

Overview of Perception and Distributed Sensing Activity

*Under NASA's Transformational Tools and Technologies (TTT) Project
Autonomous Systems (AS) Discipline*

Dr. Corey A. Ippolito
Principal Investigator, P&DS
NASA Ames Research Center
corey.a.ippolito@nasa.gov

Enabling Autonomous AAM Operations

National Aeronautics
and Space Administration

**NASA Aeronautics
Research Mission
Directorate (ARMD)**

**Transformative
Aeronautics Concepts
Program (TACP)**

**Transformative Tools
and Technology (TTT)
Project**

**Autonomous Systems
(AS) Discipline**

Perception Activity

Perception and Distributed Sensing

Perception of Environment

Perception of State

Perception of Health

Perception of Airspace

Project

Gaps

System-wide Needs and Requirements Gap

Approach

Collaborate with other NASA projects & industry partners to establish needs, requirements, gaps, and challenges for perception in AAM.

Technical Objectives

Establish collaborative simulations, scenarios, and requirements with other NASA projects.

Validated Approaches and Technologies Gap

Develop approaches, architectures, and algorithms. Perform verification and validation against requirements with the other NASA programs.

Develop approaches, algorithms, and reference architectures.

Characterization and Data Gap

Gather data sets for V&V and characterization. Publish data sets for the community. Analyze data sets and characterize performance of perception systems.

Data collection and perception system characterization.

Enabling Advanced AAM Operations Through Autonomy

NASA AAM Project Partnerships

- Transformational Tools and Technologies (TTT)
 - Autonomous Systems (AS) Discipline
 - Perception and Distributed Sensing
 - Intelligent Contingency Management (iCM)
 - Human-Autonomy Teaming (HAT)
 - Autonomous Air Traffic Management (aATM)
- Advanced Air Mobility (AAM) Project
 - National Campaign (NC)
 - High Density Vertiport (HDV)
 - Automated Flight and Contingency Management (AFCM)
- Revolutionary Vertical Lift Technology Project (RVLT)
- Convergent Aeronautics Solutions (CAS) Project
 - Data and Reasoning Fabric (DRF)

Technology Focus Areas for Perception in AAM

In AAM relevant environments, e.g., low-altitude flight in dense urban corridors...

- Technologies for Precision Approach and Landing
- Alternative Positioning, Navigation, and Timing (APNT)
- Detect and Avoid (DAA)
- Sensing and Estimation (Nonlinear Coupled Vehicle/Fluid Dynamic State)
- Weather and Atmospheric Sensing for Weather Tolerant Operations
- Health Monitoring, Prognostics and Diagnostics
- Environmental Hazard Sensing

Ongoing Research

Collaboration Opportunities

- Concepts, Requirements and Needs
- Technology Focus Areas and Capability Challenges
- Flight Test Data Collection Activities
- Tools and Technologies

Example Publications from 2022 AIAA SciTech Forum and Exposition (Jan/2022)

- Organized special session “Perception as Enabling Technology for Autonomous Air Mobility”
- Kawamura, E., Kannan, K., Lombaerts, T., & Ippolito, C. A. (2022). *Vision-Based Precision Approach and Landing for Advanced Air Mobility*. AIAA 2022 SciTech Forum and Exposition. San Diego, CA, USA. January 3-7, 2022. <https://doi.org/10.2514/6.2022-0497>
- Dolph, C., Minwalla, C., Lombaerts, T., Stepanyan, V., Iftekharuddin, K., Szatkowski, G., McSwain, R., & Ippolito, C. A. (2022). *Ground to air testing of a fused optical-radar aircraft detection and tracking system*. AIAA 2022 SciTech Forum and Exposition. San Diego, CA, USA. January 3-7, 2022. <https://doi.org/10.2514/6.2022-0498>
- Lombaerts, T., Shish, K. H., Keller, G., Stepanyan, V., Cramer, N. B., & Ippolito, C. A. (2022). *Adaptive Multi-Sensor Fusion Based Object Tracking for Autonomous Urban Air Mobility Operations*. AIAA 2022 SciTech Forum and Exposition. San Diego, CA, USA. January 3-7, 2022. <https://doi.org/10.2514/6.2022-0362>
- Stepanyan, V., Lombaerts, T., Dolph, C., Cramer, N. B., & Ippolito, C. A. (2022). *Estimation With Range Depended Sensor Model*. AIAA 2022 SciTech Forum and Exposition. San Diego, CA, USA. January 3-7, 2022. <https://doi.org/10.2514/6.2022-0494>
- Behari, N., Holbrook, H. T., Garrett, P., Ippolito, C. A., & Dolph, C. (2022). *Contextual Segmentation of Fire Spotting Regions Through Satellite-Augmented Autonomous Modular Sensor Imagery*. AIAA 2022 SciTech Forum and Exposition. San Diego, CA, USA. January 3-7, 2022. <https://doi.org/10.2514/6.2022-0495>
- Holbrook, H. T., Garrett, P., Behari, N., Dolph, C., Morris, C. I., & Szatkowski, G. (2022). *Aerial Object Trajectory Classification by Training on Flight Controller Data and Testing on RADAR Generated Tracks*. AIAA 2022 SciTech Forum and Exposition. San Diego, CA, USA. January 3-7, 2022. <https://doi.org/10.2514/6.2022-0496>

Perception and Distributed Sensing Research Activity

Dr. Corey A. Ippolito
TTT/AS/Perception Activity, Principal Investigator
NASA Ames Research Center
corey.a.ippolito@nasa.gov