ESPAÇOS LINEARES ou VECTORIAIS

Definição

- Sejam Ω um corpo (normalmente R ou C) e V um conjunto não vazio de elementos, onde estão definidas uma condição de igualdade entre elementos de V e as seguintes operações:
 - i) Operação interna Adição: envolvendo elementos de V;
 - ii) *Operação externa Multiplicação por escalar*: multiplicação de um elemento de V por um elemento de Ω (*escalar*).

Definição [1.6]: Espaço linear (vectorial) sobre um corpo Ω

O conjunto V diz-se um espaço linear (vectorial) sobre o corpo Ω , se são verificados os seguintes *axiomas*:

Axiomas de Fecho

Axioma 1) Axioma de fecho para a adição

$$\forall x, y \in V \ x + y \in V$$

Axioma 2) Axioma de fecho para a multiplicação por escalar

$$\forall x \in V \ \forall \alpha \in \Omega \ \alpha x \in V$$

Axiomas para a Adição

Axioma 3) Propriedade comutativa

$$\forall x,y \in V \ x+y=y+x$$

Axioma 4) Propriedade associativa

$$\forall x, y, z \in V (x+y) + z = x + (y+z)$$

Axioma 5) Existência de elemento zero

$$\exists o \in V \ \forall x \in V \ x + o = x$$

Axioma 6) Existência de elemento simétrico (oposto)

$$\forall x \in V \exists (-x) \in V \ x + (-x) = o$$

Axiomas para a Multiplicação por Escalar

Axioma 7) Propriedade associativa

$$\forall x \in V \ \forall \alpha, \beta \in \Omega \ \alpha(\beta x) = (\alpha \beta) x = \beta(\alpha x)$$

Axioma 8) Propriedade distributiva em relação à adição em V $\forall x, y \in V \ \forall \alpha \in \Omega \ \alpha(x+y) = \alpha x + \alpha y$

Axioma 9) Propriedade distributiva em relação à adição em Ω

$$\forall x \in V \ \forall \alpha, \beta \in \Omega \ (\alpha + \beta)x = \alpha x + \beta x$$

Axioma 10) Existência de elemento unidade

$$\forall x \in V \ 1x = x$$

- Convém realçar o seguinte:
 - i) O *elemento zero* de V pode ainda ser representado por 0_V;
 - ii) Os elementos de V são, muitas vezes, designados por vectores;
 - iii) Se $\Omega = \mathbb{R}$, então V é um *espaço linear (vectorial) real*;
 - iv) Se $\Omega = \mathbb{C}$, então V é um *espaço linear (vectorial) complexo*;
 - v) Se os elementos de V são funções, então V é um espaço funcional.

Exemplo 1 [1.9]: O conjunto \mathbb{R} é um espaço linear real; não é um espaço linear complexo.

Exemplo 2 [1.9;10]: O conjunto \mathbb{C} tanto poderá ser um *espaço linear real* como um *espaço linear complexo*.

Exemplo 3 [1.11]: Os conjuntos \mathbb{R}^2 e \mathbb{R}^3 são *espaços lineares reais*.

Exemplo 4 [1.11]: O conjunto \mathbb{R}^n é um *espaço linear real*.

Exemplo 5 [1.23]: O conjunto de elementos de \mathbb{R}^3

$$T = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 = 0 \lor x_2 = 0\} \subset \mathbb{R}^3$$

não é um espaço linear real.

Exemplo 6: O conjunto de elementos de \mathbb{R}^3

$$U = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 = 0 \land x_2 = 0 \right\} \subset \mathbb{R}^3$$

é um espaço linear real.

Exemplo 7 [1.13]: O conjunto de elementos de \mathbb{R}^3

$$W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_3 = 0\} \subset \mathbb{R}^3$$

é um espaço linear real.

Exemplo 8 [1.14]: Seja $P_n(\mathbb{R})$ o conjunto dos polinómios reais a uma variável real que não têm grau superior a n, em que n tem um valor fixo

$$P_n(\mathbb{R}) = \left\{ a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n : a_i \in \mathbb{R} , i = 0, 1, 2, \dots, n \right\}$$

Trata-se de um espaço linear real (espaço funcional real).

Exemplo 9 [1.25]: O conjunto de elementos de $P_n(\mathbb{R})$

$$S = \{ p(x) \in P_n(\mathbb{R}) : p(2) = 2 + p(0) \} \subset P_n(\mathbb{R})$$

não é um espaço linear real.

Exemplo 10 [1.15]: O conjunto de elementos de $P_3(\mathbb{R})$

$$Q = \left\{ a(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \in P_3(\mathbb{R}) : a(0) = a(1) \right\} \subset P_3(\mathbb{R})$$

é um espaço linear real.

Exemplo 11 [1.26]: O conjunto dos polinómios reais a uma variável real de grau exactamente igual a n, em que n tem um valor fixo, $n\tilde{a}o$ \acute{e} um espaço linear real.

Exemplo 12 [1.16]: O conjunto V das funções reais de variável real definidas no domínio $U \subset \mathbb{R}$ é um *espaço linear real* (*espaço funcional real*).

Exemplo 13 [1.17]: O conjunto V das funções reais de variável real contínuas num dado intervalo é um *espaço linear real* (*espaço funcional real*).

Exemplo 14 [1.18]: O conjunto V das funções reais de variável real deriváveis num dado ponto é um *espaço linear real* (*espaço funcional real*).

Exemplo 15 [1.19]: O conjunto V das funções reais de variável real integráveis num dado intervalo é um *espaço linear real* (*espaço funcional real*).

Exemplo 16 [1.12]: Seja $M_{(m,n)}$ o conjunto de todas as matrizes do tipo $m \times n$, num corpo Ω . Conforme veremos oportunamente, trata-se de um espaço linear sobre o corpo Ω , sendo um espaço linear real se $\Omega = \mathbb{R}$, e um espaço linear complexo no caso de $\Omega = \mathbb{C}$.

Propriedades de um espaço linear

Teorema [1.5]: Unicidade do elemento zero

O *elemento zero* de um espaço linear é único.

Teorema [1.6]: Unicidade do elemento simétrico (ou oposto)

Num espaço linear, o elemento simétrico de qualquer elemento é único.

Teorema [1.7]: Lei de cancelamento na adição

Seja V um espaço linear. Então

$$\forall x, y, z \in V : x + y = z + y \implies x = z$$

Teorema [1.8]: Em qualquer espaço linear V sobre um corpo Ω , que tem 0_V como *elemento zero*, são verdadeiras as seguintes proposições:

a)
$$\forall x \in V \ 0x = 0_V$$

b)
$$\forall \alpha \in \Omega \quad \alpha 0_{V} = 0_{V}$$

c)
$$\forall x \in V \ \forall \alpha \in \Omega \ (-\alpha)x = -(\alpha x) = \alpha(-x)$$

d)
$$\forall x \in V \ \forall \alpha \in \Omega \ \alpha x = 0_V \iff \alpha = 0 \lor x = 0_V$$

e)
$$\forall x, y \in V \ \forall \alpha \in \Omega \setminus \{0\} \ \alpha x = \alpha y \iff x = y$$

f)
$$\forall x \in V \setminus \{0_V\} \ \forall \alpha, \beta \in \Omega \ \alpha x = \beta x \iff \alpha = \beta$$

g)
$$\forall x, y \in V -(x+y) = (-x) + (-y) = -x - y$$

h)
$$\forall x \in V \ \forall n \in \mathbb{N} \ \sum_{i=1}^{n} x = nx$$

Subespaço linear (ou vectorial)

Definição [1.7]: Subespaço linear (vectorial)

Sejam V um *espaço linear (vectorial)* sobre um corpo Ω e S um subconjunto não vazio de V. Se S tem estrutura de espaço linear, com a mesma condição de *igualdade* e as mesmas operações *adição* e *multiplicação por escalar* definidas em V, então S diz-se um *subespaço linear (vectorial)* de V ou, simplesmente, um *subespaço* de V.

Teorema [1.9]: Se S é um subconjunto não vazio de um espaço linear V, com a mesma condição de *igualdade* e as mesmas operações *adição* e *multiplicação por escalar* definidas em V, então S é um *subespaço linear* (vectorial) de V, se e só se S satisfaz os *axiomas de fecho*.

Exemplo 17: O conjunto de elementos de \mathbb{R}^3 (exemplo 6)

$$U = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 = 0 \land x_2 = 0 \right\} \subset \mathbb{R}^3$$

é um *subespaço* de \mathbb{R}^3 .

Exemplo 18 [1.27]: O conjunto de elementos de \mathbb{R}^3 (exemplo 7)

$$W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_3 = 0\} \subset \mathbb{R}^3$$

é um *subespaço* de \mathbb{R}^3 .

Exemplo 19 [1.29]: O conjunto de elementos de \mathbb{R}^3

$$S = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 - 2x_2 = 0 \land x_1 - 3x_2 = x_3 \right\} \subset \mathbb{R}^3$$

é um *subespaço* de \mathbb{R}^3 .

Exemplo 20 [1.30]: O conjunto de elementos de $P_3(\mathbb{R})$ (exemplo 10)

$$Q = \left\{ a(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \in P_3(\mathbb{R}) : a(0) = a(1) \right\} \subset P_3(\mathbb{R})$$

é um subespaço de $P_3(\mathbb{R})$.