

Paris, le 19 novembre 2009

Communiqué de presse

Tuberculose : vers de nouvelles catégories d'antibiotiques

A la suite d'une initiative conjointe entre l'Institut Pasteur, l'Inserm et l'Institut Pasteur de Corée, des chercheurs viennent d'identifier de nouvelles familles d'antituberculeux grâce au développement de systèmes de criblage visuels haut-débit. Ces composés sont capables d'inhiber la multiplication de la bactérie dans les macrophages. Ces travaux, publiés dans *PLoS Pathogens*, ouvrent des perspectives pour de nouvelles stratégies thérapeutiques contre la tuberculose.

Avec plus de 400 000 cas chaque année en Europe et 5 millions en Asie, la tuberculose reste une maladie infectieuse responsable d'une morbidité et d'une mortalité impressionnantes. La physiopathologie de cette infection associée à l'épidémie de Sida et l'apparition de bacilles multi- et extrêmement- résistants (MDR-TB, XDR-TB) conduit à des situations d'échecs thérapeutiques pour lesquelles le développement de nouvelles classes de composés est aujourd'hui un réel enjeu de santé publique.

De nombreux cas de tuberculose chez l'adulte, ou chez le sujet immunodéprimé, sont dus à une réactivation endogène d'une infection antérieure. Une des hypothèses les plus communément admises est que cette réactivation est directement liée à la multiplication intracellulaire du bacille. En effet, contrairement à la plupart des bactéries, *Mycobacterium tuberculosis* a la capacité de survivre au sein de différents types cellulaires et, pour certains comme le macrophage, de s'y multiplier activement.

C'est en s'appuyant sur cette hypothèse que, sous la direction de Priscille Brodin - Equipe Avenir Inserm à l'Institut Pasteur Korea, rattachée à l'Unité dirigée par Roland Brosch à l'Institut Pasteur - les chercheurs ont développé un système modèle permettant de suivre la croissance de la mycobactérie au sein du macrophage par microscopie confocale de fluorescence. L'équipe a ensuite couplé ce système au criblage haut débit de plusieurs dizaines de milliers de molécules. Une centaine de molécules ont été sélectionnées pour leur activité antibactérienne intracellulaire.

Certaines de ses molécules présentent une structure chimique nouvelle, différente de celles des antibiotiques actuels, constituant des modèles pour le développement de nouveaux types d'antituberculeux.

En outre, en collaboration avec des équipes universitaires, les chercheurs montrent qu'une série de ces composés cible une enzyme requise pour la synthèse de la paroi mycobactérienne et nécessaire à la croissance intracellulaire de la bactérie. Compte tenu du fait qu'aucun antibiotique actuellement utilisé dans le traitement de la tuberculose n'est dirigé contre cette enzyme, la poursuite du développement de nouveaux types de composés inhibiteurs de celle-ci ouvrent une nouvelle voie dans la lutte contre les multirésistances.

High content screening identifies decaprenyl-phosphoribose 2' epimerase as a target for intracellular antimycobacterial inhibitors, *PLoS Pathogens*

Thierry Christophe¹, Mary Jackson², Hee Kyoung Jeon¹, Denis Fenistein³, Monica Contreras-Dominguez⁴, Jaeseung Kim⁵, Auguste Genovesio³, Jean-Philippe Carralot⁴, Fanny Ewann⁴, Eun Hye Kim⁴, Sae Yeon Lee⁵, Sunhee Kang⁵, Min Jung Seo⁵, Eun Jung Park⁵, Henrieta Škovierová², Ha Pham², Giovanna Riccardi⁶, Ji Youn Nam¹, Laurent Marsollier⁷, Marie Kempf⁷, Marie-Laure Joly-Guillou⁷, Taegwon Oh⁸, Won Kyung Shin⁸, Zaesung No⁵, Ulf Nehrbass¹, Roland Brosch⁹, Stewart T. Cole¹⁰ and Priscille Brodin^{4,9*}

¹Screening Technologies and Pharmacology, ³Image Mining, ⁴Biology of Intracellular Pathogens Inserm Avenir Group, ⁵Medicinal Chemistry, Institut Pasteur Korea, Sampyeong-dong 696, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400, Korea

²Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682

En savoir plus sur la tuberculose

http://www.pasteur.fr/ip/easysite/go/03b-00000j-0i3/presse/fiches-sur-les-maladies-infectieuses/tuberculose

Contacts

Service de presse de l'Institut Pasteur :

Nadine Peyrolo. Tél. 01 45 68 81 47 / presse@pasteur.fr

Service de presse de l'Inserm:

Séverine Ciancia. Tel: 01 44 23 60 86/ presse@inserm.fr

⁶Dipartimento di Genetica e Microbiologia, Università degli Studi di Pavia, via Ferrata 1, 27100 Pavia, Italy

⁷Groupe d'Etude des Interactions Hôte Pathogène, Université d'Angers, Angers, France

⁸International Tuberculosis Research Center, 475-1 Gapo-dong, Masan 631-320, Korea

⁹Institut Pasteur, Integrated Mycobacterial Pathogenomics, 25-28 rue du Docteur Roux, 75724 Paris, France

¹⁰Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 15, CH-1015 Lausanne, Switzerland