Boletín de Problemas 6: CIRCUITOS DE CORRIENTE CONTINUA

Problema 1. El circuito de la figura se encuentra en régimen permanente. Determinar la caída de tensión V_{AB} y la potencia que cede la fuente I_2 . Datos: $I_1 = 2$ A, $I_2 = 4$ A.

Solución: $V_{AB} = 9,41 \text{ V}; P_{I2} = 32,94 \text{ W}$

Problema 2. Se sabe que en el régimen permanente, el circuito almacena $\frac{1}{3}$ J y disipa 2 W. Obtener los valores de R_a y R_b .

Solución: $R_a=3\,\Omega$; $R_b=2/3\,\Omega$

Problema 3. Un condensador está conectado a una fuente real de tensión de continua. En el instante inicial se conoce la energía almacenada y el rendimiento de la fuente. Calcular la energía almacenada en el régimen permanente. Datos: E(0) = 200 J, y $\eta(0) = 25\%$.

Solución: $E(\infty) = 3200 \text{ J}$

Problema 4. Sabiendo que el circuito se encuentra en régimen permanente de continua, hallar las lecturas del voltímetro y del amperímetro de la figura. Datos: $V_g = 4$ V, $R_1 = R_2 = R_3 = 2$ Ω ; I_g , R, L_1 y L_2 son desconocidas.

Solución: Voltímetro = 2 V; Amperímetro = 1 A

Problema 5. Del circuito de la figura, en régimen permanente, se sabe que la fuente real de tensión (FRT) de continua funciona con rendimiento 0.2 y que la energía almacenada en la bobina es 2 J. Encontrar la tensión a circuito abierto, V_{ca} , y la intensidad de cortocircuito, I_{cc} de dicha fuente. Datos: L=1 H, R=2 Ω .

Solución: $V_{ca}=20~\mathrm{V};\,I_{cc}=2.5~\mathrm{A}$

Problema 6. Determinar el valor de la resistencia R para que la fuente real de intensidad de continua trabaje con un rendimiento del 80% en régimen permanente. Datos: $R_q = 4 \text{ k}\Omega$, L = 9 mH, $C = 1 \mu\text{F}$.

Solución: $R = 1000 \,\Omega$

Problema 7. El circuito de la figura se encuentra en régimen permanente. En t=0 se cierra el interruptor. Calcular la potencia cedida por la bobina L_1 en el instante posterior al cierre del interruptor y la energía almacenada en las bobinas y el condensador en el nuevo régimen permanente. Datos: $L_1=1$ H; $L_2=2$ H; R=2 Ω ; $V_g=6$ V; $I_g=3$ A.

Solución: $P=-18~\mathrm{W};\,E_{L1}=4,5~\mathrm{J};\,E_{L2}=9~\mathrm{J};\,E_{C}=0~\mathrm{J}$

Problema 8. En el circuito de la figura, con $I_g=4$ A, R=4 Ω y L=1 H, encontrar la expresión de la intensidad en la resistencia vertical, i(t), sabiendo que la bobina tiene una energía inicial nula.

Solución: $i(t) = 2 + 2e^{-8t} A$

Problema 9. En el circuito de la figura, con $i_g(t) = 3$ A, y $v_g(t) = 11$ V, encontrar la expresión de la intensidad i(t) sabiendo que la tensión inicial del condensador de 10 mF, con las referencias indicadas, es de 2 V.

Solución: $i(t)=2 + e^{-t/0,0075}$ A

Problema 10. El circuito de la figura evoluciona según $v(t) = 10 + 5 \cdot e^{-40t} \cdot \cos(30t)$. Determinar, sabiendo que A sólo está compuesto de fuentes independientes y de resistencias, y que L = 0.1 H, el equivalente Thévenin del circuito A y el valor del condensador.

Solución: $V_{Th}=10\,\mathrm{V}$; $R_{Th}=8\,\Omega$; $C=4\,\mathrm{mF}$

Problema 11. El circuito de la figura está en régimen permanente cuando en t=0 se abre el interruptor. Calcular la tensión u_C para t > 0.

Solución: $u_C(t) = (-10 - 50000 t) e^{-10^4 t} + 20 \text{ V}$