UM SISTEMA DE MONITORAMENTO INTELIGENTE DE INFRAESTRUTURA PREDIAL

1. INTRODUÇÃO

Este projeto tem como objetivo o desenvolvimento de um sistema de monitoramento inteligente para condomínios, utilizando tecnologias de Internet das Coisas (IoT) para acompanhar em tempo real aspectos essenciais da infraestrutura predial. O sistema monitora três áreas principais: o nível da caixa d'água, o consumo de energia elétrica e a abertura do portão principal, oferecendo maior controle, segurança e eficiência operacional para a administração do condomínio.

O sistema de monitoramento da caixa d'água utiliza um sensor ultrassônico acoplado a um microcontrolador ESP-32 para medir o nível de água em tempo real. As medições são realizadas continuamente, garantindo um acompanhamento preciso. O ESP-32 processa os dados obtidos e identifica variações inesperadas no nível. Essas variações podem indicar possíveis vazamentos no reservatório. Ao detectar anomalias, o sistema pode acionar alertas visuais ou sonoros. Isso permite uma resposta rápida para evitar o desperdício de água.

No controle de acesso, um sensor de fim de curso monitora a abertura e fechamento do portão, informando o status em tempo real. Este sensor também está ligado a um ESP-32, responsável por processar os dados localmente e enviá-los para a nuvem. Já o monitoramento do consumo de energia elétrica é feito por meio de um sensor de corrente, conectado a um microcontrolador ESP32. Esse sensor registra o uso de energia no condomínio, permitindo análises que podem identificar picos de consumo, possibilitar economia e prevenir falhas na rede elétrica.

Todos os dispositivos se comunicam com um gateway central, que por sua vez envia os dados para a nuvem utilizando o protocolo MQTT, permitindo o acesso remoto por meio de um aplicativo móvel. Com isso, os usuários podem acompanhar o estado do sistema de forma prática e em tempo real, de qualquer lugar.

O principal objetivo deste projeto é oferecer uma solução acessível, eficiente e automatizada para o gerenciamento de recursos essenciais em condomínios, promovendo sustentabilidade, segurança e maior comodidade para os moradores e administradores.

2. OBJETIVOS

O projeto tem como objetivo principal desenvolver um sistema de monitoramento inteligente para infraestrutura predial, com foco em condomínios residenciais ou comerciais, utilizando tecnologias de Internet das Coisas (IoT) para garantir maior eficiência, segurança e autonomia na gestão de recursos essenciais.

Objetivos Específicos:

- Monitorar o nível da caixa d'água em tempo real.
- Controlar o acesso físico ao condomínio.

- Monitorar o consumo de energia elétrica
- Centralizar a coleta e transmissão de dados.
- Disponibilizar uma interface remota de visualização.
- Promover a sustentabilidade e a modernização da gestão condominial.

3. FUNDAMENTAÇÃO TEÓRICA

3. 1. ARQUITETURA

O presente sistema propõe o monitoramento e controle de dispositivos físicos por meio de nós baseados no microcontrolador ESP-32, comunicando-se com o Gateway via WIFI conforme mostra a Figura 1.

Figura 1. Arquitetura do projeto

3.1.1. NÓ DO PORTÃO

O nó do portão é responsável pela supervisão da posição de um portão automatizado, utilizando um sensor de fim de curso do tipo reed switch (Figura 2).

Figura 2. Sensor de fim de curso e diferenças entre NO (Normally Open) e NC (Normally Closed)¹.

Esse sensor opera em um estado normalmente aberto, fechando o circuito quando um campo magnético proveniente de um ímã é aplicado sobre ele, o que permite detectar a posição de abertura ou fechamento do portão.

O sinal gerado por esse sensor é lido por um microcontrolador ESP-32 (Figura 3), que realiza a comunicação com o sensor e transmite os dados ao gateway via rede Wi-Fi, possibilitando o monitoramento remoto do estado do portão.

A taxa de atualização deste nó é baseada em eventos (event-driven), ou seja, os dados são transmitidos sempre que ocorre uma mudança de estado no sensor (por exemplo, ao abrir ou fechar o portão), o que reduz o tráfego na rede e economiza energia.

Figura 3. Arquitetura do nó do portão.

-

¹ Disponivel em:

Um dos terminais do sensor é ligado na entrada GPIO 12 do ESP-32, e conectado a um resistor de 1KOhm com o terra, para que mesmo quando a chave estiver desligada, a GPIO receba um estado conhecido. O outro terminal é ligado à bateria de 5V, desta forma, quando o sensor está fechado, a corrente é passada para a entrada GPIO, conforme mostra a Figura 3.

Figura 3. Esquemático do nó do portão

3.1.2. NÓ DA CAIXA D'ÁGUA

Esse nó é dedicado ao gerenciamento do nível em uma caixa d'água. Para isso, emprega-se um sensor ultrassônico do modelo HC-SR04, amplamente utilizado em aplicações embarcadas devido à sua precisão e baixo custo.

O sensor funciona enviando automaticamente oito pulsos de ultrassom a uma frequência de 40kHz e detectando se há um sinal de retorno. Caso o sinal retorne, o pino de saída do sensor permanece em nível alto por um período de tempo proporcional à distância entre o sensor e o objeto refletor. Esse tempo em nível alto representa o intervalo entre o envio do pulso e o recebimento do eco (Figura 4). A distância até o objeto pode ser calculada utilizando a fórmula: Distância = (tempo em nível alto × velocidade do som (340 m/s)) / 2, considerando que o som percorre o caminho de ida e volta até o obstáculo.

Figura 4. Módulo HC-SR04²

_

² Disponível em:

Assim como no nó do portão, este nó também utiliza um microcontrolador ESP-32, que realiza a aquisição dos dados dos sensores por meio da entrada GPIO do ESP-32 (Figura 5). O microcontrolador atua como interface entre o sensor e a nuvem, realizando o envio contínuo das informações para o gateway central do sistema via Wi-Fi.

Figura 5. Diagrama de blocos do nó de caixa d'água

O sensor ultrassônico HC-SR04 possui quatro pinos: dois para alimentação (VCC e GND) e dois para comunicação (Trigger e Echo). Neste projeto, os pinos Trigger e Echo serão conectados ao ESP-32 utilizando os pinos GPIO 14 e GPIO 12, respectivamente (Figura 6).

Figura 6. Esquemático: do sensor ultrassônico HC-SR04.

A taxa de atualização para esse nó será a cada 2 minutos, permitindo uma resposta rápida a um possível vazamento e permitindo o monitoramento preciso via Dashboard.

3.1.3. NÓ DA ENERGIA

O nó é responsável pelo monitoramento do consumo de energia elétrica do prédio. Neste caso, será utilizado um sensor de corrente invasivo do tipo ACS712, escolhido por seu baixo custo e facilidade de integração com microcontroladores.

O ACS712 (Figura 7) fornece uma saída analógica proporcional à corrente elétrica que atravessa seu terminal de entrada, possibilitando a medição tanto de corrente alternada quanto contínua.

Figura 7. Módulo sensor de corrente ACS712³.

O sinal analógico será lido pelo microcontrolador ESP-32 por meio de uma entrada ADC (Conversor Analógico-Digital), e processado para estimar a potência elétrica com base em valores de referência configurados (Figura 8).

Figura 8. Diagrama de blocos do nó sensor de corrente

O microcontrolador fará amostragens em alta frequência localmente (entre 50 e 100 amostras por segundo), mas enviará valores médios ou agregados ao servidor MQTT em intervalos de aproximadamente 5 segundos, otimizando a largura de banda e o desempenho do sistema. Isso possibilita o acompanhamento remoto em tempo real do perfil de uso da energia elétrica no edifício.

³ Disponível em: https://www.arduinoecia.com.br/como-usar-o-sensor-de-corrente-acs712

Figura 9. Esquemático Sensor de corrente

3. 2. DASHBOARD

O sistema contará com um gateway central, que será implementado por meio de um roteador Wi-Fi convencional. Esse roteador será responsável por estabelecer e manter a rede local sem fio, à qual todos os nós baseados em ESP-32 estarão conectados. Além de atuar como ponto de acesso, o gateway servirá como intermediário entre os nós sensores/atuadores e a internet, encaminhando os dados coletados para a nuvem.

Para visualização, gerenciamento e análise dos dados em tempo real, será disponibilizado um dashboard em plataforma na nuvem, acessível por dispositivos conectados à internet, como smartphones, tablets e computadores. Essa interface permitirá ao usuário monitorar o estado dos sensores (portão, nível da caixa d'água, corrente elétrica) e visualizar gráficos históricos de consumo e níveis. A interface será atualizada em conformidade com as taxas de envio dos dados de cada nó, garantindo uma visualização fluida e precisa do estado atual do sistema.

3. 2. TIPOS DE REDES

No sistema proposto, será utilizada uma rede local sem fio (WLAN) como meio principal de comunicação entre os nós sensores/atuadores e o servidor MQTT. A escolha pelo uso de Wi-Fi se justifica pela sua ampla disponibilidade, baixo custo, facilidade de integração com os microcontroladores ESP-32 e capacidade de transmitir dados diretamente para a internet sem a necessidade de infraestrutura adicional.

A WLAN será estruturada em torno de um roteador Wi-Fi convencional, que atuará como ponto de acesso (Access Point), conectando todos os dispositivos da rede local. Esse roteador também terá função de gateway, permitindo a integração do sistema com a nuvem, o que viabiliza o monitoramento remoto e em tempo real dos dados provenientes dos sensores instalados no edifício.

3.3. TIPOS DE PROTOCOLOS

A arquitetura do sistema embarcado implementará dois tipos principais de protocolos de comunicação: UART para comunicação local entre sensores e microcontroladores, e Wi-Fi com MQTT para envio dos dados à nuvem.

- UART (Universal Asynchronous Receiver/Transmitter) será utilizada na comunicação local entre os microcontroladores ESP-WROOM-32 e os sensores ou atuadores conectados, como o sensor de nível HC-SR04, o reed switch e o sensor de corrente ACS712. Esse protocolo serial é amplamente suportado, simples de implementar e adequado para a taxa de dados exigida pelos sensores utilizados.
- Wi-Fi será a tecnologia de rede empregada para conectar cada microcontrolador ESP-WROOM-32 ao gateway, possibilitando o envio dos dados para a nuvem.
- MQTT (Message Queuing Telemetry Transport) será o protocolo de aplicação adotado para a comunicação entre os nós e o dashboard em nuvem. Por ser leve, eficiente em largura de banda e adequado para dispositivos com recursos limitados, o MQTT permite a transmissão periódica dos dados de sensores com confiabilidade, além de suportar comunicação assíncrona no modelo publicador/assinante (publish/subscribe).

Esses protocolos garantem uma arquitetura enxuta, eficiente e escalável, compatível com as demandas de monitoramento remoto de ambientes em tempo real.