Can be divided into 5 groups:

- 1. Arithematic Logical unit Group:
 - 1. Accumulator:
 - 1. 8bit register
 - 2. General Purpose
 - 2. Temp Reg:
 - 1. not available for the user
 - 2. used internally by microprocessor
 - 3. Example are W, and Z
 - 3. Flag flip-flops
 - 4. Instruction Register
 - 5. ALU:
 - 1. Inputs are Accumulator and Temp reg
 - 2. It performs arithematic operations
- 2. Register Group
- 3. Interrupt Control Group:
 - 1. 5 interrupts are there and one acknowledgement
- 4. Serial I/O Control Group:
 - 1. SOD
 - 2. SID
- 5. Timing and Control Group:
 - 1. Instruction register:
 - used for internally usage
 - instruction are stored here
 - 2. Instruction decoder and machine cycle encoding:
 - when opcode is availabl for instruction
 - operands are not accepted
 - non programmable register
 - bit pattern is accepted from IR
 - and sends it to Timing and Control
 - 3. Timing and Control:
 - Control Section
 - generates "microsteps" to perform the instruction
 - Clock input and sychronizing
 - communication between peripheral and 8085

Flag Register

- 8bit register
- Sign Flag, Zero Flag, Auxillary Carry Flag, Parity Flag, Carry Flag
- 8 bit register shows the status of the microprocessor before/after an operation
 S (circuits) 7 (zero flos) AC (cyvillers corrected) P (cerity flos) 8
- S (sign flag), Z (zero flag), AC (auxillary carry flag), P (parity flag) & CY (carry flag)

Figure 2: Flag Register

- Carry Flag:
 - used when carry is generated
 - acts as 9th bit
 - borrow bit in difference
- Auxillary Flag:
 - Carry is generated at lower nibble, to upper nibble then this flag is set
 - used internally only
 - binary to binary conversion
- Zero Flag:
 - if operation result is zero, this flag is set
- Sign Flag:
 - set if negative, reset if positive, that is for MSB bit
 - used to indicate the sign of data in accumulator
- Parity Flag:
 - used to indicate the parity of result, if the result contains even no. of "1" then the flag is set, if odd the reset

Types of register

- temp: W and z:
 - used internally
 - for calculation purposes
- General Purpose: B, C, D, E, H, L:
 - to form register pair of 16bit
 - 8bit register
 - programmable by user
- Special purpose:
 - Stack Pointer:
 - * used for execution of programs
 - * points to memory address to fetch next instruction
 - * store the information cpu
 - * works in lifo
 - * 16bit address used to define starting point
 - * tracks the data stored
 - Program Counter:
 - * increments by one when fetching next instruction
 - * at start, it set at 0
 - \ast it is of 16bit, since 8085 contains 16 address line using which any memory location can be accessed. Hence 16bit are sufficient
 - Incremental/ Decrementer address latch:
 - * used in co-ordination with above two
 - * to increment and decrement infro
 - 16bit registers