## Algebraic Topology: 3rd hw

Due on February 12, 2014 at 3:10pm



Section 1.2

## Problem 1

1.2.7 We can endow X with a cell structure by letting  $X^0$  be a singleton and  $X^1$  be homeo  $S^1 \vee S^1$  by attaching two 1-cells in the obvious way, and then we can obtain X by attaching **two** 2-cells through a map that takes the upper semicircle of the boundary of the 2-cell to the first circle in  $S^1 \vee S^1$  and the lower semicircle to the second. (see diagram below.) Now we can apply proposition 1.26.a to see that

$$\pi_1(X) \cong \pi_1(S^1 \vee S^1)/N \cong \langle a, b \rangle/N \cong \langle a, ab \rangle/N$$

such that N is the normal group generated by the loops that the characteristic maps of the 2-cells generate. But both generate the same loop that goes through both circles in  $S^1 \vee S^1$  once. Therefore,

$$\pi_1(X) \cong \mathbb{Z}$$



1.2.9

1.2.17

1.2.18 (a) Let the quotient map of SX be q and put  $A_i = q(\{0, 1/i\} \times I \cup \{1/n \mid n \neq i\} \times ([0, .25) \cup (.75, 1])$  which are evidently open, and each deformation retracts to  $S^1$ , and they satisfy the assumptions of Van Kampen. Furthermore,  $A_i \cap A_j$  for all  $i \neq j$  is contractible. Hence,

$$\pi_1(SX) = \overset{\infty}{*} \mathbb{Z}$$

## Problem 2

a. Let  $\mathbb{R}^*$  be the line with two origins and 0 and 0' are the two origins. Suppose f is a loop and let  $F: I \times I \to \mathbb{R}^*$  be a homotopy between f and a loop that never traverses 0' defined as

$$F(s,t) = \begin{cases} f(s) & f(s) \neq 0' \\ 0' & f(s) = 0', t < 1/2 \\ 0 & f(s) = 0', t \ge 1/2 \end{cases}$$

note that  $F^{-1}(\{0,0'\}) = f^{-1}(\{0,0'\}) \times I$  and  $F^{-1}(S) = f^{-1}(S) \times I$  for any set  $S \subset \mathbb{R}^*$  such that  $S \cap \{0,0'\} = \emptyset$ . Now let O be an open subset of  $\mathbb{R}^*$ . O either contains both 0 and 0' or neither; if it didn't,  $F^{-1}(O)$  is obviously open and if it did

$$F^{-1}(O) = F^{-1}(\{0,0'\}) \cup F^{-1}(O \setminus \{0,0'\}) = f^{-1}(\{0,0'\}) \times I \cup f^{-1}(O \setminus \{0,0'\}) \times I = f^{-1}(O) \times$$

which is open hence F is continuous