ID: Name: Discussion room:

Quiz 1-4

This file contains all the questions from quiz 1 to quiz 4.

1. (2pt) Let R and S be two rings. Is $R \times S$ a Ring? Explain why or why not.

- 2. Let (R, +, *) be a ring. Is $(R, +, \Delta)$ a ring? Let $a\Delta b = b * a$ for all $a, b \in R$.
- 3. Let (R, +, *) be a ring. Is $(R, +, \Delta)$ a ring? Let $a\Delta b = -a * b$ for all $a, b \in R$.
- 4. (2pt) Let R be a ring. Show that $(r \cdot 0 = 0)$ for all $r \in R$.
- 5. Let R be a ring. Let a and b be two elements of R. Show that a(-b) = -(ab) for all $a, b \in R$.
- 6. (2pt) Let R be a ring. Let a and b be two elements of R. Show that (-a)(-b) = ab for all $a, b \in R$.
- 7. Is \mathbb{Z}_{18} a field? Explain why or why not.
- 8. Let a, b, and n be elements in \mathbb{N} . What is the number of solutions to the congruence $ax \equiv b \pmod{n}$? Justify your answer.
- 9. Show that the cancellation law holds for elements that are not zero divisors.
- 10. Let $G_n := \{ r \in \mathbb{Z}_n \mid r \text{ has a multiplicative inverse} \}.$
 - Find G_{12} .
 - Are G_n fields in general?
- 11. Let D be an integral domain and let F = Frac(D) be the field of quotients obtained from the relation

$$(a,b) \sim (a',b') \iff ab' = a'b \qquad (a,b), (a',b') \in D \times (D \setminus \{0\}).$$

Show that addition in F is well defined; that is, prove

$$(a,b) \sim (a',b'), (c,d) \sim (c',d') \implies [(a,b)] + [(c,d)] = [(a',b')] + [(c',d')].$$

12. Working in the polynomial ring $\mathbf{Z}_{7}[t]$, let

$$f(t) = 3t^3 + t^2 + 5t + 6,$$
 $g(t) = 4t^4 + 3t + 1.$

Without expanding by the full distributive law, compute the coefficient of t^3 in the product f(t)g(t).

13. Let R be a **commutative** ring with identity 1_R and let

$$S = R \setminus \{0_R\}.$$

On the set $R \times S$ define a relation For $(u, v), (x, y) \in R \times S$, define

$$(u, v) \sim (x, y)$$
 in $R \times S \iff uy = vx$ in R .

Show: If \sim is an equivalence relation, then R is an integral domain.

Hint:

Math 120b Quiz 1-4

ID: Discussion room:

- (a) Because \sim is an equivalence relation, it is, in particular, transitive.
- (b) Assume, for the sake of contradiction, that R contains a non-zero zero divisor. Choose $a,b\in R$ with $a\neq 0,\,b\neq 0$, and ab=0. Examine the three elements

$$(a, 1), (0, b), (0, 1) \in R \times S,$$

and show that transitivity fails.

Math 120b

Quiz 1-4