Exercise 5

1. Clifford Gates and Paulis

- (a) For n qubits, there are 4^n possible tensor products of Paulis (one of which is the n -qubit identity). Show that (up to a phase) these can be expressed as a product of 2n n -qubit Paulis.
- (b) If U is a Clifford gate, the following property holds

$$UPU^{\dagger} \sim P' \quad \forall P,$$

where P and P' are Paulis and \sim denotes equality up to a factor of ± 1 or $\pm i$. If this relation holds for the 2n Pauli generators of part (a), show that it also holds for all n -qubit Paulis.

2. Single-Qubit Clifford Gates

- (a) Show that the Paulis are Cliffords themselves.
- (b) Show that H, S and S^\dagger are Clifford gates.
- (c) Show that $T=S^{1/2}$ is not a Clifford gate.

3. Two-Qubit Clifford Gates

For more than one qubit, Clifford gates map between tensor products of Pauli operators.

For two qubits

$$U\left(P\otimes Q\right)U^{\dagger}\sim P'\otimes Q'\quad \forall P,Q$$

where P, Q, P' and Q' are all Paulis and \sim denotes equality up to a factor of ± 1 or $\pm i$.

- (a) Show that the controlled-NOT is a Clifford gate.
- (b) Show that the controlled-Hadamard is not a Clifford gate.

4. Three-Qubit Clifford Gates

(a) Provide an example of a three-qubit Clifford gate, and show that it is indeed a Clifford. This should be a truly three qubit gate, and therefore not one that can be expressed purely as a tensor product of single- and two-qubit gates.

1 of 2

(b) Show that the Toffoli gate is not Clifford.

In []:	
---------	--

2 of 2 10.04.22, 09:12