ACE – HW#1 2020-1

ACE - Acionamentos Elétricos - 2020-1

Data de apresentação: 23/03

Homework #1 – Dinâmica do acionamento mecânico

1.(20/100) - Considere que o sistema giratório mostrado na Fig. 1, com a inércia combinada $J_{eq} = J_M + J_L$, é requerido para ter o perfil de velocidade mostrado na Fig. 2. O torque da carga é zero.

- a) Calcule e faça o gráfico, em função do tempo, do torque eletromagnético do motor e da mudança de posição.
- b) Calcule também a energia cinética armazenada na inércia combinada (motor e carga) na velocidade de 1800 rpm.

Figura 1

Figura 2

2.(20/100) - Para o sistema de correia e polia da Fig. 3, M = 0.02 kg. Para o motor com inércia $J_M = 40$ gcm², determine o raio da polia que minimiza o torque requerido do motor para um perfil de velocidade da carga fornecido. Não levar em conta o amortecimento e a força da carga f_L .

Figura 3

ACE – HW#1 2020-1

3.(20/100) - No sistema de engrenagens mostrado na Fig. 5, a relação de engrenagens é n_L/n_M = 3, em que n é igual ao número de dentes em uma engrenagem. A inércia da carga e do motor são $J_L = 10 \text{ kgm}^2 \text{ e } J_M = 1,2 \text{ kgm}^2$. O amortecimento e o torque da carga T_L não são considerados. Para o perfil de velocidade mostrado na Fig. 2, determine o torque eletromagnético T_{em} necessário do motor em função do tempo para os seguintes intervalos: a) $0 \le t \le 1$ s; b) $1 \le t \le 2$ s; c) $2 \le t \le 3$ s; d) $3 \le t \le 4$ s

Figura 5

4.(20/100) - Em um veículo elétrico, cada roda é tracionada por seu próprio motor. O veículo pesa 2.000 kg. Este veículo incrementa sua velocidade linearmente de 0 a 96,54 km/h em 10 segundos. O diâmetro do pneu é 70 cm. Calcule a máxima potência requerida de cada motor em kW.

5.(20/100) - Escolher, dentre os motores de corrente contínua de 20, 30, 40, 50, 60 e 75 hp, aquele que satisfaz ao seguinte regime de trabalho a ser imposto para o caso de um guindaste para carga e descarga de carvão, cujo ciclo médio de trabalho é o seguinte:

- (a) fechamento da caçamba 6 segundos, 40 hp;
- (b) elevação da carga 10 segundos, 80 hp;
- (c) abertura da caçamba 3 segundos, 30 hp;
- (d) descida da caçamba 10 segundos, 45 hp;
- (e) repouso 16 segundos, 0 hp.