

EGE UNIVERSITY ELECTRICAL AND ELECTRONICS ENGINEERING

CONTROL SYSTEMS 1 LAB-7

MUSA OĞURAL	
05190000739	
02.06.2021	

Köllern yer egrishi ciznin

$$S^{2}-hS+13=0 \longrightarrow S_{1,2}=2\pm j3 \longrightarrow P_{1,2}=2\pm j3$$

 $S+2=0$, $S=-2 \longrightarrow 2=-2$

→ Sonal ekseni kestigi noktalor

$$G_{CL} = \frac{k(s+2)}{s^2 + (k-4)s + 2k + 13}$$

$$Q(s) = s^2 + (k-h) s + 2k+13 \longrightarrow k=4 \longrightarrow Q(s) = s^2+21$$

-> Reel elsande birlesme nolutalan

$$G_{CL} = \frac{VGH}{1+VGH}$$
, $1+VGH = 0 \longrightarrow V = -\frac{1}{GH}$

$$K = -\frac{(s^2 - hs + 13)}{s+2}$$
, $\frac{dK}{ds} = -\frac{(s^2 - hs - 21)}{(s+2)^2} = 0$

- Komplex töllerin gidis acılan

$$O_1 - O_2 - O_3 = \pm 180(2k+1)$$
 $O_3 = 180 - O_2 + O_4$
 $O_3 = 180 - 90 + 100^{-1}(\frac{3}{4})$
 $O_3 = 127^{\circ}$

Q(s) =
$$5^2 + (K-L)S + 2K+13 \xrightarrow{S=-7} L9 + (K-L)(-7) + 2K+13 = 0$$

 $L9 + 28 - 7K + 2K+13 = 0$
 $K=13$

Sistemi koronli yapon K oraligii $Q(S) = S^2 + (K-L)S + 2K + 13$

$$S^{2}$$
 | 1 2k+13
 S^{1} (k-4)
 S^{0} (2k+13)

$$\begin{array}{c} k-4>0 \longrightarrow k>4 \\ 2k+13>0 \longrightarrow k>-\frac{13}{2} \end{array}$$

- Sonal ekseni kestiği noktalar

$$G_{CL} = \frac{KGH}{1+KGH} = \frac{K(S+2)2}{S^2-LS+13+2KS+4K} = \frac{2K(S+2)}{S^2+(2K-4)S} + 4K+13$$

- Reel elsente birlegne notalam

$$K = -\frac{(s^2 + 4s + 13)}{2s + 4}$$
, $\frac{dK}{ds} = -\frac{((2s - 4)(2s + 4) - (s^2 - 4s + 13), 2)}{(2s + 4)^2}$

$$\frac{dV}{ds} = -\frac{(2s^2 + 8s - 42)}{(2s + 4)^2} = 0$$
 $s = 3$, $[s = -7]$

> Komplex köllerin gidis autlan

$$Q_1 - Q_2 - Q_3 = \pm 180 (2V+1)$$

$$\Theta_3 = 180 - 90 + 40 - 1(\frac{3}{4})$$

$$O_3 = 127^{\circ}$$

6

6 (ii) € C 6 • E • • -

• •

--

-.

Q(s)=
$$s^2 + (2k-h)s + hk+13 = 0$$

 $90 = 10k$
 $1 = 9$

→ Sistemi koronlı yapon K oraliği

MATLAB KODU

```
clc;clear;close all;
%EX1
num=2*[1 2];
den=[1 -4 13];
G=tf(num,den);
rlocus(G)
%EX2
num=1;
den=[1 1];
den=conv([1 1],[1 2]);
den=conv(conv([1 1], [1 2]),[1 4]);
G=tf(num, den);
rlocus(G)
%EX3
num=1;
num = [1 5];
num=conv([1 5],[1 2]);
num=conv(conv([1 5],[1 2]),[1 0.5]);
den=conv(conv([1 0],[1 1]),[1 4]);
G=tf(num, den);
rlocus(G)
```


Figure 1 num=[1 2], den=[1 -4 13] için Root Locus

Figure 2 num=2*[1 2], den=[1 -4 13] için Root Locus

Figure 3 num=1, den=[1 1] için Root Locus

Figure 4 num=1, den=conv([1 1],[1 2]) için Root Locus

Figure 5 num=1, den=conv(conv([1 1], [1 2]),[1 4]) için Root Locus

Figure 6 num=1, den=conv(conv([1 0],[1 1]),[1 4]) için Root Locus

Figure 7 num=[1 5], den=conv(conv([1 0],[1 1]),[1 4]) için Root Locus

Figure 8 num=conv([1 5],[1 2]), den=conv(conv([1 0],[1 1]),[1 4]) için Root Locus

Figure 9 num=conv(conv([1 5],[1 2]),[1 0.5]), den=conv(conv([1 0],[1 1]),[1 4]) için Root Locus