Colles du premier trimestre

YLF

Oct et plus, 2019

1 Semaine I : Algèbre générale

Enoncés

Exercice 1 (Sander).

Démontrer que $(\mathbb{U}(\mathbb{Z}/p\mathbb{Z}), \times)$ est cyclique.

Solutions

Exercice 1.

On sait que $\mathbb{U}(\mathbb{Z}/p\mathbb{Z}) = \mathbb{Z}/p\mathbb{Z}\backslash\{0\}$, il faut donc montrer l'existence d'un élément d'ordre (p-1). Ecrivons $p-1=p_1^{\alpha_1}\dots p_n^{\alpha_n}$, la décomposition en facteurs premiers de p-1. Il faut montrer qu'il existe un élément d'ordre $p_i^{\alpha_i}$ et cela pour tout $i\in [1;n]$.

. . .

Le produit de ces éléments est alors d'ordre n-1. Le résultat exposé est en vérité plus général, pour tout corps K, son groupe multiplicatif est cyclique et la démonstration est similaire.

2 Semaine III : Analyse générale

Enoncés

Exercice 1 (Franklin).

Posons

$$\Delta: \begin{cases} \mathcal{F}(\mathbb{R}) \to \mathcal{F}(\mathbb{R}) \\ f \mapsto x \mapsto f(x+1) - f(x) \end{cases}$$

- 1. Montrer que pour tout $p \in \mathbb{N}$ et pour toute fonction $f \in \mathcal{C}^p(\mathbb{R})$, $x \in \mathbb{R}$, il existe $y \in [x; x+p]$ tel que $\Delta^p(f)(y) = f(x)$.
- 2. Soit $\alpha \geq 0$ tel que pour tout $n \in \mathbb{N}$, $n^{\alpha} \in \mathbb{N}$. Que dire de α ?

3 Semaine IV : Espaces vectoriels normés

Exercice 1 (Houkari).

Posons $E = \{ f \in \mathcal{C}^3([0,2],\mathbb{R}) : f(0) = f(1) = f(2) \} \text{ et } N : f \mapsto ||f^{(3)}||_{\infty,[0,2]}.$

- 1. Montrer que N est une norme sur E.
- 2. L'application $f \mapsto \int_0^2 f(t) dt$ est-t-elle continue ?

Solutions

Exercice 1

La première question ne pose aucune difficulté. L'application étudiée est linéaire, pour montrer qu'elle est continue, il suffit donc de montrer qu'elle est lipschitzienne en 0. Autrement dit, peut-t-on trouver une constante K>0 telle que

$$\forall f \in E, \ \left| \int_0^2 f^{(3)}(t) dt \right| \le K ||f^{(3)}||_{\infty, [0, 2]}$$

Soit $f \in E$, l'intégration de l'inégalité de Taylor Lagrange assure que,

$$\left| \int_0^2 f(t) dt \right| \le \int_0^2 |f(t)| dt \le \int_0^2 (t|f'(0)| + \frac{t^2}{2} |f''(0)| + \frac{t^3}{6} |f^{(3)}(0)|) dt$$

Le théorème de Rolle appliqué deux fois assure l'existence de deux réels dans $[0,2], x_0, x_1$ tels que $f'(x_0) = 0$ et $f''(x_1) = 0$. Ainsi,

$$f''(0) = \int_{x_1}^0 f^{(3)}(t) dt$$

$$f'(0) = \int_{x_0}^0 \int_{x_1}^x f^{(3)}(t) dt dx$$

Ainsi, on peut écrire directement que $|f'(0)| \le 4||f^{(3)}||_{\infty}$ et $|f''(0)| \le 2||f^{(3)}||_{\infty}$. Après majoration, on trouve que $K = (8+8/6\times 2+16/24)$ convient.

4 Semaine V : Espaces vectoriels normés

Enoncés

Exercice 1 (Mme Santoni).

Soit $B \in \mathbb{M}_p(\mathbb{C})$ telle que $(B^k)_k$ est bornée. Montrer que pour tout $n \in \mathbb{N}$, $A_n = \frac{1}{n+1} \sum_{k=0}^n B^k$ admet une valeur d'adhérence, notée A et que $A^2 = A$.

Solutions

Exercice 1.

Notons M un majoration de la suite $(B^k)_k$ pour une certaine norme (dim. finie), alors (A_n) est majorée par M. Par le théorème de Bolzano-Weierstrass, A_n admet une sous-suite, disons $(A_{\varphi(n)})$, convergeante vers A.

BA = A, en effet

$$BA_{\varphi(n)} = A_{\varphi(n)} + \frac{1}{\varphi(n)+1}(B^{\varphi(n)+1} - B) \to A$$

Puis $B^kA=A$, pour tout $k\in\mathbb{N}$ par récurrence immédiate. Enfin, en revenant à l'expression de A_n et en la multipliant par A,

$$A_n A = A$$

Par passage à la limite, le résultat est obtenu.

5 Semaine VII : Séries et Algèbre linéaire

Enoncés

Exercice 1 (Antoine Le Calvez).

Nature de
$$\sum \frac{e^{i\sqrt{n}}}{n}$$
?

Exercice 2 (Antoine Le Calvez).

Soit E un \mathbb{K} -ev de dimension n, trouver une famille libre de projecteurs de E libre de cardinal maximum.

Exercice 3 (Antoine Le Calvez).

Equivalent de
$$\sum (-1)^{n-1} \lfloor \frac{n}{k} \rfloor$$
.

Solutions

Exercice 1.

Une méthode, posons pour tout $x \in \mathbb{R}^+$, $f(x) = \frac{e^{i\sqrt{x}}}{x}$ et calculons $||f'||_{\infty,[\![n;n+1]\!]}$ pour tout $n \in \mathbb{N}^*$. On obtient que $f'(x) = i\frac{e^{i\sqrt{x}}}{x^{3/2}} = O(x^{-3/2})$. Ainsi, $\sum ||f'||_{\infty}$ converge par Riemann. Utilisons donc la comparaison intégrale sur le reste

$$\sum \frac{e^{i\sqrt{n}}}{n} \sim \int \frac{e^{i\sqrt{x}}}{x} \mathrm{d}x = 2 \int \frac{e^{iu}}{u} \mathrm{d}u$$

Aussi, $\frac{\mathrm{d}}{\mathrm{d}u}\frac{e^{iu}}{u}=\frac{e^{iu}}{u}$ et $\sum\frac{e^{iu}}{u}$ converge par le critère d'Abel. Ainsi, la série converge.

Exercice 3.

On obtient facilement $n \ln 2$.

6 Semaine VIII : Algèbre linéaire

Enoncés

Exercice 1 (Sander).

Déterminer l'ensemble des matrices $A \in \mathcal{M}_n(\mathbb{K})$ telles que pour tout $B \in \mathcal{M}_n(K)$, det $A + B = \det A + \det B$.

Exercice 2 (Sander).

Montrer que

$$\forall \varphi \in \mathcal{M}_n(\mathbb{K})^*, \exists ! A \in \mathcal{M}_n(\mathbb{K}) : \varphi = (X \mapsto \operatorname{Tr}(AX))$$

Puis montrer que tout hyperplan de $\mathcal{M}_n(\mathbb{K})$ coupe $\mathcal{GL}_n(\mathbb{K})$.

Exercice 3 (Sander).

Montrer que pour tout $A, B \in \mathcal{M}_n(\mathbb{K})$, det $A^2 + B^2$ est positif.

Solutions

Exercices 1, 2, 3

En posant B=A, on constate qu'ou bien n=1 ou bien $\det A=0$. Si $\det A=0$, alors on peut noter r son rang, et alors $A=(C_1|\dots|C_r|C_{r+1}^*|\dots C_n^*)$ où disons pour simplifier sans que cela change quoi que ce soit au problème, que les r premières colonnes sont libres. Complétons-les en une base $\det \mathcal{M}_n(\mathbb{K})$, disons (C_1,\dots,C_n) , alors posons $B=(0|\dots|0|C_{r+1}|\dots|C_n)$. Alors $\det A+B\neq 0$ et $\det B=0$ si $r\geq 1$, si r=0 alors A=0 et la propriété est vraie. Finalement, seule A=0 convient.

Exercice classique, on pose l'endormorphisme $\psi:A\mapsto (X\mapsto \operatorname{Tr}(AX))$. On prouve que celle-ci est injective en utilisant les E_{ij} , en effet, $Tr(AE_{i,j})=a_{j,i}$. Ainsi, ψ est un isomorphisme, ce qui répond au problème. On utilise la caractérisation précédente et on se ramène aux matrices J_r . Par une analyse, on obtient que $B=\operatorname{Diag}(1,\ldots,1,-r+1,1,\ldots 1)\in \mathcal{GL}_n(K)$ est telle que $\operatorname{Tr}(J_rB)=0$.

On voit que $\det A^2 + B^2 = \det A - iB \det A + iB$, l'un est le conjugué de l'autre, c'est donc un nombre positif.

7 Semaine X : Réduction

Enoncés

Exercice 1 (Monier).

Soit $\mathcal{D}_n(\mathbb{C})$ l'ensemble des matrices diagonalisables dans \mathbb{C} et $\mathcal{D}_n^+(\mathbb{C})$ le sous ensemble de $\mathcal{D}_n(\mathbb{C})$ des matrices qui admettent n-valeurs propres distinctes. Déterminer l'adhérence et l'intérieur de $\mathcal{D}_n(\mathbb{C})$ et $\mathcal{D}_n^+(\mathbb{C})$.

Solutions

Exerice 1

Montrons $\operatorname{Adh} \mathcal{D}_n^+(\mathbb{C}) = \operatorname{Adh} \mathcal{D}_n(\mathbb{C}) = \mathcal{M}_n(\mathbb{C})$. Soit $A \in \mathcal{M}_n(\mathbb{C})$ alors A est trigonalisable, d'où

$$A \sim \begin{pmatrix} \lambda_1 & \star & \dots & \star \\ & \lambda_2 & \ddots & \vdots \\ & & \ddots & \star \\ & & & \lambda_n \end{pmatrix} = A'$$

et pour tout $k \in \mathbb{N}^*$, on définit

$$A_k = \begin{pmatrix} \lambda_1 - \frac{1}{k} & \star & \dots & \star \\ & \lambda_2 - \frac{2}{k} & \ddots & \vdots \\ & & \ddots & \star \\ & & & \lambda_n - \frac{n}{k} \end{pmatrix}$$

Alors $A_k \to A'$ et APCR, $A_k \in \mathcal{D}_n^+(\mathbb{C})$ car les éléments de sa diagonale finissent par tous être distincts. Comme $\mathcal{D}_n^+(\mathbb{C}) \subset \mathcal{D}_n(\mathbb{C})$, on a montré l'égalité. Montrons que $\mathcal{D}_n^+(\mathbb{C})$ est un ouvert. Soit $A \in \mathcal{D}_n^+(\mathbb{C})$, alors

$$A \sim \text{Diag}\{\lambda_1, \dots, \lambda_n\}, \ \forall i, j \in [1; n], \ i \neq j \Rightarrow \lambda_i \neq \lambda_j$$

Posons $\varepsilon = \min_{i,j} |\lambda_i - \lambda_j| \neq 0$, alors pour tout $0 < r < \varepsilon$, $A - \eta I_n \in \mathcal{D}_n^+(\mathbb{C})$. Si on prend comme norme la norme infini, on obtient le résultat et puisque toutes les normes sont équivalentes en dimension finie, c'est bon.

Montrons que Int $\mathcal{D}_n(\mathbb{C}) = \mathcal{D}_n^+(\mathbb{C})$. On a bien $\mathcal{D}_n^+ \subset \operatorname{Int} \mathcal{D}_n(\mathbb{C})$ puisque $\mathcal{D}_n^+(\mathbb{C})$ est un ouvert inclu dans $\mathcal{D}_n(\mathbb{C})$.

Pour l'autre inclusion, montrons que Int $\mathcal{D}_n(\mathbb{C}) \subset \mathcal{D}_n^+(\mathbb{C})$, i.e, $\mathcal{M}_n(\mathbb{C}) \setminus \mathcal{D}_n^+(\mathbb{C}) \subset Adh(\mathcal{M}_n(\mathbb{C}) \setminus \mathcal{D}_n(\mathbb{C}))$, i.e $\mathcal{D}_n(\mathbb{C}) \setminus \mathcal{D}_n^+(\mathbb{C}) \subset Adh(\mathcal{M}_n(\mathbb{C}) \setminus \mathcal{D}_n(\mathbb{C}))$.

Soit $A \in \mathcal{D}_n(\mathbb{C}) \backslash \mathcal{D}_n^+(\mathbb{C})$, alors

$$A \sim \text{Diag}\{\underbrace{\lambda, \dots, \lambda}_{p}, \lambda_1, \dots, \lambda_r\}$$

avec $p \geq 2$. Posons pour tout $k \in \mathbb{N}^*$,

$$A_k = A + E_{1,2} \frac{1}{k}$$

Alors pour tout $k \in \mathbb{N}^*$, A_k n'est pas diagonalisable car $\dim E_\lambda(A_k) = p-1 < p$ alors que p est la multiplicité de λ dans χ_{A_k} . De plus, $A_k \to A$. Ainsi, on a prouvé que $\mathcal{D}_n(\mathbb{C}) \backslash \mathcal{D}_n^+(\mathbb{C}) \subset \mathrm{Adh}(\mathcal{M}_n(\mathbb{C}) \backslash \mathcal{D}_n(\mathbb{C}))$.