$$\begin{array}{c}
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4)$$

$$G_1(\xi) = \operatorname{vact}\left(\frac{3/1}{\xi}\right)$$

$$G_{0}(x) = T \cdot \left(\lambda - \frac{|x|}{3/7}\right) \cdot \operatorname{rect}\left(\frac{x}{3/7}\right)$$

1)
$$\xi_0$$
 2) ξ_0 6.6. tx 3) $S_{M_c}(\xi)$ e $P_{M_c}(\xi)$ 9 $f(\xi)$ 5) $f(\xi)$ 0 $f(\xi)$ 0 $f(\xi)$ 4) $f(\xi)$ 5) $f(\xi)$ 0 $f(\xi)$ 0

$$a: \in A \equiv [-s, s]$$
 inalp. ed equipmob.

$$= \int_{-\infty}^{\infty} g_{\tau}^{2}(t) \cdot \cos^{2}(2\pi f_{0}t) \text{ olt}$$

(3)
$$\tilde{z}(t) = 3(t) + 3(t)$$

 $z_{m} = 3(t) + 3(t)$
 $z_{m} = z_{m} z_{m$

(a)
$$g(t) = g_{R}(t) \otimes g_{R}(t) = \int_{a}^{b} g_{R}(t) \cdot g_{R}(t-t) dt$$

$$g(t) = G_{R}(t) \cdot G_{R}(t) = G_{R}(t)$$

$$g(t) = \sin t^{2} \cdot (t+1)$$

$$g(t) = \int_{a}^{b} G(t) dt = \frac{d}{dt} \cdot T \cdot \frac{d}{dt} = d$$

$$\sum G(t^{2} - \frac{dt}{t}) \cdot doe \text{ exert } \text{ againste } a \cdot T$$

$$Q_{R}(t) = e(t) \cdot 2\cos(2\pi f_{R}t) + a(t)$$

$$g'(t) = \sum a_{1} g_{1}(t-iT) \cdot (2\cos(2\pi f_{R}t) \cdot \cos(2\pi f_{R}t))$$

$$\sum a_{1} g_{1}(t-iT) \cdot [2\cos(2\pi f_{R}t) \cdot \cos(2\pi f_{R}t)]$$

Seconfished unarrabe of formation $[2\cos(a) \cdot \cos(2\pi f_{R}t)]$

$$\sum a_{1} g_{1}(t-iT) \cdot [\cos(4\pi f_{R}t) - \cos(2\pi f_{R}t)]$$

$$\sum a_{1} g_{1}(t-iT) \cdot [\cos(4\pi f_{R}t) - \cos(2\pi f_{R}t)]$$

$$\sum a_{1} g_{1}(t-iT) \cdot [\cos(4\pi f_{R}t) - \cos(2\pi f_{R}t)]$$

$$\sum a_{1} g_{2}(t-iT) \cdot [\cos(4\pi f_{R}t) - \cos(2\pi f_{R}t)]$$

$$\sum a_{1} g_{2}(t-iT) \cdot [\cos(4\pi f_{R}t) - \cos(4\pi f_{R}t)]$$

$$\sum a_{1} g_{2}(t-iT) \cdot [\cos(4\pi f_{R}t) - \cos(4\pi f_{R}t)]$$

$$\sum a_{1} g_{2}(t-iT) \cdot [\cos(4\pi f_{R}t) - \cos(4\pi f_{R}t)]$$

$$\sum a_{1} g_{2}(t-iT) \cdot [\cos(4\pi f_{R}t) - \cos(4\pi f_{R}t)]$$

$$\sum a_{1} g_{2}(t-iT) \cdot [\cos(4\pi f_{R}t) - \cos(4\pi f_{R}t)]$$

$$\sum a_{1} g_{2}(t-iT) \cdot [\cos(4\pi f_{R}t) - \cos(4\pi f_{R}t)]$$

$$\sum a_{1} g_{2}(t-iT) \cdot [\cos(4\pi f_{R}t) - \cos(4\pi f_{R}t)]$$

$$\sum a_{1} g_{2}(t-iT) \cdot [\cos(4\pi f_{R}t) - \cos(4\pi f_{R}t)]$$

$$\sum a_{1} g_{2}(t-iT) \cdot [\cos(4\pi f_{R}t) - \cos(4\pi f_{R}t)]$$

$$P(e) = P(e|A) \cdot P(A) + P(e|-A) \cdot P(-A)$$

$$= \frac{1}{2}Q\left(\frac{1-1/4}{\sigma_{me}}\right) + \frac{1}{2}Q\left(\frac{\frac{4}{3}+(A)}{\sigma_{me}}\right) =$$

$$=\frac{1}{2}Q\left(\frac{3}{4\sigma_{me}}\right)+\frac{1}{2}Q\left(+\frac{5}{4\sigma_{me}}\right)=$$