

HEXFET® Power MOSFET

V _{DSS}	25	V
$R_{DS(on)}$ max (@ V_{GS} = 10 V)	0.95	mΩ
(@ V _{GS} = 4.5V)	1.60	
Qg (typical)	56	nC
I _D (@T _{C (Bottom)} = 25°C)	100©	A

Applications

- OR-ing MOSFET for 12V (typical) Bus in-Rush Current
 Battery Operated DC Motor Inverters

Features

Low R_{DSon} (<0.95m Ω)	
Low Thermal Resistance to PCB (<0.8°C/W)	
Low Profile (<0.9 mm)	results in
Industry-Standard Pinout	\Rightarrow
Compatible with Existing Surface Mount Techniques	
RoHS Compliant, Halogen-Free	
MSL1, Industrial Qualification	

Benefits

	Bollotto
	Lower Conduction Losses
	Enable better thermal dissipation
n	Increased Power Density
	Multi-Vendor Compatibility
	Easier Manufacturing
	Environmentally Friendlier
	Increased Reliability

Book nort number	Dookses Type	Standard Pack		Ordershie Dort Number
Base part number	Package Type	Form	Quantity	Orderable Part Number
IRFH8201PbF	PQFN 5mm x 6 mm	Tape and Reel	4000	IRFH8201TRPbF

Absolute Maximum Ratings

	Parameter	Max.	Units	
V_{GS}	Gate-to-Source Voltage	± 20	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	49		
I _D @ T _{C (Bottom)} = 25°C	Continuous Drain Current, V _{GS} @ 10V	324⑤⑥		
I _D @ T _{C (Bottom)} = 100°C	Continuous Drain Current, V _{GS} @ 10V	205\$6	A	
I _D @ T _{C(Bottom)} = 25°C	Continuous Drain Current, V _{GS} @ 10V (Source Bonding Technology Limited)	100®	1 ^	
I _{DM}	Pulsed Drain Current	700⊘		
P _D @T _A = 25°C	Power Dissipation ④	3.6	147	
P _D @T _{C (Bottom)} = 25°C	Power Dissipation ④	156	W	
	Linear Derating Factor ④	0.029	W/°C	
T _J	Operating Junction and	-55 to + 150	00	
T_{STG}	Storage Temperature Range		°C	

Notes ① through ⑥ are on page 9

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV_{DSS}	Drain-to-Source Breakdown Voltage	25			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		20		mV/°C	Reference to 25 $^{\circ}$ C, I_{D} = 1mA
В	Static Drain-to-Source On-Resistance		0.80	0.95	m 0	V _{GS} = 10V, I _D = 50A ②
R _{DS(on)}	Static Drain-to-Source On-Resistance		1.20	1.60	mΩ	V _{GS} = 4.5V, I _D = 50A ②
$V_{GS(th)}$	Gate Threshold Voltage	1.35	1.80	2.35	V	\\ -\\ - 150\
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-6.1		mV/°C	$V_{DS} = V_{GS}$, $I_D = 150 \mu A$
	Drain to Course Leakage Current			1.0		$V_{DS} = 20V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			150	μA	$V_{DS} = 20V, V_{GS} = 0V, T_J = 125^{\circ}C$
	Gate-to-Source Forward Leakage			100	Λ	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	$V_{GS} = -20V$
gfs	Forward Transconductance	181			S	$V_{DS} = 10V, I_{D} = 50A$
Q_g	Total Gate Charge		111		nC	$V_{GS} = 10V, V_{DS} = 13V, I_{D} = 50A$
Q_g	Total Gate Charge		56	84		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		16			V _{DS} = 13V
Q _{gs2}	Post-Vth Gate-to-Source Charge		7.0		nC	V _{GS} = 4.5V
Q_{gd}	Gate-to-Drain Charge		18			I _D = 50A
Q_{godr}	Gate Charge Overdrive		15			
Q_{sw}	Switch Charge (Q _{gs2} + Q _{gd})		25			
Q _{oss}	Output Charge		39		nC	$V_{DS} = 16V, V_{GS} = 0V$
R_G	Gate Resistance		1.1		Ω	
$t_{d(on)}$	Turn-On Delay Time		27			$V_{DD} = 13V, V_{GS} = 4.5V$
t _r	Rise Time		54		ns	I _D = 50A
$t_{d(off)}$	Turn-Off Delay Time		31			$R_G=4.7\Omega$
t _f	Fall Time		22			
C _{iss}	Input Capacitance		7330			V _{GS} = 0V
C _{oss}	Output Capacitance		1730		pF	V _{DS} = 13V
C _{rss}	Reverse Transfer Capacitance		850			f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ①		437	mJ

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			100⑥		MOSFET symbol
	(Body Diode)			1000	^	showing the $(\downarrow \downarrow)$
I_{SM}	Pulsed Source Current			700⑦	Α	integral reverse
	(Body Diode)			7000		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C$, $I_S = 50A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		25	38	ns	$T_J = 25$ °C, $I_F = 50$ A, $V_{DD} = 13$ V
Q_{rr}	Reverse Recovery Charge		57	86	nC	di/dt = 400A/µs ②

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$ (Bottom)	Junction-to-Case ③	0.5	0.8	
R _{θJC} (Top)	Junction-to-Case ③		21	°C/W
$R_{\theta JA}$	Junction-to-Ambient ④		35	1
R _{0JA} (<10s)	Junction-to-Ambient ④		20	1

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 8. Maximum Safe Operating Area

Fig 10. Threshold Voltage Vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12. On– Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current

Fig 14. Single Avalanche Event: Pulse Current vs. Pulse Width

Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 16a. Unclamped Inductive Test Circuit

Fig 17a. Switching Time Test Circuit

Fig 18a. Gate Charge Test Circuit

Fig 16b. Unclamped Inductive Waveforms

Fig 17b. Switching Time Waveforms

Fig 18b. Gate Charge Waveform

PQFN 5x6 Outline "B" Package Details

BOTTOM VIEW

DIM	MILLIM	IITERS	IN	ICH	
SYMBOL	MIN	MAX	MIN	MAX	
А	0.800	0.900	0.0315	0.0543	
Α1	0.000	0.050	0.0000	0.0020	
А3	0.20	0 REF	0.007	'9 REF	
Ф	0.350	0.470	0.0138	0.0185	
b1	0.025	0.125	0.0010	0.0049	
b2	0.210	0.410	0.0083	0.0161	
b3	0.150	0.450	0.0059	0.0177	
D	5.000	O BSC	0.1969 BSC		
D1	4.750	0 BSC	0.1870 BSC		
D2	4.100	4.300	0.1614	0.1693	
E	6.000	0 BSC	0.2362 BSC		
E1	5.75	0 BSC	0.2264 BSC		
E2	3.380	3.780	0.1331	0.1488	
е	1.27	70 REF	0.05	00 REF	
e1	2.80	0 REF	0.1102 RE		
K	1.200	1.420	0.0472	0.0559	
L	0.710	0.900	0.0280	0.0354	
Р	0°	12°	0°	12°	
R	0.200	REF	0.0079 REF		
R2	0.150	0.200	0.0059	0.0079	

Note:

- Dimensions and toleranceing confirm to ASME Y14.5M-1994
- Dimension L represents terminal full back from package edge up to 0.1mm is acceptable
- 3. Coplanarity applies to the expose Heat Slug as well as the terminal
- 4. Radius on terminal is Optional

For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf

For more information on package inspection techniques, please refer to application note AN-1154: http://www.irf.com/technical-info/appnotes/an-1154.pdf

PQFN 5x6 Part Marking

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

PQFN 5x6 Tape and Reel

REEL DIMENSIONS

TAPE DIMENSIONS

CODE	DESCRIPTION
Ao	Dimension design to accommodate the component width
Во	Dimension design to accommodate the component lenght
Ko	Dimension design to accommodate the component thickness
W	Overall width of the carrier tape
P ₁	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Note: All dimension are nominal

Package Type	Reel Diameter (Inch)	QTY	Reel Width W1 (mm)	Ao (mm)	Bo (mm)	Ko (mm)	P1 (mm)	W (mm)	Pin 1 Quadrant
5 X 6 PQFN	13	4000	12.4	6.300	5.300	1.20	8.00	12	Q1

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualifiction Information[†]

Ovalification Lavel	Industrial [†]					
Qualification Level	(per JEDEC JESD47F ^{††} guidelines)					
Moisture Sensitivity Level	PQFN 5mm x 6mm	MSL1				
Moisture Sensitivity Level	T QI N SIIIII X OIIIII	(per JEDEC J-STD-020D ^{††)}				
RoHS Compliant	Yes					

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability/
- †† Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Starting $T_J = 25^{\circ}C$, L = 0.35mH, $R_G = 50\Omega$, $I_{AS} = 50A$.
- ② Pulse width $\leq 400\mu s$; duty cycle $\leq 2\%$.
- ③ R_{θ} is measured at T_{J} of approximately 90°C.
- When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details: http://www.irf.com/technical-info/appnotes/an-994.pdf
- S Calculated continuous current based on maximum allowable junction temperature.
- © Current is limited to 100A by source bonding technology.
- Calculated based on maximum allowable junction temperature; Pulse width ≤ 200µs, Vgs= 10V.

Revision History

Date	Comments			
10/23/2013	Added Rdson @ 4.5V-page1, 2			
7/30/2014	• Updated IDM from "400A" to "700A" on page1, 2.			
7/30/2014	• Updated Fig1, Fig2, Fig3, Fig7 & Fig8 on page 3, 4.			
3/11/2015	Updated package outline and tape and reel on pages 7 and 8.			

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit http://www.irf.com/whoto-call/