МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.Ломоносова

Механико-математический факультет

Кафедра Теоретической механики и мехатроники

Отчет по второй задаче практикума по ЭВМ

Преподаватель: Самохин Александр Сергеевич Работу выполнил: Студент 422 группы Дергунов Максим Олегович

Содержание

1	Постановка задачи	2
2	Формализация задачи	2
3	Система необходимых условий оптимальности	3
4	Анормальный случай и исследования задачи	5
5	Краевая задача	6
6	Численное решение краевой задачи методом стрельбы	6
7	Тест решения задачи Коши для гармонического осцилятора	7
8	Численное решение для указанных значений параметра	7
9	Графики решений	9
	9.1 $\alpha = 0.0$	9
	9.2 $\alpha = 0.1$	10
	9.3 $\alpha = 1.0$	11
	9.4 $\alpha = 11.0$	11
10	Аналитическое решение	12
11	Список литературы	15

1 Постановка задачи

Рассматривается задача оптимального управления с фиксированным временным отрезком, с ненулевой терминальной частью, а именно с ограничением вида "меньше или равно":

$$\int_0^1 (\ddot{x}/(1+\alpha t^4)) dt \to \inf |\ddot{x}| \leq 1 x(0) = \dot{x}(0) = 0, x(1) = -11/24 \alpha = \{0.0; 0.1; 1.0; 11.0\}$$

Требуется формализовать задачу как задачу оптимального управления в понтрягинской форме, принципом максимума Понтрягина свести задачу к краевой задаче, численно решить полученную краевую задачу методом стрельбы.

2 Формализация задачи

Формализуем задачу как задачу оптимального управления. Для этого обозначим $y = \dot{x}$. Тогда система из пункта 1 перепишится в следующем виде:

$$\begin{cases} \dot{x} = y \\ \dot{y} = u \\ u \in [-1, 1] \\ x(0) = 0 \\ y(0) = 0 \\ x(1) = -11/24 \\ B_0 = \varphi_0 = \int_0^1 \left(u/\left(1 + \alpha t^4\right) \right) dt \to \inf \end{cases}$$

m=0; m'=2

3 Система необходимых условий оптимальности

Выпишем функции Лагранжа и Понтрягина:

$$\mathfrak{L} = \int_0^1 L dt + l$$

Лагранжиан $L = \lambda_0 \frac{u}{1+\alpha t^4} + p_x(\dot{x}-y) + p_y(\dot{y}-u),$

Терминант $l = \lambda_1 x(0) + \lambda_2 y(0) + \lambda_3 (x(1) + 11/24)$

$$H=p_xy+p_yu-\lambda_0\frac{u}{1+\alpha t^4}.$$

Применим к задаче оптимального управления принцип максимума Понтрягина.

Необходимые условия оптимальности:

а) условия стационарности по x - уравнения Эйлера-Лагранжа:

$$\dot{p}_x = 0, \dot{p}_y = -\frac{\partial H}{\partial y}.$$

Имеем:

$$\begin{cases} \dot{p}_x = 0\\ \dot{p}_y = -p_x \end{cases}$$

б) Условие оптимальности по управлению:

$$u = \underset{u \in [-1,1]}{\operatorname{argabsmax}} H(u)$$

Имеем:

$$u = \underset{u \in [-1,1]}{\operatorname{argabsmax}} \left(p_y u - \lambda_0 \frac{u}{1 + \alpha t^4} \right) = \begin{cases} \text{any} & \text{if } p_y - \frac{\lambda_0}{(1 + \alpha t^4)} = 0\\ 1 & \text{if } p_y - \frac{\lambda_0}{(1 + \alpha t^4)} > 0\\ -1 & \text{if } p_y - \frac{\lambda_0}{(1 + \alpha t^4)} < 0 \end{cases}$$

в) Условие трансверсальности:

$$p_x(t_k) = (-1)^k \frac{\partial l}{\partial x(t_k)},$$

$$p_y(t_k) = (-1)^k \frac{\partial l}{\partial y(t_k)}.$$

Имеем:

$$p_x(0) = \frac{\partial l}{\partial x(0)} = \lambda_1,$$

$$p_x(1) = -\frac{\partial l}{\partial x(1)} = \lambda_3,$$

$$p_y(0) = \frac{\partial l}{\partial y(0)} = \lambda_2,$$

$$p_y(1) = -\frac{\partial l}{\partial y(1)} = 0,$$

г) Условия стационарности по времени:

$$H(t_0) = -\frac{\partial l}{\partial t_0},$$

$$H(t_1) = \frac{\partial l}{\partial t_1}.$$

В данной задаче условия нет, так как t_0, t_1 - известные константы.

- д) Условия дополняющей нежесткости: $\lambda_i B_i = 0$.
- В данной задаче отсутствуют, так как нет условий вида "меньше или равно".
- е) Условие неотрицательности : $\lambda_i \ge 0$. и $\lambda_0 \ge 0$.
- ж) Условие нормировки: множители Лагранжа могут быть выбраны с точностью до положительной константы.
- з) НЕРОН: множители Лагранжа не равны одновременно нулю.

4 Анормальный случай и исследования задачи

Исследуем возможность анормального случая $\lambda_0 = 0$. При этом система перепишется в следующем виде:

$$\begin{cases} \dot{x} = y \\ \dot{y} = u \\ \dot{p}_x = 0 \\ \dot{p}_y = -p_x \end{cases}$$

Пусть p_y не равно нулю, тогда Из условия б)

$$u = \underset{u \in [-1,1]}{\operatorname{argabsmax}} (p_y u) = \left\{ \begin{array}{l} 1, \\ -1, \end{array} \right\}$$

Если u=1: $y = C_1 t = 0$ $x = C_2 - 0$ $p_x = C_3$ $p_y = -C_3 t + C_4$

Тк начальные условия $C_1 = C_2 = 0$

Из условия в):

$$\lambda_1 = -\lambda_3 = C_3$$

Если $C_3=0$ то снова из условия в получаем сначала $C_4=C_3$,а затем $\lambda_2=C_4$ Следовательно $\lambda_1=\lambda_2=\lambda_3=0$. Противоречие с НЕРОН.

Если u=-1:

$$y = -C_1 t = 0$$
$$x = C_2 - 0$$
$$p_x = C_3$$

 $p_y = -C_3 t + C_4$

Рассуждения аналогичные, тк просто меняется знак при константах C_1 и C_2 Следовательно $\lambda_1=\lambda_2=\lambda_3=0$. Противоречие с НЕРОН.

Если же $p_y=0$, из условия в) сразу же следует $\lambda_1=\lambda_2=\lambda_3=0$. Соответственно случай $\lambda_0=0$ невозможен.

Т.к. $\lambda_0 \neq 0$, то в силу однородности функции Лагранжа по множителям Лагранжа можем выбрать следующее условие нормировки: $\lambda_0 = 1$.

5 Краевая задача

С помощью принципа максимума Понтрягина задача оптимального управления сводится к краевой задаче:

$$\begin{cases} \dot{x} = y \\ \dot{y} = \begin{cases} \text{any} & \text{if } p_y - \frac{1}{(1 + \alpha t^4)} = 0 \\ 1 & \text{if } p_y - \frac{1}{(1 + \alpha t^4)} > 0 \\ -1 & \text{if } p_y - \frac{1}{(1 + \alpha t^4)} < 0 \end{cases}$$

$$\dot{p}_x = 0$$

$$\dot{p}_y = -p_x$$

$$x(0) = 0, y(0) = 0, x(1) = -11/24, p_y(1) = 0,$$

 $\alpha = \{0.0; 0.1; 1.0; 11.0\}$

6 Численное решение краевой задачи методом стрельбы

Краевая задача решается численно с помощью методом стрельбы. В качестве параметров пристрелки выбираются недостающие для решения задачи Коши значения при $t=0: \alpha_1=p_x(0), \alpha_2=p_y(0)$

Задав эти значения произвольным образом и решив задачу Коши на отрезке [0,1], получим функции $x(.) [\alpha_1, \alpha_2, \alpha_3], y(.) [\alpha_1, \alpha_2, \alpha_3], p_x(.) [\alpha_1, \alpha_2, \alpha_3], p_y(.) [\alpha_1, \alpha_2, \alpha_3].$

Задача Коши решается численно явным методом Рунге-Кутты, основанном на расчетных формулах Дормана-Принса 4(5) с автоматическим выбором шага. Для решения краевой задачи необходимо подобрать значения α_1, α_2 так, чтобы выполнялись условия:

$$p_y(1) [\alpha_1, \alpha_2] = 0$$

 $x(1) [\alpha_1, \alpha_2] + 11/24 = 0$

Вектор-функцией невязок будет функция $X(\alpha)$, определяемая равенством: $X(\alpha) = (p_y(1)[\alpha], x(1)[\alpha] + 11/24)$. Таким образом решение краевой задачи свелось к решению системы двух алгебраических уравнений от 2 неизвестных. Корень α находится методом Ньютона с модификацией Исаева-Сонина.

7 Тест решения задачи Коши для гармонического осцилятора

Рассмотрим систему дифференциальных уравнений гармонического осцилятора:

$$\begin{cases} \dot{x} = z \\ \dot{z} = -x \\ x(0) = 0, z(0) = 1 \end{cases}$$

Будем решать систему на отрезке [0,T] при различных значениях T и максимально допустимой относительной погрешности на шаге интегрирования tol. Рассмотрим несколько случаев и для каждого из них посчитаем следующие велечины: steps - общее число сделанных шагов интегрирования, оценка глобальной погрешности, числа Рунге, и $x(T) - \sin T, z(T) - \cos T$.

Τ	tol	steps	$x(T) - \sin T$	$z(T) - \cos T$	Glob - err(T)	R_x	R_z
2π	10^{-8}	464	2.144284e - 14	8.230083e - 13	1.565159e - 10	10.653857	2.871561
5π	10^{-8}	1155	5.055749e - 14	2.058465e - 12	3.917154e - 10	36.209654	6.906690
10π	10^{-8}	2308	8.587911e - 14	4.118150e - 12	7.838891e - 10	8.376851	2.708943
25π	10^{-8}	5767	2.917892e - 14	1.029488e - 11	1.960411e - 09	3.596463	1.639589
2π	10^{-10}	1160	8.062941e - 16	7.438494e - 15	3.935467e - 12	0.545860	0.411221
5π	10^{-10}	2898	1.376411e - 14	2.109424e - 14	9.846845e - 12	20.932538	7.464935
10π	10^{-10}	5794	4.222761e - 14	4.241052e - 14	1.969772e - 11	3.201522	1.506507
25π	10^{-10}	14483	4.340313e - 13	1.074696e - 13	4.925282e - 11	0.970239	0.962983
2π	10^{-12}	2066	8.598238e - 15	2.409184e - 14	6.507711e - 12	67.778850	24.801328
5π	10^{-12}	5191	1.368290e - 14	5.473400e - 14	1.590613e - 11	: 0.558472;	0.376376
10π	10^{-12}	10359	1.850690e - 14	1.079137e - 13	3.214008e - 11	7.151058	2.552932
25π	10^{-12}	25986	2.206802e - 13	2.680078e - 13	8.039571e - 11	1.030159	1.051023

8 Численное решение для указанных значений параметра

Для вычисления я использовал точность шага 10^{-9} , для отыскания точек переключения был выбран метод бисекции с точностью 10^{-15} , начальные параметры пристрелки для $\alpha=0, \alpha=0.1, \alpha=1$ и $\alpha=11$ были взяты из аналитического решения для более быстрой работы метода Ньютона и проверки такие: $p_x=1.0215$ и $p_y=1.0215$. На удивление программа сработала для всех значений α сразу.

В следующей таблице приведены найденные с помощью метода стрельбы значения начальных условий системы: $x(0), y(0), p_x(0), p_y(0)$.

α	x(0)	y(0)	$p_x(0)$	$p_y(0)$
0.0	0	0	1.0215078369	1.0215078369
0.1	0	0	1.0215078168	1.0215078168
1.0	0	0	1.0215076361	1.0215076361
11.0	$0 \mid 0$	0	0.9067263582	0.9067263582

Основная идея модификации метода Рунге-Кутта с автоматическим подбором шага такова:

В моем случае создается функция

```
double switchplus(double t,long double p_y) {
    return p_y -1.0/(1 + alpha*t*t*t*t);
}
```

Обращение в ноль которых знаменует переключение управления.И так, стандартный метод проверяет шаг на допустимость как в 7 задаче из прошлого отчета. Вот делается некоторый допустимый шаг h. Сразу же проверяю условие:

switchplus(t)*switchplus(t+h) <= 0

Если оно выполнено, значит при этом шаге произошла смена управления. На этом отрезке с помощью метода бисекции находится точка переключения t_1 и после делается шаг $t-t_1$ со старым управлением.

9 Графики решений

9.1 $\alpha = 0.0$.

В этом случае имеем одну точку переключения при t=0.021054989

Рис. 1. а)x(t), b)y(t), c) $p_x(t)$, d) $p_y(t)$, e)B0(t)

Значение функционала в точке 1 : $B_0(1) = -0.95789002084493704597$

9.2 $\alpha = 0.1$.

В этом случае так же имеем одну точку. Значение функционала в точке 1 :

Рис. 2. а)x(t), b)y(t), c) $p_x(t)$, d) $p_y(t)$, e)B0(t)

 $B_0(1) = -0.93873909510603697749$

9.3 $\alpha = 1.0$.

В этом случае так же имеем одну точку. Значение функционала в точке 1 :

b)

d)

Рис. 3. а)x(t), b)y(t), c) $p_x(t)$, d) $p_y(t)$, e)B0(t)

 $B_0(1) = -0.82015874720190540828$

9.4 $\alpha = 11.0$.

Для этого параметра имеем две точки переключения:

 $t_1 = 0.71296803442416889496 \\$

 $t_2 = 0.79820633655476203039$

Значение функционала в точке 1 : $B_0(1) = -0.54313556687899777292$

Рис. 4. a)x(t), b)y(t), c) $p_x(t)$, d) $p_y(t)$, e)B0(t)

10 Аналитическое решение

Для $\alpha = 0$ Решим задачу аналитически

Перепишем систему используя наши предположения

$$\begin{cases} \dot{x} = y \\ \dot{y} = \begin{cases} 1 & \text{if } p_y - 1 > 0 \\ -1 & \text{if } p_y - 1 < 0 \end{cases} \\ \dot{p}_x = 0 \\ \dot{p}_y = -p_x \end{cases}$$

$$x(0) = 0, y(0) = 0, x(1) = -11/24, p_y(1) = 0$$

 $x(0)=0,y(0)=0,x(1)=-11/24,p_y(1)=0$ Пусть $p_x=C_1$, тогда $p_y=-C_1t+C_2$ из условия $p_y(1)=0$ получаем $C_1 = C_2$

Обозначим C_1 как C тогда $p_y = -Ct + C$ и соответственно

$$y(t) = \begin{cases} t + c_1, -ct + c \ge 1\\ -t + c_2, -ct + c \le 1 \end{cases}$$
$$x(t) = \begin{cases} \frac{t^2}{2} + c_1t + c_3, -ct + c \ge 1\\ -\frac{t^2}{2} + c_2t + c_4, -ct + c \le 1 \end{cases}$$

Воспользуемся начальным условием в точке $x(1) = -\frac{11}{24}$

$$x(1)=-rac{1}{2}+c_2+c_4=-rac{11}{24}$$
 ,Тогда получим $c_2+c_4=rac{1}{24}$

Соответственно имеем:

$$y(t) = \begin{cases} t + c_1, -ct + c \ge 1\\ -t + c_2, -ct + c \le 1 \end{cases}$$
$$x(t) = \begin{cases} \frac{t^2}{2} + c_1t + c_3, -ct + c \ge 1\\ -\frac{t^2}{2} + c_2t + c_4, -ct + c \le 1 \end{cases}$$

Осталось применить условие x(0) = y(0) = 0

Предположим что $c \geq 1$, решим задачу в этом предположении и если подтвердится это неравенство, значит решение верно.

Тогда условие:

$$y(0) = 0$$
, даёт $c_1 = 0$

$$x(0) = 0$$
, даёт : $c_3 = 0$

Тогда получим:

$$y(t) = \begin{cases} t, -ct + c \ge 1 \\ -t + c_2, -ct + c \le 1 \end{cases} \quad x(t) = \begin{cases} \frac{t^2}{2}, -ct + c \ge 1 \\ -\frac{t^2}{2} + c_2t + \frac{1}{24} - c_2, -ct + c \le 1 \end{cases}$$

Проведем склейку в точке $t=1-\frac{1}{c}$

Для y имеем :

$$1 - \frac{1}{c} = -1 + \frac{1}{c} + c_2$$
$$2 - \frac{2}{c} = c_2$$

Для x имеем :

$$\frac{1}{2}\left(1 - \frac{2}{c} + \frac{1}{c^2}\right) = -\frac{1}{2}\left(1 - \frac{2}{c} + \frac{1}{c^2}\right) + c_2\left(1 - \frac{1}{c}\right) + \frac{1}{24} - c_2$$

$$\frac{1}{2} - \frac{1}{c} + \frac{1}{2c^2} = -\frac{1}{2} + \frac{1}{c} - \frac{1}{2c^2} + 2\left(1 - \frac{2}{c} + \frac{1}{c^2}\right) + \frac{1}{24} - 2 + \frac{2}{c}$$

$$0 = 1 + \frac{2}{c} + \frac{1}{c^2} + \frac{1}{24} - 2 - \frac{2}{c}$$

$$0 = -\frac{23}{24} + \frac{1}{c^2} \to c = \sqrt{\frac{24}{23}}$$

$$y(t) = \begin{cases} t, -ct + c \ge 1 \\ -t + 2 - \frac{2}{c}, -ct + c \ge 1 \end{cases}$$

$$x(t) = \begin{cases} \frac{t^2}{2}, -ct + c \ge 1\\ -\frac{t^2}{2} + \left(2 - \frac{2}{c}\right)t + \frac{1}{24} - \left(2 - \frac{2}{c}\right), -ct + c \le 1 \end{cases}$$

Подставим найденное c

Подставим наиденное
$$t$$

$$y(t) = \begin{cases} t, -\sqrt{\frac{24}{23}}t + \sqrt{\frac{24}{23}} \le 1\\ -t + 2 - \frac{2\sqrt{23}}{\sqrt{24}}, -\sqrt{\frac{24}{23}}t + \sqrt{\frac{24}{23}} \ge 1 \end{cases}$$

$$x(t) = \begin{cases} \frac{t^2}{2}, -\sqrt{\frac{24}{23}}t + \sqrt{\frac{24}{23}} \ge 1\\ -\frac{t^2}{2} + \left(2 - \frac{2\sqrt{23}}{\sqrt{24}}\right)t + \frac{1}{24} - \left(2 - \frac{2\sqrt{23}}{\sqrt{24}}\right), -\sqrt{\frac{24}{23}}t + \sqrt{\frac{24}{23}} \ge 1 \end{cases}$$

Соответственно точка переключения: $t=1-\sqrt{\frac{23}{24}}\approx 0,02105498962$ Параметры пристрелки, которые мы должны получить в численном реше-

Параметры пристрелки, которые мы должны получить в численном решении, учитывая что $\sqrt{\frac{24}{23}}=1.02150783691$

α		x(0)	y(0)	$p_x(0)$	$p_y(0)$
0.	0.	0	0	1.0215078369104984	1.0215078369104984

Графики решений ; График для y(t)

График для X(t)

В точке t=0 результаты аналитического решения таковы :

$\mathbf{x}(0)$	y(0)	$p_x(0)$	$p_y(0)$
0	0	1.0215078369	1.0215078369

Напомним результаты численного решения:

$\mathbf{x}(0)$	y(0)	$p_x(0)$	$p_y(0)$
0	0	1.02150783685	1.02150783685

11 Список литературы

Список литературы

- [1] И. С. Григорьев. Методическое пособие по численным методам решения краевых задач принципа максимума в задачах оптимального управления. М., Издательство Центра прикладных исследований при механико-математическом факультете МГУ, 2005.
- [2] В. В. Александров, Н. С. Бахвалов, К. Г. Григорьев, Г. Ю. Данков, М. И. Зеликин, С. Я. Ищенко, С. В. Конягин, Е. А. Лапшин, Д. А. Силаев, В. М. Тихомиров, А. В. Фурсиков. Практикум почисленным методам в задачах оптимального управления М.: Издательство Московского университета, 1988.
- [3] Эрист Хайрер, Сиверт Пауль Нёрсетт, Герхард Ваннер. Решение обыкновенных дифференци- альных уравнений М.: Мир, 1989.