Sets Lesson 2: Set Operations

8/27

As Ch. 1 section 2 of the book lays out, we have two more set operations in addition to complement A', and those operations are intersection and union.

Intersection and Union

REMINDER: " \in " symbol is the "element sign"

Intersection: $A \cap B := \{x : x \in A \text{ and } x \in B\}$ we call it "A intersect B"

The symbol " ∩ " that looks like a rainbow is the intersect symbol

Union: $A \cup B := \{x \colon x \in A \text{ or } x \in B\}$ we call it "A union B"

NOTE: When I say "or", I mean inclusive or (so elements that are of A and B are included, so if $x \in A$ and $x \in B$ then $x \in A \cup B$. So $A \cap B \subset A \cup B$

To sum it all up: "A union is what they both have, and an intersection what both sets have in common"-a few awesome students

Order of Operations

In practice, like with arithmetic, we use multiple operations for multiple sets, such as $A \cup B \cap C'$ and $(A \cap B)' \cup C$, so to do the order correctly, we have an **order of operations**, which is as follows

1. Work inside the <u>innermost</u> parenthesis

Ex.
$$(\{1,2\} \cap \{1\})' \cup \{3\}$$

We do $\{1,2\} \cap \{1\}$ first, since it's in parenthesis

2. Complements before intersections or unions

Ex.

$$U = \{1, 2, 3\}$$

 $A = \{1, 2\}$
 $B = \{3\}$
 $(A \cup B)' = \emptyset$
 $A \cup B' = A \cup \{1, 2\} = \{1, 2\} = A$

Ex. 2.4 b. (in the book)

$$(A \cap C)'$$

$$A \cap C = \{2,3\}$$

 $(A \cap C)' = \{2,3\}' = \{1,4,5,\dots,9\}$

3. find intersections and unions from left to right

8/31

Last Time:

Warm-up

Let

 $E = \left\{ x | x \text{ is enrolled in English} \right\}$

 $P = \left\{ x | x \text{ is enrolled in Psych} \right\}$

What does the following mean in English?

- a. $E \cap P$ "the students enrolled in english and psych"
- b. $E \cap P'$ "the students enrolled in english but not psych"

"the students (both enrolled in english and not enrolled in psych)"

- c. $E \cup P'$ "(every student enrolled in english) as well as (every student not enrolled in psych)" "(every student that is enrolled in english <u>or</u> not enrolled in psych)"
- d. $E' \cup P'$ "every student not taking english or not taking psych"

```
Let
```

 $U = \{apple, orange, bannana, strawberry\}$

 $X = \{apple, orange\}$

 $Y = \{orange, bannana\}$

 $Z = \{apple, bannana, strawberry\}$

a.

 $(X \cup Y)'$

first we do parantheses

 $X \cup Y = \{apple, orange, bannana\}$

next we take the complement

 $\{apple, orange, bannana\}' = \{strawberry\}$

b.

 $Y' \cap X$

first we do complements

```
Y' = \{strawberry, apple\}

next, we do the intersection \{strawberry, apple\} \cap \{apple, orange\} = \{apple\}

c. X \cap Z \cup Y = (X \cap Z) \cup Y

We go from left to right X \cap Z = \{apple\}

\{apple\} \cup \{orange, bannana\} = \{apple, orange, bannana\}
```

Sets Homework 2 Questions

No questions