ANALYTICKÁ GEOMETRIE A SVG

Adam Papula, David Weber

SPŠE Ječná, MFF UK

5. listopadu 2023

Obsah

- Analytická geometrie
 - Lineární zobrazení (homomorfismus)

Definice homomorfismu

Jsou-li U,V vektorové prostory nad tělesem T, pak zobrazení $f:U\to V$ je lineární (homomorfismus), pokud platí

Definice homomorfismu

Jsou-li U,V vektorové prostory nad tělesem T, pak zobrazení $f:U\to V$ je lineární (homomorfismus), pokud platí

Nás bude zajímat především prostor \mathbb{R}^2 , neboť budeme pracovat s rovinou $\implies U = V = \mathbb{R}^2$.

Vyjádření homomorfismu

Každý homomorfismus $f:U\to V$ lze vyjádřit ve tvaru f(x)=Ax, kde

$$A = \begin{pmatrix} | & & | \\ f(v_1) & \cdots & f(v_n) \\ | & & | \end{pmatrix},$$

přičemž $\{v_1,\ldots,v_n\}$ je báze prostoru U, tj. $\operatorname{span} U$.

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}.$$

$$A = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}.$$

$$A = \begin{pmatrix} 1 & -0.5 \\ 0 & 1 \end{pmatrix}.$$

$$A = \begin{pmatrix} 1 & -0.7 \\ -0.5 & 1 \end{pmatrix}.$$

