Bottom-Up Default Analysis (BuDA): A Scenario Based Approach for Assessing MacroFinancial Linkages

Jorge A. Chan-Lau

jchanlau@imf.org

Institute for Capacity and Development, International Monetary Fund, and Credit Research Initiative, National University of Singapore

Joint work with Jin-Chuan Duan, and Weimin Miao, with the support of the Credit Research Initiative team

> VII Meeting on Financial Stability CEMLA and Banco Central de Chile September 7-8, 2017

The views presented herein do not represent those of the IMF, its Executive Board, or IMF policy

Outline

- Motivation: Macrofinancial Surveillance
- BuDA's Bottom-Up Approach
- The Modeling Strategy
- IMF Surveillance Applications
- Conclusions

Outline

- Motivation: Macrofinancial Surveillance
- BuDA's Bottom-Up Approach
- The Modeling Strategy
- 4 IMF Surveillance Applications
- Conclusions

Macrofinancial Surveillance

- Builds on a sound qualitative understanding of the economy
- Identifies risks and vulnerabilities
 - firm level, i.e. microprudential
 - system-wide, i.e. macroprudential
- Captures macrofinancial linkages
 - business cycle
 - financial cycle

Macrofinancial Linkages

- Macrofinancial linkages matter for
 - Financial sector surveillance
 - Macroprudential policy design
- Modeling macrofinancial linkages is hard . . .
- ...due to numerous feedback loops
 - Macrofinancial environment and firms
 - Financial firms
 - Non-financial firms
 - Financial and non-financial firms

Modeling macrofinancial linkages is difficult

Sequential Modeling of MacroFinancial Linkages

- Simplify modeling
- Break the problem in steps

- Examples
 - Bank of England RAMSI model (Burrows et al, 2012)
 - Bank of Canada MFRAF model (Anand et al, 2014)

Bank of England RAMSI model

Figure 1 Stylised overview of RAMSI

Bank of Canada MFRAF model

Figure 1: MFRAF: A modular approach to systemic risk

Note: CET1 is the common equity Tier 1 capital ratio.

Source: Bank of Canada

Some Analytical Tools

Current toolkit

- Econometric models, i.e. VARs
- Structural models, i.e. DSGEs
- Network models
- Scenario analysis
- Stress tests
- Balance sheet and financial ratio analysis

A new addition

BuDA: the Bottom-Up Default Analysis Framework

How BuDA Fits in Macrofinancial Surveillance

BuDA is one powerful tool combining

- Timely market information
- Balance sheet data
- Scenario analysis and stress tests
- Caveat: only publicly listed firms

BuDA within the Sequential Modeling Approach

The Bottom-Up Default Analysis BuDA Framework

Maps macrofinancial scenarios to firms' solvency risk

- Mapping based on a bottom-up approach
- Focus on default risk, i.e. probabilities of default

Outline

- Motivation: Macrofinancial Surveillance
- BuDA's Bottom-Up Approach
 - An Illustration: China Scenario Analysis
- The Modeling Strategy
- IMF Surveillance Applications
- Conclusions

BuDA uses a Bottom-Up Approach

Advantages of the Bottom-Up Approach

- Single out systemic firms in the analysis
- Analyze specific business sectors
- Focus on large debtors of banking sector
- Identify most vulnerable firms
- Specify arbitrary group of firms (portfolio)
- Suitable for surveillance work

Surveillance Applications of the Bottom-Up Approach

BuDA generates default risk distributions

... and estimate ex-post distribution of PDs of individual firms

Why risk distributions matter

- Distribution more informative than aggregate risk measures
- Basis for modeling aggregate fluctuations
 - Granular origins of aggregate fluctuations (Gabaix, 2011)
 - Network origins of aggregate fluctuations (Acemoglu et al, 2012)
- Useful for constructing early warning and/or cyclical indicators

Distribution of default risk, Chinese financial firms

Scenario Variables

- Real GDP growth
- Inflation rate
- Policy rate
- NEER
- Money market rate
- 10-year government bond yield

Scenarios

Two-year scenarios

- Baseline
 - 6.0 percent GDP growth
- Adverse
 - 4.5 percent GDP growth
- Severe
 - 2.8 percent GDP growth

Results

135 financial firms

Results

2075 non-financial firms

Outline

- Motivation: Macrofinancial Surveillance
- BuDA's Bottom-Up Approach
- The Modeling Strategy
 - A Two-Step Approach
 - PD Modeling
 - PD Model Implementation and Database
 - Risk Factor Forecasting
- IMF Surveillance Applications
- Conclusions

A Two-Step Approach

The Two Steps

- Step 1: Risk factor prediction model using scenario variables
- Step 2: PD forecasting model, conditional on risk factors

Risk Factors for Forecasting PDs

Nature	Description	Level/Trend 1,2/				
Economy-wide	Return of domestic stock market index	Current				
	Short-term domestic interest rate	Current				
Firm-specific	Financial statements-based factors					
	Liquidity (cash + short-term investments/total assets)	Trend and level				
	Profitability (Net income/total assets)	Trend and level				
	Market-based factors					
	Distance-to-default (volatility adjusted leverage)	Trend and Level				
	Size (market capitalization relative to median market capitalization)	Trend and Level				
	Market misvaluation (market cap + total liabilities/ total assets)	Current				
	Idiosyncratic volatility	Current				
1/ The level is computed as the 12-month average value of the factor.						

^{2/} The trend is computed as the difference between the current value of the factor and its 12-month average

Matlab ready-to-use stand-alone program

- Updated on a quarterly basis
- Available upon request

PD Modeling

Default and Insolvency

- Default: obligor's failure to honor its payment or delivery obligations
- Insolvency
 - Obligor's asset value falls below its liabilities
 - Balance-sheet insolvency does not necessarily lead to default
- Cash-flow insolvency: when a balance-sheet solvent obligor defaults due to illiquidity

Types of Default

- Payment defaults
 - Inability to pay within the grace period
 - Sovereign repudiation or refusal to accept a claim as valid
 - Sovereign moratorium or stoppage of payments for some period of time
- Bankruptcy or bankruptcy protection
- Involuntary debt reorganization
- Other such as conservatorship

Default Risk Models

- Two ways to model default risk
 - Structural models
 - Reduced-form models

Structural Models

- Build on Merton's call option analogy
- Basis for Distance-to-Default measures
- Need to calibrate unobserved asset values
 - Market value proxy
 - Volatility restriction
 - KMV method
 - MLE method

Reduced Form Models

- Statistical relationship between observed defaults and predictors
- Choice of predictors
 - Economic intuition
 - Data mining
- Statistical techniques
 - Discriminant analysis
 - Binary response models: logit/probit
 - Duration analysis
 - Spot intensity models
 - Forward intensity models

Models Need to Factor in Exits other than Default

Year	Active Firms	Defaults	(%)	Other Exit	(%)
1991	4012	32	0.80%	257	6.41%
1992	4009	28	0.70%	325	8.11%
1993	4195	25	0.60%	206	4.91%
1994	4433	24	0.54%	273	6.16%
1995	5069	19	0.37%	393	7.75%
1996	5462	20	0.37%	463	8.48%
1997	5649	44	0.78%	560	9.91%
1998	5703	64	1.12%	753	13.20%
1999	5422	77	1.42%	738	13.61%
2000	5082	104	2.05%	616	12.12%
2001	4902	160	3.26%	577	11.77%
2002	4666	81	1.74%	397	8.51%
2003	4330	61	1.41%	368	8.50%
2004	4070	25	0.61%	302	7.42%
2005	3915	24	0.61%	291	7.43%
2006	3848	15	0.39%	279	7.25%
2007	3767	19	0.50%	352	9.34%
2008	3676	59	1.61%	285	7.75%
2009	3586	67	1.87%	244	6.80%
2010	3396	25	0.74%	242	7.13%
2011	3224	21	0.65%	226	7.01%

Spot vs. Forward Intensity Models

- Instantaneous default and other exit intensities at time t λ_t and ϕ_t
- The spot combined exit forward intensity is

$$\psi_t(\tau) = -\frac{\ln E_t(\exp(-\int_t^{t+\tau}(\lambda_s + \phi_s)ds))}{\tau}$$

The forward combined exit intensity is

$$g_t(\tau) = \psi_t(\tau) + \psi_t'(\tau)\tau$$

The forward default intensity is

$$f_t = \mathrm{e}^{\psi_t(\tau} \tau \lim_{\Delta_t \to 0} \frac{E_t[\int_{t+\tau}^{t+\tau+\Delta t} \exp(-\int_t^s (\lambda_u + \phi_u) \mathrm{d}u) \lambda_s \mathrm{d}s]}{\Delta t}$$

The Duan-Sun-Wan Forward Intensity Model

- Duan, Sun and Wang (2012, J of Econometrics)
 - Two Poisson processes (conditionally independent)
 - Default/bankruptcy
 - Other exits
 - Use spot intensities
 - Instantaneous rate of occurrence
 - Function of covariates
 - Does not require time series dynamics of covariates
 - Forward intensities model explicitly as function of covariates
 - Pseudo maximum likelihood estimation

PD Model Implementation and Database

The Analytical Engine

- The DSW model powers the Credit Research Initiative PD database
- Coverage: 65000 firms in 121 countries
- Data freely available from CRI web site upon registration
 - rmicri.org
- Data also available in major data platforms
 - Bloomberg
 - TR Eikon
 - DataScope Select

Data Sources

- Sample period: 1991 present, monthly data
- Default events
 - Bloomberg
 - Corporate announcements in stock exchanges
 - Credit rating agencies
 - News sources
- Economy-wide risk factors
 - Bloomberg
 - Thomson Reuters Datastream
- Stock market data: Bloomberg BackOffice

41 / 93

Data Sources

- Financial data
 - Bloomberg BackOffice
 - Compustat
- Financial statement data from quarterly/semi-annual/annual reports
- Priority rules applied when multiple data sources are available at the same time skip
- Financial statement data used until next valid statement comes out

Model Calibration

- Monthly calibration
- Separate calibrations
 - North America
 - Europe
 - Asia-Pacific Developed Economies
 - Asia-Pacific Developing Economies
 - China
 - India
- BuDA imports from the database
 - Calibrated models
 - Risk factors data
 - Historical PDs

PD Model Accuracy - Accuracy Ratio

- The Cumulative Accuracty Profile (CAP) serves to assess out-of-sample performance
- To plot CAP, order firms by default likelihood in horizontal axis
- In vertical axis, plot percent of actual defaulters with default likelihood at least equal to that in the horizontal axis

PD Model Accuracy - Accuracy Ratio

PD Model Accuracy - Type I and II errors

H₀: Bad Credit Risk

PD Model Accuracy - ROC

Receiver operating characteristic curve balances Type I and Type II errors

	Classification Decision	
True State	Non-default	Default
Non- default	Score > C (Correct Prediction)	Score ≤ C (False Alarm: Type II Error)
Default	Score >C (Miss: Type I Error)	$\begin{aligned} \text{Score} &\leq C \\ &\text{(Hit)} \end{aligned}$

PD Model Accuracy - ROC

PD Model Accuracy - AR and AUROC

PD Model Accuracy: 1-year ahead default rates

Risk Factor Forecasting

Scenario Analysis Building Blocks

Recall the Scenario Analysis mechanics

Forecast Risk Factors rather than PDs Directly

- DSW model
 - Uses risk factors as predictors
 - Good performance
 - Highly non-linear
- Forecast risk factors conditional on macro-financial scenario variables rather than PDs directly
- Input risk factor forecasts in DSW model to generate scenario PDs

Risk Factors for Forecasting PDs

Nature	Description	Level/Trend 1,2/
Economy-wide	Return of domestic stock market index	Current
	Short-term domestic interest rate	Current
Firm-specific	Financial statements-based factors	
	Liquidity (cash + short-term investments/total assets)	Trend and level
	Profitability (Net income/total assets)	Trend and level
	Market-based factors	
	Distance-to-default (volatility adjusted leverage)	Trend and Level
	Size (market capitalization relative to median market capitalization)	Trend and Level
	Market misvaluation (market cap + total liabilities/ total assets)	Current
	Idiosyncratic volatility	Current

^{2/} The trend is computed as the difference between the current value of the factor and its 12-month average

Forecasting Equations: Start with Industry Averages

Common risk factors

$$\Delta X_{m,t} = \beta_{m,0}^X + \sum_{k=1}^n \beta_{m,k}^X Z_{k,t} + \gamma_{m,1}^X X_{m,t-1} + \gamma_{m,2}^X X_{m,t-2} + \varepsilon_{m,t}^X,$$

Firm-specific risk factors

$$\Delta \bar{Y}_{i,j,t} = \beta_{i,j,0}^{Y} + \sum_{k=1}^{n} \beta_{i,j,k}^{Y} Z_{k,t} + \gamma_{i,j,1}^{Y} \bar{Y}_{i,j,t-1} + \gamma_{i,j,2}^{Y} \bar{Y}_{i,j,t-2} + \varepsilon_{i,j,t}^{Y},$$

 X_m : common risk factors, m=1,2

 $\bar{Y}_{i,j}$: i-th country industry average of j-th firm-specific risk factor.

 Z_k : k-th macroeconomic variable; may or may not contain X_m .

Mixed frequency problem

- Estimating forecasting equations needs dealing with mixed frequency problem
 - Stock index returns and DTD, monthly
 - Macro variables, quarterly
- Interpolate values within quarter
- Time-aggregated regression
 - Parameters less sensitive to interpolation method

Performance of macro-forecasting equations

From Industry Averages to Firm-Specific

Scenario variable contribution to PD forecast

- Numerical assessment of scenario variable contribution to PD forecast
- Calculate PD_{flat} assuming scenario variables stay constant during scenario
- Calculate PD_i, stressed PD if only i-th variable changes, keep others constant
- Difference between PD_{flat} and PD_i is variable contribution
- Now calculate PD_{All}, forecast PD considering changes in all variables
- Add up all individual contributions to PD_{flat} , and substract from PD_{All} . This yields the cross effects

Outline

- Motivation: Macrofinancial Surveillance
- BuDA's Bottom-Up Approach
- The Modeling Strategy
- IMF Surveillance Applications
 - 2016 Article IV Indonesia
 - 2016 Article IV Canada
 - 2016 Article IV UAE
 - 2016 Article IV Chile
 - 2016 WHD Regional Economic Outlook
- Conclusions

2016 Article IV Indonesia

Policy Context

Strong corporate sector vis-a-vis peer economies

- FX debt equals 60 percent corporate debt
- Interest coverage ratio weakening to 2008 crisis levels

Policy Context

- Deteriorating corporate debt-at risk
- Headwinds
 - Commodity down cycle
 - Slowing economy

- Complements ratio analysis with scenario analysis
- Scenario variables
 - Real GDP growth
 - Unemployment
 - CPI inflation
 - NEER
 - Short-term interest rate

Baseline scenario

- Moderate GDP growth
- Gradual decline in unemployment
- Falling inflation
- Range-bound exchange rate
- Moderate decline in interest rates

Adverse scenario

- Sharp drop in GDP growth + V-shaped recovery
- Drastic jump in unemployment rate
- Inflation surge
- Double digit depreciation
- Interest rate spike

GDP Growth

(In percent, year-on-year)

Sources: Haver Analytics Inc.; and IMF staff estimates.

PD Under Baseline Scenario: Mean, 75th and 95th Percentile

Sources: National University of Singapore; and IMF staff estimates.

PD Under Downside Scenario: Mean, 75th and 95th Percentile

2016 Article IV Canada

Policy Context

- Rebound of real GDP growth
- Rising unemployment
- Sustained decline in oil prices
- Substantial bank exposure to oil and gas sector
 - Direct and indirect exposure = 13 -15 percent total loans
 - Rising loan delinquencies

- Country desk baseline scenario
- 108 oil and gas companies, of which
 - 72 exploration and production

Median Probability of Default

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Sources: IMF staff estimates based on BuDA and Moody's rating grades.

Contributions to Changes in Projected Corporate PDs /1 (basis points)

1/ Changes compared to the scenario where the values of the macrovariables are fixed at their December 2015 levels.

2/Include domestic GDP and unemployment.

3/Include US growth, short-term and long-term interest rates.

Sources: IMF staff estimates based on BuDA.

2016 Article IV UAE

Policy Context

- Well capitalized, resilient banking system
- Liquidity buffers adequate but declining
- Headwinds ahead
 - Lower oil prices
 - Higher short-term interest rates
 - Non-oil GDP

- Complements panel data analysis of liquidity buffers
- Analysis includes
 - 17 banks
 - 57 non-financial corporates
- 5-year scenarios
- Scenario variables
 - Oil price
 - real non-oil GDP
 - CPI inflation
 - EIBOR interbank rate

Baseline Scenario

- Oil price down to USD 45 bbl, recovers to USD 60 bbl
- Non-oil GDP down to 2.4 percent, improves to 4 percent
- Inflation down to 2.8 percent, rises to 3.6 percent
- EIBOR moves with LIBOR

Oil price shock

- Oil price down by USD 10 bbl during 5 years
- Non-oil GDP declines by 1.7 percent
- Stable inflation
- EIBOR moves with LIBOR

Interest rate shock

• EIBOR increases by 100 bps

2016 Article IV Chile

Policy Context

- Corporate debt high vis-a-vis peers
- FX debt higher for highly levered non-financial firms
- High regional exposure of corporate sector

- Multiapproach analysis
 - Balance sheet analysis
 - Network analysis
 - BuDA Analysis

Scenarios

- Baseline
 - Country desk projections
 - GDP growth
 - Unemployment
 - CPI Inflation
- Pessimistic
 - Growth slowdown by 5 percent
- Regional Downturn
 - Growth slowdown by 5 percent partner countries
 - Elasticity pass-through 0.3

Probabilities of Default: Baseline and Pessimistic Scenarios (Basis points)

Sources: IMF staff estimates based on BuDA and Moody's rating grades.

Probabilities of Default by Sector: Pessimistic Scenario (Basis points)

Sources: IMF staff estimates based on BuDA and Moody's rating grades.

Probabilities of Default: Regional Shock

(Basis points)

Sources: IMF staff estimates based on BuDA and Moody's rating grades.

2016 WHD Regional Economic Outlook

Policy Context

- Macro deterioration in the region
- Declining commodity prices
- High levels of corporate debt
- Potential increase in corporate solvency risk
- Spillovers from corporates to banks

staff calculations

Scenarios

- Based on desk baseline projections
- Domestic variables
 - Real GDP growth
 - Nominal exchange rate
- External variables
 - Commodity prices (oil and metals)
 - Aggregate demand conditions in advanced economies
 - External borrowing costs

Bank Provisions and Capital

- Assumes homogeneous corporate loan portfolio
- Models loss distribution using single factor model

Figure 3.1.3. Probabilities of Default in the Nonfinancial Corporate Sector (Median probability across firms in each country, basis points) 100 -Colombia Mexico 80-70 -60-50-40 30-20 1996 98 2000 02 Sources: Credit Research Initiative at the Risk Management Institute (National University of Singapore), and IMF staff

calculations.

Table 3.1.1 LA5: Required Provisions and Economic Capital

(Percent of GDP)

	Provisions		Economic Capital	
	2015 ¹	2016-172	2015 ¹	2016-172
Brazil	1.3	2.2	3.7	5.1
Chile	1.4	1.1	7.6	6.1
Colombia	1.2	1.3	4.7	4.1
Mexico	0.4	0.3	2.3	1.7
Peru	0.6	0.8	4.4	5.5

Source: IMF staff calculations.

Note: LA5 = Brazil, Chile, Colombia, Mexico, and Peru.

¹Provisions (capital), as of October 2015, against corporate loans, estimated as total provisions (capital) multiplied by the ratio of commercial to total loans.

²Average.

Outline

- Motivation: Macrofinancial Surveillance
- BuDA's Bottom-Up Approach
- The Modeling Strategy
- 4 IMF Surveillance Applications
- Conclusions

Conclusions

- Effective surveillance requires capturing macro-financial linkages
- BuDA uses a bottom-up approach which
 - Brings timely market information and balance-sheet data together
 - Uses modern default risk models
 - Allows for the specification of flexible macro-financial scenarios
 - Enables scenario analysis and stress tests at individual firm level
- BuDA supports bilateral and multilateral financial surveillance
- BuDA is a stand-alone Matlab open-source program
 - Welcomes users' cooperation for further improving the platform
 - Available upon request, please email us at jchanlau@imf.org
 (Chan-Lau) and bizdjc@nus.edu.sg (Duan)

Thank You

References

- Credit Research Initiative, NUS. 2017. NUS-RMI Credit Research Initiative Technical Report.
- Duan, J.C., Miao, W., Chan-Lau, J.A. 2017. Bottom-Up Default Analysis (BuDA) User Manual. Version 2.0
- Duan, J.-C., Miao, W., Wang, T. 2015. Stress Testing with a Bottom-Up Corporate Default Prediction Model. RMI Working Paper
- Duan, J.C., Sun J., Wang, T. 2012. Multiperiod Corporate Default Prediction. A Forward Intensity Approach. J of Econometrics 170. 191 - 209

