МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.АЛЕКСЕЕВА

Институт радиоэлектроники и информационных технологий Кафедра «Вычислительные системы и технологии»

Сети и телекоммуникации

Лабораторная работа №3

Расчет контрольной суммы заголовка протоколов транспортного уровня TCP и UDP. Формат пакета и контрольная сумма протокола ICMP.

ПРОВЕРИЛ:	
	Гай В.Е.
СТУДЕНТ:	
	Козменкова Е.П. 18 В-2

Цель:

Изучить формат заголовка протоколов TCP и UDP и на примере разобрать механизм вычисления 16-битовой контрольной суммы, использующейся для обнаружения ошибок в протоколах транспортного уровня. Изучить формат пакета ICMP и на примере разобрать механизм вычисления 16-битовой контрольной суммы, использующейся для обнаружения ошибок в пакете протокола ICMP.

Ход работы:

Для подготовки к работе попробую разобрать по одной задаче из методички. В задании написано, что пакет начинается с заголовка Ethernet. Посмотрим, как выглядит этот заголовок:

6 байт	6 байт	2 байта	46-1500 байт	4 байта
DA	SA	T	Данные	FCS

Где DA – MAC-адрес узла назначения, SA – MAC-адрес узла отправителя, T – код протокола (08 00 - IP), FCS – контрольная сумма. Далее идет заголовок IP:

4 бита Номер	4 бита Длина			бит серв			16 бит Общая длина				
версии	заголовка	PR	D	Т	R	3					
	16 б Идентифи		пак	ета			бита Элаги D М	13 бит Смещение фрагмента			
	бит ия жизни	Прот	ОКОЛ	бит п ве	рхнего			16 бит Контрольная сумма			
	32 бита										

После заголовка IP идет заголовок и данные TCP (в 1 п.) или UDP (во 2 п.).

IP-адрес источника
32 бита
IP-адрес назначения
Параметры и выравнивание

1) ТСР-пакет

Рис. 15.5. Формат заголовка ТСР-сегмента

Теперь рассмотрю пакет из задания:

Bap.							П	аке	т ТС	CP							
	0000	00	13	8f	13	b7	f8	d8	50	е6	a2	37	61	80	00	45	00
		00															
1	0020	20	1b	c2	ac	01	bb	8b	79	69	62	52	e2	d2	c4	80	10
	0030	01	7f	00	00	00	00	01	01	80	0a	17	8b	eb	22	00	a1
	0040	27	a2														

Ethernet-кадр:

00 13 8f 13 b7 f8 – MAC-адрес получателя;

d8 50 e6 a2 37 61 – MAC-адрес отправителя;

08 00 – код протокола (IP);

С 45 начинается поле данных Ethernet-кадра – заголовок IP-пакета:

4 – номер версии протокола IP (IPv4);

5 – длина заголовка (пять 32-битных слов);

00 — тип сервиса: приоритет пакета (первые три бита) - 0, критерии выбора маршрута (задержка, пропускная способность и надежность) — так же 0;

00 34 – общая длина ІР-пакета;

fe 53 – идентификатор пакета;

 $40\ 00$ — флаги и смещение фрагмента: первые три бита (флаги) — $0\ 1\ 0$, где 2-й бит — флаг DF, который запрещает маршрутизатору фрагментировать пакет; так как пакет не фрагментируется, поле смещения — 0;

40 – время жизни пакета (в секундах);

06 – протокол верхнего уровня (ТСР);

33 2с – контрольная сумма ір-заголовка;

ас 10 64 29 – ІР-адрес источника;

d8 ef 20 1b – IP-адрес назначения;

Заголовок ТСР-сегмента:

с2 ас – порт источника;

01 bb — порт приемника;

8b 79 69 62 – номер пакета;

52 e2 d2 c4 – номер подтверждения;

8 – длина заголовка (ТСР-сегмента);

0 10 – <u>резерв</u> и флаги (<u>0000 00</u>01 0000) – резерв 0 и установлен флаг АСК (квитанция на принятый сегмент);

01 7f – размер окна;

00 00 – контрольная сумма;

 $00\ 00$ – указатель срочности;

01 01 08 0а – параметры и заполнитель;

Данные ТСР-сегмента:

00 a1 27 a2

Для подсчета контрольной суммы TCP-заголовка, разобью пакет на слова по 16 бит:

		0034	4500
		4000	FE53
IP-заголовок	>	332C	4006
		6429	AC10
		201B	D8EF
		01BB	C2AC
		6962	8B79
		D2C4	52E2
ТСР-заголовок		017F	8010
		0000	0000
		080A	0101
Полити	\	EB22	178B
Данные	ح ا	27A2	00A1
	_		

Сформирую псевдозаголовок:

AC10	6429
D8EF	201B
0006	0020

Тип протокола -6, длина сегмента в байтах -20h.

Просуммирую Заголовок, Данные и Псевдозаголовок:

Пресумынарую заголовок, данные и псевдоваголовок.
$$(C2AC)_{16} + (01BB)_{16} + (8B79)_{16} + (6962)_{16} + (52E2)_{16} + (D2C4)_{16} + \\ + (8010)_{16} + (017F)_{16} + (0000)_{16} + (0000)_{16} + (0101)_{16} + (080A)_{16} + \\ + (178B)_{16} + (EB22)_{16} + (00A1)_{16} + (27A2)_{16} + \\ + (AC10)_{16} + (6429)_{16} + (D8EF)_{16} + (201B)_{16} + (0006)_{16} + (0020)_{16} = (69DDB)_{16}$$
 Псевдозаголовок

Результат сложения превышает 16 разрядов, разобью его на два слова и посчитаю еще раз:

$$(0006)_{16} + (9DDB)_{16} = (9DE1)_{16}$$

Найду контрольную сумму:

$$CS_{TCP} = (FFFF)_{16} - (9DE1)_{16} = (621E)_{16}$$

2) UDP-пакет

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
]	Пор	OT (ЭТП	ıpaı	зит	еля	I										По	рт	ПО.	луч	ат	еля	I				
				J	Ц ли	на	да	таг	par	ИMI	Ы									К	ОН	тро	ЭЛЬ	ная	і су	/MN	ıа				
														Ţ	Ц ан	НЫ	e														

Рис. 8.3. Структура пакета UDP

Теперь рассмотрю пакет из задания:

Bap.							П	акет	r UI	OP							
	0000	d8	50	е6	a2	37	61	00	01	02	a 0	a7	ee	80	00	45	00
	0010	00	48	0d	88	00	00	7e	11	6e	с6	ac	10	04	0d	ac	10
1	0020	64	29	00	35	a1	a7	00	34	00	00	39	12	81	80	00	01
1	0030	00	01	00	00	00	00	03	77	77	77	03	73	75	74	02	72
	0040	75	00	00	01	00	01	с0	0с	00	01	00	01	00	00	04	0d
	0050	00	04	5b	ee	е6	5e										

Ethernet-кадр:

d8 50 e6 a2 37 61 – MAC-адрес получателя;

00 01 02 a0 a7 ee – МАС-адрес отправителя;

08 00 – код протокола (IP);

С 45 начинается поле данных Ethernet-кадра – заголовок IP-пакета:

4 – номер версии протокола IP (IPv4);

5 – длина заголовка (пять 32-битных слов);

00 – тип сервиса: приоритет пакета (первые три бита) - 0, критерии выбора маршрута (задержка, пропускная способность и надежность) – так же 0;

00 48 – общая длина ІР-пакета;

Od 88 – идентификатор пакета;

00 00 – флаги и смещение фрагмента;

7е – время жизни пакета (в секундах);

11 – протокол верхнего уровня (UDP);

бе сб – контрольная сумма ір-заголовка;

ас 10 04 0d – IP-адрес источника;

ас 10 64 29 – ІР-адрес назначения;

Заголовок UDP:

00 35 – порт источника;

а1 а7 – порт приемника;

00 34 – длина датаграммы;

00 00 – контрольная сумма;

Данные UDP:

3912 8180 0001 0001 0000 0000 0377 7777 0373 7574 0272 7500 0001 0001 c00c 0001 0001 0000 040d 0004 5bee e65e

Для подсчета контрольной суммы UDP-заголовка, разобью пакет на слова по 16 бит:

Сформирую псевдозаголовок:

AC10	040D
AC10	6429
0011	0034

Тип протокола – 11h, длина сегмента в байтах – 34h.

Просуммирую Заголовок, Данные и Псевдозаголовок:

$$(0035)_{16} + (A1A7)_{16} + (0034)_{16} + (0000)_{16} + (0000)_{16} + (0000)_{16} + (8180)_{16} + (0001)_{16} + (0000)_{16} + (0000)_{16} + (0377)_{16} + (7777)_{16} + (0373)_{16} + (7574)_{16} + (0272)_{16} + (7500)_{16} + (0001)_{16} + (0001)_{16} + (C00C)_{16} + (0001)_{16} + (0001)_{16} + (0000)_{16} + (040D)_{16} + (0004)_{16} + (5BEE)_{16} + (E65E)_{16} + (AC10)_{16} + (040D)_{16} + (AC10)_{16} + (6429)_{16} + (0011)_{16} + (0034)_{16} = (68EF3)_{16}$$
 $\Pi_{\text{Севдозаголовок}}$

Результат сложения превышает 16 разрядов, разобью его на два слова и посчитаю еще раз:

$$(0006)_{16} + (8EF3)_{16} = (8EF9)_{16}$$

Найду контрольную сумму:

$$CS_{UDP} = (FFFF)_{16} - (8EF9)_{16} = (7106)_{16}$$

3) ІСМР-пакет

Рис. 14.14. Формат ІСМР-сообщения

Теперь рассмотрю пакет из задания:

Bap.							Па	кет	ICI	MP							
	0000	е8	de	27	8e	0f	75	74	d0	2b	ae	ес	02	80	00	45	00
	0010	00	54	31	7е	40	00	40	01	f4	86	с0	a 8	01	0f	57	fa
	0020	fa	f2	80	00	00	00	55	7a	00	01	05	d2	еЗ	59	00	00
1	0030	00	00	2a	54	03	00	00	00	00	00	10	11	12	13	14	15
	0040	16	17	18	19	1a	1b	1c	1d	1e	1f	20	21	22	23	24	25
	0050	26	27	28	29	2a	2b	2c	2d	2e	2f	30	31	32	33	34	35
	0060	36	37														

Ethernet-кадр:

e8 de 27 8e 0f 75 – MAC-адрес получателя;

74 d0 2b ae ec 02 - MAC-адрес отправителя;

 $08\ 00$ – код протокола (IP);

С 45 начинается поле данных Ethernet-кадра – заголовок IP-пакета:

4 – номер версии протокола IP (IPv4);

5 – длина заголовка (пять 32-битных слов);

00 – тип сервиса: приоритет пакета (первые три бита) - 0, критерии выбора маршрута (задержка, пропускная способность и надежность) – так же 0;

00 54 – общая длина ІР-пакета;

31 е7 – идентификатор пакета;

40 00 – флаги и смещение фрагмента;

40 – время жизни пакета (в секундах);

01 – протокол верхнего уровня (ІСМР);

f4 86 – контрольная сумма ір-заголовка;

c0 a8 01 0f – IP-адрес источника;

57 fa fa f2 – IP-адрес назначения;

Заголовок ІСМР:

08 – тип сообщения (8 – эхо-запрос)

00 - код (всегда равно 0 для типов «эхо-запрос» и «эхо-ответ»);

00 00 – контрольная сумма;

55 7а – идентификатор запроса;

 $00\ 01$ — порядковый номер;

Данные ІСМР:

05d2 e359 0000 0000 2a54 0300 0000 0000 1011 1213 1415 1617 1819 1a1b 1c1d 1e1f 2021 2223 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 3435 3637

Для подсчета контрольной суммы ICMP-заголовка, разобью пакет на слова по 16 бит:

0800	0000) ICIAD
557A	0001	ј ІСМР-заголовок
05D2	E359	
0000	0000	
2A54	0300	
0000	0000	
1011	1213	
1415	1617	
1819	1A1B	Данные
1C1D	1E1F	Диниве
2021	2223	
2425	2627	
2829	2A2B	
2C2D	2E2F	
3031	3233	
3435	3637])

Просуммирую Заголовок и Данные:

$$(0800)_{16} + (0000)_{16} + (557A)_{16} + (0001)_{16} + \\ + (05D2)_{16} + (E359)_{16} + (0000)_{16} + (0000)_{16} + (2A54)_{16} + (0300)_{16} + (0000)_{16} + \\ + (0000)_{16} + (1011)_{16} + (1213)_{16} + (1415)_{16} + (1617)_{16} + (1819)_{16} + (1A1B)_{16} + \\ + (1C1D)_{16} + (1E1F)_{16} + (2021)_{16} + (2223)_{16} + (2425)_{16} + (2627)_{16} + (2829)_{16} + \\ + (2A2B)_{16} + (2C2D)_{16} + (2E2F)_{16} + (3031)_{16} + (3233)_{16} + (3435)_{16} + (3637) = \\ = (4 1A5A)_{16}$$

Результат сложения превышает 16 разрядов, разобью его на два слова и посчитаю еще раз:

$$(0004)_{16} + (1A5A)_{16} = (1A5E)_{16}$$

Найду контрольную сумму:

$$CS_{ICMP} = (FFFF)_{16} - (1A5E)_{16} = (E5A1)_{16}$$

Перейду к рассмотрению реальных TCP и UDP пакетов.

Сеть:

1. ТСР-пакет

Для подсчета контрольной суммы ТСР-заголовка, разобью пакет на слова по 16 бит:

		0034	4500
		4000	5499
IP-заголовок	>	D216	4006
		000A	0A00
		000B	0A00
		095F	BD2C
		9AD1	3DEE
		AAC5	2884
ТСР-заголовок		01F6	8010
		0000	4253 (0000)
		080A	0101
Полита	<u> </u>	A462	C66F
Данные	\ \text{\rightarrow}	FE70	4287

Псевдозаголовок:

0A00	000A
0A00	000B
0006	0020

$$(BD2C)_{16} + (095F)_{16} + (3DEE)_{16} + (9AD1)_{16} + (2884)_{16} + (AAC5)_{16} +$$
 $+ (8010)_{16} + (01F6)_{16} + (0000)_{16} + (0000)_{16} + (0101)_{16} + (080A)_{16} +$
 $+ (C66F)_{16} + (A462)_{16} + (4287)_{16} + (FE70)_{16} +$
 $+ (0A00)_{16} + (000A)_{16} + (0A00)_{16} + (000B)_{16} + (0006)_{16} + (0020)_{16} = (5 BDA7)_{16}$
 $+ (0A00)_{16} + (000A)_{16} + (0A00)_{16} + (000B)_{16} + (000B)_{$

Результат сложения превышает 16 разрядов, разобью его на два слова и посчитаю еще раз:

$$(0005)_{16} + (BDA7)_{16} = (BDAC)_{16}$$

Найду контрольную сумму:

$$CS_{TCP} = (FFFF)_{16} - (BDAC)_{16} = (4253)_{16}$$

Результат совпадает со значением контрольной суммы.

2. UDP-пакет

Для подсчета контрольной суммы UDP-заголовка, разобью пакет на слова по 16 бит:

Сформирую псевдозаголовок:

0A00	000A
0A00	000B
0011	0028

Результат сложения превышает 16 разрядов, разобью его на два слова и посчитаю еще раз:

$$(0006)_{16} + (3647)_{16} = (364D)_{16}$$

Найду контрольную сумму:

$$CS_{UDP} = (FFFF)_{16} - (364D)_{16} = (C9B2)_{16}$$

Результат совпадает со значением контрольной суммы.

3. ІСМР-пакет

Для подсчета контрольной суммы ICMP-заголовка, разобью пакет на слова по 16 бит:

0303	114B (0000)) ICMB
0000	0000	ј ІСМР-заголовок
4500	003C	
1674	0000	
0211	8E29	Данные
0A00	000A	
0A00	000B	
CD40	829F	

0028	A6A4		
4041	4243		
4445	4647		
4849	4A4B		Данные
4C4D	4E4F		
5051	5253		
5455	5657		
5859	5A5B		
5C5D	5E5F		

Код -03, тип -03: «Адресат недоступен» - «Порт недостижим», поле заголовка между контрольной суммой и данными не используется -0. Данные начинаются с заголовка и первых 8-ми байт поля данных IP-пакета, вызвавшего ошибку.

Просуммирую Заголовок и Данные:

$$(0303)_{16} + (0000)_{16} + (0000)_{16} + (0000)_{16} +$$

$$+(4500)_{16}+(003C)_{16}+(1674)_{16}+(0000)_{16}+(0211)_{16}+(8E29)_{16}+(0A00)_{16}+$$

$$+ (000A)_{16} + (0A00)_{16} + (000B)_{16} + (CD40)_{16} + (829F)_{16} + (0028)_{16} + (A6A4)_{16} + (A6A4)_{16}$$

$$+(4041)_{16}+(4243)_{16}+(4445)_{16}+(4647)_{16}+(4849)_{16}+(4A4B)_{16}+(4C4D)_{16}+$$

$$+(4E4F)_{16}+(5051)_{16}+(5253)_{16}+(5455)_{16}+(5657)_{16}+(5859)_{16}+(5A5B)_{16}+$$

$$+ (5C5D)_{16} + (5E5F)_{16} = (7 EEAD)_{16}$$

Результат сложения превышает 16 разрядов, разобью его на два слова и посчитаю еще раз:

$$(0007)_{16} + (EEAD)_{16} = (EEB4)_{16}$$

Найду контрольную сумму:

$$CS_{ICMP} = (FFFF)_{16} - (EEB4)_{16} = (114B)_{16}$$

Результат совпадает со значением контрольной суммы.