SPE

$$\frac{S(\phi) = \int dx \left(\frac{1}{2}(\partial_{\mu}\phi)^{2} - \frac{\mu^{2}}{2}\phi^{2} - \lambda \phi^{4}\right). \left|b^{i}\int_{C_{i}} v = \int_{b^{i}C_{i}} v = \int_{X} b^{i}\omega_{i} \wedge v.\right| \tilde{F}_{ab} = \frac{1}{2}\epsilon_{abcd}F_{cd}.}{\tilde{F}_{ab}} - c\sqrt{\gamma^{n-1}} = \frac{2}{(n+2)}\frac{1}{M_{D}^{n+2}}\left((n-2)\mu_{0} - \mu_{\rho} - (n-1)\mu_{\theta}\right),}{A_{-1} + A_{0}U_{0}(x) + \sum_{k=0}^{N-1} \tilde{A}_{0k}U_{k+1}(x) = 0,} \left|P_{n+1,m+1}\right| = \left\langle \frac{x^{0}, x^{1}, \dots, x^{m}}{x^{0}, x^{1}, \dots, x^{n}} \right\rangle \left|\tilde{F}_{j} \rightarrow \tilde{F}_{j}' = \phi_{j}(\tilde{F}_{i}), \left|G_{i}(x_{B}) \sim (1 - x_{B})^{2n-3}\right|$$

CPE

$$C_{f4} = \begin{bmatrix} c_1 & c_1 & c_1 & c_1 \\ c_2 & c_1 & -c_1 & -c_2 \\ c_1 & -c_2 & c_2 & -c_1 \end{bmatrix}, \quad S_{f4} = \begin{bmatrix} s_1 & s_2 & s_1 & s_2 \\ s_2 & s_3 & s_2 & s_3 \\ s_1 & s_2 & s_1 & s_2 \\ s_2 & s_3 & s_2 & s_3 \end{bmatrix}, \quad y(-L+x) = \Psi(z(-L+x)) = \Psi(-\tilde{\delta} + \tilde{\delta}^2 x + O(\epsilon^2 |x| + x^2 \tilde{\delta}^3)) \\ = \Psi(-\tilde{\delta} + \tilde{\delta}^2 x) + O(\epsilon^2 |x| + x^2 \tilde{\delta}^3) \\ = -\delta_0 + \Psi'(-\tilde{\delta})\tilde{\delta}^2 x + O(\tilde{\delta}^4 x^2) + O(\epsilon^2 |x| + x^2 \tilde{\delta}^3) \\ = -\delta_0 + \delta_0^2 (1 + o(\delta_0))x + O(\epsilon^2 |x| + x^2 \tilde{\delta}^3),$$

SCE

$$\frac{\textbf{1.38 \times 10^{-3}}}{\textbf{log(1/C^2)}} \frac{\textbf{v_{up}} (-250 \text{ km s}^{-1})}{6.15 \text{ two m (CH=CH)}} \frac{\phi \in L^{p/(p-q)}, \ \phi \ge 0, \ \int_0^1 \phi(\tau) \, d\tau < 1,}{\phi(\tau) \, d\tau < 1} = \begin{bmatrix} \cos \theta & \sin \theta & 0 & 0 \\ -\sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & \cos \theta & \sin \theta \\ 0 & 0 & -\sin \theta & \cos \theta \end{bmatrix}$$

HWE

$$3x+1=A(x+1)+8x |_{LBDE} = \angle LBED = \pm (180^{\circ}-30^{\circ})=75^{\circ} |_{LB} = \pm \frac{1}{2} = \pm \frac{1}$$