Theory of Computation

Lambda Calculus (LC)

Dr Shekhar "Shakes" Chandra

V1.0

"Computing Science is no more about computers than Astronomy is about telescopes."

(1930-2002)

Getting Help

Post questions on Piazza Signup here

All lecturers and most tutors are monitoring this forum!

If it is a private matter or related to a personal issue

Dr Shekhar "Shakes" Chandra shekhar.chandra@uq.edu.au

Code for Piazza: Godel

Overview

- Previous Module Summary
- Subject Map
- Relevant Chapters
- What is required of You!
- Upon completion ...

What did we do last time?

- We saw how chaotic systems create fractals
- We saw how cellular automation produces chaotic behaviour
- We then covered different cellular automations including the Game of Life (GoL)
- We found that it is possible to create a Turing machine based on the GoL by constructing a kind of circuitry out of the gliders and spaceships within GoL

Prescribed & Recommended Texts

<u>Cristopher Moore</u> and <u>Stephan Mertens</u> (2011).

<u>The Nature of Computation</u>
Oxford University Press.

[eBook – UQ Library]
Chapter 7

Raul Rojas **(2015).**A Tutorial Introduction to the Lambda Calculus

[arxiv.org]

Shakes Chandra (????).
Modern Computation
Chapter 5
[See Blackboard]

What is required of You!

- Read Shakes' Notes on Lambda Calculus (~60 mins)
- Read Rojas' Introduction to LC (~60 mins)
- Read Moore and Mertens Chapter 7, section 7.4 (~ 2-3 Hours)
- Review the demonstrations and examples conducted during the lectures. (~15 mins each lecture)
- Attempt the tutorial and notebook demos

Upon completion, you should be able to:

- Beta reduce lambda expressions
- Explain Church encoding and describe how to build
 - Boolean algebra in LC
 - Numbers in LC
 - Counting in LC
 - Arithmetic in LC
- Define what a combinator is and describe the role and form of the various special combinators covered in the course.
- Understand and explain the Y combinator, especially in the context of Turing completeness and in implementing the factorial function in LC

What's Next?

Next we will see what the future of computation holds for us! Can we use the quantum realm, the science of the very tiny (<10⁻¹⁰m), to create bizarre computers that can function over large distances faster than light or break RSA encryption nearly instantly?!

Thank you

Dr Shekhar "Shakes" Chandra | Lecturer School of Information Technology and Electrical Engineering shekhar.chandra@uq.edu.au +61 7 3365 8359

@shakes76

shekhar-s-chandra