MAS331 위상수학 Notes

한승우

May 21, 2023

CONTENTS

CHAPTER	CONNECTEDNESS AND COMPACTNESS	Page 2
1.	1 Connected Space	2
1.3	2 Connected Subspaces of the Real Line	4
1.3	3 Components and Local Connectedness	7
1.4	4 Compact Spaces	10
1.	5 Compact Subspaces of the Real Line	14

Chapter 1

Connectedness and Compactness

1.1 Connected Space

Definition 1.1.1: Separation and Connectedness

Let *X* be a topological space. A *separation* of *X* is a pair *U* and *V* of subsets of *X* which satisfy the following.

- (i) U and V are open in X.
- (ii) $U \cap V = \emptyset$.
- (iii) $U \cup V = X$.

The space X is said to be *connected* if there does not exist a separation of X.

Note:-

Connectedness ia a topological property.

🛉 Note:- 🛉

A space *X* is connected if and only if the only subsets of *X* that are both open and closed in *X* are the empty sets and *X* itself.

Lemma 1.1.1

If *Y* is a subspace of *X*, $A, B \subseteq Y$ is a separation of *Y* if and only if $A \cap B = \emptyset$, $A \cup B = Y$, and neither *A* nor *B* contains a limit point of the other.

Proof. Suppose *A* and *B* form a separation of *Y*. Then, *A* is both open and closed in *Y*; thus the closure of *A* in *Y* is $\overline{A} \cap Y = A$ by ??. In other words, $\overline{A} \cap B = \emptyset$. Similarly, $A \cap \overline{B} = \emptyset$. \checkmark

Suppose A and B are disjoint subsets of Y whose union is Y and $A \cap B' = A' \cap B = \emptyset$. Thus, $A \cap \overline{B} = \overline{A} \cap B = \emptyset$. This implies $\overline{A} \cap Y = A$ and $\overline{B} \cap Y = B$; A and B are closed in Y, and thus they are open in Y as well.

Lemma 1.1.2

If the sets C and D form a separation of a space X, and if Y is a connected subspace of X, then Y lies entirely within C or D.

Proof. $C \cap Y$ and $D \cap Y$ are open in Y. Also, $(C \cap Y) \cup (D \cap Y) = (C \cup D) \cap Y = Y$. If they were both unempty, they would form a separation of Y. Thus, one of them is empty; Y is entirely in the other.

Theorem 1.1.1

Let *X* be a topological space. Let $\{A_{\alpha}\}_{{\alpha}\in J}$ be a family of connected subspaces of *X*. If $\bigcap_{{\alpha}\in J}A_{\alpha}\neq\emptyset$, then $\bigcup_{{\alpha}\in J}A_{\alpha}$ is connected.

Proof. Take any $p \in \bigcap_{\alpha \in J} A_{\alpha}$. Suppose C and D form a separation of $Y = \bigcup_{\alpha \in J} A_{\alpha}$. WLOG, $p \in C$. For each $\alpha \in J$, since $p \in C \cap A_{\alpha}$, by Lemma 1.1.2, $A_{\alpha} \subseteq C$. Thus, $\bigcup_{\alpha \in J} A_{\alpha} \subseteq C$, contradicting that $D \cap Y \neq \emptyset$.

Theorem 1.1.2

Let *A* be a connected subspace of *X*. If $A \subseteq B \subseteq \overline{A}$, then *B* is also connected.

Proof. Suppose $B = C \cup D$ is a separation of B for the sake of contradiction. By Lemma 1.1.2, WLOG, $A \subseteq C$. Then, $B \subseteq \overline{A} \subseteq \overline{C}$. Since $\overline{C} \cap D = \emptyset$ by Lemma 1.1.1, $B \cap D = \emptyset$, which makes C and D not form a separation, #.

Theorem 1.1.3 Connected Space and Continuous Map

Let $f: X \to Y$ be a continuous map. If X is connected, then $\operatorname{Im} f$ is connected.

Proof. Note that the surjective map $g: X \to \operatorname{Im} f$ obtained by restricting the codomain of f is also continuous by $\ref{eq: X}$. Suppose $\operatorname{Im} f = A \cup B$ is a separation of $\operatorname{Im} f$. Then, $g^{-1}(A)$ and $g^{-1}(B)$ are open and disjoint sets in X whose union is X, which is a contradiction to the connectedness of X.

Theorem 1.1.4 Connected Space and Finite Product

Let $\{X_i\}_{i=1}^n$ be a finite family of connected spaces. then,

$$X = \prod_{i=1}^{n} X_i$$

is connected.

Proof. It is enough to prove for two connected spaces X and Y; extension to finite products can be done inductively. We may assume X and Y are nonempty. Take any $a \times b \in X \times Y$. Let $x \in X$. $X \times \{b\}$ and $\{x\} \times Y$ as subspaces of $X \times Y$ are connected since they are homeomorphic with X and Y, respectively. Thus,

$$T_{x} = (X \times \{b\}) \cup (\{x\} \times Y)$$

is connected by Theorem 1.1.1, having $x \times b$ as a common point of two spaces. Thus,

$$X \times Y = \bigcup_{x \in Y} T_x$$

is connected as they have a point $a \times b$ in common.

Theorem 1.1.5 Connected Space and Product Topology

Let $\{X_{\alpha}\}_{\alpha \in J}$ be a family of connected spaces. Then,

$$X = \prod_{\alpha \in J} X_{\alpha}$$

is connected in the product topology.

Proof. We may assume that $X_{\alpha} \neq \emptyset$ for each $\alpha \in J$. Let $\mathbf{a} = (a_{\alpha})_{\alpha \in J}$ be a fixed point of X.

We first note that, given any finite subset K of J, $X_K \triangleq \{(x_\alpha)_{\alpha \in J} \mid \forall \alpha \in J \setminus K, x_\alpha = a_\alpha\}$ is a connected subspace of X as X_K is homeomorphic with $\prod_{\alpha \in K} X_\alpha$, which is connected by Theorem 1.1.4. Note that $Y \triangleq \bigcup \{X_K \mid K \subseteq J \text{ and } K \text{ is finite}\}$ as a subspace of X is connected since $\mathbf{a} \in X_K$ for every finite $K \subseteq J$.

Let $\mathbf{x} \in X$ and $B = \bigcap_{i=1}^n \pi_{\alpha_i}^{-1}(U_{\alpha_i})$ be any basis that contains \mathbf{x} where $\alpha_i \in J$ for each $i \in [n]$. Define $\mathbf{x}' \in X$ be

$$(\mathbf{x}')_{\alpha} \triangleq \begin{cases} x_{\alpha} & \text{if } \alpha = \alpha_{i} \text{ for some } i \in [n] \\ a_{\alpha} & \text{otherwise.} \end{cases}$$

Then, $\mathbf{x}' \in B \cap Y$. Thus, by ??, $\overline{Y} = X$. By Theorem 1.1.2, X is connected.

Example 1.1.1 (\mathbb{R}^{ω} in the Box Topology is Disconnected)

Let

$$A = \{ \mathbf{x} \in \mathbb{R}^{\omega} \mid \mathbf{x} \text{ is bounded } \}$$
 and $B = \{ \mathbf{x} \in \mathbb{R}^{\omega} \mid \mathbf{x} \text{ is unbounded } \}.$

If **a** is in either *A* or *B*, $\prod_{i \in \mathbb{Z}_+} (a_i - 1, a_i + 1)$ is an open set that is contained in either *A* or *B*. Thus, each *A* and *B* are disjoint open sets in \mathbb{R}^{ω} whose union is \mathbb{R}^{ω} .

1.2 Connected Subspaces of the Real Line

Definition 1.2.1: Linear Continuum

A simply ordered set L having more than one element is called *linear continuum* if the following hold:

- (i) *L* has the least upper bound property.
- (ii) $\forall x, y \in L$, $(x < y \implies \exists z \in L, x < z < y)$.

Note:-

 \mathbb{R} is a linear continuum.

Example 1.2.1 (The Ordered Square is a Linear Continuum)

Let I = [0, 1] and $I_0^2 = I \times I$ be the ordered square with the dictionary ordering.

- (i) Let $\emptyset \neq A \subseteq I_0^2$ and $\pi_1 \colon I_0^2 \to I$ be the projection onto its first factor. Then, $\pi_1(A)$ is bounded above by 1. Let $b \triangleq \sup \pi_1(A)$. ([0, 1] has l.u.b. property.) If $b \in A$, it implies that $A \cap (\{b\} \times I) \neq \emptyset$ and is bounded above by 1. Thus, we may let $c \triangleq \sup (A \cap (\{b\} \times I))$. One may readily check that $\sup A_0 = b \times c$. If $b \neq A_0$, then $b \times 0$ is the trivial least upper bound of A_0 . \checkmark
- (ii) Suppose $x_1 \times y_1 < x_2 \times y_2$. If $x_1 < x_2$, then $x_1 \times y_1 < (x_1 + x_2)/2 \times 0 < x_2 \times y_2$. If $x_1 = x_2$, then, $x_1 \times y_1 < x_1 \times (y_1 + y_2)/2 < x_2 \times y_2$. \checkmark

Theorem 1.2.1

If L is a linear continuum in the order topology, any convex subspace of L is connected.

Proof. Let Y be a convex subspace of L. Suppose $Y = A \cup B$ is a separation of Y for the sake of contradiction. Take any $a \in A$ and $b \in B$. WLOG, a < b. $[a, b] \subseteq Y$ as Y is convex, and [a, b] as a subspace of Y is exactly [a, b] in the order topology by $\ref{eq:subspace}$. Hence,

$$A_0 \triangleq A \cap [a, b]$$
 and $B_0 \triangleq B \cap [a, b]$

form a separation of [a, b].

Let $c \triangleq \sup A_0$. Then, $c \geq a$ as $a \in A_0$, and $c \leq b$ as, if c were larger than b, there would be $z \in L$ such that b < z < c, which is an upper bound of A_0 smaller than c. However, we claim that $c \notin A_0 \cup B_0 = [a, b]$, which leads to a contradiction.

 $(c \notin A_0)$ Suppose $c \in A_0$ for the sake of contradiction. Since A_0 is open in [a, b], there must exist $e \in (c, b]$ such that $[c, e) \subseteq A_0$. (e cannot be larger than b as $b \notin A_0$.) As the existence of $e' \in (c, e) \cap L$ is guaranteed and such e' is in A_0 , c is no longer an upper bound of A_0 , #.

 $(c \notin B_0)$ Suppose $c \in B_0$ for the sake of contradiction. Since B_0 is open in [a, b], there exists $e \in [a, c)$ such that $(e, c] \subseteq B_0$. (e cannot be smaller than e as e0.) Since, e0. Since, e0. e1. e2. e3. e4. e5. e6. e6. e6. e7. e8. e9. e9.

Corollary 1.2.1

 $\mathbb R$ and intervals and rays in $\mathbb R$ are connected.

Theorem 1.2.2 Intermediate Value Theorem

Let *X* be a connected space and *Y* has an order topology. Let $f: X \to Y$ be a continuous map. Then, if $a, b \in X$ and $r \in Y$ satisfy $f(a) \le r \le f(b)$, there exists $c \in X$ such that f(c) = r.

Proof. If f(a) = r or f(b) = r, then done. So suppose f(a) < r < f(b). Im f is connected by Theorem 1.1.3. Let

$$A \triangleq \operatorname{Im} f \cap (-\infty, r)$$
 and $B \triangleq \operatorname{Im} f \cap (r, \infty)$.

Then, *A* and *B* are open in Im *f* and $f(a) \in A$ and $f(b) \in B$. Thus, it cannot happen that Im $f \setminus \{r\} = A \cup B = \text{Im } f$ since Im *f* is connected. Therefore, $r \in \text{Im } f$.

Definition 1.2.2: Path and Path Connectedness

Let *X* be a space. Given $x, y \in X$, a path in *X* from *x* to *y* is a continuous map $f : [a, b] \to X$ where [a, b] is a subspace of \mathbb{R} , f(a) = x, and f(b) = y. The space *X* is path connected if there exists a path in *X* from *x* to *y* for every $x, y \in X$.

Example 1.2.2 (Punctured Euclidean Space)

Define *punctured Euclidean space* to be the space $\mathbb{R}^n \setminus \{\mathbf{0}\}$, where $\mathbf{0}$ is the origin in \mathbb{R}^n . If n > 1, the space is path connected. We can join \mathbf{x} and \mathbf{y} by the line segment that has \mathbf{x} and \mathbf{y} as endpoints if the segment does not go through $\mathbf{0}$. Otherwise, we may choose a point \mathbf{x}' by flipping the sign of a coordiate of \mathbf{x} . We have a line that connects \mathbf{x} and \mathbf{x}' and other line that connects \mathbf{x}' and \mathbf{y} .

Theorem 1.2.3

Every path connected space is connected.

Proof. Let X be a path connected space. If $X = \emptyset$, it is done; let $X \neq \emptyset$. Take $x \in X$. For each $y \in X$, let $f_y : [0,1] \to X$ be a path from x to y. Since [0,1] is connected (Corollary 1.2.1), Im f_y is connected by Theorem 1.1.3. As $x \in \bigcap_{y \in X} \operatorname{Im} f_y$, $X = \bigcup_{y \in X} \operatorname{Im} f_y$ is connected by Theorem 1.1.1.

Example 1.2.3 (Connectedness Does Not Imply Path Connectedness)

By Example 1.2.1, I_0^2 is connected. Suppose I_0^2 is path connected for the sake of contradiction. Then, there is a path $f:[0,1]\to I_0^2$ from 0×0 to 1×1 . Theorem 1.2.2 says that $\mathrm{Im}\, f=I_0^2$. For each $x\in I$, let $U_x=f^{-1}(\{x\}\times I)$. Note that $U_x\neq\varnothing$. Since each U_x is open as f is continuous, by the denseness of $\mathbb Q$ in $\mathbb R$, there exists $q_x\in U_x\cap\mathbb Q$ for each $x\in X$. This implies the existence of a injection $g:I\to\mathbb Q$ defined by $x\mapsto q_x$, which is a contradiction as I is uncountable. (??)

Theorem 1.2.4 Path Connected Space and Continuous Map

Let $f: X \to Y$ be a continuous map. If X is path connected, then Im f is path connected.

Proof. Take $y_1, y_2 \in \text{Im } f$. There exist $x_1, x_2 \in X$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Since X is connected, there exists a continuous map $g: [0,1] \to X$ such that $g(0) = x_1$ and $g(1) = x_2$. Then, $f \circ g: [0,1] \to \text{Im } f$ is a continuous map such that $(f \circ g)(0) = y_1$ and $(f \circ g)(1) = y_2$ by ??.

Example 1.2.4 (Unit Sphere)

Define the *unit sphere* S^{n-1} in \mathbb{R}^n by the equation

$$S^{n-1} \triangleq \{ \mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}|| = 1 \}.$$

Then, the map $g: \mathbb{R}^n \setminus \{\mathbf{0}\} \to S^{n-1}$ defined by $\mathbf{x} \mapsto \mathbf{x}/\|\mathbf{x}\|$ is a continuous surjective map. Moreover, if n > 1, since $\mathbb{R}^n \setminus \{0\}$ is path connected (Example 1.2.2), $S^{n-1} = \operatorname{Im} g$ is also path connected by Theorem 1.2.4.

Example 1.2.5 (Topologist's Sine Curve)

Let

$$S \triangleq \left\{ x \times \sin \frac{1}{x} \in \mathbb{R}^2 \,\middle|\, x \in (0,1] \right\}.$$

Since S is a image of (0,1] under a continuous map $x \mapsto x \times \sin(1/x)$, S is (path) connected. Thus, \overline{S} is connected by Theorem 1.1.2. Note that $S_0 \triangleq \overline{S} \setminus S = \{0\} \times [-1,1]$. (S_0 is also closed.)

Suppose \overline{S} is path connected for the sake of contradiction. Then, there is a path $f: [0,1] \to \overline{S}$ from 0×0 to $f(1) \in S$. $f^{-1}(S_0)$ is closed in [0,1] by ??. Hence $b \triangleq \sup f^{-1}(S_0) \in f^{-1}(S_0)$ and $b \neq 1$. $f(b) \in S_0$ and $f((b,1]) \subseteq S$.

Reparametrize $f: [0,1] \to \overline{S}$ so that $t \mapsto x(t) \times y(t)$; $f(0) \in S_0$ and $f((0,1]) \subseteq S$. $(y(t) = \sin(1/x(t)))$ Since x(t) > 0 for $t \in (0,1]$, x is continuous, and x(0) = 0, we may construct a sequence $\{t_n\}_{n \in \mathbb{Z}_+}$ such that

$$\lim_{n\to\infty} t_n = 0, \quad x(t_n) = \frac{1}{(n+1/2)\pi}, \quad \text{and thus}$$

$$y(t_n) = \sin(1/x(t_n)) = \sin((n+1/2)\pi) = (-1)^n.$$

However, $\{y(t_n)\}_{n\in\mathbb{Z}_+}$ diverges although y is continuous and $t_n\to 0$. Thus, \overline{S} is not path connected.

1.3 Components and Local Connectedness

Definition 1.3.1: Component

Given a space X, let \sim be a equivalent relation defined by

 $x \sim y$ if there is a connected subspace of *X* containing *x* and *y*.

The equivalence classes of \sim is called (connected) components of X.

Note:-

Reflexivity follows from the fact that $\{x\}$ is a connected subspace of X that contains x. Symmetry is direct.

Let $x, y, z \in X$ and suppose $x \sim y$ and $y \sim z$. There are connected subspaces U and V such that $x, y \in U$ and $y, z \in V$. Then, $U \cup V$ is a connected subspace of X that contains both x and z by Theorem 1.1.1.

Note:-

Let $\{C_\alpha\}_{\alpha\in I}$ be the set of components of X. Then, it is a partition of X (indeed).

Theorem 1.3.1

Let $\{C_{\alpha}\}_{{\alpha}\in J}$ be the set of components of X. If $A\subseteq X$ is a connected subspace of X, then $A\subseteq C_{\alpha}$ for some $\alpha\in J$.

Proof. If $A = \emptyset$, it is done; suppose $A \neq \emptyset$.

Let C_{α} and C_{β} be connected components. If $A \cap C_{\alpha} \neq \emptyset$ and $A \cap C_{\beta} \neq \emptyset$, we may take $x \in A \cap C_{\alpha}$ and $y \in A \cap C_{\beta}$, which makes $x \sim y$. This implies $x_{\alpha} \sim x_{\beta}$ for all $x_{\alpha} \in C_{\alpha}$ and $x_{\beta} \in C_{\beta}$; thus $C_{\alpha} = C_{\beta}$.

Now, take any $\alpha \in A$. Since $\{C_\alpha\}_{\alpha \in J}$ is a partition of X, there exists some $\alpha \in J$ such that $\alpha \in C_\alpha$. By the previous result, $A \cap C_\beta = \emptyset$ for all $\beta \in J \setminus \{\alpha\}$. Hence, $A \subseteq C_\alpha$

Theorem 1.3.2

Let $\{C_{\alpha}\}_{{\alpha}\in J}$ be the set of components of X. Then, for each ${\alpha}\in J$, C_{α} is connected.

Proof. Take any $x_0 \in C_\alpha$. Then, for each $x \in C_\alpha$, there exists a connected subspace A_x that contains both x_0 and x. By Theorem 1.3.1, $A_x \subseteq C_\alpha$. Thus, $C_\alpha = \bigcup_{x \in C_\alpha} A_x$, which is connected by Theorem 1.1.1.

Definition 1.3.2: Path Component

Given a space X, let \sim be a equivalent relation defined by

 $x \sim y$ if there is a path in *X* from *x* to *y*.

The equivalence classes of \sim is called *path components* of *X*.

Note:-

The relation is reflexive since $f:[0,1] \to X$ defined by f(t) = x is a path from x to x.

The relation is symmetric since, if $f : [a, b] \to X$ is a path from x to y, then $g : [a, b] \to X$ defined by g(t) = f(a + b - t) is a path from y to x.

The relation is transitive since, if $f:[a,b] \to X$ and $g:[c,d] \to X$ are paths from x to y and from y to z, respectively, then h:[a,b+d-c] defined by

$$h(t) = \begin{cases} f(t) & \text{if } a \le t \le b \\ g(t - b + c) & \text{otherwise.} \end{cases}$$

is a path from x to z. h is continuous by ??.

Theorem 1.3.3

Let $\{P_{\alpha}\}_{{\alpha}\in J}$ be the set of path components of X. If $A\subseteq X$ is a path connected subspace of X, then $A\subseteq P_{\alpha}$ for some $\alpha\in J$.

Proof. Analogous to the proof of Theorem 1.3.1.

Theorem 1.3.4

Let $\{P_{\alpha}\}_{{\alpha}\in J}$ be the set of path components of X. Then, for each ${\alpha}\in J$, P_{α} is path connected.

Proof. Analogous to the proof of Theorem 1.3.2.

Corollary 1.3.1

Every path component is entirely contained in a connected component.

Proof. Every path component is path connected by Theorem 1.3.4, and thus connected by Theorem 1.2.3. By Theorem 1.3.1, it is contained in some connected component. \Box

Corollary 1.3.2

Every component is closed.

Proof. Let C_{α} be a connected component of X. Since $\overline{C_{\alpha}}$ is connected by Theorem 1.1.2, and since $\overline{C_{\alpha}} \cap C_{\alpha} \neq \emptyset$, $\overline{C_{\alpha}} \subseteq C_{\alpha}$ by Theorem 1.3.1.

Corollary 1.3.3

If there are a finite number of components, then each component is open.

Proof. Let $X = \bigcup_{i=1}^n C_i$ where each C_i is a component. Then, for each $i \in [n]$, $C_i = X \setminus \bigcup_{j \in [n] \setminus \{i\}} C_j$. C_i is open as $\bigcup_{j \in [n] \setminus \{i\}} C_j$ is closed by Corollary 1.3.2.

Example 1.3.1 (Path Component Is Not Necessarily Open or Closed)

Let \overline{S} be the topologist's sine curve discussed in Example 1.2.5. Then, S and S_0 are the two path components of \overline{S} . S is not closed and S_0 is not open.

Example 1.3.2

Let $A \triangleq S \cup (S_0 \setminus \{0\} \times \mathbb{Q})$. Since $S \subseteq A \subseteq \overline{S}$, A is connected by Theorem 1.1.2. However, $\{0 \times r\}$ for every $r \in [0,1] \setminus \mathbb{Q}$ is a path component. Thus, A has uncountably many path components.

Definition 1.3.3: Locally Connected Space

Let X be a topological space. X is *locally connected at* x if, for any neighborhood U of x, there exists a connected neighborhood V of x such that $x \in V \subseteq U$. X is *locally connected* if X is locally connected at every point of X.

Definition 1.3.4: Locally Path Connected Space

Let X be a topological space. X is *locally path connected at* x if, for any neighborhood U of x, there exists a path connected neighborhood V of x such that $x \in V \subseteq U$. X is *locally path connected* if X is locally path connected at every point of X.

Note:-

If a topological space *X* is locally path connected, then it is locally connected as well.

Theorem 1.3.5

A topological space X is locally connected if and only if, for every open set U in X, each connected component of U is open.

Proof. (\Rightarrow) Let U be open in X and let $\{C_{\alpha}\}_{{\alpha}\in J}$ be the set of components of U. Take any C_{α} and let $x\in C_{\alpha}$. Since X is locally connected at x, there exists a connected neighborhood V of x such that $x\in V\subseteq U$. By Theorem 1.3.1, $x\in V\subseteq C_{\alpha}$. This proves that C_{α} is open.

(⇐) Let $x \in X$ and U be a neighborhood of x. Let $\{C_{\alpha}\}_{\alpha \in J}$ be the components of U. There exists some $\alpha_0 \in J$ such that $x \in C_{\alpha_0}$. Since C_{α_0} is open by assumption, C_{α_0} is a connected neighborhood of x and satisfies $x \in C_{\alpha_0} \subseteq U$.

Theorem 1.3.6

A topological space X is locally path connected if and only if, for every open set U in X, each path component of U is open.

Proof. Analogous to Theorem 1.3.5.

Theorem 1.3.7

Let *X* be a locally path connected space. Then, the connected components and the path components are the same.

Proof. Let C be a connected component of X. C is open by Theorem 1.3.5 as X is locally connected. Let $x \in C$ and let P be the path component which x is contained in. Then, $P \subseteq C$ by Corollary 1.3.1.

Suppose $P \subsetneq C$ for the sake of contradiction. Let

 $Q \triangleq \bigcup \{ \hat{P} \subseteq C \mid \hat{P} \text{ is a path component of } X \text{ and } \hat{P} \neq P \}.$

Since path component of an open set, especially, C, is open by Theorem 1.3.6, P and Q are open. Moreover, since $C = P \cup Q$, they form a separation of C, which is a contradiction, #. \square

1.4 Compact Spaces

Definition 1.4.1: Open Cover

A collection \mathcal{A} of subsets of a space X is said to *cover* X, or to be a *covering* of X, if $\bigcup \mathcal{A} = X$. It is called an *open covering* if A is open in X for each $A \in \mathcal{A}$.

Definition 1.4.2: Compactness

A space X is said to be *compact* if every open covering \mathcal{A} of X contains a finite subcollection that also covers X.

Example 1.4.1 (R Is Not Compact)

The open cover $A \triangleq \{(n, n+2) \mid n \in \mathbb{Z}\}$ does not have a finite subcollection that covers \mathbb{R} . Thus, \mathbb{R} is not compact.

Lemma 1.4.1

Let Y be a subspace of X. Then Y is compact if and only if every covering of Y by sets open in X contains a finite subcollection covering Y.

Proof. (\Rightarrow) Let $\mathcal{A} = \{A_\alpha\}_{\alpha \in J}$ is a covering of Y by open sets in X. Then, the collection

$${A_{\alpha} \cap Y \mid \alpha \in J}$$

is an open covering of *Y*. Thus, there exists a finite subcollection

$$\{A_{\alpha_1} \cap Y, \cdots, A_{\alpha_n} \cap Y\}$$

that covers Y. Then, $\{A_{\alpha_1}, \dots, A_{\alpha_n}\}$ is a finite subcollection of \mathcal{A} that covers Y.

(\Leftarrow) Let $\mathcal{A} = \{A_{\alpha}\}_{\alpha \in J}$ be an open covering of Y. For each $\alpha \in J$, there is an open set \hat{A}_{α} in X such that $A_{\alpha} = \hat{A}_{\alpha} \cap Y$. Then, the collection $\{\hat{A}_{\alpha}\}_{\alpha \in J}$ composed of open sets in X that covers Y; by the assumption, there exists a fintie subcollection

$$\{\hat{A}_{\alpha_1},\cdots,\hat{A}_{\alpha_n}\}$$

that covers Y. Then, $\{A_{\alpha_1}, \dots, A_{\alpha_n}\}$ is a finite subcollection of \mathcal{A} that covers Y.

Theorem 1.4.1

Let X be a compact space. If Y is a closed subset of X, then Y as a subspace of X is compact.

Proof. If $Y = \emptyset$, then it is done. So, suppose $Y \neq \emptyset$. Let \mathcal{A} be a covering of Y composed of sets open in X.

$$\mathcal{B} \triangleq \mathcal{A} \cup \{X \setminus Y\}$$

is an open covering of X. Thus, it has a finite subcollection

$$\{A_1,A_2,\cdots,A_n,X\setminus Y\}$$

that covers X where $A_i \in \mathcal{A}$ for each $i \in [n]$. (WLOG, $X \setminus Y$ is in the subcollection since we may just add $X \setminus Y$ and does not affect its finiteness.) Then, $\{A_i\}_{i \in [n]}$ is a finite subcollection of \mathcal{A} that covers Y.

Theorem 1.4.2

Let *X* be a Hausdorff space. If $Y \subseteq X$ is a compact subspace of *X*, then *Y* is closed in *X*.

Proof. If $Y = \emptyset$ or Y = X, then it is done; suppose $\emptyset \neq Y \subsetneq X$. Let $x_0 \in X \setminus Y$. For each $y \in Y$, there are disjoint neighborhoods U_y and V_y of x_0 and y in X. Then, $\{V_y\}_{y \in Y}$ is an open covering of Y. Thus there exists a finite subcollection of it

$$\{V_{y_1}, V_{y_2}, \cdots, V_{y_n}\}$$

that covers Y.

Let

$$V \triangleq \bigcup_{i=1}^{n} V_{y_i}$$
 and $U \triangleq \bigcap_{i=1}^{n} U_{y_i}$.

Then, *U* is a neighborhood of x_0 and does not intersect *V*, which covers *Y*. Thus, $U \subseteq X \setminus Y$. Hence, $X \setminus Y$ is open; *Y* is closed.

Example 1.4.2 (Being Hausdorff Is Needed)

Let $X = \mathbb{R}$ be endowed with the finite complement topology. Then, every subset of X is compact. To see this, suppose A is a collection of open sets in X that covers $Y \subseteq X$. Then, take any $A \in A$ and it will cover all but finitely many points in Y. For each remaining point, choose an open set in A that contains the point. Thus, we get a finite collection of A that covers Y. However, only closed sets are finite subsets of X and \mathbb{R} .

Corollary 1.4.1

Let *X* be a Hausdorff space. If $Y \subseteq X$ is a compact subspace of *X*, then, given any $x_0 \in X \setminus Y$, there are disjoint open sets *U* and *V* in *X* containing x_0 and *Y*, respectively.

Proof. U and V defined in the proof of Theorem 1.4.2 are those.

Theorem 1 4 3

Let *X* be a compact space. Let $f: X \to Y$ be a continuous map. Then, Im *f* as a subspace of *Y* is compact.

Proof. Let \mathcal{A} be a covering of the set Im f by sets open in Y. Then, the collection

$$\{f^{-1}(A) \mid A \in \mathcal{A}\}$$

is an open covering of X as f is continuous. Hence, there are a finite subcollection $\{A_1, \dots, A_n\}$ of A such that $\{f^{-1}(A_i)\}_{i\in[n]}$ covers X. The sets $\{A_1, \dots, A_n\}$ covers $\mathrm{Im}\, f$.

Theorem 1.4.4

Let $f: X \to Y$ be a bijective continuous function. If X is compact and Y is Hausdorff, then f is a homeomorphism.

Proof. We only need to prove f^{-1} is continuous. Let $A \subseteq X$ is closed in X. Then, A is compact by Theorem 1.4.1. Thus, since $f|_A: A \to Y$ is continuous (??), f(A) is compact by Theorem 1.4.3. By Theorem 1.4.2, f(A) is closed. Hence, we proved that f(A) is closed for each closed subset A of X; f^{-1} is continuous by ??.

Lemma 1.4.2 The Tube Lemma

Let *X* and *Y* be topological spaces and *Y* is compact. Given any $x_0 \in X$ and an open set *N* in $X \times Y$ that contains $\{x_0\} \times Y$, there exists a neighborhood *W* of x_0 in *X* such that $W \times Y \subseteq N$.

Proof. For each $y \in Y$, there exists a basis element $U_y \times V_y$ in the product topology such that $x_0 \times y \in U_y \times V_y \subseteq N$. Then, $\mathcal{A} \triangleq \{U_y \times V_y \mid y \in Y\}$ is a covering of $\{x_0\} \times Y$ by open sets in $X \times Y$. Since $\{x_0\} \times Y$, being homeomorphic with Y, is compact, there is a finite subcollection

$$\mathcal{A}' = \{U_{y_1} \times V_{y_1}, \cdots, U_{y_n} \times V_{y_n}\}$$

of \mathcal{A} that covers $\{x_0\} \times Y$. Note that $\{x_0\} \times Y \subseteq \bigcup_{i=1}^n (U_{y_i} \times V_{y_i}) \subseteq N$. Let

$$W \triangleq \bigcap_{i=1}^n U_{y_i}.$$

Then, W is a neighborhood of x_0 in X.

Now, take $x \times y \in W \times Y$. There exists some $i \in [n]$ such that $y \in V_{y_i}$; $x \times y \in U_{y_i} \times V_{y_i} \subseteq N$. This shows $W \times Y \subseteq N$.

Note:-

The set $W \times Y$ is often called a *tube* about $x_0 \times Y$.

Note:-

Lemma 1.4.2 may not hold if Y is not compact. If $X = Y = \mathbb{R}$, the open set

$$N \triangleq \left\{ x \times y \in \mathbb{R}^2 \mid |x| < \frac{1}{y^2 + 1} \right\}$$

does contain $\{0\} \times Y$ but there is no open neighborhood W of 0 in X such that $W \times Y \subseteq N$.

Let X_1, X_2, \dots, X_n be topological spaces. Then, $\prod_{i=1}^n X_i$ is compact if and only if X_i is compact for each $i \in [n]$.

Proof. It is enough to prove for two topological spaces X and Y.

 (\Rightarrow) It is enough to prove X is compact. Let A be an open covering of X. Then, $\{A \times Y \mid$ $A \in \mathcal{A}$ is an open covering of $X \times Y$; there exists a finite subcollection

$$\{A_1 \times Y, A_2 \times Y, \cdots, A_n \times Y\}$$

that covers $X \times Y$. Thus, $\{A_i \mid i \in [n]\}$ is a finite subcollection of \mathcal{A} that covers X.

(\Leftarrow) Let A be an open covering of $X \times Y$. For each $x \in X$, since $\{x\} \times Y$ is compact, there are finite subcollection $\{A_1, A_2, \cdots, A_{n_x}\}\subseteq \mathcal{A}$ that covers $\{x\}\times Y$. Then, $N_x\triangleq \bigcup_{i=1}^{n_x}A_i$ is an open set in $X \times Y$ that contains $\{x\} \times Y$. Thus, by Lemma 1.4.2, there exists a tube $W_x \times Y$ such that $\{x\} \times Y \subseteq W_x \times Y \subseteq N_x$.

Noting that $\{W_x \mid x \in X\}$ is an open covering of X, there are finite subcover $\{W_{x_1}, W_{x_2}, \cdots, W_{x_k}\}$ that covers X. Hence, $\{W_{x_i} \times Y \mid i \in [k]\}$ covers $X \times Y$ and each element of it is covered by finite elements in A.

Theorem 1.4.5 holds for an arbitrary product but is is slightly technical.

Definition 1.4.3: Finite Intersection Property

A collection \mathcal{C} of subsets of X is said to have *finite intersection property* if, for any finite subcollection

$$\{C_1, C_2, \cdots, C_n\} \subseteq C$$

of C, we have

$$\bigcap_{i=1}^n C_i \neq \emptyset.$$

In other words,

$$\forall n \in \mathbb{Z}_+, \ \forall \mathcal{C}' \in \binom{\mathcal{C}}{n}, \ \bigcap \mathcal{C}' \neq \varnothing.$$

Theorem 1.4.6

Let X be a topological space. Then X is compact if and only if, for every collection \mathcal{C} of closed sets in X having the finite intersection property, the intersection $\bigcap \mathcal{C}$ is nonempty.

Proof. Given a collection A of subsets of X, let

$$\mathcal{C} \triangleq \{X \setminus A \mid A \in \mathcal{A}\}.$$

Then the following hold.

- A is a collection of open sets if and only if C is a collection of closed sets.
- $\bigcup A = X$ if and only if $\bigcap C = \emptyset$.
- The finite subcollection $\{A_1, \dots, A_n\}$ covers X if and only if $\bigcap_{i=1}^n (X \setminus A_i) = \emptyset$.

Therefore, these are equivalent.

- (i) Every open covering of *X* allows a finite subcover.
- (ii) A collection of open sets in *X* that does not allow a finite subcover does not cover *X*. contrapositive of (i)
- (iii) A collection of closed sets in X that does not allow a nonempty intersection of finite subcollection does not have a nonempty intersection.

Definition 1.4.4: Nested Sequence

A sequence of sets $\{C_n\}_{n\in\mathbb{Z}_+}$ is called a *nested sequence* if $C_n\supseteq C_{n+1}$ for each $n\in\mathbb{Z}_+$.

Corollary 1.4.2

Let *X* be a compact space. Let $\{C_n\}_{n\in\mathbb{Z}_+}$ be a nested sequence of nonempty closed sets in *X*. Then,

$$\bigcap_{n\in\mathbb{Z}_+} C_n \neq \emptyset.$$

Proof. Let $C \triangleq \{C_n \mid n \in \mathbb{Z}_+\}$. Then, C satisfies the finite intersection property as

$$C_{n_1} \cap C_{n_2} \cap \cdots \cap C_{n_k} = C_{\max_{i=1}^k n_i} \neq \emptyset.$$

The result follows from Theorem 1.4.6.

1.5 Compact Subspaces of the Real Line

Theorem 1.5.1

Let X be a simply ordered set having the least upper bound property. In the order topology, every closed interval [a, b] in X is compact.

Proof. Let A be an open covering of [a, b].

We claim that, given any $x \in [a, b)$, there exists $y \in (x, b]$ such that [x, y] can be covered by at most two elements of A.

- (i) If there exists an immediate successor $y \in (x, b]$ of x, then $[x, y] = \{x, y\}$. Pick two open sets in A that contain x and y, respectively.
- (ii) Otherwise, let $A \in \mathcal{A}$ with $x \in A$. Then, $[x,c) \subseteq A$ for some $c \in (x,b]$ and $|[x,c)| = \infty$. Take any $y \in (x,c) \subseteq (x,b]$, then $[x,y] \subseteq [x,c) \subseteq A$.

Let

$$C \triangleq \{ y \in (a, b] \mid [a, y] \text{ can be covered by finitely many elements of } A \}.$$

By the previous claim, $C \neq \emptyset$, and C is bounded above by b. Thus, we may let $c \triangleq \sup C$. $(a \le c \le b, \text{ indeed.}) \checkmark$

Suppose $c \notin C$ for the sake of contradiction. Choose $A \in \mathcal{A}$ that contains c. Then, there exists $d \in [a,c)$ such that $(d,c] \subseteq A$. Hence, there exists $z \in C \cap (d,c]$. Since $z \in C$, the interval [a,z] can be covered by finitely many, say n, elements of \mathcal{A} , then, since $[a,c] = [a,z] \cup [z,c]$ and $[z,c] \subseteq (d,c] \subseteq A$, [a,c] can be covered by at most n+1 elements of \mathcal{A} , which is contradicting to $c \notin C$, #. \checkmark

Suppose c < b for the sake of contradiction. Then, there exists $y \in (c, b]$ such that [c, y] can be covered by finitely many elements of \mathcal{A} by the previous claim. Hence, $[a, y] = [a, c] \cup [c, y]$ can be covered by finitely many elements of \mathcal{A} since $c \in C$. This implies $y \in C$, contradicting that c is an upper bound of C, #. \checkmark

Corollary 1.5.1

Every closed interval in \mathbb{R} is compact.

Theorem 1.5.2

A subspace A of \mathbb{R}^n is compact if and only if it is closed and it is bounded in the Euclidean metrid d or the square metric ρ .

Proof. It suffices to prove only for ρ as A is bounded in d if and only if A is bounded in ρ . (See the proof of $\ref{eq:condition}$.)

(⇒) By Theorem 1.4.2, A is closed. \checkmark

The collection

$$\{B_o(\mathbf{0},m) \mid m \in \mathbb{Z}_+\}$$

is an open covering of A. Thus, $A \subseteq B_{\rho}(\mathbf{0}, M)$ for some M. Therefore, $\rho(\mathbf{x}, \mathbf{y}) \leq 2M$ for each $\mathbf{x}, \mathbf{y} \in A$. Thus, A is bounded. \checkmark

(⇐) There exists $M \in \mathbb{R}_+$ such that $\rho(\mathbf{x}, \mathbf{y}) \leq M$ for each $\mathbf{x}, \mathbf{y} \in A$. Choose a point $\mathbf{x}_0 \in A$, and let $b \triangleq \rho(\mathbf{x}_0, \mathbf{0})$. Then, $\rho(\mathbf{x}, \mathbf{0}) \leq P \triangleq N + b$ for every $\mathbf{x} \in A$. Thus, $A \subseteq [-P, P]^n$. $[-P, P]^n$ is compact by Corollary 1.5.1, Theorem 1.4.5, and ??. Since A is closed in $[-P, P]^n$ and $[-P, P]^n$ is compact, A is compact by Theorem 1.4.1.

Theorem 1.5.3 Extreme Value Theorem

Let *X* be a compact set and *Y* be an ordered set endowed by the order topology. Let $f: X \to y$ be a continuous map. Then, there exist $c, d \in X$ such that $f(c) \le f(x) \le f(d)$ for all $x \in X$.

Proof. Suppose Im f does not have a maximum. Then,

$$\{(-\infty, a) \subseteq \mathbb{R} \mid a \in \operatorname{Im} f \}$$

is an open covering of $\operatorname{Im} f$. Since $\operatorname{Im} f$ is compact by Theorem 1.4.3, $\operatorname{Im} f \subseteq (-\infty, a)$ for some $a \in \operatorname{Im} f$, #.

Definition 1.5.1: Distance From a Point to a Set

Let (X, d) be a metric space and let $\emptyset \neq A \subseteq X$. For each $x \in X$, we define the *distance* from x to A by the equation

$$d(x,A) \triangleq \inf\{d(x,a) \mid a \in A\}.$$

Definition 1.5.2: Uniform Continuity

A function $f: X \to Y$ from the metrix space (X, d_X) to the metric space (Y, d_Y) is said to be *uniformly continuous* if

$$\forall \varepsilon \in \mathbb{R}_+, \ \exists \delta \in \mathbb{R}_+, \ \forall x_1, x_2 \in X, \ \left(d_X(x_1, x_2) < \delta \implies d_Y(f(x_1), f(x_2))\right).$$

Theorem 1.5.4

Let (X,d) be a metric space and let $\emptyset \neq A \subseteq X$. Then, $f: X \to \mathbb{R}$ defined by

$$f(x) \triangleq d(x,A)$$

is uniformly continuous.

Proof. Take any $\varepsilon \in \mathbb{R}_+$ and let $\delta \triangleq \varepsilon$. For any $x, y \in X$ and $a \in A$ with $d(x, y) < \varepsilon$, we have $d(x, A) \le (x, a) \le d(x, y) + d(y, a)$. Thus,

$$d(x,A) - d(x,y) \le \inf_{a \in A} d(y,a) = d(y,A),$$

which implies $|d(x,A) - d(y,A)| \le d(x,y) < \delta = \varepsilon$.

Lemma 1.5.1 The Lebesgue Number Lemma

Let (X,d) be a compact metric space. Then, for each open covering \mathcal{A} of X,

$$\exists \delta \in \mathbb{R}_+, \ \forall B \in \mathcal{P}(X) \setminus \{\emptyset\}, \ (\operatorname{diam} B < \delta \implies \exists A \in \mathcal{A}, \ B \subseteq A).$$

The number δ is called a *Lebesgue number* for the covering A.

Proof. If $X \in \mathcal{A}$, then every $\delta \in \mathbb{R}_+$ satisfies the condition. Therefore, we may suppose $X \notin \mathcal{A}$.

Choose a finite subcollection $\{A_1, A_2, \dots, A_n\}$ of \mathcal{A} that covers X. For each $i \in [n]$, let $C_i \triangleq X \setminus A_i$. We define $f: X \to \mathbb{R}$ by

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} d(x, C_i).$$

Take any $x \in X$. Then, there exists some $i \in [n]$ such that $x \in A_i$. Since A_i is open, there exists some $\varepsilon \in \mathbb{R}_+$ such that $B(x,\varepsilon) \subseteq A_i$; $d(x,C_i) \ge \varepsilon$. Hence, $f(x) \ge \varepsilon/n$. We just showed that f(x) > 0 for all $x \in X$.

Since f is continuous, there exists a minimum of $\operatorname{Im} f$, say δ , by Theorem 1.5.3. We claim that δ is a Lebesgue number for \mathcal{A} . Let $\neq \emptyset B \subseteq X$ with diam $B < \delta$. Take $x_0 \in B$. Then $B \subseteq B(x_0, \delta)$. Then,

$$\delta \le f(x_0) \le \max_{i \in [n]} d(x_0, C_i) = d(x_0, C_m).$$

where $m \in [n]$. Then, $B \subseteq B(x_0, \delta) \subseteq A_m$.

Theorem 1.5.5 Uniform Continuity Theorem

Let (X, d_X) be a compact metric space; let (Y, d_Y) be a metric space. If $f: X \to Y$ is a continuous map, then f is uniformly continuous.

Proof. Take any $\varepsilon \in \mathbb{R}_+$. Let

$$\mathcal{A} \triangleq \left\{ f^{-1} \big(B(y, \varepsilon/2) \big) \, \middle| \, y \in Y \right\}$$

be an open covering of X. Let δ be a Lebesgue number for A. Then, for each $x_1, x_2 \in X$ such that $d_X(x_1, x_2) < \delta$, since diam $\{x_1, x_2\} = d_X(x_1, x_2) < \delta$, there exists $y \in Y$ such that $\{f(x_1), f(x_2)\} \subseteq B(y, \varepsilon/2)$. Then, $d_Y(f(x_1), f(x_2)) < \varepsilon$.