9 – 12 КЛАС: ЕСЕН 2016

Задача 1. Ако $3 - (\sqrt{2} - 1)^2 = \sqrt{x}$, тогава $x =$				
A) 2	B) 4	C) 8	D) 10	
Задача 2. Ако 11.11.1811 г. е бил понеделник, кой ден от седмицата е бил 11.11.1812 г.?				
А) понеделник	В) вторник	С) сряда	D) неделя	
Задача 3. Ако $a^2 = a + 3$, тогова $a^3 =$				
A) 3 <i>a</i> +4	B) 4 <i>a</i> +3	C) $a^2 - a$	D) $a^2 + a$	
Задача 4. Ако $\sqrt{2x+1} + 4x^2-1 = 0$, пресметнете $2x-3$.				
A) - 2	B) 0	C) 4	D) -4	
Задача 5. Колко е броят на изпъкналите N -ъгълници ($N \ge 3$), всеки от които има сбор от				
ъглите по-малък от 9 999 градуса?				
A) 55	B) 56	C) 57	D) 58	
Задача 6. Броят на естествените числа, които са делители на числото $3^6 \times 6^3$ е:				
A) 27	B) 30	C) 40	D) друг отговор	
Упътване: Известно	e, че ако p и q са раз	лични прости числа, (броят на естествените	
числа, които са делители на числото, равно на $p^n \times q^m$ е $(1+n) \times (1+m)$.				
Задача 7. В правоъгълен триъгълник с катети a и b радиусът на вписаната окръжност е				
0,5 . $(a-b)$. Периметърът на този триъгълник е				
A) $a + 2b$	B) $2a + b + c$	C) $3a + 2b$	D) <i>a</i> + 3 <i>b</i>	
Задача 8. Ако $ab < 0$, тогава стойността на израза $(2a - a) \times (2b - b)$ е:				
A) <i>ab</i>	B) 2 <i>ab</i>	C) 3 <i>ab</i>	D) друг отговор	
Задача 9. Разполагаме с 5 големи кутии. В някои от тях са поставени по 5 по-малки				
кутии. В някои от по-малките кутии са поставени по 5 още по-малки кутии. Колко е				
общият брой на кутиите, ако запълнените кутии са 5?				
A) 125	B) 50	C) 30	D) 25	
Задача 10. В правоъгълен триъгълник произведението на височините му е два пъти по-				
малко от произведението на страните му. Колко градуса е най-малкият ъгъл на				
триъгълника?				
A) 15	B) 30	C) 45	D) 60	

Задача 11. Намерете последната цифра на разликата $2015^{2016} - 2017^{2018}$.

Задача 12. Правоъгълник A е разрязан на четири правоъгълника с лица на три от тях, в квадратни сантиметри, както е показано на чертежа.

6	8
	24

Колко квадратни сантиметра е лицето на правоъгълника А?

Задача 13. Намерете най-малкото естествено число, което се дели на 2017, а при делението на 2015 дава остатък 8.

Задача 14. Колко най-малко числа от числата 1, 2, 3, 4, 5, 6, ..., 98, 99 и 100 трябва да бъдат избрани на случаен принцип, така че сред тях да има 2 числа със сбор 150?

Задача 15. Ако броят на върховете на призма е с 10 по-голям от броя на стените й, определете броя на ръбовете на призмата.

Задача 16. С колко цифри се записва числото, което е равно на

$$(5^{673})^3 \times (2^4)^{504}$$
?

Задача 17. Колко са реалните решения на уравнението $20x^7 + 16x^2 + 2016 = 0$?

Упътване: Теорема на Декарт: Да разгледаме алгебричното уравнение f(x)=0.

Броят на положителните корени на уравнението f(x)=0 е или равно на броя на смените на знаците в редицата на коефициентите, или е по-малка от този брой с четно число. Броят на отрицателните корени на уравнението f(x)=0 е или равно на броя на смените на знаците в редицата на коефициентите на f(-x)=0, или е по-малка от този брой с четно число. (Энциклопедія Элементарной математики на H. Weber и J. Wellstein,

издадена в гр. Одеса през 1906 г.)

Задача 18. Намерете \sphericalangle *ACB* на \triangle *ABC*, ако \blacktriangleleft *CAB* = 60 0 и *AB* = 2×*AC*.

Задача 19. Нека n е естествено число. В интервала $[4n^2+4n+1,9n^2+6n+1]$ има точно 6 точни квадрата. Определете n.

Задача 20. Намерете естествените числа, всяко от които е възможно да е най-голям общ делител на числата 2n + 3 и n - 8, ако n е естествено число по-голямо от 8.