

2 lotto 28

Dated March 10 1829

Dissertation
on
Respiration,
by
Ames Pennebaker
of
Pennsylvania.

22 Oct 2.

for a bath apd

Prog.

With

Major Po
To
William Gibson, M.D.
Professor of Surgery in the University
of Pennsylvania,
this
Dissertation
is
Dedicated,
With sentiments of the highest
Respect and Esteem,
By
Amos Remond.

Mar
1

been
through
with
return
of the
before he
is no
contact
undergo
definite
of carb
plastic
consistenc
The
which
upward
resist

Respiration.

The blood, after having been sent by the left ventricle of the heart through the arteries to every part of the body, for its nourishment and support, is again returned, by the veins, to the right auricle of the heart, and supplied with chyle; but before being distributed over the system, it is necessary that it should be brought in contact with the atmosphere, that it may undergo certain changes, by which it is deprived of its superabundant quantity of carbon; for this purpose there is a complicated apparatus called respiratory, consisting of the larynx, trachea and lungs.

The larynx is composed of five cartilages, which form an irregular tube that opens upwards, corresponding to the posterior nares; the inferior portion is connected to

the
of the
hill
flat
bed
tree
is a
by an
it at
ringed
Whan
it in
the pr
into t
vertecto
the lig
subecto
or wi

the trachea, which is placed in the fore part
of the neck, anterior to the oesophagus. It is a
hollow tube, cylindrical in front, but
flat on its back part, consisting of a num-
ber of cartilaginous rings that form about
two thirds of the circumference of a circle
anteriorly, the third behind, where there
is a deficiency in the rings, is filled up
by an elastic fibrous membrane which
is also placed in the intervals between the
rings and serves to connect them together.
When the trachea passes into the thorax,
it inclines a little backwards and enters
the posterior mediastinum, and divides
into two branches opposite the third dorsal
vertebra, one going to the right, the other to
the left lung. These branches are again
subdivided into smaller ones which, togeth-
er with the two main branches, are no-

...med
the s
watch
memb
After
ney b
d com
the ha
per to
ready
bed of
in every
appear
having
a cell
ular to
f the b
stomach
in the

-med bronchia. The internal surface of the bronchia, as well as the larynx and trachea are lined by a soft elastic mucous membrane.

After having mentioned in a cursory manner, the canal and its branches, by which communication is established between the lungs and external air, it may be proper first to describe the lungs. The bronchia already mentioned divide into a great number of branches which ramify in the lungs in every direction, and now affords the appearance of small membranous lobes, having attached to their extremitie's vessels & cells, which differ from the common cellular texture of the lungs and other parts of the body. It is in these cells that the atmosphere effects the necessary change in the blood which is conveyed to them

by the
take
to ride
rest of
left w
se of t
which
such
accuse
with o
within
large
they em
the be
been su
delicate
Bes
in other

by the pulmonary arteries. These arteries take their origin at the base of the right ventricle by two common trunks, that soon divide into two branches, one entering at the root of the right lung, the other at that of the left; when they again divide and subdivide, so as to become small capillary vessels, which ramify around the air cells in such a manner as to form a net work around them, and then they indentate with a set of capillary veins, these uniting with one another, and at length form two large trunks for each lung, from which they emerge to discharge their blood into the left auricle of the heart, after having been subjected to the atmosphere in the delicate vessels around the air cells.

Besides the pulmonary arteries there are others for the nourishment of the lungs

aristis
arlicy
f the
the bo
belng
into t
long e
The si
numb
their
this i
in the
which a
around
hangs.
with n
parts
These
or by

arising from the aorta, these are the bronchial arteries which penetrate the different tissues of these viscera, and finally terminate in the bronchial veins; those of the veins which belong to the right lung discharge their blood into the vena azygos, and those which belong to the left, into the subclavian vein. The lungs are also furnished with a great number of abundant vessels that arise from their internal substance, as well as from their external surface. They are directed in their course towards the bronchial glands, which are of a blackish colour and placed around the bronchi where they enter the lungs. Lastly, the lungs are supplied with nerves which are principally derived from the par vagans and intercostal. These different tissues are united together by an intermediate cellular tissue,

whi
-gotten
-s of
each
The
lymph
of two
emiss
lary
and the
seed be
having
infor
to live
putting
the suc
a name
The s
eedy he

which not only serves to connect them together, but is also useful in keeping the viscera of these organs from encroaching upon each other.

The lungs thus constituted of arterioles, lymphatic vessels, &c. &c. present the appearance of two large spongy bodies of an irregular conical shape, each one is divided into lobes by fissures, the left consisting of two, and the right of three; they are also inclosed by a serous membrane, each lung having one that may be compared to an impervious sack, one side of which serves to line the lung and is designated pleura pulmonalis, and that side or portion of the sack which lines the cavity of the chest is named pleura costalis.

The thorax, in which the lungs are placed, has in shape some resemblance to

a con
base
by the
by the
each
varlets
super
the st
uniqu
-cides
needs
at war
and co
and a
also a
gins
of the
time
these

a cone, the apex of which is above, and the base below; the posterior portion is formed by the dorsal vertebrae, and its lateral sides by twenty-four ribs, twelve being placed on each side, and articulated behind with the vertebrae before, the seven that form the superior section of the chest articulate with the sternum, a bone that is somewhat triangular in form; these bones form an investment for the protection of the heart and lungs, and have attached to them, at various places, muscles for increasing and diminishing the capacity of the chest and a variety of other purposes. There is also a circular muscle called diaaphragm, attached to the outline of the base of the chest, that forms a partition between the viscera of the thorax and those of the abdomen.

The
with
condic
and fo
necces
the ma
some
fluid
with
of large
intensit
in pro
proper
to dimm
and as
it will
also the
is uncl
air and

The atmosphere is so intimately connected with the function of respiration, that a consideration of some of its ~~most~~ chemical and physical properties are essentially necessary to a perfect understanding of the manner in which venous blood is transformed into arterial. It is that uniform fluid which every where surrounds the earth to the height of a considerable number of leagues; it is invisible, colourless, without odour, and only sensible to the touch when in motion; it has the property of compressibility; for a portion may be made to diminish greatly in volume by pressure, and as soon as the pressure is removed it will resume its former bulk, proving also that it possessed elasticity. There is another property in atmospheric air, namely its weight, which may be

use
count
then
will
the
of
side
it
the
specie
be ob
are no
greater
condit
it is
we be
these
ating
have
the

ascertained by exhausting a vessel, and counterpoising it on a scale beam, and then by allowing the air to rush in, it will be found that the end to which the vessel is attached will proportionately descend. It is owing to its gravity that it presses equally on every part of the earth's surface; its pressure is about fifteen pounds to every square inch. It must be obvious that the strata of air which are near the earth's surface sustain a greater weight than those that are a considerable distance from it, and as it is compressible, those portions which are below must be more dense than those which are more elevated. These variations in the density of the atmosphere have no influence on the functions of the human body when near the earth,

but a
- selec
- sign
and
in de
tiny
on th
of o
f m
heav
- sal
proje
labor
- ce
These
need
for if
wou
rem

PHILADELPHIA
PRINTED FOR THE AUTHOR

but when man ascends to the tops of high mountains, where the pressure of the air is not so great, and consequently it must be lighter and rarer, a remarkable effect is produced on some of the animal and mental functions; owing to the diminished pressure on the surface of the body and deficiency of oxygen, there is a sudden exhaustion of muscular power, palpitations of the heart, throbbing of the arteries, unusual weakness, accompanied with a propensity to sleep, respiration becoming laborious, lastly, hemorrhage takes place from various parts of the body.

These arrangements serve to show the necessity of the atmospheric pressure; for if its pressure were removed, it would be impossible for our bodies to remain in the state in which we see

than
this
very
ever
real
ly be
I
propo
posed
of oxy
adver
they
of oxy
ding
~~the~~
lity
that
not
agre

than the fluids would be determined to their external surfaces, and thereby damage the internal parts; hemorrhage would also take place from ~~the~~ internal parts that are but slightly protected by living like the mucous membranes.

I shall now proceed to the chemical properties of the atmosphere. It was supposed to be air almost, till the discovery of oxygen, when its real composition was ascertained by Scheele and Lavoisier, though they differed with regard to the quantity of oxygen it contained. Lavoisier, according to his analysis, fixed it at 27 meassures; Scheele supposed the quantity to be still greater. Subsequent to that time, it has been analyzed by different chemists with more precision, and, agreeably to the best authority, the proportion

of the
above
77.65
long
acio
rea
-end
that
be o
post
the p
a co
and
other
than
-set.
yet.
-else
way

of the different gases are represented to be about 24 of oxygen by measure, nitrogen 77.6; besides these gases, there enter into the composition of the atmosphere some carbonic acid and moisture; the quantity of carbonic acid is, by measure, 0.03, and that of aqueous vapour 0.02; these are the constituents that compose the atmosphere, and it must be evident from the analysis that has just been stated, that nitrogen forms the greater part of its bulk, which is a colourless gas destitute of taste or odour, and may be better distinguished from other gases by its negative properties than any peculiar character it possesses; it does not support life or combustion, yet when inhaled into the lungs, it produces no injurious effects on them. It was at one time suspected that its use

wa
do
imp
-gu
-im
in
ana
1844
than
with
is co
or to
supp
entl
mo
ever
dep
life
an

was merely to dilute the oxygen, but it
is more probable that it may serve some
important purpose of which we are unac-
quainted, for it has been proved by expe-
-riments, that respiration can be carried
on without its being mixed with oxygen
and that when an animal respirea pure
oxygen, there is no more life consumed
than if it were used in a state of mixture
with nitrogen. Oxygen, like nitrogen,
is colourless, transparent, without odour
or taste; but possesses the property of
supporting life and combustion, and
enters into all animal and vegetable
matter. It is this gas to which the air
owes its chemical properties, for when
deprived of it, it will cease to support
life or combustion; metals when heated
in it will no longer become oxidized,

of
rec
num
the
the
proj
its p
form
it a
custo
It is a
and
sin
shrou
time
deat
-
time

as when oxygen is present. When the necessity of air is experienced, a number of muscles are called into action, by which the capacity of the chest is increased; the air, as has already been mentioned, passes over every part of the body owing to its gravity; therefore, when a vacuum is formed in the lungs and their canals, it will consequently rush into them; this constitutes the process denominated inspiration. It is again expelled or exhaled by the action of another set of muscles, which by their contraction diminish the capacity of the chest, and thereby produce the process named expiration. The number of inspirations for a given time vary considerably in different individuals, and also in the same person, for a man that requires twenty times in a minute at one time, may at

un
so of
by a
slope
time
meet
arrive
air to
time.
diff. o
ing.
grad
incl
put
to be
that
longer
available

another respires more frequently or not so often; the number is greatly influenced by a variety of circumstances, such as sleep, violent exercise, and moral affections. There is another circumstance connected with inspiration that is not unworthy of notice, namely, the quantity of air that enters the lungs at each inspiration. Various estimates have been made by different physiologists, but without coming to a uniform conclusion: thus by Hartwig, it has been stated to be 12 cubic inches, by Cuvier 1800, and by Gregory 20, while Doctor Thompson thinks it to be 40 cubic inches; he also thinks that the same amount is expired, and that there is generally about 250 in the lungs. The air by traversing the nasal cavities, mouth, larynx, trachea and

broom
so as
it m
spac
by th
dig t
paper
mem
After
in whi
langu
-derga
tenui
chung
langze
tun e
alent
probab
ben in

bronchia has its temperature increased so as to be equal with that of the body, it must therefore become rarer and expanded, so as to increase in volume by the time that it enters the lungs; besides these changes it becomes mixed with vapour as it passes along the mucous membrane of the air passages.

After having mentioned the manner in which the air gains access to the lungs, and the slight changes it undergoes, it will be my next object to notice the chemical and physical changes it has undergone while in the lungs. In a few seconds after its introduction into those organs, a quantity, equivalent to that inspired, is expired, though probably not the same that has just been introduced in the preceding inspira-

the
been
-me
-for
built
-go
for in
so of
that
when
only
an
red
and
matt
lary
are

-vating, however, whether it be the same or not, it is very evident that it has undergone certain alterations, for instead of the same quantity of oxygen that had been introduced, we find it greatly diminished, while the nitrogen has suffered neither increase nor diminution in bulk. The carbonic acid has also undergone a change with regard to quantity, for it will be found to have increased so as to represent the quantity of oxygen that has disappeared, which was $\frac{1}{3}$ part when inhaled, but now there remains only $\frac{1}{4}$ or $\frac{1}{5}$ part, while the carbonic acid amounts to $\frac{2}{3}$ part. The air that is expired also is mixed with vapors, which must probably exhalo from the capillary vessels that ramify around the air cells. It has been supposed that

they
the
who
play
have
just
-seen
By
arter
ther
lun
ling
-free
puff
ring
by a
the a
ting
of the

the pulmonary exhalation is equal to the cutaneous, the extent of surface from which pulmonary exhalation takes place, and the fact that cutaneous exhalation is in an inverse ratio with the pulmonary, seem to warrant the conclusion.

The transformation of venous blood into arterial - the venous blood is conveyed from the right ventricle of the heart to the lungs by the pulmonary arteries, and has to pass through their minute ramifications around the air cells; it then passes into the radicles of the pulmonary veins; while thus traversing these capillary vessels it is brought in contact with the atmosphere in the air cells, and by passing with its carbon is converted into arterial blood, which will be found to be q. o.

second
volume
from
one to
more
greater
series
the air
in the
shall
take for
that the
the air
before
cupids
and in
desire
respirin
attitude

scarlet red colour, and to have a stronger
odour than the venous, differing likewise
from the venous in being possessed of a high-
er temperature, and the property of a
more rapid coagulation; it has also a
greater specific gravity, and contains less
serum. The changes that take place in
the air and blood, when brought together
in the lungs, having been described, I
shall next endeavour to show ^{how} some of them
take place. It has already been mentioned
that there is a portion of vapour mixed with
the air that is expired; the formation of this
vapour is owing to an exhalation from the
capillary branches of the pulmonary artery,
and will most satisfactorily account for the
diminution of serum in the blood during
respiration. The change of colour has been
attributed to iron in the blood, but it is

use
well
the
-junc
-co, n
phy
earl
lary
it the
carbo
that
throu
the co
and o
Beside
there
-sider
respon
of the
it was

more probable that this alteration, as well as its increase of colour, depends upon the disengagement of carbon from its union with the manna in which this takes place; various opinions are entertained by physiologists; some supposing that the carbon is transmitted through the capillary vessels into the air cells, and that it there combines with the oxygen, forming carbonic acid, while others again suppose that the oxygen is absorbed by the blood through the capillary vessels, and that the carbonic acid is formed in them and afterwards passes into the cells. Besides the chemical actions mentioned, there are vital ones which have a considerable influence on the blood during respiration; it is owing to the conjoint agency of these two actions that the blood changes its various character in the lungs. A P