2 P 20 Q1 3 1

1. In the lecture we briefly discussed the convergence of the Gregory–Leibniz series

$$\frac{\pi}{4} = \arctan 1 = \sum_{k=1}^{\infty} \frac{(-1)^k}{2k-1}.$$
Outon $\chi = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2n-1} \chi^{n-1}$

If we compute $\pi/4$ through the partial sum

$$S_{2n} = \sum_{k=1}^{2n} \frac{(-1)^{k-1}}{2k-1},$$

the convergence is slow. Estimate the truncation error, and propose a simple correction to S_{2n} based on your error estimate.

(optional) Estimate the truncation error again for the corrected scheme.

$$\frac{39}{12} \cdot \frac{1}{12} \cdot \frac{1}{12} = \frac{20}{12} = \frac{20}{12} \cdot \frac{1}{12} = \frac{20}{12} =$$

$$= \sum_{k=1}^{\infty} \frac{(4)^k}{2^{k-1}}$$

祖元别(San)是美产力单调等指的世中:

$$S_{2(n+1)} = S_{2n} + \left(\frac{(-1)^{2n}}{2(2n+1)-1} + \frac{(-1)^{2n+1}}{2(2n+2)-1}\right)$$

$$= \int_{2n} + \left(\frac{1}{4n+1} - \frac{1}{4n+3}\right) > \int_{2n}$$

是方面,由于:

$$V_{2n} = \frac{1}{4n+1} - (\frac{1}{4n+2} - \frac{1}{4n+1}) - (\frac{1}{4n+3} - \frac{1}{4n+7}) \dots$$

放截断误差的范围为:

$$2175_{2n}$$
, 3118 $\hat{S} = S_{2n} + \frac{1}{4n4}$

$$\boxed{2} + \frac{2n}{k-1} \cdot \int_{2n} = \sum_{k=1}^{2n} \frac{(-1)^{k-1}}{2k-1} \cdot \left(\left(\frac{1}{2} \right)^{2k-1} + \left(\frac{1}{3} \right)^{2k-1} \right)$$

$$|Y_{2n}| < \frac{1}{2n+1} \cdot \left(\left(\frac{1}{2} \right)^{4n+1} + \left(\frac{1}{3} \right)^{4n+1} \right) \qquad \square$$

2. In principle, the sine function can be evaluated through the Taylor series expansion

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \qquad (x \in (-\infty, +\infty)).$$

Let us consider two computational schemes to evaluate the sine function.

(a) Directly truncate the Taylor series. Make sure that the truncation error is less than the rounding error bound for any input x.

(b) First shift x to the interval $(-\pi/2, \pi/2]$, and then apply scheme (a). Scheme (b) is in general more accurate. Can you provide a theoretical analysis?

Sample at least 1000 points in [-10, 10] (e.g., using the MATLAB/Octave statement linspace(-10, 10, 1000)) and plot the error of scheme (a) relative to scheme (b) (e.g., using the MATLAB/Octave function semilogy). Can you explain the result?

程: 有名对 COU名法的型断误差进行估计 设从第八公子始 满之eibniz 级智的条件, 那:

$$\frac{\chi^{2N+3}}{\chi^{2N+1}} = \frac{\chi^{2N+1}}{(2N+1)!}$$

$$\Rightarrow$$
 $\chi^2 < (2N+2)(2N+3)$

罗方面, 对平台入溪差, 我的能力有限, 只能估个大概

对平台K及知到不够知证(2k+1)!用长整型存储, 不包有台入设置

$$\int \left(\frac{X^{2k+1}}{X^{2k+1}}\right) - \frac{X^{2k+1}}{X^{2k+1}}\right) \leq \frac{\left(X \cdot (H \Theta_{2k})\right)}{\left(2k+1\right)!}$$

我看不严格一点:

$$\int \mathcal{L}\left(\frac{\chi^{2k+1}}{(2k+1)!}\right) \approx \frac{\left(\chi(1+O_{2k})\right)^{2k+1}}{(2k+1)!}$$

对于新儿及知知意:

$$\int d\left(\sum_{n=6}^{N} \left(-1\right)^{n} \frac{\chi^{2n+1}}{\left(2n+1\right)!}\right)$$

$$=\int \int \left(\frac{\sum_{n\geq 0} (-1)^n \left(X(H-\Theta_{2n})^{2n+1}}{\sum_{n\geq 0} (2n+1)!}\right)$$

$$\frac{2}{2} \left(\frac{1}{1}\right)^{n} \times \left(\frac{1}{1} + \frac{1}{1}\right)^{2n+1}$$

$$\frac{1}{1} = 0$$

$$\frac{2n+1}{1}$$

期, 对于 O2n+x 知意, 2n来源于 x²n+ 连续, n来源于 (N+1)个通及棚加

子是水得到:

$$f(S_N) - S_N < \sum_{n \geq 0}^{\infty} (-1)^n \frac{X^{n+1}}{X^{n+1}} \frac{\partial}{\partial x^{n+1}}$$

首先说明为什么(b) 方法址 (a) 天准确:

在八三10时,由上加强论论可知,到对<10,加10时

引(一)" X (2n+1)! 人是美精识数,则 2分 (0)有:

$$|\gamma_{N}^{(0)}| < \frac{\chi}{(21)!}$$

$$|\mathcal{P}_{1}| |\mathcal{P}_{N}| < \frac{\left(\frac{\pi}{2}\right)^{2}}{(21)!}$$

当 X 秋寂大时,由方法(四产生的截断误差会明显大平由的方法产生的截断误差,从相较让下,的方法产生的截断误差,从相较让下,的方法得到的活果更准确。

不净解释 (a) 8 cb 的期对误差:

观察发现, [x] 较中时,没是也能小, [x] 稻块时, 得是会长数型指长。

$$\frac{12}{12} E = \sum_{n=0}^{\infty} (-1)^n \frac{2^{n+1}}{x} - (x-k\pi)^{2^{n+1}}$$

其中 | X- KT < 豆

$$\lim_{x \to +\infty} \frac{(x-kT)^2}{2!!} = 0$$

$$\Rightarrow \mathcal{E} = \frac{\chi^{2}}{2!} + o(\chi^{2})$$

$$\Rightarrow$$
 $|B| = |\frac{X^{2}}{2!!} + o(x^{2})|$

因此,专以前去时1日世俗出奇国整体上呈指数场长口

3

3. A backward error can sometimes be interpreted as a forward error in a certain sense. Let us consider the following example.

You are given a nonsingular matrix $A \in \mathbb{R}^{n \times n}$ and a vector $b \in \mathbb{R}^n$. For an approximate solution $\hat{x} \in \mathbb{R}^n$ to the linear system Ax = b, try to find two vector norms $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ such that

$$||r||_{\alpha} = ||\hat{x} - x_*||_{\beta},$$

where $r = b - A\hat{x}$ is the residual vector and $x_* = A^{-1}b$ is the exact solution.

%:

可取 $11 \cdot 11_{\lambda} = 11 \cdot 11_{\lambda}$ $11 \cdot 11_{\beta} = 11 \cdot 11_{\beta}$ 其中 $11 \cup 11_{A} = \overline{)V^{T}A^{T}AV} = 11 AV 11_{2}$

由于 det (B) \$0, 例 \$100 100, 标 11AVII2=0

极满足正定性

ス有 11 V+W11A= 11 A(V+W)112

故滿是飞角不多式

⇒ 11·11a 是一个范数

社关,到。

 $f = b - A \hat{x} = A(A^{-1}b - \hat{x}) = A(X_{*} - \hat{x})$

$$\Rightarrow || b - A \hat{x} ||_{\lambda} = || x_{\star} - \hat{x} ||_{A}$$

$$\Rightarrow || r||_2 = || \hat{x} - \chi_* ||_A \square$$

4

4. (optional) Given a nonzero vector $x \in \mathbb{R}^n$ and a symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$, both already stored in the floating-point format. Estimate the rounding error for evaluating $x^{\top}Ax$.

正定性急和?

You may assume that there is no overflow or (gradual) underflow.

解: -言か:
$$fl(x^Ty) = (x+ xx)^Ty$$

其中 $|x| < x_n |x|$

$$\exists Y : | f(x \cdot Ax) - x \cdot Ax |$$

$$= | f(x \cdot f(x \cdot Ax)) - x \cdot Ax |$$

$$= \int \left(\left(x^{T} \cdot (A \cdot (x + \delta x_{2})) - x^{T} A x \right) \right)$$

$$= \int \left(x + \delta x_{1} \right)^{T} A \left(x + \delta x_{2} \right) - x^{T} A x \right)$$

< SX, AX 1+ XTA SX2 + (SX, TA SX2)
\[\frac{\mathcal{N}}{n} \sum \times
$= O(Y_n X^T A X) \square$
Question:以上过程并没有利用到A>O的的好质,但我印象里正在作往往是数值铅定的。不知的同制图达个特性呢?