Journal Club

Single Atom in a Superoscillatory Optical Trap

Xintao Feng

CONTENTS

Introduction

Concepts and Parameters

Methods

Experimental Details

Results

Data and Analysis

Outlook

Improvements

Introduction

CONCEPTS AND PARAMETERS

Introduction CONCEPTS AND PARAMETERS

Transverse Size

The size of the trap in the plane perpendicular to the direction of the laser beam

- Confine and manipulate small particles
- More precise control
- More stable and less thermal fluctuation
- Reduce the effects of scattering and aberrations

Trapping frequency (f): Optical power (P) and transverse cross-section (σ)

$$f \sim \frac{\sqrt{P}}{\sigma}$$

Introduction

CONCEPTS AND PARAMETERS

Abbe's limit

The radius of curvature of the surface at the point where the refracted ray intersects the axis of the lens.

Defining the Abbe radius of optical hotspot:

$$r_A = \frac{\lambda}{2n\sin\theta} = \frac{\lambda}{2\text{NA}}$$

Superoscillation

Phenomenon: A function oscillates faster than its Fourier transform

Time | Space domain → *Frequency domain*

Superresolution imaging and optical metrology

Laser Abbe limit Superoscillation Subwavelength features

Methods EXPERIMENTAL DETAILS

Set Up EXPERIMENTAL DETAILS

3D Magnetic-optical Trap (MOT)

- 1. A pair of anti-Helmholtz coils
- 2. Six circularly polarized beams (green arrows) Detuning with respect to $\lambda = 852~\mathrm{nm}$
- 3. Superoscillatory trap beam (brown cone) Far-off-resonant laser beam $\lambda=1064~\mathrm{nm}$

(0.56 MHz/G) 251.00(2) MHz 263.81(2) MHz 12.815(9) MHz $6^2\mathrm{P}_{3/2}$ (0.37 MHz/G) 188.44(1) MHz 201.24(2) MHz 339.64(2) MHz F = 3 $(0.00 \, \text{MHz/G})$ 151.21(2) MHz F = 2(-0.93 MHz/G) 852.347 275 82(27) nm 351.725 718 50(11) THz 11 732.307 104 9(37) cm³ 1.454 620 542(53) eV F=4 $g_F = 1/4$ (0.35 MHz/G) 4.021 776 399 375 GHz (exact) 9.192 631 770 GHz (e. act) 5.170 855 370 625 GHz (exact) F = 3 $g_F = -1/4$ (-0.35 MHz/G)

Magnetic-optical Trap (MOT)

EXPERIMENTAL DETAILS

$$6S_{1/2}(F=4) \rightarrow 6P_{3/2}(F=5)$$

Detuning: -4Γ

Linewidth: $\Gamma/2\pi = 5.2 \text{ MHz}$

$$6S_{1/2}(F=3) \rightarrow 6P_{3/2}(F=4)$$

Resonance; no detuning

Spatial Light Modulator (SLM)

EXPERIMENTAL DETAILS

Consists of an array of pixels, each pixel can:

- Introduce a specific phase shift to the light
- Attenuate or amplify the light

Results DATA AND ANALYSIS

Normalized Images

DATA AND ANALYSIS

Sharper peak, narrower central lobe and higher intensity

Trapping Frequency

DATA AND ANALYSIS

 $f \sim 50 \text{ kHz}, \qquad P = 1.1 \text{ mW}$

Outlook IMPROVEMENT AND APPLICATION

Outlook

- The optical field outside the hotspot shall be spatially spread to reduce the peak energy density in outer rings
- Create an optical trap array with Gaussian beams
- Try to avoid spurious interference

Thanks for your listening!

Any questions?