Informed (Heuristic) Search

Outline

- I. Greedy best-first search
- II. A* search

^{*} Figures are from the textbook site (or drawn by the instructor) unless the source is specifically cited.

Heuristic Function

Use of domain-specific hints about the location of a goal can find a solution more efficiently.

Heuristic function

h(n) = estimated cost of the cheapest path from the state at node n to a goal state

e.g., straight-line distance h_{SLD} on the map between two sites

Arad	366	Mehadia	241
Bucharest	O	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Straight-line distance to Bucharest

Greedy Best-First Search

Evaluation function f(n) = h(n)

Arad	366	Mehadia	241	
Bucharest	O	Neamt	234	
Craiova	160	Oradea	380	
Drobeta	242	Pitesti	100	
Eforie	161	Rimnicu Vilcea	193	
Fagaras	176	Sibiu	253	f(a) - b
Giurgiu	77	Timisoara	329	$f(n) = h_{SLD}(n)$
Hirsova	151	Urziceni	80	
Iasi	226	Vaslui	199	
Lugoj	244	Zerind	374	

Good correlations with road distances

Greedy Search for Bucharest

Closer to Bucharest than is Zerind or Timisoara

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Search for Bucharest (cont'd)

Greedy ≠ Optimal

Greedy solution: Arad – Sibiu – Fagaras – Bucharest (450)

Optimal solution: Arad – Sibiu – Rimnicu Vilcea – Pitesti – Bucharest (418)

This greedy strategy does not account for the cost to get to the current state.

A* Search

P. E. Hart, N. J. Nilsson, and B. Raphael (1968)

f(n): estimated cost of the best path that continues from n to a goal.

A* on Route Planning

Working of A* Search

h_{SL}	$_{\scriptscriptstyle D}$: straight	t-line distance	
Arad	366	Mehadia	241
Bucharest	O	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Working of A*

h_{SL}	$_{\scriptscriptstyle D}$: straight	t-line distance	
Arad	366	Mehadia	241
Bucharest	O	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Working of A*

h_{SL}	$_{\scriptscriptstyle D}$: straight	:-line distance	
Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Working of A*

h_{SL}	$_{D}$: straight	t-line distance	
Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Admissible Heuristic

- ◆ A* search is complete (when the state space either has a solution or is finite).
- Whether it is optimal depends on the heuristic.

A heuristic is admissible if it never overestimates the cost to reach a goal.

h_{SLI}	: straight-li	ne distance	
Arad	366	Mehadia	241
Bucharest	O	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

 h_{SLD} is admissible because the actual distance to Bucharest cannot be less than the straightline distance.

Optimality of A*

Theorem A* is cost-optimal with an admissible heuristic.

Proof By contradiction. Suppose the algorithm returns a path with cost C greater than the optimal cost C^* .

Let *n* be the first node on the optimal path that is *unexpanded*.

 $g^*(n)$: optimal cost from start to n

 $h^*(n)$: optimal cost from n to a goal

 $f(n) > C^*$ (otherwise $f(n) \le C^* < C$ so n would have been expanded)

But
$$f(n) = g(n) + h(n)$$

= $g^*(n) + h(n)$ (n on the optimal path)
 $\leq g^*(n) + h^*(n)$ ($h(n) \leq h^*(n)$ due to admissibility)
= C^*

That is, $f(n) \leq C^*$, contradicting with $f(n) > C^*$.

Consistent Heuristic

A heuristic h is *consistent* if for every two nodes n and n' such that n' is generated from n by some action a, the following inequality holds:

- Every consistent heuristic is admissible.
- ◆ A* with a consistent heuristic is cost-optimal.

What If the Heuristic Is Inadmissible?

In such a situation, A* may or may not be cost-optimal.

Two of the cases where A* finds an optimal path:

- *h* is admissible for all the nodes on one optimal path.
- h(n) does not overestimate the cost on each node n by more than the difference between the costs of the optimal and the second-best paths.

Search Contours

A contour labeled by a cost c encloses all the nodes n with f(n) =

 $g(n) + h(n) \le c$.

- Dijkstra's algorithm (i.e., uniform search) would have contours of g-cost to "circle" around the start state.
- With a good h, the g + h bands will stretch toward a goal state.

Monotonicity?

♦ The *g* cost increases along a path because action costs are positive.

Cost at
$$n$$
: $g(n) + h(n)$

Cost at its successor
$$n'$$
: $g(n) + c(n, a, n') + h(n')$
= $g(n')$

The path's cost increases monotonically iff

Consecutive Nodes Scored the Same

h decreases as much as g increases after an action.

Efficiency of A*

h: admissible

*C**: cost of the optimal solution path

- ◆ A* will expand every node reachable via a sequence of nodes that have costs < C*.
- A* will not expand any node n with $f(n) > C^*$.
- A* might expand a node n with cost $f(n) = C^*$ before selecting a goal node.

A* prunes away nodes unnecessary for finding an optimal solution.

♣ A* may take exponential time with a poor heuristic function.