3.12 EXERCÍCIOS

3.1) Seja um fio semi-infinito com densidade linear de carga ql. Calcule o campo elétrico E criado pelo fio no ponto P, conforme a Fig. 3.34.

Figura 3.34

Figura 3.35

- **3.2)** O disco da Fig. 3.35 é carregado com a densidade superficial de carga qs. Calcule o campo elétrico E no ponto P.
- 3.3) Dado o condutor filiforme da Fig. 3.36, carregado uniformemente com uma carga total Q, calcule o campo elétrico E no ponto θ .

Figura 3.36

Figura 3.37

- **3.4)** Na Fig. 3.37 temos dois condutores carregados com uma densidade linear de carga *ql*. Calcule **E** criado no ponto *P*.
- 3.5) Calcule o campo elétrico \mathbf{E} criado por semi-esfera de raio R no ponto θ , centro da esfera correspondente. Considere que esta semi-esfera possui uma carga Q uniformemente distribuída no seu volume.
- **3.6)** Uma esfera de raio R é carregada com uma carga elétrica cuja densidade volumétrica $q_{\nu}(r)$ varia linearmente de tal forma que $q_{\nu}(0) = 0$ e $q_{\nu}(R) = q_0$. Considere $\varepsilon = \varepsilon_0$ dentro e fora da esfera.
 - a) Escreva a lei de variação de $q_v(r)$;

- b) calcule o campo $\mathbf{E}(r)$ no interior e no exterior da esfera;
- c) trace o gráfico $\mathbf{E}(r)$ indicando o valor de $\mathbf{E}(R)$.
- 3.7) A calota esférica da Fig. 3.38 é carregada com uma densidade superficial de carga $q_s(\phi)$ que varia linearmente com o ângulo ϕ de tal forma que $q_s(0) = 0$ e $q_s(\pi/4) = q_0$.
 - a) Obtenha a lei $q_s(\phi)$;
 - b) calcule o campo E no ponto P (centro da esfera).

Para a integração despreze os termos de ordem superior a 4 e considere as seguintes aproximações:

Figura 3.38

Figura 3.39

- 3.8) Calcule o campo elétrico no ponto P criado pelo fio da Fig. 3.39 carregado com uma densidade linear de carga ql.
- **3.9)** Um fio semicircular de raio R na Fig. 3.40 é carregado com uma densidade linear de carga $q_l(\theta)$ que varia linearmente com o ângulo θ , de tal forma que $q_l(0) = 0$ e $q_l(\pi) = q_0$. Calcule o campo elétrico \mathbf{E} criado no ponto θ .

Obs: Para integração, utilizar a técnica de integração por partes.

3.10) O semiplano infinito da Fig. 3.41 é carregado com uma densidade superficial de carga $qs(r) = \frac{\rho_0 R}{r}$, para r > R. Calcule o campo elétrico **E** no ponto P.

3.11) O segmento de fio da Fig. 3.42 é carregado com uma densidade linear de carga ql dada por $ql(r) = \frac{q_0R}{r}$. Calcule E criado no ponto P.

- 3.12) A Fig. 3.43 é planar e corresponde a um material carregado com uma densidade superficial constante de carga qs. Observe que o corte existe para 2R < r < 3R e $45^{\circ} < \theta < 135^{\circ}$. Calcule o campo E no ponto P.
- 3.13) Um esfera oca, apresentada em corte na Fig. 3.44 é carregada com uma densidade volumétrica de carga ρ ; r representa um raio genérico. Considere $\varepsilon = \varepsilon_0$ em todo o domínio. Calcule E para:
 - a) $r \leq R_1$;
 - b) $R_1 < r \le R_2$;
 - c) $r > R_2$.

Construa o gráfico E(r) indicando os valores de campo para $r = R_1$ e $r = R_2$.

Figura 3.44

Figura 3.45

3.14) Calcule o campo E no ponto P criado por uma espira filiforme carregada com uma carga Q, conforme a Fig. 3.45.

3.15) O cilindro de raio R é infinito e é constituído por um material com $\varepsilon = 2\varepsilon_0$. Fora temos ar. Ele se encontra carregado com uma densidade

volumétrica de carga que varia segundo $q_v(r) = \frac{q_0 r}{R}$. Calcule **E** para:

a)
$$0 < r \le R$$
;

b)
$$r > R$$
;

Desenhe o gráfico E(r) indicando o valor de E(R). Explique a descontinuidade de E na fronteira entre cilindro e ar.

3.16) Uma calota semi-esférica, vista em corte na Fig. 3.46, possui uma densidade volumétrica de carga dada por

$$q_v(r,\phi) = \frac{q_0 R}{r} sen\phi$$

sendo ϕ o ângulo relativo a coordenadas esféricas. Considerando $R_2=2$ R_1 calcule o campo **E** criado em P.

Figura 3.46

Figura 3.47

- **3.17)** As cargas $-Q_1$ e Q criam campos no ponto P mostrado na Fig. 3.47. Calcule o valor de Q_1 em função de Q para que E seja nulo no ponto P.
- **3.18)** A coroa circular da Fig. 3.48 encontra-se carregada com uma densidade superficial de carga qs.
 - a) Calcule o campo E no ponto P;
 - b) trace, de forma aproximada, a curva E(z).

Figura 3.48

Figura 3.49

3.19) A parcela de disco circular, mostrada na Fig 3.49, existe para $30^0 \le \theta \le 150^0$ e $R \le r \le 2R$ e se encontra carregada por uma densidade de carga que obedece à lei

$$qs(\theta) = q_0 \cos \theta$$

Calcule o campo E criado em P.

- 3.20) Na situação da Fig. 3.50a, despreze o espraiamento de campo nas bordas das placas condutoras.
 - a) Calcule o campo E entre as placas e verifique se há ruptura do dielétrico no ar;
 - na Fig. 3.50b, é introduzida uma porcelana isolante na região central entre as placas; novamente calcule os campos no ar e vidro, e verifique se há ruptura nos dielétricos.

Dado: $K_{ar} = 3 \ kV/mm$; $K_{vidro} = 4 \ kV/mm$; $\varepsilon_{ar} = \varepsilon_0$; $\varepsilon_{vidro} = 4\varepsilon_0$.

Figura 3.50a

Figura 3.50b

- **3.21)** Na Fig. 3.51, as placas condutoras estão submetidas a uma diferença de potencial de $4 \, kV$. Entre elas temos uma combinação de dielétricos, cujos dados se encontram no desenho. Considere a aproximação segundo a qual os campos só possuem componentes horizontais e não há espraiamento. Para todos os dielétricos temos $K = 1.5 \, kV/mm$.
 - a) Calcule os campos E_1 , E_2 e E_3 nos dielétricos 1, 2 e 3;
 - b) haverá ruptura de dielétrico? se houver, indique onde.

- 3.22) Considere duas placas infinitas de forma cilíndrica, conforme Fig. 3.52, submetidas aos potenciais indicados. Suponha que entre elas tenhamos ar $(\varepsilon_r = 1 \text{ e } K = 3 \text{ kV/mm})$. Despreze os efeitos de bordas.
 - a) Calcule a expressão de V(r) entre as placas (utilize a equação de Laplace relativa a V em coordenadas cilíndricas);
 - b) calcule a expressão de $\mathbf{E}(r)$;
 - c) indique se haverá criação de arco elétrico entre as placas.
- 3.23) Uma linha de transmissão de 750 kV encontra-se numa região onde temos um transformador aterrado, como mostrado na Fig. 3.53. Calcule a distância d entre o transformador e a linha de tal maneira que o campo elétrico $|\mathbf{E}|$ não exceda a 10% da rigidez dielétrica do ar (K = 2kV/mm). Calcule $|\mathbf{E}|$ de forma aproximada através de $|\mathbf{E}| = |grad V|$.

Figura 3.53

Figura 3.54

3.24) Na Fig. 3.54 temos um conjunto de lâminas finas de dois dielétricos 1 e 2 de permissividade ε_1 e ε_2 , respectivamente. São materiais isotrópicos mas, como conjunto, formam um material anisotrópico. A distribuição quantitativa é de n (tal que $0 \le n \le 1$) para o material 1 e 1-n para o material 2. Usando as relações de conservação de componentes tangenciais de campo e componentes normais de indução elétrica, calcule as permissividades resultantes ε_x e ε_y para o conjunto.

Calcule ε_x e ε_y para n = 0.98 e $\varepsilon_1 = 8$ e $\varepsilon_2 = 1$.

- 3.25) O campo elétrico E atravessa a-lâmina com $\varepsilon_2 = 1$ como indicado na Fig. 3.55, onde os dados são fornecidos.
 - a) Calcule o ângulo α ;
 - b) calcule o desvio linear x que o campo incidente \mathbf{E} sofre ao atravessar a lâmina.

Figura 3.55

Figura 3.56

- 3.26) Calcule a capacitância de um capacitor constituído por dois cilindros de raios a e b (a < b) de altura h. O dielétrico colocado entre as placas condutoras possui $\varepsilon_r = 1$. Despreze espraiamento (efeitos de borda).
- 3.27) Com o objetivo de aumentar a capacitância do capacitor do problema anterior, uma camada de espessura x de um dielétrico com $\varepsilon_r = 6$ é aplicada junto ao cilindro externo, conforme a Fig. 3.56. Calcule x para que o novo capacitor possua uma capacitância duplicada em relação ao capacitor original assumindo que b = 2a.
- 3.28) A capacitância de um capacitor de placas planas é $C = \varepsilon S/d$ (ver parágrafo 3.9). Consideremos que para um dado capacitor seu dielétrico seja tal que $\varepsilon = \varepsilon_0$. Com o intuito de duplicar a sua capacitância, este dielétrico é parcialmente substituído por outro com $\varepsilon = 4\varepsilon_0$, conforme Fig. 3.57, sem que as dimensões do dispositivo sejam modificadas. Calcule a porção n de S que deve ser ocupada pelo segundo dielétrico.

Figura 3.57

Figura 3.58

- **3.29)** Calcule a capacitância C_1 do capacitor de placas esféricas de raios R_1 e R_2 com um único dielétrico $\varepsilon_1 = \varepsilon_0$ entre as placas.
- **3.30)** Considere que metade do dielétrico original do caso acima é substituída por um outro, conforme Fig. 3.58, com $\varepsilon_2 = n\varepsilon_0$. Calcule n para que a nova capacitância C_2 seja o dobro de C_1 .

- 3.31) A capacitância de um capacitor de placas planas é $C = \varepsilon S/d$. Considere que para um certo capacitor temos $\varepsilon = \varepsilon_0$. Suponhamos que se deseje duplicar a capacitância do dispositivo sem modificar suas dimensões externas, utilizando-se um dielétrico com $\varepsilon = 6\varepsilon_0$.
 - a) Calcule a porcentagem de S na qual deve ser colocado o segundo dielétrico, conforme Fig. 3.59a;
 - b) calcule a porcentagem de d na qual deve ser colocado o segundo dielétrico, conforme Fig. 3.59b.

Figura 3.59a

Figura 3.59b

- 3.32) a) Calcule a capacitância C_1 de um capacitor cilíndrico cujas placas condutoras possuem raios a e 3a, altura h e ar ($\varepsilon = \varepsilon_0$) entre elas;
 - b) a fim de aumentar a capacitância, um dielétrico com $\varepsilon = 10 \varepsilon_0$ e de espessura a é introduzido no dispositivo, conforme Fig. 3.60. Calcule a altura x em função de h, tal que obtenhamos a nova capacitância C_2 do conjunto tal que $C_2 = 2C_1$.

Figura 3.60

Figura 3.61

Obs: despreze o espraiamento de campos; para facilitar a visualização, somente metade da estrutura é mostrada na figura.

- 3.33) Calcule a capacitância do dispositivo da Fig. 3.61, desprezando efeitos de bordo do campo elétrico.
- **3.34)** Calcule a capacitância do dispositivo da Fig. 3.62, sabendo que o material dielétrico possui $\varepsilon = 3\varepsilon_0$; despreze efeitos de bordo do campo elétrico.

Figura 3.62

Figura 3.63

3.35) Considere um cilindro infinito de raio R. Assumindo uma densidade volumétrica de carga ρ uniforme no mesmo, calcule \mathbf{E} e V dentro e fora do cilindro. Assuma $\varepsilon_r = 1$ dentro e fora do cilindro.

- **3.36)** Num capacitor de placas planas, tendo inicialmente ar entre as placas, é colocado um material condutor, ocupando a metade do volume conforme Fig. 3.63. Calcule:
 - a) O campo elétrico em função de V entre as placas antes da colocação do condutor;
 - b) os campos elétricos no ar e no condutor;
 - c) os valores de densidade superficial de carga no condutor;
 - d) o valor da nova capacitância.
- 3.37) Em coordenadas cartesianas, no volume compreendido entre z=-a/2 e z=a/2 temos uma densidade volumétrica de cargas ρ e $\varepsilon=\varepsilon_0$. Fora deste volume não há cargas. Calcule **E** e V dentro e fora do volume.
- 3.38) A densidade volumétrica de carga dentro de uma esfera é dada por $\rho = kr^2$. Çalcule E e V dentro e fora da esfera.
- 3.39) Duas placas condutoras paralelas estão separadas por 1 mm, com ar entre elas. Se um potencial de 100 V é aplicado entre elas, uma carga de $10^{-8} C$ se estabelece nas placas. Calcule a seção das placas.
- 3.40) Demonstre que $r^n sen n\theta$, $r^n cos n\theta$ e a soma destes termos é a solução da equação de Laplace em coordenadas cilíndricas e em duas dimensões (n é um inteiro positivo ou negativo).
- 3.41) Utilize a equação de Poisson para calcular o potencial V na região compreendida entre duas placas paralelas infinitas, separadas por uma distância l. Os potenciais nas placas são 0 e V_0 e o espaço entre elas contém um densidade de carga $\rho = \rho_0 x$, sendo ρ_0 uma constante e x a distância medida a partir da placa aterrada, com V = 0. Calcule também a densidade superficial de carga nas duas placas (considere a permissividade ε constante na estrutura).
- **3.42)** Utilizando a equação de Laplace calcule o potencial V entre duas esferas concêntricas separadas por ar. A esfera interior tem raio a e $V = V_0$, ao passo que a externa tem raio b e V = 0. Calcule também \mathbf{E} .
- 3.43) Refaça o problema anterior, invertendo o potencial nas esferas, com $V = V_0$ na esfera externa e V = 0 na interna.
- 3.44) Utilizando o equacionamento adequado, calcule E, $V \in \rho_s$ relativos ao caso apresentado na Fig. 3.13a.