Récurrences linéaires à coefficients constants

Dans tout ce qui suit, on désigne par E l'espace vectoriel sur \mathbb{C} des suites à valeurs complexes.

1. Les espaces \mathcal{P}_a

Pour tout $q \in \mathbb{N}$, on désignera par \mathcal{P}_q le sous-espace des suites de la forme $(P(n))_{n \in \mathbb{N}}$ où P est un polynôme de degré inférieur ou égal à q; en particulier, \mathcal{P}_0 est l'espace des suites constantes.

Pour tout $k \in \mathbb{N}$, on notera e_k la suite (n^k) ; en particulier, e_0 est la suite constante égale à 1

L'application $P \mapsto (P(n))$ est clairement linéaire. De plus, si la suite (P(n)) est la suite nulle, alors P = 0; cette application est donc injective. Par suite, elle réalise un isomorphisme de $\mathbb{C}_q[X]$ dans \mathcal{P}_q ; en particulier, (e_0, e_1, \ldots, e_q) , image de la base canonique de $\mathbb{C}_q[X]$ par cet isomorphisme, est une base de \mathcal{P}_q .

2. L'opérateur de différence Δ

Pour toute suite $u=(u_n)$, on définit la suite $\Delta(u)=(u'_n)$ par $u'_n=u_{n+1}-u_n$ pour tout $n\in\mathbb{N}$.

On vérifie aisément que Δ est un endomorphisme de E.

Proposition 2.1. Le noyau de Δ est l'espace \mathcal{P}_0 des suites constantes.

C'est immédiat.

Proposition 2.2. Pour tout $q \in \mathbb{N}$, on $a \quad \Delta(\mathcal{P}_{q+1}) = \mathcal{P}_q$.

Considérons la restriction de Δ à \mathcal{P}_{q+1} . Puisque $\operatorname{Ker} \Delta = \mathcal{P}_0 \subset \mathcal{P}_{q+1}$, le noyau de cette restriction est aussi \mathcal{P}_0 , donc est de dimension 1. La formule du rang nous dit alors que $\Delta(\mathcal{P}_{q+1})$ est de dimension $\dim \mathcal{P}_{q+1} - 1 = q + 1$.

D'autre part, $\Delta(\mathcal{P}_{q+1})$ est le sous-espace engendré par les vecteurs images des vecteurs de la base (e_0, \ldots, e_{q+1}) . Or $\Delta(e_0) = 0$ et, pour tout $k \in [1, q+1]$, $\Delta(e_k) = ((n+1)^k - n^k)$ est un polynôme de degré k-1 en n, donc appartient à \mathcal{P}_q ; par suite $\Delta(\mathcal{P}_{q+1}) \subset \mathcal{P}_q$.

Puisque ces deux sous-espaces sont de même dimension, ils sont donc égaux.

Proposition 2.3. Pour toute suite u de E et tout $q \in \mathbb{N}$, on a

$$\Delta(u) \in \mathcal{P}_q \iff u \in \mathcal{P}_{q+1}$$

La proposition 2.2 fournit l'implication $u \in \mathcal{P}_{q+1} \Longrightarrow \Delta(u) \in \mathcal{P}_q$.

Réciproquement, soit $u \in E$ vérifiant $\Delta(u) \in \mathcal{P}_q$. La proposition 2.2 montre qu'il existe une suite $v \in \mathcal{P}_{q+1}$ telle que $\Delta(v) = \Delta(u)$. Il existe alors une suite $w \in \text{Ker } \Delta = \mathcal{P}_0$ telle que u = v + w. Puisque $w \in \mathcal{P}_0 \subset \mathcal{P}_{q+1}$, on a bien $u = v + w \in \mathcal{P}_{q+1}$.

Proposition 2.4. Pour tout $q \in \mathbb{N}^*$, $\operatorname{Ker}(\Delta^q) = \mathcal{P}_{q-1}$.

On raisonne par récurrence sur q. Pour q=1, c'est la proposition 2.1. Supposons le résultat établi à un rang $q \geqslant 1$. Alors, pour tout $u \in E$:

$$u \in \operatorname{Ker} \Delta^{q+1} \iff \Delta^q(\Delta(u)) = 0 \iff \Delta(u) \in \operatorname{Ker} \Delta^q = \mathcal{P}_{q-1} \iff u \in \mathcal{P}_q$$

d'après la proposition 2.3, ce qui achève la démonstration.

3. Récurrences linéaires

On cherche à déterminer l'ensemble F des suites complexes vérifiant la relation de récurrence

$$(\mathcal{R}) \qquad \forall n \in \mathbb{N} \quad u_{n+q} = a_{q-1}u_{n+q-1} + a_{q-2}u_{n+q-2} + \dots + a_1u_{n+1} + a_0u_n = \sum_{k=0}^{q-1} a_k u_{n+k}$$

dans laquelle a_0, \ldots, a_{q-1} sont des nombres complexes fixés; on supposera de plus $a_0 \neq 0$.

On considère d'autre part l'opérateur de décalage T sur les suites, défini par : si $u = (u_n) \in E$, alors T(u) est la suite (v_n) définie par $v_n = u_{n+1}$ pour tout n.

On vérifie immédiatement que T est un endomorphisme de E; et que, pour tout $k \in \mathbb{N}$ et toute suite $u = (u_n)$, la suite $T^k(u)$ est la suite (u_{n+k}) . La relation de récurrence peut donc se réécrire

$$T^{q}(u) = \sum_{k=0}^{q-1} a_k T^{k}(u)$$
 soit $[P(T)](u) = 0$

où $P = X^q - \sum_{k=0}^{q-1} a_k X^k$ est le polynôme caractéristique de la relation (\mathcal{R}) . L'ensemble F des suites cherchées est donc le noyau de P(T); ce qui montre en particulier que c'est un espace vectoriel.

D'autre part, décomposons P dans $\mathbb{C}[X]$ sous la forme $P = \prod_{i=1}^r (X - b_i)^{m_i}$ où les b_i

sont les racines (deux à deux distinctes) de P, et les m_i leurs ordres respectifs. Le lemme des noyaux montre alors que

$$F = \operatorname{Ker} P(T) = \bigoplus_{i=1}^{r} \operatorname{Ker} ([(X - b_i)^{m_i}](T)) = \bigoplus_{i=1}^{r} \operatorname{Ker} ((T - b_i \operatorname{Id}_E)^{m_i})$$

4. Étude de $Ker((T - bId_E)^m)$

4.1. Cas b = 1

On a alors $T - \mathrm{Id}_E = \Delta$, l'opérateur de différence étudié plus haut. La proposition 2.4 donne donc $\mathrm{Ker}((T - \mathrm{Id}_E)^m) = \mathcal{P}_{m-1}$.

4.2. Cas général

Notons déjà que l'hypothèse $a_0 \neq 0$ fait que 0 n'est pas racine de P : on peut donc supposer $b \neq 0$.

Considérons l'application Φ , de E dans lui-même, qui, à une suite u, associe la suite v définie par

$$\forall n \in \mathbb{N} \quad \Phi(u)_n = v_n = b^n u_n$$

L'application Φ est clairement linéaire, et bijective, de réciproque $(u_n) \longmapsto (u_n/b^n)$. Soient alors $u = (u_n) \in E$, $v = \Phi(u)$ et $w = [T - b \operatorname{Id}_E](v) = [(T - b \operatorname{Id}_E) \circ \Phi](u)$. On a pour tout n:

$$w_n = v_{n+1} - bv_n = b^{n+1}u_{n+1} - b^{n+1}u_n = b.b^n(u_{n+1} - u_n)$$

et donc $(T - b\mathrm{Id}_E) \circ \Phi = b\Phi \circ (T - \mathrm{Id}_E)$ soit $T - b\mathrm{Id}_E = b\Phi \circ (T - \mathrm{Id}_E) \circ \Phi^{-1}$.

Une récurrence simple fournit alors $(T-b\mathrm{Id}_E)^m=b^m\Phi\circ (T-\mathrm{Id}_E)^m\circ\Phi^{-1}$. Puisque $b\neq 0$ et que Φ est bijective, on en déduit, pour toute suite u:

$$u \in \operatorname{Ker}(T - b\operatorname{Id}_E)^m \iff b^m[\Phi \circ (T - \operatorname{Id}_E)^m \circ \Phi^{-1}](u) = 0$$

 $\iff [(T - \operatorname{Id}_E)^m \circ \Phi^{-1}](u) = 0$
 $\iff \Phi^{-1}(u) \in \operatorname{Ker}(T - \operatorname{Id}_E)^m = \mathcal{P}_{m-1}$

Autrement dit, la suite u appartient à $\text{Ker}(T-b\text{Id}_E)^m$ si et seulement si il existe un polynôme P de degré au plus m-1 vérifiant $u_n/b^n=P(n)$ soit $u_n=P(n)b^n$ pour tout n.

L'ensemble de ces suites est clairement isomorphe à $\mathbb{C}_{m-1}[X]$; il est donc de dimension m.

5. Bilan

L'ensemble F, somme directe des espaces $\operatorname{Ker}(T-b_i\operatorname{Id}_E)^{m_i}$, est donc de dimension $\sum m_i = \deg P = q$ où q est l'ordre de la relation de récurrence. Les suites vérifiant (\mathcal{R}) sont les suites de la forme

$$\forall n \in \mathbb{N} \quad u_n = \sum_{i=1}^r P_i(n)b_i^n$$

où les b_i sont les racines du polynôme caractéristiques, et les P_i des polynômes de degré strictement inférieur à m_i , ordre de la racine b_i dans le polynôme caractéristique. Une base de cet espace est fournie par les suites $(b^n n^k)$ où b est une racine du polynôme caractéristique, et $k \in \mathbb{N}$ est strictement plus petit que l'ordre de la racine b.

En particulier, si les racines sont toutes simples, les suites vérifiant (\mathcal{R}) sont les combinaisons linéaires des suites (b_i^n) .

5.1. Le cas $a_0 = 0$

Dans ce cas, 0 est racine du polynôme caractéristique. Notons m son ordre : on a donc $a_0 = a_1 = \cdots = a_{m-1} = 0$ et $a_m \neq 0$. Dans l'étude précédente, cela rajoute à la décomposition en somme directe de F le terme Ker T^m .

Or, ce sous-espace est clairement constitué des suites nulles à partir du rang m. Rajouter ce terme revient donc à ajouter aux suites solutions une suite quelconque nulle à partir du rang m; autrement dit, les termes u_0, \ldots, u_{m-1} des suites solutions peuvent être choisis arbitrairement.

Cela traduit le fait que la récurrence est en réalité une récurrence d'ordre q-m, mais qui ne s'applique à la suite qu'à partir du rang m, puisque le terme de plus petit indice apparaissant réellement dans la récurrence est u_{n+m} , avec donc $n+m \ge m$.