Plate Design ME 313: Mechanical Design Week 5

Definition of Plate

- A flat component that takes the load on its surface
- ▶ The main mechanism of load resistance is bending

Plate Governing Equation

Much like beam bending, plate bending also has a governing equation

$$\frac{\partial^4 v}{\partial x^4} + \frac{\partial^4 v}{\partial x^2 \partial y^2} + \frac{\partial^4 v}{\partial y^4} = \frac{P}{D}$$

where *v* (*English letter v*) is the deflection, *P* is the load, and *D* is the bending rigidity of plate

$$D = \frac{Et^3}{12(1-v^2)}$$

where E is the modulus of elasticity, t is the thickness of the plate, and v (Greek letter nu) is the Poisson's ratio

Dr. Sappinandana Akamphon

Plate Deflection Under Loads

- Deflection depends on various things
 - Plate shape: circular or rectangular
 - ▶ Boundary conditions: fixed (clamped) or simple support
- We will go through the equations for plate deflections for each case

Circular Plate with Uniform Load

- Clamped edges
 - Maximum deflection

$$v_{\text{max}} = \frac{qa^4}{64D}$$

Maximum stress

$$\sigma_{\text{max}} = \frac{3}{4} \frac{qa^2}{t^2}$$

 \triangleright where q is the magnitude of load per area (pressure)

Dr. Sappinandana Akamphon

Circular Plate with Uniform Load

- Simply supported edges
 - Maximum deflection

$$v_{\text{max}} = \frac{(5+\nu)qa^4}{64(1+\nu)D}$$

Maximum stress

$$\sigma_{\text{max}} = \frac{3(3+v)qa^2}{8t^2}$$

Circular Plate Loaded at the Center

- Clamped edges
 - Maximum deflection

$$v_{\text{max}} = \frac{Pa^2}{16\pi D}$$

Simply supported edges

$$v_{\text{max}} = \frac{(3+v)Pa^2}{16\pi(1+v)D}$$

Dr. Sappinandana Akamphon

Rectangular Plate under Uniform Loading

- Clamped edges
 - Maximum deflection

$$v_{\text{max}} = \frac{\alpha q a^4}{D}$$

b/a	α
1.0	0.00126
1.5	0.00220
2.0	0.00254

Rectangular Plate under Uniform Loading

- Clamped edges
 - Maximum stress can be calculated from bending moment
 - There are bending moments both in x and y directions

$\sigma_{ ext{max}}$ =	$6M_{bending}$
	$-t^2$

$$M_{bending} = \beta q a^2$$

b/a	β_{x}	β _y
1.0	-0.0513	-0.0513
1.5	-0.0757	-0.0570
2.0	-0.0829	-0.0571

Dr. Sappinandana Akamphon

Rectangular Plate under Uniform Loading

- Simply supported edges
 - Maximum deflection

$$v_{\text{max}} = \frac{\alpha q a^4}{D}$$

b/a	α
1.0	0.00406
1.5	0.00772
2.0	0.01013

Rectangular Plate under Uniform Loading

- Simply supported edges
 - Maximum stress can be calculated from bending moment

$\sigma_{ ext{max}} =$	$6M_{bending}$
	t^2

$$M_{bending} = \beta q a^2$$

b/a	β_{x}	β_{y}
1.0	0.0479	0.0479
1.5	0.0812	0.0498
2.0	0.1017	0.0464

Dr. Sappinandana Akamphon

Rectangular Plate under Central Load

- Clamped edges
 - Maximum deflection

$$v_{\text{max}} = \frac{\alpha P a^2}{D}$$

b/a	α
1.0	0.00560
1.5	0.00702
2.0	0.00722

Rectangular Plate under Central Load

- Simply supported edges
 - Maximum deflection

b/a	α
1.0	0.01160
1.5	0.01527
2.0	0.01651

Dr. Sappinandana Akamphon

Plate Design Conclusion

- 1. Know the requirements: stress and/or deflection
- 2. Choose the shapes
- Determine shape parameters: radius, or length x width
- 4. Compute maximum deflection/stress
- 5. Is the design satisfactory?
 - If not, make appropriate adjustments

Shell Design

ME 313: Mechanical Design Week 5

Shell Structures

- Curved thin component
 - Thickness must be much smaller than radius of curvature

t << *r*

▶ Used in roofs, walls, containers, ...

Shell Curvature

Defined by Gaussian curvature

$$K = \frac{1}{R_x} \times \frac{1}{R_y}$$

- ► K > 0
- K = 0
- K < 0

Dr. Sappinandana Akamphon

Governing Equation

$$\frac{N_x}{R_x} + \frac{N_y}{R_y} = P$$

- Force per length depends on the radius of curvature
- ▶ This is called *membrane equation*

Applications of Shell Equation

- Spherical pressure vessels
- Cylindrical pressure vessels

Dr. Sappinandana Akamphon

Example: Dented Coke Can

