Geometry Unit 1: Segments, Length, and Area Bronx Early College Academy

Christopher J. Huson PhD

8-23 September 2022

1.1 Segment addition	8 September
1.2 Solve for length	9 September
1.3 Terminology and notation	12 September
1.4 Midpoint and bisector	13 September
1.5 Equilateral and isosceles triangles, perimeter	14 September
1.6 Roundtable review	15 September
1.7 Unit conversion, Exit note quiz	16 September

Learning Target: I can measure my world

CCSS: HSG.CO.A.1 Know precise geometric definitions 1.1 Thursday 8 Sept

Do Now: Make simple measurements on paper

- 1. Diagram the desks closest to you and their distances
- 2. Early finishers: Calculate diagonal distances

ToDo: add classroom desk image, diagram

Lesson: Points, line segments, length; Segment addition postulate

Homework: Write for me your "math autobiography" on looseleaf (due tomorrow)

A diagram is a simplied image representing a situation

This is an example diagram of a desk arrangement

When making diagrams

Include common elements: labels, titles, distances

Conventions: standard ways of doing things to make it easier to work with other people

Write down vocabulary and terminology in your notebook with definitions and examples. (I write new terms in *italics*)

Line segments and their endpoints

Points P, A, B, C, and line segments \overline{AB} , \overline{BC} are shown.

The *length* of a line segment is the distance between the two endpoints. The length of segment \overline{AB} is written AB (no bar over).

A *number line* is useful for calculating length or distance

Take the difference in the points' values

Given \overline{PQ} as shown on the number line.

Find the distance on the number line between the points P and Q.

A *number line* is useful for calculating length or distance

Take the difference in the points' values

Given \overline{PQ} as shown on the number line.

Find the distance on the number line between the points P and Q.

$$PQ = 5 - 2 = 3$$

Can a length be a negative number?

Most of the lengths on my problem sets are in centimeters.

Negative number practice on a number line

Take the difference in the points' values. Check by counting the marks.

Given \overline{MN} with M(-1) and N(3), as shown on the number line.

What is the length of the segment \overline{MN} ? Show your work as an equation.

Negative number practice on a number line

Take the difference in the points' values. Check by counting the marks.

Given \overline{MN} with M(-1) and N(3), as shown on the number line.

What is the length of the segment MN? Show your work as an equation.

$$MN = 3 - (-1) = 4$$

Why is "minus a negative" like adding a positive?

Decimal practice on a number line

Mark the points then take the difference in the points' values.

Given \overline{GH} with G(1) and H(4.5).

- 1. Mark and label the points and segment on the number line.
- 2. What is the length of the segment *GH*? Show your work as an equation.

Decimal practice on a number line

Mark the points then take the difference in the points' values.

Given \overline{GH} with G(1) and H(4.5).

- 1. Mark and label the points and segment on the number line.
- 2. What is the length of the segment *GH*? Show your work as an equation.

$$GH = 4.5 - 1 = 3.5$$

Take class notes in a composition book

Copy definitions using your own words. Write down example diagrams and problems

Definitions:

Point A location, has no size; label with capital letter, P

Endpoint A point at the end of a line segment

Line segment Two points and all the points between them; label with *endpoints* and a bar, e.g. \overline{AB}

Distance The positive difference between two points on a number line (length is the same thing). AB = 3 inches

Conventions Standard ways of doing things to make it easier to work with other people

Diagram Simplified image of a situation

Number line A line with lengths marked on it

Spicy: Absolute value is the distance from a point to zero

"Spicy", or extension topics, must be written in your notebook, but homework and tests are optional.

The absolute value of 5 is 5. |5| = 5

The absolute value of -3 is 3. |-3| = 3

The absolute value of a number is always a positive number, or zero Write the absolute value of a number x using vertical bars |x| or abs(x)

Learning Target: I can solve for segment lengths

CCSS: HSG.CO.A.1 Know precise geometric definitions

1.2 Friday 9 September

Shown *collinear* points A, B, C. Given AB = 3, BC = 4. Find AC.

Definition: Points are collinear when they lie on a straight line.

Segment Addition Postulate: lengths add. e.g. AB + BC = AC

Example 2: Points and line segments

Segment Addition Postulate

Given collinear points Q, R, S, with QR = 11, QS = 20.

Find RS.

- 1. How would you check your answer?
- 2. Which equation represents the situation?

$$11 + x = 20$$
 $x = 20 - 11$

Example 3: Segment addition postulate

Given \overline{JKL} , JK = 2x + 3, KL = 5, JL = 12. Find x.

1. Write down an equation to represent the situation.

2. Solve for x.

3. Check your answer.

Example 3: Use algebra to model a length situation Write the steps in your notebook

Given
$$\overline{JKL}$$
, $JK = 2x + 3$, $KL = 5$, $JL = 12$. Find x .

$$JK + KL = JL$$
$$(2x + 3) + 5 = 12$$

$$2x + 8 = 12$$

$$2x = 4$$

$$x = 2$$

$$2(2) + 3 + 5 = 12$$
?

- 1. Sketch and label the situation
- 2. Write a geometric equation
- 3. Substitute algebraic values
- 4. Solve for *x*
- 5. Answer the question
- 6. Check your answer

Example 4 (challenge): Segment addition postulate

Given
$$\overline{ABC}$$
, $AB = 3x - 7$, $BC = x + 5$, $AC = 14$. Find AB .

Example 5: Solve an equation with x on both sides

Given
$$\overrightarrow{DEF}$$
, $DE = x + 1$, $EF = 9$, $DF = 3x$. Find DE .

Learning Target: I can use geometric conventions

CCSS: HSG.CO.A.1 Know precise geometric definitions 1.3 Monday 12 Sept

Do Now: Given collinear points A, B, C, with AB = 7, AC = 13.

1. Circle the equation that most simply represents the situation.

$$7 + x = 13$$

$$x = 13 - 7$$

2. Find BC.

Write down an example of each geometric object.

Use proper notation.

- 1. point
- 2. line segment
- endpoint
- 4. three collinear points

5. Given TU = 1.4, UV = 0.6. Find TV. (label the diagram first)

More definitions: lines, rays, planes

A *line* extends infinitely in both directions, \overrightarrow{AB} . (sometimes labeled with a small letter, for example, line k)

A ray has one endpoint and extends infinitely in one direction, \overrightarrow{CD} .

A plane is flat and extends infinitely in two directions, p.

Definition: *Opposite rays* are collinear rays with a common endpoint.

1. \overrightarrow{BA} and \overrightarrow{BC} are opposite rays

2. These rays do not make a straight line.

3. The rays \overrightarrow{GH} and \overrightarrow{HG} do not share a common endpoint.

Several objects are shown in a plane

- 1. T F The name of the plane is m
- 2. T F The line \overrightarrow{WY} is in the plane
- 3. T F The ray \overrightarrow{WX} is shown in the plane
- 4. T F Points W, X, and Z are collinear

More definitions: intersections, coplanar

Two lines *intersect* if they cross. Their common point is the *intersection*. (shown here, lines j and k intersect at point P)

Coplanar means to lie in the same plane. Three points are always coplanar, but four points may not be.

Learning Target: I can bisect a length

CCSS: HSG.CO.A.1 Know precise geometric definitions

1.4 Monday 13 Sept

Do Now: Point B is in the exact middle between A and C Given AB = x + 2, BC = 11. Find x.

Hint: The line segment is split into two equal lengths.

1.4 Midpoint and bisector

The *midpoint* of a line segment

Given
$$\overline{ABC}$$
, with $AB = 2x + 2$, $AC = 20$. $AB = BC$

Find x.

A *bisector* creates two line segments with the same length *Congruent* line segments are the same length

Given point *B* is the midpoint of \overline{AC} , with AB = x + 7, BC = 17. Find x.

The *midpoint* or *bisector* of a line segment divides it exactly in half.

Congruent means equal in length, $\overline{AB} \cong \overline{BC}$ (also AB = BC) Mark congruent segments in diagrams with cross "hash" marks.

Review: Identifying objects in a plane

Circle or mark each item

- 1. The point *H*
- 2. The ray \overrightarrow{JL}
- 3. The name of the plane shown

Learning Target: I can work with objects having congruent parts

CCSS: HSG.CO.A.1 Know precise geometric definitions

1.5 Wednesday 14 Sept

Do Now: Given \overline{ST} with S(-2) and T(4)

What is the length of the segment \overline{ST} ? Show your work as an equation.

Lesson: Perimeter, congruent line segments in rectangles & isosceles triangles

Negative number practice on a number line

Take the difference in the points' values. Check by counting the marks.

Given \overline{ST} with S(-2) and T(4), as shown on the number line.

What is the length of the segment \overline{ST} ? Show your work as an equation.

Why is "minus a negative" the same as add a positive?

Use proper notation (including the bar over the letters)

Given $\triangle ABC$ write down two congruent line segments using proper notation.

On the diagram mark the congruent line segments with tick marks.

Given $\triangle STU$ with $\overline{ST} \cong \overline{TU}$.

Sketch an isosceles triangle

Mark the congruent sides with tick marks.

ToDo: equilateral \triangle , isosceles, perimeter, quadrilaterals

Formal meanings of sketch, draw, and construct

- 1. Sketch is to make a freehand diagram of important features. Use a pencil to write carefully in your notebook or on paper.
- 2. Draw is to depict with accurate measures using ruler, protractor, and compass. For example, draw a diagram of your room.
- 3. Construct is a formal, logical process to create geometric figures using only a straightedge and compass.
- 4. Drawn to *scale* means that all of the lengths are proportional. (e.g. a "scale model")
 - Tests will often warn that diagrams are "not drawn to scale"

1.6 Roundtable review

CCSS: HSG.CO.A.1 Know precise geometric definitions 1.6 Thursday 15 September

Do Now: Draw a ray. (careful! which direction does it go?) Given the points X and Y, draw \overrightarrow{YX} .

Groupwork review for quiz tomorrow

"Roundtable" of four students, with four topics assigned

Geometry skills to study / teach

- 1. Conventions: terminology, notation, diagramming
- 2. Perimeter and special shapes:
 - ► Scalene, isosceles, and equilateral △s
 - Squares, rectangles, rhombuses, kites
- 3. Modeling situations with algebra
- 4. Solving algebraic equations for one variable

Identify each item.

Example of Topic 1: Conventions: terminology, notation, diagramming

- 1. The point A
- 2. The ray \overrightarrow{BD}
- 3. The name of the plane

Find the perimeter of the rectangle ABCD finish

Example of Topic 2: Perimeter and special triangles and quadrilaterals

Given AB = 6 inches, BC = 4 inches.

Write down an equation to represent the situation

Example of Topic 3: Modeling situations with algebra

Given M is the midpoint of \overline{AB} , AM = 4x + 2, AB = 20.

First mark the diagram with hash marks and values.

Sometimes you will not be asked to solve the equation.

Solve for *x*

Example of Topic 4: Solving algebraic equations for one variable

Given
$$\overline{LMN}$$
, $LM = 3x + 1$, $MN = 7$, $LN = 17$.

$$3x + 7 = 17$$

You must check the solution.

CCSS: HSG.CO.A.1 Know precise geometric definitions 1.7 Friday 16 September

Do Now: Mike is six feet tall. How many inches is that?

Conversion ratio: 1 foot = 12 inches

Exit note quiz today