Exercice 1. 1 point

Écrire la matrice A carrée d'ordre 3 telle que :

$$a_{ij} = \begin{cases} ij^2 & \text{si } i \geqslant j, \\ 1 & \text{sinon} \end{cases}$$

Exercice 2. 6 points

Pour tout nombre réel α non nul, on considère les matrices $A = \begin{pmatrix} 0 & \alpha & \alpha^2 \\ \frac{1}{\alpha} & 0 & \alpha \\ \frac{1}{\alpha^2} & \frac{1}{\alpha} & 0 \end{pmatrix}$ et $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

- 1. (a) Calculer (A + I)(2I A).
 - (b) En déduire que $I = \frac{1}{2}(A I)A$ puis que A est inversible et préciser son inverse.
- 2. On pose $B = \frac{1}{3}(A+I)$ et $C = \frac{1}{3}(2I-A)$.
 - (a) Montrer que B + C = I et A = 2B C.
 - (b) Montrer que $B^2 = B$ et $C^2 = C$.
- 3. Montrer, par récurrence que, pour tout entier naturel n,

$$A^n = 2^n B + (-1)^n C.$$

Exercice 3. 3 points

Soit x un nombre réel et $M = \begin{pmatrix} x+2 & 7 \\ 6 & x+1 \end{pmatrix}$.

- 1. Pour quelle(s) valeur(s) de x la matrice M est-elle inversible?
- 2. Préciser alors quand c'est possible M^{-1} .