1 Optimality for Smooth Functions

Basic Necessary and Sufficient Conditions

Theorem 1.1. Suppose f is continuously differentiable on domain neighborhood $\mathcal{N}(x^*, r)$. If x^* is a local minimizer of f, then $\nabla f(x^*) = 0$.

Proof. Let f be continuously differentiable let x^* a local minimizer of f on $\mathcal{N}(x^*, r)$ for some r > 0. Suppose, by way of contradiction, that $\nabla f(x^*) \neq 0$.

Let $p = -\nabla f(x^*)$. Then, $p^T \nabla f(x^*) = -\|\nabla f(x^*)\|^2 < 0$. Because $\nabla f(x)$ is continuous on \mathcal{N} , there exists T > 0 such that $p^T \nabla f(x^* + tp) < 0$ for all $t \in (0, T]$. Now, let $s \in (0, T]$. Then, by Taylor's Theorem

$$f(x^* + sp) = f(x^*) + sp^{\mathsf{T}} \nabla f(x^* + tsp), \quad t \in (0, 1)$$
$$= f(x^*) + sp^{\mathsf{T}} \nabla f(x^* + tp), \quad t \in (0, s)$$
$$< f(x^*)$$

Thus, $f(x^* + sp) < f(x^*)$ for all $s \in (0, T]$, a contradiction. Therefore $\nabla f(x^*) = 0$ if x^* is a local minimizer.

Theorem 1.2. Suppose f is twice continuously differentiable on domain neighborhood $\mathcal{N}(x^*, r)$. If x^* is a local minimizer of f, then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive semi-definite.

Proof. Let f be twice continuously differentiable on $\mathcal{N}(x^*, r)$ for some r > 0, and x^* a local minimizer of f. From Theorem 1.1, $\nabla f(x^*) = 0$. Now, assume, by way of contradiction, that $\nabla^2 f(x^*)$ is not positive semi-definite.

Let p be an eigenvector of $\nabla^2 f$ with a negative eigenvalue. Then $p^\mathsf{T} \nabla f(x^*) p < 0$ ($\nabla f(x^*)$). Therefore, there exists T > 0 such that $p^\mathsf{T} \nabla f(x^* + tp) p < 0$ for all $t \in (0, T]$. Let $s \in (0, t]$ then by Taylor's Theorem:

$$f(x^* + sp) = f(x^*) + sp^{\mathsf{T}} \nabla f(x^*) + \frac{1}{2} s^2 p^{\mathsf{T}} \nabla^2 (x^* + tp) p, \quad t \in (0, s)$$
$$= f(x^*) + \frac{1}{2} s^2 p^{\mathsf{T}} \nabla^2 (x^* + tp) p, \quad t \in (0, s)$$
$$< f(x^*)$$

Thus, $f(x^* + sp) < f(x^*)$ for all $s \in (0, T]$, a contradiction. Therefore, $\nabla^2 f(x^*)$ is positive semi-definite if x^* is a local minimizer of f.

Theorem 1.3. Suppose f is twice continuously differentiable on domain neighborhood $\mathcal{N}(x^*, r)$. If $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite, then x^* is a strict local minimizer.

Proof. Let f be twice continuously differentiable on $\mathcal{N}(x^*, r)$, $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ positive definite. Then, there exists $\mathcal{N}(x^*, s)$ with s < r and arbitrary p satisfying $x^* + p \in \mathcal{N}(x^*, s)$ and $\nabla^2 f(x^* + p)$ positive definite. Then,

$$f(x^* + p) = f(x^*) + \frac{1}{2}p^\mathsf{T}\nabla^2 f(x^* + tp)p$$
, for some $t \in (0, 1)$.

Therfore, $f(x^* + p) > f(x^*)$ on $\mathcal{N}(x^*, s)$. Thus, x^* is a strict local minimizer of f.

Additional Optimality Conditions

Theorem 1.4. Suppose f is convex. Then any local minimizer of f is a global minimizer of f.

Proof. Let f be convex and x^* a local minimizer of f on $\mathcal{N}(x^*, r)$. Suppose, by way of contradiction, that x^* is not a global minimizer of f. Then, there exists y such that $f(y) < f(x^*)$. Let $w = x^* + \alpha(y - x^*)$ with $\alpha \in (0, 1)$ small enough so that $w \in \mathcal{N}(x^*, r)$. We have

$$f(w) = f(\alpha(y - x^*) + x^*)$$

$$= f(\alpha y + (1 - \alpha)x^*)$$

$$\leq \alpha f(y) + (1 - \alpha)f(x^*)$$

$$< \alpha f(x^*) + (1 - \alpha)f(x^*)$$

$$= f(x^*)$$

Now, $f(w) < f(x^*)$ violates the fact that x^* is a local minimizer on $\mathcal{N}(x^*, r)$, a contradiction. Thus, $f(y) \ge f(x^*)$ for all $y \in \mathbb{R}^n$ and x^* is a global minimizer of f. **Theorem 1.5.** Suppose f is convex and continuously differentiable, then x^* is a global minimizer of f if and only if $\nabla f(x^*) = 0$.

Proof. Let f be convex and continuously differentiable. Then, we have $f(y) \ge f(x^*) + (y - x^*)^T \nabla f(x^*)$ for all $y \in \mathbb{R}^n$.

- (\Rightarrow) Suppose x^* is a global minimizer of f. Then, $f(y) \geq f(x^*)$ for all $y \in \mathbb{R}^n$. Thus, $(y-x^*)\nabla f(x^*) \geq 0$ for all $y \in \mathbb{R}^n$. If direction vector (y_1-x^*) results in $(y_1-x^*)\nabla f(x^*) > 0$ then the negative of that direction $y_2 = 2x^* y_1$ would result in $(y_2 x^*)\nabla f(x^*) < 0$. Thus, it must follow that $\nabla f(x^*) = 0$.
- (\Leftarrow) Suppose $\nabla f(x^*) = 0$. Then, $f(y) \geq f(x^*)$ for all $y \in \mathbb{R}^n$. That is, x^* is a global minimizer of f.

Lemma 1.6. A function $f: \mathbb{R}^n \to \mathbb{R}$ is coercive if and only if every sublevel set of f is bounded.

Theorem 1.7. If $f: \mathbb{R}^n \to \mathbb{R}$ is either convex or continuous, and there exists at least one non-empty bounded sublevel set of f, then a global minimizer of f exists.

The essence of a proof is that if there exists a bounded non-empty level set Ω of f, then any global minimizer of f must be in Ω . Now, if f is convex on Ω then it is also continuous on Ω . Then, it follows that f is bounded below and continuous and thus attains its infimum. That is, a global minimizer must exist.