The line
$$l$$
 has equation $r = \begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$, and the point P has position vector $\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ (a) Show that P does not lie on l .

Given that a circle, centre P, intersects l at points A and B, and that A has position vector $\begin{pmatrix} -3 \end{pmatrix}$

$$\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} -2 + \lambda \\ 1 - 2\lambda \\ 4 + \lambda \end{pmatrix}$$

$$\lambda = -2 + \lambda$$
 $\lambda = 0$
 $\lambda = 0$

b)

(b) find the position vector of B.

$$\begin{pmatrix}
2 \\
1 \\
-2 + \lambda \\
4 + \lambda
\end{pmatrix}$$

$$\begin{pmatrix}
2 \\
1 - 2\lambda \\
4 + \lambda
\end{pmatrix}$$

$$\begin{pmatrix}
3 \\
4 + \lambda
\end{pmatrix}$$

$$\begin{pmatrix}
4 + \lambda \\
4 + \lambda
\end{pmatrix}$$

$$\begin{pmatrix}
4 + \lambda \\
4 + \lambda
\end{pmatrix}$$

$$\begin{pmatrix}
4 + \lambda \\
4 + \lambda
\end{pmatrix}$$
Thuse is no value for λ such that λ lies on λ .

$$\begin{pmatrix}
-2 + \lambda \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\
4 + \lambda
\end{pmatrix}$$

$$A = \lambda \begin{pmatrix}
2 \\$$

$$|\overrightarrow{PB}| = PB = \sqrt{29}$$

$$(-4+3)^{2} + (-23)^{2} + (1+3)^{2} = 29$$

$$3^{2} - 83 + 16 + 43^{2} + 3^{2} + 23 + 1 - 29 = 0$$

$$63^{2} - 63 - 12 = 0$$

$$3^{2} - 3 - 2 = 0$$

$$(3-2)(3+1) = 0 \quad \text{When } 3 = -1$$

$$3 = 2 \quad 3 = -1$$

$$4 = 1 \quad b = \begin{pmatrix} -2 - 1 \\ 4 - 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 3 \\ 3 \end{pmatrix}$$

- 16 The line l_1 has equation $\mathbf{r} = \begin{pmatrix} -4 \\ 6 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$. A and B are the points on l_1 with $\lambda = 2$ and $\lambda = 5$ respectively.
 - a Find the position vectors of A and B. (2 marks)

The point P has position vector $\begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$.

The line l_2 passes through the point P and is parallel to the line l_1 .

b Find a vector equation of the line l_2 . (2 marks)

The points C and D both lie on line l_2 such that AB = AC = AD.

c Show that P is the midpoint of CD. (7 marks)

Equation of a plane - parametric vector form

 $m{a}$ is the position vector of a point on a plane and $m{b}$ and $m{c}$ are non-parallel vectors on the plane, how could we write the equation of the plane in vector form?

Recall the we could get to a generic point r on a line by first getting to the line using a, followed by some amount of b, i.e. $r = a + \lambda b$.

Could we do a similar thing with a plane?

Once on the plane using a, we could get to any other point on the plane using 'some amount' of b and 'some amount' of c, i.e.

A plane Π passes through the points A(2,2-1), B(3,2,-1), C(4,3,5) Find the equation of the plane Π in the form $a + \lambda b + \mu c$

Verify that the point P with position vector $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$ lies in the plane with vector equation

$$r = \begin{pmatrix} 3 \\ 4 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 + 2\lambda + \mu \\ 4 + \lambda - \mu \\ -2 + \lambda + 2\mu \end{pmatrix}$$

$$\frac{1}{2} = \frac{3 + 2\lambda + \mu}{-1 = 2\lambda + \mu} - 3 = 3\lambda$$

$$\frac{3}{2} = \frac{3 + 2\lambda + \mu}{-1 = 2\lambda + \mu} - \frac{3 = 3\lambda}{-1 = -2 + \mu}$$

$$-1 = -2 + \mu$$

$$\mu = 1$$

$$k = -1 = -2 + \lambda + 2\mu$$

$$= -2 - 1 + 2$$

$$= -1$$
So P lies on the plane.

[June 2015 Q5] The points A, B and C have position vectors
$$\begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$

respectively.

The plane Π contains the points A, B and C.

(c) Find a vector equation of Π

(4)

Equation of a plane - Cartesian form

An alternative approach to find the Cartesian equation of a straight line is to find a vector perpendicular to the line (known as the **normal vector** n)

If $\mathbf{n} = \binom{n_1}{n_2}$, then the equation of the turns out to be $n_1x + n_2y = c$ where c is a constant to be found.

This is one reason we might want the equation of a straight line equation in the form ax + by = c: the **normal** to the line will be $\binom{a}{b}$.

For example above:
$$n={-1\choose 2}$$
 (by observation)
$$\therefore -1x+2y=c$$
 As $(0,3)$ is on the line: $-1(0)+2(3)=c \rightarrow c=6$
$$-x+2y=6$$

This extends to planes:

Trust me

Equation of plane:

$$n_1x + n_2y + n_3z = c$$

The plane Π is perpendicular to the normal $\mathbf{n} = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ and passes through the point *P* with position vector 8i + 4j - 7k. (8,4,-7)

Find the Cartesian equation of
$$\Pi$$
.

$$3x - 2y + Z = C$$
 $3x8 - 2x4 - 7 = C$
 $24 - 8 - 7 = C$
 $C = 9$
 $C = 9$