What is claimed is:

1. A storage management service system, comprising.
a storage on demand (SoD) center system computer;
a storage subsystem; and
a host computer, said host computer, said storage subsystem, and said SoD
center system computer interconnected by a communications network; said host compute
comprising a software agent, said software agent providing an interface between said SoL
center system computer and an operating system resident on said host computer; and
wherein
said SoD center system computer receives input of an SoD demand, sends
said demand to an SoD resource manager, which manages storage resources of said
storage subsystem; and wherein said SoD resource manager receives said demand from
said SoD center system computer, and thereupon updates a device management table and
an I/O port management table, in which a current status of at least one of a plurality of
resources is recorded, and to which said SoD resource manager refers when managing
said at least one of a plurality of resources, and sends a management result to the SoD
center system computer; and wherein
said SoD center system computer receives said management result from
said SoD resource manager, and thereupon stores said management result.

- 2. The system of claim 1, wherein if said demand requires an I/O path setting to be updated, said SoD center system computer sends an I/O path setting request to said software agent running in said host computer; and wherein said software agent receives said I/O path setting request from said SOD center system computer, and thereupon requests said operating system to update an I/O path setting table based upon said I/O path setting request, and receives an update result from said operating system, and thereupon sends a setting result to said SoD center system computer, and wherein said SoD center system computer receives said setting result from said software agent, and thereupon stores said setting result.
- 3. The system of claim 1, wherein said host computer and said storage subsystem are connected directly by physical and logical connections made between at

3

storage resources over said network.

3	least one of a plurality of host I/O controllers and at least one of a plurality of subsystem
4	I/O ports.
1	4. The system of claim 1, wherein said host computer and said storag
2	subsystem are connected by a network switch between at least one of a plurality of host
3	I/O controllers and at least one of a plurality of subsystem I/O ports.
1	5. The system of claim 4, wherein said network switch comprises a
2	fibre channel network switch.
1	6. A storage apparatus comprising:
2	a memory;
3	at least one of a plurality of devices that store information;
4 .	at least one of a plurality of I/O ports providing an interface to said at leas
5	one of a plurality of devices that store information;
6	a device management table, in which a status of said at least one of a
7	plurality of devices that store information is stored, and an I/O port management table, in
8	which a status of said at least one of a plurality of I/O ports is stored, said device
9	management table and said I/O port management table being disposed in said memory;
10	and
11	a storage resource management processor; wherein
12	said storage management processor receives a demand for storage
13	resources, and thereupon updates said device management table and said I/O port
14	management table, and sends a management result responsive to said demand for storage
15	resources; and wherein updates to at least one of a plurality of paths connecting to storage
16	resources allocated from said at least one of a plurality of devices that store information
17	are automatically defined to an operating system of a user machine by a remotable
18	software agent.
1	7. The apparatus of claim 6, said at least one of a plurality of devices
2	that store information comprising at least one of magnetic disk, an optical disk, a
3	magnetic-optical disk, and a semiconductor memory.
1	8. The apparatus of claim 6, further comprising a communications
2	interface to a network, said storage management processor receiving said demand for

1.	9. The apparatus of claim 6, further comprising a fibre channel
2	switch, said fibre channel switch providing capability to connect to at least one of a
3	plurality of host computers.
1	10. A method for configuring a host computer to access resources in a
2	remotable storage subsystem, said host computer, said remotable storage subsystem, and
3	a center system computer interconnected by a communication network, said method
4	comprising:
5	receiving at said host computer an I/O path setting request from said center
6	system computer, said I/O path setting request comprising information about resources in
7	said remotable storage subsystem allocated for use by said host computer;
8	requesting an operating system resident in said host computer to update an
9	I/O path setting table based upon said I/O path setting request;
10	receiving an update result from said operating system; and
11	sending a setting result to said center system computer based upon said
12	update result.
	11 The weath of of claim 10 mile and made and I/O moth continue
1	11. The method of claim 10, wherein updating said I/O path setting
2	table comprises: storing an indication that a particular I/O port in said storage subsystem
3	is accessible to a particular host I/O controller.
1	12. The method of claim 10, further comprising:
2	receiving at said center system computer an input of a demand for storage
3	resources;
4	determining whether sufficient resources exist in order to meet said
5	demand;
6	sending said demand for storage resources to said storage subsystem, if
7	sufficient resources were determined to exist;
8	receiving from said storage subsystem a management result, said
9	management result indicating whether storage resources have been successfully allocated
10	in accordance with said demand;
11	storing said management result;
12	determining whether said demand includes an I/O path setting request;

13	sending said I/O path setting request to said host computer, if said demand
14	included an I/O path setting request;
15	receiving said setting result from said host computer; and
16	storing said setting result.
1	13. The method of claim 12, further comprising:
2	receiving said demand for storage resources at said storage subsystem;
3	determining whether said demand includes a command to make at least
4	one of a plurality of installed devices available;
5	updating a device management table, if said demand includes a command
6	to make at least one of a plurality of installed devices available;
7	updating an I/O port management table; and
8 ·	sending a resource management result to said center computer system.
1	14. The method of claim 13, wherein updating a device management
2	table comprises: storing an indication that a particular device is usable.
1	15. The method of claim 13, wherein updating a I/O port management
2	table comprises: storing an indication that a particular I/O port is usable.
1	16. The method of claim 13, further comprising:
2	receiving at said storage subsystem an I/O command to access storage
3	resources from said host computer;
4	determining whether storage resources requested by said I/O command are
5	usable;
6	performing said I/O command, if said storage resources requested by said
7	I/O command are usable, otherwise rejecting said I/O command; and
8	sending an I/O result to said host computer.
1	17. The method of claim 16, wherein determining whether storage
2	resources requested by said I/O command are usable comprises:
3	searching said device management table to determine whether devices
4	requested in said I/O command are usable.
1	18. The method of claim 17, wherein determining whether storage
2	resources requested by said I/O command are usable further comprises:

3	searching said I/O port management table to determine whether I/O ports
4	requested in said I/O command are usable and whether devices requested in said I/O
5	command are accessible via I/O ports requested in said I/O command.
1	19. A computer program product for configuring a host computer to
2	access resources in a remotable storage subsystem, said host computer, said remotable
3	storage subsystem, and a center system computer interconnected by a communication
4	network, said computer program product comprising:
5	code that receives at said host computer an I/O path setting request from
6	said center system computer, said I/O path setting request comprising information about
7	resources in said remotable storage subsystem allocated for use by said host computer;
8	code that requests an operating system resident in said host computer to
9	update an I/O path setting table based upon said I/O path setting request;
10	code that receives an update result from said operating system;
11	code that sends a setting result to said center system computer based upon
12	said update result; and
13	a computer readable storage medium for holding the codes.
1	20. The computer program product of claim 19, further comprising:
2	code that receives at said center system computer an input of a demand for
3	storage resources;
4	code that determines whether sufficient resources exist in order to meet
5	said demand;
6	code that sends said demand for storage resources to said storage
7	subsystem, if sufficient resources are determined to exist;
8	code that receives from said storage subsystem a management result, said
9	management result indicating whether storage resources have been successfully allocated
10	in accordance with said demand;
11	code that stores said management result;
12	code that determines whether said demand includes an I/O path setting
13	request;
14	code that sends said I/O path setting request to said host computer, if said
15	demand includes an I/O path setting request;
16	code that receives said setting result from said host computer; and

17 code that stores said setting result.

1