EJERCICIOS IMPRESCINDIBLES

► Matrices

- (1) Dada la matriz $A = \begin{bmatrix} 2 & -1 & 0 & 4 \\ 1 & 5 & 2 & 3 \end{bmatrix}$,
 - a) ¿cuánto valen a_{23} y a_{11} ?
- b) Calcula su traspuesta.
- (2) Escribe la matriz traspuesta de:

$$a) \begin{bmatrix} -1 & 0 \\ 2 & -3 \end{bmatrix}$$

$$b) \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

(3) Calcula la matriz $(A^t)^t$ en función de A. (Sugerencia: si no ves la respuesta, pon ejemplos).

▶ Operaciones básicas

(4) Sean las matrices $A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 0 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$ y $C = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$. Calcula:

$$a) A - B + 2C$$

$$b) \ 2(A+B)-C$$

▶ Producto de matrices

(5) ¿Cuáles son las dimensiones de la matriz resultante al multiplicar una matriz n x m por una matriz m x p?

(Sugerencia: si no ves el resultado en general, pon ejemplos)

(6) Multiplica las siguientes matrices:

a)
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$
 y $B = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$

$$f) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 1 & -1 \\ 2 & -2 \\ 0 & 1 \end{bmatrix}$$
 y $B = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \end{bmatrix}$ g) $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$

$$g) \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

c)
$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 y $B = \begin{bmatrix} 2 & 1 & 3 \end{bmatrix}$.

$$h) \ \begin{bmatrix} 1 & 3 \\ -2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 4 \\ 1 & -2 \end{bmatrix}$$

$$d) \begin{bmatrix} 2 & 0 & 1 \\ 3 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & -2 \\ 1 & 0 \\ 3 & -1 \end{bmatrix}$$

$$i) \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 1 & 2 \end{bmatrix}$$

$$e) \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$j) \quad \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 2 \end{bmatrix}$$

(7) **PAEU2006J.** Hállense las matrices A cuadradas de orden 2, que verifican la igualdad: $A\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} A$.

▶ Potencia de matrices

(8) Sea
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
.

- a) Calcula A^2 y expresa el resultad en función de la matriz identidad.
- b) Calcula A^{2005} .

▶ Matriz inversa

- (9) Resuelve la ecuación AX = B, siendo $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$ y $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.
- (10) Calcula la inversa de:

$$a) \ \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

$$b) \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

- (11) Calcula la inversa de la matriz $\begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$
- (12) Calcula la matriz inversa de $A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 1 & 2 & 2 \end{bmatrix}$
- (13) Dadas las matrices $A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$, $M = \begin{bmatrix} x & 0 \\ y & 1 \\ x y & 1 \end{bmatrix}$ y $N = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$, calcula los valores de x e y para que el producto AM sea igual a la inversa de la matriz N.
- (14) **PAEU2007J, apartado 2.** Calcular la inversa de $A = \begin{bmatrix} 0 & 4 \\ 1 & 0 \end{bmatrix}$.

► Resolviendo ecuaciones

(15) **PAEU2004S.** Dadas las matrices $P = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix}$ y $A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, hállese la matriz B sabiendo que $P^{-1}BP = A$.

- (16) **PAEU2005J.** Dadas las matrices $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 2 \end{bmatrix}$, hállense las matrices X que satisfacen $XC + A = C + A^2$.
- (17) **PAEU2008J.** Sean las matrices $B=\begin{bmatrix}5&3\\3&2\end{bmatrix}$ y $C=\begin{bmatrix}13&8\\8&5\end{bmatrix}$. Calcular la matriz A, sabiendo que $A^2=B$ y $A^3=C$.
- (18) **PAEU2013S.** Sea la matriz $M = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ -1 & -2 & -2 \end{bmatrix}$.
 - a) Calcular M^{-1} .
 - b) Calcular la matriz X que cumple $X \cdot M + M = 2M^2$.