ML Final Project Proposal

1. 隊名及隊員

隊名: NTU_r07943004_荳荳與水豚

隊員: R07943004 莊育權、R07943023 楊仲萱、馬咏治 R07943123

2. 題目

Human Protein Atlas Images Classification

3. Problem Study

A. 資料處理 (Data Imbalance)

這次的資料有嚴重 Data Imbalance 的問題,像是 Nucleoplasm 出現的次數 比其他類別多出很多,然而像 Endosomes、Lysosomes 這些類別出現的次數就 很少。因此如果不去針對這種情況處理,機器學習模型在學習的過程中,會 比較傾向學習出現次數比較多的類別。

$$CE(p_t) = -\alpha_t \log(p_t)$$

 p_t 為模型對於類別預測的機率。而 Lin 所提出的 Focal loss,加入一個新的 modulating factor $(1-p_t)^\gamma$, γ 是一恆正的 tunable focusing factor:

$$FL(p_t) = -(1 - p_t)^{\gamma} \log(p_t)$$

從下圖可以觀察出,當兩個特點: $(1)\gamma=0$,即是傳統的 Cross Entropy,可以發現即使此類別很容易被分類 $(p_t\gg 0.5)$,傳統的 Cross Entropy 還是會對一分類的類別產生較大的 Loss,而 FL 會根據 modulating factor 數值,對於容易分類的類別降低其所產生的誤差。 (2)當一個資料被分類錯誤且其 p_t 是小的時候,整個 loss 並不太會受到 modulating factor 的影響。

Reference: Lin, Tsung-Yi, et al. "Focal loss for dense object detection." *IEEE transactions on pattern analysis and machine intelligence* (2018).

B. 模型架構 (MobileNetV2/InceptionResNetV2)

目前 Keras 有提供許多已經可以直接 call 的 CNN 架構,因此我們 survey 近期最新且在各個 dataset 表現突出的兩個模型架構:

MobileNetV2:

MobileNetV2 是之前 MobileNet 的改良版, MobileNetv2 架構是基於倒置 殘差結構(inverted residual structure), 原本的殘差結構的主分支是有三個卷積, 兩個逐點卷積通道數較多,而倒置的殘差結構剛好相反,中間的卷積通道數(依舊使用深度分離卷積結構)較多,旁邊的較小。此外發現去除主分支中的非線性變換是有效的,這可以保持模型表現力。

論文的主要貢獻在於提出一種新型層結構:具有線性瓶頸的倒殘差結構 (inverted residual with linear bottleneck)。該模塊首先將輸入的低維壓縮表示 (low-dimensional compressed representation)擴展到高維,使用輕量級深度卷積 做過濾,隨後用 linear bottleneck 將特徵投影回低維壓縮表示。這個模塊可以使用任何現代框架中。此外該模塊特別適用於移動設備設計,它在運算過程中不實現大的張量(tensor),這減少了需要嵌入式硬件設計對主存儲器訪問的需求。

Reference:

Sandler, Mark, et al. "MobileNetV2: Inverted Residuals and Linear Bottlenecks." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2018.

https://blog.csdn.net/u011974639/article/details/79199588

InceptionResNetV2:

InceptionResNetV2 是將微軟之前提出 ResNet 的一些 idea 改良其之前所提出的 InceptionV3。殘差連結(Residual Connection)可以讓我們訓練更深的神經網路,同時也有比較好的 performance。從下圖 InceptionResNetV2 可看出,此模型架構比之前的 InceptionV3 來的更深,同時也將 inception 的模塊做簡化,使得裡面的 parallel tower 比之前使用在 InceptionV3 的量還少。

Inception Resnet V2 Network

Schematic diagram of Inception-ResNet-v2

Reference:

Szegedy, Christian, et al. "Inception-v4, inception-resnet and the impact of residual connections on learning." *AAAI*. Vol. 4. 2017.

 $\underline{https://ai.googleblog.com/2016/08/improving-inception-and-image.html}$

4. Proposed Method

目前方法	
資料處理	由於之前處理有顏色的訊號是只有 RGB 三個 channel,因此目
	前是將黃色 channel 的訊號除於 2 , 將一半的資訊給紅色
	channel,另一半資訊給綠色 channel
模型架構	目前是先用簡單的 VGG16 模型架構,確認整個訓練流程的程
	式碼都可以跑
訓練技巧	a. 由於此資料是 Multiple label, 因此目前訓練的 loss function
	是使用 binary cross entropy, metrics 是使用 accuracy
	b. 目前判斷類別是 0 或 1 的 threshold,仍是使用 0.5 當作一個
	臨界點

未來嘗試的方法		
資料處理	由於黃色 channel 本身自己也帶有細胞裡面的資訊,因此未來會	
	嘗試結合 domain knowledge,看如何把黃色 channel 的訊號也一	
	起應用進去	
模型架構	未來會嘗試近期比較強大的模型架構,像是 Keras 本身已經所	
	內建好的 MobileNetV2 或是 InceptionResNetV2	
訓練技巧	a. 由於此資料有嚴重的 Data imbalance 的問題,因此未來會嘗	
	試使用 survey 到的 focal loss 來當作我們的 loss function	
	b. 由於 Data imbalance 的問題,未來會對每種類別找出其最適	
	合分出 1 或 0 的 threshold	
	c. 訓練多個模型架構,嘗試使用 Ensemble 的方法提升效能	