Teoria di Galois 1 - Tutorato IV

Alfonso Pesiri

Giovedì 2 Maggio 2007

Esercizio 1. Si elenchino i sottogruppi transitivi di S_3, S_4 , ed S_5 , scrivendone la cardinalità. Per quali $i \in \{3, 4, 5\}$ si ha che S_i ed A_i sono gruppi risolubili?

Esercizio 2. Si calcoli il gruppo di Galois (cioè il numero di elementi e la struttura) di ciascuno dei seguenti polinomi:

a. $x^4 + 4x^2 + 2$;	b. $x^4 + 8x^3 + 26x^2 + 24x + 28$;
c. $x^4 - 354x^2 + 29929$;	d. $x^4 - 11x^3 + 41x^2 - 61x + 30$;
e. $x^4 - 2$;	f. $x^4 + 8x + 12$;
g. $x^4 - 10x^2 + 4$;	h. $x^4 + 25x^2 + 5$;
i. $x^4 + 3x^3 + 3$	1. $x^4 + x^3 + 4x^2 + 3x + 3$;
m. $x^4 - 4x + 2$;	n. $x^4 - 356x^2 + 29584$;

Esercizio 3. Dopo aver mostrato che il gruppo di Galois del polinomio x^4-5 ha 8 elementi, dedurre che $G_f\simeq D_4$

Si ricordi che $f(x) \in \mathbb{Q}[x]$ è irriducibile di grado n se e solo se G_f è transitivo in S_n

Esercizio 4. Calcolare una fomula per il discriminante di $X^n + aX + b$.

Esercizio 5. Trovare $f(x) \in \mathbb{Q}[x]$ tale che $\#Gal(\mathbb{Q}_f/\mathbb{Q}) = 13$. Pensare al numero primo $53 \equiv 1 \mod 13$

Esercizio 6. Mostrare che se n è dispari, allora $\Phi_{2n}(x) = \Phi_n(-x)$ e che

$$\Phi_n(x) = \prod_{d|n} (x^d - 1)^{\mu(n/d)}$$

dove μ è la funzione di Möbius.