Lec 01-02 Introduction to Computer Networks

Computer Networks (CSE232) Section A

Instructor: Rinku Shah

These slides are inspired and adapted from:

Computer Networking: A Top-Down Approach
 6th edition, Jim Kurose, Keith Ross, Pearson, 2017

Network structure

- Network edge
 - End hosts
 - Clients, servers
- Access networks
 - Physical media
 - Wired, wireless
 - Edge routers
- Network core
 - Interconnected routers
 - Builds a network of networks

Access networks

How do end hosts connect to edge routers?

- Physical media
 - Guided
 - Coaxial cable
 - Twisted pair
 - Fiber optics
 - Unguided
 - Radio
- Digital subscriber link (DSL), Cable network,
 Fiber Internet, ...

Access networks: Home network

Take home task: Learn more about Digital Subscriber Link (DSL)

Access networks: Enterprise access networks

- Typically used in companies, universities, ...
- 10 Mbps to 10 Gbps transmission rates
- End systems typically connect to Ethernet switches

Access networks: Wireless access networks

Wireless LANs

- Range
 - within a building/organisation
- Standards
 - IEEE 802.11 a/b/g/n
- Data rates
 - o 11, 54, 450 Mbps

Wide area wireless access

- Range
 - o 10's of kms
- Provided by telco operator
- Standards
 - o 3G, 4G LTE, 5G
- Data rates
 - o Between 1 to 10 Mbps
 - Upto 1 Gbps (expected) with 5G

What is the Internet? What are its components?

- End devices connected by communication links (wired/wireless)
 - Some end hosts provide special services such as mail server, ...
- Links terminate at switches and routers
- Multiple switches/routers in an organization connect to form an enterprise network
- Tier-2 ISPs have several routers that connect multiple enterprise networks
- Tier-1 ISPs form the backbone of Internet

LAN/MAN/WAN, Intranet

Internet architecture

POP: Point of presence

IXP: Internet exchange point

Tier-1 ISPs in India

- Bharti
- Reliance
- Tata
- VSNL

Tier-2 ISPs in India

- Hathway
- Spectranet
- Tikona Digital
- Sify Technologies

Communication from "browser" to "web server" & back?

Communication from "browser" to "web server" & back? Addressing

Addressing:

- Physical/MAC address
- IP address
- Port address
- Socket address
 - Connection end points

Addressing in Internet

- Physical or MAC address
 - Uniquely identifies a machine on the local network
 - 48 bits, hexadecimal notation
 - Example- 1a:23:76:af:86:fe
- Logical or IP address
 - Uniquely identifies a machine on the global network
 - o IPv4
 - 32 bits, dotted decimal notation
 - Example
 - 192.168.100.1, 6.2.1.4
 - o IPv6
 - 128 bits
 - Example
 - fa13:0:0:0:0:0:0:c3 can also be written as fa13::c3
 - Many alternative notations ...
 - More on IP addresses
 - Public vs. Private
 - Static vs. Dynamic

Addressing in Internet, contd...

Port address

- Uniquely identifies a process on a machine
- 16 bits; range: 0 to 65535 (2^16-1)
- 0 to 1023: Reserved port address; for server applications (public)
- 1024 to 49151 (2^15+2^14-1): Semi reserved port address; assigned by IANA
- 49152 to 65535: ephemeral port address; client-side process

Socket address

- Uniquely identifies a process on the global network, i.e., the Internet
- IP address, port address
- Connection end points (srcIP, srcPort, dstIP, dstPort)

Watch the videos for broader understanding: Where did all this start from? And where is it going?

History of the Internet

https://www.youtube.com/watch?v=9hIQjrMHTv4

What are the core principles behind Google data centers?

https://www.youtube.com/watch?v=bzx7USXoIYg

How does networking work across Google's data centers?

This video is a bit advanced; you may not understand everything

https://www.youtube.com/watch?v=2R-UVdw6thl

Lec 02 Network design

Computer Networks (CSE232) Section A

Instructor: Rinku Shah

These slides are inspired and adapted from:

Computer Networking: A Top-Down Approach
 6th edition, Jim Kurose, Keith Ross, Pearson, 2017

Network design requirements

1. Scalability

O How can we increase the number of connected end hosts?

2. Efficient resource utilization

- Resources such as network link/router capacities are fixed. How do we optimally utilize them?
 - Increase number of simultaneous flows?
 - Are application service requirements satisfied?

3. Provisioning flow-specific services

- Request/Reply messages
- Streaming messages

4. Manageability

o monitor, debug (crash/failure), configure, modify the network

Scalability (Network design requirement 1)

- Point to point networks
- Multiple access networks (Broadcast networks)
- Switched networks
- Interconnection of switched networks

The network core

Functions of the network core: Packet switching

Circuit switching vs. Packet switching

Circuit switching vs. Packet switching

Efficient resource utilization (Network design requirement 2)

Circuit switching	Packet switching
Data path is setup & fixed during the life of the connection	Application message broken into packets; router decides next hop
Reserve resources along all links of the path	No resource reservation; store-and-forward approach
Path fixed during setup; multiple access using TDM or FDM	Medium shared using Statistical TDM
Connection oriented; low delay/jitter	Packet buffered/dropped if previous packets are not transmitted
Idle connection => resources wasted	Efficient resource utilization; great for bursty data
Could provide performance guarantees (QoS)	Cannot provide performance guarantees; "Best effort" traffic
Implemented by traditional telephone networks	Implemented by the Internet, cellular networks (4G/5G/)

21

Provision of traffic-specific services (Network design requirement 3)

- Different traffic types
 - o Data, voice, video, streaming, live
- Different requirements
 - Reliability
 - Security
 - Sensitivity to packet losses
 - Sensitivity to delays
 - Bandwidth/throughput
 - Packet ordering

Watch the videos for broader understanding: Where did all this start from? And where is it going?

History of the Internet

https://www.youtube.com/watch?v=9hIQjrMHTv4

What are the core principles behind Google data centers?

https://www.youtube.com/watch?v=bzx7USXoIYg

How does networking work across Google's data centers?

This video is a bit advanced; you may not understand everything

https://www.youtube.com/watch?v=2R-UVdw6thl