Massachusetts Institute of Technology 22.68J/2.64J

Superconducting Magnets

February 6, 2003

- Course Information
- Lecture #1 Introduction
 - ➤ Superconductivity and Applications
 - ➤ Prospects and Challenges

Magnetic Field – Two Distinct Views

Users' (Physicists, Doctors, etc.)

Magnet Engineers Perspective

Electromagnets

Current Carrying Wire: generates lines of magnetic

flux (H.C. Oersted, 1819)

Iron Electromagnet: The flux can be use to align magnetic domains in iron, producing ~ 1000 times as much flux. The iron will be saturated, limiting the maximum flux to ~ 2 Tesla.

High-Field Magnets: High Field (>2T) magnets are ironless electromagnets. There are basically three approaches for high-field electromagnets: 1) nonsuperconducting; 2) superconducting; and 3) hybrid-combination of 1) and 2).

Nonsuperconducting

- RT copper magnets, generally water-cooled.
 - ➤ No inherent upper-field limit only more power (& cooling) and stronger materials required.
 - ➤ Current record: 33T (~35MW) at NHMFL.
- Cryogenic Cu or Al magnets, LN2-, LNe-, or LH2-cooled.
 - ➤ For special applications only generally pulsed fields

Superconducting

- LTS Magnets, LHe-cooled or cryocooler-cooled.
- HTS magnets. LHe-, cryocooler-, LN2-cooled.
- Superconductor performance a key limitation.

Hybrid

- A copper magnet (inner section) combined with a superconducting magnet (outer section).
- Current record: 45 (30Cu/15SC)T, at NHMFL.

High-Field Magnets

Types of Superconducting Magnet

Solenoid: Cylindrical helices; most widely used type.

Dipole: Generates a uniform field transverse to its long axis; deflects charged particles in accelerators and MHD.

Quadrupole: Generates a linear gradient field transverse to its axis over the central region of its bore; focuses particles in particle accelerators.

Racetrack: Resembles a racetrack; wound in a plane with each turn consisting of two parallel sides and two semi-circles at each end; a pair may be assembled to approximate the field of a dipole; used in motors and Maglev.

Toroid: Generates a field in the azimuthal direction; it confines hot plasma in a Tokamak; also used for SMES.

Magnet Types, Maxiumum Fields, Applications

Туре	B _{max} [T]	Application (partial list)
Calamaid	45 ^a	High-field research
	23.5 ^b	NMR
Solenoid	5 ^c	MRI
	~1.5+ ^d	Magnetic Separation
Dipole	~15 ^e	High-energy physics (HEP)
Quadrupole	$0_{ m f}$	HEP
Racetrack	4-5 ^g	Power Electric Devices
	~16 ^h	Fusion
Toroid	5-10 ⁱ	SMES

- a) Hybrid magnet (NHMFL).
- b) Future Target (1-GHz system); current record: 21.14 (900MHz).
- c) Or higher; more widely and universally used systems: 0.5-1.5T.
- d) HTS version.
- e) Future target:recent prototype (LBNL); current range: 4.8-5 (Large Hadron Collider-CERN).
- f) On-axis; peak field at the winding may reach ~8T for current systems.
- g) HTS motors and generators.
- h) Future target for power-generating systems. Present value 13T (ITER).
- i) Future range for HTS systems.

Superconductivity

Heike Kamerlingh Onnes (1853-1926)

"Door meten tot weten" ("Through measurement to knowledge")

Superconductivity

Facts on Superconductors

- "Zero electrical resistance (R=0), under DC conditions.
 - Discovered by Kammerlingh Onnes (1911).
- Some are "perfect" diamagnets (B=0) Type I.
 - The Mesissener effect (W. Meissner and R. Oschenfeld, 1933).
 - Others are mostly diamagnets and $R \ge 0$ Type II.
- There are two(?) types of superconductors.
 - Low-temperature superconductors (LTS)
 - High-temperature superconductors (HTS)
 - Medium-temperature superconductors (MTS)?

Superconductivity

Discovered by Kamerlingh Onnes (1911)

- "Zero electrical resistance (R=0), under DC conditions.
- Dissipative under AC conditions.

Mesissner Effect (W. Meissner & R. Oschenfeld, 1933)

- Some are "perfect" diamagnets (B=0) Type I.
 - The Mesissener effect (W. Meissner and R. Oschenfeld, 1933).
 - Others are mostly diamagnets and $R \sim 0$ Type II.

Resistance vs Temperature Plots

• Mercury (1911)

• Y-Ba_Cu-O (c. 1987)

Facts on Superconductors (continued)

- Superconductivity has three critical parameters:
 - o Critical temperature, T_c
 - o Critical magnetic Field, H_c
 - o Critical current density, J_c.

Critical Surface of a Superconductor

Perfect Conductor vs Superconductor

- Perfect conductor: $\rho = 0 \rightarrow dB/dt = 0$.
- Perfect Superconductor: $\rho = 0$ and B = 0.

Why Superconductivity Discovered?

- As a result of solid state physics research in the early 1910s.
 - o In 1911 Kamerlingh Onnes of U. Leiden discovered Hg $(T_c = 4.18 \text{ K})$ as a superconductor.
 - o Discovered (1911) the existence of J_c with Hg.
 - o The first superconducting (Pb wire) magnet failed (1913).
 - o Received (1913) the Nobel Prize in physics for the discovery of superconductivity and the liquifaction of helium.
 - o Discovered (1914) the existence of H_c, with Pb and Sn.

Why Superconductivity Discovered?

(continued)

- As a result of a long-sought desire to push T_c beyond 23.2 K, a stagnant limit since the 1970's, and even reach 77 K, the boiling point of liquid nitrogen.
 - o In April 1986, J.G. Bednorz and K.A. Muller of IBM (Zurich) discovered La-Ba-Cu-O, a layered copper oxide perovskite, a superconductor with $T_c = 35$ K.
 - o In 9187, P.W. Chu and others at U. of Houston and U. of Alabama discovered YBaCuO (Y-123) or YBCO), $T_c = 93K$, also a copper oxide perovskite.
 - o In January 1988, H. Maeda, of the National Institute for Metals ("Kinzai-Ken"), Tsukuba, discovered BiSrCaCuO (BSCCO); now in two forms: Bi-2212 (Tc = 85 K); and Bi-2223 (T_c = 110K).
 - o In February 1988, Z.Z. Sheng and A.M. Hermann at U. of Arkansas discovered TlBaCaCuO (Tl-2223), $T_c \simeq 125 K$.
 - o In 1993, Chu discovered HgBaCaCuO (Hg-1223), $T_c \simeq 135 K$ (164 K under a pressure of 300 atm).
 - o Since 1986 more than a hundred compounds of HTS have been discovered as well as USOs Unidentified Superconducting Objects "sighted".

Progress of T_c

Two "Flavors" of Superconductors

Type I

• Exhibits the Meissner effect; B=0 beyond "penetration depth,", δ (F. and H. London, 1935)

Selected Type I Superconductors

Material	T_c [K]	$\mu_{\circ} H_c$ [gauss]
Zn	0.9	53
Al	1.2	99
In	3.4	276
Sn	3.7	306
Hg	4.2	413
Ta	4.5	830
Pb	7.2	803

B vs H_a and M vs H_a Plots

Type II

- Exhibits the "mixed" magnetic state.
 - o Normal "islands" ("vortex") of size "coherence ξ length" in a sea of superconductivity: $R \simeq 0$.
 - o Each votex contains one quantum of magnetic flux, $\Phi_{\rm o}$, the collection of which is known as the Abrikosov vortex lattice. ($\Phi_{\rm o} \equiv h/2e \simeq 2.0 \times 10^{-15} \, {\rm Tm}^2$.)
 - o H_{c2} >> H_c and $\mu_o Hc2 \sim \Phi_o / \xi^2$.
- All high-temperature superconductors are Type II.

 $Selected\ Type\ II\ Superconductors$

Material (type; structure)	$T_c[{ m K}]$	$\mu_{\circ}H_{c2}$ [T]
Nb (metal; bcc)	9.1	0.2*
Nb-Ti (alloy; bcc)	9.8	10.5†
NbN (metalloid; NaCl)	16.8	15.3†
Nb ₃ Sn (compound; β-W [A-15])	18.2	24.5†
Nb ₃ Al	18.7	31.0†
Nb ₃ Ge	23.2	35.0†
YBaCuO (oxide; Perovskite)	93	150*
BiSrCaCuO	110	108*

^{*} at 0K † at 4.2K

Schematics of Mixed State

Superconducting electron density distribution: \mathbf{n}_{s}

Coherence length: ξ Penetration depth: λ

Magnetization Plot with the Mixed State

Magnetic Field vs Temperature Plots

Critical Surfaces

A Brief History

(•: science; *: technology)

1900s

* Liquefaction of helium ($T_s = 4.22 \text{ K}$), by KO (1908).

1910s

- * First liquid helium "cryostat" by KO (1911).
- Discovery by KO of Type I superconductors (1911).
- * First SCM by KO failed (1913).

1930s

- First Type II superconductor, W. de Haas and J. Voogd.
- Meissner effect, by W. Meissner and R. Oschenfeld (1933).
- Electromagnetic theory ("penetration depth" λ), by F. and H. London (1935).

1940s

* First "large-scale" helium liquifier, by S. Collins (1946).

1950s

- "Coherence length" (ξ), introduced by A.B. Pippard.
- GLAG (Ginzburg, Landau, Abriskov, Gorkov) theory magnetics of Type II superconductors .
- Many A-15 (metallic superconductors, chiefly in the U.S.
- Cooper pair, by L.N. Cooper (1956).

A Brief History (continued)

1950s

- BCS (Bardeen, Cooper, Schreiffer) theory microscopic theory of superconductivity (1957).
- Flux quantization.
- * "Toy" superconducting magnets (SCM) (1956).

A Brief History (continued)

1960s

- * High-field, high-current superconductors (1961) "pinning" of the "islands" (fluxoids).
- Josephson tunneling, B.D. Josephson (1962).
- * Birth of superconducting magnet technology (mid-1960s).
- * Start of large SCM for research MHD, HEP (R&D).

1970s

- * Maglev ("linear motor")
- * Superconducting generators; transmission lines (R&D).
- ***** Commercial NMR magnets.
- * Fusion and particle accelerator magnets.

1980s

- * Commercial MRI magnets.
- Discovery of HTS.

Pros and Cons of Superconductors

Positive Aspects

- R = 0 under DC conditions
 - Can generate a large magnetic field.
 Dissipation = I²R = 0.
 - > Can generate a large magnetic field over large volumes.
 - > Can generate a "persistent" magnetic field.

$$\frac{dB}{dt} = 0$$

Driven System (I²R=0)

Persistent-Mode System (dB/dt = 0)

Pros and Cons of Superconductors

Negative Aspects

- T_c << room temperature.
 - > Require refrigeration and good thermal insulation.
- Mixed state (Type II).
 - $ightharpoonup R \neq 0$, under time-varying conditions.
- Expensive vs copper, aluminum, steel, organic materials.
 - > 100-1000 times more than copper.

Magnetic Field Spectrum

Temperature Spectrum

Applications of Superconductivity

Energy

- Generation & Storage
 - Fusion; Generators; SMES; Flywheel
- Transmission & Distribution
 - Power Cable; Transformer; FCL
- End Use
 - Motor

Transportation

Maglev

Medicine

• MRI; NMR; SQUID (biomagnetism); Magnetic Steering; Biological Separations

Space & Ocean

• Sensors; SQUID; Undersea Cables; Maglifter

High Tech

• Magnetic Bearings; SOR; Magnetic Separation

Information/Communication

• Electronics; Filters

Research

• NMR; HEP Accelerators; High-Field Magnets, Proton Radiography

Power Requirements for Copper Solenoids (at Room Temperature)

• Power Required ∝ Resistivity x Diameter x Field²

$\phi [\mathrm{m}]$	$B_{\circ}\left[\mathrm{T}\right]$	P[MW]	Application
0.1	1	0.1-1	
	2	4–40	
:	5	2.5 – 25	Accelerator*
	10	10–100	NMR*
	20	40-400	NMR*
1	1	1–10	MRI*
	2	4-40	MRI*
	5	25 – 250	Maglev*
	10	100-1,000	
10	1	10–100	
	2	40–400	
	5	250-2,500	
	10	1,000-10,000	Fusion*

^{*} Feasible only with superconducting versions.

For 1-T Whole-Body MRI Units: Superconducting vs Room-Temp Copper

Unit	Power [kW]	Operation	$Cost \ [\$/ ext{year}]$
Supercond.	20*	Continuous	~20k
RT Copper	2,000†	2,500 hrs‡	~500k

^{*} Refrigeration.

- † NOT including cooling power.
- ‡ 10 hrs/day; 250 days/hear.

Magnetic Pressure, Density, Force

Magnetic Pressure

$$P_m = \frac{B^2}{2\mu_o} \quad [N/m^2]$$

Where $\mu_0 = 4\pi \times 10^{-7}$ H/m and B in tesla.

B [T]	P_m [atm]	Example
0.01*	0.0004	loud sound (rock)†
0.1	0.04	air velocity 80 m/s†
1	4	soda can†
4	64	Steam boiler
10	400	4 km below sea level
20	1,600	copper yields

^{* 100} gauss.

[†] Gauge pressure.

Fusion

The thermal or kinetic pressure, p_k , of the plasma must be confined with the magnetic pressure, p_m , exerted on the plasma by a magnetic field. The magnetic confinement of hot plasma requires that

wires that
$$p_k = n_p k_b T_p << p_m = \frac{B_f^2}{2\mu_o}$$

$$n_p k_b T = \beta \frac{B^2}{2\mu_o}$$

$$B = \sqrt{\frac{2\mu_o n_p k_b T_p}{\beta}}$$

With
$$n_p=10^{21}$$
 m⁻³, $T=10^8$ K, $k_B=1.38\times 10^{-23}$ J/K and $\beta=0.05$,
 $B\simeq 8.3$ T (~ 10 T)
 $P_m=400$ atm (10 T)
 $P_{sun}\sim 3\times 10^{11}$ atm ~ 3×10^5 T)

Maglev

$$P_{\rm m} = 4 \text{ atm } (\sim 1 \text{ T})$$

Other support pressures [atm]:

Shoes: 0.1 - 0.3

Bicycle Tires: 4-6

High-speed train steel wheels: 5,000

Magnetic Energy Density

$$E_m = \frac{B^2}{2\mu_o} [J/m^3]$$

SMES (Superconducting Magnetic Energy Storage) B limited to ~ 5 T for practical considerations.

Illustration:

$$B = 5 \text{ T} \rightarrow e_{m} = 2 \times 10^{7} \text{ J/m}^{3}.$$

Boston Edison has a peak-power demand, ΔP_{pk-av} , on a hot summer day of typically $\sim 2,500$ MW lasting (Δt) of ~ 10 h. Namely,

$$\Delta E_{pk} \sim 2.5 \times 10^9 W \times 10 \ h \times 3,600 \ s/h$$

$$\sim 10^{14} \ J$$

Because $V_{arena} \sim 1 \times 10^6$ m³, the number of SMES units each the size of a large arena storing a magnetic energy of $E_{arena} \sim 2 \times 10^{13}$ J:

$$N_{SMES} \sim 4 \text{ Arenas}$$

Magnetic (Lorentz) Force

$$F_{Lorentz} = (length) \times I \times B$$
 [Newtons]

Electrical Devices: Generators and motors.

B limited to ~ 5 T for practical considerations.

Magnetic Force on Elementary Particles

High-Energy Physics Accelerators

Centrifugal force
$$\equiv \vec{F}_{cf} = \frac{M_p v^2}{R_a} \vec{i}_r \cong \frac{M_p c^2}{R_a} \vec{i}_r = \frac{E_p}{R_a} \vec{i}_r$$

Centripetal force = Lorentz force = $\vec{F}_l = -qcB_z\vec{i}_r$

$$\frac{E_p}{R_a} = qcB_z$$

$$R_a = \frac{E_p}{qcB_z}$$

With E_p = 20 TeV (3.2 μ J), q = 1.6 \times 10⁻¹⁹ C, c = 3 \times 10⁸ m/s, and B_z = 5 T,

Ra ~ 13 km or a diameter exceeding 25 km.

Magnetic Torque on Nuclei

Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI)

$$\gamma \vec{\mu} \times \vec{H}_o = \frac{d\vec{\mu}}{dt}$$

Larmor frequency $\equiv f_o = \gamma H_o$

Where γ is a gyromagnetic ratio. For hydrogen (proton): $f_0 = 42.58$ MHz/tesla.

Applications to Electricity

U.N. Human Development Index and Electricity Use, Selected Countries

1997 (Alan D. Pasternak data)

World Primary Energies 1850-2050

Applications to Electricity

E/GNP ratio, energy consumption/GNP vs year Electricity fraction, electric energy/total energy vs year Both for the U.S.

Prospects – February 2003

Application	'79–'88	'89–'98	'99–'09	'10
Fusion	7	7	X*	7
Generator	7		\times	7
SMES	<i>></i>	7	\times	?
Flywheel		7	X	?
Cable	\rightarrow	7	X	?
Transformer		7	\times	. ?
FCL	→	7	X	?
Motor		7	X	7
Transportation	7	7	/	?
NMR	77	17	17	77
MRI	17	<i> </i>	//	77

[/] Upbeat; in the R&D phase.

[\] Downbeat; R&D will probably continue.

X Upbeat but struggling.

 $[\]rightarrow$ Dormant.

^{//} Commercially successful.

Enabling vs Replacing

Technology	Feature	Competitor	Criterion
Enabling	Yes	No	Feature
Replacing	No	Yes	Cost

Does Superconductivity Make A Technology Enabling?

Technology	In General	Yes, but Under		
Generation & Storage				
Fusion	Yes	>2050 AD		
Generator	No	Large power		
SMES	(Yes)*	Large energy		
Flywheel	No	Large energy		
Transmission & Dis	stribution			
Cable	No	Large powert		
Transformer	No	Compact unit		
FCL	No	Compact unit		
MicroSMES	(Yes)*	Compact unit		
Small Flywheel	No	Compact unit		
End Use				
Motor	No	Large power		
Maglev	No	High speed		
MRI	Yes	>0.5 T		
NMR	Yes	$> 2 \mathrm{T}$		
HEP Accelerator	Yes	>2 T		
High-field magnet	Yes	>2 T		

^{*} Not enabling as an energy storage device.

[†] And limited space, e.g., underground facilities.

Stages of Development Towards a Commercial Product

- Step-by-step progression from low to high grade.
- Highly beneficial if the device is useful at each step.

Technology	Useful at Each Step?			
Generation & Storage				
Fusion	No; Min. MW			
Generator	No; Min. MVA			
SMES	No; Min. MW h			
Flywheel	No; Min. MW h			
Transmission & Distribution				
Cable	No; Min. km & MVA			
Transformer	Yes			
FCL	Yes			
MicroSMES	Yes			
Small Flywheel	Yes			
End Use				
Motor	Yes			
Maglev	No; Min. km & km/h			
MRI	Yes			
NMR	Yes			
HEP Accelerator	Yes			
High-field magnet	Yes			

Superconducting (NbTi) Particle Accelerators

Machine	Tevatron (U.S.)	HERA* (F.R.G.)	SSC† (U.S.)	LHC‡ (Swiss)	RHIC§ (U.S.)
Energy [TeV]	0.9	0.82	20	7	0.1/amu
Particles	p- <u></u> p	e-p	p-p	·	ions
_	6.3	6.3	87.1	p-p 26.7	3.8
Loop ℓ [km]			- '	- '	1
Ave. Dia. [km]	2.0	2.0	27.7	8.5	1.2
# Units	1	1	2	2	1
Dipole magnets	3			1 " "	
B [T]	4.4	4.7	6.8	8.4	3.5
Length [m]	6.1	8.8	15.2/12.6	13.1	9.7
# magnets	774	422	7986/676	1232	288
i.d. [mm]	76	75	50	56	80
Quadrupole ma	Quadrupole magnets				
dB/dr [T/m]	76	91	205	220	72
Length [m]	1.7	1.9	5.2/7.1	3.1	1.1
# magnets	216	224	1664/112	376	276
i.d. [mm]	89	75	40	56	80
T_{op} [K]	4.6	4.5	4.4	1.9	4.6
Completion	1985	1990	(1993)†	2005	1998

^{*} Hadron-Electron Ring Accelerator.

[†] Superconducting Super Collider—canceled before completion.

[‡] Large Hadron Collider.

[§] Relativistic Heavy Iron Collider.

Superconducting (NbTi) Particle Accelerators

Large Hadron Collider at CERN, Geneva

Superconducting (NbTi) Particle Accelerators

Superconducting Magnets for Fusion

See "Fusion Magnets" presentation

Challenges for Superconductivity

Cons: Revisited

- T_c << room temperature.
 - > Require refrigeration and good thermal insulation.
- Mixed state (Type II).
 - $ightharpoonup R \neq 0$, under time-varying conditions.
- Expensive vs copper, aluminum, steel, organic materials.
 - >100-1000 times more than copper.

1. Operating Temperature

- •All devices operate at room temperature *Examples*: motors,; camera; refrigerators; wrist watches; CD players, automobiles; pianos; airplanes; etc.
- Exceptions: Superconducting devices.

Challenge

•Develop "magnet-grade" HTS that enable: $T_{op} = T_{RT}$ (Room Temperature)

Operating Temperatures: HTS vs LTS

Two Views

•Reference temperature at 0 K:

$$\frac{[T_{op}]HTS}{[T_{op}]LTS} \approx \frac{80K}{4K} = 20$$

A 20-fold improvement.

• Reference temperature at 22 C:

$$\frac{[T_{op}]HTS}{[T_{op}]LTS} \approx \frac{-291C}{-218C} = 1.33$$

Only a modest 33% improvement.

Progress of Tc: Impressive but still a lot to go.

1. Operation at Cryogenic Temperature

Refrigeration and thermal insulation required.

- Refrigeration power manageable.
- Thermal insulation fundamental hindrance.
 - o Needed: quantum improvements in insulation techniques.

Corollary

• Proliferation of superconductivity nonlinear with T_c.

2. Mixed State (Type II)

Illustration: Losses in Tapes

Superconductor and copper under $I_t = I_o \sin(2\pi f_o t)$.

Superconductor at $Top < T_{RT}$: Hysteresis Dissipation Density.

$$p_{hy} | T_{op} = \frac{f_o \mu_o I_t^3}{6w^2 I_c} [W/m^3]$$

Copper at T_{RT} : Ohmic Dissipation Density

$$p_{oh}|T_{RT} = \frac{\rho_{cu}I_t^2}{2w^2\delta^2}[W/m^3]$$

Power Density Ratio

$$\frac{p_{hy}|T_{op}}{p_{oh}|T_{RT}} \equiv \xi_{ac} = \frac{f_o \delta^2}{3} \left(\frac{\mu_o}{\rho_{cu}}\right) \left(\frac{I_t}{I_c}\right)$$

With $f_o = 60$ hz; $\delta = 0.25$ mm; $\rho_{cu} = 2 \times 10^{-8}$ Ω m; $I_t/I_c = 0.5$:

$$\xi_{ac} = 4 \times 10^{-5}$$

Power Comparison vs T_{op}

Parameter	$T_{op}\left[\mathrm{K} ight]$					
	4.2	20	40	60		
ξ_{ac}	4×10^{-5} (greater for windings)					
$ P_{\scriptscriptstyle comp}/p_{\scriptscriptstyle hy} _{T_{\scriptscriptstyle op}}$	5,000	1,000	400	200		
	(500)	(100)	(40)	(20)		
$P_{\scriptscriptstyle comp}/p_{\scriptscriptstyle oh} _{T_{rm}}$	20%	4%	1.6%	0.8%		
	(2%)	(0.4%)	(0.16%)	(0.08%)		

Observation: Hysteresis losses, though nonzero, are manageable with good refrigerators.

3. Conductor

- Performance improvement.
- Cost reduction.
- T_{op} optimization.
 Operating mode.

Performance Requirements

Electromagnetics

Application	J_c [A/mm ²]	B [T]	T_{op} [K]	$I_c \ [m kA]$
Generator (100 MVA)	500	5	20–50	1
SMES (1 MW h)	1,000	5–10	20–77	10
Transmission	100-1,000	< 0.2	77	5
FCL	100-1,000	1–3	20-77	1-10
Motor (1000 hp)	1,000	4–5	20–77	0.5

Mechanical

Application	ℓ [km]	ε [%]	$R_{bend} \ [\mathrm{m}]$	$\begin{array}{c} \text{Cost} \\ [\$/\text{kAm}] \end{array}$
Generator (100 MVA)	2	0.2	0.1	10
SMES (1 MW h)	1	0.2	1	
Transmission	0.1	0.4	2	10–100
FCL	0.1	0.2	0.1	10–100
Motor (1,000 hp)	1	0.2-0.3	0.05	10

Source: R. Blaugher, NREL

Conductor Costs

Cost of Silver-Sheathed Bi-2223 Tape

(Normalized to 77 K Cost: $1/J_c|_{77K}$)

100-kW Refrigerator Performance

Optimum Operating Temperature

- $J_c(T)$ important.
- Refrigerator performance vs T important.
- Optimum T_{op}:
 - o ~15 K for systems with large refrigerators
 - o Up to ~40 K for systems with cryocoolers
 - o 77 K probably NOT and optimum Top.
 - o LN₂ useful for high-voltage applications.