Criston Hyett

Fields Of Interest

Physics-Informed Machine Learning, Reduced-Order Modeling, Uncertainty Quantification, Renewables Integration/Power System Robustness, Reduced Models of Turbulence

Education

2019-2024 Ph.D., University of Arizona, Tucson, AZ.

(expected) Applied Mathematics

2019-2021 **M.S.**, *University of Arizona*, Tucson, AZ. Applied Mathematics

2012-2016 **B.S.**, *University of Arizona*, Tucson, AZ. Mathematics & Physics

Research

2020-present Machine Learning Statistical Evolution of the Coarse-Grained Velocity Gradient Tensor

We use cutting edge machine learning techniques to create physics-informed reduced order models of the inherently chaotic evolution of the velocity gradient tensor in isotropic turbulence.

2021-present Optimal Natural Gas Flows in a Network with Uncertainty

We work to determine optimal flows on a natural gas network under the coupled natural gas and energy grids upon inclusion of intermittent renewable energies.

Experience

2020-present **Graduate Research Assistant**, *University of Arizona*, Tucson, AZ.

Summers Graduate Student Researcher, Los Alamos National Labs, Los Alamos, NM.

2020-22

2019-2020 Graduate Teaching Assistant, University of Arizona, Tucson, AZ.

2016-2019 Software Engineer II, Raytheon Missile Systems, Tucson, AZ.

Talks

Nov, 2022 Applicability of Machine Learning Methodologies to Model the Statistical Evolution of the Coarse-Grained Velocity Gradient Tensor

APS Division of Fluid Dynamics Meeting

Nov, 2022 Interpreting Machine Learning: Insights gleaned modeling the velocity gradient tensor in turbulence SIAM Student Brownbag

Aug, 2022 Machine Learning Lagrangian Tetrads: Reduced-Order Modeling of Turbulence University of Arizona – Los Alamos Days

Nov, 2021 Machine Learning Statistical Evolution of the Coarse-Grained Velocity Gradient Tensor APS Division of Fluid Dynamics Meeting

Mar, 2021 Machine Learning Stochastic Differential Equations: Applications in Reduced-Order Models of Turbulence

SIAM Student Brownbag

Nov, 2020 Machine Learning Statistical Lagrangian Geometry of Turbulence APS Division of Fluid Dynamics Meeting

Fellowships

Jan 2022 - Roots for Resilience Data Science Scholarship University of Arizona Data Science Institute, Arizona May 2022 - Institute for Resilience

Computer Languages

Julia Proficient Used daily in development of research software

C/C++ Proficient Used extensively in an embedded environment at Raytheon Missile Systems

Bash Comfortable Basic functionality used daily

Python Comfortable Used weekly

Matlab Comfortable Interpretted monthly

Cuda Beginner

Computer skills

Open git, github, LATEX

Software

HPC Slurm

Methodologies CI, TDD, Agile

Operating Linux, Windows

Systems

Service and Leadership

2021-2022 Organized and presented "Introduction to HPC" seminar for Math PhD students quarterly

Aug 2021 - SIAM Brownbag Student Colloquium Organizer

May 2022

Jul 2018 - Jul Certified Scrum Master: Scaled Agile Framework

2019

Human Languages

English Native Speaker

Spanish Basic

Japanese Beginner

Amharic Beginner

Contact

Phone +1.520.651.1433

Address 2525 E Prince Rd, Apt 61, Tucson AZ, 85716

Email cmhyett@math.arizona.edu

Publications & Conference Proceedings

- [1] **Hyett, Criston** et al. **2022a**. "Applicability of Machine Learning Methodologies to Model the Statistical Evolution of the Coarse-Grained Velocity Gradient Tensor". In: *Bulletin of the American Physical Society*.
- [2] Tian, Yifeng et al. **2022b**. "Lagrangian Large Eddy Simulations via Physics Informed Machine Learning". In: arXiv preprint arXiv:2207.04012.
- [3] Chertkov, Michael et al. **2022c**. "Lagrangian Large Eddy Simulations via Physics-Informed Machine Learning". In: *Bulletin of the American Physical Society*.
- [4] Woodward, Michael et al. **2022d**. "Physics Informed Machine Learning with Smoothed Particle Hydrodynamics: Compressibility and Shocks". In: *Bulletin of the American Physical Society*.
- [5] Tian, Yifeng et al. **2022e**. "Physics-informed Machine Learning for Reduced-order Modeling of Lagrangian Turbulence". In: *Bulletin of the American Physical Society*.
- [6] **Hyett, Criston** et al. **2021a**. "Data-Analysis of the Coarse-Grained Velocity Gradient Tensor". In: *APS Division of Fluid Dynamics Meeting Abstracts*, N01–011.
- [7] Tian, Yifeng et al. **2021b**. "Machine Learning Lagrangian Large Eddy Simulations with Smoothed Particle Hydrodynamics". In: *APS Division of Fluid Dynamics Meeting Abstracts*, A11–008.
- [8] **Hyett, Criston** et al. **2021c**. "Machine Learning Statistical Evolution of the Coarse-Grained Velocity Gradient Tensor". In: *APS Division of Fluid Dynamics Meeting Abstracts*, E31–009.
- [9] Woodward, Michael et al. **2021d**. "Physics Informed Machine Learning of Smooth Particle Hydrodynamics: Solving Inverse Problems using a mixed mode approach". In: *APS Division of Fluid Dynamics Meeting Abstracts*, N01–050.
- [10] Woodward, Michael et al. **2021e**. "Physics Informed Machine Learning of Smooth Particle Hydrodynamics: Validation of the Lagrangian Turbulence Approach". In: *APS Division of Fluid Dynamics Meeting Abstracts*, T24–008.
- [11] Woodward, Michael et al. **2021f**. "Physics Informed Machine Learning of SPH: Machine Learning Lagrangian Turbulence". In: *arXiv preprint arXiv:2110.13311*.
- [12] **Hyett, Criston**, Chertkov, Michael, Tian, Yifeng, and Livescu, Daniel. **2020**. "Machine Learning Statistical Lagrangian Geometry of Turbulence". In: *APS Division of Fluid Dynamics Meeting Abstracts*, S01–024.