

MSP430F5259, MSP430F5258, MSP430F5257, MSP430F5256 MSP430F5255, MSP430F5254, MSP430F5253, MSP430F5252

SLAS903C -MAY 2013-REVISED SEPTEMBER 2018

MSP430F525x Mixed-Signal Microcontrollers

Device Overview

1.1 **Features**

- **Dual-Supply Voltage Device**
 - Primary Supply (AVCC, DVCC)
 - Powered From External Supply: 3.6 V Down to 1.8 V
 - Up to 18 General-Purpose I/Os With up to 8 **External Interrupts**
 - Low-Voltage Interface Supply (DVIO)
 - Powered From Separate External Supply: 1.62 V to 1.98 V
 - Up to 35 General-Purpose I/Os With up to 16 External Interrupts
 - Serial Communications
- Ultra-Low Power Consumption
 - Active Mode (AM): All System Clocks Active 290 µA/MHz at 8 MHz, 3.0 V, Flash Program Execution (Typical) 150 µA/MHz at 8 MHz, 3.0 V, RAM Program **Execution (Typical)**
 - Standby Mode (LPM3): Real-Time Clock (RTC) With Crystal, Watchdog, and Supply Supervisor Operational, Full RAM Retention, Fast Wakeup: 2.1 µA at 2.2 V, 2.3 µA at 3.0 V (Typical) Low-Power Oscillator (VLO), General-Purpose Counter, Watchdog, and Supply Supervisor Operational, Full RAM Retention, Fast Wakeup: 1.6 µA at 3.0 V (Typical)
 - Off Mode (LPM4): Full RAM Retention, Supply Supervisor Operational, Fast Wakeup: 1.3 µA at 3.0 V (Typical)
 - Shutdown Mode (LPM4.5): 0.18 µA at 3.0 V (Typical)
- Wake up From Standby Mode in 3.5 µs (Typical)
- 16-Bit RISC Architecture, Extended Memory, up to 25-MHz System Clock

- Flexible Power-Management System
 - Fully Integrated LDO With Programmable Regulated Core Supply Voltage
 - Supply Voltage Supervision, Monitoring, and **Brownout**
- Unified Clock System
 - FLL Control Loop for Frequency Stabilization
 - Low-Power Low-Frequency Internal Clock Source (VLO)
 - Low-Frequency Trimmed Internal Reference Source (REFO)
 - 32-kHz Watch Crystals (XT1)
 - HF Crystals up to 32 MHz (XT2)
- 16-Bit Timer TA0, Timer_A With Five Capture/Compare Registers
- 16-Bit Timer TA1, Timer A With Three Capture/Compare Registers
- 16-Bit Timer TA2, Timer_A With Three Capture/Compare Registers
- 16-Bit Timer TB0, Timer B With Seven Capture/Compare Shadow Registers
- Four Universal Serial Communication Interfaces
 - USCI A0, A1, A2, A3 Each Support:
 - Enhanced UART With Automatic Baud-Rate Detection
 - IrDA Encoder and Decoder
 - Synchronous SPI
 - USCI B0, B1, B2, B3 Each Support:
 - I^2C
 - Synchronous SPI
- 10-Bit Analog-to-Digital Converter (ADC) With Internal Reference, Sample-and-Hold
- Comparator
- Hardware Multiplier Supports 32-Bit Operations
- Serial Onboard Programming, No External Programming Voltage Needed
- 3-Channel Internal DMA
- · Basic Timer With RTC Feature
- **Device Comparison Summarizes the Available** Family Members and Packages

1.2 Applications

- "Always-On" System Controllers
- · Power-Management Hubs
- Bluetooth[®] Controllers

- Analog and Digital Sensor Fusion Systems
- Data Loggers
- General-Purpose Applications

1.3 Description

Using an "always-on" ultra-low-power system controller can significantly reduce power consumption on portable devices like handsets and tablets. These controllers can act as sensor hubs and monitor user stimuli (for example, reading inertial sensors or touch sensors) and vital system parameters like battery health and temperature, while power-hungry application processors and touch screen controllers are turned off. The microcontroller can then "wake up" the system based on a user input or on a fault condition that requires CPU intervention.

The MSP430F525x series is the latest addition to the 1.8-V split-rail I/O portfolio (previously only available on MSP430F522x) and is specifically designed for "always-on" system controller applications. 1.8-V I/O allows for seamless interface to application processors and other devices without the need for external level translation, while the primary supply to the MCU can be on a higher voltage rail.

Compared to the MSP430F522x, the MSP430F525x provides up to four times more RAM (32KB) and double the serial interfaces (four USCI_A and four USCI_B). The MSP430F525x also features four 16-bit timers, a high-performance 10-bit ADC, a hardware multiplier, DMA, a comparator, and an RTC module with alarm capabilities. The MSP430F525x consumes 290 μ A/MHz (typical) in active mode running from flash memory, and it consumes 1.6 μ A (typical) in standby mode (LPM3). The MSP430F525x can switch to active mode in 3.5 μ S (typical), which makes it a great fit for "always-on" low-power applications.

Key benefits of the MSP430F525x are as follows:

- Up to 32KB of RAM allows complex sensor hub algorithms and high levels of aggregation such as keyboard control and power management.
- Four USCI_A and four USCI_B modules allow for eight concurrent dedicated hardware serial interfaces (for example, four I²C and four SPI) for fast and robust communication to sensors or peripheral devices.
- Up to 35 I/Os that can be used in the 1.8-V voltage rail.

For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's Guide. For design guidelines, see Designing With MSP430F522x and MSP430F521x Devices.

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE (2)
MSP430F5259IRGC	VQFN (64)	9 mm × 9 mm
MSP430F5252IZQE	BGA (80)	5 mm × 5 mm

⁽¹⁾ For the most current part, package, and ordering information for all available devices, see the *Package Option Addendum* in Section 8, or see the TI website at www.ti.com.

⁽²⁾ The sizes shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 8.

1.4 Functional Block Diagram

Figure 1-1 shows the functional block diagram.

Figure 1-1. Functional Block Diagram

Table of Contents

1	Devi	ce Overview	1		Strength (PxDS.y = 0)	24
	1.1	Features	1	5.20		
	1.2	Applications	2		Strength (PxDS.y = 1)	
	1.3	Description	_	5.21	Crystal Oscillator, XT1, Low-Frequency Mode	26
	1.4	Functional Block Diagram	_	5.22	·	27
2	Revi	sion History	5	5.23	, ,	00
3	Devi	ce Comparison	6	5.24	(VLO)	28
	3.1	Related Products	<u>6</u>	5.24	(REFO)	28
4	Term	ninal Configuration and Functions	<u>7</u>	5.25		
	4.1	Pin Diagrams	<u>7</u>	5.26	•	
	4.2	Signal Descriptions	9	5.27		
5	Spec	cifications	<u>14</u>	5.28		
	5.1	Absolute Maximum Ratings	<u>14</u>	5.29	_	
	5.2	ESD Ratings	<u>14</u>	5.30		
	5.3	Recommended Operating Conditions	<u>14</u>	5.31	PMM, SVM Low Side	33
	5.4	Active Mode Supply Current Into V _{CC} Excluding		5.32		
	F F	External Current	<u>17</u>		Reset	
	5.5	Low-Power Mode Supply Currents (Into V _{CC}) Excluding External Current	18	5.33	_	
	5.6	Thermal Resistance Characteristics		5.34	_	
	5.7	Schmitt-Trigger Inputs – General-Purpose I/O		5.35	, , ,	
		DVCC Domain		5.36	,	
	•	to P5.5, P6.0 to P6.7, PJ.0 to PJ.3, RSTDVCC)	<u>20</u>	5.37	, , , , , ,	
	5.8	Schmitt-Trigger Inputs – General-Purpose I/O DVIO Domain		5.38	,	
		to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.		5.39	,	
		.5, RST/NMI, BSLEN)	<u>20</u>	5.40 5.41	,	39
	5.9	Inputs – Interrupts DVCC Domain Port P6	20	5.41	10-Bit ADC, Power Supply and Input Range Conditions	40
	,	to P6.7)	<u>20</u>	5.42		
		to P1.7, P2.0 to P2.7)	20	5.43		
		Leakage Current – General-Purpose I/O DVCC	_	5.44	-	_
	/DE 0	Domain	04	5.45		
	,	to P5.5, P6.0 to P6.7, PJ.0 to PJ.3) Leakage Current – General-Purpose I/O DVIO Doma	_	5.46		
		to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.		5.47	•	_
		.5)		5.48		
	5.13	Outputs - General-Purpose I/O DVCC Domain (Full		5.49	DVIO BSL Entry	45
	(P5.0	Drive Strength) to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)	21	6 Deta	ailed Description	
		Outputs – General-Purpose I/O DVCC Domain	<u></u>	6.1	CPU (Link to user's guide)	46
		(Reduced Drive Strength)		6.2	Operating Modes	47
		to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)	<u>22</u>	6.3	Interrupt Vector Addresses	48
	5.15	Outputs – General-Purpose I/O DVIO Domain (Full Drive Strength)		6.4	Memory Organization	49
	(P1.0	to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.	0	6.5	Bootloader (BSL)	<u>50</u>
		.5)	<u>22</u>	6.6	JTAG Operation	52
	5.16	Outputs – General-Purpose I/O DVIO Domain		6.7	Flash Memory (Link to user's guide)	54
	(P1.0	(Reduced Drive Strength) to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.	0	6.8	RAM (Link to user's guide)	54
	,	.5)		6.9	Peripherals	55
	5.17	Output Frequency – General-Purpose I/O DVCC		6.10	Input/Output Diagrams	77
	(P5 0	Domain to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)	23	6.11	Device Descriptors	93
	•	Output Frequency – General-Purpose I/O DVIO	20	7 Dev	ice and Documentation Support	95
		Domain		7.1	Getting Started and Next Steps	95
		to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.		7.2	Device Nomenclature	95
		.5)	<u>23</u>	7.3	Tools and Software	97
	5.19	Typical Characteristics – Outputs, Reduced Drive		7.4	Documentation Support	99

w			

7.5	Related Links	100		7.9	Export Control Notice	101
7.6	Community Resources	100		7.10	Glossary	101
7.7	Trademarks	<u>100</u>	8	Mecl	hanical, Packaging, and Orderable	
7.8	Electrostatic Discharge Caution	<u>101</u>		Infor	mation	102

2 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from November 26, 2015 to September 27, 2018	Page
 Added Section 3.1, Related Products Added color to P1.0 (pin H2) and DVSS (pin F9) to indicate supply from DVIO in Figure 4-2, 80-Pin ZQE Package (Top View). Added typical conditions statements at the beginning of Section 5, Specifications. Changed the MIN value of the V_(DVCC_BOR_hys) parameter from 60 mV to 50 mV in Section 5.26, PMM, Brownout Reset (BOR). 	8
Updated notes (1) and (2) and added note (3) in Section 5.32, Wake-up Times From Low-Power Modes and Reset	. 33
 Removed ADC10DIV from the formula for the TYP value in the second row of the t_{CONVERT} parameter in Section 5.42, 10-Bit ADC, Timing Parameters, because ADC10CLK is after division Added second row for t_{EN CMP} with Test Conditions of "CBPWRMD = 10" and MAX value of 100 µs in 	
Section 5.46, Comparator_B. • Renamed FCTL4.MGR0 and MGR1 bits in the f _{MCLK,MGR} parameter in Section 5.47, Flash Memory, to be	43
consistent with header files • Added links to the custom BSL430 package download in Section 6.5, Bootloader (BSL)	. 50
 Replaced former section Development Tools Support with Section 7.3, Tools and Software Updated list of related documentation in Section 7.4, Documentation Support 	99

3 Device Comparison

Table 3-1 summarizes the available family members.

Table 3-1. Device Comparison⁽¹⁾⁽²⁾

				USCI								
DEVICE	FLASH (KB)	SRAM (KB)	Timer_A ⁽³⁾	Timer_B ⁽⁴⁾	CHANNEL A: UART, IrDA, SPI	CHANNEL B: SPI, I ² C	ADC10 _A (Ch)	COMP _B (Ch)	I/Os DVCC ⁽⁵⁾	I/Os DVIO ⁽⁶⁾	BSL TYPE	PACKAGE
MSP430F5259	128	32	5, 3, 3	7	4	4	10 ext, 2 int	8	18	35	I ² C	64 RGC 80 ZQE
MSP430F5258	128	32	5, 3, 3	7	4	4	N/A	8	18	35	I ² C	64 RGC 80 ZQE
MSP430F5257	128	16	5, 3, 3	7	4	4	10 ext, 2 int	8	18	35	I ² C	64 RGC 80 ZQE
MSP430F5256	128	16	5, 3, 3	7	4	4	N/A	8	18	35	I ² C	64 RGC 80 ZQE
MSP430F5255	128	32	5, 3, 3	7	4	4	10 ext, 2 int	8	18	35	UART	64 RGC 80 ZQE
MSP430F5254	128	32	5, 3, 3	7	4	4	N/A	8	18	35	UART	64 RGC 80 ZQE
MSP430F5253	128	16	5, 3, 3	7	4	4	10 ext, 2 int	8	18	35	UART	64 RGC 80 ZQE
MSP430F5252	128	16	5, 3, 3	7	4	4	N/A	8	18	35	UART	64 RGC 80 ZQE

- (1) For the most current package and ordering information, see the *Package Option Addendum* in Section 8, or see the TI website at www.ti.com.
- (2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging.
- (3) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.
- (4) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.
- (5) All of these I/Os are on a single voltage rail supplied by DVCC.
- (6) All of these I/Os are on a single voltage rail supplied by DVIO.

3.1 Related Products

For information about other devices in this family of products or related products, see the following links.

- Products for TI Microcontrollers TI's low-power and high-performance MCUs, with wired and wireless connectivity options, are optimized for a broad range of applications.
- Products for MSP430 Ultra-Low-Power Microcontrollers One platform. One ecosystem. Endless possibilities. Enabling the connected world with innovations in ultra-low-power microcontrollers with advanced peripherals for precise sensing and measurement.
- Companion Products for MSP430F5259 Review products that are frequently purchased or used in conjunction with this product.
- TI Reference Designs Find reference designs that leverage the best in TI technology to solve your system-level challenges.

4 Terminal Configuration and Functions

4.1 Pin Diagrams

Figure 4-1 shows the pinout of the 64-pin RGC package.

Figure 4-1. 64-Pin RGC Package (Top View)

Figure 4-2 shows the pinout of the 80-pin ZQE package.

Supplied by DVIO

Figure 4-2. 80-Pin ZQE Package (Top View)

4.2 Signal Descriptions

Table 4-1. Terminal Functions

TERMINAL						
	NO). ⁽²⁾	I/O ⁽¹⁾	SUPPLY	DESCRIPTION	
NAME	RGC	ZQE				
P6.0/TA2CLK/SMCLK/CB0/A0	1	A1	I/O	DVCC	General-purpose digital I/O with port interrupt TA2 clock signal TA2CLK input SMCLK output Comparator_B input CB0 Analog input A0 for ADC (not available on all device types)	
P6.1/TA2.0/CB1/A1	2	B2	I/O	DVCC	General-purpose digital I/O with port interrupt TA2 CCR0 capture: CCI0A input, compare: Out0 output Comparator_B input CB1 Analog input A1 for ADC (not available on all device types) BSL transmit output	
P6.2/TA2.1/CB2/A2	3	B1	I/O	DVCC	General-purpose digital I/O with port interrupt TA2 CCR1 capture: CCI1A input, compare: Out1 output Comparator_B input CB2 Analog input A2 for ADC (not available on all device types) BSL receive input	
P6.3/TA2.2/CB3/A3	4	C2	I/O	DVCC	General-purpose digital I/O with port interrupt TA2 CCR2 capture: CCl2A input, compare: Out2 output Comparator_B input CB3 Analog input A3 for ADC (not available on all device types)	
P6.4/CB4/A4	5	C1	I/O	DVCC	General-purpose digital I/O with port interrupt Comparator_B input CB4 Analog input A4 for ADC (not available on all device types)	
P6.5/CB5/A5	6	D2	I/O	DVCC	General-purpose digital I/O with port interrupt Comparator_B input CB5 Analog input A5 for ADC (not available on all device types)	
P6.6/CB6/A6	7	D1	I/O	DVCC	General-purpose digital I/O with port interrupt Comparator_B input CB6 Analog input A6 for ADC (not available on all device types)	
P6.7/CB7/A7	8	D3	I/O	DVCC	General-purpose digital I/O with port interrupt Comparator_B input CB7 Analog input A7 for ADC (not available on all device types)	
P5.0/A8/VeREF+	9	E1	I/O	DVCC	General-purpose digital I/O Analog input A8 for ADC (not available on all device types) Input for an external reference voltage to the ADC (not available on all device types)	
P5.1/A9/VeREF-	10	E2	I/O	DVCC	General-purpose digital I/O Analog input A9 for ADC (not available on all device types) Negative terminal for the ADC reference voltage for an external applied reference voltage (not available on all device types)	
AVCC	11	F2			Analog power supply	

⁽¹⁾ I = input, O = output

⁽²⁾ N/A = not available

TERMINAL							
TERMINAL	NC). ⁽²⁾	I/O ⁽¹⁾	O(1) SUPPLY	DESCRIPTION		
NAME	RGC	ZQE	1,0	3011 11	DEGOMP HON		
					General-purpose digital I/O		
P5.4/XIN	12	F1	I/O	DVCC	Input terminal for crystal oscillator XT1 (3)		
DE E/VOLIT	10	C1	1/0	DVCC	General-purpose digital I/O		
P5.5/XOUT	13	G1	I/O	DVCC	Output terminal of crystal oscillator XT1		
AVSS	14	G2			Analog ground supply		
DVCC	15	H1			Digital power supply		
DVSS	16	J1			Digital ground supply		
VCORE ⁽⁴⁾	17	J2		DVCC	Regulated core power supply output (internal use only, no external current loading)		
					General-purpose digital I/O with port interrupt		
P1.0/TA0CLK/ACLK ⁽⁵⁾	18	H2	I/O	DVIO	TA0 clock signal TA0CLK input		
					ACLK output (divided by 1, 2, 4, 8, 16, or 32)		
P1.1/TA0.0 ⁽⁵⁾	19	НЗ	I/O	DVIO	General-purpose digital I/O with port interrupt		
11.1/1740.0	13	110	1/0	DVIO	TA0 CCR0 capture: CCI0A input, compare: Out0 output		
P1.2/TA0.1 ⁽⁵⁾	20	J3	I/O	DVIO	General-purpose digital I/O with port interrupt		
1.2/170.1	20	00	1/0	DVIO	TA0 CCR1 capture: CCI1A input, compare: Out1 output		
P1.3/TA0.2 ⁽⁵⁾	21	G4	I/O	DVIO	General-purpose digital I/O with port interrupt		
11.3/1740.2	21	04	1/0	BVIO	TA0 CCR2 capture: CCI2A input, compare: Out2 output		
P1.4/TA0.3 ⁽⁵⁾	22	H4	I/O	DVIO	General-purpose digital I/O with port interrupt		
11.4/170.5	22	114	1/0	DVIO	TA0 CCR3 capture: CCl3A input compare: Out3 output		
P1.5/TA0.4 ⁽⁵⁾	23	J4	I/O	DVIO	General-purpose digital I/O with port interrupt		
F1.3/1A0.4	23	54	1/0	DVIO	TA0 CCR4 capture: CCI4A input, compare: Out4 output		
					General-purpose digital I/O with port interrupt		
P1.6/TA1CLK/CBOUT ⁽⁵⁾	24	G5	I/O	DVIO	TA1 clock signal TA1CLK input		
					Comparator_B output		
P1.7/TA1.0 ⁽⁵⁾	25	H5	I/O	DVIO	General-purpose digital I/O with port interrupt		
11.771A1.0	25	110	1/0	DVIO	TA1 CCR0 capture: CCI0A input, compare: Out0 output		
P2.0/TA1.1 ⁽⁵⁾	26	J5	I/O	DVIO	General-purpose digital I/O with port interrupt		
1 2.0/1A1.1	20	33	1/0	DVIO	TA1 CCR1 capture: CCI1A input, compare: Out1 output		
P2.1/TA1.2 ⁽⁵⁾	27	G6	I/O	DVIO	General-purpose digital I/O with port interrupt		
12.1/17(1.2)	21	00	1/0	DVIO	TA1 CCR2 capture: CCI2A input, compare: Out2 output		
					General-purpose digital I/O with port interrupt		
P2.2/UCB3SIMO/UCB3SDA ⁽⁵⁾	28	J6	I/O	DVIO	Slave in, master out – USCI_B3 SPI mode		
					I ² C data – USCI_B3 I ² C mode		
					General-purpose digital I/O with port interrupt		
P2.3/UCB3SOMI/UCB3SCL ⁽⁵⁾	29	H6	I/O	DVIO	Clock signal input – USCI_B3 SPI slave mode		
1 Z.J/OODJGOWII/OODJGOL\	29	110	1,0	DVIO	Clock signal output – USCI_B3 SPI master mode		
					Slave transmit enable – USCI_A3 SPI mode		
					General-purpose digital I/O with port interrupt		
P2.4/UCB3CLK/UCA3STE ⁽⁵⁾	30	J7	I/O	DVIO	Clock signal input – USCI_B3 SPI slave mode		
1 Z1/OODOOLIN/OOAOOTL	30	J/	1/0	טועם	Clock signal output – USCI_B3 SPI master mode		
					Slave transmit enable – USCI_A3 SPI mode		

When in crystal bypass mode, XIN can be configured so that it can support an input digital waveform with swing levels from DVSS to DVCC or DVSS to DVIO. In this case, the pin must be configured properly for the intended input swing.

VCORE is for internal use only. No external current loading is possible. VCORE should be connected only to the recommended capacitor value, C_{VCORE} (see Section 5.3).

This pin function is supplied by DVIO. See Section 5.8 for input and output requirements. (5)

TERMINAL								
	NC). ⁽²⁾	I/O ⁽¹⁾	O ⁽¹⁾ SUPPLY	DESCRIPTION			
NAME	RGC	ZQE						
P2.5/UCB3STE/UCA3CLK ⁽⁵⁾	31	J8	I/O	DVIO	General-purpose digital I/O with port interrupt Slave transmit enable – USCI_B3 SPI mode Clock signal input – USCI_A3 SPI slave mode Clock signal output – USCI_A3 SPI master mode			
P2.6/RTCCLK/DMAE0 ⁽⁵⁾	32	J9	I/O	DVIO	General-purpose digital I/O with port interrupt RTC clock output for calibration DMA external trigger input			
P2.7/UCB0STE/UCA0CLK ⁽⁵⁾	33	H7	I/O	DVIO	General-purpose digital I/O Slave transmit enable – USCI_B0 SPI mode Clock signal input – USCI_A0 SPI slave mode Clock signal output – USCI_A0 SPI master mode			
P3.0/UCB0SIMO/UCB0SDA ⁽⁵⁾	34	H8	I/O	DVIO	General-purpose digital I/O Slave in, master out – USCI_B0 SPI mode I ² C data – USCI_B0 I ² C mode			
P3.1/UCB0SOMI/UCB0SCL ⁽⁵⁾	35	H9	I/O	DVIO	General-purpose digital I/O Slave out, master in – USCI_B0 SPI mode I²C clock – USCI_B0 I²C mode			
P3.2/UCB0CLK/UCA0STE (5)	36	G8	I/O	DVIO	General-purpose digital I/O Clock signal input – USCI_B0 SPI slave mode Clock signal output – USCI_B0 SPI master mode Slave transmit enable – USCI_A0 SPI mode			
P3.3/UCA0TXD/UCA0SIMO ⁽⁵⁾	37	G9	I/O	DVIO	General-purpose digital I/O Transmit data – USCI_A0 UART mode Slave in, master out – USCI_A0 SPI mode			
P3.4/UCA0RXD/UCA0SOMI ⁽⁵⁾	38	G7	I/O	DVIO	General-purpose digital I/O Receive data – USCI_A0 UART mode Slave out, master in – USCI_A0 SPI mode			
DVSS	39	F9			Digital ground supply			
DVIO ⁽⁶⁾	40	E9			Digital I/O power supply			
P4.0/PM_UCB1STE/ PM_UCA1CLK ⁽⁵⁾	41	E8	I/O	DVIO	General-purpose digital I/O with reconfigurable port mapping secondary function Default mapping: Slave transmit enable – USCI_B1 SPI mode Default mapping: Clock signal input – USCI_A1 SPI slave mode Default mapping: Clock signal output – USCI_A1 SPI master mode			
P4.1/PM_UCB1SIMO/ PM_UCB1SDA ⁽⁵⁾	42	E7	I/O	DVIO	General-purpose digital I/O with reconfigurable port mapping secondary function Default mapping: Slave in, master out – USCI_B1 SPI mode Default mapping: I ² C data – USCI_B1 I ² C mode			
P4.2/PM_UCB1SOMI/ PM_UCB1SCL ⁽⁵⁾	43	D9	I/O	DVIO	General-purpose digital I/O with reconfigurable port mapping secondary function Default mapping: Slave out, master in – USCI_B1 SPI mode Default mapping: I ² C clock – USCI_B1 I ² C mode			

TERMINAL						
NAME	NO). ⁽²⁾	I/O ⁽¹⁾	SUPPLY	DESCRIPTION	
NAME	RGC	ZQE				
					General-purpose digital I/O with reconfigurable port mapping secondary function	
P4.3/PM_UCB1CLK/ PM_UCA1STE (5)	44	D8	I/O	DVIO	Default mapping: Clock signal input – USCI_B1 SPI slave mode	
PW_OCATSTE					Default mapping: Clock signal output – USCI_B1 SPI master mode	
					Default mapping: Slave transmit enable – USCI_A1 SPI mode	
P4.4/PM_UCA1TXD/	45	5-7	1/0	D) # 0	General-purpose digital I/O with reconfigurable port mapping secondary function	
PM_UCA1SIMO ⁽⁵⁾	45	D7	I/O	DVIO	Default mapping: Transmit data – USCI_A1 UART mode	
					Default mapping: Slave in, master out – USCI_A1 SPI mode	
P4.5/PM_UCA1RXD/	46	C9	I/O	DVIO	General-purpose digital I/O with reconfigurable port mapping secondary function	
PM_UCA1SOMI ⁽⁵⁾	40	C9	1/0	DVIO	Default mapping: Receive data – USCI_A1 UART mode	
					Default mapping: Slave out, master in – USCI_A1 SPI mode	
P4.6/PM_UCA3TXD/	47	C8	I/O	DVIO	General-purpose digital I/O with reconfigurable port mapping secondary function	
PM_UCA3SIMO ⁽⁵⁾	47	Co	1/0	סועם	Default mapping: Transmit data – USCI_A3 UART mode	
					Default mapping: Slave in, master out – USCI_A3 SPI mode	
P4.7/PM_UCA3RXD/	48	C7	I/O	DVIO	General-purpose digital I/O with reconfigurable port mapping secondary function	
PM_UCA3SOMI ⁽⁵⁾	40	C/	1,0	2.10	Default mapping: Receive data – USCI_A3 UART mode	
					Default mapping: Slave out, master in – USCI_A3 SPI mode	
(5)					General-purpose digital I/O	
P7.0/UCA2TXD/UCA2SIMO ⁽⁵⁾	49	B8, B9	I/O	DVIO	Transmit data – USCI_A2 UART mode	
					Slave in, master out – USCI_A2 SPI mode	
D7 4 /LICA 2D VD/LICA 2COMI(5)	F0	A9	I/O	DVIO	General-purpose digital I/O	
P7.1/UCA2RXD/UCA2SOMI(5)	50	A9	1/0	DVIO	Receive data – USCI_A2 UART mode Slave out, master in – USCI_A2 SPI mode	
					General-purpose digital I/O	
					Clock signal input – USCI B2 SPI slave mode	
P7.2/UCB2CLK/UCA2STE ⁽⁵⁾	51	B7	I/O	DVIO	Clock signal output – USCI B2 SPI master mode	
					Slave transmit enable – USCI_A2 SPI mode	
					General-purpose digital I/O	
P7.3/UCB2SIMO/UCB2SDA (5)	52	A8	I/O	DVIO	Slave in, master out – USCI_B2 SPI mode	
					I ² C data – USCI_B2 I ² C mode	
					General-purpose digital I/O	
P7.4/UCB2SOMI/UCB2SCL ⁽⁵⁾	53	A7	I/O	DVIO	Slave out, master in – USCI_B2 SPI mode	
					I ² C clock – USCI_B2 I ² C mode	
					General-purpose digital I/O	
D7 5/11CD2STE/11CA2CL K ⁽⁵⁾	E 1	۸۵	I/O	DVIO	Slave transmit enable – USCI_B2 SPI mode	
P7.5/UCB2STE/UCA2CLK ⁽⁵⁾	54	54 A6		DVIO	Clock signal input – USCI_A2 SPI slave mode	
					Clock signal output – USCI_A2 SPI master mode	
BSLEN ⁽⁵⁾	55	B6	1	DVIO	BSL enable with internal pulldown	

TERMINAL						
NAME	NO. ⁽²⁾		I/O ⁽¹⁾ SUPPLY		DESCRIPTION	
NAME	RGC	ZQE				
RST/NMI ⁽⁵⁾	50	۸۵		DVIO	Reset input active low ⁽⁷⁾⁽⁸⁾	
RS1/NMI ^{NE} /	56	A5	1	DVIO	Nonmaskable interrupt input ⁽⁷⁾	
P5.2/XT2IN	57	B5	I/O	DVCC	General-purpose digital I/O	
F3.2/X12IIN	37	53	1/0	DVCC	Input terminal for crystal oscillator XT2 ⁽⁹⁾	
P5.3/XT2OUT	58	B4	I/O	DVCC	General-purpose digital I/O	
F5.3/X12001	56	D4	1/0	DVCC	Output terminal of crystal oscillator XT2	
TEST/SBWTCK ⁽¹⁰⁾	59	A4		DVCC	Test mode pin – Selects four wire JTAG operation	
TEST/SBWTCK 7	39	74	'	DVCC	Spy-Bi-Wire input clock when Spy-Bi-Wire operation activated	
PJ.0/TDO ⁽¹¹⁾	60	C5	I/O	DVCC	General-purpose digital I/O	
13.0/100	00	0.5	1/0	DVCC	JTAG test data output port	
PJ.1/TDI/TCLK ⁽¹¹⁾	61	C4	I/O	DVCC	General-purpose digital I/O	
1 3.1/101/10LK	01	04	1/0	DVCC	JTAG test data input or test clock input	
PJ.2/TMS ⁽¹¹⁾	62	A3	I/O	DVCC	General-purpose digital I/O	
1 3.2/11/103	02	7.5	1/0	DVCC	JTAG test mode select	
PJ.3/TCK ⁽¹¹⁾	63	В3	I/O	DVCC	General-purpose digital I/O	
FJ.3/TCK /	03	ВЗ	1/0	DVCC	JTAG test clock	
					Reset input active low ⁽¹²⁾	
RSTDVCC/SBWTDIO ⁽¹¹⁾	64	A2	I/O	DVCC	Spy-Bi-Wire data input/output when Spy-Bi-Wire operation activated	
Reserved	N/A	(13)			Reserved	
QFN Pad	Pad	N/A			QFN package pad. Connection to V _{SS} recommended.	

⁽⁷⁾ This pin is configurable as reset or NMI and resides on the DVIO supply domain. When driven from external, the input swing levels from DVSS to DVIO are required.

MSP430F5253 MSP430F5252

⁸⁾ When this pin is configured as reset, the internal pullup resistor is enabled by default.

⁽⁹⁾ When in crystal bypass mode, XT2IN can be configured so that it can support an input digital waveform with swing levels from DVSS to DVCC or DVSS to DVIO. In this case, the must pin be configured properly for the intended input swing.

⁽¹⁰⁾ See Section 6.5.1 and Section 6.6 for use with BSL and JTAG functions, respectively.

⁽¹¹⁾ See Section 6.6 for use with JTAG function.

⁽¹²⁾ This nonconfigurable reset resides on the DVCC supply domain and has an internal pullup to DVCC. When driven from external, input swing levels from DVSS to DVCC are required. This reset must be used for Spy-Bi-Wire communication and is not the same RST/NMI reset as found on other devices in the MSP430 family. Refer to Section 6.5.1 and Section 6.6 for details regarding the use of this pin.

⁽¹³⁾ C6, D4, D5, D6, E3, E4, E5, E6, F3, F4, F5, F6, F7, F8, G3 are reserved and should be connected to ground.

5 Specifications

All graphs in this section are for typical conditions, unless otherwise noted.

Typical (TYP) values are specified at $V_{CC} = 3.3 \text{ V}$ and $T_A = 25^{\circ}\text{C}$, unless otherwise noted.

5.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Voltage applied at V _{CC} to V _{SS}	-0.3	4.1	V
Voltage applied at V _{IO} to V _{SS}	-0.3	2.2	V
Voltage applied to any pin (excluding VCORE and V _{IO} pins) ⁽²⁾	-0.3	$V_{CC} + 0.3$	V
Voltage applied to V _{IO} pins	-0.3	V _{IO} + 0.2	V
Diode current at any device pin		±2	mA
Storage temperature, T _{stg} ⁽³⁾	-55	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages referenced to V_{SS}. VCORE is for internal device use only. No external DC loading or voltage should be applied.

5.2 ESD Ratings

			VALUE	UNIT
\/	Flactroatatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±1000	\/
V _{(ESC}	D) Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±250	V

¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1000 V may actually have higher performance.

5.3 Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
		PMMCOREVx = 0	1.8		3.6	
	Supply voltage during program execution and flash	PMMCOREVx = 0, 1	2.0		3.6	.,
V _{CC}	Supply voltage during program execution and flash programming $(AV_{CC} = DV_{CC})^{(1)}$ (2) (3)	PMMCOREVx = 0, 1, 2	2.2		3.6	V
		PMMCOREVx = 0, 1, 2, 3	2.4		3.6	
V_{IO}	Supply voltage applied to DVIO referenced to V _{SS} ⁽²⁾		1.62		1.98	V
V_{SS}	Supply voltage (AV _{SS} = DV _{SS})			0		V
T _A	Operating free-air temperature		-40		85	°C
T _J	Operating junction temperature		-40		85	°C
C _{VCORE}	Recommended capacitor at VCORE (4)			470		nF
C _{DVCC} / C _{VCORE}	Capacitor ratio of DVCC to VCORE		10			

⁽³⁾ Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V may actually have higher performance.

⁽¹⁾ TI recommends powering AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be tolerated during power up and operation.

⁽²⁾ During V_{CC} and V_{IO} power up, it is required that V_{IO} ≥ V_{CC} during the ramp up phase of V_{IO}. During V_{CC} and V_{IO} power down, it is required that V_{IO} ≥ V_{CC} during the ramp down phase of V_{IO} (see Figure 5-1).

⁽³⁾ The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the Section 5.28 threshold parameters for the exact values and further details.

⁽⁴⁾ TI recommends a capacitor tolerance of ±20% or better.

Recommended Operating Conditions (continued)

			MIN	NOM MAX	UNIT
fsystem		PMMCOREVx = 0 (default condition), 1.8 V \leq V _{CC} \leq 3.6 V	0	8.0	
	Processor frequency (maximum MCLK frequency) (5) (see Figure 5-3)	PMMCOREVx = 1, 2.0 V \leq V _{CC} \leq 3.6 V	0	12.0	MHz
		PMMCOREVx = 2, 2.2 V \leq V _{CC} \leq 3.6 V	0	20.0	
		PMMCOREVx = 3, 2.4 V \leq V _{CC} \leq 3.6 V	0	25.0	

(5) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.

NOTE: The device supports continuous operation with $V_{CC} = V_{SS}$ while V_{IO} is fully within its specification. During this time, the general-purpose I/Os that reside on the V_{IO} supply domain are configured as inputs and pulled down to V_{SS} through their internal pulldown resistors. \overline{RST}/NMI is high impedance. BSLEN is configured as an input and is pulled down to V_{SS} through its internal pulldown resistor. When V_{CC} reaches above the BOR threshold, the general-purpose I/Os become high-impedance inputs (no pullup or pulldown enabled), \overline{RST}/NMI becomes an input pulled up to V_{IO} through its internal pullup resistor, and BSLEN remains pulled down to V_{SS} through its internal pulldown resistor.

NOTE: Under certain conditions during the rising transition of V_{CC} , the general-purpose I/Os that reside on the V_{IO} supply domain may actively transition high momentarily before settling to high-impedance inputs. These voltage transitions are temporary (typically resolving to high impedance inputs when V_{CC} exceeds approximately 0.9 V) and are bounded by the V_{IO} supply.

Figure 5-1. V_{CC} and V_{IO} Power Sequencing

NOTE: The device remains in reset based on the conditions of the RSTDVCC and RST pins and the voltage present on DVCC voltage supply. If RSTDVCC or RST is held at a logic low or if DVCC is below the SVSH_+ minimum threshold, the device remains in its reset condition; that is, these conditions form a logical OR with respect to device reset.

Figure 5-2. Reset Timing

NOTE: The numbers within the fields denote the supported PMMCOREVx settings.

Figure 5-3. Maximum System Frequency

5.4 Active Mode Supply Current Into V_{CC} Excluding External Current

over recommended operating free-air temperature (unless otherwise noted) (1) (2) (3)

						FREQUENCY $(f_{DCO} = f_{MCLK} = f_{SMCLK})$									
PARAMETER	EXECUTION MEMORY		V _{CC}	PMMCOREVx	1 M	Hz	8 M	Hz	12 N	lHz	20 N	lHz	25 N	lHz	UNIT
					TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
			0	0.36	0.47	2.32	2.60								
		201/	1	0.40		2.65		4.0	4.4					A	
I _{AM} , Flash	Flash	3.0 V	2	0.44		2.90		4.3		7.1	7.7			mA	
			3	0.46		3.10		4.6		7.6		10.1	11.0		
			0	0.20	0.29	1.20	1.30								
I _{AM, RAM}	DAM	201/	1	0.22		1.35		2.0	2.2					A	
	RAM	3.0 V	2	0.24		1.50		2.2		3.7	4.2			mA	
			3	0.26		1.60		2.4		3.9		5.3	6.2		

All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current. The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load (2) capacitance are chosen to closely match the required 12.5 pF.

Characterized with program executing typical data processing. f_{ACLK} = 32786 Hz, f_{DCO} = f_{MCLK} = f_{SMCLK} at specified frequency. XTS = CPUOFF = SCG0 = SCG1 = OSCOFF= SMCLKOFF = 0.

5.5 Low-Power Mode Supply Currents (Into V_{CC}) Excluding External Current

	<u> </u>	-				TE	MPERAT	URE (T _A)		•		
	PARAMETER	V _{cc}	PMMCOREVx	-40°	С	25°	С	60°	С	85°(С	UNIT
				TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
	Low-power mode 0 ⁽³⁾ (4)	2.2 V	0	73		78	91	84		93	103	
I _{LPM0,1MHz}	Low-power mode U(4) (4)	3.0 V	3	89		95	105	101		112	124	μA
	Low-power mode 2 ⁽⁵⁾ (4)	2.2 V	0	6.7		6.7	12	10.6		13	29	
I _{LPM2}	Low-power mode 2(4) (4)	3.0 V	3	7.2		7.2	13	11.6		14	30	μA
			0	1.8		2.1		3.4		8.4		
		2.2 V	1	1.9		2.2		3.6		8.7		
			2	2.0		2.4		3.8		9.0		
I _{LPM3,XT1LF}	Low-power mode 3, crystal mode (6) (4)		0	2.0		2.3	3.1	3.6		8.6	24	μA
	mode	201/	1	2.1		2.5		3.8		8.9		
		3.0 V	2	2.2		2.6		3.9		9.2		
			3	2.3		2.7	4.1	4.0		9.2	25	
	Low-power mode 3,		0	1.3		1.6	2.9	2.6		8.5	24	
		3.0 V	1	1.3		1.6		2.8		8.8		
I _{LPM3,VLO}	VLO mode ⁽⁷⁾ (4)	3.0 V	2	1.4		1.7		2.9		9.2		μA
			3	1.5		1.8	3.2	2.9		9.2	25	
			0	1.1		1.3	1.7	2.6		7.5	22	
	1 4 (8) (4)	3.0 V	1	1.3		1.4		2.7		7.7		
I _{LPM4}	Low-power mode 4 ⁽⁸⁾ (4)	3.0 V	2	1.4		1.4		2.8		7.9		μA
			3	1.5		1.5	1.8	2.8		7.9	23	
I _{LPM4.5}	Low-power mode 4.5 ⁽⁹⁾	3.0 V		0.15		0.18	0.35	0.26		0.5	1.0	μA
I _{DVIO_START}	Current supplied from DVIO while DVCC = AVCC = 0 V, DVIO = 1.62 V to 1.98 V, All DVIO I/O floating including BSLEN and RST/NMI	0 V		1.40		1.40	2.0	1.45		1.5	2.1	μΑ

- (1) All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current.
- The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF.
- (3) Current for the watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
- CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = f_{DCO} = 1 MHz

 (4) Current for brownout and high-side supervisor (SVS_H) normal mode included. Low-side supervisor (SVS_L) and low-side monitor (SVM_L) disabled. High-side monitor (SVMH) disabled. RAM retention enabled.
- (5) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = f_{DCO} = 0 MHz, DCO setting = 1-MHz operation, DCO bias generator enabled.)
- (6) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), f_{ACLK} = 32768 Hz, f_{MCLK} = f_{SMCLK} = f_{DCO} = 0 MHz (7) Current for watchdog timer and RTC clocked by ACLK included. ACLK = VLO.
- $\mathsf{CPUOFF} = \mathsf{1}, \, \mathsf{SCG0} = \mathsf{1}, \, \mathsf{SCG1} = \mathsf{1}, \, \mathsf{OSCOFF} = \mathsf{0} \, \, (\mathsf{LPM3}), \, \mathsf{f}_{\mathsf{ACLK}} = \mathsf{f}_{\mathsf{VLO}}, \, \mathsf{f}_{\mathsf{MCLK}} = \mathsf{f}_{\mathsf{SMCLK}} = \mathsf{f}_{\mathsf{DCO}} = \mathsf{0} \, \, \mathsf{MHz}$
- CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), $f_{DCO} = f_{ACLK} = f_{MCLK} = f_{SMCLK} = 0$ MHz
- Internal regulator disabled. No data retention.
 - CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), f_{DCO} = f_{ACLK} = f_{MCLK} = f_{SMCLK} = 0 MHz

5.6 Thermal Resistance Characteristics

	THERMAL METRIC ^{(1) (2)}		VALUE	UNIT
Do	lunction to push joint the armal resistance still oil	VQFN 64 (RGC)	29.3	90044
$R\theta_{JA}$	Junction-to-ambient thermal resistance, still air	BGA 80 (ZQE)	52.0	°C/W
D0	lunction to again (top) thermal registeres	VQFN 64 (RGC)	14.2	°C/M
$R\theta_{JC(TOP)}$	Junction-to-case (top) thermal resistance	BGA 80 (ZQE)	23.9	°C/W
Do.	hand a second half and the second as a factor of	VQFN 64 (RGC)	1.1	00044
$R\theta_{JC(BOTTOM)}$	Junction-to-case (bottom) thermal resistance	BGA 80 (ZQE)	N/A ⁽³⁾	°C/W
Do.	Lore Control to be a self the control on a Self-control	VQFN 64 (RGC)	8.2	00044
$R\theta_{JB}$	Junction-to-board thermal resistance	BGA 80 (ZQE)	29.3	°C/W
).Tr	handle to a select the	VQFN 64 (RGC)	0.2	00044
Ψ_{JT}	Junction-to-package-top thermal characterization parameter	BGA 80 (ZQE)	0.5	°C/W
		VQFN 64 (RGC)	8.1	0000
Ψ_{JB}	Junction-to-board thermal characterization parameter	BGA 80 (ZQE)	29.3	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

⁽²⁾ These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [Rθ_{JC}] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards:

[•] JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)

JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages

JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages

JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements

⁽³⁾ N/A = not applicable

5.7 Schmitt-Trigger Inputs – General-Purpose I/O DVCC Domain⁽¹⁾ (P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3, RSTDVCC)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V	Positive going input threshold voltage		1.8 V	0.80		1.40	V
V _{IT+}	Positive-going input threshold voltage		3 V	1.50		2.10	V
V	Negative going input threehold voltage		1.8 V	0.45		1.00	V
V_{IT-}	Negative-going input threshold voltage		3 V	0.75		1.65	V
V	Input voltage bysteresis (// // //)		1.8 V	0.3		0.8	V
V_{hys}	Input voltage hysteresis (V _{IT+} – V _{IT-})		3 V	0.4		1.0	V
R _{Pull}	Pullup or pulldown resistor	For pullup: $V_{IN} = V_{SS}$, For pulldown: $V_{IN} = V_{CC}$		20	35	50	kΩ
C_{l}	Input capacitance	$V_{IN} = V_{SS}$ or V_{CC}			5		pF

⁽¹⁾ These same parametrics apply to the clock input pin when crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN).

5.8 Schmitt-Trigger Inputs – General-Purpose I/O DVIO Domain _____ (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5, RST/NMI, BSLEN)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{IO}	MIN	TYP	MAX	UNIT
V	Desitive going input threshold voltage	V - 20 V	1.62 V	0.8		1.25	V
V _{IT+}	Positive-going input threshold voltage	V _{CC} = 3.0 V	1.98 V	1.1		1.40	V
V	Negative-going input threshold voltage	V - 20 V	1.62 V	0.3		0.7	V
V _{IT}	Negative-going input theshold voltage	$V_{CC} = 3.0 \text{ V}$	1.98 V	0.5		1.0	v
V _{hys}	Input voltage hysteresis (V _{IT+} – V _{IT-})	V _{CC} = 3.0 V	1.62 V to 1.98 V	0.3		0.8	V
R _{Pull}	Pullup or pulldown resistor ⁽¹⁾	For pullup: V _{IN} = V _{SS} , For pulldown: V _{IN} = V _{IO}		20	35	50	kΩ
C _I	Input capacitance	$V_{IN} = V_{SS}$ or V_{IO}			5		pF

⁽¹⁾ Also applies to the RST pin when the pullup or pulldown resistor is enabled.

5.9 Inputs – Interrupts DVCC Domain Port P6 (P6.0 to P6.7)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	• • • • • • • • • • • • • • • • • • • •	, ,	•	. ,		,		
	PARAMETER	TE	ST CONDITIONS		V _{cc}	MIN N	ИАХ	UNIT
t _(int)	External interrupt timing ⁽¹⁾	External trigger puls	se duration to set in	nterrupt flag	1.8 V, 3 V	20		ns

⁽¹⁾ An external signal sets the interrupt flag every time the minimum interrupt pulse duration t_(int) is met. It may be set by trigger signals shorter than t_(int).

5.10 Inputs – Interrupts DVIO Domain Ports P1 and P2 (P1.0 to P1.7, P2.0 to P2.7)

	PARAMETER	TEST CONDITIONS	V _{IO} ⁽¹⁾	MIN MA	X UNIT
t _(int)	External interrupt timing (2)	External trigger pulse duration to set interrupt flag, V _{CC} = 1.8 V or 3.0 V	1.62 V to 1.98 V	20	ns

In all test conditions, V_{IO} ≤ V_{CC}.

⁽²⁾ An external signal sets the interrupt flag every time the minimum interrupt pulse duration t_(int) is met. It may be set by trigger signals shorter than t_(int).

5.11 Leakage Current – General-Purpose I/O DVCC Domain (P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

P.A	RAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
I _{lkg(Px.y)} High-impedar	ce leakage current	See (1)(2)	1.8 V, 3 V	- 50	50	nA

(1) The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.

5.12 Leakage Current – General-Purpose I/O DVIO Domain (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{IO} ⁽¹⁾	MIN	MAX	UNIT
I _{lkg(Px.y)}	High-impedance leakage current	See (2)(3)	1.62 V to 1.98 V	-50	50	nA

In all test conditions, V_{IO} ≤ V_{CC}.

(2) The leakage current is measured with V_{SS} or V_{IO} applied to the corresponding pins, unless otherwise noted.

5.13 Outputs – General-Purpose I/O DVCC Domain (Full Drive Strength) (P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
		$I_{(OHmax)} = -3 \text{ mA}^{(1)}$	1.8 V	V _{CC} - 0.25	V _{CC}	
V _{OH} High-level output voltage	Llimb lovel output voltome	$I_{(OHmax)} = -10 \text{ mA}^{(2)}$	1.0 V	V _{CC} - 0.60	V _{CC}	
	nigri-level output voltage	$I_{(OHmax)} = -5 \text{ mA}^{(1)}$	3 V	V _{CC} - 0.25	V_{CC}	V
		$I_{(OHmax)} = -15 \text{ mA}^{(2)}$	3 V	V _{CC} - 0.60	V_{CC}	
		$I_{(OLmax)} = 3 \text{ mA}^{(1)}$	4.0.1/	V _{SS}	$V_{SS} + 0.25$	
\/	Low level output voltage	$I_{(OLmax)} = 10 \text{ mA}^{(2)}$	1.8 V	V _{SS}	$V_{SS} + 0.60$	V
V _{OL}	Low-level output voltage	$I_{(OLmax)} = 5 \text{ mA}^{(1)}$	3 V	V _{SS}	$V_{SS} + 0.25$	V
		I _(OLmax) = 15 mA ⁽²⁾	3 V	V _{SS}	$V_{SS} + 0.60$	

The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified.

²⁾ The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is disabled.

⁽³⁾ The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is disabled.

⁽²⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage drop specified.

5.14 Outputs – General-Purpose I/O DVCC Domain (Reduced Drive Strength) (P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
		$I_{(OHmax)} = -1 \text{ mA}^{(2)}$	1.8 V	V _{CC} - 0.25	V _{CC}	
	$I_{(OHmax)} = -3 \text{ mA}^{(3)}$	1.0 V	$V_{CC} - 0.60$	V_{CC}	1 V I	
	$I_{(OHmax)} = -2 \text{ mA}^{(2)}$	3.0 V	$V_{CC} - 0.25$	V_{CC}		
		$I_{(OHmax)} = -6 \text{ mA}^{(3)}$	3.0 V	$V_{CC} - 0.60$	V_{CC}	
		$I_{(OLmax)} = 1 \text{ mA}^{(2)}$	1.8 V	V_{SS}	$V_{SS} + 0.25$	
.,	Low level output voltage	$I_{(OLmax)} = 3 \text{ mA}^{(3)}$	1.0 V	V _{SS}	$V_{SS} + 0.60$	V
V _{OL}	Low-level output voltage	$I_{(OLmax)} = 2 \text{ mA}^{(2)}$	3.0 V	V _{SS}	$V_{SS} + 0.25$	V
		$I_{(OLmax)} = 6 \text{ mA}^{(3)}$		V _{SS}	$V_{SS} + 0.60$	

⁽¹⁾ Selecting reduced drive strength may reduce EMI.

5.15 Outputs – General-Purpose I/O DVIO Domain (Full Drive Strength) (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{IO} ⁽¹⁾	MIN	MAX	UNIT
		$I_{(OHmax)} = -100 \ \mu A^{(2)}$		V _{IO} – 0.05	V_{IO}	V
V_{OH}	High-level output voltage	$I_{(OHmax)} = -3 \text{ mA}^{(2)}$	1.62 V to 1.98 V	V _{IO} – 0.25	V_{IO}	
		$I_{(OHmax)} = -6 \text{ mA}^{(2)}$		$V_{IO} - 0.50$	V_{IO}	
\/	Low-level output voltage	$I_{(OLmax)} = 3 \text{ mA}^{(2)}$	4.00.1/1-4.00.1/	V_{SS}	$V_{SS} + 0.25$	
V _{OL}		$I_{(OLmax)} = 6 \text{ mA}^{(2)}$	1.62 V to 1.98 V	V_{SS}	$V_{SS} + 0.50$	V

In all test conditions, V_{IO} ≤ V_{CC}.

5.16 Outputs – General-Purpose I/O DVIO Domain (Reduced Drive Strength) (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5)

	PARAMETER	TEST CONDITIONS	V _{IO} ⁽²⁾	MIN	MAX	UNIT
		$I_{(OHmax)} = -100 \ \mu A^{(3)}$	1.62 V to 1.98 V	$V_{IO} - 0.05$	V_{IO}	V
V_{OH}	High-level output voltage	$I_{(OHmax)} = -1 \text{ mA}^{(3)}$		V _{IO} - 0.25	V_{IO}	
		$I_{(OHmax)} = -2 \text{ mA}^{(3)}$		V _{IO} - 0.50	V_{IO}	
\/	Low-level output voltage	$I_{(OLmax)} = 1 \text{ mA}^{(3)}$	4.00.1/+- 4.00.1/	V_{SS}	$V_{SS} + 0.25$	
V _{OL}		$I_{(OLmax)} = 2 \text{ mA}^{(3)}$	1.62 V to 1.98 V	V_{SS}	$V_{SS} + 0.50$	V

⁽¹⁾ Selecting reduced drive strength may reduce EMI.

⁽²⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified.

⁽³⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage drop specified.

⁽²⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified.

⁽²⁾ In all test conditions, V_{IO} ≤ V_{CC}.

⁽³⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified.

5.17 Output Frequency – General-Purpose I/O DVCC Domain (P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	MAX	UNIT
f _{Px.y}	Port output frequency	See (1) (2)	$V_{CC} = 1.8 \text{ V},$ PMMCOREVx = 0		16	MU
	(with load)	See W.	V _{CC} = 3 V, PMMCOREVx = 3	25		MHz
	Clock output frequency		V _{CC} = 1.8 V, PMMCOREVx = 0		16	NAL I
†Port_CLK		ACLK, SMCLK, or MCLK, $C_L = 20 \text{ pF}^{(2)}$	V _{CC} = 3 V, PMMCOREVx = 3	25		MHz

⁽¹⁾ A resistive divider with 2 x R1 between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider. For full drive strength, R1 = 550 Ω. For reduced drive strength, R1 = 1.6 kΩ. C_L = 20 pF is connected to the output to V_{SS}.

5.18 Output Frequency – General-Purpose I/O DVIO Domain (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5)

	PARAMETER	TEST CONDITIONS		MIN	MAX	UNIT
f _{Px.y}	Port output frequency	See (1) (2)	$V_{IO} = 1.62 \text{ V to } 1.98 \text{ V}^{(3)},$ PMMCOREVx = 0		16	MHz
	(with load)	See (7 (-7	$V_{IO} = 1.62 \text{ V to } 1.98 \text{ V}^{(3)},$ PMMCOREVx = 3	25		IVI⊓∠
			$V_{IO} = 1.62 \text{ V to } 1.98 \text{ V}^{(3)},$ PMMCOREVx = 0		16	N41.1-
†Port_CLK	Clock output frequency	ACLK, SMCLK, or MCLK, C _L = 20 pF ⁽²⁾	V _{IO} = 1.62 V to 1.98 V ⁽³⁾ , PMMCOREVx = 3		25	MHz

⁽¹⁾ A resistive divider with 2 x R1 between V_{IO} and V_{SS} is used as load. The output is connected to the center tap of the divider. For full drive strength, R1 = 550 Ω. For reduced drive strength, R1 = 1.6 kΩ. C_L = 20 pF is connected to the output to V_{SS}.

⁽²⁾ The output voltage reaches at least 10% and 90% V_{CC} at the specified toggle frequency.

⁽²⁾ The output voltage reaches at least 10% and 90% V_{IO} at the specified toggle frequency.

⁽³⁾ In all test conditions, $V_{IO} \le V_{CC}$.

5.19 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

MSP430F5253 MSP430F5252

5.20 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)

5.21 Crystal Oscillator, XT1, Low-Frequency Mode⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT	
		f_{OSC} = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, T_A = 25°C			0.075			
$\Delta I_{DVCC.LF}$	Differential XT1 oscillator crystal current consumption from lowest drive setting, LF mode	$\begin{aligned} &f_{OSC} = 32768 \text{ Hz, XTS} = 0,\\ &\text{XT1BYPASS} = 0, \text{XT1DRIVEx} = 2,\\ &T_{A} = 25^{\circ}\text{C} \end{aligned}$	3.0 V		0.170		μΑ	
		f_{OSC} = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 3, T_A = 25°C			0.290			
f _{XT1,LF0}	XT1 oscillator crystal frequency, LF mode	XTS = 0, XT1BYPASS = 0			32768		Hz	
f _{XT1,LF,SW}	XT1 oscillator logic-level square- wave input frequency, LF mode	XTS = 0, XT1BYPASS = 1 ⁽²⁾ (3) XT1BYPASSLV = 0 or 1		10	32.768	50	kHz	
OA _{LF}	Oscillation allowance for	$ \begin{aligned} &XTS = 0, \\ &XT1BYPASS = 0, XT1DRIVEx = 0, \\ &f_{XT1,LF} = 32768 \; Hz, C_{L,eff} = 6 \; pF \end{aligned} $			210		kΩ	
OALF	LF crystals ⁽⁴⁾	$\begin{split} XTS &= 0, \\ XT1BYPASS &= 0, XT1DRIVEx = 1, \\ f_{XT1,LF} &= 32768 \text{ Hz}, C_{L,eff} = 12 \text{ pF} \end{split}$			300		K12	
		$XTS = 0$, $XCAPx = 0^{(6)}$			1			
C	Integrated effective load	XTS = 0, $XCAPx = 1$			5.5		pF	
$C_{L,eff}$	capacitance, LF mode (5)	XTS = 0, $XCAPx = 2$			8.5		рі	
		XTS = 0, $XCAPx = 3$			12.0			
	Duty cycle, LF mode	$XTS = 0$, Measured at ACLK, $f_{XT1,LF} = 32768 \text{ Hz}$		30%		70%		
f _{Fault,LF}	Oscillator fault frequency, LF mode ⁽⁷⁾	XTS = 0, XT1BYPASS = 1 ⁽⁸⁾ , XT1BYPASSLV = 0 or 1		10		10000	Hz	
t _{START,L} F	Start-up time, LF mode	$\begin{split} f_{OSC} &= 32768 \text{ Hz, XTS} = 0, \\ \text{XT1BYPASS} &= 0, \text{XT1DRIVEx} = 0, \\ \text{T}_{A} &= 25^{\circ}\text{C, C}_{L,\text{eff}} = 6 \text{ pF} \end{split}$	201/		1000			
		$f_{OSC} = 32768 \text{ Hz}, \text{ XTS} = 0, \\ \text{XT1BYPASS} = 0, \text{XT1DRIVEx} = 3, \\ T_{A} = 25^{\circ}\text{C}, C_{L,eff} = 12 \text{ pF}$	3.0 V	500		ms		

- (1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.
 - Keep the trace between the device and the crystal as short as possible.
 - Design a good ground plane around the oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
 - Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.
 - · If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
- (2) When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square-wave with parametrics defined in the Schmitt-Trigger Inputs section of this data sheet. When in crystal bypass mode, XIN can be configured so that it can support an input digital waveform with swing levels from DVSS to DVCC (XT1BYPASSLV = 0) or DVSS to DVIO (XT1BYPASSLV = 1). In this case, it is required that the pin be configured properly for the intended input swing.
- (3) Maximum frequency of operation of the entire device cannot be exceeded.
- (4) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but each application should be evaluated based on the actual crystal selected:
 - For XT1DRIVEx = 0, $C_{L,eff} \le 6 pF$
 - For XT1DRIVEx = 1, 6 pF \leq C_{L,eff} \leq 9 pF
 - For XT1DRIVEx = 2, 6 pF \leq C_{L,eff} \leq 10 pF
 - For XT1DRIVEx = 3, $C_{L,eff} \ge 6 \text{ pF}$
- (5) Includes parasitic bond and package capacitance (approximately 2 pF per pin).
 - Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
- (6) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
- (7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the flag.
- (8) Measured with logic-level input frequency but also applies to operation with crystals.

5.22 Crystal Oscillator, XT2

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT	
		$f_{OSC} = 4$ MHz, XT2OFF = 0, $T_A = 25$ °C, XT2BYPASS = 0, XT2DRIVEx = 0,			200			
ı	XT2 oscillator crystal current	f_{OSC} = 12 MHz, XT2OFF = 0, T_A = 25°C, XT2BYPASS = 0, XT2DRIVEx = 1,	3.0 V		260		^	
I _{DVCC.XT2}	consumption	f_{OSC} = 20 MHz, XT2OFF = 0, T_A = 25°C, XT2BYPASS = 0, XT2DRIVEx = 2,	3.0 V		325		μA	
		f_{OSC} = 32 MHz, XT2OFF = 0, T_A = 25°C, XT2BYPASS = 0, XT2DRIVEx = 3,			450			
f _{XT2,HF0}	XT2 oscillator crystal frequency, mode 0	XT2DRIVEx = 0, XT2BYPASS = 0 ⁽³⁾		4		8	MHz	
f _{XT2,HF1}	XT2 oscillator crystal frequency, mode 1	XT2DRIVEx = 1, XT2BYPASS = 0 ⁽³⁾		8		16	MHz	
f _{XT2,HF2}	XT2 oscillator crystal frequency, mode 2	XT2DRIVEx = 2, XT2BYPASS = 0 ⁽³⁾		16		24	MHz	
f _{XT2,HF3}	XT2 oscillator crystal frequency, mode 3	XT2DRIVEx = 3, XT2BYPASS = 0 ⁽³⁾		24		32	MHz	
f _{XT2,HF,SW}	XT2 oscillator logic-level square-wave input frequency, bypass mode	XT2BYPASS = 1 (4) (3) XT2BYPASSLV = 0 or 1		0.7		32	MHz	
		$XT2DRIVEx = 0$, $XT2BYPASS = 0$, $f_{XT2,HF0} = 6$ MHz, $C_{L,eff} = 15$ pF			450			
04	Oscillation allowance for	$XT2DRIVEx = 1$, $XT2BYPASS = 0$, $f_{XT2,HF1} = 12$ MHz, $C_{L,eff} = 15$ pF			320		0	
OA _{HF}	HF crystals (5)	$XT2DRIVEx = 2$, $XT2BYPASS = 0$, $f_{XT2,HF2} = 20$ MHz, $C_{L,eff} = 15$ pF			200		Ω	
		$XT2DRIVEx = 3$, $XT2BYPASS = 0$, $f_{XT2,HF3} = 32$ MHz, $C_{L,eff} = 15$ pF			200			
	Chart up time	$ \begin{aligned} &f_{OSC} = 6 \text{ MHz}, \\ &\text{XT2BYPASS} = 0, \text{XT2DRIVEx} = 0, \\ &T_A = 25^{\circ}\text{C}, \text{C}_{\text{L,eff}} = 15 \text{ pF} \end{aligned} $	3.0 V		0.5			
t _{START,HF}	Start-up time	$ \begin{aligned} & f_{OSC} = 20 \text{ MHz,} \\ & \text{XT2BYPASS} = 0, \text{XT2DRIVEx} = 2, \\ & T_{A} = 25^{\circ}\text{C, } C_{L,\text{eff}} = 15 \text{ pF} \end{aligned} $	- 3.0 V		0.3		ms	
$C_{L,eff}$	Integrated effective load capacitance, HF mode ⁽⁶⁾ (1)				1		pF	
	Duty cycle	Measured at ACLK, f _{XT2,HF2} = 20 MHz		40%	50%	60%		
f _{Fault,HF}	Oscillator fault frequency ⁽⁷⁾	XT2BYPASS = 1 ⁽⁸⁾ , XT2BYPASSLV = 0 or 1		30		300	kHz	

- (1) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
- 2) To improve EMI on the XT2 oscillator the following guidelines should be observed.
 - Keep the traces between the device and the crystal as short as possible.
 - Design a good ground plane around the oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.
 - Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.
 - · Use assembly materials and processes that avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.
- If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
- (3) This represents the maximum frequency that can be input to the device externally. Maximum frequency achievable on the device operation is based on the frequencies present on ACLK, MCLK, and SMCLK cannot be exceed for a given range of operation.
- (4) When XT2BYPASS is set, the XT2 circuit is automatically powered down. Input signal is a digital square-wave with parametrics defined in the Schmitt-trigger Inputs section of this data sheet. When in crystal bypass mode, XT2IN can be configured so that it can support an input digital waveform with swing levels from DVSS to DVCC (XT2BYPASSLV = 0) or DVSS to DVIO (XT2BYPASSLV = 1). In this case, it is required that the pin be configured properly for the intended input swing.
- (5) Oscillation allowance is based on a safety factor of 5 for recommended crystals.
- (6) Includes parasitic bond and package capacitance (approximately 2 pF per pin).
- Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
- (7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the flag.
- (8) Measured with logic-level input frequency but also applies to operation with crystals. Typically, an effective load capacitance of up to 18 pF can be supported.

5.23 Internal Very-Low-Power Low-Frequency Oscillator (VLO)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f_{VLO}	VLO frequency	Measured at ACLK	1.8 V to 3.6 V	6	9.4	14	kHz
df_{VLO}/d_{T}	VLO frequency temperature drift	Measured at ACLK ⁽¹⁾	1.8 V to 3.6 V		0.5		%/°C
df _{VLO} /dV _{CC}	VLO frequency supply voltage drift	Measured at ACLK ⁽²⁾	1.8 V to 3.6 V		4		%/V
	Duty cycle	Measured at ACLK	1.8 V to 3.6 V	40%	50%	60%	

Calculated using the box method: (MAX(-40° C to 85° C) – MIN(-40° C to 85° C)) / MIN(-40° C to 85° C) / (85° C – (-40° C)) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)

5.24 Internal Reference, Low-Frequency Oscillator (REFO)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
I _{REFO}	REFO oscillator current consumption	T _A = 25°C	1.8 V to 3.6 V		3		μΑ
	REFO frequency calibrated	Measured at ACLK	1.8 V to 3.6 V		32768		Hz
f _{REFO}	REFO absolute tolerance calibrated	Full temperature range	1.8 V to 3.6 V	-3.5%		3.5%	
		T _A = 25°C	3 V	-1.5%		1.5%	
df_{REFO}/d_{T}	REFO frequency temperature drift	Measured at ACLK ⁽¹⁾	1.8 V to 3.6 V		0.01		%/°C
df_{REFO}/dV_{CC}	REFO frequency supply voltage drift	Measured at ACLK ⁽²⁾	1.8 V to 3.6 V		1.0		%/V
	Duty cycle	Measured at ACLK	1.8 V to 3.6 V	40%	50%	60%	
t _{START}	REFO start-up time	40%/60% duty cycle	1.8 V to 3.6 V		25		μs

Calculated using the box method: $(MAX(-40^{\circ}C \text{ to } 85^{\circ}C) - MIN(-40^{\circ}C \text{ to } 85^{\circ}C)) / MIN(-40^{\circ}C \text{ to } 85^{\circ}C) / (85^{\circ}C - (-40^{\circ}C))$

Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)

5.25 DCO Frequency

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$f_{DCO(0,0)}$	DCO frequency (0, 0) ⁽¹⁾	DCORSELx = 0, $DCOx = 0$, $MODx = 0$	0.07		0.20	MHz
f _{DCO(0,31)}	DCO frequency (0, 31) ⁽¹⁾	DCORSELx = 0, $DCOx = 31$, $MODx = 0$	0.70		1.70	MHz
f _{DCO(1,0)}	DCO frequency (1, 0) ⁽¹⁾	DCORSELx = 1, $DCOx = 0$, $MODx = 0$	0.15		0.36	MHz
f _{DCO(1,31)}	DCO frequency (1, 31) ⁽¹⁾	DCORSELx = 1, $DCOx = 31$, $MODx = 0$	1.47		3.45	MHz
f _{DCO(2,0)}	DCO frequency (2, 0) ⁽¹⁾	DCORSELx = 2, $DCOx = 0$, $MODx = 0$	0.32		0.75	MHz
f _{DCO(2,31)}	DCO frequency (2, 31) ⁽¹⁾	DCORSELx = 2, $DCOx = 31$, $MODx = 0$	3.17		7.38	MHz
f _{DCO(3,0)}	DCO frequency (3, 0) ⁽¹⁾	DCORSELx = 3, $DCOx = 0$, $MODx = 0$	0.64		1.51	MHz
f _{DCO(3,31)}	DCO frequency (3, 31) ⁽¹⁾	DCORSELx = 3, DCOx = 31, MODx = 0	6.07		14.0	MHz
f _{DCO(4,0)}	DCO frequency (4, 0) ⁽¹⁾	DCORSELx = 4, $DCOx = 0$, $MODx = 0$	1.3		3.2	MHz
f _{DCO(4,31)}	DCO frequency (4, 31) ⁽¹⁾	DCORSELx = 4, DCOx = 31, MODx = 0	12.3		28.2	MHz
f _{DCO(5,0)}	DCO frequency (5, 0) ⁽¹⁾	DCORSELx = 5, $DCOx = 0$, $MODx = 0$	2.5		6.0	MHz
f _{DCO(5,31)}	DCO frequency (5, 31) ⁽¹⁾	DCORSELx = 5, DCOx = 31, MODx = 0	23.7		54.1	MHz
f _{DCO(6,0)}	DCO frequency (6, 0) ⁽¹⁾	DCORSELx = 6, DCOx = 0, MODx = 0	4.6		10.7	MHz
f _{DCO(6,31)}	DCO frequency (6, 31) ⁽¹⁾	DCORSELx = 6, DCOx = 31, MODx = 0	39.0		88.0	MHz
f _{DCO(7,0)}	DCO frequency (7, 0) ⁽¹⁾	DCORSELx = 7, DCOx = 0, MODx = 0	8.5		19.6	MHz
f _{DCO(7,31)}	DCO frequency (7, 31) ⁽¹⁾	DCORSELx = 7, DCOx = 31, MODx = 0	60		135	MHz
S _{DCORSEL}	Frequency step between range DCORSEL and DCORSEL + 1	$S_{RSEL} = f_{DCO(DCORSEL+1,DCO)}/f_{DCO(DCORSEL,DCO)}$	1.2		2.3	ratio
S _{DCO}	Frequency step between tap DCO and DCO + 1	$S_{DCO} = f_{DCO(DCORSEL,DCO+1)}/f_{DCO(DCORSEL,DCO)}$	1.02		1.12	ratio
	Duty cycle	Measured at SMCLK	40%	50%	60%	
df _{DCO} /dT	DCO frequency temperature drift ⁽²⁾	f _{DCO} = 1 MHz		0.1		%/°C
df _{DCO} /dV _{CC}	DCO frequency voltage drift ⁽³⁾	f _{DCO} = 1 MHz		1.9		%/V

- (1) When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, f_{DCO}, should be set to reside within the range of f_{DCO(n, 0),MAX} ≤ f_{DCO} ≤ f_{DCO(n, 31),MIN}, where f_{DCO(n, 0),MAX} represents the maximum frequency specified for the DCO frequency, range n, tap 0 (DCOx = 0) and f_{DCO(n,31),MIN} represents the minimum frequency specified for the DCO frequency, range n, tap 31 (DCOx = 31). This ensures that the target DCO frequency resides within the range selected. It should also be noted that if the actual f_{DCO} frequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the selected range is at its minimum or maximum tap setting.
- (2) Calculated using the box method: $(MAX(-40^{\circ}C \text{ to } 85^{\circ}C) MIN(-40^{\circ}C \text{ to } 85^{\circ}C)) / MIN(-40^{\circ}C \text{ to } 85^{\circ}C) / (85^{\circ}C (-40^{\circ}C))$
- (3) Calculated using the box method: (MAX(1.8 V to 3.6 V) MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V 1.8 V)

Figure 5-12. Typical DCO Frequency

5.26 PMM, Brownout Reset (BOR)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{DVCC_BOR_IT}	BOR _H on voltage, DV _{CC} falling level	$\mid dDV_{CC}/d_t \mid < 3 \text{ V/s}$			1.45	V
V _{DVCC_BOR_IT+}	BOR _H off voltage, DV _{CC} rising level	$\mid dDV_{CC}/d_t \mid < 3 \text{ V/s}$	0.80	1.30	1.50	٧
V _{DVCC_BOR_hys}	BOR _H hysteresis		50		250	mV
t _{RESET}	Pulse duration required at RST/NMI pin to accept a reset		2			μs

5.27 PMM, Core Voltage

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
V _{CORE3} (AM)	Core voltage, active mode, PMMCOREV = 3	2.4 V ≤ DV _{CC} ≤ 3.6 V	1.90	V
V _{CORE2} (AM)	Core voltage, active mode, PMMCOREV = 2	2.2 V ≤ DV _{CC} ≤ 3.6 V	1.80	V
V _{CORE1} (AM)	Core voltage, active mode, PMMCOREV = 1	2.0 V ≤ DV _{CC} ≤ 3.6 V	1.60	V
V _{CORE0} (AM)	Core voltage, active mode, PMMCOREV = 0	1.8 V ≤ DV _{CC} ≤ 3.6 V	1.40	V
V _{CORE3} (LPM)	Core voltage, low-current mode, PMMCOREV = 3	2.4 V ≤ DV _{CC} ≤ 3.6 V	1.94	V
V _{CORE2} (LPM)	Core voltage, low-current mode, PMMCOREV = 2	2.2 V ≤ DV _{CC} ≤ 3.6 V	1.84	V
V _{CORE1} (LPM)	Core voltage, low-current mode, PMMCOREV = 1	2.0 V ≤ DV _{CC} ≤ 3.6 V	1.64	V
V _{CORE0} (LPM)	Core voltage, low-current mode, PMMCOREV = 0	1.8 V ≤ DV _{CC} ≤ 3.6 V	1.44	V

5.28 PMM, SVS High Side

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
		SVSHE = 0, DV _{CC} = 3.6 V		0		~ ^	
I _(SVSH)	SVS current consumption	SVSHE = 1, DV _{CC} = 3.6 V, SVSHFP = 0		200		nA	
		SVSHE = 1, DV _{CC} = 3.6 V, SVSHFP = 1		1.5		μΑ	
		SVSHE = 1, SVSHRVL = 0	1.57	1.68	1.78		
V	SVS _H on voltage level ⁽¹⁾	SVSHE = 1, SVSHRVL = 1	1.79	1.88	1.98	V	
V(SVSH_IT-)		SVSHE = 1, SVSHRVL = 2	1.98	2.08	2.21	V	
		SVSHE = 1, SVSHRVL = 3	2.10	2.18	2.31		
	SVS _H off voltage level ⁽¹⁾	SVSHE = 1, SVSMHRRL = 0	1.62	1.74	1.85		
		SVSHE = 1, SVSMHRRL = 1	1.88	1.94	2.07		
		SVSHE = 1, SVSMHRRL = 2	2.07	2.14	2.28		
\ /		SVSHE = 1, SVSMHRRL = 3	2.20	2.30	2.42	V	
V(SVSH_IT+)		SVSHE = 1, SVSMHRRL = 4	2.32	2.40	2.55	V	
		SVSHE = 1, SVSMHRRL = 5	2.52	2.70	2.88		
		SVSHE = 1, SVSMHRRL = 6	2.90	3.10	3.23		
		SVSHE = 1, SVSMHRRL = 7	2.90	3.10	3.23		
	CVC propagation delay	SVSHE = 1, dV _{DVCC} /dt = 10 mV/µs, SVSHFP = 1		2.5			
t _{pd(SVSH)}	SVS _H propagation delay	SVSHE = 1, $dV_{DVCC}/dt = 1 \text{ mV/}\mu\text{s}$, SVSHFP = 0		20		μs	
	CVC an an eff delevation	SVSHE = $0 \rightarrow 1$, $dV_{DVCC}/dt = 10 \text{ mV/}\mu\text{s}$, SVSHFP = 1		12.5			
t _(SVSH)	SVS _H on or off delay time	SVSHE = $0 \rightarrow 1$, $dV_{DVCC}/dt = 1 \text{ mV/}\mu\text{s}$, SVSHFP = 0		100		μs	
dV _{DVCC} /dt	DV _{CC} rise time		0		1000	V/s	

⁽¹⁾ The SVS_H settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide on recommended settings and use.

5.29 PMM, SVM High Side

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		SVMHE = 0, DV _{CC} = 3.6 V		0		~ ^
I _(SVMH)	SVM _H current consumption	SVMHE= 1, DV _{CC} = 3.6 V, SVMHFP = 0		200		nA
		SVMHE = 1, DV _{CC} = 3.6 V, SVMHFP = 1		1.5		μΑ
		SVMHE = 1, SVSMHRRL = 0	1.62	1.74	1.85	
		SVMHE = 1, SVSMHRRL = 1	1.88	1.94	2.07	
	SVM _H on or off voltage level ⁽¹⁾	SVMHE = 1, SVSMHRRL = 2	2.07	2.14	2.28	
		SVMHE = 1, SVSMHRRL = 3	2.20	2.30	2.42	
$V_{(SVMH)}$		SVMHE = 1, SVSMHRRL = 4	2.32	2.40	2.55	V
		SVMHE = 1, SVSMHRRL = 5	2.52	2.70	2.88	
		SVMHE = 1, SVSMHRRL = 6	2.90	3.10	3.23	
		SVMHE = 1, SVSMHRRL = 7	2.90	3.10	3.23	
		SVMHE = 1, SVMHOVPE = 1		3.75		
	0)/14	SVMHE = 1, dV _{DVCC} /dt = 10 mV/µs, SVMHFP = 1		2.5		
t _{pd(SVMH)}	SVM _H propagation delay	SVMHE = 1, dV _{DVCC} /dt = 1 mV/µs, SVMHFP = 0		20		μs
	CV/M are an eff dalary time.	SVMHE = $0 \rightarrow 1$, $dV_{DVCC}/dt = 10 \text{ mV/}\mu\text{s}$, SVMHFP = 1		12.5		
t _(SVMH)	SVM _H on or off delay time	SVMHE = $0 \rightarrow 1$, $dV_{DVCC}/dt = 1 \text{ mV/}\mu\text{s}$, SVMHFP = 0		100		μs

⁽¹⁾ The SVM_H settings available depend on the VCORE (PMMCOREVx) setting. See the *Power Management Module and Supply Voltage Supervisor* chapter in the *MSP430x5xx and MSP430x6xx Family User's Guide* on recommended settings and use.

5.30 PMM, SVS Low Side

	PARAMETER	TEST CONDITIONS		TYP	MAX	UNIT
	SVS _L current consumption	SVSLE = 0, PMMCOREV = 2	0			~^
I _(SVSL)		SVSLE = 1, PMMCOREV = 2, SVSLFP = 0		200		nA
		SVSLE = 1, PMMCOREV = 2, SVSLFP = 1		1.5		μΑ
	SVS _L propagation delay	SVSLE = 1, dV _{CORE} /dt = 10 mV/µs, SVSLFP = 1		2.5		
t _{pd(SVSL)}		SVSLE = 1, $dV_{CORE}/dt = 1 \text{ mV/}\mu\text{s}$, SVSLFP = 0		20		μs
	CVC on or off delay time	SVSLE = $0 \rightarrow 1$, $dV_{CORE}/dt = 10$ mV/ μ s, SVSLFP = 1		12.5		
t _(SVSL)	SVS _L on or off delay time	SVSLE = $0 \rightarrow 1$, $dV_{CORE}/dt = 1 \text{ mV/}\mu\text{s}$, SVSLFP = 0		100		μs

5.31 PMM, SVM Low Side

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
	SVM _L current consumption	SVMLE = 0, PMMCOREV = 2		0		nA
I _(SVML)		SVMLE= 1, PMMCOREV = 2, SVMLFP = 0	200			IIA
		SVMLE= 1, PMMCOREV = 2, SVMLFP = 1		1.5		μΑ
	SVM _L propagation delay	SVMLE = 1, dV _{CORE} /dt = 10 mV/µs, SVMLFP = 1		2.5		
t _{pd(SVML)}		SVMLE = 1, $dV_{CORE}/dt = 1 \text{ mV/}\mu\text{s}$, SVMLFP = 0		20		μs
4	SVM _i on or off delay time	SVMLE = $0 \rightarrow 1$, $dV_{CORE}/dt = 10 \text{ mV/}\mu\text{s}$, SVMLFP = 1		12.5		
t _(SVML)		SVMLE = $0 \rightarrow 1$, $dV_{CORE}/dt = 1$ mV/ μ s, SVMLFP = 0		100		μs

5.32 Wake-up Times From Low-Power Modes and Reset

PARAMETER		TEST CONDITIONS			TYP	MAX	UNIT
	Wake-up time from LPM2,	PMMCOREV = SVSMLRRL = n	f _{MCLK} ≥ 4.0 MHz		3.5	7.5	
t _{WAKE-UP-FAST}	LPM3, or LPM4 to active mode ⁽¹⁾	(where n = 0, 1, 2, or 3), SVSLFP = 1	1.0 MHz < f _{MCLK} < 4.0 MHz		4.5	9	μs
t _{WAKE-UP-SLOW}	Wake-up time from LPM2, LPM3 or LPM4 to active mode ⁽²⁾⁽³⁾	PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 0			150	175	μs
t _{WAKE-UP-LPM5}	Wake-up time from LPM4.5 to active mode (4)				2	3	ms
twake-up-reset	Wake-up time from RST or BOR event to active mode (4)				2	3	ms

⁽¹⁾ This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance mode of the low-side supervisor (SVS_L) and low-side monitor (SVM_L). t_{WAKE-UP-FAST} is possible with SVS_L and SVM_L in full performance mode or disabled. For specific register settings, see the *Low-Side SVS and SVM Control and Performance Mode Selection* section in the *Power Management Module and Supply Voltage Supervisor* chapter of the *MSP430x5xx and MSP430x6xx Family User's Guide*.

⁽²⁾ This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance mode of the low-side supervisor (SVS_L) and low-side monitor (SVM_L). t_{WAKE-UP-SLOW} is set with SVS_L and SVM_L in normal mode (low current mode). For specific register settings, see the *Low-Side SVS* and *SVM* Control and Performance Mode Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430x5xx and MSP430x6xx Family User's Guide.

⁽³⁾ The wake-up times from LPM0 and LPM1 to AM are not specified. They are proportional to MCLK cycle time but are not affected by the performance mode settings as for LPM2, LPM3, and LPM4.

⁽⁴⁾ This value represents the time from the wake-up event to the reset vector execution.

5.33 Timer_A

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	V _{IO}	MIN	MAX	UNIT
		Internal: SMCLK or ACLK,	1.8 V	1.62 V to 1.8 V		25	
f _{TA} Timer_A input clock frequency	Timer_A input clock frequency	External: TACLK, Duty cycle = 50% ±10%	3.0 V	1.62 V to 1.98 V		25	MHz
		All capture inputs, minimum	1.8 V	1.62 V to 1.8 V	20		
t _{TA,cap}	Timer_A capture timing ⁽¹⁾	pulse duration required for capture	3.0 V	1.62 V to 1.98 V	20		ns

⁽¹⁾ The external signal sets the interrupt flag every time the minimum parameters are met. It may be set even with trigger signals shorter than t_{TA,cap}.

5.34 Timer_B

	PARAMETER	TEST CONDITIONS	V _{cc}	V _{IO}	MIN	MAX	UNIT
f _{TB} Tim	Timer_B input clock frequency	Internal: SMCLK or ACLK,	1.8 V	1.62 V to 1.8 V		25	l
		External: TBCLK, Duty cycle = 50% ±10%	3.0 V	1.62 V to 1.98 V		25	MHz
		All capture inputs, minimum	1.8 V	1.62 V to 1.8 V	20		
t _{TB,cap}	Timer_B capture timing ⁽¹⁾	pulse duration required for capture	3.0 V	1.62 V to 1.98 V	20		ns

⁽¹⁾ The external signal sets the interrupt flag every time the minimum parameters are met. It may be set even with trigger signals shorter than t_{TB.cap}.

5.35 USCI (UART Mode) Clock Frequency

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
f _{USCI}	USCI input clock frequency	Internal: SMCLK or ACLK, External: UCLK, Duty cycle = 50% ±10%		f _{SYSTEM}	MHz
f _{BITCLK}	BITCLK clock frequency (equals baud rate in MBaud)			1	MHz

5.36 USCI (UART Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	V _{CC}	V _{IO}	MIN	MAX	UNIT
	UART receive deglitch time ⁽¹⁾	1.8 V	1.62 V to 1.80 V	50	600	20
ιτ	OAKT receive degition time */	3.0 V	1.62 V to 1.98 V	50	600	ns

Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To make sure that pulses are correctly recognized, their duration should exceed the maximum specification of the deglitch time.

5.37 USCI (SPI Master Mode) Clock Frequency

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	CONDITIONS	MIN	MAX	UNIT
f _{USCI} USCI input clock frequency	Internal: SMCLK or ACLK, Duty cycle = 50% ±10%		f _{SYSTEM}	MHz

5.38 USCI (SPI Master Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 5-13 and Figure 5-14)

	PARAMETER	TEST CONDITIONS	V _{cc}	V _{IO}	MIN	MAX	UNIT
f _{USCI}	USCI input clock frequency	SMCLK or ACLK, Duty cycle = 50% ±10%				f _{SYSTEM}	MHz
		PMMCOREV = 0	1.8 V	1.62 V to 1.80 V	55		
	t _{SLLMI} SOMI input data setup time	FININGOREV = 0	3.0 V	1.62 V to 1.98 V	55		
t _{SU,MI}	SOMI input data setup time	PMMCOREV = 3	2.4 V	1.62 V to 1.98 V	35		ns
			3.0 V	1.62 V to 1.98 V	35		
		PMMCOREV = 0	1.8 V	1.62 V to 1.80 V	0		
	t _{HD,MI} SOMI input data hold time	I WINGOILLY = 0	3.0 V	1.62 V to 1.98 V	0		
^T HD,MI		PMMCOREV = 3	2.4 V	1.62 V to 1.98 V	0		ns
			3.0 V	1.62 V to 1.98 V	0		
		UCLK edge to SIMO valid,	1.8 V	1.62 V to 1.80 V		20	
	200.00	C _L = 20 pF, PMMCOREV = 0	3.0 V	1.62 V to 1.98 V		20	
t _{VALID,MO}	SIMO output data valid time ⁽²⁾	UCLK edge to SIMO valid,	2.4 V	1.62 V to 1.98 V		16	ns
		$C_L = 20 \text{ pF}, PMMCOREV = 3$	3.0 V	1.62 V to 1.98 V		16	
		O OO TE DIMINOCHELL O	1.8 V	1.62 V to 1.80 V	-10		
(2)	$C_L = 20 \text{ pF}, PMMCOREV = 0$	3.0 V	1.62 V to 1.98 V	-10			
t _{HD,MO}	SIMO output data hold time (3)	C _L = 20 pF, PMMCOREV = 3	2.4 V	1.62 V to 1.98 V	-10		ns
			3.0 V	1.62 V to 1.98 V	-10		

 $f_{UCxCLK} = 1/2t_{LO/HI} \text{ with } t_{LO/HI} \ge \max(t_{VALID,MO(USCI)} + t_{SU,SI(Slave)}, t_{SU,MI(USCI)} + t_{VALID,SO(Slave)})$ For the slave parameters $t_{SU,SI(Slave)}$ and $t_{VALID,SO(Slave)}$, see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams

in Figure 5-13 and Figure 5-14.

Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 5-13 and Figure 5-14.

Figure 5-13. SPI Master Mode, CKPH = 0

Figure 5-14. SPI Master Mode, CKPH = 1

MSP430F5253 MSP430F5252

5.39 USCI (SPI Slave Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾ (see Figure 5-15 and Figure 5-16)

	PARAMETER	TEST CONDITIONS	V _{CC}	V _{IO}	MIN	MAX	UNIT
		DIMMOODEV 0	1.8 V	1.62 V to 1.80 V	12		
	OTE land the OTE lands shall	PMMCOREV = 0	3.0 V	1.62 V to 1.98 V	12		
t _{STE,LEAD}	STE lead time, STE low to clock	DI II I OODEW	2.4 V	1.62 V to 1.98 V	10		ns
		PMMCOREV = 3	3.0 V	1.62 V to 1.98 V	10		
		DIMMOODEV 0	1.8 V	1.62 V to 1.80 V	6		
	STE lag time, Last clock to STE	PMMCOREV = 0	3.0 V	1.62 V to 1.98 V	6		
t _{STE,LAG}	high	DIMMOODEN 0	2.4 V	1.62 V to 1.98 V	6		ns
		PMMCOREV = 3	3.0 V	1.62 V to 1.98 V	6		
		DIMMOODEV 0	1.8 V	1.62 V to 1.80 V		65	
	STE access time, STE low to SOMI	PMMCOREV = 0	3.0 V	1.62 V to 1.98 V		65	
t _{STE,ACC}	data out	PMMCOREV = 3	2.4 V	1.62 V to 1.98 V		45	ns
			3.0 V	1.62 V to 1.98 V		45	
	STE disable time, STE high to SOMI high impedance	DIMMOODEN 0	1.8 V	1.62 V to 1.80 V		35	
		PMMCOREV = 0	3.0 V	1.62 V to 1.98 V		35	
^t STE,DIS		DMMCODEV = 3	2.4 V	1.62 V to 1.98 V		25	ns
		PMMCOREV = 3	3.0 V	1.62 V to 1.98 V		25	
		DI II I CODEV	1.8 V	1.62 V to 1.80 V	5		
	SIMO input data setup time	PMMCOREV = 0	3.0 V	1.62 V to 1.98 V	5		
t _{SU,SI}		PMMCOREV = 3	2.4 V	1.62 V to 1.98 V	5		ns
			3.0 V	1.62 V to 1.98 V	5		
		DIMMOODEV 0	1.8 V	1.62 V to 1.80 V	5		
	OIMO issuer data hald for a	PMMCOREV = 0	3.0 V	1.62 V to 1.98 V	5		
t _{HD,SI}	SIMO input data hold time	DIMMOODEV 0	2.4 V	1.62 V to 1.98 V	5		ns
		PMMCOREV = 3	3.0 V	1.62 V to 1.98 V	5		
		UCLK edge to SOMI valid,	1.8 V	1.62 V to 1.80 V		75	
	2014	$C_L = 20 \text{ pF},$ PMMCOREV = 0	3.0 V	1.62 V to 1.98 V		75	
t _{VALID} ,SO	SOMI output data valid time (2)	UCLK edge to SOMI valid,	2.4 V	1.62 V to 1.98 V		50	ns
		$C_L = 20 \text{ pF},$ PMMCOREV = 3	3.0 V	1.62 V to 1.98 V		50	
		$C_L = 20 \text{ pF},$	1.8 V	1.62 V to 1.80 V	10		
	COMI output data hald time (3)	PMMCOREV = 0	3.0 V	1.62 V to 1.98 V	10		ns
t _{HD,SO}	SOMI output data hold time (3)	C _L = 20 pF, PMMCOREV = 3	2.4 V	1.62 V to 1.98 V	10		
			3.0 V	1.62 V to 1.98 V	10		

 ⁽¹⁾ f_{UCxCLK} = 1/2t_{LO/HI} with t_{LO/HI} ≥ max(t_{VALID,MO(Master)} + t_{SU,SI(USCI)}, t_{SU,MI(Master)} + t_{VALID,SO(USCI)})
 For the master parameters t_{SU,MI(Master)} and t_{VALID,MO(Master)}, see the SPI parameters of the attached master.
 (2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams in Figure 5-15 and Figure 5-16.

Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 5-15 and Figure 5-16.

Figure 5-15. SPI Slave Mode, CKPH = 0

Figure 5-16. SPI Slave Mode, CKPH = 1

MSP430F5253 MSP430F5252

5.40 USCI (I²C Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-17)

	PARAMETER	TEST CONDITIONS	V _{cc}	V _{IO} ⁽¹⁾	MIN	MAX	UNIT
f _{USCI}	USCI input clock frequency	Internal: SMCLK or ACLK, External: UCLK, Duty cycle = 50% ±10%				f _{SYSTEM}	MHz
f _{SCL}	SCL clock frequency		2.2 V, 3 V	1.62 V to 1.98 V	0	400	kHz
	Hold time (removed d) CTART	f _{SCL} ≤ 100 kHz	227 27	4.00.1/+- 4.00.1/	4.0		
t _{HD,STA}	Hold time (repeated) START	f _{SCL} > 100 kHz	2.2 V, 3 V	1.62 V to 1.98 V	0.6		μs
	Catura time for a removated CTART	f _{SCL} ≤ 100 kHz	0.01/.01/	4.00.1/+- 4.00.1/	4.7		
t _{SU,STA}	Setup time for a repeated START Setup time for a repeated START 2.2 V, 3 V	2.2 V, 3 V	1.62 V to 1.98 V	0.6		μs	
t _{HD,DAT}	Data hold time		2.2 V, 3 V	1.62 V to 1.98 V	0		ns
t _{SU,DAT}	Data setup time		2.2 V, 3 V	1.62 V to 1.98 V	250		ns
	Catura time to a CTOD	f _{SCL} ≤ 100 kHz	227 27	4.00.1/+- 4.00.1/	4.0		μs
t _{SU,STO}	Setup time for STOP	f _{SCL} > 100 kHz	2.2 V, 3 V	1.62 V to 1.98 V	0.6		
t _{SP}	Pulse duration of spikes suppressed by input filter		2.2 V, 3 V	1.62 V to 1.98 V	50	600	ns

(1) In all test conditions, $V_{IO} \le V_{CC}$

Figure 5-17. I²C Mode Timing

5.41 10-Bit ADC, Power Supply and Input Range Conditions

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
AV _{CC}	Analog supply voltage	AV_{CC} and DV_{CC} are connected together, AV_{SS} and DV_{SS} are connected together, $V_{(AVSS)} = V_{(DVSS)} = 0 \text{ V}$		1.8		3.6	V
V _(Ax)	Analog input voltage range ⁽²⁾	All ADC10_A pins: P1.0 to P1.5 and P3.6 and P3.7 terminals		0		AV_{CC}	V
	Operating supply current into	$f_{ADC10CLK} = 5.0 \text{ MHz}, ADC10ON = 1,$	2.2 V		60	100	
	AVCC terminal, REF module and reference buffer off	REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 00	3 V		75	110	μΑ
	Operating supply current into AVCC terminal, REF module on, reference buffer on	f _{ADC10CLK} = 5.0 MHz, ADC10ON = 1, REFON = 1, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 01	3 V		113	150	μΑ
I _{ADC10_A}	Operating supply current into AVCC terminal, REF module off, reference buffer on	$ \begin{aligned} &f_{ADC10CLK} = 5.0 \text{ MHz, ADC10ON} = 1, \\ &REFON = 0, \text{ SHT0} = 0, \text{ SHT1} = 0, \\ &ADC10DIV = 0, ADC10SREF = 10, \\ &VEREF = 2.5 \text{ V} \end{aligned} $	3 V		105	140	μΑ
	Operating supply current into AVCC terminal, REF module off, reference buffer off	f _{ADC10CLK} = 5.0 MHz, ADC10ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 11, VEREF = 2.5 V	3 V		70	110	μΑ
C _I	Input capacitance	Only one terminal Ax can be selected at one time from the pad to the ADC10_A capacitor array including wiring and pad	2.2 V		3.5		pF
В	Innut MILIX ON registance	$AV_{CC} > 2 \text{ V}, 0 \text{ V} \leq V_{Ax} \leq AV_{CC}$				36	kO.
R _I	Input MUX ON resistance	$1.8 \text{ V} < \text{AV}_{CC} < 2 \text{ V}, 0 \text{ V} \le \text{V}_{Ax} \le \text{AV}_{CC}$				96	kΩ

⁽¹⁾ The leakage current is defined in the leakage current table with P6.x/Ax parameter.

5.42 10-Bit ADC, Timing Parameters

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{ADC10CLK}		For specified performance of ADC10_A linearity parameters	2.2 V, 3 V	0.45	5	5.5	MHz
f _{ADC10OSC}	Internal ADC10_A oscillator ⁽¹⁾	ADC10DIV = 0, f _{ADC10CLK} = f _{ADC10OSC}	2.2 V, 3 V	4.2	4.8	5.4	MHz
^t CONVERT	Conversion time	REFON = 0, Internal oscillator, 12 ADC10CLK cycles, 10-bit mode f _{ADC10OSC} = 4 MHz to 5 MHz	2.2 V, 3 V	2.4		3.0	μs
		External f _{ADC10CLK} from ACLK, MCLK or SMCLK, ADC10SSEL ≠ 0			12 x 1 / f _{ADC10CLK}		
t _{ADC10ON}	Turnon settling time of the ADC	See (2)				100	ns
t _{Sample}	Sampling time	time $R_S = 1000 \Omega$, $R_I = 96 k \Omega$, $C_I = 3.5 pF^{(3)}$	1.8 V	3			μs
			3.0 V	1			μs

⁽¹⁾ The ADC10OSC is sourced directly from MODOSC inside the UCS.

⁽²⁾ The analog input voltage range must be within the selected reference voltage range V_{R+} to V_{R-} for valid conversion results. The external reference voltage requires decoupling capacitors. See ⁽⁾.

⁽²⁾ The condition is that the error in a conversion started after t_{ADC100N} is less than ±0.5 LSB. The reference and input signal are already settled.

⁽³⁾ Approximately 8 Tau (τ) are needed to get an error of less than ±0.5 LSB

5.43 10-Bit ADC, Linearity Parameters

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
_	Integral	$1.4 \text{ V} \le (V_{\text{eREF+}} - V_{\text{eREF-}}) \le 1.6 \text{ V}, C_{\text{VeREF+}} = 20 \text{ pF}$	2.2 V. 3 V			±1.0	LSB
E _I	linearity error	1.6 V < $(V_{eREF+} - V_{eREF-}) \le V_{AVCC}$, $C_{VeREF+} = 20 pF$	2.2 V, 3 V			±1.0	LOD
E _D	Differential linearity error	1.4 V ≤ ($V_{eREF+} - V_{eREF-}$), $C_{VeREF+} = 20 pF$	2.2 V, 3 V			±1.0	LSB
E _O	Offset error	1.4 V \leq (V _{eREF+} - V _{eREF-}), C _{VeREF+} = 20 pF, Internal impedance of source R _S $<$ 100 Ω	2.2 V, 3 V			±1.0	LSB
E _G	Gain error	1.4 V \leq (V _{eREF+} - V _{eREF-}), C _{VeREF+} = 20 pF, ADC10SREFx = 11b	2.2 V, 3 V			±1.0	LSB
E _T	Total unadjusted error	1.4 V \leq (V _{eREF+} - V _{eREF-}), C _{VeREF+} = 20 pF, ADC10SREFx = 11b	2.2 V, 3 V		±1.0	±2.0	LSB

5.44 REF, External Reference

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
V _{eREF+}	Positive external reference voltage input	V _{eREF+} > V _{eREF-} (2)		1.4	AV_{CC}	V
V _{eREF}	Negative external reference voltage input	V _{eREF+} > V _{eREF-} ⁽³⁾		0	1.2	V
(V _{eREF+} – V _{eREF-})	Differential external reference voltage input	V _{eREF+} > V _{eREF-} ⁽⁴⁾		1.4	AV_{CC}	V
I _{VeREF+} ,	Static input current	$\begin{array}{l} 1.4~V \leq V_{eREF+} \leq V_{AVCC}~,~V_{eREF-} = 0~V,\\ f_{ADC10CLK} = 5~MHz,~ADC10SHTx = 0x0001,\\ Conversion~rate~200~ksps \end{array}$	2.2 V, 3 V	-26	26	μΑ
I _{VeREF}		$1.4~V \le V_{eREF+} \le V_{AVCC}$, $V_{eREF-} = 0~V$, $f_{ADC10CLK} = 5~MHZ$, ADC10SHTX = 0x1000, Conversion rate 20 ksps	2.2 V, 3 V	-1	1	μΑ
C _{VREF+} , C _{VREF-}	Capacitance at VeREF+ or VeREF- terminal	See ⁽⁵⁾		10		μF

⁽¹⁾ The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, C_I, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.

⁽²⁾ The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements.

⁽³⁾ The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements.

⁽⁴⁾ The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements.

⁽⁵⁾ Two decoupling capacitors, 10 μF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC10_A. See also the MSP430x5xx and MSP430x6xx Family User's Guide.

5.45 REF, Built-In Reference

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		REFVSEL = {2} for 2.5 V REFON = 1	3 V	2.445	2.486	2.527	
V_{REF+}	Positive built-in reference voltage	REFVSEL = {1} for 2.0 V REFON = 1	3 V	1.94	1.97	2.01	V
		REFVSEL = {0} for 1.5 V REFON = 1	2.2 V, 3 V	1.461	1.485	1.511	
	AVCC minimum voltage,	REFVSEL = {0} for 1.5 V		1.8			
AV _{CC(min)}	Positive built-in reference	REFVSEL = {1} for 2.0 V		2.2			V
	active	REFVSEL = {2} for 2.5 V		2.7			
		$f_{ADC10CLK} = 5.0 \text{ MHz}$ REFON = 1, REFBURST = 0, REFVSEL = {2} for 2.5 V	3 V		18	24	μΑ
I _{REF+}	Operating supply current into AVCC terminal (2)	f _{ADC10CLK} = 5.0 MHz REFON = 1, REFBURST = 0, REFVSEL = {1} for 2.0 V	3 V		15.5	21	μΑ
		f _{ADC10CLK} = 5.0 MHz REFON = 1, REFBURST = 0, REFVSEL = {0} for 1.5 V	3 V		13.5	21	μA
TC _{REF+}	Temperature coefficient of built-in reference (3)	I _{VREF+} = 0 A REFVSEL = {0, 1, 2}, REFON = 1			30	50	ppm/
1	Operating supply current	REFON = 0, INCH = 0Ah,	2.2 V		20	22	μA
I _{SENSOR}	into AVCC terminal (4)	$ADC10ON = N/A, T_A = 30$ °C	3 V		20	22	μΛ
V _{SENSOR}	See ⁽⁵⁾	ADC10ON = 1, INCH = 0Ah,	2.2 V		770		mV
SENSOR		$T_A = 30$ °C	3 V		770		111 V
V_{MID}	AVCC divider at channel 11	ADC10ON = 1, INCH = 0Bh,	2.2 V	1.06	1.1	1.14	V
▼ MID	717 GO GIVIGOI AT ORGANICO 11	V _{MID} ≈ 0.5 × V _{AVCC}	3 V	1.46	1.5	1.54	V
t _{SENSOR(sample)}	Sample time required if channel 10 is selected (6)	ADC10ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB		30			μs
$t_{\text{VMID}(\text{sample})}$	Sample time required if channel 11 is selected (7)	ADC10ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB		1			μs
PSRR_DC	Power supply rejection ratio (DC)	$AV_{CC} = AV_{CC}(min)$ to $AV_{CC}(max)$, $T_A = 25$ °C, REFVSEL = {0, 1, 2}, REFON = 1			120		μV/V
PSRR_AC	Power supply rejection ratio (AC)	$\begin{array}{l} {\sf AV_{CC}} = {\sf AV_{CC}}({\sf min}) \text{ to } {\sf AV_{CC}}({\sf max}), \\ {\sf T_A} = 25^{\circ}{\sf C}, {\sf f} = 1 \text{ kHz}, \Delta {\sf Vpp} = 100 \text{ mV}, \\ {\sf REFVSEL} = \{0,1,2\}, {\sf REFON} = 1 \end{array}$			6.4		mV/V
t _{SETTLE}	Settling time of reference voltage ⁽⁸⁾	$AV_{CC} = AV_{CC}(min)$ to $AV_{CC}(max)$, REFVSEL = {0, 1, 2}, REFON = 0 \rightarrow 1			75		μs

⁽¹⁾ The leakage current is defined in the leakage current table with P6.x/Ax parameter.

⁽²⁾ The internal reference current is supplied from terminal AVCC. Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.

⁽³⁾ Calculated using the box method: $(MAX(-40^{\circ}C \text{ to } 85^{\circ}C) - MIN(-40^{\circ}C \text{ to } 85^{\circ}C)) / MIN(-40^{\circ}C \text{ to } 85^{\circ}C)/(85^{\circ}C - (-40^{\circ}C))$.

⁽⁴⁾ The sensor current I_{SENSOR} is consumed if (ADC10ON = 1 and REFON = 1) or (ADC10ON = 1 and INCH = 0Ah and sample signal is high). When REFON = 1, I_{SENSOR} is already included in I_{REF+}.

⁽⁵⁾ The temperature sensor offset can be significant. TI recommends a single-point calibration to minimize the offset error of the built-in temperature sensor.

⁽⁶⁾ The typical equivalent impedance of the sensor is 51 k Ω . The sample time required includes the sensor-on time $t_{SENSOR(on)}$.

⁽⁷⁾ The on-time t_{VMID(on)} is included in the sampling time t_{VMID(sample)}, no additional on time is needed.

The condition is that the error in a conversion started after t_{REFON} is less than ±0.5 LSB.

5.46 Comparator_B

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V _{CC}	Supply voltage			1.8		3.6	V
			1.8 V			38	
		CBPWRMD = 00, CBON = 1, CBRSx = 00	2.2 V		31	38	
	Comparator operating supply current into AVCC,	SERVER = 88	3 V		32	39	
I _{AVCC_COMP}	Excludes reference resistor ladder	CBPWRMD = 01, CBON = 1, CBRSx = 00	2.2 V, 3 V		10	17	μΑ
		CBPWRMD = 10, CBON = 1, CBRSx = 00	2.2 V, 3 V		0.2	0.85	
		CBREFLx = 01, CBREFACC = 0	≥1.8V	1.400	1.43	1.472	
V_{REF}	Reference voltage level	CBREFLx = 10, CBREFACC = 0	≥2.2V	1.864	1.90	1.960	V
		CBREFLx = 11, CBREFACC = 0	≥3.0V	2.32	2.37	2.44	
	Quiescent current of resistor ladder into AVCC,	CBREFACC = 0, CBREFLx = 01, CBRSx = 10, REFON = 0, CBON = 0	2.2 V, 3 V		33	40	
I _{AVCC_REF}	Includes REF module current	CBREFACC = 1, CBREFLx = 01, CBRSx = 10, REFON = 0, CBON = 0	2.2 V, 3 V		17	μA 22	
V _{IC}	Common mode input range			0		V _{CC} – 1	V
V _{OFFSET}	Input offset voltage	CBPWRMD = 00		-20		20	mV
VOFFSET	input onset voltage	CBPWRMD = 01, 10		-10		10	IIIV
C _{IN}	Input capacitance				5		pF
D	Series input resistance	On (switch closed)			3	4	kΩ
R _{SIN}		Off (switch open)		50			ΜΩ
		CBPWRMD = 00, CBF = 0				450	
t _{PD}	Propagation delay, response time	CBPWRMD = 01, CBF = 0				600	ns
	response time	CBPWRMD = 10, CBF = 0				50	μs
		CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 00		0.35	0.6	1.5	
	Propagation delay with	CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 01		0.6	1.0	1.8	
^T PD,filter	filter active	CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 10		1.0	1.8	3.4	μs
		CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 11		1.8	3.4	6.5	
	Comporator analys time	CBON = 0 → 1, CBPWRMD = 00 or 01			1	2	
ten_cmp	Comparator enable time	CBON = $0 \rightarrow 1$, CBPWRMD = 10				100	μs
t _{EN_REF}	Resistor reference enable time	CBON = 0 → 1			1.0	1.5	μs
TC _{REF}	Temperature coefficient reference					50	ppm/ °C
V _{CB_REF}	Reference voltage for a given tap	VIN = reference into resistor ladder, n = 0 to 31		VIN x (n + 0.5) / 32	VIN × (n + 1) / 32	VIN x (n + 1.5) / 32	V

5.47 Flash Memory

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	T_{J}	MIN	TYP	MAX	UNIT
DV _{CC(PGM/ERASE)}	Program and erase supply voltage		1.8		3.6	V
I _{PGM}	Average supply current from DVCC during program			3	5	mA
I _{ERASE}	Average supply current from DVCC during erase			6	11	mA
I _{MERASE} , I _{BANK}	Average supply current from DVCC during mass erase or bank erase			6	11	mA
t _{CPT}	Cumulative program time ⁽¹⁾				16	ms
	Program and erase endurance		10 ⁴	10 ⁵		cycles
t _{Retention}	Data retention duration	25°C	100			years
t _{Word}	Word or byte program time ⁽²⁾		64		85	μs
t _{Block, 0}	Block program time for first byte or word (2)		49		65	μs
t _{Block, 1-(N-1)}	Block program time for each additional byte or word, except for last byte or $\operatorname{word}^{(2)}$		37		49	μs
t _{Block, N}	Block program time for last byte or word (2)		55		73	μs
t _{Erase}	Erase time for segment, mass erase, and bank erase when available (2)		23		32	ms
f _{MCLK,MGR}	MCLK frequency in marginal read mode (FCTL4.MGR0 = 1 or FCTL4.MGR1 = 1)		0		1	MHz

⁽¹⁾ The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming methods: individual word or byte write mode and block write mode.

5.48 JTAG and Spy-Bi-Wire Interface

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	V _{CC}	V _{IO}	MIN	TYP	MAX	UNIT
f _{SBW}	Spy-Bi-Wire input frequency	2.2 V, 3 V	1.62 V to 1.98 V	0		20	MHz
t _{SBW,Low}	Spy-Bi-Wire low clock pulse duration	2.2 V, 3 V	1.62 V to 1.98 V	0.025		15	μs
t _{SBW, En}	Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) ⁽¹⁾		1.62 V to 1.98 V			1	μs
t _{SBW,Rst}	Spy-Bi-Wire return to normal operation time	2.2 V, 3 V	1.62 V to 1.98 V	15		100	μs
4	TCK input fraguency for 4 wire ITAC(2)	2.2 V	1.62 V to 1.98 V	0		5	NAL I-
f _{TCK}	TCK input frequency for 4-wire JTAG ⁽²⁾	3 V	1.62 V to 1.98 V	0		10	MHz
R _{internal}	Internal pulldown resistance on TEST	2.2 V, 3 V	1.62 V to 1.98 V	45	60	80	kΩ

⁽¹⁾ Tools that access the Spy-Bi-Wire interface must wait for the t_{SBW,En} time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge.

⁽²⁾ These values are hardwired into the state machine of the flash controller.

⁽²⁾ f_{TCK} may be restricted to meet the timing requirements of the module selected.

5.49 DVIO BSL Entry

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-18)

	PARAMETER	V _{CC}	V _{IO}	MIN MAX	UNIT
t _{SU, BSLEN}	Setup time, BSLEN to RST/NMI ⁽¹⁾	2.2 V, 3 V	1.62 V to 1.98 V	100	ns
t _{HO, BSLEN}	Hold time, BSLEN to RST/NMI (2)	2.2 V, 3 V	1.62 V to 1.98 V	350	μs

⁽¹⁾ AVCC, DVCC, DVIO stable and within specification.

⁽²⁾ BSLEN must remain logic high long enough for the boot code to detect its level and enter the BSL sequence. After the minimum hold time is achieved, BSLEN is a don't care.

Figure 5-18. DVIO BSL Entry Timing

6 Detailed Description

6.1 CPU (Link to user's guide)

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers (see Figure 6-1).

Peripherals are connected to the CPU using data, address, and control buses. Peripherals can be managed with all instructions.

The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data.

Figure 6-1. Integrated CPU Registers

6.2 Operating Modes

These MCUs have one active mode and six software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.

Software can configure the following seven operating modes:

- Active mode (AM)
 - All clocks are active
- Low-power mode 0 (LPM0)
 - CPU is disabled
 - ACLK and SMCLK remain active, MCLK is disabled
 - FLL loop control remains active
- Low-power mode 1 (LPM1)
 - CPU is disabled
 - FLL loop control is disabled
 - ACLK and SMCLK remain active, MCLK is disabled
- Low-power mode 2 (LPM2)
 - CPU is disabled
 - MCLK and FLL loop control and DCOCLK are disabled
 - DC generator of the DCO remains enabled
 - ACLK remains active
- Low-power mode 3 (LPM3)
 - CPU is disabled
 - MCLK, FLL loop control, and DCOCLK are disabled
 - DC generator of the DCO is disabled
 - ACLK remains active
- Low-power mode 4 (LPM4)
 - CPU is disabled
 - ACLK is disabled
 - MCLK, FLL loop control, and DCOCLK are disabled
 - DC generator of the DCO is disabled
 - Crystal oscillator is stopped
 - Complete data retention
- Low-power mode 4.5 (LPM4.5)
 - Internal regulator disabled
 - No data retention
 - Wake-up input from RST/NMI, P1, or P2

6.3 **Interrupt Vector Addresses**

The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see Table 6-1). The vector contains the 16-bit address of the interrupt-handler instruction sequence.

Table 6-1. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
System Reset Power up External reset Watchdog time-out, password violation Flash memory password violation PMM password violation	WDTIFG, KEYV (SYSRSTIV) ^{(1) (2)}	Reset	OFFFEh	63, highest
System NMI PMM Vacant memory access JTAG mailbox	SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG, VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG, JMBOUTIFG (SYSSNIV) ⁽¹⁾	(Non)maskable	0FFFCh	62
User NMI NMI Oscillator fault Flash memory access violation	NMIIFG, OFIFG, ACCVIFG, BUSIFG (SYSUNIV) ⁽¹⁾ (2)	(Non)maskable	0FFFAh	61
COMP_B	Comparator B interrupt flags (CBIV) ⁽¹⁾ (3)	Maskable	0FFF8h	60
USCI_A0 receive or transmit	UCA0RXIFG, UCA0TXIFG (UCA0IV) (1) (3)	Maskable	0FFF6h	59
USCI_B0 receive or transmit	UCB0RXIFG, UCB0TXIFG (UCB0IV) (1) (3)	Maskable	0FFF4h	58
Watchdog timer interval timer mode	WDTIFG	Maskable	0FFF2h	57
USCI_A1 receive or transmit	UCA1RXIFG, UCA1TXIFG (UCA1IV) (1) (3)	Maskable	0FFF0h	56
USCI_B1 receive or transmit	UCB1RXIFG, UCB1TXIFG (UCB1IV) (1) (3)	Maskable	0FFEEh	55
ADC10_A	ADC10IFG0 ⁽¹⁾ (3) (4)	Maskable	0FFECh	54
USCI_A2 receive or transmit	UCA2RXIFG, UCA2TXIFG (UCA2IV) (1) (3)	Maskable	0FFEAh	53
USCI_B2 receive or transmit	UCB2RXIFG, UCB2TXIFG (UCB2IV) (1) (3)	Maskable	0FFE8h	52
TA0	TA0CCR0 CCIFG0 ⁽³⁾	Maskable	0FFE6h	51
TA0	TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4, TA0IFG (TA0IV) ⁽¹⁾ (3)	Maskable	0FFE4h	50
Reserved	Reserved ⁽⁵⁾	Maskable	0FFE2h	49
DMA	DMA0IFG, DMA1IFG, DMA2IFG (DMAIV) ⁽¹⁾ (3)	Maskable	0FFE0h	48
USCI_A3 receive or transmit	UCA3RXIFG, UCA3TXIFG (UCA3IV) (1) (3)	Maskable	0FFDEh	47
USCI_B3 receive or transmit	UCB3RXIFG, UCB3TXIFG (UCB3IV) (1) (3)	Maskable	0FFDCh	46
TB0	TB0CCR0 CCIFG0 (3)	Maskable	0FFDAh	45
ТВ0	TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6, TB0IFG (TB0IV) ⁽¹⁾ (3)	Maskable	0FFD8h	44
TA1	TA1CCR0 CCIFG0 ⁽³⁾	Maskable	0FFD6h	43
TA1	TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2, TA1IFG (TA1IV) ⁽¹⁾ (3)	Maskable	0FFD4h	42
I/O port P1	P1IFG.0 to P1IFG.7 (P1IV) ^{(1) (3)}	Maskable	0FFD2h	41
TA2	TA2CCR0 CCIFG0 ⁽³⁾	Maskable	0FFD0h	40
TA2	TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2, TA2IFG (TA2IV) ⁽¹⁾ (3)	Maskable	0FFCEh	39
I/O port P2	P2IFG.0 to P2IFG.7 (P2IV) ^{(1) (3)}	Maskable	0FFCCh	38

A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space. (Non)maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable bit cannot disable it.

Interrupt flags are in the module.

Only on devices with ADC, otherwise reserved

Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatibility with other devices, TI recommends reserving these locations.

Table 6-1. Interrupt Sources, Flags, and Vectors (continued)

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
RTC_A	RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG (RTCIV) ⁽¹⁾ (3)	Maskable	0FFCAh	37
I/O Port P6	P6IFG.0 to P6IFG.7 (P6IV) ^{(1) (3)}	Maskable	0FFC8h	36
			0FFC6h	35
Reserved	Reserved ⁽⁵⁾		:	:
			0FF80h	0, lowest

6.4 Memory Organization

Table 6-2 summarizes the memory map of the microcontrollers.

Table 6-2. Memory Organization⁽¹⁾

		MSP430F5259, MSP430F5258, MSP430F5255, MSP430F5254	MSP430F5257, MSP430F5256, MSP430F5253, MSP430F5252
Memory (flash) Main: interrupt vector	Total Size	128KB 00FFFFh to 00FF80h	128KB 00FFFFh to 00FF80h
	Bank D	32KB 002A3FFh to 0022400h	32KB 002A3FFh to 0022400h
Main: anda mamany	Bank C	32KB 00223FFh to 001A400h	32KB 00223FFh to 001A400h
Main: code memory	Bank B	32KB 001A3FFh to 0012400h	32KB 001A3FFh to 0012400h
	Bank A	32KB 00123FFh to 00A400h	32KB 00123FFh to 00A400h
	Sector 7	4KB 00A3FFh to 009400h	N/A
	Sector 6	4KB 0093FFh to 008400h	N/A
	Sector 5	4KB 0083FFh to 007400h	N/A
RAM	Sector 4	4KB 0073FFh to 006400h	N/A
KAM	Sector 3	4KB 0063FFh to 005400h	4KB 0063FFh to 005400h
	Sector 2	4KB 0053FFh to 004400h	4KB 0053FFh to 004400h
	Sector 1	4KB 0043FFh to 003400h	4KB 0043FFh to 003400h
	Sector 0	4KB 0033FFh to 002400h	4KB 0033FFh to 002400h
	А	128 B 001BFFh to 001B80h	128 B 001BFFh to 001B80h
TI factory memory (ROM)	В	128 B 001B7Fh to 001B00h	128 B 001B7Fh to 001B00h
	С	128 B 001AFFh to 001A80h	128 B 001AFFh to 001A80h
	D	128 B 001A7Fh to 001A00h	128 B 001A7Fh to 001A00h

Table 6-2. Memory Organization⁽¹⁾ (continued)

		MSP430F5259, MSP430F5258, MSP430F5255, MSP430F5254	MSP430F5257, MSP430F5256, MSP430F5253, MSP430F5252
	Info A	128 B 0019FFh to 001980h	128 B 0019FFh to 001980h
Information mamony (fleeh)	Info B	128 B 00197Fh to 001900h	128 B 00197Fh to 001900h
Information memory (flash)	Info C	128 B 0018FFh to 001880h	128 B 0018FFh to 001880h
	Info D	128 B 00187Fh to 001800h	128 B 00187Fh to 001800h
Bootloader (BSL) memory (flash)	BSL 3	512 B 0017FFh to 001600h	512 B 0017FFh to 001600h
	BSL 2	512 B 0015FFh to 001400h	512 B 0015FFh to 001400h
	BSL 1	512 B 0013FFh to 001200h	512 B 0013FFh to 001200h
	BSL 0	512 B 0011FFh to 001000h	512 B 0011FFh to 001000h
Peripherals	Size	4KB 000FFFh to 0h	4KB 000FFFh to 0h

6.5 Bootloader (BSL)

NOTE

Devices from TI come factory programmed with either an I^2 C-based BSL or a timer-based UART BSL. See Table 3-1 to determine which BSL type is implemented.

6.5.1 Bootloader – $^{\rho}C$

The I²C BSL enables users to program the flash memory or RAM using a I²C serial interface. Access to the device memory through the BSL is protected by an user-defined password.

When using the BSL, it requires a specific entry sequence on the RST/NMI and BSLEN pins. Table 6-3 lists the required pins and their functions. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of the features of the BSL and its implementation, see the MSP430 Flash Device Bootloader (BSL) User's Guide. BSL firmware images are available for download in the Custom BSL430 package.

NOTE

Table 6-3. BSL Pin Requirements and Functions

DEVICE SIGNAL	BSL FUNCTION	
RST/NMI	External reset	
BSLEN	Enable BSL	
P4.1/PM_UCB1SDA	I ² C data	
P4.2/ PM_UCB1SCL	I ² C clock	
DVCC, AVCC	Device power supply	
DVIO	I/O power supply	
DVSS	Ground supply	

6.5.2 Bootloader – UART

The UART BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the device memory through the BSL is protected by an user-defined password. Because the F525x have split I/O power domains, it is possible to interface with the BSL from either the DVCC or DVIO supply domains. This is useful when the MSP430 is interfacing to a host on the DVIO supply domain. The BSL interface on the DVIO supply domain (see Table 6-5) uses the USCI_A0 module configured as a UART. The BSL interface on the DVCC supply domain (see Table 6-4) uses a timer-based UART.

For applications that have BSL communication based on the DVCC supply domain, entry to the BSL requires a specific sequence on the RSTDVCC/SBWTDIO and TEST/SBWTCK pins.

NOTE

Devices that are factory programmed with an UART BSL use the DVCC power supply domain pin configuration per default (see Table 6-4).

NOTE

To invoke the BSL from the DVCC domain, the RSTDVCC/SBWTDIO pin and TEST/SBWTCK pin must be used for the entry sequence. It is critical not to confuse the RST/NMI pin with the RSTDVCC/SBWTDIO pin. In many other MSP430 devices, SBWTDIO is shared with the RST/NMI pin, and RSTDVCC does not exist. Additional information can be found in Designing With MSP430F522x and MSP430F521x Devices.

Table 6-4. DVCC BSL Pin Requirements and Functions

DEVICE SIGNAL	BSL FUNCTION	
RSTDVCC/SBWTDIO	External reset	
TEST/SBWTCK	Enable BSL	
P6.1	Data transmit	
P6.2	Data receive	
DVCC, AVCC	Device power supply	
DVIO	I/O power supply	
DVSS	Ground supply	

When using the DVIO supply domain for the BSL, entry to the BSL requires a specific sequence on the RST/NMI and BSLEN pins. Table 6-5 lists the required pins and their functions. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of the features of the BSL and its implementation, see the MSP430 Flash Device Bootloader (BSL) User's Guide. BSL firmware images are available for download in the Custom BSL430 package. The BSL on the DVIO supply domain uses the USCI A0 module configured as a UART.

NOTE

To invoke the BSL from the DVIO domain, the RST/NMI pin and the BSLEN pin must be used for the entry sequence (see Section 5.49). It is critical not to confuse the RST/NMI pin with the RSTDVCC/SBWTDIO pin. In many other MSP430 devices, SBWTDIO is shared with the RST/NMI pin, and RSTDVCC does not exist. Additional information can be found in Designing With MSP430F522x and MSP430F521x Devices.

Table 6-5. DVIO BSL Pin Requirements and Functions

DEVICE SIGNAL	BSL FUNCTION	
RST/NMI	External reset	
BSLEN	Enable BSL	
P3.3	Data transmit	
P3.4	Data receive	
DVCC, AVCC	Device power supply	
DVIO	I/O power supply	
DVSS	Ground supply	

6.6 JTAG Operation

6.6.1 JTAG Standard Interface

The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RSTDVCC/SBWTDIO is required to interface with MSP430 development tools and device programmers. Table 6-6 lists the JTAG pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming With the JTAG Interface. Additional information can be found in Designing With MSP430F522x and MSP430F521x Devices.

Traditionally, on other MSP430 devices, the RST/NMI pin is used for SBWTDIO, so care must be taken not to mistakenly use the incorrect pin. On the F525x series of devices, it is required to use RSTDVCC for SBWTDIO as shown in Table 6-6. Additional information can be found in *Designing With MSP430F522x and MSP430F521x Devices*.

MSP430F5253 MSP430F5252

Table 6-6. JTAG Pin Requirements and Functions

DEVICE SIGNAL	DIRECTION	FUNCTION	
PJ.3/TCK	IN	JTAG clock input	
PJ.2/TMS	IN	JTAG state control	
PJ.1/TDI/TCLK	IN	JTAG data input, TCLK input	
PJ.0/TDO	OUT	JTAG data output	
TEST/SBWTCK	IN	Enable JTAG pins	
RSTDVCC/SBWTDIO	IN	External reset	
DVCC, AVCC		Device power supply	
DVIO		I/O power supply	
DVSS		Ground supply	

6.6.2 Spy-Bi-Wire Interface

In addition to the standard JTAG interface, the MSP430 family supports the two wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. Table 6-7 lists the Spy-Bi-Wire interface pin requirements. For further details on interfacing to development tools and device programmers, see the *MSP430 Hardware Tools User's Guide*. For a complete description of the features of the JTAG interface and its implementation, see *MSP430 Programming With the JTAG Interface*. Additional information can be found in *Designing With MSP430F522x and MSP430F521x Devices*.

Traditionally, on other MSP430 devices, the RST/NMI pin is used for SBWTDIO, so care must be taken not to mistakenly use the incorrect pin. On the F525x series of devices, it is required to use RSTDVCC for SBWTDIO as shown in Table 6-7. Additional information can be found in *Designing With MSP430F522x and MSP430F521x Devices*.

Table 6-7. Spy-Bi-Wire Pin Requirements and Functions

DEVICE SIGNAL	DIRECTION	FUNCTION	
TEST/SBWTCK	IN	Spy-Bi-Wire clock input	
RSTDVCC/SBWTDIO	IN, OUT	Spy-Bi-Wire data input/output	
DVCC, AVCC		Device power supply	
DVIO		I/O power supply	
DVSS		Ground supply	

6.7 Flash Memory (Link to user's guide)

The flash memory can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the flash memory include:

- Flash memory has n segments of main memory and four segments of information memory (A to D) of 128 bytes each. Each segment in main memory is 512 bytes in size.
- Segments 0 to n may be erased in one step, or each segment may be individually erased.
- Segments A to D can be erased individually. Segments A to D are also called information memory.
- Segment A can be locked separately.

6.8 RAM (Link to user's guide)

The RAM is made up of n sectors. Each sector can be completely powered down to reduce leakage; however, all data are lost during power down.

Features of the RAM include:

- RAM memory has n sectors. The sizes of the sectors can be found in Section 6.4, Memory Organization.
- Each sector 0 to n can be complete disabled; however, all data in a sector are lost when it is disabled.
- Each sector 0 to n automatically enters low-power retention mode when possible.

6.9 Peripherals

Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be managed using all instructions. For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's Guide.

6.9.1 Digital I/O (Link to user's guide)

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Pullup or pulldown on all ports is programmable.
- Drive strength on all ports is programmable.
- Edge-selectable interrupt and LPM4.5 wake-up input capability is available for all bits of ports P1, P2.
- All bits of port P6 support edge-selectable interrupt input.
- All instructions support read and write access to port-control registers.
- Ports can be accessed byte-wise or word-wise in pairs.

6.9.2 Port Mapping Controller (Link to user's guide)

The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P4 (see Table 6-8).

Table 6-8. Port Mapping Mnemonics and Functions

VALUE	PxMAPy MNEMONIC	INPUT PIN FUNCTION	OUTPUT PIN FUNCTION
0	PM_NONE	None	DVSS
4	PM_CBOUT0	-	COMP_B output
1	PM_TB0CLK	TB0 clock input	-
2	PM_ADC10CLK	-	ADC10CLK
2	PM_DMAE0	DMAE0 input	-
2	PM_SVMOUT	-	SVM output
3	PM_TB0OUTH	TB0 high-impedance input TB0OUTH	-
4	PM_TB0CCR0A	TB0 CCR0 capture input CCI0A	TB0 CCR0 compare output Out0
5	PM_TB0CCR1A	TB0 CCR1 capture input CCI1A	TB0 CCR1 compare output Out1
6	PM_TB0CCR2A	TB0 CCR2 capture input CCI2A	TB0 CCR2 compare output Out2
7	PM_TB0CCR3A	TB0 CCR3 capture input CCI3A	TB0 CCR3 compare output Out3
8	PM_TB0CCR4A	TB0 CCR4 capture input CCI4A	TB0 CCR4 compare output Out4
9	PM_TB0CCR5A	TB0 CCR5 capture input CCI5A	TB0 CCR5 compare output Out5
10	PM_TB0CCR6A	TB0 CCR6 capture input CCI6A	TB0 CCR6 compare output Out6
4.4	PM_UCA1RXD	USCI_A1 UART RXD (direction controlled by USCI – input)	
11	PM_UCA1SOMI	USCI_A1 SPI slave out master in (direction controlled by USCI)	
12	PM_UCA1TXD	USCI_A1 UART TXD (directio	n controlled by USCI – output)
12	PM_UCA1SIMO	USCI_A1 SPI slave in master o	ut (direction controlled by USCI)
13	PM_UCA1CLK	USCI_A1 clock input/output ((direction controlled by USCI)
13	PM_UCB1STE	USCI_B1 SPI slave transmit ena	ble (direction controlled by USCI)
14	PM_UCB1SOMI	USCI_B1 SPI slave out master	in (direction controlled by USCI)
14	PM_UCB1SCL	USCI_B1 I ² C clock (open drain a	and direction controlled by USCI)
45	PM_UCB1SIMO	USCI_B1 SPI slave in master o	ut (direction controlled by USCI)
15	PM_UCB1SDA	USCI_B1 I ² C data (open drain a	and direction controlled by USCI)
16	PM_UCB1CLK	USCI_B1 clock input/output (direction controlled by USCI)	
16	PM_UCA1STE	USCI_A1 SPI slave transmit enable (direction controlled by USCI)	
17	PM_CBOUT1	None COMP_B output	
18	PM_MCLK	None	MCLK

Table 6-8. Port Mapping Mnemonics and Functions (continued)

VALUE	PxMAPy MNEMONIC	INPUT PIN FUNCTION	OUTPUT PIN FUNCTION	
19	PM_RTCCLK	None	RTCCLK output	
20	PM_UCA0RXD	USCI_A0 UART RXD (direction	on controlled by USCI - input)	
20	PM_UCA0SOMI	USCI_A0 SPI slave out master	in (direction controlled by USCI)	
21	PM_UCA0TXD	USCI_A0 UART TXD (directio	n controlled by USCI – output)	
21	PM_UCA0SIMO	USCI_A0 SPI slave in master o	ut (direction controlled by USCI)	
22	PM_UCA0CLK	USCI_A0 clock input/output ((direction controlled by USCI)	
22	PM_UCB0STE	USCI_B0 SPI slave transmit ena	ble (direction controlled by USCI)	
23	PM_UCB0SOMI	USCI_B0 SPI slave out master	in (direction controlled by USCI)	
23	PM_UCB0SCL	USCI_B0 I ² C clock (open drain a	and direction controlled by USCI)	
24	PM_UCB0SIMO	USCI_B0 SPI slave in master o	ut (direction controlled by USCI)	
24	PM_UCB0SDA	USCI_B0 I ² C data (open drain a	and direction controlled by USCI)	
05	PM_UCB0CLK	USCI_B0 clock input/output (direction controlled by USCI)		
25	PM_UCA0STE	USCI_A0 SPI slave transmit enable (direction controlled by USCI)		
26	PM_UCA3RXD	USCI_A3 UART RXD (direction controlled by USCI – input)		
20	PM_UCA3SOMI	USCI_A3 SPI slave out master	in (direction controlled by USCI)	
27	PM_UCA3TXD	USCI_A3 UART TXD (directio	n controlled by USCI – output)	
27	PM_UCA3SIMO	USCI_A3 SPI slave in master o	ut (direction controlled by USCI)	
20	PM_UCB3SIMO	USCI_B3 SPI slave in master o	ut (direction controlled by USCI)	
28	PM_UCB3SDA	USCI_B3 I ² C data (open drain a	and direction controlled by USCI)	
20	PM_UCB3SOMI	USCI_B3 SPI slave out master in (direction controlled by USCI)		
29	PM_UCB3SCL	USCI_B3 I ² C clock (open drain and direction controlled by USCI)		
30	Reserved	Reserved		
31 (0FFh) ⁽¹⁾	PM_ANALOG	Disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals		

⁽¹⁾ The value of the PM_ANALOG mnemonic is 0FFh. The port mapping registers are only 5 bits wide, and the upper bits are ignored, which results in a read value of 31.

Table 6-9 lists the default settings for all pins that support port mapping.

Table 6-9. Default Mapping

PIN	PxMAPy MNEMONIC	INPUT PIN FUNCTION	OUTPUT PIN FUNCTION
P4.0/P4MAP0	PM_UCB1STE/PM_UCA1CLK	USCI_B1 SPI slave transmit enable (direction controlled by USCI) USCI_A1 clock input/output (direction controlled by USCI)	
P4.1/P4MAP1	PM_UCB1SIMO/PM_UCB1SDA	USCI_B1 SPI slave in master out (direction controlled by USCI) USCI_B1 I ² C data (open drain and direction controlled by USCI)	
P4.2/P4MAP2	PM_UCB1SOMI/PM_UCB1SCL	USCI_B1 SPI slave out master in (direction controlled by USCI) USCI_B1 I ² C clock (open drain and direction controlled by USCI)	
P4.3/P4MAP3	PM_UCB1CLK/PM_UCA1STE	USCI_A1 SPI slave transmit enable (direction controlled by USCI) USCI_B1 clock input/output (direction controlled by USCI)	
P4.4/P4MAP4	PM_UCA1TXD/PM_UCA1SIMO	USCI_A1 UART TXD (Direction controlled by USCI – output) USCI_A1 SPI slave in master out (direction controlled by USCI)	
P4.5/P4MAP5	PM_UCA1RXD/PM_UCA1SOMI	USCI_A1 UART RXD (Direction controlled by USCI – input) USCI_A1 SPI slave out master in (direction controlled by USC	
P4.6/P4MAP6	PM_UCA3TXD/PM_UCA3SIMO	USCI_A3 UART TXD (Direction controlled by USCI – output) USCI_A3 SPI slave in master out (direction controlled by USCI)	
P4.7/P4MAP7	PM_UCA3RXD/PM_UCA3SOMI	USCI_A3 UART RXD (Direction controlled by USCI – input) USCI_A3 SPI slave out master in (direction controlled by USCI)	

6.9.3 Oscillator and System Clock (Link to user's guide)

The clock system is supported by the Unified Clock System (UCS) module, which includes support for a 32-kHz watch crystal oscillator (XT1 LF mode; XT1 HF mode is not supported), an internal very-low-power low-frequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator (XT2). The UCS module is designed to meet the requirements of both low system cost and low power consumption. The UCS module features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the selected FLL reference frequency. The internal DCO provides a fast turnon clock source and stabilizes in 3.5 µs (typical). The UCS module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1), a high-frequency crystal (XT2), the internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal digitally controlled oscillator DCO.
- Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources made available to ACLK.
- Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by same sources made available to ACLK.
- ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.

6.9.4 Power-Management Module (PMM) (Link to user's guide)

The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor (SVS) and supply voltage monitoring (SVM) circuitry, and brownout protection. The brownout circuit is implemented to provide the proper internal reset signal to the device during power-on and power-off. The SVS and SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not automatically reset). SVS and SVM circuitry is available on the primary supply and core supply.

6.9.5 Hardware Multiplier (Link to user's guide)

The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed and unsigned multiply-and-accumulate operations.

6.9.6 Real-Time Clock (RTC_A) (Link to user's guide)

The RTC_A module can be used as a general-purpose 32-bit counter (counter mode) or as an integrated real-time clock (RTC) (calendar mode). In counter mode, the RTC_A also includes two independent 8-bit timers that can be cascaded to form a 16-bit timer or counter. Both timers can be read and written by software. Calendar mode integrates an internal calendar that compensates for months with less than 31 days and includes leap year correction. The RTC_A also supports flexible alarm functions and offset-calibration hardware.

6.9.7 Watchdog Timer (WDT A) (Link to user's guide)

The primary function of the WDT_A module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

6.9.8 System Module (SYS) (Link to user's guide)

The SYS module handles many of the system functions within the device. These functions include power-on reset (POR) and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector generators, bootloader (BSL) entry mechanisms, and configuration management (device descriptors). The SYS module also includes a data exchange mechanism using JTAG that is called a JTAG mailbox and that can be used in the application. Table 6-10 lists the SYS module interrupt vector registers.

Table 6-10. System Module Interrupt Vector Registers

INTERRUPT VECTOR REGISTER	ADDRESS	INTERRUPT EVENT	VALUE	PRIORITY
		No interrupt pending	00h	
		Brownout (BOR)	02h	Highest
		RST/NMI (BOR)	04h	
		PMMSWBOR (BOR)	06h	
		Wakeup from LPMx.5	08h	
		Security violation (BOR)	0Ah	
		SVSL (POR)	0Ch	
		SVSH (POR)	0Eh	
CVCDCTIV Custom Densit	04054	SVML_OVP (POR)	10h	
SYSRSTIV, System Reset	019Eh	SVMH_OVP (POR)	12h	
		PMMSWPOR (POR)	14h	
		WDT time-out (PUC)	16h	
		WDT password violation (PUC)	18h	
		KEYV flash password violation (PUC)	1Ah	
		Reserved	1Ch	
		Peripheral area fetch (PUC)	1Eh	
		PMM password violation (PUC)	20h	
		Reserved	22h to 3Eh	Lowest
		No interrupt pending	00h	
		SVMLIFG	02h	Highest
		SVMHIFG	04h	
		SVSMLDLYIFG	06h	
		SVSMHDLYIFG	08h	
SYSSNIV, System NMI	019Ch	VMAIFG	0Ah	
		JMBINIFG	0Ch	
		JMBOUTIFG	0Eh	
		SVMLVLRIFG	10h	
		SVMHVLRIFG	12h	
		Reserved	14h to 1Eh	Lowest
		No interrupt pending	00h	
		NMIIFG	02h	Highest
0)/01/10/10/10/10/10	04041	OFIFG	04h	
SYSUNIV, User NMI	019Ah	ACCVIFG	06h	
		Reserved	08h	
		Reserved	0Ah to 1Eh	Lowest

6.9.9 DMA Controller (Link to user's guide)

The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC10_A conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or from a peripheral (see Table 6-11).

Table 6-11. DMA Trigger Assignments⁽¹⁾

Name	DICCED		CHANNEL	
1 TA0CCR0 CCIFG TA0CCR0 CCIFG TA0CCR0 CCIFG 2 TA0CCR2 CCIFG TA0CCR2 CCIFG TA0CCR2 CCIFG 3 TA1CCR0 CCIFG TA1CCR0 CCIFG TA1CCR0 CCIFG 4 TA1CCR2 CCIFG TA1CCR2 CCIFG TA1CCR2 CCIFG 5 TA2CCR0 CCIFG TA2CCR0 CCIFG TA2CCR2 CCIFG 6 TA2CCR2 CCIFG TB0CCR0 CCIFG TB0CCR0 CCIFG 7 TB0CCR0 CCIFG TB0CCR0 CCIFG TB0CCR0 CCIFG 8 TB0CCR2 CCIFG TB0CCR2 CCIFG TB0CCR2 CCIFG 9 UCA2RXIFG UCA2RXIFG UCA2RXIFG 10 UCA2TXIFG UCA2TXIFG UCA2TXIFG 11 UCB2RXIFG UCB2RXIFG UCB2RXIFG 12 UCB2TXIFG UCB2TXIFG UCB2TXIFG 13 Reserved Reserved Reserved 14 Reserved Reserved Reserved 15 Reserved Reserved Reserved 16 UCA0TXIFG UCA0TXIFG UCA0TXIFG 17 UCA0T	RIGGER	0	1	2
2 TA0CCR2 CCIFG TA0CCR2 CCIFG TA0CCR2 CCIFG 3 TA1CCR0 CCIFG TA1CCR0 CCIFG TA1CCR0 CCIFG 4 TA1CCR2 CCIFG TA1CCR2 CCIFG TA1CCR2 CCIFG 5 TA2CCR0 CCIFG TA2CCR0 CCIFG TA2CCR0 CCIFG 6 TA2CCR2 CCIFG TA2CCR2 CCIFG TB0CCR0 CCIFG 7 TB0CCR0 CCIFG TB0CCR0 CCIFG TB0CCR0 CCIFG 8 TB0CCR2 CCIFG TB0CCR2 CCIFG TB0CCR2 CCIFG 9 UCA2RXIFG UCA2RXIFG UCA2RXIFG 10 UCA2RXIFG UCA2RXIFG UCA2RXIFG 11 UCB2RXIFG UCB2RXIFG UCB2RXIFG 12 UCB2TXIFG UCB2TXIFG UCB2TXIFG 13 Reserved Reserved Reserved 14 Reserved Reserved Reserved 15 Reserved Reserved Reserved 16 UCA0RXIFG UCA0RXIFG UCA0RXIFG UCA0RXIFG 17 UCA0TXIFG UCB0TXIFG UCB0TXIFG UCB0TXIFG	0	DMAREQ	DMAREQ	DMAREQ
3 TA1CCR0 CCIFG TA1CCR0 CCIFG TA1CCR0 CCIFG 4 TA1CCR2 CCIFG TA1CCR2 CCIFG TA1CCR2 CCIFG 5 TA2CCR0 CCIFG TA2CCR0 CCIFG TA2CCR0 CCIFG 6 TA2CCR2 CCIFG TA2CCR2 CCIFG TA2CCR2 CCIFG 7 TB0CCR0 CCIFG TB0CCR0 CCIFG TB0CCR0 CCIFG 8 TB0CCR2 CCIFG TB0CCR2 CCIFG TB0CCR2 CCIFG 9 UCA2RXIFG UCA2RXIFG UCA2RXIFG 10 UCA2TXIFG UCA2TXIFG UCA2TXIFG 11 UCB2RXIFG UCB2RXIFG UCB2RXIFG 12 UCB2TXIFG UCB2TXIFG UCB2TXIFG 13 Reserved Reserved Reserved 14 Reserved Reserved Reserved 15 Reserved Reserved Reserved 16 UCA0RXIFG UCA0RXIFG UCA0RXIFG 17 UCA0TXIFG UCA0TXIFG UCB0RXIFG 19 UCB0TXIFG UCB0TXIFG UCB0TXIFG 20 UCA1TXIFG	1	TA0CCR0 CCIFG	TA0CCR0 CCIFG	TA0CCR0 CCIFG
4 TA1CCR2 CCIFG TA1CCR2 CCIFG TA1CCR2 CCIFG 5 TA2CCR0 CCIFG TA2CCR0 CCIFG TA2CCR0 CCIFG 6 TA2CCR2 CCIFG TA2CCR2 CCIFG TA2CCR2 CCIFG 7 TB0CCR0 CCIFG TB0CCR0 CCIFG TB0CCR0 CCIFG 8 TB0CCR2 CCIFG TB0CCR2 CCIFG TB0CCR2 CCIFG 9 UCA2RXIFG UCA2RXIFG UCA2RXIFG 10 UCA2TXIFG UCB2TXIFG UCB2RXIFG 11 UCB2RXIFG UCB2RXIFG UCB2RXIFG 12 UCB2TXIFG UCB2TXIFG UCB2TXIFG 13 Reserved Reserved Reserved 14 Reserved Reserved Reserved 15 Reserved Reserved Reserved 16 UCA0RXIFG UCA0RXIFG UCA0RXIFG 17 UCA0TXIFG UCA0TXIFG UCB0RXIFG 19 UCB0TXIFG UCB0TXIFG UCB0TXIFG 20 UCA1TXIFG UCA1TXIFG UCA1TXIFG 21 UCA1TXIFG UCA1TXIFG </td <td>2</td> <td>TA0CCR2 CCIFG</td> <td>TA0CCR2 CCIFG</td> <td>TA0CCR2 CCIFG</td>	2	TA0CCR2 CCIFG	TA0CCR2 CCIFG	TA0CCR2 CCIFG
5 TA2CCR0 CCIFG TA2CCR0 CCIFG TA2CCR0 CCIFG 6 TA2CCR2 CCIFG TA2CCR2 CCIFG TA2CCR2 CCIFG 7 TB0CCR0 CCIFG TB0CCR0 CCIFG TB0CCR0 CCIFG 8 TB0CCR2 CCIFG TB0CCR2 CCIFG TB0CCR2 CCIFG 9 UCA2RXIFG UCA2RXIFG UCA2RXIFG 10 UCA2TXIFG UCA2TXIFG UCA2TXIFG 11 UCB2RXIFG UCB2RXIFG UCB2RXIFG 12 UCB2TXIFG UCB2TXIFG UCB2TXIFG 13 Reserved Reserved Reserved 14 Reserved Reserved Reserved 15 Reserved Reserved Reserved 16 UCA0RXIFG UCA0RXIFG UCA0RXIFG UCA0RXIFG 17 UCA0TXIFG UCB0TXIFG UCB0TXIFG UCB0TXIFG 19 UCB0TXIFG UCB0TXIFG UCB0TXIFG UCA1TXIFG 20 UCA1TXIFG UCA1TXIFG UCA1TXIFG 21 UCA1TXIFG UCA1TXIFG UCB1TXIFG	3	TA1CCR0 CCIFG	TA1CCR0 CCIFG	TA1CCR0 CCIFG
6 TA2CCR2 CCIFG TA2CCR2 CCIFG TA2CCR2 CCIFG 7 TB0CCR0 CCIFG TB0CCR0 CCIFG TB0CCR0 CCIFG 8 TB0CCR2 CCIFG TB0CCR2 CCIFG TB0CCR2 CCIFG 9 UCA2RXIFG UCA2RXIFG UCA2RXIFG 10 UCA2TXIFG UCA2TXIFG UCB2RXIFG 11 UCB2RXIFG UCB2RXIFG UCB2RXIFG 12 UCB2TXIFG UCB2TXIFG UCB2TXIFG 13 Reserved Reserved Reserved 14 Reserved Reserved Reserved 15 Reserved Reserved Reserved 16 UCA0RXIFG UCA0RXIFG UCA0RXIFG 17 UCA0TXIFG UCA0TXIFG UCA0TXIFG 18 UCB0RXIFG UCB0RXIFG UCB0RXIFG 19 UCB0TXIFG UCB0TXIFG UCB0TXIFG 20 UCA1TXIFG UCA1TXIFG UCA1TXIFG 21 UCA1TXIFG UCA1TXIFG UCB1TXIFG 22 UCB1RXIFG UCB1TXIFG UCB1TX	4	TA1CCR2 CCIFG	TA1CCR2 CCIFG	TA1CCR2 CCIFG
7 TB0CCR0 CCIFG TB0CCR0 CCIFG TB0CCR0 CCIFG 8 TB0CCR2 CCIFG TB0CCR2 CCIFG TB0CCR2 CCIFG 9 UCA2RXIFG UCA2RXIFG UCA2RXIFG 10 UCA2TXIFG UCA2TXIFG UCA2TXIFG 11 UCB2RXIFG UCB2RXIFG UCB2RXIFG 12 UCB2TXIFG UCB2TXIFG UCB2TXIFG 13 Reserved Reserved Reserved 14 Reserved Reserved Reserved 15 Reserved Reserved Reserved 16 UCA0RXIFG UCA0RXIFG UCA0RXIFG 17 UCA0TXIFG UCA0TXIFG UCA0TXIFG 18 UCB0RXIFG UCB0RXIFG UCB0RXIFG 19 UCB0TXIFG UCB0TXIFG UCB0TXIFG 20 UCA1TXIFG UCA1TXIFG UCA1TXIFG 21 UCA1TXIFG UCA1TXIFG UCB1TXIFG 22 UCB1TXIFG UCB1TXIFG UCB1TXIFG 23 UCB1TXIFG UCB1TXIFG UCB1TXIFG	5	TA2CCR0 CCIFG	TA2CCR0 CCIFG	TA2CCR0 CCIFG
8 TB0CCR2 CCIFG TB0CCR2 CCIFG TB0CCR2 CCIFG 9 UCA2RXIFG UCA2RXIFG UCA2RXIFG 10 UCA2TXIFG UCA2TXIFG UCA2TXIFG 11 UCB2RXIFG UCB2RXIFG UCB2RXIFG 12 UCB2TXIFG UCB2TXIFG UCB2TXIFG 13 Reserved Reserved Reserved 14 Reserved Reserved Reserved 15 Reserved Reserved Reserved 16 UCA0RXIFG UCA0RXIFG UCA0RXIFG 17 UCA0TXIFG UCA0TXIFG UCA0TXIFG 18 UCB0RXIFG UCA0TXIFG UCA0TXIFG 19 UCB0TXIFG UCB0TXIFG UCB0TXIFG 20 UCA1RXIFG UCA1TXIFG UCA1TXIFG 21 UCA1TXIFG UCA1TXIFG UCA1TXIFG 22 UCB1RXIFG UCB1RXIFG UCB1RXIFG 23 UCB1TXIFG UCB1TXIFG UCB1TXIFG 24 ADC10IFG0(2) ADC10IFG0(2)	6	TA2CCR2 CCIFG	TA2CCR2 CCIFG	TA2CCR2 CCIFG
9 UCA2RXIFG UCA2RXIFG UCA2RXIFG 10 UCA2TXIFG UCA2TXIFG UCA2TXIFG 11 UCB2RXIFG UCB2RXIFG UCB2RXIFG 12 UCB2TXIFG UCB2TXIFG UCB2TXIFG 13 Reserved Reserved Reserved 14 Reserved Reserved Reserved 15 Reserved Reserved Reserved 16 UCA0RXIFG UCA0RXIFG UCA0RXIFG 17 UCA0TXIFG UCA0TXIFG UCA0TXIFG 18 UCB0RXIFG UCB0RXIFG UCB0RXIFG 19 UCB0TXIFG UCB0TXIFG UCB0TXIFG 20 UCA1RXIFG UCA1TXIFG UCA1TXIFG 21 UCA1TXIFG UCA1TXIFG UCA1TXIFG 22 UCB1RXIFG UCB1TXIFG UCB1TXIFG 23 UCB1TXIFG UCB1TXIFG 24 ADC10IFG0(2) ADC10IFG0(2)	7	TB0CCR0 CCIFG	TB0CCR0 CCIFG	TB0CCR0 CCIFG
10 UCA2TXIFG UCB2RXIFG UCB2RXIFG 11 UCB2RXIFG UCB2RXIFG UCB2RXIFG 12 UCB2TXIFG UCB2TXIFG UCB2TXIFG 13 Reserved Reserved Reserved 14 Reserved Reserved Reserved 15 Reserved Reserved Reserved 16 UCA0RXIFG UCA0RXIFG UCA0RXIFG 17 UCA0TXIFG UCA0TXIFG UCA0TXIFG 18 UCB0RXIFG UCB0RXIFG UCB0RXIFG 19 UCB0TXIFG UCB0RXIFG UCB0TXIFG 20 UCA1RXIFG UCA1TXIFG UCA1TXIFG 21 UCA1TXIFG UCA1TXIFG UCA1TXIFG 22 UCB1RXIFG UCB1RXIFG UCB1RXIFG 23 UCB1TXIFG UCB1TXIFG UCB1TXIFG 24 ADC10IFG0(2) ADC10IFG0(2)	8	TB0CCR2 CCIFG	TB0CCR2 CCIFG	TB0CCR2 CCIFG
11 UCB2RXIFG UCB2RXIFG UCB2RXIFG 12 UCB2TXIFG UCB2TXIFG UCB2TXIFG 13 Reserved Reserved Reserved 14 Reserved Reserved Reserved 15 Reserved Reserved Reserved 16 UCA0RXIFG UCA0RXIFG UCA0RXIFG 17 UCA0TXIFG UCA0TXIFG UCA0TXIFG 18 UCB0RXIFG UCB0RXIFG UCB0RXIFG 19 UCB0TXIFG UCB0TXIFG UCB0TXIFG 20 UCA1RXIFG UCA1RXIFG UCA1RXIFG 21 UCA1TXIFG UCA1TXIFG UCA1TXIFG 22 UCB1RXIFG UCB1RXIFG UCB1RXIFG 23 UCB1TXIFG UCB1TXIFG UCB1TXIFG 24 ADC10IFG0(2) ADC10IFG0(2)	9	UCA2RXIFG	UCA2RXIFG	UCA2RXIFG
12 UCB2TXIFG UCB2TXIFG UCB2TXIFG 13 Reserved Reserved Reserved 14 Reserved Reserved Reserved 15 Reserved Reserved Reserved 16 UCA0RXIFG UCA0RXIFG UCA0RXIFG 17 UCA0TXIFG UCA0TXIFG UCA0TXIFG 18 UCB0RXIFG UCB0RXIFG UCB0RXIFG 19 UCB0TXIFG UCB0TXIFG UCB0TXIFG 20 UCA1RXIFG UCA1TXIFG UCA1TXIFG 21 UCA1TXIFG UCA1TXIFG UCA1TXIFG 22 UCB1RXIFG UCB1TXIFG UCA1TXIFG 23 UCB1TXIFG UCB1TXIFG UCB1TXIFG 24 ADC10IFG0(2) ADC10IFG0(2)	10	UCA2TXIFG	UCA2TXIFG	UCA2TXIFG
13 Reserved Reserved Reserved 14 Reserved Reserved Reserved 15 Reserved Reserved Reserved 16 UCA0RXIFG UCA0RXIFG UCA0RXIFG 17 UCA0TXIFG UCA0TXIFG UCA0TXIFG 18 UCB0RXIFG UCB0RXIFG UCB0RXIFG 19 UCB0TXIFG UCB0TXIFG UCB0TXIFG 20 UCA1RXIFG UCA1RXIFG UCA1RXIFG 21 UCA1TXIFG UCA1TXIFG UCA1TXIFG 22 UCB1RXIFG UCB1RXIFG UCB1RXIFG 23 UCB1TXIFG UCB1TXIFG UCB1TXIFG 24 ADC10IFG0(2) ADC10IFG0(2) ADC10IFG0(2)	11	UCB2RXIFG	UCB2RXIFG	UCB2RXIFG
14 Reserved Reserved Reserved 15 Reserved Reserved Reserved 16 UCA0RXIFG UCA0RXIFG UCA0RXIFG 17 UCA0TXIFG UCA0TXIFG UCA0TXIFG 18 UCB0RXIFG UCB0RXIFG UCB0RXIFG 19 UCB0TXIFG UCB0TXIFG UCB0TXIFG 20 UCA1RXIFG UCA1RXIFG UCA1RXIFG 21 UCA1TXIFG UCA1TXIFG UCA1TXIFG 22 UCB1RXIFG UCB1RXIFG UCB1RXIFG 23 UCB1TXIFG UCB1TXIFG UCB1TXIFG 24 ADC10IFG0(2) ADC10IFG0(2)	12	UCB2TXIFG	UCB2TXIFG	UCB2TXIFG
15 Reserved Reserved Reserved 16 UCA0RXIFG UCA0RXIFG UCA0RXIFG 17 UCA0TXIFG UCA0TXIFG UCA0TXIFG 18 UCB0RXIFG UCB0RXIFG UCB0RXIFG 19 UCB0TXIFG UCB0TXIFG UCB0TXIFG 20 UCA1RXIFG UCA1RXIFG UCA1RXIFG 21 UCA1TXIFG UCA1TXIFG UCA1TXIFG 22 UCB1RXIFG UCB1RXIFG UCB1RXIFG 23 UCB1TXIFG UCB1TXIFG UCB1TXIFG 24 ADC10IFG0(2) ADC10IFG0(2) ADC10IFG0(2)	13	Reserved	Reserved	Reserved
16 UCA0RXIFG UCA0RXIFG UCA0RXIFG 17 UCA0TXIFG UCA0TXIFG UCA0TXIFG 18 UCB0RXIFG UCB0RXIFG UCB0RXIFG 19 UCB0TXIFG UCB0TXIFG UCB0TXIFG 20 UCA1RXIFG UCA1RXIFG UCA1RXIFG 21 UCA1TXIFG UCA1TXIFG UCA1TXIFG 22 UCB1RXIFG UCB1RXIFG UCB1RXIFG 23 UCB1TXIFG UCB1TXIFG UCB1TXIFG 24 ADC10IFG0(2) ADC10IFG0(2)	14	Reserved	Reserved	Reserved
17 UCA0TXIFG UCA0TXIFG UCA0TXIFG 18 UCB0RXIFG UCB0RXIFG UCB0RXIFG 19 UCB0TXIFG UCB0TXIFG UCB0TXIFG 20 UCA1RXIFG UCA1RXIFG UCA1RXIFG 21 UCA1TXIFG UCA1TXIFG UCA1TXIFG 22 UCB1RXIFG UCB1RXIFG UCB1RXIFG 23 UCB1TXIFG UCB1TXIFG UCB1TXIFG 24 ADC10IFG0(2) ADC10IFG0(2) ADC10IFG0(2)	15	Reserved	Reserved	Reserved
18 UCB0RXIFG UCB0RXIFG UCB0RXIFG 19 UCB0TXIFG UCB0TXIFG UCB0TXIFG 20 UCA1RXIFG UCA1RXIFG UCA1RXIFG 21 UCA1TXIFG UCA1TXIFG UCA1TXIFG 22 UCB1RXIFG UCB1RXIFG UCB1RXIFG 23 UCB1TXIFG UCB1TXIFG UCB1TXIFG 24 ADC10IFG0(2) ADC10IFG0(2) ADC10IFG0(2)	16	UCA0RXIFG	UCA0RXIFG	UCA0RXIFG
19 UCB0TXIFG UCB0TXIFG UCB0TXIFG 20 UCA1RXIFG UCA1RXIFG UCA1RXIFG 21 UCA1TXIFG UCA1TXIFG UCA1TXIFG 22 UCB1RXIFG UCB1RXIFG UCB1RXIFG 23 UCB1TXIFG UCB1TXIFG UCB1TXIFG 24 ADC10IFG0(2) ADC10IFG0(2) ADC10IFG0(2)	17	UCA0TXIFG	UCA0TXIFG	UCA0TXIFG
20 UCA1RXIFG UCA1RXIFG UCA1RXIFG 21 UCA1TXIFG UCA1TXIFG UCA1TXIFG 22 UCB1RXIFG UCB1RXIFG UCB1RXIFG 23 UCB1TXIFG UCB1TXIFG UCB1TXIFG 24 ADC10IFG0(2) ADC10IFG0(2) ADC10IFG0(2)	18	UCB0RXIFG	UCB0RXIFG	UCB0RXIFG
21 UCA1TXIFG UCA1TXIFG UCA1TXIFG 22 UCB1RXIFG UCB1RXIFG UCB1RXIFG 23 UCB1TXIFG UCB1TXIFG UCB1TXIFG 24 ADC10IFG0 ⁽²⁾ ADC10IFG0 ⁽²⁾ ADC10IFG0 ⁽²⁾	19	UCB0TXIFG	UCB0TXIFG	UCB0TXIFG
22 UCB1RXIFG UCB1RXIFG UCB1RXIFG 23 UCB1TXIFG UCB1TXIFG UCB1TXIFG 24 ADC10IFG0 ⁽²⁾ ADC10IFG0 ⁽²⁾ ADC10IFG0 ⁽²⁾	20	UCA1RXIFG	UCA1RXIFG	UCA1RXIFG
23 UCB1TXIFG UCB1TXIFG UCB1TXIFG 24 ADC10IFG0 ⁽²⁾ ADC10IFG0 ⁽²⁾ ADC10IFG0 ⁽²⁾	21	UCA1TXIFG	UCA1TXIFG	UCA1TXIFG
24 ADC10IFG0 ⁽²⁾ ADC10IFG0 ⁽²⁾ ADC10IFG0 ⁽²⁾	22	UCB1RXIFG	UCB1RXIFG	UCB1RXIFG
	23	UCB1TXIFG	UCB1TXIFG	UCB1TXIFG
	24	ADC10IFG0 ⁽²⁾	ADC10IFG0 ⁽²⁾	ADC10IFG0 ⁽²⁾
25 UCA3RXIFG UCA3RXIFG UCA3RXIFG	25	UCA3RXIFG	UCA3RXIFG	UCA3RXIFG
26 UCA3TXIFG UCA3TXIFG UCA3TXIFG	26	UCA3TXIFG	UCA3TXIFG	UCA3TXIFG
27 UCB3RXIFG UCB3RXIFG UCB3RXIFG	27	UCB3RXIFG	UCB3RXIFG	UCB3RXIFG
28 UCB3TXIFG UCB3TXIFG UCB3TXIFG	28	UCB3TXIFG	UCB3TXIFG	UCB3TXIFG
29 MPY ready MPY ready MPY ready	29	MPY ready	MPY ready	MPY ready
30 DMA2IFG DMA0IFG DMA1IFG	30	DMA2IFG	DMA0IFG	DMA1IFG
31 DMAE0 DMAE0 DMAE0	31	DMAE0	DMAE0	DMAE0

⁽¹⁾ If a reserved trigger source is selected, no trigger is generated.

⁽²⁾ Only on devices with ADC; reserved on devices without ADC

6.9.10 Universal Serial Communication Interface (USCI) (Links to user's guide: UART Mode, SPI Mode, & Mode)

The USCI modules are used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3- or 4-pin) and I²C, and asynchronous communication protocols such as UART, enhanced UART with automatic baud-rate detection, and IrDA. Each USCI module contains two portions, A and B.

The USCI_An module provides support for SPI (3- or 4-pin), UART, enhanced UART, or IrDA.

The USCI_Bn module provides support for SPI (3- or 4-pin) or I²C.

The MSP430F525x include four complete USCI modules (n = 0, 1, 2, 3).

6.9.11 TA0 (Link to user's guide)

TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. TA0 supports multiple captures or compares, PWM outputs, and interval timing (see Table 6-12). TA0 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 6-12. TA0 Signal Connections

INPUT PIN NUMBER	DEVICE INPUT	MODULE	MODULE	MODULE OUTPUT	DEVICE OUTPUT	OUTPUT PIN NUMBER	
RGC, ZQE	SIGNAL	INPUT SIGNAL	BLOCK	SIGNAL	SIGNAL	RGC, ZQE	
18, H2 - P1.0	TA0CLK	TACLK					
	ACLK (internal)	ACLK		NA			
	SMCLK (internal)	SMCLK	Timer		NA		
18, H2 - P1.0	TA0CLK	TACLK					
19, H3 - P1.1	TA0.0	CCI0A				19, H3 - P1.1	
	DVSS	CCI0B	CCR0	TA0	TAO 0		
	DVSS	GND	CCRU	TAU	TA0.0		
	DVCC	V _{CC}					
20, J3 - P1.2	TA0.1	CCI1A			TA0.1	20, J3 - P1.2	
	CBOUT (internal)	CCI1B	CCR1	TA1		ADC10 (internal) ADC10SHSx = {1}	
	DVSS	GND					
	DVCC	V _{CC}					
21, G4 - P1.3	TA0.2	CCI2A				21, G4 - P1.3	
	ACLK (internal)	CCI2B	CCR2	TA2	TA0.2		
	DVSS	GND	CCR2	IA2	1AU.2		
	DVCC	V _{CC}					
22, H4 - P1.4	TA0.3	CCI3A				22, H4 - P1.4	
	DVSS	CCI3B	CCR3	TA3	TA0.3		
	DVSS	GND	CCR3	TA3			
	DVCC	V _{cc}					
23, J4 - P1.5	TA0.4	CCI4A					23, J4 - P1.5
	DVSS	CCI4B	CCD4	TA4	TAO 4		
	DVSS	GND	CCR4	TA4	TA0.4		
	DVCC	V _{cc}					

MSP430F5253 MSP430F5252

6.9.12 TA1 (Link to user's guide)

TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA1 supports multiple captures or compares, PWM outputs, and interval timing (see Table 6-13). TA1 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 6-13. TA1 Signal Connections

INPUT PIN NUMBER	DEVICE INPUT SIGNAL	MODULE INPUT SIGNAL	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT SIGNAL	OUTPUT PIN NUMBER							
RGC, ZQE	OIONAL	OIOITAL		OUT OF GIONAL	OIOITAL	RGC, ZQE							
24, G5 - P1.6	TA1CLK	TACLK											
	ACLK (internal)	ACLK	Timer	NA	NA								
	SMCLK (internal)	SMCLK	rimer	INA	INA								
24, G5 - P1.6	TA1CLK	TACLK											
25, H5 - P1.7	TA1.0	CCI0A		TA0 TA1.0									25, H5 - P1.7
	DVSS	CCI0B	CCDO										
	DVSS	GND	CCR0	TAU	TAT.U								
	DVCC	V _{CC}											
26, J5 - P2.0	TA1.1	CCI1A				26, J5 - P2.0							
	CBOUT (internal)	CCI1B	0004	T A 4	TA4.4								
	DVSS	GND	CCR1 TA1	CCRT	TA1	TA1.1							
	DVCC	V _{CC}											
27, G6 - P2.1	TA1.2	CCI2A				27, G6 - P2.1							
	ACLK (internal)	CCI2B	0000	TA 0	TA4.0								
	DVSS	GND	CCR2	TA2	TA1.2								
	DVCC	V _{CC}											

6.9.13 TA2 (Link to user's guide)

TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA2 supports multiple captures or compares, PWM outputs, and interval timing (see Table 6-14). TA2 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 6-14. TA2 Signal Connections

INPUT PIN NUMBER	DEVICE INPUT SIGNAL	MODULE INPUT SIGNAL	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT	OUTPUT PIN NUMBER
RGC, ZQE	SIGNAL	SIGNAL		OUTPUT SIGNAL	SIGNAL	RGC, ZQE
1, A1 - P6.0	TA2CLK	TACLK				
	ACLK (internal)	ACLK	Timer	NA	NA	
	SMCLK (internal)	SMCLK	rimer	INA	INA	
1, A1 - P6.0	TA2CLK	TACLK				
2, B2 - P6.1	TA2.0	CCI0A				2, B2 - P6.1
	DVSS	CCI0B	CCDO	TA0	TAO 0	
	DVSS	GND	CCR0	TA0	TA2.0	
	DVCC	V _{CC}				
3, B1 - P6.2	TA2.1	CCI1A				3, B1 - P6.2
	CBOUT (internal)	CCI1B	0004	T 4 4	TAO 4	
	DVSS	GND	CCR1	TA1	TA2.1	
	DVCC	V _{CC}				
4, C2 - P6.3	TA2.2	CCI2A				4, C2 - P6.3
	ACLK (internal)	CCI2B	0000	TA 0		
	DVSS	GND	CCR2	TA2	TA2.2	
	DVCC	V _{CC}				

6.9.14 TB0 (Link to user's guide)

TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers. TB0 supports multiple captures or compares, PWM outputs, and interval timing (see Table 6-15). TB0 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 6-15. TB0 Signal Connections

NPUT PIN NUMBER	DEVICE INPUT	MODULE INPUT	MODULE BLOCK	MODULE	DEVICE OUTPUT	OUTPUT PIN NUMBER
RGC, ZQE	SIGNAL	SIGNAL	MODULE BLOCK	OUTPUT SIGNAL	SIGNAL	RGC, ZQE
(1)	TB0CLK	TBCLK				
	ACLK (internal)	ACLK	Timer	NA	NA	
	SMCLK (internal)	SMCLK	Timer	INA	NA NA	
(1)	TB0CLK	TBCLK				
(1)	TB0.0	CCI0A				(1)
(1)	TB0.0	CCI0B	CCR0	TB0	TB0.0	ADC10 (internal) ADC10SHSx = {2}
	DVSS	GND				
	DVCC	V _{cc}				
(1)	TB0.1	CCI1A				(1)
	CBOUT (internal)	CCI1B	CCR1	TB1	TB0.1	ADC10 (internal) ADC10SHSx = {3}
	DVSS	GND				
	DVCC	V _{CC}				
(1)	TB0.2	CCI2A				(1)
(1)	TB0.2	CCI2B	CCR2	TB2	TB0.2	
	DVSS	GND	CCR2	162		
	DVCC	V _{cc}				
(1)	TB0.3	CCI3A				(1)
(1)	TB0.3	CCI3B	CCR3	TB3	TDOO	
	DVSS	GND	CCR3	163	TB0.3	
	DVCC	V _{cc}				
(1)	TB0.4	CCI4A				(1)
(1)	TB0.4	CCI4B	0004	TD 4	TD0.4	
	DVSS	GND	- CCR4	TB4	TB0.4	
	DVCC	V _{CC}				
(1)	TB0.5	CCI5A				(1)
(1)	TB0.5	CCI5B	0005	TD:	TDOE	
	DVSS	GND	- CCR5	TB5	TB0.5	
	DVCC	V _{CC}	1			
(1)	TB0.6	CCI6A				(1)
	ACLK (internal)	CCI6B	0000	TDO	TDCC	
	DVSS	GND	- CCR6	TB6	TB0.6	
	DVCC	V _{CC}	1			

⁽¹⁾ Timer functions can be selected by the port mapping controller.

6.9.15 Comparator_B (Link to user's guide)

The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions, battery voltage supervision, and monitoring of external analog signals.

6.9.16 ADC10_A (Link to user's guide)

The ADC10_A module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator, and a conversion result buffer. A window comparator with lower and upper limits allows CPU-independent result monitoring with three window comparator interrupt flags.

6.9.17 CRC16 (Link to user's guide)

The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.

6.9.18 Reference (REF) Module Voltage Reference (Link to user's guide)

The REF module generates all of the critical reference voltages that can be used by the various analog peripherals in the device.

6.9.19 Embedded Emulation Module (EEM) (S Version) (Link to user's guide)

The EEM supports real-time in-system debugging. The S version of the EEM has the following features:

- Three hardware triggers or breakpoints on memory access
- · One hardware trigger or breakpoint on CPU register write access
- Up to four hardware triggers can be combined to form complex triggers or breakpoints
- One cycle counter
- Clock control on module level

6.9.20 Peripheral File Map

Table 6-16 lists the base address for the registers of each peripheral module.

Table 6-16. Peripherals

MODULE NAME	BASE ADDRESS	OFFSET ADDRESS RANGE
Special Functions (see Table 6-17)	0100h	000h to 01Fh
PMM (see Table 6-18)	0120h	000h to 010h
Flash Control (see Table 6-19)	0140h	000h to 00Fh
CRC16 (see Table 6-20)	0150h	000h to 007h
RAM Control (see Table 6-21)	0158h	000h to 001h
Watchdog (see Table 6-22)	015Ch	000h to 001h
UCS (see Table 6-23)	0160h	000h to 01Fh
SYS (see Table 6-24)	0180h	000h to 01Fh
Shared Reference (see Table 6-25)	01B0h	000h to 001h
Port Mapping Control (see Table 6-26)	01C0h	000h to 002h
Port Mapping Port P4 (see Table 6-26)	01E0h	000h to 007h
Port P1, P2 (see Table 6-27)	0200h	000h to 01Fh
Port P3, P4 (see Table 6-28)	0220h	000h to 00Bh
Port P5, P6 (see Table 6-29)	0240h	000h to 01Fh
Port P7 (see Table 6-30)	0260h	000h to 00Bh
Port PJ (see Table 6-31)	0320h	000h to 01Fh
TA0 (see Table 6-32)	0340h	000h to 02Eh
TA1 (see Table 6-33)	0380h	000h to 02Eh
TB0 (see Table 6-34)	03C0h	000h to 02Eh
TA2 (see Table 6-35)	0400h	000h to 02Eh
Real-Time Clock (RTC_A) (see Table 6-36)	04A0h	000h to 01Bh
32-Bit Hardware Multiplier (see Table 6-37)	04C0h	000h to 02Fh
DMA General Control (see Table 6-38)	0500h	000h to 00Fh
DMA Channel 0 (see Table 6-38)	0510h	000h to 00Ah
DMA Channel 1 (see Table 6-38)	0520h	000h to 00Ah
DMA Channel 2 (see Table 6-38)	0530h	000h to 00Ah
USCI_A0 (see Table 6-39)	05C0h	000h to 01Fh
USCI_B0 (see Table 6-40)	05E0h	000h to 01Fh
USCI_A1 (see Table 6-41)	0600h	000h to 01Fh
USCI_B1 (see Table 6-42)	0620h	000h to 01Fh
USCI_A2 (see Table 6-39)	0640h	000h to 01Fh
USCI_B2 (see Table 6-40)	0660h	000h to 01Fh
USCI_A3 (see Table 6-41)	0680h	000h to 01Fh
USCI_B3 (see Table 6-42)	06A0h	000h to 01Fh
ADC10_A (see Table 6-47)	0740h	000h to 01Fh
Comparator_B (see Table 6-48)	08C0h	000h to 00Fh

Table 6-17. Special Function Registers (Base Address: 0100h)

REGISTER DESCRIPTION	REGISTER	OFFSET
SFR interrupt enable	SFRIE1	00h
SFR interrupt flag	SFRIFG1	02h
SFR reset pin control	SFRRPCR	04h

Table 6-18. PMM Registers (Base Address: 0120h)

REGISTER DESCRIPTION	REGISTER	OFFSET
PMM control 0	PMMCTL0	00h
PMM control 1	PMMCTL1	02h
SVS high-side control	SVSMHCTL	04h
SVS low-side control	SVSMLCTL	06h
PMM interrupt flags	PMMIFG	0Ch
PMM interrupt enable	PMMIE	0Eh
PMM power mode 5 control	PM5CTL0	10h

Table 6-19. Flash Control Registers (Base Address: 0140h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Flash control 1	FCTL1	00h
Flash control 3	FCTL3	04h
Flash control 4	FCTL4	06h

Table 6-20. CRC16 Registers (Base Address: 0150h)

REGISTER DESCRIPTION	REGISTER	OFFSET
CRC data input	CRC16DI	00h
CRC data input reverse byte	CRCDIRB	02h
CRC initialization and result	CRCINIRES	04h
CRC result reverse byte	CRCRESR	06h

Table 6-21. RAM Control Registers (Base Address: 0158h)

REGISTER DESCRIPTION	REGISTER	OFFSET
RAM control 0	RCCTL0	00h

Table 6-22. Watchdog Registers (Base Address: 015Ch)

REGISTER DESCRIPTION	REGISTER	OFFSET
Watchdog timer control	WDTCTL	00h

Table 6-23. UCS Registers (Base Address: 0160h)

REGISTER DESCRIPTION	REGISTER	OFFSET
UCS control 0	UCSCTL0	00h
UCS control 1	UCSCTL1	02h
UCS control 2	UCSCTL2	04h
UCS control 3	UCSCTL3	06h
UCS control 4	UCSCTL4	08h
UCS control 5	UCSCTL5	0Ah
UCS control 6	UCSCTL6	0Ch
UCS control 7	UCSCTL7	0Eh
UCS control 8	UCSCTL8	10h
UCS control 9	UCSCTL9	12h

Table 6-24. SYS Registers (Base Address: 0180h)

REGISTER DESCRIPTION	REGISTER	OFFSET
System control	SYSCTL	00h
Bootloader configuration area	SYSBSLC	02h
JTAG mailbox control	SYSJMBC	06h
JTAG mailbox input 0	SYSJMBI0	08h
JTAG mailbox input 1	SYSJMBI1	0Ah
JTAG mailbox output 0	SYSJMBO0	0Ch
JTAG mailbox output 1	SYSJMBO1	0Eh
User NMI vector generator	SYSUNIV	1Ah
System NMI vector generator	SYSSNIV	1Ch
Reset vector generator	SYSRSTIV	1Eh

Table 6-25. Shared Reference Registers (Base Address: 01B0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Shared reference control	REFCTL	00h

Table 6-26. Port Mapping Registers (Base Address of Port Mapping Control: 01C0h, Port P4: 01E0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port mapping key/ID	PMAPKEYID	00h
Port mapping control	PMAPCTL	02h
Port P4.0 mapping	P4MAP0	00h
Port P4.1 mapping	P4MAP1	01h
Port P4.2 mapping	P4MAP2	02h
Port P4.3 mapping	P4MAP3	03h
Port P4.4 mapping	P4MAP4	04h
Port P4.5 mapping	P4MAP5	05h
Port P4.6 mapping	P4MAP6	06h
Port P4.7 mapping	P4MAP7	07h

Table 6-27. Port P1, P2 Registers (Base Address: 0200h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P1 input	P1IN	00h
Port P1 output	P1OUT	02h
Port P1 direction	P1DIR	04h
Port P1 resistor enable	P1REN	06h
Port P1 drive strength	P1DS	08h
Port P1 selection	P1SEL	0Ah
Port P1 interrupt vector word	P1IV	0Eh
Port P1 interrupt edge select	P1IES	18h
Port P1 interrupt enable	P1IE	1Ah
Port P1 interrupt flag	P1IFG	1Ch
Port P2 input	P2IN	01h
Port P2 output	P2OUT	03h
Port P2 direction	P2DIR	05h
Port P2 resistor enable	P2REN	07h
Port P2 drive strength	P2DS	09h
Port P2 selection	P2SEL	0Bh
Port P2 interrupt vector word	P2IV	1Eh
Port P2 interrupt edge select	P2IES	19h
Port P2 interrupt enable	P2IE	1Bh
Port P2 interrupt flag	P2IFG	1Dh

Table 6-28. Port P3, P4 Registers (Base Address: 0220h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P3 input	P3IN	00h
Port P3 output	P3OUT	02h
Port P3 direction	P3DIR	04h
Port P3 resistor enable	P3REN	06h
Port P3 drive strength	P3DS	08h
Port P3 selection	P3SEL	0Ah
Port P4 input	P4IN	01h
Port P4 output	P4OUT	03h
Port P4 direction	P4DIR	05h
Port P4 resistor enable	P4REN	07h
Port P4 drive strength	P4DS	09h
Port P4 selection	P4SEL	0Bh

Table 6-29. Port P5, P6 Registers (Base Address: 0240h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P5 input	P5IN	00h
Port P5 output	P5OUT	02h
Port P5 direction	P5DIR	04h
Port P5 resistor enable	P5REN	06h
Port P5 drive strength	P5DS	08h
Port P5 selection	P5SEL	0Ah
Port P6 input	P6IN	01h
Port P6 output	P6OUT	03h
Port P6 direction	P6DIR	05h
Port P6 resistor enable	P6REN	07h
Port P6 drive strength	P6DS	09h
Port P6 selection	P6SEL	0Bh
Port P6 interrupt vector word	P6IV	1Eh
Port P6 interrupt edge select	P6IES	19h
Port P6 interrupt enable	P6IE	1Bh
Port P6 interrupt flag	P6IFG	1Dh

Table 6-30. Port P7 Registers (Base Address: 0260h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P7 input	P7IN	00h
Port P7 output	P7OUT	02h
Port P7 direction	P7DIR	04h
Port P7 resistor enable	P7REN	06h
Port P7 drive strength	P7DS	08h
Port P7 selection	P7SEL	0Ah

Table 6-31. Port J Registers (Base Address: 0320h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port PJ input	PJIN	00h
Port PJ output	PJOUT	02h
Port PJ direction	PJDIR	04h
Port PJ resistor enable	PJREN	06h
Port PJ drive strength	PJDS	08h

Table 6-32. TA0 Registers (Base Address: 0340h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA0 control	TA0CTL	00h
Capture/compare control 0	TA0CCTL0	02h
Capture/compare control 1	TA0CCTL1	04h
Capture/compare control 2	TA0CCTL2	06h
Capture/compare control 3	TA0CCTL3	08h
Capture/compare control 4	TA0CCTL4	0Ah
TA0 counter	TA0R	10h
Capture/compare 0	TA0CCR0	12h
Capture/compare 1	TA0CCR1	14h
Capture/compare 2	TA0CCR2	16h
Capture/compare 3	TA0CCR3	18h
Capture/compare 4	TA0CCR4	1Ah
TA0 expansion 0	TA0EX0	20h
TA0 interrupt vector	TAOIV	2Eh

Table 6-33. TA1 Registers (Base Address: 0380h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA1 control	TA1CTL	00h
Capture/compare control 0	TA1CCTL0	02h
Capture/compare control 1	TA1CCTL1	04h
Capture/compare control 2	TA1CCTL2	06h
TA1 counter	TA1R	10h
Capture/compare 0	TA1CCR0	12h
Capture/compare 1	TA1CCR1	14h
Capture/compare 2	TA1CCR2	16h
TA1 expansion 0	TA1EX0	20h
TA1 interrupt vector	TA1IV	2Eh

Table 6-34. TB0 Registers (Base Address: 03C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TB0 control	TB0CTL	00h
Capture/compare control 0	TB0CCTL0	02h
Capture/compare control 1	TB0CCTL1	04h
Capture/compare control 2	TB0CCTL2	06h
Capture/compare control 3	TB0CCTL3	08h
Capture/compare control 4	TB0CCTL4	0Ah
Capture/compare control 5	TB0CCTL5	0Ch
Capture/compare control 6	TB0CCTL6	0Eh
TB0 counter	TB0R	10h
Capture/compare 0	TB0CCR0	12h
Capture/compare 1	TB0CCR1	14h
Capture/compare 2	TB0CCR2	16h
Capture/compare 3	TB0CCR3	18h
Capture/compare 4	TB0CCR4	1Ah
Capture/compare 5	TB0CCR5	1Ch
Capture/compare 6	TB0CCR6	1Eh
TB0 expansion 0	TB0EX0	20h
TB0 interrupt vector	TB0IV	2Eh

Table 6-35. TA2 Registers (Base Address: 0400h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA2 control	TA2CTL	00h
Capture/compare control 0	TA2CCTL0	02h
Capture/compare control 1	TA2CCTL1	04h
Capture/compare control 2	TA2CCTL2	06h
TA2 counter	TA2R	10h
Capture/compare 0	TA2CCR0	12h
Capture/compare 1	TA2CCR1	14h
Capture/compare 2	TA2CCR2	16h
TA2 expansion 0	TA2EX0	20h
TA2 interrupt vector	TA2IV	2Fh

Table 6-36. Real-Time Clock Registers (Base Address: 04A0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
RTC control 0	RTCCTL0	00h
RTC control 1	RTCCTL1	01h
RTC control 2	RTCCTL2	02h
RTC control 3	RTCCTL3	03h
RTC prescaler 0 control	RTCPS0CTL	08h
RTC prescaler 1 control	RTCPS1CTL	0Ah
RTC prescaler 0	RTCPS0	0Ch
RTC prescaler 1	RTCPS1	0Dh
RTC interrupt vector word	RTCIV	0Eh
RTC seconds/counter 1	RTCSEC/RTCNT1	10h
RTC minutes/counter 2	RTCMIN/RTCNT2	11h
RTC hours/counter 3	RTCHOUR/RTCNT3	12h
RTC day of week/counter 4	RTCDOW/RTCNT4	13h
RTC days	RTCDAY	14h
RTC month	RTCMON	15h
RTC year low	RTCYEARL	16h
RTC year high	RTCYEARH	17h
RTC alarm minutes	RTCAMIN	18h
RTC alarm hours	RTCAHOUR	19h
RTC alarm day of week	RTCADOW	1Ah
RTC alarm days	RTCADAY	1Bh

Table 6-37. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
16-bit operand 1 – multiply	MPY	00h
16-bit operand 1 – signed multiply	MPYS	02h
16-bit operand 1 – multiply accumulate	MAC	04h
16-bit operand 1 – signed multiply accumulate	MACS	06h
16-bit operand 2	OP2	08h
16 x 16 result low word	RESLO	0Ah
16 x 16 result high word	RESHI	0Ch
16 x 16 sum extension	SUMEXT	0Eh
32-bit operand 1 – multiply low word	MPY32L	10h
32-bit operand 1 – multiply high word	MPY32H	12h
32-bit operand 1 – signed multiply low word	MPYS32L	14h
32-bit operand 1 – signed multiply high word	MPYS32H	16h
32-bit operand 1 – multiply accumulate low word	MAC32L	18h
32-bit operand 1 – multiply accumulate high word	MAC32H	1Ah
32-bit operand 1 – signed multiply accumulate low word	MACS32L	1Ch
32-bit operand 1 – signed multiply accumulate high word	MACS32H	1Eh
32-bit operand 2 – low word	OP2L	20h
32-bit operand 2 – high word	OP2H	22h
32 x 32 result 0 – least significant word	RES0	24h
32 x 32 result 1	RES1	26h
32 × 32 result 2	RES2	28h
32 x 32 result 3 – most significant word	RES3	2Ah
MPY32 control 0	MPY32CTL0	2Ch

Table 6-38. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)

REGISTER DESCRIPTION	REGISTER	OFFSET
DMA channel 0 control	DMA0CTL	00h
DMA channel 0 source address low	DMA0SAL	02h
DMA channel 0 source address high	DMA0SAH	04h
DMA channel 0 destination address low	DMA0DAL	06h
DMA channel 0 destination address high	DMA0DAH	08h
DMA channel 0 transfer size	DMA0SZ	0Ah
DMA channel 1 control	DMA1CTL	00h
DMA channel 1 source address low	DMA1SAL	02h
DMA channel 1 source address high	DMA1SAH	04h
DMA channel 1 destination address low	DMA1DAL	06h
DMA channel 1 destination address high	DMA1DAH	08h
DMA channel 1 transfer size	DMA1SZ	0Ah
DMA channel 2 control	DMA2CTL	00h
DMA channel 2 source address low	DMA2SAL	02h
DMA channel 2 source address high	DMA2SAH	04h
DMA channel 2 destination address low	DMA2DAL	06h
DMA channel 2 destination address high	DMA2DAH	08h
DMA channel 2 transfer size	DMA2SZ	0Ah
DMA module control 0	DMACTL0	00h
DMA module control 1	DMACTL1	02h
DMA module control 2	DMACTL2	04h
DMA module control 3	DMACTL3	06h
DMA module control 4	DMACTL4	08h
DMA interrupt vector	DMAIV	0Eh

Table 6-39. USCI_A0 Registers (Base Address: 05C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI control 1	UCA0CTL1	00h
USCI control 0	UCA0CTL0	01h
USCI baud rate 0	UCA0BR0	06h
USCI baud rate 1	UCA0BR1	07h
USCI modulation control	UCA0MCTL	08h
USCI status	UCA0STAT	0Ah
USCI receive buffer	UCA0RXBUF	0Ch
USCI transmit buffer	UCA0TXBUF	0Eh
USCI LIN control	UCA0ABCTL	10h
USCI IrDA transmit control	UCA0IRTCTL	12h
USCI IrDA receive control	UCA0IRRCTL	13h
USCI interrupt enable	UCA0IE	1Ch
USCI interrupt flags	UCA0IFG	1Dh
USCI interrupt vector word	UCA0IV	1Eh

Table 6-40. USCI_B0 Registers (Base Address: 05E0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI synchronous control 1	UCB0CTL1	00h
USCI synchronous control 0	UCB0CTL0	01h
USCI synchronous bit rate 0	UCB0BR0	06h
USCI synchronous bit rate 1	UCB0BR1	07h
USCI synchronous status	UCB0STAT	0Ah
USCI synchronous receive buffer	UCB0RXBUF	0Ch
USCI synchronous transmit buffer	UCB0TXBUF	0Eh
USCI I2C own address	UCB0I2COA	10h
USCI I2C slave address	UCB0I2CSA	12h
USCI interrupt enable	UCB0IE	1Ch
USCI interrupt flags	UCB0IFG	1Dh
USCI interrupt vector word	UCB0IV	1Eh

Table 6-41. USCI_A1 Registers (Base Address: 0600h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI control 1	UCA1CTL1	00h
USCI control 0	UCA1CTL0	01h
USCI baud rate 0	UCA1BR0	06h
USCI baud rate 1	UCA1BR1	07h
USCI modulation control	UCA1MCTL	08h
USCI status	UCA1STAT	0Ah
USCI receive buffer	UCA1RXBUF	0Ch
USCI transmit buffer	UCA1TXBUF	0Eh
USCI LIN control	UCA1ABCTL	10h
USCI IrDA transmit control	UCA1IRTCTL	12h
USCI IrDA receive control	UCA1IRRCTL	13h
USCI interrupt enable	UCA1IE	1Ch
USCI interrupt flags	UCA1IFG	1Dh
USCI interrupt vector word	UCA1IV	1Eh

Table 6-42. USCI_B1 Registers (Base Address: 0620h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI synchronous control 1	UCB1CTL1	00h
USCI synchronous control 0	UCB1CTL0	01h
USCI synchronous bit rate 0	UCB1BR0	06h
USCI synchronous bit rate 1	UCB1BR1	07h
USCI synchronous status	UCB1STAT	0Ah
USCI synchronous receive buffer	UCB1RXBUF	0Ch
USCI synchronous transmit buffer	UCB1TXBUF	0Eh
USCI I2C own address	UCB1I2COA	10h
USCI I2C slave address	UCB1I2CSA	12h
USCI interrupt enable	UCB1IE	1Ch
USCI interrupt flags	UCB1IFG	1Dh
USCI interrupt vector word	UCB1IV	1Eh

Table 6-43. USCI_A2 Registers (Base Address: 0640h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI control 1	UCA2CTL1	00h
USCI control 0	UCA2CTL0	01h
USCI baud rate 0	UCA2BR0	06h
USCI baud rate 1	UCA2BR1	07h
USCI modulation control	UCA2MCTL	08h
USCI status	UCA2STAT	0Ah
USCI receive buffer	UCA2RXBUF	0Ch
USCI transmit buffer	UCA2TXBUF	0Eh
USCI LIN control	UCA2ABCTL	10h
USCI IrDA transmit control	UCA2IRTCTL	12h
USCI IrDA receive control	UCA2IRRCTL	13h
USCI interrupt enable	UCA2IE	1Ch
USCI interrupt flags	UCA2IFG	1Dh
USCI interrupt vector word	UCA2IV	1Eh

Table 6-44. USCI_B2 Registers (Base Address: 0660h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI synchronous control 1	UCB2CTL1	00h
USCI synchronous control 0	UCB2CTL0	01h
USCI synchronous bit rate 0	UCB2BR0	06h
USCI synchronous bit rate 1	UCB2BR1	07h
USCI synchronous status	UCB2STAT	0Ah
USCI synchronous receive buffer	UCB2RXBUF	0Ch
USCI synchronous transmit buffer	UCB2TXBUF	0Eh
USCI I2C own address	UCB2I2COA	10h
USCI I2C slave address	UCB2I2CSA	12h
USCI interrupt enable	UCB2IE	1Ch
USCI interrupt flags	UCB2IFG	1Dh
USCI interrupt vector word	UCB2IV	1Eh

Table 6-45. USCI_A3 Registers (Base Address: 0680h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI control 1	UCA3CTL1	00h
USCI control 0	UCA3CTL0	01h
USCI baud rate 0	UCA3BR0	06h
USCI baud rate 1	UCA3BR1	07h
USCI modulation control	UCA3MCTL	08h
USCI status	UCA3STAT	0Ah
USCI receive buffer	UCA3RXBUF	0Ch
USCI transmit buffer	UCA3TXBUF	0Eh
USCI LIN control	UCA3ABCTL	10h
USCI IrDA transmit control	UCA3IRTCTL	12h
USCI IrDA receive control	UCA3IRRCTL	13h
USCI interrupt enable	UCA3IE	1Ch
USCI interrupt flags	UCA3IFG	1Dh
USCI interrupt vector word	UCA3IV	1Eh

Table 6-46. USCI_B3 Registers (Base Address: 06A0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI synchronous control 1	UCB3CTL1	00h
USCI synchronous control 0	UCB3CTL0	01h
USCI synchronous bit rate 0	UCB3BR0	06h
USCI synchronous bit rate 1	UCB3BR1	07h
USCI synchronous status	UCB3STAT	0Ah
USCI synchronous receive buffer	UCB3RXBUF	0Ch
USCI synchronous transmit buffer	UCB3TXBUF	0Eh
USCI I2C own address	UCB3I2COA	10h
USCI I2C slave address	UCB3I2CSA	12h
USCI interrupt enable	UCB3IE	1Ch
USCI interrupt flags	UCB3IFG	1Dh
USCI interrupt vector word	UCB3IV	1Eh

Table 6-47. ADC10_A Registers (Base Address: 0740h)

REGISTER DESCRIPTION	REGISTER	OFFSET
ADC10_A control 0	ADC10CTL0	00h
ADC10_A control 1	ADC10CTL1	02h
ADC10_A control 2	ADC10CTL2	04h
ADC10_A window comparator low threshold	ADC10LO	06h
ADC10_A window comparator high threshold	ADC10HI	08h
ADC10_A memory control 0	ADC10MCTL0	0Ah
ADC10_A conversion memory	ADC10MEM0	12h
ADC10_A interrupt enable	ADC10IE	1Ah
ADC10_A interrupt flags	ADC10IGH	1Ch
ADC10_A interrupt vector word	ADC10IV	1Eh

Table 6-48. Comparator_B Registers (Base Address: 08C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Comp_B control 0	CBCTL0	00h
Comp_B control 1	CBCTL1	02h
Comp_B control 2	CBCTL2	04h
Comp_B control 3	CBCTL3	06h
Comp_B interrupt	CBINT	0Ch
Comp_B interrupt vector word	CBIV	0Eh

MSP430F5253 MSP430F5252

6.10 Input/Output Diagrams

6.10.1 Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger

Figure 6-2 shows the port diagram. Table 6-49 summarizes the selection of the pin function.

Figure 6-2. Port P1 (P1.0 to P1.7) Diagram

Table 6-49. Port P1 (P1.0 to P1.7) Pin Functions

DINI NAME (D4)		FUNCTION	CONTROL BIT	CONTROL BITS OR SIGNALS	
PIN NAME (P1.x)	X	FUNCTION	P1DIR.x	P1SEL.x	
	P1.0 (I/O)	I: 0; O: 1	0		
P1.0/TA0CLK/ACLK	0	TAOCLK	0	1	
		ACLK	1	1	
		P1.1 (I/O)	I: 0; O: 1	0	
P1.1/TA0.0	1	TA0.CCI0A	0	1	
		TA0.0	1	1	
		P1.2 (I/O)	I: 0; O: 1	0	
P1.2/TA0.1	2	TA0.CCI1A	0	1	
		TA0.1	1	1	
		P1.3 (I/O)	I: 0; O: 1	0	
P1.3/TA0.2	3	TA0.CCI2A	0	1	
		TA0.2	1	1	
		P1.4 (I/O)	I: 0; O: 1	0	
P1.4/TA0.3	4	TA0.CCI3A	0	1	
		TA0.3	1	1	
		P1.5 (I/O)	I: 0; O: 1	0	
P1.5/TA0.4	5	TA0.CCI4A	0	1	
		TA0.4	1	1	
		P1.6 (I/O)	I: 0; O: 1	0	
P1.6/TA1CLK/CBOUT	6	TA1CLK	0	1	
		CBOUT comparator B	1	1	
		P1.7 (I/O)	I: 0; O: 1	0	
P1.7/TA1.0	7	TA1.CCI0A	0	1	
		TA1.0	1	1	

MSP430F5253 MSP430F5252

6.10.2 Port P2 (P2.0 to P2.7) Input/Output With Schmitt Trigger

Figure 6-3 shows the port diagram. Table 6-50 summarizes the selection of the pin function.

Figure 6-3. Port P2 (P2.0 to P2.7) Diagram

Table 6-50. Port P2 (P2.0 to P2.7) Pin Functions

DINI NAME (DO)		FUNCTION	CONTROL BITS	OR SIGNALS ⁽¹⁾
PIN NAME (P2.x)	Х	FUNCTION	P2DIR.x	P2SEL.x
		P2.0 (I/O)	I: 0; O: 1	0
P2.0/TA1.1	0	TA1.CCI1A	0	1
		TA1.1	1	1
		P2.1 (I/O)	I: 0; O: 1	0
P2.1/TA1.2	1	TA1.CCI2A	0	1
		TA1.2	1	1
P2.2/UCB3SIMO/UCB3SDA	2	P2.2 (I/O)	I: 0; O: 1	0
P2.2/UCB3SIMO/UCB3SDA	2	UCB3SIMO/UCB3SDA	X	1
P2.3/UCB3SOMI/UCB3SCL	3	P2.3 (I/O)	I: 0; O: 1	0
F2.3/UCB33OWII/UCB33CL	3	UCB3SOMI/UCB3SCL	X	1
P2.4/UCB3CLK/UCA3STE	4	P2.4 (I/O)	I: 0; O: 1	0
P2.4/UCB3CLN/UCA3STE	4	UCB3CLK/UCA3STE (2) (3)	X	1
D2 F/LICD2CTF/LICA2CLIV	5	P2.5 (I/O)	I: 0; O: 1	0
P2.5/UCB3STE/UCA3CLK	5	UCB3STE/UCA3CLK ⁽²⁾ (4)	X	1
		P2.6 (I/O)	I: 0; O: 1	0
P2.6/RTCCLK/DMAE0	6	DMAE0	0	1
		RTCCLK	1	1
DO 7/LICROSTE/LICAGOLY	7	P2.7 (I/O)	I: 0; O: 1	0
P2.7/UCB0STE/UCA0CLK	/	UCB0STE/UCA0CLK(2) (5)	X	1

⁽¹⁾ X = Don't care

The pin direction is controlled by the USCI module.

⁽³⁾ UCB3CLK function takes precedence over UCA3STE function. If the pin is required as UCB3CLK input or output, USCI A3 is forced to 3-wire SPI mode if 4-wire SPI mode is selected.

⁽⁴⁾ UCA3CLK function takes precedence over UCB3STE function. If the pin is required as UCA3CLK input or output, USCI_B3 is forced to 3-wire SPI mode if 4-wire SPI mode is selected.

⁽⁵⁾ UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI_B0 is forced to 3-wire SPI mode if 4-wire SPI mode is selected.

6.10.3 Port P3 (P3.0 to P3.4) Input/Output With Schmitt Trigger

Figure 6-4 shows the port diagram. Table 6-51 summarizes the selection of the pin function.

Figure 6-4. Port P3 (P3.0 to P3.4) Diagram

Table 6-51. Port P3 (P3.0 to P3.4) Pin Functions

DIN NAME (D2 v)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾		
PIN NAME (P3.x)	X	FUNCTION	P3DIR.x	P3SEL.x	
	0	P3.0 (I/O)	I: 0; O: 1	0	
P3.0/UCB0SIMO/UCB0SDA	0	UCB0SIMO/UCB0SDA(2)(3)	Х	1	
P3.1/UCB0SOMI/UCB0SCL	4	P3.1 (I/O)	I: 0; O: 1	0	
	ı	UCB0SOMI/UCB0SCL ⁽²⁾ (3)	X	1	
	2	P3.2 (I/O)	I: 0; O: 1	0	
P3.2/UCB0CLK/UCA0STE	2	UCB0CLK/UCA0STE (2) (4)	Х	1	
D2 2/LICAOTYD/LICAOCIMO	2	P3.3 (I/O)	I: 0; O: 1	0	
P3.3/UCA0TXD/UCA0SIMO	3	UCA0TXD/UCA0SIMO(2)	Х	1	
P3.4/UCA0RXD/UCA0SOMI	4	P3.4 (I/O)	I: 0; O: 1	0	
	4	UCA0RXD/UCA0SOMI (2)	Х	1	

⁽¹⁾ X = Don't care

⁽²⁾ The pin direction is controlled by the USCI module.

⁽³⁾ If the I²C functionality is selected, the output drives only the logical 0 to V_{SS} level.

⁽⁴⁾ UCB0CLK function takes precedence over UCA0STE function. If the pin is required as UCB0CLK input or output, USCI_A0 is forced to 3-wire SPI mode if 4-wire SPI mode is selected.

6.10.4 Port P4 (P4.0 to P4.7) Input/Output With Schmitt Trigger

Figure 6-5 shows the port diagram. Table 6-52 summarizes the selection of the pin function.

Figure 6-5. Port P4 (P4.0 to P4.7) Diagram

Table 6-52. Port P4 (P4.0 to P4.7) Pin Functions

DIN NAME (D4)		FUNCTION	CONTRO	L BITS OR SIG	SNALS ⁽¹⁾
PIN NAME (P4.x)	X	FUNCTION	P4DIR.x ⁽²⁾	P4SEL.x	P4MAPx
D4.0/D4MAD0		P4.0 (I/O)	I: 0; O: 1	0	Х
P4.0/P4MAP0	0	Mapped secondary digital function	Х	1	≤ 30
D4.4/D4MAD4	4	P4.1 (I/O)	I: 0; O: 1	0	Х
P4.1/P4MAP1	1	Mapped secondary digital function	X	1	≤ 30
D4.0/D4MAD0	2	P4.2 (I/O)	I: 0; O: 1	0	Х
P4.2/P4MAP2	2	Mapped secondary digital function	X	1	≤ 30
D4 2/D4MA D2	_	P4.3 (I/O)	I: 0; O: 1	0	Х
P4.3/P4MAP3	3	Mapped secondary digital function	Х	1	≤ 30
D4.4/D4MAD4	4	P4.4 (I/O)	I: 0; O: 1	0	Х
P4.4/P4MAP4	4	Mapped secondary digital function	X	1	≤ 30
D4.5/D4MAD5	_	P4.5 (I/O)	I: 0; O: 1	0	Х
P4.5/P4MAP5	5	Mapped secondary digital function	Х	1	≤ 30
D4 C/D4MADC	6	P4.6 (I/O)	I: 0; O: 1	0	Х
P4.6/P4MAP6	6	Mapped secondary digital function	Х	1	≤ 30
D4.7/D4MAD7	7	P4.7 (I/O)	I: 0; O: 1	0	Х
P4.7/P4MAP7	'	Mapped secondary digital function	X	1	≤ 30

⁽¹⁾ X = Don't care

⁽²⁾ The direction of some mapped secondary functions are controlled directly by the module. See Table 6-8 for specific direction control information of mapped secondary functions.

6.10.5 Port P5 (P5.0 and P5.1) Input/Output With Schmitt Trigger

Figure 6-6 shows the port diagram. Table 6-53 summarizes the selection of the pin function.

(1) not available for MSPF430F5258 MSPF430F5256 MSPF430F5254 MSPF430F5252

Figure 6-6. Port P5 (P5.0 and P5.1) Diagram

Table 6-53. Port P5 (P5.0 and P5.1) Pin Functions

DIN NAME (DE v)	.,	FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾				
PIN NAME (P5.x)	X	FONCTION	P5DIR.x	P5SEL.x	REFOUT ⁽²⁾		
DE 0/40//- DEE .		P5.0 (I/O) ⁽³⁾	I: 0; O: 1	0	Х		
P5.0/A8/VeREF+	U	A8/VeREF+ ⁽⁴⁾	Х	1	0		
DE 4/40//- DEE		P5.1 (I/O) ⁽³⁾	I: 0; O: 1	0	Х		
P5.1/A9/VeREF-	1	A9/VeREF-(5)	Х	1	0		

- (1) X = Don't care
- (2) REFOUT resides in the REF module.
- (3) Default condition
- (4) Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC10_A. Channel A8, when selected with the INCHx bits, is connected to the VeREF+ pin.
- (5) Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. An external voltage can be applied to VeREF- and used as the reference for the ADC10_A. Channel A9, when selected with the INCHx bits, is connected to the VeREF- pin.

6.10.6 Port P5 (P5.2 and P5.3) Input/Output With Schmitt Trigger

Figure 6-7 and Figure 6-8 show the port diagrams. Table 6-54 summarizes the selection of the pin function.

Figure 6-7. Port P5 (P5.2) Diagram

Figure 6-8. Port P5 (P5.3) Diagram

Table 6-54. Port P5 (P5.2 and P5.3) Pin Functions

PIN NAME (P5.x)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾					
PIN NAME (PO.X)	X	FUNCTION	P5DIR.x	P5SEL.2	P5SEL.3	XT2BYPASS		
		P5.2 (I/O)	I: 0; O: 1	0	X	X		
P5.2/XT2IN	2	XT2IN crystal mode (2)	Х	1	Х	0		
		XT2IN bypass mode (2)	Х	1	Х	1		
		P5.3 (I/O)	I: 0; O: 1	0	0	Х		
P5.3/XT2OUT	3	XT2OUT crystal mode (3)	Х	1	Х	0		
		P5.3 (I/O) ⁽³⁾	Х	1	0	1		

⁽¹⁾ X = Don't care

⁽²⁾ Setting P5SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P5.2 is configured for crystal mode or bypass mode.

⁽³⁾ Setting P5SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.3 can be used as general-purpose I/O.

6.10.7 Port P5 (P5.4 and P5.5) Input/Output With Schmitt Trigger

Figure 6-9 and Figure 6-10 show the port diagrams. Table 6-55 summarizes the selection of the pin function.

Figure 6-9. Port P5 (P5.4) Diagram

Figure 6-10. Port P5 (P5.5) Diagram

Table 6-55. Port P5 (P5.4 and P5.5) Pin Functions

PIN NAME (P5.x)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾					
	X	FUNCTION	P5DIR.x	P5SEL.4	P5SEL.5	XT1BYPASS		
		P5.4 (I/O)	I: 0; O: 1	0	X	X		
P5.4/XIN	4	XIN crystal mode ⁽²⁾	Х	1	Х	0		
		XIN bypass mode ⁽²⁾	Х	1	Х	1		
		P5.5 (I/O)	I: 0; O: 1	0	0	Х		
P5.5/XOUT	5	XOUT crystal mode (3)	Х	1	Х	0		
		P5.5 (I/O) ⁽³⁾	Х	1	0	1		

X = Don't care

⁽²⁾ Setting P5SEL.4 causes the general-purpose I/O to be disabled. Pending the setting of XT1BYPASS, P5.4 is configured for crystal mode or bypass mode.

Setting P5SEL.4 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.5 can be used as general-purpose I/O.

6.10.8 Port P6 (P6.0 to P6.7) Input/Output With Schmitt Trigger

Figure 6-11 shows the port diagram. Table 6-56 summarizes the selection of the pin function.

Figure 6-11. Port P6 (P6.0 to P6.7) Diagram

Table 6-56. Port P6 (P6.0 to P6.7) Pin Functions

DIN NAME (DC v)		FUNCTION	CONTR	CONTROL BITS OR SIGNALS			
PIN NAME (P6.x)	X	FUNCTION	P6DIR.x	P6SEL.x	CBPD		
		P6.0 (I/O)	I: 0; O: 1	0	0		
		TA2CLK	0	1	0		
P6.0/TA2CLK/SMCLK/CB0/(A0)	0	SMCLK	1	1	0		
		A0	X	X	1		
		CB0 ⁽¹⁾	X	X	1		
		P6.1 (I/O)	I: 0; O: 1	0	0		
		TA2.CCI0A	0	1	0		
P6.1/TA2.0/CB1/(A1)	1	TA2.0	1	1	0		
		A1	X	Х	1		
		CB1 ⁽¹⁾	X	Х	1		
		P6.2 (I/O)	I: 0; O: 1	0	0		
		TA2.CCI1A	0	1	0		
P6.2/TA2.1/CB2/(A2)	2	TA2.1	1	1	0		
		A2	X	Х	1		
		CB2 ⁽¹⁾	X	Х	1		
		P6.3 (I/O)	I: 0; O: 1	0	0		
		TA2.CCI2A	0	1	0		
P6.3/TA2.1/CB3/(A3)	3	TA2.2	1	1	0		
		A3	X	Х	1		
		CB3 ⁽¹⁾	X	Х	1		
		P6.4 (I/O)	I: 0; O: 1	0	0		
P6.4/CB4/(A4)	4	A4	X	Х	1		
		CB4 ⁽¹⁾	X	Х	1		
		P6.5 (I/O)	I: 0; O: 1	0	0		
P6.5/CB5/(A5)	5	A5	X	Х	1		
		CB5 ⁽¹⁾	X	Х	1		
		P6.6 (I/O)	I: 0; O: 1	0	0		
P6.6/CB6/(A6)	6	A6	Х	Х	1		
		CB6 ⁽¹⁾	Х	X	1		
		P6.7 (I/O)	I: 0; O: 1	0	0		
P6.7/CB7/(A7)	7	A7	Х	X	1		
		CB7 ⁽¹⁾	Х	Х	1		

⁽¹⁾ Setting the CBPD.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CBx input pin to the comparator multiplexer with the CBx bits automatically disables output driver and input buffer for that pin, regardless of the state of the associated CBPD.x bit.

6.10.9 Port P7 (P7.0 to P7.5) Input/Output With Schmitt Trigger

Figure 6-12 shows the port diagram. Table 6-57 summarizes the selection of the pin function.

Figure 6-12. Port P7 (P7.0 to P7.5) Diagram

Table 6-57. Port P7 (P7.0 to P7.5) Pin Functions

DINI NI AME (DZ)		FUNCTION	CONTROL BITS	S OR SIGNALS
PIN NAME (P7.x)	X	FUNCTION	P7DIR.x	P7SEL.x
P7.0/UCA2TXD/UCA2SIMO ⁽¹⁾	_	P7.0 (I/O)	I: 0; O: 1	0
P7.0/UCA21XD/UCA2SIMO	0	UCA2TXD/UCA2SIMO(2)	X	1
P7.1/UCA2RXD/UCA2SOMI(1)	_	P7.1 (I/O)	I: 0; O: 1	0
P7.1/UCA2RXD/UCA2SOMIN	1	UCA2RXD/UCA2SOMI(2)	Х	1
(1)		P7.2 (I/O)	I: 0; O: 1	0
P7.2/UCB2CLK/UCA2STE ⁽¹⁾	2	UCB2CLK/UCA2STE (2) (3)	X	1
P7.3/UCB2SIMO/UCB2SDA ⁽¹⁾	_	P7.3 (I/O)	I: 0; O: 1	0
P7.3/UCB2SIMO/UCB2SDA	3	UCB2SIMO/UCB2SDA(2) (4)	Х	1
DZ 4/LICDOCOMULICDOCOL (1)	4	P7.4 (I/O)	I: 0; O: 1	0
P7.4/UCB2SOMI/UCB2SCL ⁽¹⁾		UCB2SOMI/UCB2SCL ⁽²⁾ (4)	X	1
P7.5/UCB2STE/UCA2CLK ⁽¹⁾	_	P7.5 (I/O)	I: 0; O: 1	0
P7.5/UCB25TE/UCA2CLK***	5	UCB2STE/UCA2CLK ⁽²⁾	X	1

⁽¹⁾ The pin direction is controlled by the USCI module.

⁽²⁾ Setting P7SEL.x bit disables the output driver and the input Schmitt trigger.

⁽³⁾ UCB2CLK function takes precedence over UCA2STE function. If the pin is required as UCB2CLK input or output, USCI_A2 is forced to 3-wire SPI mode if 4-wire SPI mode is selected.

⁽⁴⁾ If the I²C functionality is selected, the output drives only the logical 0 to V_{SS} level.

6.10.10 Port J (PJ.0) JTAG Pin TDO, Input/Output With Schmitt Trigger or Output

Figure 6-13 shows the port diagram. Table 6-58 summarizes the selection of the pin function.

Figure 6-13. Port PJ (PJ.0) Diagram

6.10.11 Port J (PJ.1 to PJ.3) JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output

Figure 6-14 shows the port diagram. Table 6-58 summarizes the selection of the pin function.

Figure 6-14. Port PJ (PJ.1 to PJ.3) Diagram

Table 6-58. Port PJ (PJ.0 to PJ.3) Pin Functions

PIN NAME (PJ.x)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾
, ,			PJDIR.x
DI O/TDO	0	PJ.0 (I/O) ⁽²⁾	I: 0; O: 1
PJ.0/TDO		TDO ⁽³⁾	X
PJ.1/TDI/TCLK	4	PJ.1 (I/O) ⁽²⁾	I: 0; O: 1
PJ. 1/ TD1/ TCLK	ı	TDI/TCLK ⁽³⁾ (4)	X
D L O/TMC	2	PJ.2 (I/O) ⁽²⁾	I: 0; O: 1
PJ.2/TMS		TMS ⁽³⁾ (4)	X
D I O/TOI	3	PJ.3 (I/O) ⁽²⁾	I: 0; O: 1
PJ.3/TCK		TCK ⁽³⁾ (4)	X

⁽¹⁾ X = Don't care

⁽²⁾ Default condition

⁽³⁾ The pin direction is controlled by the JTAG module.

⁽⁴⁾ In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care.

6.11 Device Descriptors

Table 6-59 and Table 6-60 list the contents of the device descriptor tag-length-value (TLV) structure for each device type.

Table 6-59. MSP430F5259, MSP430F5257, MSP430F5255, MSP430F5253 Device Descriptor Table (1)

DESCRIPTION		ADDDECC	SIZE		VA	LUE	
	DESCRIPTION	ADDRESS	(bytes)	F5259	F5257	F5255	F5253
	Info length	01A00h	1	06h	06h	06h	06h
	CRC length	01A01h	1	06h	06h	06h	06h
	CRC value	01A02h	2	Per unit	Per unit	Per unit	Per unit
Info Block	Device ID	01A04h	1	FF	01	03	05
	Device ID	01A05h	1	81	82	82	82
	Hardware revision	01A06h	1	Per unit	Per unit	Per unit	Per unit
	Firmware revision	01A07h	1	Per unit	Per unit	Per unit	Per unit
	Die record tag	01A08h	1	08h	08h	08h	08h
	Die record length	01A09h	1	0Ah	0Ah	0Ah	0Ah
D's Desert	Lot/wafer ID	01A0Ah	4	Per unit	Per unit	Per unit	Per unit
Die Record	Die X position	01A0Eh	2	Per unit	Per unit	Per unit	Per unit
	Die Y position	01A10h	2	Per unit	Per unit	Per unit	Per unit
	Test results	01A12h	2	Per unit	Per unit	Per unit	Per unit
	ADC10 calibration tag	01A14h	1	13h	13h	13h	13h
	ADC10 calibration length	01A15h	1	10h	10h	10h	10h
	ADC gain factor	01A16h	2	Per unit	Per unit	Per unit	Per unit
	ADC offset	01A18h	2	Per unit	Per unit	Per unit	Per unit
	ADC 1.5-V reference Temperature sensor 30°C	01A1Ah	2	Per unit	Per unit	Per unit	Per unit
ADC10	ADC 1.5-V reference Temperature sensor 85°C	01A1Ch	2	Per unit	Per unit	Per unit	Per unit
Calibration	ADC 2.0-V reference Temperature sensor 30°C	01A1Eh	2	Per unit	Per unit	Per unit	Per unit
	ADC 2.0-V reference Temperature sensor 85°C	01A20h	2	Per unit	Per unit	Per unit	Per unit
	ADC 2.5-V reference Temperature sensor 30°C	01A22h	2	Per unit	Per unit	Per unit	Per unit
	ADC 2.5-V reference Temperature sensor 85°C	01A24h	2	Per unit	Per unit	Per unit	Per unit
	REF calibration tag	01A26h	1	12h	12h	12h	12h
	REF calibration length	01A27h	1	06h	06h	06h	06h
REF Calibration	REF 1.5-V reference factor	01A28h	2	Per unit	Per unit	Per unit	Per unit
	REF 2.0-V reference factor	01A2Ah	2	Per unit	Per unit	Per unit	Per unit
	REF 2.5-V reference factor	01A2Ch	2	Per unit	Per unit	Per unit	Per unit

⁽¹⁾ NA = Not applicable, blank = unused and reads FFh.

Table 6-60. MSP430F5258, MSP430F5256, MSP430F5254, MSP430F5252 Device Descriptor Table (1)

	DECODIDEION	4000000	SIZE		VAI	LUE	
	DESCRIPTION	ADDRESS	(bytes)	F5258	F5256	F5254	F5252
	Info length	01A00h	1	06h	06h	06h	06h
	CRC length	01A01h	1	06h	06h	06h	06h
	CRC value	01A02h	2	Per unit	Per unit	Per unit	Per unit
Info Block	Device ID	01A04h	1	00	02	04	06
	Device ID	01A05h	1	82	82	82	82
	Hardware revision	01A06h	1	Per unit	Per unit	Per unit	Per unit
	Firmware revision	01A07h	1	Per unit	Per unit	Per unit	Per unit
	Die record tag	01A08h	1	08h	08h	08h	08h
	Die record length	01A09h	1	0Ah	0Ah	0Ah	0Ah
D: D .	Lot/wafer ID	01A0Ah	4	Per unit	Per unit	Per unit	Per unit
Die Record	Die X position	01A0Eh	2	Per unit	Per unit	Per unit	Per unit
	Die Y position	01A10h	2	Per unit	Per unit	Per unit	Per unit
	Test results	01A12h	2	Per unit	Per unit	Per unit	Per unit
	ADC10 calibration tag	01A14h	1	13h	13h	13h	13h
	ADC10 calibration length	01A15h	1	10h	10h	10h	10h
	ADC gain factor	01A16h	2	blank	blank	blank	blank
	ADC offset	01A18h	2	blank	blank	blank	blank
	ADC 1.5-V reference Temperature sensor 30°C	01A1Ah	2	blank	blank	blank	blank
ADC10 Calibration	ADC 1.5-V reference Temperature sensor 85°C	01A1Ch	2	blank	blank	blank	blank
Calibration	ADC 2.0-V reference Temperature sensor 30°C	01A1Eh	2	blank	blank	blank	blank
	ADC 2.0-V reference Temperature sensor 85°C	01A20h	2	blank	blank	blank	blank
	ADC 2.5-V reference Temperature sensor 30°C	01A22h	2	blank	blank	blank	blank
	ADC 2.5-V reference Temperature sensor 85°C	01A24h	2	blank	blank	blank	blank
	REF calibration tag	01A26h	1	12h	12h	12h	12h
	REF calibration length	01A27h	1	06h	06h	06h	06h
REF Calibration	REF 1.5-V reference factor	01A28h	2	Per unit	Per unit	Per unit	Per unit
	REF 2.0-V reference factor	01A2Ah	2	Per unit	Per unit	Per unit	Per unit
	REF 2.5-V reference factor	01A2Ch	2	Per unit	Per unit	Per unit	Per unit

⁽¹⁾ NA = Not applicable, blank = unused and reads FFh.

7 Device and Documentation Support

7.1 Getting Started and Next Steps

For more information on the MSP430[™] family of devices and the tools and libraries that are available to help with your development, visit the MSP430 ultra-low-power sensing and measurement MCUs overview.

7.2 Device Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully qualified production devices (MSP).

XMS – Experimental device that is not necessarily representative of the final device's electrical specifications

MSP - Fully qualified production device

XMS devices are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated fully. Tl's standard warranty applies.

Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices. TI recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature range, package type, and distribution format. Figure 7-1 provides a legend for reading the complete device name.

Figure 7-1. Device Nomenclature

7.3 Tools and Software

All MSP microcontrollers are supported by a wide variety of software and hardware development tools. Tools are available from TI and various third parties. See them all at MSP430 Ultra-Low-Power MCUs – Tools & software.

Table 7-1 lists the debug features of the MSP430F522x MCUs. See the *Code Composer Studio for MSP430 User's Guide* for details on the available features.

Table 7-1. Hardware Debug Features

MSP430 ARCHITECTURE	4-WIRE JTAG	2-WIRE JTAG	BREAK- POINTS (N)	RANGE BREAK- POINTS	CLOCK CONTROL	STATE SEQUENCER	TRACE BUFFER	LPMx.5 DEBUGGING SUPPORT
MSP430Xv2	Yes	Yes	8	Yes	Yes	Yes	Yes	No

Design Kits and Evaluation Modules

- 64-Pin Target Development Board and MSP-FET Programmer Bundle for MSP430F5x MCUs

 MSP-FET430U64C is a powerful tool that includes the hardware and software required to complete much of your application development work. The flash memory can be erased and programmed in seconds with only a few keystrokes, and since the MSP430 flash is extremely low power, no external power supply is required.
- **64-Pin Target Development Board for MSP430F5x MCUs** The MSP-TS430RGC64C is a stand-alone 64-pin ZIF socket target board used to program and debug the MSP430 MCU in-system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol.
- Dual-Mode Bluetooth CC2564 Module with Integrated Antenna Evaluation Board

 CC2564MODAEM evaluation board contains the Bluetooth BR/EDR/LE HCI solution. Based on TI's CC2564B dual-mode Bluetooth single-chip device, the bCC2564MODA is intended for evaluation and design purposes, reducing design effort and enabling fast time to market.

Software

- MSP430Ware MSP430Ware software is a collection of code examples, data sheets, and other design resources for all MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing MSP430 MCU design resources, MSP430Ware software also includes a high-level API called MSP Driver Library. This library makes it easy to program MSP430 hardware. MSP430Ware software is available as a component of CCS or as a stand-alone package.
- MSP430F525x Code Examples C code examples that configure each of the integrated peripherals for various application needs.
- MSP Driver Library Driver Library's abstracted API keeps you above the bits and bytes of the MSP430 hardware by providing easy-to-use function calls. Thorough documentation is delivered through a helpful API Guide, which includes details on each function call and the recognized parameters. Developers can use Driver Library functions to write complete projects with minimal overhead.
- MSP EnergyTrace™ Technology EnergyTrace technology for MSP430 microcontrollers is an energy-based code analysis tool that measures and displays the application's energy profile and helps to optimize it for ultra-low-power consumption.
- ULP (Ultra-Low Power) Advisor ULP Advisor™ software is a tool for guiding developers to write more efficient code to fully utilize the unique ultra-low power features of MSP and MSP432 microcontrollers. Aimed at both experienced and new microcontroller developers, ULP Advisor checks your code against a thorough ULP checklist to squeeze every last nano amp out of your application. At build time, ULP Advisor will provide notifications and remarks to highlight areas of your code that can be further optimized for lower power.

- IEC60730 Software Package The IEC60730 MSP430 software package was developed to be useful in assisting customers in complying with IEC 60730-1:2010 (Automatic Electrical Controls for Household and Similar Use Part 1: General Requirements) for up to Class B products, which includes home appliances, arc detectors, power converters, power tools, e-bikes, and many others. The IEC60730 MSP430 software package can be embedded in customer applications running on MSP430s to help simplify the customer's certification efforts of functional safety-compliant consumer devices to IEC 60730-1:2010 Class B.
- Fixed Point Math Library for MSP The MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and MSP432 devices. These routines are typically used in computationally intensive real-time applications where optimal execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably lower than equivalent code written using floating-point math.
- Floating Point Math Library for MSP430 Continuing to innovate in the low power and low cost microcontroller space, TI brings you MSPMATHLIB. Leveraging the intelligent peripherals of our devices, this floating point math library of scalar functions brings you up to 26x better performance. Mathlib is easy to integrate into your designs. This library is free and is integrated in both Code Composer Studio and IAR IDEs. Read the user's guide for an in depth look at the math library and relevant benchmarks.

Development Tools

- Code Composer Studio™ Integrated Development Environment for MSP Microcontrollers

 Composer Studio is an integrated development environment (IDE) that supports all MSP microcontroller devices. Code Composer Studio comprises a suite of embedded software utilities used to develop and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking you through each step of the application development flow. Familiar utilities and interfaces allow users to get started faster than ever before. Code Composer Studio combines the advantages of the Eclipse software framework with advanced embedded debug capabilities from TI resulting in a compelling feature-rich development environment for embedded developers.
- Command-Line Programmer MSP Flasher is an open-source shell-based interface for programming MSP microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP Flasher can download binary files (.txt or .hex) files directly to the MSP microcontroller without an IDE.
- MSP MCU Programmer and Debugger The MSP-FET is a powerful emulation development tool often called a debug probe which allows users to quickly begin application development on MSP low-power microcontrollers (MCU). Creating MCU software usually requires downloading the resulting binary program to the MSP device for validation and debugging. The MSP-FET provides a debug communication pathway between a host computer and the target MSP. Furthermore, the MSP-FET also provides a Backchannel UART connection between the computer's USB interface and the MSP UART. This affords the MSP programmer a convenient method for communicating serially between the MSP and a terminal running on the computer.
- MSP-GANG Production Programmer The MSP Gang Programmer is an MSP430 or MSP432 device programmer that can program up to eight identical MSP430 or MSP432 Flash or FRAM devices at the same time. The MSP Gang Programmer connects to a host PC using a standard RS-232 or USB connection and provides flexible programming options that allow the user to fully customize the process. The MSP Gang Programmer is provided with an expansion board, called the Gang Splitter, that implements the interconnections between the MSP Gang Programmer and multiple target devices. Eight cables are provided that connect the expansion board to eight target devices (through JTAG or Spy-Bi-Wire connectors). The programming can be done with a PC or as a stand-alone device.

7.4 Documentation Support

The following documents describe the MSP430F525x devices. Copies of these documents are available on the Internet at www.ti.com.

Receiving Notification of Document Updates

To receive notification of documentation updates—including silicon errata—go to the product folder for your device on ti.com (for links to the product folders, see Section 7.5). In the upper right corner, click the "Alert me" button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document.

Errata

MSP430F5259 Device Erratasheet	Describes the known exceptions to the functional specifications.
MSP430F5258 Device Erratasheet	Describes the known exceptions to the functional specifications.
MSP430F5257 Device Erratasheet	Describes the known exceptions to the functional specifications.
MSP430F5256 Device Erratasheet	Describes the known exceptions to the functional specifications.
MSP430F5255 Device Erratasheet	Describes the known exceptions to the functional specifications.
MSP430F5254 Device Erratasheet	Describes the known exceptions to the functional specifications.
MSP430F5253 Device Erratasheet	Describes the known exceptions to the functional specifications.
MSP430F5252 Device Erratasheet	Describes the known exceptions to the functional specifications.

User's Guides

- MSP430F5xx and MSP430F6xx Family User's Guide Detailed information on the modules and peripherals available in this device family.
- MSP430 Flash Device Bootloader (BSL) User's Guide The MSP430 bootloader (BSL, formerly known as the bootstrap loader) allows users to communicate with embedded memory in the MSP430 microcontroller during the prototyping phase, final production, and in service. Both the programmable memory (flash memory) and the data memory (RAM) can be modified as required. Do not confuse the bootloader with the bootstrap loader programs found in some digital signal processors (DSPs) that automatically load program code (and data) from external memory to the internal memory of the DSP.
- MSP430 Programming With the JTAG Interface This document describes the functions that are required to erase, program, and verify the memory module of the MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition, it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG interface, which is also referred to as Spy-Bi-Wire (SBW).
- MSP430 Hardware Tools User's Guide This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the program development tool for the MSP430 ultra-low-power microcontroller. Both available interface types, the parallel port interface and the USB interface, are described.

Application Reports

- MSP430 32-kHz Crystal Oscillators Selection of the right crystal, correct load circuit, and proper board layout are important for a stable crystal oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the correct crystal for MSP430 ultra-low-power operation. In addition, hints and examples for correct board layout are given. The document also contains detailed information on the possible oscillator tests to ensure stable oscillator operation in mass production.
- MSP430 System-Level ESD Considerations System-Level ESD has become increasingly demanding as silicon technology scales to lower voltages and the need for designing cost-effective and ultra-low-power components. This application report addresses three ESD topics to help board designers and OEMs understand and design robust system-level designs: (1) Component-level ESD testing and system-level ESD testing; (2) General design guidelines for system-level ESD protection; (3) Introduction to System Efficient ESD Design (SEED), a co-design methodology of on-board and on-chip ESD protection.

MSP430F5253 MSP430F5252

Designing with MSP430F522x and MSP430F521x Devices The MSP430F522x and MSP430F521x devices support a split supply I/O system that is essential in systems in which the MCU is required to interface with external devices (such as sensors or other processors) that operate at different voltage level compared to the MCU device supply. Additionally, the split supply input voltage range of the F522x and F521x devices starts as low as 1.62 V (see the device data sheet specifications), and this allows for nominal 1.8-V I/O interface without the need for external level translation. This application report describes the various design considerations to keep in mind while designing the F522x and F521x devices in an application.

7.5 Related Links

Table 7-2 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 7-2. Related Links

PARTS	PRODUCT FOLDER	ORDER NOW	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
MSP430F5259	Click here	Click here	Click here	Click here	Click here
MSP430F5258	Click here	Click here	Click here	Click here	Click here
MSP430F5257	Click here	Click here	Click here	Click here	Click here
MSP430F5256	Click here	Click here	Click here	Click here	Click here
MSP430F5255	Click here	Click here	Click here	Click here	Click here
MSP430F5254	Click here	Click here	Click here	Click here	Click here
MSP430F5253	Click here	Click here	Click here	Click here	Click here
MSP430F5252	Click here	Click here	Click here	Click here	Click here

7.6 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Community

TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

TI Embedded Processors Wiki

Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices.

7.7 Trademarks

MSP430, MSP430Ware, EnergyTrace, ULP Advisor, Code Composer Studio, E2E are trademarks of Texas Instruments.

Bluetooth is a registered trademark of Bluetooth SIG, Inc.

7.8 Electrostatic Discharge Caution

1800

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

7.9 Export Control Notice

Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws.

7.10 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

8 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

29-Dec-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
MSP430F5252IRGCR	ACTIVE	VQFN	RGC	64	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	F5252	Samples
MSP430F5252IRGCT	ACTIVE	VQFN	RGC	64	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	F5252	Samples
MSP430F5252IZQE	ACTIVE	BGA MICROSTAR JUNIOR	ZQE	80	360	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	F5252	Samples
MSP430F5253IRGCR	ACTIVE	VQFN	RGC	64	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	F5253	Samples
MSP430F5253IRGCT	ACTIVE	VQFN	RGC	64	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	F5253	Samples
MSP430F5253IZQE	ACTIVE	BGA MICROSTAR JUNIOR	ZQE	80	360	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	F5253	Samples
MSP430F5254IRGCR	ACTIVE	VQFN	RGC	64	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	F5254	Samples
MSP430F5254IRGCT	ACTIVE	VQFN	RGC	64	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	F5254	Samples
MSP430F5254IZQE	ACTIVE	BGA MICROSTAR JUNIOR	ZQE	80	360	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	F5254	Samples
MSP430F5255IRGCR	ACTIVE	VQFN	RGC	64	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	F5255	Samples
MSP430F5255IRGCT	ACTIVE	VQFN	RGC	64	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	F5255	Samples
MSP430F5255IZQE	ACTIVE	BGA MICROSTAR JUNIOR	ZQE	80	360	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	F5255	Samples
MSP430F5255IZQER	ACTIVE	BGA MICROSTAR JUNIOR	ZQE	80	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	F5255	Samples
MSP430F5256IRGCR	ACTIVE	VQFN	RGC	64	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	F5256	Samples
MSP430F5256IRGCT	ACTIVE	VQFN	RGC	64	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	F5256	Samples

www.ti.com

29-Dec-2018

Orderable Device	Status	Package Type	_	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
MSP430F5256IZQE	ACTIVE	BGA MICROSTAR JUNIOR	ZQE	80	360	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	F5256	Samples
MSP430F5256IZQER	ACTIVE	BGA MICROSTAR JUNIOR	ZQE	80	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	F5256	Samples
MSP430F5257IRGCR	ACTIVE	VQFN	RGC	64	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	F5257	Samples
MSP430F5257IRGCT	ACTIVE	VQFN	RGC	64	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	F5257	Samples
MSP430F5257IZQE	ACTIVE	BGA MICROSTAR JUNIOR	ZQE	80	360	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	F5257	Samples
MSP430F5257IZQER	ACTIVE	BGA MICROSTAR JUNIOR	ZQE	80	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	F5257	Samples
MSP430F5258IRGCR	ACTIVE	VQFN	RGC	64	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	F5258	Samples
MSP430F5258IRGCT	ACTIVE	VQFN	RGC	64	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	F5258	Samples
MSP430F5258IZQE	ACTIVE	BGA MICROSTAR JUNIOR	ZQE	80	360	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	F5258	Samples
MSP430F5258IZQER	ACTIVE	BGA MICROSTAR JUNIOR	ZQE	80	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	F5258	Samples
MSP430F5259IRGCR	ACTIVE	VQFN	RGC	64	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	F5259	Samples
MSP430F5259IRGCT	ACTIVE	VQFN	RGC	64	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	F5259	Samples
MSP430F5259IZQE	ACTIVE	BGA MICROSTAR JUNIOR	ZQE	80	360	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	F5259	Samples
MSP430F5259IZQER	ACTIVE	BGA MICROSTAR JUNIOR	ZQE	80	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	F5259	Samples

PACKAGE OPTION ADDENDUM

29-Dec-2018

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 29-Dec-2018

TAPE AND REEL INFORMATION

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MSP430F5252IRGCR	VQFN	RGC	64	2000	330.0	16.4	9.3	9.3	1.1	12.0	16.0	Q2
MSP430F5252IRGCT	VQFN	RGC	64	250	180.0	16.4	9.3	9.3	1.1	12.0	16.0	Q2
MSP430F5253IRGCR	VQFN	RGC	64	2000	330.0	16.4	9.3	9.3	1.1	12.0	16.0	Q2
MSP430F5253IRGCT	VQFN	RGC	64	250	180.0	16.4	9.3	9.3	1.1	12.0	16.0	Q2
MSP430F5254IRGCR	VQFN	RGC	64	2000	330.0	16.4	9.3	9.3	1.1	12.0	16.0	Q2
MSP430F5254IRGCT	VQFN	RGC	64	250	180.0	16.4	9.3	9.3	1.1	12.0	16.0	Q2
MSP430F5255IRGCR	VQFN	RGC	64	2000	330.0	16.4	9.3	9.3	1.1	12.0	16.0	Q2
MSP430F5255IRGCT	VQFN	RGC	64	250	180.0	16.4	9.3	9.3	1.1	12.0	16.0	Q2
MSP430F5255IZQER	BGA MI CROSTA R JUNI OR	ZQE	80	2500	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q1
MSP430F5256IRGCR	VQFN	RGC	64	2000	330.0	16.4	9.3	9.3	1.1	12.0	16.0	Q2
MSP430F5256IRGCT	VQFN	RGC	64	250	180.0	16.4	9.3	9.3	1.1	12.0	16.0	Q2
MSP430F5256IZQER	BGA MI CROSTA R JUNI OR	ZQE	80	2500	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q1
MSP430F5257IRGCR	VQFN	RGC	64	2000	330.0	16.4	9.3	9.3	1.1	12.0	16.0	Q2
MSP430F5257IRGCT	VQFN	RGC	64	250	180.0	16.4	9.3	9.3	1.1	12.0	16.0	Q2

PACKAGE MATERIALS INFORMATION

www.ti.com 29-Dec-2018

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MSP430F5257IZQER	BGA MI CROSTA R JUNI OR	ZQE	80	2500	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q1
MSP430F5258IRGCR	VQFN	RGC	64	2000	330.0	16.4	9.3	9.3	1.1	12.0	16.0	Q2
MSP430F5258IRGCT	VQFN	RGC	64	250	180.0	16.4	9.3	9.3	1.1	12.0	16.0	Q2
MSP430F5258IZQER	BGA MI CROSTA R JUNI OR	ZQE	80	2500	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q1
MSP430F5259IRGCR	VQFN	RGC	64	2000	330.0	16.4	9.3	9.3	1.1	12.0	16.0	Q2
MSP430F5259IRGCT	VQFN	RGC	64	250	180.0	16.4	9.3	9.3	1.1	12.0	16.0	Q2
MSP430F5259IZQER	BGA MI CROSTA R JUNI OR	ZQE	80	2500	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MSP430F5252IRGCR	VQFN	RGC	64	2000	367.0	367.0	38.0
MSP430F5252IRGCT	VQFN	RGC	64	250	210.0	185.0	35.0
MSP430F5253IRGCR	VQFN	RGC	64	2000	367.0	367.0	38.0

PACKAGE MATERIALS INFORMATION

www.ti.com 29-Dec-2018

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MSP430F5253IRGCT	VQFN	RGC	64	250	210.0	185.0	35.0
MSP430F5254IRGCR	VQFN	RGC	64	2000	367.0	367.0	38.0
MSP430F5254IRGCT	VQFN	RGC	64	250	210.0	185.0	35.0
MSP430F5255IRGCR	VQFN	RGC	64	2000	367.0	367.0	38.0
MSP430F5255IRGCT	VQFN	RGC	64	250	210.0	185.0	35.0
MSP430F5255IZQER	BGA MICROSTAR JUNIOR	ZQE	80	2500	336.6	336.6	28.6
MSP430F5256IRGCR	VQFN	RGC	64	2000	367.0	367.0	38.0
MSP430F5256IRGCT	VQFN	RGC	64	250	210.0	185.0	35.0
MSP430F5256IZQER	BGA MICROSTAR JUNIOR	ZQE	80	2500	336.6	336.6	28.6
MSP430F5257IRGCR	VQFN	RGC	64	2000	367.0	367.0	38.0
MSP430F5257IRGCT	VQFN	RGC	64	250	210.0	185.0	35.0
MSP430F5257IZQER	BGA MICROSTAR JUNIOR	ZQE	80	2500	336.6	336.6	28.6
MSP430F5258IRGCR	VQFN	RGC	64	2000	367.0	367.0	38.0
MSP430F5258IRGCT	VQFN	RGC	64	250	210.0	185.0	35.0
MSP430F5258IZQER	BGA MICROSTAR JUNIOR	ZQE	80	2500	336.6	336.6	28.6
MSP430F5259IRGCR	VQFN	RGC	64	2000	367.0	367.0	38.0
MSP430F5259IRGCT	VQFN	RGC	64	250	210.0	185.0	35.0
MSP430F5259IZQER	BGA MICROSTAR JUNIOR	ZQE	80	2500	336.6	336.6	28.6

ZQE (S-PBGA-N80)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225
- D. This is a Pb-free solder ball design.

MicroStar Junior is a trademark of Texas Instruments.

9 x 9, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4224597/A

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated