L3 wtr

TianruiWang

May 2019

Logistic Regression 1

1.1 **Mathematical Foundation**

Bayes Formula

 $P(B_i|A) = P(B_i)P(A|B_i)/P(A)$ $P(A) = \sum_{j=1}^{n} P(B_j)P(A|B_j)$ sometimes $P(B_i|A)$ is too difficult to figure

so we use Bayes Formula to simplify it

Sigmoid Function

Sigmoid Function: $f(x) = 1/(1 + e^{-x})$

We can use Sigmoid Function to judge the probabilities of classification and take derivative for any times

The Exponential Family

seems like

 $p(y;\eta) = b(y)exp(\eta^T T(y) - a(\eta))$

b(y) is a given function

ηis a Natural parameter

T(y) is called Sufficient Statistic usually T(y) = y

 $a(\eta)$ is to ensure the sum equal to 1

for example

 $Bernoulli\ distribution$

$$f(y;p) = p^y (1-p)^{1-y}$$

$$= exp(yln(p/(1-p)) + ln(1-p))$$

1.2 Logistic Regression

Symbol

let $X=(x_1, x_2....)$ and Y is boolen

Assume $P(x_i|Y=y_k)$ as $N(\mu_{ik},\sigma_i)$

From log to linear

$$P(Y=0|X) = exp(w_0 + \sum iw_i x_i)$$

$$\begin{array}{l} P(Y=0|X)=exp(w_0+\sum iw_ix_i)\\ ln(P(Y=0|x)/P(Y=1|X))=w_0+\sum iw_ix_i \end{array}$$

```
Our target is to select a set of W = (w_1, w_2...)
which maximizes \sum_{i} P(y_i|x_i;W)
```

We can understand it by maximizing $P(output = y_i)$ when $input = x_i$

log-likelihood

define
$$l(W) = \sum_{l} y_{l} ln P(y_{l} = 1 | x_{l}; W) + (1 - y_{l}) ln P(y_{l} = 0 | x_{l}; W)$$

only one of both can be non-zero the bigger the expression is the better our function is $l(W) = \sum_{l} y_{l}(w_{0} + \sum_{i}^{n} w_{i}x_{il}) - ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i}x_{il}))$ However the function has no closed form (which means we can't figure it out easily)

Gradient Descent Method

this function is a concave function

the gradient descent method can be applied to find the answer

Note:

We should select proper step length in case of low efficient or away from minimum Algorithm

 $Iterate\ until\ change\ <\ \epsilon$

For all i repeat $w_i < -W_i + \eta \sum_i x_{il}(y_l - P(y_l = 1|x_i; W))$

End for

Regularization

$$W < -argmax \sum_{l} lnP(y_l|x_l; W) - \lambda/2||W||^2$$

 $W < -argmax \sum_{l} lnP(y_{l}|x_{l};W) - \lambda/2||W||^{2}$ We add $\lambda/2||W||^{2}$ because if ||W|| is too big, the model will overfit

Discrete Values

change the samples in [0,1]

for every k

$$P(y = y_R | X) = 1/(1 + \sum_{j=1}^{R-1} exp(w_{j0} + \sum_{j=1}^{R-1} w_{ji}x_i))$$

2 **Boosting**

Comprehension

A method to train a ensembling module with many individual learners

2.1Common Method

```
Bagging
```

$$f(x)=1/B \sum_{b=1}^{B} f_b(x)$$

 $1 - 1/e \approx 63.2\%$

Algorithm

Input:

Training Set: $\{(x1, y1), (x2, y2)...\}$

Learning algorithm: l

 $Training\ times:\ T$

Procedure:

for t = 1, 2..., T

 $h_t = l(D, D_b s)$

We divide the set into two parts, $D_b s$ is the remaining part $P(H(x)! = f(x)) = P(x \le T/2) = \dots$ $using\ Hoeffding\ inequality$ $<= exp(-1/2T(1-2\epsilon)^2)$ However, those methods are not independent, so the inequality has no significance

2.2 Adaboost Algorithm

Input: The training set D A weak base learner $h=h(x;\theta)$

 $Initialize: w_i = 1/N$ Iterate for t = 1, 2, ...T

- 1. train base learner according to weighted example set and obtain hypothesis
- 2. compute error $\epsilon_t = \sum_{i=1}^n w_{mi} I(G_m(x_i)! = (y_i))$
- 3. compute weight $\alpha_t = 1/2 \ln \epsilon_t / 1 \epsilon_t$
- $4.\ update\ example\ weights\ for\ next\ iterate$

How to update?

$$\epsilon_k = \sum_{i=1}^{n} w_i^{k-1} I(y_i! = h(x_i; \theta_k)) / \sum_{i=1}^{n} w_i^{k-1}$$

 $\alpha_t = 1/2 \ln \epsilon_t / 1 - \epsilon_t$
 $w_i^k = w_i^{k-1} exp(-y_i \alpha_k h(x_i; \theta))$

 w_i^k means in the i_{th} iteration in k_{th} sample

2.3 **Expotential Loss**

$$\begin{split} \mathbf{L}(\mathbf{h}) &= \sum_{i=1}^{n} exp(-y_i h_m(x_i)) \\ h(x) &= \sum_{i=1}^{m} \alpha_i h(x; \theta_i) / \sum_{i=1}^{m} \alpha_i \end{split}$$