Dimensionality Reduction / 5 VD issues with XTX when performing PCA 1) memory pxp square matrix MNIST n = 60,000 (Luaiming examples)

P = 28 × 28 = 784

P × P = 614,656 pixel

x 8 bytes / pixel you need 4Mb of mimory to store XTX however, if $P = 200 \times 200$ (rusduting of a Linked In you would need 1266 of memory to store XTX p = 400×400 \(\sigma 200 Gb \)

2 numerical evorus happen (nounding) when computing X^TX

A factorization technique called 5VD allows us to perform PCA without computing X^TX X = U Z VT with Ward n x p m x r r x r p x r r x r p x r r x r r x r p x r r x r x r r x r UT. U = I $\bigvee^{\mathsf{T}}.\bigvee=\mathsf{T}$

how does SVD relates to PCA! $X^{T} = (U \Sigma V^{T})^{T}$ $= (\mathbf{V}^{\mathsf{T}})^{\mathsf{T}} \mathbf{\Sigma}^{\mathsf{T}} \mathbf{U}^{\mathsf{T}}$ = VZUT XT X = (VZUT)(UZVT) = VZ(UTU)ZVT = $\sqrt{\sum_{i=1}^{n}}\sqrt{\sum_{i=1}^{n}}$ let's right multiply by Von both sides $(X^TX)V = V\Sigma^2$ the Victoria of Vare the eigenvectors of XTX
with eigenvalues) similarly XXT=(UZVT)(YZUT)=UZ'UT the column vectors of U are the eigenvectors of XXT X = UZV edumnsare
eigenvectors of

XT. X

XT. X for colon rectors U/V $(\times \times^{\top} / \times^{\top} \times)$

Application to latest features

movies

usors is a sugarvatures

eigenvalues

concept concept movies

movies

reace

space

space

(college a

utility

matrix)

("hidden")

	Matrix	Alien	Serenity	Casablanca	Amelia	_
Alice	1	2	2		e 1	
Bob	3	5	5			
Cindy	4	4	4			
Dem	5	5	5			
Fmily		2		4	4	
				5	5	
Trank				2	2	
Greg						
	Bob C	holy and	nd.	Jame co	4	science fiction
. /	1	03-0	.3 /	topic is	iction	Thorics
A - 0.	5 0.1	5.5 -0.			-0.5	0 0.1 (-0.7 -0.7)
0.5	/	0.5		9.5	× -0.8	0.6 0 -0.1 -0.1
	(-0.6) (-0.7)		5) 1/	0.4	0.5 -0.8 -0.1 -0.1/
9/-01	-0.3	0.20.	3/	somence	M	0.6 0 -0.1 -0.1 0.5 -0.8 -0.1 -0.1 A 5 C A
<i>d</i>						