实验 1.4.1: 复习性实验

拓扑图

地址表

设备	接口	IP 地址	子网掩码	默认网关	
R1	Fa0/1	不适用	不适用	不适用	
	Fa0/1.10	192.168.10.1	255.255.255.0	不适用	
	Fa0/1.12	10.12.12.1	255.255.255.0	不适用	
	Fa0/1.13	10.13.13.1	255.255.255.0	不适用	
	S0/0/0	10.1.1.1	255.255.255.252	不适用	
R2	Fa0/1	不适用	不适用	不适用	
	Fa0/1.12	10.12.12.2	255.255.255.0	不适用	
	Fa0/1.20	192.168.20.1	255.255.255.0	不适用	
	S0/0/0	10.1.1.2	255.255.255.252	不适用	
	S0/0/1	10.2.2.1	255.255.255.252	不适用	

R3	Fa0/1	不适用	不适用	不适用
	Fa0/1.13	10.13.13.3	255.255.255.0	不适用
	Fa0/1.30	192.168.30.1	255.255.255.0	不适用
	S0/0/1	10.2.2.2	255.255.255.252	不适用
S1	VLAN10	192.168.10.2	255.255.255.0	192.168.10.1
S2	VLAN20	192.168.20.2	255.255.255.0	192.168.20.1
S3	VLAN30	192.168.30.2	255.255.255.0	192.168.30.1
PC1	网卡	192.168.10.10	255.255.255.0	192.168.10.1
PC3	网卡	192.168.30.10	255.255.255.0	192.168.30.1

学习目标

本实验的任务:

- 根据拓扑图完成网络电缆连接
- 清除启动配置,重新启动路由器使其处于默认状态
- 在路由器上执行基本配置任务
- 配置并激活接口
- 配置生成树协议
- 配置 VTP 服务器和客户端
- 在交换机上配置 VLAN
- 在所有路由器上配置 RIP 路由
- 在所有路由器上配置 OSPF 路由
- 在所有路由器上配置 EIGRP 路由

场景

本实验中,您将复习基本的路由和交换概念。请尽量多动手操作。当您遇到困难而无法继续时,请回顾前面所学的知识。

注:要将三种不同的路由协议(RIP、OSPF 和 EIGRP)配置成路由同一个网络不仅不明智,甚至应该视作糟糕之举,不应该实施于生产网络中。这里设置这样的练习,是为了让您在学习后续章节之前复习主要的路由协议,同时通过这样的夸张示例了解管理距离的概念。

任务 1: 准备网络

步骤 1: 根据拓扑图完成网络电缆连接。

步骤 2: 清除路由器的所有配置。

任务 2: 执行基本设备配置

根据以下说明配置 R1、R2 和 R3 路由器以及 S1、S2 和 S3 交换机:

- 配置主机名。
- 禁用 DNS 查找。
- 配置执行模式口令。
- 配置当日消息标语。
- 配置控制台的连接口令。
- 配置同步日志记录。
- 配置 vty 的连接口令。

任务 3: 配置并激活串行地址和以太网地址

步骤 1: 配置 R1、R2 和 R3 上的接口。

步骤 2: 检验 IP 地址和接口。

步骤 3: 在 S1、S2 和 S3 上配置管理 VLAN 接口。

步骤 4: 配置 PC1 和 PC3 的以太网接口。

步骤 5: 测试 PC 之间的连通性。

任务 4: 配置 STP

步骤 1: 将 S1 配置为固定根桥。

步骤 2: 检查 S1 是否是根桥。

任务 5: 配置 VTP

步骤 1: 将 S1 配置为 VTP 服务器并创建域名和口令。

步骤 2: 将 S2 和 S3 配置为 VTP 客户端并分配域名和口令。

步骤 3: 检验配置。

任务 6: 配置 VLAN

步骤 1: 为 S1 配置 VLAN。

步骤 2: 检查 S2 和 S3 是否已收到 S1 传送的 VLAN 配置。

步骤 3: 将端口分配给相应的 VLAN。

任务 7: 配置 RIP 路由

步骤 1: 在 R1、R2 和 R3 上配置 RIP 路由。

步骤 2: 使用 ping 命令测试连通性。

步骤 3: 检查路由表。

任务 8: 配置 OSPF 路由

步骤 1: 在 R1、R2 和 R3 上配置 OSPF 路由。

步骤 2: 检查是否因管理距离较短而用 OSPF 路由取代了 RIP 路由。

运行 OSPF 后,	路由决定有何不同?		

步骤 3: 检查 RIP 是否仍在运行。

任务 9: 配置 EIGRP 路由

步骤 1: 在 R1、R2 和 R3 上配置 EIGRP 路由。

步骤 2: 检查是否因其管理距离较短而用 EIGRP 路由取代了 OSPF 路由。

步骤 3: 检查 OSPF 是否仍在运行。

任务 10: 记录路由器配置

任务 11:课后清理

清除配置,然后重新启动路由器。拆下电缆并放回存放处。对于通常连接到其它网络(例如学校 LAN 或 Internet)的 PC 主机,请重新连接相应的电缆并恢复原有的 TCP/IP 设置。