Printer Ballistics Through Texture Analysis of Characters

Adriano Ruggero, Gabriel Fernandes, Mário Brito, Maurício Perez

Institute of Computing - Unicamp

November 29, 2013

Outline

Introduction

References

Outline

Introduction

References

Motivation

- We (still) live in a "paper era"
- Documents forgery has become common
- There is a way to relate a document to a specific printer?

Printer attribution

A way to do this is called "Printer Attribution"

Methods

- Geometric distortion
- Texture analysis of characters

Geometric distortion

Figura 1: Geometric distortion ¹

¹Geometric Distortion Signatures for Printer Identification[1]

Texture analysis of characters

Outline

Introduction

References

Bibliography

Orhan Bulan, Junwen Mao, and Gaurav Sharma. Geometric distortion signatures for printer identification. In *Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing*, ICASSP '09, pages 1401–1404, Washington, DC, USA, 2009. IEEE Computer Society.

Thanks

Thanks!

Adriano R. Ruggero, Gabriel Rodrigues, Mário F. Brito, Maurício L. Perez

