

Introduction to Analog Integrated Circuit Design

Fall 2023

Single-Stage Amplifiers

Yung-Hui Chung

MSIC Lab

DECE, NTUST

類比設計八邊形

放大器之輸入一輸出特性

一個放大器之輸入-輸出特性通常為一非線性函數

$$y(t) \approx \alpha_0 + \alpha_1 x(t) + \alpha_2 x^2(t) + \dots + \alpha_n x^n(t)$$
 $x_1 \le x \le x_2$

x 的範圍夠小時 $y(t) \approx \alpha_0 + \alpha_1 x(t)$

Chapter 3 Single-Stage Amplifiers

Amplifier Categories

Common-Source Stage	Source Follower	Common-Gate Stage	Cascode
With Resistive Load	With Resistive Bias	With Resistive Load	Telescopic
With Diode-Connected Load	With Current-Source Bias	With Current-Source Load	Folded
With Current-Source Load			
With Active Load			
With Source Degeneration			

- 在看類比電路時,先思考電路的本質:
 - 這個電路的目的是甚麼?
 - 運用電子學與電路學的基礎知識
- 接著,分析這個電路 (DC Gain, Rin and Rout (Zin and Zout))
 - 至少用兩種方式交叉驗證(在你沒自信之前!!)

負載電阻之共源極組態

- (a)共源極組態;(b)輸入一輸出特性圖;
- (c)深三極管區之等效電路;(d)飽和區之小信號模型。

共源極組態之特性

- $1.V_{in}$ 由零開始時, M_1 關閉, $V_{out}=V_{DD}$ 。
- $2.V_{in}$ 略大於 V_{TH} 時(飽和區),

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2$$

 $3.V_{in}$ 比 V_{out} 高 V_{TH} 以上時,如圖A點 $(V_{GS}-V_{TH}=V_{DS})$

$$\underline{V_{in1}} - V_{TH} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH})^2 => V_{in1} =?$$

 $4.V_{in}>V_{in1}$ 時, M_1 位於三極管區

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} [2(V_{in} - V_{TH})V_{out} - V_{out}^2]$$

 $5.V_{in}$ 夠大足以驅動 M_1 進入深三極管區時, $V_{out} << 2(V_{in} - V_{TH})$

$$V_{out} = V_{DD} \frac{R_{on}}{R_{on} + R_D} = \frac{V_{DD}}{1 + \mu_n C_{ox} \frac{W}{L} R_D (V_{in} - V_{TH})}$$

電壓增益

因為在三極管區中轉導會下降,通常會確保 $V_{out} > V_{in} - V_{TH}$,並視其斜率為小信號增益,可得

$$A_{v} = \frac{\partial V_{out}}{\partial V_{in}} = -R_{D}\mu_{n}C_{ox}\frac{W}{L}(V_{in} - V_{TH}) = -g_{m}R_{D}$$

$$A_{v} = -\sqrt{2\mu_{n}C_{ox}\frac{W}{L}I_{D}}\frac{V_{RD}}{I_{D}} = -\sqrt{2\mu_{n}C_{ox}\frac{W}{L}\frac{V_{RD}}{\sqrt{I_{D}}}}$$

欲將共源極之電壓增益最大化,如果其它參數保持固定,可藉由增加W/L或 V_{RD} ,或是減少 I_D 來增加 A_V 之大小。

小信號模型

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2 (1 + \lambda V_{out})$$

$$\frac{\partial V_{out}}{\partial V_{in}} = -R_D \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH}) (1 + \lambda V_{out})$$

$$-R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2 \lambda \frac{\partial V_{out}}{\partial V_{in}}$$

$$A_V \approx -R_D g_m - R_D I_D \lambda A_V = -\frac{g_m R_D}{1 + R_D \lambda I_D} = -g_m \frac{r_O R_D}{r_O + R_D} = -g_m \left(\frac{r_O}{R_D} \right)$$

四種共源級放大器

- Homework (HW2.1)
 - Find DC voltage gain and output resistance of each amplifier

源極退化共源極組態之小信號增益

Ignore body effect

$$V_{GS} = V_{in} - I_D R_S$$

$$V_{out} = V_{DD} - I_D R_D$$
, $\partial V_{out} / \partial V_{in} = -(\partial I_D / \partial V_{in}) R_D$,假設 $I_D = f(V_{GS}) = g_m V_{GS}$

$$G_{m} = \frac{\partial I_{D}}{\partial V_{in}} = \frac{\partial f}{\partial V_{GS}} \frac{\partial V_{GS}}{\partial V_{in}} = \left(1 - R_{S} \frac{\partial I_{D}}{\partial V_{in}}\right) \frac{\partial f}{\partial V_{GS}}$$

$$\partial f / \partial V_{GS}$$
為 M_1 之轉 導 g_m ,則 $G_m = \frac{g_m}{1 + g_m R_S}$

因此,小信號增益等於
$$A_v = -G_m R_D = \frac{-g_m R_D}{1 + g_m R_S} \ (= -\frac{g_m}{1 + g_m R_S} R_D)$$

源極退化共源極組態之小信號模型

Considering body effect

共源極元件之汲極電流和轉導值

 g_m is not constant

(a)源極無退化現象時;

$$i_D = \beta (V_{in} - V_{TH})^2$$

$$g_m = \frac{\partial i_D}{\partial V_{GS}} = 2\beta (V_{in} - V_{TH})$$

 G_m is constant if large Vin

(b)源極有退化現象時。

$$G_m = \frac{g_m}{1 + g_m R_S}$$

源極退化共源極組態之輸出電阻

流經
$$R_s$$
之電流為 I_X , $V_1 = -I_X R_s$

流經
$$r_O$$
之電流為 $I_X - (g_m + g_{mb})V_1 = I_X + (g_m + g_{mb})R_sI_X$

$$r_{O}[I_{X} + (g_{m} + g_{mb})R_{S}I_{X}] + I_{X}R_{S} = V_{X}$$

$$R_{out} = [1 + (g_{m} + g_{mb})R_{S}]r_{O} + R_{S}$$

$$= [1 + (g_{m} + g_{mb})r_{O}]R_{S} + r_{O}$$

$$\approx (g_{m} + g_{mb})r_{O}R_{S} + r_{O}$$

$$= [1 + (g_m + g_{mb})R_S]r_O$$

源極隨耦器 (Source Follower)

Gain=? How to improve?

Actually, using R_S at the output node V_{out} is not a good idea. Do you know why?

源極隨耦器 (Source Follower)

$$V_{in} < V_{TH}$$
, M_1 關閉且 $V_{out} = 0$ 。

$$V_{in} > V_{TH}$$
 時, $\frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH} - V_{out})^2 R_S = V_{out}$

 $V_{out} = f(V_{in})$, a nonlinear function

源極隨耦器之增益

對
$$V_{in}$$
 微分 $\frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}2(V_{in}-V_{TH}-V_{out})\left(1-\frac{\partial V_{TH}}{\partial V_{in}}-\frac{\partial V_{out}}{\partial V_{in}}\right)R_{S}=\frac{\partial V_{out}}{\partial V_{in}}$

因為 $\partial V_{TH}/\partial V_{in} = \eta \partial V_{out}/\partial V_{in}$

$$\frac{\partial V_{out}}{\partial V_{in}} = \frac{\mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH} - V_{out}) R_S}{1 + \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH} - V_{out}) R_S (1 + \eta)}$$

$$g_m = \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH} - V_{out})$$

Supplement

How to get
$$\partial V_{TH}/\partial V_{in} = \eta \partial V_{out}/\partial V_{in}$$

$$V_{TH} = V_{TH0} + \gamma \left(\sqrt{2\Phi_F + V_{SB}} - \sqrt{|2\Phi_F|} \right)$$

Since
$$V_{SB} = V_{out}$$

$$\frac{\partial V_{TH}}{\partial V_{in}} = \frac{\gamma}{2} (2 \phi_F + V_{out})^{-1/2} \cdot \frac{\partial V_{out}}{\partial V_{in}} = \eta \cdot \frac{\partial V_{out}}{\partial V_{in}}$$

where
$$\eta = \frac{\gamma}{2} (2 \phi_F + V_{out})^{-1/2}$$

電流源取代電阻之源極隨耦器

使用NMOS電晶體作為電流源之源極隨耦器。

Q: Why is it a better design? ANS: Current is constant!!

源極隨耦器之輸出阻抗

$$R_{out} = \frac{1}{g_m} \left\| \frac{1}{g_{mb}} \right\|$$

$$= \frac{1}{g_m + g_{mb}}$$
If considering r_o ?
$$R'_{out} = R_{out} || r_o$$

How about a fast watching!!

共源極組態和源極隨耦器之疊加組態

疊加 (cascade)

Gain stage Output stage

- 無源極隨耦器時, V_X 之最小允許值為 $V_{GS1}-V_{TH1}$
- 考慮源極隨耦器時, V_X 必須大於 $V_{GS2}+V_{
 m out,max}$

共閘極組態之輸出一輸入特性

For (a),
$$V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_b - V_{in} - V_{TH})^2 R_D = V_b - V_{TH}$$
 If $V_{in} > V_{in1}$

$$V_{out} = V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_b - V_{in} - V_{TH})^2 R_D$$

$$\frac{\partial V_{out}}{\partial V_{in}} = -\mu_n C_{ox} \frac{W}{L} (V_b - V_{in} - V_{TH}) \left(-1 - \frac{\partial V_{TH}}{\partial V_{in}} \right) R_D$$

$$\frac{\partial V_{TH}}{\partial V_{in}} = \frac{\partial V_{TH}}{\partial V_{in}} = \eta \qquad \frac{\partial V_{out}}{\partial V_{in}} = \mu_n C_{ox} \frac{W}{L} R_D (V_b - V_{in} - V_{TH}) (1 + \eta)$$
$$= g_m (1 + \eta) R_D$$

共閘極組態之電壓增益(小訊號分析)

共閘極組態之輸入阻抗

共閘極組態之輸出阻抗

$$R_{out} = \{ [1 + (g_m + g_{mb})r_O]R_S + r_O \} // R_D$$

$$\approx (g_m + g_{mb})r_O R_S // R_D$$

HW2.2

Cascode Circuits

將一共源極組態和一共閘極組態疊加即為一疊接組態(cascode)

Common-source + Common-gate => Cascode

Q: Why do we use this configuration?

Cascode Circuits

Shielding Property

Using the current formula of MOSFET,

M2

(a)

Cascode Current Source

(b)

How does the shielding work? => Please see **Example 3.24** in the textbook

摺疊疊接組態

From Cascode to Folded-Cascode

- (a)簡單摺疊疊接組態 (it is not real)
- (b)適當偏壓之疊接組態 (using I_1)
- (c)負載為NMOS輸入之疊接組態

Examples to Calculate Rout

Please answer the question to find Rout (HW 2.4)

