

EDA Competition

EDA Competition 일정

EDA Competition 일정

EDA Competition 시작: 2024.04.09 (화)

EDA Competition 결과물 제출 : 2024.05.19 (일) 23:59

결과물 제출은 ppt 보고서와 소스 코드가 담긴 ipynb 파일을 '.zip' 파일로 압축하여 <u>tjfud0216@kookmin.ac.kr</u>로 제출

ppt 보고서

- 1. 배경
- 2. 사용한데이터 2. 분석
- 3. 전처리 과정
- 4. 분석 & 시각화 과정
- 5. 결론 및 활용 방안

소스 코드

- 1. 전처리
- 3. 시각화 과정

EDA Competition 결과물 발표 : 2024.05.21 (화)

한 팀당 발표 시간 7 분 부여 (시간 엄수)

발표 후 쉬는 시간 동안 순위 결정

바로 당일 시상식 진행

CONTENTS.

01. 시각화

- 시각화

02. pandas

- pandas

- 유형

03. matplotlib

- matplotlib

- 유형

- 그래프 꾸미기

- 여러 그래프 그리기

04. seaborn

- seaborn

- 유형

- 그래프 꾸미기

시각화 **시각화**

시각화

데이터를 시각적으로 표시하는 것 데이터 자체나 수치로만 볼 때는 알 수 없었던 데이터의 패턴, 다른 요소들 간의 연관성 등의 인사이트를 발견하여 더 나은 의사결정 도출 가능

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

pandas pandas

.plot()

pandas의 DataFrame, Series의 시각화를 위한 메서드 해당 메서드에서 내부적으로 matplotlib을 불러와서 사용

*matplotlib을 import하지 않고 matplotlib 기능 활용

사용 방법

```
# plot. 套异()
DF.plot.line()

# plot(kind = '套异')
DF.plot(kind = 'line')
```

pandas

유형

line

수치형 데이터의 변화(순서,추세)

.plot()
.plot.line()
.plot(kind = 'line')

bar

수치형 데이터의 값 비교

.plot.bar() .plot(kind = 'bar')

hist

데이터의 분포

.plot.hist()
.plot(kind = 'hist')

pandas

유형

pie

범주형 데이터의 범주 비교

.plot.pie()
.plot(kind = 'pie')

scatter

두 수치형 데이터 간의 상관관계

.plot.scatter(x, y)
.plot(x, y, kind = 'scatter')

기타

barh, box, kde, density, area, hexbin(DataFrame only)

https://pandas.pydata.org/docs/reference/api/pandas.D ataFrame.plot.html#pandas.DataFrame.plot

matplotlib matplotlib

matplotlib

가장 대표적인 python의 시각화 라이브러리 matplotlib.pyplot의 함수를 사용하여 시각화

사용 방법

import matplotlib.pyplot as plt
plt.plot()

matplotlib 유형

Basic plots

matplotlib 유형

Statistics plots


```
# 크기(Figure Size)
plt.figure(figsize = (width, height))

# 그래프 제목
plt.title('그래프 제목')

# 축 Labe!
plt.xlabel('X축 Label')
plt.ylabel('Y축 Label')
# 축 범위 지정
plt.xlim([xmin, xmax])
plt.ylim([ymin, ymax])
# plt.axis([xmin, xmax, ymin, ymax])
```



```
# 크기(Figure Size)
plt.figure(figsize = (width, height))

# 그래프 제목
plt.title('그래프 제목')

# 축 Labe!
plt.xlabel('X축 Label')
plt.ylabel('Y축 Label')

# 축 범위 지정
plt.xlim([xmin, xmax])
plt.ylim([ymin, ymax])
# plt.axis([xmin, xmax, ymin, ymax])
```



```
# 크기(Figure Size)
plt.figure(figsize = (width, height))

# 그래프 제목
plt.title('그래프 제목')

# 축 Labe/
plt.xlabel('X축 Label')
plt.ylabel('Y축 Label')

# 축 범위 지정
plt.xlim([xmin, xmax])
plt.ylim([ymin, ymax])
# plt.axis([xmin, xmax, ymin, ymax])
```



```
# 크기(Figure Size)
plt.figure(figsize = (width, height))
# 그래프 제목
plt.title('그래프 제목')
# 축 Labe!
plt.xlabe!('X축 Labe!')
plt.ylabe!('Y축 Labe!')
# 축 범위 지정
plt.xlim([xmin, xmax])
plt.ylim([ymin, ymax])
# plt.axis([xmin, xmax, ymin, ymax])
```



```
# 考 定 是
plt.xticks(np.arange(xmin, xmax+1))
plt.yticks(np.arange(ymin, ymax+1))
# plt.yticks([0, 2, 4])

# 발례
plt.legend()

# 그리드
plt.grid(True)
```



```
#考定者
plt.xticks(np.arange(xmin, xmax+1))
plt.yticks(np.arange(ymin, ymax+1))
# plt.yticks([0, 2, 4])

# 범례
plt.legend()

# 그리도
plt.grid(True)
```



```
# 章 运言
plt.xticks(np.arange(xmin, xmax+1))
plt.yticks(np.arange(ymin, ymax+1))
# p/t.yticks([0, 2, 4])

# 발레
plt.legend()

# 그리드
plt.grid(True)
```


color

linestyle

```
Solid
plt.plot(x, y, '-')
             Dashed
plt.plot(x, y, '--')
             Dotted
.......
plt.plot(x, y, ':')
             Dash-dot
plt.plot(x, y, '-.')
```

https://matplotlib.org/stable/gallery/lines_bars_and_markers/linestyles.html

marker

matplotlib

여러 그래프 그리기

겹쳐 그리기

x축과 y축이 모두 같은 경우

y축이 다른 경우 (subplots)

나란히 그리기

subplot, subplots

seaborn

seaborn

matplotlib 기반 시각화 라이브러리 통계 그래프를 그리기 위한 고급 인터페이스 제공

사용 방법

import seaborn as sns

sns. 유형() sns.countplot()

유형

countplot

데이터 항목별 개수

sns.countplot(x, data)
sns.countplot(data.x)

boxplot

데이터의 분포나 전체 형상

sns.boxplot(x)
sns.boxplot(data)

violinplot

boxplot + kde 데이터의 분포나 전체 형상

sns.violinplot(x)
sns.violinplot(data)

Implot

데이터 간의 선형관계 scatter plot + 추세선

sns.lmplot(x, y)

pairplot

데이터 간의 상관관계 column이 같으면 hist, 다르면 scatter

sns.pairplot(data)

heatmap

데이터 간의 상관관계 색으로 표현

sns.heatmap(x)

그래프 꾸미기

color palette

seaborn은 스타일 지정을 위한 color palette 지원

sns.color_palette()

https://seaborn.pydata.org/tutorial/color_palettes.html

seaborn 그래프 꾸미기

color palette

Qualitative

- 고유한 색상들로 이루어짐
- 범주형 데이터

Diverging

- 양 끝 색이 강조되도록 이루어짐
- 높고 낮음을 표시해야 하는 데이터

Sequential

- 밝은 색부터 어두운 색까지 차례대로 이루어짐
- 순서가 있는 데이터

6주차 **팀 과제**

1. EDA Competiton 데이터를 이용해 5개 이상 시각화 해보기 (라이브러리, 종류 무관)

- ipynb 파일에 자유 양식으로 작성

2. EDA Competition 기획서 작성하기

REFERENCE

<u> https://pandas.pydata.org/</u>

<u> https://matplotlib.org/</u>

<u> https://seaborn.pydata.org/</u>

https://codetorial.net/matplotlib/set_linestyle.html

https://www.codecademy.com/article/seaborn-design-ii

