Paper Review: Ground-level Mapping And Navigating for Agriculture Based on IoT And Computer Vision

Name: Tasnim Fuyara Chhoan

ID: 23366035; **CSE 707** (Fall'23)

Submitted to- Annajiat Alim Rasel (AAR)

Motivation/purpose/ aims/hypothesis

Contribution

Methodology

Conclusion

Motivation/purpose/ aims/hypothesis

- Enhance agriculture mapping
- Combine IoT and computer vision
- •loT benefits precision agriculture

FIGURE 1. The IoT architecture of Cloud-Edge-Robot.

Contribution

- •IoT-based mapping (Fig. 3)
- •Computer vision and edge computing (Fig. 4)
 - •Advancing precision agriculture (Fig. 5)

FIGURE 3. a) A demonstration of mn-scaled meshing with SLAM map and b) real-time farm view.

FIGURE 5. Route planning algorithm based on the Mesh-map.

FIGURE 4. mn-Scaled Meshing algorithm.

Methodology

- •Monocular cameras, SLAM, mesh maps (Figs. 2, 5)
 - Accuracy, CPU usage, localization
 experiments (Figs. 9, 12)
 - •Real-time mapping for precision agriculture(Fig. 8)

FIGURE 5. Route planning algorithm based on the Mesh-map.

FIGURE 12. The CDF of the time intervals between responses. Note: User means a working robot.

FIGURE 9. The flowchart of map maintenance.

TABLE 4. Results from the accuracy experiment.

Cell length (approximate) (cm)	30	60
Localization success frequency (%)	84.7	89.3
RMSE (cm)	19.5	0
Maximal error (cm)	36.9	0
Orientation accuracy (%)	100	100

Note: Orientation includes 8 directions separated by 45 degrees.

FIGURE 13. CPU usages in each experiment configuration.

GURE 12. The CDF of the time intervals between responses. Note: User eans a working robot.

Conclusion

- •High accuracy (Table 4).
- Efficiency of edge computing (Fig. 13).
- •Real-time data and map updates (Fig. 12).

Limitations

Limitation 1

Planar terrain assumption

Limitation 2

SLAM technology limitations

Synthesis

Future	Environmental	Smart	Disaster
Applications	Monitoring	Cities	Response
Exploration & Mapping	Versatile	Overcoming	Enhancing
	Industries	Limitations	Adaptability

Reference: Wei Zhao, Xuan Wang, Bozhao Qi, & Troy Runge. (2020). Ground-Level Mapping and Navigating for Agriculture Based on IoT and Computer Vision. *API* (Digital Object Identifier 10.1109/ACCESS.2020.3043662).