

目录

1	介绍与概述			1		
2	如何	如何使用 DVP2 API				
	2.1	相关文	件介绍	2		
		2.1.1	编译时所需要的文件	2		
		2.1.2	运行时所需要的文件	2		
	2.2	开发环	境搭建	3		
		2.2.1	Visual C++开发环境配置	3		
		2.2.2	Visual C#开发环境配置	3		
		2.2.3	Visual Basic.net 开发环境配置	3		
	2.3	基本流	程	3		
	2.4	运行过	程中的参数调节	5		
	2.5	图像采	集方式	5		
		2.5.1	回调函数	5		
		2.5.2	同步方式(阻塞方式)	5		
3	相机	L的属性页	ī操作	7		
	3.1	相机参	数的存档	7		
4	参考	台代码清单	<u>1</u>	8		

1 介绍与概述

首先非常感谢您使用我们公司的产品。本公司目前最新的工业相机产品,都可使用该SDK进行应用软件开发,其具有以下特色:

- (1) 高效、简洁、规范的 API 接口,为用户提供一个简单易用的开发环境;强大的调试功能,可以很方便的定位用户在使用过程中遇到的问题;
- (2)提供 UI 配置界面,用户无须自行实现相机配置界面,调用一个 API 即可完成对相机的各个参数进行调节;
- (3) 对各种主流的机器视觉软件(LabView、Halcon)提供专门的转换接口,使相机可以更高效的运行于这些机器视觉软件;
 - (4) 支持 GenlCam 接口,支持使用该接口的通用相机应用软件;
 - (5) 支持主流的编程语言和开发环境:Visual C++、Visual C#、VB.net、Qt;
 - (6) 提供高质量、实用性较强的参考案例;

2 如何使用 DVP2 API

本章主要介绍了使用 DVP API 进行应用程序开发时,涉及到的一些相关文件、开发环境的搭建、相机开发的基本流程、运行过程中相关参数的调节、图像采集的方式以及代码清单。

2.1 相关文件介绍

本节主要介绍了使用 DVP2 API 开发应用工程时,编译和运行过程中所需要使用到的文件。

2.1.1 编译时所需要的文件

编译时所包含的文件如下表所示。

文件名	文件功能
DVPCamera.h	定义枚举、结构、API 接口
DVPCamera.lib	DVPCamera. dll 的静态链接文件
DVPCamera64.1ib	DVPCamera64.dll的静态链接文件

表 1 编译时所需要文件

2.1.2 运行时所需要的文件

使用 DVP2API 开发的应用程序,运行时所需要的文件如下表所示。

文件名	文件功能
DVPCamera.dl1	API 接口动态库
CommonHZD. d11	相机驱动公用库
XXXXX. dscam. dll	相机设备驱动程序

表 2 运行时所需文件(32位)

文件名	文件功能
DVPCamera64.dll	API 接口动态库
CommonHZD64. dll	相机驱动公用库
XXXXX. dscam64. dll	相机设备驱动程序

表 3 运行时所需的文件(64位)

如果使用了本公司提供产品驱动安装包,将会复制以上运行文件到安装目录(假设系统目录为 C 盘):

使用安装包时,32 位文件被安装到 C:\Program Files(x86)\DVPCamera\DVP2 64 位文件被安装到 C:\Program Files(x86)\ DVPCamera \DVP2 x64

用户也可以自行将文件拷贝到应用程序所在目录,如果系统目录和应用程序所在目录同时存在这些文件,应用程序中的 DLL 程序将被优先加载。

2.2 开发环境搭建

本节主要介绍了使用 Visual C++、Visual C#以及 Visual Basic.net 进行 DVP2 API 开发时,如何搭建开发环境。

2.2.1 Visual C++开发环境配置

(1) 添加头文件:

#include "头文件目录/DVPCamera.h"

(2) 加载 LIB 库:

#ifdef M X64

// 加载 64 位 LIB 库

#pragma comment(lib, "64 位 LIB 文件目录/DVPCamera64.lib")

#else

// 加载 32 位 LIB 库

#pragma comment(lib, "32 位 LIB 文件目录/DVPCamera.lib")

#endif

2.2.2 Visual C#开发环境配置

- (1) 添加引用
 - 32 位添加引用 DVPCameraCS.dll
 - 64 位添加引用 DVPCameraCS64.dll
- (2) 命名空间

命名空间 DVPCameraType

API 函数类 DVPCamera

2.2.3 Visual Basic.net 开发环境配置

- (1) 添加引用
 - 32 位添加引用 DVPCameraCS.dll
 - 64 位添加引用 DVPCameraCS64.dll
- (2) 命名空间

命名空间 DVPCameraType

API 函数类 DVPCamera

2.3 基本流程

- 一般使用流程分为以下几个步骤:
- (1) 使用 dvpRefresh 和 dvpEnum 获取相机相关的设备信息;
- (2)使用 dvpOpenByName/dvpOpen 成功打开/初始化相机后,将获得一个相机对应的 ID(句

柄);

- (3) 打开相机后,可以对相机进行各种模式配置和参数调节;
- (4) 配置模式和参数设置好后,使用 dvpStart 启动图像输出;
- (5) 图像采集完成后,可以使用 dvpStop 关闭图像输出;
- (6) 使用 dvpClose 关闭(反初始化)相机,结束相机操作。

图 1 相机操作流程图

2.4 运行过程中的参数调节

相机在启动后或输出图像的过程中,允许对相机的各功能进行实时的设置和参数调节,但以下几个功能除外,对这些功能的设置需要先停止相机(dvpStop)。

<u> </u>		
功能	相关接口	
网络相机传输包长	dvpSetStreamPackSize	
采集图像格式	dvpSetSourceFormat	
目标图像格式	dvpSetTargetFormat	

表 4 须要停止相机才能设置的功能

2.5 图像采集方式

使用相机进行图像采集是主要有两种方法:回调函数与同步方式,这两种方式可以同时使用。

2.5.1 回调函数

回调方式是最简单的应用方式,该方式适合用于视频显示、简单图像处理等场合。通过 dvpRegisterStreamCallback 注册一个用户提供的回调函数来获取图像数据。

图 2 回调方式采集图像处理操作流程图

2.5.2 同步方式(阻塞方式)

主要应用场景:用户的图像采集或处理线程中调用 dvpGetFrame 获取图像数据,图像数据没有获得之前,这些过程将被阻塞。为了避免出现长时间的阻塞, dvpGetFrame 可以设置超时,允许用户自行决定合适的等待时间。

图 3 使用同步方式采集图像

3 相机的属性页操作

DVPCamera(32) M036M-192, 168, 10, 246 触发功能 关于相机 图像尺寸 曝光设置 高级设置 增强效果 亮度调节 目标亮度 1.000 自动增益 🔲 🕞 自动曝光 📝 49.979 ms 憂秒 微秒 0 49 977 键入时间生效 灯光频率 ◎ 直流 50Hz @ 60Hz 曝光区域 0 0 横偏 752 480 🚔 高度 宽度 界面语言 使用设置 当前设置 ▼ 简体中文 ▼

使用 API 函数 dvpShowPropertyModalDialog 可以弹出一个属性页如下:

图 4 属性页界面

取消

应用(A)

确定

通过属性页面可以完成常用的参数配置操作,点击"确定",相机参数将被保存。

3.1 相机参数的存档

- (1) 如果用户使用属性页功能,并点击属性页的"确定"按钮,将会产生一个存档。
- (2) 如果用户使用本公司相机产品对应的驱动安装程序进行安装,那么默认的参数存档路径将可能是 C:\ProgramData\DVPCamera\DVP2 目录(假设 C 盘为系统盘)。
- (3) 如果用户采用的直接复制库文件(DVPCamera. dl1、XXX. dscam. dl1)到应用程序目录的方式,默认的参数存档路径将是 EXE 程序所在的目录。
- (4) 参数存档文件一般的文件名形式为: [产品序列号]. ini, 这样每个相机将对应一个存档文件。

4 参考代码清单

Sample 工程名称	关键字	Sample 功能介绍
BasicFunction	自动曝光	可连接的相机数目枚举,相机设备的打开和关闭,相机视频流
	曝光时间	的启动和停止,相机属性设置等基本功能。
	模拟增益	保存图片功能。
	消频闪	自动曝光操作,自动曝光模式选择,曝光时间调整,抗频闪方
	分辨率切换	式设置,模拟增益调节等功能。
	视频流回调函	相机分辨率设置。
	数	
ImageAcquisition	采集线程	可连接的相机数目枚举,相机设备的打开和关闭,相机视频流
	图像保存	的启动和停止,相机属性设置等基本功能。
	软触发	采用同步的方式,在一个线程中采集图像,并可以根据设置将
	定时采集	采集到的图像显示出来或者保存到文件中。
	采集同步	打开已经保存的图像的文件夹。
		可以使用软触发的方式进行采集,这样可以在不需要图像数据
		的情况下节省通讯带宽、降低系统开销; 软触发方式也能起到
		采集同步的效果。
		可以设定采集的等待时间,实现类似于定时采集的效果。
MultipleCamera	多相机	可连接的相机数目枚举,相机设备的打开和关闭,相机视频流
	用户命名	的启动和停止,相机属性设置等基本功能。
	(User ID)	设置用户ID的功能。
	相机名称绑定	四台相机同时工作,通过用户 ID 绑定每台相机保存绑定关系,
		实现每次启动时每个视频窗体对应于指定的相机。
Trigger	软触发	软触发和外部触发相关参数的调节,如触发信号抖动过滤、延
	外部触发	迟、定时器设置。
	循环触发	触发输入信号和 strobe 输出信号的配置。
	Strobe 信号	