### Differentiation Formulas

$$\frac{d}{dx}k = 0$$

$$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$$

$$\frac{d}{dx}[k \cdot f(x)] = k \cdot f'(x)$$

$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$$

$$\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$$

$$\frac{d}{dx}x^n = nx^{n-1}$$

$$\frac{d}{dx}\sin x = \cos x$$

$$\frac{d}{dx}\cos x = -\sin x$$

$$\frac{d}{dx}\cot x = -\csc^2 x$$

$$\frac{d}{dx}\cot x = -\csc^2 x$$

$$\frac{d}{dx}\sec x = \sec x \tan x$$

$$\frac{d}{dx}\csc x = -\csc x \cot x$$

$$\frac{d}{dx}e^x = e^x$$

$$\frac{d}{dx}a^x = a^x \ln a$$

$$\frac{d}{dx}\ln|x| = \frac{1}{x}$$

$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\cos^{-1}x = \frac{-1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\cot^{-1}x = \frac{1}{x^2+1}$$

$$\frac{d}{dx}\cot^{-1}x = \frac{1}{|x|\sqrt{x^2-1}}$$

$$\frac{d}{dx}\csc^{-1}x = \frac{1}{|x|\sqrt{x^2-1}}$$

$$\frac{d}{dx}\csc^{-1}x = \frac{-1}{|x|\sqrt{x^2-1}}$$

$$\frac{d}{dx}\csc^{-1}x = \frac{-1}{|x|\sqrt{x^2-1}}$$

### Integration Formulas

$$\int dx = x + C$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

$$\int \frac{dx}{x} = \ln|x| + C$$

$$\int e^x dx = e^x + C$$

$$\int \ln x dx = x \ln x - x + C$$

$$\int \ln x dx = -\cos x + C$$

$$\int \cot x dx = -\ln|\cos x| + C$$

$$\int \cot x dx = \ln|\sin x| + C$$

$$\int \sec x dx = \ln|\sec x + \tan x| + C$$

$$\int \sec^2 x dx = \tan x + C$$

$$\int \sec^2 x dx = -\cot x + C$$

$$\int \sec^2 x dx = -\cot x + C$$

$$\int \sec^2 x dx = -\cot x + C$$

$$\int \csc^2 x dx = -\cot x + C$$

$$\int \csc^2 x dx = -\cot x + C$$

$$\int \csc^2 x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x dx = -\cot x + C$$

$$\int \cot x$$

#### TRIGONOMETRIC IDENTITIES

• Reciprocal identities

$$\sin u = \frac{1}{\csc u} \quad \cos u = \frac{1}{\sec u}$$

$$\tan u = \frac{1}{\cot u} \quad \cot u = \frac{1}{\tan u}$$

$$\csc u = \frac{1}{\sin u} \quad \sec u = \frac{1}{\cos u}$$

• Pythagorean Identities

$$\sin^2 u + \cos^2 u = 1$$
$$1 + \tan^2 u = \sec^2 u$$
$$1 + \cot^2 u = \csc^2 u$$

• Quotient Identities

$$\tan u = \frac{\sin u}{\cos u} \quad \cot u = \frac{\cos u}{\sin u}$$

• Co-Function Identities

$$\sin(\frac{\pi}{2} - u) = \cos u \quad \cos(\frac{\pi}{2} - u) = \sin u$$

$$\tan(\frac{\pi}{2} - u) = \cot u \quad \cot(\frac{\pi}{2} - u) = \tan u$$

$$\csc(\frac{\pi}{2} - u) = \sec u \quad \sec(\frac{\pi}{2} - u) = \csc u$$

• Parity Identities (Even & Odd)

$$\sin(-u) = -\sin u \quad \cos(-u) = \cos u$$
  

$$\tan(-u) = -\tan u \quad \cot(-u) = -\cot u$$
  

$$\csc(-u) = -\csc u \quad \sec(-u) = \sec u$$

• Sum & Difference Formulas

$$\sin(u \pm v) = \sin u \cos v \pm \cos u \sin v$$

$$\cos(u \pm v) = \cos u \cos v \mp \sin u \sin v$$

$$\tan(u \pm v) = \frac{\tan u \pm \tan v}{1 \mp \tan u \tan v}$$

• Double Angle Formulas

$$\sin(2u) = 2\sin u \cos u$$

$$\cos(2u) = \cos^2 u - \sin^2 u$$

$$= 2\cos^2 u - 1$$

$$= 1 - 2\sin^2 u$$

$$\tan(2u) = \frac{2\tan u}{1 - \tan^2 u}$$

Power-Reducing/Half Angle Formulas

$$\sin^2 u = \frac{1 - \cos(2u)}{2}$$
$$\cos^2 u = \frac{1 + \cos(2u)}{2}$$
$$\tan^2 u = \frac{1 - \cos(2u)}{1 + \cos(2u)}$$

• Sum-to-Product Formulas

$$\sin u + \sin v = 2\sin\left(\frac{u+v}{2}\right)\cos\left(\frac{u-v}{2}\right)$$

$$\sin u - \sin v = 2\cos\left(\frac{u+v}{2}\right)\sin\left(\frac{u-v}{2}\right)$$

$$\cos u + \cos v = 2\cos\left(\frac{u+v}{2}\right)\cos\left(\frac{u-v}{2}\right)$$

$$\cos u - \cos v = -2\sin\left(\frac{u+v}{2}\right)\sin\left(\frac{u-v}{2}\right)$$

• Product-to-Sum Formulas

$$\sin u \sin v = \frac{1}{2} \left[ \cos(u - v) - \cos(u + v) \right]$$

$$\cos u \cos v = \frac{1}{2} \left[ \cos(u - v) + \cos(u + v) \right]$$

$$\sin u \cos v = \frac{1}{2} \left[ \sin(u + v) + \sin(u - v) \right]$$

$$\cos u \sin v = \frac{1}{2} \left[ \sin(u + v) - \sin(u - v) \right]$$

# Hyperbolic and inverse functions

| <b>Identities for Hyperbolic Function</b>                                                                                                                                                                                                                   | The Six Hyperbolic Function                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\sinh 2x = 2 \sinh x \cosh x$ $\cosh 2x = \cosh^2 x + \sinh^2 x$ $\cosh^2 x = \frac{\cosh 2x + 1}{2}$ $\sinh^2 x = \frac{\cosh 2x - 1}{2}$ $\cosh^2 x - \sinh^2 x = 1$ $\tanh^2 x = 1 - \operatorname{sech}^2 x$ $\coth^2 x = 1 + \operatorname{csch}^2 x$ | $\sinh x = \frac{e^x - e^{-x}}{2}$ $\cosh x = \frac{e^x + e^{-x}}{2}$ $\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ $\operatorname{csch} x = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}}$ $\operatorname{sech} x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}}$ $\operatorname{coth} x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$ |

# Expressing Inverse Hyperbolic Funcions As Natural Logarithms