The Logistic map. Exercises

- 1. Use a calculator (*) to iterate each of the following functions using arbitrary initial value and explain these results.
 - $f(x) = \cos(x).$
 - $f(x) = \sin(x)$.
 - $f(x) = \frac{1}{e}e^x$.
 - $f(x) = \arctan(x)$.
 - (*) You can use Excel, Numbers, Calc, Matlab to compute the iterations.
- 2. Using the graph of the function, identify the fixed points for each of the maps in the previous exercise.
- 3. For $f(z) = z^2 + \frac{5}{4}$, $z \in \mathbb{C}$ compute periodic orbits of period 1, 2 and 3.
- 4. Find all fixed points for each of the following maps and classify them as attracting, repelling, or neither. Sketch the phase portraits.
 - $f(x) = x x^2.$
 - $f(x) = 2(x x^2)$.
 - $f(x) = x^3 \frac{1}{9}x$.
 - $f(x) = x^3 x.$
 - $S(x) = \frac{1}{2}\sin(x)$.
 - $\bullet \ S(x) = \sin(x).$
 - $\bullet \ E(x) = e^{x-1}.$
 - $\bullet \ E(x) = e^x.$
 - $A(x) = \arctan(x)$.
 - $A(x) = \frac{\pi}{4}\arctan(x)$.
 - $A(x) = -\frac{\pi}{4}\arctan(x)$.
 - $f(x) = x^3 x^2 x$.
 - $g(x) = \sqrt{x+1}$ for $x \ge -1$
- 5. Identify the bifurcations and discuss the phase portrait before and after the bifurcations which occur in the following families of maps at the indicated parameter values
 - $F_{\mu}(x) = \mu x(1-x), \mu = 3.$

- $F_{\lambda}(x) = \lambda x x^3, \ \lambda = 1.$
- $F_{\lambda}(x) = \lambda x x^3, \ \lambda = -1.$
- $Q_c(x) = x^2 + c$, c = -3/4.
- $A_{\lambda}(x) = \lambda \arctan(x), \lambda = -1.$
- $H_{\lambda}(x) = \lambda \sinh(x) \lambda = 1.$
- 6. Plot the bifurcation diagram of the sine map $f_{\lambda}(x) = \lambda \sin(\pi x)$ with $0 < \lambda < 1$. What are the similarities with the bifurcation diagram of the logistic map?
- 7. Let $r < \alpha$ two real numbers and let $f: [r, \alpha] \to \mathbb{R}$ a continuous map such that
 - f(r) = r
 - r < f(x) < x for all $x \in (r, \alpha)$. Prove that $\lim_{n\to\infty} f^n(x_0) = r$ for all $x_0 \in [r, \alpha)$.
- 8. Read the paper "Period Three Implies Chaos" from the web site https://www.its.caltech.edu/ matilde/LiYorke.pdf and use Sharkovskii's theorem in a concrete example.