Phase 2

Sebastian Sätzler, Bastian Tilk

Struktur

- Preprocessing
 - Skalierung
 - Outlier Removal
 - Standardisierung
- Modeling
 - Rotwein
 - Weißwein

Skalierung

MinMax Skalierung ausgewählt

- Über alle Features Skala [0;1]
- ...ausgenommen "quality"
- → RobustScaler nicht nötig, da Ausreißer im nächsten Schritt entfernt werden

Rotwein		Rotwein Skaliert	
VIF:		VIF:	
fixed acidity	53.426067	fixed acidity	13.194483
volatile acidity	16.703346	volatile acidity	10.337223
citric acid	9.108963	citric acid	9.103255
residual sugar	4.661322	residual sugar	2.636330
chlorides	6.307859	chlorides	5.241178
free sulfur dioxide	6.356018	free sulfur dioxide	5.742105
total sulfur dioxide	6.301839	total sulfur dioxide	5.284688
density	4003.421361	density	10.645272
pH	85.040860	рН	3.659068
sulphates	21.438226	sulphates	6.286883
magnesium	4.047249	magnesium	4.016390
alcohol	858.229937	alcohol	6.922062
lightness	1079.426466	lightness	18.308691

Outlier Removal

- Isolation Forest
- Local Outlier Factor
- Minimum Covariance Determinant
- One-Class SVM
- Contamination auf 5% gesetzt
 - Anlehnung an Statistik mit 2
 Standardabweichungen
 - Ergebnisse zufriedenstellend genug
- Validierung/Bewertung der Ergebnisse:
 - Beobachtung der Outlier Detection anhand Histogrammen von Features mit starken Outlier
- Objektiv falsche Outlier manuell entfernt
 - o pH von 99.99
 - Qualität von 99 und 17

Die betrachteten Features

Isolation Forest

Generiert Random Forest Decision Tree

Häufig verwendet bei unsupervised learning → vielseitig anwendbar:

- Mit unterschiedlichen Skalenniveaus
- Anzahl der Dimensionen/Features
- Daten müssen nicht skaliert sein

Local Outlier Factor

Density Based System

→ Skalierung des Datensatzes wichtig

Minimum Covariance Determinant

Robust Estimator:
Wahre Zusammenhänge zwischen Features
ausfindig machen

Berechnet die Korrelation, wie sie ohne Einfluss von Outlier wäre

→ wird genutzt um Outlier zu entfernen

Variance Influence Factor

Rotwein Skaliert VIF: fixed acidity 13,194483 volatile acidity 10.337223 citric acid 9.103255 residual sugar 2.636330 chlorides 5.241178 free sulfur dioxide 5.742105 total sulfur dioxide 5.284688 рН 3.659068 SUlpnaces 0.200883 magnesium 4.016390 alcohol 6.922062 lightness 18.308691

Outlier
19.130504
10.933478
9.068865
4.857854
14.750573
6.121432
5.698108
11 472832
21.263061
7.541203
4.001089
14.367848
26.703889

One-Class SVM

Novelty Detection

→ Daten die selten auftauchen/Outlier

Hypersphere wird angelegt

Durch Feature expansion linear separierbar (SVM anwenden)

- sehr aufwendig v.a. mit hochdimensionalen Daten (viele Features) O(n^2)

⇒ Verwendung des Kernel-Trick

- ermöglicht Klassifizierung, ohne dabei im Feature space zu arbeiten

Überblick

Überblick

Weißwein	Kompletter Datensatz 4881	Isolation Forest 4637	Local Outlier Factor 4843	Minimum Covariance Determinant 4636	One-Class SVM 4640
Rotwein	1564	1485	1518	1485	1484

Standardisierung-PowerTransformer

Ziemlich effektiv, um Datensätze zu Standardisieren → Erwartungswert 0, Varianz 1 (Gauss Glockenkurve)

Daten verlieren an lesbarkeit (für den Menschen)...

... Aber das spielt bei der Modellerstellung eine geringere Rolle, solange die Accuracy besser wird

Modellerstellung

Manuelles Preprocessing

Allgemein:

- Datensätze mit Missing Values entfernt
- Noise bei quality und pH-Wert entfernt
- Feature flavanoids entfernt

Bei Rotwein:

- density entfernt

Rotwein Standard Datensatz mit Information Gain Classifier

Rotwein Regressionsmethoden und Datensätze

Rotwein: Accuracy erhöhen

Information Gain Classifier mit Datensatz der durch Isolation Forests von Outlier befreit wurde.

Höchste Genauigkeit mit 9 Features: **60,94**%

- Fixed acidity
- Volatile acidity
- Citric acid
- Chlorides
- Total sulfur dioxide
- Sulphates
- Magnesium
- Alcohol
- lightness

Weißwein

Weißwein Regressionsmethoden und Datensätze

Weißwein Standard Datensatz mit Information Gain Classifier (IGC)

Weißwein Standard Datensatz

Höchste Genauigkeit im IGC von 49,1% mit 8 Features:

- residual sugar
- Chlorides
- free sulfur dioxide
- total sulfur dioxide
- Density
- Magnesium
- Alcohol
- Lightness
- quality

Vgl. Korrelationstabelle aus Phase 1

Pearson Spearman

Korrelation	Weißwein	Rotwein	
stark	residual sugar & density (0.84) alcohol & lightness (-0.86)	alcohol & lightness (-0.95)	
moderat	free sulfur dioxide & total sulfur dioxide (0.62) density & lightness (0.69) density & alcohol (-0.78)	fixed acidity & citric acid (0.67) free sulfur dioxide & total sulfur dioxide (0.67) fixed acidity & pH (-0.71) citric acid & pH (-0.57)	
schwach	total sulfur dioxide & residual sugar (0.4) total sulfur dioxide & density (0.53) total sulfur dioxide & lightness (0.4) residual sugar & lightness (0.42) residual sugar & alcohol (-0.45) total sulfur dioxide & alcohol (-0.45) chlorides & density (0.51) chlorides & lightness (0.5) chlorides & alcohol (-0.57)	density & lightness (0.48) alcohol & quality (0.47) volatile acidity & citric acid (-0.56) density & alcohol (-0.52) lightness & quality (-0.44)	

Weißwein Optimierung (1)

Höchste Genauigkeit von 49,97% (+0,2%) mit 11 Features:

- fixed acidity
- volatile acidity
- citric acid
- residual sugar
- chlorides
- free sulfur dioxide
- total sulfur dioxide
- pH
- sulphates
- magnesium
- alcohol

Weißwein Optimierung (2)

Formatierung von Features mit hoher Varianz/Uniformverteilung:

- total sulfur dioxide
- free sulfur dioxide

Genauigkeit: 49,1 (-0,8%)

Entfernung von Features mit hoher Korrelation:

- lightness
- density
- citric acid
- fixed acidity
- total sulfur dioxide

Genauigkeit: 49,1 (-0,8%)

Ergebnis

- Rotwein 60,9% (Lineare Regression)
- Weißwein 49,9% (Lineare Regression)

Fazit

- Ergebnisse nicht Vorhersehbar
 - Prognosen beim Preprocessing haben sich teilweise nicht bewahrheitet
 - Iteratives/Experimentelles Vorgehen essentiell! → Ausprobieren
- Rotwein liefert ein besseres Modell als Weißwein
 - Bereits in Task 1a ersichtlich:
 - → Rotwein hat korrelierende Features mit dem Qualität-Attribut