GGGGCTTCGGCCCCAGCGCCAGCGCTAGTCGGTCTGGTAAGGATTTACAAAAGGTGCAGGTATG AGCAGGTCTGAAGACTAACATTTTGTGAAGTTGTAAAACAGAAAACCTGTTAGAAAATG TTCAGCAAGGCCTCAGTTTCCTTCCTTCAGCCCTTGTAATTTGGACATCTGCTGCTTTCATATTT TCATACATTACTGCAGTAACACTCCACCATATAGACCCGGCTTTACCTTATATCAGTGACACTGG TACAGTAGCTCCAGAAAAATGCTTATTTGGGGCAATGCTAAATATTGCGGCAGTTTTATGCATTG CTACCATTTATGTTCGTTATAAGCAAGTTCATGCTCTGAGTCCTGAAGAAACGTTATCATCAAA TTAAACAAGGCTGGCCTTGTACTTGGAATACTGAGTTGTTTAGGACTTTCTATTGTGGCAAACTT CCAGAAAACAACCCTTTTTGCTGCACATGTAAGTGGAGCTGTGCTTACCTTTGGTATGGGCTCAT TATATATGTTTGTTCAGACCATCCTTTCCTACCAAATGCAGCCCAAAATCCATGGCAAACAAGTC TTCTGGATCAGACTGTTGTTGGTTATCTGGTGTGGAGTAAGTGCACTTAGCATGCTGACTTGCTC ATCAGTTTTGCACAGTGGCAATTTTGGGACTGATTTAGAACAGAAACTCCATTGGAACCCCGAGG ACAAAGGTTATGTGCTTCACATGATCACTACTGCAGCAGAATGGTCTATGTCATTTTCCTTCTTT GGTTTTTTCCTGACTTACATTCGTGATTTTCAGAAAATTTCTTTACGGGTGGAAGCCAATTTACA GAGATATT<u>TGA</u>TGAAAGGATAAAATATTTCTGTAATGATTATGATTCTCAGGGATTGGGGAAAGG TTCACAGAAGTTGCTTATTCTTCTGAAATTTTCAACCACTTAATCAAGGCTGACAGTAACACT GATGAATGCTGATAATCAGGAAACATGAAAGAAGCCATTTGATAGATTATTCTAAAGGATATCAT ATG

<subunit 1 of 1, 266 aa, 1 stop

<MW: 29766, pI: 8.39, NX(S/T): 0

MWWFQQGLSFLPSALVIWTSAAFIFSYITAVTLHHIDPALPYISDTGTVAPEKCLFGAMLNIAAV LCIATIYVRYKQVHALSPEENVIIKLNKAGLVLGILSCLGLSIVANFQKTTLFAAHVSGAVLTFG MGSLYMFVQTILSYQMQPKIHGKQVFWIRLLLVIWCGVSALSMLTCSSVLHSGNFGTDLEQKLHW NPEDKGYVLHMITTAAEWSMSFSFFGFFLTYIRDFQKISLRVEANLHGLTLYDTAPCPINNERTR LLSRDI

Important features:

Type II transmembrane domain:

amino acids 13-33

Other Transmembrane domains:

amino acids 54-73, 94-113, 160-180, 122-141

N-myristoylation sites.

amino acids 57-63, 95-101, 99-105, 124-130, 183-189

CGGACGCGTGGGCGGACGCGTGGGGGGAGAGCCGCAGTCCCGGCTGCAGCACCTGGGAGAAGGCAGACC GTGTGAGGGGGCCTGTGGCCCCAGCGTGCTGTGGCCTCGGGGAAGTGGAAGTGGAGGCAGGAGCCTTC CTTACACTTCGCC ATG AGTTTCCTCATCGACTCCAGCATCATGATTACCTCCCAGATACTATTTTTTGGATTTGGGTGGCTTTTCTTCATGCGCCAATTGTTTAAAGACTATGAGATACGTCAGTATGTTGTACAG GTGATCTTCTCCGTGACGTTTGCATTTTCTTGCACCATGTTTGAGCTCATCATCTTTGAAATCTTAGG AGTATTGAATAGCAGCTCCCGTTATTTTCACTGGAAAATGAACCTGTGTGAATTCTGCTGATCCTGG TTTTCATGGTGCCTTTTTACATTGGCTATTTTATTGTGAGCAATATCCGACTACTGCATAAACAACGA CTGCTTTTTCCTGTCTCTTATGGCTGACCTTTATGTATTTCTTCTGGAAACTAGGAGATCCCTTTCC CATTCTCAGCCCAAAACATGGGATCTTATCCATAGAACAGCTCATCAGCCGGGTTGGTGATTGGAG TGACTCTCATGGCTCTTCTTTCTGGATTTGGTGCTGTCAACTGCCCATACACTTACATGTCTTACTTC CTCAGGAATGTGACTGACACGGATATTCTAGCCCTGGAACGGCGACTGCTGCAAACCATGGATATGAT CATAAGCAAAAAGAAAAGGATGGCAATGGCACGGAGAACAATGTTCCAGAAGGGGGAAGTGCATAACA AACCATCAGGTTTCTGGGGAATGATAAAAAGTGTTACCACTTCAGCATCAGGAAGTGAAAATCTTACT ATATGCTACCAAGGAGAGAATAGAATACTCCAAAACCTTCAAGGGGAAATATTTTAATTTTCTTGGTT ACTTTTCTCTATTTACTGTGTTTTGGAAAATTTTCATGGCTACCATCAATATTGTTTTTGATCGAGTT GGGAAAACGGATCCTGTCACAAGAGGCATTGAGATCACTGTGAATTATCTGGGAATCCAATTTGATGT TGCTGATCACTCTTACCAAGTTCTTTTATGCCATCTCTAGCAGTAAGTCCTCCAATGTCATTGTCCTG CTATTAGCACAGATAATGGGCATGTACTTTGTCTCCTCTGTGCTGCTGATCCGAATGAGTATGCCTTT AGAATACCGCACCATAATCACTGAAGTCCTTGGAGAACTGCAGTTCAACTTCTATCACCGTTGGTTTG ATGTGATCTTCCTGGTCAGCGCTCTCTCTAGCATACTCTTCCTCTATTTGGCTCACAAACAGGCACCA GAGAAGCAAATGGCACCT**TGA**ACTTAAGCCTACTACAGACTGTTAGAGGCCAGTGGTTTCAAAATTTA ATTTTCACCTTCATAGCATACTCCTTCCCCGTCAGGTGATACTATGACCATGAGTAGCATCAGCCAG AACATGAGAGGGAGAACTAACTCAAGACAATACTCAGCAGAGAGCATCCCGTGTGGATATGAGGCTGG TGTAGAGGCGGAGAGGAGCCAAGAAACTAAAGGTGAAAAATACACTGGAACTCTGGGGCAAGACATGT CTATGGTAGCTGAGCCAAACACGTAGGATTTCCGTTTTAAGGTTCACATGGAAAAGGTTATAGCTTTG ACTCTAGAGTCGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATG

MSFLIDSSIMITSQILFFGFGWLFFMRQLFKDYEIRQYVVQVIFSVTFAFSCTMFELIIFEILGV
LNSSSRYFHWKMNLCVILLILVFMVPFYIGYFIVSNIRLLHKQRLLFSCLLWLTFMYFFWKLGDP
FPILSPKHGILSIEQLISRVGVIGVTLMALLSGFGAVNCPYTYMSYFLRNVTDTDILALERRLLQ
TMDMIISKKKRMAMARRTMFQKGEVHNKPSGFWGMIKSVTTSASGSENLTLIQQEVDALEELSRQ
LFLETADLYATKERIEYSKTFKGKYFNFLGYFFSIYCVWKIFMATINIVFDRVGKTDPVTRGIEI
TVNYLGIQFDVKFWSQHISFILVGIIIVTSIRGLLITLTKFFYAISSSKSSNVIVLLLAQIMGMY
FVSSVLLIRMSMPLEYRTIITEVLGELQFNFYHRWFDVIFLVSALSSILFLYLAHKQAPEKQMAP

Important features:

Signal peptide:

amino acids 1-23

Potential transmembrane domains:

amino acids 37-55, 81-102, 150-168, 288-311, 338-356, 375-398, 425-444

N-glycosylation sites.

amino acids 67-70, 180-183 and 243-246

Eukaryotic cobalamin-binding proteins

amino acids 151-160

AGAACTCTCCATCCGGACTAGTTATTGAGCATCTGCCTCTCATATCACCAGTGGCCATCTGAGGT $\tt GTTTCCCTGGCTCTGAAGGGGTAGGCACG\underline{\textbf{ATG}} \texttt{GCCAGGTGCTTCAGCCTGGTGTTGCTTCTCACT}$ GTCATGCAGAATTATGGGGATCACCCTTGTGAGCAAAAAGGCGAACCAGCAGCTGAATTTCACAG AAGCTAAGGAGGCCTGTAGGCTGCTGGGACTAAGTTTGGCCGGCAAGGACCAAGTTGAAACAGCC TTGAAAGCTAGCTTTGAAACTTGCAGCTATGGCTGGGTTGGAGATGGATTCGTGGTCATCTCTAG GCCGACAGTTTGCAGCCTATTGTTACAACTCATCTGATACTTGGACTAACTCGTGCATTCCAGAA CAGTGACAGTACCTACTCGGTGGCATCCCCTTACTCTACAATACCTGCCCCTACTACTACTCCTC CTGCTCCAGCTTCCACTTCTATTCCACGGAGAAAAAAATTGATTTGTGTCACAGAAGTTTTTATG GAAACTAGCACCATGTCTACAGAAACTGAACCATTTGTTGAAAATAAAGCAGCATTCAAGAATGA CAGCAGAAGGAAATGATCGAAACCAAAGTAGTAAAGGAGGAGAAGGCCAATGATAGCAACCCTAA TGAGGAATCAAAGAAAACTGATAAAAACCCAGAAGAGTCCAAGAGTCCAAGCAAAACTACCGTGC ${\tt GATGCCTGGAAGCTGAAGTT} \underline{{\tt TAG}} {\tt ATGAGACAGAAATGAGGAGACACCTGAGGCTGGTTTCTTT}$ ${\tt CATGCTCCTTACCCTGCCCC} \overline{{\tt AGC}} {\tt TGGGGAAATCAAAAGGGCCCAAAGAACCAAAGAAGAAGTCCA}$ CCCTTGGTTCCTAACTGGAATCAGCTCAGGACTGCCATTGGACTATGGAGTGCACCAAAGAGAAT TTCTAGCCTGGCTATGTCCTAATAATATCCCACTGGGAGAAAGGAGTTTTGCAAAGTGCAAGGAC CTAAAACATCTCATCAGTATCCAGTGGTAAAAAGGCCTCCTGGCTGTCTGAGGCTAGGTGGGTTG AAAGCCAAGGAGTCACTGAGACCAAGGCTTTCTCTACTGATTCCGCAGCTCAGACCCTTTCTTCA GCTCTGAAAGAGAAACACGTATCCCACCTGACATGTCCTTCTGAGCCCGGTAAGAGCAAAAGAAT GGCAGAAAAGTTTAGCCCCTGAAAGCCATGGAGATTCTCATAACTTGAGACCTAATCTCTGTAAA GCTAAAATAAAGAAATAGAACAAGGCTGAGGATACGACAGTACACTGTCAGCAGGGACTGTAAAC CTTACTTTTTCTGGTCTCTACCACTGCTGATATTTTCTCTAGGAAATATACTTTTACAAGTAACA AAAATAAAAACTCTTATAAATTTCTATTTTTATCTGAGTTACAGAAATGATTACTAAGGAAGATT AAGTGCTGTGCAAGGTATTACACTCTGTAATTGAATATTATTCCTCAAAAAATTGCACATAGTAG AACGCTATCTGGGAAGCTATTTTTTTCAGTTTTGATATTTCTAGCTTATCTACTTCCAAACTAAT TTTTATTTTTGCTGAGACTAATCTTATTCATTTTCTCTAATATGGCAACCATTATAACCTTAATT TATTATTAACATACCTAAGAAGTACATTGTTACCTCTATATACCAAAGCACATTTTAAAAAGTGCC ATTAACAAATGTATCACTAGCCCTCCTTTTTCCAACAAGAAGGGACTGAGAGATGCAGAAATATT TGTGACAAAAATTAAAGCATTTAGAAAACTT

MARCFSLVLLLTSIWTTRLLVQGSLRAEELSIQVSCRIMGITLVSKKANQQLNFTEAKEACRLLG LSLAGKDQVETALKASFETCSYGWVGDGFVVISRISPNPKCGKNGVGVLIWKVPVSRQFAAYCYN SSDTWTNSCIPEIITTKDPIFNTQTATQTTEFIVSDSTYSVASPYSTIPAPTTTPPAPASTSIPR RKKLICVTEVFMETSTMSTETEPFVENKAAFKNEAAGFGGVPTALLVLALLFFGAAAGLGFCYVK RYVKAFPFTNKNQQKEMIETKVVKEEKANDSNPNEESKKTDKNPEESKSPSKTTVRCLEAEV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 53-57, 130-134, 289-293

Casein kinase II phosphorylation site.

amino acids 145-149, 214-218

Tyrosine kinase phosphorylation site.

amino acids 79-88

N-myristoylation site.

amino acids 23-29, 65-71, 234-240, 235-239, 249-255, 253-259

GGCCTCCCGGCGGAGCGAGCAGATCCAGTCCGGCCCGCAGCGCAACTCGGTCCAGTCGGGGCGG GCTCTCAGCTACCCGCAGGAGGAGGCCACCCTCAATGAGATGTTCCGCGAGGTTGAGGAACTGAT GGAGGACACGCAGCACAAATTGCGCAGCGCGGTGGAAGAGATGGAGGCAGAAGAAGCTGCTACTA AAGCATCAGAAGTGAACCTGGCAAACTTACCTCCCAGCTATCACAATGAGACCAACACAGAC ACGAAGGTTGGAAATAATACCATCCATGTGCACCGAGAAATTCACAAGATAACCAACAACAGAC TGGACAAATGGTCTTTTCAGAGACAGTTATCACATCTGTGGGAGACGAAGAAGGCAGAAGGACCC ACGAGTGCATCATCGACGAGGACTGTGGGCCCAGCATGTACTGCCAGTTTGCCAGCTTCCAGTAC GCTGTGTGTCTGGGGTCACTGCACCAAAATGGCCACCAGGGGCAGCAATGGGACCATCTGTGACA ACCAGAGGGACTGCCAGCCGGGGCTGTGCTGTGCCTTCCAGAGAGGCCTGCTGTTCCCTGTGTGC ACACCCCTGCCCGTGGAGGGCGAGCTTTGCCATGACCCCGCCAGCCGGCTTCTGGACCTCATCAC CTGGGAGCTAGAGCCTGATGGAGCCTTGGACCGATGCCCTTGTGCCAGTGGCCTCCTCTGCCAGC CCCACAGCCACAGCCTGGTGTATGTGTGCAAGCCGACCTTCGTGGGGAGCCGTGACCAAGATGGG GAGATCCTGCTGCCCAGAGAGGTCCCCGATGAGTATGAAGTTGGCAGCTTCATGGAGGAGGTGCG CCAGGAGCTGGAGGACCTGAGGAGCCTGACTGAAGAGATGGCGCTGGGGGAGCCTGCGGCTG CCGCCGCTGCACTGCTGGGAGGGGAAGAGATTTAGATCTGGACCAGGCTGTGGGTAGATGTGCAA TAGAAATAGCTAATTTATTTCCCCAGGTGTGTGCTTTAGGCGTGGGCTGACCAGGCTTCTTCCTA CATCTTCTTCCCAGTAAGTTTCCCCTCTGGCTTGACAGCATGAGGTGTTGTGCATTTGTTCAGCT GGAGCAGTTTGCCACCCCTGTCCAGATTATTGGCTGCTTTGCCTCTACCAGTTGGCAGACAGCCG TTTGTTCTACATGGCTTTGATAATTGTTTGAGGGGAGGAGATGGAAACAATGTGGAGTCTCCCTC TGATTGGTTTTGGGGAAATGTGGAGAAGAGTGCCCTGCTTTGCAAACATCAACCTGGCAAAAATG CAACAAATGAATTTTCCACGCAGTTCTTTCCATGGGCATAGGTAAGCTGTGCCTTCAGCTGTTGC AGATGAAATGTTCTGTTCACCCTGCATTACATGTGTTTATTCATCCAGCAGTGTTGCTCAGCTCC TACCTCTGTGCCAGGGCAGCATTTTCATATCCAAGATCAATTCCCTCTCTCAGCACAGCCTGGGG AGGGGGTCATTGTTCTCCTCGTCCATCAGGGGATCTCAGAGGCTCAGAGACTGCAAGCTGCTTGCC CAAGTCACACAGCTAGTGAAGACCAGAGCAGTTTCATCTGGTTGTGACTCTAAGCTCAGTGCTCT TTTTCTTGAGGCATGCACATCTGGAATTAAGGTCAAACTAATTCTCACATCCCTCTAAAAGTAAA CTACTGTTAGGAACAGCAGTGTTCTCACAGTGTGGGGCAGCCGTCCTTCTAATGAAGACAATGAT ATTGACACTGTCCCTCTTTGGCAGTTGCATTAGTAACTTTGAAAGGTATATGACTGAGCGTAGCA TACAGGTTAACCTGCAGAAACAGTACTTAGGTAATTGTAGGGCGAGGATTATAAATGAAATTTGC AAAATCACTTAGCAGCAACTGAAGACAATTATCAACCACGTGGAGAAAATCAAACCGAGCAGGGC TGTGTGAAACATGGTTGTAATATGCGACTGCGAACACTGAACTCTACGCCACTCCACAAATGATG TTTTCAGGTGTCATGGACTGTTGCCACCATGTATTCATCCAGAGTTCTTAAAGTTTAAAGTTGCA CATGATTGTATAAGCATGCTTTCTTTGAGTTTTAAATTATGTATAAACATAAGTTGCATTTAGAA

MQRLGATLLCLLLAAAVPTAPAPAPTATSAPVKPGPALSYPQEEATLNEMFREVEELMEDTQHKL RSAVEEMEAEEAAAKASSEVNLANLPPSYHNETNTDTKVGNNTIHVHREIHKITNNQTGQMVFSE TVITSVGDEEGRRSHECIIDEDCGPSMYCQFASFQYTCQPCRGQRMLCTRDSECCGDQLCVWGHC TKMATRGSNGTICDNQRDCQPGLCCAFQRGLLFPVCTPLPVEGELCHDPASRLLDLITWELEPDG ALDRCPCASGLLCQPHSHSLVYVCKPTFVGSRDQDGEILLPREVPDEYEVGSFMEEVRQELEDLE RSLTEEMALGEPAAAAAALLGGEEI

Signal sequence:

amino acids 1-19

N-glycosylation site.

amino acids 96-100, 106-110, 121-125, 204-208

Casein kinase II phosphorylation site.

amino acids 46-50, 67-71, 98-102, 135-139, 206-210, 312-316, 327-331

N-myristoylation site.

amino acids 202-208, 217-223

Amidation site.

amino acids 140-144

GGCCCACCTTGTGAACTCCTCGTGCCCAGGGCTGATGTGCGTCTTCCAGGGCTACTCATCCAAAG GCCTAATCCAACGTTCTGTCTTCAATCTGCAAATCTATGGGGTCCTGGGGCTCTTCTGGACCCTT AACTGGGTACTGGCCCTGGGCCAATGCGTCCTCGCTGGAGCCTTTGCCTCCTTCTACTGGGCCTT CCACAAGCCCCAGGACATCCCTACCTTCCCCTTAATCTCTGCCTTCATCCGCACACTCCGTTACC ACACTGGGTCATTGGCATTTGGAGCCCTCATCCTGACCCTTGTGCAGATAGCCCGGGTCATCTTG GAGTATATTGACCACAAGCTCAGAGGAGTGCAGAACCCTGTAGCCCGCTGCATCATGTGCTGTTT CAAGTGCTGCCTCTGGTGTCTGGAAAAATTTATCAAGTTCCTAAACCGCAATGCATACATCATGA TCGCCATCTACGGGAAGAATTTCTGTGTCTCAGCCAAAAATGCGTTCATGCTACTCATGCGAAAC ATTGTCAGGGTGGTCGTCCTGGACAAAGTCACAGACCTGCTGCTGTTCTTTGGGAAGCTGCTGGT GGTCGGAGGCGTGGGGGTCCTGTCCTTCTTTTTTTCTCCGGTCGCATCCCGGGGCTGGGTAAAG ACTTTAAGAGCCCCCACCTCAACTATTACTGGCTGCCCATCATGACCTCCATCCTGGGGGCCTAT GGAAGACCTGGAGCGGAACAACGGCTCCCTGGACCGGCCCTACTACATGTCCAAGAGCCTTCTAA CCCTGATCCAGGACTGCACCCCACCCCCACCGTCCAGCCATCCAACCTCACTTCGCCTTACAGGT CTCCATTTTGTGGTAAAAAAGGTTTTAGGCCAGGCGCCGTGGCTCACGCCTGTAATCCAACACT TTGAGAGGCTGAGGCGGGCGGATCACCTGAGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGTG AAACCTCCGTCTCTATTAAAAATACAAAAATTAGCCGAGAGTGGTGGCATGCACCTGTCATCCCA GCTACTCGGGAGGCTGAGGCAGAGAATCGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGCCGA AAGATTTTATTAAAGATATTTTGTTAACTC

RTRGRTRGGCEKVPINTSCNPTAHLVNSSCPGLMCVFQGYSSKGLIQRSVFNLQIYGVLGLFWTL
NWVLALGQCVLAGAFASFYWAFHKPQDIPTFPLISAFIRTLRYHTGSLAFGALILTLVQIARVIL
EYIDHKLRGVQNPVARCIMCCFKCCLWCLEKFIKFLNRNAYIMIAIYGKNFCVSAKNAFMLLMRN
IVRVVVLDKVTDLLLFFGKLLVVGGVGVLSFFFFSGRIPGLGKDFKSPHLNYYWLPIMTSILGAY
VIASGFFSVFGMCVDTLFLCFLEDLERNNGSLDRPYYMSKSLLKILGKKNEAPPDNKKRKK

Important features:

Transmembrane domains:

amino acids 57-80 (type II), 110-126, 215-231, 254-274

N-glycosylation sites.

amino acids 16-20, 27-31, 289-293

Hypothetical YBR002c family proteins.

amino acids 276-288

Ammonium transporters proteins.

amino acids 204-231

N-myristoylation sites.

amino acids 60-66, 78-84

Amidation site.

amino acids 306-310

CAGCCGCAACTCCACCGTGAGCCGCCTCATCTTCACGTTCTTCCTCTTCCTGGGGGTGCTGGTGTCCA CATGTGCTTCGCCACGGCGGCCTTCTTCTTCTTCTTTTTCACCCTGCTCATGCTCTGCGTGAGCAGCA GCCGGGACCCCGGGCTGCCATCCAGAATGGGTTTTGGTTCTTTAAGTTCCTGATCCTGGTGGGCCTC ACCGTGGGTGCCTTCTACATCCCTGACGGCTCCTTCACCAACATCTGGTTCTACTTCGGCGTCGTGGG CTCCTTCCTCTTCATCCTCATCCAGCTGGTGCTCCTCATCGACTTTGCGCACTCCTGGAACCAGCGGT GGCTGGGCAAGGCCGAGGAGTGCGATTCCCGTGCCTGGTACGCAGGCCTCTTCTTCTTCACTCTCCTC TTCTACTTGCTGTCGATCGCGGCCGTGGCGCTGATGTTCATGTACTACACTGAGCCCAGCGGCTGCCA CGAGGGCAAGGTCTTCATCAGCCTCAACCTCACCTTCTGTGTCTGCGTGTCCATCGCTGCTGTCCTGC CCAAGGTCCAGGACGCCCAGCCCAACTCGGGTCTGCTGCAGGCCTCGGTCATCACCCTCTACACCATG TTTGTCACCTGGTCAGCCCTATCCAGTATCCCTGAACAGAAATGCAACCCCCATTTGCCAACCCAGCT GGGCAACGAGACAGTTGTGGCAGGCCCCGAGGGCTATGAGACCCAGTGGTGGGATGCCCCGAGCATTG TGGGCCTCATCATCTTCCTCCTGTGCACCCTCTTCATCAGTCTGCGCTCCTCAGACCACCGGCAGGTG AACAGCCTGATGCAGACCGAGGAGTGCCCACCTATGCTAGACGCCACACAGCAGCAGCAGCAGCAGGT GGCAGCCTGTGAGGGCCGGGCCTTTGACAACGAGCAGGACGGCGTCACCTACAGCTACTCCTTCTTCC ACTTCTGCCTGGTGCTGCCTCACTGCACGTCATGATGACGCTCACCAACTGGTACAAGCCCGGTGAG ACCCGGAAGATGATCAGCACGTGGACCGCCGTGTGGGTGAAGATCTGTGCCAGCTGGGCAGGGCTGCT CCTCTACCTGTGGACCCTGGTAGCCCCACTCCTCCTGCGCAACCGCGACTTCAGCTGAGGCAGCCTCA CAGCCTGCCATCTGGTGCCTCCTGCCACCTGGTGCCTCTCGGCTCGGTGACAGCCAACCTGCCCCCTC CCCACACCAATCAGCCAGGCTGAGCCCCCACCCCTGCCCCAGGCTCCAGGACCTGCCCCTGAGCCGGGC CTTCTAGTCGTAGTGCCTTCAGGGTCCGAGGGGCATCAGGCTCCTGCAGAGCCCCATCCCCCGCCAC ACCCACACGGTGGAGCTGCCTCTTCCTTCCCCTCCTCCTGTTGCCCATACTCAGCATCTCGGATGAA AGGGCTCCCTTGTCCTCAGGCTCCACGGGAGCGGGGCTGCTGGAGAGAGCGGGGGAACTCCCACCACAG TGGGGCATCCGGCACTGAAGCCCTGGTGTTCCTGGTCACGTCCCCCAGGGGACCCTGCCCCCTTCCTG

MGACLGACSLLSCASCLCGSAPCILCSCCPASRNSTVSRLIFTFFLFLGVLVSIIMLSPGVESQL
YKLPWVCEEGAGIPTVLQGHIDCGSLLGYRAVYRMCFATAAFFFFFFTLLMLCVSSSRDPRAAIQ
NGFWFFKFLILVGLTVGAFYIPDGSFTNIWFYFGVVGSFLFILIQLVLLIDFAHSWNQRWLGKAE
ECDSRAWYAGLFFFTLLFYLLSIAAVALMFMYYTEPSGCHEGKVFISLNLTFCVCVSIAAVLPKV
QDAQPNSGLLQASVITLYTMFVTWSALSSIPEQKCNPHLPTQLGNETVVAGPEGYETQWWDAPSI
VGLIIFLLCTLFISLRSSDHRQVNSLMQTEECPPMLDATQQQQQQQVAACEGRAFDNEQDGVTYSY
SFFHFCLVLASLHVMMTLTNWYKPGETRKMISTWTAVWVKICASWAGLLLYLWTLVAPLLLRNRD
FS

Signal sequence:

amino acids 1-20

Transmembrane domains:

amino acids 40-58, 101-116, 134-150, 162-178, 206-223, 240-257, 272-283, 324-340, 391-406, 428-444

 ${\tt GGTTGGAAAAAGACTCCTGTAACCCTCCTCCAGG} \underline{{\tt ATG}} {\tt AACCACCTGCCAGAAGACATGGAGAACG}$ CTCTCACCGGGAGCCAGAGCTCCCATGCTTCTCTGCGCAATATCCATTCCATCAACCCCACACAA TTTCTGTTTGTTCACCTTTGACCTCTTATTCGTAACATTACTGTGGATAATAGAGTTAAATG TGAATGGAGGCATTGAGAACACATTAGAGAAGGAGGTGATGCAGTATGACTACTATTCTTCATAT TTTGATATATTTCTTCTGGCAGTTTTTCGATTTAAAGTGTTAATACTTGCATATGCTGTGTGCAG ACTGCGCCATTGGTGGGCAATAGCGTTGACAACGGCAGTGACCAGTGCCTTTTTACTAGCAAAAG CTTGCCTGGATTGAGACGTGGTTCCTGGATTTCAAAGTGTTACCTCAAGAAGCAGAAGAAGAAAAA CAGACTCCTGATAGTTCAGGATGCTTCAGAGAGGGCAGCACTTATACCTGGTGGTCTTTCTGATG GTCAGTTTTATTCCCCTCCTGAATCCGAAGCAGGATCTGAAGAAGCTGAAGAAAAACAGGACAGT GAGAAACCACTTTTAGAACTA**TGA**GTACTACTTTTGTTAAATGTGAAAAACCCTCACAGAAAGTC ATCGAGGCAAAAAGAGGCAGGCAGTGGAGTCTCCCTGTCGACAGTAAAGTTGAAATGGTGACGTC CATATCCATGCACATTTAGTTGCCTGCCTGTGGCTGGTAAGGTAATGTCATGATTCATCCTCTCT TCAGTGAGACTGAGCCTGATGTGTTAACAAATAGGTGAAGAAAGTCTTGTGCTGTATTCCTAATC AAAAGACTTAATATTGAAGTAACACTTTTTTAGTAAGCAAGATACCTTTTTATTTCAATTCAC TCCCTTGTTTTTTAACTCATGCACATGTGCTCTTTGTACAGTTTTAAAAAGTGTAATAAAATCTG ACATGTCAATGTGGCTAGTTTTATTTTTCTTGTTTTGCATTATGTGTATGGCCTGAAGTGTTGGA CTTGCAAAAGGGGAAGAAAGGAATTGCGAATACATGTAAAATGTCACCAGACATTTGTATTATTT TTATCATGAAATCATGTTTTTCTCTGATTGTTCTGAAATGTTCTAAATACTCTTATTTTGAATGC ACAAAATGACTTAAACCATTCATATCATGTTTCCTTTGCGTTCAGCCAATTTCAATTAAAATGAA CTAAATTAAAAA

MNHLPEDMENALTGSQSSHASLRNIHSINPTQLMARIESYEGREKKGISDVRRTFCLFVTFDLLF VTLLWIIELNVNGGIENTLEKEVMQYDYYSSYFDIFLLAVFRFKVLILAYAVCRLRHWWAIALTT AVTSAFLLAKVILSKLFSQGAFGYVLPIISFILAWIETWFLDFKVLPQEAEEENRLLIVQDASER AALIPGGLSDGQFYSPPESEAGSEEAEEKQDSEKPLLEL

Important features of the protein:

Signal peptide:

amino acids 1-20

Transmembrane domains:

amino acids 54-72, 100-118, 130-144, 146-166

N-myristoylation sites.

amino acids 14-20, 78-84, 79-85, 202-208, 217-223

ACTCGAACGCAGTTGCTTCGGGACCCAGGACCCCTCGGGCCCGACCCGCCAGGAAAGACTGAGG ${\tt GGTCCCTCTGCTGCCGCTGCTCCTGCTACTGGCCCTGGGGCCTGGGGTGCAGGGCTGCCCAT}$ AGGCAGCTTTGCCGGCCTGCCGGGCCTGCAGCTCCTGGACCTGTCACAGAACCAGATCGCCAGCC TGCCCAGCGGGGTCTTCCAGCCACTCGCCAACCTCAGCAACCTGGACCTGACGGCCAACAGGCTG CATGAAATCACCAATGAGACCTTCCGTGGCCTGCGGCGCCTCGAGCGCCTCTACCTGGGCAAGAA CCGCATCCGCCACATCCAGCCTGGTGCCTTCGACACGCTCGACCGCCTCCTGGAGCTCAAGCTGC AGGACAACGAGCTGCGGGCACTGCCCCGGCTGCCCCGCCTGCTGCTGCTGCTGGACCTCAGC CACAACAGCCTCCTGGCCCTGGAGCCCGGCATCCTGGACACTGCCAACGTGGAGGCGCTGCGGCT GGCTGGTCTGGGGCTGCAGCAGCTGGACGAGGGGCTCTTCAGCCGCTTGCGCAACCTCCACGACC TGGATGTGTCCGACAACCAGCTGGAGCGAGTGCCACCTGTGATCCGAGGCCTCCGGGGCCTGACG TCTTCCCCCGCCTGCGGCTGCTGGCAGCTGCCCGCAACCCCTTCAACTGCGTGTGCCCCCTGAGC TGGTTTGGCCCCTGGGTGCGCGAGAGCCACGTCACACTGGCCAGCCCTGAGGAGACGCGCTGCCA CTTCCCGCCCAAGAACGCTGGCCGGCTGCTCCTGGAGCTTGACTACGCCGACTTTGGCTGCCCAG CCACCACCACAGCCACAGTGCCCACCACGAGGCCCGTGGTGCGGGAGCCCACAGCCTTGTCT CACTGCCCCACCGACTGTAGGGCCTGTCCCCCAGGCCCCAGGACTGCCCACCGTCCACCTGCCTCA ATGGGGGCACATGCCACCTGGGGACACGGCACCACCTGGCGTGCTTGTGCCCCGAAGGCTTCACG GGCCTGTACTGTGAGAGCCAGATGGGGCAGGGGACACGGCCCAGCCCTACACCAGTCACGCCGAG GCCACCACGGTCCCTGACCCTGGGCATCGAGCCGGTGAGCCCCACCTCCCTGCGCGTGGGGCTGC AGCGCTACCTCCAGGGGAGCTCCGTGCAGCTCAGGAGCCTCCGTCTCACCTATCGCAACCTATCG GCGAGGAGGCCTGCGGGGAGGCCCATACACCCCCAGCCGTCCACTCCAACCACGCCCCAGTCACC CCAGGCCCGAAGGCAACAGAGGGCGGTGGAGAGGCCCTGCCCAGCGGGTCTGAGTGTGAGGTGCC ${\tt ACTCATGGGCTTCCCAGGGCCTGGCCTCCAGTCACCCCTCCACGCAAAGCCCTACATC} \underline{{\tt TAA}}{\tt GCCA}$ GAGAGACAGGGCAGCTGGGGCCGGGCTCTCAGCCAGTGAGATGGCCAGCCCCCTCCTGCTGCC ACACCACGTAAGTTCTCAGTCCCAACCTCGGGGATGTGTGCAGACAGGGCTGTGTGACCACAGCT GGGCCCTGTTCCCTCTGGACCTCGGTCTCCTCATCTGTGAGATGCTGTGGCCCAGCTGACGAGCC CTAACGTCCCCAGAACCGAGTGCCTATGAGGACAGTGTCCGCCCTGCCCTCCGCAACGTGCAGTC CCTGGGCACGGCGGCCCTGCCATGTGCTGGTAACGCATGCCTGGGTCCTGCTGGGCTCTCCCAC TCCAGGCGGACCCTGGGGGCCAGTGAAGGAAGCTCCCGGAAAGAGCAGAGGGAAGAGCGGGTAGGC GGCTGTGTGACTCTAGTCTTGGCCCCAGGAAGCGAAGGAACAAAAGAAACTGGAAAGGAAGATGC TTTAGGAACATGTTTTGCTTTTTTAAAATATATATATTTTATAAGAGATCCTTTCCCATTTATTCT GGGAAGATGTTTTTCAAACTCAGAGACAAGGACTTTGGTTTTTGTAAGACAAACGATGATATGAA GGCCTTTTGTAAGAAAAAATAAAAGATGAAGTGTGAAA

MCSRVPLLLPLLLLALGPGVQGCPSGCQCSQPQTVFCTARQGTTVPRDVPPDTVGLYVFENGIT
MLDAGSFAGLPGLQLLDLSQNQIASLPSGVFQPLANLSNLDLTANRLHEITNETFRGLRRLERLY
LGKNRIRHIQPGAFDTLDRLLELKLQDNELRALPPLRLPRLLLLDLSHNSLLALEPGILDTANVE
ALRLAGLGLQQLDEGLFSRLRNLHDLDVSDNQLERVPPVIRGLRGLTRLRLAGNTRIAQLRPEDL
AGLAALQELDVSNLSLQALPGDLSGLFPRLRLLAAARNPFNCVCPLSWFGPWVRESHVTLASPEE
TRCHFPPKNAGRLLLELDYADFGCPATTTTATVPTTRPVVREPTALSSSLAPTWLSPTAPATEAP
SPPSTAPPTVGPVPQPQDCPPSTCLNGGTCHLGTRHHLACLCPEGFTGLYCESQMGQGTRPSPTP
VTPRPPRSLTLGIEPVSPTSLRVGLQRYLQGSSVQLRSLRLTYRNLSGPDKRLVTLRLPASLAEY
TVTQLRPNATYSVCVMPLGPGRVPEGEEACGEAHTPPAVHSNHAPVTQAREGNLPLLIAPALAAV
LLAALAAVGAAYCVRRGRAMAAAAQDKGQVGPGAGPLELEGVKVPLEPGPKATEGGGEALPSGSE
CEVPLMGFPGPGLQSPLHAKPYI

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 579-599

EGF-like domain cysteine pattern signature.

amino acids 430-442

Leucine zipper pattern.

amino acids 197-219, 269-291

N-glycosylation sites.

amino acids 101-105, 117-121, 273-277, 500-504, 528-532

Tyrosine kinase phosphorylation sites.

amino acids 124-131, 337-345

N-myristoylation sites.

amino acids 23-29, 27-33, 70-76, 142-148, 187-193, 348-354, 594-600, 640-646

GGTCCGGATAGGGCTGACGCTGCTGTGTGCGGTGCTGAGCTTGGCCTCGGCGTCCTCGG ATGAAGAAGGCAGCCAGGATGAATCCTTAGATTCCAAGACTACTTTGACATCAGATGAGTCAGTA AAGGACCATACTACTGCAGGCAGAGTAGTTGCTGGTCAAATATTTCTTGATTCAGAAGAATCTGA ATTAGAATCCTCTATTCAAGAAGAGGAAGACAGCCTCAAGAGCCAAGAGGGGGAAAGTGTCACAG CGGAAACCAGCTTTGACCGCCATTGAAGGCACAGCACATGGGGAGCCCTGCCACTTCCCTTTTCT CTACAACCTATGACTACAAAGCAGATGAAAAGTGGGGCTTTTGTGAAACTGAAGAAGAGGCTGCT AAGAGACGCAGATGCAGGAAGCAGAAATGATGTATCAAACTGGAATGAAAATCCTTAATGGAAG CCAAAGCCCTGGAGAGAGTGTCATATGCTCTTTTATTTGGTGATTACTTGCCACAGAATATCCAG GCAGCGAGAGAGATGTTTGAGAAGCTGACTGAGGAAGGCTCTCCCAAGGGACAGACTGCTCTTGG CTTTCTGTATGCCTCTGGACTTGGTGTTAATTCAAGTCAGGCAAAGGCTCTTGTATATTATACAT $\tt TTGGAGCTCTTGGGGGCAATCTAATAGCCCACATGGTTTTGGTAAGTAGACTT\underline{TAG} \tt TGGAAGGCT$ AATAATATTAACATCAGAAGAATTTGTGGTTTATAGCGGCCACAACTTTTTCAGCTTTCATGATC AACACATGGAATCTACATGTAAATGAAAGTTGGTGGAGTCCACAATTTTTCTTTAAAATGATTAG TTTGGCTGATTGCCCCTAAAAAGAGAGATCTGATAAATGGCTCTTTTTAAATTTTCTCTGAGTTG GAATTGTCAGAATCATTTTTTACATTAGATTATCATAATTTTTAAAAATTTTTCTTTAGTTTTTCA AAATTTTGTAAATGGTGGCTATAGAAAAACAACATGAAATATTATACAATATTTTGCAACAATGC CCTAAGAATTGTTAAAATTCATGGAGTTATTTGTGCAGAATGACTCCAGAGAGCTCTACTTTCTG TTTTTTACTTTTCATGATTGGCTGTCTTCCCATTTATTCTGGTCATTTATTGCTAGTGACACTGT GCCTGCTTCCAGTAGTCTCATTTTCCCTATTTTGCTAATTTGTTACTTTTTCTTTGCTAATTTGG

MRVRIGLTLLLCAVLLSLASASSDEEGSQDESLDSKTTLTSDESVKDHTTAGRVVAGQIFLDSEESEL ESSIQEEEDSLKSQEGESVTEDISFLESPNPENKDYEEPKKVRKPALTAIEGTAHGEPCHFPFLFLDK EYDECTSDGREDGRLWCATTYDYKADEKWGFCETEEEAAKRRQMQEAEMMYQTGMKILNGSNKKSQKR EAYRYLQKAASMNHTKALERVSYALLFGDYLPQNIQAAREMFEKLTEEGSPKGQTALGFLYASGLGVN SSQAKALVYYTFGALGGNLIAHMVLVSRL

Important features:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 195-199, 217-221, 272-276

Tyrosine kinase phosphorylation site.

amino acids 220-228

N-myristoylation sites.

amino acids 120-126, 253-259, 268-274, 270-274, 285-291, 289-295

Glycosaminoglycan attachment site.

amino acids 267-271

Microbodies C-terminal targeting signal.

amino acids 299-303

Type II fibronectin collagen-binding domain protein.

amino acids 127-169

Fructose-bisphosphate aldolase class-II protein.

amino acids 101-119

AATTCAGATTTTAAGCCCATTCTGCAGTGGAATTTCATGAACTAGCAAGAGGACACCATCTTCTT CCTCCTAATCCTCTGTGGTTTTCTGTGGACTCGTAAAGGAAAACTAAAGATTGAAGACATCACTG ATAAGTACATTTTTATCACTGGATGTGACTCGGGCTTTGGAAACTTGGCAGCCAGAACTTTTGAT AAAAAGGGATTTCATGTAATCGCTGCCTGTCTGACTGAATCAGGATCAACAGCTTTAAAGGCAGA CCCAGTGGGTGAAGAACCAAGTTGGGGAGAAAGGTCTCTGGGGTCTGATCAATAATGCTGGTGTT CCTGTTTGGACTCATCAGTGTGACACTAAATATGCTTCCTTTGGTCAAGAAAGCTCAAGGGAGAG TATGCAGTGGAAGGTTTCAATGACAGCTTAAGACGGGACATGAAAGCTTTTGGTGTGCACGTCTC TCGCCATTTGGGAGCAGCTGTCTCCAGACATCAAACAACAATATGGAGAAGGTTACATTGAAAAA AGTCTAGACAAACTGAAAGGCAATAAATCCTATGTGAACATGGACCTCTCTCCGGTGGTAGAGTG CATGGACCACGCTCTAACAAGTCTCTTCCCTAAGACTCATTATGCCGCTGGAAAAGATGCCAAAA TTTTCTGGATACCTCTGTCTCACATGCCAGCAGCTTTGCAAGACTTTTTATTGTTGAAACAGAAA GCAGAGCTGGCTAATCCCAAGGCAGTG**TGA**CTCAGCTAACCACAAATGTCTCCTCCAGGCTATGA AATTGGCCGATTTCAAGAACACATCTCCTTTTCAACCCCATTCCTTATCTGCTCCAACCTGGACT CATTTAGATCGTGCTTATTTGGATTGCAAAAGGGAGTCCCACCATCGCTGGTGGTATCCCAGGGT CCCTGCTCAAGTTTTCTTTGAAAAGGAGGGCTGGAATGGTACATCACATAGGCAAGTCCTGCCCT GTATTTAGGCTTTGCCTGCTTGGTGTGATGTAAGGGAAATTGAAAGACTTGCCCATTCAAAATGA TCTTTACCGTGGCCTGCCCATGCTTATGGTCCCCAGCATTTACAGTAACTTGTGAATGTTAAGT AAAAAAAAAAA

MLFWVLGLLILCGFLWTRKGKLKIEDITDKYIFITGCDSGFGNLAARTFDKKGFHVIAACLTESG STALKAETSERLRTVLLDVTDPENVKRTAQWVKNQVGEKGLWGLINNAGVPGVLAPTDWLTLEDY REPIEVNLFGLISVTLNMLPLVKKAQGRVINVSSVGGRLAIVGGGYTPSKYAVEGFNDSLRRDMK AFGVHVSCIEPGLFKTNLADPVKVIEKKLAIWEQLSPDIKQQYGEGYIEKSLDKLKGNKSYVNMD LSPVVECMDHALTSLFPKTHYAAGKDAKIFWIPLSHMPAALQDFLLLKQKAELANPKAV

Important features of the protein:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 136-152

N-glycosylation sites.

amino acids 161-163, 187-190 and 253-256

Glycosaminoglycan attachment site.

amino acids 39-42

N-myristoylation sites.

amino acids 36-41, 42-47, 108-113, 166-171, 198-203 and 207-212

CACTCGCTTTCCAGCACCTCAACACGGACTCGGACACGGAAGGTTTTCTTCTTGGGGAAGTAAAA GGTGAAGCCAAGAACAGCATTACTGATTCCCAAATGGATGATGTTGAAGTTGTTTATACAATTGA CATTCAGAAATATATTCCATGCTATCAGCTTTTTAGCTTTTATAATTCTTCAGGCGAAGTAAATG AGCAAGCACTGAAGAAAATATTATCAAATGTCAAAAAGAATGTGGTAGGTTGGTACAAATTCCGT CGTCATTCAGATCAGATCATGACGTTTAGAGAGAGGCTGCTTCACAAAAACTTGCAGGAGCATTT TTCAAACCAAGACCTTGTTTTTCTGCTATTAACACCAAGTATAATAACAGAAAGCTGCTCTACTC ATCGACTGGAACATTCCTTATATAAACCTCAAAAAGGACTTTTTCACAGGGTACCTTTAGTGGTT GCCAATCTGGGCATGTCTGAACAACTGGGTTATAAAACTGTATCAGGTTCCTGTATGTCCACTGG TTTTAGCCGAGCAGTACAAACACACAGCTCTAAATTTTTTTGAAGAAGATGGATCCTTAAAGGAGG TACATAAGATAAATGAAATGTATGCTTCATTACAAGAGGAATTAAAGAGTATATGCAAAAAAGTG GAAGACAGTGAACAAGCAGTAGATAAACTAGTAAAGGATGTAAACAGATTAAAACGAGAAATTGA GAAAAGGAGAGGAGCACAGATTCAGGCAGCAAGAGAGAAGAACATCCAAAAAGACCCTCAGGAGA ATGTCTTTAAAAAATAGACATGTTTCTAAAAGTAGCTGTAACTACAACCACCATCTCGATGTAGT AGACAATCTGACCTTAATGGTAGAACACACTGACATTCCTGAAGCTAGTCCAGCTAGTACACCAC AAATCATTAAGCATAAAGCCTTAGACTTAGATGACAGATGGCAATTCAAGAGATCTCGGTTGTTA GATACACAAGACAAACGATCTAAAGCAAATACTGGTAGTAGTAACCAAGATAAAGCATCCAAAAT GAGCAGCCCAGAAACAGATGAAGAAATTGAAAAGATGAAGGGTTTTGGTGAATATTCACGGTCTC ATTTCTATTGTTTTACTATGTTGAGCTACTTGCAGTAAGTTCATTTGTTTTTACTATGTTCACC TGTTTGCAGTAATACACAGATAACTCTTAGTGCATTTACTTCACAAAGTACTTTTTCAAACATCA GATGCTTTTATTTCCAAACCTTTTTTTCACCTTTCACTAAGTTGTTGAGGGGAAGGCTTACACAG ACACATTCTTTAGAATTGGAAAAGTGAGACCAGGCACAGTGGCTCACACCTGTAATCCCAGCACT TAGGGAAGACAAGTCAGGAGGATTGATTGAAGCTAGGAGTTAGAGACCAGCCTGGGCAACGTATT GAGACCATGTCTATTAAAAAATAAAATGGAAAAGCAAGAATAGCCTTATTTTCAAAATATGGAAA GAAATTTATATGAAAATTTATCTGAGTCATTAAAATTCTCCTTAAGTGATACTTTTTTAGAAGTA CATTATGGCTAGAGTTGCCAGATAAAATGCTGGATATCATGCAATAAATTTGCAAAACATCATCT

MEGESTSAVLSGFVLGALAFQHLNTDSDTEGFLLGEVKGEAKNSITDSQMDDVEVVYTIDIQKYI
PCYQLFSFYNSSGEVNEQALKKILSNVKKNVVGWYKFRRHSDQIMTFRERLLHKNLQEHFSNQDL
VFLLLTPSIITESCSTHRLEHSLYKPQKGLFHRVPLVVANLGMSEQLGYKTVSGSCMSTGFSRAV
QTHSSKFFEEDGSLKEVHKINEMYASLQEELKSICKKVEDSEQAVDKLVKDVNRLKREIEKRRGA
QIQAAREKNIQKDPQENIFLCQALRTFFPNSEFLHSCVMSLKNRHVSKSSCNYNHHLDVVDNLTL
MVEHTDIPEASPASTPQIIKHKALDLDDRWQFKRSRLLDTQDKRSKANTGSSNQDKASKMSSPET
DEEIEKMKGFGEYSRSPTF

Important features:

Signal peptide:

amino acids 1-19

N-glycosylation sites.

amino acids 75-79, 322-326

N-myristoylation site.

amino acids 184-154

Growth factor and cytokines receptors family.

amino acids 134-150

GCAGCGCGCAGCGAACGCCCGCCGCCCACACCCTCTGCGGTCCCCGCGGGCGCCTGCCACCCTTCCCTTCCCCC GCGTCCCCGCCTCGCCGGCCAGTCAGCTTGCCGGGTTCGCTGCCCCGCGAAACCCCGAGGTCACCAGCCCGCGCCTCT GCTTCCCTGGGCCGCGCGCCCCCCCCCCCCCCTCCTTCTCCCCTGGCCCGGCGCCTGGCACCGGGGACCGTTGCCTGA CGCGAGGCCCAGCTCTACTTTTCGCCCCGCGTCTCCTCCGCCTGCTCGCCTCTTCCACCAACTCCAACTCCTTCTCCC TCCAGCTCCACTCGCTAGTCCCCGACTCCGCCAGCCCTCGGCCCGCTGCCGTAGCGCCGCTTCCCGTCCGGTCCCAAA ${\tt GGTGGGAACGCGTCCGCCCCGGCCCGCACCATGGCACGGTTCGGCTTGCCCGCGCTTCTCTGCACCCTGGCAGTGCTC}$ AGCGCCGCGCTGCTGGCTGCCGAGCTCAAGTCGAAAAGTTGCTCGGAAGTGCGACGTCTTTACGTGTCCAAAGGCTTC AACAAGAACGATGCCCCCCCCCACGAGATCAACGGTGATCATTTGAAGATCTGTCCCCAGGGTTCTACCTGCTGCTCT CAAGAGATGGAGGAGAAGTACAGCCTGCAAAGTAAAGATGATTTCAAAAGTGTGGTCAGCGAACAGTGCAATCATTTG CAAGCTGTCTTTGCTTCACGTTACAAGAAGTTTGATGAATTCTTCAAAGAACTACTTGAAAAATGCAGAGAAATCCCTG AATGATATGTTTGTGAAGACATATGGCCATTTATACATGCAAAATTCTGAGCTATTTAAAGATCTCTTCGTAGAGTTG AAACGTTACTACGTGGGGAAATGTGAACCTGGAAGAAATGCTAAATGACTTCTGGGCTCGCCTCCTGGAGCGGATG TTCCGCCTGGTGAACTCCCAGTACCACTTTACAGATGAGTATCTGGAATGTGTGAGCAAGTATACGGAGCAGCTGAAG TTAGCGGTTGCGGGAGATGTCGTGAGCAAGGTCTCCGTGGTAAACCCCACAGCCCAGTGTACCCATGCCCTGTTGAAG ATGATCTACTGCTCCCACTGCCGGGGTCTCGTGACTGTGAAGCCATGTTACAACTACTGCTCAAACATCATGAGAGGC TGTTTGGCCAACCAAGGGGATCTCGATTTTGAATGGAACAATTTCATAGATGCTATGCTGATGGTGGCAGAGAGGCTA GAGGGTCCTTTCAACATTGAATCGGTCATGGATCCCATCGATGTGAAGATTTCTGATGCTATTATGAACATGCAGGAT AATAGTGTTCAAGTGTCTCAGAAGGTTTTCCAGGGATGTGGACCCCCCAAGCCCCTCCCAGCTGGACGAATTTCTCGT TCCATCTCTGAAAGTGCCTTCAGTGCTCGCTTCAGACCACATCACCCCGAGGAACGCCCCAACCACCAGCAGCTGGCACT AGTTTGGACCGACTGGTTACTGATGTCAAGGAGAAACTGAAACAGGCCAAGAAATTCTGGTCCTCCCTTCCGAGCAAC GTTTGCAACGATGAGGAGGATGCTGCAGGAAACGGCAATGAGGATGACTGTTGGAATGGGAAAGGCAAAAGCAGGTAC CTGTTTGCAGTGACAGGAAATGGATTAGCCAACCAGGGCAACAACCCAGAGGTCCAGGTTGACACCAGCAAACCAGAC ATACTGATCCTTCGTCAAATCATGGCTCTTCGAGTGATGACCAGCAAGATGAAGAATGCATACAATGGGAACGACGTG AAAAAGTGTTCATCAAAAAGTTAAAAGGCACCAGTTATCACTTTTCTACCATCCTAGTGACTTTGCTTTTTAAATGAA TGGACAACAATGTACAGTTTTTACTATGTGGCCACTGGTTTAAGAAGTGCTGACTTTGTTTTCTCATTCAGTTTTGGG AGGAAAAGGGACTGTGCATTGAGTTGGTTCCTGCTCCCCCAAACCATGTTAAACGTGGCTAACAGTGTAGGTACAGAA TTTTTTTCCAACTGTGATCTCGCCTTGTTTCTTACAAGCAAACCAGGGTCCCTTCTTGGCACGTAACATGTACGTATT

MARFGLPALLCTLAVLSAALLAAELKSKSCSEVRRLYVSKGFNKNDAPLHEINGDHLKICPQGST
CCSQEMEEKYSLQSKDDFKSVVSEQCNHLQAVFASRYKKFDEFFKELLENAEKSLNDMFVKTYGH
LYMQNSELFKDLFVELKRYYVVGNVNLEEMLNDFWARLLERMFRLVNSQYHFTDEYLECVSKYTE
QLKPFGDVPRKLKLQVTRAFVAARTFAQGLAVAGDVVSKVSVVNPTAQCTHALLKMIYCSHCRGL
VTVKPCYNYCSNIMRGCLANQGDLDFEWNNFIDAMLMVAERLEGPFNIESVMDPIDVKISDAIMN
MQDNSVQVSQKVFQGCGPPKPLPAGRISRSISESAFSARFRPHHPEERPTTAAGTSLDRLVTDVK
EKLKQAKKFWSSLPSNVCNDERMAAGNGNEDDCWNGKGKSRYLFAVTGNGLANQGNNPEVQVDTS
KPDILILRQIMALRVMTSKMKNAYNGNDVDFFDISDESSGEGSGSGCEYQQCPSEFDYNATDHAG
KSANEKADSAGVRPGAQAYLLTVFCILFLVMQREWR

Important features:

Signal peptide:

amino acids 1-22

ATP/GTP-binding site motif A (P-loop).

amino acids 515-524

N-glycosylation site.

amino acids 514-518

Glycosaminoglycan attachment sites.

amino acids 494-498, 498-502

N-myristoylation sites.

amino acids 63-69, 224-230, 276-282, 438-444, 497-503, 531-537

Glypicans proteins.

amino acids 54-75, 105-157, 238-280, 309-346, 423-460, 468-506

 ${\tt MKVLISSLLLLPLMLMSMVSSSLNPGVARGHRDRGQASRRWLQEGGQECECKDWFLRAPRRKFM} \\ {\tt TVSGLPKKQCPCDHFKGNVKKTRHQRHHRKPNKHSRACQQFLKQCQLRSFALPL} \\$

Important features:

Signal peptide:

amino acids 1-22

N-myristoylation sites.

amino acids 27-33, 46-52

GGACGCCAGCGCCTGCAGAGGCTGAGCAGGGAAAAAGCCCAGTGCCCCAGCGGAAGCACAGCTCAG CCTGCACCTCATGGCTCTGCTGGGCTGCTGGCAGCCCCTGTGCAAAAGCTACTTCCCCTACCTGA TGGCCGTGCTGACTCCCAAGAGCAACCGCAAGATGGAGAGCAAGAAACGGGAGCTCTTCAGCCAG ATAAAGGGGCTTACAGGAGCCTCCGGGAAAGTGGCCCTACTGGAGCTGGGCTGCGGAACCGGAGC CAACTTTCAGTTCTACCCACCGGGCTGCAGGGTCACCTGCCTAGACCCAAATCCCCACTTTGAGA AGTTCCTGACAAAGAGCATGGCTGAGAACAGGCACCTCCAATATGAGCGGTTTGTGGTGGCTCCT GGAGAGGACATGAGACAGCTGGCTGATGGCTCCATGGATGTGGTGGTCTGCACTCTGGTGCTGTG CTCTGTGCAGAGCCCAAGGAAGGTCCTGCAGGAGGTCCGGAGAGTACTGAGACCGGGAGGTGTGC TCTTTTTCTGGGAGCATGTGGCAGAACCATATGGAAGCTGGGCCTTCATGTGGCAGCAAGTTTTC GAGCCCACCTGGAAACACATTGGGGATGGCTGCTGCCTCACCAGAGAGACCTGGAAGGATCTTGA GGCCCCACATCATGGGAAAGGCTGTCAAACAATCTTTCCCAAGCTCCAAGGCACTCATTTGCTCC **G**CAGAATGAGAGACATTCATGTACCACCTACTAGTCCCTCTCTCCCCAACCTCTGCCAGGGC AATCTCTAACTTCAATCCCGCCTTCGACAGTGAAAAAGCTCTACTTCTACGCTGACCCAGGGAGG AAACACTAGGACCCTGTTGTATCCTCAACTGCAAGTTTCTGGACTAGTCTCCCAACGTTTGCCTC CCAATGTTGTCCCTTTCCTTCGTTCCCATGGTAAAGCTCCTCTCGCTTTCCTCCTGAGGCTACAC CCATGCGTCTCTAGGAACTGGTCACAAAAGTCATGGTGCCTGCATCCCTGCCAAGCCCCCCTGAC CCTCTCTCCCCACTACCACCTTCTTCCTGAGCTGGGGGCACCAGGGAGAATCAGAGATGCTGGGG ACCACG

MDILVPLLQLLVLLTLPLHLMALLGCWQPLCKSYFPYLMAVLTPKSNRKMESKKRELFSQIKGL TGASGKVALLELGCGTGANFQFYPPGCRVTCLDPNPHFEKFLTKSMAENRHLQYERFVVAPGEDM RQLADGSMDVVVCTLVLCSVQSPRKVLQEVRRVLRPGGVLFFWEHVAEPYGSWAFMWQQVFEPTW KHIGDGCCLTRETWKDLENAQFSEIQMERQPPPLKWLPVGPHIMGKAVKQSFPSSKALICSFPSL OLEOATHOPIYLPLRGT

Important features:

Signal peptide:

amino acids 1-23

Leucine zipper pattern.

amino acids 10-32

N-myristoylation sites.

amino acids 64-70, 78-84, 80-86, 91-97, 201-207

 $\verb|MLLLTLLLLLLLKGSCLEWGLVGAQKVSSATDAPIRDWAFFPPSFLCLLPHRPAMTCSQAQPRG|\\ EGEKVGDG$

Important features:

Signal peptide:

amino acids 1-15

Growth factor and cytokines receptors family:

amino acids 3-18

GTTTGAATTCCTTCAACTATACCCACAGTCCAAAAGCAGACTCACTGTGTCCCAGGCTACCAGTT CCTCCAAGCAAGTCATTTCCCTTATTTAACCGATGTGTCCCTCAAACACCTGAGTGCTACTCCCT ATTTGCATCTGTTTTGATAAATGATGTTGACACCCTCCACCGAATTCTAAGTGGAATCATGTCGG GAAGAGATACAATCCTTGGCCTGTGTATCCTCGCATTAGCCTTGTCTTTGGCCATGATGTTTACC TTCAGATTCATCACCACCCTTCTGGTTCACATTTTCATTTCATTTGGTTATTTTGGGATTGTTGTT TGTCTGCGGTGTTTTATGGTGGCTGTATTATGACTATACCAACGACCTCAGCATAGAATTGGACA CAGAAAGGGAAAATATGAAGTGCGTGCTGGGGTTTGCTATCGTATCCACAGGCATCACGGCAGTG CTGCTCGTCTTGATTTTTGTTCTCAGAAAGAGAATAAAATTGACAGTTGAGCTTTTCCAAATCAC AAATAAAGCCATCAGCAGTGCTCCCTTCCTGCTGTTCCAGCCACTGTGGACATTTGCCATCCTCA TTTTCTTCTGGGTCCTCTGGGTGGCTGTGCTGCTGAGCCTGGGAACTGCAGGAGCTGCCCAGGTT ATGGAAGGCGGCCAAGTGGAATATAAGCCCCTTTCGGGCATTCGGTACATGTGGTCGTACCATTT AATTGGCCTCATCTGGACTAGTGAATTCATCCTTGCGTGCCAGCAAATGACTATAGCTGGGGCAG TGGTTACTTGTTATTTCAACAGAAGTAAAAATGATCCTCCTGATCATCCCATCCTTTCGTCTCTC TCCATTCTCTTCTTCTACCATCAAGGAACCGTTGTGAAAGGGTCATTTTTAATCTCTGTGGTGAG GATTCCGAGAATCATTGTCATGTACATGCAAAACGCACTGAAAGAACAGCAGCATGGTGCATTGT CCAGGTACCTGTTCCGATGCTGCTACTGCTGTTTCTGGTGTCTTGACAAATACCTGCTCCATCTC AACCAGAATGCATATACTACAACTGCTATTAATGGGACAGATTTCTGTACATCAGCAAAAGATGC ATTCAAAATCTTGTCCAAGAACTCAAGTCACTTTACATCTATTAACTGCTTTGGAGACTTCATAA TTTTTCTAGGAAAGGTGTTAGTGGTGTTTTCACTGTTTTTTGGAGGACTCATGGCTTTTAACTAC CCATAGTTTTTTATCTGTGTTTGAAACTGTGCTGGATGCACTTTTCCTGTGTTTTGCTGTTGATC TGGAAACAAATGATGGATCGTCAGAAAAGCCCTACTTTATGGATCAAGAATTTCTGAGTTTCGTA AAAAGGAGCAACAAATTAAACAATGCAAGGGCACAGCAGGACAAGCACTCATTAAGGAATGAGGA GGGAACAGAACTCCAGGCCATTGTGAGA**TAG**ATACCCATTTAGGTATCTGTACCTGGAAAACATT TCCTTCTAAGAGCCATTTACAGAATAGAAGATGAGACCACTAGAGAAAAGTTAGTGAATTTTTTT TTAAAAGACCTAATAAACCCTATTCTTCCTCAAAA

MSGRDTILGLCILALALSLAMMFTFRFITTLLVHIFISLVILGLLFVCGVLWWLYYDYTNDLSIE
LDTERENMKCVLGFAIVSTGITAVLLVLIFVLRKRIKLTVELFQITNKAISSAPFLLFQPLWTFA
ILIFFWVLWVAVLLSLGTAGAAQVMEGGQVEYKPLSGIRYMWSYHLIGLIWTSEFILACQQMTIA
GAVVTCYFNRSKNDPPDHPILSSLSILFFYHQGTVVKGSFLISVVRIPRIIVMYMQNALKEQQHG
ALSRYLFRCCYCCFWCLDKYLLHLNQNAYTTTAINGTDFCTSAKDAFKILSKNSSHFTSINCFGD
FIIFLGKVLVVCFTVFGGLMAFNYNRAFQVWAVPLLLVAFFAYLVAHSFLSVFETVLDALFLCFA
VDLETNDGSSEKPYFMDQEFLSFVKRSNKLNNARAQQDKHSLRNEEGTELQAIVR

Important features:

Signal peptide:

amino acids 1-20

Putative transmembrane domains:

amino acids 35-54, 75-97, 126-146, 185-204, 333-350, 352-371

N-glycosylation sites.

amino acids 204-208, 295-299, 313-317

N-myristoylation sites.

amino acids 147-153, 178-184, 196-202, 296-275, 342-348

GTTCGATTAGCTCCTCTGAGAAGAAGAAAAGGTTCTTGGACCTCTCCCTGTTTCTTCCTTAGA GAAAATTTTTTGAAAAAAAATTGCCTTCTTCAAACAAGGGTGTCATTCTGATATTT**ATG**AGGAC TGTTGTTCTCACTATGAAGGCATCTGTTATTGAAATGTTCCTTGTTTTTGCTGGTGACTGGAGTAC ATTCAAACAAGAAACGGCAAAGAAGATTAAAAGGCCCAAGTTCACTGTGCCTCAGATCAACTGC GATGTCAAAGCCGGAAAGATCATCGATCCTGAGTTCATTGTGAAATGTCCAGCAGGATGCCAAGA TACACAGTGGTGTGCTTGATAATTCAGGAGGGAAAATACTTGTTCGGAAGGTTGCTGGACAGTCT GGTTACAAAGGGAGTTATTCCAACGGTGTCCAATCGTTATCCCTACCACGATGGAGAGAATCCTT TATCGTCTTAGAAAGTAAACCCAAAAAGGGTGTAACCTACCCATCAGCTCTTACATACTCATCAT CGAAAAGTCCAGCTGCCCAAGCAGGTGAGACCACAAAAGCCTATCAGAGGCCACCTATTCCAGGG ACAACTGCACAGCCGGTCACTCTGATGCAGCTTCTGGCTGTCACTGTAGCTGTGGCCACCCCCAC CACCTTGCCAAGGCCATCCCCTTCTGCTGCTTCTACCACCAGCATCCCCAGACCACAATCAGTGG GCCACAGGAGCCAGGAGATGGATCTCTGGTCCACTGCCACCTACACAAGCAGCCAAAACAGGCCC AGAGCTGATCCAGGTATCCAAAGGCAAGATCCTTCAGGAGCTGCCTTCCAGAAACCTGTTGGAGC GGATGTCAGCCTGGGACTTGTTCCAAAAGAAGAATTGAGCACACAGTCTTTGGAGCCAGTATCCC TGGGAGATCCAAACTGCAAAATTGACTTGTCGTTTTTAATTGATGGGAGCACCAGCATTGGCAAA CGGTCCACTGATGGGTGTTGTCCAGTATGGAGACAACCCTGCTACTCACTTTAACCTCAAGACAC GTAGGTCGGGCCATCTCCTTTGTGACCAAGAACTTCTTTTCCAAAGCCAATGGAAACAGAAGCGG GGCTCCCAATGTGGTGGTGATGGTGGATGGCTGGCCCACGGACAAAGTGGAGGAGGCTTCAA GACTTGCGAGAGTCAGGAATCAACATTTTCTTCATCACCATTGAAGGTGCTGCTGAAAATGAG AAGCAGTATGTGGTGGAGCCCAACTTTGCAAACAAGGCCGTGTGCAGAACAAACGGCTTCTACTC GCTCCACGTGCAGAGCTGGTTTGGCCTCCACAAGACCCTGCAGCCTCTGGTGAAGCGGGTCTGCG ACACTGACCGCCTGCCCTGCAGCAAGACCTGCTTGAACTCGGCTGACATTGGCTTCGTCATCGAC GGCTCCAGCAGTGTGGGGACGGCCAACTTCCGCACCGTCCTCCAGTTTGTGACCAACCTCACCAA AGAGTTTGAGATTTCCGACACGGACACGCGCATCGGGGCCGTGCAGTACACCTACGAACAGCGGC TACTGGAGTGGTGGCACCAGCACGGGGGCTGCCATCAACTTCGCCCTGGAGCAGCTCTTCAAGAA GTCCAAGCCCAACAGAGGAAGTTAATGATCCTCATCACCGACGGAGGTCCTACGACGACGTCC GGATCCCAGCCATGGCTGCCCATCTGAAGGGAGTGATCACCTATGCGATAGGCGTTGCCTGGGCT GCCCAAGAGGAGCTAGAAGTCATTGCCACTCACCCCGCCAGAGACCACTCCTTCTTTGTGGACGA GTTTGACAACCTCCATCAGTATGTCCCCAGGATCATCCAGAACATTTGTACAGAGTTCAACTCAC GGACCACCCCACCGCTTAATGGGGCACGCACGGTGCATCAAGTCTTGGGCAGGGCATGGAGAAAC AAATGTCTTGTTATTATTCTTTGCCATCATGCTTTTTCATATTCCAAAACTTGGAGTTACAAAGA TGATCACAAACGTATAGAATGAGCCAAAAGGCTACATCATGTTGAGGGTGCTGGAGATTTTACAT TTTGACAATTGTTTCAAAATAAATGTTCGGAATACAGTGCAGCCCTTACGACAGGCTTACGTAG AGCTTTTGTGAGATTTTTAAGTTGTTATTTCTGATTTGAACTCTGTAACCCTCAGCAAGTTTCAT

App ID=10063549 Page 185 of 320

MRTVVLTMKASVIEMFLVLLVTGVHSNKETAKKIKRPKFTVPQINCDVKAGKIIDPEFIVKCPAG
CQDPKYHVYGTDVYASYSSVCGAAVHSGVLDNSGGKILVRKVAGQSGYKGSYSNGVQSLSLPRWR
ESFIVLESKPKKGVTYPSALTYSSSKSPAAQAGETTKAYQRPPIPGTTAQPVTLMQLLAVTVAVA
TPTTLPRPSPSAASTTSIPRPQSVGHRSQEMDLWSTATYTSSQNRPRADPGIQRQDPSGAAFQKP
VGADVSLGLVPKEELSTQSLEPVSLGDPNCKIDLSFLIDGSTSIGKRRFRIQKQLLADVAQALDI
GPAGPLMGVVQYGDNPATHFNLKTHTNSRDLKTAIEKITQRGGLSNVGRAISFVTKNFFSKANGN
RSGAPNVVVMVDGWPTDKVEEASRLARESGINIFFITIEGAAENEKQYVVEPNFANKAVCRTNG
FYSLHVQSWFGLHKTLQPLVKRVCDTDRLACSKTCLNSADIGFVIDGSSSVGTGNFRTVLQFVTN
LTKEFEISDTDTRIGAVQYTYEQRLEFGFDKYSSKPDILNAIKRVGYWSGGTSTGAAINFALEQL
FKKSKPNKRKLMILITDGRSYDDVRIPAMAAHLKGVITYAIGVAWAAQEELEVIATHPARDHSFF
VDEFDNLHQYVPRIIQNICTEFNSQPRN

Important features:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 181-200

N-glycosylation sites.

amino acids 390-394, 520-524

N-myristoylation sites.

amino acids 23-29, 93-99, 115-121, 262-268, 367-373, 389-395, 431-437, 466-472, 509-515, 570-576, 571-577, 575-581, 627-633

Amidation site.

amino acids 304-308

App ID=10063549 Page 186 of 320

 $\verb|CCGAGCACAGGAGATTGCCTGCGTTTAGGAGGTGGCTGCGTTGTGGGAAAAGCTATCAAGGAAGAAATTGC|$ ACAGAAACAACAAAAACTTAAGCTTTAATTTCATCTGGAATTCCACAGTTTTCTTAGCTCCCTGGACCC GGTTGACCTGTTGGCTCTTCCCGCTGGCTGCTCTATCACGTGGTGCTCTCCGACTACTCACCCCGAGTGTA AAGAACCTTCGGCTGCTGCTGAGCTGCTGTGGATGGCCTCTGGACTGTCCTTCCGAGTAGGATGTCACTGAGATCCCTCAAATGGAGCCTCCTGCTGCTGTCACTCCTGAGTTTCTTTGTGATGTGGTAC CAGACAAGACTTTCACCTTCACACTTCGAGAGCATTCAAACTGCTCTCATCAAAATCCATTTCTGGTCATTC TGGTGGGGATATGAGGTTCTTACATTTTTCTTATTAGGCCAAGAGGCTGAAAAGGGAAGACAAAATGTTGGC ATTGTCCTTAGAGGATGAACACCTTCTTTATGGTGACATAATCCGACAAGATTTTTTAGACACATATAATA ACCTGACCTTGAAAACCATTATGGCATTCAGGTGGGTAACTGAGTTTTGCCCCAATGCCAAGTACGTAATG AAGACAGACACTGATGTTTTCATCAATACTGGCAATTTAGTGAAGTATCTTTTAAACCTAAACCACTCAGA GAAGTTTTTCACAGGTTATCCTCTAATTGATAATTATTCCTATAGAGGATTTTACCAAAAAACCCATATTT CTTACCAGGAGTATCCTTTCAAGGTGTTCCCTCCATACTGCAGTGGGTTGGGTTATATAATGTCCAGAGAT TTGGTGCCAAGGATCTATGAAATGATGGGTCACGTAAAACCCATCAAGTTTGAAGATGTTTATGTCGGGAT ATTTGGATGTCTGTCAACTGAGACGTGTGATTGCAGCCCATGGCTTTTCTTCCAAGGAGATCATCACTTTT TGGCAGGTCATGCTAAGGAACACCACATGCCATTAT**TAA**CTTCACATTCTACAAAAAGCCTAGAAGGACAG GATACCTTGTGGAAAGTGTTAAATAAAGTAGGTACTGTGGAAAATTCATGGGGAGGTCAGTGTGCTGGCTT ACACTGAACTGAAACTCATGAAAAACCCAGACTGGAGACTGGAGGGTTACACTTGTGATTTATTAGTCAGG CCCTTCAAAGATGATATGTGGAGGAATTAAATATAAAGGAATTGGAGGTTTTTGCTAAAGAAATTAATAGG ACCAAACAATTTGGACATGTCATTCTGTAGACTAGAATTTCTTAAAAGGGTGTTACTGAGTTATAAGCTCA CTAGGCTGTAAAAACAAACAATGTAGAGTTTTATTTATTGAACAATGTAGTCACTTGAAGGTTTTGTGTA TATCTTATGTGGATTACCAATTTAAAAATATATGTAGTTCTGTGTCAAAAAACTTCTTCACTGAAGTTATA CTGAACAAAATTTTACCTGTTTTTGGTCATTTATAAAGTACTTCAAGATGTTGCAGTATTTCACAGTTATT ATTATTTAAAATTACTTCAACTTTGTGTTTTTTAAATGTTTTGACGATTTCAATACAAGATAAAAAGGATAG TGAATCATTCTTTACATGCAAACATTTTCCAGTTACTTAACTGATCAGTTTATTATTGATACATCACTCCA TTAATGTAAAGTCATAGGTCATTATTGCATATCAGTAATCTCTTGGACTTTGTTAAATATTTTACTGTGGT AATATAGAGAAGAATTAAAGCAAGAAAATCTGAAAA

App_ID=10063549 Page 187 of 320

MASALWTVLPSRMSLRSLKWSLLLLSLLSFFVMWYLSLPHYNVIERVNWMYFYEYEPIYRQDFHF
TLREHSNCSHQNPFLVILVTSHPSDVKARQAIRVTWGEKKSWWGYEVLTFFLLGQEAEKEDKMLA
LSLEDEHLLYGDIIRQDFLDTYNNLTLKTIMAFRWVTEFCPNAKYVMKTDTDVFINTGNLVKYLL
NLNHSEKFFTGYPLIDNYSYRGFYQKTHISYQEYPFKVFPPYCSGLGYIMSRDLVPRIYEMMGHV
KPIKFEDVYVGICLNLLKVNIHIPEDTNLFFLYRIHLDVCQLRRVIAAHGFSSKEIITFWQVMLR
NTTCHY

Important features:

Type II transmembrane domain:

amino acids 20-39

N-glycosylation sites.

amino acids 72-76, 154-158, 198-202, 212-216, 326-330

Glycosaminoglycan attachment site.

amino acids 239-243

Ly-6 / u-PAR domain proteins.

amino acids 23-37

N-myristoylation site.

amino acids 271-277

AATATGATCAGATTGAGTGCGTCTGCCCCGGAAAGAGGGAAGTCGTGGGTTATACCATCCCTTGCTGCAGGAATGAGGAGAA GCCAGGTTCTGCGAGCCCCAAAGGGTCAGATTTTGTTGGAAAGCTATCCCCTAAATGCTCACTGTGAATGGACCATTCATGC TAAACCTGGGTTTGTCATCCAACTAAGATTTGTCATGTTGAGTCTGGAGTTTGACTACATGTGCCAGTATGACTATGTTGAG GTTCGTGATGGAGACAACCGCGATGGCCAGATCATCAAGCGTGTCTGTGGCAACGAGCGGCCAGCTCCTATCCAGAGCATAG GATCCTCACTCCACGTCCTCTTCCACTCCGATGGCTCCAAGAATTTTGACGGTTTCCATGCCATTTATGAGGAGATCACAGC ATGCTCCTCATCCCCTTGTTTCCATGACGGCACGTGCGTCCTTGACAAGGCTGGATCTTACAAGTGTGCCTGCTTGGCAGGC TATACTGGGCAGCGCTGTGAAAATCTCCTTGAAGAAAGGAAACTGCTCAGACCCTGGGGGCCCAGTCAATGGGTACCAGAAAA TCTTAGTGGCAATGAGAAAGAACTTGCCAGCAGAATGGAGAGTGGTCAGGGAAACAGCCCATCTGCATAAAAGCCTGCCGA GAACCAAAGATTTCAGACCTGGTGAGAAGGAGAGTTCTTCCGATGCAGGTTCAGTCAAGGGAGACACCATTACACCAGCTAT ATACCAACATCTGCATACCCAGCTCCAGTATGAGTGCATCTCACCCTTCTACCGCCGCCTGGGCAGCAGCAGGAGGACATGT CTGAGGACTGGGAAGTGGAGTGGGCGGCACCATCCTGCATCCCTATCTGCGGGAAAATTGAGAACATCACTGCTCCAAAGA CCCAAGGGTTGCGCTGGCCGTGGCAGGCAGCCATCTACAGGAGGACCAGCGGGGTGCATGACGGCAGCCTACACAAGGGAGC GTGGTTCCTAGTCTGCAGCGGTGCCCTGGTGAATGAGCGCACTGTGGTGGTGGCTGCCCACTGTGTTACTGACCTGGGGAAG AGAGCCTACAGATTTCTGCTATCATTCTGCATCCCAACTATGACCCCATCCTGCTTGATGCTGACATCGCCATCCTGAAGCT $\tt CGAGCATCTCCTGAGCCACGCTGGCATCTGATGGGACTGGTCAGCTGGAGCTATGATAAAACATGCAGCCACAGGCTCTCCA$ TGTTTCTGTATATCCGTCTGTACGTGTGTCATTGCGTGAAGCAGTGTGGGCCTGAAGTGTGATTTGGCCTGTGAACTTGGCT GTGCCAGGGCTTCTGACTTCAGGGACAAAACTCAGTGAAGGGTGAGTAGACCTCCATTGCTGGTAGGCTGATGCCGCGTCCA CTCCACTGACCTGGTGGTCTTCCCCAACTTTCAGTTATACGAATGCCATCAGCTTGACCAGGGAAGATCTGGGCTTCATGAG ${\tt GCCCCTTTTGAGGCTCTCAAGTTCTAGAGAGCTGCCTGTGGGACAGCCCAGGGCAGCAGAGCTGGGATGTGGTGCATGCCTT}$

App ID=10063549 Page 189 of 320

MELGCWTQLGLTFLQLLLISSLPREYTVINEACPGAEWNIMCRECCEYDQIECVCPGKREVVGYT
IPCCRNEENECDSCLIHPGCTIFENCKSCRNGSWGGTLDDFYVKGFYCAECRAGWYGGDCMRCGQ
VLRAPKGQILLESYPLNAHCEWTIHAKPGFVIQLRFVMLSLEFDYMCQYDYVEVRDGDNRDGQII
KRVCGNERPAPIQSIGSSLHVLFHSDGSKNFDGFHAIYEEITACSSSPCFHDGTCVLDKAGSYKC
ACLAGYTGQRCENLLEERNCSDPGGPVNGYQKITGGPGLINGRHAKIGTVVSFFCNNSYVLSGNE
KRTCQQNGEWSGKQPICIKACREPKISDLVRRRVLPMQVQSRETPLHQLYSAAFSKQKLQSAPTK
KPALPFGDLPMGYQHLHTQLQYECISPFYRRLGSSRRTCLRTGKWSGRAPSCIPICGKIENITAP
KTQGLRWPWQAAIYRRTSGVHDGSLHKGAWFLVCSGALVNERTVVVAAHCVTDLGKVTMIKTADL
KVVLGKFYRDDDRDEKTIQSLQISAIILHPNYDPILLDADIAILKLLDKARISTRVQPICLAASR
DLSTSFQESHITVAGWNVLADVRSPGFKNDTLRSGVVSVVDSLLCEEQHEDHGIPVSVTDNMFCA
SWEPTAPSDICTAETGGIAAVSFPGRASPEPRWHLMGLVSWSYDKTCSHRLSTAFTKVLPFKDWI
ERNMK

Important features of the protein:

Signal peptide:

amino acids 1-23

EGF-like domain cysteine pattern signature.

amino acids 260-272

N-glycosylation sites.

amino acids 96-100, 279-283, 316-320, 451-455, 614-618

N-myristoylation sites.

amino acids 35-41, 97-103, 256-262, 284-290, 298-304, 308-314, 474-480, 491-497, 638-644, 666-672

Amidation site.

amino acids 56-60

Serine proteases, trypsin family.

amino acids 489-506

CUB domain proteins profile.

amino acids 150-167

GGTTCCTACATCCTCATCTGAGAATCAGAGAGCATAATCTTCTTACGGGCCCGTGATTTATTAACGTGGCTTAATC TGAAGGTTCTCAGTCAAATTCTTTGTGATCTACTGATTGTGGGGGGCATGGCAAGGTTTGCTTAAAGGAGCTTGGCTGG TGGTCTTGCCTTGGCTCAGTCCTGCTAACTACATTGACAATGTGGGCAACCTGCACTTCCTGTATTCAGAACTCTGTA AAGGTGCCTCCCACTACGGCCTGACCAAAGATAGGAAGAGGCGCTCACAAGATGGCTGTCCAGACGGCTGTGCGAGCC TCACAGCCACGGCTCCCTCCCCAGAGGTTTCTGCAGCTGCCACCATCTCCTTAATGACAGACGAGCCTGGCCTAGACA GGACAAAGAGGGGGAGTGCAGTTGCCAACCATGCCGACCAGGGCAGGGAAAATTCTGAAAAACACCACTGCCCCTGAAG TCTTTCCAAGGTTGTACCACCTGATTCCAGATGGTGAAATTACCAGCATCAAGATCAATCGAGTAGATCCCAGTGAAA GCCTCTCTATTAGGCTGGTGGGAGGTAGCGAAACCCCACTGGTCCATATCATTATCCAACACATTTATCGTGATGGGG TGATCGCCAGAGACGGCCGGCTACTGCCAGGAGACATCATTCTAAAGGTCAACGGGATGGACATCAGCAATGTCCCTC ACAACTACGCTGTGCGTCTCCTGCGGCAGCCCTGCCAGGTGCTGTGGCTGACTGTGATGCGTGAACAGAAGTTCCGCA GCAGGAACAATGGACAGGCCCCGGATGCCTACAGACCCCGAGATGACAGCTTTCATGTGATTCTCAACAAAAGTAGCC CCGAGGAGCAGCTTGGAATAAAACTGGTGCGCAAGGTGGATGAGCCTGGGGTTTTCATCTTCAATGTGCTGGATGGCG GTGTGGCATATCGACATGGTCAGCTTGAGGAGAATGACCGTGTGTTAGCCATCAATGGACATGATCTTCGATATGGCA GCCCAGAAAGTGCGGCTCATCTGATTCAGGCCAGTGAAAGACGTGTTCACCTCGTCGTGTCCCGCCAGGTTCGGCAGC GGAGCCCTGACATCTTTCAGGAAGCCGGCTGGAACAGCAATGGCAGCTGGTCCCCAGGGCCAGGGGAGAGGAGCAACA CTCCCAAGCCCCTCCATCCTACAATTACTTGTCATGAGAAGGTGGTAAATATCCAAAAAGACCCCGGTGAATCTCTCG TCATAAGCAGAGATGGAAGAATAAAAACAGGTGACATTTTGTTGAATGTGGATGGGGTCGAACTGACAGAGGTCAGCC GGAGTGAGGCAGTGGCATTATTGAAAAGAACATCATCCTCGATAGTACTCAAAGCTTTGGAAGTCAAAGAGTATGAGC GGGTCATGTGGCTGGAATTACCACGGTGCTTGTATAACTGTAAAGATATTGTATTACGAAGAAACACAGCTGGAAGTC ${\tt CACCAGCATACAATGATGGAAGAATTAGATGTGGTGATATTCTTCTTGCTGTCAATGGTAGAAGTACATCAGGAATGA}$ ${\tt TACATGCTTGGCAAGACTGCTGAAAGAACTTAAAGGAAGAATTACTCTAACTATTGTTTCTTGGCCTGGCACTT}$ TTGTCAGTTTTTATATTTAAAGAAAGAATACATTGTAAAAATGTCAGGAAAAGTATGATCATCTAATGAAAGCCAGTT CAAGCTGATTTAAAATTTAAAATTTGGTATATGCTGAAGTCTGCCAAGGGTACATTATGGCCATTTTTAATTTACAGCT

App ID=10063549 Page 191 of 320

MKALLLLVLPWLSPANYIDNVGNLHFLYSELCKGASHYGLTKDRKRRSQDGCPDGCASLTATAPS
PEVSAAATISLMTDEPGLDNPAYVSSAEDGQPAISPVDSGRSNRTRARPFERSTIRSRSFKKINR
ALSVLRRTKSGSAVANHADQGRENSENTTAPEVFPRLYHLIPDGEITSIKINRVDPSESLSIRLV
GGSETPLVHIIIQHIYRDGVIARDGRLLPGDIILKVNGMDISNVPHNYAVRLLRQPCQVLWLTVM
REQKFRSRNNGQAPDAYRPRDDSFHVILNKSSPEEQLGIKLVRKVDEPGVFIFNVLDGGVAYRHG
QLEENDRVLAINGHDLRYGSPESAAHLIQASERRVHLVVSRQVRQRSPDIFQEAGWNSNGSWSPG
PGERSNTPKPLHPTITCHEKVVNIQKDPGESLGMTVAGGASHREWDLPIYVISVEPGGVISRDGR
IKTGDILLNVDGVELTEVSRSEAVALLKRTSSSIVLKALEVKEYEPQEDCSSPAALDSNHNMAPP
SDWSPSWVMWLELPRCLYNCKDIVLRRNTAGSLGFCIVGGYEEYNGNKPFFIKSIVEGTPAYNDG
RIRCGDILLAVNGRSTSGMIHACLARLLKELKGRITLTIVSWPGTFL

Important features:

Signal peptide:

amino acids 1-15

N-glycosylation sites.

amino acids 108-112, 157-161, 289-293, 384-388

Tyrosine kinase phosphorylation sites.

amino acids 433-441, 492-500

N-myristoylation sites.

amino acids 51-57, 141-147, 233-239, 344-350, 423-429, 447-453, 467-473, 603-609

App ID=10063549

 ${\tt ACCAGGCATTGTATCTTCAGTTGTCATCAAGTTCGCAATCAGATTGGAAAAGCTCAACTTGAAGCTTT}$ $\tt CTTGCCTGCAGTGAAGCAGAGATAGATATTATTCACGTAATAAAAAAC\textbf{ATG} GGCTTCAACCTGACT$ CACCAGTAACTACTTCGTGGGTGCCATTCAAGGAGATTCCTAAAGCAAAGGAGTTCATGGCTAATTTCC ATAAGACCCTCATTTTGGGGAAGGGAAAAACTCTGACTAATGAAGCATCCACGAAGAAGGTAGAACTT GACAACTGTCCTTCTGTGTCTCCTTACCTCAGAGGCCAGAGCAAGCTCATTTTCAAACCAGATCTCAC TTTGGAAGAGGTACAGGCAGAAAATCCCAAAGTGTCCAGAGGCCGGTATCGCCCTCAGGAATGTAAAG CTTTACAGAGGGTCGCCATCCTCGTTCCCCACCGGAACAGAGAAACACCTGATGTACCTGCTGGAA CATCTGCATCCCTTCCTGCAGAGGCAGCTGGATTATGGCATCTACGTCATCCACCAGGCTGAAGG TAAAAAGTTTAATCGAGCCAAACTCTTGAATGTGGGCTATCTAGAAGCCCTCAAGGAAGAAAATTGGG ACTGCTTTATATTCCACGATGTGGACCTGGTACCCGAGAATGACTTTAACCTTTACAAGTGTGAGGAG CATCCCAAGCATCTGGTGGTTGGCAGGAACAGCACTGGGTACAGGTTACGTTACAGTGGATATTTTGG GGGTGTTACTGCCCTAAGCAGAGCAGTTTTTCAAGGTGAATGGATTCTCTAACAACTACTGGGGAT GGGGAGGCGAAGACGATGACCTCAGACTCAGGGTTGAGCTCCAAAGAATGAAAATTTCCCGGCCCCTG CCTGAAGTGGGTAAATATACAATGGTCTTCCACACTAGAGACAAAGGCAATGAGGTGAACGCAGAACG GATGAAGCTCTTACACCAAGTGTCACGAGTCTGGAGAACAGATGGGTTGAGTAGTTGTTCTTATAAAT TAGTATCTGTGGAACACAATCCTTTATATATCAACATCACAGTGGATTTCTGGTTTGGTGCA**TGA**CCC ATAGTAGCACACTTAAGAACCTGTTACAGCTCATTGTTGAGCTGAATTTTTCCTTTTTTGTATTTTCT TAGCAGAGCTCCTGGTGATGTAGAGTATAAAACAGTTGTAACAAGACAGCTTTCTTAGTCATTTTGAT CATGAGGGTTAAATATTGTAATATGGATACTTGAAGGACTTTATATAAAAGGATGACTCAAAGGATAA AAAAGGCCACAGGAAATAAGACTGCTGAATGTCTGAGAGAACCAGAGTTGTTCTCGTCCAAGGTAGAA AGGTACGAAGATACAATACTGTTATTCATTTATCCTGTACAATCATCTGTGAAGTGGTGGTGTCAGGT GAGAAGGCGTCCACAAAAGAGGGGAGAAAAGGCGACGAATCAGGACACAGTGAACTTGGGAATGAAGA GGTAGCAGGAGGGTGGAGTGTCGGCTGCAAAGGCAGCAGTAGCTGAGCTGGTTGCAGGTGCTGATAGC CTTCAGGGGAGGACCTGCCCAGGTATGCCTTCCAGTGATGCCCACCAGAGAATACATTCTCTATTAGT TTTTAAAGAGTTTTTGTAAAATGATTTTGTACAAGTAGGATATGAATTAGCAGTTTACAAGTTTACAT ATTAACTAATAATAATATGTCTATCAAATACCTCTGTAGTAAAATGTGAAAAAGCAAAA

MGFNLTFHLSYKFRLILLLTLCLTVVGWATSNYFVGAIQEIPKAKEFMANFHKTLILGKGKTLTN EASTKKVELDNCPSVSPYLRGQSKLIFKPDLTLEEVQAENPKVSRGRYRPQECKALQRVAILVPH RNREKHLMYLLEHLHPFLQRQQLDYGIYVIHQAEGKKFNRAKLLNVGYLEALKEENWDCFIFHDV DLVPENDFNLYKCEEHPKHLVVGRNSTGYRLRYSGYFGGVTALSREQFFKVNGFSNNYWGWGGED DDLRLRVELQRMKISRPLPEVGKYTMVFHTRDKGNEVNAERMKLLHQVSRVWRTDGLSSCSYKLV SVEHNPLYINITVDFWFGA

Important features:

Signal peptide:

amino acids 1-27

N-glycosylation sites.

amino acids 4-8, 220-224, 335-339

Xylose isomerase proteins.

amino acids 191-202

App_ID=10063549 Page 194 of 320

App_ID=10063549 Page 195 of 320

 ${\tt MALSSQIWAACLLLLLLASLTSGSVFPQQTGQLAELQPQDRAGARASWMPMFQRRRRDTHFPICIFCCGCCHRSKCGMCCKT}$

Important features:

Signal peptide:

amino acids 1-24

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 58-59

N-myristoylation site.

amino acids 44-50

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 1-12

TCATCTATATCCTTTGGCAGCTCACAGGGTCAGCAGCCTCTGGACCCGTGAAAGAGCTGGTCGGT TCCGTTGGTGGGGCCGTGACTTTCCCCCTGAAGTCCAAAGTAAAGCAAGTTGACTCTATTGTCTG GACCTTCAACACCCCTCTTGTCACCATACAGCCAGAAGGGGGCACTATCATAGTGACCCAAA ATCGTAATAGGGAGAGTAGACTTCCCAGATGGAGGCTACTCCCTGAAGCTCAGCAAACTGAAG AAGAATGACTCAGGGATCTACTATGTGGGGATATACAGCTCATCACTCCAGCAGCCCTCCACCCA GGAGTACGTGCTGCATGTCTACGAGCACCTGTCAAAGCCTAAAGTCACCATGGGTCTGCAGAGCA ATAAGAATGGCACCTGTGTGACCAATCTGACATGCTGCATGGAACATGGGGAAGAGATGTGATT TATACCTGGAAGGCCCTGGGGCAAGCAGCCAATGAGTCCCATAATGGGTCCATCCTCCCCATCTC TCTCAAGCCCCATCCTTGCCAGGAAGCTCTGTGAAGGTGCTGCTGATGACCCAGATTCCTCCATG GTCCTCCTGTGTCTCCTGTTGGTGCCCCTCCTGCTCAGTCTCTTTTGTACTGGGGCTATTTCTTTG AAACTCCTAACATATGCCCCCATTCTGGAGAGAACACAGAGTACGACAATCCCTCACACTAAT AGAACAATCCTAAAGGAAGATCCAGCAAATACGGTTTACTCCACTGTGGAAATACCGAAAAAGAT GGAAAATCCCCACTCACTGCTCACGATGCCAGACACACCAAGGCTATTTGCCTATGAGAATGTTA TCTAGACAGCAGTGCACTCCCCTAAGTCTCTGCTCA

App ID=10063549 Page 197 of 320

MAGSPTCLTLIYILWQLTGSAASGPVKELVGSVGGAVTFPLKSKVKQVDSIVWTFNTTPLVTIQP
EGGTIIVTQNRNRERVDFPDGGYSLKLSKLKKNDSGIYYVGIYSSSLQQPSTQEYVLHVYEHLSK
PKVTMGLQSNKNGTCVTNLTCCMEHGEEDVIYTWKALGQAANESHNGSILPISWRWGESDMTFIC
VARNPVSRNFSSPILARKLCEGAADDPDSSMVLLCLLLVPLLLSLFVLGLFLWFLKRERQEEYIE
EKKRVDICRETPNICPHSGENTEYDTIPHTNRTILKEDPANTVYSTVEIPKKMENPHSLLTMPDT
PRLFAYENVI

Important features:

Signal peptide:

amino acids 1-22

Transmembrane domain:

amino acids 224-250

Leucine zipper pattern.

amino acids 229-251

N-glycosylation sites.

amino acids 98-102, 142-146, 148-152, 172-176, 176-180, 204-208, 291-295

App_ID=10063549 Page 198 of 320

MTCCEGWTSCNGFSLLVLLLLGVVLNAIPLIVSLVEEDQFSQNPISCFEWWFPGIIGAGLMAIPA
TTMSLTARKRACCNNRTGMFLSSFFSVITVIGALYCMLISIQALLKGPLMCNSPSNSNANCEFSL
KNISDIHPESFNLQWFFNDSCAPPTGFNKPTSNDTMASGWRASSFHFDSEENKHRLIHFSVFLGL
LLVGILEVLFGLSQIVIGFLGCLCGVSKRRSQIV

Important features:

Transmembrane domains:

amino acids 10-31 (type II), 50-72, 87-110, 191-213

N-glycosylation sites.

amino acids 80-84, 132-136, 148-152, 163-167

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 223-227

N-myristoylation sites.

amino acids 22-28, 54-60, 83-89, 97-103, 216-222

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 207-218

TNFR/NGFR family cysteine-rich region protein.

amino acids 4-12

ATCCGTTCTCTGCGCTGCCAGCTCAGGTGAGCCCTCGCCAAGGTGACCTCGCAGGACACTGGTGA
AGGAGCAGTGAGGAACCTGCAGAGTCACACAGTTGCTGACCAATTGAGCTGTGAGCCTGGAGCAG
ATCCGTGGGCTGCAGACCCCCGCCCCAGTGCCTCTCCCCCTGCAGCCCTGCCCCTCGAACTGTGA
CATGGAGAGAGGAGCCCTGGCCCTTCTCCTACTGGCAGGCCTGACTGCCTTGGAAGCCAATGACC
CATTTGCCAATAAAGACGATCCCTTCTACTATGACTGGAAAAACCTGCAGCTGAGCGGACTGATC
TGCGGAGGGCTCCTGGCCATTGCTGGGATCGCGGCAGTTCTGAGTGGCAAATGCAAATACAAGAG
CAGCCAGAAGCAGCACAGTCCTGTACCTGAGAAGGCCATCCCACTCATCACTCCAGGCTCTGCCA
CTACTTGCTGAGCACAGGACTGGCCTCCAGGGATGGCCTGAAGCCTAACACTGGCCCCCAGCACC
TCCTCCCCTGGGGAGGCCTTATCCTCAAGGAAGGACTTCTCTCCAAGGGCAGGCTGTTAGGCCCCT
TTCTGATCAGGAGGCTTCTTTTATGAATTAAACTCGCCCCACCACCCCCTCA

 ${\tt MERVTLALLLLAGLTALEANDPFANKDDPFYYDWKNLQLSGLICGGLLAIAGIAAVLSGKCKYKS} \\ {\tt SQKQHSPVPEKAIPLITPGSATTC}$

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domain:

amino acids 36-59

N-myristoylation sites.

amino acids 41-47, 45-51, 84-90

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7.

amino acids 54-67

AGGAGACCCTGGTGGGAGGAAGACACTCTGGAGAGAGAGGGGGGCTGGGCAGAG**ATG**AAGTTCCAG GGGCCCCTGGCCTGCCTGCCTGCCTGCCTGGGCAGTGGGGAGGCTGGCCCCCTGCAGAG CGGAGAGGAAAGCACTGGGACAAATATTGGGGAGGCCCTTGGACATGGCCTGGGAGACGCCCTGA GCGAAGGGGTGGGAAAGGCCATTGGCAAAGAGGCCGGAGGGGCAGCTGGCTCTAAAGTCAGTGAG AGCAGATGCTTTGGGCAACAGGGTCGGGGAAGCAGCCCATGCTCTGGGAAACACTGGGCACGAGA GTGCCTGGCCACAGTGGTGCTTGGGAAACTTCTGGAGGCCATGGCATCTTTGGCTCTCAAGGTGG GAAACTCAGCAGGCAGCTTTGGAATGAATCCTCAGGGAGCTCCCTGGGGTCAAGGAGGCAATGGA GGGCCACCAAACTTTGGGACCAACACTCAGGGAGCTGTGGCCCAGCCTGGCTATGGTTCAGTGAG AGCCAGCAACCAGAATGAAGGGTGCACGAATCCCCCACCATCTGGCTCAGGTGGAGGCTCCAGCA ACTCTGGGGGAGCAGCGGCTCACAGTCGGGCAGCAGTGGCAGCAATGGTGACAACAAC TGGCGGCAGCAGTGGCAGCAGTGGCAACAGTGGTGGCAGCAGAGGTGACAGCGGCAGTGAGT CCTCCTGGGGATCCAGCACCGGCTCCTCCTCCGGCAACCACGGTGGGAGCGGCGGAGGAAATGGA CATAAACCCGGGTGTGAAAAGCCAGGGAATGAAGCCCGCGGGGAGCGGGGAATCTGGGATTCAGGG CTTCAGAGGACAGGGAGTTTCCAGCAACATGAGGGAAATAAGCAAAGAGGGCAATCGCCTCCTTG GAGGCTCTGGAGACAATTATCGGGGGGCAAGGGTCGAGCTGGGGCAGTGGAGGAGGTGACGCTGTT GGTGGAGTCAATACTGTGAACTCTGAGACGTCTCCTGGGATGTTTAACTTTGACACTTTCTGGAA GAATTTTAAATCCAAGCTGGGTTTCATCAACTGGGATGCCATAAACAAGGACCAGAGAAGCTCTC ${\tt GCATCCCG}$ ${\tt TGA}$ ${\tt CCTCCAGACAAGGAGCCCACACTCCCTTAA}$ AACACCACCCTCTCATCACTAATCTCAGCCCTTGCCCTTGAAATAAACCTTAGCTGCCCCACAAA

 ${\tt MKFQGPLACLLLALCLGSGEAGPLQSGEESTGTNIGEALGHGLGDALSEGVGKAIGKEAGGAAGSKVS}$ EALGQGTREAVGTGVRQVPGFGAADALGNRVGEAAHALGNTGHEIGRQAEDVIRHGADAVRGSWQGVP GHSGAWETSGGHGIFGSQGGLGGQGQGNPGGLGTPWVHGYPGNSAGSFGMNPQGAPWGQGGNGGPPNF GTNTQGAVAQPGYGSVRASNQNEGCTNPPPSGSGGGSSNSGGGSGSQSGSSGSGSNGDNNNGSSSGGS SSGSSSGSSGGSSGGSSGNSGGSRGDSGSESSWGSSTGSSSGNHGGSGGGNGHKPGCEKPGNE $\tt ARGSGESGIQGFRGQGVSSNMREISKEGNRLLGGSGDNYRGQGSSWGSGGGDAVGGVNTVNSETSPGM$ FNFDTFWKNFKSKLGFINWDAINKDQRSSRIP

Signal peptide:

amino acids 1-21

N-glycosylation site.

amino acids 265-269

Glycosaminoglycan attachment site.

amino acids 235-239, 237-241, 244-248, 255-259, 324-328, 388-392

Casein kinase II phosphorylation site.

amino acids 26-30, 109-113, 259-263, 300-304, 304-308

N-myristoylation site.

```
32-30, 42-48, 50-56, 60-66, 61-67, 64-70, 74-80, 90-96, 96-102, 130-136, 140-146, 149-155, 152-158, 155-161, 159-165, 163-169, 178-184, 190-196, 194-200, 199-205, 218-224, 236-242, 238-244, 239-245, 240-246, 245-251, 246-252, 249-250, 253-259, 256-262, 266-272, 270-276, 271-272, 283-289, 284-290
283-289, 284-290, 287-293,
                                                    288-294,
                                                                     291-297, 292-298,
                                                                                                        295-301,
                                                    315-321,
298-304, 305-311, 311-317,
                                                                     319-325, 322-328, 323-329,
325-331, 343-349, 354-360,
                                                    356-362, 374-380, 381-387, 383-389,
387-393, 389-395, 395-401
```

Cell attachment sequence.

amino acids 301-304

GGAGAAGAGGTTGTGTGGGACAAGCTGCTCCCGACAGAAGGATGTCGCTGCTGAGCCTGCCCTGG CTGGGCCTCAGACCGGTGGCAATGTCCCCATGGCTACTCCTGCTGCTGGTTGTGGGCTCCTGGCT ACTCGCCCGCATCCTGGCTTGGACCTATGCCTTCTATAACAACTGCCGCCGGCTCCAGTGTTTCC CACAGCCCCAAAACGGAACTGGTTTTGGGGTCACCTGGGCCTGATCACTCCTACAGAGGAGGGC TTGAAGGACTCGACCCAGATGTCGGCCACCTATTCCCAGGGCTTTACGGTATGGCTGGGTCCCAT CATCCCCTTCATCGTTTTATGCCACCCTGACACCATCCGGTCTATCACCAATGCCTCAGCTGCCA GAAGTCCTATATAACGATCTTCAACAAGAGTGCAAACATCATGCTTGACAAGTGGCAGCACCTGG CCTCAGAGGGCAGCAGTCGTCTGGACATGTTTGAGCACATCAGCCTCATGACCTTGGACAGTCTA CAGAAATGCATCTTCAGCTTTGACAGCCATTGTCAGGAGAGGCCCAGTGAATATATTGCCACCAT CTTGGAGCTCAGTGCCCTTGTAGAGAAAAGAAGCCAGCATATCCTCCAGCACATGGACTTTCTGT ATTACCTCTCCCATGACGGCGCGCTTCCACAGGGCCTGCCGCCTGGTGCATGACTTCACAGAC GCTGTCATCCGGGAGCGGCGTCGCACCCTCCCCACTCAGGGTATTGATGATTTTTTCAAAGACAA AGCCAAGTCCAAGACTTTGGATTTCATTGATGTGCTTCTGCTGAGCAAGGATGAAGATGGGAAGG CATTGTCAGATGAGGATATAAGAGCAGAGGCTGACACCTTCATGTTTGGAGGCCATGACACCACG GCCAGTGGCCTCTCCTGGGTCCTGTACAACCTTGCGAGGCACCCAGAATACCAGGAGCGCTGCCG ACAGGAGGTGCAAGAGCTTCTGAAGGACCGCGATCCTAAAGAGATTGAATGGGACGACCTGGCCC AGCTGCCCTTCCTGACCATGTGCGTGAAGGAGGCCTGAGGTTACATCCCCCAGCTCCCTTCATC TCCCGATGCTGCACCCAGGACATTGTTCTCCCAGATGGCCGAGTCATCCCCAAAGGCATTACCTG CCTCATCGATATTATAGGGGTCCATCACAACCCAACTGTGTGGCCGGATCCTGAGGTCTACGACC CCTTCCGCTTTGACCCAGAGAACAGCAAGGGGAGGTCACCTCTGGCTTTTATTCCTTTCTCCGCA GGGCCCAGGAACTGCATCGGGCAGGCGTTCGCCATGGCGGAGATGAAAGTGGTCCTGGCGTTGAT GCTGCTGCACTTCCGGTTCCTGCCAGACCACACTGAGCCCCGCAGGAAGCTGGAATTGATCATGC GCGCCGAGGGCGGGCTTTGGCTGCGGGTGGAGCCCCTGAATGTAGGCTTGCAG**TGA**CTTTCTGAC CCATCCACCTGTTTTTTTGCAGATTGTCATGAATAAAACGGTGCTGTCAAA

MSLLSLPWLGLRPVAMSPWLLLLLVVGSWLLARILAWTYAFYNNCRRLQCFPQPPKRNWFWGHLG
LITPTEEGLKDSTQMSATYSQGFTVWLGPIIPFIVLCHPDTIRSITNASAAIAPKDNLFIRFLKP
WLGEGILLSGGDKWSRHRRMLTPAFHFNILKSYITIFNKSANIMLDKWQHLASEGSSRLDMFEHI
SLMTLDSLQKCIFSFDSHCQERPSEYIATILELSALVEKRSQHILQHMDFLYYLSHDGRRFHRAC
RLVHDFTDAVIRERRRTLPTQGIDDFFKDKAKSKTLDFIDVLLLSKDEDGKALSDEDIRAEADTF
MFGGHDTTASGLSWVLYNLARHPEYQERCRQEVQELLKDRDPKEIEWDDLAQLPFLTMCVKESLR
LHPPAPFISRCCTQDIVLPDGRVIPKGITCLIDIIGVHHNPTVWPDPEVYDPFRFDPENSKGRSP
LAFIPFSAGPRNCIGQAFAMAEMKVVLALMLLHFRFLPDHTEPRRKLELIMRAEGGLWLRVEPLN
VGLQ

Important features:

Transmembrane domains:

amino acids 13-32 (type II), 77-102

Cytochrome P450 cysteine heme-iron ligand signature.

amino acids 461-471

N-glycosylation sites.

amino acids 112-116, 168-172

 ${\tt MGPVKQLKRMFEPTRLIATIMVLLCFALTLCSAFWWHNKGLALIFCILQSLALTWYSLSFIPFAR} \\ {\tt DAVKKCFAVCLA}$

Important features:

Signal peptide:

amino acids 1-33

Type II fibronectin collagen-binding domain protein.

amino acids 30-72

CGGCTCGAGCTCGAGCCGAATCGGCTCGAGGGGCAGTGGAGCACCCAGCAGGCCGCCAAC**ATG**CTCTGTCTGTGCCTG ATTTTCAAGCTCAGTGTCTTCATCCCCTCCCAGGAATTCTCCACCTACCGCCAGTGGAAGCAGAAAATTGTACAAGCT CTGGTGTTTAAGATTTTGGACAAAAAGAATGATGGACGCATTGACGCGCAGGAGATCATGCAGTCCCTGCGGGACTTG GGAGTCAAGATATCTGAACAGCAGGCAGAAAAAATTCTCAAGAGCATGGATAAAAACGGCACGATGACCATCGACTGG AACGAGTGGAGAGACTACCACCTCCTCCACCCCGTGGAAAACATCCCCGAGATCATCCTCTACTGGAAGCATTCCACG CACCTGGTGGCAGGAGGTGGGGCAGGGGCCGTATCCAGAACCTGCACGGCCCCCTGGACAGGCTCAAGGTGCTCATG ATCGCCCAGAGCAGCATCTACCCAATGGAGGTCCTGAAGACCCGGATGGCGCTGCGGAAGACAGGCCAGTACTCAGGA ATGCTGGACTGCGCCAGGAGGATCCTGGCCAGAGAGGGGGGTGGCCGCCTTCTACAAAGGCTATGTCCCCAACATGCTG AACAGCGCGGACCCCGGCGTGTTTGTGCTCCTGGCCTGTGGCACCATGTCCAGTACCTGTGGCCAGCTGCCAGCTAC $\verb|CCCCTGGCCCTAGTCAGGACCCGGATGCAGGCGCAAGCCTCTATTGAGGGCGCTCCGGAGGTGACCATGAGCAGCCTC| \\$ TTCAAACATATCCTGCGGACCGAGGGGGCCTTCGGGCTGTACAGGGGGCCTGGCCCCCAACTTCATGAAGGTCATCCCA CGCCCGGCAGTGGACTCGCTGATCCTGGGCCGCAGCCTGGGGTGTGCAGCCATCTCATTCTGTGAATGTGCCAACACT GTCCTGCTGACCCCAGCAGACCCTCCTGTTGGTTCCAGCGAAGACCACAGGCATTCCTTAGGGTCCAGGGTCAGCAGG $\tt CCTCTTGCCTGCCTGTCTGCTGAGGTAAGGTGGGAGGGGGTACAGCCCACATCCCACCCCTCGTCCAATCCC$ ATAATCCATGATGAAAGGTGAGGTCACGTGGCCTCCCAGGCCTGACTTCCCAACCTACAGCATTGACGCCAACTTGGC TGTGAAGGAAGGAACTGGCCTTGTGGTCACTGGCATCTGAGCCCTGATGGCTGAGGCCTCTCGGGCATG CTTGGGAGTGCAGGGGGCTCGGCTGCCTGGCTGCACAGAAGGCAAGTGCTGGGGCTCATGGTGCTCTGAGCT GGCCTGGACCCTGTCAGGATGGGCCCCACCTCAGAACCAAACTCACTGTCCCCACTGTGGCATGAGGGCAGTGGAGCA GATTGTACCTTCCCAAGCCCGCCCAGTGGGATGGGAGGAGGAGGAGGAGGGGGGCCCTTGGGCCGCTGCAGTCACATCT CTTCTGCTGCCCTTGCTTAACAATGCCGGCCAACTGGCGACCTCACGGTTGCACTTCCATTCCACCAGAATGACCTGA $\tt TGAGGAAATCTTCAATAGGATGCAAAGATCAATGCAAAAATTGTTATATATGAACATATAACTGGAGTCGTCAAAAAG$

MLCLCLYVPVIGEAQTEFQYFESKGLPAELKSIFKLSVFIPSQEFSTYRQWKQKIVQAGDKDLDG
QLDFEEFVHYLQDHEKKLRLVFKILDKKNDGRIDAQEIMQSLRDLGVKISEQQAEKILKSMDKNG
TMTIDWNEWRDYHLLHPVENIPEIILYWKHSTIFDVGENLTVPDEFTVEERQTGMWWRHLVAGGG
AGAVSRTCTAPLDRLKVLMQVHASRSNNMGIVGGFTQMIREGGARSLWRGNGINVLKIAPESAIK
FMAYEQIKRLVGSDQETLRIHERLVAGSLAGAIAQSSIYPMEVLKTRMALRKTGQYSGMLDCARR
ILAREGVAAFYKGYVPNMLGIIPYAGIDLAVYETLKNAWLQHYAVNSADPGVFVLLACGTMSSTC
GQLASYPLALVRTRMQAQASIEGAPEVTMSSLFKHILRTEGAFGLYRGLAPNFMKVIPAVSISYV
VYENLKITLGVOSR

Important features:

Signal peptide:

amino acids 1-16

Putative transmembrane domains:

amino acids 284-304, 339-360, 376-394

Mitochondrial energy transfer proteins signature.

amino acids 206-215, 300-309

N-glycosylation sites.

amino acids 129-133, 169-173

Elongation Factor-hand calcium-binding protein.

amino acids 54-73, 85-104, 121-140

CACTCATCATTGGCTTTGGTATTTCAGGGAGACACTCCATCACAGTCACTACTGTCGCCTCAGCT GGGAACATTGGGGAGGATGGAATCCTGAGCTGCACTTTTGAACCTGACATCAAACTTTCTGATAT CGTGATACAATGGCTGAAGGAAGGTGTTTTAGGCTTGGTCCATGAGTTCAAAGAAGGCAAAGATG AGCTGTCGGAGCAGGATGAAATGTTCAGAGGCCGGACAGCAGTGTTTGCTGATCAAGTGATAGTT GGCAATGCCTCTTTGCGGCTGAAAAACGTGCAACTCACAGATGCTGGCACCTACAAATGTTATAT CATCACTTCTAAAGGCAAGGGGAATGCTAACCTTGAGTATAAAACTGGAGCCTTCAGCATGCCGG AAGTGAATGTGGACTATAATGCCAGCTCAGAGACCTTGCGGTGTGAGGCTCCCCGATGGTTCCCC CAGCCCACAGTGGTCTGGGCATCCCAAGTTGACCAGGGAGCCAACTTCTCGGAAGTCTCCAATAC CAGCTTTGAGCTGAACTCTGAGAATGTGACCATGAAGGTTGTGTCTGTGCTCTACAATGTTACGA TCAACACACATACTCCTGTATGATTGAAAATGACATTGCCAAAGCAACAGGGGATATCAAAGTG ACAGAATCGGAGATCAAAAGGCGGAGTCACCTACAGCTGCTAAACTCAAAGGCTTCTCTGTGTGT CTCTTCTTTCTTTGCCATCAGCTGGGCACTTCTGCCTCTCAGCCCTTACCTGATGCTAAAATAAT GTGCCTTGGCCACAAAAAAGCATGCAAAGTCATTGTTACAACAGGGATCTACAGAACTATTTCAC CACCAGATATGACCTAGTTTTATATTTCTGGGAGGAAATGAATTCATATCTAGAAGTCTGGAGTG AGCAAACAAGAGCAAGAAACAAAAAGAAGCCAAAAGCAGAAGGCTCCAATATGAACAAGATAAAT CTATCTTCAAAGACATATTAGAAGTTGGGAAAATAATTCATGTGAACTAGACAAGTGTGTTAAGA CACCTGGGGAGTGAGAGGACAGGATAGTGCATGTTCTTTGTCTCTGAATTTTTAGTTATATGTGC TGTAATGTTGCTCTGAGGAAGCCCCTGGAAAGTCTATCCCAACATATCCACATCTTATATTCCAC AAATTAAGCTGTAGTATGTACCCTAAGACGCTGCTAATTGACTGCCACTTCGCAACTCAGGGGCG GCTGCATTTTAGTAATGGGTCAAATGATTCACTTTTTATGATGCTTCCAAAGGTGCCTTGGCTTC TCTTCCCAACTGACAAATGCCAAAGTTGAGAAAAATGATCATAATTTTAGCATAAACAGAGCAGT ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

App_ID=10063549 Page 211 of 320

MASLGQILFWSIISIIIILAGAIALIIGFGISGRHSITVTTVASAGNIGEDGILSCTFEPDIKLS
DIVIQWLKEGVLGLVHEFKEGKDELSEQDEMFRGRTAVFADQVIVGNASLRLKNVQLTDAGTYKC
YIITSKGKGNANLEYKTGAFSMPEVNVDYNASSETLRCEAPRWFPQPTVVWASQVDQGANFSEVS
NTSFELNSENVTMKVVSVLYNVTINNTYSCMIENDIAKATGDIKVTESEIKRRSHLQLLNSKASL
CVSSFFAISWALLPLSPYLMLK

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 258-281

N-glycosylation sites.

amino acids 112-116, 160-164, 190-194, 196-200, 205-209, 216-220, 220-224

N-myristoylation sites.

amino acids 52-58, 126-132, 188-194

 $\tt TGACGTCAGAATCACC {\color{red} ATG} GCCAGCTATCCTTACCGGCAGGGCTGCCCAGGAGCTGCAGGACAAG$ CACCAGGAGCCCCTCCGGGTAGCTACTACCCTGGACCCCCAATAGTGGAGGGCAGTATGGTAGT GGGCTACCCCTGGTGGTGGTTATGGGGGTCCTGCCCCTGGAGGGCCTTATGGACCACCAGCTGG TGGAGGGCCCTATGGACACCCCAATCCTGGGATGTTCCCCTCTGGAACTCCAGGAGGACCATATG GCGGTGCAGCTCCCGGGGGCCCCTATGGTCAGCCACCTCCAAGTTCCTACGGTGCCCAGCAGCCT GGGCTTTATGGACAGGGTGGCGCCCCTCCCAATGTGGATCCTGAGGCCTACTCCTGGTTCCAGTC GGTGGACTCAGATCACAGTGGCTATATCTCCATGAAGGAGCTAAAGCAGGCCCTGGTCAACTGCA ATTGGTCTTCATTCAATGATGAGACCTGCCTCATGATGATAAACATGTTTGACAAGACCAAGTCA GGCCGCATCGATGTCTACGGCTTCTCAGCCCTGTGGAAATTCATCCAGCAGTGGAAGAACCTCTT ${\tt CCAGCAGTATGACCGGGACCGCTCGGGCTCCATTAGCTACACAGAGCTGCAGCAAGCTCTGTCCC}$ AAATGGGCTACAACCTGAGCCCCAGTTCACCCAGCTTCTGGTCTCCCGCTACTGCCCACGCTCT GCCAATCCTGCCATGCAGCTTGACCGCTTCATCCAGGTGTGCACCCAGCTGCAGGTGCTGACAGA GGCCTTCCGGGAGAAGGACACAGCTGTACAAGGCAACATCCGGCTCAGCTTCGAGGACTTCGTCA CCATGACAGCTTCTCGGATGCTATCACCCAACCATCTGTGGAGAGTGGAGTGCACCAGGGACCTT TCCTGGCTTCTTAGAGTGAGAGAAGTATGTGGACATCTCTTTTTTCCTGTCCCTCTAGAAGAAC ATTCTCCCTTGCTTGATGCAACACTGTTCCAAAAGAGGGTGGAGAGTCCTGCATCATAGCCACCA AATAGTGAGGACCGGGGCTGAGGCCACACAGATAGGGGCCTGATGGAGGAGAGGATAGAAGTTGA ATGTCCTGATGGCCATGAGCAGTTGAGTGGCACAGCCTGGCACCAGGAGCAGGTCCTTGTAATGG AGTTAGTGTCCAGTCAGCTGAGCTCCACCCTGATGCCAGTGGTGAGTGTTCATCGGCCTGTTACC GTTAGTACCTGTGTTCCCTCACCAGGCCATCCTGTCAAACGAGCCCATTTTCTCCAAAGTGGAAT $\tt CTGACCAAGCATGAGAGAGATCTGTCTATGGGACCAGTGGCTTGGATTCTGCCACACCCATAAAT$ CCTTGTGTTTAACTTCTAGCTGCCTGGGGCTGGCCCTGCTCAGACAATCTGCTCCCTGGGCAT ATTTGGGGCCAAAAGTCCAGTGAAATTGTAAGCTTCAATAAAAGGATGAAACTCTGA

App ID=10063549 Page 213 of 320

MASYPYRQGCPGAAGQAPGAPPGSYYPGPPNSGGQYGSGLPPGGGYGGPAPGGPYGPPAGGGPYG HPNPGMFPSGTPGGPYGGAAPGGPYGQPPPSSYGAQQPGLYGQGGAPPNVDPEAYSWFQSVDSDH SGYISMKELKQALVNCNWSSFNDETCLMMINMFDKTKSGRIDVYGFSALWKFIQQWKNLFQQYDR DRSGSISYTELQQALSQMGYNLSPQFTQLLVSRYCPRSANPAMQLDRFIQVCTQLQVLTEAFREK DTAVQGNIRLSFEDFVTMTASRML

Important features of the protein:

Signal peptide:

amino acids 1-19

N-glycosylation site.

amino acids 147-150

Casein kinase II phosphorylation sites.

amino acids 135-138, 150-153, 202-205, 271-274

N-myristoylation sites.

amino acids 9-14, 15-20, 19-24, 33-38, 34-39, 39-44, 43-48, 61-66, 70-75, 78-83, 83-88, 87-92, 110-115

App_ID=10063549

 ${\tt CAGG} \underline{\textbf{ATG}} \underline{\textbf{CAGGGCCGCGTGGCAGGGAGCTGCGCTCCTCTGGGCCTGCTCCTGGTCTTCATC}$ ${\tt TCCCAGGCCTCTTTGCCCGGAGCATCGGTGTTGTGGAGGAGAAGTTTCCCAAAACTTCGGGACC}$ AACTTGCCTCAGCTCGGACAACCTTCCTCCACTGGCCCCTCTAACTCTGAACATCCGCAGCCCGC TCTGGACCCTAGGTCTAATGACTTGGCAAGGGTTCCTCTGAAGCTCAGCGTGCCTCCATCAGATG GATTCCTGGCCCCTGAGGATCCTTGGCAGATGATGGCTGCTGCGGCTGAGGACCGCCTGGGGGA AGCGCTGCCTGAAGAACTCTCTTACCTCTCCAGTGCTGCGGCCCTCGCTCCGGGCAGTGGCCCTT TGCCTGGGGAGTCTTCTCCCGATGCCACAGGCCTCTCACCTGAGGCTTCACTCCTCCACCAGGAC TCGGAGTCCAGACGACTGCCCCGTTCTAATTCACTGGGAGCCGGGGGAAAAATCCTTTCCCAACG CCCTCCTGGTCTCTCATCCACAGGGTTCTGCCTGATCACCCCTGGGGTACCCTGAATCCCAGTG TGTCCTGGGGAGGTGGAGGCCCTGGGACTGGTTGGGGAACGAGGCCCATGCCACACCCTGAGGGA ATCTGGGGTATCAATAATCAACCCCCAGGTACCAGCTGGGGAAATATTAATCGGTATCCAGGAGG CAGCTGGGGAAATATTAATCGGTATCCAGGAGGCAGCTGGGGGAATATTAATCGGTATCCAGGAG GCAGCTGGGGGAATATTCATCTATACCCAGGTATCAATAACCCATTTCCTCCTGGAGTTCTCCGC $\tt CCTCCTGGCTCTTCTTGGAACATCCCAGCTGGCTTCCCTAATCCTCCAAGCCCTAGGTTGCAGTG$ GGGCTAGAGCACGATAGAGGGAAACCCAACATTGGGAGTTAGAGTCCTGCTCCCGCCCCTTGCTG TGTGGGCTCAATCCAGGCCCTGTTAACATGTTTCCAGCACTATCCCCACTTTTCAGTGCCTCCCC

MQGRVAGSCAPLGLLLVCLHLPGLFARSIGVVEEKVSQNFGTNLPQLGQPSSTGPSNSEHPQPAL
DPRSNDLARVPLKLSVPPSDGFPPAGGSAVQRWPPSWGLPAMDSWPPEDPWQMMAAAAEDRLGEA
LPEELSYLSSAAALAPGSGPLPGESSPDATGLSPEASLLHQDSESRRLPRSNSLGAGGKILSQRP
PWSLIHRVLPDHPWGTLNPSVSWGGGGPGTGWGTRPMPHPEGIWGINNQPPGTSWGNINRYPGGS
WGNINRYPGGSWGNINRYPGGSWGNIHLYPGINNPFPPGVLRPPGSSWNIPAGFPNPPSPRLQWG

Important features of the protein:

Signal peptide:

amino acids 1-26

Casein kinase II phosphorylation sites.

amino acids 56-59, 155-158

N-myristoylation sites.

amino acids 48-53, 220-225, 221-226, 224-229, 247-252, 258-263, 259-264, 269-274, 270-275, 280-285, 281-286, 305-310

App_ID=10063549 Page 216 of 320

AAGGAGAGGCCACCGGGACTTCAGTGTCTCCTCCATCCCAGGAGCGCAGTGGCCACTATGGGGTC
TGGGCTGCCCCTTGTCCTCCTCTTGACCCTCCTTGGCAGCTCACATGGAACAGGGCCGGGTATGA
CTTTGCAACTGAAGGTGAAGGAGTCTTTTCTGACAAATTCCTCCTATGAGTCCAGCTTCCTGGAA
TTGCTTGAAAAGCTCTGCCTCCTCCATCTCCCTTCAGGGACCAGCGTCACCCTCCACCATGC
AAGATCTCAACACCATGTTGTCTGCAACACATGACACCATTGAAGCCTGTGTCCTTCTTGGCCC
GGGCTTTTGGGCCGGGGATGCAGGAGGCAGGCCCCGACCCTGTCTTTCAGCAGGCCCCCACCCTC
CTGAGTGGCAATAAATAAAATTCGGTATGCTG

App_ID=10063549 Page 217 of 320

 ${\tt MGSGLPLVLLLTLLGSSHGTGPGMTLQLKLKESFLTNSSYESSFLELLEKLCLLLHLPSGTSVTL}\\ {\tt HHARSQHHVVCNT}$

Important features:

Signal peptide:

amino acids 1-19

N-glycosylation site.

amino acids 37-41

N-myristoylation sites.

amino acids 15-21, 19-25, 60-66

App_ID=10063549

App_ID=10063549 Page 219 of 320

 ${\tt MANPGLGLLLALGLPFLLARWGRAWGQIQTTSANENSTVLPSSTSSSSDGNLRPEAITAIIVVFS} \\ {\tt LLAALLLAVGLALLVRKLREKRQTEGTYRPSSEEQFSHAAEARAPQDSKETVQGCLPI}$

Important features:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 56-80

N-glycosylation site.

amino acids 36-40

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 86-90

Tyrosine kinase phosphorylation site.

amino acids 86-94

N-myristoylation sites.

amino acids 7-13, 26-32

App_ID=10063549 Page 220 of 320

TCAAATACTTCCTTCATTAAGCTGAATAATAATGGCTTTGAAGATATTGTCATTGTTATAGATCCTAGTGTGCCAGAA GATGAAAAATTGAACAAATAGAGGATATGGTGACTACAGCTTCTACGTACCTGTTTGAAGCCACAGAAAAAAAGA AACCATAAACATGCTGATGTTATAGTTGCACCACCTACACTCCCAGGTAGAGATGAACCATACACCAAGCAGTTCACA GAATGTGGAGAAAAGGCGAATACATTCACTTCACCCCTGACCTTCTACTTGGAAAAAAACAAAATGAATATGGACCA ${\tt CCAGGCAAACTGTTTGTCCATGAGTGGGCTCACCTCCGGTGGGGAGTGTTTGATGAGTACAATGAAGATCAGCCTTTC}$ TACCGTGCTAAGTCAAAAAAAATCGAAGCAACAAGGTGTTCCGCAGGTATCTCTGGTAGAAATAGAGTTTATAAGTGT CAAGGAGGCAGCTGTCTTAGTAGAGCATGCAGAATTGATTCTACAACAAAACTGTATGGAAAAGATTGTCAATTCTTT CCTGATAAAGTACAAACAGAAAAAGCATCCATAATGTTTATGCAAAGTATTGATTCTGTTGATTTTGTAACGAA AAAACCCATAATCAAGAAGCTCCAAGCCTACAAAACATAAAGTGCAATTTTAGAAGTACATGGGAGGTGATTAGCAAT AATAAGCTAATCCAAATAAAAAGCAGTGATGAAAGAAACACACTCATGGCAGGATTACCTACATATCCTCTGGGAGGA ACTTCCATCTGCTCTGGAATTAAATATGCATTTCAGGTGATTGGAGAGCTACATTCCCAACTCGATGGATCCGAAGTA $\tt CTGCTGATGATGGGGAGGATAACACTGCAAGTTCTTGTATTGATGAAGTGAAACAAAGTGGGGCCATTGTTCAT$ TTTATTGCTTTGGGAAGAGCTGCTGATGAAGCAGTAATAGAGATGAGCAAGATAACAGGAGGAAGTCATTTTTATGTT TCAGATGAAGCTCAGAACAATGGCCTCATTGATGCTTTTTGGGGCTCTTACATCAGGAAATACTGATCTCTCCCAGAAG TCCCTTCAGCTCGAAAGTAAGGGATTAACACTGAATAGTAATGCCTGGATGAACGACACTGTCATAATTGATAGTACA GTGGGAAAGGACACGTTCTTTCTCATCACATGGAACAGTCTGCCTCCCAGTATTTCTCTCTGGGATCCCAGTGGAACA ATAATGGAAAATTTCACAGTGGATGCAACTTCCAAAATGGCCTATCTCAGTATTCCAGGAACTGCAAAGGTGGGCACT TGGGCATACAATCTTCAAGCCAAAGCGAACCCAGAAACATTAACTATTACAGTAACTTCTCGAGCAGCAAATTCTTCT GTGCCTCCAATCACAGTGAATGCTAAAATGAATAAGGACGTAAACAGTTTCCCCAGCCCAATGATTGTTTACGCAGAA ATTCTACAAGGATATGTACCTGTTCTTGGAGCCAATGTGACTGCTTTCATTGAATCACAGAATGGACATACAGAAGTT TTGGAACTTTTGGATAATGGTGCAGGCGCTGATTCTTTCAAGAATGATGGAGTCTACTCCAGGTATTTTACAGCATAT ACAGAAAATGGCAGATATAGCTTAAAAGTTCGGGCTCATGGAGGAGCAAACACTGCCAGGCTAAAATTACGGCCTCCA CTGAATAGAGCCGCGTACATACCAGGCTGGGTAGTGAACGGGGAAATTGAAGCAAACCCGCCAAGACCTGAAATTGAT GAGGATACTCAGACCACCTTGGAGGATTTCAGCCGAACAGCATCCGGAGGTGCATTTGTGGTATCACAAGTCCCAAGC CTTCCCTTGCCTGACCAATACCCACCAAGTCAAATCACAGACCTTGATGCCACAGTTCATGAGGATAAGATTATTCTT ACATGGACAGCACCAGGAGATAATTTTGATGTTGGAAAAGTTCAACGTTATATCATAAGAATAAGTGCAAGTATTCTT GATCTAAGAGACAGTTTTGATGATGCTCTTCAAGTAAATACTACTGATCTGTCACCAAAGGAGGCCAACTCCAAGGAA AGCAATTTGACATCAAAAGTATCCAACATTGCACAAGTAACTTTGTTTATCCCTCAAGCAAATCCTGATGACATTGAT CCTACACCTACTCCTACTCCTACTCCTGATAAAAGTCATAATTCTGGAGTTAATATTTCTACGCTGGTATTG $\texttt{TCTGTGATTGGGTCTGTTATTTTAACTTTATTTTAAGTACCACCATT\underline{\textbf{\textit{TGA}}}\texttt{ACCTTAACGAAGAAAAAAATCTTC}$ ATCCTTTTTCATACTGATACCTGGTTGTATATTATTTGATGCAACAGTTTTCTGAAATGATATTTCAAATTGCATCAA

App ID=10063549 Page 221 of 320

MGLFRGFVFLLVLCLLHQSNTSFIKLNNNGFEDIVIVIDPSVPEDEKIIEQIEDMVTTASTYLFE
ATEKRFFFKNVSILIPENWKENPQYKRPKHENHKHADVIVAPPTLPGRDEPYTKQFTECGEKGEY
IHFTPDLLLGKKQNEYGPPGKLFVHEWAHLRWGVFDEYNEDQPFYRAKSKKIEATRCSAGISGRN
RVYKCQGGSCLSRACRIDSTTKLYGKDCQFFPDKVQTEKASIMFMQSIDSVVEFCNEKTHNQEAP
SLQNIKCNFRSTWEVISNSEDFKNTIPMVTPPPPPVFSLLKISQRIVCLVLDKSGSMGGKDRLNR
MNQAAKHFLLQTVENGSWVGMVHFDSTATIVNKLIQIKSSDERNTLMAGLPTYPLGGTSICSGIK
YAFQVIGELHSQLDGSEVLLLTDGEDNTASSCIDEVKQSGAIVHFIALGRAADEAVIEMSKITGG
SHFYVSDEAQNNGLIDAFGALTSGNTDLSQKSLQLESKGLTLNSNAWMNDTVIIDSTVGKDTFFL
ITWNSLPPSISLWDPSGTIMENFTVDATSKMAYLSIPGTAKVGTWAYNLQAKANPETLTITVTSR
AANSSVPPITVNAKMNKDVNSFPSPMIVYAEILQGYVPVLGANVTAFIESQNGHTEVLELLDNGA
GADSFKNDGVYSRYFTAYTENGRYSLKVRAHGGANTARLKLRPPLNRAAYIPGWVVNGEIEANPP
RPEIDEDTQTTLEDFSRTASGGAFVVSQVPSLPLPDQYPPSQITDLDATVHEDKIILTWTAPGDN
FDVGKVQRYIIRISASILDLRDSFDDALQVNTTDLSPKEANSKESFAFKPENISEENATHIFIAI
KSIDKSNLTSKVSNIAQVTLFIPQANPDDIDPTPTPTPTPDKSHNSGVNISTLVLSVIGSVVI
VNFILSTTI

Signal peptide:

amino acids 1-21

Putative transmembrane domains:

amino acids 284-300, 617-633

Leucine zipper pattern.

amino acids 469-491, 476-498

N-glycosylation site.

amino acids 20-24, 75-79, 340-344, 504-508, 542-546, 588-592, 628-632, 811-815, 832-836, 837-841, 852-856, 896-900

App_ID=10063549 Page 222 of 320

CAACAGGTGTCATCTTTTTGATCTCGTGTGTGGCTGCCTTCCTATTTCAAGGAAAGACGCCAAGGTAATTTTGACCCA GAGGAGCAATGATGTAGCCACCTCCTAACCTTCCTTGTAACCCCCAGTTATGCCAGGATTTACTAGAGAGTGTCA ACTCAACCAGCAAGCGGCTCCTTCGGCTTAACTTGTGGTTGGAGGAGAACCTTTGTGGGGCTGCGTTCTCTTAGCA AGTAGAGAAGCTGCTCTGTGTGGTGGTTAACTCCAAGAGGCAGAACTCGTTCTAGAAGGAAATGGATGCAAGCAGCTC ${\tt ACCGGTTCTGGACGCATGGCTGATTCCTGA} \underline{{\tt ATG}} \\ {\tt ATGATGGTTCGCCGGGGGGCTGCTTGCGTGGATTTCCCGGGTGGTG} \\$ $\tt GTTTTGCTGGTGCTCTCTGTTGCTATCTCTGTCCTGTACATGTTGGCCTGCACCCCAAAAGGTGACGAGGAGCAG$ CTGGCACTGCCCAGGGCCAACAGCCCCACGGGGAAGGAGGGGTACCAGGCCGTCCTTCAGGAGTGGGAGGAGCAC AATGGGCAGTACCAAGCCAGCGATGCTGGCCTGGGTCTGGACAGGAGCCCCCCAGAGAAAACCCAGGCCGACCTC CCTTTCGATAGCTTTACTCTACAGAAGGTGTACCAGCTGGAGACTGGCCTTACCCGCCACCCCGAGGAGAAGCCTGTG AGGAAGGACAAGCGGGATGAGTTGGTGGAAGCCATTGAATCAGCCTTGGAGACCCTGAACAATCCTGCAGAGAACAGC $\tt CCCAATCACCGTCCTTACACGGCCTCTGATTTCATAGAAGGGATCTACCGAACAGAAAGGGACAAAGGGACATTGTAT$ GTGAAAAATGAAAAGCTCAACATGGCCAACACGCTTATCAATGTTATCGTGCCTCTAGCAAAAAGGGTGGACAAGTTC CGGCAGTTCATGCAGAATTTCAGGGAGATGTGCATTGAGCAGGATGGGAGAGTCCATCTCACTGTTGTTTACTTTGGG AAAGAAGAAATAAATGAAGTCAAAGGAATACTTGAAAACACTTCCAAAGCTGCCAACTTCAGGAACTTTACCTTCATC CAGCTGAATGGAGAATTTTCTCGGGGAAAGGGACTTGATGTTGGAGCCCGCTTCTGGAAGGGAAGCAACGTCCTTCTC TTTTTCTGTGATGTGGACATCTACTTCACATCTGAATTCCTCAATACGTGTAGGCTGAATACACAGCCAGGGAAGAAG TTCATCAATATAGGTGGGTTTGATCTGGACATCAAAGGCTGGGGCGGAGAGGATGTGCACCTTTATCGCAAGTATCTC CACAGCAACCTCATAGTGGTACGGACGCCTGTGCGAGGACTCTTCCACCTCTGGCATGAGAAGCGCTGCATGGACGAG CTGACCCCGAGCAGTACAAGATGTGCATGCAGTCCAAGGCCATGAACGAGGCATCCCACGGCCAGCTGGGCATGCTG GAAGGATTGTGGGAGACACTTTTTCTTTCCTTTTGCAATTACTGAAAGTGGCTGCAACAGAGAAAAGACTTCCATAAA GGACGACAAAAGAATTGGACTGATGGGTCAGAGATGAGAAAGCCTCCGATTTCTCTCTGTTGGGCTTTTTACAACAGA GCCTATCAGCAGGGCTCTAGTTTCTAGGAATGCTAAAATATCAGAAGGCAGGAGAGGAGATAGGCTTATTATGATACT AGTGAGTACATTAAGTAAAATAAAATGGACCAGAAAAGAAAAGAAACCATAAATATCGTGTCATATTTTCCCCAAGAT TTTTTTCCCTTGTGAGTTATAGTCTGCTTATTTAATTACCACTTTGCAAGCCTTACAAGAGAGCACAAGTTGGCCTACÄTTTTTATATTTTTTAAGAAGATACTTTGAGATGCATTATGAGAACTTTCAGTTCAAAGCATCAAATTGATGCCATAT AATACAGACGTACAGATACTTTCTCTGAAGAGTATTTTCGAAGAGGAGCAACTGAACACTGGAGGAAAAGAAAATGAC ACTTTCTGCTTTACAGAAAAGGAAACTCATTCAGACTGGTGATATCGTGATGTACCTAAAAGTCAGAAACCACATTTT GAAAGATCAATCCATCTGCCAGAATCTAGTGGGATGGAAGTTTTTGCTACATGTTATCCACCCCAGGCCAGGTGGAAG TAACTGAATTATTTTTTAAATTAAGCAGTTCTACTCAATCACCAAGATGCTTCTGAAAATTGCATTTTATTACCATTT $\tt ATGCATGAGCTAATTATCTCTTTGAGTCCTTGCTTCTGTTTGCTCACAGTAAACTCATTGTTTAAAAGCTTCAAGAAC$ CCATGAATGGAAGGTGGTATTGCACAGCTAATAAAATATGATTTGTGGATATGAA

App_ID=10063549 Page 223 of 320

MMMVRRGLLAWISRVVVLLVLLCCAISVLYMLACTPKGDEEQLALPRANSPTGKEGYQAVLQEWE
EQHRNYVSSLKRQIAQLKEELQERSEQLRNGQYQASDAAGLGLDRSPPEKTQADLLAFLHSQVDK
AEVNAGVKLATEYAAVPFDSFTLQKVYQLETGLTRHPEEKPVRKDKRDELVEAIESALETLNNPA
ENSPNHRPYTASDFIEGIYRTERDKGTLYELTFKGDHKHEFKRLILFRPFSPIMKVKNEKLNMAN
TLINVIVPLAKRVDKFRQFMQNFREMCIEQDGRVHLTVVYFGKEEINEVKGILENTSKAANFRNF
TFIQLNGEFSRGKGLDVGARFWKGSNVLLFFCDVDIYFTSEFLNTCRLNTQPGKKVFYPVLFSQY
NPGIIYGHHDAVPPLEQQLVIKKETGFWRDFGFGMTCQYRSDFINIGGFDLDIKGWGGEDVHLYR
KYLHSNLIVVRTPVRGLFHLWHEKRCMDELTPEQYKMCMQSKAMNEASHGQLGMLVFRHEIEAHL
RKQKQKTSSKKT

Important features:

Signal peptide:

amino acids 1-27

N-glycosylation sites.

amino acids 315-319, 324-328

N-myristoylation sites.

amino acids 96-102, 136-142, 212-218, 311-317, 339-345, 393-399

Amidation site.

amino acids 377-381

App ID=10063549 Page 224 of 320

GAGACTGCAGAGGGAGATAAAGAGAGAGGGCAAAGAGGCAGCAAGAGATTTGTCCTGGGGATCCA GAAACCCATGATACCCTACTGAACACCGAATCCCCTGGAAGCCCACAGAGACAGAGACAGCAAGA CCTCCCTCTCTCTGCCTGTCCTAGTCCTCTAGTCCTCAAATTCCCAGTCCCCTGCACCCCTTC GTCAACACTGGACGTATGAGGGCCCACATGGTCAGGACCATTGGCCAGCCTCTTACCCTGAGTGT TGCTCTGCAGCCCCACGGATATGACCAGCCTGGCACCGAGCCTTTGGACCTGCACAACAATGGCC ACACAGTGCAACTCTCTCTGCCCTCTACCCTGTATCTGGGTGGACTTCCCCGAAAATATGTAGCT GCCCAGCTCCACCTGCACTGGGGTCAGAAAGGATCCCCAGGGGGGTCAGAACACCAGATCAACAG TGAAGCCACATTTGCAGAGCTCCACATTGTACATTATGACTCTGATTCCTATGACAGCTTGAGTG AATATAGCTTATGAACACATTCTGAGTCACTTGCATGAAGTCAGGCATAAAGATCAGAAGACCTC AGTGCCTCCCTTCAACCTAAGAGAGCTGCTCCCCAAACAGCTGGGGCAGTACTTCCGCTACAATG GCTCGCTCACAACTCCCCCTTGCTACCAGAGTGTGCTCTGGACAGTTTTTTATAGAAGGTCCCAG ATTTCAATGGAACAGCTGGAAAAGCTTCAGGGGACATTGTTCTCCACAGAAGAGGAGCCCTCTAA GCTTCTGGTACAGAACTACCGAGCCCTTCAGCCTCTCAATCAGCGCATGGTCTTTGCTTCTTTCA TGTCTCTGCCTTCTCCTGGCTGTTTATTTCATTGCTAGAAAGATTCGGAAGAAGAGGCTGGAAAA $\verb|CCGAAAGAGTGTGGTCTTCACCTCAGCACAAGCCACGACTGAGGCA{}{\textbf{TAA}}{\textbf{A}}{\textbf{TTCCTTCTCAGATAC}}|$ CATGGATGTGGATGACTTCCCTTCATGCCTATCAGGAAGCCTCTAAAATGGGGTGTAGGATCTGG CCAGAAACACTGTAGGAGTAGTAAGCAGATGTCCTCCTTCCCCTGGACATCTCTTAGAGAGGAAT GGACCCAGGCTGTCATTCCAGGAAGAACTGCAGAGCCTTCAGCCTCTCCAAACATGTAGGAGGAA ATGAGGAAATCGCTGTTGTTAATGCAGAGANCAAACTCTGTTTAGTTGCAGGGGAAGTTTGGG ATATACCCCAAAGTCCTCTACCCCCTCACTTTTATGGCCCTTTCCCTAGATATACTGCGGGATCT CTCCTTAGGATAAAGAGTTGCTGTTGAAGTTGTATATTTTTGATCAATATATTTTGGAAATTAAAG TTTCTGACTTT

App_ID=10063549

TGCCGCTGCCGCCGCTGCTGTTGCTCCTGGCGGCGCCTTGGGGACGGCAGTTCCCTGTGTC TCTGGTGGTTTGCCTAAACCTGCAAACATCACCTTCTTATCCATCAACATGAAGA**ATG**TCCTACA $\tt ATTGGCCCACCAGAGGTGGCACTGACTACAGATGAGAAGTCCATTTCTGTTGTCCTGACAGCTCC$ AGAGAAGTGGAAGAAATCCAGAAGACCTTCCTGTTTCCATGCAACAAATATACTCCAATCTGA ACGCTGGTGCTCACCTGGCTGGAGCCGAACACTCTTTACTGCGTACACGTGGAGTCCTTCGTCCC CAGAGTTCAAGGCTAAAATCATCTTCTGGTATGTTTTTGCCCATATCTATTACCGTGTTTCTTTTT TCTGTGATGGGCTATTCCATCTACCGATATATCCACGTTGGCAAAGAGAAAACACCCAGCAAATTT GATTTTGATTTATGGAAATGAATTTGACAAAAGATTCTTTGTGCCTGCTGAAAAAATCGTGATTA ACTTTATCACCCTCAATATCTCGGATGATTCTAAAATTTCTCATCAGGATATGAGTTTACTGGGA AAAAGCAGTGATGTATCCAGCCTTAATGATCCTCAGCCCAGCGGGAACCTGAGGCCCCCTCAGGA GGAAGAGGAGGTGAAACATTTAGGGTATGCTTCGCATTTGATGGAAATTTTTTTGTGACTCTGAAG AAAACACGGAAGGTACTTCTCTCACCCAGCAAGAGTCCCTCAGCAGAACAATACCCCCGGATAAA ACAGTCATTGAATATGAATATGATGTCAGAACCACTGACATTTGTGCGGGGCCTGAAGAGCAGGA TCTTGGGCCCGCAAACGTTACAGTACTCATACACCCCTCAGCTCCAAGACTTAGACCCCCTGGCG CAGGAGCACACAGACTCGGAGGAGGGGCCGGAGGAAGAGCCATCGACCACGCTGGTCGACTGGGA TCCCCAAACTGGCAGGCTGTGTATTCCTTCGCTGTCCAGCTTCGACCAGGATTCAGAGGGCTGCG CCAGACAGGCCACCAGGAGAAAATGAAACCTATCTCATGCAATTCATGGAGGAATGGGGGTTATA TGTGCAGATGGAAAACTGATGCCAACACTTCCTTTTGCCTTTTGTTTCCTGTGCAAACAAGTGAG TCACCCCTTTGATCCCAGCCATAAAGTACCTGGGATGAAAGAAGTTTTTTCCAGTTTGTCAGTGT GGTCTCTTAACAATGATGGTGGGCCTCTGGAGTCCAGGGGCTGGCCGGTTGTTCTATGCAGAGAA

App ID=10063549 Page 227 of 320

MSYNGLHQRVFKELKLLTLCSISSQIGPPEVALTTDEKSISVVLTAPEKWKRNPEDLPVSMQQIY
SNLKYNVSVLNTKSNRTWSQCVTNHTLVLTWLEPNTLYCVHVESFVPGPPRRAQPSEKQCARTLK
DQSSEFKAKIIFWYVLPISITVFLFSVMGYSIYRYIHVGKEKHPANLILIYGNEFDKRFFVPAEK
IVINFITLNISDDSKISHQDMSLLGKSSDVSSLNDPQPSGNLRPPQEEEEVKHLGYASHLMEIFC
DSEENTEGTSLTQQESLSRTIPPDKTVIEYEYDVRTTDICAGPEEQELSLQEEVSTQGTLLESQA
ALAVLGPQTLQYSYTPQLQDLDPLAQEHTDSEEGPEEEPSTTLVDWDPQTGRLCIPSLSSFDQDS
EGCEPSEGDGLGEEGLLSRLYEEPAPDRPPGENETYLMQFMEEWGLYVQMEN

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 140-163

N-glycosylation sites.

amino acids 71-74, 80-83, 89-92, 204-207, 423-426

GAGGAGCGGGCCGAGGACTCCAGCGTGCCCAGGTCTGGCATCCTGCACTTGCTGCCCTCTGACAC CAAGCCACCTCAGTCCCACTGCAGTTCTCATCCTCGGCCCAAAAGTCATCAAAGAAAAGCTGAC ACAGGAGCTGAAGGACCACAACGCCACCAGCATCCTGCAGCAGCTGCCGCTGCTCAGTGCCATGC GGGAAAAGCCAGCCGGAGGCATCCCTGTGCTGGGCAGCCTGGTGAACACCGTCCTGAAGCACATC ATCTGGCTGAAGGTCATCACAGCTAACATCCTCCAGCTGCAGGTGAAGCCCTCGGCCAATGACCA GGAGCTGCTAGTCAAGATCCCCCTGGACATGGTGGCTGGATTCAACACGCCCCTGGTCAAGACCA TCGTGGAGTTCCACATGACGACTGAGGCCCAAGCCACCATCCGCATGGACACCAGTGCAAGTGGC CCCACCGCCTGGTCCTCAGTGACTGTGCCACCAGCCATGGGAGCCTGCGCATCCAACTGCTGTA TAAGCTCTCCTTGCTGAACGCCTTAGCTAAGCAGGTCATGAACCTCCTAGTGCCATCCCTGC $\tt CTCCTGCAGCTGGTGAAGGTGCCCATTTCCCTCAGCATTGACCGTCTGGAGTTTGACCTTCTGTA$ TCCTGCCATCAAGGGTGACACCATTCAGCTCTACCTGGGGGCCAAGTTGTTGGACTCACAGGGAA AGGTGACCAAGTGGTTCAATAACTCTGCAGCTTCCCTGACAATGCCCACCCTGGACAACATCCCG ${\tt TTCAGCCTCATCGTGAGTCAGGACGTGGTGAAAGCTGCAGTGGCTGCTGTGCTCTCCAGAAGA}$ ATTCATGGTCCTGTTGGACTCTGTGCTTCCTGAGAGTGCCCATCGGCTGAAGTCAAGCATCGGGC TGATCAATGAAAAGGCTGCAGATAAGCTGGGATCTACCCAGATCGTGAAGATCCTAACTCAGGAC ACTCCCGAGTTTTTTATAGACCAAGGCCATGCCAAGGTGGCCCAACTGATCGTGCTGGAAGTGTT TCCCTCCAGTGAAGCCCTCCGCCCTTTGTTCACCCTGGGCATCGAAGCCAGCTCGGAAGCTCAGT TTTACACCAAAGGTGACCAACTTATACTCAACTTGAATAACATCAGCTCTGATCGGATCCAGCTG ATGAACTCTGGGATTGGCTGGTTCCAACCTGATGTTCTGAAAAACATCATCACTGAGATCATCCA CTCCATCCTGCCGAACCAGAATGGCAAATTAAGATCTGGGGTCCCAGTGTCATTGGTGAAGG CCTTGGGATTCGAGGCAGCTGAGTCCTCACTGACCAAGGATGCCCTTGTGCTTACTCCAGCCTCC $\tt TTGTGGAAACCCAGCTCTCCTGTCTCCCAG\textbf{TGA} AGACTTGGATGGCAGCCATCAGGGAAGGCTGG$ **CCTGTGAAAAA**

App_ID=10063549 Page 229 of 320

MAGPWTFTLLCGLLAATLIQATLSPTAVLILGPKVIKEKLTQELKDHNATSILQQLPLLSAMREK
PAGGIPVLGSLVNTVLKHIIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVE
FHMTTEAQATIRMDTSASGPTRLVLSDCATSHGSLRIQLLYKLSFLVNALAKQVMNLLVPSLPNL
VKNQLCPVIEASFNGMYADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAKLLDSQGKVT
KWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVLPESAHRLKSSIGLIN
EKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSEALRPLFTLGIEASSEAQFYT
KGDQLILNLNNISSDRIQLMNSGIGWFQPDVLKNIITEIIHSILLPNQNGKLRSGVPVSLVKALG
FEAAESSLTKDALVLTPASLWKPSSPVSQ

Important features of the protein:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 48-51, 264-267, 401-404

Glycosaminoglycan attachment site.

amino acids 412-415

LBP / BPI / CETP family proteins.

amino acids 407-457

App ID=10063549 Page 230 of 320

GAGAGAAGTCAGCCTGGCAGAGAGACTCTGAAATGAGGGATTAGAGGTGTTCAAGGAGCAAGAGC $\verb|TTCAGCCTGAAGACAAGGGAGCAGTCCCTGAAGACGCTTCTACTGAGAGGTCTGCC| \textbf{ATG} GCCTCT|$ CTTGGCCTCCAACTTGTGGGCTACATCCTAGGCCTTCTGGGGCTTTTGGGCACACTGGTTGCCAT GCTGCTCCCCAGCTGGAAAACAAGTTCTTATGTCGGTGCCAGCATTGTGACAGCAGTTGGCTTCT ACCCTTCTGGGCCTGCCCGCTGACATCCAGGCTGCCCAGGCCATGATGGTGACATCCAGTGCAAT CTCCTCCTGGCCTGCATTATCTCTGTGGTGGGCATGAGATGCACAGTCTTCTGCCAGGAATCCC GAGCCAAAGACAGAGTGGCGGTAGCAGGTGGAGTCTTTTTCATCCTTGGAGGCCTCCTGGGATTC ATTCCTGTTGCCTGGAATCTTCATGGGATCCTACGGGACTTCTACTCACCACTGGTGCCTGACAG CATGAAATTTGAGATTGGAGAGGCTCTTTACTTGGGCATTATTTCTTCCCTGTTCTCCCTGATAG CTGGAATCATCCTCTGCTTTTCCTGCTCATCCCAGAGAAATCGCTCCAACTACTACGATGCCTAC CAAGCCCAACCTCTTGCCACAAGGAGCTCTCCAAGGCCTGGTCAACCTCCCAAAGTCAAGAGTGA GTTCAATTCCTACAGCCTGACAGGGTATGTGTGAAGAACCAGGGGCCAGAGCTGGGGGGTGGCTG GGTCTGTGAAAAACAGTGGACAGCCCCGAGGGCCACAGGTGAGGGACACTACCACTGGATCGT GTCAGAAGGTGCTGAGGATAGACTGACTTTGGCCATTGGATTGAGCAAAGGCAGAAATGGGG GCTAGTGTAACAGCATGCAGGTTGAATTGCCAAGGATGCTCGCCATGCCAGCCTTTCTGTTTTCC TCACCTTGCTGCTCCCCTAAGTCCCCAACCCTCAACTTGAAACCCCATTCCCTTAAGCCA GGACTCAGAGGATCCCTTTGCCCTCTGGTTTACCTGGGACTCCATCCCCAAACCCACTAATCACA GCTGGGGATGGGAAGGAAGCAGTGGCTTTTGTGGGCATTGCTCTAACCTACTTCTCAAGCTTC CCTCCAAAGAAACTGATTGGCCCTGGAACCTCCATCCCACTCTTGTTATGACTCCACAGTGTCCA GACTAATTTGTGCATGAACTGAAATAAAACCATCCTACGGTATCCAGGGAACAGAAAGCAGGATG CAGGATGGGAGGACAGGCAGCCTGGGACATTTAAAAAAATA

MASLGLQLVGYILGLLGLLGTLVAMLLPSWKTSSYVGASIVTAVGFSKGLWMECATHSTGITQCD
IYSTLLGLPADIQAAQAMMVTSSAISSLACIISVVGMRCTVFCQESRAKDRVAVAGGVFFILGGL
LGFIPVAWNLHGILRDFYSPLVPDSMKFEIGEALYLGIISSLFSLIAGIILCFSCSSQRNRSNYY
DAYQAQPLATRSSPRPGQPPKVKSEFNSYSLTGYV

Important features of the protein:

Signal peptide:

amino acids 1-24

Transmembrane domains:

amino acids 82-102, 117-140, 163-182

N-glycosylation site.

amino acids 190-193

PMP-22 / EMP / MP20 family proteins.

amino acids 46-59

CCCGCGTTCTCTTCCACCTTTCTCTTCCCACCTTAGACCTCCCTTCCTGCCCTCCTTTCCT GCCCACCGCTGCTTCCTGGCCCTTCTCCGACCCCGCTCTAGCAGCAGACCTCCTGGGGTCTGTGG CCATGGGAAGAGATACTCCCCCGGCGAGAGCTGGCACCCCTACTTGGAGCCACAAGGCCTGATGT ACTGCCTGCGCTGTACCTGCTCAGAGGGCGCCCATGTGAGTTGTTACCGCCTCCACTGTCCGCCT GTCCACTGCCCCAGCCTGTGACGGAGCCACAGCAATGCTGTCCCAAGTGTGTGGAACCTCACAC TCCCTCTGGACTCCGGGCCCCACCAAAGTCCTGCCAGCACAACGGGACCATGTACCAACACGGAG AGATCTTCAGTGCCCATGAGCTGTTCCCCTCCCGCCTGCCCAACCAGTGTGTCCTCTGCAGCTGC ACAGAGGGCCAGATCTACTGCGGCCTCACAACCTGCCCGAACCAGGCTGCCCAGCACCCCTCCC ACTGCCAGACTCCTGCCAAGCCTGCAAAGATGAGGCAAGTGAGCAATCGGATGAAGAGGACA GTGTGCAGTCGCTCCATGGGGTGAGACATCCTCAGGATCCATGTTCCAGTGATGCTGGGAGAAAG AGAGGCCCGGGCACCCCACTGGCCTCAGCGCCCCTCTGAGCTTCATCCCTCGCCACTT CAGACCCAAGGGAGCAGCACCACCTGTCAAGATCGTCCTGAAGGAGAAACATAAGAAAGCCT GTGTGCATGGCGGAAGACGTACTCCCACGGGGAGGTGTGGCACCCGGCCTTCCGTGCCTTCGGC CCCTTGCCCTGCATCCTATGCACCTGTGAGGATGGCCGCCAGGACTGCCAGCGTGTGACCTGTCC CACCGAGTACCCCTGCCGTCACCCCGAGAAAGTGGCTGGGAAGTGCTGCAAGATTTGCCCAGAGG ACAAAGCAGACCCTGGCCACAGTGAGATCAGTTCTACCAGGTGTCCCAAGGCACCGGGCCGGGTC CTCGTCCACACATCGGTATCCCCAAGCCCAGACAACCTGCGTCGCTTTGCCCTGGAACACGAGGC CTCGGACTTGGTGGAGATCTACCTCTGGAAGCTGGTAAAAGATGAGGAAACTGAGGCTCAGAGAG GTGAAGTACCTGGCCCAAGGCCACACAGCCAGAATCTTCCACTTGACTCAGATCAAGAAAGTCAG GAAGCAAGACTTCCAGAAAGAGGCACAGCACTTCCGACTGCTCGCTGGCCCCCACGAAGGTCACT GGAACGTCTTCCTAGCCCAGACCCTGGAGCTGAAGGTCACGGCCAGTCCAGACAAAGTGACCAAG

MYPEVRVLSSLLGLALLWFPLDSHARARPDMFCLFHGKRYSPGESWHPYLEPQGLMYCLRCTCSE
GAHVSCYRLHCPPVHCPQPVTEPQQCCPKCVEPHTPSGLRAPPKSCQHNGTMYQHGEIFSAHELF
PSRLPNQCVLCSCTEGQIYCGLTTCPEPGCPAPLPLPDSCCQACKDEASEQSDEEDSVQSLHGVR
HPQDPCSSDAGRKRGPGTPAPTGLSAPLSFIPRHFRPKGAGSTTVKIVLKEKHKKACVHGGKTYS
HGEVWHPAFRAFGPLPCILCTCEDGRQDCQRVTCPTEYPCRHPEKVAGKCCKICPEDKADPGHSE
ISSTRCPKAPGRVLVHTSVSPSPDNLRRFALEHEASDLVEIYLWKLVKDEETEAQRGEVPGPRPH
SQNLPLDSDQESQEARLPERGTALPTARWPPRRSLERLPSPDPGAEGHGQSRQSDQDITKT

Signal peptide:

amino acids 1-25

App_ID=10063549 Page 234 of 320

GACAGCTGTGTCTCGATGGAGTAGACTCTCAGAACAGCGCAGTTTGCCCTCCGCTCACGCAGAGCCTCTCC ${\tt TCCGTTTCCATGCCGTGAGGTCCATTCACAGAACACATCC{\bf ATG}GCTCTCATGCTCAGTTTGGTTCTGAGTC}$ TCCTCAAGCTGGGATCAGGGCAGTGGCAGGTGTTTGGGCCAGACAAGCCTGTCCAGGCCTTGGTGGGGGAG GACGCAGCATTCTCCTGTTTCCTGTCTCCTAAGACCAATGCAGAGGCCATGGAAGTGCGGTTCTTCAGGGG ${\tt CCAGTTCTCTAGCGTGGTCCACCTCTACAGGGACGGGAAGGACCAGCCATTTATGCAGATGCCACAGTATC}$ AAGGCAGGACAAAACTGGTGAAGGATTCTATTGCGGAGGGGCGCATCTCTCTGAGGCTGGAAAACATTACT GTGTTGGATGCTGGCCTCTATGGGTGCAGGATTAGTTCCCAGTCTTACTACCAGAAGGCCATCTGGGAGCT ACAGGTGTCAGCACTGGGCTCAGTTCCTCTCATTTCCATCACGGGATATGTTGATAGAGACATCCAGCTAC ACAGACTCCAGGACAAACAGAGACATGCATGGCCTGTTTGATGTGGAGATCTCTCTGACCGTCCAAGAGAA CGCCGGGAGCATATCCTGTTCCATGCGGCATGCTCATCTGAGCCGAGAGGTGGAATCCAGGGTACAGATAG GAGATACCTTTTTCGAGCCTATATCGTGGCACCTGGCTACCAAAGTACTGGGAATACTCTGCTGTGGCCTA TTTTTTGGCATTGTTGGACTGAAGATTTCTTCTCCAAATTCCAGTGGAAAATCCAGGCGGAACTGGACTG GAGAAGAAAGCACGGACAGGCAGAATTGAGAGACGCCCGGAAACACGCAGTGGAGGTGACTCTGGATCCAG AGACGGCTCACCCGAAGCTCTGCGTTTCTGATCTGAAAACTGTAACCCATAGAAAAGCTCCCCAGGAGGTG CCTCACTCTGAGAAGAGTTTACAAGGAAGAGTGTGGTGGCTTCTCAGAGTTTCCAAGCAGGGAAACATTA CTGGGAGGTGGACGGACGACAATAAAAGGTGGCGCGTGGGAGTGTGCCGGGATGATGTGGACAGGAGGA AGGAGTACGTGACTTGTCTCCCGATCATGGGTACTGGGTCCTCAGACTGAATGGAGAACATTTGTATTTC ACATTAAATCCCCGTTTTATCAGCGTCTTCCCCAGGACCCCACCTACAAAAATAGGGGTCTTCCTGGACTA AAGGCTTATTGAGGCCCTACATTGAGTATCCGTCCTATAATGAGCAAAATGGAACTCCCATAGTCATCTGC CCAGTCACCCAGGAATCAGAGAAAGAGGCCTCTTGGCAAAGGGCCTCTGCAATCCCAGAGACAAGCAACAG TGAGTCCTCCTCACAGGCAACCACGCCCTTCCTCCCCAGGGGTGAAATGTAGGATGAATCACATCCCACAT TCTTCTTTAGGGATATTAAGGTCTCTCCCAGATCCAAAGTCCCGCAGCAGCCGGCCAAGGTGGCTTCCA CTGACATTACATTTAGTTTGCTCTCACTCCATCTGGCTAAGTGATCTTGAAATACCACCTCTCAGGTGAAG AACCGTCAGGAATTCCCATCTCACAGGCTGTGGTGTAGATTAAGTAGACAAGGAATGTGAATAATGCTTAG ATCTTATTGATGACAGAGTGTATCCTAATGGTTTGTTCATTATATTACACTTTCAGTAAAAAAA

MALMLSLVLSLLKLGSGQWQVFGPDKPVQALVGEDAAFSCFLSPKTNAEAMEVRFFRGQFSSVVH
LYRDGKDQPFMQMPQYQGRTKLVKDSIAEGRISLRLENITVLDAGLYGCRISSQSYYQKAIWELQ
VSALGSVPLISITGYVDRDIQLLCQSSGWFPRPTAKWKGPQGQDLSTDSRTNRDMHGLFDVEISL
TVQENAGSISCSMRHAHLSREVESRVQIGDTFFEPISWHLATKVLGILCCGLFFGIVGLKIFFSK
FQWKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVTHRKAPQEVPHSEKRF
TRKSVVASQSFQAGKHYWEVDGGHNKRWRVGVCRDDVDRRKEYVTLSPDHGYWVLRLNGEHLYFT
LNPRFISVFPRTPPTKIGVFLDYECGTISFFNINDQSLIYTLTCRFEGLLRPYIEYPSYNEQNGT
PIVICPVTQESEKEASWQRASAIPETSNSESSSQATTPFLPRGEM

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 239-255

AACAGACGTTCCCTCGCGGCCCTGGCACCTCTAACCCCAGAC ATG CTGCTGCTGCTGCCCCTGCTCTGGGGGAGGGAGGGCGGAAGGACAGCAAGTAAACTGCTGACGATGCAGAGTTCCGTGA CGGTGCAGGAAGGCCTGTGTGTCCATGTGCCCTGCTCCTTCTCCTACCCCTCGCATGGCTGGATT TACCCTGGCCCAGTAGTTCATGGCTACTGGTTCCGGGAAGGGGCCAATACAGACCAGGATGCTCC AGTGGCCACAAACAACCCAGCTCGGGCAGTGTGGGAGGAGACTCGGGACCGATTCCACCTCCTTG GGGACCCACATACCAAGAATTGCACCCTGAGCATCAGAGATGCCAGAAGAAGTGATGCGGGGAGA TACTTCTTTCGTATGGAGAAGGAAGTATAAAATGGAATTATAAACATCACCGGCTCTCTGTGAA TGTGACAGCCTTGACCCACAGGCCCAACATCCTCATCCCAGGCACCCTGGAGTCCGGCTGCCCC AGAATCTGACCTGCTCTGTGCCCTGGGCCTGTGAGCAGGGGACACCCCCTATGATCTCCTGGATA GGGACCTCCGTGTCCCCCTGGACCCCTCCACCACCCGCTCCTCGGTGCTCACCCTCATCCCACA GCCCAGGACCATGGCACCAGCCTCACCTGTCAGGTGACCTTCCCTGGGGCCAGCGTGACCACGA ACAAGACCGTCCATCTCAACGTGTCCTACCCGCCTCAGAACTTGACCATGACTGTCTTCCAAGGA GACGGCACAGTATCCACAGTCTTGGGAAATGGCTCATCTCTGTCACTCCCAGAGGGCCAGTCTCT GCGCCTGGTCTGTGCAGTTGATGCAGTTGACAGCAATCCCCCTGCCAGGCTGAGCCTGAGCTGGA GAGGCCTGACCCTGTGCCCCTCACAGCCCTCAAACCCGGGGGTGCTGGAGCTGCCTTGGGTGCAC CTGAGGGATGCAGCTGAATTCACCTGCAGAGCTCAGAACCCTCTCGGCTCTCAGCAGGTCTACCT GAACGTCTCCCTGCAGAGCAAAGCCACATCAGGAGTGACTCAGGGGGTGGTCGGGGGAGCTGGAG CCACAGCCCTGGTCTTCCTGTCTTCTGCGTCATCTTCGTTGTAGTGAGGTCCTGCAGGAAGAAA TCGGCAAGGCCAGCGGGCGTGGGAGATACGGGCATAGAGGATGCAAACGCTGTCAGGGGTTC AGCCTCTCAGGGGCCCCTGACTGAACCTTGGGCAGAAGACAGTCCCCCAGACCAGCCTCCCCCAG CTTCTGCCCGCTCCTCAGTGGGGGAAGGAGAGCTCCAGTATGCATCCCTCAGCTTCCAGATGGTG AAGCCTTGGGACTCGCGGGGACAGGAGGCCACTGACACCGAGTACTCGGAGATCAAGATCCACAG ATGAGAAACTGCAGAGACTCACCCTGATTGAGGGATCACAGCCCCTCCAGGCAAGGGAGAAGTCA GAGGCTGATTCTTGTAGAATTAACAGCCCTCAACGTGATGAGCTATGATAACACTATGAATTATG TGCAGAGTGAAAAGCACACAGGCTTTAGAGTCAAAGTATCTCAAACCTGAATCCACACTGTGCCC TCCCTTTTATTTTTTAACTAAAAGACAGACAAATTCCTA

App_ID=10063549 Page 237 of 320

MLLLLPLLWGRERAEGQTSKLLTMQSSVTVQEGLCVHVPCSFSYPSHGWIYPGPVVHGYWFREG
ANTDQDAPVATNNPARAVWEETRDRFHLLGDPHTKNCTLSIRDARRSDAGRYFFRMEKGSIKWNY
KHHRLSVNVTALTHRPNILIPGTLESGCPQNLTCSVPWACEQGTPPMISWIGTSVSPLDPSTTRS
SVLTLIPQPQDHGTSLTCQVTFPGASVTTNKTVHLNVSYPPQNLTMTVFQGDGTVSTVLGNGSSL
SLPEGQSLRLVCAVDAVDSNPPARLSLSWRGLTLCPSQPSNPGVLELPWVHLRDAAEFTCRAQNP
LGSQQVYLNVSLQSKATSGVTQGVVGGAGATALVFLSFCVIFVVVRSCRKKSARPAAGVGDTGIE
DANAVRGSASQGPLTEPWAEDSPPDQPPPASARSSVGEGELQYASLSFQMVKPWDSRGQEATDTE

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 351-370

App_ID=10063549

 $\verb|CCAAGGAAAGTGCAGCTGAGACTCAGACAAGATTACA| \textbf{ATG} \verb|AACCAACTCAGCTTCCTGCTGTTTC| \\$ TCTTCGTCTCCATCTCTGCCCAGAAGCTGCAAGGAAATCAAAGACGAATGTCCTAGTGCATTTGA TGGCCTGTATTTTCTCCGCACTGAGAATGGTGTTATCTACCAGACCTTCTGTGACATGACCTCTG GGGGTGGCGGCTGGACCCTGGTGGCCAGCGTGCATGAGAATGACATGCGTGGGAAGTGCACGGTG GGCGATCGCTGGTCCAGTCAGCAGGGCAGCAAAGCAGACTACCCAGAGGGGGACGGCAACTGGGC CAACTACAACACCTTTGGATCTGCAGAGGCGGCCACGAGCGATGACTACAAGAACCCTGGCTACT ACGACATCCAGGCCAAGGACCTGGGCATCTGGCACGTGCCCAATAAGTCCCCCATGCAGCACTGG AGAAACAGCTCCCTGCTGAGGTACCGCACGGACACTGGCTTCCTCCAGACACTGGGACATAATCT GTTTGGCATCTACCAGAAATATCCAGTGAAATATGGAGAAAGGAAAGTGTTGGACTGACAACGGCC CGGTGATCCCTGTGGTCTATGATTTTGGCGACGCCCAGAAAACAGCATCTTATTACTCACCCTAT GGCCAGCGGGATTCACTGCGGGATTTGTTCAGTTCAGGGTATTTAATAACGAGAGAGCAGCCAA CGCCTTGTGTGCTGGAATGAGGGTCACCGGATGTAACACTGAGCATCACTGCATTGGTGGAGGAG GATACTTTCCAGAGGCCAGTCCCCAGCAGTGTGGAGATTTTTCTGGTTTTGATTGGAGTGGATAT GGAACTCATGTTGGTTACAGCAGCAGCCGTGAGATAACTGAGGCAGCTGTGCTTCTATTCTATCG $\mathtt{T}\underline{\mathbf{TGA}}\mathtt{GAGTTTTGTGGGAGGGAACCCAGACCTCTCCTCCCAACCATGAGATCCCAAGGATGGAGAA}$ CAACTTACCCAGTAGCTAGAATGTTAATGGCAGAAGAGAAAACAATAAATCATATTGACTCAAGA AAAAA

App_ID=10063549 Page 239 of 320

MNQLSFLLFLIATTRGWSTDEANTYFKEWTCSSSPSLPRSCKEIKDECPSAFDGLYFLRTENGVI
YQTFCDMTSGGGGWTLVASVHENDMRGKCTVGDRWSSQQGSKADYPEGDGNWANYNTFGSAEAAT
SDDYKNPGYYDIQAKDLGIWHVPNKSPMQHWRNSSLLRYRTDTGFLQTLGHNLFGIYQKYPVKYG
EGKCWTDNGPVIPVVYDFGDAQKTASYYSPYGQREFTAGFVQFRVFNNERAANALCAGMRVTGCN
TEHHCIGGGGYFPEASPQQCGDFSGFDWSGYGTHVGYSSSREITEAAVLLFYR

Important features:

Signal peptide:

amino acids 1-16

N-glycosylation site.

amino acids 163-167

Glycosaminoglycan attachment sites.

amino acids 74-78, 289-293

N-myristoylation sites.

amino acids 76-82, 115-121, 124-130, 253-259, 292-298

App_ID=10063549 Page 240 of 320

 ${\tt MGRVSGLVPSRFLTLLAHLVVVITLFWSRDSNIQACLPLTFTPEEYDKQDIQLVAALSVTLGLFA} \\ {\tt VELAGFLSGVSMFNSTQSLISIGAHCSASVALSFFIFERWECTTYWYIFVFCSALPAVTEMALFV} \\ {\tt TVFGLKKKPF} \\$

Transmembrane domain:

amino acids 12-28 (type II), 51-66, 107-124

App_ID=10063549 Page 242 of 320

TCGCTGCTGCTTCCTGGTGCAGGGTAGCCTCTATCTGGTCATCTGTGGCCAGGATGATG GTCCTCCCGGCTCAGAGGACCCTGAGCGTGATGACCACGAGGGCCAGCCCCGGCCCCGGGTGCCT CGGAAGCGGGGCCACATCTCACCTAAGTCCCGCCCCATGGCCAATTCCACTCTCCTAGGGCTGCT GGCCCCGCCTGGGGAGGCTTGGGGCATTCTTGGGCAGCCCCCAACCGCCCGAACCACAGCCCCC CACCCTCAGCCAAGGTGAAGAAATCTTTGGCTGGGGCGACTTCTACTCCAACATCAAGACGGTG GCCCTGAACCTGCTCGTCACAGGGAAGATTGTGGACCATGGCAATGGGACCTTCAGCGTCCACTT CCAACACAATGCCACAGGCCAGGGAAACATCTCCATCAGCCTCGTGCCCCCCAGTAAAGCTGTAG AGTTCCACCAGGAACAGCAGATCTTCATCGAAGCCAAGGCCTCCAAAATCTTCAACTGCCGGATG GAGTGGGAGAAGGTAGAACGGGGCCGCCGGACCTCGCTTTGCACCCACGACCCAGCCAAGATCTG CTCCGAGACCACGCTCAGAGCTCAGCCACCTGGAGCTGCTCCCAGCCCTTCAAAGTCGTCTGTG TCTACATCGCCTTCTACAGCACGGACTATCGGCTGGTCCAGAAGGTGTGCCCAGATTACAACTAC CATAGTGATACCCCCTACTACCCATCTGGGTGACCCGGGGCAGGCCACAGAGGCCAGGCCAGGGC $\tt TGGAAGGACAGGCCTGCCCATGCAGGAGACCATCTGGACACCGGGCAGGGAAGGGGTTGGGCCTC$ AGGCAGGGGGGGGGGGGAGACGAGGAGATGCCAAGTGGGGCCAAGTCTCAAGTGGCAG AGAAAGGGTCCCAAGTGCTGGTCCCAACCTGAAGCTGTGGAGTGACTAGATCACAGGAGCACTGG AGGAGGAGTGGGCTCTCTGTGCAGCCTCACAGGGCTTTGCCACGGAGCCACAGAGAGATGCTGGG GCCTGTCAACTTAGGATGGATGGCTGAGAGGGCTTCCTAGGAGCCAGTCAGCAGGGTGGGGTGGG GCCAGAGGAGCTCTCCAGCCCTGCCTAGTGGGCGCCCTGAGCCCCTTGTCGTGTGCTGAGCATGG CATGAGGCTGAAGTGGCAACCCTGGGGTCTTTGATGTCTTGACAGATTGACCATCTGTCTCCAGC CAGGCCACCCTTTCCAAAATTCCCTCTTCTGCCAGTACTCCCCCTGTACCACCCATTGCTGATG GCACACCCATCCTTAAGCTAAGACAGGACGATTGTGGTCCTCCCACACTAAGGCCACAGCCCATC CGCGTGCTGTGTGTCCCTCTTCCACCCCAACCCCTGCTGGCTCCTCTGGGAGCATCCATGTCCCG GAGAGGGGTCCCTCAACAGTCAGCCTCACCTGTCAGACCGGGGTTCTCCCGGATCTGGATGGCGC TGTGTGTCTGTCTGTGGGTGGGGGGGGGGGGGGGGGAGTCTTGTGAAACCGCTGATTGCTGACTTT TGTGTGAAGAATCGTGTTCTTGGAGCAGGAAATAAAGCTTGCCCCGGGGCA

App_ID=10063549 Page 243 of 320

MQLTRCCFVFLVQGSLYLVICGQDDGPPGSEDPERDDHEGQPRPRVPRKRGHISPKSRPMANSTL LGLLAPPGEAWGILGQPPNRPNHSPPPSAKVKKIFGWGDFYSNIKTVALNLLVTGKIVDHGNGTF SVHFQHNATGQGNISISLVPPSKAVEFHQEQQIFIEAKASKIFNCRMEWEKVERGRRTSLCTHDP AKICSRDHAQSSATWSCSQPFKVVCVYIAFYSTDYRLVQKVCPDYNYHSDTPYYPSG

Important features of the protein:

Signal peptide:

amino acids 1-14

N-glycosylation sites.

amino acids 62-65, 127-130, 137-140, 143-146

2-oxo acid dehydrogenases acyltransferase

amino acids 61-71

App_ID=10063549 Page 245 of 320

MTAAVFFGCAFIAFGPALALYVFTIAIEPLRIIFLIAGAFFWLVSLLISSLVWFMARVIIDNKDG PTQKYLLIFGAFVSVYIQEMFRFAYYKLLKKASEGLKSINPGETAPSMRLLAYVSGLGFGIMSGV FSFVNTLSDSLGPGTVGIHGDSPQFFLYSAFMTLVIILLHVFWGIVFFDGCEKKKWGILLIVLLT HLLVSAQTFISSYYGINLASAFIILVLMGTWAFLAAGGSCRSLKLCLLCQDKNFLLYNQRSR

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domains:

amino acids 32-51, 119-138, 152-169, 216-235

Glycosaminoglycan attachment site.

amino acids 120-123

Sodium:neurotransmitter symporter family protein

amino acids 31-65

App ID=10063549 Page 246 of 320

AATTTTCACCAGAGTAAACTTGAGAAACCAACTGGACCTTGAGTATTGTACATTTTGCCTCGTG ${\tt GACCCAAAGGTAGCAATCTGAAAC} {\tt ATGAGGAGTACGATTCTACTGTTTTGTCTTCTAGGATCAAC}$ GAACACTACCAAACCAACAGCAGTCAAATCAGGTCTTTCCTTCTTTAAGTCTGATACCATTAACA CAGATGCTCACACTGGGGCCAGATCTGCATCTGTTAAATCCTGCTGCAGGAATGACACCTGGTAC CCAGACCCACCCATTGACCCTGGGAGGGTTGAATGTACAACAGCAACTGCACCCACATGTGTTAC CAATTTTTGTCACACACTTGGAGCCCAGGGCACTATCCTAAGCTCAGAGGAATTGCCACAAATC TAATCCAGATGTCCAGGATGGAAGCCTTCCAGCAGGAGGAGCAGGTGTAAATCCTGCCACCCAGG GAACCCCAGCAGGCCGCCTCCCAACTCCCAGTGGCACAGATGACGACTTTGCAGTGACCACCCCT GCAGGCATCCAAAGGAGCACACATGCCATCGAGGAAGCCACCACAGAATCAGCAAATGGAATTCA GTAAGCTGTTTCAAATTTTTTCAACTAAGCTGCCTCGAATTTGGTGATACATGTGAATCTTTATC TACCTGAAAATATTCTTGAAATTTCAGAAAATATGTTCTATGTAGAGAATCCCAACTTTTAAAAA CAATAATTCAATGGATAAATCTGTCTTTGAAATATAACATTATGCTGCCTGGATGATATGCATAT

 $\label{thm:mastillecligstrslpqlkpalglpptklapdqgtlpnqqqsnqvfpslslipltqm $$ LTLGPDLHLLNPAAGMTPGTQTHPLTLGGLNVQQQLHPHVLPIFVTQLGAQGTILSSEE $$ LPQIFTSLIIHSLFPGGILPTSQAGANPDVQDGSLPAGGAGVNPATQGTPAGRLPTPSGTDDDFAVTTPAGIQRSTHAIEEATTESANGIQ$

Signal peptide:

amino acids 1-16

GCTCAAGTGCCCTGCCTTGCCCCACCCAGCCCAGCCTGGCCAGAGCCCCCTGGAGAAGGAGCTCT CTTCTTGCTTGGCAGCTGGACCAAGGGAGCCAGTCTTGGGCGCTGGAGGGCCTGTCCTGACCATG GTCCCTGCCTGGCTGTGGCTGCTTTGTGTCTCCGTCCCCCAGGCTCTCCCCAAGGCCCAGCCTGC AGAGCTGTCTGTGGAAGTTCCAGAAAACTATGGTGGAAATTTCCCTTTATACCTGACCAAGTTGC CGCTGCCCGTGAGGGGGCTGAAGGCCAGATCGTGCTGTCAGGGGACTCAGGCAAGGCAACTGAG GGCCCATTTGCTATGGATCCAGATTCTGGCTTCCTGCTGGTGACCAGGGCCCTGGACCGAGAGGA GCAGGCAGAGTACCAGCTACAGGTCACCCTGGAGATGCAGGATGGACATGTCTTGTGGGGTCCAC AGCCTGTGCTTGTGCACGTGAAGGATGAGAATGACCAGGTGCCCCATTTCTCTCAAGCCATCTAC AGAGCTCGGCTGAGCCGGGGTACCAGGCCTGGCATCCCCTTCCTCTTCCTTGAGGCTTCAGACCG GGATGAGCCAGGCACACCCGGATCTTCGATTCCACATCCTGAGCCAGGCTCCAGCCCAGC ACCAGCCTTGACCACGCCCTGGAGAGGACCTACCAGCTGTTGGTACAGGTCAAGGACATGGGTGA CCAGGCCTCAGGCCACCAGGCCACCGTGGAAGTCTCCATCATAGAGAGCACCTGGGTGT CCCTAGAGCCTATCCACCTGGCAGAGAATCTCAAAGTCCTATACCCGCACCACATGGCCCAGGTA CACTGGAGTGGGGGTGATGTGCACTATCACCTGGAGAGCCATCCCCCGGGACCCTTTGAAGTGAA TGCAGAGGGAAACCTCTACGTGACCAGAGAGCTGGACAGAGAAGCCCAGGCTGAGTACCTGCTCC AGGTGCGGCTCAGAATTCCCATGGCGAGGACTATGCGGCCCCTCTGGAGCTGCACGTGCTGGTG ATGGATGAGAATGACAACGTGCCTATCTGCCCTCCCCGTGACCCCACAGTCAGCATCCCTGAGCT CAGTCCACCAGGTACTGAAGTGACTAGACTGTCAGCAGAGGATGCCAGATGCCCCCGGCTCCCCCA ATTCCCACGTTGTGTATCAGCTCCTGAGCCCTGAGCCTGAGGATGGGGTAGAGGGGAGAGCCTTC CAGGTGGACCCCACTTCAGGCAGTGTGACGCTGGGGGTGCTCCCACTCCGAGCAGGCCAGAACAT TCGAAGTCGCAGTCACAGATATCAATGATCACGCCCCTGAGTTCATCACTTCCCAGATTGGGCCT ATAAGCCTCCCTGAGGATGTGGAGCCCGGGACTCTGGTGGCCATGCTAACAGCCATTGATGCTGA CCTCGAGCCCGCCTTCCGCCTCATGGATTTTGCCATTGAGAGGGGAGACACAGAAGGGACTTTTG GCCTGGATTGGGAGCCAGACTCTGGGCATGTTAGACTCAGACTCTGCAAGAACCTCAGTTATGAG AGGCCCTGGAGCCACCGCCACGGTGACTGTGCTAGTGGAGAGAGTGATGCCACCCCCAAGTTGG ACCAGGAGAGCTACGAGGCCAGTGTCCCCATCAGTGCCCCAGCCGGCTCTTTCCTGCTGACCATC CTGCATTGAGAAATTCTCCGGGGAGGTGCACACCGCCCAGTCCCTGCAGGGCGCCCAGCCTGGGG ACACCTACACGGTGCTTGTGGAGGCCCAGGATACAGCCCTGACTCTTGCCCCTGTGCCCTCCCAA TACCTCTGCACACCCCGCCAAGACCATGGCTTGATCGTGAGTGGACCCAGCAAGGACCCCGATCT GGCCAGTGGGCACGGTCCCTACAGCTTCACCCTTGGTCCCAACCCCACGGTGCAACGGGATTGGC GCCTCCAGACTCTCAATGGTTCCCATGCCTACCTCACCTTGGCCCTGCATTGGGTGGAGCCACGT GAACACATAATCCCCGTGGTGGTCAGCCACAATGCCCAGATGTGGCAGCTCCTGGTTCGAGTGAT CGTGTGTCGCTGCAACGTGGAGGGCAGTGCATGCGCAAGGTGGGCCGCATGAAGGCCATGCCCA CGAAGCTGTCGGCAGTGGGCATCCTTGTAGGCACCCTGGTAGCAATAGGAATCTTCCTCATCCTC ATTTTCACCCACTGGACCATGTCAAGGAAGAAGGACCCGGATCAACCAGCAGACAGCGTGCCCCT GAAGGCGACTGTC**TGA**ATGGCCCAGGCAGCTCTAGCTGGGAGCTTGGCCTCTGGCTCCATCTGAG TCCCCTGGGAGAGAGCCCAGCACCCAAGATCCAGCAGGGGACAGGACAGAGTAGAAGCCCCTCCA TCTGCCCTGGGGTGGAGGCACCATCACCATCACCAGGCATGTCTGCAGAGCCTGGACACCAACTT TATGGACTGCCCATGGGAGTGCTCCAAATGTCAGGGTGTTTGCCCAATAATAAAGCCCCAGAGAA

App ID=10063549 Page 249 of 320

MVPAWLWLLCVSVPQALPKAQPAELSVEVPENYGGNFPLYLTKLPLPREGAEGQIVLSGDSGKAT
EGPFAMDPDSGFLLVTRALDREEQAEYQLQVTLEMQDGHVLWGPQPVLVHVKDENDQVPHFSQAI
YRARLSRGTRPGIPFLFLEASDRDEPGTANSDLRFHILSQAPAQPSPDMFQLEPRLGALALSPKG
STSLDHALERTYQLLVQVKDMGDQASGHQATATVEVSIIESTWVSLEPIHLAENLKVLYPHHMAQ
VHWSGGDVHYHLESHPPGPFEVNAEGNLYVTRELDREAQAEYLLQVRAQNSHGEDYAAPLELHVL
VMDENDNVPICPPRDPTVSIPELSPPGTEVTRLSAEDADAPGSPNSHVVYQLLSPEPEDGVEGRA
FQVDPTSGSVTLGVLPLRAGQNILLLVLAMDLAGAEGGFSSTCEVEVAVTDINDHAPEFITSQIG
PISLPEDVEPGTLVAMLTAIDADLEPAFRLMDFAIERGDTEGTFGLDWEPDSGHVRLRLCKNLSY
EAAPSHEVVVVVQSVAKLVGPGPGPGATATVTVLVERVMPPPKLDQESYEASVPISAPAGSFLLT
IQPSDPISRTLRFSLVNDSEGWLCIEKFSGEVHTAQSLQGAQPGDTYTVLVEAQDTALTLAPVPS
QYLCTPRQDHGLIVSGPSKDPDLASGHGPYSFTLGPNPTVQRDWRLQTLNGSHAYLTLALHWVEP
REHIIPVVVSHNAQMWQLLVRVIVCRCNVEGQCMRKVGRMKGMPTKLSAVGILVGTLVAIGIFLI
LIFTHWTMSRKKDPDQPADSVPLKATV

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 762-784

GGCTGACCGTGCTACATTGCCTGGAGGAAGCCTAAGGAACCCAGGCATCCAGCTGCCCACGCCTG AGTCCAAGATTCTTCCCAGGAACACAAACGTAGGAGACCCACGCTCCTGGAAGCACCAGCCTTTA TCTCTTCACCTTCAAGTCCCCTTTCTCAAGAATCCTCTGTTCTTTGCCCTCTAAAGTCTTGGTAC ATCTAGGACCCAGGCATCTTGCTTTCCAGCCACAAAGAGACAGATGAAAGATGCAGAAAGGAAATG TTCTCCTTATGTTTGGTCTACTATTGCATTTAGAAGCTGCAACAAATTCCAATGAGACTAGCACC TCTGCCAACACTGGATCCAGTGTGATCTCCAGTGGAGCCAGCACACCCAACTCTGGGTCCAG TGTGACCTCCAGTGGGGTCAGCACAGCCACCATCTCAGGGTCCAGCGTGACCTCCAATGGGGTCA GCATAGTCACCAACTCTGAGTTCCATACAACCTCCAGTGGGATCAGCACAGCCACCAACTCTGAG TTCAGCACAGCGTCCAGTGGGATCAGCATAGCCACCAACTCTGAGTCCAGCACAACCTCCAGTGG GGCCAGCACAGCCACCAACTCTGAGTCCAGCACACCCTCCAGTGGGGCCAGCACAGTCACCAACT CTGGGTCCAGTGTGACCTCCAGTGGAGCCAGCACTGCCACCAACTCTGAGTCCAGCACAGTGTCC AGTAGGGCCAGCACTGCCACCACTCTGAGTCTAGCACACTCTCCAGTGGGGCCAGCACACCAC CAACTCTGACTCCAGCACAACCTCCAGTGGGGCTAGCACAGCCACCAACTCTGAGTCCAGCACAA $\verb|CCTCCAGTGGGGCCAGCACCACCAACTCTGAGTCCAGCACAGTGTCCAGTAGGGCCAGCACT| \\$ GCCACCAACTCTGAGTCCAGCACAACCTCCAGTGGGGCCAGCACAGCCACCAACTCTGAGTCCAG AACGACCTCCAATGGGGCTGGCACAGCCACCAACTCTGAGTCCAGCACGACCTCCAGTGGGGCCA GCACAGCCACCAACTCTGACTCCAGCACAGTGTCCAGTGGGGCCAGCACTGCCACCAACTCTGAG TCCAGCACGACCTCCAGTGGGGCCAGCACACCCAACTCTGAGTCCAGCACGACCTCCAGTGG GGCTAGCACGCCACCAACTCTGACTCCAGCACAACCTCCAGTGGGGCCGGCACAGCCACCAACT CTGAGTCCAGCACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACACCCTCC AGTGGGGCCAACACCCCAACTCTGAGTCCAGTACGACCTCCAGTGGGGCCAACACACCAC CAACTCTGAGTCCAGCACAGTGTCCAGTGGGGCCAGCACTGCCACCAACTCTGAGTCCAGCACAA CCTCCAGTGGGGTCAGCACAGCCACACTCTGAGTCCAGCACAACCTCCAGTGGGGCTAGCACA GCCACCAACTCTGACTCCAGCACACCTCCAGTGAGGCCAGCACCAACCCCAACTCTGAGTCTAG CACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACAACCTCCAGTGGGGCCA ACACAGCCACCAACTCTGGGTCCAGTGTGACCTCTGCAGGCTCTGGAACAGCAGCTCTGACTGGA GCCGTGGGAAATCTTCCTCATCACCCTGGTCTCGGTTGTGGCGGCCGTGGGGCTCTTTGCTGGGC TCTTCTTCTGTGTGAGAAACAGCCTGTCCCTGAGAAACACCTTTAACACAGCTGTCTACCACCCT CATGGCCTCAACCATGGCCTTGGTCCAGGCCCTGGAGGGAATCATGGAGCCCCCCACAGGCCCAG GTGGAGTCCTAACTGGTTCTGGAGGAGACCAGTATCATCGATAGCCATGGAGATGAGCGGGAGGA AATCTTGAAGAAGGTATTCCTCACCTTTCTTGCCTTTACCAGACACTGGAAAGAGAATACTATAT CCCCGGGGTGGGTATCTAGCTCTGAGATGAACTCAGTTATAGGAGAAAACCTCCATGCTGGACTC

App ID=10063549 Page 251 of 320

MKMQKGNVLLMFGLLLHLEAATNSNETSTSANTGSSVISSGASTATNSGSSVTSSGVSTATISGS
SVTSNGVSIVTNSEFHTTSSGISTATNSEFSTASSGISIATNSESSTTSSGASTATNSESSTPSS
GASTVTNSGSSVTSSGASTATNSESSTVSSRASTATNSESSTLSSGASTATNSDSSTTSSGASTA
TNSESSTTSSGASTATNSESSTVSSRASTATNSESSTTSSGASTATNSESRTTSNGAGTATNSES
STTSSGASTATNSDSSTVSSGASTATNSESSTTSSGASTATNSESSTTSSGASTATNSDSSTTSS
GAGTATNSESSTVSSGISTVTNSESSTPSSGANTATNSESSTTSSGANTATNSESSTVSSGASTA
TNSESSTTSSGVSTATNSESSTTSSGASTATNSDSSTTSSEASTATNSESSTVSSGISTVTNSES
STTSSGANTATNSGSSVTSAGSGTAALTGMHTTSHSASTAVSEAKPGGSLVPWEIFLITLVSVVA
AVGLFAGLFFCVRNSLSLRNTFNTAVYHPHGLNHGLGPGPGGNHGAPHRPRWSPNWFWRRPVSSI
AMEMSGRNSGP

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 510-532

App ID=10063549 Page 252 of 320

GGCCGGACGCCTCCGCGTTACGGGATGAATTAACGGCGGGTTCCGCACGGAGGTTGTGACCCCTA GGAGGCTGGAACTATCAGGCTGAAAAACAGAGTGGGTACTCTCTTCTGGGAAGCTGGCAACAAAT GGATGATGTGATAT**ATG**CATTCCAGGGGAAGGGAAATTGTGGTGCTTCTGAACCCATGGTCAATT AACGAGGCAGTTTCTAGCTACTGCACGTACTTCATAAAGCAGGACTCTAAAAGCTTTGGAATCAT GGTGTCATGGAAAGGGATTTACTTTATACTGACTCTGTTTTGGGGAAGCTTTTTTGGAAGCATTT TCATGCTGAGTCCCTTTTTACCTTTGATGTTTGTAAACCCATCTTGGTATCGCTGGATCAACAAC CGCCTTGTGGCAACATGGCTCACCCTACCTGTGGCATTATTGGAGACCATGTTTGGTGTAAAAGT GATTATAACTGGGGATGCATTTGTTCCTGGAGAAAGAAGTGTCATTATCATGAACCATCGGACAA GAATGGACTGGATGTTCCTGTGGAATTGCCTGATGCGATATAGCTACCTCAGATTGGAGAAAATT ATATTCACGAACCACTTCAACTCCTCATATTCCCAGAAGGGACTGATCTCACAGAAAACAGCAAG TCTCGAAGTAATGCATTTGCTGAAAAAAATGGACTTCAGAAATATGAATATGTTTTACATCCAAG AACTACAGGCTTTACTTTTGTGGTAGACCGTCTAAGAGAAGGTAAGAACCTTGATGCTGTCCATG ATATCACTGTGGCGTATCCTCACAACATTCCTCAATCAGAGAAGCACCTCCTCCAAGGAGACTTT CCCAGGGAAATCCACTTTCACGTCCACCGGTATCCAATAGACACCCTCCCCACATCCAAGGAGGA CCTTCAACTCTGGTGCCACAAACGGTGGGAAGAGAAGAAGAAGAGAGGCTGCGTTCCTATCAAG GGGAGAAGAATTTTTATTTTACCGGACAGAGTGTCATTCCACCTTGCAAGTCTGAACTCAGGGTC CTTGTGGTCAAATTGCTCTCTATACTGTATTGGACCCTGTTCAGCCCTGCAATGTGCCTACTCAT ATATTTGTACAGTCTTGTTAAGTGGTATTTTATAATCACCATTGTAATCTTTGTGCTGCAAGAGA GAATATTTGGTGGACTGGAGATCATAGAACTTGCATGTTACCGACTTTTACACAAACAGCCACAT TTAAATTCAAAGAAAAATGAG**TAA**GATTATAAGGTTTGCCATGTGAAAACCTAGAGCATATTTTG GAAATGTTCTAAACCTTTCTAAGCTCAGATGCATTTTTTGCATGACTATGTCGAATATTTCTTACT GCCATCATTATTTGTTAAAGATATTTTGCACTTAATTTTGTGGGAAAAATATTGCTACAATTTTT TTTAATCTCTGAATGTAATTTCGATACTGTGTACATAGCAGGGAGTGATCGGGGTGAAATAACTT GGGCCAGAATATTATTAAACAATCATCAGGCTTTTAAA

MHSRGREIVVLLNPWSINEAVSSYCTYFIKQDSKSFGIMVSWKGIYFILTLFWGSFFGSIFMLSP
FLPLMFVNPSWYRWINNRLVATWLTLPVALLETMFGVKVIITGDAFVPGERSVIIMNHRTRMDWM
FLWNCLMRYSYLRLEKICLKASLKGVPGFGWAMQAAAYIFIHRKWKDDKSHFEDMIDYFCDIHEP
LQLLIFPEGTDLTENSKSRSNAFAEKNGLQKYEYVLHPRTTGFTFVVDRLREGKNLDAVHDITVA
YPHNIPQSEKHLLQGDFPREIHFHVHRYPIDTLPTSKEDLQLWCHKRWEEKEERLRSFYQGEKNF
YFTGQSVIPPCKSELRVLVVKLLSILYWTLFSPAMCLLIYLYSLVKWYFIITIVIFVLQERIFGG
LEIIELACYRLLHKQPHLNSKKNE

Important features of the protein:

Signal peptide:

amino acids 1-22

Transmembrane domains:

amino acids 44-63, 90-108, 354-377

CGGCTCGAGCGGCTCGAGTGAAGAGCCTCTCCACGGCTCCTGCGCCTGAGACAGCTGGCCTGACC TCCAAATCATCCACCCCTGCTGTCATCTGTTTTCATAGTGTGAGATCAACCCACAGGAATA ${\tt TCCATG}{\tt GCTTTTGTGCTCATTTTGGTTCTCAGTTTCTACGAGCTGGTGTCAGGACAGTGGCAAGT}$ TTCCTGAGACCAGTGCAGAGGCTATGGAAGTGCGGTTCTTCAGGAATCAGTTCCATGCTGTGGTC CACCTCTACAGAGATGGGGAAGACTGGGAATCTAAGCAGATGCCACAGTATCGAGGGAGAACTGA GTTTGTGAAGGACTCCATTGCAGGGGGGGCGTGTCTCTCTAAGGCTAAAAAACATCACTCCCTCGG ACATCGGCCTGTATGGGTGCTGGTTCAGTTCCCAGATTTACGATGAGGAGGCCACCTGGGAGCTG CGGGTGGCAGCACTGGGCTCACTTCCTCTCATTTCCATCGTGGGATATGTTGACGGAGGTATCCA GTTACTCTGCCTGTCCTCAGGCTGGTTCCCCCCAGCCCACAGCCAAGTGGAAAGGTCCACAAGGAC AGGATTTGTCTTCAGACTCCAGAGCAAATGCAGATGGGTACAGCCTGTATGATGTGGAGATCTCC GGTGGAATCCAAGGTATTGATAGGAGAGACGTTTTTCCAGCCCTCACCTTGGCGCCTGGCTTCTA TTTTACTCGGGTTACTCTGTGGTGCCCTGTGTGGTGTTGTCATGGGGATGATAATTGTTTTCTTC AAATCCAAAGGGAAAATCCAGGCGGAACTGGACTGGAGAAGAAGCACGGACAGGCAGAATTGAG AGACGCCCGGAAACACGCAGTGGAGGTGACTCTGGATCCAGAGACGGCTCACCCGAAGCTCTGCG TTTCTGATCTGAAAACTGTAACCCATAGAAAAGCTCCCCAGGAGGTGCCTCACTCTGAGAAGAGA TTTACAAGGAAGAGTGTGGTGGCTTCTCAGGGTTTCCAAGCAGGAGACATTACTGGGAGGTGGA CGTGGGACAAAATGTAGGGTGTATGTGGGAGTGTCGGGATGACGTAGACAGGGGGAAGAACA ATGTGACTTTGTCTCCCAACAATGGGTATTGGGTCCTCAGACTGACAACAGAACATTTGTATTTC ACATTCAATCCCCATTTTATCAGCCTCCCCCCAGCACCCCTCCTACACGAGTAGGGGTCTTCCT TGACATGTCAGTTTGAAGGCTTGTTGAGACCCTATATCCAGCATGCGATGTATGACGAGGAAAAG GGGACTCCCATATTCATATGTCCAGTGTCCTGGGGA**TGA**GACAGAGAAGACCCTGCTTAAAGGGC CCCACACCACAGACCCAGACACAGGCAAGGGAGAGTGCTCCCGACAGGTGGCCCCAGCTTCCTCT CCGGAGCCTGCGCACAGAGAGTCACGCCCCCCACTCTCCTTTAGGGAGCTGAGGTTCTTCTGCCC TGAGCCCTGCAGCAGCGGCAGTCACAGCTTCCAGATGAGGGGGGGATTGGCCTGACCCTGTGGGAG TCAGAAGCCATGGCTGCCCTGAAGTGGGGACGGAATAGACTCACATTAGGTTTAGTTTGTGAAAA CTCCATCCAGCTAAGCGATCTTGAACAAGTCACAACCTCCCAGGCTCCTCATTTGCTAGTCACGG ACAGTGATTCCTGCCTCACAGGTGAAGATTAAAGAGACAACGAATGTGAATCATGCTTGCAGGTT TGAGGGCACAGTGTTTGCTAATGATGTTTTTTATATTATACATTTTCCCACCATAAACTCTGTT TGCTTATTCCACATTAATTTACTTTTCTCTATACCAAATCACCCATGGAATAGTTATTGAACACC TGCTTTGTGAGGCTCAAAGAATAAAGAGGAGGTAGGATTTTTCACTGATTCTATAAGCCCAGCAT CTCATTAACACAGACACAAAAATTCTAAATAAAATTTTAACAAATTAAACTAAACAATATATTTA AAGATGATATATAACTACTCAGTGTGTTTTGTCCCACAAATGCAGAGTTGGTTTAATATTTAAAT

App_ID=10063549 Page 255 of 320

MAFVLILVLSFYELVSGQWQVTGPGKFVQALVGEDAVFSCSLFPETSAEAMEVRFFRNQFHAVVH
LYRDGEDWESKQMPQYRGRTEFVKDSIAGGRVSLRLKNITPSDIGLYGCWFSSQIYDEEATWELR
VAALGSLPLISIVGYVDGGIQLLCLSSGWFPQPTAKWKGPQGQDLSSDSRANADGYSLYDVEISI
IVQENAGSILCSIHLAEQSHEVESKVLIGETFFQPSPWRLASILLGLLCGALCGVVMGMIIVFFK
SKGKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVTHRKAPQEVPHSEKRF
TRKSVVASQGFQAGRHYWEVDVGQNVGWYVGVCRDDVDRGKNNVTLSPNNGYWVLRLTTEHLYFT
FNPHFISLPPSTPPTRVGVFLDYEGGTISFFNTNDQSLIYTLLTCQFEGLLRPYIQHAMYDEEKG
TPIFICPVSWG

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 131-150, 235-259

App_ID=10063549 Page 256 of 320

 $\tt CCTTCACAGGACTCTTCATTGCTGGTTGGCA{\textbf{ATG}}\\ TGTTCGGCCAGATGTGGTGAGGGCTAGGAAAAGAG$ TTTGTTGGGAACCCTGGGTTATCGGCCTCGTCATCTTCATATCCCTGATTGTCCTGGCAGTGTGCATTGGA CTCACTGTTCATTATGTGAGATATAATCAAAAGAAGACCTACAATTACTATAGCACATTGTCATTTACAAC TGACAAACTATATGCTGAGTTTGGCAGAGAGGCTTCTAACAATTTTTACAGAAATGAGCCAGAGACTTGAAT CAATGGTGAAAAATGCATTTATAAATCTCCATTAAGGGAAGAATTTGTCAAGTCTCAGGTTATCAAGTTC AGTCAACAGAAGCATGGAGTGTTGGCTCATATGCTGTTGATTTGTAGATTTCACTCTACTGAGGATCCTGA AACTGTAGATAAAATTGTTCAACTTGTTTTACATGAAAAGCTGCAAGATGCTGTAGGACCCCCTAAAGTAG ACACGAAGAAGTAAAACTCTAGGTCAGAGTCTCAGGATCGTTGGTGGGACAGAAGTAGAAGAGGGTGAATG TTGTGAGTGCTCCTCTTTTACAACATATAAGAACCCTGCCAGATGGACTGCTTCCTTTGGAGTAACA ATAAAACCTTCGAAAATGAAACGGGGTCTCCGGAGAATAATTGTCCATGAAAAATACAAACACCCATCACA TGACTATGATATTTCTCTTGCAGAGCTTTCTAGCCCTGTTCCCTACACAAATGCAGTACATAGAGTTTGTC TCCCTGATGCATCCTATGAGTTTCAACCAGGTGATGTGATGTTTGTGACAGGATTTGGAGCACTGAAAAAT GATGGTTACAGTCAAAATCATCTTCGACAAGCACAGGTGACTCTCATAGACGCTACAACTTGCAATGAACC TCAAGCTTACAATGACGCCATAACTCCTAGAATGTTATGTGCTGGCTCCTTAGAAGGAAAAACAGATGCAT GCCAGGGTGACTCTGGAGGACCACTGGTTAGTTCAGATGCTAGAGATATCTGGTACCTTGCTGGAATAGTG AGCTGGGGAGATGAATGTGCGAAACCCAACAAGCCTGGTGTTTATACTAGAGTTACGGCCTTGCGGGACTG GGTGTGGAGGCCATTTTTAGAGATACAGAATTGGAGAAGACTTGCAAAACAGCTAGATTTGACTGATCTCA ATAAACTGTTTGCTTGATGCATGTATTTTCTTCCCAGCTCTGTTCCGCACGTAAGCATCCTGCTTCTGCCA GATCAACTCTGTCATCTGTGAGCAATAGTTGAAACTTTATGTACATAGAGAAATAGATAATACAATATTAC ATTACAGCCTGTATTCATTTGTTCTCTAGAAGTTTTGTCAGAATTTTGACTTGTTGACATAAATTTGTAAT GCATATATACAATTTGAAGCACTCCTTTTCTTCAGTTCCTCAGCTCCTCTCATTTCAGCAAATATCCATTT TCAAGGTGCAGAACAAGGAGTGAAAGAAATATAAGAAGAAAAAATCCCCTACATTTTATTGGCACAGAA AAGTATTAGGTGTTTTTCTTAGTGGAATATTAGAAATGATCATTATTCATTATGAAAGGTCAAGCAAAGACA TTACTGAGGATGTCAACATATAACAATAAAATATAAATCACCCA

MMYRPDVVRARKRVCWEPWVIGLVIFISLIVLAVCIGLTVHYVRYNQKKTYNYYSTLSFTTDKLY
AEFGREASNNFTEMSQRLESMVKNAFYKSPLREEFVKSQVIKFSQQKHGVLAHMLLICRFHSTED
PETVDKIVQLVLHEKLQDAVGPPKVDPHSVKIKKINKTETDSYLNHCCGTRRSKTLGQSLRIVGG
TEVEEGEWPWQASLQWDGSHRCGATLINATWLVSAAHCFTTYKNPARWTASFGVTIKPSKMKRGL
RRIIVHEKYKHPSHDYDISLAELSSPVPYTNAVHRVCLPDASYEFQPGDVMFVTGFGALKNDGYS
QNHLRQAQVTLIDATTCNEPQAYNDAITPRMLCAGSLEGKTDACQGDSGGPLVSSDARDIWYLAG
IVSWGDECAKPNKPGVYTRVTALRDWITSKTGI

Transmembrane domain:

amino acids 21-40 (type II)

App_ID=10063549 Page 258 of 320

AGAGAAGAAGCGTCTCCAGCTGAAGCCAATGCAGCCCTCCGGCTCTCCGCGAAGAAGTTCCCTG GCCGACGATCGCTGCCGTTTTGCCCTTGGGAGTAGGATGTGGTGAAAGGATGGGGCTTCTCCCTT ACGGGGCTCACATGCCCAGAGAAGATTCCGTGAAGTGTCTGCGCTGCTCTACGCCCTCAA TCTGCTCTTTTGGTTAATGTCCATCAGTGTTGTTGGCAGTTTCTGCTTGGATGAGGGGACTACCTAA GTGGTTCATCCGGTCATGATTGCTGTTTGCTGTTTCCTTATCATTGTGGGGATGTTAGGATATTG TGGAACGGTGAAAAGAAATCTGTTGCTTCTTGCATGGTACTTTGGAAGTTTGCTTGTCATTTTCT GTGTAGAACTGGCTTGTGGCGTTTGGACATATGAACAGGAACTTATGGTTCCAGTACAATGGTCA GATATGGTCACTTTGAAAGCCAGGATGACAAATTATGGATTACCTAGATATCGGTGGCTTACTCA AAATGACAGAGATGGCCCCCAGATTCCTGCTGTTTAGAGAATTCCCAGGATGTTCCAAA CAGGCCCACCAGGAAGATCTCAGTGACCTTTATCAAGAGGGTTGTGGGAAGAAAATGTATTCCTT TTTGAGAGGAACCAAACAACTGCAGGTGCTGAGGTTTCTGGGAATCTCCATTGGGGTGACACAAA TCCTGGCCATGATTCTCACCATTACTCTGCTCTGGGCTCTGTATTATGATAGAAGGGAGCCTGGG ACAGACCAAATGATGTCCTTGAAGAATGACAACTCTCAGCACCTGTCATGTCCCTCAGTAGAACT GTTGAAACCAAGCCTGTCAAGAATCTTTGAACACACATCCATGGCAAACAGCTTTAATACACACT TTGAGATGGAGGAGTTA**TAA**AAAGAAATGTCACAGAAGAAAACCACAAACTTGTTTTATTGGACT TGTGAATTTTTGAGTACATACTATGTGTTTCAGAAATATGTAGAAATAAAAATGTTGCCATAAAA TAACACCTAAGCATATACTATTCTATGCTTTAAAATGAGGATGGAAAAGTTTCATGTCATAAGTC ACCACCTGGACAATAATTGATGCCCTTAAAATGCTGAAGACAGATGTCATACCCACTGTGTAGCC TGTGTATGACTTTTACTGAACACAGTTATGTTTTGAGGCAGCATGGTTTGATTAGCATTTCCGCA TCCATGCAAACGAGTCACATATGGTGGGACTGGAGCCATAGTAAAGGTTGATTTACTTCTACCAA CTAGTATATAAAGTACTAATTAAATGCTAACATAGGAAGTTAGAAAATACTAATAACTTTTATTA CTCAGCGATCTATTCTTCTGATGCTAAATAAATTATATATCAGAAAACTTTCAATATTGGTGACT ACCTAAATGTGATTTTTGCTGGTTACTAAAATATTCTTACCACTTAAAAGAGCAAGCTAACACAT TGTCTTAAGCTGATCAGGGATTTTTTGTATATAAGTCTGTGTTAAATCTGTATAATTCAGTCGAT TTCAGTTCTGATAATGTTAAGAATAACCATTATGAAAAGGAAAATTTGTCCTGTATAGCATCATT ATTTTTAGCCTTTCCTGTTAATAAAGCTTTACTATTCTGTCCTGGGCTTATATTACACATATAAC TGTTATTTAAATACTTAACCACTAATTTTGAAAATTACCAGTGTGATACATAGGAATCATTATTC AGAATGTAGTCTGGTCTTTAGGAAGTATTAATAAGAAAATTTGCACATAACTTAGTTGATTCAGA AAGGACTTGTATGCTGTTTTTCTCCCAAATGAAGACTCTTTTTGACACTAAACACTTTTTAAAAA GCTTATCTTTGCCTTCTCCAAACAAGAAGCAATAGTCTCCAAGTCAATATAAATTCTACAGAAAA TAGTGTTCTTTTTCTCCAGAAAAATGCTTGTGAGAATCATTAAAACATGTGACAATTTAGAGATT CTTTGTTTTATTTCACTGATTAATATACTGTGGCAAATTACACAGATTATTAAATTTTTTTACAA GAGTATAGTATATTTATTTGAAATGGGAAAAGTGCATTTTACTGTATTTTGTGTATTTTGTTTAT

App_ID=10063549 Page 259 of 320

MAREDSVKCLRCLLYALNLLFWLMSISVLAVSAWMRDYLNNVLTLTAETRVEEAVILTYFPVVHP
VMIAVCCFLIIVGMLGYCGTVKRNLLLLAWYFGSLLVIFCVELACGVWTYEQELMVPVQWSDMVT
LKARMTNYGLPRYRWLTHAWNFFQREFKCCGVVYFTDWLEMTEMDWPPDSCCVREFPGCSKQAHQ
EDLSDLYQEGCGKKMYSFLRGTKQLQVLRFLGISIGVTQILAMILTITLLWALYYDRREPGTDQM
MSLKNDNSQHLSCPSVELLKPSLSRIFEHTSMANSFNTHFEMEEL

Signal peptide:

amino acids 1-33

Transmembrane domains:

amino acids 12-35, 57-86, 94-114, 226-248

CCAAGGCCAGAGCTGTGGACACCTTATCCCACTCATCCTCATCCTCTCTGATAAAGCCCCTACCAGTGCT CCAGTATTAAGAGGATTTTCCAGTGTTTCTGGCAGTTGGTCCAGAAGG ATG CCTCCATTCCTGCTTCTCACCTGCCTGGAGGAACACTGACCACCAGTTGGATGAGTCTCAAGGTCCTCCTCTATGTGACAACCATGTGAATGGGGAG TGGTACCACTTCACGGGCATGGCGGGAGATGCCATGCCTACCTTCTGCATACCAGAAAACCACTGTGGAACCCA CGCACCTGTCTGGCTCAATGGCAGCCACCCCCTAGAAGGCGACGGCATTGTGCAACGCCAGGCTTGTGCCAGCT TCAATGGGAACTGCTGTCTCTGGAACACCACGGTGGAAGTCAAGGCTTGCCCTGGAGGCTACTATGTGTATCGT CTGACCAAGCCCAGCGTCTGCTTCCACGTCTACTGTGGTCATTTTTATGACATCTGCGACGAGGACTGCCATGG CAGCTGCTCAGATACCAGCGAGTGCACATGCGCTCCAGGAACTGTGCTAGGCCCTGACAGGCAGACATGCTTTG ATGAAAATGAATGTGAGCAAAACAACGGTGGCTGCAGTGAGATCTGTGTGAACCTCAAAAAACTCCTACCGCTGT GAGTGTGGGGTTGGCCGTGTGCTAAGAAGTGATGGCAAGACTTGTGAAGACGTTGAAGGATGCCACAATAACAA TGGTGGCTGCAGCCACTCTTGCCTTGGATCTGAGAAAGGCTACCAGTGTGAATGTCCCCGGGGCCTGGTGCTGT CTGAGGATAACCACACTTGCCAAGTCCCTGTGTTGTGCAAATCAAATGCCATTGAAGTGAACATCCCCAGGGAG CTGGTTGGTGGCCTGGAGCTCTTCCTGACCAACACCTCCTGCCGAGGAGTGTCCAACGCCACCCATGTCAACAT CCTCTTCTCTCAAGACATGTGGTACAGTGGTCGATGTGGTGAATGACAAGATTGTGGCCAGCAACCTCGTGA CAGGTCTACCCAAGCAGACCCCGGGGAGCAGCGGGGACTTCATCATCCGAACCAGCAAGCTGCTGATCCCGGTG ACCTGCGAGTTTCCACGCCTGTACACCATTTCTGAAGGATACGTTCCCAACCTTCGAAACTCCCCACTGGAAAT CATGAGCCGAAATCATGGGATCTTCCCATTCACTCTGGAGATCTTCAAGGACAATGAGTTTGAAGAGCCTTACC GGGAAGCTCTGCCCACCCTCAAGCTTCGTGACTCCCTCTACTTTGGCATTGAGCCCGTGGTGCACGTGAGCGGC $\tt TTGGAAAGCTTGGTGGAGAGCTGCTTTGCCACCCCCACCTCCAAGATCGACGAGGTCCTGAAATACTACCTCAT$ $\tt CCGGGATGGCTGTTTCAGATGACTCGGTAAAGCAGTACACATCCCGGGATCACCTAGCAAAGCACTTCCAGG$ $\tt CGGTCTACAGGGCCAGACGCTAACAGGCGGCCCGATCCGCATCGACTGGGAGGACTAGTTCGTAGCCATACCTC$ GAGTCCCTGCATTGGACGGCTCTGCTCTTTGGAGCTTCTCCCCCCACCGCCCTCTAAGAACATCTGCCAACAGC CAGGTCACAGCACTGCTGAACAATGTGGCCTGGGTGGGGTTTCATCTTTCTAGGGTTGAAAACTAAACTGTCCA CCCAGAAAGACACTCACCCCATTTCCCTCATTTCTTTCCTACACTTAAATACCTCGTGTATGGTGCAATCAGAC CACAAAATCAGAAGCTGGGTATAATATTTCAAGTTACAAACCCTAGAAAAATTAAACAGTTACTGAAATTATGA CTTAAATACCCAATGACTCCTTAAATATGTAAATTATAGTTATACCTTGAAATTTCAATTCAAATGCAGACTAA TTATAGGGAATTTGGAAGTGTATCAATAAAACAGTATATAATTTT

App_ID=10063549 Page 261 of 320

MPPFLLTCLFITGTSVSPVALDPCSAYISLNEPWRNTDHQLDESQGPPLCDNHVNGEWYHFTGMAGDAMP
TFCIPENHCGTHAPVWLNGSHPLEGDGIVQRQACASFNGNCCLWNTTVEVKACPGGYYVYRLTKPSVCFHV
YCGHFYDICDEDCHGSCSDTSECTCAPGTVLGPDRQTCFDENECEQNNGGCSEICVNLKNSYRCECGVGRV
LRSDGKTCEDVEGCHNNNGGCSHSCLGSEKGYQCECPRGLVLSEDNHTCQVPVLCKSNAIEVNIPRELVGG
LELFLTNTSCRGVSNGTHVNILFSLKTCGTVVDVVNDKIVASNLVTGLPKQTPGSSGDFIIRTSKLLIPVT
CEFPRLYTISEGYVPNLRNSPLEIMSRNHGIFPFTLEIFKDNEFEEPYREALPTLKLRDSLYFGIEPVVHV
SGLESLVESCFATPTSKIDEVLKYYLIRDGCVSDDSVKQYTSRDHLAKHFQVPVFKFVGKDHKEVFLHCRV
LVCGVLDERSRCAQGCHRRMRRGAGGEDSAGLQGQTLTGGPIRIDWED

Important features of the protein:

Signal peptide:

amino acids 1-16

N-glycosylation sites.

amino acids 89-93, 116-120, 259-263, 291-295, 299-303

Tyrosine kinase phosphorylation sites.

amino acids 411-418, 443-451

N-myristoylation sites.

amino acids 226-232, 233-239, 240-246, 252-258, 296-302, 300-306, 522-528, 531-537

Page 262 of 320

Aspartic acid and asparagine hydroxylation site.

amino acids 197-209

ZP domain proteins.

amino acids 431-457

Calcium-binding EGF-like proteins.

amino acids 191-212, 232-253

App_ID=10063549

GAGAGAGGCAGCAGCTTGCTCAGCGGACAAGGATGCTGGGCGTGAGGGACCAAGGCCTGCCCTGCACTCGG $\verb|CCTGCTGCCTTGGGGTGACAATCTCAGCTCCAGGCTACAGGGAGACCGGGAGGATCACAGAGCCAGCATGT| \\$ TACAGGATCCTGACAGTGATCAACCTCTGAACAGCCTCGATGTCAAACCCCTGCGCAAACCCCGTATCCCC ATGGAGACCTTCAGAAAGGTGGGGATCCCCATCATCATAGCACTACTGAGCCTGGCGAGTATCATCATTGT GGTTGTCCTCATCAAGGTGATTCTGGATAAATACTACTTCCTCTGCGGGCAGCCTCTCCACTTCATCCCGA GGAAGCAGCTGTGTGACGGAGAGCTGGACTGTCCCTTGGGGGAGGACGAGGAGCACTGTGTCAAGAGCTTC CCCGAAGGGCCTGCAGTGGCAGTCCGCCTCTCCAAGGACCGATCCACACTGCAGGTGCTGGACTCGGCCAC AGGGAACTGGTTCTCTGCCTGTTTCGACAACTTCACAGAAGCTCTCGCTGAGACAGCCTGTAGGCAGATGG GCTACAGCAGAGCTGTGGAGATTGGCCCAGACCAGGATCTGGATGTTGTTGAAATCACAGAAAACAGCCAG GAGCTTCGCATGCGGAACTCAAGTGGGCCCTGTCTCTCAGGCTCCCTGGTCTCCCTGCACTGTCTTGCCTG TGGGAAGACCTGAAGACCCCCGTGTGGTGGGTGGGGAGGAGGCCTCTGTGGATTCTTGGCCTTGGCAGG GCCCACTGCTTCAGGAAACATACCGATGTGTTCAACTGGAAGGTGCGGGCAGGCTCAGACAAACTGGGCAG CTTCCCATCCTGGCTGTGGCCAAGATCATCATCATTGAATTCAACCCCATGTACCCCAAAGACAATGACA GATGAGGAGCTCACTCCAGCCACCCCACTCTGGATCATTGGATGGGGCTTTACGAAGCAGAATGGAGGGAA GATGTCTGACATACTGCTGCAGGCGTCAGTCCAGGTCATTGACAGCACACGGTGCAATGCAGACGATGCGT ACCAGGGGAAGTCACCGAGAAGATGATGTGTGCAGGCATCCCGGAAGGGGGTGTGGACACCTGCCAGGGT GACAGTGGTGGGCCCCTGATGTACCAATCTGACCAGTGGCATGTGGTGGGCATCGTTAGCTGGGGCTATGG CTGCGGGGGCCCGAGCACCCCAGGAGTATACACCAAGGTCTCAGCCTATCTCAACTGGATCTACAATGTCT GGGGATCCCCCAAAGTCAGACACAGAGCAAGAGTCCCCTTGGGTACACCCCTCTGCCCACAGCCTCAGCAT TTCTTGGAGCAGCAAAGGGCCTCAATTCCTGTAAGAGACCCTCGCAGCCCAGAGGCGCCCAGAGGAAGTCA GCAGCCCTAGCTCGGCCACACTTGGTGCTCCCAGCATCCCAGGGAGAGACACAGCCCACTGAACAAGGTCT CAGGGGTATTGCTAAGCCAAGAAGGAACTTTCCCACACTACTGAATGGAAGCAGGCTGTCTTGTAAAAGCC CAGATCACTGTGGGCTGGAGAGGAGGAAGGAAGGGTCTGCGCCAGCCCTGTCCGTCTTCACCCATCCCCAA GCCTACTAGAGCAAGAAACCAGTTGTAATATAAAATGCACTGCCCTACTGTTGGTATGACTACCGTTACCT AAAA

App_ID=10063549 Page 263 of 320

MLQDPDSDQPLNSLDVKPLRKPRIPMETFRKVGIPIIIALLSLASIIIVVVLIKVILDKYYFLCG
QPLHFIPRKQLCDGELDCPLGEDEEHCVKSFPEGPAVAVRLSKDRSTLQVLDSATGNWFSACFDN
FTEALAETACRQMGYSRAVEIGPDQDLDVVEITENSQELRMRNSSGPCLSGSLVSLHCLACGKSL
KTPRVVGGEEASVDSWPWQVSIQYDKQHVCGGSILDPHWVLTAAHCFRKHTDVFNWKVRAGSDKL
GSFPSLAVAKIIIIEFNPMYPKDNDIALMKLQFPLTFSGTVRPICLPFFDEELTPATPLWIIGWG
FTKQNGGKMSDILLQASVQVIDSTRCNADDAYQGEVTEKMMCAGIPEGGVDTCQGDSGGPLMYQS
DQWHVVGIVSWGYGCGGPSTPGVYTKVSAYLNWIYNVWKAEL

Transmembrane domain:

amino acids 32-53 (typeII)

GGCTGGACTGGAACTCCTGGTCCCAAGTGATCCACCCGCCTCAGCCTCCCAAGGTGCTGTGATTA TAGGTGTAAGCCACCGTGTCTGGCCTCTGAACAACTTTTTCAGCAACTAAAAAAGCCACAGGAGT TGTTTTTTGTTCTCTTGTAACTAGCCTTTACCTTCCTAACACAGAGGATCTGTCACTGTGGCTCT GGCCCAAACCTGACCTTCACTCTGGAACGAGAACAGAGGTTTCTACCCACACCGTCCCCTCGAAG ${\tt CCGGGGACAGCCTCACCTTGCTGGCCTCTCGCTGGAGCAGTGCCCTCACCAACTGTCTCACGTCT}$ GGAGGCACTGACTCGGGCAGTGCAGGTAGCTGAGCCTCTTGGTAGCTGCGGCTTTCAAGGTGGGC CTTGCCTGGCCGTAGAAGGGATTGACAAGCCCGAAGATTTCATAGGCGATGGCTCCCACTGCCC AGGCATCAGCCTTGCTGTAGTCAATCACTGCCCTGGGGCCAGGACGGCCGTGGACACCTGCTCA GAAGCAGTGGGTGAGACATCACGCTGCCCGCCCATCTAACCTTTTCATGTCCTGCACATCACCTG CAGAAGGGGTCTGCTTAGACCACCTGGTTTATGTGACAGGACTTGCATTCTCCTGGAACATGAGG GAACGCCGGAGGAAAGCAAAGTGGCAGGGAAGGAACTTGTGCCAAATTATGGGTCAGAAAAGATG GAGGTGTTGGGTTATCACAAGGCATCGAGTCTCCTGCATTCAGTGGACATGTGGGGGAAGGGCTG CCGATGGCGCATGACACACTCGGGACTCACCTCTGGGGCCATCAGACAGCCGTTTCCGCCCCGAT CCACGTACCAGCTGCTGAAGGGCAACTGCAGGCCGATGCTCTCATCAGCCAGGCAGCCAAAA CTCCTTCCCTCTGAGAGGCCCTCCTATGTCCCTACTAAAGCCACCAGCAAGACATAGCTGACAGG GGCTAATGGCTCAGTGTTGGCCCAGGAGGTCAGCAAGGCCTGAGAGCTGATCAGAAGGGCCTGCT GTGCGAACACGGAAATGCCTCCAGTAAGCACAGGCTGCAAAATCCCCAGGCAAAGGACTGTGTGG CTCAATTTAAATCATGTTCTAGTAATTGGAGCTGTCCCCAAGACCAAAGGAGCTAGAGCTTGGTT CAAATGATCTCCAAGGGCCCTTATACCCCAGGAGACTTTGATTTGAATTTGAAACCCCAAATCCA AACCTAAGAACCAGGTGCATTAAGAATCAGTTATTGCCGGGTGTGGTGGCCTGTAATGCCAACAT TTTGGGAGGCCGAGGCGGTAGATCACCTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAACATGG CCAGCTACTCGGGAGGCTGAGACAGGAGAATTACTTGAACCTGGGAGGTGAAGGAGGCTGAGACA TGGTTATTTGTAA

App_ID=10063549 Page 265 of 320

 ${\tt MLWWLVLLLLPTLKSVFCSLVTSLYLPNTEDLSLWLWPKPDLHSGTRTEVSTHTVPSKPGTASPC} \\ {\tt WPLAGAVPSPTVSRLEALTRAVQVAEPLGSCGFQGGPCPGRRD} \\$

Signal peptide:

amino acids 1-15

AGAATCCTCCAGAGAATTGTGAAGACTGTCACATTCTAAATGCAGAAGCTTTTAAATCCAAGAAA ATATGTAAATCACTTAAGATTTGTGGACTGGTGTTTGGTATCCTGGCCCTAACTCTAATTGTCCT GTTTTGGGGGAGCAAGCACTTCTGGCCGGAGGTACCCAAAAAAGCCTATGACATGGAGCACACTT TCTACAGCAATGGAGAGAAGAAGAAGATTTACATGGAAATTGATCCTGTGACCAGAACTGAAATA TTCAGAAGCGGAAATGGCACTGATGAAACATTGGAAGTGCACGACTTTAAAAACGGATACACTGG CATCTACTTCGTGGGTCTTCAAAAATGTTTTATCAAAACTCAGATTAAAGTGATTCCTGAATTTT ATTTGGGTCCCAGCAGAAAAGCCTATTGAAAAACCGAGATTTTCTTAAAAATTCCAAAATTCTGGA GATTTGTGATAACGTGACCATGTATTGGATCAATCCCACTCTAATATCAGTTTCTGAGTTACAAG AGAACTTCCAATAAATGACTATACTGAAAATGGAATAGAATTTGATCCCATGCTGGATGAGAGAG GTTATTGTTGTATTTACTGCCGTCGAGGCAACCGCTATTGCCGCCGCGTCTGTGAACCTTTACTA GGCTACTACCCATATCCATACTGCTACCAAGGAGGACGAGTCATCTGTCGTGTCATCATGCCTTG ${\tt TAACTGGTGGGTGGCCCGCATGCTGGGGAGGGTC{\tt TAA}TAGGAGGTTTGAGCTCAAATGCTTAAAC}$ TGCTGGCAACATATAATAAATGCATGCTATTCAATGAATTTCTGCCTATGAGGCATCTGGCCCCT GGTAGCCAGCTCTCCAGAATTACTTGTAGGTAATTCCTCTCTTCATGTTCTAATAAACTTCTACA ТТАТСАССААААААААААААААААА

App ID=10063549 Page 267 of 320

MAKNPPENCEDCHILNAEAFKSKKICKSLKICGLVFGILALTLIVLFWGSKHFWPEVPKKAYDME
HTFYSNGEKKKIYMEIDPVTRTEIFRSGNGTDETLEVHDFKNGYTGIYFVGLQKCFIKTQIKVIP
EFSEPEEEIDENEEITTTFFEQSVIWVPAEKPIENRDFLKNSKILEICDNVTMYWINPTLISVSE
LQDFEEEGEDLHFPANEKKGIEQNEQWVVPQVKVEKTRHARQASEEELPINDYTENGIEFDPMLD
ERGYCCIYCRRGNRYCRRVCEPLLGYYPYPYCYQGGRVICRVIMPCNWWVARMLGRV

Important features of the protein:

Signal peptide:

amino acids 1-40

Transmembrane domain:

amino acids 25-47 (type II)

N-glycosylation sites.

amino acids 94-97, 180-183

Glycosaminoglycan attachment sites.

amino acids 92-95, 70-73, 85-88, 133-136, 148-151, 192-195, 239-242

N-myristoylation sites.

amino acids 33-38, 95-100, 116-121, 215-220, 272-277

Microbodies C-terminal targeting signal.

amino acids 315-317

Cytochrome c family heme-binding site signature.

amino acids 9-14

GAGCTCCCCTCAGGAGCGCGTTAGCTTCACACCTTCGGCAGCAGGAGGGCGGCAGCTTCTCGCAGGCGGCA GGCCGCTGCATCGCGGCCACCGGGATGGACATGTGGAGCACCCAGGACCTGTACGACAACCCCGTCACCT CCGTGTTCCAGTACGAAGGGCTCTGGAGGAGCTGCGTGAGGCAGAGTTCAGGCTTCACCGAATGCAGGCCC GGGTGCCATTGGCCTCCTGGTATCCATCTTTGCCCTGAAATGCATCCGCATTGGCAGCATGGAGGACTCTG CCAAAGCCAACATGACACTGACCTCCGGGATCATGTTCATTGTCTCAGGTCTTTGTGCAATTGCTGGAGTG TCTGTGTTTTGCCAACATGCTGGTGACTAACTTCTGGATGTCCACAGCTAACATGTACACCGGCATGGGTGG GATGGTGCAGACTGTTCAGACCAGGTACACATTTGGTGCGGCTCTGTTCGTGGGCTGGGTCGCTGGAGGCC TCACACTAATTGGGGGTGTGATGATGTGCATCGCCTGCCGGGGCCTGGCACCAGAAGAAACCAACTACAAA GCCGTTTCTTATCATGCCTCAGGCCACAGTGTTGCCTACAAGCCTGGAGGCTTCAAGGCCAGCACTGGCTT TGGGTCCAACACCAAAAACAAGAAGATATACGATGGAGGTGCCCGCACAGAGGACGACGAGTACAATCTTATC CTTCCAAGCACGACTATGTGTAATGCTCTAAGACCTCTCAGCACGGGCGGAAGAAACTCCCGGAGAGCTCA CCCAAAAAACAAGGAGATCCCATCTAGATTTCTTCTTGCTTTTGACTCACAGCTGGAAGTTAGAAAAGCCT CGATTTCATCTTTGGAGAGGCCAAATGGTCTTAGCCTCAGTCTCTGTCTCTAAATATTCCACCATAAAACA GCTGAGTTATTTATGAATTAGAGGCTATAGCTCACATTTTCAATCCTCTATTTCTTTTTTTAAATATAACT TTCCTCCTAGTCAATAAACCCATTGATGATCTATTTCCCAGCTTATCCCCAAGAAAACTTTTGAAAGGAAA GAGTAGACCCAAAGATGTTATTTTCTGCTGTTTGAATTTTGTCTCCCCACCCCAACTTGGCTAGTAATAA ACACTTACTGAAGAAGAAGCAATAAGAGAAAGATATTTGTAATCTCTCCAGCCCATGATCTCGGTTTTCTT ACACTGTGATCTTAAAAGTTACCAAACCAAAGTCATTTTCAGTTTGAGGCAACCAAACCTTTCTACTGCTG TTGACATCTTCTTATTACAGCAACACCATTCTAGGAGTTTCCTGAGCTCTCCACTGGAGTCCTCTTTCTGT AATAAATAATGTTTTAGTAAAATGATACACTATCTCTGTGAAATAGCCTCACCCCTACATGTGGATAGAAG GAAATGAAAAATTGCTTTGACATTGTCTATATGGTACTTTGTAAAGTCATGCTTAAGTACAAATTCC TCGAGACTAGCCTGGGCAACATGGAGAAGCCCTGTCTCTACAAAATACAGAGAGAAAAAATCAGCCAGTCA TGGTGGCATACACCTGTAGTCCCAGCATTCCGGGAGGCTGAGGTGGGAGGATCACTTGAGCCCAGGGAGGT AATAAAAATAAATAAATGGAACACAGCAAGTCCTAGGAAGTAGGTTAAAACTAATTCTTTAA

 $\label{thm:covafilsiglagciaatgmdmwstqdlydnpvtsvfqyeglwrscvrqssgftecrpy filglpamlqavralmivgivlgaigllvsifalkcirigsmedsakanmtltsgimfivsglcaiagcvsvfanmlvtnfwmstanmytgmggmvqtvqtrytfgaalfvgwvaggltliggvmmciacrglapeetnykavsyhasghsvaykpggfkastgfgsntknkkiydggartedevqsypskhdyv$

Signal peptide:

amino acids 1-23

Transmembrane domains:

amino acids 81-100, 121-141, 173-194

GGAAAAACTGTTCTCTTGTGGCACAGAGAACCCTGCTTCAAAGCAGAAGTAGCAGTTCCGGAGTCC ${\tt AGCTGGCTAAAACTCATCCCAGAGGATA} \underline{{\tt ATG}} {\tt GCAACCCATGCCTTAGAAATCGCTGGGCTGTTTCTTG}$ GTGGTGTTGGAATGGTGGCACAGTGGCTGTCACTGTCATGCCTCAGTGGAGAGTGTCGGCCTTCATT GACTGATGTGTGCTGCTTCCGTGATGTCCTTCTTGGCTTTCATGATGGCCATCCTTGGCATGAAATGC ACCAGGTGCACGGGGGACAATGAGAAGGTGAAGGCTCACATTCTGCTGACGGCTGGAATCATCTTCAT CATCACGGGCATGGTGGTCCTCATCCCTGTGAGCTGGGTTGCCAATGCCATCATCAGAGATTTCTATA ACTCAATAGTGAATGTTGCCCAAAAACGTGAGCTTGGAGAAGCTCTCTACTTAGGATGGACCACGGCA CTGGTGCTGATTGTTGGAGGAGCTCTGTTCTGCTGCGTTTTTTGTTGCAACGAAAAGAGCAGTAGCTA CAGATACTCGATACCTTCCCATCGCACAACCCAAAAAAGTTATCACACCGGAAAGAAGTCACCGAGCG ${\tt TCTACTCCAGAAGTCAGTATGTG}{\tt TAG}{\tt TTGTGTATGTTTTTTTAACTTTACTATAAAGCCATGCAAATG}$ ACAAAAATCTATATTACTTTCTCAAAATGGACCCCAAAGAAACTTTGATTTACTGTTCTTAACTGCCT AATCTTAATTACAGGAACTGTGCATCAGCTATTTATGATTCTATAAGCTATTTCAGCAGAATGAGATA TTAAACCCAATGCTTTGATTGTTCTAGAAAGTATAGTAATTTGTTTTCTAAGGTGGTTCAAGCATCTA $\tt CTCTTTTTATCATTTACTTCAAAATGACATTGCTAAAGACTGCATTATTTTACTACTGTAATTTCTCC$ ACGACATAGCATTATGTACATAGATGAGTGTAACATTTATATCTCACATAGAGACATGCTTATATGGT ATCATGGATAGGGTTGAAGAAGGTTACTATTAATTGTTTAAAAAACAGCTTAGGGATTAATGTCCTCCA TTTATAATGAAGATTAAAATGAAGGCTTTAATCAGCATTGTAAAGGAAATTGAATGGCTTTCTGATAT CTTGTGTATTAAATTAACATTTTTAAAACGCAGATATTTTGTCAAGGGGCTTTGCATTCAAACTGCTT TTCCAGGGCTATACTCAGAAGAAAGATAAAAGTGTGATCTAAGAAAAAGTGATGGTTTTAGGAAAGTG TGTCTTGGTTTTCATTTGCTTACCAAAAAAACAACAACAAAAAAGTTGTCCTTTGAGAACTTCACCT CCATTTCTGTTTAGTTTACTAAAATCTGTAAATACTGTATTTTTCTGTTTATTCCAAATTTGATGAA TATACATTTATATTAATAAATTGTACATTTTTCTAATT

App_ID=10063549 Page 271 of 320

MATHALEIAGLFLGGVGMVGTVAVTVMPQWRVSAFIENNIVVFENFWEGLWMNCVRQANIRMQCK
IYDSLLALSPDLQAARGLMCAASVMSFLAFMMAILGMKCTRCTGDNEKVKAHILLTAGIIFIITG
MVVLIPVSWVANAIIRDFYNSIVNVAQKRELGEALYLGWTTALVLIVGGALFCCVFCCNEKSSSY
RYSIPSHRTTQKSYHTGKKSPSVYSRSQYV

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 82-101, 118-145, 164-188

GGAGAGAGGCGCGGGTGAAAGGCGCATTGATGCAGCCTGCGGCGGCCTCGGAGCGCGGCGGAG CCAGACGCTGACCACGTTCCTCTCCTCCGGTCTCCTCCGCCTCCAGCTCCGCGCTGCCCGGCAGCC TGCTGCTGCAGCTGCCCGCCGTCGAGCGCCTCTGAGATCCCCAAGGGGAAGCAAAAGGCGCAG $\tt CTCCGGCAGAGGGGGGGGGGGGCCTGTATAATGGAATGTGCTTACAAGGGCCAGCAGGAGTGCC$ TGGTCGAGACGGGAGCCCTGGGGCCAATGTTATTCCGGGTACACCTGGGATCCCAGGTCGGGATG GATTCAAAGGAGAAAAGGGGGAATGTCTGAGGGAAAGCTTTGAGGAGTCCTGGACACCCAACTAC AAGCAGTGTTCATGGAGTTCATTGAATTATGGCATAGATCTTGGGAAAATTGCGGAGTGTACATT TACAAAGATGCGTTCAAATAGTGCTCTAAGAGTTTTGTTCAGTGGCTCACTTCGGCTAAAATGCA GAAATGCATGCTGTCAGCGTTGGTATTTCACATTCAATGGAGCTGAATGTTCAGGACCTCTTCCC ATTGAAGCTATAATTTATTTGGACCAAGGAAGCCCTGAAATGAATTCAACAATTAATATTCATCG CACTTCTTCTGTGGAAGGACTTTGTGAAGGAATTGGTGCTGGATTAGTGGATGTTGCTATCTGGG ${\tt ATTATTGAAGAACTACCAAAA} \underline{{\tt TAA}} {\tt ATGCTTTAATTTTCATTTGCTACCTCTTTTTTTATTATGCC}$ CTAAATATGTTTACAGACCAAAGTGTGATTTCACACTGTTTTTAAATCTAGCATTATTCATTTTG CTTCAATCAAAAGTGGTTTCAATATTTTTTTTTAGTTGGTTAGAATACTTTCTTCATAGTCACATT CTCTCAACCTATAATTTTGGAATATTGTTGTGGTCTTTTGTTTTTTCTCTTAGTATAGCATTTTTA TAAATAAAATTATTTCCAACA

App_ID=10063549 Page 273 of 320

 $\label{thm:constraint} $$\operatorname{MRPQGPAASPQRLRGLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGVPGR$$$ DGSPGANVIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIAECTFTK$$$ MRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYLDQGSPEMNSTINIHRTS SVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIEELPK$

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 195-217

GCTGAGCGTGTGCGCGGTACGGGGCTCTCCTGCCTTCTGGGCTCCAACGCAGCTCTGTGGCTGAA CTGGGTGCTCATCACGGGAACTGCTGGGCTATGGAATACAGATGTGGCAGCTCAGGTAGCCCCAA ACCGCCCCTCCCCACCCCCCAAAAAAACTGTAAAGATGCAAAAACGTAATATCCATGAAGATCC TGTTCTGCGTGGCTGGCAAAGAATAATGTTCCAAAATCGGTCCATCTCCCAAGGGGTCCAATTTT TCTTCCTGGGTGTCAGCGAGCCCTGACTCACTACAGTGCAGCTGACAGGGGCTGTCATGCAACTG GCCCCTAAGCCAAAGCAAAAGACCTAAGGACGACCTTTGAACAATACAAAGG**ATG**GGTTTCAATG TAATTAGGCTACTGAGCGGATCAGCTGTAGCACTGGTTATAGCCCCCACTGTCTTACTGACAATG CTTTCTTCTGCCGAACGAGGATGCCCTAAGGGCTGTAGGTGTGAAGGCAAAATGGTATATTGTGA ATCTCAGAAATTACAGGAGATACCCTCAAGTATATCTGCTGGTTGCTTAGGTTTGTCCCTTCGCT ATAACAGCCTTCAAAAACTTAAGTATAATCAATTTAAAGGGCTCAACCAGCTCACCTGGCTATAC CTTGACCATAACCATATCAGCAATATTGACGAAAATGCTTTTAATGGAATACGCAGACTCAAAGA GCTGATTCTTAGTTCCAATAGAATCTCCTATTTTCTTAACAATACCTTCAGACCTGTGACAAATT TACGGAACTTGGATCTGTCCTATAATCAGCTGCATTCTCTGGGATCTGAACAGTTTCGGGGCTTG CGGAAGCTGCTGAGTTTACATTTACGGTCTAACTCCCTGAGAACCATCCCTGTGCGAATATTCCA AGACTGCCGCAACCTGGAACTTTTGGACCTGGGATATAACCGGATCCGAAGTTTAGCCAGGAATG CTGGCCCTTTTTCCAAGGTTGGTCAGCCTTCAGAACCTTTACTTGCAGTGGAATAAAATCAGTGT CATAGGACAGACCATGTCCTGGACCTGGAGCTCCTTACAAAGGCTTGATTTATCAGGCAATGAGA TCGAAGCTTTCAGTGGACCCAGTGTTTTCCAGTGTGTCCCGAATCTGCAGCGCCTCAACCTGGAT TCCAACAAGCTCACATTTATTGGTCAAGAGATTTTTGGATTCTTTGGATATCCCTCAATGACATCAG TCTTGCTGGGAATATATGGGAATGCAGCAGAAATATTTGCTCCCTTGTAAACTGGCTGAAAAGTT TTAAAGGTCTAAGGGAGAATACAATTATCTGTGCCAGTCCCAAAGAGCTGCAAGGAGTAAATGTG ATCGATGCAGTGAAGAACTACAGCATCTGTGGCAAAAGTACTACAGAGAGGTTTGATCTGGCCAG GGCTCTCCCAAAGCCGACGTTTAAGCCCAAGCTCCCCAGGCCGAAGCATGAGAGCAAACCCCCTT TGCCCCGACGGTGGGAGCCACAGAGCCCGGCCCAGAGACCGATGCTGACGCCGAGCACATCTCT TTCCATAAAATCATCGCGGGCAGCGTGGCGCTTTTCCTGTCCGTGCTCGTCATCCTGCTGGTTAT CTACGTGTCATGGAAGCGGTACCCTGCGAGCATGAAGCAGCTGCAGCAGCGCTCCCTCATGCGAA GGCACAGGAAAAAGAAAAGACAGTCCCTAAAGCAAATGACTCCCAGCACCCAGGAATTTTATGTA GATTATAAACCCACCAACACGGAGACCAGCGAGATGCTGCTGAATGGGACGGGACCCTGCACCTA ${\tt TAACAAATCGGGCTCCAGGGAGTGTGAGGTA} \underline{{\tt TGA}} {\tt ACCATTGTGATAAAAAGAGCTCTTAAAAGCT}$ ${\tt GGGAAATAAGTGGTGCTTTATTGAACTCTGG\overline{TGA}CTATCAAGGGAACGCGATGCCCCCCTCCCC}$ TTCCCTCTCCCTCTCACTTTGGTGGCAAGATCCTTCCTTGTCCGTTTTAGTGCATTCATAATACT GAACTCCGGTTTAATATAATACCTATTGTATAAGACCCTTTACTGATTCCATTAATGTCGCATTT

App_ID=10063549 Page 275 of 320

MGFNVIRLLSGSAVALVIAPTVLLTMLSSAERGCPKGCRCEGKMVYCESQKLQEIPSSISAGCLG
LSLRYNSLQKLKYNQFKGLNQLTWLYLDHNHISNIDENAFNGIRRLKELILSSNRISYFLNNTFR
PVTNLRNLDLSYNQLHSLGSEQFRGLRKLLSLHLRSNSLRTIPVRIFQDCRNLELLDLGYNRIRS
LARNVFAGMIRLKELHLEHNQFSKLNLALFPRLVSLQNLYLQWNKISVIGQTMSWTWSSLQRLDL
SGNEIEAFSGPSVFQCVPNLQRLNLDSNKLTFIGQEILDSWISLNDISLAGNIWECSRNICSLVN
WLKSFKGLRENTIICASPKELQGVNVIDAVKNYSICGKSTTERFDLARALPKPTFKPKLPRPKHE
SKPPLPPTVGATEPGPETDADAEHISFHKIIAGSVALFLSVLVILLVIYVSWKRYPASMKQLQQR
SLMRRHRKKKRQSLKOMTPSTQEFYVDYKPTNTETSEMLLNGTGPCTYNKSGSRECEV

Important features of the protein:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 420-442

N-glycosylation sites.

amino acids 126-129, 357-360, 496-499, 504-507

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 465-468

Tyrosine kinase phosphorylation site.

amino acids 136-142

N-myristoylation sites.

amino acids 11-16, 33-38, 245-250, 332-337, 497-502, 507-512

 $\texttt{CCGTTATCGTCTTGCGCTACTGCTGA} \underline{\textbf{ATG}} \\ \texttt{TCCGTCCCGGAGGAGGAGGAGGCTTTTGCCGCTG} \\$ ACCCAGAGATGGCCCCGAGCGAGCAAATTCCTACTGTCCGGCTGCCGGGCTACCGTGGCCGAGCT AGCAACCTTTCCCCTGGATCTCACAAAAACTCGACTCCAAATGCAAGGAGAAGCAGCTCTTGCTC GGTTGGGAGACGGTGCAAGAGAATCTGCCCCCTATAGGGGAATGGTGCGCACAGCCCTAGGGATC ATTGAAGAGGAAGGCTTTCTAAAGCTTTGGCAAGGAGTGACACCCGCCATTTACAGACACGTAGT GTATTCTGGAGGTCGAATGGTCACATATGAACATCTCCGAGAGGTTGTGTTTTGGCAAAAGTGAAG ATGAGCATTATCCCCTTTGGAAATCAGTCATTGGAGGGATGATGGCTGGTGTTATTGGCCAGTTT AAAACCATTGCGATTTCGTGGTGTACATCATGCATTTGCAAAAATCTTAGCTGAAGGAGGAATAC GAGGGCTTTGGGCAGGCTGGGTACCCAATATACAAAGAGCAGCACTGGTGAATATGGGAGATTTA ACCACTTATGATACAGTGAAACACTACTTGGTATTGAATACACCACTTGAGGACAATATCATGAC TCACGGTTTATCAAGTTTATGTTCTGGACTGGTAGCTTCTATTCTGGGAACACCAGCCGATGTCA ACTGACTGCTTGATTCAGGCTGTTCAAGGTGAAGGATTCATGAGTCTATATAAAGGCTTTTTACC TGAGTGGAGTCAGTCCATTTTAA

MSVPEEEERLLPLTQRWPRASKFLLSGCAATVAELATFPLDLTKTRLQMQGEAALARLGDGARES APYRGMVRTALGIIEEEGFLKLWQGVTPAIYRHVVYSGGRMVTYEHLREVVFGKSEDEHYPLWKS VIGGMMAGVIGQFLANPTDLVKVQMQMEGKRKLEGKPLRFRGVHHAFAKILAEGGIRGLWAGWVP NIQRAALVNMGDLTTYDTVKHYLVLNTPLEDNIMTHGLSSLCSGLVASILGTPADVIKSRIMNQP RDKQGRGLLYKSSTDCLIQAVQGEGFMSLYKGFLPSWLRMTPWSMVFWLTYEKIREMSGVSPF

Transmembrane domains:

amino acids 25-38, 130-147, 233-248

CGCGGATCGGACCCAAGCAGGTCGGCGGCGGCGGCAGGAGAGCGGCCGGGCGTCAGCTCCTCGAC $\verb|CCCGTGTCGGGCTAGTCCAGCGAGGCGGACGGGCGTGGGCCC| \verb|ATG| GCCAGGCCCGGCATGG|$ AGCGGTGGCGCGACCGGCTGGCGCTGGTGACGGGGGCCTCGGGGGGCCATCGGCGCCGCCGTGGCC CGGGCCCTGGTCCAGCAGGGACTGAAGGTGGTGGGCTGCGCCCGCACTGTGGGCAACATCGAGGA GCTGGCTGCTGAATGTAAGAGTGCAGGCTACCCCGGGACTTTGATCCCCTACAGATGTGACCTAT CAAATGAAGAGGACATCCTCTCCATGTTCTCAGCTATCCGTTCTCAGCACAGCGGTGTAGACATC TGCATCAACAATGCTGGCTTGGCCCGGCCTGACACCCTGCTCTCAGGCAGCACCAGTGGTTGGAA GGACATGTTCAATGTGAACGTGCTGGCCCTCAGCATCTGCACACGGGAAGCCTACCAGTCCATGA AGGAGCGGAATGTGGACGATGGGCACATCATTAACATCAATAGCATGTCTGGCCACCGAGTGTTA CCCCTGTCTGTGACCCACTTCTATAGTGCCACCAAGTATGCCGTCACTGCGCTGACAGAGGGACT GAGGCAAGAGCTTCGGGAGGCCCAGACCCACATCCGAGCCACGTGCATCTCTCCAGGTGTGGTGG AGACACAATTCGCCTTCAAACTCCACGACAAGGACCCTGAGAAGGCAGCTGCCACCTATGAGCAA ATGAAGTGTCTCAAACCCGAGGATGTGGCCGAGGCTGTTATCTACGTCCTCAGCACCCCCGCACA CATCCAGATTGGAGACATCCAGATGAGGCCCACGGAGCAGGTGACCTAGTGACTGTGGGAGCTCC TCCTTCCCTCCCACCCTTCATGGCTTGCCTCCTGCCTCTGGATTTTAGGTGTTGATTTCTGGAT ${\tt TCATCTTGTCAAATTGCTTCAGTTGTAAATGTGAAAAATGGGCTGGGGAAAGGAGGTGGTGTCCC}$ TAATTGTTTTACTTGTTACTTGTTCTTGTGCCCCTGGGCACTTGGCCTTTGTCTCAGTG TCTTCCCTTTGACATGGGAAAGGAGTTGTGGCCAAAATCCCCATCTTCTTGCACCTCAACGTCTG TGGCTCAGGGCTGGGGTGGCAGAGGGAGGCCTTCACCTTATATCTGTGTTGTTATCCAGGGCTCC AGCCCAGTCTTGGCTTCTTGTCCCCTCCTGGGGTCATCCCTCCACTCTGACTCTGACTATGGCAG CAGAACACCAGGGCCTGGCCCAGTGGATTTCATGGTGATCATTAAAAAAAGAAAAATCGCAACCAA AAAAAAAAA

App ID=10063549 Page 279 of 320

MARPGMERWRDRLALVTGASGGIGAAVARALVQQGLKVVGCARTVGNIEELAAECKSAGYPGTLI
PYRCDLSNEEDILSMFSAIRSQHSGVDICINNAGLARPDTLLSGSTSGWKDMFNVNVLALSICTR
EAYQSMKERNVDDGHIININSMSGHRVLPLSVTHFYSATKYAVTALTEGLRQELREAQTHIRATC
ISPGVVETQFAFKLHDKDPEKAAATYEQMKCLKPEDVAEAVIYVLSTPAHIQIGDIQMRPTEQVT

Important features of the protein:

Signal peptide:

amino acids 1-17

N-myristoylation sites.

amino acids 18-24, 21-27, 22-28, 24-30, 40-46, 90-96, 109-115, 199-205

Short-chain alcohol dehyrogenase.

amino acids 30-42, 104-114

App_ID=10063549

 $\mathtt{AACTTCTAC}_{\mathtt{ATG}}\mathtt{GGCCTCCTGCTGCTGGTGCTCTTCCTCAGCCTCCTGCCGGTGGCCTACACCAT$ CATGTCCCTCCCACCCTCTTTGACTGCGGGCCGTTCAGGTGCAGAGTCTCAGTTGCCCGGGAGC ACCTCCCTCCCGAGGCAGTCTGCTCAGAGGGCCTCGGCCCAGAATTCCAGTTCTGGTTTCATGC GGATGGAAATGTTAGGTCGTTCTGTGTCTGCGCTGTTCATTTCAGTAGCCACCAGCCACCTGTGG TTAATTTTTAACTGATAGTTGTACATATTTGGGGGTACATGTGATATTTGGATACATGTATACAA $\tt TTAGACAGAGTCTCACTCTGTCACCCAGGCTGGAGTGCAGTGGTGCCATCTCAGCTTACTGCAAC$ $\tt CTCTGCCTGCCAGGTTCAAGCGATTCTCATGCCTCCAACCTCCCAAGTAGCTGGGACTACAGGCAT$ GCACCACAATGCCCAACTAATTTTTGTATTTTTAGTAGAGACGGGGTTTTGCCATGTTGCCCAGG CTGGCCTTGAACTCCTGGCCTCAAACAATCCACTTGCCTCGGCCTCCCAAAGTGTTATGATTACA GGCGTGAGCCACCGTGCCTGGCCTAAACATTTATCTTTTCTTTGTGTTGGGAACTTTGAAATTAT ACAATGAATTATTGTTAACTGTCATCTCCCTGCTGTGCTATGGAACACTGGGACTTCTTCCCTCT ATCTAACTGTATATTTGTACCAGTTAACCAACCGTACTTCATCCCCACTCCTCTATCCTTCCC AACCTCTGATCACCTCATTCTACTCTCTACCTCCATGAGATCCACTTTTTTAGCTCCCACATGTG AGTAAGAAAATGCAATATTTGTCTTTCTGTGCCTGGCTTATTTCACTTAACATAATGACTTCCTG TTCCATCCATGTTGCTGCAAATGACAGGATTTCGTTCTTAATTTCAATTAAAATAACCACACATG CCAAAAA

App_ID=10063549 Page 281 of 320

 ${\tt MGLLLVLFLSLLPVAYTIMSLPPSFDCGPFRCRVSVAREHLPSRGSLLRGPRPRIPVLVSCQPV} \\ {\tt KGHGTLGESPMPFKRVFCQDGNVRSFCVCAVHFSSHQPPVAVECLK}$

Important features of the protein:

Signal peptide:

amino acids 1-18

N-myristoylation site.

amino acids 86-92

Zinc carboxypeptidases, zinc-binding region 2 signature.

amino acids 68-79

TTCTGAAGTAACGGAAGCTACCTTGTATAAAGACCTCAACACTGCTGACCATGATCAGCGCAGCCTGGAGC ATCTTCCTCATCGGGACTAAAATTGGGCTGTTCCTTCAAGTAGCACCTCTATCAGTTATGGCTAAATCCTG TCCATCTGTGTGTGTCGCTGCGATGCGGGTTTCATTTACTGTAATGATCGCTTTCTGACATCCATTCCAACAG ${\tt TTGAAAAACTTGCTGAAAGTAGAAAGAATATACCTATACCACAACAGTTTAGATGAATTTCCTACCAACCT}$ CCCAAAGTATGTAAAAGAGTTACATTTGCAAGAAAATAACATAAGGACTATCACTTATGATTCACTTTCAA AAATTCCCTATCTGGAAGAATTACATTTAGATGACAACTCTGTCTCTGCAGTTAGCATAGAAGAGGGAGCA TTCCGAGACAGCAACTATCTCCGACTGCTTTTCCTGTCCCGTAATCACCTTAGCACAATTCCCTGGGGTTT GCCCAGGACTATAGAAGAACTACGCTTGGATGATAATCGCATATCCACTATTTCATCACCATCTCTTCAAG GTCTCACTAGTCTAAAACGCCTGGTTCTAGATGGAAACCTGTTGAACAATCATGGTTTAGGTGACAAAGTT TTCTTCAACCTAGTTAATTTGACAGAGCTGTCCCTGGTGCGGAATTCCCTGACTGCACCAGTAAACCT TCCAGGCACAAACCTGAGGAAGCTTTATCTTCAAGATAACCACATCAATCGGGTGCCCCCAAATGCTTTTT $\verb|CTTATCTAAGGCAGCTCTATCGACTGGATATGTCCAATAATAACCTAAGTAATTTACCTCAGGGTATCTTT| \\$ GATGATTTGGACAATATAACACAACTGATTCTTCGCAACAATCCCTGGTATTGCGGGTGCAAGATGAAATG AGGTTCGTGGGATGGCTATTAAGGATCTCAATGCAGAACTGTTTGATTGTAAGGACAGTGGGATTGTAAGC ACCATTCAGATAACCACTGCAATACCCAACACGTGTATCCTGCCCAAGGACAGTGGCCAGCTCCAGTGAC CAAACAGCCAGATATTAAGAACCCCAAGCTCACTAAGGATCAACAAACCACAGGGAGTCCCTCAAGAAAAA CAATTACAATTACTGTGAAGTCTGTCACCTCTGATACCATTCATATCTCTTGGAAACTTGCTCTACCTATG ACTGCTTTGAGACTCAGCTGGCTTAAACTGGGCCATAGCCCGGCATTTGGATCTATAACAGAAACAATTGT AACAGGGGAACGCAGTGAGTACTTGGTCACAGCCCTGGAGCCTGATTCACCCTATAAAGTATGCATGGTTC CCATGGAAACCAGCAACCTCTACCTATTTGATGAAACTCCTGTTTGTATTGAGACTGAAACTGCACCCCTT CGAATGTACAACCCTACAACCACCCTCAATCGAGAGCAAGAAAAACCCTTACAAAAAACCCCAATTTACC TTTGGCTGCCATCATTGGTGGGGCTGTGGCCCTGGTTACCATTGCCCTTCTTGCTTTAGTGTTTGGTATG TTCATAGGAATGGATCGCTCTTCTCAAGGAACTGTGCATATAGCAAAGGGAGGAGAAGAAAGGATGACTAT GCAGAAGCTGGCACTAAGAAGGACAACTCTATCCTGGAAATCAGGGAAACTTCTTTTCAGATGTTACCAAT ACAAAAACAATCACAGTGAAAGCAGTAGTAACCGAAGCTACAGAGACAGTGGTATTCCAGACTCAGATCAC GT

App_ID=10063549 Page 283 of 320

MISAAWSIFLIGTKIGLFLQVAPLSVMAKSCPSVCRCDAGFIYCNDRFLTSIPTGIPEDATTLYL QNNQINNAGIPSDLKNLLKVERIYLYHNSLDEFPTNLPKYVKELHLQENNIRTITYDSLSKIPYL EELHLDDNSVSAVSIEEGAFRDSNYLRLLFLSRNHLSTIPWGLPRTIEELRLDDNRISTISSPSL QGLTSLKRLVLDGNLLNNHGLGDKVFFNLVNLTELSLVRNSLTAAPVNLPGTNLRKLYLQDNHIN RVPPNAFSYLRQLYRLDMSNNNLSNLPQGIFDDLDNITQLILRNNPWYCGCKMKWVRDWLQSLPV KVNVRGLMCQAPEKVRGMAIKDLNAELFDCKDSGIVSTIQITTAIPNTVYPAQGQWPAPVTKQPD IKNPKLTKDQQTTGSPSRKTITITVKSVTSDTIHISWKLALPMTALRLSWLKLGHSPAFGSITET IVTGERSEYLVTALEPDSPYKVCMVPMETSNLYLFDETPVCIETETAPLRMYNPTTTLNREQEKE PYKNPNLPLAAIIGGAVALVTIALLALVCWYVHRNGSLFSRNCAYSKGRRRKDDYAEAGTKKDNS ILEIRETSFOMLPISNEPISKEEFVIHTIFPPNGMNLYKNNHSESSSNRSYRDSGIPDSDHSHS

Important features of the protein:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 531-552

N-glycosylation sites.

amino acids 226-229, 282-285, 296-299, 555-558, 626-629, 633-636

Tyrosine kinase phosphorylation site.

amino acids 515-522

N-myristoylation sites.

amino acids 12-17, 172-177, 208-213, 359-364, 534-539, 556-561, 640-645

Amidation site.

amino acids 567-570

Leucine zipper pattern.

amino acids 159-180

Phospholipase A2 aspartic acid active site.

amino acids 34-44

App_ID=10063549 Page 284 of 320

CCGTCATCCCCTGCAGCCACCCTTCCCAGAGTCCTTTGCCCAGGCCACCCCAGGCTTCTTGGCA TGCAGAGGCAGTCTGGGCTTGGCCAGAGCTCAGGGTGCTGAGCGTGTGACCAGCAGTGAGCAGAG GCCGGCCATGGCCAGCCTGGGGCTGCTCCTGCTCTTACTGACAGCACTGCCACCGCTGTGGT $\tt CCTCCTCACTGCCTGGGCTGGACACTGCTGAAAGTAAAGCCACCATTGCAGACCTGATCCTGTCT$ GCGCTGGAGAGAGCCACCGTCTTCCTAGAACAGAGGCTGCCTGAAATCAACCTGGATGGCATGGT GGGGGTCCGAGTGCTGGAAGAGCAGCTAAAAAGTGTCCGGGAGAAGTGGGCCCAGGAGCCCCTGC TGCAGCCGCTGAGCCTGCGCGTGGGGATGCTGGGGGAGAAGCTGGAGGCTGCCATCCAGAGATCC CTCCACTACCTCAAGCTGAGTGATCCCAAGTACCTAAGAGAGTTCCAGCTGACCCTCCAGCCCGG GTTTTGGAAGCTCCCACATGCCTGGATCCACACTGATGCCTCCTTGGTGTACCCCACGTTCGGGC CCCAGGACTCATTCTCAGAGGAGAGAGTGACGTGTGCCTGGTGCAGCTGCTGGGAACCGGGACGGACAGCAGCGAGCCCTGCGGCCTCTCAGACCTCTGCAGGAGCCTCATGACCAAGCCCGGCTGCTC AGGCTACTGCCTGTCCCACCAACTGCTCTTCTTCCTCTGGGCCAGAATGAGGGGATGCACACAGG GACCACTCCAACAGAGCCAGGACTATATCAACCTCTTCTGCGCCAACATGATGGACTTGAACCGC AGAGCTGAGGCCATCGGATACGCCTACCCTACCCGGGACATCTTCATGGAAAACATCATGTTCTG TGGAATGGGCGGCTTCTCCGACTTCTACAAGCTCCGGTGGCTGGAGGCCATTCTCAGCTGGCAGA AACAGCAGGAAGGATGCTTCGGGGAGCCTGATGCTGAAGATGAAGAATTATCTAAAGCTATTCAA TATCAGCAGCATTTTTCGAGGAGAGTGAAGAGGCGAGAAAAACAATTTCCAGATTCTCGCTCTGT TGCTCAGGCTGGAGTACAGTGGCGCAATCTCGGCTCACTGCAACCTTTGCCTCCTGGGTTCAAGC AATTCTCTTGCCTCATCCTCCCGAGTAGCTGGGACTACAGGAGCGTGCCACCATACCTGGCTAAT TTTTATATTTTTTAGTAGAGACAGGGTTTCATCATGTTGCTCATGCTGGTCTCGAACTCCTGAT $\tt CTCAAGAGATCCGCCCACCTCAGGCTCCCAAAGTGTGGGATTA{\color{red}{TAG}} GTGTGAGCCACCGTGTCTG$ GCTGAAAAGCACTTTCAAAGAGACTGTGTTGAATAAAGGGCCAAGGTTCTTGCCACCCAGCACTC ATGGGGGCTCTCTCCCCTAGATGGCTGCTCCTCCCACAACACAGCCACAGCAGTGGCAGCCCTGG GTGGCTTCCTATACATCCTGGCAGAATACCCCCCAGCAAACAGAGAGCCACACCCATCCACACCG $\tt CCACCACCAGCAGCCGCTGAGACGGACGGTTCCATGCCAGCTGCCTGGAGGAGGAACAGACCCC$ TTTAGTCCTCATCCCTTAGATCCTGGAGGGCACGGATCACATCCTGGGAAGAAGGCATCTGGAGG ATAAGCAAAGCCACCCGACACCCAATCTTGGAAGCCCTGAGTAGGCAGGGCCAGGGTAGGTGGG

App ID=10063549 Page 285 of 320

MSARGRWEGGGRRACRGSLGLARAQGAERVTSSEQRPAMASLGLLLLLLLTALPPLWSSSLPGLD
TAESKATIADLILSALERATVFLEQRLPEINLDGMVGVRVLEEQLKSVREKWAQEPLLQPLSLRV
GMLGEKLEAAIQRSLHYLKLSDPKYLREFQLTLQPGFWKLPHAWIHTDASLVYPTFGPQDSFSEE
RSDVCLVQLLGTGTDSSEPCGLSDLCRSLMTKPGCSGYCLSHQLLFFLWARMRGCTQGPLQQSQD
YINLFCANMMDLNRRAEAIGYAYPTRDIFMENIMFCGMGGFSDFYKLRWLEAILSWQKQQEGCFG
EPDAEDEELSKAIQYQQHFSRRVKRREKQFPDSRSVAQAGVQWRNLGSLQPLPPGFKQFSCLILP
SSWDYRSVPPYLANFYIFLVETGFHHVAHAGLELLISRDPPTSGSQSVGL

Important features of the protein:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 39-56

Tyrosine kinase phosphorylation sites.

amino acids 149-156, 274-282

N-myristoylation sites.

amino acids 10-16, 20-26, 63-69, 208-214

Amidation site.

amino acids 10-14

Glycoprotein hormones beta chain signature 1.

amino acids 230-237

App_ID=10063549 Page 287 of 320

MAAALWGFFPVLLLLLLSGDVQSSEVPGAAAEGSGGSGVGIGDRFKIEGRAVVPGVKPQDWISAA RVLVDGEEHVGFLKTDGSFVVHDIPSGSYVVEVVSPAYRFDPVRVDITSKGKMRARYVNYIKTSE VVRLPYPLQMKSSGPPSYFIKRESWGWTDFLMNPMVMMMVLPLLIFVLLPKVVNTSDPDMRREME QSMNMLNSNHELPDVSEFMTRLFSSKSSGKSSSGSSKTGKSGAGKRR

Important features of the protein:

Signal sequence:

amino acids 1-23

Transmembrane domain:

amino acids 161-182

N-glycosylation site.

amino acids 184-187

Glycosaminoglycan attachment sites.

amino acids 37-40, 236-239

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 151-154

N-myristoylation sites.

amino acids 33-38, 36-41, 38-44, 229-234

Amidation site.

amino acids 238-241

ATP/GTP-binding site motif A (P-loop).

amino acids 229-236

GATGGCGCAGCCACAGCTTCTGTGAGATTCGATTTCTCCCCAGTTCCCCTGTGGGTCTGAGGGGA CCAGAAGGGTGAGCTACGTTGGCTTTCTGGAAGGGGAGGCTATATGCGTCAATTCCCCAAAACAA GTTTTGACATTTCCCCTGAAATGTCATTCTCTATCTATTCACTGCAAGTGCCTGCTGTTCCAGGC CTTACCTGCTGGGCACTAACGGCGGAGCCAGGATGGGGACAGAATAAAGGAGCCACGACCTGTGC CACCAACTCGCACTCAGACTCTGAACTCAGACCTGAAATCTTCTCTTCACGGGAGGCTTGGCAGT TTTTCTTACTCCTGTGGTCTCCAGATTTCAGGCCTAAGATGAAAGCCTCTAGTCTTGCCTTCAGC CTTCTCTCTGCTGCGTTTTATCTCCTATGGACTCCTTCCACTGGACTGAAGACACTCAATTTGGG AAGCTGTGTGATCGCCACAAACCTTCAGGAAATACGAAATGGATTTTCTGAGATACGGGGCAGTG TGCAAGCCAAAGATGGAAACATTGACATCAGAATCTTAAGGAGGACTGAGTCTTTGCAAGACACA AAGCCTGCGAATCGATGCTGCCTCCTGCGCCATTTGCTAAGACTCTATCTGGACAGGGTATTTAA AAACTACCAGACCCCTGACCATTATACTCTCCGGAAGATCAGCAGCCTCGCCAATTCCTTTCTTA AAGAAATACAGCCAGATTCTGAGTCACTTTGAAAAGCTGGAACCTCAGGCAGCAGTTGTGAAGGC TTTGGGGGAACTAGACATTCTTCTGCAATGGATGGAGGAGACAGAA**TAG**GAGGAAAGTGATGCTG CTTCCTTGCATGATTGTCTTTATGCATCCCCAATCTTAATTGAGACCATACTTGTATAAGATTTT ATGTATTTATTTTTTACTTGGACATGAAACTTTAAAAAAATTCACAGATTATATTTATAACCTG ATTTGAAATTGAACCAATGACTACTTAGGATGGGTTGTGGAATAAGTTTTGATGTGGAATTGCAC ATCTACCTTACAATTACTGACCATCCCCAGTAGACTCCCCAGTCCCATAATTGTGTATCTTCCAG AAAAAAAAAA

App_ID=10063549 Page 289 of 320

MRQFPKTSFDISPEMSFSIYSLQVPAVPGLTCWALTAEPGWGQNKGATTCATNSHSDSELRPEIF SSREAWQFFLLLWSPDFRPKMKASSLAFSLLSAAFYLLWTPSTGLKTLNLGSCVIATNLQEIRNG FSEIRGSVQAKDGNIDIRILRRTESLQDTKPANRCCLLRHLLRLYLDRVFKNYQTPDHYTLRKIS SLANSFLTIKKDLRLSHAHMTCHCGEEAMKKYSQILSHFEKLEPQAAVVKALGELDILLQWMEET E

Important features of the protein:

Signal peptide:

amino acids 1-42

 $\mathtt{cAMP-}$ and $\mathtt{cGMP-}dependent$ protein kinase phosphorylation sites.

amino acids 192-195, 225-228

N-myristoylation sites.

amino acids 42-47, 46-51, 136-141

 $\tt CCTGGAGCCGGAAGCGCGGCTGCAGCAGGGGGGGGTCGGGTCGGTTCCGCATCCAGCC$ CACGGAGCGGAGCCCCAGCGCCCGAACCCTCGGCTGGAGCCAGTTCTAACTGGACCACGCTGCC ACCACCTCTCTCAGTAAAGTTGTTATTGTTCTGATAGATGCCTTGAGAGATGATTTTGTGTTTG GGTCAAAGGGTGTGAAATTTATGCCCTACACAACTTACCTTGTGGAAAAAGGAGCATCTCACAGT TTTGTGGCTGAAGCAAAGCCACCTACAGTTACTATGCCTCGAATCAAGGCATTGATGACGGGGAG CCTTCCTGGCTTTGTCGACGTCATCAGGAACCTCAATTCTCCTGCACTGCTGGAAGACAGTGTGA TAAGACAAGCAAAAGCAGCTGGAAAAAGAATAGTCTTTTATGGAGATGAAACCTGGGTTAAATTA TTCCCAAAGCATTTTGTGGAATATGATGGAACAACCTCATTTTTCGTGTCAGATTACACAGAGGT GGATAATAATGTCACGAGGCATTTGGATAAAGTATTAAAAAGAGGAGATTGGGACATATTAATCC TCCACTACCTGGGGCTGGACCACATTGGCCACATTCAGGGCCCAACAGCCCCCTGATTGGGCAG GACGCCTTTACCCAATTTGCTGGTTCTTTTGTGGTGACCATGGCATGTCTGAAACAGGAAGTCACG GGGCCTCCTCCACCGAGGAGGTGAATACACCTCTGATTTTAATCAGTTCTGCGTTTGAAAGGAAA $\verb|CCCGGTGATATCCGACATCCAAAGCACGTCCAA| \textbf{TAG} \verb|ACGGATGTGGCTGCGACACTGGCGATAGC| \\$ CAATGAGAGCAGTTGAGATTTTTACATTTGAATACAGTGCAGCTTAGTAAACTGTTGCAAGAG AATGTGCCGTCATATGAAAAAGATCCTGGGTTTGAGCAGTTTAAAATGTCAGAAAGATTGCATGG GAACTGGATCAGACTGTACTTGGAGGAAAAGCATTCAGAAGTCCTATTCAACCTGGGCTCCAAGG $\tt TTCTCAGGCAGTACCTGGATGCTCTGAAGACGCTGAGCTTGTCCCTGAGTGCACAAGTGGCCCAG$ TTCTCACCCTGCTCCTGCTCAGCGTCCCACAGGCACTGCACAGAAAGGCTGAGCTGGAAGTCCCA GCCTTTCGTTTACCAGACTCTGGTTGAACACCTGGTGTGTCCCAAGTGCTGGCAGTGCCCTGGAC AGGGGGCCTCAGGGAAGGACGTGGAGCAGCCTTATCCCAGGCCTCTGGGTGTCCCGACACAGGTG TTCACATCTGTGCTGTCAGGTCAGATGCCTCAGTTCTTGGAAAGCTAGGTTCCTGCGACTGTTAC CAAGGTGATTGTAAAGAGCTGGCGGTCACAGAGGAACAAGCCCCCCAGCTGAGGGGGTGTGTGAA TCGGACAGCCTCCCAGCAGAGGTGTGGGAGCTGCAGCTGAGGGAAGAAGAGACAATCGGCCTGGA CACTCAGGAGGGTCAAAAGGAGACTTGGTCGCACCACTCATCCTGCCACCCCCAGAATGCATCCT GCCTCATCAGGTCCAGATTTCTTTCCAAGGCGGACGTTTTCTGTTGGAATTCTTAGTCCTTGGCC TCGGACACCTTCATTCGTTAGCTGGGGAGTGGTGGTGAGGCAGTGAAGAAGAGGCGGATGGTCAC ACTCAGATCCACAGAGCCCAGGATCAAGGGACCCACTGCAGTGGCAGCAGGACTGTTGGGCCCCC ACCCCAACCCTGCACAGCCCTCATCCCCTCTTGGCTTGAGCCGTCAGAGGCCCTGTGCTGAGTGT CTGACCGAGACACTCACAGCTTTGTCATCAGGGCACAGGCTTCCTCGGAGCCAGGATGATCTGTG

App_ID=10063549 Page 291 of 320

MRLGSGTFATCCVAIEVLGIAVFLRGFFPAPVRSSARAEHGAEPPAPEPSAGASSNWTTLPPPLF
SKVVIVLIDALRDDFVFGSKGVKFMPYTTYLVEKGASHSFVAEAKPPTVTMPRIKALMTGSLPGF
VDVIRNLNSPALLEDSVIRQAKAAGKRIVFYGDETWVKLFPKHFVEYDGTTSFFVSDYTEVDNNV
TRHLDKVLKRGDWDILILHYLGLDHIGHISGPNSPLIGQKLSEMDSVLMKIHTSLQSKERETPLP
NLLVLCGDHGMSETGSHGASSTEEVNTPLILISSAFERKPGDIRHPKHVQ

Important features of the protein:

Signal peptide:

amino acids 1-34

Transmembrane domain:

amino acids 58-76

N-glycosylation sites.

amino acids 56-60, 194-198

N-myristoylation sites.

amino acids 6-12, 52-58, 100-106, 125-131, 233-239, 270-276, 275-281, 278-284

Amidation site.

amino acids 154-158

Cell attachment sequence.

amino acids 205-208

 $\label{thm:pkkfsihdqdhkvlvldsgnliavpdknyirpei} FFALASSLSSASAEKGSPILLGVSKGEFCLYCDKDKGQSHPSLQLKKEKLMKLAAQKESARRPFI\\ FYRAQVGSWNMLESAAHPGWFICTSCNCNEPVGVTDKFENRKHIEFSFQPVCKAEMSPSEVSD$

 $\mathtt{cAMP-}$ and $\mathtt{cGMP-}$ dependent protein kinase phosphorylation site. amino acids 33-36

N-myristoylation site.

amino acids 50-55, 87-92

Interleukin-1

amino acids 37-182

Important features of the protein:

Signal peptide:

amino acids 1-25

N-glycosylation sites.

amino acids 117-121, 139-143

N-myristoylation site.

amino acids 9-15

 $\tt CTGTGCAGCTCCAGAGGCACACTCCAGAGAGAGCCAAGGTTCTGACGCG{\color{red} ATG} AGGAAG {\color{red} CTGTGCAGGCTCCAGAGGCACACTCCAGAGAGAGCCAAGGTTCTGACGCG{\color{red} ATG} AGGAAG {\color{red} CTGTGCAGAGGCTCCAGAGGAGAGCCAAGGTTCTGACGCG{\color{red} ATG} AGGAAG {\color{red} CTGTGCAGAGGCACACTCCAGAGAGAGAGCCAAGGTTCTGACGCG{\color{red} ATG} AGGAAG {\color{red} CTGTGCAGAGGCCAAGGTTCTGACGCG{\color{red} ATG} AGGAAG {\color{red} CTGTGACGCG{\color{red} ATG} AGGAAG {\color{red} CTGTGACGGCG{\color{red} ATG} AGGAAG {\color{red} CTGTGACGCG{\color{red} ATG} AGGAAG {\color{red} CTGTGACGGCG{\color{red} ATG} AGGAAG {\color{red} ATG} AGGAAG {\color{red} CTGTGACGGCG{\color{red} ATG} AGGAAG {\color{red} ATG} AGGAAG {\color{red}$ CACCTGAGCTGGTGGTGGCCACTGTCTGCATGCTCTTCAGCCACCTCTCTGCGGTCCA GACGAGGGCATCAAGCACAGAATCAAGTGGAACCGGAAGGCCCTGCCCAGCACTGCCCAGATCA GACTTCGGAGCCGAGGGCAACAGGTACTACGAGGCCAACTACTGGCAGTTCCCCGATGGCATCCA CTACAACGGCTGCTCTGAGGCTAATGTGACCAAGGAGGCATTTGTCACCGGCTGCATCAATGCCA CCCAGGCGGCGAACCAGGGGGGAGTTCCAGAAGCCAGACAACAAGCTCCACCAGCAGGTGCTCTGG ${\tt TCGGGTCACCATGCACCAGCCAGTGCTCCTCTGCCTTCTGGCTTTGATCTGGCTCATGGTGAAA{\tt TCGGGTCACGGTGAAA{\tt TCGGGTCACGGTCACGGTGAAA{\tt TCGGGTCACGGTGAAA{\tt TCGGGTCACGGTCACGGTCACGGTGAAA{\tt TCGGGTCACG$ AAGCTTGCCAGGAGGCTGGCAGTACAGAGCGCAGCAGCGAGCAAATCCTGGCAAGTGACCCAGCT CTTCTCCCCCAAACCCACGCGTGTTCTGAAGGTGCCCAGGAGCGGCGATGCACTCGCACTGCAAA TGCCGCTCCCACGTATGCGCCCTGGTATGTGCCTGCGTTCTGATAGATGGGGGACTGTGGCTTCT CCGTCACTCCATTCTCAGCCCCTAGCAGAGCGTCTGGCACACTAGATTAGTAGTAAATGCTTGAT GAGAAGAACACATCAGGCACTGCCCACCTGCTTCACAGTACTTCCCAACAACTCTTAGAGGTAG GTGTATTCCCGTTTTACAGATAAGGAAACTGAGGCCCAGAGAGCTGAAGTACTGCACCCAGCATC ACCAGCTAGAAAGTGGCAGAGCCAGGATTCAACCCTGGCTTGTCTAACCCCAGGTTTTCTGCTCT GTCCAATTCCAGAGCTGTCTGGTGATCACTTTATGTCTCACAGGGACCCACATCCAAACATGTAT

 $\label{thm:main} $$\operatorname{MRKHLSWWWLATVCMLLFSHLSAVQTRGIKHRIKWNRKALPSTAQITEAQVAENRPGAFIKQGRK$$$ $$\operatorname{LDIDFGAEGNRYYEANYWQFPDGIHYNGCSEANVTKEAFVTGCINATQAANQGEFQKPDNKLHQQVLWRLVQELCSLKHCEFWLERGAGLRVTMHQPVLLCLLALIWLMVK$$$

Important features of the protein:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 157-171

N-glycosylation sites.

amino acids 98-102, 110-114

Tyrosine kinase phosphorylation site.

amino acids 76-83

N-myristoylation sites.

amino acids 71-77, 88-94, 93-99, 107-113, 154-160

Amidation site.

amino acids 62-66

 ${\tt MFRSSLLFWPPLCLLSLFLLILISSIYSESCKLEIFHFACQWGRSLSLSFYFLKFQLSDSGGTCE} \\ {\tt GLFYEYIA}$

Important features of the protein:

Signal peptide:

amino acids 1-25

N-myristoylation site.

amino acids 62-68

GTCTCCGCGTCACAGGAACTTCAGCACCCACAGGGCGGACAGCGCTCCCCTCTACCTGGAGACTTGAC TCCCGCGCGCCCCAACCCTGCTTATCCCTTGACCGTCGAGTGTCAGAGATCCTGCAGCCGCCCAGTCC ACAAAAGCTACAGCTCCAGGAGCCCAGCGCCGGGCTGTGACCCAAGCCGAGCGTGGAAGA**ATG**GGGTT CCTCGGGACCGGCACTTGGATTCTGGTGTTAGTGCTCCCGATTCAAGCTTTCCCCAAACCTGGAGGAA GCAGAAGAAGACAAGATTAAAAAAACATATCCTCCAGAAAACAAGCCAGGTCAGAGCAACTATTCTTT TAAGAAGCTCCCCACTTGATAATAAGTTGAATGTGGAAGATGTTGATTCAACCAAGAATCGAAAACTG ATCGATGATTATGACTCTACTAAGAGTGGATTGGATCATAAATTTCAAGATGATCCAGATGGTCTTCA TCAACTAGACGGGACTCCTTTAACCGCTGAAGACATTGTCCATAAAATCGCTGCCAGGATTTATGAAG AAAATGACAGAGCCGTGTTTGACAAGATTGTTTCTAAACTACTTAATCTCGGCCTTATCACAGAAAGC CAAGCACATACACTGGAAGATGAAGTAGCAGAGGTTTTACAAAAATTAATCTCAAAGGAAGCCAACAA TTATGAGGAGGATCCCAATAAGCCCACAAGCTGGACTGAGAATCAGGCTGGAAAAATACCAGAGAAAG TGACTCCAATGGCAGCAATTCAAGATGGTCTTGCTAAGGGAGAAAACGATGAAACAGTATCTAACACA TTAACCTTGACAAATGGCTTGGAAAGGAGAACTAAAACCTACAGTGAAGACAACTTTGAGGAACTCCA CACTGATTACTATCATGAAAACACTGATTGACTTTGTGAAGATGATGGTGAAATATGGAACAATATCT CCAGAAGAAGGTGTTTCCTACCTTGAAAACTTGGATGAAATGATTGCTCTTCAGACCAAAAACAAGCT CAGACAGTACCAAGGAAGAAGCAGCTAAGATGGAAAAGGAATATGGAAGCTTGAAGGATTCCACAAAA GATGATAACTCCAACCCAGGAGGAAAGACAGATGAACCCAAAGGAAAAACAGAAGCCTATTTGGAAGC CATCAGAAAAATATTGAATGGTTGAAGAAACATGACAAAAAGGGGAAATAAAGAAGATTATGACCTTT CAAAGATGAGAGACTTCATCAATAAACAAGCTGATGCTTATGTGGAGAAAGGCATCCTTGACAAGGAA GAAGCCGAGGCCATCAAGCGCATTTATAGCAGCCTGTAAAAATGGCAAAAGATCCAGGAGTCTTTCAA CTGTTTCAGAAAACATAATATAGCTTAAAACACTTCTAATTCTGTGATTAAAATTTTTTGACCCAAGG GTTATTAGAAAGTGCTGAATTTACAGTAGTTAACCTTTTACAAGTGGTTAAAACATAGCTTTCTTCCC

MGFLGTGTWILVLVLPIQAFPKPGGSQDKSLHNRELSAERPLNEQIAEAEEDKIKKTYPPENKPG
QSNYSFVDNLNLLKAITEKEKIEKERQSIRSSPLDNKLNVEDVDSTKNRKLIDDYDSTKSGLDHK
FQDDPDGLHQLDGTPLTAEDIVHKIAARIYEENDRAVFDKIVSKLLNLGLITESQAHTLEDEVAE
VLQKLISKEANNYEEDPNKPTSWTENQAGKIPEKVTPMAAIQDGLAKGENDETVSNTLTLTNGLE
RRTKTYSEDNFEELQYFPNFYALLKSIDSEKEAKEKETLITIMKTLIDFVKMMVKYGTISPEEGV
SYLENLDEMIALQTKNKLEKNATDNISKLFPAPSEKSHEETDSTKEEAAKMEKEYGSLKDSTKDD
NSNPGGKTDEPKGKTEAYLEAIRKNIEWLKKHDKKGNKEDYDLSKMRDFINKQADAYVEKGILDK
EEAEAIKRIYSSL

N-glycosylation sites:

amino acids 68-71, 346-349, 350-353

Casein kinase II phosphorylation site:

amino acids 70-73, 82-85, 97-100, 125-128, 147-150, 188-191, 217-220, 265-268, 289-292, 305-308, 320-323, 326-329, 362-365, 368-341, 369-372, 382-385, 386-389, 387-390

N-myristoylation sites:

amino acids 143-148, 239-244

CGGCTCGAGGCTCCCGCCAGGAGAAAGGAACATTCTGAGGGGAGTCTACACCCTGTGGAGCTCAA GATGGTCCTGAGTGGGGCGCTGTGCTTCCGAATGAAGGACTCGGCATTGAAGGTGCTTTATCTGC ATAATAACCAGCTTCTAGCTGGAGGGCTGCATGCAGGGAAGGTCATTAAAGGTGAAGAGATCAGC GTGGTCCCCAATCGGTGGCTGGATGCCAGCCTGTCCCCCGTCATCCTGGGTGTCCAGGGTGGAAG CCAGTGCCTGTCATGTGGGGTGGGGCAGGAGCCGACTCTAACACTAGAGCCAGTGAACATCATGG AGCTCTATCTTGGTGCCAAGGAATCCAAGAGCTTCACCTTCTACCGGCGGGACATGGGGCTCACC ${\tt TCCAGCTTCGAGTCGGCTGCCTACCCGGGCTGGTTCCTGTGCACGGTGCCTGAAGCCGATCAGCC}$ TGTCAGACTCACCCAGCTTCCCGAGAATGGTGGCTGGAATGCCCCCATCACAGACTTCTACTTCC AGCAGTGTGACTAGGGCAACGTGCCCCCAGAACTCCCTGGGCAGAGCCAGCTCGGGTGAGGGGT TGGGCACCTGACCACTTTGTCTTCTGGTTCCCAGTTTGGATAAATTCTGAGATTTGGAGCTCAGT CCACGGTCCTCCCCCACTGGATGGTGCTACTGCTGTGGAACCTTGTAAAAACCATGTGGGGTAAA TAATGGTAACTGACAAGTGTTACCCTGAGCCCCGCAGGCCAACCCATCCCCAGTTGAGCCTTATA GAGTCAGGGATCTATGGCCCTTGGCCCAGCCCCACCCCTTCCCTTTAATCCTGCCACTGTCATA TGCTACCTTTCCTATCTCTCCCTCATCATCTTGTTGTGGGCATGAGGAGGTGGTGATGTCAGAA GAAATGGCTCGAGCTCAGAAGATAAAAGATAAGTAGGGTATGCTGATCCTCTTTTAAAAACCCAA GATACAATCAAAATCCCAGATGCTGGTCTCTATTCCCATGAAAAAGTGCTCATGACATATTGAGA TCTTTATAGAAAAAGTCTGGAAGAGTTTACTTCAATTGTAGCAATGTCAGGGTGGTGGCAGTAT AGGTGATTTTTCTTTTAATTCTGTTAATTTATCTGTATTTCCTAATTTTTCTACAATGAAGATGA ATTCCTTGTATAAAAATAAGAAAAGAAATTAATCTTGAGGTAAGCAGAGCAGACATCATCTCTGA TTGTCCTCAGCCTCCACTTCCCCAGAGTAAATTCAAATTGAATCGAGCTCTGCTGCTCTGGTTGG TTGTAGTAGTGATCAGGAAACAGATCTCAGCAAAGCCACTGAGGAGGAGGCTGTGCTGAGTTTGT GTGGCTGGAATCTCTGGGTAAGGAACTTAAAGAACAAAAATCATCTGGTAATTCTTTCCTAGAAG GATCACAGCCCCTGGGATTCCAAGGCATTGGATCCAGTCTCTAAGAAGGCTGCTGTACTGGTTGA ATTGTGTCCCCCTCAAATTCACATCCTTCTTGGAATCTCAGTCTGTGAGTTTATTTGGAGATAAG GTCTCTGCAGATGTAGTTAGTTAAGACAAGGTCATGCTGGATGAAGGTAGACCTAAATTCAATAT GACTGGTTTCCTTGTATGAAAAGGAGAGGACACAGAGACAGAGGAGACGCGGGGAAGACTATGTA AAGATGAAGGCAGAGATCGGAGTTTTGCAGCCAAGCTAAGAAACACCAAGGATTGTGGCAACC ATCAGAAGCTTGGAAGAGGCAAAGAAGAATTCTTCCCTAGAGGCTTTAGAGGGATAACGGCTCTG CTGAAACCTTAATCTCAGACTTCCAGCCTCCTGAACGAAGAAGAATAAATTTCGGCTGTTTTAA GCCACCAAGGATAATTGGTTACAGCAGCTCTAGGAAACTAATACAGCTGCTAAAATGATCCCTGT CTCCTCGTGTTTACATTCTGTGTGTCCCCTCCCACAATGTACCAAAGTTGTCTTTGTGACCAA TAGAATATGGCAGAAGTGATGGCATGCCACTTCCAAGATTAGGTTATAAAAGACACTGCAGCTTC AAGCTAGCTGCCATGCTATGAGCAGGCCTATAAAGAGACTTACGTGGTAAAAAATGAAGTCTCCT

 ${\tt MVLSGALCFRMKDSALKVLYLHNNQLLAGGLHAGKVIKGEEISVVPNRWLDASLSPVILGVQGGS}$ ${\tt QCLSCGVGQEPTLTLEPVNIMELYLGAKESKSFTFYRRDMGLTSSFESAAYPGWFLCTVPEADQP}$ ${\tt VRLTQLPENGGWNAPITDFYFQQCD}$

N-myristoylation sites.

amino acids 29-34, 30-35, 60-65, 63-68, 73-78, 91-96, 106-111

Interleukin-1 signature.

amino acids 111-131

Interleukin-1 proteins.

amino acids 8-29, 83-120, 95-134, 64-103

 $\tt CCTGCAGAAATCTGTGAGCTCTTTCCTTATGGGGACCCTGGCCACCAGCTGCCTCCTTCTTTGG$ $\verb|CCCTCTTGGTACAGGGAGGAGCAGCTGCGCCCATCAGCTCCCACTGCAGGCTTGACAAGTCCAAC| \\$ $\tt TTCCAGCAGCCCTATATCACCAACCGCACCTTCATGCTGGCTAAGGAGGCTAGCTTGGCTGATAA$ ATCTGATGAAGCAGGTGCTGAACTTCACCCTTGAAGAAGTGCTGTTCCCTCAATCTGATAGGTTC CAGCCTTATATGCAGGAGGTGGTGCCCTTCCTGGCCAGGCTCAGCAACAGGCTAAGCACATGTCA TATTGAAGGTGATGACCTGCATATCCAGAGGAATGTGCAAAAGCTGAAGGACACAGTGAAAAAGC TTGGAGAGAGTGGAGAGATCAAAGCAATTGGAGAACTGGATTTGCTGTTTATGTCTCTGAGAAAT GCCTGCATT**TGA**CCAGAGCAAAGCTGAAAAATGAATAACTAACCCCCTTTCCCTGCTAGAAATAA CAATTAGATGCCCCAAAGCGATTTTTTTTAACCAAAAGGAAGATGGGAAGCCAAACTCCATCATG ATGGGTGGATTCCAAATGAACCCCTGCGTTAGTTACAAAGGAAACCAATGCCACTTTTGTTTATA AGACCAGAAGGTAGACTTTCTAAGCATAGATATTTATTGATAACATTTCATTGTAACTGGTGTTC TATACACAGAAAACAATTTATTTTTTAAATAATTGTCTTTTTCCATAAAAAAGATTACTTTCCAT TCCTTTAGGGGAAAAAACCCCTAAATAGCTTCATGTTTCCATAATCAGTACTTTATATTTATAAA AGAAACATCATTCGATATTGCTACTTGAGTGTAAGGCTAATATTGATATTTATGACAATAATTAT AGAGCTATAACATGTTTATTTGACCTCAATAAACACTTGGATATCCC

 ${\tt MAALQKSVSSFLMGTLATSCLLLLALLVQGGAAAPISSHCRLDKSNFQQPYITNRTFMLAKEASL}$$ ADNNTDVRLIGEKLFHGVSMSERCYLMKQVLNFTLEEVLFPQSDRFQPYMQEVVPFLARLSNRLS TCHIEGDDLHIQRNVQKLKDTVKKLGESGEIKAIGELDLLFMSLRNACI$

Important features of the protein:

Signal peptide:

amino acids 1-33

N-glycosylation sites.

amino acids 54-58, 68-72, 97-101

N-myristoylation sites.

amino acids 14-20, 82-88

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 10-21

GGCTTGCTGAAAATAAAATCAGGACTCCTAACCTGCTCCAGTCAGCCTGCTTCCACGAGGCCTGT CAGGGAGCGACCCAGATTAGGTGAGGACAGTTCTCTCATTAGCCTTTTCCTACAGGTGGTTGCAT TCTTGGCAATGGTCATGGGAACCCACACCTACAGCCACTGGCCCAGCTGCTGCCCCAGCAAAGGG CAGGACACCTCTGAGGAGCTGCTGAGGTGGAGCACTGTGCCTGTGCCTCCCCTAGAGCCTGCTAG GCCCAACCGCCACCCAGAGTCCTGTAGGGCCAGTGAAGATGGACCCCTCAACAGCAGGGCCATCT CCCCTGGAGATATGAGTTGGACAGAGACTTGAACCGGCTCCCCCAGGACCTGTACCACGCCCGT TGCCTGTGCCCGCACTGCGTCAGCCTACAGACAGGCTCCCACATGGACCCCCGGGGCAACTCGGA GCTGCTCTACCACAACCAGACTGTCTTCTACAGGCGGCCATGCCATGGCGAGAAGGGCACCCACA GTGATGGGC<u>TAG</u>CCGGACCTGCTGGAGGCTGGTCCCTTTTTGGGAAACCTGGAGCCAGGTGTACA ACCACTTGCCATGAAGGGCCAGGATGCCCAGATGCTTGGCCCCTGTGAAGTGCTGTCTGGAGCAG CAGGATCCCGGGACAGGATGGGGGGCTTTGGGGAAAACCTGCACTTCTGCACATTTTGAAAAGAG CAGCTGCTGCTTAGGGCCGCCGGAAGCTGGTGTCCTGTCATTTTCTCTCAGGAAAGGTTTTCAAA GTTCTGCCCATTTCTGGAGGCCACCACTCCTGTCTCTTCCTCTTTTCCCATCCCCTGCTACCCTG GCCCAGCACAGGCACTTTCTAGATATTTCCCCCTTGCTGGAGAAGAAGAGCCCCTGGTTTTATT TGTTTGTTTACTCATCACTCAGTGAGCATCTACTTTGGGTGCATTCTAGTGTAGTTACTAGTCTT CTTTATTTAAAAATGAAAAA

MRERPRLGEDSSLISLFLQVVAFLAMVMGTHTYSHWPSCCPSKGQDTSEELLRWSTVPVPPPLEPA RPNRHPESCRASEDGPLNSRAISPWRYELDRDLNRLPQDLYHARCLCPHCVSLQTGSHMDPRGNS ELLYHNQTVFYRRPCHGEKGTHKGYCLERRLYRVSLACVCVRPRVMG

Important features of the protein:

Signal peptide:

amino acids 1-32

N-glycosylation site.

amino acids 136-140

Tyrosine kinase phosphorylation site.

amino acids 127-135

N-myristoylation sites.

amino acids 44-50, 150-156

GACCGTTCAATGTGGCTCTGAAACTGGGCCATCTCCAGAGTGGATGCTACAACATGATCTAATCC CCGGAGACTTGAGGGACCTCCGAGTAGAACCTGTTACAACTAGTGTTGCAACAGGGGACTATTCA ATTTTGATGAATGTAAGCTGGGTACTCCGGGCAGATGCCAGCATCCGCTTGTTGAAGGCCACCAA GATTTGTGTGACGGCAAAAGCAACTTCCAGTCCTACAGCTGTGTGAGGTGCAATTACACAGAGG CCTTCCAGACTCAGACCAGACCCTCTGGTGGTAAATGGACATTTTCCTACATCGGCTTCCCTGTA CCCTTCCATGTCTGTGAATTTCACCTCACCAGGCTGCCTAGACCACATAATGAAATATAAAAAAA AGTGTGTCAAGGCCGGAAGCCTGTGGGATCCGAACATCACTGCTTGTAAGAAGAATGAGGAGACA GTAGAAGTGAACTTCACAACCACTCCCCTGGGAAACAGATACATGGCTCTTATCCAACACAGCAC TTCCAGTGACTGGGGATAGTGAAGGTGCTACGGTGCAGCTGACTCCATATTTTCCTACTTGTGGC AGCGACTGCATCCGACATAAAGGAACAGTTGTGCTCTGCCCACAAACAGGCGTCCCTTTCCCTCT GGATAACAACAAAAGCAAGCCGGGAGGCTGGCTGCCTCCCCCTGCTGTCTCTGCTGGTGGCCA CATGGGTGCTGGTGGCAGGGATCTATCTAATGTGGAGGCACGAAAGGATCAAGAAGACTTCCTTT TCTACCACCACACTACTGCCCCCCATTAAGGTTCTTGTGGTTTACCCATCTGAAATATGTTTCCA TCACACAATTTGTTACTTCACTGAATTTCTTCAAAACCATTGCAGAAGTGAGGTCATCCTTGAAA AGTGGCAGAAAAAGAAATAGCAGAGATGGGTCCAGTGCAGTGCCTTGCCACTCAAAAGAAGGCA GCAGACAAAGTCGTCTTCCTTCTTTCCAATGACGTCAACAGTGTGTGCGATGGTACCTGTGGCAA GAGCGAGGGCAGTCCCAGTGAGAACTCTCAAGACCTCTTCCCCCTTGCCTTTAACCTTTTCTGCA GTGATCTAAGAAGCCAGATTCATCTGCACAAATACGTGGTGGTCTACTTTAGAGAGATTGATACA AAAGACGATTACAATGCTCTCAGTGTCTGCCCCAAGTACCACCTCATGAAGGATGCCACTGCTTT CTGTGCAGAACTTCTCCATGTCAAGCAGCAGGTGTCAGCAGGAAAAAGATCACAAGCCTGCCACG ATGGCTGCTGCTCCTTGTAG

MSLVLLSLAALCRSAVPREPTVQCGSETGPSPEWMLQHDLIPGDLRDLRVEPVTTSVATGDYSILMNVSWV LRADASIRLLKATKICVTGKSNFQSYSCVRCNYTEAFQTQTRPSGGKWTFSYIGFPVELNTVYFIGAHNIP NANMNEDGPSMSVNFTSPGCLDHIMKYKKKCVKAGSLWDPNITACKKNEETVEVNFTTTPLGNRYMALIQH STIIGFSQVFEPHQKKQTRASVVIPVTGDSEGATVQLTPYFPTCGSDCIRHKGTVVLCPQTGVPFPLDNNK SKPGGWLPLLLLSLLVATWVLVAGIYLMWRHERIKKTSFSTTTLLPPIKVLVVYPSEICFHHTICYFTEFL QNHCRSEVILEKWQKKKIAEMGPVQWLATQKKAADKVVFLLSNDVNSVCDGTCGKSEGSPSENSQDLFPLA FNLFCSDLRSQIHLHKYVVVYFREIDTKDDYNALSVCPKYHLMKDATAFCAELLHVKQQVSAGKRSQACHD GCCSL

Important features of the protein:

Signal peptide:

amino acids 1-14

Transmembrane domain:

amino acids 290-309

N-glycosylation sites.

amino acids 67 - 71, 103 - 107, 156 - 160, 183 - 187, 197 - 201 and 283 - 287

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 228 - 232 and 319 - 323

Casein kinase II phosphorylation sites.

amino acids 178 - 182, 402 - 406, 414 - 418 and 453 - 457

N-myristoylation site.

amino acids 116-122

Amidation site.

amino acids 488-452

 ${\tt MTVKTLHGPAMVKYLLLSILGLAFLSEAAARKIPKVGHTFFQKPESCPPVPGGSMKLDIGIINEN}$ ${\tt QRVSMSRNIESRSTSPWNYTVTWDPNRYPSEVVQAQCRNLGCINAQGKEDISMNSVPIQQETLVV}$ ${\tt RRKHQGCSVSFQLEKVLVTVGCTCVTPVIHHVQ}$

Signal sequence:

amino acids 1-30

N-glycosylation site.

amino acids 83-87

N-myristoylation sites.

amino acids 106-111, 136-141

ACACTGGCCAAACAAAAACGAAAGCACTCCGTGCTGGAAGTAGGAGGAGAGTCAGGACTCCCAGG ACAGAGAGTGCACAAACTACCCAGCACAGCCCCCTCCGCCCCTCTGGAGGGCTGAAGAGGGATTC ${\tt AGGGCCTCAGGCCTGGGTGCCACCTGGCACCTAGAAG} {\color{red} {\bf ATG}} {\tt CCTGTGCCCTGGTTCTTGCTGTCCT}$ TGGCACTGGGCCGAAGCCCAGTGGTCCTTTCTCTGGAGAGGCTTGTGGGGCCTCAGGACGCTACC AGAAGGAGACCGACTGTGACCTCTGTCTGCGTGTGGCCTGTCCACTTGGCCGTGCATGGGCACTGG GAAGAGCCTGAAGATGAGGAAAAGTTTGGAGGAGCAGCTGACTCAGGGGTGGAGGAGCCTAGGAA TGCCTCTCCAGGCCCAAGTCGTGCTCTCCTTCCAGGCCTACCCTACTGCCCGCTGCGTCCTGC TGGAGGTGCAAGTGCCTGCTGCCCTTGTGCAGTTTGGTCAGTCTGTGGGCTCTGTGGTATATGAC TGCTTCGAGGCTGCCCTAGGGAGTGAGGTACGAATCTGGTCCTATACTCAGCCCAGGTACGAGAA ACGTGCATCTGGTTCTGAATGTCTCTGAGGAGCACCTTCGGCCTCTCCCTGTACTGGAATCAG GTCCAGGGCCCCCAAAACCCCGGTGGCACAAAACCTGACTGGACCGCAGATCATTACCTTGAA CCACACAGACCTGGTTCCCTGCCTCTGTATTCAGGTGTGGCCTCTGGAACCTGACTCCGTTAGGA CGAACATCTGCCCCTTCAGGGAGGACCCCCGCGCACACCAGAACCTCTGGCAAGCCGCCCGACTG CGACTGCTGACCCTGCAGAGCTGGCTGCTGGACGCACCGTGCTCGCTGCCCGCAGAAGCGGCACT GTGCTGGCGGCTCCGGGTGGGGACCCCTGCCAGCCACTGGTCCCACCGCTTTCCTGGGAGAACG TCACTGTGGACAAGGTTCTCGAGTTCCCATTGCTGAAAGGCCACCCTAACCTCTGTGTTCAGGTG AACAGCTCGGAGAAGCTGCAGCTGCAGGAGTGCTTGTGGGCTGACTCCCTGGGGCCTCTCAAAGA CGATGTGCTACTGTTGGAGACACGAGGCCCCCAGGACAACAGATCCCTCTGTGCCTTGGAACCCA CAAGACCTGCAGTCAGGCCAGTGTCTGCAGCTATGGGACGATGACTTGGGAGCGCTATGGGCCTG CCCCATGGACAAATACATCCACAAGCGCTGGGCCCTCGTGTGGCCTGGCCTACTCTTTGCCG CTGCGCTTTCCCTCATCCTCCTTCTCAAAAAGGATCACGCGAAAGGGTGGCTGAGGCTCTTGAAA CAGGACGTCCGCTCGGGGGCCGCCAGGGGCCGCGCGCTCTGCTCCTCTACTCAGCCGATGA CTCGGGTTTCGAGCGCCTGGTGGGCGCCCTGGCGCCTGTGCCAGCTGCCGCTGCG CCGTAGACCTGTGGAGCCGTGAACTGAGCGCGCAGGGGCCCGTGGCTTGGTTTCACGCGCAG GTGCAGCGAGTGGCTACAGGATGGGGTGTCCGGGGCCGGGGCGCACGCCCGCACGACGCCTTCC GCGCCTCGCTCAGCTGCCTGCCCGACTTCTTGCAGGGCCGGGCGCCCGGCAGCTACGTGGGG GCCTGCTTCGACAGGCTGCTCCACCCGGACGCCGTACCCGCCCTTTTCCGCACCGTGCCCGTCTT CACACTGCCCTCCCAACTGCCAGACTTCCTGGGGGCCCTGCAGCAGCCTCGCGCCCCGCGTTCCG CATCCCCGGGGACTCCCGCGCCGGGACGCGGGGTGGGACCAGGGGCGGGACCTGGGGCGGGGGA CGGGACT**TAA**ATAAAGGCAGACGCTGTTTTTCTAAAAAAA

MPVPWFLLSLALGRSPVVLSLERLVGPQDATHCSPGLSCRLWDSDILCLPGDIVPAPGPVLAPTHLQTELV LRCQKETDCDLCLRVAVHLAVHGHWEEPEDEEKFGGAADSGVEEPRNASLQAQVVLSFQAYPTARCVLLEV QVPAALVQFGQSVGSVVYDCFEAALGSEVRIWSYTQPRYEKELNHTQQLPALPWLNVSADGDNVHLVLNVS EEQHFGLSLYWNQVQGPPKPRWHKNLTGPQIITLNHTDLVPCLCIQVWPLEPDSVRTNICPFREDPRAHQN LWQAARLRLLTLQSWLLDAPCSLPAEAALCWRAPGGDPCQPLVPPLSWENVTVDKVLEFPLLKGHPNLCVQ VNSSEKLQLQECLWADSLGPLKDDVLLLETRGPQDNRSLCALEPSGCTSLPSKASTRAARLGEYLLQDLQS GQCLQLWDDDLGALWACPMDKYIHKRWALVWLACLLFAAALSLILLLKKDHAKGWLRLLKQDVRSGAARG RAALLLYSADDSGFERLVGALASALCQLPLRVAVDLWSRRELSAQGPVAWFHAQRRQTLQEGGVVVLLFSP GAVALCSEWLQDGVSGPGAHGPHDAFRASLSCVLPDFLQGRAPGSYVGACFDRLLHPDAVPALFRTVPVFT LPSQLPDFLGALQQPRAPRSGRLQERAEQVSRALQPALDSYFHPPGTPAPGRGVGPGAGPGAGDGT

Signal sequence:

amino acids 1-20

Transmembrane domain.

amino acids 453-475

N-glycosylation sites.

amino acids 118-121, 186-189, 198-201, 211-214, 238-241, 248-251, 334-337, 357-360, 391-394

Glycosaminoglycan attachment site.

amino acids 583-586

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 552-555

N-myristoylation sites.

amino acids 107-112, 152-157, 319-324, 438-443, 516-521, 612-617, 692-697, 696-701, 700-705

App_ID=10063549

GCTCACGCCCCTGAGGACCCCTCGGATCTGCTCCAGCACGTGAAATTCCAGTCCAGCAACTTTGA AAACATCCTGACGTGGGACAGCGGGCCAGAGGGCACCCCAGACACGGTCTACAGCATCGAGTATA AGACGTACGGAGAGGGACTGGGTGGCAAAGAAGGGCTGTCAGCGGATCACCCGGAAGTCCTGC AACCTGACGGTGGAGACGGCAACCTCACGGAGCTCTACTATGCCAGGGTCACCGCT GTCAGTGCGGGAGGCCGGTCAGCCACCAAGATGACTGACAGGTTCAGCTCTCTGCAGCACACTAC CCTCAAGCCACCTGATGTGACCTGTATCTCCAAAGTGAGATCGATTCAGATGATTGTTCATCCTA $\verb|CCCCACGCCAATCCGTGCAGGCGATGGCCACCGGCTAACCCTGGAAGACATCTTCCATGACCTG|$ TTCTACCACTTAGAGCTCCAGGTCAACCGCACCTACCAAATGCACCTTGGAGGGAAGCAGAGAGA ATATGAGTTCTTCGGCCTGACCCCTGACACAGAGTTCCTTGGCACCATCATGATTTGCGTTCCCA CCTGGGCCAAGGAGAGTGCCCCCTACATGTGCCGAGTGAAGACACTGCCAGACCGGACATGGACC TACTCCTTCTCCGGAGCCTTCCTGTTCTCCATGGGCTTCCTCGTCGCAGTACTCTGCTACCTGAG CTACAGATATGTCACCAAGCCGCCTGCACCTCCCAACTCCCTGAACGTCCAGCGAGTCCTGACTT ${\tt TCCAGCCGCTGCGCTTCATCCAGGAGCACGTCCTGATCCCTGTCTTTGACCTCAGCGGCCCCAGC}$ AGTCTGGCCCAGCCTGTCCAGTACTCCCAGATCAGGGTGTCTGGACCCAGGGAGCCCGCAGGAGC TCCACAGCGGCATAGCCTGTCCGAGATCACCTACTTAGGGCAGCCAGACATCTCCATCCTCCAGC CCTCCAACGTGCCACCTCCCCAGATCCTCTCCCCACTGTCCTATGCCCCAAACGCTGCCCCTGAG GTCGGGCCCCATCCTATGCACCTCAGGTGACCCCCGAAGCTCAATTCCCATTCTACGCCCCACA GGCCATCTCTAAGGTCCAGCCTTCCTCCTATGCCCCTCAAGCCACTCCGGACAGCTGGCCTCCCT CCTATGGGGTATGCATGGAAGGTTCTGGCAAAGACTCCCCCACTGGGACACTTTCTAGTCCTAAA $\tt TTCTCTGCAGGAGGTGACCTCCTTGGCTATGGAGGAATCCCAAGAAGCAAAATCATTGCACCAGC$ CCCTGGGGATTTGCACAGACAGACATCTGACCCAAATGTGCTACACAGTGGGGAGGAAGGGACA CCACAGTACCTAAAGGGCCAGCTCCCCCTCTCTCTCAGTCCAGATCGAGGGCCACCCCATGTC CCTCCCTTTGCAACCTCCTTCCGGTCCATGTTCCCCCTCGGACCAAGGTCCAAGTCCCTGGGGCC TGCTGGAGTCCCTTGTGTGTCCCAAGGATGAAGCCAAGAGCCCAGCCCCTGAGACCTCAGACCTG ${\tt GAGCAGCCCACAGAACTGGATTCTCTTTTCAGAGGCCTGGCCCTGACTGTGCAGTGGGAGTCC} {\tt TG}$ ${f A}$ GGGGAATGGGAAAGGCTTGGTGCTTCCTCCCTGTCCCTACCCAGTGTCACATCCTTGGCTGT $\overline{{f CA}}$ ATCCCATGCCTGCCCATGCCACACACTCTGCGATCTGGCCTCAGACGGGTGCCCTTGAGAGAAAGC AGAGGGAGTGCATGCAGGGCCCCTGCCATGGGTGCGCTCCTCACCGGAACAAGCAGCATGATA AGGACTGCAGCGGGGAGCTCTGGGGAGCAGCTTGTGTAGACAAGCGCGTGCTCGCTGAGCCCTG CAAGGCAGAAATGACAGTGCAAGGAGGAAAATGCAGGGAAACTCCCGAGGTCCAGAGCCCCACCTC CTAACACCATGGATTCAAAGTGCTCAGGGAATTTGCCTCTCCTTGCCCCATTCCTGGCCAGTTTC ACAATCTAGCTCGACAGAGCATGAGGCCCCTGCCTCTTCTGTCATTGTTCAAAGGTGGGAAGAGA GCCTGGAAAAGAACCAGGCCTGGAAAAGAACCAGAAGGAGGCTGGGCAGAACCAGAACCAGCCTGC TTCCCAGCCAGGGCAACTGCCTGACGTTGCACGATTTCAGCTTCATTCCTCTGATAGAACAAAGC ATCCTGAGAATGGGGTTTGAAAGGAAGGTGAGGGCTGTGGCCCCTGGACGGGTACAATAACACAC $\tt TGTACTGATGTCACAACTTTGCAAGCTCTGCCTTGGGTTCAGCCCATCTGGGCTCAAATTCCAGC$ CTCACCACTCACAAGCTGTGTGACTTCAAACAAATGAAATCAGTGCCCAGAACCTCGGTTTCCTC ATCTGTAATGTGGGGATCATAACACCTACCTCATGGAGTTGTGGTGAAGATGAAATGAAGTCATG TCTTTAAAGTGCTTAATAGTGCCTGGTACATGGGCAGTGCCCAATAAACGGTAGCTATTTAAAAA AAAAAAA

App ID=10063549 Page 315 of 320

MRTLLTILTVGSLAAHAPEDPSDLLQHVKFQSSNFENILTWDSGPEGTPDTVYSIEYKTYGERDW VAKKGCQRITRKSCNLTVETGNLTELYYARVTAVSAGGRSATKMTDRFSSLQHTTLKPPDVTCIS KVRSIQMIVHPTPTPIRAGDGHRLTLEDIFHDLFYHLELQVNRTYQMHLGGKQREYEFFGLTPDT EFLGTIMICVPTWAKESAPYMCRVKTLPDRTWTYSFSGAFLFSMGFLVAVLCYLSYRYVTKPPAP PNSLNVQRVLTFQPLRFIQEHVLIPVFDLSGPSSLAQPVQYSQIRVSGPREPAGAPQRHSLSEIT YLGQPDISILQPSNVPPPQILSPLSYAPNAAPEVGPPSYAPQVTPEAQFPFYAPQAISKVQPSSY APQATPDSWPPSYGVCMEGSGKDSPTGTLSSPKHLRPKGQLQKEPPAGSCMLGGLSLQEVTSLAM EESQEAKSLHQPLGICTDRTSDPNVLHSGEEGTPQYLKGQLPLLSSVQIEGHPMSLPLQPPSGPC SPSDQGPSPWGLLESLVCPKDEAKSPAPETSDLEQPTELDSLFRGLALTVQWES

Signal sequence.

amino acids 1-17

Transmembrane domain.

amino acids 233-250

N-glycosylation sites.

amino acids 80-83, 87-90, 172-175

N-myristoylation sites.

amino acids 11-16, 47-52, 102-107, 531-536, 565-570

 $\verb"TGGCCTACTGGAAAAAAAAAAAAAAAAAAAAAAAAAGTCACCCGGGCCCGCGGTGGCCACAAC \verb"ATG"$ TCGGATCTCAGCCACGGACGCGTTTCTCGGACCTCAAAGTGTGCGGGGACGAAGAGTGCAGCAT GTTAATGTACCGTGGGAAAGCTCTTGAAGACTTCACGGGCCCTGATTGTCGTTTTTGTGAATTTTA AAAAAGGTGACGATGTATATGTCTACTACAAACTGGCAGGGGGATCCCTTGAACTTTGGGCTGGA AGTGTTGAACACAGTTTTGGATATTTTCCAAAAGATTTGATCAAGGTACTTCATAAATACACGGA AGAAGAGCTACATATTCCAGCAGATGAGACAGACTTTGTCTGCTTTGAAGGAGGAAGAGATGATT TTAATAGTTATAATGTAGAAGAGCTTTTAGGATCTTTGGAACTGGAGGACTCTGTACCTGAAGAG TCGAAGAAAGCTGAAGAAGTTTCTCAGCACAGAGAGAAATCTCCTGAGGAGTCTCGGGGGCGTGA ${\tt ACTTGACCCTGTGCCTGAGCCCGAGGCATTCAGAGCTGATTCAGAGGATGGAGAAGGTGCTTTCT}$ CAGAGAGCACCGAGGGGCTGCAGGGACAGCCCTCAGCTCAGGAGAGCCACCCTCACACCAGCGGT CCTGCGGCTAACGCTCAGGGAGTGCAGTCTTCGTTGGACACTTTTGAAGAAATTCTGCACGATAA ATTGAAAGTGCCGGGAAGCGAAAGCAGAACTGGCAATAGTTCTCCTGCCTCGGTGGAGCGGGAGA AGACAGATGCTTACAAAGTCCTGAAAACAGAAATGAGTCAGAGAGGGAAGTGGACAGTGCGTTATT AAAAAAAAAAAAAAA

MAAAPGLLFWLFVLGALWWVPGQSDLSHGRRFSDLKVCGDEECSMLMYRGKALEDFTGPDCRFVN FKKGDDVYVYYKLAGGSLELWAGSVEHSFGYFPKDLIKVLHKYTEEELHIPADETDFVCFEGGRD DFNSYNVEELLGSLELEDSVPEESKKAEEVSQHREKSPEESRGRELDPVPEPEAFRADSEDGEGA FSESTEGLQGQPSAQESHPHTSGPAANAQGVQSSLDTFEEILHDKLKVPGSESRTGNSSPASVER EKTDAYKVLKTEMSQRGSGQCVIHYSKGFRWHQNLSLFYKDCF

Important features of the protein:

Signal peptide:

amino acids 1-22

N-glycosylation site.

amino acids 294-298

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 30-34

Tyrosine kinase phosphorylation site.

amino acids 67-76

N-myristoylation sites.

amino acids 205-211, 225-231, 277-283

Amidation site.

amino acids 28-32

CCAGGACCAGGGCGCACCGGCTCAGCCTCTCACTTGTCAGAGGCCGGGGAAGAAGCAAAGCGC AACGGTGTGGTCCAAGCCGGGGCTTCTGCTTCGCCTCTAGGACATACACGGGACCCCCTAACTTC AGTCCCCAAACGCGCACCCTCGAAGTCTTGAACTCCAGCCCCGCACATCCACGCGCGGCACACAGG CGCGGCAGGCGGCAGGTCCCGGCCGAAGGCGATGCGCGCAGGGGGTCGGGCAGCTGGGCTCGGGC GGCGGGAGTAGGGCCCGGCAGGGAGGCAGGGGGCTGCATATTCAGAGTCGCGGGCTGCGCCCTG GGCAGAGGCCGCCCTCGCTCCACGCAACACCTGCTGCTGCCACCGCGCCGCGA**TG**AGCCGCGTGG TCTCGCTGCTGCGCCCCCCCTCTCTGCGGCCACGGAGCCTTCTGCCGCCGCGTGGTCAGC GGCCAAAAGGTGTGTTTTGCTGACTTCAAGCATCCCTGCTACAAAATGGCCTACTTCCATGAACT GCCTTGAGAATGAAGCAGAACAGAAGTTAATAGAGAGCATGTTGCAAAACCTGACAAAACCCGGG ACAGGGATTTCTGATGGTGATTTCTGGATAGGGCTTTGGAGGAATGGAGATGGGCAAACATCTGG TGCCTGCCCAGATCTCTACCAGTGGTCTGATGGAAGCAATTCCCAGTACCGAAACTGGTACACAG CTTGGGGGTCCCTACCTTTACCAGTGGAATGATGACAGGTGTAACATGAAGCACAATTATATTTG CAAGTATGAACCAGAGATTAATCCAACAGCCCCTGTAGAAAAGCCTTATCTTACAAATCAACCAG GAGACACCCATCAGAATGTGGTTGTTACTGAAGCAGGTATAATTCCCAATCTAATTTATGTTGTT ATACCAACAATACCCCTGCTCTTACTGATACTGGTTGCTTTTGGAACCTGTTGTTTCCAGATGCT GCATAAAAGTAAAGGAAGAACAAAAACTAGTCCAAACCAGTCTACACTGTGGATTTCAAAGAGTA CCAGAAAAGAAAGTGGCATGGAAGTATAATAACTCATTGACTTGGTTCCAGAATTTTGTAATTCT GGATCTGTATAAGGAATGGCATCAGAACAATAGCTTGGAATGGCTTGAAATCACAAAGGATCTGC AAGATGAACTGTAAGCTCCCCCTTGAGGCAAATATTAAAGTAATTTTTATATGTCTATTATTTCA TTTAAAGAATATGCTGTGCTAATAATGGAGTGAGACATGCTTATTTTGCTAAAGGATGCACCCAA ACTTCAAACTTCAAGCAAATGAAATGGACAATGCAGATAAAGTTGTTATCAACACGTCGGGAGTA TGTGTGTTAGAAGCAATTCCTTTATTTCTTTCACCTTTCATAAGTTGTTATCTAGTCAATGTAA TGTATATTGTATTGAAATTTACAGTGTGCAAAAGTATTTTACCTTTGCATAAGTGTTTGATAAAA ATGAACTGTTCTAATATTTTTTTTTTTTGGCATCTCATTTTTCAATACATGCTCTTTTGATTAAAG AAACTTATTACTGTTGTCAACTGAATTCACACACACACAAATATAGTACCATAGAAAAAGTTTGT TTTCTCGAAATAATTCATCTTTCAGCTTCTCTGCTTTTGGTCAATGTCTAGGAAATCTCTTCAGA AATAAGAAGCTATTTCATTAAGTGTGATATAAACCTCCTCAAACATTTTACTTAGAGGCAAGGAT TGTCTAATTTCAATTGTGCAAGACATGTGCCTTATAATTATTTTTAGCTTAAAATTAAACAGATT TTGTAATAATGTAACTTTGTTAATAGGTGCATAAACACTAATGCAGTCAATTTGAACAAAAGAAG TGACATACACAATATAAATCATATGTCTTCACACGTTGCCTATATAATGAGAAGCAGCTCTCTGA GGGTTCTGAAATCAATGTGGTCCCTCTCTTGCCCACTAAACAAGATGGTTGTTCGGGGTTTTGGG ATTGACACTGGAGGCAGATAGTTGCAAAGTTAGTCTAAGGTTTCCCTAGCTGTATTTAGCCTCTG ACTATATTAGTATACAAAGAGGTCATGTGGTTGAGACCAGGTGAATAGTCACTATCAGTGTGGAG ACAAGCACACACACACATTTTAGGAAGGAAAGGAACTACGAAATCGTGTGAAAATGGGTTGG AACCCATCAGTGATCGCATATTCATTGATGAGGGTTTGCTTGAGATAGAAAATGGTGGCTCCTTT CTGTCTTATCTCCTAGTTTCTTCAATGCTTACGCCTTGTTCTTCTCAAGAGAAAGTTGTAACTCT CTGGTCTTCATATGTCCCTGTGCTCCTTTTAACCAAATAAAGAGTTCTTGTTTCTGGGGGAAAAA

MSRVVSLLLGAALLCGHGAFCRRVVSGQKVCFADFKHPCYKMAYFHELSSRVSFQEARLACESE GGVLLSLENEAEQKLIESMLQNLTKPGTGISDGDFWIGLWRNGDGQTSGACPDLYQWSDGSNSQ YRNWYTDEPSCGSEKCVVMYHQPTANPGLGGPYLYQWNDDRCNMKHNYICKYEPEINPTAPVEK PYLTNQPGDTHQNVVVTEAGIIPNLIYVVIPTIPLLLLILVAFGTCCFQMLHKSKGRTKTSPNQ STLWISKSTRKESGMEV

Important features of the protein:

Signal peptide:

amino acids 1-21

Transmembrane domain:

amino acids 214-235

N-glycosylation sites.

amino acids 86-89, 255-258

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 266-269

N-myristoylation sites.

amino acids 27-32, 66-71, 91-96, 93-98, 102-107, 109-114, 140-145, 212-217