Your Name: Cole Bardin Section: 62

first last

Lab 2: Matrix Explorations

Spring 2022

As a convenience, this **answer template** is provided if you wish to easily submit your work. Be sure to save it as a PDF before submitting online! Only one submission is allowed.

Question 1: Solve a Linear System by Row Reducing the Augmented Matrix

The unique solution is:
$$\vec{\mathbf{x}} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix}$$

(x = 6, y = 6, z = 6)

Question 2: Solve a Linear System with a Free Variable

a. Record the RAM from part **a** here. \rightarrow

1	1	0	2
0	0	1	2
0	0	0	0

b. The solution is:
$$\vec{\mathbf{x}} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 - y \\ y(free) \\ 2 \end{bmatrix}$$

($x = 2 - y$, $y = y(free)$, $z = 2$)

Ouestion 3: Matrices in general do not commute.

Question 3a. Find the matrix below that commutes with A. Circle or highlight it. **i.** $B = \begin{bmatrix} 3 & 4 \\ 4 & 3 \end{bmatrix}$ **ii.** $C = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$ **iii.** $D = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

i.
$$B = \begin{bmatrix} 3 & 4 \\ 4 & 3 \end{bmatrix}$$

ii.
$$C = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$$

iii.
$$D = \begin{bmatrix} \vec{1} & \vec{2} \\ 3 & 4 \end{bmatrix}$$

Question 3b. For $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ to commute with $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$, the matrix B must have the form:

i.
$$B = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$

ii.
$$B = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

iii.
$$B = \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$$

$$\mathbf{i.} B = \begin{bmatrix} a & b \\ b & a \end{bmatrix} \qquad \mathbf{ii.} B = \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \qquad \mathbf{iii.} B = \begin{bmatrix} a & b \\ b & -a \end{bmatrix} \qquad \mathbf{iv.} B = \begin{bmatrix} a & b \\ -b & -a \end{bmatrix}$$

Question 3c. For *B* to commute with the new matrix $F = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$, *B* must have the form: **i.** $B = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ **ii.** $B = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ **iv.** $B = \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$

i.
$$B = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$

ii.
$$B = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

iii.
$$B = \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$$

iv.
$$B = \begin{bmatrix} a & b \\ -b & -a \end{bmatrix}$$

Question 4: Commuting Pairs of Matrices

Question 4: The number of commuting pairs is: 23 15

Question 5: Trace of a matrix product AB

Question 5a: The trace of A = magic(3) is:

Question 5b: The number of pairs satisfying Tr(AB) = Tr(BA) is: All: 10,000

Question 5c: The number of pairs satisfying $Tr(AB) = Tr(A) \cdot Tr(B)$ is: 219

Question 6: Determinant of a matrix product AB.

Preview of Determinant

Question 6: The number of matrix pairs satisfying det(AB) = det(A) det(B) is: **All: 10,000**

Question 7: Row Equivalent Matrices and the Reducing Matrix R

Question 7a. The matrix row-equivalent to *A* is:

Question 7b. Record your value for R here: $R = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & -0.5 \end{bmatrix}$

Question 8: Solving Linear Systems $A\vec{x} = \vec{b}$ using linsolve (A, b)

Question 8a. Record the solution here: $\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

Question 8b. Record the RAM here.

Questions 9-10: A Stoichiometry Example/Combustion of Propane

a. Record the RAM here.

()	1	0	0	5
	1))	1	0	4
)	0	1	4 3

b. Balance the equation. Fill in a positive integer inside each box.

$$C_3H_8 + \boxed{5} O_2 \rightarrow \boxed{4} H_2O + \boxed{3} CO_2$$

ENGR 231 – Linear Engineering Systems

Ready to Submit?

Be sure all ten questions are answered. When your lab is complete, be sure to submit four files:

- 1. Your **completed Answer Template** as a PDF file
- 2. A copy of your original MALAB Script
- 3. A copy of your MATLAB Live Script
- 4. A **PDF** copy of your **MATLAB Live Script** (Save-Export to PDF...)

The due date is the day after your lab section by **11:59pm** to receive full credit. You have one more day, to submit the lab (but with a small penalty), and then the window closes, and your grade will be zero.