TD de AC360 : traitement du signal déterministe

Exercice 7 : Calcul de transformées en z

Calculez les transformées en z des suites suivantes en précisant leur domaine d'existence.

1.
$$\{x(n)\} = \delta(n-k)$$

2.
$$\{x(n)\} = \begin{cases} 1, \forall n \ge 0 \\ 0, \text{ ailleum} \end{cases}$$

2. {
$$x(n)$$
 } = $\begin{vmatrix} 1, \forall n \ge 0 \\ 0, \text{ ailleurs} \end{vmatrix}$ **3.** { $x(n)$ } = $\begin{vmatrix} \alpha^n, \forall n \ge 0 \\ 0, \text{ ailleurs} \end{vmatrix}$

4.
$$\{x(n)\} = \begin{cases} n, \forall n \ge 0 \\ 0, \text{ ailleurs} \end{cases}$$

Exercice 8 : Système discret

Considérons le système défini par l'équation aux différences :

$$y(n) = x(n) + by(n - 1)$$
 avec la condition initiale $y(-1) = a$.

1. Dans le cas où a = 0, déterminez la réponse de ce système à la suite $\{x(n)\} = \{x_1(n)\}$ définie par :

$$x_1(n) = 1 \text{ pour } n = 0$$

0 pour $n \neq 0$

Comment est appelée cette réponse ? Est-elle finie ou infinie ? Donnez la condition de stabilité et en déduire les valeurs que peut prendre b.

2. Toujours dans le cas où a = 0, déterminez la réponse à la suite $\{x(n)\} = \{x_2(n)\}$ définie par :

$$x_2(n) = 1 \text{ pour } n \ge 0$$

0 pour n < 0

Tracez cette réponse et déterminez la valeur de y(n) quand n tend vers l'infini, dans le cas où la condition de stabilité est vérifiée.

3. Déterminez la fonction de transfert H(z) du système ; en déduire ses pôles et ses zéros, et tracez le module |H(f)| avec b = -0,8.

Exercice 9 : Filtres RIF élémentaires

1. Quelles sont les réponses fréquentielles d'amplitude et de phase ainsi que la réponse impulsionnelle du système régi par l'équation : y(n) = x(n) + x(n-L) avec $L \in \mathbb{R}^+$

Tracez H(f) et h(t) pour L = 1 en temps et en fréquence normalisés.

- **2.** Mêmes questions pour le système suivant : y(n) = x(n) + 2. x(n-1) + x(n-2)
- 3. Quels sont les effets des filtres étudiés ? Les comparer et conclure.

Exercice 10 : Synthèse de filtre RIF par troncature de la réponse impulsionnelle

Le filtre à synthétiser est un filtre passe bas de fréquence de coupure normalisée égale à 0.25.

- 1. Calculer la réponse impulsionnelle de ce filtre en considérant que l'on souhaite obtenir un filtre à phase linéaire et que l'on souhaite considérer N échantillons. Faire l'application numérique pour N = 15 et représenter la réponse impulsionnelle.
- 2. Calculer le gain complexe du filtre synthétisé en faisant apparaître une somme de termes en cosinus. Le représenter et comparer au filtre désiré. Comment améliorer le filtre réalisé ?

Exercice 11 : Synthèse de filtre RII par approximation de Butterworth

On souhaite réaliser un filtre numérique passe-bas dont le gabarit $|H(\omega)|$ possède les caractéristiques suivantes :

- une atténuation maximale de 1 dB dans la bande passante : $0 \le \omega \le 0.18\pi$.
- une atténuation minimale de 30 dB dans la bande atténuée : $0.75\pi \le \omega \le \pi$.

Pour cela, on choisit de rechercher le filtre analogique de Butterworth d'ordre minimal qui par transformation bilinéaire sera associé à un filtre numérique possédant ces caractéristiques.

On rappelle qu'un filtre de Butterworth $H_a(\omega_a)$, d'ordre N et de fréquence de coupure ω_{ac} , est défini par la relation :

$$|H_a(j\omega_a)|^2 = \frac{1}{1 + \left(\frac{\omega_a}{\omega_{ac}}\right)^{2N}}$$

- **1.** Proposer pour le filtre analogique un gabarit, qui selon cette procédure, correspond au gabarit du filtre numérique.
- **2.** Déterminer les paramètres (ordre et fréquence de coupure) du filtre de Butterworth d'ordre minimal qui satisfait le gabarit proposé.
- 3. Donner la fonction de transfert Ha(p) du filtre de Butterworth stable correspondant (Te = 2s).
- **4.** Calculer l'expression de H(z) de la fonction de transfert du filtre numérique déduit de $H_a(p)$ par la transformation bilinéaire.
- **5.** Tracer le gabarit souhaité et dessiner l'allure de $|H(\omega)|$ pour $0 \le \omega \le \pi$