偏微分方程式 — 層の超局所台: 微分加群への応用*

柏原正樹 ピエール・シャピラ

1982年9月27日提出

概要

 C^1 級多様体において,層の超局所台を,余接束内の包合的な錐的閉集合として導入し,その関手的な性質を調べる.その後,確定特異点を持つホロノミー加群から誘導される方程式系の特性多様体の増大度を導出する.

1 法錐

M を C^1 級多様体とし, T^*M をその余法束, π を T^*M から M への射影とする. \dot{T}^*M を T^*M における零切断 T^*_MM の補集合とする.a を T^*M の対蹠写像 (application anti-podale) とし, S^a を T^*M の部分集合 S の像とする.M の S つの集合 S と S に対し,点 S に沿った S の法錐 (cône normal) S に沿った S の法錐 (cône normal) S とは,接空間 S の閉錐で,局所座標系を用いて次のように定義されるものである.

$$\begin{cases} v \in C_x(S,Z) \Leftrightarrow S \times Z \times \mathbf{R}^+$$
内の列 $(s_n, z_n, c_n)_n$ で
$$s_n \underset{n}{\to} x, z_n \underset{n}{\to} x, c_n(x_n - z_n) \underset{n}{\to} v \text{ をみたすものが存在する.} \end{cases}$$

 $C(S,Z) = \bigcup_x C_x(S,Z)$ とおく. Z が M の部分多様体のとき, $C_x(S,Z)$ は T_xZ で安定であり, $C_Z(S)$ で C(S,Z) の法束 T_ZM での像を表す.M の閉部分集合 S に対し,錐 $TM\setminus C(M\setminus S,S)$ を強い意味での法錐(cône normal strict)といい N(S) とかく.また $N(S)\cap T_xM$ の双対閉錐体を N_x^*S とかき,x における S の余法錐(cône conrmal)という(cf.[4]).

2 超局所台

 $D_+(M)$ ($D_b(M)$) を M 上の A 加群の層の下に有界な(有界な)複体のなす圏の導来圏とする.*1 ここで A は環である.

命題 1. — $F^{\bullet} \in Ob(D_{+}(M))$ とし ξ を $T^{*}M$ の点とする. 次の条件は同値である.

^{*} M. Kashiwara, P. Schapira, Micro-support des faisceaux: application aux modules différentiels, C. R. Acad. Sc. Paris, 295 (8 novembre 1982) の和訳 (2023/10/28). (2024 年 8 月 9 日更新)

 $^{^{*1}}$ [訳注] D_+ と D_b は現在,上つきの D^+ と D^b でそれぞれ表すのが通例である.

- (i) ξ の錐状近傍 U と $\pi(\xi)$ の近傍 V で,V の任意の閉部分集合 Z と任意の点 $x \in \partial Z \cap V$ で $N_x^*(Z) \subset U^a \cup \{0\}$ を満たすものに対し $(\mathrm{R}\Gamma_Z(F^{ullet}))_x = 0$ となるものが存在する;
- (ii) (M を C^r 級とする. ここで $1 \le r \le \infty$ または $r = \omega$ とする.) 境界が C^r 級超曲面であるような任意の Z に対し、条件 (i) が成り立つ;
- (iii) (M が \mathbf{R}^n の開集合であるとし, $\xi = (x_0, \xi_0)$ とする)実数 $\delta > 0, \varepsilon > 0$ で, $|a x_0| < \varepsilon$ を みたす全ての点 $a \in M$ に対し次が成り立つものが存在する.

$$R\Gamma(\{x; -\delta \leq \langle x - x_0, \xi_0 \rangle, \langle x - a, \xi_0 \rangle \leq -\varepsilon |x - a|\}, F^{\bullet})$$

$$\simeq R\Gamma(\{x; -\delta = \langle x - x_0, \xi_0 \rangle, \langle x - a, \xi_0 \rangle \leq -\varepsilon |x - a|\}, F^{\bullet}).$$

この命題は [4, §4] で暗に示されている.

定義 1. — $F^{\bullet} \in \mathrm{Ob}(\mathrm{D}_{+}(M))$ とする. F^{\bullet} の超局所台 (micro-support) $\mathrm{SS}(F^{\bullet})$ とは,次で定義される $T^{*}M$ の閉錐である.:

- (a) $SS(F^{\bullet}) \cap T_M^* M = \overline{\bigcup_i supp(\mathcal{H}^j(F^{\bullet}))};$
- (b) $\xi \in \dot{T}^*M, \xi \in SS(F^{\bullet}) \Leftrightarrow 命題 1$ の同値な条件をみたす.

例 1. —
$$M = \mathbf{R}^n, Z = \{x \in M, x_1 \ge 0\}, F = \underline{\mathbf{C}}_Z.^{*2}$$

このとき $SS(F) = \{(x, \xi); x_1 \ge 0, \xi = 0\} \cup \{(x, \xi); \xi_1 \ge 0, x_1 = \xi_2 = \dots = \xi_n = 0\}.$

例 2. —
$$M = \mathbf{R}^n$$
, $\mathscr{U} = \{x \in M, x_1 > 0\}$, $F = \underline{\mathbf{C}}_{\mathscr{U}}$.
このとき $SS(F) = \{(x, \xi); x_1 \ge 0, \xi = 0\} \cup \{(x, \xi); \xi_1 \le 0, x_1 = \xi_2 = \dots = \xi_n = 0\}$.

例 3. —
$$M = \mathbf{R}^2, Z = \{x \in M, x_1^3 \ge x_2^2\}, F = \underline{\mathbf{C}}_Z.$$

このとき $\pi^{-1}(0) \cup \mathrm{SS}(F) = \{\xi; \xi_1 \ge 0\}.$

3 関手的な性質

命題 2. ω を M 上の双対化複体とする.

このとき、任意の $F^{\bullet} \in \mathrm{Ob}(\mathrm{D}_b(M))$ に対し、 $\mathrm{SS}(\mathrm{R}\mathscr{H}om(F^{\bullet},\omega)) \subset \mathrm{SS}(F^{\bullet})^a$ が成り立つ.

Mと N を C^1 級多様体, f を M から N への C^1 級写像とし, $\bar{\omega}\colon T^*N\underset{N}{\times}M\to T^*N$ と $\rho\colon T^*N\underset{N}{\times}M\to T^*M$ を f から定まる写像とする.

命題 3. — $F^{ullet}\in \mathrm{Ob}(\mathrm{D}_+(M))$ を f の $\overline{\bigcup_j \mathrm{supp}(\mathscr{H}^j(F^{ullet}))}$ への制限が固有となるものとする. このとき $\mathrm{SS}(\mathrm{R}f_*(F^{ullet}))\subset
ho(T^*N\underset{N}{ imes}M)$ が成り立つ.

命題 4. - f が滑らかであるとする.

(i) $G^{\bullet} \in \mathrm{Ob}(\mathrm{D}_{+}(N))$ とする. このとき, $\mathrm{SS}(f^{-1}(G^{\bullet})) = \rho \bar{\omega}^{-1}(\mathrm{SS}(G^{\bullet}))$ である.

 $^{^{*2}}$ [訳注] \mathbf{C}_Z は Z に台を持つ定数層である.現在は \mathbf{C}_Z で表すのが通例である.

(ii) $F^{\bullet} \in \mathrm{Ob}(\mathrm{D}_b(M))$ とする.このとき,任意の $\mathscr{H}^j(F^{\bullet})$ が f のファイバー上で局所定数層となるのは, $\mathrm{SS}((F^{\bullet})) \subset \rho(T^*N \times M)$ が成り立つとなるときである.

命題 5. — M と N を C^1 級多様体とし、 p_1 と p_2 を $M \times N$ から M と N への射影とする.

(i) $F^{\bullet} \in \mathrm{Ob}(\mathrm{D}_b(M))$ と $G^{\bullet} \in \mathrm{Ob}(\mathrm{D}_+(N))$ に対し,

$$SS(R\mathcal{H}om_A(p_1^{-1}F^{\bullet}, p_2^{-1}G^{\bullet})) \subset SS(F^{\bullet})^a \times SS(G^{\bullet})$$

が成り立つ.

(ii) A のコホモロジー次元が有限であるとする.このとき, $F^{\bullet}\in \mathrm{Ob}(\mathrm{D}_b(M))$ と $G^{\bullet}\in \mathrm{Ob}(\mathrm{D}_+(N))$ に対し,

$$SS(p_1^{-1}F^{\bullet} \overset{L}{\underset{A}{\otimes}} p_2^{-1}G^{\bullet}) \subset SS(F^{\bullet}) \times SS(G^{\bullet})$$

が成り立つ.

4 超局所化

以降,N は M の部分多様体であるとし,M と N は C^2 級であるとする。 $M\setminus N\cup T_NM$ $(M\setminus N\cup T_N^*M)$ にはブローアップ (éclaté) の (余ブローアップ (co-éclaté) の) 自然な位相を入れる (cf.[6])。j を M から $M\setminus N\cup T_NM$ への包含とし π を $M\setminus N\cup T_N^*M$ から M への射影とする。 $F^\bullet\in \mathrm{Ob}(\mathrm{D}_+(M))$ に対し, $\lambda(F^\bullet)$ で ([7] と同様に) $\mathrm{D}_+(T_NM)$ の対象 $\mathrm{R}f_*(F^\bullet)|_{T_NM}$ を表し, $\mu_N(F^\bullet)$ で F^\bullet に対する N での佐藤の超局所化,すなわち, $\mathrm{D}_+(T_N^*M)$ の対象 $\mathrm{R}\Gamma_{T_N^*M}(\pi^{-1}(F^\bullet))^a$ を表す。 Λ で M の N に対する余法東 T_N^*M を表す。N を表す。N を表す。N で N を表す。N を表す。N を N を表す。N を N の N に対する余法東 N を表す。N を N から埋め込み N を N を N を N を N から埋め込み N の部分を様体と同一視することができる。 したがって,N を N に取り替えることで)N が N の部分を様体と同一視されることがわかる。

定理 1. — $F^{\bullet} \in \mathrm{Ob}(\mathrm{D}_{+}(M))$ とする,次の包含関係が成り立つ.

- (i) $SS(\mu_N(F^*)) \subset C_{\Lambda}(SS(F^{\bullet})),$
- (ii) $SS(\lambda_N(F^*)) \subset C_{\Lambda}(SS(F^{\bullet})),$
- (iii) $SS(R\Gamma_N(F^*)) \subset T^*N \cap C_\Lambda(SS(F^{\bullet})),$
- (iv) $SS(F^*|_N) \subset T^*N \cap C_{\Lambda}(SS(F^{\bullet})).$

証明は [4] の主張の繰り返しである([1] も参照). (iii) と (iv) は一般に真の包含である.

系 6. — $SS(F^*) \cap T_N^*M \subset T_M^*M$ とする. このとき,

$$\mathrm{R}\Gamma_N(F^{\bullet}) \simeq F^{\bullet} \otimes \mathrm{R}\Gamma_N(\mathbf{Z}_M)$$
 かつ $\mathrm{SS}(F^*|_N) \subset \bar{\omega}\rho^{-1}(\mathrm{SS}(F^*))$

が成り立つ.

([6, 1章] の 命題 1.2.5 を用いる.)

系 7. — (i)
$$F^{\bullet} \in \mathrm{Ob}(\mathrm{D}_b(M)), G^{\bullet} \in \mathrm{Ob}(\mathrm{D}_+(M))$$
 とする. このとき

$$SS(R\mathcal{H}om_A(F^{\bullet}, G^{\bullet})) \subset T^*M \cap C(SS(G^{\bullet}), SS(F^{\bullet}))$$

が成り立つ.

(ii) A のコホモロジー次元が有限であるとする. このとき $F^{\bullet}, G^{\bullet} \in \mathrm{Ob}(\mathrm{D}_{+}(M))$ に対し,

$$SS(F^{\bullet} \overset{L}{\underset{A}{\otimes}} G^{\bullet}) \subset T^*M \cap C(SS(F^{\bullet}), SS(G^{\bullet})^a)$$

が成り立つ.

5 包合性

定理 2. $F^{\bullet} \in Ob(D_b(M))$ とする.このとき $SS(F^{\bullet})$ は包合的である(関数 f が $SS(F^{\bullet})$ で 0 になるとき, $SS(F^{\bullet})$ はハミルトンベクトル場 H_f で不変である).

 $(M ext{ は } C^2 ext{ 級であるとし}, C^1 ext{ 級関数 } f ext{ は } T^*M ext{ の開集合でしか定義されないと仮定する.})$

6 応用

以下では (X,\mathcal{O}_X) を複素解析多様体とし, \mathcal{O}_X で有限階の(\mathcal{O}_X^∞ で無限階の)正則関数係数の 微分作用素のなす X 上の層を表す.連接 \mathcal{O} 加群 \mathcal{M} に対し, $\mathrm{car}(\mathcal{M})$ で T^*X における \mathcal{M} の特性多様体を表す.Z を別の複素解析多様体とするとき, π_Z で射影 $T^*(X\times Z)\to T^*X$ を表す.

命題 8. — (i)

$$\operatorname{car}(\mathcal{M}) = \bigcup_{Z} \pi_{Z}(\operatorname{SS}(\operatorname{R}\mathcal{H}om_{\mathcal{D}}(\mathcal{M}, \mathcal{O}_{X \times Z})))$$

である(Zは複素解析多様体である).

(ii) *M* がホロノミー加群であるとき,

$$\operatorname{car}(\mathscr{M}) = \operatorname{SS}(\operatorname{R}\mathscr{H}om_{\mathscr{D}}(\mathscr{M}, \mathcal{O}_X))$$

である.

包含の片側は古典的な結果 [2] であり、反対の包含は層 $\mathscr{E}_X^{\mathbf{R}}$ (cf.[6, 2]) のコホモロジーを用いた定義と、 $\mathscr{E}_X^{\mathbf{R}}$ が超局所微分作用素の環 \mathscr{E}_X の上で忠実平坦であることから従う.

 \mathbf{A} 9. Y を X の部分多様体とし、

- (a) $\mathscr{D}_X^{\infty} \otimes \mathrm{R}\Gamma_{[Y]}(\mathscr{M}) = \mathrm{R}\Gamma_Y(\mathscr{D}_X^{\infty} \otimes \mathscr{M}),$
- (b) \mathscr{D}_Y 加群 $\mathscr{T}or_i^{\mathcal{O}_X}(\mathcal{O}_Y, \mathscr{M})$ は連接的である

と仮定する.このとき、任意のjに対し次の包含関係が成り立つ.

$$\operatorname{car}(\operatorname{\mathscr{T}\!\mathit{or}}_{j}^{\mathcal{O}_{X}}(\mathcal{O}_{Y}, \mathscr{M})) \subset T^{*}Y \cap C_{T_{Y}X}(\operatorname{car}(\mathscr{M})).$$

仮定 (a), (b) は確定特異点型ホロノミー加群ならば任意の部分多様体 Y に対して成り立つ [3]. 系 9 は [3] の結果を補完し,例えば, $\prod_j f_j^{\lambda_j}$ 型の分布の解析的波面集合の上からの評価を得ることができる.

本稿の主要結果は著者の一人が [8] において発表している.

参考文献

- J. M. Bony, P. Schapira, Solutions Hyperfonction du Problem de Cauchy, Springer Lecare Noles in Math., 287, 1973, p. 82–98.
- [2] *3 M. Kashiwara, Cours Université Paris-Nord redige par T. Monteiro-Fernandes, 1977.
- [3] M. Kashiwara, T. Kawai, On Holonomic Systems of Microdifferential equations III, Publ. Rims. Kyoto Univ., 17, 1981, p. 813–979.
- [4] M. Kashiwara, P. Schapira, Micro-hyperbolic Systems, Acta Math., 142, 1979, p. 1-55.
- [5] M. Kashiwara, P. Schapira, Micro-support des faisceaux: application aux modules différentiels, Journees E.D.P. Saint-Jean-de-Monts, 1981, publ. Ecole Polytechnique, Palaiseau.
- [6] Sato, T. Kawai, M. Kashiwara, Microfunctions and Pseudo-differential Equations, Springer Lecture Notes in Math., 287, 1973, p. 265-529.
- [7] B. Malgrange, Transformation de Fourier cohomologique, Expose a Nancy, mai 1982.
- [8] Schapira, Micro-support des faisceaux, Expose a Nancy, mai 1982.

 $^{*^3}$ [訳注] M. Kashiwara, Systems of Microdifferential Equations, Birkhäuser, 1983. として単行本化されている.