Fiche n°0 : matrices de passage et formules de changement de base

(environ 2 séances)

Dans tout ce qui suit, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Matrice d'une famille de vecteurs dans des bases

Exercice 1 – matrices de passages entre bases de \mathbb{K}^2 .

Soient $\mathscr{B} = (e_1, e_2)$ la base canonique de \mathbb{K}^2 , c'est-à-dire $e_1 = (1, 0)$ et $e_2 = (0, 1)$, et u = (2, 4), v = (3, -1).

- 1. Vérifier que $\mathscr{B}'=(u,v)$ est une base de \mathbb{K}^2 et écrire la matrice de passage $P=P_{\mathscr{B}}^{\mathscr{B}'}$ de \mathscr{B} à $\mathscr{B}'.$
- **2.** Calculer l'inverse de P.
- **3.** Que vaut la matrice du vecteur (7,-1) dans la base $\mathscr{B}'=(u,v)$?

\spadesuit Exercice 2 – recherche d'une base particulière dans un espace de polynômes.

On se place dans le \mathbb{R} -espace vectoriel $\mathbb{R}_2[X]$ des polynômes de degré au plus 2 à coefficients dans \mathbb{R} . Montrer qu'il existe une unique base \mathscr{B} de $\mathbb{R}_2[X]$ telle que, pour tout $P \in \mathbb{R}_2[X]$, la matrice de P dans la base \mathscr{B} soit :

$$\operatorname{Mat}_{\mathscr{B}}(P) = \begin{pmatrix} P(-1) \\ P(0) \\ P(1) \end{pmatrix}.$$

MATRICE D'UN ENDOMORPHISME DANS DES BASES

Exercice 3 – un exemple de projection de \mathbb{R}^3

On se place dans l'espace vectoriel \mathbb{R}^3 ;

1. Construire une base (u_1, u_2) du plan vectoriel

$$P = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}.$$

- **2.** Soit D la droite de \mathbb{R}^3 engendrée par le vecteur $u_3 = (1,1,1)$. Montrer que $\mathbb{R}^3 = P \oplus D$. En déduire que (u_1, u_2, u_3) est une base de \mathbb{R}^3 .
- **3.** Écrire la matrice de la projection de \mathbb{R}^3 sur le plan P parallèlement à la droite D dans la base (u_1, u_2, u_3) , puis dans la base canonique (e_1, e_2, e_3) de \mathbb{R}^3 .

- **4.** Écrire la matrice de la projection de \mathbb{R}^3 sur la droite D parallèlement au plan P dans la base (u_1, u_2, u_3) , puis dans la base canonique (e_1, e_2, e_3) de \mathbb{R}^3 .
- **5.** Écrire la matrice de la symétrie de \mathbb{R}^3 par rapport au plan P parallèlement à la droite D dans la base (u_1, u_2, u_3) , puis dans la base canonique (e_1, e_2, e_3) de \mathbb{R}^3 .

Exercice 4 – quelques propriétés des projections vectorielles

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$, et F, G deux sous-espaces vectoriels de E, supplémentaires dans E. On note $p_{F,G}$ la projection de E sur F parallèlement à G. On rappelle que $p_{F,G}$ est un endomorphisme de E.

- 1. Quel est le noyau de $p_{F,G}$? Quelle est son image?
- **2.** Montrer : $p_{F,G} \circ p_{F,G} = p_{F,G}$.
- **3.** Soient \mathscr{B}_F et \mathscr{B}_G des bases de F et G respectivement, et \mathscr{B} la base de E obtenue par concaténation des familles libres \mathscr{B}_F et \mathscr{B}_G . Écrire la matrice de $p_{F,G}$ dans la base \mathscr{B} .
- **4.** Soit $s_{F,G}$ la symétrie de E par rapport à F parallèlement à G. Montrer que $s_{F,G} \circ s_{F,G} = \operatorname{Id}_E$ et écrire la matrice de $s_{F,G}$ dans la base \mathscr{B} .

Exercice 5 – les projecteurs d'un espace vectoriel sont les projections de cet espace

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$. On appelle **projecteur de** E tout endomorphisme de E tel que $p \circ p = p$.

Le but de cet exercice est de démontrer qu'un projecteur de E est une projection de E (nous avons vu la réciproque, tout projection de E est un projecteur, au cours de l'exercice précédent).

- **1.** Soit p un projecteur de E, c'est-à-dire $p \in \mathcal{L}(E)$ et $p \circ p = p$. Montrer que $\operatorname{Ker} p$ et $\operatorname{Im} p$ sont en somme directe dans E, autrement dit que $\operatorname{Ker} p \cap \operatorname{Im} p = \{0_E\}$.
- **2.** En remarquant que tout vecteur x de E s'écrit x = (x p(x)) + p(x), montrer que $E = \operatorname{Ker} p + \operatorname{Im} p$. En déduire que $\operatorname{Ker} p$ et $\operatorname{Im} p$ sont supplémentaires dans E, autrement dit que $E = \operatorname{Ker} p \oplus \operatorname{Im} p$.
- 3. Montrer que p est la projection de E sur $\operatorname{Im} p$ et parallèlement à $\operatorname{Ker} p$, et conclure.

De la même façon, on peut montrer que les symétries vectorielles de E sont les endomorphismes s de E vérifiant $s \circ s = \operatorname{Id}_E$.

Exercice 6 – recherche d'une base dans laquelle la matrice d'un endomorphisms a une allure préalablement fixée.

1. Soit f l'endomorphisme de \mathbb{K}^2 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 2 & 4 \\ -1 & -2 \end{pmatrix}.$$

- **1.1** Vérifier que $f^2 = 0$ et $f \neq 0$.
- **1.2** \spadesuit Justifier qu'il existe une base $\mathscr{B}=(v_1,v_2)$ de E dans laquelle la matrice de f est $N=\begin{pmatrix}0&1\\0&0\end{pmatrix}$.
- 1.3 Écrire la formule de changement de bases entre les matrices A et N, et vérifier sa cohérence.
- **2.** \spadesuit Plus généralement, soient E un \mathbb{K} -espace vectoriel de dimension 2, f un endomorphisme de E vérifiant $f^2 = 0$ et $f \neq 0$. Justifier qu'il existe une base $\mathscr{B} = (v_1, v_2)$ de E dans laquelle la matrice de f est N.

Matrices semblables

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ deux matrices carrées d'ordre $n \in \mathbb{N}^*$ et à coefficients dans \mathbb{K} . On rappelle que A est dite **semblable** à B, et on note $A \sim B$, s'il existe une matrice inversible $P \in GL_n(\mathbb{K})$ telle que $B = P^{-1}AP$.

Exercice 7 – propriétés de la relation \sim .

- 1. Montrer que la relation \sim est une relation d'équivalence dans l'ensemble $\mathcal{M}_n(\mathbb{K})$.
- **2.** On rappelle que la trace d'une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$, notée $\mathrm{Tr}(A)$, est la somme des éléments diagonaux de A.
 - Soient $A, B \in \mathscr{M}_n(\mathbb{K})$.
 - **2.1** Montrer que si $A \sim B$, alors Tr(A) = Tr(B).
 - **2.2** Montrer que si $A \sim B$, alors $A^k \sim B^k$ pour tout $k \in \mathbb{N}^*$.

Exercice 8 – utilisation de certains invariants pour montrer que deux matrices ne sont pas semblables.

- **1.** Les matrices $A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ sont-elles semblables?
- **2.** Les matrices $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ sont-elles semblables?
- 3. Les matrices $A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ sont-elles semblables?

Fiche n°2 : déterminants

(environ 2 séances)

Dans tout ce qui suit, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et $n \in \mathbb{N} \setminus \{0, 1\}$.

GÉNÉRALITÉS SUR LE DÉTERMINANT

Exercice 1 – vrai ou faux.

Les assertions suivantes sont-elles vraies ou fausses? Justifier l'assertion ou citer le cours si la réponse est «vraie», et donner un contre-exemple simple sinon.

- (a) Pour tout $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$, on a : $\det(A + B) = \det(A) + \det(B)$.
- (b) Pour tout $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$, on a : $\det(A + B) = \det(A) \det(B)$.
- (c) Pour tous $A \in \mathcal{M}_n(\mathbb{K})$ et $\alpha \in \mathbb{K}$, on a : $\det(\alpha A) = \alpha \det(A)$
- (d) Pour tout $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$ tel que A et B soient semblables (voir la fiche n°0), on a : $\det(A) = \det(B)$.

Exercice 2 – déterminant de matrices particulières.

- **1.** Que peut-on dire du déterminant d'une matrice nilpotente $A \in \mathcal{M}_n(\mathbb{K})$ (c'est-àdire que $A^N = 0$ pour un certain $N \in \mathbb{N}^*$)?
- **2.** Que peut-on dire du déterminant d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ telle que $A^2 = I_n$?
- **3.** Que peut-on dire du déterminant d'une matrice antisymétrique $A \in \mathcal{M}_n(\mathbb{K})$ (c'est-à-dire que ${}^tA = -A$) lorsque n est impair?

CALCULS DE DÉTERMINANTS

Exercice 3 - calcul d'un déterminant à l'aide d'opérations élémentaires.

Pour $(a,b) \in \mathbb{K}^2$, calculer le déterminant d'ordre n suivant :

$$\begin{vmatrix} a & b & \cdots & b \\ b & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \cdots & b & a \end{vmatrix}.$$

(Indication: commencer par effectuer l'opération élémentaire $C_1 \leftarrow C_1 + \sum_{j=2}^n C_j$.)

Exercice 4 – utilisation du déterminant pour savoir si une matrice est inversible.

1. Calculer, pour $t \in \mathbb{C}$, le déterminant de la matrice suivante sous forme factorisée :

$$A_t = \begin{pmatrix} 1 & 1 & t \\ 1 & t & 1 \\ t & 1 & 1 \end{pmatrix}.$$

- 2. En déduire les valeurs de t pour lesquelles la matrice A_t est inversible.
- **3.** Lorsque A_t n'est pas inversible, déterminer une base de Ker A_t .

Exercice 5 – déterminant d'une matrice circulante.

On pose $j = \exp\left(\frac{2i\pi}{3}\right)$. On rappelle les relations : $j^3 = 1$ et $1 + j + j^2 = 0$.

1. Montrer que les vecteurs suivants forment une base de \mathbb{C}^3 :

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 1 \\ j \\ j^2 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 1 \\ j^2 \\ j^3 \end{pmatrix}.$$

2. Soient $(a,b,c)\in\mathbb{C}^3$ et f l'endomorphisme de \mathbb{C}^3 canoniquement associé à la matrice circulante suivante :

$$A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}.$$

Calculer $f(u_1)$, $f(u_2)$, $f(u_3)$ et écrire la matrice de f dans la base (u_1, u_2, u_3) .

3. En calculant de déterminant de f de deux manières différentes, obtenir une factorisation de $3abc - a^3 - b^3 - c^3$.

Exercice 6 - un calcul de déterminant pas récurrence.

Calculer le déterminant d'ordre n suivant :

$$\Delta_n = \begin{vmatrix} \alpha + a_1 & -1 & 0 & \cdots & 0 \\ a_2 & \alpha & -1 & & \vdots \\ a_3 & 0 & \alpha & \ddots & 0 \\ \vdots & \vdots & & \ddots & -1 \\ a_n & 0 & \cdots & 0 & \alpha \end{vmatrix},$$

où $\alpha, a_1, \ldots, a_n \in \mathbb{K}$. (Indication : on pourra établir une relation de récurrence entre Δ_n et Δ_{n-1} et raisonner par récurrence.)

Exercice 7 - déterminant de Vandermonde.

Alexandre-Théophile Vandermonde, né à Paris le 28 février 1735 et mort à Paris le 1er janvier 1796, est un mathématicien français. Il fut aussi économiste, musicien et chimiste, travaillant notamment avec Étienne Bézout et Antoine Lavoisier. Son nom est maintenant surtout associé à une matrice et son déterminant.

Soit $(x_1, \ldots, x_n) \in \mathbb{C}^n$. On appelle **déterminant de Vandermonde** le déterminant d'ordre n suivant :

$$V(x_1, \dots, x_n) = \begin{vmatrix} 1 & 1 & \cdots & 1 & 1 \\ x_1 & x_2 & \cdots & x_{n-1} & x_n \\ x_1^2 & x_2^2 & \cdots & x_{n-2}^2 & x_n^2 \\ \vdots & \vdots & & \vdots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_{n-1}^{n-1} & x_n^{n-1} \end{vmatrix}.$$

L'objectif de cet exercice est de calculer $V(x_1, ..., x_n)$, et de déterminer pour quels n-uplets $(x_1, ..., x_n) \in \mathbb{C}^n$ ce déterminant est non nul.

- 1. Calculer $V(x_1)$, $V(x_1, x_2)$, $V(x_1, x_2, x_3)$.
- **2.** Que peut-on dire de $V(x_1, \ldots, x_n)$ si $x_i = x_j$ pour $(i, j) \in \{1, \ldots, n\}^2$ tel que i < j?
- 3. \spadesuit On fixe dans cette question des complexes x_1, \ldots, x_n deux à deux distincts.
- **3.1** Montrer que l'application $t \mapsto V(x_1, \dots, x_{n-1}, t)$ est une fonction polynomiale de degré n-1. Autrement dit, $V(x_1, \dots, x_{n-1}, T)$ est un polynôme de degré au plus n-1 en la variable T.
- **3.2** À l'aide de la question 2, trouver n-1 racines distinctes du polynôme $V(x_1,\ldots,x_{n-1},T)$. En déduire une expression de $V(x_1,\ldots,x_{n-1},T)$ en fonction de x_1,\cdots,x_{n-1} et de $V(x_1,\ldots,x_{n-1},x_n)$.
- **3.3** Calculer $V(x_1, \ldots, x_{n-1}, 0)$ et obtenir, à l'aide d'une récurrence sur $n \in \mathbb{N}^*$, une expression de $V(x_1, \ldots, x_n)$ sous forme factorisée.
- **4.** Montrer que $V(x_1, \ldots, x_n)$ est non nul si et seulement si les complexes x_1, \ldots, x_n sont deux à deux distincts.

Fiche n°3 : réduction des endomorphismes (1er niveau)

(4 à 5 séances)

Dans tout ce qui suit, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , $n \in \mathbb{N}^*$ et E est un \mathbb{K} -ev de dimension finie n.

ÉLÉMENTS PROPRES D'UN ENDOMORPHISME OU D'UNE MATRICE PAR CALCULS «DIRECTS», SANS RECOURS AU POLYNÔME CARACTÉRISTIQUE

Exercice 1 – exemples et contre-exemples.

- 1. Donner un exemple de matrice de $\mathcal{M}_2(\mathbb{R})$ dont le spectre est vide.
- **2.** Donner un exemple de matrice diagonalisable de $\mathcal{M}_2(\mathbb{R})$ dont le spectre est réduit à $\{1\}$. Que peut-on dire d'un telle matrice?
- **3.** Donner un exemple de matrice non diagonalisable de $\mathcal{M}_2(\mathbb{R})$ dont le spectre est réduit à $\{1\}$.
- **4.** Donner un exemple de matrice <u>non diagonale</u> de $\mathcal{M}_2(\mathbb{R})$ dont le spectre est $\{-1,1\}$. Une telle matrice est-elle <u>toujours diagonalisable</u>?
- **5.** Donner un exemple de matrice <u>non nulle</u> de $\mathcal{M}_2(\mathbb{R})$ dont le spectre est réduit à $\{0\}$. Une telle matrice peut-elle être diagonalisable?
- **6.** Donner un exemple de couple $(A, B) \in \mathcal{M}_2(\mathbb{R})^2$ telle que $\operatorname{Spec}_{\mathbb{R}}(A) = \operatorname{Spec}_{\mathbb{R}}(B) = \{1\}$ et telle que A et B ne soient pas semblables.
- 7. Peut-on trouver une paire $(A, B) \in \mathcal{M}_2(\mathbb{R})^2$ telle que $\operatorname{Spec}_{\mathbb{R}}(A) = \operatorname{Spec}_{\mathbb{R}}(B) = \{-1, 1\}$ et telle que A et B ne soient pas semblables?

Exercice 2 – diagonalisabilité d'une matrice d'ordre 3 (presque) sans calcul. On considère la matrice

 $A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}.$

- 1. Sans aucun calcul, en observant seulement les colonnes de la matrice A, repérer deux valeurs propres réelles λ et μ pour A.
- ${\bf 2.}\,$ En déduire que la matrice A est semblable à une matrice du type

$$T = \begin{pmatrix} \lambda & 0 & \alpha \\ 0 & \mu & \beta \\ 0 & 0 & \nu \end{pmatrix},$$

où α , β et ν sont trois réels.

3. En utilisant la trace, déterminer la valeur de ν . La matrice A est-elle diagonalisable?

Exercice 3 – étude de la diagonalisabilité d'un endomorphisme défini sur un espace de polynômes.

Soit ϕ l'application définie par :

$$\forall P \in \mathbb{R}_n[X], \quad \phi(P) = X(1-X)P'' + (1-2X)P'.$$

- 1. Vérifier que ϕ est un endomorphisme de $\mathbb{R}_n[X]$ et donner sa matrice dans la base canonique de $\mathbb{R}_n[X]$.
- **2.** L'endomorphisme ϕ est-il diagonalisable?

Exercice 4 – obtention d'éléments propres par résolution d'un système linéaire.

Soit

$$A = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & 1 \\ 1 & \cdots & 1 & 2 \end{pmatrix}.$$

- **1.** Quelle est la dimension de Ker A?
- 2. Trouver les valeurs propres non nulles de A. (Indication : résoudre directement l'équation $AX = \lambda X$. On peut aussi calculer le polynôme caractéristique mais les calculs sont plus fastidieux.)
- **3.** La matrice A est-elle diagonalisable?

Propriétés et utilisation du polynôme caractéristique

Exercice 5 - matrice d'un projecteur.

Soient

$$A = \begin{pmatrix} -1 & 2 & 2\\ 2 & -1 & -2\\ -2 & 2 & 3 \end{pmatrix},$$

et f_A l'endomorphisme de \mathbb{R}^3 canoniquement associé à A.

- 1. Quelles sont les valeurs propres et vecteurs propres de f_A ?
- **2.** Montrer que l'endomorphisme f_A est diagonalisable.
- **3.** Expliciter une base de \mathbb{R}^3 formée de vecteurs propres pour f_A et écrire la matrice de f_A dans cette base.
- 4. Comment s'interprète géométriquement l'endomorphisme f_A ?
- 5. Pouvait-on obtenir les résultats des questions 2. et 4. par une autre méthode?

Exercice 6 – sous-espaces stables et polynôme caractéristique.

Soient $f \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E stable par f. On note, comme dans le cours, f_F l'endomorphisme de F induit par f. Montrer que χ_{f_F} divise χ_f . (Indication: utiliser une interprétation matricielle du fait que F soit stable par f.)

Exercice 7 – diagonalisation effective d'une matrice d'ordre 3.

Les matrices suivantes sont-elles diagonalisables sur \mathbb{Q} , \mathbb{R} ou \mathbb{C} ?

$$A = \begin{pmatrix} 2 & -2 & 0 \\ 1 & 2 & 1 \\ 0 & 2 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & -2 \\ 1 & 0 & 1 \\ 1 & -2 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 3 & 1 \\ 2 & 2 & 2 \end{pmatrix}.$$

Exercice 8 – résoudre une équation différentielle pour déterminer les éléments propres d'un endomorphisme d'un espace de polynômes.

Pour tout $P \in \mathbb{R}_3[X]$, on pose $\phi(P) = (X^2 - 1)P'(X) - (3X + 1)P(X)$.

- 1. Montrer que ϕ est un endomorphisme de $\mathbb{R}_3[X]$. Donner la matrice de ϕ dans la base canonique de $\mathbb{R}_3[X]$.
- 2. Déterminer le polynôme caractéristique de ϕ . En déduire les valeurs propres et les vecteurs propres de ϕ . L'endomorphisme ϕ est-il diagonalisable?
- 3. On se propose dans cette question de retrouver les résultats de la question précédente à l'aide d'une équation différentielle.

Pour tout réel m, on note (E_m) l'équation différentielle :

$$(x^2 - 1)y'(x) = (3x + m)y(x), x \in]-1,1[,$$

d'inconnue $y:]-1,1[\to \mathbb{R},$ fonction dérivable sur]-1,1[.

- **3.1** Résoudre l'équation (E_m) .
- **3.2** Pour quelles valeurs de m les solutions de (E_m) sont-elles polynomiales?
- **3.3** En déduire les valeurs propres et les vecteurs propres de ϕ .

Exercice 9 – éléments propres et polynôme caractéristique d'une matrice compagnon.

Soient $a_0, \ldots, a_{n-1} \in \mathbb{K}$ et

$$A = \begin{pmatrix} 0 & 0 & \cdots & 0 & a_0 \\ 1 & 0 & \ddots & \vdots & a_1 \\ & \ddots & \ddots & 0 & \vdots \\ & & \ddots & 0 & a_{n-2} \\ 0 & & & 1 & a_{n-1} \end{pmatrix}.$$

On dit que A est la matrice compagnon du polynôme P, où

$$P = X^n - a_{n-1}X^{n-1} - \dots - a_1X - a_0 \in \mathbb{C}[X].$$

- 1. On cherche à étudier dans cette question à quelle condition sur P la matrice A est diagonalisable.
 - 1.1 Montrer que les valeurs propres de A sont exactement les racines dans \mathbb{K} du polynôme P.

 (Indication: résoudre directement l'équation $AX = \lambda X$, sans calculer le po-
 - $lyn\^ome\ caract\'eristique.)$ 1.2 En déduire que si le polynôme P a exactement n racines deux à deux distinctes
- dans \mathbb{K} , alors A est diagonalisable. Déterminer dans ce cas une base de \mathbb{K}^n formée de vecteurs propres pour A.
- 1.3 \spadesuit Réciproquement, montrer que si A est diagonalisable, alors le polynôme P est scindé et à racines simples dans \mathbb{K} . (Indication: utiliser la résolution précédente $AX = \lambda X$ pour déterminer les vecteurs propres.)
- 1.4 ♠ Exemple d'application. Démontrer que la matrice

$$A = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

est diagonalisable dans $\mathcal{M}_3(\mathbb{C})$ mais pas dans $\mathcal{M}_3(\mathbb{R})$. (Indication: étudier les variations de la fonction polynomiale $x \mapsto x^3 + x^2 + 1$ sur \mathbb{R} .)

2. Calculer le polynôme caractéristique de A (ou pourra s'inspirer de l'exercice 6 de la fiche n°2). Retrouver ainsi le résultat de la question 1.1.

Utilisation d'un polynôme annulateur

Exercice 10 – diagonalisabilité d'une matrice dont on connaît un polynôme annulateur.

Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$. On suppose de plus que la matrice A vérifie

$$A^4 + A^3 + A^2 + A = 0.$$

Que peut-on dire du spectre de A? Si de plus on suppose la matrice A inversible, peut-elle être diagonalisable dans $\mathcal{M}_n(\mathbb{R})$?

♠ Exercice 11 – diagonalisation simultanée

Soient $f, g \in \mathcal{L}(E)$ deux endomorphismes de E. On suppose que f et g commutent, c'est-à-dire que $f \circ g = g \circ f$, et que f et g sont diagonalisables.

- 1. Montrer que les sous-espaces propres de f sont stables par g.
- 2. Montrer que les endomorphismes induits par g sur chaque sous-espace propre de f sont diagonalisables.
- **3.** En déduire qu'il existe une base de E dans laquelle les matrices de g et f sont diagonales, autrement dit, qu'on peut diagonaliser «simultanément» f et g.
- 4. Illustrer par un exemple que ce résultat est mis en défaut si f et g ne commutent pas.
- 5. Soient

$$A = \begin{pmatrix} 1 & 2 & -1 & -1 \\ 2 & 1 & -1 & -1 \\ 1 & 1 & 0 & -2 \\ 1 & 1 & -2 & 0 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 0 & -1 & -1 & 2 \\ 1 & -1 & -2 & 1 \\ 1 & -2 & -1 & 1 \\ 2 & -1 & -1 & 0 \end{pmatrix}.$$

Trouver des matrices diagonales D et D' et une matrice inversible $P \in GL_4(\mathbb{R})$ telles que

$$A = PDP^{-1}$$
 et $B = PD'P^{-1}$

(Indication : vérifier que AB = BA et considérer les endomorphismes de \mathbb{R}^4 canoniquement à A et B.)

APPLICATIONS DE LA DIAGONALISATION

Exercice 12 – recherche de sev stables grâce aux éléments propres. Soient

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix},$$

et f_A l'endomorphisme de \mathbb{R}^3 canoniquement associé à A. Le but de cet exercice est de trouver tous les sev de \mathbb{R}^3 stables par f_A .

- 1. Trouver les droites de \mathbb{R}^3 stables par f_A .
- 2. Montrer que le plan vectoriel

$$P_0 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$$

est stable par f_A .

- **3.** Trouver les plans de \mathbb{R}^3 stables par f_A . (Indication: si P est stable par f, $P \neq P_0$, observer que $P \cap P_0$ est une droite stable par f_A .)
- **4.** Conclusion : quels sont les sev stables de \mathbb{R}^3 par f_A ?

Exercice 13 – calcul de puissances d'une matrice carrée. Soit

$$A = \begin{pmatrix} 0 & -8 & 6 \\ -1 & -8 & 7 \\ 1 & -14 & 11 \end{pmatrix}.$$

- 1. Montrer que A est diagonalisable et diagonaliser A.
- **2.** Calculer A^k , pour tout $k \in \mathbb{N}$. (Par convention $A^0 = I_n$.)
- **3.** Montrer que A est inversible, et calculer A^{-1} .
- **4.** En déduire A^k , pour tout $k \in \mathbb{Z}$. (Par convention, si $k \in \mathbb{Z}$, k < 0, $A^k = (A^{-1})^{-k}$.)

Exercice 14 – une suite récurrente linéaire d'ordre 2 à coefficients constants.

On note E l'ensemble des suites $(u_n)_{n\in\mathbb{N}}$ réelles telles que :

$$\forall n \in \mathbb{N}, \quad u_{n+2} = \frac{1}{2}(u_{n+1} + u_n).$$

1. Trouver une matrice A de $\mathcal{M}_2(\mathbb{R})$ telle que :

$$(u_n)_{n\in\mathbb{N}}\in E\iff \forall n\in\mathbb{N},\quad \begin{pmatrix} u_{n+2}\\u_{n+1} \end{pmatrix}=A\begin{pmatrix} u_{n+1}\\u_n \end{pmatrix}.$$

2. En déduire qu'une suite $(u_n)_{n\in\mathbb{N}}$ appartient à E si et seulement si on a :

$$\forall n \in \mathbb{N}, \quad \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix} = A^n \begin{pmatrix} u_1 \\ u_0 \end{pmatrix}.$$

- **3.** Montrer que A est diagonalisable et diagonaliser A dans $\mathcal{M}_2(\mathbb{R})$.
- **4.** Soit $(u_n)_{n\in\mathbb{N}}\in E$. Déduire de la question précédente, pour tout entier naturel n, une expression de u_n en fonction de n et des réels u_0 , u_1 . La suite $(u_n)_{n\in\mathbb{N}}$ est-elle convergente? Si oui, préciser sa limite en fonction de u_0 et u_1 .

Exercice 15- étude de trois suites récurrentes linéaires d'ordre 2 «imbriquées ».

Soit A la matrice carrée d'ordre 3 à coefficients réels définie par :

$$A = \begin{pmatrix} \frac{7}{12} & -\frac{1}{6} & \frac{1}{12} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{12} & -\frac{1}{6} & \frac{7}{12} \end{pmatrix} = \frac{1}{12} \begin{pmatrix} 7 & -2 & 1 \\ -4 & 8 & -4 \\ 1 & -2 & 7 \end{pmatrix}.$$

- 1. Montrer que A est diagonalisable et diagonaliser de la matrice A.
- **2.** Considérons trois suites réelles $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ définies par :

$$\forall n \in \mathbb{N}, \quad \begin{cases} u_{n+1} = \frac{7u_n - 2v_n + w_n}{12} \\ v_{n+1} = \frac{-u_n + 2v_n - w_n}{3} \\ w_{n+1} = \frac{u_n - 2v_n + 7w_n}{12}. \end{cases}$$

- **3.** Montrer que, pour tout entier naturel n, on a : $\begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix} = A^n \begin{pmatrix} u_0 \\ v_0 \\ w_0 \end{pmatrix}$.
- **4.** Calculer A^n à l'aide de la question **1**. En déduire, pour tout entier naturel n, une expression de u_n , v_n et w_n en fonction de n et des réels u_0 , v_0 et w_0 .
- **5.** Les suites $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$, sont-elles convergentes? Si oui, préciser la limite de chacune d'elles.

Exercice 16 – résolution d'un système différentiel linéaire d'ordre un.

On cherche dans cet exercice tous les triplets (f, g, h) de fonctions dérivables sur \mathbb{R} , à valeurs réelles, vérifiant le système différentiel (\mathscr{S}) suivant :

$$\forall t \in \mathbb{R}, \begin{cases} f'(t) &= f(t) + 2g(t) - h(t) \\ g'(t) &= 2f(t) + 4g(t) - 2h(t) \\ h'(t) &= -f(t) - 2g(t) + h(t) \end{cases}$$

1. On pose $A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \\ -1 & -2 & 1 \end{pmatrix}$. Montrer que A est diagonalisable, et trouver une matrice diagonale $D \in \mathcal{D}_3(\mathbb{R})$ et une matrice inversible $P \in GL_3(\mathbb{R})$ telles que

$$A = PDP^{-1}.$$

2. Résoudre le système différentiel suivant, où u, v, w sont trois fonctions dérivables :

$$\begin{pmatrix} u' \\ v' \\ w' \end{pmatrix} = D \begin{pmatrix} u \\ v \\ w \end{pmatrix}.$$

3. En déduire les solutions du système (\mathcal{S}) .

Fiche n°4 : réduction des endomorphismes (2ème niveau)

(4 à 5 séances)

Dans tout ce qui suit, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

TRIGONALISATION EFFECTIVE

Exercice 1 – trigonalisation d'une matrice avec valeur propre double. Soit

$$A = \begin{pmatrix} 5 & -17 & 25 \\ 2 & -9 & 16 \\ 1 & -5 & 9 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- 1. Calculer le polynôme caractéristique de A, et déterminer les valeurs propres de A.
- **2.** Déterminer une base de chaque sous-espace caractéristique de A. En déduire que A est trigonalisable dans $\mathcal{M}_3(\mathbb{R})$, mais non diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.
- 3. Soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A. Trouver une base $\mathscr{B}=(V_1,V_2,V_3)$ de \mathbb{R}^3 telle que

$$\operatorname{Mat}_{\mathscr{B}}(f) = egin{pmatrix} 2 & \alpha & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \text{ où } \alpha \in \mathbb{R} \setminus \{0\}.$$

4. Trouver une matrice inversible $P \in GL_3(\mathbb{R})$ telle que

$$A = PTP^{-1}$$
, où $T = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Exercice 2 - trigonalisation d'une matrice avec valeur propre triple. Soit

$$A = \begin{pmatrix} -2 & 2 & -1 \\ -1 & 1 & -1 \\ -1 & 2 & -2 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- 1. Calculer le polynôme caractéristique de A, et déterminer les valeurs propres de A.
- **2.** Déterminer une base de chaque sous-espace caractéristique de A. En déduire que A est trigonalisable dans $\mathcal{M}_3(\mathbb{R})$, mais non diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.

3. Soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A. Trouver une base $\mathscr{B}=(V_1,V_2,V_3)$ de \mathbb{R}^3 telle que

$$\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} -1 & 0 & \alpha \\ 0 & -1 & \beta \\ 0 & 0 & \gamma \end{pmatrix},$$

où α, β sont des réels non tous les deux nuls, et γ un réel que l'on déterminera.

4. \spadesuit Trouver une matrice inversible $P \in GL_3(\mathbb{R})$ telle que

$$A = PTP^{-1}$$
, où $T = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$.

Exercice 3 – trigonalisation d'une autre matrice avec valeur propre triple. Soit

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 1 & 3 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- 1. Calculer le polynôme caractéristique de A, et déterminer les valeurs propres de A.
- **2.** Déterminer une base de chaque sous-espace caractéristique de A. En déduire que A est trigonalisable dans $\mathcal{M}_3(\mathbb{R})$, mais non diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.
- 3. Soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A. Trouver une base $\mathscr{B}=(V_1,V_2,V_3)$ de \mathbb{R}^3 telle que

$$\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} 2 & \alpha & \beta \\ 0 & 2 & \gamma \\ 0 & 0 & 2 \end{pmatrix}, \text{ où } \alpha \in \mathbb{R} \setminus \{0\}, \ \beta, \gamma \in \mathbb{R}, \ (\beta, \gamma) \neq (0, 0).$$

4. \spadesuit Trouver une matrice inversible $P \in GL_3(\mathbb{R})$ telle que

$$A = PTP^{-1}$$
, où $T = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.

Trigonalisation et sous-espaces stables

Exercice 4 – trigonalisation et sev stables.

Soient E un \mathbb{C} -espace vectoriel de dimension $n \in \mathbb{N}^*$ et $f \in \mathcal{L}(E)$ un endomorphisme de E. Montrer que, pour tout $k \in \{0, \dots, n\}$, il existe un sev de E stable par f de dimension k. Ce résultat reste-t-il vrai en remplaçant \mathbb{C} par \mathbb{R} ?

POLYNÔME CARACTÉRISTIQUE ET POLYNÔME MINIMAL

Exercice 5- une application des théorèmes de Bézout, de d'Alembert et de Cayley-Hamilton.

Soient $n \in \mathbb{N}^*$, $A \in \mathscr{M}_n(\mathbb{K})$ et $P \in \mathbb{C}[X]$. Montrer:

$$P(A) \in GL_n(\mathbb{C}) \iff P \wedge \chi_A = 1.$$

Exercice 6 - vrai ou faux.

Les assertions suivantes sont-elles vraies ou fausses?

- (a) il existe $A \in \mathcal{M}_2(\mathbb{R})$ tel que $\pi_A = X^2 + 1$,
- (b) il existe $B \in \mathcal{M}_3(\mathbb{C})$ tel que $\pi_B = X^2 + 1$,
- (c) il existe $C \in \mathcal{M}_3(\mathbb{R})$ tel que $\pi_C = X^2 + 1$.

Justifier vos réponses.

Exercice 7 – polynômes minimaux d'endomorphismes particuliers.

- 1. Quel est le polynôme minimal d'une homothétie de \mathbb{R}^3 de rapport $\alpha \in \mathbb{R}$?
- **2.** Soient D une droite et P un plan de \mathbb{R}^3 tels que $\mathbb{R}^3 = P \oplus D$. On note p la projection de \mathbb{R}^3 sur P parallèlement à D, et q la projection de \mathbb{R}^3 sur D parallèlement à P. Quel est le polynôme minimal de p? de q?

Plus généralement, quel est le polynôme minimal d'une projection d'un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$? Distinguer les différents cas.

- **3.** Quel est le polynôme minimal de la matrice $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$?
- **4.** Quel est le polynôme minimal de la matrice $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$?
- 5. Quel est le polynôme minimal des matrices suivantes?

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 2 & 3 & 0 & 3 \\ -1 & 0 & 1 & 2 \\ 0 & 3 & 2 & 3 \\ 1 & 2 & -1 & 0 \end{pmatrix}.$$

6. Quel est le polynôme minimal des matrices suivantes?

Exercice 8 – comparaison entre polynôme minimal et polynôme caractéristique.

Soit

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \in \mathcal{M}_4(\mathbb{R}).$$

Calculer χ_A , les valeurs propres et les sous-espaces propres de A. A-t-on $\chi_A = \pi_A$?

DÉCOMPOSITION DE DUNFORD

Exercice 9 – décomposition de Dunford et calcul de puissances d'une matrice.

Soient

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \in \mathcal{M}_4(\mathbb{R}),$$

et f l'endomorphisme de \mathbb{R}^4 canoniquement associé à A.

- 1. Montrer que l'on a : $(f \mathrm{Id}_{\mathbb{R}^4})^2 \circ (f + \mathrm{Id}_{\mathbb{R}^4})^2 = 0_{\mathscr{L}(\mathbb{R}^4)}$.
- 2. En déduire la décomposition :

$$\mathbb{R}^4 = \operatorname{Ker}\left((f - \operatorname{Id}_{\mathbb{R}^4})^2\right) \oplus \operatorname{Ker}\left((f + \operatorname{Id}_{\mathbb{R}^4})^2\right),\,$$

et déterminer une base de chacun des sous-espaces $F = \operatorname{Ker} ((f - \operatorname{Id}_{\mathbb{R}^4})^2)$ et $G = \operatorname{Ker} ((f + \operatorname{Id}_{\mathbb{R}^4})^2)$ de \mathbb{R}^4 .

- **3.** Montrer que les sous-espaces F et G sont stables par f. On note f_F et f_G les endomorphismes induits par f sur F et G respectivement.
- **4.** \spadesuit Trouver une base \mathscr{B}_F de F dans laquelle la matrice de f_F est de la forme $\begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}$, et trouver une base \mathscr{B}_G de G dans laquelle la matrice de f_G est de la forme $\begin{pmatrix} -1 & \beta \\ 0 & -1 \end{pmatrix}$, où α et β sont des réels non nuls.
- 5. Trouver une base $\mathcal B$ de $\mathbb R^4$ dans laquelle la matrice de f est de la forme

$$\begin{pmatrix} 1 & \alpha & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & \beta \\ 0 & 0 & 0 & -1 \end{pmatrix},$$

où α et β sont des réels non nuls. En déduire la décomposition de Dunford de f et de A.

6. Calculer A^k pour tout k ∈ N. (Indication: remarquer que N = A - D, où D = diag(1,1,-1,-1), est une matrice nilpotente qui commutent avec D et utiliser la formule du binôme de Newton.)

Exercice 10- décomposition de Dunford et calcul de puissances d'une matrice.

Soit

$$A = \begin{pmatrix} -1 & -2 & -3 & -3 & -3 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 & 3 \\ -1 & -1 & -1 & -1 & -2 \end{pmatrix}.$$

1. Montrer que χ_A est scindé sur \mathbb{R} . Trouver une matrice inversible $P \in GL_4(\mathbb{R})$ telle que $A = PJP^{-1}$, où

$$J = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix}.$$

2. Montrer que A est inversible, et calculer A^k pour tout $k \in \mathbb{Z}$ (on pourra exprimer A^k en fonction de P et k).

ÉLÉMENTS NILPOTENTS

Exercice 11 – éléments nilpotents et forme de Jordan. Soit

 $A = \begin{pmatrix} 2 & 1 & 0 \\ -2 & 2 & 2 \\ 0 & 1 & 2 \end{pmatrix},$

et posons $N = A - 2I_3$.

- 1. Montrer que $N^3 = 0$ et que $N^3 \neq 0$.
- **2.** Montrer qu'il existe une matrice $P \in GL_3(\mathbb{R})$ telle que

$$N = PJP^{-1},$$
 où $J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$

(Indication : considérer l'endomorphisme ν de \mathbb{R}^3 canoniquement associé à N et montrer qu'il existe $x \in \mathbb{R}^3$ tel que $(x, \nu(x), \nu^2(x))$ forme une base de \mathbb{R}^3 .)

 ${\bf 3.}\,$ En déduire que A est semblable à la matrice

$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

Exercice 12 – commutant d'une matrice nilpotente.

Soit

$$N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

1. Calculer le *comumutant* $\mathscr{C}(N)$ de la matrice N dans $\mathscr{M}_3(\mathbb{R})$ défini par :

$$\mathscr{C}(N) = \{ M \in \mathscr{M}_3(\mathbb{R}) \mid MN = NM \}.$$

2. \spadesuit En déduire le commutant $\mathscr{C}(A)$ de la matrice $A = \begin{pmatrix} 2 & 1 & 0 \\ -2 & 2 & 2 \\ 0 & 1 & 2 \end{pmatrix}$ de l'exercice précédent dans $\mathscr{M}_3(\mathbb{R})$, où

$$\mathscr{C}(A) = \{ M \in \mathscr{M}_3(\mathbb{R}) \mid MA = AM \}.$$