1

Matrix Theory EE5609

Sandhya Addetla PhD Artificial Inteligence Department AI20RESCH14001

Assignment-9

Problem:

Let M_n denote the vector space of all $n \times n$ real matrices. Which of the following is a linear subspaces of M_n :-

- 1) $V_1 = \{A \in M_n : A \text{ is nonsingular}\}$
- 2) $V_2 = \{A \in M_n : det(A) = 0\}$
- 3) $V_3 = \{A \in M_n : trace(A) = 0\}$
- 4) $V_4 = \{BA : A \in M_n\}$, where B is some fixed matrix in M_n

Solution:

Vector space	Is it subspace to M_n ?
1) V_1 : All non- singular matrices of $n \times n$	The matrices $I_{n\times n}$ and $-I_{n\times n}$ are non-singular matrices, but the sum $I_{n\times n} - I_{n\times n}$ is zero matrix and it is singular. $\therefore V_1$ does not form subspace of M_n .
2) V_2 : All singular matrices of $n \times n$	The matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ are singular matrices, but the sum is a non-singular matrix. $\therefore V_2$ does not form subspace M_n .
3) V_3 : All matrices of $n \times n$ with trace =0	Let $\mathbf{v_1}$ and $\mathbf{v_2}$ be matrices with Trace = 0. $Tr(\mathbf{v_1} + \alpha \mathbf{v_2}) = Tr(\mathbf{v_1}) + \alpha Tr(\mathbf{v_2}) = 0.$ \therefore the vector space V_3 forms linear subspace of M_n .
4) V_4 : $F_A = BA$, where B is some fixed matrix in M_n	Let $\mathbf{v_1}$ and $\mathbf{v_2}$ be matrices in the vector space V_4 . $F_{v_1+\alpha v_2} = B(\mathbf{v_1} + \alpha \mathbf{v_2})$ $= B\mathbf{v_1} + \alpha B\mathbf{v_2} =$ $F_{v_1} + \alpha F_{v_2}.$ $\therefore V_4 \text{ forms linear subspace}$ of M_n .