DIC L23: Interconnect (1)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

5.3. Static power (6)

- Example 5.4
 - 50M logic transistors (Average width: 12 λ)
 - 5 % low- V_T + 95 % high- V_T
 - 950M memory transistors (Average width: 4λ)
 - 100 % high-V_T
 - 1.0 V 65 nm process (λ is 25 nm.)
 - Subthreshold leakage is 100 nA/ μ m (low- V_T) or 10 nA/ μ m (high- V_T).
 - Gate leakage is 5 nA/µm. (Neglect the junction leakage.)
 - Estimate the static power consumption. (Assume that half the transistors contribute leakage currents.)

5.3. Static power (7)

Power gating

- Turn off the power supply to the sleeping blocks.
- "A total of 1.5m of total width per core of ultra-low-leakage PMOS transistors are used with the gate terminal adaptively switched to the highest available chip voltage to further reduce leakage."

6.1. Introduction (1)

- Wire geometry
 - Pitch = w + s
 - Aspect ratio (AR) = $\frac{t}{w}$
 - Older processes had AR << 1.
 - Modern processes have AR \approx 2.

Fig. 6.1

6.1. Introduction (2)

Example: Intel metal stacks

1	μm	

GIST Lecture on December 3, 2019

(Equivalent to Table 6.1)

Fig. 6.2

6.2. Interconnect modeling (1)

- Lumped element models
 - A wire is a distributed circuit with a resistance and capacitance per unit length.

Fig. 6.5

6.2. Interconnect modeling (2)

Wire resistance

Resistance

$$R = \frac{\rho}{t} \frac{l}{w}$$
 Eq. (6.1)

With the sheet resistance

$$R = R_{\Box} \frac{l}{w}$$
 Eq. (6.2)

Fig. 6.6

6.2. Interconnect modeling (3)

Wire resistance

Resistance

$$R = \frac{\rho}{t} \, \frac{l}{w}$$

With the sheet resistance

$$R = R_{\square} \frac{l}{w}$$

- Example 6.1
 - Sheet resistance of $0.1 \Omega/_{\square}$
 - 0.125 µm wide and 1 mm long

Fig. 6.6

6.2. Interconnet modeling (4)

Al versus Cu

Dual damascene process

Metal	Bulk resistivity (μΩ • cm)
Silver (Ag)	1.6
Copper (Cu)	1.7
Gold (Au)	2.2
Aluminum (Al)	2.8
Tungsten (W)	5.3
Titanium (Ti)	43.0

Table 6.2

(Cheng et al., "Copper metal for semiconductor interconnects")

6.2. Interconnect modeling (5)

Wire capacitance

$$C_{total} = C_{top} + C_{bot} + 2C_{adj}$$
 Eq. (6.9)

Fig. 6.11

GIST Lecture on December 3, 2019