Recent Changes in Firm Dynamics and the Nature of Economic Growth

Markus Kondziella University of St. Gallen

2024 Annual Meeting Society for Economic Dynamics

June 2024

Introduction

- ▶ Recent trends in the U.S. economy
 - Increase in industry concentration
 - Decline in firm entry
 - Decline in aggregate productivity growth
- ▶ Similar trends observed in many advanced economies worldwide
- ▶ New insights into trends, based on a novel finding in high-quality Swedish registry data
- ▶ Systematic changes in the size growth of firms since the late 1990s

Avg. firm size (log employment) conditional on firm age in Sweden

Notes: 95% confidence intervals shown.

Avg. firm size (log sales) conditional on firm age in Sweden

Notes: nominals sales deflated to 2017-SEK. 95% confidence intervals shown.

Size growth over the firm's life cycle

- ▶ Quantify size growth over the firm's life cycle using regression framework
- ▶ Non-parametric estimation of life cycle profile of firm *j*

$$\ln \mathsf{Size}_{j,t} = \gamma_0 + \sum_{\mathsf{a}_f=1}^{20} \gamma_{\mathsf{a}_f} \mathbb{1}_{\mathsf{Age}_{j,t}=\mathsf{a}_f} + \theta_{\mathsf{c}} + \theta_{\mathsf{k}} + \epsilon_{j,t}$$

- Size \in {Employment, Sales}
- $\mathbb{1}_{Age_{i,t}=a_f}$ age dummies
- θ_c cohort fixed effect
- θ_k 5-digit industry fixed effect
- $ightharpoonup \gamma_{\it a_f}$ capture the log differences in firm size between ages $\it a_f$ and zero (γ_0)

4

Cumulative size growth (log employment) over the firm's life cycle

Notes: graph shows γ_{a_f} indicating the difference in log employment between age a_f and zero. 95% confidence intervals shown.

Cumulative size growth (log sales) over the firm's life cycle

Notes: graph shows γ_{a_f} indicating the difference in log sales between age a_f and zero. Nominals sales deflated to 2017-SEK. 95% confidence intervals shown.

This paper

- ▶ Economic theory suggests that firm and agg. productivity growth are directly linked
- ▶ Models of endogenous growth through creative destruction
 - Business stealing through innovation
 - Business stealing associated with firm size growth
 - Innovation contributes to agg. productivity growth
- ▶ Exploit the link between firm and agg. productivity growth through a structural model

What can we infer about recent trends in agg. prod. growth from the changes in firm growth?

7

Related literature

- ► Trends in firm size (growth)
 - Sterk, Sedlácek and Pugsley (2021), Karahan, Pugsley and Sahin (2022), Hopenhayn, Neira and Singhania (2022)
- ► Explaining recent macroeconomic trends
 - Davis (2017), Gutiérrez and Philippon (2018), Bloom, Jones, Van Reenen and Webb (2020), Liu, Mian and Sufi (2022), Olmstead-Rumsey (2022),
 Peters and Walsh (2022), Akcigit and Ates (2023), Aghion, Bergeaud, Boppart, Klenow and Li (2023), De Ridder (2024), . . .
- ▶ Quantifying the sources of economic growth
 - Akcigit and Kerr (2018), Garcia-Macia, Hsieh and Klenow (2019), Peters (2020)
- Macroeconomic implications of reallocation
 - Restuccia and Rogerson (2008), Hsieh and Klenow (2009), Song, Storesletten and Zilibotti (2011), Acemoglu, Akcigit, Alp, Bloom and Kerr (2018)

Outline

Model

Explaining changes in firm growth across BGPs

Long-run macroeconomic implications

Transition dynamics

Robustness and discussion

Outline

Model

Explaining changes in firm growth across BGPs

Long-run macroeconomic implications

Transition dynamic

Robustness and discussion

Model overview

The model features the following three elements

- ▶ Link b/w firm dynamics and economic growth in spirit of Schumpeterian growth models
- ▶ Two types of innovation: horizontal and vertical (internal) innovation as in Peters (2020)
 - Internal innovation as a source of markup growth
 - Allows for differential trends in sales and employment growth
- ▶ Innate (ex-ante) heterogeneity across firms
 - Changes in sales and employment growth vary across firms that differ in fundamentals
 - With reallocation effects across firms that matter for economic aggregates

Aggregate economy

► Household preferences

$$U = \int_0^\infty \exp(-\rho t) \ln C_t dt$$

► Final good production

$$Y_t = \exp\left(\int_0^1 \ln\left(q_{it}y_{it}\right) di\right)$$

 q_{it} denotes the quality of product i.

ightharpoonup Firms increase q_{it} through innovation

Market structure within product markets

► Firm *j* produces in product market *i* with

$$y_{ijt} = \varphi_j L_{ijt}$$

▶ Innate heterogeneity in firm productivity φ_i as in Aghion et al. (REStud, 2023)

$$\varphi_{\mathbf{j}} \in \{\varphi^{\mathbf{h}}, \varphi^{\ell}\}$$

- ► Firms compete in prices (Bertrand competition)
 - ightarrow firm with the highest quality adjusted productivity is producing in market i

Market structure within product markets

▶ Incumbent in market *i* sets price according to

$$p_{ijt} = \frac{q_{ijt}}{q_{ij't}} \frac{w_t}{\varphi_{j'}}$$

▶ Incumbent in market *i* sets markup according to

$$\mu_{ijt} \equiv rac{p_{ijt}}{w_t/arphi_j} = rac{q_{ijt}}{q_{ij't}} rac{arphi_j}{arphi_{j'}}$$

- → Internal innovation increases markup
- → More productive incumbent charges higher markup

$$r_t V_t^h(n,\boldsymbol{\mu},S_t) - \dot{V}_t^h(n,\boldsymbol{\mu},S_t) =$$

$$r_t V_t^h(n, \mu, S_t) - \dot{V}_t^h(n, \mu, S_t) = \sum_{k=1}^n \underbrace{\pi(\mu_k)}_{\mathsf{Flow profits}} +$$

$$r_t V_t^h(n, \mu, S_t) - \dot{V}_t^h(n, \mu, S_t) = \\ \sum_{k=1}^n \frac{\pi(\mu_k)}{\mathsf{Flow profits}} + \sum_{k=1}^n \underbrace{\tau_t \Big[V_t^h \Big(n - 1, \mu_{-k}, S_t \Big) - V_t^h(n, \mu, S_t) \Big]}_{\mathsf{Agg. creative destruction}}$$

$$\begin{split} r_{t}V_{t}^{h}(n,\mu,S_{t}) - \dot{V}_{t}^{h}(n,\mu,S_{t}) &= \\ \sum_{k=1}^{n} \underbrace{\pi(\mu_{k})}_{\text{Flow profits}} + \sum_{k=1}^{n} \underbrace{\tau_{t}\left[V_{t}^{h}\left(n-1,\mu_{-k},S_{t}\right) - V_{t}^{h}(n,\mu,S_{t})\right]}_{\text{Agg. creative destruction}} \\ &+ \max_{\left[I_{k},\times_{k}\right]} \left\{\sum_{k=1}^{n} \underbrace{I_{k}\left[V_{t}^{h}\left(n,\left[\mu_{-k},\mu_{k}\times\lambda\right],S_{t}\right) - V_{t}^{h}(n,\mu,S_{t})\right]}_{\text{Internal R&D}} \right. \end{split}$$

Firm chooses its internal (vertical) and expansion (horizontal) R&D efforts (I_k, x_k)

$$\begin{split} r_{t}V_{t}^{h}(n,\boldsymbol{\mu},S_{t}) &- \dot{V}_{t}^{h}(n,\boldsymbol{\mu},S_{t}) = \\ &\sum_{k=1}^{n} \underbrace{\pi(\mu_{k})}_{\text{Flow profits}} + \sum_{k=1}^{n} \underbrace{\tau_{t}\left[V_{t}^{h}\left(n-1,\mu_{-k},S_{t}\right)-V_{t}^{h}(n,\mu,S_{t})\right]}_{\text{Agg. creative destruction}} \\ &+ \max_{\left[l_{k},\mathbf{x}_{k}\right]} \left\{\sum_{k=1}^{n} \underbrace{l_{k}\left[V_{t}^{h}\left(n,\left[\boldsymbol{\mu}_{-k},\mu_{k}\times\lambda\right],S_{t}\right)-V_{t}^{h}(n,\mu,S_{t})\right]}_{\text{Internal R&D}} \right. \\ &+ \sum_{k=1}^{n} \underbrace{\mathbf{x}_{k}\left[S_{t}V_{t}^{h}\left(n+1,\left[\boldsymbol{\mu},\lambda\right],S_{t}\right)+(1-S_{t})V_{t}^{h}\left(n+1,\left[\boldsymbol{\mu},\lambda\times\varphi^{h}/\varphi^{\ell}\right],S_{t}\right)-V_{t}^{h}(n,\boldsymbol{\mu},S_{t})\right]}_{\text{Expansion R&D}} \end{split}$$

 S_t is the share of product lines operated by high-productivity firms

Firm chooses its internal (vertical) and expansion (horizontal) R&D efforts (I_k, x_k)

$$\begin{split} r_{t}V_{t}^{h}(n,\boldsymbol{\mu},S_{t}) &- \dot{V}_{t}^{h}(n,\boldsymbol{\mu},S_{t}) = \\ &\sum_{k=1}^{n} \underbrace{\pi(\mu_{k})}_{\text{Flow profits}} + \sum_{k=1}^{n} \underbrace{\tau_{t}\left[V_{t}^{h}\left(n-1,\mu_{-k},S_{t}\right)-V_{t}^{h}(n,\boldsymbol{\mu},S_{t})\right]}_{\text{Agg. creative destruction}} \\ &+ \max_{\left[l_{k},\mathbf{x}_{k}\right]} \left\{\sum_{k=1}^{n} \underbrace{l_{k}\left[V_{t}^{h}\left(n,\left[\mu_{-k},\mu_{k}\times\lambda\right],S_{t}\right)-V_{t}^{h}(n,\boldsymbol{\mu},S_{t})\right]}_{\text{Internal R&D}} \right. \\ &+ \underbrace{\sum_{k=1}^{n} \underbrace{\mathbf{x}_{k}\left[S_{t}V_{t}^{h}\left(n+1,\left[\mu,\lambda\right],S_{t}\right)+(1-S_{t})V_{t}^{h}\left(n+1,\left[\mu,\lambda\times\varphi^{h}/\varphi^{\ell}\right],S_{t}\right)-V_{t}^{h}(n,\boldsymbol{\mu},S_{t})\right]}_{\text{Expansion R&D}} \\ &- \underbrace{w_{t}\Gamma\left(\left[l_{i},\mathbf{x}_{i}\right];n,\boldsymbol{\mu}\right)}_{\text{R&D costs}} \right\} \end{split}$$

 S_t is the share of product lines operated by high-productivity firms

R&D costs

► R&D costs in labor units

$$\Gamma([x_i, t_i]; n, [\mu_i]) = \sum_{k=1}^{n} \left[\mu_k^{-1} \frac{1}{\psi_i} (t_k)^{\zeta} + \frac{1}{\psi_{\chi}} (x_k)^{\zeta} \right]$$

 ζ innovation cost curvature, ψ_I and ψ_X internal and expansion R&D efficiency

 \blacktriangleright ψ_I and ψ_X discipline firm markup, sales and employment life cycle growth

► Analytical characterization

Firm entry and exit

- ▶ Entrants improve the quality of a random product line
- lacktriangleright Productivity type is revealed after paying a fixed cost of entry w_t/ψ_z
- \blacktriangleright ψ_z governs the entry efficiency
- \blacktriangleright Entrants get assigned the high productivity type with probability p^h
- ► Free entry condition

$$\rho^h \times E\left[V^h(1,\mu,S)\right] + (1-\rho^h) \times E\left[V^\ell(1,\mu,S)\right] = \frac{w_t}{\psi_z}$$

▶ Firm becomes inactive when losing its last product to competitors

Value of a product line

Proposition

Along a BGP, the value of a product line of firm productivity type $d \in \{h, \ell\}$ is

$$V_t^d(1, \mu_i, S) = \frac{1}{\rho + \tau} \left[\underbrace{Y_t \left(1 - \frac{1}{\mu_i} \right)}_{Profits} + \underbrace{\underbrace{\frac{\zeta - 1}{\psi_x} (x^d)^\zeta w_t}_{Continuation \ value \ expansion \ R\&D}}_{Continuation \ value \ internal \ R\&D} \right]$$

where $I \equiv I^h = I^\ell$ and $x^h > x^\ell$.

More productive firms

- charge higher markups and enjoy greater profits per product (on average)
- ▶ choose higher expansion R&D rates, $x^h > x^\ell$

▶ BGP definition

Stationary distribution of productivity types

Proposition

Along a BGP, the constant share of product lines operated by high-productivity incumbents is

$$S = \frac{zp^h}{(1-S)(x^\ell - x^h) + z}$$

- \triangleright Given firm entry, z, difference in expansion R&D rates determines S
- ▶ Firm entry crucial for stationary distribution of productivity types across product lines

Growth rate of the economy

Proposition

Along a BGP, the constant growth rate of the economy is

$$g = (I + \tau) \times \ln(\lambda) = \left(\underbrace{I}_{Incumbent \ internal \ R\&D} + \underbrace{Sx^h + (1 - S)x^\ell}_{Incumbent \ expansion \ R\&D} + \underbrace{z}_{Entry}\right) \times \ln(\lambda)$$

▶ Share of product lines operated by each productivity type affects aggregate growth rate

Outline

Model

Explaining changes in firm growth across BGPs

Long-run macroeconomic implications

Transition dynamics

Robustness and discussion

Explaining changes in firm growth across BGPs

- ▶ What do the changes in firm growth suggest about recent trends in agg. prod. growth?
 - Rationalize changes in sales and employment growth across two BGPs (this section)
 - Quantify the implications for economic aggregates (next section)
- ► Estimate model twice
 - Initial BGP reflects firm dynamics and macro-econ. conditions during the late 1990s
 - New BGP reflects changes in sales and employment life cycle growth wrt. 2010s
- \blacktriangleright Parameters subject to change: entry and internal R&D efficiency (ψ_z, ψ_I)

Initial BGP: moments and estimated parameters

	Data	Model
Moments		
Sales growth by age 8 in % (cohorts 1997–2000)	55.9	55.8
Employment growth by age 8 in % (cohorts 1997-2000)	28.8	28.8
Cross-sectional SD of log labor shares across entrants (1997–2005)	0.053	0.053
TFP growth g in % (1997–2005; FRED)	3.02	3.02
Entry rate in % (1997–2005)	14.3	14.3
Agg. markup μ in % (Sandström, 2020; De Loecker and Eeckhout, 2018)	7.5	7.5
Parameters		
ψ_I Internal R&D efficiency		0.144
ψ_{x} Expansion R&D efficiency		0.282
ψ_z Entry R&D efficiency		1.483
λ Step size of innovation		1.136
$arphi^h/arphi^\ell$ Productivity gap		1.091
p ^h Share of high type firms among entrants		0.683
Set exogenously		
ho Discount rate		0.02
ζ R&D cost curvature		2

New BGP: moments and estimated parameter changes

Data (%)	Model (%)	Δ BGPs (pp)
67.4	67.4	+11.5
46.6	46.6	+17.8
		-51.0
		-22.0
	67.4	67.4 67.4

Estimation points towards

- ▶ Rising entry costs (Davis, 2017; Gutiérrez and Philippon, 2018)
- ▶ Rising (internal) R&D costs (Bloom et al., 2020)

New BGP: changes in R&D efforts

	Initial BGP	$\psi_I \downarrow (\%)$	$\psi_z\downarrow$ (%)	$\psi_I \downarrow, \psi_z \downarrow (\%)$
x ^h	0.1187	+1.0	+32.8	+35.0
x^ℓ	0.0439	-5.9	+1.3	-11.5
I^h, I^ℓ	0.0367	-49.4	+13.8	-41.9

Notes: $\psi_I \downarrow$ denotes the 51% fall in the internal R&D efficiency and $\psi_Z \downarrow$ the 22% fall in the entry efficiency.

- ▶ Falling internal R&D efficiency, ψ_I , decreases internal R&D rates
 - Markup growth \downarrow Employment relative to sales growth \uparrow
- ▶ Falling entry efficiency, ψ_z , increases expansion R&D rates (value of product line ↑)
 - Sales growth ↑ Employment growth ↑

New BGP: changes in R&D efforts

	Initial BGP	$ \psi_I \downarrow (\%)$	$\psi_z\downarrow$ (%)	$\psi_I \downarrow, \psi_z \downarrow (\%)$
x^h x^ℓ I^h, I^ℓ	0.1187	+1.0	+32.8	+35.0
	0.0439	-5.9	+1.3	-11.5
	0.0367	-49.4	+13.8	-41.9

Notes: $\psi_I \downarrow$ denotes the 51% fall in the internal R&D efficiency and $\psi_Z \downarrow$ the 22% fall in the entry efficiency.

- ▶ Falling internal R&D efficiency, ψ_I , decreases internal R&D rates
 - ullet Markup growth \downarrow Employment relative to sales growth \uparrow
- ▶ Falling entry efficiency, ψ_z , increases expansion R&D rates (value of product line ↑)
 - Sales growth ↑ Employment growth ↑
- lacktriangle Falling internal R&D and entry efficiency increase x^h relative to x^ℓ
 - Acceleration in firm growth is due to faster growth by more productive firms!

Share of high-productivity firms conditional on age

- ▶ Share of high-productivity firms conditional on age increases
- ▶ Their share in the cross-section of firms increases by 12pp.

Outline

Model

Explaining changes in firm growth across BGPs

Long-run macroeconomic implications

Transition dynamics

Robustness and discussion

Long-run macroeconomic implications

	Initial BGP (in %)	ΔBGPs
Entry rate Concentration, S Agg. growth rate, g Avg. productivity, $\left(\varphi^h/\varphi^\ell\right)^{S_{new}-S_{initial}}$	14.3 80.6 3.02	-8.1pp. +17.1pp. -0.6pp. +1.5%

Notes: Initial BGP shows levels, Δ BGPs shows changes in percentage points (pp) or in percent wrt. to the initial BGP.

- lacktriangle Changes in firm growth consistent with entry rate \downarrow , concentration \uparrow , agg. growth rate \downarrow
- ▶ Fall in entry rate (agg. growth rate) accounts for 80% (60%) of that in the data
- ▶ Opposing level and growth effects on agg. output. Change in welfare ambiguous
- $ightharpoonup S\uparrow$ aligns with Kehrig & Vincent (2021), Baqaee & Farhi (2020), De Loecker et al. (2020)

Decomposing the long-run fall in the agg. growth rate

▶ Write the agg. growth rate g as

$$g = Sg^h + (1 - S)g^\ell + g^z,$$

where $g^h \equiv (I + x^h) \ln(\lambda)$, $g^\ell \equiv (I + x^\ell) \ln(\lambda)$ and $g^z \equiv z \ln(\lambda)$.

lacktriangle Shift-share decomposition of $\Delta g \equiv g_{new} - g_{old}$

$$\Delta g = \underbrace{S_{old} \Delta g^h + (1 - S_{old}) \Delta g^\ell}_{\Delta \text{Within}} + \underbrace{g^h_{old} \Delta S - g^\ell_{old} \Delta S}_{\Delta \text{Between}} + \underbrace{\Delta g^h \Delta S - \Delta g^\ell \Delta S}_{\Delta \text{Cross}} + \underbrace{\Delta g^z}_{\Delta \text{Entry}}$$

- ΔWithin: changes in incumbents' innovation rates
- Δ Reallocation = Δ Between + Δ Cross: reallocation across productivity types
- ullet Δ Entry: changes in the entry rate

Decomposing the long-run fall in the agg. growth rate

	$ \psi_I \downarrow, \psi_z \downarrow$	$ \psi_I\downarrow$	$\psi_{z}\downarrow$
Δ Within Δ Reallocation Δ Entry	+0.22 +0.27 -1.10	-0.23 +0.01 -0.11	+0.47 +0.20 -0.93
Δg (in pp.)	-0.62	-0.33	-0.26

- ▶ Incumbents' innovation rates increased
 - Contrasting effects of falling internal R&D and entry efficiency
- ▶ Reallocation matters for the long-run growth rate (Acemoglu et al., 2018)
 - Reallocation effects absent with ex-ante homogeneous firms
 - Reallocation effects driven by rising entry costs
- ▶ Slowdown in economic growth (since late 1990s) driven by falling entry

Outline

Model

Explaining changes in firm growth across BGPs

Long-run macroeconomic implications

Transition dynamics

Robustness and discussion

Transition dynamics

- ▶ Economy converges to a new BGP with a lower growth rate of aggregate output
- ▶ Reallocation to more productive incumbents increases aggregate productivity
- ▶ These two forces have opposing effects on short-run output growth
- ▶ What are the welfare effects associated with the changes in firm growth?

Transition dynamics

(a) Output and quality growth

(c) Rate of creative destruction, τ_t

(b) Change in concentration, $S_t - S_{initial}$

(d) Rate of entry, z_t

Welfare effects

- ▶ Perm. consumption change that yields indifference b/w initial and transition to new BGP
- ▶ Transition to new BGP equivalent to permanent 23.3% consumption loss in initial BGP
- ▶ Welfare loss sizable
 - Caveat: interpreted high-growth period of late 1990s as initial BGP
 - Transition is quick and no further burst in growth (consistent with data)

Outline

Mode

Explaining changes in firm growth across BGPs

Long-run macroeconomic implications

Transition dynamics

Robustness and discussion

Robustness and discussion

- ► Alternative comparative statics estimation •
- ▶ Firm productivity and firm size growth in the data •
- ▶ Potential causes behind rising entry and internal R&D costs •

Conclusion

Empirical finding

- ▶ Firm sales and employment growth over the life cycle accelerated in Swedish registry data
- ▶ Disproportionate rise in employment growth

Structural model of firm dynamics with markup growth and ex-ante firm heterogeneity

- ▶ Rising entry and internal R&D costs quantitatively account for the changes in firm growth
- lacktriangle Changes in firm growth consistent with entry \downarrow , concentration \uparrow and economic growth \downarrow
- ▶ Rising entry and internal R&D costs favor the expansion of ex-ante more productive firms
 - ⇒ Observed acceleration in firm growth driven by productive incumbents
 - \implies Positive reallocation effects on aggregate productivity and long-run economic growth
- ▶ Falling economic growth since the late 1990s is due to declining firm entry

- Backup Slides -

Data

- ▶ Universe of Swedish firms 1997–2017
- ▶ Information from balance sheets and profit and loss statements
- ▶ Restrict to firms in the private economy with at least one employee
- ▶ Birth year defined as year when firm hires its first employee

Data: summary statistics

	25th Pct.	50th Pct.	75th Pct.	Mean	SD	Obs.
Sales*	1.2	2.7	7.8	27.8	568.2	4,918,996
Value added*	0.5	1.1	2.9	7.6	142.3	4,918,996
Employment	1	2	5	9.9	131.1	4,918,996
Wage bill*	0.2	0.6	1.6	3.7	53.0	4,918,996
Capital stock*	0.04	0.2	1.1	9.3	277.0	4,918,996
Intermediate Inputs*	0.4	0.9	2.6	10.8	270.0	4,918,996

Note: variables marked with * are in units of million 2017-SEK (1 SEK pprox 0.1 US dollars). The capital stock is defined as fixed assets minus depreciation.

Balanced growth path definition

Definition

A balanced growth path (BGP) is a set of allocations $[x_{it}, I_{it}, \ell_{it}, z_t, S_t, y_{it}, C_t]_{it}$ and prices $[r_t, w_t, p_{it}]_{it}$ such that firms choose $[x_{it}, I_{it}, p_{it}]$ optimally, the representative household maximizes utility choosing $[C_t, y_{it}]_{it}$, the growth rate of aggregate variables is constant, the free-entry condition holds, all markets clear and the distribution of quality and productivity gaps is stationary.

▶ Back

Characterization of firm dynamics

▶ Life cycle of markups (high and low productivity firms)

$$E\left[\mu_f^h|\text{firm age} = a_f,\varphi^h\right] = \underbrace{\ln\lambda\times\left(1+I\times E[a_P^h|a_f]\right)}_{\text{Quality improvements}} + \underbrace{\left(1-S\right)\times\ln\left(\varphi^h/\varphi^l\right)}_{\text{Productivity advantage}}$$

$$E\left[\mu_f^l|\text{firm age} = a_f,\varphi^l\right] = \underbrace{\ln\lambda\times\left(1+I\times E[a_P^l|a_f]\right)}_{\text{Quality improvements}} + \underbrace{S\times\ln\left(\varphi^l/\varphi^h\right)}_{\text{Productivity disadvantage}}$$

▶ Sales growth productivity type $j \in \{h, I\}$

$$E\left[\ln npy|a_f,\varphi^j\right] - E\left[\ln npy|0,\varphi^j\right] = \underbrace{g \times a_f}_{\text{Aggregate growth}} + \underbrace{\sum_{n=1} \ln n \times f^j(n|a_f)}_{\text{Firm's product growth}}$$

▶ Employment growth productivity type $j \in \{h, I\}$

$$E[\ln I_f | a_f, \varphi^j] - E[\ln I_f | 0, \varphi^j] = \underbrace{E\left[\ln n | a_f, \varphi^j\right]}_{\text{Firm's product growth}} - \underbrace{\left(E\left[\ln \mu_f | a_f, \varphi^j\right] - E\left[\ln \mu_f | 0, \varphi^j\right]\right)}_{\text{Firm's markup growth}}$$

Alternative comparative statics

- ▶ Aghion et al. (2023): $\varphi^h/\varphi^\ell \uparrow$ as a driver behind rising concentration and falling growth
- lacktriangle Estimate alternative new BGP where $arphi^h/arphi^\ell$ (instead of $\psi_{f z}$) and $\psi_{f I}$ are subject to change
- ▶ Estimated fall in internal R&D efficiency almost identical to before (-54% vs. -51%)
- ▶ Increase in productivity gap *qualitatively* consistent with changes in firm growth

	$\Delta Data$ (pp)	Δ Model (pp)
Moments Sales growth by age 8 (cohorts 2009–2012) Employment growth by age 8 (cohorts 2009–2012)	+11.5 +17.8	+2.1 +7.4
Parameters ψ_I Internal R&D efficiency (Δ in %) φ^h/φ^ℓ Productivity gap (Δ in %)		-54 +6

Alternative comparative statics

- ▶ Long-run macroeconomic implications in line with recent trends
 - The aggregate growth rate g falls by 0.49pp (0.42pp in Aghion et al., 2023)
 - The entry rate falls by 3pp
 - Concentration *S* rises
- ightharpoonup Decomposing the fall in the growth rate g as before

	$ \psi_I \downarrow, \varphi^h/\varphi^\ell \uparrow$	$ \psi_I\downarrow$	$\varphi^{h}/\varphi^{\ell}\uparrow$
Δ Within Δ Reallocation Δ Entry	-0.13 +0.18 -0.53	-0.24 +0.01 -0.12	+0.11 +0.13 -0.35
Δg (in pp.)	-0.49	-0.35	-0.11

Firm productivity and firm growth in the data

- \blacktriangleright Permanently more productive firms choose higher expansion R&D rates x
 - Firm life cycle trajectories determined by ex-ante factors (Sterk et al., 2021)
- ▶ Model suggests that permanent firm productivity captured by markup at entry
- ▶ Test relation between permanent firm productivity and firm growth in the data

$$\ln \mathsf{Size}_{\mathsf{Age}_{j,t} = a_f} - \ln \mathsf{Size}_{\mathsf{Age}_{j,t} = 0} = \beta_0 + \beta_1 \log \left(\frac{py}{wl}\right)_{\mathsf{Age}_{i,t} = 0} + \theta_c + \theta_k + \epsilon_{j,t}$$

31

Firm productivity and employment growth in the data

	Δ In Size _{Age=8}			
$\log \left(\frac{py}{wl} \right)_{Age=0}$	0.130	0.198	0.222	0.237
	(0.006)	(0.005)	(0.005)	(0.006)
$\log K_{Age=0}$			-0.041	0.003
•			(0.003)	(0.003)
$\log M_{ m Age=0}$				-0.107
0				(0.004)
Cohort fixed effects	✓	✓	✓	✓
Industry fixed effects	✓	✓	✓	✓
$\log\left(\frac{py}{wl}\right)_{Age=0}>0$		✓	✓	✓
N	66,817	65,875	60,950	60,832
R^2	0.06	0.08	0.08	0.10

1% more productive firms associated with 0.24pp faster size growth over first 8 years

Potential causes behind rising entry and internal R&D costs

Increasingly difficult to enter and compete with incumbent firms

- ▶ Rising complexity of regulatory requirements and the tax system
- ► Rising lobbying expenditures
- ► Rising importance of intangible capital
- ▶ Davis (2017), Gutiérrez and Philippon (2018), De Ridder (2024)

Potential causes behind rising entry and internal R&D costs

Rising costs of (internal) R&D

- ▶ Falling R&D output relative to R&D inputs in the U.S. (Bloom et al., 2020)
 - Model points to rising internal rather than expansion R&D costs
 - $* \varphi_I \downarrow$ consistent with trends in firm growth, entry, concentration, agg. growth
 - * $\varphi_{\mathsf{x}} \downarrow$ would counterfactually slow firm growth and reduce concentration
 - Aghion et al. (2023): falling costs of spanning multiple product markets
- ► Structural transformation to service economy
 - Swedish manufacturing firms increasingly offer services
 - * Volvo offering car maintenance, insurance, leasing, car sharing
 - * H&M offering clothing repair and recycling, clothing rentals . . .
 - * Agg. level: workforce employed in services from 72% to 79% (1997–2012)
 - Harder to distance competitor within product markets in services than manufacturing

