compatible avec I, 5.1.

 $^{{}^{(44)}{\}rm N.D.E.}$: On a ajouté la phrase qui suit.

⁽⁴⁵⁾ N.D.E.: On a détaillé ce qui suit.

définit un morphisme de $\widehat{\mathscr{C}}$ -groupes $u_f: \mathcal{M} \to \mathcal{E}_f$. On a donc construit un diagramme commutatif de $\widehat{\mathscr{C}}$ -groupes :

On a immédiatement :

Lemme 1.2.3. — (i) La suite (E_f) est exacte.

(ii) L'application $s\mapsto e_f\circ s=f'$ réalise une correspondance bijective entre les morphismes

$$s: \mathbf{H} \longrightarrow \mathbf{E}_f$$

tels que $v_f \circ s = id$ (c'est-à-dire les sections de v_f) et les morphismes

$$f': \mathbf{H} \longrightarrow \mathbf{E}$$

tels que $v \circ f' = f$ (c'est-à-dire les morphismes f' « relevant » f).

(iii) Dans la correspondance précédente, sections de (E_f) et morphismes de groupes f' relevant f se correspondent.

Appliquant le lemme 1.2.2 à l'extension (E_f) et tenant compte de 1.2.3, on obtient la proposition suivante (qui contient formellement 1.2.2) :

Proposition 1.2.4. — Soit $(E): 1 \to M \to E \xrightarrow{v} G$ une suite exacte de $\widehat{\mathscr{C}}$ -groupes avec M commutatif. Soit

$$f: \mathbf{H} \longrightarrow \mathbf{G}$$

un morphisme de $\widehat{\mathcal{C}}$ -groupes; supposons qu'il se relève en un morphisme (non nécessairement de groupes) $f': H \to E$. Faisons opérer H sur M par le morphisme composé (multiplicatif et indépendant du choix de f'),

$$H \xrightarrow{f'} E \xrightarrow{\text{int}} \underline{\text{Aut}}_{\widehat{\mathscr{C}}\text{-gr.}}(M).$$

(i) Le morphisme f définit canoniquement une classe $c(f) \in H^2(H,M)$ dont l'annulation est nécessaire et suffisante à l'existence d'un morphisme de $\widehat{\mathscr{C}}$ -groupes

$$f': \mathbf{H} \longrightarrow \mathbf{E}$$

 $relevant\ f.$

- (ii) Si c(f) = 0, l'ensemble des morphismes de $\widehat{\mathscr{C}}$ -groupes f' relevant f, modulo l'action des automorphismes intérieurs définis par les éléments de $\Gamma(M)$ (i.e. par les éléments m de $\Gamma(E)$ tels que v(m) = e) est principal homogène sous $H^1(H, M)$.
- (iii) Si $f': H \to E$ est un morphisme de groupes relevant f, l'ensemble des transformés de f' par les automorphismes intérieurs définis par les éléments de $\Gamma(M)$ est isomorphe à $\Gamma(M)/\Gamma(M^H) = \Gamma(M)/H^0(H,M)$.

1.3. Extensions de lois de groupes. — Considérons la situation suivante : on a un morphisme de $\widehat{\mathscr{C}}$

$$p: X \longrightarrow Y$$

et un $\widehat{\mathscr{C}}$ -groupe commutatif M opérant sur X, tels que X soit formellement principal homogène au-dessus de Y sous M_Y .

Si $g: Y \to Z$ est un morphisme quelconque de $\widehat{\mathscr{C}}$, alors $g \circ p: X \to Z$ est invariant par M: pour chaque $S \in Ob \mathscr{C}$, $(g \circ p)(S)$ est invariant sous l'action de M(S) opérant sur X(S). Réciproquement, nous supposerons vérifiée la condition suivante pour n = 1, 2, 3, 4.

 $(+)_n$: Tout morphisme de X^n dans M, invariant sous l'action de M^n opérant sur X^n , se factorise de manière unique par $p^n: X^n \to Y^n$ (où les puissances n désignent des puissances cartésiennes).

Lemme 1.3.1. — (i) Si h est un morphisme de Y dans M, l'automorphisme u_h de X défini ensemblistement par $x \mapsto h(p(x)) \cdot x$ préserve les fibres de p et commute aux opérations de M sur X, ⁽⁴⁶⁾ i.e. pour tous $S \in Ob \mathscr{C}$ et $x \in X(S)$, $m \in M(S)$, on a

$$p\big(h(p(x))\cdot x\big) = p(x), \qquad m\cdot h(p(x))\cdot x = h(p(m\cdot x))\cdot m\cdot x\,.$$

(ii) Cette construction réalise une correspondance bijective entre morphismes de Y dans M et automorphismes de X préservant les fibres de p et commutant aux opérations de M.

La première partie est claire, puisque $p(m \cdot x) = p(x)$ et que M est commutatif. Réciproquement, un automorphisme u de X préservant les fibres de p s'écrit ensemblistement $x \mapsto g(x)x$, où g est un certain morphisme de X dans M. Si u commute aux opérations de M, le morphisme g est invariant par M $^{(47)}$ et on conclut par la condition $(+)_1$.

Nous supposons maintenant que sont données en plus une loi de groupe sur Y et une opération de Y sur M, c'est-à-dire un morphisme de $\widehat{\mathscr{C}}$ -groupes :

$$(\ddagger) \qquad f: Y \longrightarrow \underline{\mathrm{Aut}}_{\widehat{\mathscr{C}}_{-\mathrm{gr.}}}(M).$$

Définition 1.3.2. — Une loi de composition sur X

$$P: X \times X \longrightarrow X$$

est dite admissible si elle vérifie les deux conditions suivantes :

(i) P relève la loi de groupe de Y, i.e. le diagramme

$$\begin{array}{c|c} X \times X & \xrightarrow{P} & X \\ \downarrow & \downarrow & \downarrow \\ Y \times Y & \longrightarrow Y \end{array}$$

 $^{^{(46)}}$ N.D.E.: Ici et dans la suite, on a remplacé « commute à p et aux opérations de M » par « préserve les fibres de p et commute aux opérations de M ». D'autre part, on a ajouté les égalités qui suivent. $^{(47)}$ N.D.E.: En effet, l'égalité mg(x)x = mu(x) = u(mx) = g(mx)mx entraîne g(mx) = g(x).

est commutatif.

(ii) Pour tout $S \in Ob \mathscr{C}$ et tous $x, y \in X(S), m, n \in M(S)$, on a la relation suivante

$$(++) P(m \cdot x, n \cdot y) = m \cdot f(p(x))(n) \cdot P(x, y).$$

Proposition 1.3.3. — Pour qu'une loi de groupe * sur X soit admissible, il faut et il suffit que les quatre conditions suivantes soient satisfaites :

- (i) $p: X \to Y$ est un morphisme de groupes.
- (ii) Le morphisme $i: M \to X$ défini par $i(m) = m \cdot e_X$ est un isomorphisme de groupes de M sur Ker(p), c'est-à-dire : on a ensemblistement $(m \cdot e_X) * (n \cdot e_X) = (mn) \cdot e_X$.
 - (iii) On a $m \cdot x = (m \cdot e_X) * x = i(m) * x pour chaque <math>m \in M(S)$, $x \in X(S)$.
- (iv) Les automorphismes intérieurs de X opèrent sur $\mathrm{Ker}(p)$ suivant la formule ensembliste :

$$x * i(m) * x^{-1} = i(f(p(x))m).$$

La démonstration est immédiate.

- **Lemme 1.3.4.** ⁽⁴⁸⁾ Soient h un morphisme $Y \to M$ et u_h l'automorphisme $x \mapsto h(p(x)) \cdot x$ de X (cf. 1.3.1). Soit P une loi de composition (resp. une loi de groupe) admissible sur X et soit P' la loi de composition sur X déduite de P par l'intermédiaire de u_h , c.-à-d., $P'(x,y) = u_h^{-1}(P(u_h(x), u_h(y)))$. Alors:
 - (i) P' est une loi de composition (resp. une loi de groupe) admissible.
 - (ii) Pour tout $x, y \in X(S)$ ($S \in Ob \mathscr{C}$), posons v = p(x) et w = p(y), alors

$$P'(x,y) = h(vw)^{-1} \cdot h(v) \cdot f(v)(h(w)) \cdot P(x,y) = (\partial^{1}h)(p(x), p(y)) \cdot P(x,y).$$

Démonstration. On a $u_h^{-1} = u_{h^{\vee}}$, où $h^{\vee} : Y \to M$ est défini par $h^{\vee}(y) = h(y)^{-1}$. D'après 1.3.2 (i) et (ii), on a $P(h(v) \cdot x, h(w) \cdot y) = h(v) \cdot f(v)(h(w)) \cdot P(x, y)$ et p(P(x, y)) = vw, d'où

$$P'(x,y) = h(vw)^{-1} \cdot h(v) \cdot f(v)(h(w)) \cdot P(x,y) = (\partial^{1}h)(p(x), p(y)) \cdot P(x,y).$$

Il est alors immédiat que P' vérifie les conditions (i) et (ii) de 1.3.2.

Définition 1.3.5. — Deux lois de composition admissibles déduites l'une de l'autre par le procédé de 1.3.4 sont dites *équivalentes*. $^{(49)}$

Proposition 1.3.6. — Supposons qu'il existe une loi de composition admissible sur X. Alors :

(i) Il existe une classe $c \in H^3(Y,M)$ (déterminée canoniquement), dont la nullité est nécessaire et suffisante à l'existence d'une loi de composition admissible associative sur X

 $^{{}^{(48)}{\}rm N.D.E.}$: On a détaillé l'énoncé ainsi que sa démonstration, en vue du point (e) de la démonstration de 1.3.6.

 $^{^{(49)}}$ N.D.E.: C'est bien une relation d'équivalence, puisque $u_h^{-1} = u_{h^{\vee}}$.

- (ii) Si c = 0, l'ensemble des lois de composition admissibles et associatives (resp. des classes d'équivalence de lois de composition admissibles et associatives) sur X est principal homogène sous $Z^2(G, M)$ (resp. $H^2(G, M)$).
- La démonstration se fait en plusieurs étapes.
 - a) Soit P une loi de composition admissible sur X. Comme P relève la loi de composition de Y qui est associative, il existe un morphisme unique $a: X^3 \to M$ tel que

(*)
$$P(x, P(y, z)) = a(x, y, z) P(P(x, y), z).$$

En appliquant les conditions 1.3.2 (i) et (ii), on voit aussitôt que a est invariant sous l'action de M^3 sur X^3 , $^{(50)}$ d'où en appliquant l'hypothèse $(+)_3$ le résultat suivant :

(1) Il existe un morphisme unique $DP: Y^3 \to M$ tel que

$$\mathbf{P}(x,\mathbf{P}(y,z)) = \mathbf{D}\mathbf{P}(p(x),p(y),p(z))\,\mathbf{P}(\mathbf{P}(x,y),z),$$

et P est associative si et seulement si DP = 0.

b) Calculons de proche en proche P(P(P(x,y),z),t) à l'aide de la formule précédente. En posant $p(x)=u,\ p(y)=v,\ p(z)=w,\ p(t)=h,$ on obtient ⁽⁵¹⁾ le diagramme pentagonal suivant, où une flèche $a\xrightarrow{m}b$ signifie que $b=m\cdot a$:

$$\begin{array}{c|c} & P(x,P(y,P(z,t))) \\ & & DP(u,v,wh) \\ \hline \\ P(P(x,y),P(z,t)) & P(x,P(P(y,z),t)) \\ \hline \\ P(y,y) & & P(x,P(P(y,z),t)) \\ \hline \\ P(y,y) & & P(y,y) \\ \hline \\ P(y,y) & & P(y,y) \\ \hline \\ P(y,y) & & P(y,y) \\ \hline \end{array}$$

donc on trouve

$$\mathrm{DP}(u,v,w) \cdot \mathrm{DP}(u,vw,h) \cdot f(u)\mathrm{DP}(v,w,h) \cdot \mathrm{DP}(u,v,wh)^{-1} \cdot \mathrm{DP}(uv,w,h)^{-1} = e_{\mathrm{M}}$$

c.-à-d., $\partial^3 \mathrm{DP}(u,v,w,h) = e_{\mathrm{M}}$. Comme d'autre part le premier membre de la formule précédente peut s'écrire à l'aide de P et de a comme l'expression en (x,y,z,t) d'un certain morphisme $\mathrm{X}^4 \to \mathrm{M}$, il résulte de l'hypothèse d'unicité dans $(+)_4$ que $\partial^3 \mathrm{DP}$ et e_{M} , qui factorisent le même morphisme, sont égaux, donc

(2) DP est un cocycle, i.e. on a DP $\in \mathbb{Z}^3(Y, M)$.

$$^{(50)}{\rm N.D.E.}$$
: Pour $x,y,z\in {\rm X(S)},$ posons $u=p(x),v=p(y)$ et $w=p(z).$ Alors

$$\mathbf{P}\big(mx,\mathbf{P}(m'y,m''z)\big) = \mathbf{P}\big(mx,m'f(v)(m'')\mathbf{P}(y,z)\big) = mf(u)(m')f(uv)(m'')\mathbf{P}\big(x,\mathbf{P}(y,z)\big).$$

D'autre part, comme p(P(x,y)) = uv, on a aussi

$$P(P(mx,m'y),m''z)) = P(mf(u)(m')P(x,y),m''z) = mf(u)(m')f(uv)(m'')P(P(x,y),z)$$

et la comparaison de ces égalités avec (*) donne a(mx, m'y, m''z) = a(x, y, z). (51) N.D.E.: On a ajouté le diagramme qui suit.

 \mathbf{c}) Si P et P' sont deux lois de composition admissibles sur X, il existe un morphisme unique

$$b: X^2 \longrightarrow M$$

tel que P'(x,y) = b(x,y)P(x,y). Appliquant 1.3.2 (ii) à P et P', on voit que b est 111 invariant par M^2 , d'où, d'après $(+)_2$:

(3) Pour tout couple de lois de compositions admissibles (P,P'), il existe un unique $d(P,P'):Y^2\to M$ tel que

$$P'(x,y) = d(P,P')(p(x),p(y)) P(x,y),$$

et l'ensemble des lois de compositions admissibles devient ainsi principal homogène sous $\operatorname{Hom}(Y^2,M)=C^2(Y,M)$.

d) Sous les conditions précédentes, on a la formule :

(4)
$$DP' - DP = \partial^2 d(P, P').$$

- e) P et P' sont équivalentes si et seulement si il existe un morphisme $h \in C^1(Y, M) = \text{Hom}(Y, M)$ tel que $d(P, P') = \partial^1 h$; cela résulte de la définition de l'équivalence et de 1.3.4 (ii).
- f) Il n'y a plus qu'à conclure : on cherche un P' qui soit associatif, i.e. tel que $\mathrm{DP'}=e_{\mathrm{M}}.$ Or DP est un cocycle dont la classe dans $\mathrm{H}^3(\mathrm{Y},\mathrm{M})$ ne dépend pas de la loi de composition admissible P choisie (par (3) et (4)). Cette classe est l'obstruction c demandée. On pourra choisir un P' répondant aux conditions si et seulement si c=0; en effet, choisissant un P quelconque, on aura à résoudre, par (1) :

$$0 = \mathrm{DP'} = \mathrm{DP} + \partial^2 d(\mathrm{P}, \mathrm{P'}),$$

ce qui est possible par (3) et (4) si et seulement si c = 0. L'ensemble des P' associatifs est principal homogène sous $Z^2(Y, M)$, toujours par (3) et (4). L'ensemble des P' associatifs à équivalence près est principal homogène sous $H^2(Y, M)$ d'après (e).

2. Extensions infinitésimales d'un morphisme de schémas en groupes

Reprenons les notations du n°0. Soient Y et X deux S-foncteurs en groupes. Soit M le noyau du morphisme de groupes $p_X : X \to X^+$. On a donc une suite exacte de S-foncteurs en groupes

$$1 \longrightarrow M \longrightarrow X \xrightarrow{p_X} X^+.$$

Par définition de X⁺, on a des isomorphismes

$$\begin{array}{ccc} \operatorname{Hom}_{S}(Y,X^{+}) & \xrightarrow{\sim} & \operatorname{Hom}_{S_{\mathcal{J}}}(Y_{\mathcal{J}},X_{\mathcal{J}}) \\ \operatorname{Hom}_{S\text{-}\operatorname{gr.}}(Y,X^{+}) & \xrightarrow{\sim} & \operatorname{Hom}_{S_{\mathcal{J}}\text{-}\operatorname{gr.}}(Y_{\mathcal{J}},X_{\mathcal{J}}), \end{array}$$

et le morphisme

$$\operatorname{Hom}_{\operatorname{S}}(\operatorname{Y},p_{\operatorname{X}}):\operatorname{Hom}_{\operatorname{S}}(\operatorname{Y},\operatorname{X})\longrightarrow\operatorname{Hom}_{\operatorname{S}}(\operatorname{Y},\operatorname{X}^{+})$$

associe à un S-morphisme $f: Y \to X$, le S-morphisme $f^+: Y \to X^+$ correspondant par les isomorphismes précédents au $S_{\mathcal{J}}$ -morphisme $f_{\mathcal{J}}: Y_{\mathcal{J}} \to X_{\mathcal{J}}$ obtenu par changement de base à partir de f. Si M est *commutatif*, on peut appliquer à cette situation la proposition 1.2.4.

112

- **2.0.** (52) Dans la suite, nous nous intéresserons au cas suivant : Y est *plat* sur S, et X est un S-foncteur en groupes de l'une des deux espèces suivantes :
 - a) X est un S-schéma en groupes,
 - b) $X = Aut_S(E)$ où E est un S-schéma, de présentation finie sur S.

Notons $(\mathbf{Plats})_{/S}$ la catégorie des S-schémas plats sur S. Dans le cas (a) (resp. (b)), le S-foncteur en groupes $M = \mathrm{Ker}(X \to X^+)$, sa restriction L à $(\mathbf{Plats})_{/S}$, et les opérations des automorphismes intérieurs de X sur M, ont été calculés en 0.9, 0.5, et 0.10 (resp. 0.11, 0.14, et 0.12). C'est-à-dire, dans le cas (a), soit L_0 le S_0 -foncteur en groupes commutatifs défini par : pour tout S_0 -schéma T_0 ,

$$\operatorname{Hom}_{S_0}(T_0,L_0) = \operatorname{Hom}_{\mathscr{O}_{T_0}}(\omega^1_{X_0/S_0} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_{T_0}, \mathcal{J} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_{T_0}),$$

sur lequel X_0 opère via sa représentation adjointe dans $\omega^1_{X_0/S_0}$, alors $L = \prod_{S_0/S} L_0$, i.e. pour tout S-schéma T, on a $L(T) = L_0(T \times_S S_0)$.

Dans le cas (b), notons π le morphisme structural $E \to S$, alors L est le foncteur en groupes abéliens sur $(\mathbf{Plats})_{/S}$ défini par

$$\operatorname{Hom}_{S}(T, L) = \Gamma(T, \pi_{*}(\mathscr{H}om_{\mathscr{O}_{E}}(\Omega^{1}_{E/S}, \mathscr{J}\mathscr{O}_{E})) \otimes_{\mathscr{O}_{S}} \mathscr{O}_{T}),$$

sur lequel X, considéré comme foncteur sur $(\mathbf{Plats})_{/S}$, opère comme on l'a vu en 0.12. Alors, on a une suites exacte de foncteurs en groupes sur $(\mathbf{Plats})_{/S}$:

$$1 \longrightarrow L \longrightarrow X \longrightarrow X^+.$$

D'autre part, Y étant supposé plat sur S, les groupes $H^i(Y, M)$ ne dépendent, d'après 1.1.1, que de la restriction L de M à $(\mathbf{Plats})_{/S}$. Comme $L = \prod_{S_0/S} L_0$ dans le cas (a), alors d'après 1.1.2, on a dans ce cas des isomorphismes $H^i(Y, L) \simeq H^i(Y_0, L_0)$.

Alors, compte tenu de ce qui précède, on déduit de la proposition 1.2.4 le (53)

Théorème 2.1. — Soient S un schéma, \mathcal{I} et \mathcal{J} deux idéaux quasi-cohérents tels que $\mathcal{I} \supset \mathcal{J}$ et $\mathcal{I} \cdot \mathcal{J} = 0$, définissant les sous-schémas fermés S_0 et $S_{\mathcal{J}}$, et soient :

- X un S-foncteur en groupes de type (a) ou (b), et L₀, L comme ci-dessus;
- 114 Y un S-schéma en groupes plat sur S et $f_{\mathcal{J}}: Y_{\mathcal{J}} \to X_{\mathcal{J}}$ un morphisme de $S_{\mathcal{J}}$ -groupes.

Alors:

113

- (i) Pour que $f_{\mathcal{J}}$ se relève en un morphisme de S-groupes $Y \to X$, il faut et il suffit que les deux conditions suivantes soient satisfaites :
 - (i₁) $f_{\mathcal{J}}$ se relève en un morphisme de S-foncteurs $Y \to X$ (d'après 1.2.4, ceci définit une opération de Y sur L, qui ne dépend pas du relèvement choisi; de plus, dans le cas (a), l'opération ainsi obtenue de Y_0 sur L_0 provient du morphisme $f_0: Y_0 \to X_0$ et de « l'action adjointe » de X_0 sur L_0);

 $^{^{(52)}}$ N.D.E. : On a ajouté la numéro tation 2.0, pour des références ultérieures.

⁽⁵³⁾N.D.E. : On a placé plus haut les définitions qui figuraient dans l'original dans l'énoncé du théorème 2.1 et formaient l'essentiel de la page 113 de l'original.

- (i₂) Une certaine obstruction $c(f_{\mathcal{J}})$, définie canoniquement par $f_{\mathcal{J}}$, est nulle, où $c(f_{\mathcal{J}})$ est une classe dans $H^2(Y, L)$ ($\simeq H^2(Y_0, L_0)$ dans le cas (a)).
- (ii) Si les conditions de (i) sont satisfaites, l'ensemble E des morphismes de Sfoncteurs en groupes $Y \to X$ prolongeant $f_{\mathcal{J}}$ est principal homogène sous $Z^1(Y,L)$ ($\simeq Z^1(Y_0,L_0)$ dans le cas (a)), et E modulo l'action des automorphismes intérieurs de X définis par les sections de X sur S induisant la section unité de $X_{\mathcal{J}}$ sur $S_{\mathcal{J}}$, est principal homogène sous $H^1(Y,L)$ ($\simeq H^1(Y_0,L_0)$ dans le cas (a)).
- (iii) Si $f: Y \to X$ est un morphisme de S-foncteurs en groupes prolongeant $f_{\mathcal{J}}$, l'ensemble des morphismes $Y \to X$ transformés de f par les automorphismes intérieurs définis par les sections de X sur S induisant la section unité de $X_{\mathcal{J}}$ sur $S_{\mathcal{J}}$, est isomorphe à $\Gamma(L)/H^0(Y,L)$ ($\simeq \Gamma(L_0)/H^0(Y_0,L_0)$ dans le cas (a)).

Remarque 2.1.1. — ⁽⁵⁴⁾ Si $f, f': Y \to X$ sont des morphismes de S-foncteurs en groupes prolongeant $f_{\mathcal{J}}$, on obtient donc un cocycle $d(f, f') \in Z^1(Y, L)$ ($\simeq Z^1(Y_0, L_0)$ dans le cas (a)), tel que

$$f' = d(f, f') \cdot f \quad . \tag{55}$$

On notera $\overline{d}(f, f')$ l'image de d(f, f') dans $H^1(Y, L)$ ($\simeq H^1(Y_0, L_0)$ dans le cas (a)).

Remarque 2.2. — On conserve les notations précédentes; en particulier, Y est *plat* sur S. Dans le cas (b), L est, d'après (0.14.1), la restriction à (Plats)/S du foncteur

$$W(\pi_*(\mathscr{H}om_{\mathscr{O}_E}(\Omega^1_{E/S}, \mathscr{J}\mathscr{O}_E))),$$

où $\pi: E \to S$ est le morphisme structural. Dans le cas (a), supposons de plus que X soit localement de présentation finie sur S; alors d'après (0.6.1), L est la restriction à (**Plats**)/S du foncteur

$$\prod_{S_0/S} W \big(\operatorname{\mathscr{H}\!\mathit{om}}_{\mathscr{O}_{S_0}} (\omega^1_{X_0/S_0}, \mathcal{J}) \big).$$

Dans les deux cas, le module dont on prend le W est quasi-cohérent, d'après EGA I, 9.1.1. Supposons de plus Y affine sur S $^{(56)}$. Alors, d'après I, 5.3, on obtient :

- $\mathrm{a)}\ \mathrm{H}^i(\mathrm{Y},\mathrm{L})=\mathrm{H}^i(\mathrm{Y}_0,\mathrm{L}_0)=\mathrm{H}^i(\mathrm{Y}_0,\mathscr{H}\!\mathit{om}_{\mathscr{O}_{\mathrm{S}_0}}(\omega^1_{\mathrm{X}_0/\mathrm{S}_0},\mathcal{J})),$
- b) $H^i(Y, L) = H^i(Y, \pi_*(\mathscr{H}\!\mathit{om}_{\mathscr{O}_E}(\Omega^1_{E/S}, \mathcal{J}\mathscr{O}_E))).$

 $^{^{(54)}}$ N.D.E.: On a ajouté cette remarque, analogue de 4.5.1, pour introduire les notations d(f,f') et $\overline{d}(f,f')$, utilisées en 4.38; par conséquent, on a aussi ajouté dans 2.1 (ii) ci-dessus, la partie concernant E lui-même.

 $^{^{(55)}}$ N.D.E.: On s'est conformé aux conventions de signe de l'original. On aurait pu choisir d'écrire $f' = d(f', f) \cdot f$, mais alors pour avoir en 4.27 l'égalité $d^1(d(i, i')) = d(Y, i'(Y))$ lorsque i, i' sont deux immersions $Y \hookrightarrow X$, il aurait fallu changer le signe de la classe d(Y, Y') introduite en 4.5.1, et cela aurait conduit à des changements de signes dans les formules de 4.8, 4.14, 4.17. On a préféré garder les signes donnés dans l'original (tous corrects!).

⁽⁵⁶⁾ N.D.E.: On a ajouté cette hypothèse, ainsi que la référence à I, 5.3.

Remarque 2.3. — 1) D'après 0.16 et 0.17, la condition (i_1) est automatiquement vérifiée lorsque Y est un schéma *affine* et

$$\begin{cases} \text{dans le cas (a), X est } \textit{lisse sur S;} \\ \text{dans le cas (b), E est } \textit{lisse et affine sur S.} \end{cases}$$

2) De plus, sous ces conditions (Y étant toujours supposé plat sur S, cf. 2.0), on peut écrire dans le cas (a), d'après 2.2 a) et (0.6.2),

$$H^{i}(Y,L) = H^{i}(Y_{0},L_{0}) = H^{i}(Y_{0}, \mathcal{L}ie(X_{0}/S_{0}) \otimes_{\mathscr{O}_{S_{0}}} \mathcal{J}),$$

(57) et dans le cas (b), d'après (0.14.2), 1.1.2 et I, 5.3,

$$H^{i}(Y,L) = H^{i}(Y_{0}, \pi_{0*} \mathscr{H}om_{\mathscr{O}_{E_{0}}}(\Omega^{1}_{E_{0}/S_{0}}, \mathcal{J} \otimes_{\mathscr{O}_{S_{0}}} \mathscr{O}_{E_{0}})).$$

Énonçons maintenant un certain nombre de corollaires concernant le cas où Y est un S-groupe diagonalisable (I, 4.4); on sait alors (loc. cit. 5.3.3) que si S est affine, $H^n(Y, \mathscr{F}) = 0$ pour n > 0 et tout \mathscr{O}_S -module quasi-cohérent \mathscr{F} . D'abord un cas particulier :

Corollaire 2.4. — Soient S un schéma et S₀ un sous-schéma fermé défini par un idéal nilpotent. Soit Y un S-groupe diagonalisable et soit :

- a) X un S-groupe localement de présentation finie sur S,
- b) $X = \underline{Aut}_{S}(E)$ où E est un S-schéma localement de présentation finie.

Soit $f: Y \to X$ un morphisme de S-groupes tel que le morphisme $f_0: Y_0 \to X_0$ obtenu par changement de base soit le morphisme unité. Alors f est le morphisme unité.

En effet, la question est locale sur S et (dans (b)) sur E. On peut donc supposer S affine et (dans (b)) E de présentation finie sur S. En introduisant maintenant les sous-schémas fermés S_n de S définis par les puissances de l'idéal définissant S_0 , on est ramené au cas où S_0 est défini par un idéal de carré nul, et en ce cas l'assertion énoncée résulte du théorème, via 2.2.

Dans le cas où on ne suppose pas nécessairement que f_0 soit le morphisme unité, on a :

Corollaire 2.5. — Soient S et S_0 comme dans 2.4. Supposons de plus S affine. Soient Y un S-groupe diagonalisable, X un S-foncteur en groupes et $f_0: Y_0 \to X_0$ un morphisme de S_0 -foncteurs en groupes.

(i) (58)

116

 $^{^{(57)} \}rm N.D.E.$: On a ajouté ce qui suit, cf. la N.D.E. (31) dans 0.14.

 $^{^{(58)}}$ N.D.E.: L'original énoncait : « Supposons que l'on ait l'une des deux propriétés suivantes : (a) X est un S-groupe localement de présentation finie ; (b) $X = \underline{\mathrm{Aut}}_{\mathbf{S}}(\mathbf{E})$ où \mathbf{E} est de présentation finie sur S. Alors f_0 se prolonge en un morphisme de S-groupes $\mathbf{Y} \to \mathbf{X}$ si et seulement si il se prolonge en un morphisme de S-foncteurs $\mathbf{Y} \to \mathbf{X}$. » et indiquait : « (i) résulte de proche en proche de la partie (ii) du théorème. ». Cette démonstration ne semble pas suffisante : si par exemple $\mathcal{I}^3 = 0$ et $\mathcal{I} = \mathcal{I}^2$, et si $f: \mathbf{Y} \to \mathbf{X}$ est un morphisme de S-foncteurs relevant f_0 , alors f_0 se relève en un morphisme de S $_{\mathcal{I}}$ -groupes $g_{\mathcal{I}}: \mathbf{Y}_{\mathcal{I}} \to \mathbf{X}_{\mathcal{I}}$; ensuite, $g_{\mathcal{I}}$ se relève-t-il en un morphisme de S-foncteurs $g: \mathbf{Y} \to \mathbf{X}$? En tout état de cause, cette assertion (i) n'est pas utilisée dans la suite, où \mathbf{X} est partout supposé lisse sur S.

- (ii) Supposons que l'on ait l'une des deux propriétés suivantes :
 - (a) X est un S-groupe lisse sur S;
 - (b) $X = \underline{Aut}_{S}(E)$ où E est lisse et affine sur S.

Alors f_0 se prolonge en un morphisme de S-groupes $Y \to X$, deux tels prolongements sont conjugués par un automorphisme intérieur de X défini par une section de X sur S induisant la section unité de X_0 sur S_0 .

Introduisons les S_n comme ci-dessus. (59) Pour (ii), notons d'abord qu'un schéma lisse sur S est nécessairement localement de présentation finie sur S; donc, dans le cas (b), E étant lisse et affine sur S est nécessairement de présentation finie sur S, i.e. on est bien sous l'hypothèse (b) de 2.0.

Alors, sous les hypothèses de (ii), la condition (i₁) de 2.1 est automatiquement vérifiée d'après 0.16 et 0.17; en outre toute section de X_{S_n} sur S_n se relève en une section de $X_{S_{n+1}}$ sur S_{n+1} , d'après la définition de « lisse sur S » dans le cas (a), et d'après 0.17 dans le cas (b). Par conséquent, si f et f' sont deux relèvements de f_0 , on peut supposer de proche en proche $f_n = f'_n$ en relevant l'automorphisme intérieur dont l'existence est affirmée par la partie (ii) du théorème, ce qui achève la démonstration.

En raisonnant de même, on obtient en tenant compte de la remarque 2.3 :

Corollaire 2.6. — Soient S un schéma, \mathcal{I} un idéal nilpotent définissant le sous-schéma fermé S_0 , Y un S-groupe plat sur S et affine, X un S-groupe lisse sur S.

- (i) Si, pour tout $n \geqslant 0$, on a $H^2(Y_0, \mathcal{L}ie(X_0/S_0) \otimes_{\mathscr{O}_{S_0}} \mathcal{I}^{n+1}/\mathcal{I}^{n+2}) = 0$, tout morphisme de S_0 -groupes $f_0: Y_0 \to X_0$ se relève en un morphisme de S-groupes $f: Y \to X$.
- (ii) Si, pour tout $n \geqslant 0$, on a $H^1(Y_0, \mathcal{L}ie(X_0/S_0) \otimes_{\mathscr{O}_{S_0}} \mathcal{I}^{n+1}/\mathcal{I}^{n+2}) = 0$, deux tels relèvements sont conjugués par un automorphisme intérieur de X défini par une section de X sur S induisant la section unité de X_0 sur S_0 .

Or on a le lemme suivant :

Lemme 2.7. — Soient S un schéma affine, G un S-groupe affine, \mathscr{F} un \mathscr{O}_S -module quasi-cohérent, \mathscr{L} un \mathscr{O}_S -module localement libre. Supposons que l'on ait une opération de G sur \mathscr{F} au sens de l'exposé I, ce qui définit une opération de G sur $\mathscr{F} \otimes_{\mathscr{O}_S} \mathscr{L}^{(60)}$. Notons Λ l'anneau de S, L le Λ -module définissant \mathscr{L} (qui est donc un module projectif). On a un isomorphisme canonique

$$H^*(G,\mathscr{F}\otimes_{\mathscr{O}_S}\mathscr{L})\simeq H^*(G,\mathscr{F})\otimes_{\Lambda}L.$$

 $^{(61)}$ En effet, notons $\mathscr A$ la $\mathscr O_S$ -algèbre $\mathscr A(G)$ et considérons le complexe $\mathscr C$ de $\mathscr O_S$ -modules quasi-cohérents :

$$0\longrightarrow \mathscr{F}\longrightarrow \mathscr{F}\otimes_{\mathscr{O}_{S}}\mathscr{A}\longrightarrow \mathscr{F}\otimes_{\mathscr{O}_{S}}\mathscr{A}\otimes_{\mathscr{O}_{S}}\mathscr{A}\longrightarrow\cdots$$

17

118

 $^{{}^{(59)}{\}rm N.D.E.}$: Dans ce qui suit, on a légèrement modifié et détaillé l'original.

 $^{{}^{(60)}{\}rm N.D.E.}$: où ${\mathscr L}$ est muni de l'action triviale de G.

⁽⁶¹⁾N.D.E.: On a détaillé (et simplifié) la démonstration de l'original (celui-ci invoquait en plus les isomorphismes $\mathcal{H}^n(\mathscr{C} \otimes_{\mathscr{O}_{\mathbb{S}}} \mathscr{L}) \simeq \mathcal{H}^n(\mathscr{C}) \otimes_{\mathscr{O}_{\mathbb{S}}} \mathscr{L}$ et $H^n(\Gamma(-)) \simeq \Gamma(\mathcal{H}^n(-))$, où les $\mathcal{H}^n(\mathscr{C})$ désignent les faisceaux de cohomologie du complexe \mathscr{C}).

D'après I, 5.3, $H^*(G, \mathscr{F})$ (resp. $H^*(G, \mathscr{F} \otimes_{\mathscr{O}_S} \mathscr{L})$) est la cohomologie du complexe $\Gamma(S, \mathscr{C})$ (resp. $\Gamma(S, \mathscr{C} \otimes_{\mathscr{O}_S} \mathscr{L})$). Or, comme S est affine, on a (cf. EGA I, 1.3.12)

$$\Gamma(S, \mathscr{C} \otimes_{\mathscr{O}_S} \mathscr{L}) \simeq \Gamma(S, \mathscr{C}) \otimes_{\Lambda} L$$
.

Comme L est un Λ -module projectif (donc plat), on a aussi $H^*(\Gamma(S,\mathscr{C}) \otimes_{\Lambda} L) \simeq H^*(\Gamma(S,\mathscr{C})) \otimes_{\Lambda} L$, d'où le résultat annoncé.

En utilisant le lemme, on transforme 2.6 en :

- Corollaire 2.8. Soient S un schéma affine, \mathcal{I} un idéal nilpotent sur S définissant le sous-schéma fermé S_0 . Supposons les $\mathcal{I}^{n+1}/\mathcal{I}^{n+2}$ localement libres sur S_0 . Soient Y un S-groupe plat sur S et affine, X un S-groupe lisse sur S, et $f_0: Y_0 \to X_0$ un morphisme de S-groupes.
 - (i) $Si H^2(Y_0, \mathcal{L}ie(X_0/S_0)) = 0$, f_0 se relève en un morphisme de S-groupes $Y \to X$.
- (ii) Si $H^1(Y_0, \mathcal{L}ie(X_0/S_0)) = 0$, deux tels relèvements sont conjugués par un automorphisme intérieur de X défini par une section de X sur S induisant la section unité de X_0 sur S_0 .

En particulier, faisant Y = X:

- Corollaire 2.9. Soient S et S_0 comme ci-dessus. Soit X un S-groupe lisse sur S et affine.
- (i) $Si H^1(X_0, \mathcal{L}ie(X_0/S_0)) = 0$, tout endomorphisme de X au-dessus de S induisant l'identité sur X_0 est l'automorphisme intérieur défini par une section de X sur S induisant la section unité de X_0 sur S_0 .
- (ii) Si $H^2(X_0, \mathcal{L}ie(X_0/S_0)) = 0$, tout S_0 -automorphisme de X_0 se prolonge en un S-automorphisme de X. (62)
 - Remarque 2.10. Les assertions concernant les H^1 ont des réciproques d'après le théorème. Signalons comme exemple la suivante : si $S = I_{S_0}$ est le schéma des nombres duaux sur S_0 (II, 2.1) et si X est un S-groupe plat tel que tout automorphisme de X sur S induisant l'identité sur S_0 soit l'automorphisme intérieur défini par une section de X sur S induisant la section unité de X_0 sur S_0 , alors $H^1(X_0, \mathcal{L}ie(X_0/S_0)) = 0$. (63)
 - Corollaire 2.11. Soient S, \mathcal{I} et \mathcal{J} comme en 2.1. Soient Y un S-schéma en groupes plat sur S, X un S-schéma en groupes, $f: Y \to X$ un morphisme de S-groupes. L'ensemble des morphismes de Y dans X déduits de f par conjugaison par des $x \in X(S)$ induisant l'unité de $X(S_{\mathcal{J}})$ est isomorphe au quotient

$$E = \operatorname{Hom}_{\mathscr{O}_{S_0}}(\omega^1_{X_0/S_0}, \mathcal{J}) \big/ \operatorname{Hom}_{\mathscr{O}_{S_0}}(\omega^1_{X_0/S_0}, \mathcal{J})^{\operatorname{ad}(Y_0)},$$

 $^{^{(62)}}$ N.D.E.: En effet, soit f_0 un S₀-automorphisme de X₀ et soit g_0 son inverse. D'après 2.8 (i), f_0 (resp. g_0) se relève en un S-endomorphisme f (resp. g) de X. Alors, $g \circ f$ et $f \circ g$ sont des endomorphismes de X induisant l'identité sur X₀; ce sont donc, d'après 0.7, des S-automorphismes de X, et il en est donc de même de f et g.

⁽⁶³⁾ N.D.E.: Ceci est utilisé dans XXIV, 1.13.

où le second groupe est formé des \mathscr{O}_{S_0} -morphismes $\omega^1_{X_0/S_0} \to \mathcal{J}$, qui par tout changement de base $S' \to S_0$ donnent des morphismes $\omega^1_{X_0/S_0} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_{S'} \to \mathcal{J} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_{S'}$ invariants sous l'action de $Y_0(S')$ sur le premier facteur.

Par 2.1 (iii), on sait que l'ensemble cherché est isomorphe à $\Gamma(L_0)/H^0(Y_0,L_0)$. Or $\Gamma(L_0)=\operatorname{Hom}_{\mathscr{O}_{S_0}}(\omega^1_{X_0/S_0},\mathcal{J})$ et $H^0(Y_0,L_0)$ n'est évidemment autre que $\Gamma(L_0)^{\operatorname{ad}(Y_0)}$ au sens de l'énoncé précédent.

Corollaire 2.12. — Sous les conditions de 2.11, supposons de plus $\omega^1_{X_0/S_0}$ localement libre de rang fini. Alors

$$E \simeq \Gamma(S_0, \mathscr{L}\!\mathit{ie}(X_0/S_0) \otimes_{\mathscr{O}_{S_0}} \mathcal{J}) / H^0(Y_0, \mathscr{L}\!\mathit{ie}(X_0/S_0) \otimes_{\mathscr{O}_{S_0}} \mathcal{J}).$$

 $^{(64)}$ En effet, si $\omega^1_{X_0/S_0}$ est localement libre de rang fini, on a $\mathscr{H}om_{\mathscr{O}_{S_0}}(\omega^1_{X_0/S_0}, \mathcal{J}) \simeq \mathscr{L}ie(X_0/S_0) \otimes_{\mathscr{O}_{S_0}} \mathcal{J}$.

Corollaire 2.13. — Supposons de plus Y₀ diagonalisable. Alors

$$E \simeq \Gamma(S_0, \mathscr{L}\!\mathit{ie}(X_0/S_0) \otimes_{\mathscr{O}_{S_0}} \mathcal{J}) \big/ \Gamma(S_0, \mathscr{L}\!\mathit{ie}(X_0/S_0)^{\mathrm{ad}(Y_0)} \otimes_{\mathscr{O}_{S_0}} \mathcal{J})$$

où $\mathscr{L}ie(X_0/S_0)^{ad(Y_0)}$ peut être construit comme le facteur de la décomposition de I, 4.7.3, correspondant au caractère nul de Y_0 .

En effet, si $Y_0 \simeq D_{S_0}(M)$, on a par loc. cit. une décomposition en somme directe :

$$\mathscr{L}ie(X_0/S_0) = \mathscr{L}ie(X_0/S_0)_0 \oplus \bigoplus_{\substack{m \in M \\ m \neq 0}} \mathscr{L}ie(X_0/S_0)_m.$$

En tensorisant par \mathcal{J} , on trouve une décomposition analogue pour $\mathscr{L}ie(X_0/S_0)\otimes_{\mathscr{O}_{S_0}}\mathcal{J}$, d'où la relation

$$H^0(Y_0, \mathscr{L}\!\mathit{ie}(X_0/S_0) \otimes \mathcal{J}) \simeq \Gamma(S_0, \mathscr{L}\!\mathit{ie}(X_0/S_0)_0 \otimes_{\mathscr{O}_{S_0}} \mathcal{J}).$$

Corollaire 2.14. — Supposons de plus S_0 affine. Alors

$$E \simeq \Gamma\left(S_0, \left[\operatorname{\mathscr{L}\!\mathit{ie}}(X_0/S_0) / \operatorname{\mathscr{L}\!\mathit{ie}}(X_0/S_0)^{\operatorname{ad}(Y_0)} \right] \otimes_{\operatorname{\mathscr{O}}_{S_0}} \mathcal{J} \right).$$

3. Extensions infinitésimales d'un schéma en groupes

Toujours dans les notations du n° 0 (S, \mathcal{I} , \mathcal{J} , etc.), donnons-nous un S-schéma X et supposons $X_{\mathcal{J}}$ muni d'une structure de groupe. Nous nous proposons de trouver les structures de S-groupe sur X induisant sur $X_{\mathcal{J}}$ la structure donnée.

À partir de maintenant, nous supposons X plat sur S. Soit $\mathscr C$ la catégorie des S-schémas plats sur S. On a donc $X \in Ob \mathscr C$. Nous noterons Y, resp. M, le foncteur sur $\mathscr C$ défini par X^+ , resp. L_X' . Le morphisme canonique $p_X: X \to X^+$ définit un morphisme de $\widehat{\mathscr C}$

$$p: X \longrightarrow Y$$

120

121

⁽⁶⁴⁾ N.D.E. : On a ajouté la phrase qui suit.

et l'opération de L_X' sur X dans $\widehat{(\mathbf{Sch})}_{/S}$ définit une opération de M sur X dans $\widehat{\mathscr{C}}$. On vérifie aussitôt que X devient bien ainsi formellement principal homogène sous M_Y au-dessus de Y (cf. 0.2 (i) et 0.4).

L'opération de X^+ sur L_X' définie en 0.8 (notée Ad en *loc. cit.*) définit une opération notée f de Y sur M. On sait, d'autre part (0.5), que

$$\operatorname{Hom}_{\mathscr{L}}(Z, M) \simeq \operatorname{Hom}_{S_0}(Z_0, L_0), \qquad Z \in \operatorname{Ob} \mathscr{C},$$

où L_0 est le foncteur défini en 0.5.

Lemme 3.1. — (i) La condition $(+)_n$ de 1.3 est vérifiée pour tout entier positif n.

(ii) Si on fait opérer le S_0 -groupe X_0 sur le S_0 -foncteur L_0 par l'intermédiaire de sa représentation adjointe, on a un isomorphisme canonique

$$H^*(X_0, L_0) \simeq H^*(Y, M),$$

122 (la première cohomologie est calculée dans $(\mathbf{Sch})_{/S_0}$, la seconde dans \mathscr{C}).

Les deux parties du lemme résultent de la relation :

$$\begin{split} \operatorname{Hom}_{\widehat{\mathscr{C}}}(Y,M) &\simeq \operatorname{Hom}_{(\widehat{\operatorname{\mathbf{Sch}}})_{/S_0}}(X^+ \underset{S}{\times} S_0, L_0) \\ &\simeq \operatorname{Hom}_{S_0}(X_0, L_0) \\ &\simeq \operatorname{Hom}_{\widehat{\mathscr{C}}}(X,M), \end{split}$$

qui provient aussitôt de la définition de M comme un $\prod_{S_0/S}$. Cette relation étant plus généralement vérifiée en remplaçant X, Y par X^n , Y^n , on en déduit que tout morphisme $X^n \to M$ se factorise de manière unique par Y^n , ce qui entraîne $(+)_n$. On en déduit aussi la relation $C^*(Y, M) = C^*(X_0, L_0)$ ce qui entraîne (ii).

Nous pouvons donc appliquer les constructions de 1.3. En particulier :

Lemme 3.2. — Soit $P: X \times_S X \to X$ un morphisme. Pour que P induise la loi de groupe de $X_{\mathcal{J}}$, il faut et il suffit que P soit une loi de composition admissible (cf. 1.3.2) sur X.

En effet, pour que P induise la loi de groupe de $X_{\mathcal{J}}$, il faut et il suffit que P relève la loi de groupe de X^+ , ou encore celle de Y. Il n'y a donc qu'à montrer que tout morphisme P relevant la loi de groupe de $X_{\mathcal{J}}$ vérifie l'identité (++) de 1.3.2 (ii), ce qui est exactement ce qu'on a vu en 0.8.

Proposition 3.3. — Soient S un schéma et S_0 un sous-schéma fermé défini par un idéal nilpotent. Soit X un S-schéma plat, et quasi-compact ou localement de présentation finie sur S. Soit $P: X \times_S X \to X$ une loi de composition sur X. Pour que P soit une loi de groupe, il faut et il suffit que les deux conditions suivantes soient satisfaites :

(i) P est associatif.

123

(ii) P induit sur $X_0 = X \times_X S_0$ une loi de groupe.

Ces conditions sont évidemment nécessaires. Montrons qu'elles sont suffisantes. Supposons d'abord que $X \to S$ possède une section. Comme X(S') est alors non vide pour chaque $S' \to S$, il suffit $^{(65)}$ de montrer que, pour tout $x \in X(S')$, les translations à gauche et à droite par x sont des isomorphismes de $X_{S'}$. $^{(66)}$

On peut évidemment supposer S' = S; la translation en question t induit sur X_0 une translation t_0 de X_0 , qui est donc un automorphisme puisque X_0 est un groupe. On conclut par platitude (SGA 1 III 4.2). (67)

Ne supposant plus maintenant que X possède une section sur S, supposons qu'il existe un $S' \to S$ tel que $X_{S'}$ possède une section sur S'. Alors $X_{S'}$ est un S'-groupe d'après ce qu'on vient de voir; considérons sa section unité e'. L'image inverse de e' par $\operatorname{pr}_i: S' \times_S S' \to S'$ (i=1,2) est la section unité de $X_{S''}$ pour la loi de groupe image inverse de $\operatorname{P}_{S'}$ par pr_i . Mais comme P est « défini sur S », ces deux lois de groupes coïncident, donc aussi leur section unité. On a donc $\operatorname{pr}_1^*(e') = \operatorname{pr}_2^*(e')$.

Si $S' \to S$ est un morphisme de descente (cf. Exp. IV n°2), il existera une section de X donnant e' par extension de la base, et on aura terminé. Comme X_X possède une section sur X (la section diagonale), on voit qu'il suffit maintenant de prouver que $X \to S$ est un morphisme de descente. Or il est plat et surjectif, et quasi-compact ou localement de présentation finie, donc couvrant pour (fpqc), donc un morphisme de descente (Exp. IV, n°6).

Remarque. — En fait l'hypothèse $X \to S$ quasi-compact ou localement de présentation finie est superflue, en vertu du résultat suivant que le lecteur démontrera comme exercice sur l'exposé IV:

Sous les conditions du texte sur S et S_0 , si $X \to S$ est un morphisme plat et $S_0 \to S_0$ un morphisme couvrant pour (fpqc), alors $S_0 \to S$ est un morphisme de descente.

124

 $^{^{(65)}}$ N.D.E.: On a corrigé l'original, en supprimant la référence inadéquate à un exercice de Bourbaki sur les semi-groupes (cf. [**BAlg**], §I.2, Exercices 9 à 13) et en indiquant le rôle des translations à gauche *et à droite*, voir la N.D.E. suivante.

 $^{^{(66)}}$ N.D.E.: Soit E un ensemble non vide muni d'une loi de composition associative, telle que toute translation à gauche ℓ_x soit bijective; fixons $x_0 \in E$. Il existe un unique $e \in E$ tel que $x_0 \cdot e = x_0$; alors $x_0 \cdot e \cdot x = x_0 \cdot x$ entraı̂ne $e \cdot x = x$, pour tout $x \in E$. D'autre part, pour tout x il existe un unique x' tel que $x \cdot x' = e$. Supposons de plus qu'il existe $b \in E$ tel que la translation à droite r_b soit injective. Alors, pour tout x, l'égalité $x \cdot e \cdot b = x \cdot b$ donne $x \cdot e = x$ (i.e. e est élément neutre), et $x \cdot x' \cdot x = x = x \cdot e$ entraı̂ne $x' \cdot x = e$, i.e. x' est l'inverse de x à gauche et à droite, donc E est un groupe.

Noter que l'hypothèse « r_b injective » est nécessaire : sur tout ensemble E on peut définir une loi de composition par $x\cdot y=y$, pour tous $x,y\in E$; alors toute translation à gauche est l'identité (d'où l'associativité de la loi), mais pour tout y on a $r_y(E)=\{y\}$, donc E n'est pas un groupe si |E|>1. $^{(67)}$ N.D.E. : Puisque X et X_0 ont même espace topologique sous-jacent et que t_0 est un automorphisme, t est un homéomorphisme, donc un morphisme affine, cf. Exp. VI_B, 2.9.1 ou EGA IV₄, 18.12.7.1. Il suffit donc de voir que si J est un idéal nilpotent d'un anneau Λ , et $\phi: \Lambda \to B$ un morphisme de Λ -algèbres, avec B plate sur Λ , tel que $\phi \otimes_{\Lambda} (\Lambda/J)$ soit bijectif, alors ϕ est bijectif. D'après le « lemme de Nakayama nilpotent », ϕ est surjectif; de plus, B étant plate sur Λ , on a aussi $\operatorname{Ker}(\phi) \otimes_{\Lambda} (\Lambda/J) = 0$, d'où $\operatorname{Ker}(\phi) = 0$, donc ϕ est bijectif.

125

Lemme 3.4. — Pour que deux lois de compositions admissibles sur X soient équivalentes (cf. 1.3.5), il faut et il suffit qu'elles soient déduites l'une de l'autre par un automorphisme de X au-dessus de S induisant l'identité sur $X_{\mathcal{J}}$.

En effet, les morphismes construits en 1.3.1 sont exactement ceux de l'énoncé précédent (par 0.7). ⁽⁶⁸⁾

Compte tenu de tous les résultats précédents, la proposition 1.3.6 donne :

Théorème 3.5. — Soient S un schéma, \mathcal{I} et \mathcal{J} deux idéaux sur S tels que $\mathcal{I} \supset \mathcal{J}$, $\mathcal{I} \cdot \mathcal{J} = 0$, S_0 et $S_{\mathcal{J}}$ les sous-schémas fermés de S qu'ils définissent. Soit X un S-schéma plat sur S (et localement de présentation finie ou quasi-compact sur S), X_0 et $X_{\mathcal{J}}$ les schémas obtenus par changement de base. Supposons $X_{\mathcal{J}}$ muni d'une structure de $S_{\mathcal{J}}$ -groupe et notons L_0 le S_0 -foncteur en groupes abéliens défini par la formule

$$\operatorname{Hom}_{S_0}(T, L_0) = \operatorname{Hom}_{\mathscr{O}_T}(\omega^1_{X_0/S_0} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_T, \mathcal{J} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_T)$$

sur lequel X₀ opère par l'intermédiaire de sa représentation adjointe.

- (i) Pour qu'il existe une structure de S-groupe sur X induisant la structure donnée sur $X_{\mathcal{J}}$, il faut et il suffit que les conditions suivantes soient satisfaites :
 - (i_1) Il existe un morphisme de S-schémas $X\times_S X\to X$ induisant la loi de groupe de $X_\mathcal{J}$.
 - (i₂) Une certaine classe d'obstruction appartenant à $H^3(X_0, L_0)$ (définie canoniquement par la donnée de X et de la loi de groupe de $X_{\mathcal{J}}$) est nulle.
- (ii) Si les conditions de (i) sont satisfaites, l'ensemble E des lois de groupe sur X induisant la loi donnée de $X_{\mathcal{J}}$ est un ensemble principal homogène sous $Z^2(X_0, L_0)$, et E modulo les S-automorphismes de X induisant l'identité sur $X_{\mathcal{J}}$, est un ensemble principal homogène sous $H^2(X_0, L_0)$.
- $^{(69)}$ En effet, tout morphisme de S-schémas $f: X \times_S X \to X$ induisant la loi de groupe de $X_{\mathcal{J}}$ est, d'après 3.2, une loi de composition admissible sur X; alors, d'après 1.3.6 (i), l'existence d'une loi de composition admissible $P: X \times_S X \to X$ associative équivaut à la nullité d'une certaine classe $c(f) \in H^3(X_0, L_0)$, et dans ce cas, d'après 3.3, P est une loi de groupe. Ceci prouve (i), et (ii) découle alors de 3.3 et 1.3.6 (ii).

Remarque 3.5.1. — ⁽⁷⁰⁾ Si μ, μ' sont des lois de groupe sur X induisant la loi donnée de $X_{\mathcal{J}}$, on obtient donc un cocycle $\delta(\mu, \mu') \in Z^2(X_0, L_0)$, la convention de signe choisie

 $^{^{(68)}}$ N.D.E.: En effet, d'après la démonstration de 0.7, les S-endomorphismes de X induisant l'identité sur $X_{\mathcal{J}}$ sont les automorphismes $m \cdot \mathrm{id}_X$, pour m parcourant $\mathrm{M}(\mathrm{X}) = \mathrm{Hom}_{\mathrm{S}}(\mathrm{X},\mathrm{M})$ (pour tout $\mathrm{S}' \to \mathrm{S}$ et $x \in \mathrm{X}(\mathrm{S}')$, on a $(m \cdot \mathrm{id}_{\mathrm{X}})(x) = m(x) \cdot x$). Or, d'après la démonstration de 3.1, chaque $m : \mathrm{X} \to \mathrm{M}$ se factorise de façon unique en un morphisme h de $\mathrm{Y} = \mathrm{X}^+$ vers M , et donc $m \cdot \mathrm{id}_{\mathrm{X}}$ est l'automorphisme u_h introduit en 1.3.1. Le lemme découle alors de la définition de l'équivalence, cf. 1.3.4 et 1.3.5. $^{(69)}$ N.D.E.: On a ajouté ce qui suit.

 $^{^{(70)}}$ N.D.E.: On a ajouté cette remarque, analogue de 4.5.1, pour introduire la notation $\delta(\mu, \mu')$ (ou $\delta(X, X')$), utilisée en 4.38; par conséquent, on a aussi ajouté dans 3.5 (ii) ci-dessus, la partie concernant E lui-même.

étant que $\mu' = \delta(\mu, \mu') \cdot \mu$, c.-à-d., pour tout $S' \to S$ et $x, y \in X(S')$,

$$\mu'(x,y) = \delta(\mu, \mu')(x_0, y_0) \cdot \mu(x,y). \tag{71}$$

On notera $\bar{\delta}(\mu, \mu')$ l'image de $\delta(\mu, \mu')$ dans $H^2(X_0, L_0)$. Enfin, si X muni de la loi de groupe μ (resp. μ') est désigné simplement par X (resp. X'), on écrira $\delta(X, X')$ au lieu de $\delta(\mu, \mu')$, et de même pour $\bar{\delta}(X, X')$.

Remarque 3.6. — Soit $X_{\mathcal{J}}$ un $S_{\mathcal{J}}$ -schéma *lisse* sur $S_{\mathcal{J}}$ et *affine*. Par 0.15, il existe à isomorphisme près un unique S-schéma X, *lisse* sur S, et se réduisant suivant $X_{\mathcal{J}}$. Si $X_{\mathcal{J}}$ est muni d'une structure de $S_{\mathcal{J}}$ -groupe, il résulte de 0.16 que la condition (i_1) est automatiquement vérifiée. De plus, d'après 0.6 la définition de L_0 se simplifie et on obtient :

Corollaire 3.7. — Soient S, \mathcal{I} et \mathcal{J} comme dans 3.1. Soit $X_{\mathcal{J}}$ un $S_{\mathcal{J}}$ -groupe lisse sur $S_{\mathcal{J}}$ et affine.

(i) L'ensemble des S-groupes lisses sur S et se réduisant suivant $X_{\mathcal{J}}$, à isomorphisme (induisant l'identité sur $X_{\mathcal{J}}$) près, est vide ou principal homogène sous le groupe

$$H^2(X_0, \mathscr{L}ie(X_0/S_0) \otimes_{\mathscr{O}_{S_0}} \mathcal{J}).$$

(ii) Il existe un S-groupe lisse sur S se réduisant suivant $X_{\mathcal{J}}$ si et seulement si une certaine obstruction dans

$$H^3(X_0, \mathcal{L}ie(X_0/S_0) \otimes_{\mathscr{O}_{S_0}} \mathcal{J})$$

est nulle.

On en déduit comme d'habitude les corollaires suivants :

Corollaire 3.8. — Soient S un schéma et S_0 un sous-schéma fermé défini par un idéal nilpotent \mathcal{I} . Soit X_0 un S_0 -groupe lisse sur S et affine.

- (i) Si $H^2(X_0, \mathcal{L}ie(X_0/S_0) \otimes_{\mathscr{O}_{S_0}} \mathcal{I}^{n+1}/\mathcal{I}^{n+2}) = 0$ pour tout $n \geqslant 0$, deux S-groupes 1 lisses sur S se réduisant suivant X_0 sont isomorphes (par un isomorphisme induisant l'identité sur X_0).
- (ii) Si $H^3(X_0, \mathcal{L}ie(X_0/S_0) \otimes_{\mathscr{O}_{S_0}} \mathcal{I}^{n+1}/\mathcal{I}^{n+2}) = 0$ pour tout $n \geqslant 0$, il existe un S-groupe lisse sur S, se réduisant suivant X_0 .

Corollaire 3.9. — Soient S un schéma affine et S_0 un sous-schéma fermé défini par un idéal nilpotent \mathcal{I} . Supposons les $\mathcal{I}^{n+1}/\mathcal{I}^{n+2}$ localement libres sur S_0 . Soit S_0 un S_0 -groupe lisse et affine sur S_0

- (i) Si $H^2(X_0, \mathcal{L}ie(X_0/S_0)) = 0$, deux S-groupes lisses sur S se réduisant suivant X_0 sont isomorphes.
- (ii) Si $H^3(X_0, \mathcal{L}ie(X_0/S_0)) = 0$, il existe un S-groupe lisse sur S se réduisant suivant X_0 .

 $^{{}^{(71)}}$ N.D.E. : On s'est conformé aux conventions de signe de l'original, afin d'avoir en 4.38 (5) l'égalité $\partial^1 \overline{d}(X,X') = \overline{\delta}(X,X')$ (voir aussi la N.D.E. (54)).

Corollaire 3.10. — Soient S_0 un schéma et $S = I_{S_0}$ le schéma des nombres duaux sur S_0 . Soit X_0 un S_0 -groupe lisse sur S_0 . Pour que tout S-groupe Y, lisse sur S, tel que Y_0 soit S_0 -isomorphe à X_0 , soit S-isomorphe à $X = X_0 \times_{S_0} S$, il faut et il suffit que $H^2(X_0, \mathcal{L}ie(X_0/S_0)) = 0$. (72)

En effet, en vertu de 3.5 l'ensemble des classes, à un isomorphisme de S-groupes près « induisant l'identité sur X_0 », de tels groupes Y, est en bijection avec $H^2(X_0, \mathcal{L}ie(X_0/S_0))$, donc l'ensemble des classes, à un isomorphisme de S-groupes quelconque près, est en bijection avec

$$H^2(X_0, \mathcal{L}ie(X_0/S_0))/\Gamma_0$$

οù

127

$$\Gamma_0 = \operatorname{Aut}_{S_0\text{-gr.}}(X_0)$$

(qui opère de façon évidente sur le H^2). La conclusion résulte aussitôt de là. $^{(73)}$

4. Extensions infinitésimales de sous-groupes fermés

Énonçons d'abord un résultat valable dans une catégorie abélienne quelconque.

Lemme 4.1. — Soient $0 \longrightarrow A' \xrightarrow{i} A \xrightarrow{p} A'' \longrightarrow 0$ une suite exacte, $\phi: A' \to Q$ un morphisme et $\pi: A'' \to P$ un épimorphisme de noyau C. Soit E l'ensemble (à isomorphisme près) des quadruplets (B, f, g, h) tels que la suite

$$0 \longrightarrow \mathbf{Q} \xrightarrow{f} \mathbf{B} \xrightarrow{g} \mathbf{P} \longrightarrow 0$$

soit exacte et le diagramme ci-dessous commutatif :

$$0 \longrightarrow A' \xrightarrow{i} A \xrightarrow{p} A'' \longrightarrow 0$$

$$\downarrow \phi \qquad \qquad \downarrow \pi \qquad \qquad \downarrow \pi$$

$$0 \longrightarrow Q \xrightarrow{f} B \xrightarrow{g} P \longrightarrow 0.$$

- (i) Pour que E soit non vide, il faut et il suffit que l'image dans $\operatorname{Ext}^1(C,Q)$ de l'élément A de $\operatorname{Ext}^1(A'',A')$ soit nulle.
- (ii) Sous ces conditions, E est un ensemble principal homogène sous le groupe abélien Hom(C, Q).

 $^{{}^{(72)}{\}rm N.D.E.}$: Ceci est utilisé dans XXIV, 1.13.

 $^{^{(73)}}$ N.D.E. : En effet, $\operatorname{Aut}_{S_0-gr.}(X_0)$ opère par automorphismes de groupe sur le groupe abélien $\operatorname{H}^2(X_0, \mathscr{L}ie(X_0/S_0))$, donc l'orbite de 0 est le singleton $\{0\}$; par conséquent l'ensemble quotient est un singleton si et seulement si $\operatorname{H}^2(X_0, \mathscr{L}ie(X_0/S_0)) = \{0\}$.

129

Introduisons la somme amalgamée $B'=A\coprod^{A'}\!\!Q.$ On a alors un diagramme commutatif où les lignes sont exactes : $^{(74)}$

$$0 \longrightarrow A' \xrightarrow{i} A \xrightarrow{p} A'' \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

et il est clair que la catégorie des solutions du problème posé est canoniquement isomorphe à la catégorie des solutions du problème correspondant pour la suite

$$0 \longrightarrow Q \longrightarrow B' \longrightarrow A'' \longrightarrow 0$$

et les morphismes id_Q et $\pi: A'' \to P$. (75) Dans ce cas, l'ensemble E est en bijection avec l'ensemble des sous-objets N de B' tels que B' $\to A''$ induise un isomorphisme de N avec le noyau C de $A'' \to P$, c'est-à-dire l'ensemble des morphismes $e: C \to B'$ relevant le morphisme canonique $C \to A''$. Le groupe abélien G = Hom(C, Q) agit sur E par $g \cdot e = g + e$ (addition dans Hom(C, B')), et si $E \neq \emptyset$ ceci fait de E un ensemble principal homogène sous G.

On en déduit :

Proposition 4.2. — ⁽⁷⁶⁾ Soient S un schéma, $S_{\mathcal{J}}$ le sous-schéma fermé défini par un idéal quasi-cohérent \mathcal{J} de carré nul, X un S-schéma, \mathscr{F} un \mathscr{O}_X -module, $X_{\mathcal{J}} = X \times_S S_{\mathcal{J}}$, $\mathscr{F}_{\mathcal{J}} = \mathscr{F} \otimes_{\mathscr{O}_S} \mathscr{O}_{S_{\mathcal{J}}}$, et $\mathscr{G}_{\mathcal{J}} = \mathscr{F}_{\mathcal{J}}/\mathscr{H}_{\mathcal{J}}$ un module quotient de $\mathscr{F}_{\mathcal{J}}$. Donnons-nous un morphisme de $\mathscr{O}_{X_{\mathcal{J}}}$ -modules

$$f: \mathcal{J} \otimes_{\mathscr{O}_{\operatorname{S}_{\mathcal{T}}}} \mathscr{G}_{\mathcal{J}} \longrightarrow \mathcal{Q}.$$

Soit & le faisceau d'ensembles sur X défini comme suit : pour chaque ouvert U de X, &(U) est l'ensemble des modules quotients $\mathscr G$ de $\mathscr F|_U$, tels que $\mathscr G/\mathcal J\mathscr G=\mathscr G_{\mathcal J}|_U$ et qu'il existe un isomorphisme

$$h: \mathcal{JG} \xrightarrow{\sim} \mathcal{Q}|_{\mathrm{U}}$$

rendant commutatif le diagramme

 $^{^{(74)}}$ N.D.E.: On a Coker $(j) = B' \coprod^Q 0 = A \coprod^{A'} 0 = A''$, et l'on voit que $Ker(j) \simeq Ker(i) = 0$ en raisonnant « comme si $\mathscr C$ était une catégorie de modules » ; pour une démonstration uniquement en termes de flèches, voir par exemple [Fr64], Th. 2.5.4 (*).

⁽⁷⁵⁾ N.D.E.: Dans ce qui suit, on a remplacé A par B', et détaillé la fin de l'argument.

⁽⁷⁶⁾ N.D.E.: On a récrit l'énoncé pour être exactement dans le cadre de l'application qui en est faite dans 4.3; d'autre part, on a détaillé la démonstration, selon les indications données par M. Demazure.

(h est alors unique, puisque $\mathcal{J} \otimes_{\mathscr{O}_{S_{\mathcal{J}}}} (\mathscr{G}_{\mathcal{J}}|_{U}) \to \mathcal{J}\mathscr{G}$ est un épimorphisme). Alors \mathscr{E} est un faisceau formellement principal homogène sous le faisceau en groupes commutatifs

$$\mathscr{A}=\mathscr{H}\!\mathit{om}_{\mathscr{O}_{\mathrm{X}}}(\mathscr{H}_{\mathcal{J}},\mathcal{Q})=\mathscr{H}\!\mathit{om}_{\mathscr{O}_{\mathrm{X}_{\mathcal{I}}}}(\mathscr{H}_{\mathcal{J}},\mathcal{Q}).$$

 $D\acute{e}monstration$. Si $\mathscr{E}(U) = \varnothing$ il n'y a rien à démontrer ; on peut donc supposer que $\mathscr{E}(U)$ contient un élément $\widetilde{\mathscr{G}}$. Alors, dans le diagramme ci-dessous, h est un isomorphisme et toutes les flèches sont des épimorphismes :

Donc, le morphisme $\mathcal{J} \otimes_{\mathscr{O}_{S_{\mathcal{J}}}} (\mathscr{F}_{\mathcal{J}}|_{U}) \to \mathcal{Q}|_{U}$ induit un épimorphisme (nécessairement unique) $\phi : \mathcal{J}\mathscr{F}|_{U} \to \mathcal{Q}|_{U}$, et si \mathscr{G} est un \mathscr{O}_{U} -module tel que $\mathscr{G}/\mathcal{J}\mathscr{G} = \mathscr{G}_{\mathcal{J}}|_{U}$ et qu'on ait un diagramme commutatif à lignes exactes :

$$0 \longrightarrow \mathcal{J}\mathscr{F}|_{\mathbf{U}} \longrightarrow \mathscr{F}|_{\mathbf{U}} \longrightarrow \mathscr{F}_{\mathcal{J}}|_{\mathbf{U}} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \pi$$

$$0 \longrightarrow \mathcal{Q}|_{\mathbf{U}} \longrightarrow \mathscr{G} \xrightarrow{p_{\mathcal{J}}} \mathscr{G}_{\mathcal{J}}|_{\mathbf{U}} \longrightarrow 0$$

(où $p_{\mathcal{J}}$ est la projection $\mathscr{G} \to \mathscr{G}/\mathcal{J}\mathscr{G} = \mathscr{G}_{\mathcal{J}}|_{\mathrm{U}}$, de sorte que $\mathcal{Q}|_{\mathrm{U}} = \mathrm{Ker}(p_{\mathcal{J}}) = \mathcal{J}\mathscr{G}$), alors on peut identifier \mathscr{G} à un module quotient de $\mathscr{F}|_{\mathrm{U}}$. Par conséquent, d'après 4.1 (ii), l'ensemble $\mathscr{E}(\mathrm{U})$ est principal homogène sous le groupe abélien

$$\mathscr{H}\!\mathit{om}_{\mathscr{O}_X}(\mathscr{H}_{\mathcal{I}},\mathcal{Q})(U) = \mathscr{H}\!\mathit{om}_{\mathscr{O}_{X_{\mathcal{I}}}}(\mathscr{H}_{\mathcal{I}},\mathcal{Q})(U).$$

Proposition 4.3. — (TDTE IV 5.1) Soient S un schéma, $S_{\mathcal{J}}$ le sous-schéma fermé défini par un idéal quasi-cohérent \mathcal{J} de carré nul, X un S-schéma, \mathscr{F} un \mathscr{O}_X -module quasi-cohérent, $X_{\mathcal{J}} = X \times_S S_{\mathcal{J}}$, $\mathscr{F}_{\mathcal{J}} = \mathscr{F} \otimes_{\mathscr{O}_S} \mathscr{O}_{S_{\mathcal{J}}}$. Soit $\mathscr{G}_{\mathcal{J}} = \mathscr{F}_{\mathcal{J}}/\mathscr{H}_{\mathcal{J}}$ un module quotient quasi-cohérent de $\mathscr{F}_{\mathcal{J}}$, plat sur $S_{\mathcal{J}}$.

Pour tout ouvert U de X, soit $\mathscr{E}(U)$ l'ensemble des modules quotients quasi-

Pour tout ouvert U de X, soit $\mathscr{E}(U)$ l'ensemble des modules quotients quasicohérents $\mathscr{G}^{(77)}$ de $\mathscr{F}|_{U}$, plats sur S et tels que $\mathscr{G}/\mathscr{J}\mathscr{G} \simeq \mathscr{G}_{\mathcal{J}}|_{U}$. Alors les $\mathscr{E}(U)$ forment un faisceau d'ensembles \mathscr{E} sur X, qui est formellement principal homogène sous le faisceau en groupes commutatifs

$$\mathscr{A}=\mathscr{H}\!\mathit{om}_{\mathscr{O}_{X,\mathcal{T}}}(\mathscr{H}_{\mathcal{J}},\mathcal{J}\otimes_{\mathscr{O}_{S,\mathcal{T}}}\mathscr{G}_{\mathcal{J}}).$$

 $^{^{(77)}}$ N.D.E.: Pour alléger l'énoncé, on a ajouté ici l'hypothèse que \mathscr{G} soit quasi-cohérent, et reporté à la démonstration la remarque que cette hypothèse est automatiquement vérifiée; on a détaillé la démonstration en conséquence.

 $D\acute{e}monstration$. — Notons $\pi: X \to S$ le morphisme structural. Soient U un ouvert de X et \mathscr{G} un \mathscr{O}_{U} -module plat sur S et tel que $\mathscr{G}/\mathcal{J}\mathscr{G} \simeq \mathscr{G}_{\mathcal{J}}|_{U}$. Alors, pour tout $x \in U$, \mathscr{G}_{x} est un module plat sur l'anneau local $\mathscr{O}_{S,s}$ (où $s=\pi(x)$), et donc le morphisme

$$\mathcal{J}_s \otimes_{\mathscr{O}_{\mathrm{S},s}} (\mathscr{G}/\mathcal{J}\mathscr{G})_x = \mathcal{J}_s \otimes_{\mathscr{O}_{\mathrm{S},s}} \mathscr{G}_x \longrightarrow (\mathcal{J}\mathscr{G})_x$$

est bijectif; on a donc une suite exacte

$$0 \longrightarrow \mathcal{J} \otimes_{\mathscr{O}_{S}} (\mathscr{G}_{\mathcal{I}}|_{U}) \longrightarrow \mathscr{G} \longrightarrow \mathscr{G}_{\mathcal{I}}|_{U} \longrightarrow 0$$

et comme $\mathcal{J} \otimes_{\mathscr{O}_{S}} (\mathscr{G}_{\mathcal{J}}|_{U})$ et $\mathscr{G}_{\mathcal{J}}|_{U}$ sont des \mathscr{O}_{U} -modules quasi-cohérents, \mathscr{G} l'est aussi (cf. EGA III, 1.4.17).

Réciproquement, puisqu'on a supposé $\mathscr{G}_{\mathcal{J}}$ plat sur $S_{\mathcal{J}}$, si \mathscr{G} est un \mathscr{O}_{U} -module quasicohérent tel que $\mathscr{G}/\mathcal{J}\mathscr{G} \simeq \mathscr{G}_{\mathcal{J}}$ et que le morphisme $\mathcal{J} \otimes_{\mathscr{O}_{S_{\mathcal{J}}}} \mathscr{G}_{\mathcal{J}} \to \mathcal{J}\mathscr{G}$ soit bijectif, alors \mathscr{G} est plat sur S, d'après le « critère fondamental de platitude » (cf. SGA 1 IV, 5.5 $^{(78)}$).

Par conséquent, l'ensemble $\mathscr{E}(U)$ considéré ici coïncide avec l'ensemble considéré dans 4.2, en prenant pour f le morphisme identique de $\mathcal{J} \otimes_{\mathscr{O}_{S_{\mathcal{J}}}} \mathscr{G}_{\mathcal{J}}$, et la conclusion découle donc de 4.2. C.Q.F.D.

 $^{(79)}$ On conserve les notations précédentes. Soit $Y_{\mathcal{J}}$ un sous-schéma fermé de $X_{\mathcal{J}},$ défini par un idéal quasi-cohérent $\mathscr{I}_{Y_{\mathcal{J}}}.$ On suppose $Y_{\mathcal{J}}$ plat sur $S_{\mathcal{J}}.$ Alors, appliquant 4.3 à $\mathscr{F}=\mathscr{O}_X$ et $\mathscr{G}_{\mathcal{J}}=\mathscr{O}_{Y_{\mathcal{J}}}=\mathscr{O}_{X_{\mathcal{J}}}/\mathscr{I}_{Y_{\mathcal{J}}},$ on obtient le corollaire suivant.

Corollaire 4.3.1. — Soient $S, S_{\mathcal{J}}, \mathcal{J}, X, X_{\mathcal{J}}, Y_{\mathcal{J}}$ et $\mathscr{I}_{Y_{\mathcal{J}}}$ comme ci-dessus; on suppose $Y_{\mathcal{J}}$ plat sur $S_{\mathcal{J}}$. Notons $\mathscr{A}_{\mathcal{J}}$ le faisceau en groupes commutatifs

$$\mathscr{H}\!\mathit{om}_{\mathscr{O}_{X_{\mathcal{I}}}}(\mathscr{I}_{Y_{\mathcal{I}}},\mathcal{J}\otimes_{\mathscr{O}_{S_{\mathcal{I}}}}\mathscr{O}_{Y_{\mathcal{I}}})$$

 $sur X_{\mathcal{J}} \ et \mathscr{A} = i_*(\mathscr{A}_{\mathcal{J}}), \ où \ i \ est \ l'immersion \ X_{\mathcal{J}} \hookrightarrow X.$

Pour tout ouvert U de X, soit $\mathscr{E}(U)$ l'ensemble des sous-schémas fermés Y de U, plats sur S, tels que Y $\times_S S_{\mathcal{J}} = Y_{\mathcal{J}} \cap U$. Alors \mathscr{E} est un \mathscr{A} -pseudo-torseur.

Si de plus un Y existe localement (c.-à-d., si tout $x \in X$ possède un voisinage ouvert U tel que $\mathscr{E}(U) \neq \varnothing$), alors \mathscr{E} est un \mathscr{A} -torseur. Or on sait (voir par exemple EGA IV₄, 16.5.15) que les \mathscr{A} -torseurs sur X sont paramétrés par le groupe $H^1(X,\mathscr{A}) = H^1(X_{\mathcal{J}},\mathscr{A}_{\mathcal{J}})$, et que \mathscr{E} possède une section globale (c.-à-d., $\mathscr{E}(X) \neq \varnothing$) si et seulement si la classe de cohomologie correspondant à \mathscr{E} est nulle. On obtient donc le :

Corollaire 4.4. — Soient S, $S_{\mathcal{J}}$, \mathcal{J} , X, $X_{\mathcal{J}}$, $Y_{\mathcal{J}}$ et $\mathscr{I}_{Y_{\mathcal{J}}}$ comme ci-dessus; on suppose $Y_{\mathcal{J}}$ plat $sur S_{\mathcal{J}}$. Soit E l'ensemble des sous-schémas fermés Y de X, plats sur S, tels $que Y \times_S S_{\mathcal{J}} = Y_{\mathcal{J}}$.

(i) L'ensemble E est vide ou principal homogène sous le groupe abélien

$$H^0(X,\mathscr{A})=H^0(X_{\mathcal{J}},\mathscr{A}_{\mathcal{J}})=\mathrm{Hom}_{\mathscr{O}_{X_{\mathcal{J}}}}(\mathscr{I}_{Y_{\mathcal{J}}},\mathcal{J}\otimes_{\mathscr{O}_{S_{\mathcal{J}}}}\mathscr{O}_{Y_{\mathcal{J}}}).$$

⁽⁷⁸⁾ N.D.E.: voir aussi [**BAC**], § III.5, th. 1.

 $^{^{(79)}}$ N.D.E. : On a détaillé ce qui suit et ajouté le corollaire 4.3.1. D'autre part, on rappelle que « pseudo-torseur » est synonyme de « formellement principal homogène ».

- (ii) Pour que E soit non vide, il faut et il suffit que les deux conditions suivantes soient vérifiées :
 - (a) Il existe localement sur X une solution du problème.
 - (b) Une certaine obstruction est nulle, qui se trouve dans

$$H^1(X_{\mathcal{J}}, \mathscr{H}\!\mathit{om}_{\mathscr{O}_{X_{\mathcal{J}}}}(\mathscr{I}_{Y_{\mathcal{J}}}, \mathcal{J} \otimes_{\mathscr{O}_{S_{\mathcal{J}}}} \mathscr{O}_{Y_{\mathcal{J}}})).$$

Complément 4.4.1. — ⁽⁸⁰⁾ Conservons les notations de 4.4 et supposons que E contienne un élément Y. Notons \mathscr{I}_Y l'idéal de \mathscr{O}_X définissant Y, et $\mathscr{I}_{Y_{\mathcal{J}}}$ son image dans $\mathscr{O}_{X_{\mathcal{J}}}$. Alors, comme on l'a vu dans la démonstration de 4.2, on a un diagramme commutatif

donc un épimorphisme de \mathscr{O}_X -modules $\phi: \mathscr{J}\mathscr{O}_X \to \mathscr{J}\otimes_{\mathscr{O}_{S_{\mathcal{J}}}} \mathscr{O}_{Y_{\mathcal{J}}}$; notons \mathscr{K} son noyau. Alors, pour tout élément Y' de E, le morphisme $\mathscr{O}_X \to \mathscr{O}_{Y'}$ se factorise par $\mathscr{O}_X/\mathscr{K}$ (qui est la somme amalgamée B' de la démonstration du lemme 4.1) et, notant $\mathscr{I}_{Y'}$ l'idéal de Y' dans \mathscr{O}_X , on a un diagramme commutatif:

Donc, remplaçant X par le sous-schéma fermé défini par \mathscr{K} , on se ramène à $\mathscr{K}=0$. Alors, la donnée de Y' équivaut à celle du sous- \mathscr{O}_X -module $\mathscr{I}_{Y'}$ de \mathscr{O}_X , s'envoyant bijectivement sur $\mathscr{I}_{Y_{\mathcal{J}}}$ par la projection $p:\mathscr{O}_X\to\mathscr{O}_{X_{\mathcal{J}}}$; notons $f':\mathscr{I}_{Y_{\mathcal{J}}}\stackrel{\sim}{\longrightarrow}\mathscr{I}_{Y'}$ (resp. $f:\mathscr{I}_{Y_{\mathcal{J}}}\stackrel{\sim}{\longrightarrow}\mathscr{I}$) l'isomorphisme réciproque. Alors f'-f est un élément de

$$\operatorname{Hom}_{\mathscr{O}_{X,\mathcal{I}}}(\mathscr{I}_{Y_{\mathcal{I}}},\mathcal{J}\otimes_{\mathscr{O}_{S,\mathcal{I}}}\mathscr{O}_{Y_{\mathcal{I}}})=\operatorname{Hom}_{\mathscr{O}_{X,\mathcal{I}}}(\mathscr{I}_{Y_{\mathcal{I}}},\mathcal{J}\mathscr{O}_{Y})$$

qu'on notera $d(\mathbf{Y}',\mathbf{Y})$. (Noter que $d(\mathbf{Y},\mathbf{Y}')=-d(\mathbf{Y}',\mathbf{Y})$.)

⁽⁸⁰⁾ N.D.E.: On a ajouté ce complément, utile pour démontrer le point (ii) de la proposition 4.8.

Pour notre Y fixé et Y' variable, considérons le morphisme :

$$\mathscr{I}_{\mathbf{Y}'} \longrightarrow \mathscr{O}_{\mathbf{X}} \longrightarrow \mathscr{O}_{\mathbf{Y}} = \mathscr{O}_{\mathbf{X}}/\mathscr{I}_{\mathbf{Y}};$$

puisque la composée avec $\mathscr{O}_{Y} \to \mathscr{O}_{Y_{\mathcal{J}}}$ est nulle, on sait qu'il est à valeurs dans $\mathscr{J}\mathscr{O}_{Y} = \mathscr{J} \otimes_{\mathscr{O}_{S_{\mathcal{J}}}} \mathscr{O}_{Y_{\mathcal{J}}}$. Plus précisément, si V est un ouvert de X, x' une section de $\mathscr{J}_{Y'}$ sur V et $x_{\mathcal{J}}$ son image dans $\Gamma(V, \mathscr{I}_{Y_{\mathcal{J}}})$, alors

$$x' = f'(x_{\mathcal{T}}) = f(x_{\mathcal{T}}) + (f' - f)(x_{\mathcal{T}}) = f(x_{\mathcal{T}}) + d(Y', Y)(x_{\mathcal{T}}).$$

Par conséquent : le morphisme $\mathscr{I}_{Y'} \to \mathscr{J}\mathscr{O}_Y$ est donné par d(Y',Y).

4.5.0. — ⁽⁸¹⁾ Conservons les notations de 4.3.1 et 4.4 et effectuons un certain nombre de transformations : $\mathscr{I}_{Y_{\mathcal{J}}}/\mathscr{I}_{Y_{\mathcal{J}}}^2$ est un $\mathscr{O}_{X_{\mathcal{J}}}$ -module quasi-cohérent annulé par $\mathscr{I}_{Y_{\mathcal{J}}}$ donc est l'image directe d'un $\mathscr{O}_{Y_{\mathcal{J}}}$ -module quasi-cohérent noté $\mathscr{N}_{Y_{\mathcal{J}}/X_{\mathcal{J}}}$, et appelé le faisceau conormal à $Y_{\mathcal{J}}$ dans $X_{\mathcal{J}}$. ⁽⁸²⁾ Comme $\mathscr{J} \otimes_{\mathscr{O}_{S_{\mathcal{J}}}} \mathscr{O}_{Y_{\mathcal{J}}}$ est annulé par $\mathscr{I}_{Y_{\mathcal{J}}}$, le faisceau en groupes commutatifs $\mathscr{A}_{\mathcal{J}}$ de 4.3.1 s'identifie à :

$$\mathscr{H}\!\mathit{om}_{\mathscr{O}_{Y_{\mathcal{I}}}}(\mathscr{I}_{Y_{\mathcal{I}}}/\mathscr{I}_{Y_{\mathcal{I}}}^{2},\mathcal{J}\otimes_{\mathscr{O}_{S_{\mathcal{I}}}}\mathscr{O}_{Y_{\mathcal{I}}})=\mathscr{H}\!\mathit{om}_{\mathscr{O}_{Y_{\mathcal{I}}}}(\mathscr{N}_{Y_{\mathcal{I}}/X_{\mathcal{I}}},\mathcal{J}\otimes_{\mathscr{O}_{S_{\mathcal{I}}}}\mathscr{O}_{Y_{\mathcal{I}}}),$$

d'où, pour tout $i \ge 0$:

$$\mathrm{H}^{i}(\mathrm{X}_{\mathcal{J}}, \mathscr{A}_{\mathcal{J}}) = \mathrm{H}^{i}(\mathrm{Y}_{\mathcal{J}}, \mathscr{H}om_{\mathscr{O}_{\mathrm{Y}, \mathcal{I}}}(\mathscr{N}_{\mathrm{Y}_{\mathcal{I}}/\mathrm{X}_{\mathcal{I}}}, \mathcal{J} \otimes_{\mathscr{O}_{\mathrm{S}, \mathcal{I}}} \mathscr{O}_{\mathrm{Y}, \mathcal{I}})).$$

 $^{(83)}$ On peut alors supprimer l'hypothèse « Y fermé », comme suit. Notons d'abord que tout ouvert $U_{\mathcal{J}}$ de $X_{\mathcal{J}}$ provient par changement de base du sous-schéma ouvert U de X ayant même espace topologique sous-jacent que $U_{\mathcal{J}}$. Soit maintenant $Y_{\mathcal{J}}$ un sous-schéma fermé de $U_{\mathcal{J}}$, plat sur $S_{\mathcal{J}}$, et $\mathscr{I}_{Y_{\mathcal{J}}}$ l'idéal quasi-cohérent de $\mathscr{O}_{U_{\mathcal{J}}}$ définissant $Y_{\mathcal{J}}$. Si $Y_{\mathcal{J}}$ se relève en un sous-schéma Y de X, alors Y, ayant même espace topologique sous-jacent que $Y_{\mathcal{J}}$, est un sous-schéma fermé de U; par conséquent, l'obstruction pour relever $Y_{\mathcal{J}}$ en un sous-schéma, plat sur S, de X ou de U est « la même », elle réside dans

$$H^1(Y_{\mathcal{J}}, \mathscr{H}\!\mathit{om}_{\mathscr{O}_{Y_{\mathcal{J}}}}(\mathscr{N}_{Y_{\mathcal{J}}/X_{\mathcal{J}}}, \mathcal{J} \otimes_{\mathscr{O}_{S_{\mathcal{J}}}} \mathscr{O}_{Y_{\mathcal{J}}})).$$

Enfin, revenons aux notations du n°0 : soit \mathcal{I} un idéal quasi-cohérent de \mathscr{O}_S tel que $\mathcal{J} \subset \mathcal{I}$ et $\mathcal{I} \mathcal{J} = 0$, et soit S_0 le sous-schéma fermé de $S_{\mathcal{J}}$ défini par \mathcal{I} . Pour tout S-schéma Z, on note $Z_{\mathcal{J}} = Z \times_S S_{\mathcal{J}}$ et $Z_0 = Z \times_S S_0$. Alors, comme \mathcal{J} est annulé par \mathcal{I} , on a, avec les notations de 4.4 :

$$\begin{split} \mathcal{J} \otimes_{\mathscr{O}_{S_{\mathcal{J}}}} \mathscr{O}_{Y_{\mathcal{J}}} &= \mathcal{J} \otimes_{\mathscr{O}_{S_{0}}} \mathscr{O}_{Y_{0}} \\ \mathscr{H}\!\mathit{om}_{\mathscr{O}_{Y_{\mathcal{J}}}}(\mathscr{N}_{Y_{\mathcal{J}}/X_{\mathcal{J}}}, \mathcal{J} \otimes_{\mathscr{O}_{S_{\mathcal{J}}}} \mathscr{O}_{Y_{\mathcal{J}}}) &= \mathscr{H}\!\mathit{om}_{\mathscr{O}_{Y_{0}}}(\mathscr{N}_{Y_{\mathcal{J}}/X_{\mathcal{J}}} \otimes_{\mathscr{O}_{Y_{\mathcal{J}}}} \mathscr{O}_{Y_{0}}, \mathcal{J} \otimes_{\mathscr{O}_{S_{0}}} \mathscr{O}_{Y_{0}}), \end{split}$$

etc. On obtient donc:

131

 $^{^{(81)}}$ N.D.E. : On a ajouté la numérotation 4.5.0 pour marquer le retour à l'original.

 $^{{\}rm ^{(82)}N.D.E.}$: On a corrigé la phrase suivante.

⁽⁸³⁾ N.D.E.: On a détaillé ce qui suit.

132

Proposition 4.5. — Soient S un schéma, S_0 et $S_{\mathcal{J}}$ les sous-schémas fermés définis par les idéaux quasi-cohérents \mathcal{I} et \mathcal{J} , tels que $\mathcal{I} \supset \mathcal{J}$ et $\mathcal{I} \cdot \mathcal{J} = 0$. Soient X un S-schéma et $Y_{\mathcal{J}}$ un sous-schéma de $X_{\mathcal{J}}$, plat sur $S_{\mathcal{J}}$. Soit \mathscr{A}_0 le \mathscr{O}_{Y_0} -module défini par

$$\mathscr{A}_0 = \mathscr{H}om_{\mathscr{O}_{Y_0}}(\mathscr{N}_{Y_{\mathcal{I}}/X_{\mathcal{I}}} \otimes_{\mathscr{O}_{Y_{\mathcal{I}}}} \mathscr{O}_{Y_0}, \mathcal{J} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_{Y_0}).$$

- (i) Pour qu'il existe un sous-schéma Y de X, se réduisant suivant $Y_{\mathcal{J}}$, plat sur S, il faut et il suffit que les conditions suivantes soient satisfaites :
 - (a) Un tel Y existe localement sur X.
 - (b) Une certaine obstruction dans $R^1\Gamma(Y_0, \mathscr{A}_0)$ est nulle. (84)
- (ii) Sous ces conditions, l'ensemble des Y répondant aux conditions exigées est principal homogène sous le groupe commutatif $\Gamma(Y_0, \mathscr{A}_0)$.

Remarque 4.5.1. — ⁽⁸⁵⁾ Il résulte de 4.5 (ii) la donnée pour tout couple (Y, Y') de sous-schémas ⁽⁸⁶⁾ de X, plats sur S et se réduisant suivant $Y_{\mathcal{J}}$, d'une « *déviation* »

$$d(Y',Y) \in \Gamma(Y_0,\mathscr{A}_0) = \mathrm{Hom}_{\mathscr{O}_{Y_0}}(\mathscr{N}_{Y_{\mathcal{I}}/X_{\mathcal{I}}} \otimes_{\mathscr{O}_{Y_{\mathcal{I}}}} \mathscr{O}_{Y_0}, \ \mathcal{J} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_{Y_0}) \, ;$$

la convention de signe adoptée dans 4.4.1 étant que $d(\mathbf{Y}',\mathbf{Y})$ correspond au morphisme de $\mathscr{O}_{\mathbf{X}}$ -modules

$$\mathscr{I}_{\mathbf{Y}'} \hookrightarrow \mathscr{O}_{\mathbf{X}} \longrightarrow \mathscr{O}_{\mathbf{Y}}$$

(qui est à valeurs dans $\mathcal{I}\mathscr{O}_Y \simeq \mathcal{I} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_{Y_0}$ et se factorise par $\mathscr{I}_{Y'_{\mathcal{I}}} = \mathscr{I}_{Y_{\mathcal{I}}}$ puis par $\mathscr{N}_{Y_{\mathcal{I}}/X_{\mathcal{I}}}$).

Remarque 4.6. — ⁽⁸⁷⁾ Si X est plat sur S et si $Y_{\mathcal{J}}$ est localement intersection complète dans $X_{\mathcal{J}}$, alors la condition (a) est toujours satisfaite et tout Y plat sur S relevant $Y_{\mathcal{J}}$ est alors localement intersection complète dans X. Si de plus Y_0 est affine, la condition (b) est également satisfaite.

Définition 4.6.1. — (cf. SGA 6, VII 1.1) Soient B un anneau commutatif, $f: E \to B$ un morphisme B-linéaire, où E est un B-module libre de rang fini d, et I l'idéal f(E) (si on choisit une base de E, f est donné par un d-uplet (f_1, \ldots, f_d) d'éléments de B, et I est l'idéal engendré par les f_i). Le complexe de Koszul K $_{\bullet}(f)$ est le B-module gradué $\bigwedge_{B}^{\bullet} E$, muni de la différentielle (de degré -1) :

$$x_1 \wedge \cdots \wedge x_i \mapsto \sum_{j=1}^i (-1)^{j-1} f(x_j) x_1 \wedge \cdots \wedge \widehat{x_j} \wedge \cdots \wedge x_i.$$

 $^{^{(84)}}$ N.D.E.: Ici, on a noté $\mathrm{R}^1\Gamma(Y_0,\mathscr{A}_0)$ le groupe de cohomologie « cohérente » $\mathrm{H}^1(Y_0,\mathscr{A}_0)$ du \mathscr{O}_{Y_0} -module \mathscr{A}_0 , afin de le distinguer de groupes de cohomologie « de Hochschild » $\mathrm{H}^i(Y_0,\mathscr{M}_0)$ (Y_0 un S_0 -groupe, \mathscr{M}_0 un \mathscr{O}_{S_0} -module) qui seront considérés à partir de 4.16.

⁽⁸⁵⁾ N.D.E. : On a placé ici cette remarque, qui remplace la remarque 4.7 de l'original.

 $^{{\}rm ^{(86)}N.D.E.}$: On a corrigé « sous-schémas fermés » en « sous-schémas ».

 $^{^{(87)}}$ N.D.E. : On a conservé, pour mémoire, la remarque 4.6 de l'original, où ne figure pas la définition de « localement intersection complète ». On a ajouté à la suite la « bonne » définition, tirée de SGA 6, VII 1.4 (qui *remplace* celle de EGA IV₄, 16.9.2), et la démonstration des trois résultats énoncés dans la remarque.

On a donc un complexe de chaînes augmenté (B/I étant en degré -1):

$$\cdots \longrightarrow \bigwedge^2 E \longrightarrow E \xrightarrow{f} B \longrightarrow B/I \longrightarrow 0$$

qui par définition est exact en degré 0, puisque I = f(E). On dit que f est régulier si $K_{\bullet}(f)$ est acyclique en degrés > 0, c.-à-d., si le complexe augmenté ci-dessus est une résolution de C = B/I.

Dans ce cas, la démonstration de SGA 6, VII 1.2 b) montre que les C-modules I^n/I^{n+1} $(n \in \mathbb{N})$ sont libres, I/I^2 étant de rang d.

Définition 4.6.2. — (cf. SGA 6, VII 1.4) Soient X un schéma, Y un sous-schéma, U un ouvert de X tel que Y soit un sous-schéma fermé de U, défini par l'idéal quasi-cohérent \mathcal{I}_{Y} .

On dit que Y est localement intersection complète dans X si Y \hookrightarrow X est une immersion régulière au sens de SGA 6, VII 1.4, c.-à-d., si pour tout $y \in$ Y il existe un voisinage ouvert affine V de y dans U, un \mathcal{O}_{V} -module fini libre \mathcal{E} , et un morphisme régulier $f : \mathcal{E} \to \mathcal{O}_{V}$ d'image $\mathcal{I}_{Y|V}$, i.e. tel que $K_{\bullet}(f)$ soit une résolution de $\mathcal{O}_{Y \cap V}$.

Ceci implique que l'immersion $Y \hookrightarrow X$ est localement de présentation finie, et, d'après 4.6.1, que le faisceau conormal $\mathcal{N}_{Y/X} = \mathcal{I}_Y/\mathcal{I}_Y^2$ est un \mathcal{O}_Y -module fini localement libre.

Lemme 4.6.3. — ⁽⁸⁸⁾ Soient A un anneau, J un idéal de A de carré nul, $\overline{A} = A/J$, B une A-algèbre plate, E un B-module libre de rang fini, $f : E \to B$ un morphisme de B-modules. On suppose que le morphisme $g : \overline{E} = E \otimes_A \overline{A} \to \overline{B} = B \otimes_A \overline{A}$ induit par f est régulier et que $\overline{B}/g(\overline{E})$ est plate $sur \overline{A}$.

Alors f est régulier et B/f(E) est plate sur A.

Démonstration. Posons C = B/f(E) et $\overline{C} = C \otimes_A \overline{A} = \overline{B}/g(\overline{E})$. D'abord, les $\bigwedge_B^i(E)$ sont des B-modules libres, donc des A-modules plats, puisque B est plat sur A. Comme $\bigwedge_B^{\bullet} E \otimes_A \overline{A} \simeq \bigwedge_{\overline{B}}^{\bullet} \overline{E}$, on obtient donc une suite exacte de complexes :

$$0 \longrightarrow J \otimes_A \bigwedge_B^{\bullet} E \longrightarrow \bigwedge_B^{\bullet} E \longrightarrow \bigwedge_{\overline{A}}^{\bullet} \overline{E} \longrightarrow 0.$$

De plus, comme $J^2 = 0$, on a $J \otimes_A M = J \otimes_{\overline{A}} \overline{A} \otimes_A M$ pour tout A-module M. Notant $-- \succ$ les flèches d'augmentation, et d le rang de E, on obtient donc le bicomplexe qui suit, où les lignes sont exactes :

⁽⁸⁸⁾ N.D.E. : Afin de démontrer les résultats énoncés dans la remarque 4.6, on a ajouté les lemmes 4.6.3, 4.6.4 et la proposition 4.6.5, ainsi que la remarque 4.6.6.

De plus, les colonnes de droite et de gauche sont exactes, puisque $K_{\bullet}(g)$ est une résolution de \overline{C} et que celui-ci est plat sur \overline{A} . Donc, considérant la suite exacte longue d'homologie associée à la suite exacte de complexes non augmentés on obtient que $K_{\bullet}(f)$ est acyclique en degrés > 0, et qu'on a en degré 0 une suite exacte :

$$0 \longrightarrow J \otimes_A C \longrightarrow C \longrightarrow \overline{C} \longrightarrow 0.$$

Donc C est plat sur A, d'après le « critère fondamental de platitude » (cf. [**BAC**], § III.5, th. 1).

Lemme 4.6.4. — ⁽⁸⁸⁾ Soient A un anneau commutatif, J un idéal nilpotent, $N \subset M$ des A-modules tels que M/N soit plat sur A. Si x_1, \ldots, x_n sont des éléments de N dont les images engendrent l'image \overline{N} de N dans M/JM, alors ils engendrent N.

En effet, notons N' le sous-module de N engendré par les x_i , et Q = N/N'. Alors le morphisme $N' \otimes (A/J) \to \overline{N}$ est surjectif. D'autre part, comme M/N est plat sur A, le morphisme $N \otimes (A/J) \to \overline{N}$ est bijectif. On obtient donc que $Q \otimes (A/J) = 0$, d'où Q = 0 d'après le « lemme de Nakayama nilpotent » (on a $Q = JQ = J^2Q = \cdots = 0$).

On peut maintenant démontrer la :

Proposition 4.6.5. — ⁽⁸⁸⁾ Soient $S, \mathcal{I}, \mathcal{J}$ et $X, Y_{\mathcal{J}}$ comme en 4.5. Supposons de plus X plat $sur\ S$ et $Y_{\mathcal{J}}$ localement intersection complète $dans\ X_{\mathcal{J}}$.

- a) Alors, la condition (a) de 4.5 (i) est satisfaite; de plus, tout Y plat sur S relevant Y_{\mathcal{T}} est localement intersection complète dans X.
 - b) Si de plus Y₀ est affine, la condition (b) de loc. cit. est également satisfaite.

 $D\acute{e}monstration$. La première assertion de (a) découle du lemme 4.6.3; la seconde résulte alors du lemme 4.6.4. D'autre part, l'hypothèse entraı̂ne (cf. 4.6.2) que $\mathcal{N}_{Y_{\mathcal{J}}/X_{\mathcal{J}}}$ est un $\mathcal{O}_{Y_{\mathcal{J}}}$ -module fini localement libre, donc le \mathcal{O}_{Y_0} -module

$$\mathscr{A}_0 = \mathscr{H}\!\mathit{om}_{\mathscr{O}_{Y_0}}(\mathscr{N}_{Y_\mathcal{J}/X_\mathcal{J}} \otimes_{\mathscr{O}_{Y_\mathcal{J}}} \mathscr{O}_{Y_0}, \mathcal{J} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_{Y_0}).$$

est quasi-cohérent (cf. EGA I, 1.3.12), d'où $R^1\Gamma(Y_0, \mathscr{A}_0) = 0$ si Y_0 est affine.

Remarque 4.6.6. — ⁽⁸⁸⁾ Terminons ce paragraphe par l'exemple suivant, qui montre que, sous les hypothèses du lemme 4.6.3, si (g_1, g_2) est une suite régulière engendrant l'idéal $\overline{I} = g(\overline{E})$, elle ne se relève pas nécessairement en une suite régulière dans B.

Soient k un corps, $\overline{A} = k[X, Y]$, notons $k\varepsilon$ le \overline{A} -module $\overline{A}/(X, Y)$ (i.e. $P \cdot \varepsilon = P(0, 0) \varepsilon$ pour tout $P \in \overline{A}$), et soit $A = \overline{A} \oplus k\varepsilon$, où $J = k\varepsilon$ est un idéal de carré nul. On a $A/J = \overline{A}$.

L'algèbre $B = A \otimes_k k[Z, T]$ est libre sur A, donc plate; on a $\overline{B} = k[X, Y, Z, T]$. Posons $g_1 = XZ - YT$ et $g_2 = XZ - 1$. Comme le polynôme g_1 est irréductible, $\overline{B}/(g_1)$ est intègre, et donc (g_1, g_2) est une suite régulière dans \overline{B} , engendrant l'idéal $\overline{I} = (XZ - 1, YT - 1)$. Donc

$$\overline{\mathbf{C}} = \overline{\mathbf{B}}/\overline{\mathbf{I}} = k[\mathbf{X}, \mathbf{Y}, \mathbf{X}^{-1}, \mathbf{Y}^{-1}] = \mathbf{A}[\mathbf{X}^{-1}, \mathbf{Y}^{-1}]$$

est une \overline{A} -algèbre plate (et aussi une A-algèbre plate). Mais tout relèvement dans B de g_1 est de la forme $XY - ZT + \lambda \varepsilon$, où $\lambda \in k[Z, T]$, donc annule ε .

4.7. On a supprimé ici la remarque 4.7, placée en 4.5.1.

Remarque 4.8.0. — ⁽⁸⁹⁾ Soient S un schéma, S' un sous-schéma fermé, X un S-schéma, Y un sous-S-schéma de X, et $X' = X \times_S S'$, $Y' = Y \times_S S'$. Alors, on a un morphisme surjectif de $\mathscr{O}_{Y'}$ -modules

$$\mathcal{N}_{Y/X} \otimes_{\mathscr{O}_Y} \mathscr{O}_{Y'} \xrightarrow{\operatorname{surj.}} \mathscr{N}_{Y'/X'}.$$

En effet, quitte à remplacer X par un certain ouvert, on peut supposer que Y est fermé, défini par un idéal \mathscr{I}_Y de \mathscr{O}_X ; alors l'image de \mathscr{I}_Y dans $\mathscr{O}_{X'}$ est l'idéal $\mathscr{I}_{Y'}$ définissant Y', et l'on a un morphisme surjectif de $\mathscr{O}_{Y'}$ -modules

$$\pi: \quad (\mathscr{I}_Y/\mathscr{I}_Y^2) \otimes_{\mathscr{O}_Y} \mathscr{O}_{Y'} \xrightarrow{\mathrm{surj.}} \mathscr{I}_{Y'}/\mathscr{I}_{Y'}^2 \, .$$

Supposons de plus que $\mathscr{O}_{Y} = \mathscr{O}_{X}/\mathscr{I}_{Y}$ soit plat sur \mathscr{O}_{S} ; alors le morphisme naturel

$$\mathscr{I}_Y \otimes_{\mathscr{O}_X} \mathscr{O}_{X'} \longrightarrow \mathscr{I}_{Y'}$$

 $^{^{(89)}}$ N.D.E. : On a inséré ici cette remarque, utilisée dans la proposition qui suit ; elle figurait en 4.10 de l'original.

est bijectif (cf. EGA IV $_2,\,2.1.8).$ On a alors le diagramme commutatif à lignes exactes suivant :

$$\begin{array}{c|c}
\mathcal{J}_{\mathbf{Y}}^{2} \otimes_{\mathcal{O}_{\mathbf{X}}} \mathcal{O}_{\mathbf{X}'} \longrightarrow \mathcal{J}_{\mathbf{Y}} \otimes_{\mathcal{O}_{\mathbf{X}}} \mathcal{O}_{\mathbf{X}'} \longrightarrow (\mathcal{J}_{\mathbf{Y}}/\mathcal{J}_{\mathbf{Y}}^{2}) \otimes_{\mathcal{O}_{\mathbf{Y}}} \mathcal{O}_{\mathbf{Y}'} \longrightarrow 0 \\
& \text{surj.} & \downarrow \downarrow & \pi \mid \text{surj.} \\
0 \longrightarrow \mathcal{J}_{\mathbf{Y}'}^{2} \longrightarrow \mathcal{J}_{\mathbf{Y}'} \longrightarrow \mathcal{J}_{\mathbf{Y}'}/\mathcal{J}_{\mathbf{Y}'}^{2} \longrightarrow 0
\end{array}$$

d'où l'on déduit, d'après le lemme du serpent : (90)

$$(4.8.0) \mathcal{N}_{Y/X} \otimes_{\mathscr{O}_{Y}} \mathscr{O}_{Y'} \xrightarrow{\sim} \mathcal{N}_{Y'/X'} \text{si Y est } plat \text{ sur S}.$$

Proposition 4.8. — Soient S, S_0 , $S_{\mathcal{J}}$ et \mathcal{I} , \mathcal{J} comme en 4.5. ⁽⁹¹⁾ Soient X un S-schéma, Y un sous-schéma de X, et i l'immersion $Y \hookrightarrow X$.

(i) Pour tout S-morphisme $f: T \to X$ tel que $f_{\mathcal{J}}: T_{\mathcal{J}} \to X_{\mathcal{J}}$ se factorise par $Y_{\mathcal{J}}$, on peut définir une obstruction

$$(*) c(X, Y, f) \in \operatorname{Hom}_{\mathscr{O}_{T_0}}(f_0^*(\mathscr{N}_{Y/X} \otimes_{\mathscr{O}_Y} \mathscr{O}_{Y_0}), \mathcal{J}\mathscr{O}_T)$$

dont la nullité équivaut à l'existence d'une factorisation de f par Y.

(ii) Soit Y' un second sous-schéma de X. Supposons que $Y'_{\mathcal{J}} = Y_{\mathcal{J}}$ et que Y, Y' soient plats sur S. On a alors des isomorphismes (cf. 4.8.0) :

$$\mathcal{J}\mathscr{O}_Y \simeq \mathcal{J} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_{Y_0} \simeq \mathcal{J}\mathscr{O}_Y' \qquad \text{et} \qquad \mathscr{N}_{Y/X} \otimes_{\mathscr{O}_Y} \mathscr{O}_{Y_{\mathcal{J}}} \stackrel{\sim}{\longrightarrow} \mathscr{N}_{Y_{\mathcal{J}}/X_{\mathcal{J}}}$$

d'où un isomorphisme :

133

$$u: \mathrm{Hom}_{\mathscr{O}_{\mathbf{Y}_{0}}}(\mathscr{N}_{\mathbf{Y}_{\mathcal{I}}/\mathbf{X}_{\mathcal{I}}} \otimes_{\mathscr{O}_{\mathbf{Y}_{\mathcal{I}}}} \mathscr{O}_{\mathbf{Y}_{0}}, \mathcal{J}\mathscr{O}_{\mathbf{Y}}) \xrightarrow{\sim} \mathrm{Hom}_{\mathscr{O}_{\mathbf{Y}_{0}}}(\mathscr{N}_{\mathbf{Y}/\mathbf{X}} \otimes_{\mathscr{O}_{\mathbf{Y}}} \mathscr{O}_{\mathbf{Y}_{0}}, \mathcal{J}\mathscr{O}_{\mathbf{Y}'}).$$

Notant $i': Y' \to X$ l'immersion canonique et d(Y, Y') la déviation de 4.5.1, on a : (92)

(**)
$$c(X, Y, i') = u(d(Y, Y')).$$

(iii) Le morphisme canonique $\mathcal{N}_{Y/X} \xrightarrow{D} i^*(\Omega^1_{X/S})$ (cf. SGA 1 II, formule 4.3) ⁽⁹³⁾ induit un morphisme :

$$D_0: \mathscr{N}_{Y/X} \otimes_{\mathscr{O}_Y} \mathscr{O}_{Y_0} \longrightarrow \Omega^1_{X_0/S_0} \otimes_{\mathscr{O}_{X_0}} \mathscr{O}_{Y_0}$$

 $^{^{(90)}}$ N.D.E.: Dans l'original, ceci était indiqué dans la remarque 4.10, sous l'hypothèse additionnelle que Y' soit localement intersection complète dans X'. Cette hypothèse figurait aussi, par suite, dans les énoncés 4.12-4.14; elle semble en fait superflue, et on l'a supprimée des énoncés précités.

 $^{{}^{(91)}{\}rm N.D.E.}$: On a supprimé l'hypothèse que $\mathcal I$ soit ${\it nilpotent},$ qui paraît superflue (cf. la démonstration).

⁽⁹²⁾ N.D.E.: voir aussi 4.27 plus loin.

 $^{^{(93)}}$ N.D.E. : voir aussi EGA IV₄, 16.4.21. Rappelons que si U est un ouvert affine de X tel que Y \cap U soit défini par l'idéal I de A = $\mathscr{O}_{\mathbf{X}}(\mathbf{U})$, si on note d la différentielle A \rightarrow $\Gamma(\mathbf{U}, \Omega^1_{\mathbf{X}/\mathbf{S}})$, et si $x \in \mathbf{I}$, alors $\mathbf{D}(x+\mathbf{I}^2)$ est l'élément $d(x) \otimes 1$ de $\Gamma(\mathbf{U}, \Omega^1_{\mathbf{X}/\mathbf{S}}) \otimes_{\mathbf{A}} (\mathbf{A}/\mathbf{I})$.

et donc, pour tout S-morphisme $f: T \to X$ comme en (i), un morphisme :

$$v_{f_0}: \operatorname{Hom}_{\mathscr{O}_{\mathrm{T}_0}}(f_0^*(\Omega^1_{\mathrm{X}_0/\mathrm{S}_0}), \mathcal{J}\mathscr{O}_{\mathrm{T}}) \to \operatorname{Hom}_{\mathscr{O}_{\mathrm{T}_0}}(f_0^*(\mathscr{N}_{\mathrm{Y}/\mathrm{X}} \otimes_{\mathscr{O}_{\mathrm{Y}}} \mathscr{O}_{\mathrm{Y}_0}), \mathcal{J}\mathscr{O}_{\mathrm{T}}),$$

$$a \mapsto a \circ f_0^*(\mathrm{D}_0)$$

où ci-dessus le premier groupe est $\operatorname{Hom}_{X^+}(T,L_X),$ cf. 0.1.5. Pour $a\in \operatorname{Hom}_{X^+}(T,L_X),$ on a :

$$(***)$$
 $c(X, Y, a \cdot f) - c(X, Y, f) = v_{f_0}(a),$

où l'on a noté $a\cdot f$ le morphisme composé $T\xrightarrow{a\times f} L_X\times_{X^+} X\to X.$

Nous allons démontrer la partie (i) de la proposition, laissant au lecteur le soin de (ne pas) vérifier les assertions (ii) et (iii); cette vérification se fait par réduction au cas affine, puis par comparaison des définitions explicites. (94)

Démontrons donc (i). Le morphisme $f: T \to X$ définit un morphisme de faisceaux d'anneaux $\phi: \mathscr{O}_X \to f_*(\mathscr{O}_T)$. (95) Soit U un sous-schéma ouvert de X dans lequel Y est fermé; comme T (resp. $Y_{\mathcal{J}}$) a même espace sous-jacent que $T_{\mathcal{J}}$ (resp. Y), l'application continue sous-jacente à f envoie T dans U, et comme U est un ouvert de X, ϕ induit un morphisme de faiceaux d'anneaux $\mathscr{O}_U = \mathscr{O}_X|_U \to f_*(\mathscr{O}_T)$, i.e. f se factorise par U.

Donc, on peut se restreindre au cas où Y est fermé, donc défini par un faisceau d'idéaux \mathscr{I}_Y . Pour que f se factorise par Y, il faut et il suffit que l'application composée $\mathscr{I}_Y \to \mathscr{O}_X \to f_*(\mathscr{O}_T)$ soit nulle. Comme $f_{\mathcal{J}}$ se factorise par $Y_{\mathcal{J}}$, l'application composée $\mathscr{I}_{Y_{\mathcal{J}}} \to \mathscr{O}_{X_{\mathcal{J}}} \to f_*(\mathscr{O}_{T_{\mathcal{J}}})$ est nulle. Considérant le diagramme commutatif où la première ligne est exacte :

on en déduit que ϕ applique \mathscr{I}_Y dans $f_*(\mathscr{I}\mathscr{O}_T)$. (96) Puisque $\mathscr{I}^2 = 0$, il en résulte que $f_*(\mathscr{I}\mathscr{O}_T)$, vu comme \mathscr{O}_X -module via ϕ , est annulé par \mathscr{I}_Y ; par conséquent, ϕ induit un morphisme de \mathscr{O}_X -modules

$$h: i_*(\mathcal{N}_{Y/X}) = \mathcal{I}_Y/\mathcal{I}_Y^2 \longrightarrow f_*(\mathcal{I}\mathcal{O}_T).$$

134

⁽⁹⁴⁾ N.D.E. : On a fait ces vérifications plus bas.

 $^{^{(95)}}$ N.D.E. : D'une part, on a supprimé l'hypothèse que $\mathcal I$ soit nilpotent, i.e. que X_0 ait même espace topologique sous-jacent que X; d'autre part, on a détaillé la phrase qui suit.

⁽⁹⁶⁾ N.D.E.: On a détaillé ce qui suit.

D'autre part, on a des carrés cartésiens :

$$T_{0} \xrightarrow{f_{0}} X_{0} \stackrel{i_{0}}{\lessdot} Y_{0}$$

$$\downarrow^{\tau_{\Gamma_{0}}} \qquad \downarrow^{\tau_{X_{0}}} \qquad \downarrow^{\tau_{Y_{0}}}$$

$$T \xrightarrow{f} X \stackrel{i}{\lessdot} Y.$$

où i_{T_0} etc. sont les immersions fermées déduites par changement de base de $S_0 \hookrightarrow S$. Comme $\mathcal{J}\mathscr{O}_T$ est un \mathscr{O}_T -module quasi-cohérent annulé par \mathcal{I} , on a un isomorphisme

$$\mathcal{J}\mathscr{O}_{\mathrm{T}} \simeq (\tau_{\mathrm{T}_0})_* \, \tau_{\mathrm{T}_0}^* (\mathcal{J}\mathscr{O}_{\mathrm{T}}),$$

d'où $f_*(\mathcal{I}\mathscr{O}_{\mathrm{T}}) \simeq (\tau_{\mathrm{X}_0})_*(f_0)_* \tau_{\mathrm{T}_0}^*(\mathcal{I}\mathscr{O}_{\mathrm{T}})$. Donc h correspond, par adjonction, à un morphisme de $\mathscr{O}_{\mathrm{T}_0}$ -modules

$$h_0: f_0^* \tau_{\mathbf{X}_0}^* i_*(\mathcal{N}_{\mathbf{Y}/\mathbf{X}}) \longrightarrow i_{\mathbf{T}_0}^*(\mathcal{J}\mathscr{O}_{\mathbf{T}}).$$

Or, $\tau_{\mathbf{X}_0}^* i_*(\mathscr{N}_{\mathbf{Y}/\mathbf{X}}) \simeq (i_0)_* \, \tau_{\mathbf{Y}_0}^*(\mathscr{N}_{\mathbf{Y}/\mathbf{X}}) = \mathscr{N}_{\mathbf{Y}/\mathbf{X}} \otimes_{\mathscr{O}_{\mathbf{Y}}} \mathscr{O}_{\mathbf{Y}_0}$. Donc, revenant à l'abus de notation $i_{\mathbf{T}_0}^*(\mathscr{J}\mathscr{O}_{\mathbf{T}}) = \mathscr{J}\mathscr{O}_{\mathbf{T}}$ constamment utilisé, h_0 s'identifie à un morphisme de $\mathscr{O}_{\mathbf{T}_0}$ -modules

$$h_0: f_0^*(\mathcal{N}_{Y/X} \otimes_{\mathscr{O}_Y} \mathscr{O}_{Y_0}) \longrightarrow \mathscr{J}\mathscr{O}_T$$

qui est l'obstruction c(X, Y, f) cherchée. Ceci prouve (i).

Lorsque f est l'immersion i': Y \hookrightarrow X, on voit que c(X,Y,i') provient du morphisme $\mathscr{I}_Y \hookrightarrow \mathscr{O}_X \to \mathscr{O}_{Y'}$ donc correspond, d'après 4.4.1 et 4.5.1, à la classe d(Y,Y'). Ceci prouve (ii).

Démontrons (iii). D'abord, D : $\mathcal{N}_{Y/X} \to i^*(\Omega^1_{X/S})$ induit un morphisme

$$\mathbf{D}_0:\quad \tau_{\mathbf{Y}_0}^*(\mathscr{N}_{\mathbf{Y}/\mathbf{X}}) \longrightarrow \tau_{\mathbf{Y}_0}^* i^*(\Omega^1_{\mathbf{X}/\mathbf{S}}) = i_0^* \tau_{\mathbf{X}_0}^*(\Omega^1_{\mathbf{X}/\mathbf{S}})$$

et, comme $X_0=X\times_S S_0$, on a $\tau_{X_0}^*(\Omega_{X/S}^1)\simeq\Omega_{X_0/S_0}^1$ (cf. EGA IV₄, 16.4.5). On obtient donc le morphisme annoncé

$$D_0: \mathcal{N}_{Y/X} \otimes_{\mathscr{O}_Y} \mathscr{O}_{Y_0} \longrightarrow \Omega^1_{X_0/S_0} \otimes_{\mathscr{O}_{X_0}} \mathscr{O}_{Y_0}.$$

Enfin, on va vérifier l'égalité (***) après la remarque ci-dessous.

Remarque 4.9. — L'obstruction c(X,Y,f) se calcule localement sur T. Soit $U = \operatorname{Spec}(C)$ un ouvert affine de T au-dessus d'un ouvert affine $\operatorname{Spec}(A)$ de X, lui-même au-dessus d'un ouvert affine $\operatorname{Spec}(\Lambda)$ de S, soient $J \subset I \subset \Lambda$ (resp. $I_Y \subset A$) les idéaux correspondant à $\mathcal{J} \subset \mathcal{I}$ (resp. à \mathscr{I}_Y), soit $B = A/I_Y$ et soit $\phi : A \to C$ le morphisme de Λ-algèbres correspondant à $f : T \to X$; comme $f(T_J) \subset Y_J$ on a $\phi(I_Y) \subset JC$ et donc ϕ induit un morphisme de Λ-algèbres $B \to C/JC \to C_0 = C/IC$. Alors, l'obstruction c = c(X, Y, f) se calcule par le diagramme commutatif suivant :

c.-à-d., elle est définie, au-dessus de l'ouvert U, comme l'unique élément de

$$\operatorname{Hom}_{C_0}(\operatorname{I}_Y/\operatorname{I}_Y^2 \otimes_B C_0, \operatorname{JC}) = \operatorname{Hom}_{B_0}(\operatorname{I}_Y/\operatorname{I}_Y^2 \otimes_B B_0, \operatorname{JC})$$

tel que, avec les notations évidentes, on ait $c(\overline{x} \otimes_B 1) = \phi(x)$, pour tout $x \in I_Y$.

 $^{(97)}$ On peut maintenant achever la démonstration de 4.8 (iii). L'égalité (***) se vérifie localement sur T, on est donc ramené à la situation affine décrite ci-dessus. Notons $d_{A/\Lambda}$ la différentielle $A \to \Omega^1_{A/\Lambda}$. Alors a correspond, au-dessus de U, à un élément a_U de

$$\operatorname{Hom}_{C_0}(\Omega^1_{A_0/\Lambda_0}\otimes_{A_0}C_0,\operatorname{JC})\simeq\operatorname{Hom}_{B_0}(\Omega^1_{A/\Lambda}\otimes_AB_0,\operatorname{JC})\simeq\operatorname{Hom}_A(\Omega^1_{A/\Lambda},\operatorname{JC}).$$

Alors, d'une part, $v_{f_0}(a)$ correspond au-dessus de U à l'élément $a_{\rm U} \circ {\rm D}_0$, où ${\rm D}_0$ est le morphisme de B-modules ⁽⁹⁸⁾

$$I_Y/I_Y^2 \longrightarrow \Omega^1_{A/\Lambda} \otimes_A B_0, \qquad x + I_Y^2 \mapsto d_{A/\Lambda}(x) \otimes 1.$$

D'autre part (cf. la démonstration de 0.1.8 et 0.1.9), le morphisme de Λ -algèbres $\phi': \mathcal{A} \to \mathcal{C}$ correspondant à $a \cdot f$ diffère de ϕ par la Λ -dérivation $\mathcal{A} \to \mathcal{J}\mathcal{C}$ associée à $a_{\mathcal{U}}$, i.e. on a :

$$\phi' = \phi + a_{\mathrm{U}} \circ d_{\mathrm{A}/\Lambda} = \phi + a_{\mathrm{U}} \circ (d_{\mathrm{A}/\Lambda} \otimes 1).$$

Par conséquent, notant $c'=c(\mathbf{X},\mathbf{Y},a\cdot f)$, on a pour tout $x\in \mathbf{I}_{\mathbf{Y}}$, en notant \overline{x} son image dans $\mathbf{I}_{\mathbf{Y}}/\mathbf{I}_{\mathbf{Y}}^2$:

$$(c'-c)(\overline{x}\otimes 1)=a_{\mathrm{U}}(d_{\mathrm{A}/\Lambda}(x)\otimes 1)=(a_{\mathrm{U}}\circ \mathrm{D}_0)(\overline{x})=v_{f_0}(a)(\overline{x}).$$

Ceci montre que $c' - c = v_{f_0}(a)$.

 $\bf 4.10.~$ On a supprimé la remarque 4.10 de l'original, rendue obsolète par l'ajout de la remarque 4.8.0.

136

4.11. Nous nous proposons maintenant d'étudier la situation suivante. Soient S, $S_{\mathcal{J}}$ et S_0 comme en 4.8; on a trois S-schémas X, X', T, un sous-schéma Y de X (resp. Y' de X'), et des morphismes $f: T \to X'$ et $g: X' \to X$.

⁽⁹⁷⁾ N.D.E. : On a ajouté ce qui suit.

⁽⁹⁸⁾ N.D.E. : cf. N.D.E. (93).

On suppose que par réduction modulo \mathcal{J} , ce diagramme se complète en un diagramme commutatif

On a donc par 4.8 des obstructions :

$$\begin{split} c(\mathbf{X},\mathbf{Y},g\circ i') &\in \mathrm{Hom}_{\mathscr{O}_{\mathbf{Y}_0'}}(i_0^{**}g_0^*(\mathscr{N}_{\mathbf{Y}/\mathbf{X}}\otimes_{\mathscr{O}_{\mathbf{Y}}}\mathscr{O}_{\mathbf{Y}_0}),\mathcal{J}\mathscr{O}_{\mathbf{Y}'}),\\ c(\mathbf{X}',\mathbf{Y}',f) &\in \mathrm{Hom}_{\mathscr{O}_{\mathbf{T}_0}}(f_0^*(\mathscr{N}_{\mathbf{Y}'/\mathbf{X}'}\otimes_{\mathscr{O}_{\mathbf{Y}'}}\mathscr{O}_{\mathbf{Y}_0'}),\mathcal{J}\mathscr{O}_{\mathbf{T}}),\\ c(\mathbf{X},\mathbf{Y},g\circ f) &\in \mathrm{Hom}_{\mathscr{O}_{\mathbf{T}_0}}(f_0^*g_0^*(\mathscr{N}_{\mathbf{Y}/\mathbf{X}}\otimes_{\mathscr{O}_{\mathbf{Y}}}\mathscr{O}_{\mathbf{Y}_0}),\mathcal{J}\mathscr{O}_{\mathbf{T}}), \end{split}$$

dont on cherche à calculer les relations. (99)

Lemme 4.12. — Supposons Y' plat sur S, de sorte que $\mathcal{J} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_{Y'_0} = \mathcal{J} \mathscr{O}_{Y'}$.

(i) On a un morphisme naturel

$$b_{f_0}: \operatorname{Hom}_{\mathscr{O}_{\mathbf{Y}_0'}}(i_0'^*g_0^*(\mathscr{N}_{\mathbf{Y}/\mathbf{X}}\otimes\mathscr{O}_{\mathbf{Y}_0}), \mathscr{J}\mathscr{O}_{\mathbf{Y}'}) \longrightarrow \operatorname{Hom}_{\mathscr{O}_{\mathbf{T}_0}}(f_0^*g_0^*(\mathscr{N}_{\mathbf{Y}/\mathbf{X}}\otimes\mathscr{O}_{\mathbf{Y}_0}), \mathscr{J}\mathscr{O}_{\mathbf{T}}).$$

(ii) On a aussi un morphisme naturel, fonctoriel en T ⁽¹⁰⁰⁾

$$a_{g_0}(f_0): \operatorname{Hom}_{\mathscr{O}_{\mathbf{T}_0}}(f_0^*(\mathscr{N}_{\mathbf{Y}'/\mathbf{X}'}\otimes\mathscr{O}_{\mathbf{Y}_0'}), \mathscr{J}\mathscr{O}_{\mathbf{T}}) \longrightarrow \operatorname{Hom}_{\mathscr{O}_{\mathbf{T}_0}}(f_0^*g_0^*(\mathscr{N}_{\mathbf{Y}/\mathbf{X}}\otimes\mathscr{O}_{\mathbf{Y}_0}), \mathscr{J}\mathscr{O}_{\mathbf{T}}).$$

Démonstration. — ⁽¹⁰¹⁾ Remarquons d'abord que, X, X', Y, Y' étant fixés, se donner un T comme ci-dessus équivaut à se donner un morphisme $(f, f_{\mathcal{J}})$: T → X' ×_{X'_+} Y₊. Posons Z = X' ×_{X'_+} Y'₊ et notons M et M' les Z-foncteurs définis par : pour tout $f: T \to Z$,

$$M(T) = \operatorname{Hom}_{\mathscr{O}_{T_0}}(f_0^* g_0^* (\mathscr{N}_{Y/X} \otimes \mathscr{O}_{Y_0}), \mathcal{J}\mathscr{O}_T)$$

$$M'(T) = \operatorname{Hom}_{\mathscr{O}_{T_0}}(f_0^* (\mathscr{N}_{Y'/X'} \otimes \mathscr{O}_{Y'_0}), \mathcal{J}\mathscr{O}_T). \tag{102}$$

 $^{^{(99)}}$ N.D.E.: À partir de 4.17, on appliquera ceci au cas où X est un S-groupe, $g: X \times_S X \to X$ la multiplication, Y un sous-schéma de X tel que $Y_{\mathcal{J}}$ soit un sous-groupe de $X_{\mathcal{J}}$, $Y' = Y \times_S Y$, et aux deux morphismes $Y^3 \to X^2$ qui envoient (y_1, y_2, y_3) sur (y_1y_2, y_3) , resp. (y_1, y_2y_3) . Dans ce cas, la comparaison des obstructions ci-dessus montrera que l'obstruction à ce que Y soit un sous-groupe de X réside dans un certain groupe de cohomologie (de Hochschild) $H^2(Y_0, N_0)$.

 $^{^{(100)}}$ N.D.E.: On a supprimé l'hypothèse « Y'_0 localement intersection complète dans X'_0 », superflue d'après 4.8.0; d'autre part, on a ajouté que $a_{g_0}(f_0)$ est « fonctoriel en T », ceci jouant un rôle crucial dans la démonstration de 4.17.

 $^{^{(101)}}$ N.D.E.: On a détaillé la démonstration, pour faire voir la « fonctorialité en T » de a_{g_0} .

 $^{^{(102)}}$ N.D.E. : La situation se simplifiera à partir de 4.16 : on se restreindra aux schémas *plats* sur S, Y sera un S-groupe plat et $Y' = Y \times_S Y$, on obtiendra alors des S₀-foncteurs N₀ et N'₀.

On a de toute façon un diagramme commutatif :

$$f_0^*(\mathcal{J} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_{Y_0'}) = \mathcal{J} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_{T_0}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$f_0^*(\mathcal{J}\mathscr{O}_{Y'}) - - - - - > \mathcal{J}\mathscr{O}_{T}$$

et comme Y' est plat sur S, la flèche de gauche est un isomorphisme, donc on obtient un morphisme de \mathscr{O}_{T_0} -modules $f_0^*(\mathcal{J}\mathscr{O}_{Y'}) \to \mathcal{J}\mathscr{O}_T$. Celui-ci induit un morphisme de groupes abéliens

$$\operatorname{Hom}_{\mathscr{O}_{\mathcal{T}_0}}(f_0^*g_0^*(\mathscr{N}_{\mathcal{Y}/\mathcal{X}}\otimes\mathscr{O}_{\mathcal{Y}_0}),f_0^*(\mathscr{J}\mathscr{O}_{\mathcal{Y}'}))\longrightarrow \operatorname{M}(\mathcal{T})$$

et, composant avec le morphisme

$$M(Y') \longrightarrow \operatorname{Hom}_{\mathscr{O}_{T_0}}(f_0^* g_0^*(\mathscr{N}_{Y/X} \otimes \mathscr{O}_{Y_0}), f_0^*(\mathscr{J}\mathscr{O}_{Y'})),$$

induit par f_0^* , on obtient le morphisme $b_{f_0}: M(Y') \to M(T)$.

De même, on a de toutes façons un diagramme

et comme Y' est plat sur S, la deuxième flèche verticale est un isomorphisme, d'après 4.8.0. On obtient donc un $\mathcal{O}_{Y_0'}$ -morphisme

$$i_0^{\prime *} g_0^* (\mathscr{N}_{Y/X} \otimes_{\mathscr{O}_Y} \mathscr{O}_{Y_0}) \longrightarrow \mathscr{N}_{Y'/X'} \otimes_{\mathscr{O}_{Y'}} \mathscr{O}_{Y_0'}$$

qui induit un morphisme $a_{g_0}(\mathrm{id}_{Y'}): \mathrm{M}'(\mathrm{Y}') \to \mathrm{M}(\mathrm{Y}')$ et, pour tout $f: \mathrm{T} \to \mathrm{Z}$, un morphisme $a_{g_0}(f): \mathrm{M}'(\mathrm{T}) \to \mathrm{M}(\mathrm{T})$ tel qu'on ait un diagramme commutatif

$$M'(Y') \xrightarrow{a_{g_0}(id_{Y'_0})} M(Y')$$

$$b'_{f_0} \downarrow \qquad \qquad \downarrow b_{f_0}$$

$$M'(T) \xrightarrow{a_{g_0}(f_0)} M(T)$$

(où b'_{f_0} est défini comme b_{f_0}).

C.Q.F.D.

Remarque 4.12.1. — ⁽¹⁰³⁾ Notons M_0 et M_0' les Y_0' -foncteurs définis par : pour tout $f: T_0 \to Y_0'$,

$$\mathrm{M}_0(\mathrm{T}) = \mathrm{Hom}_{\mathscr{O}_{\mathrm{T}_0}}(f_0^*g_0^*(\mathscr{N}_{\mathrm{Y}/\mathrm{X}}\otimes\mathscr{O}_{\mathrm{Y}_0}), \mathcal{J}\otimes_{\mathscr{O}_{\mathrm{S}_0}}\mathscr{O}_{\mathrm{T}_0})$$

$$M_0'(T) = \operatorname{Hom}_{\mathscr{O}_{T_0}}(f_0^*(\mathscr{N}_{Y'/X'} \otimes \mathscr{O}_{Y_0'}), \mathcal{J} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_{T_0}).$$

⁽¹⁰³⁾ N.D.E.: On a ajouté cette remarque, utilisée dans la démonstration de 4.17.

Remarquons tout de suite que $Z_0 = Y_0'$ et que sur la catégorie des Z-schémas T qui sont *plats* sur S, M et M' coïncident, respectivement, avec les foncteurs $\prod_{S_0/S} M_0$ et $\prod_{S_0/S} M_0'$. Dans ce cas, b_{f_0} est simplement le morphisme

$$f_0^*: \mathrm{M}_0(\mathrm{Y}_0') \longrightarrow \mathrm{M}(\mathrm{T}_0)$$

induit par f_0 , et pour tout morphisme $u: U \to T$, posant $h = f \circ u$, on a un diagramme commutatif

$$M'_{0}(T_{0}) \xrightarrow{a_{g_{0}}(f_{0})} M_{0}(T_{0})$$

$$\downarrow u_{0}^{*} \qquad \qquad \downarrow u_{0}^{*}$$

$$\downarrow u_{0}^{*} \qquad \qquad \downarrow u_{0}^{*}$$

$$M'_{0}(U_{0}) \xrightarrow{a_{g_{0}}(h_{0})} M_{0}(U_{0})$$

i.e. a_{g_0} devient un morphisme de foncteurs $\prod_{S_0/S} M'_0 \to \prod_{S_0/S} M_0$.

Proposition 4.13. — Supposons Y' plat sur S. On a alors la formule :

$$c(X, Y, g \circ f) = a_{g_0}(c(X', Y', f)) + b_{f_0}(c(X, Y, g \circ i')).$$

Comme la définition des différentes obstructions et des morphismes a_{g_0} et b_{f_0} est locale, on voit facilement qu'il suffit de vérifier la formule donnée lorsque les différents schémas en cause sont affines. Notons donc $S = \operatorname{Spec}(\Lambda)$, $S_J = \operatorname{Spec}(\Lambda/J)$, $S_0 = \operatorname{Spec}(\Lambda/I)$, $T = \operatorname{Spec}(C)$, $X = \operatorname{Spec}(A)$, $Y = \operatorname{Spec}(A/I_Y) = \operatorname{Spec}(B)$, $X' = \operatorname{Spec}(A')$, $Y' = \operatorname{Spec}(A'/I_{Y'}) = \operatorname{Spec}(B')$.

On a donc un diagramme d'anneaux et d'idéaux ⁽¹⁰⁴⁾

Étudions les différents termes de la formule à démontrer. Dans ce qui suit, si $x \in I_Y$ (resp. $u \in I_{Y'}$), on note \overline{x} (resp. \overline{u}) son image dans I_Y/I_Y^2 (resp. $I_{Y'}/I_{Y'}^2$); d'autre part, si m appartient à un Λ -module M, on note m_0 son image dans $M_0 = M/IM$.

On a vu que $c = c(X, Y, g \circ f)$ est l'unique C_0 -morphisme $I_Y/I_Y^2 \otimes_B C_0 \to JC$ tel que $c(\overline{x} \otimes 1) = f(g(x))$, pour tout $x \in I_Y$.

139

 $^{^{(104)}}$ N.D.E. : On a conservé les notations de l'original, en notant $f: A' \to C$ et $g: A \to A'$ les morphismes d'anneaux correspondant à $f: T \to X'$ et $g: X' \to X$. Ceci explique la formule $c(X,Y,g\circ f)(\overline{x}\otimes 1)=f(g(x))$, pour $x\in I_Y$.

Fixons $x \in I_Y$; on a $g(x) \in I_{Y'} + JA'$ puisque $g_J(Y'_J) \subset Y_J$. Écrivons $g(x) = x' + \sum \lambda_i a'_i$, avec $x' \in I_{Y'}$, $\lambda_i \in J$, $a'_i \in A'$. On a donc

(1)
$$c(X, Y, g \circ f)(\overline{x} \otimes 1) = f(g(x)) = f(x') + \sum_{i} \lambda_i f(a'_i).$$

Considérons maintenant $a_{g_0}(c(X', Y', f))$. D'après les définitions posées, il est défini par le diagramme

On a donc $a_{g_0}(c(\mathbf{X}',\mathbf{Y}',f))(\overline{x}\otimes 1)=f(u)$, où u est un élément de $\mathbf{I}_{\mathbf{Y}'}$ dont l'image \overline{u} dans $\mathbf{I}_{\mathbf{Y}'_0}/\mathbf{I}_{\mathbf{Y}'_0}^2$ vérifie $\overline{u}_0\otimes 1=\overline{g}_0(\overline{x}_0)\otimes 1=\overline{g}_0(\overline{x}_0)\otimes 1$. On peut donc prendre u=x' et on trouve

(2)
$$a_{q_0}(c(X', Y', f))(\overline{x} \otimes 1) = f(x').$$

Considérons enfin $b_{f_0}(c(X,Y,g\circ i'))$. Par hypothèse, le morphisme de Λ_0 -algèbres $f_0: A_0' \to C_0$ se factorise par B_0' et donc, comme $J \otimes_{\Lambda_0} B_0' \xrightarrow{\sim} JB'$ (B' étant plat sur Λ), on obtient un morphisme de B_0' -modules $\psi: JB' \to JC$ tel que l'on ait un diagramme commutatif:

Notons $\phi: JB' \otimes_{B'_0} C_0 \to JC$ le morphisme de C_0 -modules déduit de ψ , alors on a, pour tout $a' \in A'$, $\lambda \in J$,

$$\phi(\lambda \pi'(a') \otimes 1) = \lambda f(a').$$

Alors, $b_{f_0}(c(X, Y, g \circ i'))$ est défini par le diagramme commutatif :

On a donc aussitôt

(3)
$$b_{f_0}(c(X, Y, g \circ i'))(\overline{x} \otimes 1) = \phi(\sum \lambda_i \pi'(a_i') \otimes 1) = \sum \lambda_i f(a_i'),$$

la dernière égalité découlant de (†) plus haut. La comparaison des trois résultats explicites (1), (2), (3) donne la formule cherchée.

Corollaire 4.14. — Soient Y, Y' deux sous-schémas de X, plats, se réduisant suivant $Y_{\mathcal{J}}$; supposons Y_0 localement intersection complète dans X_0 . Si $f: T \to X$ est un S-morphisme tel que $f_{\mathcal{J}}$ se factorise par $Y_{\mathcal{J}} \to X_{\mathcal{J}}$, on a la formule

$$c(X, Y, f) - c(X, Y', f) = b_{f_0}(d(Y, Y')).$$

En effet, appliquant la formule précédente au diagramme

on trouve $c(X, Y, f) - c(X, Y', f) = b_{f_0}(c(X, Y, i'))$. De plus, d'après 4.8 (ii), on a c(X, Y, i') = d(Y, Y').

Proposition 4.15. — Soient X un S-groupe lisse sur S et Y un sous-S-groupe plat et localement de présentation finie sur S. Alors Y est localement intersection complète (cf. 4.6.2) dans X.

Démonstration. (105) On va montrer que l'immersion Y → X est régulière au sens de EGA IV₄, 16.9.2, ce qui implique qu'elle l'est aussi au sens de 4.6.2, d'après EGA IV₄, 19.5.1 (d'ailleurs, d'après loc. cit., les deux définitions sont équivalentes si S est localement noethérien). Donc, dans ce qui suit, on prend « immersion régulière » au sens de EGA IV₄, 16.9.2. Comme X et Y sont plats et localement de présentation finie sur S, alors, d'après EGA IV₄, 19.2.4, il suffit de montrer que, pour tout $s \in S$, $Y_s \to X_s$ est une immersion régulière. D'après EGA IV₄, 19.1.5 (ii), on est ramené à vérifier l'assertion sur les fibres géométriques de S, donc lorsque S est le spectre d'un corps k algébriquement clos.

Alors, d'après VI_A, 3.2, le quotient X/Y existe et est lisse, le morphisme $\pi: X \to X/Y$ est plat, et l'on a un carré cartésien

$$\begin{array}{ccc}
Y & \xrightarrow{f} X \\
\downarrow & & \downarrow^{\pi} \\
\overline{e} & \xrightarrow{i} X/Y
\end{array}$$

(où \overline{e} est l'image dans X/Y du point unité de X). Donc, par changement de base plat (cf. EGA IV₄, 19.1.5 (ii)), il suffit de voir que i est une immersion régulière, ce qui est immédiat puisque l'anneau local noethérien $\mathcal{O}_{\mathrm{X/Y},\overline{e}}$ est lisse, donc son idéal maximal engendré par une suite régulière.

4.16. (106) Soit X un S-groupe *lisse* sur S, on note $\mu: X \times_S X \to X$ sa loi de groupe. Donnons-nous un sous-S_J-groupe Y_J de X_J, plat et localement de présentation finie sur S_J. D'après 4.15, Y_J est localement intersection complète dans X.

Donc, d'après 4.6.5, tout S-schéma plat $^{(107)}$ Y relevant Y_J est localement intersection complète dans X. Pour un tel Y on a, d'après 4.8.0,

$$(4.16.1) \qquad \qquad \mathscr{N}_{Y/X} \otimes_{\mathscr{O}_{Y}} \mathscr{O}_{Y_{0}} = \mathscr{N}_{Y_{0}/X_{0}} = \mathscr{N}_{Y_{\mathcal{I}}/X_{\mathcal{I}}} \otimes_{\mathscr{O}_{Y_{\mathcal{I}}}} \mathscr{O}_{Y_{0}}.$$

 $^{(105)}$ N.D.E. : On a ajouté dans l'énoncé l'hypothèse que Y soit localement de présentation finie sur S, et l'on a donné la démonstration qui suit, plus directe que celle esquissée dans l'original. Pour être complet, détaillons aussi cette dernière. Comme dans la démonstration donnée plus haut, on se ramène d'abord au cas où S = Spec(k), k étant un corps algébriquement clos. D'après EGA IV₄, 16.9.10 et 19.3.2, il suffit de voir que, pour tout $y \in Y$, le complété de l'anneau local $\mathcal{O}_{Y,y}$ est le quotient d'un anneau local noethérien complet par une suite régulière. D'après loc. cit., 19.3.3, l'ensemble des $y \in Y$ vérifiant cette propriété est un ouvert U de Y; comme Y est de type fini sur k, il suffit de montrer que U contient tout point fermé. Comme Y est un k-groupe il suffit, par un argument de translation, de montrer que la propriété est vraie pour le complété de $\mathcal{O}_{Y,e}$, c.-à-d., pour le « groupe formel » \hat{Y} correspondant à Y (cf. Exp. VII_B). Or, comme X est lisse, l'algèbre affine $\mathscr{A}(\hat{X})$ est une algèbre de séries formelles $k[[X_1, \ldots, X_n]]$, et on conclut à l'aide du théorème de structure de Dieudonné qui montre que $\mathscr{A}(\hat{Y})$ est isomorphe à un quotient $k[[X_1, \ldots, X_{r+s}]]/(X_1^{p^{n_1}}, \ldots, X_r^{p^{n_r}})$, où p est l'exposant caractéristique de k et $r+s \leq n$, cf. VII_B, Remarque 5.5.2 (b).

 $^{(106)}$ N.D.E. : On a réorganisé 4.16 en y regroupant, d'une part, les hypothèses énoncées à la fin de 4.15 et, d'autre part, la définition de l'obstruction DY.

142

 $^{^{(107)}}$ N.D.E. : On a corrigé l'original en rajoutant « plat ».

D'autre part, notons $\varepsilon_0:S_0\to Y_0$ la section unité de Y_0 et \mathfrak{n}_{Y_0/X_0} le \mathscr{O}_{S_0} -module quasi-cohérent :

$$\mathfrak{n}_{Y_0/X_0} = \varepsilon_0^* (\mathscr{N}_{Y_0/X_0}).$$

Comme Y_0 et X_0 sont des S_0 -groupes, on voit aisément que \mathcal{N}_{Y_0/X_0} est invariant par les translations (disons à gauche) de Y_0 , donc ⁽¹⁰⁸⁾ est l'image réciproque par $Y_0 \to S_0$ de \mathfrak{n}_{Y_0/X_0} , i.e. on a

$$\mathcal{N}_{\mathbf{Y}_0/\mathbf{X}_0} = \mathfrak{n}_{\mathbf{Y}_0/\mathbf{X}_0} \otimes_{\mathscr{O}_{\mathbf{S}_0}} \mathscr{O}_{\mathbf{Y}_0}.$$

Tenant compte de (4.16.1) et (4.16.2), on déduit d'une part de 4.5 que l'ensemble des sous-S-schémas Y de X, plats sur S, relevant $Y_{\mathcal{J}}$, est vide ou principal homogène sous

et l'on déduit d'autre part de 4.8 (i) que, pour tout tel Y et tout S-morphisme $f: T \to X$ tel que $f_{\mathcal{J}}: T_{\mathcal{J}} \to X_{\mathcal{J}}$ se factorise par $Y_{\mathcal{J}}$, l'obstruction c(X,Y,f) à ce que f se factorise par Y est un élément de

$$\operatorname{Hom}_{\mathscr{O}_{\operatorname{T}_0}}(\mathfrak{n}_{Y_0/X_0}\otimes_{\mathscr{O}_{\operatorname{S}_0}}\mathscr{O}_{\operatorname{T}_0},\mathcal{J}\mathscr{O}_{\operatorname{T}});$$

si de plus T est plat sur S, ce dernier groupe égale

$$\operatorname{Hom}_{\mathscr{O}_{T_0}}(\mathfrak{n}_{Y_0/X_0}\otimes_{\mathscr{O}_{S_0}}\mathscr{O}_{T_0},\ \mathcal{J}\otimes_{\mathscr{O}_{S_0}}\mathscr{O}_{T_0}).$$

Ceci conduit à introduire le foncteur en groupes N_0 ci-dessous :

Définition 4.16.1. — Soit N_0 le S_0 -foncteur en groupes commutatifs défini par : pour tout $Z \in Ob(\mathbf{Sch})_{/S_0}$,

$$(*) \qquad \qquad \operatorname{Hom}_{S_0}(Z,N_0) = \operatorname{Hom}_{\mathscr{O}_Z}(\mathfrak{n}_{Y_0/X_0} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_Z, \ \mathcal{J} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_Z).$$

Alors, l'ensemble des sous-S-schémas Y de X, plats sur S, relevant $Y_{\mathcal{J}}$, est vide ou principal homogène sous

$$\text{Hom}_{S_0}(Y_0, N_0) = C^1(Y_0, N_0).$$

Pour chaque tel Y, considérons le diagramme suivant :

$$\begin{array}{cccc} \mathbf{Y} \times_{\mathbf{S}} \mathbf{Y} & & \mathbf{Y} \\ & & & \downarrow \\ (i,i) & & & \downarrow \\ \mathbf{X} \times_{\mathbf{S}} \mathbf{X} & \xrightarrow{\mu} & & \mathbf{X} \end{array}$$

et notons $\mathrm{DY} = c(\mathrm{X}, \mathrm{Y}, \mu \circ (i, i))$ l'obstruction à ce que $\mu \circ (i, i)$ se factorise par Y , i.e. à ce que Y soit stable par la loi de groupe de X ; d'après ce qui précède, DY est un élément de

$$N_0(Y_0 \times_{S_0} Y_0) = C^2(Y_0, N_0).$$

⁽¹⁰⁸⁾ N.D.E.: voir 4.25 plus loin.

144

Lemme 4.17. — ⁽¹⁰⁹⁾ Soient X un S-groupe lisse sur S et $Y_{\mathcal{J}}$ un sous- $S_{\mathcal{J}}$ -groupe de $X_{\mathcal{J}}$, plat et localement de présentation finie sur $S_{\mathcal{J}}$. Pour chaque sous-schéma Y de X, plat sur S et relevant $Y_{\mathcal{J}}$, considérons l'obstruction définie en 4.16.1 :

$$DY \in Hom_{S_0}(Y_0 \times_{S_0} Y_0, N_0) = C^2(Y_0, N_0)$$

- (i) Pour que Y soit un sous-S-groupe de X, il faut et il suffit que DY = 0. 143
- (ii) Si on fait opérer Y_0 sur N_0 par fonctorialité à partir des automorphismes intérieurs de Y_0 , alors $DY \in Z^2(Y_0, N_0)$.
- (iii) Si Y et Y' sont deux sous-schémas de X, plats sur S, relevant $Y_{\mathcal{J}}$ (de sorte qu'est définie la déviation $d(Y,Y') \in C^1(Y_0,N_0)$, cf. 4.5.1), on a $DY'-DY = \partial^1 d(Y,Y')$.

Démontrons successivement ces diverses assertions.

- **4.18.** Démonstration de 4.17 (i). Par définition, on a DY = 0 si et seulement si Y est stable par la loi de groupe de X. Donc DY = 0 si Y est un sous-groupe de X. Réciproquement, si DY = 0, Y est muni de la loi induite $\mu^{\rm Y}$, qui est associative et se réduit modulo $\mathcal J$ suivant la loi de groupe sur ${\rm X}_{\mathcal J}$; comme Y est plat et localement de présentation finie sur S, il résulte de 3.3 que $\mu^{\rm Y}$ est une loi de groupe.
- **4.19.** Démonstration de 4.17 (ii). Celle-ci se fait en comparant les deux valeurs de $u = c(X, Y, \mu^2 \circ (i, i, i))$ calculées dans les deux diagrammes suivants $(D_j), j = 1, 2$:

où $f_1=(1,\pi),\, f_2=(\pi,1),$ et où l'on note μ^2 le morphisme

$$\mu \circ f_1 = \mu \circ f_2 : \quad \mathbf{X} \underset{\mathbf{S}}{\times} \mathbf{X} \underset{\mathbf{S}}{\times} \mathbf{X} \longrightarrow \mathbf{X}.$$

(111) Posons $\mu^{Y} = \mu \circ (i, i)$, $f_{j}^{Y} = f_{j} \circ (i, i, i)$ et $\mu^{2,Y} = \mu^{2} \circ (i, i, i)$. Pour j = 1, 2, notons a_{j} et b_{j} les morphismes

$$a_j = a_{\mu_0} ((f_j^{Y})_0)$$
 et $b_j = b_{(f_j^{Y})_0}$,

associés au couple de morphismes $(f_j^{\rm Y},\mu)$ par le lemme 4.12; on a donc :

$$(\dagger) \quad \begin{cases} \operatorname{Hom}_{\mathscr{O}_{\mathbf{Y}_0^3}} \left((f_j^{\mathbf{Y}})_0^* (\mathscr{N}_{\mathbf{Y}_0 \times \mathbf{Y}_0/\mathbf{X}_0 \times \mathbf{X}_0}), \mathcal{J}\mathscr{O}_{\mathbf{Y}_0^3} \right) \xrightarrow{a_j} \operatorname{Hom}_{\mathscr{O}_{\mathbf{Y}_0^3}} \left((\mu^{2,\mathbf{Y}})_0^* (\mathscr{N}_{\mathbf{Y}_0/\mathbf{X}_0}), \mathcal{J}\mathscr{O}_{\mathbf{Y}_0^3} \right) \\ \operatorname{Hom}_{\mathscr{O}_{\mathbf{Y}_0^2}} \left((\mu^{\mathbf{Y}})_0^* (\mathscr{N}_{\mathbf{Y}_0/\mathbf{X}_0}), \mathcal{J}\mathscr{O}_{\mathbf{Y}_0^2} \right) \xrightarrow{b_j} \operatorname{Hom}_{\mathscr{O}_{\mathbf{Y}_0^3}} \left((\mu^{2,\mathbf{Y}})_0^* (\mathscr{N}_{\mathbf{Y}_0/\mathbf{X}_0}), \mathcal{J}\mathscr{O}_{\mathbf{Y}_0^3} \right). \end{cases}$$

⁽¹⁰⁹⁾ N.D.E.: On a modifié 4.17 et 4.18 en tenant compte des ajouts faits dans 4.16.

 $^{^{(110)}}$ N.D.E. : Dans l'original, on trouve DY' – DY = $-\partial d(Y,Y')$, mais ∂ y est l'opposé de la différentielle ∂^1 définie en I, 5.1.

⁽¹¹¹⁾ N.D.E.: On a légèrement modifié les notations, et détaillé le début de l'argument.

Comme $\mathscr{N}_{Y_0 \times Y_0/X_0 \times X_0} \simeq \operatorname{pr}_1^* \mathscr{N}_{Y_0/X_0} \oplus \operatorname{pr}_2^* \mathscr{N}_{Y_0/X_0}$ (puisque X_0 et Y_0 sont plats sur S_0), et $\mathscr{N}_{Y_0/X_0} \simeq \mathfrak{n}_{Y_0/X_0} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_{Y_0}$, alors :

$$(f_j^Y)_0^*(\mathscr{N}_{Y_0 \times Y_0/X_0 \times X_0}) \simeq (\mathfrak{n}_{Y_0/X_0} \oplus \mathfrak{n}_{Y_0/X_0}) \otimes \mathscr{O}_{Y_0^3}$$

et, de même,

$$(\mu^{2,Y})_0^*(\mathscr{N}_{Y_0/X_0}) \simeq \mathfrak{n}_{Y_0/X_0} \otimes \mathscr{O}_{Y_0^3} \qquad \text{et} \qquad (\mu^Y)_0^*(\mathscr{N}_{Y_0/X_0}) \simeq \mathfrak{n}_{Y_0/X_0} \otimes \mathscr{O}_{Y_0^2}.$$

De plus, comme Y_0^2 et Y_0^3 sont plats sur S_0 , alors (\dagger) se récrit sous la forme suivante :

$$\begin{cases} a_j : \operatorname{Hom}_{S_0}(Y_0^3, N_0 \oplus N_0) \to \operatorname{Hom}_{S_0}(Y_0^3, N_0) \\ b_j : \operatorname{Hom}_{S_0}(Y_0^2, N_0) \to \operatorname{Hom}_{S_0}(Y_0^3, N_0). \end{cases}$$

Appliquant deux fois 4.13 à $c(X, Y, \mu^{2,Y}) = u$, on obtient :

$$a_1(c(X^2, Y^2, f_1)) + b_1(c(X, Y, \mu^Y)) = u = a_2(c(X^2, Y^2, f_2)) + b_2(c(X, Y, \mu^Y)).$$

Or, $c(X, Y, \mu^Y) = DY$ et, comme $f_1 = (1, \mu)$ et $f_2 = (\mu, 1)$, on a, avec des notations évidentes :

$$c(X^2, Y^2, f_1) = (0, DY)$$
 et $c(X^2, Y^2, f_2) = (DY, 0)$.

Donc, on obtient:

$$u = a_1((0, DY)) + b_1(DY) = a_2((DY, 0)) + b_2(DY).$$

La première chose que l'on remarque, c'est que b_j n'est autre que $\text{Hom}_{S_0}((f_j^Y)_0, N_0)$, c'est-à-dire le morphisme déduit de $(f_j^Y)_0$ par fonctorialité.

L'identité ci-dessus devient donc :

$$a_1((0, DY)) - \text{Hom}((\mu, 1), N_0)(DY) + \text{Hom}((1, \mu), N_0)(DY) - a_2((DY, 0)) = 0.$$

On reconnaît les deux termes du milieu : ce sont les parties « $\mathrm{DY}(xy,z)$ » et « $\mathrm{DY}(x,yz)$ » de la formule du 2-cobord. Il ne reste plus donc qu'à identifier les deux autres termes.

Il nous faut d'abord calculer l'application a_j . Or elle provient, par image réciproque par $(f_i^{\rm Y})_0$, du morphisme de $\mathscr{O}_{{\rm Y}_0^2}$ -modules

$$P:\quad \mathfrak{n}_{Y_0/X_0}\otimes\mathscr{O}_{Y_0^2}\longrightarrow (\mathfrak{n}_{Y_0/X_0}\oplus\mathfrak{n}_{Y_0/X_0})\otimes\mathscr{O}_{Y_0^2}$$

induit par le produit dans Y_0 . Or ce morphisme se décrit de la manière suivante : considérons le fibré vectoriel $V = \mathbf{V}(\mathfrak{n}_{Y_0/X_0})$; P donne par dualité un morphisme

$$\mathbf{V}(P): \quad V \underset{S_0}{\times} V \underset{S_0}{\times} Y_0 \underset{S_0}{\times} Y_0 \longrightarrow V \underset{S_0}{\times} Y_0 \underset{S_0}{\times} Y_0$$

145 qui s'exprime ensemblistement par

$$\mathbf{V}(P)(u, v, a, b) = (u + Ad(a)v, ab, b).$$
 (112)

Ceci se démontre exactement comme le fait correspondant sur les algèbres de Lie, c'est-à-dire sur le module $\omega^1_{Y_0/S_0}$. On remarque d'abord que V est muni par fonctorialité en Y_0 d'une structure de groupe dans la catégorie des fibrés vectoriels sur S_0 ; en

 $^{^{(112)}}$ N.D.E. : On a remplacé a,b par ab,b pour faire voir que $\mathbf{V}(P)$ provient par image inverse sur \mathbf{Y}_0^2 du morphisme de multiplication $\mathbf{V}_{\mathbf{Y}_0} \times_{\mathbf{S}_0} \mathbf{V}_{\mathbf{Y}_0} \to \mathbf{V}_{\mathbf{Y}_0}$.

vertu du lemme déjà utilisé pour les algèbres de Lie (exposé II, 3.10), cette structure coïncide avec la structure de groupe sous-jacente à sa structure de \mathbf{O}_S -module. On voit ensuite que $\mathbf{V}(\mathfrak{n}_{Y_0/X_0}\otimes_{\mathscr{O}_{S_0}}\mathscr{O}_{Y_0})=\mathbf{V}(\mathscr{N}_{Y_0/X_0})$ est lui aussi muni d'une structure de S_0 -groupe qui n'est autre que le produit semi-direct de celle de V par celle de V_0 . Il ne reste plus qu'à identifier les opérations de V_0 sur V pour établir la formule cherchée.

Calculons maintenant les deux termes restants. Considérons d'abord $a_1((0, DY))$. On le calcule par le diagramme (où \mathfrak{n} désigne \mathfrak{n}_{Y_0/X_0}):

Considérant maintenant les fibrés vectoriels définis par ces différents modules comme autant de schémas sur S_0 et prenant les points à valeurs dans n'importe quoi, on a, en notant (u, x, y, z) un point de $\mathbb{V}(\mathcal{J}) \times Y_0^3$;

$$(\operatorname{Ad}(x)\operatorname{DY}_{y,z}(u),x,yz) \longleftrightarrow (0+\operatorname{DY}_{y,z}(u),x,yz)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$

On a donc obtenu $a_1((0, DY))(x, y, z) = Ad(x)DY(y, z)$, ce qui est bien le premier terme du cobord. On aurait de même $a_2((DY, 0))(x, y, z) = DY(x, y)$, d'où (113)

$$0 = \operatorname{Ad}(x)\operatorname{DY}(y, z) - \operatorname{DY}(xy, z) + \operatorname{DY}(x, yz) - \operatorname{DY}(x, y) = (\partial^2 \operatorname{DY})(x, y, z).$$

⁽¹¹³⁾ N.D.E.: on a changé les signes, pour les rendre compatibles avec I 5.1.

4.20. Démonstration de 4.17 (iii). (114) Celle-ci se fait en comparant les deux valeurs de $v = c(X, Y, \mu \circ (i', i'))$ calculées dans les deux diagrammes suivants

$$(*) \qquad \qquad Y' \qquad Y \\ i \qquad \qquad i \\ V' \times_{S} Y' \xrightarrow{\mu \circ (i',i')} X = X$$

$$(\dagger) \qquad \qquad \begin{matrix} \mathbf{Y} \times_{\mathbf{S}} \mathbf{Y} & \mathbf{Y} \\ & \downarrow & & \downarrow \\ & & \downarrow \\ & \mathbf{Y}' \times_{\mathbf{S}} \mathbf{Y}' \xrightarrow{(i',i')} & \mathbf{X} \times_{\mathbf{S}} \mathbf{X} \xrightarrow{\mu} & \mathbf{X}. \end{matrix}$$

Notons $f = \mu \circ (i', i')$; alors (*) donne

(1)
$$v = DY' + f_0^*(c(X, Y, i')).$$

Or $Y_0' = Y_0$ et f_0 est la multiplication $Y_0^2 \to Y_0$; on en déduit que

(2)
$$f_0^*(c(X,Y,i'))(x_0,y_0) = c(X,Y,i')(x_0y_0).$$

Posons c = c(X, Y, i'); via l'identification $N'_0 \simeq N_0 \oplus N_0$, $c(X \times_S X, Y \times_S Y, (i', i'))$ s'identifie au couple (c, c). Alors, notant h = (i', i'), (\dagger) donne

(3)
$$v = h_0^*(DY) + a_{\mu_0}(c, c).$$

Or h_0 est l'application identique de Y_0^2 , d'où $h_0^*(DY) = DY$. Enfin, d'après le calcul de a_{μ_0} fait précédemment, on a pour tout $S' \to S$ et $x_0, y_0 \in Y_0(S_0')$,

(4)
$$a_{\mu_0}(c,c)(x_0,y_0) = c(x_0) + \operatorname{Ad}(x_0)(c(y_0)).$$

On obtient donc:

$$(DY' - DY)(x_0, y_0) = Ad(x_0) (c(X, Y, i')(y_0)) - c(X, Y, i')(x_0 y_0) + c(X, Y, i')(x_0)$$
$$= (\partial^1 c(X, Y, i')) (x_0, y_0).$$

Comme c(X, Y, i') = d(Y, Y') (cf. 4.8 (ii)), ceci montre que $DY' - DY = \partial^1 d((Y, Y'))$.

147 Théorème 4.21. — Soient S un schéma, \mathcal{I} et \mathcal{J} deux idéaux ⁽¹¹⁵⁾ sur S tels que $\mathcal{I} \supset \mathcal{J}$ et $\mathcal{I} \cdot \mathcal{J} = 0$. Soient X un S-groupe lisse sur S et $Y_{\mathcal{J}}$ un sous- $S_{\mathcal{J}}$ -groupe de $X_{\mathcal{J}}$, plat et localement de présentation finie sur $S_{\mathcal{J}}$. Considérons le S_0 -foncteur en groupes commutatifs N_0 défini par

$$\begin{aligned} \operatorname{Hom}_{S_0}(T,N_0) &= \operatorname{Hom}_{\mathscr{O}_T}(\mathfrak{n}_{Y_0/X_0} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_T, \mathcal{J} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_T), \qquad T \in \operatorname{Ob}(\mathbf{Sch})_{/S_0}, \\ \mathit{sur\ lequel\ } Y_0 \ \mathit{op\`{e}re\ par\ l'interm\'{e}diaire\ des\ automorphismes\ int\'{e}rieurs\ de\ X_0. \end{aligned}$$

(i) Pour qu'il existe un sous-S-groupe de X, plat sur S, qui se réduise suivant $Y_{\mathcal{J}}$, il faut et il suffit que les deux conditions suivantes soient vérifiées :

 $^{{}^{(114)}{\}rm N.D.E.}$: On a détaillé l'original dans ce qui suit.

 $^{{}^{(115)}{\}rm N.D.E.}$: On a supprimé l'hypothèse que $\mathcal I$ soit nilpotent, qui semble superflue.

- (i₁) Il existe un sous-schéma Y de X, plat sur S, relevant $Y_{\mathcal{J}}$ (condition automatiquement vérifiée si Y_0 est affine, cf. 4.6.5).
 - (i₂) Une certaine obstruction canonique, élément de H²(Y₀, N₀), est nulle.
- (ii) Si les conditions de (i) sont satisfaites, l'ensemble des sous-S-groupes Y de X, plats sur S et se réduisant suivant $Y_{\mathcal{J}}$ est un ensemble principal homogène sous le groupe $Z^1(Y_0, N_0)$. (116)

En effet, la condition (i_1) est nécessaire. Supposons-la vérifiée et soit Y plat sur S relevant $Y_{\mathcal{J}}$. Il nous faut chercher un Y' plat sur S relevant aussi $Y_{\mathcal{J}}$ tel que DY'=0, $^{(117)}$ cf. 4.17 (i). D'après 4.17 (iii), cela revient à chercher un $d(Y',Y) \in C^1(Y_0,N_0)$ tel que $DY = \partial^1 d(Y',Y)$. $^{(118)}$

Soit $c \in H^2(Y_0, N_0)$ la classe image de DY qui est un cocycle par 4.17 (ii). Elle ne dépend pas du choix de Y d'après 4.17 (iii), et sa nullité est nécessaire et suffisante à l'existence d'un d(Y', Y) vérifiant l'équation précédente. Ceci démontre (i).

Si on a maintenant choisi Y tel que DY = 0, l'équation à résoudre s'écrit $\partial^1 d(Y',Y) = 0$, ce qui démontre (ii).

Remarque 4.22. — On conserve les notations de 4.21. D'après 4.15, Y_0 est localement intersection complète dans X_0 , donc \mathscr{N}_{Y_0/X_0} est un \mathscr{O}_{Y_0} -module fini localement libre, et par suite $\mathfrak{n}_{Y_0/X_0} = \varepsilon_0^*(\mathscr{N}_{Y_0/X_0})$ est un \mathscr{O}_{S_0} -module fini localement libre. Donc, notant $\mathfrak{n}_{Y_0/X_0}^\vee = \mathscr{H}om_{\mathscr{O}_{Y_0}}(\mathfrak{n}_{Y_0/X_0}, \mathscr{O}_{Y_0})$, on a

$$\mathscr{H}\!\mathit{om}_{\mathscr{O}_{\mathrm{T}}}(\mathfrak{n}_{\mathrm{Y}_{0}/\mathrm{X}_{0}}\otimes_{\mathscr{O}_{\mathrm{S}_{0}}}\mathscr{O}_{\mathrm{T}},\mathcal{J}\otimes_{\mathscr{O}_{\mathrm{S}_{0}}}\mathscr{O}_{\mathrm{T}})\simeq\mathfrak{n}_{\mathrm{Y}_{0}/\mathrm{X}_{0}}^{\vee}\otimes_{\mathscr{O}_{\mathrm{S}_{0}}}\mathcal{J}\otimes_{\mathscr{O}_{\mathrm{S}_{0}}}\mathscr{O}_{\mathrm{T}}\,.$$

pour tout $T \to S_0$. (119) Par conséquent, le S_0 -foncteur N_0 est isomorphe au foncteur

$$W(\mathfrak{n}_{Y_0/X_0}^{\vee} \otimes_{\mathscr{O}_{S_0}} \mathcal{J}) \simeq W(\mathscr{H}\!\mathit{om}_{\mathscr{O}_{S_0}}(\mathfrak{n}_{Y_0/X_0}, \mathcal{J})).$$

Il en résulte des isomorphismes : $^{\left(120\right) }$

$$\begin{split} &H^2(Y_0,N_0)\simeq H^2(Y_0,\mathscr{H}\!\mathit{om}_{\mathscr{O}_{S_0}}(\mathfrak{n}_{Y_0/X_0},\mathcal{J}))\simeq H^2(Y_0,\mathfrak{n}^\vee_{Y_0/X_0}\otimes_{\mathscr{O}_{S_0}}\mathcal{J})),\\ &Z^1(Y_0,N_0)\simeq Z^1(Y_0,\mathscr{H}\!\mathit{om}_{\mathscr{O}_{S_0}}(\mathfrak{n}_{Y_0/X_0},\mathcal{J}))\simeq Z^1(Y_0,\mathfrak{n}^\vee_{Y_0/X_0}\otimes_{\mathscr{O}_{S_0}}\mathcal{J})). \end{split}$$

4.23. Toujours sous les hypothèses de 4.21, nous allons maintenant étudier comment l'ensemble des Y relevant $Y_{\mathcal{J}}$, se comporte vis-à-vis de la conjugaison par des sections de X. Si x est une section de X sur S induisant la section unité de $X_{\mathcal{J}}$, l'automorphisme intérieur $\mathrm{Int}(x)$ défini par x transforme sous-groupes plats de X relevant $Y_{\mathcal{J}}$ en sous-groupes plats de X relevant $Y_{\mathcal{J}}$. Or, sous les conditions de 4.21 (ii), l'ensemble de ces sous-groupes est principal homogène sous $\mathrm{Z}^1(\mathrm{Y}_0,\mathrm{N}_0)$; nous allons voir qu'il existe

 $^{^{(116)}}$ N.D.E. : La question de savoir si l'ensemble précédent, modulo conjugaison par les $x \in X(S)$ induisant l'unité de $X(S_{\mathcal{J}})$, est principal homogène sous $H^1(Y_0,N_0)$, occupe les n^{os} 4.23 à 4.36. $^{(117)}$ N.D.E. : On a corrigé $\partial DY'$ en DY'.

⁽¹¹⁸⁾ N.D.E. : cf. N.D.E. (110).

 $^{^{(119)}}$ N.D.E. : On a détaillé ce qui précède, ceci montre que l'isomorphisme qui suit est valable sans hypothèse de platitude ; par contre, depuis 4.16, on s'est restreint aux S-schémas $f: T \to S$ plats sur S pour s'assurer que le groupe $\operatorname{Hom}_{\mathscr{O}_{T_0}}(\mathfrak{n}_{Y_0/X_0} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_{T_0}, \mathscr{J}\mathscr{O}_T),$ dans lequel réside l'obstruction c(X,Y,f), coı̈ncide avec $N_0(T_0)$ (cf. la fin de 4.16).

 $^{{}^{(120)}{\}rm N.D.E.}$: avec les notations de I 5.3, supposant Y0 affine sur S0.

alors un sous-groupe Γ de $B^1(Y_0, N_0)$ (121) tel que deux sous-groupes de X, plats sur S, et relevant $Y_{\mathcal{J}}$ soient conjugués (par des $x \in X(S)$ induisant l'unité de $X(S_{\mathcal{J}})$) si et seulement si leur « différence » dans $Z^1(Y_0, N_0)$ est un élément de Γ . Dans les meilleurs cas, nous montrerons que Γ égale $B^1(Y_0, N_0)$, donc que l'ensemble des sous-groupes de X plats, relevant $Y_{\mathcal{J}}$, modulo conjugaison par les $x \in X(S)$ induisant l'unité de $X(S_{\mathcal{J}})$, est vide ou principal homogène sous $H^1(Y_0, N_0)$ (cf. 4.29 et 4.36).

149

150

4.24. On conserve les notations de 4.21. Soit Y un sous-groupe plat de X, se réduisant suivant $Y_{\mathcal{J}}$. Rappelons que nous avons introduit en 0.5 le foncteur L_{0X} (resp. L_{0Y}) défini par l'identité par rapport au S_0 -schéma variable T:

$$\operatorname{Hom}_{S_0}(T,L_{0X}) = \operatorname{Hom}_{\mathscr{O}_T}(\omega^1_{X_0/S_0} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_T, \mathcal{J} \otimes_{\mathscr{O}_{S_0}} \mathscr{O}_T)$$

(resp. de même en remplaçant X par Y), ainsi que le foncteur $L_X' = \prod_{S_0/S} L_{0X}$.

Or on a:

Lemme 4.25. — Il existe une suite exacte canonique de Y_0 - \mathcal{O}_{S_0} -modules

$$(+) \mathfrak{n}_{Y_0/X_0} \xrightarrow{d} \omega^1_{X_0/S_0} \longrightarrow \omega^1_{Y_0/S_0} \longrightarrow 0$$

possédant les propriétés suivantes :

- (i) Par image réciproque sur Y₀, d donne le morphisme D₀ de 4.8 (iii).
- (ii) $Si X_0$ et Y_0 sont lisses $sur S_0$, alors d est injectif. Comme les deux ω^1 sont alors localement libres de type fini, il en est de même de \mathfrak{n}_{Y_0/X_0} et la suite est localement scindée.

 $D\acute{e}monstration$. (122) Notons π_0 le morphisme $Y_0 \to S_0$. D'après SGA 1 II, formule (4.3) (voir aussi EGA IV₄, 16.4.21), on a une suite exacte canonique de \mathscr{O}_{Y_0} -modules

$$(\dagger) \qquad \mathcal{N}_{Y_0/X_0} \xrightarrow{D_0} \Omega^1_{X_0/S_0} \otimes_{\mathscr{O}_{X_0}} \mathscr{O}_{Y_0} \longrightarrow \Omega^1_{Y_0/S_0} \longrightarrow 0.$$

Comme cette suite est formée de modules et de morphismes $(Y_0 \times_S Y_0)$ -équivariants, son image réciproque (+) par ε_0^* est une suite exacte de Y_0 - \mathcal{O}_{S_0} -modules, et (\dagger) est l'image réciproque de (+) par π_0^* (cf. Exp. I, § 6.8). Ceci prouve (i).

Supposons de plus X_0 et Y_0 lisses sur S_0 . Alors, d'après SGA 1 II 4.10 (voir aussi EGA IV₄, 17.2.3 (i) et 17.2.5), D est injectif et la suite (†) est formée de \mathcal{O}_{Y_0} -modules localement libres de type fini (donc est localement scindée). D'après l'équivalence de catégories I, 6.8.1, d est également injectif, et donc la suite (+) a les propriétés indiquées.

 $^{^{(121)}}$ N.D.E. : On a remplacé $Z^1(Y_0,N_0)$ par $B^1(Y_0,N_0)$, puisque la démonstration montre que Γ est un sous-groupe de $B^1(Y_0,N_0)$, cf. 4.27–4.29.

⁽¹²²⁾ N.D.E.: On a détaillé la démonstration, en tenant compte des ajouts faits dans l'Exp. I, § 6.8.

4.26. (123) Pour tout S_0 -schéma $f: T \to S_0$, (+) donne une suite exacte de $Y_0(T)$ -**O**(T)-modules

$$0 \longrightarrow \operatorname{Hom}_{\mathscr{O}_{\mathbf{T}}}(f^{*}(\omega^{1}_{\mathbf{Y}_{0}/\mathbf{S}_{0}}), f^{*}(\mathcal{J})) \longrightarrow \operatorname{Hom}_{\mathscr{O}_{\mathbf{T}}}(f^{*}(\omega^{1}_{\mathbf{X}_{0}/\mathbf{S}_{0}}), f^{*}(\mathcal{J})) \longrightarrow \operatorname{Hom}_{\mathscr{O}_{\mathbf{T}}}(f^{*}(\mathfrak{n}_{\mathbf{Y}_{0}/\mathbf{X}_{0}}), f^{*}(\mathcal{J})),$$

on a donc une suite exacte de Y_0 - \mathbf{O}_{S_0} -modules :

$$(4.26.1) 0 \longrightarrow L_{0Y} \longrightarrow L_{0X} \stackrel{d}{\longrightarrow} N_0.$$

On en déduit une suite exacte de complexes de groupes abéliens :

$$0 \longrightarrow C^*(Y_0, L_{0Y}) \longrightarrow C^*(Y_0, L_{0X}) \xrightarrow{d^*} C^*(Y_0, N_0) ,$$

et en particulier, un diagramme commutatif à lignes exactes

$$0 \longrightarrow C^{0}(Y_{0}, L_{0Y}) \longrightarrow C^{0}(Y_{0}, L_{0X}) \xrightarrow{d^{0}} C^{0}(Y_{0}, N_{0})$$

$$\downarrow \partial \qquad \qquad \downarrow \partial \qquad \qquad \downarrow \partial$$

$$0 \longrightarrow C^{1}(Y_{0}, L_{0Y}) \longrightarrow C^{1}(Y_{0}, L_{0X}) \xrightarrow{d^{1}} C^{1}(Y_{0}, N_{0})$$

Remarquons que $C^0(Y_0, L_{0Y})$ (resp. $C^0(Y_0, L_{0X})$) n'est autre que $Hom_{S_0}(S_0, L_{0Y}) = Hom_{S}(S, L'_Y)$ (resp. \cdots) i.e. (cf. 0.9) le groupe des sections de Y (resp. X) sur S induisant la section unité de $X_{\mathcal{J}}$. Notons aussi que d^1 n'est autre que le morphisme $v_{i_{Y_0}}$ de 4.8 (iii), où $i_{Y_0}: Y_0 \to X_0$ est l'immersion canonique. (124)

Lemme 4.27. — Sous les conditions de 4.21 pour S, \mathcal{I} , \mathcal{J} et X, soit Y un sous-groupe de X, plat sur S et relevant $Y_{\mathcal{I}}$. Notons $i:Y\hookrightarrow X$ l'immersion canonique. (125)

(i) Soit $i': Y \to X$ un morphisme de S-schémas relevant i_0 (de sorte que i' est aussi une immersion), soit Y' = i'(Y) et soit d(i,i') l'élément de $C^1(Y_0, L_{0X})$ tel que $i' = d(i,i') \cdot i$ (cf. 1.2.4). Alors la déviation $d(Y,Y') \in C^1(Y_0,N_0)$ (cf. 4.5.1) est donnée par la formule :

$$d(Y, Y') = d^1(d(i, i')).$$

(ii) Soit $x \in C^0(Y_0, L_{0X})$ une section de X sur S induisant la section unité de $X_{\mathcal{J}}$ sur $S_{\mathcal{J}}$. Alors la déviation $d(Y, Int(x)Y) \in C^1(Y_0, N_0)$ (cf. 4.5.1) est donnée par la 151 formule :

$$-d(Y, Int(x)Y) = d^1 \partial x = \partial d^0 x$$
.

En effet, Y' est l'image de Y par le morphisme composé : (126)

$$Y \xrightarrow{(d(i,i'),i)} L'_{X} \underset{S}{\times} X \longrightarrow X$$
,

 $^{^{(123)}}$ N.D.E.: On a détaillé l'original, pour faire voir qu'on a une suite exacte de Y_0 - O_{S_0} -modules. $^{(124)}$ N.D.E.: En effet, cela résulte de la définition de $d: \mathfrak{n}_{Y_0/X_0} \to \Omega^1_{X_0/S_0}$ (cf. 4.25) et de celle de $v_{i_{X_0}}$ (cf. 4.8).

⁽¹²⁵⁾ N.D.E.: On a ajouté le point (i) ci-dessous, qui sera utile en 4.35.1 puis en 4.38 (4) et (5).

 $^{^{(126)}{\}rm N.D.E.}$: On rappelle que $L_{\rm X}'=\prod_{S_0/S}L_{0{\rm X}}.$

qui est noté $d(i,i') \cdot i$ en 4.8 (iii); d'après loc. cit. et l'égalité $v_{i_0} = d^1$, on a donc :

$$c(X, Y', d(i, i') \cdot i) - c(X, Y', i) = v_{i_0}(d(i, i')) = d^1(d(i, i')).$$

Mais $d(i,i') \cdot i = i'$ se factorise par Y' par définition, donc le premier terme est nul; de plus, par 4.8 (ii), on a c(X,Y',i) = d(Y',Y) = -d(Y,Y'). Donc $d(Y,Y') = d^1(d(i,i'))$, ce qui prouve (i).

Soit maintenant x comme en (ii). Par la formule

$$xyx^{-1} = xyx^{-1}y^{-1}y = (x - Ad(y)x)y = (-\partial x)(y) \cdot y$$
,

on voit que Y' est l'image de Y par l'immersion $i'=(-\partial x)\cdot i_{\rm Y}.$ Donc, d'après (i) on obtient

$$-d(Y, Int(x)Y) = d^1 \partial x = \partial d^0 x$$
.

Corollaire 4.28. — Pour que deux sous-groupes Y et Y' de G, plats sur S et relevant $Y_{\mathcal{J}}$, soient conjugués par une section de X sur S induisant la section unité de $X_{\mathcal{J}}$, il faut et il suffit que $d(Y,Y') \in \partial d^0 \, C^0(Y_0,L_{0X}) \subset \partial C^0(Y_0,N_0) = B^1(Y_0,N_0)$.

Corollaire 4.29. — Si d^0 est surjectif, Y et Y' comme ci-dessus sont conjugués par une section de X sur S induisant la section unité de $X_{\mathcal{J}}$ si et seulement si $d(Y,Y') \in B^1(Y_0,N_0)$.

Corollaire 4.30. — Soit Y comme dans 4.27; l'ensemble des conjugués de Y par des sections de X sur S induisant la section unité de $X_{\mathcal{J}}$ est isomorphe à :

$$d^1 \partial C^0(Y_0, L_{0X}) = C^0(Y_0, L_{0X}) / \operatorname{Ker} d^1 \partial.$$

Remarquons maintenant que $C^0(Y_0/L_{0X})$ / Ker $d^1\partial$ se calcule uniquement à l'aide du carré de gauche du diagramme commutatif de 4.26. Il en résulte en particulier que l'on peut aussi le calculer dans tout diagramme du même type ayant le même carré de gauche. Considérons en particulier le foncteur L_{0X}/L_{0Y} au-dessus de S_0 défini par

$$\operatorname{Hom}_{S_0}(T, L_{0X}/L_{0Y}) = \operatorname{Hom}_{S_0}(T, L_{0X}) / \operatorname{Hom}_{S_0}(T, L_{0Y}).$$

On a un diagramme commutatif

$$0 \longrightarrow C^{0}(Y_{0}, L_{0Y}) \longrightarrow C^{0}(Y_{0}, L_{0X}) \longrightarrow C^{0}(Y_{0}, L_{0X}/L_{0Y}) \longrightarrow 0$$

$$\downarrow \partial \qquad \qquad \downarrow \partial \qquad \qquad \downarrow \partial$$

$$0 \longrightarrow C^{1}(Y_{0}, L_{0Y}) \longrightarrow C^{1}(Y_{0}, L_{0X}) \longrightarrow C^{1}(Y_{0}, L_{0X}/L_{0Y}) \longrightarrow 0$$

d'où par la remarque précédente :

Corollaire 4.31. — Soit Y comme en 4.27; l'ensemble des conjugués de Y par des sections de X sur S induisant la section unité de $X_{\mathcal{I}}$ est isomorphe à

$$E = \partial\,C^0(Y_0, L_{0X}/L_{0Y}) = C^0(Y_0, L_{0X}/L_{0Y})\big/H^0(Y_0, L_{0X}/L_{0Y}).$$

Corollaire 4.32. — Supposons de plus S_0 affine et $\omega^1_{Y_0/S_0}$ (127) fini localement libre. Si on note $\mathscr{F}_0 = \left(\mathscr{L}ie(X_0/S_0) \middle/ \mathscr{L}ie(Y_0/S_0) \right) \otimes_{\mathscr{C}_{S_0}} \mathcal{J}$, on a $E = \Gamma(S_0, \mathscr{F}_0) \middle/ H^0(Y_0, \mathscr{F}_0)$.

152

153

 $^{^{(127)}}$ N.D.E. : On a corrigé $\mathcal{L}ie(Y_0/S_0)$ en $\omega^1_{Y_0/S_0}$.

 $^{(128)}$ En effet, comme $\omega^1_{Y_0/S_0}$ est fini localement libre, ainsi que $\omega^1_{X_0/S_0}$ (puisque X est supposé lisse sur S), on a, d'après 0.6 :

$$L_{0Y} = W(\mathscr{L}\!\mathit{ie}(Y_0/S_0) \otimes_{\mathscr{O}_{S_0}} \mathcal{J}) \qquad \mathrm{et} \qquad L_{0X} = W(\mathscr{L}\!\mathit{ie}(X_0/S_0) \otimes_{\mathscr{O}_{S_0}} \mathcal{J}).$$

D'autre part, d'après 4.25, on a une suite exacte de Y_0 - \mathcal{O}_{S_0} -modules :

$$0 \longrightarrow \mathscr{K} \longrightarrow \omega^1_{X_0/S_0} \xrightarrow{\phi} \omega^1_{Y_0/S_0} \longrightarrow 0$$

(où $\mathscr{K}=\mathrm{Ker}(\phi)$). Comme $\omega^1_{\mathrm{Y}_0/\mathrm{S}_0}$ et $\omega^1_{\mathrm{X}_0/\mathrm{S}_0}$ sont finis localement libres, on a une suite exacte localement scindée :

$$0 \longrightarrow \mathscr{L}\!\mathit{ie}(Y_0/S_0) \otimes_{\mathscr{O}_{S_0}} \mathcal{J} \longrightarrow \mathscr{L}\!\mathit{ie}(X_0/S_0) \otimes_{\mathscr{O}_{S_0}} \mathcal{J} \longrightarrow \mathscr{F}_0 \longrightarrow 0$$

Il en résulte qu'on a une suite exacte de $Y_0\text{-}\mathbf{O}_{S_0}\text{-}$ modules :

$$0 \longrightarrow L_{0Y} \longrightarrow L_{0X} \longrightarrow W(\mathscr{F}_0).$$

Par le raisonnement qui nous a servi à prouver 4.31, nous pouvons calculer E comme l'image de l'application composée

$$C^0(Y_0, L_{0X}) \xrightarrow{\pi} C^0(Y_0, W(\mathscr{F}_0)) \xrightarrow{\partial} C^1(Y_0, W(\mathscr{F}_0)).$$

Or l'application π ci-dessus est l'application $\Gamma(S_0, \mathcal{L}ie(X_0/S_0) \otimes_{\mathscr{O}_{S_0}} \mathcal{J}) \to \Gamma(S_0, \mathscr{F}_0)$. Donc, S_0 étant affine, π est surjective et on trouve bien le résultat annoncé.

Corollaire 4.33. — Soient S, \mathcal{I} , \mathcal{J} et X comme en 4.21, et soit Y un sous-groupe diagonalisable de X. Supposons $\omega^1_{Y_0/S_0}$ fini localement libre et S_0 affine. (129) L'ensemble des sous-groupes de X, conjugués de Y par une section de X sur S induisant la section unité de $X_{\mathcal{I}}$, est isomorphe à

$$E = \Gamma\left(S_0, \mathscr{L}ie(X_0/S_0)\big/ \mathscr{L}ie(X_0/S_0)^{\operatorname{ad}(Y_0)}\right) \otimes_{\Gamma(S_0,\mathscr{O}_{S_0})} \Gamma(S_0, \mathcal{J})$$

(130) c.-à-d., à $L_{0X}(Y_0)/H^0(Y_0, L_{0X})$.

En effet, on écrit par I 4.7.3 (cf. 2.13):

$$\mathscr{L}ie(X_0/S_0) = \mathscr{L}ie(X_0/S_0)^{ad(Y_0)} \oplus \mathscr{R}.$$

Comme Y_0 est commutatif on a $\mathcal{L}ie(Y_0/S_0) \subset \mathcal{L}ie(X_0/S_0)^{ad(Y_0)}$, donc

$$\begin{split} \mathscr{F}_0 &= \left(\mathscr{L}\!\mathit{ie}(X_0/S_0)^{\mathrm{ad}(Y_0)} \big/ \, \mathscr{L}\!\mathit{ie}(Y_0/S_0) \right) \otimes \mathcal{J} \bigoplus \mathscr{R} \otimes \mathcal{J}, \\ \mathscr{F}_0^{\mathrm{ad}(Y_0)} &= \left(\mathscr{L}\!\mathit{ie}(X_0/S_0)^{\mathrm{ad}(Y_0)} \big/ \, \mathscr{L}\!\mathit{ie}(Y_0/S_0) \right) \otimes \mathcal{J}. \end{split}$$

Par 4.32, on a donc $E \simeq \Gamma(S_0, \mathcal{R} \otimes \mathcal{J})$. Retournant à la définition de \mathcal{R} , on a terminé. 154

⁽¹²⁸⁾ N.D.E.: On a détaillé l'original dans ce qui suit.

 $^{{}^{(129)}\}text{N.D.E.}: On a ajouté l'hypothèse sur } \omega^1_{Y_0/S_0} \text{ et remplacé l'hypothèse « S affine » par « S_0 affine ».}$

⁽¹³⁰⁾ N.D.E.: on a ajouté ce qui suit, cf. 4.34.

Corollaire 4.34. — Soient S, \mathcal{I} , \mathcal{J} et X comme en 4.21, et soit Y un sous-groupe diagonalisable de X. Supposons $\omega^1_{Y_0/S_0}$ fini localement libre et S_0 affine. (131) Si $x \in X(S)$ induit la section unité de $X_{\mathcal{I}}$ et normalise Y, alors il centralise Y.

Cela résulte immédiatement de la comparaison du corollaire précédent et de 2.14. En effet, 4.33 montre que les éléments de $C^0(Y_0, L_{0X})$ qui respectent globalement Y sont les éléments de $H^0(Y_0, L_{0X})$, et on a vu en 2.14 que ce sont ceux-là même qui agissent trivialement sur l'immersion canonique $Y \to X$.

4.35. Revenons à la situation générale de 4.21 et supposons $Y_{\mathcal{J}}$ lisse sur $S_{\mathcal{J}}$. Alors, d'après 4.25 (ii), on a une suite exacte de Y_0 - \mathscr{O}_{S_0} -modules :

$$(*) 0 \longrightarrow \mathscr{L}ie(Y_0/S_0) \longrightarrow \mathscr{L}ie(X_0/S_0) \longrightarrow \mathfrak{n}_{Y_0/X_0}^{\vee} \longrightarrow 0$$

et ce sont des \mathcal{O}_{S_0} -modules finis localement libres.

D'autre part, d'après SGA 1, II 4.10, tout sous-schéma Y de X relevant $Y_{\mathcal{J}}$ et plat sur S sera lisse sur S. (132) Supposons de plus S_0 et $Y_{\mathcal{J}}$ affines. Alors, comme $\mathfrak{n}_{Y_0/X_0}^{\vee}$ est un \mathscr{O}_{S_0} -module localement libre, la suite (*) reste exacte lorsqu'on lui applique $\otimes_{\mathscr{O}_{S_0}} \mathcal{J}$, puis qu'on prend l'image inverse sur Y_0^n , et comme les Y_0^n sont affines, on obtient donc une suite exacte de complexes de groupes abéliens :

$$0 \longrightarrow C^*(Y_0, L_{0Y}) \longrightarrow C^*(Y_0, L_{0X}) \xrightarrow{d^*} C^*(Y_0, N_0) \longrightarrow 0$$

et en particulier, un diagramme commutatif à lignes exactes

Soient maintenant Y, Y' deux sous-groupes de X relevant Y $_{\mathcal{J}}$ et plats, donc *lisses*, sur S. Comme Y $_{\mathcal{J}}$ est affine alors, d'après 0.15, Y et Y' sont isomorphes comme schémas étendant Y $_{\mathcal{J}}$, i.e. il existe un isomorphisme de S-schémas

$$f: \mathbf{Y} \xrightarrow{\sim} \mathbf{Y}'$$

induisant l'identité sur $Y_{\mathcal{J}}$. D'une part, d'après 1.2.4, f définit un élément a de $C^1(Y_0, L_{0X})$ tel que $f(y) = a(y_0)y$, pour tout $y \in Y(S')$, $S' \to S$, et d'après 4.27 (i), on a

$$d^{1}(a) = d(Y, Y').$$

De plus, comme Y, Y' sont des sous-groupes de X, l'élément ci-dessus appartient à $Z^1(Y_0,N_0)$ (cf. 4.21). Alors ∂a est un élément de $Z^2(Y_0,L_{0Y})$ dont l'image $\overline{\partial a}$ dans $H^2(Y_0,L_{0Y})$ ne dépend que de la classe $\overline{d}(Y,Y')\in H^1(Y_0,N_0)$; ceci étant la définition de l'application bord $\partial^1: H^1(Y_0,N_0)\to H^2(Y_0,L_{0Y})$, on a donc :

$$\partial^1(\overline{d}(Y, Y')) = \overline{\partial a}.$$

⁽¹³¹⁾ N.D.E. : cf. N.D.E. (129).

⁽¹³²⁾ N.D.E.: On a ajouté ce qui suit et la proposition 4.35.1, implicite dans l'original, cf. 4.38 (5).

155

D'autre part, transportons par f la structure de groupe de Y' et soit Y₁ le groupe obtenu (qui a donc Y comme schéma sous-jacent), c.-à-d., la loi de groupe μ_1 de Y₁ est définie par : pour tout S' \rightarrow S et $x, y \in Y(S')$,

$$\mu_1(x,y) = f^{-1}(f(x)f(y)).$$

D'après 3.5.1, Y_1 définit un cocycle $\delta(Y,Y_1) \in Z^2(Y_0, \mathcal{L}ie(Y_0/S_0))$ tel que, pour tout $S' \to S$ et $x, y \in Y(S')$, on ait

$$\delta(Y, Y_1)(x_0, y_0) xy = \mu_1(x, y) = f^{-1}(f(x)f(y)).$$

Posons $b = \delta(Y, Y_1)$. Pour tout $S' \to S$ et $x, y \in Y(S')$, on a $(b(x_0, y_0) xy)_0 = x_0 y_0$ et donc on obtient que $f(b(x_0, y_0) xy)$ égale, d'une part, $a(x_0 y_0) b(x_0 y_0) xy$ et, d'autre part,

$$f(x)f(y) = a(x_0)x a(y_0)y = a(x_0) \operatorname{Ad}(x_0)(a(y_0)) xy.$$

Comparant les deux expressions, on obtient que $b(x_0, y_0)$ égale

$$a(x_0y_0)^{-1}a(x_0)\operatorname{Ad}(x_0)(a(y_0)) = \operatorname{Ad}(x_0)(a(y_0)) - a(x_0y_0) + a(x_0) = (\partial a)(x_0, y_0),$$

i.e. $\delta(Y, Y_1) = \partial a$. On a donc obtenu la

Proposition 4.35.1. — $^{(132)}$ Sous les hypothèses de 4.21, supposons de plus S_0 affine et $Y_{\mathcal{J}}$ lisse sur $S_{\mathcal{J}}$ et affine. Soient Y,Y' deux sous-groupes de X relevant $Y_{\mathcal{J}}$ et plats (donc lisses) sur S, soit $f:Y \xrightarrow{\sim} Y'$ un isomorphisme de S-schémas induisant l'identité sur $Y_{\mathcal{J}}$, notons Y_1 le groupe obtenu en transportant par f la structure de groupe de Y'. Alors on a

$$\partial^1 \overline{d}(Y, Y') = \overline{\delta}(Y, Y_1).$$

Proposition 4.36. — Sous les hypothèses de 4.21, supposons de plus $Y_{\mathcal{J}}$ lisse sur $S_{\mathcal{J}}$ et S_0 affine. L'ensemble des sous-S-groupes Y de X plats (ou lisses) sur S, se réduisant suivant $Y_{\mathcal{J}}$, modulo conjugaison par des sections de X sur S induisant la section unité de $X_{\mathcal{J}}$, est soit vide, soit un ensemble principal homogène sous le groupe

$$\mathrm{H}^{1}(\mathrm{Y}_{0}, [\mathscr{L}ie(\mathrm{X}_{0}/\mathrm{S}_{0})/\mathscr{L}ie(\mathrm{Y}_{0}/\mathrm{S}_{0})] \otimes_{\mathscr{O}_{\mathrm{S}_{0}}} \mathcal{J}).$$

Il nous suffit de vérifier que le corollaire 4.29 s'applique, c'est-à-dire que

$$d^0: \mathrm{Hom}_{\mathscr{O}_{S_0}}(\omega^1_{X_0/S_0}, \mathcal{J}) \longrightarrow \mathrm{Hom}_{\mathscr{O}_{S_0}}(\mathfrak{n}_{Y_0/X_0}, \mathcal{J})$$

est surjectif. Or cela résulte de ce que la suite (+) de 4.25 (ii) est scindée, S_0 étant affine. $^{(133)}$

Enonçons enfin un corollaire commun à 4.21 et 4.36, qui sera, en fait, la seule forme sous laquelle nous utiliserons par la suite les résultats généraux de ce numéro. (134)

Corollaire 4.37. — Soient S un schéma et S_0 le sous-schéma fermé défini par un idéal nilpotent \mathcal{I} . Soient S un S-groupe lisse sur S, et S_0 un sous- S_0 -groupe de S_0 , plat sur S_0 .

 $^{^{(133)}}$ N.D.E. : Ceci résulte aussi de la démonstration de 4.32.

⁽¹³⁴⁾ N.D.E.: Par exemple, 4.37 est utilisé dans l'exposé IX pour prouver les énoncés 3.2 bis et 3.6 bis.

(i) $Si S_0$ est affine, Y_0 lisse $sur S_0$, et si

$$\mathrm{H}^{1}\left(\mathrm{Y}_{0},\left[\mathscr{L}ie(\mathrm{X}_{0}/\mathrm{S}_{0})\right/\mathscr{L}ie(\mathrm{Y}_{0}/\mathrm{S}_{0})\right]\otimes_{\mathscr{O}_{\mathrm{S}_{0}}}\mathcal{I}^{n+1}/\mathcal{I}^{n+2}\right)=0$$

pour tout $n \ge 0$, deux sous-S-groupes de X, plats (ou lisses) sur S, se réduisant suivant Y_0 , sont conjugués par une section de X sur S induisant la section unité de X_0 .

(ii) $Si~{\rm Y}_0~est$ affine et~de présentation finie $et~si~^{(135)}$

$$H^2(Y_0,\mathfrak{n}_{Y_0/X_0}^{\vee}\otimes_{\mathscr{O}_{S_0}}\mathcal{I}^{n+1}/\mathcal{I}^{n+2})=0$$

pour tout $n \geqslant 0$, il existe un sous-S-groupe de X, plat sur S, se réduisant suivant Y_0 .

4.38. Il nous reste à relier les trois constructions que nous avons faites dans cet exposé. Pour éviter des complications inessentielles, nous nous placerons dans la situation suivante : S_0 est le spectre d'un corps k, S est le spectre des nombres duaux D(k), G est un S-groupe lisse sur S, K un sous-S-groupe, lisse sur S et affine.

⁽¹³⁶⁾ Notons $\mathfrak{g}_0 = \mathcal{L}ie\,G_0$ (qui égale ici $\Gamma(S_0,\mathcal{L}ie\,G_0) = \underline{\operatorname{Lie}}(G_0/S_0)(S_0)$) et $\mathfrak{k}_0 = \mathcal{L}ie\,K_0$. On a une suite exacte de k-espaces vectoriels ⁽¹³⁷⁾:

$$0 \longrightarrow \mathfrak{k}_0 \stackrel{i}{\longrightarrow} \mathfrak{g}_0 \stackrel{d}{\longrightarrow} \mathfrak{n}_{K_0/G_0}^{\vee} \longrightarrow 0,$$

donnant naissance à une suite exacte de cohomologie :

$$0 \longrightarrow H^0(K_0, \mathfrak{k}_0) \xrightarrow{i^0} H^0(K_0, \mathfrak{g}_0) \xrightarrow{d^0} H^0(K_0, \mathfrak{g}_0/\mathfrak{k}_0)$$

$$\xrightarrow{\partial^0} H^1(K_0, \mathfrak{k}_0) \xrightarrow{i^1} H^1(K_0, \mathfrak{g}_0) \xrightarrow{d^1} H^1(K_0, \mathfrak{n}_{K_0/G_0}^{\vee}) \xrightarrow{\partial^1} H^2(K_0, \mathfrak{k}_0).$$

Or ces divers groupes ont tous une signification géométrique.

- a) $H^0(K_0, \mathfrak{k}_0) = \mathcal{L}ie \operatorname{Centr}(K_0)$ (138) d'après II 5.2.3.
- **b)** $H^0(K_0, \mathfrak{g}_0) = \mathcal{L}ie \underline{Centr}_{G_0}(K_0)$ (138) (idem).
- c) $H^0(K_0, \mathfrak{g}_0/\mathfrak{k}_0) = \mathcal{L}ie \underline{Norm}_{G_0}(K_0)/\mathfrak{k}_0$ (138) (idem).
- d) $\mathrm{H}^1(\mathrm{K}_0,\mathfrak{k}_0)=\mathscr{L}ie\left(\underline{\mathrm{Aut}}_{\mathrm{S}_0\text{-}\mathrm{gr.}}(\mathrm{K}_0)\right)/\mathrm{Im}(\mathfrak{k}_0),$ où $\mathrm{Im}(\mathfrak{k}_0)$ désigne l'image de \mathfrak{k}_0 par le morphisme $\mathscr{L}ie(\mathrm{Int}_0)$ déduit de $\mathrm{Int}_0:\mathrm{K}_0\to \underline{\mathrm{Aut}}_{\mathrm{S}_0\text{-}\mathrm{gr.}}(\mathrm{K}_0).$ En effet, il résulte de 2.1 (ii), appliqué à $\mathrm{Y}=\mathrm{X}=\mathrm{K}$ et $f_0=\mathrm{id}_{\mathrm{K}_0},$ que $\mathrm{Z}^1(\mathrm{K}_0,\mathfrak{k}_0)$ est le groupe des automorphismes infinitésimaux du S_0 -groupe $\mathrm{K}_0,$ et que $\mathrm{H}^1(\mathrm{K}_0,\mathfrak{k}_0)$ s'obtient en quotientant par les automorphismes infinitésimaux intérieurs, i.e. par l'image de $\mathfrak{k}_0.$ De plus, d'après II 4.2.2, on a aussi $\mathrm{Z}^1(\mathrm{K}_0,\mathfrak{k}_0)=\mathscr{L}ie\left(\underline{\mathrm{Aut}}_{\mathrm{S}_0\text{-}\mathrm{gr.}}(\mathrm{K}_0)\right)^{(139)}.$

 $^{^{(135)}\}text{N.D.E.}$: On a remplacé $\mathscr{H}\!\mathit{om}_{\mathscr{O}_{S_0}}(\mathfrak{n}_{Y_0/X_0},\mathcal{I}^{n+1}/\mathcal{I}^{n+2})$ par $\mathfrak{n}^\vee_{Y_0/X_0}\otimes_{\mathscr{O}_{S_0}}\mathcal{I}^{n+1}/\mathcal{I}^{n+2},$ conformément à la remarque 4.22.

 $^{^{(136)}}$ N.D.E. : On a légèrement modifié l'original dans ce qui suit. En particulier, on a remplacé X par G et Y par K, et l'on a noté \mathfrak{g}_0 et \mathfrak{k}_0 leurs algèbres de Lie. D'autre part, on a écrit explicitement $H^i(K_0, \cdot)$ au lieu de l'abréviation $H^i(\cdot)$ de l'original.

 $^{^{(137)}}$ N.D.E. : munis de l'action adjointe de K_0

 $^{^{(138)}}$ N.D.E.: Comme la formation des centralisateurs et normalisateurs commute au changement de base (cf. I 2.3.3.1), on a écrit $\underline{\mathrm{Centr}}(K_0)$ au lieu de $\underline{\mathrm{Centr}}(K)_0$ dans l'original, et de même $\underline{\mathrm{Centr}}_{G_0}(K_0)$ et $\underline{\mathrm{Norm}}_{G_0}(K_0)$ au lieu de $\underline{\mathrm{Centr}}_{G}(K)_0$ et $\underline{\mathrm{Norm}}_{G}(K)_0$.

⁽¹³⁹⁾N.D.Ē.: et ceci est l'algèbre de Lie Dér_k(\mathfrak{k}_0) des dérivations de \mathfrak{k}_0 , donc $H^1(K_0, \mathfrak{k}_0)$ est le quotient de Dér_k(\mathfrak{k}_0) par les dérivations intérieures (i.e. par l'image de ad : $\mathfrak{k}_0 \to \text{Dér}_k(\mathfrak{k}_0)$).

e) $H^1(K_0, \mathfrak{g}_0)$ est, d'après 2.1 (ii), le groupe des déviations entre homomorphismes $K \to G$ prolongeant l'immersion canonique $i_0 : K_0 \to G_0$, modulo les déviations obtenues par l'action des automorphismes intérieurs de G définis par des éléments de G(S) donnant l'unité de $G(S_0)$ (c'est-à-dire des éléments de \mathfrak{g}_0).

- f) $H^1(K_0, \mathfrak{n}_{K_0/G_0}^{\vee})$ est, d'après 4.36, le groupe des déviations entre sous-groupes K' de G prolongeant K_0 et plats sur S (donc *lisses* sur S, cf. SGA 1, II 4.10), modulo les déviations obtenues par l'action des automorphismes intérieurs de G construits comme précédemment.
- **g)** $H^2(K_0, \mathfrak{k}_0)$ est, d'après 3.5 (ii), le groupe des déviations entre structures de groupe sur K prolongeant celle de K_0 , modulo les S-automorphismes de K induisant l'identité sur K_0 .

Nous nous proposons maintenant de montrer comment on peut expliciter les six morphismes de la suite exacte précédente dans l'interprétation géométrique que nous venons de donner.

1) i^0 et d^0 ne sont autres que les morphismes obtenus par passage à l'algèbre de Lie (puis par passage au quotient pour d^0), à partir des monomorphismes canoniques :

$$\underline{\mathrm{Centr}}(\mathrm{K}_0) \longrightarrow \underline{\mathrm{Centr}}_{\mathrm{G}_0}(\mathrm{K}_0) \longrightarrow \underline{\mathrm{Norm}}_{\mathrm{G}_0}(\mathrm{K}_0).$$

C'est en effet ce qu'il résulte immédiatement de la définition des identifications (a), (b), et (c).

2) On construit ∂^0 ainsi. Soit $\overline{x} \in \mathscr{L}ie \underline{\mathrm{Norm}}_{G_0}(K_0)/\mathfrak{k}_0$. Relevons-le en un $x \in \mathscr{L}ie \underline{\mathrm{Norm}}_{G_0}(K_0) \subset \underline{\mathrm{Norm}}_{G}(K)(S)$. Alors $\mathrm{Int}(x)$ définit un automorphisme de K induisant l'identité sur K_0 , donc un élément de $\mathscr{L}ie \underline{\mathrm{Aut}}_{S_0\text{-gr.}}(K_0)$. Notons $\overline{\mathrm{Int}(x)}$ l'image 158 de cet élément dans $\mathscr{L}ie \underline{\mathrm{Aut}}_{S_0\text{-gr.}}(K_0)/\mathrm{Im}(\mathfrak{k}_0)$. Alors on a :

(*)
$$\partial^0(\overline{x}) = -\overline{\operatorname{Int}(x)} = \overline{\operatorname{Int}(x^{-1})}.$$

En effet, calculons l'élément de $\mathcal{L}ie$ $\underline{\mathrm{Aut}}_{S_0\text{-}\mathrm{gr.}}(\mathrm{K}_0)$ défini par $\mathrm{Int}(x)$. Il correspondra par définition à un élément a de $\mathrm{Z}^1(\mathrm{K}_0,\mathfrak{k}_0)$ tel que

$$x y x^{-1} = a(y_0) y$$
, pour tout $y \in K(S'), S' \longrightarrow S$.

Mais ceci s'écrit aussi $a(y_0) = xyx^{-1}y^{-1} = x - \operatorname{Ad}(y)x = -\partial(x)(y_0)$, d'où $a = -\partial(x)$. (140) D'autre part, l'image de $x \in \mathscr{L}ie \operatorname{\underline{Norm}}_{G_0}(K_0) \subset \mathfrak{g}_0$ par ∂ est un élément de $Z^1(K_0,\mathfrak{k}_0)$, dont l'image $\overline{\partial(x)}$ dans $H^1(K_0,\mathfrak{k}_0)$ ne dépend que de \overline{x} , et par définition de l'application bord ∂^0 , on a

$$\partial^0(\overline{x}) = \overline{\partial(x)}$$
:

combiné avec l'égalité $a = -\partial(x)$, ceci prouve (*).

3) (141) Notons $i: K \to G$ l'immersion canonique. Soit \overline{u} un élément de $H^1(K_0, \mathfrak{k}_0)$, image d'un

$$u \in \mathscr{L}ie \operatorname{\underline{Aut}}_{S_0\text{-}\mathrm{gr.}}(K_0) \subset \operatorname{Aut}_{S\text{-}\mathrm{gr.}}(K).$$

⁽¹⁴⁰⁾ N.D.E.: On a ajouté la phrase qui suit.

 $^{^{(141)}}$ N.D.E.: On a détaillé l'original dans ce qui suit, et dans (**) on a corrigé $u \circ i$ en $i \circ u$.

Alors, on a:

$$i^{1}(\overline{u}) = \overline{d}(i, i \circ u),$$

où $\overline{d}(i, i \circ u)$ est la classe définie en 2.1.1.

En effet, \overline{u} est l'image d'un élément $v \in Z^1(K_0, \mathfrak{k}_0)$ tel que $u(y) = v(y_0)y$, et $i^1(\overline{u})$ est l'image dans $H^1(K_0, \mathfrak{g}_0)$ du cocyle $i \circ v \in Z^1(K_0, \mathfrak{g}_0)$.

Or, comme i est un morphisme de groupes, l'égalité $u(y) = v(y_0)y$ entraı̂ne $iu(y) = iv(y_0)i(y)$. Il en résulte que $i \circ v = d(i, i \circ u)$, d'où (**).

159 4) Soit $i': K \to G$ un morphisme de groupes relevant i_0 , soit $\overline{d}(i,i')$ la classe définie en 2.1.1, et soit $d(K,i'(K)) \in C^1(K_0,\mathfrak{n}_{K_0/X_0})$ la déviation définie en 4.5.1; d'après 4.21, d(K,i'(K)) appartient à $Z^1(K_0,\mathfrak{n}_{K_0/X_0})$. Notons $\overline{d}(K,i'(K))$ son image dans $H^1(K_0,\mathfrak{n}_{K_0/X_0})$. Alors, d'après 4.27 (i), on a :

$$d^{1}(\overline{d}(i,i')) = \overline{d}(K,i'(K)).$$

5) Soit enfin K' un sous-groupe de G relevant K_0 et plat, donc *lisse*, sur S. On a supposé que K_0 est *affine*. Alors on sait que K et K' sont isomorphes comme schémas étendant K_0 (cf. 0.15), donc qu'il existe un isomorphisme de S-schémas

$$f: \mathbf{K} \xrightarrow{\sim} \mathbf{K}'$$

induisant l'identité sur K_0 . Transportons par f la structure de groupe de K' et soit K_1 le groupe obtenu (qui a donc K comme schéma sous-jacent), c.-à-d., la loi de groupe μ_1 de K_1 est définie par : pour tout $S' \to S$ et $x, y \in K(S')$,

$$\mu_1(x,y) = f^{-1}(f(x)f(y)).$$

⁽¹⁴²⁾ D'après 3.5.1, K_1 définit un cocycle $\delta(K, K_1) \in Z^2(K_0, \mathfrak{k}_0)$ tel que, pour tout $S' \to S$ et $x, y \in K(S')$, on ait

$$\delta(K, K_1)(x_0, y_0) xy = \mu_1(x, y) = f^{-1}(f(x)f(y)).$$

Alors, d'après 4.35.1, on a :

$$\partial^1 \, \overline{d}(K, K') = \overline{\delta}(K, K_1).$$

Bibliographie

(143)

- [BAlg] N. Bourbaki, Algèbre, Chap. I-III, Hermann, 1970.
- [BAC] N. Bourbaki, Algèbre commutative, Chap. I-IV, Masson, 1985.
- [DG70] M. Demazure, P. Gabriel, *Groupes algébriques*, Masson & North-Holland, 1970.
- [Fr64] P. Freyd, Abelian categories, Harper and Row, 1964.

 $^{^{(142)}}$ N.D.E. : On a modifié l'original dans ce qui suit, en tenant compte des ajouts faits en 3.5.1 et 4.35.1.

 $^{^{(143)}}$ N.D.E. : références additionnelles citées dans cet Exposé