Arquitetura e Organização de Computadores

Capítulo 7

Entrada/saída

slide 1

© 2010 Pearson Prentice Hall. Todos os direitos reservados.

Problemas de entrada/saída

- Grande variedade de periféricos:
 - —Entregando diferentes quantidades de dados.
 - —Em velocidades diferentes.
 - —Em formatos diferentes.
- Todos mais lentos que CPU e RAM.
- Precisa de módulos de E/S.

Módulo de entrada/saída

- Interface com CPU e memória.
- Interface com um ou mais periféricos.

Dispositivos externos

- Legíveis ao ser humano:
 - -- Monitor, impressora, teclado.
- Legíveis à máquina:
 - -- Monitoração e controle.
- Comunicação:
 - --Modem.
 - —Placa de interface de rede (NIC).

Função do módulo de E/S

- Controle e temporização.
- Comunicação com CPU.
- Comunicação com dispositivo.
- Buffering de dados.
- Detecção de erro.

Etapas da E/S

- CPU verifica estado do módulo de E/S.
- Módulo de E/S retorna o estado.
- Se estiver pronto, CPU solicita transferência de dados.
- Módulo de E/S recebe dados do dispositivo.
- Módulo de E/S transfere dados à CPU.
- Variações para saída, DMA etc.

Decisões do módulo de E/S

- Ocultar ou revelar propriedades do dispositivo à CPU.
- · Admitir dispositivo múltiplo ou único.
- Controlar funções do dispositivo ou sair para CPU.
- Também decisões do SO.
 - —P.e., Unix trata de tudo o que pode como arquivo.

Técnicas de E/S

- Programada (*Polling*).
- Controlada por interface (Interrupção).
- Acesso direto à memória (DMA).

E/S programada

- CPU tem controle direto sobre E/S:
 - —Conhecendo o estado.
 - —Comandos de leitura/escrita.
 - —Transferindo dados.
- CPU espera que módulo de E/S termine a operação.
- Desperdiça tempo de CPU.

E/S programada - detalhe

- CPU solicita operação de E/S.
- Módulo de E/S realiza operação.
- Módulo de E/S altera bits de estado.
- CPU verifica bits de estado periodicamente.
- Módulo de E/S não informa à CPU diretamente.
- Módulo de E/S não interrompe CPU.
- CPU pode esperar ou voltar mais tarde.

Comandos de E/S

- CPU emite endereço:
 - —Identifica módulo (& disp. se >1 por módulo).
- CPU emite comando:
 - —Controle dizendo ao módulo o que fazer.
 - -P.e., girar disco
 - —Teste verifica estado:
 - -P.e., alimentado? Erro?
 - -Leitura/escrita:
 - Módulo transfere dados via buffer de/para dispositivo.

Endereçando dispositivos de E/S

- Sob E/S programada, transferência de dados é muito semelhante ao acesso à memória (do ponto de vista da CPU).
- · Cada dispositivo recebe identificador exclusivo.
- Comandos da CPU contêm identificador (endereço).

Mapeamento de E/S

- E/S mapeada na memória (Memory Mapped):
 - —Dispositivos e memória compartilham um espaço de endereços comum.
 - —E/S se parece com leitura/escrita na memória.
 - -Nenhum comando especial para E/S.
 - Grande seleção disponível de comandos de acesso à memória.
- E/S independente (I/O Mapped):
 - —Espaços de endereços separados.
 - —Precisa de linhas de seleção de E/S ou memória.
 - -Comandos especiais para E/S.
 - Conjunto limitado.

E/S controlada por interrupção

- Contorna problema de espera da CPU.
- Sem verificação de dispositivo repetida da CPU.
- Módulo de E/S interrompe quando estiver pronto.

E/S controlada por interrupção - Operação básica

- CPU emite comando de leitura.
- Módulo de E/S recebe dados do periférico enquanto CPU faz outro trabalho.
- Módulo de E/S interrompe CPU.
- CPU solicita dados.
- Módulo de E/S transfere dados.

Ponto de vista da CPU

- Emite comando de leitura.
- · Realiza outro trabalho.
- Verifica interrupção ao final de cada ciclo de instrução.
- Se interrompida:
 - —Salva contexto (registradores).
 - —Processa interrupção.
 - Busca dados & armazena.
- · Ver notas do sistema operacional.

Aspectos de projeto

- Como identificar o módulo que emite a interrupção?
- Como lidar com interrupções múltiplas?
 - —Ou seja, um tratador de interrupção sendo interrompido.

Identificando módulo que interrompe

- · Linha diferente para cada módulo:
 - —PC.
 - —Limita número de dispositivos.
- Verificação por software:
 - —CPU verifica cada módulo por vez.
 - -Lento.
- Daisy chain ou verificação por hardware.
 - -Interrupt Acknowledge enviado por uma cadeia.
 - -Módulo responsável coloca vetor no barramento.
 - —CPU usa vetor para identificar rotina do tratador.
- Arbitração de barramento:
 - —Módulo deve reivindicar o barramento antes que possa causar uma interrupção.
 - -P.e., PCI & SCSI.

Identificando módulo que interrompe

· Como lidar com interrupções múltiplas?

Z80A-CTC – Controlador de Prioridade de IRQ e Temporizador Programável

Z80A-SIO – Controlador Serial Multiprotocolo

Z80A-PIO – Controlador de Portas Paralelas Programável

Z80A-DMA - Controlador de DMA

Múltiplas interrupções

- Cada linha de interrupção tem uma prioridade.
- Linhas com prioridade mais alta podem interromper linhas com prioridade mais baixa.
- Com *bus mastering*, só o mestre atual pode interromper.

Exemplo - Barramento do PC

- 80x86 tem uma linha de interrupção.
- Sistemas baseados no 8086 usam um controlador de interrupção 8259A.
- 8259A tem 8 linhas de interrupção.

Sequência de eventos

- 8259A aceita interrupções.
- 8259A determina prioridade.
- 8259A signals 8086 (levanta linha INTR).
- · CPU confirma.
- 8259A coloca vetor correto no barramento de dados.
- CPU processa interrupção.

Sistema de interrupção de barramento ISA

- · Barramento ISA encadeia dois 8259As.
- Ligação é via interrupção 2.
- Gera 15 linhas:
 - —16 linhas menos uma para ligação.
- IRQ 9 é usada para redirecionar qualquer coisa tentando usar IRQ 2.
 - -Compatibilidade.
- Incorporado no chip set.

Acesso direto à memória

- E/S controlada por interrupção e programada exige intervenção ativa da CPU.
 - —Taxa de transferência é limitada.
 - —CPU fica amarrada.
- DMA é a resposta.

Função do DMA

- Módulo adicional (hardware) no barramento.
- Controlador de DMA toma o comando da CPU para E/S.

Operação do DMA

- CPU diz ao controlador de DMA:
 - —Leitura/escrita.
 - -Endereço do dispositivo.
 - —Endereço inicial do bloco de memória para dados.
 - —Quantidade de dados a serem transferidos.
- CPU prossegue com outro trabalho.
- Controlador de DMA lida com transferência.
- Controlador de DMA envia interrupção quando terminar.

Transferência de DMA - Roubo de ciclo

- Controlador de DMA assume o barramento por um ciclo.
- Transferência de uma palavra de dados.
- Não uma interrupção.
 - —CPU não troca de contexto.
- CPU suspensa logo antes de acessar o barramento.
 - —Ou seja, antes de uma busca de operando ou dados ou uma escrita de dados.
- Atrasa a CPU, mas não tanto quanto a CPU fazendo transferência.

- Único barramento, controlador de DMA integrado.
- Controlador pode aceitar mais de um dispositivo.
- Cada transferência usa barramento uma vez.
 - —DMA para memória.
- CPU é suspensa uma vez.

- Barramento de E/S separado.
- Barramento aceita todos dispositivos habilitados para DMA.
- Cada transferência usa barramento uma vez.
 - DMA para memória.
- CPU é suspensa uma vez.

Flutuando

- Enquanto DMA usa barramentos, processador fica ocioso.
- · Processador usando barramento, DMA ocioso:
 - —Conhecido como controlador de DMA flutuante.
- Dados não passam e são armazenados no chip de DMA.
 - -DMA apenas entre porta de E/S e memória.
 - Não entre duas portas de E/S ou dois locais de memória.
- Pode transferir de memória para memória via registrador.
- 8237 contém quatro canais de DMA.
 - —Programado independentemente.
 - —Qualquer um ativo.
 - -Canais numerados com 0, 1, 2 e 3.

Canais e Processadores de E/S

- Extensões do conceito de DMA.
- Dispositivos de E/S se tornam mais sofisticados.
- P.e., placas gráficas 3D.
- CPU instrui controlador de E/S a realizar transferência.
- Canal de E/S Controlador de E/S com conjunto especializado de instruções, realiza transferência completa.
- · Melhora velocidade.
 - —Retira carga da CPU.
 - -- Processador dedicado é mais rápido.
- Processador de E/S possui memória local própria e de fato é um computador separado

Interface Externa: Firewire e InfiniBand

- Interface multiponto (e não ponto a ponto)
- Conexão entre módulos de E/S e dispositivos externos.
- São barramentos externos
- P.exemplo, FireWire e InfiniBand.

EEE 1394	FireWire	9		
Barramento	eSATA	PATA	Fire Wire 1394b	USB 2.0
Velocidade atual	2.4 >Gb/s	1064 Mb/s	786 Mb/s	~375 Mb/s
Máx comp. do cabo	2 metros	46 cm	4.5 metros 16 cabos podem ser encadeados até 72 metros	
Cabo de Alimentação?	Sim	Sim	Não	Não
Dispositivos por Canal	1 (5 com multiplicador)	3 (3° disp. read -only)	63	127

IEEE 1394 FireWire

- Barramento serial de alto desempenho.
- Rápido.
- · Baixo custo.
- Fácil de implementar.
- Também sendo usado em câmeras digitais, VCRs e TV.

Configuração de FireWire

- · Daisy chain.
- Até 63 dispositivos em única porta.
 - —Na realidade, 64, dos quais um é a própria interface.
- Até 1022 barramentos podem ser conectados com pontes.
- Configuração automática.
- Sem terminações de barramento.
- Pode ser estruturada em forma de árvore.
- Hot Plugging (como USB)

Pilha de 3 camadas do FireWire

- Física:
 - —Meio de transmissão, características elétricas e de sinalização.
- Enlace:
 - —Transmissão de dados em pacotes.
- Transação:
 - —Protocolo requisição-resposta.

Fire Wire - Camada física

- Taxas de dados de 25 a 3200 Mbps.
- Duas formas de arbitração:
 - —Baseado na estrutura em forma de árvore.
 - -Raiz atua como árbitro.
 - —Primeiro a chegar, primeiro a ser atendido.
 - Prioridade natural controla requisições simultâneas, ou seja, quem está mais próximo da raiz.
- Duas funções adicionais:
 - —Arbitração imparcial (mais justa).
 - —Arbitração urgente (com prioridade).

Fire Wire - Camada de enlace

- Dois tipos de transmissão:
 - —Assíncrono:
 - Quantidade variável de dados e vários bytes de dados de transação transferidos como um pacote.
 - Para endereço explícito.
 - Confirmação retornada.
 - -Isócrono:
 - Quantidade variável de dados em sequência de pacotes de tamanho fixo em intervalos regulares.
 - Endereçamento simplificado.
 - Sem confirmação.

InfiniBand

- Especificação de E/S voltada para servidores de ponta.
 - —União da Future I/O (Cisco, HP, Compaq, IBM) e Next Generation I/O (Intel).
- Versão 1 lançada no início de 2001.
- Arquitetura e especificação para fluxo de dados entre processador e dispositivos de E/S inteligentes.
- · Pretende substituir PCI nos servidores.
- Maior capacidade, facilidade de expansão, flexibilidade.

Arquitetura InfiniBand

- Armazenamento remoto, rede e conexão entre servidores.
- Conecta servidores, armazenamento remoto, dispositivos de rede à estrutura central de comutadores e conexões.
- · Maior densidade de servidores.
- · Central de dados expansível.
- Nós independentes acrescentados conforme a necessidade.
- Distribuição de E/S do servidor até:
 - -17m usando cobre.
 - —300m usando fibra óptica multimodo.
 - —10km usando fibra óptica de monomodo.
- · Até 30Gbps.

Operação do InfiniBand

- 16 canais lógicos (pistas virtuais) por enlace físico.
- Uma pista para gerenciamento, restante para dados.
- Dados no fluxo de pacotes.
- Pista virtual dedicada temporariamente à transferência fim a fim.
- Comutador mapeia tráfego da pista de entrada para pista de saída.

