《天体物理学》

第十二章 宇宙(b)

讲授: 徐仁新

北京大学物理学院天文学系

- 0, 什么是宇宙?
- 1, 基本观测事实
- 2, Robertson-Walker度规
- 3, 宇宙膨胀动力学
- 4, 极早期宇宙真空相变
- 5, 暴胀
- 6,辐射与物质间的脱耦
- 7, 宇宙早期核合成
- 8, 暗物质与暗能量
- 9, 可观测宇宙之外?

宇宙膨胀动力学

对比黑洞、中子星和宇宙三类研究客体

(真空/有源Einstein场方程不同时空对称性时的三类解)

4, 极早期宇宙真空相变 时空泡沫("原子")的尺度

- •满足Heisenberg关系虚粒子寿命: $\tau \sim \hbar/(Mc^2)$
- •虚粒子运动速度:几乎为光速c
- •质量M的虚粒子明显影响周围**空间弯曲的尺度**: $r_{\rm s} \sim GM/c^2$
- •自由粒子波包的典型尺度: $\lambda \sim \hbar/(Mc)$
- •时空量子效应出现于 $\lambda \sim r_{\rm s}$ 情形 \Rightarrow Planck质量: $M_{\rm p} = (\hbar c/G)^{1/2}$
- •泡沫空间尺度: Planck长度 $l_p \sim \hbar/(M_p c) = (G\hbar/c^3)^{1/2} = 1.61 \times 10^{-33}$ cm
- •泡沫时间尺度: Planck时间定义 $t_{\rm p} = l_{\rm p}/c = 5.38 \times 10^{-44} {
 m s}$

 $\{t_p,l_p\}$ 尺度以下:没有"四方上下、古往今来"!

一个比喻:海平面

远看一平如镜, 近看汹涌澎湃!

4、极早期宇宙真空相变

Planck时代: 宇宙年龄小于~ t_p 的阶段

- •时空量子涨落显著,不能明确定义时空;又称为时空创生期
- •该时期宇宙处于极高温

Higgs标量场与真空对称性自发破缺

•大统一理论认为自然界存在Higgs标量场

存在一个临界温度 T_c : 成功实例: 弱电

 $\Gamma T > T_{c}$ 时真空位于 $\sigma = 0$ 处,对称态

T < T 时真空位于 $\sigma \neq 0$ 处,失称态

•宇宙降温导致真空对称性逐渐降低

又称为: 真空对称性自发破缺(即: 真空相变)

⇒ 基本相互作用的分化: $t \sim 10^{-44} \,\mathrm{s} \rightarrow t \sim 10^{-36} \,\mathrm{s} \rightarrow t \sim 10^{-10} \,\mathrm{s}$

4, 极早期宇宙真空相变

对称性破缺:

一般而言,要使某一物理现象具有某种对称性则要求相关的动力学 理论和该系统所处状态(在场论中称为"真空态")均具有该对称 性。若一个物理状态不具有某种对称性,则称这一对称性破缺了。

对称性自发破缺两例:

•铁磁相变:畴壁→拓朴缺陷面

·餐桌上对称性自发破缺: → 缺陷点

Honey coils

对称性自发破缺后果之一:

暴胀

真空相变的后果

- •导致目前四种基本相互作用的分化
- •相变所释放出巨大能量,是当今宇宙中物质和辐射的来源
- •极早期宇宙的暴胀 原真空(即伪真空)态与新真空态间 存在势垒; 起初量子隧穿几率很低
- ⇒ 非立即相变成 $\sigma \neq 0$ 态,真空能主导

此时宇宙膨胀行为主要决定于真空能!

根据Friedmann方程(R) (以k = 0为例)

$$\frac{\dot{R}^2}{R^2} + \frac{k}{R^2} = \frac{8\pi G}{3} \rho \implies dR \sim Rdt \implies R \sim \exp[t] \quad \boxed{\text{QlC: §\text{region}} \\ \Rightarrow dR \sim Rdt \implies R \sim \exp[t] \quad \boxed{\text{QlC: §\text{region}} \\ \Rightarrow dR \sim Rdt \implies R \sim \exp[t] \quad \boxed{\text{QlC: §\text{region}} \\ \Rightarrow dR \sim Rdt \implies R \sim \exp[t] \quad \boxed{\text{QlC: §\text{region}} \\ \Rightarrow dR \sim Rdt \implies R \sim \exp[t] \quad \boxed{\text{QlC: §\text{region}} \\ \Rightarrow dR \sim Rdt \implies R \sim \exp[t] \quad \boxed{\text{QlC: §\text{region}} \\ \Rightarrow dR \sim Rdt \implies R \sim \exp[t] \quad \boxed{\text{QlC: §\text{region}} \\ \Rightarrow dR \sim Rdt \implies R \sim \exp[t] \quad \boxed{\text{QlC: §\text{region}} \\ \Rightarrow dR \sim Rdt \implies R \sim \exp[t] \quad \boxed{\text{QlC: §\text{region}} \\ \Rightarrow dR \sim Rdt \implies R \sim \exp[t] \quad \boxed{\text{QlC: §\text{region}} \\ \Rightarrow dR \sim Rdt \implies R \sim \exp[t] \quad \boxed{\text{QlC: §\text{region}} \\ \Rightarrow dR \sim Rdt \implies R \sim \exp[t] \quad \boxed{\text{QlC: §\text{region}} \\ \Rightarrow dR \sim Rdt \implies R \sim \exp[t] \quad \boxed{\text{QlC: §\text{region}} \\ \Rightarrow dR \sim Rdt \implies R \sim \exp[t] \quad \boxed{\text{QlC: §\text{region}} \\ \Rightarrow dR \sim Rdt \implies R \sim \exp[t] \quad \boxed{\text{QlC: §\text{region}} \\ \Rightarrow dR \sim Rdt \implies R \sim \exp[t] \quad \boxed{\text{QlC: §\text{region}} \\ \Rightarrow dR \sim Rdt \implies R \sim \exp[t] \quad \boxed{\text{QlC: §\text{region}} \\ \Rightarrow dR \sim Rdt \implies R \sim Rdt \implies R$$

由真空能为主的宇宙将指数膨胀! → "暴胀"

5, 暴胀

暴胀解决"平坦性疑难"

•辐射为主: $\rho R^4 = 常数$; 物质主导: $\rho R^3 = 常数$

ξ随着宇宙的膨胀而严重地放大!

- •动力学计算发现:现今 ξ 值应大约是Planck时期的 10^{64} 倍!
- •目前观测发现 Ω 非常接近于1(Ω 肯定小于10)
- •难道早期宇宙Ω要极端地微调以致于惊人地与1接近?
- •这一不自然的结论,即所谓的"平坦性疑难"
- •暴胀模型的理解:

极早期近指数加速膨胀,R短时间内极增约 e^{70} 倍。R增长使 ξ 非 常接近于0。暴胀后 ξ 又被逐渐放大,直到今天, ξ 还很接近0。

暴胀

暴胀解决"视界疑难"

- •宇宙可观测的空间边界称为视界,它随年龄增加而增加。
- •CMB在z~eV/3K≈10³时透明。
- •测量发现CMB几乎是均匀的!
- •宇宙年龄#时因果联系区域大小 却只有~ct,对应目前天区~1°
- •为何无因果联系的区域辐射特 征却如此的均匀?
 - →"视界疑难"!
- •暴胀模型的理解:

在暴胀期之前有因果联系的区 域在暴胀期间被极端地放大!

5, 暴胀

TD magnetic monopole cosmic string domain wall

暴胀解决"磁单极疑难"

- •磁单极是零维拓扑缺陷,可能出现于不同真空的交界处
- •估计大统一真空相变产生磁单极相变发生年龄t~10-36s,当时具有因果关联区体积~(ct)³~10-76 cm³若10种不同真空可产生一磁单极
 - ⇒相变时磁单极密度~10⁷⁵ cm⁻³
 - ⇒目前磁单极的数密度:

$$\sim 10^{75} \left(\frac{R}{R_0}\right)^3 \approx 10^{75} \left(\frac{T_0}{T}\right)^3 \approx 10^{-8} \text{cm}^{-3}$$

•暴胀模型的理解:

磁单极被严重稀释了!

宇宙的热演化简史

- •Planck时期:时空起源
- 重子起源: (Sakharov, 1960s) B不守恒; C和CP破缺; 偏离热平衡
- •辐射为主宇宙:

$$T \approx \frac{10^{10}}{\sqrt{t/s}} \,\mathrm{K} \approx \frac{1}{\sqrt{t}} \,\mathrm{MeV}$$

6,辐射与物质间的脱耦

脱耦的条件

- •原初等离子体中粒子间的相互作用 i粒子作用截面 σ_i ,能够与它作用粒子数密度 n_i ,运动速度接近 光速c,则单位时间内i粒子发生 n_i · σ_i ·c次作用
- •**脱耦**:在Hubble时间 H^{-1} 内作用的次数 $n_i \cdot \sigma_i \cdot c \cdot H^{-1} < 1$,i粒子就几 乎不再与其它粒子作用了而脱离原初等离子体而存在
- $\bullet \sigma_i$ 越小的粒子脱耦得越早。脱耦粒子又称为背景遗迹粒子。 如果它们是相对论性的,则称为背景辐射。

三种背景辐射

- •引力波背景辐射(CGB):起源于Planck时期,年龄~10-44s
- •中微子背景辐射(CNB): T~1MeV(t~1s)时,中微子脱耦
- •微波背景辐射(CMB): 年龄 $t \sim 10^{12}$ s时,温度降至 $T \sim eV$

7, 宇宙早期核合成

QCD相变(强子化过程)

- •QED描述荷电粒子间作用; QCD描述带色荷夸克、胶子间作用
- •渐近自由: 高温或高密状态下夸克、胶子间作用可忽略
- •色禁闭:低温且低密时带色粒子间作用强,只局限于强子内部
- •**QCD相变**: 宇宙膨胀T、 ρ 下降,"渐近自由" \rightarrow "色禁闭" 相变发生于 $T \sim (100-200)$ MeV, $t \sim 10 \mu s$
- •相变后果:形成长寿命稳定存在强子(质子和中子)
- •相变产物质子和中子起初处于β平衡(因v不透明):

$$p + e^{-} \leftrightarrow n + \nu_e, \quad p + \overline{\nu_e} \leftrightarrow n + e^{+}$$

数密度之比满足Boltzmann公式:
$$\frac{n_{\rm n}}{n_{\rm p}} = \exp[-\Delta m/(kT)]$$

($\Delta m = m_{\rm n} - m_{\rm p} \sim 1.3 {\rm MeV}$)

7, 宇宙早期核合成

原初核合成

•中微子脱耦: $T\sim1$ MeV($t\sim1$ s)时,弱作用率~宇宙膨胀率

此时中子、质子数目比:
$$\frac{n_n}{n_p} \sim \exp[-1.3]$$

但尚不能很快核合成,因为第一步是氘合成: p+n ↔ D+光子, 那时容易导致D裂变回中子和质子(D的结合能2.23MeV)。

- •D不被分裂的条件: 1, 温度较低; 2, η 值较高。
- •当 $T\sim T_D\sim 0.1$ MeV($t\sim 100$ s)时,D才能大量合成,并速合成⁴He

$$D+n \rightarrow {}^{3}H+\gamma$$
宇宙最初
$$^{3}H+p \rightarrow {}^{4}He+\gamma$$
三分钟
$$D+p \rightarrow {}^{3}He+\gamma$$

$$^{3}He+n \rightarrow {}^{4}He+\gamma$$

7,宇宙早期核合成 原初核合成: 奇妙的核性质

"Intro. to Astrophysics"

http://vega.bac.pku.edu.cn/rxxu R. X. Xu

7, 宇宙早期核合成

原初核合成

- •考虑到约100s内中子衰变,核合成时粒子数之**比值修正**为 $n_n/n_n\sim 1/7$
- ⇒ ¹H、⁴He质量比~3:1 (习题2)
- •BBN还生成**少量**D、 3 He、 7 Li等 产物丰度是 $\eta_{10} \equiv \eta/10^{-10}$ 的函数!
 - ⇒ 观测确定出 η_{10} ~1]
- •测光发现只占 $\Omega_{\rm L} < 0.01 \Rightarrow$ 暗重子
- •~4%的暗重子可能以弥散于星系际之间的气体形式存在

8, 暗物质与暗能量 宇宙学常数

•Einstein曾先验地认为宇宙是静止的,而在场方程中添加一项

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

具有引力的粒子体系只能减速膨胀。新加项等效于粒子间斥力

- •Hubble膨胀的发现使得Einstein认为引入宇宙常数是最大错误
- ·宇宙常数非零的尺度因子演化→ R(I)
- •曾被用来解决"宇宙年龄问题"
- •最近用来理解"宇宙加速膨胀"

8, 暗物质与暗能量

暗物质

- •暴胀宇宙学研究使我们相信Ω非常接近于1
- •BBN理论 $\Rightarrow \Omega_{\rm B} \sim 0.05$
- •星系旋转、星系或星系团动力学、引力透镜等 $\Rightarrow \Omega_{\rm DM} \sim 25\%$
- •暗物质三大特点: 长寿命、大质量、作用弱。(非重子)

暗能量

熵力?

- •Ia型超新星巡天⇒宇宙正在**加速**膨胀
- •为什么加速膨胀?目前主要三种看法: 了宇宙学常数//非零

真空能: Planck截断 ⇒ **差10**¹²⁰量级!

存在"暗能量"物质:
$$p = \omega \rho$$
, $\omega < -1/3$

$$\rho_{\text{vac}} = \int_0^{M_p/c} \frac{4\pi p^2 dp}{(2\pi\hbar)^3} \cdot \frac{1}{2} pc$$

$$\frac{\ddot{R}}{R} = -\frac{4\pi G}{3}(\rho + 3p)$$

标量场: Quitessence: $-1 < \omega < 1$, Phantom: $\omega < -1$, Quintom: $\omega \not = -1$; Tachyon: $-1 \le \omega \le 0$.

暗物质与暗能量

暗物质与暗能量

•除了Ia超新星外,CBM各向异性、2dF星系红移巡天也能够

给出对 Ω_{M} 、 Ω_{Λ} 的限制 $\Omega_{\rm B} = 0.04$ $\Omega_{\rm DM} = 0.26$ $\Omega_{\Lambda}=0.7$

•宇宙大尺度演化的数值计 算也反映暗物质、暗能量 的存在!

(若认为主要由重子构成, 至今来不及形成星系)

9, 可观测宇宙之外?

宇宙观

- •Ptolemy和Copernicus时代:宇宙就是太阳系
- "宇宙岛":银河系
- •当代可观测宇宙的空间:尺度为百亿光年量级
- •.....在可观测宇宙之外?
- •高维宇宙?
- •Campbell定理: 任一N 维Einstein场方程解析 解都可以局部地嵌入至 (N+1)维Ricci平直 (T=0) 的Rieman 流形中。

我们在 这里?

- 0, 什么是宇宙?
- 1, 基本观测事实
- 2, Robertson-Walker度规
- 3, 宇宙膨胀动力学
- 4, 极早期宇宙真空相变
- 5, 暴胀
- 6,辐射与物质间的脱耦
- 7, 宇宙早期核合成
- 8, 暗物质与暗能量
- 9, 可观测宇宙之外?

作业

习题: 2