

Binary Response: The Probit and Logit Models

Advanced Microeconometrics

Anders Munk-Nielsen 2022

Plan for lectures: Helicopter

Part I: Linear methods. ✓

Part II: High-dimensional methods. ✓

Part III: M-estimation, theory √

 $\textbf{Part IV:} \ \, \text{M-estimation, concrete models} \leftarrow$

Where are we in the course?

Part	Topic	Parameterization non-linear	Estimation non-linear	Dimension $dim(x)$	Numerical optimization	M-estimation (Part III)	Outcome (y_i)	Panel (c_i)
1	OLS	÷	÷	low	÷	✓	R	✓
П	LASSO	÷	✓	high	✓	÷	R	÷
	Probit	✓	✓	low	✓	✓	{0,1}	÷
	Tobit	✓	✓	low	✓	✓	[0;∞)	÷
IV	Logit	✓	✓	low	✓	✓	{1, 2,, <i>J</i> }	÷
	Sample selection	+	+	łow	+	+	\mathbb{R} and $\{0,1\}$	÷
	Simulated Likelihood	✓	✓	low	✓	✓	Any	✓
	Quantile Regression	÷	✓	(low)	✓	✓	R	÷
	Non-parametric	✓	(√)	∞	÷	÷	R	÷

Blitz discussion

Discuss

Suppose the data above shows *historical* bank solvency against whether the bank survives or goes bankrupt. And suppose the social planner wants to maximize expected gain from tax payer money.

• Q: Going forward, which banks should we bail out?

Today's goal

For all M-estimators, we will write model.py with the key ingredients

```
1 def q(theta, y, x):
          # FILL IN
2
          return -loglike # N-vector
3
4
 def starting_values(y, x):
          # FILL IN
6
          return theta0 # K-vector
7
8
9 def sim_data(theta, N):
          # FILL IN
10
          return y, x
11
12
13 # to estimate a model (probit, logit, tobit, etc.)
14 theta0 = model.starting_values(y, x)
result = estimation.estimate(model.q, theta0, y, x)
```

(Common for: probit.py, logit.py, clogit.py, tobit.py, qreg.py)

Non-linear Models

Outcome and associated models

Outcome	Name	Model
$y \in \{0,1\}$	Binary	Probit, Logit
$y \in \{0, 1,, J\}$	Unordered	Conditional/multinomial logit
$y \in [0; \infty)$	Censored	Tobit
$y \in \mathbb{N}$	Count data	[not covered]

Methodology:

- Write up a model (the DGP)
- Derive the likelihood function
- Estimate parameters
- Today: Binary response.

Agenda

- 1. Model
 - 1.1. Drawing Random Numbers
- 2. Criterion Function
 - 2.1. Deriving the Likelihood
 - 2.2. Identification
- 3. Features of Interest
 - 3.1. Partial Effects
 - 3.2. The Delta Method
- 4. Specific Issues
 - 4.1. Probit or Logit?
 - 4.2. Comparison with OLS

Outline

1. Model

1.1. Drawing Random Numbers

- 2. Criterion Function
 - 2.1. Deriving the Likelihood
 - 2.2. Identification
- 3. Features of Interest
 - 3.1. Partial Effects
 - 3.2. The Delta Method
- 4. Specific Issues
 - 4.1. Probit or Logit?
 - 4.2. Comparison with OLS

Data: y vs. $x\beta$

Data: y vs. $x\beta$

Latent Variable Model

Latent Variable Model

$$\begin{aligned} y_i^* &= & \mathbf{x}_i \boldsymbol{\beta}_o + \boldsymbol{\varepsilon}_i, & \boldsymbol{\varepsilon}_i \sim G_o(\cdot), \\ y_i &= & \mathbf{1}\{y_i^* > 0\}. \end{aligned}$$

where

- y_i* is the *latent* unobserved index,
- we either observe $y_i = 1$ or $y_i = 0$,
- $G_o(\cdot)$ is the (true) cdf of ε_i , i.e. $\Pr(\varepsilon_i \leq z) = G_o(z)$,
- $\mathbf{1}\{\cdot\}$ is an *indicator*, (=1 if the event is true, =0 otherwise).

Latent Variable Model

Latent Variable Model

$$\begin{aligned} y_i^* &= & \mathbf{x}_i \boldsymbol{\beta}_o + \varepsilon_i, & \varepsilon_i | \mathbf{x}_i \sim G_o(\cdot), \\ y_i &= & \mathbf{1} \{ y_i^* > 0 \}. \end{aligned}$$

■ Task: show $Pr(y_i = 1|x_i) = G_o(\mathbf{x}_i'\beta_o)$ if G_o is symmetric.

Intermezzo: Drawing from $G(\cdot)$

Drawing from a density

If $U \sim \mathrm{Uniform}(0,1)$, then the variable

$$V:=G^{-1}(U),$$

will have cdf $G(\cdot)$, where $G^{-1}(\cdot)$ is the inverse of $G(\cdot)$.

```
import numpy as np
from scipy.stats import norm, logistic
U = np.random.uniform(size=1000)
X = norm.ppf(U) # X is standard normal
Z = logistic.ppf(U) # Z is standard logistic
```

Latent Variable Model

$$\begin{aligned} y_i^* &= & \mathbf{x}_i \boldsymbol{\beta}_o + \varepsilon_i, & \varepsilon_i | \mathbf{x}_i \sim G_o(\cdot), \\ y_i &= & \mathbf{1} \{ y_i^* > 0 \}. \end{aligned}$$

```
function sim_data(N,theta):
      # 1. simulate x variables.
      oo = np.ones((N,1))
3
      xx = np.random.normal(size=(N,K-1))
4
      x = np.hstack([oo, xx]);
5
      # 2 draw error terms
      uniforms = np.random.uniform(size=N)
7
      u = Ginv(uniforms)
8
      # 2 compute latent index
9
      vstar = x@beta + u
10
      # 2 compute observed y (as a float)
11
      y = (ystar>=0).astype(float)
12
      return y,x # ystar is not observed
13
```

Common choices of $G(\cdot)$

- **Probit:** $G(z) = \Phi(z)$ [standard normal cdf]
- Logit: $G(z) = \frac{1}{1 + \exp(-z)}$ [logistic cdf]

Logit vs. Probit


```
from scipy.stats import norm, logistic
2 G = lambda z : norm.cdf(z) # probit
3 G = lambda z : logistic.cdf(z) # logit
4 G = lambda z : 1.0 / (1.0 + np.exp(-z)); # logit (analytic)
```

Logit vs. Probit


```
from scipy.stats import norm, logistic
G = lambda z : norm.pdf(z) # probit
G = lambda z : logistic.pdf(z) # logit
```

Outline

- 1. Model
 - 1.1. Drawing Random Numbers
- 2. Criterion Function
 - 2.1. Deriving the Likelihood
 - 2.2. Identification
- 3. Features of Interest
 - 3.1. Partial Effects
 - 3.2. The Delta Method
- 4. Specific Issues
 - 4.1. Probit or Logit?
 - 4.2. Comparison with OLS

Deriving the Likelihood

- Note that y is Bernoulli with $Pr(y = 1|\mathbf{x}) = G(\mathbf{x}\beta_o)$.
- Likelihood:

$$\log f(y|\mathbf{x}) = \mathbf{1}_{\{y=1\}} \log \Pr(y = 1|\mathbf{x}) + \mathbf{1}_{\{y=0\}} \log \Pr(y = 0|\mathbf{x}).$$

- and $Pr(y = 0|\mathbf{x}) = 1 Pr(y = 1|\mathbf{x})$.
- Criterion:

$$q(y_i, \mathbf{x}_i, \beta) = -\mathbf{1}_{\{y=1\}} \log G(\mathbf{x}\beta) - \mathbf{1}_{\{y=0\}} \log[1 - G(\mathbf{x}\beta)].$$

Discuss

When do we get consistency when we minimize $\sum_i q(\cdot)$?

Identification

Definition: Identification

We say that the parameters of the model are *identified* if there exists a unique θ_o that minimizes the population criterion, $Q_o(\theta) \equiv \mathbb{E}[q(w,\theta)]$.

Appropriate definition for M-estimators.

Identification intuition: Default (β, σ)

Identification in tuition: $(2\beta, 2\sigma)$

Identification intuition: $(\frac{1}{5}\beta, \frac{1}{5}\sigma)$

Example: Gaussian Model

A "Gaussian" Model, 1

scale of the error term

$$y_i^* = \mathbf{x}_i \boldsymbol{\beta}_o + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, \sigma_o^2).$$

 $y_i = \mathbf{1}\{y_i^* > 0\}.$

This yields the criterion

$$q(y_i, \mathbf{x}_i, \beta, \sigma) = -\mathbf{1}_{\{y=1\}} \log \Phi\left(\frac{\mathbf{x}\beta}{\sigma}\right) - \mathbf{1}_{\{y=0\}} \log\left[1 - \Phi\left(\frac{\mathbf{x}\beta}{\sigma}\right)\right].$$

Discuss (scale normalization)

Which of these sets of parameters shows non-identification?

- 1. $\theta = (\beta_o + k, \sigma_o + k)'$.
- 2. $\theta=(k\beta_o,k\sigma_o)'$, <- This guy. This shows there is NOT a unique solution to the criterion function see the def of identification
- 3. $\theta = (k\beta_o, \frac{1}{k}\sigma_o)'$

Example: Gaussian Model

A "Gaussian" Model, 2

$$y_i^* = \mathbf{x}_i \boldsymbol{\beta}_o + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(\mu_0 \, 1).$$

 $y_i = \mathbf{1}\{y_i^* > 0\}.$

This yields the criterion

$$q(y_i, \mathbf{x}_i, \boldsymbol{\beta}, \boldsymbol{\mu}) = -\mathbf{1}_{\{y=1\}} \log \Phi \left(\mathbf{x} \boldsymbol{\beta} - \boldsymbol{\mu} \right) - \mathbf{1}_{\{y=0\}} \log \left[1 - \Phi \left(\mathbf{x} \boldsymbol{\beta} - \boldsymbol{\mu} \right) \right].$$

Discuss (location normalization)

Why is μ not identified?

if you add μ to the constant in x - they must sum to the same to show that μ is not identified if we have a constant in x, then

The Probit Model

The Probit Model

$$y_i^* = \mathbf{x}_i \boldsymbol{\beta}_o + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, 1).$$

 $y_i = \mathbf{1}\{y_i^* > 0\}.$

The Probit Criterion

$$q(y_i, \mathbf{x}_i, \beta) = -\mathbf{1}_{\{y=1\}} \log \Phi(\mathbf{x}\beta) - \mathbf{1}_{\{y=0\}} \log[1 - \Phi(\mathbf{x}\beta)].$$

Outline

- 1. Model
 - 1.1. Drawing Random Numbers
- 2. Criterion Function
 - 2.1. Deriving the Likelihood
 - 2.2. Identification
- 3. Features of Interest
 - 3.1. Partial Effects
 - 3.2. The Delta Method
- 4. Specific Issues
 - 4.1. Probit or Logit?
 - 4.2. Comparison with OLS

Conditional Distribution

■ **Model:** For $G(\cdot, \cdot)$ known, assume

$$Pr(y_i = 1 | \mathbf{x}_i) = G(\mathbf{x}_i, \boldsymbol{\beta}_o).$$

- Question: What is $\mathbb{E}(y|x_i)$?
 - Answer: $\mathbb{E}(y|\mathbf{x}_i) = \text{probability of success ("G-index")}$
- **Question:** What is $Var(y|\mathbf{x}_i)$?
 - Answer: $Var(y|x_i) = product of success and failure$
- Question: Which estimators could be used?
 - Answer: OLS, MLE (Probit/Logit)

Which model to use?

			"OLS"
	Probit	Logit	LPM
β_1	0.256	0.462	0.529
β_2	1.656	2.853	0.348

Challenge: How do we compare across models?

Answer: Compare *partial effects*, not the underlying parameters.

Model:

$$\Pr(y = 1|\mathbf{x}) = \mathbb{E}(y|\mathbf{x}) = G(\mathbf{x}_i\beta_o), \quad G'(\cdot) \equiv g(\cdot).$$

- **Note:** Magnitude of β_k is hard to interpret.
 - Intuition: Measured in "utils".
- **Object of interest?** Partial effects of x_{ip} on the *response probability*.
 - OLS: $\partial \mathbb{E}(y|\mathbf{x})/\partial x_p = \beta_p$
 - ... doesn't depend on x!
- **Generally:** (and here) the PEs must be evaluated at some $\mathbf{x} = \mathbf{x}^0 \equiv (x_1^0, ..., x_P^0)$.
- **Dummy** x_p ? Then the derivative doesn't make sense intuitively...
 - Solution: Differences.

• Continuous x_p : The PE of x_p at \mathbf{x}^0 ,

$$\delta_p(\mathbf{x}^0) \equiv \frac{\partial \Pr(\mathbf{y} = 1|\mathbf{x})}{\partial x_p} \bigg|_{\mathbf{x} = \mathbf{x}^0} = g(\mathbf{x}^0 \beta) \beta_p.$$

- Probit: $\delta_p(\mathbf{x}^0) = \phi(\mathbf{x}^0 \boldsymbol{\beta}) \beta_p$.

 lower case \phi -> normal pdf
- **Binary** x_p (dummy): Let $x^0(x_p = i)$ denote $\mathbf{x^0}$ with x_p set to the value i. Then

$$\delta_{\rho}(x^{0}) \equiv \operatorname{Pr}\left[y=1|\mathbf{x}^{0}(x_{\rho}=1)\right] - \operatorname{Pr}\left[y=1|\mathbf{x}^{0}(x_{\rho}=0)\right]$$
$$= G\left[\mathbf{x}^{0}(x_{\rho}=1)\beta\right] - G\left[\mathbf{x}^{0}(x_{\rho}=0)\beta\right].$$

• Partial effect: Let g = G'. The partial effect, δ_p , is

small partial effects at the boundary close to zero in a pdf, the partial effect is largest

$$\delta_p(\mathbf{x}^0) = \begin{cases} g(\mathbf{x}^0 \beta) \beta_p & \text{if } x_p \text{ is continuous,} \\ G(\mathbf{x}^1 \beta) - G(\mathbf{x}^0 \beta) & \text{if } x_p \text{ is a dummy,} \end{cases}$$

where $x_p^1 = 1$ and $x_p^0 = 0$ if x_p is a dummy (and $x_k^1 = x_k^0$ for $k \neq p$).

- 1. **Sign:** β_p determines whether $\delta_p \geq 0$.
- 2. **Depends on x^0:** Typically, x^0 is the average or median characteristics.
 - Average PE: Alternatively, average across observations:

$$APE_p = N^{-1} \sum_{i=1}^{N} \delta_p(\mathbf{x}_i).$$

- 3. Largest when $\mathbf{x}^0 \boldsymbol{\beta} \cong 0$; smaller when $|\mathbf{x}^0 \boldsymbol{\beta}|$ is large.
 - Mathematically: g is a pdf; $g(z) \to 0$ as $z \to \pm \infty$.
 - Example: Job training programs' effectiveness depends on baseline probability.

Partial effects (simulation example)

	Probit	Logit	LPM	
Marginal effect of x_1	0.054	0.056	0.529	discrete variable
Marginal effect of x_2	0.351	0.348	0.348	cont. variable

• Intuition: The partial effect is really what we are after.

Partial Effects: A Remark on Identification

Remark: Identification of Partial Effects

- Suppose $\varepsilon \sim \mathcal{N}(0, \sigma^2)$, $\sigma \neq 1$.
- Then

$$\Pr(\varepsilon > -\mathbf{x}\beta|\mathbf{x}) = \Pr(\varepsilon/\sigma > -\mathbf{x}\beta/\sigma|\mathbf{x}) = \Phi(\mathbf{x}\beta/\sigma).$$

So the partial effect becomes

$$\delta_p(\mathbf{x}^0) = \phi\left(\frac{\mathbf{x}^0\beta}{\sigma}\right)\frac{\beta_p}{\sigma}, \quad p = 1, ..., \underbrace{P}_{\equiv \dim \beta}$$

Conclusion: Only the "normalized" coefficients, β_p/σ , matter for the partial effects.

■ ⇒ The normalization $\sigma := 1$ is without loss of generality [if the interest is in partial effects]

Partial Effects: Inference

- **Problem:** We can estimate $Var(\hat{\beta}_p)$, but what is $Var(\hat{\delta}_p)$?
- Note: $\hat{\delta}_p$'s are a function of $\hat{\beta}$. Suppressing dependence on x^0 ,

$$\hat{\delta}_p = g(\mathbf{x}^0\hat{\boldsymbol{\beta}})\hat{\beta}_p \equiv h(\hat{\boldsymbol{\beta}})$$

the asymptotic variance of h is almost

Delta Method

approx

$$\operatorname{Avar}[h(\hat{\beta})] \cong \left[\nabla h(\hat{\beta})\right] \operatorname{Avar}(\hat{\beta}) \left[\nabla h(\hat{\beta})\right]'.$$

- Intuition: The variance of $\hat{\beta}_q$ affects the variance of $\hat{\delta}_p$ more if $\hat{\beta}_q$ is important in h (i.e. $h_q'(\hat{\beta})$ is large).
- Hands-on: Covered in one of the exercise classes.

Outline

- 1. Model
 - 1.1. Drawing Random Numbers
- 2. Criterion Function
 - 2.1. Deriving the Likelihood
 - 2.2. Identification
- 3. Features of Interest
 - 3.1. Partial Effects
 - 3.2. The Delta Method
- 4. Specific Issues
 - 4.1. Probit or Logit?
 - 4.2. Comparison with OLS

How to choose?

- **Typically:** Not much difference.
 - ... same partial effects are identified.
 - But parameter values differ.
- **Estimation:** Possible to estimate $G(\cdot)$ non-parametrically,
 - e.g. Klein & Spady (1993), Manski's maximum score (LAD).
 - Don't always work that well in practice;
 - ... appears to not make a huge difference at the mean.

Probit vs. Logit

Probit

$$y_i^* = \mathbf{x}_i \boldsymbol{\beta}_o + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, 1)$$

$$Pr(y_i = 1|\mathbf{x}_i) = \Phi(\mathbf{x}_i \boldsymbol{\beta}_o)$$

$$\frac{\partial Pr(y = 1|\mathbf{x})}{\partial x_p} (\mathbf{x}^0) = \phi(x^0 \boldsymbol{\beta}) \beta_p.$$

Logit

$$\begin{aligned} y_i^* &= \mathbf{x}_i \boldsymbol{\beta}_o + \boldsymbol{\varepsilon}_i, \quad \boldsymbol{\varepsilon}_i \sim \operatorname{Logistic} \\ \Pr(y_i &= 1 | \mathbf{x}_i) &= \frac{1}{1 + \exp(-\mathbf{x}_i \boldsymbol{\beta}_o)} \\ &\underset{\text{partial effect}}{\partial \Pr(y &= 1 | \mathbf{x})} (\mathbf{x}^0) &= \frac{\exp(-\mathbf{x}_i \boldsymbol{\beta}_o)}{[1 + \exp(-\mathbf{x}_i \boldsymbol{\beta}_o)]^2} \boldsymbol{\beta}_p. \end{aligned}$$

partial effect

Probit vs. Logit

- Distributions: Logistic has slightly fatter tails.
- Relative PEs: Recall,

$$\delta_p = g(\mathbf{x}^0 \boldsymbol{\beta}) \beta_p.$$

• If $\mathbf{x}^{0\prime}\beta\cong 0$ for both models,

$$\begin{split} \delta_{p}^{\mathrm{Logit}} & = & g^{\mathrm{Logit}}(0)\beta_{p}^{\mathrm{Logit}} = \frac{1}{4}\beta_{p}^{\mathrm{Logit}} \\ \delta_{p}^{\mathrm{Probit}} & = & \phi(0)\beta_{p}^{\mathrm{Probit}} = \frac{1}{\sqrt{2\pi}}\beta_{p}^{\mathrm{Probit}}. \end{split}$$

• PEs identified: Hence $\delta_{\it p}^{
m Logit}\cong\delta_{\it p}^{
m Probit}$

$$\begin{split} &\Rightarrow \frac{1}{4}\beta_p^{\mathrm{Logit}} &\;\; \cong \;\;\; \frac{1}{\sqrt{2\pi}}\beta_p^{\mathrm{Probit}} \\ &\Leftrightarrow \beta_p^{\mathrm{Logit}} &\;\; \cong \;\;\; 1.6\beta_p^{\mathrm{Probit}}. \end{split}$$

Exercise class: Verify this.

Semi-parametric Specification (not curriculum)

- Possible to avoid functional assumptions, leaving G free.
- We derived the likelihood function:

$$\ell_i(\theta) = y_i \log G(\mathbf{x}_i \beta) + (1 - y_i) \log [1 - G(\mathbf{x}_i \beta)].$$

Klein & Spady Criterion

$$\ell_i(\theta) = y_i \log \hat{G}(\mathbf{x}_i \beta) + (1 - y_i) \log \left[1 - \hat{G}(\mathbf{x}_i \beta)\right],$$

where $\hat{G}(\cdot)$ is computed using Kernel methods (lecture #17).

- Normalizations: In Probit, we assume $\mu=0, \sigma=1$; here, $\hat{\mathbf{G}}$ is free but we instead fix:
 - Location: $\beta_0 = 0$,
 - Scale: $\beta_1 = 1$.

Discuss

Why are these normalization requirements a good idea?

Estimation by OLS

Model:

$$G(\mathbf{x}_i'\boldsymbol{\beta}_o) = \mathbf{x}_i\boldsymbol{\beta}_o.$$

• Characterization/identification: Since $\mathbb{E}(y_i|\mathbf{x}_i) = G(\mathbf{x}_i\boldsymbol{\beta}_o)$ (by ass.), follows from NLS proof that

$$\beta_o = \arg\min_{\beta} \mathbb{E}(y - \mathbf{x}\beta)^2.$$

Estimation: closed-form solution [phew]

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}.$$

- Question: Where can predictions lie?
 - Answer:
- Question: What about implications for the error term variance $(\varepsilon_i \equiv y_i G(\mathbf{x}_i \boldsymbol{\beta}_o))$.
 - Answer: The error term will be heteroskedastic.

Comparison

