

Bootstrapping Ansätze zur Bestimmung von Konfidenzbändern für Verteilungsfunktionen

Dennis Richter

4. Januar 2021

Lehrstuhl IV Informatik

Motivation und Problemstellung

D. Richter | 4. Januar 2021 2/12

Motivation und Problemstellung

- Konfidenzintervalle sind visuelle Hilfsmittel zur Interpretation der Genauigkeit einzelner Schätzwerte
- Konfidenzbänder werden für simultane Schätzungen benötigt
- Es gibt verschiedene Ansätze zur Bestimmung von Konfidenzbändern (analytische Verfahren, aber auch Bootstrap-Verfahren)
- In der Literatur gibt es viele theoretische Diskussionen über die Verwendung von Bootstrap zur Bestimmung von Konfidenzbändern, aber wenige Implementierungen und empirische Ergebnisse

D. Richter | 4. Januar 2021 3 / 12

Grundlagen

- Regressions funktion $\eta(x,\theta)$: gesucht ist θ_0 mit $y_i = \eta(x_i,\theta_0) + \epsilon_i$, j = 1,2...,n und $\epsilon \sim N(0,\sigma^2)$
- Schätzer $\hat{y}(x) = \eta(x, \hat{\theta})$ für den "wahren Wert" $E(y|x) = \eta(x, \theta_0)$
- Konfidenzbereich für den Schätzer:

$$P(\theta_L \le \theta_0 \le \theta_U) \ge 1 - \alpha$$

z.B. $\theta_L, \theta_U = \hat{\theta} \mp z_{\alpha/2} \sqrt{V(\hat{\theta})}$

■ Konfidenzintervall für einen Punkt der Regressionsfunktion:

$$\begin{split} \forall x: & P\left(y_L(x) \leq \eta(x,\theta_0) \leq y_U(x)\right) \geq 1 - \alpha \\ \text{z.b. } & y_L(x), y_U(x) = \eta(x,\hat{\theta}) \mp z_{\alpha/2} \sqrt{\left(\frac{\partial \eta(x,\theta)}{\partial \theta}\right)_{\hat{\alpha}}^T \mathbf{V}(\hat{\theta}) \left(\frac{\partial \eta(x,\theta)}{\partial \theta}\right)_{\hat{\alpha}}^2} \end{split}$$

■ Konfidenzband für die Regressionsfunktion:

$$\begin{split} &P\left(\forall x: y_L(x) \leq \eta(x,\theta_0) \leq y_U(x)\right) \geq 1 - \alpha \\ &\text{z.b. } y_L(x), y_U(x) = \eta(x,\hat{\theta}) \mp \sqrt{\chi_p^2(a) \left(\frac{\partial \eta(x,\theta)}{\partial \theta}\right)_{\hat{\theta}}^T \mathbf{V}(\hat{\theta}) \left(\frac{\partial \eta(x,\theta)}{\partial \theta}\right)_{\hat{\theta}}} \end{split}$$

D. Richter | 4. Januar 2021 4 / 12

Grundlagen

Basic-Sampling-Methode:

```
for j = 0 to B do

for i = 0 to n do

Draw sample y_{ij} from F(.)

end for

Calculate statistic s_j = s(y_j)

end for

Form the EDF G_n(.|s)
```

Bootstrap-Methode:

```
Require: Random sample y = (y_1, y_2, ...y_n) from F(.)

Form the EDF F_n(.|y)

for j = 0 to B do

for i = 0 to n do

Draw sample y_{ij}^* from F_n(.|y)

end for

Calculate statistic s_j^* = s(y_j^*)

end for

Form the EDF G_n(.|s_*)
```

D. Richter | 4. Januar 2021 5 / 12

Verwandte Arbeiten

- Cheng, Russell. (2005). Bootstrapping simultaneous confidence bands. 8 pp.-. 10.1109/WSC.2005.1574257.
- Cheng, Russell. (2015). Bootstrap confidence bands and goodness-of-fit tests in simulation input/output modelling. 16-30.
 10.1109/WSC.2015.7408150.

Weitere-

- Govind, Nirmal & Roeder, Theresa. (2006). Estimating Expected Completion Times with Probabilistic Job Routing. 1804-1810. 10.1109/WSC.2006.322958.
- Wang, Xing & Wang, Xin & Sun, Zhaonan. (2009). Comparison on Confidence Bands of Decision Boundary between SVM and Logistic Regression. 272-277. 10.1109/NCM.2009.281.

D. Richter | 4. Januar 2021 6 / 12

Lösungsansatze

2 Ansätze werden vorgestellt, bei denen Bootstrap zur Vereinfachung der analytischen Verfahren verwendet wird

- Parametric Bootstrap:
 - setzt voraus, dass $\hat{\theta}$ als normalverteilt angenommen werden kann, d.h. $\hat{\theta} \sim N(\theta_0, \mathbf{V}(\theta_0))$
 - \blacksquare verzichtet jedoch auf die lineare Approximation von $\eta(x,\theta)$ durch die Delta-Methode
- Non-Parametric Bootstrap:
 - \blacksquare keine Verteilungsannahme über $\hat{ heta}$
 - \blacksquare und auch keine lineare Approximation von $\eta(x,\theta)$
 - rechenintensiv wegen verschachteltem Doppel-Bootstrap

Es gibt jedoch auch andere analytische Verfahren zur Bestimmung von Konfindenzbändern, bei denen Bootstrap verwendet werden kann

D. Richter | 4. Januar 2021 7/12

Anwendnungs Beispiel

Av. Age	Year	1980	1986	1993	2000
2	0-4	1.26	2.78	0.63	0.34
7	5-9	3.53	4.10	1.31	0.91
12	10-14	11.98	13.14	9.86	6.53
19.5	15-24	90.82	97.12	75.85	59.46
29.5	25-34	83.45	116.62	104.00	80.85
39.5	35-44	55.98	67.28	79.33	82.66
54.5	45-64	66.32	78.53	69.10	67.27
75	65+	39.42	55.35	60.76	73.20

Parameter	MLE	
θ_1	10.17	
θ_2	153.79	
θ_3	17.26	
θ_4	-2.58	
θ_5	0.455	
θ_6	0.01746	

Abbildung: MLE's for the Morocco TB Model

Abbildung: Morocco Pulmonary TB notifications per 100,000

Als Modell wurde gewählt:

$$\begin{aligned} y_j &= (\theta_2 + \theta_4 x_j + \theta_6 x_j^2) \frac{exp(\theta_5(x_j - \theta_3))}{1 + exp(\theta_5(x_j - \theta_3))} + \epsilon_j \\ \end{aligned}$$
 wobei $\epsilon_j \sim N(0, \theta_1^2)$

Anwendnungs Beispiel

D. Richter | 4. Januar 2021 9/12

Umsetzung

- 2 Wochen: Vertiefende Recherche der Bootstrap-Ansätzen
- 1 Woche: Recherche zu Parameterstudien, Auswertung und Darstellung in Kontext von OMNeT++
- 1 Woche: Erstellung von mindestens 2 einfachen Beispielen in Form einer OMNeT++ Simulation
- 2 Wochen: Implementierung der Verfahren in C++ (mindestens die von Cheng (2005) vorgestellten Ansätze)
- 2 Wochen: Anwendung der Verfahren und empirische Bewertung

Zudem:

- Die implementierung soll wiederverwendbar sein (über Git) und nach Möglichkeit in die IDE integriert
- Zwischen den Arbeitspaketen sind jeweils Schreibphasen geplant

Geplante Evaluation

Die Verfahren werden anhand der zuvor erstellten Beispiele getestet:

- Datenerhebung durch die Simulation
- Bestimmung eines statistischen Modells und der Regressionsgerade (Modellanpassung)
- Auswertung mit analytischen Verfahren (durch C++-Libraries oder in R)
- Auswertung mit den implementierten Bootstrap-Verfahren
- Vergleich der Konfidenzbänder

Es wird erwartet, dass die Bootstrap-Ansätze ähnliche Konfidenzbänder liefern wie die analytischen Methoden und sich diesen annähern

Zeitplan

