

12주차 실습

RML Lab.

Continuous Random Variable

Discrete r.v vs Continuous r.v

$$p_X(x) = P(X = x)$$

$$p_{X|A}(x) = P(X = x \mid A)$$

$$P(X \in B) = \sum_{x \in B} p_X(x)$$

$$P(X \in B \mid A) = \sum_{x \in B} p_{X|A}(x)$$

$$\sum_{x} p_{X|A}(x) = 1$$

$$f_X(x) \cdot \delta \approx \mathbf{P}(x \leq X \leq x + \delta)$$

$$f_{X|A}(x) \cdot \delta \approx \mathbf{P}(x \le X \le x + \delta \mid A)$$

$$P(X \in B) = \int_B f_X(x) \, dx$$

$$P(X \in B \mid A) = \int_B f_{X|A}(x) dx$$

$$\int f_{X|A}(x) \, dx = 1$$

Expectation

Conditional expectation of X, given an event

$$\mathbf{E}[X] = \sum_{x} x p_X(x)$$

$$\mathbf{E}[X \mid A] = \sum_{x} x p_{X \mid A}(x)$$

$$\mathbf{E}[X] = \int x f_X(x) \, dx$$

$$\mathbf{E}[X \mid A] = \int x f_{X|A}(x) \, dx$$

Expected value rule:

$$\mathbf{E}[g(X)] = \sum_{x} g(x) p_X(x)$$

$$\operatorname{E}[g(X) \mid A] = \sum_{x} g(x) p_{X \mid A}(x)$$

$$\mathbf{E}[g(X)] = \int g(x) f_X(x) \, dx$$

$$\mathbf{E}[g(X) \mid A] = \int g(x) f_{X|A}(x) dx$$

Variance

Variance and its properties

- Definition of variance: $var(X) = E[(X \mu)^2]$
- Calculation using the expected value rule, $\mathbf{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) \, dx$

$$var(X) = \int_{-\infty}^{\infty} (x - \mu)^{2} f_{x}(x) dx$$

Standard deviation: $\sigma_X = \sqrt{\text{var}(X)}$

$$var(aX + b) = a^2 var(X)$$

A useful formula: $\operatorname{var}(X) = \operatorname{E}[X^2] - \left(\operatorname{E}[X]\right)^2$

Distribution

Uniform distribution

	Uniform distribution					
r.v type	discrete	continuous				
parameter	$a \in \{, -2, -1, 0, 1, 2, \}$ $b \in \{, -2, -1, 0, 1, 2, \}$ $b \ge a$ n = b - a + 1	$-\infty < a < b < \infty$ $x \in [a, b]$				
PMF or PDF	$\frac{1}{n}$	$\begin{cases} \frac{1}{b-a} & for \ x \in [a,b] \\ 0 & otherwise \end{cases}$				
mean	$\frac{a+b}{2}$	$\frac{a+b}{2}$				
variance	$\frac{(b-a+1)^2 - 1}{12}$	$\frac{(b-a+1)^2}{12}$				

Geometric distribution vs Exponential distribution

	Geometric distribution	Exponential distribution		
r.v type	discrete	continuous		
parameter	$0 k \in \{1, 2, 3,\}$	$\lambda > 0$ $x \in [0, \infty)$		
PMF or PDF	$(1-p)^{k-1}p$	$\lambda e^{-\lambda x}$		
mean	$\frac{1}{p}$	$\frac{1}{\lambda}$		
variance	$\frac{1-p}{p^2}$	$\frac{1}{\lambda^2}$		

Normal (or Gaussian) distribution

	Normal (or Gaussian) distribution			
Notation	$\mathcal{N}(\mu, \sigma^2)$			
parameter	$\mu \in \mathbf{R}$ $\sigma^2 > 0$			
PDF	$\frac{1}{\sqrt{2\sigma^2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$			
mean				
variance	$\frac{1-p}{p^2}$			

Let X be a continuous random variable with a PDF of the form

$$f_X(x) = egin{cases} c(1-x), & ext{if } x \in [0,1], \ 0, & ext{otherwise}. \end{cases}$$

Find the following values.

1.
$$c =$$

2.
$${f P}(X=1/2)=$$

3.
$$\mathbf{P}ig(X \in \{1/k: k ext{ integer}, \, k \geq 2\}ig) = igg[$$

4.
$$\mathbf{P}(X \leq 1/2) =$$

Suppose that X has a PDF of the form

$$f_X(x) = \left\{ egin{aligned} 1/x^2, & ext{if } x \geq 1, \ 0, & ext{otherwise.} \end{aligned}
ight.$$

For any x>2 , the conditional PDF of X , given the event X>2 is

The random variables X and Y have a joint PDF of the form $f_{X,Y}(x,y) = c \cdot \exp \left\{ -\frac{1}{2} \left(4x^2 - 8x + y^2 - 6y + 13 \right) \right\}$.

$$\mathbf{E}[X] =$$

$$\operatorname{var}(X) =$$

$$\mathbf{E}[Y] =$$

$$\operatorname{var}(Y) =$$

The bias of a coin (i.e., the probability of Heads) can take three possible values, 1/4, 1/2, or 3/4, and is modeled as a discrete random variable Q with PMF

$$p_Q(q) = egin{cases} 1/6, & ext{if } q = 1/4, \ 2/6, & ext{if } q = 2/4, \ 3/6, & ext{if } q = 3/4, \ 0, & ext{otherwise.} \end{cases}$$

Let K be the total number of Heads in two independent tosses of the coin. Find $p_{Q|K}(3/4\,|\,2)$.

The random variables X and Y are jointly continuous, with a joint PDF of the form

$$f_{X,Y}(x,y) = \left\{ egin{aligned} cxy, & ext{if } 0 \leq x \leq y \leq 1, \ 0, & ext{otherwise,} \end{aligned}
ight.$$

where \boldsymbol{c} is a normalizing constant.

For $x \in [0,0.5]$, the conditional PDF $f_{X|Y}(x\,|\,0.5)$ is of the form ax^b . Find a and b. Your answers should be numbers.

$$a =$$

$$b =$$

Let Z be normal with zero mean and variance equal to 4. For this case, the Chebyshev inequality yields:

$$\mathbf{P}ig(|Z| \geq 4) \leq$$

The random variables X_i are i.i.d. with mean 2 and standard deviation equal to 3. Assume that the X_i are nonnegative. Let $S_n = X_1 + \cdots + X_n$. Use the CLT to find good approximations to the following quantities. You may want to refer to the normal table . In parts (a) and (b), give answers with 4 decimal digits.

a)
$$\mathbf{P}(S_{100} \leq 245) pprox$$

b) We let N (a random variable) be the first value of n for which S_n exceeds 119.

$$\mathbf{P}(N>49)pprox$$

c) What is the largest possible value of n for which we have $\mathbf{P}(S_n \leq 128) pprox 0.5$?

$$n =$$

0.0 0.1 0.2 0.3	.00 .5000 .5398	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.1 0.2		5040			.01	.00	.00	.07	.00	.09
0.2	5308	.00-10	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
- 11	.0000	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.3	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998