

INFORMATION DISCLOSURE STATEMENT BY APPLICANT		Application No.	09/447,227
		Filing Date	November 22, 1999
		First Named Inventor	Mark C. Shults
		Art Unit	3735
(Multiple sheets used when necessary)		Examiner	Nasser, Robert L.
SHEET 1 OF 18		Attorney Docket No.	DEXCOM.008DV1

U.S. PATENT DOCUMENTS					
Examiner Initials	Cite No.	Document Number <i>Number - Kind Code (if known)</i> Example: 1,234,567 B1	Publication Date MM-DD-YYYY	Name of Patentee or Applicant	Pages, Columns, Lines Where Relevant Passages or Relevant Figures Appear

FOREIGN PATENT DOCUMENTS						
Examiner Initials	Cite No.	Foreign Patent Document <i>Country Code-Number-Kind Code</i> Example: JP 1234567 A1	Publication Date MM-DD-YYYY	Name of Patentee or Applicant	Pages, Columns, Lines Where Relevant Passages or Relevant Figures Appear	T ¹

NON PATENT LITERATURE DOCUMENTS							
Examiner Initials	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.					T ¹
	1	Aalders et al. 1991. Development of a wearable glucose sensor; studies in healthy volunteers and in diabetic patients. The International Journal of Artificial Organs 14(2):102-108					
	2	Abe et al. 1992. Characterization of glucose microsensors for intracellular measurements. Alan. Chem. 64(18):2160-2163					
	3	Abel et al. 1984. Experience with an implantable glucose sensor as a prerequisite of an artifical beta cell, Biomed. Biochim. Acta 43(5):577-584					
	4	Abel et al. 2002. Biosensors for in vivo glucose measurement: can we cross the experimental stage. Biosens Bioelectron 17:1059-1070					
	5	Amin et al. 2003. Hypoglycemia prevalence in prepubertal children with type 1 diabetes on standard insulin regimen: Use of continuous glucose monitoring system. Diabetes Care 26(3):662-667					
	6	Asberg et al. 2003. Hydrogels of a Conducting Conjugated Polymer as 3-D Enzyme Electrode. Biosensors Bioelectronics. pp. 199-207					
	7	Atanasov et al. 1994. Biosensor for continuous glucose monitoring. Biotechnology and Bioengineering 43:262-266					
	8	Atanasov et al. 1997. Implantation of a refillable glucose monitoring-telemetry device. Biosens Bioelectron 12:669-680					
	9	Bailey et al. 2007. Reduction in hemoglobin A1c with real-time continuous glucose monitoring: results from a 12-week observational study. Diabetes Technology & Therapeutics 9(3):203-210					
	10	Beach et al. 1999. Subminiature implantable potentiostat and modified commercial telemetry device for remote glucose monitoring. IEEE Transactions on Instrumentation and Measurement 48(6):1239-1245					
	11	Bessman et al., Progress toward a glucose sensor for the artificial pancreas, Proceedings of a Workshop on Ion-Selective Microelectrodes, June 4-5, 1973, Boston, MA, 189-197					

Examiner Signature	Date Considered
--------------------	-----------------

***Examiner:** Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

T¹ - Place a checkmark in this area when an English language translation is attached. /B.N./

INFORMATION DISCLOSURE STATEMENT BY APPLICANT		Application No.	09/447,227
		Filing Date	November 22, 1999
		First Named Inventor	Mark C. Shults
		Art Unit	3735
<i>(Multiple sheets used when necessary)</i>		Examiner	Nasser, Robert L.
SHEET 2 OF 18		Attorney Docket No.	DEXCOM.008DV1

NON PATENT LITERATURE DOCUMENTS

Examiner Initials	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T ¹
	12	Biermann et al. 2008. How would patients behave if they were continually informed of their blood glucose levels? A simulation study using a "virtual" patient. Diab. Thechnol. & Therapeut., 10:178-187.	
	13	Bindra et al. 1989. Pulsed amperometric detection of glucose in biological fluids at a surface-modified gold electrode. Anal Chem 61:2566-2570	
	14	Bisenberger et al. 1995. A triple-step potential waveform at enzyme multisensors with thick-film gold electrodes for detection of glucose and sucrose. Sensors and Actuators, B 28:181-189	
	15	Bland et al. 1990. A note on the use of the intraclass correlation coefficient in the evaluation of agreement between two methods of measurement. Comput. Biol. Med. 20(5):337-340	
	16	Bode et al. 1999. Continuous glucose monitoring used to adjust diabetes therapy improves glycosylated hemoglobin: A pilot study. Diabetes Research and Clinical Practice 46:183-190	
	17	Bode et al. 2000. Using the continuous glucose monitoring system to improve the management of type 1 diabetes. Diabetes Technology & Therapeutics, 2(Suppl 1):S43-48	
	18	Bode, B. W. 2000. Clinical utility of the continuous glucose monitoring system. Diabetes Technol Ther, 2(Suppl 1):S35-41	
	19	Boland et al. 2001. Limitations of conventional methods of self-monitoring of blood glucose. Diabetes Care 24(11):1858-1862	
	20	Bowman, L.; Meindl, J. D. 1986. The packaging of implantable integrated sensors. IEEE Trans Biomed Eng BME33(2):248-255	
	21	Brauker et al. 1998. Sustained expression of high levels of human factor IX from human cells implanted within an immunoisolation device into athymic rodents. Hum Gene Ther 9:879-888	
	22	Brauker et al. 2001. Unraveling Mysteries at the Biointerface: Molecular Mediator of Inhibition of Blood vessel Formation in the Foreign Body Capsule Revealed. Surfacts Biomaterials 6. 1;5	
	23	Braunwald, 2008. Biomarkers in heart failure. N. Engl. J. Med., 358: 2148-2159.	
	24	Bremer et al. 2001. Benchmark data from the literature for evaluation of new glucose sensing technologies. Diabetes Technology & Therapeutics 3(3):409-418	
	25	Bruckel et al. 1989. In vivo measurement of subcutaneous glucose concentrations with an enzymatic glucose sensor and a wick method. Klin Wochenschr 67:491-495	
	26	Brunner et al. 1998. Validation of home blood glucose meters with respect to clinical and analytical approaches. Diabetes Care 21(4):585-590	
	27	Cai et al. 2004. A wireless, remote query glucose biosensor based on a pH-sensitive polymer. Anal Chem 76(4):4038-4043	
	28	Campanella et al. 1993. Biosensor for direct determination of glucose and lactate in undiluted biological fluids. Biosensors & Bioelectronics 8:307-314	

Examiner Signature	Date Considered
--------------------	-----------------

***Examiner:** Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

T¹ - Place a checkmark in this area when an English language translation is attached. /B.N./

INFORMATION DISCLOSURE STATEMENT BY APPLICANT		Application No.	09/447,227
		Filing Date	November 22, 1999
		First Named Inventor	Mark C. Shults
		Art Unit	3735
<i>(Multiple sheets used when necessary)</i>		Examiner	Nasser, Robert L.
SHEET 3 OF 18		Attorney Docket No.	DEXCOM.008DV1

NON PATENT LITERATURE DOCUMENTS			
Examiner Initials	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T ¹
	29	Candas et al (1994). "An adaptive plasma glucose controller basedon a nonlinear insulin/glucose model." <i>IEEE Transactions on Biomedical Engineering</i> , 41 (2): 116-124.	
	30	Cassidy et al., April 1993. Novel electrochemical device for the detection of cholesterol or glucose, <i>Analyst</i> , 118:415-418	
	31	Cellulose Acetate Product Description, Product No. 419028, Sigma-Aldrich Corp., St. Louis, MO. 2005	
	32	Chase et al. 2001. Continuous subcutaneous glucose monitoring in children with type 1 diabetes. <i>Pediatrics</i> 107:222-226	
	33	Chen et al. 2006. A noninterference polypyrrole glucose biosensor. <i>Biosensors and Bioelectronics</i> 22:639-643	
	34	Ciba® Irgacure 2959 Photoinitiator Product Description, Ciba Specialty Chemicals Inc., Basel, Switzerland.	
	35	Claremont et al. 1986. Subcutaneous implantation of a ferrocene-mediated glucose sensor in pigs. <i>Diabetologia</i> 29:817-821	
	36	Claremont et al. July 1986. Potentially-impltable, ferrocene-mediated glucose sensor. <i>J. Biomed. Eng.</i> 8:272-274	
	37	Clark et al. 1987. Configurational cyclic voltammetry: increasing the specificity and reliability of implanted electrodes, <i>IEEE/Ninth Annual Conference of the Engineering in Medicine and Biology Society</i> , pp. 0782-0783	
	38	Clark et al. 1988. Long-term stability of electroenzymatic glucose sensors implanted in mice. <i>Trans Am Soc Artif Intern Organs</i> 34:259-265	
	39	Clark et al., 1981. One-minute electrochemical enzymic assay for cholesterol in biological materials, <i>Clin. Chem.</i> 27(12):1978-1982	
	40	CLSI. <i>Performance metrics for continuous interstitial glucose monitoring; approved guideline</i> , CLSI document POCT05-A. Wayne, PA: Clinical and Laboratory Standards Institute: 2008 28(33), 72 pp.	
	41	Colangelo et al. 1967. Corrosion rate measurements in vivo, <i>Journal of Biomedical Materials Research</i> , 1:405-414	
	42	Colowick et al. 1976. Methods in Enzymology, Volume XLIV, Immobilized Enzymes. New York: Academic Press	
	43	Cox et al. 1985. Accuracy of perceiving blood glucose in IDDM. <i>Diabetes Care</i> 8(6):529-536	
	44	Csoregi et al., 1994. Design, characterization, and one-point in vivo calibration of a subcutaneously implanted glucose electrode. <i>Anal Chem.</i> 66(19):3131-3138	
	45	Dai et al. 1999. Hydrogel Membranes with Mesh Size Asymmetry Based on the Gradient Crosslink of Poly(vinyl alcohol). <i>Journal of Membrane Science</i> 156:67-79	

Examiner Signature	Date Considered
--------------------	-----------------

***Examiner:** Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

T¹ - Place a checkmark in this area when an English language translation is attached. /B.N./

INFORMATION DISCLOSURE STATEMENT BY APPLICANT		Application No.	09/447,227
<i>(Multiple sheets used when necessary)</i>		Filing Date	November 22, 1999
SHEET 4 OF 18		First Named Inventor	Mark C. Shults
		Art Unit	3735
		Examiner	Nasser, Robert L.
		Attorney Docket No.	DEXCOM.008DV1

NON PATENT LITERATURE DOCUMENTS

Examiner Initials	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T ¹
	46	Danielsson et al. 1988. Enzyme thermistors, Methods in Enzymology, 137:181-197	
	47	D'Arrigo et al. 2003. Porous-Si based bioreactors for glucose monitoring and drugs production. Proc. of SPIE 4982:178-184	
	48	Dassau et al., In silico evaluation platform for artifical pancreatic β-cell development-a dynamic simulator for closed loop control with hardware-in-the-loop, Diabetes Technology & Therapeutics, 11(3):1-8, 2009	
	49	Davis et al. 1983. Bioelectrochemical fuel cell and sensor based on a quinoprotein, alcohol dehydrogenase. <i>Enzyme Microb. Technol.</i> , Vol. 5, September, 383-388	
	50	Dixon et al. 2002. Characterization in vitro and in vivo of the oxygen dependence of an enzyme/polymer biosensor for monitoring brain glucose. Journal of Neuroscience Methods 119:135-142	
	51	Durliat et al. 1976. Spectrophotometric and electrochemical determinations of L(+)-lactate in blood by use of lactate dehydrogenase from yeast, Clin. Chem. 22(11):1802-1805	
	52	Edwards Lifesciences. Accuracy for your and your patients. Marketing materials, 4 pp. 2002	
	53	EI Degheidy et al. 1986. Optimization of an implantable coated wire glucose sensor. J. Biomed Eng. 8: 121-129	
	54	EI-Khatib et al. 2007. Adaptive closed-loop control provides blood-glucose regulation using dual subcutaneous insulin and glucagon infusion in diabetic swine, Journal of Diabetes Science and Technology, 1(2):181-192	
	55	EI-Sa'ad et al. 1990. Moisture Absorption by Epoxy Resins: the Reverse Thermal Effect. Journal of Materials Science 25:3577-3582	
	56	Ernst et al. 2002. Reliable glucose monitoring through the use of microsystem technology. Anal. Bioanal. Chem. 373:758-761	
	57	Fahy et al., An analysis: hyperglycemic intensive care patients need continuous glucose monitoring-- easier said than done, Journal of Diabetese Science and Technology, 2(2):201-204, March 2008	
	58	Fare et al. 1998. Functional characterization of a conducting polymer-based immunoassay system. Biosensors & Bioelectronics 13(3-4):459-470	
	59	Feldman et al. 2003. A continuous glucose sensor based on wired enzyme technology -- results from a 3-day trial in patients with type 1 diabetes. Diabetes Technol Ther 5(5):769-779	
	60	Fischer et al. 1987. Assessment of subcutaneous glucose concentration: validation of the wick technique as a reference for implanted electrochemical sensors in normal and diabetic dogs, Diabetologia 30:940-945	
	61	Fischer et al. 1995. Hypoglycaemia-warning by means of subcutaneous electrochemical glucose sensors: an animal study, Horm. Metab. Rese. 27:53	

Examiner Signature	Date Considered
--------------------	-----------------

***Examiner:** Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

T¹ - Place a checkmark in this area when an English language translation is attached. /B.N./

INFORMATION DISCLOSURE STATEMENT BY APPLICANT		Application No.	09/447,227
(Multiple sheets used when necessary)		Filing Date	November 22, 1999
SHEET 5 OF 18		First Named Inventor	Mark C. Shults
		Art Unit	3735
		Examiner	Nasser, Robert L.
		Attorney Docket No.	DEXCOM.008DV1

NON PATENT LITERATURE DOCUMENTS

Examiner Initials	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T ¹
	62	Frost et al. 2002. Implantable chemical sensors for real-time clinical monitoring: Progress and challenges. Current Opinion in Chemical Biology 6:633-641	
	63	Gabbay et al. 2008. Optical coherence tomography-based continuous noninvasive glucose monitoring in patients with diabetes. Diab. Thechnol. & Therapeut., 10:188-193.	
	64	Ganesan et al., Gold layer-based dual crosslinking procedure of glucose oxidase with ferrocene monocarboxylic acid provides a stable biosensor, Analytical Biochemistry 343:188-191, 2005	
	65	Ganesh et al., Evaluation of the VIA® blood chemistry monitor for glucose in healthy and diabetic volunteers, Journal of Diabetes Science and Technology, 2(2):182-193, March 2008	
	66	Garg et al. 2004. Improved Glucose Excursions Using an Implantable Real-Time continuous Glucose Sensor in Adults with Type I Diabetes. Diabetes Care 27:734-738	
	67	Geller et al. 1997. Use of an immunoisolation device for cell transplantation and tumor immunotherapy. Ann NY Acad Sci 831:438-451	
	68	Gerritsen et al. 1999. Performance of subcutaneously implanted glucose sensors for continuous monitoring. The Netherlands Journal of Medicine 54:167-179	
	69	Gerritsen et al. 2001. Influence of inflammatory cells and serum on the performance of implantable glucose sensors. J Biomed Mater Res 54:69-75	
	70	Gerritsen, M. 2000. Problems associated with subcutaneously implanted glucose sensors. Diabetes Care 23(2):143-145	
	71	Gilligan et al. 2004, Feasibility of continuous long-term glucose monitoring from a subcutaneous glucose sensor in humans. Diabetes Technol Ther 6:378-386	
	72	Godslan et al. 2001. Maximizing the Success Rate of Minimal Model Insulin Sensitivity Measurement in Humans: The Importance of Basal Glucose Levels. The Biochemical Society and the Medical Research Society, 1-9	
	73	Gouda et al., July 4, 2003. Thermal inactivation of glucose oxidase, The Journal of Biological Chemistry, 278(27):24324-24333	
	74	Gough et al. 2000. Immobilized glucose oxidase in implantable glucose sensor technology. Diabetes Technology & Therapeutics 2(3):377-380	
	75	Gough et al. 2003. Frequency characterization of blood glucose dynamics. Annals of Biomedical Engineering 31:91-97	
	76	Gregg et al. 1990. Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Biosensor Applications. Anal. Chem. 62:258-263	
	77	Gross et al. 2000. Efficacy and reliability of the continuous glucose monitoring system. Diabetes Technology & Therapeutics, 2(Suppl 1):S19-26	
	78	Gross et al. 2000. Performance evaluation of the MiniMed® continuous glucose monitoring system during patient home use. Diabetes Technology & Therapeutics 2(1):49-56	

Examiner Signature	Date Considered
--------------------	-----------------

***Examiner:** Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

T¹ - Place a checkmark in this area when an English language translation is attached. /B.N./

INFORMATION DISCLOSURE STATEMENT BY APPLICANT		Application No.	09/447,227
<i>(Multiple sheets used when necessary)</i>		Filing Date	November 22, 1999
SHEET 6 OF 18		First Named Inventor	Mark C. Shults
		Art Unit	3735
		Examiner	Nasser, Robert L.
		Attorney Docket No.	DEXCOM.008DV1

NON PATENT LITERATURE DOCUMENTS

Examiner Initials	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T ¹
	79	Guerci et al., Clinical performance of CGMS in type 1 diabetic patients treated by continuous subcutaneous insulin infusion using insulin analogs, <i>Diabetes Care</i> , 26:582-589, 2003	
	80	Hall et al. 1998. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part II: Effect of potential. <i>Electrochimica Acta</i> 43(14-15):2015-2024	
	81	Hall et al. 1998. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part I: An adsorption-controlled mechanism. <i>Electrochimica Acta</i> , 43(5-6):579-588	
	82	Hall et al. 1999. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part III: Effect of temperature. <i>Electrochimica Acta</i> , 44:2455-2462	
	83	Hall et al. 1999. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part IV: Phosphate buffer dependence. <i>Electrochimica Acta</i> , 44:4573-4582	
	84	Hall et al. 2000. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part V: Inhibition by chloride. <i>Electrochimica Acta</i> , 45:3573-3579	
	85	Hashiguchi et al. (1994). "Development of a miniaturized glucose monitoring system by combining a needle-type glucose sensor with microdialysis sampling method: Long-term subcutaneous tissue glucose monitoring in ambulatory diabetic patients," <i>Diabetes Care</i> , 17(5): 387-396.	
	86	Heller, A. 1999. Implanted electrochemical glucose sensors for the management of diabetes. <i>Annu Rev Biomed Eng</i> 1:153-175	
	87	Heller, A. 2003. Plugging metal connectors into enzymes. <i>Nat Biotechnol</i> 21:631-2	
	88	Hitchman, M. L. 1978. Measurement of Dissolved Oxygen. In Elving et al. (Eds.). <i>Chemical Analysis</i> , Vol. 49, Chap. 3, pp. 34-49, 59-123. New York: John Wiley & Sons.	
	89	Hrapovic et al. 2003. Picoamperometric detection of glucose at ultrasmall platinum-based biosensors: preparation and characterization. <i>Anal Chem</i> 75:3308-3315	
	90	http://www.merriam-webster.com/dictionary , definition for "aberrant," 8/19/2008, page 1	
	91	Huang et al. A 0.5mV passive telemetry IC for biomedical applications. Swiss Federal Institute of Technology. 4 pp.	
	92	Huang et al. August 1975. Electrochemical Generation of Oxygen. 1: The Effects of Anions and Cations on Hydrogen Chemisorption and Aniodic Oxide Film Formation on Platinum Electrode. 2: The Effects of Anions and Cations on Oxygen Generation on Platinum Electrode, pp 1-116,	
	93	Hunter et al. 2000. Minimally Invasive Glucose Sensor and Insulin Delivery System. MIT Home Automation and Healthcare Consortium. Progress Report No. 25	
	94	Ishikawa et al. 1998. Initial evaluation of a 290-mm diameter subcutaneous glucose sensor: Glucose monitoring with a biocompatible, flexible-wire, enzyme-based amperometric microsensor in diabetic and nondiabetic humans. <i>Journal of Diabetes and Its Complications</i> , 12:295-301	

Examiner Signature	Date Considered
--------------------	-----------------

***Examiner:** Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹ - Place a checkmark in this area when an English language translation is attached. /B.N./

INFORMATION DISCLOSURE STATEMENT BY APPLICANT		Application No.	09/447,227
(Multiple sheets used when necessary)		Filing Date	November 22, 1999
SHEET 7 OF 18		First Named Inventor	Mark C. Shults
		Art Unit	3735
		Examiner	Nasser, Robert L.
		Attorney Docket No.	DEXCOM.008DV1

NON PATENT LITERATURE DOCUMENTS

Examiner Initials	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T ¹
	95	Jensen et al. 1997. Fast wave forms for pulsed electrochemical detection of glucose by incorporation of reductive desorption of oxidation products. <i>Analytical Chemistry</i> 69(9):1776-1781	
	96	Jeutter, D. C. 1982. A transcutaneous implanted battery recharging and biotelemeter power switching system. <i>IEEE Trans Biomed Eng</i> 29:314-321	
	97	Jovanovic, L. 2000. The role of continuous glucose monitoring in gestational diabetes mellitus. <i>Diabetes Technology & Therapeutics</i> , 2 Suppl 1, S67-71	
	98	Kacaniklic May-June 1994. <i>Electroanalysis</i> , 6(5-6):381-390	
	99	Kamath et al. Calibration of a continuous glucose monitor: effect of glucose rate of change, Eighth Annual Diabetes Technology Meeting, November 13-15 2008, p. A88	
	100	Kang et al. 2003. In vitro and short-term in vivo characteristics of a Kel-F thin film modified glucose sensor. <i>Anal Sci</i> 19:1481-1486	
	101	Kargol et al. 2001. Studies on the structural properties of porous membranes: measurement of linear dimensions of solutes. <i>Biophys Chem</i> 91:263-271	
	102	Karube et al. 1993. Microbiosensors for acetylcholine and glucose. <i>Biosensors & Bioelectronics</i> 8:219-228	
	103	Kaufman et al. 2001. A pilot study of the continuous glucose monitoring system. <i>Diabetes Care</i> 24(12):2030-2034	
	104	Kaufman. 2000. Role of the continuous glucose monitoring system in pediatric patients. <i>Diabetes Technology & Therapeutics</i> 2(1):S-49 - S-52	
	105	Keedy et al. 1991. Determination of urate in undiluted whole blood by enzyme electrode. <i>Biosensors & Bioelectronics</i> , 6: 491-499	
	106	Kerner et al. 1988. A potentially implantable enzyme electrode for amperometric measurement of glucose, <i>Horm Metab Res Suppl</i> . 20:8-13	
	107	Kiechle, F.L. 2001. The impact of continuous glucose monitoring on hospital point-of-care testing programs. <i>Diabetes Technol Ther</i> 3:647-649	
	108	Klueh et al. 2003. Use of Vascular Endothelia Cell Growth Factor Gene Transfer To Enhance Implantable Sensor Function in Vivo, <i>Biosensor Function and Vegf-Gene Transfer</i> , pp. 1072-1086	
	109	Klueh et al. 2007. Inflammation and glucose sensors: use of dexamethasone to extend glucose sensor function and life span in vivo. <i>Journal of Diabetes Science and Technology</i> 1(4):496-504	
	110	Kondo et al. 1982. A miniature glucose sensor, implantable in the blood stream. <i>Diabetes Care</i> . 5(3):218-221	
	111	Koschinsky et al. 1988. New approach to technical and clinical evaluation of devices for self-monitoring of blood glucose. <i>Diabetes Care</i> 11(8): 619-619	

Examiner Signature	Date Considered
--------------------	-----------------

***Examiner:** Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

T¹ - Place a checkmark in this area when an English language translation is attached. /B.N./

INFORMATION DISCLOSURE STATEMENT BY APPLICANT		Application No.	09/447,227
<i>(Multiple sheets used when necessary)</i>		Filing Date	November 22, 1999
SHEET 8 OF 18		First Named Inventor	Mark C. Shults
		Art Unit	3735
		Examiner	Nasser, Robert L.
		Attorney Docket No.	DEXCOM.008DV1

NON PATENT LITERATURE DOCUMENTS

Examiner Initials	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T ¹
	112	Koschinsky et al. 2001. Sensors for glucose monitoring: Technical and clinical aspects. Diabetes Metab. Res. Rev. 17:113-123	
	113	Kost et al. 1985. Glucose-sensitive membranes containing glucose oxidase: activitiy, swelling, and permeability studies, Journal of Biomedical Materials Research 19:1117-1133	
	114	Koudelka et al. 1989. In vivo response of microfabricated glucose sensors to glycemia changes in normal rats. Biomed Biochim Acta 48(11-12):953-956	
	115	Koudelka et al. 1991. In-vivo behaviour of hypodermically implanted microfabricated glucose sensors. Biosensors & Bioelectronics 6:31-36	
	116	Kraver et al. 2001. A mixed-signal sensor interface microinstrument. Sensors and Actuators A 91:266-277	
	117	Kruger et al. 2000. Psychological motivation and patient education: A role for continuous glucose monitoring. Diabetes Technology & Therapeutics, 2(Suppl 1):S93-97	
	118	Kulys et al., 1994. Carbon-paste biosensors array for long-term glucose measurement, Biosensors& Beioelectronics, 9:491-500	
	119	Kunjan et al., Automated blood sampling and glucuse sensing in critical care settings, Journal of Diabetes Science and Technology 2(3):194-200, March 2008	
	120	Kunzler et al. 1993. Hydrogels based on hydrophilic side chain siloxanes. Poly Mat Sci and Eng 69:226-227	
	121	Kunzler et al. 21 August 1995. Contact lens materials. Chemistry & Industry. 651-655	
	122	Kurtz et al. 2005. Recommendations for blood pressure measurement in humans and experimental animals, Part 2: Blood pressure measurement in experimental animals, A statement for professionals from the subcommittee of professional and public education of the American Heart Association Council on High Blood Pressure Research. Hypertension 45:299-310	
	123	Ladd et al., Structure Determination by X-ray Crystallography, 3rd ed. Plenum, 1996, Ch. 1, pp. xxii-xxiv and 1-58	
	124	Lee et al. 1999. Effects of pore size, void volume, and pore connectivity on tissue responses. Society for Biomaterials 25th Annual Meeting, 171	
	125	Lehmann et al. May 1994. Retrospective valication of a physiological model of glucose-iunsulin interraction in tyhpe 1 diabetes mellitus, Med. Eng. Phys. 16:193-202	
	126	Lerner et al. 1984. An implantable electrochemical glucose sensor. Ann. N. Y. Acad. Sci. 428:263-278	
	127	Lewandowski et al. 1988. Evaluation of a miniature blood glucose sensor. Trans Am Soc Artif Intern Organs 34:255-258	
	128	Leypoldt et al. 1984. Model of a two-substrate enzyme electrode for glucose. Anal. Chem. 56:2896-2904	

Examiner Signature	Date Considered
--------------------	-----------------

***Examiner:** Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

T¹ - Place a checkmark in this area when an English language translation is attached. /B.N./

INFORMATION DISCLOSURE STATEMENT BY APPLICANT		Application No.	09/447,227
		Filing Date	November 22, 1999
		First Named Inventor	Mark C. Shults
		Art Unit	3735
<i>(Multiple sheets used when necessary)</i>		Examiner	Nasser, Robert L.
SHEET 9 OF 18		Attorney Docket No.	DEXCOM.008DV1

NON PATENT LITERATURE DOCUMENTS

Examiner Initials	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T ¹
	129	Linke et al. 1994. Amperometric biosensor for in vivo glucose sensing based on glucose oxidase immobilized in a redox hydrogel. Biosensors & Bioelectronics 9:151-158	
	130	Lowe, 1984. Biosensors, Trends in Biotechnology, 2(3):59-65	
	131	Luong et al. 2004. Solubilization of Multiwall Carbon Nanotubes by 3-Aminopropyltriethoxysilane Towards the Fabrication of Electrochemical Biosensors with Promoted Electron Transfer. Electronanalysis 16(1-2):132-139	
	132	Lyandres et al. (2008). Progress toward an in vivo surface-enhanced raman spectroscopy glucose sensor. Diabetes Technology & Therapeutics, 10(4): 257-265.	
	133	Madaras et al. 1996. Microfabricated amperometric creatine and creatinine biosensors. Analytica Chimica Acta 319:335-345	
	134	Makale et al. 2003. Tissue window chamber system for validation of implanted oxygen sensors. Am. J. Physiol. Heart Circ. Physiol. 284:H2288-2294	
	135	Malin et al. 1999. Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectroscopy. Clinical Chemistry 45:9, 1651-1658	
	136	Maran et al. 2002. Continuous subcutaneous glucose monitoring in diabetic patients: A multicenter analysis. Diabetes Care 25(2):347-352	
	137	March, W. F. 2002. Dealing with the delay. Diabetes Technol Ther 4(1):49-50	
	138	Marena et al. 1993. The artifical endocrine pancreas in clinical practice and research. Panminerva Medica 35(2):67-74	
	139	Mascini et al. 1989. Glucose electrochemical probe with extended linearity for whole blood. J Pharm Biomed Anal 7(12): 1507-1512	
	140	Mastrototaro et al. 2003. Reproducibility of the continuous glucose monitoring system matches previous reports and the intended use of the product. Diabetes Care 26:256; author reply p. 257	
	141	Mastrototaro, J. J. 2000. The MiniMed continuous glucose monitoring system. Diabetes Technol Ther 2(Suppl 1):S13-8	
	142	Matsumoto et al. 1998. A micro-planar amperometric glucose sensor unsusceptible to interference species. Sensors and Actuators B 49:68-72	
	143	Matsumoto et al. 2001. A long-term lifetime amperometric glucose sensor with a perfluorocarbon polymer coating. Biosens Bioelectron 16:271-276	
	144	Matthews et al. 1988. An amperometric needle-type glucose sensor testing in rats and man. Diabetic Medicine 5:248-252	
	145	Mazze et al. 2008. Characterizing glucose exposure for individuals with normal glucose tolerance using continuous glucose monitoring and ambulatory glucose profile analysis. Diab. Thechnol. & Therapeut., 10:149-159.	

Examiner Signature	Date Considered
--------------------	-----------------

***Examiner:** Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

T¹ - Place a checkmark in this area when an English language translation is attached. /B.N./

INFORMATION DISCLOSURE STATEMENT BY APPLICANT		Application No.	09/447,227
(Multiple sheets used when necessary)		Filing Date	November 22, 1999
SHEET 10 OF 18		First Named Inventor	Mark C. Shults
		Art Unit	3735
		Examiner	Nasser, Robert L.
		Attorney Docket No.	DEXCOM.008DV1

NON PATENT LITERATURE DOCUMENTS			
Examiner Initials	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T ¹
	146	McCartney et al. 2001. Near-infrared fluorescence lifetime assay for serum glucose based on allophycocyanin-labeled concanavalin A. <i>Anal Biochem</i> 292:216-221	
	147	McGrath et al. 1995. The use of differential measurements with a glucose biosensor for interference compensation during glucose determinations by flow injection analysis. <i>Biosens Bioelectron</i> 10:937-943	
	148	Memoli et al. 2002. A comparison between different immobilised glucoseoxidase-based electrodes. <i>J Pharm Biomed Anal</i> 29:1045-1052	
	149	Merriam-Webster Online Dictionary. The term "nominal." http://www.m-w.com/dictionary/nominal	
	150	Meyerhoff et al. 1992. On line continuous monitoring of subcutaneous tissue glucose in men by combining portable glucosensor with microdialysis. <i>Diabetologia</i> 35:1087-1092	
	151	Miller et al. 1989. In vitro stimulation of fibroblast activity by factors generated from human monocytes activated by biomedical polymers. <i>Journal of J Biomed Mater Res</i> 23:911-930	
	152	Miller et al. 1989. Generation of IL1-like activity in response to biomedical polymer implants: a comparison of in vitro and in vivo models. <i>J Biomed Mater Res</i> 23:1007-1026	
	153	Miller, A. 1988. Human monocyte/macrophage activation and interleukin 1 generation by biomedical polymers. <i>J Biomed Mater Res</i> 23:713-731	
	154	Morff et al. 1990. Microfabrication of reproducible, economical, electroenzymatic glucose sensors, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 12(2):0483-0484	
	155	Mosbach et al. 1975. Determination of heat changes in the proximity of immobilized enzymes with an enzyme termistor and its use for the assay of metabolites, <i>Biochim. Biophys. Acta. (Enzymology)</i> , 403:256-265	
	156	Motonaka et al. 1993. Determination of cholesterol and cholesterol ester with novel enzyme microsensors, <i>Anal. Chem.</i> 65:3258-3261	
	157	Moussy et al. 2000. Biomaterials community examines biosensor biocompatibility <i>Diabetes Technol Ther</i> 2:473-477	
	158	Mowery et al. 2000. Preparation and characterization of hydrophobic polymeric films that are thromboresistant via nitric oxide release. <i>Biomaterials</i> 21:9-21	
	159	Muslu. 1991. Trickling filter performance. <i>Applied Biochemistry and Biotechnology</i> 37:211-224	
	160	Myler et al. 2002. Ultra-thin-polysiloxane-film-composite membranes for the optimisation of amperometric oxidase enzyme electrodes. <i>Biosens Bioelectron</i> 17:35-43	
	161	Nafion® 117 Solution Product Description, Product No. 70160, Sigma-Aldrich Corp., St. Louis, MO.	

Examiner Signature	Date Considered
--------------------	-----------------

***Examiner:** Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

T¹ - Place a checkmark in this area when an English language translation is attached. /B.N./

INFORMATION DISCLOSURE STATEMENT BY APPLICANT		Application No.	09/447,227
(Multiple sheets used when necessary)		Filing Date	November 22, 1999
		First Named Inventor	Mark C. Shults
		Art Unit	3735
SHEET 11 OF 18		Examiner	Nasser, Robert L.
		Attorney Docket No.	DEXCOM.008DV1

NON PATENT LITERATURE DOCUMENTS

Examiner Initials	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T ¹
	162	Nakayama et al. 1992. Surface fixation of hydrogels: heparin and glucose oxidase hydrogelated surfaces. ASAIO Journal M421-M424	
	163	Nam et al. 2000. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res 53:1-7	
	164	Ohara et al. 1994. "Wired" enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances. Anal Chem 66:2451-2457	
	165	Okuda et al. 1971. Mutarotase effect on micro determinations of D-glucose and its anomers with β-D-glucose oxidase. Anal Biochem 43:312-315	
	166	Palmisano et al. 2000. Simultaneous monitoring of glucose and lactate by an interference and cross-talk free dual electrode amperometric biosensor based on electropolymerized thin films. Biosensors & Bioelectronics 15:531-539	
	167	Panetti 2002. Differential effects of sphingosine 1-phosphate and lysophosphatidic acid on endothelial cells. Biochimica et Biophysica Acta 1582:190-196	
	168	Patel et al. 2003. Amperometric glucose sensors based on ferrocene containing polymeric electron transfer systems-a preliminary report. Biosens Bioelectron 18:1073-6	
	169	Peacock et al. 2008. Cardiac troponin and outcome in acute heart failure. N. Engl. J. Med., 358: 2117-2126.	
	170	Pfeiffer et al. 1992. On line continuous monitoring of subcutaneous tissue glucose is feasible by combining portable glucosensor with microdialysis. Horm. Metab. Res. 25:121-124	
	171	Pfeiffer, E.F. 1990. The glucose sensor: the missing link in diabetes therapy, Horm Metab Res Suppl. 24:154-164	
	172	Pichert et al. 2000. Issues for the coming age of continuous glucose monitoring Diabetes Educ 26(6):969-980	
	173	Pickup et al. "Implantable glucose sensors: choosing the appropriate sensing strategy," Biosensors, 3:335-346 (1987/88).	
	174	Pickup et al. 1988. Progress towards in vivo glucose sensing with a ferrocene-mediated amperometric enzyme electrode. 34-36	
	175	Pickup et al. "In vivo molecular sensing in diabetes mellitus: an implantable glucose sensor with direct electron transfer," Diabetologia, 32:213-217 (1989).	
	176	Pickup et al. 1989. Potentially-implantable, amperometric glucose sensors with mediated electron transfer: improving the operating stability. Biosensors 4:109-119	
	177	Pinner et al., Cross-linking of cellulose acetate by ionizing radiation, Nature, Vol. 184, 1303-1304, October 24, 1959	
	178	Pishko et al. "Amperometric glucose microelectrodes prepared through immobilization of glucose oxidase in redox hydrogels," Anal. Chem., 63:2268-72 (1991).	

Examiner Signature	Date Considered
--------------------	-----------------

***Examiner:** Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

T¹ - Place a checkmark in this area when an English language translation is attached. /B.N./

INFORMATION DISCLOSURE STATEMENT BY APPLICANT		Application No.	09/447,227
<i>(Multiple sheets used when necessary)</i>		Filing Date	November 22, 1999
SHEET 12 OF 18		First Named Inventor	Mark C. Shults
		Art Unit	3735
		Examiner	Nasser, Robert L.
		Attorney Docket No.	DEXCOM.008DV1

NON PATENT LITERATURE DOCUMENTS

Examiner Initials	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T ¹
	179	Pitzer et al. 2001. Detection of hypoglycemia with the GlucoWatch biographer. Diabetes Care 24(5):881-885	
	180	Poitout et al. 1993. A glucose monitoring system for on line estimation in man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue and a wearable control unit. Diabetologia 36:658-663	
	181	Poitout et al. 1994. Development of a glucose sensor for glucose monitoring in man: the disposable implant concept. Clinical Materials 15:241-246	
	182	Postlethwaite et al. 1996. Interdigitated array electrode as an alternative to the rotated ring-disk electrode for determination of the reaction products of dioxygen reduction. Analytical Chemistry 68:2951-2958	
	183	Prabhu et al. 1981. Electrochemical studies of hydrogen peroxide at a platinum disc electrode, Electrochimica Acta 26(6):725-729	
	184	Quinn et al. 1995. Kinetics of glucose delivery to subcutaneous tissue in rats measured with 0.3-mm amperometric microsensors. The American Physiological Society E155-E161	
	185	Quinn et al. 1997. Biocompatible, glucose-permeable hydrogel for in situ coating of implantable biosensors. Biomaterials 18:1665-1670	
	186	Rabah et al., 1991. Electrochemical wear of graphite anodes during electrolysis of brine, Carbon, 29(2):165-171	
	187	Ratner, B.D. 2002. Reducing capsular thickness and enhancing angiogenesis around implant drug release systems. J Control Release 78:211-218	
	188	Reach et al. 1986. A Method for Evaluating in vivo the Functional Characteristics of Glucose Sensors. Biosensors 2:211-220	
	189	Reach, G. 2001. Which threshold to detect hypoglycemia? Value of receiver-operator curve analysis to find a compromise between sensitivity and specificity. Diabetes Care 24(5):803-804	
	190	Reach, Gerard. 2001. Letters to the Editor Re: Diabetes Technology & Therapeutics, 2000;2:49-56. Diabetes Technology & Therapeutics 3(1):129-130	
	191	Rebrin et al. "Automated feedback control of subcutaneous glucose concentration in diabetic dogs," Diabetologia, 32:573-76 (1989).	
	192	Rebrin et al. 1992. Subcutaneous glucose monitoring by means of electrochemical sensors: fiction or reality? J. Biomed. Eng. 14:33-40	
	193	Rigla et al. 2008. Real-time continuous glucose monitoring together with telemedical assistance improves glycemic control and glucose stability in pump-treated patients. Diab. Thechnol. & Therapeut., 10:194-199.	
	194	Rivers et al., Central venous oxygen saturation monitoring in the critically ill patient, Current Opinion in Critical Care, 7:204-211, 2001	

Examiner Signature	Date Considered
--------------------	-----------------

***Examiner:** Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

T¹ - Place a checkmark in this area when an English language translation is attached. /B.N./

INFORMATION DISCLOSURE STATEMENT BY APPLICANT		Application No.	09/447,227
<i>(Multiple sheets used when necessary)</i>		Filing Date	November 22, 1999
SHEET 13 OF 18		First Named Inventor	Mark C. Shults
		Art Unit	3735
		Examiner	Nasser, Robert L.
		Attorney Docket No.	DEXCOM.008DV1

NON PATENT LITERATURE DOCUMENTS

Examiner Initials	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T ¹
	195	Sachlos et al. 2003. Making Tissue Engineering Scaffolds Work. Review on the Application of Solid Freeform Fabrication Technology to the Production of Tissue Engineering Scaffolds. European Cells and Materials 5:29-40	
	196	Sakakida et al. 1992. Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations. Artif. Organs Today 2(2):145-158	
	197	Sakakida et al. 1993. Ferrocene-Mediated Needle Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane, Sensors and Actuators B 13-14:319-322	
	198	Salardi et al. 2002. The glucose area under the profiles obtained with continuous glucose monitoring system relationships with HbA1c in pediatric type 1 diabetic patients. Diabetes Care 25(10):1840-1844	
	199	Sanders et al. 2003. Fibrous Encapsulation of Single Polymer Microfibers Depends on their Vertical Dimension in subcutaneous Tissue Polymer Microfibers pp. 1181-1187	
	200	Sansen et al. 1985. "Glucose sensor with telemetry system." In Ko, W. H. (Ed.). Implantable Sensors for Closed Loop Prosthetic Systems. Chap. 12, pp. 167-175, Mount Kisco, NY: Futura Publishing Co.	
	201	Sansen et al. 1990. A smart sensor for the voltammetric measurement of oxygen or glucose concentrations. Sensors and Actuators B 1:298-302	
	202	Schmidt et al. 1993. Glucose concentration in subcutaneous extracellular space. Diabetes Care 16(5):695-700	
	203	Schmidtke et al., Measurement and modeling of the transient difference between blood and subcutaneous glucose concentrations in the rat after injection of insulin. Proc Natl Acad Sci U S A 1998, 95, 294-299	
	204	Schoemaker et al. 2003. The SCGM1 system: Subcutaneous continuous glucose monitoring based on microdialysis technique. Diabetes Technology & Therapeutics 5(4):599-608	
	205	Schoonnen et al. 1990 Development of a potentially wearable glucose sensor for patients with diabetes mellitus: design and in-vitro evaluation. Biosensors & Bioelectronics 5:37-46	
	206	Schuler et al. 1999. Modified gas-permeable silicone rubber membranes for covalent immobilisation of enzymes and their use in biosensor development. Analyst 124:1181-1184	
	207	Selam, J. L. 1997. Management of diabetes with glucose sensors and implantable insulin pumps. From the dream of the 60s to the realities of the 90s. ASAIO J, 43:137-142	
	208	Service et al. 1970. Mean amplitude of glycemic excursions, a measure of diabetic instability. Diabetes, 19: 644-655.	
	209	Service et al. 1987. Measurements of glucose control. Diabetes Care, 10: 225-237.	
	210	Service, R. F. 2002. Can sensors make a home in the body? Science 297:962-3	

Examiner Signature	Date Considered
--------------------	-----------------

***Examiner:** Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

T¹ - Place a checkmark in this area when an English language translation is attached. /B.N./

INFORMATION DISCLOSURE STATEMENT BY APPLICANT		Application No.	09/447,227
<i>(Multiple sheets used when necessary)</i>		Filing Date	November 22, 1999
SHEET 14 OF 18		First Named Inventor	Mark C. Shults
		Art Unit	3735
		Examiner	Nasser, Robert L.
		Attorney Docket No.	DEXCOM.008DV1

NON PATENT LITERATURE DOCUMENTS

Examiner Initials	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T ¹
	211	Sharkawy et al. 1996. Engineering the tissue which encapsulates subcutaneous implants. I. Diffusion properties, J Biomed Mater Res, 37:401-412	
	212	Shaw et al. "In vitro testing of a simply constructed, highly stable glucose sensor suitable for implantation in diabetic patients," Biosensors & Bioelectronics, 6:401-406 (1991).	
	213	Shichiri et al. 1982. Wearable artificial endocrine pancreas with needle-type glucose sensor. Lancet 2:1129-1131	
	214	Shichiri et al. 1983. Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas. Diabetologia 24:179-184	
	215	Shichiri et al. 1985. Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas in Implantable Sensors 197-210	
	216	Skyler, J. S. 2000. The economic burden of diabetes and the benefits of improved glycemic control: The potential role of a continuous glucose monitoring system. Diabetes Technology & Therapeutics 2 Suppl 1:S7-12	
	217	Slater-Maclean et al. 2008. Accuracy of glycemic measurements in the critically ill. Diab. Thechnol. & Therapeut., 10:169-177.	
	218	Sokol et al. 1980, Immobilized-enzyme rate-determination method for glucose analysis, Clin. Chem. 26(1):89-92	
	219	Sriyudthsak et al. 1996. Enzyme-epoxy membrane based glucose analyzing system and medical applications. Biosens Bioelectron 11:735-742	
	220	Steil et al. 2003. Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor. Diabetes Technology & Therapeutics 5(1):27-31	
	221	Stern et al., 1957. Electrochemical polarization: 1. A theoretical analysis of the shape of polarization curves, Journal of the Electrochemical Society, 104(1):56-63	
	222	Sternberg et al. 1988. Covalent enzyme coupling on cellulose acetate membranes for glucose sensor development. Anal. Chem. 69:2781-2786	
	223	Suh et al. 2002. Behavior of fibroblasts on a porous hyaluronic acid incorporated collagen matrix. Yonsei Medical Journal 43(2):193-202	
	224	Sumino T. et al. 1998. Preliminary study of continuous glucose monitoring with a microdialysis technique. Proceedings of the IEEE, 20(4):1775-1778	
	225	Takegami et al. 1992. Pervaporation of ethanol water mixtures using novel hydrophobic membranes containing polydimethylsiloxane, Journal of Membrane Science, 75(93-105)	
	226	Tanenberg et al. 2000. Continuous glucose monitoring system: A new approach to the diagnosis of diabetic gastroparesis. Diabetes Technology & Therapeutics, 2 Suppl 1:S73-80	
	227	Tang et al. 1993. Fibrin(ogen) mediates acute inflammatory responses to biomaterials. J Exp Med 178:2147-2156	

Examiner Signature	Date Considered
--------------------	-----------------

***Examiner:** Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹ - Place a checkmark in this area when an English language translation is attached. /B.N./

INFORMATION DISCLOSURE STATEMENT BY APPLICANT		Application No.	09/447,227
(Multiple sheets used when necessary)		Filing Date	November 22, 1999
SHEET 15 OF 18		First Named Inventor	Mark C. Shults
		Art Unit	3735
		Examiner	Nasser, Robert L.
		Attorney Docket No.	DEXCOM.008DV1

NON PATENT LITERATURE DOCUMENTS

Examiner Initials	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T ¹
	228	Tang et al. 1995. Inflammatory responses to biomaterials. Am J Clin Pathol 103:466-471	
	229	Tang et al. 1996. Molecular determinants of acute inflammatory responses to biomaterials. J Clin Invest 97:1329-1334	
	230	Tang et al. 1998. Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc Natl Acad Sci U S A 95:8841-8846	
	231	Tatsuma et al. 1991. Oxidase/peroxidase bilayer-modified electrodes as sensors for lactate, pyruvate, cholesterol and uric acid, Analytica Chimica Acta, 242:85-89	
	232	Thome et al. 1995. Can the decrease in subcutaneous glucose concentration precede the decrease in blood glucose level? Proposition for a push-pull kinetics hypothesis, Horm. Metab. Res. 27:53	X-abstract
	233	Thomé-Duret et al. 1996. Modification of the sensitivity of glucose sensor implanted into subcutaneous tissue. Diabetes Metabolism, 22:174-178.	
	234	Thome-Duret et al. 1996. Use of a subcutaneous glucose sensor to detect decreases in glucose concentration prior to observation in blood, Anal. Chem. 68:3822-3826	
	235	Thomé-Duret et al. 1998. Continuous glucose monitoring in the free-moving rat. Metabolism, 47:799-803.	
	236	Thompson et al., In Vivo Probes: Problems and Perspectives, Department of Chemistry, University of Toronto, Canada, pp. 255-261, 1986	
	237	Tibell et al. 2001. Survival of macroencapsulated allogeneic parathyroid tissue one year after transplantation in nonimmunosuppressed humans. Cell Transplant 10:591-9	
	238	Tierney et al. 2000. Effect of acetaminophen on the accuracy of glucose measurements obtained with the GlucoWatch biographer. Diabetes Technol Ther 2:199-207	
	239	Tierney et al. 2000. The GlucoWatch® biographer: A frequent, automatic and noninvasive glucose monitor. Ann. Med. 32:632-641	
	240	Torjman et al., Glucose monitoring in acute care: technologies on the horizon, Journal of Diabetes Science and Technology, 2(2):178-181, March 2008	
	241	Trecroci, D. 2002. A Glimpse into the Future- Continuous Monitoring of Glucose with a Microfiber. Diabetes Interview 42-43	
	242	Turner and Pickup, "Diabetes mellitus: biosensors for research and management," Biosensors, 1:85-115 (1985).	
	243	Turner et al. 1984. Carbon Monoxide: Acceptor Oxidoreductase from <i>Pseudomonas Thermocarboxydovorans</i> Strain C2 and its use in a Carbon Monoxide Sensor. Analytica Chimica Acta, 163: 161-174	
	244	Turner, A.P.F. 1988. Amperometric biosensor based on mediator-modified electrodes. Methods in Enzymology 137:90-103	

Examiner Signature	Date Considered
--------------------	-----------------

***Examiner:** Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹ - Place a checkmark in this area when an English language translation is attached. /B.N./

INFORMATION DISCLOSURE STATEMENT BY APPLICANT		Application No.	09/447,227
<i>(Multiple sheets used when necessary)</i>		Filing Date	November 22, 1999
SHEET 16 OF 18		First Named Inventor	Mark C. Shults
		Art Unit	3735
		Examiner	Nasser, Robert L.
		Attorney Docket No.	DEXCOM.008DV1

NON PATENT LITERATURE DOCUMENTS

Examiner Initials	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T ¹
	245	Unger et al. 2004. Glucose control in the hospitalized patient. <i>Emerg Med</i> 36(9):12-18	
	246	Updike et al. 1967. The enzyme electrode. <i>Nature</i> , 214:986-988.	
	247	Updike et al. 1997. Principles of long-term fully implanted sensors with emphasis on radiotelemetric monitoring of blood glucose form inside a subcutaneous foreign body capsule (FBC). In Fraser, ed., <i>Biosensors in the Body</i> . New York. John Wiley & Sons, pp. 117-137.	
	248	Updike et al. 2000. A subcutaneous glucose sensor with improved longevity, dynamic range, and stability of calibration. <i>Diabetes Care</i> 23(2):208-214	
	249	Utah Medical Products Inc., Blood Pressure Tranducers product specifications. 6 pp. 2003-2006, 2003	
	250	Vadgama, P. 1988. Diffusion Limited Enzyme Electrodes. <i>Analytical Uses of Immobilized Biological Compounds for Detection, Medical and Industrial Uses</i> , 359-377, by D. Reidel Publishing Company	
	251	Vadgama, P. November 1981. Enzyme electrodes as practical biosensors. <i>Journal of Medical Engineering & Technology</i> 5(6):293-298	
	252	Van den Berghe 2004. Tight blood glucose control with insulin in "real-life" intensive care. <i>Mayo Clin Proc</i> 79(8):977-978	
	253	Velho et al. 1989. In vitro and in vivo stability of electrode potentials in needle-type glucose sensors. Influence of needle material. <i>Diabetes</i> 38:164-171	
	254	Wade Jr., L.G. <i>Organic Chemistry</i> , Chapter 17, Reactions of Aromatic Compounds pp. 762-763, 1987	
	255	Wagner et al. 1998. Continuous amperometric monitoring of glucose in a brittle diabetic chimpanzee with a miniature subcutaneous electrode. <i>Proc. Natl. Acad. Sci. A</i> , 95:6379-6382	
	256	Wang et al. 1994. Highly Selective Membrane-Free, Mediator-Free Glucose Biosensor. <i>Anal. Chem.</i> 66:3600-3603	
	257	Wang et al. 1997. Improved ruggedness for membrane-based amperometric sensors using a pulsed amperometric method. <i>Anal Chem</i> 69:4482-4489	
	258	Ward et al. 2000. Understanding Spontaneous Output Fluctuations of an Amperometric Glucose Sensor: Effect of Inhalation Anesthesia and e of a Nonenzyme Containing Electrode. <i>ASAIO Journal</i> 540-546	
	259	Ward et al. 2000. Rise in background current over time in a subcutaneous glucose sensor in the rabbit: Relevance to calibration and accuracy. <i>Biosensors & Bioelectronics</i> , 15:53-61.	
	260	Ward et al. 2002. A new amperometric glucose microsensor: In vitro and short-term in vivo evaluation. <i>Biosensors & Bioelectronics</i> , 17:181-189	
	261	Wientjes, K. J. C. 2000. Development of a glucose sensor for diabetic patients (Ph.D. Thesis).	

Examiner Signature	Date Considered
--------------------	-----------------

***Examiner:** Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

T¹ - Place a checkmark in this area when an English language translation is attached. /B.N./

INFORMATION DISCLOSURE STATEMENT BY APPLICANT		Application No.	09/447,227
<i>(Multiple sheets used when necessary)</i>		Filing Date	November 22, 1999
SHEET 17 OF 18		First Named Inventor	Mark C. Shults
		Art Unit	3735
		Examiner	Nasser, Robert L.
		Attorney Docket No.	DEXCOM.008DV1

NON PATENT LITERATURE DOCUMENTS

Examiner Initials	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T ¹
	262	Wikipedia 2006 "Intravenous therapy," http://en.wikipedia.org/wiki/Intravenous_therapy , August 15, 2006, 6 pp.	
	263	Wilkins et al. 1988. The coated wire electrode glucose sensor, Horm Metab Res Suppl., 20:50-55	
	264	Wilkins et al. 1995. Glucose monitoring: state of the art and future possibilities. Med Eng Phys 18:273-288	
	265	Wilkins et al. 1995. Integrated implantable device for long-term glucose monitoring. Biosens. Bioelectron 10:485-494	
	266	Wilson et al. 1992. Progress toward the development of an implantable sensor for glucose. Clin. Chem. 38(9):1613-1617	
	267	Wilson et al. 2000. Enzyme-based biosensors for in vivo measurements. Chem. Rev., 100:2693-2704.	
	268	Wood, W. et al. March 1990. Hermetic Sealing with Epoxy. Mechanical Engineering 1-3	
	269	Worsley et al., Measurement of glucose in blood with a phenylboronic acid optical sensor, Journal of Diabetes Science and Technology, 2(2):213-220, March 2008	
	270	Wright et al., Bioelectrochemical dehalogenations via direct electrochemistry of poly(ethylene oxide)-modified myoglobin, Electrochemistry Communications 1 (1999) 603-611	
	271	Wu et al. 1999. In situ electrochemical oxygen generation with an immunoisolation device. Annals New York Academy of Sciences, pp. 105-125	
	272	Yamasaki et al. 1989. Direct measurement of whole blood glucose by a needle-type sensor. Clinica Chimica Acta. 93:93-98	
	273	Yamasaki, Yoshimitsu. September 1984. The development of a needle-type glucose sensor for wearable artificial endocrine pancreas. Medical Journal of Osaka University 35(1-2):25-34	
	274	Yang et al (1996). "A glucose biosensor based on an oxygen electrode: In-vitro performances in a model buffer solution and in blood plasma," Biomedical Instrumentation & Technology, 30:55-61.	
	275	Yang et al. 1998. Development of needle-type glucose sensor with high selectivity. Science and Actuators B 46:249-256	
	276	Yang, et al. 2004. A Comparison of Physical Properties and Fuel Cell Performance of Nafion and Zirconium Phosphate/Nafion Composite Membranes. Journal Of Membrane Science 237:145-161	
	277	Zamzow et al. Development and evaluation of a wearable blood glucose monitor. pp. M588-M591, 1990	
	278	Zethelius et al. 2008. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N. Engl. J. Med., 358: 2107-2116.	

Examiner Signature	Date Considered
--------------------	-----------------

***Examiner:** Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

T¹ - Place a checkmark in this area when an English language translation is attached. /B.N./

INFORMATION DISCLOSURE STATEMENT BY APPLICANT		Application No.	09/447,227
(Multiple sheets used when necessary)		Filing Date	November 22, 1999
SHEET 18 OF 18		First Named Inventor	Mark C. Shults
		Art Unit	3735
		Examiner	Nasser, Robert L.
		Attorney Docket No.	DEXCOM.008DV1

NON PATENT LITERATURE DOCUMENTS

Examiner Initials	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T ¹
	279	Zhang et al (1993). Electrochemical oxidation of H ₂ O ₂ on Pt and Pt + Ir electrodes in physiological buffer and its applicability to H ₂ O ₂ -based biosensors. <i>J. Electroanal. Chem.</i> , 345:253-271.	
	280	Zhang et al. 1994. Elimination of the acetaminophen interference in an implantable glucose sensor. <i>Analytical Chemistry</i> 66(7):1183-1188	
	281	Zhu et al. (1994). "Fabrication and characterization of glucose sensors based on a microarray H ₂ O ₂ electrode." <i>Biosensors & Bioelectronics</i> , 9: 295-300.	
	282	Zhu et al. 2002. Planar amperometric glucose sensor based on glucose oxidase immobilized by chitosan film on prussian blue layer. <i>Sensors</i> , 2:127-136.	

8484800
020210

Examiner Signature	/Robert Nasser/	Date Considered	05/09/2010
--------------------	-----------------	-----------------	------------

***Examiner:** Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

T¹ - Place a checkmark in this area when an English language translation is attached. /B.N./