Insurance Exploratory Data Analysis (EDA)

This notebook explores the cleaned insurance dataset to uncover **premium drivers**, **customer segments**,

and retention opportunities. It moves beyond cleaning into visualization, correlation, and clustering to derive actionable business insights.

Project Overview

Business Context

After cleaning and wrangling, the next step is to identify key factors influencing insurance premiums and to discover natural customer segments for pricing and marketing.

Goal

Use descriptive statistics, visualization, and clustering to:

- 1. Understand premium distribution and drivers,
- 2. Segment customers by risk and revenue potential,
- 3. Highlight actionable insights for retention and upsell.

Deliverable

Key visuals, cluster profiles, and a ranked list of premium drivers.

1. Load and Inspect the Data

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Load the dataset
df = pd.read_csv("data/Insurance.csv")

# Preview structure
print("Shape:", df.shape)
print("\nColumn Info:")
print(df.info())
df.head()
```

Shape: (2082, 23)

Column Info:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2082 entries, 0 to 2081
Data columns (total 23 columns):

#	Column	Non-Null Count	Dtype
0	Customer ID	2082 non-null	int64
1	Age	2082 non-null	int64
2	Gender	2082 non-null	object
3	Marital Status	2082 non-null	object
4	Occupation	2082 non-null	object
5	Income Level	2082 non-null	int64
6	Education Level	2082 non-null	object
7	Geographic Information	2082 non-null	object
8	Location	2082 non-null	int64
9	Purchase History	2082 non-null	object
10	Policy Start Date	2082 non-null	object
11	Policy Renewal Date	2082 non-null	object
12	Claim History	2082 non-null	int64
13	Coverage Amount	2082 non-null	int64
14	Premium Amount	2082 non-null	int64
15	Deductible	2082 non-null	int64
16	Policy Type	2082 non-null	object
17	Preferred Communication Channel	2082 non-null	object
18	Preferred Contact Time	2082 non-null	object
19	Risk Profile	2082 non-null	int64
20	Credit Score	2082 non-null	int64
21	Driving Record	2082 non-null	object
22	Life Events	2082 non-null	object

dtypes: int64(10), object(13)
memory usage: 374.2+ KB

None

Out[17]:

•		Customer ID	Age	Gender	Marital Status	Occupation	Income Level	Education Level	Geographic Information	Locati
	0	15043	48	Female	Single	Engineer	72654	Associate Degree	Karnataka	751
	1	88777	50	Male	Divorced	Manager	93448	Master's Degree	Karnataka	567
	2	62911	53	Male	Widowed	Doctor	92558	Doctorate	Arunachal Pradesh	602
	3	38955	38	Male	Widowed	Salesperson	78536	High School Diploma	Andhra Pradesh	347
	4	3935	42	Male	Married	Salesperson	90220	High School Diploma	Puducherry	142
5 rows × 23 columns										

2. Premium Drivers – Explore the Target

```
In [21]: # Histogram of Premium Amount
plt.figure(figsize=(6,4))
sns.histplot(df['Premium Amount'], bins=30, kde=True)
plt.title("Distribution of Premium Amount")
plt.savefig("charts/premium_distribution.png", dpi=300, bbox_inches='tight')
plt.show()
```



```
In [22]: # Boxplot of Premium Amount
plt.figure(figsize=(6,4))
sns.boxplot(x=df['Premium Amount'])
plt.title("Boxplot of Premium Amount")
plt.savefig("charts/premium_boxplot.png", dpi=300, bbox_inches='tight')
plt.show()
```

Boxplot of Premium Amount

The premium distribution is roughly bell-shaped, centered around ~3,000, with most policies between 2,000 and 3,500. A few low-premium outliers fall below about 1,000, and only a small tail extends above 4,500. This indicates a fairly tight pricing range with a small set of minimal-coverage customers and a modest high-end segment for potential upsell.

```
In [28]: # Correlations with Numeric Drivers
num_cols = ['Premium Amount','Coverage Amount','Deductible','Income Level','Age']
sns.heatmap(df[num_cols].corr(), annot=True, cmap="coolwarm")
plt.title("Correlation Heatmap - Premium Drivers")
plt.savefig("charts/Correlations.png", dpi=300, bbox_inches='tight')
plt.show()
```


Premium amount rises strongly with **coverage** and **income**, while it drops as **deductible** increases. Age shows only a mild positive link, suggesting price is driven more by policy size and customer income than by age.

3. Risk vs Revenue Segments - Clustering

```
In [32]: from sklearn.preprocessing import StandardScaler
    from sklearn.cluster import KMeans

features = df[['Premium Amount','Coverage Amount','Deductible','Age']]
```

```
scaled = StandardScaler().fit_transform(features)
kmeans = KMeans(n_clusters=3, random_state=42)
df['Segment'] = kmeans.fit_predict(scaled)
# Average values for key drivers in each segment
segment_profile = (
   df.groupby('Segment')[['Premium Amount',
                           'Coverage Amount',
                           'Deductible',
                           'Age']]
      .mean()
      .round(0)
display(segment_profile)
sns.boxplot(x='Segment', y='Premium Amount', data=df)
plt.title("Premium by Customer Segment")
plt.savefig("charts/Segment.png", dpi=300, bbox_inches='tight')
plt.show()
```

Premium Amount Coverage Amount Deductible Age

Segment

0	2930.0	562287.0	1186.0 42.0
1	2099.0	401575.0	1367.0 43.0
2	3305.0	590010.0	1131.0 50.0

- Segment 2 represents high-revenue, higher-risk customers with the largest premiums and coverage but the smallest deductibles.
- Segment 1 are budget customers with the lowest premiums and highest deductibles.
- Segment 0 sits in between, offering balanced revenue and risk.

4. Retention & Upsell Indicators

The black lines represent a bootstrap confidence interval (by default 95%) for the median premium in each age group. They give a quick visual cue of how stable the median estimate is: Short bars \rightarrow the median is precise (low variability). Tall bars \rightarrow more spread in the data or fewer samples, so the median is less certain.

Insight: Premiums tend to increase steadily with age, peaking in the 50–70 group. Older customers therefore represent a higher-value segment for targeted retention or upsell campaigns.

Summary

- The analysis shows that coverage amount and deductible are the strongest premium drivers, with income and age having smaller effects.
- Clustering customers reveals a high-revenue segment (high coverage, low deductible), a balanced mid-range group, and a low-value basic group, helping target pricing and marketing.
- Premiums also rise steadily with age, highlighting middle-aged and older customers as key opportunities for retention and upsell.