Technische Informatik I

Kapitel 4

Minimierung

Prof. Dr. Dirk W. Hoffmann

Hochschule Karlsruhe ◆ University of Applied Sciences ◆ Fakultät für Informatik

Motivation

- Jede Boolesche Funktion lässt sich auf verschiedene Weise darstellen und damit unterschiedlich in Hardware implementieren
 - Disjunktive Normalform
 - Konjunktive Normalform
 - ...
- Normalformdarstellungen sind sehr aufwendig
 - Basieren auf Mintermen bzw. Maxtermen
 - Jeder Minterm bzw. Maxterm enthält alle Eingangsvariablen
 - Formellänge steigt exponentiell mit der Anzahl der Eingangsvariablen
 - Für die Praxis nicht geeignet
- Ziel der Minimierung
 - Die Suche nach einer einfacheren Lösung

Beispiel

Beispiel

Welche Schaltung ist besser?

Optimierungsziele und Kostenfunktion

- Die Güte einer Schaltung ist relativ
 - Ob eine Schaltung "besser" ist, hängt vom Optimierungsziel ab
- Typische Optimierungsziele
 - Hohe Taktrate ("speed")
 - Geringer Platzverbrauch ("area")
- Optimierungsziele sind komplementär
 - Schnellste Schaltung benötigt viel Platz
 - Kleinste Schaltung bietet nur geringe Taktrate
- Das Optimierungsziel wird mit einer Kostenfunktion modelliert
 - C_S = Schaltungstiefe (Geschwindigkeitsoptimierung)
 - C_A = Anzahl Zellen (Größenoptimierung)

Beispiel

Fazit: Wähle Schaltung 2 oder 3 für eine schnelle Schaltung Wähle Schaltung 1 oder 3 für eine kompakte Schaltung

Können die Kostenfunktionen noch verbessert werden?

Verbesserte Kostenfunktionen

- Zellen sind nicht gleich Zellen
 - Schaltelemente mit vielen Eingängen sind größer
 - Verbesserung: Bilden einer gewichteten Summe

$$C_A' = \sum_{g \in Gatter}$$
 Anzahl Eingänge von g

- Kombinieren verschiedener Metriken
 - Bei gleich schnellen Schaltungen wird diejenige bevorzugt, die weniger Fläche benötigt

$$C_{S}' = (100 \times Schaltungstiefe) + C_{A}'$$

- Industrielle Werkzeuge
 - Zellenbibliothek mit Flächen- und Geschwindigkeitsdaten
 - Statische Timing-Analyse

Beispiel

Fazit: Wähle Schaltung 3 für eine schnelle Schaltung Wähle Schaltung 1 für eine kompakte Schaltung

- Nochmals zurück zu den bisher betrachteten Verfahren...
 - Disjunktive Normalform, Konjunktive Normalform
 - Beide erzeugen einen Term für jede 1-Zeile der Wahrheitstabelle
 - Optimierung: Zusammenfassung mehrerer Zeilen in einem Term

	d	С	b	а	У		
10	1	0	1	0	1]	d. o.b
11	1	0	1	1	1		d v -c v p

	d	С	b	а	У	
11	1	0	1	1	1	nicht möglich
12	1	1	0	0	1	Therit mognen

Die Zusammenfassung funktioniert genau dann, wenn sich die Variablenbelegungen in genau einer Variablen unterscheiden.

Die identisch belegten Variablen heißen *gebunden*. Die unterschiedlich belegte Variable heißen *frei*.

	d	С	b	а	У
10	1	0	1	0	1
<i>f</i> 11	1	0	1	1	1

$$d \wedge \neg c \wedge b$$

	d	С	b	а	У	
11	1	0	1	1	1	
12	1	1	0	0	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Welche mathematische Regel verbirgt sich hier?

	d	С	b	а	У	
10	1	0	1	0	1	
11	1	0	1	1	1	

$$d \wedge \neg c \wedge b$$

- Erste Zeile: d ∧ ¬c ∧ b ∧ ¬a
- Zweite Zeile:
 d \(\neg c \lambda \) b \(\lambda \)

Die disjunktive Verknüpfung ergibt...

$$(d \wedge \neg c \wedge b \wedge \neg a) \vee (d \wedge \neg c \wedge b \wedge a) = (K) + (A)$$

$$((d \wedge \neg c \wedge b) \wedge \neg a) \vee ((d \wedge \neg c \wedge b) \wedge a) = (D)$$

$$(d \wedge \neg c \wedge b) \wedge (\neg a \vee a) =$$
 (I)

$$(d \wedge \neg c \wedge b) \wedge 1 = \tag{N}$$

$$d \wedge \neg c \wedge b$$

	d	С	b	а	у	
0	0	0	0	0	1	> ¬d ∧ ¬c ∧ ¬b
1	0	0	0	1	1	
2	0	0	1	0	1	-d ∧ -c ∧ b
3	0	0	1	1	1	
4	0	1	0	0	1	$\neg d \land c \land \neg b$
5	0	1	0	1	1	
6	0	1	1	0	1	-d∧c∧b
7	0	1	1	1	1	
8	1	0	0	0	1	$\int d \wedge \neg c \wedge \neg b$
9	1	0	0	1	1	
10	1	0	1	0	1	d ∧ ¬c ∧ b
11	1	0	1	1	1	
12	1	1	0	0	1	d.a.b
13	1	1	0	1	1	d ∧ c ∧ ¬b
14	1	1	1	0	1	
15	1	1	1	1	1	> d v c v p

KV-Diagramme

Nachteil der Wahrheitstabelle

- Benachbarte Belegungen stehen in der Wahrheitstabelle nicht immer nebeneinander
- Nebeneinander stehende Belegungen in der Wahrheitstabelle sind nicht immer benachbart

Ziel

- Darstellung, in der die Nachbarschaftsbeziehung offensichtlich ist
- In einer solchen Darstellung wäre die Blockbildung einfach möglich

Lösung

- Karnaugh-Veitch-Diagramme (KV-Diagramme)
- Anordnung aller Belegungen in einer Matrix
- Grundlage für die graphische Minimierung boolescher Funktionen

Konstruktion von KV-Diagrammen

Übung 1

	d	С	b	а	У
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	0

Übung 2

	d	С	b	а	У
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

Minimierung unvollständiger Funktionen

Wiederholung

- Unvollständig definierter Funktionen enthalten Belegungen, für die der Funktionswert gleichgültig ist
- Solche Belegungen werden Freistellen oder Don't cares genannt

Vorgehen

Die Funktionswerte der Freistellen werden so gewählt, dass <u>maximal große</u>
 <u>Blöcke</u> entstehen

Übung 3

	٦		h		1/
	d	С	b	а	У
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	-
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	-
15	1	1	1	1	1

Begriffe

Minimalformen

Die hier vorgestellte Minimierung mit Hilfe von KV-Diagrammen berechnet eine disjunktive Minimalform der Eingangsfunktion.

Durch die Anwendung der Methode auf die Nullmenge kann in analoger Weise auch eine konjunktive Minimalform berechnet werden.

Disjunktive Minimalform

Allgemeine disjunktive Form (DF)

$$\bigvee_{i=1}^{n} \bigwedge_{j=1}^{m(i)} L_{ij} \qquad L_{ij} \in \{x_i, \neg x_i\}$$

- Disjunktive Minimalform (DMF)
 - liegt vor, wenn jede andere disjunktive Form gleich viele oder mehr Literale benötigt

Konjunktive Minimalform

Allgemeine konjunktive Form (KF)

n m(i)

$$\bigwedge_{i=1}^{n} \bigvee_{j=1}^{m(i)} L_{ij} \qquad L_{ij} \in \{x_i, \neg x_i\}$$

- Konjunktive Minimalform (KMF)
 - liegt vor, wenn jede andere konjunktive Form gleich viele oder mehr Literale benötigt

⊃ Die DMF (KMF) ist nicht eindeutig, also keine Normalform

KV Diagramme: Zusammenfassung

1. Erstellen des KV-Diagramms

- Konstruktion durch abwechselndes horizontales und vertikales Spiegeln.
- Eintragen der Funktionswerte in das KV-Diagramm.

2. Bestimmen der Primblöcke

- Überdeckung der Einsmenge (DMF) bzw. der Nullmenge (KMF).
- Sukzessive Bildung von Blöcken mit 2, 4, 8 Belegungen, usw.
- Wenn die Blockbildung abbricht, sind alle Primblöcke gefunden.

3. Bestimmung einer vollständigen Überdeckung

- Ziel: Überdeckung mit der geringsten Anzahl an Primblöcken.
- Markierung aller Primblöcke, die <u>alleine</u> eine Funktionsstelle überdecken.
- Falls diese bereits alle Stellen überdecken, ist eine minimale Lösung erreicht.
- Reichen diese nicht zur Überdeckung aller Stellen aus, werden weitere Primblöcke hinzugenommen, bis eine vollständige Überdeckung erreicht ist.

4. Extraktion der disjunktiven (konjunktiven) Minimalform

- Jeder Primblock entspricht einem Primimplikanten.
- Alle Primimplikanten werden disjunktiv (konjunktiv) verknüpft.