# Temporal Aggregation of Visual Features for Large-Scale Image-to-Video Retrieval

Noa Garcia Aston University

# Motivation

#### Visual Content Era









- Types of visual search:
  - Content-based image retrieval



Ranking









- Types of visual search:
  - Text-to-Image retrieval









Ranking









Collection of Images

- Types of visual search:
  - Audio-to-Image retrieval











Collection of Images



Ranking









- Types of visual search:
  - Image-to-Video Retrieval



# Image-to-Video Retrieval

#### Challenges:

- Asymmetry
- Temporal Redundancy
- Scalability
- Objectives:
  - To encode videos and images into a common space
  - To compress redundant data without a dramatic loss in accuracy



# Related Work

#### Related Work

- Early Work: Image Retrieval techniques
  - BoW on frames (Sivic and Zisserman, ICCV'03)
  - Vocabulary Trees on frames (Nister and Stewenius, CVPR'06)

#### Related Work

- Early Work: Image Retrieval techniques
  - BoW on frames (Sivic and Zisserman, ICCV'03)
  - Vocabulary Trees on frames (Nister and Stewenius, CVPR'06)
- Temporal Aggregation (TA) Methods
  - Based on Local Features
  - Based on Global Feautres

#### TA: Local Features

- Local features (e.g. SIFT) extracted from each frame and tracked along time
- Tracks are aggregated into a single vector by:
  - Average (Anjulan and Canagarajah, SPIC'07)
  - Minimum distance (Araujo et al. ICIP'14)



#### TA: Global Features

- Encode the visual information of a video segment into a single vector
  - BoW (Zhu and Satoh, ICMR'12)
  - Fisher Vector (Araujo et al., ICIP'15)
  - Bloom Filters (Araujo and Girod, CSVT'17)



# Methodology

# Temporal Aggregation

- We propose two models to aggregate temporal information in videos:
  - Local Binary Temporal Tracking (LBTT)
  - Deep Features Temporal Aggregation (DFTA)



BRIEF descriptor sampling patterns (Calonder et al., ECCV'10)



AlexNet architecture (Krizhevsky et al., NIPS'12)

# Temporal Aggregation

- We propose two models to aggregate temporal information in videos:
  - Local Binary Temporal Tracking (LBTT)
  - Deep Features Temporal Aggregation (DFTA)



BRIEF descriptor sampling patterns (Calonder et al., ECCV'10)



AlexNet architecture (Krizhevsky et al., NIPS'12)

• BRIEF features are extracted from every frame

#### **Feature Extraction**



Frame n

- BRIEF features are extracted from every frame
- Hamming distance to track features along time



- BRIEF features are extracted from every frame
- Hamming distance to track features along time
- For each track, a key feature is computed by majority



- Shot Boundary Detection
  - When consecutive frames have no common tracks
- Test time:
  - BRIEF features extracted from query
  - Search nearest key features with a kd-tree
  - Key features vote for the shot they belong to

# Temporal Aggregation

- We propose two models to aggregate temporal information in videos:
  - Local Binary Temporal Tracking (LBTT)
  - Deep Features Temporal Aggregation (DFTA)



BRIEF descriptor sampling patterns (Calonder et al., ECCV'10)



AlexNet architecture (Krizhevsky et al., NIPS'12)

# Temporal Aggregation: DFTA

• Each frame is encoded using RMAC (Tolias et al., ICLR'16)



# Temporal Aggregation: DFTA

- RMACs within the same shot are aggregated by:
  - DLTA-Max: for each dimension, keep the maximum value

$$\Theta(\mathbf{S}_{i,j}) = maxpool(\phi(f_{i,j,k}))$$

DLTA-Mean: for each dimension, the average value

$$\Theta(\mathbf{S}_{i,j}) = \frac{1}{N_{S_{i,j}}} \sum_{k=1}^{N_{S_{i,j}}} \phi(f_{i,j,k})$$

# Experiments

#### Dataset

- MoviesDB to evaluate image-to-video retrieval
  - Full movies with annotated query images
  - Query images are capture with a webcam
  - Performance measured as accuracy

$$Acc = \frac{No. Visual Matches}{Total No. Queries}$$



The Devil Wears Prada



Groundhog Day



Her



Pirates of the Caribbean: At World's End

#### Results

- LBTT
  - superior accuracy
  - multiple searches

- DLTA
  - best compression
  - single search per query

Table 1: Results in The Devil Wears Prada from MovieDB.

|        | Method    | Dim  | Memory  | N.Features | Acc  |
|--------|-----------|------|---------|------------|------|
| Local  | IR-BRIEF  | 256  | 2.53 GB | 85M        | 0.93 |
|        | LBTT      | 256  | 61 MB   | 2M         | 0.93 |
| Global | IR-FC1    | 4096 | 614 MB  | 39,324     | 0.63 |
|        | IR-FC2    | 4096 | 614 MB  | 39,324     | 0.42 |
|        | IR-RMAC   | 512  | 76.8 MB | 39,324     | 0.91 |
|        | DLTA-Max  | 512  | 3.13 MB | 1,602      | 0.22 |
|        | DLTA-Mean | 512  | 3.13 MB | 1,602      | 0.69 |

#### Results

- Results are consistent over different movies
  - LBTT outperforms DLTA in accuracy
  - DLTA-Max poor results

Table 2: Accuracy in The Devil Wears Prada, Groundhog Day, Her and Pirates of the Caribbean movies from MoviesDB.

| Method    | Movie1 | Movie2 | Movie3 | Movie4 |
|-----------|--------|--------|--------|--------|
| LBTT      | 0.93   | 0.97   | 0.76   | 0.80   |
| DLTA-Max  | 0.22   | 0.16   | 0.18   | 0.12   |
| DLTA-Mean | 0.69   | 0.56   | 0.53   | 0.47   |

# Future Work

#### Future Work

LSTM as Temporal Aggregation Method



- Experiments over more video collections
  - Full MoviesDB dataset (40 movies)
  - Standford I2V (Araujo et al., MMSys'15)

We propose two temporal aggregation models for image-to-video retrieval

- A model based on local binary features (LBTT)
- A model based on global deep features (DLTA)

Models based on binary features outperform deep learning models in terms of accuracy

However, deep learning models are more efficient

Future Work: train better deep learning models to increase accuracy

# Thank you!

Noa Garcia Aston University

Contact: garciadn@aston.ac.uk

ACM International Conference on Multimedia Retrieval 2018

#### References

- Araujo et al. Stanford I2V: a News Video Dataset for Query-by-Image Experiments. MMSys'15
- · Araujo et al. Temporal Aggregation for Large-Scale Query-by-Image Video Retrieval. ICIP'15
- · Araujo and Girod. Large-Scale Video Retrieval Using Image Queries. CSVT'17
- · Calonder et al., BRIEF: Binary Robust Independent Elementary Features. ECCV'10
- Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks. NIPS'12
- · Nister and Stewenius. Scalable Recognition with a Vocabulary Tree. CVPR'06
- Sivic and Zisserman. Video Google: A Text Retrieval Approach to Object Matching in Videos. ICCV'03
- Tolias et al., Particular Object Retrieval with Integral Max-Pooling of CNN Activations.
  ICLR'16
- Zhu and Satoh. Large Vocabulary Quantization for Searching Instances from Videos. ICMR'12