Homework 2 - Kinematics & Transformations

Question 1

Conventions Followed

base_link:

- x forward (north @ start), y left (west @ start), z up.
- Origin is centered between wheels on the plane where wheels touch the ground

odom:

- x east, y north, z up
- Origin is colocated at robot initial base_link (middle of map)

map:

- x east, y north, z up
- Origin: bottom left corner (as specified)

Transformation matrices

0 deg rotation, (5, 5, 0) translation

 $^{\mathsf{map}}\mathsf{T}_{\mathsf{odom}}$

90 deg yaw rotation, no translation $\rightarrow \cos(9) = 0$ $\cos(9) = 0$

 $^{\text{odom}}\mathsf{T}_{\text{base_link}}$

Simply negate the translation

 $^{\text{odom}}T_{\text{map}}$

Transpose of rotational component

 $^{\text{base_link}}\mathsf{T}_{\text{odom}}$

Question 2

From class notes $R = \frac{1}{2} \cdot \frac{V_r + V_r}{V_r - V_r}$ $\omega = \frac{V_r - V_r}{2}$ when $V_r > Y_2$ (turning left)

$$R = \frac{0.235n}{2} \cdot \frac{\text{tf}(1.7/5)}{\text{tf}(0.17/5)} = 5 \cdot 0.235m = 1.175m$$

$$= 1.175m$$

$$= 1.175m, 5m, 0m = (3.525m, 5m, 0m)$$

2. Calculate
$$\omega$$
 1 forget to include IT here. For the rest of the hw, I used the results of this calculation. See the correct ensurer for #2 in red below.

Corrected Answer for #2.

$$\omega = \frac{v_1 - v_2}{v_3} = \frac{0.1 \cdot T}{0.235} = 1.337 \frac{v_3}{sec}.$$

$$6 = 1.337 \frac{v_4}{sec} \cdot 0.5 s = 0.668 \text{ radians},$$

$$x' = 3.825 \text{ m} + 1.175 \text{ m} \cdot \cos(0.668) = 4.75 \text{ m}$$

$$y' = 5 \text{ m} + 1.175 \text{ m} \cdot \sin(0.668) = 5.73 \text{ m}$$

Position (relative to odom) =
$$(-0.25, 0.73 \text{ m})$$

 $6 = \frac{\pi}{2} + 0.668 = 2.24$ radious

4. Calculate new pose

$$X' = X_{1CC} + R \cdot cos(6)$$

= 3.825m + 1.175m · cos(0.2128)
= 4.973 m
 $L \rightarrow -0.027m$ relative to odom

$$y' = y_{rec} + R \cdot \sin(\theta)$$

= $5m + 1.175m \cdot \sin(\theta)$
= $5.248m \rightarrow 0.248m$ relative to off

Updated matrix odomTbase_link

Question 3

Question 4

 $p_{base_link} = {}^{base_link}T_{odom} \times {}^{odom}T_{world} \times p_{dest}$

I. Calculate $^{base_link}T_{odom}$ by finding inverse of $^{odom}T_{base_link}$

Q. Calculate p_{base_link}

$$\begin{bmatrix}
0 & 0 & | & 5 \\
0 & 1 & 0 & | & 5 \\
0 & 0 & | & 0
\end{bmatrix}
\begin{bmatrix}
-0.212 & 0.477 & 0 & | & -0.248 \\
-0.477 & -0.212 & 0 & 0.026 \\
0 & 0 & | & 0
\end{bmatrix}
\begin{bmatrix}
4.87 \\
4.87 \\
0 & 0
\end{bmatrix}$$

$$= \begin{bmatrix}
-401 \\
0.338 \\
0 \\
1
\end{bmatrix}$$

Question 5

Part 1: Rotation.

$$\theta = 0$$
 $\theta' = 1.182\pi$

Light So $V_R > V_R$.

 $V_{max} = 1.25\%$.

Distance =
$$\int (0.400)^2 + (.238)^2 = 0.466 \text{ m}$$
.
Take $\int V_e = V_R = V_{max} = 1.25 \text{ m/s}$.
 $1.25 \text{ m/s} \cdot 4t = 0.466 \text{ m}$
 $\int 4t = \frac{0.466 \text{ m}}{0.25 \text{ m/s}} = 0.373 \text{ s}$

$$\theta = -0.818\pi$$
 $\theta' = -0.250\pi$
 $\Delta\theta = 0.568\pi$

Left turn, so $V_r > V_e$ take
$$V_r = 1.25\%s, V_e = -1.25\%s$$
 $\delta E = \frac{0.568\pi}{10.64\frac{red}{sec}} = 0.168s$

Transformation Matrix To 1 2 0.707 0.707 0 -0.2 -0.707 0.707 0 -0.2 0 0 1 0 0 0 0 1

Question 5 (using arc)

Method: Constant velocity wheels will make robot follow the arc of a circle with a single fixed ICC. So, we fit a circle that is touching and tangential to the initial position and crosses the target position.

2. Calculate are angle and arelength

$$d_h = 0.466m \text{ (calculated above)}.$$

$$\cos(0) = \frac{2r^2 - d_h^2}{2r^2} = 1 - \frac{d^2}{2r^2} \text{ law of cosines}$$

$$\Theta = \cos^{-1}\left(1 - \frac{(0.466)^2}{2 \cdot (0.455)^2}\right) = 1.075 \text{ radians.}$$

$$61.61^{\circ}$$

$$0 = -0.075 \cdot 0.455 = 0.489 \text{ m}$$

$$R = \frac{1}{2} \cdot \frac{V_r + V_t}{V_r - V_t} \qquad \text{(class notes)}$$

$$0.455_m = \frac{0.335m}{2} \cdot \frac{1.35 + V_s}{1.35 - V_e}$$

$$\omega = \frac{V_r - V_t}{2} = \frac{1.25 - 0.74}{0.0335} = 2.17 \frac{red}{sec}$$

$$\omega = \frac{V_r - V_t}{2} = \frac{1.25 - 0.74}{0.0335} = 2.17 \frac{red}{sec}$$

$$w \cdot st = 0 \rightarrow st = \frac{1.075}{2.17} = 0.49s$$
For arc, $V_r = -1.25 \%s$
 $V_q = -0.74 \%s$
 $st = 0.49s$.

4. Use rotation to achieve final orientation.

Current angle:
$$-1.075$$
 rads

Torget angle: 1.182 T rads = -0.818 T rads

= -2.570 rads

 $\omega = -1.49$ rads

 $\omega = 10.64$ rads

 $\omega = 10.64$ rads

 $\omega = -1.25$ rads

 $\omega = -1.25$ rads

 $\omega = -1.25$ rads