CONVEXITÉ

I. FONCTION CONVEXE - FONCTION CONCAVE

DÉFINITION

Soient f une fonction dérivable sur un intervalle I et \mathcal{C}_f sa courbe représentative.

- On dit que f est **convexe** sur I si la courbe \mathscr{C}_f est **au-dessus** de toutes ses tangentes sur l'intervalle I.
- On dit que f est **concave** sur I si la courbe \mathscr{C}_f est **au-dessous** de toutes ses tangentes sur l'intervalle I.

EXEMPLES

Fonction convexe (et quelques tangentes...)

Fonction concave (et quelques tangentes...)

THÉORÈME

Si f est dérivable sur I:

- f est convexe sur I si et seulement si f' est **croissante** sur I
- f est concave sur I si et seulement si f' est **décroissante** sur I

REMARQUE

L'étude de la convexité se ramène donc à l'étude des variations de f'. Si f' est dérivable, on donc est amené a étudier le signe la dérivée de f'. Cette dérivée s'appelle la **dérivée seconde** de f et se note f''.

THÉORÈME

Si f est dérivable sur I et si f' est dérivable sur I (on dit aussi que f est 2 fois dérivable sur I):

- f est convexe sur I si et seulement si f'' est **positive ou nulle** sur I
- f est concave sur I si et seulement si f'' est **négative ou nulle** sur I

EXEMPLES

• La fonction $f: x \mapsto x^2$ est deux fois dérivable sur \mathbb{R} . f'(x) = 2x et f''(x) = 2. Comme f'' est positive sur \mathbb{R} , f est convexe sur \mathbb{R} .

• La fonction $f: x \mapsto x^3$ est deux fois dérivable sur \mathbb{R} . $f'(x) = 3x^2$ et f''(x) = 6x. $f'' \geqslant 0$ sur $[0; +\infty[$, donc f est convexe sur $[0; +\infty[$. $f'' \leqslant 0$ sur $]-\infty;0]$, donc f est concave sur $]-\infty;0]$.

II. POINT D'INFLEXION

DÉFINITION

Soient f une fonction dérivable sur un intervalle I, \mathcal{C}_f sa courbe représentative et A(a;f(a)) un point de la courbe \mathcal{C}_f .

On dit que A est un **point d'inflexion** de la courbe \mathscr{C}_f , si et seulement si la courbe \mathscr{C}_f traverse sa tangente en A.

EXEMPLE

Point d'inflexion en A

PROPRIÉTÉ

Si A est un point d'inflexion d'abscisse a, f passe de concave à convexe ou de convexe à concave en a.

THÉORÈME

Soit f une fonction deux fois dérivable sur un intervalle I de courbe représentative \mathscr{C}_f . Le point A d'abscisse a est un point d'inflexion de \mathscr{C}_f si et seulement si f'' s'annule et change de signe en a.

EXEMPLE

Le graphique de l'exemple précédent correspond à la fonction définie par :

$$f(x) = \frac{1}{3}x^3 - x^2 + 1$$

On a
$$f'(x) = x^2 - 2x$$
 et $f''(x) = 2x - 2$.

On vérifie bien que f'' change de signe en 1. Donc le point A d'abscisse 1 et d'ordonnée $f(1) = \frac{1}{3}$ est bien un point d'inflexion.