DSCI 565: OPTIMIZATION ALGORITHMS

This content is protected and may not be shared, uploaded, or distributed.

Ke-Thia Yao

Lecture 20: 2025-10-20

Optimization and Deep Learning

- Goal of optimization:
 - lacktriangle Given objective function f(x) find x that minimizes the objective function
- Goal of deep learning:
 - Finding a suitable model, given a finite amount of data
- These two goals are not the same
 - lacktriangleright If we set objective function to be the loss function and find optimum parameter x^* , then we are minimizing the training error
 - For deep learning we care about generalization error
 - We want select the right model that neither overfits the data, nor underfits the data

Optimization Challenges in Deep Learning

- In deep learning, the objective functions are complicated
- They do not have analytical solutions
- Optimization problems include
 - Local minima
 - Saddle points
 - Vanishing gradients

Local Minima

- □ For any objective function f(x), x is a local minima if f(x) is smaller than $f(x + \epsilon)$ for some ϵ
- At a local minima the gradient is zero
- For deep learning objective functions, there are many local minima

Saddle Points

- At a saddle point the gradient vanishes, but it is neither a minima nor a maxima
- Simply finding locations where the gradients vanish is not sufficient
- \square Consider the function $f(x) = x^3$

Saddle Points in Higher Dimensions

- In higher dimensions, a saddle point look like
 - A minima in one dimension
 - A maxima in another dimension
- \square Consider $f(x,y) = x^2 y^2$

Use Hessian matrix to
 determine type of critical point

Hessian Matrix

□ For a function $f: \mathbb{R}^n \to \mathbb{R}$, the Hessian matrix **H** of f is all is second order partial derivatives:

$$\mathbf{H} \equiv \begin{bmatrix} \frac{\partial f}{\partial x_1^2} & \frac{\partial f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial f}{\partial x_1 \partial x_n} \\ \frac{\partial f}{\partial x_2 \partial x_1} & \frac{\partial f}{\partial x_2^2} & \cdots & \frac{\partial f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial x_n \partial x_1} & \frac{\partial f}{\partial x_n \partial x_2} & \cdots & \frac{\partial f}{\partial x_n^2} \end{bmatrix}$$

Hessian Matrix Interpretation

- \square At a critical point of function f, i.e., gradient of f is zero
 - When the eigenvalues of the function's Hessian matrix are all positive, we have a local minimum for the function
 - When the eigenvalues of the function's Hessian matrix are all negative, we have a local maximum for the function
 - When the eigenvalues of the function's Hessian matrix are negative and positive, we have a saddle point for the function

Hessian Matrix Example

□ The eigenvalues of its Hessian matrix is 1 and -1:

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = -1 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

 \square Critical point (0,0) is a saddle point

Vanishing Gradients

- At these points, the gradients become close to zero
- Optimization gets stuck and causes the learning to be slow

Convexity

- Optimization problems that obey convexity properties are easier to analyze and solve
- If an algorithm performs poorly for convex problems, then it is unlikely to do well for nonconvex problems
- Deep learning optimization problems are typically nonconvex, but near local optima they look like convex problems

Convex Sets

 \square A set $\mathcal X$ in a vector space is convex if for any $a,b\in\mathcal X$ the line segment connecting a and b is also in $\mathcal X$

$$\lambda a + (1 - \lambda)b \in \mathcal{X}$$
, for $\lambda \in [0, 1]$

Convex Sets

Intersection of convex sets is convex

Union of convex sets need not be convex

Convex Functions

 \square Given a convex set \mathcal{X} , a function $f: \mathcal{X} \to \mathbb{R}$ is convex if for all $x, x' \in \mathcal{X}$ and for all $\lambda \in [0,1]$

$$\lambda f(x) + (1 - \lambda)f(x') \ge f(\lambda x + (1 - \lambda)x')$$

Convex functions

Examples of convex functions

- $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} + \mathbf{b}$
- $f(\mathbf{x}) = \mathbf{x}^T \mathbf{x}$
- $f(\mathbf{x}) = \|\mathbf{x}\|_1$

Jensen's Inequality

□ For convex functions, Jensen's inequality states

$$\sum_{i} \alpha_{i} f(x_{i}) \geq f\left(\sum_{i} \alpha_{i} x_{i}\right) \text{ and } E_{X}[f(X)] \geq f\left(E_{X}[X]\right),$$

- \square Where $\alpha_i \geq 0$ such that $\sum_i \alpha_i = 1$, and X is random variable
- Jensen's inequality provides a lower bound, which is usually simpler than original expression

Properties of Convex Functions

- Local minima are global minima
- Below sets of convex functions are convex
- □ A function is convex if its Hessian matrix H is semi-positive definite

Convexity: Local Minima is Global Minima

- Let f be a convex function defined on a convex set \mathcal{X} If $\mathbf{x}^* \in \mathcal{X}$ is local minima, then \mathbf{x}^* is a global minima
- Proof by contradiction
 - lacksquare Suppose there exists $\mathbf{x}' \in \mathcal{X}$, where $f(\mathbf{x}') < f(\mathbf{x}^*)$
 - □ If x^* is local minima, then there is a neighbor near x^* , $0 < |x x^*| \le P$, such that $f(x^*) < f(x)$
 - lacktriangle We can find a λ such that $\lambda x^* + (1-\lambda)x'$ is in this neighborhood
 - lacksquare But this contradicts that x^* is a local minima

$$f(\lambda x^* + (1 - \lambda)x') \le \lambda f(x^*) + (1 - \lambda)f(x')$$

$$\le \lambda f(x^*) + (1 - \lambda)f(x^*)$$

$$= f(x^*),$$

Below Sets of Convex Functions are Convex

- □ We can define convex sets using below sets of convex functions
- □ Given a convex function f defined on a convex set \mathcal{X} , any below set $\mathcal{S}_b \equiv \{x | x \in \mathcal{X} \text{ and } f(x) \leq b\}$ is convex.
- □ Proof:
 - For any $x, x' \in \mathcal{S}_b$ we need to show $\lambda x + (1 \lambda)x' \in \mathcal{S}_b$ for $\lambda \in [0,1]$
 - But $f(\lambda x + (1 \lambda)x') \le \lambda f(x) + (1 \lambda)f(x') \le b$
 - By definition of convexity and $f(x) \le b$ and $f(x') \le b$

Convexity and Second Derivative

- \square A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if the Hessian H of f is positive semi-definite
- $lue{}$ A matrix H is positive semi-definite if for all $\mathbf{x} \in \mathbb{R}^n$

$$\mathbf{x}^{\mathrm{T}}\mathbf{H}\mathbf{x} \geq 0$$

□ Proof is in Section 12.2.2

Constrained Optimization

Constrained optimization problems

$$\min_{\mathbf{x}} f(\mathbf{x})$$

subject to $c_i(\mathbf{x}) \le 0$ for all $i \in \{1, ..., n\}$

where f is the objective function and c_i are constraint functions

- $lue{}$ Convex optimization: If f is convex and c_i define convex sets then there are polynomial algorithms to find optimal $oldsymbol{x}$
- \square Example convex constraints: $c_1(x) = ||x||_2 1$ or $c_2(x) = v^T x + b$
- In general optimization problems are NP-hard

One-Dimensional Gradient Descent

 \square Let $f: \mathbb{R} \to \mathbb{R}$ be continuously differentiable, using Taylor expansion

$$f(x + \epsilon) = f(x) + \epsilon f'(x) + \mathcal{O}(\epsilon^2)$$

 \square If we take a "small" step, $\eta > 0$, in the negative gradient direction

$$f(x - \eta f'(x)) = f(x) - \eta f'^{2}(x) + O(\eta^{2} f'^{2}(x)).$$

□ If the derivative $f'(x) \neq 0$, then $\eta f'^2(x) > 0$. For small enough η $f(x - \eta f'(x)) \leq f(x)$

Gradient descent iterate using

$$x \leftarrow x - \eta f'(x)$$

Learning Rate

- lacktriangle The learning rate η controls the size of the step
- lacktriangleq If η is too small, then convergence to local minima is slow
- \square If η is too large, then higher order terms of the Taylor expansion $\mathcal{O}(\eta^2 f'^2(x))$ may become significant
 - The gradient descent may overshoot and diverge

Learning Rate and Convergence

Multivariate Gradient Descent

 \square Let $f: \mathbb{R}^d \to \mathbb{R}$, then the gradient of f is

$$\nabla f(\mathbf{x}) = \left[\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_d} \right]^T$$

□ The Taylor expansion is

$$f(\mathbf{x} + \boldsymbol{\epsilon}) = f(\mathbf{x}) + \boldsymbol{\epsilon}^T \nabla f(\mathbf{x}) + \mathcal{O}(\|\boldsymbol{\epsilon}\|^2)$$

Gradient descent iterate using

$$\mathbf{x} \leftarrow \mathbf{x} - \eta \nabla f(\mathbf{x})$$

Newton's Method

 $lue{}$ For function $f\colon\mathbb{R}^d o\mathbb{R}$, we add another term to the Taylor expansion

$$f(\mathbf{x} + \boldsymbol{\epsilon}) = f(\mathbf{x}) + \boldsymbol{\epsilon}^T \nabla f(\mathbf{x}) + \frac{1}{2} \boldsymbol{\epsilon}^T \nabla^2 f(\mathbf{x}) + \mathcal{O}(\|\boldsymbol{\epsilon}\|^3)$$

- \square Where Hessian $\mathbf{H} \equiv \nabla^2 f(\mathbf{x})$
- \Box Take derivative with respect to ϵ , then $\nabla f(\mathbf{x}) + \mathbf{H}\epsilon = 0$ $\epsilon = -\mathbf{H}^{-1}\nabla f(\mathbf{x})$
- \square For $f(x) = \frac{1}{2}x^2$, gradient is $\nabla f(x) = x$ and H = 1

 - Only need one step to reach the global minimum

Notebook

chapter_optimization/gd.ipynb

Newton's Method Convergence

- If we are sufficiently close to the minimum, then the error decreases quadratically with each iteration
- Let $x^{(k)}$ be the value of x at the k^{th} iteration, and let error $e^{(k)} \equiv x^{(k)} x^*$, where x^* is the minimum, then

$$\left| e^{(k+1)} \right| \le c \left(e^{(k)} \right)^2$$

□ Where
$$\frac{|f'''(\xi^{(k)})|}{2f''(x^{(k)})} \le c$$
, $\xi^{(k)} \in [x^{(k)} - e^{(k)}, x^{(k)}]$

Preconditioning

- Storing the full Hessian is very expensive, especially for deep learning
- One workaround is to only compute the diagonal of the Hessian

$$\mathbf{x} \leftarrow \mathbf{x} - \eta \operatorname{diag}(\mathbf{H})^{-1} \nabla f(\mathbf{x})$$

- This is called preconditioning
- Effectively preconditioning selects a different learning rate for each variable
- □ For example, consider if one variable is in millimeters and another in meters

Gradient Descent with Line Search

 \Box Instead of fixing the learning rate η , at each step find the best rate by performing a binary search on η that minimized

$$f(\mathbf{x} - \eta \nabla f(\mathbf{x}))$$

- This approach has good convergence
- But it is very expensive for gradient descent, since each step of binary search requires evaluating the entire dataset

Stochastic Gradient Descent

- Let $f_i(x)$ be the loss with respect to training example $i \in [1, n]$ and x is the parameter vector
- □ The objective function and its gradient are:

$$f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}) \qquad \nabla f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\mathbf{x})$$

Stochastic gradient update:

$$\mathbf{x} \leftarrow \mathbf{x} - \eta \nabla f_i(\mathbf{x})$$

Stochastic Gradient Descent

 \square On average, $\nabla f_i(x)$ is a good estimate of the gradient

$$\mathbb{E}_i \nabla f_i(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(\mathbf{x}) = \nabla f(\mathbf{x}).$$

But it has too much variance

- See notebook
 - chapter_optimization/sgd.ipynb
 - Tend to wander, especially near optima

Dynamic Learning Rate for Stochastic Gradient Descent

lacksquare Adjust learning rate $\eta(t)$

$$\eta(t) = \eta_i \text{ if } t_i \le t \le t_{i+1}$$
 piecewise constant
 $\eta(t) = \eta_0 \cdot e^{-\lambda t}$ exponential decay
 $\eta(t) = \eta_0 \cdot (\beta t + 1)^{-\alpha}$ polynomial decay

- Piecewise constant drop rate when progress stalls
 - Popular choice for deep learning
- Exponential decay maybe to drastic
- \square For polynomial decay, $\alpha=0.5$ is a popular choice

Minibatch Stochastic Gradient Descent

- $\hfill\square$ Instead of training one example at a time, train in small batches of examples of size b
- □ If we draw batches uniformly at random from training set, then
 - The expectation of the gradient is unchanged
 - lacksquare The variance is reduced by a factor of $b^{-\frac{1}{2}}$

In practice choose batch size that fits into GPU memory

Memory Bottleneck

- CPUs and GPUs can process faster than memory can deliver the data
- Using vectorization (Single Instruction Multiple Data, SIMD), 2GHz CPU with 16 cores can process $2*10^9*16*32=10^{12}=1000$ GB/s
- Main memory of a midrange server can only deliver 100 GB/s
- □ With just main memory CPU is idle 90% of the time
- GPUs have many more cores

Cache Hierarchy

- Cache hierarchy provides multiple levels of memory stores, with varying access speed and size
- Level-one (L1) cache is fast but small
- L2 cache is slower and larger
- L3 cache is even slower and larger

Notebook

- chapter_optimization/minibatch-sgd.ipynb
 - Vectorization and caches
 - https://en.wikipedia.org/wiki/Cache hierarchy

Momentum

- Instead of using $\mathbf{g}_{t,t-1}$, the gradient of the minibatch at time t, use a leaky average (aka exponentially weighted average, aka exponential moving average) of the past gradients
- \square Let \mathbf{v}_t be the velocity, $\mathbf{v}_t = \beta \mathbf{v}_{t-1} + \mathbf{g}_{t,t-1}$

$$\mathbf{v}_t = \beta^2 \mathbf{v}_{t-2} + \beta \mathbf{g}_{t-1,t-2} + \mathbf{g}_{t,t-1} = \dots, = \sum_{\tau=0}^{t-1} \beta^{\tau} \mathbf{g}_{t-\tau,t-\tau-1}.$$

- \square Advan $\mathbf{x}_t \leftarrow \mathbf{x}_{t-1} \eta_t \mathbf{v}_t$.
 - Reduction in variance beyond a single batch
 - "Rolling down hill"
 - Helps with ill-conditioned problems

III-Conditioned Problem

- For $f(x,y) = 0.1x^2 + 2y^2$, the Hessian matrix is $H = \begin{bmatrix} 0.2 & 0 \\ 0 & 4 \end{bmatrix}$
- □ The eigenvalues of its Hessian matrix is 0.2 and 4:

$$\begin{bmatrix} 0.2 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0.2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 0.2 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 4 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

- □ The condition number is $\frac{4}{0.2} = 20$
- $lue{}$ Gradient much larger direction y than direction x
- Larger number implies ill-conditioned

Notebook

See chapter_optimization/momentum.ipynb