Министерство оброзования Республики Беларусь Учреждение Оброзования Белорусский Государственный Университет Информатики и Радиоэлектроники

Кафедра интеллектуальных информационных технологий

Лабораторная работа №2

Выполнение всех операций над множествами

Проверила: Гулякина Н.А.

Работу выполнили: Левков Г. А, Мощук В. Ю, Веркеев А. С.

Группа 121703

Постановка задачи

Даны 2 множества, выполнить операции над ними: объединение, пересечение, разность, симметрическая разность, декартово произведение, дополнение.

Множества задаются перечислением или высказыванием.

Уточнение постановки задачи

За один проход программа выпонлянет одну операцию, выбранную пользователем.

Оба множества задаются однинаковым способом.

Универсальное множесто состоит из всех целых чисел на отрезке от -100 до 100 включительно.

Мощность множества задается пользователем с клавиатуры, мощность множества является натуральным числом, мощность множества $\in [1; 20]$.

Элементами множества могут служить целые числа, в промежутке [-100; 100].

Для способа задания множества высказыванием могут использоваться следующие высказывания, для первого и для второго множества соответственно:

```
\{x\in N|x=3k-2, k=\overline{1,n1}\}, где n1 — мощность множества. \{y\in N|y=2k+2, k=\overline{1,n2}\}, где n2 — мощность множества.
```

Определения

Множество X есть любое собрание определенных и различимых между собой объектов нашей интуиции или интеллекта, мыслимое как единое целое.

Мощность множества – характеристика множеств, обобщающая понятие количества элементов конечного множества.

Объединением, или суммой множеств A и B будем называть множество, состоящее из тех и только тех элементов, которые принадлежат или множеству A, или множеству B, или обоим множествам одновременно. $(A \cup B), \{x | x \in A \lor x \in B\}$

Пересечением множеств A и B будем называть множество, состоящее из тех и только тех элементов, которые принадлежат и множеству A, и множеству B одновременно. $(A \cap B), \{x | x \in A \land x \in B\}$

Разность множеств A и B будем называть операцию, результатом которой является множество, в которое входят все элементы множества A, не входящие во множество B. $(A \setminus B), \{x | x \in A \land x \notin B\}$

Симметрической разностью множеств A и B будем называть операцию, результатом которой является новое множество, включающее все элементы исходных множеств, не принадлежащие одновременно обоим исходным множествам. $(A\triangle B)$, $\{x|x\notin A \land x\notin B\}$

Декартовым произведением множеств A и B будем называть операцию, результатом которой является новое множество, элементами которого являются все возможные упорядоченные пары элементов исходных множеств. $(A \times B), \{(x,y)|x \in A, y \in B\}$

Дополнением множества А будем называть операцию нахождения множества всех элементов из универсума, не содержащихся во множестве А.

Алгоритм

- 0. Универсум:
 - 0.1. Создаем множество U и заполняем его целыми числами из промежутка [-100;100].
- 1. Ввод данных:
 - 1.1. Пользователь выбирает способ задания множеств (перечислением или высказыванием):
 - 1.1.1. Если пользователь выбрал способ задания перечислением, то:
 - 1.1.1.1. Пользователь вводит мощность множества А.
 - 1.1.1.2. Пользователь вводит элементы множества А.
 - 1.1.1.3. Пользователь вводит мощность множества В.
 - 1.1.1.4. Пользователь вводит элементы множества В.
 - 1.1.2. Если пользователь выбрал способ задания высказыванием, то:
 - 1.1.2.1. Пользователь вводит мощность множества А.

- 1.1.2.2. Пользователь вводит мощность множества В.
- 1.1.2.3. Пусть есть некоторое k = 0.
- 1.1.2.4. Увеличиваем к на единицу.
- 1.1.2.5. Умножаем k на 3 и вычитаем 2.
- 1.1.2.6. Полученное занчение записываем в множество А.
- 1.1.2.7. Если k не равно мощности A, то переходим к пункту 1.1.2.4.
- 1.1.2.8. Пусть есть некоторое k = 0.
- 1.1.2.9. Увеличиваем к на единицу.
- 1.1.2.10. Умножаем k на 2 и прибавляем 2.
- 1.1.2.11. Полученное занчение записываем в множество В.
- 1.1.2.12. Если к не равно мощности В, то переходим к пункту 1.1.2.9.
- 1.1.2.13. Выводим результаты заполенения множеств.

2. Выбор операции:

- 2.1. Пользователь выбирает какую операцию со множествами выполнить: (пересечение, объединение, разность $A \setminus B$, разность $B \setminus A$, симметричесая разность, дополнение A, дополнение B или декартово произведение $A \times B$, декартово произведение $B \times A$):
 - Если пользователь выбирает операцию пересечения, то переходим к пункту 3.
 - Если пользователь выбирает операцию объединения, то переходим к пункту 4.
 - Если пользователь выбирает операцию разности $(A \setminus B)$, то переходим к пункту 5.
 - Если пользователь выбирает операцию разности $(B \ A)$, то переходим к пункту 6.
 - Если пользователь выбирает операцию симметрической разности A и B, то переходим κ пункту 7.
 - Если пользователь выбирает операцию дополнения множества A, то переходим к пункту 8.
 - Если пользователь выбирает операцию дополнения множества B, то переходим к пункту 9.
 - Если пользователь выбирает операцию декартово произведения $(A \times B)$, то переходим к пункту 10.
 - Если пользователь выбирает операцию декартово произведения $(B \times A)$, то переходим к пункту 11.

3. Пересечение множеств А и В:

- 3.1. Создается пустое множество С.
- 3.2. Выбираем первый элемент множества А.
- 3.3. Выбираем первый элемент множества В.
- 3.4. Если выбранный элемент множества A равен выбранному элементу множества B, то элемент множества B записываем в множества C.
- 3.5. Если выбранный элемент множества В является последним, то переходим к пункту
 3.8.
- 3.6. Выбираем следующий элемент множества В,
- 3.7. Переходим к пункту 3.4
- $3.8. \;$ Если выбранный элемент множества A является последним, то переходим к пункту $3.11. \;$
- 3.10. Выбираем следующий элемент множества А, переходим к пункту 3.4.
- 3.11. С результат объединения множеств А и В.
- 3.12. Переходим к пункту 12.

4. Объединение множеств А и В:

4.1. Создается пустое множество С, которое будет результатом операции.

- 4.2. Выбираем первый элемент множества А.
- 4.3. Записываем выбранный элемент множества А во множество С.
- 4.4. Если выбранный элемент множества A является последним, переходим к пункту 4.6.
- 4.5. Выбираем следующий элемент множества А, переходим к пункту 4.3.
- 4.6. Выбираем первый элемент множества А.
- 4.7. Выбираем первый элемент множества В.
- 4.8. Если выбранный элемент множества A не равен выбранному элементу множества B, то выбираем следующий элемент множества A.
- 4.9. Если рассматриваемый элемент множества A равен рассматриваемому элементу множества B, то:
 - 4.9.1. Если элемент множества В является последним, переходим к пункту 4.12.
 - 4.9.2. Рассмотрим следующий элемент множества В.
- 4.10. Если выбранный элемент множества A является последним и не равен выбранному элементу множества B, то записываем выбранный элемент множества B во множество C.
 - 4.10.1. Если элемент множества В является последним, то переходим к пункту 4.12.
 - 4.10.2. Выбираем следующий элемент множества В и первый элемент множества А.
- 4.11. Переходим к пункту 4.4.
- 4.12. С результат объединения множеств А и В.
- 4.13. Переходим к пункту 12.

5. Разность множеств А и В:

- 5.1. Создается пустое множество С.
- 5.2. Выбираем первый элемент множества А.
- 5.3. Выбираем первый элемент множества В.
- 5.4. Если выбранный элемент множества A не равен выбранному элементу множества В:
 - 5.4.1 Если выбранный элемент множества В не является последним:
 - 5.4.1.1 Если выбранный элемент множества A не является последним, выбираем следующий элемент множества B, переходим к пункту 5.4.
 - 5.4.1.2 Если выбранный элемент множества A является последним, переходим к пункту 5.6.
 - $5.4.2\;$ Если выбранный элемент множества В является последним, записываем выбранный элемент множества А в множество С.
 - 5.4.3 Выбираем следующий элемент множества А.
 - 5.4.4 Переходим к пункту 5.3.
- 5.5. Если выбранный элемент множества A равен выбранному элементу множества B и не является последним, выбираем следующий элемент множества A.
- 5.6 Переходим к пункту 5.3.
- 5.7. С результат разности множеств А и В.
- 5.8. Переходим к пункту 12.

6. Разность множеств В и А:

- 6.1. Создается пустое множество С.
- 6.2. Выбираем первый элемент множества В.
- 6.3. Выбираем первый элемент множества А.
- 6.4. Если выбранный элемент множества A не равен выбранному элементу множества B:
 - 6.4.1 Если выбранный элемент множества А не является последним:

- 6.4.1.1 Если выбранный элемент множества B не является последним, выбираем следующий элемент множества A.
- 6.4.1.2 Переходим к пункту 6.4.
- 6.4.1.3 Если выбранный элемент множества В является последним, переходим к пункту 6.6.
- $6.4.2\;$ Если выбранный элемент множества В является последним, записываем выбранный элемент множества А в множество С.
- 6.4.3 Выбираем следующий элемент множества А.
- 6.4.4 Переходим к пункту 6.3.
- 6.5. Если выбранный элемент множества B равен выбранному элементу множества A и не является последним.
- 6.6. Выбираем следующий элемент множества В.
- 6.7. Переходим к пункту 6.3.
- 6.8. С результат разности множеств В и А.
- 6.9. Переходим к пункту 12.
- 7. Симметрическая разность А и В:
 - 7.1. Создается пустое множество С.
 - 7.2. Выбираем первый элемент множества А.
 - 7.3. Выбираем первый элемент множества В.
 - 7.4. Если выбранный элемент множества A не равен выбранному элементу множества B:
 - 7.4.1. Если выбранный элемент множества В не является последним:
 - 7.4.1.1. Если выбранный элемент множества A не является последним, выбираем следующий элемент множества B, переходим к пункту 7.4
 - 7.4.1.2. Если выбранный элем.ент множества А является последним, переходим к пункту 7.6.
 - 7.4.2. Если выбранный элемент множества В является последним, записываем выбранный элемент множества А в множество С.
 - 6.4.3. выбираем следующий элемент множества А, переходим к пункту 7.3.
 - 7.5. Если выбранный элемент множества А равен выбранному элементу множества В и не является последним, выбираем следующий элемент множества А.
 - 7.6. Переходим к пункту 7.3.
 - 7.7. Выбираем первый элемент множества В.
 - 7.8. Выбираем первый элемент множества А.
 - 7.9. Если выбранный элемент множества B не равен выбранному элементу множества A:
 - 7.9.1 Если выбранный элемент множества А не является последним:
 - 7.9.1.1 Если выбранный элемент множества B не является последним, выбираем следующий элемент множества A, переходим к пункту 7.8
 - 7.9.1.2 Если выбранный элемент множества В является последним, переходим к пункту 7.10.
 - 7.9.2. Если выбранный элемент множества А является последним, записываем выбранный элемент множества В в множество С.
 - 7.9.3. Выбираем следующий элемент множества В.
 - 7.9.4. Переходим к пункту 7.7.
 - 7.10. Если выбранный элемент множества B равен выбранному элементу множества A и не является последним, выбираем следующий элемент множества B.
 - 7.11. Переходим к пункту 7.8.
 - 7.12. С результат симметрической разности множеств А и В.
 - 7.13. Переходим к пункту 12.

8. Дополнение множества А:

- 8.1. Создается пустое множество С.
- 8.2. Выбираем первый элемент множества U.
- 8.3. Сравниваем выбранный элемент со всеми элементами множества A, если выбранный элемент не содержится в A, то выбранный элемент записывается в C.
- 8.4. Если выбранный элемент был последним в множестве U, то переходим к пункту 8.6.
- 8.5. Выбираем следующий элемент U, переходим к пункту 8.3
- 8.6. С результат дополнения множества А.
- 8.7. Переходим к пункту 12.

9. Дополнение множества В:

- 9.1. Создается пустое множество С.
- 9.2. Выбираем первый элемент множества U.
- 9.3. Сравниваем выбранный элемент со всеми элементами множества B, если выбранный элемент не содержится в B, то выбранный элемент записывается в C.
- 9.4. Если выбранный элемент был последним в множестве U, то переходим к пункту 9.6.
- 9.5. Выбираем следующий элемент U, переходим к пункту 9.3.
- 9.6. С результат дополнения множества В.
- 9.7. Переходим к пункту 12.

10. Декартово произведения A×B:

- 10.1. Создается пустое множество С.
- 10.2. Выбираем первый элемент множества А.
- 10.3. Выбираем первый элемент множества В.
- 10.4. Записываем выбранный элемент А и выбранный элемент В в кортеж, который записываем в С.
- 10.5. Если выбранный элемент множества В был последним, то переходим к пункту 10.7.
- 10.6. Выбираем следующий элемент В, переходим к пункту 10.4
- 10.7. Если выбранный элемент множества А был последним, то переходим к пункту 10.9.
- 10.8. Выбираем следующий элемент А, переходим к пункту 10.4.
- 10.9. С рузультат декартового произведения множеств А и В.
- 10.10. Переходим к пункту 12.

11. Декартово произведения В×А:

- 11.1. Создается пустое множество С.
- 11.2. Выбираем первый элемент множества В.
- 11.3. Выбираем первый элемент множества А.
- 11.4. Записываем выбранный элемент B и выбранный элемент B в кортеж, который записываем в C.
- 11.5. Если выбранный элемент множества А был последним, то переходим к пункту 11.7.
- 11.6. Выбираем следующий элемент А, переходим к пункту 11.4
- 11.7. Если выбранный элемент множества В был последним, то переходим к пункту 11.9.
- 11.8. Выбираем следующий элемент В, переходим к пункту 11.4.
- 11.9. С рузультат декартового произведения множеств В и А.
- 11.10. Переходим к пункту 12.
- 12. Выводим пользователю результат операции над множествами.
- 13. Завершаем программу.