Descriptive

The data variables used in the study are;

IR: Inflation rate of the United States form January 1980 to December 2021

GDP: Gross Domestic product of the United States form January 1980 to December 2021

CPI: The Consumer Price Index

UR: Unemployment rate

SP: S&P500 close price

MS: Money supply

The summary statistics were as shown below;

Mean	Median	Minimum	Maximum
3.2181	2.8000	-2.1000	14.800
99.910	100.00	91.705	101.85
7.2176	7.0473	5.9501	9.9242
1.7910	1.7579	1.2528	2.6878
5.0653	4.8963	4.3541	5.6305
6.6325	6.9602	4.6259	8.4350
Std. Dev.	c.v.	Skewness	Ex. kurtosis
2.4612	0.76481	2.2968	7.1366
1.1886	0.011897	-1.9618	8.0772
0.79874	0.11067	1.2357	2.3138
0.27155	0.15162	0.25812	-0.51887
0.34477	0.068066	0.016724	-1.3794
0.97663	0.14725	-0.37944	-0.88546
5% perc.	95% perc.	IQ range	Missing obs.
0.62500	8.2000	2.0750	0
97.740	101.41	1.1064	0
6.0915	8.2900	0.89883	0
1.3610	2.2772	0.39864	0
4.5470	5.5488	0.57264	0
4.8667	7.9995	1.4193	0
	3.2181 99.910 7.2176 1.7910 5.0653 6.6325 Std. Dev. 2.4612 1.1886 0.79874 0.27155 0.34477 0.97663 5% perc. 0.62500 97.740 6.0915 1.3610 4.5470	3.2181 2.8000 99.910 100.00 7.2176 7.0473 1.7910 1.7579 5.0653 4.8963 6.6325 6.9602 Std. Dev. C.V. 2.4612 0.76481 1.1886 0.011897 0.79874 0.11067 0.27155 0.15162 0.34477 0.068066 0.97663 0.14725 S% perc. 95% perc. 0.62500 8.2000 97.740 101.41 6.0915 8.2900 1.3610 2.2772 4.5470 5.5488	3.2181

From the descriptive table above, consumer price index recorded the least range of 1.2764 (max-min) showing that CPI was stable for that time period while inflation rate recorded the highest range showing that it had great fluctuations in the period.

The standard deviation which is the distance from the mean was highest for inflation rate and least for unemployment rate

Skewness shows the direction of the outliers. For positive skew, the tail of the distribution curve is longer on the right meaning that the outliers are further out towards the right and closer to the mean on the left. The same is opposite for negative skewness. From the analysis, inflation rate had the highest positive skewness while GDP has the highest negative skewness.

Kurtosis measures whether the data are heavy tailed or light tailed relative to the normal distribution. That is, the variables with high kurtosis tend to have outliers (IR, GDP, MS)while those with low kurtosis have no outliers (UR, CPI, SP)

The dataset recorded no missing observations.

Correlation

The correlation analysis was conducted to establish association between each pair of variables, the summary was as shown;

```
Correlation Coefficients, using the observations 1980:02 - 2021:12
5% critical value (two-tailed) = 0.0874 for n = 503

IR GDP 1_UR d_1_MS d_1_SP
1.0000 0.1517 0.1303 -0.0701 -0.0616 IR
1.0000 -0.5992 -0.3632 -0.1055 GDP
1.0000 0.1827 0.0859 1_UR
1.0000 0.348 d_1_MS
1.0000 d_1_SP

d_1_CPI
0.1041 IR
-0.0234 GDP
0.0113 1_UR
-0.0137 d_1_MS
-0.0388 d_1_SP
1.0000 d_1_CPI
```

The study established a regression coefficient of .1041 between the variable d_I_CPI and IR, it follows that there exist a weak positive association between the consumer price index and the inflation rate. The variables UR also had a direct correlation with d_I_CPI.

There was a weak direct correlation between the variables GDP and IR, I_UR and IR, d_I_MS and I_UR then d_I_SP and d_I_MS.

The study established an inverse association between the variables; d_I_CPI and GDP, d_I_MS, d_I_SP. This was also the case for the variables d_I_SP and IR and correlation between d_I_SP and GDP.

In summary, the study established that there was at least an association between each of the pairs of variables in the study.

Stationarity

Since the data is a time series data, it would be necessary to test for stationarity, the study used the Augmented Dickey Fuller test to test this and the results were as follows;

```
Augmented Dickey-Fuller test for d 1 CPI
testing down from 17 lags, criterion AIC
sample size 502
unit-root null hypothesis: a = 1
  test with constant
  including 0 lags of (1-L)d 1 CPI
  model: (1-L)y = b0 + (a-1)*y(-1) + e
  estimated value of (a - 1): -0.953376
 test statistic: tau c(1) = -21.355
  asymptotic p-value 1.562e-49
  1st-order autocorrelation coeff. for e: -0.002
Augmented Dickey-Fuller test for d 1 MS
testing down from 17 lags, criterion AIC
sample size 502
unit-root null hypothesis: a = 1
  test with constant
  including 0 lags of (1-L)d 1 MS
  model: (1-L)y = b0 + (a-1)*y(-1) + e
  estimated value of (a - 1): -0.896199
  test statistic: tau c(1) = -20.1485
  asymptotic p-value 1.183e-47
  1st-order autocorrelation coeff. for e: -0.004
Augmented Dickey-Fuller test for d 1 SP
testing down from 17 lags, criterion AIC
sample size 502
unit-root null hypothesis: a = 1
  test with constant
  including 0 lags of (1-L)d 1 SP
  model: (1-L)y = b0 + (a-1)*y(-1) + e
  estimated value of (a - 1): -0.961662
  test statistic: tau c(1) = -21.5235
  asymptotic p-value 9.296e-50
  1st-order autocorrelation coeff. for e: -0.000
Augmented Dickey-Fuller test for IR
testing down from 17 lags, criterion AIC
sample size 488
unit-root null hypothesis: a = 1
  test with constant
  including 15 lags of (1-L) IR
  model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
  estimated value of (a - 1): -0.0339142
  test statistic: tau c(1) = -4.34867
  asymptotic p-value 0.0003603
  1st-order autocorrelation coeff. for e: -0.003
  lagged differences: F(15, 471) = 27.404 [0.0000]
```

```
Augmented Dickey-Fuller test for GDP
testing down from 17 lags, criterion AIC
sample size 499
unit-root null hypothesis: a = 1
  test with constant
  including 4 lags of (1-L)GDP
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
  estimated value of (a - 1): -0.0451051
  test statistic: tau c(1) = -5.05026
  asymptotic p-value 1.609e-05
  1st-order autocorrelation coeff. for e: 0.009
  lagged differences: F(4, 493) = 137.508 [0.0000]
Augmented Dickey-Fuller test for 1 UR
testing down from 17 lags, criterion AIC
sample size 502
unit-root null hypothesis: a = 1
  test with constant
  including one lag of (1-L)1 UR
  model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
  estimated value of (a - 1): -0.0286527
  test statistic: tau c(1) = -2.76582
  asymptotic p-value 0.06327
  1st-order autocorrelation coeff. for e: 0.005
```

The study established that all the variables were stationary, and those that were not stationary were differenced and became stationary on first differencing, the variables differenced were; I_MS, I-CPI, and I_SP.

Assumptions

Normality

The histogram below was used to test for the normality assumption.

The graph implied that the data is symetric, this indicates that the data is normally distributed. The assumption of normality has been met.

Autocorrelation

The study tested for the autocorrelation using the Durbin Watson test as shown;

```
Durbin-Watson statistic = 1.94844

H1: positive autocorrelation
   p-value = 0.237913

H1: negative autocorrelation
   p-value = 0.762087
```

A Durbin Watson test statistic value of 1.94844 being less than 2.0 indicates that there exist a positive autocorrelation, implying that the assumption has been met.

Autocorrelation function results

While some variables needed lagging to attain stationarity, before this, some variables like the CPI, Money Supply and the Unemployment rate were logged given they contained extreme values that may distort results of the OLS regression, this is the summarizing function of number of lags that was required for each variable to attain stationarity;

Variable:	Number of Lags
Inflation	0
Ln Unemployment Rate	0
GDP	0
Ln S&P500	1
Ln_Money Supply	1
Ln CPI	1

After lagging was done, Breusch-Godfreys test was used to assess whether there exist a serial correlation and the results were as shown below;

Breusch-Godfrey test for first-order autocorrelation OLS, using observations 1980:02-2021:12 (T = 503) Dependent variable: uhat

	coefficient	std. error	t-ratio	p-value
const	0.00567158	0.235318	0.02410	0.9808
IR	-1.34907e-05	0.000854636	-0.01579	0.9874
GDP	-5.85871e-05	0.00225562	-0.02597	0.9793
d_1_CPI	0.00415019	0.136543	0.03039	0.9758
d_1_MS	-0.00211860	0.0380918	-0.05562	0.9557
1_UR	0.000129072	0.00933544	0.01383	0.9890
uhat 1	0.0261614	0.0452351	0.5783	0.5633

Unadjusted R-squared = 0.000674

```
Test statistic: LMF = 0.334480,
with p-value = P(F(1,496) > 0.33448) = 0.563
Alternative statistic: TR^2 = 0.338972,
with p-value = P(Chi-square(1) > 0.338972) = 0.56
Ljung-Box Q' = 0.335757,
with p-value = P(Chi-square(1) > 0.335757) = 0.562
```

Breusch-Godfrey tests assess the null hypothesis that the there is no serial correlation of any order up to p, since the p-value of the test is .563, a value greater than the 1% level of significance, we fail to reject the null hypothesis and conclude that there does not exist a serial correlation up to order p, this implies that the problem of autocorrelation does not exist.

Therefore, the general autocorrelation model is;

$$S\&P500_t = \alpha + \beta_1 IR + \beta_2 GDP + \beta_3 UR + \beta_4 CPI_t + \beta_5 MS_t + \epsilon$$

Linearity

This assumption is tested to ensure that the variables are not linearly related, the variance inflation factor was used to test this assumption and the resullt were as follows;

```
Variance Inflation Factors
Minimum possible value = 1.0
Values > 10.0 may indicate a collinearity problem
           1_UR
IR
VIF(j) = 1/(1 - R(j)^2), where R(j) is the multiple correlation coefficient
between variable j and the other independent variables
Belsley-Kuh-Welsch collinearity diagnostics:
  variance proportions
               cond const d_1_MS d_1_CPI
                        0.000 0.002 0.004 0.000
0.000 0.599 0.275 0.000
    3.767 1.000
                                                                    0.001
                                                                               0.017

    3.767
    1.000
    0.000
    0.002
    0.004
    0.000
    0.001

    0.996
    1.944
    0.000
    0.599
    0.275
    0.000
    0.000

    0.939
    2.003
    0.000
    0.254
    0.706
    0.000
    0.000

    0.283
    3.651
    0.000
    0.017
    0.011
    0.000
    0.003

    0.015
    15.758
    0.001
    0.035
    0.000
    0.001
    0.590

    0.000
    324.900
    0.999
    0.093
    0.003
    0.999
    0.406

                                                                               0.003
                                                                               0.896
                                                                               0.006
                                                                               0.077
  lambda = eigenvalues of inverse covariance matrix (smallest is 3.56843e-005)
           = condition index
  note: variance proportions columns sum to 1.0
According to BKW, cond >= 30 indicates "strong" near linear dependence,
and cond between 10 and 30 "moderately strong". Parameter estimates whose
variance is mostly associated with problematic cond values may themselves
be considered problematic.
Count of condition indices >= 30: 1
Variance proportions >= 0.5 associated with cond >= 30:
    const
                 GDP
   0.999 0.999
Count of condition indices >= 10: 2
Variance proportions >= 0.5 associated with cond >= 10:
                 GDP
    1.000 1.000 0.996
```

Since the VIF values are all below 10, it indicates that the problem of linearity does not exist therefore the assumption has been met.

Heteroscedasticity

The problem of constant variance is another that needs to be addressed, the study used Breusch-Pagan test to assess this assumption and the result was as follows;

Model 4: OLS, using observations 1980:02-2021:12 (T = 503) Dependent variable: d_1SP

	coefficient		error		-
const	0.241828				
d_1_MS -	-0.00298904	0.03	378899	-0.07889	0.9372
d 1 CPI -	-0.107375	0.13	36263	-0.7880	0.4311
GDP -	-0.00246820	0.00	225184	-1.096	0.2736
1_UR	0.00869195	0.00	932652	0.9320	0.3518
IR -	-0.000996875	0.00	0853745	-1.168	0.2435
Mean dependent	t var 0.00732	2	S.D. deper	ndent var	0.043731
Sum squared re	esid 0.94434	1	S.E. of re	egression	0.043590
	0.01635				
F(5, 497)	1.65221	.0	P-value(F))	0.144633
Log-likelihood	1 865.155	2	Akaike cri	iterion	-1718.310
Schwarz criter	rion -1692.98	7	Hannan-Qui	inn	-1708.376
rho	0.02576	0	Durbin-Wat	son	1.948441
Excluding the constant, p-value was highest for variable 17 (d_1MS)					
Breusch-Pagan test for heteroskedasticity -					
Null hypothesis: heteroskedasticity not present					
Test statistic: LM = 12.398					
with p-value	e = P(Chi-squar	e (5)	> 12.398)	= 0.02972	25

The p-value of the test was established to be .0297, a value greater than the 1% level of significance, we therefore fail to reject the null hypothesis that the data is homoscedastic and conclude that the assumption has been met.

Cointegration test

This test identifies scenarios where two or more non-stationary time series variables are integrated together in a way they cannot deviate from the equilibrium, it is used to identify the degree of sensitivity.

This test carried the following stationarity tests using the Augmented Dickey-Fuller test to assess stationarity of the variables and the result was as follows;

```
Step 1: testing for a unit root in IR
Augmented Dickey-Fuller test for IR
including 7 lags of (1-L) IR
sample size 495
unit-root null hypothesis: a = 1
 test with constant
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
 estimated value of (a - 1): -0.0357674
  test statistic: tau c(1) = -4.58746
  asymptotic p-value 0.0001
  1st-order autocorrelation coeff. for e: 0.000
 lagged differences: F(7, 486) = 18.082 [0.0000]
Step 2: testing for a unit root in GDP
Augmented Dickey-Fuller test for GDP
including 7 lags of (1-L)GDP
sample size 495
unit-root null hypothesis: a = 1
 test with constant
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
 estimated value of (a - 1): -0.0456867
 test statistic: tau c(1) = -4.73703
 asymptotic p-value 6.829e-05
  1st-order autocorrelation coeff. for e: -0.001
  lagged differences: F(7, 486) = 77.424 [0.0000]
Step 3: testing for a unit root in 1 UR
Augmented Dickey-Fuller test for 1 UR
including 7 lags of (1-L)1 UR
sample size 495
unit-root null hypothesis: a = 1
 test with constant
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
  estimated value of (a - 1): -0.0264315
 test statistic: tau c(1) = -2.42026
 asymptotic p-value 0.1361
 1st-order autocorrelation coeff. for e: 0.000
  lagged differences: F(7, 486) = 1.829 [0.0797]
```

```
asymptotic p-value 0.1361
  1st-order autocorrelation coeff. for e: 0.000
  lagged differences: F(7, 486) = 1.829 [0.0797]
Step 4: testing for a unit root in d 1 MS
Augmented Dickey-Fuller test for d_1_MS
including 7 lags of (1-L)d 1 MS
sample size 495
unit-root null hypothesis: a = 1
 test with constant
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
 estimated value of (a - 1): -0.826381
  test statistic: tau c(1) = -7.35609
 asymptotic p-value 3.484e-11
  1st-order autocorrelation coeff. for e: -0.000
 lagged differences: F(7, 486) = 0.164 [0.9919]
Step 5: testing for a unit root in d_1_SP
Augmented Dickey-Fuller test for d 1 SP
including 7 lags of (1-L)d 1 SP
sample size 495
unit-root null hypothesis: a = 1
 test with constant
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
  estimated value of (a - 1): -0.921441
 test statistic: tau c(1) = -7.46722
 asymptotic p-value 1.7e-11
 1st-order autocorrelation coeff. for e: -0.001
 lagged differences: F(7, 486) = 0.912 [0.4964]
Step 6: testing for a unit root in d 1 CPI
Augmented Dickey-Fuller test for d 1 CPI
including 7 lags of (1-L)d 1 CPI
sample size 495
unit-root null hypothesis: a = 1
  test with constant
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
  estimated value of (a - 1): -0.992424
 test statistic: tau c(1) = -7.96076
 asymptotic p-value 6.512e-13
  1st-order autocorrelation coeff. for e: -0.000
  lagged differences: F(7, 486) = 0.070 [0.9995]
```

Since all the p-values were less than 1% level of significance, the study can conclude that all the variables were stationary.

Cointegrating regression analysis

The summarized regression analysis resulting from cointegration was as follows;

Step 7: cointegrating regression

```
Cointegrating regression - OLS, using observations 1980:02-2021:12 (T = 503) Dependent variable: d 1 SP
```

	coeffi	cient	std	. erro	r t-ratio	p-value
const	0.241	828	0.23	34956	1.029	0.3039
IR	-0.000	996875	0.00	008537	45 -1.168	0.2435
GDP	-0.002	46820	0.00	022518	4 -1.096	0.2736
1 UR	0.008	69195	0.00	093265	0.9320	0.3518
d_1_CPI	-0.107	375	0.13	36263	-0.7880	0.4311
d 1 MS	-0.002	98904	0.03	378899	-0.07889	0.9372
Mean depende	ent var	0.0073	22	S.D.	dependent var	0.043731
Sum squared	resid	0.9443	41	S.E.	of regression	0.043590
R-squared		0.0163	50	Adjus	ted R-squared	0.006454
Log-likelih	ood	865.15	52	Akaik	e criterion	-1718.310
Schwarz cri	terion	-1692.9	87	Hanna	n-Quinn	-1708.376
rho		0.0257	60	Durbi	n-Watson	1.948441

Step 8: testing for a unit root in uhat

```
Augmented Dickey-Fuller test for uhat including 12 lags of (1-L)uhat sample size 490 unit-root null hypothesis: a = 1
```

```
test without constant model: (1-L)y = (a-1)*y(-1) + ... + e estimated value of (a-1): -0.932803 test statistic: tau_c(6) = -5.91614 asymptotic p-value 0.0008026 lst-order autocorrelation coeff. for e: -0.001 lagged differences: F(12, 477) = 0.789 [0.6618]
```

There is evidence for a cointegrating relationship if:

- (a) The unit-root hypothesis is not rejected for the individual variables, and
- (b) the unit-root hypothesis is rejected for the residuals (uhat) from the cointegrating regression.

From the cointegretion regression findings above, the integration coefficient of S&P500 and inflation rate is -0.000996875 indicating a negative association between the variables. Hence a unit change in inflation rate would lead to a decrease in S&P500 by 0.000996875 units.

The integration coefficient of S&P500 and GDP is -0.0024682 indicating a negative association between the variables. Hence a unit change in GDP would lead to a decrease in S&P500 by 0.0024682 units.

The integration coefficient of S&P500 and unemployment rate is 0.00869195 indicating a positive association between the variables. Hence a unit change in unemployment rate would lead to an increase in S&P500 by 0.00869195 units.

The integration coefficient of S&P500 and consumer price index is -0.107375 indicating a negative association between the variables. Hence a unit change in consumer price index would lead to a decrease in S&P500 by 0.107375 units.

The integration coefficient of S&P500 and money supply is -0.00298904 indicating a negative association between the variables. Hence a unit change in money supply would lead to a decrease in S&P500 by 0.00298904 units.

The regression constant is 0.241828 indicating that S&P500 would be at 24.1828% if all the independent variables were zero.

The value of the adjusted R^2 (0.006454) indicates that the model explains 0.65% influence on S&P500.

The regression equation is,

$$\begin{split} S\&P500_t = \ 0.2418 - 0.000997IR_t - 0.00247GDP_t + 0.00869UR_t - 0.1074CPI_t \\ - \ 0.002989MS_t + \epsilon \end{split}$$

Conclusion

Evidence of cointegration

H₀: Unit root is present, indicating residuals are non-stationary

H₁: No unit root present, indicating residuals are stationary.

From the above table: for all the independent variables t-statistic is less than the p-values, we reject H₀ and conclude that there isn't enough evidence to show that unit root is present.

Since there is proof of the residuals being stationary, relationship between the variables in the model is evident in the long run.

Error correction model results

Model 1: OLS, using observations 1980:02-2021:12 (T = 503) Dependent variable: d 1 SP

	coefficient	std. err	or t-ratio	p-value
const	0.241828	0.234956	1.029	0.3039
IR -	-0.000996875	0.000853	745 -1.168	0.2435
GDP -	-0.00246820	0.002251	84 -1.096	0.2736
1_UR	0.00869195	0.009326	52 0.9320	0.3518
d 1 MS	-0.00298904	0.037889	9 -0.07889	0.9372
d_1_CPI ·	-0.107375	0.136263	-0.7880	0.4311
Mean dependent	t var 0.0073	22 S.D.	dependent var	0.043731
Sum squared re	esid 0.9443	41 S.E.	of regression	0.043590
R-squared	0.0163	50 Adju	sted R-squared	0.006454
F(5, 497)	1.6522	10 P-va	lue(F)	0.144633
Log-likelihood	d 865.15	52 Akai	ke criterion	-1718.310
Schwarz crite	rion -1692.9	87 Hann	an-Quinn	-1708.376
rho	0.0257	60 Durb	in-Watson	1.948441

Excluding the constant, p-value was highest for variable 14 (d 1 MS)

From the table above, the correlation coefficient of inflation rate and S&P500 is -0.000997 indicating a very week negative correlation between the two variables. Sam case applies to GDP and the dependent variable having a correlation coefficient of -0.00246820

Unemployment rate however has a positive correlation with S&P500, hence a change in unemployment rate affects S&P500 by 0.869%

Narrow money supply and consumer price index have negative correlations with the dependent variables of -0.00298904 and -0.107375. This shows that narrow money supply and S&P500 move in different directions as well as consumer price index and S&P500.

In conclusion, since the correlation coefficients are more close to 0 than one, we notice a very week association between each of the independent variables and S&P500.

The value of the adjusted R² (0.006454) indicates that, in a general contest, S&P500 is affected by only 0.65% of the said independent variables. We can conclude therefore that there is no significant relationship between S&P500 and each of the independent variables. The final regression model is;

$$S\&P500_t = 0.2418 - 0.000997IR_t - 0.00247GDP_t + 0.00869UR_t - 0.1074CPI_t - 0.002989MS_t + \epsilon$$

Ramsey RESET test

Auxiliary regression for RESET specification test OLS, using observations 1980:02-2021:12 (T = 503) Dependent variable: d_1SP

	coefficient	std. error	t-ratio	p-value
const	-0.123515	0.335398	-0.3683	0.7128
d 1 MS	-0.0273962	0.0410872	-0.6668	0.5052
d 1 CPI	-0.149508	0.138860	-1.077	0.2821
GDP	0.00126321	0.00332393	0.3800	0.7041
1 UR	0.000416443	0.0107806	0.03863	0.9692
IR	-0.000242019	0.000985967	-0.2455	0.8062
yhat^2	61.9737	40.6528	1.524	0.1280

```
Test statistic: F = 2.323983, with p-value = P(F(1,496) > 2.32398) = 0.128
```

The p-value of our F-statistic is 0.128 (12.8%). At 5% level of significance, we fail to reject the null hypothesis and conclude that the functional form is correct and our model does not suffer from omitted variables.

It is therefore clear that the model is reliable.