

Árvores

João Paulo Dias de Almeida jp.dias.almeida@gmail.com

Universidade Federal de Sergipe

O que vamos aprender hoje?

- Entender o que é uma árvore
- Aprender os conceitos relacionados a árvore
- Conhecer os diferentes tipos de árvores
- Implementar uma árvore

Árvore: definição

- A árvore é um grafo
 - Dessa forma ela é composta por vértices e arestas
 - Nesse contexto, nós iremos chamar o vértice de nó
- Entretanto, a árvore é um grafo com limitações
 - Uma árvore é um grafo conectado, unidirecional, sem ciclos
 - Desta forma, existe apenas um caminho possível entre dois vértices
 - Não existe direção associada às arestas

Árvores: aplicações

- São utilizadas para descrever uma estrutura hierárquica
- É fácil buscar e ordenar dados
- Pode ser utilizada para:
 - Descrever páginas HTML
 - Descrever um sistema de diretórios
 - Armazenar dados
 - Otimiza busca e ordenação

Aplicações: HTML

Aplicações: diretórios

Aplicações: armazenamento

- A árvore possui um nó inicial que chamamos de raiz
 - Pode possuir zero ou mais arestas (links)
- Cada aresta no nó raiz faz referência a um ou mais filhos
 - O filho esquerdo é o primeiro nó da subárvore esquerda
 - Os filhos de um nó especifico são chamados de irmãos
 - Um nó sem filhos é chamado de folha
 - Um nó que possui filhos é chamado de pai
 - Todo nó possui um pai, exceto a raiz

- Cada nó pode possuir zero ou mais filhos
- Uma árvore pode ser vazia ou conter diversas subárvores
 - As subárvores também podem ser vazias

Árvore: altura

Árvore: nível

Árvore: profundidade

- A altura da árvore é igual ao número de arestas que conecta a raiz à sua folha mais distante
- O número de arestas de uma árvore é igual ao número de nós – 1

$$E = V - 1$$

Quantas arestas tem nesta árvore?

- O número de subárvores de um nó define o seu grau
- O grau de uma árvore é o maior grau existente em todos os seus nós
- Todo nó folha vai possuir grau zero

Árvore: ancestralidade

Árvore: ancestralidade

Árvore: descendência

Árvore: descendência

Tipos de árvores

- Existem diferentes tipos de árvores:
 - Árvore binária, R-tree, AVL, rubro-negra
- Cada nó da árvore binária pode possuir no máximo dois filhos
 - Um dos principais tipos utilizados
 - Possui grau 2

Exemplo de árvore binária em Java

```
public class BinaryTree {
     Node root; // apontador para o nó raiz
public class Node {
     int value; // valor armazenado no nó
     Node left; // apontador para o nó filho esquerdo
     Node right; // apontador para o nó filho direito
     Node(int value) {
         this.value = value;
         right = null;
         left = null;
```

Árvore binária: implementação

Referências

- SKERRIT, B. **Trees the data structure**. Disponível em: https://medium.com/brandons-computer-science-notes/trees-the-data-structure-e3cb5aabfee9. Acessado em: 28/01/2022.
- CORMEN, Thomas. Desmistificando Algoritmos. Editora Campus, 2012.
- SKIENA, Steven. The Algorithm Design Manual. 6^a edição. Springer, 2020.
- DEITEL, P., DEITEL, H. Java: Como programar. 10^a edição. Pearson, 2017.

Referências

 SANTIAGO, D. Árvores: estrutura de dados. Disponível em: https://algol.dev/arvores-estrutura-de-dados/.

Acessado em: 28/01/2022

Dúvidas?