Untitled

untilted

```
# Input the Fleming and Harrington Count Data (fhcnt) and name the covariates
fhcnt = read.table("https://biostatcenter.gwu.edu/sites/biostatcenter.gwu.edu/files/Lachin%20Files/fhcn
names(fhcnt)=c("id","z1","z2","z3","z4","z5","z6","z7","z8","z9","nevents","futime")
```

```
a)
model \leftarrow glm(nevents \sim as.factor(z1) + as.factor(z2) + z3 + z4 + z5 + as.factor(z6) + as.factor(z7) + as.factor(z8) + as.fact
summary(model)
##
## Call:
## glm(formula = nevents \sim as.factor(z1) + as.factor(z2) + z3 +
                z4 + z5 + as.factor(z6) + as.factor(z7) + as.factor(z8) +
                as.factor(z9) + offset(log(futime)), family = poisson(link = "log"),
##
##
                data = fhcnt)
##
## Deviance Residuals:
                Min
                                        1Q
                                                    Median
                                                                                    3Q
                                                                                                       Max
## -2.1183 -0.8879 -0.5864
                                                                          0.2579
                                                                                                2,4641
##
## Coefficients:
##
                                             Estimate Std. Error z value Pr(>|z|)
                                                                       1.058252 -5.054 4.33e-07 ***
## (Intercept)
                                           -5.348270
## as.factor(z1)2 1.156140
                                                                       0.277853
                                                                                              4.161 3.17e-05 ***
## as.factor(z2)2 0.754567
                                                                       0.287943
                                                                                              2.621 0.00878 **
## z3
                                           -0.083938
                                                                       0.035200 -2.385 0.01710 *
## z4
                                             0.007649
                                                                       0.010556 0.725 0.46869
## z5
                                             0.010345
                                                                       0.016127
                                                                                              0.641 0.52122
                                                                       0.597411 -3.278 0.00105 **
## as.factor(z6)2 -1.958265
## as.factor(z7)2 0.668546 0.343399
                                                                                               1.947 0.05155 .
## as.factor(z8)2 -0.856499 0.393411 -2.177 0.02947 *
## as.factor(z9)2 -0.110733  0.326942 -0.339  0.73484
## as.factor(z9)3 -0.955742
                                                                       0.487365 -1.961 0.04987 *
## as.factor(z9)4 -0.788223
                                                                       0.494094 -1.595 0.11065
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
                Null deviance: 179.79 on 127 degrees of freedom
## Residual deviance: 133.27 on 116 degrees of freedom
## AIC: 260.3
##
```

Number of Fisher Scoring iterations: 6

b)

```
rd <- residuals.glm(model,"deviance")
fv <- model$fitted.values
plot(fv,rd,xlab="fitted value",ylab="deviance residual",main="scatterplot")
abline(h=2)
abline(h=-2)</pre>
```

scatterplot

We can see the there are some points lies above the two lines, thus the model is not fitted.

```
qqnorm(rd)
abline(a=0,b=1)
```

Normal Q-Q Plot

We can see that in the middle of the graph, points are not lie along with the line, thus the model is not fitted

c)

The estimated for treatment group is 1.156140

```
exp(1.156140)
```

[1] 3.177644

Thus the relative rate is $3.177644 = \frac{\lambda_2}{\lambda_1}$ which λ_2 represent take placebo and λ_1 represent take interferon. Thus $\lambda_2 > \lambda_1$, take interferon actually decrease the rate. Thus treatment with interferon effective in reducing serious infections among children with CGD

```
LOG_CI = 1.156140 + c(-1,1)*1.96*0.277853
exp(LOG_CI)
```

[1] 1.843283 5.477955

95% confidence interval of relative rate is [1.843283,5.477955]

d)

```
x = as.matrix(c(0,0,0,0,0,0,0,0,0,1,-1),ncol=1)
v = summary(model)$cov.unscaled
se<-sqrt(t(x) %*% v %*% x)
mle = -0.955742-(-0.788223)
CI <- mle + c(-1,1)*1.96*se[1]
exp(CI)</pre>
```

[1] 0.2761451 2.5903447

Thus the 95% Confidence Interval of relative rate is [0.2761451 2.5903447]

e)

```
\begin{split} \hat{\mu} &= \lambda \times t = exp(log(\hat{\lambda}) + log(t) \\ log(\hat{\lambda}) &= x^T \hat{\beta} \\ \\ \text{beta} &= \text{c}(-5.348270, 1.156140, 0.754567, -0.083938, 0.007649, 0.010345, -1.958265, 0.668546,} \\ &- 0.856499, -0.110733, -0.955742, -0.788223) \\ \\ \text{x} &= \text{c}(1,0,0,12,142,34,0,1,0,1,0,0) \\ \\ log\_\text{hat} &= \text{sum}(\text{beta*x}) \\ \\ \text{mu} &= \exp(\log_{-}\text{hat} + \log(365.25)) \\ \\ \text{mu} \end{split}
```

[1] 4.668123

Estimated number of infections are 4.668123

f)

The purpose of this study was to find the different variables that would influence the results of a serious infections among children with chronic granulotomous disease.

The treatment group: interferon versus placebo (Odds Ratio(OR) = 3.18) and Inheritance pattern: X-linked versus autosomal recessive (OR=2.127) were associated with increased odds the response

Age (OR=0.919), Corticosteroid use on entry: yes versus no(OR=0.1411) Gender: male versus female (OR=0.4246) and Type of hospital: Amsterdam (OR = 0.3845) were associated with decreased odds the response

```
# Characteristics siginificantly associated with increased odds of response
exp(model$coeff)[model$coeff>0 & summary(model)$coeff[,4]<0.05]</pre>
```

```
## as.factor(z1)2 as.factor(z2)2
## 3.177645 2.126691
```

Characteristics siginificantly associated with decreased odds of response exp(model\$coeff) [model\$coeff<0 & summary(model)\$coeff[,4]<0.05]</pre>

```
## (Intercept) z3 as.factor(z6)2 as.factor(z8)2 as.factor(z9)3
## 0.004756373 0.919487882 0.141102991 0.424646137 0.384526752
```