수행 기업과제

중대형 공간용 초고해상도 비정형 플렌옵틱 동영상 저작/재생 플랫폼 기술 개발

발주처: 한국전자통신연구원(ETRI)

근무처: 한성대학교 Visual Intelligence 연구실

목 표: 컬러 영상에 대한 2차원 혹은 3차원 객체 추적 기술의 동향을 파악하고 최적의 알고리즘을 선정하여 구현함으로써 플렌옵틱 영상 입력에 대한 성능 검증 및 특성을 비교 분석하고 개선방안을 연구

- NIQE, Sharpness 1/2를 통해 최적의 선명도를 가진 프레임 선정
- $(t-1)^{th}$ 프레임의 포커스 정보 기반 탐색 영역 제한
- 포컬 영역 별 최대 유사도 영역 추적
- 후보 영역 스케일 별 최대 유사도 영역 추적

결 과:

- Ground-Truth 제작
- 새로운 추론 방법 제안

Plenoptic images

Proposed visual object tracking method

결과

정성적 평가

제안 기술 결과

정량적 평가

플렌옵틱 영상 이름	성능 지표	2D 영상 사용	플렌옵틱 영상 사용 (제안 된 방법)
NonVideo4_0	Precision (거리)	71 . 85	3,37
	l oU (%)	20.13	83.04
NonVideo4_1	Precision (거리)	27 . 39	7,03
	l oU (%)	46.03	67.53
Video3	Precision (거리)	81.08	3,08
	l oU (%)	30.98	91.66