自动控制原理II

(Principle of Automatic Control Theory)

黄剑: huang_jan@hust.edu.cn

学时: 48学时

考试: 闭卷

References

- 1.王永骥,王金城,王敏主编。自动控制原理。 北京:化学工业出版社,2007
- 2.胡寿松主编。自动控制原理。第三版。 北京: 国防工业出版社, 1994
- 3. Automatic Control Systems, Benjamin C.Kuo, Farid Golnarghi,第8版,影印版,高等教育出版社,2003
- 4. Modern Control Systems, Richard C.Dorf, Robert H.Bishop,第9版,影印版,科学出版社,2002

Chapter 7 Analysis and Design of Linear Discrete-Time System

- 7.1 Introduction
- 7.2 The Sampling Process and Sampling Theorem
- 7.3 Signal Recovery and Zero-Order Hold
- 7.4 Z-Transform and Inverse Z Transform
- 7.5 Mathematical Models of Discrete-Time Systems
- 7.6 Dynamic Performance of Discrete-Time Systems
- 7.7 Digital Control Design for Discrete-Time Systems

7.1 Introduction

Discrete-Time Systems:

Types:
Sampled data systems: Discrete Time, Continuous Value
Digital systems: Discrete Time, Quantized Value

Sampled Data System: a system that is continuous except for one or more *sampling operations*.

Digital System: There is one or more *digital signals* in the system.

Sampled-data control system

e*(t) is obtained by sampling a continuous signal e(t).

A/D: analog to digital converter

D/A: digital to analog converter

A/D process

- Sampling Time sampled
- Quantization Value quantized

D/A process

Computer Controlled Systems

Fig 7-1 机载火力控制系统原理

History of Discrete-time system (p. 212-213)

DDC-Direct Digital Control (直接数字控制系统)

SCC- Surveillance Computer Control System(计算机监督控制系统)

TDC- Total and Distributed Control(集散控制系统): muti-agent robots

Advantages and Disadvantages

Computer Control System

- (1) Calculations are performed in the software. Easy for modification.
 (2) Complex control laws easily realized;
 (3) Reduced sensitivity to noise;
 (4) One computer for multi-tasks, high utilization;
 (5) Network for process automation measures.

 - (5) Network for process automation, macro-management and remote control.
 - Information between samples is lost. Compared with continuous system in the similar condition, the performance is reduced
 - Needs A/D and D/A conversion devices

7.2 The Sampling Process and Sampling Theorem

7.2.1 The Sampling Process

Computer Control System

Question: In the above computer control system, which signals are discrete, which signals are continuous?

- Sampling Process: Continuous signal → Discrete Signal
- Holding Process: Discrete Signal → Continuous Signal.
- The two are inverse process to each other.

Sampler: A switch that closes every T seconds for one instant of time.

Where T is called the sampling period.

Ideal sampling process:

- (1) $t \ll T$. The sampling process is completed instantaneously
- (2) Word Length is enough, thus $e^*(Kt)=e(Kt)$

Types of Samplers: ideal, periodical, random,...

Sampling Process

7.2.2 Mathematical Model for Sampling Signals

1. Some ideal assumptions

- The sampler can be connected and cut down immediately;
- The signals in and out the sampler have no error/noise;
- $\bullet \tau << T$, that is $\tau \to 0$;
- The output is constant when sampler shuts down;
- Sample Period T is a constant.

2. Unit Impulsive Signal $\delta(t)$

$$\delta(t) = \begin{cases} \frac{1}{\varepsilon} & 0 \le t \le \varepsilon \\ 0 & t < 0 \text{ or } t > \varepsilon \end{cases}$$

3. Unit Impulsive Sequence Signal

Unit Impulsive sequential signal

4. Sampling Signal

$$e^*(t) = \sum_{k=-\infty}^{\infty} e(t)\delta(t - kT) = e^{-t} S_{T}(t)$$

$$e^*(t) = \sum_{k=0}^{\infty} e(kT)\delta(t - kT)$$

real sampler

So the sampling operation can be expressed as

$$e^{*}(t) = \sum_{k=0}^{+\infty} e(kT) \cdot \delta(t - kT)$$

or

$$e^*(t) = e(t) \cdot \sum_{k=0}^{\infty} \delta(t - kT)$$

or

$$e^*(t) = e(t) \cdot \delta_T(t)$$

where

$$\delta_T(t) = \sum_{k=0}^{\infty} \delta(t - kT)$$

Fig 7 - 3 Sampling Process

$$f_{\tau}^{*}(t) = p(t) \cdot f(t)$$

Note:

$$e^{*}(t) = e(0)\delta(t) + e(T)\delta(t-T) + \cdots$$

$$\neq e(0) + e(T) + \cdots$$

Laplace Transformation

位移定理:

a.实域中的位移定理,若原函数在时间上延迟 τ ,则其象函数应乘以 $e^{-\tau \cdot s}$

$$L[f(t-\tau)] = e^{-\tau \cdot s} F(s)$$

b.复域中的位移定理,象函数的自变量延迟a,原函数应乘以 e^{a} 即

$$L[e^{at}f(t)] = F(s-a)$$

Ideal sampling sequence

$$\delta_T(t) = \sum_{n=0}^{\infty} \delta(t - nT)$$

$$e^*(t) = e(t) \cdot \delta_T(t)$$

$$= e(t) \cdot \sum_{n=0}^{\infty} \delta(t - nT) = \sum_{n=0}^{\infty} e(nT) \cdot \delta(t - nT)$$

(2) L:
$$E^*(s) = L[e^*(t)]$$

$$= L \left[\sum_{n=0}^{\infty} e(nT) \cdot \delta(t-nT) \right] = \sum_{n=0}^{\infty} e(nT) \cdot e^{-nTs}$$

Example 7-1
$$e(t) = 1(t)$$
 Obtain $E^*(s)$

Solution
$$E^*(s) = \sum_{n=0}^{\infty} 1 \cdot e^{-nTs}$$

= $1 + e^{-Ts} + e^{-2Ts} + \dots = \frac{1}{1 - e^{-Ts}} = \frac{e^{Ts}}{e^{Ts} - 1}$

Example 7-2
$$e(t) = e^{-at}$$
 Obtain $E^*(s)$
Solution $E^*(s) = \sum_{n=0}^{\infty} e^{-anT} \cdot e^{-nTs} = \sum_{n=0}^{\infty} e^{-(s+a)nT}$

$$= \frac{1}{1 - e^{-(s+a)T}} = \frac{e^{Ts}}{e^{Ts} - e^{-aT}}$$

The continuous signal and its amplitude spectrum are

The Fourier-series expansion of $\delta_T(t)$:

$$\delta_T(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_{\rm s}t}$$
 $\omega_{\rm s} = \frac{2\pi}{T}$ is the sampling freq.

$$c_{k} = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \delta_{T}(t) e^{-jkw_{s}t} dt = \frac{1}{T} \int_{0^{-}}^{0^{+}} \delta(t) dt = \frac{1}{T}$$

$$\delta_{T}(t) = \frac{1}{T} \sum_{k=-\infty}^{\infty} e^{jk\omega_{s}t}$$

So the sampled signal is

$$e^*(t) = e(t) \cdot \delta_T(t) = \frac{1}{T} \cdot \sum_{k=-\infty}^{\infty} e(t) \cdot e^{jk\omega_s t}$$

which Laplace transform is

$$E^*(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} E[j(\omega + k\omega_s)]$$

where the operator s is replaced by $j\omega$

From the figure above, we can conclude that if $\omega_s > 2\omega_{\rm max}$

25

there are no overlap of each component, so the input signal can be recovered approximately. This is called sampling theorem or Shannon's Theorem

Shannon's Sampling Theorem:

Let x(t) denote any continuous-time signal having a continuous Fourier transform

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

Let $x^*(t)$ denote the samples of x(t) at uniform intervals of T seconds. Then x(t) can be exactly reconstructed from its samples $x^*(t)$ if and only if $X(j\omega) = 0$ for all $|\omega| \ge \pi/T$

In the figure the input signal can't be recovered.

Problem: the maximum frequency ω_{max} is *infinite* for a non-periodic signal!

Then, how could we select the sampling frequency \mathcal{O}_{S} for it?

Solution:

Example 7-3 Let $e(t)=e^{-t}$, select the sampling frequency according to Shannon's sampling therem.

Solution.

The Laplace transform of
$$e(t)$$
: $E(s) = \frac{1}{s+1}$

Solution.

The Laplace transform of
$$e(t)$$
:
$$E(s) = \frac{1}{s+1}$$
The Fourier transform of $e(t)$ is:
$$E(j\omega) = \frac{1}{j\omega+1}$$

The amplitude frequency characteristics:

$$|E(j\omega)| = \frac{1}{\sqrt{\omega^2 + 1}}$$

Assume the maximum frequency of e(t) satisfies: $|E(j\omega_{\text{max}})| = 0.05|E(0)|$

$$\frac{1}{\sqrt{\omega_{\text{max}}^2 + 1}} = 0.05, \quad \omega_{\text{max}} = 20 rad / s$$

Then according to Shannon's theorem we have

$$\omega_{\rm s} \ge 2\omega_{\rm max} = 40 rad/s$$

7.3 Signal Recovery and Zero-Order Hold

I.Signal recovery

The ideal filter is illustrated as the dotted line in the figure.

- The most common-used and simplest filter is zero-order hold filter.
- The zero-order hold (ZOH) is a mathematical model of the practical signal reconstruction done by a conventional digital-to-analog converter (DAC). That is, it describes the effect of converting a discrete-time signal to a continuous-time signal by *holding each sample value for one sample interval*.

The original signal x(t) and recovered signal $x_h(t)$ satisfy:

$$x_h(t) = \sum_{k=0}^{\infty} x(kT)(1(t-kT) - 1(t-kT-T))$$

Apply Laplace transform on both sides of the equation, we have

$$x_h(s) = \sum_{k=0}^{\infty} x(kT)e^{-kTs} \left[\frac{1}{s} - \frac{1}{s}e^{-Ts} \right]$$

Then the ZOH equivalent transition function is

$$\frac{x_h(s)}{x^*(s)} = \frac{1 - e^{-Ts}}{s} = G_h(s)$$

Corresponding time-domain function:

$$g_{h}(t) = 1(t) - 1(t - T)$$

$$1 \xrightarrow{g_{h}(t)} T$$

$$T$$

$$T$$

$$T$$

Analysis of the frequency characteristics of ZOH filter: $(i\frac{1}{2}\omega T) = -i\frac{1}{2}$

filter:
$$G_h(j\omega) = \frac{1 - e^{-j\omega T}}{j\omega} = \frac{e^{-\frac{1}{2}j\omega T}(e^{j\frac{1}{2}\omega T} - e^{-j\frac{1}{2}\omega T})}{j\omega} = \frac{2e^{-\frac{1}{2}j\omega T}\left(\frac{e^{j\frac{1}{2}\omega T} - e^{-j\frac{1}{2}\omega T}}{2j}\right)}{\omega}$$

Considering we have, $\sin x = \frac{e^{jx} - e^{-jx}}{2j}$ therefore

$$G_h(j\omega) = \frac{2e^{-\frac{1}{2}j\omega T}\sin(\frac{1}{2}\omega T)}{\omega} \quad \Box \quad G_h(j\omega) = T\frac{\sin(\frac{\omega T}{2})}{\frac{\omega T}{2}}e^{-\frac{1}{2}j\omega T}$$

$$G_{h}(j\omega) = \frac{1 - e^{-j\omega T}}{j\omega} = T \cdot \frac{\sin(\omega T/2)}{\omega T/2} \cdot e^{-\frac{j\omega T}{2}}$$

$$\therefore T = \frac{2\pi}{\omega_{s}}$$

$$S_a(x) = \frac{\sin x}{x}$$

then we have

$$G_h(j\omega) = \frac{2\pi}{\omega_s} \cdot S_a(\pi\omega/\omega_s) \cdot e^{-j\frac{\pi\omega}{\omega_s}}$$

$$|G_h(j\omega)| = \frac{2\pi}{\omega_s} \cdot |S_a(\pi\omega/\omega_s)|$$

$$\angle G_h(j\omega) = -\frac{\pi\omega}{\omega_s}$$

Note:

• The ZOH filter is not an ideal low-pass filter. **Ripple error** may occur after the filtering.

• There is a *delayed phase angle* when a signal is filtered by a ZOH.