

# [ Chapter 4 ]The GreedyApproach



- Dynamic Programming vs. Greedy Approach
  - DP: Recursive property to divide an instance into smaller ones
  - GA: No division into smaller instances, but making a sequence of greedy choices to arrive at a solution.
- Selection procedure
  - Chooses the next item to add to the solution set.
  - Selection is made according to a greedy criterion that satisfies locally optimal consideration at the time.
- Feasibility check
  - Sees if the new set is feasible.
- Solution check
  - Determines if the new set constitutes a solution to the instance.

## **Example: Coin change problem (a.k.a. Frobenius problem)**



## Greedy algorithm is not optimal: check the optimality check when a 12-cent coin is included.



## Exercise

- Greedy approach itself never guarantees the optimal solution. Thus, it is the responsibility of an algorithm designer. OPTIMALITY PROOF is a MUST in greedy algorithm design.
- Prove that the greedy algorithm always produces the minimum number of coins for a change if the coin set is {1, 5, 10}.

# 1

#### Minimum spanning tree problem

- Graph theory terms:
  - Undirected graph G: G = (V, E)
  - Connected graph
  - Weighted graph
  - Path
  - Cyclic graph and acyclic graph
  - Subgraph G' = (V', E') if V' (E') is a subset of V (E)
  - Tree is an acyclic and connected graph.
  - Spanning tree for G is an acyclic connected subgraph that contains all the nodes in G.
  - Minimum spanning tree for G is a spanning tree of minimum weight for the graph.



#### MST Example Applications

- Interstate highway construction
- Subway, railroad construction
- Telecommunication network construction
- Plumbing, wiring, power transmission, and etc.

#### **Example: A weighted graph and three subgraphs.**

(a) A connected, weighted, undirected graph *G*.



(b) If  $(v_4, v_5)$  were removed from this subgraph, the graph would remain connected.



(c) A spanning tree for G.



(d) A minimum spanning tree for G.



#### **Prim's algorithm**

Algorithm sketch

```
1. F := 0;
2. Y := {v<sub>1</sub>};
3. while ( the instance is not solved ) {
    select a vertex in V - Y that is nearest to Y;
    add the vertex to Y;
    add the edge to F;
    if (Y == V) the instance is solved;
}
```

## **Step-by-step snapshots in applying Prim's algorithm**

Determine a minimum spanning tree.



1. Vertex  $v_1$  is selected first.



2. Vertex  $v_2$  is selected because it is nearest to  $\{v_1\}$ .



3. Vertex  $v_3$  is selected because it is nearest to  $\{v_1, v_2\}$ .



4. Vertex  $v_2$  is selected because it is nearest to  $\{v_1, v_2, v_3\}$ .



5. Vertex  $v_4$  is selected.



### Prim's algorithm (Cont'd)

Adjacency Matrix Representation

$$W[i][j] = \begin{cases} weight \\ \infty \\ 0 \end{cases}$$

If there is an edge from  $v_i$  to  $v_j$ If there is no edge from  $v_i$  to  $v_j$ If i = j.

- Two additional arrays
  - nearest[i]: index of the vertex in Y nearest to  $v_i$ .
  - distance[i]: weight on edge between  $v_i$  and the vertex indexed by nearest[i].

## The array representation *W* of the graph in finding MST

|   | 1                | 2 | 3 | 4 | 5        |
|---|------------------|---|---|---|----------|
| 1 | 0                | 1 | 3 | ∞ | ∞        |
| 2 | 1                | 0 | 3 | 6 | <b>∞</b> |
| 3 | 3                | 3 | 0 | 4 | 2        |
| 4 | 0<br>1<br>3<br>∞ | 6 | 4 | 0 | 5        |
| 5 | ∞                | ∞ | 2 | 5 | 0        |

#### **Prim's algorithm analysis**

- Time complexity analysis
  - Basic operation
    - There are two loops, each with n-1 iterations, inside the loop. Executing the instructions inside each of them can be considered to be doing the basic operation once.
  - Input size
    - n, the number of vertices.
  - $T(n) = 2(n-1)(n-1) \in \Theta(n^2)$

#### **Optimality Proof for Prim's algorithm**

- In G = (V, E), a subset F of E is called *promising* if edges can be added to it so as to form a MST.
- Lemma 4.1 Let G be a connected, weighted, undirected graph; let F be a promising subset of E; and let Y be the set of vertices connected by the edges in F. If e is an edge of minimum weight that connects a vertex in Y to a vertex in V Y, the  $F \cup \{e\}$  is promising.
- Theorem 4.1 Prim's algorithm always produces a MST.
  - Induction base: Clearly the empty set is promising.
  - I. H. Assume that, after a given iteration of the loop, the set of edges so far selected, namely F, is promising.
  - I. S. Let's show that the  $F \cup \{e\}$  is promising. Because the edge e selected in the next iteration is an edge of minimum weight that connects Y to V Y,  $F \cup \{e\}$  is promising, by Lemma 4.1

#### **Proof for Lemma 4.1**

- Because F is *promising*, there must be some set of edges F' such that  $F \subseteq F'$  and (V,F') is a MST.
- Case 1: If  $e \in F'$ ,  $F \cup \{e\} \subseteq F'$ , therefore  $F \cup \{e\}$  is promising.
- Case 2: If  $e \notin F'$ ,  $F' \cup \{e\}$  should contain at least one cycle, and e is an edge in the cycle. Then, there must be another edge  $e' \in F'$  that connects Y to V Y. If we remove e' from  $F' \cup \{e\}$ , the cycle will disappear, which means that we have a spanning tree. Because e is an edge of minimum weight that connects Y to V Y, the weight of e must be less than or equal to the weight of e' (in fact, they must be equal). So,  $F' \cup \{e\} \{e'\}$  is an MST. Now  $F \cup \{e\} \subseteq F' \cup \{e\} \{e'\}$ , because e' cannot be in F (recall that edges in F connect only vertices in Y.) Therefore,  $F \cup \{e\}$  is promising, which completes the proof of Lemma 4.1.

## Figure 4.6 A graph illustrating the proof in Lemma 4.1. The edges in F' are shaded in color





#### Kruskal's algorithm

- Algorithm sketch
  - 1. *F* := 0; // the set of edges
  - 2. Create disjoint subsets of V, one for each vertex and containing only that vertex;
  - 3. Sort the edges in E in nondecreasing order;

```
    4. while ( the instance is not solved ) {
        select next edge;
        if (the edge connects two vertices in disjoint subsets) {
            merge the subsets;
            add the edge to P;
        }
        if (all the subsets are merged) the instance is solved;
```

## A weighted graph (in upper-left corner) and the Kruskal's algorithm for that graph.



#### Kruskal's algorithm analysis

- Time complexity analysis
  - Basic operation: a comparison operation.
  - Input size: *n*, *m*, the number of vertices and edges, respectively.
  - The time to sort the edges. (Recall the mergesort algorithm)  $\Theta(m \lg m)$
  - The time in the loop:  $\Theta(m \lg m)$
  - The time to initialize n disjoint sets:  $\Theta(n)$
  - Since  $m \ge n 1$ ,  $W(m, n) = \Theta(m \lg m)$
  - But in worst case,  $m = \frac{n(n-1)}{2} \in \Theta(n^2)$   $W(m,n) \in \Theta(n^2 \lg n^2) = \Theta(2n^2 \lg n) = \Theta(n^2 \lg n)$
- Optimality proof is very similar to Prim's case.

## Comparing Prim's algorithm with Kruskal's algorithm

|         | W(m,n)                                    | sparse graph      | dense graph         |
|---------|-------------------------------------------|-------------------|---------------------|
| Prim    | $\Theta(n^2)$                             | $\Theta(n^2)$     | $\Theta(n^2)$       |
| Kruskal | $\Theta(m \lg m)$ and $\Theta(n^2 \lg n)$ | $\Theta(n \lg n)$ | $\Theta(n^2 \lg n)$ |

#### Dijkstra's algorithm (shortest paths)

Compute shortest paths from  $v_1$ .











- 3. Vertex  $v_3$  is selected because it has the shortest path from  $v_1$  using only vertices in  $\{v_4, v_5\}$  as intermediates.
- 4. The shortest path from  $v_1$  to  $v_2$  is  $[v_1, v_5, v_4, v_2]$ .







Minimizing total time in the system

| Job | Time in the system |  |  |
|-----|--------------------|--|--|
|     |                    |  |  |
|     |                    |  |  |
|     |                    |  |  |

Time complexity:



Scheduling with deadlines

Solution:



#### **The Knapsack Problem**

- Problem
- Goal
- Brute force algorithm complexity
- Greedy algorithm