TRhizo-urbanMicrobiome

Pathogenic Bacteria

David Murray-Stoker

Contents

Load Packages	3
Load Data	4
Data Management	5
Filter Abundances	6
Mycobacterium GAMs Check Model Assumptions	9 10
Legionella GAMs Check Model Assumptions	
Staphylococcus GAMs Check Model Assumptions	
Stenotrophomonas GAMs Check Model Assumptions	
	17 17 18
Clostridium GAMs Check Model Assumptions	
Paenibacillus GAMs Check Model Assumptions	
Williamsia GAMs Check Model Assumptions	
- F G	25 25

ANOVAs	26
Xanthomonas GAMs Check Model Assumptions	27
ANOVAs	
Rhizobacter GAMs	2 9
Check Model Assumptions	29
ANOVAs	30
	31
Check Model Assumptions	
ANOVAs	32
Export Data	33
R Session Information	34

Load Packages

Load Data

```
## Microbiome tidyamplicons
microbiome.tidyamplicon.reference <- read_rds(
    file = "data/microbiome_tidyamplicon_reference.rds"
)

## Load the urbanization data
urbanization.data <- read_rds(
    file = "data/urbanization_data.rds"
)

## Load the workspace
#load("data_analysis/10-bacterial_functional_groups/pathogenic_bacteria-workspace.RData")</pre>
```

Data Management

```
## Set reference ASV abundance matrix
ASV.abundance.matrix <- add_rel_abundance(microbiome.tidyamplicon.reference) %>%
  abundances()
## Set reference taxa matrix
ASV.taxa.matrix <- taxa(microbiome.tidyamplicon.reference)
## Set tibble of bacteria abundance
bacteria.abundance.data <- ASV.abundance.matrix %>%
  full_join(ASV.taxa.matrix, by = "taxon_id") %>%
 full_join(microbiome.tidyamplicon.reference$samples, by = "sample_id") %>%
  select(Population:Compartment, phylum:genus, abundance, rel_abundance) %>%
 rename(
   Phylum = phylum, Class = class, Order = order, Family = family, Genus = genus,
   Abundance = abundance, Relative_Abundance = rel_abundance
  )
## Set aggregated sample data
sample.data <- microbiome.tidyamplicon.reference$samples %>%
   select(Population:Compartment) %>%
   distinct()
```

Filter Abundances

```
## Set tibbles of abundances for different mutualistic bacteria
# Mycobacterium
mycobacterium.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Mycobacterium") %>%
  select(Population, Compartment, Abundance, Relative_Abundance) %>%
  group_by(Population, Compartment) %>%
  summarise(
   Mycobacterium_Abundance = sum(Abundance),
   Mycobacterium_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
  )
# Legionella
legionella.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Legionella") %>%
  select(Population, Compartment, Abundance, Relative Abundance) %>%
  group_by(Population, Compartment) %>%
  summarise(
   Legionella_Abundance = sum(Abundance),
   Legionella_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
  )
# Staphylococcus
staphylococcus.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Staphylococcus") %>%
  select(Population, Compartment, Abundance, Relative_Abundance) %>%
  group_by(Population, Compartment) %>%
  summarise(
   Staphylococcus_Abundance = sum(Abundance),
   Staphylococcus_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
# Stenotrophomonas
stenotrophomonas.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Stenotrophomonas") %>%
  select(Population, Compartment, Abundance, Relative_Abundance) %>%
  group_by(Population, Compartment) %>%
  summarise(
   Stenotrophomonas_Abundance = sum(Abundance),
    Stenotrophomonas_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
  )
# Acinetobacter
acinetobacter.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Acinetobacter") %>%
  select(Population, Compartment, Abundance, Relative_Abundance) %>%
  group_by(Population, Compartment) %>%
  summarise(
```

```
Acinetobacter_Abundance = sum(Abundance),
    Acinetobacter_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
# Clostridium
clostridium.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Clostridium sensu stricto") %>%
  select(Population, Compartment, Abundance, Relative_Abundance) %>%
  group_by(Population, Compartment) %>%
  summarise(
    Clostridium_Abundance = sum(Abundance),
   Clostridium Relative Abundance = sum(Relative Abundance),
    .groups = "keep"
# Paenibacillus
paenibacillus.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Paenibacillus") %>%
  select(Population, Compartment, Abundance, Relative_Abundance) %>%
  group_by(Population, Compartment) %>%
  summarise(
   Paenibacillus Abundance = sum(Abundance),
   Paenibacillus_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
  )
# Williamsia
williamsia.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Williamsia") %>%
  select(Population, Compartment, Abundance, Relative_Abundance) %>%
  group_by(Population, Compartment) %>%
  summarise(
   Williamsia_Abundance = sum(Abundance),
   Williamsia_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
  )
# Sphingomonas
sphingomonas.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Sphingomonas") %>%
  select(Population, Compartment, Abundance, Relative_Abundance) %>%
  group_by(Population, Compartment) %>%
  summarise(
   Sphingomonas_Abundance = sum(Abundance),
   Sphingomonas_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
# Xanthomonas
xanthomonas.abundances <- bacteria.abundance.data %>%
  filter(Genus == "Xanthomonas") %>%
  select(Population, Compartment, Abundance, Relative_Abundance) %>%
```

```
group_by(Population, Compartment) %>%
 summarise(
   Xanthomonas_Abundance = sum(Abundance),
   Xanthomonas_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
 )
# Rhizobacter
rhizobacter.abundances <- bacteria.abundance.data %>%
 filter(Genus == "Rhizobacter") %>%
 select(Population, Compartment, Abundance, Relative_Abundance) %>%
 group_by(Population, Compartment) %>%
 summarise(
   Rhizobacter_Abundance = sum(Abundance),
   Rhizobacter_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
# Agrobacterium
agrobacterium.abundances <- bacteria.abundance.data %>%
 filter(Genus == "Agrobacterium") %>%
 select(Population, Compartment, Abundance, Relative_Abundance) %>%
 group_by(Population, Compartment) %>%
 summarise(
   Agrobacterium Abundance = sum(Abundance),
   Agrobacterium_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
 )
## Combine abundances into a single tibble with urbanization metrics
pathogenic.bacteria.data <- sample.data %>%
   full_join(mycobacterium.abundances, by = c("Population", "Compartment")) %>%
   full_join(legionella.abundances, by = c("Population", "Compartment")) %>%
   full_join(staphylococcus.abundances, by = c("Population", "Compartment")) %%
   full_join(stenotrophomonas.abundances, by = c("Population", "Compartment")) %>%
   full_join(acinetobacter.abundances, by = c("Population", "Compartment")) %>%
   full_join(clostridium.abundances, by = c("Population", "Compartment")) %>%
   full join(paenibacillus.abundances, by = c("Population", "Compartment")) %>%
   full_join(williamsia.abundances, by = c("Population", "Compartment")) %>%
   full_join(sphingomonas.abundances, by = c("Population", "Compartment")) %>%
   full_join(xanthomonas.abundances, by = c("Population", "Compartment")) %>%
   full_join(rhizobacter.abundances, by = c("Population", "Compartment")) %>%
   full_join(agrobacterium.abundances, by = c("Population", "Compartment")) %>%
   replace(is.na(.), 0) %>%
   full_join(urbanization.data, by = "Population") %>%
```

Mycobacterium GAMs

```
## Mycobacterium by distance
mycobacterium.by.distance.GAM <- gam(</pre>
    Mycobacterium_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
## Mycobacterium by HII
mycobacterium.by.HII.GAM <- gam(
    Mycobacterium_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
)
## Mycobacterium by ISC
mycobacterium.by.ISC.GAM <- gam(</pre>
    Mycobacterium_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
```

```
## Mycobacterium abundance-by-distance model diagnostics
check_model(mycobacterium.by.distance.GAM)
# Visual check = assumptions met

## Mycobacterium abundance-by-HII model diagnostics
check_model(mycobacterium.by.HII.GAM)
# Visual check = assumptions met

## Mycobacterium abundance-by-ISC model diagnostics
check_model(mycobacterium.by.ISC.GAM)
# Visual check = assumptions met
```

Table 1: ANOVA table for the Mycobacterium relative abundance-by-distance GAM. Adjusted R-squared = 0.592, deviance = 60.1 Compartment: $F=100,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0.000	9	0.000	0.644
s (Distance) : Compartment Soil	0.526	9	0.122	0.153

Table 2: ANOVA table for the Mycobacterium relative abundance-by-HII GAM. Adjusted R-squared = 0.589, deviance = 59.8 Compartment: $F=99.4,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Human_Influence_Index):CompartmentRoot	0.345	9	0.058	0.221
$s(Human_Influence_Index) : Compartment Soil$	0.105	9	0.013	0.295

Table 3: ANOVA table for the Mycobacterium relative abundance-by-ISC GAM. Adjusted R-squared = 0.586, deviance = 59.2 Compartment: F = 98.5, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	0.000	9	0.000	0.551
$s(Mean_ISC) : Compartment Soil$	0.067	9	0.008	0.304

Legionella GAMs

```
## Legionella by distance
legionella.by.distance.GAM <- gam(</pre>
    Legionella_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
## Legionella by HII
legionella.by.HII.GAM <- gam(</pre>
    Legionella_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
)
## Legionella by ISC
legionella.by.ISC.GAM <- gam(</pre>
    Legionella_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
```

```
## Legionella abundance-by-distance model diagnostics
check_model(legionella.by.distance.GAM)
# Visual check = assumptions met

## Legionella abundance-by-HII model diagnostics
check_model(legionella.by.HII.GAM)
# Visual check = assumptions met

## Legionella abundance-by-ISC model diagnostics
check_model(legionella.by.ISC.GAM)
# Visual check = assumptions met
```

Table 4: ANOVA table for the Legionella relative abundance-by-distance GAM. Adjusted R-squared = 0.481, deviance = 49.4 Compartment: $F=62.6,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0.604	9	0.166	0.119
s (Distance) : Compartment Soil	0.427	9	0.082	0.192

Table 5: ANOVA table for the Legionella relative abundance-by-HII GAM. Adjusted R-squared = 0.479, deviance = 49.2 Compartment: $F=62.4,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Human_Influence_Index):CompartmentRoot	0.313	9	0.051	0.232
$s(Human_Influence_Index) : Compartment Soil$	0.000	9	0.000	0.587

Table 6: ANOVA table for the Legionella relative abundance-by-ISC GAM. Adjusted R-squared = 0.478, deviance = 49.1 Compartment: $F=62.3,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	0.556	9	0.138	0.139
$s(Mean_ISC) : Compartment Soil$	0.631	9	0.182	0.111

Staphylococcus GAMs

```
## Staphylococcus by distance
staphylococcus.by.distance.GAM <- gam(</pre>
   Staphylococcus_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
   data = pathogenic.bacteria.data,
   method = "REML"
## Staphylococcus by HII
staphylococcus.by.HII.GAM <- gam(
   Staphylococcus_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
   data = pathogenic.bacteria.data,
   method = "REML"
)
## Staphylococcus by ISC
staphylococcus.by.ISC.GAM <- gam(
   Staphylococcus_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
   data = pathogenic.bacteria.data,
   method = "REML"
```

```
## Staphylococcus abundance-by-distance model diagnostics
check_model(staphylococcus.by.distance.GAM)
# Visual check = assumptions met

## Staphylococcus abundance-by-HII model diagnostics
check_model(staphylococcus.by.HII.GAM)
# Visual check = assumptions met

## Staphylococcus abundance-by-ISC model diagnostics
check_model(staphylococcus.by.ISC.GAM)
# Visual check = assumptions met
```

Table 7: ANOVA table for the Staphylococcus relative abundance-by-distance GAM. Adjusted R-squared = 0.117, deviance = 15.4 Compartment: $F=1.836,\,P=0.180.$

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	1.91	9	0.924	0.012
s (Distance) : Compartment Soil	0.00	9	0.000	0.956

Table 8: ANOVA table for the Staphylococcus relative abundance-by-HII GAM. Adjusted R-squared = 0.403, deviance = 44.2 Compartment: F=2.717, P=0.104.

Term	EDF	Ref. df	F	P-value
s(Human_Influence_Index):CompartmentRoot	3.523	9	4.989	0.000
$s(Human_Influence_Index) : Compartment Soil$	0.000	9	0.000	0.921

Table 9: ANOVA table for the Staphylococcus relative abundance-by-ISC GAM. Adjusted R-squared = 0.023, deviance = 5.1 Compartment: F = 1.67, P = 0.201.

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot			0.154	0.128
$s(Mean_ISC):CompartmentSoil$	0.000	9	0.000	0.822

Stenotrophomonas GAMs

```
## Stenotrophomonas by distance
stenotrophomonas.by.distance.GAM <- gam(</pre>
    Stenotrophomonas_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
## Stenotrophomonas by HII
stenotrophomonas.by.HII.GAM <- gam(
    Stenotrophomonas_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
)
## Stenotrophomonas by ISC
stenotrophomonas.by.ISC.GAM <- gam(</pre>
    Stenotrophomonas_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
```

```
## Stenotrophomonas abundance-by-distance model diagnostics
check_model(stenotrophomonas.by.distance.GAM)
# Visual check = assumptions met

## Stenotrophomonas abundance-by-HII model diagnostics
check_model(stenotrophomonas.by.HII.GAM)
# Visual check = assumptions met

## Stenotrophomonas abundance-by-ISC model diagnostics
check_model(stenotrophomonas.by.ISC.GAM)
# Visual check = assumptions met
```

Table 10: ANOVA table for the Stenotrophomonas relative abundance-by-distance GAM. Adjusted R-squared = 0.257, deviance = 27.6 Compartment: F = 21.2, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0.799	9	0.404	0.035
s (Distance) : Compartment Soil	0.000	9	0.000	1.000

Table 11: ANOVA table for the Stenotrophomonas relative abundance-by-HII GAM. Adjusted R-squared = 0.225, deviance = 24.1 Compartment: F = 20.3, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Human_Influence_Index):CompartmentRoot	0.406	9	0.076	0.199
$s(Human_Influence_Index) : Compartment Soil$	0.000	9	0.000	0.862

Table 12: ANOVA table for the Stenotrophomonas relative abundance-by-ISC GAM. Adjusted R-squared = 0.242, deviance = 26.1 Compartment: F = 20.8, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	0.697	9	0.248	0.077
$s(Mean_ISC) : Compartment Soil$	0.000	9	0.000	0.994

Acinetobacter GAMs

```
## Acinetobacter by distance
acinetobacter.by.distance.GAM <- gam(</pre>
   Acinetobacter_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
   data = pathogenic.bacteria.data,
   method = "REML"
## Acinetobacter by HII
acinetobacter.by.HII.GAM <- gam(
   Acinetobacter_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
   data = pathogenic.bacteria.data,
   method = "REML"
)
## Acinetobacter by ISC
acinetobacter.by.ISC.GAM <- gam(
   Acinetobacter_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
   data = pathogenic.bacteria.data,
   method = "REML"
)
```

```
## Acinetobacter abundance-by-distance model diagnostics
check_model(acinetobacter.by.distance.GAM)
# Visual check = assumptions met

## Acinetobacter abundance-by-HII model diagnostics
check_model(acinetobacter.by.HII.GAM)
# Visual check = assumptions met

## Acinetobacter abundance-by-ISC model diagnostics
check_model(acinetobacter.by.ISC.GAM)
# Visual check = assumptions met
```

Table 13: ANOVA table for the Acinetobacter relative abundance-by-distance GAM. Adjusted R-squared = 0.089, deviance = 11.4 Compartment: F = 2.542, P = 0.116.

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0.864	9	0.581	0.015
s (Distance) : Compartment Soil	0.001	9	0.000	0.376

Table 14: ANOVA table for the Acine tobacter relative abundance-by-HII GAM. Adjusted R-squared =0.028, deviance =4.8 Compartment: $\rm F=2.381,~P=0.127.$

Term	EDF	Ref. df	F	P-value
$s(Human_Influence_Index):CompartmentRoot$	0.379	9	0.068	0.209
$s(Human_Influence_Index) : Compartment Soil$	0.001	9	0.000	0.385

Table 15: ANOVA table for the Acinetobacter relative abundance-by-ISC GAM. Adjusted R-squared = 0.065, deviance = 8.9 Compartment: $F=2.476,\,P=0.120.$

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	0.779	9	0.369	0.042
$s(Mean_ISC) : Compartment Soil$	0.000	9	0.000	0.655

Clostridium GAMs

```
## Clostridium by distance
clostridium.by.distance.GAM <- gam(</pre>
    Clostridium_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
## Clostridium by HII
clostridium.by.HII.GAM <- gam(</pre>
    Clostridium_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
)
## Clostridium by ISC
clostridium.by.ISC.GAM <- gam(</pre>
    Clostridium_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
```

```
## Clostridium abundance-by-distance model diagnostics
check_model(clostridium.by.distance.GAM)
# Visual check = assumptions met

## Clostridium abundance-by-HII model diagnostics
check_model(clostridium.by.HII.GAM)
# Visual check = assumptions met

## Clostridium abundance-by-ISC model diagnostics
check_model(clostridium.by.ISC.GAM)
# Visual check = assumptions met
```

Table 16: ANOVA table for the Clostridium relative abundance-by-distance GAM. Adjusted R-squared = 0.520, deviance = 53.4 Compartment: F = 68.9, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0.000	9	0.000	0.793
s (Distance) : Compartment Soil	0.902	9	0.771	0.006

Table 17: ANOVA table for the Clostridium relative abundance-by-HII GAM. Adjusted R-squared = 0.479, deviance = 49.0 Compartment: $F=63.4,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Human_Influence_Index):CompartmentRoot	0.000	9	0.000	0.786
$s(Human_Influence_Index) : Compartment Soil$	0.492	9	0.107	0.165

Table 18: ANOVA table for the Clostridium relative abundance-by-ISC GAM. Adjusted R-squared = 0.506, deviance = 51.9 Compartment: $F=66.85,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	0.000	9	0.000	0.655
$s(Mean_ISC) : Compartment Soil$	0.843	9	0.522	0.020

Paenibacillus GAMs

```
## Paenibacillus by distance
paenibacillus.by.distance.GAM <- gam(</pre>
    Paenibacillus_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
## Paenibacillus by HII
paenibacillus.by.HII.GAM <- gam(
    Paenibacillus_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
)
## Paenibacillus by ISC
paenibacillus.by.ISC.GAM <- gam(</pre>
    Paenibacillus_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
```

```
## Paenibacillus abundance-by-distance model diagnostics
check_model(paenibacillus.by.distance.GAM)
# Visual check = assumptions met

## Paenibacillus abundance-by-HII model diagnostics
check_model(paenibacillus.by.HII.GAM)
# Visual check = assumptions met

## Paenibacillus abundance-by-ISC model diagnostics
check_model(paenibacillus.by.ISC.GAM)
# Visual check = assumptions met
```

Table 19: ANOVA table for the Paenibacillus relative abundance-by-distance GAM. Adjusted R-squared = 0.396, deviance = 41.3 Compartment: $F=39.78,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0.000	9	0.000	0.614
s (Distance) : Compartment Soil	0.892	9	0.726	0.008

Table 20: ANOVA table for the Paenibacillus relative abundance-by-HII GAM. Adjusted R-squared = 0.388, deviance = 40.9 Compartment: $F=39.21,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Human_Influence_Index):CompartmentRoot	0.617	9	0.179	0.111
$s(Human_Influence_Index) : Compartment Soil$	0.794	9	0.428	0.031

Table 21: ANOVA table for the Paenibacillus relative abundance-by-ISC GAM. Adjusted R-squared = 0.349, deviance = 36.3 Compartment: $F=36.87,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	0.000	9	0.000	0.619
$s(Mean_ISC) : Compartment Soil$	0.526	9	0.121	0.154

Williamsia GAMs

```
## Williamsia by distance
williamsia.by.distance.GAM <- gam(</pre>
    Williamsia_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
## Williamsia by HII
williamsia.by.HII.GAM <- gam(</pre>
    Williamsia_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
)
## Williamsia by ISC
williamsia.by.ISC.GAM <- gam(</pre>
    Williamsia_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
```

```
## Williamsia abundance-by-distance model diagnostics
check_model(williamsia.by.distance.GAM)
# Visual check = assumptions met

## Williamsia abundance-by-HII model diagnostics
check_model(williamsia.by.HII.GAM)
# Visual check = assumptions met

## Williamsia abundance-by-ISC model diagnostics
check_model(williamsia.by.ISC.GAM)
# Visual check = assumptions met
```

Table 22: ANOVA table for the Williamsia relative abundance-by-distance GAM. Adjusted R-squared = 0.038, deviance = 6.24 Compartment: F = 0.914, P = 0.342.

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0.000	9	0.000	0.772
s (Distance) : Compartment Soil	0.749	9	0.312	0.055

Table 23: ANOVA table for the Williamsia relative abundance-by-HII GAM. Adjusted R-squared = 0.044, deviance = 6.83 Compartment: $F=0.920,\,P=0.341.$

Term	EDF	Ref. df	F	P-value
s(Human_Influence_Index):CompartmentRoot	0.000	9	0.00	0.989
$s(Human_Influence_Index): Compartment Soil$	0.764	9	0.36	0.043

Table 24: ANOVA table for the Williamsia relative abundance-by-ISC GAM. Adjusted R-squared = 0.023, deviance = 4.64 Compartment: $F=0.901,\,P=0.346.$

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	0.000	9	0.000	0.797
$s(Mean_ISC) : Compartment Soil$	0.639	9	0.193	0.103

Sphingomonas GAMs

```
## Sphingomonas by distance
sphingomonas.by.distance.GAM <- gam(</pre>
    Sphingomonas_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
## Sphingomonas by HII
sphingomonas.by.HII.GAM <- gam(</pre>
    Sphingomonas_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
)
## Sphingomonas by ISC
sphingomonas.by.ISC.GAM <- gam(</pre>
    Sphingomonas_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
```

```
## Sphingomonas abundance-by-distance model diagnostics
check_model(sphingomonas.by.distance.GAM)
# Visual check = assumptions met

## Sphingomonas abundance-by-HII model diagnostics
check_model(sphingomonas.by.HII.GAM)
# Visual check = assumptions met

## Sphingomonas abundance-by-ISC model diagnostics
check_model(sphingomonas.by.ISC.GAM)
# Visual check = assumptions met
```

Table 25: ANOVA table for the Sphingomonas relative abundance-by-distance GAM. Adjusted R-squared = 0.584, deviance = 60.4 Compartment: F = 76.42, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	2.433	9	2.365	0.000
s (Distance) : Compartment Soil	0.000	9	0.000	0.405

Table 26: ANOVA table for the Sphingomonas relative abundance-by-HII GAM. Adjusted R-squared = 0.453, deviance = 46.1 Compartment: F = 58.2, P < 0.001.

Term	EDF	Ref. df	F	P-value
$s(Human_Influence_Index):CompartmentRoot$	0	9	0	0.885
$s(Human_Influence_Index): Compartment Soil$	0	9	0	0.998

Table 27: ANOVA table for the Sphingomonas relative abundance-by-ISC GAM. Adjusted R-squared = 0.453, deviance = 46.1 Compartment: F = 58.2, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	0	9	0	0.751
$s(Mean_ISC) : Compartment Soil$	0	9	0	0.774

Xanthomonas GAMs

```
## Xanthomonas by distance
xanthomonas.by.distance.GAM <- gam(</pre>
    Xanthomonas_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
## Xanthomonas by HII
xanthomonas.by.HII.GAM <- gam(</pre>
    Xanthomonas_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
)
## Xanthomonas by ISC
xanthomonas.by.ISC.GAM <- gam(</pre>
    Xanthomonas_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
```

```
## Xanthomonas abundance-by-distance model diagnostics
check_model(xanthomonas.by.distance.GAM)
# Visual check = assumptions met

## Xanthomonas abundance-by-HII model diagnostics
check_model(xanthomonas.by.HII.GAM)
# Visual check = assumptions met

## Xanthomonas abundance-by-ISC model diagnostics
check_model(xanthomonas.by.ISC.GAM)
# Visual check = assumptions met
```

Table 28: ANOVA table for the Xanthomonas relative abundance-by-distance GAM. Adjusted R-squared = 0.251, deviance = 27.1 Compartment: $F=18.21,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	0.886	9	0.656	0.011
s (Distance) : Compartment Soil	0.000	9	0.000	0.922

Table 29: ANOVA table for the Xanthomonas relative abundance-by-HII GAM. Adjusted R-squared = 0.306, deviance = 32.5 Compartment: $F=19.64,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Human_Influence_Index):CompartmentRoot	0.922	9	1.302	0.001
$s(Human_Influence_Index) : Compartment Soil$	0.000	9	0.000	0.794

Table 30: ANOVA table for the Xanthomonas relative abundance-by-ISC GAM. Adjusted R-squared = 0.234, deviance = 25.5 Compartment: $F=17.82,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	0.834	9	0.48	0.025
$s(Mean_ISC) : Compartment Soil$	0.000	9	0.00	0.997

Rhizobacter GAMs

```
## Rhizobacter by distance
rhizobacter.by.distance.GAM <- gam(</pre>
    Rhizobacter_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
## Rhizobacter by HII
rhizobacter.by.HII.GAM <- gam(</pre>
    Rhizobacter_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
)
## Rhizobacter by ISC
rhizobacter.by.ISC.GAM <- gam(</pre>
    Rhizobacter_Relative_Abundance ~ Compartment
      + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
```

```
## Rhizobacter abundance-by-distance model diagnostics
check_model(rhizobacter.by.distance.GAM)
# Visual check = assumptions met

## Rhizobacter abundance-by-HII model diagnostics
check_model(rhizobacter.by.HII.GAM)
# Visual check = assumptions met

## Rhizobacter abundance-by-ISC model diagnostics
check_model(rhizobacter.by.ISC.GAM)
# Visual check = assumptions met
```

Table 31: ANOVA table for the Rhizobacter relative abundance-by-distance GAM. Adjusted R-squared = 0.653, deviance = 67.6 Compartment: $F=115.9,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	3.462	9	1.684	0.003
s (Distance) : Compartment Soil	0.000	9	0.000	0.728

Table 32: ANOVA table for the Rhizobacter relative abundance-by-HII GAM. Adjusted R-squared = 0.589, deviance = 59.9 Compartment: $F=97.81,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Human_Influence_Index):CompartmentRoot	0.688	9	0.245	0.078
$s(Human_Influence_Index) : Compartment Soil$	0.000	9	0.000	0.786

Table 33: ANOVA table for the Rhizobacter relative abundance-by-ISC GAM. Adjusted R-squared = 0.587, deviance = 59.7 Compartment: $F=97.38,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	0.66	9	0.21	0.094
$s(Mean_ISC) : Compartment Soil$	0.00	9	0.00	0.793

Agrobacterium GAMs

```
## Agrobacterium by distance
agrobacterium.by.distance.GAM <- gam(</pre>
    Agrobacterium_Relative_Abundance ~ Compartment
      + s(Distance, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
## Agrobacterium by HII
agrobacterium.by.HII.GAM <- gam(
    Agrobacterium_Relative_Abundance ~ Compartment
      + s(Human_Influence_Index, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
)
## Agrobacterium by ISC
agrobacterium.by.ISC.GAM <- gam(</pre>
    Agrobacterium_Relative_Abundance ~ Compartment
     + s(Mean_ISC, by = Compartment, bs = "ts", k = 10),
    data = pathogenic.bacteria.data,
    method = "REML"
)
```

```
## Agrobacterium abundance-by-distance model diagnostics
check_model(agrobacterium.by.distance.GAM)
# Visual check = assumptions met

## Agrobacterium abundance-by-HII model diagnostics
check_model(agrobacterium.by.HII.GAM)
# Visual check = assumptions met

## Agrobacterium abundance-by-ISC model diagnostics
check_model(agrobacterium.by.ISC.GAM)
# Visual check = assumptions met
```

Table 34: ANOVA table for the Agrobacterium relative abundance-by-distance GAM. Adjusted R-squared = 0.539, deviance = 56.4 Compartment: F = 59.84, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Distance):CompartmentRoot	2.65	9	2.438	0.000
s (Distance) : Compartment Soil	0.00	9	0.000	0.934

Table 35: ANOVA table for the Agrobacterium relative abundance-by-HII GAM. Adjusted R-squared = 0.692, deviance = 71.8 Compartment: $F=89.55,\,P<0.001.$

Term	EDF	Ref. df	F	P-value
$s(Human_Influence_Index):CompartmentRoot$	4.81	9	7.399	0.000
$s(Human_Influence_Index): Compartment Soil$	0.00	9	0.000	0.845

Table 36: ANOVA table for the Agrobacterium relative abundance-by-ISC GAM. Adjusted R-squared = 0.474, deviance = 49.9 Compartment: F = 52.36, P < 0.001.

Term	EDF	Ref. df	F	P-value
s(Mean_ISC):CompartmentRoot	2.325	9	1.189	0.006
$s(Mean_ISC) : Compartment Soil$	0.000	9	0.000	1.000

Export Data

```
## Pathogenic bacteria
write_rds(
    pathogenic.bacteria.data,
    file = "data/pathogenic_bacteria_data.rds"
)
```

save.image("data_analysis/10-bacterial_functional_groups/pathogenic_bacteria-workspace.RData")

R Session Information

Table 37: Packages required for data management and analysis.

Package	Loaded Version	Date
bayestestR	0.13.2	2024-02-12
broom	1.0.5	2023-06-09
correlation	0.8.4	2023-04-06
datawizard	0.10.0	2024-03-26
dplyr	1.1.4	2023-11-17
easystats	0.7.1	2024-03-28
effectsize	0.8.7	2024-04-01
forcats	1.0.0	2023-01-29
ggplot2	3.5.1	2024-04-23
insight	0.19.10	2024-03-22
kableExtra	1.4.0	2024-01-24
knitr	1.46	2024-04-06
lubridate	1.9.3	2023-09-27
mgcv	1.9-1	2023 - 12 - 21
modelbased	0.8.7	2024-02-15
nlme	3.1-164	2023-11-27
parameters	0.21.6	2024-03-18
performance	0.11.0	2024 - 03 - 22
purrr	1.0.2	2023-08-10
readr	2.1.5	2024-01-10
report	0.5.8	2023-12-07
see	0.8.4	2024-04-29
stringr	1.5.1	2023-11-14
tibble	3.2.1	2023-03-20
tidyamplicons	0.2.2	2022-09-10
tidyr	1.3.1	2024-01-24
tidyverse	2.0.0	2023-02-22