MULTI-OBJECTIVE COST OPTIMIZATION IN PI CROSS-DOCK NETWORKS USING GENETIC ALGORITHMS

Master 2 Réseaux et système autonomes, paris cité

Presented by Zineb Taieb

Supervisors: Mme Essghaier Fatma M Allaoui Hamid

WHY GA FOR CROSS DOCK OPTIMIZATION?

Objectif

We aim to optimize container-truck assignments to minimize transport cost and energy cost

NP-hard

Optimization of this kind of problems is NP-hard

Why Genetic algorithms?

Robustness, Adaptability, Flexibility(hybridization)

RAIL-ROAD PI-HUB CROSS-DOCKING TERMINAL

GENETIC ALGORITHM PRINCIPAL

Algorithme génétique

Initialiser la population

Créer un ensemble initial de solutions mixte (aléatoire 80% + binpacking 20%)

Former la nouvelle population

Créer une nouvelle génération de solutions

Appliquer la mutation

Introduire des changements aléatoires pour la diversité 'échange de containers ou changement de dock

Appliquer le croisement

Combiner les solutions pour créer de nouvelles Croisement uniforme

Évaluer la fitness

Mesurer la performance de chaque solution avec une somme pondérée Fitness= W1*F1+W2*F2

Sélectionner les meilleurs

Choisir les solutions les plus performantes Sélection par tournois de k=3

CHROMOSOME DESIGN

Containers	0	Dock position	0	Containers	0	Dock position	0	Containers	0	Dock position	0
[4]	0	1	0		0	2	0	[1,2]	0	4	0

Containers	0	Dock position	0	Containers	0	Dock position	0
[3,6]	0	3	0	[]	0	5	0

- A chromosome represents a solution
- Each block of 4 represents a truck and its assignements

FITNESS FUNCTION

- Shows how to evaluate each solution
- Fitness function = Objective function

$$ext{Minimize } F_1 = \sum_{h=1}^H \sum_{d=1}^D CT_d \, a_{hd} ext{Minimize } F_2 = CE \sum_{i=1}^N \sum_{h=1}^H z_{ih}$$

• Weighted sum of F1 and F2, with weights W1, W2

Fitness = W1*F1 + W2*F2; W1=0.5 and W2=0.5

GENETIC OPERATIONS

Crossover

```
Flip a coin:
if random.random() < crossover_rate = 0.9
Uniforme crossover
Parent 1: [ [4,6],0,3,0, {Point de croisement}[1],0,5,0,[],0,1,0 ]
```

Enfant 1: [[4,6],0,3,0, [],0,7,0,[2],0,6,0]

Parent 2: [[3,7],0,4,0,{Point de croisement} [],0,7,0,[2],0,6,0] Enfant 2: [[3,7],0,4,0, [1],0,5,0,[],0,1,0]

Else:

Enfant 1 = parent 1 Enfant 2 = parent 2

Mutation

Chromosome: [[4,6],0,3,0,[],0,7,0,[2],0,6,0]

Flip a coin:

if random.random() < mutation_rate=0.03:

Mutate dock position

Chromosome: [[4,6],0,5,0,[],0,3,0,[2],0,1,0]

Swap containers

Chromosome: [[2],0,5,0,[],0,3,0,[4,6],0,1,0]

IMPLEMENTATIONS DETAILS

Import

Run_ga(crossover_rate, mutation_rate, ratio_binpacking, num_elits).py Crossover Mutation Utils.py(
print_chromosome_assi
gnments,
verify_solution_feasibilit
y)

main.py
main GA loop

Crossover_rate	Mutation_rate	Ratio_binpacking	num_elits
0.9	0.03	0.8	1

Convegence of the fitness evaluation

Experience	Population	Generations	temps d'execution (secon des)	Valeur Fitness
Α	10	10	58.405	888.0
В	30	20	52.034	839.5
С	100	50	92.124	832.5

More population = more diversity

Convegence of the fitness evaluation

Mutation rate	Best fitnessue	Observation
0.05	880	Bonne convergence, mais un peu lente
0.1	881	Convergence plus rapide, mais pas plus optimale
0.07	877	Meilleur équilibre : meilleure solution finale

Feasible and unfeasible solutions

Feasable solution = solution that respects constraints (truck capacity, destination and assignement)

Solution faisable

Handling constraints and unfeasible solutions

- Rejection strategy
- Repair strategy
- Penalize strategy

Penalize strategy

Fitness = W1*F1 + W2*F2 + penalty

Problem with simple penalty

The GA minimizes: Fitness = W1* F1 + W2 * F2 + penalty

The GA found:

A chromosome with fewer containers \rightarrow minimizes the total fitness

Penalty is small, GA prefers minimizing total cost over penalty.

Example output

Meilleur Chromosome trouvé : [[], 0, 5, 0, [], 0, 5, 0, [3, 1], 0, 4, 0, [6], 0, 5, 0, [], 0, 5, 0]

Only 3 containers assigned out of 6, Penalty is weak

Handling constraints and unfisable solutions

Adaptative Penalizing strategy:

- Penalize every container assigned more than once in the same chromosome
- Penalize every container assigned to a truck with different destination
- Penalize if truck capacity is exceeded
- Penalize every unassigned container

```
P_DUP = 500 #penalty for duplicated container in the chromosome.
P_CAP = 200 # penalty for exceeded capacity
P_DEST = 300 #penalty for wrong destination
P_UNASSIGNED = 5000 #penalize heavely for unassigned container
assigned_containers_list []
for i in assigned_container_list:
    if count_assined[i]:1:
        Fitness (chromosome) = fitness + P_DUP
if truck_capacity< container length:
    fitness (chromosome) = fitness + P_CAP
unassigned_list []
n_b_unassigned= len(unassigned_list )
fitness ( chromosome) = fitness + P_UNASSIGNED * n_b_unassigned #penalize every truck unassigned in the chromosome</pre>
```

Output of adaptative penalizing stategy

```
Meilleur Chromosome trouvé: [[4], 0, 5, 0, [], 0, 2, 0, [1, 2], 0, 5, 0, [3, 6], 0, 4, 0, [], 0, 2, 0]
```

5 containers assigned, 1 unassigned container

Results and discussions

Fitness convergence drops over the generations \rightarrow normal

Penalty evolution over the generations stays flat = $5000 \rightarrow$ the GA never get better with penalty, same penalty over the generations

Root cause:

Check Initial population:

- →Container 5 never gets assigned
- → Checking input data, Container[5].length = 10 > max truck capacity = 6

20

Generation

30

40

10

Results and discussions

- After reinitialization:
- Container[5].length = 5

Results

Fitness curve (top): → Gradually decreases then stabilizes around generation 21.

Penalty curve (bottom): → Perfectly flat at 0.

-->Meaning: every solution is feasible, no unassigned containers, no wrong destination and no capacity exceeded.

Instances param

Container_lengths[1, 2, 3, 4, 5]
Trucks size = 6
Cost_truck_by_dest
Cost_one energy_unit = 0,5

Optimize

$$ext{Minimize } F_1 = \sum_{h=1}^H \sum_{d=1}^D CT_d \, a_{hd} ext{Minimize } F_2 = CE \sum_{i=1}^N \sum_{h=1}^H z_{ih}$$

Unified Objective function: Weighted Sum, W1=0.5 W2= 0.5

$$Minimize~(\mathrm{W1} imes F_1 imes W2 imes F_2)$$

Gurobi License: Free academic license, version 12

Instances

Instance	CE(cost of 1 truck)	D(destinati on)	H (Trucks)	K(Docks)	N(Containers)
1	0.5	2	10	5	4
2	0.5	3	9	5	8
3	0.5	4	10	7	5
4	0.5	3	7	3	11
5	0.5	3	10	4	13
6	0.5	3	9	5	11
7	0.5	2	9	3	13
8	0.5	3	10	5	11
9	0.5	5	6	4	9
10	0.5	4	5	7	10
11	0.5	5	6	7	7
12	0.5	3	7	3	9
13	0.5	5	7	5	5
14	0.5	5	8	7	10
15	0.5	3	5	4	6
16	0.5	2	10	5	6
17	0.5	3	6	5	4
18	0.5	5	10	5	11

GA vs method_exact

- Unsolved cases by Gurobi: 9, 10, 12, 13, 19, 24,25, 26, 29 (status 3, infeasible).
- If Couts_GA> Couts_optimals, we measure the gap between Couts_GA and the optimal solution.
- If Couts_GA < Couts_optimals, Gap = 0, meaning the genetic algorithm found a more optimal solution than the exact method.
 - Execution time: for some instances, especially the larger ones, the exact method was very slow (up to 1056 seconds).
 - Ga with random initialization, significantly less stable, this indicates strong dependence of the GA on the initialization.

		I			1		
Instance	Couts_GA	Couts_GA_ random	Couts_Exact	Gap(%)	ExecutionTime(s)_GA	ExecutionTime(s)_random	ExecutionTime(s)_ xact
1	2046	1230,25	1439,0016	42,18191	3,818	0,411	0,142
2	4673,25	2347,5	2888,0014	61,81606	5,025	0,431	0,079
3	1278,25	11556	721,0008	77,28829	3,939	0,527	0,086
4	2832,5	17722,75	1555.500499	82,09573	4,669	0,774	1,475
5	6094	9362,75	3643,5017	67,25668	6,76	0,6	208,119
6	3809	17909,5	2347,5015	62,25762	4,953	0,867	256,243
7	4897,5	5240,5	2582,0007	89,67849	5,959	0,805	0,338
8	3384	2479	1874,0035	80,57597	6,573	0,341	311,724
11	1185,75	8066	1304,0004	0	2,926	0,747	0,209
14	2177,5	5036,75	1375,0006	58,36357	5,632	0,537	22,491
15	1867	8488,75	1340,5012	39,27626	2,437	0,627	0,026
16	981,75	4708,25	588,5008	66,8222	4,842	0,442	0,072
17	1359	3559,25	745,001	82,41586	2,747	1,028	0,029
18	5493,5	11578	2533,0048	116,8768	6,201	0,593	17,468
20	5772,5	13756,25	3325,002	73,60892	7,34	0,87	1059,178
21	2384,25	9647,25	1691,002	40,99629	4,13	0,76	0,129
22	1555,5	11172	831,002	87,18367	3,368	0,813	0,043
23	1946,75	2552,25	1070,001	81,93908	4,38	0,415	0,248
27	2553,25	1309,5	1367,0017	86,77738	4,098	0,494	17,248
28	1922,25	1855,5	1056,5006	81,945	3,542	0,262	0,159
30	2305	5715,5	1306,0024	76,49278	6,813	0,556	0,108

Instance 9, noted unfeasible by Gurobi, let's see why?

Destinations	Trucks	Docks	Containers
5	6	4	9

1	
2	
2	

Container ID

Trucks_max_capacity =6

Constraints

One truck can only load containers with same destination

- Containers (6, 7, 8) ->destination 3 ->3 trucks
- Containers (3, 4) ->destination 5 ->1 trucks
- Containers (5, 9) ->destination 2 ->1 trucks
- Containers (2) ->destination 4 ->1 trucks
- Containers (1) ->destination 1 ->1 trucks

Container_iD	Lengui	Destination
1	3	1
2	4	4
3	1	5
4	4	5
5	5	2
n	4	3
7	4	3
8	5	3
9	1	2
	31	

Length

Destination

Couts_GA vs Couts_GA_random vs Couts_optimals

Couts_GA vs Couts_Optimals

Time_GA vs Time_Exact

Trucks by instance

Conclusion & key improvements to explore next

Initial initialization plays a big role on the quality of the GA solutions

Big instances->GA faster-> Lose precision

Big instances->Exact_methode found optimal-> bigger time execution

Tradeoff (Optimal solutions, and Running time)

The results are still being stabilized, but the observed trends indicate that GA can provide a quick alternative, especially for large instances.

- Move to Multi-Objective GA (NSGA-II) (Use NSGA-II to generate a Pareto front of best compromises)
- Parameter tuning: population size, crossover rate, mutation rate, elitism.
- Explore hybridized metaheuristics

Thank you