Math 317: Homework 10

Due Friday, April 26, 2019

- 1. (33.2) Let S be a nonempty bounded subset of \mathbb{R} . For fixed c > 0, let $cS = \{cs : s \in S\}$. Show that $\sup(cS) = c \cdot \sup(S)$ and $\inf(cS) = c \cdot \inf(S)$.
- 2. (33.6) Let f be integrable on [a, b]. Prove that, for any subset $S \subseteq [a, b]$ we have

$$M(|f|, S) - m(|f|, S) \le M(f, S) - m(f, S)$$

Hint. For $x_0, y_0 \in S$, we have $|f(x_0)| - |f(y_0)| \le |f(x_0) - f(y_0)| \le M(f, S) - m(f, S)$.

- 3. (33.5) Show that $\left| \int_{-2\pi}^{2\pi} x^2 \sin^8(e^x) \, dx \right| \le \frac{16\pi^3}{3}$.
- 4. (33.8) Let f and g be integrable functions on [a, b].
 - a. It is a fact (see Exercise 33.7) that if h is integrable on [a,b], then so is h^2 . Prove that fg is integrable on [a,b]. Hint. Use that $4fg = (f+g)^2 (f-g)^2$.
 - b. Show that $\max(f,g)$ and $\min(f,g)$ are integrable on [a,b]. You may use the results of Excercise 17.8 without proof.
- 5. (33.10) Let f be the function,

$$f(x) = \begin{cases} \sin(\frac{1}{x}) & x \neq 0\\ 0 & x = 0 \end{cases}$$

Prove that f is integrable on [-1, 1]. Hint. See Excercise 33.11(c) and its solution in the textbook. (Why can we not apply the Dominated Convergence Theorem to prove that f is integrable?)