Занятие З Градиентные методы

Елена Кантонистова

elena.kantonistova@yandex.ru

ПЛАН ЗАНЯТИЯ

- Заканчиваем с задачей про Титаник
- Разбираем градиентный спуск
- Обучаем регрессию в Python

ЛИНЕЙНАЯ РЕГРЕССИЯ

Линейная регрессия:

$$a(x) = w_0 + w_1 x_1 + \dots + w_d x_d = (w, x)$$

Обучение линейной регрессии - минимизация среднеквадратичной ошибки:

$$Q(a,X) = \frac{1}{l} \sum_{i=1}^{l} (a(x_i) - y_i)^2 = \frac{1}{l} \sum_{i=1}^{l} ((w, x_i) - y_i)^2 \to \min_{w}$$

(здесь l – количество объектов)

ЛИНЕЙНАЯ РЕГРЕССИЯ

Обучение линейной регрессии - минимизация среднеквадратичной ошибки:

$$Q(a,X) = \frac{1}{l} \sum_{i=1}^{l} (a(x_i) - y_i)^2 = \frac{1}{l} \sum_{i=1}^{l} ((w, x_i) - y_i)^2 \to \min_{w}$$

(здесь l – количество объектов)

Подбираем веса $w_0, w_1, ..., w_d$ так, чтобы ошибка модели была минимальна.

Как это сделать?

ТЕОРЕМА О ГРАДИЕНТЕ

Теорема. Градиент — это вектор, в направлении которого функция быстрее всего растёт.

Антиградиент (вектор, противоположный градиенту) – вектор, в направлении которого функция быстрее всего

убывает.

$$f(x,y) = \frac{3}{2}(x-y)^2 + \frac{1}{3}(x+y)^2$$

ТЕОРЕМА О ГРАДИЕНТЕ

Аантиградиент (вектор, противоположный градиенту) – вектор, в направлении которого функция быстрее всего убывает.

• Наша задача при обучении модели – найти такие веса **w**, на которых достигается **минимум функции ошибки**.

- Наша задача при обучении модели найти такие веса **w**, на которых достигается минимум функции ошибки.
- В простейшем случае, если ошибка среднеквадратичная, то её график это парабола.

- Наша задача при обучении модели найти такие веса **w**, на которых достигается минимум функции ошибки.
- В простейшем случае, если ошибка среднеквадратичная, то её график это парабола.
- Идея метода градиентного спуска:

На каждом шаге (на каждой итерации метода) движемся в сторону антиградиента функции потерь!

То есть на каждом шаге движемся в направлении уменьшения ошибки.

- Наша задача при обучении модели найти такие веса **w**, на которых достигается минимум функции ошибки.
- В простейшем случае, если ошибка среднеквадратичная, то её график это парабола.
- Идея метода градиентного спуска:

На каждом шаге (на каждой итерации метода) движемся в сторону антиградиента функции потерь!

То есть на каждом шаге движемся в направлении уменьшения ошибки.

Вектор градиента функции потерь обозначают grad Q или ∇Q .

Метод градиентного спуска (одномерный случай):

Пусть у нас только один вес - w.

Тогда при добавлении к весу w слагаемого $-\frac{\partial Q}{\partial w}$ функция Q(w) убывает.

Метод градиентного спуска (одномерный случай):

Пусть у нас только один вес - w.

Тогда при добавлении к весу w слагаемого $-\frac{\partial Q}{\partial w}$ функция Q(w) убывает.

- Инициализируем вес $w^{(0)}$.
- На каждом следующем шаге обновляем вес, добавляя $-\frac{\partial Q}{\partial w}(w^{(k-1)})$:

$$w^{(k)} = w^{(k-1)} - \frac{\partial Q}{\partial w}(w^{(k-1)})$$

Метод градиентного спуска (общий случай случай):

Пусть $w_0, w_1, ..., w_n$ - веса, которые мы ищем.

Тогда
$$\nabla Q(w) = \{\frac{\partial Q}{\partial w_0}, \frac{\partial Q}{\partial w_1}, \dots, \frac{\partial Q}{\partial w_n}\}$$

Метод градиентного спуска (общий случай случай):

Пусть $w_0, w_1, ..., w_n$ - веса, которые мы ищем.

Тогда
$$\nabla Q(w) = \{\frac{\partial Q}{\partial w_0}, \frac{\partial Q}{\partial w_1}, \dots, \frac{\partial Q}{\partial w_n}\}$$

• Инициализируем веса $w_0^{(0)}, w_1^{(0)}, w_2^{(0)}, \dots, w_n^{(0)}$.

Метод градиентного спуска (общий случай случай):

Пусть $w_0, w_1, ..., w_n$ - веса, которые мы ищем.

Тогда
$$\nabla Q(w) = \{\frac{\partial Q}{\partial w_0}, \frac{\partial Q}{\partial w_1}, \dots, \frac{\partial Q}{\partial w_n}\}$$

- Инициализируем веса $w_0^{(0)}, w_1^{(0)}, w_2^{(0)}, \dots, w_n^{(0)}$.
- На каждом следующем шаге обновляем веса:

$$w_0^{(k)} = w_0^{(k-1)} - \frac{\partial Q}{\partial w_0} (w_0^{(k-1)}),$$

. . .

$$w_n^{(k)} = w_n^{(k-1)} - \frac{\partial Q}{\partial w_n} \left(w_n^{(k-1)} \right).$$

Формулу для обновления весов можно записать в векторном виде:

- ullet Инициализируем веса $oldsymbol{w}^{(0)}$.
- На каждом следующем шаге обновляем веса по формуле:

$$w^{(k)} = w^{(k-1)} - \nabla Q(w^{(k-1)})$$

Формулу для обновления весов можно записать в векторном виде:

- ullet Инициализируем веса $oldsymbol{w}^{(0)}$.
- На каждом следующем шаге обновляем веса по формуле:

$$w^{(k)} = w^{(k-1)} - \nabla Q(w^{(k-1)})$$

В формулу обычно добавляют параметр *η* — величина градиентного шага (learning rate). Он отвечает за скорость движения в сторону антиградиента:

$$w^{(k)} = w^{(k-1)} - \eta \nabla Q(w^{(k-1)})$$

Формулу для обновления весов можно записать в векторном виде:

- Инициализируем веса $w^{(0)}$.
- На каждом следующем шаге обновляем веса по формуле:

$$w^{(k)} = w^{(k-1)} - \nabla Q(w^{(k-1)})$$

В формулу обычно добавляют параметр η — величина градиентного шага (learning rate). Он отвечает за скорость движения в сторону антиградиента:

$$w^{(k)} = w^{(k-1)} - \eta \nabla Q(w^{(k-1)})$$

Если функция Q(w) выпуклая и гладкая, а также имеет минимум в точке w^* , то метод градиентного спуска при аккуратно подобранном η через некоторое число шагов гарантированно попадет в малую окрестность точки w^* .

Пример (решение на доске):

выписать формулы обновления весов методом градиентного спуска.

$$y = w_0 + w_1 x$$

$$Q(w) = \sum_{i=1}^{l} (w_0 + w_1 x_i - y_i)^2$$

ВАРИАНТЫ ИНИЦИАЛИЗАЦИИ ВЕСОВ

- $w_j = 0, j = 1, ..., n$
- Небольшие случайные значения:

$$w_j \coloneqq random(-\varepsilon, \varepsilon)$$

- Обучение по небольшой случайной подвыборке объектов
- Мультистарт: многократный запуск из разных случайных начальных приближений и выбор лучшего решения

КРИТЕРИИ ОСТАНОВА

•
$$|Q(w^{(k)}) - Q(w^{(k-1)})| < \varepsilon$$

$$\bullet \| w^{(k)} - w^{(k-1)} \| < \varepsilon$$

ГРАДИЕНТНЫЙ СПУСК

ПРОБЛЕМА ВЫБОРА ГРАДИЕНТНОГО ШАГА

ГРАДИЕНТНЫЙ ШАГ

В общем случае градиентный шаг может зависеть от номера итерации, тогда будем писать не η , а η_k .

- $\eta_k = c$
- $\eta_k = \frac{1}{k}$
- $\eta_k = \lambda \left(\frac{s_0}{s_0 + k}\right)^p$, λ , s_0 , p параметры

ОДИН ИЗ НЕДОСТАТКОВ ГРАДИЕНТНОГО СПУСКА

(с точки зрения реализации)

• На каждом шаге для вычисления $\nabla Q(w)$ мы вычисляем производную по каждому весу от каждого объекта. То есть вычисляем целую матрицу производных — это затратно и по времени, и по памяти.

СТОХАСТИЧЕСКИЙ ГРАДИЕНТНЫЙ СПУСК

Stochastic gradient descent (SGD):

• на каждом шаге выбираем *один случайный объект* и сдвигаемся в сторону антиградиента по этому объекту:

$$w^{(k)} = w^{(k-1)} - \eta_k \cdot \nabla q_{i_k}(w^{(k-1)}),$$

где $\nabla q_{i_k} (w^{(k-1)})$ - градиент функции потерь, вычисленный только по объекту с номером i_k (а не по всей обучающей выборке).

СТОХАСТИЧЕСКИЙ ГРАДИЕНТНЫЙ СПУСК

Если функция Q(w) выпуклая и гладкая, а также имеет минимум в точке w^* , то метод стохастического градиентного спуска при аккуратно подобранном η через некоторое число шагов гарантированно попадет в малую окрестность точки w^* . Однако, сходится метод медленнее, чем обычный градиентный спуск

MINI-BATCH GRADIENT DESCENT

Промежуточное решение между классическим градиентным спуском и стохастическим вариантом.

- Выбираем batch size (например, 32, 64 и т.д.). Разбиваем все пары объект-ответ на группы размера batch size.
- На і-й итерации градиентного спуска вычисляем $\nabla Q(w)$ только по объектам і-го батча:

$$w^{(k)} = w^{(k-1)} - \eta_k \cdot \nabla Q_i(w^{(k-1)}),$$

где $\nabla Q_i(w^{(k-1)})$ - градиент функции потерь, вычисленный по объектам из i-го батча.

ВАРИАНТЫ ГРАДИЕНТНОГО СПУСКА

