# CGFDM3D-EQR-SC 跨断层地震动模拟软件 V1. 0

## 使用手册

王文强1 徐天鸿2 张振国2

- 1. 国家超级计算深圳中心(深圳云计算中心)
  - 2. 南方科技大学地球与空间科学系

## 目 录

| 第1  | 章 软件介绍     | 3  |
|-----|------------|----|
| 第2  | 章 软件安装     | 4  |
| 2   | 2.1 软件运行环境 | .4 |
| 2   | 2.2 软件编译   | .4 |
| 第3  | 章 参数配置     | 6  |
| 第4  | 章 震源输入     | 8  |
| 第5  | 章 地形设置     | 9  |
| 第6  | 章 速度结构设置   | 10 |
| 第7  | 章 软件输出     | 12 |
| 参老: | 文 献:       | 14 |

## 第1章 软件介绍

CGFDM3D-EQR-SC 跨断层地震动模拟软件(以下简称 CGFDM3D-EQR-SC)是一套用于生成断层两侧成对位移的数值模拟软件,它是基于王文强等(2022)所提出的 CGFDM3D-EQR 地震灾害快速响应平台所编写的[1]。原程序使用的数值方案是曲线网格有限差分法(CGFDM)。在原程序的基础上,加入了激波捕获格式(Shock-Capturing)中的可选通量加权本质无振荡格式(AWENO),用于解决地震波场模拟中可能出现的激波问题<sup>[2,3]</sup>。

软件使用 MPI 和 CUDA C/C++混合编程,使其能够在拥有多 GPU 计算卡的服务器上高效运行。我们混合了原 AWENO 格式与一种新型高效的 AWENO 格式<sup>[4]</sup>,称为 ME-AWENO 格式,使得计算效率得到进一步提高,内存占用显著下降。软件的整体构架如图 1 所示,共包括三个模块:数据预处理模块,快速地震模拟模块以及烈度输出模块。利用该软件,可以提供从震源输入到地震动输出的一站式服务。



图 1 CGFDM3D-EQR-SC 的软件构架

## 第2章 软件安装

#### 2.1 软件运行环境

CGFDM3D-EQR-SC 软件是在 CentOS7 环境下编写的,使用 gcc/g++/nvcc 混合编译。需求软件环境:

- GCC 4.8.5 或以上
- G++ 4.8.5 或以上
- CUDA 10.0 或以上
- OpenMPI 4.1.1 或以上
- Proj 8.1.0 或以上

#### 2.2 软件编译

编译前请将上述软件的 Home 目录填写于软件包内所包含的 Makefile 文件中 (图 2)。

```
CCHOME := /usr

CUDAHOME := /public/software/cuda-10.0

#CUDAHOME := /public/software/cuda-11.5

MPIHOME := /public/software/openmpi-4.1.1-cuda.10

PROJHOME := /public/software/proj-8.1.0
```

图 2 Makefile 中软件包 Home 的填写位置

表 1 对 Makefile 中的参数进行了说明:

表 1 Makefile 编译参数表

| 参数名          | 说明                                       |  |
|--------------|------------------------------------------|--|
| SCFDM        | 是否使用 ME-AWENO 格式,关闭则使用 CGFDM 格式          |  |
| LF           | 黎曼解为 LF 通量,默认开启,目前仅有此通量                  |  |
| PML          | 是否使用 PML 吸收边界 <sup>[5]</sup>             |  |
| EXP_DECAY    | 是否使用指数衰减吸收边界,当 SCFDM 打开时,仅可以使用此吸收边界      |  |
| GPU_CUDA     | 是否使用 GPU 计算,默认开启,当 SCFDM 打开时,仅<br>支持此项开启 |  |
| XFAST/ZFAST  | 最快计算轴,默认为 XFAST,不建议修改                    |  |
| FREE_SURFACE | 是否开启自由表面边界条件,默认开启。当 SCFDM 打              |  |

|                         | 开时,使用特征边界条件 <sup>[3,6]</sup> ; 当 SCFDM 关闭时,使用<br>牵引力镜像自由表面边界条件 <sup>[7,8]</sup> |
|-------------------------|---------------------------------------------------------------------------------|
| SOLVE_DISPLACEMENT      | 是否计算地表位移,默认开启                                                                   |
| Terrain_Smooth          | 地形平滑,默认开启,不建议修改                                                                 |
| DealWithFirstLayer      | 首层处理,默认开启,不建议修改                                                                 |
| LayeredStructureTerrain | 层状地形结构,默认开启,不建议修改                                                               |
| StructureTerrain        | 地形结构,默认开启,不建议修改                                                                 |
| SET_BASIN               | 默认关闭,暂不支持此功能                                                                    |
| FLOAT16                 | 默认关闭,暂不支持此功能                                                                    |

软件提供了两个默认参数 Makefile 文件,分别为 Makefile\_CGFDM 和 Makefile\_SCFDM,两个 Makefile 文件分别指定了使用 CGFDM 和 ME-AWENO 格式时的默认参数。随软件包提供了一个脚本 make.sh,可以方便地用于指定方法进行编译。

## 第3章 参数配置

软件给出了一个 params.json 配置文件,运行前需要根据模拟的需要设置合理的参数。表 2 对 params.json 中的所有参数进行了说明:

表 2 params.json 参数表

| 参数名                                | 说明                                                        |  |  |
|------------------------------------|-----------------------------------------------------------|--|--|
| TMAX                               | 模拟的最大时长(单位为 s)                                            |  |  |
| DT                                 | 模拟的时间间隔                                                   |  |  |
| DH                                 | 模拟的空间间隔                                                   |  |  |
| IT_SKIP                            | 软件输出的间隔步数,默认为100                                          |  |  |
| NX/NY/NZ                           | 沿经度方向/纬度方向/竖直方向的模拟点数                                      |  |  |
| Depth                              | 模拟的最大深度(单位 km,此项与速度结构有关,务必填写)                             |  |  |
| centerX/centerY                    | 投影中心所在的点号                                                 |  |  |
| sliceX/sliceY/sliceZ               | 输出点号所指定的切片,-1 为不输出                                        |  |  |
| sliceFreeSurf                      | 是否输出自由表面切片,1为输出,0为不输出                                     |  |  |
| PX/PY/PZ                           | MPI 分块规则,沿 X/Y/Z 方向分别的块数,此项乘积务 必与 gpu_nodes 中所指定的计算卡总块数一致 |  |  |
| nPML                               | PML 层数,默认为 12,当 SCFDM 激活时默认为 30 (使用指数衰减吸收边界),不建议修改此项      |  |  |
| gpu_nodes                          | 指定参与计算的 GPU                                               |  |  |
| useSingleSource(ricker)            | 当此参数为1时软件为单点源                                             |  |  |
| sourceX/sourceY/sourceZ            | 单点源时的震源位置                                                 |  |  |
| gauss_hill                         | 单点源是否使用高斯山地地形                                             |  |  |
| rickerfc                           | 单点源时 Ricker 子波的主频                                         |  |  |
| strike/dip/rake/Mw                 | 单点源时的双力偶震源设置,分别指定走向、倾角、滑<br>动角、震级来生成震源                    |  |  |
| useMultiSource                     | 此项为1时使用多点源(有限断层)                                          |  |  |
| centerLatitude/<br>centerLongitude | 投影中心所在的经纬度                                                |  |  |
| useTerrain                         | 是否使用输入地形                                                  |  |  |
| useMedium                          | 是否使用输入介质                                                  |  |  |
| ShenModel                          | 是否使用 ShenWeisen 模型 <sup>[9]</sup>                         |  |  |

### CGFDM3D-EQR-SC 跨断层地震动模拟软件(V1.0)

| Crust_1Model              | 是否使用 Crust1.0 模型                                     |
|---------------------------|------------------------------------------------------|
| LayeredModel              | 是否使用层状介质模型                                           |
| out                       | 软件的输出位置                                              |
| TerrainTif                | 地形的 Tif 文件位置                                         |
| TerrainDir                | 地形的二进制文件位置                                           |
| srtm90                    | 是否使用 SRTM90 模型                                       |
| lonStart/latStart         | 地形文件的起始经纬度                                           |
| blockX/blockY             | 地形文件沿经度/纬度方向的块数                                      |
| MLonStart/MLatStart       | 介质文件的起始经纬度                                           |
| MLonEnd/MLatEnd           | 介质文件的终止经纬度                                           |
| MLonStep/MLatStep         | 介质文件的经纬度步长                                           |
| MVerticalStep             | 介质文件的竖直方向间隔(单位为 m)                                   |
| MediumDir                 | 介质文件目录                                               |
| LayeredFileName           | 层状介质文件名                                              |
| CrustDir                  | Crust1.0 介质目录                                        |
| CurstLonStep/CrustLatStep | Crust1.0 介质经纬度步长                                     |
| sourceDir                 | 震源文件目录                                               |
| sourceFile                | 震源文件名                                                |
| degree2radian             | 是否需要角度转弧度,当震源文件提供的 rake 是角度时此参数设置为 1,提供的是弧度时此参数设置为 0 |
| FAST_AXIS                 | 最快计算轴,默认为 X,不建议修改                                    |

## 第4章 震源输入

当 params.json 文件中的 useMultiSource 设置为 1 时,激活有限断层模型输入。有限断层模型文件存放在 sourceDir 及 sourceFile 设定的文件中。有限断层模型文件中需要包含以下数据,如表 3 所示:

| 参数名        | 说明                                                         | 参数维度        |
|------------|------------------------------------------------------------|-------------|
| Lon/Lat    | 每个子断层的经纬度                                                  | (nx*ny, 1)  |
| Z          | 每个子断层所在的深度,单位为 m                                           | (nx*ny, 1)  |
| Area       | 每个子断层的面积,单位为 m <sup>2</sup>                                | (nx*ny, 1)  |
| Strike/Dip | 每个子断层的走向/倾角,默认为角度                                          | (nx*ny, 1)  |
| Rake       | 每个子断层的滑动角,可由角度或弧度给出,当设置为角度时 params 中的 degree2radian 参数设置为1 | (nx*ny, nt) |
| Rate       | 每个子断层的滑动速率,单位为 m/s                                         | (nx*ny, nt) |

表 3 有限断层模型参数

软件随包给出一个震源文件写入 python 脚本,如图 3 所示。

```
writeData(sourceFileName, Lon, Lat, Z, Area, Strike, Dip, Rake, Rate, NPTS, NT, dt):
sourceFile = open(sourceFileName, "wb")
value = struct.pack("i", NPTS)
sourceFile.write(value)
value = struct.pack("i", NT)
sourceFile.write(value)
value = struct.pack("f", dt)
sourceFile.write(value)
for i in range(NPTS):
    value = struct.pack("f", Lon[i])
    sourceFile.write(value)
    value = struct.pack("f", Lat[i])
    sourceFile.write(value)
    value = struct.pack("f",
    sourceFile.write(value)
    value = struct.pack("f", Area[i])
    sourceFile.write(value)
    value = struct.pack("f", Strike[i])
    sourceFile.write(value)
    value = struct.pack("f", Dip[i])
    sourceFile.write(value)
    tvalue = struct.pack("f" * NT, *(Rake[i, :]))
    sourceFile.write(tvalue)
    tvalue = struct.pack("f" * NT, *(Rate[i, :]))
    sourceFile.write(tvalue)
sourceFile.close()
```

图 3 有限断层震源写入脚本

## 第5章 地形设置

软件提供了 SRTM90 的内置读取,用户可由 <a href="https://srtm.csi.cgiar.org/srtmdata/">https://srtm.csi.cgiar.org/srtmdata/</a> 网站下载,解压缩后获得 tif 格式文件,将文件名修改为先纬度后经度的形式,如图 4 所示:

图 4 SRTM90 文件名格式

软件随包提供了一个将 tif 格式转换成软件输入所需的二进制文件的 python 脚本 tif2bin,如图 5 所示:

```
def tif2bin( lonStart, latStart, terrainTifPath, terrainBinPath, FAST_AXIS ):
    tifFileName = "%s/srtm_%dN%dE.tif" % ( terrainTifPath, latStart, lonStart )
    #terrain = np.zeros( [NY, NX] )
    terrain = np.flipud( imageio.imread( tifFileName ) )

( NY, NX ) = np.shape( terrain )
    #print( "NY = %d, NX = %d" % ( NY, NX ) )

binFileName = "%s/srtm_%dN%dE.bin" % ( terrainBinPath, latStart, lonStart )
    print( "Tif file is being converted to Binary file: %s" % binFileName )

binFile = open( binFileName, "wb" )

if FAST_AXIS == 'Z':
    for i in range( NX ):
        for j in range( NY ):
              t = struct.pack( "f", float( terrain[j, i] ) )
              binFile.write( t )

else:
    for j in range( NX ):
        t = struct.pack( "f", float( terrain[j, i] ) )
              binFile.write( t )
```

图 5 tif 转换成 bin 文件的 python 脚本

## 第6章 速度结构设置

软件可以设置三种不同的速度结构模型,若 params.json 文件中的 useMedium 设置为 0,则使用程序内置的均匀介质模型。

对于层状介质模型,用户可提供模型的文本文件,如图 6 所示:

```
      1
      0.00
      6.0000
      3.5200
      2.7100

      2
      10.00
      6.2500
      3.6500
      2.7600

      3
      20.00
      6.7500
      3.8700
      2.8700

      4
      30.00
      8.0700
      4.5200
      3.2700
```

图 6 层状介质模型文本文件

软件随包提供了将文本文件转化为软件要求的二进制文件的脚本 setLayeredModel,如图 7 所示:

```
value = struct.pack("i", Layers)
LayeredFile.write(value)

for i in range(Layers):
    value = struct.pack("f", Dep[i])
    LayeredFile.write(value)
    value = struct.pack("f", Vs[i])
    LayeredFile.write(value)
    value = struct.pack("f", Vp[i])
    LayeredFile.write(value)
    value = struct.pack("f", Rho[i])
    LayeredFile.write(value)

LayeredFile.close()
```

图 7 层状介质模型转化为程序输入脚本

若需要使用三维速度结构,软件提供了 ShenWeisen 中国大陆三维 S 波速度结构模型<sup>[9]</sup>的内置读取,如图 8 所示:



图 8 ShenWeisen 中国大陆三维 S 波速度结构模型

对于介质密度和 P 波速度,使用 Brocher(2005)给出的经验关系来进行计  $2^{[10]}$ 。

对于其他三维速度结构,推荐将速度结构格式转换为 ShenWeisen 模型的格式 , 并 于 params.json 文 件 中 设 置 MLonStart/MLatStart/MLonEnd/MLatEnd/MLonStep/MLatStep/MVeticalStep 等参数,软件将会按该格式进行读取。

## 第7章 软件输出

软件提供了一个台站参数配置文件 station.json, 文件中需要设置每一个台站的位置(该位置是在计算网格中的点号), 如图 9 所示:

```
"point": 1,
"lon_lat": 0,
"station(point)": {
    "0": [
        300,
        300,
        400
        300,
        400
    "2": [
        500,
        300,
        400
    ],
"3": [
        500,
        300,
```

图 9 台站配置文件

软件运行过程中,将会按照 params 中设定的输出间隔将所有已设置的切片数据存储在每个 MPI 计算块所保存的文件中,随包提供了数个用于绘制切片图像,绘制台站波形的脚本。图 10 展示了程序的波场快照,图 11 展示了台站波形。



图 10 波场快照



图 11 软件两种数值格式的波形对比

## 参考文献

- [1] WANG W, ZHANG Z, ZHANG W, et al. CGFDM3D EQR: A platform for rapid response to earthquake disasters in 3D complex media [J]. Seismological Research Letters, 2022, 93(4): 2320-34.
- [2] JIANG Y, SHU C-W, ZHANG M. Free-stream preserving finite difference schemes on curvilinear meshes [J]. Methods and applications of analysis, 2014, 21(1): 1-30.
- [3] XU T, ZHANG Z. Numerical simulation of 3D seismic wave based on alternative flux finite-difference WENO scheme [J]. Geophysical Journal International, 2024, 238(1): 496-512.
- [4] CHU S, KURGANOV A, XIN R. New more efficient A-WENO schemes [J]. Available at SSRN: <a href="https://ssrncom/abstract=4486288">https://ssrncom/abstract=4486288</a> or <a href="http://dxdoiorg/102139/ssrn4486288">https://dxdoiorg/102139/ssrn4486288</a>, 2023.
- [5] ZHANG Z, ZHANG W, CHEN X. Complex frequency-shifted multi-axial perfectly matched layer for elastic wave modelling on curvilinear grids [J]. Geophysical Journal International, 2014, 198(1): 140-53.
- [6] BAYLISS A, JORDAN K, LEMESURIER B, et al. A fourth-order accurate finite-difference scheme for the computation of elastic waves [J]. Bulletin of the Seismological Society of America, 1986, 76(4): 1115-32.
- [7] ZHANG W, CHEN X. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation [J]. Geophysical Journal International, 2006, 167(1): 337-53.
- [8] ZHANG W, ZHANG Z, CHEN X. Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids [J]. Geophysical Journal International, 2012, 190(1): 358-78.
- [9] SHEN W, RITZWOLLER M H, KANG D, et al. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion [J]. Geophysical Journal International, 2016, 206(2): 954-79.
- [10] BROCHER T M. Empirical relations between elastic wavespeeds and density in the Earth's crust [J]. Bulletin of the seismological Society of America, 2005, 95(6): 2081-92.