

IMMERSE realistic configuration: WP6-Task3 "Impact of NEMO developments on the global forecasts"

Clément Bricaud (Mercator Ocean)
Dorotea Iovino (CMCC)
Jean-Marc Molines (CNRS/IGE)
Miguel Castrillo (BSC)

Outline

- 1. Target configuration description
- 2. The IMMERSE developments tested
- 3. Plan and status
- 4. First Results
- 5. Issues
- 6. Next steps

Target configuration description

A high-resolution global configuration at 1/36° (2-3 km) horizontal resolution

- Horizontal grid : ORCA tripolar grid, 12960 * 10850 points
- Vertical grid: 75 Z-levels, 1 meter at surface
- with southern cavities (under ice shelf seas)
- with tidal forcing (o1, k1, m2, s2, n2 and use Self Attraction Loading)
- Forcing dataset: based on ECMWF/IFS system (1 hour time frequency and 1/14° spatial resolution)

Tested developments

Developments from IMMERSE:

- XIOS read/write restarts
- Tilling
- Loop fusion
- Wider halo
- Diagnostics on GPU
- Collective neighborhood communications (mpi3 optimization)
- New time-stepping scheme (based on RK3)

Outside IMMERSE:

- Mixed precision
- XIOS 2 levels servers

Plan and status

Results

A first hindcast produced end 2019/early 2020

- 18 months run with ORCA36
- new Meteo France Bull computer
- 30.000 cores for NEMO
- 2 to 3 months can be simulated per days
- 3D daily and 2D hourly outputs with XIOS
- Forced by IFS at 1/8° and 3 hours resolution
- No cavities, no tidal forcing

A bench/demonstrator is available on IMMERSE github:

https://github.com/immerseproject/ORCA36-demonstrator/

A new short experiment produced in 2021

- with southern cavities
- Without and with <u>tidal forcing</u>
 (o1, k1, m2, s2, n2 and use Self Attraction Loading)
- Bathy: based on GEBCO 2019
- Forcing dataset: improve ECMWF/IFS resolution
 - Time: from 3 hours to 1 hour
 - Space: <u>from 1/8° to 1/14°</u>

SSH anomaly after 3 month (hourly mean)

Impact of cavities on tidal solution

Compare runs at 1/12° resolution

- · with tidal forcing
- Without/with cavities

Impact of resolution on tidal solution

Compare runs at 1/4°, 1/12° and 1/36° resolution

- · with tidal forcing
- with cavities

Error (cm)	M2	K1	01	N2	S2
no cavity	8,50	6,17	2,37	1,24	2,66
cavities	6,49	2,20	1,77	1,07	2,03
gain	2	4	0,5	0,17	0,63

Global 1/12° errors to FES2014

=> Adding southern cavities improve tide solution at global scale for all components

N2	1/4	1/12	1/36
M2	0.072	0.052	0.031
K1	0.070	0.064	0.035
01	0.023	0.018	0.012
S2	0.028	0.021	0.014
N2	0.014	0.014	0.006

Global 1/4°,1/12° and 1/36° errors to FES2014

- ⇒ Resolution improve tidal solution in global configurations
- \Rightarrow Between ½ and 1/36, errors to FES2014 are divided by 2

Results: HPC tests

XIOS read/write restarts

nn_wxios		0=NO			1=mono			2=multi		
		test1	test2	test3	test1	test2	test3	test1	test2	test3
In_xios_read	F	03:41:47	01:08:47	01:08:07	03:13:03	01:29:03	02:27:04	01:15:28	01:10:55	01:11:09
	Т	01:54:24	01:50:22	01:54:35	01:56:27	04:24:45	01:55:08			

Using XIOS to write restart files:

- Multiple file mode: no increase in elapsed time
- One file mode : increase in elapsed time

Using XIOS to read restart files:

- Multiple file mode: not possible
- · One file mode: increase in elapsed time

Collective neighbor communications (MPI3)

=> Tested on MN4, no change in elapsed time

XIOS 2 levels servers

=>Memory issues for XIOS on MN4; will test it soon on MF/Bull or ECMWF/Cray

Issues

- XIOS: Memory issues for model outputs on Mare Nostrum 4
- => Looking at processes distribution, XIOS release,...
- ⇒ Other computer available (Météo France / BULL, ECMWF/Cray)

- ⇒ MN4: Try to start with few model outputs?
- ⇒ MN4: Using high memory node for XIOS ?

- NEMO/interpolation on the fly: memory issues with big input files (2D or 3D)
- => interpolation of field on eORCA36 grid is done in pre-processing

Next steps

HPC tests:

Wider halo/Tilling/Loop fusion

Will start soon

Mixed precision

preliminary tests to do with ORCA12; ok for dec2021

Diagnostics on GPU

- Not started
- Others new computers in 2022 (CINES, CMCC)
- Ready to tests; see with Vineet to run it on 3 nodes of GPU on the MF/BULL
- Dorotea: CINECA

XIOS 2 levels servers

=>Memory issues for XIOS on MN4; will test it soon on MF/Bull or ECMWF/Cray

New time-stepping scheme (based on RK3)

· Will be done when the development will be ready

Multi annual run:

- The code is running, the configuration exists and it has been tested over 6 months
- Will start soon

Questions?