Comment simuler numériquement l'évolution de la géomorphologie alpines ? Sujet de TPE

Gros Alexis, Manceau Thibaut, Porteries Tristan

November 2, 2015

Sommaire

- Déroulement du projet sur SysMI
- 2 Les chunks
- 3 Les arbres binaires à 2 dimensions (QuadTree)
- 4 La subdivision des noeuds
- La Visibilité des noeuds dans le champ de vue (Frustum Culling)

Pour organiser le déroulement du projet nous avons réalisé un diagramme avec SysMI.

Définition : Ce sont des morceaux de terrain carrés composés du même nombre de vertices formant une grille déformée en profondeur (Z). Tous ces vertices forment des triangles.

C'est un arbre à 2 dimensions qui pour chaque noeud (carré 2D) contient 4 sous noeuds 2 fois plus petit. Chaque fonction d'un noeud peut être appliquée à ses sous noeuds.

Chaque noeud est subdivisé en fonction de la distance du bord le plus proche de ce noeud vers la caméra.

1:
$$d = \max(\left\|\overrightarrow{CN}\right\| - r, 0)$$

- 2: **Pour** n de 0 jusqu'à $(n_{max} 1)$ **Faire**
- 3: Si $\frac{d_{max} \times n}{n_{max}} \le d < \frac{d_{max} \times (n+1)}{n_{max}}$ Alors
- 4: Retourner $n_{max} n$
- 5: **Fin Si**
- 6: Fin Pour

 n_{max} : niveau de subdivisions maximale, C: position de la caméra, N: centre du noeud, d_{max} : distance maximale pour subdiviser un noeud, r: rayon du noeud.

Pour savoir si un noeud est visible on teste si sa boîte englobante alignée (AABB) est dans le champ de la caméra.

November 2, 2015

10:

1:
$$c_1 = 0$$
2: Pour p de 1 jusqu'à 6 Faire
3: $c_2 = 0$
4: Pour p de 1 jusqu'à 8 Faire
5: Si $\overrightarrow{P_p}$. $\overrightarrow{B_v} < 0$ Alors
6: $c_2 = c_2 + 1$
7: Fin Si
8: Fin Pour
9: Si $c_2 = 8$ Alors
11: else
12: $c_1 = c_1 + 1$
13: Fin Si
14: Fin Pour
15: Si $c_1 > 0$ Alors
16: Retourner Intersection
17: else
18: Retourner Interieur
19: Fin Si
19: Fin Si

 P_n : matrice 4 × 3 du plan n de la caméra, B_n : la position du coin n de la boîte de visibilité.

