Measure Theory: Exercises (not for credit)

Josephine Evans

November 29, 2021

Question 1. Suppose that (E, \mathcal{E}) and (F, \mathcal{F}) are measurable spaces. Show that the set $\mathcal{A} \subseteq \mathcal{E} \times \mathcal{F}$ with $\mathcal{A} = \{A \times B : A \in \mathcal{E}, B \in \mathcal{F}\}$ is a π -system.

Question 2. Suppose that (E, \mathcal{E}) and (F, \mathcal{F}) are measurable spaces. Let $\mathcal{A}_1 \subseteq \mathcal{E}$ and $\mathcal{A}_2 \subseteq \mathcal{F}$ be such that $\sigma(\mathcal{A}_1) = \mathcal{E}$ and $\sigma(\mathcal{A}_2) = \mathcal{F}$. Show that $\mathcal{E} \times \mathcal{F} = \sigma(\mathcal{A}_1 \times \mathcal{A}_2)$.

Question 3. Let \mathcal{M}_1 be the σ -algebra of Lebesgue measurable subsets of \mathbb{R} , and \mathcal{M}_2 be the σ -algebra of Lebesgue measurable subsets of \mathbb{R}^2 . Show that $\mathcal{M}_2 \neq \mathcal{M}_1 \times \mathcal{M}_1$.

Question 4. Let μ be the counting measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ (the measure that counts how many elements there are in a set) and let λ be Lebesgue measure on \mathbb{R} . Let f be the indicator function of the set $\{(x,x):x\in\mathbb{R}\}$. Show that

$$\int_{\mathbb{R}} \int_{\mathbb{R}} f(x, y) \mu(\mathrm{d}x) \lambda(\mathrm{d}y) \neq \int_{\mathbb{R}} \int_{\mathbb{R}} f(x, y) \lambda(\mathrm{d}x) \mu(\mathrm{d}x).$$

What part of the conditions of Fubini-Tonelli theorem doesn't hold to mean this can happen?

Question 5. Let $f(x,y) = 1_{x \ge 0} (1_{y \in [x,x+1)} - 1_{y \in [x+1,x+2)})$ Show that

$$\int_{\mathbb{R}} \int_{\mathbb{R}} f(x, y) dx dy \neq \int_{\mathbb{R}} f(x, y) dy dx.$$

What part of the conditions of Fubini-Tonelli theorem doesn't hold to allow this to happen?

Question 6. Let A be a bounded Borel subset of \mathbb{R} with $\lambda(A) > 0$ show that the function $x \mapsto \lambda(A \cap (x+A))$ is continuous and is non-zero on some open interval containing 0. Define $diff(A) = \{z : z = x - y, x \in A, y \in A\}$ show that if A is a Borel subset of \mathbb{R} with non-zero measure then diff(A) contains some open interval around 0.