Лабораторная работа 17

Задания для самостоятельной работы

Герра Гарсия Паола Валентина

Содержание

Цель работы
Выполнение лабораторной работы
Моделирование работы вычислительного центра
Модель работы аэропорта
Моделирование работы морского порта
Выводы

Цель работы

Реализовать с помощью gpss модели работы вычислительного центра, аэропорта и морского порта.

Задание

Реализовать с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.

Выполнение лабораторной работы

Моделирование работы вычислительного центра

На вычислительном центре в обработку принимаются три класса заданий А, В и С. Исходя из наличия оперативной памяти ЭВМ задания классов А и В могут решаться одновременно, а задания класса С монополизируют ЭВМ. Задачи класса С загружаются в ЭВМ, если она полностью свободна. Задачи классов А и В могут дозагружаться к решающей задаче.

Смоделируем работу ЭВМ за 80 ч. и определим её загрузку.

Построим модель (рис. [-@fig:001]).

```
model 17_1.gps
 ram STORAGE 2
 ;моделирование заданий класса А
 GENERATE 20,5
 QUEUE class A
 ENTER ram, 1
 DEPART class A
 ADVANCE 20,5
 LEAVE ram, 1
 TERMINATE 0
 ;моделирование заданий класса В
 GENERATE 20,10
 QUEUE class A
 ENTER ram, 1
 DEPART class A
 ADVANCE 21,3
 LEAVE ram, 1
 TERMINATE 0
 ;моделирование заданий класса С
 GENERATE 28,5
 QUEUE class A
 ENTER ram, 2
 DEPART class A
 ADVANCE 28,5
 LEAVE ram, 2
 TERMINATE 0
 ;таймер
 GENERATE 4800
 TERMINATE 1
 START 1
```

Модель работы вычислительного центра

Задается хранилище ram на две заявки. Затем записаны три блока: первые два обрабатывают задания класса A и B, используя один элемент ram, а третий обрабатывает задания класса C, используя два элемента ram. Также есть блок времени генерирующий 4800 минут (80 часов).

После запуска симуляции получаем отчёт (рис. [-@fig:002], [-@fig:003]).

odel 17_1.1.1	- REPORT				
	TART TIME	END TIME	BIOCHE	FACILITIES	STODACES
5	0.000				
	0.000	4800.000) <u>2</u> 3	U	1
	NAME				
CI	ASS A	10	0001.000		
RA	.м	10	000.000		
ABEL	LOC BLO	CK TYPE	ENTRY COU	NT CURRENT C	OUNT RETRY
	1 GEN	ERATE	240	0	0
	2 QUE	ERATE UE ER ART	240	4	0
	3 ENT	ER	236	0	0
	4 DEP	ART	236	0	0
	5 ADV	ANCE	236	1	0
	6 LEA	VE	235	0	0
	7 TER	MINATE	235	0	0
	8 GEN	ERATE	236	0	0
	9 QUE	UE	236	5	0
	10 ENT	ER	231	0	oʻ
	11 DEP	ART	231	0	
		ANCE		1	
	13 LEA	VE	230	0	0
	14 TER	MINATE	230	0	0
	15 GEN	ERATE	172	0	0
	16 QUE	UE	172	172	0
	17 ENT	ER	0	0	0
	18 DEP	ART	0	0	0
	19 ADV	ANCE	0	0	0
	20 LEA	VE	0	0	0
	21 TER	MINATE	0	0	0
	22 GEN	ERATE	1	0	0
	23 TER	MINATE	1	0	0

Отчёт по модели работы вычислительного центра

QUEUE CLASS_1		MAX CONT. 183 181					AVE.(-0) RETR 688.354 0
STORAGE RAM				X. ENTRI 2 46			IL, RETRY DELAY 994 0 181
FEC XN	PRI	BDT	ASSEM	CURRENT	NEXT	PARAMETER	VALUE
650	0	4803.512	650	0	1		
636	0	4805.704	636	5	6		
651	0	4807.869	651	0	15		
637	0	4810.369	637	12	13		
652	0	4813.506	652	0	8		
653	0	9600.000	653	0	22		

Отчёт по модели работы вычислительного центра

Из отчета увидим, что загруженность системы равна 0.994.

Модель работы аэропорта

Самолёты прибывают для посадки в район аэропорта каждые 10 ± 5 мин. Если взлетно-посадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром.

В аэропорту через каждые 10 ± 2 мин к взлетно -посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна. Для взлета и посадки самолёты занимают полосу ровно на 2 мин. Если при

свободной полосе одновременно один самолёт прибывает для посадки, а другой – для взлёта, то полоса предоставляется взлетающей машине.

Требуется:

- выполнить моделирование работы аэропорта в течение суток;
- подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром;
- определить коэффициент загрузки взлетно-посадочной полосы.

Построим модель (рис. [-@fig:004]).

```
model 17_2.gps
GENERATE 10,5,,,1
ASSIGN 1,0
 QUEUE arrival
 landing GATE NU runway, wait
 SEIZE runway
DEPART arrival
ADVANCE 2
RELEASE runway
 TERMINATE 0
 ;ожидание
 wait TEST L p1,5,goaway
ASSIGN 1+,1 ;если значение атрибута меньше 5,
 ;то счетчик прибавляет 1(круг) и идет попытка приземления
 TRANSFER 0, landing
 goaway SEIZE reserve
 DEPART arrival
 RELEASE reserve
 TERMINATE 0
GENERATE 10,2,,,2
 QUEUE takeoff
 SEIZE runway
 DEPART takeoff
 ADVANCE 2
 RELEASE runway
 TERMINATE 0
 ; таймер
 GENERATE 1440
 TERMINATE 1
 START 1
```

Модель работы аэропорта

Блок для влетающих самолетов имеет приоритет 2, для прилетающий приоритет 1 (чем выше значение, тем выше приоритет). Происходит проверка: если полоса пустая, то заявка просто отрабатывается, если нет, то происходит переход в блок ожидания. При ожидании заявка проходит в цикле 5 раз, каждый раз проверяется не освободилась ли полоса, если освободилась – переход в блок обработки, если нет – самолет обрабатывается дополнительным обработчиком отправления в запасной аэродром. Время задаем в минутах – 1440 (24 часа).

После запуска симуляции получаем отчёт (рис. [-@fig:005], [-@fig:006]).

	3	,	,		(1		O	J, F - O
model 17_	_2.4.1 - REPORT							
	c	уббо:	та, июня 15,	2024 19	:09:52			
	START TIM					ACILITIES		
	0.00	0	1440	.000	26	1		0
	NAME			VAL	ישו			
	ARRIVAL			10002.				
	GOAWAY			14.				
	LANDING				000			
	RESERVE			UNSPEC				
	RUNWAY			10001.				
	TAKEOFF			10000.				
	WAIT			10.				
LABEL			BLOCK TYPE			CURRENT		
		1	GENERATE		146		0	0
			ASSIGN		146		0	0
			QUEUE		146		0	0
LANDING		-	GATE		184		0	0
			SEIZE		146		0	0
			DEPART		146		0	0
			ADVANCE		146		0	0
		8	RELEASE		146		0	0
			TERMINATE		146		0	0
WAIT			TEST		38		0	0
	_		ADVANCE		38		0	0
			ASSIGN TRANSFER		38 38		0	0
GOAWAY			SEIZE		0		0	0
GUAWAI		.5	DEPART		0		0	0
			RELEASE		0		0	0
	_		TERMINATE		0		0	0
	_		GENERATE		142		0	0
			QUEUE		142		0	0
	_	0	SEIZE		142		0	0
		1	DEPART		142		0	0
		2	ADVANCE		142		0	0
	2	3	RELEASE		142		0	0
	2	4	TERMINATE		142		0	0
	2	25	GENERATE		1		0	0
	2	6	TERMINATE		1		0	0

Отчёт по модели работы аэропорта

FACILITY RUNWAY	:	ENTRIE 288		IL. 1	AVE. TIME 2.00	AVAIL.	OWNER 0		INTER 0	RETRY 0	DELAY 0
QUEUE TAKEOFF ARRIVAL		MAX 1 2	0	142	ENTRY(0) 114 114	0.017	1	0.173	3	0.880	0
	PRI 2 1 0	BD 1440 1445 2880	.749	ASSEI 290 291 292	0	T NEXT 18 1 25	PARAI	METER	VAI	LUE	

Отчёт по модели работы аэропорта

Взлетело 142 самолета, село 146, а в запасной аэропорт отправилось 0. В запасной аэропорт не отправились самолеты, поскольку процессы обработки длятся всего 2 минуты, что намного быстрее, чем генерации новых самолетов. Коэффициент загрузки полосы равняется 0.4, полоса большую часть времени не используется.

Моделирование работы морского порта

Морские суда прибывают в порт каждые $[\alpha \pm \delta]$ часов. В порту имеется N причалов. Каждый корабль по длине занимает M причалов и находится в порту $[b \pm \varepsilon]$ часов. Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта.

Рассмотрим два варианта исходных данных:

```
1) a = 20 \text{ y}, \delta = 5 \text{ y}, b = 10 \text{ y}, \varepsilon = 3 \text{ y}, N = 10, M = 3;
```

2)
$$a = 30 \text{ y}, \delta = 10 \text{ y}, b = 8 \text{ y}, \varepsilon = 4 \text{ y}, N = 6, M = 2.$$

Первый вариант модели

Построим модель для первого варианта (рис. [-@fig:007]).

```
model 17_3.gps

pier STORAGE 10
GENERATE 20,5

;моделирование занятия причала
QUEUE arrive
ENTER pier,3
DEPART arrive
ADVANCE 10,3
LEAVE pier,3
TERMINATE 0

;таймер
GENERATE 24
TERMINATE 1
START 180
```

Модель работы морского порта

После запуска симуляции получаем отчёт (рис. [-@fig:008]).

	START T	IME 000			FACILITIES 0		
	NAME ARRIVE PIER			VALUE 10001.000 10000.000			
LABEL		1 GE 2 QU 3 EN 4 DE 5 AD 6 LE 7 TE 8 GE	NERATE EUE	215 215 215 215 215 214 214 180	0 1 0 0	0 0 0 0 0 0	
QUEUE ARRIVE		MAX CONT 1 0	. ENTRY ENT	TRY(0) AVE.0 215 0.0	CONT. AVE.TIM	E AVE.(-0) RETRY 0 0.000 0	Z
STORAGE PIER						UTIL. RETRY DELAY 0.148 0 0	
395 396	0	4324.260 4335.233	ASSEM 0 395 396 397	5 6 0 1	KT PARAMETER	VALUE	

Отчет по модели работы морского порта

При запуске с 10 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 3 (рис. [-@fig:009]), получаем оптимальный результат, что видно на отчете (рис. [-@fig:010]).

```
model 17_3.gps

pier STORAGE 3
GENERATE 20,5

;моделирование занятия причала
QUEUE arrive
ENTER pier,3
DEPART arrive
ADVANCE 10,3
LEAVE pier,3
TERMINATE 0

;таймер
GENERATE 24
TERMINATE 1
START 180
```

Модель работы морского порта с оптимальным количеством причалов

	START T	IME		EN	D TIM	E BLO	OCKS	FAC	ILITIES	STO	RAGES	
	0.	000		43	320.00	0	9		0		1	
	NAME					VAL	UE					
	ARRIVE				1	0001.	000					
	PIER				1	0000.	000					
LABEL		T.OC	BLO	CK TYP	PE.	ENTR	y com	NT C	URRENT	COUNT	RETRY	
		1					215			0		
		2					215			0	0	
		3	ENTE	ER			215			0	0	
		4	DEP	ART			215			0	0	
		5	ADV	ANCE			215			1	0	
		6	LEAV	/E			214			0	0	
		7	TER	MINATE			214			0	0	
		8	GENE	ERATE			180			0	0	
		9	TER	MINATE		:	180			0	0	
OUEUE		MAX C	ONT.	ENTRY	ENTR	Y(0)	AVE.C	ONT.	AVE.TI	ME	AVE.(-0) RETRY
ARRIVE											0.00	
STORAGE												
PIER		3	0	0	3	6	45	1	1.485	0.49	5 0	0
FEC XN	DDT	BDT		7000	M CII	премт	NEV	T D	ARAMETE		שווזמט	
395		4324.							ARAPIE I E		VALUE	
395												
397	0	4335.	000	205	,	0	- 8					

Отчет по модели работы морского порта с оптимальным количеством причалов

Второй вариант модели

Построим модель для второго варианта (рис. [-@fig:011]).

```
model 17_3.gps

pier STORAGE 6
GENERATE 30,10

;моделирование занятия причала
QUEUE arrive
ENTER pier,2
DEPART arrive
ADVANCE 8,4
LEAVE pier,2
TERMINATE 0

;таймер
GENERATE 24
TERMINATE 1
START 180
```

Модель работы морского порта

После запуска симуляции получаем отчёт (рис. [-@fig:012]).

model 1/	_3.3.1 - REPO	K I						
	START T	IME	END	TIME B	LOCKS F	ACILITIES	STORAGES	
	0.	000	432	0.000	9	0	1	
	NAME			VA	LUE			
	ARRIVE			10001				
	PIER			10000	.000			
LABEL							OUNT RETRY	
			GENERATE OUEUE			_	0	
			ENTER				0	
		_	DEPART		143	0	_	
			ADVANCE			1	-	
		_	LEAVE		142	0	_	
			TERMINATE		142	-	0	
		8	GENERATE		180		0	
		9	TERMINATE		180	0	0	
_							E AVE. (-0)	
ARRIVE		1	0 143	143	0.000	0.00	0.000	0
STORAGE		CAP. R	EM. MTN. M	AX. ENT	RIES AVI	. AVE.C.	UTIL. RETRY	DELAY
PIER							0.087 0	
		-	-					-
FEC XN			ASSEM			PARAMETER	VALUE	
322			92 322					
324	0	4336.6	99 324	0	1			
325	0	4344.0	00 325	0	8			

Отчет по модели работы морского порта

При запуске с 6 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 2 (рис. [-@fig:013]), получаем оптимальный результат, что видно из отчета (рис. [-@fig:014]).

```
model 17_3.gps

pier STORAGE 2
GENERATE 30,10

;моделирование занятия причала
QUEUE arrive
ENTER pier,2
DEPART arrive
ADVANCE 8,4
LEAVE pier,2
TERMINATE 0

;таймер
GENERATE 24
TERMINATE 1
START 180
```

Модель работы морского порта с оптимальным количеством причалов

model 17	_3.6.1 - REPOR	Т					
	START TI		END TIME 4320.000		FACILITIES 0	STORAGES 1	
	NAME ARRIVE PIER		100	VALUE 001.000 000.000			
LABEL		LOC BLOCK 1 GENER 2 QUEUE 3 ENTER 4 DEPAR 5 ADVAN 6 LEAVE 7 TERMI 8 GENER 9 TERMI	ATE T CE NATE ATE	NTRY COUL 143 143 143 143 143 142 142 180 180	NT CURRENT CC 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	
QUEUE ARRIVE	1					E AVE.(-0) RE	
STORAGE PIER	(JTIL. RETRY DEI	
324	0	BDT 4325.892 4336.699 4344.000	322 5 324 0	6) 1	T PARAMETER	VALUE	

Отчет по модели работы морского порта с оптимальным количеством причалов

Выводы

В результате выполнения данной лабораторной работы я реализовала с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.