EEDG/CE 6303: Testing and Testable Design

Mehrdad Nourani

Dept. of ECE Univ. of Texas at Dallas

Session 09

Scan Design for Testability

Basic Concept

Architectural View

- A sequential circuit is viewed as
 - A combinational logic block, with
 - Primary inputs $x_1, x_2, ..., x_n$
 - Primary outputs $z_1, z_2, ..., z_m$
 - State inputs (present state)
 Y₁, Y₂, ..., Y_k
 - State outputs (next state) $Y_1, Y_2, ..., Y_k$
 - $-Y_i$ and y_i are respectively the input and output of FF_i

Test Generation in Scan

- Hence, for purposes of test development
 - State inputs treated as primary inputs
 - State outputs treated as primary outputs
- By reducing test generation for sequential circuits to test generation for combinational circuits, scan
 - Reduces test development cost
 - In many cases, enables attainment of acceptable fault coverage

Scan as a DFT Method

- In scan DFT (design for testability) methodology, flip-flops (or latches) designed to support two modes
 - <u>Normal mode</u>: Flip-flops configured as in the original circuit
 - —<u>Test mode</u>: Flip-flops configured as one or more shiftregisters, called <u>scan registers</u> or <u>scan chains</u>
- Most Common Scan Flip-Flop (SFF) cell

Scan Structure

- Testing using scan
 - In normal mode, responses at state outputs captured in flip-flops
 - Circuit then configured in the test mode
 - Scan registers clocked
 - The output of the last flip-flop in scan chain observed
 - At the same time, values to be applied at state inputs in the subsequent test shifted into flip-flops

Applying Test in Scan

- Shift Register Test: TC=0 (scan mode) and apply the 001100...
 - Test length: n_{sff}+4
- Scan Test:
 - TC=0 (scan mode)
 - Shift yi values in FFs.
 - Put xi values in PIs.
 - TC=1 (normal mode) and check zi's.
 - Apply clock to TCK (still normal mode).
 - TC=0 (scan mode) and shift Yi's out for check.

Applying Test in Scan (cont.)

Total scan test length (number of clocks)

$$(n_{\text{sff}}+4)+(n_{\text{sff}}+1) n_{\text{comb}} + (n_{\text{sff}}-1)=(n_{\text{comb}}+2)n_{\text{sff}}+n_{\text{comb}}+3$$

- $-n_{comb}$ = number of combinational vectors
- $-n_{sff}$ = number of scan flip-flops
- Without considering shift register test: $(n_{sff}+1) n_{comb} + (n_{sff}-1)$

Applying Test in Scan (cont.)

- Scan register must be tested prior to application of scan test sequences.
- A shift sequence 00110011... of length $n_{\rm sff}+4$ in scan mode (TC=0) produces 00, 01, 11 and 10 transitions in all flip-flops and observes the result at SCANOUT output.
- Total scan test length:

$$(n_{\text{comb}} + 2) n_{\text{sff}} + n_{\text{comb}} + 3 clock periods.$$

- Example: 2,000 scan flip-flops, 500 comb. vectors, total scan test length $\sim 10^6$ clocks.
- Multiple scan registers reduce test length.

Multiple Scan Registers

- Scan flip-flops can be distributed among any number of shift registers, each having a separate scanin and scanout pin.
- Test sequence length is determined by the longest scan shift register.
- Just one test control (TC) pin is essential.

Scan Test Overhead

- IO pins: One pin necessary.
- Area overhead:
 - *Gate overhead* = $[4 n_{sff}/(n_{q}+10n_{ff})] \times 100\%$
 - $n_{q} = comb. Gates$
 - $-n_{\rm ff} = flip-flops$
 - Example $n_q = 100k$ gates, $n_{ff} = 2k$ flip-flops, overhead = 6.7%.
 - More accurate estimate must consider scan wiring and layout area.
- Performance overhead:
 - Multiplexer delay added in combinational path; approx. two gate-delays.
 - Flip-flop output loading due to one additional fanout; approx. 5-6%.

Timing and Power During Scan

- Small delays in scan path and clock skew can cause race condition.
- Large delays in scan path require slower scan clock.
- Dynamic multiplexers: Skew between TC and TC signals can cause momentary shorting of D and SD inputs.
- Random signal activity in combinational circuit during scan can cause excessive power dissipation.

Full-Scan vs. Partial Scan

- In a full-scan circuit, scan mode and scan chains enable
 - Desired values to be <u>scanned in</u> into every flip-flop from ScanIn
 - Response captured in every flip-flop to be <u>scanned out</u> and observed at *ScanOut*
- In a partial-scan, a subset of flip-flops is scanned.
 - Minimize area overhead and scan sequence length, yet achieve required fault coverage
 - Exclude selected flip-flops from scan:
 - Improve performance
 - Allow limited scan design rule violations
 - Shorter scan sequences
- Hence, combinational part of the circuit used to generate tests

Effect on Cost and Performance

- Cost and benefits of scan
 - —Area overhead: Increase in circuit area to add extra circuitry, route additional control signals and/or clocks
 - Increases chip area and hence cost, since
 - + Fewer chips manufactured per wafer
 - + Increase in area decreases yield
 - —Performance penalty: Additional logic typically increases delay in normal mode
 - Performance penalty may be reduced at the cost of higher area

Effect on Cost and Performance (cont.)

- Cost and benefits of scan
 - —Need <u>extra pins</u> for ScanIn, ScanOut, control inputs, and so on
 - —Typically increase in test application time
 - —For many sequential circuits, the only way to <u>achieve</u> <u>acceptable fault coverage</u>
 - Useful for debugging first silicon, i.e., the first batch of chips fabricated for a given design
 - Used to locate failing components when an operational system fails

Partial Scan

- Overheads of scan can be reduced by replacing only a subset of flip-flops in a circuit by scan flip-flops, i.e., via <u>partial scan</u>
- How to select flip-flops to scan?
 - —To reduce area overhead, select a minimum number of flip-flops
 - —To reduce performance penalty, avoid selecting flipflops along <u>critical paths</u>, i.e., paths whose delays are equal to or close to the clock period
 - However, flip-flops should be selected to ensure improvements in controllability and observability values so as to provide acceptably high fault coverage

Partial Scan Architecture

Scan Cells

Scan Design Rules

- Use only clocked D-type of flip-flops for all state variables.
- At least one PI pin must be available for test; more pins, if available, can be used.
- All clocks must be controlled from PIs.
- Clocks must not feed data inputs of flip-flops.

Basic Scan Cell

Multiplexed-input scan

- —Flip-flop design must be modified such that
 - In normal mode, the input to FF_i is the value at next state output Y_i
 - In the test mode, the input to FF_i is the value at the output of the previous flip-flop in the scan chain
- —This can be achieved by adding a multiplexer
 - Two data inputs, D and D_S
 - Mode control input mc
 - + When mc = normal (e.g. 0), input D is selected
 - + When mc = test (e.g. 1), input D_S is selected

Basic Scan Cell (cont.)

- Scan flip-flops are connected to support test and scan modes
 - —The D input of FF_i is connected to the state output Y_i
 - —The D_S input of FF_i is connected to the output of the previous flip-flop in the scan chain
 - —The D_S input of the first flip-flop in the scan chain is connected to ScanIn, the input to the scan chain
 - —The output of FF_i is connected to the state input y_i
 - —The output of the last flip-flop in the chain is connected to *ScanOut*, the output of the scan chain

Normal vs. Scan Mode

Normal Mode

Scan Mode

Implementation of Scan FF Cell

Level-Sensitive Scan D Latch (LSSD)

Scan-Hold Flip Flop (SHFF)

- The control input HOLD keeps the output steady at previous state of flip-flop.
- Applications:
 - Reduce power dissipation during scan
 - Isolate asynchronous parts during scan test
 - Delay testing (applying V1→V2 pair)

Random-Access Scan (RAS)

RAM Cell in RAS

Single Latch Design - Cells

- Holds output and state constant when clock is low
- When clock is high, changes in D are reflected at its state as well as outputs with some delay
- Symbol and one possible implementation
- Used in certain types of circuits, e.g., high speed data paths

Single Latch Design - Configuration

Double Latch Design - Cells

- Two clocks B and C must be non-overlapping, i.e., they must not assume the value 1 at the same time.
 - —In particular, B can be complement of C

Double Latch Design - Configuration

Level Sensitive (LS) Scan Element

- Latch L₁ in a standard master-slave configuration replaced by a two-port latch L*, called L*₁
- L*₁ has
 - Two data inputs D and D_S
 - Two clocks C and A
- L₂ remains unchanged
- In normal mode, clock A held low (A=0) and nonoverlapping clocks C and B used
- In test (scan) mode, clock C held low (C=0) and nonoverlapping clocks A and B used

LS Element in Single Latch Configuration

LS Element in Double Latch Configuration

Scan Chain Organization

Organization of Scan Chains

- To organize scan flip-flops into chains by
 - —Partitioning them into multiple chains (if applicable)
 - —Ordering flip-flops within each chain
 - Using reconfiguration circuitry (if applicable)
- To reduce test application time
- Model of circuit assuming full-scan
 - —Gates and fanout systems combined into one or more <u>maximal combinational blocks</u>
 - Obtained by iteratively combining into one block any two circuit elements between which a combinational path exists
 - Called CLB₁, CLB₂, ..., CLB_{Nb}

Organization of Scan Chains (cont.)

- Model of circuit assuming full-scan
 - —All flip-flops whose normal data inputs are driven by outputs of CLB_j and whose outputs drive inputs of CLB_j (j may be equal to i) are combined into a register
 - Such a register is said to be a
 - + Receiver for CLB;
 - + Driver for *CLB_i*
 - $Lreg_i$ is the length of register R_i , i.e., the number of flip-flops in R_i

Definitions & Metrics

- A <u>kernel</u> is a sub-circuit that can be tested independently of the rest of the circuit
- In a full-scan circuit
 - —A kernel (K_i) is synonymous with a maximal combinational block (CLB_i)
 - —Number of kernels, $N_k = N_b$
- In a partial-scan circuit, a kernel may contain
 - One or more maximal combinational blocks
 - —Non-scan registers

Definitions & Metrics (cont.)

- Register R_i is <u>receiver</u> for kernel K_{ji} if outputs of K_j drive normal data inputs of R_i
- R_i is <u>driver</u> for K_{ji} if outputs of R_i drive inputs of K_i
- R_i is a <u>pure-driver</u> if it is not a receiver for any kernel
- R_i is a <u>pure-receiver</u> if it is not a driver for any kernel

The Running Example

- R₁, R₂, R₃, R₄, R₅
 registers of lengths 8, 4,
 2, 4, and 2, respectively
- R₁ and R₂ pure drivers for CLB₁ and CLB₂, respectively
- R₄ and R₅ pure receivers for CLB₁ and CLB₂, respectively
- R₃ is a driver for CLB₁
 and receiver for CLB₂

Organization Example – One Test Session

- Full-scan version of above example circuit
- K₁ and K₂ are identical to CLB₁ and CLB₂, respectively

Optimization Metrics

- Let NT_i be the number of test vectors for K_i
- Assume $NT_1 \cdot NT_2 \cdot ... \cdot NT_{Nk}$
- In a circuit with multiple (N_{sc}) scan chains
 - —Chains are called $ScanChain_{ii}$, $1 \cdot i \cdot N_{sc}$
 - —ScanChain; has
 - Scan input output ScanIn; and ScanOut;
 - SCL_i flip-flops
 - —We assume synchronous scan, i.e., all chains share a single mode control (*mc*) signal

Optimization Metrics (cont.)

- <u>Driving weight of a register</u> R_{ii} *DRW*_{ii} is the number of vectors for which R_{i} is used as a driver
- If R_i is a driver for kernel K_{ji} , then $DRW_i = NT_j$
- Receiving weight of a register R_i, RCW_i, is defined in a similar manner

Organization Example – Two Test Session

- NT1 = 50 and NT2 = 300
- R1 is pure driver with DRW1 = 50 and, by definition, RCW1 = 0
- R5 is pure receiver with RCW5 = 300 and, by definition, DRW5 = 0
- R3 is a driver/receiver with DRW3 = 50 and RCW3 = 300

Register	Bitwidth	Туре	DRW	RCW
R1	8	Pure Driver	50	0
R2	4	Pure Driver	300	0
R3	2	Driver/Receiver	50	300
R4	4	Pure Receiver	0	50
R5	2	Pure Receiver	0	300

Test Vectors vs. Test Sessions

- Characteristics of scan vectors
 - —Vectors may have many don't cares
 - Different kernels require different numbers of vectors
- Desired values must be scanned into some registers for many more vectors than into others
- Responses captured in some registers need to be scanned out for many more vectors than those captured in others
- Test sessions
 - —A circuit may be tested in multiple test sessions
 - —In each test session, a different combination of kernels tested

Test Application Schemes

- 1. Combined test application scheme
 - Circuit tested in one session
 - All kernels tested simultaneously
 - The number of vectors applied is the maximum of the number of vectors required for any kernel
- 2. Overlapped test application scheme
 - Assume $NT_1 < NT_2 < ... < NT_{Nk}$
 - Circuit tested in N_k sessions
 - In the first session, $NTS^{Ovr}(TSes_1) = NT_1$ vectors applied to all kernels
 - In the second session, $NTS^{Ovr}(TSes_2) = NT_2 NT_1$ vectors applied to all kernels except K_1
 - In the third session, $NTS^{Ovr}(TSes_3) = NT_3 NT_2$ vectors applied to all kernels except K_1 and K_2
 - **–** ...
 - In the last session, $NTS^{Ovr}(TSes_{Nk}) = NT_{Nk} NT_{Nk-1}$ vectors applied to the last kernel

Test Application Schemes (cont.)

- 3. Isolated test application scheme
 - —In each session, one kernel is tested by itself
 - —In the first session, NT_1 vectors applied to K_1
 - —In the second session, NT_2 vectors applied to K_2
 - —...
 - —This mechanism is not of interest as it has no advantage over the other two.

Comparing Test Application Schemes

	TSes ₁	TSes ₂
Combined	300 vectors to <i>K</i> ₁ & <i>K</i> ₂	
Overlapped	50 vectors to <i>K</i> ₁ & <i>K</i> ₂	250 vectors to K_2
Isolated	50 vectors to K_1	300 vectors to K_2

Overlapped test application scheme most efficient

Role of Active Drivers/Receivers

- Active drivers in session TSes_i, AD(TSes_i), is the set of drivers into which desired values need to be scanned in TSes_i
- Active receivers in session TSes_i,
 AR(TSes_i), is the set of receivers from which responses need to be scanned out in TSes_i
- For the example circuit

$$-AD(TSes_1) = \{R_1, R_2, R_3\};$$

$$AR(TSes_1) = \{R_3, R_4, R_5\}$$

$$-AD(TSes_2) = \{R_2\}; AR(TSes_2) = \{R_3, R_5\}$$

A <u>chain is active in TSes</u>; if any of the registers in the chain is active as a driver or receiver in TSes;

Scan Shift/Flush Policy

- Scan-shift policies
 - —Scan has two purposes
 - To scan out response captured for the previous vector
 - To scan in the next vector

I. Flush policy

- —For every chain
 - Content of every flip-flop scanned out
 - Test data scanned into every flip-flop
- —If N_{sc} chains of lengths SCL_1 , SCL_2 , ..., SCL_{Nsc}
 - For application of each vector, chains configured in test mode, and
 - $-SC^{Flsh} = max(SCL_1, SCL_2, ..., SCL_{Nsc})$ clocks applied
- —SCFIsh is called the shift cycle for the flush policy

Minimum Shift Policy

- II. Minimum shift policy in a particular test session
 - —Shift test data into every active driver
 - —Shift response out of every active receiver
 - —If for *ScanChain_i* the above two respectively require *SCin_i* and *SCout_i* cycles, then
 - $-SC_i = max(SCin_i, SCout_i)$
 - —Hence, for that session, $SC^{MS} = max_i SC_i$

Example of Shift/Flush Policy

- For flush policy
 - $-SC^{Flsh}(TSes_1) = 20$ cycles (8+4+2+4+2)
 - $-SC^{Flsh}(TSes_2) = 20$ cycles
 - Time (Combined)= $n_{comb}(n_{sff}+1)+(n_{sff}-1)=300(20+1)+(20-1)=6319$
- Lower shift-cycle can be used (i.e. Minimum Shift)
 - In TSes₁
 - Test data needs to be scanned into R_{1} , R_{2} , and R_{3} + Hence, SCin = 8+4+2 = 14
 - Response needs to be scanned out of R_3 , R_4 , and R_5 + Hence, SCout = 2+4+2=8
 - Hence, max(SCin, SCout) = 14 cycles sufficient for TSes₁
 - In $TSes_{2i}$ only R_2 active as a driver and R_3 and R_5 as receivers
 - Hence, SCin = 8+4 = 12, SCout = 2+4+2 = 8
 - Hence, max(SCin, SCout) = 12 cycles sufficient for TSes₂
 - Time (Overlapped) = [50(14+1)+250(12+1)]+(14-1) = 4013

Reg.	Bits	Туре	DRW	RCW
R1	8	Dri	50	0
R2	4	Dri	300	0
R3	2	Dri/Rec	50	300
R4	4	Rec	0	50
R5	2	Rec	0	300

Active Shift/Flush Policy

- III. Active flush policy
 - —Flush policy applied only to active scan chains
 - —For **single chain** designs, identical to flush policy
- IV. Active minimum-shift policy
 - —Minimum shift policy applied only to active scan chains
 - —For **single chain** designs, identical to minimum-shift policy

Summary of Scan Application/Shift

		Test Ap	plication Schemes	
Number of Chains	Scan-Shift Policy	Combined (Test all kernels in one session; $N_{\text{vectors}} = \text{Max}\{N_k\})$	Overlapped (Test K kernels in K sessions; N _{vectors} =N ₁ ,N ₂ -N ₁ ,,N _k)	Isolated (Test one kernel per session)
	Flush (scan in/out into/from all FFs)			
One	Minimum-Shift (scan in/out into/from active driver/receiver FFs)		Minimum Overall Time	Has no advantage over other schemes/
	Active Flush (apply flush to active scan chains)			policies. It's not of interest.
Multiple	Active Minimum-Shift (apply minimum-shift to active scan chains)		Minimum Overall Time	

Comparison - Single Scan Chain Example

Reg.	Bits	Туре	DRW	RCW
R1	8	Dri	50	0
R2	4	Dri	300	0
R3	2	Dri/Rec	50	300
R4	4	Rec	0	50
R5	2	Rec	0	300

	Combined	Overlapped
Flush	6319	6319
Minimum- Shift	4 513	4013

- Shift Policy: Flush; Application Scheme: Combined
 - Time = $[n_{comb}(n_{sff}+1)]+(n_{sff}-1) = [300(20+1)]+(20-1) = 6319$
- Shift Policy: Flush; Application Scheme: Overlapped
 - Time = [50(20+1)+250(20+1)]+(20-1) = 6319
- Shift Policy: Minimum-Shift; Application Scheme: Combined
 - Time = [300(14+1)]+(14-1) = 4513session 1: max input/output scan shifts = $max\{14,8\} = 14$
- Shift Policy: Minimum Shift; Application Scheme: Overlapped
 - Time = [50(14+1)+250(12+1)]+(14-1) = 4013session 1: max input/output scan shifts (CLB₁ and CLB₂) = max{14,8} = 14 session 2: max input/output scan shifts (CLB₂) = max{12,8} = 12

Multiple Scan Chains

- This design has two chains
 - $-ScanChain_1$ with $SCL_1 = 12$
 - $-ScanChain_2$ with $SCL_2 = 8$
- Under overlapped test application
 - —For active flush policy

$$-SC^{AFlush}(TSes_1) = \max\{12,8\} = 12$$

- $-SC^{AFlush}(TSes_2) = 8$
- For active minimum-shift policy

$$-SC^{AMS}(TSes_1) = 8 \text{ and}$$
$$SC^{AMS}(TSes_2) = 4$$

Register	Bitwidth	Туре	DRW	RCW
R1	8	Pure Driver	50	0
R2	4	Pure Driver	300	0
R3	2	Driver/Receiver	50	300
R4	4	Pure Receiver	0	50
R5	2	Pure Receiver	0	300

Comparison - Multiple Scan Chain Example

Reg.	Bits	Туре	DRW	RCW
R1	8	Dri	50	0
R2	4	Dri	300	0
R3	2	Dri/Rec	50	300
R4	4	Rec	0	50
R5	2	Rec	0	300

	Combined	Overlapped
Flush	3911	2911
Minimum- Shift	2707	1707

- Shift Policy: Active Flush; Application Scheme: Combined
 - Time =[300(12+1)]+(12-1)=3911 (max $\{12,8\}=12$ is max length of active chains)
- Shift Policy: Active Flush; Application Scheme: Overlapped
 - Time= [50(12+1)+250(8+1)]+(12-1)=2911
- Shift Policy: Active Minimum-Shift; Application Scheme: Combined
 - Time= [300(8+1)]+(8-1)=2707session 1: max active scan shifts (ScanIn1 and ScanIn2)=max{max{8,4},max{6,4}}=8)
- Shift Policy: Active Minimum Shift; Application Scheme: Overlapped
 - Time= [50(8+1)+250(4+1)]+(8-1)=1707session 1: max active scan shifts (ScanIn1 and ScanIn2)=max{max{8,4},max{6,4}}=8 session 2: max active scan shifts (ScanIn2) = max{4,4}=4

Register Organization

- Organization of registers in a single chain depends upon
 - —The test application scheme
 - —Shift policy
 - —The characteristics of design, including
 - The numbers of tests required for each kernel
 - Sizes and driving/receiving weights of registers
 - —The key operation is ordering of registers in the chain
- Ordering of registers
 - —No impact for flush policy
 - —But has impact for minimum-shift policy

Register Organization – Single Chain #1

Reg.	Bits	Туре	DRW	RCW
R1	8	Dri	50	0
R2	4	Dri	300	0
R3	2	Dri/Rec	50	300
R4	4	Rec	0	50
R5	2	Rec	0	300

- Organization: overlapped test application and minimum-shift policy
 - In TSes1, 50 vectors applied to CLB1 and CLB2 (Kernels K1 and K2)
 - In TSes2, 250 vectors applied to CLB2 (Kernel K2)
 - AD(TSes1) = {R1, R2, R3}
 - AR(TSes1) = {R3, R4, R5}
 - $AD(TSes2) = \{R2\}$
 - AR(TSes2) = {R3, R5}
 - SC(TSes1) = max{14,8} = 14 and SC(TSes2) = max{12,8} = 12
 - Hence, test application time for this order of registers
 - Time = [50(14 + 1) + 250(12 + 1)] + (14 1) = 4013 clock cycles

Register Organization – Single Chain #2

Reg.	Bits	Туре	DRW	RCW
R1	8	Dri	50	0
R2	4	Dri	300	0
R3	2	Dri/Rec	50	300
R4	4	Rec	0	50
R5	2	Rec	0	300

- Organization: overlapped test application and minimumshift policy
 - In TSes1, 50 vectors applied to CLB1 and CLB2
 - In TSes2, 250 vectors applied to CLB2
 - $-SC(TSes1) = max\{18,8\} = 18 \text{ and } SC(TSes2) = max\{4,4\} = 4$
 - Hence, test application time for this order of registers

- Time =
$$[50(18 + 1) + 250(4 + 1)] + (18 - 1) = 2217$$
 clock cycles

Register Organization – Multiple Chains #1

Reg.	Bits	Туре	DRW	RCW
R1	8	Dri	50	0
R2	4	Dri	300	0
R3	2	Dri/Rec	50	300
R4	4	Rec	0	50
R5	2	Rec	0	300

- Organization: overlapped test application and minimumshift policy
 - TSes1: 50 vectors applied to CLB1 and CLB2
 - TSes2: 250 vectors applied to CLB2
 - SC1(TSes1)=max $\{8,4\}$ =8 and SC2(TSes1)=max $\{6,4\}$ =6 → SC(TSes1)=max $\{8,6\}$ =8
 - SC1(TSes2)= 0 (NOT ACTIVE), and SC2(TSes2)= $max\{4,4\}=4 \rightarrow SC(TSes2)=max\{0,4\}=4$
 - Hence, test application time for this order of registers
 - Time= [50(8+1)+250(4+1)]+(8-1)=1707 clock cycles

Register Organization – Multiple Chains #2

Reg.	Bits	Туре	DRW	RCW
R1	8	Dri	50	0
R2	4	Dri	300	0
R3	2	Dri/Rec	50	300
R4	4	Rec	0	50
R5	2	Rec	0	300

- Organization: overlapped test application and minimumshift policy
 - TSes1: 50 vectors applied to CLB1 and CLB2
 - TSes2: 250 vectors applied to CLB2
 - SC1(TSes1)=max $\{10,2\}$ =10 and SC2(TSes1)=max $\{4,6\}$ =6 \rightarrow SC(TSes1)=max $\{10,6\}$ =10
 - —SC1(TSes2)= $max{0,2}=2$ and SC2(TSes2)= $max{4,2}=4$ → SC(TSes2)=4
 - Hence, test application time for this order of registers
 - Time= [50(10+1)+250(4+1)]+(10-1)=1809 clock cycles

Register Organization – Multiple Chains #3

Reg.	Bits	Туре	DRW	RCW
R1	8	Dri	50	0
R2	4	Dri	300	0
R3	2	Dri/Rec	50	300
R4	4	Rec	0	50
R5	2	Rec	0	300

- Organization: overlapped test application and minimumshift policy
 - TSes1: 50 vectors applied to CLB1 and CLB2
 - TSes2: 250 vectors applied to CLB2
 - SC1(TSes1)=max{4,0}=4, SC2(TSes1)=max{2,4}=4 and SC3(TSes1)=max{8,4}=8 → SC(TSes1)=max{4,4,8}=8
 - SC1(TSes2)= $max\{4,0\}=4$, SC2(TSes2)= $max\{0,4\}=4$ and SC3(TSes2)=0 (NOT ACTIVE) → SC(TSes2)= $max\{4,4,0\}=4$
 - Hence, test application time for this order of registers
 - Time= [50(8+1)+250(4+1)]+(8-1)=1607 clock cycles

Importance of Registers Positions

- The shift-cycle depends on the position of the registers in the chain
 - —SCin(TSesi): The distance from ScanIn of the farthest driver that is active is TSesi
 - —SCout(TSesi): The distance from ScanOut of the farthest receiver that is active is TSesi
 - —SCMS(TSesi) = max{SCin(TSesi), SCout(TSesi)}

Guidelines for Register Organization

- Some simple rules
 - —Place drivers closer to ScanIn than receivers
 - —Place drivers with higher driving weights closer to ScanIn than drivers with lower driving weights
 - —Place receivers closer to ScanOut than drivers
 - Place receivers with higher receiving weights closer to ScanOut than receivers with lower receiving weights
- These are only guidelines and do not guarantee optimality.

Guidelines for Register Organization (cont.)

- Rules conflict if some registers are drivers as well as receivers
- Hence, in general, necessary to enumerate various orders of registers
- Complexity can be reduced by using interchange property
 - —If any scan chain contains R_i closer to ScanIn than R_j where $DRW_i <= DRW_j$ and $RCW_i >= RCW_j$, then interchange R_i and R_j provided
 - R_i is adjacent to R_j in the chain, or
 - $-LReg_i = LReg_i$

Special Cases

- Optimal ordering for special cases
 - —No driver-receivers
 - Order drivers in decreasing weights, followed by receivers in increasing weights
 - —All kernels require equal number of vectors
 - Pure drivers, followed by driver-receivers, followed by pure receivers
- For the general case, <u>implicitly</u> search all orders (utilize interchange property)

Guidelines for Multiple Scan Chains

- Organization of multiple scan chains
 - —Under the flush policy
 - Order of registers within a chain does not matter
 - The shift-cycle for any session is equal to the length of the longest chain
 - Hence, partition registers into multiple chains
 - + Of equal lengths (if possible)
 - + Or, if above not possible, then in such a manner that the length of the longest chain is minimized
 - —Under active flush methodology
 - Registers may be assigned in such a manner that one or more longer chains become inactive after the first few sessions

Example - Impact of Register Ordering

	ter		

- Pure Drivers
 - -DRW(R1)=50
 - -DRW(R2)=300
- Pure Receivers
 - -RCW(R4)=50
 - -RCW(R5)=300
- Driver & Receiver
 - -DRW(R3)=50
 - -RCW(R3)=300

Reg.	Bits	Туре	DRW	RCW
R1	8	Dri	50	0
R2	4	Dri	300	0
R3	2	Dri/Rec	50	300
R4	4	Rec	0	50
R5	2	Rec	0	300

- Organization: overlapped test application and minimum-shift policy
 - In TSes1, 50 vectors applied to CLB1 and CLB2 (Kernels K1 and K2)
 - In TSes2, 250 vectors applied to CLB2 (Kernel K2)
 - $SC(TSes1) = max\{14,8\} = 14$ and $SC(TSes2) = max\{12,8\} = 12$
- Hence, test application time for this order of registers
 - Time = [50(14 + 1) + 250(12 + 1)] + (14 1) = 4013 clock cycles

- Organization: overlapped test application and minimum-shift policy
 - In TSes1, 50 vectors applied to CLB1 and CLB2
 - In TSes2, 250 vectors applied to CLB2
 - $SC(TSes1) = max\{18,8\} = 18$ and $SC(TSes2) = max\{4,4\} = 4$
- Hence, test application time for this order of registers

- Time =
$$[50(18 + 1) + 250(4 + 1)]$$
70 + $(18 - 1)$ = 2217 clock cycles

Reconfigurable Chain

Reg.	Bits	Туре	DRW	RCW
R1	8	Dri	50	0
R2	4	Dri	300	0
R3	2	Dri/Rec	50	300
R4	4	Rec	0	50
R5	2	Rec	0	300

- The chains can be reconfigured to bypass inactive registers
 - This chain minimizes the shift cycle for TSes₁

- $-R_4$ is inactive in $TSes_2$ but prevents minimization of shift cycle in $TSes_2$
- This reconfigurable chain minimizes shift cycle for every session

