1 Java

1.1 Access Modifier

C: Class; P: Package; SC: Subclass; W: World

Modifier	С	Р	SC	W
public	Y	Y	Y	Y
protected	Y	Y	Y	N
none	Y	Y	N	N
private	Y	N	N	N

1.2 Comparable

Implement Comparable<T>:

int compareTo(T o)

1.3 hashCode

- If two objects are equal, hashCode must return the same result
- hashCode must return the same result hen invoked on the same object more than once

```
int hashCode() {}
boolean equals(Object o) {}
```

2 Algorithmic Analysis

Amortized Cost Algo has amortized cost T(n) if \forall k \in Z, cost of k operations is $\leq kT(n)$

2.1 Master's Theorem

 $T(n) = aT(\frac{n}{b}) + f(n)$ where $a \ge 1$, b > 1

- $f(n) \in O(n^c)$, $c < \log_b a$ then $T(n) \in \Theta(n^{\log_b a})$
- $f(n) \in O(n^c \log^k n)$, $c = \log_b a$ then $T(n) \in \Theta(n^c \log^{k+1} n)$
- $f(n) \in O(n^c), c > \log_b a$ and $\exists k$ st $af(\frac{n}{b}) \le kf(n)$ then $T(n) \in \Theta(n^{\log_b a})$

2.1.1 Common Ones

- $T(n) = T(n/2) + \Theta(1) = O(\log n)$ (Binary Search)
- $T(n) = 2T(n/2) + \Theta(1) = O(n)$ (Binary Tree Traversal)
- $T(n) = 2T(n/2) + \Theta(\log n) = O(n)$ (Optimal Sorted Matrix Search)

```
• T(n) = 2T(n/2) + O(n) = O(n \log n)
(Merge Sort)
```

3 Abstract Data Types

Bag Insert(i); Draw()

Queue (FIFO) add(); offer(i); peek(); poll(); remove()

Dequeue double-ended queue

4 Searching

• Binary Search $O(\log n)$

```
int binarySearch(int[] arr, int key) {
    int start = 0, end = arr.length - 1;
    int found = -1;
    while(start <= end) {</pre>
        int mid = start + (end - start)/2;
        if(arr[mid] < key) {</pre>
             start = mid + 1:
        } else if(arr[mid] > key) {
            end = mid - 1:
        } else {
            found = mid;
             // if we want first instance
             end = mid - 1;
            // if we want last instance
             // start = mid + 1:
    return found;
```

One sided Binary Search Suppose one side is bounded, eg $[1, \infty)$. Use the sequence $[1,2,4,8,16..., 2^k...]$ If it works for 2^k , then search on $[2^{k-1}, 2^k]$

Peak Finding A[j] in array A is peak if (i) A[j] > A[j-1] (ii) A[j] > A[j+1]. If only one item in array, vacously true

1D Peak Finding $O(\log n)$ D&C

 $\label{eq:analytic_problem} \begin{array}{l} \text{if } a[n/2] < a[n/2-1] \text{ look at } 1..n/2-1 \\ \text{else if } a[n/2] < a[n/2+1] \text{ look at } n/2+1..n \\ \text{else return } a[n/2] \end{array}$

2D Peak Finding O(m+n) D&C

```
find max in border + cross O(m+n)
if max is peak return
else go into quadrant with higher number
```

5 Sorting

Bubble Sort Stable, In-place, W&A $O(n^2)$, B O(n), S O(1); Invariant: At iteration i, the sub-array A[1 .. i] is sorted and any element in A[i + 1 .. A . size] is greater or equal to any element in A[1 .. i]

Selection Sort In-Place, Unstable; find minimum element and swap. W,A,B $O(n^2)$, S O(n/1); Invariant: a[0...i-1] is sorted all entries in a[i..n-1] are larger than or equal to the entries in a[0..i-1]

Insertion Sort In-place, Stable; W $O(n^2)$, B $O(n \log n)$, S O(n); Invariant: The subarray a[i] consists of the original elements in sorted order.

Merge Sort Stable, In Place; W/E $O(n \log n)$, S O(n)

Quick Sort In-place, Unstable; W $O(n^2)$ A/B $O(n \log n)$ S $O(\log n)$

6 Geometric Algorithms

6.1 Jarvis March O(hn)

- 1. Find somewhere to start, e.g. y-min coordinate
- 2. Add point with maximum angle from horizon O(n)
- 3. Keep adding points with maximum angle from previous

6.2 Line Intersection Algorithm $O(n \log n)$

- 1. Divide into two equal size sets (along vertical line)
- 2. Recursively find convex hulls (base case 3 points)
- 3. Merge convex hulls
 - (a) Find upper tangent lines
 - i. while (u, v, w) clockwise, decrement v

- ii. while (v, w, z) clockwise, increment w
- (b) Find lower tangent lines
 - i. while (w, v, u) clockwise, increment v
 - ii. while (z, v, u) clockwise, decrement w

6.3 Quick Hull $O(n \log n)$

- 1. Choose pivot, construct two subproblems, delete interior points
- 2. recurse on subproblems

7 Trees

7.1 Binary Trees (height h)

 $h(v) = max\left(h(v.left), h(v.right)\right) + 1$

- BST: left ST < key < right ST
- traversal O(n) IN:LSR, PRE:SLR, POST:LRS
- insert, search, findMax, findMin: O(h)
- successor O(h):
 - if hasRightChild, smallest node in right sub-tree
 - else, first parent node that is left child
- delete O(h): switch numChild
 - 0: remove v
 - 1: remove v, connect child(v) to parent(v)
 - 2: swap with successor(v), remove(v)

7.2 AVL Trees (height $h = \log n$)

- Property: Every node is height-balanced
- |v.left.height v.right.height| < 1

- insert $O(\log n)$:
 - insert key in BST

- walk up, perform max 2 rotations if outof-balance
- delete(v): (log n rotations)
 - If v has 2 children, swap with successor
 - delete v, and reconnect children
 - for every ancestor of deleted noderotate if out-of-balance
- Splay Trees: Rotate nodes that are accessed to root. consider using where operations are non-random.

7.3 Augmented Trees

7.3.1 Rank Tree (Order Statistics)

- ullet store weight of tree in each node:
- w(v) = w(v.left) + w(v.right) + 1
- select(k) $O(\log n)$: finds node with rank k

```
rank = left.weight + 1;
  if (k == rank)
    return v
  else if (k < rank)
    return left.select(k)
  else return right.select(k-rank)</pre>
```

• rank(v) $O(\log n)$: computes rank of node v

```
rank = v.left.weight + 1
  while (v != null) do
    if v is left child do nothing
    if v is right child,
      rank += v.parent.left.weight + 1
    v = v.parent
```

7.3.2 Interval Trees

- Each node is an interval (m, n), m < n
- Sort by m, augment node with maximum n of children in each node
- search(x) $O(\log n)$:

```
if x in c
  return c
else if c has no left child
  search in right subtree
else if x > max endpoint in c.left
  search in right subtree
else search in left subtree
```

• find All(x) $O(k \log n)$ for k overlapping intervals

```
search(x)
store it somewhere else
remove interval
repeat until no intervals found
```

- walk up, perform max 2 rotations if out- 7.3.3 Orthogonal Range Searching

1. 1D

- (a) use a binary tree search tree
- (b) store all points in the leaves of the tree, internal nodes store only copies
- (c) each internal node v stores the max of any leaf in the left subtree
- (d) Query Time: $O(k + \log n)$
- (e) Building Tree: $O(n \log n)$

2. k-dim Tree

- (a) each node in the x-tree has a set of points in its subtree
- (b) store the y-tree at each x-node containing all points
- (c) Query Time: $O(k + \log^d n)$
- (d) Building Tree: $O(n \log^{d-1} n)$
- (e) Space: $O(n \log^{d-1} n)$

7.3.4 Custom Augmentations

augment nodes to include the count of the number of nodes in that sub-tree, along with thee sum of the heights of all the people in that sub-tree. To return the desired average, rst search for the name in the hash table; assume it is at node v; then nd the sum of the heights of: the right-child of v, and if w is on the path from v to the root and v is in w's left-subtree, then w's right-subtree and w.

8 Hash Tables

- \bullet n: #
items, m: #buckets
- Simple Uniform Hashing: Keys are equally likely to map to every bucket, and are mapped independently
- $-load(ht) = \frac{n}{m}$
- $-E_{\text{search}} = 1 + \frac{n}{m}$
- Assume $m = \Omega(n)$, $E_{\text{search}} = O(1)$

8.1 Hash Functions

8.1.1 Division

• $h(k) = k \mod m$, choose m prime

8.1.2 Multiplication

• fix table size: $m = 2^r$, for some r

- fix word size: w, size of key in bits
- fix odd constant A, $A > 2^{w-1}$
- $h(k) = (Ak) \mod 2^w >> (w r)$

8.1.3 Rolling Hash

• When key changes by single character

8.2 Chaining

- bucket stores linked list, containing (object, value)
- Worst insert O(1 + cost(h))
- Expected search = $1 + \frac{n}{m} = O(1)$
- Worst search O(n)

8.3 Open Addressing

• One item per slot, probe sequence of buckets until find only one

Average height of people taller than $\mathbf{Andy}h(key,i):U\mapsto 1..m,\ i \text{ is no. of collisions}$

- search: keep probing until empty bucket, or exhausted entire table
- delete: set key to tombstone value, so probe sequence still works
- *insert*: on deleted cell, overwrite, else find next available slot
- good hash function:
 - 1. h(key, i) enumerates all possible buckets
 - 2. Simple Uniform Hashing
- Linear: h(k,i) = h(k) + i, Clustering
- Double: $h(k,i) = f(k) + i \cdot g(k) \mod m$
- Insert, Search: $\frac{1}{1-\alpha}$ where $\alpha = \frac{n}{m} \le 1$
- good: saves space, rare mem alloc, better cache perf
- bad: sensitive to hash, load

8.4 Cuckoo Hashing

- Resolving hash collisions with worst-case constant lookup time
- Lookup: inspection of just two locations in the hash table
- Insertion: Insert into first table if empty; else kick out other key to second location.
- If infinite loop, hash function is rebuilt in place

8.5 Table resizing

- Scan old table $O(m_1)$, create new table $O(m_2)$, insert each element O(1), total $O(m_1 + m_2 + n)$
- O(n) amor: if n == m, m = 2m, if $n < \frac{m}{4}$, $m = \frac{m}{2}$

8.6 Fingerprint Hash Table (FHT)

- Vector of 0/1 bits
- no false negatives, but has false positives. $P_{\text{no FP}} = \left(\frac{1}{e}\right)^{n/m}$

8.7 Bloom Filter

- use n hash functions. More space per item, but require n collisions for false positive.
- $\bullet \ P_{\text{coll}} = \left(1 e^{-kn/m}\right)^k$
- Two hash functions, h(k) and t(k), two tables T_1 and T_2
- insert: $T_1[h(k)] = 1$, $T_2[h(k)] = 1$
- search: if $T_1[h(k)]$ and $T_2[h(k)]$ both 1 return true

9 Graphs

Type	Space	v,w	any	all
List	O(V+E)	slow	fast	fast
Mat	$O(V^2)$	fast	slow	slow

9.1 Simple search

• BFS/DFS do not explore all paths

9.1.1 BFS O(V + E)

bfs(root)

Q.enqueue(root)

```
while Q is not empty:
    current = Q.dequeue()
    visit(current)
    for each node n adj to current
        if n not visited
            n.parent = current
            Q.enqueue(n)
```

9.1.2 DFS O(V + E)

• Same as BFS, but use stack instead of queue

9.1.3 Topological Sort (DAG)

- Post-order DFS
- Kahn's Algorithm (first append all nodes with no incoming edges to result set, remove edges connected to these nodes and repeat, also O(V+E))

9.2 SSSP

9.2.1 Bellman-Ford O(EV)

• $O(V^3)$ if using Adj Matrix

```
do V number of times
  for (Edge e : graph)
    relax(e)
```

- can terminate early if no improvement
- can detect negative cycle: perform V times, then perform once more, if have changes it has negative cycle
- if all weights are the same, use BFS

9.2.2 Dijkstra $O(E \log V)$

- Doesn't work with negative edge weights
- can terminate once end is found

```
add start to PQ
dist[i] = INF for all i
dist[start] = 0
while PQ not empty
  w = pq.dequeue()
  for each edge e connected to w
    if edge is improvement
      update pq[w] O(logn)
      update dist[w]
```

9.2.3 DAG

- Toposort, relax in order
- SSSP on DAG: run topo sort, and relax edges in that order in O(V+E)
- Single Source Longest Path problem is easy on DAG: multiply edge weights by -1 and run SSSP

9.3 Heap

- implements priority queue, is a complete binary tree
- priority of parent > priority of child
- insert: create new leaf, bubbleUp
- decreaseKey: update priority, bubbleDown
- delete: swap with leaf, delete, and then bubble

- store in array:
 - left(x) = 2x + 1
- right(x) = 2x + 2
- $parent(x) = \lfloor (x-1)/2 \rfloor$

9.3.1 Heap Sort

- 1. Heapify (insert n items) O(n log n)
- 2. Extract from heap n times (O(n log n))
- 3. **Improvement**: recursively join 2 heaps and bubble root down (base case single node) O(n)
- 4. O(n log n) worst case, deterministic, inplace

9.3.2 UFDS (weighted)

- union(p,q) $O(\log n)$
 - find parent of p and q
 - make root of smaller tree root of larger tree
- find(k) $O(\log n)$
 - search up the tree, return the root
- (PC): update all traversed nodes parent to root
- WU with PC, union and find $O(\alpha(m, n))$

9.4 MST

• acyclic subset of edges that connects all nodes, and has minimum weight

9.4.1 Properties

- 1. Cutting edge in MST results in 2 MSTs
- 2. Cycle Poperty: \forall cycle, max weight edge is not in MST
- 3. Cut Property: ∀ partitions, min weight edge across cut is in MST

9.4.2 Prim's $O(E \log V)$

• Uses cycle property

```
T = {start}
enqueue start's edges in PQ
while PQ not empty
e = PQ.dequeue()
if (vertex v linked with e not in T)
   T = T U {v, e}
else
   ignore edge
MST = T
```

9.4.3 Kruskal's $O(E \log V)$

- Uses UFDS
- It is possible that some edge in the first V-1 edges will form a cycle with preexisting MST solution

```
Sort E edges by increasing weight
T = {}
for (i = 0; i < edgeList.length; i++)
  if adding e = edgelist[i] does
  not form a cycle
   add e to T
   else ignore e
MST = T</pre>
```

9.4.4 Boruvka's $O(E \log V)$

T = { one-vertex trees }
While T has more than one component:

For each component C of T:

Begin with an empty set of edges S For each vertex v in C:

Find the cheapest edge from v to a vertex outside of C, and add it to S

Add the cheapest edge in S to T Combine trees connected by edges MST = T

9.4.5 Variants

- 1. Same weight: BFS/DFS O(E)
- 2. Edges have weight 1..k:
 - Kruskal's
 - Bucket sort Edges O(E)
 - Union/check $O(\alpha(V))$
 - Total cost: $O(\alpha(V)E)$
 - Prim's
 - Use array of size k as PQ, each slot holds linked list of nodes
 - insert/remove nodes O(V)
 - decreaseKey O(E)
- 3. Directed MST
- \forall node except root, add minimum incoming edge O(E)
- 4. MaxST
 - $\bullet\,$ negate all weights, run MST algo

9.4.6 MST Problems

- 1. How do I add an edge (A,B) of weight k into graph G and find MST quickly?
 - Use cycle property; max edge in any cycle is not in MST

- only add (A,B) if k is not the max weight edge
- O(V + E) time to find max edge along $A \rightarrow B$ with DFS
- 2. Given an undirected graph with K power plants, find the minimum cost to connect all other sites.
 - run Prim's, use super source
 - weight of new edges are zero
 - this is a single MST
- 3. How do I make Kruskal run faster when sorting?
 - Store edges in separate linked lists
 - To process edges in increasing weight, process all edges in one linked list then the next
 - Time: O(E) or $O(E\alpha(m,n))$
 - Space: O(E), need to store all E edges
- 4. Minimum Bottleneck Spanning Tree (MBST)
 - General idea: If I use some edge e that is not in the MST to replace some edge e' in the MST, then my max. edge is max (max edge on original MST, e).
 - Intuitively, my MST would then fulfill the condition of MBST.
 - Note: Every MST is an MBST, but not every MBST is an MST
- 5. Find maximum distance between 2 vertices in MST
 - Bruteforce: perform DFS starting from every single location since there is only one path from any node to another
 - DFS: O(V + E), doing it V times, $O(V(V+E)) = O(V^2)$ since E = V - 1
 - Space: O(V), need to store all the edges in MST

9.5 Floyd-Warshall (APSP)

- Shortest paths have optimal substructure
- Shortest paths have overlapping subproblems
- Idea: gradually allow usage of intermediate vertices
- Invariant: At step k, shortest path via nodes 0 to k are correct

9.6 Network Flow

k-edge connected Source and target are k-edge connected if there are k edge disjoint paths(don't share edges) from source to target.

Max flow st-cut property with minimum capacity(outgoing from s, ignore incoming to s)

Min cut Let S be the nodes reachable from the source in the residual graph. T =all other nodes, $S \to T$ is minimum cut

Augmenting Path path in residual graph from s to t that has no 0 weight edges

9.6.1 Ford-Fulkerson

- 1. Start with 0 flow
- 2. While there exists augmenting path:
 - find an augmenting path
 - compute bottleneck (min edge)
 - increase flow on the path by bottleneck capacity

Time Complexity:

- DFS: O(|F|E)
- BFS(Edmonds-Karp, shortest augmenting path): $O(VE^2)$
- Dinitz: $O(V^2E)$

9.7 Graph Algorithms on Trees9.7.1 Min Vertex Cover

- Idea: transform tree into DAG, run DP
- only two possiblities for each vertex; taken or not

```
int MVC(int v, int flag) {
  int ans = 0;
  if (memo[v][flag] != -1)
```

9.7.2 SSSP

- On a weighted tree, any graph traversal algorithm (eg. DFS, BFS) can obtain the shortest path to any vertice in O(V)
- Weight of shortest path between two vertices is the sum of the weights of edges on the unique path

9.7.3 ASSP

• Run SSSP on V vertices in total $O(V^2)$, compared to $O(V^3)$ FW algorithm

9.7.4 Diameter

- Originally, run FW in $O(V^3)$ and do an $O(V^2)$ all-pairs check, to total $O(V^2)$.
- Now, only need 2 O(V) traversals: DFS/BFS from any vertex s to find the furthest vertex x. Then do a DFS/BFS one more time from vertex x to find furthest vertex y. Length of unique path along x to y is the diameter of the tree.

9.8 Graph Modelling Techniques

- 1. minimum shortest path from many source to one destination: run SSSP treating destination as source.
- 2. multiple sources to multiple destinations: consider super source and super sink, with edge weight 0, and run Dijkstra (if no negative edge weights), BF otherwise.
- 3. Attempt to convert graph into a DAG and use DP techniques. Example: attaching a variable to a vertex that is monotonically decreasing

4. Shortest path between X and Y that passes through node A: Compute two shortest paths; X to A, A to Y, and join the paths.

10 Parallel Algorithms

10.1 Parallel Fibonacci

```
parallelFib(n) {
  if(n < 2) then
  return n;
  x = spawn parallelFib(n - 1);
  y = spawn parallelFib(n - 2);
  sync;
  return x + y;
}</pre>
```

- Critical Path: T_{∞} , Parallelism = T_1/T_{∞}
- $T_{\infty}(n) = max(T_{\infty}(n-1), T_{\infty}(n-2)) + O(1) = O(n)$
- $T_p > T_1/p$
- $T_p > T_{\infty}$, cannot run slower on more processors
- Goal: $T_p = (T_1/p) + T_{\infty}$, T_1/p is the parallel part, T_{∞} is the sequential part

10.2 Matrix Addition

```
Before: • Work analysis: T_1(n) = O(n^2)
```

• critical path analysis: $T_{\infty}(n) = O(n^2)$ After:

```
pMatAdd(A,B,C,i,j,n)
  if(n == 1)
    C[i,j] = A[i,j] + B[i,j];
else:
    spawn pMatAdd(A,B,C,i,j,n/2);
    spawn pMatAdd(A,B,C,i,j+n/2,n/2);
    spawn pMatAdd(A,B,C,i+n/2,j,n/2);
    spawn pMatAdd(A,B,C,i+n/2,j+n/2,n/2);
    spawn pMatAdd(A,B,C,i+n/2,j+n/2,n/2);
    sync;
```

- Work Analysis: $T_1(n) = 4T_1(n/2) + O(1) = O(n^2)$
- Critical Path Analysis: $T_{\infty}(n) = T_{\infty}(n/2) + O(1) = O(\log n)$

10.3 Parallelized Merge Sort

```
pMerge(A[1..k], B[1..m], C[1..n])
  if (m > k) then pMerge(B, A, C);
  else if (n==1) then C[1] = A[1];
  else if (k==1) and (m==1) then
   if (A[1] <= B[1]) then
      C[1] = A[1]; C[2] = B[1];
  else</pre>
```

```
C[1] = B[1]; C[2] = A[1];
 else
    // binary search for j where
    // B[j] \le A[k/2] \le B[j+1]
    spawn pMerge(A[1..k/2],
                  B[1..j],
                  C[1..k/2+j])
    spawn pMerge(A[k/2+1..1],
                  B[j+1..m],
                  C[k/2+j+1..n])
    synch;
pMergeSort(A, n)
 if (n=1) then return;
 else
   X = \text{spawn pMergeSort}(A[1..n/2], n/2)
   Y = \text{spawn pMergeSort}(A[n/2+1, n], n/2)
    A = spawn pMerge(X, Y);
```

Critical Path Analysis:

- $T_{\infty}(n)$: critical path of parallel merge for A,B of length n
- k > n/2 elements in A, n k elements in B, k/2 + (n k) < 3n/4
- $T_{\infty}(n)T_{\infty}(3n/4) + O(\log n)O(\log^2 n)$
- $T_1(n) = T_1(\alpha n) + T_1((1-\alpha)n) + O(\log n) \approx 2T_1(n/2) + O(\log n) = O(n)$
- Parallel Sorting: $T_{\infty}(n) = T_{\infty}(n/2) + O(\log^2 n) = O(\log^3 n)$