Assignment 2 MAT 367

Q6: $a \implies b$: Suppose that $f: M \to N$ is a diffeomorphism. Suppose that $\psi_1: V \to \mathbb{R}^n$ is a coordinate chart of \mathcal{B} . Then we have that $\psi_1 \circ f$ is a homeomorphism from $f^{-1}(V)$ to \mathbb{R}^n since f is a homeomorphism. Now given φ , coordinate chart of M, $(\psi_1 \circ f) \circ \varphi^{-1}$ is a diffeomorphism since f is. If ψ_2 is another chart of N, then

$$(\psi_2 \circ f) \circ (\psi_1 \circ f)^{-1} = \psi_2 \circ f \circ f^{-1} \circ \psi_1^{-1} = \psi_2 \circ \psi_1^{-1} \in \mathcal{C}^{\infty}.$$

Now if $\psi \circ f$ is a coordinate chart of \mathcal{A} , $\psi \circ f \circ f^{-1} = \psi$ is a homeomorphism on N into \mathbb{R}^n . We can see that for any other coordinate chart ψ_2 on N, $(\psi \circ f) \circ (\psi_2 \circ f)^{-1}$ is \mathcal{C}^{∞} , since they are charts on \mathcal{A} , but

$$(\psi \circ f) \circ (\psi_2 \circ f)^{-1} = \psi \circ \psi_2^{-1}.$$

So ψ is \mathcal{C}^{∞} related to any other chart ψ .

 $b \implies c$: Suppose $g \in \mathcal{C}^{\infty}$ on (N, \mathcal{B}) . Then for any chart $\psi \in \mathcal{B}$, we have that $g \circ \psi^{-1} \in \mathcal{C}^{\infty}$. Then

$$g\circ f\circ \varphi^{-1}=(g\circ \psi^{-1})\circ (\psi\circ f\circ \varphi^{-1}).$$

By assumption $\psi \circ f$ is a chart on (M, \mathcal{A}) , so its composition with φ^{-1} is smooth. We have that $g \circ f \circ \varphi^{-1}$ is the composition of smooth functions hence smooth. Now suppose that $g \circ f$ is \mathcal{C}^{∞} on (M, \mathcal{A}) . Therefore,

$$g \circ f \circ \varphi^{-1} = (g \circ \psi^{-1}) \circ (\psi \circ f \circ \varphi^{-1}).$$

We have that $(\psi \circ f \circ \varphi^{-1})$ is a diffeomorphism by assumption, so $g \circ \psi$ is \mathcal{C}^{∞} .

 $c \implies a$. Take $g = \psi \in \mathcal{B}$. We know that ψ is \mathcal{C}^{∞} on (N, \mathcal{B}) , so we must have that $\psi \circ f$ is smooth on (M, \mathcal{A}) i.e. $\psi \circ f \circ \varphi^{-1}$ is smooth. Since f is a homeomorphism, we conclude that f is a diffeomorphism.