	Date
Exp	ot. No Page No
	Experiment No:->07
1.)	Dim: To determine the structure of an unknown compound of using spectroscopic data
	Given Molecular formula of the given compound is CgH100
2.)	Theory:
10)	of the E.M. I Snadiation I with the matter
20)	Spectooscopy is an important tool for the qualitative and quantitative analysis of an unknown compound
30)	In the modern structure analysis the poverful spectroscopy methods of I.R. and N.M.R play a major role
40)	En order to determine the structure of an unknown compound it may be required to comline a variety of spectroscopie data
	Teacher's Signature

IR frequencies for important Functional Groups

Functional Group	Frequency (cm ⁻¹)	Functional Group	Frequency (cm ⁻¹)
OH stretch (H ₂ O)	3700–3100	C=O ketone	1745–1715
OH stretch (alcohol)	3600–3200	C=O amide	1700-1500
carboxylic acid OH stretch	3600–2500	C=C alkene	1680–1600
N-H stretch	3500–3350	C=C aromatic	1600–1400
≡C–H stretch	~3300	CH ₂ bend	1480-1440
=C-H stretch	3100–3000	CH ₃ bend	1465–1440, 1390–1365
-C-H stretch	2950–2840	C-O-C stretch	1250-1050
-C-H aldehydic	2900–2800	C-OH stretch	1200-1020
C≡N stretch	~2250	NO ₂ stretch	1600-1500 and 1400-1300
C≡C stretch	2260–2100	C-F	1400–1000
C=O aldehyde	1740–1720	C-Cl	800-600
C=O anhydride	1840–1800, 1780–1740	C-Br	750–500
C=O ester 1750–1720		C-I	~500

Example: NMR spectra

Peak	Integration	Chemical shift (δ)	Multiplicity	Adjacent Hs
Α	2	2.45	q	3
В	3	2.14	S	0
С	3	1.06	t	2

Example: IR spectra

Fig. 2.7: IR spectra of 2-butanone

	Date
Expt. No07	Page No
* Infrared Spectroscop	4
1) Englared spectroscopy is lidentifying the fur	especially useful in
unkrowin compoulnd	chis is a Ottube of
functional group spects	ioscopy
2) Conventionally the Joko so	pectoum is a solat of
2) Conventionally the I.R. s.	nce (%) T) res
wave numbers (cm-1)	J-J-OHA ORDER &
3) che parts peaks/signa	le observed on the
51164 1011111 150 17115	or the thing of the
various important fine such as alcohol	tio hal groups
etc in unknown sample	b.
1) The TR spectaring is in	tou board of less on to
to the relevence tallor	containing the into
4) The IR spectrum is into the rejerence tables regarding the function of their carries pond	nal group's &
and the presence of	ing l' Warie numbers
is analysed according	ngly marchal groups
A) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
My Think Spectoroscopi	*
1) Paroton nucleas magnette	910500000000 18 Vanu
important & widely us	resonance is very
technique	
	Teacher's Signature

Characteristic ¹H-NMR Chemical shifts (δ)

	Date
Expt. No	Page No.
2) Stris primarily used in of organic molecul	the characterization es
3) H-NMR spectrum is a vs chemical shift (8)	plot of signal intensity
Into from other sing	n companed with the ctoroscopic techniques
\$ Snterpretation of 11-NN	1R spectoroscopy spectrum
Important injo includes	
1) No of signals/peaks (No	of Henusionments)
2) Dybe of Hs (Alephati based on Chemical	c/Dromatec/Semclional) Shifts
30) No of Hs each type (ST	tegration)
	slitting/multiplicity of
30 Analysis & Interf.	retation
a) Brobaile structure jor	
	Teacher's Signature

IR Spectrum of the Unknown Compound A

NMR Spectrum of the Unknown Compound A integration 33 10 ppm⁵

Observations

1.) IR Spectrum

SoNO	Wave (cm') Number	Possible Group	Explanation	Group
1	3100-3210	11	Meduum & Shart	-CH (a)
2	2360-2931	=CH (Alkyllanom)	Medium Dshan	P-CHCC)
3	1690-1750	-C=0	High & Broad	-CA=07d
4		-CH Cattouched to	fligh & Broad	- CH (b)
		C=0)	U	302 /

2) NMR-Spectrum

,	1	t	
SINE	Phonical Shift	Possible	Eexplanatio Group Present
ONIVO	Shift	Group	
4	2.4-2.6	-CH (attached to C=0)	High & Sharp -CH(1)
2	2120	to C=0)	
2	2.3 - 2.5	-CHOSTRYE)	
2		U	High & sharp - CH(3)
0	0.4-1.1	200	
4	7.3-8.1	-CHCAttachedto	12000 021 0/1 -(414)
		Benzenea	0201100 25
3	2·3-2·5 6·9-7·1 7·3-8·1	-CHOStacked to	Low or will -CH(4)

There ore, the Stoucture of the compound is it is character of the compound is it is character of the compound in the compound of the compound is it is in the compound of the compound in the compound of the compound is it is in the compound of the compound in the compound is it is in the compound of the compound in the compound is in the compound of the compound in the compound is in the compound of the compound in the compound in the compound is in the compound of the compound in the comp

(c)H (c)(3) CH3(a)(2)