

Harrow, Hassidim, and Lloyd: Quantum algorithm for linear systems of equations (2009)

# HHL Algorithm

Max Kern, Philipp Krüger, Simone Spedicato

- 1. Introduction
- 2. Theory
- 3. Implementation
- 4. Results
- 5. The Fine Print
- 6. Summary and Outlook



### 1. Introduction

### Example: Solving Discretized PDEs numerically

Finance: Black-Scholes Equation

$$rac{\partial V}{\partial t} + rac{1}{2}\sigma^2 S^2 rac{\partial^2 V}{\partial S^2} + rSrac{\partial V}{\partial S} - rV = 0$$



Mechanics: Navier Stokes Equation

$$\frac{\partial}{\partial t}(
ho\,\mathbf{u}) + 
abla \cdot (
ho\,\mathbf{u}\otimes\mathbf{u}) = -
abla p + 
abla \cdot oldsymbol{ au} + 
ho\,\mathbf{g}$$

... and many more!

Finite Difference/Element Method



⇒ Sparse matrix A



Numerical Problem as a System linear equations



$$A\vec{x} = \vec{b}$$

$$\vec{x} = A^{-1}\vec{b}$$



### Linear System Problems: Classical vs. Quantum

#### Classical Vector:

$$A\vec{x} = \vec{b}$$
$$\vec{x} = A^{-1}\vec{b}$$



# Conjugate gradient method: minimizes $|A\vec{x} - \vec{b}|^2$

Complexity:  $O(Ns\kappa \log(1/\epsilon))$ 

- Best classical algorithm: Conjugate gradient method
- returns full solution
- superior error scaling

#### **OM Vector:**

$$\hat{A} |x\rangle = |b\rangle$$

A is Hermitian, sparse

$$|x\rangle = \hat{A}^{-1} |b\rangle$$

Solution with precision  $\epsilon \geq 0$ 

#### HHL method:

inverts A using QPE

Complexity: 
$$O[\log(N)s^2\kappa^2/\epsilon)$$
  $\kappa = \frac{\lambda_{max}}{\lambda_{min}}$ 

- **Exponential speed up:** log(N)
- we don't obtain the vector, only expectation values  $\langle x | M | x \rangle$
- Obtaining complete x would scale linearly in N again

Harrow et al. arXiv:0811.3171 (2009)



2. Theory

### Theory: The Algorithm



### Theory: Inverting Hermitian Matrices

Problem: 
$$\hat{A} |x\rangle = |b\rangle \implies |x\rangle = \hat{A}^{-1} |b\rangle$$

$$\hat{A} = \hat{A}^{\dagger} \implies \hat{A} = \sum_{j=0}^{N-1} \lambda_j |u_j\rangle \langle u_j|, \ \lambda_j \in \mathbb{R} \quad \text{ with } \quad \hat{A} |u_j\rangle = \lambda_j |u_j\rangle$$

$$\Rightarrow \left(\hat{A}^{-1} = \sum_{j=0}^{N-1} \lambda_j^{-1} \left| u_j \right\rangle \left\langle u_j \right| \right) \quad |b\rangle \text{ in eigenbasis of } \hat{A} : \left( |b\rangle = \sum_{j=0}^{N-1} b_j \left| u_j \right\rangle, \ b_j \in \mathbb{C} \right)$$

$$\left| \left| x 
ight
angle = \hat{A}^{-1} \left| b 
ight
angle = \sum_{j=0}^{N-1} rac{b_j}{\lambda_j} \left| u_j 
ight
angle 
ight.$$

### Theory: Exact Quantum Phase Estimation (QPE)

Project an initial state onto the eigenbasis of  $\hat{A}$ 

QPE: - inputs: 
$$\hat{U}$$
 and  $|0\rangle_n \, |\psi\rangle_m$  , with  $\, \hat{U} \, |\psi_j\rangle_m = e^{2\pi i \theta_j} \, |\psi_j\rangle_m$ 

- output: state  $|\tilde{\theta}\rangle_n |\psi\rangle_m$ ,  $\tilde{\theta}$  binary approx. to  $2^n\theta$ , truncated to n digits

$$QPE(\hat{U}, |0\rangle_n |\psi\rangle_m) = |\tilde{\theta}\rangle_n |\psi\rangle_m \qquad \hat{U} := e^{i\hat{A}t} = \sum_{j=0}^{N-1} e^{i\lambda_j t} |u_j\rangle \langle u_j|$$

$$\left( \operatorname{QPE}(e^{i\hat{A}t}, \sum_{j=0}^{N-1} b_j |0\rangle_n |u_j\rangle_m) = \sum_{j=0}^{N-1} b_j |\lambda_j\rangle_n |u_j\rangle_m \right)$$

### **Theory: Conditioned Rotation**

eventual goal

$$\ket{x} = \hat{A}^{-1} \ket{b} = \sum_{j=0}^{N-1} rac{b_j}{\lambda_j} \ket{u_j}$$

$$\sum_{j=0}^{N-1} b_j \, |\lambda_j\rangle \, |u_j\rangle \otimes |0\rangle \longrightarrow \sum_{j=0}^{N-1} b_j \, |\lambda_j\rangle \, |u_j\rangle = 0$$
 initial state added ancilla

apply  $e^{-i\theta Y}$  on ancilla  $|0\rangle$ , conditioned on  $|\lambda_j\rangle$ 

result after conditioned rotation:

$$\sum_{j=0}^{N-1} b_j |\lambda_j\rangle |u_j\rangle \left(\sqrt{1 - \frac{C^2}{\lambda_j^2}} |0\rangle + \frac{C}{\lambda_j} |1\rangle\right)$$

### Theory: Summary



- Map linear problem to QM:  $\hat{A} |x\rangle = |b\rangle$
- Exponentially faster
   than any known
   classical algorithm

Danial Dervovic et al., 2018, Quantum linear systems algorithms: a primer

Qiskit: An Open-source Framework for Quantum Computing, 2019

Qiskit tutorial: https://qiskit.org/textbook/ch-applications/hhl\_tutorial.html



# 3. Implementation

### **HHL: Optimized Circuit**

 $A\vec{x} = \vec{b}(\theta)$ 



### A Tailored Problem for an Optimized Circuit

$$A\vec{x} = \vec{b}(\theta)$$

$$\begin{pmatrix} 1 & -1/3 \\ -1/3 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \end{pmatrix}$$

→ Analytical solution:

$$|x|^2 = 0.625 + 0.375 \sin(2\theta)$$



General vs. Optimized algorithm

Width: 7 vs. 4 (1 ancilla instead of 3)

Depth: 102 vs. 26

CNOTs: 54 vs. 10 (factor of 5)

→ Mitigating readout error with Richardson extrapolation of error amplification

### Richardson Extrapolation



The expectation values of the observables scale quadratically with the error:

$$\langle \mathcal{O}(r) \rangle = Ar^2 + Br + \langle \mathcal{O}(0) \rangle$$

Abhinav Kandala et al. arXiv:1805.04492 (2019) Kübra Yeter-Aydeniz et al. arXiv:1912.06226 (2019)

## IBMQX2 after executing our 12.523rd shot



# 4. Results

### Results: Richardson Extrapolation



#### **Conclusions**

- An increasing amount of CNOTs amplified the error.
- We were able to improve our results with Richardson extrapolation and received results that were very similar to the analytic solution.

### Results for IBMQX2 vs IBM Athens in Comparison



- The amount of CNOTs used impacted the error on both quantum computers.
- **IBMQX2:** results improved with Richardson extrapolation using 1000 shots.
- **IBM ATHENS:** results worst, even with 8000 of shots.

### Testing the Circuit on a different Quantum Computer

#### **IBM Athens**

- Better CNOT error rates
- better readout errors



#### **IBMQX2**

Better Qubit Connectivity





### **Transpiled Circuits**

#### ibm qx2

depth: 23 vs 26

CNOTs: 16 vs 10



#### athens

depth: 32 vs 26

CNOTs: 28 vs 10



**Conclusion**: Additional SWAP gates used in IBM Athens generate additional noise.

### Results: Summary

- Richardson extrapolation: Can work very well using 2 additional CNOT configuration to amplify the noise.
- Quantum Architecture: The Qubit connectivity is crucial to obtain high quality results.
- 3. **IBM quantum experience:** Good platform for having an idea of the potentiality but limited for results of more complex linear systems

Qiskit: An Open-source Framework for Quantum Computing, 2019



### 5. The Fine Print

### The Fine Print

Four general critique points by Aaronson: "Read the fine print" (2015)  $O(\log(N)s^2\kappa^2/\epsilon)$ 

- Load vector b quickly into QC memory. Most methods would already scale with n.
- QCs architecture needs to be able to efficiently apply QPE  $e^{i\hat{A}t}$  for various t, which scales quadratically with the size of non-sparse matrices A
- A needs to be robustly invertible/ "well-conditioned": small condition number  $\kappa = \frac{\lambda_{max}}{\lambda_{min}}$
- Writing the output vector x would require n steps. By default only the state itself or an expectation value is generated.



# 6. Summary and Outlook

### **Outlook: Applications**

#### **Similar Applications**

2010: linear differential equations. Berry arXiv:1010.2745 (2010)

2012: least-squares fitting. Wiebe et al. arXiv:1204.5242 (2012)

2013: radar cross-section of a complex shape using a preconditioner.

Claser et al. arXiv:1301.2340 (2013)

#### **Road towards Quantum Machine Learning**

2013: Qubits can represent large tensor spaces.

Lloyd et al. arXiv:1307.0411 (2013)

2013: Quantum support vector machine for classifying big data.

Rebentrost et al. arXiv:1307.0471v2 (2013)

2018: Bayesian training of deep neural networks "General Purpose Algorithm"

Zhao et al. arXiv:1806.11463 (2018)

⇒ HHL became more a template for other quantum algorithms than a quantum algorithm on in its own

$$\boldsymbol{x}'(t) = \boldsymbol{A}(t)\boldsymbol{x}(t)$$

$$|oldsymbol{\lambda}
angle = \mathbf{A}^{-1}\mathbf{I}(\mathbf{F}^\dagger)|\mathbf{y}
angle$$

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$
$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$

$$L(\vec{\alpha}) = \sum_{j=1}^{M} y_j \alpha_j - \frac{1}{2} \sum_{j,k=1}^{M} \alpha_j K_{jk} \alpha_k$$



### Outlook: Experimental Realizations

2013: 2x2 system with photonic Qubits

Cai et al. arXiv:1302.4310 (2013)

2013: 2x2 system using NMR Quantum Computer (96% fidelity)

Pan et al. arXiv:1302.1946 (2013)

2018: 8x8 system using NMR and Adiabatic Quantum Computing

Wen et al. 10.1103/PhysRevA.99.012320 (2018)



|                  | 13C            | F1          | F <sub>2</sub> | F <sub>3</sub> | F <sub>1</sub>                                                |
|------------------|----------------|-------------|----------------|----------------|---------------------------------------------------------------|
| 13C              | 15479.7 Hz     |             |                |                | F                                                             |
| F1               | -297.7 Hz      | -33122.4 Hz |                |                | C                                                             |
| F <sub>2</sub>   | -275.7 Hz      | 64.6 Hz     | -42677.7 Hz    |                | 13C                                                           |
| F <sub>3</sub>   | 39,1 Hz        | 51.5 Hz     | 129.0 Hz       | -56445.8 Hz    | , <b>D</b>                                                    |
| T <sub>2</sub> * | 1.22 s         | 0.66 s      | 0.63 s         | 0.61 s         | F <sub>3</sub>                                                |
| T <sub>2</sub>   | 7 <b>.</b> 9 s | 4.4 s       | 6.8 s          | 4.8 s          | <ul> <li>C-labelled</li> <li>iodotrifluoroethylene</li> </ul> |

No Quantum Advantage with NISQ technology

### Summary: Lessons Learned

$$|x\rangle = \hat{A}^{-1} |b\rangle$$















$$O(\log(N)s^2\kappa^2/\epsilon)$$

Exponential speed up

Error mitigation with Richardson Extrapolation

For practical implementations Qubit Connectivity is more important than gate errors

No Experimental quantum advantage yet but promising general applications



7. Appendix

### **Appendix: Complexity**

QPE is Hamiltonian simulation scaling with  $\mathcal{O}(\log(N))$ 

Complexity of HHL dominated by QPE

 $\Rightarrow$  HHL scales with  $\mathcal{O}(\log(N))$  as well!

### Appendix: Non-exact Quantum Phase Estimation

QPE only exact, if  $\frac{\lambda_j t}{2\pi}$  can be represented exactly with  $n_l$  binary bits

 $\Rightarrow$  If one knows the eigenvalues, we can rescale them such that  $\frac{\lambda_j t}{2\pi}$  can be represented exactly!

- → Optimized version of algorithm possible
- → Important for working with real hardware
- ightarrow HHL would also work without prior knowledge of the eigenvalues of  $\hat{A}$

### Appendix: Different Times t

| time t [ms] | 1     | 2     | 2.3   | 3     | analytical solution |
|-------------|-------|-------|-------|-------|---------------------|
| result      | 0.896 | 0.603 | 0.506 | 0.669 | 0.5014              |

#### **Observation**

- random t values more distant from the analytical value give worse results.
- by varying t and running the algorithm several times we can get closer to the wanted value.

#### Conclusion

- We picked t to the analytically best value to represent the eigenvalues binary.
- Due to hardware noise it was not possible to obtain similar results with non-optimal times.
- Here, we would lose our quantum advantage, since for general NxN hermitian matrices, we would need O(N) time to optimize.

### **Appendix: Optimal Parameters Setting**

• **Time t = 2.3:** Binary representation exact if

$$2^{n_l} = \frac{\lambda_j t}{2\pi}$$

• 1000/8000 shots:

- Improve statistics of the final probabilities at ancilla value = 1
- Accuracy did not improve above 1000 shots

• {1, 3, 5} CNOTs: Enables error quantification via Richardson extrapolation

### Appendix: Advances in Quantum Algorithms for Linear Equations

Ambainis (2010, 2012):  $\mathcal{O}(\kappa \log(N))\epsilon^3$ 

 Variable-time amplitude amplification: Branches of the computation stop earlier than other branches.

Childs et al. (2017): 
$$\mathcal{O}(\kappa \log(N) \mathrm{poly} \log(1/\epsilon))$$

 Replaced Phase Estimation algorithm with linear combination of Fourier or Chebyshev series operator representation.

Subasi et al. (2019): 
$$\mathcal{O}(\kappa \log(N)/\epsilon)$$

• "Adiabatically Inspired" simplification of the algorithm that connects  $|b\rangle$  and  $|x\rangle$  by continuous evolution of the Hamiltonian.