Übungsblatt 9 zur Homologischen Algebra I

Aufgabe 1. Funktoren als verallgemeinerte monotone Abbildungen

Seien P und Q Quasiordnungen (oder Partialordnungen). Seien BP und BQ die zugehörigen dünnen Kategorien, deren Objekte genau die Elemente von P bzw. Q sind und in denen zwischen zwei Objekten genau dann ein Morphismus verläuft, wenn die Quelle kleinergleich dem Ziel ist.

- a) Zeige, dass Funktoren $BP \to BQ$ auf kanonische Art und Weise mit schwach monoton steigenden Abbildungen $P \to Q$ korrespondieren.
- b) Zeige, dass zwischen zwei Funktoren $Bf, Bg: BP \to BQ$ höchstens eine natürliche Transformation verlaufen kann; und dass es genau dann eine solche gibt, wenn für die zugehörigen monotonen Abbildungen $f,g:P\to Q$ gilt: $f(x)\preceq g(x)$ für alle $x\in P$.

Aufgabe 2. Beispiele für natürliche Transformationen

Sei $\mathrm{Id}_{\mathrm{Set}}:\mathrm{Set}\to\mathrm{Set}$ der Identitätsfunktor auf Set, $P:\mathrm{Set}\to\mathrm{Set}$ der (kovariante) Potenzmengenfunktor und $K:\mathrm{Set}\to\mathrm{Set}$ der Funktor

$$\begin{array}{ccc} X & \longmapsto & X \times X \\ f & \longmapsto & f \times f := ((a,b) \mapsto (f(a),f(b))). \end{array}$$

a) Zeige: Es gibt nur eine einzige natürliche Transformation $\eta: \mathrm{Id}_{\mathrm{Set}} \to \mathrm{Id}_{\mathrm{Set}}$, nämlich

$$\eta_X: X \to X, \ x \mapsto x.$$

b) Zeige: Es gibt nur eine einzige natürliche Transformation $\omega: \mathrm{Id}_{\mathrm{Set}} \to K$, nämlich

$$\omega_X: X \to X \times X, \ x \mapsto (x, x).$$

Tipp für a) und b): Betrachte geeignete Abbildungen $1 \to X$, $\star \mapsto x$. Dabei ist $1 = \{\star\}$ eine einelementige Menge.

- c) Zeige: Es gibt keine natürliche Transformation $P \to \mathrm{Id}_{\mathrm{Set}}$, wohl aber eine in die andere Richtung.
- d) Wir nehmen an, dass wir für jede nichtleere Menge X ein bestimmtes Element $a_X \in X$ gegeben haben. Zeige: Die Setzung $\tau_X : X \to X$, $x \mapsto a_X$ definiert nicht eine natürliche Transformation $\mathrm{Id}_{\mathcal{C}} \to \mathrm{Id}_{\mathcal{C}}$, wobei \mathcal{C} die Kategorie der nichtleeren Mengen und beliebigen Abbildungen bezeichnet.
- e) Welche natürlichen Transformationen $\mathrm{Id}_{\mathcal{C}} \to \mathrm{Id}_{\mathcal{C}}$ gibt es, wenn \mathcal{C} die Kategorie der reellen Vektorräume bezeichnet?

Aufgabe 3. Die 2-Kategorie der Kategorien

- a) Seien $\eta: F \to G$ und $\varepsilon: G \to H$ natürliche Transformationen zwischen Funktoren $F, G, H: \mathcal{C} \to \mathcal{D}$. Definiere auf geeignete Art und Weise die *vertikale Komposition* $\varepsilon \circ \eta: F \to H$. Weise nach, dass deine Definition wirklich zu einer natürlichen Transformation führt.
- b) Sei $\eta: F \to G$ eine natürliche Transformation zwischen Funktoren $F, G: \mathcal{C} \to \mathcal{D}$ und $\varepsilon: J \to K$ eine natürliche Transformation zwischen Funktoren $J, K: \mathcal{D} \to \mathcal{E}$. Definiere auf geeignete Art und Weise die horizontale Komposition $\eta \star \varepsilon: J \circ F \to K \circ G$. Musst du dazu Wahlen treffen?
- c) Verifiziere für passende natürliche Transformationen folgendes Vertauschungsgesetz:

$$(\beta' \circ \beta) \star (\alpha' \circ \alpha) = (\beta' \star \alpha') \circ (\beta \star \alpha)$$

Eine gewöhnliche Kategorie heißt auch 1-Kategorie; eine strikte 2-Kategorie ist eine Kategorie, in der die Hom-Mengen $\operatorname{Hom}(X,Y)$ nicht nur Mengen, sondern ihrerseits (gewöhnliche 1-)Kategorien sind, und in der die Verknüpfungsoperationen $\operatorname{Hom}(Y,Z) \times \operatorname{Hom}(X,Y) \to \operatorname{Hom}(X,Z)$ sogar Funktoren sind. Zur besseren Abgrenzung heißen die Objekte $f \in \operatorname{Hom}(X,Y)$ dann 1-Morphismen (zwischen X und Y) und die Morphismen α : $f \to g$ in $\operatorname{Hom}(X,Y)$ dann 2-Morphismen (zwischen f und g).

d) Zeige, dass sich 1-Kategorien, Funktoren und natürliche Transformationen zu einer 2-Kategorie organisieren.

Aufgabe 4. Überraschende Kommutativität

Die erste Homotopiegruppe $\pi_1(X, x_0)$ eines topologischen Raums X mit Basispunkt x_0 ist die Menge aller stetigen Abbildungen $\gamma: [0,1] \to X$ mit $\gamma(0) = \gamma(1) = x_0$, wobei zwei solche Abbildungen genau dann miteinander identifiziert werden, wenn sie vermöge einer basispunktfixierenden Abbildung $[0,1] \times [0,1] \to X$ homotop sind.

Die zweite Homotopiegruppe $\pi_2(X, x_0)$ ist die Menge aller stetigen Abbildungen $H: [0,1]^2 \to X$, die den Rand des Einheitsquadrats auf den Basispunkt x_0 abbilden, wobei zwei solche Abbildungen H, \widetilde{H} genau dann miteinander identifiziert werden, wenn sie vermöge einer stetigen Abbildung $K: [0,1] \times [0,1]^2 \to X$ mit $K(0,\underline{\hspace{0.5cm}}) = H, K(1,\underline{\hspace{0.5cm}}) = \widetilde{H}, K(\underline{\hspace{0.5cm}}, \partial[0,1]^2) = \text{konst. } x_0 \text{ homotop sind.}$

- a) Finde zwei kanonische Gruppenstrukturen auf $\pi_2(X, x_0)$.

 Tipp: Das hat etwas damit zu tun, wie man das Quadrat horizontal und vertikal in zwei Rechtecke gleicher Größe aufteilen kann.
- b) Beweise, dass die beiden Gruppenstrukturen dasselbe Vertauschungsgesetz erfüllen wie in Aufgabe 3c).
- c) Zeige, dass die beiden Gruppenstrukturen übereinstimmen und kommutativ sind.
 Tipp: Das gilt allgemein zwei binäre Operationen mit neutralem Element, die wie in Aufgabe 3c) miteinander verträglich sind, sind tatsächlich gleich und kommutativ.

- d) Sei A ein Objekt einer 2-Kategorie C. Sei $\mathrm{id}_A:A\to A$ der (1-)Identitätsmorphismus. Sei $Z_C(A):=\mathrm{End}(\mathrm{id}_A)$ die Menge aller 2-Morphismen von id_A nach id_A .
 - Finde zwei Monoidstrukturen auf Z(A), zeige, dass sie miteinander verträglich sind, und folgere daher, dass sie gleich und kommutativ sind.
- e) Der Fundamental-2-Gruppoid $\Pi_1(X)$ ist folgende 2-Kategorie: Die Objekte sind die Punkte von X, die Morphismen sind Wege zwischen den Punkten und die 2-Morphismen zwischen Wegen $\gamma, \tilde{\gamma}$ sind Homotopieklassen von stetigen Abbildungen $H: [0,1] \times [0,1] \to X$ mit $H(0,\underline{\hspace{0.5cm}}) = \gamma$, $H(1,\underline{\hspace{0.5cm}}) = \tilde{\gamma}$.
 - Zeige, dass $Z_{\Pi_1(X)}(x_0) = \pi_2(X, x_0)$. Folgere mit dieser Erkenntnis Teilaufgabe c) aus d).

Aufgabe 5. Eine Kategorie mit endlichen Mengen als Objekten

Zeige, dass folgende Setzungen eine Kategorie Σ definieren. Bestätige also das Assoziativgesetz und finde die Identitätsmorpismen.

Objekte: alle endlichen Mengen

Morphismen: $\operatorname{Hom}(X,Y) := \{ Abbildungen \ f: X \to Y \ \text{zusammen mit} \}$

Totalordnungen auf den Fasern $f^{-1}[\{y\}], y \in Y$

Die Komposition soll dabei wie folgt definiert sein: Die Abbildungsteile verkettet man wie gewöhnlich, und auf den Fasern $(g \circ f)^{-1}[\{z\}]$ definiert man folgende Totalordnung: $i \leq j$ genau dann, wenn entweder $f(i) \neq f(j)$ und $f(i) \leq f(j)$ in $g^{-1}[\{z\}]$, oder f(i) = f(j) und $i \leq j$ in $f^{-1}[\{f(i)\}]$.