ЛЕКЦИЯ № 4

Математические основы оптимизации

1.1. Градиент функции.

Пусть f: $X \to Y; X \subset E^n, Y \subset E^1$ f(x) – всюду гладкая функция.

$$gradf(x_0) = \nabla_x f(x_0) = \left\{ \frac{df}{dx_i} \right\}_{i=1,n}; \nabla_x f(x) = \left[\frac{df}{dx_1}, \frac{df}{dx_2}, \dots, \frac{df}{dx_n} \right]^T$$

для выпуклой функции:

$$f(x) \ge f(x_0) + \nabla_x^T f(x_0)(x - x_0)$$

фундаментальное неравенство выпуклых функций.

1.2. Субградиент и его субдифференциал.

Определение 1. Субградиентом выпуклой не всюду гладкой функции f в точке Xo называется вектор $\gamma = [\gamma_1, \gamma_2, \gamma_3...\gamma_n]^T$, удовлетворяющий условию $f(x) \geq f(x_0) + \gamma^T(x - x_0)$, $X \subset R^n, f(x) \in R^1$ В пространстве $E^{n+1} \subset R^{n+1}$ гиперплоскость: $z = f(x_0) + \gamma^T(x - x_0)$ касающаяся функции f(x) в т. Xo , и лежащая всюду не выше этой функции называется опорной гиперплоскостью функции f(x) в точке Xo.

Определение 2. Субдифференциалом выпуклой необязательно гладкой функции f в т.Хо называется множество всех субградиентов функции f(x) в т. Хо $df(x_0) = \left\{ \!\!\! \gamma_j \right\}_{j=1}^k \!\!\! \big|_{r}$

Обобщение: дифференциал Фреше - главная линейная часть функции f(x):

$$Adx = \left[\gamma_i^T \right] dx$$

Теорема: Для любой точки $x_0 (\forall x_0 \in I(S_\alpha))^{$ элемента внутренности множества сечения уровня $df(x_0)$ - компактное множество.

1.3. Производная функции по направлению.

Определение 3. Пусть f: $X \to Y; X \subset E^n, Y \subset E^1$, тогда производной по направлению d функции f(x) в т. Хо называется предел:

$$f'_{d}(\mathbf{x}_{0}) = \lim_{\alpha \to 0} \frac{f(x_{0} + \alpha d) - f(x_{0})}{\alpha} \ge \gamma^{T} dx \Big|_{x_{0}}$$
или
$$\frac{df(x)}{dx} \Big|_{d} = \lim_{\alpha \to 0} \frac{f(x_{0} + \alpha d) - f(x_{0})}{\alpha} \ge \gamma^{T} d$$

Обобщение: Производная Гато: $\frac{df(x_0)}{d\alpha}\Big|_d = \max \gamma^T d$ Из существования производной Гато не следует существование дифференциала Фреше.

1.4. Разложение функции в ряд Тейлора.

В случае n-мерного пространства переменных - разложение в ряд Тейлора.

Пусть f: $X \to Y; X \subset E^n, Y \subset E^1$, тогда , если f(x) n раз дифференцируема в т. x0, то $f(x_0 + \Delta x) = f(x_0) + \nabla^T f(x_0) \Delta x + \frac{1}{2} \Delta x^T H(x_0) \Delta x + ... + O(\|\Delta x\|^T);$ где O - остаточный член в форме Пеано;

$$abla^T f(x_0) = grad f(x_0) = \left\{ \frac{\partial f(x_0)}{\partial x_i} \right\}_{i=1,n}$$
 - градиент функции f(x) в т. x0; $H(x_0) = \left\{ \frac{\partial^2 f(x_0)}{\partial x_i \partial x_j} \right\}_{\substack{i=1,n \ j=1,n}}$ - матрица Гессе 2-х частных производных в т. x0.

Если $\det H(x_0) \ge 0$, функция f(x) в т. x0 выпукла (если > – строго).

Если $\det H(x_0) \le 0$, функция f(x) в т. x_0 вогнута (если < – строго).

Если $\det H(x_0) = 0$, функция f(x) в т. x_0 имеет перегиб.

1.5. Матрица Якоби. Якобиан.

Пусть g - операторное отображение: g: $X \to Z, X \subset E^n, Z \subset E^m$,

Тогда
$$grad\ g(x_0) = J(x_0)$$
 – матрица Якоби, где $J(x_0) = \left[\frac{\partial g_j(x_0)}{\partial x_i}\right]_{\substack{i=1,n\\j=1,m}}$ а $\det(J(x0))$ – Якобиан. $\det(J(x0)) = |J(x0)|$.

Если $\det J(x) \neq 0$, то система уравнений gj(x) = C имеет решение.

 $\forall x \in X$. В этом случае существует обратное отображение $g^{-1}(x_0) \to x_0, [m.e.g^{-1}: Z \to X].$

Это имеет большое значение при решении задач с неявно заданными функциями.

1.6. Классы дифференцируемых функций.

Пусть f: $X \to Y; X \subset E^n, Y \subset E^1$, тогда $f(x) \in C^0(X)$ — класс непрерывных функций; $f(x) \in C^1(X)$ — класс 1 раз дифференцируемых функций; $f(x) \in C^2(X)$ — класс 2 раза дифференцируемых функций; $f(x) \in C^n(X)$ — класс n раз дифференцируемых функций.

2.<u>Необходимые и достаточные условия</u> существования экстремума функции.

2.1.Условия существования экстремума без учета ограничений.

2.1.1. Необходимые и достаточные условия выпуклости функций.

Теорема1. (Необходимые условия).

Пусть f:
$$X \to Y; X \subset E^n, Y \subset E^1 \quad \|x - \overline{x}\| \le \varepsilon$$
 $y = f(x); \forall x, x \in X, y \in Y, f(x) \in C^1(X)$, тогда для того, чтобы f(x) была выпуклой в $U_{\epsilon}(x)$, необходимо, чтобы

$f(x) \ge f(\bar{x}) + \nabla_x^T f(x) U_{\varepsilon}(\bar{x})$, где $|x - \bar{x}| \in U_{\varepsilon}(\bar{x})$.

Теорема2.(достаточные условия).

Пусть f:
$$X \to Y; X \subset E^n, Y \subset E^1$$
 и $\exists \mathcal{E}$, для которой $\|x - \overline{x}\| \leq \mathcal{E}, U_{\mathcal{E}}(\overline{x}),$ $\forall x, \overline{x} \in X, y \in Y, f(x) \in C^2(x)$, тогда для того, чтобы f(x) , была выпуклой в U(x) достаточно, чтобы $\det H(\overline{x}) > 0$.

2.<u>Необходимые и достаточные условия</u> существования экстремума функции.

2.1.2. Необходимые и достаточные условия существования экстремума функции без ограничений.

Теорема3. Пусть f: $X \to Y; X \subset E^n, Y \subset E^1; y = f(x); \forall x \in X, y \in Y, f(x) \in C^2(X).$

Тогда, для того чтобы $x^e = Argextr_{x \in X} f_1(x)$ необходимо и достаточно, чтобы

были выполнены условия: $\begin{cases} \nabla f(x^e) = 0 \\ \det H(x^e) \neq 0 \end{cases}$

При этом: $\begin{cases} \nabla f(x^e) = 0 \\ \det H(x^e) > 0 \end{cases}$ приводит к $x^e = Arg \min_{x \in X} f(x)$

$$\begin{cases} \nabla f(x^e) = 0 \\ \det H(x^e) \le 0 \end{cases}$$
 приводит к $x^e = Arg \max_{x \in X} f(x)$

2.Необходимые и достаточные условия существования экстремума функции.

2.2. Условия существования экстремума с учетом ограничений.

2.2.1.Постановка задачи:

Пусть f:
$$X \to Y; X \subset E^n, Y \subset E^1$$
 y=f(x) — выпуклая функция; $x \in X, y \in Y; f(x) \in C^1(X)$ и пусть g: $X \to Z; X \subset E^n, Z \subset E^m$ $f(x) \in C^1(X)$ — вогнутые или выпуклые функции, $g = \begin{bmatrix} g_1(x), g_2(x), ..., g_m(x) \end{bmatrix}^T$ а также $\forall g_j(x) = 0$ — ограничения типа равенства.

$$\begin{cases} x^e = Arg \min f(x) \\ x_i \ge 0, i = 1..n \\ g_j(x) = 0, j = 1..m \end{cases}$$

2.Необходимые и достаточные условия существования экстремума функции.

2.2.2.Метод множителей Лагранжа. (1788г. "Аналитическая механика")

Функция вида: $L(x,\lambda) = f(x) + \sum_{j=1}^{m} \lambda_{j} g_{j}(x)$.

Если взять вариацию от функции $L(x,\lambda)$ в U(x):

$$\delta L(x,\lambda) = \sum_{i=1}^{n} \frac{\partial f(x)}{\partial x_i} \delta x_i + \sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_j \frac{\partial g_j}{\partial x_i} \delta x_i = 0$$
 при $x = x^e$

$$\delta L(x,\lambda) = \sum_{i=1}^{n} \left[\frac{\partial f}{\partial x_i} + \sum_{j=1}^{m} \lambda_j \frac{\partial g_j}{\partial x_i} \right]_{x=x^e} \delta x_i = 0$$

Таким образом получаем систему уравнений :
$$\left[\frac{\partial f}{\partial x_i} + \sum_{j=1}^m \lambda_j \frac{\partial g_j}{\partial x_i} = 0\right]_{x=x^e}$$

Подбором определенных значений $\lambda_{\rm i}$ можно добиться того, чтобы эти уравнения удовлетворялись при $\forall i = \overline{1..n}$. Именно в точке χ^e достигается стационарность функции L(x, λ), т.е. экстремум функции f(x) при заданных ограничениях $g_i(x)=0$.

2.Необходимые и достаточные условия существования экстремума функции.

2.2.2.Метод множителей Лагранжа.

Задачу можно переформулировать следующим образом.

Требуется найти:
$$\begin{cases} x^e = Arg \min_{x \in X} L(x, \lambda) \\ \lambda^e = Arg \max_{\lambda \in \Lambda} L(x, \lambda) \end{cases}$$

Тогда решение задачи состоит в совместном решении уравнений:

$$\begin{cases} \frac{\partial L(x,\lambda)}{\partial x_i} = 0, i = 1..n; \\ \frac{\partial L(x,\lambda)}{\partial \lambda_j} = 0, j = 1..m. \end{cases}$$

$$\begin{cases} \frac{\partial L(x,\lambda)}{\partial x_i} = 0, i = 1..n; \\ \frac{\partial L(x,\lambda)}{\partial \lambda_j} = 0, j = 1..m. \end{cases}$$
 Составляются и решаются 2 системы уравнений:
$$\begin{cases} \frac{\partial f}{\partial x_i} + \sum_{j=1}^m \lambda_j \frac{\partial g}{\partial x_i} = 0, -n_y p a в н e н u \ddot{u} \\ g_j(x) = 0, -m_y p a в н e н u \ddot{u} \end{cases}$$

2.Необходимые и достаточные условия существования экстремума функции.

2.2.4.Область применения классического метода множителей Лагранжа.

Задача поиска экстремума методами классического математического анализа связана с удовлетворением следующих условий, накладываемых на функции:

- 1.Целевая функция f(x) должна быть выпуклой (в случае поиска минимума).
- 2. Функции ограничений gj(x) должны быть вогнутыми или выпуклыми функциями.
- 3.Ограничения gj(x) = 0 только типа равенств.

Последнее условие связано с тем, что если gj(x) < 0, то классический метод множителей Лагранжа не дает единственного решения $x^e = Arg \min f(x)$ и, следовательно, не работает.