Emotion Detection using Deep Convolutional Neural Network

Muhammad Hammad & Elliott Barnes

Overview:

- Problem Statement
- Proposed Solution
- Data and Technology
- Results
- Demo
- References

1. Problem Statement

How do we classify emotions?

Problem Statement:

- Classify between two unique emotions:
 - Нарру

- Neutral

·••

- O Applications:
 - Apps that take pictures on smiles
 - Psych research

General Model

General Model

Deep Convolutional Neural Network Model

Model

- Sequential Model
- 4 Encoding Blocks
- 4 Decoding Blocks

Training Details

- 50 Epochs
- 32 Batch Size
- 48x48 Pixels

- The first convolutional layer learns 32 filters, and uses a 3x3 mask (no need for bigger, our input images are only 48x48)
- Then, we use the Rectified Linear Unit (ReLU) activation function
- Reduce the spatial dimensions of the output with max pooling, using a 2x2 mask
- And normalize the output with Batch Normalization

- The second convolutional layer learns 64 filters, and uses a 3x3 mask
- Then, we use the Rectified Linear Unit (ReLU) activation function
- Reduce the spatial dimensions of the output with max pooling, using a 2x2 mask

- The third convolutional layer learns 64 filters, and uses a 3x3 mask
- We added a Dropout layer with a dropout rate of 0.1 to reduce overfitting
- Then, we use the Rectified Linear Unit (ReLU) activation function
- Reduce the spatial dimensions of the output with max pooling, using a 2x2 mask
- And normalize the output with Batch Normalization

- The fourth convolutional layer learns 128 filters, and uses a 3x3 mask
- Then, we use the Rectified Linear Unit (ReLU) activation function
- Reduce the spatial dimensions of the output with max pooling, using a 2x2 mask

Decoding Block 1

- Flatten layer
- Dense 128 units
- Activation (ReLU)

Decoding Block 2

- Flatten layer
- Dense 64 units
- Activation (ReLU)

Decoding Block 3

- > Flatten layer
- Dense 32 units
- Activation (ReLU)

Decoding Block 4

- Dense 2 units
- Activation (ReLU)
- Output one of two emotions

- Optimizer
 - Adam
 - Works well on large datasets
 - Can handle sparse gradients on noisy datasets
 - Computationally efficient
- Loss Function
 - Binary Cross-Entropy
 - Works well for binary classification

Data & Technology

- Technology
 - Python
 - Tensorflow/Keras, Matplotlib, OpenCV, Pandas, and Numpy

- Dataset
 - Facial Expression Recognition Challenge Dataset 2013
 - Downloaded from Kaggle
 - FER2013 Link

Random Images from Training Set

Training Set

Happy: 7215 Neutral: 4965

Test Set

Happy: 879 Neutral: 626

Validation Set

Happy: 895 Neutral: 607

Distribution of all sets

Data Augmentation

Expanded Dataset

By introducing transformations such as:

- Rotation
- > Shear
- > Zoom
- Horizontal Flip / Mirroring
- Width and Height Shift

Results:

Figure of Predictions

Results:

Loss and Accuracy

Results:

Our Test Loss vs Accuracy

References

References:

- 1. Li, S., Xing, J., Niu, Z., Shan, S., & Yan, S. (2015). Shape driven kernel adaptation in Convolutional Neural Network for robust facial trait recognition. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2015.7298618
- 2. Xiaoguang Chen, Xuan Yang, Maosen Wang, & Jiancheng Zou. (2017). Convolution neural network for automatic facial expression recognition. 2017 International Conference on Applied System Innovation (ICASI), 814-817.
- 3. Matsugu, M, Mori, K, Mitari, Y, & Keneda, Y. (2003). Facial expression recognition combined with robust face detection in a convolutional neural network. Proceedings of the International Joint Conference on Neural Networks, 2003, 3, 2243-2246 vol.3.
- 4. Dataset Facial Expression Recognition Challenge Dataset 2013
 - a. https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/data
- 5. Keras
 - a. https://keras.io/
- 6. Open CV
 - a. https://opencv.org/
- 7. Slide Template
 - a. https://www.slidescarnival.com/
- 8. Model Visualization
 - a. https://netron.app/

Questions & Answers