DUKELEC

CDCTL-B1 数据手册

DUKELEC

August 14, 2017

Contents

1	功能描述	3
	1.1 概述	3
	1.2 特性	3
2	CDBUS 协议	3
3	硬件	4
	3.1 电路参考	4
	3.2 内部结构	5
	3.3 引脚定义	5
	3.4 尺寸规格	6
	3.5 极限参数	6
	3.6 建议工作参数	6
	3.7 直流参数	6
4	寄存器列表	7
5	流程图	10
	5.1 RX	11
	5.2 TX	12

	设备接口	12
	6.1 SPI	
	6.2 I2C	13
7	操作示例	13
	7.1 初始化	
	7.1.1 兼容模式和传统模式	
	7.2 TX	
	7.3 RX	14
8	版权说明	15

DUKELEC 2 CDBUS 协议

1 功能描述

1.1 概述

CDBUS 是一款基於 RS485 的通讯协议,它只定义了 ISO/OSI 模型的数据链路层。 CDBUS 协议由 DUKELEC 公司於 2009 年设计,以便捷、多主对等、高速通讯为目标。

1.2 特性

CDCTL-B1 型号模块支持:

- 支持 CDBUS 多主对等通讯协议,使用发送方地址按位仲裁
- 每个数据帧可装载 253 字节数据
- 8个接收缓冲页, 2个发送缓冲页, 每个页 256 字节
- 16 位硬件 CRC 校验
- 波特率范围 458 bps 至 10 Mbps (如果需要可以支持更高)
- 仲裁字段和后续数据可设定不同波特率
- · 可兼容传统 RS485 总线设备
- 支持 SPI 和 I2C 接口
- 配置和使用简单

2 CDBUS 协议

CDBUS 示例时序:

当总线为空闲模式才允许接收。

当总线持续空闲一段时间(默认 10 bit)后才开始发送。

DUKELEC 3 硬件

FROM_ID	1	发送方 ID 在发送此字段时,所有的 1 不使能 TX_EN 脚,从而回读总线状态以判断是否有更高优先级节点同时在发送。若有,该节点立即停止并推后发送;若无,在最后一次回读后使能 TX_EN 并保持到数据帧结束。此字段会在所有数据 1 的中间位置进行回读,因为发送与接收存在延时,所以通常设置低于 1 Mbps.
TO_ID	1	接收方 ID, 255 为广播帧。
DATA_LEN	1	装载的数据长度,范围: 0~253 字节,每个缓存页是 256 字节,最前 3 字节被 FROM_ID、TO_ID 和 DATA_LEN 使用。
DATA	0~253	装载的数据
CRC_L	1	CRC 低 8 位,与 Modbus RTU 使用相同的 CRC 标準。
CRC_H	1	CRC 高 8 位

CDBUS 协议只定义数据帧格式,不规定所装载数据格式;只支持单播和广播,不支持多播;只提供硬件避让、避让后自动重传,而应答及出错处理则由上层软件负责。

3 硬件

3.1 电路参考

DUKELEC 3 硬件

3.2 内部结构

3.3 引脚定义

引脚	定义	I/O	上下拉	描述
1	TX_EN	O	下拉 (10 kOhm)	使能脚,连接 RS485 收发器
2	TX	O	-	发送脚,连接 RS485 收发器
3	RX	I	-	接收脚,连接 RS485 收发器
4, 6	I2C_ADDR	I	上拉 (40 kOhm)	设置 I2C 地址
5	SEL	I	上拉 (40 kOhm)	输入高选择 SPI 模式; 低为 I2C 模式
7, 15	RESERVED			留空
8	VCC			电源
9	GND			地
10	RST_N	I	上拉 (10 kOhm)	复位, ≥ 200 ns 低脉冲复位 (可选)
11	SS	I	上拉 (40 kOhm)	SPI 片选
12	SCK/SCL	I	-	SPI/I2C 时钟
13	SDI	I	-	SPI MOSI
14	SDO/SDA	I/IO	-	SPI MOSI / I2C SDA
16	INT_N	О	-	中断,低有效,开漏输出

DUKELEC 3 硬件

3.4 尺寸规格

3.5 极限参数

参数	最小	最大
VCC 电压	-0.5 V	3.60 V
环境温度	-65 ℃	150 ℃
节温 (T _J)	-65 °C	125 ℃

3.6 建议工作参数

参数	最小	最大
VCC 电压	3.14 V	3.46 V
节温	-40 ℃	100 ℃
上电速度	0.6 V/ms	10 V/ms

3.7 直流参数

参数	最小	典型	最大
$ m V_{IL}$	-0.3 V	-	0.8 V
$ m V_{IH}$	2.0 V	-	VCC + 0.2 V
V_{OL}	0.2 V	-	0.4 V
V_{OH}	VCC - 0.4 V	-	VCC - 0.2 V
I_{OL}	-	-	8 mA
I_{OH}	-	-	-8 mA
Input 或 I/O 漏电流	-	-	+/-10 uA

DUKELEC 4 寄存器列表

I/O 寄生电容 (25℃, 1.0 MHz)	-	6 pF	-
器件功耗	-	-	15 mW
V _{PORUP} (上电复位电压阈值)	0.7 V	-	1.6 V
V _{PORDN}	-	-	1.6 V

4 寄存器列表

地址	名称	R/W	说明		
0x00	VERSION	R	硬件版本,	当前为: 0x01	
0x01	SETTING	RW	Bits:		
			bit0	TX_PUSH_PULL 如果关闭,TX 为开漏输出,且 TX_EN 悬空不使用。	
			bit1	TX_INVERT 如果设置,TX 将会反向输出。	
			bit2	USER_CRC 关闭硬件 CRC 如果关闭:用户需要自行计算两字节 CRC 并追写在数 据之后;在读完数据之后再多读两字节 CRC 数据以便 自行校验。用户数据最大长度将会降至 251 字节。	
			bit3	NO_DROP 如果设置,当接收出错置位 RX_ERROR 标志时会同时保 留出错的数据帧。 通过 RX_PAGE_FLAG 判断当前 RX 缓存页中的数据帧 是否有错。	
			bit[5:4]	TX_EN_ADVANCE(仅 NO_ARBITRATE 置位时有效) TX_EN 提前 TX 使能的位长(额外加上 1 个系统时钟周期)。	
			bit6	NO_ARBITRATE 关闭仲裁功能,输出时 TX_EN 一直有效。	
			默认: x00	10000 (x: 不关心,写 0)	
0x02	SILENCE_LEN	RW		居帧结束后继续保持 SILENCE 位长的时间为 1, 总线便进 式, 默认 20 (bits)	
0x03	TX_DELAY	RW	当总线进入空闲并保持此段时间,才允许发送,默认 10 (bits) 可以为越高优先级节点设置越低的值,但至少要保留 1 bit,以确保所有节点都有足够时间检测到总线 IDLE 状态。		

DUKELEC 4 寄存器列表

0x04	SELF_ID	RW	仅用做接收过滤:(由上至下进行匹配)				
			FROM_ID	TO_ID	SELF_ID	接收或丟弃	
			not care	not care	255	接收(嗅探模式)	
			= SELF_ID	not care	!= 255	丟弃(避免环路)	
			!= SELF_ID	255	not care	接收(广播)	
			!= SELF_ID	!= 255	= TO_ID	接收(点对点)	
			not care	!= 255	!= TO_ID	丟弃	
			默认: 255				
0x05	PERIOD_LS_L	RW	EN_ADVANC 计算公式 fac	TX_DELA E). $stor = sysc$	AY 和 FROM clock ÷ bone	I_ID 字段设置波特率(也包括 d_rate - 1 设置 259 最接近 115200 bps(默认	
0x06	PERIOD_LS_H	RW	PERIOD_LS	高8位,共	16 位		
0x07	PERIOD_HS_L	RW	PERIOD_HS 位为 TO_ID、D		-	默认 259) CRC_L/H 字段设置波特率。	
0x08	PERIOD_HS_H	RW	PERIOD_HS	高8位,共	〒16 位		

DUKELEC 4 寄存器列表

INT FLAG 中断标志: 0x09R BUS IDLE bit0 指示总线是否进入 IDLE 模式。 RX PENDING bit1 指示 RX 缓存是否有页待读。 写 1 到 RX CTRL[CLR RX PENDING] 清除当前页待读 标志。 RX LOST bit2 当一个帧正确抵达且不被过滤,但却因为没有更多页用 做下一次接收而被丢弃,此标志置位。 写 1 到 RX_CTRL[CLR_RX_LOST] 清此标志。 RX ERROR bit3 当一个不被过滤的帧停止位错误、超时或校验错误,此 标志置位。 写 1 到 RX CTRL[CLR RX ERROR] 清此标志。 TX BUF CLEAN bit4 指示是否所有 TX 缓存页都未标记为待发送。 bit5 TX CD 当检测到有更高优先级节点时推后发送并置此标志。 写 1 到 TX CTRL[CLR TX CD] 清此标志。 此位用作调试使用。 bit6 TX ERROR 检测到冲突后,当总线再次空闲超过设定时间硬件会自 动重发,但如果连续重发3次都发生冲突,则取消发送, 并置位此标志。 写 1 到 TX CTRL[CLR TX ERROR] 清此标志。 RW 中断允许 0x0AINT MASK 当 INT FLAG & INT MASK!= 0 时 INT N 输出低, 否则输出高阻 (默认 0x00) 0x0BRX R 读RX缓存页数据,地址自动增加 共有8个RX缓存页,每一页256字节。 当硬件端成功接收到不被过滤的帧:如果下一页未标记为待读(可 用作下一次接收),将当前页标记为待读并切换到下一页;否则丢 弃该帧并置位 RX LOST. RX PENDING 位指示用户端当前页待读,写1到CLR_RX_PENDING 清除当前页的待读标志并切换到下一页。写 1 到 RST RX 清除所有 页的待读标志,并复位接收逻辑。

DUKELEC 5 流程图

0x0C	TX	W	写 TX 缓存页数据,地址自动增加 共有 2 个 TX 缓存页,每一页 256 字节。 当用户写完数据,需要等待 TX_BUF_CLEAN 置位,然后才可以通过 START_TX 置位当前页的待发送标志,并自动切换到下一页(否则什么都不会发生)。 当页的待发送标志被置上,硬件将会启动发送,当发送完毕,硬件端清页的待发送标志并切换到下一页。
0x0D	RX_CTRL	W	RX 控制:
			bit0 RST_RX_POINTER 写 1 归零当前 RX 缓存页的读指针
			bit1 CLR_RX_PENDING (自动包含 bit0)
			bit2 CLR_RX_LOST
			bit3 CLR_RX_ERROR
			bit4 RST_RX (自动包含 bit0, 2, 3)
0x0E	TX_CTRL	W	TX 控制:
			bit0 RST_TX_POINTER 写 1 归零当前 TX 缓存页的写指针
			bit1 START_TX (自动包含 bit0)
			bit3 CLR_TX_CD
			bit4 CLR_TX_ERROR
0x0F	RX_ADDR	RW	读写当前 RX 缓存页的读指针
0x10	RX_PAGE_FLAG	R	(仅 NO_DROP 置位时使用) 0 代表当前 RX 缓存页中的数据帧正确; 非 0 表示数据帧错误,其值指示最后接收到的字节地址,包含 CRC 字段。

5 流程图

DUKELEC 5 流程图

5.1 RX

如果当前帧接收不够两个字节,或者将会被丢弃则不会设置 RX_ERROR 标志。

DUKELEC 6 设备接口

5.2 TX

6 设备接口

SPI 和 I2C 频率低于 sysclock ÷ 10.

DUKELEC 7 操作示例

除了 RX 和 TX, 其余寄存器通常只读写 1 字节。

```
6.1 SPI
   读写:
start (NSS = 0)
Write reg address with bit7: 0: read, 1: write
Read or write arbitrary length of data
stop (NSS = 1)
6.2 I2C
Write address: 0xc0 | (I2C_ADDR << 1)</pre>
Read address: 0xc1 | (I2C_ADDR << 1)</pre>
I2C_ADDR is the value of I2C_ADDR_n pins.
   写:
start
write the write address
write 1 byte reg address
write arbitrary length of data
stop
   读:
start
write the write address
write 1 byte reg address
restart (or stop + start)
write the read address
read arbitrary length of data, ACK all bytes except last byte
stop
    操作示例
7
7.1 初始化
```

```
// enable OUTPUT
cd_write(REG_SETTING, TX_PUSH_PULL);

// set SELF_ID
cd_write(REG_SELF_ID, 0xcd);

// set bondrate
cd_write(REG_PERIOD_LS_L, 39); // 750000 bps
cd_write(REG_PERIOD_LS_H, 0);
cd_write(REG_PERIOD_HS_L, 2); // 10 Mbps
cd_write(REG_PERIOD_HS_H, 0);
```

DUKELEC 7 操作示例

```
// clean RX buffer
cd_write(REG_RX_CTRL, RST_RX);

// enable interrupt
// cd_write(REG_INT_MASK, TX_ERROR | RX_ERROR | RX_LOST | RX_PENDING);
```

7.1.1 兼容模式和传统模式

PERIOD_LS 和 PERIOD_HS 设置相同为兼容模式。

进一步置位 NO_ARBITRATE 进入传统模式:

7.2 TX

```
header_buf[0] = 0xcd; // FROM_ID
header_buf[1] = 0x02; // T0_ID
header_buf[2] = 12; // DATA_LEN

cd_write_chunk(REG_TX, header_buf, 3); // write HEADER
cd_write_chunk(REG_TX, data_buf, header_buf[2]); // write DATA

while (cd_read(REG_INT_FLAG) & TX_BUF_CLEAN == 0); // make sure TX_BUF_CLEAN is set
cd_write(REG_TX_CTRL, START_TX); // sent frame
```

7.3 RX

```
while (cd_read(REG_INT_FLAG) & RX_PENDING == 0);

cd_read_chunk(REG_RX, header_buf, 3);  // read HEADER
cd_read_chunk(REG_RX, data_buf, header_buf[2]); // read DATA

cd_write(REG_RX_CTRL, CLR_RX_PENDING);  // release page
```

DUKELEC 8 版权说明

8 版权说明

CDBUS 是一个相当开放的协议,硬件实现也相对简单,除了芯片生产商需要支付少量版权费,其余任何人都可以免费使用此协议及其变种,只需要在产品说明中保留原始的版权信息。

联络: info@dukelec.com