Chapter 1: Set Theory

Author: Meng-Gen Tsai Email: plover@gmail.com

Problem 1.1. Show that $\{x : x \neq x\} = \emptyset$.

Proof. Every element x of $\{x: x \neq x\}$ satisfying $x \neq x$, contrary to x = x. That is, there are no elements in $\{x: x \neq x\}$, or $\{x: x \neq x\} = \emptyset$. \square

Problem 1.2. Show that if $x \in \emptyset$, then x is a green-eyed lion.

Proof. $\emptyset \subseteq \{ a \text{ green-eyed lion} \}. \square$

Problem 1.4. Show that the well-ordering principle implies the principle of mathematical induction. (Hint: Consider the set $\{n \in \mathbb{N} : P(n) \text{ is false}\}.$)

Proof (Hint). Suppose that

- (1) P(n) be a proposition defined for each $n \in \mathbb{N}$,
- (2) P(1) is true,
- (3) $[P(n) \Rightarrow P(n+1)]$ is true.

Consider the set

$$S = \{n \in \mathbb{N} : P(n) \text{ is false}\} \subseteq \mathbb{N}.$$

Want to show S is empty, or the principle of mathematical induction holds. If S were nonempty, by the well-ordering principle S has a smallest element m. m cannot be 1 by (2). Say m > 1. Therefore, $m - 1 \in \mathbb{N}$ and P(m - 1) is true by the minimality of m. By (3), P((m - 1) + 1) = P(m) is true, which is absurd. \square

Problem 1.5. Use mathematical induction to establish that the well-ordering principle. (Hint: Given a set S of positive integers, let P(n) be the proposition 'If $n \in S$, then S has a least element'.)

Proof (Modified hint).

(1) Given a set S of positive integers, let P(n) be the proposition 'If $m \in S$ for some $m \leq n$, then S has a least element'. Want to show P(n) is true for all $n \in \mathbb{N}$.

- (a) P(1) is true. For $m \in S$ with $m \le n = 1$, or m = 1 by the minimality of $1 \in \mathbb{N}$, S has a least element 1 (m itself) in \mathbb{N} .
- (b) Suppose P(n) is true. If $n+1 \in S$, then there are only two possible cases.
 - (i) There is a positive integer $m \in S$ less than n+1. So $n \ge m \in S$. Since P(n) is true, S has a least element.
 - (ii) There is no positive integer $m \in S$ less than n+1. In this case n+1 is the least element in S.

In any cases (i)(ii), S has a least element, or P(n+1) is true.

By mathematical induction, P(n) is true for all $n \in \mathbb{N}$.

(2) Show that the well-ordering principle holds. Let T be a nonempty subset of \mathbb{N} , so there exists a positive integer $k \in T$. Notice that P(k) is true by (1), thus T has a least element since $k \leq k$.

Problem 1.9. *Show that* $A \subseteq B \Leftrightarrow A \cap B = A \Leftrightarrow A \cup B = B$.

Proof.

- (1) $A \subseteq B \iff A \cap B = A$.
 - (a) (\Longrightarrow) It suffices to show $A \cap B \supseteq A$. For any $x \in A$, $x \in B$ by $A \subseteq B$, so $x \in A \cap B$, so $A \cap B \supseteq A$.
 - (b) (\Leftarrow) $A = A \cap B \subseteq B$.
- (2) $A \subseteq B \Leftrightarrow A \cup B = B$.
 - (a) (\Longrightarrow) It suffices to show $A \cup B \subseteq B$. For any $x \in A \cup B$, $x \in A$ or $x \in B$. By $A \subseteq B$, $x \in B$ or $x \in B$. $x \in B$, so $x \in B$.
 - (b) $(\Leftarrow\!\!=)$ $A \subseteq A \cup B = B$.

Problem 1.11. Show that $A \subseteq B \Leftrightarrow \widetilde{B} \subseteq \widetilde{A}$.

Proof.

$$\begin{split} A \subseteq B &\iff x \in A \Rightarrow x \in B \\ &\iff x \not\in B \Rightarrow x \not\in A \\ &\iff \widetilde{B} \subseteq \widetilde{A}. \end{split}$$

Problem 1.14. Show that

$$B\cap \left[\bigcup_{A\in\mathscr{C}}A\right]=\bigcup_{A\in\mathscr{C}}(B\cap A).$$

Proof.

$$\begin{split} x \in B \cap \left[\bigcup_{A \in \mathscr{C}} A \right] &\Longleftrightarrow x \in B \text{ and } x \in \bigcup_{A \in \mathscr{C}} A \\ &\iff x \in B \text{ and } x \in A \text{ for some } A \in \mathscr{C} \\ &\iff x \in B \cap A \text{ for some } A \in \mathscr{C} \\ &\iff x \in \bigcup_{A \in \mathscr{C}} (B \cap A). \end{split}$$