- 1. Server Components Summary
- Motherboard: Main circuit board connecting all components (CPU, RAM, etc.).
- CPU: Executes instructions; performs computations.
- RAM: Temporary storage for active processes.
- Storage Drives: HDD (mechanical), SSD (flash), NVMe (high-speed SSD).
- RAID Controller: Manages disk arrays for redundancy/performance (e.g., HP Smart Array).
- PSU: Supplies power; redundant PSUs ensure uptime.
- NIC: Network interface for connectivity (embedded or PCIe-based).
- Cooling System: Fans/heat sinks to dissipate heat.
- PCIe Slots: For expansion cards (GPUs, NICs, etc.).
- Chassis: Enclosure (rack/tower/blade).
- BIOS/UEFI: Firmware for hardware initialization/boot.
- Backplane: Connects drives to controllers (hot-swappable in servers).

- 2. IPMI and iLO
- IPMI: Open standard for remote server management (power control, monitoring).
- iLO: HP's proprietary IPMI-like tool with enhanced features.
- Function: Out-of-band management (independent of OS).
- 3. Relation to BIOS/UEFI

IPMI/iLO can access/modify BIOS/UEFI settings remotely (e.g., boot order).

- Purpose: Physical interface to install processors.					
- Servers: Often multiple sockets (2P/4P) for scalability.					
5. Pseudo File Systems in Linux					
- Why Introduced: Adheres to Unix philosophy ("everything is a file"); provides virtual files to interact with kernel/hardware (e.g., /proc, /sys).					
6. Pseudo vs. Normal FS					
- Pseudo FS: Virtual (no disk storage); dynamic kernel data (e.g., /proc/cpuinfo).					
- Normal FS: Stores actual files on disk (e.g., ext4, NTFS).					
7. /sys/ Directory Info					
Exposes kernel objects (devices, drivers, power settings). Example:					
- /sys/block/: Block devices.					
- /sys/power/: Power management controls.					
8. DMA (Direct Memory Access)					
- What: Hardware feature to transfer data between devices/RAM without CPU.					
- Use Case: High-speed I/O (e.g., disk/network operations).					

4. CPU Sockets

- Action: Queries kernel (via sysfs/udev) for block device info (disks, partitions).					
- Similar Commands:					
- lsusb: USB devices (kernel's USB subsystem).					
- lspci: PCI devices (kernel's PCI subsystem).					
- lshw: Comprehensive hardware info (combines multiple sources).					
10. Simulate Shutdown via /sys					
bash					
echo "poweroff" > /sys/power/state					
					
11. Kernel Types					
Type Pros Cons					
Monolithic Fast (all in kernel space) Less secure/modular (e.g., Linux).					
Microkernel Secure (services in user space) Slower (IPC overhead; e.g., QNX).					
Hybrid Balance (e.g., Windows, macOS). Complex design.					

9. lsblk Internals

12. MBR in First Sector
- Why: Standardized location for bootloaders; BIOS knows to check sector 0.
13. MBR and Bootloader
- MBR Structure: 512 bytes (boot code + partition table).
- Process: MBR's boot code loads the next stage (e.g., GRUB) from the active partition.
14efi Files
- What: Executables for UEFI firmware (e.g., grubx64.efi).
- Role: Replace legacy bootloaders; loaded by UEFI from ESP.
15. ESP (EFI System Partition)
- What: FAT32 partition storing .efi files.
- Usage: UEFI firmware reads ESP to load OS bootloaders.
16. GRUB Configuration (grub.conf)
- Breakdown:
- menuentry: Boot entry for Ubuntu.
- insmod: Loads modules (e.g., ext2, part_gpt).
- set root: Specifies boot partition (hd0,gpt2).
- search: Locates partition by UUID.

- linux: Loads kernel with parameters (e.g., root=/dev/mapper/vg0-root).

- initrd: Loads initial RAM disk.					