IE1204 Digital Design

L14: Semiconductor memory, microcomputer

Masoumeh (Azin) Ebrahimi
KTH/ICT
mebr@kth.se

IE1204 Digital Design

Read Only Memory (ROM)

- A read only memory has the <u>address inputs</u> and <u>data</u> <u>outputs</u>
- With m address lines, 2^m different memory addresses can be accessed
- At each address, there is one data word of n bits
- Usually, the ROM also has an Output Enable (OE) input

8x4 ROM

Possible memory content

A_2	A ₁	A_0	D_3	D_2	D_1	D_0
0	0	0	0	0	1	0
0	0	1	0	1	1	0
0	1	0	1	1	1	1
0	1	1	1	1	0	1
1	0	0	0	0	1	1
1	0	1	0	0	0	0
1	1	0	1	0	0	1
1	1	1	0	0	1	1

Read-Only Memory (ROM)

Use of ROM for implementing logic functions

Address	Content	
Xn-1X1X0	Zm-1Z1Z0	
000	110	
001	001	
•••		
111	001	

A ROM having n inputs and m outputs can be used to implement a combinatorial function with m outputs and 2ⁿ minterms

Use of ROM for implementing sequential circuits

By using feedback, ROM can be adopted to implement sequential circuits and state machines

Random-Access Memory (RAM)

- RAM also has a Write
 Enable (WE) input that
 allows to write a data
 word at a given address
- D_{n-1} ... D₀ serve as both, inputs and outputs

SRAM Static Random Access Memory

- An SRAM memory contains a matrix of SRAM cells
- To write, 'data' is used as input
 - 'Sel' is set to 1 and the value at 'data' is written into the cell
- To read, 'data' is used as output
 - "Sel" is set to 1 and the value from the cell is transferred to the output

SRAM

 Sel_0 Here we have a matrix of 2^m x n **SRAM** cells Sel₁ Data₀ Data₁

SRAM memory

 To ensure that we can only read or write at a time, tristate buffers are used.

Address

Dynamic RAM

- SRAM memory cell requires four transistors, so large memories are too costly to implement in this way
- DRAM memory cells use only one transistor and a capacitor
 - capacitor stores a quantity of charge that corresponds to the logical value of the signal

DRAM Memory Cell

 DRAM cell consists of only one transistor and one capacitor

Writing

- To load the cell,
 word line should be
 set to "1"
 - The cell now gets the value on the bit line

DRAM Memory Cell

Reading is more complex

- We don't want to lose data when reading!
- The bit line is set at a voltage between the High and Low
- To read from the cell, the word line is set to "1"
 - Bit line adjusts its voltage either up or down
 - An additional circuit (sense amplifier) detects the change direction and creates a real 0 or 1
 - The charge in the capacitor C must be restored!

SRAM vs DRAM

- SRAM takes more space than DRAM, but it has a simpler access logic and is therefore faster (but also more expensive)
- When power is shut down, the content of SRAM or DRAM memory disappears

Memory Types

- Volatile memories
 - Memories lose their information if power supply is shut down
 - Static RAM (SRAM)
 - Dynamic RAM (DRAM)
- Non-volatile memories
 - Memories keep their information if power supply is shut down
 - Flash
 - EPROMs, EEPROMs

A combination of different memories is required in an electronic design!

Flash Memory

- Non-volatile memory
 - Found in over 90% PCs, over 90% cellular phones and over 50% modems
 - Key component of the digital imaging and audio markets where it serves as the digital "film" or digital "tape"
- Low cost and low power consumption
- Can be erased and updated, but it takes much more time than in a RAM

Memory Access Times and Costs

Memory Technology	Typical Access Time	\$ Per GB in 2004
SRAM	0.5 ns -5 ns	\$ 4,000 - \$ 10,000
DRAM	50 ns - 70 ns	\$ 100 - \$ 200
Magnetic disk	5,000,000 ns - 20,000,000 ns	\$ 0.5 - \$ 2

Source: Patterson and Hennessy, 2004

Microcomputer

 A microcomputer consists of both combinational and sequential digital logic

Motorola 68000 (1979-prerelease)

Motorola 68000

 Motorola 68000 was a highly successful processor that formed the brain in several desktop computers (not in the IBM PC) in the 1980s

Atari ST

Apple Macintosh

Principles of Microcomputer Architecture

Hardware architecture of a small embedded system

Supplementary courses

Course evaluation

- It is important that we get your feedback!
- You will soon receive an e-mail with instructions for course evaluation
- Help us to improve the course with <u>your</u> feedbacks (Please comment)