# Assignment 2 (ICSE 2019 Grade 12)

Busireddy Asli Nitej Reddy (CS21BTECH11011)

## PROBLEM 2(A)

The following results were obtained with respect to two variable x and y

| sigma | $\sum x$ | $\sum y$ | $\sum xy$ | $\sum x^2$ | $\sum y^2$ | $\sum n$ |
|-------|----------|----------|-----------|------------|------------|----------|
| value | 15       | 25       | 83        | 55         | 135        | 5        |
|       |          | •        | TABLE     |            | •          | •        |

ALL VALUES OF SIGMAS IN A TABLE

- 1) Find the regression coefficient  $b_{xy}$
- 2) Find the regression equation of x on y

### **SOLUTION**

#### Part 1

the formulae for calculating  $b_{xy}$  is

$$b_{xy} = \frac{\sum xy - \frac{\sum x \times \sum y}{n}}{\sum y^2 - \frac{(\sum y)^2}{n}}$$
(1)

substituting the values in eq(1)

$$b_{xy} = \frac{83 - \frac{15 \times 25}{5}}{135 - \frac{(25)^2}{5}} = \frac{4}{5} = 0.8$$
 (2)

 $\therefore$  the value of  $b_{xy}$  is 0.8

### Part 2

in this part we need to find the regression equation of x on y formulae for that is

The Normal equation of a line is given by

$$\mathbf{n}^{\top}\mathbf{x} = c \tag{3}$$

where n is the normal vector of the line. so we need to calculate n for that we need The direction vector of regression equation of that line which is m, and is given by

$$\mathbf{m} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \tag{4}$$

$$\mathbf{m}^{\mathsf{T}}\mathbf{n} = 0 \tag{5}$$

om keeping value for solving n and  $n^{\top}$  we get

$$\implies (4 \quad 5) \mathbf{n} = 0 \tag{6}$$

$$\implies \mathbf{n} = \begin{pmatrix} 5 \\ -4 \end{pmatrix} \tag{7}$$

$$\implies \mathbf{n}^{\top} = \begin{pmatrix} 5 & -4 \end{pmatrix} \tag{8}$$

for calculating c we use a point on line  $\begin{pmatrix} 3 \\ 5 \end{pmatrix}$  and based on that we get value of c as

$$c = \begin{pmatrix} 5 & -4 \end{pmatrix} \begin{pmatrix} 3 \\ 5 \end{pmatrix} \tag{9}$$

$$c = -5 \tag{10}$$

Thus, line  $L \equiv \begin{pmatrix} 5 & -4 \end{pmatrix} \mathbf{x} = -5$ 



Fig. 1. graph of regression equation of x on y