Lineaariset mallit, kl 2016, Harjoitus 1, viikko 13 (huom.: pääsiäisloma)

- 1. Symmetristä matriisia \mathbf{A} $(n \times n)$ sanotaan positiivisesti definiitiksi (merkitään $\mathbf{A} > \mathbf{0}$), jos $\mathbf{x}' \mathbf{A} \mathbf{x} > \mathbf{0}$ kaikilla $\mathbf{x} \neq \mathbf{0}$, $\mathbf{x} \in \mathbb{R}^n$ (ks. monisteen Liite B.11). Osoita, että positiivisesti definiitti matriisi on epäsingulaarinen (eli sillä on käänteismatriisi). (*Vihje*: Yksi tapa on olettaa \mathbf{A} singulaariseksi ja todeta, ettei se voi tällöin olla positiivisesti definiitti.)
- 2. Olkoon \mathbf{A} $(n \times n)$ positiivisesti definiitti ja \mathbf{B} $(n \times k)$ astetta k oleva matriisi (eli \mathbf{B} :n sarakkeet ovat lineaarisesti riippumattomat; ks. monisteen Liite \mathbf{B} .9). Osoita, että $\mathbf{B'AB}$ $(k \times k)$ on positiivisesti definiitti ja siten epäsingulaarinen.
- 3. (i) Olkoon neliömatriisi \mathbf{A} $(n \times n)$ idempotentti eli $\mathbf{A} = \mathbf{A}\mathbf{A}$ (merkitään $\mathbf{A}\mathbf{A} = \mathbf{A}^2$; ks. monisteen Liite B.10). Osoita, että $\mathbf{I}_n \mathbf{A}$ on myös idempotentti.
- (ii) Olkoon \mathbf{X} on astetta p oleva $n \times p$ matriisi ja $\mathcal{R}(\mathbf{X}) = \{\mathbf{z} \in \mathbb{R}^n : \mathbf{z} = \mathbf{X}\mathbf{b} \text{ jollain } \mathbf{b} \in \mathbb{R}^p\}$ \mathbf{X} :n sarakevektoreiden virittämä \mathbb{R}^n :n p-ulotteinen aliavaruus (eli \mathbf{X} :n sarakeavaruus).

Osoita, että matriisi $\mathbf{P} = \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'$ on symmetrinen ja idempotentti eli ns. (ortogonaalinen) projektio(matriisi). Totea myös, että matriisin \mathbf{P} määritelmässä esiintyvä matriisi $\mathbf{X}'\mathbf{X}$ on epäsingulaarinen ja että yhtälö $\mathbf{P}\mathbf{x} = \mathbf{x}$ pätee kaikilla $\mathbf{x} \in \mathcal{R}(\mathbf{X})$ (kuten nimityksen projektiomatriisi perusteella odottaisikin).

4. Tarkastellaan aineistosta $y_1,...,y_n$ laskettua otoskeskiarvoa $\bar{y}=n^{-1}\sum_{i=1}^n y_i$ ja otosvarianssia $s_y^2=(n-1)^{-1}\sum_{i=1}^n (y_i-\bar{y})^2$. Osoita, että

$$(n-1) s_y^2 = \mathbf{y}' \left(\mathbf{I}_n - \mathbf{J} \right) \mathbf{y},$$

jossa $\mathbf{y} = [y_1 \cdots y_n]'$ ja $\mathbf{J} = \mathbf{1}_n (\mathbf{1}'_n \mathbf{1}_n)^{-1} \mathbf{1}'_n (\mathbf{1}_n = [1 \cdots 1]', n \times 1)$ on (edellisen tehtävän perusteella) projektiomatriisi.

5. (Yksisuuntainen varianssianalyysimalli) Olkoon $Y_{11},...,Y_{1n_1},Y_{21},...,Y_{2n_2},...,Y_{p1},...,Y_{pn_p}$ riippumattomia ja $Y_{ji} \sim \mathbb{N}\left(\mu_j,\sigma^2\right)\left(\mu_j \in \mathbb{R},\,\sigma^2>0\right)$. Esitä tilanne lineaarisen mallin erikoistapauksena käyttäen lineaarisen mallin matriisiesitystä. Mikä on matriisin \mathbf{X} aste?