Solution

Name:

Department:

Quiz 3

Define the integer sequence $a_0, a_1, a_2 \ldots$, recursively by

(1) $a_0 = 1, a_1 = 1, a_2 = 1$; and

(2) For $n \geq 3$, $a_n = a_{n-1} + a_{n-3}$.

Prove that $a_n \geq (\sqrt{2})^{n-2}$ for all $n \geq 2$.

5(2)

an = (2) 1.2

Noke

5(2)

50

5(4) or

sc2),5(3)-. -

5(K)

correct

tha

 $+0k-2 = (\sqrt{2})^{k-2} + (\sqrt{2})^{k-4} = 3(\sqrt{2})$

.5 (LH) 12

Solutions

Name:

Department:

Quiz 3

For $n \geq 0$, let F_n denote the nth Fibonacci number. Prove that

$$F_0 + F_1 + F_2 + \cdots + F_n = F_{n+2} - 1.$$

for all $n \geq 0$.

(Recall that Fibonacci numbers are defined recursively as $F_0 = 0$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$.)

Let S(n) For F_{n+1} + F_{n+2} F_{n+1} 1

Sull is true because $F_{n+1} = F_{n+1}$ $F_{n+2} = F_{n+1}$

Assume SCK) is true

FotFit ... + Fk + Fk + 1 = Fk + 2 - 1 + Fk + 1 = Fk + 3 - 1

by iNuclin

of Fibonocci

numbers

So S(LH) is also true.