10	
0	
63	
र्भ	
C	
0	1

AU				

USAAVLABS TECHNICAL REPORT 68-61

DESCRIPTION OF A HELICOPTER ROTOR NOISE COMPUTER PROGRAM

By

J. B. Ollerhead R. B. Taylor

January 1969

U. S. ARMY AVIATION MATERIEL LABORATORIES FORT EUSTIS, VIRGINIA

CONTRACT DAAJ02-67-C-0023
WYLE LABORATORIES
HUNTSVILLE, ALABAMA

This document has been approved for public release and sale; its distribution is unlimited.

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.

DEPARTMENT OF THE ARMY U. S ARMY AVIATION MATERIEL LABORATORIES FORT EUSTIS, VIRGINIA 23604

This report has been reviewed by the U. S. Army Aviation Materiel Laboratories and is considered to be technically sound. The scientific opinions expressed in the report are those of the authors and do not necessarily reflect the position of the U. S. Army Aviation Materiel Laboratories. The report is published for the dissemination of information and the stimulation of thought.

Task 1F12140A14801 Contract DAAJ02-67-C-0023 USAAVLABS Technical Report 68-61 January 1969

DESCRIPTION OF A HELICOPTER ROTOR NOISE COMPUTER PROGRAM

Final Report

Wyle Research Staff Report WR 68-10

By

J. B. Ollerhead and R. B. Taylor

Prepared by

Wyle Laboratories Huntsville, Alabama

for

U. S. ARMY AVIATION MATERIEL LABORATORIES FORT EUSTIS, VIRGINIA

This document has been approved for public release and sale; its distribution is unlimited.

SUMMARY

This report contains a comprehensive description of a computer program developed for the numerical evaluation of the helicopter noise equations derived in USAAVLABS TR 68-60, "Studies of Helicopter Rotor Noise." It is completely self-contained in that the program details are described, starting from two basic acoustic equations and covering methods by which these equations are applied to the rotor noise problem. Program flow diagrams and a complete listing are presented together with input instructions and sample inputs and outputs. The program is written in FORTRAN IV for the CDC 3300 Computer.

TABLE OF CONTENTS

		Page
SUMM	ARY	iii
LIST O	OF ILLUSTRATIONS	vi
1.0	INTRODUCTION	1
2.0	COORDINATE SYSTEMS AND TRANSFORMATIONS	6
	2.1 Rotor Axes x', y', z 2.2 Flight Path Axes x, y, z 2.3 Fixed Axes X, Y, Z 2.4 Blade Element Displacements 2.5 Blade Element Velocities and Accelerations 2.6 Aerodynamic Forces and Their Derivatives	6 8 9 11 13
3.0	METHOD OF SOLUTION BY DIGITAL COMPUTER	15
	3.1 Phase I Initial Data Processing	15 15
4.0	PROGRAM FLOW CHARTS, EQUATIONS AND LISTING	23
	4.1 Detailed Flow Chart for Program HERON! 4.2 List of Equations Computed by Program HERON! 4.3 Program Listing	24 30 37 49
5.0	PROGRAM INPUT/OUTPUT	56
	5.1 Program HERON 1. Data Input	57 63 68
	DISTRICTION	72

LIST OF ILLUSTRATIONS

Figure		Page
1	Discrete Representation of Aerodynamic Loading	2
2	Shaft Axes (x', y', z') and Flight Path Coordinates (x, y, z)	6
3	Pitch and Roll Rotations	7
4	Shaft Inclinations	7
5	Fixed Axes (Plan View)	8
6	Blade Element Displacements in Rotor Axes	9
7	Block Schematic Flow Diagram for HERON 1	1 <i>7</i>
8	Velocity Diagram for Sound Radiation by Moving Aircraft	19

1.0 INTRODUCTION

The rotor sound field is calculated according to the general acoustic equation for aero-dynamic forces in motion which is derived in Section 3.3 of USAAVLABS TR 68-60:

$$p(t) - p_0 = \begin{bmatrix} \frac{(x_i - y_i)}{4\pi(1 - M_s)^2 c s^2} \left\{ \frac{\partial F_i}{\partial t} + \frac{F_i}{1 - M_s} \frac{\partial M_s}{\partial t} \right\} \end{bmatrix}$$
 (1)

This equation is written in tensor notation, where the i denotes summation over the three component directions, and the brackets denote evaluation at the appropriate retarded time t' = t - s/c which is the time at which the source generated the sound reaching the observer at time t.

p(t) - p is the instantaneous acoustic pressure.

x; are the coordinates of the observer.

y; are the coordinates of the source.

Ms is the component of the source Mach number in the direction of the observer.

$$= \frac{(x_i - y_i)}{s} \frac{1}{c} \frac{dy_i}{dt}$$

s is the distance between source and observer.

F; are the components of the aerodynamic force.

c is the speed of sound.

In addition, the near field pressure fluctuations are calculated according to Lowson 1 as follows:

$$p'(t) - p_0 = \left[\frac{1}{4\pi(1-M_s)^2 s^2} \left\{ \frac{F_i(x_i - y_i)}{s} \frac{(1-M_s^2)}{(1-M_s)} - F_i M_i \right\} \right]$$
 (2)

^{1.} Lowson, M.V., "The Sound Field for Singularities in Motion", Proceedings of the Royal Society, Volume A 286, pp. 559-572 (1965). (Equation 18).

where M is the source Mach number = $\sqrt{\frac{\dot{y}_1^2 + \dot{y}_2^2 + \dot{y}_3^2}{c}}$

and M. is the component of M in the i-direction.

In all cases the sum of Equations (1) and (2) is calculated, but as shown in Section 6 of USAAVLABS TR 68-60 the component due to (2) is negligible at any significant distance from the rotor.

Equations (1) and (2) are solved by a numerical method which has been programmed for digital computation. This solution is exact to the extent that no approximations are made. The accuracy of the solution is only limited by that with which the real loads and motions experienced by the rotor dynamic system can be represented by the model used. The sound field for the simulated system is calculated accurately at any point in the near or far field.

The sound generated by a rotor blade in motion is the result of the distributed aerodynamic pressure acting over its entire surface. Rotational noise, which is the subject of this study, is defined as that component of the sound field which is directly attributable to the lift and drag forces acting on the blade. Strictly, the entire spanwise and chordwise distributions of these components should be taken into account, but for the sake of numerical expediency it is necessary to simulate the actual distributions by a discrete set of point loads. The implications of doing so are fully discussed in Section 5 of USAAVLABS TR 68-60. The spanwise

loading distributions are divided into a number of segments, each of which is represented by two single force components, lift and drag. This model is illustrated in Figure 1. The point of application of each force pair then becomes an acoustic source which generates sound according to Equations (1) and (2). The F; in those equations are the forces acting upon the air and are therefore opposed to the lift and drag forces acting upon the blade.

If an arbitrary set of orthogonal axes X,Y,Z are defined, Equations (1) and (2) can be combined. Using also a more convenient notation,

Figure 1. Discrete Representation of Aerodynamic Loading.

$$\Delta p(t) = \frac{-1}{4\pi (1-M_s)^2 c s^2} \left[\bar{x} \left\{ \dot{F}_X + F_X \left(\frac{\dot{M}_s + \frac{c}{s} (1-M^2)}{1-M_s} - \frac{\dot{X}}{x} \right) \right\} + \bar{y} \left\{ \dot{F}_Y + F_Y \left(\frac{\dot{M}_s + \frac{c}{s} (1-M^2)}{1-M_s} - \frac{\dot{Y}}{y} \right) \right\} + \bar{z} \left\{ \dot{F}_Z + F_Z \left(\frac{\dot{M}_s + \frac{c}{s} (1-M^2)}{1-M_s} - \frac{\dot{Z}}{z} \right) \right\} \right]$$
(3)

 $\Delta p(t)$ is the observed sound pressure at time t due to the aerodynamic forces acting at any particular point on the blade whose components in the X, Y and Z directions, at the retarded time $t - \frac{s}{c}$, were F_X , F_Y and F_Z . The dot denotes differentiation with respect to time. The quantities \bar{x} , \bar{y} and \bar{z} are the coordinates of the observer, relative to the source in the X, Y and Z directions. The negative sign accounts for the use of the blade loads which are equal and opposite to the forces which act on the air.

It can be seen from this equation that the force generates sound in two ways: through its fluctuation in time and its fluctuations in position which cause its accelerations toward the observer (\dot{M}_s) . The term $(1-M_s)$ in the various denominators is essentially a Doppler effect which amplifies the sound radiated in the direction of motion. Dipole sound (the term in \dot{F}) is amplified by the factor $(1-M_s)^{-2}$ and quadrupole sound (the accelerative term in $F \cdot \dot{M}_s$) by $(1-M_s)^{-3}$. Thus the second term becomes increasingly important as the velocity in the direction of the observer increases.

The elements of the method of computing the sound field of a complete rotor are as follows:

(1) Define the geometry, blade loading and resulting blade motions of the rotor as a function of time.

- (2) Define the position, attitude and velocity of the rotor with respect to the observer at the time t.
- (3) Calculate the orientation and magnitude of each of the elemental blade airloads at its appropriate retarded time.
- (4) Calculate and integrate the observed sound pressures due to all the seasons.
- (5) Repeat operations (2) through (4) for a series of successive time int to construct a time history of the acoustic pressure amplitude and harmonically analyze this to obtain its frequency spectrum.

A computer program has been written to perform these operations taking account of the following variables:

- (a) Number of rotors.
- (b) Number of blades.
- (c) Rotor diameter.
- (d) Helicopter position in space with regard to a fixed observer including:
 - 1. Rotor hub vertical displacement.
 - 2. Rotor hub horizontal displacement.
 - 3. Rotor shaft inclination.
- (e) Rotor hub motion including:
 - 1. Linear velocity.
 - 2. Roll angular velocity.
 - 3. Pitch angular velocity.
- (f) Rotor blade tip speed.
- (g) Articulated blade motions.
- (h) Blade motion resulting from flapping bending, edgewise bending, and twist about the elastic axis.

- (i) Phase relationships between rotor angular positions for multirotor vehicles.
- Time dependent blade loading for at least 20 radial blade segments. The blade loading includes loading normal to the hub plane, radial loading in the hub plane, and tangential loading in the hub plane. These loadings are treated as loads at a chordwise point on the blade element with direction determined by orientation of the blade element in space. Variation in disc loading is considered as a function of variation in blade loading with the number of blades and blade chord held constant.

This program, code-named HERON 1, is described in detail in Sections 4 and 5. The axis transformations and outlines of the computational steps are discussed in the following sections.

2.0 COORDINATE SYSTEMS AND TRANSFORMATIONS

2.1 Rotor Axes x', y', z'

Since blade motions are measured relative to the rotor shaft it is desirable, for the direct utilization of experimental data, to specify all blade responses, including flapping, lagging and elastic deformations with respect of a set of "shaft axes".

Figure 2. Shaft Axes (x',y',z') and Flight Path Coordinates (x,y,z).

Accordingly, a set of right-handed orthogonal axes x', y', z' are chosen with the z' axis coincident with the rotor shaft and positive downward (Figure 2). The longitudinal axis x' lies in the vertical plane through the aircraft velocity vector ∇ .

2.2 Flight Path Axes x,y,z

This system is introduced merely to simplify the transformations between the x',y',z' and X,Y,Z systems. The origin of this system is coincident with that of the rotor axes. However, the x y plane is horizontal with the x axis in the vertical V-x' plane. The aircraft rotation is specified with respect to this system in the following sequence (Figure 3).

Figure 3. Pitch and Roll Rotations.

- (1) The pitch angle θ' is measured clockwise about the positive y axis, rotating x to x'.
- (2) The roll angle ϕ' is then measured clockwise about the x' axis, rotating y to y' and z to z'.

(Vehicle angular displacements are measured in pitch and roll only, since rotor yaw is simply a shift in azimuth reference.)

The shaft inclinations to the vertical z axis, measured in the x z and y z planes, are θ' and ϕ' so that (Figure 4) $\theta = \theta'$ and $\tan \phi = \cos \theta \tan \phi'$.

Figure 4. Shaft Inclinations.

The transformations between shaft and flight path axes are:

$$x = x' \cos \theta + y' \sin \phi \sin \theta + z' \cos \phi \sin \theta$$

$$y = y' \cos \phi - z' \sin \phi$$

$$z = x' \sin \theta + y' \sin \phi \cos \theta + z' \cos \phi \cos \theta.$$
(4)

2.3 Fixed Axes X,Y,Z

This coordinate system is used to define the aircraft and observer positions in space. The axes are fixed in space with arbitrary origin, and XY is the horizontal ground plane. Z is measured positive vertically upwards.

The $X\ Y$ and $x\ y$ planes are thus parallel, and the angle between the x and X axes is defined as X.

Figure 5. Fixed Axes (Plan View).

Thus, if the rotor hub coordinates are X_H , Y_H , Z_H , any point in the X, Y, Z system is defined by

$$X = X_{H} + x \cos X + y \sin X$$

$$Y = Y_{H} + x \sin X - y \cos X$$

$$Z = Z_{H} - z$$
(5)

The coordinates of an observer at X_0, Y_0, Z_0 , with respect to the source at x, y, z, are

$$\bar{x} = X_0 - X$$

$$\bar{y} = Y_0 - Y$$

$$\bar{z} = Z_0 - Z$$
(6)

The distance s between source and observer is

$$s = (\bar{x}^2 + \bar{y}^2 + \bar{z}^2)^{\frac{1}{2}}$$
 (7)

2.4 Blade Element Displacements

The x', y', z' coordinates of each specified blade loading point are calculated as a function of azimuth angle, flapping and lagging angles (where applicable), and normal and in-plane elastic displacements. The rotor azimuth angle is measured from the negative x' axis, clockwise about the positive z' axis, $\psi = \Omega t$.

Figure 6. Blade Element Displacements in Rotor Axes.

Referring to Figure 6,

- ϵ_{f} is the flap hinge offset from the shaft centerline.
- is the lag hinge offset.
- is the lag angle projection on the x'y' plane (positive in the direction of rotation).
- β is the flap angle between the undeformed blade axis and the x'y' plane, positive in the negative z' direction.
- n_T(r) is the elastic displacement of blade station r parallel to the x'y' plane, normal to the undeformed blade axis and positive in the direction of rotation.
- η_N(r) is the elastic displacement normal to the undeformed blade axis, in the plane containing the z' axis and positive in the negative z' direction.

These coordinates thus take account of all possible motion of the blade axis upon which the point aerodynamic loads are assumed to act.

If the flapping hinge is outboard of the lagging hinge, the coordinates of the radial station r are:

$$x' = -\epsilon_{\ell} \cos \psi - \left\{ (r - \epsilon_{f}) \cos \beta + (\epsilon_{f} - \epsilon_{\ell}) \right\} \cos (\psi + \xi)$$

$$+ \eta_{T} \sin (\psi + \xi) + \eta_{N} \sin \beta \cos (\psi + \xi)$$

$$y' = -\epsilon_{\ell} \sin \psi - \left\{ (r - \epsilon_{f}) \cos \beta + (\epsilon_{f} - \epsilon_{\ell}) \right\} \sin (\psi + \xi)$$

$$+ \eta_{T} \cos (\psi + \xi) + \eta_{N} \sin \beta \sin (\psi + \xi)$$

$$z' = -(r - \epsilon_{f}) \sin \beta - \eta_{N} \cos \beta$$
(8a)

If the flapping hinge is inboard of the lagging hinge, we have

$$x' = -\left(\epsilon_{f} + \epsilon_{\ell} \cos \beta\right) \cos \psi - (r - \epsilon_{\ell}) \cos \beta \cos (\psi + \xi)$$

$$+ \eta_{T} \sin (\psi + \xi) + \eta_{N} \sin \beta \cos (\psi + \xi)$$

$$y' = -\left(\epsilon_{f} + \epsilon_{\ell} \cos \beta\right) \sin \psi - (r - \epsilon_{\ell}) \cos \beta \sin (\psi + \xi)$$

$$- \eta_{T} \cos (\psi + \xi) + \eta_{N} \sin \beta \sin (\psi + \xi)$$

$$z' = -\left(r - \epsilon_{f}\right) \sin \beta - \eta_{N} \cos \beta$$
(8b)

It is now possible, using Equations (4), (5) and (8), to find the fixed coordinates X, Y, Z of any blade station, defined in convenient rotor coordinates as a function of time, and subsequently, using Equations (6) and (7), the displacement components \bar{x} , \bar{y} , \bar{z} and s of the sound Equation (3).

2.5 Blade Element Velocities and Accelerations

We also require the velocity and acceleration components defined in the sound Equation (3) as M, M_s and \dot{M}_s which are the source Mach number and rate of change of

Mach number in the direction of the observer. Resolving the source Mach number into its three components we have

$$M = \sqrt{M_X^2 + M_Y^2 + M_Z^2}$$
 (9)

$$M_{s} = \frac{\bar{x}}{s} M_{\chi} + \frac{\bar{y}}{s} M_{\gamma} + \frac{\bar{z}}{s} M_{Z}$$
 (10)

and
$$\dot{M}_{s} = \frac{\bar{x}}{s} \dot{M}_{X} + \frac{\bar{y}}{s} \dot{M}_{Y} + \frac{\bar{z}}{s} \dot{M}_{Z}$$
 (11)

where M_X , M_Y , and M_Z are simply $\frac{\dot{X}}{c}$, $\frac{\dot{Y}}{c}$ and $\frac{\dot{Z}}{c}$ respectively; that is, the velocity components of the source, relative to the stationary air, expressed as a fraction of the atmospheric speed of sound. To obtain the first and second time derivatives of X,Y, and Z it is necessary to differentiate Equations (5), and subsequently Equations (4) and (8). From Equation (5),

$$\dot{X} = \dot{X}_{H} + \dot{x} \cos \chi - x \dot{\chi} \sin \chi + \dot{y} \sin \chi + y \dot{\chi} \cos \chi$$

$$= \dot{X}_{H} + (\dot{x} + y \dot{\chi}) \cos \chi + (\dot{y} - x \dot{\chi}) \sin \chi$$

$$\dot{Y} = \dot{Y}_{H} + \dot{x} \sin \chi + x \dot{\chi} \cos \chi - \dot{y} \cos \chi + y \dot{\chi} \sin \chi$$

$$= \dot{Y}_{H} - (\dot{y} - x \dot{\chi}) \cos \chi + (\dot{x} + y \dot{\chi}) \sin \chi$$

$$\dot{Z} = \dot{Z}_{H} - \dot{Z} \qquad (12)$$

$$\ddot{X} = \ddot{X}_{H} + (\ddot{x} + 2\dot{y}\dot{\chi} - x\dot{\chi}^{2} + y\ddot{\chi})\cos\chi + (\ddot{y} - 2\dot{x}\dot{\chi} - y\dot{\chi}^{2} - x\ddot{\chi})\sin\chi$$

$$\ddot{Y} = \ddot{Y}_{H} - (\ddot{y} - 2\dot{x}\dot{\chi} - y\dot{\chi}^{2} - x\ddot{\chi})\cos\chi + (\ddot{x} + 2\dot{y}\dot{\chi} - x\dot{\chi}^{2} + y\ddot{\chi})\sin\chi$$

$$\ddot{Z} = \ddot{Z}_{H} + \ddot{z}$$
(13)

and from Equation (3),

$$\dot{x} = \dot{x}' \cos \theta - x' \dot{\theta} \sin \theta - (z' \dot{\phi} - \dot{y}') \sin \phi \sin \theta$$

$$+ (\dot{z}' + y' \dot{\phi}) \cos \phi \sin \theta + y' \dot{\theta} \sin \phi \cos \theta + z' \dot{\theta} \cos \phi \cos \theta$$

$$\dot{y} = (\dot{y}' - z' \dot{\phi}) \cos \phi - (y' \dot{\phi} + \dot{z}) \sin \phi$$

$$\dot{z} = z - \dot{x}' \sin \theta - x' \dot{\theta} \cos \theta + (\dot{y}' - z' \dot{\phi}) \sin \phi \cos \theta$$

$$+ (y' \dot{\phi} + \dot{z}') \cos \phi \cos \theta - y' \dot{\theta} \sin \phi \sin \theta - z' \dot{\theta} \cos \phi \sin \theta$$
 (14)

$$\ddot{x} = (\ddot{x}' - x'\dot{\theta}^2) \cos\theta - (2\dot{x}'\dot{\theta} + x'\ddot{\theta}) \sin\theta$$

$$+ (2y'\dot{\phi}\dot{\theta} + 2\dot{z}'\dot{\theta} + z'\ddot{\theta}) \cos\phi \cos\theta$$

$$+ (\ddot{y}' - y'(\dot{\phi}^2 + \dot{\theta}^2) - 2\dot{z}'\dot{\phi} - z'\ddot{\phi}) \sin\phi \sin\theta$$

$$+ (2\dot{y}'\ddot{\phi} + y'\ddot{\phi} + \ddot{z}' - z'(\dot{\phi}^2 + \dot{\theta}^2))\cos\phi \sin\theta$$

$$+ (2\dot{y}'\dot{\theta} + y'\ddot{\theta} - 2z'\dot{\phi}\dot{\theta}) \sin\phi \cos\theta$$

$$\ddot{y} = (\ddot{y}' + y'\dot{\phi}^2 - z'\ddot{\phi})\cos\phi - (\ddot{z}' - z'\dot{\phi}^2 + y'\ddot{\phi})\sin\phi$$

$$\ddot{z} = -(2\dot{x}'\dot{\theta} + x'\ddot{\theta})\cos\theta - (\ddot{x}' - x'\dot{\theta}^2)\sin\theta$$

$$+(2\dot{y}'\dot{\phi} + y'\ddot{\phi} + \ddot{z}' - z'(\dot{\phi}^2 + \dot{\theta}^2))\cos\phi\sin\theta$$

$$-(2\dot{y}'\dot{\theta} + y'\dot{\theta} - 2z\dot{\phi}\dot{\theta})\sin\phi\sin\theta$$

$$-(2y'\dot{\phi}\dot{\theta} + 2\dot{z}'\dot{\theta} + 2\ddot{\theta})\cos\phi\sin\theta$$

$$+(\ddot{y}' - y'(\dot{\phi}^2 + \dot{\theta}^2) - 2\dot{z}'\dot{\phi} - z'\ddot{\phi} - z'\ddot{\phi})\sin\phi\cos\theta$$
(15)

Expressions for the derivatives of x', y' and z' are not derived explicitly for reasons which will be explained in Section 3.0.

2.6 Aerodynamic Forces and Their Derivatives

The aerodynamic force components in the sound Equation (3) are derived from the components F_N and F_T which act directly on the blade. F_N is defined as the component of the aerodynamic load on the blade which acts normal to the blade axis (in its deformed condition) in the plane containing the shaft axis z'. It acts in the same sense as the lift on the blade. F_T is the tangential component, again acting normal to the blade axis but parallel to the x'y' plane. Its sense is opposite to the blade drag force. Referring to Figure 6, we see that the blade force components in the x',y' and z' directions are:

$$F_{x'} = F_{T} \sin(\psi + \zeta') + F_{N} \sin \beta' \cos(\psi + \zeta')$$

$$F_{y'} = -F_{T} \cos(\psi + \zeta') + F_{N} \sin \beta' \sin(\psi + \zeta')$$

$$F_{z'} = -F_{N} \cos \beta'$$
(16)

where β' and β' are the blade slopes relative to the x'y' plane and the radius at azimuth ψ respectively. That is,

$$\beta' = \beta + \tan^{-1} \left(\frac{d\eta}{dr} \right)$$

$$\zeta' = \zeta + \tan^{-1} \left(\frac{d\eta_T}{dr} \right)$$
(17)

The transformations which are required to obtain the components F_X , F_Y and F_Z in the fixed coordinate system are identical to those used to convert x', y', z' to X, Y, Z (Equations (4) and (5)). The derivatives \dot{F}_X , \dot{F}_Y and \dot{F}_Z are also derived from the rotor axis values using similar transformations (Equations (12) through (15)), and again the derivatives in the rotor coordinate system $\dot{F}_{x'}$, $\dot{F}_{y'}$ and $\dot{F}_{z'}$ are not derived explicitly for reasons outlined in the following section.

3.0 METHOD OF SOLUTION BY DIGITAL COMPUTER

The technique for calculating the helicopter rotor sound field is best explained by a description of the computational steps of the program HERON 1. Figure 7 is an illustration of these basic steps in flow diagram form. The program is divided into two phases. The first processes the input data into a convenient form for storage and the second computes the sound pressure level at a preselected number of field points.

3.1 Phase 1 Initial Data Processing

For each rotor, the blade loading and motion data is read by the program either as a number of arrays, listing their values at a discrete number of points over the rotor disc, or as a series of Fourier coefficients, one set for each radial station. To reduce the volume of later computations, this initial phase of the program calculates and stores the displacements of each loading point with respect to the rotor axes x', y', z' according to Equation (7). The three force components $F_{x'}$, $F_{y'}$ and $F_{z'}$ are also using Equation (16). These calculations are performed, upon the input data in whichever form it comes, at a predetermined number of azimuth stations. The history of each of these six variables around the azimuth is then harmonically analyzed for every radial station, and the Fourier coefficients are stored. This operation is carried out for one blade only since it is assumed that all blades are loaded and respond in identical manners. From the stored coefficients it is possible for later elements of the program to interpolate for all required blade loading and motion variables at any arbitrary azimuth station.

3.2 Phase II Calculation of the Sound Field

Phase II of the program is repeated in its entirety for each required observer position, X_0 , Y_0 , Z_0 .

3.2.1 "Observer Time" t

The sound field observed at the position X_0 , Y_0 , Z_0 is calculated as a time history of the acoustic pressure Δp at the "observer time" intervals 0, Δt , $2\Delta t$, ... T, where T is the fundamental period. The sound harmonic amplitudes are then obtained through a Fourier analysis of this time history.

The fundamental period T, to an observer moving with the aircraft, is the blade passage period $2\pi/\Omega B$. However, for a stationary observer this shifts by the factor $(1-M_0)^{-1}$ where M_0 is the aircraft Mach number component in the direction of the observer.

Figure 7. Block Schematic Flow Diagram For HERON 1.

+

BLANK PAGE

One approach is to calculate rie observed period which can then be divided into an appropriate number of intervals. However, because of the aircraft motion, a slight error is introduced by this procedure which results in the computation of something slightly less than a complete period. This error increases with sound harmonic number (which is equivalent to a reduction of wavelength).

The alternative which has been adopted in the program is to calculate the time history at a point which "moves" with the same velocity as the rotor hub but which has the average position X_0, Y_0, Z_0 during the period T. The only modification required for the final result is to correct the observed frequency for the Doppler shift factor $(1 - M_0)^{-1}$. The quotation marks are used because at each time increment the sound pressure is still calculated at a stationary point which has simply moved the same distance as the rotor since the previous time increment. All relative velocity effects in the acoustic calculation are retained.

For each observer time $\,$ t, the sound pressure $\,$ $\Delta p \,$ is calculated at the effective observer positions:

$$X'_{0} = X_{0} + \dot{X}_{H} (t - \frac{T}{2})$$

$$Y'_{0} = Y_{0} + \dot{Y}_{H} (t - \frac{T}{2})$$

$$Z'_{0} = Z_{0} + \dot{Z}_{H} (t - \frac{T}{2})$$
(18)

To calculate the Mach number component M_0 , and hence the Doppler shift correction, it is first necessary to calculate the sound propagation time τ_0 as follows:

The position of the rotor hub at time t is X_H , Y_H , Z_H and the distance between the hub and the observer at X_0 , Y_0 , Z_0 , according to Equation (6), is

Figure 8. Velocity Diagram for Sound Radiation by Moving Aircraft.

$$s = (\bar{x}_0^2 + \bar{y}_0^2 + \bar{z}_0^2)^{\frac{1}{2}}$$

However, the sound arriving at the observer at time t was generated at the retarded time $t - \tau_0$ when the hub was at X'_H, Y'_H, Z'_H . The corresponding velocity triangle is shown in Figure 8. The resultant aircraft velocity is

$$V = \left(\dot{X}_{H}^{2} + \dot{Y}_{H}^{2} + \dot{Z}_{H}^{2}\right)^{\frac{1}{2}}$$
 (19)

and the propagation time τ_0 is given by

$$\tau_{0} = -\frac{(\bar{x}_{0}\dot{X}_{H} + \bar{y}_{0}\dot{Y}_{H} + \bar{z}_{0}\dot{Z}_{H}) + \sqrt{(\bar{x}_{0}\dot{X}_{H} + \bar{y}_{0}\dot{Y}_{H} + z_{0}\dot{Z}_{H})^{2} + s^{2}(c^{2} - \sqrt{2})}}{c^{2} - \sqrt{2}}$$
(20)

From the propagation time the instant of sound emission can be calculated. The component hub to observer separations are \bar{x}_0^i , \bar{y}_0^i and \bar{z}_0^i where

$$\bar{x}'_{0} = \bar{x}_{0} + \dot{X}_{H} \tau_{0}$$

$$\bar{y}'_{0} = \bar{y}_{0} + \dot{Y}_{H} \tau_{0}$$

$$\bar{z}'_{0} = \bar{z}_{0} + \dot{Z}_{H} \tau_{0}$$
(21)

Hence, the required Mach number component is

$$M_0 = \frac{\bar{x}_0' \dot{X}_H + \bar{y}_0' \dot{Y}_H + \bar{z}_0' \dot{Z}_H}{c^2 \tau_0}$$
 (22)

3.2.2 Retarded Time

The retarded time of each blade loading point has to be calculated independently for each observer time instant. This requires solution of the transcendental equation

$$c \tau = \sqrt{\bar{x}^2(t-\tau) + \bar{y}^2(t-\tau) + \bar{z}^2(t-\tau)}$$
 (23)

This equation can only be solved by iteration, starting with some realistically chosen value of τ and successively substituting newly calculated values into the right-hand side until the solution converges. The right-hand side of Equation (23) is in fact a very lengthy expression which includes Equations (4), (5), (6) and (8). The following procedure is followed to minimize the computational time involved.

For the most inboard blade loading point, the rotor hub retarded time $(t - \tau_0)$ is used as a starting value. The RHS of Equation (23) is calculated using the first harmonic Fourier coefficients of x', y' and z'. As an example,

$$\psi = \psi (t - \tau)$$

$$x' = a_{x_0'}(r) + a_{x_1'}(r) \cos \psi + b_{x_1'}(r) \sin \psi$$

The values of y' and z' are calculated similarly and the necessary transformations applied to compute \bar{x}, \bar{y} and \bar{z} . These are substituted into Equation (23) to yield a second approximation to the retarded time. The iteration proceeds but a successively greater number of harmonics is admitted in the calculation of the x', y', z' coordinates in successive iterations. By the time convergence is reached, the predetermined limiting number of harmonics is admitted. It is found that this method considerably reduces the volume of computation (through avoiding a large number of Fourier summations) without increasing the number of iterative cycles to convergence.

The calculations for the next radial station use the final value of τ from the first radial station, and so on. Experience shows that an average of four or five iterations is required for a convergent solution with an error of less than 10^{-5} seconds.

3.2.3 Blade Loads and Motions

The Fourier representation of the load and motion distributions enables the required displacements, velocities, accelerations, forces and rate of change of forces to be computed with a minimum amount of effort. From the retarded time $t-\tau$, the relevant blade azimuth angle ψ is obtained and the motion and load variables in the x', y', z' system are synthesized as shown in the following example:

$$\psi = \psi (t - \tau)$$

$$x' = a_{x_0'} + \sum_{k=1}^{K} \left\{ a_{x_k'} \cos k\psi + b_{x_k'} \sin k\psi \right\}$$

$$x' = -\Omega \sum_{k=1}^{K} k \left\{ a_{x_k'} \sin k\psi - b_{x_k'} \cos b\psi \right\}$$

$$x' = -\Omega^2 \sum_{k=1}^{K} k^2 \left\{ a_{x_k'} \cos k\psi + b_{x_k'} \sin k\psi \right\}$$

The transformations listed in Section 2.1.2 are then applied to derive all the necessary components of the sound Equation (3).

3.2.4 The Sound Field

The observed sound pressure increment generated by each loading point is calculated according to Equations (1) and (2). The increments due to all loading points on all blades are then summed to give the total pressure increment at time t. The entire process is repeated for successive time instants until a history is obtained for one complete (blade passage) period. The final step is to Fourier analyze this time history into its sine and cosine component harmonics (a and b). Each harmonic sound pressure level is then expressed in decibels by performing the transformation

$$SPL_n = \left(10 \log \sqrt{\frac{a_n^2 + b_n^2}{n} + 124.6}\right) dB \text{ re .0002 } \mu Bar$$

3.2.5 Multiple Rotors

In its present form the program computes the sound harmonics at each field point for each rotor and outputs the results independently. If the rotors have the same fundamental blade passage frequency then the sound harmonics due to the individual rotors reinforce each other and the in-phase and out-of-phase components are simply added together separately. If the rotors have different fundamental frequencies (for example the main and tail rotors of a "single rotor" helicopter), then the individual harmonics do not interfere and the sound spectra are merely superimposed. The final block in Figure 7 is drawn with a broken line since the program does not perform this function automatically. However, sufficient information is output (namely the frequency, cosine and sine harmonic amplitude in lb/ft² and sound pressure level of each harmonic) to enable the necessary summations to be performed rapidly by hand.

4.0 PROGRAM FLOW CHARTS, EQUATIONS AND LISTING

The computer program HERON 1 is written in FORTRAN IV for the Control Data Corporation's CDC 3300 utilizing the SCOPE operation required is as follows:

- 1. 3300 series computer with 32,000-word core storage.
- 2. Card reader.
- 3. Line printer.
- 4. One scratch tape unit (LUN2)

A complete description of the program is contained in this section which includes the following items:

- 4.1 A detailed flow chart for the program. The noted equation numbers correspond to list 4.2.
- 4.2 A complete list of programmed equations.
- 4.3 A program listing.
- 4.4 A list of program symbols and definitions (Table I).

List of Equations Computed by Program HERON 1

Equation No.

1 a)
$$x' = -\epsilon_{\ell} \cos \psi - \left\{ (r - \epsilon_{f}) \cos \beta + (\epsilon_{f} - \epsilon_{\ell}) \right\} \cos (\psi + \zeta) + \eta_{T} \sin (\psi + \zeta) + \eta_{N} \sin \beta \cos (\psi + \zeta)$$

b)
$$y' = -\epsilon_{\ell} \sin \psi - \left\{ (r - \epsilon_f) \cos \beta + (\epsilon_f - \epsilon_{\ell}) \right\} \sin (\psi + \zeta)$$

 $-\eta_T \cos (\psi + \zeta) + \eta_N \sin \beta \sin (\psi + \zeta)$

c)
$$z' = -(r - \epsilon_f) \sin \beta - \eta_N \cos \beta$$
.

2 a)
$$x' = -(\epsilon_{f} + \epsilon_{\ell} \cos \beta) \cos \psi - (r + \epsilon_{\ell}) \cos \beta \cos (\psi + \zeta)$$

 $+ \eta_{T} \sin (\psi + \zeta) + \eta_{N} \sin \beta \cos (\psi + \zeta)$

b)
$$y' = -(\epsilon_f + \epsilon_\ell \cos \beta) \sin \psi - (r + \epsilon_\ell) \cos \beta \sin (\psi + \xi)$$

 $-\eta_T \cos (\psi + \xi) + \eta_N \sin \beta \sin (\psi + \xi)$

c)
$$z' = -(r - \epsilon_f) \sin \beta - \eta_N \cos \beta$$
.

3 a)
$$d\eta_N/dr = (\eta_N(n+1) - \eta_N(n-1))/(r(n+1) - r(n-1))$$

b)
$$d\eta_N/dr = (\eta_N(2) - \eta_N(1))/(r(2) - r(1))$$

c)
$$d\eta_T/dr = (\eta_T(n+1) - \eta_T(n-1))/(r(n+1) - r(n-1))$$

d)
$$d\eta_T dr = (\eta_T(2) - \eta_T(1))/(r(2) - r(1))$$

e)
$$d\eta_N/dr = (\eta_N(n) - \eta_N(n-1))/(r(n) - r(n-1))$$

f)
$$d\eta_T/dr = (\eta_T(n) - \eta_T(n-1))/(r(n) - r(n-1))$$

4 a)
$$\beta' = \beta + tan^{-1}(d\eta_N/dr)$$

b)
$$\zeta' = \zeta' + \tan^{-1} (d\eta_T/dr)$$

5 a)
$$F_{x'} = 7 \sin(\psi + \zeta') + F_{N} \sin \beta' \cos(\psi + \zeta')$$

b)
$$F_{y'} = -F_{T} \cos(\psi + \zeta') + F_{N} \sin \beta' \sin(\psi + \zeta')$$

c)
$$F_{z'} = - F_N \cos \beta'$$
.

b)
$$a_{k}(\omega) = \frac{2}{M} \sum_{k} \omega \cos ((m-1) \dot{x} 2\pi k/M)$$

c)
$$b_{k}(\omega) = \frac{2}{M} \sum_{m} \omega \sin((m-1) \cdot 2\pi k/M)$$

7 a)
$$a_{0_n}(F_i) = \frac{1}{M} \sum_{m=1}^{M} F_i$$

b)
$$a_{k_n}(F_i) = \frac{2}{M} \sum_{i=1}^{n} F_i \cos((m-1) \cdot 2\pi k/M)$$

c)
$$b_{k_n}(F_i) = \frac{2}{M} \sum_{i} F_i \sin((m-1) \cdot 2\pi k/M)$$

8 a)
$$\vec{x}_H = X_H - X_0$$

b)
$$\bar{y}_H = Y_H - Y_0'$$

c)
$$\bar{z}_{H} = Z_{H} - Z_{0}$$

$$S_{H} = \sqrt{\bar{x}_{H}^{2} + \bar{y}_{H}^{2} + \bar{z}_{H}^{2}}$$

10
$$V = \sqrt{\dot{X}_{H}^{2} + \dot{Y}_{H}^{2} + \dot{Z}_{H}^{2}}$$
11
$$\tau'_{0} = \left\{ -(\bar{x}_{H}\dot{X}_{H} + \bar{y}_{H} \cdot \dot{Y}_{H} + \bar{z}_{H}\dot{Z}_{H}) + ((\bar{x}_{H}\dot{X}_{H} + \bar{y}_{H}\dot{Y}_{H} + \bar{z}_{H}\dot{Z}_{H})^{2} + S_{H}^{2}(\alpha_{0}^{2} - V^{2}))^{\frac{1}{2}} \right\} / (\alpha_{0}^{2} - V^{2})$$

12 a)
$$\bar{x}'_{H} = \bar{x}_{H} + \dot{x}_{H} \tau'_{0}$$

b)
$$\bar{y}'_{H} = \bar{y}_{H} + \dot{Y}_{H} \dot{y}_{0}$$

c)
$$\bar{z}'_H = \bar{z}_H + \dot{Z}_H \tau'_0$$

13
$$M_0 = (\bar{x}_H^{1} \dot{X}_H + \bar{y}_H^{1} \dot{Y}_H + \bar{z}_H^{1} \dot{Z}_H) / \alpha_0^2 \tau_0^1$$

14 a)
$$X'_{H} = X_{H} - \dot{X}_{H} \tau'_{0}$$

b)
$$Y'_{H} = Y_{H} - \dot{Y}_{H} \tau'_{0}$$

c)
$$Z'_{H} = Z_{H} - \dot{Z}_{H} \tau'_{0}$$

15 a)
$$T = 2\pi/\Omega B$$

b)
$$\Delta T = 2\pi/\Omega M$$

16 a)
$$X_0 = X_0'(j) + \dot{X}_H\left(t - \frac{T}{2}\right)$$
 $t = 0 (\Delta T) T - \Delta T$

b)
$$Y_0 = Y_0'(j) + \dot{Y}_H(t - \frac{T}{2})$$

c)
$$Z_0 = Z_0'(j) + \dot{Z}_H\left(t - \frac{T}{2}\right)$$

17
$$\psi_0 = \psi_0 + \frac{2\pi}{B} \cdot b$$
 $b = 1 (1) B$

$$18 \hspace{1cm} a) \hspace{1cm} \psi \hspace{1cm} = \hspace{1cm} \psi_0 \hspace{1cm} + \hspace{1cm} \Omega \, t'$$

b)
$$X_{H} = X_{H_0} + \dot{X}_{H} t'$$

c)
$$Y_H = Y_{H_0} + \dot{Y}_H t'$$

$$d) Z_H = Z_{H_0} + \dot{Y}_H t'$$

e)
$$\theta = \theta_0 + \dot{\theta} t'$$

$$f) \qquad \qquad \varphi = \varphi_0 + \dot{\varphi} t^i$$

g)
$$\varphi^{-1} = \tan^{-1}(\cos\theta \tan\varphi)$$

h)
$$\dot{\phi}' = \cos^2 \phi' (\dot{\phi} \cos \theta \sec^2 \phi - \dot{\theta} \sin \theta \tan \phi)$$

19 a)
$$\omega' = \omega' + a_k (\omega') \cos k \psi + b_k (\omega') \sin k \psi$$

b)
$$\dot{\omega}' = \dot{\omega}' - k \Omega \left[a_{k_n}(\omega') \sin k \psi - b_{k_n}(\omega') \cos k \psi \right]$$

c)
$$\ddot{\omega}' = \ddot{\omega}' - k^2 \Omega^2 \left[a_k^{(\omega')} \cos k \psi + b_k^{(\omega')} \sin k \psi \right]$$

20 a)
$$x = x' \cos \theta + y' \sin \phi' \sin \theta + z' \cos \phi' \sin \theta$$

b)
$$y = y' \cos \varphi' - z' \cos \varphi'$$

c)
$$z = -x' \sin \theta + y' \sin \phi' \cos \theta + z' \cos \phi' \cos \theta$$

21 a)
$$\dot{z} = \dot{z}' \cos \theta - x' \dot{\theta} \sin \theta - (z' \dot{\phi}' - \dot{y}') \sin \phi' \sin \theta$$

$$+ (\dot{z}' + y' \dot{\phi}') \cos \phi' \sin \theta + y' \dot{\theta} \sin \phi' \cos \theta$$

$$+ z' \dot{\theta} \cos \phi' \cos \theta$$

b)
$$\dot{y} = (\dot{y}' - z'\dot{\phi}') \cos \phi' - (y'\dot{\phi}' + \dot{z}') \sin \phi'$$

c)
$$\dot{z} = -\dot{x}' \sin \theta - x'\dot{\theta} \cos \theta + (\dot{y}' - z'\dot{\phi}') \sin \phi' \cos \theta$$

 $+ (y'\dot{\phi}' + \dot{z}') \cos \phi' \cos \theta - y'\dot{\theta}' \sin \phi' \sin \theta - z'\dot{\theta}' \cos \phi' \sin \theta$

22 a)
$$\ddot{x} = (\ddot{x}' - x'\dot{\theta}^2) \cos\theta - 2\dot{x}'\dot{\theta} \sin\theta + (2y'\dot{\phi}'\dot{\theta} + 2\dot{z}'\dot{\theta})\cos\phi'\cos\theta$$

$$+ (\ddot{y}' - y'(\dot{\phi}'^2 + \dot{\theta}^2) - 2\dot{z}'\dot{\phi}')\sin\phi'\sin\theta + (2\dot{y}'\dot{\phi}' + \ddot{z}' - z'(\dot{\phi}'^2 + \dot{\theta}^2))\cos\phi'\sin\theta + (2\dot{y}'\dot{\theta} - 2z'\dot{\phi}'\dot{\theta})\sin\phi'\cos\theta$$

b)
$$\ddot{y} = (\ddot{y}' + y' \dot{\phi}'^2) \cos \phi' - (\ddot{z}' - z'\dot{\phi}^2) \sin \phi'$$

b)
$$\dot{y} = (\dot{y} + \dot{\theta}) \cos \theta - (\ddot{x} - \dot{x} \dot{\theta}^2) \sin \theta + (2\dot{y} \dot{\phi} + \ddot{z})$$

$$- z'(\dot{\phi}^2 + \dot{\theta}^2)) \cos \phi' \sin \theta - (2\dot{y} \dot{\theta} - 2z'\dot{\phi} \dot{\theta}) \sin \phi' \sin \theta$$

$$- (2\dot{y} \dot{\phi} \dot{\theta} + 2\dot{z} \dot{\theta}) \cos \phi' \sin \theta + (\ddot{y} - \dot{y}'(\dot{\phi}^2 + \dot{\theta}^2))$$

$$- 2\ddot{z} \dot{\phi}^1) \sin \phi^1 \cos \theta.$$

23 a)
$$\bar{x} = X_0 - X_H - x \cos X - y \sin X$$

b)
$$\bar{y} = Y_0 - Y_H - x \sin x - y \cos x$$

c)
$$\bar{z} = Z_0 - Z_H + z$$
.

$$\dot{X} = \dot{X}_{H} + \dot{x} \cos X + \dot{y} \sin X$$

b)
$$\dot{Y} = \dot{Y}_H + \dot{x} \sin X - \dot{y} \cos X$$

c)
$$\dot{z} = \dot{z}_H - \dot{z}$$

$$\ddot{X} = \ddot{x} \cos X + \ddot{y} \sin X$$

b)
$$\ddot{Y} = -\ddot{y} \cos \chi + \ddot{x} \sin \chi$$

c)
$$\ddot{Z} = \ddot{z}$$
.

$$S = \sqrt{\overline{x}^2 + \overline{y}^2 + \overline{z}^2}$$

$$M_s = (\bar{x}\dot{X} + \bar{y}\dot{Y} + \bar{z}\dot{Z})/S a_0$$

$$\dot{M}_{s} = (\bar{x}\ddot{X} + \bar{y}\ddot{Y} + \bar{z}\ddot{Z})/S \alpha_{0}$$

29 a)
$$F_i = a_0(F_i) + a_{k_n}(F_i) \cos k\psi + b_{k_n}(F_i) \sin k\psi$$

b)
$$\dot{F}_i = -k \Omega a_{k_n}(F_i) \sin k\psi - b_{k_n}(F_i) \cos k\psi$$

30 a)
$$F_x = F_x \cos \theta + F_y \sin \phi' \sin \theta + F_z \cos \phi' \sin \theta$$

b)
$$F_y = F_{y'} \cos \phi' - F_{z'} \sin \phi'$$

c)
$$F_z = -F_{x'} \sin \theta + F_{y'} \sin \phi' \cos \theta + F_{z'} \cos \phi' \cos \theta$$

31 a)
$$\dot{F}_{x} = \dot{F}_{x'} \cos \theta - F_{x'} \dot{\theta} \sin \theta - (F_{z'} \dot{\phi}' - \dot{F}_{y'}) \sin \phi' \sin \theta$$

$$+ (\dot{F}_{z'} + F_{y'} \dot{\phi}') \cos \phi' \sin \theta + F_{y'} \dot{\theta} \sin \phi' \cos \theta + F_{z'} \dot{\theta} \cos \phi \cos \theta$$

b)
$$\dot{F}_{y} = (\dot{F}_{y'} - F_{z'}\dot{\phi}') \cos \phi' - (F_{y'}\dot{\phi}' + \dot{F}_{z'}) \sin \phi'$$

c)
$$\dot{F}_{z} = -\dot{F}_{x'}\sin\theta - F_{x'}\dot{\theta}\cos\theta + (\dot{F}_{y'} - F_{z'}\dot{\phi}')\sin\phi'\cos\theta + (F_{y'}\dot{\phi}' + \dot{F}_{z'})\cos\phi'\cos\theta - F_{y'}\dot{\theta}\sin\phi'\sin\theta - F_{z'}\dot{\theta}\cos\phi'\sin\theta$$

32 a)
$$F_{X} = F_{x} \cos x + F_{y} \sin x$$

b)
$$F_Y = F_X \sin X - F_Y \cos X$$

c)
$$F_Z = -F_z$$

33 a)
$$\dot{F}_X = \dot{F}_x \cos x + \dot{F}_y \sin x$$

b)
$$\dot{F}_{Y} = \dot{F}_{x} \sin x - \dot{F}_{y} \cos x$$

c)
$$\dot{F}_Z = -\dot{F}_z$$
.

34
$$X_T = \dot{M}_s + a_0 (1 - M^2)/s$$

35 a)
$$X_{\dot{M}_s} = X_T - \dot{X}/\bar{x}$$

b)
$$X_{\dot{M}_s} = X_T - \dot{Y}/\bar{y}$$

c)
$$Z_{\dot{M}_s} = X_T - \dot{Z}/\bar{z}$$

36
$$\Delta_{p} = -\left\{ \bar{x} \left(\dot{F}_{X} + F_{X} \cdot X_{\dot{M}_{s}} \right) + \bar{y} \left(\dot{F}_{Y} + F_{Y} \cdot Y_{\dot{M}_{s}} \right) + \bar{z} \left(\dot{F}_{Z} + F_{Z} Z_{\dot{M}_{s}} \right) \right\}$$

$$\left\{ 4\pi \left(1 - M_{s} \right)^{2} \alpha_{0} S^{2} \right\}$$

$$p_{j}(t) = p_{j}(t) + \Delta p$$

38 a)
$$C_{p_{jk}} = 2B \left\{ \sum_{m=1}^{M/B} p_{j}(m) \cos(m-1) k \cdot 2 \pi B/M \right\} / M$$

b)
$$S_{p_{jk}} = 2B \left\{ \sum_{p_{j}} (m) \sin(m-1) k 2\pi B/M \right\} / M$$

c)
$$p_{jk} = \sqrt{\frac{C_{p_{jk}}^2 + S_{jk}^2}{p_{jk}}}$$

39
$$p_{jk} = 20 \log_{10} p_{jk} + 124.58.$$

$$f_L = k \Omega B / 2\pi.$$

```
SEQUENCE, 16
OPERATOR
```

```
PROGRAM HERON 1
       COMPON K1, K2, KSF, KSX, DrSI, M, N
       COMMON BET(72), ZET(72), FN(72,12), FT(72,12), DMD(72) ,D(22)
       COMPON PSIO.K.
                          C,OM
       COMMON XO, YO, ZO, XDH, YDH, ZDH
       COMPON XHO, YHO, ZHC, THO, THD, PHIO, PHID
       COMPON A0172
                     ), AK(36,72), BK(36,72), F(3), FD(3)
       COMMON XD(72),
                                             YD(72), ZD(72), WP(3), HDP(3)
       COMPON HDDP (3)
       COMPON BETP(72,12), ZETP(72,12)
       DIMENSION CARD(30), RN(12)
      DIMENSION FF(72), CPJ(72), SPJ(72), PJ(72), ALPHAJ(72)
     C, PJK (72)
       EQLIVALENCE (TAUD, TAUD), (XD, CXD), (YD, CYD), (ZD, CZD), (D(1), RN(1))
      EQUIVALENCE (CYDH, YDH), (CZDH, ZDH), (BET, FF), (ZET, CPJ)
      P1=3,1415926536
      WRITE(61,1)
      REAC(60,2)CARD
      WRITE(61,3)CARD
      REAC (60, 1027) 1H, JCON, C, RHO
                                                                                READ 1
      DO 600 11=1,1H
      REAL (60,1028) OHN, R. BU, EPF, EPL, PSIO
                                                                                READ 2
      OM=CMN+6,283185307/60,
      REAC (60,1000)M,N
                              IND, KSF.KSX ,K1,K2
                                                                                READ
      KX=PAX1(KSX,K1,K2)+1
       KF=KSF+1
      AH=XM=FLOATF(M)
      ZZ=2,/XM
      DT =6,283185307/(OM+AM)
TT =6,283185307/(OM+BB)
      TT =6,283185307/(OM+BB)
DPS1=6,283185307/XM
      TT=TT-DT
      MFT=M+1
      DMD(1)=0.
      DDS1=360,/XM
      DO 405 J=1, MPT
      DMD(J+1)=DMD(J)+DDSt
      REAC (60,1028) (D(I), [=1,N)
                                                                                READ 4
      DO 10 I=1.N
   10 RN(1)=R+D(1)
      REAC(60,1028)XH, YH, ZH, TH, PHI, XUH, YDH, ZDH, THD, PHID
                                                                                READ 5
      IF(xDH, EQ, YDH, AND, YDH, EQ, ZDH, AND, ZDH, EQ, 0, )1083,1064
$083 V=0.
      GO TO 1085
     V=SCRT(XDH+XDH+ YDH+YDH+ZDH+ZDH)
1084
1085
     CONTINUE
      19=1F1X(88)
      WRITE(61,4)19,R,OHN,EPF,EPL,PS10,TH,PH1,XDH,YDH,ZDH,V
      WRITE(61,5)XH,YH,ZH
      WRITE(61,6)
      SINPD=SINF (PHID)
      COSPD=COS(PHID)
      HXEOHX
      YHOEYH
      ZHO = ZH
      THO=TH
      PHIC = PHI
```

```
CHIEATAN(YDH/XDH)
[F(XDH,EQ,0,)11,12
        IF(YDH, EQ, 0, )14,15
 11
        CHI=0.
GO TO 12
CHI=PI/2.
 15
        COSCHI #COS(CHI)
 12
        SINCHI-SIN(CHI)
        WRITE(61,9)N
        WRITE(61,61)M
        N IS NUMBER OF RADIAL STATIONS
M IS THE NUMBER OF AZIMUTH STATIONS
X, Y, Z IS THE POSITION OF OBSERVER
        BET IS THE FLAPPING ANGLE, ZET IS THE LAG ANGLE, BETA AND ZETA ARE INPUT IN DEGREES,
İ
                                                                                                 *******
.
                                                                                                 ********
        GO TO (16,18) IND
    16 CONTINUE
        WRITE(61,7)
        REAC(60,1028)(BET(1),1=1,M)
                                                                                                  READ 6
        REAC(60,1028)(ZET(1),1=1,M)
                                                                                                  READ 7
        WRITE(61,67)
        HRITE(61,68)(DMD(1),8ET(1),ZET(1),1=1,M)
    90 TO 20
18 CONTINUE
        WRITE(61,8)
    CALL INPUT (1)
20 CONTINUE
        DO 25 [3=1,M
BET([3)=BET([3)+0,01745329
    25 ZET([3)=ZET([3)+0,01745329
        REWIND 2
    GO TO (30,40) IND
30 DO 35 J=1,N
        THE FOLLOWING STATEMENTS INPUT THE ETAN AND ETAT ARRAYS INTO THE FN AND FT STORAGE LOCATIONS, THESE SAME LOCATIONS WILL LATER BE USED FOR THE FN
        AND FT ARRAYS,
    REAT (60,1028) (FN(I,J),I=1,M)
35 REAT (60,1028) (FT(I,J),I=1,M)
                                                                                                  READ 8
                                                                                                  READ 9
        WRITE(61,69)
        WRITE(61,63)
        WRITE(61,64)(RN(I), I=1,N)
        DO 111 J=1, M
        WRITE(61,65)((DMD(J),(FT(J,I),I=1,N)
                                                                 ))
        WRITE(61,1091)
        WRITE(61,71)
        WRITE(61,63)
        WRITE(61,64)(RN(I), I=1,N)
        DO 112 J=1, M
        WRITE(61,65)((DMD(J),(FN(J,1),1=1,N)
                                                                 2)
 112 WRITE(61,1091)
        GO TO 42
    40 CALL INPUT (3)
    42 DO 70 15=1.N
        PS1 = 0,0
        DO 60 14=1,M
```

```
COSB=COS(BET(14))
COSPZ=COS(PSI+ZET(14))
       SINFZ=SIN(PSI+ZET(14))
       SINE=SIN(BET(14))
       COSP=COSF(PSI)
       SINP#SINF (PSI)
       RELATIVE COORDINATE OF BLADE STATION,
                                                                              *******
       IF(EPF,GT,EPL)54,58
 54
       T=(RN(15)=EPF)+COSB+EPF-EPL
       XD(14) = EPL + COSP-T+COSPZ+FN(14, 15) +SINB+COSPZ
      C+FT(!4,15)+SINPZ
       YD(14) = + EPL + SINP * T + SINP Z = FT (14, 15) + COSPZ + FM (14, 15) + SINB + SINP Z
       ZD(14) == (RN(15) =EPF) +SINB=FN(14,15) +COSB
       GO TO 60
       XD(14) == (EPF+EPL+COSB)+COSP+(RN(15)+EPL)+COSB+COSPZ+FT(14,15;+
 58
      1SINPZ+FN(I4,I5)+SINB+COSPZ
       YD(14)==(EPF+EPL+COSB)+SINP+(RN(15)+EPL)+COSB+SINPZ-FT(14,15)+COSP
      12+FN(14,15)+SINB+SINPZ
       ZD(14) == (RN(15) - EPF) +SINB-FN(14, 15) +COSB
       PSI*PSI+DPSI
       WRITE (2,1003) (XD(14),14=1,M)
       WRITE (2,1003) (YD(14),14=1,H)
   70 WRITE (2,1003) (ZD(14),14=1,H)
      DO 93 15=1,N
DO 93 14=1,M
.
       AERCDYNAMICS FORCE COMPONENT.
                                                                              *******
.
      XD=FXD , YD=FYD , ZD=FZD IN THE FOLLOWING COMPUTATIONS.
      IF (N.EQ.1) 91,83
   83 IF(15,E0,1)84,88
      DNDR=(FN(14,2)=FN(14,1))/(RN(2)=RN(1))
      DTDR=(FT(14,2)=FT(14,1))/(RN(2)=RN(1))
      GO TO 92
 88
       IF(15,EQ,N)89,90
      DNDR=(FN(14,15)=FN(14,15-1))/(RN(15)=RN(15-1))
 89
      DTDR=(FT(14,15)=FT(14,15=1))/(RN(15)=RN(15=1))
      GO TO 92
 90
      DNDR#(FN(14,15+1)=FN(14,15+1))/(RN(15+1)=RN(15+1))
      DTDR=(FT (14,15+1)=FT(14,15+1))/(RN(15+1)=RN(15-1))
      GO TO 92
   91 DNDR=DTDR=0,
92 BETF(14,15)=BET(14)+ATAN(DNDR)
   93 ZETP(14,15)=ZET(14)+ATAN(DTDR)
   GO TO (94,96) IND
94 DO 95 J=1,N
      READ (60,1028) (FN(I,J), I=1,M)
   95 READ (60,1028) (FT(1,J), [#1,H)
      WRITE(61,62)
      WRITE(61,63)
      WRITE(61,64)(RN(1),1=1,N)
      D01112 J#1,M
      WRITE(61,1091)
      WRITE(61,65)((DMD(J),(FN(J,I),I=1,N)
                                                    ))
1112
      WRITE(61,66)
      WRITE(61,63)
      WRITE(61,64)(RN(1), I=1,N)
      D01111 J=1,H
```

```
WRITE(61,1091)
WRITE(61,65)((DMD(J),(FT(J,1),1=1,N)
                                                        ))
2111
   90 TO 97
96 CALL INPUT (2)
   97 DO 160 I5=1,N
       PSI=0.
       DO 100 14=1,H
       ZE=ZETP(14,15)
       BE=EETP(14,15)
       XD(14) = FT(14,15) + SIN(PSI + ZE ) + FN(14,15) + SIN(BE ) + COS(PSI + ZE ) 
YD(14) = FT(14,15) + COS(PSI + ZE ) + FN(14,15) + SIN(BE ) + SIN(PSI + ZE )
       ZD(14)==FN(14,15)+COS(BE )
 100
       PSI=PSI-DPS!
       WRITE(2,1003)(XD(14),14=1,M)
       WRITE(2,1003)(YD(14),14=1,M)
       HRITE(2,1003)(ZD(14),14=1,M)
 150
      CONTINUE
       END FILE 2
       REWIND 2
.
       CALCULATE HARMONICS
       17=0
       DO 190 [2=1,2
GO TO (165,166) [2
  165 KSP=KX
       GO TO 167
  166 KSP=KF
  167 IF (KSP, LE, 0) 168, 169
  168 KSP=1
  169 DO 190 I3=1.N
DO 190 I4=1.3
       17417-1
       REAC (2,1003) (BET(15),15=1,M)
       SUM1=0,
DO 172 19=1,M
  172 SUM1 - SUM1 + BET([9)
       A0(17) #5UH1/XH
       DO 190 16-1,KSP
       XX=EPSI+FLOATF(IS)
       SUM2=SUM3=X=0,
       DO 180 18=1.M
       SUM2=SUM2+BFT(18)+COS(X+XX)
       SUM3=SUM7-BET(18)+SIN(X+XX)
       WRITE(61,1044)SUM2,SUM3
  180 X=X+1,
       AK(16,17) = SUH2+ZZ
       BK(16,17)=SUM3+ZZ
  190 CONTINUE
#***** ****** BEGIN PART 2 --- CALC, OF SOUND FIELD *********
.
       13=1F1X(BB)
       WRITE(61,78)
       DO 700 111=1, JCON
       17=0
       READ (60,1016)XOP, YOP, ZOP
       SXBH=-XOP+XHO
       SYBHERYOP-YH O
       SZBH=-ZOP-ZHO
       IF ($XBH, EQ, SYBH, AND, SYBH, EQ, SZBH, AND, SZBH, EQ, 0, )1073,1072
1073 SHIO.
```

```
GO TO 1075
SH=SQRT(SXBH+SXBH+SYBH+SYBH+SZBH+SZBH)
1072
       QC= SXBH+XDH+SYBH+YDH+SZBH+ZDH
1075
       QT=C+C+V+V
       QS=GQ+QQ+SH+SH+QT
       IF(GS,E0,0,)1071,1092
1071
       TAUCP==QQ/QT
       GO TO 1069
1092
        TALOP# (-00+SORT (OS))/OT
       CONTINUE
1069
       XPH=XHO-XDH+TAUOP
       YPH=YHO-YDH+TAUOP
       ZPH=ZHO-ZDH+TAUOP
SXBPH=SXBH+XDH+TAUOP
       SY8PH=SY8H+YDH+TAUOP
       SZBPH=$ZBH+ZDH+TAUOP
       8MO*SXBPH*XDH*SYBPH*YDH*SZBPH*ZDH
       BMO-BMO/C/C/TAUOP
       TT=6,2831853/(QM+88)
       DT=6.2831853/(OM+AM)
       T=0.
       MB=M/IFIX(BB)
       DO 400 MS=1,MB
       17=17+1
       XO=XOP+XDH*(T-TT/2,)
       YO=YOP+YDH+(T+TT/2,)
       20=20P+ZDH+(T=TT/2,)
       PJ(17)=0.
       DO 350 12=1.13
PNEW=PSIO+6,28318510FLOATF(12=1)/88
       TAU1=TAUOP
       11=0
       JJ#3+N
DO 330 14=1,N
6
              TE RETARDED TIME
6.
       AK=1
  210 TAUC = TAU1
TP=T-TAU0
       TAU1=SF(TP, KK, 14, PNEW, CHI)/C
       I=1+1
  IF ([,GT,50) 260,220
220 ER#ABSF(TA 1-TAU0)
       IF (ER,GT,,001) 225,228
  225 KK=1
  GO TO 250
228 IF (ER,GT,,0001) 230,232
  230 KK=3
  GO TO 250
232 IF (ER,GT,,00005) 234,236
  234 KK=10
      GO TO 250
  236 IF (ER,GT,,00001) 238,242
  238 KK#20
      GO TO 250
  242 IF (KK, EQ, KX) 260,254
  250 [F(KX+KK)251,210,210
  251 KK=KX$ GO TO 210
254 KK=KX$ GO TO 210
     CONTINUE
260
```

```
TP=T-TAU1
       BEGIN CALCULATION OF VELOCITIES AND ACCELERATIONS.
       PSI=PNEW+OM+TP
       XH=XHO+XDK+TP
       YH=YHO+YDH+TP
       ZH=ZHO+ZDH+19
       TH=THO+THD+TP
       PHI=PHIO+PHID+TP
       COST=COSF(TH)
       SINT=SINF (TH)
       TANPSTANF (PHI)
       PHIF = ATAN (COST + TANP)
       SINPHIP=SIN(PHIP)
       COSPHIP=COS(PHIP)
       PHICP=COSPHIP+COSPHIP+(PHID+COST/(COSF(PHI)++2)-THD+SINT+TANP)
 1045 FORMAT(6X, 6HPS1X8=,12E10,5)
       DO 265 15=1,3
       11=11+1
       WP(15)=A0(11)
       XK#1,
WDP([5)=WDDP([5]=0,
       DO 263 KL=1,KX
       ARG=XK+PSI
       COSKP=COS(ARG)
       SINKP=SIN(ARG)
       WP([5]=WP([5])+AK(KL,[])+COSKP+BK(KL,[])+' \P
WDP([5)=WDP([5)+XK+OM+(AK(KL,[])+SINKP+BK(KL,[])
                                                                   +COSKP)
       WDDP(15) = WDDP(15) - XK + XK + DM + OM + (AK(KL, [1]) + COSKP + BK(KL, [1]) + SINKP)
 263
       XK=XK+1.
 265
       CONTINUE
       THD2=THD+THD
       P2*FHIDP*PHIDP
       X=WP(1) + COST+WP(2) + SINPHIP+SINT+WP(3) + COSPHIP+SINT
       Y=WP(2) + COSPHIP-WP(3) + SINPHIP
       Z==WP(1)+SINT+WP(2)+SINPHIP+COST+WP(3)+COSPHIP+COST
0
       XD=kDP(1)+COST=WP(1)+THD+SINT+(WP(3)+PHIDP=WDP(2))+SINPHIP+SINT+
      1(WDF(3)+WP(2)+PHIDP)+COSPHIP+SINT+WP(2)+THD+SINPHIP+COST+WP(3)+
      2THD+COSPHIP+COST
       YD=(WDP(2)+WP(3)+PHIDP)+COSPHIP+(WP(2)+PHIDP+WDP(3))+SINPHIP
       ZD=+WDP(1)+SINT-WP(1)+THD+COST+(WDP(2)+WP(3)+PHIDP)+SINPHIP+COST+
     1(WP(2)*PHIDP*WDP(3))*COSPHIP*COST*WP(2)*THD*SINPHIP*SINT*WP(3)*
       XDD=(WDDP(1)=WP(1)*THD2 )*COST=2,*WDP(1)*THD*SINT+(2,*WP(2)*
     1PHICP+THD+2, +WDP(3)+THD)+COSPHIP+COST+(WDDP(2)+WP(2)+(P2+
     2THD2 )=2,*WDP(3)*PHIDP)*SINPHIP*SINT*(2,*WDP(2)*PHIDP*WDDP(3)=
                   +THD2
                                    )) + COSPHIP + SINT + (2, + WDP (2) + THD = 2, + WP (3)
     3WP(3)+(P2
      4.PHIDP.THD) +SINPHIP+COST
       YDD=(WDDP(2)+WP(2)+P2
                                          )*COSPHIP=(WDDP(3)*WP(3)*P2)*SINPHIP
     ZDD== 2,*WDP(1)*THD*COST=(WDDP(1)*WP(1)*THD2 )*SINT+(2,*WDP(2)

1*PHIDP*WDDP(3)*WP(3)*(P2+THD2 ))*COSPHIP*SINT*(2,*WDP(2)

2)*THD=2,*WP(3)*PHIDP*THD)*SINPHIP*SINT*(WP(2)*PHIDP*WDP(3))*COSPHI
     3P+S1NT+2,+THD+(WDDP(2)+WP(2)+(P2+THD2
                                                                )-2.*WDP(3)*PHIDP
     4)+SINPHIP+COST
8
       XRAF = XO-XH-X+COSCHI-Y+SINCHI
       YBAF = YO = YH = X + SINCH I + Y + COSCHI
```

```
ZBA# = 20 - 2H+2
8
      CXD=XDH+XD+COSCHI+YD+SINCHI
      CYD= YDH+XD+SINCHI=YD+COSCHI
      CZD= ZDH=ZD
0
      CXDC = XDD + COSCHI + YDD + SINCHI
      CYDE = YDD + COSCH! + XDD + SINCH!
      CZDC = ZDD
      SS=SQRT(XBAR+XBAR+YBAR+YBAR+ZBAR+ZBAR)
8
      XMAS=(CXD+CXD+CYD+CYD+CZD+CZD)/C/C
      XMS=(XBAR+CXD+YBAR+CYD+ZBAR+CZD)/(SS+C)
      XMDS=(XBAR+CXDD+YBAR+CYDD+ZBAR+CZDD)/(SS+C)
      BEGIN CALCULATION OF FORCES AND DERIVATIVES.
      DO 275 15=1,3
      JJ=JJ+1
F(I5)=A0(JJ)
      FD(15)=0,
      XK=1.
      DO 270 16=1.KF
      COSK = COSF (XK+PSI)
      SINK #SINF (XK+PSI)
      F(15)=F(15)+AK(16,JJ)+COSK+RK(16,JJ)+SINK
      FD(15)=FD(15)=OM+XK+(AK(16,JJ)+SINK-BK(16,JJ)+COSK)
270
     XX=XK+1.
275
     CONTINUE
8
      FX=F(1) *COST+F(2) +SINPHIP+SINT+F(3) +COSPHIP+SINT
      FY=F(2)+COSPHIP=F(3)+SINPHIP
      FZ==F(1)+SINT+F(2)+SINPHIP+COST+F(3)+COSPHIP+COST
      FDX=FD(1)+COST=F(1)+THD+SINT=(F(3)+PHIDP+FD(2))+SINPHIP +SINT+
          (FD(3)+F(2)+PHIDP)+COSPHIP+SINT+F(2)+THD+SINPHIP+
          COST+F(3)+COSPHIP+COST+THD
      FDY=(FD(2)-F(3)+PHIDP)+COSPHIP-(F(2)+PHIDP+FD(3))+SINPHIP
      FDZ==FD(1)+SINT+F(1)+THD+COST+(FD(2)+F(3)+PHIDP)+SINPHIP+COST+
     1(F(2)*PHIDP*FD(3))*COSPHIP*COST*F(2)*THD*SINPHIP*SINT*F(3)*COSPHIP
     2*SINT*THD
8
      FX=FX+COSCHI+FY+SINCHI
      FY=FX+SINCHI+FY+COSCHI
      FZ==FZ
      FDX=FCX+COSCHI+FDY+SINCHI
      FDY*FCX+SINCHI - FDY+COSCHI
      FD7a-FD7
      BEGIN SOUND PRESSURE CALCULATIONS.
      XT=XMDS+C+(1, YMAS)/SS
      XMXS=XT-XD/XBAR
      XMYS=XT=YD/YBAR
      XMZS=XT=ZD/ZBAR
8
      TEMP=1, -XMS
      TEMP2=TEMP+TEMP
      TMP==1,/(4,*PI*TEMP2*C*SS*SS)
      DP#(XBAR+(FDX+FX+XMXS/TEMP)+YBAR+(FDY+FY+XMYS/TEMP)+ZBAR+(FDZ+FZ+
     1XMZS/TS4P))+TMP
```

```
PJ(17) = PJ(17) + DP
  330 CONTINUE
  350 CONTINUE
       TET+DT
  400 CONTINUE
4
       HARMONIC ANALYSIS OF SOUND FIELD,
       F1=2, +BR/XM
       F2=2, +P1+88/XM
F3=CM+88/(PI+PI)
       F4#20, +, 43429448
       BB/MX=BMX
       BMEXMB/2,
       BM2=FLOAT(M8/2)
  IF (BM,GT,BM2) 605,610
605 KMAX=M/(2+IFIX(BB))
       GO TO 615
  610 KMAX=M/(2+1F1X(BB))-1
  615 XL=0.
       DO 680 L1=1.KMAX
       XL=XL+1,
       SUM1=SUM2=X=0,
       DO 660 MM=1,MB
       SUM1=SUM1+PJ(MM)+COS(X+F2+XL)
       SUM2=SUM2+FJ(HM)+SIN(X+XL+F2)
 664
         FCRMAT(2X,212,9(3X,E10,5))
  660 X=X+1,
       CPJ(L1) =F1+SUH1
       SPJ(L1)=F1+SUM2
       ALPHAJ(L1) = ATAN(SPJ(L1)/CPJ(L1))
       IF(CPJ(L1), EQ, 0, )661,662
       ALPHAJ(L1)=P1/2.
 661
 662
        SPJ(L1) = ABSF(SPJ(L1))
        CPJ(L1) = ABSF(CPJ(L1))
       PJK(L1) = SQRT(CPJ(L1) + CPJ(L1) + SPJ(L1) + SPJ(L1))
       PJK(L1)=F4+ALOG(PJK(L1))+124,58
       FF(L1) = XL + F3 /(1, = BMO)
  680 CONTINUE
       WRITE (61,1030)
WRITE (61,1032) III,XOP,YOP,ZOP
        WRITE(61,1029)XPH, YPH, ZPH
       WRITE (61,1030)
WRITE (61,1033)
       WRITE(61,79)
       DO 700 L1=1,KMAX
  700 WRITE (61,1034) L1,FF(L1),CPJ(L1),SPJ(L1),PJK(L1)
       WRITE (61,1030)
  800 CONTINUE
       WRITE (59,1002)
WRITE (61,1030)
       WRITE (61,1002)
       FORMAT(1H1,60X,16HPROGRAM ,HERON 1)
       FORMATI
                       1048)
 3
       FORMAT(3(28x,1048/))
       FORMAT(1H0,28x,63HBLADE LOADING AND MOTION DATA (PARALLEL AND NORM
 6
      1AL TO THE SHAFT//)
      FORMAT(1H ///,28x,22H GEOMETRY OF ROTOR H ,,110 ,11x 1 ,6HBLADES/,1H ,50x,E10,3,3x,3HFT,,4x,6HRADIU9/,1H ,50x,E10,3,3x,26HR,P,M,/,1H ,50x,E10,3,3x,3HFT,,4x,17HFLAP HINGE OFFSET/,1H ,50x,
      3E10,0,3x,3HFT,,4x,17HDRAG HINGE OFFSET/,1H ,50x,E10,3,2x,7HDEGREES 4,14H AZIMUTH PHASE/,1H ,50x,E10,3,9H DEGREES,27H REARHARD SHAFT I
```

```
5NCLINATION/, 1H ,50XE10,3,9H DEGREES, 31H SHAFT INCLINATION TO STAR 6BOARD/,50X,E10,3,2X,6HFT/SEC,25H VELOCITY IN X-DIRECTION/,1H ,50X 6,E10,3,2X,6HFT/SEC,25H VELOCTIY IN Y-DIRECTION/,1H ,50X,E10,3,2X,
      86HFT/SEC,25H VELOCITY IN Z-DIRECTION/,1H ,50X,E10,3,2X,6HFT/SEC,2
90H RESULTANT VELOCITY/)
 5
       FORMAT(1H ,50x,E10,3,3x,3HFT,,18H
                                                   X HUB ORDINATE/.1H .50X.E10.3
                            Y HUB ORDINATE/,1H ,50x,F10,3,3x,3HFT,,18H
      1,3X,3HFT,,18H
      2UB CRDINATE)
       FORMAT(1H ,28X,27HNUMBER OF LOADING STATIONS=,16//)
FORMAT(1H ,28X,37HNUMBER OF AZIMUTH INTEGRATION POINTS=,16//)
 61
       FORFAT(1H , 28x, 49HFORM OF INPUT, SPANWISE/AZIMUTHWISE DISTRUBUTION
      15//)
       FORMAT(1H ,28x,23HFORM OF INPUT, HARMONIC//)
 67
       FORMATCH ://28X,13HAZIMUTH ANGLE:7X,10HFLAP ANGLE:10X, 9HLAG ANGL
      1E//3
       FORMAT(1H ,28X,E10,2,10X,F7,3,13X,F7,3)
 68
       FORFAT(1H ,///28x,57HBLADE ELEMENT ELASTIC DISPLACEMENTS PARALLEL
 69
      1TO THE SHAFT//)
 63
       FORMAT(1H , 2X, 13HAZIMUTH ANGLE, 30X, 14HRADIAL STATION//)
       FORMAT(1H ,15X,10F10,3)
 64
       FORMAT(1H , 5x, F10,3 , 10E10,3)
FORMAT(1H ,//28x,57HBLADE ELEMENT FLASTIC DISPLACEMENTS NORMAL
 65
 71
     1TO THE SHAFT//)
 1091 FORMAT(/)
       FORMAT(1H1 ,28X,26HBLADE THRUST LOADING (LBS)//)
 62
66
       FORMAT(1H ,///28X,18HBLADE DRAG LOADING//)
       FORMAT(1H .///48x,20HCOMPUTED SOUND FIELD//)
       FORMAT(1H ,28X, 8HHARHUNIC,6X, 9HFREQUENCY,8X,14HIN PHASE PRES,,5X
      1,18FOLT OF PHASE PRES,,3X,20HSDUND PRESSURE LEVEL/,30X,3HNO,,31X,
28H(F,S,F,),10X,8H(P,S,F,),9X,28H(DB, RE, ,0002 DYNES/SQ,CM,))
1029 FORMAT(1H ,///28X,25HRETARDED HUB CO-ORDINATES,10X,4HXPH=,E16,8,1X,4HYH
     1,4HYPH=,E16,8,1X,4HZPH=,E16,3)
 1032 FORMAT(1H ,///28x,21HOBSERVER CO-ONDINATES, 4x,
     U
                     2HJ=,14,5X,3HXQ=,E16,8,2X,3HYQ=,E16,8,2X,3HZQ=,E16,8)
 1000 FORMAT(2014)
 1002 FORMAT (2X, 10HEND OF RUN)
 1003 FORMAT( 8E16,8)
 1016 FORMAT (8F10,0)
 1027 FORMAT(214,2x,6F10,0)
 1028 FORMAT(8F10,0)
 1030 FORMAT (/)
 1034 FORMAT(30x,14,4E20,8)
 1033 FORMAT(32x,1HK,13x,4HF(K),13x,6HCPJ(K),15x,6HSPJ(K),14x,5HPJ(K))
       SUBFOLTINE INPUT (11)
       COMMON K1, K2, KSF, KSX, DPSI, M, N
       COMMON BET(72), ZET(72), FN(72,12), FT(72,12) , DMD(72) , D(22)
       DIMENSION ZRO2(12), CFN(12,12), ZRO3(12), CFT(12,12), E(12), SFN(12,12)
       DIMENSION ZRO1(1), CHET(72), GGG(1), SRET(72), HHH(1), SFT(12,12)
       CALL PARAMETER OF 1 HETURNS BETA AND ZETA ARRAYS ONLY.
       CALL PARAMETER OF 2 RETURNS FN AND FT ARRAYS ONLY, CALL PARAMETER OF 3 RETURNS ETAN AND ETAT ARRAYS ONLY,
C
       WRITE (61,1505)
       1 = 0
       FORMAT(1H , 28X, 34HBLADE LAGGING HARMONICS (DEGREES))
       GO TO (50,110,120) II
   50 CONTINUE
C
       COMPUTE BETA AND ZETA ARRAYS.
```

```
G
      REAT (60,1028) (CBET(KK), KK=I, K1)
      XJ=1.
      FORMAT(1H ,32x,1HA,12,7x, E10,3)
FORMAT(1H ,28x,34HBLADE FLAPPING HARMONICS (DEGREES))
 74
 76
        WRITE(61,76)
      WRITE(61,74)(J,CBET(J),J=1,K1)
      REAC (60,1028) (SBET(KK),KK=1,K1)
      FORMAT(1H ,32X,1HB,12,7X, E10,3)
      WRITE(61,84)(J,SBET(J),J*1,K1)
      XJ=2.
      X==1.
      DO 60 11=1.M
      X = X + 1 .
      PSI=X+DPSI
      BET([1)=CBET([)
      Y = 0 .
      DO 60 [2=1.K1
      Y= Y + 1 .
      YK=FSI+Y
   60 BET([1])=BET([1)+CBET([2)+COS(YK)+SBET([2)+SIN(YK)
8
      COMPLETES COMPUTATION OF BETA ARRAY,
C
 75
      FORMAT(1H ,28X,31HBLADE DRAG LOAD HARMONICS (LBS)///)
 85
      FORMAT(1H ,28x,33HBLADE THRUST LOAD HARMONICS (LBS)///)
      REAL (60,1028) (CBET(J), J=1,K2)
      XJ=3,
        WRITE(61,77)
      WRITE(61,74)(J,CBET(J),J=1,K2)
      READ (60,1028) (SBET(J), J=1, K2)
      WRITE(61,84)(J,SBET(J),J=1,K2)
      X==1,
Dn 70 [3=1,M
      X=X+1,
      PSI=X*DPSI
      ZET(13) = CRET(1)
      Y=0.
DO 70 KK =1.K2
      Y=Y+1.
      YK=Y+FSI
   70 ZET(13)=ZET(13)+CRET(KK)+COS(YK)+SBET(KK)+SIN(YK)
 79
      FORMAT(1H ,32X,1HA,12,7X,10E10,3)
 78
      FORMAT(1H ,32X,1HR,12,7X,10E10,3)
 72
      FORMAT(1H ,28X,14HRAUTAL STATION,F10,3)
      COMPLETES COMPUTATION OF ZETA ARRAY.
C
      GO TO 1200
  110 KSTF=KSF
      KF=1
      Go TO 125
  120 KSTF=KSX
      KF = 2
  125 DO 130 NN=1,N
      READ (60,1028) (CFN(NN,J),J=1,KSTP)
      XJ=5,
REAC (60,1028) (SFN(NN,J),J=1,KSTP)
      XJać.
      RFAC (60,1028) (CFT(NN,J),J=[,KSTP)
```

```
XJ=7,
REAL (60,1028) (SFT(NN,J),J=1,KSTP)
      XJ≈e,
130
         CONTINUE
 69
      FORMAT(1H ,///28x,57HBLADE FLEMENT FLASTIC DISPLACEMENTS PARALLEL
     1TO THE SHAFT//)
      FORMAT(1H ,///28x,57H8LADE ELEMENT ELASTIC DISPLACEMENTS NORMAL
 71
     1TO THE SHAFT//)
      IFC KF, EQ. 1
                     )101,502
     WRITE(61,85)
      GO TO 503
     WRITE(61,71)
 503
      WRITE(61,72)( D(K),K=1,N)
      DO 104 J=I.KSTP
      WRITE(61,79)(J,CFN(NN,J),NN=1,N)
      DO 105 J=1,KSTP
 105
     WRITE(61,78)(J,SFN(NN,J),NN=1,N)
      IF( KF,EQ,1
                     1102,504
     WRITE(61,75)
      GO TO 505
     WRITE(61,69)
 504
      WRITE(61,72)( D(K),K=1,N)
 505
      DO 107 J=I,KSTP
 107
     WRITE(61,79)(J,CFT(NN,J),NN=1,N)
      DO 108 J=1,KSTP
 108
     WRITE(61,78)(J,SFT(NN,J),NN=1,N)
       CONTINUE
      DO 140 NN=1, N
      X = 0 .
      DO 140 MM=1.M
      PSI=DPSI+X
      X = X + 1,
      FN(FM, NN) = CFN(NN, I)
      FT(MM, NN) = CFT(NN, 1)
      Y = Q .
      DO 140 14=1,KSTP
      Y = Y + 1 .
      ARG = Y + PSI
      SINARG=SIN(ARG)
      COSARG=COS(ARG)
      FN(MM, NN) = FN(MM, NN) + CFN(NN, 14) + COSARG+SFN(NN, 14) + SINARG
  140 FT(MM, NN) =FT(MM, NN) +CFT(NN , 14) +COSARG+SFT(NN, 14) +SINARG
G
      COMPLETES FN AND FT OR ETAN AND ETAT CALCULATIONS.
8
 1028 FORMAT (8F10,0)
 1260 RETURN
 1500 FORMAT (10X, 7E16,8)
 1505 FORMAT (/)
      END
      FUNCTION SFITP, KK, NUM, PNEW, CHI)
Œ
      COMMON K1, K2, KSF, KSY, DPSI, M, N
      COMMON BET(72), ZET(72), FN(72,12), FT(72,12) , DMD(72) , D(22)
      COMMON PSI),K, C,OM
COMMON XO,(O,Z),XDH,YDH,ZDH
                                     , AM
      COMPON XHO, YHO, ZHO, THO, THO, PHIO, PHID
      COMMON AOL'2
                      ),AK(36,72),BK(36,72),F(3),FD(3)
      DIMENSION WITH
      CALCULATED SOUND SOURCE TO OBSERVER DISTANCE,
                                                                              *******
```

```
PSI=PNEW+OM+TP
      XH=XHO+XUH+TP
      YH=YHO+YDH+TP
      ZH=ZHO+ZDH+TP
      THETHO+THD+TP
      PHI=PHIO+PHID+TP
PHIF=ATAN(COSF(TH)+TANF(PHI))
DO 100 I1=1,3
      I1=3+(NUM-1)+11
      WP#AO(II)
      XK=1.
 DO 80 12±1,KK

500 FORMAT (5X,8HSUB DATA,5X,7E14,6)

WP#hP+AK(12,11)*COSF(XK*PS1)*BK(12,11)*SIN(XK*PS1)
80 XK=XK+1,
100 W(I1)=WP
      COST=COSF(TH)
SINFHIP=SINF(PHIP)
SINT=SINF(TH)
      COSPHIP=COS(PHIP)
      SINP=SINF(CHI)
      COSF#CUSF(CHI)
      X=W(1)+COST+H(2)+SINPHIP+SINT+H(3)+COSPHIP+SINT
      Y=W(2)+COSPHIP+W(3) +SINPHIP
      Z=+h(1)+SINT+W(2)+SINPHIP+COST+W(3)+COSPHIP+COST
      W(1) #X0 = XH = X + COSP + Y + S!NP
      W(2) = Y0 - YH - X - SINP + Y + COSP
      W(3)=70=ZH+7
SF=SQRT(W(1)+W(1)+W(2)+W(2)+W(3)+W(3))
      RETURN
      END
```

TABLE I. MAJOR FORTRAN SYMBOLS USED IN PROGRAM HERON 1

(Other Symbols Which Appear are Generally Used for Local Calculations and have Self-Evident Meanings)

PROGRAM SYMBOLS	ALGEBRAIC SYMBOLS	DEFINITION
IH	Н	Number of rotors
JCON	J	Number of observer positions
С	c, a ₀	Atmospheric speed of sound (ft/sec)
RHO	ρ_0	Atmospheric density (slugs/ft³)
ОНМ	ν	Rotor speed (rpm)
R	R	Rotor radius (ft)
ВВ	В	Number of blades
EPF	εf	Flapping hinge offset (ft)
EPL	${}^\epsilon\!\mathcal{L}$	Lagging hinge offset (ft)
PSIO	Ψ_0	Azimuth reference angle (radians)
ОМ	Ω	Angular velocity of rotor (radians/sec)
М	М	Number of azimuth stations
N	Ν	Number of radial stations
IND	IND	Indicator: If IND = 1, loading/motion read as span- wise/azimuthwise distributions
_	-	If IND = 2, loading/motion read as Fourier coefficients
KSF	K*	Number of force harmonics read
KSX	K*	Number of displacement harmonics read

		TABLE I - Continued
PROGRAM SYMBOLS	ALGEBRAIC SYMBOLS	DEFINITION
K1	K ₁	Number of flapping angle harmonics read
K 2	K ₂	Number of lagging angle harmonics read
кх	K _×	Number of displacement harmonics calculated
KF	K _f	Number of force harmonics calculated
DT	Δt	Time increment between sound pressure values in final time history (sec)
TT	Ţ	Fundamental blade passage period (sec)
DPSI	Δψ	Azimuth increment (radians)
D(1)	x(n)	i th radial station (nondimensional)
R(I)	r(n)	Radial distance of i th station – R · D(I)
хно	X_{H_0}	
YHO	$^{Y}_{H_{0}}$	Hub coordinates relative to fixed ground axes (ft) at time t = 0
ZHO	Z _{H₀}	
тно	θ_0	Pitch angle relative to aircraft trajectory coordinates (radians) at time t = 0
РНІО	Φ ₀	Roll angle relative to aircraft trajectory coordinates (radians) at time $t = 0$
XDH	х _н	
YDH	Ϋ́Η	Hub velocity components in fixed coordinate directions (ft/sec)
ZDH	ż _H	

		TABLE I - Continued
PROGRAM SYMBOLS	ALGEBRAIC SYMBOLS	DEFINITION
THD	ė	
PHID	ф	Pitch and roll rates (radians/sec)
V	٧	Resultant hub velocity (ft/sec)
СНІ	x	Azimuth angle between x and X axes (radians)
хн	x_H	
ΥH	Υ _H	Rotor hub coordinates at retarded time t' (ft)
ZH	z _H	
ВЕТ	β	Flap angle (radians)
ZET	ζ	Lag angle (radians)
FN	F_N or η_N	Normal section loading (lb) or elastic displacement (ft)
FT	F _T or η _T	In-plane section loading (lb) or elastic displacement (ft)
XD	×¹	Coordinates in shaft axis system (ft) (Also used for
YD	y'	Coordinates in shaft axis system (ft). [Also used for blade section force components in same system (lb)]
ZD	z'	
DNDR	$d\eta_{N}/dr$	Local blade slope with respect to plane of rotation (radians)
DTDR	dn _T /dr	Local blade slope with respect to nominal blade azimuth (radians)
AO	a ₀	
AK	a _k	Fourier coefficients of blade section force and displacement with respect to rotor axes (ft)
ВК	b _k	

	*	TABLE I - Continued
PROGRAM SYMBOLS	ALGEBRAIC SYMBOLS	DEFINITION
XOP	X' ₀ (j)	
YOP	Y' ₀ (j)	Nominal observer position in fixed coordinate system (ft)
ZOP	Z' ₀ (j)	
SXBH	×т	
SYBH	\bar{y}_{H}	Position of rotor hub relative to observer at time to in fixed coordinate system (ft)
SZBH	ž _H)
SH	S _H	Distance between hub and observer at time t (ft)
TAUOP	τ'0	Time of propagation of sound from the rotor hub which reaches observer at time t (sec)
ХРН	Χ' _H	
YPH	Y'H	Hub coordinates in fixed axis system at retarded time t' (ft)
ZPH	Z' _H)
SXBPH	×̈́Η)
SYBPH	γ̈́ _H	Position of hub relative to observer at retarded time t' (ft)
SZBPH	₹¦H)
вмо	M _o	Hub Mach number component in direction of observer
Т	t	"Observer" time t
хо	x _o	
YO	Y ₀	Coordinates of "moving observer" at time t
ZO	Z ₀	<i>)</i>

	***************************************	TABLE I - Continued
PROGRAM SYMBOLS	ALGEBRAIC SYMBOLS	DEFINITION
PNEW	Ψ ο	Reference azimuth angle for particular blade
TAU 1	т ₁	Sound propagation time
TP	†¹	Retarded time $t^i = t - \tau$
PSI	ψ	Blade azimuth angle (nominal) at retarded time t
хн	Х _Н)
YH	Y _H	Hub coordinates (in fixed axes) at retarded time t
ZH	z _H)
тн	θ	Pitch angle at retarded time (radians)
PHI	ф	Roll angle at retarded time (radians)
PHIP	φ'	Roll angle at retarded time (relative to vehicle) (radians)
PHIDP	φ'	Roll rate at retarded time (relative to vehicle)(radians/sec)
WP(I)	w¹	Coordinates of blade station (rotor axes)(ft) (w = x,y or z)
WDP	w'	Blade element velocity components (ft/sec)
WDDP	w'	Blade element acceleration components (ft/sec ²)
x	×)
Y	у	Aircraft flight path coordinates (x is flight azimuth direction) (ft)
z	z)
XD	×	
YD	ý	Aircraft flight path velocity components (ft/sec)

		TABLE I - Continued
PROGRAM SYMBOLS	ALGEBRAIC SYMBOLS	DEFINITION
ZD	ż	Aircraft flight path velocity component (ft/sec)
XDD	×	
YDD	ÿ	Aircraft flight path acceleration components (ft/sec ²)
ZDD	Ë)
XBAR -	×	
YBAR	ÿ	Coordinates of blade element relative to observer at
ZBAR	z	reta; ded time (ft)
CXD	×	
CYD	Ÿ	Velocity components of blade element at assarded time (fixed axes)(ft/sec)
CZD	Ż	
CXDD	Ÿ	
CYDD	Ÿ	Acceleration components of blade element at retarded time (ft/sec ²)
CZDD	Ë)
SS	S	Distance traveled by sound (ft)
XMAS	М	Square of absolute Mach number of blade element
XMS	Ms	Mach number of element toward observer
XMDS	\dot{M}_{s}	Rate of change of Mach number toward abserver
F(i)	F,	Aerodynamic force component relative to rotor axes (1b)
FD(I)	Ė,	Rate of change of aerodynamic force component relative to rotor axes (lb/sec)

		TABLE I - Continued
PROGRAM SYMBOLS	ALGEBRAIC SYMBOLS	DEFINITION
FX	F _×	
FY	Fy	Aerodynamic force components relative to aircraft flight path axes (lb)
FZ	Fz) Trigili pain axes (15)
FDX	Ė _×	
FDY	Ė y	Rate of change force components relative to aircraft flight path axes (lb/sec)
FDZ	Ėz	
FX	F _X	\
FY	F _Y	
FZ	FZ	Forces and rate of change of forces relative to
FDX	ĖX	fixed axes (lb, lb/sec)
FDY	Ėγ	
FDZ	ĖZ	<i>)</i>
DP	Δ _p	Acoustic pressure increment due to forces and motions of blade element (lb/ft^2)
PJ(I)	p _. (t)	Total acoustic pressure at time t (lb/ft²)
CPJ(I)	c _{pjk}	In-phase harmonic pressure component (1b/ft²)
SPJ(I)	S	Out-of-phase harmonic pressure component (lb/ft²)
PJK(I)	p _{jk}	Harmonic pressure amplitude (lb/ft²)
(1)	fk	Frequency (Hz)

5.0 PROGRAM INPUT/OUTPUT

Table II describes the preparation of the input data cards for HERON 1. This is followed by an example comprising a complete set of data written on coding forms. In conclusion, the computer output obtained for the example is presented.

SYMBOL UNITS DO A Slugs/ft ³ N A The A		TABLE II. PROGRAM HERON I. DATA INPUT	AM HERON 1.	DATA INPUT		
III TITLE CARDS No. of rotors No. of field points Speed of sound Speed of sound Atmospheric density Rotor rom**** Rotor rodians ister Rotor rodians	CARD NO.*	DESCRIPTION	SYMBOL	UNITS	FORMAT	CARD COL.
Onics Kr		TITLE CARDS			10A8	1-80
Ones*** ***** ***** **** **** **** ****	_	No. of rotors	I	ı	14	1-4
οης **** Β Β Β β β β β β β β β β β β β β β β β	_	No. of field points	7	ı	14	8-4
οης **** Β Β β β β β β β β β β β β β β β β β β	_	Speed of sound	U	ft/sec	F10.0	11-20
onics Kr. ****	-	Atmospheric density	g _o	slugs/ft ³	F10.0	21-30
ons*** **** **** **** *** *** ***	2	Rotor rpm ****	z G	щd	F10.0	1-10
ons****	2	Rotor radians	o ∠	ŧ	F10.0	11-20
ons*** **** **** **** **** **** **** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *	2	No. of blades	8	í	F10.0	21-30
ions**** M	2	Flapping hinge offset	e _f	‡	F10.0	31-40
imuth th stations**** I stations**** I stations**** Indicator**** Indicator*** Indicator*** Indicator*** Indicator*** Indicator*** Indicator*** Indicator*** Indicator** Indicator*	2	Lagging hinge offset	73	#	F10.0	41-50
I stations**** N IND Indicator**** Kf IND Independent Kx IND Indicator****	2	Reference azimuth	` ⊋°	рa	F10.0	51-60
indicator**** IND Indicator**** Indicator**** Indicator**** Indicator**** Indicator**** Indicator**** Indicator**** Indicator*** Indicator*** Indicator*** Indicator** Indicator	ო	No. of azimuth stations****	₹	ı	14	1-4
indicator**** IND ng harmonics K _f scement K _X	ო	No. of radial stations****	z	ı	14	5-8
ading harmonics K_{f} -	ო	•••	N N	ı	71	9-12
placement	ო	No. of loading harmonics	ጁ	ļ.	4	13-16
3	ო	No. of displacement harmonics	××	i	14	17-20
- - -	က	No. of flapping harmonics	×_	ı	4	21-24
3 No. of lagging harmonics K_2 - 14	3		Κ ₂	-	14	25-28

	TABLE II	II - Continued	ğ		
CARD NO.*	DESCRIPTION	SYMBOL	UNITS	FORWAT	CARD COL.
++	Radial stations (r/R)	(u)x	ı	F10.0	1-80
Ŋ	Hub coordinates * * * *	×		F10.0	1-10
5	At time t = 0	 	#	F10.0	11-20
5		Z _H		F10.0	21-30
5	Shaft * * * * Iongitudinal	~		F10.0	31-40
2	Inclination (lateral	Φ ^c	5	F10.0	41-50
5	Ξ	×		F10.0	51-60
5	Hub velocity components***	→	ţ	F10.0	61-70
5		Z _H)		F10.0	71-80
9	Pitch rate* * * *		7.7	F10.0	1-10
9	Roli rate* * * *		Idd/sec	F10.0	11-20
IF IND = 1 - Time History Input	ne History Input				
*	Flapping angle at successive azimuth stations $(m = 1(1)M)$	B(m)	gəb	F10.0	1-10 etc.
*	Lagging angle at successive azimuth stations $(\pi=1(1)M)$	ζ(m)	g b b	F10.0	1-10 etc.

CARD NO.*					
ARD NO.*		CVMROI	UNITS	FORMAT	CARD COL.
	DESCRIPTION	+		0 013	1-10
+6	Normal elastic displacement at	(u, u)N ^r	ŧ	2	etc.
	successive $(n = 1(1)N)$ and successive azimuth stations $(m = 1(1)M)$			c c	01-1
+01	Tangential elastic displacement at successive radial stations	ո, ա) դո	#	0.00	etc.
	(n = 1(1)N) and successive azimuth stations $(m = 1(1)M)$			ç	1-10
ŧ	Normal blade load at successive radial stations $(n=1(1)N)$ and	F _{N(m,n)}	മ	D. 22	etc.
	successive azimuth stations $(m = 1(1)M)$			9	1-10
12+	Tangential blade load at successive radial stations (n = 1(1)N) and successive	F _T (m,n)	മ	2	etc.
	azimuth stations (m = 1(1)171)			<u> </u>	
IF IND = 2 - Harmonic Input	rmonic Input		1	0 013	1-10
70+	Flapping angle cosine harmonics for $k = 0(1)K_1$	a(k)	ge deg		etc.
764	Flapping angle sine harmonics for $k = 1(1)K_1 * *$	P(k)	qeg	F10.0	etc.

		TABLE II	TABLE II - Continued			
CARD NO.*	DESCRIPTION		SYMBOL	UNITS	FORMAT	CARD COL.
*	Lagging angle cosine for $k = 0(1)K_1$	cosine harmonics	a(k)	бөр	F10.0	1-10 etc.
\$ 0 8	Lagging angle sine harmonics for $k = 1(1)K_1$	ndrmonics	P(k)	qeg	F10.0	1-10 etc.
***	Normal elastic displacement cosine harmonics for $k = 0(1)K_X$	Repeated for successive	a(n,k)	#	F10.0	1-10 etc.
9°+	Normal elastic displacement sine harmonics for $k = 1(1)K_X$	stations $n = 1(i)N$	b(n,k)	đ.	F10.0	1-10 etc.
4°C+	Tangential elastic displacement cosine harmonics for $k = 0(1)K_X$	Repeated for successive radial	a(n,k)	‡	F10.0	1-10 efc.
7c+	Tangential elastic displacement sine harmonics for k = 1(1)K _X	stations $n = 1(1)N$	b(n,k)	±	F10.0	1-10 etc.

		TABLE II	- Continued			
CARD NO *	DESCRIPTION		SYMBOL	UNITS	FORMAT	CARD COL.
10e1 · ***	Normal blade force cosine harmonics for k = 0(1)K.	Repeated for successive radial	a(n,k)	વ	F19.0	1-10 etc.
106+	Normal blade force sine harmonics for k = 1(1)K _F	^	b(n,k)	<u>a</u>	F10.0	1-10 etc.
10c+	Tangential blade force cosine harmonics for $k = 0(1)K_E$	Repeated for successive	a(n,k)	æ	F10.0	1-10 etc.
10d+	Tangentia! blade force sine harmonics for k = 1(1)K _F	stations n = 1(1) N	b(n,k)	٩	F10.0	1-10 etc.
11)	Observer coordinates for j = 1(1)J	s for	() () () () () () () () () () () () () (###	F10.0 F10.0 F10.0	1-10 11-20 21-30
* Where a co	Where a card number is followed by a total data.	by a + sign, a	dditional cards	are permissible	+ sign, additional cards are permissible if required to accommodate	commodate
* * When the nu are omitted.	Ψ nen the number of harmonics (K) is specified as zero, there are no sine components and relevant cards are omitted.	K) is specified	as zero, there	are no sine com	ponents and rele	vant cards

	TABLE II - Continued
* *	For $n = 0$, all necessary (a) cards are punched, foliqwed by all (b), (c) and (d) cards, for $n = 1$. These are followed by complete sets for $n = 2$, $3 \dots N$.
* * *	These parameters are determined as follows: –
٤	Number of azimuth intervals.
	This controls the number of sound harmonics which will be calculated (= integral part of M/2B if M/2B is nonintegral, or = (M/2B) - 1 if M/2B is integral). With the present storage limits, M must not exceed 72. When the loading and motion data is read in time history form, M defines the number of azimuthal stations for which values must be specified.
z	Number of radial stations must not exceed 12.
QVI	Input format indicator. When IND = 1, all loading and motion data must be specified as azimuthal/radial distributions. When IND = 2, data is input as a set of harmonic coefficients for each radial station.
X _H Y _H Z _H X ₀ Y ₀ Z ₀	$X_{H}Y_{H}Z_{H}$ In determining hub and observer coordinates, it should be remembered that the positive direction of rotor $X_{0}Y_{0}Z_{0}$ rotation (Ω_{N} positive) is clockwise (viewed from above) that the Z axis is vertically upwards, and that the Y axis is rotated 90° anticlockwise from the X axis.
θ ₀ , ė ₀	The shaft longitudinal inclination and rate of pitch are positive in the nose-up sense.
φ,φ	The shaft lateral inclination and rate of roll are positive in a starboard-down sense.

COMPUTER CODING FORM

111111 1 1/0101 1 10-1 JOB NO. 11191111 11.195 1,008 980 OF 67.15 1.006 .02# 1 1619111 PAGE CUSTOMER 11111111 1 13851 1 CI-19/15/7 1.007.7 1-1048 11.151.1 11.12.5.11 1 1 12/2/19/1 1.055 1.01.1.01. 10.002131 1 15151 1 11.01.4 11390-111111 12,00 1.10/18 NAME DATE 11,1,1,7,1,1,1 101111 13,1,6, 1 12/8/01-1 10002 3 1.000 101 12,50. 11 400 3.397 FI. 617.2 0. 0. 026 0. ...25. 01.1 3.6 -71-0. 1-3,4 II.N. 2,1,7,

4

8

COMPUTER CODING FORM

			NAME		CUSTOMER	OMER	JOB NO.	
			DATE			PAGE	2 OF 5	
_			V					
	misterrier elerer	अ थियोगीयोगीयोगीयोगीया अभिनेता अधिक अधिक अधिक अधिक अधिक अभिनेता अभिनेता अभिनेता अधिक अधिक अधिक अधिक अधिक अधिक अधिक अधिक	(ब्रांग्डांस्ड ब्रांस्ड स्डांस्ड स्डांस	 क क स य क} ब द स स	41 42 43 44 46 46 47 48 41 41 39	[00 92 62 74 66 96 65 55 55	[at [as [as] to] to] to] to] to] to]	กำนุโทโทโทโทโทโทโค
	0.0	1111111	1111111	11111111		1111111	11111111	11111111
4	0		11111111	; ; ; ; ; ; ; ; ; ; ; ;	11111111	1111111	11111111	
	111011111111111111111111111111111111111		1.1111111		1111111	13-1.11.11.1.1	1.1.1.1.1.1.1.1	1111111
	1110111	111011111111111111111111111111111111111	11111111		11111111	11111111	1111111	1111111
	0.111	1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1.1.1.1.1.1	11111111	1111111	11.111111	11111111	1111111
	0.1	1111111	11111111		11111111	11111111	1111111	11.1.1.1.1.1
	0	111111	1111111	111111111	1111111	111111		111111
	0	1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11111111	11111111	11111111	1111111	11111111	1111111
100	1 1/4/Ziei/1	11/4/7/1/11 1-1/3.0811	27:13/1	C1.88865111	15.19.83	1.161.14813 1.11	1-31-15,7	1-151-1514.01 1
	1-17-12121 1 6121601	612,60	6.1/50.1		1111111		1.1.1.1.1.1.1	11111111
106	106 181.151.1	1119915	1 21/10/3/3/11	161-15193	1-12:-15:47	:-51.651 1 1	1.77.7.55	13, 7,13,
	1-121.12116	1-12,012,016, 11 1-11,014,41,1	1.1.1.1.1.1		1111111	1111111	1111111	11111111
100							1111111	1111111
					11111111	11111111	1111111	1111111
Pol			1111111		11111111	1111111	11111111	11111111
				11111111	111111	1111111	11111111	1111111
	13.3.3.14	1.13.3.3.14. 1 1.31.0.0241 1.1	15.61-19.01	117.04.9	1-121-1111111	1 ,21-,512, 1 , 1	1.4.9.4	1-11.2 104.1.1
-	1-3,2,5,1	1-31-13,2151 1 17:1860111	-14101232111				111111	1 1 1 1 1
	195, 181, 1	1 A5. 1811 1 1 151-1340111	111100517	1-11-17-1	-191212131 1	1-11:4-12:61	1-11-1764 11	11101263111
	1,10,7,6.4,	1 1/10/7.6.41 1 1-1/10.2.61 1 1 1						1:1:1:1:1
	WITE 1417 (412 1417 1515)	with the first time who made in the test of the fest and indicates to the fest and indicates the fest and indicate	ler laz lez fiz fer fer lez lez lez fez fez f	les les l'extes les les les les les les les les les l	alederical est est est est est est	100 45 05 25 05 35 26 65 75 15	F '40 MG [41] 40 [41] 40 [41] 24 [41]	8 12 12 12 12 12 12 12 1

COMPUTER CODING FORM

NO.	9
ERJOB	PAGE 3 OF
CUSTOMER	
NAME	DATE

	22 41 41 42 43 44 55 55 55 55 55 55			[25] ex [45] [45] [46] [47] [48] [48]		0.000 [0.0] 200 [0.0] 200 [0.0] 200 [0.0]	2 - 2 -
		111111	11111111	1111111		11111111	
					1 1 1 1 1 1 1 1	11111111	
					1 1 1 1 1 1		1111111
		11111111		171111111	1111111	1111111	
15,6,6,10	1566.10 11 126.1512	9151-15151	1.13/11/194 1.1	1.171.187.17	1 12 10 5 8 17 5 1	1.1763	1 1001-1211
1-4.5.28 1.15.170	-15.70	1,10:-1051			111111		
1,1,081.5, 1,1,00.1,7,	1,19-1,7	11.350	1-1121-188	1-1 1151.18121 1	1716.812	1-191,1913151	14.15.28111
1-19.123.21 1 1-19.123.01	1-19.12301			1111111	1111111	1111111	
				TTTTTTTT		111111111	
	11111111				111111		-
	1111111	111111111	TITLITIT	11111111	111111		
11:11:11:					111111111	11111111	
1.808.13. 1.1.3.81.	1113-811.1	11.291 3. 1.	1 1661-13171 1	119.58	172,4.812	1.1/17:-17:4	11,12,17,0,11
1-19-25	3:.628	115.67	111111	1111111		1.111111	
1.13.17.3. 1 1 1.1225. 1	1121-1251	1-191.181781.1	1-114-111 ::	1-13121-18161 1	_	1.6.15512.1	1 191081191
5846	15.18.4.6. 1 1 13.5.2.8. 1					111111	
			1111111	11111111	1111111	1 1 1 1 1 1 1	1 1 1 1 1 1
						1 1 1 1 1 1 1	
		1111111			11111111	11111111	TTITITITI
	1,111,111	11111111					
919191919191919	જો નાં આવેલી હોં સીલો સો સો	@ ISA	ion feel an as be feel ee in lenfui	isclusion Lolonioni ori ori col zolos	in bein bein ini niciala	olitzital (~ 168 fm 1671 68 39. 70	and an an an an an an an

ON BOL	4 OF 5	
FORM	PAGE	
COMPUTER CODING FORM		
CO	NAME	DATE

	to the first test and test test test and test test and test test and test a		is in in in in in in it.	in	to had been subtrated as less as	100000000000000000000000000000000000000	4.365
MINISTRIBILITIES.	E SEINININININININININININININININININININ	- Maininininininini	17 29	8820	-18-93	The Training	
6 1130	25.11.2	6449	11/1/2/2/2/11		11111111	1111111	
Cast Self	3700	5. 468	1111111		2.1. Oct	2. 29.3	1101.121111
13:13:7/	100,000		-120.12/	121.1011-	10:115	STORY CHOICE SE	11111111
-1461112111	-461-1121 1 1211-19/11	-	111110000	11111111	1111111		111111111
11,19,12,3111	11.19.123.11				1111111		
TOTAL MARK NOW		1111111		CAND A WARRENCE	1111111	1111111	
	ALTERNATION AND A STATE OF	11111111	111111		12 4 7 1 7 3 4 4 1 3	1111111	1111111
			111111111				111111111
	41111111		1.17.1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4			. 242	11.19.01.11.1
				42	-24.91	1-111-1473	
-	_	12.3. 419 11	1.68:1/6			11111111	
3011	2 517	2.47	11111111		1 2/13	2. 226	1.764
10201	1 12016 1 1 10 10 2101	+	14.70	1711-1911	17 17 17 17 17 17 17 17 17 17 17 17 17 1		
147.53	-4.7. 53, 1, C.4.185#11	T SIGN FIGURE	+-		111111111		
100	11.17811-1	11111111	1 1 1 1 1 1 1		11 11 11 11	11111111	
111111111			111111				
			111111111				1111111
				11111111			
	1111111	111111			1111111		3.5
		411111		27 13	29.0.6	1-29.67	110.51.0
	4.350	-15,1678	1661.93	13/11/16/2	1		44111111
308	306.11	190.11.1	111111111111	200	20.26	1, 2, 5,29	114.17.2
20. 30	20.90		1 11. Zut 4	17/2/17/1-1	23.53		1111111
-40.00	1-40.00.100.1						lad adversariation of the
6.787	6.787, 1-9.16119				clea Liches I sal estical salisation I	an fall of the fact to fee for the fact	The land to the land of the land is the land and which the land of
el (l'ala la	allalalalalalalalalalalalalalalalalala	Terler beler bei bet erter im in	al ministration in the last of				

COMPUTER CODING FORM

			COMPUTER C	CODING FORM	Z Z		
		DATE		602	PAGE	6 OF 5	
जिस्सामा अस्ति अस्ति का अधिक के अधिक कि अस्ति के अस्ति क	व्यक्षाताम् वामाताम्	ल ह्यांक कि कि कि कि कि कि	માં સામામાં સામામાં સાથ	41 42 43 44 45 46 47 48 49 54	1 1 12 12 12 14 14 15 15 14 14 14 14	as les les les les les les les les les	กเกเทโพโทโทโทโท
		1111111			1111111	1111111	11111111
			111111	1 1 1 1			1111111
	1111111111		1111111	111111111	1111111		11.11.11.11
			1111111	11111111	111111		
11-250-11111250-111	11250	11101111	1111111	1111111	1111111	FIFTHITT	
1 51299111 1125011	1112501111	1110	1111111	1111111111	1111111	VOTANIHATINE	
150.11	1,12501.11	11191111		111.11.1111	11111111		
	1 1250.111	1119.111	11111111	1111111	1111111		
	11,12,510.111	111.01111	11111111	111111111	1111111	111111111	
	11,14500.11	111191111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11111111	111111	111111111	11111111
1115001111	11121519111	0.11	1111111	111111111	1111111	91111111	
	11.250:11	0.111	111111	11111111	11111111	11111111	
11500-111	11.250.11	11101111	1111111		11111111	1111111	
1,299.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,12,50	1.0.		1111111	1111111	0111.1111	
1,259.1111	11,145,9.11	111191111			1111111	11111111	
				1111111	11111111		
		11111111			1111111		
		1111111			11111111	111111	11111111
		11111111	1111111111	111111	1111111		11111111
		1111111	11111111	11111111		1111111	111111111
# [0] [[] [] [] [] [] [] [] [] [જ શિલ્લો હાં અકિલો નોલો સાં	०० दिशेषको १४ विकासिको १४ विकासिको	મહિતા કરોત કરો કરો કરો હતો. કર્મા કર્મા	ल्डीकाविकादको स्कानिका स्कारको रक्ता स	en los las las les les les les les les	a. 149 pp (49 pp (49 fee) 29 [49]	ના જાયા જાયા જાયા જાયા જાયા જાયા જાયા જા

SAMPLE OUTPUT

The following pages give the program output for the example case presented previously. This output is fairly self-explanatory, although the following points are worthy of mention.

The results for the first two field points only (11 were requested) are included for the sake of brevity.

It should be remembered that the program calculates the sound field observed when the helicopter rotor is positioned at the nominal position X_H , Y_H , Z_H . This sound was actually generated by the rotor when it was in some other position (at the retarded time). This position is denoted in each case by the "retarded hub coordinates."

Four sound harmonics are calculated since M was specified as 36 so that (M/2B)=4.5. The Doppler shift effect can be noted in the slightly different frequencies observed at the two positions.

PROGRAM .HERON 1 CASE H.1.51. H-34 IN LEVEL FLIGHT AT 40 KTS. DATA FROM NASA TM. X+952 TABLE 8.

```
BEDYETRY OF ADTOR
                                                                                BLADES
                                          2,800£ 01
                                                                FT,
                                                                              RADIUS
                                                                R.P.H.
                                           2,1/06 02
                                           1,0006 00
                                                                             FLAP HINGE OFFSET
                                          1,000E 00
                                                                FT.
                                                                              DRAG HINGE OFFSET
                                                              DEGREES AZIMUTH PHASE
DEGREES REARWARD SHAFT INCLINATION
                                         -1,570E-02
                                        -1,5 0E-02 DEGREES REARMAND SMAPT INCLINATION
-1,570E-02 DEGREES SHAFT INCLINATION TO STARBOARD
6,750E 01 FT/SEC VELOCITY IN X-DIRECTION
0 FT/SEC VELOCITY IN Y-DIRECTION
0 FT/SEC VFLOCITY IN Z-DIRECTION
6,750E 01 FT/SEC HESULTANT VELOCITY
                                                         0
                                                                FT.
                                                                              X HUB ORDINATE
                                                              FT.
                                                                             Y HUB ORDINATE
Z HUB ORDINATE
                                          2,000E 02
```

BLADE LOADING AND MOTION DATA (PARALLEL AND NORMAL TO THE SHAFT

NUMBER OF LOADING STATIONS*

NUMBER OF AZIMUTH INTEGRATION POINTS# 36

FORM OF INPUT. HARMONIC

```
BLADE FLAPPING HARMONICS (DEGREES)
   A 0
               3,307₺ 00
    A 1
               3,160E-01
    A 2
               1,400E-02
               1,500E-01
    A 3
    A 4
               7,700E-02
    A 2
               6,000E-03
    4 6
               3,800E-02
    A 7
               1,400t-02
    A 8
               2,6006-02
               6.000E-03
    A 9
    A10
               1,800E-02
    1
              -6,720E-01
   A 5
               A,7006-02
              -6.500E-02
    3 4
               5.500E-02
              -4.900E-02
   8 5
   d 6
               2.4006-02
    3 7
               8.000E=03
    b 8
                       n
              -4,000t-03
    B10
               2.000E-03
```

BLADE LAGGING HARMONICS (DEGREES)
A 0 -7,000E 00

BLADE ELEMENT ELASTIC DISPLACEMENTS NORMAL TO THE SHAFT

RADIAL STATION	7,000	11,200	15,400	21,000	23,800	25,200	26,600
A 0	0	0	0	0	0	0	0

BLADE ELEMENT ELASTIC DISPLACEMENTS PARALLEL TO THE SHAFT

RADIAL STATION	7,000	11,200	15,400	21,000	23.800	25,200	26,600
A 0	0	0	0	0	0	0	0

BLADE THRUST LOAD HARMONICS (LBS)

RADIAL STATIO	7,000 11.2	200 15.40	0 21,000 23.	800 25,200 26,600
A 0	1.471E 02 3,334E	02 5,660E 0	2 8.083E 02 4.543E	02 3,014E 02 3,081E 02
A 1				01-6,166E 00 6,350E 00
A 2				01 2,340E 01-5,678E 00
AS				01 6,876E 01 6,693E 01
A 4				-01 1,142E 01 3,762E 01
A 5				01-2,401E 01-2,906E 01
A 6	-3.157F no 4 940F	00 1 7636-0	1 1 7745 01 1 0405	00-1,243E 00-2,967E 01
A 7				00 1,104E 01 1,020E 01
à Á				00 2.016E-01 2.090E 01
A 9				
				-01-3,562E 00 1,428E 00
A10	C_150E 00-4,232E	00 1,005E 0	1 1,567E 01 5,468E	00 2,470E 00-1,109E 01
H 1				01-4,753E 01-4,000E 01
P 5				00-6,854£ 00-1,403E 01
B 3	2,133E 01 1,057E	00 1,350E 0	J-9,878E 00-2.265E	01-5,158E 00-1,368E 01
4	6,593E 00-1,179E	01-1,288E 0	1-1,411E 01-2,021E	01-1,470E 01 1,714E 0n
B 5	-2,547E 00-9,223E	00-1,582E 0	1-3,286E 01-1,048E	01-1,7915 01-1,739E 01
B 6	-5,650E 00-1,426E	U1-1,682E 0	1-1,336E 01-2,104E	01-7.342E 00-2,026E 01
8 7				00 3,226E 00 2,520E 00
8 8				01 1.764E 00 1.472E 01
8 9				01 1,176E 00 6,787E 00
810	-1.441E 00-1,260E	00-9,230E 0	0 3,528E-01-5,645E	00-1,781E 00-9,610E 00

BLADE DRAG LOAD HARMONICS (LBS)

RADIAL STATION	7,000	11,200	15,400	21.000	23,800	25,200	26,600
A D	0	U	0	0	n	0	0
A 1	U	0	0	n	U	0	0
A &	11	Ŋ	0	D	Ü	0	Ō
A J	Ü	0	0	n	n	0	n
A 4	0	U	0	n	n	0	0
A >	0	D	0	n	ti	0	0
A D	0	0	0	O	0	0	0
A 7	0	0	0	0	0	0	0
A B	()	υ	0	0	C	0	0
A 9	n	0	0	0	0	0	0
A1U	0	υ	Ç	0	0	0	0
a T	ŋ	0	0	ŋ	0	0	0
R 5	J	0	0	n	n	0	0
ዘ ડ	()	Ű	0	0	0	0	0
H 4	n	Û	0	n	C	G	n
d 2	0	0	0	n	0	0	0
d 6	ĵ	0	0	n	n	0	Ó
8 7	0	J	0	0	0	0	Ō
8 8)	0	0	0	0	0	Ō
8 9	0	U	0	ŋ	0	0	Ŏ
813	ĵ	0	0	0	0	0	ō

•	8	. *	•	0.5	
00E 02 ZO=	0 ZPW= 2,00000006E	PJ(K) SOUND PRESSURE LEVEL (DB. RE. ,0002 DYNES/SQ.CM 8,52205780E 01 8,2423223E 01 6,86954979E 01 6,75648703E 01	03 20=	0 ZPH= 2,00000000E	PJ(K) SOUND PRESSURE LEVEL (DB, RE, .0002 DYNES/SQ, 8,73002754E 01 8,31586838E 01 6,28201229E 01
000E 02 YO* 2,50000000E	922E 01 YPHs	SPJ(K) 0UT OF PHASE PRES. (P,S,F,) 1,04885518E=02 2,87507291E=03 1,00197493E=03 8,97429345E=04	1000E 02 YO= 2,5(000003E	2116E 01 VPH=	SPJ(K) OUT OF PHASE PRES, (P,S,F,) 7,00482784E=03 7,01783579E=03 8,15807666E=04 1,62177906E=05
1 X0= -2,500000	XPH= -2,36923922E	CPJ(K) IN PHASE PRES, (P.S.F.) 2,42557947E-03 7,25207500E-03 1,25524132E-03 1,08763223E-03	2 XO= -2,00000000E	XPM= -2,2132	CPJ(K) IN PHASE PRES, (P.S.F.) 1,17483472E=02 4,77944402E=03 3,58252364E=05 4,91181960E=04
CO-ORDINATES J#	HUB CO+ORDINATES	FREQUENCY 1,51038167E 01 3,02076334E 01 4,53114501E 01 6,04152669E 01	CO-OKDINATES JR	HUB CO-ORDINATES	F(K) FREQUENCY 1,50170596E 01 3,00341192E 01 4,50511787E 01 6,00682383E 01
OBSERVER C	RETARDED P	A	OBSERVER (RETARDED !	ARAN O 400 AUNA

BLANK PAGE

Unclassified

	MENT CONTROL DATA					
(Security classification of title, body of abetrac ORIGINATING ACTIVITY (Corporate author)	t and indexing annotation must		ECURITY CLASSIFICATION			
Wyla Laboratories	Unclassified					
Huntsville, Alabama						
REPORT TITLE			<u> </u>			
Description of a Helicopter Rotor No	ise Computer Program					
- DESCRIPTIVE NOTES (Type of report and inclusive de	ates)					
Final Report, March 1967 - October 1	968					
AUTHOR(S) (Firet name, middle initial, last nume)						
Ollerhead, John B. and Taylor, Rober	1 B.					
REPORT DATE	74. TOTAL NO	OF PAGES	78. NO. OF REPS			
January 1969		78				
DAAJ02-67-C-0023		OR'S REPORT NUM	=			
MANUE - 07-C-5023	USAAVLA	BS Technical	Report 68-67			
Task 1F121401A14801						
,	SO. OTHER RE	PORT HO(8) (Any	ther numbers that may be assigned			
	WR 6					
1 D. DISTRIBUTION STATEMENT	1770					
O. DISTRIBUTION STATEMENT						
This document has been approved	for public release	and sale;				
its distribution is unlimited.						
1. SUPPLEMENTARY NOTES	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	MG MILITARY ACT				
		U.S. Army Aviation Materiel Laboratories				
	FOR EUSTIS	, Virginia				
. ABSTRACT		n to	-1-84 374			
		/				
This report contains a comprehensive d	escription of a compu	ter program de	veloped for the			
numerical evaluation of the beliconter			ABS TR 68-60, "Studies			
of Helicopter Rotor Noise." It is comp						
of Helicopter Rotor Noise." It is comp described, starting from two basic acou	ustic equations and co	vering method	ls by which these			
of Helicopter Rotor Noise." It is comp described, starting from two basic acou equations are applied to the rotor noise	ustic equations and co e problem. Program f	vering method low diagrams o	ls by which these and a complete listing			
of Helicopter Rotor Noise." It is comp described, starting from two basic acou equations are applied to the rotor noise are presented together with input instru	ustic equations and co e problem. Program f uctions and sample inp	vering method low diagrams o	ls by which these and a complete listing			
of Helicopter Rotor Noise." It is comp described, starting from two basic acou equations are applied to the rotor noise are presented together with input instru	ustic equations and co e problem. Program f uctions and sample inp	vering method low diagrams o	ls by which these and a complete listing			
of Helicopter Rotor Noise." It is comp described, starting from two basic acou equations are applied to the rotor noise are presented together with input instru	ustic equations and co e problem. Program f uctions and sample inp	vering method low diagrams o	ls by which these and a complete listing			
of Helicopter Rotor Noise." It is comp described, starting from two basic acou equations are applied to the rotor noise are presented together with input instru	ustic equations and co e problem. Program f uctions and sample inp	vering method low diagrams o	ls by which these and a complete listing			
of Helicopter Rotor Noise." It is comp described, starting from two basic acou equations are applied to the rotor noise are presented together with input instru	ustic equations and co e problem. Program f uctions and sample inp	vering method low diagrams o	ls by which these and a complete listing			
of Helicopter Rotor Noise." It is comp described, starting from two basic acou equations are applied to the rotor noise are presented together with input instru	ustic equations and co e problem. Program f uctions and sample inp	vering method low diagrams o	ls by which these and a complete listing			
of Helicopter Rotor Noise." It is comp described, starting from two basic acou equations are applied to the rotor noise are presented together with input instru	ustic equations and co e problem. Program f uctions and sample inp	vering method low diagrams o	ls by which these and a complete listing			
of Helicopter Rotor Noise." It is comp described, starting from two basic acou equations are applied to the rotor noise are presented together with input instru	ustic equations and co e problem. Program f uctions and sample inp	vering method low diagrams o	ls by which these and a complete listing			
of Helicopter Rotor Noise." It is comp described, starting from two basic acou equations are applied to the rotor noise	ustic equations and co e problem. Program f uctions and sample inp	vering method low diagrams o outs and outpu	ls by which these and a complete listing			
of Helicopter Rotor Noise." It is comp described, starting from two basic acou equations are applied to the rotor noise are presented together with input instru	ustic equations and co e problem. Program f uctions and sample inp	vering method low diagrams o outs and outpu	ls by which these and a complete listing			
of Helicopter Rotor Noise." It is comp described, starting from two basic acou equations are applied to the rotor noise are presented together with input instru	ustic equations and co e problem. Program f uctions and sample inp	vering method low diagrams o outs and outpu	ls by which these and a complete listing			
of Helicopter Rotor Noise." It is comp described, starting from two basic acou equations are applied to the rotor noise are presented together with input instru	ustic equations and co e problem. Program f uctions and sample inp	vering method low diagrams o outs and outpu	ls by which these and a complete listing			
of Helicopter Rotor Noise." It is comp described, starting from two basic acou equations are applied to the rotor noise are presented together with input instru	ustic equations and co e problem. Program f uctions and sample inp	vering method low diagrams o outs and outpu	ls by which these and a complete listing			
of Helicopter Rotor Noise." It is comp described, starting from two basic acou equations are applied to the rotor noise are presented together with input instru written in FORTRAN IV for the CDC 3	ustic equations and co e problem. Program f uctions and sample inp 300 Computer.	vering method low diagrams o outs and outpu	ls by which these and a complete listing			
of Helicopter Rotor Noise." It is comp described, starting from two basic acou equations are applied to the rotor noise are presented together with input instru	ustic equations and co e problem. Program f uctions and sample inp 300 Computer.	vering method low diagrams o outs and outpu	is by which these and a complete listing its. The program is			

Unclassified

Security Classification 14. Link A Link B Link							
KEY WORDS		LINK A		LINK B		LINKC	
		ROLE	WT	ROLE	WT	ROLE	WT
Noise							
Helicopter Noise					1	i	ł
thelicopiet Noise							i
Helicopter Rotors							
Aerodynamic Loading				1		ĺ	
Computing		1				!	
			ŀ	}			
1				!			
ł			 				
			1		,	l	- 6
			ļ				
		-		1			
			}				
				l			
					I		
		ł					
			1				ŀ
		1	ł				i
			ĺ				ļ l
			l				
]					
		İ					
							1
						ŀ	
			1				
		İ					
		1					
		i .				1	
			1				

Unclassified
Security Classification