Statistical Method Illustration - Classification Methods

Daniel Shang

```
# Load the necessary packages
library(tidylog)
##
## Attaching package: 'tidylog'
## The following object is masked from 'package:stats':
##
##
       filter
library(e1071)
## Warning: package 'e1071' was built under R version 4.0.3
library(ggplot2)
library(party)
## Warning: package 'party' was built under R version 4.0.3
## Loading required package: grid
## Loading required package: mvtnorm
## Warning: package 'mvtnorm' was built under R version 4.0.3
## Loading required package: modeltools
## Warning: package 'modeltools' was built under R version 4.0.3
## Loading required package: stats4
## Loading required package: strucchange
## Warning: package 'strucchange' was built under R version 4.0.3
## Loading required package: zoo
## Attaching package: 'zoo'
```

```
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
## Loading required package: sandwich
## Warning: package 'sandwich' was built under R version 4.0.3
library(rpart)
library(rpart.plot)
## Warning: package 'rpart.plot' was built under R version 4.0.3
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
      margin
library(caret)
## Loading required package: lattice
# Load the data, remove missing values (if any), and convert columns to proper formats
## based on the documentation of the dataset
data = read.csv('heart.csv', )
data_clean = na.omit(mutate_all(data,
                      ~ifelse(. %in% c("N/A", "null", "", NULL), NA, .)))
## mutate_all: no changes
colnames(data clean)[1] = 'age'
data_clean$sex = as.factor(data_clean$sex)
data_clean$cp = as.factor(data_clean$cp)
data_clean$fbs = as.factor(data_clean$fbs)
data_clean$restecg = as.factor(data_clean$restecg)
data_clean$exang = as.factor(data_clean$exang)
data_clean$slope = as.factor(data_clean$slope)
data_clean$ca = as.factor(data_clean$ca)
data_clean$thal = as.factor(data_clean$thal)
data_clean$target = as.factor(data_clean$target)
```

- Support Vector Machine

```
# Build a support vector machine (SVM) to predict the 'target' and summarize the model
svm_model = svm(target ~ ., data = data_clean, kernel = 'linear')
summary(svm_model)
##
## Call:
## svm(formula = target ~ ., data = data_clean, kernel = "linear")
##
##
## Parameters:
     SVM-Type: C-classification
##
   SVM-Kernel: linear
##
##
         cost: 1
##
## Number of Support Vectors: 114
##
   (60 54)
##
##
##
## Number of Classes: 2
##
## Levels:
## 0 1
# Make predictions using the model and compare the outcome with the 'target' values
## in the dataset. Summarize the prediction accuracy and related statistics using
## a confusion matrix
set.seed(123)
prediction_svm1 = predict(svm_model, data_clean)
confusionMatrix(prediction_svm1, data_clean$target)
## Confusion Matrix and Statistics
##
            Reference
##
## Prediction 0 1
            0 112 11
            1 26 154
##
##
##
                  Accuracy : 0.8779
##
                   95% CI: (0.8356, 0.9125)
##
      No Information Rate: 0.5446
##
      P-Value [Acc > NIR] : < 2e-16
##
##
                     Kappa : 0.7516
##
   Mcnemar's Test P-Value: 0.02136
##
##
##
               Sensitivity: 0.8116
##
               Specificity: 0.9333
            Pos Pred Value: 0.9106
##
            Neg Pred Value: 0.8556
```

Prevalence: 0.4554

##

```
## Balanced Accuracy : 0.8725
##

## 'Positive' Class : 0
##

# Use the 'tune' formula to figure out the best parameters for the SVM model to
## boost the model performance. The darker the color is, the better the model will
## perform, as indicated by the 'cost' y-axis label.
set.seed(123)
tune_svm = tune(svm, target ~ ., data = data_clean, range = list(epsilon = seq(0, 2, 0.1), cost = 2^(2:plot(tune_svm))
```

Performance of `svm'

Detection Rate: 0.3696

Detection Prevalence: 0.4059

##

Summarize the tuned model
summary(tune_svm)

```
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## epsilon cost
##
    0    4
```

```
##
   - best performance: 0.1589247
##
   - Detailed performance results:
##
      epsilon cost
                        error dispersion
## 1
          0.0
                  4 0.1589247 0.06874025
                  4 0.1589247 0.06874025
          0.1
                  4 0.1589247 0.06874025
## 3
          0.2
##
          0.3
                  4 0.1589247 0.06874025
## 5
          0.4
                  4 0.1589247 0.06874025
## 6
          0.5
                  4 0.1589247 0.06874025
## 7
          0.6
                  4 0.1589247 0.06874025
## 8
          0.7
                  4 0.1589247 0.06874025
## 9
          0.8
                  4 0.1589247 0.06874025
## 10
          0.9
                  4 0.1589247 0.06874025
## 11
          1.0
                  4 0.1589247 0.06874025
## 12
                  4 0.1589247 0.06874025
          1.1
## 13
          1.2
                  4 0.1589247 0.06874025
## 14
          1.3
                  4 0.1589247 0.06874025
## 15
          1.4
                  4 0.1589247 0.06874025
## 16
          1.5
                  4 0.1589247 0.06874025
## 17
          1.6
                  4 0.1589247 0.06874025
## 18
          1.7
                  4 0.1589247 0.06874025
## 19
          1.8
                  4 0.1589247 0.06874025
## 20
          1.9
                  4 0.1589247 0.06874025
  21
          2.0
                  4 0.1589247 0.06874025
## 22
          0.0
                  8 0.1654839 0.07909940
##
  23
                  8 0.1654839 0.07909940
          0.1
## 24
          0.2
                  8 0.1654839 0.07909940
## 25
          0.3
                  8 0.1654839 0.07909940
## 26
          0.4
                  8 0.1654839 0.07909940
##
  27
          0.5
                  8 0.1654839 0.07909940
##
   28
          0.6
                  8 0.1654839 0.07909940
## 29
          0.7
                  8 0.1654839 0.07909940
## 30
          0.8
                  8 0.1654839 0.07909940
## 31
          0.9
                  8 0.1654839 0.07909940
## 32
          1.0
                  8 0.1654839 0.07909940
## 33
          1.1
                  8 0.1654839 0.07909940
## 34
          1.2
                  8 0.1654839 0.07909940
##
  35
          1.3
                  8 0.1654839 0.07909940
   36
                  8 0.1654839 0.07909940
          1.4
## 37
          1.5
                  8 0.1654839 0.07909940
                  8 0.1654839 0.07909940
##
   38
          1.6
##
  39
          1.7
                  8 0.1654839 0.07909940
## 40
          1.8
                  8 0.1654839 0.07909940
## 41
          1.9
                  8 0.1654839 0.07909940
##
   42
          2.0
                  8 0.1654839 0.07909940
## 43
          0.0
                 16 0.1786022 0.06553252
## 44
          0.1
                 16 0.1786022 0.06553252
## 45
          0.2
                 16 0.1786022 0.06553252
                 16 0.1786022 0.06553252
## 46
          0.3
## 47
          0.4
                 16 0.1786022 0.06553252
## 48
          0.5
                 16 0.1786022 0.06553252
## 49
          0.6
                 16 0.1786022 0.06553252
```

```
## 50
          0.7
                16 0.1786022 0.06553252
## 51
          0.8
                16 0.1786022 0.06553252
## 52
          0.9
               16 0.1786022 0.06553252
               16 0.1786022 0.06553252
## 53
          1.0
## 54
          1.1
                16 0.1786022 0.06553252
## 55
          1.2
                16 0.1786022 0.06553252
## 56
                16 0.1786022 0.06553252
          1.3
                16 0.1786022 0.06553252
## 57
          1.4
## 58
          1.5
                16 0.1786022 0.06553252
## 59
          1.6
                16 0.1786022 0.06553252
## 60
          1.7
                16 0.1786022 0.06553252
## 61
          1.8
                16 0.1786022 0.06553252
                16 0.1786022 0.06553252
## 62
          1.9
## 63
                16 0.1786022 0.06553252
          2.0
## 64
          0.0
                32 0.2082796 0.07285258
## 65
          0.1
                32 0.2082796 0.07285258
## 66
                32 0.2082796 0.07285258
          0.2
## 67
          0.3
                32 0.2082796 0.07285258
## 68
          0.4
                32 0.2082796 0.07285258
## 69
          0.5
                32 0.2082796 0.07285258
## 70
          0.6
                32 0.2082796 0.07285258
## 71
          0.7
                32 0.2082796 0.07285258
## 72
          0.8
                32 0.2082796 0.07285258
## 73
          0.9
                32 0.2082796 0.07285258
## 74
                32 0.2082796 0.07285258
          1.0
## 75
          1.1
                32 0.2082796 0.07285258
## 76
          1.2
                32 0.2082796 0.07285258
                32 0.2082796 0.07285258
## 77
          1.3
## 78
          1.4
                32 0.2082796 0.07285258
## 79
          1.5
               32 0.2082796 0.07285258
                32 0.2082796 0.07285258
## 80
          1.6
## 81
          1.7
                32 0.2082796 0.07285258
## 82
          1.8
                32 0.2082796 0.07285258
## 83
                32 0.2082796 0.07285258
          1.9
## 84
          2.0
                32 0.2082796 0.07285258
# Use the best model tuned by the function and set it as our final model
set.seed(123)
final_svm = tune_svm$best.model
summary(final_svm)
##
## Call:
   best.tune(method = svm, train.x = target ~ ., data = data_clean,
##
       ranges = list(epsilon = seq(0, 2, 0.1), cost = 2^2(2:5))
##
##
##
  Parameters:
      SVM-Type: C-classification
    SVM-Kernel:
##
                 radial
##
          cost:
                 4
##
  Number of Support Vectors: 145
##
```

```
## (71 74)
##
##
## Number of Classes: 2
## Levels:
## 0 1
# Use the tuned model to make prediction and compare the accuracy with the previous
## model. Since the prediction accuracy increased from 0.8779 to 0.9241, we can
## conclude that the 'tune' function did a great job identifying the best model
prediction_svm2 = predict(final_svm, data_clean)
confusionMatrix(prediction_svm2, data_clean$target)
## Confusion Matrix and Statistics
##
             Reference
##
              0 1
## Prediction
           0 123
            1 15 157
##
##
##
                  Accuracy: 0.9241
##
                    95% CI: (0.8883, 0.9513)
##
      No Information Rate: 0.5446
##
      P-Value [Acc > NIR] : <2e-16
##
##
                     Kappa: 0.8463
##
##
  Mcnemar's Test P-Value: 0.2109
##
##
              Sensitivity: 0.8913
               Specificity: 0.9515
##
##
            Pos Pred Value: 0.9389
##
            Neg Pred Value: 0.9128
                Prevalence: 0.4554
##
            Detection Rate: 0.4059
##
##
      Detection Prevalence: 0.4323
##
         Balanced Accuracy: 0.9214
##
##
          'Positive' Class: 0
##
                             Classification Tree
# Build a classification tree model to predict the target. I used a tree control
## parameter 'mincriterion.' The value of this parameter will be considered as
## 1 - p-value that must be exceeded in order to implement a node split.
tree_model1 = ctree(target~., data = data_clean, controls = ctree_control(mincriterion = 0.95))
summary(tree_model1)
##
       Length
                   Class
                               Mode
##
            1 BinaryTree
                                 S4
```

tree_model1

plot(tree_model1, type = 'simple')

```
##
##
     Conditional inference tree with 6 terminal nodes
##
## Response: target
## Inputs: age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang, oldpeak, slope, ca, thal
## Number of observations: 303
##
## 1) thal == \{2\}; criterion = 1, statistic = 85.022
##
     2) ca == {0, 4}; criterion = 1, statistic = 35.631
##
       3) thalach <= 160; criterion = 0.989, statistic = 11.213
##
         4)* weights = 53
##
       3) thalach > 160
##
         5)* weights = 64
##
     2) ca == \{1, 2, 3\}
##
       6) cp == {0}; criterion = 0.998, statistic = 19.826
         7)* weights = 20
##
       6) cp == \{1, 2, 3\}
##
         8)* weights = 29
##
## 1) thal == {0, 1, 3}
##
     9) cp == \{1, 2, 3\}; criterion = 1, statistic = 31.784
       10)* weights = 46
##
##
     9) cp == \{0\}
       11)* weights = 91
# Plot the tree model built
```



```
# Make prediction using the tree model and build a confusion matrix to evaluate
## its prediction accuracy
prediction_tree1 = predict(tree_model1, data = data_clean)
confusionMatrix(prediction_tree1, data_clean$target)
```

```
## Confusion Matrix and Statistics
##
##
             Reference
                    1
## Prediction
##
            0
               98
                  13
##
            1
               40 152
##
##
                  Accuracy: 0.8251
##
                    95% CI: (0.7775, 0.8661)
##
       No Information Rate: 0.5446
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa : 0.6416
##
    Mcnemar's Test P-Value: 0.0003551
##
##
##
               Sensitivity: 0.7101
##
               Specificity: 0.9212
            Pos Pred Value : 0.8829
##
##
            Neg Pred Value: 0.7917
                Prevalence: 0.4554
##
```

```
## Detection Rate : 0.3234
## Detection Prevalence : 0.3663
## Balanced Accuracy : 0.8157
##
## 'Positive' Class : 0
##
# Build another tree model using a different package
tree_model2 = rpart(target ~ ., data = data_clean)

# Plot the tree at a certain level of detail
rpart.plot(tree_model2, extra = 1)
```



```
# Make prediction using the second tree model and build a confusion matrix to evaluate
## the prediction accuracy
prediction_tree2 = predict(tree_model2, data_clean, type = 'class')
confusionMatrix(prediction_tree2, data_clean$target)
```

```
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 111 17
## 1 27 148
##
```

```
##
                  Accuracy : 0.8548
##
                    95% CI: (0.81, 0.8925)
      No Information Rate: 0.5446
##
      P-Value [Acc > NIR] : <2e-16
##
##
##
                     Kappa: 0.7055
##
##
   Mcnemar's Test P-Value: 0.1748
##
##
               Sensitivity: 0.8043
##
               Specificity: 0.8970
            Pos Pred Value: 0.8672
##
            Neg Pred Value: 0.8457
##
##
                Prevalence: 0.4554
##
            Detection Rate: 0.3663
##
      Detection Prevalence: 0.4224
##
         Balanced Accuracy: 0.8507
##
##
          'Positive' Class: 0
##
                              Random Forest -
# Build a random forest model to predict the 'target' variable in the dataset. I
## started with a huge number of trees (ntree) so that, based on the plot later,
## we can easily identify the number of trees that leads to least prediction error
set.seed(123)
rf_model1 = randomForest(target ~ ., data = data_clean, ntree = 2000)
print(rf_model1)
##
## Call:
## randomForest(formula = target ~ ., data = data_clean, ntree = 2000)
##
                  Type of random forest: classification
##
                        Number of trees: 2000
## No. of variables tried at each split: 3
           OOB estimate of error rate: 16.17%
##
## Confusion matrix:
      0
          1 class.error
## 0 111 27
              0.1956522
## 1 22 143
              0.1333333
# Use the random forest model to make prediction and build a confusion matrix to
## evaluate the prediction accuracy
prediction rf1 = predict(rf model1, data = data clean)
confusionMatrix(prediction_rf1, data_clean$target)
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction
              0 1
           0 111 22
##
```

```
1 27 143
##
##
                  Accuracy : 0.8383
##
                    95% CI : (0.7919, 0.8779)
##
       No Information Rate: 0.5446
##
##
       P-Value [Acc > NIR] : <2e-16
##
##
                     Kappa : 0.673
##
   Mcnemar's Test P-Value : 0.5677
##
##
##
               Sensitivity: 0.8043
##
               Specificity: 0.8667
            Pos Pred Value: 0.8346
##
##
            Neg Pred Value: 0.8412
                Prevalence: 0.4554
##
##
            Detection Rate: 0.3663
      Detection Prevalence: 0.4389
##
         Balanced Accuracy: 0.8355
##
##
          'Positive' Class : 0
##
##
```

Plot the relationship between the number of trees and the prediction error. We
can see that the error reaches the lowest point when the number of trees is
around 750. Therefore, I will use this number to build a new model later to see
if it does a great job predicting
plot(rf_model1)

rf_model1


```
# Use the 'tuneRF' function to figure out the 'mtry' parameter that leads to least
## prediction error. 'mtry' is the number of variables randomly sampled as candidates
## at each split of node. According to the plot, an 'mtry' of three leads to the
## random forest model the predicts most accurately
set.seed(123)
tune_rf1 = tuneRF(data_clean[, -14], data_clean[, 14], stepFactor = 1.5, plot = TRUE, ntreeTry = 750, the
## mtry = 3 00B error = 15.84%
## Searching left.
```

```
## mtry = 3 00B error = 15.84%
## Searching left ...
## mtry = 2 00B error = 16.17%
## -0.02083333 0.01
## Searching right ...
## mtry = 4 00B error = 16.5%
## -0.04166667 0.01
```



```
# Build a new model using the parameters we just figured out. We can see that the
## Out Of Bag (OBB) estimate of error rate decreases from 16.17% to 15.84%, meaning
## that the functions did a great job identifying the best parameters
set.seed(123)
rf_model2 = randomForest(target ~ ., data = data_clean, ntree = 750, mtry = 3, importance = TRUE, proximal target ~ ...
print(rf model2)
##
## Call:
  randomForest(formula = target ~ ., data = data_clean, ntree = 750, mtry = 3, importance = TRUE
                  Type of random forest: classification
##
                        Number of trees: 750
\#\# No. of variables tried at each split: 3
##
           OOB estimate of error rate: 15.84%
##
## Confusion matrix:
       0
           1 class.error
## 0 112 26
               0.1884058
## 1 22 143
               0.1333333
# Build a confusion matrix for more detailed statistics about the model performance
prediction_rf2 = predict(rf_model2, data = data_clean)
confusionMatrix(prediction_rf2, data_clean$target)
```

Confusion Matrix and Statistics

```
##
##
            Reference
              0 1
## Prediction
##
           0 112 22
            1 26 143
##
##
##
                 Accuracy : 0.8416
                    95% CI : (0.7955, 0.8808)
##
##
       No Information Rate: 0.5446
       P-Value [Acc > NIR] : <2e-16
##
##
##
                     Kappa: 0.6799
##
##
   Mcnemar's Test P-Value: 0.665
##
##
              Sensitivity: 0.8116
##
              Specificity: 0.8667
            Pos Pred Value: 0.8358
##
##
            Neg Pred Value: 0.8462
##
               Prevalence: 0.4554
           Detection Rate: 0.3696
##
##
      Detection Prevalence : 0.4422
##
         Balanced Accuracy: 0.8391
##
##
          'Positive' Class : 0
##
```

```
# Plot the distribution of tree size to better understand the model
hist(treesize(rf_model2), col = 'chartreuse1')
```

Histogram of treesize(rf_model2)


```
# Plot all the variables in the dataset and sort them based on their relative
## importance when making the prediction. The first plot gives information about
## how much prediction accuracy will decrease if we remove the variable. For example,
## if we remove 'ca,' the prediction accuracy will decrease by 30%. The second plot
## shows how pure the nodes are at the end of the tree, if the variable is removed.
varImpPlot(rf_model2, main = 'Variable importance (high to low)')
```

Variable importance (high to low)

To know how many times each column is used in the entire random forest, we can
use the 'varUsed' function
varUsed(rf_model2)

[1] 4527 1431 2714 4321 4677 749 1462 4830 1309 4057 1795 2670 1962

To understand the marginal effect of a variable on the final prediction result,
we can use the partial dependence plot. For example, this plot shows that, when
age is greater than 53, the random forest is much less likely to predict
1 as the target for that record.
partialPlot(rf_model2, data_clean, age, '1')

Partial Dependence on age

