Product Rule Practice Problems

Connor Lincycomb

Product Rule Practice Problems

Differentiate each of the following functions with respect to x using the product rule:

- 1. $f(x) = x \cdot \sin(x)$
- $2. \ f(x) = x^4 \cdot \cos(x)$
- 3. $f(x) = \frac{1}{3}x \cdot \tan(x)$
- $4. \ f(x) = 5x \cdot e^x$
- $5. \ f(x) = 2x^3 \cdot e^x$
- 6. $f(x) = (x^2 + 5)(x^4 + 6)$
- 7. $f(x) = (2x^3 + 5)(x^5 7)$
- 8. $f(x) = (-6x^4 + 5x)(x^3 7x)$
- 9. $f(x) = \sec(x) \cdot \tan(x)$
- 10. $f(x) = \sin(x) \cdot \csc(x)$
- 11. $f(x) = 5x^2 \cdot \csc(x)$
- 12. $f(x) = (x^5 7x) \cdot e^x$
- $13. \ f(x) = 5x^3 \cdot \ln(x)$
- 14. $f(x) = \sin(x) \cdot \ln(x)$
- 15. $f(x) = 7x^{3/5} \cdot \ln(x)$

Solutions

1.
$$f(x) = x \cdot \sin(x)$$
$$f'(x) = \sin(x) + x \cdot \cos(x)$$

2.
$$f(x) = x^4 \cdot \cos(x)$$

 $f'(x) = 4x^3 \cdot \cos(x) - x^4 \cdot \sin(x)$

3.
$$f(x) = \frac{1}{3}x \cdot \tan(x)$$

 $f'(x) = \frac{1}{3} \cdot (\tan(x) + x \cdot \sec^2(x))$

4.
$$f(x) = 5x \cdot e^x$$
$$f'(x) = 5e^x + 5x \cdot e^x$$

5.
$$f(x) = 2x^3 \cdot e^x$$

 $f'(x) = 6x^2 \cdot e^x + 2x^3 \cdot e^x$

6.
$$f(x) = (x^2 + 5)(x^4 + 6)$$

 $f'(x) = (2x)(x^4 + 6) + (x^2 + 5)(4x^3)$

7.
$$f(x) = (2x^3 + 5)(x^5 - 7)$$

 $f'(x) = (6x^2)(x^5 - 7) + (2x^3 + 5)(5x^4)$

8.
$$f(x) = (-6x^4 + 5x)(x^3 - 7x)$$

 $f'(x) = (-24x^3 + 5)(x^3 - 7x) + (-6x^4 + 5x)(3x^2 - 7)$

9.
$$f(x) = \sec(x) \cdot \tan(x)$$
$$f'(x) = \sec(x) \cdot \tan^2(x) + \sec^3(x)$$

10.
$$f(x) = \sin(x) \cdot \csc(x)$$

 $f'(x) = 0$

11.
$$f(x) = 5x^2 \cdot \csc(x)$$
$$f'(x) = 10x \cdot \csc(x) - 5x^2 \cdot \csc(x) \cdot \cot(x)$$

12.
$$f(x) = (x^5 - 7x) \cdot e^x$$

 $f'(x) = (5x^4 - 7) \cdot e^x + (x^5 - 7x) \cdot e^x$

13.
$$f(x) = 5x^3 \cdot \ln(x)$$

 $f'(x) = 15x^2 \cdot \ln(x) + 5x^3 \cdot \frac{1}{x}$

14.
$$f(x) = \sin(x) \cdot \ln(x)$$
$$f'(x) = \cos(x) \cdot \ln(x) + \sin(x) \cdot \frac{1}{x}$$

15.
$$f(x) = 7x^{3/5} \cdot \ln(x)$$

 $f'(x) = \frac{21}{5}x^{-2/5} \cdot \ln(x) + 7x^{3/5} \cdot \frac{1}{x}$