Теория с лекций. Алгебра

Содержание

1	Дис	кретная математика	
	1.1	Булевые функции	-
	1.2	Теорема Пост.	٤

1 Дискретная математика

Преподаватель: Пузырина Светлана Александровна s.puzynina@gmail.com

1.1 Булевые функции

Булевая функция - это функция вида:

f: $(0;1)^n \to (0,1)$ Иными словами сопоставляет кажой n-элементной последовательности значение 1 или 0.

Всего для
 n переменных существует 2^{2^n} булевых функций.

Булевую функцию можно задавать таблицей истинности или же вектором истинности.

Базис - некоторое подмножество булевых функций.

Определение.

Формула над базисом F определяется по индукции.

База: всякая функция $f \in F$ является формулой над F.

Индуктивный переход: если $f(x_1, x_2...x_n)$ - формула над базисом F, а $\phi_1, \phi_2...\phi_n$ - либо формулы над F, либо переменные, но тогда $f(\phi_1, \phi_2...\phi_n)$ формула над базисом F.

Пример: $(x \lor y) \land (x \lor z)$ - формула над базисом (\lor, \land) Введем удобное обозначение:

Простой конъюнкцией называется конъюнкция одной или нескольких переменных (их отрицаний), где при этом каждая переменная встречается лишь один раз.

Дезъюнктивно нормальная форма (ДН Φ) - представление Б Φ в виде дизъюнкции простых конъюнкций.

Если в каждой конъюнкции учавсвуют все переменные, то это \mathbf{C} (соверщенная)ДНФ. Kak построить $\mathit{CДH\Phi}$?

В таблице истинности отмечаем все наборы переменных, для которых БФ дает значение 1. Для каждого такого набора $(\sigma_1, ... \sigma_n)$ берем конъюнкцию $(x_1^{\sigma_1}, ... x_n^{\sigma_n})$. Включаем в СДНФ все полученные конъюнкции:

$$f(x_1...x_n) = \bigwedge(x_1^{\sigma_1}, ...x_n^{\sigma_n})$$

Теорема

Для любой БФ (не тождественной 0) существует СДНФ.

Аналогично определим СКНФ:

Простой дизъюнкцией называется дизъюнкция одной или нескольких переменных (их отриц), причем каждая переменная встречается не более одного раза.

 ${\rm KH}\Phi$ - представление ${\rm B}\Phi$ в виде конъюнкции простых дизъюнкции.

Если в каждой дизъюнкции все переменные - то это СКНФ.

Строится аналогично.

Причем вопрос о разлодении всех функций в виде ${\rm CKH}\Phi$ до сих пор открыт.

Многочлен жегалкина.

Сумма по мудулю 2 конъюнкций переменных (допускается слагаемое 1) без повторения слагаемых, а так же константа 0.

Общий вид:

$$f(x_1, x_2..., x_n) = a \bigoplus a_{i_1 i_2...i_k} * x_{i_1} * ... * x_{i_{k_2}}$$

Зачастую константу 0 не считают полиномом Жегалкина, т.е. в полиноме допускаются лишь константа 1 и сложение с дизъюнкцией.

Теорема.

Для каждой функцией существует единственное представление многочленом Жегалкина.

Док-во.

Существование. Преобразуем ДНФ:

Замена дизъюнкции: $x \wedge y = x \oplus y \oplus x \wedge y$

Замена отрицаний: $!x = x \oplus 1$

Раскрываем скобки: $(x \oplus y) \lor z = (x \lor z) \oplus (x \lor z)$

Сокращаем: $x \oplus x = 0$

Замкнутые классы. F - множество $Б\Phi$ замыкание $LF \bot$ (относительно суперпозиции) - это множество всех булевых функций, представимых формулой над F.

Замкнутый класс - это класс равный своему замыканию.

Некоторые замкнутые классы:

- 1. T_0 класс функций сохраняющих 0. f(0...0) = 0
- 2. T_1 класс функций сохраняющих 1. f(1...1) = 1
- 3. Двойственные функции к f: $f * (x_1....x_n) = !f(!x_1....!x_n)$
- 4. Частичный порядок на множестве двоичных наборов: $(b_1,....b_n) \le (c_1,.....c_n)$, если $b_i \le c_i$.
 - f монотонная функция, если $f(\alpha) \le f(\beta)$, если $\alpha \le \beta$
- 5. Линейные функции такие, что их многочлен Жегалкина не использует конъюнкций, а так же константа 0.

1.2 Теорема Пост.

Критерий полноты сисемы функций.

Множество Б Φ F называется полной системой, если все булевые функции выразимы формулами над этим базисом.

Теорема. Множество булевых функций F является полным т и т.т, когда F не содержится ни в одном из пяти классов T_0, T_1, S, M, L . 1) Если содержится, то его замыкание также содержится в этом классе. 2) Если не

содержится, то есть функции не из данных классов (аналогично). Пусть f_0