Notas de Aula Cálculo II para Economia

Professora: Yunelsy N Alvarez

7. Derivação Implícita

Objetivos

- Compreender o conceito de funções definidas implicitamente.
- Aplicar a regra da cadeia para derivar equações onde y não está isolada.
- Encontrar variação de uma variável definida implícitamente em com respeito às demais.
- Determinar a inclinação da reta tangente a curvas implícitas.
- Resolver problemas aplicados envolvendo derivação implícita.

Como motivação, consideremos a seguinte curva no plano \mathbb{R}^2 , conhecida como a *Lemniscata de Bernoulli*¹. Tal curva é simétrica em relação aos eixos coordenados, com uma estrutura que se assemelha a um "8" deitado, forma característica das lemniscatas. Curiosamente, esse mesmo formato foi adotado como símbolo do infinito (∞) .

Figura 7.1: L

Ela é definida por uma *equação implícita* notável, cuja forma torna inviável isolar *y* em função de *x* de maneira direta:

$$(x^2 + y^2)^2 = x^2 - y^2. (7.1)$$

Isso está relacionado ao próprio formato da curva: ela não representa o gráfico de uma função y = h(x), pois, para certos valores de x, existem dois (ou mais) valores distintos de y que satisfazem a equação. O mesmo ocorre se

¹A *Lemniscata de Bernoulli* foi estudada inicialmente por Jakob Bernoulli, matemático suíço do século XVII, conhecido por suas contribuições ao cálculo e à teoria das curvas.

tentarmos isolar x em função de y; ou seja, a relação entre as variáveis não é unívoca em nenhuma das direções.

Pensemos agora no ponto (0.5, 0.34) da curva, e consideremos a parte da Lemniscata de Bernoulli localizada no primeiro quadrante.

Figura 7.2: L

Podemos observar que, nesse trecho, a curva se comporta como o gráfico de uma função y = h(x), mesmo que não conheçamos sua expressão explícita devido à complexidade algébrica da equação. Ainda assim, existe localmente uma função h que associa cada valor de x a um único valor de y em uma pequena vizinhança aberta do ponto (0.5, 0.34).

Surge então uma questão natural: mesmo sem conhecer a expressão de h(x), será que podemos determinar a taxa de variação de y em função de x nesse ponto?

Voltemos à equação (7.1). Levando todos os termos para um lado, podemos reescrever a equação como:

$$(x^2 + y^2)^2 - (x^2 - y^2) = 0,$$

ou seja, a curva está definida como a **curva de nível zero** da função $g: \mathbb{R}^2 \to \mathbb{R}$, dada por:

$$g(x,y) := (x^2 + y^2)^2 - (x^2 - y^2).$$

Mesmo sem conhecermos a expressão de y como função de x, podemos diferenciar essa equação implícita com respeito a x, utilizando a Regra da Cadeia. A função g depende de x diretamente e também indiretamente por meio de y = y(x), de modo que:

$$\frac{d}{dx} [g(x, y(x))] = \frac{\partial g}{\partial x}(x, y) + \frac{\partial g}{\partial y}(x, y) \cdot y'(x) = 0.$$
 (7.2)

Essa é uma aplicação direta da derivada composta, assumindo que g(x, y(x)) = 0 ao longo da curva.

Isolando y', obtemos:

$$y'(x) = -\frac{\frac{\partial g}{\partial x}(x, y)}{\frac{\partial g}{\partial y}(x, y)}, \quad \frac{\partial g}{\partial y}(x, y) \neq 0.$$
 (7.3)

Vamos então calcular as derivadas parciais de g:

$$\frac{\partial g}{\partial x}(x,y) = \frac{d}{dx} \left[(x^2 + y^2)^2 \right] - \frac{d}{dx} (x^2 - y^2)
= 2(x^2 + y^2) \cdot 2x - 2x = 4x(x^2 + y^2) - 2x,$$
(7.4)

$$\frac{\partial g}{\partial y}(x,y) = \frac{d}{dy} \left[(x^2 + y^2)^2 \right] - \frac{d}{dy} (x^2 - y^2)$$

$$= 2(x^2 + y^2) \cdot 2y + 2y = 4y(x^2 + y^2) + 2y.$$
(7.5)

Avaliando no ponto (x, y) = (0.5, 0.34), temos:

$$\frac{\partial g}{\partial x}(0.5, 0.34) \approx 4 \cdot 0.5 \cdot 0.3656 - 2 \cdot 0.5 = 0.7312 - 1 = -0.2688,$$

$$\frac{\partial g}{\partial y}(0,5,\,0,34)\approx 4\cdot 0,34\cdot 0,3656+2\cdot 0,34\approx 0,4972+0,68=1,1772.$$

Observe que, de fato, $\frac{\partial g}{\partial y}(0.5, 0.34) \neq 0$. Substituindo essas expressões na equação da derivada total, temos:

$$y'(x) = -\frac{\frac{\partial g}{\partial x}}{\frac{\partial g}{\partial y}} = -\frac{-0.2688}{1.1772} \approx 0.228.$$

Portanto, a taxa de variação de y em função de x, no ponto (0,5,0,34), é aproximadamente $y'(0,5) \approx 0,228$, mesmo sem conhecermos explicitamente a função y = h(x).

Observe que as equações (7.2) e (7.3) foram obtidas de forma geral, sem que fosse necessário conhecer a expressão explícita da função y = h(x), nem mesmo a forma exata da função g. Logo, surge uma questão natural: será que, de maneira geral, é possível determinar a variação de uma variável em função de outra, mesmo quando essa dependência é definida apenas de forma implícita por uma equação?

A resposta é sim, e essa ideia se estende para dimensões maiores. Essa generalização é formalizada por um dos resultados mais importantes do cálculo multivariável: o **Teorema da Função Implícita**, apresentado a seguir.

Teorema 7.1 (Teorema da Função Implícita).

Seja $g: \mathbb{R}^n \to \mathbb{R}$ uma função contínua definida em uma vizinhança $D \subset \mathbb{R}^n$ de um ponto $\mathbf{x}_0 = (x_1^0, x_2^0, \dots, x_n^0) \in \mathbb{R}^n$. Suponha que:

- $g(\mathbf{x}_0) = c$;
- as derivadas parciais de g existem e são contínuas em D;

•
$$\frac{\partial g}{\partial x_n}(\mathbf{x}_0) \neq 0$$
.

Então, existe uma vizinhança $\hat{D} \subset \mathbb{R}^{n-1}$ de $\hat{\mathbf{x}}_0 = (x_1^0, x_2^0, \dots, x_{n-1}^0)$ e uma única função contínua $h: \hat{D} \to \mathbb{R}$, de classe C^1 , tal que:

- $h(\hat{\mathbf{x}}_0) = x_n^0$;
- $g(\hat{\mathbf{x}}, h(\hat{\mathbf{x}})) = c$ para todo $\hat{\mathbf{x}} \in \hat{D}$.

Além disso, para todo i = 1, ..., n - 1, a derivada parcial de h é dada por:

$$\frac{\partial h}{\partial x_i}(\hat{\mathbf{x}}) = -\frac{\frac{\partial g}{\partial x_i}(\hat{\mathbf{x}}, h(\hat{\mathbf{x}}))}{\frac{\partial g}{\partial x_n}(\hat{\mathbf{x}}, h(\hat{\mathbf{x}}))}.$$
 (7.6)

Observação 7.2.

De forma mais usual, (7.6) escreve-se como:

$$\frac{\partial x_n}{\partial x_i}(\hat{\mathbf{x}}) = -\frac{\frac{\partial g}{\partial x_i}(\mathbf{x})}{\frac{\partial g}{\partial x_n}(\mathbf{x})}.$$
(7.7)

A grosso modo, o Teorema da Função Implícita nos diz que, sob certas condições, é possível descrever uma das variáveis envolvidas em uma equação implícita do tipo $g(x_1, \ldots, x_n) = 0$ como função das demais. Mais ainda, mesmo sem conhecermos explicitamente essa relação, podemos calcular a taxa de variação dessa variável em relação a todas as outras variáveis presentes na equação.

Exemplo 7.1.

Consideremos a esfera definida pela equação $x^2 + y^2 + z^2 = 1$. Queremos aplicar o Teorema da Função Implícita para expressar z como função de x e y, ao redor do ponto (0,0,1) (polo norte da esfera).

Seja $g(x, y, z) = x^2 + y^2 + z^2$. Note que a esfera é a superfície de nível 1 dessa função e que g(0,0,1) = 1. Além disso,

$$\frac{\partial g}{\partial z}(0,0,1) = 2 \neq 0.$$

Assim, pelo Teorema da Função Implícita, podemos afirmar que, em torno do ponto $(0,0) \in \mathbb{R}^2$, a variável z depende explicitamente de x e y. Ou seja, existe uma função h(x,y) definida em uma vizinhança de $(0,0) \in \mathbb{R}^2$ tal que z = h(x,y). O teorema ainda garante que essa função existe e que é possível calcular sua taxa de variação em relação a x e a y, por meio da fórmula (7.7).

Como

$$\frac{\partial g}{\partial x} = 2x$$
, $\frac{\partial g}{\partial y} = 2y$, $\frac{\partial g}{\partial z} = 2z$,

temos

$$\frac{\partial z}{\partial x}(0,0) = -\frac{\frac{\partial g}{\partial x}(0,0,1)}{\frac{\partial g}{\partial z}(0,0,1)} = -\frac{2 \cdot 0}{2 \cdot 1} = 0$$

e

$$\frac{\partial z}{\partial y}(x,y) = -\frac{\frac{\partial g}{\partial y}(0,0,1)}{\frac{\partial g}{\partial z}(0,0,1)} = -\frac{2 \cdot 0}{2 \cdot 1} = 0.$$

É claro que, no exemplo anterior, já sabemos que a função que descreve z em função de x e y explicitamente é dada por:

$$z = h(x, y) = \sqrt{1 - x^2 - y^2},$$

e que $\hat{D} = \overline{B(O,1)}$, isto é, o disco aberto de raio 1 centrado na origem. No Exemplo 6.2 da Nota 6, calculamos explicitamente as derivadas parciais dessa função, e observamos que isso envolve certa dificuldade algébrica, devido à presença da raiz quadrada. Por outro lado, ao usarmos o Teorema da Função Implícita, mesmo conhecendo a função h, o cálculo das derivadas fica signifi-

cativamente mais simples, pois envolve apenas as derivadas da função g, que é uma expressão polinomial.

Isso mostra que o Teorema da Função Implícita pode ser útil mesmo quando conhecemos a função h explicitamente, especialmente quando sua expressão é mais complicada do que a da função g.

Observação 7.3.

Embora o enunciado do Teorema da Função Implícita geralmente envolva a variável x_n como dependente, isso não significa que só ela possa ser determinada em função das demais. Na verdade, qualquer uma das variáveis pode ser expressa como função das outras, desde que a derivada parcial correspondente de g não se anule no ponto considerado. Ou seja, o papel da "variável dependente" não precisa ser, necessariamente, o da última coordenada.

Exercício 7.1.

Considere a Lemnicata de Bernoulli dada pela equação:

$$(x^2 + y^2)^2 = x^2 - y^2$$
.

Use o Teorema da Função Implícita para calcula a taxa de variação de x em relação a y no ponto $\left(\frac{1}{2}, \frac{\sqrt{2}}{4}\right)$.

Exercício 7.2.

Considere a esfera dada pela equação:

$$x^2 + y^2 + z^2 = 1$$
.

Use o Teorema da Função Implícita para calcular a taxa de variação de x em função de y e de z no ponto $\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$.

Até agora, toda a nossa análise foi baseada no comportamento da equação implícita nos pontos em que a derivada parcial da função g em relação à variável dependente é diferente de zero.

Isso decorre naturalmente da aplicação da regra da cadeia: ao derivarmos a equação implícita, a possibilidade de isolar a derivada da variável dependente exige que o denominador (isto é, a derivada parcial de g em relação a essa variável) não seja nulo.

Mas o que acontece nos pontos em que a derivada parcial $\frac{\partial g}{\partial v}$ se anula?

Para ilustrar, retomemos o caso da Lemniscata de Bernoulli (ver Equação (7.5)), temos:

$$\frac{\partial g}{\partial y}(x,y) = 0 \iff y = 0.$$

Substituindo y = 0 na equação da lemniscata,

$$(x^2 + y^2)^2 = x^2 - y^2,$$

obtemos:

$$x^4 = x^2 \iff x = 0, \pm 1.$$

Portanto, existem exatamente três pontos da curva em que $\frac{\partial g}{\partial y}$ se anula: (-1,0), (0,0) e (1,0).

Nos pontos (-1,0) e (1,0), observamos que as retas tangentes à curva são verticais. Isso pode ser explicado por meio da derivada implícita: se tentarmos descrever localmente a curva na forma y = y(x), então y'(x) representa o coeficiente angular da reta tangente à curva. Como $\frac{dy}{dx}$ envolve um denominador que se anula nesses pontos (isto é, $\partial g/\partial y = 0$), o valor da derivada diverge, indicando que a reta tangente é vertical.

O terceiro ponto é a origem, (0,0). Nesse ponto, a curva possui duas retas tangentes bem definidas (com equações y = x e y = -x) apesar de a derivada parcial de g em relação a y também se anular. Isso mostra que a anulação da derivada parcial não implica ausência de tangente, e sim que não podemos descrever a curva localmente como o gráfico de uma função y = h(x). A origem é, na ver-

dade, um ponto singular da curva, onde ela *se cruza consigo mesma*, formando uma auto-interseção. Nesses casos, não há uma única direção de tangência e, portanto, o Teorema da Função Implícita não se aplica.

Figura 7.3

Por outro lado, consideremos a seguinte equação implícita:

$$x^2 + \left(\frac{5y}{4} - \sqrt{|x|}\right)^2 = 1.$$

Essa equação define uma curva no plano com formato semelhante a um coração.

Pelo gráfico, observa-se que a curva apresenta dois pontos "pontiagudos" sobre o eixo y, que são (0,4/5) e (0,-4/5). Nesses pontos específicos, não existe uma reta tangente bem definida.

Entretanto, é possível perceber visualmente que, em uma pequena vizinhança de cada um desses pontos, a curva ainda pode ser descrita como o gráfico de uma função y = h(x). No entanto, como sabemos do Cálculo de uma variável, essa função não é derivável nesses pontos, pois o gráfico apresenta um "canto".

Nesse caso, a equação da derivada implícita (obtida por meio do Teorema da Função Implícita) não é válida, pois uma de suas hipóteses não está satisfeita: a derivada parcial da função

$$g(x, y) = x^2 + \left(\frac{5y}{4} - \sqrt{|x|}\right)^2$$

não existe nos pontos em que x = 0, devido à presença do termo $\sqrt{|x|}$.

Isso mostra que a existência e a continuidade das derivadas parciais são condições suficientes para garantir a existência da função h, conforme estabelece o Teorema da Função Implícita, mas não são condições necessárias. Ou seja, há situações em que as derivadas da função g não existem em determinado ponto, mas ainda assim é possível descrever a equação g(x,y) = 0 localmente

12

como o gráfico de uma função, mesmo que essa função não seja diferenciável naquele ponto.

No caso do exemplo, temos que y se expressa explicitamente em relação a x, seguindo a seguinte expressão explícita, ao redor de $\left(0, \frac{4}{5}\right)$:

$$y(x) = \frac{4}{5} \left(\sqrt{1 - x^2} + \sqrt{|x|} \right), \text{ para } -1 \le x \le 1.$$

Seu gráfico é a parte superior da curva ("cortando" a mesma a partir de onde a reta tangente é vertical).

Analogamente, no caso do ponto $\left(0, -\frac{4}{5}\right)$, a função que descreve localmente a parte inferior da curva é

$$y(x) = -\frac{4}{5} \left(\sqrt{1 - x^2} - \sqrt{|x|} \right), \text{ para } -1 \le x \le 1,$$

ainda que, como antes, ela não seja derivável no ponto x = 0. O gráfico é a parte inferior do "coração",

Exercícios Suplementares

Exercício 7.3.

Encontre $\frac{dy}{dx}$ usando derivação implícita, assumindo que y = f(x) está definida implicitamente por cada equação abaixo.

- (a) $x^2 + y^2 = 25$

Exercício 7.4.

Encontre as derivadas parciais $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$, assumindo que z está definida implicitamente em função de x e y por cada equação abaixo.

- (a) $x^2 + y^2 + z^2 = 1$

- (b) $x^2z + y^2 = z^3$ (c) $\sin(xz) + \cos(yz) = 0$ (d) $e^{xz} + y^2z = x + y$ (e) $\ln(z) + x^2 + y^2 = xyz$

Exercício 7.5.

Determine o coeficiente angular da reta tangente ao gráfico da função y = f(x) definida implicitamente na equação $2x^2 + y^3 + y - 6 = 3xy$ no ponto (1,2).

Exercício 7.6.

Encontre a equação da reta tangente à curva de equação $x^2 + y^2 + \ln(xy) = 10$ no ponto (1,3).