"COMMON PROBABILITY DISTRIBUTIONS"

Probability Distribution

- Describes the probabilities of all possible outcomes for a random variable.
- Sum of probabilities of all possible outcomes is 1.

Probability Function

Probability of a random variable being equal to a specific value.

Properties:

- $0 \le p(x) \le 1$
- $\Sigma p(x) = 1$

	Discrete	Continuous
Random Variable	Finite (measurable)	Infinite
	# of possible	(immeasurable) # of
	outcomes.	possible outcomes.
Distribution	 P(x) can't be 0 if 'x' can occur. We can find the probability of a specific point in time. 	 P(x) can be zero even if 'x' can occur. We can't find the probability of a specific point in time.

Discrete uniform random variable

All outcomes have the same probability.

Uniform Probability Distribution

Discrete

- Has a finite number of specified outcomes.
- P(x)×k. K is the probability for 'k' number of possible outcomes in a range.
- cdf: $F(x_n) = n.p(x)$.

Continuous

- Defined over a range with parameters 'b' (upper limit)
 & 'a' (lower limit).
- cdf: It is linear over the variable's range.
- Properties:
- $P(x \le a) = 0 \& P(x \ge b) = 1$
- P(a < x < b)= $\frac{x_2 x_1}{b a}$

Probability Density Function (PDF)

- It is used for continuous distribution.
- Denoted by f(x).

Cumulative Distribution Function (CDF)

- Calculates the probability of a random variable 'x' taking on the value less than or equal to a specific value of 'x'.
- $F(x) = P(X \le x)$

Binomial Distribution

Properties:

- Two outcomes (success & failure).
- 'n' number of independent trials.
- Probability of success remains constant.
- $p(x) = \frac{n!}{(n-x)! \cdot x!} p^{x} (1-p)^{n-x}$

Binomial Tree

- Shows all possible combinations of up & down moves over a number of successive periods.
- Node: Each of the possible values along the tree.
- U is up-move factor.
- D is down-move factor (1/U).
- p is probability of up move.
- (1-p) is probability of down move.

Confidence Interval

Range of values around the expected value within which actual outcome is expected to be some specified percentage of time.

Confidence Interval	%age
x ± 1s	68%
x ± 1.65s	90%
x ± 1.96s	95%
x ± 2s	95.45%
x ± 2.58s	99%
x ± 3s	99.73%

Historical Simulation

 Based on actual values & actual distribution of the factors i.e., based on historical data.

Limitation:

- History does not repeat itself.
- Historical data does not provide flexibility.

Roy's Safety First Criterion

- Optimal portfolio minimizes the probability that the return of the portfolio falls below some minimum acceptable
- Minimize $P(R_P < R_I)$.
- SFRatio =

$$\frac{[E(R_P) - R_L]}{\sigma_P}$$

• Choose the portfolio with greatest SFRatio.

Shortfall Risk

Risk that portfolio value will fall below some minimum level at a future date.

Monte-Carlo Simulation

- Repeated generation of one or more factors (e.g. risk) that affect required value (e.g., stock price) in order to generate a distribution of the values (stock price).
- We have the flexibility of providing the data.

Uses

- Valuing complex securities.
- Simulating gains / losses from trading strategy.
- Estimating value at risk (VAR).
- Examining variability of the difference b/w assets & liabilities of pension funds.
- Valuing portfolio with nonnormal return distribution.

Limitations

- Complex procedure.
- Highly dependent on assumed distributions.
- Based on a statistical rather than an analytical method.