Student: Arfaz Hossain	Instructor: Muhammad Awais	Assignment: HW-6 [Sections 10.4, 10.5]
Date: 03/07/22	Course: Math 101 A04 Spring 2022	& 10.6]

Does the series defined below converge or diverge? Give reasons for your answer.

$$a_1 = 6$$
, $a_{n+1} = \frac{6}{n}a_n$

Let $\sum a_n$ be any series and suppose that $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho$. The Ratio Test states that the series converges absolutely if ρ < 1 and diverges if ρ > 1 or ρ is infinite. The test is inconclusive if ρ = 1.

Substitute in the appropriate symbolic terms of the series into the limit for the Ratio Test and simplify the expression.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{6}{n} a_n}{a_n} \right|$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{6}{n} \right|$$

Evaluate
$$\lim_{n\to\infty} \left| \frac{6}{n} \right|$$
.

$$\lim_{n \to \infty} \left| \frac{6}{n} \right| = 0$$

Thus, $\rho = 0$. This means that the given series converges absolutely by the Ratio Test, and so it converges.