1. Determine whether the function below is 1-1.

$$f(x) = (3x + 18)^3$$

- A. No, because there is a y-value that goes to 2 different x-values.
- B. No, because there is an x-value that goes to 2 different y-values.
- C. Yes, the function is 1-1.
- D. No, because the range of the function is not $(-\infty, \infty)$.
- E. No, because the domain of the function is not $(-\infty, \infty)$.
- 2. Choose the interval below that f composed with g at x = 1 is in.

$$f(x) = -2x^3 + 3x^2 - 2x + 4$$
 and $g(x) = 3x^3 - 1x^2 - 4x$

- A. $(f \circ g)(1) \in [58, 61]$
- B. $(f \circ q)(1) \in [33, 38]$
- C. $(f \circ g)(1) \in [27, 32]$
- D. $(f \circ q)(1) \in [65, 75]$
- E. It is not possible to compose the two functions.
- 3. Find the inverse of the function below. Then, evaluate the inverse at x = 9 and choose the interval that $f^{-1}(9)$ belongs to.

$$f(x) = \ln(x - 4) - 2$$

- A. $f^{-1}(9) \in [59865, 59875]$
- B. $f^{-1}(9) \in [442410, 442413]$
- C. $f^{-1}(9) \in [144, 150]$
- D. $f^{-1}(9) \in [59876, 59889]$
- E. $f^{-1}(9) \in [1095, 1101]$

4. Find the inverse of the function below (if it exists). Then, evaluate the inverse at x = 11 and choose the interval that $f^{-1}(11)$ belongs to.

$$f(x) = 2x^2 - 4$$

A.
$$f^{-1}(11) \in [4.53, 5.21]$$

B.
$$f^{-1}(11) \in [3.22, 3.77]$$

C.
$$f^{-1}(11) \in [1.5, 1.96]$$

D.
$$f^{-1}(11) \in [2.07, 3.59]$$

- E. The function is not invertible for all Real numbers.
- 5. Subtract the following functions, then choose the domain of the resulting function from the list below.

$$f(x) = \frac{1}{5x - 19}$$
 and $g(x) = 5x^2 + 8x + 2$

- A. The domain is all Real numbers greater than or equal to x=a, where $a \in [-8,-2]$
- B. The domain is all Real numbers less than or equal to x = a, where $a \in [-8, 1]$
- C. The domain is all Real numbers except x = a, where $a \in [0, 8]$
- D. The domain is all Real numbers except x = a and x = b, where $a \in [4, 14]$ and $b \in [2, 12]$
- E. The domain is all Real numbers.