Contents

1 Munkres Chapter 2

1	Mur	nkres Chapter 2	1	
	1	12. Topological space	1	
	2	13. Basis for a topology	1	
	3	14. The order topology	2	
	4	15. The product topology on $X \times Y$	2	
	5	17. Closed sets and limit points	3	
	6	22. The quotient topology	4	
2	Munkres Chapter 3			
	1	24. Connected subspace of the real line	6	
	2	25. Components and local connectedness	6	
3	Mur	nkres Chapter 9	7	
	1	51. Homotopy of paths	7	
	2	52. The fundamental group	9	
	3		0	
	4	Section 54. The fundamental group of the circle	0	
	5	Lecture 0909	1	

Section 1. Munkres Chapter 2

12. Topological space

1.1 Definition: Topology

A *topology* on a set X is a set of \mathcal{T} of subsets of X having the following properties:

- (a) $\varnothing, X \in \mathcal{T}$.
- (b) The union of any subset of \mathcal{T} is in \mathcal{T} .
- (c) The intersection of any finite subset of \mathcal{T} is in \mathcal{T} .

A set X for which a topology \mathcal{T} has been specified is called a **topological space**. We say $U \subset X$ is an **open set** if $U \subset \mathcal{T}$.

Example 1.2 A topology $\mathcal{T} = \{\varnothing, X\}$ is called the *indiscrete topology* or *trivial topology*. On the other hand, if $\mathcal{T} = P(X)$, then it is called the *discrete topology*

Example 1.3 Let X ba a set, \mathcal{T}_f be a set of all subset $U \subset X$ such that $X \setminus U$ either is finite or is all of X. Then

- (a) $X \setminus X$ is finite and $X \setminus \emptyset$ is X.
- (b) Suppose $\{U_{\alpha}\}$ is an indexed family of nonempty elements of \mathcal{T}_f . Then X $\bigcup U_{\alpha} = \bigcap (X - U_{\alpha})$ is finite.
- (c) $X \bigcap_{i=1}^n = \bigcup_{j=1}^n (X U_\alpha)$ is finite.

Therefore, \mathcal{T}_f is a topology, called *finite complement topology*. We can replace the condition 'finite' with 'countable', and the proposition still holds.

1.4 Definition

Suppose \mathcal{T} and \mathcal{T}' are two topologies on a given set X. If $\mathcal{T}' \supset \mathcal{T}$, then we say that \mathcal{T}' is **finer(larger)** than \mathcal{T} , and \mathcal{T} is **coarser(smaller)** than \mathcal{T}' . Also, we say that \mathcal{T} is *comparable* with \mathcal{T}' if either $\mathcal{T} \supset \mathcal{T}'$ or $\mathcal{T}' \supset \mathcal{T}$.

13. Basis for a topology

1.5 Definition

If X is a set, a **basis** for a topology on X is a collection \mathcal{B} of subsets of X(called a basis elements) such that

- (a) For each $x \in X$, there is at least one basis element B containing x.
- (b) If x belongs to the intersection of two basis elements B_1 and B_2 , then there is a basis element B_3 containing x such that $B_3 \subset B_1 \cap B_2$. We deine the **topology** \mathcal{T} **generated by** \mathcal{B} as follows: A subset U of X is said to be open in X if for each $x \in U$, there is a basis element $B \in \mathcal{B}$ such that $x \in B$ and $B \subset U$.

Example 1.6 Consider the set of all rectangular regions in \mathbb{R}^2 without border, where each rectangular have sides parallel to the coordinate axes.

1.7 Lemma

A topology is equal to the set of all union of its basis elements.

Munkres lemma 13.1

1.8 Lemma

Let X be a topological space. Suppose that \mathcal{C} is a set of open sets of X such that for each $U \subset X$ and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$.

Then C is a basis for the topology of X.

Munkres lemma 13.2

1.9 Lemma

Let \mathcal{B} and \mathcal{B}' be bases for the topologies \mathcal{T} and \mathcal{T}' , respectively, on X. TFAE:

- (a) \mathcal{T}' is finer than \mathcal{T} .
- (b) For each $x \in X$ and each $B \in \mathcal{B}$ containing x, there is a basis element $B' \in \mathcal{B}'$ such that $x \in B' \subset B$.

Munkres lemma 13.3

1.10 Definition

In \mathbb{R} ,

- (a) The set of all open interval is a basis of the **standard topology** on \mathbb{R} .
- (b) The set of all half-open([a,b)) intervals is a basis of the *lower limit topology* on \mathbb{R} , denoted by \mathbb{R}_l .
- (c) Let $K = \{1/n \mid n \in \mathbb{Z}\}$. The set of all open interval without the points in K is a basis of the **K-topology** on \mathbb{R} , denoted by \mathbb{R}_K .

1.11 Lemma

 \mathbb{R}_l and \mathbb{R}_K are strictly finer than the standard topology on \mathbb{R} , but are not comparable with one another.

Munkres lemma 13.4

1.12 Definition

A **subbasis** S for a topology on X is a collection of subsets of X whose union equals X. The **topology generated by the subbasis** S is defined to be the set T of all unions of finite intersections of elements of S.

14. The order topology

1.13 Definition

If X is a set with the relation <, the topology derived from the basis $\mathcal B$ of subset of X such that

- (a) All open intervals (a, b) in X;
- (b) all intervals of the form $[a_0, b)$ in X (if the smallest element a_0 exists);
- (c) all intervals of the form $[a, b_0]$ in X (if the largest element b_0 exists),

is called the order topology.

Example 1.14 The standard topology on \mathbb{R} is a order topology.

Example 1.15 The order topology on \mathbb{Z}^+ is the discrete topology.

Example 1.16 The basis elements for order topology of the set $\mathbb{R} \times \mathbb{R}$ in the dictionary order is of the form $(a \times b, c \times d)$ for a < c or a = c and b < d.

Example 1.17 The order topology of the set $X = \{1,2\} \times \mathbb{Z}^+$ in the dictionary order is not the discrete topology. Consider the basis element containing (2,1).

1.18 Definition

П

Suppose X is an ordered set, and $a \in X$. There are four subsets of X:

- (a) $(a, +\infty) = \{x \mid x > a\}.$
- (b) $(-\infty, a) = \{x \mid x < a\}.$
- (c) $[a, +\infty] = \{x \mid x \ge a\}.$
- (d) $(-\infty, a) = \{x \mid x \le a\}.$

They are called the *rays* determined by a. Sets of the first two types are called *open rays*, and sets of the last two types are called *closed rays*. The open rays form a subbasis for the order topology on X.

15. The product topology on $X \times Y$

1.19 Definition

Let X,Y be topological spaces. The **product topology** on $X\times Y$ is the topology having as basis the set $\mathcal B$ of all sets of the form $U\times V$, where $U\underset{\text{open}}{\subset} X$ and $V\underset{\text{open}}{\subset} Y$.

Remark \mathcal{B} is not a topology on $X \times Y$.

1.20 Theorem

If \mathcal{B} is a basis for the topology of X and \mathcal{C} is a basis for the topology of Y, then the set $\mathcal{D} = \{B \times C \mid B \in \mathcal{B}, C \in \mathcal{C}\}$ is a basis for the topology of $X \times Y$.

Munkres theorem 15.1

1.21 Definition

Define $\pi_1: X \times Y \to X$ by the equation $\pi_1(x,y) = x$, and define $\pi_2: X \times Y \to Y$ by $\pi_2(x,y) = y$. The maps are called the **projection** of $X \times Y$ onto its first and second factors, respectively.

1.22 Theorem

 $\mathcal{S} = \{\pi_1^{-1}(U) \mid U \underset{\text{open}}{\subset} X\} \cup \{\pi_2^{-1}(V) \mid V \underset{\text{open}}{\subset} Y\} \text{ is a subbasis for the product topology on } X \times Y.$

Munkres theorem 15.2

1.23 Definition

Let X be a topological space with a topology \mathcal{T} . If $Y \subset X$, $\mathcal{T}_Y = \{Y \cap U \mid U \in \mathcal{T}\}$ is a topology on Y, called the **subspace topology**. With this topology, Y is called a subspace of X.

1.24 Lemma

If \mathcal{B} is a basis for the topology on X, then the set $\mathcal{B}_Y = \{B \cap Y \mid B \in \mathcal{B}\}$ is a basis for the subspace topology on Y.

Munkres lemma 16.1

We say $U \subset Y$ is open in(or open relative to)Y if $U \subset \mathcal{T}_Y$.

1.25 Lemma

Let Y be a subspace of X. If U is open in Y and Y is open in X, then U is open in X.

Proof) Munkres lemma 16.2

1.26 Theorem

Suppose A is a subspace of X and B is a subspace of Y. Then the product topology of $A \times B$ is same as the subspace topology of $A \times B$.

Proof) Munkres lemma 16.3

Example 1.27 Suppose Y = [0,1] is a subspace of \mathbb{R} . Then the subspace topology of Y and the order topology on [0,1] are same.

Example 1.28 Let $Y = [0,1) \cup \{2\}$. If Y is a subspace of \mathbb{R} , then $\{2\}$ is open in the subspace topology on $Y(\text{since }(3/2,5/2) \cap \{2\} = \{2\})$. But $\{2\}$ is not open in the order topology on $Y(\text{since }\{2\} \text{ must be in the set of the form }(a,2])$.

Example 1.29 Let I = [0,1] and $I \times I$ be of the dictionary order on $\mathbb{R} \times \mathbb{R}$. Then its subspace topology and its order topology are not same. Consider the set $\{1/2\} \times (1/2,1]$, which is open in $I \times I$ in the subspace topology, but not in order topology.

1.30 Theorem

Let X be an ordered set in the order topology, and let Y be a subset of X that is convex in X. Then the order topology on Y is the same as the topology Y inherits as a subspace of X.

Munkres theorem 16.4

17. Closed sets and limit points

1.31 Definition

Let X be a topological space with topology \mathcal{T} . By a *closed* set, we mean a subset A of X that is A = X - B for some $B \in \mathcal{T}$.

Example 1.32 In the discrete topology on the set *X*, every set is open and closed.

Example 1.33 Consider the set $Y = [0,1] \cup (2,3)$. Both interval [0,1] and (2,3) are open and closed.

1.34 Theorem

П

П

Let X be a topological space. Then

- (a) \varnothing and X are closed.
- (b) Arbitrary intersections of closed sets are closed.
- (c) Finite unions of closed sets are closed.

Proof) Clear by the definition of open set and DeMorgan's law.

1.35 Theorem

Let Y be a subspace of X. Then a set A is *closed in* Y if and only if it equals the intersection of a closed set of X with Y.

Proof) Munkres theorem 17.2

1.36 Proposition

Let Y be a subspace of X. If A is closed in Y and Y is closed in X, then A is closed in X.

1.37 Definition

Given a subset A of a topological space X, the *interior*(denoted by IntA) of A is defined as the union of all open sets contained in A, and the *closure*(denoted by ClA or \overline{A}) of A is defined as the intersection of all closed sets containing A.

1.38 Theorem

Let Y be a subspace of X, let A be a subset of Y, let \overline{A} denote the closure of A in X. Then the closure of A in Y equals $\overline{A} \cap Y$.

Proof) Munkres theorem 17.5

A intersects *B* if $A \cap B \neq \emptyset$.

1.39 Theorem

Let A be a subset of the topological space X.

- (a) $x \in \overline{A} \iff$ every open set U containing x intersects A.
- (b) $x \in \overline{A} \iff$ every basis element B containing x intersects A.

Proof) Munkres p96

We can shorten the statement "U is an open set containing x" to the phrase "U is a **neighborhood** of x".

1.40 Definition

Let X be a topological space, and suppose $x \in A \subset X$. Then x is called a *limit(or cluster or accumulation) point* of A if every neighborhood of x intersects A in some points other than x. A' denote the set of all limit points of A.

1.41 Theorem

Let X be a topological space, and suppose $A \subset X$. Then $\overline{A} = A \cup A'$.

Proof) Munkres theorem 17.6

1.42 Corollary

Let X be a topological space, and suppose $A \subset X$. Then A is closed $\iff A' \subset A$.

Proof) Munkres corollary 17.7

1.43 Definition

If X is a topological space, a sequence of points of X is called **converge** to $x \in X$ if for each neighborhood U of x, there exists a positivie integer N such that $x_n \in U$ whenever $n \geq N$.

Remark In general topological space,

- (a) A one point set in the space need not be closed.
- (b) A sequence of points of the space can converge to more than one point.

1.44 Definition

A topological space X is called a **Hausdorff space** if for each pair x_1 , x_2 of distinct points of X, there exist neighborhoods U_1 , and U_2 of x_2 , respectively, that are disjoint.

1.45 Theorem

Every finite point set in a Hausdorff space *X* is closed.

Proof) Munkres theorem 17.8

1.46 Theorem

П

Let X be a space satisfying the T_1 axiom(that is, finite set in X closed); let A be a subset of X. Then the point x is a limit point of A if and only if every neighborhood of x contains infinitely many points of A.

Proof) Munkres theorem 17.9

1.47 Theorem

If X is a Hausdorff space, then a sequence of points of X converges to at most one point of X.

Proof) Munkres theorem 17.10

1.48 Definition

If a sequence x_n of points of the Hausdorff space X converges to the point x of X, we write $x_n \to x$, and we say that x is the *limit* of th sequence x_n .

1.49 Theorem

- (a) Every simply ordered set is a Hausdorff set space in the order topology.
- (b) The product of two Hausdorff spaces is a Hausdorff space.
- (c) A subspace of a Hausdorff space is a Hausdorff space

Proof) Exercise.

22. The quotient topology

1.50 Definition

Let X and Y be topological spaces; let $p:X\to Y$ be a surjective map. p is said to be a *quotient map* if

$$U \subset Y \iff p^{-1}(U) \subset X$$
.

1.51 Definition

Let X and Y be topological spaces; let $p:X\to Y$ be surjective. A subset $C\subset X$ is *saturated* if

$$f^{-1}f(C) = C$$

1.52 Proposition

TFAE:

- (a) $p: X \to Y$ is a quotient map.
- (b) p is continuous and maps saturated open sets of X to open sets of Y.
- (c) p is continuous and maps saturated closed sets of X to closed sets of Y.

1.53 Definition

A map f from a space to a space is **open(closed) map** if f maps each open(closed) sets in domain to open(closed) sets in codomain.

1.54 Proposition

If $p:X\to Y$ is a surjective continuous map that is either open or closed, then p is a quotient map.

1.55 Definition

Let X be a space, A a set, and $p:X\to A$ surjective map. There exists exactly one topology $\mathcal T$ on A relative to which p is a quotient map. It is called the **quotient topology** induced by p. $\mathcal T=\{U\in P(A):p^{-1}(A)\underset{\mathrm{open}}{\subset}X\}.$

1.56 Definition

Let

- (a) X be a topological space;
- (b) X^* be a partition of X into disjoint subsets whose uinon is X;
- (c) $p: X \to X^*$ be the surjective map that carries each point of X to the element of X^* containing it.

In the quotient topology induced by p, the space X^* is called a **quotient space** of X.

This can be viewed from a different perspective. For $U \subset X^*$, $p^{-1}(U)$ is a collection of equivalence classes whose union is open in X.

1.57 Theorem

Let $p: X \to Y$ be a quotient map; let A be a subspace of X that is saturated with respect to p; let $q: A \to p(A)$ be the map obtained by restricting p.

- (a) If A is either open or closed in X, then q is quotient map.
- (b) If p is either an open map or a closed map, then q is a quotient map.

Proof) Munkres p140

Section 2. Munkres Chapter 3

24. Connected subspace of the real line

2.1 Theorem: Intermediate value theorem

Let $f: X \to Y$ be a continuous map, where X is a connected space and Y is an ordered set in the order topology. If f(a) < r < f(b), there exists a point $c \in X$ such that f(c) = r.

П

Proof) Munkres p154

25. Components and local connectedness

2.2 Definition

Given X, define an equivalence relation on X by setting $x \sim y$ if there is a connected subspace(or path) X containing both x and y. The equivalence classes are called the *components(or path components)* of X.

2.3 Theorem

The (path) components of X are (path) connected disjoint subspaces of X whose union is X such that each nonempty (path) connected subspace of X itersects only one of them.

Proof) Munkres p159,p160

2.4 Definition

A space X is said to be *locally (path) connected at x* if for every neighborhood U of x, there is a (path) connected neighborhood V of x contained in U.

2.5 Theorem

A space x is locally (path) connected if and only if for every open set U of X, each (path) components of U is open in X.

Proof) Munkres 161

2.6 Theorem

If X is a topological space, each path components of X lies in a component of X. If X is locally path connected, then the components and the path components of X are the same.

Section 3. Munkres Chapter 9

51. Homotopy of paths

3.1 Definition

By the *unit interval* I, we mean the closed interval [0,1].

3.2 Theorem

The unit interval has the following properties:

- (a) I is a complete metric space. The metric on I is given by d(x,y) = |x-y|.
- (b) I is compact, contractible, path connected, and locally path connected.

3.3 Definition: Homotopic

Let X,Y be topological spaces and $f,f':X\to Y$ continuous. We say that f is **homotopic** to f' if there is a continuous map $F:X\times I\to Y$ such that

$$F(x,0) = f(x)$$
 and $F(x,1) = f'(x)$

for each x. The map F is called a **homotopy** between f and f', denoted by $f \simeq f'$. In this case, if f' is constant, we say that f is **nulhomotopic**.

3.4 Definition: Path

If a map $f:[0,1]\to X$ is continuous, $f(0)=x_0$, and $f(1)=x_1$, then we say f is a **path** in X from initial point x_0 to final point x_1 .

3.5 Definition: Path homotopic

Two path $f, f': [0,1] = I \to X$ are said to be **path homotopic** if thay have the same initial point x_0 and the same point x_1 , and if there is a continuous map $F: I \times I \to x$ such that

$$F(s,0) = f(s)$$
 and $F(s,1) = f'(s)$,

$$F(0,t) = x_0$$
 and $F(1,t) = x_1$,

for each $s \in I$ and each $t \in I$. We call F a **path homotopy** between f and f', denoted by $f \simeq_{v} f'$.

3.6 Proposition

 \simeq and \simeq_p are equivalence relations.

- (a) (reflexive) F(x,t) = f(x).
- (b) (symetric) G(x,t) = F(x, 1-t).
- (c) (transitive) $G(x,t)= \begin{cases} F(x,2t) & \text{for } t\in[0,\frac{1}{2}] \\ F'(x,2t-1) & \text{for } t\in[\frac{1}{2},1] \end{cases}$. By pasting lemma, G is continuous.

Example 3.7 Let f,g be any map of a space X into \mathbb{R}^2 . The map F(x,t)=(1-t)f(x)+tg(x) is called a **straight-line homotopy**. More generally, let A be any convex subspace of \mathbb{R}^n . Then any two path f,g in A from x_0 to x_1 are path homotopic in A.

Example 3.8 Let X denote the *punctured plane*, $\mathbb{R}^2\{0\}$, and let

$$f(s) = (\cos \phi s, \sin \phi s),$$

$$g(s) = (\cos \phi s, 2\sin \phi s),$$

$$h(s) = (\cos \phi s, -\sin \phi s)$$

Then $f \simeq g$, but f, h are not path homotopic.

3.9 Definition

If f is a path in X from x_0 to x_1 , and if g is a path in X from x_1 to x_2 , we define the **product** f * g of f and g to be the path h given by the equations

$$h(s) = \begin{cases} f(2s) & \text{for } s \in [0, \frac{1}{2}] \\ g(2s - 1) & \text{for } s \in [\frac{1}{2}, 1] \end{cases}$$

3.10 Lemma

The product operation on path-homotopy classes is well-defined by the equation [f] * [g] = [f * g].

Proof) Let F and G be the path homotopy between f,f' and g,g' respectively. Define $H(s,t) = \begin{cases} F(2s,t) & \text{for } s \in [0,\frac{1}{2}] \\ G(2s-1,t) & \text{for } s \in [\frac{1}{2},1] \end{cases}$. Then H is well-defined; and continuous by the pasting lemma; that is, it is a path homotopy between f*g and f'*g'. \square

3.11 Lemma

Suppose

- (a) $k: X \to Y$ is a continuous map;
- (b) F is a path homotopy in X between the paths f and f'.

Then $k \circ F$ is a path homotopy in Y between the paths $k \circ f$ and $k \circ f'$.

3.12 Lemma

Suppose

- (a) $k: X \to Y$ is a continuous map;
- (b) f and g are paths in X with f(1) = g(0).

Then

$$k \circ (f * g) = (k \circ f) * (k \circ g).$$

The proof is trivial.

3.13 Lemma

If [a,b] and [c,d] are two intervals in $\mathbb R$, there are unique numbers $m,k\in\mathbb R$ that define the map $p:[a,b]\to [c,d]$, given by p(x)=mx+k. We call it the **positive** *linear map* of [a,b] to [c,d]. This concept is closed under the inverse map and composition of maps.

 $e_x: I \to X$ denote the constant path given by $e_x = x$.

 $i: I \to I$ denote the identity map given by i(s) = s for all $s \in I$.

3.14 Theorem

The operation * has the following properties:

- (a) (associativity) If [f]*([g]*[h]) is defined, then so is ([f]*[g])*[h], and they are equal.
- (b) (right and left identities) Let $e_x:I\to X$ denote the constant path given by $e_x=x.$ If f is a path from x_0 to x_1 , then

$$[f] * [e_{x_1}] = [f]$$
 and $[e_{x_0}] * [f] = [f]$.

(c) (inverse) Given the path f in X from x_0 to x_1 , let \overline{f} be the path defined by $\overline{f}(s) = f(1-s)$. It is called the *reverse* of f. Then

$$[f] * [\overline{f}] = [e_{x_0}]$$
 and $[\overline{f}] * [f] = [e_{x_1}].$

Proof) To prove (1), define a map $k_{a,b}: I \to I \quad 0 < a < b < 1$ as follows:

- (a) A positive linear map of [0, a] to I followed by f;
- (b) a positive linear map of [a, b] to I followed by g;
- (c) a positive linear map of [b, 1] to I followed by h.

For 0 < c < d < 1, $k_{c,d} \simeq_p k_{a,b}$. Define $p: I \to I$ as follows:

- (a) A positive linear map of [0, a] to [0, c];
- (b) a positive linear map of [a, b] to [c, d];
- (c) a positive linear map of [b, 1] to [d, 1].

If $i:I\to I$ is the identity map, then $p\simeq_p i$. Suppose P is a path-homotopy in I between p and i. Then $k_{c,d}\circ P$ is a path-homotopy in X between $k_{a,b}$ and $k_{c,d}$. Since $f*(g*h)=k_{a,b}$ where a=1/2 and b=3/4, and $(f*g)*h=k_{c,d}$ where c=1/4 and d=1/2, the associativity property holds.

To prove (2), since I is convex, we see that $[e_0 * i] = [i]$. By the provious lemma, $f \circ i$ and $f \circ (e_0 * i)$ are path-homotopic Consequently,

$$[f] = [f \circ i] = [f \circ e_0 * i] = [(f \circ e_0) * (f \circ i)] = [f \circ e_0] * [f \circ i] = [e_{x_0}] * [f].$$

A similar argument show that $[f] * [e_{x_1}] = [f]$.

To prove (3), note that $[i*\overline{i}]=[e_0]$. Therefore,

$$[e_{x_0}] = [f \circ e_0] = [f \circ (i * \overline{i})] = [f \circ i] * [f \circ \overline{i}] = [f] * [\overline{f}].$$

A similar argument show that $[\overline{f}] * [f] = [e_{x_1}].$

3.15 Proposition: Exercise 1

If $h,h':X\to Y$ are homotopic and k,k' are homotopic, then $k\circ h$ and $k'\circ h'$ are homotopic.

3.16 Proposition: Exercise 3

A space X is said to be *contractible* if the identity map $i_X:X\to X$ is nulhomotopic.

- (a) Show that I and \mathbb{R} are contractible.
- (b) Show that a contractible space is path connected.
- (c) Show that if Y is contractible, then for any X, the set [X,Y] has a single element.
- (d) Show that if X is contractible and Y is path connected, then [X,Y] has a single element.

52. The fundamental group

monomorphism: homomorphism + injective. **epimorphism**: homomorphism + surjective.

3.17 Definition

Let X be a space, $x_0 \in X$. A path in X that begins and ends at x_0 is called a **loop** based at x_0 . The set of path homotopy classes of loops based at x_0 , with the operation *, is called the **fundamental group** of X relative to the **base point** x_0 . It is denoted by $\pi_1(X, x_0)$, called the **first homotopy group** of X.

Example 3.18 The unit ball has trivial fundamental group.

3.19 Definition

Let α be a path in X from x_0 to x_1 . We define a map $\hat{\alpha}: \pi_1(X, x_0) \to \pi_1(X, x_1)$ by $\hat{\alpha}([f]) = [\hat{\alpha}] * [f] * [\alpha]$.

3.20 Theorem

The map $\hat{\alpha}$ is a group isomorphism.

Proof) The proof for homomorphism is trivial. To prove bijectivity, consider $\hat{\alpha}$.

3.21 Corollary

If X is path connected and x_0 and x_1 are two points of X, then $\pi_1(X,x_0)$ is isomorphic to $\pi_1(X,x_1)$.

3.22 Definition

A space X is said to be **simply connected** if it is a path-connnected space and if $\pi_1(X, x_0)$ is trivial (one-element) group for some $x_0 \in X$, and hense for every $x_0 \in X$, write $\pi_1(X, x_0) = 0$.

3.23 Lemma

In a simply connected space X, any two paths having the same initial and final points are path homotopic.

Proof) Let α and β be two paths from x_0 to x_1 . Then $[\alpha * \overline{\beta}] * [\beta] = [e_{x_0}] * [\beta]$.

Suppose that $h: X \to Y$ is a continuous map that $h(x_0) = y_0$. Then we write $h: (X, x_0) \to (Y, y_0)$.

3.24 Definition

Let $h:(X,x_0)\to (Y,y_0)$ be a continuous map. Define $h_*:\pi_1(X,x_0)\to \pi_1(Y,y_0)$ by $h_*([f])=[h\circ f]$. The map is called the **homomorphism induced by h**, relative to the base point x_0 .

Remark h_* depends not only on the map $h: X \to Y$ but also on the choice of the base point x_0 .

3.25 Theorem

If $h:(X,x_0)\to (Y,y_0)$ and $k:(Y,y_0)\to (Z,z_0)$ are continuous, then $(k\circ h)_*=k_*\circ h_*$. If $i:(X,x_0)\to (X,x_0)$ is the identity map, then i_* is the identity homomorphism.

Proof) The proof is trivial.

3.26 Corollary

If h is a homeomorphism, then h_* is an isomorphism.

Proof) h_*^{-1} is the inverse of h_* .

3.27 Proposition: Exercise 4

Let $A \subset X$; suppose $r: X \to A$ is a continuous map such that r(a) = a for each $a \in A$. (The map r is called a **retraction** of X onto A) If $a_0 \in A$, show that

$$r_*: \pi_1(X, a_0) \to \pi_1(A, a_0)$$

is surjective.

3.28 Definition

G is called a *topological group* if it is both a topological space and a group such that the group operation map

$$G \times G \to G$$
, $(x,y) \mapsto x \cdot y$

and the inverse map

$$G \times G, \quad x \mapsto x^{-1}$$

are continuous maps with respect to the topology on G and the product topology on $G\times G$.

3.29 Proposition: Exercise 7

Let G be a topological group with operation \cdot and identity element x_0 . Let $\Omega(G,x_0)$ denote the set of all loops in G based at x_0 . If $f,g\in\Omega(G,x_0)$, let us define a loop $f\otimes g$ by the rule

$$(f \otimes g)(s) = f(s) \cdot g(s).$$

- (a) Show that this operation makes the set $\Omega(G, x_0)$ into a group.
- (b) Show that rhis operation induces a group operation \otimes on $\pi_1(G, x_0)$.
- (c) Show that the two group operation * and \otimes on $\pi_1(G,x_0)$ are the same.[Hint: Compute $(f*e_{x_0})\otimes (e_{x_0}*g)$]
- (d) Show that $\pi_1(G, x_0)$ is abelian.

53. Covering spaces

3.30 Definition

Let $p:E\to B$ be a continuous surjective map. The open set U of B is said to be **evenly covered** by p if the inverse image $p^{-1}(U)$ can be written as the union of disjoint open sets V_α in E such that for each α , the restriction of p to V_α is a homeomorphism of V_α onto U. The collection $\{V_\alpha\}$ will be called a partition of $p^{-1}(U)$ into **slices**.

3.31 Definition

Let $p: E \to B$ be continuous and surjective. If every point b of B has a neighborhood U that is evenly covered by p, then p is called a **covering map**, and E is said to be a **covering space** of B.

3.32 Proposition

For each $b \in B$, the subspace $p^{-1}(b)$ has the discrete topology.

Proof) Munkres p336

3.33 Proposition

A covering map is open.

Example 3.34 For any space X, the identity map $i: X \to X$ is a covering map.

3.35 Theorem

The map $p: \mathbb{R} \to S^1$ given by $p(x) = (\cos 2\pi x, \sin 2\pi x)$ is a covering map.

Proof) Let $U=\{(x,y)\mid x\in (0,1],y\in (-1,1)\}$. Then $p^{-1}(U)$ is the union of intervals of the form $V_n=(n-\frac{1}{4},n+\frac{1}{4})$, for all $n\in \mathbb{Z}$. We easily see that $p|\overline{V_n}$ is bijective(by IVT), and is closed(since $\overline{V_n}$ is compact), that is, is a homeomorphism of \overline{V} with \overline{U} . In particular, $p|V_n$ is a homeomorphism of V_n with U. Similar argument can be applied to the upper, left, down side of S^1 . They cover S^1 and each of them is evenly covered by p.

Example 3.36 Let $p: S^1 \to S^1$ be defined on the complex plane, given by $p(z) = z^2$. Then p is a covering map.

3.37 Definition

Let $p: E \to B$ is a *local homeomorphism* if for each $x \in E$, there is a neighborhood V of x such that p|V is a homeomorphism

3.38 Proposition

A covering map is a local homeomorphism.

Example 3.39 $p: \mathbb{R}_+ \to S^1$ given by $p(x) = (\cos 2\pi x, \sin 2\pi x)$ is surjective, and local homeomorphism, but is not a covering map. This example implies that the restriction of a covering map may not be a covering map.

3.40 Theorem

Let $p: E \to B$ be a covering map. If B_0 is a subspace of B, and if $E_0 = p^{-1}(B_0)$, then the map $p_0: E_0 \to B_0$ obtained by restricting p is a covering map.

Proof) Munkres theorem 53.2

3.41 Theorem

If $p:E\to B$ and $p':E'\to B'$ are covering maps, then $p\times p':E\times E'\to B\times B'$ is a covering map.

Exercise 3.1 $T = S^1 \times S^1$ is called the *torus*. The product map $p \times p : \mathbb{R} \times \mathbb{R} \to S^1 \times S^1$ is a covering map of torus by the plane \mathbb{R}^2 .

Section 54. The fundamental group of the circle

Lecture 0909

3.42 Theorem

 $x \mapsto (\cos 2\pi x, \sin 2\pi x)$ is a covering map.

Proof)

Example 3.43

$$exp: \mathbb{C} \to \mathbb{C} \setminus \{0\}$$
$$z \mapsto e^z$$

 $\mathbb{C} \simeq \mathbb{R}^2$ and $\mathbb{C} \setminus \{0\} \simeq \mathbb{R}^+ \times S$ given by $(x,y) \mapsto (e^x,e^{iy})$. It is a product map of a homeomorphism $\mathbb{R} \to \mathbb{R}^+$ and a covering map $\mathbb{R} \to S$.

Lemma 54.1 $B=\bigcup_{j\in J}u_j$ where open sets $u_j\subset B$ are evenly covered by p. $I=\alpha^{-1}(u_{j_1})\cup\cdots\cup\alpha^{-1}(u_{j_N})$ since compactness of I. $\exists 0< s_0< s_1<\cdots< s_M=1$ s.t. $[s_i,s_{i+1}]\subset\alpha^{-1}(u_{j_k})$ for some k by Lebesque's lemma. Assume that there exists a lifting of α $\tilde{\alpha}:[0,s_i]\to E$ with $\tilde{\alpha}(0)=e_0.$ $\alpha([s_i,s_{i+1}])\subset U\subset B$ for some evenly covered open set U.