复赛专题上

微枳分进阶....................................	1
单元函数和微分方程	1
单元函数	1
微分方程及其应用	4
多元函数、重积分和高斯积分	9
多元函数问题	9
重积分	. 15
高斯积分	. 17
曲线曲面积分和矢量分析	. 19
曲线曲面积分	. 19
矢量分析	. 22
复数和线性代数	. 27
复数	. 27
线性代数	. 30
运动与静力进阶	. 33
微元法进阶	. 33
平动系与转动系	. 33
微元法的本质	. 35
各种坐标系与导数运用	. 35
运动的关联	. 39
矢量的空间坐标表达及运用	. 39
关联与约束	. 40
相图的应用	. 45
相图的含义	. 45
静力学临界问题分析	. 46
运动相关问题	. 47
与能量有关的相图	. 48
运动知识补充	. 50
三维运动与理论力学初步	. 51

	立体运动学	51
	自由度与能量分析法	53
	虚功原理	55
É	l由度、能量和静力学进阶	57
	自由度、能量解法	57
	能量与量子力学	58
	图解静力学	60
动力	力学综合	64
f	· 比量微分方程和条件约束 · · · · · · · · · · · · · · · · · · ·	64
	质心动能定理	64
	约束	64
	变质量问题	67
貟	^{龙量微分和多自由度}	70
	能量微分解法	70
	惯性力	72
	存在约束的多自由度问题	72
ŧ	辰动和简正模	74
	振动	
	简正模问题	75
	简正模/振动拉式方程法	77
3	夏杂简正模和自由两体	79
	复杂简正模: 一维无线振子链	79
	自由两体问题	79
车	专动惯量与刚体进动	81
	转动惯量的计算	81
	刚体进动	83
X	体与连续体动力学	85
	刚体碰撞	85
	刚体动力学综合	86
	连续体问题	
	瞬时轴转动定理	88
柞	模量	89

杨氏模量									89
粘滞系数									89
剪切模量									90
万有引力与天体运动									91
椭圆运动									91
天体进动									92
万有引力									93
静电静磁进阶									94
场的分布和电偶极子							X,	۸.	94
电荷、电场、电势						 ۱.,	K	(?)	94
电场线形状									95
电偶极子					. <				95
导体问题				./.	K				96
电像法与电场能量			0	10	L.				98
电像法		. (98
静电能量问题			رب						100
磁学体系与通电线圈问题		5.	•						. 102
磁学理论体系	C								102
通电线圈问题									103
带电粒子在磁场中的运动									. 106
洛伦兹力与一般运动形成									106
对称性与正则守恒									106
相对论下的带电粒子运动	١								108
电路进阶									. 109
线性系统的处理									. 109
电介质问题									109
线性统一处理									112
电路中的线性									113
分离对称性									. 115
对称性化简									115
恢复对称性									116
化简:应用自相似									. 119

自相似性与多端接口	1 (不行	含源).												.119
有源线性网络处理																.121
非线性电路																123
暂态电路																.123
复数法解交流电 .															٠	.123
电容器充放电问题																.125
三相交流电																.126
电磁感应进阶															٠	127
动生电动势与感生电	动す	李白	匀统		·理	[解	į .							, ヘ		127
电磁感应的统一性											./.	, .	K		>	.127
感应电动势的计算										4						.127
磁矢势与自感互感问	题			•						\	X.	1.			٠	130
磁矢势							./.	X	7							.130
自感互感问题						0	X	9								.133
电磁动力学																136
杆为U型杆				1	×											.136
电磁场相对论变换。			9	5												138
四维矢量	.)	·\														.138
电磁场变换的推导																.138
热学进阶	7															140
新热力学模型															٠	140
输运过程																.140
热传导																.140
热辐射															٠	.142
熵、循环和相变																144
熵																.144
循环过程与热机(针	制冷	机)) .													.146
相变																.147
光子气体																.148
分子统计力学																149
玻尔兹曼分布																.149
麦克斯韦分布																.150

热学综合																. 155
理想气体综合问题 .																155
热力学第一定律																157
光学进阶																. 158
几何光学																. 158
透镜几何作图							٠									158
折射																159
近轴成像													٠,			159
非近轴成像												X		>		159
反射										./	۲.)		X		?	160
全反射							٠									160
虹和霓							٠.		7	X						161
波动光学基础								1								. 162
波动基础					1		0	Ľ.								162
干涉问题				. ()_	X										162
复振幅与光波的数学记	十拿	枲		D	را)										. 166
复振幅			, () .	•											166
能流密度	•	()														166
复杂干涉问题	7															166
衍射	۲															167
偏振、复杂光学问题.																. 170
斯托克斯倒逆关系 .																170
光栅																170
偏振																171
菲涅尔公式																172
菲涅尔衍射																173
反射率和透射率																173
近代物理进阶																174
狭义相对论时空观																. 174
正三观																174
原理与变换																174
洛伦兹变换																176

	坐标变	换																			.177	7
洛	伦兹变	换下的	的物	理量	<u>t</u>																180)
	变换不	变量:	四丝	隹标	量,																.180)
	满足洛	伦兹纳	を换:	四	维乡	量分	<u></u> .														.180)
能	动量、	四维	动力	学.																	184	1
	能动量	四维纪	量?																		.184	4
	相对论	碰撞问	可题																		.18	5
原	子物理																		٠.		189	9
	量子化							•						٠	٠			X			.189	9
	原子与	原子植	亥 .													./		K	(/	?	.190)
															<							
													S		7	7	. "					
											1		1	1								
												1	}	16.								
) -		1										
									×													
						6	7															
						•	J															
			<																			
		, (2																			
	0																					

5 加则回柱固全,才统上时间 翻: 拉力不做对: 19th : 19th : 19th 1 W= do = 10-0r → (Pn-Or) dp = Vodt ⇒ T = ≥vor वामा! 众例不图全国楠(m), 定轴光滑轻动, 木兔上的回. 爾:在桶鞋动系中: > 大文 (打向). か= !(d+0); 9n = ro $m \log = (mr^2 \dot{\theta}) + (ml^2 (\dot{\alpha} + \dot{\theta}) + mr^2 \dot{\theta})$ $= \lim_{n \to \infty} m \sin^2 \theta + \lim_{n \to \infty} \sin^2 \theta + \lim_{n$ 111 111 D 111 111 (2) 同时有: l=lo-arsl=-ar 有目相:表示出权有文的方程、 ATO: 402=1202+Po2+810+a) → (212+82)240 = >12(lobo-lix)2+ 12(lobo+212)2 → (21248)200 = 2728080-41000282d+21284X + 8280 80 +4 VOVOXPX 2 + 414 82 22 • -> (212/2) 260 = (212/2) 00 Vo2 + (212/2) 212/32 $\Rightarrow \frac{1}{2} = \frac{2r^2 + l^2 - lo^2}{2r^2 l^2} | l_0 = \frac{2r^2 - 2lord + a^2r^2}{2r^2 (l_0 - \alpha r)^2} | l_0 = \frac{1}{2} | l_0 |$ $\Rightarrow \frac{ds}{dt} = dt \Rightarrow T = \int_0^1 \frac{ds}{dt} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 = \frac{1}{2} | l_0 - \alpha r |^2 | l_0 - \alpha r$ ·一般做分方程: 口亭教: 从现的日, 岁, 岁, ……系数为布数. D.齐次:inty"·fix)+y.sha)+y.hni=kta), kta)=D.例为无次. ①线性、常系数、杂次微分方程: 10 - Bt: y +ay = 0 有: dy = -ada 精: y=A·enx 代刊: 7. Aenx + a A enx = 0 => 1 = -a.

$$\operatorname{div} \vec{A} = \nabla \cdot \vec{A} = \frac{\partial Ax}{\partial x} + \frac{\partial Ay}{\partial y} + \frac{\partial Ay}{\partial z}$$

若为正:发源;若为质:汇聚. 女子=(対, りz, ≥x) 水 P(スリ、z) 女女不一 新: P= Eo(ま、ナシー・サラ)= Eo(ス+タ+2)

分析: 野戸·ds= MV·E·dV= 製=ま。MPOV シヤ·产=る

●自由度、能量和静力学进阶(J)

57 △自由度、能是解法: 利用一个或多个自由医描述能置 →对空间亦事: 求解静力平衡问题 2对时间本号: 水解像小长动的殿 文例图示是主轴轻动圆筒内的圆柱. (1)大筒固定时小柱作微小振动的周期下. (2)大筒不固定时的围期下 解: 川战灰白由医时 EK= = m(R-1)202+ = = mr2 (0 0) EVERGUE TOWN Ex= =m(R+1)202+===mx2(8-1)202 Ep=-mg(R+1)(050+1)==mg(R-1)02 > TI=217 = MIR+114 选贩自由度 & ER = mgx 英中上升高度1倍至·d·(d-x)2= 8-+2→ 7=8 故: Ek= = = = = m /2 EP= Z. R-KR 区选贩自由废: 日(小柱)、日(大筒): 有: Ex===m(R-r)2/8+10)2+=MR202 += = = mr (F0-0-4)2 Ep = mg(R-1)(1-000(PHU)) 校任星: L=T-V ===m(R+)2(++)2+=nR2(++=mr2(+0-0-4)2==mg(R+)18+0)2 m(R+1)210+10)+=mr210-Pr0)-=-mg(R-1)10+101 MR2 \$\varphi + m(R-r)2 (\varphi + \varphi) + \varphi mr2 (\varphi - \varphi - \varphi \varphi) = - mg(R+1) \varphi + \varphi mr2 (\varphi - \varphi - \varphi \varphi) = - mg(R+1) \varphi + \varphi mr2 (\varphi - \varphi - \varphi \varphi) = - mg(R+1) \varphi + \varphi mr2 (\varphi - \varphi - \varphi \varphi) = - mg(R+1) \varphi + \varphi mr2 (\varphi - \varphi - \varphi \varphi) = - mg(R+1) \varphi + \varphi mr2 (\varphi - \varphi - \varphi \varphi) = - mg(R+1) \varphi + \varphi mr2 (\varphi - \varphi - \varphi - \varphi \varphi) = - mg(R+1) \varphi + \varphi mr2 (\varphi - \varphi - \varphi \varphi - \varphi \varphi - \varphi \varphi \varphi - \varphi \varphi \varphi \varphi \varphi - \varphi \varph = m(R-1)20 + LmR2-5mRr+3mr] = -mg(R-1)10+61 [mR2-5mRr+3mr2] + LMR2+mR2-2m12r+3mr2] = -=> \ A \vartheta + B\vartheta = CO+CP \\
B\vartheta + P\vartheta + P\vartheta + P\vartheta = CO+CP \\
B\vartheta + P\vart ⇒ (A(P-B)+B(A-B))= C(P-B+A-B)B 其中: D-B=MR²+JmPr. A-B=Jmp²-Jmpr=Jmp(P-r) # + 2M+m - 8 - P-P => T=2TT R57

●复杂简正横和自由两体(4) △复杂简正横:一维无限振子链:	79
「有限様子: f_{k_1} ないなん f_{k_2} ないなん f_{k_3} ないなん f_{k_4} ない f_{k_4} ないなん f_{k_4} ない	
·无限振子:	D在事物人。k.m.
Ep= 書き kn(Xmn-Xn) kn=k 放送せず アートートートートートートートートートートートートートートートートートートート	立ちまり! Xn-Xn+-Xn-1)+ Xn=0 2int)-w3 Aneint=0
一方方は解: $Ae^{-i(wt+kx)} = Ae^{-ikx}$. e^{-ikx} . e	anus 11 U= alte
中某一标子某一时刻的运动: Xn= ADS(Wt+N) 文这里是编辑》),实用库罗格解WoE2Xn-	an) Xm - Xm J+ Xn =0!
(1) 3 年 日 (2) 1 日 (3)	i vij vie
Military : Vi=Vi-Vc= m2Vi	p-vendis-hip
= m2sinBc m1+m2corBc ->m,	Drab!

● 似筒: 应用自相似(3) ○ 白相似性 与多端接口: (不含调)	119
·自相似性: 天穷、是性使其本身分本身一部分文字	
A	RAB=13-1)r r//(13)r=1413-6)v
RAB=(2r+RAB)//r RAC=2RAB(RAB=CAR) RAB=(3r+RAB)//r RAB=(3r+RAB)//r	(N分析 インコーRABED-1-17) 一)RAIL エルコ
·三端接口:(房性) 三端接口有3个自由度,只用没成分。 一种用单位长度下,最外边长后,内层的1/4寸分。 一个 圣佩分析:Rx=以下(个) 产品	△型. tiRaB. er=1
及	第二年两次RAB 年了对称但
有: $R_1 = \frac{1}{4} \times \frac{1}$	1000000 BOOK
=> RAB-2P1+ = (P2+P4)====================================	Total Victoria
ABALACE长度10.BALE长度210.最外达长期:原图200.10000000000000000000000000000000000	В
$A \longrightarrow B \qquad 0 \stackrel{R}{\nearrow} = : RAB = \frac{1}{2} $	= RAO + RBO+ ROO! \\\\\ X Tofo)+Tofo] 2Tofo

+44

0应用:0血红细胞过毛细血管:	148
HOP -> :MP.	
● 海:*: *********************************	→ 40°C. ন? → 30°C. ন?
能带: 有一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	
9	bkle
注: の年介分: 京= = = mv= 一流: Ek= = inRT (株 医計 ② P= nM → NPな= ndP機.	9 (气= (ジ液)
○ 人名子气体: ·理想气体压强的快速推身: ARPA以外之时以下。 P. 文文 = 3 M. W. 文· 2 m. 以为立时以下。	5xx! 12/4/5
⇒ P 3 nm v² = 3n 元 ⇒ Ek = ≟PV (なるれ) ・ 光子をは: ε=hv. p= ½ ・ 田強: P·文·社 = 6·n·公本・5·2 ど ⇒ P = で の 京・能 置: E(P,V) = N·宮k= N → = 3pV ⇒ E =	in Ek
の は 本	= Po (70)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Entroly 1

A: 7=0分: NISIO): NASIO1 = 98%:2% $\pi = l \cdot h(d \cdot l) : n_{2} \cdot l \cdot l = \frac{1}{1}$ $\Rightarrow n = \frac{1}{49} e^{\frac{m_2 \cdot m}{70}} = \frac{\omega^2}{1}$ wt. 11t. △麦克斯韦分布:(n S Ex的关系) ·数学知识: 高斯积分: Gn(d)= 500 7ne-oxtdx $\Rightarrow \frac{dGn(d)}{d\alpha} = -\int_{0}^{\infty} x^{n+2} e^{-\alpha x^{2}} dx = -Gn+2|\alpha|$ $= G(d) = \int_{0}^{\infty} x e^{-\alpha x^{2}} dx = \int_{0}^{\infty} e^{-\alpha x^{2}} dx^{2} = -\frac{1}{2\alpha} e^{-\alpha x^{2}} \Big|_{\alpha}^{-\infty} = \frac{1}{2\alpha}$ 可Gold)]= Soe-dxdx Soe-dydy = 有 Jos Soe-dxxxydxdy = 有 Jos e-dxrdrdの = 型 Jore-dr dr 4a f(7,y)=f(r,8) FIXW dx dy

= fire) - dr. rd > Gold = Ed= Gild)= = dat G2(d)= \(\frac{1}{2} \d \) = \(\frac{1}{2} \d \) 94101 = 3F10-3 G51d)= d-3 ·分布律的推引 口假设: 入松野 大松英家庭. のなり、そろ虫之、 ATO VX - VX + dVx . dp=f/VX) dVx 沙方的: Vy-Vy+aVy, dp=flvy)dvy 250: 12-12+d/2. dp=fiv=1-d/2 @iZ V在VX-VXtd Vx; Vy-Vy+dVy; Vz-Vz+dVz的概率: dp=fivx)fivyitivs)avx avyavs is fivilavx avyavs. 性质(1)考虑3(x)=f(x)=Ax4+Bx2+C →f(v) 换的数元化明于表 RIJS/X) = AX+BX+C 证尽像知当到市 関有 S(v2)=f(v)=S(Vx19(Vy19(Vz2) 有因安置心数值效 的日成概要密度函数的形式: => f(v2)=f(vx)+(vy)+(v2) XIZ ANPISXIAN 圣相同的.

RIST

176 △洛伦兹支换: 取一个对齐在口点的变换: 横方不变的变换即称络伦兹变换 包括: /平动交换(boost): 沿一个方向平动 器动变换(rotation):治一个绯斑动 +名自的组合 财间反厦(T): t' -t 空间反倾(P): X的-X、Y的-Y、200-21(被价的从) · X6 boost: 16 XTOVO 有: [lcti-x-y-zi]-[lctiz-xi-yi-zi] = (rct-rax)- 1rx-Brett-(ct)+x=(r2+x)(ct)-(ct) 即成方言xixi = xxxx= (cti-x-y-z=const. (注:)两个事件间隔: AS=(Gt)2-W)2-0X)2-12)+=c2bt)2+41)也不多:/能较 · y poost: 118/AVO) · 26 post: (102/14/6) · xoya rotation: 122 25 X = X OSY + YSING = - X5in0+ Y658 文例 XOY平面内作出以此的防防的变换 爾: $\vec{r} = (\vec{r} \cdot \hat{n}) \hat{n} + (\vec{r} - (\vec{r} \cdot \hat{A}) \cdot \hat{A})$ 有一十二个一个一个一个 16 = 2/F.B-Bct) 众治 n 主流液 j 如同治X轴旋液 生村不多丰村为有不多 1 X 8 X PM !. 在: ct'=Yct-BY (OSBX+Singy) ア'=r16'n+rg'=アノア·n-pct)が下す = (058, sino, 0). (Y (050 x+sinoy) +(3ct) + Y-(7.n)n X = 050 [7 (050 X+510 by)+0ct] - 1 056 X+510 by) 050 +X = 17-1 1050 (050 X+510 by)+X +0050 pc Y'= sing[Y(cosex+singy)-PC]-lasex +Giney) singty =17-15in0(cosex+singy)+y+singec 2=3