

"Strong happiness" and other properties of certain imprecise probability models when treating samples sequentially

Gero Walter

Institut für Statistik Ludwig-Maximilians-Universität München

May 12th, 2010

Prior-Data Conflict

Prior-Data Conflict \(\hat{=}\) situation in which...

- ... informative prior beliefs and trusted data (sampling model correct, no outliers, etc.) are in conflict
- "... the prior [places] its mass primarily on distributions in the sampling model for which the observed data is surprising." (Evans & Moshonov, 2006)

posterior: $\mid \boldsymbol{ heta} \mid \mathbf{k} \sim \mathsf{Dir}(lpha + \mathbf{k})$

$$\mathbb{E}[\theta_j] = \frac{\alpha_j}{\sum \alpha_i} \qquad \qquad \mathbb{V}(\theta_j) = \frac{\mathbb{E}[\theta_j](1 - \mathbb{E}[\theta_j])}{\sum \alpha_i + 1}$$

$$\mathbb{E}[\theta_j] = \frac{\alpha_j}{\sum \alpha_i} =: \mathbf{y}_j^{(0)} \quad \mathbb{V}(\theta_j) = \frac{\mathbb{E}[\theta_j](1 - \mathbb{E}[\theta_j])}{\sum \alpha_i + 1} = \frac{\mathbf{y}_j^{(0)}(1 - \mathbf{y}_j^{(0)})}{\mathbf{n}^{(0)} + 1}$$

Data :	k	\sim	$M(oldsymbol{ heta})$	
conjugate prior:	$\boldsymbol{\theta}$	\sim	$Dir(n^{(0)}, y^{(0)})$	$n^{(0)} = \sum \alpha_i$
posterior:	$\theta \mid k$	\sim	$Dir(n^{(1)}, y^{(1)})$	

$$\mathbb{E}[\theta_j] = \frac{\alpha_j}{\sum \alpha_i} =: \mathbf{y}_j^{(0)} \quad \mathbb{V}(\theta_j) = \frac{\mathbb{E}[\theta_j](1 - \mathbb{E}[\theta_j])}{\sum \alpha_i + 1} = \frac{\mathbf{y}_j^{(0)}(1 - \mathbf{y}_j^{(0)})}{\mathbf{n}^{(0)} + 1}$$

Data:
$$\mathbf{k} \sim \mathsf{M}(\boldsymbol{\theta})$$
conjugate prior: $\boldsymbol{\theta} \sim \mathsf{Dir}(n^{(0)}, \mathbf{y}^{(0)})$
posterior: $\boldsymbol{\theta} \mid \mathbf{k} \sim \mathsf{Dir}(n^{(1)}, \mathbf{y}^{(1)})$

$$y_j^{(1)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y_j^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{k_j}{n}$$
 $n^{(1)} = n^{(0)} + n$

Case (i):
$$y_j^{(0)} = 0.75$$
, $k_j/n = 0.75$ $n = 16$

Case (ii): $y_j^{(0)} = 0.25$, $k_j/n = 1$ $n = 16$

Case (i):
$$y_j^{(0)} = 0.75, \quad k_j/n = 0.75$$
 $(n = 16)$

Case (ii):
$$y_j^{(0)} = 0.25, \quad k_j/n = 1 \\ (n^{(0)} = 8) \quad (n = 16)$$

$$\mathbb{E}[\theta_j \mid \mathbf{k}] = \mathbf{y}_j^{(1)} = 0.75, \quad \mathbb{V}(\theta_j \mid \mathbf{k}) = 3/400 \quad \boxed{0}$$

$$(\mathbb{V}(\theta_j) = 1/48)$$

Posterior inferences do not reflect uncertainty A
due to unexpected observations!

Conjugate Priors

Weighted average structure is underneath *all common* conjugate priors for exponential family sampling distributions!

 $X \stackrel{iid}{\sim}$ linear, canonical exponential family, i.e.

$$p(x \mid \theta) \propto \exp\left\{\langle \psi, \tau(x) \rangle - n\mathbf{b}(\psi)\right\}$$

$$|\psi\>$$
 transformation of $\theta\>$

Conjugate Priors

Weighted average structure is underneath *all common* conjugate priors for exponential family sampling distributions!

 $X \stackrel{iid}{\sim}$ linear, canonical exponential family, i.e.

$$p(x \mid \theta) \propto \exp\left\{\langle \psi, \tau(x) \rangle - n\mathbf{b}(\psi)\right\} \qquad \left[\psi \text{ transformation of } \theta\right]$$

conjugate prior:

$$p(\theta) \propto \exp\left\{n^{(0)}\left[\langle \psi, \mathbf{y}^{(0)} \rangle - \mathbf{b}(\psi)\right]\right\}$$

Conjugate Priors

Weighted average structure is underneath all common conjugate priors for exponential family sampling distributions!

 $X \stackrel{iid}{\sim}$ linear, canonical exponential family, i.e.

$$p(x \mid \theta) \propto \exp\left\{\langle \psi, \tau(x) \rangle - n\mathbf{b}(\psi)\right\} \qquad \left[\psi \text{ transformation of } \theta\right]$$

conjugate prior:

$$p(\theta) \propto \exp\left\{n^{(0)}\left[\langle \psi, \mathbf{y}^{(0)} \rangle - \mathbf{b}(\psi)\right]\right\}$$

→ (conjugate) posterior:

$$p(\theta \mid x) \propto \exp\left\{n^{(1)}\left[\langle \psi, \mathbf{y^{(1)}} \rangle - \mathbf{b}(\psi)\right]\right\},$$

where
$$y^{(1)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{1}{n} \tau(x)$$
 and $n^{(1)} = n^{(0)} + n$.

Generalized iLUCK-models

Model for Bayesian inference with sets of priors (Walter & Augustin, 2009)

1. use conjugate priors from general construction method (prior parameters $y^{(0)}$, $n^{(0)}$)

Generalized iLUCK-models

Model for Bayesian inference with sets of priors (Walter & Augustin, 2009)

- 1. use conjugate priors from general construction method (prior parameters $y^{(0)}$, $n^{(0)}$)
- 2. construct sets of priors via sets of parameters $y^{(0)} \in \mathcal{Y}^{(0)} \times n^{(0)} \in \mathcal{N}^{(0)}$

Generalized iLUCK-models

Model for Bayesian inference with sets of priors (Walter & Augustin, 2009)

- 1. use conjugate priors from general construction method (prior parameters $y^{(0)}$, $n^{(0)}$)
- 2. construct sets of priors via sets of parameters $y^{(0)} \in \mathcal{Y}^{(0)} \times n^{(0)} \in \mathcal{N}^{(0)}$
- 3. set of posteriors $\hat{=}$ set of (element-wise) updated priors \Longrightarrow still easy to handle: described as set of $(y^{(1)}, n^{(1)})$'s

$$y^{(1)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{1}{n} \tau(x)$$

$$n^{(1)} = n^{(0)} + n$$

Case (i):
$$y_j^{(0)} \in [0.7, 0.8], \quad k_j/n = 0.75$$
 $n = 16$

Case (ii):
$$y_j^{(0)} \in [0.2, 0.3], \quad k_j/n = 1$$
 $(n = 16)$ 0

Case (i):
$$y_{j}^{(0)} \in [0.7, 0.8], \quad k_{j}/n = 0.75$$

$$(n^{(0)} \in [1, 8]) \quad (n = 16)$$

$$y_{j}^{(1)} \in [0.73, 0.76]$$

$$(n^{(0)} \in [17, 24])$$

$$y_{j}^{(0)} \in [0.2, 0.3], \quad k_{j}/n = 1$$

$$(n^{(0)} \in [1, 8]) \quad (n = 16)$$

Case (i):
$$y_{j}^{(0)} \in [0.7, 0.8], \quad k_{j}/n = 0.75$$
 $(n^{(0)} \in [1,8])$
 $y_{j}^{(1)} \in [0.73, 0.76]$
 $(n^{(0)} \in [17,24])$

Case (ii): $y_{j}^{(0)} \in [0.2, 0.3], \quad k_{j}/n = 1$
 $(n^{(0)} \in [1,8])$
 $(n = 16)$
 $y_{j}^{(1)} \in [0.73, 0.96]$
 $(n^{(0)} \in [17,24])$

Case (i):
$$y_{j}^{(0)} \in [0.7, 0.8], \quad k_{j}/n = 0.75$$
 $(n^{(0)} \in [1,8])$
 $y_{j}^{(1)} \in [0.73, 0.76]$
 $(n^{(0)} \in [17,24])$

Case (ii): $y_{j}^{(0)} \in [0.2, 0.3], \quad k_{j}/n = 1$
 $(n^{(0)} \in [1,8])$
 $(n = 16)$
 $y_{j}^{(1)} \in [0.73, 0.96]$
 $(n^{(0)} \in [17,24])$

Generalized iLUCK-models lead to cautious inferences if, and only if, caution is needed.

Generalized iLUCK-models: Parameter Sets

Prior parameter set $y^{(0)} \in \mathcal{Y}^{(0)} \times n^{(0)} \in \mathcal{N}^{(0)}$ is rectangular, but posterior parameter set

$$\left\{ \left(y^{(1)}, n^{(1)} \right) \middle| y^{(1)} = \frac{n^{(0)} y^{(0)} + \tau(x)}{n^{(0)} + n}, \ n^{(1)} = n^{(0)} + n, \\ y^{(0)} \in \mathcal{Y}^{(0)}, \ n^{(0)} \in \mathcal{N}^{(0)} \right\}$$

is not rectangular anymore!

Generalized iLUCK-models: Parameter Sets

Prior parameter set $\mathbf{v}^{(0)} \in \mathcal{Y}^{(0)} \times \mathbf{n}^{(0)} \in \mathcal{N}^{(0)}$ is rectangular, but posterior parameter set

$$\left\{ \left(y^{(1)}, n^{(1)} \right) \middle| y^{(1)} = \frac{n^{(0)}y^{(0)} + \tau(x)}{n^{(0)} + n}, \ n^{(1)} = n^{(0)} + n, \\ y^{(0)} \in \mathcal{Y}^{(0)}, \ n^{(0)} \in \mathcal{N}^{(0)} \right\}$$

is not rectangular anymore!

Set of posteriors: $y^{(1)} \in [0.1; 0.35]$ and $n^{(1)} \in [11; 20]$

with "rectangularization"...

different intervals for y in case of prior-data conflict

with "rectangularization"...

- different intervals for y in case of prior-data conflict
- sufficient statistic $\tau(x)$ not sufficient anymore?!?

with "rectangularization"...

- different intervals for y in case of prior-data conflict
- sufficient statistic $\tau(x)$ not sufficient anymore?!?
- ▶ more information (order) → more imprecise posterior!

with "rectangularization"...

- different intervals for y in case of prior-data conflict
- sufficient statistic $\tau(x)$ not sufficient anymore?!?
- ▶ more information (order) → more imprecise posterior!

In general: $\mathcal{Y}_{\mathsf{dir}}^{(2)} \subseteq \mathcal{Y}_{\mathsf{seq}}^{(2)}$

if no pdc in both steps:
$$\mathcal{Y}_{ ext{dir}}^{(2)} = \mathcal{Y}_{ ext{seq}}^{(2)}$$

if pdc in both steps in same direction:
$$\mathcal{Y}_{ ext{dir}}^{(2)} = \mathcal{Y}_{ ext{seq}}^{(2)}$$

if neither of the former:
$$\mathcal{Y}_{ ext{dir}}^{(2)} \subset \mathcal{Y}_{ ext{seq}}^{(2)}$$

especially: if prior-data conflict 'on the way', then $\mathcal{Y}_{\sf dir}^{(2)} \subset \mathcal{Y}_{\sf seq}^{(2)}!$

If $\mathcal{Y}_{\text{dir}}^{(2)} \neq \mathcal{Y}_{\text{seq}}^{(2)}$, there was prior-data conflict 'on the way'.

(but: no need to use $\mathcal{Y}_{\text{seq}}^{(2)}$ for inference if you think, e.g, that the sequence of data is exchangeable nevertheless.)

If $\mathcal{Y}_{\text{sig}}^{(2)} \neq \mathcal{Y}_{\text{seq}}^{(2)}$, there was prior-data conflict 'on the way'. (but: no need to use $\mathcal{Y}_{\text{seq}}^{(2)}$ for inference if you think, e.g, that the sequence of data is exchangeable nevertheless.)

Data situation: Bernoulli sampling (observe 0 or 1) Start with
$$\mathcal{Y}^{(0)} = [0,1]$$

- A (1,0,1)
- B (1, 1, 0)
- (0,1,1)
- D ([2/3, n = 3]) (direct)

Data situation: Bernoulli sampling (observe 0 or 1) Start with $\mathcal{Y}^{(0)} = [0,1]$

- A (1,0,1)
- B (1, 1, 0)
- (0,1,1)
- D ([2/3, n = 3]) (direct)
- $A^* = C^* ([1/2, n = 2], 1)$
 - B^* ([1, n = 2], 0)

Data situation: Bernoulli sampling (observe 0 or 1) Start with $\mathcal{Y}^{(0)} = [0,1]$

A
$$(1,0,1)$$

D (
$$[2/3, n = 3]$$
) (direct)

$$A^* = C^* ([1/2, n = 2], 1)$$

$$B^*$$
 ([1, $n = 2$], 0)

Interval length for
$$y$$
: " $|\mathcal{Y}|$ " =: I
 $I_A > I_B$, $I_A > I_C$

Data situation: Bernoulli sampling (observe 0 or 1) Start with $\mathcal{Y}^{(0)} = [0, 1]$

A
$$(1,0,1)$$

D (
$$[2/3, n = 3]$$
) (direct)

$$A^* = C^* ([1/2, n = 2], 1)$$

B*
$$([1, n = 2], 0)$$

Interval length for
$$y$$
: " $|\mathcal{Y}|$ " =: I

$$I_{A} > I_{B}, I_{A} > I_{C}$$

B* ([1, n = 2], 0)
$$A^{**} = B^{**} (1, [1/2, n = 2]) \stackrel{\triangle}{=} D (if \overline{n}^{(0)} \ge 1)$$

$$C^{**}$$
 $(0,[1,n=2]) \hat{=} C$

"Strong Happiness"

Data situation: Bernoulli sampling (observe 0 or 1).

Idea: Choose sample size n_1 such that $I^{(1)}$ low enough under certain threshold I such that – even if we got another sample n_2 in conflict to $\mathcal{Y}^{(1)} - I^{(2)}$ is still below I!

With a sample of such a size n_1 we attain "strong happiness", because whatever we would see as a following sample, we would never get more imprecise than I!

(Is only possible because degree of prior-data conflict is bounded due to Bernoulli sampling!).

"Strong Happiness"

$$I^{(2)} = \frac{\overline{n}^{(0)}I^{(0)}}{\overline{n}^{(0)} + n_1 + n_2} + \frac{\overline{n}^{(0)} - \underline{n}^{(0)}}{\overline{n}^{(0)} + n_1 + n_2} \left(\frac{n_1}{\underline{n}^{(0)} + n_1} \Delta \left(\frac{c_1}{n_1}, \mathcal{Y}^{(0)} \right) + \frac{n_2}{\underline{n}^{(0)} + n_1 + n_2} \Delta \left(\frac{c_2}{n_2}, \mathcal{Y}^{(1)} \right) \right)$$

$$\stackrel{!}{\leq} I \quad \forall \ (k_2, \ n_2)$$

"Strong Happiness"

$$I^{(2)} = \frac{\overline{n}^{(0)}I^{(0)}}{\overline{n}^{(0)} + n_1 + n_2} + \frac{\overline{n}^{(0)} - \underline{n}^{(0)}}{\overline{n}^{(0)} + n_1 + n_2} \left(\frac{n_1}{\underline{n}^{(0)} + n_1} \Delta \left(\frac{c_1}{n_1}, \mathcal{Y}^{(0)} \right) + \frac{n_2}{\underline{n}^{(0)} + n_1 + n_2} \Delta \left(\frac{c_2}{n_2}, \mathcal{Y}^{(1)} \right) \right)$$

$$\stackrel{!}{\leq} I \quad \forall \ (k_2, \ n_2)$$

If data from second sample in conflict with $\mathcal{Y}^{(1)}$ (and conflict strong enough), then imprecision $I^{(2)}$ should first increase and then decrease in n_2 .

 \rightarrow find n_2 that maximizes $I^{(2)}$ for maximal possible conflict with current $\mathcal{Y}^{(1)}$, plug into formula for $I^{(2)}$ and give n_1 as a function of $I^{(0)}$ (or $\mathcal{Y}^{(0)}$) and I (and $\mathcal{N}^{(0)}$).

Plans, Further Ideas

- Try to attain Strong Happiness by sorting out formula
- Write programs for Strong Happiness
- Investigate interval lengths in general situation (not only Bernoulli sampling)
- Focus considerations on certain event of interest instead of Y?
- · . . .

