

Algebriac Topology III (MAT484)

Lecture Notes

Contents

1 Singular Homology Groups

3

Singular Homology Groups

Let \mathbb{R}^{∞} denote the generalized Euclidean space \mathbb{E}^{J} , with J being the set of positive integers. An element of the vector space \mathbb{R}^{∞} is an infinite sequence of real numbers (functions from \mathbb{N} to \mathbb{R}) with finitely many nonzero entries. Let Δ_{p} denote the p-simplex in \mathbb{R}^{∞} having vertices

$$\begin{split} \varepsilon_0 &= (1,0,0,\ldots,0,\ldots) \;, \\ \varepsilon_1 &= (0,1,0,\ldots,0,\ldots) \;, \\ & \ldots \\ \varepsilon_p &= (0,0,0,\ldots,\underbrace{1}_{(p+1)\text{-th entry}},\ldots) \,. \end{split}$$

We call Δ_p the **standard p-simplex**. In this notation, Δ_{p-1} is a face of Δ_p .

Definition 1.1 (Singular p-simplex). Let X be a topological space. We define a **singular** p-simplex of X to be a continuous map $T: \Delta_p \to X$. The free abelian group generated by singular p-simplices of X is denoted by $S_p(X)$, and is called the **singular chain group** of X in dimension p. We shall denote an element of $S_p(X)$ by a \mathbb{Z} -linear combination of singular p-simplices of X.

Singular means that T could be a "bad" map, i.e. it may not be an imbedding. All we want that T is just continuous. Now, recall that

$$\Delta_p = \left\{ (x_0, x_1, \dots, x_p, 0, \dots) \in \mathbb{R}^{\infty} | 0 \le x_i \le 1 \text{ and } \sum_{i=0}^p x_i = 1 \right\}.$$
 (1.1)

Given $a_0, a_1, \ldots, a_p \in \mathbb{R}^{\infty}$, there is a unique affine map $l_{(a_0, \ldots, a_p)} : \Delta_p \to \mathbb{R}^{\infty}$ that maps ε_i to a_i . It is defined by

$$l_{(a_0,\dots,a_p)}(x_0,x_1,\dots,x_p,0,\dots) = \sum_{i=0}^p x_i a_i = \sum_{i=0}^p x_i a_i + a_0 - \sum_{i=0}^p x_i a_0$$
$$= a_0 + \sum_{i=0}^p x_i (a_i - a_0). \tag{1.2}$$

We call this map the **linear singular simplex** determined by $a_0, a_1, \ldots, a_p \in \mathbb{R}^{\infty}$. Now, what is $l_{(\varepsilon_0, \ldots, \varepsilon_p)}$? Observe that

$$l_{(\varepsilon_0,\dots,\varepsilon_p)}\varepsilon_i = l_{(\varepsilon_0,\dots,\varepsilon_p)}(0,\dots,0,\underbrace{1}_{(i+1)\text{-th entry}},0,\dots) = \varepsilon_i.$$
(1.3)

Therefore, $l_{(\varepsilon_0,\dots,\varepsilon_p)}$ maps ε_i to itself, for every $i=0,1,\dots,p$. Also,

$$l_{(\varepsilon_0,\dots,\varepsilon_p)}(x_0,x_1,\dots,x_p,0,\dots) = \sum_{i=0}^p x_i \varepsilon_i = (x_0,x_1,\dots,x_p,0,\dots).$$
(1.4)

Therefore, $l_{(\varepsilon_0,\ldots,\varepsilon_p)}$ is just the inclusion map of Δ_p into \mathbb{R}^{∞} . Now, suppose $(x_0,x_1,\ldots,x_{p-1},0,\ldots) \in \Delta_{p-1}$, so that $\sum_{i=0}^{p-1} x_i = 1$. Then

$$l_{(\varepsilon_0,\dots,\widehat{\varepsilon_i},\dots,\varepsilon_p)}(x_0,x_1,\dots,x_{p-1},0,\dots) = x_0\varepsilon_0 + \dots + x_{i-1}\varepsilon_{i-1} + 0 \cdot \varepsilon_i + x_{i+1}\varepsilon_{i+1} + \dots + x_{p-1}\varepsilon_p$$

$$= (x_0,\dots,x_{i-1},0,x_{i+1},\dots,x_{p-1},0,\dots), \qquad (1.5)$$

which is a point on the face of Δ_p opposite to the vertex ε_i . In fact, $l_{(\varepsilon_0,...,\widehat{\varepsilon_i},...,\varepsilon_p)}$ is a linear homomorphism of Δ_{p-1} into the face of Δ_p that is opposite to the vertex ε_i . In other words,

$$l_{(\varepsilon_0,\dots,\widehat{\varepsilon_i},\dots,\varepsilon_p)}:\Delta_{p-1}\to\Delta_p$$

maps Δ_{p-1} to the face of Δ_p opposite to the vertex ε_i . Therefore, given a singular p-simplex $T:\Delta_p\to X$, one can form the composite

$$T \circ l_{(\varepsilon_0,\dots,\widehat{\varepsilon_i},\dots,\varepsilon_p)} : \Delta_{p-1} \to X,$$

which is a singular (p-1)-simplex. We think of it as the *i*-th face of the singular *p*-simplex T.

Definition 1.2 (Boundary homomorphism). We define $\partial: S_p(X) \to S_{p-1}(X)$ as follows. If $T: \Delta_p \to X$ is a singular p-simplex, we define ∂T to be

$$\partial T = \sum_{i=0}^{p} (-1)^{i} T \circ l_{(\varepsilon_{0}, \dots, \widehat{\varepsilon_{i}}, \dots, \varepsilon_{p})}. \tag{1.6}$$

In other words, ∂T is a formal sum of singular simplices of dimension p-1, which are the faces of T.

If $f: X \to Y$ is a continuous map, we define a group homomorphism $f_{\#}: S_p(X) \to S_p(Y)$ by defining it on singular *p*-simplices by the equation

$$f_{\#}\left(T\right) = f \circ T \tag{1.7}$$

for a singular p-simplex T.

$$\Delta_p \xrightarrow{T} X \xrightarrow{f} Y$$

Theorem 1.1

The homomorphism $f_{\#}$ commutes with ∂ . Furthermore, $\partial^2 = 0$.

Proof. Given a singular p-simplex T,

$$\partial f_{\#}(T) = \partial (f \circ T) = \sum_{i=0}^{p} (-1)^{i} (f \circ T) \circ l_{(\varepsilon_{0}, \dots, \widehat{\varepsilon_{i}}, \dots, \varepsilon_{p})}. \tag{1.8}$$

$$f_{\#}(\partial T) = f_{\#}\left(\sum_{i=0}^{p} (-1)^{i} T \circ l_{(\varepsilon_{0},\dots,\widehat{\varepsilon_{i}},\dots,\varepsilon_{p})}\right) = \sum_{i=0}^{p} (-1)^{i} f \circ T \circ l_{(\varepsilon_{0},\dots,\widehat{\varepsilon_{i}},\dots,\varepsilon_{p})}.$$
 (1.9)

Therefore, $\partial f_{\#}(T) = f_{\#}(\partial T)$. Now, to prove $\partial^2 = 0$, we first compute ∂ for linear singular simplices $l_{(a_0,...,a_p)}$.

$$\partial l_{(a_0,\dots,a_p)} = \sum_{i=0}^p (-1)^i l_{(a_0,\dots,a_p)} \circ l_{(\varepsilon_0,\dots,\widehat{\varepsilon_i},\dots,\varepsilon_p)}. \tag{1.10}$$

Observe that

$$l_{(a_0,\dots,a_p)} \circ l_{(\varepsilon_0,\dots,\widehat{\varepsilon_i},\dots,\varepsilon_p)} (x_0,\dots,x_{p-1},0,\dots) = l_{(a_0,\dots,a_p)} (x_0,\dots,x_{i-1},0,x_ix_{p-1},0,)$$

$$= x_0 a_0 + \dots + x_{i-1} a_{i-1} + 0 \cdot a_i + x_i a_{i+1} + \dots + x_{p-1} a_p$$

$$= l_{(a_0,\dots,\widehat{a_i},\dots a_p)} (x_0,\dots,x_{p-1},0,\dots). \tag{1.11}$$

Hence,

$$l_{(a_0,\dots,a_p)} \circ l_{(\varepsilon_0,\dots,\widehat{\varepsilon_i},\dots,\varepsilon_p)} = l_{(a_0,\dots,\widehat{a_i},\dots a_p)}. \tag{1.12}$$

Therefore, from 1.10, it follows that

$$\partial l_{(a_0,\dots,a_p)} = \sum_{i=0}^p (-1)^i l_{(a_0,\dots,\widehat{a_i},\dots a_p)}.$$
(1.13)

Let's now evaluate $\partial \partial l_{(a_0,...,a_p)}$.

$$\partial \partial l_{(a_0,\dots,a_p)} = \sum_{i=0}^{p} (-1)^i \partial l_{(a_0,\dots,\widehat{a_i},\dots a_p)}$$

$$= \sum_{i=0}^{p} (-1)^i \sum_{ji} (-1)^{j-1} l_{(a_0,\dots,\widehat{a_i},\dots \widehat{a_j},\dots a_p)}$$

$$= \sum_{i=0}^{p} \sum_{ji} (-1)^{i+j} l_{(a_0,\dots,\widehat{a_i},\dots \widehat{a_j},\dots a_p)}. \tag{1.14}$$

Now fix $0 \le j_0 < i_0 \le p$. In the first summand of 1.14, the contribution of $i = i_0, j = j_0$ is

$$(-1)^{i_0+j_0} l_{(a_0,\dots,\widehat{a_{j_0}},\dots\widehat{a_{i_0}},\dots a_p)}. \tag{1.15}$$

On the other hand, in the second summand of 1.14, the contribution of $i = j_0, j = i_0$ is also

$$(-1)^{i_0+j_0} l_{\left(a_0,\dots,\widehat{a_{j_0}},\dots\widehat{a_{i_0}},\dots a_p\right)}. \tag{1.16}$$

These two contributions cancel each other. This way, one finds that the RHS of 1.14 vanishes. Hence,

$$\partial \partial l_{(a_0,\dots,a_p)} = 0. \tag{1.17}$$

In particular,

$$\partial \partial l_{(\varepsilon_0, \dots, \varepsilon_n)} = 0. \tag{1.18}$$

Now, $l_{(\varepsilon_0,\dots,\varepsilon_p)}:\Delta_p\to\Delta_p$ is continuous, so $l_{(\varepsilon_0,\dots,\varepsilon_p)}\in S_p\left(\Delta_p\right)$. Furthermore, it is the identity map as we have seen in 1.4. Since $T:\Delta_p\to X$ is continuous, we can form $T_\#:S_p\left(\Delta_p\right)\to S_p\left(X\right)$.

$$T_{\#}\left(l_{(\varepsilon_{0},\dots,\varepsilon_{p})}\right) = T \circ l_{(\varepsilon_{0},\dots,\varepsilon_{p})} = T \circ \mathrm{id}_{\Delta_{p}} = T.$$
 (1.19)

Therefore, using the fact that $T_{\#}$ commutes with ∂ , we obtain

$$\partial \partial T = \partial \partial T_{\#} \left(l_{(\varepsilon_0, \dots, \varepsilon_p)} \right) = T_{\#} \left(\partial \partial l_{(\varepsilon_0, \dots, \varepsilon_p)} \right) = 0. \tag{1.20}$$

Hence,
$$\partial^2 T = 0$$
.