$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$\begin{cases}
15x \equiv 6 \pmod{9} \leftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15x \equiv 6 \pmod{9}$$

$$\begin{cases}
15x \equiv 6 \pmod{9} &\longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

 $15x \equiv 6 \pmod{9}$

Reducimos módulo 9

$$\begin{cases}
15x \equiv 6 \pmod{9} &\longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15x \equiv 6 \pmod{9}$$
$$6x \equiv 6 \pmod{9}$$

Reducimos módulo 9

$$\begin{cases}
15x \equiv 6 \pmod{9} \leftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$mcd(6, 9) = 3$$

$$15x \equiv 6 \pmod{9}$$
$$6x \equiv 6 \pmod{9}$$

$$\begin{cases}
15x \equiv 6 \pmod{9} &\longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15x \equiv 6 \pmod{9}$$
$$6x \equiv 6 \pmod{9}$$

mcd(6, 9) = 36 es múltiplo de 3

$$\begin{cases}
15x \equiv 6 \pmod{9} &\longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15x \equiv 6 \pmod{9}$$
$$6x \equiv 6 \pmod{9}$$

mcd(6, 9) = 3
6 es múltiplo de 3
La congruencia tiene solución.

$$\begin{cases}
15x \equiv 6 \pmod{9} &\longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15x \equiv 6 \pmod{9}$$
$$6x \equiv 6 \pmod{9}$$

mcd(6, 9) = 3
6 es múltiplo de 3
La congruencia tiene solución.

Dividimos todo por 3

$$\begin{cases}
15x \equiv 6 \pmod{9} \longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15x \equiv 6 \pmod{9}$$
$$6x \equiv 6 \pmod{9}$$
$$2x \equiv 2 \pmod{3}$$

mcd(6, 9) = 36 es múltiplo de 3 La congruencia tiene solución.

Dividimos todo por 3

$$\begin{cases}
15x \equiv 6 \pmod{9} \longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15x \equiv 6 \pmod{9}$$
$$6x \equiv 6 \pmod{9}$$
$$2x \equiv 2 \pmod{3}$$

Calculamos el inverso de 2 módulo 3

$$\begin{cases}
15x \equiv 6 \pmod{9} \longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15x \equiv 6 \pmod{9}$$

 $6x \equiv 6 \pmod{9}$
 $2x \equiv 2 \pmod{3}$

Calculamos el inverso de 2 módulo 3

Dicho inverso vale 2

$$\begin{cases}
15x \equiv 6 \pmod{9} \longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15x \equiv 6 \pmod{9}$$

 $6x \equiv 6 \pmod{9}$
 $2x \equiv 2 \pmod{3}$

Calculamos el inverso de 2 módulo 3

Dicho inverso vale 2 Multiplicamos por 2

$$\begin{cases}
15x \equiv 6 \pmod{9} \longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15x \equiv 6 \pmod{9}$$

$$6x \equiv 6 \pmod{9}$$

$$2x \equiv 2 \pmod{3}$$

$$x \equiv 2 \cdot 2 \pmod{3}$$

Calculamos el inverso de 2 módulo 3

Dicho inverso vale 2 Multiplicamos por 2

$$\begin{cases}
15x \equiv 6 \pmod{9} \leftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15x \equiv 6 \pmod{9}$$

 $6x \equiv 6 \pmod{9}$
 $2x \equiv 2 \pmod{3}$
 $x \equiv 2 \cdot 2 \pmod{3}$

Reducimos módulo 3

$$\begin{cases}
15x \equiv 6 \pmod{9} \longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15x \equiv 6 \pmod{9}$$

$$6x \equiv 6 \pmod{9}$$

$$2x \equiv 2 \pmod{3}$$

$$x \equiv 2 \cdot 2 \pmod{3}$$

$$x \equiv 1 \pmod{3}$$

Reducimos módulo 3

$$\begin{cases}
15x \equiv 6 \pmod{9} \longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15x \equiv 6 \pmod{9}$$

$$6x \equiv 6 \pmod{9}$$

$$2x \equiv 2 \pmod{3}$$

$$x \equiv 2 \cdot 2 \pmod{3}$$

$$x \equiv 1 \pmod{3}$$

Luego la solución es

$$\begin{cases}
15x \equiv 6 \pmod{9} \longleftarrow \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15x \equiv 6 \pmod{9}$$

$$6x \equiv 6 \pmod{9}$$

$$2x \equiv 2 \pmod{3}$$

$$x \equiv 2 \cdot 2 \pmod{3}$$

$$x \equiv 1 \pmod{3}$$

$$x \equiv 1 \pmod{3}$$

$$x \equiv 1 \pmod{3}$$

Luego la solución es

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$x = 1 + 3k_1$$

$$8x \equiv 11 \pmod{21} \longleftarrow$$

$$11x \equiv 7 \pmod{16}$$

$$6x \equiv 10 \pmod{22}$$

Sustituimos x en la segunda congruencia

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$8(1+3k_1)\equiv 11\pmod{21}$$

Sustituimos x en la segunda congruencia

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$8(1+3k_1)\equiv 11\pmod{21}$$

$$x = 1 + 3k_1$$

$$8x \equiv 11 \pmod{21} \longleftarrow$$

$$11x \equiv 7 \pmod{16}$$

$$6x \equiv 10 \pmod{22}$$

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$8(1 + 3k_1) \equiv 11 \pmod{21}$$

 $8 + 24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$

$$x = 1 + 3k_1$$

$$\begin{cases} 8x \equiv 11 \pmod{21} \longleftarrow \\ 11x \equiv 7 \pmod{16} \\ 6x \equiv 10 \pmod{22} \end{cases}$$

$$mcd(3, 21) = 3$$

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$

mcd(3, 21) = 33 es múltiplo de 3

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$

mcd(3,21) = 3
3 es múltiplo de 3
La congruencia tiene solución.

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$

mcd(3,21) = 3
3 es múltiplo de 3
La congruencia tiene solución.
Dividimos todo por 3

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$
 $k_1 \equiv 1 \pmod{7}$

mcd(3,21) = 3
3 es múltiplo de 3
La congruencia tiene solución.
Dividimos todo por 3

$$x = 1 + 3k_1$$

$$\begin{cases} 8x \equiv 11 \pmod{21} \longleftarrow \\ 11x \equiv 7 \pmod{16} \\ 6x \equiv 10 \pmod{22} \end{cases}$$

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$
 $k_1 \equiv 1 \pmod{7}$

Luego la solución es

$$x = 1 + 3k_1$$

$$8x \equiv 11 \pmod{21} \longleftarrow$$

$$11x \equiv 7 \pmod{16}$$

$$6x \equiv 10 \pmod{22}$$

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$
 $k_1 \equiv 1 \pmod{7}$
 $k_1 \equiv 1+7k_2$

Luego la solución es

$$x = 1 + 3k_1$$

$$\begin{cases} 8x \equiv 11 \pmod{21} \longleftarrow \\ 11x \equiv 7 \pmod{16} \\ 6x \equiv 10 \pmod{22} \end{cases}$$

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$
 $k_1 \equiv 1 \pmod{7}$
 $k_1 \equiv 1+7k_2$

Sustituimos k_1 en x

$$x = 1 + 3k_1$$

$$8x \equiv 11 \pmod{21} \longleftarrow$$

$$11x \equiv 7 \pmod{16}$$

$$6x \equiv 10 \pmod{22}$$

Sustituimos k_1 en x

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$
 $k_1 \equiv 1 \pmod{7}$
 $k_1 \equiv 1 + 7k_2$
 $k_1 \equiv 1 + 3(1+7k_2)$

$$x = 1 + 3k_1$$

$$8x \equiv 11 \pmod{21} \longleftarrow$$

$$11x \equiv 7 \pmod{16}$$

$$6x \equiv 10 \pmod{22}$$

Y operamos

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$
 $k_1 \equiv 1 \pmod{7}$
 $k_1 \equiv 1 + 7k_2$
 $k_1 \equiv 1 + 3(1+7k_2)$

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Y operamos

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$
 $k_1 \equiv 1 \pmod{7}$
 $k_1 \equiv 1+7k_2$
 $k_1 \equiv 1+3(1+7k_2)$
 $k_1 \equiv 1+21k_2$

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Y esta es la solución de las dos primeras congruencias.

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$
 $k_1 \equiv 1 \pmod{7}$
 $k_1 \equiv 1 + 7k_2$
 $k_1 = 1 + 7k_2$
 $k_1 = 1 + 7k_2$
 $k_1 = 1 + 7k_2$

$$x = 1 + 3k_1$$

$$\begin{cases}
8x \equiv 11 \pmod{21} \longleftarrow \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Y esta es la solución de las dos primeras congruencias.

$$x = 4 + 21k_2: k_2 \in \mathbb{Z}$$

$$8(1+3k_1) \equiv 11 \pmod{21}$$

 $8+24k_1 \equiv 11 \pmod{21}$
 $24k_1 \equiv 3 \pmod{21}$
 $3k_1 \equiv 3 \pmod{21}$
 $k_1 \equiv 1 \pmod{7}$
 $k_1 \equiv 1 + 7k_2$
 $k_1 = 1 + 7k_2$
 $k_1 = 1 + 2k_2$
 $k_1 = 1 + 3k_2$

$$x = 1 + 3k_1$$

$$8x \equiv 11 \pmod{21} \longleftarrow$$

$$11x \equiv 7 \pmod{16}$$

$$6x \equiv 10 \pmod{22}$$

O lo que es lo mismo:

$$x \equiv 4 \pmod{21}$$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Sustituimos x en la tercera congruencia

$$x = 4 + 21k_2$$

$$\begin{cases} 11x \equiv 7 \pmod{16} \longleftarrow \\ 6x \equiv 10 \pmod{22} \end{cases}$$

$$11(4+21k_2) \equiv 7 \pmod{16}$$

Sustituimos x en la tercera congruencia

$$x = 4 + 21k_2$$

$$\begin{cases} 11x \equiv 7 \pmod{16} \longleftarrow \\ 6x \equiv 10 \pmod{22} \end{cases}$$

$$11(4+21k_2) \equiv 7 \pmod{16}$$

$$x = 4 + 21k_2$$

$$\begin{cases} 11x \equiv 7 \pmod{16} \longleftarrow \\ 6x \equiv 10 \pmod{22} \end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

mcd(7, 16) = 1

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

mcd(7, 16) = 1La congruencia tiene solución.

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$mcd(7, 16) = 1$$

La congruencia tiene solución.

Calculamos el inverso de 7 (mód 16)

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$11(4+21k_2)\equiv 7$	(mód 16)
$44 + 231k_2 \equiv 7$	(mód 16)
$231k_2 \equiv -37$	(mód 16)
$7k_2 \equiv 11$ (m	nód 16)

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

16	0	D //
7	1	1/2
		$16 = 7 \cdot 2 + 2$
:4		$7 = 2 \cdot 3 + 1$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

16		0	D //
7		1	1/2
2	2		$16 = 7 \cdot 2 + 2$
_ 1	3		$7 = 2 \cdot 3 + 1$

$$x = 4 + 21k_2$$

$$\begin{cases} 11x \equiv 7 \pmod{16} \longleftarrow \\ 6x \equiv 10 \pmod{22} \end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$\begin{array}{c|cccc}
16 & 0 \\
\hline
7 & 1 \\
2 & 2 \\
\hline
1 & 3
\end{array}$$

$$0 - 2 \cdot 1 = -2$$

$$x = 4 + 21k_2$$

$$\begin{cases} 11x \equiv 7 \pmod{16} \longleftarrow \\ 6x \equiv 10 \pmod{22} \end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

16		0	
7		1	
2	2	-2	$0-2\cdot 1=-2$
- 1	3	19	

$$x = 4 + 21k_2$$

$$\begin{cases} 11x \equiv 7 \pmod{16} \longleftarrow \\ 6x \equiv 10 \pmod{22} \end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$1 - 3 \cdot (-2) = 7$$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

16		0	8
7		1	Z X
2	2	-2	
1	3	7	$1-3\cdot(-2)=7$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} &\longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Por tanto

$$11(4+21k_2) \equiv 7 \pmod{16}$$

 $44+231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Por tanto el inverso vale 7

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

Por tanto
el inverso vale 7
Multiplicamos por 7

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} &\longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$

Por tanto
el inverso vale 7
Multiplicamos por 7

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$

Reducimos módulo 16

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$
 $k_2 \equiv 13 \pmod{16}$

Reducimos módulo 16

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$
 $k_2 \equiv 13 \pmod{16}$

Luego la solución es

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Luego la solución es

$$11(4+21k_2) \equiv 7 \pmod{16}$$

 $44+231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$
 $k_2 \equiv 13 \pmod{16}$
 $k_2 \equiv 13 \pmod{16}$
 $k_2 \equiv 13 + 16k_3$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Sustituimos k_2 en x

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$
 $k_2 \equiv 13 \pmod{16}$
 $k_2 \equiv 13 + 16k_3$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Sustituimos k_2 en x

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$
 $k_2 \equiv 13 \pmod{16}$
 $k_2 \equiv 13 \pmod{16}$
 $k_2 \equiv 13 + 16k_3$
 $k_3 \equiv 4 + 21(13 + 16k_3)$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Y operamos

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

 $44 + 231k_2 \equiv 7 \pmod{16}$
 $231k_2 \equiv -37 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$
 $k_2 \equiv 13 \pmod{16}$
 $k_2 \equiv 13 \pmod{16}$
 $k_2 \equiv 13 + 16k_3$
 $k_3 \equiv 4 + 21(13 + 16k_3)$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Y operamos

$$11(4 + 21k_2) \equiv 7 \pmod{16}$$

$$44 + 231k_2 \equiv 7 \pmod{16}$$

$$231k_2 \equiv -37 \pmod{16}$$

$$7k_2 \equiv 11 \pmod{16}$$

$$k_2 \equiv 11 \cdot 7 \pmod{16}$$

$$k_2 \equiv 13 \pmod{16}$$

$$k_2 \equiv 13 \pmod{16}$$

$$k_2 = 13 + 16k_3$$

$$x = 4 + 21(13 + 16k_3)$$

$$x = 277 + 336k_3$$

$$x = 4 + 21k_2$$

$$\begin{cases}
11x \equiv 7 \pmod{16} & \longleftarrow \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Y esta es la solución de las tres primeras congruencias.

$$x = 277 + 336k_3 : k_3 \in \mathbb{Z}$$

$$11(4+21k_2) \equiv 7 \pmod{16}$$

$$44+231k_2 \equiv 7 \pmod{16}$$

$$231k_2 \equiv -37 \pmod{16}$$

$$7k_2 \equiv 11 \pmod{16}$$

$$k_2 \equiv 11 \cdot 7 \pmod{16}$$

$$k_2 \equiv 13 \pmod{16}$$

$$k_2 \equiv 13 \pmod{16}$$

$$k_2 = 13 + 16k_3$$

$$x = 4 + 21(13 + 16k_3)$$

$$x = 277 + 336k_3$$

$$x = 277 + 336k_3$$

$${6x \equiv 10 \pmod{22}}$$

$$x = 277 + 336k_3$$

$${6x \equiv 10 \pmod{22}} \leftarrow$$

Sustituimos x en la cuarta congruencia

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

$$\begin{cases} 6x \equiv 10 \pmod{22} & \longleftarrow \end{cases}$$

 $x = 277 + 336k_3$

Sustituimos x en la cuarta congruencia

$$x = 277 + 336k_3$$

$$\begin{cases} 6x \equiv 10 \pmod{22} \longleftarrow \end{cases}$$

Operamos

$$x = 277 + 336k_3$$

$${6x \equiv 10 \pmod{22}}$$

Operamos

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$

$$x = 277 + 336k_3$$

$$\begin{cases} 6x \equiv 10 \pmod{22} & \longleftarrow \end{cases}$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$

Operamos

$$x = 277 + 336k_3$$

$${6x \equiv 10 \pmod{22}} \leftarrow$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$

$$x = 277 + 336k_3$$

$${6x \equiv 10 \pmod{22}} \leftarrow$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$

$$2016 = 22 \cdot 91 + 14$$

$$-1652 = 22 \cdot (-76) + 20$$

$$x = 277 + 336k_3$$

$${6x \equiv 10 \pmod{22}} \leftarrow$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$

$$2016 = 22 \cdot 91 + 14$$

$$-1652 = 22 \cdot (-76) + 20$$

$$x = 277 + 336k_3$$

$${6x \equiv 10 \pmod{22}} \leftarrow$$

$$mcd(14, 22) = 2$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$

$$x = 277 + 336k_3$$

$${6x \equiv 10 \pmod{22}} \leftarrow$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$

mcd(14, 22) = 22 es divisor de 20

$$x = 277 + 336k_3$$

$${6x \equiv 10 \pmod{22}} \leftarrow$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$

mcd(14, 22) = 2 2 es divisor de 20 La congruencia tiene solución

$${6x \equiv 10 \pmod{22}} \leftarrow$$

 $x = 277 + 336k_3$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$

mcd(14, 22) = 2
2 es divisor de 20
La congruencia tiene solución
Dividimos todo por 2

$$\{6x \equiv 10 \pmod{22} \longleftarrow$$

 $x = 277 + 336k_3$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

mcd(14, 22) = 2
2 es divisor de 20
La congruencia tiene solución
Dividimos todo por 2

$$\{6x \equiv 10 \pmod{22} \longleftarrow$$

 $x = 277 + 336k_3$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

Calculamos el inverso de 7módulo 11

$$x = 277 + 336k_3$$

$$\{6x \equiv 10 \pmod{22} \longleftarrow$$

11	20	0
7)	1
	(fo	

$$\{6x \equiv 10 \pmod{22} \longleftarrow$$

 $x = 277 + 336k_3$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

11	0	
7	1	<u> </u>
	,	$11 = 7 \cdot 1 + 4$
		$7 = 4 \cdot 1 + 3$
		$4 = 3 \cdot 1 + 1$

$$x = 277 + 336k_3$$

$$\begin{cases} 6x \equiv 10 \pmod{22} & \longleftarrow \end{cases}$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

11		U	N. 7.
7		1	
4	1	(1	$11 = 7 \cdot 1 + 4$
3	1		$7 = 4 \cdot 1 + 3$
1	1		$4 = 3 \cdot 1 + 1$

$$x = 277 + 336k_3$$

$$\begin{cases} 6x \equiv 10 \pmod{22} & \longleftarrow \end{cases}$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

11		0	K.J.
7		1	<u> </u>
4	1		$-1 = 0 - 1 \cdot 1$
3	1		
_ 1	1		3.7

$$\{ 6x \equiv 10 \pmod{22} \longleftarrow$$

 $x = 277 + 336k_3$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

11		0	V. V
7		1	8 0
4	1	-1	$-1 = 0 - 1 \cdot 1$
3	1	2.5	FF 55
1	1		3.0

$$x = 277 + 336k_3$$

$$\begin{cases} 6x \equiv 10 \pmod{22} & \longleftarrow \end{cases}$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

11		0	2
7		1	<u> </u>
4	1	-1	
3	1		$2 = 1 - 1 \cdot (-1)$
- 1	1	- 4	3-77

$$x = 277 + 336k_3$$

$$\begin{cases} 6x \equiv 10 \pmod{22} & \longleftarrow \end{cases}$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

11		0	The state of the s
7		1	<u> </u>
4	1	-1	
3	1	2	$2 = 1 - 1 \cdot (-1)$
- 1	1		5-7

$$x = 277 + 336k_3$$

$$\begin{cases} 6x \equiv 10 \pmod{22} & \longleftarrow \end{cases}$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

11		0	
7		1	
4	1	-1	
3	1	2	
. 1	1	700	$-3 = -1 - 2 \cdot 1$

$$x = 277 + 336k_3$$

$$\begin{cases} 6x \equiv 10 \pmod{22} & \longleftarrow \end{cases}$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

11		0	
7		1	
4	1	-1	
3	1	2	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1	1	-3	$-3 = -1 - 2 \cdot 1$

$$\begin{cases} 6x \equiv 10 \pmod{22} &\longleftarrow \end{cases}$$

 $x = 277 + 336k_3$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

Puesto que $-3 \equiv 8 \pmod{11}$

$$\{ 6x \equiv 10 \pmod{22} \longleftarrow$$

 $x = 277 + 336k_3$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

Puesto que $-3 \equiv 8 \pmod{11}$ El inverso vale 8

$$\{6x \equiv 10 \pmod{22} \longleftarrow$$

 $x = 277 + 336k_3$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$

Puesto que $-3 \equiv 8 \pmod{11}$ El inverso vale 8
Multiplicamos por 8

$$\{ 6x \equiv 10 \pmod{22} \longleftarrow$$

 $x = 277 + 336k_3$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$
 $k_3 \equiv 10 \cdot 8 \pmod{11}$

Puesto que $-3 \equiv 8 \pmod{11}$ El inverso vale 8 Multiplicamos por 8

$$x = 277 + 336k_3$$

$${6x \equiv 10 \pmod{22}} \leftarrow$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$
 $k_3 \equiv 10 \cdot 8 \pmod{11}$

$$x = 277 + 336k_3$$

$${6x \equiv 10 \pmod{22}} \leftarrow$$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$
 $k_3 \equiv 10 \cdot 8 \pmod{11}$
 $k_3 \equiv 3 \pmod{11}$

$$\{6x \equiv 10 \pmod{22} \longleftarrow$$

 $x = 277 + 336k_3$

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$
 $k_3 \equiv 10 \cdot 8 \pmod{11}$
 $k_3 \equiv 3 \pmod{11}$

La solución de esta congruencia es

$$\{6x \equiv 10 \pmod{22} \longleftarrow$$

 $x = 277 + 336k_3$

La solución de esta congruencia es

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$
 $k_3 \equiv 10 \cdot 8 \pmod{11}$
 $k_3 \equiv 3 \pmod{11}$
 $k_3 \equiv 3 \pmod{11}$

$$x = 277 + 336k_3$$

$${6x \equiv 10 \pmod{22}} \leftarrow$$

Sustituimos k_3 en x

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$
 $k_3 \equiv 10 \cdot 8 \pmod{11}$
 $k_3 \equiv 3 \pmod{11}$
 $k_3 \equiv 3 + 11 \cdot k$

$$x = 277 + 336k_3$$

$${6x \equiv 10 \pmod{22}}$$

Sustituimos k_3 en x

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$
 $k_3 \equiv 10 \cdot 8 \pmod{11}$
 $k_3 \equiv 3 \pmod{11}$

$$x = 277 + 336k_3$$

$${6x \equiv 10 \pmod{22}} \leftarrow$$

Operamos

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$
 $k_3 \equiv 10 \cdot 8 \pmod{11}$
 $k_3 \equiv 3 \pmod{11}$

$$x = 277 + 336k_3$$

$${6x \equiv 10 \pmod{22}} \leftarrow$$

Operamos

$$6(277 + 336k_3) \equiv 10 \pmod{22}$$

 $1662 + 2016k_3 \equiv 10 \pmod{22}$
 $2016k_3 \equiv -1652 \pmod{22}$
 $14k_3 \equiv 20 \pmod{22}$
 $7k_3 \equiv 10 \pmod{11}$
 $k_3 \equiv 10 \cdot 8 \pmod{11}$
 $k_3 \equiv 3 \pmod{11}$

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

La solución de este sistema de congruencias es

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

La solución de este sistema de congruencias es

$$x = 1285 + 3696 \cdot k : k \in \mathbb{Z}$$

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Vamos a comprobar que x = 1285

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Vamos a comprobar que x = 1285 es solución de las cuatro congruencias.

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

Vamos a comprobar que x = 1285 es solución de las cuatro congruencias.

$$15 \cdot 1285 - 6 = 19269$$

```
\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}
```

Vamos a comprobar que x = 1285 es solución de las cuatro congruencias.

$$\begin{cases} 15x \equiv 6 \pmod{9} \\ 8x \equiv 11 \pmod{21} \\ 11x \equiv 7 \pmod{16} \\ 6x \equiv 10 \pmod{22} \end{cases}$$

 $15 \cdot 1285 - 6 = 19269$ Que es múltiplo de 9

Vamos a comprobar que x = 1285 es solución de las cuatro congruencias.

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15 \cdot 1285 - 6 = 19269$$

Que es múltiplo de 9
ya que $19269 = 9 \cdot 2141$

Vamos a comprobar que x = 1285 es solución de las cuatro congruencias.

$$\begin{cases} 15x \equiv 6 \pmod{9} \\ 8x \equiv 11 \pmod{21} \\ 11x \equiv 7 \pmod{16} \\ 6x \equiv 10 \pmod{22} \end{cases}$$

$$15 \cdot 1285 - 6 = 19269$$

Que es múltiplo de 9
ya que $19269 = 9 \cdot 2141$

Vamos a comprobar que x = 1285 es solución de las cuatro congruencias.

Para la segunda:

$$\begin{cases} 15x \equiv 6 \pmod{9} \\ 8x \equiv 11 \pmod{21} \\ 11x \equiv 7 \pmod{16} \\ 6x \equiv 10 \pmod{22} \end{cases}$$

$$15 \cdot 1285 - 6 = 19269$$

Que es múltiplo de 9
ya que $19269 = 9 \cdot 2141$
 $8 \cdot 1285 - 11 = 10269$

Vamos a comprobar que x=1285 es solución de las cuatro congruencias.

Para la segunda:

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15 \cdot 1285 - 6 = 19269$$

Que es múltiplo de 9
ya que $19269 = 9 \cdot 2141$
 $8 \cdot 1285 - 11 = 10269$
Que es múltiplo de 21

Vamos a comprobar que x = 1285 es solución de las cuatro congruencias.

Para la segunda:

▶ 4 章 ト 4 章 ト 章 りゅう

$$\begin{cases}
15x \equiv 6 \pmod{9} \\
8x \equiv 11 \pmod{21} \\
11x \equiv 7 \pmod{16} \\
6x \equiv 10 \pmod{22}
\end{cases}$$

$$15 \cdot 1285 - 6 = 19269$$

Que es múltiplo de 9
ya que $19269 = 9 \cdot 2141$
 $8 \cdot 1285 - 11 = 10269$
Que es múltiplo de 21
ya que $10269 = 21 \cdot 489$

Vamos a comprobar que x = 1285 es solución de las cuatro congruencias.

Para la segunda:

$$\begin{cases} 15x \equiv 6 \pmod{9} \\ 8x \equiv 11 \pmod{21} \\ 11x \equiv 7 \pmod{16} \\ 6x \equiv 10 \pmod{22} \end{cases}$$

$$15 \cdot 1285 - 6 = 19269$$

Que es múltiplo de 9
ya que $19269 = 9 \cdot 2141$
 $8 \cdot 1285 - 11 = 10269$
Que es múltiplo de 21
ya que $10269 = 21 \cdot 489$

Vamos a comprobar que x = 1285 es solución de las cuatro congruencias.

Para la tercera:

$$\begin{cases} 15x \equiv 6 \pmod{9} \\ 8x \equiv 11 \pmod{21} \\ 11x \equiv 7 \pmod{16} \\ 6x \equiv 10 \pmod{22} \end{cases}$$

$$15 \cdot 1285 - 6 = 19269$$

Que es múltiplo de 9
ya que $19269 = 9 \cdot 2141$
 $8 \cdot 1285 - 11 = 10269$
Que es múltiplo de 21
ya que $10269 = 21 \cdot 489$
 $11 \cdot 1285 - 7 = 14128$

Vamos a comprobar que x = 1285es solución de las cuatro congruencias.

Para la tercera:

$$\begin{cases} 15x \equiv 6 \pmod{9} \\ 8x \equiv 11 \pmod{21} \\ 11x \equiv 7 \pmod{16} \\ 6x \equiv 10 \pmod{22} \end{cases}$$

Que es múltiplo de 9 ya que $19269 = 9 \cdot 2141$ $8 \cdot 1285 - 11 = 10269$ Que es múltiplo de 21 ya que $10269 = 21 \cdot 489$ $11 \cdot 1285 - 7 = 14128$ Que es múltiplo de 16

 $15 \cdot 1285 - 6 = 19269$

Vamos a comprobar que x = 1285 es solución de las cuatro congruencias.

Para la tercera:

$$\begin{cases} 15x \equiv 6 \pmod{9} \\ 8x \equiv 11 \pmod{21} \\ 11x \equiv 7 \pmod{16} \\ 6x \equiv 10 \pmod{22} \end{cases}$$

Vamos a comprobar que x=1285 es solución de las cuatro congruencias.

Para la tercera:

$$15 \cdot 1285 - 6 = 19269$$

Que es múltiplo de 9
ya que $19269 = 9 \cdot 2141$
 $8 \cdot 1285 - 11 = 10269$
Que es múltiplo de 21
ya que $10269 = 21 \cdot 489$
 $11 \cdot 1285 - 7 = 14128$
Que es múltiplo de 16
ya que $14128 = 16 \cdot 883$

$$\begin{cases} 15x \equiv 6 \pmod{9} \\ 8x \equiv 11 \pmod{21} \\ 11x \equiv 7 \pmod{16} \\ 6x \equiv 10 \pmod{22} \end{cases}$$

Vamos a comprobar que x=1285 es solución de las cuatro congruencias.

Y para la cuarta:

$$15 \cdot 1285 - 6 = 19269$$

Que es múltiplo de 9
ya que $19269 = 9 \cdot 2141$
 $8 \cdot 1285 - 11 = 10269$
Que es múltiplo de 21
ya que $10269 = 21 \cdot 489$
 $11 \cdot 1285 - 7 = 14128$
Que es múltiplo de 16
ya que $14128 = 16 \cdot 883$

$$\begin{cases} 15x \equiv 6 \pmod{9} \\ 8x \equiv 11 \pmod{21} \\ 11x \equiv 7 \pmod{16} \\ 6x \equiv 10 \pmod{22} \end{cases}$$

Vamos a comprobar que x = 1285es solución de las cuatro congruencias.

Y para la cuarta:

$$15 \cdot 1285 - 6 = 19269$$

Que es múltiplo de 9
ya que $19269 = 9 \cdot 2141$
 $8 \cdot 1285 - 11 = 10269$
Que es múltiplo de 21
ya que $10269 = 21 \cdot 489$
 $11 \cdot 1285 - 7 = 14128$
Que es múltiplo de 16
ya que $14128 = 16 \cdot 883$
 $6 \cdot 1285 - 10 = 7700$

$$\begin{cases} 15x \equiv 6 \pmod{9} \\ 8x \equiv 11 \pmod{21} \\ 11x \equiv 7 \pmod{16} \\ 6x \equiv 10 \pmod{22} \end{cases}$$

Vamos a comprobar que x = 1285 es solución de las cuatro congruencias.

Y para la cuarta:

 $15 \cdot 1285 - 6 = 19269$ Que es múltiplo de 9 $ya que 19269 = 9 \cdot 2141$ $8 \cdot 1285 - 11 = 10269$ Que es múltiplo de 21 $ya que 10269 = 21 \cdot 489$ $11 \cdot 1285 - 7 = 14128$ Que es múltiplo de 16 ya que $14128 = 16 \cdot 883$ $6 \cdot 1285 - 10 = 7700$ Que es múltiplo de 22

$$\begin{cases} 15x \equiv 6 \pmod{9} \\ 8x \equiv 11 \pmod{21} \\ 11x \equiv 7 \pmod{16} \\ 6x \equiv 10 \pmod{22} \end{cases}$$

Vamos a comprobar que x = 1285 es solución de las cuatro congruencias.

Y para la cuarta:

 $15 \cdot 1285 - 6 = 19269$ Que es múltiplo de 9 $ya que 19269 = 9 \cdot 2141$ $8 \cdot 1285 - 11 = 10269$ Que es múltiplo de 21 $ya que 10269 = 21 \cdot 489$ $11 \cdot 1285 - 7 = 14128$ Que es múltiplo de 16 ya que $14128 = 16 \cdot 883$ $6 \cdot 1285 - 10 = 7700$ Que es múltiplo de 22 ya que $7700 = 22 \cdot 350$

$$\begin{cases}
4x \equiv 1 \pmod{9} \\
10x \equiv 4 \pmod{21} \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$\begin{cases}
4x \equiv 1 \pmod{9} &\longleftarrow \\
10x \equiv 4 \pmod{21} \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$4x \equiv 1 \pmod{9}$$

$$\begin{cases}
4x \equiv 1 \pmod{9} & \longleftarrow \\
10x \equiv 4 \pmod{21} \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$mcd(4, 9) = 1$$

$$\begin{cases}
4x \equiv 1 \pmod{9} &\longleftarrow \\
10x \equiv 4 \pmod{21} \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$mcd(4, 9) = 1$$

La congruencia tiene solución.

$$\begin{cases}
4x \equiv 1 \pmod{9} &\longleftarrow \\
10x \equiv 4 \pmod{21} \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$4x \equiv 1 \pmod{9}$$

$$mcd(4, 9) = 1$$

La congruencia tiene solución.

Calculamos el inverso de 4 módulo 9

$$\begin{cases}
4x \equiv 1 \pmod{9} &\longleftarrow \\
10x \equiv 4 \pmod{21} \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$4x \equiv 1 \pmod{9}$$

$$mcd(4, 9) = 1$$

La congruencia tiene solución.

Calculamos el inverso de 4 módulo 9

Dicho inverso vale 7

$$\begin{cases}
4x \equiv 1 \pmod{9} &\longleftarrow \\
10x \equiv 4 \pmod{21} \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$4x \equiv 1 \pmod{9}$$

$$mcd(4, 9) = 1$$

La congruencia tiene solución.

Calculamos el inverso de 4 módulo 9

Dicho inverso vale 7

Multiplicamos por 7

$$\begin{cases}
4x \equiv 1 \pmod{9} &\longleftarrow \\
10x \equiv 4 \pmod{21} \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$4x \equiv 1 \pmod{9}$$
$$x \equiv 7 \pmod{9}$$

$$mcd(4, 9) = 1$$

La congruencia tiene solución.

Calculamos el inverso de 4 módulo 9

Dicho inverso vale 7 Multiplicamos por 7

$$\begin{cases}
4x \equiv 1 \pmod{9} &\longleftarrow \\
10x \equiv 4 \pmod{21} \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$4x \equiv 1 \pmod{9}$$
$$x \equiv 7 \pmod{9}$$

Luego la solución es

$$\begin{cases}
4x \equiv 1 \pmod{9} \leftarrow \\
10x \equiv 4 \pmod{21} \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$4x \equiv 1 \pmod{9}$$
$$x \equiv 7 \pmod{9}$$
$$x = 7 + 9k_1 : k_1 \in \mathbb{Z}$$

Luego la solución es

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} & \longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

Sustituimos x en la segunda congruencia

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} \longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$10(7+9k_1) \equiv 4 \pmod{21}$$

Sustituimos x en la segunda congruencia

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} \longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$10(7+9k_1)\equiv 4\pmod{21}$$

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} &\longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$10(7 + 9k_1) \equiv 4 \pmod{21}$$

 $70 + 90k_1 \equiv 4 \pmod{21}$

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} \longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$10(7 + 9k_1) \equiv 4 \pmod{21}$$

 $70 + 90k_1 \equiv 4 \pmod{21}$
 $90k_1 \equiv -66 \pmod{21}$

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} \longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$10(7 + 9k_1) \equiv 4 \pmod{21}$$

 $70 + 90k_1 \equiv 4 \pmod{21}$
 $90k_1 \equiv -66 \pmod{21}$
 $6k_1 \equiv 18 \pmod{21}$

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} &\longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$mcd(6, 21) = 3$$

$$10(7 + 9k_1) \equiv 4 \pmod{21}$$

 $70 + 90k_1 \equiv 4 \pmod{21}$
 $90k_1 \equiv -66 \pmod{21}$
 $6k_1 \equiv 18 \pmod{21}$

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} &\longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$10(7 + 9k_1) \equiv 4 \pmod{21}$$

 $70 + 90k_1 \equiv 4 \pmod{21}$
 $90k_1 \equiv -66 \pmod{21}$
 $6k_1 \equiv 18 \pmod{21}$

mcd(6, 21) = 3

3 es divisor de 18

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} \longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$10(7 + 9k_1) \equiv 4 \pmod{21}$$

 $70 + 90k_1 \equiv 4 \pmod{21}$
 $90k_1 \equiv -66 \pmod{21}$
 $6k_1 \equiv 18 \pmod{21}$

mcd(6, 21) = 3

3 es divisor de 18

La congruencia tiene solución.

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} &\longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$10(7 + 9k_1) \equiv 4 \pmod{21}$$

 $70 + 90k_1 \equiv 4 \pmod{21}$
 $90k_1 \equiv -66 \pmod{21}$
 $6k_1 \equiv 18 \pmod{21}$

mcd(6, 21) = 3
3 es divisor de 18
La congruencia tiene solución.
Dividimos todo por 3

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} \longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$10(7 + 9k_1) \equiv 4 \pmod{21}$$

 $70 + 90k_1 \equiv 4 \pmod{21}$
 $90k_1 \equiv -66 \pmod{21}$
 $6k_1 \equiv 18 \pmod{21}$
 $2k_1 \equiv 6 \pmod{7}$

mcd(6, 21) = 3
3 es divisor de 18
La congruencia tiene solución.
Dividimos todo por 3

2/2

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} &\longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$10(7 + 9k_1) \equiv 4 \pmod{21}$$

 $70 + 90k_1 \equiv 4 \pmod{21}$
 $90k_1 \equiv -66 \pmod{21}$
 $6k_1 \equiv 18 \pmod{21}$
 $2k_1 \equiv 6 \pmod{7}$

Calculamos el inverso de 2 módulo 7

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} \longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$10(7 + 9k_1) \equiv 4 \pmod{21}$$

 $70 + 90k_1 \equiv 4 \pmod{21}$
 $90k_1 \equiv -66 \pmod{21}$
 $6k_1 \equiv 18 \pmod{21}$
 $2k_1 \equiv 6 \pmod{7}$

Calculamos el inverso de 2 módulo 7 El inverso vale 4

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} &\longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$10(7 + 9k_1) \equiv 4 \pmod{21}$$

 $70 + 90k_1 \equiv 4 \pmod{21}$
 $90k_1 \equiv -66 \pmod{21}$
 $6k_1 \equiv 18 \pmod{21}$
 $2k_1 \equiv 6 \pmod{7}$

Calculamos el inverso de 2 módulo 7 Fl inverso vale 4 Multiplicamos por 4

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} &\longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$10(7 + 9k_1) \equiv 4 \pmod{21}$$

 $70 + 90k_1 \equiv 4 \pmod{21}$
 $90k_1 \equiv -66 \pmod{21}$
 $6k_1 \equiv 18 \pmod{21}$
 $2k_1 \equiv 6 \pmod{7}$
 $k_1 \equiv 6 \cdot 4 \pmod{7}$

Calculamos el inverso de 2 módulo 7

El inverso vale 4

Multiplicamos por 4

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} & \longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$10(7 + 9k_1) \equiv 4 \pmod{21}$$

 $70 + 90k_1 \equiv 4 \pmod{21}$
 $90k_1 \equiv -66 \pmod{21}$
 $6k_1 \equiv 18 \pmod{21}$
 $2k_1 \equiv 6 \pmod{7}$
 $k_1 \equiv 6 \cdot 4 \pmod{7}$

Reducimos módulo 7

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} &\longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$10(7 + 9k_1) \equiv 4 \pmod{21}$$

 $70 + 90k_1 \equiv 4 \pmod{21}$
 $90k_1 \equiv -66 \pmod{21}$
 $6k_1 \equiv 18 \pmod{21}$
 $2k_1 \equiv 6 \pmod{7}$
 $k_1 \equiv 6 \cdot 4 \pmod{7}$
 $k_1 \equiv 3 \pmod{7}$

Reducimos módulo 7

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} \longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

$$10(7 + 9k_1) \equiv 4 \pmod{21}$$

 $70 + 90k_1 \equiv 4 \pmod{21}$
 $90k_1 \equiv -66 \pmod{21}$
 $6k_1 \equiv 18 \pmod{21}$
 $2k_1 \equiv 6 \pmod{7}$
 $k_1 \equiv 6 \cdot 4 \pmod{7}$
 $k_1 \equiv 3 \pmod{7}$

Luego la solución es

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} \longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

Luego la solución es

$$10(7 + 9k_1) \equiv 4 \pmod{21}$$

 $70 + 90k_1 \equiv 4 \pmod{21}$
 $90k_1 \equiv -66 \pmod{21}$
 $6k_1 \equiv 18 \pmod{21}$
 $2k_1 \equiv 6 \pmod{7}$
 $k_1 \equiv 6 \cdot 4 \pmod{7}$
 $k_1 \equiv 3 \pmod{7}$
 $k_1 \equiv 3 \pmod{7}$
 $k_1 \equiv 3 + 7k_2$

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} &\longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

Sustituimos k_1 en x

$$10(7 + 9k_1) \equiv 4 \pmod{21}$$

 $70 + 90k_1 \equiv 4 \pmod{21}$
 $90k_1 \equiv -66 \pmod{21}$
 $6k_1 \equiv 18 \pmod{21}$
 $2k_1 \equiv 6 \pmod{7}$
 $k_1 \equiv 6 \cdot 4 \pmod{7}$
 $k_1 \equiv 3 \pmod{7}$
 $k_1 \equiv 3 \pmod{7}$
 $k_1 \equiv 3 + 7k_2$

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} &\longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

Sustituimos k_1 en x

$$10(7 + 9k_1) \equiv 4 \pmod{21}$$

$$70 + 90k_1 \equiv 4 \pmod{21}$$

$$90k_1 \equiv -66 \pmod{21}$$

$$6k_1 \equiv 18 \pmod{21}$$

$$2k_1 \equiv 6 \pmod{7}$$

$$k_1 \equiv 6 \cdot 4 \pmod{7}$$

$$k_1 \equiv 3 \pmod{7}$$

$$k_1 \equiv 3 \pmod{7}$$

$$k_1 \equiv 3 + 7k_2$$

$$x = 7 + 9(3 + 7k_2)$$

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} &\longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

Y operamos

$$10(7 + 9k_1) \equiv 4 \pmod{21}$$

 $70 + 90k_1 \equiv 4 \pmod{21}$
 $90k_1 \equiv -66 \pmod{21}$
 $6k_1 \equiv 18 \pmod{21}$
 $2k_1 \equiv 6 \pmod{7}$
 $k_1 \equiv 6 \cdot 4 \pmod{7}$
 $k_1 \equiv 3 \pmod{7}$
 $k_1 \equiv 3 \pmod{7}$
 $k_1 \equiv 3 + 7k_2$
 $k_1 \equiv 7 + 9(3 + 7k_2)$

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} & \longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

Y operamos

$$10(7 + 9k_1) \equiv 4 \pmod{21}$$

$$70 + 90k_1 \equiv 4 \pmod{21}$$

$$90k_1 \equiv -66 \pmod{21}$$

$$6k_1 \equiv 18 \pmod{21}$$

$$2k_1 \equiv 6 \pmod{7}$$

$$k_1 \equiv 6 \cdot 4 \pmod{7}$$

$$k_1 \equiv 3 \pmod{7}$$

$$k_1 \equiv 3 \pmod{7}$$

$$k_1 \equiv 3 + 7k_2$$

$$x = 7 + 9(3 + 7k_2)$$

$$x = 34 + 63k_2$$

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} &\longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

Y esta es la solución de las dos primeras congruencias.

$$10(7 + 9k_1) \equiv 4 \pmod{21}$$

 $70 + 90k_1 \equiv 4 \pmod{21}$
 $90k_1 \equiv -66 \pmod{21}$
 $6k_1 \equiv 18 \pmod{21}$
 $2k_1 \equiv 6 \pmod{7}$
 $k_1 \equiv 6 \cdot 4 \pmod{7}$
 $k_1 \equiv 3 \pmod{7}$
 $k_1 \equiv 3 + 7k_2$
 $x = 7 + 9(3 + 7k_2)$
 $x = 34 + 63k_2$

$$x = 7 + 9k_1$$

$$\begin{cases}
10x \equiv 4 \pmod{21} &\longleftarrow \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

Y esta es la solución de las dos primeras congruencias.

$$x = 34 + 63k_2$$
: $k_2 \in \mathbb{Z}$

$$10(7 + 9k_1) \equiv 4 \pmod{21}$$

$$70 + 90k_1 \equiv 4 \pmod{21}$$

$$90k_1 \equiv -66 \pmod{21}$$

$$6k_1 \equiv 18 \pmod{21}$$

$$2k_1 \equiv 6 \pmod{7}$$

$$k_1 \equiv 6 \cdot 4 \pmod{7}$$

$$k_1 \equiv 3 \pmod{7}$$

$$k_1 \equiv 3 \pmod{7}$$

$$k_1 \equiv 3 + 7k_2$$

$$x = 7 + 9(3 + 7k_2)$$

$$x = 34 + 63k_2$$

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} \\ 7x \equiv 4 \pmod{22} \end{cases}$$

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} &\longleftarrow \\ 7x \equiv 4 \pmod{22} \end{cases}$$

Sustituimos x en la tercera congruencia

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} & \longleftarrow \\ 7x \equiv 4 \pmod{22} \end{cases}$$

$$9(34+63k_2) \equiv 13 \pmod{16}$$

Sustituimos x en la tercera congruencia

$$x = 34 + 63k_2$$

$$\equiv 13 \pmod{16}$$

$$\begin{cases} 9x \equiv 13 \pmod{16} \longleftarrow \\ 7x \equiv 4 \pmod{22} \end{cases}$$

Operamos

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} &\longleftarrow \\ 7x \equiv 4 \pmod{22} \end{cases}$$

Operamos

$$9(34 + 63k_2) \equiv 13 \pmod{16}$$

 $306 + 567k_2 \equiv 13 \pmod{16}$

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} &\longleftarrow \\ 7x \equiv 4 \pmod{22} \end{cases}$$

Operamos

$$9(34 + 63k_2) \equiv 13 \pmod{16}$$

 $306 + 567k_2 \equiv 13 \pmod{16}$
 $567k_2 \equiv -293 \pmod{16}$

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} &\longleftarrow \\ 7x \equiv 4 \pmod{22} \end{cases}$$

$$9(34 + 63k_2) \equiv 13 \pmod{16}$$

 $306 + 567k_2 \equiv 13 \pmod{16}$
 $567k_2 \equiv -293 \pmod{16}$

Reducimos módulo 16

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} &\longleftarrow \\ 7x \equiv 4 \pmod{22} & \end{cases}$$

$$9(34 + 63k_2) \equiv 13 \pmod{16}$$

 $306 + 567k_2 \equiv 13 \pmod{16}$
 $567k_2 \equiv -293 \pmod{16}$

Reducimos módulo 16 $567 = 16 \cdot 35 + 7$ $-293 = 16 \cdot (-19) + 11$

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} &\longleftarrow \\ 7x \equiv 4 \pmod{22} & \end{cases}$$

$$9(34 + 63k_2) \equiv 13 \pmod{16}$$

 $306 + 567k_2 \equiv 13 \pmod{16}$
 $567k_2 \equiv -293 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

Reducimos módulo 16 $567 = 16 \cdot 35 + 7$ $-293 = 16 \cdot (-19) + 11$

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} &\longleftarrow \\ 7x \equiv 4 \pmod{22} \end{cases}$$

$$mcd(7, 16) = 1$$

$$9(34 + 63k_2) \equiv 13 \pmod{16}$$

 $306 + 567k_2 \equiv 13 \pmod{16}$
 $567k_2 \equiv -293 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} &\longleftarrow \\ 7x \equiv 4 \pmod{22} & \end{cases}$$

$$9(34 + 63k_2) \equiv 13 \pmod{16}$$

 $306 + 567k_2 \equiv 13 \pmod{16}$
 $567k_2 \equiv -293 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

mcd(7, 16) = 1La congruencia tiene solución.

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} & \longleftarrow \\ 7x \equiv 4 \pmod{22} & \end{cases}$$

$$9(34 + 63k_2) \equiv 13 \pmod{16}$$

 $306 + 567k_2 \equiv 13 \pmod{16}$
 $567k_2 \equiv -293 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$mcd(7, 16) = 1$$

La congruencia tiene solución.

Calculamos el inverso de 7 módulo 16

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} &\longleftarrow \\ 7x \equiv 4 \pmod{22} \end{cases}$$

$$9(34 + 63k_2) \equiv 13 \pmod{16}$$

 $306 + 567k_2 \equiv 13 \pmod{16}$
 $567k_2 \equiv -293 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$mcd(7, 16) = 1$$

La congruencia tiene solución.

Calculamos el inverso de 7 módulo 16

Dicho inverso vale 7

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} &\longleftarrow \\ 7x \equiv 4 \pmod{22} & \end{cases}$$

$$9(34 + 63k_2) \equiv 13 \pmod{16}$$

 $306 + 567k_2 \equiv 13 \pmod{16}$
 $567k_2 \equiv -293 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$

$$mcd(7, 16) = 1$$

La congruencia tiene solución.

Calculamos el inverso de 7 módulo 16

Dicho inverso vale 7 Multiplicamos por 7

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} & \longleftarrow \\ 7x \equiv 4 \pmod{22} & \end{cases}$$

$$9(34 + 63k_2) \equiv 13 \pmod{16}$$

 $306 + 567k_2 \equiv 13 \pmod{16}$
 $567k_2 \equiv -293 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$

$$mcd(7, 16) = 1$$

La congruencia tiene solución.

Calculamos el inverso de 7 módulo 16

Dicho inverso vale 7 Multiplicamos por 7

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} & \longleftarrow \\ 7x \equiv 4 \pmod{22} & \end{cases}$$

$$9(34 + 63k_2) \equiv 13 \pmod{16}$$

 $306 + 567k_2 \equiv 13 \pmod{16}$
 $567k_2 \equiv -293 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$

Reducimos módulo 16

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} & \longleftarrow \\ 7x \equiv 4 \pmod{22} & \end{cases}$$

$$9(34 + 63k_2) \equiv 13 \pmod{16}$$

 $306 + 567k_2 \equiv 13 \pmod{16}$
 $567k_2 \equiv -293 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$
 $k_2 \equiv 13 \pmod{16}$

Reducimos módulo 16

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} & \longleftarrow \\ 7x \equiv 4 \pmod{22} & \end{cases}$$

$$9(34 + 63k_2) \equiv 13 \pmod{16}$$

 $306 + 567k_2 \equiv 13 \pmod{16}$
 $567k_2 \equiv -293 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$

Luego la solución es

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} & \longleftarrow \\ 7x \equiv 4 \pmod{22} & \end{cases}$$

Luego la solución es

$$9(34 + 63k_2) \equiv 13 \pmod{16}$$

 $306 + 567k_2 \equiv 13 \pmod{16}$
 $567k_2 \equiv -293 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$
 $k_2 = 13 + 16k_3$

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} & \longleftarrow \\ 7x \equiv 4 \pmod{22} & \end{cases}$$

Sustituimos k_2 en x

$$9(34 + 63k_2) \equiv 13 \pmod{16}$$

 $306 + 567k_2 \equiv 13 \pmod{16}$
 $567k_2 \equiv -293 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$
 $k_2 \equiv 13 + 16k_3$

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} & \longleftarrow \\ 7x \equiv 4 \pmod{22} & \end{cases}$$

Sustituimos k_2 en x

$$9(34 + 63k_2) \equiv 13 \pmod{16}$$

 $306 + 567k_2 \equiv 13 \pmod{16}$
 $567k_2 \equiv -293 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$
 $k_2 = 13 + 16k_3$
 $x = 34 + 63(13 + 16k_3)$

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} &\longleftarrow \\ 7x \equiv 4 \pmod{22} \end{cases}$$

Y operamos

$$9(34 + 63k_2) \equiv 13 \pmod{16}$$

 $306 + 567k_2 \equiv 13 \pmod{16}$
 $567k_2 \equiv -293 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$
 $k_2 \equiv 13 + 16k_3$
 $k_3 \equiv 14 + 63(13 + 16k_3)$

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} &\longleftarrow \\ 7x \equiv 4 \pmod{22} \end{cases}$$

Y operamos

$$9(34 + 63k_2) \equiv 13 \pmod{16}$$

 $306 + 567k_2 \equiv 13 \pmod{16}$
 $567k_2 \equiv -293 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$
 $k_2 = 13 + 16k_3$
 $x = 34 + 63(13 + 16k_3)$
 $x = 853 + 1008k_3$

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} &\longleftarrow \\ 7x \equiv 4 \pmod{22} \end{cases}$$

Y esta es la solución de las tres primeras congruencias.

$$9(34 + 63k_2) \equiv 13 \pmod{16}$$

 $306 + 567k_2 \equiv 13 \pmod{16}$
 $567k_2 \equiv -293 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$
 $k_2 = 13 + 16k_3$
 $x = 34 + 63(13 + 16k_3)$
 $x = 853 + 1008k_3$

$$x = 34 + 63k_2$$

$$\begin{cases} 9x \equiv 13 \pmod{16} &\longleftarrow \\ 7x \equiv 4 \pmod{22} \end{cases}$$

Y esta es la solución de las tres primeras congruencias.

$$x = 853 + 1008k_3 : k_3 \in \mathbb{Z}$$

$$9(34 + 63k_2) \equiv 13 \pmod{16}$$

 $306 + 567k_2 \equiv 13 \pmod{16}$
 $567k_2 \equiv -293 \pmod{16}$
 $7k_2 \equiv 11 \pmod{16}$
 $k_2 \equiv 11 \cdot 7 \pmod{16}$
 $k_2 = 13 + 16k_3$
 $x = 34 + 63(13 + 16k_3)$
 $x = 853 + 1008k_3$

$$x = 853 + 1008k_3$$

$$\{7x \equiv 4 \pmod{22}$$

$$x = 853 + 1008k_3$$

$${7x \equiv 4 \pmod{22} \longleftarrow$$

Sustituimos x en la cuarta congruencia

$$7(853 + 1008k_3) \equiv 4 \pmod{22}$$

$$\{ 7x \equiv 4 \pmod{22} \longleftarrow$$

 $x = 853 + 1008k_3$

Sustituimos x en la cuarta congruencia

$$7(853 + 1008k_3) \equiv 4 \pmod{22}$$

$$x = 853 + 1008k_3$$

$$\left\{ 7x \equiv 4 \pmod{22} \right. \longleftarrow$$

Operamos

$$x = 853 + 1008k_3$$

$$\left\{ 7x \equiv 4 \pmod{22} \right. \longleftarrow$$

Operamos

$$7(853 + 1008k_3) \equiv 4 \pmod{22}$$

 $5971 + 7056k_3 \equiv 4 \pmod{22}$

$$x = 853 + 1008k_3$$

$$\left\{ 7x \equiv 4 \pmod{22} \right. \longleftarrow$$

$$7(853 + 1008k_3) \equiv 4 \pmod{22}$$

 $5971 + 7056k_3 \equiv 4 \pmod{22}$
 $7056k_3 \equiv -5967 \pmod{22}$

Operamos

$$x = 853 + 1008k_3$$

$$\{7x \equiv 4 \pmod{22} \longleftarrow$$

$$7(853 + 1008k_3) \equiv 4 \pmod{22}$$

 $5971 + 7056k_3 \equiv 4 \pmod{22}$
 $7056k_3 \equiv -5967 \pmod{22}$

Reducimos módulo 22

$$x = 853 + 1008k_3$$

$${7x \equiv 4 \pmod{22} \longleftarrow$$

$$7(853 + 1008k_3) \equiv 4 \pmod{22}$$

 $5971 + 7056k_3 \equiv 4 \pmod{22}$
 $7056k_3 \equiv -5967 \pmod{22}$

Reducimos módulo 22

$$7056 = 22 \cdot 320 + 16$$

$$-5967 = 22 \cdot (-272) + 17$$

$$x = 853 + 1008k_3$$

$$\left\{ 7x \equiv 4 \pmod{22} \right. \longleftarrow$$

$$7(853 + 1008k_3) \equiv 4 \pmod{22}$$

 $5971 + 7056k_3 \equiv 4 \pmod{22}$
 $7056k_3 \equiv -5967 \pmod{22}$
 $16k_3 \equiv 17 \pmod{22}$

Reducimos módulo 22

$$7056 = 22 \cdot 320 + 16$$

$$-5967 = 22 \cdot (-272) + 17$$

2/2

$$x = 853 + 1008k_3$$

$$\left\{ 7x \equiv 4 \pmod{22} \right. \longleftarrow$$

$$mcd(16, 22) = 2$$

$$7(853 + 1008k_3) \equiv 4 \pmod{22}$$

 $5971 + 7056k_3 \equiv 4 \pmod{22}$
 $7056k_3 \equiv -5967 \pmod{22}$
 $16k_3 \equiv 17 \pmod{22}$

$$x = 853 + 1008k_3$$

$${7x \equiv 4 \pmod{22} \longleftarrow$$

$$7(853 + 1008k_3) \equiv 4 \pmod{22}$$

 $5971 + 7056k_3 \equiv 4 \pmod{22}$
 $7056k_3 \equiv -5967 \pmod{22}$
 $16k_3 \equiv 17 \pmod{22}$

mcd(16, 22) = 22 no es divisor de 17

$$x = 853 + 1008k_3$$

$$\left\{ 7x \equiv 4 \pmod{22} \right. \longleftarrow$$

$$7(853 + 1008k_3) \equiv 4 \pmod{22}$$

 $5971 + 7056k_3 \equiv 4 \pmod{22}$
 $7056k_3 \equiv -5967 \pmod{22}$
 $16k_3 \equiv 17 \pmod{22}$

mcd(16, 22) = 22 no es divisor de 17 La congruencia no tiene solución

$$\begin{cases}
4x \equiv 1 \pmod{9} \\
10x \equiv 4 \pmod{21} \\
9x \equiv 13 \pmod{16} \\
7x \equiv 4 \pmod{22}
\end{cases}$$

El sistema no tiene solución.

