ESTRUCTURAS ALGEBRAICAS

Una Estructura Algebraica es un objeto matemático consistente en un conjunto no vacío y una relación ó ley de composición interna definida en él.

En algunos casos más complicados puede definirse más de una ley de composición interna y también leyes de composición externa.

<u>Operación binaria ó Ley de composición interna</u>: definida en un conjunto no vacío A es toda regla (función) que asocia a cada par de elementos de A otro elemento de A.

Es decir:

es una ley de composición interna en A : A x A A / a,b A a * b = c; c A

Ejemplos

- La suma ó la multiplicación es ley de composición interna en N, en Z, en Q, en R ó en C
- Las siguientes tablas definen leyes de composición interna en el conjunto A = {a, b, c}

0	a	h	С
		1	
a	a	b	c
b	b	c	a
С	С	a	b

	a	b	С
a	a	b	b
b	c	a	c
С	b	c	a

Propiedades de las operaciones binarias y elementos notables

Propiedad conmutativa

$$a, b A : a * b = b * a$$

<u>Ejemplos</u>

- La adición y la multiplicación son conmutativas en cada uno de los conjuntos numéricos
- ↓ La siguiente tabla define una ley de composición interna conmutativa en el conjunto
 A = {1, 2, 3}

*	1	2	3
1	1	1	1
2	1	2	2
3	1	2	3

Al observar la tabla hay simetría respecto a la diagonal principal. Esto sucede siempre que la operación es conmutativa en un conjunto finito.

La siguiente ley de composición interna definida en R dada por la expresión a * b = a b no es conmutativa ya que si a =2 y b= -3
 a * b = 2 -3 = 2 3 = 6 y b * a = -3 2 = -6
 por lo tanto a * b es distinto de b * a

Propiedad asociativa:

$$a,b,c$$
 A: $(a "* b) * c = a * (b * c)$

Ejemplos

- La adición y la multiplicación son asociativas en cada uno de los conjuntos numéricos
- ♣ En el conjunto de partes de cualquier conjunto A, la unión y la intersección son asociativas
- ♣ En el caso de que la operación binaria * este definida por una tabla es necesario considerar todos los casos posibles para demostrar que cumple con la propiedad asociativa.

Si A = n el número total de casos es n^3 que corresponde a las variaciones con repetición de n elementos tomados de a tres.

La siguiente ley de composición interna definida por la tabla es asociativa

*	1	2	3
1	1	1	1
2	1	2	2
3	1	2	3

Debemos plantear 3^3 casos pero como la operación binaria * es conmutativa, tabla simétrica respecto a la diagonal principal, son suficientes diez casos.

а	b	С	(a * b)	(a*b)*c	(b * c)	a * (b * c)
1	1	1	1	1	1	1
1	2	1	1	1	1	1
1	2	2	1	1	2	1
1	3	1	1	1	1	1
1	2	3	1	1	2	1
1	3	3	1	1	3	1
2	2	2	2	2	2	2
2	2	3	2	2	2	2
2	3	3	2	2	3	2
3	3	3	3	3	3	3

La siguiente ley de composición interna definida en R dada por la expresión a * b = a b es asociativa ya que

(a * b) * c = (a "* b) c = (a b) c = a b c

a * (b * c) = a * (b c) = a b c

Propiedad idempotencia

$$a \ A : a * a = a$$

Ejemplos

♣ En el conjunto de partes de cualquier conjunto A, la unión y la intersección son idempotentes.

$$X: X \quad X = X; X \quad X = X$$

♣ La ley de composición interna * en el conjunto A={1,2,3} definida por la tabla cumple idempotencia

*	1	2	3
1	1	1	1
2	1	2	2
3	1	2	3

Al observar la diagonal principal de la tabla se cumple 1*1=1; 2*2 = 2; 3*3 = 3

La siguiente ley de composición interna definida en R dada por la expresión a * b = a b no cumple idempotencia ya que si a = -2 a * a = a a = -2 . 2 = -4 que es distinto de -2

Si tenemos una segunda operación binaria *'

Propiedad distributiva

a,b,c A a *´ (b * c) = (a *´ b) * (a *´c) distribuye a izquierda respecto de *
$$(a * b) *´ c = (a * c) *´ (a * c)$$
 distribuye a derecha respecto de *

Ejemplos

- La multiplicación distribuye respecto a la suma en todos los conjuntos numéricos
- La unión de conjuntos distribuye respecto de la intersección de conjuntos y la intersección de conjuntos distribuye respecto a la unión de conjuntos

Algunos elementos del conjunto A se pueden comportar de forma notable respecto a la operación * .Por lo tanto podemos encontrar

Elemento neutro e:

Si existe el elemento neutro este es único

<u>Ejemplos</u>

- ♣ En los conjuntos numéricos el neutro para la suma es el cero y para la multiplicación es el uno
- ♣ En el conjunto de partes de cualquier conjunto A, el neutro de la unión es el conjunto vacío, , y el neutro de la intersección es el conjunto A
- ♣ La ley de composición interna * en el conjunto A={1,2,3} definida por la tabla tiene como elemento neutro el 3

*	1	2	3
1	1	1	1
2	1	2	2
3	1	2	3

El elemento neutro 3 corresponde a la intersección de la fila y de la columna donde aparecen los elementos del conjunto A en el orden establecido.

La siguiente ley de composición interna * definida en R dada por la expresión a * b = a b no posee neutro ya que a * e = a e = a e = 1 e = 1 v e = -1 y e * a = e a = a si a 1 e = 1 ; si a < 1 e = -1</p>

Como el elemento neutro es único * no tiene elemento neutro

Elemento simétrico:

La operación * tiene simétrico en A si cada elemento de A tiene simétrico. El simétrico de cada elemento es único.

Si la operación * no tiene neutro en A no se puede buscar el simétrico de ningún elemento de A.

Ejemplos

- ♣ Como en el conjunto de los números N con la adición no hay neutro entonces ningún elemento tiene simétrico.
- ♣ Para los conjuntos numéricos Z,Q,R y C ,con la adición los simétricos son los opuestos. Es decir : a + a' = 0 a' = -a
- ♣ El conjunto de los números enteros con la multiplicación no tiene simétrico ya que a.a'=1 a' = 1 si a=5 a'= 1 que no es elemento de Z
- ♣ La ley de composición interna * en el conjunto A= {1, 2,3} definida por la tabla no tiene simétrico.

*	1	2	3
1	1	1	1
2	1	2	2
3	1	2	3

Para encontrar el simétrico de cada elemento se debe buscar y marcar el neutro en cada una de las filas de la tabla de la operación binaria *.El simétrico corresponde a la columna en donde aparece el neutro.

Es decir: 3' = 3; 1 y 2 no tienen simétrico.

↓ La siguiente operación binaria * en el conjunto A= {0, 1,2} definida por la siguiente tabla tiene simétrico.

*	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

El elemento neutro es el 0.De la tabla se obtiene 0'=0; 1'=2 y 2'=1

Elemento absorbente:

$$a A / x A : x * a = a * x = a$$

Si existe el elemento absorbente este es único

Ejemplos

- ♣ En los conjuntos numéricos no hay elemento absorbente para la suma y para la multiplicación el elemento absorbente es el cero
- ♣ La ley de composición interna * en el conjunto A={1,2,3} definida por la tabla tiene como elemento absorbente el 1

*	1	2	3
1	1	1	1
2	1	2	2
3	1	2	3

↓ La siguiente ley de composición interna * definida en R dada por la expresión
a * b = a b posee elemento absorbente a=0 ya que x * 0 = x 0 = 0 y 0 *x = 0 x = 0

Según las propiedades que deban satisfacer estas leyes de composición, se tienen los distintos tipos de estructuras ó sistemas axiomáticos.

Monoide

El par (A,) donde A es un conjunto no vacío dotado de una operación ó ley de composición interna se denomina monoide.

<u>Ejemplos</u>

- **(N, -)** no es un monoide porque la sustracción no es ley de composición interna en **N.**
- **(N,**) donde está definido como a b = máx{a, b} es un monoide.

Semigrupo

El par (A,) donde A es un conjunto no vacío dotado de una operación ó ley de composición interna es semigrupo si: es asociativa.

Si la ley de composición interna además es conmutativa se llama semigrupo conmutativo. Si existe el elemento neutro se dice que es un semigrupo con unidad ó semigrupo con identidad. El elemento neutro se llama identidad.

Ejemplos

- **(N, +)** es un semigrupo conmutativo sin elemento neutro.
- **↓** (N₀, +) es un semigrupo conmutativo con elemento neutro, el 0.
- **(N,)** es un semigrupo conmutativo con elemento neutro ó identidad igual a 1.

<u>Grupo</u>

El par (A,), donde A es un conjunto no vacío dotado de una ley de composición interna binaria es **grupo** si:

es asociativa.
posee elemento neutro en A.
todo elemento de A tiene simétrico en A respecto de

Grupo Abeliano ó Grupo conmutativo es cuando además de ser un grupo,

es conmutativa. Es decir:

(A,) es un grupo abeliano sí:

es asociativa. posee elemento neutro en A.

Ing. Marcela Bellani Página 7 de 13

todo elemento de A tiene simétrico en A respecto de . * es conmutativa

Si (A,) es grupo, se dice que es un **grupo finito** si el conjunto A es finito y su cardinal se llama orden del grupo.

Ejemplos

- + (Z,+); (Q,+); (R,+) y (C,+) son grupos abelianos.
- **↓** (N₀, +) No es grupo. Tiene neutro, el 0, pero no tiene inverso
- **4** (Q,) No es grupo, el 0 no tiene inverso multiplicativo.
- + (Q-{0},) y (R-{0},) son grupos abelianos
- ♣ El par (Z,) donde Z es el conjunto de los números enteros y es una operación definida como a b = a + b + 2 alcanza la estructura de un grupo abeliano.

Verificación:

es ley de composición interna en Z pues la suma y el producto son leyes de composición interna en Z .Por lo tanto si a y b Z, a + b + 2 Z

es asociativa pues

a b
$$c = (a + b + 2)$$
 $c = a + b + 2 + c + 2 = a + b + c + 4$ (1)
y a b $c = a$ $(b + c + 2) = a + b + c + 2 + 2 = a + b + c + 4$ (2)
Por lo tanto (1) = (2)

tiene elemento neutro e = -2, pues

a A, a
$$e = a$$
 $a + e + 2 = a$ $e = -2$
y e $a = a$ $e + a + 2 = a$ $e = -2$

tiene inverso
$$a$$
 , a / a a e , ya que
$$a \quad a = -2 \quad a + a' + 2 = -2 \quad a' = -a - 4$$

$$a' \quad a = -2 \quad a + a' + 2 = -2 \quad a' = -a - 4$$
 Por lo tanto $\underline{a'} = -a - 4$

es conmutativa pues a b = a + b + 2 = b + a + 2 = b a

<u>Subgrupo</u>

Un subconjunto no vacío H, del conjunto A es un subgrupo de (A,) grupo si y solo sí (H,) es grupo en si mismo.

<u>Ejemplo</u>

(Z, +) es un subgrupo de **(Q, +)**.grupo conmutativo.

Si en estas estructuras se introduce una nueva ley de composición interna con ciertas restricciones, se obtienen ternas ordenadas del tipo (A , , ,) que también son estructuras algebraicas.

Estas nuevas estructuras son:

Retículo Algebraico

Dados, un conjunto no vacío A y dos leyes de composición interna y , la terna ordenada (A, ,) tiene estructura de **retículo Algebraico** si y solo si

- , son asociativas
- son conmutativas
- , son idempotentes
- , cumplen con absorción

$$x, y \quad A : x \quad (x \quad y) = x$$

 $x, y \quad A : x \quad (x \quad y) = x$

Ejemplos

♣ (P(A), ,) es un retículo algebraico ya que cumple con :

Operaciones binarias.

Asociatividad

$$X$$
 A, Y A, Z A: $(X$ Y) $Z = X$ $(Y$ Z) X A, Y A, Z A: $(X$ Y) $Z = X$ $(Y$ Z)

Conmutatividad

$$X$$
 A, Y A: X $Y = Y$ X X A, Y A: X $Y = Y$ X

o Idempotencia

$$X \quad A: X \quad X = X$$

$$X \quad A: X \quad X = X$$

Absorción

$$X$$
 A, Y A: X X Y X $(X$ $Y) = X;$ X Y X X X Y Y X

- ♣ (D₈,mcm,mcd) es retículo algebraico pues:
- o Operaciones binarias.

Asociatividad

a
$$D_8$$
, b D_8 , c D_8 : mcm{ mcm{a,b},c} = mcm{a,mcm{b,c}} a D_8 , b D_8 , c D_8 : mcd{ mcd{a,b},c} = mcd{a,mcd{b,c}}

o Conmutatividad

a
$$D_8$$
, b D_8 : mcm{a,b} = mcm{b,a}
a D_8 , b D_8 : mcd{a,b} = mcd{b,a}

o Idempotencia

a
$$D_8 : mcm\{a,a\} = a$$

a $D_8 : mcd\{a,a\} = a$

Absorción

$$a \hspace{0.5cm} D_8 \hspace{0.5cm}, \hspace{0.5cm} b \hspace{0.5cm} D_8 \hspace{0.5cm}: \hspace{0.5cm} mcd\{a,mcm\{a,b\}\} = a \hspace{0.5cm} mcm\{a,mcd\{a,b\}\} = a$$

Álgebra de Boole

Dados, un conjunto no vacío A; dos leyes de composición interna y , los elementos 0 y 1 y una operación unaria (complemento) $\bar{}$; la terna **(A, ,)** tiene estructura de **Álgebra de Boole** si y solo si :

- , son asociativas
- , son conmutativas
- , tienen elemento neutro

distribuye respecto a ; distribuye respecto a Los elementos de A tienen complemento

$$x A x A/x x = 1 x x = 0$$

Ejemplo

 Operaciones binarias. La operación binaria es la unión de conjuntos () y la operación binaria es la intersección () de conjuntos.

 Asociatividad. La unión y la intersección de conjuntos son asociativas, ya que para cualesquiera tres conjuntos X, Y, Z:

$$X$$
 A, Y A, Z A: $(X$ Y) $Z = X$ $(Y$ Z) X A, Y A, Z A: $(X$ Y) $Z = X$ $(Y$ Z)

 Conmutatividad. La unión y la intersección son conmutativas, ya que para cualquier par de conjuntos X, Y :

$$X$$
 A, Y A: X $Y = Y$ X X A, Y A: X $Y = Y$ X

 Existencia de neutros. El neutro de la unión es el conjunto vacío , mientras que el neutro de la intersección es el conjunto A, ya que para cualquier conjunto arbitrario X,

$$X = X$$
 y X $A = X$

 Distributividad. La unión de conjuntos es distributiva sobre la intersección, y viceversa, la intersección es distributiva sobre la unión, ya que para cualesquiera tres conjuntos X, Y, Z:

$$X (Y Z) = (X Y) (X Z) y X (Y Z) = (X Y) (X Y)$$

 Existencia de complementos. El conjunto complemento X cumple con las condiciones deseadas:

$$X \quad X = A$$
 $y \quad X \quad X =$

♣ (D₈,mcm,mcd) no es un Álgebra de Boole ya que si bien cumple con :

o Operaciones binarias.

Asociatividad

a
$$D_8$$
, b D_8 , c D_8 : mcm{ mcm{a,b},c} = mcm{a,mcm{b,c}} a D_8 , b D_8 , c D_8 : mcd{ mcd{a,b},c} = mcd{a,mcd{b,c}}

o Conmutatividad

a
$$D_8$$
, b D_8 : mcm{a,b} = mcm{b,a}
a D_8 , b D_8 : mcd{a,b} = mcd{b,a}

- o Existencia de neutros. El neutro del mcm{a,b} es 1 y el neutro del mcd{a,b} es 8

No tiene complemento: ya que el 2 y 4 no tienen complemento; $\overline{1} = 8$

Diagrama de Hasse

Bibliografía consultada

- Álgebra I

Armando Rojo. Editorial El Ateneo - 1978

-Matemática Discreta y sus aplicaciones (quinta edición)

Kenneth Rosen. Editorial Mc Graw Hill – 2004 -Matemáticas Discretas. Kenneth A. Ross.Charles R.B. Wright.Editorial Prentice Hall

Ing. Marcela Bellani Página 13 de 13