华东理工大学

概率论与数理统计

作业簿(第八册)

学	院	专	业	班 级班
学	号	姓	名	任课教师

第十五次作业

- 一. 选择题:
- 1. 设随机变量 ξ 的概率分布律为

ξ	-1	0	1	2
P	0.2	0.1	0.3	0.4

则 $\eta = \xi^2 - 1$ 的分布函数F(y)为(B)。

$$A, F(y) = \begin{cases} 0, & y < -1, \\ 0.1, & -1 \le y < 0, \\ 0.6, & 0 \le y < 1, \\ 1, & y \ge 1 \end{cases} \qquad B, F(y) = \begin{cases} 0, & y < 1, \\ 0.1, & 1 \le y < 0, \\ 0.6, & 0 \le y < 3, \\ 1, & y \ge 3 \end{cases}$$

$$C, F(y) = \begin{cases} 0, & y < -1, \\ 0.1, & -1 \le y < 0, \\ 0.6, & 0 \le y < 3, \\ 1, & y \ge 3 \end{cases} \qquad D, F(y) = \begin{cases} 0, & y < 1, \\ 0.6, & 0 \le y < 3, \\ 0.1, & 1 \le y < 0, \\ 0.6, & 0 \le y < 4, \\ 1, & y \ge 4 \end{cases}$$

2. 设随机变量 ξ 密度函数为 p(x),则 $\eta=3\xi-1$ 的密度函数 $p_{\eta}(y)$ 为(A)。

A,
$$\frac{1}{3}p(\frac{y+1}{3})$$
 B, $3p(\frac{y+1}{3})$ C, $\frac{1}{3}p(3(y+1))$ D, $3p(\frac{y-1}{3})$

3. 设随机变量 ξ 密度函数为

$$p(x) = \begin{cases} 2x, & 0 \le x < 1, \\ 0, & 其他. \end{cases}$$

则 $\eta = \xi^2$ 的密度函数 $p_n(y)$ 为(D)。

A、
$$p_{\eta}(y) = \begin{cases} \frac{1}{2}y, & 0 \le y < 1, \\ 0, & 其他. \end{cases}$$
 B、 $p_{\eta}(y) = \begin{cases} 2y, & 0 \le y < 1, \\ 0, & 其他. \end{cases}$

B、
$$p_{\eta}(y) = \begin{cases} 2y, & 0 \le y < 1, \\ 0, & 其他. \end{cases}$$

$$\mathbf{C}, \quad p_{\eta}(y) = \begin{cases} \frac{2}{\sqrt{y}}, & 0 \le y < 1, \\ 0, & 其他. \end{cases}$$

$$\mathbf{D}, \quad p_{\eta}(y) = \begin{cases} 1, & 0 \le y < 1, \\ 0, & 其他. \end{cases}$$

D、
$$p_{\eta}(y) = \begin{cases} 1, & 0 \le y < 1 \\ 0, & 其他. \end{cases}$$

4. 设随机变量 ξ 和 η 相互独立,且 $\xi \sim P(\lambda)$, $\eta \sim P(\lambda)$,则下列(B)不成立。

A.
$$P\{\xi + \eta = 1\} = 2\lambda e^{-2\lambda}$$
 B. $P\{\xi + \eta = 0\} = e^{-\lambda}$

B.
$$P\{\xi + \eta = 0\} = e^{-\lambda}$$

C.
$$E(\xi + \eta) = 2\lambda$$

D.
$$D(\xi + \eta) = 2\lambda$$

- 二. 填空题:
- 1. 已知随机变量 $\xi \sim U(-2,4)$,设 $\eta = \frac{\xi}{2} + 1$,则 η 的概率密度为 $p_{\eta}(y) =$

$$\begin{cases} \frac{1}{3}, & 0 \le y \le 3, \\ 0, & 其他. \end{cases}$$

2. 已知随机变量 $\xi \sim N(0,1), \eta = 2\xi - 5$, 则 η 的概率密度为 $p_n(y) =$

$$\frac{1}{2\sqrt{2\pi}}e^{-\frac{(y-5)^2}{8}}$$
 .

- 4. 设随机变量 ξ 和 η 相互独立,且 $\xi \sim B(2,0.4)$, $\eta \sim B(3,0.4)$,则 $\xi + \eta$ 服从 参数为__(5,0.4)___的二项分布。
- 三. 计算题
 - 1. 已知随机变量 $\xi \sim U[0,2]$, 求 $\eta = \xi^2$ 的概率密度。

$$\text{ \mathbb{H}: } F_{\eta}(y) = P\{\xi^2 \leq y\} = \begin{cases} P\{-\sqrt{y} \leq \xi \leq \sqrt{y}\} & y \geq 0 \\ 0 & y < 0 \end{cases} = \begin{cases} F_{\xi}(\sqrt{y}) - F_{\xi}(-\sqrt{y}) & y \geq 0 \\ 0 & y < 0 \end{cases}$$

故
$$p_{\eta}(y) = \begin{cases} \frac{1}{2\sqrt{y}} \left(p_{\xi}(\sqrt{y}) - p_{\xi}(-\sqrt{y}) \right) & y \ge 0 \\ 0 & y < 0 \end{cases} = \begin{cases} \frac{1}{4\sqrt{y}} & 0 \le y \le 4 \\ 0 & 其他 \end{cases}$$

2. 设随机变量 X 的概率分布为:

X	1	2	3	•••	n	
P	$\frac{1}{2}$	$\left(\frac{1}{2}\right)^2$	$\left(\frac{1}{2}\right)^3$		$\left(\frac{1}{2}\right)^n$	

求 $Y = \sin(\frac{\pi}{2}X)$ 的概率分布。

解: 由于
$$\sin(\frac{x\pi}{2}) = \begin{cases} -1 & x = 4k - 1\\ 0 & x = 2k\\ 1 & x = 4k - 3 \end{cases}$$
 $k = 1, 2, \dots$

故随机变量Y的可能取值为: -1, 0, 1。

随机变量
$$Y$$
 的 $P\{Y=-1\}=\sum_{k=1}^{\infty}P\{X=4k-1\}=\sum_{k=1}^{\infty}\frac{1}{2^{4k-1}}=\frac{1}{8}\times\frac{1}{\frac{1}{2^4}-1}=\frac{2}{15};$

$$P{Y = 0} = \sum_{k=1}^{\infty} P{X = 2k} = \sum_{k=1}^{\infty} \frac{1}{2^{2k}} = \frac{1}{4} \times \frac{1}{\frac{1}{2^2} - 1} = \frac{1}{3};$$

$$P\{Y=1\} = \sum_{k=1}^{\infty} P\{X=4k-3\} = \sum_{k=1}^{\infty} \frac{1}{2^{4k-3}} = \frac{1}{2} \times \frac{1}{\frac{1}{2^4} - 1} = \frac{8}{15},$$

于是随机变量Y的分布律为:

Y	-1	0	1
P	$\frac{2}{15}$	$\frac{1}{3}$	$\frac{8}{15}$

3. 已知随机变量 $\xi \sim N(0,1)$, 求 $\eta = |\xi|$ 的概率密度。

解: 先求分布函数 $F_n(y)$ 。当 y < 0时, $F_n(y) = P\{\xi^2 \le y\} = 0$; 当 $y \ge 0$ 时,

$$F_{\eta}(y) = P\{\xi^2 \le y\} = \Phi(\sqrt{y}) - \Phi(-\sqrt{y}) = 2\Phi(\sqrt{y}) - 1$$

故
$$p_{\eta}(y) = \begin{cases} \frac{2}{\sqrt{2\pi y}} e^{-\frac{y}{2}} & y \ge 0 \\ 0 & y < 0 \end{cases} = \begin{cases} \frac{1}{4\sqrt{y}} & 0 \le y \le 4 \\ 0 & 其他 \end{cases}$$

4. 设
$$\xi \sim U(0,1)$$
 , 求 $\eta = \xi^{\ln \xi}$ 的分布 。

解: 对应于
$$\eta = \xi^{\ln \xi}$$
 , $y = x^{\ln x} = e^{(\ln x)^2} = f(x)$, 由于

$$f'(x) = e^{(\ln x)^2} \cdot 2 \ln x \cdot \frac{1}{x} \quad \circ$$

$$\underline{x}$$
 ∈ (0,1) $\underline{\text{H}}$, $f'(x) < 0$, $x = f^{-1}(y) = e^{-\sqrt{\ln y}}$

其中当 $y \in (-\infty,1]$ 时, $\varphi_{\eta}(y) = 0$ 是由 $x \in (0,1)$ 时 $y \in (1,+\infty)$ 而导出的。

5. 已知随机变量 $\xi \sim U(-2,4)$, 求 $\eta = \xi^2$ 的分布函数。

解:

$$F_{\eta}(y) = P\{\xi^{2} \leq y\} = \begin{cases} 0 & y < 0, \\ P\{-\sqrt{y} \leq \xi \leq \sqrt{y}\}, & 0 \leq y < 4 \\ P\{-2 \leq \xi \leq \sqrt{y}\}, & 4 \leq y < 16 \\ 1 & y \geq 16 \end{cases}$$

$$= \begin{cases} 0 & y < 0, \\ \frac{1}{3}\sqrt{y}, & 0 \leq y < 4 \\ \frac{1}{6}(\sqrt{y} + 2), & 4 \leq y < 16 \\ 1 & y \geq 16 \end{cases}$$

6. 已知随机变量 ξ 、 η 的概率分布分别为

而且 $P\{\xi\eta=0\}=1$ 。

(1)求 ξ 、 η 的联合概率分布; (2)问 ξ 、 η 是否独立?

(3)求 $\zeta = \max(\xi, \eta)$ 的概率分布。

解: 由于
$$P(\xi \eta = 0) = 1$$
,可以得到 $P(\xi = -1, \eta = 1) = P(\xi = 1, \eta = 1) = 0$,从而

$$\begin{split} P(\xi=0,\eta=1) &= P(\eta=1) = \frac{1}{2}, \quad P(\xi=-1,\eta=0) = P(\xi=-1) = \frac{1}{4}, \\ P(\xi=1,\eta=0) &= P(\xi=1) = \frac{1}{4}, \quad P(\xi=0,\eta=0) = P(\xi=0) - P(\xi=0,\eta=1) = 0, \end{split}$$

汇总到联合分布列,即

ξη	0	1		
-1	$\frac{1}{4}$	0		
0	0	$\frac{1}{2}$		
1	$\frac{1}{4}$	0		

(2)由于 $P(\xi = i, \eta = j) \neq P(\xi = i) \cdot P(\eta = j)$,故 ξ, η 不独立.

(3)

$$P(\zeta = 0) = P(\xi = -1, \eta = 0) + P(\xi = 0, \eta = 0) = \frac{1}{4},$$

$$P(\zeta = 1) = P(\xi = -1, \eta = 1) + P(\xi = 0, \eta = 1) + P(\xi = 1, \eta = 0) + P(\xi = 1, \eta = 1) = \frac{3}{4}$$

第十六次作业

- 一. 选择题:
- 1. 设随机变量 ξ 和 η 相互独立,且 ξ ~ N(-2,4) η ~ N(2,8) ,则 ξ + 2η 的密度函数 p(z) 为(C)。

A,
$$\frac{1}{6\sqrt{2\pi}}e^{\frac{-(z-4)^2}{72}}$$
 B, $\frac{1}{2\sqrt{6\pi}}e^{\frac{-z^2}{24}}$ C, $\frac{1}{6\sqrt{2\pi}}e^{\frac{-z^2}{72}}$ D, $\frac{1}{2\sqrt{6\pi}}e^{\frac{-(z-4)^2}{24}}$

2. 设随机变量(ξ , η)的联合密度函数为 p(x,y) , 则 ξ + η 的分布函数 F(z) = (D)。

A.
$$F(z) = \int_{-\infty}^{+\infty} dy \int_{-\infty}^{y} p(z-x, y) dx$$
 B. $F(z) = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} p(z-x, y) dy$

$$C_{x}$$
 $F(z) = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{x} p(z-x, y) dy$

C.
$$F(z) = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{x} p(z-x, y) dy$$
 D. $F(z) = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{z-x} p(x, y) dy$

3. 设随机变量 ξ 和 η 相互独立,其密度函数分别为 $p_1(x)$ 与 $p_2(y)$,则 $\frac{\eta}{\xi}$ 的密度

函数 p(z) 为(A)。

A.
$$p(z) = \int_{-\infty}^{+\infty} |x| p_1(x) p_2(zx) dx$$
 B. $p(z) = \int_{-\infty}^{+\infty} p_1(x) p_2(z-x) dx$

B.
$$p(z) = \int_{-\infty}^{+\infty} p_1(x) p_2(z-x) dx$$

C.
$$p(z) = \int_{-\infty}^{+\infty} |x| p_1(zx) p_2(x) dx$$

C,
$$p(z) = \int_{-\infty}^{+\infty} |x| p_1(zx) p_2(x) dx$$
 D, $p(z) = \int_{-\infty}^{+\infty} p_1(z-x) p_2(x) dx$

4. 设随机变量 ξ 和 η 相互独立,其分布函数分别为 $F_{\varepsilon}(x)$ 与 $F_{n}(y)$,则

$$\zeta = \max(\xi, \eta)$$
 的分布函数 $F_{\zeta}(z)$ 等于

(B)

A.
$$\max\{F_{\xi}(z), F_{\eta}(z)\}$$
 B. $F_{\xi}(z)F_{\eta}(z)$

B.
$$F_{\varepsilon}(z)F_n(z)$$

C.
$$\frac{1}{2}[F_{\xi}(z) + F_{\eta}(z)]$$

C.
$$\frac{1}{2}[F_{\xi}(z) + F_{\eta}(z)]$$
 D. $F_{\xi}(z) + F_{\eta}(z) - F_{\xi}(z)F_{\eta}(z)$

二. 填空题:

1. 设随机变量 ξ 和 η 相互独立,且 ξ ~N(-2,4) η ~N(-2,12) ,则 ξ - η 的密度函

数
$$p(z) = \frac{1}{4\sqrt{2\pi}}e^{-\frac{z^2}{32}}$$
。

2. 设随机变量 ξ 和 η 独立同分布,均服从(0,1) 上的均匀分布,则 $\max(\xi,\eta)$ 的密

度函数
$$p(z) =$$

$$\begin{cases} 2z, & 0 < z < 1, \\ 0, & \text{其他.} \end{cases}$$

3. 设随机变量 ξ 和 η 相互独立,且 ξ ~E(1), η ~E(2),则

$$P\{\min(\xi,\eta) \le 1\} = 1 - e^{-3}$$

三. 计算题

1. 设随机变量 ξ 、 η 相互独立,其密度函数分别为

$$p_{\xi}(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & \not\exists \text{th} \end{cases}, \quad p_{\eta}(y) = \begin{cases} e^{-y} & y > 0 \\ 0 & y \le 0 \end{cases}$$

求 $\xi+\eta$ 的概率密度函数。

解: 由 ξ , η 相互独立得联合密度函数为

$$p(x, y) = \begin{cases} e^{-y}, & 0 \le x \le 1, y > 0, \\ 0, & \text{其他,} \end{cases}$$

密度函数中非零部分对应的(x,y)落在区域D中,利用卷积公式,

当
$$0 < z < 1$$
时, $p_{\zeta}(z) = \int_0^z e^{-(z-x)} dx = 1 - e^{-z}$,

当 $z \le 0$ 时, $p_{\zeta}(z) = 0$,

故
$$p_{\zeta}(z) = \begin{cases} (e-1)e^{-z}, & z \ge 1, \\ 1-e^{-z}, & 0 < z < 1, \\ 0, & z \le 0. \end{cases}$$

2. 设随机变量 (ξ,η) 的联合概率密度函数为

$$p(x,y) = \begin{cases} 2 - x - y, & 0 < x < 1, 0 < y < 1 \\ 0, & \text{ 其他} \end{cases}$$

 $求\xi + \eta$ 的概率密度函数。

解: 利用卷积公式, 当 $z \le 0$ 或 $z \ge 2$ 时, $p_{\zeta}(z) = 0$,

当
$$0 < z < 1$$
时, $p_{\zeta}(z) = \int_0^z (2-z) dx = 2z - z^2$,

当
$$1 \le z < 2$$
时, $p_{\zeta}(z) = \int_{z-1}^{1} (2-z) dx = (2-z)^2$,

故
$$p_{\zeta}(z) = \begin{cases} 2z - z^2, & 0 < z < 1, \\ (2 - z)^2, & 1 \le z < 2, \\ 0, & 其他. \end{cases}$$

解:由 ξ , η 相互独立得联合密度函数为

$$p(x,y) = \begin{cases} 1, & 0 \le x \le 1, 0 \le y \le 1, \\ 0, & 其他, \end{cases}$$

先求分布函数 当 $z \le -1$ 时, $F_c(z) = 0$,

当
$$-1 < z < 0$$
 时, $F_{\zeta}(z) = \int_{0}^{z+1} dx \int_{x-z}^{1} 1 dy = \frac{1}{2} (z+1)^{2}$,
当 $0 \le z < 1$ 时, $F_{\zeta}(z) = 1 - \int_{z}^{1} dx \int_{0}^{1-z} 1 dy = 1 - \frac{1}{2} (1-z)^{2}$,
当 $z \ge 1$ 时, $F_{\zeta}(z) = 1$,

故
$$\xi-\eta$$
 的概率密度函数为 $p_{\zeta}(z)= egin{cases} z+1, & -1< z<0, \\ z-1, & 0\leq z<1, \\ 0, & 其他. \end{cases}$

4. 电子仪器由 4 个相互独立的部件 L_i (i=1,2,3,4) 组成,连接方式如图所示。设各个部件的使用寿命 ξ_i 服从指数分布 E(1),求仪器使用寿命 ζ 的概率密度。

解: 设各并联组的使用寿命为 $\eta_i(j=1,2)$,则

$$\zeta = \min\{\eta_1, \eta_2\}, \quad \eta_1 = \max\{\xi_1, \xi_2\}, \quad \eta_2 = \max\{\xi_3, \xi_4\}$$

由 ξ_i 独立同分布知 η_1,η_2 也独立同分布。现

$$F_{\xi}(x) = \begin{cases} 1 - e^{-x} & x > 0 \\ 0 & x \le 0 \end{cases}$$
$$F_{\eta}(y) = F_{\xi}^{2}(y) = \begin{cases} (1 - e^{-y})^{2} & y > 0 \\ 0 & y \le 0 \end{cases}$$

所以

从而

$$\begin{split} F_{\zeta}(z) &= 1 - \left[1 - F_{\eta}(z)\right]^2 = \begin{cases} 1 - \left[1 - (1 - e^{-z})^2\right]^2 & z > 0 \\ 0 & z \le 0 \end{cases} = \begin{cases} 1 - e^{-2z}(2 - e^{-z})^2 & z > 0 \\ 0 & z \le 0 \end{cases} \\ \therefore p_{\zeta}(z) &== \begin{cases} 4e^{-2z}(1 - e^{-z})(2 - e^{-z}) & z > 0 \\ 0 & z \le 0 \end{cases} \end{split}$$

5. 将上题中的电子部件 L_i (i = 1,2,3,4) 组成,按下列方式联接,求仪器使用寿命 ζ 的概率密度。

解: 设各串联组的使用寿命为 $\eta_i(j=1,2)$,则

$$\zeta = \max\{\eta_1, \eta_2\}, \quad \eta_1 = \min\{\xi_1, \xi_2\}, \quad \eta_2 = \min\{\xi_3, \xi_4\}$$

由 ξ_i 独立同分布知 η_1,η_2 也独立同分布。现

$$F_{\xi}(x) = \begin{cases} 1 - e^{-x} & x > 0 \\ 0 & x \le 0 \end{cases}$$

所以
$$F_{\eta_i}(y) = 1 - (1 - F_{\xi}(y))^2 = \begin{cases} 1 - e^{-2y} & y > 0 \\ 0 & y \le 0 \end{cases}$$

从而

$$F_{\zeta}(z) = [F_{\eta}(z)]^{2} = \begin{cases} (1 - e^{-2z})^{2} & z > 0 \\ 0 & z \le 0 \end{cases}$$

$$\therefore p_{\zeta}(z) == \begin{cases} 4e^{-2z}(1 - e^{-2z}) & z > 0 \\ 0 & z \le 0 \end{cases}$$

6. 将上题中的串联部分加上一个开关,先用上面部分,如果坏了,合上开关再 用下面部分, 求仪器使用寿命ζ的概率密度。

设各串联组的使用寿命为 $\eta_i(j=1,2)$,则 解:

$$\zeta = \eta_1 + \eta_2$$
, $\eta_1 = \min\{\xi_1, \xi_2\}$, $\eta_2 = \min\{\xi_3, \xi_4\}$

由 ξ_i 独立同分布知 η_1,η_2 也独立同分布。现

$$F_{\xi}(x) = \begin{cases} 1 - e^{-x} & x > 0 \\ 0 & x \le 0 \end{cases}$$

所以
$$F_{\eta_i}(y) = 1 - (1 - F_{\xi}(y))^2 = \begin{cases} 1 - e^{-2y} & y > 0 \\ 0 & y \le 0 \end{cases}$$

从而 η _i的概率密度为

$$\therefore p_{\eta_i}(y) == \begin{cases} 2e^{-2y} & y > 0 \\ 0 & y \le 0 \end{cases}.$$

由 (η_1,η_2) 的联合密度函数为

$$p(x,y) = \begin{cases} 4e^{-2(x+y)}, & x > 0, y > 0, \\ 0, & \text{其他}, \end{cases}$$

 $\zeta = \eta_1 + \eta_2$ 利用卷积公式,

当
$$z \le 0$$
时, $p_{\zeta}(z) = 0$,

当
$$z > 0$$
时, $p_{\zeta}(z) = \int_0^z 4e^{-2z} dx = 4ze^{-2z}$ 。