Introduction to Routing

What is the least cost path between u and z?

- Come up with a routing algorithm avoids periodic updates, or in other words discovers the route on do-
 - What is the effect Source Routing ... changes in network topology?
- Come up with a routing algorithm Geographic Routing node location?
 - Node x knows l(x)
 - Node x can compute $d_x(y) = \Delta(l(x), l(y))$
 - What happens when node mobility is high?

- Network model
 - Graph G = (V, E)
 - $V = \{u, v, w, x, v, z\}$
 - $E = \{(u, v), (u, x), (v, x), ...\}$
 - Link cost c(x, y)
 - c(x,y) = c(y,x)
 - If $(x, y) \notin E$ then $c(x, y) = \infty$

Mountains & Minds 213

physical

Routing Information Protocol (RIP)

2

- Early inclusion in BSD-UNIX
- A distance vector protocol
 - Each hop cost 1, max path 15 hops
 - Poisoned reverse (infinity = 16 hops)
 - DVs exchanges with neighbors every 30 seconds
 - Up to 25 subnets advertised
 - Straight out of the routing table
 - Links removed and routes invalidated if no advertisement after 180 seconds

RIP packets are encapsulated in UDP (port 530). Is that not inefficient?

Mountains & Minds

214

to other routers

Open Shortest-Path First (OSPF)

- "Open": publicly available
 - Cisco's IGRP proprietary until 2015
- A link state protocol
 - LS information dissemination directly through IP (via raw sockets)
 - Topology map at every node
 - Route computation using Dijkstra's
- Improvements over RIP
 - Security: OSPF routers and adverts authenticated
 - Multiple same-cost paths allowed
 - Support for multicast
 - Different cost metrics allowed

How to configure weights for low latency paths? How about high bandwidth?

Mountains & Minds

- Hierarchical OSPF
 - Local areas and backbone
 - LS adverts only within areas
 - Routers in area only know shortest path direction to other areas

Hierarchical Routing

- Aggregate routers into regions
 - Autonomous Systems (AS)
 - One or more AS's per ISP
- Routers in same AS run same routing protocol
 - intra-AS routing protocol
 - RIP, OSPF, IGRP
 - Routers in different AS can run different intra-AS routing protocol

- Gateway routers
 - At the "edge" of its own AS
 - Link to edge routers in another AS
 - Run inter-AS routing protocol
 - BGP

Mountains & Minds

Why different Intra-AS and Inter-AS routing?

Scale:

- inter-AS: scalability hierarchical addressing reduces routing table size and update traffic
- intra-AS: flexibility need to met needs of different customers

Policy:

- inter-AS: admin wants control over how its traffic is routed and who routes through its network.
- intra-AS: single admin, so decisions can be made based on on efficiency

Performance:

- inter-AS: scalability, or policy may dominate over performance
- intra-AS: focus on performance and low cost

Mountains & Minds

Interconnected ASes

Forwarding table configured by both intra- and inter-AS routing algorithm

- Intra-AS sets entries for internal destinations
- Inter-AS & intra-AS sets entries for external destinations

Mountains & Minds 218

Interconnected ASes Example

Intra-AS routing

- Routers in AS3 exchange reachability information to subnet X
- Routing table configured at 3a
- And used by inter-AS routing

Inter-AS routing

- Routers in AS1 receive reachability information for X from AS3 though inter-AS routing protocol
- Inter-AS routing propagates reachability from 1c to other AS1 border routers
- Inter-AS routing forwards AS3 reachability to AS2

219

Border Gateway Protocol (BGP)

A bit like source routing!

- The *de facto* inter-domain routing protocol
 - "Glue that holds the Internet together"
 - Allows subnet to say: "I am here"
- BGP provides each AS a means to:
 - eBGP: obtain subnet reachability information from neighboring ASs.
 - iBGP: propagate reachability information to all AS-internal routers.
 - Determine "good" routes to other networks based on reachability information and policy.

- BGP messages
 - Over semi-permanent BGP connections between "peers"
 - May be over intra-AS paths
 - Prefix (aggregate)
 - 138.16.64/22
 - NEXT-HOP
 - NLX1-110F
 - IP of router interface
 - AS-PATH (path vector)
 - ASN routing path e.g., AS 67, AS 17

Mountains & Minds

Border Gateway Protocol (BGP)

How does router 1d forward packets to subnet Y?

- Local preference value attribute (policy)
 - e.g., cheaper peering with AS2
- Shortest AS-PATH

Closest NEXT-HOP router · Hot potato routing

Route advertisements can be ignored by an import policy, e.g., never route through AS3

BGP messages

- Over semi-permanent BGP connections between "peers"
 - May be over intra-AS paths
- Prefix (aggregate)
 - 138.16.64/22
- **NEXT-HOP**
 - IP of router interface
 - AS-PATH (path vector)
 - ASN routing path e.g., AS 67, AS 17

AS1 - eBGP session ---- iBGP session

Mountains & Minds

221

BGP routing policy

- A, B, C are provider networks
- X, W, Y are customers, but ISPs in their own right
- X is dual-homed: attached to two networks
- Should B advertise path BAW to C?
- Why does B not route to W through C?
- How does X prevent B routing to C through itself?

Mountains & Minds 222

ICMP

•	Internet Control Message Protocol
	(ICMP)

- Used by hosts and routers to communicate network-level information
 - Error reporting: unreachable host, network, port, protocol
 - Echo request/reply (used by ping)
- Network-layer "above" IP
 - ICMP messages carried in IP datagrams
 - One of the "upper layer" types
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

<u>Type</u>	<u>Code</u>	<u>Description</u>
0	0	echo reply (ping)
3	0	dest network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	4	fragmentation required
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header
		223

Mountains & Minds

Traceroute and ICMP

- Source sends series of UDP segments to the destination
 - First set has TTL =1
 - Second set has TTL=2, etc.
 - Unlikely port number
- When nth set of datagrams arrives to nth router:
 - Router discards datagrams
 - Sends source ICMP messages (type 11, code 0)
 - ICMP messages includes name of router and IP address

- when ICMP messages arrives, source records RTTs
- Stopping criteria:
 - UDP segment eventually arrives at destination host
 - Destination returns ICMP "port unreachable" message (type 3, code 3)
 - Source stops

Mountains & Minds 224