CMPT 379 Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

10/5/11

Parsing - Roadmap

- Parser:
 - decision procedure: builds a parse tree
- Top-down vs. bottom-up
- LL(1) Deterministic Parsing
 - recursive-descent
 - table-driven
- LR(k) Deterministic Parsing
 - LR(o), SLR(1), LR(1), LALR(1)
- Parsing arbitrary CFGs Polynomial time parsing

10/5/11

Top-Down vs. Bottom Up

Grammar: $S \rightarrow AB$ Input String: ccbca

 $A \rightarrow c \mid \epsilon$

 $B \rightarrow cbB \mid ca$

Top-Down/leftmost		Bottom-Up/rightmost		
$S \Rightarrow AB$	S→AB	ccbca ← Acbca	A→c	
⇒cB	A→c	← AcbB	B→ca	
⇒ ccbB	B→cbB	← AB	B→cbB	
⇒ccbca	B→ca	€ S	S→AB	

10/5/11 3

Top-Down: Backtracking

Backtracking

Transition Diagram

Predictive Top-Down Parser

- Knows which production to choose based on single lookahead symbol
- Need LL(1) grammars

First L: reads input Left to right
Second L: produce Leftmost derivation
one symbol of lookahead

- Can't have left-recursion
- Must be left-factored (no left-factors)
- Not all grammars can be made LL(1)

10/5/11

Leftmost derivation for id + id * id

$$E \rightarrow E + E \qquad E \Rightarrow E + E$$

$$E \rightarrow E * E \qquad \Rightarrow id + E$$

$$E \rightarrow (E) \qquad \Rightarrow id + E * E$$

$$E \rightarrow -E \qquad \Rightarrow id + id * E$$

$$E \rightarrow id \qquad \Rightarrow id + id * id$$

$$E \Rightarrow^*_{lm} id + E \setminus^* E$$

10/5/11 8

Predictive Parsing Table

Productions		
1	T → F T'	
2	Τ' → ε	
3	T' → * F T'	
4	F → id	
5	$\mathbf{F} \rightarrow (\mathbf{T})$	

	*	()	id	\$
T		T → F T'		T → F T'	
T'	T' → * F T'		Τ' → ε		Τ' → ε
F		$\mathbf{F} \rightarrow (\mathbf{T})$		F → id	

10/5/11

Stack	Input	Output
\$T	(id)*id\$	
\$T'F	(id)*id\$	T → F T '
\$T')T((id)*id\$	$\mathbf{F} \rightarrow (\mathbf{T})$
\$T')T	id)*id\$	
\$T')T'F	id)*id\$	T → F T '
\$T')T'id	id)*id\$	F → id
\$T')T')*id\$	
\$T'))*id\$	Τ' → ε

10/5/11 1

		*	()	id	\$
	T		T → FT'		T → FT'	
Trace "(id)*id"	T'	T'→*FT'		Τ' → ε		Τ' → ε
rrace (la) la	F		$\mathbf{F} \rightarrow (\mathbf{T})$		F → id	

Stack	Input	Output
\$T'	*id\$	
\$T'F*	*id\$	T' → * F T'
\$T'F	id\$	
\$T'id	id\$	F → id
\$T'	\$	
\$	\$	Τ' → ε

10/5/11

Table-Driven Parsing

```
stack.push($); stack.push(S);
a = input.read();
forever do begin
    X = stack.peek();
    if X = a and a = $ then return SUCCESS;
    elsif X = a and a != $ then
        pop X; a = input.read();
    elsif X != a and X ∈ N and M[X,a] then
        pop X; push right-hand side of M[X,a];
    else ERROR!
end
```

6

Predictive Parsing table

- Given a grammar produce the predictive parsing table
- We need to to know for all rules A $\rightarrow \alpha \mid \beta$ the lookahead symbol
- Based on the lookahead symbol the table can be used to pick which rule to push onto the stack
- This can be done using two sets: FIRST and FOLLOW

10/5/11

FIRST and FOLLOW

$$a \in \text{FIRST}(\alpha) \text{ if } \alpha \Rightarrow^* a\beta$$

if $\alpha \Rightarrow^* \epsilon \text{ then } \epsilon \in \text{FIRST}(\alpha)$
 $a \in \text{FOLLOW}(A) \text{ if } S \Rightarrow^* \alpha A a \beta$
 $a \in \text{FOLLOW}(A) \text{ if } S \Rightarrow^* \alpha A \gamma a \beta$

and $\gamma \Rightarrow^* \epsilon$

Conditions for LL(1)

- Necessary conditions:
 - no ambiguity
 - no left recursion
 - Left factored grammar
- A grammar G is LL(1) if whenever $A \rightarrow \alpha \mid \beta$
 - 1. First(α) \cap First(β) = \emptyset
 - 2. $\alpha \Rightarrow * \epsilon \text{ implies } !(\beta \Rightarrow * \epsilon)$
 - 3. $\alpha \Rightarrow * \epsilon \text{ implies First}(\beta) \cap \text{Follow}(A) = \emptyset$

10/5/11

ComputeFirst(α : string of symbols)

```
\label{eq:continuous_system} \begin{split} & \text{// assume } \alpha = X_1 \, X_2 \, X_3 \, \dots \, X_n \\ & \text{if } X_1 \! \in \! \textbf{T then } \mathsf{First}[\alpha] \coloneqq \{X_1\} \\ & \text{else begin} \\ & \text{i:=1; } \mathsf{First}[\alpha] \coloneqq \mathsf{ComputeFirst}(X_1) \! \setminus \! \{\epsilon\}; \\ & \text{while } X_i \! \Rightarrow^* \epsilon \; \textbf{do begin} \\ & \text{if } i < n \; \textbf{then} \\ & \text{First}[\alpha] \coloneqq \mathsf{First}[\alpha] \; \mathsf{U} \; \mathsf{ComputeFirst}(X_{i+1}) \! \setminus \! \{\epsilon\}; \\ & \text{else} \\ & \text{First}[\alpha] \coloneqq \mathsf{First}[\alpha] \; \mathsf{U} \; \{\epsilon\}; \\ & \text{i } \coloneqq \mathsf{i} + \mathsf{1}; \\ & \text{end} \\ & \text{end} \\ \end{split}
```

ComputeFirst(α : string of symbols)

```
// assume α = X_1 X_2 X_3 ... X_n

if X_1 ∈ T then First[α] := \{X_1\}

else begin

i:=1; First[α] := ComputeFirst(X_1) \setminus \{ε\};

while X_i ⇒ * ε do begin

if i < n then

First[α] := First[α] ∪ ComputeFirst(X_{i+1}) \setminus \{ε\};

else

First[α] := First[α] ∪ \{ε\};

i:= i + 1;

end

Recursion in computing FIRST causes problems when faced with recursive grammar rules
```

17

18

ComputeFirst; modified

```
foreach X \in T do First[X] := \{X\};

foreach p \in P : X \to \epsilon do First[X] := \{\epsilon\};

repeat foreach X \in N, p : X \to Y_1 Y_2 Y_3 ... Y_n do

begin i:=1;

while Y_i \Rightarrow * \epsilon and i <= n do begin

First[X] := First[X] \cup First[Y_i] \setminus \{\epsilon\};

i := i+1;

end

if i = n+1 then First[X] := First[X] \cup \{\epsilon\};

until no change in First[X] for any X;
```

ComputeFirst; modified

```
foreach X \in T do First[X] := X;

foreach p \in P : X \to \epsilon do First[X] := \{\epsilon\};

repeat foreach X \in N, p : X \to Y_1 Y_2 Y_3 ... Y_n do

begin i:=1;

while Y_i \Rightarrow^*

First[X] := Foreal Proof of the proof of
```

19

20

ComputeFollow

```
Follow(S) := \{\$\};

repeat

foreach p \in P do

    case p = A \rightarrow \alpha B\beta begin

    Follow[B] := Follow[B] U ComputeFirst(\beta)\{\epsilon};

    if \epsilon \in First(\beta) then

    Follow[B] := Follow[B] U Follow[A];

    end

    case p = A \rightarrow \alpha B

    Follow[B] := Follow[B] U Follow[A];

until no change in any Follow[N]
```

Example First/Follow

 $S \rightarrow AB$ $A \rightarrow c \mid \epsilon$ Not an LL(1) grammar $B \rightarrow cbB \mid ca$ First(A) = {c, \epsilon} Follow(A) = {c} First(B) = {c} Follow(A) \cap First(cbB) = First(c) = {c} First(ca) = {c} Follow(B) = {\$} First(S) = {c} Follow(S) = {\$}

21

ComputeFirst on Left-recursive Grammars

- ComputeFirst as defined earlier loops on leftrecursive grammars
- Here is an alternative algorithm for ComputeFirst
 - 1. Compute non left-recursive cases of FIRST
 - 2. Create a graph of recursive cases where FIRST of a non-terminal depends on another non-terminal
 - 3. Compute Strongly Connected Components (SCC)
 - 4. Compute FIRST starting from root of SCC to avoid cycles

ComputeFirst on Left-recursive Grammars

- Each Strongly Connected Component can have recursion
- But the connections between SCC means that (by defn) what we have now is a directed acyclic graph – hence without left recursion
- Unlike top-down LL parsing, bottom-up LR parsing allows left-recursive grammars, so this algorithm is useful for LR parsing

10/5/11 23

ComputeFirst on Left-recursive Grammars

- S → BD | D
- D → d | Sd

 $FIRST_0[A] := \{a, b\}$ $FIRST_0[C] := \{\}$ $FIRST_0[B] := \{b\}$ $FIRST_0[S] := \{b, d\}$

 $FIRST_0[D] := \{d\}$

• A → CB | a

• C → Bb | ε

• $B \rightarrow Ab \mid b$

Compute Strongly Connected Components

2 SCCs: e.g. consider B-A-C

 $\mathsf{FIRST}[\mathsf{B}] := \mathsf{FIRST}_0[\mathsf{B}] + \mathsf{FIRST}[\mathsf{A}]$

 $\mathsf{FIRST}[\mathsf{A}] := \mathsf{FIRST}_0[\mathsf{A}] + \mathsf{FIRST}[\mathsf{C}]$

 $FIRST[C] := FIRST_0[C] + FIRST_0[B]$

FIRST[C] := FIRST[C] + $\{\epsilon\}$

How to compute: Does $X \Rightarrow * \epsilon$?

• The question `Does X ⇒* ε?' can be written as the predicate: nullable(X)

```
Nullable = {} (set containing nullable non-terminals)
Changed = True
While (changed):
    changed = False
    if X is not in Nullable:
        if
        1. X \rightarrow \epsilon is in the grammar, or
        2. X \rightarrow Y_1 \dots Y_n is in the grammar and Y_i is in Nullable for all i then
        add X to Nullable; changed = True
```

10/5/11 25

Converting to LL(1)

```
S \rightarrow AB
                                 Note that grammar
  A \rightarrow c \mid \epsilon
                                 is regular: c? (cb)* ca
 B \rightarrow cbB \mid ca
c (c b c b ... c b) c a
                                      c c (b c b ... c b c) a
  (c b c b ... c b) c a
                                         (b c b ... c b c) a
                                          S \rightarrow cAa
          same as:
                                          A \rightarrow cB \mid B
             c c? (bc)* a
                                          B \rightarrow bcB \mid \epsilon
  10/5/11
                                                                    26
```

Verifying LL(1) using F/F sets

```
S \rightarrow cAa

A \rightarrow cB \mid B

B \rightarrow bcB \mid \epsilon

First(A) = {b, c, \varepsilon} Follow(A) = {a}

First(B) = {b, \varepsilon} Follow(B) = {a}

First(S) = {c} Follow(S) = {$}
```

10/5/11 27

Building the Parse Table

- Compute First and Follow sets
- For each production A $\rightarrow \alpha$
 - foreach a ∈ First(α) add A \rightarrow α to M[A,a]
 - If ε ∈ First(α) add A → α to M[A,b] for each b in Follow(A)
 - If ε ∈ First(α) add A → α to M[A,\$] if \$ ∈ Follow(α)
 - All undefined entries are errors

Predictive Parsing Table

l	Productions			
1	T → F T'			
2	Τ' → ε			
3	T' → * F T'			
4	F → id			
5	$\mathbf{F} \rightarrow (\mathbf{T})$			

$FIRST(T) = \{id, (\}$
$FIRST(T') = \{*, \epsilon\}$
$FIRST(F) = \{id, (\}$

$FOLLOW(T) = \{\$, \}$
$FOLLOW(T') = \{\$,\}$
$FOLLOW(F) = \{*,\$,\}$

	*	()	id	\$
T		T → F T'		T → F T'	
T'	T' → * F T'		Τ' → ε		Τ' → ε
F		$\mathbf{F} \rightarrow (\mathbf{T})$		F → id	

10/5/11

Revisit conditions for LL(1)

- A grammar G is LL(1) iff whenever A $\rightarrow \alpha \mid \beta$
 - 1. First(α) \cap First(β) = \emptyset
 - 2. $\alpha \Rightarrow * \epsilon \text{ implies } !(\beta \Rightarrow * \epsilon)$
 - 3. $\alpha \Rightarrow * \varepsilon \text{ implies First}(\beta) \cap \text{Follow}(A) = \emptyset$
- No more than one entry per table field

Error Handling

- Reporting & Recovery
 - Report as soon as possible
 - Suitable error messages
 - Resume after error
 - Avoid cascading errors
- Phrase-level vs. Panic-mode recovery

10/5/11

Panic-Mode Recovery

- Skip tokens until synchronizing set is seen
 - Follow(A)
 - garbage or missing things after
 - Higher-level start symbols
 - First(A)
 - garbage before
 - Epsilon
 - if nullable
 - Pop/Insert terminal
 - "auto-insert"
- Add "synch" actions to table

Summary so far

- LL(1) grammars, necessary conditions
 - No left recursion
 - Left-factored
- Not all languages can be generated by LL(1) grammar
- LL(1) Parsing: O(n) time complexity
 - recursive-descent and table-driven predictive parsing
- LL(1) grammars can be parsed by simple predictive recursive-descent parser
- Alternative: table-driven top-down parser