Iteración 1: Introducir datos y resolver

Problema 7 Electre con nuevas funciones

```
source("teoriadecision_funciones_multicriterio.R")
source("teoriadecision_funciones_multicriterio_utiles.R")
p7 = multicriterio.crea.matrizdecision(
   c(100,15,7,40,-50,
200,25,7,60,-200,
      100,20,4,25,-25,
200,30,20,70,-350
      250,25,15,100,-500), numalternativas = 5, numcriterios = 5)
## a1 100 15 7 40 -50
## a2 200 25 7 60 -200
## a3 100 20 4 25 -25
## a4 200 30 20 70 -350
## a5 250 25 15 100 -500
sal7 = multicriterio.metodoELECTRE_I(p7,pesos.criterios = c(0.25,0.25,0.2,0.2,0.2),
                                      nivel.concordancia.minimo.alpha = 0.7,
no.se.compensan = c(60,Inf,4,Inf,Inf),
que.alternativas = TRUE)
#sal7
qgraph::qgraph(sal7$relacion.dominante)
```


Datos para el método ELECTRE

Todos los criterios son de maximizar, excepto el último que es de minimizar. El decisor proporciona a cada criterio los siguientes pesos preferenciales: W=(0.25,0.25,0.2,0.2,0.2). La matriz de decisión viene recogida en la siguiente tabla:

		C_1	C_2	C_3	C_4	C_5
ſ	Α	100	15	7	40	50
ſ	В	200	25	7	60	200
ſ	С	100	20	4	25	25
ſ	D	200	30	20	70	350
Ī	Е	250	25	15	100	500

Aplicar el método ELECTRE para ordenar las alternativas. Inicia el proceso con $\alpha=0.7~\mathrm{y}$ $\mathbf{d} = (60, \infty, 4, \infty, \infty).$

Iteración 2: Se reducen alternativas y/o alpha

Para intentar quedarse con una única alternativa óptima:

- $\bullet\,$ reducir el grafo a las alternativas en el núcleo y/o
- reducir el valor de alpha $\in [0.5, 1)$

```
sal7b = multicriterio.metodoELECTRE_I(p7,pesos.criterios = c(0.25,0.25,0.2,0.2,0.2),
                                  nivel.concordancia.minimo.alpha = 0.7,
no.se.compensan = c(60,Inf,4,Inf,Inf),
                                  que.alternativas = c(4,5))
```

qgraph::qgraph(sal7b\$relacion.dominante)

sal7b\$nucleo_aprox

4 5

```
## a4 a5
```

Iteración 3: Se reducen alternativas y/o alpha

```
sal7c = multicriterio.metodoELECTRE_I(p7,pesos.criterios = c(0.25,0.25,0.2,0.2,0.2),
                                     nivel.concordancia.minimo.alpha = 0.55, # se usó: 0.65, 0.6
no.se.compensan = c(60,Inf,4,Inf,Inf),
que.alternativas = c(4,5))
qgraph::qgraph(sal7c$relacion.dominante)
```


sal7c\$nucleo_aprox

Método ELECTRE

2. Para cada par de alternativas a_j y a_k , con $j \neq k$, en el conjunto A, construir los siguientes conjuntos de índices:

$$\begin{split} I^{+}(a_{j}, a_{k}) &= \{i | 1 \leq i \leq n, V_{i}(a_{j}) > V_{i}(a_{k}) \} \\ I^{=}(a_{j}, a_{k}) &= \{i | 1 \leq i \leq n, V_{i}(a_{j}) = V_{i}(a_{k}) \} \end{split}$$

$$I^-(a_j, a_k) = \{i | 1 \le i \le n, V_i(a_j) < V_i(a_k)\}$$

3. Construir los índices de concordancia I_{jk} e \hat{I}_{jk} , donde

$$\begin{split} I_{jk} &= \left(\sum_{i \in I^+(a_j,a_k)} w_i + \sum_{i \in I^=(a_j,a_k)} w_i\right) / \left(\sum_{i=1}^n w_i\right) \\ \hat{I}_{jk} &= \left(\sum_{i \in I^+(a_j,a_k)} w_i\right) / \left(\sum_{i \in I^-(a_j,a_k)} w_i\right) \\ \text{Si } I^-(a_j,a_k) &= \emptyset \quad \hat{I}_{jk} = 1 \end{split}$$

4. Dar, entre el analista y el decisor, un valor adecuado de un parámetro $\alpha \in (0,5,1]$ denominado **Nivel mínimo** de concordancia .

Se dirá que el test de concordancia se ha pasado si

$$I_{jk} \ge \alpha$$
 y $\hat{I}_{jk} \ge 1$.

Test de discordancia.

1. Para cada atributo i dar un conjunto de discordancia D_i (que puede ser vacío), que es el conjunto de todos los posibles pares de alternativas cuyos valores del atributo V_i no pueden compensarse entre sí.

Por ejemplo, es posible dar unos valores d_i tales que $D_i = \{(a_j, a_k) | (V_i(a_k) - V_i(a_j)) \ge d_i \}$

- 2. Se dice que dos alternativas a_j y a_k pasan el test de discordancia si
 - $\forall i \in I^-(a_i, a_k), (a_i, a_k) \notin D_i$, o
 - $I^-(a_i, a_k) = \emptyset$

Finalmente, se dice que $a_j S a_k$ si el par (a_j, a_k) pasa el test de concordancia y el test de discordancia.

Finalmente, se dice que $a_j S a_k$ si el par (a_j, a_k) pasa el test de concordancia y el test de discordancia.

En el grafo, podemos encontrar subconjuntos de alternativas llamados **subconjuntos dominantes minimales**, que tienen la propiedad de que dada cualquier alternativa a_j que no esté en él, existe una alternativa en él a_i tal que a_iSa_j (existe un arco desde a_i hasta a_j). Si además en un conjunto dominante minimal no existen dos alternativas relacionadas por un arco del grafo, el conjunto se denomina **núcleo**.

El núcleo constituye el conjunto reducido de alternativas entre las que elegir finalmente (el resto se rechaza). Si el núcleo tiene más de una alternativa y queremos llegar a una alternativa única, entonces podemos:

- Mover los umbrales, en el sentido de modificar las exigencias.
- 2. Utilizar nuevos criterios o aplicar el método ELECTRE de nuevo sobre las alternativas resultantes con nuevos umbrales. Esto último suele ser más ventajoso para la comprensión de la estructura de preferencias por parte del decisor.

Cálculos en el método ELECTRE I

#r7\$TDiscordancia\$KE %>% save_kable("test3.png")										
			c <i>:a\$KE %>%</i> cs("test3.p		3.png")					
	Alts	Inds	A1	A2	A3	A4	A5			
	A1	F .		1,2,4	2,5	1,2,3,4	1,2,3,4			
		Djk		100(60),10(Inf),20(Inf)	5(Inf),25(Inf)	100(60),15(Inf),13(4),30(Inf)	150(60),10(Inf),8(4),60(Inf)			
		TD	0	F	1	F	F			
	A2	16	5		5	2,3,4	1,3,4			
		Djk	150(Inf)		175(Inf)	5(Inf),13(4),10(Inf)	50(60),8(4),40(Inf)			
		TD	0	•	0	F	F			
	АЗ	ъ.	3,4	1,2,3,4		1,2,3,4	1,2,3,4			
		Djk	3(4),15(Inf)	100(60),5(Inf),3(4),35(Inf)		100(60),10(Inf),16(4),45(Inf)	150(60),5(Inf),11(4),75(Inf)			
		TD	0	r	0	F	F			
	A4	16	5	5	5		1,4			
		Djk	300(Inf)	150(Inf)	325(Inf)		50(60),30(Inf)			
		TD	0	•	0	•	o o			
	AS	16	5	5	5	2,3,5				
		Djk	450(Inf)	300(Inf)	475(Inf)	5(Inf),5(4),150(Inf)				
		TD	0	•	0	F	0			
clu		-	cs("test4.p	_						
	Alts	Inds	A1	A2	A3	M	A5			
	A1	тс	F	<u>'</u>	F	•	F			
		TD	0	0	0	0	0			
		RSup	F			F	F			
	A2	тс	0	F	0	F	•			
		TD	0		0	0	0			
		RSup		F	• • • • • • • • • • • • • • • • • • •	F	F			
	A3	TC TD								
		RSup		F		,				
		тс		0						
	A4	TD	0	,			,			
		RSup	0	,	0		F			
		тс	0				F			
	A5	TD	0	,		0	F			
		RSup	0		0	,	F			
			uperación: alpha = 0.7		•					

r7\$Grafo

De

1 2 1

2 2 3 ## 3 4 1

4 4 3

5 5 1

6 5 3

qgraph::qgraph(r7\$Grafo)

r7\$Nucleo

a4 a5

4 5