Leistungselektronik - Formelsammlung

Inhaltsverzeichnis		S.	. Ke	ein.	l1	L	N	v la	ZZ	ole	en:	1								
	Illiansverzeichnis		23	s. S	ep	ten	nb	er	20	16										
1	Halbleiter																			
	1.1 Kristallgitter																			
	1.2 Dotierung																			
	1.3 pn-Übergang																			,
2	Idiotenseite																			
3	Glossar																			

1 Halbleiter

- Metallische Leiter: der Stromtransport wurde durch Elektronen erzeugt.
- Isolatoren: der Stromtransport wurde durch Isolatoren erzeugt.
- Halbleiter: die Leitfähigkeit liegt irgendwo zwischen Metallen und Isolatoren.
 - Die wichtigsten Halbleiter sind Si, Ge, CuO2 und GaAs
- **Dotierte Halbleiter:** Durch kontrollierte Verunreinigung (Dotierung) der reinen Halbleiterwerkstoffe kann die Leitfähigkeit wesentlich verändert werden.

1.1 Kristallgitter

Durch die thermische Bewegung der Atomem um ihre Ruhelage im Kristallgitter ist es möglich einige **Elektronenpaarbindungen** aufzubrechen.

Auf diese weise ein gelöstes Elektron bewegt sich im Kristallgitter frei und hinterlässt eine **positiv geladene Lücke im Kristallgitter** (Defektelektron)

1.2 Dotierung

Durch eine Dotierung des Halbleitermaterials mit Fremdatomen ist es möglich die Ladungsträgerdichte effizient zu kontrollieren:

1.3 pn-Übergang

1.3.1 Diffusionsstrom

Der Diffusionsstrom wird durch den Ladungsträgeraustausch zwischen beiden Halbleitergebieten erzeugt und dadurch verschwinden in der Grenzschicht alle freien Ladungsträger.

Durch die Elektronenwanderung entsteht im n-Teil des Grenzgebiets die **ortsfeste** Positive Ladung(+). Die eindiffundierten Elektronen erzeugen im p-Teil des Grenzgebiets die **ortsfeste** negative Ladung (-). Die ortsfesten Ladungen erzeugen das elektrische Feld in der Raumladungszone und dammit auch den Driftstrom.

Der Driftstrom ist gegen den Diffusionsstrom gerichtet. Sobald die Ströme gleich sind, ist eine stabile Raumladungszone etabliert.

1.3.2 pn-Übergang mit äusserer Spannung

Die Spannungsquelle ist an den pn-Übergang in **Sperrrichtung** geschalten. Die Spannung U vergrössert die Breite der Raumladungszone. Der Strom kann nicht über den pn-Übergang fliessen.

S. Reinli L. Mazzoleni 23. September 2016

2 Idiotenseite

2.1 SI-Vorsätze

Symbol	Name	Wert	Binär	Symbol	Name	Wert
da	Deka	10^{1}		d	Dezi	10^{-1}
h	Hekto	10 ²		С	Centi	10-2
k	Kilo	10 ³	$2^{10} = 1024$	m	Mili	10^{-3}
M	Mega	10 ⁶	2 ²⁰	y, μ	Mikro	10^{-6}
G	Giga	109	2 ³⁰	n	Nano	10-9
T	Tera	10 ¹²	2 ⁴⁰	р	Piko	10^{-12}
Р	Peta	10^{15}	2 ⁵⁰	f	Femto	10^{-15}

2.2 Dreiecksformeln

Cosinussatz

$$c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos \gamma$$

Sinussatz

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2r = \frac{u}{\pi}$$

Pythagoras beim Sinus

$$\sin^2(b) + \cos^2(b) = 1$$
 $\tan(b) = \frac{\sin(b)}{\cos(b)}$

$$\sin \beta = \frac{b}{a} = \frac{\text{Gegenkathete}}{\text{Hypotenuse}}$$
 $\cos \beta = \frac{c}{a} = \frac{\text{Ankathete}}{\text{Hypotenuse}}$

$$\tan \beta = \frac{c}{b} = \frac{\text{Gegenkathete}}{\frac{\text{Ankathete}}{\text{Ankathete}}}$$
$$\cot \beta = \frac{c}{b} = \frac{\text{Gegenkathete}}{\frac{\text{Gegenkathete}}{\text{Gegenkathete}}}$$

2.3 Funktionswerte für Winkelargumente

deg	rad	sin	cos	tan	de
0	0	0	1	0	90
30	$\frac{\pi}{6}$	1/2	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	12
45	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	13
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	15

deg	rad	sin	cos
90	$\frac{\pi}{2}$	1	0
120	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$
135	$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$
150	$\frac{5\pi}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$

deg	rad	sin	cos
180	π	0	-1
210	$\frac{7\pi}{6}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$
225	$\frac{5\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$
240	$\frac{4\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$

deg	rad	sin	cos
270	$\frac{3\pi}{2}$	-1	0
300	$\frac{5\pi}{3}$	$-\frac{\sqrt{3}}{2}$	<u>1</u>
315	$\frac{7\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
330	$\frac{11\pi}{6}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$

2.4 Periodizität

$$cos(a + k \cdot 2\pi) = cos(a)$$
 $sin(a + k \cdot 2\pi) = sin(a)$ $(k \in \mathbb{Z})$

2.5 Quadrantenbeziehungen

$$\sin(-a) = -\sin(a)$$

$$\sin(\pi - a) = \sin(a)$$

$$\sin(\pi + a) = -\sin(a)$$

$$\sin(\frac{\pi}{2} - a) = \sin(\frac{\pi}{2} + a) = \cos(a)$$

$$\cos(\pi - a) = \cos(a)$$

$$\cos(\pi + a) = -\cos(a)$$

$$\cos(\pi + a) = -\cos(a)$$

$$\cos(\frac{\pi}{2} - a) = -\cos(\frac{\pi}{2} + a) = \sin(a)$$

Ableitungen

S. Reinli L. Mazzoleni 23. September 2016

2.7 Additionstheoreme

$$\sin(a \pm b) = \sin(a) \cdot \cos(b) \pm \cos(a) \cdot \sin(b)$$

$$\cos(a \pm b) = \cos(a) \cdot \cos(b) \mp \sin(a) \cdot \sin(b)$$

$$\tan(a \pm b) = \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a) \cdot \tan(b)}$$

2.8 Doppel- und Halbwinkel

$$sin(2a) = 2 sin(a) cos(a)
cos(2a) = cos2(a) - sin2(a) = 2 cos2(a) - 1 = 1 - 2 sin2(a)
cos2($\frac{a}{2}$) = $\frac{1 + cos(a)}{2}$ $sin2(\frac{a}{2}) = \frac{1 - cos(a)}{2}$$$

2.9 Geradengleichung Interpolieren

2.10 Grad <-> Rad

$$lpha_{rad} = lpha_{grad} \cdot rac{\pi}{180}$$

$$lpha_{grad} = lpha_{rad} \cdot rac{180}{\pi}$$

2.11 Grundelemente

Ohmscher Widerstand R

u und *i* können sprunghaft ändern

$$u(t) = R \cdot i(t)$$

$$\downarrow U \qquad i(t) = \frac{u(t)}{R}$$

$$Z_R = R$$

$$\text{nicht linear:} \qquad R_=(u) = \frac{U}{I(u)}, r_D = \frac{\mathrm{d}U}{\mathrm{d}I}|_{U_0}$$

$$P = I^2 \cdot R = \frac{U^2}{R}$$

Kapazitität C

u kann nicht sprunghaft ändern

$$u(t) = \frac{1}{C} \int_{0}^{t} i(\tau)d\tau + u(0)$$

$$i(t) = C \frac{du(t)}{dt}$$

$$Z_{C} = \frac{1}{j\omega C} = -\frac{j}{\omega C}$$

$$X_{C} = -\frac{1}{\omega C} \quad B_{C} = \omega C$$

$$Q_{C} = -U^{2} \cdot \omega C = -\frac{I^{2}}{\omega C}$$

$$W_{C} = \frac{1}{2}CU_{C}^{2}$$

Induktivität L

i kann nicht sprunghaft ändern

$$u(t) = L \frac{di(t)}{dt}$$

$$i(t) = \frac{1}{L} \int_{0}^{t} u(\tau) d\tau + i(0)$$

$$\frac{Z_L}{Z_L} = j\omega L$$

$$X_L = \omega L \quad B_L = -\frac{1}{\omega L}$$

$$Q_L = I^2 \cdot \omega L = \frac{U^2}{\omega L}$$

$$W_L = \frac{1}{2}LI_L^2$$

2.12 Begriffe der Impedanz und Admittanz

Scheinwiderstand		$Z = \frac{U_{eff}}{I_{eff}}$	$= \sqrt{R^2 + X^2}$	Ohm
Komplexer Widerstand	Impedanz	$\underline{Z} = R + jX = Z \cdot e^{j\varphi}$	$= \frac{\underline{U}}{\underline{I}} = \frac{\underline{U} \cdot \underline{U}^*}{\underline{S}^*} = \frac{\underline{U}^2}{\underline{S}^*} = \frac{\underline{S}}{\underline{I}^2}$	Ohm
Komplexer Leitwert	Admittanz	$\underline{Y} = G + jB = \frac{1}{\underline{Z}} = \frac{1}{\overline{Z}}e^{-j\varphi}$	$=\frac{\underline{I}}{\underline{U}}$	Siemens
Wirkwiderstand	Resistanz	$R = \text{Re}(\underline{Z})$	$=Z\cdot cos(\varphi)$	Ohm
Wirkleitwert	Konduktanz	$G = \text{Re}(\underline{Y})$	$\neq \frac{1}{R}$	Siemens
Blindwiderstand	Reaktanz	$X = \operatorname{Im}(\underline{Z})$	$=Z\cdot sin(\varphi)$	Ohm
Blindleitwert	Suszeptanz	$B = \operatorname{Im}(\underline{Y})$	$\neq \frac{1}{X}$	Siemens
Phasenverschiebung		$\varphi = \varphi_u - \varphi_i = \arctan\left(\frac{\operatorname{Im}(\underline{Z})}{\operatorname{Re}(\underline{Z})}\right)$		Radiant

3 Glossar

GTO Gate Turn-Off Thyristor

IGCT Integrated Gate-Commutated Thyristor

BT Bipolarer Transistor

MOS Metal Oxide Semiconductor

IGBT Insulated-Gate Bipolar Transistor

S. Reinli L. Mazzoleni 23. September 2016