# SRI JAYACHAMARAJENDRA COLLEGE OF ENGINEERING



- Constituent College of JSS Science and Technology University
- Approved by A.I.C.T.E
- CIENCE AND Governed by the Grant-in-Aid Rules of Government of Karnataka
  - Identified as lead institution for World Bank Assistance under TEQIP Scheme



| Course Title: Operating Systems | Course Code: 20CS410               |
|---------------------------------|------------------------------------|
| Credits: 4                      | Contact Hours (L: T: P): 52:0:0    |
| Type of Course: Theory          | Category: Professional Core Course |
| CIE Marks: 50                   | SEE Marks: 100                     |

Pre-Requisites: Computer Organization and Architecture, Data Structures, C Programming.

**Course Objectives:** The course should enable the students to:

| Sl.<br>No. | Course Objectives                                                                    |  |  |  |  |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| 1          | Understand the concepts that underlie operating systems.                             |  |  |  |  |  |  |  |  |  |
| 2          | Illustrate process management, inter-process communication, process synchronization, |  |  |  |  |  |  |  |  |  |
|            | multithreading and deadlock handling mechanisms through examples.                    |  |  |  |  |  |  |  |  |  |
| 3          | Comprehend different memory management techniques and file system.                   |  |  |  |  |  |  |  |  |  |

| Unit<br>No. | Course Content                                                                                                                                  | No. of<br>Hours |  |  |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|
| 1           | Introduction and Operating System Structures: What operating systems do;                                                                        | 10              |  |  |  |  |  |  |
|             | Computer System organization; Computer System architecture; Operating System structure; Operating System operations; Process management; Memory |                 |  |  |  |  |  |  |
|             | management; Storage management; Protection and security; Computing environments                                                                 |                 |  |  |  |  |  |  |
|             | Operating System structures: Operating System services; User - Operating System                                                                 |                 |  |  |  |  |  |  |
|             | interface; System calls and its types System programs; Operating System design                                                                  |                 |  |  |  |  |  |  |
|             | and implementation; Operating System structure; Virtual machines; Operating                                                                     |                 |  |  |  |  |  |  |
|             | System generation; System boot.                                                                                                                 |                 |  |  |  |  |  |  |
| 2           | <b>Processes, Threads and CPU Scheduling:</b> Process concept; Process scheduling;                                                              | 11              |  |  |  |  |  |  |
|             | Operations on processes; Interprocess communication.                                                                                            |                 |  |  |  |  |  |  |
|             | Threads: Overview; Multicore programming; Multithreading models; Thread                                                                         |                 |  |  |  |  |  |  |
|             | Libraries; Threading issues.                                                                                                                    |                 |  |  |  |  |  |  |
|             | CPU Scheduling: Basic concepts; Scheduling criteria; Scheduling algorithms.                                                                     | 4.4             |  |  |  |  |  |  |
| 3           | Process Synchronization and Deadlocks: Basic concepts, The Critical section                                                                     | 11              |  |  |  |  |  |  |
|             | problem; Peterson's solution; Synchronization hardware; Semaphores; Classic                                                                     |                 |  |  |  |  |  |  |
|             | problems of synchronization; Monitors.  Deadlocks: System model; Deadlock characterization; Methods for handling                                |                 |  |  |  |  |  |  |
|             | deadlocks; Deadlock prevention; Deadlock avoidance; Deadlock detection;                                                                         |                 |  |  |  |  |  |  |
|             | Recovery from deadlock.                                                                                                                         |                 |  |  |  |  |  |  |
| 4           | Main Memory and Virtual Memory: Background; Swapping; Contiguous                                                                                | 10              |  |  |  |  |  |  |
| -           | memory allocation; Paging; Structure of page table; Segmentation.                                                                               | 10              |  |  |  |  |  |  |
|             | Virtual Memory: Background; Demand paging; Copy-on-write; Page replacement;                                                                     |                 |  |  |  |  |  |  |
|             | Allocation of frames; Thrashing.                                                                                                                |                 |  |  |  |  |  |  |
| 5           | Mass Storage Structure and File System: Overview of Mass storage structure;                                                                     | 10              |  |  |  |  |  |  |
|             | Disk structure; Disk attachment; Disk scheduling.                                                                                               |                 |  |  |  |  |  |  |
|             | File System: File concept; Access methods; Directory structure; File system                                                                     |                 |  |  |  |  |  |  |
|             | mounting; File sharing; Protection. Implementing File System: File system                                                                       |                 |  |  |  |  |  |  |
|             | structure; File system implementation; Directory implementation; Allocation                                                                     |                 |  |  |  |  |  |  |
|             | methods; Free space management.                                                                                                                 |                 |  |  |  |  |  |  |

# SRI JAYACHAMARAJENDRA COLLEGE OF ENGINEERING



- Constituent College of JSS Science and Technology University
- Approved by A.I.C.T.E
- AND Governed by the Grant-in-Aid Rules of Government of Karnataka
- TECHNOLOGY UNIVERSITY Identified as lead institution for World Bank Assistance under TEQIP Scheme



# **Text Book:**

| Sl.<br>No. | Author/s              | Title                     | Publisher Details                     |  |  |  |
|------------|-----------------------|---------------------------|---------------------------------------|--|--|--|
| 1          | Abraham Silberschatz, | Operating system concepts | 9 <sup>th</sup> Edition, Wiley India, |  |  |  |
|            | Peter Baer Galvin,    |                           | 2013                                  |  |  |  |
|            | Greg Gagne            |                           |                                       |  |  |  |

# **Reference Books:**

| Sl.<br>No. | Author/s          | Title                                   | Publisher Details                  |  |  |  |  |
|------------|-------------------|-----------------------------------------|------------------------------------|--|--|--|--|
| 1          | D.M Dhamdhere     | Operating systems-A concept-based       | 4 <sup>th</sup> Edition, Tata      |  |  |  |  |
|            |                   | Approach                                | McGraw- Hill, 2013                 |  |  |  |  |
| 2          | P.C.P. Bhatt      | Introduction to Operating Systems       | Concepts and Practice,             |  |  |  |  |
|            |                   |                                         | 4 <sup>th</sup> Edition, PHI, 2014 |  |  |  |  |
| 3          | William Stallings | Operating Systems: Internals and Design | 7 <sup>th</sup> Edition, Prentice  |  |  |  |  |
|            |                   | Principles                              | Hall of India,2017                 |  |  |  |  |
| 4          | Harvey M Deital   | Operating systems                       | 3 <sup>rd</sup> Edition, Pearson   |  |  |  |  |
|            |                   |                                         | Education,2007                     |  |  |  |  |

# Web Resources:

| Sl.<br>No. | Web Link                                                                 |
|------------|--------------------------------------------------------------------------|
| 1          | https://www.youtube.com/playlist?list=PLLDC70psjvq5hIT0kfr1sirNuees0NIbG |
| 2          | https://youtu.be/783KAB-tuE4 - NPTEL IIT, Madras                         |

# **Course Outcomes:**

| CO1 | Explain the concepts, goals, design and construction of operating systems.           |  |  |  |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| CO2 | Illustrate inter-process communication, multithread handling and analyse various CPU |  |  |  |  |  |  |  |  |  |  |
|     | scheduling algorithms.                                                               |  |  |  |  |  |  |  |  |  |  |
| CO3 | Solve process synchronization and Deadlock handling mechanisms.                      |  |  |  |  |  |  |  |  |  |  |
| CO4 |                                                                                      |  |  |  |  |  |  |  |  |  |  |
|     | replacement problems.                                                                |  |  |  |  |  |  |  |  |  |  |
| CO5 |                                                                                      |  |  |  |  |  |  |  |  |  |  |
|     | scheduling techniques.                                                               |  |  |  |  |  |  |  |  |  |  |

Mapping Course Outcomes with Program outcomes & Program Specific outcomes:

| Course   |     | Program Outcomes |     |     |     |     |     |     |     |      |      | PSO's |      |      |      |      |
|----------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|-------|------|------|------|------|
| Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12  | PSO1 | PSO2 | PSO3 | PSO4 |
| CO1      | 3   | -                | -   | -   | -   | -   | -   | -   | -   | -    | -    | -     | 3    | -    | 3    | -    |
| CO2      | 3   | 3                | 3   | 3   | -   | -   | -   | -   | -   | -    | -    | -     | 3    | 3    | 3    | -    |
| CO3      | 3   | 3                | 3   | -   | -   | -   | -   | -   | -   | -    | -    | -     | 3    | -    | 3    | -    |
| CO4      | 3   | 3                | 3   | 3   | -   | -   | -   | -   | -   | -    | •    | -     | 3    | 3    | 3    | -    |
| CO5      | 3   | 3                | 3   | -   | -   | -   | -   | -   | -   | -    | -    | -     | 3    | 3    | 3    | -    |

1-Low association, 2- Moderate association, 3-High association