Chapter 8

Exercise 8.6:

The pattern generator for the sequence abcaba is described by the following transition table:

PS	NS/z
A	B/a
В	C/b
С	D/c
D	E/a
\mathbf{E}	F/b
F	A/a

Let us define the following encoding:

$y_2y_1y_0$	State
000	A
001	В
010	\mathbf{C}
011	D
100	${f E}$
101	\mathbf{F}

$$\begin{array}{c|c} z_1 z_0 & \\ \hline 00 & a \\ 01 & b \\ 10 & c \\ \end{array}$$

From the state table and the previous encoding we get the following table and K-maps:

PS	NS/z_1z_0
000	001/00
001	010/01
010	011/10
011	100/00
100	101/01
101	000/00
101	/
101	/

The expressions we get from the K-maps are:

$$Y_2 = y_1y_0 + y_2y'_0$$

$$Y_1 = y'_2y'_1y_0 + y_1y'_0$$

$$Y_0 = y'_0$$

$$z_1 = y_1y'_0$$

$$z_0 = y'_2y'_1y_0 + y_2y'_0$$

The network that implements a canonical version of this sequential network is presented in Figure ?? on page ??.

Figure 8.1: Pattern generator of Exercise 8.6

Exercise 8.8

We need a 3-bit vector to represent the six states and a 2-bit vector to represent the output. Let us define the following encoding:

$y_2 y_1 y_0$	State			
000	A		~. ~.	l
001	В	_	$\frac{z_1 z_0}{00}$	
010	С			a
011	D		01	b
100	E		10	c
101	F			

From the state table and the encoding we get the following K-maps.

The corresponding switching expressions are

$$Y_0 = y_0'$$

$$Y_1 = x'y_2'y_1'y_0 + x'y_1y_0' + xy_2y_0' + xy_1y_0$$

$$Y_2 = x'y_2y_0' + x'y_1y_0 + xy_2y_0 + xy_2'y_1'y_0'$$

$$Y_2 = x'y_2y_0' + x'y_1y_0 + xy_2y_0 + xy_2'y_1'y_0'$$

$$z_1 = y_2 y_0 + x y_0$$

$$z_0 = x'y_1y_0 + y_2y_0' + xy_0'$$

The sequential network is shown in Figure ?? on page ??.

Figure 8.2: Sequential network for Exercise 8.8

Exercise 8.16 From the network we obtain the following table, based on the expressions below:

$$J_A = K_A = xQ_B$$
$$J_B = K_B = x$$

PS	Input		Input	
Q_AQ_B	x = 0	x = 1	x = 0	x = 1
00	0000	0011	00	01
01	0000	1111	01	10
10	0000	0011	10	11
11	0000	1111	11	00
	$J_AK_AJ_BK_B$		N	S

The outputs are expressed as:

$$z_3 = Q_A Q_B$$

$$z_2 = Q_A Q_B'$$

$$z_1 = Q_A' Q_B$$

$$z_0 = Q_A' Q_B'$$

Giving the following names to the states:

State Name	Code
S_0	00
${S}_1$	01
S_2	10
S_3	11

we get the transition table:

PS	Input		Output
Q_AQ_B	x = 0	x = 1	
S_0	S_0	S_1	0
S_1	S_1°	S_2	1
S_2	S_2	S_3	2
S_3	S_3	S_0	3
NS			

The state diagram for the given network is presented in Figure ??, and corresponds to a modulo-4 counter with decoded output.

Figure 8.3: State diagram for Exercise 8.16