

## 线性代数笔记

奇峰

之前

# 目录

| 第· | 一章       | 行列式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1  |
|----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | I.       | 定义                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1  |
|    | i.       | 几何定义                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1  |
|    | ii       | . 逆序定义                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1  |
|    | ii       | i. 展开定义                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1  |
|    | II.      | 性质                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2  |
|    | III.     | 重要行列式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2  |
|    | IV.      | 行列式的降阶性质                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3  |
|    | v.       | 五类特殊的行列式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3  |
|    | VI.      | 克拉默法则                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4  |
| 给  | 二章       | 45.R4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =  |
| 퐈. | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -  |
|    | I.       | 矩阵定义及特殊矩阵                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5  |
|    | i.       | / <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -  |
|    | ii<br>ii | NAME OF THE CONTRACT OF THE CO | 5  |
|    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (  |
|    |          | 矩阵运算                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6  |
|    |          | 逆矩阵                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7  |
|    |          | 初等变换与初等矩阵                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|    | V.       | 矩阵的秩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8  |
|    | VI.      | 求解 $A^n$ 的三种情况 $\dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E  |
| 第. | 三章       | 线性方程组                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11 |
|    | I.       | 齐次线性方程组                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11 |
|    | II.      | 非齐次线性方程组                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12 |
|    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 第  | 四章       | 向量                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13 |
|    | I.       | 定义与性质                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13 |
|    |          | 定义                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13 |
|    | ii       | . 模                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13 |





|              | iii.          | 内积                                                                                          | 13        |
|--------------|---------------|---------------------------------------------------------------------------------------------|-----------|
|              | iv.           | 正交性                                                                                         | 13        |
|              | v.            | 性质                                                                                          | 14        |
| II           | . ŕ           | 可量组的线性相关与线性无关                                                                               | 14        |
|              | i.            | 定义                                                                                          | 14        |
|              | ii.           | 性质                                                                                          | 14        |
|              | iii.          | 向量组线性无关性的证明                                                                                 | 15        |
| II           | I. 约          | 。<br>6性表示                                                                                   | 15        |
|              | i.            | 定义                                                                                          | 15        |
|              | ii.           | 性质                                                                                          | 15        |
| I            | 7 <b>.</b> þ  | 可量组等价                                                                                       | 16        |
| $\mathbf{V}$ | . 机           | <b>3</b> 大无关组                                                                               | 17        |
| ケナギ          | ⊑ 4∃          | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 10        |
| 第五章          |               | f征值与特征向量                                                                                    | 18        |
| I.           | \(\bar{\pi}\) | ≧义与性质                                                                                       | 18        |
| II           | . 特           | 特征值与特征向量的求解                                                                                 | 18        |
| II           | 1. 知          | 三阵相似                                                                                        | 19        |
| I            | 7. 相          | 目似对角化                                                                                       | 20        |
| $\mathbf{V}$ | . 村           | 目似对角化的求解                                                                                    | 21        |
|              | i.            | 普通方阵                                                                                        | 21        |
|              | ii.           | 对称矩阵                                                                                        | 21        |
| 第六章          | Ę –           | ・冷刑                                                                                         | 23        |
|              |               |                                                                                             |           |
| I.           |               | E义                                                                                          | 23        |
| II           | •             | 三阵合同                                                                                        | <b>23</b> |
|              | i.            | 定义                                                                                          | 23        |
|              | ii.           | 可逆变换                                                                                        | 24        |
|              | iii.          | 判定                                                                                          | 24        |
|              | iv.           | 二次型化为标准型                                                                                    | 24        |

# 第一章 行列式

不妨用"一排"指代"一行或一列"。

## I. 定义

## i.几何定义

### 定义 1.1.1 几何定义

-n 维方阵为 n 个 n 维向量在 n 维空间内的 n 维空间体积。

注意,  $|\vec{a}_i| = 0 \Leftrightarrow \vec{a}_i$  线性相关  $(i = 1, 2, \dots, n)$  。

## ii.逆序定义

### 定义 1.1.2 逆序和逆序数

设 i,j 为一对不相等的整数,若 1>j,则称 (i,j) 为一逆序对。 $1,2,\cdots,n$  的一个排列  $a_1,a_2,\ldots,a_n$  中逆序对的数目为逆序数,记为  $\tau(a_1,a_2,\ldots,a_n)$  。

逆序数为奇(偶)数的排列为奇(偶)排列。

### 定义 1.1.3 逆序定义

行列式 D 为取自 D 中不同行不同列元素积的代数和, 具体而言, 为

$$D = \sum_{j_1, j_2, \dots, j_n} (-1)^{\tau(j_1, \dots, j_n)} a_{1j_1} a_{2j_2} \dots a_{nj_n}$$

## iii.展开定义

#### 定义 1.1.4 余子式和代数余子式

行列式 D 去掉第 i 行第 j 列而成的 n-1 阶方阵为 D 的余子式  $M_{ij}$  。  $A_{ij}=(-1)^{i+j}M_{ij}\ \ {\it E}\ D$  的代数余子式。

### 定义 1.1.5 展开定义



对 n 阶行列式  $D_n$ , 有

$$D_n = \sum_{i=1}^n a_{ij} A_{ij}, \ i = 1, 2, \dots, n$$

## II. 性质

行列式有性质如下。

- $\det(A) = \det(A^T)$ ;
- 两排对换,行列式变号;
- 一排有公因子 k ,可提到行列式外;
- 若有一排元素皆为两数之和,可据此拆成两个行列式;
- 将一排的 k 倍加到另一排,行列式值不变。

## III. 重要行列式

### 上下三角行列式

上下三角行列式值为主对角线元素积。

### 副三角行列式

副三角行列式值为  $(-1)^{\frac{n(n-1)}{2}}a_{1n}\dots a_{n1}$ , 即副对角线代数积。

#### 拉普拉斯展开

- 若对于分块了的行列式  $M=\begin{vmatrix}A&C\\D&B\end{vmatrix}$ ,在 C, D 中至少有一个是零矩阵,则有  $|M|=|A|\cdot|B|$ ;
- 若对于分块了的行列式  $M=\begin{vmatrix} C&A\\B&D \end{vmatrix}$ , 在 C,D 中至少有一个是零矩阵,则有  $|M|=(-1)^{M\times N}|A|\cdot |B|$  。

### 范德蒙德行列式

形如

$$V_n(a_i) \stackrel{\Delta}{=} \begin{vmatrix} a_1^0 & \cdots & a_1^{n-1} \\ \vdots & \ddots & \vdots \\ a_n^0 & \cdots & a_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (a_j - a_i)$$

的行列式为范德蒙德行列式。



## IV. 行列式的降阶性质

对 i, j = 1, 2, ..., n 有

$$\sum_{k=1}^{n} a_{ik} A_{jk} = \begin{cases} D, & i = j \\ 0, & i \neq j \end{cases}$$

一排代数余子式与一组同长度的元素的点积为将原行列式中那一排替换为那一组元素的结果。

## V. 五类特殊的行列式

### 主对角平行线型

对形如 
$$\begin{vmatrix} \blacksquare & \Box & 0 & 0 \\ \Box & \blacksquare & \Box & 0 \\ 0 & \Box & \blacksquare & \Box \\ 0 & 0 & \Box & \blacksquare \end{vmatrix}_n$$
的行列式:

- 向下消零成三角;
- 按首排展开递推。

### 主对角爪型

通过斜爪消平爪,即将第 i>1 排的  $k_i$  倍加到第一排以让第一排只有  $a_{11}\neq 0$  。有时只能按行列中的一个消除。

### 黑白行列式

对形如 
$$A = \begin{bmatrix} \blacksquare & \square & \square & \square \\ \square & \blacksquare & \square & \square \\ \square & \square & \blacksquare & \square \\ \square & \square & \square & \square \end{bmatrix}$$
 的行列式,有  $\mathbf{A} = [\blacksquare + (\mathbf{n} - \mathbf{1})\square][\blacksquare - \square]^{\mathbf{n} - \mathbf{1}}$ .

θ 型

从  $\theta$  所在列 (按行倒也可以) 展开。



### 反∠型

对形如 
$$D_n = \begin{vmatrix} \blacksquare & \Box & & & & \\ & \blacksquare & \Box & & & \\ & & \blacksquare & \Box & & \\ & & & \blacksquare & \Box \\ b_n & b_{n-1} & \cdots & b_2 & \theta \end{vmatrix}_n$$
 的行列式,其中  $\theta \neq 0$ ,

 $D_{n-1}$  为  $D_n$  去掉首行首列; 算法为按首列 (行也行) 展开递推。

## VI. 克拉默法则

对 n 元一次非齐次方程组 DX=Y ,若  $D_i$  为将 D 的第 i 列替换为 Y 的结果,则  $x_i=\frac{D_i}{D}$  .

# 第二章

## 矩阵

## I. 矩阵定义及特殊矩阵

## i.矩阵

由  $m \times n$  个元素组成的 m 行 n 列数表  $(a_{ij})_{m \times n}$  称为一个  $m \times n$  阶矩阵。

若矩阵 A,B 的行列数相等,则称其为同型矩阵。若对任意  $i=1,2,\ldots,m,j=1,2,\ldots,n$  都有  $a_{ij}=b_{ij}$  ,则称矩阵 A,B 相等,记为 A=B .

## ii.特殊矩阵

设矩阵  $A = (a_{ij})_{m \times n}$ , 此时一部分特殊矩阵如下。

- **零阵** O 对任意 i,j 有  $a_{ij} = 0$ ;
- **单位矩阵**  $E_n$  主对角元素  $a_{ii} = 1$  , 其余元素等于零;
- 对称矩阵  $\forall i,j \in a_{ij} = a_{ji}$ ;
- 反对称矩阵  $\forall i,j \in a_{ij} = -a_{ji}$ ;
- 转置矩阵  $A^{\top}$   $A^{\top} = (a_{ji})_{n \times m}$ ;
- 正交矩阵 对方阵  $A, AA^{\top} = A^{\top}A = E$ ;

其中,转置矩阵有如下性质。

- $(A^{\top})^{\top} = A$ ;
- $|A^{\top}| = |A|$ ;
- $(kA)^{\top} = kA^{\top}$ ;
- $(AB)^{\top} = B^{\top}A^{\top}$ ;
- $\bullet \ \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}^\top = \begin{pmatrix} A^\top & 0 \\ 0 & B^\top \end{pmatrix} \, ;$



### iii.伴随矩阵

对方阵 A,有

$$A^* \stackrel{\Delta}{=} \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} \stackrel{\Delta}{=} (A_{ij})^\top$$

其中  $A_{ij}$  是  $a_{ij}$  的代数余子式。

对于二阶矩阵,有

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow A^* = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

伴随矩阵有一重要性质,即

$$AA^* = A^*A = \det(A)E$$

其还有推论

$$\Delta \Delta^* = \Delta^* \Delta = \det(\Delta) E$$

其中  $\Delta$  是含有矩阵的运算式整体。

由上述结论,伴随矩阵还有如下的运算结论。

- $|A^*| = |A|^{n-1}$ ;
- $(kA)^* = k^{n-1}A^*$ ;
- $(A^*)^* = \det(\mathbf{A})^{\mathbf{n-2}}\mathbf{A}$ ;

$$\bullet \ \begin{pmatrix} A & O \\ O & B \end{pmatrix}^* = \begin{pmatrix} |B|A^* \\ & |A|B^* \end{pmatrix}$$

## II. 矩阵运算

对矩阵  $A = (a_{ij})_{m \times n}, B = (b_{ij})_{m \times n}, D = (d_{ij})_{n \times s}$ ,有

- $kA = (ka_{ij})_{m \times n}$ ;
- $A \pm B = (a_{ij} \pm b_{ij})_{m \times n}$ ;

• 
$$AD = (c_{ij})_{m \times s}$$
,  $\sharp \vdash c_{ij} = \sum_{t=1}^{n} a_{it} d_{tj}$ ;

对于两向量  $\vec{\alpha} = (a_1, \dots, a_n)^{\top}, \vec{\beta} = (b_1, \dots, b_n)^{\top},$  有如下表格。



| $\alpha^{\top}\beta$  | $\beta^{\top}\alpha$  | 相等的数          |
|-----------------------|-----------------------|---------------|
| $\alpha \beta^{\top}$ | $\beta \alpha^{\top}$ | 互为转置矩阵, 秩 = 1 |
| 上为                    | 下的迹                   |               |

其中,矩阵 A 的迹是  $tr(A) \stackrel{\triangle}{=} \sum_{i=1}^{n} a_{ii}$ .

注意,对矩阵 A, B, 有

- $A \neq B \Rightarrow |A| \neq |B|$ ;
- $A \neq O, B \neq O \Rightarrow AB \neq O$ ;
- 一般地,  $AB \neq BA$ , 此时  $(AB)^k \neq A^k B^k$ ;
- $AB = AC \Rightarrow B = C$  仅当  $A^{-1}$  存在。

## III. 逆矩阵

对方阵 A, B , 若有 AB = BA = E ,则 A, B 都是可逆矩阵,且有  $A^{-1} = B, B^{-1} = A$  .

### 定理 2.3.1 可逆的充要条件

A 是可逆矩阵  $\Leftrightarrow |A| \neq 0$ .

AB = BA = kE 时 A, B 也有可逆性。因此,

$$AA^* = |A|E \Rightarrow A^{-1} = \frac{1}{|A|}A^*$$

求解逆矩阵时,

- 若 A 抽象未知,则由定义求解,即凑出 AB = kE,其中 A 也可以是一个矩阵的运算式;
- 若已知 A , 则有

$$\circ A^{-1} = \frac{1}{|A|} A^* ;$$

$$\circ \quad (A:E) \xrightarrow{\overleftarrow{\tau} \not \circ \not +} (E:A^{-1}) \ .$$

可逆矩阵还有以下性质。

- $(kA)^{-1} = \frac{1}{k}A^{-1}$ ;
- $(A^{-1})^{-1} = A$ ;
- $(AB)^{-1} = B^{-1}A^{-1}$ ;

$$\bullet \ \begin{pmatrix} A & O \\ O & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & O \\ O & B^{-1} \end{pmatrix};$$



$$\bullet \ \begin{pmatrix} O & A \\ B & O \end{pmatrix}^{-1} = \begin{pmatrix} O & B^{-1} \\ A^{-1} & O \end{pmatrix}.$$

显然,对正交矩阵 A 有  $A^{-1} = A^{\top}$ .

## IV. 初等变换与初等矩阵

初等矩阵是将 E 经一次初等变换所得到的矩阵。初等变换有三种,即

- 倍乘;
- 倍加;
- 交换,

因此初等矩阵也有三种,即

- $E_{ij}$  将 E 的 i,j 两排交换;
- $E_i(k)$  将 E 的第 i 排乘 k;
- $E_{ij}(k)$  将 E 的第 i 行的 k 倍加到第 j 行,同时也是将 E 的第 j 列的 k 倍加到第 i 列。 初等矩阵有如下的性质。
- 对于 $-m \times n$  矩阵 A, 对 A 进行一次初等  $\frac{f}{g}$  变换相当于  $\frac{f}{f}$  乘对应的初等矩阵;
- 有重要结论

|             | 行列式 | 逆            |
|-------------|-----|--------------|
| $E_{ij}$    | -1  | $E_{ij}(k)$  |
| $E_i(k)$    | k   | $E_i(1/k)$   |
| $E_{ij}(k)$ | 1   | $E_{ij}(-k)$ |

## V. 矩阵的秩

#### 定义 2.5.1 r 阶子式

对一矩阵  $A_{m \times n}$  , 从其中任取 r 行和 r 列,按照原顺序构成的行列式是其 r 阶子式。

#### 定义 2.5.2 矩阵的秩

对一矩阵 A , 若其有至少一个 r 阶子式不为零,而全部 r+1 阶子式均为零,则称 r 为矩阵 A 的 秩,记为 r(A)=r.



注意,

- $r(A) = 0 \Leftrightarrow A = O$ ;
- $r(A_n) = n \Leftrightarrow |A| \neq 0$ ;
- $r(A) < k \Leftrightarrow 所有 r 阶子式全为零.$

矩阵的秩有如下性质。

- $r(A_{m \times n}) \leq min\{m, n\}$ ;
- r(kA) = r(A);
- $r(A+B) \le r(A) + r(B)$ ;
- $r(A:B) \ge r(A)$ ;
- 对 *n* 阶方阵 *A* , 有

$$r(A^*) = \begin{cases} n, & r(A) = n \\ 1, & r(A) = n - 1 \\ 0, & r(A) < n - 1 \end{cases}$$

求解秩时,将矩阵 A 通过初等行变换变为阶梯矩阵 B ,其非零行数即为秩,以矩阵表示方程组,则 秩也等于约束变量的方程数。

设 P,Q 为可逆矩阵, 若有 PAQ = B, 则称 A 与 B 相似。

有性质 r(PA) = r(AQ) = r(PAQ) = r(A). 因此,A 与 B 等价  $\Leftrightarrow r(A) = r(B)$ .

## VI. 求解 $A^n$ 的三种情况

其一, 当 r(A) = 1 时, 必定能将 A 表示为一列向量  $\alpha$  乘一行向量  $\beta^{T}$  , 且

$$A^{n} = \alpha \beta^{\top} \cdot \alpha \beta^{\top} \cdots \alpha \beta^{\top}$$
$$= \alpha (\beta^{\top} \cdot \alpha) (\beta^{\top} \cdots \alpha) \beta^{\top}$$
$$= \alpha \cdot tr(A)^{n-1} \cdot \beta^{\top}$$
$$= tr(A)^{n-1} A$$

其二, 若

$$A = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$$



则有

$$A^{2} = \begin{pmatrix} 0 & 0 & ac \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, A^{i} = O(i > 2)$$

其三,对两相似矩阵  $A \sim B$  ,有  $B^n = P^{-1}A^nP$  ,即相似矩阵的 n 次方仍相似。 对第二种类型,可以引申得到对矩阵

$$A = \begin{pmatrix} 0 & 1 & \cdots & \cdots & 1 \\ & 0 & \ddots & \ddots & \vdots \\ & & \ddots & \ddots & \vdots \\ & & & 0 & 1 \\ & & & & 0 \end{pmatrix}$$

每对其乘一个 A, 其结果中的 1 斜列就向右上平移一列,直到成为零阵。

# 第三章

## 线性方程组

## I. 齐次线性方程组

形如

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases}$$

的方程组是齐次线性方程组, 其还有

- 向量表示形式  $\vec{\alpha}_1 x_1 + \cdots \vec{\alpha}_n x_n = 0$ ;
- 矩阵表示形式 AX = 0, 其中  $A = (a_{ij})_{m \times n}, X = (x_1, \dots, x_n)^{\top}$ .

#### 解的性质

齐次线性方程组的解有如下性质。

- 方程组 AX=0 必定有解,其为  $\begin{cases} 只有唯一零解, \quad r(A)=n(|A|\neq 0) \\ \text{有无穷个解}, \qquad r(A)< n(|A|=0) \end{cases}$
- $\ddot{a} = \xi_1, \xi_2$  均为 AX = 0 的解,则其线性组合  $k_1\xi_1 + k_2\xi_2$  也是其解

#### 高斯消元法

求解齐次线性方程组适用高斯消元法。高斯消元法将系数矩阵 A 经行变换化为最简阶梯矩阵 B, 其中 B 满足

- 每行首项非零元素为 1;
- 其所在列其余元素均为 0.

此时只需求解 BX=0,并令每行首项非零元对应变量为固定变量,剩余变量为自由变量,并用自由变量表达固定变量。

### 基础解系和解的结构

设  $\xi_i$ ,  $i=1,2,\ldots,n-r$  是方程组 AX=0 的解, 其中 n-r 为自由变量的个数, 若有

- ξ<sub>i</sub> 线性无关;
- AX = 0 的任意解均可由  $\xi_i$  线性表出,

则这组向量  $\xi_i$  是 AX = 0 的基础解系。同时,称  $\sum_{i=1}^{n-r} k_i \xi_i$  称为方程组的通解,其中  $k_i$  为任意常数。



## II. 非齐次线性方程组

形如

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_n \end{cases}$$

的方程组是非齐次线性方程组,其中  $b_i, i=1,2,\ldots$  不全为零。其还有

- 向量表示形式  $\vec{\alpha}_1 x_1 + \cdots \vec{\alpha}_n x_n = \vec{\beta}$ ;
- 矩阵表示形式  $AX = \vec{b}$ , 其中  $A = (a_{ij})_{m \times n}, X = (x_1, \dots, x_n)^\top, \vec{b} = (b_1, \dots, b_n)^\top$ .

### 解的性质

将矩阵  $\bar{A} \stackrel{\triangle}{=} (A:b)$  称为增广矩阵,非齐次线性方程组的解有如下性质。

• 方程组 AX = b 的解有三种情况,即

$$\left\{ \begin{array}{l} {\displaystyle \operatorname{有解}, r(A) = r(\bar{A}) \left\{ \begin{array}{l} \operatorname{唯一解}, r(A) = n \\ {\displaystyle \operatorname{无穷解}, r(A) < n} \end{array} \right. } \right. \\ \left. {\displaystyle \operatorname{无解}, r(A) \neq r(\bar{A})} \right. \end{array} \right.$$

- $\forall \xi \mid AX = 0$  的解,  $\eta \mid AX = b$  的解,  $\forall k\xi \mid \eta$  也为 AX = b 的解;
- 若  $\xi_1, \xi_2$  均为 AX = b 的解,则有

$$k_1\xi_1+k_2\xi_2 egin{cases} \hat{eta}_{AX}^{\hat{ar{\pi}}\hat{\chi}\hat{ar{\pi}}ar{e}4} \ egin{cases} \hat{ar{\pi}}_{AX}=0 \ \hat{ar{n}} \ \hat{ar{m}}_{AX}=0 \ \hat{ar{n}} \ \hat{ar{m}}_{AX}=0 \ \hat{ar{m}} \ \hat{ar{m}}_{AX}=0 \ \hat{ar{m}} \ \hat{ar{m}}_{AX}=1 \ \end{pmatrix}$$

# 第四章

## 向量

## I. 定义与性质

## i.定义

形如  $\alpha = (a_1, a_2, \dots, a_n)^{\mathsf{T}}$  的称为 n 维列向量,形如  $\alpha = (a_1, a_2, \dots, a_n)$  的称为 n 维行向量。

### ii.模

 $|\alpha| \stackrel{\Delta}{=} \sqrt{a_1^2 + \cdots a_n^2}$  是向量  $\alpha$  的模。 注意,

- 若一向量  $\alpha$  的模为 1, 则称其为单位向量。非单位向量可以通过单位化变为单位向量,具体而言,只需将原向量的每一个分量除以其模。

## iii.内积

对 n 维向量  $\alpha, \beta$  , 称  $(\alpha, \beta) \stackrel{\triangle}{=} \sum_{i=1}^n a_i b_i$  为  $\alpha, \beta$  的内积。 注意,若  $A = \alpha \beta^\top \Leftrightarrow r(A) = 1$  , 必有  $(\alpha, \beta) = \alpha^\top \beta = \beta^\top \alpha = tr(A)$  .

## iv.正交性

若有  $(\alpha, \beta) = 0$ ,则称  $\alpha$  和  $\beta$  两向量正交。

#### 正交矩阵

对矩阵 A , 若  $AA^{\top}=A^{\top}A=E$  则其为正交矩阵。 对正交矩阵,

- 每一内部向量都为单位向量;
- 任意两内部向量正交。



### v.性质

对向量  $\alpha = (a_1, \dots, a_n)^\top, \beta = (b_1, \dots, b_n)^\top$ ,

- $\alpha \pm \beta = (a_1 \pm b_1, \cdots, a_n \pm b_n)^{\top}$ ;
- $k\alpha = (ka_1, \cdots, ka_n)^{\top}$ ;
- 向量乘法没有交换律,没有消去律;
- $\forall \alpha, (\vec{0}, \alpha) = 0, ;$
- $(\alpha, \beta) = (\beta, \alpha) = \alpha^{\mathsf{T}} \beta = \beta^{\mathsf{T}} \alpha = tr(A)$ ;
- $(\sum k_i \alpha_i, \beta) = \sum k_i(\alpha_i, \beta)$ .

## II. 向量组的线性相关与线性无关

### i.定义

对一组列向量  $\alpha_1,\alpha_2,\cdots,\alpha_s$  , 对于  $\sum k_i\alpha_i=0$  , 若存在不全为零的一组  $k_i$  使其成立,则称  $\alpha_i$  线性相关,否则称其线性无关。

## ii.性质

- 以下五点等价;
  - 一组列向量  $\alpha_1, \alpha_2, \cdots, \alpha_s$  线性无关;
  - $\circ$   $\sum k_i \alpha_i = \vec{0}$ , 当且仅当  $\forall k_i \equiv 0$ ;
  - $\circ (\alpha_1, \dots, \alpha_s)(k_1, \dots, k_s)^{\top} = 0,$   $\stackrel{\text{def}}{=} \mathbb{Q}$   $\stackrel{\text{def}}{=} 0;$
  - 方程组  $(\alpha_1, \dots, \alpha_s)(x_1, \dots, x_s)^{\mathsf{T}} = 0$  只有零解;
  - $\circ$   $r(\alpha_1, \dots, \alpha_s) = s$  (向量个数);
- 以下三种向量组组线性相关;
  - 。 向量组中含有零向量;
  - 。 向量组中含有成比例的向量;
  - 。 向量组中含有向量能被同组向量线性表出;
- 向量组中向量个数大于维数时,向量组也可线性表出。

事实上, 若设  $A_{m \times n} = (\alpha_1, \dots, \alpha_n)$ , 若 n > m 则有  $r(A) \leq min(m, n) = m < n \Rightarrow r(\alpha_1, \dots, \alpha_n) < n$ , 故其线性相关;



整体无关 ⇒ 部分无关;
 部分相关 ⇒ 整体相关;
 整体与部分是指个数。

原本无关 ⇒ 延长必无关;
 原本相关 ⇒ 缩短必相关;
 延长与缩短的是维数。

## iii.向量组线性无关性的证明

#### 向量组已知

- 若向量组可构成方阵,只需证  $|\alpha_i| \neq 0$ ;
- 若不能构成方阵,则需证明  $r(\alpha_i) = s$ .

#### 向量组抽象未知

考虑使用定义,即令

$$\sum_{i=1}^{s} k_i \alpha_i = 0$$

并证明  $\forall k_i, k_i = 0$ .

具体而言, 可以

- 重组法,即套定义,代入已知的无关向量组,并重组系数证明等式成立时系数必全为零;
- 等式乘,即将向量组组成的矩阵转化为多个矩阵的积,并证明其满秩。

## III. 线性表示

## i.定义

设有向量  $\alpha_1, \dots, \alpha_s, \beta$ , 若存在一组  $k_i$  使得

$$\beta = \sum_{i=1}^{s} k_i \alpha_i$$

则称  $\beta$  可由  $\alpha_i$  线性表出。

## ii.性质

•  $\alpha_1, \dots, \alpha_m$  线性无关  $\Leftrightarrow \forall \alpha_i$  不可由剩余向量线性表出;



- 以下五点等价;
  - 。  $\beta$  可由  $\alpha_1, \dots, \alpha_s$  线性表出;
  - $\circ$   $\beta = \sum_{i=1}^{s} k_i \alpha_i$  中任意  $k_i$  均存在;
  - $\circ$   $(\alpha_1, \dots, \alpha_s)(k_1, \dots, k_s)^{\top} = \beta$  中任意  $k_i$  均存在;
  - $\circ$   $(\alpha_1, \dots, \alpha_s)(x_1, \dots, x_s)^{\top} = \beta$  必有解;
  - $\circ r(\alpha_1, \cdots, \alpha_s) = r(\alpha_1, \cdots, \alpha_s, \beta) .$
- 以少表多,多必相关。

具体而言, 若  $\beta_1, \dots, \beta_t$  可由  $\alpha_1, \dots, \alpha_s$  线性表出, 且 s < t, 则  $\beta_i$  必线性相关。

## IV. 向量组等价

#### 矩阵等价

设有矩阵  $A_{m\times n}, B_{m\times n}$  ,若 A 可经有限次变换得到 B ,则称矩阵 A,B 等价。 注意,

- 存在可逆 P,Q 使得  $PAQ = B \Leftrightarrow A,B$  等价;
- $A, B \cong f \Leftrightarrow r(A) = r(B)$ ;

#### 向量组等价

设有向量组 (I):  $\alpha_1, \dots, \alpha_s$  与 (II):  $\beta_1, \dots, \beta_t$ . 若

- (I) 可由 (II) 表示,
   即对任意 α<sub>i</sub> , 其可由 β<sub>1</sub>, · · · , β<sub>t</sub> 线性表出,
   即对矩阵 (β<sub>1</sub>, · · · , β<sub>t</sub> | α<sub>1</sub>, · · · , α<sub>s</sub>) , 每一列均有解;
- (II) 可由 (I) 表示,
   即对任意 β<sub>j</sub> , 其可由 α<sub>1</sub>, · · · , α<sub>s</sub> 线性表出,
   即对矩阵 (α<sub>1</sub>, · · · , α<sub>s</sub> | β<sub>1</sub>, · · · , β<sub>t</sub>) , 每一列均有解;

则称向量组 (I), (II) 等价,此时,有充要条件

$$r(I) = r(II) = r(I, II)$$

此时还有向量组 (I), (II) 等价  $\Rightarrow$  矩阵 (I), (II) 等价。



## V. 极大无关组

### 定义

对  $(I): \alpha_1, \cdots, \alpha_s$  中的一组向量  $\alpha_1, \cdots, \alpha_t$ , 若其满足

- $\alpha_1, \dots, \alpha_t$  线性无关;
- (I) 中任意剩余向量与  $\alpha_1, \dots, \alpha_t$  组成的向量组线性相关;

则称  $\alpha_1, \dots, \alpha_t$  为向量组 (I) 的极大无关组。

### 性质

若  $\alpha_1, \dots, \alpha_t$  为 (I) 的极大无关组,则

- (I) 中剩余向量可由该组向量线性表出;
- r(I) = t.

### 求极大无关组

已知向量组  $(I): \alpha_1, \cdots, \alpha_s$  时求其极大无关组的方法如下。

- i. 将 (I) 以列向量的形式构成一矩阵 A;
- ii. 通过初等行变换将 A 转化为阶梯矩阵 B;
- iii. 每一阶取一列,构成极大无关组。

# 第五章

## 特征值与特征向量

## I. 定义与性质

### 定义 5.1.1 特征值与特征向量

对 n 阶方阵 A, 若其满足  $A\vec{\alpha} = \lambda \vec{\alpha}$ , 则称  $\lambda$  为 A 的特征值,  $\vec{\alpha}$  为对应  $\lambda$  的特征向量。

### 性质

注意,对n阶方阵A,有如下性质。

- 其有 n 个特征值 (包括重数);
- 特征向量  $\alpha \neq \vec{0}$ ;
- 任意特征值 λ 对应无数个特征向量;
   若 λ 为单根,其对应的特征向量都线性相关;
   若其为 k 重根,其最多有 k 个相互无关的特征向量;
- 不同特征值对应的特征向量必定线性无关;

## II. 特征值与特征向量的求解

#### 未知矩阵

当 A 未知的时候,可以凑定义,即强行构造  $A\alpha = \lambda\alpha$ .

#### 已知矩阵

当 A 元素已知时,可以使用公式法。 具体而言,

- 通过特征多项式  $|\lambda E A| = 0$  解出所有  $n \uparrow \lambda$ ;
  - 。 加减·消零·得公因式
- 对解得的每一个  $\lambda_0$  , 求解  $(\lambda_0 E A)X = 0$  以得到
  - $\circ$  基解 其对应的 k 个相互无关的特征向量,此处尽量将特征向量整数化;



○ 通解 - 其对应的全部特征向量,此处  $k_i \neq 0$ ;

求特征向量时,若未明示求无关的特征向量,则需要求出特征值对应的全部特征向量。

#### 秩为 1 的矩阵

特别地,对  $A_n: r(A)=1$  ,有  $A=\alpha\beta^\top=\beta\alpha^\top$  ,此时其特征值必定为  $\lambda_1=tr(A), \lambda_i=0 (i\neq 1)$  . 事实上,假设 n=3 ,则有

- 行列式拆分 -

$$|\lambda E - A| = \lambda^3 - (a_{11} + a_{22} + a_{33})\lambda^2 + S_2\lambda - |A| = 0, S_2$$
 是某些二阶子式,故有

- $\circ \quad \sum \lambda = tr(A) \; ;$
- $\circ \quad \prod \lambda = |A| \; ;$

又因  $r(A) = 1 \Rightarrow S_2 = 0, |A| = 0$ ,故  $\lambda_1 = tr(A), \lambda_2 = \lambda_3 = 0$ .

### 表格法

给定矩阵 A 及其特征值、特征向量  $A\alpha=\lambda\alpha$  ,推断其他矩阵的特征值和特征向量时,适用表格法。此时注意, $\lambda_A$  与 A 具有相同形式。

如, 若求  $A^2$  的特征值, 有

$$A^2\alpha = AA\alpha = \lambda A\alpha = \lambda^2\alpha$$

因此,有表格

| A          | $\lambda$        | $\alpha$                |
|------------|------------------|-------------------------|
| $A^k$      | $\lambda^k$      | $\alpha$                |
| $A^m + kE$ | $\lambda^m + kE$ | $\alpha$                |
| $A^{-1}$   | $1/\lambda$      | $\alpha$                |
| $A^*$      | $ A /\lambda$    | $\alpha$                |
| $A^{	op}$  | $\lambda$        | 无法断定                    |
| $P^{-1}AP$ | $\lambda$        | $\mathbf{P}^{-1}\alpha$ |
|            |                  |                         |

## III. 矩阵相似

#### 定义 5.3.1 矩阵相似

对方阵  $A_n, B_n$  , 若有可逆矩阵 P 使得  $P^{-1}AP = B$  , 称 A, B 相似。

若矩阵 A, B 相似,以下几个性质成立。

• |A| = |B|;



- r(A) = r(B);
- $\lambda_A = \lambda_B$ ; 事实上,  $|\lambda E - B| = |\lambda P^{-1}P - P^{-1}AP| = |P^{-1}(\lambda E - A)P|$ .
- tr(A) = tr(B);
- $A + kE \sim B + kE$ ;
- $P^{-1}A^nP = B^n$ , 注意此时 P 没有变化;
- $A \sim B, B \sim C \Rightarrow A \sim C$ .

## IV. 相似对角化

### 定义 5.4.1 对角化

若存在可逆矩阵 P 使得  $P^{-1}AP = \Lambda$ , 则称 A 可相似对角化。

考虑三阶方阵  $A_{3\times 3}$ , 由  $P^{-1}AP = \Lambda \Rightarrow AP = P\Lambda$ , 若设

$$P = (\alpha_1, \alpha_2, \alpha_3), \Lambda = \begin{pmatrix} k_1 & & \\ & k_2 & \\ & & k_3 \end{pmatrix}$$

则有

$$(A\alpha_1,A\alpha_2,A\alpha_3)=(k\alpha_1,k\alpha_2,k\alpha_3)$$

由此, $k_i$  为 A 的特征值, $\alpha_i$  为其对应的特征向量。 推广至 n 阶,

• 
$$\Lambda = \frac{\mathring{\&}$$
定存在 $}{\begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}};$ 

•  $P = (\alpha_1, \dots, \alpha_n)$ ,  $\alpha_i$  有 n 个,是线性无关的特征向量;没有 n 个线性无关的特征向量时不能相似对角化。

### 相似对角化的判定



## V. 相似对角化的求解

### i.普通方阵

- i. 化简矩阵 A (抽象, 含参) 的具体元素, 注意此时不适用初等变换;
- ii. 求解特征值、特征向量;
- iii. 令  $P = (\alpha_1, \dots, \alpha_n)$ , 此时有

$$P^{-1}AP = \Lambda = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots \\ & & & \lambda_n \end{pmatrix}$$

此处可以通过  $\Lambda$  反推 A 进行验证。

### ii.对称矩阵

#### 对称矩阵的性质

对称矩阵  $A^{\top} = A$  有如下的性质。

- 不同特征值对应的特征向量必定正交;
  - 。 事实上,若设  $\lambda_1 \neq \lambda_2$ ,  $A\alpha_i = \lambda_i \alpha_i$ , i = 1, 2, 则有

$$A\alpha_{1} = \lambda_{1}\alpha_{1} \Rightarrow \alpha_{1}^{\top}A^{\top} = \alpha_{1}^{\top}A = \lambda_{1}\alpha_{1}^{\top}$$
$$\Rightarrow \alpha_{1}^{\top}A\alpha_{2} = \lambda_{2}\alpha_{1}^{\top}\alpha_{2} = \lambda_{1}\alpha_{1}^{\top}\alpha_{2}$$
$$\Rightarrow (\lambda_{2} - \lambda_{1})\alpha_{1}^{\top}\alpha_{2} = 0$$
$$\therefore \lambda_{1} \neq \lambda_{2}, \quad \therefore \alpha_{1}^{\top}\alpha_{2} = 0.$$

- 必定存在可逆矩阵 P 使得  $P^{-1}AP = \Lambda$ ;
- k 重特征值  $\lambda_0$  必定对应 k 个线性无关的特征向量;

### 施密特正交法

对一组线性无关向量  $\alpha_i$ , i=1,2,3, 通过施密特正交法将其化为一组正交向量  $\beta_i$  的方法如下。

- $\Leftrightarrow \beta_1 = \alpha_1$ ;
- $\Rightarrow \beta_2 = \alpha_2 \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1$ ;
- $\Rightarrow \beta_3 = \alpha_3 \frac{(\alpha_3, \beta_1)}{(\beta_1, \beta_1)} \beta_1 \frac{(\alpha_3, \beta_2)}{(\beta_2, \beta_2)} \beta_2 ;$



 $\beta_i$  应当尽量整数化。此时得到的  $\beta_i$  两两正交。

当知道一组正交的  $\alpha_1, \alpha_2$  时,则

$$\alpha_3 \stackrel{\triangle}{=} \begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} \leftarrow \alpha_1$$
$$= c_i \vec{i} + c_j \vec{j} + c_k \vec{k}$$

此时有  $\alpha_3 = (c_1, c_2, c_3)$  与  $\alpha_1, \alpha_2$  两两正交。

### 对称矩阵的相似对角化

对对称矩阵 A,

- 必定存在可逆 P 使得  $P^{-1}AP = \Lambda$ , 其求解方法同普通方阵;
- 必定存在正交矩阵 Q 使得  $Q^{-1}AQ = Q^{T}AQ = \Lambda$ ;
  - 化简矩阵 A;
  - 通过  $|\lambda E A| = 0$ ,  $(\lambda_0 E A)X = 0$  得到特征值与特征向量;
  - 。 处理得到的特征值和特征向量;
    - \* 若特征值都互异,将特征向量单位化;  $\forall \alpha_i, \gamma_i = \frac{\alpha_i}{|\alpha_i|}$
    - \* 对 k 重根  $\lambda_0$  及其对应的  $\alpha_1, \dots, \alpha_k$ ,
      - · 若其全部正交,将全部单位化;
      - · 若其不正交,先对  $\alpha_1, \dots, \alpha_k$  做施密特正交化,再将**全部**向量单位化为  $\gamma_i$ .
  - 。 令  $Q = (\gamma_1, \cdots, \gamma_n)$ , 其中  $\gamma_i$  必定单位且正交,

则必有 
$$Q^{-1}AQ = Q^{\top}AQ = \Lambda = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$$

# 第六章

## 二次型

## I. 定义

### 二次型

形如

$$f(x_1, \dots, x_n) = \sum_{i=1}^n a_{ii} x_i^2 + \sum_{1 \le i < j \le n} 2a_{ij} x_i x_j$$

$$\stackrel{\triangle}{=} X^\top A X, \quad X = (x_1, \dots, x_n)^\top,$$

$$A = A^\top = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix}$$

的二次齐次函数是二次型。

对称矩阵 A 称为二次型的矩阵。

二次型 f 的秩 r(f) = r(A).

### 标准型

只含有平方项的二次型  $X^{\top}AX = \sum d_i x_i^2$  是标准型。二次型总能化为标准型。 标准型的矩阵是对角矩阵  $\Lambda$  .

### 规范型

系数为 0,±1 的标准型是规范型。

#### 惯性指数

(二次型对应的)标准型中正(负)系数的个数为其正(负)惯性指数。

## II. 矩阵合同

## i.定义

对 n 阶方阵 A, B, 若存在可逆矩阵 P 使得  $P^{T}AP = B$ , 则称 A, B 合同。



## ii.可逆变换

设  $f = X^{T}AX$ , 令可逆矩阵 C: X = CY, 代回,有  $f = Y^{T}C^{T}ACY$ . 因此,二次型的可逆变换即为合同变换。

## iii.判定

矩阵合同的判定方式如下。

$$\lambda_A = \lambda_B \Leftrightarrow A \sim B \Rightarrow A, B$$
合同 
$$\Leftrightarrow X^{\top}AX, X^{\top}BX$$
的惯性指数相同 
$$\Leftrightarrow \lambda_A, \lambda_B$$
正负数的个数相同

### iv.二次型化为标准型

#### 正交变换

由正交变换将二次型化为标准型,即寻找正交矩阵 Q: X = QY 以将对称矩阵转化为对角矩阵。 事实上,第五章对称矩阵相似对角化和第六章正交变换很相似,但有些许不同。

- 第五章: 已知对称矩阵;
  - 第六章:已知二次型 ⇒ 对应的对称矩阵;
- 第五章:
  - 。 求解特征值、特征向量;
  - 。 施密特正交单位化;

第六章: 同上

• 第五章: 令  $Q = (\gamma_1, \dots, \gamma_n)$  时有  $Q^{-1}AQ = Q^{\top}AQ = \Lambda$ ; 第六章: 令  $Q = (\gamma_1, \dots, \gamma_n)$  有 X = QY 时,二次型  $f = \sum \lambda_i y_i^2$ ,此时特征值的正负个数为正负惯性指数。

#### 配方法

由配方法将二次型化为标准型,即通过配平方将多项式变形至只有平方项。 具体而言,常用的公式有

$$\begin{cases} (a+b)^2 = a^2 + b^2 + 2ab \\ (a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac \\ (a+b)(a-b) = a^2 - b^2 \end{cases}$$