FORMALE SPRACHEN UND AUTOMATEN

MTV: Modelle und Theorie Verteilter Systeme

11.07.2022 - 17.07.2022

Tutorium 12

Gegeben seien die Alphabete $\Sigma_1 \triangleq \{ (,) \}, \Sigma_2 \triangleq \{ a, b, c \}$ und $\Sigma_3 \triangleq \{ 0, 1 \}$, die PDAs

$$M_1 \triangleq (\{ q_0, q_1, q_2 \}, \Sigma_1, \{ \Box, \bullet \}, \Box, \Delta_1, q_0, \{ q_2 \}) \text{ und } M_2 \triangleq (\{ q_0, q_1, q_2, q_3 \}, \Sigma_2, \Sigma_2 \cup \{ \Box \}, \Box, \Delta_2, q_0, \{ q_3 \})$$

mit

sowie die Sprache:

$$A_4 \triangleq \{ w \in \Sigma_2^* \mid |w|_{\mathfrak{a}} = |w|_{\mathfrak{b}} \}$$

Aufgabe 1: Sprache eines Kellerautomaten

1.a) Gib jeweils alle Ableitungen für die Wörter ε , (), ()(, ()),)(() und (()()) in M_1 an. Welche dieser Wörter liegen in $L_{End}(M_1)$ und welche liegen in $L_{Kel}(M_1)$? ------[Lösung]-

$$\begin{array}{c} (q_{0},\,\epsilon,\,\Box)\, \nvdash_{M_{1}} \\ (q_{0},\,(),\,\Box)\, \vdash_{M_{1}}\,(q_{0},\,),\,\bullet\Box)\, \vdash_{M_{1}}\,(q_{1},\,\epsilon,\,\Box)\, \vdash_{M_{1}}\,(q_{2},\,\epsilon,\,\Box)\, \nvdash_{M_{1}} \\ (q_{0},\,()(,\,\Box)\, \vdash_{M_{1}}\,(q_{0},\,)(,\,\bullet\Box)\, \vdash_{M_{1}}\,(q_{1},\,(,\,\Box)\, \vdash_{M_{1}}\,(q_{2},\,(,\,\Box)\, \vdash_{M_{1}}\,(q_{0},\,\epsilon,\,\bullet\Box)\, \nvdash_{M_{1}} \\ (q_{0},\,()),\,\Box)\, \vdash_{M_{1}}\,(q_{0},\,)),\,\bullet\Box)\, \vdash_{M_{1}}\,(q_{1},\,),\,\Box)\, \vdash_{M_{1}}\,(q_{2},\,),\,\Box)\, \nvdash_{M_{1}} \\ (q_{0},\,)((),\,\Box)\, \nvdash_{M_{1}} \\ (q_{0},\,)(()),\,\Box)\, \vdash_{M_{1}}\,(q_{0},\,()()),\,\bullet\Box)\, \vdash_{M_{1}}\,(q_{0},\,)()),\,\bullet\bullet\,\Box)\, \vdash_{M_{1}}\,(q_{1},\,()),\,\bullet\Box)\, \vdash_{M_{1}} \\ (q_{0},\,)),\,\bullet\,\bullet\,\Box)\, \vdash_{M_{1}}\,(q_{1},\,),\,\bullet\Box)\, \vdash_{M_{1}}\,(q_{1},\,\epsilon,\,\Box)\, \vdash_{M_{1}}\,(q_{2},\,\epsilon,\,\Box)\, \nvdash_{M_{1}} \\ \end{array}$$

und damit $(),(()()) \in L_{End}(M_1), \varepsilon,()(,()),(() \notin L_{End}(M_1)$ und, da das unterste Kellersymbol □ nie entfernt wird, ε,(),()(,()),)((),(()()) ∉ L_{Kel}(M₁).

1.b) Gib an: $L_{End}(M_1)$ und $L_{Kel}(M_1)$

Sei $(v)_{1...i} \triangleq (v)_1 \dots (v)_i$ für ein Wort v und eine natürliche Zahl i mit $1 \le i \le |v|$.

$$\begin{split} L_{End}(M_1) &= \left\{ \right. w \in \Sigma_1^+ \mid \left. \left| w \right|_{(} = \left| w \right|_{)} \wedge \left(\forall i \in \text{[1, } \left| w \right| \text{]} \right. \mid \left(w \right)_{1...i} \mid_{(} \geqslant \mid \left(w \right)_{1...i} \mid_{)} \right) \right. \right\} \\ L_{Kel}(M_1) &= \emptyset \end{split}$$

Hinweis: $L_{End}(M_1)$ ist die nicht-leere Menge aller korrekt geklammerten Ausdrücke über Σ_1 , dass heißt jedes Wort besteht aus sich möglicherweise überlappenden Klammerpaaren so, dass die öffnende Klammer eines jeden solchen Paares vor der entsprechenden schließenden Klammer kommt.

1.c) Gib jeweils alle Ableitungen für die Wörter ε , aa, abb und abc in M_2 an. Welche dieser Wörter liegen in $L_{End}(M_2)$ und welche liegen in $L_{Kel}(M_2)$?

-----(Lösung)-----

Für das Wort ε gibt es die Ableitungen:

```
(q_0, \varepsilon, \square) \vdash_{M_2} (q_0, \varepsilon, \alpha \square) \nvdash_{M_2}

(q_0, \varepsilon, \square) \vdash_{M_2} (q_0, \varepsilon, \varepsilon) \nvdash_{M_2}
```

Für das Wort aa gibt es die Ableitungen:

```
 \begin{array}{c} (\mathsf{q}_{0},\,\mathsf{aa},\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\,\mathsf{aa},\,\mathsf{a}\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\,\mathsf{a},\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\,\mathsf{a},\,\mathsf{a}\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\,\epsilon,\,\Box) \vdash_{\mathsf{M}_{2}} \\ (\mathsf{q}_{0},\,\epsilon,\,\mathsf{a}\Box) \nvdash_{\mathsf{M}_{2}} \\ (\mathsf{q}_{0},\,\mathsf{aa},\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\,\mathsf{aa},\,\mathsf{a}\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\,\mathsf{a},\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\,\mathsf{a},\,\mathsf{a}\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\,\epsilon,\,\Box) \vdash_{\mathsf{M}_{2}} \\ (\mathsf{q}_{0},\,\epsilon,\,\epsilon) \nvdash_{\mathsf{M}_{2}} \\ (\mathsf{q}_{0},\,\mathsf{aa},\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\,\mathsf{aa},\,\mathsf{a}\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\,\mathsf{a},\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\,\mathsf{a},\,\epsilon) \nvdash_{\mathsf{M}_{2}} \\ (\mathsf{q}_{0},\,\mathsf{aa},\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\,\mathsf{aa},\,\mathsf{a}\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\,\mathsf{a},\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{1},\,\epsilon,\,\Box) \nvdash_{\mathsf{M}_{2}} \\ (\mathsf{q}_{0},\,\mathsf{aa},\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\,\mathsf{aa},\,\epsilon) \nvdash_{\mathsf{M}_{2}} \\ (\mathsf{q}_{0},\,\mathsf{aa},\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{1},\,\mathsf{a},\,\Box) \nvdash_{\mathsf{M}_{2}} \\ (\mathsf{q}_{0},\,\mathsf{aa},\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{1},\,\mathsf{a},\,\Box) \nvdash_{\mathsf{M}_{2}} \\ \end{array}
```

Für das Wort abb gibt es die Ableitungen:

```
 \begin{array}{c} (\mathsf{q}_{0},\,\mathsf{abb},\,\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\,\,\mathsf{abb},\,\,\mathsf{a}\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\,\,\mathsf{bb},\,\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\,\,\mathsf{bb},\,\,\mathsf{a}\,\Box) \nvdash_{\mathsf{M}_{2}} \\ (\mathsf{q}_{0},\,\,\mathsf{abb},\,\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\,\,\mathsf{abb},\,\,\mathsf{a}\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\,\,\mathsf{bb},\,\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\,\,\mathsf{bb},\,\,\mathsf{c}) \nvdash_{\mathsf{M}_{2}} \\ (\mathsf{q}_{0},\,\,\mathsf{abb},\,\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\,\,\mathsf{abb},\,\,\varepsilon) \nvdash_{\mathsf{M}_{2}} \\ (\mathsf{q}_{0},\,\,\mathsf{abb},\,\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{1},\,\,\mathsf{bb},\,\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{1},\,\,\mathsf{b},\,\,\mathsf{b}\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{1},\,\,\mathsf{c},\,\,\mathsf{bb}\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{2},\,\,\mathsf{c},\,\,\mathsf{bb}\,\Box) \nvdash_{\mathsf{M}_{2}} \\ (\mathsf{q}_{0},\,\,\mathsf{abb},\,\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{1},\,\,\mathsf{bb},\,\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{1},\,\,\mathsf{b},\,\,\mathsf{b}\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{2},\,\,\mathsf{b},\,\,\mathsf{b}\,\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{2},\,\,\mathsf{c},\,\,\Box) \vdash_{\mathsf{M}_{2}} \\ (\mathsf{q}_{3},\,\,\,\mathsf{c},\,\,\Box) \nvdash_{\mathsf{M}_{2}} \\ \end{array}
```

Für das Wort abc gibt es die Ableitungen:

```
 \begin{array}{c} (\mathsf{q}_{0},\;\mathsf{abc},\;\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\;\mathsf{abc},\;\mathsf{a}\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\;\mathsf{bc},\;\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\;\mathsf{bc},\;\mathsf{a}\Box) \nvdash_{\mathsf{M}_{2}} \\ (\mathsf{q}_{0},\;\mathsf{abc},\;\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\;\mathsf{abc},\;\mathsf{a}\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\;\mathsf{bc},\;\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\;\mathsf{bc},\;\varepsilon) \nvdash_{\mathsf{M}_{2}} \\ (\mathsf{q}_{0},\;\mathsf{abc},\;\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{0},\;\mathsf{abc},\;\varepsilon) \nvdash_{\mathsf{M}_{2}} \\ (\mathsf{q}_{0},\;\mathsf{abc},\;\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{1},\;\mathsf{bc},\;\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{1},\;\mathsf{c},\;\mathsf{b}\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{2},\;\mathsf{c},\;\mathsf{b}\Box) \vdash_{\mathsf{M}_{2}} (\mathsf{q}_{2},\;\varepsilon,\;\Box) \vdash_{\mathsf{M}_{2}} \\ (\mathsf{q}_{3},\;\varepsilon,\;\Box) \nvdash_{\mathsf{M}_{2}} \\ \end{array}
```

(Wie die roten Ableitungen zeigen,) ist abb, abc $\in L_{End}(M_2)$. Es gilt ϵ , aa $\notin L_{End}(M_2)$. (Wie die blauen Ableitungen zeigen,) ist ϵ , aa $\in L_{Kel}(M_2)$. Es gilt abb, abc $\notin L_{Kel}(M_2)$.

/Lösung

1.d) Gib an: $L_{End}(M_2)$ und $L_{Kel}(M_2)$ Lösung $L_{\mathrm{End}}(\mathsf{M}_2) = \left\{ \ \mathfrak{a}^{\mathfrak{m}} \mathfrak{b}^{\mathfrak{m}} \mathfrak{x} \mid \mathfrak{n}, \mathfrak{m} \in \mathbb{N}^+ \wedge \mathfrak{x} \in \{ \ \mathfrak{b}, \ \mathfrak{c} \ \}^* \wedge |\mathfrak{x}| = \mathfrak{m} \ \right\}$ $L_{Kel}(M_2) = \{ \alpha \}^*$ /Lösung Aufgabe 2: Konstruktion von Kellerautomaten 2.a) Gib einen PDA M_4 so an, dass $L_{End}(M_4) = L_{Kel}(M_4) = A_4$. -----(Lösung)- $M_4 = (\{ q_0, q_1 \}, \Sigma_2, \{ \square, +, - \}, \square, \Delta_4, q_0, \{ q_1 \}) \text{ mit } \Delta_4$: $a, \Box/+\Box$, a, +/++, $a, -/\epsilon$, $b, \Box / - \Box$, $b, +/\varepsilon$, c, X/X ϵ , \Box/ϵ q_0 wobei X ∈ { \Box , +, − }. /Lösung 2.b) *Gib* einen PDA M_4'' mit nur einem Zustand und dem Kelleralphabet $\Gamma_4'' = \{ a, b, c, \Box \}$ so an, dass $L_{Kel}(M_4'') = A_4$. Gib außerdem $L_{End}(M_4'')$ an. -----(Lösung) $M_4'' = (\{ q_0 \}, \Sigma_2, \Gamma_4'', \square, \Delta_4'', q_0, \emptyset) \text{ mit } \Delta_4''$: $a, \Box/a\Box, a, a/aa,$ $b, \Box/b\Box$, $b, a/\varepsilon$, b, b/bb, c, X/X, ϵ , \Box/ϵ wobei $X \in \{ \Box, a, b \}$. Für den gegeben Automaten ist $L_{End}(M_4'') = \emptyset$. Hinweis: Alternativ hätten wir auch q_0 als Endzustand wählen können. Dann wäre $L_{End}(M_4^{\prime\prime})=$ /Lösung

 Σ_2^* . Es ist nicht möglich einen PDA M_4''' mit nur einem Zustand und $L_{End}(M_4''') = A_4$ anzugeben.

Aufgabe 3: Deterministische Kellerautomaten

3.a) Gib eine reguläre Sprache A_8 über Σ_2 an, für die es keinen DPDA M_8 mit $L_{Kel}(M_8) = A_8$ $z.B.: A_8 = \{ a^n \mid n \in \mathbb{N} \}$ Hinweis: Enthält eine Sprache A ein Wort $x \in A$ so, dass auch eine Verlängerung xy dieses Wortes mit $y \neq \epsilon$ in der Sprache enthalten ist $(xy \in A)$, dann gibt es für diese Sprache keinen DPDA M $mit L_{Kel}(M) = A.$ /Lösung

3.b) Gib, falls das möglich ist, einen DPDA M_4 mit $L_{End}(M_4) = A_4$ an. ------(Lösung)----- $M_4 = (\{ q_0, q_1 \}, \Sigma_2, \{ \Box, +, - \}, \Box, \Delta_4, q_0, \{ q_0 \}) \text{ mit } \Delta_4$:

Aufgabe 4: Kellerautomaten und kontextfreie Grammatiken

/Lösung