V601 - Franck-Hertz-Versuch

Dienstag, 18. Juni 2024

Ziel:

Es soll die Annegungsenergie bestimmt werden, die benötigt wind um tg. Atome aus dem Grundzust in den ersten angeregten zu bekommen

Theorie:

- Mome besiten disbrete Energinivess
 - Les Ubgang vom Grundzust. En Zerm ersten angereyten E_1 benötigt genau die Energie $\Delta E = E_1 E_0$
- -> Elektronen mit E_e . $\stackrel{?}{=}$ Δ E Kommen in einem Stoß mit Hg- Atomen diese von E_o -> E_1 amegen
- Falls E_e = $n \Omega E + E$, dann tonnen in n Stößen in Alome angeregt werden
- -> DE Konn somit über die Energie des Elektrons vor (Ee-) und nach (Ee-) dem Stoß bestimmt

Aufbou:

-> Frank - Hertz . Röhre

-> Glühdroht -> Thermische Elektronen
-> Kathoole & Anode
-> Beschleunigungssponnung -> Gitter
-> Bremsspannung
-> Quecksilber Dampt

~ Hizspannungsgliat
-> Spannungsgerät
Lo Brems - Beschleynigung
os Grens = / Geschagung
-5 X Y - Schneiber
-> Strommesser
_)
Lo Kann eine zum Strom prop. Spannung ausgeben
7 Enemais vesteilung una Eleblumen:
7. Energie verteilung von Elektronen:
Theorie:
-> Fermi - Dirac - Vertilling
Durhlührung
Durchführung:
-> Const. Beschl Spanning
-> Austrittsstrom abh. von Bremsspannung
-> ? Temp.
Ergebnis & Probleme:
- Nicht triv. Energie - Verteilung
7 Frank Heats Vivia
7. Frank - Hertz - Kurve
Durchführung:
-> 3 Temp,
-, Strom alch. von Beschl-Spannung
Everbaich Polyme:
Ergebnis & Probleme:

-> ideale Kurve: 1111

-> echte Kurve: 1 1

- -> Energieverteilung
- -> inelastische/elastische Stäße
- -> Kontaktpot.

=> Abstand zwischen Maxima enklärt DE => DE = e DU L> I=0 (=) eU= Ee -> Energie vor & nach Stafs