

Numerical Galaxy Formation & Cosmology

Lecture 7: 1st example

Galaxy mergers

Benjamin Moster

Ewald Puchwein

Outline of the lecture course

- Lecture I: Motivation & Initial conditions
- Lecture 2: Gravity algorithms & parallelization
- Lecture 3: Hydro schemes
- Lecture 4: SPH, Radiative cooling & heating, Subresolution physics
- Lecture 5: Halo and subhalo finders & Semi-analytic models
- Lecture 6: Getting started with Gadget
- Lecture 7: Example galaxy collision
- Lecture 8: Example cosmological box

Initial conditions for galaxy mergers

- Main steps for creating initial conditions:
 - Choose parameters for each galaxy (mass, size, morphology, etc)
 - Create IC files for each galaxy
 - Choose parameters for galaxy orbit (initial distance, pericentric distance, eccentricity, orientation)

Numerical Galaxy Formation & Cosmology VII

- Merge both files and put galaxies on orbit
- Main steps for running the simulation:
 - Compile simulation code for galaxy merger simulations
 - Set parameters for simulation
 - Run simulation

Creating ICs for galaxy mergers

- Initial conditions have already been created for each galaxy
- Download IC files and code that puts galaxies on orbit:
 - wget http://www.ast.cam.ac.uk/~moster/lectures/csf2016/merger.tar
 - tar -xvf merger.tar
- Compile merger code:
 - module load intel
 - icc -o merge_cm_eps merge_cm_eps.c -lm
- Put galaxies on orbit:
 - ./merge_cm_eps Gall.dat Gall.dat Galll.dat 200. 12. 0.9 0. 30. 0. 0.

Setting up Gadget

- Download Gadget (in case you haven't yet):
 - wget http://www.mpa-garching.mpg.de/gadget/gadget-2.0.7.tar.gz
 - tar -xvf gadget-2.0.7.tar.gz

Edit Makefile

- ► #OPT += -DPERIODIC
- ► OPT += -DUNEQUALSOFTENINGS
- #OPT += -DPMGRID=128
- ▶ OPT += -DDOUBLEPRECISION
- ▶ OPT += -DDOUBLEPRECISION_FFTW
- #OPT += -DHAVE_HDF5
- MPICHLIB = -lmpi
- #SYSTYPE="MPA"

Compile with make

Setting up the parameter file

- Edit the parameter file galaxy.param
 - ▶ InitCondFile ../ICs/Gall1.dat
 - OutputDir ../Output/Gall1/
 - TimeMax 2.0
 - ► TimeBetSnapshot 0.1
 - SofteningGas 0
 - ▶ SofteningHalo 1.0
 - SofteningDisk 0.4
 - SofteningBulge 0.4
 - SofteningStars 0.4
 - SofteningBndry 0
- Don't forget to put the IC file into the correct folder and to create the output folder!
- Run with:
 - mpiexec -np 2 ./Gadget2 parameterfiles/param.txt

Plotting the initial conditions:

- Copy the file plot_particles.py to the folder with the ICs
- Edit the file and modify the input filename
 - filename = "Gall.dat"
 - y=1 (face-on) or y=2 (edge-on)
- Plot the particles:
 - ipython
 - run plot_particles.py
- What do we see?
- Plot some snapshots from the output folder

Plotting the distance between the galaxies:

- Copy the file distance.py to the output folder
- Plot the particles:
 - ipython
 - run distance.py
- Why does the distance between the galaxies decrease?
- What has a larger merging-timescale: major or minor mergers?

Plotting the evolution of the simulation

- Copy the file movie.py to the output folder
- Plot the particles:
 - ipython
 - run movie.py
- Run both face-on and edge-on
- Does the centre of mass correspond to the centre of each galaxy?

Final notes

- Text Books:
 - Cosmology: Galaxy Formation and Evolution (Mo, vdBosch, White)
 - Galactic Structure: Galactic Dynamics (Binney, Tremaine)
- Papers:
 - Springel & White (1999), MNRAS, 307, 162
 - Springel et al. (2005), MNRAS, 62, 79
- Fun app to play with:
 http://burro.cwru.edu/JavaLab/GalCrashWeb/
- Gadget and N-GenIC website:
 http://www.mpa-garching.mpg.de/gadget/