Ans 1)

a. It would have to be n^2 - 10n + 2 \leq c·n², because its f(x) = O(g(x)).

by the Big-Oh definition, T(n) is $O(n^2)$ if $T(n) \le c \cdot n^2$ for some $n \ge n_0$

if
$$n^2 - 10n + 2 \le c \cdot n^2$$

then
$$1 - \frac{10}{n} + \frac{2}{n^* n} \le c$$

Therefore, the Big-Oh condition holds for $n \ge n_0 = 1$ and $c \ge -7$ (= 1 - 10 + 2)

=> Valid

b. It would have to be $2^{n^*n} \le c2^{2n}$, because its f(x) = O(g(x)).

Here
$$f(x) = 2^{n^*n}$$
 and $g(x) = 2^{2n}$

$$=> \log(2^{n^*n}) \le \log(c.2^{2n})$$

$$=> n^2 \log 2 \le \log c + 2n \log 2$$

$$=> n^2 \le logc + 2n$$

Therefore, the Big-Oh condition cannot hold (the left side of the latter inequality is growing exponentially, so that there is no such constant factor c)

=> Not valid

c. It would have to be $nlog_2(n) \le c \cdot nlog_{10}(n)$, because its f(x) = O(g(x)).

 $log_2(n)$ and $log_{10}(n)$ are asymptotically equal.

Therefore, the Big-Oh condition holds.

=> valid

d. It would have to be $nlog_2(n) \le c \cdot n$, because its f(x) = O(g(x)).

Here
$$f(x) = nlog_2(n)$$
 and $g(x) = n$

$$=> nlog_2(n) \le c.n$$

$$=> \log_2(n) \le c$$

Therefore, the Big-Oh condition cannot hold (the left side of the latter inequality is growing logarithmically, so that there is no such constant factor c)

=> Not valid

e. It would have to be $n2^n \le c2^{2n}$, because its f(x) = O(g(x)).

Here
$$f(x) = n2^{n}$$
 and $g(x) = 2^{2n}$

$$=> \log n + n \le \log c + 2n$$

Therefore, the Big-Oh condition cannot hold (the left side of the latter inequality is growing logarithmically, so that there is no such constant factor c)

=> Not valid

Ans 2) Algo 1:

First for loop i = 1 to n:

$$=> 1 + 2 + 3 \dots + n = O(n)$$

Second for loop j = n to 1:

Third for loop k = j to 1:

=>
$$n(n + (n-1) + (n-2) + (n-3) \dots + 1) + (n-1)((n-1) + (n-2) + (n-3) \dots + 1)$$

=> $O(n^2)$

Overall Time complexity:

=>
$$O(n) + O(n^2)$$

=> $O(n^2)$

Algo 2:

$$=> n + n/2 + n/4 + n/8 \dots n/2^k$$

$$=> n/2^k = 1 => n = 2^k$$

$$=> \log_2 n = k$$

Overall time complexity:

$$=> O(log_2n)$$

Ans 3) Given an array A of integers,

<u>Algorithm</u>

majority(A):

- 1. if len(A) == 0: return Null
- 2. if len(A) == 1: return A[0]
- 3. Half = len(A) / 2
- 4. left = majority(A[start, half])
- 5. right = majority(A[half+1, end])
- 6. if left == right: return left
- 7. if A.count(left) > half: return left

- 8. if A.count(right) > half: return right
- 9. Else: return Null

Recurrence relation : T(n) = 2T(n/2) + O(n)

$$a = 2$$
, $b = 2$, $f(n) = O(n^{\log 2} * \log_2 n)$

By master theorem, time complexity is:

$$T(n) = O(nLog_2n)$$

Ans 4) We compare the given recurrence relation with $T(n) = aT(n/b) + \theta (n^k \log^p n)$.

Then, we have-

$$a = 3$$
, $b = 2$, $k = 2$, $p = 0$

Now, a = 3 and $b^k = 2^2 = 4$.

Clearly, $a < b^k$. So, we follow case-03.

Since p = 0, so we have-

$$=> T(n) = \theta (n^k \log^p n)$$

$$=> T(n) = \theta (n^2 \log^0 n)$$

Thus, $T(n) = \theta (n^2)$

Ans 5)
$$T(n) = 2T(n/2) + n \log_2(n)$$
, where $T(n) = O(1)$

Determine cost of each level-

- Cost of level-0 = $n(\log(n/2^0)) = O(n\log(n))$
- Cost of level-1 = $log(n/2^1) = O(log(n/2))$
- Cost of level-2 = $log(n/2^2) = O(log(n/4))$
- Cost of level-logn = $log(n/2^{log n}) = O(log(n/2^{log n}))$

$$=> n((\log n - \log 2^0) + (\log n - \log 2^1) + (\log n - \log 2^2) + ... + \log n - (\log 2^{\log n}))$$

$$=> n((\log n - 0) + (\log n - 1) + (\log n - 2) + ... + (\log n - \log n))$$

$$=> n(\log n + (\log n - 1) + (\log n - 2) + ... + 2 + 1 + 0)$$

Because of Gauss's sum: 0 + 1 + 2 + 3 + ... + k = k(k+1) / 2. That means that this sum simplifies down to

Ans 6) Karatsuba's algorithm has O(nlog₂(3)) complexity.

when *a increases*, the number of subproblems determines the asymptotic running time.

By master theorem, in worst time complexity of the algorithm will be,

=>
$$T(n) = \Theta(n^{\log_b a}) = \Theta(n^{\log_4 a})$$

=> $\Theta(n^{\log_2 \sqrt{a}})$

To make T(n) smaller than Karatuba's algorithm, $n^{\log \sqrt{a}}$ must be smaller than $n^{\log 3}$

$$\Rightarrow$$
 $n^{\log \sqrt{a}}$ $<$ $n^{\log 3}$

=>
$$\log \sqrt{a} < \log 3$$

=>
$$\sqrt{a}$$
 < 3

The largest integer value of a for which Professor Caesar's algorithm would be asymptotically faster than O(nlog₂(3)) is **8**.