IA GENERATIVA: DESAFIOS & OPORTUNIDADES NO BRASIL

ORIENTADORES: HUGO BASTOS E HAYALA CURTO.

INTEGRANTES: CAIO CÉSAR, THIAGO DOMINGOS, GABRIEL FERNANDES E NICOLAS RODRIGUES

Tecnologias como a lA Generativa e os Large Language Models (LLMs) estão rapidamente remodelando setores, desde a saúde até a educação, transformando a forma como interagimos e trabalhamos. No entanto, sua adoção plena no Brasil ainda enfrenta obstáculos, especialmente para profissionais juniores e microempresas, grupos cruciais para a nossa economia. Nosso objetivo é analisar esses desafios e identificar as oportunidades para superá-los, desbloqueando o vasto potencial da lA Generativa em nosso país.

SOES BRIDGE

STATE OF DATA 2023

A base "State of Data Brazil 2023" é a espinha dorsal do nosso estudo. Ela nos trouxe um retrato fiel e atualizado dos profissionais de dados no Brasil, abrangendo demografia, experiência e aspirações de carreira. É por meio dela que pudemos entender as oportunidades e os desafios enfrentados por esses talentos, crucial para desvendar o panorama da IA Generativa em nosso país.

MICRODADOS DA EDUCAÇÃO 2023

A base "MICRODADOS_ED_SUP_IES 2023" complementou nossa análise, fornecendo um panorama detalhado das instituições de ensino superior no Brasil. Com ela, pudemos mapear a distribuição e a oferta de cursos, especialmente nas áreas ligadas à IA Generativa. Esses dados são essenciais para entender como a formação acadêmica se alinha com as necessidades do mercado e os desafios de adoção da IA.

ANÁLISE EXPLORATORIA

ANÁLISE EXPLORATORIA

ANÁLISE EXPLORATORIA

TRATAMENTO DE DADOS STATE OF DATA

- 1. Seleção de Colunas: Foram escolhidas 3. Nova Coluna: Foi criada a coluna colunas-chave sobre carreira, satisfação e tecnologias ('Empregado'/'Desempregado'). (IA/Cloud).
- 2. Tratamento de Dados: linhas com respostas inválidas sobre satisfação no trabalho foram removidas; Valores ausentes foram preenchidos com 0 ou 'Desconhecido', dependendo coluna.Os nomes das colunas foram padronizados para um formato simples e legível (ex: idade, genero).
- demografia, emprego_status

TRATAMENTO DE DADOS MICRODADOS

- Seleção de Colunas: Foram usadas as colunas de *UF (SG_UF_IES*), total de técnicos (*QT_TEC_TOTAL*) e total de docentes (*QT_DOC_TOTAL*).
- 2. **Agregação:** Os dados foram agrupados por estado (UF) para calcular a soma total de técnicos, docentes e o número de instituições em cada estado.

JUNÇÃO DE DADOS

- **Método:** Foi realizada uma junção à esquerda **(left join)**, mantendo todos os registros da pesquisa "State of Data".
- Chave: A união foi feita utilizando a coluna de estado de cada base de dados (uf_onde_mora e uf_ies).

Resultado: Um arquivo único (dados_tratados_combinados.csv) onde cada respondente da pesquisa possui os dados educacionais agregados de seu estado.

LIGHTGBM & XGBOOST MODELOS

O **LightGBM** é um algoritmo de aprendizado de máquina baseado em árvores de decisão, reconhecido por sua alta velocidade e eficiência. No contexto do problema, ele foi implementado dentro de um pipeline que primeiro pré-processa os dados (padronizando valores numéricos e codificando variáveis categóricas) e depois utiliza a técnica SMOTE para criar dados sintéticos da classe minoritária (profissionais "insatisfeitos").

O XGBoost é um dos mais robustos e populares algoritmos de gradient boosting, amplamente utilizado em competições e na indústria pela sua precisão e flexibilidade. A abordagem utilizada neste notebook também envolveu um pipeline de pré-processamento similar. No entanto, para tratar o desbalanceamento de classes, em vez de criar dados novos, foi utilizado o parâmetro interno do XGBoost, scale_pos_weight.

LightGBM

Métrica	Classe	Treino	Teste
Acurácia Geral	N/A	97%	96%
AUC-ROC	N/A	0.982	0.955
Precisão	Insatisfeito	1.00	1.00
Precisão	Satisfeito	0.96	0.95
Recall	Insatisfeito	0.90	0.87
Recall	Satisfeito	1.00	1.00
F1-Score	Insatisfeito	0.95	0.93
F1-Score	Satisfeito	0.98	0.98
F1-Score (Macro Avg)	N/A	0.97	0.95

Matrizes de Confusão Comparativas

XGBoost

Métrica	Classe	Treino	Teste
Acurácia Geral	N/A	97%	96%
AUC-ROC	N/A	0.988	0.961
Precisão	Insatisfeito	1.00	1.00
Precisão	Satisfeito	0.97	0.95
Recall	Insatisfeito	0.91	0.87
Recall	Satisfeito	1.00	1.00
F1-Score	Insatisfeito	0.95	0.93
F1-Score	Satisfeito	0.98	0.98
F1-Score (Macro Avg)	N/A	0.97	0.95

Matrizes de Confusão Comparativas (XGBoost)

LIGHTGBM

Nosso modelo utilizou o LightGBM para prever a satisfação dos profissionais de dados. No entanto, acreditamos que alguns fatores podem ter prejudicado o desempenho real do modelo. O principal deles é o possível vazamento de informação, pois features como os "motivos de insatisfação" estão altamente correlacionadas com a variável alvo, facilitando demais a tarefa de classificação e reduzindo o valor do modelo em aplicações práticas. Além disso, o uso do SMOTE para balanceamento pode ter criado exemplos sintéticos que não representam bem a população, impactando a robustez do modelo. Por fim, o conjunto de dados apresenta um viés de amostragem – como a maioria dos respondentes são de níveis pleno e sênior, o modelo pode não capturar adequadamente as particularidades dos profissionais juniores, limitando sua capacidade de generalização.

XGBOOST

No caso do modelo XGBoost, apesar do bom desempenho quantitativo, identificamos potenciais limitações que podem ter afetado sua performance e confiabilidade. O balanceamento entre as classes foi tratado via parâmetro de peso (scale_pos_weight), mas isso pode não ser suficiente quando há forte desbalanceamento, prejudicando a aprendizagem sobre a classe minoritária. O modelo também pode estar sofrendo com vazamento de informação, já que utiliza variáveis diretamente relacionadas à satisfação, o que limita sua utilidade em contextos reais de previsão. Adicionalmente, a distribuição desigual dos níveis de senioridade nos dados de entrada pode fazer com que o XGBoost aprenda padrões muito específicos de plenos e seniors, deixando de captar fatores importantes para os profissionais juniores.

CONCLUSÃO

Apesar dos bons resultados quantitativos dos nossos modelos, aprendemos que interpretar e confiar em previsões de satisfação profissional vai muito além de apenas olhar para as métricas. Fatores como perguntas que já entregam a resposta e a falta de diversidade nos perfis dos respondentes podem dar uma falsa impressão de acerto. Isso mostra que, para gerar valor real com ciência de dados, precisamos olhar sempre para a qualidade dos dados, buscar representatividade e garantir que o modelo realmente ajude a tomar decisões melhores no mundo real.