CS74040

Name:
Midterm exam

November 4, 2021

Question 1: We have a vocabulary V of size 300. How many parameters will you have to estimate for:

- 1. an MLE unigram language model
- 2. a bigram language model with add-one smoothing
- 3. a maximum likelihood trigram language model

Question 2: Consider the following training corpus T of sentences:

- 1. <s>I am Sam </s>
- 2. $\langle s \rangle$ Sam I am $\langle s \rangle$
- 3. <s> I do not like green eggs and ham </s>

Compute the following maximum likelihood parameters:

- p(I| < s >) =
- p(</s>|Sam) =
- p(I|do) =
- (p(ham|eggs, and) =

Question 3: We have the following training corpus:

- 1. the green book STOP
- 2. my blue book STOP
- 3. his green house STOP
- 4. book STOP

Assume we have a trigram language model with linear interpolation based on this corpus, with $\lambda_i = \frac{1}{3}$ for all i. Compute the value of the parameter p(book|the,green) under this model. Assume STOP as part of your unigram model.

Question 4: Given a vocabulary V of size 1000 and a tagset T of size 30, suppose you wish to train a *bigram HMM tagger*. How many transition and emission parameters will your model have? Explain.

Question 5:

Let V={Karlsson,lives,happily} Let T={N,V}

We have a *trigram HMM tagger* that has the following non-zero parameters (all other parameters are zero):

Transition parameters:

- p(N|START)=0.5
- p(V|START)=0.5
- p(N|START,N)=1.0
- p(N|START,V)=0.9
- p(V|START,V)=0.1
- p(STOP|N,N)=1.0
- p(STOP|V,V)=1.0
- p(STOP|V,N)=1.0
- p(s|u,v)=0 for all other p parameters

Emission parameters:

- e(Karlsson|N)=0.8
- e(happily|N)=0.2
- e(lives|V)=0.7
- e|happily|V)=0.3

Under this model, how many pairs of sequences $x_1 ... x_n, y_1 ... y_n$ have non-zero probability $p(x_1, ... x_n, y_1 ... y_{n+1}) \ge 0$? Show all of these possible sequences.

Question 6: Find one tagging error in each of the following sentences that are tagged with the Penn Treebank tagset:

- 1. I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN
- 2. Does/VBZ this/DT flight/NN serve/VB dinner/NNS
- 3. I/PRP have/VB a/DT friend/NN living/VBG in/IN Denver/NNP
- 4. Can/VBP you/PRP list/VB the/DT nonstop/JJ afternoon/NN flights/NNS

Question 7:

We have a vocabulary V={Hello} and a constant $N \ge 1$. For any $x_1 ... x_n$ such that $x_i \in V$ for i = 1 ... (n-1) and $x_n = STOP$, we define

$$p(x_1, ..., x_n) = \begin{cases} \frac{1}{N}, & \text{if } n \le N. \\ 0, & \text{otherwise.} \end{cases}$$

Is this a valid language model? Explain.

Question 8:

Now we have a vocabulary V={Hello, Goodbye} and a constant $N \ge 1$. For any $x_1 \dots x_n$ such that $x_i \in V$ for $i = 1 \dots (n-1)$ and $x_n = STOP$, we define

$$p(x_1,...,x_n) = \begin{cases} \frac{1}{2}, & \text{if n=2.} \\ 0, & \text{otherwise.} \end{cases}$$

Is this a valid language model? Explain.

Question 9: Consider the task of classifying the word *bass* using the Naïve Bayes algorithm. The features used are bag-of-word features. Assume the following likelihoods for each word being part of a "fish" and "music" class, and equal prior probabilities for each class. What class will Naïve Bayes assign to the sentence "I eat fresh bass after music lesson"? Show your work.

	fish	music
I	0.09	0.16
eat	0.29	0.06
fresh	0.10	0.05
after	0.07	0.06
music	0.04	0.15
lesson	0.08	0.11