

MAT3007 · Homework 4

Due: 11:59pm, Oct. 29 (Sunday), 2023

Instructions:

- Homework problems must be carefully and clearly answered to receive full credit. Complete sentences that establish a clear logical progression are highly recommended.
- Please submit your assignment on Blackboard.
- The homework must be written in English.
- Late submission will not be graded.
- Each student must not copy homework solutions from another student or from any other source.

Problem 1 (10+10+10=30pts).

Consider the following linear program:

maximize
$$3x_1 + x_2 + 4x_3$$

subject to $x_1 + 3x_2 + x_3 \le 5$
 $x_1 + 2x_2 + 2x_3 \le 7$
 $x_1, x_2, x_3 \ge 0$

- (a). What is the corresponding dual problem?
- (b). Solve the dual problem graphically.
- (c). Use complementarity conditions for the primal-dual pair to solve the primal problem.

Problem 2 (5 + 10 + 10 + 10 = 35pts).

Consider the following table of food and corresponding nutritional values:

	Protein, g	Carbohydrates, g	Calories	Cost
Bread	4	7	130	3
Milk	6	10	120	4
Fish	20	0	150	9
Potato	1	30	70	1

The ideal intake for an adult is at least 30 grams of protein, 40 grams of carbohydrates, and 400 calories per day. The problem is to find the **least** costly way to achieve those amounts of nutrition by using the four types of food shown in the table.

- (a). Formulate this problem as a linear optimization problem (specify the meaning of each decision variable and constraint).
- (b). Solve it using MATLAB, find an optimal solution and the optimal value.
- (c). Formulate the dual problem. Interpret the dual problem. (Hint: Suppose a pharmaceutical company produces each of the nutrients in pill form and sells them each for a certain price.)
- (d). Use MATLAB to solve the dual problem. Find an optimal solution and the optimal value.

Problem 3 (15pts) Farkas's Lemma.

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Then exactly one of the following two condition holds:

- (1). $\exists x \in \mathbb{R}^n$ such that Ax = b and $x \ge 0$.
- (2). $\exists y \in \mathbb{R}^m$ such that $A^\top y \ge 0$ and $y^\top b < 0$.

Problem 4 (10 + 10 = 20pts). Special Dual problem.

Suppose M is a square matrix such that $M = -M^T$, for example,

$$M = \left(\begin{array}{rrr} 0 & 1 & 2 \\ -1 & 0 & -4 \\ -2 & 4 & 0 \end{array}\right)$$

Consider the following optimization problem:

minimize
$$x$$
 $c^T x$
subject to $Mx \ge -c$
 $x \ge 0$

- (a). Show that the dual problem of it is equivalent to the primal problem.
- (b). Argue that the problem has optimal solution if and only if there is a feasible solution.