

Lecture 9.1

Hypothesis testing (continued...)

Power, Type I, and Type II errors

It is possible that we will reject H_0 when H_0 is in fact true. This is called a **Type I error** whose probability is controlled by the significance level.

The other error we can make in hypothesis testing is to 'accept' H_0 when it is false. This is called a **Type II error**.

The **power** of the test is given by $1 - \mathbb{P}(\text{Type II Error})$. Power is affected by many factors including the size of the effect under H_1 , population variance, sample size and significance level.

Power, Type I, and Type II errors

	Decision				
	Retain	Reject			
H ₀ is true	Correct	Type I Error			
	$(1-\alpha)$	(α)			
H_0 is false	Type II Error	Correct			
	(β)	$Power = (1 - \beta)$			

Ideally, we would like the probability of making Type I and Type II errors to be as small as possible. However, there is a trade-off between the two errors. Intuitively, when the significance level, α , is decreased (smaller probability of type I error), it is more likely that p-value $> \alpha$ (so accept H_0 even when it is false).

Example

An automobile model is known to sustain no visible damage 25% of the time in 10-mph crash tests. A modified bumper design has been proposed in an effort to increase this percentage. Let p denote the proportion of all 10-mph crashes with this new bumper that result in no visible damage. The hypotheses to be tested are

$$H_0: p = 0.25$$
, against $H_1: p > 0.25$.

The test will be based on an experiment involving n=20 independent crashes with prototypes of the new design.

Let X be the number of crashes with no visible damage (test statistic).

Under the null hypothesis, $X \sim \text{Bin}(20, 0.25)$, the p-value for a given observed value x is

$$\mathbb{P}(X \ge x) = \sum_{i=x}^{20} {20 \choose i} \times 0.25^i \times 0.75^{20-i}.$$

So, we have

$$\mathbb{P}(X \ge 7) = 0.214$$
, $\mathbb{P}(X \ge 8) = 0.102$, and $\mathbb{P}(X \ge 9) = 0.041$.

Consider using a significance level of 0.05. Thus, rejecting H_0 when p-value ≤ 0.05 is equivalent to rejecting H_0 when $X \geq 9$.

$$P(\text{committing a type I error}) = P(\text{rejecting } H_0 \text{ when } H_0 \text{ is true})$$

= $\mathbb{P}(X \ge 9 \text{ when } X \sim \text{Bin}(20, 0.25)) = 0.041 \le 0.05.$

That is, the probability of a type I error is controlled by the significance level.

If the null hypothesis is true and the test procedure is used over and over again, each time with a group of 20 crashes, in the long run the null hypothesis will be incorrectly rejected in favor of the alternative hypothesis about 4% of the time.

There is only one type I error probability because there is only one value of the parameter for which H_0 is true, i.e., p = 0.25.

Let β denote the probability of committing a type II error. Unfortunately there is not a single value of β , because there are a multitude of ways for H_0 to be false: it could be false because $p=0.30,\ p=0.37,\ p=0.05,$ and so on. There is in fact a different value of β for each different value of p that exceeds 0.25.

At the chosen significance level 0.05, H_0 will be rejected if and only if $X \ge 9$, so H_0 will not be rejected if and only if $X \le 8$.

What is the probability of committing type II error when p = 0.3?

$$\beta(0.3) = \mathbb{P}(\text{type II error when } p = 0.3) = \mathbb{P}(H_0 \text{ is not rejected when } p = 0.3)$$

= $\mathbb{P}(X \le 8 \text{ when } X \sim \text{Bin}(20, 0.3)) = 0.887.$

When p is actually 0.3 rather than 0.25 (a "small" departure from H_0), roughly 89% of all experiments of this type would result in H_0 incorrectly standing! This is because the sample size of 20 is too small to permit accurate discrimination between .25 and 0.3. The departure from H_0 needs to be larger for it to be detected with such a small sample size.

р	0.3	0.4	0.5	0.6	0.7	8.0
$\beta(p)$.887	.560	.251	.056	.005	.000

Intuitively, the greater the departure from H_0 , the more likely it is that such a departure will be detected.

In order to detect small departures from H_0 , we need larger samples. Let's n=1000 in our example. Then, under the null hypothesis, $X \sim \text{Bin}(1000, 0.25)$, and the p-value for a given observed value x is

$$\mathbb{P}(X \ge x) = \sum_{i=x}^{1000} {20 \choose i} \times 0.25^{i} \times 0.75^{1000-i}.$$

So, we have

$$\mathbb{P}(X \ge 272) = 0.059, \quad \mathbb{P}(X \ge 272) = 0.051, \quad \text{and} \quad \mathbb{P}(X \ge 274) = 0.044.$$

So, now what is the probability of committing type II error when p = 0.3?

$$\beta(0.3) = \mathbb{P}(\text{type II error when } p = 0.3) = \mathbb{P}(H_0 \text{ is not rejected when } p = 0.3)$$

= $\mathbb{P}(X \le 273 \text{ when } X \sim \text{Bin}(1000, 0.3)) = 0.033.$

How to chose H_0 vs H_1 ?

There is an asymmetry between the null and alternative hypotheses. The decision as to which is the null and which is the alternative hypothesis is not a mathematical one, and depends on scientist context, custom, and convenience. **Some guidelines are:**

- When one of the competing hypotheses is more complex, null
 hypothesis is chosen as the one which is simpler than the alternative,
- The consequences of incorrectly rejecting one hypothesis may be graver than those of incorrectly rejecting the other. In such a case, the former should be chosen as the null hypothesis, because the probability of falsely rejecting it, i.e., Type I error, could be controlled. For example, in scientific studies, the false confirmation of one's own theory (Type I error) is typically a more serious error than falsely failing to confirm ones' own theory (Type II error).

Caution!

- The p-value resulting from carrying out a test on a selected sample is not the probability that H_0 is true.
- Care must be taken in interpreting evidence when the sample size is large, since any small departure from H₀ will almost surely be detected by a test as **statistically significant**, yet such a departure may not really be **practically significance**.
- H₀ not only includes the assumptions about the parameters, but it also contains assumptions about the underlying distribution of the data. Small p-value implies inconsistency with all of our assumptions, i.e., perhaps our initial assumption about the model for the distribution of the data was altogether wrong!

Paired data

Analysis of Paired Data

Our two-sample testing techniques require the assumption that all X and Y samples are independent of one another. In many experiments, there is only one set of n experimental objects; making two observations on each one results in a natural pairing of values. Such data often arises in "before—after" experiments, e.g., X_i and Y_i represent, respectively, the "before" and the "after" status of the same the ith object.

To compare the difference in the expectations of two dependent random variables X and Y, based on paired samples $\{X_i\}$ and $\{Y_i\}$, we use the difference random variable D = X - Y, and test whether $\delta = \mu_X - \mu_Y = 0$ using independent samples $D_i = X_i - Y_i$. We are thus back to the case of a one-sample testing.

WE FOUND NO LINK BETWEEN PURPLE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN BROWN JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN PINK JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN BLUE JELLY BEANS AND ACNE (P>0.05),

WE FOUND NO LINK BETWEEN TEAL JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN SALMON JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN RED JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO
LINK BETWEEN
TURQUOISE JELLY
BEANS AND ACKE
(P>0.05)

WE FOUND NO LINK BETWEEN MAGENTA JELLY BEANS AND ACNE (P>0.05),

WE FOUND NO LINK BETWEEN YELLOW JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN GREY JELLY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN TAN JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN CYAN JELLY BEANS AND ACNE (P>0.05).

WE FOUND A LINK BETWEEN GREEN JELLY BEANS AND ACNE (P < 0.05).

WE FOUND NO LINK BETWEEN YELLOW JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN BEIGE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN LILAC JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN BLACK JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN PEACH JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN ORANGE JELLY BEANS AND ACNE (P > 0.05).

Simultaneous testing of Several Hypotheses:

When doing k hypothesis testing, we need to set the significance level of each test to α/k so that overall, the probability of making at least one type I error, i.e., overall significance level, remains below α .

This is because by Bonferroni inequality, we have

$$\mathbb{P}(\text{at least one type I error}) = \mathbb{P}(A_1 \cup A_2 \cup \ldots \cup A_k)$$

$$\leq \mathbb{P}(A_1) + \mathbb{P}(A_2) + \ldots + \mathbb{P}(A_k)$$

$$= k\alpha/k = \alpha.$$

Hypothesis testing: Summary and Moral of the story

Moral of the story: Does our assumptions match our observations?

- Yes: Keep our assumptions
- No: Discard our assumptions