- ▼ Time Series Project monthly housing sales Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p.d.q

Philly Indv

Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

Time Series Project - monthly housing sales by zip code

For this analysis I will be working as a Data Scientist for a financial investment firm that is looking for short-term real estate investment opportunities for it's smaller investors to diversify their investment profiles. I will be analyzing median monthly housing sales prices for over 14,000 United States zip codes and choosing the best areas to further analyze for potential investment. I will then forecast future real estate prices in those zip codes.

Dataset information

This data represents median monthly housing sales prices for 265 zip codes over the period of April 1996 through April 2018 as reported by Zillow.

Each row represents a unique zip code. Each record contains location info and median housing sales prices for each month.

There are 14 723 rows and 272 variables:

- RegionID: Unique index. 58196 through 753844
- RegionName: Unique Zip Code, 1001 through 99901
- . City: City in which the zip code is located
- State: State in which the zip code is located
- Metro: Metropolitan Area in which the zip code is located
- CountyName: County in which the zip code is located
- SizeRank: Numerical rank of size of zip code, ranked 1 through 14723
- 1996-04 through 2018-04: refers to the median housing sales values for April 1996 through April 2018, that is 265 data points of monthly data for each zip code

Some ideas for exploration:

- 1. Look at ROI for each zip code, over the whole dataset, avg for each year, 3 year avg, 5 year avg, 10 year avg
- 2. Plot median sales price against ROI to get quadrants for comparison
- 3. Which zips have highest and lowest ROI?
- 4. Business case choose highest ROI for small investors

Data Preprocessing

Import and basic info

Output - zillow

```
Contents æ &
```

- ▼ Time Series Project monthly housing sales Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

```
In [2]: ▶ # Set default visualization parameters
            CB91 Blue = '#2CBDFE'
            CB91 Green = '#47DBCD'
            CB91 Pink = '#F3A0F2'
            CB91 Purple = '#9D2EC5'
            CB91 Violet = '#661D98
            CB91 Amber = '#F5B14C'
            color list = [CB91 Blue, CB91 Pink, CB91 Green, CB91 Amber, CB91 Purple, CB91 Violet]
            plt.rcParams['axes.prop cycle'] = plt.cycler(color=color list)
            sns.set context("notebook", rc={"font.size":16, "axes.titlesize":20, "axes.labelsize":18})
            sns.set(font='Franklin Gothic Book'.
            rc={'axes.axisbelow': False.
            'axes.edgecolor': 'lightgrey',
            # 'axes.edgecolor': 'white',
            'axes.facecolor': 'None'.
            'axes.grid': False.
             'axes.labelcolor': 'dimgrev'.
            # 'axes.labelcolor': 'white',
             'axes.spines.right': False,
             'axes.spines.top': False.
             'axes.prop cycle': plt.cycler(color=color list),
             'figure.facecolor': 'white',
             'lines.solid capstyle': 'round',
             'patch.edgecolor': 'w'.
             'patch.force edgecolor': True,
             'text.color': 'dimgrey',
            # 'text.color': 'white',
            'xtick.bottom': False,
            'xtick.color': 'dimgrey',
            # 'xtick.color': 'white',
            'xtick.direction': 'out'.
            'xtick.top': False,
            'ytick.color': 'dimgrey',
            # 'ytick.color': 'white',
            'ytick.direction': 'out',
            'vtick.left': False,
            'ytick.right': False})
            %matplotlib inline
            '''font = {'family' : 'normal',
                    'weight' : 'bold',
                    'size' : 22}
            matplotlib.rc('font', **font)
            # NOTE: if you visualizations are too cluttered to read, try calling 'plt.gcf().autofmt xdate()'!'''
```

Out[2]: "font = {'family' : 'normal',\n 'weight' : 'bold',\n 'size' : 22}\n\nmatplotlib.rc('font', **font)\n\n# NOTE: if you visualizations are too cluttered to read, try calling 'plt.gcf().autofmt xdate()'!"

- ▼ Time Series Project monthly housing sales Dataset information
- ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

```
In [3]: N zillow = pd.read_csv('zillow_data.csv')
zillow.info()
# I see 4 string object columns, not sure why 49 are int and others float.
# Most column names will be changed to datetime
# Zip codes are actually not continuous so maybe they should be strings
# Don't know if RegionID has any meaning, seems unneeded if zip codes are unique.
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14723 entries, 0 to 14722
Columns: 272 entries, RegionID to 2018-04
dtypes: float64(219), int64(49), object(4)
memory usage: 30.6+ MB

In [4]: ▶ zillow.head()

Out[4]:

	RegionID	RegionName	City	State	Metro	CountyName	SizeRank	1996-04	1996-05	1996-06	 2017-07	2017-08	2017-09	2017-10	2017
0	84654	60657	Chicago	IL	Chicago	Cook	1	334200.0	335400.0	336500.0	 1005500	1007500	1007800	1009600	10130
1	90668	75070	McKinney	TX	Dallas- Fort Worth	Collin	2	235700.0	236900.0	236700.0	 308000	310000	312500	314100	315(
2	91982	77494	Katy	TX	Houston	Harris	3	210400.0	212200.0	212200.0	 321000	320600	320200	320400	3208
3	84616	60614	Chicago	IL	Chicago	Cook	4	498100.0	500900.0	503100.0	 1289800	1287700	1287400	1291500	12966
4	93144	79936	El Paso	TX	El Paso	El Paso	5	77300.0	77300.0	77300.0	 119100	119400	120000	120300	1200

5 rows × 272 columns

```
In [5]: M # Data annears to be sorted by SizeRank, Largest to smallest
            # T see some Nan values in Metro
            # And some 4 digit zip codes which I assume should start with a zero
            zillow.tail(10)
```

Out[5]: Contents 2 &

- ▼ Time Series Project monthly housing sales Dataset information
 - ▼ Data Preprocessing Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro' Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling ▼ Find Optimal p,d,q

Philly

Indv

Daytona

Columbus

Kansas City

Chattanooga Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

```
2017-
                                                                                                                             2017-
                                                                                                                                     2017-
                                                                                                                                             2017-
       RegionID RegionName
                                                     Metro CountyName SizeRank
                                                                                    1996-04
                                                                                              1996-05
                                                                                                       1996-06
                                      City State
                                                                                                                       07
                                                                                                                                08
                                                                                                                                        09
                                                                                                                                                10
                                                  Claremont
14713
         59187
                       3765
                                  Haverhill
                                             NH
                                                                 Grafton
                                                                            14714
                                                                                     80800.0
                                                                                              80100.0
                                                                                                        79400.0
                                                                                                                    119800
                                                                                                                            120000
                                                                                                                                    120800
                                                                                                                                            121600
                       84781
                                                                                             136300.0
                                                                                                      136600.0
                                                                                                                           243200 244300 248900
14714
         94711
                                 Pine Valley
                                             UT
                                                              Washington
                                                                             14715
                                                                                   135900.0
                                                                                                                    241100
                                                    George
         62556
                       12429
                                                                                              78300.0
                                                                                                        78200.0
                                                                                                                                    170000 171000
14715
                                   Esopus
                                             NY
                                                   Kingston
                                                                   Ulster
                                                                            14716
                                                                                     78300.0
                                                                                                                    164200
                                                                                                                            166600
14716
         99032
                       97028
                             Rhododendron
                                             OR
                                                    Portland
                                                               Clackamas
                                                                             14717
                                                                                    136200.0
                                                                                             136600.0
                                                                                                       136800.0
                                                                                                                            332900
                                                                                                                                    335600
                                                                                                                                            338900
14717
         62697
                       12720
                                     Rethel
                                             NY
                                                       NaN
                                                                 Sullivan
                                                                             14718
                                                                                     62500 0
                                                                                              62600.0
                                                                                                        62700 0
                                                                                                                    122200
                                                                                                                            122700
                                                                                                                                   122300
                                                                                                                                            122000
                                                  Greenfield
14718
         58333
                        1338
                                   Ashfield
                                             MA
                                                                 Franklin
                                                                            14719
                                                                                     94600.0
                                                                                              94300.0
                                                                                                        94000.0
                                                                                                                   216800 217700 218600 218500
                                                      Town
14719
         59107
                       3293
                                 Woodstock
                                                                 Grafton
                                                                            14720
                                                                                     92700.0
                                                                                              92500.0
                                                                                                        92400.0
                                                                                                                            208400 212200 215200
                                             NH Claremont
                                                                                                                    202100
14720
         75672
                       40404
                                     Rerea
                                                  Richmond
                                                                Madison
                                                                             14721
                                                                                    57100.0
                                                                                              57300.0
                                                                                                        57500.0
                                                                                                                    121800
                                                                                                                            122800
                                                                                                                                   124600 126700
                              Mount Crested
                      81225
14721
         93733
                                             CO
                                                       NaN
                                                                Gunnison
                                                                             14722
                                                                                   191100.0
                                                                                             192400.0
                                                                                                      193700.0
                                                                                                                    662800
                                                                                                                            671200 682400 695600
                                     Rutto
                                                       Las
14722
         95851
                       89155
                                             NV
                                                                   Clark
                                                                             14723
                                                                                   176400.0 176300.0 176100.0 ...
                                                                                                                   333800 336400 339700 343800
                                  Mesauite
                                                     Vegas
```

10 rows × 272 columns

a

```
In [6]: ▶ # Can see missing values in Metro
            zillow.isna().sum()
```

```
Out[6]: RegionID
        RegionName
                          a
        City
                          а
        State
                          а
                       1043
        Metro
        2017-12
                          0
        2018-01
        2018-02
                          0
        2018-03
                          a
        2018-04
        Length: 272, dtype: int64
```

```
In [7]: 🔰 # There will be lots of other missing values in the time series data
            zillow.isna().sum().sum()
```

Out[7]: 157934

Analyze 'RegionID'

All unique, cast to string

- ▼ Time Series Project monthly housing sales Dataset information
- ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

```
In [8]: # # Starting analysis of first variable, RegionID
# 14723 unique values
print(zillow.RegionID.value_counts())
print(zillow.RegionID.nunique())
print(zillow.RegionID.min())
print(zillow.RegionID.max())
```

73724 1 70551 1 99221 1 76688 1

82829 1

71176 1 91654 1 65029 1

100380 1 98304 1

Name: RegionID, Length: 14723, dtvpe: int64

14723 58196 753844

In [9].

対 zillow[zillow.RegionID >= 200000]

Out[9]:

	RegionID	RegionName	City	State	Metro	CountyName	SizeRank	1996-04	1996-05	1996-06	 2017-07	2017-08	2017-09	2017-10
444	417444	85142	Queen Creek	ΑZ	Phoenix	Pinal	445	117400.0	115500.0	113800.0	 281200	283700	286200	288200
750	399576	33578	Riverview	FL	Tampa	Hillsborough	751	74700.0	74200.0	73800.0	 189600	190100	190400	191400
863	417437	85122	Casa Grande	AZ	Phoenix	Pinal	864	82700.0	83500.0	84300.0	 152600	155000	157200	158400
926	399724	77407	Richmond	TX	Houston	Fort Bend	927	119800.0	119600.0	119700.0	 247100	247200	247100	247000
1101	399638	78665	Round Rock	TX	Austin	Williamson	1102	160700.0	160300.0	160100.0	 258000	257400	257700	258400
12263	399644	80927	Colorado Springs	со	Colorado Springs	El Paso	12264	147800.0	148500.0	149100.0	 335900	335700	335200	334700
12407	399666	89034	Mesquite	NV	Las Vegas	Clark	12408	196000.0	196000.0	195900.0	 289400	294500	299800	304700
13498	417445	85145	Marana	AZ	Tucson	Pima	13499	NaN	NaN	NaN	 141000	143800	145900	146600
14181	399514	3285	Thornton	NH	Claremont	Grafton	14182	92000.0	91800.0	91500.0	 200500	204900	208600	211600
14672	399675	91008	Bradbury	CA	Los Angeles- Long Beach- Anaheim	Los Angeles	14673	351200.0	351200.0	351300.0	 1231800	1248800	1269200	1273600

106 rows × 272 columns

- ▼ Time Series Project monthly housing sales Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

Analyze 'Region Name'

Output -

Cast to string, add 0 to 4 digit zip codes

```
In [12]: ▶ # Now Look at RegionName, this is the zip code
           zillow.RegionName.value counts() # 14723 unique values
   Out[12]: 55324
                  1
           74561
                  1
           73538
                  1
           31546
                  1
           82070
                  1
           75182
                  1
           55343
                  1
           1450
                  1
           73129
                  1
           65536
                  1
           Name: RegionName, Length: 14723, dtype: int64
In [13]: | # All zip codes are unique. I will cast to string and add 0 to the four digit one.
           zillow.RegionName = zillow.RegionName.astype('string')
zillow.RegionName[i] = zillow.RegionName[i].rjust(5, '0')
Out[15]: '01001'
```

Contents € ♦

- ▼ Time Series Project monthly housing sales Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City' Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly Indv

Daytona

Columbus

Kansas City Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

	RegionName	State
5850	01001	MA
4199	01002	MA
11213	01005	MA
6850	01007	MA
14547	01008	MA
4526	99709	AK
8438	99712	AK
4106	99801	AK
8658	99835	AK
7293	99901	AK

14723 rows × 2 columns

Analyze 'City'

▼ Analyze 'State'

▼ Analyze 'Metro'

Fillna with None

```
In [21]:  print(zillow.Metro.value counts())
                                                             print(zillow.Metro.nunique())
Contents 2 4
▼ Time Series Project - monthly housing sales
   Dataset information
                                                             New York
                                                                                                 779
  ▼ Data Preprocessing
                                                             Los Angeles-Long Beach-Anaheim
                                                                                                 347
     Import and basic info
                                                                                                 325
                                                             Chicago
     Analyze 'RegionID'
                                                             Philadelphia
                                                                                                 281
     Analyze 'Region Name'
                                                             Washington
                                                                                                 249
     Analyze 'City'
                                                                                                . . .
     Analyze 'State'
                                                             Gallup
                                                                                                  1
     Analyze 'Metro'
                                                             Alamogordo
                                                                                                  1
     Analyze 'CountyName'
                                                             Salina
                                                                                                  1
     Analyze 'SizeRank'
                                                             Stephenville
                                                                                                  1
     Analyze missing sales values
                                                             Cullman
   EDA on zip codes
                                                             Name: Metro, Length: 701, dtype: int64
                                                             701
   Subset data on top zip codes
   Clustering?
   Convert to date types
                                               Reshape from wide to long format
   Visualize time series plots

▼ Checking for trends, stationarity, seasonali

                                                   Out[22]: nan
     Seasonal decomposition
     Correlation
                                               ACF and PACF
   Train Test Split
   Baseline ARIMA modeling
  ▼ Find Optimal p,d,q
                                               In [24]: ▶ zillow.Metro.value counts()
     Philly
     Indv
     Daytona
                                                   Out[24]: None
                                                                                                 1043
     Columbus
                                                             New York
                                                                                                  779
     Kansas City
                                                                                                  347
                                                             Los Angeles-Long Beach-Anaheim
     Chattanooga
                                                             Chicago
                                                                                                  325
   Visualize predictions and Calculate RMSE
                                                             Philadelphia
                                                                                                  281
   Facebook Prophet
                                                                                                 . . .
   Interpret Results / Conclusions
                                                             Gallup
                                                                                                    1
                                                             Alamogordo
                                                                                                    1
                                                             Salina
                                                                                                    1
                                                             Stephenville
                                                                                                    1
                                                             Cullman
                                                             Name: Metro, Length: 702, dtype: int64
```

▼ Analyze 'CountyName'

- ▼ Time Series Project monthly housing sales Dataset information
- ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

```
Out[25]: Los Angeles
                       264
           Jefferson
                       175
           Orange
                       166
           Washington
                       164
           Montgomery
                       159
           Wilbarger
           Summers
                        1
           Seward
                        1
           Licking
                        1
           Wilcox
           Name: CountyName, Length: 1212, dtype: int64
In [26]: > zillow.CountyName.isna().sum()
   Out[26]: 0
```

▼ Analyze 'SizeRank'

```
In [27]: N zillow.SizeRank.unique()

Out[27]: array([ 1,  2,  3, ..., 14721, 14722, 14723], dtype=int64)
```

Analyze missing sales values

```
In [28]: # 1039 zip codes don't have full data
zillow[zillow['1996-04'].isna()]
```

- ▼ Time Series Project monthly housing sales Dataset information
- ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly Indy

Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

	RegionID	RegionName	City	State	Metro	CountyName	SizeRank	1996- 04	1996- 05	1996- 06	 2017-07	2017-08	2017-09	2017-10	20
20	61625	10011	New York	NY	New York	New York	21	NaN	NaN	NaN	 12137600	12112600	12036600	12050100	120 ⁻
36	61796	10456	New York	NY	New York	Bronx	37	NaN	NaN	NaN	 357900	357100	356500	357200	3(
105	84613	60611	Chicago	IL	Chicago	Cook	106	NaN	NaN	NaN	 1475200	1473900	1469500	1472100	14
156	62048	11238	New York	NY	New York	Kings	157	NaN	NaN	NaN	 2673300	2696700	2716500	2724000	274
232	69533	27834	Greenville	NC	Greenville	Pitt	233	NaN	NaN	NaN	 100100	98700	97400	96100	!
14703	94323	83821	Coolin	ID	Sandpoint	Bonner	14704	NaN	NaN	NaN	 550500	550700	542900	539100	54
14705	79929	49768	Paradise	MI	Sault Ste. Marie	Chippewa	14706	NaN	NaN	NaN	 86700	86900	87000	87200	ŧ
14706	59046	03215	Waterville Valley	NH	Claremont	Grafton	14707	NaN	NaN	NaN	 786000	780900	774100	767800	7:
14707	69681	28039	East Spencer	NC	Charlotte	Rowan	14708	NaN	NaN	NaN	 27300	26400	25500	25100	:
14708	99401	97733	Crescent	OR	Klamath Falls	Klamath	14709	NaN	NaN	NaN	 197700	203700	207900	208100	2(

1039 rows × 272 columns

```
In [29]: | # But all zip codes have some data zillow[zillow['2018-04'].isna()]
```

Out[29]:

Out[28]:

PagianID	RegionName	City	State	Motro	CountyNama	CizoBook	1996-	1996-	1996-	2017-	2017-	2017-	2017-	2017-	2017-	2018-	2018-	2018-
Regionib	Regionivalne	City	State	wetro	Countywaine	Sizeralik	04	05	06	 07	08	09	10	11	12	01	02	03

0 rows × 272 columns

```
In [30]: | # I need to find an ROI that I can compare them all on
# Find the zips with the least data
for col in reversed(zillow.columns):
    if zillow[col].isna().sum() >0:
        print(col)
        break
```

2014-06

In [31]:
56 zip codes only go back to 07-2014
zillow[zillow['2014-06'].isna()]

Out[31]:

Contents 2 ₺ ▼ Time Series Project - monthly housing sales Dataset information ▼ Data Preprocessing Import and basic info Analyze 'RegionID' Analyze 'Region Name' Analyze 'City' Analyze 'State' Analyze 'Metro' Analyze 'CountyName' Analyze 'SizeRank' Analyze missing sales values EDA on zip codes Subset data on top zip codes Clustering? Convert to date types Reshape from wide to long format Visualize time series plots ▼ Checking for trends, stationarity, seasonali Seasonal decomposition Correlation

ACF and PACF
Train Test Split
Baseline ARIMA modeling
▼ Find Optimal p,d,q
Philly
Indy
Daytona
Columbus
Kansas City

Visualize predictions and Calculate RMSE

Chattanooga

Facebook Prophet
Interpret Results / Conclusions

	RegionID	RegionName	City	State	Metro	CountyName	SizeRank	1996- 04	1996- 05	1996- 06	 2017-07	2017-08	2017-09	2017-10	2017
2946	73623	35810	Huntsville	AL	Huntsville	Madison	2947	NaN	NaN	NaN	 61000	61000	61100	61900	628
3330	58630	02116	Boston	MA	Boston	Suffolk	3331	NaN	NaN	NaN	 1931100	1995600	2031100	2049600	20578
6153	73629	35816	Huntsville	AL	Huntsville	Madison	6154	NaN	NaN	NaN	 61500	62500	62800	63300	641
7587	78091	46320	Hammond	IN	Chicago	Lake	7588	NaN	NaN	NaN	 66000	67900	68200	68700	696
7635	78566	47371	Portland	IN	None	Jay	7636	NaN	NaN	NaN	 86300	86600	87400	88200	891
8263	88723	70647	lowa	LA	Lake Charles	Calcasieu	8264	NaN	NaN	NaN	 111600	117900	125300	128900	129€
8338	73630	35824	Huntsville	AL	Huntsville	Madison	8339	NaN	NaN	NaN	 217200	216800	216300	215100	2157
8668	75206	39202	Jackson	MS	Jackson	Hinds	8669	NaN	NaN	NaN	 152700	154300	155800	157500	1581
8746	90561	74857	Norman	OK	Oklahoma City	Cleveland	8747	NaN	NaN	NaN	 141800	141800	141700	141700	1420
8780	78097	46327	Hammond	IN	Chicago	Lake	8781	NaN	NaN	NaN	 75200	74600	73200	72500	728
9054	73597	35759	Meridianville	AL	Huntsville	Madison	9055	NaN	NaN	NaN	 164000	161800	159600	159300	1607
9218	71997	32435	Defuniak Springs	FL	Crestview- Fort Walton Beach- Destin	Walton	9219	NaN	NaN	NaN	 102100	102600	103600	103800	1027
9594	76778	43619	Northwood	ОН	Toledo	Wood	9595	NaN	NaN	NaN	 98800	100200	101100	101800	1021
9684	99311	97467	Reedsport	OR	Roseburg	Douglas	9685	NaN	NaN	NaN	 156200	156200	156100	157400	1581
9739	59298	04009	Bridgton	ME	Portland	Cumberland	9740	NaN	NaN	NaN	 175600	177300	179000	179800	1819
10373	87291	66739	Galena	KS	None	Cherokee	10374	NaN	NaN	NaN	 46900	47000	46500	45800	450
10453	88587	70431	Bush	LA	New Orleans	Saint Tammany	10454	NaN	NaN	NaN	 168000	171100	176300	180200	181€
10599	73598	35760	New Hope	AL	Huntsville	Madison	10600	NaN	NaN	NaN	 104900	105500	105100	102300	995
10781	75219	39216	Jackson	MS	Jackson	Hinds	10782	NaN	NaN	NaN	 161200	163600	166700	169600	1720
11073	79629	49245	Homer	MI	Battle Creek	Calhoun	11074	NaN	NaN	NaN	 72900	73000	73200	74300	768
11391	81629	54230	Reedsville	WI	Manitowoc	Manitowoc	11392	NaN	NaN	NaN	 138100	139600	142300	143400	1390
11521	77878	45872	North Baltimore	ОН	Toledo	Wood	11522	NaN	NaN	NaN	 79800	78500	78300	78300	772
11523	82857	56441	Crosby	MN	Brainerd	Crow Wing	11524	NaN	NaN	NaN	 100100	101800	103800	105200	1051
11767	78635	47512	Bicknell	IN	Vincennes	Knox	11768	NaN	NaN	NaN	 53300	54000	54400	54600	549
11772	67332	22625	Cross Junction	VA	Winchester	Frederick	11773	NaN	NaN	NaN	 225800	229100	232000	234200	235€
11888	64657	16625	Greenfield	PA	Altoona	Blair	11889	NaN	NaN	NaN	 100400	100300	99200	98800	968
11905	69706	28088	Landis	NC	Charlotte	Rowan	11906	NaN	NaN	NaN	 119400	120800	122200	123000	1232
11922	79637	49253	Manitou Beach	MI	Adrian	Lenawee	11923	NaN	NaN	NaN	 153500	154100	155100	156800	1613
11969	89717	72718	Cave Springs	AR	Fayetteville	Benton	11970	NaN	NaN	NaN	 251700	251300	250200	249200	2485
11988	78538	47336	Dunkirk	IN	None	Jay	11989	NaN	NaN	NaN	 80800	81200	81700	82900	843
12049	88638	70515	Basile	LA	None	Evangeline	12050	NaN	NaN	NaN	 75000	75700	76000	75600	724

Contents ₽ ♥

- ▼ Time Series Project monthly housing sales

 Dataset information
 - ▼ Data Preprocessing Import and basic info Analyze 'RegionID' Analyze 'Region Name' Analyze 'City' Analyze 'State'

Analyze 'Metro'
Analyze 'CountyName'

Analyze CountyName
Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation
ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

	RegionID	RegionName	City	State	Metro	CountyName	SizeRank	1996- 04	1996- 05	1996- 06 ···	2017-07	2017-08	2017-09	2017-10	2017
12187	76690	43450	Pemberville	ОН	Toledo	Wood	12188	NaN	NaN	NaN	132400	132500	134300	135500	135€
12193	87644	67544	Hoisington	KS	Great Bend	Barton	12194	NaN	NaN	NaN	57700	55600	54800	55700	559
12408	85788	62922	Creal Springs	IL	Carbondale	Williamson	12409	NaN	NaN	NaN	138100	141300	144600	146200	1477
12673	77203	44491	West Farmington	ОН	Youngstown	Trumbull	12674	NaN	NaN	NaN	122400	123600	124900	125900	1265
12684	89991	73173	Oklahoma City	ОК	Oklahoma City	Oklahoma	12685	NaN	NaN	NaN	286000	282000	280600	279700	2785
12887	86745	65259	Huntsville	MO	Moberly	Randolph	12888	NaN	NaN	NaN	110600	112500	113200	111000	1069
13078	81145	53015	Cleveland	WI	Manitowoc	Manitowoc	13079	NaN	NaN	NaN	159400	161800	166100	168100	1630
13185	85340	62216	Aviston	IL	St. Louis	Clinton	13186	NaN	NaN	NaN	163300	162900	162500	162600	1622
13348	85752	62882	Sandoval	IL	Centralia	Marion	13349	NaN	NaN	NaN	27900	27500	27300	27300	277
13368	99281	97435	Drain	OR	Roseburg	Douglas	13369	NaN	NaN	NaN	142200	145900	150000	153100	1544
13573	80051	49950	Mohawk	MI	Houghton	Keweenaw	13574	NaN	NaN	NaN	114100	116500	117500	121500	1278
13584	71553	31527	Brunswick	GA	Brunswick	Glynn	13585	NaN	NaN	NaN	394700	399200	400100	398800	4009
13603	78567	47373	Redkey	IN	None	Jay	13604	NaN	NaN	NaN	81500	82600	83900	85100	860
13604	85741	62870	Odin	IL	Centralia	Marion	13605	NaN	NaN	NaN	33200	33100	33100	33100	334
13615	99337	97499	Yoncalla	OR	Roseburg	Douglas	13616	NaN	NaN	NaN	125900	127900	129200	131400	1339
13811	88122	68730	Crofton	NE	None	Knox	13812	NaN	NaN	NaN	126400	129200	131000	132600	1350
13820	76701	43466	Wayne	ОН	Toledo	Wood	13821	NaN	NaN	NaN	79400	79200	79000	79300	798
14063	76685	43443	Luckey	ОН	Toledo	Wood	14064	NaN	NaN	NaN	118700	119400	120600	121200	1211
14157	76663	43406	Bradner	ОН	Toledo	Wood	14158	NaN	NaN	NaN	72700	72100	71700	71400	707
14206	66105	19954	Houston	DE	Dover	Kent	14207	NaN	NaN	NaN	157000	156400	155700	154900	1532
14207	85339	62215	Albers	IL	St. Louis	Clinton	14208	NaN	NaN	NaN	151300	147900	144500	143300	1429
14267	79020	48157	Luna Pier	MI	Monroe	Monroe	14268	NaN	NaN	NaN	95700	96500	97000	95900	934
14341	79832	49636	Glen Arbor	MI	Traverse City	Leelanau	14342	NaN	NaN	NaN	580500	594300	610000	636300	6779
14577	85489	62440	Lerna	IL	Charleston	Coles	14578	NaN	NaN	NaN	81500	83500	85200	86400	880
14707	69681	28039	East Spencer	NC	Charlotte	Rowan	14708	NaN	NaN	NaN	27300	26400	25500	25100	251

56 rows × 272 columns

EDA on zip codes

```
Contents 2 4
▼ Time Series Project - monthly housing sales
    Dataset information
  ▼ Data Preprocessing
      Import and basic info
      Analyze 'RegionID'
      Analyze 'Region Name'
      Analyze 'City'
      Analyze 'State'
      Analyze 'Metro'
      Analyze 'CountyName'
      Analyze 'SizeRank'
      Analyze missing sales values
    EDA on zip codes
    Subset data on top zip codes
    Clustering?
    Convert to date types
    Reshape from wide to long format
    Visualize time series plots
  ▼ Checking for trends, stationarity, seasonali
      Seasonal decomposition
      Correlation
      ACF and PACF
    Train Test Split
    Baseline ARIMA modeling
  ▼ Find Optimal p,d,q
      Philly
      Indy
      Daytona
      Columbus
      Kansas City
      Chattanooga
    Visualize predictions and Calculate RMSE
    Facebook Prophet
    Interpret Results / Conclusions
```

```
In [32]: # Create a 4 year ROI since that is the most data we have for some zips
              zillow['4 yr ROI'] = (zillow['2018-04'] - zillow['2014-07'])/(zillow['2014-07'])
              zillow['4 yr ROI']
   Out[32]: 0
                       0.154346
              1
                       0.338046
              2
                       0.134847
                       0.119294
              3
                       0.066725
              14718
                       0.103903
              14719
                       0.239297
              14720
                       0.280230
              14721
                       0.234256
              14722
                       0.293266
              Name: 4 yr ROI, Length: 14723, dtype: float64
In [33]: ▶ # Lowest values
              zillow.sort_values('4_yr_ROI').head()[['RegionName','City','State','4_yr_ROI']]
   Out[331:
                     RegionName
                                       City State 4 yr ROI
              11391
                          54230
                                   Reedsville
                                               WI
                                                  -0.388060
               12436
                          45390
                                   Union City
                                              ОН
                                                  -0.335992
               13485
                          45346
                                              OH -0.282334
                                 New Madison
               13078
                          53015
                                   Cleveland
                                               WI
                                                  -0.265185
               4294
                          45331
                                              OH -0.249827
                                   Greenville
In [34]: ▶ # Highest values
              zillow.sort_values('4_yr_ROI',ascending=False).head()[['RegionName','City','State','4_yr_ROI']]
   Out[34]:
                     RegionName
                                          City
                                              State 4_yr_ROI
              13409
                                                NC 1.948770
                          27980
                                       Hertford
                842
                          30032
                                 Candler-Mcafee
                                                GA 1.489011
                6563
                          15201
                                      Pittsburgh
                                                PA 1.261294
                4554
                          33805
                                      Lakeland
                                                FL 1.233115
               6105
                          37210
                                                TN 1.142857
                                      Nashville
```

zillow['recent 1 yr ROI'] = (zillow['2018-04'] - zillow['2017-04'])/(zillow['2017-04'])

```
zillow['recent 1 vr ROI']
                                                      Out[351: 0
                                                                          0.041852
                                                                1
                                                                          0.057162
Contents 2 4
                                                                2
                                                                          0.030937
▼ Time Series Project - monthly housing sales
                                                                2
                                                                          0.019103
   Dataset information
                                                                          0.029661
  ▼ Data Preprocessing
      Import and basic info
                                                                14718
                                                                         -0.010402
      Analyze 'RegionID'
                                                                14719
                                                                          0.162120
      Analyze 'Region Name'
                                                                14720
                                                                          0.104305
      Analyze 'City'
                                                                14721
                                                                          0.121350
      Analyze 'State'
                                                                14722
                                                                          0.100092
      Analyze 'Metro'
                                                                Name: recent 1 yr ROI, Length: 14723, dtype: float64
      Analyze 'CountyName'
      Analyze 'SizeRank'
                                                 In [36]: ▶ # Lowest values
      Analyze missing sales values
                                                                zillow.sort values('recent 1 yr ROI').head()[['RegionName','City','State','recent 1 yr ROI']]
    EDA on zip codes
    Subset data on top zip codes
   Clustering?
                                                      Out[36]:
   Convert to date types
                                                                        RegionName
                                                                                          City State recent 1 vr ROI
   Reshape from wide to long format
                                                                 14618
                                                                                     Effingham
                                                                                                            -0.218135
                                                                              66023
                                                                                                 KS
    Visualize time series plots
  ▼ Checking for trends, stationarity, seasonali
                                                                  7286
                                                                                                 LA
                                                                                                           -0.197955
                                                                              70583
                                                                                         Scott
      Seasonal decomposition
                                                                 11914
                                                                              71023
                                                                                        Doyline
                                                                                                 LA
                                                                                                           -0.186260
      Correlation
      ACF and PACF
                                                                                                           -0.170560
                                                                  6445
                                                                              30642
                                                                                    Greensboro
                                                                                                 GA
   Train Test Split
                                                                  9457
                                                                              70090
                                                                                       Vacherie
                                                                                                 LA
                                                                                                           -0.167689
    Baseline ARIMA modeling
  ▼ Find Optimal p,d,q
     Philly
                                                  zillow.sort values('recent 1 yr ROI', ascending=False).head()[['RegionName', 'City', 'State', 'recent 1 yr ROI']]
      Indy
      Daytona
      Columbus
     Kansas City
                                                      Out[37]:
                                                                        RegionName
                                                                                              City State recent_1_yr_ROI
      Chattanooga
    Visualize predictions and Calculate RMSE
                                                                  4211
                                                                              07106
                                                                                           Newark
                                                                                                     NJ
                                                                                                                0.508078
   Facebook Prophet
                                                                 13409
                                                                                                     NC
                                                                                                                0.474385
   Interpret Results / Conclusions
                                                                              27980
                                                                                           Hertford
                                                                  3285
                                                                              19601
                                                                                           Reading
                                                                                                     PA
                                                                                                                0.437500
                                                                  3540
                                                                              07103
                                                                                           Newark
                                                                                                     NJ
                                                                                                                0.435213
                                                                                                                0.431034
                                                                  4309
                                                                              29405 North Charleston
                                                 In [38]: # Find ava one year ROI over past 3 years
                                                                def average one year ROI(df):
                                                                     average_one_year_ROI = []
                                                                    for i in range(len(df)):
                                                                         year 1 ROI = df['recent 1 yr ROI'][i]
                                                                         year_2_ROI = (df.iloc[i,-15] - df.iloc[i,-27])/df.iloc[i,-27]
                                                                         year_3_ROI = (df.iloc[i,-27] - df.iloc[i,-39])/df.iloc[i,-39]
                                                                         avg_ROI = (year_1_ROI + year_2_ROI + year_3_ROI)/3
```

average_one_year_ROI.append(avg_ROI)

return average_one_year_ROI

In [35]: **M** # Check most recent one year ROI

Contents 2 4 ▼ Time Series Project - monthly housing sales Dataset information ▼ Data Preprocessing Import and basic info Analyze 'RegionID' Analyze 'Region Name' Analyze 'City' Analyze 'State' Analyze 'Metro' Analyze 'CountyName' Analyze 'SizeRank' Analyze missing sales values EDA on zip codes Subset data on top zip codes Clustering? Convert to date types Reshape from wide to long format Visualize time series plots ▼ Checking for trends, stationarity, seasonali Seasonal decomposition Correlation ACF and PACF Train Test Split Baseline ARIMA modeling ▼ Find Optimal p,d,q Philly Indy Daytona Columbus Kansas City Chattanooga Visualize predictions and Calculate RMSE Facebook Prophet Interpret Results / Conclusions

```
In [40]: ▶ # Lowest values
              zillow.sort values('avg one yr ROI').head()[['RegionName','City','State','avg one yr ROI']]
   Out[40]:
                    RegionName
                                       City State avg_one_yr_ROI
              11391
                          54230
                                  Reedsville
                                             WI
                                                       -0.135889
              12436
                          45390
                                  Union City
                                             ОН
                                                       -0.129479
              13485
                          45346
                                New Madison
                                             ОН
                                                       -0.109924
              13078
                          53015
                                             WI
                                                       -0.103355
                                   Cleveland
                                                       -0.098901
               4294
                          45331
                                  Greenville
                                             ОН
In [41]: ▶ # Highest values
              zillow.sort_values('avg_one_yr_ROI', ascending=False).head()[['RegionName','City','State','avg_one_yr_ROI','2018-04']]
   Out[41]:
                    RegionName
                                         City State avg_one_yr_ROI 2018-04
              13409
                          27980
                                      Hertford
                                               NC
                                                         0.355009
                                                                   143900
                842
                          30032
                                Candler-Mcafee
                                               GΑ
                                                         0.273701
                                                                   135900
                466
                          19134
                                   Philadelphia
                                               PA
                                                         0.268561
                                                                   46600
               1821
                          28208
                                      Charlotte
                                               NC
                                                         0.250809
                                                                   113400
               2661
                          33705 Saint Petersburg
                                                         0.247735
                                                                  177300
In [42]: 🔰 # Plotting median home price versus avg ROI. Some crazy 20 million dollar home values in New York.
             plt.figure(figsize = (12,6))
             sns.scatterplot(data=zillow, x='2018-04', y='avg one yr ROI')
             plt.savefig('Images/scatterplot1.png');
                 0.3
                 0.2
              avg_one_yr_ROI
                 0.1
                 0.0
                 -0.1
                       0.00
                                  0.25
                                              0.50
                                                         0.75
                                                                     1.00
                                                                                1.25
                                                                                            150
                                                                                                       175
                                                               2018-04
```

- ▼ Time Series Project monthly housing sales

 Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

```
In [43]: # Eliminate the high outliers
plt.figure(figsize = (12,6))
sns.scatterplot(data=zillow, x='2018-04', y='avg_one_yr_ROI')
plt.xlim(0,2000000)
plt.xticks([500000,10000000,1500000,20000000],['500,000','1,000,000','1,500,000','2,000,000'])
plt.xlabel('Median Sales price in April 2018 ($)')
plt.ylabel('Average One Year ROI for past 3 years')
plt.yticks([-0.10, 0, 0.10, 0.20, 0.30], ['-10%', '0.0', '10%', '20%', '30%'])
plt.savefig('Images/scatterplot2.png');
```


- ▼ Time Series Project monthly housing sales Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy

Daytona Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

```
In [44]: # Further reduce price
# Per my business case, I am looking for highest ROI for small investors
plt.figure(figsize = (12,6))
sns.scatterplot(data=zillow, x='2018-04', y='avg_one_yr_ROI')
plt.xlim(0,300000)
plt.xticks([50000,100000,150000,200000,250000,3000000],['50000','100,000','150,000','200,000','250,000','300,000'])
plt.xlabel('Median Sales price in April 2018 ($)')
plt.ylabel('Average One Year ROI for past 3 years')
plt.hlines(0, 0, 300000, color='r', linestyles='dashed')
plt.hlines(.20, 0, 100000, color='black', linestyles='dotted')
plt.vlines(100000,.2,.4,color='black', linestyles='dotted')
plt.yticks([-0.10, 0, 0.10, 0.20, 0.30], ['-10%', '0.0', '10%', '20%', '30%'])
plt.savefig('Images/scatterplot3.png');
```


- ▼ Time Series Project monthly housing sales Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

```
In [45]: # Zoom in
    plt.figure(figsize = (12,6))
    sns.scatterplot(data=zillow, x='2018-04', y='avg_one_yr_ROI')
    plt.xlim(0,100000)
    plt.ylim(.20,.30)
    plt.xticks([25000, 50000,75000,100000],['25000','50,000','75,000','100,000'])
    plt.xlabel('Median Sales price in April 2018 ($)')
    plt.ylabel('Average One Year ROI for past 3 years')
    # plt.hlines(0, 0, 300000, color='r', linestyles='dashed')
    # plt.hlines(.20, 0, 100000, color = 'black', linestyles='dotted')
    # plt.vlines(100000,.2,.4,color='black', linestyles='dotted')
    plt.yticks([0.20, 0.25, 0.30], ['20%', '25%', '30%'])
    plt.savefig('Images/scatterplot4.png');
```


▼ Subset data on top zip codes

```
In [46]: # Choose zips with 'current' price under $100,000 and avg ROI greater than 20%
zillow_top = zillow[(zillow['2018-04'] < 100000) & (zillow['avg_one_yr_ROI'] > 0.20)]
zillow_top
```

- ▼ Time Series Project monthly housing sales Dataset information
- ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

	RegionID	RegionName	City	State	Metro	CountyName	SizeRank	1996- 04	1996- 05	1996- 06	 2017- 10	2017- 11	2017- 12	2018- 01	2018- 02
466	65801	19134	Philadelphia	PA	Philadelphia	Philadelphia	467	27600.0	27500.0	27500.0	 39600	40600	41600	42600	44000
1754	78022	46203	Indianapolis	IN	Indianapolis	Marion	1755	NaN	NaN	NaN	 67000	66600	67400	69200	70600
2199	71793	32114	Daytona Beach	FL	Daytona Beach	Volusia	2200	47700.0	48000.0	48300.0	 85500	86700	87900	89000	90400
3853	76575	43206	Columbus	ОН	Columbus	Franklin	3854	NaN	NaN	NaN	 69400	71800	75700	78800	81300
4293	87104	66104	Kansas City	KS	Kansas City	Wyandotte	4294	41300.0	41200.0	41200.0	 51600	54200	55700	55700	55900
5682	74373	37411	Chattanooga	TN	Chattanooga	Hamilton	5683	54800.0	55000.0	55200.0	 87400	89200	90500	91700	93500

6 rows × 275 columns

```
In [47]: N zillow_top[['RegionName', 'City','State','Metro', 'SizeRank','2018-04','avg_one_yr_ROI']]
```

Out[47]:

Out[46]:

	RegionName	City	State	Metro	SizeRank	2018-04	avg_one_yr_ROI
466	19134	Philadelphia	PA	Philadelphia	467	46600	0.268561
1754	46203	Indianapolis	IN	Indianapolis	1755	73500	0.231818
2199	32114	Daytona Beach	FL	Daytona Beach	2200	92600	0.210909
3853	43206	Columbus	ОН	Columbus	3854	88100	0.225806
4293	66104	Kansas City	KS	Kansas City	4294	59800	0.226380
5682	37411	Chattanooga	TN	Chattanooga	5683	95600	0.219015

Clustering?

What info does this really give me?

Convert to date types

```
In [48]: | # Function provided in starter notebook
def get_datetimes(df):
    return pd.to_datetime(df.columns.values[:], format='%Y-%m')
```

Contents 2 a Out[49]:

- ▼ Time Series Project monthly housing sales Dataset information
 - ▼ Data Preprocessing Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

```
1996-
               1996-
                       1996
                               1996-
                                       1996-
                                               1996-
                                                       1996
                                                               1996-
                                                                       1996-
                                                                               1997-
                                                                                         2017- 2017- 2017- 2017- 2017- 2018-
                                                                                                                                      201
               05-01
                       06-01
                               07-01
                                       08-01
                                               09-01
                                                       10-01
                                                               11-01
                                                                       12-01
                                                                               01-01
                                                                                                                                      02-
       04-01
                                                                                        07-01
                                                                                               08-01
                                                                                                     09-01
                                                                                                            10-01
                                                                                                                  11-01
                                                                                                                         12-01
                                                                                                                                01-01
     27600.0 27500.0
                     27500.0
                             27400.0
                                     27400.0
                                             27300.0
                                                     27300.0
                                                             27200.0
                                                                     27200.0
                                                                            27300.0
                                                                                        39000
                                                                                              39100 39100 39600
                                                                                                                  40600
                                                                                                                        41600
                                                                                                                               42600 440
        NaN
                NaN
                        NaN
                                NaN
                                        NaN
                                               NaN
                                                        NaN
                                                               NaN
                                                                        NaN
                                                                                NaN
                                                                                              66700 66900 67000
                                                                                                                  66600
                                                                                                                        67400
                                                                                                                               69200 706
     47700.0 48000.0
                     48300.0
                             48400.0
                                     48500.0
                                             48500.0
                                                     48500.0
                                                             48400.0
                                                                     48400.0
                                                                            48400.0
                                                                                        82300
                                                                                              83300 84300
                                                                                                           85500
                                                                                                                  86700
                                                                                                                        87900
                                                                                                                               89000 904
2199
3853
        NaN
                NaN
                        NaN
                                NaN
                                        NaN
                                               NaN
                                                        NaN
                                                               NaN
                                                                        NaN
                                                                                NaN
                                                                                        67600
                                                                                              68600
                                                                                                    68800
                                                                                                           69400 71800
                                                                                                                        75700
                                                                                                                               78800 813
     41300.0
             41200.0
                     41200.0
                             41100.0
                                     41000.0
                                             40800.0
                                                     40700.0
                                                             40500.0
                                                                     40500.0
                                                                            40500.0
                                                                                              47900 49700
     54800 0 55000 0
                     55200 0 55400 0 55700 0 55900 0 56200 0 56400 0 56700 0 57000 0 82300 84500 85800 87400 89200 90500 91700 935
```

Out[50]:

_		RegionID	RegionName	City	State	Metro	CountyName	SizeRank	4_yr_ROI	recent_1_yr_ROI	avg_one_yr_ROI	 2017-07- 01 00:00:00	2017-08- 01 00:00:00
	466	65801	19134	Philadelphia	PA	Philadelphia	Philadelphia	467	0.834646	0.259459	0.268561	 39000	39100
	1754	78022	46203	Indianapolis	IN	Indianapolis	Marion	1755	1.047354	0.137771	0.231818	 66700	66700
	2199	71793	32114	Daytona Beach	FL	Daytona Beach	Volusia	2200	0.909278	0.169192	0.210909	 82300	83300
	3853	76575	43206	Columbus	ОН	Columbus	Franklin	3854	0.984234	0.409600	0.225806	 67600	68600
	4293	87104	66104	Kansas City	KS	Kansas City	Wyandotte	4294	0.986711	0.300000	0.226380	 47300	47900
	5682	74373	37411	Chattanooga	TN	Chattanooga	Hamilton	5683	0.623090	0.283221	0.219015	 82300	84500

6 rows × 275 columns

6 rows × 265 columns

Out[51]: 324

Reshape from wide to long format

Contents ♂ &

- ▼ Time Series Project monthly housing sales Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p.d.q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

```
In [52]: M # Create a separate data frame for each of the 6 top zin codes.
             Philly = zillow top date[zillow top date['RegionName']=='19134']
             Indv = zillow top date[zillow top date['RegionName']=='46203']
             Daytona = zillow top date[zillow top date['RegionName']=='32114']
             Columbus = zillow_top_date[zillow_top_date['RegionName']=='43206']
             KC = zillow top date[zillow top date['RegionName']=='66104']
             Chattanooga = zillow top date[zillow top date['RegionName']=='37411']
In [53]: M # Columbus and Indv have missing data. I don't want to back fill multiple years worth of data.
             # I'd rather slice off what I have and hackfill only occasional missing data
             Indy.isna().sum().sum()
   Out[53]: 111
In [54]: ► Indy.columns[Indy.isnull().any()] # Indy begins recording data at 2005-07-01
   Out[54]: Index([1996-04-01 00:00:00, 1996-05-01 00:00:00, 1996-06-01 00:00:00,
                    1996-07-01 00:00:00, 1996-08-01 00:00:00, 1996-09-01 00:00:00,
                    1996-10-01 00:00:00, 1996-11-01 00:00:00, 1996-12-01 00:00:00,
                    1997-01-01 00:00:00.
                    2004-09-01 00:00:00, 2004-10-01 00:00:00, 2004-11-01 00:00:00,
                    2004-12-01 00:00:00, 2005-01-01 00:00:00, 2005-02-01 00:00:00,
                    2005-03-01 00:00:00, 2005-04-01 00:00:00, 2005-05-01 00:00:00,
                    2005-06-01 00:00:001.
                   dtype='object', length=111)
In [55]: | Columbus.columns[Columbus.isnull().any()] # Columbus begins recording data at 2014-01-01
   Out[55]: Index([1996-04-01 00:00:00, 1996-05-01 00:00:00, 1996-06-01 00:00:00,
                    1996-07-01 00:00:00, 1996-08-01 00:00:00, 1996-09-01 00:00:00,
                    1996-10-01 00:00:00, 1996-11-01 00:00:00, 1996-12-01 00:00:00,
                    1997-01-01 00:00:00.
                    2013-03-01 00:00:00, 2013-04-01 00:00:00, 2013-05-01 00:00:00,
                    2013-06-01 00:00:00, 2013-07-01 00:00:00, 2013-08-01 00:00:00,
                    2013-09-01 00:00:00, 2013-10-01 00:00:00, 2013-11-01 00:00:00,
                    2013-12-01 00:00:00],
                   dtype='object', length=213)
In [56]: | Indy_notnull = Indy[Indy.columns.drop(Indy.columns[Indy.isnull().any()])]
             Columbus notnull = Columbus[Columbus.columns.drop(Columbus.columns[Columbus.isnull().any()])]
```

```
Out[57]:
                                                                                                                                                                                            2017-07- 2017-08-
                                                                        RegionID RegionName
                                                                                                    City State
                                                                                                                   Metro CountyName SizeRank 4 yr ROI recent 1 yr ROI avg one yr ROI ...
                                                                                                                                                                                            00:00:00
Contents 2 4
                                                                 1754
                                                                          78022
                                                                                       46203 Indianapolis
                                                                                                           IN Indianapolis
                                                                                                                                           1755 1.047354
                                                                                                                                                                0.137771
                                                                                                                                                                                0.231818
                                                                                                                                                                                              66700
                                                                                                                               Marion
▼ Time Series Project - monthly housing sales
   Dataset information
                                                                 1 rows × 164 columns
  ▼ Data Preprocessing
      Import and basic info
      Analyze 'RegionID'
      Analyze 'Region Name'
      Analyze 'City'
                                                  In [58]: M def melt data(list of dfs): # changed to take in a list of dataframes for scalability
      Analyze 'State'
                                                                      """Convert list of time series dataframes into melted format"""
      Analyze 'Metro'
                                                                     return list = []
     Analyze 'CountyName'
                                                                     for df in list of dfs:
     Analyze 'SizeRank'
                                                                         melted = pd.melt(df, id vars=['RegionID','RegionName', 'City', 'State', 'Metro', 'CountyName',
     Analyze missing sales values
                                                                                                           'SizeRank', '4 vr ROI', 'recent 1 vr ROI', 'avg one vr ROI'], var name='time')
    EDA on zip codes
                                                                         melted['time'] = pd.to datetime(melted['time'], infer datetime format=True)
                                                                            melted = melted.dropna(subset=['value'])
   Subset data on top zip codes
                                                                         melted = melted.bfill() # I'm adding this to try backfill instead of droppg
   Clustering?
                                                                         return list.append(melted.groupby('time').aggregate({'value':'mean'}))
   Convert to date types
                                                                     return return list
   Reshape from wide to long format
    Visualize time series plots

▼ Checking for trends, stationarity, seasonali

      Seasonal decomposition
                                                  In [59]: | zips to melt = [Philly, Indy notnull, Daytona, Columbus notnull, KC, Chattanooga]
      Correlation
                                                                 Philly melted, Indy melted, Daytona melted, Columbus melted, KC melted, Chattanooga melted = melt data(zips to melt)
     ACF and PACF
   Train Test Split
                                                                 Indy melted
   Baseline ARIMA modeling
  ▼ Find Optimal p,d,q
     Philly
                                                      Out[59]:
      Indv
                                                                              value
      Daytona
                                                                       time
      Columbus
     Kansas City
                                                                  2005-07-01 73600.0
      Chattanooga
                                                                  2005-08-01 74700.0
    Visualize predictions and Calculate RMSE
   Facebook Prophet
                                                                  2005-09-01 75700.0
   Interpret Results / Conclusions
                                                                  2005-10-01 76600.0
                                                                  2005-11-01 77200.0
                                                                  2017-12-01 67400.0
                                                                  2018-01-01 69200.0
                                                                  2018-02-01 70600.0
                                                                  2018-03-01 71800.0
                                                                  2018-04-01 73500.0
                                                                 154 rows × 1 columns
```

Visualize time series plots

In [57]: ▶ Indv notnull

01

00:00:00

66700

- ▼ Time Series Project monthly housing sales

 Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

 Checking for trends, stationarity, seasonali Seasonal decomposition
 Correlation

ACF and PACF

Train Test Split
Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

- ▼ Time Series Project monthly housing sales Dataset information
- ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

Checking for trends, stationarity, seasonality

Best Log Transformed Differences (0-5) with p-values

```
{'Philadelphia': (1, 0.03194585744150177), 'Indianapolis': (2, 0.7150685269034184), 'Daytona': (5, 0.15351111071221946), 'Columbus': (4, 0.018148301922587158), 'Kansas City': (1, 0.14000751949106677), 'Chattanooga': (1, 0.14039677392972233)}
```

▼ Data Preprocessing Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

▼ Time Series Project - monthly housing sales

Analyze 'City'

Dataset information

Contents 2 4

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

```
In [62]: M stationarity_check(Philly_melted) # Function defined in user_functions.py # p-value is greater than .05 (it is .927!) so the series is not stationary
```


Results of Dickey-Fuller Test:

Test Statistic	-0.288166
p-value	0.927164
#Lags Used	0.000000
Number of Observations Used	264.000000
Critical Value (1%)	-3.455365
Critical Value (5%)	-2.872551
Critical Value (10%)	-2.572638
dtype: float64	

- ▼ Time Series Project monthly housing sales

 Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy

Daytona Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

value

Out[63]:

	value
time	
1996-04-01	NaN
1996-05-01	-100.0
1996-06-01	0.0
1996-07-01	-100.0
1996-08-01	0.0
1996-09-01	-100.0
1996-10-01	0.0
1996-11-01	-100.0
1996-12-01	0.0
1997-01-01	100.0

- ▼ Time Series Project monthly housing sales Dataset information
- ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy

Daytona

Columbus Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

Results of Dickey-Fuller Test:

Test Statistic -2.422182
p-value 0.135573
#Lags Used 8.000000
Number of Observations Used 255.000000
Critical Value (1%) -3.456257
Critical Value (5%) -2.872942
Critical Value (10%) -2.572846
dtype: float64

localhost:8888/notebooks/Time Series Project.ipynb

- ▼ Time Series Project monthly housing sales Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

```
0 nan
1 0.1355732285119607
2 0.11919275051848399
3 0.46881217920610363
4 0.06815812325627901
5 0.5883509233410241
6 0.6625687149487411
7 0.6594311981817602
8 0.6800038226664793
9 0.6534124137040307
10 0.4258803417746362
11 0.37733392014565237
12 0.35832937865646863
13 0.5086076402133188
14 0.7541136387628624
15 0.774362568776317
16 0.9158068216563182
17 0.6293119733269782
18 0.7908159564611525
19 0.7702364848871605
20 0.6899295894240023
21 0.5526525850677468
22 0.3944823143309037
23 0.15231458968681078
24 0.25381820081799567
```

- ▼ Time Series Project monthly housing sales Dataset information
- ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy

Daytona

Columbus

Kansas City Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

In [66]: # Well it doesn't appear that differencing is enough to make this data stationary. I will try a log transform.

stationarity_check(np.log(Philly_melted))

Results of Dickey-Fuller Test:

Test Statistic -2.205328
p-value 0.204317
#Lags Used 15.000000
Number of Observations Used 249.000000
Critical Value (1%) -3.456888
Critical Value (5%) -2.873219
Critical Value (10%) -2.572994
dtype: float64

Contents 2 4 ▼ Time Series Project - monthly housing sales Dataset information ▼ Data Preprocessing Import and basic info Analyze 'RegionID' Analyze 'Region Name' Analyze 'City' Analyze 'State' Analyze 'Metro' Analyze 'CountyName' Analyze 'SizeRank' Analyze missing sales values EDA on zip codes Subset data on top zip codes Clustering? Convert to date types Reshape from wide to long format Visualize time series plots ▼ Checking for trends, stationarity, seasonali Seasonal decomposition Correlation ACF and PACF Train Test Split Baseline ARIMA modeling ▼ Find Optimal p,d,q Philly Indv Daytona Columbus Kansas City Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

```
if ind best difference(np.log(Philly melted)) # Looks like 1 period difference on the Log is enough!
             0 nan
             1 0.03194585744150177
             2 0.05755421697421712
             3 0.41215000402719315
             4 0.3328238500504311
             5 0.5219180086033582
             6 0.6242970016812888
             7 0.5848581976590658
             8 0.6510232059347572
             9 0.5855397938521867
             10 0.2152804651715723
             11 0.31644676563329477
             12 0.3180101413235155
             13 0.5066454466043491
             14 0.7145389957289219
             15 0.7496413895092593
             16 0.9257344998971225
             17 0.5027490612893842
             18 0.785076746341453
             19 0.4866291610367524
             20 0.5239041024548403
             21 0.6558632056717053
             22 0.3828486937258605
             23 0.15615792830432296
             24 0.10144107169157374
In [68]: M find best difference(Indy melted) # Similarly, Indy will also not be stationary just with differencing
             # I will log transform all data from this point for consistency
             0 nan
             1 0.6607367844729298
             2 0.6710288605269173
             3 0.6538440854875729
             4 0.8180384416636614
             5 0.9168834702182442
             6 0.7272629085524935
             7 0.972985914001579
             8 0.9077547267914667
             9 0.9250468892100571
             10 0.9475248432116631
             11 0.9567961891949055
             12 0.8959853887922271
             13 0.8727363146890167
             14 0.9364298296713139
             15 0.9631269272782114
             16 0.8440507229682248
             17 0.7932262718023664
             18 0.6247702692033436
             19 0.8627990295543804
             20 0.4749649338554318
             21 0.4731927953954632
             22 0.2701763743725465
             23 0.4080676060217747
             24 0.4125021871455804
```

Philly

Indv

Daytona

```
0 nan
                                                               1 0.7169611824126959
                                                               2 0.7150685269034184
                                                               3 0.7706040494740733
Contents € &
                                                               4 0.7316064027092836
▼ Time Series Project - monthly housing sales
                                                               5 0.8342752473849291
   Dataset information
                                                               6 0.7934513927344009
  ▼ Data Preprocessing
                                                               7 0.9239429975367102
      Import and basic info
                                                               8 0.8022629832205488
      Analyze 'RegionID'
                                                               9 0.8736470080397349
      Analyze 'Region Name'
                                                               10 0.8879831714495896
      Analyze 'City'
                                                               11 0.9083559498230531
      Analyze 'State'
                                                               12 0.8595828254320502
      Analyze 'Metro'
                                                               13 0.7216980892314375
                                                               14 0.736487471121519
      Analyze 'CountyName'
      Analyze 'SizeRank'
                                                               15 0.8862216762430716
                                                               16 0.6717269713827985
      Analyze missing sales values
                                                               17 0.26786907914893804
    EDA on zip codes
                                                               18 0.28044792795807144
    Subset data on top zip codes
                                                               19 0.22406085021268823
   Clustering?
                                                               20 0.1610621757219327
   Convert to date types
                                                               21 0.14248605509675633
   Reshape from wide to long format
                                                               22 0.05064913563009264
    Visualize time series plots
                                                               23 0.09326162148773787

▼ Checking for trends, stationarity, seasonali

                                                               24 0.10517892475263818
      Seasonal decomposition
      Correlation
      ACF and PACF
                                                In [70]: # I'm going to get my best difference parameter within 0-5
   Train Test Split
                                                               def find all best log differences(dfs, names):
   Baseline ARIMA modeling
                                                                   best scores={}
  ▼ Find Optimal p,d,q
                                                                   for idx, df in enumerate(dfs):
                                                                       lowest score=1 # These are p-values so 1 is the highest
                                                                       for i in range(0,6):
                                                                            difference = (np.log(df)).diff(periods=i)
      Columbus
                                                                            dftest = adfuller(difference[i:])
      Kansas City
                                                                            if dftest[1] < lowest score:</pre>
      Chattanooga
                                                                                lowest score = dftest[1]
    Visualize predictions and Calculate RMSE
                                                                                best combo=(i,lowest score)
   Facebook Prophet
                                                                       best scores[names[idx]] = best combo
   Interpret Results / Conclusions
                                                                   return best scores
                                                               best diff = find all best log differences(all dfs,names)
                                                               best diff
                                                    Out[70]: {'Philadelphia': (1, 0.03194585744150177),
                                                                 'Indianapolis': (2, 0.7150685269034184),
                                                                'Daytona': (5, 0.15351111071221946),
                                                                'Columbus': (4, 0.018148301922587158),
                                                                'KansasCity': (1, 0.14000751949106677),
                                                                'Chattanooga': (1, 0.14039677392972233)}
```

Seasonal decomposition

- ▼ Time Series Project monthly housing sales Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

```
In [71]: N # I will be using logged and difference data in the models but would like to look at how decomposition works for EDA
             # Import and apply seasonal decompose()
             from statsmodels.tsa.seasonal import seasonal decompose
             decomposition = seasonal decompose(np.log(Philly melted))
             # Gather the trend, seasonality, and residuals
             trend = decomposition.trend
             seasonal = decomposition.seasonal
             residual = decomposition.resid
             # Plot gathered statistics
             plt.figure(figsize=(12,8))
             plt.subplot(411)
             plt.plot(Philly melted, label='Original')#np.log(ts)
             plt.legend(loc='best')
             plt.subplot(412)
             plt.plot(trend, label='Trend')
             plt.legend(loc='best')
             plt.subplot(413)
             plt.plot(seasonal, label='Seasonality')
             plt.legend(loc='best')
             plt.subplot(414)
             plt.plot(residual, label='Residuals')
             plt.legend(loc='best')
             plt.savefig('Images/decomposition.png')
             plt.tight layout()
```


- ▼ Time Series Project monthly housing sales Dataset information
- ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

In [72]: ▶ # Drop missing values from residuals

Philly_residuals = residual

Philly residuals.dropna(inplace=True)

Check stationarity

stationarity check(Philly residuals)

Although the std dev still appears to be trending upward, the p-value indicates stationarity

Results of Dickey-Fuller Test:

Test Statistic -6.009296e+00 p-value 1.587583e-07 #Lags Used 8.000000e+00 Number of Observations Used Critical Value (1%) -3.457438e+00 Critical Value (5%) -2.873459e+00 Critical Value (10%) -2.573122e+00 dtype: float64

Correlation

- ▼ Time Series Project monthly housing sales Dataset information
- ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

Out[731:

	Philadelphia	Indianapolis	Daytona	Columbus	KansasCity	Chattanooga
Philadelphia	1.000000	0.928714	0.788810	0.937542	0.568138	0.856833
Indianapolis	0.928714	1.000000	0.869279	0.933518	0.898426	0.928332
Daytona	0.788810	0.869279	1.000000	0.936875	0.829742	0.864986
Columbus	0.937542	0.933518	0.936875	1.000000	0.901098	0.882271
KansasCity	0.568138	0.898426	0.829742	0.901098	1.000000	0.777869
Chattanooga	0.856833	0.928332	0.864986	0.882271	0.777869	1.000000

```
In [74]: | # Let's difference them all then check correlation again
    df_group_diff = np.log(df_group).diff(periods=1)
    df_group_diff.plot(figsize=(15,6))
    plt.xlabel('Year', fontsize=14)
    plt.savefig('Images/zips_differenced.png');
```


- ▼ Time Series Project monthly housing sales Dataset information
- ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

In [76]: № df_group_diff.corr() # Less correlated when they are differenced 1 period, nothing over .639

Out[76]:

	Philadelphia	Indianapolis	Daytona	Columbus	KansasCity	Chattanooga
Philadelphia	1.000000	0.368891	0.378077	0.319255	0.267676	0.443239
Indianapolis	0.368891	1.000000	0.388933	0.055788	0.372529	0.250858
Daytona	0.378077	0.388933	1.000000	-0.080285	0.639956	0.431938
Columbus	0.319255	0.055788	-0.080285	1.000000	-0.048437	0.103480
KansasCity	0.267676	0.372529	0.639956	-0.048437	1.000000	0.393031
Chattanooga	0.443239	0.250858	0.431938	0.103480	0.393031	1.000000

ACF and PACF

Contents 2 ₺

- ▼ Time Series Project monthly housing sales Dataset information
- ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

plot_acf(Philly_melted, lags=50); Contents ② 🌣

Autocorrelation

Autocorrelation

Autocorrelation

Autocorrelation

Autocorrelation

Autocorrelation

0.75

0.50

0.50

0.25

-0.25

-0.50

-0.75

0 10 20 30 40 50

▼ Time Series Project - monthly housing sales Dataset information ▼ Data Preprocessing

Import and basic info Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName' Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

Train Test Split

```
Contents æ &
```

```
▼ Time Series Project - monthly housing sales
Dataset information
```

▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

```
In [80]: # My times series have different lengths, some are very short
             # I originally split the testing data to be 20% of the data, rather than a particular time period
             # However, my training data failed to capture the recent upward trends
             # So now I will seament the test/forecastina data to only the most recent year
             # Function takes in a list for scalability
             # We already created the list and names for a previous function
             def test snlit(list of df. names):
                 return list=[]
                 for i, df in enumerate(list of df):
                       test nobs=int((len(df))*.20)
                       trainina data = df[:-(test nobs)]
                       test data = df[-(test nobs):]
                     training data = df[:-12]
                     test data = df[-12:]
                     return list.extend([training data, test data])
                     print(names[i], ': ', df.shape, 'Train: ', training data.shape, 'Test: ', test data.shape)
                 return return list
             Philly train, Philly test, Indy train, Indy test, Daytona train, Daytona test, \
                 Columbus train, Columbus test, KC train, KC test, Chattanooga train, Chattanooga test = test split(all dfs. names)
             Philadelphia: (265, 1) Train: (253, 1) Test: (12, 1)
             Indianapolis: (154, 1) Train: (142, 1) Test: (12, 1)
             Daytona: (265, 1) Train: (253, 1) Test: (12, 1)
             Columbus: (52, 1) Train: (40, 1) Test: (12, 1)
             KansasCity: (265, 1) Train: (253, 1) Test: (12, 1)
             Chattanooga: (265, 1) Train: (253, 1) Test: (12, 1)
In [81]: ▶ Columbus test
   Out[81]:
                         value
                   time
              2017-05-01 63900 0
              2017-06-01 66000.0
              2017-07-01 67600.0
              2017-08-01 68600.0
              2017-09-01 68800.0
              2017-10-01 69400.0
              2017-11-01 71800.0
              2017-12-01 75700.0
              2018-01-01 78800.0
              2018-02-01 81300.0
              2018-03-01 84500.0
              2018-04-01 88100.0
In [82]: ▶ # Making lists to run through models together
             all train df = [Philly train, Indy train, Daytona train, Columbus train, KC train, Chattanooga train]
             all_test_df = [Philly_test, Indy_test, Daytona_test, Columbus_test, KC_test, Chattanooga_test]
```

Baseline ARIMA modeling

```
Name
                    Order
                              Seasonal Order Fit Time
                                                        Const
                                                                   ar.L1 ma.L1
                                                                                  sigma2
                                                                                              AIC Score
   Philadelphia
                   (1, 0, 1)
                               (0, 0, 0, 0)
                                              0.1751
                                                       36279.03
                                                                  0.9975 0.7643
                                                                                 105736.54
                                                                                              3660.12
   Indianapolis
                   (1, 0, 1)
                                                                                 365498.65
                                                                                              2237.24
                               (0, 0, 0, 0)
                                              0.1616
                                                       56143.06
                                                                  0.9971 0.8044
                   (1, 0, 1)
                                                       65794.06
                                                                  0.9976 0.9413 541074.22
                                                                                              4074.94
   Davtona
                               (0, 0, 0, 0)
                                              0.1536
   Columbus
                   (1, 0, 1)
                                              0.0608
                                                       54074.93
                                                                  0.9913 0.9994
                                                                                 362743.00
                                                                                              642.68
3
                               (0, 0, 0, 0)
                                                       48263.62
                                                                                              3834.07
   Kansas City
                   (1, 0, 1)
                              (0, 0, 0, 0)
                                              0.1556
                                                                  0.9970 0.8875
                                                                                 209724.01
   Chattanooga
                   (1, 0, 1)
                              (0, 0, 0, 0)
                                              0.2144
                                                       70698.40
                                                                  0.9979 0.8266 167378.79
                                                                                              3776.88
```

Out[84]:

	Name	Order	Seasonal_Order	Fit_Time	Const	ar.L1	ma.L1	sigma2	AIC Score
0	Philadelphia	(1, 0, 1)	(0, 0, 0, 0)	0.1396	36279.03	0.9975	0.7643	105736.54	3660.12
1	Indianapolis	(1, 0, 1)	(0, 0, 0, 0)	0.1297	56143.06	0.9971	0.8044	365498.65	2237.24
2	Daytona	(1, 0, 1)	(0, 0, 0, 0)	0.1366	65794.06	0.9976	0.9413	541074.22	4074.94
3	Columbus	(1, 0, 1)	(0, 0, 0, 0)	0.0648	54074.93	0.9913	0.9994	362743.00	642.68
4	KansasCity	(1, 0, 1)	(0, 0, 0, 0)	0.1297	48263.62	0.9970	0.8875	209724.01	3834.07
5	Chattanooga	(1, 0, 1)	(0, 0, 0, 0)	0.1875	70698.40	0.9979	0.8266	167378.79	3776.88

▼ Find Optimal p,d,q

▼ Philly

```
pdq (2, 1, 2)
pdqs (1, 0, 1, 12)
aic -1818.25
Name: 226, dtype: object
```

Contents 2 &

- ▼ Time Series Project monthly housing sales Dataset information
 - ▼ Data Preprocessing Import and basic info

Analyze 'RegionID'

Analyze RegioniD

Analyze 'Region Name' Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

- ▼ Time Series Project monthly housing sales Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

pdq (2, 1, 2) pdqs (1, 0, 1, 12) aic -1818.25 Name: 226, dtype: object 366.6337876319885

In [86]: N
'''There is no problem with a positive log-likelihood. It is a common misconception that the log-likelihood must be negative. If the likelihood is derived from a probability density it can quite reasonably exceed 1 which means that log-likelihood is positive, hence the deviance and the AIC are negative. This is what occurred in your model.

If you believe that comparing AICs is a good way to choose a model then it would still be the case that the (algebraically) lower AIC is preferred not the one with the lowest absolute AIC value. To reiterate you want the most negative number in your example.'''

Out[86]: 'There is no problem with a positive log-likelihood. It is a common misconception that the log-likelihood must be \nnegative.

If the likelihood is derived from a probability density it can quite reasonably exceed 1 which means that\nlog-likelihood is positive, hence the deviance and the AIC are negative. This is what occurred in your model.\n\nIf you believe that comparing AICs is a good way to choose a model then it would still be the case that the (algebraically)\nlower AIC is preferred not the one with the lowest absolute AIC value. To reiterate you want the most negative number in\nyour example.'

-1818.2534500111883

Contents ♂ &

- ▼ Time Series Project monthly housing sales Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly Indv

Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

```
In [88]: M # Because so many values came up as '2' in my arid search. I would like to expand my arid to higher values.
             tic = time.time()
             p = d = q = range(2, 5)
             pdq = list(itertools.product(p, d, q))
             pdqs = [(1,0,1,12)]
             ans = []
             for comb in pdg:
                 for combs in ndas:
                    trv:
                         grid model = ARIMA(np.log(Philly train), order=comb, seasonal order=combs, freq='MS')
                         grid results = grid model.fit()
                         ans.append([comb, combs, grid results.aic])
                         print('ARIMA {} x {}12 : AIC Calculated ={}'.format(comb. combs. results.aic))
                     except:
                         continue
             ans df = pd.DataFrame(ans, columns=['pdg', 'pdgs', 'aic'])
             print(ans df.loc[ans df['aic'].idxmin()])
             print(time.time()-tic)
             pda
                         (2, 2, 3)
             ndas
                    (1, 0, 1, 12)
             aic
                          -1822.04
             Name: 1, dtvpe: object
             21 523201942443848
In [89]: ▶ # So with (2.1.2) gic was -1818. With (2.2.3) gic is -1822. I'm not sure that is enough difference to justify the
             # addition of the extra parameters
In [90]: M Philly metrics = track final metrics(Philly grid search, Philly results, names[0]) # function in user functions.py
         Indv
             pda
                         (1, 2, 2)
                    (2, 0, 2, 12)
             pdqs
             aic
                          -867,448
             Name: 155, dtype: object
Indy_grid_search = grid_search_arima(np.log(Indy_train), d = best_diff['Indianapolis'][0])
             print(time.time()-tic)
             pdq
                         (1, 2, 2)
                    (2, 0, 2, 12)
             pdqs
                          -867.448
             Name: 155, dtype: object
             309.1987555027008
In [92]: Indy_model = ARIMA(np.log(Indy_train), order=(1,2,2), seasonal_order=(2,0,2,12), freq='MS')
             Indy_results = Indy_model.fit()
             print(Indy results.aic)
             -867.4478406929932
```

Contents 2 *

- ▼ Time Series Project monthly housing sales Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

```
Daytona
              pda
                           (0, 5, 2)
                      (0, 0, 0, 12)
              pdas
                            -1824.65
              aic
              Name: 54, dtype: object
Daytona grid search = grid search arima(np.log(Daytona train), d = best diff['Daytona'][0])
              print(time.time()-tic)
              pda
                           (0, 5, 2)
              pdas
                      (0, 0, 0, 12)
              aic
                            -1824.65
              Name: 54, dtype: object
              596.0486102104187
In [95]: ▶ Daytona_grid_search
   Out[95]:
                      pdq
                               pdqs
                                             aic
                0 (0, 5, 0) (0, 0, 0, 12) -1414.539641
                1 (0, 5, 0) (0, 0, 1, 12) -1417.087372
                2 (0, 5, 0) (0, 0, 2, 12) -1413.983055
                3 (0, 5, 0) (0, 1, 0, 12) -1151,848313
                4 (0, 5, 0) (0, 1, 1, 12) -1288,018780
               238
                   (2, 5, 2) (2, 1, 1, 12) -1459.375987
               239 (2, 5, 2) (2, 1, 2, 12) -1504.250667
               240 (2, 5, 2) (2, 2, 0, 12) -1249.043222
               241 (2, 5, 2) (2, 2, 1, 12) -1243.620754
               242 (2, 5, 2) (2, 2, 2, 12) -1288.388315
              243 rows × 3 columns
In [96]: ► Daytona_model = ARIMA(np.log(Daytona_train), order=(0,5,2), seasonal_order=(0,0,0,12), freq='MS')
              Daytona results = Daytona model.fit()
              print(Daytona_results.aic)
              -1824.6532776198896
           Daytona_metrics = track_final_metrics(Daytona_grid_search, Daytona_results, names[2]) # function in user_functions.py
```

Columbus

Contents 2 4

Dataset information

▼ Data Preprocessing
Import and basic info

Analyze 'City'

Analyze 'State'

Analyze 'Metro' Analyze 'CountyName'

EDA on zip codes Subset data on top zip codes

Clustering?
Convert to date types

Correlation
ACF and PACF

Train Test Split
Baseline ARIMA modeling

▼ Find Optimal p,d,q

Columbus Kansas City Chattanooga

Facebook Prophet

Interpret Results / Conclusions

Philly

Indy Daytona

Analyze 'SizeRank'

Analyze missing sales values

Reshape from wide to long format Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Visualize predictions and Calculate RMSE

Analyze 'RegionID'

Analyze 'Region Name'

▼ Time Series Project - monthly housing sales

```
pdq
                          (2, 4, 1)
              pdas
                      (1, 0, 0, 12)
                           -194.596
              aic
              Name: 198, dtvpe: object
In [98]: H tic = time.time()
              Columbus grid search = grid search arima(np.log(Columbus train), d = best diff['Columbus'][0])
              print(time.time()-tic)
              nda
                          (2, 4, 1)
              pdqs
                      (1, 0, 0, 12)
                           -194.596
              aic
              Name: 198, dtvpe: object
              170.1638731956482
In [99]: M Columbus model = ARIMA(np.log(Columbus train), order=(2,4.1), seasonal order=(1,0,0.12), freq='MS')
              Columbus results = Columbus model.fit()
              print(Columbus results.aic)
              -194.5958648817607
           M Columbus metrics = track final metrics(Columbus grid search, Columbus results, names[3]) # function in user functions.py
          Kansas City
              pdq
                          (1, 1, 2)
              pdqs
                      (0, 0, 2, 12)
                           -1801.54
              Name: 137, dtype: object
In [101]:
           h tic = time.time()
              KC_grid_search = grid_search_arima(np.log(KC_train), d = best_diff['KansasCity'][0])
              print(time.time()-tic)
              pda
                          (1, 1, 2)
              pdqs
                      (0, 0, 2, 12)
                           -1801.54
              aic
              Name: 137, dtype: object
              382.5188422203064
In [102]:  M KC_model = ARIMA(np.log(KC_train), order=(1,1,2), seasonal_order=(0,0,2,12), freq='MS')
              KC_results = KC_model.fit()
              print(KC results.aic)
              -1801.535745337077
```

In [103]: M KC_metrics = track_final_metrics(KC_grid_search, KC_results, names[4]) # function in user_functions.py

Chattanooga

```
pdq (1, 1, 2)
pdqs (0, 0, 2, 12)
aic -2068.06
Name: 137, dtype: object
```

```
Contents 2 *
```

- ▼ Time Series Project monthly housing sales Dataset information
- ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

-2068.064330716703

```
Time Series Project - Jupyter Notebook
         ► Chattanooga results.summary()
Out[106]:
            SARIMAX Results
                Dep. Variable:
                                                 value No. Observations:
                                                                               253
                       Model: ARIMA(1, 1, 2)x(0, 0, 2, 12)
                                                                          1040.032
                                                          Loa Likelihood
                        Date:
                                       Sun, 31 Jan 2021
                                                                     AIC
                                                                          -2068.064
                        Time:
                                              18:18:17
                                                                         -2046.888
                     Sample:
                                            04-01-1996
                                                                   HQIC -2059.543
                                           - 04-01-2017
             Covariance Type:
                                                   opa
                            coef
                                   std err
                                                z P>izi
                                                            [0.025
                                                                     0.9751
                          0.7161
                                    0.039
                                           18.303
                                                            0.639
                                                                     0.793
                 ar.L1
                                                  0.000
                ma.L1
                          0.7526
                                    0.049
                                           15.384 0.000
                                                            0.657
                                                                     0.848
                          0.2969
                                            6.726 0.000
                                                            0.210
                                                                     0.383
                ma.L2
                                    0.044
             ma.S.L12
                         -0.1871
                                    0.064
                                           -2.938 0.003
                                                            -0.312
                                                                     -0.062
             ma.S.L24
                         -0.1307
                                    0.057
                                           -2.282 0.022
                                                            -0.243
                                                                     -0.018
               sigma2 1.501e-05 9.31e-07 16.111 0.000 1.32e-05
                                                                  1.68e-05
                 Ljung-Box (L1) (Q): 0.31 Jarque-Bera (JB):
                                                          172.83
                          Prob(Q): 0.58
                                                Prob(JB):
                                                            0.00
```

Heteroskedasticity (H): 8.97 Skew: -0.34
Prob(H) (two-sided): 0.00 Kurtosis: 7.00

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

107]: M Chattanooga_metrics = track_final_metrics(Chattanooga_grid_search, Chattanooga_results, names[5])

```
Contents 2 ₺
```

- ▼ Time Series Project monthly housing sales Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName' Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Contents 2 ₺

- ▼ Time Series Project monthly housing sales

 Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Contents 2 5

- ▼ Time Series Project monthly housing sales Dataset information
- ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

Visualize predictions and Calculate RMSE for top models

In [109]: M Philly_pred, Philly_forecast, Philly_train_rmse, Philly_test_rmse = \
 run_preds_and_plot(Philly_results, Philly_train, Philly_test, 'Philadelphia', best_diff)
Philly_metrics.update({'train rmse': Philly_train_rmse, 'test rmse': Philly_test_rmse})

Contents 2 ₺

- ▼ Time Series Project monthly housing sales Dataset information
- ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

The Root Mean Squared Error of Philadelphia predictions is 210.12 The Root Mean Squared Error of Philadelphia forecasts is 2904.6

Contents 2 ₺

- ▼ Time Series Project monthly housing sales Dataset information
- ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

The Root Mean Squared Error of Indianapolis predictions is 473.98 The Root Mean Squared Error of Indianapolis forecasts is 6108.44

Contents ₽ ❖

- ▼ Time Series Project monthly housing sales
 Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Contents 2 ♥

- ▼ Time Series Project monthly housing sales

 Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

The Root Mean Squared Error of Daytona predictions is 318.07 The Root Mean Squared Error of Daytona forecasts is 23990.07

Contents ₽ ♥

- ▼ Time Series Project monthly housing sales Dataset information
- ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'
Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

The Root Mean Squared Error of Columbus predictions is 844.18 The Root Mean Squared Error of Columbus forecasts is 17797.27

Contents 2 ₺

- ▼ Time Series Project monthly housing sales Dataset information
- ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

The Root Mean Squared Error of KansasCity predictions is 243.3 The Root Mean Squared Error of KansasCity forecasts is 3745.08

Contents 2 &

- ▼ Time Series Project monthly housing sales Dataset information
- ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

The Root Mean Squared Error of Chattanooga predictions is 254.97 The Root Mean Squared Error of Chattanooga forecasts is 13426.12

▼ Facebook Prophet

In [115]: ▶ from fbprophet import Prophet

```
In [116]: M Philly proph = Philly train.reset index()
              Philly proph.columns = ['ds', 'v']
              Philly proph
   Out[116]:
                          ds
                                  ٧
                 0 1996-04-01 27600.0
                 1 1996-05-01 27500.0
                 2 1996-06-01 27500.0
                 3 1996-07-01 27400 0
                 4 1996-08-01 27400 0
               248 2016-12-01 36500.0
               249 2017-01-01 36700.0
               250 2017-02-01 36800.0
               251 2017-03-01 36800.0
               252 2017-04-01 37000 0
              253 rows × 2 columns
In [117]:  prophet model = Prophet()
              prophet model.fit(Philly proph)
              INFO:fbprophet:Disabling weekly seasonality. Run prophet with weekly seasonality=True to override this.
              INFO:fbprophet:Disabling daily seasonality. Run prophet with daily_seasonality=True to override this.
   Out[117]: <fbprophet.forecaster.Prophet at 0x238b49b6430>
In [118]: In future = prophet model.make future dataframe(freg = 'MS', periods=12)
              future.tail()
   Out[118]:
                          ds
               260 2017-12-01
               261 2018-01-01
               262 2018-02-01
```

Contents 2 4

- ▼ Time Series Project monthly housing sales Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

263 2018-03-01 **264** 2018-04-01

Contents 2 5

- ▼ Time Series Project monthly housing sales Dataset information
- ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

Out[119]:

	ds	yhat	yhat_lower	yhat_upper
260	2017-12-01	31263.594936	28343.943331	34389.437167
261	2018-01-01	31343.365536	28419.795132	34293.161551
262	2018-02-01	31325.741272	28325.238875	34484.651475
263	2018-03-01	31495.508175	28673.347796	34593.682411
264	2018-04-01	31553.705527	28587.227066	34844.157742

Out[143]: 0.030605143650945077

Contents 2 ₺

- ▼ Time Series Project monthly housing sales Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Contents 2 ₺

- ▼ Time Series Project monthly housing sales

 Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Contents 2 4

- ▼ Time Series Project monthly housing sales Dataset information
- ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

Interpret Results / Conclusions

In [124]: ᢂ pd.DataFrame([Philly_metrics, Indy_metrics, Daytona_metrics, Columbus_metrics, KC_metrics, Chattanooga_metrics])

Out[124]:

	name	order	seasonal order	ar.L1	ar.L2	ma.L1	ma.L2	ar.S.L12	ma.S.L12	sigma2	aic	train rmse	test rmse	ar.S.L24	ma.S.L24
0	Philadelphia	(2, 1, 2)	(1, 0, 1, 12)	1.1489	-0.1829	-0.1092	-0.3715	0.5673	-0.9261	0.0000	-1818.25	210.120410	2904.602710	NaN	NaN
1	Indianapolis	(1, 2, 2)	(2, 0, 2, 12)	0.4495	NaN	-0.2736	-0.5485	-0.2887	0.2439	0.0001	-867.45	473.983586	6108.436530	0.367	-0.6304
2	Daytona	(0, 5, 2)	(0, 0, 0, 12)	NaN	NaN	-1.9436	0.9541	NaN	NaN	0.0000	-1824.65	318.066481	23990.065072	NaN	NaN
3	Columbus	(2, 4, 1)	(1, 0, 0, 12)	-0.0722	-0.8108	-0.9405	NaN	-0.2056	NaN	0.0002	-194.60	844.184953	17797.268489	NaN	NaN
4	KansasCity	(1, 1, 2)	(0, 0, 2, 12)	0.7820	NaN	0.7766	0.2137	NaN	-0.1090	0.0000	-1801.54	243.298505	3745.083869	NaN	-0.1074
5	Chattanooga	(1, 1, 2)	(0, 0, 2, 12)	0.7161	NaN	0.7526	0.2969	NaN	-0.1871	0.0000	-2068.06	254.974561	13426.120075	NaN	-0.1307

In [125]: | original_dfs = [Philly, Indy, Daytona, Columbus, KC, Chattanooga]
forecast_dfs = [Philly_forecast, Indy_forecast, Daytona_forecast, Columbus_forecast, KC_forecast, Chattanooga_forecast]
for df in original_dfs:
 df.reset index(drop=True, inplace=True)

```
Contents 2 8
```

- ▼ Time Series Project monthly housing sales Dataset information
 - ▼ Data Preprocessing

Import and basic info

Analyze 'RegionID'

Analyze 'Region Name'

Analyze 'City'

Analyze 'State'

Analyze 'Metro'

Analyze 'CountyName'

Analyze 'SizeRank'

Analyze missing sales values

EDA on zip codes

Subset data on top zip codes

Clustering?

Convert to date types

Reshape from wide to long format

Visualize time series plots

▼ Checking for trends, stationarity, seasonali Seasonal decomposition

Correlation

ACF and PACF

Train Test Split

Baseline ARIMA modeling

▼ Find Optimal p,d,q

Philly

Indy Daytona

Columbus

Kansas City

Chattanooga

Visualize predictions and Calculate RMSE

Facebook Prophet

Interpret Results / Conclusions

Out[127]:

	Philadelphia	Indianapolis	Daytona Beach	Columbus	Kansas City	Chattanooga
Zip Code	19134	46203	32114	43206	66104	37411
median housing price	46600	73500	92600	88100	59800	95600
actual 2018 ROI	25.95	13.78	16.92	40.96	30	28.32
forecast 2018 ROI	7.21	22.42	75.04	101.29	8.87	-0.85

Results:

- All training data outperformed the test data.
- The models are all very skewed because of the market crash in 2009.
- Columbus and Daytona had very large confidence intervals and overly high forecasts.
- Chattanooga has outperformed even the confidence intervals of the model.
- Philadelphia is potentially a good 50K investment, Indianapolis at 75K and Chattanooga at 100K investment

Caveats:

- · Logged and differenced the data but some still did not test as stationary according to the Dickey Fuller test.
- Real estate predictions can vary due to unseen fluctuations in the market

Next Steps/Future Work:

- · Obtain current data after 2018 for current predictions. Found zip data on Redfin but it is rolling avg by zip code.
- Investigate why some of the models seem so far off in their forecasts.