1. Problem Statement

The objective of this project is to leverage supervised machine learning to predict whether an individual is a user of illicit drugs based on demographic attributes, personality traits, and behavioral characteristics. The task is a binary classification where the target variable indicates drug use (1 for user, 0 for non-user).

This project addresses substance abuse, a significant public health issue with far-reaching social, psychological, and economic consequences. By identifying strong predictors of drug use and evaluating model performance, this project aims to:

- 1. Provide actionable insights for targeted interventions.
- 2. Inform educational programs and public health policies.
- 3. Develop a model to accurately predict if an individual is at risk for drug use/abuse, using key metrics such as precision, recall, and F1-score.

Models Used

The following machine learning models were evaluated for their ability to predict drug use:

- 1. Logistic Regression: For its simplicity and interpretability in identifying significant predictors.
- 2. Random Forest: For handling non-linear relationships and feature importance analysis.
- 3. Support Vector Machine: For its ability to handle high-dimensional data and non-linear boundaries.
- 4. k-Nearest Neighbor: For capturing local patterns and simplicity in implementation.

Dataset

The data used for this project is the "Drug Consumption (Quantified)" dataset: Fehrman, E., Egan, V., & Mirkes, E. (2015). Drug Consumption (Quantified) [Dataset]. UCI Machine Learning Repository. https://doi.org/10.24432/C5TC7S

Contents of Notebook

- 1. Problem Statement (Topic and Data)
- 2. Description of Data
- 3. Data Cleaning Process
- 4. Data Cleaning Conclusion
- 5. EDA
- 6. EDA Conclusion
- 7. Logistic Regression
- 8. Random Forest
- 9. SVM (Soft Margin)
- 10. KNN
- 11. Results and Analysis
- 12. Discussion and Conclusion

In [2]:

```
# Import required libraries
from ucimlrepo import fetch_ucirepo
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, roc_auc_score, confusion_matrix, roc_c
urve, auc
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
```

```
In [3]:
```

```
# Fetch dataset
drug_consumption_quantified = fetch_ucirepo(id=373)

# Load data as Pandas DataFrames
X = drug_consumption_quantified.data.features
y = drug_consumption_quantified.data.targets

# Merge features and targets into a single DataFrame
df = pd.concat([X, y], axis=1)
```

2. Description of Data

Load and Preview the Data

Understand the dataset structure and summarize it

Check the structure of the dataset

```
In [4]:
```

```
print(df.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1885 entries, 0 to 1884
Data columns (total 31 columns):
 # Column Non-Null Count Dtype
---
                _____
   age
 0
                1885 non-null float64
   gender
 1
                1885 non-null
   education 1885 non-null float64
 3
   country 1885 non-null float64
 4
   ethnicity 1885 non-null float64
 5
   nscore 1885 non-null float64 escore 1885 non-null float64
 6
 7 oscore 1885 non-null float64
8 ascore 1885 non-null float64
9 cscore 1885 non-null float64
 10 impuslive 1885 non-null float64
               1885 non-null float64
 11 ss
12 alcohol 1885 non-null object
13 amphet 1885 non-null object
 13 amphet
             1885 non-null object
 14 amyl
15 benzos 1885 non-null object
16 caff 1885 non-null object
 17 cannabis 1885 non-null
                                object
 18 choc
19 coke
               1885 non-null
                                object
               1885 non-null
                                object
 20 crack
                1885 non-null
                                object
 21 ecstasy 1885 non-null object
22 heroin 1885 non-null object
 23 ketamine 1885 non-null object
 24 legalh 1885 non-null object
 25 lsd
               1885 non-null object
 26 meth
               1885 non-null object
 27 mushrooms 1885 non-null object
 28 nicotine 1885 non-null object
              1885 non-null
 29 semer
                                object
 30 vsa
               1885 non-null
                                object
dtypes: float64(12), object(19)
memory usage: 456.6+ KB
None
```

In [5]:

```
# Dataset Overview
print("Dataset Shape:", df.shape)
```

```
print("\nData Types:")
print(df.dtypes.value_counts())

# Summary of numerical columns
df.describe()

# Count unique values in categorical columns
categorical_columns = df.select_dtypes(include='object').columns
for col in categorical_columns:
    print(f"{col}: {df[col].nunique()} unique values")
```

Dataset Shape: (1885, 31) Data Types: object 19 float64 12 Name: count, dtype: int64 alcohol: 7 unique values amphet: 7 unique values amyl: 7 unique values benzos: 7 unique values caff: 7 unique values cannabis: 7 unique values choc: 7 unique values coke: 7 unique values crack: 7 unique values ecstasy: 7 unique values heroin: 7 unique values ketamine: 7 unique values legalh: 7 unique values lsd: 7 unique values meth: 7 unique values mushrooms: 7 unique values nicotine: 7 unique values semer: 5 unique values vsa: 7 unique values

3. Data Cleanup

Here we'll do some slight cleaning of the data.

- 1. Check for null values
- 2. Fix a typo in the dataset and drop an irrelevant column
- 3. Check for imbalances
- 4. Check for outliers ##### TODO

3.1 Check for null

In [6]:

```
# Check for missing values
print(df.isnull().sum())
```

```
age
gender
education
            0
            0
country
           0
ethnicity
           Ω
nscore
           0
escore
           0
oscore
           0
ascore
cscore
impuslive 0
alcohol
           0
           0
amphet
            0
amyl
           0
benzos
```

```
caff
cannabis
choc
             0
coke
             0
crack
ecstasy
             0
             0
heroin
             0
ketamine
legalh
             0
lsd
             0
meth
mushrooms
nicotine
             0
semer
             0
             0
vsa
dtype: int64
```

3.2 fix typo and drop column

```
In [7]:
```

```
# Fix column name
df = df.rename(columns={'impuslive': 'impulsive'})
```

In [8]:

```
# Drop bad samples based on the dataset description, fictitious drug to weed out those wh
o over report drug use
# List of drug use codes to filter out
drug user = ['CL3', 'CL4', 'CL5', 'CL6']
# Store the original number of rows
original row count = len(df)
# Create a boolean mask to identify rows where 'semer' is NOT in the drug user list
mask = []
for value in df['semer']:
   if value in drug_user:
       mask.append(False) # Drop this row
   else:
       mask.append(True) # Keep this row
# Drop semer column
df = df.drop(columns=['semer'])
# Apply the mask to filter the dataframe
df = df.loc[mask]
# Calculate the number of rows dropped
rows dropped = original row count - len(df)
print(f"Number of rows dropped: {rows dropped}")
```

Number of rows dropped: 3

age

In [9]:

```
# Preview the dataset
print(df.head())
```

nscore escore

oscore

```
0 0.49788 0.48246
                                    0.12600 0.31287 -0.57545 -0.58331
                  -0.05921
                            0.96082
1 -0.07854 -0.48246
                    1.98437
                           0.96082
                                     -0.31685 -0.67825
                                                     1.93886 1.43533
  0.49788 -0.48246
                   -0.05921
                            0.96082
                                     -0.31685 -0.46725 0.80523 -0.84732
                   1.16365 0.96082
3 -0.95197 0.48246
                                    -0.31685 -0.14882 -0.80615 -0.01928
4 0.49788 0.48246
                   1.98437 0.96082 -0.31685 0.73545 -1.63340 -0.45174
          cscore ... crack ecstasy heroin ketamine legalh 1sd meth
   ascore
0 -0.91699 -0.00665 ... CLO CLO CLO CLO CLO CLO CLO
1
 0.76096 -0.14277 ...
                        CL0
                                CL4
                                      CL0
                                              CL2
                                                     CLO CL2 CL3
2 -1.62090 -1.01450 ...
                       CL0
                                CLO CLO
                                              CL0
                                                     CLO CLO CLO
3 0.59042 0.58489 ...
                       CL0
                                CL0
                                      CL0
                                              CL2
                                                    CLO CLO CLO
```

gender education country ethnicity

```
4 -0.30172 1.30612 ...
                 CL0
                        CL1 CL0
                                  CLO
                                       CL1 CL0 CL0
 mushrooms nicotine vsa
          CL2 CL0
    CL0
           CL4 CL0
1
     CL0
           CLO CLO
2
     CL1
3
     CL0
           CL2 CL0
           CL2 CL0
     CL2
[5 rows x 30 columns]
In [10]:
df.columns
Out[10]:
dtype='object')
```

Understand the Target Variable

Before diving into predictors, analyze the distribution of the target variable (y).

In [11]:

```
# Define a list of drugs (update based on your analysis)
drugs = ['cannabis', 'coke', 'crack', 'heroin', 'meth', 'ecstasy',
        'lsd', 'amyl', 'ketamine', 'mushrooms', 'vsa']
# Use at least once in last year
drug_user = ['CL3', 'CL4', 'CL5', 'CL6']
# Define a binary target variable for any drug use in the last year
def check drug use(row):
   for user in drug user: # Iterate over the drug user codes
       if user in row.values: # Check if the code is in the row's values
           return 1 # Return 1 if a match is found
   return 0 # Return 0 if no matches are found
# Apply the function only to the specified drug columns
df['drug use'] = df[drugs].apply(check drug use, axis=1)
dfDrugUse = df.drop(columns={'alcohol',
       'amphet', 'amyl', 'benzos', 'caff', 'cannabis', 'choc', 'coke', 'crack',
       'ecstasy', 'heroin', 'ketamine', 'legalh', 'lsd', 'meth', 'mushrooms',
       'nicotine', 'vsa'})
dfDrugUse.head()
```

Out[11]:

	age	gender	education	country	ethnicity	nscore	escore	oscore	ascore	cscore	impulsive	SS	drug_use
0	0.49788	0.48246	-0.05921	0.96082	0.12600	0.31287	- 0.57545	0.58331	- 0.91699	0.00665	-0.21712	- 1.18084	0
1	- 0.07854	- 0.48246	1.98437	0.96082	-0.31685	- 0.67825	1.93886	1.43533	0.76096	- 0.14277	-0.71126	- 0.21575	1
2	0.49788	- 0.48246	-0.05921	0.96082	-0.31685	- 0.46725	0.80523	- 0.84732	- 1.62090	- 1.01450	-1.37983	0.40148	1
3	- 0.95197	0.48246	1.16365	0.96082	-0.31685	- 0.14882	0.80615	0.01928	0.59042	0.58489	-1.37983	- 1.18084	0
4	0.49788	0.48246	1.98437	0.96082	-0.31685	0.73545	1.63340	- 0.45174	0.30172	1.30612	-0.21712	- 0.21575	1

Overview of the Target Variable

• Start by checking the distribution of the binary target variable to ensure no severe class imbalance.

In [12]:

```
# Plot the new binary target variable
sns.countplot(x=df['drug_use'], y=None, hue=None, data=df)
plt.title("Drug Use Distribution")
plt.xlabel("Drug Use (0 = No, 1 = Yes)")
plt.ylabel("Count")
plt.show()
```

Drug Use Distribution

In [13]:

```
# Check class distribution
print(df['drug_use'].value_counts(normalize=True))

drug_use
1    0.58661
0    0.41339
Name: proportion, dtype: float64
```

3.4 Check for outliers ##TODO

Create a Mapped DataFrame for Visualizations

Copy the original df to a new DataFrame, dfMapped, and apply the mappings only to this new DataFrame.

In [14]:

```
# Mapping age values to age groups

age_mapping = {
    -0.95197: "18-24",
    -0.07854: "25-34",
    0.49788: "35-44",
    1.09449: "45-54",
```

```
1.82213: "55-64",
     2.59171: "65+"
}
gender mapping = {
   0.48246: "Female",
  -0.48246: "Male"
education mapping = {
   -2.43591: "Left before 16",
   -1.73790: "Left at 16",
   -1.43719: "Left at 17",
   -1.22751: "Left at 18",
   -0.61113: "Some college",
   -0.05921: "Professional cert",
    0.45468: "University degree",
    1.16365: "Masters degree",
    1.98437: "Doctorate"
country_mapping = {
   -0.09765: "Australia",
    0.24923: "Canada",
   -0.46841: "New Zealand",
   -0.28519: "Other",
    0.21128: "Ireland",
    0.96082: "UK",
   -0.57009: "USA"
}
ethnicity mapping = {
   -0.50212: "Asian",
    -1.10702: "Black",
    1.90725: "Mixed-Black/Asian",
    0.12600: "Mixed-White/Asian",
   -0.22166: "Mixed-White/Black",
    0.11440: "Other",
   -0.31685: "White"
```

In [15]:

```
# Create a separate DataFrame for mapped values
dfMapped = df.copy()

# Apply mappings to the copied DataFrame for visualizations
dfMapped['age'] = dfMapped['age'].map(age_mapping)
dfMapped['gender'] = dfMapped['gender'].map(gender_mapping)
dfMapped['education'] = dfMapped['education'].map(education_mapping)
dfMapped['country'] = dfMapped['country'].map(country_mapping)
dfMapped['ethnicity'] = dfMapped['ethnicity'].map(ethnicity_mapping)
```

Dataset Overview

The dataset contains 1,885 rows and 30 columns, representing individuals' demographic information, personality traits, and behavioral attributes. It is well-suited for supervised learning as it includes both features and a binary target variable (drug use).

Key Features:

- 1. Demographic Attributes:
 - age: Encoded age groups (e.g., 18-24, 25-34).
 - gender: Encoded as -0.48246 for Male and 0.48246 for Female.
 - education: Encoded levels of education, ranging from "Left before 16" to "Doctorate."
- 2. Personality Traits:

2 ----- ----- ----- ----- ------ Ctondardized navehometric searce based on Dig Eive

nscore, escore, oscore, ascore, cscore: otanuaruizeu psychometric scores baseu on big rive personality traits.

3. Behavioral Characteristics:

- impulsive: Impulsivity score.
- ss: Sensation-seeking score.

4. Target Variable:

• drug use: Binary variable indicating drug use (1 = user, 0 = non-user).

Target Variable Distribution

The target variable is slightly imbalanced, with approximately 58.7% users and 41.3% non-users.

4. Data Cleaning Conclusion

Missing Values

. The dataset contains no missing values

Outliers

• There were no significant outliers

Class Imbalance

• The target variable was ever so slightly imbalanced, with 58.7% users and 41.3% non-users.

Conclusions

The cleaned dataset contains no missing values or extreme outliers.

4. EDA

Feature Distribution by Illicit Drug Use

Analyze the distribution of demographic and personality traits with respect to illicit_drug_use.

a. Demographics

```
In [16]:
```

```
# Visualize age distribution by illicit drug use
sns.countplot(data=dfMapped, x='age', hue=df['drug_use'])
plt.title("Age vs. Illicit Drug Use")
plt.show()
```


In [17]:

```
# Visualize gender distribution by illicit drug use
sns.countplot(data=dfMapped, x='gender', hue=df['drug_use'])
plt.title("Gender vs. Illicit Drug Use")
plt.show()
```


In [18]:

```
# Visualize education distribution by illicit drug use
sns.countplot(data=dfMapped, x='education', hue=df['drug_use'])
plt.title("Education vs. Illicit Drug Use")
plt.xticks(rotation=45)
plt.show()
```


In [19]:

```
# Visualize ethnicity distribution by illicit drug use
sns.countplot(data=dfMapped, x='ethnicity', hue=df['drug_use'])
plt.title("Ethnicity vs. Illicit Drug Use")
plt.xticks(rotation=45)
plt.show()
```


In [20]:

```
# Visualize country distribution by illicit drug use
sns.countplot(data=dfMapped, x='country', hue=df['drug_use'])
plt.title("Country vs. Illicit Drug Use")
plt.xticks(rotation=45)
plt.show()
```

Country vs. Illicit Drug Use

b. Personality Traits

In [21]:

3

```
# Box plots for personality traits by illicit drug use
traits = ['nscore', 'escore', 'ascore', 'cscore', 'impulsive', 'ss']

for trait in traits:
    sns.boxplot(data=df, x=df['drug_use'], y=trait)
    plt.title(f"{trait.capitalize()} vs. Illicit Drug Use")
    plt.show()
```

Nscore vs. Illicit Drug Use

Escore vs. Illicit Drug Use

ó

Ascore vs. Illicit Drug Use

Correlation Analysis

• Analyze the correlation between numerical features and illicit drug use to identify strong predictors.

In [22]:

```
# Compute correlation matrix
correlation_matrix = dfDrugUse.corr()

# Plot heatmap for correlations
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=False, cmap='coolwarm', vmin=-1, vmax=1)
plt.title("Correlation_Matrix")
plt.show()
```


Pairwise Relationships

• Use pair plots to explore how key features relate to illicit drug use.

```
In [25]:
```

```
# Pair plot for selected features
selected_features = ['age', 'nscore', 'escore', 'oscore', 'ascore', 'cscore', 'drug_use',
'ss']
sns.pairplot(df[selected_features], hue='drug_use', diag_kind='kde')
plt.show()
```


Relationships Between Features and illicit_drug_use:

```
In [26]:
```

```
for col in ['age', 'gender', 'education']:
    print(f"Distribution of {col} by illicit_drug_use:")
    print(dfMapped.groupby([col, 'drug_use']).size().unstack())
```

```
Distribution of age by illicit_drug_use: drug_use 0 1 age 18-24 82 558
```

```
ZJ-34 ZU1 Z14
35-44
       205 151
45-54
       205 89
55-64 63 30
65+
        16
             2
Distribution of gender by illicit drug use:
drug_use 0
gender
       527 414
Female
       251 690
Male
Distribution of education by illicit drug use:
                 0
drug use
education
Doctorate
                53
                     36
Left at 16
                48
Left at 17
                 9
                     21
Left at 18
                26
Left before 16
                 9
                    19
              184
Masters degree
                    99
Professional cert 136 134
Some college 68 435
University degree 245 235
```

Logistic Regression

- Type: Linear Model
- Best For:
 - Simple relationships between predictors and the target variable.
 - Interpretable models with clear feature importance (via coefficients).
 - Problems with linearly separable data.
- Pros:
 - Easy to implement and interpret.
 - Computationally efficient and fast to train.
 - Performs well with simple or moderately complex datasets.
 - Naturally outputs probabilities for classification.
- Cons:
 - Assumes linearity between predictors and the target.
 - Sensitive to multicollinearity among features.
 - May struggle with non-linear decision boundaries.

In [27]:

```
# Define features (X) and target (y)
X = dfDrugUse.drop('drug_use', axis=1)  # Features
y = dfDrugUse['drug_use']  # Target

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
```

In [28]:

```
# Initialize Logistic Regression model
logistic_model = LogisticRegression(solver='liblinear', max_iter=1000, random_state=42,
class_weight='balanced')
# Train the model
logistic_model.fit(X_train, y_train)
```

Out[28]:

LogisticRegression

```
In [29]:
# Predict on the test set
y pred = logistic model.predict(X test)
y proba = logistic model.predict proba(X test)[:, 1] # Probability estimates for ROC-AUC
# Classification report
print("Classification Report:")
print(classification_report(y_test, y_pred))
# Confusion matrix
conf_matrix = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(conf matrix)
Classification Report:
              precision
                           recall f1-score
                                               support
           0
                   0.76
                             0.84
                                        0.80
                                                   156
           1
                   0.88
                             0.81
                                        0.84
                                                   221
                                        0.82
                                                   377
    accuracy
                                        0.82
                                                   377
  macro avg
                   0.82
                              0.82
weighted avg
                   0.83
                              0.82
                                        0.82
                                                   377
Confusion Matrix:
[[131 25]
 [ 42 179]]
In [30]:
# Predict probabilities on the test set
y pred proba = logistic model.predict proba(X test)[:, 1]
# Calculate ROC curve
fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba)
roc auc = auc(fpr, tpr)
# Plot the ROC curve
plt.figure()
plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc auc)
plt.plot([0, 1], [0, 1], 'k--', label='No Skill')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
```


plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')

plt.legend()
plt.show()

plt.title('ROC Curve for Drug Use Prediction')

In [31]:

```
param_grid = {'C': [0.01, 0.1, 1, 10], 'penalty': ['l2'], 'solver': ['lbfgs']}
grid = GridSearchCV(LogisticRegression(max_iter=1000, class_weight='balanced'), param_gri
d, scoring='roc_auc', cv=5)
grid.fit(X_train, y_train)
print(f"Best Parameters: {grid.best_params_}")
print(f"Best ROC-AUC Score: {grid.best_score_}")
```

```
Best Parameters: {'C': 0.1, 'penalty': '12', 'solver': 'lbfgs'}
Best ROC-AUC Score: 0.9106176234736651
```

In [32]:

```
best_logistic_model = LogisticRegression(C=10, penalty='12', solver='lbfgs')
best_logistic_model.fit(X_train, y_train)
# Predict on the test set
y_pred = best_logistic_model.predict(X_test)
y_proba = best_logistic_model.predict_proba(X_test)[:, 1] # Probability estimates for RO
C-AUC

# Classification report
print("Classification Report:")
print(classification_report(y_test, y_pred))

# Confusion matrix
conf_matrix = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(conf_matrix)
```

Classification Report:

	precision	recall	il-score	support
0	0.82	0.81	0.81	156
1	0.87	0.87	0.87	221
accuracy			0.85	377
macro avg	0.84	0.84	0.84	377
weighted avg	0.85	0.85	0.85	377

Confusion Matrix:

[[126 30] [28 193]]

Random Forest

- Type: Ensemble Model (Bagging)
- Best For:
 - Complex, non-linear relationships.
 - Handling missing data and unbalanced datasets.
 - Feature importance analysis.
- Pros:
 - Can capture non-linear patterns and interactions between features.
 - Robust to overfitting with enough trees.
 - Automatically handles feature scaling and normalization.
 - Resistant to outliers and noise.
- Cons:
 - Can be slower to train for large datasets.
 - Interpretability is lower compared to simpler models like Logistic Regression.
 - May require hyperparameter tuning (e.g., number of trees, max depth) for optimal performance.

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42
, stratify=y)
# Initialize Random Forest model
rf model = RandomForestClassifier(
   n estimators=100, # Number of trees
   random state=42,
   class weight='balanced', # Handle class imbalance
    max depth=None, # Allow trees to grow fully
# Train the model
rf model.fit(X train, y train)
Out[33]:
                      RandomForestClassifier
RandomForestClassifier(class weight='balanced', random state=42)
In [34]:
# Predict on the test set
y pred = rf model.predict(X test)
y_proba = rf_model.predict_proba(X_test)[:, 1] # Probability estimates for ROC-AUC
# Classification report
print("Classification Report:")
print(classification report(y test, y pred))
# ROC-AUC score
roc auc = roc auc score(y test, y proba)
print(f"ROC-AUC Score: {roc auc}")
# Confusion matrix
conf matrix = confusion matrix(y test, y pred)
print("Confusion Matrix:")
print(conf_matrix)
Classification Report:
             precision
                          recall f1-score
                                             support
           0
                   0.82
                           0.80
                                      0.81
                                                  156
                   0.86
                             0.87
                                       0.87
                                                  221
                                       0.84
                                                  377
   accuracy
                   0.84
                             0.84
                                       0.84
                                                  377
  macro avg
                                      0.84
                                                  377
                   0.84
                             0.84
weighted avg
ROC-AUC Score: 0.9110395637544959
Confusion Matrix:
[[125 31]
 [ 28 193]]
In [35]:
# Define hyperparameter grid
param grid = {
    'n estimators': [100, 200, 300],
```

```
# Define hyperparameter grid
param_grid = {
    'n_estimators': [100, 200, 300],
    'max_depth': [None, 10, 20, 30],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4]
}

# Grid search
grid_search = GridSearchCV(
    estimator=RandomForestClassifier(random_state=42, class_weight='balanced'),
    param_grid=param_grid,
    scoring='roc_auc',
    cv=5,
    verbose=1,
```

```
n jobs=2
grid search.fit(X train, y train)
# Best parameters and score
print(f"Best Parameters: {grid search.best params }")
print(f"Best ROC-AUC Score: {grid_search.best_score_}}")
Fitting 5 folds for each of 108 candidates, totalling 540 fits
Best Parameters: {'max_depth': 10, 'min_samples_leaf': 4, 'min_samples_split': 2, 'n_esti
mators': 100}
Best ROC-AUC Score: 0.9091165896250644
In [36]:
best rf model = RandomForestClassifier(
    n estimators=200, # Number of trees
    random state=42,
   min_samples_leaf=2, # Minimum samples in leaf nodes
   min_samples_split=10, # Minimum samples to split nodes
    class weight='balanced', # Handle class imbalance
    max depth=10,
# Train the model
best rf model.fit(X train, y train)
Out[36]:
                      RandomForestClassifier
                                                             i ?
RandomForestClassifier(class weight='balanced', max depth=10,
                       min_samples_leaf=2, min_samples_split=10,
                       n estimators=200, random state=42)
In [37]:
# Predict on the test set
y pred = best rf model.predict(X test)
y_proba = best_rf_model.predict_proba(X_test)[:, 1] # Probability estimates for ROC-AUC
# Classification report
print("Classification Report:")
print(classification report(y test, y pred))
# ROC-AUC score
roc_auc = roc_auc_score(y_test, y_proba)
print(f"ROC-AUC Score: {roc auc}")
# Confusion matrix
conf matrix = confusion matrix(y test, y pred)
print("Confusion Matrix:")
print(conf_matrix)
Classification Report:
             precision
                         recall f1-score support
                  0.81
           0
                           0.82
                                     0.82
                                                  156
                  0.87
                            0.86
                                      0.87
                                                  221
           1
                                      0.85
                                                 377
   accuracy
                  0.84
                             0.84
                                      0.84
                                                  377
   macro avq
                                      0.85
                                                 377
weighted avg
                  0.85
                            0.85
ROC-AUC Score: 0.915158371040724
Confusion Matrix:
[[128 28]
 [ 30 191]]
```

Cuppert Vester Machine (Coff Marain)

Support vector machine (Soft margin)

- Type: Kernel-based Model
- Best For:
 - High-dimensional data.
 - Non-linear decision boundaries (via kernel functions).
 - Problems where a soft margin (allowing some misclassifications) is beneficial.
- Pros:
 - Effective for high-dimensional spaces and small datasets.
 - Can model complex relationships using kernels (e.g., radial basis function, polynomial).
 - Well-suited for imbalanced datasets with proper tuning (e.g., class weights).
- Cons:
 - Computationally expensive for large datasets.
 - Sensitive to the choice of hyperparameters (e.g., kernel type, C parameter).
 - Less interpretable compared to Logistic Regression or Random Forest.

```
In [38]:
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42
, stratify=y)

# Train SVM with default hyperparameters
svm_model = SVC(C=1.0, kernel='rbf', gamma='scale', probability=True, random_state=42)
svm_model.fit(X_train, y_train)

# Cross-validation
scores = cross_val_score(svm_model, X_train, y_train, cv=5)
print("Cross-validation mean accuracy: {:.3f}".format(np.mean(scores)))
```

Cross-validation mean accuracy: 0.835

In [39]:

```
# Predict on the test set
y_pred = svm_model.predict(X_test)
y_proba = svm_model.decision_function(X_test)

# Classification report
print("Classification_Report:")
print(classification_report(y_test, y_pred))

# Confusion matrix
conf_matrix = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(conf_matrix)

# ROC-AUC Score
roc_auc = roc_auc_score(y_test, y_proba)
print(f"ROC-AUC Score: {roc_auc}")
```

Classification Report:

	precision	recall	f1-score	support
0	0.82 0.86	0.80 0.87	0.81 0.87	156 221
accuracy macro avg weighted avg	0.84 0.84	0.84 0.84	0.84 0.84 0.84	377 377 377

Confusion Matrix:

[[125 31] [28 193]]

ROC-AUC Score: 0.8954635108481263

In [40]:

```
kernels = ['linear', 'poly', 'rbf', 'sigmoid']
```

```
kernel = linear, cross-val mean-accuracy: 0.829
kernel = poly, cross-val mean-accuracy: 0.815
kernel = rbf, cross-val mean-accuracy: 0.835
kernel = sigmoid, cross-val mean-accuracy: 0.785
In [41]:
# Define the parameter grid
param grid = {
    'C': np.logspace(-5, 5, num=11, base=2), # C values: 2^-5 to 2^5
    'gamma': np.logspace(-5, 5, num=11, base=2)  # gamma values: 2^-5 to 2^5
# GridSearchCV for hyperparameter tuning
grid = GridSearchCV(
   estimator=SVC(kernel='linear', probability=True, random state=42),
   param grid=param grid,
   cv=5,
    scoring='roc auc',
    verbose=1
# Fit the grid search to the data
grid.fit(X train, y train)
# Print the best parameters and corresponding accuracy
print("Best parameters found: ", grid.best params )
print("Best cross-validation ROC-AUC: {:.3f}".format(grid.best score ))
# Use the best model for predictions
best model = grid.best estimator
y pred best = best model.predict(X test)
print("Test set accuracy of the best model: {:.3f}".format(best_model.score(X_test, y_tes
t)))
Fitting 5 folds for each of 121 candidates, totalling 605 fits
Best parameters found: {'C': 2.0, 'gamma': 0.03125}
Best cross-validation ROC-AUC: 0.909
Test set accuracy of the best model: 0.830
In [42]:
# Confusion matrix for the best model
conf matrix best = confusion matrix(y test, y pred best)
sns.heatmap(conf matrix best, annot=True, fmt='d', cmap='Blues', xticklabels=['No Use',
'Use'], yticklabels=['No Use', 'Use'])
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix - Best SVM')
plt.show()
```

svm = SVC(C=1.0, kernel=kernel, gamma='scale', random state=42)

print(f"kernel = {kernel}, cross-val mean-accuracy: {np.mean(scores):.3f}")

scores = cross val score(svm, X train, y train, cv=5)

for kernel in kernels:

k-Nearest Neighbors (kNN)

- Type: Instance-based Learning
- Best For:
 - Simple datasets with clear clusters or patterns.
 - When interpretability isn't a priority but simplicity is.
- Pros:
 - Easy to implement.
 - Makes no assumptions about the data distribution.
 - Adapts naturally to non-linear decision boundaries.
- Cons:
 - Computationally expensive for large datasets.
 - Sensitive to irrelevant features and feature scaling.
 - Performance depends heavily on the choice of k.

0.79

0.79

0.79

0.79

In [43]:

```
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42
, stratify=y)
# Initialize KNN with K=3
knn = KNeighborsClassifier(n neighbors=3)
# Train the model
knn.fit(X_train, y_train)
# Predict on the test set
y pred = knn.predict(X test)
# Evaluate the model
print("Classification Report for K=3:")
print(classification report(y test, y pred))
# Confusion matrix
conf_matrix = confusion_matrix(y_test, y_pred)
print("Confusion Matrix for K=3:")
print(conf matrix)
Classification Report for K=3:
              precision
                        recall f1-score
                                               support
                   0.75
                             0.76
                                       0.75
                                                   156
                                       0.82
                   0.83
                             0.82
                                                   221
                                       0.79
                                                   377
   accuracy
```

0.79

0.79

377

377

Confusion Matrix for K=3:
[[118 38]

[40 181]]

macro avg

weighted avg

In [44]:

Test different values of K

```
acc = []
allks = range(1, 50, 2)

for k in allks:
    knn = KNeighborsClassifier(n_neighbors=k)
    scores = cross_val_score(knn, X_train, y_train, cv=5, scoring='accuracy')
    acc.append(scores.mean())
    print(f"K = {k}, Cross-Validation Accuracy: {scores.mean():.3f}")

K = 1, Cross-Validation Accuracy: 0.772
```

```
K = 3, Cross-Validation Accuracy: 0.793
K = 5, Cross-Validation Accuracy: 0.811
K = 7, Cross-Validation Accuracy: 0.813
K = 9, Cross-Validation Accuracy: 0.807
K = 11, Cross-Validation Accuracy: 0.814
K = 13, Cross-Validation Accuracy: 0.823
K = 15, Cross-Validation Accuracy: 0.821
K = 17, Cross-Validation Accuracy: 0.820
K = 19, Cross-Validation Accuracy: 0.821
K = 21, Cross-Validation Accuracy: 0.822
K = 23, Cross-Validation Accuracy: 0.826
K = 25, Cross-Validation Accuracy: 0.831
K = 27, Cross-Validation Accuracy: 0.826
K = 29, Cross-Validation Accuracy: 0.829
K = 31, Cross-Validation Accuracy: 0.827
 = 33, Cross-Validation Accuracy: 0.823
K = 35, Cross-Validation Accuracy: 0.825
K = 37, Cross-Validation Accuracy: 0.823
K = 39, Cross-Validation Accuracy: 0.822
K = 41, Cross-Validation Accuracy: 0.819
K = 43, Cross-Validation Accuracy: 0.818
K = 45, Cross-Validation Accuracy: 0.824
K = 47, Cross-Validation Accuracy: 0.820
K = 49, Cross-Validation Accuracy: 0.822
```

In [45]:

```
# Plot accuracy vs K
plt.figure(figsize=(12, 7))
plt.plot(allks, acc, marker="o", color="steelblue", lw=3, label="Accuracy")
plt.xlabel("Number of Neighbors (K)", fontsize=16)
plt.ylabel("Cross-Validation Accuracy", fontsize=16)
plt.title("Accuracy vs. Number of Neighbors", fontsize=18)
plt.xticks(range(1, 50, 2))
plt.grid(alpha=0.25)
plt.legend(fontsize=14)
plt.show()
```


In [46]:

```
# Optimal K (max accuracy)
optimal_k = 25
print(f"Optimal K: {optimal_k}")

# Train KNN with the optimal K
knn_optimal = KNeighborsClassifier(n_neighbors=optimal_k)
knn_optimal.fit(X_train, y_train)

# Predict on the test set
y_pred_optimal = knn_optimal.predict(X_test)

# Evaluate the optimal KNN model
print(f"Classification Report for K={optimal_k}:")
print(classification_report(y_test, y_pred_optimal))

# Confusion matrix for optimal K
conf_matrix_optimal = confusion_matrix(y_test, y_pred_optimal)
print(f"Confusion Matrix for K={optimal_k}:")
print(conf_matrix_optimal)
```

Optimal K: 25

Classification Report for K=25:

support	f1-score	recall	precision	
156 221	0.80 0.85	0.83 0.82	0.77 0.87	0 1
377 377	0.82 0.82	0.83	0.82	accuracy macro avg
377	0.83	0.82	0.83	weighted avg

Confusion Matrix for K=25:

[[129 27] [39 182]]

In [47]:

```
# Confusion matrix heatmap
sns.heatmap(conf_matrix_optimal, annot=True, fmt='d', cmap='Blues', xticklabels=['No Use'
, 'Use'], yticklabels=['No Use', 'Use'])
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title(f'Confusion Matrix for K={optimal_k}')
plt.show()
```


