ТВиМС. Практическое занятие №2

2. Алгебра событий

Алгебра событий. Случайные события. Действия над событиями. Аксиомы вероятностей. Вероятностные схемы. Классическое и статистическое определения вероятности.

2.1. Алгебра событий

Одним из основных понятий теории вероятностей является понятие *слу-чайного события*.

Определение 2.1. **Случайное событие** это подмножество множества элементарных исходов случайного эксперимента.

Далее вводится понятие вероятностного пространства, и строится математически строгая теория вероятностей.

Вероятностное пространство

Рассмотрим конечное или счетное множество $\Omega = \{\omega_1, \omega_2, \ldots, \omega_N\}$, $N \in \mathbb{Z}, N \leqslant +\infty$. Каждому из элементов ω_i любой природы, ставится в соответствие неотрицательное число P_i , такое, что $\sum_{i=1}^N P_i = 1$. Элементы ω_i называются элементарными исходами.

Случайное событие это любое подмножество A множества $\Omega, A \subset \Omega$. Например: $A = \emptyset, A = \{\omega_1\}, A = \{\omega_2, \omega_7\}, A = \Omega$.

Вероятность события А вычисляется по формуле

$$P(A) = \sum_{i:\omega_i \in A} P_i.$$

Случайные события будем обозначать большими латинскими буквами: A,B,C,..., X, Y, Z.

Всякое осуществление комплекса условий, при которых изучается конкретное случайное событие, будем называть опытом или *испытанием*.

Определение 2.2. Событие называется **достоверным** (в дальнейшем Ω), если оно обязательно появится в результате данного испытания.

Определение 2.3. Событие называется **невозможным** (в дальнейшем \varnothing), если оно не может появится в результате данного испытания.

Замечание 2.1. Часто в литературе достоверное событие обозначают буквой U, а невозможное — V.

Определение 2.4. Два события A и B называются **несовместными**, если они не могут появиться в одном испытании. Если событий больше двух, они могут быть попарно несовместными, если любые два из них несовместны.

Определение 2.5. **Противоположеным** событию A называется событие \overline{A} , состоящее в не появлении события A.

Определение 2.6. **Суммой** двух событий A + B называется событие C, состоящее в наступлении хотя бы одного из этих событий.

Т.е. наступает событие А или В или оба одновременно.

Определение 2.7. **Произведением** двух событий $A \cdot B$ называется событие, состоящее в наступлении каждого из этих событий.

Т.е. наступают оба события одновременно.

Определение 2.8. n событий A_1, A_2, \ldots, A_n образуют **полную группу**, если в результате испытания обязательно появится одно из них.

Следовательно,

$$A_1 + A_2 + \ldots + A_n = \Omega$$
.

Отметим, что события A и \overline{A} несовместны и образуют полную группу.

Пример 2.1. Событие A означает, что хотя бы один из шести проверяемых двигателей неисправен, событие B — все двигатели исправны. Что означают события A + B, AB?

◀ Из условия следует, что событие \overline{A} означает, что все двигатели исправны, т.е. $\overline{A} = B$. Следовательно, A и B представляют собой противоположные события, для которых $A + B = A + \overline{A} = \Omega$, $AB = \emptyset$. ▶

Пример 2.2. Пусть событие A — при аварии сработал первый сигнализатор, событие B — сработал второй сигнализатор. Опишите события:

$$A + B$$
, AB , $A \overline{B}$, $\overline{A} \overline{B}$, $A \overline{B} + \overline{A}B$.

Сумма событий A+B означает, что при аварии сработал либо первый сигнализатор, либо второй, либо оба. Событие AB — сработали оба сигнализатора одновременно; $A\overline{B}$ означает, что первый сигнализатор сработал, а второй нет; $\overline{A} \, \overline{B}$ — не сработали оба сигнализатора. $A\overline{B} + \overline{A}B$ — сработал один сигнализатор, первый или второй. ▶

Пример 2.3. Доказать, что: а) $\overline{A+B} = \overline{A} \ \overline{B}$, б) $\overline{AB} = \overline{A} + \overline{B}$.

- а) Событие \overline{A} \overline{B} означает непоявление событий: ни A, ни B. Противоположное событие \overline{A} \overline{B} состоит в том, что хотя бы одно из событий A или B имеет место, а это и есть сумма событий A + B; следовательно, $\overline{A} \cdot \overline{B} = \overline{A + B}$.
- б) Событие AB состоит в совместном появлении событий A и B; событие \overline{AB} состоит в не появлении хотя бы одного из этих событий A, B или в появлении хотя бы одного из событий $\overline{A}, \overline{B}$, а это равносильно $\overline{A} + \overline{B}$.
- **Пример** 2.4. Событие A состоит в том, что хотя бы один из имеющихся десяти цехов не выполняет план; событие B состоит в том, что цехов, не выполняющих план, среди них не менее двух. Описать события: a) \overline{A} u \overline{B} , b) A + B, b) A \overline{B} , c) \overline{A} B.
- ∢ а) \overline{A} все цеха выполняют план, \overline{B} цехов, не выполняющих план, один или нет ни одного; б) так как наступление события B означает также наступление события A, то A+B=A; в) один цех не выполняет план; г) $\overline{A}B=\emptyset$, т.к. события \overline{A} и B несовместны. ▶
- **Пример** 2.5. Из множества супружеских пар наудачу выбирается одна. Событие A мужу больше 30 лет, событие B муж старше жены, событие C жене больше 30 лет. Что означают события: ABC, $A\overline{B}$, $A\overline{B}C$?
- \blacksquare ABC оба супруга старше 30 лет, причём муж старше жены. $A\overline{B}$ мужу больше 30 лет, но он не старше своей жены. $A\overline{B}C$ оба супруга старше 30 лет, но муж не старше своей жены.

Пример 2.6. Пусть A, B, C — три произвольных события. Что означают следующие события:

- a) A + B + C, b) AB + AB, b) ABC, c) $AB\overline{C}$,
- ∂) $A\overline{B}$ \overline{C} , e) \overline{A} \overline{B} \overline{C} , HC) A \overline{B} \overline{C} + \overline{A} $B\overline{C}$ + \overline{A} \overline{B} C,
- 3) $AB\overline{C} + A \overline{B}C + \overline{A} BC$, u) A + B + C ABC ?
- \blacktriangleleft а) Произошло по крайней мере одно из трёх событий; б) произошли по крайней мере два события из трёх; в) произошли все три события; г) произошли A и B, а событие C не произошло; д) произошло A, а события B и C не произошли; е) ни одно событие не произошло; ж) произошло только одно событие; з) произошли только два события; и) произошло не более двух событий.

Если рассматривать событие A как попадание в область A, событие \overline{A} как непопадание в область A и ввести аналогичные обозначения для событий B и C, то рассмотренные события можно представить, как попадание в области, заштрихованные на рис. 1.

Рисунок 1. *Геометрическая иллюстрация операций над событиями*

Пример 2.7. Доказать, что события $A, \overline{A}B, \overline{A+B}$ образуют полную группу попарно несовместных событий.

 \blacktriangleleft Учитывая, что $\overline{A+B}=\overline{A}\ \overline{B},$ будем рассматривать события $A,\overline{A}\ B,\overline{A}\ \overline{B}.$ Их сумма

$$A + \overline{A} B + \overline{A} \overline{B} = A + \overline{A} (B + \overline{B}) = A + \overline{A} \Omega = A + \overline{A} = \Omega,$$

а произведения

$$A \cdot \overline{A}B = (A \ \overline{A}) \cdot B = \emptyset B = \emptyset, \quad A \cdot \overline{A} \ \overline{B} = (A \ \overline{A}) \ \overline{B} = \emptyset \ \overline{B} = \emptyset,$$

$$\overline{A}B \cdot \overline{A} \ \overline{B} = (\overline{A} \ \overline{A})(B \ \overline{B}) = \overline{A} \ \emptyset = \emptyset.$$

События с данными свойствами по определению образуют полную группу попарно несовместных событий. >

Пример 2.8. Дана схема включения элементов. Элементы работают независимо и включены в цепь по приведенной схеме, рис. 2. Пусть событие A_i означает безотказную работу за время T элемента c номером i $(i=1,2,\ldots,7)$, а событие B — безотказную работу схемы. Напишите формулу, выражсающую события B через события A_i .

Рисунок 2. К примеру 2.8

При последовательном соединении схема работоспособна, если все элементы исправны. Для схемы, изображённой на рис. 3, получаем, что схема будет работать, если все три блока Б1, Б2, и Б3 исправны. Это записывается в виде произведения событий $B = \text{Б1} \cdot \text{Б2} \cdot \text{Б3}$.

Если схема соединена параллельно, рис. 4, то она исправна, если исправен хотя бы один элемент, то есть при параллельном соединении считаем, что элементы дублируют друг друга. Это записывается в виде суммы событий $C=\mathrm{B1}+\mathrm{B2}+\mathrm{B3}.$

Рисунок 3. *Последовательное* соединение

Рисунок 4. *Парамельное соединение*

Работоспособность блока Б1, совпадает с событием A — элемент номер 1 работоспособен.

Блок Б2 состоит из трёх параллельно соединенных элементов. Он работоспособен, если исправен хотя бы один из элементов 2, 3 или 4. Это можно записать формулой $A_2 + A_3 + A_4$.

Блок Б3 состоит из двух параллельных веток, причём в первой ветке два элемента соединены параллельно. Он работоспособен, если работоспособна хотя бы одна из веток. Это можно записать формулой $A_5A_6+A_3$.

Наконец, вся схема работоспособна, если все три блока Б1, Б2 и Б3 исправны. Получаем

$$B = A_1(A_2 + A_3 + A_4)(A_5A_6 + A_7). \quad \blacktriangleright$$

Ответ:
$$B = A_1(A_2 + A_3 + A_4)(A_5A_6 + A_7).$$

2.2. Относительная частота

Определение 2.9. Пусть в N испытаниях событие A появилось M раз. Относительной частотой или просто частотой события A в данной серии испытаний называется отношение числа испытаний, в которых событие A появилось, κ общему числу испытаний:

$$P^*(A) = \frac{M}{N}. (2.1)$$

Определение 2.10. Условной частотой события A при условии появления B $P^*(A/B) = P_B^*(A)$ называется отношение числа испытаний, в которых появились оба события A и B, κ числу испытаний, в которых появилось событие B.

Если в N испытаниях событие B появилось L раз, а событие A появилось совместно с событием B K раз, то

$$P^*(A/B) = \frac{K}{L} , \qquad (2.2)$$

$$P^*(B) = \frac{L}{N} \,, \tag{2.3}$$

$$P^*(AB) = \frac{K}{N} \ . \tag{2.4}$$

Теорема 2.1 (умножения частот). Относительная частота произведения двух событий равна произведению условной частоты одного из них при условии появления другого на относительную частоту другого события:

$$P^*(AB) = P^*(B) \cdot P^*(A/B). \tag{2.5}$$

Если сомножителей больше двух, то:

$$P^*(A_1 \cdot A_2 \cdots A_k) = P^*(A_1) \cdot P^*(A_2/A_1) \cdot P^*(A_3/A_1 \cdot A_2) \cdots \cdots P^*(A_k/A_1 \cdot A_2 \cdots A_{k-1}).$$
(2.6)

Пример 2.9. В университете 120 компьютеров. При проверке оказалось, что на 105 из них установлена операционная система Linux. Найти относительную частоту установки операционной системы Linux.

◆Согласно формуле (2.1), частота установки операционной системы Linux равна:

$$P^*(A) = \frac{M}{N} = \frac{105}{120} = \frac{7}{8} \approx \textbf{0,875.} \blacktriangleright$$
 Ответ: $P^*(A) = 7/8 \approx 0.875.$

Пример 2.10. Брошены 100 раз две игральные кости. При этом совпадение числа очков было 15 раз, а шестерка на обеих гранях костей выпала 4 раза. Определить условную частоту выпадения шестерок в случае совпадения числа очков.

◆ Обозначим: событие A — появление шестерок на обеих гранях, событие B — совпадение числа очков. Тогда событие A появилось K=4 раза, а событие B произошло L=15 раз.

Следовательно, $P^*(A) = \frac{4}{100}$ и $P^*(B) = \frac{15}{100}$. Согласно формуле (2.2), условная частота появления двух шестерок равна:

$$P^*(A/B) = \frac{K}{L} = \frac{4}{15} \approx 0,267.$$

Otbet: $P^*(A/B) = 4/15 \approx 0,267.$

Пример 2.11. Из 300 произведённых изделий 20 обладают дефектом α , причём 5 из них имеют также дефект β . Найти относительную частоту появления изделия с обоими дефектами.

∢Пусть событие A — появление дефекта β , а событие B — дефекта α . Тогда по формуле (2.5) относительная частота произведения этих двух событий определится как

$$P^*(AB) = \frac{20}{300} \cdot \frac{5}{20} = \frac{1}{60} \approx 0.017.$$

Ответ:
$$P^*(AB) = 1/60 \approx 0.017$$
.

2.3. Классическое определение вероятности

В приложениях теории вероятностей имеются задачи, в которых вероятность вычисляется с помощью классической формулы. Это задачи, в которых количество (N) элементарных исходов $\omega_i, i = 1, 2, \ldots, N$ конечно и при этом результаты опытов являются равновозможными.

В этом случае пространство элементарных исходов имеет вид

$$\Omega = \{\omega_1, \omega_1, \dots, \omega_N\}. \tag{2.7}$$

Рассмотрим теперь множество \mathcal{A} подмножеств множества элементарных событий Ω .

$$\mathcal{A} = \Big\{ \varnothing, \omega_1, \dots, \omega_N, \{\omega_1, \omega_2\}, \dots, \{\omega_1, \omega_N\}, \dots, \Omega = \{\omega_1, \omega_2, \dots, \omega_N\} \Big\}.$$

Согласно определению 2.1, каждый элемент данного множества является случайным событием. Будем рассматривать равновозможные элементарные события, образующие полную группу попарно несовместных событий. Такие события будем называть исходами или элементарными событиями.

Определение 2.11. Элементарные исходы, при появлении которых интересующее нас событие наступает, назовем исходами, **благоприятствующими** данному событию.

Так, при бросании игральной кости событию A: «выпало более четырёх очков» благоприятствуют два элементарных исхода — выпадение чисел пять или шесть.

Таким образом, событие A наблюдается, если в испытании наступает один из элементарных исходов, благоприятствующих ему.

Описанная схема носит название схемы случаев, а сами элементарные события, обладающие перечисленными свойствами, называются случаями.

Определение 2.12. Вероятность события A равна отношению числа (M) благоприятствующих этому событию исходов κ общему числу всех исходов данного испытания (N):

$$P(A) = \frac{M}{N}. (2.8)$$

Вычисление вероятности по формуле (2.8) верно только для схемы случаев, которая неприменима, например, если число возможных исходов бесконечно. Формула (2.8) во многих учебниках по теории вероятностей называется «классическим определением вероятности».

В теории множеств число $N=|\Omega|$ называется мощностью множеств Ω .

Из этой формулы вытекают следующие свойства вероятности, аналогичные свойствам относительной частоты событий $P^*(A)$:

Вероятность случайного события A является действительным числом принимающим любые значения от 0 до 1:

$$0 \leqslant P(A) \leqslant 1. \tag{2.9}$$

Действительно, для любого события $0\leqslant M\leqslant N$, поэтому: $0\leqslant M/N\leqslant 1.$

Вероятность достоверного события равна единице:

$$P(\Omega) = 1. \tag{2.10}$$

Действительно, в случае достоверного события M=N и $P(\Omega)=N/N=1.$

Вероятность невозможного события равна нулю:

$$P(\varnothing) = 0. (2.11)$$

Решение задач непосредственно по формуле (2.8) часто сводится к определению отдельно числителя и знаменателя.

Пример 2.12. В урне 13 чёрных и 8 белых шаров. Из урны наугад вынимают один шар. Найти вероятность того, что он — белый.

Всего возможно N = 13 + 8 = 21 исход, в том числе M = 8 благоприятных, откуда $P(A) = \frac{8}{21}$.

Ответ:
$$\frac{8}{21}$$
.

Пример 2.13. Карта называется козырной, если она — туз, король, дама или трефовой масти. Из колоды в 36 карт вынимают одну. Какова вероятность того, что она — козырная?

Общее число исходов N=36; число благоприятных исходов равно числу козырей, которых 9 треф и ещё по три карты (Д, К, Т) в трёх некозырных мастях, $M=9+3\cdot 3=18 \Rightarrow P(A)=\frac{18}{36}=\frac{1}{2}$. ▶

Otbet:
$$\boxed{\frac{1}{2}}$$
.

Пример 2.14. В партии из 80 деталей 11 нестандартных. Взятые для контроля 5 деталей оказались стандартными. Определить вероятности того, что взятая затем деталь будет: а) стандартной, б) нестандартной.

 \blacksquare После первой проверки остались 64 стандартных и 11 нестандартных деталей. Число всех деталей перед второй проверкой N=75.

- а) Число благоприятствующих исходов появлений стандартной детали (событие A) M=64. Тогда $P(A)=64/75\approx 0.853$.
- б) Число благоприятствующих исходов для этого случая число появлений нестандартной детали (событие B) M=11 и $P(B)=11/75\approx 0,147$.

Ответ:
$$P(A) = 64/75 \approx 0.853; \ P(B) = 11/75 \approx 0.147.$$

Пример 2.15. Бросаются три игральные кости. Найти вероятности того, что: а) сумма очков на выпавших гранях равна 4, б) на всех гранях выпадает одинаковое число очков, в) на всех гранях выпадает различное число очков.

- ▶ Игральная кость представляет собой куб, на гранях которого нанесены 1, 2, 3, 4, 5, 6 очков. Каждый из исходов бросания одной кости может сочетаться с каждым из исходов бросания второй и третьей, поэтому общее число возможных исходов испытания $N=6^3$.
- а) Здесь благоприятствующих событию A появлению на трёх костях суммы очков, равной 4, будет M=3 исхода: $1+1+2,\ 1+2+1,\ 2+1+1.$ Тогда

$$P(A) = 3/6^3 = 1/72 \approx 0.014.$$

б) В этом случае число благоприятствующих исходов будет равно числу граней, т.е. $M{=}6$. Следовательно,

$$P(B) = 6/6^3 = 1/36 \approx 0.028$$
.

в) Число исходов, когда на трёх гранях выпадает различное число очков, равно числу размещений $M=A_6^3=4\cdot 5\cdot 6$ и

$$P(C) = \frac{4 \cdot 5 \cdot 6}{6^3} = 5/9 \approx \textbf{0,556}. \blacktriangleright$$
 Otbet: $P(A) = 1/72 \approx 0,014; \ P(B) = 1/36 \approx 0,028; \ P(C) = 5/9 \approx 0,556.$

 \blacktriangleleft Здесь производится выборка пяти букв из шести и в нужной последовательности. Порядок выбора букв существенен, поэтому число всевозможных исходов данного испытания равно $N=A_6^5$, а число исходов благоприятствующих получению слова ЗАВОД равно M=1. Тогда вероятность искомого события A равна

$$P(A)=1/A_6^5=1/720 pprox {f 0,001}.$$
 Рответ: $P(A)=1/720 pprox 0,001.$

Пример 2.17. В коробке имеются десять букв: А, А, А, В, И, К, М, О, Т, Т. Найти вероятность того, что если наудачу вынимать одну букву за другой, то можно сложить слово АВТОМАТИКА.

■ В данном примере имеются повторяющиеся буквы. Число всех исходов равно всевозможным перестановкам из 10 букв, т.е. N = 10! В числителе формулы для вероятности мы должны учесть, что букву А можно расположить на трёх местах 3! способами, а букву Т — 2! способами. Сочетая каждое расположение букв А с каждым расположением букв Т, найдем:

$$P(A) = \frac{3! \cdot 2!}{10!} = \frac{1}{302400} \approx 0{,}331 \cdot 10^{-5}. \quad \blacktriangleright$$
 Ответ:
$$P(A) = \frac{1}{302400} \approx 0{,}331 \cdot 10^{-5}.$$

Пример 2.18. В цехе из 80 рабочих не выполняют норму выработки 5 человек. По списку случайно отбирается 3 человека. Найти вероятность того что: а) все выбранные рабочие выполняют норму; б) все выбранные рабочие не выполняют норму; в) только два выбранные рабочие выполняют норму.

- В данном примере порядок выбора рабочих не существенен. Поэтому для подсчёта числа исходом опыта (выбора трёх рабочих) применяется формула для сочетаний. Количество всех возможных исходов равно числу способов, которыми можно отобрать 3 человека из 80, т.е. числу сочетаний $N = C_{80}^3$.
- а) Благоприятствующими будут те исходы, когда 3 человека отбираются рабочих, которые выполняют тех только 80-5=75 рабочих; их число равно $M_1=C_{75}^3$. Вероятность данного события A

$$P(A) = \frac{M_1}{N} = \frac{C_{75}^3}{C_{80}^3} = \frac{75!}{3!72!} \cdot \frac{3!77!}{80!} = \frac{73 \cdot 74 \cdot 75}{78 \cdot 79 \cdot 80} = \frac{13505}{16432} \approx \mathbf{0.822}.$$

б) Здесь вычислим вероятность того, что трое рабочих выбираются именно из тех пяти, которые не выполняют норму (событие B). Число таких слу-

чаев равно
$$M_2=C_5^3$$
; тогда
$$P(B)=\frac{M_2}{N}=\frac{C_5^3}{C_{80}^3}=\frac{5! \quad \cdot 3! \ 77!}{3! \ 2! \quad \cdot 80!}=\frac{3 \cdot 4 \cdot 5}{78 \cdot 79 \cdot 80}=\frac{1}{8216}\approx 0,1217 \cdot 10^{-3}.$$

в) В этом случае два рабочих выполняют норму, а один не выполняет. Для определения количество исходов благоприятствующих появлению искомого случайного события C, применяем свойство умножения. Умножаем число комбинаций, в которых два рабочих выполняют норму $M_1=C_{75}^2$, на число комбинаций, в которых один рабочий не выполняет норму $M_2 = C_5^1 = 5$.

Получаем
$$M_3 = M_1 \cdot M_2 = C_{75}^2 \cdot C_5^1$$
.
$$P(C) = \frac{M_3}{N} = \frac{C_{75}^2 \cdot 5}{C_{80}^3} = \frac{75! \cdot 5}{2!73!} \frac{3!77!}{80!} = \frac{75 \cdot 74 \cdot 5 \cdot 3}{78 \cdot 79 \cdot 80} = \frac{2775}{16432} \approx \mathbf{0,1689}. \quad \blacktriangleright$$

Other:
$$P(A) = \frac{13505}{16432} \approx 0,822; P(B) = \frac{1}{8216} \approx 0,1217 \cdot 10^{-3};$$

$$P(C) = \frac{2775}{16432} \approx 0,1689.$$

Задания для самостоятельной работы

- **2.1.** В электрическую цепь последовательно подсоединены два выключателя. Каждый из них может быть, как включен, так и выключен. Рассмотрим события: A включен первый выключатель, B включен второй выключатель, C по цепи идет ток. Выразите события C и \overline{C} через A и B.
- **2.2.** В группе студентов несколько человек являются отличниками; группа делится также по цвету волос на шатенов, брюнетов и блондинов. Из группы наудачу отобраны два человека с разным цветом волос. Пусть событие A выбран шатен, событие B выбран брюнет, событие C выбран отличник. Опишите события: AC, \overline{A} \overline{B} , ABC.

два блондина, ABC — выбранные блондин и брюнет являются отлични-ками.

- 2.3. Доказать, что
- a) $\overline{A}_1 \ \overline{A}_2 \ \dots \ \overline{A}_n = A_1 + A_2 + \dots + A_n$,
- 6) $\overline{A_1 A_2 ... A_n} = \overline{A}_1 + \overline{A}_2 + ... \overline{A}_n$.
- **2.4.** Доказать, что (A + B)(A + C) = A + BC.
- **2.5.** Событие A первый узел автомобиля работает безотказно, событие B второй узел автомобиля работает безотказно. Опишите события: \overline{A} и \overline{B} , $A+B,AB,A\overline{B},\overline{A}$ $B,A\overline{B}$ + \overline{A} B; как и в примере 2.6, сделайте рисунки.
- **2.6.** Дана схема включения элементов. Элементы работают независимо и включены в цепь по приведенной схеме, рис. 5 Пусть событие A_i означает безотказную работу за время T элемента с номером і (i=1,2,3), а событие B безотказную работу цепи. Напишите формулу, выражающую события B и \overline{B} через события A_i .
- **2.7.** Дана схема включения элементов. Элементы работают независимо и включены в цепь по приведенной схеме, рис.6. Пусть событие A_i означает элемент с номером i за время T вышел из строя (i=1,2,3), а событие B схема вышла из строя. Напишите формулу, выражающую события B и \overline{B} через события A_i .

Рисунок 5. К примеру 2.6

Рисунок 6. К примеру 2.7

2.8. Релейная схема, рис. 7, состоит из семи элементов: V_1, V_2, \dots, V_7 . Событие A_i состоит в том, что элемент V_i работает безотказно в течение

времени T. Выразить событие A, состоящее в том, что за время T а) схема работает безотказно; б) схема выйдет из строя.

Рисунок 7. К примеру 2.8

- **2.9.** Процент выполнения задания предприятием в течение 10 дней соответственно равняется 107, 111, 109, 116, 115, 105, 112, 114, 121, 124. Какова относительная частота дней, в которые задание было выполнено более чем на 110 процентов?
- **2.10.** В ящике «Спортлото» находится 36 шаров, помеченных номерами от 1 до 36. Какова вероятность того, что вынутый шар окажется с номером, кратным 3?
- **2.11.** Найдите вероятность того, что взятое наудачу двузначное число кратно 5.
- **2.12.** Буквы, составляющие слово РАКЕТА, написаны по одной на шести карточках; карточки перемешаны и положены в пакет. а) Чему равна вероятность того, что, вынимая четыре буквы, получим слово РЕКА? б) Какова вероятность сложить слово КАРЕТА при вынимании всех букв?
- **2.13.** В цех сборки привезли 25 деталей, из которых 20 изготовлены Московским заводом. Найти вероятность того, что среди 10 взятых наудачу деталей окажутся: а) все детали Московского завода, б) 7 деталей Московского завода.
- **2.14.** Полная колода содержит 52 карты взяли 5 карт. Найти вероятность того, что среди этих карт будет шестерка трефовой масти.
- **2.15.** Бригада, состоящая из 20 мужчин и 4 женщин, делится наудачу на два равных звена. Найти вероятность того, что в каждом звене окажется по две женщины.