Feedback — Homework 3

You submitted this quiz on **Fri 15 Jan 2016 1:29 AM CST**. You got a score of **400.00** out of **400.00**. However, you will not get credit for it, since it was submitted past the deadline.

Question 1

Decision Tree

Impurity functions play an important role in decision tree branching. For binary classification problems, let μ_+ be the fraction of positive examples in a data subset, and $\mu_-=1-\mu_+$ be the fraction of negative examples in the data subset.

The Gini index is $1-\mu_+^2-\mu_-^2$. What is the maximum value of the Gini index among all $\mu_+\in[0,1]$?

Your Answer		Score	Explanation
0.5	~	20.00	
O 1			
0.25			
0.75			
O 0			
Total		20.00 / 20.00	

Question 2

Following Question 1, there are four possible impurity functions below. We can normalize each impurity function by dividing it with its maximum value among all $\mu_+ \in [0,1]$. For instance, the classification error is simply $\min(\mu_+,\mu_-)$ and its maximum value is 0.5. So the normalized classification error is $2\min(\mu_+,\mu_-)$. After normalization, which of the following impurity function is equivalent to the normalized Gini index?

Your Answer Score Explanation

✓ 20.00
20.00 / 20.00

Random Forest

If bootstrapping is used to sample N'=pN examples out of N examples and N is very large. Approximately how many of the N examples will not be sampled at all?

Your Answer		Score	Explanation
$\bigcirc (1 - e^{-1/p}) \cdot N$			
$\bigcirc e^{-1} \cdot N$			
$\bullet e^{-p} \cdot N$	~	20.00	
$\bigcirc (1 - e^{-p}) \cdot N$			
$\bigcirc e^{-1/p} \cdot N$			
Total		20.00 / 20.00	

Question 4

Consider a Random Forest G that consists of three binary classification trees $\{g_k\}_{k=1}^3$, where each tree is of test 0/1 error $E_{\rm out}(g_1)=0.1$, $E_{\rm out}(g_2)=0.2$, $E_{\rm out}(g_3)=0.3$. Which of the

following is the exact possible range of $E_{\mathrm{out}}(G)$?

Your Answer	Score	Explanation
$\bigcirc 0.1 \le E_{\text{out}}(G) \le 0.3$		
$0 \le E_{\text{out}}(G) \le 0.1$		
$\bigcirc 0.1 \le E_{\text{out}}(G) \le 0.6$		
$0 \le E_{\text{out}}(G) \le 0.3$	✓ 20.00	
$0.2 \le E_{\text{out}}(G) \le 0.3$		
Total	20.00 / 20.00	

Question 5

Consider a Random Forest G that consists of K binary classification trees $\{g_k\}_{k=1}^K$, where K is an odd integer. Each g_k is of test 0/1 error $E_{\mathrm{out}}(g_k)=e_k$. Which of the following is an upper bound of $E_{\mathrm{out}}(G)$?

Your Answer		Score	Explanation
\bigcirc max _{1 \leq k \leq K} e_k			
$\bigcirc \frac{1}{K+1} \sum_{k=1}^{K} e_k$			
	~	20.00	
$\bigcirc \min_{1 \leq k \leq K} e_k$			
$\bigcirc \frac{1}{K} \sum_{k=1}^{K} e_k$			
Total		20.00 / 20.00	

Question 6

Gradient Boosting

Let ϵ_t be the weighted 0/1 error of each g_t as described in the AdaBoost algorithm (Lecture 208), and $U_t = \sum_{n=1}^N u_n^{(t)}$ be the total example weight during AdaBoost. Which of the following

our Answer		Score	Explanation
$\sum_{t=1}^{T} \epsilon_t$			
none of the other choices			
$\prod_{t=1}^{T} \epsilon_t$			
$\prod_{t=1}^{T} (2\sqrt{\epsilon_t(1-\epsilon_t)})$	~	20.00	
$\sum_{t=1}^{T} (2\sqrt{\epsilon_t(1-\epsilon_t)})$			
- otal		20.00 / 20.00	

For the gradient boosted decision tree, if a tree with only one constant node is returned as g_1 , and if $g_1(\mathbf{x})=2$, then after the first iteration, all s_n is updated from 0 to a new constant $\alpha_1g_1(\mathbf{x}_n)$. What is s_n ?

Your Answer		Score	Explanation
$\bigcirc \min_{1 \leq n \leq N} y_n$			
\bigcirc max _{1 \leq n \leq N} y_n			
onone of the other choices			
O 2			
	~	20.00	
Total		20.00 / 20.00	

Question 8

For the gradient boosted decision tree, after updating all s_n in iteration t using the steepest η as α_t , what is the value of $\sum_{n=1}^N s_n g_t(\mathbf{x}_n)$?

Your Answer		Score	Explanation
$\sum_{n=1}^{N} y_n s_n$			
onone of the other choices			
	~	20.00	
\bigcirc 0			
$\sum_{n=1}^{N} y_n^2$			
Total		20.00 / 20.00	

Neural Network

Consider Neural Network with sign(s) instead of tanh(s) as the transformation functions. That is, consider Multi-Layer Perceptrons. In addition, we will take +1 to mean logic TRUE, and -1 to mean logic FALSE. Assume that all x_i below are either +1 or -1. Which of the following perceptron

$$g_A(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=0}^d w_i x_i\right).$$

implements

$$OR(x_1, x_2, ..., x_d)$$
.

Your Answer		Score	Explanation
$\bigcirc (w_0, w_1, w_2, \dots, w_d) = (-d+1, +1, +1, \dots, +1)$			
$(w_0, w_1, w_2, \dots, w_d) = (d - 1, +1, +1, \dots, +1)$	~	20.00	
$\bigcirc (w_0, w_1, w_2, \dots, w_d) = (d - 1, -1, -1, \dots, -1)$			
$\bigcirc (w_0, w_1, w_2, \dots, w_d) = (-d+1, -1, -1, \dots, -1)$			
onone of the other choices			
Total		20.00 / 20.00	

Continuing from Question 9, among the following choices of D, which D is the smallest for some 5-D-1 Neural Network to implement $XOR(x_1, x_2, x_3, x_4, x_5)$?

Your Answer		Score	Explanation
O 3			
O 9			
O 1			
O 7			
o 5	~	20.00	
Total		20.00 / 20.00	

Question 11

For a Neural Network with at least one hidden layer and $\tanh(s)$ as the transformation functions on all neurons (including the output neuron), what is true about the gradient components (with respect to the weights) when all the initial weights $w_{ij}^{(\ell)}$ are set to 0?

Your Answer	Score	Explanation
O only the gradient components with respect to $w_{j1}^{(L)}$ for $j>0$ may be non-zero, all other gradient components must be zero		
all the gradient components are zero		
O none of the other choices		
$lacksquare$ only the gradient components with respect to $w_{01}^{(L)}$ may be non-zero, all other gradient components must be zero	✓ 20.00	
Only the gradient components with respect to $w_{0j}^{(\ell)}$ for $j>0$ may non-zero, all other gradient components must be zero		
Total	20.00./	

For a Neural Network with one hidden layer and $\tanh(s)$ as the transformation functions on all neurons (including the output neuron), what is always true about the backprop algorithm when all the initial weights $w_{ij}^{(\ell)}$ are set to 1?

Sc	ore	Explanation
✓ 20	.00	
20	.00 / 20.00	
	✓ 20	Score ✓ 20.00 20.00 / 20.00

Question 13

Experiments with Decision Tree

Implement the simple C&RT algorithm without pruning using the Gini index as the impurity measure as introduced in the class. For the decision stump used in branching, if you are branching with feature i and direction s, please sort all the $x_{n,i}$ values to form (at most) N+1 segments of equivalent θ , and then pick θ within the median of the segment. Run the algorithm on the following set for training:

hw3 train.dat

and the following set for testing:

hw3_test.dat

How many internal nodes (branching functions) are there in the resulting tree G?

Your Answer	Score	Explanation
O 12		

6	
O 8	
10	✓ 20.00
O 14	
Total	20.00 / 20.00

Continuing from Question 13, which of the following is closest to the $E_{\rm in}$ (evaluated with 0/1 error) of the tree?

Your Answer		Score	Explanation
0.4			
O 0.2			
0.3			
• 0.0	~	20.00	
O.1			
Total		20.00 / 20.00	

Question 15

Continuing from Question 13, which of the following is closest to the $E_{\rm out}$ (evaluated with 0/1 error) of the tree?

Your Answer		Score	Explanation
0.05			
0.35			
0.15	~	20.00	

0.00		
0.25		
Total	20.00 / 20.00	

Now implement the Bagging algorithm with N'=N and couple it with your decision tree above to make a preliminary random forest G_{RS} . Produce T=300 trees with bagging. Repeat the experiment for 100 times and compute average $E_{\rm in}$ and $E_{\rm out}$ using the 0/1 error.

Which of the following is true about the average $E_{\rm in}(g_t)$ for all the 30000 trees that you have generated?

Your Answer	Score	Explanation
$\bigcirc 0.09 \le \text{average } E_{\text{in}}(g_t) < 0.12$		
$\odot 0.03 \le \text{average } E_{\text{in}}(g_t) < 0.06$	✓ 20.00	
$\bigcirc 0.06 \le \text{average } E_{\text{in}}(g_t) < 0.09$		
$\bigcirc 0.12 \le \text{average } E_{\text{in}}(g_t) < 0.50$		
$\bigcirc 0.00 \le \text{average } E_{\text{in}}(g_t) < 0.03$		
Total	20.00 / 20.0	00

Question 17

Continuing from Question 16, which of the following is true about the average $E_{\rm in}(G_{RF})$?

Your Answer	Score	Explanation
\bigcirc 0.03 \leq average $E_{\rm in}(G_{RF}) < 0.06$		
\bigcirc 0.09 \leq average $E_{\rm in}(G_{RF}) < 0.12$		
\bigcirc 0.06 \leq average $E_{in}(G_{RF}) < 0.09$		
$\odot 0.00 \le \text{average } E_{\text{in}}(G_{RF}) < 0.03$	✓ 20.00	

\bigcirc 0.12 \leq average $E_{\rm in}(G_{RF}) < 0$	0.50
Total	20.00 / 20.00

Continuing from Question 16, which of the following is true about the average $E_{\mathrm{out}}(G_{RF})$?

Your Answer	Score	Explanation
$\bigcirc 0.09 \le \text{average } E_{\text{out}}(G_{RF}) < 0.12$		
$\bigcirc 0.00 \le \text{average } E_{\text{out}}(G_{RF}) < 0.03$		
$\bigcirc 0.12 \le \text{average } E_{\text{out}}(G_{RF}) < 0.50$		
$\odot 0.06 \le \text{average } E_{\text{out}}(G_{RF}) < 0.09$	✓ 20.00	
$\bigcirc 0.03 \le \text{average } E_{\text{out}}(G_{RF}) < 0.06$		
Total	20.00 / 20.00	

Question 19

Now, `prune' your decision tree algorithm by restricting it to have one branch only. That is, the tree is simply a decision stump determined by Gini index. Make a random `forest' G_{RS} with those decision stumps with Bagging like Questions 16-18 with T=300. Repeat the experiment for 100 times and compute average $E_{\rm in}$ and $E_{\rm out}$ using the 0/1 error.

Which of the following is true about the average $E_{\rm in}(G_{RS})$?

Your Answer	Score	Explanation
$\bigcirc 0.00 \le \text{average } E_{\text{in}}(G_{RS}) < 0.03$		
\odot 0.09 \leq average $E_{\rm in}(G_{RS}) < 0.12$	✓ 20.00	
$\bigcirc 0.06 \le \text{average } E_{\text{in}}(G_{RS}) < 0.09$		
\bigcirc 0.12 \leq average $E_{\rm in}(G_{RS}) < 0.50$		
\bigcirc 0.03 \leq average $E_{\rm in}(G_{RS}) < 0.06$		
Total	20.00 / 20.00	

Continuing from Question 19, which of the following is true about the average $E_{\mathrm{out}}(G_{RS})$?

Score	Explanation
✓ 20.00	
20.00 / 20.00	
	✓ 20.00