

Labor ZH Router Bern (160.85.21.2):

Netzadresse Präfix	klänge	Route	Broadcast-Adresse	
160.85.18.240 /2	28	via 10.5.2.10	160,85.18,255	
160.85.18.0 /2	24	via 10.5.2.2	160.85.18.255	
160.85.19.0 /2	24	via 10.5.2.10	160.85.19.255	
160.85.21.0 /2	24	direct, G 0/0	160-85.21. 255	
0.0.0.0 /	0	via 160.85.21.1	255, 255, 255, 255 kein BC	
	Router Paris (160.85.18.1):		Paris (160.85.18.1):	
Netzadresse Präfixlänge Route		Route	Broadcast-Adresse	

160.85.19.0 /24 via 10.5.2.6 /10.85.19.255 160.85.18.0 /24 direct G 0/3/0-7 /160.95.18. 255 0.0.0.0 /0 via 10.5.2.1 7.55.155.155.155 Router Genf (10.5.2.22):

Router Genf (10.5.2.22):						
Netzadresse	Präfixlänge	Route	Broadcast-Adresse			
160.85.18.192	/27	via 10.5.2.13	160.85.18.223			
160.85.19.0	/24	via 10.5.2.18	160.85.19.255			
0.0.0.0	/0	via 10.5.2.21	155.255.255.15\$			
0.0.0.0	/0	Vid 10.5.2.21	03.23.03.03			

0.0.0.0	/0	Via 10.5.2.21	193.253.C53.C53				
	Router Wien (160.85.19.1)						
Netzadresse	Präfixlänge	Route	Broadcast-Adresse				
160.85.18.0	/25	via 10.5.2.5	160.85.18.127				
160.85.18.192	/26	via 10.5.2.17	160.85.18,255				
160.85.19.0	/24	direct, G 0/3/0-7	160.85.19.255				
0.0.0.0	/0	via 10.5.2.9	2 55. 255-255-255				

Tabelle 2: Routen ZH

2.1 Vorbereitung zu Forwarding

 Bestimmen Sie die Adressbereiche der aufgeführten Subnetze, also deren Broadcast-Adressen und tragen Sie diese in Tabelle 1: Routen WIN oder Tabelle 2: Routen ZH ein. (Das letzte Byte genügt).

Nehmen Sie an, ein Host im Subnetz Wien sende IP-Pakete an die in Tabelle 3 aufgeführten Ziele im Subnetz Paris (siehe Abbildung 1). pp steht für das standortspezifische dritte Adressbyte vom Netz Paris: also WIN pp=16 / ZH pp=18.

• Tragen Sie in Tabelle 3 die Namen der Router ein, die ein Paket auf seinem Weg passiert.

Ziele	160.85. <i>pp</i> .75	160.85. <i>pp</i> .171	160.85. <i>pp</i> .219	160.85. <i>pp</i> .236	160.85. <i>pp</i> .252
1. Hop	160-15.19.1	160.85.19.1	160.85.19.1	160.83.19.1	160.85.19.1
2. Hop	10.5.2.5	10.5.2.9	10.5.2.17	10.5.2.17	10.5.2.17
3. Нор	1608518.75	10.52.2	10.5.2.13	10.5.2.21	10.5.2.21
4. Hop		160.85.18.171	160.85.18.219	10.5.2.2	10.5.2.10
5. Hop				160.85.18.236	10.5.2.17
6. Нор					10.5.2.21

Tabelle 3: Vorbereitung - Traces von Wien nach Paris

Welche besondere Situation liegt bei der letzten Ziel-IP-Adresse vor?

geht bis TTL = 0 im Kreis (Routing loop)

2.2 Vorbereitung zu Fragmentierung

• Beantworten Sie die folgenden Fragen zum Ping-Befehl unter Linux:

Wie sind die Request-Pakete aufgebaut, die der ping-Befehl (siehe auch 1. Versuch zu OSI)?

Die Option **-s packetsize** erlaubt die Angabe der Daten-Bytes. Wie gross darf der Wert von **packetsize** maximal sein, damit eine bestimmte MTU (z.B. 600) nicht überschritten wird?

Wofür steht die Abkürzung MTU?

Gibt die MTU die maximale Grösse eines Frames (Layer 2) an oder die maximale Paketgrösse (Layer 3)?

Mit der Option **-M do** und **-M dont** kann die Fragmentierung der Ping-Pakete gesteuert werden. Welche Option verhindert die Fragmentierung?