TIÊU CHUẨN QUỐC GIA

TCVN 5575: 2012

KẾT CẦU THÉP - TIỀU CHUẨN THIẾT KẾ

Steel structures - Design standard

Lời nói đầu

TCVN 5575:2012 thay thế TCVN 5575:1991.

TCVN 5575:2012 được chuyển đổi từ TCXDVN 338:2005 thành Tiêu chuẩn Quốc gia theo qui định tại khoản 1 Điều 69 của Luật Tiêu chuẩn và Quy chuẩn kỹ thuật và điểm b khoản 2 Điều 7 Nghị định số 127/2007/NĐ-CP ngày 1/8/2007 của Chính phủ qui định chi tiết thi hành một số điều của Luật tiêu chuẩn và Quy chuẩn kỹ thuật.

TCVN 5575:2012 do Viện Khoa học Công Nghệ Xây Dựng - Bộ xây dựng biên soạn, Bộ xây dựng đề nghị, Tổng cục Tiêu chuẩn Đo lường Chất lượng thẩm định, Bộ Khoa học và Công nghệ công bố.

KÉT CẦU THÉP - TIÊU CHUẨN THIẾT KẾ

Steel structures - Design standard

1 Phạm vi áp dụng

Tiêu chuẩn này dùng để thiết kế kết cấu thép các công trình xây dựng dân dụng, công nghệ. Tiêu chuẩn này không dùng để thiết kế các công trình giao thông, thủy lợi như các loại cầu, công trình trên đường, cửa van, đường ống, v.v...

2 Tài liệu viện dẫn

Các tài liệu viện dẫn sau là cần thiết cho việc áp dụng tiêu chuẩn này. Đối với các tài liệu viện dẫn ghi năm công bố thì áp dụng bản được nêu. Đối với các tài liệu viện dẫn không ghi năm công bố thì áp dụng phiên bản mới nhất, bao gồm cả các sửa đổi, bổ sung (nếu có).

TCVN 197:2002, Kim loại. Phương pháp thử kéo.

TCVN 198:2008, Kim loại. Phương pháp thử uốn.

TCVN 312:2007, Kim loại. Phương pháp thử uốn va đập ở nhiệt độ thường.

TCVN 313:1985, Kim loại. Phương pháp thử xoắn.

TCVN 1691:1975, Mối hàn hồ quang điện bằng tay. Kiểu, kích thước cơ bản.

TCVN 1765:1975, Thép các bon kết cấu thông thường. Mác thép và yêu cầu kỹ thuật.

TCVN 1766:1975, Thép các bon kết cấu chất lượng tốt. Mác thép và yêu cầu kỹ thuật.

TCVN 1916:1995: Bu lông,vít, vít cấy và đai ốc. Yêu cầu kỹ thuật.

TCVN 2737:1995, Tải trọng và tác động. Tiêu chuẩn thiết kế.

TCVN 3104:1979, Thép kết cấu hợp kim thấp. Mác, yêu cầu kỹ thuật.

TCVN 3223:2000, Que hàn điện dùng cho thép các bon thấp và thép hợp kim thấp. Ký hiệu, kích thước và yêu cầu kỹ thuật chung.

TCVN 3909:2000, Que hàn điện dùng cho thép các bon thấp và thép hợp kim thấp. Phương pháp thử.

TCVN 5400:1991. Mối hàn. Yêu cầu chung về lấy mẫu để thử cơ tính.

TCVN 5401:1991, Mối hàn. Phương pháp thử uốn.

TCVN 5402:2010, Mối hàn. Phương pháp thử uốn va đập.

TCVN 5709:2009, Thép các bon cán nóng dùng làm kết cấu trong xây dưng. Yêu cầu kỹ thuật.

TCVN 6522:2008, Thép tấm kết cấu cán nóng.

3 Đơn vị đo và ký hiệu

3.1 Đơn vị đo

Tiêu chuẩn này sử dụng các đơn vị đo theo hệ SI, cụ thể là đơn vị dài: mét (m); đơn vị lực: niutơn (N); đơn vị ứng suất: pascan (Pa); đơn vị khối lượng: kilogam (kg); thời gian: giây (s).

3.2 Ký hiệu

- a) Các đặc trưng hình học
- A diện tích tiết diện nguyên
- A_n diện tích tiết diện thực
- A_f diện tích tiết diện cánh
- A_w diện tích tiết diện bản bụng
- A_{bn} diện tích tiết diện thực của buông
- A_d diện tích tiết diện thanh xiên.
- b chiều rộng
- b_t chiều rộng cánh
- b_o chiều rộng phần nhô ra của cánh
- b_s chiều rộng của sườn ngang
- h chiều cao của tiết diện
- h_w chiều cao của bản bụng
- h_f chiều cao của đường hàn gốc
- h_{tk} khoảng cách giữa trục của các cánh dầm
- i bán kính quán tính của tiết diện
- i_x , i_y bán kính quán tính của tiết diện đối với các trục tương ứng x-x, y-y
- i_{min} bán kính quán tính nhỏ nhất của tiết diện
- I_f mômen quán tính của tiết diện nhánh
- I_m , I_d mômen quán tính của thanh cánh và thanh xiên của giàn
- I_b mômen quán tính tiết diện bản giằng
- I_s, I_s, mômen quán tính tiết diện sườn ngang và dọc
- I_t mômen quán tính xoắn
- I_{tr} mômen quán tính xoắn của ray, dầm
- I_{x} , I_{y} các mômen quán tính của tiết diện nguyên đối với các trục tương ứng x-x và y-y
- I_{nx} , I_{nv} các mômen quán tính của tiết diện thực đối với các trục tương ứng x-x, y-y
- L chiều cao của thanh đứng, cột hoặc chiều dài nhịp dầm
- I chiều dài nhịp
- I_d chiều dài của thanh xiên
- I_m chiều dài khoang các thanh cánh của giàn hoặc cột rỗng
- lo chiều dài tính toán của cấu kiện chịu nén
- I_x , I_y chiều dài tính toán của cấu kiện trong các mặt phẳng vuông góc với các trục tương ứng x-x, y-y

- Iw chiều dài tính toán của đường hàn
- S mômen tĩnh
- s bước lỗ bu lông
- t chiều dày
- t_f , t_w chiều dài của bản cánh và bản bụng
- u khoảng cách đường lỗ bu lông

 W_{nmin} môđun chống uốn (mômen kháng) nhỏ nhất của tiết diện thực đối với trục tính toán

 W_x , W_y môđun chống uốn (mômen kháng) của tiết diện nguyên đối với trục tương ứng x-x, y-y

 $W_{nx,min}$, $W_{ny,min}$ môđun chống uốn (mômen kháng) nhỏ nhất của tiết diện thực đối với các trục tương ứng x-x, y-y

- b) Ngoại lực và nội lực
- F, P ngoại lực tập trung
- M mômen uốn
- M_x , M_y mômen uốn đối với trục tương ứng x-x, y-y
- M_t mômen xoắn cục bộ
- N luc doc
- N_d nội lực phụ
- N_M lực dọc trong nhánh do mômen gây ra
- p áp lực tính toán
- V lực cắt
- V_t lực cắt qui ước tác dụng trong một mặt phẳng thanh (bản) giằng
- V_s lực cắt qui ước tác dụng trong thanh (bản) giằng của một nhánh
- c) Cường độ và ứng suất
- E môđun đàn hồi
- f_{y} cường độ tiêu chuẩn lấy theo giới hạn chảy của thép
- f_u cường độ tiêu chuẩn của thép theo sức bền kéo đứt
- f cường độ tính toán của thép chịu kéo, nén, uốn lấy theo giới hạn chảy
- f_t cường độ tính toán của thép theo sức bền kéo đứt
- f_{ν} cường độ tính toán chịu cắt của thép
- f_c cường độ tính toán của thép khi ép mặt theo mặt phẳng tì đầu (có gia công phẳng)
- f_{cc} cường độ tính toán ép mặt cục bộ trong các khớp trụ (mặt cong) khi tiếp xúc chặt
- f_{th} cường độ tính toán chịu kéo của sợi thép cường độ cao
- f_{ub} cường độ kéo đứt tiêu chuẩn của bulông
- f_{tb} cường độ tính toán chịu kéo của bulông
- f_{vb} cường độ tính toán chịu cắt của bulông
- f_{cb} cường độ tính toán chịu ép mặt của bulông
- f_{ba} cường độ tính toán chịu kéo của bulông neo
- f_{hb} cường độ tính toán chịu kéo của bulông cường độ cao
- f_{cd} cường độ tính toán chiu ép mặt theo đường kính con lặn

```
f_w cường độ tính toán của mối hàn đối đầu chịu nén, kéo, uốn theo giới hạn chảy
```

 f_{wu} cường độ tính toán của mối hàn đối đầu chịu nén, kéo, uốn theo sức bền kéo đứt

 f_{wv} cường độ tính toán của mỗi mối hàn đối đầu chịu cắt

 f_{wf} cường độ tính toán của đường hàn góc (chịu cắt qui ước) theo kim loại mối hàn

 f_{ws} cường độ tính toán của đường hàn góc (chịu cắt qui ước) theo kim loại ở biên nóng chảy

 f_{wun} cường độ tiêu chuẩn của kim loại đường hàn theo sức bền kéo đứt

G môđun trượt

 σ ứng suất thấp

 σ_c ứng suất pháp cục bộ

 σ_{x} , σ_{y} các ứng suất pháp song song với các trục tương ứng x-x, y-y

 $\sigma_{cr,}$ $\sigma_{c,cr}$ các ứng suất pháp tới hạn và ứng suất cục bộ tới hạn

 τ ứng suất tiếp

d) Kí hiệu các thông số

 c_1 , c_x , c_y các hệ số dùng để kiểm tra bền của dầm chịu uốn trong một mặt phẳng chính hoặc trong hai mặt phẳng chính khi có kể đến sự phát triển của biến dạng dẻo

e độ lệch tâm của lực

m độ lệch tâm tương đối

m_e độ lệch tâm tương đối tính đổi

 n, p, μ các thông số để xác định chiều dài tính toán của cột

n_a số lượng bulông trên một nữa liên kết

n_c số mũ

 $n_{\rm O}$ chu kỳ tải trọng

 n_v số lượng các mặt cắt tính toán;

 $\beta_{\rm f},~\beta_{\rm s}~$ các hệ số tính toán đường hàn góc theo kim loại đường hàn và ở biên nóng chảy của thép cơ bản

 γ_c hệ số điều kiện làm việc của kết cấu.

 γ_b hệ số điều kiện làm việc của liên kết bulông

 γ_M hệ số độ tin cậy về cường độ

 γ_Q hệ số độ tin cậy về tải trọng

 γ_u hệ số độ tin cậy trong các tính toán theo sức bền tức thời

 η hệ số ảnh hưởng hình dạng của tiết hiện

 λ đô mảnh của cấu kiên ($\lambda = I_{\lambda}/I$)

 $\overline{\lambda}$ độ mảnh qui ước ($\overline{\lambda} = \lambda \sqrt{f/E}$)

 λ_o độ mảnh tương đương của thanh tiết diện rỗng

 $\overline{\lambda}_0$ độ mảnh tương đương qui ước của thanh tiết diện rỗng ($\overline{\lambda}_0 = \lambda \sqrt{f/E}$)

 $\overline{\lambda}_{w}$ độ mảnh qui ước của bản bụng ($\overline{\lambda}_{w} = (h_{w} / t_{w}) \sqrt{f/E}$)

- λ_x , λ_y độ mảnh tính toán của cấu kiện trong các mặt phẳng vuông góc với các trục tương ứng x-x, y-y
- μ hệ số chiều dài tính toán của cột
- φ hệ số uốn dọc
- φ_b hệ số giảm cường độ tính toán khi mất ổn định dạng uốn xoắn
- φ_e hệ số giảm cường độ tính toán khi nén lệch tâm,nén uốn
- ψ hệ số xác định hệ số φ_b khi tính toán ổn định của dầm (Phụ lục E)

4 Nguyên tắc chung

4.1 Các qui định chung

- **4.1.1** Khi thiết kế kết cấu thép của một số loại công trình chuyên dụng như kết cấu lò cao, công trình thủy công, công trình ngoài biển hoặc kết cấu thép có tính chất đặc biệt như kết cấu thành mỏng, kết cấu thép tạo hình nguội, kết cấu ứng lực trước, kết cấu không gian, v.v..., cần theo những yêu cầu riêng qui định trong các tiêu chuẩn chuyên ngành.
- **4.1.2** Kết cấu thép phải được thiết kế đạt yêu cầu chung qui định trong Quy chuẩn Xây dựng Việt Nam là đảm bảo an toàn chịu lực và đảm bảo khả năng sử dụng bình thường trong suốt thời hạn sử dụng công trình.
- **4.1.3** Khi thiết kế kết cấu thép còn cần tuân thủ các tiêu chuẩn tương ứng về phòng chống cháy, về bảo vệ chống ăn mòn. Không được tăng bề dày của thép với mục đích bảo vệ chống ăn mòn hoặc nâng cao khả năng chống cháy của kết cấu.
- **4.1.4** Khi thiết kế kết cấu thép cần phải:

Tiết kiệm vật liệu thép;

Ưu tiên sử dụng các loại thép do Việt Nam sản xuất;

Lựa chọn sơ đồ kết cấu hợp lí, tiết diện cấu kiện hợp lí về mặt kinh tế - kĩ thuật;

Ưu tiên sử dụng công nghệ chế tạo tiên tiến như hàn tự động, hàn bán tự động, bulông cường độ cao;

Chú ý việc công nghiệp hóa cao quá trình sản xuất và dựng lắp, sử dụng những liên kết dựng lắp liên tiếp như liên kết mặt bích, liên kết bulông cường độ cao; cũng có thể dùng liên kết hàn để lắp nếu có căn cứ hợp lí;

Kết cấu phải có cấu tạo để dễ quan sát, làm sạch bụi, sơn, tránh tụ nước. Tiết diện hình ống phải được bit kín hai đầu.

4.2 Các yêu cầu đối với thiết kế

4.2.1 Kết cấu thép phải được tính toán với tổ hợp tải trọng bất lợi nhất, kể cả tải trọng theo thời gian và mọi yếu tố tác động khác. Việc xác định nội lực có thể thực hiện theo phương pháp phân tích đàn hồi hoặc phân tích dẻo.

Trong phương pháp đàn hồi, các cấu kiện thép được giả thiết là luôn đàn hồi dưới tác dụng của tải trọng tính toán, sơ đồ kết cấu là sơ đồ ban đầu không biến dạng.

Trong phương pháp phân tích dẻo, cho phép kể đến biến dạng không đàn hồi của thép trong một bộ phận hay toàn bộ kết cấu, nếu thỏa mãn các điều kiện sau:

Giới hạn chảy của thép không được lớn quá 450 MPa, có vùng chảy dẻo rõ rệt;

Kết cấu chỉ chịu tải trọng tác dụng tĩnh (không có tải trọng động lực hoặc va chạm hoặc tải trọng lặp gây mỏi);

Cấu kiện sử dụng thép cán nóng, có tiết diện đối xứng.

- **4.2.2** Các cấu kiện thép hình phải được chọn theo tiết diện nhỏ nhất thỏa mãn các yêu cầu của Tiêu chuẩn này. Tiết diện của cấu kiện tổ hợp được thiết lập theo tính toán sao cho ứng suất không lớn hơn 95% cường độ tính toán của vật liệu.
- **4.2.3** Trong các bản vẽ thiết kế kết cấu thép và văn bản đặt hàng vật liệu thép, phải ghi rõ mác và tiêu chuẩn tương ứng của thép làm kết cấu và thép làm liên kết, yêu cầu phải đảm bảo tính năng cơ học hay về thành phần hóa học hoặc cả hai, cũng như những yêu cầu riêng đối với vật liệu được qui định trong các tiêu chuẩn kĩ thuật Nhà nước hoặc của nước ngoài.

5 Cơ sở thiết kế kết cấu thép

5.1 Nguyên tắc thiết kế

- **5.1.1** Tiêu chuẩn này sử dụng phương pháp tính toán kết cấu thép theo trạng thái giới hạn. Kết cấu được thiết kế sao cho không vượt quá trang thái giới han của nó.
- **5.1.2** Trạng thái giới hạn là trạng thái mà khi vượt quá thì kết cấu không còn thỏa mãn các yêu cầu sử dụng hoặc khi dựng lắp được đề ra đối với nó khi thiết kế. Các trạng thái giới hạn gồm:

Các trạng thái giới hạn về khả năng chịu lực là các trạng thái mà kết cấu không còn đủ khả năng chịu lực, sẽ bị phá hoại, sụp đổ hoặc hư hỏng làm nguy hại đến sự an toàn của con người, của công trình. Đó là các trường hợp:kết cấu không đủ độ bền (phá hoại bền), hoặc kết cấu bị mất ổn định, hoặc kết cấu bị phá hoại dòn, hoặc vật liệu kết cấu bị chảy.

Các trạng thái giới hạn về sử dụng là các trạng thái mà kết cấu không còn sử dụng bình thường được nữa do bị biến dạng quá lớn hoặc do hư hỏng cục bộ. Các trạng thái giới hạn này gồm: trạng thái giới hạn về độ võng và biến dạng làm ảnh hưởng đến việc sử dụng bình thường của thiết bị máy móc, của con người hoặc làm hỏng sự hoàn thiện của kết cấu, do đó hạn chế việc sử dụng công trình; sự rung động quá mức; sự han gỉ quá mức.

5.1.3 Khi tính toán kết cấu theo trạng thái giới hạn phải dùng các hệ số độ tin cậy sau:

Hệ số độ tin cậy về cường độ γ_M (xem 6.1.4 và 6.2.2);

Hệ số độ tin cậy về tải trọng $\gamma_{\rm O}$ (xem 5.2.2);

Hệ số điều kiện làm việc γ_C (xem 5.4.1 và 5.4.2);

Cường độ tính toán của vật liệu là cường độ tiêu chuẩn nhân với hệ số $\gamma_{\rm C}$ và chia cho hệ số $\gamma_{\rm M}$; tải trọng tính toán là tải trọng tiêu chuẩn nhân với hệ số $\gamma_{\rm Q}$.

5.2 Tải trong

- **5.2.1** Tải trọng dùng trong thiết kế kết cấu thép được lấy theo TCVN 2737:1995 hoặc tiêu chuẩn thay thế tiêu chuẩn trên (nếu có).
- **5.2.2** Khi tính kết cấu theo các giới hạn về khả năng chịu lực thì dùng tải trọng tính toán là tải trọng tiêu chuẩn nhân với hệ số độ tin cậy về tải trọng γ_Q (còn gọi là hệ số tăng tải hoặc hệ số an toàn về tải trọng). Khi tính kết cấu theo các trạng thái giới hạn về sử dụng và tính toán về mỏi thì dùng tri số của tải trọng tiêu chuẩn.
- **5.2.3** Các trường hợp tải trọng đều được xét riêng rẽ và được tổ hợp để có tác dụng bất lợi nhất đối với kết cấu. Giá trị của tải trọng, các loại tổ hợp tải trọng, các hệ số tổ hợp, các hệ số độ tin cậy về tải trọng được lấy theo các điều của TCVN 2737:1995.
- **5.2.4** Với kết cấu trực tiếp chịu tải trọng động, khi tính toán về cường độ và ổn định thì trị số tính toán của tải trọng phải nhân với hệ số động lực. Khi tính toán về mỏi và biến dạng thì không nhân với hệ số này. Hệ số động lực được xác định bằng lý thuyết tính toán kết cấu hoặc cho trong các Qui pham riêng đối với loại kết cấu tương ứng.
- **5.2.5** Khi thiết kế cho giai đoạn sử dụng và dựng lắp kết cấu, nếu cần xét đến sự thay đổi nhiệt độ, có thể giả thiết sự thay đổi nhiệt độ ở các vùng phía Bắc là từ 5 °C đến 40 °C, ở các vùng phía Nam là từ 10 °C đến 40 °C. Sự phân chia hai vùng Bắc và Nam dựa theo Qui chuẩn Xây dựng Việt Nam, tập III, Phụ lục 2. Tuy nhiên, phạm vi biến động nhiệt độ có thể dựa theo số liệu khí hậu cụ thể của địa điểm xây dựng để xác định chính xác hơn.

5.3 Biến dang cho phép của kết cấu

- **5.3.1** Biến dạn của kết cấu thép được xác định theo tải trọng tiêu chuẩn, không kể đến hệ số động lực và không xét sự giảm yếu tiết diện do các lỗ liên kết.
- 5.3.2 Độ võng của cấu kiện chịu uốn không được vượt quá trị số cho phép trong Bảng 1.
- **5.3.3** Chuyển vị ngang ở mức mép mái của nhà công nghiệp kiểu khung một tầng, không cầu trục, gây bởi tải trọng gió tiêu chuẩn được giới hạn như sau:

Khi tường bằng tấm tôn kim loại: H/100;

Khi tường là tấm vật liệu nhẹ khác: H/150;

Khi tường bằng gạch hoặc bê tông: H/240;

với H là chiều cao cột.

Nếu có những giải pháp cấu tạo để đảm bảo sự biến dạng dễ dàng của liên kết tường thì các chuyển vị giới hạn trên có thể tăng lên tương ứng.

- **5.3.4** Chuyển vị ngang của đỉnh khung nhà một tầng (không thuộc loại nhà ở 3.3.3) không được vượt quá 1/300 chiều cao khung. Chuyển vị ngang của đỉnh khung nhà nhiều tầng không được vượt quá 1/500 của tổng chiều cao khung. Chuyển vị tương đối tại mỗi tầng của nhà nhiều tầng không được vươt quá 1/300 chiều cao mỗi tầng.
- **5.3.5** Đối với cột nhà xưởng có cầu trục chế độ làm việc nặng và cột của cầu tải ngoài trời có cầu trục chế độ làm việc vừa và nặng thì chuyển vị gây bởi tải trọng nằm ngang của một cầu trục lớn nhất tại mức đỉnh dầm cầu trục không được vượt quá trị số cho phép ghi trong Bảng 2.

Bảng 1 - Độ võng cho phép của cấu kiện chịu uốn

Dầm của sàn nhà và mái:L /4001. Dầm chínhL /4002. Dầm của trần có trát vữa, chỉ tính võng cho tải trọng tạm thờiL /3503. Các dầm khác, ngoài trường hợp 1 và 2L /2504. Tấm bản sànL /150Dầm có đường ray:L /1501. Dầm đỡ sàn công tác có đường ray nặng 35 kg/m và lớn hơnL /6002. Như trên, khi đường ray nặng 25 kg/m và nhỏ hơnL /400Xà gồ:L /1501. Mái nhà ngói không đấp vữa, mái tấm tôn nhỏL /1502. Mái lợp ngói có đấp vữa, mái tôn múi và các mái khácL /200Dầm hoặc giản đỡ cầu trực:L /2001. Cầu trục chế độ làm việc nhẹ, cầu trục tay, palăngL /4002. Cầu trục chế độ làm việc vừaL /5003. Cầu trục chế độ làm việc nặng và rất nặngL /600Sườn tưởng:L /300	Loại cấu kiện	Độ võng cho phép
2. Dầm của trần có trát vữa, chỉ tính võng cho tải trọng tạm thời 3. Các dầm khác, ngoài trường hợp 1 và 2 4. Tấm bản sàn L/150 Dầm có đường ray: 1. Dầm đỡ sàn công tác có đường ray nặng 35 kg/m và lớn hơn L/600 2. Như trên, khi đường ray nặng 25 kg/m và nhỏ hơn L/400 Xà gồ: 1. Mái nhà ngói không đấp vữa, mái tấm tôn nhỏ L/150 2. Mái lợp ngói có đấp vữa, mái tôn múi và các mái khác L/200 Dầm hoặc giản đỡ cầu trực: 1. Cầu trục chế độ làm việc nhẹ, cầu trục tay, palăng L/400 2. Cầu trục chế độ làm việc nặng và rất nặng L/600 Sườn tường:	Dầm của sàn nhà và mái:	
3. Các dầm khác, ngoài trường hợp 1 và 2 4. Tấm bản sàn Dầm có đường ray: 1. Dầm đỡ sàn công tác có đường ray nặng 35 kg/m và lớn hơn L /600 2. Như trên, khi đường ray nặng 25 kg/m và nhỏ hơn L /400 Xà gồ: 1. Mái nhà ngói không đấp vữa, mái tấm tôn nhỏ L /150 2. Mái lợp ngói có đấp vữa, mái tôn múi và các mái khác L /200 Dầm hoặc giàn đỡ cầu trực: 1. Cầu trục chế độ làm việc nhẹ, cầu trục tay, palăng L /400 2. Cầu trục chế độ làm việc vừa 3. Cầu trục chế độ làm việc nặng và rất nặng L /600 Sườn tường:	1. Dầm chính	<i>L /</i> 400
4. Tấm bản sàn L /150 Dầm có đường ray: 1. Dầm đỡ sàn công tác có đường ray nặng 35 kg/m và lớn hơn L /600 2. Như trên, khi đường ray nặng 25 kg/m và nhỏ hơn L /400 Xà gồ: 1. Mái nhà ngói không đắp vữa, mái tấm tôn nhỏ L /150 2. Mái lợp ngói có đấp vữa, mái tôn múi và các mái khác L /200 Dầm hoặc giàn đỡ cầu trục: 1. Cầu trục chế độ làm việc nhẹ, cầu trục tay, palăng L /400 2. Cầu trục chế độ làm việc vừa 3. Cầu trục chế độ làm việc nặng và rất nặng L /600 Sườn tường:	2. Dầm của trần có trát vữa, chỉ tính võng cho tải trọng tạm thời	L /350
Dầm có đường ray: 1. Dầm đỡ sàn công tác có đường ray nặng 35 kg/m và lớn hơn L /600 2. Như trên, khi đường ray nặng 25 kg/m và nhỏ hơn L /400 Xà gồ: L /150 1. Mái nhà ngói không đắp vữa, mái tấm tôn nhỏ L /150 2. Mái lợp ngói có đắp vữa, mái tôn múi và các mái khác L /200 Dầm hoặc giản đỡ cầu trục: L /400 1. Cầu trục chế độ làm việc nhẹ, cầu trục tay, palăng L /400 2. Cầu trục chế độ làm việc vừa L /500 3. Cầu trục chế độ làm việc nặng và rất nặng L /600	3. Các dầm khác, ngoài trường hợp 1 và 2	<i>L /</i> 250
1. Dầm đỡ sàn công tác có đường ray nặng 35 kg/m và lớn hơn 2. Như trên, khi đường ray nặng 25 kg/m và nhỏ hơn L/400 Xà gồ: 1. Mái nhà ngói không đắp vữa, mái tấm tôn nhỏ L/150 2. Mái lợp ngói có đắp vữa, mái tôn múi và các mái khác L/200 Dầm hoặc giàn đỡ cầu trực: 1. Cầu trục chế độ làm việc nhẹ, cầu trục tay, palăng L/400 2. Cầu trục chế độ làm việc vừa 3. Cầu trục chế độ làm việc nặng và rất nặng L/600 Sườn tưởng:	4. Tấm bản sàn	<i>L /</i> 150
2. Như trên, khi đường ray nặng 25 kg/m và nhỏ hơn L /400 Xà gồ: 1. Mái nhà ngói không đắp vữa, mái tấm tôn nhỏ L /150 2. Mái lợp ngói có đấp vữa, mái tôn múi và các mái khác L /200 Dầm hoặc giàn đỡ cầu trục: 1. Cầu trục chế độ làm việc nhẹ, cầu trục tay, palăng L /400 2. Cầu trục chế độ làm việc vừa L /500 3. Cầu trục chế độ làm việc nặng và rất nặng L /600 Sườn tường:	Dầm có đường ray:	
Xà gồ: 1. Mái nhà ngói không đắp vữa, mái tấm tôn nhỏ L/150 2. Mái lợp ngói có đấp vữa, mái tôn múi và các mái khác L/200 Dầm hoặc giàn đỡ cầu trục: L/200 1. Cầu trục chế độ làm việc nhẹ, cầu trục tay, palăng L/400 2. Cầu trục chế độ làm việc vừa L/500 3. Cầu trục chế độ làm việc nặng và rất nặng L/600 Sườn tường:	1. Dầm đỡ sàn công tác có đường ray nặng 35 kg/m và lớn hơn	L/600
1. Mái nhà ngói không đắp vữa, mái tấm tôn nhỏ 2. Mái lợp ngói có đắp vữa, mái tôn múi và các mái khác L/200 Dầm hoặc giàn đỡ cầu trục: 1. Cầu trục chế độ làm việc nhẹ, cầu trục tay, palăng L/400 2. Cầu trục chế độ làm việc vừa 3. Cầu trục chế độ làm việc nặng và rất nặng L/600 Sườn tường:	2. Như trên, khi đường ray nặng 25 kg/m và nhỏ hơn	L /400
2. Mái lợp ngói có đắp vữa, mái tôn múi và các mái khác L /200 Dầm hoặc giàn đỡ cầu trục: 1. Cầu trục chế độ làm việc nhẹ, cầu trục tay, palăng L /400 2. Cầu trục chế độ làm việc vừa L /500 3. Cầu trục chế độ làm việc nặng và rất nặng L /600 Sườn tường:	Xà gồ:	
Dầm hoặc giàn đỡ cầu trục: 1. Cầu trục chế độ làm việc nhẹ, cầu trục tay, palăng L /400 2. Cầu trục chế độ làm việc vừa L /500 3. Cầu trục chế độ làm việc nặng và rất nặng L /600 Sườn tường:	1. Mái nhà ngói không đắp vữa, mái tấm tôn nhỏ	<i>L</i> /150
1. Cầu trục chế độ làm việc nhẹ, cầu trục tay, palăng L /400 2. Cầu trục chế độ làm việc vừa L /500 3. Cầu trục chế độ làm việc nặng và rất nặng L /600 Sườn tường:	2. Mái lợp ngói có đắp vữa, mái tôn múi và các mái khác	L/200
2. Cầu trục chế độ làm việc vừa 3. Cầu trục chế độ làm việc nặng và rất nặng L /600 Sườn tường:	Dầm hoặc giàn đỡ cầu trục:	
3. Cầu trục chế độ làm việc nặng và rất nặng L /600 Sườn tường:	1. Cầu trục chế độ làm việc nhẹ, cầu trục tay, palăng	L /400
Sườn tường:	2. Cầu trục chế độ làm việc vừa	L /500
	3. Cầu trục chế độ làm việc nặng và rất nặng	L /600
1. Dầm đỡ tường xây L/300	Sườn tường:	
	1. Dầm đỡ tường xây	L/300
2. Dầm đỡ tường nhẹ (tôn, fibro xi măng), dầm đỡ cửa kính $L/200$	2. Dầm đỡ tường nhẹ (tôn, fibro xi măng), dầm đỡ cửa kính	L /200
3. Cột tường <i>L</i> /400	3. Cột tường	L /400

CHÚ THÍCH: *L* là nhịp của cấu kiện chịu uốn. Đối với dầm công xôn thì L lấy bằng 2 lần độ vươn của dầm.

Bảng 2 - Chuyển vị cho phép của cột đỡ cầu trục

Chuyển vị	Tính theo kết cấu phẳng	Tính theo kết cấu không gian
Chuyển vị theo phương ngang nhà của cột nhà xưởng	H _T / 1250	H _T / 2000
Chuyển vị theo phương ngang nhà của cột cầu tải ngoài trời	H _⊤ / 2500	_
3. Chuyển vị theo phương dọc nhà của cột trong và ngoài nhà	H _T / 4000	_

CHÚ THÍCH 1: H_Tlà đô cao từ mặt đáy chân cột đến mặt đỉnh dầm cầu trục hay giản cầu trục.

CHÚ THÍCH 2: Khi tính chuyển vị theo phương dọc nhà của cột trong nhà hay ngoài trời, có thể giả định là tải trọng theo phương dọc của cầu trục sẽ phân phối cho tất cả các hệ giằng và hệ khung dọc giữa các cột trong phạm vi khối nhiệt độ.

CHÚ THÍCH 3: Trong các nhà xưởng có cầu trục ngoạm và cầu trục cào san vật liệu, trị số chuyển vị cho phép của cột nhà tương ứng phải giảm đi 10%.

5.4 Hệ số điều kiện làm việc $\gamma_{\rm C}$

5.4.1 Khi tính toán kiểm tra khả năng chịu lực của các kết cấu thuộc những trường hợp nêu trong Bảng 3, cường độ tính toán của thép cho trong Bảng 5, 6 và của liên kết cho trong Bảng 7, 8, 10, 11, 12, B.5 (Phụ lục B) phải được nhân với hệ số điều kiện làm việc γ_{C} . Mọi trường hợp khác không nêu trong bảng này và không được qui định trong các điều tương ứng thì đều lấy γ_{C} = 1.

5.4.2 Giá trị của hệ số điều kiện làm việc γ_C được cho trong Bảng 3.

Bảng 3 - Giá trị của hệ số điều kiện làm việc γ_C

Loại cấu kiện	γс
1. Dầm đặc và thanh chịu nén trong giàn của các sàn những phòng lớn ở các công trình như nhà hát, rạp chiếu bóng, câu lạc bộ, khán đài, các gian nhà hàng, kho sách, kho lưu trữ, v.vkhi trọng lượng sàn lớn hơn hoặc bằng tải trọng tạm thời	0,9
2. Cột của các công trình công cộng, cột đỡ tháp nước	0,95
3. Các thanh chịu nén chính của hệ thanh bụng dàn liên kết hàn ở mái và sàn nhà (trừ thanh tại gối tựa) có tiết diện chữ T tổ hợp từ thép góc (ví dụ: vì kèo và các dàn, v.v), khi độ mảnh λ lớn hơn hoặc bằng 60	0,8
4. Dầm đặc khi tính toán về ổn định tổng thể khi ϕ_b < 1,0	0,95
5. Thanh căng, thanh kéo, thanh néo, thanh treo được làm từ thép cán	0,9
6. Các thanh của kết cấu hệ thanh ở mái và sàn:	
a. Thanh chịu nén (trừ loại tiết diện ống kín) khi tính về ổn định	0,95
b. Thanh chịu kéo trong kết cấu hàn	0,95

Bảng 3

Loại cấu kiện	γс
7. Các thanh bụng chịu nén của kết cấu không gian rỗng gồm các thép góc đơn đều cạnh hoặc không đều cạnh (hoặc liên kết theo cánh lớn):	
a. Khi liên kết trực tiếp với thanh cánh trên theo một cạnh bằng đường hàn hoặc bằng hai bulông trở lên, dọc theo thanh thép góc:	
- Thanh xiên theo Hình 9 a	0,9
- Thanh ngang theo Hình 9 b, c	0,9

- Thanh xiên theo Hình 9 c, d, e	0,8
b. Khi liên kết trực tiếp với thanh cánh trên theo một cạnh bằng một bulông (ngoài mục 7 của bảng này) hoặc khi liên kết qua bản mã bằng liên kết bất kỳ.	0,75
8. Các thanh chịu nén là thép góc đơn được liên kết theo một cạnh (đối với thép góc không đều cạnh chỉ liên kết cạnh ngắn), trừ các trường hợp đã nêu ở mục 7 của bảng này, và các giàn phẳng chỉ gồm thép góc đơn	0,75
9. Các loại bể chứa chất lỏng	0,8

CHÚ THÍCH 1: Các hệ số điều kiện làm việc $\gamma_{\rm C}$ < 1 không được lấy đồng thời.

CHÚ THÍCH 2: Các hệ số điều kiện làm việc γ_C trong các mục 3, 4, 6a, 7 và 8 cũng như các mục 5 và 6b (trừ liên kết hàn đối đầu) sẽ không được xét đến khi tính toán liên kết các cấu kiện đó.

6 Vật liệu của kết cấu và liên kết

6.1 Vật liệu thép dùng trong kết cấu

6.1.1 Vật liệu thép dùng trong kết cấu phải được lựa chọn thích hợp tùy theo tính chất quan trọng của công trình, điều kiện làm việc của kết cấu, đặc trưng của tải trọng và phương pháp liên kết, v.v...

Thép dùng làm kết cấu chịu lực cần chọn loại thép lò Mactanh hoặc lò quay thối oxy, rót sôi hoặc nữa tĩnh và tĩnh, có mác tương đương với các mác thép CCT34, CCT38 (hay CCT38Mn), CCT42, theo TCVN 1765:1975 và các mác tương ứng của TCVN 5709:1993 các mác thép hợp kim thấp theo TCVN 3104:1979. Thép phải được đảm bảo phù hợp với các tiêu chuẩn nêu trên về tính năng cơ học và cả về thành phần hóa học.

- **6.1.2** Không dùng thép sôi cho các kết cấu hàn làm việc trong điều kiện nặng hoặc trực tiếp chịu tải trọng động lực như dầm cầu trục chế độ nặng, dầm sát đặt máy, kết cấu hành lang băng tải, cột vượt của đường dây tải điện cao trên 60 mét, v.v...
- **6.1.3** Cường độ tính toán của vật liệu thép cán và thép ống đối với các trạng thái ứng suất khác nhau được tính theo các công thức của Bảng 4. Trong bảng này, f_y và f_u là cường độ tiêu chuẩn lấy theo giới hạn chảy của thép và cường độ tiêu chuẩn của thép theo sức bền kéo đứt, được đảm bảo bởi tiêu chuẩn sản xuất thép và được lấy là cường độ tiêu chuẩn của thép; γ_M là hệ số độ tin cậy về vật liệu, lấy bằng 1,05 cho mọi mác thép.
- **6.1.4** Cường độ tiêu chuẩn f_y , f_u và cường độ tính toán f của thép cácbon và thép hợp kim thấp cho trong Bảng 5 và Bảng 6 (với các giá trị lấy tròn tới 5 MPa).

Đối với các loại thép không nêu tên trong Tiêu chuẩn này và các loại thép của nước ngoài được phép sử dụng trong Bảng 4, lấy f_y là cường độ tiêu chuẩn lấy theo giới hạn chảy nhỏ nhất và f_u là cường độ tiêu chuẩn theo sức bền kéo đứt nhỏ nhất được đảm bảo của thép. γ_M là hệ số độ tin cậy về vật liệu, lấy bằng 1,1 cho mọi mác thép.

Với các loại vật liệu kim loại khác như dây cáp, khối gang đúc, v.v...phải sử dụng các loại tiêu chuẩn riêng tương ứng.

Bảng 4 - Cường độ tính toán của thép cán và thép ống

Trạng thái làm việc	Ký hiệu	Cường độ tính toán
Kéo, nén, uốn	f	$f = f_{V} / \gamma_{M}$
Trượt	f_{V}	$f_{v} = 0.58 f_{v} / \gamma_{M}$
Ép mặt lên đầu mút (khi tì sát)	f_c	$f_c = f_u/\gamma_M$
Ép mặt trong khớp trụ khi tiếp xúc chặt	f _{cc}	$f_{cc} = 0.5 f_u / \gamma_M$
Ép mặt theo đường kính của con lăn	f _{cd}	$f_{cd} = 0.025 \ f_u/\gamma_M$

Bảng 5 - Cường độ tiêu chuẩn f_y , f_u cường độ tính toán f của thép các bon

Đơn vị tính bằng megapascan

Mác thép							
	t ≤	20	20 <	20 < t ≤ 40 40 < t ≤			phụ thuộc bề dày t,
	f _y	f	f _y	f	f _y	f	mm
CCT34	220	210	210	200	200	190	340
CCT38	240	230	230	220	220	210	380
CCT42	260	245	250	240	240	230	420

Bảng 6 - Cường độ tiêu chuẩn f_v , f_u và cường độ tính toán f của thép hợp kim thấp

Đơn vị tính bằng megapascan

Don vị tim báng megapassan									
	Độ dày, mm								
Mác thép		t ≤ 20		2	20 < t ≤ 3	0	3	30 < t ≤ 6	0
	f _u	f _y	f	f _u	f _y	f	f _u	f _y	f
09Mn2	450	310	295	450	300	285	-	-	-
14Mn2	460	340	325	460	330	315	-	-	-
16MnSi	490	320	305	480	300	285	470	290	275
09Mn2Si	09Mn2Si 480 330 315 470 310 295 460 290 275							275	
10Mn2Si1	510	360	345	500	350	335	480	340	325
10CrSiNiCu	540	400*	360	540	400*	360	520	400*	360
CHÚ THÍCH: * H	CHÚ THÍCH: * Hệ số γ_M đối với trường hợp này là 1,1; bề dày tối đa là 40 mm.								

6.2 Vật liệu thép dùng trong liên kết

- 6.2.1 Kim loại hàn dùng cho kết cấu thép phải phù hợp với các yêu cầu sau:
- 1. Que hàn khi hàn tay lấy theo TCVN 3223:1994. Kim loại que hàn phải có cường độ kéo đứt tức thời không nhỏ hơn trị số tương ứng của thép được hàn.
- 2. Dây hàn và thuốc hàn dùng trong hàn tự động và bán tự động phải phù hợp với mác thép được hàn. Trong mọi trường hợp, cường độ của mối hàn không được thấp hơn cường độ của que hàn tương ứng.
- **6.2.2** Cường độ tính toán của mối hàn trong các dạng liên kết và trạng thái làm việc khác nhau được tính theo các công thức trong Bảng 7.

Trong liên kết đối đầu hai loại thép khác nhau thì dùng trị số cường độ tiêu chuẩn nhỏ hơn.

Chiều dài tính toán của mối hàn góc của một số loại que hàn cho trong Bảng 8.

Bảng 7 - Cường đô tính toán của mối hàn

Dạng liên kết	Trạng thái	Ký hiệu	Cường độ tính toán	
Hàn đối đầu	Nén, kéo và uốn khi kiểm tra chất lượng đường hàn bằng các phương pháp vật lý	Theo giới hạn chảy Theo sức bền kéo đứt	f _w	$f_{w} = f$ $f_{wu} = f_{t}$
	Kéo vá	f_{w}	$f_w = 0.85 f$	

		Trượt	f_{wv}	$f_{wv} = f_v$
Hàn góc	Cắt (qui ước)	Theo kim loại mối hàn	f_{wf}	$f_{wf} = 0.55 f_{wun} / \gamma_{M}$
900	5 21 (qui a 5 5)	Theo kim loại ở biên nóng chảy	f_{ws}	$f_{\rm ws} = 0.45 f_{\rm u}$

CHÚ THÍCH 1: f_v và f_v là cường độ tính toán chịu kéo và cắt của thép được hàn; f_u và f_{wun} là ứng suất kéo đứt tức thời theo tiêu chuẩn sản phẩm (cường độ kéo đứt tiêu chuẩn) của thép được hàn và của kim loại hàn.

CHÚ THÍCH 2: Hệ số độ tin cậy về cường độ của mối hàn γ_M lấy bằng 1,25 khi $f_{wun} \le 490$ Mpa và bằng 1,35 khi $f_{wun} \ge 590$ Mpa.

Bảng 8 - Cường độ kéo đứt tiêu chuẩn f_{wun} và cường độ tính toán f_{wf} của kim loại hàn trong mối hàn góc

Đơn vị tính bằng megapascan

Loại que hàn theo TCVN	Cường độ kéo đứt tiêu chuẩn	Cường độ tính toán
3223:1994	f _{wun}	f_{wf}
N42, N42 - 6B	410	180
N46, N46 - 6B	450	200
N50, N50 - 6B	490	215

6.2.3 Bu lông phổ thông dùng cho kết cấu thép phải phù hợp với các yêu cầu của TCVN 1916:1995. Cấp độ bền của bulông chịu lực phải từ 4.6 trở lên. Bulông cường độ cao phải tuân theo các qui định riêng tương ứng. Cường độ tính toán của liên kết một bulông được xác định theo các công thức ở Bảng 9.

Trị số cường độ tính toán chịu cắt và kéo của bulông theo cấp độ bền của bulông cho trong Bảng 10. Cường độ tính toán chịu ép mặt của thép trong liên kết bulông cho trong Bảng 11.

Bảng 9 - Cường đô tính toán của liên kết một bulông

Bung 5 - Out ong do timi tour cua nen ket mot bulong						
Trạng thái làm	Ký		ịu cắt và kéo củ với cấp độ bền	Cường độ chịu ép mặt của cấu kiện thép có giới		
việc	hiệu	4.6; 5.6; 6.6	4.8; 5.8	8.8; 10.9	hạn chảy dưới 440 MPa	
Cắt	f_{vb}	$f_{vb} = 0.38 \ f_{ub}$	$f_{vb} = 0.4 f_{ub}$	$f_{vb} = 0.4 f_{ub}$	_	
Kéo	f_{tb}	$f_{tb} = 0.42 f_{ub}$	$f_{tb} = 0.4 f_{ub}$	$f_{tb} = 0.5 f_{ub}$	_	
Ép mặt a. Bulông tinh		_	_	ı	$f_{cb} = \left(0.6 + 410 \frac{f_u}{E}\right) f_u$	
b. Bulông thô và bulông thường	f _{cb}	_	_	-	$f_{cb} = \left(0.6 + 340 \frac{f_u}{E}\right) f_u$	

Bảng 10 - Cường độ tính toán chịu cắt và kéo của bulông

Đơn vị tính bằng megapascan

Trạng	Ký		Cấp độ bền					
thái làm việc	hiệu	4.6	4.8	5.6	5.8	6.6	8.8	10.9
Cắt	f_{vb}	150	160	190	200	230	320	400
Kéo	f_{tb}	170	160	210	200	250	400	500

Bảng 11 - Cường độ tính toán chịu ép mặt của bulông f_{cb}

Đơn vị tính bằng megapascan

Giới hạn bền kéo đứt của	Giá trị f _{cb}			
thép cấu kiện liên kết	Bulông tinh	Bulông thô và thường		
340	435	395		
380	515	465		
400	560	505		
420	600	540		
440	650	585		
450	675	605		
480	745	670		
500	795	710		
520	850	760		
540	905	805		

6.2.4 Cường độ tính toán chịu kéo của bulông neo f_{ba} được xác định theo công thức $f_{ba} = 0.4 \text{ x}$ f_{vb} .

Trị số cường độ tính toán chịu kéo của bulông neo cho trong Bảng 12

Bảng 12 - Cường độ tính toán chịu kéo của bulông neo

Đơn vị tính bằng megapascan

Đường kính bulông,		Làm từ thép mác	
mm	CT38	16MnSi	09Mn2Si
Từ 12 đến 32	150	192	190
Từ 33 đến 60	150	190	185
Từ 61 đến 80	150	185	180
Từ 81 đến 140	150	185	165

6.2.5 Cường độ tính toán chịu kéo của bulông cường độ cao trong liên kết truyền lực bằng ma sát được xác định theo công thức $f_{hb} = 0.7 \text{ x } f_{ub}$. Cường độ kéo đứt tiêu chuẩn f_{ub} của thép làm bulông cường độ cao cho trong Bảng B.5, Phụ lục B.

6.2.6 Cường độ tính toán chịu kéo của sợi thép cường độ cao được xác định theo công thức f_{th} = 0,63 x f_u .

7 Tính toán các cấu kiện

7.1 Cấu kiện chịu kéo đúng tâm

7.1.1 Cấu kiện chịu kéo đúng tâm tính toán về bền theo công thức

$$\sigma = \frac{N}{A_n} \le f \gamma_c \tag{1}$$

trong đó:

N là lực kéo đúng tâm tính toán;

 A_n là diện tích tiết diện thực của cấu kiện.

7.2.1 Diện tích tiết diện thực bằng diện tích tiết diện nguyên trừ đi diện tích giảm yếu. Diện tích giảm yếu là diện tích bị mất đi do yêu cầu chế tạo. Đối với liên kết bulông (trừ bulông cường độ cao) khi các lỗ xếp thẳng hàng thì diện tích giảm yếu bằng tổng lớn nhất của diện tích các lỗ tại

một tiết diện ngang bất kỳ vuông góc với chiều của ứng suất trong cấu kiện. Khi các lỗ xếp so le thì diện tích giảm yếu lấy trị số lớn hơn trong hai trị số sau (Hình 1a):

Giảm yếu do các lỗ xếp trên đường thẳng 1-5;

Tổng diện tích ngang của các lỗ nằm trên đường chữ chi 1 - 2 - 3 - 4 - 5 trừ đi lượng $s^2tl(4u)$ cho mỗi đoạn đường chéo giữa các lỗ;

trong đó:

s là bước lỗ so le, tức là khoảng cách song song với phương của lực giữa tâm của các lỗ trên hai đường liên tiếp nhau;

t là bề dày thanh thép có lỗ;

u là khoảng đường lỗ, là khoảng cách vuông góc với phương của lực giữa tâm các lỗ trên hai đường liên tiếp.

Đối với thép có lỗ trên hai cánh thì khoảng đường lỗ u là tổng các khoảng cách từ tâm lỗ đến sống thép góc, trừ đi bề dày cánh (Hình 1b).

Hình 1 - Cách xác định diện tích thực

7.2 Cấu kiện chịu uốn

7.2.1 Tính toán về bền

7.2.1.1 Cấu kiên bung đặc chiu uốn trong một mặt phẳng chính được tính theo công thức:

$$\frac{\mathsf{M}}{\mathsf{W}_{\mathsf{n}\,\mathsf{min}}} \le \mathsf{f}\gamma_{\mathsf{c}} \tag{2}$$

trong đó:

M là mômen uốn quanh trục tính toán;

 $W_{n,min}$ là môđun chống uốn nhỏ nhất của tiết diện thực đối với trục tính toán.

7.2.1.2 Độ bền chịu cắt của cấu kiện bụng đặc chịu uốn trong một mặt phẳng chính được tính theo công thức:

$$\tau = \frac{VS}{It_{w}} \le f_{v} \gamma_{c} \tag{3}$$

trong đó:

V là lực cắt trong mặt phẳng bản bụng của tiết diện tính toán;

S là mômen tĩnh đối với trục trung hòa của phần tiết diện nguyên ở bên trên vị trí tính ứng suất;

I là mômen quán tính của tiết diện nguyên;

 t_w là bề dày bản bụng;

 f_{ν} là cường độ tính toán chịu cắt của thép.

7.2.1.3 Khi trên cánh dầm có tải trọng tập trung tác dụng trong mặt phẳng bản bụng mà bên dưới không có sườn tăng cường, phải kiểm tra độ bền nén cục bộ của mép trên bản bụng theo công thức:

$$\sigma_{c} = \frac{F}{t_{w}l_{z}} \le f\gamma_{c} \tag{4}$$

trong đó:

F là tải trọng tập trung;

 I_z là độ dài phân bố qui đổi của tải trọng tập trung dọc theo mép trên của bản bụng tại cao độ ứng với biên trên của chiều cao tính toán h_w của bản bụng:

$$I_z = b + 2h_v \tag{5}$$

với b là chiều dài phân bố lực của tải trọng tập trung theo chiều dài dầm; h_y là khoảng cách từ mặt trên của cánh dầm đến biên trên của chiều cao tính toán của bản bụng (Hình 2).

a) Dầm hàn; b) Dầm thép cán; c) Dầm bulông (đinh tán)

Hình 2 - Sơ đồ tính chiều dài phân bố tải trọng lên bụng dầm

Chiều cao tính toán h_w của bản bụng lấy như sau: với dầm thép cán là khoảng cách giữa các điểm bắt đầu uốn cong của bản bụng, chỗ tiếp giáp của bản bụng với cánh trên và cánh dưới (Hình 2b); với dầm hàn là chiều cao bản bụng (Hình 2a); với dầm đinh tán hay bulông là khoảng cách giữa các mép gần nhau nhất của các thép góc trên hai cánh (Hình 2c).

7.2.1.4 Tại cao độ ứng với biên trên của chiều cao tính toán của bản bụng dầm, khi đồng thời có ứng suất pháp, ứng suất tiếp và có thể có cả ứng suất cục bộ thì cần kiểm tra theo ứng suất tương đương:

$$\sqrt{\sigma^2 + \sigma_c^2 - \sigma\sigma_c + 3\tau^2} \le 1,15 f\gamma_c \tag{6}$$

trong đó σ , τ , σ_c là các ứng suất pháp,ứng suất tiếp và ứng suất cục bộ vuông góc với trục dầm ở cùng một điểm tại cao độ ứng với biên trên của chiều cao tính toán của bản bụng; τ và σ_c tính theo công thức (3) và (4); còn σ tính theo công thức sau:

$$\sigma = \frac{M}{I_n} y \tag{7}$$

trong đó:

 σ và σ_c mang dấu dương nếu là kéo, dấu âm nếu là nén;

In là mômen quán tính của tiết diện thực của dầm;

y là khoảng cách từ biên trên của chiều cao tính toán của bản bung đến truc trung hòa;

7.2.1.5 Cấu kiện đặc chiu uốn trong hai mặt phẳng chính được kiểm tra bền theo công thức:

$$\frac{M_x}{I_{nx}}y \pm \frac{M_y}{I_{ny}}x \le f\gamma_c \tag{8}$$

trong đó: x, y là khoảng cách từ điểm đang xét của tiết diên tới trục chính tương ứng.

Đồng thời với công thức (8) bản bung dầm phải được kiểm tra bền theo các công thức (3) và (6).

7.2.1.6 Dầm đơn giản có tiết diện đặc, bằng thép có giới hạn chảy $f_y \le 530$ MPa, chịu tải trọng tĩnh, uốn trong các mặt phẳng chính, được phép tính toán có kể đến sự phát triển của biến dạng dẻo, công thức kiểm tra bền như sau:

Chịu uốn ở một trong các mặt phẳng chính và khi ứng suất tiếp $\tau \le 0.9 f_v$ (trừ tiết diện ở gối):

$$\frac{M}{c_1 W_{p_1 min}} \le f \gamma_c \tag{9}$$

Chịu uốn trong hai mặt phẳng chính và khi ứng suất tiếp $\tau \le 0.5 f_v$ (trừ đi tiết diện ở gối):

$$\frac{M_{x}}{c_{x}W_{nx,min}} + \frac{M_{y}}{c_{y}W_{ny,min}} \le f\gamma_{c}$$
 (10)

trong đó:

 M_x , M_y là các giá trị tuyệt đối của mômen uốn;

 c_1 , c_x , c_y lấy theo Bảng C.1, Phụ lục C.

Tiết diện gối dầm (khi M = 0, $M_x = 0$; $M_y = 0$) được kiểm tra bền theo công thức:

$$\tau = \frac{V}{t_w h_w} \le f_v \gamma_c \tag{11}$$

- **7.2.1.7** Đối với dầm có tiết diện thay đổi, chỉ được tính toán kể đến sự phát triển của biến dạng dẻo cho một tiết diện có tổ hợp nội lực M và V lớn nhất.
- **7.2.1.8** Dầm liên tục và dầm ngàm, có tiết diện chữ I không đổi, chịu uốn trong mặt phẳng có độ cứng lớn nhất, chiều dài các nhịp lân cận khác nhau không quá 20, chịu tải trọng tĩnh, tính toán bền theo công thức (9) có kể đến sự phân bố lại mômen tại gối và nhịp. Giá trị tính toán của mômen uốn M được lấy như sau:

$$M = \alpha x M_{\text{max}} \tag{12}$$

trong đó:

 M_{max} là mômen uốn lớn nhất tại nhịp hoặc gối khi tính như dầm liên tục với giả thiết vật liệu làm việc đàn hồi;

 α là hê số phân bố lai mômen, tính theo công thức:

$$\alpha = 0.5 \left(1 + \frac{M_e}{M_{max}} \right) \tag{13}$$

với Me là mômen uốn qui ước được lấy như sau:

a) Với những dầm liên tục có hai đầu mút là khớp, lấy tri số lớn hơn trong hai tri số sau:

$$M_{e} = \max \left[\frac{M_{1}}{1 + (a/I)} \right] \tag{14}$$

$$M_{\rm e} = 0.5 \, M_2 \tag{15}$$

trong đó:

 M_1 là mômen uốn ở nhịp biên, được tính như dầm đơn giản một nhịp, kí hiệu max tức là lấy trị số lớn nhất có thể có của biểu thức đứng sau nó;

 $\it M_{\rm 2}$ là mômen uốn lớn nhất trong nhịp trung gian được tính như dầm đơn giản một nhịp;

a là khoảng cách từ tiết diện có mômen M_1 đến gối biên;

/ là chiều dài nhịp biên.

- b) Trong dầm một nhịp và dầm liên tục có hai đầu mút liên kết ngàm thì $M_e = 0.5 M_3$, với M_3 là giá trị lớn nhất trong các mômen tính được khi coi gối tựa là các khớp.
- c) Dầm có một đầu liên kết ngàm, đầu kia liên kết khớp thì M_e được lấy theo công thức (14).

Giá trị của lực cắt V trong công thức (11) lấy lại tiết diện có M_{max} tác dụng, nếu M_{max} là mômen uốn ở nhịp thì kiểm tra tiết diện ở gối dầm.

7.2.1.9 Dầm liên tục và dầm ngàm thỏa mãn 7.2.1.8, chịu uốn trong hai mặt phẳng chính, có $\tau \le 0.5 f_v$ được kiểm tra bền theo công thức (10) có kể đến sự phân bổ lại mômen theo các chỉ dẫn ở 7.2.1.8.

7.2.2 Tính toán về ổn định

7.2.2.1 Dầm tiết diện chữ I, chịu uốn trong mặt phẳng bản bụng được kiểm tra ổn định tổng thể theo công thức:

$$\frac{M}{\varphi_{b}W_{c}} \le f\gamma_{c} \tag{16}$$

trong đó:

 W_c là môđun chống uốn của tiết diện nguyên cho thở biên của cánh chịu nén;

φ_b là hệ số, xác định theo Phụ lục E

Khi xác định φ_b , chiều dài tính toán I_0 của cánh chịu nén lấy như sau:

a) Trường hợp dầm đơn giản:

Là khoảng cách giữa các điểm cố kết của cánh chịu nén không cho chuyển vị ngang (các mắt của hệ giằng dọc, giằng ngang, các điểm liên kết của sàn cứng).

Bằng chiều dài nhịp dầm khi không có hệ giằng.

b) Trường hợp dầm côngxôn:

Bằng khoảng cách giữa các điểm liên kết của cánh chịu nén trong mặt phẳng ngang khi có các liên kết này ở đầu mút và trong nhịp côngxôn.

Bằng chiều dài côngxôn khi đầu mút cánh chịu nén không được liên kết chặt trong mặt phẳng ngang

7.2.2.2 Không cần kiểm tra ổn định của dầm khi:

- a) Cánh chịu nén của dầm được liên kết chặt với sàn cứng (sàn bê tông cốt thép bằng bê tông nặng, bê tông nhẹ, bê tông xốp; các sàn thép phẳng, thép hình, thép ống, v.v...).
- b) Đối với dầm có tiết diện chữ I đối xứng và những dầm có cánh chịu nén mở rộng nhưng chiều rộng cánh chịu kéo không nhỏ hơn 0,75 chiều rộng cánh chịu nén, thì tỉ số giữa chiều dài tính toán l_0 và chiều rộng cánh chịu nén b_f của dầm không lớn hơn giá trị tính theo các công thức của Bảng 13.

Bảng 13 - Giá trị lớn nhất l_o / b_f để không cần kiểm tra ổn định của dầm

Vị trí đặt tải trọng	Dầm cán và dầm hàn (khi 1≤ h _f /b _f ≤ 6 và 15 ≤ b _f /t _f ≤ 35)
Ở cánh trên	$\frac{I_{o}}{b_{f}} = \left[0.35 + 0.0032 \frac{b_{f}}{t_{f}} + \left(0.76 - 0.02 \frac{b_{f}}{t_{f}}\right) \frac{b_{f}}{h_{fk}}\right] \sqrt{\frac{E}{f}} $ (17)
Ở cánh dưới	$\frac{I_o}{b_f} = \left[0.57 + 0.0032 \frac{b_f}{t_f} + \left(0.92 - 0.02 \frac{b_f}{t_f}\right) \frac{b_f}{h_{fk}}\right] \sqrt{\frac{E}{f}} $ (18)

Không phụ thuộc vị trí đặt tải khi tính các đoạn dầm giữa các điểm giằng hoặc khi uốn thuần túy

$$\frac{I_o}{b_f} = \left[0,41 + 0,0032 \frac{b_f}{t_f} + \left(0,73 - 0,016 \frac{b_f}{t_f} \right) \frac{b_f}{h_{fk}} \right] \sqrt{\frac{E}{f}} \qquad \textbf{(19)}$$

CHÚ THÍCH:

b_f, t_f là chiều rộng và bề dày của cánh chịu nén;

h_{fk} là khoảng cách giữa trục của các cánh dầm;

Đối với dầm bulông cường độ cao, giá trị của l_o/ b_f trong Bảng 13 được nhân với 1, 2;

Đối với dầm có tỉ số b_f , t_f < 15 trong các công thức của Bảng 13 dùng b_f , t_f = 15.

7.3 Cấu kiện chịu nén đúng tâm

7.3.1 Tính toán về bền

Tính toán về bền của cấu kiện nén đúng tâm giống cấu kiện chịu nén đúng tâm, theo công thức (1), 7.1.1.

7.3.2 Tính toán về ổn định

7.3.2.1 Tính toán về ổn định của cấu kiện đặc chịu nén đúng tâm theo công thức:

$$\frac{N}{\phi A} \le f \gamma_c$$
 (20)

trong đó:

A là diện tích tiết diện nguyên;

 ϕ là hệ số uốn dọc, phụ thuộc vào độ mãnh qui ước $\overline{\lambda}=\lambda\sqrt{\frac{f}{E}}$ được tính theo các công thức:

Khi
$$0 < \overline{\lambda} \le 2.5$$
: $\phi = 1 - \left(0.073 - 5.53 \frac{f}{E}\right) \overline{\lambda} \sqrt{\overline{\lambda}}$ (21)

Khi 2,5 <
$$\overline{\lambda}$$
 ≤ 4,5: $\phi = 1,47 - 13,0 \frac{f}{E} - \left(0,371 - 27,3 \frac{f}{E}\right) \overline{\lambda} + \left(0,0275 - 5,53 \frac{f}{E}\right) \overline{\lambda}^{-2}$ (22)

Khi
$$\overline{\lambda} > 4.5$$
:
$$\varphi = \frac{332}{\overline{\lambda}^2 (51 - \overline{\lambda})}$$
 (23)

Giá trị số của hệ số φ có thể lấy theo Bảng D.8, Phụ lục D.

7.3.2.2 Các cấu kiện chịu nén có bản bụng đặc, hở dạng Π , có $\lambda_x < 3\lambda_y$ (với λ_x , λ_y là độ mảnh tính toán theo các trục tương ứng x-x và y-y, xem Hình 3), được liên kết bằng các bản giằng hoặc thanh giằng cần được tính theo các chỉ dẫn ở 7.3.2.3 và 7.3.2.5.

Hình 3 - Các cấu kiện có tiết diện dạng Π

7.3.2.3 Các thanh rỗng tổ hợp từ các nhánh, được liên kết với nhau bằng các bản giằng hoặc thanh giằng, chịu nén đúng tâm thì hệ số uốn dọc φ đối với trục ảo (trục vuông góc với mặt

phẳng của bản giằng hoặc thanh giằng) được tính theo các công thức (21), (22), (23) hoặc tra theo Bảng D.8 Phụ lục D, trong đó thay $\overline{\lambda}$ bằng độ mảnh tương đương quy ước $\overline{\lambda_o}$ (

 $\overline{\lambda}_o = \lambda_o \sqrt{f/E}$). Giá trị của λ_o được tính theo các công thức ở Bảng 14.

Với những thanh tổ hợp liên kết bằng thanh giằng, ngoài việc kiểm tra ổn định của cả thanh còn phải kiểm tra ổn định của từng nhánh trong khoảng I_f giữa các mắt.

Độ mảnh riêng của từng nhánh λ_1 , λ_2 , λ_3 không được lớn hơn 40.

Khi dùng một tấm thay cho một mặt phẳng bản giằng (Hình 3) thì độ mảnh của nhánh tính theo bán kính quán tính của một nửa tiết diện đối xứng với trục vuông góc với mặt phẳng của bản giằng của phần tiết diện đó.

Đối với thanh tổ hợp liên kết bằng thanh giằng, độ mảnh riêng của các nhánh nằm giữa các mắt không được lớn hơn 80 và không vượt quá đô mảnh tương đượng λο của cả thanh.

7.3.2.4 Cấu kiện tổ hợp từ các thép góc, thép chữ [(như thanh dàn, v.v...) được ghép sát nhau hoặc qua các bản đệm được tính toán như thanh bụng đặc khi khoảng tự do của nhánh l_i giữa các bản đệm (lấy như 7.3.2.3) không vượt quá:

40 i, đối với cấu kiện chịu nén;

80 i, đối với cấu kiện chịu kéo.

trong đó i là bán kính quán tính của thép góc, thép chữ [đối với trục song song với mặt phẳng của bản đệm; khi tiết diện thanh dạng chữ thập (ghép từ hai thép góc) là bán kính quán tính nhỏ nhất của thép góc.

Trong phạm vi chiều dài thanh nén, cần đặt ít nhất hai bản đệm.

7.3.2.5 Bản giằng, thanh giằng của cấu kiện tổ hợp được tính theo lực cắt qui ước V_t không đổi theo chiều dài thanh. V_t được tính theo công thức:

$$V_f = 7,15. \ 10^{-6} (2330 - E/f) \ N/\varphi$$
 (33)

trong đó:

N là lực nén tính toán trong thanh tố hợp;

 φ là hệ số uốn dọc của thanh tổ hợp xác định theo λ_0 .

Lực cắt qui ước V_t được phân phối như sau:

Đối với tiết diện loại 1 và 2 (Bảng 14), mỗi mặt phẳng chứa bản (thanh) giằng vuông góc với trục tính toán một lực là $0.5 V_i$;

Đối với tiết diện loại 3 (Bảng 14) mỗi mặt phẳng bản (thanh) giằng chiu một lực bằng 0,8 V_t.

7.3.2.6 Bản giằng và liên kết của nó với nhánh cột (Hình 5) được tính theo các nội lực sau:

Lực cắt trong bản:
$$T_b = V_s I/b$$
 (34)

Mômen uốn trong bản:
$$M_b = V_s I/2$$
 (35)

trong đó V_s là lực cắt qui ước tác dụng trong bản của một nhánh.

- a) Cột liên kết hàn
- b) Côt liên kết bulông

a) Cột liên kết hàn

Hình 5 - Cột tổ hợp bằng bản giằng

Bảng 14 - Công thức tính độ mảnh tương đương của cấu kiện rỗng

Logi	Sơ đồ	Độ mảnh	tương đương λ _o	
tiết	tiết	Với bản giằng khi		Vádabonko nišena
diện	diện	$I_b I / (I_f b) < 5$	Với thanh giẳng	
1	$x = \begin{bmatrix} 1 & 1 & y & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} - x$	$\lambda_0 = \sqrt{\lambda_y^2 + +0.82\lambda_1^2(1+n)}$	$\lambda_0 = \sqrt{\lambda_y^2 + \lambda_1^2}$	$\lambda_0 = \sqrt{\lambda_y^2 + \alpha_1 \frac{A}{A_{d1}}}$
	1 + y	(24)	(27)	(30)
2	2	$\lambda_0 = \sqrt{\lambda^2 + +0.82[\lambda_1^2(1+n_1) + \lambda_2^2(1+n_2)]}$	$\lambda_0 = \sqrt{\lambda^2 + \lambda_1^2 + \lambda_2^2}$	$\lambda_0 = \sqrt{\lambda^2 + A \left(\frac{\alpha_1}{\alpha_1} + \frac{\alpha_2}{\alpha_2} \right)}$
	b +	(25)	(28)	$\begin{pmatrix} A_{d1} & A_{d2} \end{pmatrix}$ (31)
3		$\lambda_0 = \sqrt{\lambda^2 + 0.82[\lambda_3^2(1 + 3n_3)]}$	$\lambda_0 = \sqrt{\lambda^2 + 1.3\lambda_3^2}$	$\lambda_0 = \sqrt{\lambda^2 + \alpha_1 \frac{2A}{3A_d}}$
		(26)	(29)	(32)

CHÚ THÍCH 1: *b* là khoảng cách giữa trục của các nhánh; / là khoảng cách giữa trọng tâm của các bản giằng;

λ là độ mảnh lớn nhất của thanh;

 λ_1 , λ_2 , λ_3 là độ mảnh của từng nhánh đối với các trục 1-1, 2-2, 3-3, tương ứng với chiều dài nhánh l $_{\rm f}$, đối với cột hàn là khoảng cách giữa các mép gần nhau của hai bản giằng liên tiếp (Hình 5.a), đối với cột bulông là khoảng cách giữa trọng tâm của hai bulông ngoài cùng của hai bản giằng liên tiếp (Hình 5.b);

A là diện tích tiết diện toàn cột;

 A_{d1} , A_{d2} , A_{d} là diện tích tiết diện các thanh xiên của hệ giằng (khi thanh giằng dạng chữ thập là diện tích của hai thanh) nằm trong các mặt phẳng thẳng góc với các trục tương ứng 1-1 và 2-2, hoặc nằm trong một mặt phẳng nhánh (đối với cột 3 nhánh);

 α_1 , α_2 là các hệ số, xác định theo công thức: $\alpha = 10 \frac{a^3}{b^2 l}$, trong đó: a, b, l lấy theo Hình 4;

 I_b là mômen quán tính của bản giằng đối với trục bản thân x-x (Hình 5);

 I_f là mômen quán tính của một nhánh lấy với trục 1-1 (tiết diện loại 1); 1-1 và 2-2 (tiết diện loại 2); 3-3 (tiết diện loại 3);

 n_1 , n_2 , n_3 tương ứng là các hệ số được xác định theo các công thức sau:

$$n = \frac{I_{f1}b}{I_{b}I}; \qquad n_1 = \frac{I_{f1}b}{I_{b1}I}; \qquad n_2 = \frac{I_{f2}b}{I_{b2}I}; \qquad n_3 = \frac{I_{f3}b}{I_{b}I};$$

ở đâv:

 I_{f_1} và I_{f_3} là Mômen quán tính của tiết diện từng nhánh lấy với trục tương ứng 1-1 và 3-3 (đối với tiết diện loại 1 và loại 3);

 I_{f1} và I_{f2} là Mômen quán tính của các tiết diện thép chữ l lấy với trục 1-1 và 2-2 (đối với tiết diện loại 2);

 I_{b1} và I_{b2} là Mômen quán tính của một bản giằng nằm tương ứng trong mặt phẳng vuông góc với

trục các trục tương ứng 1-1 và 2-2 (đối với tiết diện loại 2).

7.3.2.7 Thanh giằng được tính như hệ thanh bụng của dàn. Khi tính các thanh xiên giao nhau của hệ chữ thập, có thanh chống ngang (Hình 6) phải xét thêm nội lực phụ N_d trong thanh xiên do lực nén trong nhánh cột gây nên:

$$N_{d} = \alpha N_{f} \frac{A_{d}}{A_{f}}$$
 (36)

trong đó:

N_f là lực nén trong một nhánh;

Af là diện tích tiết diện một nhánh;

 A_d là diện tích tiết diện một thanh xiên;

 α là hệ số, xác định theo công thức:

$$\alpha = al^2/(a^3 + 2b^3)$$

a, b, I - Các kích thước, xác định theo Hình 6.

Hình 6 - Sơ đồ thanh giằng chữ thập

7.3.2.8 Các thanh dùng để giảm chiều dài tính toán của các cấu kiện chịu nén được tính theo lực cắt quy ước trong cấu kiện chịu nén, xác định theo công thức (33).

7.4 Cấu kiện chịu nén uốn, kéo uốn

- 7.4.1 Tính toán về bền
- **7.4.1.1** Không cần tính toán về bền của cấu kiện chịu nén lệch tâm, nén uốn đồng thời khi độ lệch tâm tương đối tính đổi $m_e \le 20$, tiết diện không bị giảm yếu và giá trị của mômen uốn để tính toán về bền và ổn định là như nhau.
- **7.4.1.2** Tính toán về bền cấu kiện chịu nén lệch tâm, nén uốn, kéo lệch tâm, kéo uốn, làm bằng thép có giới hạn chảy $f_y \le 530$ MPa, không chịu trực tiếp tác dụng của tải trọng động, khi $\tau \le 0.5$ f_v và N/(A_nf)>0.1 được thực hiện theo công thức:

$$\left(\frac{N}{A_{n}f\gamma_{c}}\right)^{n_{c}} + \frac{M_{x}}{c_{x}W_{nx,min}f\gamma_{c}} + \frac{M_{y}}{c_{y}W_{ny,min}f\gamma_{c}} \le 1$$
(37)

trong đó:

N, M_x , M_y là giá trị tuyệt đối tương ứng của lực dọc, mômen uốn của tổ hợp nội lực bất lợi nhất. n_c , c_x , c_y là các hệ số, lấy theo Phụ lục C.

Nếu $\frac{N}{A_n f} \le 0,1$ thì chỉ được dùng công thức (37) khi thỏa mãn các yêu cầu ở 7.6.3.2.

Trong các trường hợp khác, tính toán về bền theo công thức:

$$\frac{N}{A_n} \pm \frac{M_x}{I_{nx}} y \pm \frac{M_y}{I_{ny}} x \le f \gamma_c$$
 (38)

trong đó: x, y là các tọa độ của thở khảo sát đối với các trục chính của tiết diện.

- 7.4.2 Tính toán về ổn định
- **7.4.2.1** Cấu kiện chịu nén lệch tâm, nén uốn phải được kiểm tra ổn định trong mặt phẳng tác dụng của mômen (dạng mất ổn định phẳng) và ngoài mặt phẳng tác dụng của mômen (dạng mất ổn định uốn xoắn).
- **7.4.2.2** Tính toán về ổn định cấu kiện chịu nén lệch tâm, nén uốn, có tiết diện không đổi trong mặt phẳng của mômen uốn trùng với mặt phẳng đối xứng được thực hiện theo công thức:

$$\frac{N}{\alpha_{o}A} \le f\gamma_{c} \tag{39}$$

trong đó φ_e được xác định như sau:

a) Đối với các thanh đặc lấy theo Bảng D.10, Phụ lục D phụ thuộc vào độ mảnh qui ước $\overline{\lambda}$ và độ lệch tâm tương đối tính đổi m_e được xác định theo công thức:

$$m_e = \eta m \tag{40}$$

trong đó:

η là hệ số ảnh hưởng hình dạng tiết diện, lấy theo Bảng D.9, Phụ lục D;

 $m = \frac{eA}{W_c} \text{là độ lệch tâm tương đối (e = M/N là độ lệch tâm; } W_c \text{là môđun chống uốn của thở chịu}$ nén lớn nhất).

b) Đối với thanh rỗng, khi các thanh giằng hoặc bản giằng nằm trong các mặt phẳng song song với các mặt phẳng uốn, lấy theo Bảng D.11, Phụ lục D, phụ thuộc độ mảnh tương đương qui ước $\overline{\lambda_0}$ (khi tính lấy λ_0 theo Bảng 14) và độ lệch tâm tương đối m:

$$m = e \frac{Aa}{I}$$
 (41)

trong đó:

a là khoảng cách từ trục chính vuông góc với mặt phẳng uốn của tiết diện đến trọng tâm của nhánh chịu nén lớn nhất, nhưng không nhỏ hơn khoảng cách đến trục của bản bụng nhánh;

e= M/N là độ lệch tâm; giá trị của M và N lấy theo 7.4.2.3.

Độ lệch tâm tương đối *m* của thanh rỗng ba mặt, liên kết bằng thanh giằng hoặc bản giằng, chịu nén uốn, nén lệch tâm lấy theo 11.5.4.

- **7.4.2.3** Giá trị của lực dọc N và mômen uốn M ở trong cùng một tổ hợp tải trọng và khi đó M được lấy như sau:
- a) Với cột tiết diện không đổi của hệ khung, là mômen lớn nhất trong chiều dài cột;
- b) Với cột bậc, là mômen lớn nhất ở đoạn cột có tiết diện không đổi;
- c) Với cột dạng công xôn, là mômen ở ngàm nhưng không nhỏ hơn mômen tại tiết diện cách ngàm một đoan bằng 1/3 chiều dài cột;
- d) Với thanh chịu nén hai đầu tựa khớp và tiết diện có một trục đối xứng trùng với mặt phẳng uốn, giá trị của M lấy theo Bảng 15;

Bảng 15 - Giá trị M

i l	
Đô lệch tâm tương	Giá tri tính toán của M khi đô mảnh qui ước

đối ứng với M _{max}	$\overline{\lambda} < 4$	$\overline{\lambda} \geq 4$
m ≤ 3	$M = M_2 = M_{max} - \frac{\overline{\lambda}}{4} (M_{max} - M_1)$	$M = M_1$
3 < m ≤ 20	$M = M_2 + \frac{m-3}{17}(M_{max} - M_2)$	$M = M_1 + \frac{m - 3}{17} (M_{max} - M_1)$

CHÚ THÍCH:

 M_{max} là mômen uốn lớn nhất trong chiều dài thanh;

 M_1 là mômen uốn lớn nhất trong khoảng 1/3 chiều dài của thanh nhưng không nhỏ hơn $0.5M_{max}$; m là độ lệch tâm tương đối: $m = M_{max}A / (NW_c)$;

Trong mọi trường hợp lấy M \geq 0,5 M_{max} .

e) Với cánh trên chịu nén của giàn và của hệ lưới thanh không gian, chịu tải trọng tập trung không đúng mắt, là mômen lớn nhất trong khoảng 1/3 chiều dài khoang mắt khi tính cánh trên như dầm liên tục trên gối đàn hồi.

Với thanh chịu nén hai đầu tựa khớp và tiết diện có hai trục đối xứng, giá trị của độ lệch tâm tương đối tính đổi m_e lấy theo Bảng D.12, Phụ lục D.

7.4.2.4 Tính toán về ổn định ngoài mặt phẳng uốn cấu kiện chịu nén lệch tâm có tiết diện không đổi, mômen uốn tác dụng trong mặt phẳng có độ cứng lớn nhất $(I_x > I_Y)$ trùng với mặt phẳng đối xứng, được thực hiện theo công thức:

$$\frac{\mathsf{N}}{\mathsf{c}\phi_{\mathsf{V}}\mathsf{A}} \le \mathsf{f}\gamma_{\mathsf{C}} \tag{42}$$

trong đó:

c là hệ số lấy theo 7.4.2.5;

 φ_v là hệ số lấy theo 7.3.2.1.

7.4.2.5 Hệ số c trong công thức (42) được tính như sau:

Khi độ lệch tâm tương đối m_x ≤ 5:

$$c = \frac{\beta}{1 + \alpha m_{v}} \tag{43}$$

trong đó các hệ số α và β được lấy theo Bảng 16.

Khi
$$m_x \ge 10$$
:
$$c = \frac{1}{1 + m_x \phi_v I \phi_b}$$
 (44)

trong đó:

 φ_b là hệ số lấy theo 7.2.2.1 và Phụ lục E như trong dầm có cánh chịu nén với từ hai điểm cố kết trở lên; đối với tiết diện kín thì φ_b = 1,0.

Khi 5 <
$$m_x$$
 < 10: $c = c_5(2 - 0.2m_x) + c_{10}(0.2m_x - 1)$ (45)

trona đó:

 C_5 tính theo các công thức (43) khi $m_x = 5$;

 C_{10} tính theo công thức (44) khi $m_x = 10$.

Khi xác định độ lệch tâm tương đối m_x , mômen tính toán M_x lấy như sau:

- a) Với thanh hai đầu được giữ không cho chuyển vị trong phương vuông góc với mặt phẳng tác dụng của mômen, là mômen lớn nhất trong khoảng 1/3 chiều dài thanh (nhưng không nhỏ hơn 0,5 lần mômen lớn nhất trên cả chiều dài thanh);
- b) Với thanh công xôn, là mômen ở ngàm (nhưng không nhỏ hơn mômen ở tiết diện cách ngàm một đoạn bằng 1/3 chiều dài thanh).

Khi độ mảnh $\lambda_v > \lambda_c = 3,14\sqrt{E/f}$ thì hệ số c lấy như sau:

Với thanh tiết diện kín, c = 1;

Với thanh tiết diện chữ I, có hai trục đối xứng, c không vượt quá:

$$c_{\text{max}} = \frac{2}{1 + \delta + \sqrt{(1 - \delta)^2 + \frac{16}{\mu} \left(\frac{M_x}{Nh}\right)^2}}$$
(46)

trong đó:

$$\delta = \frac{4\rho}{\mu}; \quad \ \rho = \frac{I_x + I_y}{\text{Ah}^2};$$

$$\mu = 2 + 0.156. \frac{I_t}{Ah^2} .\lambda_y^2 \, ; \qquad I_t = 0.433 {\sum} b_i t_i^3 \label{eq:mu_to_point}$$

b_i, t_i là chiều rộng và chiều dày các bản (cánh, bụng) của tiết diện;

h là khoảng cách giữa trục hai cánh.

Với thanh tiết diện chữ I và chữ T có một trục đối xứng, hệ số c không vượt quá giá trị tính theo công thức D.9, Phụ lục D.

Bảng 16 - Hệ số α và β

	bally 10 - ne so α va p					
		Giá trị của các hệ số				
Loại tiết diện		α khi			βkhi	
Loại ti	Loại tiet diện		1 < m _x ≤ 5	λ _y ≤ λ _c	$\lambda_{\rm y} > \lambda_{\rm c}$	
Н		0,7	$0.65 + 0.05 \text{m}_{x}$	1	$\sqrt{\varphi_{c}/\varphi_{y}}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$I - 0.3 \frac{I_2}{I_1}$	$1 - (0.35 - 0.05 \text{m}_x) \times \frac{\text{I}_2}{\text{I}_1}$	1	$1 - \left(1 - \sqrt{\frac{\phi_c}{\phi_y}}\right) x \left(2\frac{I_2}{I_1} - 1\right)$ khi $\frac{I_1}{I_2} < 0.5; \beta = 1$	
thanh (bản) giằng	đặc	0,6	0,55 + 0,05m _x	1	$\sqrt{\phi_{c}/\phi_{y}}$	
CHÚ THÍCH:						

 I_1 , I_2 lần lượt là các mômen quán tính của cánh lớn và nhỏ đối với trục đối xứng y-y của tiết diện;

$$\varphi_c$$
 là giá trị của φ_v khi $\lambda_v = \lambda_c = 3,14 \ \lambda \sqrt{E/f}$;

Đối với cột rỗng thanh giằng (bản giằng) chỉ lấy giá trị của α và β theo tiết diện kín nếu trên chiều dài thanh có ít nhất 2 vạch cứng, trong trường hợp ngược lại lấy theo tiết diện chữ I hở.

7.4.2.6 Cấu kiện chịu nén lệch tâm, uốn trong mặt phẳng có độ cứng nhỏ nhất ($I_y < I_x$ và $e_y \ne 0$), nếu $\lambda_x > \lambda_y$ thì tính toán về ổn định theo công thức (39) và kiểm tra ổn định ngoài mặt phẳng có mômen tác dụng như thanh nén đúng tâm theo công thức.

$$\frac{N}{\varphi_{\mathsf{v}}\mathsf{A}} \le \mathsf{f}\gamma_{\mathsf{c}} \tag{47}$$

trong đó:

 φ_x là hệ số lấy theo 7.3.2.1

Nếu $\lambda_x \le \lambda_v$ thì kiểm tra ổn định ra ngoài mặt phẳng tác dụng của mômen là không cần thiết.

7.4.2.7 Đối với thanh rỗng chịu nén lệch tâm, có các thanh giằng nằm trong những mặt phẳng song song với mặt phẳng uốn, ngoài việc kiểm tra ổn định của cả thanh theo công thức (39) còn phải kiểm tra ổn định của từng nhánh riêng như thanh chịu nén đúng tâm theo công thức (20). Khi xác định lực dọc trong mỗi nhánh phải kể thêm lực nén N_M do mômen gây ra. Giá trị của N_M khi uốn trong mặt phẳng vuông góc với trục y-y (Bảng 14) như sau:

 $N_M = M/b$ đối với tiết diện loại 1 và 3;

 $N_M = M/2b$ đối với tiết diện loại 2;

Với tiết diện loại 3 khi uốn trong mặt phẳng vuông góc với trục x-x, $N_M = 1,16M/b$ (b là khoảng cách giữa trục các nhánh).

Các nhánh của thanh rỗng chịu nén lệch tâm, có các bản giằng, được kiểm tra ổn định như cấu kiện chịu nén lệch tâm, khi đó phải kể thêm lực nén N_M do mômen và sự uốn cục bộ của nhánh do lực cắt thực tế hoặc qui ước (như cánh của giàn không thanh xiên, lực cắt qui ước lấy theo 7.4.2.10).

7.4.2.8 Ôn định của thanh bụng đặc, chịu nén uốn trong hai mặt phẳng chính, khi mặt phẳng có độ cứng lớn nhất ($I_x > I_y$) trùng với mặt phẳng đối xứng, được kiểm tra theo công thức:

$$\frac{\mathsf{N}}{\varphi_{\mathsf{exy}}\mathsf{A}} \le \mathsf{f}\gamma_{\mathsf{c}} \tag{48}$$

trong đó:

$$\phi_{\text{exy}} = \phi_{\text{ey}} \left(0.6 \sqrt[3]{c} + 0.4 \sqrt[4]{c} \right);$$

ở đây φ_{ev} lấy theo 7.4.2.2 nhưng thay các đại lượng m và λ tương ứng bằng m_v và λ_v ;

c lấy theo 7.4.2.5.

Khi tính độ lệch tâm tương đối tính đổi $m_{\rm ey} = \eta m_{\rm y}$ đối với các tiết diện chữ I có các cạnh không giống nhau, hệ số η được lấy như đối với tiết diện loại 8 Bảng D.9, Phụ lục D.

Nếu $m_e < m_x$ thì ngoài việc kiểm tra theo công thức (48) còn phải kiểm tra theo công thức (39) và (42) khi lấy $e_v = 0$.

Giá trị của độ lệch tâm tương đối tính như sau:

$$m_x = e_x (A / W_x) \text{ và } m_v = e_v (A / W_v)$$

trong đó:

 W_x và W_y là các mômen chống uốn của tiết diện đối với các thớ chịu nén lớn nhất đối với các trục x-x và y-y.

Nếu $\lambda_x > \lambda_y$ thì ngoài việc tính theo công thức (48) cần kiểm tra thêm công thức (39) với $e_y = 0$.

Trong trường hợp mặt phẳng có độ cứng lớn nhất $(I_x > I_y)$ không trùng với mặt phẳng đối xứng thì giá trị của m_x được tăng lên 25%.

- **7.4.2.9** Kiểm tra ổn định của thanh rỗng gồm hai nhánh bụng đặc, trục đối xứng y-y (Hình 7), các thanh giằng nằm trong hai mặt phẳng song song, chịu nén uốn trong hai mặt phẳng chính như sau:
- a) Về ổn định của cả thanh trong mặt phẳng song song với mặt phẳng của các thanh giằng theo 7.4.2.2, lấy $e_v = 0$;
- b) Về ổn định của các nhánh riêng, như cấu kiện chịu nén lệch tâm theo các công thức (39), (42). Khi đó lực dọc trong mỗi nhánh có kể thêm lực nén do M_x (xem 7.4.2.7), còn M_y phân phối cho các nhánh theo tỉ lệ độ cứng của chúng (nếu M_y nằm trong mặt phẳng của một trong các nhánh thì coi như nó truyền hoàn toàn lên nhánh đó). Khi kiểm tra theo công thức (39) thì độ mảnh của nhánh lấy thỏa mãn yêu cầu trong 7.5.2.5, khi kiểm tra theo công thức (42) thì độ mảnh của nhánh lấy ứng với khoảng cách lớn nhất giữa mắt các thanh giằng.
- **7.4.2.10** Bản giằng và thanh giằng trong thanh nén lệch tâm tính theo 7.3.2.6, 7.3.2.7. Lực cắt lấy bằng giá trị lớn hơn trong hai giá trị: lực cắt thực tế và lực cắt qui ước (tính theo 7.3.2.5).

Hình 7 - Tiết diện rỗng gồm hai nhánh bung đặc

- 7.5 Chiều dài tính toán của các cấu kiện chịu nén và nén uốn
- 7.5.1 Thanh của giàn phẳng và hệ giằng
- **7.5.1.1** Chiều dài tính toán I_o của các thanh trong giàn phẳng và hệ giằng (trừ các thanh bụng chữ thập) lấy theo Bảng 17.

Bảng 17 - Chiều dài tính toán của các thanh trong giàn phẳng và hê giằng

Danig II Simoa dar tillir todil odd od	Chiều dài tính toán l _o			
Phương uốn dọc	Thanh cánh	Thanh xiên, thanh đứng ở gối tựa	Các thanh bụng khác	
1. Trong mặt phẳng dàn:				
a) Đối với các dàn, trừ những giàn ở mục 1.b	I	1	0,81	
b) Đối với giàn có các thanh là thép góc đơn và giàn có các thanh bụng liên kết dạng chữ T với các thanh cánh.	I	I	0,91	
 Trong phương vuông góc với mặt phẳng giàn (ngoài mặt phẳng dàn): 				
a) Đối với các dàn, trừ những giàn ở mục 2.b	l ₁	I_1	I_1	

b) Giàn có các thanh cánh là định hình cong, các thanh bụng liên kết dạng chữ T với thanh	I ₁	I ₁	0,9l₁
cánh			

Các kí hiệu trong Bảng 17 (theo Hình 8);

/ là chiều dài hình học của thanh (khoảng cách giữa tâm các mắt) trong mặt phẳng dàn;

 l_1 là khoảng cách giữa các mắt được liên kết không cho chuyển vị ra ngoài mặt phẳng giản (bằng các thanh giằng, các tấm mái cứng được hàn hoặc bắt bulông chặt với cánh dàn, v.v...).

7.5.1.2 Nếu theo chiều dài thanh (cánh, bụng) có các lực nén N_1 và N_2 ($N_1 > N_2$) thì chiều dài tính toán ngoài mặt phẳng giàn của thanh (Hình 8 c, d) là:

$$I_0 = I_1 \left(0.75 + 0.25 \frac{N_2}{N_1} \right) \tag{49}$$

Khi đó thanh được tính toán về ổn định theo lực N_1 .

7.5.1.3 Chiều dài tính toán l_0 của các thanh bụng chữ thập (Hình 8, e) lấy như sau:

Trong mặt phẳng giàn, bằng khoảng cách từ tâm của mắt giàn đến điểm giao nhau của chúng (I_o = I);

Ngoài mặt phẳng dàn, đối với các thanh chịu nén lấy theo Bảng 18, đối với các thanh chịu kéo lấy bằng chiều dài hình học của thanh ($I_0 = I_1$).

7.5.1.4 Bán kính quán tính i của tiết diện thanh thép góc đơn lấy như sau:

Khi tính chiều dài tính toán của thanh bằng I hoặc 0,9I (I là khoảng cách giữa các mắt gần nhất), lấy giá trị nhỏ nhất, $i = i_{min}$;

Trong các trường hợp còn lại: lấy đối với trục của thép góc vuông góc hoặc song song với mặt phẳng giàn ($i = i_x$ hoặc $i = i_y$ phụ thuộc vào phương uốn dọc).

- a) Hệ tam giác có thanh đứng;
- b) Hệ thanh bụng xiên;
- c) Hệ tam giác có giàn phân nhỏ;
- d) Hệ thanh bung hình chữ K;
- e) Hệ thanh bụng chữ thập.

Hình 8 - Các sơ đồ thanh bụng giàn để xác định chiều dài tính toán các thanh

Bảng 18 - Chiều dài tính toán ngoài mặt phẳng giàn của thanh bụng chữ thập chịu nén

Đặc điểm mặt giao nhau của các thanh bụng	Chiều dài tính	dài tính toán l _o nếu thanh giao nhau với thanh khảo sát là thanh			
	chịu kéo	không chịu lực	chịu nén		
Cả hai thanh đều không gián đoạn	1	0,7 l ₁	I ₁		
Thanh giao nhau với thanh khảo sát gián đoạn và có phủ bản mã:					
- Thanh khảo sát không gián đoan;	0,7 I ₁	I ₁	1,4 I ₁		
- Thanh khảo sát gián đoạn;	0,7 I ₁	_	_		

CHÚ THÍCH (Hình 8, e):

I là khoảng cách từ tâm mắt giàn đến điểm giao nhau của các thanh;

 I_1 là chiều dài hình học của thanh.

7.5.2 Côt

7.5.2.1 Chiều dài tính toán của cột có tiết diện không đổi hoặc các đoạn của cột bậc được tính theo công thức:

$$I_{o} = \mu I \tag{50}$$

trong đó:

/ là chiều dài của cột, từng đoạn của nó hoặc chiều cao của tầng:

μ là hệ số chiều dài tính toán.

7.5.2.2 Hệ số chiều dài tính toán μ của cột có tiết diện không đổi (đứng độc lập) phụ thuộc vào cách liên kết ở hai đầu cột và dạng tải trọng.

Đối với một số trường hợp liên kết và dạng tải trong lấy theo Bảng D.1, Phụ lục D.

- **7.5.2.3** Hệ số chiều dài tính toán μ của cột có tiết diện không đổi, trong mặt phẳng khung, khi xà ngang liên kết ngàm với cột được lấy như sau:
- a) Với khung có chuyển vị ngang khi chịu tải (tại các nút khung không có liên kết chống chuyển vị ngang) và tải trọng tại các nút như nhau: lấy theo Bảng 19.
- b) Với khung không có chuyển vị ngang khi chịu tải (các nút khung có liên kết chống chuyển vị ngang) và tải trong tại các nút như nhau:

$$\mu = \sqrt{\frac{1 + 0.46(p + n) + 0.18pn}{1 + 0.93(p + n) + 0.71pn}}$$
 (55)

Trong công thức (55) p và n lấy như sau:

Với khung 1 tầng: $\rho = I_i I_c / II_c$; $n = I_b I_c / II_c$;

Với khung nhiều tầng:

- + Đối với tầng trên cùng: $\rho = 0.5(\rho_1 + \rho_2)$; $n = n_1 + n_2$;
- + Đối với các tầng giữa: $\rho = 0.5(\rho_1 + \rho_2)$; $n = 0.5(n_1 + n_2)$;
- + Đối với tầng dưới cùng: $\rho = \rho_1 + \rho_2$; $n = 0.5(n_1 + n_2)$;

trong đó p_1 , p_2 , n_1 , n_2 lấy theo Bảng 19.

c) Đối với cột có tiết diện không đổi của khung, khi một đầu của cột liên kết khớp với xà ngang còn đầu kia ngàm với móng thì trong công thức (52) của khung một tầng; (53), (54) của khung nhiều tầng; (55) của khung không có chuyển vị ngang, các giá trị của n và ρ lấy như sau:

Đầu trên của cột là khớp (dưới ngàm): n = 0, ($I_b = 0$); $\rho = 50$, ($I_l = \infty$);

Đầu trên của cột là ngàm (dưới khớp): n = 50, $(I_b = \infty)$; $\rho = 0$, $(I_l = 0)$;

Bảng 19 - Hệ số chiều dài tính toán μ của cột có tiết diện không đổi

Sơ đồ tính của khung có		Hệ số <i>n</i> và p		
chuyển vị ngang tự do	Công thức tính μ	Một nhịp	Nhiều nhịp	

	$2\sqrt{1 + \frac{0,38}{n}} $ (51)	I.J.	k(n. + n.)
	$\sqrt{\frac{n+0,56}{n+0,14}} $ (52)	$n = \frac{I_b I_c}{II_c}$	$n = \frac{k(n_1 + n_2)}{k + 1}$
T T T T T		Tầr	ng trên cùng
	Khi n ≤ 0,2	$n = \frac{I_b I_c}{2II_c}$	$n = \frac{k(n_1 + n_2)}{k+1}$
N N N N N N N N N N N N N N N N N N N	$\frac{(p+0.68)\sqrt{n+0.22}}{\sqrt{0.68p(p+0.9)(n+0.08)+0.1n}}$	$p = \frac{I_i I_c}{2 I I_c}$	$p = \frac{k(p_1 + p_2)}{k+1}$
L, L, L, L, L, L	(53)	Cá	c tầng giữa
*** ****		$n = \frac{I_b I_c}{2II_c}$	$n = \frac{k(n_1 + n_2)}{k + 1}$
	Khi > 0,2	$p = \frac{I_i I_c}{2II_c}$	$p = \frac{k(p_1 + p_2)}{k+1}$
	$\frac{(p+0.63)\sqrt{n+0.28}}{\sqrt{pn(p+0.9)+0.1n}}$	Tần	g dưới cùng
		$n = \frac{I_b I_c}{2II_c}$	$n = \frac{k(n_1 + n_2)}{k + 1}$
	(54)	$p = \frac{I_i I_c}{II_c}$	$p = \frac{2k(p_1 + p_2)}{k+1}$

CHÚ THÍCH:

 $n_1 = (I_{b1}l_c)/(I_1I_c); n_2 = (I_{b2}l_c)/(I_2I_c); p_1 = (I_{i1}l_c)/(I_1I_c); p_2 = (I_{i2}l_c)/(I_2I_c); k là số nhịp; l, l_1, l_2 là các nhịp khung:$

 I_c , I_c là mômen quán tính tiết diện và chiều dài của cột khảo sát;

 $I_{b,}$ I_{b1} , I_{b2} là mômen quán tính của các xà liên kết với đầu trên của cột;

 I_{l} , I_{i1} , I_{i2} là mômen quán tính của các xà liên kết với đầu dưới của cột;

- Đối với cột ngoài của khung nhiều nhịp tính như đối với cột khung 1 nhịp.

d) Đối với nhà một tầng, có chuyển vị ngang, khi tải trọng tại nút các cột không đều nhau, nhà có khối mái cứng hoặc có hệ giằng dọc nối đầu trên của tất cả các cột, thì hệ số chiều dài tính toán μ_e của cột chịu tải lớn nhất tính như sau:

$$\mu_{e} = \mu \sqrt{\frac{I_{c} \sum N_{i}}{N_{c} \sum I_{i}}}$$
 (56)

trong đó:

 μ là hệ số tính theo các công thức (51), (52), Bảng 19;

I_c, N_c là mômen quán tính và lực nén lớn nhất trong cột khảo sát;

 $\sum N_i$, $\sum I_i$ tương tứng là tổng lực nén và tổng mômen quán tính tiết diện của tất cả các cột ở khung khảo sát và của 4 khung lân cận (2 khung mỗi phía). Tất cả các lực N_i đều trong cùng một tổ hợp tải trọng với N_c .

Giá trị của μ_e tính theo công thức (56) không được nhỏ hơn 0,7.

CHÚ THÍCH: Khi tỉ số H/B > 6 (H là chiều cao của nhà nhiều tầng; B là chiều rộng của nhà), phải kiểm tra thêm ổn định tổng thể của khung như thanh tổ hợp, ngàm ở móng.

Đối với cột biên, hệ số μ lấy như cột của khung một nhịp.

7.5.2.4 Hệ số chiều dài tính toán đối với các đoạn của cột bậc lấy theo Phụ lục D.

Khi xác định hệ số μ của cột bậc trong khung nhà công nghiệp một tầng cho phép:

Không kể đến ảnh hưởng sự chịu tải và độ cứng của các cột lân cận;

Chỉ xác định chiều dài tính toán của cột đối với tổ hợp tải trọng cho lực nén lớn nhất trong các đoạn và giá trị μ nhận được này sẽ dùng cho các tổ hợp tải trọng khác;

Đối với khung nhiều nhịp (từ hai trở lên), khi có khối mái cứng hoặc hệ giằng dọc nối đầu trên của các cột đảm bảo sự làm việc không gian của cả hệ khung thì chiều dài tính toán của cột khung được xác định như đối với một cột độc lập được liên kết cố định ở mức xà ngang;

Đối với cột một bậc, khi tỉ số $l_2/l_1 \le 0.6$ và $N_1, N_2 > 3$ thì giá trị của μ lấy theo Bảng 20.

- **7.5.2.5** Chiều dài tính toán của cột theo hướng dọc nhà (ngoài mặt phẳng khung) bằng khoảng cách giữa các điểm liên kết không cho cột chuyển vị ra ngoài mặt phẳng khung (gối tựa của cột, dầm cầu trục, giàn đỡ kèo, mắt liên kết với hệ giằng, với xà ngạng, v.v...).
- **7.5.2.6** Chiều dài tính toán của thanh (đặc, rỗng) có tiết diện thay đổi có thể tham khảo Phụ lục D.3.
- 7.5.3 Kết cấu không gian rỗng
- **7.5.3.1** Khi xác định độ mảnh của các thanh thép góc đơn chịu nén hoặc không chịu lực trong kết cấu không gian rỗng, chiều dài tính toán I_o và bán kính quán tính I của các thanh lấy theo Bảng 21.

Bảng 20 - Hệ số chiều dài tính toán μ của cột bậc

Điều kiện liên kết ở đầu trên của cột	Hệ số μ đối với				
	Đoạn có	Đoạn cột trên			
	$0,1 < I_2/I_1 \le 0,3$	$0.05 < I_2/I_1 \le 0.1$			
Đầu tự do	2,5	3,0	3,0		
Chỉ liên kết không cho xoay	2,0	2,0	3,0		
Tựa khớp cố định	1,6	2,0	2,5		
Liên kết ngàm	1,2	1,5	2,0		

CHÚ THÍCH:

 I_1 , I_1 , N_1 là chiều dài, mômen quán tính tiết diện và lực dọc của đoạn cột dưới;

l₂, l₂, N₂ là chiều dài, mômen quán tính tiết diện là lực dọc của đoạn cột trên;

7.5.3.2 Khi xác định độ mảnh của thanh chịu kéo bằng thép và góc đơn, chiều dài tính toán và bán kính quán tính của chúng lấy như sau:

Với thanh cánh: theo Bảng 21;

Với thanh xiên:

- + Theo Hình 9 a, e: trong mặt phẳng giàn I_d và i_{min} ; ngoài mặt phẳng giàn L_d (khoảng cách giữa hai mắt liên kết với thanh cánh) và i_x (lấy với trục song song với mặt phẳng dàn);
- + Theo Hình 9 b, c, d: chiều dài I_d và i_{min} .

Bảng 21 - Chiều dài tính toán I_o và bán kính quán tính i của các thanh

Thanh	Thanh I _o i						
Cánh:	*0						
Carifi.							
- Theo Hình 9, a, b, c	I_m	İ _{min}					
- Theo Hình 9, d, e	1,14 I _m	i _x hoặc i _y					
Xiên:							
- Theo Hình 9, b, c, d	$\mu_{d}I_{d}$	i _{min}					
- Theo Hình 9, a, e	$\mu_{d}l_{dc}$	i _{min}					
Ngang:							
- Theo Hình 9, b	0,8 l _c	i _{min}					
- Theo Hình 9, c	0,65 l _c	i _{min}					

CHÚ THÍCH: I_{ac} là chiều dài qui ước của thanh xiên, lấy theo Bảng 22;

 μ_d là hệ số chiều dài tính toán của thanh xiên lấy theo Bảng 23;

Trong hình 9, a, e, các thanh xiên phải liên kết với nhau tại giao điểm của chúng.

Giá trị l_o đối với thanh ngang theo Hình 9c ứng với thép góc đơn đều cạnh.

- a, b, c các mắt ở hai mặt tiếp giáp trùng nhau;
- d, e các mắt ở hai mặt tiếp giáp không trùng nhau.

Hình 9 - Sơ đồ kết cấu không gian rỗng, các thanh từ thép góc đơn

Bảng 22 - Chiều dài qui ước l_{dc} của thanh xiên

Builg 22 Gillou dai dai doo lac daa allami xion					
Đặc điểm mắt giao nhau của	Giá trị <i>l_{dc}</i> của thanh xiên khảo sát nếu thanh giao nhau với thanh khảo sát là thanh				
các thanh xiên	Chịu kéo	Chịu nén			
Cả hai thanh không gián đoạn	I _d	1,3 <i>I_d</i>	0,8 <i>L</i> _d		

Thanh giao nhau với thanh khảo sát gián đoạn và có phủ bản mã:			
- Kết cấu theo Hình 9 a;	1,3 <i>I_d</i>	1,6 <i>I_d</i>	L_d
- Kết cấu theo Hình 9 e, khi:			
1< n ≤ 3	(1,75 - 0,15n) <i>I_d</i>	(1,9 - 0,1n) <i>I_d</i>	\mathcal{L}_d
n > 3	1,3 <i>I_d</i>	1,6 <i>I_d</i>	L_d
 Mắt giao nhau của các thanh xiên được liên kết tránh chuyển vị ra ngoài mặt phẳng giàn 	l _d	l _d	I _d

CHÚ THÍCH:

 L_d là chiều dài thanh xiên theo Hình 9 a, e;

 $n = (I_{m,min}I_d)/(I_{d,min}I_m)$; $I_{m,min}$ và $I_{d,min}$ là mômen quán tính nhỏ nhất của thanh cánh và thanh xiên.

Bảng 23 - Hệ số chiều dài tính toán của thanh xiên μ_d

			, -	
Liên kết của thanh xiên		G	iá trị của μ_d khi <i>l/i_{min}</i> bằn	g
với thanh cánh	n	≤ 60	60 < I/i _{min} ≤ 160	≥ 160
Bằng đường hàn hoặc	≤ 2	1,14	0,54 + 36(<i>i_{min}/l</i>)	0,765
bulông (không nhỏ hơn 2), không có bản mã	≥6	1,04	$0,56 + 28,8(i_{min}/l)$	0,74
Bằng 1 bulông, không có bản mã	Không phụ thuộc <i>n</i>	1,12	0,64 + 28,8(i _{min} /l)	0,82

CHÚ THÍCH:

n xem Bảng 22;

I là chiều dài thanh, lấy bằng l_d đối với Hình 9, b, c, d; bằng l_{dc} theo Bảng 21 (đối với Hình 9, a, e);

- Giá trị của μ_d khi n từ 2 đến 6 xác định theo nội suy tuyến tính;
- Khi liên kết trực tiếp một đầu của thanh xiên với thanh cánh bằng đường hàn hoặc bulông, còn đầu kia qua bản mã thì hệ số chiều dài tính toán là $0.5(1+\mu_d)$; khi liên kết cả hai đầu thanh qua bản mã thì $\mu_d = 1$.
- **7.5.3.3** Chiều dài tính toán và bán kính quán tính của thanh thép ống và tiết diện ghép từ hai thép góc lấy theo 7.5.1.

7.5.4 Hệ mái lưới thanh không gian

Chiều dài tính toán của các thanh trong hệ mái lưới không gian lấy theo Bảng 24.

Bảng 24 - Chiều dài tính toán của các thanh trong hệ mái lưới không gian

Các thanh của hệ mái lưới	Chiều dài tính toán
	l _o
1. Ngoài các thanh nêu ở mục 2 và 3 ở dưới đây	1
2. Thanh cánh liên tục (không gián đoạn tại mắt) và liên kết hàn dạng chữ T với mắt cầu (thanh xuyên qua mắt cầu và hàn ở chu vi giao nhau với mặt cầu)	0,85/
3. Là thép góc đơn, liên kết vào mắt theo một cánh bằng:	
a) Đường hàn hoặc bulông (không ít hơn hai) bố trí dọc theo thanh khi:	

- <i>l/i_{min}</i> ≤ 90;	1
$-90 \le 1/i_{min} \le 120;$	0,9/
- 120 ≤ <i>l/i_{min}</i> ≤ 150 (chỉ đối với các thanh bụng);	0,75/
- 150 ≤ <i>l/i_{min}</i> ≤ 200 (chỉ đối với các thanh bụng).	0,71
b) Một bulông khi:	
- <i>l/i_{min}</i> ≤ 90;	1
$-90 \le 1/i_{min} \le 120;$	0,95/
- 120 ≤ <i>l/i_{min}</i> ≤ 150 (chỉ đối với các thanh bụng);	0,85/
- 150 ≤ l/i _{min} ≤ 200 (chỉ đối với các thanh bụng).	0,8/
CHÚ THÍCH: /là chiều dài hình học của thanh (khoảng cách giữa các mắt)	

7.5.5 Độ mảnh giới hạn của các thanh

7.5.5.1 Độ mảnh giới hạn của các thanh chịu nén lấy theo Bảng 25

Bảng 25 - Độ mảnh giới hạn của các thanh chịu nén

Bang 20 - Bộ mann giời nặn của các thành chịu hen	
Các thanh	Độ mảnh giới hạn
1. Thanh cánh, thanh xiên và thanh đứng nhận phản lực gối:	
a) Của giàn phẳng, hệ mái lưới thanh không gian, hệ thanh không gian rỗng (có chiều cao <i>H</i> ≤ 50 m) bằng thép ống hoặc tổ hợp từ hai thép góc;	180 - 60α
 b) Của hệ thanh không gian rỗng bằng thép góc đơn, hệ thanh không gian rỗng (chiều cao H > 50 m) nhưng bằng thép ống hay tổ hợp từ hai thép góc. 	120
2. Các thanh (trừ những thanh đã nêu ở mục 1 và 7):	210 - 60α
a) Của giàn phẳng bằng thép góc đơn; hệ mái lưới thanh không gian và hệ thanh không gian rỗng bằng thép góc đơn, tổ hợp từ hai thép góc hoặc thép ống;	
b) Của hệ mái lưới thanh không gian, hệ thanh không gian rỗng bằng thép góc đơn, dùng liên kết bulông.	220 - 40α
3. Cánh trên của giàn không được tăng cường khi lắp ráp (khi đã lắp ráp lấy theo mục 1)	220
4. Cột chính	180 - 60α
5. Cột phụ (cột sườn tường, thanh đứng của cửa mái, v.v), thanh giằng của cột rỗng, thanh của hệ giằng cột (ở dưới gầm cầu trục)	210 - 60α
6. Các thanh giằng (trừ các thanh đã nêu ở mục 5), các thanh dùng để giảm chiều dài tính toán của thanh nén và những thanh không chịu lực mà không nêu ở mục 7 dưới đây.	200
7. Các thanh chịu nén hoặc không chịu lực của hệ thanh không gian rỗng, tiết diện chữ T, chữ thập, chịu tải trọng gió khi kiểm tra độ mảnh trong mặt phẳng thẳng đứng.	150
CHÚ THÍCH: $\alpha = N/(\varphi A f \gamma_c)$	
- Hệ số $arphi$ lấy không nhỏ hơn 0,5 (khi nén lệch tâm, nén uốn thay $arphi$ bằng $arphi_{ m e}$).	

7.5.5.2 Độ mảnh giới hạn của các thanh chịu kéo lấy theo Bảng 26.

Bảng 26 - Độ mảnh giới hạn của các thanh chịu kéo

Các thanh	Khi kết cấu chịu tải trọng
-----------	----------------------------

	động trực tiếp	tĩnh	cầu trục
1. Thanh cánh, thanh xiên ở gối của giàn phẳng (kể cả giàn hãm) và của hệ mái lưới thanh không gian	250	400	250
2. Các thanh giàn và của hệ mái lưới thanh không gian (trừ các thanh nêu ở mục 1)	350	400	300
3. Thanh cánh dưới của dầm cầu trục, dàn	-	-	150
4. Các thanh của hệ giằng cột (ở dưới dầm cầu trục)	300	300	200
5. Các thanh giằng khác	400	400	300
6. Thanh cánh và thanh xiên ở gối của cột đường dây tải điện	250	-	-
7. Các thanh của cột đường dây tải điện (trừ các thanh nêu ở mục 6 và 8)	350	-	-
8. Các thanh của hệ thanh không gian rỗng có tiết diện chữ T hoặc chữ thập chịu tác dụng của tải trọng gió khi kiểm tra độ mảnh trong mặt phẳng thẳng đứng.	150	-	-

CHÚ THÍCH 1: Trong các kết cấu không chịu tải trọng động chỉ cần kiểm tra độ mảnh của thanh trong mặt phẳng thẳng đứng.

CHÚ THÍCH 2: Không hạn chế độ mảnh của thanh chịu kéo ứng lực trước.

CHÚ THÍCH 3: Tải trọng động đặt trực tiếp lên kết cấu là tải trọng dùng trong tính toán về bền mỏi hoặc trong tính toán có kể đến hệ số động.

7.6 Ôn định cục bộ của các cấu kiện có tấm mỏng

7.6.1 On định cục bộ của bản bụng dầm

7.6.1.1 Để đảm bảo ổn định cục bộ, bản bụng của dầm tổ hợp phải được tăng cường bằng các sườn cứng theo các qui định sau:

a. Nếu độ mảnh qui ước của bản bụng $\overline{\lambda}_w > 3,2$ khi dầm chịu tải trọng tĩnh, hoặc $\overline{\lambda}_w > 2,2$ khi dầm chịu tải trọng di động thì bản bụng phải được tăng cường bằng các sườn cứng ngang (Hình

10), trong đó $\bar{\lambda}_w = \frac{h_w}{t_w} \sqrt{\frac{f}{E}}$, (h_w là chiều cao tính toán của bản bụng dầm, xem 7.2.1.3, Hình 2; t_w là chiều dày của bản bụng).

Khoảng cách giữa các sườn cứng ngang a $\leq 2h_w$ nếu $\overline{\lambda}_w > 3,2$ và a $\leq 2,5h_w$ nếu $\overline{\lambda}_w \leq 3,2$.

Nếu chỉ tăng cường bản bụng bằng sườn cứng ngang thì kích thước của chúng lấy như sau: khi bố trí cặp sườn đối xứng, chiều rộng của sườn $b_s \ge h_w/30 + 40$ mm;khi chỉ bố trí các sườn ở một bên của bản bụng $b_s \ge h_w/24 + 50$ mm. Chiều dài của sườn $t_s \ge 2b_s \sqrt{f/E}$.

- b. Tại gối tựa của dầm và tại những chỗ có tải trọng tĩnh tập trung lớn đặt ở cánh trên phải đặt các sườn tăng cường ngang. Sườn ở gối tựa (sườn đầu dầm) được tính toán theo 7.6.1.7.
- c. Nếu độ mảnh của bản bụng $\overline{\lambda}_w > 5,5$ thì ngoài sườn ngang còn phải tăng cường bản bụng bằng sườn tăng cường dọc (Hình 11). Sườn dọc được đặt cách mép chịu nén của bản bụng một đoạn $h_1 = (0,2 \div 0,3)h_w$. Khi có sườn dọc thì kích thước các sườn lấy như sau:

Đối với sườn ngang: $I_s = 3h_w t_w^3$; I_s là mômen quán tính của cặp sườn ngang đối với trục dọc của bản bụng;

Đối với sườn dọc: $I_{sl} \geq$ 1,5 $h_w t_w^3$; I_{sl} là mômen quán tính của sườn dọc đối với trục thẳng đứng của tiết diện dầm.

Khi chỉ bố sườn ngang và dọc ở một bên của bản bụng thì mômen quán tính của các sườn được tính đối với các trục tương ứng trên nhưng nằm ở mặt tiếp xúc của sườn với bản bụng.

7.6.1.2 Khi kiểm tra ổn định cục bộ bản bụng dầm phải kể đến tất cả các thành phần của trạng thái ứng suất (σ, τ, σ_c) .

Các thành phần ứng suất được tính với giả thiết vật liệu làm việc đàn hồi theo tiết diện nguyên, không kể đến hệ φ_b .

Ứng suất nén σ (lấy dấu "+") ở biên của ô bản khảo sát và ứng suất tiếp trung bình τ được tính theo các công thức:

$$\sigma = \frac{M}{I_{x}} y \tag{57}$$

$$\tau = \frac{V}{h_{w}t_{w}} \tag{58}$$

trong đó: M, V là giá trị trung bình của mômen và lực cắt trong phạm vi của ô bản. Nếu chiều dài của ô nhỏ hơn hoặc bằng chiều cao tính toán của nó (a $\leq h_w$) thì M, V lấy tại tiết diện giữa ô; nếu a $> h_w$ thì M và V lấy tại tiết diện giữa của phần ô bản có ứng suất lớn hơn và có chiều dài h_w ; nếu trong phạm vi ô kiểm tra có M và V đổi dấu thì giá trị trung bình của chúng lấy trên phần ô có giá trị tuyệt đối của nội lực lớn.

Ứng suất cục bộ σ_c trong bản bụng do tải trọng tập trung được tính theo công thức (4) và 10.5.6 (khi γ_1 = 1,1).

Nếu trong ô có tải trọng tập trung đặt ở cánh chịu kéo thì kiểm tra do tác dụng đồng thời của hai thành phần ứng suất σ và τ hoặc σ_c và τ .

7.6.1.3 Không cần kiểm tra ổn định cục bộ của bản bụng dầm khi:

 $\overline{\lambda}_{w} \le 3.5$, trong trường hợp không có ứng suất cục bộ;

 $\lambda_{\rm w} \le 2.5$, trong trường hợp có ứng suất cục bộ.

Khi đó chỉ cần đặt các sườn cứng ngang theo chỉ dẫn ở 7.6.1.1.

7.6.1.4 Kiểm tra ổn định của bản bụng dầm có tiết diện đối xứng, chỉ tăng cường bằng các sườn cứng ngang, khi ứng suất cục bộ $\sigma_c = 0$, và độ mảnh qui ước $\overline{\lambda}_W < 6$ theo công thức:

$$\sqrt{\left(\sigma/\sigma_{m}\right)^{2} + \left(\tau/\tau_{m}\right)^{2}} \le \gamma_{m} \tag{59}$$

trong đó:

$$\sigma_{\rm cr} = \frac{c_{\rm cr} f}{\overline{\lambda}_{\rm w}^2} \tag{60}$$

$$\tau_{cr} = 10,3 \left(1 + \frac{0,76}{\mu^2}\right) \frac{f_v}{\lambda_0} \tag{61}$$

Trong công thức (60) hệ số c_{cr} lấy như sau:

Đối với dầm hàn, theo Bảng 27, phụ thuộc hệ số:

$$\delta = \beta \frac{b_f}{h_w} \left(\frac{t_f}{t_w} \right)^3 \tag{62}$$

trong đó:

b_f, t_f là chiều rộng và chiều dày của cánh chịu nén;

Bảng 27 - Hệ số c_{cr}

δ	≤ 0,8	1,0	2,0	4,0	6,0	10,0	≥ 30
C _{cr}	30,0	31,5	33,3	34,6	34,8	35,1	35,5

Bảng 28 - Hệ số β

Dầm	Điều kiện làm việc của cánh chịu nén	β
Cầu trục	Ray không hàn	2
	Ray được hàn	∞
Các dầm khác	Khi có sàn cứng đặt liên tục trên cánh nén	∞
	Trong các trường hợp khác	0,8

CHÚ THÍCH: Đối với dầm cầu trục, khi có lực tập trung đặt ở cánh chịu kéo, khi tính hệ số δ lấy β = 0,8

Đối với dầm bulông cường độ cao lấy $c_{cr} = 35,2$.

Trong công thức (61):
$$\overline{\lambda}_0 = \frac{d}{t_{\rm tot}} \sqrt{\frac{f}{E}}$$

trong đó:

d là cạnh bé của ô bản (h_w hoặc a);

 μ là tỉ số giữa cạnh lớn của ô bản chia cho cạnh nhỏ.

7.6.1.5 Kiểm tra ổn định của bản bụng dầm có tiết diện đối xứng, chỉ tăng cường bằng các sườn ngang (Hình 10a), khi ứng suất cục bộ $\sigma_c \neq 0$, theo công thức:

$$\sqrt{\left(\frac{\sigma}{\sigma_{cr}} + \frac{\sigma_{c}}{\sigma_{cr}}\right)^{2} + \left(\frac{\tau}{\tau_{cr}}\right)^{2}} \leq \gamma_{c}$$
 (63)

trong đó:

 σ , σ_c , τ được tính theo các công thức ở 7.6.1.2;

 τ_{cr} tính theo công thức (61);

$$\sigma_{c,cr} = \frac{c_1 f}{\overline{\lambda}_a^2}$$
 (64)

với:

$$\overline{\lambda}_a = \frac{a}{t_w} \sqrt{f/E}$$

 c_1 là hệ số, đối với dầm hàn lấy theo Bảng 29 phụ thuộc vào giá trị của a/h $_w$ và δ (theo công thức (62); đối với dầm bulông cường độ cao lấy theo Bảng 30.

Nếu tải trọng đặt ở cánh chịu kéo (Hình 10 b) thì kiểm tra ổn định của bản bụng được thực hiện theo hai tổ hợp ứng suất:

 σ và τ (cho biên chịu nén)

 σ_c và τ , (cho biên chịu kéo), khi đó tính hệ số δ theo công thức (62) thì b_f và t_f là chiều rộng và dày của cánh chịu kéo.

b) Khi a/h_w > 0,8 là tỉ số σ_c/σ lớn hơn các giá trị cho trong Bảng 31 thì:

$$\sigma_{\rm cr} = \frac{c_2 f}{\lambda_{\rm w}} \tag{65}$$

trong đó:

c₂ là hệ số lấy trong Bảng 32;

 $\sigma_{c,cr}$ là tính theo công thức (64), trong đó nếu $a/h_w > 2$ thì lấy $a = 2h_w$

Bảng 29 - Giá trị của c₁ đối với dầm hàn

δ	Giá trị của c₁ đối với dầm hàn khi a/h _w bằng									
	≤ 0,5	0,6	0,8	1,0	1,2	1,4	1,6	1,8	≥ 2	
≤ 1	11,5	12,4	14,8	18,0	21,1	27,1	32,6	38,9	45,6	
2	12,0	13,0	16,1	20,4	25,7	32,1	39,2	46,5	55,7	
4	12,3	13,3	16,6	21,6	28,1	36,3	45,2	54,9	65,1	
6	12,4	13,5	16,8	22,1	29,1	38,3	48,7	59,4	70,4	
10	12,4	13,6	16,9	22,5	30,0	39,7	51,0	63,3	76,5	
≥ 30	12,5	13,7	17,0	22,9	31,0	41,6	53,8	68,2	83,6	

Bảng 30 - Giá trị của c₁ đối với dầm bulông cường độ cao

a/h _w	0,5	0,6	0,8	1,0	1,2	1,4	1,6	1,8	2,0
C ₁	13,7	15,9	20,8	28,4	38,75	51,0	64,2	79,8	94,9

Bảng 31 - Giá tri giới han của σ_c/σ

Loại	δ	Giá trị giới hạn của σ _c /σ khi a/h _w bằng							
dâm		0,8	0,9	1,0	1,2	1,4	1,6	1,8	≥ 2
Hàn	≤ 1	0	0,146	0,183	0,267	0,359	0,445	0,540	0,618
	2	0	0,109	0,169	0,277	0,406	0,543	0,652	0,799
	4	0	0,072	0,129	0,281	0,479	0,711	0,930	1,132
	6	0	0,066	0,127	0,288	0,536	0,874	1,192	1,468
	10	0	0,059	0,122	0,296	0,574	1,002	1,539	2,154
	≥ 30	0	0,047	0,112	0,300	0,633	1,283	2,249	3,939
Bulông cường độ cao	-	0	0,121	0,184	0,378	0,643	1,131	1,614	2,347

Bảng 32 - Hệ số c₂

a/h _w	≤ 0,8	0,9	1,0	1,2	1,4	1,6	1,8	≥ 2				
C ₂	Theo Bảng 27, c ₂ = c _{cr}	37,0	39,2	45,2	52,8	62,0	72,6	84,7				

c) Khi a/h_w < 0,8 và tỉ số σ_c/σ không lớn hơn các giá trị cho trong Bảng 31 thì:

 σ_{cr} tính theo công thức (60);

 σ_{c} , $_{cr}$ tính theo công thức (64) nhưng đặt a/2 thay cho a khi tính $\overline{\lambda}_{a}$ cũng như ở trong Bảng 30. Trong mọi trường hợp τ_{cr} đều được tính theo kích thước thực của ô bản.

- a) Tải trọng tập trung F đặt ở cánh chịu nén, (σt ứng suất kéo);
- b) Tải trong tập trung F đặt ở cánh chịu kéo.

CHÚ DẪN:

- 1. Sườn cứng ngang;
- 2. Sườn cứng dọc.

Hình 10 - Sơ đồ dầm được tăng cường bằng các sườn cứng ngang

CHÚ DẪN:

- 1. Sườn cứng ngang;
- 2. Sườn cứng dọc.

Hình 11 - Sơ đồ dầm được tăng cường bằng các sườn cứng dọc và ngang

- **7.6.1.6** Kiểm tra ổn định của bản bụng dầm có tiết diện không đối xứng (cánh chịu nén mở rộng) theo chỉ dẫn ở 7.6.1.4, 7.6.1.5 nhưng có kể đến các thay đổi sau: trong công thức (60), (65) và Bảng 32 giá trị của h_w lấy bằng hai lần khoảng cách từ trục trung hòa đến biên tính toán chịu nén của ô bản. Nếu a/ h_w > 0,8 và $\sigma_c \neq 0$ thì cần kiểm tra cả hai trường hợp theo 7.6.1.5b và 7.6.1.5c không phụ thuộc vào giá trị của σ_c/σ .
- **7.6.1.7** Tại gối tựa, bản bụng của dầm tổ hợp phải được tăng cường bằng các sườn ngang (sườn đầu dầm). Sườn đầu dầm được tính theo uốn dọc ra ngoài mặt phẳng của bản bụng như một thanh đứng chịu phản lực gối. Tiết diện tính toán của thanh gồm tiết diện của sườn và phần bản bụng ở hai bên sườn, mỗi bên rộng bằng $0.65t_w\sqrt{E/f}$.

Chiều dài tính toán của thanh bằng chiều cao bản bụng. Tiết diện mút dưới của sườn gối (Hình 12) phải được bào nhẵn, tì sát hoặc hàn vào cánh dưới của dầm. Ứng suất tại tiết diện này do

phản lực gối tựa trong trường hợp thứ nhất (Hình 12, a) không vượt quá cường độ tính toán của thép cán về ép mặt khi a \leq 1,5 t_s , và về nén khi a > 1,5 t_s ; trong trường hợp thứ hai (Hình 12, b) không vượt quá cường độ ép mặt).

Khi hàn sườn gối với cánh dưới của dầm thì đường hàn được tính với phản lực gối tựa.

- a) Sườn gối ở đầu mút dầm, mặt tựa được bào nhẵn;
- b) Sườn gối ở gần đầu mút dầm, tì sát hoặc hàn vào cánh dưới.

Hình 12 - Sơ đồ đặt sườn cứng ở gối

- 7.6.2 On định cục bộ của bản bung cột
- **7.6.2.1** Cột chịu nén đúng tâm (m = 0), cột chịu nén lệch tâm và nén uốn (m > 0, tiết diện chữ I hoặc hình hộp, Hình 13) ngoài việc được kiểm tra ổn định theo các công thức (20), (39), (48) thì tỉ số giữa chiều cao tính toán và chiều dày của bản bụng h_w/t_w không được vượt quá trị số giới hạn $[h_w/t_w]$ cho trong Bảng 33.
- 7.6.2.2 Đối với cột chịu nén lệch tâm và nén uốn, tiết diện chữ I hoặc hình hộp (Hình 13) mà điều kiện ổn định được kiểm tra theo công thức (42) thì giá trị giới hạn của h_w/t_w phụ thuộc vào giá trị của thông số $\alpha = (\sigma \sigma_1)/\sigma$ (với σ là ứng suất nén lớn nhất tại biên của bản bụng, mang dấu "+", khi không kể đến các hệ số ϕ_e , ϕ_{exy} hoặc c_ϕ ; σ_1 là ứng suất tại biên tương ứng của bản bụng), được lấy như sau:

Khi $\alpha \leq 0.5$, lấy theo 7.6.2.1;

Khi $\alpha \ge 1$, tính theo công thức:

$$\frac{h_{w}}{t_{w}} = 4,35 \sqrt{\frac{(2\alpha - 1)E}{\sigma(2 - \alpha + \sqrt{\alpha^{2} + 4\beta^{2}})}} \le 3.8 \sqrt{\frac{E}{f}}$$
 (66)

trong đó:

$$\beta = 1{,}4(2\alpha - 1)\frac{\tau}{\sigma} \text{ , (với } \tau = \frac{V}{t_w h_w} \text{ là ứng suất tiếp trung bình trong tiết diện khảo sát)}.$$

Khi $0.5 < \alpha < 1$, nội suy tuyến tính giữa các giá trị được tính với $\alpha = 0.5$ và $\alpha = 1$.

Hình 13 - Sơ đồ cột chịu nén

lệch tâm có tiết diện chữ I và hình hộp

Bảng 33 - Giá trị giới hạn [h_w/t_w]

Độ lệch tâm tương	Loại tiết diện	Giá tri	Công thức tính
đổi	cột	Ola ti į	[h _w /t _w]

		$\overline{\lambda}$ và $\overline{\lambda}_1$	
	Chữ I	√ < 2,0	$(1,3+0,15\overline{\lambda^2})\sqrt{E/f}$
		$\overline{\lambda} \geq 2,0$	$(1.2 + 0.35\lambda)\sqrt{E/f}$ nhưng không lớn
			hơn 2,3√E/f
	Hình hộp,	$\overline{\lambda}$ < 1,0	1,2√E/f
m = 0	chữ [cán	$\overline{\lambda} \geq 1,0$	$(1,0+0,2\overline{\lambda})\sqrt{E/f}$; nhưng không lớn
			hơn 1,6√E/f
	Chữ [tổ hợp	$\overline{\lambda}$ < 0,8	√E/f
		$\overline{\lambda} \geq 0.8$	$(0.85 + 0.19\overline{\lambda})\sqrt{E/f}$; nhưng không
			lớn hơn 1,6√E/f
	Chữ I,	$\overline{\lambda}_1 < 2.0$	$(1,3+0,15\overline{\lambda^2})\sqrt{E/f}$
$m \ge 1,0$	Hình hộp	$\overline{\lambda}_1 \ge 2.0$	$(1,2+0,35\overline{\lambda_1})\sqrt{E/f}$; nhưng không
			lớn hơn 3,1√E/f

CHÚ THÍCH:

- $\bar{\lambda}$ là độ mảnh qui ước khi tính toán ổn định của cột chịu nén đúng tâm;
- $\overline{\lambda}_1$ là độ mảnh qui ước khi tính toán ổn định trong mặt phẳng tác dụng của mômen;
- Tiết diện hình hộp là các tiết diện kín (tổ hợp, uốn cong dạng chữ nhật hay vuông);
- Đối với tiết diện hình hộp, khi m > 0, giá trị của $[h_w/t_w]$ lấy cho bản bụng nằm song song với mặt phẳng tác dụng của mômen uốn;
- Khi 0 < m < 1,0 giá trị của $[h_w/t_w]$ được nội suy tuyến tính theo các giá trị với m = 0 và m = 1,0.
- **7.6.2.3** Đối với cột chịu nén lệch tâm, nén uốn có tiết diện khác chữ I hoặc hình hộp (trừ tiết diện chữ T), giá trị của $[h_w/t_w]$ ở 7.6.2.2 được nhân với hệ số 0,75.
- **7.6.2.4** Đối với các cột chịu nén đúng tâm, nén uốn, nén lệch tâm tiết diện chữ T, có độ mảnh qui ước $\overline{\lambda}$ từ 0,8 đến 4 và khi 1 \leq b_f/h_w \leq 2 (với b_f là chiều rộng của cánh chữ T;h_w là chiều cao bản bụng chữ T). thì tỉ số h_w/t_w không được vượt quá giá trị tính theo công thức:

$$\frac{h_{w}}{t_{w}} = \left(0,40 + 0,07\overline{\lambda}\right)\left(1 + 0,25\sqrt{2 - \frac{b_{f}}{h_{w}}}\right)\sqrt{\frac{E}{f}}$$
 (67)

Khi $\overline{\lambda}$ < 0,8 hoặc $\overline{\lambda}$ > 4 thì trong công thức (67) lấy tương ứng $\overline{\lambda}$ = 0,8 hoặc $\overline{\lambda}$ = 4.

Khi tiết diện của cấu kiện được chọn theo độ mảnh giới hạn thì giá trị giới hạn của h_w/t_w được nhân với hệ số $\sqrt{f\phi_m/\sigma}(\phi_m=\phi$ hoặc $\phi_m=\phi_e,\sigma=N/A$), nhưng không lớn hơn 1,25 h_w/t_w .

- **7.6.2.5** Với cột tiết diện chữ I, khi giá trị thực tế của h_w/t_w vượt quá trị giới hạn [h_w/t_w] qui định ở 7.6.2.1 (đối với cột chịu nén đúng tâm không lớn hơn 2 lần) thì:
- a) Khi kiểm tra ổn định cột chịu nén đúng tâm theo công thức (20) diện tích tiết diện A chỉ gồm diện tích của hai cánh và hai phần bản bụng tiếp giáp với hai cánh, mỗi phần rộng $0.5t_w[h_w/t_w]$.

b) Khi kiểm tra ổn định của cột nén lệch tâm và nén uốn theo công thức (39), (48), diện tích tiết diện A chỉ gồm diện tích hai cánh và hai phần bản bụng tiếp giáp với hai cánh, mỗi phần rộng $0.85t_{\rm w}[h_{\rm w}/t_{\rm w}]$.

Giá trị của [hw/tw] được lấy tương ứng theo Bảng 33.

- **7.6.2.6** Khi bản bụng của cột đặc có $h_w/t_w \ge 2,3\sqrt{E/f}$ thì phải gia cường bằng các sườn cứng ngang đặt cách nhau một khoảng từ $2,5h_w$ đến $3h_w$. Trong trường hợp cột phải vận chuyển thì mỗi đoạn cột phải được gia cường không ít hơn 2 sườn. Kích thước của các sườn cứng ngang lấy theo 7.6.1.1.
- 7.6.3 On định cục bộ của bản cánh dầm và cột
- 7.6.3.1 Chiều rộng tính toán bo của bản cánh lấy như sau:

Trong cấu kiện hàn: bằng khoảng cách từ biên của bản bụng đến mép của bản cánh;

Trong các thép cán định hình: từ điểm bắt đầu uốn cong phía trong của cánh đến mép của bản cánh;

Trong các định hình cong: từ điểm cuối đoạn cong của bản bụng đến mép của bản cánh (Hình 14).

7.6.3.2 Trong dầm, tỉ số giữa chiều rộng tính toán và chiều dài của bản cánh b_c/t_f không được lớn hơn giá trị $[b_c/t_f]$ giới hạn cho ở Bảng 34.

Phần nhô a_o của mép viền định hình cong (Hình 14) không được nhỏ hơn $0,3b_o$ khi không có bản giằng; không nhỏ hơn $0,2b_o$ khi có bản giằng; chiều dày của mép viền không được nhỏ hơn $2a_o\sqrt{f/E}$.

7.6.3.3 Đối với cột chịu nén đúng tâm, nén lệch tâm, nén uốn có độ mảnh qui ước $0.8 \le \overline{\lambda} \le 4$, tỉ số $[b_o t_i]$ không được lớn hơn các giá trị xác định theo các công thức trong Bảng 35.

Khi $\bar{\lambda}$ < 0,8 hoặc $\bar{\lambda}$ > 4 thì các công thức trong Bảng 35 lấy tương ứng với $\bar{\lambda}$ = 0,8 hoặc $\bar{\lambda}$ = 4.

Hình 14 - Sơ đồ tiết diện ngang của định hình cong

Bảng 34 - Giá trị giới hạn [b_c/t_f]

Tính toán dầm	Đặc điểm phần nhô ra	Giá trị [b。/tɨ]
Trong giới hạn đàn hồi	Không viền mép	0,5√E / f
noi	Có viền mép	0,75√E/f
Kể đến sự phát triển của biến dạng dẻo ⁽¹⁾	Không viền mép	0,11h _w /t _w nhưng không lớn hơn 0,5√E/f
cua bien dang deo	Có viền mép	0,16h _w /t _w nhưng không lớn hơn 0,75√E/f

CHÚ THÍCH: (1): Khi $h_w/t_w \le 2,7\sqrt{E/f}$ giá trị $[b_o/t_f]$ lấy như sau:

- Đối với cánh không viền: $[b_0/t_f] = 0.3\sqrt{E/f}$;

- Đối với cánh viền bằng sườn: $[b_0/t_f] = 0.45\sqrt{E/f}$;

- hw, tw là chiều cao tính toán và chiều dày của bản bụng.

Bảng 35 - Giá trị giới hạn của [bo/tf]

Đặc điểm của bản cánh và tiết diện	Giá trị [b₀/t₅]
Cánh của tiết diện chữ I và chữ T không liền mép	$(0.36 + 0.10\overline{\lambda})\sqrt{E/f}$
Thép góc đều cánh và định hình cong không viền bằng sườn (trừ tiết diện chữ [)	(0,40 + 0,07√)√E/f
Định hình cong có sườn viền	$(0.50 + 0.18\overline{\lambda})\sqrt{E/f}$
Cánh lớn của thép góc không đều cánh và cánh của tiết diện chữ [(0,43 + 0,08√̄)√E/f

7.6.3.4 Đối với cột chịu nén đúng tâm có tiết diện hình hộp giá trị $[b_o/t_f]$ lấy theo Bảng 33 như đối với bản bụng của tiết diện hình hộp.

Đối với cột chịu nén lệch tâm, nén uốn có tiết diện hình hộp, giá trị của [b₀/t₁] được lấy như sau:

Khi m ≤ 0,3: như đối với cấu kiện chịu nén đúng tâm;

Khi m
$$\geq$$
 1,0 và $\bar{\lambda} \leq$ 2 + 0,04m; $[b_0/t_f] = \sqrt{E/f}$

Khi m
$$\geq 1.0$$
 và $\overline{\lambda} > 2 + 0.04$ m; $[b_0/t_f] = (0.4 + 0.3\overline{\lambda})(1 - 0.01$ m) $\sqrt{E/f}$.

Khi giá trị của độ lệch tâm tương đối 0.3 < m < 1 thì $[b_0/t_f]$ được nội suy tuyến tính theo các giá trị ứng với m = 0.3 và m = 1.

7.6.3.5 Khi tiết diện của cột chịu nén đúng tâm, nén lệch tâm, nén uốn được chọn theo độ mảnh giới hạn và của dầm theo độ võng giới hạn thì giá trị của $[b_o/t_f]$ được nhân với hệ số $\sqrt{f\phi_m/\sigma}$ nhưng không lớn hơn 1,25, trong đó ϕ_m và σ lấy như sau:

Đối với cột chịu nén đúng tâm, nén lệch tâm và nén uốn: ϕ_m là giá trị nhỏ nhất trong các giá trị của ϕ , ϕ_e , ϕ_{exv} , c_{ϕ} dùng khi kiểm tra ổn định của cột; còn $\sigma = N/A$.

Đối với cấu kiện chịu uốn: φ_m = 1; còn σ là giá trị lớn hơn trong hai giá trị tính theo vế trái của các công thức (8) và (16).

7.7 Kết cấu thép tấm

7.7.1 Tính toán về bền

7.7.1.1 Kiểm tra độ bền của kết cấu tấm vỏ tròn xoay theo trạng thái ứng suất phi mômen theo công thức:

$$\sqrt{\sigma_x^2 - \sigma_x \sigma_y + \sigma_y^2 + 3\tau_{xy}^2} \le f \gamma_c \tag{68}$$

trong đó:

 $\sigma_x v a \sigma_v l$ à các ứng suất pháp theo hai phương vuông góc với nhau;

 τ_{xy} là ứng suất tiếp.

Ngoài ra, các giá trị tuyệt đối của các ứng suất chính không được lớn hơn fy_c.

7.7.1.2 Các ứng suất trong vỏ mỏng tròn xoay tính theo lý thuyết phi mômen (Hình 15), chịu áp lực của chất lỏng, chất khí hoặc vật liệu hạt được xác định theo công thức:

$$\frac{\sigma_1}{r_1} + \frac{\sigma_2}{r_2} = \frac{p}{t} \tag{69}$$

$$\sigma_1 = \frac{F}{2\pi r t \cos \beta} \tag{70}$$

trong đó:

 σ_1 và σ_2 là các ứng suất tương ứng theo phương kinh tuyến và phương vòng;

r₁ và r₂ là bán kính cong theo các phương chính của mặt trung bình của vỏ;

p là áp lực tính toán trên một đơn vị bề mặt của vỏ;

t là chiều dày của vỏ;

F là hình chiếu lên trục z-z của toàn bộ áp lực tính toán tác dụng lên phần vỏ abc (Hình 15); r và β là bán kính và góc như trên Hình 15.

Hình 15 - Sơ đồ vỏ tròn xoay

Hình 16 - Sơ đồ vỏ nón tròn xoay

7.7.1.3 Vỏ mỏng kín, tròn xoay, chịu áp lực phân bố đều bên trong, khi tính theo trạng thái phi mômen các ứng suất được xác định theo những công thức:

Đối với vỏ trụ:
$$\sigma_1 = \frac{pr}{2t}$$
 và $\sigma_2 = \frac{pr}{t}$ (71)

Đối với vỏ cầu:
$$\sigma_1 = \sigma_2 = \frac{pr}{2t}$$
 (72)

Đối với vỏ nón:
$$\sigma_1 = \frac{pr}{2t\cos\beta}$$
 và $\sigma_1 = \frac{pr}{t\cos\beta}$ (73)

trong đó:

p là áp lực tính toán bên trong trên một đơn vị diện tích bề mặt vỏ;

r là bán kính mặt trung bình của vỏ (Hình 16);

β là góc giữa đường sinh của mặt nón và trục z-z của nó (Hình 16).

7.7.1.4 Ở những chỗ vỏ thay đổi hình dạng, thay đổi chiều dày, cũng như có tải trọng thay đổi phải kể đến ứng suất cục bộ (hiệu ứng biên).

7.7.2 Tính toán về ổn định

7.7.2.1 Vỏ trụ kín, chịu nén đều song song với đường sinh, được kiểm tra ổn định theo công thức:

$$\sigma_1 \le \gamma_c \sigma_{cr1} \tag{74}$$

trong đó:

 σ_1 là ứng suất tính toán trong vỏ;

 σ_{cr1} là ứng suất tới hạn, lấy bằng giá trị nhỏ hơn trong hai giá trị: ψ f hoặc cEt/r (ở đây r là bán kính của mặt trung bình của vỏ, t là chiều dài vỏ).

Giá trị của hệ số ψ khi $0 < r/t \le 300$ được tính theo công thức:

$$\psi = 0.97 - \left(0.00025 + 0.95 \frac{f}{E}\right) \frac{r}{t}$$
 (75)

Giá trị của hệ số c lấy theo Bảng 36.

Bảng 36 - Giá trị của hệ số c

r/t	100	200	300	400	600	800	1000	1500	2500
С	0,22	0,18	0,16	0,14	0,11	0,09	0,08	0,07	0,06

Khi vỏ chịu nén lệch tâm song song với đường sinh, hoặc chịu uốn thuần túy trong mặt phẳng đường kính, nếu ứng suất tiếp ở chỗ mômen lớn nhất $\tau \le 0,07 E(t/r)^{3/2}$, thì giá trị của ứng suất σ_{cr1} được tăng lên bằng cách nhân với $(1,1-0,1\sigma_1/\sigma_1)$, trong đó: σ_1 là ứng suất nhỏ nhất (ứng suất kéo được qui ước là âm).

7.7.2.2 Thép ống có độ mảnh qui ước $\overline{\lambda} = \lambda \sqrt{f/E \ge 0.65}$ và khi tỉ số:

$$r/t \le 3,14\sqrt{E/f} \tag{76}$$

sẽ được tính theo cấu kiện chịu nén hoặc nén uốn. Ởn định tổng thể của chúng được kiểm tra theo các công thức ở 7 không phụ thuộc vào việc kiểm tra ổn định của thành ống. Đối với các loại ống không có đường hàn dọc, không cần kiểm tra ổn định của thành ống nếu tỉ số r/t không lớn quá một nửa giá trị tính theo công thức (76).

7.7.2.3 Vỏ trụ kín tròn xoay, chịu tác động của áp lực phân bố đều từ phía ngoài vuông góc với mặt vỏ, được tính toán về ổn định theo công thức:

$$\sigma_2 \le \gamma_c \sigma_{cr2} \tag{77}$$

trong đó:

 $\sigma_2 = \text{pr/t}$ là ứng suất vòng tính toán trong vỏ;

 σ_{cr2} là ứng suất tới hạn, xác định theo các công thức sau:

Khi
$$0.5 \le 1/r \le 10$$
: $\sigma_{cr2} = 0.55E(r/1)(t/r)^{3/2}$ (78)

Khi
$$I/r \ge 20$$
: $\sigma_{cr2} = 0.17E(t/r)^2$ (79)

Khi $10 \le l/r \le 20$, giá trị của σ_{cr2} được nội suy tuyến tính theo các giá trị ứng với l/r = 10 và l/r = 20

(ở đây l là chiều dài vỏ tru).

Nếu vỏ được tăng cường bằng các sườn vòng có khoảng cách giữa các trục sườn là $S \ge 0,5r$, thì khi kiểm tra ổn định theo các công thức (77) đến (79), giá trị của I được thay bằng s. Khi đó để đảm bảo tính ổn định của vành, mômen quán tính của nó lấy theo trục song song với đường sinh không được nhỏ hơn giá trị psr³/3E. Diện tích tính toán gồm diện tích của sườn cộng thêm diện tích phần vỏ có chiều rộng $0,65t\sqrt{E/f}$ về mỗi phía của sườn (tính từ trục sườn). Còn độ mảnh

quy ước $\overline{\lambda} = \lambda \sqrt{\frac{f}{E}}$ không được lớn hơn 6,5. Trường hợp sườn chỉ đặt ở một phía của vỏ thì mômen quán tính được lấy đối với trục trùng với mặt tiếp xúc của vỏ và sườn.

7.7.2.4 Vỏ trụ kín chịu tác dụng đồng thời của các tải trọng nêu ở 7.7.2.1 và 7.7.2.3 được kiểm tra ổn định theo công thức:

$$\frac{\sigma_1}{\sigma_{cr1}} + \frac{\sigma_2}{\sigma_{cr2}} \le \gamma_c \tag{80}$$

trong đó:

 σ_{cr1} được tính theo 7.7.2.1;

 σ_{cr2} được tính theo 7.7.2.3;

7.7.2.5 Vỏ nón tròn xoay, có góc nghiêng $\beta \le 60^{\circ}$, chịu lực nén dọc trục N (Hình 17), được kiểm tra về ổn định theo công thức:

$$N \le \gamma_{\rm c} N_{\rm cr} \tag{81}$$

trong đó:

N_{cr} là lực nén tới hạn, tính theo công thức:

$$N_{cr} = 6.28 r_{m} t \sigma_{cr1} \cos^{2} \beta \tag{82}$$

với:

t là chiều dày của vỏ;

 σ_{cr1} là ứng suất tới hạn, tính theo 7.7.2.1 nhưng thay bán kính r bằng bán kính r_m :

$$r_{m} = \frac{0.9r_{2} + 0.1r_{1}}{\cos\beta} \tag{83}$$

Hình 17 - Sơ đồ vỏ nón tròn xoay chiu lực nén dọc trục

7.7.2.6 Vỏ nón tròn xoay, chịu áp lực phân bố đều từ phía ngoài p vuông góc với mặt vỏ, được kiểm tra về ổn định theo công thức:

$$\sigma_2 \le \gamma_c \sigma_{cr2}$$
 (84)

trong đó:

 $\sigma_2 = pr_m/t$ là ứng suất tính toán trong vỏ;

 σ_{cr2} là ứng suất tới hạn, tính theo công thức sau:

$$\sigma_{cr2} = 0.55E(r_m/h)(t/r_m)^{3/2}$$
 (85)

Với: h là chiều cao của vỏ nón (khoảng cách giữa hai đáy);

r_m là bán kính, tính theo công thức (83).

7.7.2.7 Vỏ nón tròn xoay, chịu tác dụng đồng thời của các tải trọng nêu ở điều 7.7.2.5 và 7.7.2.6 được kiểm tra về ổn định theo công thức

$$\frac{N}{N_{cr}} + \frac{\sigma_2}{\sigma_{cr2}} \le \gamma_c \tag{86}$$

trong đó các giá trị của N_{cr} và σ_{cr2} được tính theo các công thức (82) và (85).

7.7.2.8 Vỏ cầu (hoặc chỏm cầu) có tỉ số r/t ≤ 750, chịu áp lực phân bố đều từ phía ngoài vuông góc với mặt vỏ kiểm tra ổn định theo công thức:

$$\sigma_{\rm c} \le \gamma_{\rm c} \sigma_{\rm cr}$$
 (87)

trong đó:

 σ = pr/2t là ứng suất tính toán;

 $\sigma_{cr} = 0.1$ Et/r là ứng suất tới hạn, lấy không lớn hơn f;

r là bán kính trung bình của vỏ.

7.7.2.9 Các yêu cầu bổ sung khi tính toán giàn thép ống tham khảo Phụ lục G

8 Tính toán liên kết

8.1 Liên kết hàn

8.1.1 Hàn đối đầu

8.1.1.1 Liên kết hàn đối đầu chịu kéo hoặc nén đúng tâm với lực dọc N được tính theo công thức:

$$\frac{N}{tl_{w}} \le f_{w} \gamma_{c} \tag{88}$$

trong đó:

t là chiều dày nhỏ nhất của các cấu kiện được liên kết;

l_w là chiều dài tính toán của đường hàn, bằng chiều dài thực (chiều dài hình học) trừ đi 2t, hoặc bằng chiều dài thực nếu hai đầu của đường hàn kéo dài quá giới hạn nối (khi hàn trên bản lót).

Không cần kiểm tra bền liên kết hàn đối đầu khi dùng loại que hàn theo Bảng B.1, Phụ lục B, khi các cấu kiện liên kết được hàn đầy và có kiểm tra chất lượng mối hàn bằng các phương pháp vật lý.

8.1.1.2 Liên kết hàn đối đầu được kiểm tra chất lượng bằng phương pháp vật lý, chịu tác dụng đồng thời của ứng suất pháp và tiếp, được kiểm tra bền theo công thức (6) trong đó thay σ , σ_c , τ và f tương ứng bằng σ_{xw} , σ_{yw} , τ_w và f $_w$ (lần lượt là các ứng suất pháp theo hai phương vuông góc, ứng suất tiếp trong đường hàn và cường độ tính toán của đường hàn đối đầu).

8.1.2 Liên kết hàn góc

8.1.2.1 Liên kết hàn dùng đường hàn góc, chịu tác dụng của lực dọc và lực cắt được kiểm tra bền (cắt qui ước) theo hai tiết diện:

Theo kim loại đường hàn (tiết diện 1 trên Hình 18):

$$N/(\beta_t h_t I_w) \le f_{wf} \gamma_c \tag{89}$$

Theo kim loại ở biên nóng chảy (tiết diện 2 trên Hình 18):

$$N/(\beta_{s}h_{f}I_{w}) \le f_{ws}\gamma_{c} \tag{90}$$

trong đó:

l_w là chiều dài tính toán của đường hàn, bằng chiều dài thực của nó trừ đi 10 mm;

h_f là chiều cao của đường hàn góc;

 β_f và β_s là các hệ số lấy như sau: khi các cấu kiện được hàn là thép có giới hạn chảy $f_y \le 530$ MPa, lấy theo Bảng 37; khi $f_y > 530$ MPa không phụ thuộc vào phương pháp hàn, vị trí đường hàn và đường kính que hàn lấy $\beta_f = 0.7$ và $\beta_s = 1$.

CHÚ DẪN:

- 1 Tiết diện theo kim loại đường hàn
- 2 Tiết diện theo kim loại ở biên nóng chảy

Hình 18 - Sơ đồ tiết diện tính toán của đường hàn góc

Bảng 37 - Hệ số β_f và β_s

Phương pháp hàn,	, Vị trí Giá trị β _f và β _s của khi				ều cao đường	j hàn h _f , mm
đường kính que (dây) hàn d, mm	đường hàn	Hệ số	Từ 3 đến 8	Từ 9 đến 12	Từ 14 đến 16	≥18
	Trong	β_{f}		1,1		0,7
Hàn tự động khi	máng	βs		1,15		1,0
d = 3 ÷ 5	A13	β_{f}	1,1	0	,9	0,7
	Nằm	β_{s}	1,15	1,	05	1,0
	Trong máng	β_{f}	0	0,9		0,7
Hàn tự động, bán tự		β_{s}	1,05		1,	1,0
động khi d = $1.4 \div 2$	Nằm,	β_{f}	0,9	0,8	0,	,7
	ngang, đứng	β_{s}	1,05		1,0	
Hàn tay, bán tự động	Trong β_f		0,7			
với dây hàn đặc d < 1,4 hoặc dây hàn có lõi thuốc	máng, ngang, đứng, ngược	βs		1	,0	
CHÚ THÍCH: Giá trị củ	a các hệ số	ứng vớ	vi chế độ hàn ti	êu chuẩn.		

8.1.2.2 Liên kết hàn dùng đường hàn góc chịu mômen:

Khi mômen tác dụng nằm trong mặt phẳng vuông góc với mặt phẳng bố trí đường hàn, độ bền của đường hàn được tính theo công thức:

+ Theo kim loại đường hàn:
$$\frac{M}{W_f} \le f_{wf} \gamma_c \tag{91}$$

+ Theo kim loại ở biên nóng chảy:
$$\frac{M}{W_s} \le f_{ws} \gamma_c \tag{92}$$

trong đó:

 $W_{\rm f},W_{\rm s}$ là mô đun chống uốn của tiết diện tính toán theo kim loại đường hàn và theo biên nóng chảy của thép cơ bản.

Khi mômen tác dụng nằm trong mặt phẳng bố trí đường hàn, độ bền của đường hàn được tính theo công thức:

+ Theo kim loại đường hàn:
$$\frac{M}{I_{xw}+I_{yw}}\sqrt{x^2+y^2} \leq f_{wf}\gamma_c \tag{93}$$

+ Theo kim loại ở biên nóng chảy:
$$\frac{M}{I_{xs}+I_{ys}}\sqrt{x^2+y^2} \leq f_{ws}\gamma_c \tag{94}$$

trong đó:

 I_{xw} , I_{yw} là các mômen quán tính của tiết diện tính toán theo kim loại đường hàn đối với các trục chính x-x, y-y của nó;

 I_{xs} , I_{ys} là cũng như trên nhưng theo kim loại ở biên nóng chảy của thép cơ bản;

x, y là các tọa độ của những điểm xa nhất so với gốc tọa độ trọng tâm theo các trục chính x-x, y-y (Hình 19).

Hình 19 - Đường hàn góc chịu mômen tác dụng trong mặt phẳng bố trí đường hàn

8.1.2.3 Đường hàn góc chịu đồng thời tác dụng của lực dọc, lực cắt và mômen được kiểm tra bền theo công thức:

$$\tau_{\rm wt} \le f_{\rm wf} \gamma_{\rm c} \, \text{và} \, \tau_{\rm ws} \le f_{\rm wf} \gamma_{\rm c}$$
 (95)

trong đó:

 τ_{wf} và τ_{ws} là các ứng suất trong tiết diện tính toán theo kim loại đường hàn và kim loại ở biên nóng chảy, bằng tổng hình học các ứng suất gây bởi lực dọc, lực cắt và mômen.

8.2 Liên kết bulông

- **8.2.1** Khi liên kết bulông chịu tác dụng của lực dọc N đi qua trọng tâm chịu kéo của liên kết thì lực phân phối lên các bulông coi như đều nhau.
- 8.2.2 Khả năng chịu lực tính toán của một bulông được tính như sau:

Chiu cắt:
$$[N]_{vb} = f_{vb}\gamma_b A n_v$$
 (96)

Chịu ép mặt:
$$[N]_{cb} = f_{cb}\gamma_b d\Sigma t$$
 (97)

Chịu kéo:
$$[N]_{tb} = f_{tb}A_{bn}$$
 (98)

trong đó:

 f_{vb} , f_{cb} , f_{tb} lần lượt là cường độ tính toán chịu cắt, chịu ép mặt và chịu kéo của bulông;

d là đường kính ngoài của bulông;

A = $\pi d^2/4$ là diện tích tiết diện tính toán của thân bulông;

A_{bn} là diện tích tiết diện thực của thân bulông, lấy theo Bảng B.4, Phụ lục B;

Σt là tổng chiều dài nhỏ nhất của các bản thép cùng trượt về một phía;

 n_{ν} là số lượng các mặt cắt tính toán;

 γ_b là hệ số điều kiện làm việc của liên kết bulông, lấy theo Bảng 38.

8.2.3 Số lượng bulông trong liên kết khi chịu lực dọc N được tính theo công thức:

$$n \ge \frac{N}{[N]_{\min} \gamma_c} \tag{99}$$

trong đó:

[N]_{min} là giá trị nhỏ nhất trong các khả năng chịu lực của một bulông tính theo 8.2.2

Bảng 38 - Hê số điều kiên làm việc γ_b

Dang 30 - Tie 30 died kien lain viec 1/b				
Đặc điểm của liên kết	Giá trị γ _b			
1. Liên kết nhiều bulông khi tính toán chịu cắt và ép mặt:				

- Đối với bulông tinh (độ chính xác nâng cao)	1,0
- Bulông thô và bulông độ chính xác bình thường, bulông cường độ cao không điều chỉnh lực xiết đai ốc.	0,9
2. Liên kết có một hoặc nhiều bulông, được tính toán chịu ép mặt khi a = 1,5d và b = 2d, thép được liên kết có giới hạn chảy:	
- f _y ≤ 285 MPa	0,8
- f _y > 285 MPa	0,75

CHÚ THÍCH:

Các hệ số điều kiện làm việc ở mục 1 và 2 được lấy đồng thời;

a là khoảng cách dọc theo lực, từ mép cấu kiện đến trọng tâm của lỗ gần nhất;

b là khoảng cách giữa trọng tâm các lỗ.

d là đường kính lỗ bulông.

- **8.2.4** Khi tác dụng của mômen gây trượt các cấu kiện được liên kết thì lực phân phối cho các bulông tỷ lệ với khoảng cách từ trong tâm của liên kết đến bulông khảo sát.
- 8.2.5 Bulông chịu cắt và kéo đồng thời được kiểm tra chịu cắt và kéo riêng biệt.

Bulông chịu cắt do tác dụng đồng thời của lực dọc và mômen được kiểm tra theo hợp lực của các nội lực thành phần.

8.2.6 Khi các cấu kiện được liên kết với nhau qua cấu kiện trung gian, hoặc khi dùng bản nối ở một phía thì số lượng bulông phải tăng lên 10% so với tính toán.

8.3 Liên kết bulông cường độ cao

- **8.3.1** Liên kết bulông cường độ cao được tính toán với giả thiết là nội lực trong liên kết được truyền bằng ma sát nảy sinh trên mặt tiếp xúc của các cấu kiện được nối do lực xiết bulông.
- **8.3.2** Lực trượt tính toán mà mỗi mặt ma sát của những cấu kiện được liên kết có thể chịu được khi xiết một bulông cường độ cao được tính toán theo công thức:

$$[N]_{b} = \frac{f_{hb}\gamma_{b1}A_{bn}\mu}{\gamma_{b2}} \tag{100}$$

trong đó:

f_{nb} là cường độ tính toán chịu kéo của bulông cường độ cao, lấy theo 6.2.5;

μ là hệ số ma sát, lấy theo Bảng 39;

γb₂ là hệ số độ tin cậy, lấy theo Bảng 39;

A_{bn} là diện tích tiết diện thực của bulông, lấy theo Bảng B.4, Phụ lục B;

 γb_1 là hệ số điều kiện làm việc của liên kết, phụ thuộc số lượng bulông chịu lực n_a trong liên kết, giá trị của γb_1 lấy như sau:

 $\gamma b_1 = 0.8 \text{ n\'eu } n_a < 5;$

 $\gamma b_1 = 0.9 \text{ n\'eu } 5 \le n_a < 10;$

 γb_1 = 1,0 nếu n_a ≥ 10.

Số lượng bulông cường độ cao na cần thiết để chịu lực dọc N được tính theo công thức:

$$n_a \ge \frac{N}{n_f[N]_b \gamma_c} \tag{101}$$

trong đó: n_f là số lượng ma sát của liên kết.

Lực kéo trong thân bulông xiết êcu gây nên: $P = f_{hb}A_{bn}$.

8.3.3 Kiểm tra bền các bản thép được liên kết theo tiết diện giảm yếu bởi lỗ bulông được tiến hành khi coi như một nửa lực đi qua mỗi bulông đã được truyền bằng lực ma sát. Do đó diện tích của tiết diện giảm yếu được tính như sau:

Khi chịu tải trọng động: bằng diện tích thực An;

Khi chịu tải trọng tĩnh: bằng diện tích tiết diện nguyên A nếu $A_n \ge 0.85A$;

bằng diện tích qui ước $A_c = 1,18A_n$ nếu A_n nếu $A_n < 0,85A$.

Bảng 39 - Hệ số ma sát μ và hệ số độ tin cậy γ_{b2}

Phương pháp làm sạch mặt phẳng của các cấu kiện được	Phương pháp điều	Hệ số ma sát	Hệ số γ_{b2} khi tải trọng và độ dung sai giữa đường kính bulông và lỗ δ ,		
liên kết	chỉnh lực xiết bulông	μ	Động và $\delta = 3 \div 6$;	Động và $\delta = 1$;	
			Tĩnh và $\delta = 5 \div 6$	Tĩnh và $\delta = 1 \div 4$	
1. Phun cát thạch anh hoặc bột	Theo M	0,58	1,35	1,12	
kim loại.	Theo α	0,58	1,2	1,02	
2. Phun cát hoặc bột kim loại	Theo M	0,5	1,35	1,12	
sau đó phun sơn kẽm hoặc nhôm.	Theo α	0,5	1,2	1,02	
3. Bằng ngọn lửa hơi đốt, không	Theo M	0,42	1,35	1,12	
có lớp bảo vệ mặt kim loại.	Theo α	0,42	1,2	1,02	
4. Bằng bàn chải sắt, không có	Theo M	0,35	1,35	1,17	
lớp sơn bảo vệ.	Theo α	0,35	1,25	1,06	
5. Không gia công bề mặt	Theo M	0,25	1,7	1,3	
	Theo α	0,25	1,5	1,2	

CHÚ THÍCH: Phương pháp điều chỉnh theo M tức là theo mômen xoắn; theo α tức là theo góc quay của êcu.

9 Tính toán kết cấu thép theo độ bền mỏi

9.1 Các kết cấu chịu trực tiếp tác dụng của tải trọng di động, tải trọng rung động hoặc các tải trọng khác, có số lượng chu kỳ tải trọng từ 10⁵ trở lên, thí dụ: dầm cầu trục, dầm sàn công tác, cầu đỡ tải, bun-ke, kết cấu đỡ động cơ, v.v... cần được tính toán theo điều kiện bền mỏi.

Các công trình cao như: ăng ten, ống khói, trụ, tháp, cầu trục khi kiểm tra cộng hưởng do tác dụng của tải trọng gió cần tính toán theo điều kiện bền mỏi.

Số lượng chu kỳ tải trong n_o lấy theo yêu cầu công nghệ khi sử dụng.

Tải trọng để tính toán về bền mỏi lấy theo các qui định của TCVN 2737:1995

Các loại kết cấu kiểm tra theo điều kiện bền mỏi phải được thiết kế cấu tạo sao cho ứng suất tập trung chúng không lớn.

9.2 Công thức kiểm tra theo điều kiên bền mỏi như sau:

$$\sigma_{\text{max}} \le \alpha f_f \gamma_t$$
 (102)

trong đó:

 $f_{\rm f}$ là cường độ tính toán về mỏi, lấy theo Bảng 40 phụ thuộc vào cường độ kéo đứt tức thời của thép và nhóm cấu kiện ở Bảng F.1, Phụ lục F;

 α là hệ số, kể đến số lượng chu kỳ tải trọng $n_{\rm Q}$ và được tính theo công thức:

Khi $n_0 < 3.9 \times 10^6$:

Đối với các nhóm cấu kiện 1 và 2:

$$\alpha = 0.064 \left(\frac{n_Q}{10^6}\right)^2 - 0.5 \left(\frac{n_Q}{10^6}\right) + 1.75$$
 (103)

Đối với các nhóm cấu kiện 3 và 8:

$$\alpha = 0.07 \left(\frac{n_Q}{10^6} \right)^2 - 0.64 \left(\frac{n_Q}{10^6} \right) + 2.2$$
 (104)

Khi $n_Q \ge 3.9 \times 10^6$, lấy $\alpha = 0.77$;

 $\gamma_{\rm f}$ là hệ số, lấy theo Bảng 41, phụ thuộc vào trạng thái ứng suất và hệ số không đối xứng của ứng suất $\rho = \sigma_{\rm min}/\sigma_{\rm max}$, với $\sigma_{\rm max}$ và $\sigma_{\rm min}$ tương ứng là các ứng suất lớn nhất và nhỏ nhất (tính theo trị tuyệt đối) trong cấu kiện, tính theo tiết diện giảm yếu, không kể đến các hệ số ϕ , $\phi_{\rm e}$, $\phi_{\rm b}$. Khi các ứng suất khác dấu nhau, hệ số ρ mang dấu "-".

Khi kiểm tra theo công thức (102), tích số $\alpha f_{f/f}$ không được vượt quá giá trị f_{ν}/γ_{M} ; $\gamma_{M} = 1,3$.

9.3 Đối với các kết cấu chịu tác dụng trực tiếp tải trọng động có số lượng chu kỳ nhỏ hơn 10⁵ thì phải dùng các giải pháp cấu tạo sao cho ứng suất tập trung trong chúng là nhỏ và khi cần thiết vẫn phải kiểm tra về bền mỏi theo số lượng chu kỳ nhỏ.

Bảng 40 - Cường độ tính toán về mỏi f_f

Đơn vị tính bằng megapascan

AU. (Trị số của f _r khi cường độ kéo đứt tức thời f _u							
Nhóm cấu kiện	≤ 420	Từ 420 đến 440	Từ 440 đến 520	Từ 520 đến 580	Từ 580 đến 635			
1	120	128	132	136	145			
2	100	106	108	110	116			
3	Đối với mọi mác thép		90					
4	Đối với mọi mác thép		75					
5	Đối với mọi mác thép		60					
6	Đối với mọi mác thép		45					
7	Đối với mọi mác thép		36					
8	Đối với mọi má	c thép	27					

Bảng 41 - Hệ số γ_ε

σ _{max}	Hệ số không đối xứng của ứng suất ρ	Công thức tính hệ số γ _f
Kéo	-1 ≤ ρ ≤ 0	$\gamma_{\rm f} = 2.5 / (1.5 - \rho)$
	0 < ρ ≤ 0,8	$\gamma_{\rm f} = 2.0 / (1.2 - \rho)$
	0,8 < ρ < 1	$\gamma_{\rm f} = 1.0 / (1 - \rho)$
Nén	-1 ≤ ρ < 1	$\gamma_{\rm f} = 2.0 / (1 - \rho)$

10 Các yêu cầu kỹ thuật và cấu tạo khác khi thiết kế cấu kiện cấu thép 10.1 Dầm

- **10.1.1** Trong dầm hàn tiết diện chữ I chỉ dùng bản cánh bằng một lớp thép tấm (trừ dầm cầu trục). Trong dầm bulông cường độ cao bản cánh có thể gồm nhiều tấm thép nhưng số lượng lớp thép tấm không lớn hơn 3. Khi đó diện tích các thép góc cánh không được nhỏ hơn 30% diện tích toàn bộ cánh.
- **10.1.2** Chiều rộng cánh dầm hàn nên thỏa mãn các điều kiện: $b_f \ge 180$ mm và $b_f \ge (1/10)h$ và phải thỏa mãn yêu cầu về ổn định cục bộ ở 7.6.3.2. Chiều dài bản cánh $t_f \le 40$ mm.
- **10.1.3** Các đường hàn liên kết bản cánh và bản bụng cũng như liên kết các cấu kiện phụ vào dầm (ví dụ sườn cứng) là đường hàn liên tục.
- **10.1.4** Tại những chỗ cánh dầm có tải trọng tập trung (kể cả tải trọng của các tấm bê tông có sườn), bản bụng dầm thường được gia cường bằng các sườn cứng ngang.
- **10.1.5** Các sườn cứng ngang của dầm hàn được đặt cách đầu nối của bản bụng một khoảng không nhỏ hơn 10 lần chiều dày bản bụng, còn các đường hàn của sườn dọc với bản bụng nằm cách đầu nối này một đoạn là 40 mm.
- **10.1.6** Trong các dầm hàn tiết diện chữ I chịu tải trọng tĩnh, hoặc của các kết cấu phụ thường dùng sườn cứng ngang một bên (trừ sườn đầu dầm) bố trí cả ở một mặt của bản bụng. Nếu dùng đường hàn góc một phía để liên kết cánh và bụng dầm thì các sườn cứng ngang được bố trí ở phía đối diện các bản bụng.
- **10.1.7** Đối với các sườn gối, khi tính theo điều kiện ép mặt, mặt tì của đầu dưới sườn với cánh dầm (hoặc với gối kê) phải được bào nhẵn, tiếp xúc chặt. Khi dùng sườn gối hàn vào mút đầu dầm, độ nhô của sườn ra khỏi cánh dưới dầm lấy nhỏ hơn hoặc bằng $1,5t_{\rm s}$ ($t_{\rm s}$ chiều dài của sườn gối).
- 10.1.8 Liên kết cánh của dầm tổ hợp:
- **10.1.8.1** Đường hàn và bulông cường độ cao liên kết bản bụng và bản cánh của dầm chữ I tổ hợp được tính toán theo Bảng 42.

Khi không có các sườn cứng để truyền các tải trọng tập trung lớn cố định, việc tính toán cánh trên được tiến hành như đối với tải trọng trung di động.

Khi đặt tải trọng tập trung cố định lên cánh dưới của dầm thì đường hàn và bulông cường độ cao dùng liên kết cánh này với bản bụng được tính theo các công thức từ (110) đến (112) của Bảng 42, không phụ thuộc vào sự có mặt của sườn cứng tại chỗ đặt tải trọng.

Đường hàn cánh được hàn thấu hết toàn bộ chiều dài của bản bụng coi như có độ bền bằng độ bền của bản bụng.

10.1.8.2 Trong dầm dùng liên kết bulông cường độ cao có bản cánh ghép nhiều tấm, liên kết của mỗi tấm ở sau điểm cắt lý thuyết của nó được tính với một nữa nội lực mà tiết diện của tấm có thể chịu được. Liên kết của mỗi tấm ở trên khoảng giữa điểm cắt thực tế của nó và điểm cắt đứt của tấm trước được tính với toàn bô nội lực mà tiết diên của tấm có thể chịu được.

Bảng 42 - Công thức tính liên kết trong dầm tổ hợp

Đặc điểm của tải trọng	Dạng liên kết		Công thức	
	Đường hàn	hai nhía	$T/(2\beta_f h_f) \le f_{wt} \gamma_c$	(105)
Cố định	góc:	hai phía	$T/(2\beta_s h_f) \le f_{ws} \gamma_c$	(106)
	một phía		$T/(\beta_f h_f) \le f_{wt} \gamma_c$	(107)
			$T/(\beta_s h_f) \le f_{ws} \gamma_c$	(108)
	Bulông cường	độ cao	$aT \le n_f[N]_b \gamma_c$	(109)
Di động	Đường hàn góc hai phía		$\sqrt{T^2 + V_P^2} / (2\beta_f h_f) \le 1$	f _{wt} γ _c (110)

	$\sqrt{T^2 + V_P^2} / (2\beta_s h_f) \le f_{ws} \gamma_c$ (111)
Bulông cường độ cao	$a\sqrt{T^2 + \alpha V_P^2} \le n_f[N]_b \gamma_c \qquad (112)$

CHÚ THÍCH:

 $T = VS/I_f$ là lực trượt của cánh trên một đơn vị chiều dài do lực cắt V gây ra;

S là mômen tĩnh nguyên của cánh dầm đối với trục trung hòa;

 $V_P = P/I_z$ là áp lực do tải trọng tập trung P (với dầm cầu chạy là áp lực bánh xe cầu trục khi không kể đến hệ số động);

l_z là chiều dài phân bố qui ước của tải trọng tập trung lấy theo chỉ dẫn của 7.2.1.3 và 10.5.6;

a là bước của bulông cường độ cao;

 α là hệ số, α = 0,4 khi tải trọng đặt ở cánh trên và bản bụng tì sát cánh trên;

 α = 1.0 khi bản bung không tì sát cánh trên và khi tải trong đặt ở cánh dưới;

[N]_b là lực tính toán của bulông cường độ cao, được tính theo công thức (100).

10.2 Cột

- **10.2.1** Các đoạn của cột rỗng khi vận chuyển được gia cường bằng các vách cứng bố trí ở hai đầu mỗi đoạn. Trong cột rỗng các vách cứng ngang được bố trí cách nhau không quá 4 m theo chiều dài cột.
- **10.2.2** Khi các thanh bụng của cột rỗng được hàn trực tiếp vào nhánh cột, cho phép trục của các thanh bụng hội tụ tại mép ngoài của nhánh.

Khi các thanh bụng được nối với nhánh qua bản mã, các đường hàn góc tại liên kết chồng của bản mã với nhánh cột lấy theo tính toán và có thể bố trí gián đoạn. Khoảng cách gián đoạn giữa đầu mút của các đoạn được hàn không vượt quá 15 lần chiều dày bản mã.

- 10.2.3 Khi nối lắp ghép, các đầu mút cột được phay nhẵn, dùng đường hàn đối đầu, bản ghép với đường hàn góc hoặc với bulông. Khi dùng bản ghép, đường hàn đặt cách chỗ nối 30 mm về mỗi phía. Cho phép dùng mặt bích để truyền lực nén bằng tiếp xúc và truyền lực kéo bằng bulông.
- 10.2.4 Kích thước mặt bằng của bản đế chân cột được xác định theo điều kiện bền nén của vật liệu móng. Chiều dày của bản đế được tính theo điều kiện bền khi uốn (của các ô bản) do áp lực của mặt móng. Chiều dày của bản đế không được nhỏ hơn 10 mm và không lớn hơn 40 mm khi có sườn và dầm đế, không lớn hơn 60 mm khi không có sườn và dầm đế.
- 10.2.5 Bulông neo chân cột được tính theo lực nhổ ở chân cột. Cánh tay đòn của mômen chống nhổ bằng khoảng cách giữa trục bulông chịu kéo đến trọng tâm vùng ứng suất nén mặt dưới bản đế. Loại và kích thước bulông neo lấy theo Bảng 12. Với cột liên kết khớp, bu lông neo lấy theo cấu tạo từ hai đến bốn chiếc, đường kính không nhỏ hơn 16 mm.
- **10.2.6** Bulông neo không chịu lực cắt tại chân cột. Lực cắt này do lực ma sát giữa bản đế và bêtông móng chịu. Khi lực cắt lớn, nên đặt thêm các chốt chịu cắt riêng.

10.3 Giàn phẳng và hệ thanh không gian

10.3.1 Trục của các thanh giàn và hệ thanh không gian phải hội tụ tại tâm các nút (nằm trên trục các thanh cánh). Trong giàn hàn, trục thanh phải đi qua trọng tâm của tiết diện thanh (làm tròn đến 5 mm), trong giàn dùng liên kết bulông là trục của dãy bulông nằm gần sống thép góc nhất.

Cho phép không tính đến độ lệch trục của các cánh giàn khi thay đổi tiết diện nếu độ lệch đó không vươt quá 1,5% chiều cao của thanh cánh.

Khi có lệch tâm tại các nút thì việc tính toán các thanh giàn và hệ thanh không gian phải kể đến mômen uốn tương ứng.

Khi tải trọng đặt ngoài nút dàn, các thanh giàn phải được tính theo nén, uốn (chịu tác dụng đồng thời của lực dọc và mômen uốn).

- **10.3.2** Khi giàn mái có nhịp lớn hơn 36 m, nên làm độ vồng cấu tạo. Độ vồng cấu tạo lấy bằng độ võng của giàn do tĩnh tải và hoạt tải dài hạn gây ra. Đối với các loại mặt mái bằng (giàn có cánh song song), độ vồng cấu tạo của giàn lấy không phụ thuộc độ lớn của nhịp và bằng độ võng do tổng tải trọng tiêu chuẩn gây nên công với 1/200 nhịp)
- **10.3.3** Khi tính toán nội lực của giàn có các thanh là thép góc hoặc thép chữ T, nút liên kết các thanh được coi là khớp.

Với các thanh giàn có tiết diện chữ I, chữ H, hoặc thép ống chỉ được coi các nút là khớp khi tỉ số giữa chiều cao của tiết diện với chiều dài của thanh không lớn hơn 1/10. Nếu vượt quá tỉ số này, phải kể đến mômen phụ trong các thanh do độ cứng của các nút gây nên. Việc kể đến độ cứng của nút giàn khi tính có thể thực hiện theo các phương pháp gần đúng. Cho phép xác định lực dọc trong các thanh theo sơ đồ khớp.

10.3.4 Khoảng cách giữa đầu các thanh bụng và thanh cánh trong giàn có bản mã lấy không nhỏ hơn a (a = 6t - 20 mm) nhưng không lớn hơn 80 mm (t là chiều dày bản mã, tính bằng milimét (mm)). Khe hở giữa các đầu mút của các thanh nối ở cánh giàn có phủ các bản ghép không được nhỏ hơn 50 mm.

Đường hàn liên kết thanh bụng của giàn với bản mã được kéo dài thêm vào cạnh đầu thanh một đoạn 20 mm.

- **10.3.5** Tại các nút giàn có thanh cánh là thép chữ T, chữ I hoặc thép góc đơn, liên kết đối đầu bản mã với cánh bằng đường hàn thấu hết chiều dày bản mã.
- **10.3.6** Chiều dày bản mã giàn lấy theo nội lực của thanh lớn nhất (thường là thanh xiên ở gối) và không đổi cho các nút của cả dàn.
- 10.3.7 Đối với thanh giàn ghép từ hai thép góc, tại khe hở giữa hai thép góc đặt các tấm đệm hàn với các thép góc. Khoảng cách giữa tâm các tấm đệm không vượt quá 40i (đối với thanh nén) và 80i (đối với thanh kéo), i là bán kính quán tính của một thép góc lấy với trục trọng tâm song song với mặt phẳng dàn.

10.4 Hệ giằng

- 10.4.1 Trong mỗi khối nhiệt độ của nhà cần bố trí một hệ thống giằng riệng.
- **10.4.2** Hệ giằng đứng giữa các cột chính ở mức dầm cầu trục của cột hai nhánh được bố trí trong mặt phẳng của từng nhánh cột. Các nhánh của hệ giằng hai nhánh được liên kết với nhau bằng các thanh giằng hoặc bản giằng.
- **10.4.3** Hệ giằng ngang theo phương ngang nhà được bố trí ở mức cánh trên hoặc cánh dưới của giàn vì kèo tại các nhịp ở đầu mỗi khối nhiệt độ.

Khi khối nhiệt độ dài hơn 144m cần đặt thêm hệ giằng ngang trung gian. Những giàn vì kèo không nối trực tiếp với hệ giằng ngang cần được tăng cường trong mặt phẳng bố trí hệ giằng này bằng các thanh chống hoặc thanh kéo. Tại chỗ bố trí hệ giằng ngang đặt hệ giằng đứng giữa các dàn. Khi có khối mái cứng, tại mức cánh trên đặt hệ giằng tạm để định vị kết cấu và đảm bảo ổn định của chúng trong quá trình lắp ráp.

10.4.4 Hệ giằng dọc cánh dưới của các giàn vì kèo được bố trí dọc các dãy cột biên trong các trường hợp sau: nhà có cầu trục với chế độ làm việc nặng hoặc rất nặng; mái có giàn đỡ kèo; nhà một hoặc hai nhịp có cầu trục sức nâng 10 tấn trở lên và khi cao độ cánh dưới của giàn vì kèo lớn hơn 18 m không phụ thuộc vào sức nâng cầu trục.

Trong các nhà có ba nhịp trở lên, hệ giằng dọc cánh dưới còn được bố trí dọc các dãy cột giữa và không được cách nhau quá một nhịp đối với các nhà có cầu trục có chế độ làm việc nặng hoặc rất nặng, không được cách nhau quá hai nhịp đối với các nhà khác.

10.4.5 Cánh dưới của dầm và giàn cầu trục có nhịp lớn hơn 12 m phải được tăng cường bằng hệ giằng ngang.

10.4.6 Khi bố trí hệ giằng chéo chữ thập, việc tính toán chúng cho phép tiến hành theo sơ đồ qui ước với giả thiết thanh xiên chỉ chịu kéo (bỏ qua sự làm việc của các thanh xiên chịu nén).

Khi xác định nội lực trong các thanh của hệ giằng cho phép không kể đến lực nén trong các cánh dàn.

10.5 Dầm cầu truc

10.5.1 Kiểm tra độ bền của dầm cầu trục do tác dụng của tải trọng đứng và ngang theo các qui định ở 7.2.1.5.

10.5.2 Kiểm tra độ bền của bản bụng dầm cầu trục (trừ các dầm được tính toán theo bền mỏi với số chu kỳ của tải trọng từ $2x10^6$ trở lên) theo công thức (6), trong đó khi kiểm tra tiết diện gối dầm liên tục thay hệ số 1,15 bằng 1,3.

10.5.3 Kiểm tra ổn định tổng thể của dầm cầu trục theo qui định ở 7.2.2.1.

10.5.4 Kiểm tra ổn định của bản bụng và bản cánh của dầm cầu trục theo qui định ở 7.6.1 và 7.6.3.

10.5.5 Tính toán về bền mỏi của dầm cầu trục theo các qui định ở điều 9.

Đối với dầm cầu trục có số chu kỳ của tải trọng $n_Q > 2X10^6$ bản bụng dầm phải được kiểm tra thêm về độ bền theo 10.5.6 và mỏi theo 10.5.7.

Tải trọng cầu trục dùng để kiểm tra dầm cầu trục theo bền và mỏi được lấy theo các qui định của tiêu chuẩn TCVN 2737:1995

Số chu kỳ tải trọng của dầm cầu trục là số lượt nâng tải trong thời gian phục vụ của cầu trục do các yêu cầu sản xuất.

10.5.6 Vùng chịu nén của bản bụng dầm cầu trục bằng thép có giới hạn chảy từ 400 MPa trở xuống phải thỏa mãn điều kiên:

$$\sqrt{(\sigma_{x} + \sigma_{cx})^{2} - (\sigma_{x} + \sigma_{cx})\sigma_{cy} + \sigma_{cy}^{2} + 3(\tau_{xy} + \tau_{cy})^{2}} \le \beta f$$

$$\sigma_{x} + \sigma_{cx} \le f$$

$$\sigma_{cy} + \sigma_{ty} \le f$$
(114)
$$\sigma_{cy} + \sigma_{ty} \le f$$
(115)

$$\tau_{xy} + \tau_{cxy} + \tau_{txy} \le f_v \tag{116}$$

trong đó:

$$\begin{split} &\sigma_{x} = \text{M/W}_{nx}; \tau_{xy} = \text{V/h}_{w}t_{w}; \sigma_{cy} = \gamma_{1}\text{P/t}_{w}\text{I}_{z}; \\ &\sigma_{cx} = 0.25\sigma_{cy}; \tau_{cxy} = 0.3\sigma_{cy}; \\ &\sigma_{ty} = 2\text{M}_{t}t_{w}/\text{I}_{t}; \tau_{txy} = 0.25\sigma_{ty}; \end{split}$$

 β là hệ số bằng 1,15 khi tính toán dầm đơn giản; bằng 1,3 khi tính toán tiết diện tại gối của dầm liên tục:

M và V tương ứng là mômen uốn và lực cắt trong tiết diện của dầm do tải trong tính toán;

P là áp lực tính toán của bánh xe cầu trục không kể đến hệ số động;

 γ_1 là hệ số tăng tải trọng tập trung thẳng đứng lên một bánh xe cầu trục lấy theo qui định của TCVN 2737:1995

$$I_t = I_{tr} + \frac{b_f t_f^3}{3} là tổng$$

các mômen quán tính xoắn bản thân của ray và của cánh;

t_f và b_f là chiều dày và chiều rộng của cánh trên (chịu nén) của dầm;

Itr là mômen quán tính xoắn của ray;

1, là chiều dài chịu tải qui ước, được xác định theo công thức:

$$I_{z} = c_{x}^{3} \sqrt{I_{1t} / t_{w}}$$
 (118)

trong đó:

c là hệ số, lấy bằng 3,25 đối với dầm hàn và dầm cán; bằng 4,5 đối với dầm bulông cường độ cao:

 I_{1t} là tổng các mômen quán tính bản thân của cánh dầm và của ray cầu trục hoặc là mômen quán tính chung của ray và cánh khi hàn ray bằng đường hàn đảm bảo sự làm việc đồng thời của ray và cánh:

M_t - mômen xoắn cục bộ, được xác định theo công thức:

$$M_1 = Pe + 0.75V_1h_2$$

trong đó:

e là độ lệch tâm qui ước, lấy bằng 15 mm;

 V_t là tải trọng ngang (lực xô) tính toán gây bởi sự nghiêng lệch của cầu trục và sự không song song của đường ray cầu trục lấy theo TCVN 2737:1995

h_r là chiều cao của ray cầu trục.

Trong tất cả các công thức từ (113) đến (117) ứng suất lấy dấu dương.

10.5.7 Kiểm tra độ bền mỏi vùng trên của bụng dầm cầu trục hàn được tiến hành theo công thức:

$$0.5\sqrt{\sigma_x^2 + 0.36\tau_{xy}^2} + 0.4\sigma_{cy} + 0.5\sigma_{ty} \le f_f$$
 (119)

trong đó:

 f_f là cường độ tính toán về mỏi, với mọi mác thép lấy bằng: 75 MPa đối với vùng trên chịu nén của bản bụng (tiết diện tại nhịp dầm); 65 MPa đối với vùng trên chịu kéo của bản bụng (tại tiết diện gối của gối dầm liên tục).

Giá trị của các đại lượng trong công thức (119) được xác định theo 10.5.6.

Khi tính toán theo điều kiện về mỏi với số chu kỳ tải trọng $n_Q \ge 2X10^6$, đường hàn liên kết cánh trên với bản bụng phải hàn thấu hết chiều dày bản bụng.

- **10.5.8** Các mép tự do của cánh chịu kéo của dầm cầu chạy và các dầm sàn công tác chịu trực tiếp tại trong di động phải được cán hoặc bào nhẫn.
- **10.5.9** Các kích thước của sườn cứng trong dầm cầu trục được lấy theo 7.6.1.1, khi đó chiều rộng phần nhô ra của sườn hai bên bản bụng không được nhỏ hơn 90 mm. Sườn cứng ngang hai bên không cần hàn với cánh dầm, nhưng phải bào nhẫn và tì sát với cánh trên dầm.

Trong các dầm cầu trục có chế độ làm việc nhẹ và trung bình cho phép dùng các sườn cứng ngang bố trí ở một bên bản bụng, hàn với bản bụng và cánh trên dầm, bố trí sườn theo 5.6.1.1.

10.5.10 Khi kiểm tra độ bền của các dầm cầu trục treo, phải kể đến các ứng suất pháp cục bộ do áp lực của bánh xe cầu trục theo hướng dọc và ngang trục dầm.

10.6 Liên kết

10.6.1 Liên kết hàn

- **10.6.1.1** Trong các kết cấu dùng liên kết hàn nên chọn phương pháp sản xuất cơ khí hóa cao khi hàn.
- 10.6.1.2 Mép bản thép tại chỗ hàn được gia công theo qui định ở tiêu chuẩn TCVN 1961:1975
- 10.6.1.3 Kích thước và hình dang của đường hàn góc được qui đinh như sau:

- a) Chiều cao của đường hàn góc h_f không được lớn hơn 1,2t_{min} (t_{min} là chiều dày nhỏ nhất của các cấu kiên được liên kết).
- b) Chiều cao của đường hàn góc h_f lấy theo tính toán, nhưng không được nhỏ hơn hơn các giá trị cho trong Bảng 43.
- c) Chiều dài tính toán của đường hàn góc không được nhỏ hơn 4h_f và không nhỏ hơn 40 mm.
- d) Chiều dài tính toán của đường hàn góc bên không được lớn hơn 85 $\beta_f h_f$ (β_f là hệ số lấy ở Bảng 37).
- e) Kích thước các phần chồng nhau(trong liên kết chồng) không được nhỏ hơn 5 lần chiều dày nhỏ nhất của các cấu kiên được hàn.
- f) Tỉ số kích thước hai cạnh góc vuông của đường hàn góc bằng 1:1; khi các cấu kiện được hàn có chiều dày khác nhau cho phép dùng đường hàn có hai cạnh không đều nhau, khi đó cạnh gắn với cấu kiện có chiều dày mỏng hơn lấy theo qui định ở điều 10.6.1.3.a, còn cạnh gắn với cấu kiên chiều dày lớn hơn theo điều 10.6.1.3.b.
- g) Đối với các kết cấu chịu tải trọng động và tải trọng rung động dùng đường hàn góc thoải, tỉ lệ hai cạnh góc vuông của đường hàn là 1:1,5 (cạnh dài nằm theo hướng lực tác dụng) và được tính toán theo bền mỏi hoặc theo phá hoại giòn.
- **10.6.1.4** Liên kết hàn đối đầu các tấm thường là đường hàn thẳng, hàn thấu hết bề dày và dùng các bản lót. Trong điều kiện lắp ghép, cho phép hàn một phía có hàn đầy thêm ở đáy đường hàn và hàn vào bản thép lót được giữ lại.
- **10.6.1.5** Không được dùng liên kết hỗn hợp mà trong đó một phần lực được tiếp nhận bằng đường hàn, một phần bằng bulông.
- **10.6.1.6** Đường hàn gián đoạn chỉ dùng trong các liên kết phụ, nơi có nội lực nhỏ. Khi đó khoảng cách a_{max} giữa các đầu mút của hai đường hàn liên tiếp lấy như sau:
- a_{max} ≤ 15 t_{min}, đối với cấu kiện chịu nén;
- a_{max} ≤ 30 t_{min}, đối với cấu kiện chịu kéo;
- trong đó t_{min} là chiều dày nhỏ nhất của các bản thép được liên kết.
- **10.6.1.7** Trong thiết kế cần chỉ rõ: phương pháp hàn, loại que hàn hoặc dây hàn, vị trí và thự tự hàn của các mối hàn.
- 10.6.2 Liên kết bulông.
- **10.6.2.1** Lỗ của các loại bulông được chế tạo theo các qui định kỹ thuật của tiêu chuẩn về bulông.
- **10.6.2.2** Bulông thô và bulông thường được dùng trong các kết cấu làm bằng thép có giới hạn chảy từ 380 MPa trở xuống.
- 10.6.2.3 Cho phép liên kết các cấu kiện vào nút liên kết bằng một bulông.

Bảng 43 - Chiều cao nhỏ nhất của đường hàn góc h_f

Dạng liên kết	Phương pháp hàn	Giới hạn chảy của thép f _v	Giá trị nhỏ nhất h _í khi chiều dài lớn nhất của các cấu kiện được hàn t, mm						
Hell Ket	рпар пап	MPa	4÷5	6÷10	11÷16	17÷22	23÷32	33÷40	41÷80
Chữ T	Tay	≤ 430	4	5	6	7	8	9	10
với đường		430 < f _y ≤ 530	5	6	7	8	9	10	12
hàn góc hai phía;	Tự động và	≤ 430	3	4	5	6	7	8	9
chồng và góc	bán tự động	430 < f _y ≤ 530	4	5	6	7	8	9	10

Chữ T	Tay		5	6	7	8	9	10	12
với đường hàn góc một phía	Tự động và bán tự động	≤ 380	4	5	6	7	8	9	10

CHÚ THÍCH: Các kết cấu làm từ thép có giới hạn chảy $f_y > 530$ MPa và với tất cả các loại thép khi chiều dày các cấu kiện lớn hơn 80 mm, chiều cao nhỏ nhất của đường hàn góc lấy theo các qui định kỹ thuật riêng.

- **10.6.2.4** Trong các liên kết bulông làm việc chịu cắt không được dùng các bulông mà trên chiều dài của phần không ren có các đoạn với đường kính khác nhau.
- **10.6.2.5** Dưới đai ốc (êcu) của các bulông phải đặt vòng đệm, riêng bulông cường độ cao đặt vòng đệm cả ở dưới mũ bulông. Khi dung sai giữa đường kính của lỗ và của thân bulông không vươt quá 3 mm cho phép đặt một vòng đêm dưới đai ốc.
- **10.6.2.6** Với các bulông làm việc chịu trượt (trừ bulông cường độ cao), phần có ren không ăn vào quá một nữa chiều dày của bản thép ngoài cùng (nằm dưới đai ốc) hoặc không quá 5 mm.
- 10.6.2.7 Các loại bulông (kể cả bulông cường độ cao) được bố trí theo các qui định ở Bảng 44.

Trong các liên kết không chịu lực hoặc chủ yếu do yêu cầu cấu tạo, các bulông thường được bố trí theo khoảng cách lớn nhất, trong các liên kết chịu lực bulông được bố trí theo khoảng cách nhỏ nhất.

Khi bố trí bulông kiểu so le nên lấy khoảng cách giữa tâm của chúng dọc theo phương của lực không nhỏ hơn a + 1,5d (a là khoảng cách giữa các hàng theo phương vuông góc với lực; d là đường kính lỗ bulông). Khi bố trí như vậy tiết diện thực của cấu kiện A_n kể đến giảm yếu chỉ do các lỗ bulông nằm theo phương vuông góc với phương của lực (không theo đường zích zắc).

10.6.2.8 Phải dùng bulông cường độ cao (hoặc liên kết hàn) cho liên kết dựng lắp các kết cấu chịu lực chính của nhà và công trình có dầm cầu trục (tính theo bền mỏi), các kết cấu ở dưới đường sắt.

Trong liên kết dựng lắp, bulông thô và bulông thường được dùng trong các trường hợp sau:

Để liên kết xà gồ, các cấu kiện của cửa mái, hệ giằng cánh trên của giàn (khi có hệ giằng cánh dưới hoặc mái cứng), hệ giằng đứng giữa các giàn và cửa mái, các cấu kiện của hệ sườn tường;

Bảng 44 - Qui định bố trí bulông

Đặc điểm của khoảng cách	Trị số của khoảng cách
1. Giữa tâm hai bulông theo hướng bất kỳ:	
a) Nhỏ nhất	2,5d
b) Lớn nhất trong các dãy biên khi không có thép góc viền, chịu kéo và chịu nén.	8d hoặc 12t
c) Lớn nhất trong các dãy giữa và các dãy biên khi có thép góc viền:	
- Khi chịu kéo	16d hoặc 24t
- Khi chịu nén	12d hoặc 18t
2. Khoảng cách từ tâm bulông đến mép của cấu kiện:	
a) Nhỏ nhất dọc theo lực	2d
b) Nhỏ nhất khi vuông góc với lực:	
- Khi mép cắt	1,5d
- Khi mép cán	1,2d

c) Lớn nhất	4d hoặc 8d
d) Nhỏ nhất đối với bulông cường độ cao khi mép bất kỳ và hướng bất kỳ	1,3d

CHÚ THÍCH: Trong các cấu kiện liên kết làm bằng thép có giới hạn chảy cao hơn 380 MPa, khoảng cách nhỏ nhất giữa tâm hai bulông là 3d

Các ký hiệu dùng trong Bảng 44:

d là đường kính lỗ bulông;

t là chiều dày mỏng hơn của các cấu kiện ngoài.

Để liên kết hệ giằng cánh dưới của các giàn khi có khối mái cứng (các tâm bêtông cốt thép, bêtông lưới thép, các tấm thép định hình, v.v...);

Để liên kết giàn vì kèo và giàn đỡ kèo với cột, giàn vì kèo với giàn đỡ kèo với điều kiện phản lực gối thẳng đứng truyền qua gối đỡ;

Để liên kết Để liên kết các dầm cầu trục đơn giản với nhau, liên kết cánh dưới của chúng với vai côt;

Để liên kết các dầm của sàn công tác không chịu tác dụng của tải trọng động;

Để liên kết các kết cấu phụ.

10.6.2.9 Khi dùng bulông cường độ cao, trong thiết kế phải ghi rõ phương pháp gia công bề mặt các bản thép

10.7 Các yêu cầu bổ sung khi thiết kế dầm có lỗ

10.7.1 Dầm có lỗ được thiết kế từ dầm chữ I cán, thường làm bằng thép có giới hạn chảy từ 530 MPa trở xuống.

Liên kết hàn của bản bung cần dùng đường hàn đối đầu thấu hết chiều dày.

10.7.2 Độ bền của dầm khi chịu uốn trong mặt phẳng của bản bụng (Hình 20) được kiểm tra theo các công thức Bảng 45.

Bảng 45 - Các công thức để kiểm tra đô bền của tiết diên dầm (Hình 20)

Chữ T phía trên			Chữ T phía dưới	Gối
Điểm 1	$\frac{Mh_1}{I_x} + \frac{V_{1a}}{2W_{1max}} \le f_1 \gamma_c$	Điểm 3	$\frac{Mh_2}{I_x} + \frac{V_{2a}}{2W_{2max}} \le f_2 \gamma_c$	V ₃ s < f w
Điểm 2	$\frac{Md_1}{I_x} + \frac{V_{1a}}{2W_{1max}} \le \frac{f_{u1}\gamma_c}{\gamma_u}$	Điểm 4	$\frac{Md_2}{I_x} + \frac{V_{2a}}{2W_{2max}} \le \frac{f_{u2}\gamma_c}{\gamma_u}$	$\frac{v_3 s}{t_w a h_3} \le f_v \gamma_c$

CHÚ THÍCH:

M là mômen uốn trong tiết diện dầm;

$$V_1$$
, V_2 là lực cắt do các phần tử T tiếp nhận $V_1 = V \frac{I_1}{I_1 + I_2}$; $V_2 = V \frac{I_2}{I_1 + I_2}$;

Với V là lực cắt trong tiết diện dầm;

 I_1 , I_2 là các mômen quán tính của phần tiết diện chữ T phía trên và phía dưới đối với trục bản thân và song song với cánh;

 V_3 là lực cắt trong tiết diện của dầm tại khoảng cách gối một đoạn (c + s - 0,5a) (Hình 20);

I_x là mômen quán tính của tiết diện dầm có lỗ đối với trục x-x;

W_{1max}, W_{1min} lần lượt là mômen kháng uốn lớn nhất và nhỏ nhất của tiết diên chữ T ở trên;

W_{2max}, W_{2min} lần lượt là mômen kháng uốn lớn nhất và nhỏ nhất của tiết diện chữ T ở dưới;

 f_1 , f_{u1} , f_2 , f_{u2} lần lượt là các cường độ tính toán của thép cán đối với các tiết diện chữ T ở trên và ở dưới; γ_c là hệ số điều kiện làm việc của kết cấu;

 γ_c là hệ số độ tin cậy trong các tính toán theo sức bền tức thời.

Hình 20 - Sơ đồ một đoạn dầm có lỗ

10.7.3 Ởn định của dầm cần được kiểm tra theo các chỉ dẫn của 7.2.2.1, trong đó các đặc trưng hình học được tính đối với tiết diên có lỗ.

Không cần kiểm tra ổn định của dầm khi đã thoải mãn các yêu cầu của 7.2.2.2.

- **10.7.4** Tại các tiết diện gối nếu $h_w t_w > 40$ (t_w là chiều dày nhỏ nhất của bản bụng) thì cần gia cường bản bụng bằng các sườn cứng và phải kiểm tra theo các yêu cầu của 7.6.1.7, khi đó bên tiết diện gối cần lấy $c \ge 250$ mm (Hình 20)
- **10.7.5** Tại các tiết diện của dầm khi tỉ số $h_w t_w > 2,5\sqrt{E/f}$ hoặc khi không thỏa mãn các yêu cầu trong các chỉ dẫn ở 7.2.1.3 thì phải đặt các sườn cứng theo yêu cầu của 7.6.1.1.

Chỉ được đặt tải trọng tập trung tại các tiết diện không có lỗ giảm yếu.

Chiều cao bản bụng của tiết diện chữ I chịu nén phải thoả mãn các yêu cầu của 7.6.2.4, trong công thức (67) dùng $\bar{\lambda}$ = 1,4.

- **10.7.6** Khi xác định độ võng của dầm có tỉ số $I/h_w \ge 12$ (với I là nhịp của dầm) thì mômen quán tính của tiết diện dầm có I0 phải được nhân với hệ số I0,95.
- 11 Các yêu cầu kỹ thuật và cấu tạo khác khi thiết kế nhà và công trình

11.1 Nhà công nghiệp

- 11.1.1 Biến dạng, độ võng và chuyển vị của kết cấu lấy theo qui định ở 5.3
- **11.1.2** Khoảng cách lớn nhất giữa các khe nhiệt độ của khung thép nhà một tầng lấy theo Bảng 46.

Khi vượt quá 5% so với các giá trị cho trong Bảng 46, cũng như khi tăng độ cứng của khung bằng tường hoặc các kết cấu khác phải tính đến tác dụng của nhiệt độ, biến dạng không đàn hồi của kết cấu.

Bảng 46 - Khoảng cách lớn nhất giữa các khe nhiệt độ của khung thép nhà và công trình một tầng

Đơn vị tính bằng mét

Đặc điểm của nhà và công trình	Khoảng cách lớn nhất		
	Giữa các l	Từ khe nhiệt độ hoặc từ đầu	
	Theo dọc nhà	Theo ngang nhà	/

			giằng đứng gần nhất
- Nhà có cách nhiệt	230	150	90
- Nhà không cách nhiệt và các xưởng nóng	200	120	75
- Cầu cạn lộ thiên	130		50

CHÚ THÍCH: Khi trong phạm vi khối nhiệt độ của nhà và công trình có hai hệ giằng đứng thì khoảng cách giữa các trục của chúng không vượt quá: Từ 40 đến 50 m đối với nhà; từ 25 đến 30 m đối với cầu cạn lộ thiên

11.2 Nhà khung thấp tầng

- 11.2.1 Đô võng cho phép của các cấu kiên chiu uốn lấy theo 5.3.2.
- **11.2.2** Chuyển vị ngang của khung do thành phần tĩnh của tải trọng gió tiêu chuẩn (không kể đến biến dạng của móng và độ cứng của tường bao che, tường ngăn), không được vượt quá các giá trị ở 5.3.4.
- **11.2.3** Để phân phối lại mômen uốn trong các cấu kiện của khung, tại nút liên kết của dầm và cột cho phép dùng các bản ghép làm việc trong giai đoạn dẻo. Các bản ghép được làm bằng thép có giới hạn chảy $f_y \le 345$ MPa. Nội lực nhỏ nhất trong bản ghép (dùng để xác định khả năng chịu lực M_{min} của nút) được tính theo ứng suất $\sigma_{\text{min}} = f_y$; và nội lực lớn nhất (để xác định M_{max} của nút) được tính theo ứng suất $\sigma_{\text{max}} = f_v + 100$ MPa.

Các cạnh dọc của bản ghép phải được bào hoặc phay nhẵn.

11.3 Kết cấu thép tấm

- 11.3.1 Các sườn cứng ngang của vỏ phải có chu vi kín.
- **11.3.2** Tải trọng tập trung không được truyền trực tiếp lên vỏ mà phải thông qua các sườn cứng trung gian.
- 11.3.3 Để giảm ứng suất cục bộ, chỗ nối các vỏ có hình dang khác nhau được làm trơn thoải.
- 11.3.4 Các đường hàn đối đầu được hàn hai phía hoặc hàn một phía có hàn đầy thêm ở mặt sau, hoặc hàn trên bản lót.

Trong thiết kế phải ghi rõ các điều cần thiết để đảm bảo tính đặc kín của liên kết theo yêu cầu sử dụng.

- **11.3.5** Trong kết cấu thép tấm thường dùng liên kết hàn đối đầu. Khi chiều dày các tấm $t \le 5$ mm, hoặc khi liên kết lắp ghép cho phép dùng liên kết chồng.
- **11.3.6** Khi cấu tạo kết cấu thép tấm nên chọn phương pháp sản xuất và lắp ghép công nghiệp bằng cách dùng:

Các tấm hoặc băng có kích thước lớn (có thể chế tạo sẵn thân và đáy vỏ ở dạng cuộn);

Hình khai triển, để khi cắt thép có ít phế liệu nhất;

Hàn tư động.

- 11.4 Kết cấu tháp, tru
- 11.4.1 Khi thiết kế tháp trụ nên chú ý các điều sau:

Giảm sức cản khí động của công trình và các bộ phận riêng của nó;

Phân bố hợp lý nội lực trong các cấu kiện của kết cấu bằng các giải pháp cấu tạo hoặc dùng ứng suất trước;

Phối hợp chức năng chịu lực và chức năng công nghệ.

11.4.2 Các dây neo được làm bằng thép tròn mạ kẽm hoặc cáp bện. Trong môi trường có mức đô ăn mòn trung bình và cao dùng cáp ma kẽm.

Mút của cáp thép ở cốc neo hoặc ống nối được giữ bằng cách rót hợp kim theo đúng kỹ thuật neo cáp.

- 11.4.3 Khi tính toán tháp, tru lấy hệ số điều khiển làm việc theo 5, Bảng 47 và Bảng 49.
- **11.4.4** Độ lệch ngang tương đối của cột không được vượt quá các giá trị cho trong Bảng 48 (trừ các cột được thiết kế theo các yêu cầu kỹ thuật riêng).
- **11.4.5** Cho phép lấy giá trị tải trọng gió tác dụng vào thân trụ tại vị trí giữa các lớp dưới dây neo hoặc tác dụng vào dây neo ở vị trí 2/3 chiều cao dây neo và coi như các giá trị đó không đổi trên cả chiều dài đoạn thân hoặc dây neo.
- **11.4.6** Cho phép coi lực tập trung của các sự cách điện treo trên dây như lực phân bố đều có giá trị được lấy theo điều kiện mômen tương đương khi coi dây như dầm đơn giản.
- **11.4.7** Khi tính toán các cấu kiện nằm nghiêng (cáp neo, thanh chống xiên, v.v...) chỉ kể đến hình chiếu của các lực tác dụng lên phương vuông góc với trục của cấu kiện hoặc dây cung của nó.
- 11.4.8 Kiểm tra ổn định tổng thể của trụ theo các tổ hợp tải trọng sau:

Lực kéo lắp ráp của dây căng khi không có gió;

Tải trọng gió trong phương song song với mặt phẳng thẳng đứng chứa một trong các dây neo. Khi kiểm tra ổn định tổng thể của trụ, lực tính toán trong thân phải nhỏ hơn lực tới hạn ít nhất 1,3 lần.

Bảng 47 - Hệ số điều kiện làm việc γ_c

Bang 47 - Tiệ Số tiết Kiện làm Việc ýc				
Các cấu kiện của kết cấu	Giá trị γ _c			
- Các thanh ứng suất trước của hệ thanh bụng	0,9			
- Mặt bích:				
+ Dạng vành khuyên	1,1			
+ Các dạng còn lại	0,9			
- Các thép của dây neo trụ khi số lượng của chúng:				
+ Từ 3 đến 5 dây trong một lớp	0,8			
+ Từ 6 đến 8 dây trong một lớp	0,9			
+ Từ 9 dây trong một lớp trở lên	0,95			
- Các chi tiết neo kẹp đầu cáp hoặc dập điểm trong ống lồng	0,75			
- Bện cáp ở chổ nối hoặc sứ cách điện	0,55			
- Các bộ phận liên kết dây neo với kết cấu gối và móng neo	0,9			
- Các thanh neo không có ren chịu kéo uốn	0,65			
- Các tai đỡ chịu kéo	0,65			

Bảng 48 - Độ lệch ngang tương đối

Bang 40 - Do lecti ngang taong doi						
Dạng tải trọng	Độ lệch ngang tương đối (so với chiều cao)					
- Gió	1/100					
- Các thiết bị ăngten treo một bên cột khi không có gió	1/300					

- **11.4.9** Trong thiết kế cần ghi rõ giá trị lực kéo lắp ráp của dây cáp neo trụ ở nhiệt độ không khí trung bình của năm tai nơi xây dựng.
- **11.4.10** Liên kết lắp ghép các cấu kiện của kết cấu được thiết kế bằng bulông thường khi nội lực nhỏ hơn hoặc bằng 197 kN (20 T) và bằng bulông cường độ cao khi tải trọng đổi dấu và nội lực lớn hơn.

Trong liên kết mặt bích nên dùng bu lông cường độ cao. Dùng đường hàn lắp ghép hoặc bulông tinh phải phù hợp với điều kiện thi công.

- **11.4.11** Các thanh xiên có độ mảnh lớn hơn 250 trong hệ thanh bụng chữ thập phải được liên kết với nhau tại các chỗ giao nhau.
- 11.4.12 Độ võng trong phương thẳng đứng và phương ngang của các thanh ngang của vách cứng và các cấu kiện của sàn công tác không được vượt quá 1/250 chiều dài của nhịp.
- **11.4.13** Trong kết cấu cột rỗng khoảng cách giữa các vách cứng không được lớn hơn 3 lần cạnh của tiết diện ngang trung bình của các đoạn cột và được đặt tại chỗ có tải trọng tập trung hoặc nơi gẫy góc của các thanh cánh.
- **11.4.14** Bulông neo liên kết các mặt bích của những thép ống được bố trí trên một đường tròn với đường kính nhỏ nhất có thể có, và khoảng cách giữa các bulông đều nhau.
- **11.4.15** Các thanh xiên của giàn tại một nút hội tụ ở điểm giao nhau giữa trục các thanh cánh và các thanh xiên. Ở chổ liên kết thanh xiên với mặt bích cho phép lệch tâm, nhưng độ lệch tâm không lớn hơn 1/3 kích thước tiết diện ngang của thanh cánh. Khi độ lệch tâm lớn hơn, việc tính toán các thanh phải kể đến mômen lệch tâm tai nút.

Trong các bản mã có xẻ rãnh để liên kết thanh xiên là thép tròn bằng đường hàn, ở đầu khe (sát mút của thép tròn) bản mã được khoan lỗ với đường kính lớn hơn đường kính thanh 1,2 lần (để giảm ứng suất tập trung).

11.4.16 Dây neo của trụ thân rỗng hội tụ tại điểm giao nhau của trục thanh cánh và các thanh ngang. Trục qui ước của dây neo là dây cung của nó.

Để tránh uốn cong, tại liên kết dây neo với thân được gia cường bằng các sườn cứng.

- 11.4.17 Các giá đỡ và thanh treo của sàn công tác được liên kết với các mắt chính của thân côt.
- **11.4.18** Thiết bị căng (tăng đơ) dùng để điều chỉnh chiều dài và giữ dây neo trụ phải được ghì với thiết bị neo bằng cáp mảnh, riêng chiều dài của cáp luồn vào ống lồng (dùng nối cáp) không được nhỏ hơn 20 lần đường kính cáp.
- **11.4.19** Để giảm dao động của dây, trên dây neo của trụ và dây dẫn treo liên tiếp các thiết bị giảm rung tần số thấp (từ 1 đến 2,5 Hz) và tần số cao (từ 4 đến 40 Hz) dạng lò xo. Thiết bị giảm rung tần số thấp được chọn theo tần số dao động chính của dây. Khoảng cách s từ chỗ đầu neo cáp đến điểm treo thiết bị giảm rung được xác định theo công thức sau:

$$s \ge \beta d \sqrt{\frac{P}{m}} \tag{120}$$

trong đó:

d là đường kính dây, tính bằng milimét (mm);

m là khối lượng 1 m dài dây, tính bằng kilôgam (kg);

P là lực căng trước trong cáp treo hoặc dây dẫn, tính bằng niuton (N);

β là hệ số bằng 0,00041.

Thiết bị giảm rung tần số cao được đặt cao hơn thiết bị giảm rung tần số thấp một đoạn là s. Khi nhịp của cáp neo hoặc của dây dẫn vượt quá 300 m, bộ giảm rung được đặt không phụ thuộc vào tính toán.

- **14.4.20** Các công trình ăngten phải được sơn màu sắc phù hợp với qui định của ngành hàng không.
- **14.4.21** Các chi tiết cơ khí của cáp neo, lõi thép của sứ cách điện, cũng như các chi tiết kim loại khác phải được mạ kẽm.

11.5 Côt đường dây tải điện

- **11.5.1** Liên kết bulông thô, bulông thường và bulông tinh dùng trong cột có chiều cao từ 100 m trở xuống không cần tính toán theo bền mỏi, khi chiều cao cột lớn hơn 100 m, chúng phải được tính toán theo bền mỏi.
- 11.5.2 Khi thiết kế cột điện, lấy hệ số làm việc theo Bảng 3 và Bảng 49.
- **11.5.3** Khi xác định độ mảnh tương đương theo Bảng 14, độ mảnh lớn nhất của toàn thanh λ được tính theo công thức:

Đối với thanh bốn mặt, có các cánh song song, hai đầu tựa khớp:

$$\lambda = 2L/b \tag{121}$$

Đối với các thanh ba mặt đều, có các cánh song song, hai đầu tựa khớp:

$$\lambda = 2.5L/b \tag{122}$$

Bảng 49 - Hệ số điều kiện làm việc γ_c khi thiết kế cột điện

Các cấu kiện của kết cấu	Giá trị γ _c
 Các cánh chịu nén làm bằng thép góc đơn trong hai khoang đầu kể từ mặt móng của cột đứng tự do: 	
a) Khi dùng liên kết hàn	0,95
b) Khi dùng liên kết bulông	0,9
2. Các thanh chịu nén của xà ngang rỗng (để treo dây) bằng các thép góc đơn đều cạnh được liên kết trên một cạnh (Hình 21)	
a) Thanh cánh liên kết trực tiếp với thân cột bằng hai bulông trở lên.	0,9
b) Thanh cánh liên kết với thân cột bằng một bulông hoặc qua bản mã.	0,75
c) Thanh xiên và thanh ngang.	0,75
3. Dây neo bằng cáp thép hoặc bó sợi cường độ cao:	
a) Đối với cột trung gian và cột có chế độ làm việc bình thường	0,9
b) Đối với các cột neo, cột neo ở góc và cột góc:	
- Chế độ làm việc bình thường	0,8
- Chế độ làm việc có sự cố	0,9
CHÚ THÍCH: Các hệ số điều kiện làm việc không dùng để tính liên kết của c	ác cấu kiện tại nút

Đối với các cột đứng độc lập dạng tháp (Hình 9):

$$\lambda = 2\mu_1 h/b_d \tag{123}$$

trong đó:

 $\mu_1 = 1,25(b_t/b_d)^2 - 2,75(b_t/b_d) + 3,5$ là hệ số chiều dài tính toán;

L là chiều dài hình họ của thanh rỗng;

b là khoảng cách giữa trục của các cánh song song trên mặt hẹp nhất của thân cột;

h là chiều cao của cột đứng độc lập;

 b_t và b_d là khoảng cách giữa trục các cánh của cột dạng tháp ứng với phía trên và dưới chân của mặt hẹp nhất.

- a) Thanh bụng tam giác;
- b) Thanh bụng tam giác có thanh chống

Hình 21 - Sơ đồ xà ngang

11.5.4 Thanh rỗng có tiết diện không đổi theo chiều dài, chịu nén lệch tâm hoặc nén uốn, được kiểm tra ổn định theo các chỉ dẫn ở 7.4.

Độ lệch tâm tương đối m của thanh rỗng ba mặt đều và không đổi theo chiều dài, dùng thanh giằng hoặc bản giằng, được tính theo công thức:

Khi uốn trong mặt phẳng vuông góc với một trong các mặt của thân cột:

$$m = 3,48\beta M / (Nb)$$
 (124)

Khi uốn trong mặt phẳng song song với một trong các mặt của thân cột:

$$m = 3\beta M / (Nb)$$
 (125)

trong đó:

b là khoảng cách giữa trục của các cánh song song trong một mặt của thân;

β là hệ số, bằng 1,2 khi liên kết bulông và bằng 1,0 khi liên kết hàn.

- **11.5.5** Khi tính cột tiết diện rỗng, chịu nén lệch tâm hoặc nén uốn theo các chỉ dẫn ở 7.4, giá trị của đô lệch tâm tăng lên 1,2 lần nếu dùng bulông để liên kết các thanh.
- **11.5.6** Cho phép kiểm tra ổn định của thanh cánh bằng các thép góc đơn như thanh chịu nén đúng tâm với điều kiện nhận lực dọc tính toán trong thanh với hệ số α để kể đến ảnh hưởng độ lệch tâm của nội lực thanh xiên đặt vào thanh cánh. Giá trị của α lấy không nhỏ hơn 1,05 và được xác định theo công thức:

$$\alpha = 1 + \frac{N_{df}}{N_f} x \frac{a}{c} (0.35 - 0.07 \overline{\lambda})$$
 (126)

trong đó:

 N_{df} là tổng thành phần hình chiếu nội lực của các thanh xiên lên trục của thanh cánh và truyền vào nút thuộc khoang tính toán thép góc cánh trong cùng một tổ hợp tải trọng tính thép góc cánh;

N_f là nội lực tính toán trong cánh;

a là khoảng cách trên mặt phẳng bản cánh của thép góc cánh tính từ trọng tâm của nó đến trục hội tu của các thanh xiên;

c là khoảng cách trên mặt phẳng bản cánh của thép góc cánh tính từ trọng tâm đến sống của nó;

 $\bar{\lambda}$ là đô mảnh qui ước của thanh cánh.

Khi kiểm tra kết cấu trong chế độ làm việc có sự cố do tác dụng đồng thời của lực dọc, lực cắt và mômen xoắn, lấy $\alpha = 1,0$.

Khoảng cách a lấy như sau:

$$a \leq c \text{ khi } \frac{N_{df}}{N_f} \leq 0,5 \ ;$$

$$a \leq 1,2c \text{ khi } \frac{N_{df}}{N_f} \leq 0,35 \ ;$$

$$a \leq 1,4c \text{ khi } \frac{N_{df}}{N_f} \leq 0,25 \ ;$$

Cho phép các thanh xiên hội tụ tại sống thép góc cánh nếu $N_{df} / N_f \le 0.4$, lúc đó khi tính lấy a = c.

Khi giá trị của a và N_{df} / N_f vượt quá các trị số trên, các thanh xiên phải qui tụ tại trọng tâm của thép góc cánh hoặc phải tính toán thanh cánh theo chịu nén lệch tâm.

- **11.5.7** Trong cột rỗng đứng độc lập, độ mảnh của các thanh xiên đầu tiên ở chân cột bằng thép góc đơn không được vượt quá 160.
- **11.5.8** Độ lệch của đỉnh cột và độ võng theo phương thẳng đứng của xà ngang không được lớn hơn các giá trị cho trong Bảng 50.
- **11.5.9** Cột rỗng có các thanh là những thép góc đơn được tăng cường bằng các vách cứng ngang đặt cách nhau không quá 15 m theo chiều dài cột, cũng như tại chỗ đặt tải trọng tập trung và nơi gẫy góc của các thanh cánh.

Bảng 50 - Đô lệch đỉnh cột và đô võng theo phương thẳng đứng của xà ngang

Bang 30 - Độ lệch dinh cột và độ vông theo phương tháng đưng của xã ngàng							
Kết cấu và hướng lệch	Độ lệch tương đối của cột (so	Độ võng tương đối của xà ngang (so với chiều dài của nhịp hoặc công xôn)					
	với chiều cao h)	Phươ	ng đứng	Phươi	Phương ngang		
		Trong nhịp	Trên công xôn	Trong nhịp	Trên công xôn		
 Cột neo (đầu dây dẫn được neo chặt vào cột qua sứ cách điện) ở đầu và góc rẽ của tuyến dây có chiều cao h ≤ 60m, dọc dây dẫn 	1/120	1/200	1/70	Không	ŋ hạn chế		
2. Cột neo của tuyến dây có chiều cao h ≤ 60m, dọc dây dẫn	1/100	1/200	1/70	Không hạn chế			
3. Cột trung gian của tuyến dây (ngoài cột vượt) dọc dây dẫn	Không hạn chế	1/150	1/50	Không	j hạn chế		
4. Cột vượt của tuyến dây, có chiều cao h ≥ 60m, dọc dây dẫn	1/140	1/200	1/70	Không	j hạn chế		
5. Cột của các giá đỡ thiết bị	1/100	-	-		-		
6. Dầm đỡ các thiết bị	-	1/300	1/250		-		

CHÚ THÍCH 1: Không qui định độ lệch của cột và xà ngang trong chế độ sự cố và lắp ráp.

CHÚ THÍCH 2: Độ lệch và độ võng qui định ở điều 5 và 6 phải giảm bớt khi điều kiện kỹ thuật về sử dụng thiết bị qui định yêu cầu khắt khe hơn.

11.5.10 Trong các thanh được liên kết bằng một bulông của hệ thanh bụng (thanh xiên và thanh ngang), trừ những thanh chỉ làm việc chịu kéo, có chiều dày bản cánh t \leq 6 mm, làm bằng thép có giới hạn chảy $f_v \leq$ 380 MPa, được phép lấy khoảng cách từ mép thanh đến trọng tâm của lỗ

(dọc theo lực) bằng 1,35d (d là đường kính lỗ), và cần ghi rõ điều này trong thiết kế. Khi đó, trong tính toán liên kết theo ép mặt lấy hệ số điều kiện làm việc $\gamma_b = 0,65$.

Trong các thanh chỉ làm việc chịu kéo, khoảng cách từ mép thanh đến tâm của lỗ (dọc theo phương lực) lấy không nhỏ hơn 2d.

- **11.5.11** Khi dùng bulông liên kết trực tiếp các thanh xiên vào thanh cánh, các thanh xiên nên đặt trên hai mặt khác nhau của bản cánh thép góc cánh.
- 11.5.12 Trong các mắt nối đối đầu bằng bulông của các thanh cánh là thép góc đều cánh, số lượng bulông nên lấy chẵn và bố trí đều trên các bản cánh của thép góc cánh.

Số lượng bulông khi bố trí một dãy, bố trí so le hoặc song song không nên lớn hơn 5 cái trên một bản cánh thép góc ở một phía đầu nối.

Phụ lục A

(Qui định)

Vật liệu dùng cho kết cấu thép và cường độ tính toán

Bảng A.1 - Thép các bon TCVN 1765:1975

Bang A.1 - Thep cac bon TCVN 1765:1975							
	Độ bền	Giới hạ	ạn chảy f _y , N dày t, mi	MPa cho độ m		Độ dãn dài ∆, % ho độ dày t, m	
Mác thép	kéo f _u , MPa	≤ 20	20 <t≤40< th=""><th>40<t≤100< th=""><th>≤20</th><th>20<t≤40< th=""><th>>40</th></t≤40<></th></t≤100<></th></t≤40<>	40 <t≤100< th=""><th>≤20</th><th>20<t≤40< th=""><th>>40</th></t≤40<></th></t≤100<>	≤20	20 <t≤40< th=""><th>>40</th></t≤40<>	>40
			Không nhỏ	hơn	ı	Không nhỏ hơi	า
CT31	≥ 310	-	-	-	23	22	20
CT33s	310 ÷ 400	-	-	-	35	34	32
CT33n, CT33	320 ÷ 420	-	-	-	34	33	31
CT34s	330 ÷ 420	220	210	200	33	32	30
CT34n, CT34	340 ÷ 440	230	220	210	32	31	29
CT38s	370 ÷ 470	240	230	220	27	26	24
CT38n, CT38	380 ÷ 490	250	240	230	26	25	23
CT38nMn	380 ÷ 500	250	240	230	26	25	23
CT42s	410 ÷ 520	260	250	240	25	24	22
CT42n, CT42	420 ÷ 540	270	260	250	24	23	21
CT51n, CT51	510 ÷ 640	290	280	270	20	19	17
CT52nMn	460 ÷ 600	290	280	270	20	19	17
CT61n, CT61	≥ 610	320	310	300	15	14	12

Bảng A.2 - Tính năng cơ học của một số loại thép nước ngoài (Tham khảo)

	97.11		Ứng suất giới hạn nhỏ nhất, MPa		
Nước	Ký hiệu thép	Loại thép	Chảy f _y	Bền đứt f _u	Chú thích

		I			
Nga -	ВСт3кп2-1	Thép cacbon sôi	225	360	Thép tấm 11 mm
Liên xô cũ	ВСт3кп5-1	Thép cacbon lắng	245	370	- 12 mm
(ГОСТ	09Г2	Thép hợp kim thấp	305	440	
hay TY)	09Г2С	Thép hợp kim thấp	325	470	
	14Γ2	Thép hợp kim thấp	355	470	
	15ХСНД	Thép hợp kim thấp	345	490	,
	10ХСНД	Thép hợp kim thấp	390	530	Thép tấm 4 mm - 32 mm
Hoa kỳ	A36	Thép cacbon	250	400	Các loại thép cán
(theo ASTM)	A500 gr.C	Thép cacbon	345	427	Thép ống
,,	A570 gr.50	Thép cacbon	345	450	Thép cuộn và tấm
	A572 gr.50	Thép hợp kim thấp	345	450	Thép tấm và hình
	A607 gr.65	Thép hợp kim thấp	450	550	Chống rỉ
	A514	Thép hợp kim nhiệt luyện	690	760	Thép tấm
Anh	BS 4360 gr.40	Thép kết cấu không hợp	240	340	
	BS 4360 gr.43	kim	275	410	
	BS 4360 gr.50	Thép kết cấu không hợp kim	355	480	≤ 16 mômen
	BS 4360 gr.55	Thép kết cấu không hợp kim	450	550	2 TO Monten
		Thép hợp kim thấp			
Châu Âu	S235	Thép kết cấu không hợp	235	340	
(EN)	S275	kim	275	410	
	S355	Thép kết cấu không hợp kim	355	490	≤ 16 mm
	S460	Thép kết cấu không hợp kim	460	550	2 10 111111
		Thép hợp kim thấp			
Nhật	SS330	Thép kết cấu cán nóng	205	330	
(JIS -	SS400	Thép kết cấu cán nóng	245	400	40
G3101)	SS490	Thép kết cấu cán nóng	275	490	≤ 16 mm
	SS540	Thép kết cấu cán nóng	400	540	

Bảng A.2 - (kết thúc)

Nước	Ký hiệu thép	Loại thép	hạn n	suất giới hỏ nhất, //Pa	Chú thích
			chảy f _y	bền đứt f _u	
Trung	Số 3 (hay Q235)	Thép cacbon	235	370	≤ 16 mm
Quốc	16Mn (hay Q345)	Thép hợp kim thấp	345	510	
	15MnV (hay	Thép hợp kim thấp	390	530	
	Q390)	Thép cacbon	235	370	

	Số 3 (hay Q235)				
Úc	AS 3678 gr.250	Thép tấm	250	410	≤ 50 mm
	AS 3678 gr.300	Thép tấm	30	430	≤ 20 mm
	AS 3679 gr.250	Thép hình	250	410	≤ 40 mm
	AS 3679 gr.350	Thép hình	340	480	≤ 40 mm

CHÚ THÍCH: Các kí hiệu thép nêu trong bảng này chỉ gồm các kí tự gốc nói lên tính chất cơ học, không ghi các kí tự đuôi nói lên đặc điểm sử dụng và chế tạo của thép. Thép có chung kí tự gốc đều dùng được trị số cho trong bảng, ví dụ: thép Anh BS 4360 gr.40C dùng được trị số của BS 4360 gr. 40; thép châu Âu S355JOC dùng như trị số S355; thép Trung Quốc Q235B - YF dùng được trị số như Q235.

Bảng A.3 - Yêu cầu về độ dai va đập đối với thép các bon TCVN 5709:1993

Đơn vị tính bằng niutơn mét trên centimet vuông

Mác thép	Độ dày,		Không nhỏ hơn				
	mm	ở nhiệt độ, °C				óa già cơ ọc	
		+20		-20		Dọc	Ngang
		Dọc	Ngang	Dọc	Ngang		
XCT34	Từ 12	100	80	60	50	60	40
XCT38	đến 40	90	60	60	40	60	30
XCT42		80	60	50	40	40	30
XCT52		10	50	50	40	40	30

Bảng A.4 - Cường độ tính toán của thép cán chịu ép mặt tì đầu, ép mặt cục bộ trong các khớp trụ, ép theo đường kính con lăn

Đơn vị tính bằng megapascan

	Don'vi tilii bang megabascan			
Giới hạn bền		Cường độ tính toán		
MPa		Ép mặt	Ép theo đường kính	
	Tì đầu (có gia công mặt phẳng mặt)	Cục bộ trong các khớp trụ (giữa các thớt cong với trục hình trụ) khi tiếp xúc chặt	con lăn (trong các kết cấu có độ di động hạn chế)	
360	327	164	8	
365	332	166	8	
370	336	168	8	
380	346	173	9	
390	355	178	9	
400	364	182	10	
430	391	196	10	
440	400	200	10	
450	409	205	10	
460	418	209	10	
470	427	214	11	

480	436	218	11
490	445	223	11
500	455	228	11
510	464	232	12
520	473	237	12
530	473	237	12
540	482	241	12
570	504	252	13
590	522	261	13
635	578	289	14

CHÚ THÍCH: Giá trị của cường độ tính toán lấy theo các công thức ở Bảng 4, với $\gamma_{\rm M}=1,1$.

Bảng A.5 - Các đặc trưng vật lý của thép

Các đặc trưng vật lý	Giá trị
1. Khối lượng riêng p, kg/m³:	
- Thép cán và khối đúc bằng thép	7850
- Khối đúc bằng gang	7200
2. Hệ số dãn dài do nhiệt α°, C ⁻¹	0,12x10 ⁻⁴
3. Môđun đàn hồi E, MPa	
- Thép cán và khối đúc bằng thép	2,1x10 ⁵
- Khối đúc bằng gang	0,85x10 ⁶
- Bó sợi thép song song	2,0x10 ⁶
- Các thép xoắn và cáp thép xoắn có lớp bọc ngoài	1,7x10 ⁶
4. Môđun trượt của thép và khối đúc bằng gang G, MPa	0,81x10 ⁶
5. Hệ số nở ngang (hệ số Poát xông)	0,3

CHÚ THÍCH: Giá trị môđun đàn hồi của cáp thép cho trong bảng ứng với khi lực kéo không bé hơn 60 % lực kéo đứt sợi cáp

Phụ lục B

(Qui định)

Vật liệu dùng cho liên kết kết cấu thép

Bảng B.1 - Que hàn dùng ứng với mác thép (Tham khảo)

Mác thép	Loại que hàn có thuốc bọc		
	TCVN 3223:1994	ГОСТ 9467 - 75 (Nga)	
XCT34; XCT38; XCT42; XCT52	N42; N46	э42; э46	
09Mn2; 14Mn2; 09Mn2Si; 10Mn2Si1;	N46; N50	э46; э50	

Bảng B.2 - Kích thước que hàn điện TCVN 3223:1994 (Tham khảo)

		,
Đường kính lõi que hàn d	Chiều dày thép cơ bản t, mm	Chiều dài que hàn (L ± 2),
mm		mm

1,6	Từ 3 đến 5	250 (200)
2,0		250 (300)
2,5		300 (350)
3,0 (3,25)	Từ 6 đến 10	350 (400)
4,0	Từ 10 đến 14	400 (450)
5,0	Từ 16 đến 20	450
6,0		450

Bảng B.3 - Qui định sử dụng các cấp bền của bulông trong các điều kiện làm việc khác nhau

Bulông trong các kết cấu	Điều kiện làm việc của bulông	Cấp bền của bulông được sử dụng		
Không tính đến mỏi	Kéo hoặc cắt	4.6; 5.6; 4.8; 5.8; 6.6; 8.8; 10.9		
Có tính đến mỏi	Kéo hoặc cắt	4.6; 5.6; 6.6; 8.8; 10.9		

CHÚ THÍCH: Khi đặt hàng, đối với bulông cấp độ bền 6.6; 8.8 và 10.9 phải ghi rõ mác thép và tiêu chuẩn tương ứng.

Bảng B.4 - Diện tích tiết diện của bulông A, A_{bn}

Đơn vị tính bằng centimet vuông

							_			
TCVN 1916:1995	16	18	20	22	24	27	30	36	42	48
d , mm										
Bước ren p, mm	2	2,5	2,5	2,5	3	3	3,5	4	4,5	5
Α	2,01	2,54	3,14	3,80	4,52	5,72	7,06	10,17	13,85	18,09
A_{bn}	1,57	1,92	2,45	3,03	3,52	4,59	5,60	8,16	11,20	14,72

Bảng B.5 - Đặc trưng cơ học của bulông cường độ cao

	Bang B.3 - Đặc trưng cơ nộc của bulong cương độ cao								
Đường kính danh nghĩa của ren, mm		Độ bền kéo nhỏ nhất f _{ub} , MPa	Đường kính danh nghĩa của ren, mm	Mác thép	Độ bền kéo nhỏ nhất f _{ub} , MPa				
	40Cr	1 100		40Cr	750				
Từ 16 đến	38CrSi; 40CrVA	1 350	36	30Cr3MoV	1 100				
27	30Cr3MoV	4.050	40	40Cr	650				
	30Cr2NiMoVA	1 350	42	30Cr3MoV	1 000				
	40Cr	950		40Cr	600				
30	30Cr3MoV; 35Cr2AV	1 200	48	30Cr3MoV	900				

Phụ lục C

(Qui định)

Các hệ số để tính độ bền của các cấu kiện Khi kể đến sự phát triển của biến dạng dẻo Bảng C1 - Các hệ số: c₁; c_x; c_y; n_c

Loại	10-1-1 464-44	A_f	Giá trị các hệ số			
tiết diện	Hình dạng tiết diện	$\frac{A_f}{A_w}$	C ₁ (C _x)	Cy	n_c khi $M_y = 0$	
		0,25	1,19		1.5	
1	T,	0,5	1,12	1,47		
		1,0	1,07			
	Ty A _i Ti y	2,0	1,04			
	1 A 1	0,5	1,40			
2	x - - x	1,0	1,28	1,47	2,0	
	A. 1 0,5A,	2,0	1,18			
	_ IY A,	0,25	1,19	1,07		
	x x	0,5	1,12	1,12	4.5	
3	1:1	1,0	1,07	1,19	1,5	
	0,5A. ly A,	2,0	1,04	1,26		
	x—————————————————————————————————————	0,5	1,40	1,12		
4		1,0	1,40	1,20	2,0	
4		2,0	1,18	1,31	2,0	
	0,25A, ly	2,0	1,10	1,51		
	a) y b) y	-	1,47	1,47	-) 0 0	
5	x-				a) 2,0	
	j j				b) 3,0	
	A _K Iy	0,25		1,04		
6	0,5A _w -× 0,5A _w	0,5	1 17	1,07	3,0	
		1,0	1,47	1,12	3,0	
		2,0		1,19		
	y J					
7	x-(+)-x	-	1,26	1,26	1,5	
	Ý		,	,	,-	
	у					
8	a) b) a) y b) y				a) 3,0	
	*	-	1,60	1,47	a) 3,0 b) 1,0	
	y A _w Ty I'y iy				5, 1,0	
			<u> </u>	<u> </u>		

9	a) y b) y $x - \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$	0,5 1,0 2,0	1,60	1,07 1,12 1,19	a) 3,0 b) 1,0
---	---	-------------------	------	----------------------	------------------

CHÚ THÍCH:

- Khi $M_v \neq 0$ lấy $n_c = 1,5$ (trừ tiết diện loại 5a lấy $n_c = 2$ và loại 5b lấy $n_c = 3$).
- Khi giá trị A_f/A_w trung gian thì các hệ số xác định theo nội suy tuyến tính.

Phu luc D

(Qui định)

Các hệ số để tính toán ổn định của cấu kiện chịu nén đúng tâm, nén lệch tâm và nén uốn D.1 Xác định hệ số chiều dài tính toán của cột

D.1.1 Cột có tiết diện không đổi

Hệ số chiều dài tính toán μ của cột có tiết diện không đổi được xác định theo Bảng D.1

Bảng D.1 - Hệ số μ xác định chiều dài tính toán của cột có tiết diện không đổi

Cách liên kết và dạng tải trọng	Z W	N Amor	Z	ndan N			No.	7
Hệ số μ theo lý thuyết	1,0	0,7	0,5	2,0	1,0	2,0	0,725	1,12
Hệ số μ khi các điều kiện liên kết gần sát với lý thuyết (Tham khảo)	1,0	0,8	0,65	2,1	1,2	2,0	-	-

D.1.2 Côt một bậc

Hệ số chiều dài tính toán μ_1 đối với phần dưới của cột một bậc xác định tùy thuộc vào tỉ số:

$$n = \frac{I_2 I_1}{I_1 I_2} \qquad \quad \text{và trị số} \qquad \quad \alpha = \frac{I_2}{I_1} \sqrt{\frac{I_1}{I_2 \beta}}$$

trong đó: I_1 , I_2 , I_1 , I_2 là mômen quán tính của tiết diện và chiều dài tương ứng của phần cột dưới và phần cột trên (Hình D.1);

$$\beta = \frac{N_1 + N_2}{N_2};$$

Khi đầu trên cột tự do, μ₁ tra theo Bảng D.2;

Khi đầu trên cột là ngàm trượt, μ₁ tra theo Bảng D.3;

Khi đầu trên là khớp cố định hoặc ngàm thì μ_1 thì đối với phần cột dưới tính theo công thức:

$$\mu_1 = \sqrt{\frac{\mu_{12}^2 + \mu_{11}^2 (\beta - 1)}{\beta}} \tag{D.1}$$

trong đó:

 μ_{12} là hệ số chiều dài tính toán của phần cột dưới khi $N_1 = 0$;

 μ_{11} là hệ số chiều dài tính toán của phần cột dưới khi $N_2 = 0$;

Trị số của μ₁₂ và μ₁₁ lấy như sau:

Khi đầu trên cột tựa khớp, theo Bảng D.4;

Khi đầu trên cột là liên kết ngàm, theo Bảng D.5.

Hệ số chiều dài tính toán μ_2 của phần cột trên trong tất cả mọi trường hợp đều được tính theo công thức:

$$\mu_2 = \frac{\mu_1}{\alpha_1} \le 3 \tag{D.2}$$

Hình D.1 - Sơ đồ cột một bậc

D.1.3 Cột hai bậc

Hệ số chiều dài tính toán μ_1 đối với phần dưới của cột hai bậc (Hình D.2) khi đầu trên của cột được liên kết như trong Bảng D.6, tính theo công thức:

$$\mu_{1} = \sqrt{\frac{\beta_{1}\mu_{m1}^{2} + (\beta_{2}\mu_{m2}^{2} + \mu_{m3}^{2})(1 + \delta_{2})^{2}I_{1}/I_{1m}}{1 + \beta_{1} + \beta_{2}}}$$
 (D.3)

trong đó:

 $\mu_{m1}, \mu_{m2}, \mu_{m3}$ là các hệ số, xác định theo bảng D.6 như đối với cột một bậc ở Hình D.3;

$$\beta_1 = \frac{N_1}{N_3} \; ; \; \beta_2 = \frac{N_2}{N_3} \; ; \; \delta_2 = \frac{I_2}{I_1} \; ; \;$$

 N_1 , N_2 , N_3 là các lực dọc đặt tương ứng tại các bậc và đỉnh cột (Hình D.2);

 I_{1m} là mômen quán tính trung bình của các cột I_1 và I_2 , được tính theo công thức:

$$I_{1m} = \frac{I_1 I_1 + I_2 I_2}{I_1 + I_2}$$
 (D.4)

 $I_{2m}\,l\grave{a}$ mômen quán tính trung bình của các cột $I_2\,v\grave{a}\,I_3,$ được tính theo công thức:

$$I_{2m} = \frac{I_2 I_2 + I_3 I_3}{I_2 + I_3}$$
 (D.5)

 I_1 ; I_2 , I_3 và I_1 ; I_2 ; I_3 là mômen quán tính của tiết diện và chiều dài tương ứng của các đoạn cột dưới, giữa và trên cùng.

- a) lực N đặt tại phần cột dưới;
- b) lực N đặt tại phần cột giữa;
 - c) lực N đặt tại đỉnh cột

Hình D.2 - Sơ đồ cột

Hình D.3 - Các sơ đồ cột một bậc (cho Bảng D.5)

Hệ số chiều dài tính toán μ_2 của phần cột giữa, ứng với I_2 được tính theo công thức:

$$\mu_2 = \frac{\mu_1}{\alpha_2};\tag{D.6}$$

và hệ số μ_3 đối với phần cột trên cùng, ứng với I_3 , theo công thức:

$$\mu_3 = \frac{\mu_1}{\alpha_3} \le 3 \tag{D.7}$$

trong đó:

$$\alpha_2 = \frac{I_2}{I_1} \sqrt{\frac{I_1(N_2 + N_3)}{I_2(N_1 + N_2 + N_3)}} \; ; \; \alpha_3 = \frac{I_3}{I_1} \sqrt{\frac{I_1N_3}{I_3(N_1 + N_2 + N_3)}}$$

Bảng D.2 - Hệ số chiều dài tính toán μ_1 đối với cột một bậc có đầu trên tự do

Sơ đồ	α1				<u>-</u>					•	Hệ số		n			•					
tính		0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,2	1,4	1,6	1,8	2,0	2,5	5,0	10,0	20,0
ĮΝ	0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
<u></u>	0,2	2,0	2,01	2,02	2,03	2,04	2,05	2,06	2,06	2,07	2,08	2,09	2,10	2,12	2,14	2,15	2,17	2,21	2,40	2,76	3,38
N-7	0,4	2,0	2,04	2,08	2,11	2,13	2,18	2,21	2,25	2,28	2,32	2,35	2,42	2,48	2,54	2,60	2,66	2,80	-	-	-
	0,6	2,0	2,11	2,20	2,28	2,36	2,44	2,52	2,59	2,66	2,73	2,80	2,93	3,05	3,17	3,28	3,39	-	-	-	-
	0,8	2,0	2,25	2,42	2,56	2,70	2,83	2,96	3,07	3,17	3,27	3,36	3,55	3,74	-	-	-	-	-	-	-
1	1,0	2,0	2,50	2,73	2,94	3,13	3,29	3,44	3,59	3,74	3,87	4,00	-	-	-	-	-	-	-	-	-
1/-2	1,5	3,0	3,43	3,77	4,07	4,35	4,61	4,86	5,05	-	-	-	-	-	-	-	-	-	-	-	-
	2,0	4,0	4,44	4,90	5,29	5,67	6,03	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2,5	5,0	5,55	6,08	6,56	7,00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3,0	6,0	6,65	7,25	7,82	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Bảng D.3 - Hệ số chiều dài tính toán μ_1 đối với cột có đầu trên là ngàm trượt

Sơ đồ	α1										Hệ số	μ₁ khi	n								
tính		0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,2	1,4	1,6	1,8	2,0	2,5	5,0	10,0	20,0
Į N,	0	2,0	1,92	1,86	1,80	1,76	1,70	1,67	1,64	1,60	1,57	1,55	1,50	1,46	1,43	1,40	1,37	1,32	1,18	1,10	1,05
N,	0,2	2,0	1,93	1,87	1,82	1,76	1,71	1,68	1,64	1,62	1,59	1,56	1,52	1,48	1,45	1,41	1,39	1,33	1,20	1,11	-
Ŭ.	0,4	2,0	1,94	1,88	1,83	1,77	1,75	1,72	1,69	1,66	1,62	1,61	1,57	1,53	1,50	1,48	1,45	1,40	-	-	-
	0,6	2,0	1,95	1,91	1,86	1,83	1,79	1,77	1,76	1,72	1,71	1,69	1,66	1,63	1,61	1,59	-	-	-	-	-
	0,8	2,0	1,97	1,94	1,92	1,90	1,88	1,87	1,86	1,85	1,83	1,82	1,80	1,79	-	-	-	-	-	-	-
1	1,0	2,0	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	-	-	-	-	-	-	-	-	-
V,+V	1,5	2,0	2,12	2,25	2,33	2,38	2,43	2,48	2,52	-	-	-	-	-	-	-	-	-	-	-	-
	2,0	2,0	2,45	2,66	2,81	2,91	3,00	-	-	ı	-	-	-	-	-	-	-	-	-	-	-

2,5	2,5	2,94	3,17	3,34	3,50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3,0	3,0	3,43	3,70	3,93	4,12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Bảng D.4 - Hệ số chiều dài tính toán μ_{12} và μ_{11} đối với cột một bậc có đầu tựa khớp cố định

Sơ đồ tính	I ₂							Hệ số μ	₂ và μ ₁₂	khi l ₂ /l ₁						
	$\frac{I_2}{I_1}$	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,2	1,4	1,6	1,8	2,0
							Hệ	số μ ₁₂								
N ₂	0,04	1,02	1,84	2,25	2,59	2,85	3,08	3,24	3,42	3,70	4,00	4,55	5,25	5,80	6,55	7,20
100	0,06	0,91	1,47	1,93	2,26	2,57	2,74	2,90	3,05	3,24	3,45	3,88	4,43	4,90	5,43	5,94
	0,08	0,86	1,31	1,73	2,05	2,31	2,49	2,68	2,85	3,00	3,14	3,53	3,93	4,37	4,85	5,28
- 1,	0,1	0,83	1,21	1,57	1,95	2,14	2,33	2,46	2,60	2,76	2,91	3,28	3,61	4,03	4,43	4,85
↓ ∭	0,2	0,79	0,98	1,23	1,46	1,67	1,85	2,02	2,15	2,28	2,40	2,67	2,88	3,11	3,42	3,71
N_2	0,3	0,78	0,90	1,09	1,27	1,44	1,60	1,74	1,86	1,98	2,11	2,35	2,51	2,76	2,99	3,25
	0,4	0,78	0,88	1,02	1,17	1,32	1,45	1,58	1,69	1,81	1,92	2,14	2,31	2,51	2,68	2,88
	0,5	0,78	0,86	0,99	1,10	1,22	1,35	1,47	1,57	1,67	1,76	1,96	2,15	2,34	2,50	2,76
	1,0	0,78	0,85	0,92	0,99	1,06	1,13	1,20	1,27	1,34	1,41	1,54	1,68	1,82	1,97	2,10
		T					Hệ	số μ ₁₁					T	T	T	
- 1/2	0,04	0,67	0,67	0,83	1,25	1,43	1,55	1,65	1,70	1,75	1,78	1,84	1,87	1,88	1,90	1,92
- MN.	0,06	0,67	0,67	0,81	1,07	1,27	1,41	1,51	1,60	1,64	1,70	1,78	1,82	1,84	1,87	1,88
- 1	0,08	0,67	0,67	0,75	0,98	1,19	1,32	1,43	1,51	1,58	1,63	1,72	1,77	1,81	1,82	1,84
Π'	0,1	0,67	0,67	0,73	0,93	1,11	1,25	1,36	1,45	1,52	1,57	1,66	1,72	1,77	1,80	1,82
N,1	0,2	0,67	0,67	0,69	0,75	0,89	1,02	1,12	1,21	1,29	1,36	1,46	1,54	1,60	1,65	1,69
150	0,3	0,67	0,67	0,67	0,71	0,80	0,90	0,99	1,08	1,15	1,22	1,33	1,41	1,48	1,54	1,59
	0,4	0,67	0,67	0,67	0,69	0,75	0,84	0,92	1,00	1,07	1,13	1,24	1,33	1,40	1,47	1,51
	0,5	0,67	0,67	0,67	0,69	0,73	0,81	0,87	0,94	1,01	1,07	1,17	1,26	1,33	1,39	1,44

	1,0	0,67	0,67	0,67	0,68	0,71	0,74	0,78	0,82	0,87	0,91	0,99	1,07	1,19	1,19	1,24
--	-----	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------

Bảng D.5 - Hê số chiều dài tính toán μ_{12} và μ_{11} đối với côt một bậc có đầu trên liên kết ngàm

Sơ đồ tính	L		9	ię so cii				Hệ số μ	-							
	$\frac{I_2}{I_1}$	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,2	1,4	1,6	1,8	2,0
							Hệ	số μ ₁₂								
N ₂	0,04	0,78	1,02	1,53	1,73	2,01	2,21	2,38	2,54	2,65	2,85	3,24	3,70	4,20	4,76	5,23
1,	0,06	0,70	0,86	1,23	1,47	1,73	1,93	2,08	2,23	2,38	2,49	2,81	3,17	3,50	3,92	4,30
+ H.,	0,08	0,68	0,79	1,05	1,31	1,54	1,74	1,91	2,05	2,20	2,31	2,55	2,80	3,11	3,45	3,73
- 1,	0,1	0,67	0,76	1,00	1,20	1,42	1,61	1,78	1,92	2,04	2,20	2,40	2,60	2,86	3,18	3,41
1	0,2	0,64	0,70	0,79	0,93	1,07	1,23	1,41	1,50	1,60	1,72	1,92	2,11	2,28	2,45	2,64
N, 1	0,3	0,62	0,68	0,74	0,85	0,95	1,06	1,18	1,28	1,39	1,48	1,67	1,82	1,96	2,12	2,20
	0,4	0,60	0,66	0,71	0,78	0,87	0,99	1,07	1,16	1,26	1,34	1,50	1,65	1,79	1,94	2,08
	0,5	0,59	0,65	0,70	0,77	0,82	0,93	0,99	1,08	1,17	1,23	1,39	1,53	1,66	1,79	1,92
	1,0	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	1,10	1,20	1,30	1,40	1,50
							Hệ	số μ ₁₁								
1	0,04	0,66	0,68	0,75	0,94	1,08	1,24	1,37	1,47	1,55	1,64	1,72	1,78	1,81	1,85	1,89
_~ I ₂	0,06	0,65	0,67	0,68	0,76	0,94	1,10	1,25	1,35	1,44	1,50	1,61	1,69	1,74	1,79	1,82
N,	0,08	0,64	0,66	0,67	0,68	0,84	1,00	1,12	1,25	1,34	1,41	1,53	1,62	1,68	1,75	1,79
I,	0,1	0,64	0,65	0,65	0,65	0,78	0,92	1,05	1,15	1,25	1,33	1,45	1,55	1,62	1,68	1,71
₩	0,2	0,62	0,64	0,65	0,65	0,66	0,73	0,83	0,92	1,01	1,09	1,23	1,33	1,41	1,48	1,54
N,	0,3	0,60	0,63	0,64	0,65	0,66	0,67	0,73	0,81	0,89	0,94	1,09	1,20	1,28	1,35	1,41
	0,4	0,58	0,63	0,63	0,64	0,64	0,66	0,68	0,75	0,82	0,88	1,01	1,10	1,19	1,26	1,32
	0,5	0,57	0,61	0,63	0,64	0,64	0,65	0,68	0,72	0,77	0,83	0,94	1,04	1,12	1,19	1,25
	1,0	0,55	0,58	0,60	0,61	0,62	0,63	0,65	0,67	0,70	0,73	0,80	0,88	0,93	1,01	1,05

Bảng D.6 - Hệ số chiều dài tính toán $\mu_{m1},\,\mu_{m2,}\,\mu_{m3}$

		Pill 7, Pill 2, Pill 3	
Liên kết đầu trên của cột	μ _{m1}	μ _{m2}	μ _{m3}
Lien ket dau tren cua cot		Với tải trọng	
	Theo hình D.3, a	Theo hình D.3, b	Theo hình D.3, c
	$\mu_{m1} = 2.0$	$\mu_{m2} = 2,0$	$\mu_{m3} = \mu_1$
To de			$(\mu_1$ theo bảng D.2 khi
Tự do			$\alpha_1 = \frac{I_3}{I_1 + I_2} \sqrt{\frac{I_{1m}}{I_3}})$
	$\mu_{m1} = \mu_1$	$\mu_{m2} = \mu_1$	$\mu_{m3} = \mu_1$
Chỉ liên kết không cho xoay	$(\mu_1 \text{ theo bảng D.3 với } \alpha_1 = 0)$	(μ1 theo bảng D.3 với $α1 = 0)$	$(\mu_1 \text{ theo bảng D.3 khi}$
Chi lien ket khong cho xoay			$\alpha_1 = \frac{I_3}{I_1 + I_2} \sqrt{\frac{I_{1m}}{I_3}}$)
ما المراجع الم	$\mu_{m1} = \mu_{11}$	$\mu_{m2} = \mu_{11}$	$\mu_{m3} = \mu_{12}$
Liên kết khớp cố định	(μ ₁₁ theo bảng D.4)	(μ ₁₁ theo bảng D.4)	$(\mu_{12}$ theo bảng D.4)
Liên kết ngàm	$\mu_{m1} = \mu_{11}$	$\mu_{m2} = \mu_{11}$	$\mu_{m3} = \mu_{12}$
Lien ket ngam	(μ ₁₁ theo bảng D.5)	(μ ₁₁ theo bảng D.5)	(μ_{12} theo bảng D.5)

D.1.4 Cột có tiết diện thay đổi (tham khảo)

Trong trường hợp thanh có tiết diện thay đổi, khi xác định chiều dài tính toán cần kể đến hệ số chiều dài tính toán bổ sung μ_b cho trong Bảng D.7. Khi đó, chiều dài tính toán I_o được tính theo công thức:

$$I_0 = \mu \mu_1 I \tag{D.8}$$

trong đó l là chiều dài hình học; μ là hệ số chiều dài tính toán như trong trường hợp tiết diện không đổi.

Bảng D.7 - Hệ số chiều dài tính toán bổ sung µ₁ đối với thanh có tiết diện thay đổi

Bung Bir Tiç 30 dineu dar tilli todil 30						_{nax} bằı		
Sơ đồ thanh	I₁/I	0,01	0,1	0,2	0,4	0,6	0,8	1,0
Inia Inax	1	-	1,35	1,24	1,14	1,08	1,02	1,00
lorin lorins	-	-	1,66	1,45	1,24	1,14	1,06	1,00
	0,0	1,69	1,35	1,25	1,14	1,08	1,03	1,00
1 1	0,2	1,45	1,22	1,15	1,08	1,05	1,02	-
	0,4	1,23	1,11	1,07	1,04	1,02	1,01	-
Inst.	0,6	1,07	1,03	1,02	1,01	1,01	1,00	-
	0,8	1,01	1,00	1,00	1,00	1,00	1,00	-

D.2 Các hê số khác

D.2.1 Hệ số uốn dọc ϕ lấy theo Bảng D.8, hệ số ảnh hưởng của hình dạng tiết diện η lấy theo Bảng D.9, hệ số ϕ_e lấy theo Bảng D.10, D.11, độ lệch tâm tính đổi m_e lấy theo Bảng D.12.

D.2.2 Hệ số c_{max} đối với tiết diện chữ I và chữ T.

D.2.2.1 Đối với tiết diện chữ I

Đối với tiết diện chữ I có 1 trục đối xứng (Hình D.4), hệ số c_{max} được tính theo công thức:

$$c_{\text{max}} = \frac{2}{1 + \delta B + \sqrt{(1 - \delta B)^2 + \frac{16}{\mu} \left(\alpha_x - \frac{e_x}{h}\right)^2}}$$
 (D.9)

trong đó:

 $\alpha_x = (h_1I_1 - h_2I_2)/(I_yh);$

 $e_x = M_x/N$ là độ lệch tâm của lực nén so với trục x-x, lấy theo dấu tương ứng (như trên Hình D.4 là dấu dương);

h là khoảng cách giữa các trục của cánh;

$$\mu = \frac{8I_{1}I_{2}}{I_{v}^{2}} + 0,156\frac{I_{t}}{Ah^{2}}\lambda_{y}^{2}$$

$$B = 1 + \frac{2\beta}{\rho} \frac{e_x}{h};$$

$$\delta = \frac{4\rho}{\mu}$$

Ở đây:

 I_1 , I_2 lần lượt là mômen quán tính của cánh lớn và cánh nhỏ lấy với trục y-y;

$$\rho = \frac{I_x + I_y}{Ah^2} + \alpha_x^2;$$

 I_t và β là các giá trị tính theo các công thức ở Bảng E.3 và Bảng E.4.

D.2.2.2 Đối với tiết diện chữ T

Đối với tiết diện chữ T, giá trị của hệ số c_{max} được xác định như đối với tiết diện chữ I nhưng khi tính I_t lấy: $I_2=0$; $b_2=0$; $t_2=0$ (Hình D.4)

Hình D.4 - Sơ đồ tiết diện chữ I một trục đối xứng chịu nén lệch tâm

Bảng D.8 - Hê số uốn dọc φ của cấu kiên chiu nén đúng tâm

Độ		Hệ số	φ đối v	ới các			thép cá				f, MPa	
mảnh λ	200	240	280	320	360	400	440	480	520	560	600	640
10	988	987	985	984	983	982	981	980	979	978	977	977
20	967	962	959	955	952	949	946	943	941	938	936	934
30	939	931	924	917	911	905	900	895	891	887	883	879
40	906	894	883	873	863	854	846	849	832	825	820	814
50	869	852	836	822	809	796	785	775	764	746	729	712
60	827	805	785	766	749	721	696	672	650	628	608	588
70	782	784	724	687	654	623	595	568	542	518	494	470
80	734	686	641	602	566	532	501	471	442	414	386	359
90	665	612	565	522	483	447	413	380	349	326	305	287
100	599	542	493	448	408	369	335	309	286	267	250	235
110	537	478	427	381	338	306	280	258	239	223	209	197
120	479	719	366	321	287	260	237	219	203	190	178	167
130	425	364	313	276	247	223	204	189	175	163	153	145
140	376	315	272	240	215	195	178	164	153	143	134	126
150	328	276	239	211	189	171	157	145	134	126	118	111

160	290	244	212	187	167	152	139	129	120	112	105	099
170	259	218	189	167	150	136	125	115	107	100	094	089
180	233	196	170	150	135	123	112	104	097	091	085	081
190	210	177	154	136	122	111	102	094	088	082	077	073
200	191	161	140	124	111	101	093	086	080	075	071	067
210	174	147	128	113	102	093	085	079	074	069	065	062
220	160	135	118	104	094	086	077	073	068	064	060	057

CHÚ THÍCH: Giá trị của hệ số ϕ trong bảng đã được tăng lên 1000 lần.

Bảng D.9 - Hệ số ảnh hưởng của hình dạng tiết diện η

	Báng D.9 - Hệ số ánh h	ıươn	ig cua ninn dạng tiế	ταιệη η	
Loạ			Trị s	ố của η khi	
i tiết	Sơ đồ tiết diện	$\frac{A_f}{A_w}$	$0 \le \overline{\lambda} \le \overline{\lambda}$	5	$\overline{\lambda} \geq 5$
diệ n	••••••••••••••••••••••••••••••••••••••	/\w	0,1 ≤ m ≤ 5	5 < m ≤ 20	0,1 ≤ 5 < m m ≤ 5 ≤ 20
1	-	-	1,0	1,0	1,0
2	Wh = 0,25	-	0,85	0,85	0,85
3		-	$0.75 + 0.02 \overline{\lambda}$	$0,75 + 0,02\overline{\lambda}$	0,85
4	vh = 0.25	-	$(1,35 - 0,05m) - 0,01(5 - m) \overline{\lambda}$	1,1	1,1
5	1 = 0.15 = 0.5A, 0.5A	0,25	(1,45 - 0,05m) - 0,01 $(5 - m) \overline{\lambda}$	1,2	1,2
	+ v ~ v • t + 1 1 1 1 1 1 1 1 1 1	0,5	(1,75 - 0,1m) - 0,02 $(5 - m) \overline{\lambda}$	1,25	1,25
		≥ 1	(1,90 - 0,1m) - 0,02 $(6 - m) \overline{\lambda}$	1,4 - 0,2 λ	1,3
6	a,m = 0,15	-	$\eta_5[1-0.3(5-m)] \times \frac{a_1}{h}$	η_5	η_5
7	a_1 \Rightarrow a_1	-	$\eta_5 \left(1 - 0.8 \frac{a_1}{h}\right)$	$\eta_5 \left(1 - 0.8 \frac{a_1}{h}\right)$	$\eta_5 \left(1 - 0.8 \frac{a_1}{h}\right)$
8		0,25	(0,75 + 0,05m) -	1,0	1,0

			0,01 (5 - m) $\bar{\lambda}$			
		0,5	(0.5 + 0.1m) + 0.02 (5 - m) $\frac{1}{\lambda}$	1,0	1	,0
		≥ 1	$(0,25 + 0,15m) - 0,03 (5 - m) \overline{\lambda}$	1,0	1	,0
9	0,5A. + 0,5A. + 1	0,5	(1,25 - 0,05m) - 0,01 $(5 - m) \overline{\lambda}$	1,0	1	,0
	A,	≥ 1	$(1,5 - 0,1m) - 0,02 (5 - m) \overline{\lambda}$	1,0	1	,0
10	A. 6 A. 6	0,5	1,4	1,4	1,4	1,4
	0.5A, 0.5A	1,0	1,6 - 0,01 (5 - m) $\bar{\lambda}$	1,6	1,35 + 0,05 m	1,6
	0,254,7	2,0	1,8 - 0,02 (5 - m) λ	1,8	1,3 + 0,1m	1,8
11	4	0,5	1,45 + 0,04 m	1,65	1,45 + 0,04m	1,65
	0,54 - 0,54	1,0	1,8 + 0,12 m	2,4	1,8 + 0,12m	2,4
		1,5	$2.0 + 0.25m + 0.1 \frac{1}{\lambda}$	-	-	
	0.54 0.54	2,0	$3.0 + 0.25m + 0.1 \overline{\lambda}$	-	-	-

CHÚ THÍCH:

Đối với các loại tiết diện từ 5 tới 7 khi tính tỉ số A_i/A_w không kể đến phần cánh đặt thẳng đứng; Đối với các loại tiết diện từ 6 đến 7 giá trị của η_5 lấy bằng giá trị của η của loại tiết diện 5, tương ứng với các giá trị của A_i/A_w .

Bảng D.10 - Hệ số ϕ_e để kiểm tra ổn định của cấu kiện tiết diện đặc, chịu nén lệch tâm (nén uốn), mặt phẳng tác dụng của mômen trùng với mặt phẳng đối xứng

Độ mảnh	,, :	p	Hệ s	ố φ _e kh		ch tân	n tươr		tính đ	ổi m _e k	òằng	_	
$\frac{\mathbf{qui} \ \mathbf{w\acute{o}c}}{\lambda} = \lambda \sqrt{f/E}$	0,1	0,25	0,5	0,75	1,0	1,25	1,5	1,75	2,0	2,5	3,0	3,5	4,0
0,5	967	922	850	782	722	669	620	577	538	469	417	370	337
1,0	925	854	778	711	653	600	563	520	484	427	382	341	307
1,5	875	804	716	647	593	548	507	470	439	388	347	312	283
2,0	813	742	653	587	536	496	457	425	397	352	315	286	260
2,5	742	672	587	526	480	442	410	383	357	317	287	262	238
3,0	667	597	520	465	425	395	365	342	320	287	260	238	217
3,5	587	522	455	408	375	350	325	303	287	258	233	216	198
4,0	505	447	394	356	330	309	289	270	256	232	212	197	181
4,5	418	382	342	310	288	272	257	242	229	208	192	178	165

5,0	354	326	295	273	253	239	225	215	205	188	175	162	150
5,5	302	280	256	240	224	212	200	192	184	170	158	148	138
6,0	258	244	223	210	198	190	178	172	166	153	145	137	128
6,5	223	213	196	185	176	170	160	155	149	140	132	125	117
7,0	194	186	173	163	157	152	145	141	136	127	121	115	108
8,0	152	146	138	133	128	121	117	115	113	106	100	095	091
9,0	122	117	112	107	103	100	098	096	093	088	085	082	079
10,0	100	097	093	091	090	085	081	080	079	075	072	070	069
11,0	083	079	077	076	075	073	071	069	068	063	062	061	060
12,0	069	067	064	063	062	060	059	059	056	055	054	053	052
13,0	062	061	054	053	052	051	051	050	049	049	048	048	047
14,0	052	049	049	048	048	047	047	046	045	044	043	043	042

Bảng D.10 - (kết thúc)

Độ mảnh		Hệ số φ _e khi độ lệch tâm tính đổi khi m _e											
qui ước $\frac{\overline{\lambda}}{\lambda} = \lambda \sqrt{f/E}$	4,5	5,0	5,5	6,0	6,5	7,0	8,0	9,0	10	12	14	17	20
0,5	307	280	260	237	222	210	183	164	150	125	106	090	077
1,0	283	259	240	225	209	196	175	157	142	121	103	086	074
1,5	262	240	223	207	195	182	163	148	134	114	099	082	070
2,0	240	222	206	193	182	170	153	138	125	107	094	079	067
2,5	220	204	190	178	168	158	144	130	118	101	090	076	065
3,0	202	187	175	166	156	147	135	123	112	097	086	073	063
3,5	183	172	162	153	145	137	125	115	106	092	082	069	060
4,0	168	158	149	140	135	127	118	108	098	088	078	066	057
4,5	155	146	137	130	125	118	110	101	093	083	075	064	055
5,0	143	135	126	120	117	111	103	095	088	079	072	062	053
5,5	132	124	117	112	108	104	095	089	084	075	069	060	051
6,0	120	115	109	104	100	096	089	084	079	072	066	057	049
6,5	112	106	101	097	094	089	083	080	074	068	062	054	047
7,0	102	098	094	091	087	083	078	074	070	064	059	052	045
8,0	087	083	081	078	076	074	068	065	062	057	053	047	041
9,0	075	072	069	066	065	064	061	058	055	051	048	043	038
10,0	065	062	060	059	058	057	055	052	049	046	043	039	035
11,0	057	055	053	052	051	050	048	046	044	040	038	035	032
12,0	051	050	049	048	047	046	044	042	040	037	035	032	029
13,0	045	044	043	042	041	041	039	038	037	035	033	030	027
14,0	041	040	040	039	039	038	037	036	036	034	032	029	026
CHÚ THÍCH	:												

Giá trị của hệ số ϕ_e trong bảng đã được tăng lên 1000 lần; Giá trị của hệ số ϕ_e không lấy lớn hơn giá trị của ϕ .

Bảng D.11 - Hệ số ϕ_e để kiểm tra ổn định của cấu kiện tiết diện rỗng, chịu nén lệch tâm (nén uốn), mặt phẳng tác dụng của mômen trùng với mặt phẳng đối xứng

Độ mảnh		Hệ số φ _e khi độ lệch tâm tương đối khi m											
$\frac{\text{qui w\'oc}}{\overline{\lambda} = \lambda \sqrt{f/E}}$	0,1	0,25	0,5	0,75	1,0	1,25	1,5	1,75	2,0	2,5	3,0	3,5	4,0
0,5	908	800	666	571	500	444	400	364	333	286	250	222	200
1,0	872	762	640	553	483	431	387	351	328	280	243	218	197
1,5	830	727	600	517	454	407	367	336	311	271	240	211	190
2,0	774	673	556	479	423	381	346	318	293	255	228	202	183
2,5	708	608	507	439	391	354	322	297	274	238	215	192	175
3,0	637	545	455	399	356	324	396	275	255	222	201	182	165
3,5	562	480	402	355	320	294	270	251	235	206	187	170	155
4,0	484	422	357	317	288	264	246	228	215	191	173	160	145
4,5	415	365	315	281	258	237	223	207	196	176	160	149	136
5,0	350	315	277	250	230	212	201	186	178	161	149	138	127
5,5	300	273	245	223	203	192	182	172	163	147	137	128	118
6,0	255	237	216	198	183	174	165	156	149	135	126	119	109
6,5	211	208	190	178	165	157	149	142	137	124	117	109	102
7,0	192	184	168	160	150	141	135	130	125	114	108	101	095
8,0	148	142	136	130	123	118	113	108	105	097	091	085	082
9,0	117	114	110	107	102	098	094	090	087	082	079	075	072
10,0	097	094	091	090	087	084	080	076	073	070	067	064	062
11,0	082	078	077	076	073	071	068	066	064	060	058	056	054
12,0	068	066	064	063	061	060	058	057	056	054	053	050	049
13,0	060	059	054	053	052	051	050	049	049	048	047	046	045
14,0	050	049	048	047	046	046	045	044	043	043	042	042	041

Bảng D.11 - (kết thúc)

	Bailg B.11 - (Ret triuc)												
Độ mảnh		Hệ số φ _e khi độ lệch tâm tương đối khi m											
$\frac{\mathbf{qui} \ \mathbf{w\acute{o}c}}{\overline{\lambda} = \lambda \sqrt{f/E}}$	4,5	5,0	5,5	6,0	6,5	7,0	8,0	9,0	10	12	14	17	20
0,5	182	167	154	143	133	125	111	100	091	077	067	056	048
1,0	180	165	151	142	131	121	109	098	090	077	066	055	046
1,5	178	163	149	137	128	119	108	096	088	077	065	053	045
2,0	170	156	143	132	125	117	106	095	086	076	064	052	045
2,5	162	148	136	127	120	113	103	093	083	074	062	051	044
3,0	153	138	130	121	116	110	100	091	081	071	061	051	043
3,5	143	130	123	115	110	106	096	088	078	069	059	050	042

4,0	133	124	118	110	105	100	093	084	076	067	057	049	041
4,5	124	116	110	105	100	096	089	079	073	065	055	048	040
5,0	117	108	104	100	095	092	086	076	071	062	054	047	039
5,5	110	102	098	095	091	087	081	074	068	059	052	046	039
6,0	103	097	093	090	085	083	077	070	065	056	051	045	038
6,5	097	092	088	085	080	077	072	066	061	054	050	044	037
7,0	091	087	083	079	076	074	068	063	058	051	047	043	036
8,0	079	077	073	070	067	065	060	055	052	048	044	041	035
9,0	069	067	064	062	059	056	053	050	048	045	042	039	035
10,0	060	058	056	054	052	050	047	045	043	041	038	036	033
11,0	053	052	050	048	046	044	043	042	041	038	035	032	030
12,0	048	047	045	043	042	040	039	038	037	034	032	030	028
13,0	044	044	042	041	040	038	037	036	035	032	030	028	026
14,0	041	040	039	039	038	037	036	035	034	031	029	027	025

CHÚ THÍCH:

Giá trị của hệ số ϕ_{e} trong bảng đã được tăng lên 1000 lần;

Giá trị của hệ số ϕ_e không lấy lớn hơn giá trị của ϕ .

Bảng D.12 - Độ lệch tâm tính đổi $m_{\rm e}$ đối với thanh có đầu tựa khớp

M ₂	_			Độ	lệch tá	âm tín	h đổi	m _e khi	m _{e 1} k	hớp		
$\delta = \frac{M_2}{M_1}$	$\bar{\lambda}$	0,1	0,5	1,0	1,5	2,0	3,0	4,0	5,0	7,0	10,0	20,0
δ = - 1,0	1	0,10	0,30	0,68	1,12	1,60	2,62	3,55	4,55	6,50	9,40	19,40
M. 🗟	2	0,10	0,17	0,39	0,68	1,03	1,80	2,75	3,72	5,65	8,60	18,50
M, ® M	3	0,10	0,10	0,22	0,36	0,55	1,17	1,95	2,77	4,60	7,40	17,20
	4	0,10	0,10	0,10	0,18	0,30	0,57	1,03	1,78	3,35	5,90	15,40
	5	0,10	0,10	0,10	0,10	0,15	0,23	0,48	0,95	2,18	4,40	13,40
	6	0,10	0,10	0,10	0,10	0,10	0,15	0,18	0,40	1,25	3,00	11,40
	7	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,50	1,70	9,50
δ = - 0,5	1	0,10	0,31	0,68	1,12	1,60	2,62	3,55	4,55	6,50	9,40	19,40
M (500	2	0,10	0,22	0,46	0,73	1,05	1,88	2,75	3,72	5,65	8,60	18,50
M, ⊕ M₂	3	0,10	0,17	0,38	0,58	0,80	1,33	2,00	2,77	4,60	7,40	17,20
	4	0,10	0,14	0,32	0,49	0,66	1,05	1,52	2,22	3,50	5,90	15,40
	5	0,10	0,10	0,26	0,41	0,57	0,95	1,38	1,80	2,95	4,70	13,40
	6	0,10	0,16	0,28	0,40	0,52	0,95	1,25	1,60	2,50	4,00	11,50
	7	0,10	0,22	0,32	0,42	0,55	0,95	1,10	1,35	2,20	3,50	10,80

Bảng D.12 - (kết thúc)

$_{2}$ M_{2}	_			Độ	lệch t	âm tín	h đổi	m _e kh	i m _{e1} k	òằng		
$\delta = \frac{L}{M_1}$	λ	1,0	0,5	1,0	1,5	2,0	3,0	4,0	5,0	7,0	10,0	20,0

δ = 0,5	1	0,10	0,32	0,70	1,12	1,60	2,62	3,55	4,55	6,50	9,40	19,40
M, 📵 ¬M,	2	0,10	0,28	0,60	0,90	1,28	1,96	2,75	3,72	5,65	8,40	18,50
	3	0,10	0,27	0,55	0,84	1,15	1,75	2,43	3,17	4,80	7,40	17,20
	4	0,10	0,26	0,52	0,78	1,10	1,60	2,20	2,83	4,00	6,30	15,40
	5	0,10	0,25	0,52	0,78	1,10	1,55	2,10	2,78	3,85	5,90	14,50
	6	0,10	0,28	0,52	0,78	1,10	1,55	2,00	2,70	3,80	5,60	13,80
	7	0,10	0,32	0,52	0,78	1,10	1,55	1,90	2,60	3,75	5,50	13,00
δ = 0,5	1	0,10	0,40	0,80	1,23	1,68	2,62	3,55	4,55	6,50	9,40	19,40
M, B M.	2	0,10	0,40	0,78	1,20	1,60	2,30	3,15	4,10	5,85	8,60	18,50
M ₁ M ₂	3	0,10	0,40	0,77	1,17	1,55	2,30	3,10	3,90	5,55	8,13	18,00
	4	0,10	0,40	0,75	1,13	1,55	2,30	3,05	3,80	5,30	7,60	17,50
	5	0,10	0,40	0,75	1,10	1,55	2,30	3,00	3,80	5,30	7,60	17,00
	6	0,10	0,40	0,75	1,10	1,50	2,30	3,00	3,80	5,30	7,60	16,50
	7	0,10	0,40	0,75	1,10	1,40	2,30	3,00	3,80	5,30	7,60	16,00
M CHÚ THÍCH: m _{c1} = n	CHI THÍCH: m . = n M ₁ A											

CHÚ THÍCH: $m_{e1} = \eta \frac{M_1}{N} \frac{A}{W_c}$

Phụ lục E

(Qui định)

Hệ số ϕ_b để tính ổn định của dầm

E.1 Đối với dầm tiết diện chữ I có hai trục đối xứng

Để xác định ϕ_b cần tính giá trị của hệ số ϕ_1 :

$$\varphi = \psi \frac{I_y}{I_x} \left(\frac{h}{I_0}\right)^2 \frac{E}{f}$$
 (E.1)

trong đó giá trị của ψ lấy theo bảng E.1 và E.2 phụ thuộc vào đặc điểm tải trọng và thông số α . Trị giá của α tính như sau:

a) Đối với thép cán I cán:
$$\alpha = 1,54 \frac{I_t}{I_v} \left(\frac{I_o}{h}\right)^2 \tag{E.2}$$

trong đó:

I₀ là chiều dài tính toán của dầm hoặc công xôn, lấy theo 7.2.2.1;

h là chiều cao của tiết diện dầm;

- It là mômen quán tính của tiết diện dầm khi xoắn.
- b) Đối với dầm tổ hợp hàn từ 3 tấm thép hoặc dầm bulông cường độ cao:

$$\alpha = 8 \left(\frac{I_0 t_1}{h b_f} \right)^2 \left(1 + \frac{a t^3}{b_f t_1^3} \right)$$
 (E.3)

trong đó:

Đối với dầm hàn tiết diện chữ I:

t là chiều dày bản bụng;

b_f, t_f là chiều rộng và chiều dày bản cánh;

h là khoảng cách giữa trọng tâm hai cánh;

a = 0.5h

Đối với dầm chữ I, liên kết cánh và bụng bằng bulông cường độ cao:

t là tổng chiều dày bản bụng và các cánh thép góc thẳng đứng đặt sát bản bụng;

b_f là chiều rộng tấm cánh (bản phủ);

t₁ là tổng chiều dày các tấm cánh và của cánh nằm ngang của thép góc cánh;

h là khoảng cách giữa các trục của hai tập bản phủ ở hai cánh;

a là chiều rộng của cánh thép góc thẳng đứng, không kể đến chiều dày của các tấm cánh.

Giá trị của hệ số φ_b trong công thức (16) lấy như sau:

Nếu $\varphi_1 \le 0.85$ thì $\varphi_b = \varphi_1$;

Nếu $\phi_1 > 0.85$ thì $\phi_b = 0.68 + 0.21\phi_b$, nhưng không lớn hơn 1.0.

E.2 Đối với dầm tiết diện chữ I có trục đối xứng (Hình E.1)

Để xác định φ_b cần tính các hệ số φ_1 và φ_2 :

$$\varphi_1 = \psi \frac{I_y}{I_x} \frac{2hh_1}{I_0^2} \frac{E}{f}$$
 (E.4)

$$\varphi_2 = \psi \frac{I_y}{I_x} \frac{2hh_1}{I_2^2} \frac{E}{f}$$
 (E.5)

trong đó:

h₁ là khoảng cách từ trọng tâm của tiết diện đến trục của cánh lớn;

h₂ là như trên nhưng đến truc của cánh nhỏ;

l_o là xác định như ở công thức (E.2)

ψ là hệ số, tính theo công thức:

$$\psi = D\left(B + \sqrt{B^2 + C}\right) \tag{E.6}$$

Các hệ số D, C, B trong công thức (E.6) lấy theo Bảng E.3 và E.4

Đối với tiết diện chữ I khi 0.9 < n < 1.0, hệ số ψ được xác định bằng nội suy tuyến tính theo công thức (E.5), khi đó với tiết diện chữ I lấy n = 0.9 và chữ T lấy n = 1.

Đối với tiết diện chữ T, chịu lực tập trung hoặc phân bố đều và khi α < 40, hệ số ψ sẽ được nhân với giá trị (0,8 + 0,004 α).

Khi n > 0,7 và $5 \le I_0/b_2 \le 25$ thì hệ số ϕ_2 sẽ lấy giảm đi bằng cách nhân với giá trị (1,025 - 0,015 I_0/b_2) nhưng không lớn hơn 0,95.

Không cho phép dùng dầm tiết diện không đối xứng có $I_0/b_2 > 25$.

Hệ số $φ_b$ trong công thức (16) tính theo các công thức ở Bảng E.5 nhưng không được lớn hơn 1.0.

E.3 Đối với dầm tiết diện chữ [

Hệ số φ_b được xác định như đối với dầm có tiết diện chữ I đối xứng, giá trị của α được tính theo công thức (E.2), nhưng giá trị của φ_1 được nhân với 0,7.

Các giá trị của I_x , I_y và I_t trong các công thức (E.1), (E.2) lấy theo tiết diện chữ [.

Hình D.4 - Sơ đồ tiết diện chữ I một trục đối xứng chịu nén lệch tâm

Bảng E.1 - Hệ số ψ đối với dầm tiết diện chữ I có hai trục đối xứng

			iet diện chữ 1 co i	iai ii și o aoi xang
Số lượng điểm cố	Dạng tải	Cánh được	Công	thức tính ψ khi α
kết cánh nén trong nhịp	trọng	chất tải	0,1 ≤ α ≤ 40	40 < α ≤ 400
	Tập trung	Cánh trên	$\psi = 1,75 + 0,09\alpha$	$\psi = 3.3 + 0.053\alpha - 4.5.10^{-5}\alpha^2$
171. 2	rạp trung	Cánh dưới	$\psi = 5.05 + 0.09\alpha$	$\psi = 6.6 + 0.053\alpha - 4.5.10^{-5}\alpha^{2}$
Không cố kết	Phân bố	Cánh trên	$\psi = 1.6 + 0.08\alpha$	$\psi = 3.15 + 0.04\alpha - 2.7.10^{-5}\alpha^2$
	đều	Cánh dưới	$\psi = 3.8 + 0.08\alpha$	$\psi = 5.35 + 0.04\alpha - 2.7.10^{-5}\alpha^{2}$
Hai hay nhiều, chia nhịp thành các phần đều nhau	Bất kỳ	Bất kỳ	$\psi = 2,25 + 0,07\alpha$	$\psi = 3.6 + 0.04\alpha - 3.5.10^{-5}\alpha^2$
	Tập trung ở giữa	Bất kỳ	$\psi = 1,75\psi_1$	$\psi = 1,75\psi_1$
_	Tập trung	Cánh trên	$\psi = 1,14\psi_1$	$\psi = 1,14\psi_1$
Một ở giữa	ở 1/4 nhịp	Cánh dưới	$\psi = 1.6 \ \psi_1$	$\psi = 1,6$
	Phân bố	Cánh trên	$\psi = 1,14\psi_1$	$\psi = 1,14\psi_1$
	đều	Cánh dưới	$\psi = 1.3 \ \psi_1$	$\psi = 1.3 \ \psi_1$

CHÚ THÍCH: Trị số của ψ_1 lấy bằng ψ khi cánh nén được cố kết bằng hai hoặc nhiều điểm

Bảng E.2 - Hệ số w đối với dầm công xôn, tiết diện chữ I có hai trục đối xứng

Dạng tải trọng	Cánh được chất tải		ni cánh nén của dầm cố kết, và khi α
		$4 \le \alpha \le 28$	28 < α ≤ 100
Tập trung ở đầu mút	Cánh trên	$\psi = 1.0 + 0.16\alpha$	$\psi = 4.0 + 0.05\alpha$
côngxôn	Cánh dưới	$\psi = 6.2 + 0.08\alpha$	$\psi = 7.0 + 0.05\alpha$
Phân bố đều	Cánh trên	$\psi = 1$.42√α

CHÚ THÍCH: Khi cánh nén của côngxôn được cố kết trong phương ngang ở đầu mút hoặc theo chiều dài thì hệ số ψ được lấy như đối với côngxôn không cố kết, ngoài trường hợp tải trọng tập trung đặt tại cánh trên ở mút côngxôn, khi đó ψ = 1,75 ψ 1 (giá trị của ψ 1 lấy theo CHÚ THÍCH trong Bảng E.1).

Bảng E.3 - Hê số D và C

Dạng tải trọng	D	Hệ số C ki	ni tiết diện
		Chữ I, n ≤ 0,9	Chữ T, n = 1
Tập trung ở giữa nhịp	3,265	0,330μ	$0,0826\alpha$
Phân bố đều	2,247	0,481μ	0,1202α
Uốn thuần túy	4,315	0,101μ	0,0253α

CHÚ THÍCH:

Các kí hiệu trong Bảng E.3:

$$n = \frac{I_1}{I_1 + I_2} \; ; \; \mu = n(1-n)(9.87 + \alpha_1);$$

trong đó:

$$\alpha_1 = 0.385 \frac{I_t(I_1 + I_2)}{I_1I_2} \left(\frac{I_0}{h}\right)^2$$

với: I_1 , I_2 tương ứng là mômen quán tính của cánh lớn và cánh nhỏ đối với trục đối xứng của tiết diện, được tính theo công thức (D.4);

Mômen quán tính xoắn được tính như sau:

$$I_t = \frac{\delta}{3} \sum b_i t_i^3$$

ở đây b_i và t_i tương ứng là các chiều rộng và chiều dày của các tấm cánh; δ = 1,25 đối với tiết diện chữ I một trục đối xứng; δ = 1,20 đối với tiết diện chữ T;

 α xác định như trong Bảng E.2

Bảng E.4 - Hệ số B

Bang E.4 - пе so в								
Sơ đồ tiết diện và vị	Hệ số B khi sơ đồ đặt tải							
trí đặt tải	Tập trung ở giữa Phân bố đều nhịp		Uốn thuần túy					
ŢŢ	δ	μ	β					
<u>†</u> †	δ - 1	μ - 1	β					
İ İ	1 - δ	1 - μ	- β					
<u>†</u>	- δ	- μ	- β					

CHÚ THÍCH:

Các kí hiệu dùng trong Bảng E.4:

 $\delta = n + 0.734\beta$; $\mu = n + 1.145\beta$;

$$\beta = \left\{0,47 - 0,035 \left(\frac{b_1}{h}\right) \left[1 + \frac{b_1}{h} - 0,072 \left(\frac{b_1}{h}\right)^2\right]\right\} (2n - 1)$$

trong đó: b₁ là chiều rộng cánh lớn hơn của dầm;

n là kí hiệu xem Bảng E.3

Bảng E.5 - Hệ số φ_b

Giá trị của φ₂	Hệ số φ _b khi cán	Hệ số φ _b khi cánh chịu nén là			
	Cánh lớn hơn	Cánh nhỏ hơn			
φ ₂ ≤ 0,85	$\varphi_b = \varphi_1$	$\varphi_b = \varphi_2$			
φ ₂ > 0,85	$\phi_b = \phi_1 \left[0.21 + 0.68 \left(\frac{n}{\phi_1} + \frac{1-n}{\phi_2} \right) \right]$	$\varphi_b = 0.68 + 0.21 \varphi_2$			

Bảng E.6 - Mômen quán tính xoắn

Số hiệu thép I	I _t , cm ⁴	Số hiệu thép I	I _t , cm ⁴	Số hiệu thép I	I _t , cm ⁴
10	2,28	22	8,60	33	23,8
12	2,88	22a	9,77	36	31,4
14	3,59	24	11,10	40	40,6
16	4,46	24a	12,80	45	54,7
18	5,60	27	13,60	50	75,4
18a	6,54	27a	16,70	55	100,0
20	6,92	30	17,40	60	135,0
20a	7,94	30a	20,30		

Phụ lục F

(Qui định)

Bảng tính toán về mỏi

Bảng F.1 - Bảng phân nhóm cấu kiện để tính về bền mỏi

Thứ tự	Sơ đồ cấu kiện và vị trí của tiết diện tính toán	Đặc điểm của cấu kiện	Nhóm cấu kiện
1	a.	 Mép của thép cơ bản được cán hoặc gia công cơ khí 	1
	a	 Mép của thép cơ bản được cắt bằng máy cắt hơi 	1
2	<u> </u>	Mép của thép cơ bản được gia công cơ khí, khi bán kính cong chuyển ở chỗ có chiều rộng khác nhau là:	
		r = 200 mm;	1
		r = 10 mm.	4

3		Thép cơ bản trong liên kết bulông cường độ cao	1
4		Thép cơ bản trong liên kết bulông (bulông tinh), tiết diện khảo sát đi qua lỗ: a) Khi liên kết hai bản ghép b) Khi dùng liên kết chồng	4 5
5	la la	Bản mã hình chữ nhật, hàn đối đầu hay hàn thẳng góc kiểu chữ T với cấu kiện, mép chuyển tiếp từ cấu kiện đến bản mã không được gia công cơ khí	7
6		Bản mã được hàn đối đầu hoặc kiểu chữ T với bản bụng, bản cánh dầm hoặc với thanh giàn khi α ≤ 45°	4
7		Bản mã hình chữ nhật hay hình thang, liên kết chồng với cánh dầm, thép ở chu vi đường hàn không gia công cơ khí	7
8		Đường hàn đối đầu không gia công mép; lực vuông góc với đường hàn; thép cơ bản có chiều rộng và dày như nhau	2
9	7/151-5	Đường hàn đối đầu không gia công mép; thép cơ bản có chiều rộng và dày khác nhau	5
10	1a isl:4 (aisl:4)	Thép cơ bản bằng gia công cơ khí cho đường hàn dày lên được vát tại chỗ nối đối đầu: Khi các bản thép được nối có	
	la la	chiều dày và rộng như nhau Khi chiều dày và rộng khác nhau	2

11		Đường hàn đối đầu, khi hàn có bản lót ở dưới, lực vuông góc với đường hàn	4
12		Đường hàn đối đầu nối thép ống, khi hàn có đoạn ống lót ở trong	4
13		Liên kết đối đầu thép định hình	4
14	13	Tiết diện tổ hợp hàn chữ I, chữ T, hoặc các loại khác được hàn bằng các đường hàn dọc, lực tác dụng dọc theo đường hàn	2
15	3333	Chi tiết phụ, được liên kết bằng đường hàn góc khi góc: α ≤ 45°	4
		<i>α</i> ≤ 90°	7
16		Thép cơ bản có đường hàn ngang, đường hàn hai phía, hàn thoải dần xuống thép cơ bản	4
17	la la	Thép cơ bản của cánh dầm chịu kéo, các cấu kiện của giàn gần vách cứng, sườn cứng được liên kết bằng các đường hàn góc	5
18	al 255	Thép cơ bản ở chỗ chuyển tiếp với đường hàn góc đầu	6
19	b) 18 1a 18	Thép cơ bản trong liên kết dùng đường hàn góc bên (chỗ chuyển tiếp từ cấu kiện đến mút của đường hàn) khi:	
	+-==-	a) Dùng hai đường hàn góc bên	8
	18 la	b) Đường hàn góc bên và góc đầu	7
	c) (a	c) Khi truyền lực qua thép cơ bản	7
	d)	d) Chi tiết neo để giữ cáp	8

20	Thép cơ bản của các thanh xiên chịu kéo bằng thép ống khi tỉ số giữa chiều dày và đường kính ngoài của thanh cánh là:	
	 $t_m/d_m \ge 1/14$	7
	$1/20 \le t_{\rm m}/d_{\rm m} \le 1/14$	8
21	 Thép cơ bản của thanh xiên chịu kéo bằng thép ống, khi tỉ số giữa đường kính của thanh xiên và thanh cánh d _d / d _m = 0,4 ÷ 0,7 và tỉ số giữa chiều dày với đường kính ngoài của thanh cánh:	
	$t_m/d_m \geq 1/14$	6
	$1/20 \le t_m/d_m \le 1/14$	7
	$1/35 < t_{\rm m}/d_{\rm m} \le 1/20$	8

Phu luc G

(Qui định)

Các yêu cầu bổ sung khi tính toán giàn thép ống

G.1 Tỉ số giữa đường kính ống D và chiều dày ống t, (D/t), không được vượt quá:

Đối với thanh cánh: 30;

Đối với thanh xiên và thanh bụng: từ 80 đến 90.

- **G.2** Tỉ số giữa đường kính thanh xiên d và đường kính thanh cánh D không được nhỏ hơn 0,3 (d/D $\geq 0,3$) để tránh hiện tượng ép lõm thanh cánh.
- **G.3** Trục hình học của các thanh được lấy làm trục để định vị. Trong trường hợp không sử dụng hết khả năng chịu lực của thanh cánh cho phép trục có độ lệch tâm là 1/4 đường kính thanh cánh.
- **G.4** Khi hàn các thanh thép ống phải đảm bảo độ kín khít ở đầu ống để tránh hiện tượng xuất hiện ăn mòn mặt bên trong ống.
- **G.5** Để liên kết thanh xiên vào thanh cánh có nhiều biện pháp. Thông thường người ta dùng các biện pháp liên kết như Hình G.1.

a) Liên kết hàn không bản mã; b) Liên kết hàn có bản đệm cong

c,d) Liên kết hàn đầu ống đã đập bẹt; e,f) Liên kết hàn dùng bản mã

Hình G.1 - Các dạng liên kết thanh thép ống xiên vào thanh cánh

- **G.6** Ứng suất dọc theo chiều dài đường hàn phân bố không đều và phụ thuộc vào tỉ số các đường kính của các ống thép được hàn, chiều dày thành ống của thanh cánh, góc nghiêng của ống, các đặc trưng của vật liệu làm thép ống làm thanh cánh.
- G.7 Độ bền đường hàn được kiểm tra theo điều kiện:

$$\frac{N}{0.85h_f I_w (R_w \beta \gamma_w)_{min} \gamma_c} \le 1 \tag{G.1}$$

trong đó:

0,85 là hệ số điều kiện làm việc của đường hàn kể đến sự phân bố ứng suất không đều dọc đường hàn;

h_f là chiều cao đường hàn;

l_w là chiều dài đường hàn, được tính như sau:

$$I_{w} = 0.5\pi d\xi \left[1.5(1 + \cos ec \alpha) - \sqrt{\cos ec \alpha} \right]$$
 (G.2)

Giá trị ξ phụ thuộc vào đường kính ống thép, cho trong Bảng G.1:

Bảng G.1 - Giá tri của hê số ξ

d/D	0,2	0,5	0,6	0,7	0,75	0,8	0,85	0,9	0,95	1,0
٤	1,0	1,01	1,02	1,03	1,04	1,05	1,06	1,08	1,12	1,22

- **G.8** Thành ống thanh cánh tại những vị trí tiếp xúc với thanh bụng hoặc tại những vị trí có các cấu kiện khác đè lên (xà gồ) cần được kiểm tra độ bền về uốn cục bộ theo các điều sau:
- a) Các thanh thép ống chịu nén, nén uốn khi độ mảnh qui ước $\overline{\lambda} = \lambda \sqrt{\frac{f}{E}} \ge 0,65$ phải thỏa mãn điều kiên:

$$\frac{r}{t} \le \frac{280}{1 + 1400 \frac{f}{r}} \tag{G.3}$$

Ngoài ra cần kiểm tra ổn định thành ống theo điều kiện:

$$\sigma_1 \le \gamma_c \sigma_{cr1}$$
 (G.4)

trong đó:

σ₁ là ứng suất tính toán trong thành ống;

 σ_{cr} là ứng suất tới hạn, lấy bằng giá trị nhỏ hơn trong hai giá trị ψ f hoặc $\frac{cEt}{r}$ (ở đây r là giá trị trung bình của bán kính ngoài và trong của ống, t là chiều dày ống).

Giá trị ψ và c được xác định tương ứng theo Bảng G.2 và G.3.

Bảng G.2 - Giá trị của hệ số ψ

Giá trị f, MPa	Hệ số ψ khi ^r tằng								
	0	25	50	75	100	125	150	200	250
f ≤ 140	1,00	0,98	0,88	0,79	0,72	0,65	0,59	0,45	0,39
f ≥ 280	1,00	0,94	0,78	0,67	0,57	0,49	0,42	0,29	-

CHÚ THÍCH: Giá trị của hệ số ψ khi 140 MPa ≤ f < 280 MPa và đối với các giá trị trung gian của r/t, được lấy nội suy tuyến tính.

Bảng G.3 - Giá trị của hệ số c

Giá trị r/t	≤ 50	100	150	200	250	500
Hệ số c	0,30	0,22	0,20	0,18	0,16	0,12

CHÚ THÍCH: Đối với các giá trị trung gian của r/t, hệ số c được lấy nội suy tuyến tính.

Trong trường hợp nén lệch tâm có phương song song với đường sinh trục ống hay uốn thuần túy trong mặt phẳng tiết diện ngang mà ứng suất tiếp tại vị trí có mômen lớn nhất không vượt

quá giá trị
$$0.07\,\text{E}\!\left(\frac{r}{t}\right)^{\!\!3/2}$$
, ứng suất σ_{cr1} phải được tăng lên bằng cách nhân với giá trị

$$(\left(1,1-0,1\frac{\sigma_1^{'}}{\sigma_1}\right), \text{ với } \sigma_1^{'} \text{ là ứng suất nhỏ nhất (qui ước ứng suất kéo lấy dấu "_").}$$

- b) Không cần kiểm tra ổn định thanh thép ống không có đường hàn dọc nếu r/t không vượt quá giá trị $1,7\sqrt{\frac{f}{F}}$ hoặc 35.
- **G.9** Khi chiều dày thanh cánh không đủ, có thể gia cường bằng các bản ốp cong. Các bản ốp cong này có thể được cắt từ những ống thép có cùng đường kính, hoặc được uốn từ thép tấm có chiều dày không nhỏ hơn chiều dày thanh cánh và không lớn hơn 2 lần chiều dày thanh cánh (Hình G.1, b).
- **G.10** Có thể dập bẹt đầu ống thép (chỉ được áp dụng đối với thép các bon thấp hoặc loại thép dẻo khác) (Hình G.1, c,d); trong một số trường hợp đặc biệt có thể hàn như Hình G.11, e, f.
- **G.11** Các ống thép có cùng đường kính được hàn với nhau trên ống lót bằng thép (Hình G.2, a). Tính toán kiểm tra chiu nén và kéo như sau:

$$\frac{N}{\pi D_{tb} t(R_w \beta)_{min} \gamma_c} \le 1 \tag{G.5}$$

trong đó D_{tb} là đường kính trung bình của ống thép có chiều dày nhỏ hơn; t là chiều dày thanh thép ống nhỏ hơn.

- a) Liên kết hàn 2 ống lót và đường hàn thẳng
- b) Liên kết hàn dùng ống lót và đường hàn xiên
- c) Liên kết hàn 2 ống thép dùng bản cong ốp bên ngoài
- d) Liên kết hàn 2 ống thép khác đường kính
- e) Liên kết bùng bulông

Hình G.2 - Các dang liên kết thanh thép ống xiên vào thanh cánh

Cường độ của mối hàn sẽ bằng cường độ của thép cơ bản nếu cường độ tính toán của thép hàn không nhỏ hơn cường độ tính toán của thép cơ bản (đối với thép không giảm cường độ do hàn).

Trong trường hợp cường độ của thép hàn nhỏ hơn cường độ của thép cơ bản thì có thể dùng đường hàn xiên có ống đệm bên trong (Hình G.2, b)

Trong trường hợp không đảm bảo được liên kết đối đầu và cường độ của liên kết, liên kết các ống thép cùng đường kính có thể được thực hiện bằng hai ống thép tròn cuộn từ thép tấm hoặc được cắt ra từ ống có cùng hoặc đường kính lớn hơn một chút với thép ống cần hàn (Hình G.2,c)

Bản ốp cần được cắt theo đường cong để tăng chiều dài đường hàn đảm bảo cho cường độ mối hàn bằng cường độ thép cơ bản. Chiều dày ống lót bằng thép hoặc bản ốp và chiều cao đường hàn nên lấy bằng 20 % chiều dày các ống thép cần hàn.

Chiều dài đường hàn khi sử dụng bản ốp cong được tính theo công thức sau:

$$I_{w} = 2n\sqrt{a^2 + \left(\frac{\pi D}{2n}\right)^2}$$
 (G.6)

trong đó: a là chiều dài đường cong của bản ốp dọc theo trục ống thép; n là số lượng bản đệm cong bao quanh chu vi ống thép.

Liên kết hàn các ống thép chịu nén có đường kính khác nhau, hoặc liên kết tại những vị trí trục thanh bị gãy khúc có thể được thực hiện bằng cách dùng các bản mặt bích bịt đầu ống (Hình G.2, d).

Tại công trường cũng hay dùng liên kết bulông (Hình G.2, e).

Phụ lục H (Tham khảo)

Bảng chuyển đổi đơn vị kỹ thuật cũ sang hệ đơn vị SI

.	Đơn vị	Hệ đơn v	į SI	
Đại Iượng	· KVINIIAI 17'			Quan hệ chuyển đổi
Lực	kG	Niuton	N	1 kG = 9,81 N ≈ 10 N
	T (tấn)	kilô Niutơn	kN	1 kN = 1000 N
		mega Niuton	MN	1 T = 9,81 kN ≈ 10 kN
				1 MN = 1 000 000 N
Mômen	kGm	Niutơn mét	Nm	1 kGm = 9,81 Nm ≈ 10 Nm
	Tm	kilô Niutơn	kNm	1 Tm = 9,81 kNm ≈ 10 kNm
		mét		
Ứng suất;	kG/mm ²	Niuton/mm ²	N/mm ²	1 Pa = 1 N/m² ≈ 0,1 kG/m²
Cường	kG/cm ²	Pascan	Pa	1 kPa = 1 000 Pa = 1 000 N/m ² = 100 kG/m ²
độ; Môđun	T/m ²	Mêga Pascan	MPa	1 MPa = 1 000 000 Pa = 1 000 kPa ≈ 100 000 kG/m² = 10 kG/cm²
đàn hồi				1 MPa = 1 N/mm ²
				1 kG/mm ² = 9,81 N/mm ²
				1 kG/cm ² = 9,81 x 10^4 N/m ² $\approx 0,1$ MN/m ² = 0,1 MPa
				1 kG/m ² = 9,81 N/m ² = 9,81 Pa \approx 10 N/m ² = 1 daN/m ²

MUC LUC

Mục lục

Lời nói đầu

- 1. Pham vi áp dung
- 2. Tài liệu viện dẫn
- 3. Đơn vị đo và ký hiệu
- 4. Nguyên tắc chung
- 4.1 Các quy định chung
- 4.2 Các yêu cầu đối với thiết kế
- 5 Cơ sở thiết kế kết cấu thép
- 5.1 Nguyên tắc thiết kế
- 5.2 Tải trọng
- 5.3 Biến dạng cho phép của kết cấu
- 5.4 Hệ số điều kiện làm việc γ_c
- 6. Vật liệu của kết cấu và liên kết
- 6.1 Vật liệu thép dùng trong kết cấu
- 6.2 Vật liệu thép dùng trong liên kết
- 7. Tính toán các cấu kiện
- 7.1 Cấu kiện chịu kéo đúng tâm
- 7.2 Cấu kiện chịu uốn
- 7.3 Cấu kiện chịu nén đúng tâm
- 7.4 Cấu kiện chịu nén uốn, kéo uốn
- 7.5 Chiều dài tính toán của các cấu kiện chịu nén và nén uốn
- 7.6 Ôn định cục bộ của các cấu kiện có tấm mỏng
- 7.7 Kết cấu thép tấm
- 8. Tính toán liên kết
- 8.1 Liên kết hàn
- 8.2 Liên kết bu lông
- 8.3 Liên kết bu lông cường độ cao
- 9. Tính toán kết cấu thép theo độ bền mỏi
- 10. Các yêu cầu kỹ thuật và cấu tạo khác khi thiết kế cấu kiện kết cấu thép
- 10.1 Dầm
- 10.2 Côt
- 10.3 Giàn phẳng và hệ thanh không gian
- 10.4 Hệ giằng
- 10.5 Dầm cầu truc
- 10.6 Liên kết

- 10.7 Các yêu cầu bổ sung khi thiết kế dầm có lỗ
- 11. Các yêu cầu kỹ thuật và cấu tạo khác khi thiết kế nhà và công trình
- 11.1 Nhà công nghiệp
- 11.2 Nhà khung thấp tầng
- 11.3 Kết cấu thép tầm
- 11.4 Kết cầu tháp, trụ
- 11.5 Cột đường dây tải điện
- Phụ lục A (Quy định) Vật liệu dùng cho kết cấu thép và cường độ tính toán
- Phụ lục B (Quy định) Vật liệu dùng cho liên kết kết cấu thép
- Phụ lục C (Quy định) Các hệ số để tính độ bền của các cấu kiện
- Phụ lục D (Quy định) Các hệ số để tính toán ổn định của cấu kiện chịu nén đúng tâm, nén lệch tâm và nén uốn
- Phụ lục E (Quy định) Hệ số φ_b để tính ổn định của dầm
- Phụ lục F (Quy định) Bảng tính toán về mỏi
- Phụ lục G (Quy định) Các yêu cầu bổ sung khi tính toán giàn thép ống
- Phụ lục H (Tham khảo) Bảng chuyển đổi đơn vị kỹ thuật cũ sang hệ đơn vị SI