

ETC3550 Applied forecasting for business and economics

Ch3. The forecasters' toolbox OTexts.org/fpp3/

Outline

- 1 Some simple forecasting methods
- 2 Box-Cox transformations
- 3 Residual diagnostics
- 4 Evaluating forecast accuracy
- 5 Prediction intervals

Outline

- 1 Some simple forecasting methods
- 2 Box-Cox transformations
- 3 Residual diagnostics
- 4 Evaluating forecast accuracy
- 5 Prediction intervals

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \ldots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \ldots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h|T} = y_T$.
- Consequence of efficient market hypothesis.

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \ldots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h|T} = y_T$.
- Consequence of efficient market hypothesis.

Seasonal naïve method

- Forecasts equal to last value from same season.
- Forecasts: $\hat{y}_{T+h|T} = y_{T+h-m(k+1)}$, where m = seasonal period and k is the integer part of (h-1)/m.

Drift method

- Forecasts equal to last value plus average change.
- Forecasts:

$$\hat{y}_{T+h|T} = y_T + \frac{h}{T-1} \sum_{t=2}^{T} (y_t - y_{t-1})$$
$$= y_T + \frac{h}{T-1} (y_T - y_1).$$

Equivalent to extrapolating a line drawn between first and last observations.

- Mean: MEAN(y)
- Naïve: NAIVE(y)
- Seasonal naïve: SNAIVE(y)
- Drift: RW(y ~ drift())

- Mean: MEAN(y)
- Naïve: NAIVE(y)
- Seasonal naïve: SNAIVE(y)
- Drift: RW(y ~ drift())

Your turn

- Use these four functions to produce forecasts for goog and auscafe.
- Plot the results using autoplot().

Outline

- 1 Some simple forecasting methods
- 2 Box-Cox transformations
- 3 Residual diagnostics
- 4 Evaluating forecast accuracy
- 5 Prediction intervals

If the data show different variation at different levels of the series, then a transformation can be useful.

If the data show different variation at different levels of the series, then a transformation can be useful.

Denote original observations as y_1, \ldots, y_n and transformed observations as w_1, \ldots, w_n .

If the data show different variation at different levels of the series, then a transformation can be useful.

Denote original observations as y_1, \ldots, y_n and transformed observations as w_1, \ldots, w_n .

Mathematical transformations for stabilizing variation

Square root
$$w_t = \sqrt{y_t}$$

Cube root
$$w_t = \sqrt[3]{y_t}$$
 Increasing

Logarithm
$$w_t = \log(y_t)$$
 strength

If the data show different variation at different levels of the series, then a transformation can be useful.

Denote original observations as y_1, \ldots, y_n and transformed observations as w_1, \ldots, w_n .

Mathematical transformations for stabilizing variation

Square root
$$w_t = \sqrt{y_t}$$
 \downarrow Cube root $w_t = \sqrt[3]{y_t}$ Increasing Logarithm $w_t = \log(y_t)$ strength

Logarithms, in particular, are useful because they are more interpretable: changes in a log value are **relative (percent) changes on the original scale**.

Each of these transformations is close to a member of the family of **Box-Cox transformations**:

$$w_t = \begin{cases} \log(y_t), & \lambda = 0; \\ (y_t^{\lambda} - 1)/\lambda, & \lambda \neq 0. \end{cases}$$

Each of these transformations is close to a member of the family of **Box-Cox transformations**:

$$w_t = \begin{cases} \log(y_t), & \lambda = 0; \\ (y_t^{\lambda} - 1)/\lambda, & \lambda \neq 0. \end{cases}$$

- λ = 1: (No substantive transformation)
- $\lambda = \frac{1}{2}$: (Square root plus linear transformation)
- λ = 0: (Natural logarithm)
- $\lambda = -1$: (Inverse plus 1)

- \mathbf{y}_t^{λ} for λ close to zero behaves like logs.
- If some $y_t = 0$, then must have $\lambda > 0$
- if some $y_t < 0$, no power transformation is possible unless all y_t adjusted by adding a constant to all values.
- Simple values of λ are easier to explain.
- Results are relatively insensitive to λ .
- Often no transformation (λ = 1) needed.
- Transformation can have very large effect on PI.
- Choosing λ = 0 is a simple way to force forecasts to be positive

Automated Box-Cox transformations

```
forecast::BoxCox.lambda(elec$value)
```

```
## [1] -0.1143683
```

Automated Box-Cox transformations

```
forecast::BoxCox.lambda(elec$value)
```

```
## [1] -0.1143683
```

- This attempts to balance the seasonal fluctuations and random variation across the series.
- Always check the results.
- A low value of λ can give extremely large prediction intervals.

Back-transformation

We must reverse the transformation (or back-transform) to obtain forecasts on the original scale. The reverse Box-Cox transformations are given by

$$y_t = \begin{cases} \exp(w_t), & \lambda = 0; \\ (\lambda W_t + 1)^{1/\lambda}, & \lambda \neq 0. \end{cases}$$

Back-transformation

```
fc <- elec %>%
  model(SNAIVE(BoxCox(value, lambda=1/3)))
  forecast()
fc %>% autoplot(elec)
```


Back-transformation

Your turn

Find a Box-Cox transformation that works for the gas data.

Bias adjustment

- Back-transformed point forecasts are medians.
- Back-transformed PI have the correct coverage.

- Back-transformed point forecasts are medians.
- Back-transformed PI have the correct coverage.

Back-transformed means

Let X be have mean μ and variance σ^2 .

Let f(x) be back-transformation function, and Y = f(X).

Taylor series expansion about μ :

$$f(X) = f(\mu) + (X - \mu)f'(\mu) + \frac{1}{2}(X - \mu)^2 f''(\mu).$$

- Back-transformed point forecasts are medians.
- Back-transformed PI have the correct coverage.

Back-transformed means

Let X be have mean μ and variance σ^2 .

Let f(x) be back-transformation function, and Y = f(X).

Taylor series expansion about μ :

$$f(X) = f(\mu) + (X - \mu)f'(\mu) + \frac{1}{2}(X - \mu)^2 f''(\mu).$$

$$E[Y] = E[f(X)] = f(\mu) + \frac{1}{2}\sigma^2 f''(\mu)$$

Box-Cox back-transformation:

$$y_t = \begin{cases} \exp(w_t) & \lambda = 0; \\ (\lambda W_t + 1)^{1/\lambda} & \lambda \neq 0. \end{cases}$$

$$f(x) = \begin{cases} e^x & \lambda = 0; \\ (\lambda x + 1)^{1/\lambda} & \lambda \neq 0. \end{cases}$$

$$f''(x) = \begin{cases} e^x & \lambda = 0; \\ (1 - \lambda)(\lambda x + 1)^{1/\lambda - 2} & \lambda \neq 0. \end{cases}$$

Box-Cox back-transformation:

$$y_t = \begin{cases} \exp(w_t) & \lambda = 0; \\ (\lambda W_t + 1)^{1/\lambda} & \lambda \neq 0. \end{cases}$$

$$f(x) = \begin{cases} e^x & \lambda = 0; \\ (\lambda x + 1)^{1/\lambda} & \lambda \neq 0. \end{cases}$$

$$f''(x) = \begin{cases} e^x & \lambda = 0; \\ (1 - \lambda)(\lambda x + 1)^{1/\lambda - 2} & \lambda \neq 0. \end{cases}$$

$$\mathsf{E}[\mathsf{Y}] = \begin{cases} e^{\mu} \left[1 + \frac{\sigma^2}{2} \right] & \lambda = 0; \\ (\lambda \mu + 1)^{1/\lambda} \left[1 + \frac{\sigma^2 (1 - \lambda)}{2(\lambda \mu + 1)^2} \right] & \lambda \neq 0. \end{cases}$$

```
eggs <- as_tsibble(fma::eggs)
fit <- eggs %>% model(RW(log(value) ~ drift()))
fc <- fit %>% forecast(h=50)
fc_biased <- fit %>% forecast(h=50, bias_adjust = FALSE)
eggs %>% autoplot(value) +
  autolayer(fc_biased, series="Simple back transformation", level
  autolayer(fc, series="Bias adjusted", level = NULL) +
  guides(colour=guide_legend(title="Forecast"))
```


Outline

- 1 Some simple forecasting methods
- 2 Box-Cox transformations
- 3 Residual diagnostics
- 4 Evaluating forecast accuracy
- 5 Prediction intervals

Fitted values

- $\hat{y}_{t|t-1}$ is the forecast of y_t based on observations y_1, \dots, y_t .
- We call these "fitted values".
- Sometimes drop the subscript: $\hat{y}_t \equiv \hat{y}_{t|t-1}$.
- Often not true forecasts since parameters are estimated on all data.

For example:

- $\hat{y}_t = \bar{y}$ for average method.
- $\hat{y}_t = y_{t-1} + (y_T y_1)/(T 1)$ for drift method.

Forecasting residuals

Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

Forecasting residuals

Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

Assumptions

- $\{e_t\}$ uncorrelated. If they aren't, then information left in residuals that should be used in computing forecasts.
- $\{e_t\}$ have mean zero. If they don't, then forecasts are biased.

Forecasting residuals

Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

Assumptions

- $\{e_t\}$ uncorrelated. If they aren't, then information left in residuals that should be used in computing forecasts.
- $\{e_t\}$ have mean zero. If they don't, then forecasts are biased.

Useful properties (for prediction intervals)

- $\{e_t\}$ have constant variance.
- $\{e_t\}$ are normally distributed.

```
goog200 %>% autoplot(Price) +
  xlab("Day") + ylab("Closing Price (US$)") +
  ggtitle("Google Stock (daily ending 6 December 2013)")
```


Naïve forecast:

$$\hat{\mathsf{y}}_{t|t-1} = \mathsf{y}_{t-1}$$

Naïve forecast:

$$\hat{\mathsf{y}}_{t|t-1} = \mathsf{y}_{t-1}$$

$$e_t = y_t - y_{t-1}$$

Naïve forecast:

$$\hat{\mathbf{y}}_{t|t-1} = \mathbf{y}_{t-1}$$

$$e_t = y_t - y_{t-1}$$

Note: e_t are one-step-forecast residuals

```
fit <- goog200 %>% model(NAIVE(Price))
augment(fit) %>%
  ggplot(aes(x = Time)) +
  geom_line(aes(y = Price, colour = "Data")) +
  geom_line(aes(y = .fitted, colour = "Fitted")) +
  xlab("Day") + ylab("Closing Price (US$)") +
  ggtitle("Google Stock (daily ending 6 December 2013)")
```



```
residuals(fit) %>%
autoplot(.resid) + xlab("Day") + ylab("") +
ggtitle("Residuals from naïve method")
```

```
## Warning: Removed 1 rows containing missing
## values (geom_path).
```



```
residuals(fit) %>%
  ggplot(aes(x = .resid)) +
  geom_histogram() +
  ggtitle("Histogram of residuals")
```

stat_bin() using bins = 30. Pick
better value with binwidth.

residuals(fit) %>% ACF(.resid) %>% autoplot() + ggtitle("ACF

ACF of residuals

- We assume that the residuals are white noise (uncorrelated, mean zero, constant variance). If they aren't, then there is information left in the residuals that should be used in computing forecasts.
- So a standard residual diagnostic is to check the ACF of the residuals of a forecasting method.
- We *expect* these to look like white noise.

Consider a whole set of r_k values, and develop a test to see whether the set is significantly different from a zero set.

Consider a whole set of r_k values, and develop a test to see whether the set is significantly different from a zero set.

Box-Pierce test

$$Q = T \sum_{k=1}^{h} r_k^2$$

where *h* is max lag being considered and *T* is number of observations.

- If each r_k close to zero, Q will be **small**.
- If some r_k values large (positive or negative), Q will be large.

Consider a whole set of r_k values, and develop a test to see whether the set is significantly different from a zero set.

Ljung-Box test

$$Q^* = T(T+2) \sum_{k=1}^{h} (T-k)^{-1} r_k^2$$

where *h* is max lag being considered and *T* is number of observations.

- My preferences: h = 10 for non-seasonal data,
 h = 2m for seasonal data.
- Better performance, especially in small samples.

- If data are WN, Q* has χ^2 distribution with (h K)degrees of freedom where K = no. parameters in model.
- When applied to raw data, set K = 0.
- For the Google example:

```
# lag=h and fitdf=K
Box.test(residuals(fit)$.resid, lag=10, fitdf=0, type="Lj")
##
    Box-Ljung test
##
##
   data: residuals(fit)$.resid
  X-squared = 11.031, df = 10, p-value =
## 0.3551
```

43

checkresiduals function

checkresiduals(naive(goog200))

Your turn

Compute seasonal naïve forecasts for quarterly Australian beer production from 1992.

```
beer <- ausbeer %>% filter(year(Time) >= 1992)
fit <- beer %>% model(snaive(Production))
fit %>% forecast() %>% autoplot(beer)
```

Test if the residuals are white noise.

```
fit %>% residuals %>% checkresiduals(.resid)
```

What do you conclude?

Outline

- 1 Some simple forecasting methods
- 2 Box-Cox transformations
- 3 Residual diagnostics
- 4 Evaluating forecast accuracy
- 5 Prediction intervals

Training and test sets

- A model which fits the training data well will not necessarily forecast well.
- A perfect fit can always be obtained by using a model with enough parameters.
- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.
- The test set must not be used for *any* aspect of model development or calculation of forecasts.
- Forecast accuracy is based only on the test set.

Forecast errors

Forecast "error": the difference between an observed value and its forecast.

$$e_{T+h} = y_{T+h} - \hat{y}_{T+h|T},$$

where the training data is given by $\{y_1, \ldots, y_T\}$

- Unlike residuals, forecast errors on the test set involve multi-step forecasts.
- These are *true* forecast errors as the test data is not used in computing $\hat{y}_{T+h|T}$.


```
y_{T+h} = (T+h)th observation, h = 1, ..., H
\hat{y}_{T+h|T} = \text{its forecast based on data up to time } T.
e_{T+h} = y_{T+h} - \hat{y}_{T+h|T}

MAE = mean(|e_{T+h}|)

MSE = mean(e_{T+h}^2)

RMSE = \sqrt{\text{mean}(e_{T+h}^2)}

MAPE = 100mean(|e_{T+h}|/|y_{T+h}|)
```

$$y_{T+h} = (T+h)$$
th observation, $h = 1, ..., H$
 $\hat{y}_{T+h|T} =$ its forecast based on data up to time T .
 $e_{T+h} = y_{T+h} - \hat{y}_{T+h|T}$

MAE = mean(
$$|e_{T+h}|$$
)
MSE = mean(e_{T+h}^2)

MAPE = 100mean(
$$|e_{T+h}|/|y_{T+h}|$$
)

MAE, MSE, RMSE are all scale dependent.

 $v_{\star} \gg 0$ for all t and v has a natural zero

MAPE is scale independent but is only sensible if

RMSE = $\sqrt{\text{mean}(e_{T+h}^2)}$

Mean Absolute Scaled Error

MASE = mean(
$$|e_{T+h}|/Q$$
)

where Q is a stable measure of the scale of the time series $\{y_t\}$.

Proposed by Hyndman and Koehler (IJF, 2006).

For non-seasonal time series,

$$Q = (T-1)^{-1} \sum_{t=2}^{T} |y_t - y_{t-1}|$$

works well. Then MASE is equivalent to MAE relative to a naïve method.

Mean Absolute Scaled Error

MASE = mean(
$$|e_{T+h}|/Q$$
)

where Q is a stable measure of the scale of the time series $\{y_t\}$.

Proposed by Hyndman and Koehler (IJF, 2006).

For seasonal time series,

$$Q = (T - m)^{-1} \sum_{t=m+1}^{T} |y_t - y_{t-m}|$$

works well. Then MASE is equivalent to MAE relative to a seasonal naïve method.


```
beer2 <- ausbeer %>% filter(between(year(Time), 1992, 2007))
beer3 <- ausbeer %>% filter(year(Time) > 2007)
fc <- beer2 %>%
    model(
        Mean = MEAN(Production),
        Naïve = NAIVE(Production),
        Seasonal naïve = SNAIVE(Production)
) %>%
    forecast(h = 10)
accuracy(fc, beer3)
```

	RMSE	MAE	MAPE
Mean	38.44724	34.825	8.283390
Naïve	62.69290	57.400	14.184424
Seasonal naïve	14.31084	13.400	3.168503

Poll: true or false?

- Good forecast methods should have normally distributed residuals.
- A model with small residuals will give good forecasts.
- The best measure of forecast accuracy is MAPE.
- If your model doesn't forecast well, you should make it more complicated.
- Always choose the model with the best forecast accuracy as measured on the test set.

Time series cross-validation

Traditional evaluation

Time series cross-validation

Time series cross-validation

Traditional evaluation

- Forecast accuracy averaged over test sets.
- Also known as "evaluation on a rolling forecasting origin"

tsCV function

A good way to choose the best forecasting model is to find the model with the smallest RMSE computed using time series cross-validation.

Pipe function

%TODO: better example of pipe utility

Ugly code:

Better with a pipe:

```
goog200 %>%

tsCV(forecastfunction=rwf, drift=TRUE, h=1) -> e
e^2 %>% mean(na.rm=TRUE) %>% sqrt
goog200 %>% rwf(drift=TRUE) %>% residuals -> res
```

Outline

- 1 Some simple forecasting methods
- 2 Box-Cox transformations
- 3 Residual diagnostics
- 4 Evaluating forecast accuracy
- 5 Prediction intervals

- A forecast $\hat{y}_{T+h|T}$ is (usually) the mean of the conditional distribution $y_{T+h} \mid y_1, \dots, y_T$.
- A prediction interval gives a region within which we expect y_{T+h} to lie with a specified probability.
- Assuming forecast errors are normally distributed, then a 95% PI is

$$\hat{\mathbf{y}}_{T+h|T} \pm 1.96\hat{\sigma}_h$$

where $\hat{\sigma}_h$ is the st dev of the *h*-step distribution.

■ When h = 1, $\hat{\sigma}_h$ can be estimated from the residuals.

Naive forecast with prediction interval:

```
res_sd <- sqrt(mean(res^2, na.rm=TRUE))
c(tail(goog200,1)) + 1.96 * res_sd * c(-1,1)
```

```
naive(goog200, level=95)
```

- Point forecasts are often useless without prediction intervals.
- Prediction intervals require a stochastic model (with random errors, etc).
- Multi-step forecasts for time series require a more sophisticated approach (with PI getting wider as the forecast horizon increases).

Assume residuals are normal, uncorrelated, sd = $\hat{\sigma}$:

Mean forecasts:
$$\hat{\sigma}_h = \hat{\sigma} \sqrt{1 + 1/T}$$

Naïve forecasts:
$$\hat{\sigma}_h = \hat{\sigma}\sqrt{h}$$

Seasonal naïve forecasts
$$\hat{\sigma}_h = \hat{\sigma}\sqrt{k+1}$$

Drift forecasts:
$$\hat{\sigma}_h = \hat{\sigma} \sqrt{h(1+h/T)}$$
.

where k is the integer part of (h-1)/m.

Note that when h = 1 and T is large, these all give the same approximate value $\hat{\sigma}$.

- Computed automatically using: naive(), snaive(), rwf(), meanf(), etc.
- Use level argument to control coverage.
- Check residual assumptions before believing them.
- Usually too narrow due to unaccounted uncertainty.