Booleans

We represent false as 0 and we represent true as 1. Let \oplus denote "exclusive or", which here is "addition modulo 2".

Question 1. Suppose $f, g : \{0, 1\}^n \to \{0, 1\}$. Define $h(x) = f(x) \oplus g(x)$. Prove that h always outputs 0 if and only if f and g are the same function.

Question 2. For a Boolean string $x = x_1 \dots x_n$, define

$$(-1)^x = (-1)^{(x_1 + \dots + x_n)}$$

$$\mathsf{XOR}(x) = x_1 \oplus \dots \oplus x_n$$

Prove that $(-1)^x = 1$ if and only if XOR(x) = 0.

Question 3. For a function $f:\{0,1\}^n \to \{0,1\}$, we say that f is *constant* if either f always outputs 0 or f always outputs 1.

Prove that f is constant if and only if $f(0) \oplus f(1) = 0$.

exclusive or: return 1 if one of the statement is 1 and return 0 if both statements are the same.

Offrom that h always outputs 0 if f and g are the same function.

Assume that f and g are the same function, f(x) = g(x) $h(x) = f(x) \oplus g(x) = f(x) \oplus f(x)$

Since \oplus always returns O if the values of these functions are the same . $f(x) \oplus f(x) = 0$.: h(x) = 0.

:. In always outputs 0 if f and g are the same function.

Prove that f and g are the same function if h always outputs o.

Assume that h(x) always outputs o.

 $h(x) = f(x) \oplus g(x)$ in $f(x) \oplus g(x) = 0$ two

Since \oplus returns O only when the values of the functions are the same, $i \cdot f(x) = g(x)$ for all x.

: f and g are the same function.

... f and g are the same function if h always outputs o

in h always outputs o if and only if f and g are the same function.

$$(-1)^x = (-1)^{(x_1+\ldots+x_n)}$$

 $\mathsf{XOR}(x) = x_1 \oplus \ldots \oplus x_n$

Prove that $(-1)^x = 1$ if and only if XOR(x) = 0.

Prove that $(-1)^x = 1$ if X OR(x) = 0.

Assume XOR(x) = 0. $X_1 \oplus ... \oplus X_n = 0$

Since 1 returns 0 only when there is an even number of 1 values in X such that every pair of 1 values would be cancelled out.

:. $X_1 + ... + X_N$ must also be an even number $\Rightarrow (-1)^{(X_1 + ... + X_N)} = 1$

 $(-1)^{x} = (-1)^{(x_1 + ... + x_n)}$ $(-1)^{x} = (-1)^{(x_1 + ... + x_n)}$

(2)

Prove that XOR(x) = 0 if $(-1)^x = 1$. Assume $(-1)^x = 1$ in $(-1)^{(x_1 + \dots + x_n)} = 1$.

: XI + ... + Xn must be an even number

There is an even number of 1 values in x In XOR, even number of 1 values would be cancelled out, and there are only number of 0 values left.

 \therefore XOR(x) = 0

: XOR(x) = 0 if $(-1)^{x} = 1$

i. $(-1)^{x} = 1$ if and only if XDR(x) = 0.

1) Prove that $f(0) \oplus f(1) = 0$ if f is constant.

Assume f is constant, then f always outputs the same value (either always 0 or always 1).

f(x) = f(0) = f(1).

Since \oplus returns O if the values of two functions are the same, i. $f(o) \oplus f(i) = 0$.

:. $f(0) \oplus f(1) = 0$ if f is constant.

Prove that f is constant if $f(0) \oplus f(1) = 0$. $f(0) \oplus f(1) = 0$.

Since \oplus returns \odot only when both of the functions return the same value, in f(0) = f(1)

 $: f: \{0,1\}^n \rightarrow \{0,1\}, \quad f(0) = f(1)$

or both of f(0) and f(1) return 0 or both of f(0) and f(1) return 1

: Either f always outputs 0 or f always outputs 1

is f is constant if $f(0) \oplus f(1) = 0$

:. f is constant if and only if f(0) @ f(1) = 0