Lezione 2. Raggiungibilità e controllabilità

Schema della lezione

- 1. Raggiungibilità di un sistema lineare stazionario a tempo discreto
- 2. Controllabilità di un sistema lineare stazionario a tempo discreto
- 3. Matlab

Ripasso

$$\begin{cases} x(k+1) = Ax(k) + Bu(k) & x(0) = x_0 \\ y(k) = Cx(k) + Du(k) & u(k), k \ge 0 \end{cases}$$

Movimento dello stato

$$x(k) = A^{k}x_{0} + \sum_{i=0}^{k-1} A^{k-i-1}Bu(i) \qquad k = 0,1,2,...$$
Movimento libero $x_{l}(k)$ dello stato $x_{f}(k)$ Movimento forzato dello stato

1. Raggiungibilità di sistemi LTI (a tempo discreto)

Si consideri il seguente sistema LTI a tempo discreto SISO

$$\begin{cases} x(k+1) = Ax(k) + Bu(k) & x \in \mathbb{R}^n \\ y(k) = Cx(k) & (1.1) \end{cases}$$

Definizione 1.1 - Stato raggiungibile

Uno stato \ddot{x} del sistema (1.1) si dice **raggiungibile** se esistono

- un istante di tempo finito $\widetilde{k} > 0$
- un ingresso $\widetilde{u}(k)$, $0 \le k \le \widetilde{k} 1$

tali che, detto $x_f(k)$, $0 \le k \le \widetilde{k}$ il movimento forzato dello stato generato da $\widetilde{u}(k)$ risulti

$$x_f(\widetilde{k}) = \sum_{i=0}^{\widetilde{k}-1} A^{\widetilde{k}-i-1} B\widetilde{u}(i) = \widetilde{x}$$

Definizione 1.2 - Sottospazio di raggiungibilità

Si definisce sottospazio di raggiungibilità X^R il sottoinsieme dello spazio di stato i cui elementi sono stati raggiungibili.

Definizione 1.3 - Sistema completamente raggiungibile

Un sistema i cui stati siano tutti raggiungibili si dice completamente raggiungibile.

Nota Bene

Il sottospazio di raggiungibilità di un sistema completamente raggiungibile coincide con l'intero spazio di stato.

Teorema 1.1

Il sistema (1.1) è completamente raggiungibile se e solo se il rango della **matrice di raggiungibilità** M_r è pari all'ordine n del sistema, dove:

$$M_r = \begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix}$$

 M_r ha dimensioni $n \times n$ (nel caso SISO)

Corollario

Il sottospazio di raggiungibilità X^R coincide con l'immagine della matrice di raggiungibilità M_r , cioè

$$X^R = \mathfrak{T}\mathfrak{m}(M_r) = \{x : x = M_r w \ \forall w \in \mathfrak{R}^n\}$$
 (nel caso SISO)

Esempio

$$x(k+1) = Ax(k) + Bu(k)$$
 $A = \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix}$ $B = \begin{bmatrix} 1 \\ \alpha \end{bmatrix}$

Studiare la raggiungibilità al variare di α .

$$M_r = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 1 & 2 - \alpha \\ \alpha & -4 + 2\alpha \end{bmatrix}$$

Il rango di M_r è massimo se e solo se det $M_r \neq 0$

$$\det M_r = -4 + 2\alpha - 2\alpha + \alpha^2 = \alpha^2 - 4$$

Il sistema è completamente raggiungibile se e solo se $\alpha \neq \pm 2$ In questo caso il sottospazio di raggiungibilità X^R coincide con l'intero spazio di stato, cioè $X^R = R^2$ Si analizzi il caso critico $\alpha = -2$

$$M_r = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ -2 & -8 \end{bmatrix}$$

Si nota subito che la seconda colonna è il quadruplo della prima e quindi M_r non ha rango pieno ed il sistema non è completamente raggiungibile.

Si calcoli il sottospazio di raggiungibilità X^R . Per definizione

$$X^R = \mathfrak{Tm}(M_r) = \{x : x = M_r w \ \forall w \in \mathfrak{R}^2\}$$

Quindi
$$w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

 $x \in X^R$, $x=M_r w$, per ogni w

$$x = \begin{bmatrix} 1 & 4 \\ -2 & -8 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} w_1 + 4w_2 \\ -2w_1 - 8w_2 \end{bmatrix} \implies \begin{cases} x_1 = w_1 + 4w_2 \\ x_2 = -2w_1 - 8w_2 = -2x_1 \end{cases}$$

$$\begin{cases} x_1 & \text{qualsiasi} \\ x_2 & = -2x_1 \end{cases}$$

Per il caso critico $\alpha=2$

$$M_r = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}$$

Il rango di M_r è 1 e quindi il sistema non è completamente raggiungibile.

Si calcoli il sottospazio di raggiungibilità X^R .

$$x \in X^R$$
, $x=M_r w$, per ogni w

$$x = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} w_1 \\ 2w_1 \end{bmatrix} \implies \begin{cases} x_1 = w_1 \\ x_2 = 2w_1 = 2x_1 \end{cases}$$
$$\begin{cases} x_1 \text{ qualsiasi} \\ x_2 = 2x_1 \end{cases}$$

Si calcoli la funzione di trasferimento (supponendo $y(k)=x_1(k)$)

$$W(z) = C(zI - A)^{-1}B = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} z - 2 & 1 \\ 4 & z - 2 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ \alpha \end{bmatrix} = \frac{1}{z^2 - 4z} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} z - 2 & -1 \\ -4 & z - 2 \end{bmatrix} \begin{bmatrix} 1 \\ \alpha \end{bmatrix} = \frac{z - 2 - \alpha}{z^2 - 4z}$$

Giustamente, per $\alpha=\pm 2$ c'è una cancellazione!

Si osservi che, usando una qualsiasi altra trasformazione di uscita, non sarebbe cambiato nulla!

Esempio numerico

Definiamo il sistema da studiare

Il sistema è completamente raggiungibile.

Proviamo a dare in ingresso al sistema un ingresso casuale

F. Previdi - Controlli Automatici - Lez. 2

Disegnamo ora la traiettoria nello spazio di stato $(x_2 \text{ vs } x_1)$

E' empirico! Ma si nota che la traiettoria "occupa" tutto lo spazio di stato.

Ora modifichiamo la matrice B di ingresso in modo da rendere il sistema non completamente raggiungibile (è un sistema diverso!!).

Il sistema non è completamente raggiungibile.

Proviamo a dare in ingresso al sistema lo stesso ingresso casuale di prima

F. Previdi - Controlli Automatici - Lez. 2

Disegnamo ora la traiettoria nello spazio di stato $(x_2 \text{ vs } x_1)$

E' empirico! Ma si nota che la traiettoria "occupa" solo un sottospazio dello spazio di stato. Sarà il sottospazio di raggiungibilità?

F. Previdi - Controlli Automatici - Lez. 2

Esempio

$$S_1 \begin{cases} x_1(k+1) = \alpha x_1(k) + v(k) \\ w(k) = x_1(k) \end{cases}$$

$$S_2 \begin{cases} x_2(k+1) = -x_2(k) + 2w(k) \\ h(k) = x_2(k) \end{cases}$$

$$S_3 \begin{cases} x_3(k+1) = -x_3(k) + 3w(k) \\ y(k) = x_3(k) \end{cases}$$

Il sistema complessivo è

$$\begin{cases} x_{1}(k+1) = \alpha x_{1}(k) + v(k) = \alpha x_{1}(k) - x_{2}(k) + u(k) \\ x_{2}(k+1) = -x_{2}(k) + 2x_{1}(k) \\ x_{3}(k+1) = -x_{3}(k) + 3x_{1}(k) \\ y(k) = x_{3}(k) \end{cases}$$

$$\mathbf{x}(k+1) = \begin{bmatrix} \alpha & -1 & 0 \\ 2 & -1 & 0 \\ 3 & 0 & -1 \end{bmatrix} \mathbf{x}(k) + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u(k)$$

$$v(k) = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \mathbf{x}(k)$$

Studiare la raggiungibilità al variare di α.

$$M_r = \begin{bmatrix} B & AB & A^2B \end{bmatrix} = \begin{bmatrix} 1 & \alpha & \alpha^2 - 2 \\ 0 & 2 & 2\alpha - 2 \\ 0 & 3 & 3\alpha - 3 \end{bmatrix}$$

Il rango di M_r è massimo se e solo se $\det M_r \neq 0$

$$\det M_r = -6 + 6\alpha - 6\alpha + 6 = 0$$

Non esiste alcun valore di α per cui il sistema è completamente raggiungibile.

Il numero di colonne linearmente indipendenti in M_r è 2, quindi dim $X^R=2$.

Esempio

Riprendendo l'esempio iniziale:

Anche a tempo continuo!! (con qualche differenza)

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases} A = \begin{bmatrix} -\frac{R}{L} & -\frac{R}{L} \\ -\frac{R}{L} & -\frac{R}{L} \end{bmatrix} B = \begin{bmatrix} \frac{R}{L} \\ \frac{R}{L} \end{bmatrix}$$

$$B = \begin{bmatrix} \frac{R}{L} \\ \frac{R}{L} \end{bmatrix}$$

$$C = \begin{bmatrix} -R & -R \end{bmatrix}$$
 $D = R$

La matrice di raggiungibilità è:

$$M_r = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} \frac{R}{L} & -\frac{2R^2}{L^2} \\ \frac{R}{L} & -\frac{2R^2}{L^2} \end{bmatrix} \qquad \det M_r = 0$$

rango di $M_r = 1$

Il sistema non è completamente raggiungibile.

2. Controllabilità di sistemi LTI (a tempo discreto)

Si consideri il seguente sistema LTI a tempo discreto

$$\begin{cases} x(k+1) = Ax(k) + Bu(k) \\ y(k) = Cx(k) \end{cases}$$
 (2.1)

Definizione 2.1 - Stato controllabile

Uno stato \ddot{x} del sistema (2.1) si dice controllabile se esistono

- un istante di tempo finito $\widetilde{k} > 0$
- un ingresso $\widetilde{u}(k)$, $0 \le k \le \widetilde{k} 1$

tali che il movimento dello stato generato da $\widetilde{u}(k)$ con condizione iniziale \check{x} risulti nullo, cioè

$$x(\tilde{k}) = A^{\tilde{k}}\tilde{x} + \sum_{i=0}^{k-1} A^{\tilde{k}-i-1}B\tilde{u}(i) = 0$$

F. Previdi - Controlli Automatici - Lez. 2

Definizione 2.2 - Sottospazio di controllabilità

Si definisce sottospazio di controllabilità X^C il sottoinsieme dello spazio di stato i cui elementi sono stati controllabili.

Definizione 2.3 - Sistema completamente controllabile

Un sistema i cui stati siano tutti controllabili si dice completamente controllabile.

Nota Bene

Il sottospazio di controllabilità di un sistema completamente controllabile coincide con l'intero spazio di stato.

Teorema 2.1

Se un sistema è completamente raggiungibile allora è anche completamente controllabile. Il viceversa è vero solo se la matrice A è non singolare .

A tempo continuo Raggiungibilità Controllabilità

Conseguenze

Per verificare se un sistema è completamente controllabile basta verificare se la matrice di raggiungibilità M_r ha rango pieno.

 $\ igotimes$ Il sottospazio di controllabilità è anch'esso l'immagine della matrice di raggiungibilità M_r .

Esempio

$$x(k+1) = Ax(k) + Bu(k)$$
 $A = \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix}$ $B = \begin{bmatrix} 1 \\ \alpha \end{bmatrix}$

Studiare la controllabilità al variare di α .

Il sistema è completamente raggiungibile se e solo se $\alpha \neq \pm 2$ (vedi Esempio precedente).

A tempo discreto la raggiungibilità implica la controllabilità (vedi Teo. 2.1), quindi il sistema è anche completamente controllabile se e solo se $\alpha \neq \pm 2$.

In questo caso il sottospazio di controllabilità X^C coincide con l'intero spazio di stato, cioè $X^C = R^2$

Nota finale

A conferma del fatto che raggiungibilità e controllabilità sono due **proprietà** strutturali si osservi che le proprietà della matrice di raggiungibilità sono indipendenti dalla particolare rappresentazione di stato del sistema. Infatti, si considerino due sistemi

$$(A,B,C,D)\sim (\widetilde{A},\widetilde{B},\widetilde{C},\widetilde{D})$$

legati dalla trasformazione di equivalenza T.

Si consideri la matrice di raggiungibilità di $(\widetilde{A}, \widetilde{B})$. Si ha:

$$\begin{split} \widetilde{M}_r &= \begin{bmatrix} \widetilde{B} & \widetilde{A}\widetilde{B} & \widetilde{A}^2\widetilde{B} & \cdots & \widetilde{A}^{n-1}\widetilde{B} \end{bmatrix} = \\ &= \begin{bmatrix} TB & TAT^{-1}TB & TA^2T^{-1}TB & \cdots & TA^{n-1}T^{-1}TB \end{bmatrix} = \\ &= T\begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix} = TM_r \end{split}$$

$$\widetilde{M}_r = TM_r$$

rango di
$$M_r$$
 = rango di \widetilde{M}_r

4. Matlab

Calcolo della matrice di raggiungibilità

```
>> Mr=ctrb (A, B)
```

Calcolo del rango di una matrice

```
>> rank (Mr)
```

Calcola una base ortonormale per il range (lo span o immagine) di una matrice

```
>> Q=orth (Mr)
```