Model standards and code generation tools

Lab 5, ESDM

Objective

Using the Model Advisor and the Code Generation tools for model-based development in Simulink.

Theoretical aspects

Model Advisor and MAAB rules

MAAB (or MAB) and JMAAB are sets of guidelines and recommended practices for the implementation of Stateflow models (e.g. like MISRA-C for C code).

Respecting these guidelines implies a high quality of the models and is often required in practice.

Some of the rules can be checked automatically with the Model Advisor tool.

Generating C code

 $\label{eq:matches} \mbox{Matlab can generate C code automatically from Simulink models, including Stateflow charts.}$

Steps:

- specify the data types of all inputs and outputs
- Right-click on chart -> Block Parameters -> Code Generation -> Function Packaging and select:

- Reusable function
- User specified function name (you choose name)
- User specified file name (you choose name)
- Right-click on chart -> C/C++ Code -> Build This Subsystem

It is recommended that the delays are specified in ticks rather than sec or msec. In this way the generated code is simpler.

Exercises

- 1. Design a FSM in Stateflow for a simplified alarm system. The system has two inputs DoorOpen and CodeOK and one output AlarmOn, for the following requirements:
 - 1. Initially the alarm is turned off (AlarmOn = FALSE).
 - 2. The alarm is turned on after 15 seconds from the moment the door is open (DoorOpen = TRUE), while CodeOK = FALSE.
 - 3. The alarm is turned off when the correct passcode is entered (CodeOK = TRUE).
- 2. Test your design using another model. Inside this test model, use the Model Reference to reference the model under test.
- 3. Run the Model advisor tool (Analysis -> Model Advisor -> Model Advisor), select and run the "Modeling Standards for MAB" checks. Observe the warnings/failures and fix some of them.
 - You need to install the toolbox Simulink Check in Add-Ons -> Get Add-ons
- 4. Generate C code from the model. Locate the code files, open them and identify the implementation of the state machine.

How is it implemented (with which C instructions)?

How would you implement it yourself in C?