Growth Functions and Asymptotic Analysis (I)

Instructor: Krishna Venkatasubramanian

CSC 212

Announcements

Go to office hours.

Next Quiz Sept 24 (next Tuesday).

 Everything covered on Sept 12 and this week are fair game for the quiz.

Same format as today's quiz.

Running Time of Algorithms

- Running time of algorithm determines how "quickly" it executes.
- Computed based on # of basic steps in the algorithm that are executed
 - Loops result in repeated computational sets leading to larger running time than those without
- Size of the inputs can also affect number of basic steps
 - Sorting longer arrays need more time than shorter ones!
 - In such cases, size of input usually dictates # of basic steps!

Runtime affected by # of Basic Steps

- Two algorithms for performing the same tasks can have different running times depending upon # of steps it has
- Here, the size of the input is the same --- 1 number --- but the presence of loops dictates running time.

```
import time
def SumOfN(n):
  start = time.time()
  theSUM = 0
                                                     Sum of N with for loop
  for i in range(1,n+1):
                      w/ FOR LOOP
     theSUM +=i
                                                     Sum is 500000500000 required
                                                                                           0.0627120 seconds
  end = time.time()
                                                                                           0.0636330 seconds
                                                     Sum is 500000500000 required
                                                     Sum is 500000500000 required
                                                                                           0.0593448 seconds
  return theSUM, end-start
                                                     Sum is 500000500000 required
                                                                                           0.0563250 seconds
def directSumOfN(n):
                                                     Sum is 500000500000 required
                                                                                           0.0615969 seconds
  start = time.time()
                                                     Sum of N function direct
  theSUM = (n*(n+1))/2
                    DIRECT SUMMATION
  end = time.time()
                                                     Sum is 500000500000 required
                                                                                           0.0000012 seconds
  return theSUM,end-start
                                                     Sum is 500000500000 required
                                                                                           0.0000000 seconds
                                                     Sum is 500000500000 required
                                                                                           0.0000000 seconds
def main():
                                                                                           0.0000012 seconds
                                                     Sum is 500000500000 required
  print("Sum of N with for loop")
                                                     Sum is 500000500000 required
                                                                                           0.0000007 seconds
  for i in range(5):
     print("Sum is %d required %10.7f seconds"%SumOfN(1000000))
  print("Sum of N function direct ")
  for i in range(5):
     print("Sum is %d required %10.7f seconds"%directSumOfN(1000000))
```

Runtime affected by input size: Insertion Sort (Recap)

```
Assume n elements
                                                                          Cost
                                                                                      Times
def InsertionSort(A)
                                                                            c1
                                                                                        n
          for k in range(1, len(A))
                                                                            c2
                                                                                        n-1
                     kev = A \lceil k \rceil
                                                                                        n -1
                                                                             c4
                    i = k - 1
                                                                                           WHY?
                                                                                       \sum_{i=1}^{n} t_i
                    while i > 0 and A[i] > key
                                                                            c5
                                                                                       \sum_{i=1}^{n} (t_i - 1)
                                                                             c6
                               A \Gamma i + 17 = A \Gamma i 7
                               i = i - 1
                                                                                      \sum_{i=1}^{n} (t_i - 1)
                                                                            c7
                    A \Gamma i + 17 = kev
                                                                             c8
                                                                                        n-1
```

$$T(n) = c1 * n + c2(n-1) + c4(n-1) + c5\sum_{j=1}^{n} t_j + c6\sum_{j=1}^{n} (t_j - 1) + c7\sum_{j=1}^{n} (t_j - 1) + c8(n-1)$$

Θ-notation

- **Definition:** For a given function g(n), $\Theta(g(n))$ is a **set of functions** such that
 - $\Theta(g(n)) = \{f(n): \text{ there exists positive constants c1, c2, and n0 s.t. } 0 \le c1g(n) \le f(n) \le c2g(n) \text{ for all n} \ge n0 \}$
- This is called an asymptotic tightbound for f(n)
 - Really, $f(n) \in \Theta(g(n))$
- For all values of $n \ge n0$ the value of f(n) is between the c1g(n) and c2g(n) belt.
- Focus on large values of n

Θ-notation: Example

- Assume $f(n) = 1/2n^2 3n$
- We say $f(n) = \Theta(n^2)$, if this is true then
 - $c1n^2 <= 1/2n^2 3n <= c2n^2$
 - c1 <= 1/2 3/n <=c2

Remember:

c1,c2 and n are positive constants

- The right inequality is true for n>=1 and c2 >= ½
- The left inequality is true for n>=7 and c1 <= 1/14
- Thus if we choose
 - c1 = 1/14, $c2 = \frac{1}{2}$, and c1 = 7 we can make the inequality true
- Thus $f(n) = \Theta(n^2)$
- Note, other c1, c2, and n0 may also exist that make the inequality true
- Suffice it to say, that we can find one groups of values

Θ-notation

- In the running time of an algorithm, lower order terms are ignored.
 - For large values of n, the lower order terms become minuscule compared to the highest-order term
 - E.g., For $T(n) = an^2 + bn + c$, the value of n^2 will dominate values of b^*n or c or a for large values of n
- More generally, for any polynomial

```
p(n) = \sum_{i=0}^{d} a_i n^i where a_i is a constant and a_d > 0, p(n) = \Theta(n^i)
```

• Similarly, for a zero—degree polynomial q(n) or a constant function --- e.g., a given algorithm step

$$q(n) = \Theta(n^0) = \Theta(1)$$

- Called the Asymptotic Tight-bound!
 - Asymptotic means for large n
 - Tight-bound because we have found the function that describes the algorithm's running time to with a constant multiple above and below

O-notation

- **Definition:** For a given function g(n), O(g(n)) is a **set** of functions such that
 - $O(g(n)) = \{f(n): \text{ there exists } positive constants c, and n0 s.t. } 0 \le f(n) \le cg(n) \text{ for all } n \ge n0$
- This is called an asymptotic upper-bound for f(n)
- For all values of $n \ge n0$ the value of f(n) is always <= cg(n)
- Focus on large values of n

n >> n0

O-notation: Example

- Assume $f(n) = 1/2n^2 3n$
- We say $f(n) = O(n^2)$, if this is true then
 - $0 \le 1/2n^2 3n \le cn^2$
 - 0 <= 1/2 3/n <=c

- Remember: c and n are positive constants
- The right inequality is true for n>=1 and c>= 1/2
- The left inequality is true for n >=4
- Thus if we choose
 - $c = \frac{1}{2}$, and n0 = 4 we can make the inequality true
- Thus $f(n) = O(n^2)$
- Called the Asymptotic Upper-bound!
 - Asymptotic means for large n
 - Tight-bound because we have found the function that describes the algorithm's running time to with a constant multiple above

Practice

• What is the Asymptotic Relationship (O or Θ – notation) between

- n^k in terms of c^n (assuming c > 1 and k > 1)
- lg n lg 17 in terms of lg 17 lg n
- log₂n in terms of log₈n --- [tricky work it out]
- 3nlog₈n in terms of n³lg n

Θ-notation (RECAP)

- **Definition:** For a given function g(n), $\Theta(g(n))$ is a **set of functions** such that
 - $\Theta(g(n)) = \{f(n): \text{ there exists positive constants c1, c2, and n0 s.t. } 0 \le c1g(n) \le f(n) \le c2g(n) \text{ for all n} \ge n0 \}$
- This is called an asymptotic tightbound for f(n)
 - Really, $f(n) \in \Theta(g(n))$
- For all values of $n \ge n0$ the value of f(n) is between the c1g(n) and c2g(n) belt.
- Focus on large values of n

O-notation (RECAP)

- **Definition:** For a given function g(n), O(g(n)) is a **set** of functions such that
 - $O(g(n)) = \{f(n): \text{ there exists }$ positive constants c, and n0 s.t. $0 \le f(n) \le cg(n) \text{ for all } n \ge n0$
- This is called an asymptotic upper-bound for f(n)
- For all values of $n \ge n0$ the value of f(n) is always $\leq cg(n)$
- Focus on large values of n

n >> n0

Ω -notation

- **Definition:** For a given function g(n), $\Omega(g(n))$ is a **set** of functions such that
 - $\Theta(g(n)) = \{f(n): \text{ there exists positive constants c, and n0 s.t. } 0 \le cg(n) \le f(n) \text{ for all } n \ge n0 \}$
- This is called an asymptotic lower-bound for f(n)
- For all values of $n \ge n0$ the value of cg(n) is always <= f(n)
- Focus on large values of n

•

Note: Correct but Meaningless

You could say

$$3n^2 + 2 = O(n^6)$$
 or $3n^2 + 2 = O(n^7)$

O (n²) is a tighter asymptotic upper bound

But this is like answering:

- What is the world's record for running one mile?
 - Less than 3 days.
- How long does it take to drive from here to Chicago?
 - Less than 11 years.

Do not get confused: O-Notation

O(1) or "Order One"

- DOES NOT mean that it takes only one operation
- DOES mean that the work doesn't change as N changes
- Is notation for "constant work"

O(N) or "Order N"

- DOES NOT mean that it takes N operations
- DOES mean that the work changes in a way that is proportional to N
- Is a notation for "work grows at a linear rate"

Recap: Best Case Analysis of Insertion Sort

$$T(n) = c1 * n + c2(n-1) + c4(n-1) + c5\sum_{j=2}^{n} t_j + c6\sum_{j=2}^{n} (tj -1) + c7\sum_{j=2}^{n} (tj -1) + c8(n-1)$$

- When will the algorithm take the least amount of time?
 - When the array is already sorted
 - So the T(n) will be

$$T(n) = c1 * n + c2(n-1) + c4(n-1) + c5(n-1) + c8(n-1)$$

- Or T(n) is of the form An +B
- Linear function of input size, which is n

Recap: Worst Case Analysis of Insertion Sort

$$T(n) = c1 * n + c2(n-1) + c4(n-1) + c5\sum_{j=1}^{n} t_j + c6\sum_{j=1}^{n} (tj -1) + c7\sum_{j=1}^{n} (tj -1) + c8(n-1)$$

- When will the algorithm take the most amount of time?
 - When the array sorted in inverse
- So the T(n) will be $[n(n+1)/2] 1 \qquad n(n-1)/2$ $T(n) = c1 * n + c2(n-1) + c4(n-1) + c5 \sum_{j=2}^{n} j + c6 \sum_{j=2}^{n} (j-1) + c7 \sum_{j=2}^{n} (j-1) + c8(n-1)$
 - Or T(n) is of the form An² + Bn + C
 - Quadratic function of input size, which is n

Running Time for insertion sort

BEST CASE

$$T(n) = c1 * n + c2(n-1) + c4(n-1) + c8(n-1)$$

- T(n) = An + B = O(n)
- Where A = c1+c2+c4+c8 and B = -(c2+c4+c8)

WORST CASE

$$T(n) = c1 * n + c2(n-1) + c4(n-1) + c5\frac{n(n+1)}{2} + c6\frac{n(n-1)}{2} + c7\frac{n(n-1)}{2} + c8(n-1)$$

- $T(n) = An^2 + Bn + C3 = O(n^2)$
- What are A, B, and C???

Comparing Algorithms

 We will use O-notation from now on to describe algorithm running time.

- We can compare different algorithms that solve the same problem:
 - 1. Determine the O(.) for the time complexity of each algorithm
 - 2. Compare them and see which has "better" performance

Comparing Asymptotic Growth

Modular Analysis

 Algorithms typically consist of a sequence of logical steps/sections/modules

 We need a way to analyze these more complex algorithms...

It's easy – analyze the sections and then combine them

Sequential Steps

• If steps appear sequentially (one after another), then add their respective O().

Embedded Steps

 If steps appear embedded (one inside another), then multiply their respective O().

Correctly Determining Big-O

- Can have multiple factors (variables that measure input size)
 - O(N*M)
 - $O(logP + N^2)$
- But keep only the dominant factors:
 - $O(N + NlogN) \rightarrow O(NlogN)$
 - $O(N*M + P) \rightarrow$ remains the same
 - $O(V^2 + VlogV) \rightarrow O(V^2)$
- Drop constants:
 - $O(2N + 3N^2) \rightarrow O(N + N^2) \rightarrow O(N^2)$

Growth Functions

- Using O-notation, we are characterizing an algorithm's running time using a polynomial of some kind!
 - O(n) --- worst case sumOfN function (in slide 3)
 - O(n²) --- worst case insertion sort
- One can have algorithms that have other running times as well such as
 - O(2ⁿ) --- worst case traveling salesman problem
 - O(nlgn) worst case merge sort
 -
- So, which of the running times are ok, and which are not?

More Asymptotic Growth Rates

Puzzle

- Imagine a pond.
- Moss starts to grow on it and <u>doubles</u> in size every day.
- One the 10th day the moss fully covers the pond.

On what day, was the **pond half-covered** with moss?

Exponential Growth and Linear Growth are very different

We are used to thinking in terms of linear functions, exponential functions behave differently

Quiz

- You are given this set of functions:
- n!
- 2ⁿ
- 2n²
- 5nlogn
- 20n
- 10n

Organize them by ascending order of growth rate

 $5nlogn > 10n > 20n > 2n^2 > 2^n > n!$

Growth Rates Table

n	log log n	log n	n	n log n	n ²	n ³	2 ⁿ
16	2	4	2 ⁴	$4\cdot 2^4=2^6$	2 ⁸	2 ¹²	2 ¹⁶
256	3	8	2 ⁸	$8 \cdot 2^8 = 2^{11}$	2 ¹⁶	2 ²⁴	2 ²⁵⁶
1024	≈ 3.3	10	2 ¹⁰	$10\cdot 2^{10}\approx 2^{13}$	2 ²⁰	2 ³⁰	2 ¹⁰²⁴
64K	4	16	2 ¹⁶	$16 \cdot 2^{16} = 2^{20}$	2 ³²	2 ⁴⁸	2 ^{64K}
1 M	≈ 4.3	20	2 ²⁰	$20\cdot 2^{20}\approx 2^{24}$	2 ⁴⁰	2 ⁶⁰	2 ^{1M}
1G	≈ 4.9	30	2 ³⁰	$30\cdot 2^{30}\approx 2^{35}$	2 ⁶⁰	2 ⁹⁰	2 ^{1G}

Comparing Computational Cost

Size of Input	2^n	n^3	n^2	n	nlog2n	log2n
1	2	1	1	1	0	0
10	1024	1000	100	10	33.21928095	3.321928095
100	1.26765E+30	1000000	10000	100	664.385619	6.64385619
1000	1.0715E+301	1000000000	1000000	1000	9965.784285	9.965784285
10000 Are you crazy!		1E+12	100000000	10000	132877.1238	13.28771238
100000 Stop it!		1E+15	10000000000	100000	1660964.047	16.60964047
1000000 NO!		1E+18	1E+12	1000000	19931568.57	19.93156857
10000000 This is nuts!		1E+21	1E+14	10000000	232534966.6	23.25349666
100000000 give up!		1E+24	1E+16	100000000	2657542476	26.57542476

Order Of Growth

Practice

Consider this program. What is it doing?

```
sum = 0;
for (i=1; i<=n; i++)
  for (j=1; j<=n; j++)
    sum++;</pre>
Input size = n
```

- What is the running time here?
 - The basic operation here is sum++ → can be done in constant time, say c
 - Ignore the operation sum =0 \rightarrow it's so simple \rightarrow the time take to do is << c
- T(n) = O(?)
 - For a given input size n, how many steps will be taken?

Practice: What is the O-notation for the following?

```
for i in range(n):
  for j in range(n):
    for k in range(n):
        k = 2+j+i
```

```
i = n

while i > 0:

k = 2+2

i = i//2
```

```
for i in range(n): 
 k = k + i
```

```
i = 2

i = i*i+2*(5^6)/(i*9)
```

```
for i in range(n):
    k = k+i
for j in range(n):
    k = k + j
for k in range(n):
    k = k+ k
```

