$N^{\underline{o}}$ de ordem:	

Mestrado Integrado em Engenharia Informática e Computação Arquitetura e Organização de Computadores Teste 2

1º ano 2017-01-16 Duração 1:45 Sem consulta

Nome:	Nº de estudante:

Atenção: Este teste tem 14 questões em 6 páginas, num total de 200 pontos.

Parte I — Questões de Escolha Múltipla

Cada questão tem uma resposta certa. Respostas erradas não descontam.

As respostas às questões de escolha múltipla devem ser assinaladas com \times na grelha seguinte.

Apenas as respostas indicadas na grelha são consideradas para efeitos de avaliação.

	Questão									
Opção	1	2	3	4	5	6	7	8	9	10
A					×		×		×	
В		×	×			×				×
С	×							×		
D				×						

Pontos: / 100

- [10] 1. O código de uma instrução é 0x0137C825. Esta instrução utiliza o registo:
 - A. \$t0 B. \$t2 C. \$s7 D. \$s6
- [10] 2. O código-máquina da instrução sra \$t2, \$t1, 4 é:
 - A. 0x00095202 B. 0x00095103 C. 0x0000A4903 D. 0x0000A4A03
- [10] 3. Considere que no CPU estudado o sinal ALUSrc é sempre 1 devido a uma anomalia. Não sendo possível executar a instrução xor \$v0, \$v0, que alternativa a pode substituir levando ao mesmo resultado?
 - A. add \$v0, \$zero, \$zero
 - B. addi \$v0, \$zero, 0
 - C. sub \$v0, \$v0, \$v0
 - D. lw \$v0, 0(\$zero)
- [10] 4. A memória principal usada com um CPU de 2 GHz tem um tempo de acesso de 60 ns. O acesso à memória *cache* demora 0,5 ns. Qual deve ser o valor mínimo da taxa de faltas da memória *cache* para que o tempo médio de acesso a memória seja 10 ciclos?
 - A. 5% B. 10% C. 2,5% **D. 7,5**%
- [10] 5. Um programa gasta 50 % do tempo a executar cálculos de vírgula flutuante. Qual é o ganho de rapidez (speedup) que se poderia obter, se a unidade de vírgula flutuante fosse 5 vezes mais rápida?
 - **A.** 5/3 B. 2,5 C. 10/3 D. 2

[10] 6. Considerar o seguinte fragmento de código:

```
li $t0,0xABCD78EF
li $t1,0x00002000
sw $t0,0($t1)
lb $t3,2($t1)
```

Assumindo que o valor inicial de \$t3 é 0, qual é o seu valor final?

A. 0x000000CD B. 0xffffffCD C. Acesso ilegal D. 0x00CD0000

[10] 7. A instrução lw \$t3, 0x80004400(\$t7) não é uma instrução primitiva do processador MIPS-32. Qual dos seguintes fragmentos é equivalente a essa instrução?

```
$at, 0x8000
                                         B. and $at, $at, $zero
\mathbf{A}. lui
   add
        $at, $at, $t7
                                            addi $at, $t7, 0x4400
        $t3, 0x4400($at)
                                                  $t3, 0x8000($at)
   lw
C. lui
        $at, 0x8000
                                         D. add
                                                 $at, $at, $zero
        $at, $at, $t7
                                            addi $at, $t7, 0x8000
  or
        $t3, 0x4400($at)
                                                 $t3, 0x4400($at)
  lw
                                            lw
```

[10] 8. Considerar o seguinte fragmento de código:

```
li $t0,0xAABBCCDD

srl $t1,$t0,0x10

sll $t0,$t0,16

or $t0,$t0,$t1
```

Qual é o valor final de \$t0?

A. Oxccfffaef3 B. Oxddccaabb C. Oxccddaabb D. Oxaaccbbdd

- [10] 9. Qual das seguintes afirmações sobre uma memória cache do tipo write-back é verdadeira?
 - A. Existe a possibilidade de serem feitos 2 acessos a memória principal para apenas um acesso a memória *cache*.
 - B. O conteúdo da memória principal está sempre atualizado.
 - C. Pode haver um acesso a memória principal mesmo que o acesso a memória cache seja um acerto (hit).
 - D. Não pode ser usada como *D-cache*.
- [10] 10. Considere duas versões do mesmo programa a correrem no mesmo processador. A versão A foi produzida pelo compilador C_A e executa 2×10^{10} instruções; a versão B foi produzida pelo compilador C_B e executa $1,25 \times 10^{10}$ instruções. Para a versão A, o valor de CPI_A é de 2. A versão A é 25% mais rápida que a a versão B. Qual é o valor de CPI da versão B?

```
A. \mathrm{CPI_B} = 25/16 B. \mathrm{CPI_B} = 4 C. \mathrm{CPI_B} = 57/16 D. \mathrm{CPI_B} = 3 (Continua)
```

$N^{\underline{o}}$ de ordem:	

2016/17

Nome: ______ Nº de estudante: _____

Parte II — Questões de Resposta Aberta

Atenção: Responder diretamente no enunciado. Justificar todas as respostas.

- 11. A sub-rotina sumsel retorna a soma dos elementos de uma sequência (de N half-words) que pertencem ao intervalo [a; b]. Os parâmetros da sub-rotina são, por ordem, os seguintes: 1) endereço-base da sequência; 2) número de elementos da sequência; 3) valor de a; 4) valor de b.
- [20] (a) Completar a sub-rotina tendo em atenção as convenções relacionadas com o uso de registos.

```
$v0, $v0, $v0
sumsel: xor
ciclo:
               $a1, $zero, fim
                                               # terminar?
       beq
               $t1, 0($a0)
         lh
       slt
               $t2, $t1, $a2
                                               # limite inferior
               $t2, $zero, cont
       bne
               $t2, $a3, $t1
       slt
                                               # limite superior
               $t2, $zero, cont
               $v0, $v0, $t1
       add
               $a0, $a0, 2
cont:
       addi
               $a1, $a1, __1
       addi
               ciclo
        j
fim:
       jr
                 $ra
                                               # retornar
```

[10] (b) Para a sequência $\{-3, 3, 6, 5, 0, -5, 8, 2, -1\}$ e intervalo [-1; 6], determinar quantas instruções são executadas pela sub-rotina sumsel.

(Nota: enunciado original tinha uma gralha: [-1;6] em vez de [-1;6]. O intervalo [-1;6] é que corresponde ao código assembley apresentado. Foram consideradas corretas soluções que consideraram o intervalo [-1;6].)

- Iterações para elementos da sequência inferiores a a executam 7 instruções.
- Iterações para elementos da sequência superiores a b executam 9 instruções.
- Iterações para elementos da sequência dentro do intervalo executam 10 instruções.

Neste caso, temos N=9: Existem 2 elementos na primeira condição, 1 na segunda e 6 na terceira.

A primeira e última instruções do código são executadas apenas 1 vez cada. A instrução beq é executada ainda uma vez após as 9 iterações.

No total: $2 \times 7 + 1 \times 9 + 6 \times 10 + 3 = 86$ instruções executadas. (Nota: Para [-1; 6], o resultado seria 85.)

[10] (c) O modelo do processador usada para a execução da sub-rotina emprega um sinal de relógio com a frequência de 1 GHz. O tempo de execução da sub-rotina com os dados da alínea (b) é de 170 ns. Determinar o valor médio de ciclos por instrução (CPI).

(Nota: Se não resolveu a alínea anterior, assuma que o número de instruções executadas é 100.)

Usando a fórmula para o desempenho: $T_{exec} = N \times CPI \times \frac{1}{F}$, pode determinar-se CPI por $CPI = F \times T_{exec} \times \frac{1}{N}$.

Com N = 86, obtém-se: $CPI = 1 \times 10^9 \times 170 \times 10^{-9} \times \frac{1}{86} = \frac{86}{43}$.

(Nota: Com N=85, obtém-se: $CPI=1\times 10^9\times 170\times 10^{-9}\times \frac{1}{85}=2$. Com N=100, tem-se CPI=1,7.)

- 12. Sobre uma instrução assembly é conhecida a seguinte informação relativa a sinais e componentes que fazem parte da organização do CPU:
 - 'Read register 1' e 'Read register 2' são iguais a, respetivamente, 15 e 2;
 - O código da instrução está na posição de memória com endereço 0x00000038;
 - O valor presente na entrada 1 do multiplexador controlado por 'PCSrc' é 0x0000004C;
 - Todos os multiplexadores são úteis para a execução da instrução.

Determine qual a instrução completa em causa assumindo que se trata de uma instrução envolvendo dados de 32 bits com:

[10] (a) opcode=001000

O valor de opcode corresponde à instrução addi, restando identificar os operandos (rt, rs, imm).

Os valores de 'Read register 1' e 'Read register 2' referem-se aos registos t7 e v0, respetivamente. Portanto, rs=t7 e rt=v0.

O valor imediato é o que está presente na entrada 1 do multiplexador controlado por 'ALUSrc', podendo ser deduzido a partir do valor na entrada 1 do multiplexador controlado por 'PCSrc'. Este valor (0x0000004C) resulta da soma de (endereço da instrução + 4)=0x0000003C com o valor à saída de 'Shift left 2'. Portanto, o valor à saída de 'Shift left 2' é 0x00000010=16, concluindo-se que o valor imediato à saída de 'Sign extend' é 4.

Através dos valores deduzidos conclui-se que a instrução é addi \$v0, \$t7, 4.

[10] (b) 'MemToReg'=1

Como todos os multiplexadores são utilizados exclui-se a hipótese de ser uma instrução de salto condicional, para a qual 'MemToReg' pode assumir um valor qualquer. Sendo 'MemToReg'=1 conclui-se ser uma instrução de leitura da memória, ou seja, lw rt, imm(rs).

Através dos valores determinados na alínea anterior conclui-se que a instrução é lw \$v0, 4(\$t7).

[10] 13. Assuma que o caminho crítico das instruções beq, and e andi inclui o banco de registos. A diferença entre as latências de execução de beq e andi é 10 ps. Todos os multiplexadores têm a mesma latência

Indique o caminho crítico da instrução and e relacione a respetiva latência com a de andi.

Nas condições indicadas, os caminhos críticos de beq e andi são, respetivamente,

beq: Instruction memory \rightarrow Registers \rightarrow Mux \rightarrow ALU \rightarrow Mux

andi: $Instruction\ memory o Registers o ALU o Mux$

concluindo-se que a diferença de 10 ps traduz a latência de um multiplexador.

O caminho crítico da instrução and é

Instruction memory \rightarrow Registers \rightarrow Mux \rightarrow ALU \rightarrow Mux

O caminho crítico das instruções beq e and, embora não seja o mesmo, apresenta a mesma latência por integrar componentes iguais. Conclui-se portanto que a latência de and é superior em 10 ps à de andi porque tem um multiplexador a mais.

14. A tabela seguinte apresenta o conteúdo de uma memória *cache* do tipo *write-through* com 8 blocos de 4 bytes usada como *D-cache* num CPU com endereços de 32 bits.

	С	ont	eúd	.0	Etiqueta	v
0	aa	ff	СС	33	123456a	0
1	12	34	56	78	7bcd001	1
2	88	b0	3с	2b	7fffd55	1
3	71	ab	3f	6d	7fffd55	1
4	34	ff	13	aa	07f9910	0
5	78	00	9с	23	0000893	1
6	7a	10	9f	a3	2900002	1
7	99	43	65	b4	7f01d12	0

[10] (a) Como é decomposto o endereço para acesso à memória cache? Justifique.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5	4 3 2	1 0
Etiqueta	índice	00
27 bits	3 bits	

Offset: 2 bits.

Índice: 3 bits. Como a cache possui 8 blocos são necessários 3 bits para representar os índices

de 0 a 7.

Etiqueta: 27 bits. Como temos 32 bits e já gastamos 5, os restantes (32 - 5 = 27) serão para a

etiqueta.

[20] (b) Apresente, justificando, o conteúdo da memória cache após a execução do seguinte conjunto de instruções (se em algum caso não for possível conhecer o conteúdo escreva "indeterminado"):

1: li \$t1,0xfafafafa

2: add \$t4, \$t3, \$t2

3: li \$t4, 0x0ff32210

4: lw \$t5, 0(\$t4)

5: sub \$t5, \$t4, \$t1

6: li \$t6, Oxffffaaa8

7: sw \$t1, 4(\$t6)

	Conteúdo	Etiqueta	v
0	aa ff cc 33	123456a	0
1	12 34 56 78	7bcd001	1
2	88 b0 3c 2b	7fffd55	1
3	fa fa fa fa	7fffd55	1
4	indeterminado	07f9910	1
5	78 00 9c 23	0000893	1
6	7a 10 9f a3	2900002	1
7	99 43 65 b4	7f01d12	0

As únicas instruções que acedem à memória de dados são:

• Instrução 4:

Endereço 0x0ff32210 -> 000011111111001100100010000 | 100 | 00

Etiqueta: 0x07f9910, bloco 4.

Apesar de a etiqueta ser igual, tem-se v=0 (read miss). É necessário ler o valor da memória principal e escrevê-lo na memória cache, colocando ainda v=1.

• Instrução 7:

 $1^{\rm o}$ passo: Calcular o endereço: 0xffffaa
a8+4=0xffffaa
ac.

 $2^{\rm o}$ passo: Obter etiqueta e bloco: 0xffffaa
ac -> 111111111111111111110101010101 | 011 | 00

Etiqueta 0x7fffd55, bloco 3.

 3° passo: Verificar se é para alterar a memória cache.

O bloco 3 tem etiqueta igual e v=1 (write hit). O valor de \$t1 é escrito na memória principal e também na memória cache: o conteúdo do bloco 3 é alterado para Oxfafafafa.