ALGEBRA Y ALGEBRA LINEAL 520142.

PRACTICA 6. FUNCIONES.

Problema 1. Para las siguientes funciones usuales, encuentre su recorrido y la gráfica de cada una de ellas. Además, analice si estas funciones son: inyectivas, sobreyectivas y biyectivas.

[En práctica 1.6).]

1.1) Dada la constante real k, la **función constante** de valor k está definida por

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto f(x) = k.$$

1.2) La **función idéntica** está definida por

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto f(x) = x.$$

1.3) Dadas las constantes reales a y b, $a \neq 0$, la función lineal afín está definida por

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto f(x) = ax + b.$$

Con b=0 se tiene la función lineal (propiamente tal); f(x)=ax. En particular, analice la función para a=-5 y b=3.

1.4) La función**raíz cuadrada** está definida por

$$f: [0, \infty[\longrightarrow \mathbb{R}, \quad x \longmapsto f(x) = \sqrt{x}.$$

donde \sqrt{x} indica el único número real, no negativo, que elevado al cuadrado da x.

1.5) La función valor absoluto está definida por

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto f(x) = |x|,$$

donde:

$$|x| = \begin{cases} x, & x > 0 \\ 0, & x = 0 \\ -x, & x < 0. \end{cases}$$

1.6) La función característica de A, para A un subconjunto cualquiera de un conjunto universo U, se define por:

$$\chi_A: U \to \{0, 1\}, \quad \chi_A(x) = \left\{ \begin{array}{ll} 1 & \mathrm{si} \ x \in A \\ 0 & \mathrm{si} \ x \notin A \end{array} \right.$$

Problema 2. Para la función característica de A. Demuestre que para todo $A, B \subseteq U$:

2.1)
$$\chi_{A \cap B} = \chi_A \chi_B$$
 2.2) $\chi_{A \cup B} = \chi_A + \chi_B - \chi_{A \cap B}$, 2.3) $\chi_{A-B} = \chi_A - \chi_{A \cap B}$. Analice el caso $A = U$ y $A = \emptyset$! [En práctica 2.2).]

Problema 3. Para la función definida de A en \mathbb{R} por

[En práctica.]

$$f: A \subseteq \mathbb{R} \longrightarrow \mathbb{R}, \quad x \mapsto f(x) = x^2 - 4x + 4.$$

- 3.1) Muestre que f no es sobreyectiva ni inyectiva.
- 3.2) Redefina f de manera que la nueva función q sea biyectiva.
- 3.3) Defina la función inversa de g.
- 3.4) Encuentre, si existe, otra restricción de f que sea invertible.

Problema 4. Muestre que la función valor absoluto es una función par y que la función identidad es impar. Además, encuentre una función par P y una función impar I de manera que la identica $f(x) = x^2 - 3x + 1, x \in \mathbb{R}$ se pueda escribir como la suma de P con I. Es decir,

$$f(x) = P(x) + I(x), \quad x \in \mathbb{R}.$$

¿Se puede generalizar a cualquier función f definida en A?.

Problema 5. Muestre que la función valor absoluto es estrictamente creciente en $[0, +\infty[$ y es estrictamente decreciente en $]-\infty, 0]$.

Demuestre que la función raíz cuadrada es estrictamente creciente y utilice este resultado para demostrar que tiene inversa. Defina su inversa y grafique ambas funciones en un mismo plano.

Observe que las gráficas son simétricas con respecto a la función identica. Esta propiedad es válidad para todas las funciones f y su inversa f^{-1} .

Problema 6. En los siguientes casos determine si la función es invertible y si lo es defina su inversa.

6.1)
$$f: Dom(f) \subseteq \mathbb{R} \longrightarrow f(Dom(f)), \quad x \mapsto f(x) = \frac{x+3}{2x-4}.$$

6.2)
$$f:[2,10] \longrightarrow f([2,10]), \quad x \mapsto f(x) = \sqrt{\frac{x+3}{x-1}}.$$
 [En práctica.]

Problema 7. Considere dos funciones polinomiales N y D definidas en \mathbb{R} . Defina las funciones $N+D, N\cdot D-kN$ y $\frac{N}{D}$, con $k\in\mathbb{R}$ indicando su dominio.

24.04.2003.

ACQ/acq.