Bit Manipulation 2

Agenda

- Check bit / Count set bits
- Set ith bit
- Unset ith bit
- Set continuous x & y bits

Quick Revision

$$a < b = a \times 2^{b}$$

$$15 < c < 2 = 15 \times 2^{2}$$

$$= 15 \times 4$$

$$= 60$$

$$a > b = \frac{a}{2^{b}}$$

$$29 \Rightarrow 2 = \frac{29}{2} = \frac{29}{4}$$

Quiz 3:

Which of the following options output is 2 power n

$$a < b = a \times 2^{b}$$

$$1 < e N = 1 \times 2^{N} = 2^{N}$$

$$2^{30} = 1 \times 2^{30} = 1 < < 30$$

$$2^{31} = 1 \times 2^{31} = 1 < < 31$$

Quiz 4:

Quiz 4:
$$a = a \times 2^b$$
Which of the following options value is 5 power n

$$\times 5 \times (1 < < N) = 5 \times (2^{N})$$

 $\times 5 < < N = 5 \times 2^{N}$
 $\times 5 < < (N-1) = 5 \times 2^{N-1}$
 $\times None of the abore$

Q1 Given N and i, check if i th bit position is set or not.

Example

Example

$$i = 3$$

Idea

Boolean checkBit(int N, int i) {

}

Can we also do it with left shift?

Boolean checkBit(int N, int i) { return (N& (122i)) 1=0 }

Q2 Number of 1 Bits

Qualcomm (1) box

Given an integer N, count how many set bits are there in N (Assume N to be a 32 bit integer)

Example

4 bits

Example

5 bits

Example

6 bits

niserst lit
$$\nu$$
 ν
 ν
 ν
 ν

Idea 1

}

Iterate & check for every bit if

32 Lit Number

TC: 0(1)

int countSetBits(int N) {

int c = 0for (i=0); i < 32; i + = 1) $\{ > [0 + 0.21] \}$ if (check Rit (N, i)) c + t

J2 iterations

int countSetBits(int N) {

int c=0

while
$$(N > 0)$$
 \leq
 $(N > 0)$ $<$
 $(N >$

Which approach is better?

	<u>Idea 1</u>	Idea 2
	0(1)	0 (log 2 N)
N= 10	32 iterations	y iterations
N = 3 00 00	32 iterations	15-16 iterations
32 N=2	32 iterations	32 iterations

Exceptional case - Big O gives us
the wrong idea.

Break till 10:25 PM

Q3 Given x & y, set x^{\dagger} bit and y^{\dagger} bit in value 0.

Example

= 10

Example

y=2

0 0 0 0 0

$$= 2^{5} + 2^{2}$$

= 32 + 4 = 36

Example

6 5 4 3 2 1 0

$$ans = 2^{x} + 2^{y}$$

ans =
$$(1 << n) + (1 << y)$$

What if x == y?

if (n==y)return (1 < < n)else return (1 < < n) + (1 < < y)

This works for all cases

$$2^{6} = 100000000$$
of $2^{3} = 0001000$

Expected result
$$= (1 < < n) = 2^{n}$$

$$= 2^{n}$$

alasa

$$2^{n} \begin{vmatrix} 2^{n} \\ 2^{n} \end{vmatrix} = \begin{vmatrix} 2^{n} \\ 2^{n} \end{vmatrix}$$

 $\mathbf{Q4}$ Given N & i, set the ith bit in N.

$$N = 23$$
 $i = 2$
 $1 \circ 1 \circ 1 \circ 1$
 $2 \cdot 3$
 $2 \cdot 3$

```
int setIthBit(int N, int i) {

yeturn (N | (12<i))
}
```

$$N=10$$
 $i=2$

OR

OR

ON

Mogic

Number

 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 4

Magic Number - Only it bit set fest all bits were unset

$$N = 23$$
 $i = 2$

Of 0 1 0 0

 $V = 23$
 $V = 23$

$$i = S \Rightarrow 1000000 \Rightarrow 2^{s}$$

Magic $N_{0} = 2^{i} = 12ci$

Q5 Given N & i, unset the ith bit.

$$N=23$$
 $i=2$
 10011
 19

```
int unsetIthBit(int N, int i) {

return N & ( 1 < < i ) )
}
```


Super = Only it bit unset.

No fast all bits are set.

Magic Number - Only it bit set = 12=i

fest all bits were unset

i=2

Super No = ~ (Magic No)
= ~ (12 < i)

Todo

Q1 Cliven nly, set n continuous bits & unset y continuous bits 11100 = 28 12-3 422 111100 = 60 254 y = 2 2 2=1 y =3 Early Lend. Solve it however you can Medium Level - Max 2 lines of code

O2 Toggle ith bit

ith bit is set, unset it No if
else

> If ith bit is set, set it else

Doubts

Crood Night

Thank You

Wednesday