Đáp án môn: TOÁN 2 (MATH132501) Ngày thi: 12/06/2018

Câu	Ý	Nội dung	Thang điểm
I	1a	Pt hoành độ giao điểm $y = 2x^2v$ à $6x + 5y - 16 = 0$ $2x^2 = \frac{16 - 6x}{5} \Leftrightarrow 10x^2 + 6x - 16 = 0 \Leftrightarrow x = 1 \text{ hoặc } x = -\frac{8}{5}$	0.25
		Diện tích của miền cần tìm $A = \int_0^1 2x^2 dx + \int_1^{\frac{8}{3}} \frac{16 - 6x}{5} dx$	0.5
		Kết quả $A = \frac{2}{3} + \frac{5}{3} = \frac{7}{3}$	0.25
	1b	Thể tích của vật thể cần tìm 1. pp vòng đệm $V = \pi \int_0^2 \left[\left(\frac{16 - 5y}{6} \right)^2 - \left(\sqrt{\frac{y}{2}} \right)^2 \right] dy$ $V = \frac{167}{27} \pi$	0.5 0.5
		2. pp ống trụ $V = 2\pi \int_0^1 x \cdot 2x^2 dx + 2\pi \int_1^{\frac{8}{3}} x(\frac{16-6x}{5}) dx = \pi + \frac{140}{27}\pi$ $\oint \text{Giao điểm } 3 - 2\cos\theta = 3 - 2\sin\theta \Leftrightarrow \theta = \frac{\pi}{4} + k\pi, k \in \mathbb{Z}$	0.25
	3	Tọa độ Đề-các $M\left(3-\sqrt{2},\frac{\pi}{4}\right),N\left(3+\sqrt{2},\frac{5\pi}{4}\right)$ Tọa độ Đề-các $M\left(\frac{3\sqrt{2}-2}{2},\frac{3\sqrt{2}-2}{2}\right),N\left(-\frac{3\sqrt{2}+2}{2},-\frac{3\sqrt{2}+2}{2}\right)$	0.25 0.25 0.25
		Diện tích của miền phẳng cần tìm là $S = \frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} [(3 - 2\cos\theta)^2 - (3 - 2\sin\theta)^2] d\theta$	0.25 0.25
		$S = \left[-12\sin\theta - 12\cos\theta + 2\sin2\theta \right]_{\frac{\pi}{4}}^{\frac{5\pi}{4}}$ $S = 12\sqrt{2}$	0.25
	1	$I = \lim_{t \to 3^{-}} \int_{2}^{t} \frac{x^{2}}{\sqrt{9 - x^{2}}} dx = \lim_{t \to 3^{-}} \left[\frac{-x\sqrt{9 - x^{2}}}{2} + \frac{9}{2} \sin^{-1} \frac{x}{3} \right]_{2}^{t}$	0.5
II		$I = \lim_{t \to 3^{-}} \left[\frac{-t\sqrt{9 - t^2}}{2} + \frac{9}{2}\sin^{-1}\frac{t}{3} + \sqrt{5} - \frac{9}{2}\sin^{-1}\left(\frac{2}{3}\right) \right]$	0.25
		$I = \frac{9}{2} \left(\frac{\pi}{2} - \sin^{-1} \left(\frac{2}{3} \right) \right) + \sqrt{5}$	0.25
	2	Với $x \in [2, \infty)$, xét $f(x) = \frac{x^2 + 4x + 3}{6x^3 - 11x} > 0, g(x) = \frac{1}{6x} > 0$	0.25
		$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1 \text{ Suy ra } \int_2^{\infty} f(x) dx \text{ và } \int_2^{\infty} g(x) dx \text{ cùng tính chất hội tụ}$	0.25

		$1 \times 1 \times$	0.25
		Mà $\int_2^\infty g(x)dx = \frac{1}{6} \int_2^\infty \frac{1}{x} dx$ phân kỳ vì $p = 1$	0.23
		Vậy J phân kỳ	
	3	Ptvp $2\frac{dv}{dt} = 2 \times 9.81 - 0.024v \iff \frac{dv}{dt} + 0.012v = 9.81 (1)$	0.25
		Thừa số tích phân $I = e^{\int 0.012 dt} = e^{0.012t}$	0.25
		Vậy nghiệm tổng quát của phương trình (1) là $v = \frac{1}{e^{0.012t}} (\int 9.81e^{0.012t} dt + C)$	0.25
		$v = \frac{1}{e^{0.012t}} \left(\frac{1635}{2} e^{0.012t} + C \right)$, C là hằng số tùy ý	
		Với $v(0) = 0$, $C = -\frac{1635}{2}$	
		$V_{ay} v = \frac{1635}{2} (1 - e^{-0.012t})$	0.25
III	1	Ta có $a_k = \left(\frac{4k^3 - 1}{5k^3 + 2k^2}\right)^k \ge 0, \forall k \ge 1$	0.5
111		$\lim_{k \to \infty} \sqrt[k]{a_k} = \lim_{k \to \infty} \left(\frac{4k^3 - 1}{5k^3 + 2k^2} \right)$	
		Sh + Zh)	
		$\lim_{k \to \infty} \sqrt[k]{a_k} = = \frac{4}{5} < 1. \text{ Vây } \sum_{k=1}^{\infty} \left(\frac{4k^3 - 1}{5k^3 + 2k^2} \right)^k \text{ hội tụ (theo tiêu chuẩn căn)}$	0.5
	2	Đặt X = x - 2	0.5
		Theo tiêu chuẩn căn tổng quát $\lim_{k \to \infty} \left \frac{u_{k+1}}{u_k} \right = \lim_{k \to \infty} \left \frac{X^{k+1}}{\sqrt[3]{4(k+1)^2 + 7(k+1)}} \cdot \frac{\sqrt[3]{4k^2 + 7k}}{X^k} \right = X $	
		Tại $X = 1$ ta có chuỗi số $\sum_{k=1}^{\infty} \frac{1^k}{\sqrt[3]{4k^2 + 7k}} = \sum_{k=1}^{\infty} \frac{1}{\sqrt[3]{4k^2 + 7k}}$ phân kỳ	0.5
		vì cùng tính chất hội tụ với $\sum_{k=1}^{\infty} \frac{1}{\sqrt[3]{4k^2}}$ vì $p = \frac{2}{3} < 1$	
		Tại $X = -1$ ta có chuỗi số $\sum_{k=1}^{\infty} \frac{\left(-1\right)^k}{\sqrt[3]{4k^2 + 7k}}$ chuỗi hội tụ (theo tiêu chuẩn hội tụ của chuỗi	0.5
		đan dấu)Vậy miền hội tụ của chuỗi là D = [1;3)	
IV		Ta có $\mathbf{u} \times \mathbf{w} = (m-3, 5, 4m-2)$	0.5
		$3\mathbf{v} - \mathbf{w} = (2, -5, 10)$ 55	0.25
		$(\mathbf{u} \times \mathbf{w})(3\mathbf{v} - \mathbf{w}) = 4 \Leftrightarrow m = \frac{55}{42}$	0.25
	-		