${ m CSC/MA/OR}$ 565 - Spring 2018 Homework 3

- 1. Show that every simple graph G with 6 vertices has either a clique of size 3 or an independent set of size 3.
- 2. Prove or disprove: In a simple graph, every closed even trail of length more than 3 contains an even cycle.
- 3. Prove the following by strong induction on the length of the trail: The edge set of every closed trail can be partitioned into zero or more pairwise edge-disjoint cycles.
- 4. Suppose that T is a maximal trail in a simple graph G and that T has at least one edge and is not closed. Prove that the endpoints of T have odd degree.
- 5. If G is a graph with vertices v_1, v_2, \dots, v_n and A^k denotes the kth power of the adjacency matrix of G under matrix multiplication then

(***) $A^k[i,j]$ is the number of v_i, v_j -walks of length k in G.

Show how to use (***) to solve the following without multipltying matrices and prove your answer correct: Let A be the adjacency matrix of K_n . If i = j, then $A^3[i,j] =$ _____. Otherwise $A^3[i,j] =$ _____.

- 6. Draw a simple, connected graph with the following degree sequence, or prove that no such graph is possible:
 - a. (3, 3, 3, 2, 2, 2)
 - b. (7, 6, 5, 4, 3, 2, 1)
 - c. (3, 3, 2, 2, 1, 1)
 - d. (7, 6, 5, 4, 3, 3, 2)
 - e. (6, 6, 5, 4, 3, 3, 1)
- 7. How many different simple graphs are there with 5 edges and with vertex set $\{v_1, v_2, \dots v_5\}$? (We are counting labeled graphs, not isomorphism classes)
- 8. Prove by contradiction: A graph with every vertex degree even has no cut-edge.