> Meisam Hejazinia

Product review, an insight about consumer search

Meisam Hejazinia

March 23, 2013

Outline

- Data and Defnitions
- Model
- 3 Result of Normal regression
- 4 Poisson Regression
- 6 Bayesian Gaussian Linear Regression
- 6 Bayesian Tobit
- Bayesian Ordinary Probit
- 8 Frequentist Binary Probit
- 9 Bayesian Binary Probit
- Frequentist Binary Logit
- Bayesian Binary Logit
- Conclusion

Data and Defnitions

Mode

Result of Normal

Regressio

Gaussian Linear

Bayesian Tobi

Bayesian Ordinary Probit

Frequentist Binary Probit

Bayesian Binary Pro

Data and Definitions

Data

- Firefox Download them all plug in product reviews for one year (365 days)
- Number of of product reviews availabe: 1212
- Number of categories available 20
- Variation of downloads between 12,000 to 26,000 per day
- Stem of words used by reviewers: 2603 stems categorized by human reviwer

Notation:

- Ψ Word category matrix [2603 \times 20]
- Θ Review word matrix [1212 × 2603]
- $\Omega = \Theta * \Psi$ Review category matrix [1212 × 20]

Data and Defnitions

Mode

Result o Normal regression

Poisson Regression

Gaussian Linear

Bayesian Tobit

Bayesian

Frequentist

Bayesian

Data and Definitions cont.

List of categories:

- Information source, complement products, alternative products, experience, lack of experience
- usage, product attribute, product human interaction, selection criteria
- Cost (time and effort), Terminology, positive valance, negative valance, comparison
- Social network, feeling intensity, uncertainty, politeness, broad, narrow

Model

Result o

Poisson

Regressio

Gaussian Linear Regression

Bayesian Tobit

Bayesian Ordinary Probit

Frequentist Binary Probit

Bayesian Binary Pro

- Model 1: Effect of review attributes on download count
 - $D = \beta * \Omega + \Sigma$
 - where D is number of daily download vector
- Variation of Model 1
 - Frequentist regression
 - poisson regression
 - Bayesian regression
 - Tobit regression
- Model 2: Effect of review attributes on number of star selection
 - $S = \beta * \Phi + \Sigma$ where:
 - S is number of stars selected
 - Φ is attribute of the review (in term of categories)
 - Σ would have normal error term
 - Model would be Ordinal Probit

Model

Result o Normal

regression

Poisson

Regressio

Gaussian Linear

Rayesian Tobit

Bayesian Tobit

Ordinary Probit

Binary Probi

Model cont.

- Model 3: Effect of review attributes on selection of each star level
 - $S_i = \beta * \Phi + \Sigma$ where:
 - S_i is whether i star is selected
 - Φ is attribute of the review (in term of categories)
 - ullet Σ would have be normal or Gambel error term
 - Model: both binary probit and binary logit is checked

Meisam Hejazinia

Result of Normal regression

Variable	Estimate	Std. Error	Pr(> t)
(Interc.)	1.939e+04	2.040e+02	i 2e-16 ***
Info Src	1.215e+04	3.781e+03	0.001436 **
complement	2.041e+03	4.664e+02	1.61e-05 ***
substitute	-3.915e+03	1.164e+03	0.000855 ***
experience	1.784e+03	1.207e+03	0.140302
Naive	-2.602e+03	2.557e+03	0.309565
Usage	-3.996e+02	1.317e+02	0.002597 **
Prod. attrib	1.107e+01	2.194e+02	0.959810
P. intrection	-3.796e+27	3.587e+27	0.290583
Sel. Crit.	-3.904e+03	1.172e+03	0.000961 ***

Signif.codes: 0 * * * 0.001 * * 0.01 * 0.05.0.11s

Result of Normal regression

Result of Normal regression cont.

Variable	Estimate	Std. Error	Pr(> t)
Cost	-1.637e+04	2.178e+03	4.93e-13 ***
Terminology	-2.225e+03	3.875e+02	2.07e-08 ***
Positive	5.483e+01	2.205e+02	0.803747
Negative	7.713e+02	3.121e+02	0.013959 *
Comparison	3.178e+03	1.303e+03	0.015273 *
Social NW	-4.046e+03	8.172e+02	1.16e-06 ***
Extreme fl.	-6.964e+02	3.573e+02	0.052117 .
Uncertainty	-2.343e+02	9.585e+02	0.806995
Politeness	-1.079e+04	7.862e+03	0.170868
Broad	4.218e+02	1.099e+03	0.701423
Narrow	1.333e+02	8.181e+01	0.104270

Signif.codes: 0 * * * 0.001 * *0.01 * 0.05.0.11s

Data and Defnition

Mode

Result of Normal regression

Poisson

Regression

Gaussian Linear Regression

Bayesian Tobit

Bayesian Ordinary Probit

Frequentist Binary Probit

Bayesian Binarv Prol Result of Normal regression cont.

DF	344	
R^2	0.4641	
Adjusted R^2	0.4329	
p-value	< 2.2e - 16	

Data and Defnition

Mod

Result of Normal regression

Poisson Regression

Bayesian Gaussian Linear Regressio

Bayesian Tobi

Bayesian Ordinary Probit

Frequentist Binary Probit

Bayesian Binary Pro

Poisson Regression

Variable	Estimate	Std. Error	Pr(> t)
(Interc.)	9.874e+00	1.355e-03	; 2e-16 ***
Info Src	6.878e-01	2.526e-02	; 2e-16 ***
complement	1.112e-01	3.108e-03	; 2e-16 ***
substitute	-2.130e-01	7.821e-03	; 2e-16 ***
experience	1.020e-01	7.977e-03	; 2e-16 ***
Naive	-1.469e-01	1.703e-02	; 2e-16 ***
Usage	-2.169e-02	8.725e-04	; 2e-16 ***
Prod. attrib	-7.314e-04	1.466e-03	0.61799
P. intrection	-2.150e+23	2.357e+22	i 2e-16 ***

Signif.codes: 0 * * * 0.001 * *0.01 * 0.05.0.11

Three Fisher scoring iteration

> Meisam Hejazinia

Poisson Regression

Poisson Regression cont.

			- ()
Variable	Estimate	Std. Error	Pr(> t)
Sel. Crit.	-2.128e-01	7.879e-03	; 2e-16 ***
Cost	-8.865e-01	1.461e-02	; 2e-16 ***
Terminology	-1.229e-01	2.591e-03	; 2e-16 ***
Positive	3.737e-03	1.467e-03	0.01085 *
Negative	4.214e-02	2.090e-03	; 2e-16 ***
Comparison	1.640e-01	8.625e-03	; 2e-16 ***
Social NW	-2.192e-01	5.455e-03	; 2e-16 ***
Extreme fl.	-3.872e-02	2.382e-03	; 2e-16 ***
Uncertainty	-1.029e-02	6.391e-03	0.10726
Politeness	-5.791e-01	5.177e-02	; 2e-16 ***
Broad	2.031e-02	7.290e-03	0.00534 **
Narrow	7.439e-03	5.419e-04	; 2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 Three Fisher scoring iteration

Data and Defnition

Mode

Result of Normal

Poisson

Regression Regression

Bayesian Gaussian Linear Regression

Bayesian Tobis

Ordinary Probit

Frequentist Binary Probit

Bayesian

Bayesian Gaussian Linear Regression

Variable	Mean	SD
(Interc.)	1.9e+04	0.32
Info Src	1.2e+04	0.32
complement	2.0e+03	0.32
substitute	-3.9e+03	0.32
experience	1.8e+03	0.32
Naive	-2.6e+03	0.32
Usage	-4.0e+02	0.32
Prod. attrib	1.1e+01	0.31
P. intrection	-3.8e+27	0.00
Sel. Crit.	-3.9e+03	0.32

Probability
$$(s) = 0.95$$

Bayesian Gaussian Linear Regression

Bayesian Gaussian Linear Regression cont.

Variable	Mean	SD
Cost	-1.6e+04	0.32
Terminology	-2.2e+03	0.31
Positive	5.5e+01	0.32
Negative	7.7e+02	0.31
Comparison	3.2e+03	0.32
Social NW	-4.0e+03	0.32
Extreme fl.	-7.0e+02	0.32
Uncertainty	-2.3e+02	0.32
Politeness	-1.1e+04	0.31
Broad	4.2e+02	0.32
Narrow	1.3e+02	0.32
Sigma	1231559	89247

Probability (s) = 0.95

Data and Defnitions

Mode

Result of Normal regression

Poisson Regressio

Bayesian Gaussian Linear

Bayesian Tobit

Bayesian Ordinary Probit

Frequentist Binary Probi

Binary Proi

Bayesian Tobit

Variable	Estimate	SD
(Interc.)	1.939e+04	2.041e+02
Info Src	1.214e+04	3.813e+03
complement	2.042e+03	4.669e+02
substitute	-3.9e+03	0.32
experience	1.779e+03	1.207e+03
Naive	-2.601e+03	2.581e+03
Usage	-3.995e+02	1.322e+02
Prod. attrib	1.007e+01	2.213e+02
P. intrection	-3.797e+27	3.609e+27
Sel. Crit.	-3.908e+03	1.179e+03

Not that much different from Bayesian regression model Probability (s) = 0.95

Bayesian Tobit

Bayesian Tobit cont.

Estimate	SD
-1.637e+04	2.189e+03
-2.224e+03	3.891e+02
5.621e+01	2.213e+02
7.698e+02	3.120e+02
3.174e+03	1.304e+03
-4.048e+03	8.190e+02
-6.981e+02	3.584e+02
-2.341e+02	9.574e+02
-1.081e+04	7.871e+03
44.275e+02	1.100e+03
1.332e+02	8.120e+01
1.249e+06	9.608e+04
	-1.637e+04 -2.224e+03 5.621e+01 7.698e+02 3.174e+03 -4.048e+03 -6.981e+02 -2.341e+02 -1.081e+04 44.275e+02 1.332e+02

Not that much different from Bayesian regression model Probability (s) = 0.95

Data and Defnitions

Mode

Result o

Poisson

Regressio

Bayesian Gaussian Linear Regression

Bayesian Tobi

Bayesian Ordinary

Frequentist

Probit

Bayesian

Bayesian Ordinary Probit

Variable	Estimate	SD
(Interc.)	2.4602	0.0861
Info Src	0.0249	0.2070
complement	0.0334	0.0402
substitute	0.0205	0.1367
experience	0.0058	0.0705
Naive	0.1426	0.2439
Usage	-0.0744	0.0167
Prod. attrib	-0.0725	0.0301
P. intrection	-0.3579	0.4702
Sel. Crit.	-0.0649	0.2166

Data and Defnition

Mode

Result of Normal regressio

Poisson Regressie

Bayesian Gaussian Linear Regression

Bayesian Tobit

Bayesian Ordinary

Frequentist Binary Probit

Bayesian

Probit

Bayesian Ordinary Probit cont.

Variable	Estimate	SD
Variable		
Cost	0.7268	0.3572
Terminology	0.1061	0.0705
Positive	0.2215	0.0326
Negative	-0.0881	0.0255
Comparison	-0.0509	0.0923
Social NW	0.0279	0.0904
Extreme fl.	0.0910	0.0438
Uncertainty	-0.1971	0.0938
Politeness	0.5938	0.3750
Broad	-0.2004	0.1027
Narrow	-0.0038	0.0072

Bayesian Ordinary Probit

Bayesian Ordinary Probit cont.

mean	STD
0.00	0.000
0.33	0.045
0.86	0.071
1.78	0.079
	0.00 0.33 0.86

> Meisam Hejazinia

Data and Defnition

Mod

Result o

Poisson

Regressio

Gaussian Linear Regression

Bayesian Tobi

Bayesian

Frequentist

Binary Probit

Frequentist Binary Probit

Variable	Estimate	SD	Pr(> z)
(Interc.)	-0.933384	-16.468	i 2e-16 ***
Info Src	0.266610	0.258385	0.3021
complement	-0.031706	0.046578	0.4961
substitute	0.076687	0.153450	0.6173
experience	0.107060	0.081933	0.1913
Naive	0.014478	0.260034	0.9556
Usage	0.091107	0.021076	1.54e-05 ***
Prod. attrib	-0.030762	0.036012	0.3930
P. intrection	-0.594659	0.609818	0.3295
Sel. Crit.	-0.420550	0.298737	0.1592

Signif.codes: 0 * * * 0.001 * *0.01 * 0.05.0.11

> Meisam Hejazinia

Frequentist Binary Probit

Frequentist Binary Probit

Variable	Estimate	SD	Pr(> z)
Terminology	-0.116154	0.083958	0.1665
Positive	-0.174933	0.036411	1.55e-06 ***
Negative	0.014374	0.030931	0.6421
Comparison	-0.104262	0.114742	0.3635
Social NW	-0.170967	0.105617	0.1055
Extreme fl.	0.087655	0.049576	0.0770
Uncertainty	0.218757	0.111400	0.0496 *
Politeness	0.244508	0.435486	0.5745
Broad	-0.035015	0.125350	0.7800
Narrow	0.011943	0.008273	0.1488

Signif.codes: 0 * * * 0.001 * *0.01 * 0.05.0.11

Data and Defnition

Mode

Result of Normal

Poisson

Regressio

Gaussian Linear Regression

Bayesian Tobit

Bayesian

Frequentist

Bayesian Binary Probit

Bayesian Binary Probit

Estimate	SD
-0.9339	0.0559
0.3099	0.2801
-0.0330	0.0456
0.0607	0.1546
0.1075	0.0821
-0.0088	0.2680
0.0934	0.0202
-0.0315	0.0360
-0.6773	0.6010
-0.4534	0.3166
	-0.9339 0.3099 -0.0330 0.0607 0.1075 -0.0088 0.0934 -0.0315 -0.6773

Somehow similar to frequentist estimate

Bayesian

Bayesian Binary Probit

Variable	Estimate	SD
Cost	-0.8793	0.5247
Terminology	-0.1181	0.0835
Positive	-0.1795	0.0368
Negative	0.0139	0.0289
Comparison	-0.1134	0.1137
Social NW	-0.1761	0.1048
Extreme fl.	0.0891	0.0508
Uncertainty	0.2204	0.1115
Politeness	0.2663	0.4254
Broad	-0.0353	0.1237
Narrow	0.0114	0.0084

Somehow similar to frequentist estimate

Data and Defnition

Mod

Result of Normal

Poisson

Regressio

Gaussian Linear Regression

Bayesian Tobi

Bayesian

Frequentist

Binary Probi

Frequentist Binary Logit

Variable	Estimate	SD	Pr(> z)
(Interc.)	-1.54729	0.10058	i 2e-16 ***
Info Src	0.42794	0.44572	0.3370
complement	-0.06649	0.08214	0.4182
substitute	0.16701	0.26707	0.5318
experience	0.19751	0.13781	0.1518
Naive	0.05007	0.45324	0.9120
Usage	0.15809	0.03646	1.45e-05 ***
Prod. attrib	-0.06275	0.06278	0.3175
P. intrection	-1.22210	1.15394	0.2896
Sel. Crit.	-0.67191	0.53827	0.2119

Signif .codes : 0 * * * 0.001 * *0.01 * 0.05.0.11

> Meisam Hejazinia

Frequentist Binary Logit

Variable	Estimate	SD	Pr(> z)
Cost	-1.18657	0.84149	0.1585
Terminology	-0.20762	0.15033	0.1673
Positive	-0.30409	0.06622	4.39e-06 ***
Negative	0.02858	0.05400	0.5966
Comparison	-0.19581	0.20370	0.3364
Social NW	-0.32325	0.18751	0.0847
Extreme fl.	0.15999	0.08616	0.0633 .
Uncertainty	0.38933	0.18779	0.0382 *
Politeness	0.45152	0.73675	0.5400
Broad	-0.06837	0.21904	0.7549
Narrow	0.02104	0.01399	0.1326

Signif.codes: 0 * * * 0.001 * *0.01 * 0.05.0.11

Bayesian Binary Logit

Model worked for low dimension x, but since mine had 20 variable, the code did not work.

Conclusion

1 Bayesian is good, but it generates somehow same result as frequentist approach