

PROTECTED DIGITAL AUDIO AMPLIFIER

Features

- Integrated analog input Class D audio amplifier driver in a small 16 pin package
- Floating inputs enable easy half bridge implementation
- Programmable bidirectional over-current protection with self-reset function
- Programmable preset deadtime for improved THD performances
- Start and stop click noise reduction
- High noise immunity
- ±100 V ratings deliver up to 500 W in output power
- Operates up to 800 kHz
- RoHS compliant

Product Summary

V _{OFFSET} (max)	± 100 V		
Gate driver	lo+	1.0 A	
Gate unvei	lo-	1.2 A	
Selectable Deadtime	е	25/40/65/105 ns	
OC protection delay	(max)	500 ns	
DC offset	DC offset		
PWM frequency	PWM frequency		
Error amplifier open gain	>60 dB		
THD+N* (1kHz, 50V	0.01 %		
Residual Noise* (AES-17 Filter)	200 μVrms		

^{*} Measured with recommended circuit

Typical Applications

- Home theater systems
- Mini component stereo systems
- Powered speaker systems
- General purpose audio power amplifiers

Package Options

SOIC16N

PDIP16

Typical Connection Diagram

Table of Contents	Page
Description	3
Simplified Block Diagram	4
Typical Application Diagram	4
Qualification Information	5
Absolute Maximum Ratings	6
Recommended Operating Conditions	7
Electrical Characteristics	8
Waveform Definitions	11
Functional Block Diagram	12
Input/Output Pin Equivalent Circuit Diagram	13
Lead Definitions	14
Lead Assignments	14
Package Details	15
Tape and Reel Details	16
Part Marking Information	17
Ordering Information	17

Description

The IRS2092 is a high voltage, high performance Class D audio amplifier driver with PWM modulator and protection. In conjunction with two external MOSFET and a few external components, a complete Class D audio amplifier with protection can be realized.

International Rectifier's proprietary noise isolation technology allows high current gate drive stage and high speed low noise error amplifier reside on a single small silicon die.

Open elements of PWM modulator section allow flexible PWM topology implementation

Simplified Block Diagram

Typical Application Diagram

Qualification Information

Qualification inito	manon				
		Industrial ^{††} (per JEDEC JESD 47E)			
		Comments: This IC has passed JEDEC's Industria			
		qualification. IR's Con	sumer qualification level is granted		
		by extension of the high			
Moisture Sensitivity Level		SOIC16N	MSL2 ^{†††}		
		30101614	(per IPC/JEDEC J-STD-020C)		
		DIP16	Not applicable		
	Machine Model	Class B			
	Wacilile Wodel	(per JEDEC standard JESD22-A114D)			
ESD	Human Body Model	Class 2			
E3D	Human Body Woder	(per EIA/JEDEC standard EIA/JESD22-A115-A)			
	Charged Device Model	Class IV			
Charged Device Mode		(per JEDEC standard JESD22-C101C)			
IC Latch-lin Tost	IC Latch-Up Test		Class I, Level A		
io Lateri-op Test			(per JESD78A)		
RoHS Compliant	·	Yes			

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM; all currents are defined positive into any lead. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions

Symbol	Definition		Min	Max	Units	
V _B	High side floating supply voltage		-0.3	220		
Vs	High side floating supply voltage ††		V _B -20	V _B +0.3		
V _{HO}	High side floating output voltage		V _S -0.3	V _B +0.3		
V _{CSH}	CSH pin input voltage	V _S -0.3	V _B +0.3			
V _{CC}	Low side fixed supply voltage ^{††}	-0.3	20			
V_{LO}	Low side output voltage		-0.3	Vcc+0.3	V	
V _{AA}	Floating input positive supply voltage ††		(See I _{AAZ})	210		
V _{SS}	Floating input negative supply voltage ^{††}		-1 (See I _{SSZ})	GND +0.3		
V_{GND}	Floating input supply ground voltage	V _{SS} -0.3 (See I _{SSZ})	V _{AA} +0.3 (See I _{AAZ})			
I _{IN-}	Inverting input current †		±3	mA		
V _{CSD}	SD pin input voltage	V _{SS} -0.3	V _{AA} +0.3	V		
V _{COMP}	COMP pin input voltage	V _{SS} -0.3	V _{AA} +0.3			
V _{DT}	DT pin input voltage	-0.3	V _{CC} +0.3			
V _{OCSET}	OCSET pin input voltage	-0.3	V _{CC} +0.3			
I _{AAZ}	Floating input positive supply zener clamp current	t ^{††}		20		
I _{SSZ}	Floating input negative supply zener clamp currer	nt ^{††}		20		
I _{CCZ}	Low side supply zener clamp current †††			10	mA	
I _{BSZ}	Floating supply zener clamp current ***			10		
I _{OREF}	Reference output current			5		
dV _S /dt	Allowable Vs voltage slew rate			50	V/ns	
dV _{SS} /dt	Allowable Vss voltage slew rate ***			50	V/ms	
Pd	Maximum power dissipation @ T _A ≤ +25°C	SOIC16N		1.0	W	
Fu	Maximum power dissipation @ 1 _A ≤ +25 C	DIP16		1.6	- vv	
Rth _{JA}	Thermal resistance, Junction to ambient	SOIC16N		115	0000	
IXUIJA	DIP16			75	°C/W	
T _J	Junction Temperature		150	°C		
Ts	Storage Temperature		-55	150	°C	
T_L	Lead temperature (soldering, 10 seconds)			300	°C	

IN- contains clamping diode to GND.

[†] †† V_{DD} - IN+, GND -V_{SS}, V_{CC}-COM and V_B-V_S contain internal shunt zener diodes. Please note that the voltage ratings of these can be limited by the clamping current.

For the rising and falling edges of step signal of 10 V. V_{SS} =15 V to 200 V. †††

Recommended Operating Conditions

For proper operation, the device should be used within the recommended conditions below. The Vs and COM offset ratings are tested with supplies biased at V_{AA} - V_{SS} =10 V, V_{CC} =12 V and V_{B} - V_{S} =12 V. All voltage parameters are absolute voltages referenced to COM; all currents are defined positive into any lead.

Symbol	Definition	Min.	Max.	Units
V _B	High side floating supply absolute voltage	V _S +10	V _S +18	V
Vs	High side floating supply offset voltage	†	200	V
I _{AAZ}	Floating input positive supply zener clamp current	1	11	mA
I _{SSZ}	Floating input negative supply zener clamp current	1	11	IIIA
V_{SS}	Floating input supply absolute voltage	0	200	
V_{HO}	High side floating output voltage	Vs	V_{B}	
V _{CC}	Low side fixed supply voltage	10	18	
V_{LO}	Low side output voltage	0	V _{CC}	V
V_{GND}	GND pin input voltage	V _{SS} †††	V _{AA} †††	V
V _{IN-}	Inverting input voltage	V _{GND} -0.5	V _{GND} +0.5	
V _{CSD}	CSD pin input voltage	V _{SS}	V _{AA}	
V_{COMP}	COMP pin input voltage	V _{SS}	V _{AA}	
C _{COMP}	COMP pin phase compensation capacitor to GND	1	-	nF
V_{DT}	DT pin input voltage	0	V _{CC}	V
I _{OREF}	Reference output current to COM ††	0.3	0.8	mA
V _{OCSET}	OCSET pin input voltage	0.5	5	V
V _{CSH}	CSH pin input voltage	Vs	V _B	V
dVss/dt	Allowable Vss voltage slew rate upon power-up ****	-	50	V/ms
I _{PW}	Input pulse width	10 *****	-	ns
f _{SW}	Switching Frequency	-	800	kHz
T _A	Ambient Temperature	-40	125	°C

† Logic operational for Vs equal to –5 V to +200 V. Logic state held for Vs equal to –5 V to –V_{BS}.

Nominal voltage for V_{REF} is 5.1 V. I_{OREF} of 0.3 – 0.8 mA dictates total external resistor value on VREF to be 6.3 kΩ to 16.7 kΩ.

††† GND input voltage is limited by I_{AAZ} and I_{SSZ}.

†††† V_{SS} ramps up from 0 V to 200 V.

††††† Output logic status may not respond correctly if input pulse width is smaller than the minimum pulse width.

Electrical Characteristics

 V_{CC}, V_{BS} = 12 V, V_{SS} = V_{S} =COM=0 V, V_{AA} =10 V, C_{L} =1 nF and T_{A} =25 °C unless otherwise specified.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
Low Side				•	'	
UV _{CC+}	Vcc supply UVLO positive threshold	8.4	8.9	9.4		
UV _{CC-}	Vcc supply UVLO negative threshold	8.2	8.7	9.2	V	
UV _{CCHYS}	UV _{CC} hysteresis	-	0.2	-		
I_{QCC}	Low side quiescent current	-	-	3	mA	$V_{DT}=V_{CC}$
V_{CLAMPL}	Low side zener diode clamp voltage	19.6	20.4	21.6	V	I _{CC} =5 mA
High Side	Floating Supply		_	_		
UV _{BS+}	High side well UVLO positive threshold	8.0	8.5	9.0		
UV _{BS} -	High side well UVLO negative threshold	7.8	8.3	8.8	V	
UV _{BSHYS}	UV _{BS} hysteresis	-	0.2	-		
I_{QBS}	High side quiescent current	-	-	1	mA	
I_{LKH}	High to Low side leakage current	-	-	50	μA	$V_{B}=V_{S}=200 \text{ V}$
V_{CLAMPH}	High side zener diode clamp voltage	19.6	20.4	21.6	V	I _{BS} =5 mA
Floating I	Input Supply					
UV _{AA+}	VA+, VA- floating supply UVLO positive threshold from V _{SS}	8.2	8.7	9.2		V _{SS} =0 V, GND pin floating
UV _{AA-}	VA+, VA- floating supply UVLO negative threshold from V _{SS}	7.7	8.2	8.7	V	V _{SS} =0 V, GND pin floating
UV _{AAHYS}	UV _{AA} hysteresis	-	0.5	-		V _{SS} =0 V, GND pin floating
I _{QAA0}	Floating Input positive quiescent supply current	-	0.5	2		V_{AA} =10 V, V_{SS} =0 V, V_{CSD} =VSS
I _{QAA1}	Floating Input positive quiescent supply current	-	8	11	mA	V_{AA} =10 V, V_{SS} =0 V, V_{CSD} =VAA
I _{QAA2}	Floating Input positive quiescent supply current	-	8	11		V_{AA} =10 V, V_{SS} =0 V, V_{CSD} =GND
I _{LKM}	Floating input side to Low side leakage current	-	-	50	μA	$V_{AA}=V_{SS}=V_{GND}=$ 100 V
V _{CLAMPM+}	V _{AA} floating supply zener diode clamp voltage, positive, with respect to GND	6.0	7.0	8.0	V	$I_{AA} = 5 \text{ mA, } I_{SS} = 5 \text{ mA,}$ $V_{GND} = 0 \text{ V,}$ $V_{CSD} = VSS$
V _{CLAMPM} -	V _{SS} floating supply zener diode clamp voltage, negative, with respect to GND	-8.0	-7.0	-6.0	v	$I_{AA}=5 \text{ mA}, I_{SS}=5 \text{ mA}, \\ V_{GND}=0 \text{ V}, \\ V_{CSD}=\text{VSS}$

Electrical Characteristics (cont'd)

 V_{CC}, V_{BS} = 12 V, V_{SS} = V_{S} =COM=0 V, V_{AA} =10 V, C_{L} =1 nF and T_{A} =25 °C unless otherwise specified.

Audio In	put (V _{GND} =0, V _{AA} =5V, V _{SS} =-5V)					
V_{OS}	Input offset voltage	-15	0	15	mV	
I_{BIN}	Input bias current	-	-	40	nA	
BW	Small signal bandwidth	-	9	-	MHz	$C_{COMP}=2 nF, Rf=3.3 k\Omega$
V_{COMP}	OTA Output voltage	VAA-1	-	VSS+1	V	
g_{m}	OTA transconductance	-	100	-	mS	$V_{IN}=10 \text{ mV}$
G_{V}	OTA gain	60	-	-	dB	
V_{Nrms}	OTA input noise voltage	-	250	-	mVrms	BW=20 kHz, Resolution BW=22 Hz Fig.5
SR	Slew rate	-	±5	-	V/us	C _{COMP} =1 nF
CMRR	Common-mode rejection ratio	-	60	-	dB	
PSRR	Supply voltage rejection ratio	-	65	-	uБ	
PWM co	mparator					
Vth_{PWM}	PWM comparator threshold in COMP	-	(V _{AA} - V _{SS})/2	-	V	
f _{OTA}	COMP pin star-up local oscillation frequency	0.7	1.0	1.5	MHz	V _{CSD} =GND
Protection	on					
V_{REF}	Reference output voltage	4.8	5.1	5.4		I _{OREF} =0.5 mA
Vth _{OCL}	Low side OC threshold in Vs	1.1	1.2	1.3		OCSET=1.2 V, Fig.6
Vth _{OCH}	High side OC threshold in V _{CSH}	1.1+ Vs	1.2+ Vs	1.3+ Vs	V	Vs=200 V,
Vth1	CSD pin shutdown release threshold	0.62xV _{AA}	0.70xV _{AA}	0.78xV _{AA}		
Vth2	CSD pin self reset threshold	0.26xV _{AA}	$0.30xV_{AA}$	$0.34xV_{AA}$		
I _{CSD+}	CSD pin discharge current	70	100	130		$V_{CSD} = V_{SS} + 5 V$
I _{CSD-}	CSD pin charge current	70	100	130	μΑ	$V_{CSD} = V_{SS} + 5 V$
t _{SD}	Shutdown propagation delay from V _{CSD} > V _{SS} + Vth _{OCH} to Shutdown	-	-	250		
t _{OCH}	Propagation delay time from V _{CSH} > Vth _{OCH} to Shutdown	-	-	500	ns	Fig.3
t _{OCL}	Propagation delay time from Vs> Vth _{OCL} to Shutdown	-	-	500		Fig.4

Electrical Characteristics (cont'd)

 V_{CC}, V_{BS} = 12 V, V_{SS} = V_{S} =COM=0 V, V_{AA} =10 V, C_{L} =1 nF and T_{A} =25 °C unless otherwise specified.

Gate D	river					
lo+	Output high short circuit current (Source)	-	1.0	-	А	Vo=0 V, PW <u><</u> 10 μs
lo-	Output low short circuit current (Sink)	-	1.2	-	Α	Vo=12 V, PW <u><</u> 10 μs
V _{OL}	Low level out put voltage LO – COM, HO - VS	-	-	0.1	V	lo=0 A
V _{OH}	High level out put voltage VCC – LO, VB - HO	-	-	1.4	V	10=0 A
ton	High and low side turn-on propagation delay	-	360	-		$V_{DT} = V_{CC}$
toff	High and low side turn-off propagation delay	-	335	-		$V_{DT} = V_{CC}$
tr	Turn-on rise time	-	20	50		
tf	Turn-off fall time	-	15	35		
DT1	Deadtime: LO turn-off to HO turn- on (DT_{LO-HO}) & HO turn-off to LO turn-on (DT_{HO-LO})	15	25	35		V _{DT} >V _{DT1,}
DT2	Deadtime: LO turn-off to HO turn- on (DT_{LO-HO}) & HO turn-off to LO turn-on (DT_{HO-LO})	25	40	55	ns	$V_{DT1}>V_{DT}>V_{DT2,}$
DT3	Deadtime: LO turn-off to HO turn- on (DT _{LO-HO}) & HO turn-off to LO turn-on (DT _{HO-LO})	50	65	85		V_{DT2} > V_{DT} > V_{DT3}
DT4	Deadtime: LO turn-off to HO turn- on (DT _{LO-HO}) & HO turn-off to LO turn-on (DT _{HO-LO}) $V_{DT} = V_{DT4}$	85	105	135		V _{DT3} >V _{DT} > V _{DT4} ,
V_{DT1}	DT mode select threshold 2	0.51xVcc	0.57xVcc	0.63xVcc		
V _{DT2}	DT mode select threshold 3	0.32xVcc	0.36xVcc	0.40xVcc	V	
V _{DT3}	DT mode select threshold 4	0.21xVcc	0.23xVcc	0.25xVcc		

Waveform Definitions

Figure 1: Switching Time Waveform Definitions

Figure 2: CSD to Shutdown Waveform Definitions

Figure 3: V_S > Vth_{OCL} to Shutdown Waveform

Figure 4: V_{CSH} > Vth_{OCH} to Shutdown Waveform

Figure 5: OTA input noise voltage mesurent circuit

Functional Block Diagram: IRS2092

Input/Output Pin Equivalent Circuit Diagrams: IRS2092

Lead Definitions: IRS2092

Pin #	Symbol	Description		
1	VAA	Floating input positive supply		
2	GND	Floating input supply return		
3	IN-	Analog inverting input		
4	COMP	Phase compensation input, comparator input		
5	CSD	Shutdown timing capacitor		
6	VSS	Floating input negative supply		
7	VREF	5V reference voltage to program OCSET pin		
8	OCSET	Low side over current threshold setting		
9	DT	Deadtime program input		
10	COM	Low side supply return		
11	LO	Low side output		
12	VCC	Low side supply		
13	VS	High side floating supply return		
14	НО	High side output		
15	VB	High side floating supply		
16	CSH	High side over current sensing input		

Lead Assignments

PDIP16 and SOIC16N

Package Details: PDIP16

NOTES:

- DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982.
- CONTROLLING DIMENSION: INCH.
- DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- OUTLINE CONFORMS TO JEDEC OUTLINE MS-001AA.
- MEASURED WITH THE LEADS CONSTRAINED TO BE PERPENDICULAR TO DATUM PLANE C.
- DIMENSION DOES NOT INCLUDE MOLD PROTUSIONS. MOLD PROTUSIONS SHALL NOT EXCEED 0.25 [.010].

Package Details: SOIC16N

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AC.
- DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.
- DIMENSION DOES NOT INCLUDE MOLD PROTUSIONS. MOLD PROTUSIONS SHALL NOT EXCEED 0.15 [.006].

www.irf.com

© 2013 International Rectifier

Tape and Reel Details: SOIC16N

CARRIER TAPE DIMENSION FOR 16SOICN

	Me	etric	Imperial		
Code	Min	Max	Min	Max	
Α	7.90	8.10	0.311	0.318	
В	3.90	4.10	0.153	0.161	
С	15.70	16.30	0.618	0.641	
D	7.40	7.60	0.291	0.299	
E	6.40	6.60	0.252	0.260	
F	10.20	10.40	0.402	0.409	
G	1.50	n/a	0.059	n/a	
Н	1.50	1.60	0.059	0.062	

REEL DIMENSIONS FOR 16SOICN

	Me	tric	Imperial		
Code	Min Max		Min	Max	
Α	329.60	330.25	12.976	13.001	
В	20.95	21.45	0.824	0.844	
С	12.80	13.20	0.503	0.519	
D	1.95	2.45	0.767	0.096	
E	98.00	102.00	3.858	4.015	
F	n/a	22.40	n/a	0.881	
G	18.50	21.10	0.728	0.830	
Η	16.40	18.40	0.645	0.724	

Part Marking Information

Ordering Information

Basa Bart Nambar	Daalaana Tana	Standard Pack		Commission Boat Name on
Base Part Number	Package Type	Form	Quantity	Complete Part Number
	PDIP16	Tube/Bulk	25	IRS2092PBF
IRS2092	SOIC46NI	Tube/Bulk	45	IRS2092SPBF
	SOIC16N	Tape and Reel	2500	IRS2092STRPBF

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105