On sait que l'instruction rand(1) renvoie un nombre entre 0 et 1 (réel)

Pour obtenir une loi de Bernoulli de paramètre p on a divisé cet intervalle en 2 morceaux, l'un de longueur p et l'autre de longueur 1-p

0 p 1

si rand arrive entre 0 et p on renvoie 1 sinon on renvoie 0.

une loi géom de paramètre p renvoie 1 avec proba p premier sous intervalle de longueur p renvoie 2 avec une proba p(1-p) on met un second sous intervalle de longueur p(1-p)

renvoie 3 avec une probabilité $p(1-p)^2$ il faut un troisième intervalle de longueur $p(1-p)^2$

$$\begin{array}{cccc} 0 & & p & & p+p(1\mbox{-}p) & & p+p(1\mbox{-}p) + p(1\mbox{-}p)^2 \\ S_0 = 0 & & S_1 & & S_2 & & S_3 \end{array}$$

etc.

Si rand arrive entre 0 et S_1 on renvoie 1, si rand arrive entre S_2 et S_3 on renvoie 3 et plus généralement si rand arrive entre S_n et S_{n+1} on renvoie n+1.

On a une suite (S_n) strictement croissante donnée par le TD S_0 = 0, S_n tend vers 1 quand n tend vers l'infini.

 $S_{n+1} - S_n$ = proba que X = n+1 si X suit une loi géométrique G(p) à valeurs dans IN^*

on fait un rand $\,$ qui renvoie un réel x (simule une loi uniforme sur [0,1]) et on regarde entre quels S_n on arrive.

On sait qu'il existe un unique n tel que

 $S_n \le X \le S_{n+1}$

On le détermine, on renvoie **n+1**.

$$S_n = 1 - (1 - p)^n$$

$$\begin{array}{lll} 1\text{-}(1\text{-}p)^n & \leq & r < 1\text{-}(1\text{-}p)^{n+1} \iff & etc \\ (1\text{-}p)^{n+1} < 1\text{-}r \leq (1\text{-}p)^n \\ (n+1) & \ln(1\text{-}p) < \ln(1\text{-}r) \leq n & \ln(1\text{-}p) \\ & n \leq & \ln(1\text{-}r) / \ln(1\text{-}p) < n+1 \\ et & on & renvoie & \textbf{n+1} \end{array}$$

X = rand(N) N taille de l'échantillon renvoyer n + 1 = ceil(log(1-X) / log(1-p))

$$\Leftrightarrow \iff \exists \, \exists \, \forall \, \pm \, \wedge \, \vee \, \cap \qquad \otimes \, \Sigma \, \, \coprod \prod \, \in \not \in \, \cap \, \subset \, \bigcap \, \bigcup \, \supset \, \int \, \int \, \lambda \, \phi \, \sigma \, \pi \, \mu \, \, \theta \, \epsilon \, \delta \, \tau \, \chi \, \rho \, \alpha \, \beta \, \gamma \, \eta \, \omega \, \, \, \Omega \, \mathcal{T} \quad \ell$$