

Pattern Discovery: Basic Concepts

■ What Is Pattern Discovery? Why Is It Important?

■ Basic Concepts: Frequent Patterns and Association Rules

Compressed Representation: Closed Patterns and Max-Patterns

What Is Pattern Discovery?

- What are patterns?
 - □ Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
 - Patterns represent intrinsic and important properties of datasets
- □ Pattern discovery: Uncovering patterns from massive data sets
- Motivation examples:
 - What products were often purchased together?
 - What are the subsequent purchases after buying an iPad?
 - What code segments likely contain copy-and-paste bugs?
 - What word sequences likely form phrases in this corpus?

Pattern Discovery: Why Is It Important?

- ☐ Finding inherent regularities in a data set
- □ Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Mining sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: Discriminative pattern-based analysis
 - Cluster analysis: Pattern-based subspace clustering
- Broad applications
 - Market basket analysis, cross-marketing, catalog design, sale campaign analysis, Web log analysis, biological sequence analysis

Basic Concepts: k-Itemsets and Their Supports

- □ Itemset: A set of one or more items
- \square k-itemset: $X = \{x_1, ..., x_k\}$
 - Ex. {Beer, Nuts, Diaper} is a 3-itemset
- ☐ (absolute) support (count) of X, sup{X}:
 Frequency or the number of occurrences
 of an itemset X
 - \square Ex. sup{Beer} = 3
 - \square Ex. sup{Diaper} = 4
 - Ex. sup{Beer, Diaper} = 3
 - \square Ex. sup{Beer, Eggs} = 1

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40 Nuts, Eggs, Milk		
50	Nuts, Coffee, Diaper, Eggs, Milk	

- (relative) support, s{X}: The fraction of transactions that contains X (i.e., the probability that a transaction contains X)
 - \Box Ex. s{Beer} = 3/5 = 60%
 - \Box Ex. s{Diaper} = 4/5 = 80%
 - \Box Ex. s{Beer, Eggs} = 1/5 = 20%

Basic Concepts: Frequent Itemsets (Patterns)

- An itemset (or a pattern) X is *frequent* if the support of X is no less than a minsup threshold σ
- Let $\sigma = 50\%$ (σ : *minsup* threshold) For the given 5-transaction dataset
 - All the frequent 1-itemsets:
 - □ Beer: 3/5 (60%); Nuts: 3/5 (60%)
 - □ Diaper: 4/5 (80%); Eggs: 3/5 (60%)
 - All the frequent 2-itemsets:
 - □ {Beer, Diaper}: 3/5 (60%)
 - All the frequent 3-itemsets?
 - None

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	20 Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40 Nuts, Eggs, Milk		
50	Nuts, Coffee, Diaper, Eggs, Milk	

- Why do these itemsets (shown on the left) form the complete set of frequent k-itemsets (patterns) for any k?
- Observation: We may need an efficient method to mine a complete set of frequent patterns

From Frequent Itemsets to Association Rules

- Comparing with itemsets, rules can be more telling
 - \square Ex. Diaper \rightarrow Beer
 - Buying diapers may likely lead to buying beers
- How strong is this rule? (support, confidence)
 - \square Measuring association rules: $X \rightarrow Y$ (s, c)
 - Both *X* and *Y* are itemsets

- \square Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%)
- □ Confidence, c: The conditional probability that a transaction containing X also contains Y
 - \square Calculation: $c = \sup(X \cup Y) / \sup(X)$
 - \square Ex. $c = \sup{\text{Diaper, Beer}}/\sup{\text{Diaper}} = \frac{3}{4} = 0.75$

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40 Nuts, Eggs, Milk		
50 Nuts, Coffee, Diaper, Eggs, Milk		

Note: $X \cup Y$: the union of two itemsets

The set contains both X and Y

Mining Frequent Itemsets and Association Rules

- Association rule mining
 - Given two thresholds: minsup, minconf
 - \Box Find all of the rules, $X \rightarrow Y$ (s, c)
 - \square such that, $s \ge minsup$ and $c \ge minconf$
- Let minsup = 50%
 - Freq. 1-itemsets: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3
 - ☐ Freq. 2-itemsets: {Beer, Diaper}: 3
- Let minconf = 50%
 - \Box Beer \rightarrow Diaper (60%, 100%)
 - \square Diaper \rightarrow Beer (60%, 75%)

(Q: Are these all rules?)

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	30 Beer, Diaper, Eggs	
40 Nuts, Eggs, Milk		
50 Nuts, Coffee, Diaper, Eggs, Milk		

Observations:

- Mining association rules and mining frequent patterns are very close problems
- Scalable methods are needed for mining large datasets

Challenge: There Are Too Many Frequent Patterns!

- □ A long pattern contains a combinatorial number of sub-patterns
- □ How many frequent itemsets does the following TDB₁ contain?
 - \Box TDB_{1:} T₁: {a₁, ..., a₅₀}; T₂: {a₁, ..., a₁₀₀}
 - Assuming (absolute) minsup = 1
 - Let's have a try

```
1-itemsets: {a<sub>1</sub>}: 2, {a<sub>2</sub>}: 2, ..., {a<sub>50</sub>}: 2, {a<sub>51</sub>}: 1, ..., {a<sub>100</sub>}: 1, 2-itemsets: {a<sub>1</sub>, a<sub>2</sub>}: 2, ..., {a<sub>1</sub>, a<sub>50</sub>}: 2, {a<sub>1</sub>, a<sub>51</sub>}: 1 ..., ..., {a<sub>99</sub>, a<sub>100</sub>}: 1, ..., ..., ...
```

99-itemsets: {a₁, a₂, ..., a₉₉}: 1, ..., {a₂, a₃, ..., a₁₀₀}: 1

100-itemset: {a₁, a₂, ..., a₁₀₀}: 1

☐ The total number of frequent itemsets:

A too huge set for any one to compute or store!

$$\binom{100}{1} + \binom{100}{2} + \binom{100}{3} + \dots + \binom{100}{100} = 2^{100} - 1$$

Expressing Patterns in Compressed Form: Closed Patterns

- How to handle such a challenge?
- □ Solution 1: **Closed patterns**: A pattern (itemset) X is closed if X is frequent, and there exists no super-pattern Y ⊃ X, with the same support as X
 - □ Let Transaction DB TDB₁: T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
 - □ Suppose minsup = 1. How many closed patterns does TDB₁ contain?
 - □ Two: P_1 : "{ a_1 , ..., a_{50} }: 2"; P_2 : "{ a_1 , ..., a_{100} }: 1"
- Closed pattern is a lossless compression of frequent patterns
 - Reduces the # of patterns but does not lose the support information!
 - □ You will still be able to say: " $\{a_2, ..., a_{40}\}$: 2", " $\{a_5, a_{51}\}$: 1"

Expressing Patterns in Compressed Form: Max-Patterns

- □ Solution 2: Max-patterns: A pattern X is a max-pattern if X is frequent and there exists no frequent super-pattern Y ⊃ X
- □ Difference from close-patterns?
 - Do not care the real support of the sub-patterns of a max-pattern
 - □ Let Transaction DB TDB₁: T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
 - Suppose minsup = 1. How many max-patterns does TDB₁ contain?
 - □ One: P: "{a₁, ..., a₁₀₀}: 1"
- Max-pattern is a lossy compression!
 - \square We only know $\{a_1, ..., a_{40}\}$ is frequent
 - But we do not know the real support of $\{a_1, ..., a_{40}\}$, ..., any more!
- ☐ Thus in many applications, mining close-patterns is more desirable than mining max-patterns

Summary: Pattern Discovery: Basic Concepts

■ What Is Pattern Discovery? Why Is It Important?

■ Basic Concepts: Frequent Patterns and Association Rules

Compressed Representation: Closed Patterns and Max-Patterns

Recommended Readings

- □ R. Agrawal, T. Imielinski, and A. Swami, "Mining association rules between sets of items in large databases", in Proc. of SIGMOD'93
- □ R. J. Bayardo, "Efficiently mining long patterns from databases", in Proc. of SIGMOD'98
- □ N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Discovering frequent closed itemsets for association rules", in Proc. of ICDT'99
- □ J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007

Efficient Pattern Mining Methods

- ☐ The Downward Closure Property of Frequent Patterns
- The Apriori Algorithm
- Extensions or Improvements of Apriori
- Mining Frequent Patterns by Exploring Vertical Data Format
- ☐ FPGrowth: A Frequent Pattern-Growth Approach
- Mining Closed Patterns

The Downward Closure Property of Frequent Patterns

- □ Observation: From $TDB_{1:} T_1: \{a_1, ..., a_{50}\}; T_2: \{a_1, ..., a_{100}\}$
 - We get a frequent itemset: $\{a_1, ..., a_{50}\}$
 - □ Also, its subsets are all frequent: $\{a_1\}$, $\{a_2\}$, ..., $\{a_{50}\}$, $\{a_1, a_2\}$, ..., $\{a_1, a_2\}$, ..., $\{a_{10}, a_{10}\}$, ...
 - □ There must be some hidden relationships among frequent patterns!
- The downward closure (also called "Apriori") property of frequent patterns
 - □ If **{beer, diaper, nuts}** is frequent, so is **{beer, diaper}**
 - Every transaction containing {beer, diaper, nuts} also contains {beer, diaper}
 - Apriori: Any subset of a frequent itemset must be frequent
- Efficient mining methodology

Apriori Pruning and Scalable Mining Methods

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not even be generated! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Scalable mining Methods: Three major approaches
 - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
 - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD'97)
 - Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)

Apriori: A Candidate Generation & Test Approach

- Outline of Apriori (level-wise, candidate generation and test)
 - Initially, scan DB once to get frequent 1-itemset
 - Repeat
 - □ Generate length-(k+1) candidate itemsets from length-k frequent itemsets
 - Test the candidates against DB to find frequent (k+1)-itemsets
 - Set k := k +1
 - Until no frequent or candidate set can be generated
 - Return all the frequent itemsets derived

The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate itemset of size k
F_k: Frequent itemset of size k
K := 1;
F_k := \{ \text{frequent items} \}; // \text{frequent 1-itemset} \}
While (F_k != \emptyset) do \{ // when F_k is non-empty
  C_{k+1} := candidates generated from F_k; // candidate generation
  Derive F_{k+1} by counting candidates in C_{k+1} with respect to TDB at minsup;
  k := k + 1
return \bigcup_k F_k // return F_k generated at each level
```

The Apriori Algorithm—An Example

Database TDB

Items

A, C, D

B, C, E

A, B, C, E

B, E

minsup = 2

1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

$F_{\scriptscriptstyle 1}$	Itemset	sup
1	{A}	2
	{B}	3
	{C}	3
	{E}	3

 F_2

Tid

10

20

30

40

Itemset	sup
{A, C}	2
{B, C}	2
{B, E}	3
{C, E}	2

•

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

2nd scan

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 C_3 **Itemset** {B, C, E}

 3^{rd} scan F_3

Itemset	sup
{B, C, E}	2

Apriori: Implementation Tricks

- How to generate candidates?
 - Step 1: self-joining F_k
 - Step 2: pruning
- Example of candidate-generation
 - \Box F_3 = {abc, abd, acd, ace, bcd}
 - \square Self-joining: $F_3 * F_3$
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - \square acde is removed because ade is not in F_3

Candidate Generation: An SQL Implementation

where $p.item_1 = q.item_1$, ..., $p.item_{k-2} = q.item_{k-2}$, $p.item_{k-1} < q.item_{k-1}$

self-join

<u>ab</u>d

<u>abc</u>

self-join

acde

pruned

<u>ace</u>

bcd

<u>ac</u>d

- lacksquare Suppose the items in F_{k-1} are listed in an order
- Step 1: self-joining F_{k-1} abcd insert into C_k select $p.item_1$, $p.item_2$, ..., $p.item_{k-1}$, $q.item_{k-1}$ from F_{k-1} as p, F_{k-1} as q
- Step 2: pruning for all *itemsets c in C_k* do for all *(k-1)-subsets s of c* do **if** *(s is not in F_{k-1})* **then delete** *c* **from** C_k

Apriori: Improvements and Alternatives

- Reduce passes of transaction database scans
 - Partitioning (e.g., Savasere, et al., 1995)

- Dynamic itemset counting (Brin, et al., 1997)
- Shrink the number of candidates
 - Hashing (e.g., DHP: Park, et al., 1995)

- Pruning by support lower bounding (e.g., Bayardo 1998)
- Sampling (e.g., Toivonen, 1996)
- Exploring special data structures
 - ☐ Tree projection (Agarwal, et al., 2001)
 - H-miner (Pei, et al., 2001)
 - Hypecube decomposition (e.g., LCM: Uno, et al., 2004)

Partitioning: Scan Database Only Twice

□ Theorem: Any itemset that is potentially frequent in TDB must be frequent in at least one of the partitions of TDB

- ☐ Method: Scan DB twice (A. Savasere, E. Omiecinski and S. Navathe, VLDB'95)
 - Scan 1: Partition database so that each partition can fit in main memory (why?)
 - Mine local frequent patterns in this partition
 - Scan 2: Consolidate global frequent patterns
 - ☐ Find global frequent itemset candidates (those frequent in at least one partition)
 - □ Find the true frequency of those candidates, by scanning TDB; one more time

Direct Hashing and Pruning (DHP)

- DHP (Direct Hashing and Pruning): (J. Park, M. Chen, and P. Yu, SIGMOD'95)
- \square Hashing: Different itemsets may have the same hash value: v = hash (itemset)
- □ 1st scan: When counting the 1-itemset, hash 2-itemset to calculate the bucket count
- $lue{}$ Observation: A k-itemset cannot be frequent if its corresponding hashing bucket

count is below the *minsup* threshold

Example: At the 1st scan of TDB, count 1-itemset, and

■ Hash 2-itemsets in the transaction to its bucket

{ab, ad, ce}

□ {bd, be, de}

...

Itemsets	Count
{ab, ad, ce}	35
{bd, be, de}	298
{yz, qs, wt}	58

Hash Table

- At the end of the first scan,
 - \Box if minsup = 80, remove ab, ad, ce, since count{ab, ad, ce} < 80

Exploring Vertical Data Format: ECLAT

- ECLAT (Equivalence Class Transformation): A depth-first search algorithm using set intersection [Zaki et al. @KDD'97]
- ☐ Tid-List: List of transaction-ids containing an itemset
- □ Vertical format: $t(e) = \{T_{10}, T_{20}, T_{30}\}; t(a) = \{T_{10}, T_{20}\}; t(ae) = \{T_{10}, T_{20}\}$
- Properties of Tid-Lists
 - \Box t(X) = t(Y): X and Y always happen together (e.g., t(ac) = t(d))
 - \Box $t(X) \subset t(Y)$: transaction having X always has Y (e.g., $t(ac) \subset t(ce)$)
- Deriving frequent patterns based on vertical intersections
- Using diffset to accelerate mining
 - Only keep track of differences of tids
 - $t(e) = \{T_{10}, T_{20}, T_{30}\}, t(ce) = \{T_{10}, T_{30}\} \rightarrow Diffset (ce, e) = \{T_{20}\}$

A transaction DB in Horizontal Data Format

Tid	Itemset
10	a, c, d, e
20	a, b, e
30	b, c, e

The transaction DB in Vertical Data Format

Item	TidList
а	10, 20
b	20, 30
С	10, 30
d	10
е	10, 20, 30

Why Mining Frequent Patterns by Pattern Growth?

- □ Apriori: A *breadth-first search* mining algorithm
 - ☐ First find the complete set of frequent k-itemsets
 - Then derive frequent (k+1)-itemset candidates
 - Scan DB again to find true frequent (k+1)-itemsets
- Motivation for a different mining methodology
 - Can we develop a depth-first search mining algorithm?
 - For a frequent itemset ρ, can subsequent search be confined to only those transactions that containing ρ?
- Such thinking leads to a frequent pattern growth approach:
 - FPGrowth (J. Han, J. Pei, Y. Yin, "Mining Frequent Patterns without Candidate Generation," SIGMOD 2000)

Example: Construct FP-tree from a Transaction DB

TID	Items in the Transaction	Ordered, frequent itemlist
100	$\{f, a, c, d, g, i, m, p\}$	f, c, a, m, p
200	$\{a, b, c, f, l, m, o\}$	f, c, a, b, m
300	$\{b, f, h, j, o, w\}$	f, b
400	$\{b, c, k, s, p\}$	c, b, p
500	$\{a, f, c, e, l, p, m, n\}$	f, c, a, m, p

After inserting the 1st frequent Itemlist: "f, c, a, m, p"

1. Scan DB once, find single item frequent pattern:

Let min_support = 3

f:4, a:3, c:4, b:3, m:3, p:3

- Sort frequent items in frequency descending order, f-listF-list = f-c-a-b-m-p
- 3. Scan DB again, construct FP-tree
 - ☐ The frequent itemlist of each transaction is inserted as a branch, with shared subbranches merged, counts accumulated

Header Table

Item	Frequency	header $f:1$
f	4	c:1
С	4	
а	3	> a:1
b	3	m:1
m	3	
р	3	p:1

Example: Construct FP-tree from a Transaction DB

TID	Items in the Transaction	Ordered, frequent itemlist
100	$\{f, a, c, d, g, i, m, p\}$	f, c, a, m, p
200	$\{a, b, c, f, l, m, o\}$	f, c, a, b, m
300	$\{b, f, h, j, o, w\}$	f, b
400	$\{b, c, k, s, p\}$	c, b, p
500	$\{a, f, c, e, l, p, m, n\}$	f, c, a, m, p

After inserting the 2nd frequent itemlist "f, c, a, b, m"

L. Scan DB once, find single item frequent pattern:

Let min_support = 3

f:4, a:3, c:4, b:3, m:3, p:3

- Sort frequent items in frequency descending order, f-list F-list = f-c-a-b-m-p
- 3. Scan DB again, construct FP-tree
 - ☐ The frequent itemlist of each transaction is inserted as a branch, with shared subbranches merged, counts accumulated

Header Table

Item	Frequency	header	f:2
f	4		> c:2
С	4		/
а	3		> a:2
b	3		$-\overline{m}:I$ $\rightarrow b:1$
m	3		->
р	3		$- \rightarrow p:1 \mid \rightarrow m:1 \mid$

Example: Construct FP-tree from a Transaction DB

TID	Items in the Transaction	Ordered, frequent itemlist
100	$\{f, a, c, d, g, i, m, p\}$	f, c, a, m, p
200	$\{a, b, c, f, l, m, o\}$	f, c, a, b, m
300	$\{b, f, h, j, o, w\}$	f, b
400	$\{b, c, k, s, p\}$	c, b, p
500	$\{a, f, c, e, l, p, m, n\}$	f, c, a, m, p

After inserting all the frequent itemlists

1. Scan DB once, find single item frequent pattern:

Let min_support = 3

f:4, a:3, c:4, b:3, m:3, p:3

- Sort frequent items in frequency descending order, f-list F-list = f-c-a-b-m-p
- 3. Scan DB again, construct FP-tree
 - ☐ The frequent itemlist of each transaction is inserted as a branch, with shared subbranches merged, counts accumulated

Header Table

Mining FP-Tree: Divide and Conquer Based on Patterns and Data

- Pattern mining can be partitioned according to current patterns
 - □ Patterns containing *p*: *p*'s conditional database: *fcam:2, cb:1*
 - \square p's conditional database (i.e., the database under the condition that p exists):
 - □ transformed prefix paths of item p
 - Patterns having m but no p: m's conditional database: fca:2, fcab:1

Conditional database of each pattern

<u>Item</u>	Conditional database
С	f:3
a	fc:3
b	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

Mine Each Conditional Database Recursively

min_support = 3

Conditional Data Bases

<u>item cond. data base</u>

c f:3

a fc:3

b fca:1, f:1, c:1

m fca:2, fcab:1

p fcam:2, cb:1

- For each conditional database
 - Mine single-item patterns
 - Construct its FP-tree & mine it

p's conditional DB: $fcam:2, cb:1 \rightarrow c:3$

m's conditional DB: fca:2, $fcab:1 \rightarrow fca:3$

b's conditional DB: $fca:1, f:1, c:1 \rightarrow \phi$

Actually, for single branch FP-tree, all the frequent patterns can be generated in one shot

f:3 cam's FP-tree

fm: 3, cm: 3, am: 3

fcm: 3, fam:3, cam: 3

fcam: 3

m: 3

A Special Case: Single Prefix Path in FP-tree

- □ Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts
- Reduction of the single prefix path into one node
- $a_1:n_1$ Concatenation of the mining results of the two parts

FPGrowth: Mining Frequent Patterns by Pattern Growth

- Essence of frequent pattern growth (FPGrowth) methodology
 - Find frequent single items and partition the database based on each such single item pattern
 - Recursively grow frequent patterns by doing the above for each partitioned database (also called the pattern's conditional database)
 - To facilitate efficient processing, an efficient data structure, FP-tree, can be constructed
- Mining becomes
 - Recursively construct and mine (conditional) FP-trees
 - Until the resulting FP-tree is empty, or until it contains only one path single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Scaling FP-growth by Item-Based Data Projection

- What if FP-tree cannot fit in memory?—Do not construct FP-tree
 - "Project" the database based on frequent single items
 - Construct & mine FP-tree for each projected DB
- Parallel projection vs. partition projection
 - Parallel projection: Project the DB on each frequent item
 - Space costly, all partitions can be processed in parallel
 - Partition projection: Partition the DB in order
 - Passing the unprocessed parts to subsequent partitions

CLOSET+: Mining Closed Itemsets by Pattern-Growth

- Efficient, *direct* mining of closed itemsets
- Intuition:
 - If an FP-tree contains a single branch as shown left
 - \Box " a_1, a_2, a_3 " should be merged
- ☐ Itemset merging: If Y appears in every occurrence of X, then Y is merged with X
 - \Box d-proj. db: {acef, acf} \rightarrow acfd-proj. db: {e}
- ☐ Final closed itemset: acfd:2
- There are many other tricks developed
 - □ For details, see J. Wang, et al,, "CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets", KDD'03

TID	Items
1	acdef
2	abe
3	cefg
4	acdf

Let minsupport = 2

a:3, c:3, d:2, e:3, f:3

F-List: a-c-e-f-d

Summary: Efficient Pattern Mining Methods

- ☐ The Downward Closure Property of Frequent Patterns
- The Apriori Algorithm
- Extensions or Improvements of Apriori
- Mining Frequent Patterns by Exploring Vertical Data Format
- □ FPGrowth: A Frequent Pattern-Growth Approach
- Mining Closed Patterns

Recommended Readings

- R. Agrawal and R. Srikant, "Fast algorithms for mining association rules", VLDB'94
- A. Savasere, E. Omiecinski, and S. Navathe, "An efficient algorithm for mining association rules in large databases", VLDB'95
- J. S. Park, M. S. Chen, and P. S. Yu, "An effective hash-based algorithm for mining association rules", SIGMOD'95
- S. Sarawagi, S. Thomas, and R. Agrawal, "Integrating association rule mining with relational database systems: Alternatives and implications", SIGMOD'98
- M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, "Parallel algorithm for discovery of association rules", Data Mining and Knowledge Discovery, 1997
- J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without candidate generation", SIGMOD'00
- M. J. Zaki and Hsiao, "CHARM: An Efficient Algorithm for Closed Itemset Mining", SDM'02
- J. Wang, J. Han, and J. Pei, "CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets", KDD'03
- C. C. Aggarwal, M.A., Bhuiyan, M. A. Hasan, "Frequent Pattern Mining Algorithms: A Survey", in Aggarwal and Han (eds.): Frequent Pattern Mining, Springer, 2014