Computer Architecture

Final Project

Outline

- Introduction
- The Architecture of CNN
- Spec.
- Grading Policy

Introduction

• In this final project, you are going to design a simple version of CNN on the GPU. The simple version means that you only need to consider the feed-forward part and its architecture is just a 5-layer structure. Some of process are omitted such as activation function and bias. However, it still reserve the computational behavior.

- CNN is composed of three types of layers:
 - Convolution layer
 - Subsampling layer
 - Fully connection layer

The Architecture of CNN

Example:

numImage = 1 imageSize = 14 I1_NumKernel = 1 I1_KernelSize = 3 I3_NumKernel = 2 I3_KernelSize = 3

Example(cont.):

numImage = 1 imageSize = 14 l1_NumKernel = 1 l1_KernelSize = 3 l3_NumKernel = 2

I3_KernelSize = 3

Example: Convolution Layer Case

If there is one sub_input_fm, do convolution with each kernel.

If there are multiple sub_input_fm, All do convolution kernel by kernel and then sum them up as a output fm

If there are multiple sub_input_fm and only one kernel, do convolution with that kernel and then sum them up.

Final Project: Convolution Neural Network

In The Final Project, You Have to...

- Write OpenCL to design the implementation of CNN.
 - Host program:
 - Create memory buffer
 - Send data
 - Enqueue task to GPU
 - Read result from GPU
 - ...
 - Kernel
 - Convolution
 - Subsampling
 - Fully connection

- Write a report to describe how you implement your design
 - Parallelized algorithm
 - Work-item's task
 - Work-group size
 - Techniques
 - ...
 - Describe your design
 - How to use your design
 - Use report files to verify your design
 - ...
 - Show your statistics

Spec.

Software

• Data type:

- Every element of images is an integer from 0 to 9.
- Every element of kernels is an integer from 0 to 9.
- Every element of weights is an integer from 0 to 9.
- Above three are stored into an 1D array by rowmajor, individually.
- Number of image: 1 ~ 20
- Image size: 16x16 ~ 128x128
- Number of kernel: 1 ~ 10
- Kernel size: 3x3 ~ 15x15
- Output node: 10

Your code could run on native or M2S

Hardware

Do not change hardware architecture

AMD Radeon™ HD 7870	
Frequency	1000 MHz
Compute Unit	20 #
Stream Processors	1280
L1 Cache (one per CU)	16 KB
L1C Latency	1 clock
L2 Cache (one per 4 CUs)	128 KB
L2 Cache Latency	10 clocks

AMD Radeon™ HD 7870

←Architecture Overview

↓ Cache Hierarchy

Figure from: https://www.amd.com/Documents/GCN Architecture whitepaper.pdf

TU 10

Analysis on Multi2sim

Collect Report

• In the Lab package, you will see

```
- EXAMPLE: CNN_C
```

- CNN:

```
• 00 Configuration:
                                * Contain CPU, GPU, Memory configuration files

    00 Report

                                * After 03 and 04, the reports will be generated here
                                  Note that the reports will be covered every running 04.
                                *Could run on native after 01
• 01 COMPILE ON NATIVE.sh*
• 03 COMPILE ON M2S.sh*
                                *Compile source code by using M2S's library
• 04 RUN ON M2S.sh*
                                * Start to simulate on M2S
• 09 CLEAN REPORT.sh*
                                * Clean all report files
• CNN.c

    CNN.cl

                                        * Write your code here

    parameter.h
```

Analysis on Multi2sim

How to Get The Statistics: CPU/GPU Report

```
GPU Configuration
; CPU Configuration
                                                                            Config
 Config
                                                                             : Simulation Statistics
 ; Simulation Statistics
                                                                             : Global statistics
                                                                                                                "Cycles" is used to
 Global statistics
                                                                            [ Device ]
                                                                                                                measure the performance!!
[Global]
                                                                            VectorMemInstructions = xxx
                                                                                                                Remember to record it!!!
                                                                            Cycles = 5600711
Cycles = 198145463
                                                                            InstructionsPerCycle = xxx
Time = 159.44
                                                                                                                              Each CU has some
CyclesPerSecond = 1242776
                                                                            [ ComputeUnit 0 ]
                                                                                                                              other information.
MemoryUsed = 29409280
                                                                            [ ComputeUnit 19 ]
MemoryUsedMax = 29409280
```

Analysis on Multi2sim

How to Get The Statistics: Memory Report

Grading Policy

Two Parts:

- [60%] OpenCL code:
 - [45%] 3 cases to verify the functionality (small/middle/big image, kernel size)
 - -[15%] Performance (on Multi2sim)
 - Each case accounts for 10pts: The best gets 10, the worst gets 1.
 - Measured by "Cycles" from GPU report.
- [40%] Report (IEEE double column format):
 - [20%] Description of your design including work-item's task, techniques, and so on.
 - [10%] How to use your design
 - [10%] Show statistics

Note: report do not exceed 4 pages.

(due 1/14)

About Submission

Please Observe The Following Rules:

- ONE group submit ONE report.
- Please write down ALL the group members (1 ~ 3 members per group).
- The group is the same as previous lab.
- Each one will get the same score in the same group.
- Upload the package to E3 "作業列表 -> FP", and it must contains
 - Report (accept PDF/word).
 - CNN.c
 - CNN.cl
 - parameter.h
- Deadline: 1/14 23:59:59
- No score for late submission.

Login Into Workstation

Guideline

- Please use SSH tool to connect to the workstation
 - Such as "mobaXterm", "Putty"...
- Login
 - Host name: 140.113.225.130
 - Port: 22
 - Type: SSH
 - Personal account is the same as previous lab.
- Get the package
 - Please type the command:\$tar -xvf /tmp/FP.tar

Reference

 White paper - AMD GRAPHICS CORES NEXT (GCN) ARCHITECTURE https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf