pyALRA

Alexandre LANAU

CONTENTS:

1	pyAl	ALRA.core module				
	1.1	pyALRA.core.alra	1			
		pyALRA.core.choose_k				
	1.3	pyALRA.core.randomized_svd_py	2			
	1.4	pyALRA.core.normalize_data	2			
In	dex		2			

PYALRA.CORE MODULE

1.1 pyALRA.core.alra

pyALRA.core.alra(A_norm, k=0, q=12, quantile_prob=0.001, random_state=1, svd_type=None)
Adaptive thresholded low-rank approximation (ALRA) for imputation of sparse data.

Parameters

- A_norm (ndarray or sparse matrix) Normalized input matrix.
- **k** (*int*, *optional*) Rank for approximation; if 0, automatically chosen (default 0).
- q (int, optional) Number of power iterations for randomized SVD (default 12).
- quantile_prob (float, optional) Quantile threshold for adaptive thresholding (default 0.001).
- random_state (int, optional) Random seed for reproducibility (default 1).
- svd_type (str or None, optional) SVD method: 'truncated' or None for randomized SVD.

Returns

Dictionary containing: - 'A_norm_rank_k': low-rank approximation matrix (rank k) - 'A_norm_rank_k_cor': thresholded low-rank matrix - 'A_norm_rank_k_cor_sc': scaled and thresholded matrix (final imputed matrix)

Return type

dict

1.2 pyALRA.core.choose_k

pyALRA.core.choose_ $k(A_norm, K=100, thresh=6, noise_start=80, q=12, random_state=1, svd_type=None)$ Select the rank k for low-rank approximation based on singular value gap statistics.

Parameters

- **A_norm** (*ndarray or sparse matrix*) Normalized input matrix.
- K (int, optional) Maximum number of singular values to consider (default 100).
- **thresh** (*float*, *optional*) Threshold on number of standard deviations to detect significant singular value gap (default 6).
- **noise_start** (int, optional) Index to start noise singular values (default 80).
- **q** (*int*, *optional*) Number of power iterations for randomized SVD (default 12).

- random_state (int, optional) Random seed for reproducibility (default 1).
- svd_type (str or None, optional) SVD method: 'truncated' or None for randomized SVD.

Returns

Dictionary with keys: - 'k': selected rank - 'num_of_sds': array of standardized singular value differences - 'd': singular values array

Return type

dict

1.3 pyALRA.core.randomized_svd_py

pyALRA.core.randomized_svd_py(A, K, q, random_state, svd_type=None)

Perform SVD with an option for randomized or truncated SVD.

Parameters

- A (ndarray or sparse matrix) Input data matrix to decompose.
- **K** (*int*) Number of singular values and vectors to compute.
- **q** (*int*) Number of power iterations (only applicable for randomized SVD).
- random_state (int) Random seed for reproducibility.
- **svd_type**(*str or None, optional*) If 'truncated', use TruncatedSVD; otherwise, use randomized SVD.

Returns

- U (*ndarray*) Left singular vectors.
- **Sigma** (*ndarray*) Singular values.
- VT (ndarray) Right singular vectors transposed.

1.4 pyALRA.core.normalize_data

pyALRA.core.normalize_data(A)

Normalize data by library size and log-transform.

Parameters

A (ndarray or sparse matrix) - Input matrix with cells as rows and genes as columns.

Returns

Normalized and log-transformed matrix.

Return type

ndarray

INDEX

```
A
alra() (in module pyALRA.core), 1
C
choose_k() (in module pyALRA.core), 1
N
normalize_data() (in module pyALRA.core), 2
R
randomized_svd_py() (in module pyALRA.core), 2
```