Homework 3

Please use the 180 nm process parameters shown at the end of homework for all the homework questions. For NMOS as $R_n = 6.47 K\Omega$, for PMOS as $R_p = 29.6 K\Omega$, and $C_1 = 0.89 f\,F)$

- 1. (10pt) Draw the transistor-level schematics for domino gates that implement these functions:
 - (a) a+b+c
 - (b) (abc)'
 - (c) ((a+b)c)'
- 2. (10 pts) For the RC circuit shown below, compute the Elmore delays of from
 - (a) from node 1 to node 4;
 - (b) from node 1 to node 7;
 - (c) from node 4 to node 7;

- 3. (20pt) Compute the Elmore delay for these wires assuming each wire is divided into 100 sections:
- a) Poly wire of width 2 λ , length 1,000 λ .
- b) Metal 1 wire of width 3 λ , length 1,000 λ .
- c) Metal 1 wire of width 3 λ , length 10,000 λ .

- 4. (20pt) Compute the optimal number of buffers and buffer sizes for these RC wires when driven by a minimum-size inverter:
 - a) Poly wire of width 3 λ , length 1,000 λ .
 - b) Metal 2 wire of width 3 λ , length 10,000 λ .
- 5. (15pt) Compute the density of these channels. Vertically aligned pins are shown with dotted lines.

a) C d b a e d a C b e b) f d b C e a b f d e C a

6. (15 pts) For the provided channel (dotted lines show the vertically aligned pins), route the channel using the left-edge algorithm.

- 7. (10) For each of these logic networks, draw the logic diagram and find the critical path, assuming that the delay through all *n*-input gates are *n*, delay through an inverter is 1.
 - (a) NAND2(NAND2(a,b),NAND2(c,d)).
 - (b) AOI21(NAND3(a,b,c), NOR2(d,e), INV(NAND2(f,g)))

- 8. A string of inverters drives a load of 50 pF. Assuming gate capacitance of the input inverter is 18 fF and P_{inv} is 1. To get minimal delay, you are asked to determine the number of inverter stages and sizes following the steps:
- 1) Use $\widehat{N} \approx \log_{\widetilde{f}} F$ to estimate the number of stages N (Let $\widehat{f} = 4$)
- 2) Calculate **path delay** and **inverter sizes** (in terms of gate capacitance) using the estimated *N*.
- 3) Calculate path delay respectively using N+1 and N-1. Evaluate the estimation accuracy in step 1)

n-type transconductance	k'n	2
	K n	170μA/V ²
p-type transconductance	k' _p	$-30\mu A/V^2$
n-type threshold voltage	V _{tn}	0.5 V
p-type threshold voltage	V_{tp}	-0.5V
n-diffusion bottomwall capacitance	C _{ndiff,bot}	940aF/μm ²
n-diffusion sidewall capacitance	C _{ndiff,side}	200aF/μm
p-diffusion bottomwall capacitance	C _{pdiff,bot}	1000 <i>a</i> F/μm ²
p-diffusion sidewall capacitance	C _{pdiff,side}	200aF/μm
n-type source/drain resistivity	R _{ndiff}	7Ω/□
p-type source/drain resistivity	R _{pdiff}	7Ω/□
poly-substrate plate capacitance	C _{poly,plate}	63aF/μm ²
poly-substrate fringe capacitance	C _{poly,fringe}	63 <i>a</i> F/μm
poly resistivity	R _{poly}	8Ω/□
metal 1-substrate plate capacitance	C _{metal1,plate}	36 <i>a</i> F/μm ²
metal 1-substrate fringe capacitance	C _{metal1,fringe}	54aF/μm
metal 2-substrate capacitance	C _{metal2,plate}	$36aF/\mu m^2$
metal 2-substrate fringe capacitance	C _{metal2,fringe}	51aF/μm
metal 3-substrate capacitance	C _{metal3,plate}	$37aF/\mu m^2$
metal 3-substrate fringe capacitance	C _{metal3,fringe}	54aF/μm
metal 1 resistivity	R _{metal1}	0.08Ω/□
metal 2 resistivity	R _{metal2}	0.08Ω/□
metal 3 resistivity	R _{metal3}	0.03Ω/□
metal current limit	I _{m,max}	lmA/μm

Typical 180 nm process parameters