Class Activity 5

Your name here

2024-04-02

Problem 1: Changing color and scales

In this problem, you will learn about the effects of changing colors, scales, and shapes in ggplot2 for both gradient and discrete color choices. You will be given a series of questions and examples to enhance your understanding. Consider the following scatter plot

```
# Generate sample data
set.seed(42)
data <- data.frame(
   Category = factor(sample(1:3, 50, replace = TRUE), labels = c("A", "B", "C")),
   X = 10 ^ rnorm(50, mean = 2, sd = 1),
   Y = rnorm(50, mean = 0, sd = 1)
)

p <- ggplot(data, aes(x = X, y = Y, color = Category)) +
   geom_point(size = 3)</pre>
```


a. Modify the scatter plot to use custom colors for each category using scale_color_manual(). What is the effect of changing the colors on the plot's readability?

Answer: Changing colors using scale_color_manual() allows for better distinction between categories and enhances the plot's readability.

```
p <- ggplot(data, aes(x = X, y = Y, color = Category)) +
   geom_point(size = 3) +
   scale_color_manual(values = c("red", "blue", "green"))
p</pre>
```


b. Modify the scatter plot to use custom shapes for each category using scale_shape_manual(). What is the effect of changing the shapes on the plot's readability?

Answer: Changing the shapes using scale_shape_manual() helps to distinguish between categories and improves the plot's readability

```
p <- ggplot(data, aes(x = X, y = Y, shape = Category, color = Category)) +
    geom_point(size = 3) +
    scale_shape_manual(values = c("A" = 16, "B" = 17, "C" = 18)) +
    scale_color_manual(values = c("A" = "red", "B" = "blue", "C" = "green"))
p</pre>
```


c. Try modifying the plot by combining color, shape, and theme customization. Additionally, try using <code>geom_smooth()</code> to add trend lines for each category. Pay attention to how each element affects the overall readability and interpretability of the plot.

```
p <- ggplot(data, aes(x = X, y = Y)) +
    geom_point(aes(color = Category, shape = Category), size = 3) +
    geom_smooth(aes(group = Category, color = Category), method = "lm", se = FALSE) +
    scale_shape_manual(values = c("A" = 19, "B" = 8, "C" = 24)) +
    scale_color_brewer(palette = "Dark2") +
    ggthemes::theme_tufte() +
    labs(title = "Separate Trend Lines for Each Category")</pre>
```

Separate Trend Lines for Each Category

Problem 2: Chloropeth map

In today's class we created cloropleth maps of states in the US based on ACS data.

```
states <- map_data("state")
ACS <- read.csv("https://raw.githubusercontent.com/deepbas/statdatasets/main/ACS.csv")
ACS <- dplyr::filter(ACS, !(region %in% c("Alaska", "Hawaii"))) # only 48+D.C.
ACS$region <- tolower(ACS$region) # lower case (match states regions)</pre>
```

(a) Mapping median income

Create a cloropleth plot that uses color to create a MedianIncome map of the US.

```
# map median income
ggplot(data=ACS) + coord_map() +
  geom_map(aes(map_id = region, fill = MedianIncome), map = states) +
  expand_limits(x=states$long, y=states$lat) + ggtitle("Median Income")
```


(b) Mapping deviations from national median income

The median income in the US in 2016 was estimated to be \$27,000. Redraw your map in (a) to visualize each state's deviation from national median income.

```
# compare state income to national income
ggplot(data=ACS) + coord_map() +
  geom_map(aes(map_id = region, fill = MedianIncome - 27000), map = states) +
  expand_limits(x=states$long, y=states$lat) + ggtitle("Deviation from national median income")
```


(c) Changing numerically scaled color

You should use a *diverging* color for (b) to highlight larger deviations from the national median. Add scale_fill_distiller to the map from (b) and select a diverging palette.

```
# change to a diverging color
ggplot(data=ACS) + coord_map() +
  geom_map(aes(map_id = region, fill = MedianIncome - 27000), map = states) +
  expand_limits(x=states$long, y=states$lat) + ggtitle("Deviation from national median incom
  scale_fill_distiller(type = "div")
```


(d) Fixing a midpoint on a diverging scale

Use scale_fill_gradient2 to fix a midpoint scale value at a white color, with diverging colors for larger positive and negative values. Apply this color to your map in (b) and fix the midpoint at an appropriate value.

```
# change to a gradient fill color
ggplot(data=ACS) + coord_map() +
  geom_map(aes(map_id = region, fill = MedianIncome - 27000), map = states) +
  expand_limits(x=states$long, y=states$lat) + ggtitle("Deviation from national median income scale_fill_gradient2(midpoint = 0)
```


Next, we will use this merged data to create a polygon map that focuses on the boundaries and shapes of each state, colored by median income.

(e) Polygon map

```
# Merge income data with geographic information
income_data <- left_join(states, ACS, by = c("region" = "region"))</pre>
```

For this task, you will create a polygon map to visualize the MedianIncome across different states using the. Pay attention to the shapes and sizes of states as depicted on the map.

```
theme_minimal() +
scale_fill_viridis_c()
```


(f) Visualizing Relative Income Deviation

