

- 1. Is there a solution that southfres all austomers
- 2. Which one is the best \sum_{t_i} min ?

1. No, since for city D. E, customers can only get from car e, so they can't get at the same time.

2.	cor	A	В	C	D	E
	a	1h		1h		
	b	1h	2h			
	C		2h	1 µ		
	d			11		
	e		дh	•	2h	1h

Mentioned in Q1
For D, E the best way is to go to E
first then come back to e then to D $t_1 = 2 \times 1 + 2 = 4 \text{ h}$ (If car serves only one, then no D, $t_1 = 1 \text{ h}$)
E is occupied so the rest table is

cor	A	В	C
a	1h		1h
b	1h	2h	
C		2h	1 h
d			1/1

(For each car, round trip won't be profitable since $min(t_i) \times 2 + min(t_i) > X$ i=a,b,c,d $fx \in t_i$, $x \neq min(t_i)$)

Since for city A. B. C. Dilivery time is the same for every city. So it doesn't matter allocate which can to it.

 $t_{min} = t_1 + t_2 = 8h$ (or 5h as mentioned)

Algorithm:

car	A	В	C	D	E
a	14		1h		
b	1h	2h			
c	•	2h	1 h		
d			11		
e		дh	115	2h	1h

Greedy Algorithm (No sound trip)

For Cities X, cour Y; N(Yx) = 1=> X one path

For X one porth, cour Y:

Xxoneporth; = X Xoneporth;

T1= min T(Xx enepoth) => X allocated, Tallocated

For cities Xunallocated, con Yunallocated:

T = min T(Yx)

T= \(\sum_{(Y)}\) + T1