Содержание

Вариант 1	4
Вариант 2	6
Вариант 3	8
Вариант 4	10
Вариант 5	12
Вариант 6	14
Вариант 7	16
Вариант 8	18
Вариант 9	20
Вариант 10	22
Вариант 11	24
Вариант 12	26
Вариант 13	28
Вариант 14	30
Вариант 15	32
Вариант 16	34
Вариант 17	36
Вариант 18	38
Вариант 19	40
Вариант 20	42
Вариант 21	44
Вариант 22	46
Вариант 23	48

Вариант 24	50
Вариант 25	52
Вариант 26	54
Вариант 27	56
Вариант 28	58
Вариант 29	60
Вариант 30	62
Вариант 31	64
Вариант 32	66
Вариант 33	68
Вариант 34	70
Вариант 35	72
Вариант 36	74
Вариант 37	76
Вариант 38	78
Вариант 39	80
Вариант 40	82
Вариант 41	84
Вариант 42	86
Вариант 43	88
Вариант 44	90
Вариант 45	92
Вариант 46	94
Вариант 47	96
Вариант 48	98

Вариант 49	100
Вариант 50	102

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -7 & 7 \\ -5 & -1 \end{array} \right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -4.96 & 0.11 \\ -0.08 & -7.82 \end{pmatrix}, b = \begin{pmatrix} -4.86 \\ -8.05 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 23x + 6y + 3z = 3, \\ 7x + 19y + 4z = 2, \\ 3x + 4y + 19z = 4. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+6), где

$$A = \begin{pmatrix} 3 & -7 & 3 \\ -4 & 12 & -5 \\ -8 & 25 & -10 \end{pmatrix}$$

$$M = \begin{bmatrix} 12 & 12 & 12 & 7 \\ 13 & 4 & 9 & 14 \\ 7 & 3 & 2 & 13 \\ 0 & 16 & 12 & 16 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^3 + 1} \qquad y = \frac{t^3 - t^2 + 1}{2}$$

$$f(x)=\sqrt{2x+5}$$
 на отрезке $[0,\,4]$ по норме $|h|_T=\sqrt{\int_0^4 rac{h(x)^2}{\sqrt{1-(2x-4)^2/16}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -6 & 8\\ 1 & -1 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -3.03 & -0.11 \\ -5.11 & -4.9 \end{pmatrix}, b = \begin{pmatrix} -2.85 \\ -10.0 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 26x + 5y + 6z = 5, \\ 2x + 20y + 5z = 7, \\ 3x + 4y + 20z = 6. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+4), где

$$A = \begin{pmatrix} -1 & -1 & 2\\ 5 & 4 & -3\\ -3 & -1 & 4 \end{pmatrix}$$

$$M = \begin{bmatrix} 9 & 15 & 9 & 21 \\ 0 & 15 & 2 & 15 \\ 9 & 14 & 13 & 9 \\ 4 & 15 & 14 & 3 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^2 + 3} \qquad y = \frac{t^2 + 1}{t^3 - t^2 + 1}$$

$$f(x)=\sqrt{5x+9}$$
 на отрезке [2, 3] по норме $|h|_T=\sqrt{\int_2^3 rac{h(x)^2}{\sqrt{1-(2x-5)^2/1}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 2 & 8 \\ -9 & 0 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -2.08 & 0.19 \\ 2.97 & -7.92 \end{pmatrix}, b = \begin{pmatrix} -2.17 \\ -5.1 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 22x + 9y + 7z = 2, \\ 2x + 22y + 4z = 9, \\ 8x + 8y + 27z = 9. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+3}$, где

$$A = \begin{pmatrix} 0 & -3 & -4 \\ 0 & 4 & 4 \\ 4 & 3 & 4 \end{pmatrix}$$

$$M = \begin{bmatrix} 9 & 15 & 9 & 21 \\ 0 & 15 & 2 & 15 \\ 9 & 14 & 13 & 9 \\ 4 & 15 & 14 & 3 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t^3 + t + 1}{t}$$
 $y = \frac{t}{t^2 - 2}$

$$f(x)=\sqrt{4x+2}$$
 на отрезке $[0,\,4]$ по норме $|h|_T=\sqrt{\int_0^4 rac{h(x)^2}{\sqrt{1-(2x-4)^2/16}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -8 & -9 \\ 8 & -4 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -4.0 & -0.19 \\ -2.11 & -5.92 \end{pmatrix}, b = \begin{pmatrix} -4.06 \\ -7.91 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 24x + 5y + 9z = 8, \\ 4x + 26y + 8z = 5, \\ 4x + 1y + 22z = 9. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+3), где

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 2 \\ 1 & -2 & 5 \end{pmatrix}$$

$$M = \begin{bmatrix} 0 & 16 & 18 & 14 \\ 11 & 3 & 4 & 12 \\ 17 & 16 & 5 & 5 \\ 4 & 18 & 13 & 9 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{1 - t^2}{t^2 + t + 2} \qquad y = \frac{t^3 + 2t^2}{t^2 + t + 1}$$

$$f(x)=\sqrt{4x+1}$$
 на отрезке $[1,\,6]$ по норме $|h|_T=\sqrt{\int_1^6 rac{h(x)^2}{\sqrt{1-(2x-7)^2/25}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 3 & -8 \\ -3 & 6 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -4.05 & 0.1 \\ -5.08 & -1.93 \end{pmatrix}, b = \begin{pmatrix} -3.92 \\ -7.01 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 26x + 9y + 4z = 3, \\ 6x + 27y + 9z = 7, \\ 2x + 7y + 19z = 6. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+1}$, где

$$A = \begin{pmatrix} 17 & 15 & -7 \\ -20 & -17 & 8 \\ -14 & -12 & 6 \end{pmatrix}$$

$$M = \begin{bmatrix} 1 & 0 & 5 & 1 \\ 18 & 9 & 10 & 5 \\ 13 & 19 & 3 & 0 \\ 10 & 13 & 1 & 16 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^3 + 2} \qquad y = \frac{t^3 - t^2 + 1}{1}$$

$$f(x)=\sqrt{x+5}$$
 на отрезке $[1,\,3]$ по норме $|h|_T=\sqrt{\int_1^3 rac{h(x)^2}{\sqrt{1-(2x-4)^2/4}}dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -1 & 3\\ 6 & 5 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -3.92 & -0.04 \\ 1.0 & -2.18 \end{pmatrix}, b = \begin{pmatrix} -3.83 \\ -0.9 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 26x + 5y + 3z = 8, \\ 5x + 27y + 2z = 2, \\ 4x + 2y + 20z = 9. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+3), где

$$A = \begin{pmatrix} -9 & -21 & 11\\ 22 & 46 & -23\\ 30 & 61 & -30 \end{pmatrix}$$

$$M = \begin{bmatrix} 16 & 5 & 10 & 8 \\ 1 & 16 & 10 & 9 \\ 7 & 8 & 0 & 16 \\ 4 & 7 & 18 & 0 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^2 + 1} \qquad y = \frac{t^2 + 1}{t^3 - t^2 + 2}$$

$$f(x)=\sqrt{x+2}$$
 на отрезке $[0,\,4]$ по норме $|h|_T=\sqrt{\int_0^4 rac{h(x)^2}{\sqrt{1-(2x-4)^2/16}}dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 6 & -5 \\ 8 & -3 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -0.99 & 0.18 \\ 1.15 & -1.02 \end{pmatrix}, b = \begin{pmatrix} -1.01 \\ 0.01 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 22x + 4y + 1z = 8, \\ 8x + 20y + 6z = 3, \\ 6x + 4y + 24z = 5. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+7), где

$$A = \begin{pmatrix} 16 & 9 & 4 \\ -37 & -22 & -11 \\ 41 & 27 & 15 \end{pmatrix}$$

$$M = \begin{bmatrix} 6 & 4 & 4 & 20 \\ 7 & 14 & 0 & 14 \\ 14 & 8 & 14 & 8 \\ 5 & 4 & 19 & 12 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t^3 + t + 1}{t}$$
 $y = \frac{t}{t^2 - 3}$

$$f(x)=\sqrt{x+9}$$
 на отрезке $[0,\,5]$ по норме $|h|_T=\sqrt{\int_0^5 rac{h(x)^2}{\sqrt{1-(2x-5)^2/25}}dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 3 & 2 \\ 7 & 8 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} 2.09 & 0.12 \\ -0.83 & -8.13 \end{pmatrix}, b = \begin{pmatrix} 2.1 \\ -9.03 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 22x + 7y + 3z = 7, \\ 3x + 24y + 5z = 2, \\ 4x + 4y + 24z = 4. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+2}$, где

$$A = \begin{pmatrix} 2 & -23 & 11 \\ 1 & -32 & 16 \\ 2 & -76 & 38 \end{pmatrix}$$

$$M = \begin{bmatrix} 1 & 12 & 4 & 17 \\ 23 & 11 & 3 & 3 \\ 4 & 16 & 16 & 20 \\ 15 & 9 & 15 & 6 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{1 - t^2}{t^2 + t + 2} \qquad y = \frac{t^3 + 2t^2}{t^2 + t + 3}$$

$$f(x)=\sqrt{5x+2}$$
 на отрезке $[1,\,5]$ по норме $|h|_T=\sqrt{\int_1^5 rac{h(x)^2}{\sqrt{1-(2x-6)^2/16}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -1 & -6 \\ -4 & 1 \end{array} \right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} 2.9 & -0.17 \\ 2.05 & -1.96 \end{pmatrix}, b = \begin{pmatrix} 2.87 \\ 0.05 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 25x + 5y + 5z = 1, \\ 5x + 25y + 1z = 3, \\ 7x + 4y + 21z = 5. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+3), где

$$A = \begin{pmatrix} 0 & -65 & 32 \\ 1 & 46 & -22 \\ 2 & 80 & -38 \end{pmatrix}$$

$$M = \begin{bmatrix} 1 & 12 & 4 & 17 \\ 23 & 11 & 3 & 3 \\ 4 & 16 & 16 & 20 \\ 15 & 9 & 15 & 6 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^3 + 1} \qquad y = \frac{t^3 - t^2 + 1}{2}$$

$$f(x)=\sqrt{2x+8}$$
 на отрезке $[0,\,6]$ по норме $|h|_T=\sqrt{\int_0^6 rac{h(x)^2}{\sqrt{1-(2x-6)^2/36}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -5 & 1\\ 6 & -7 \end{array} \right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} 4.01 & -0.12 \\ -1.83 & -4.04 \end{pmatrix}, b = \begin{pmatrix} 3.83 \\ -6.1 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 23x + 3y + 8z = 1, \\ 3x + 27y + 5z = 1, \\ 3x + 2y + 25z = 3. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+6), где

$$A = \begin{pmatrix} -34 & -26 & 9\\ 51 & 39 & -13\\ -3 & -2 & 2 \end{pmatrix}$$

$$M = \begin{bmatrix} 3 & 13 & 12 & 16 \\ 15 & 3 & 2 & 4 \\ 18 & 12 & 0 & 0 \\ 12 & 7 & 11 & 7 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^2 + 1} \qquad y = \frac{t^2 + 1}{t^3 - t^2 + 2}$$

$$f(x)=\sqrt{x+5}$$
 на отрезке $[0,\,6]$ по норме $|h|_T=\sqrt{\int_0^6 rac{h(x)^2}{\sqrt{1-(2x-6)^2/36}}dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -5 & 0 \\ -1 & 3 \end{array} \right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -1.08 & 0.09 \\ 5.0 & -7.04 \end{pmatrix}, b = \begin{pmatrix} -0.89 \\ -2.09 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 20x + 5y + 8z = 9, \\ 6x + 21y + 6z = 4, \\ 8x + 2y + 25z = 2. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+5), где

$$A = \begin{pmatrix} 11 & 4 & -3 \\ -22 & -6 & 3 \\ -8 & -2 & 1 \end{pmatrix}$$

$$M = \begin{bmatrix} 3 & 13 & 12 & 16 \\ 15 & 3 & 2 & 4 \\ 18 & 12 & 0 & 0 \\ 12 & 7 & 11 & 7 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t^3 + t + 1}{t}$$
 $y = \frac{t}{t^2 - 3}$

$$f(x)=\sqrt{3x+7}$$
 на отрезке $[0,\,5]$ по норме $|h|_T=\sqrt{\int_0^5 rac{h(x)^2}{\sqrt{1-(2x-5)^2/25}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 1 & 4 \\ -2 & 8 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -1.01 & -0.11 \\ 0.07 & -2.92 \end{pmatrix}, b = \begin{pmatrix} -1.08 \\ -2.98 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 22x + 7y + 5z = 5, \\ 8x + 24y + 5z = 4, \\ 3x + 6y + 27z = 7. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+7), где

$$A = \begin{pmatrix} 12 & 6 & -5 \\ -56 & -34 & 31 \\ -49 & -33 & 31 \end{pmatrix}$$

$$M = \begin{bmatrix} 6 & 15 & 1 & 3 \\ 9 & 15 & 12 & 7 \\ 14 & 0 & 6 & 18 \\ 14 & 5 & 5 & 15 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{1 - t^2}{t^2 + t + 1} \qquad y = \frac{t^3 + 2t^2}{t^2 + t + 2}$$

$$f(x)=\sqrt{2x+9}$$
 на отрезке $[0,\,4]$ по норме $|h|_T=\sqrt{\int_0^4 rac{h(x)^2}{\sqrt{1-(2x-4)^2/16}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 4 & -3 \\ 0 & 6 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} 2.98 & 0.09 \\ -3.96 & -5.87 \end{pmatrix}, b = \begin{pmatrix} 2.92 \\ -9.91 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 27x + 9y + 3z = 6, \\ 3x + 21y + 2z = 5, \\ 8x + 5y + 27z = 6. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+1}$, где

$$A = \begin{pmatrix} 29 & 16 & -5 \\ -39 & -21 & 7 \\ 3 & 2 & 1 \end{pmatrix}$$

$$M = \begin{bmatrix} 6 & 20 & 22 & 5 \\ 18 & 14 & 20 & 2 \\ 3 & 13 & 14 & 4 \\ 12 & 6 & 13 & 0 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^3 + 3} \qquad y = \frac{t^3 - t^2 + 1}{2}$$

$$f(x)=\sqrt{4x+8}$$
 на отрезке [2, 4] по норме $|h|_T=\sqrt{\int_2^4 rac{h(x)^2}{\sqrt{1-(2x-6)^2/4}}dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 6 & 8 \\ 9 & -7 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} 2.08 & 0.04 \\ 3.96 & -8.14 \end{pmatrix}, b = \begin{pmatrix} 2.07 \\ -4.1 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 23x + 7y + 9z = 7, \\ 6x + 26y + 9z = 9, \\ 7x + 6y + 22z = 9. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+3}$, где

$$A = \begin{pmatrix} 7 & 4 & 3 \\ -12 & -8 & -8 \\ 9 & 8 & 9 \end{pmatrix}$$

$$M = \begin{bmatrix} 6 & 23 & 19 & 3 \\ 13 & 20 & 1 & 6 \\ 2 & 11 & 6 & 4 \\ 2 & 22 & 6 & 2 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^2 + 2} \qquad y = \frac{t^2 + 1}{t^3 - t^2 + 3}$$

$$f(x)=\sqrt{2x+2}$$
 на отрезке $[1,\,5]$ по норме $|h|_T=\sqrt{\int_1^5 rac{h(x)^2}{\sqrt{1-(2x-6)^2/16}}}dx$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 1 & 3 \\ 3 & -6 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -3.94 & 0.03 \\ -3.15 & -3.05 \end{pmatrix}, b = \begin{pmatrix} -3.81 \\ -5.99 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 20x + 2y + 3z = 6, \\ 6x + 20y + 8z = 8, \\ 5x + 4y + 20z = 7. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+5), где

$$A = \begin{pmatrix} -9 & -3 & 4\\ 32 & 11 & -12\\ -4 & -1 & 3 \end{pmatrix}$$

$$M = \begin{bmatrix} 6 & 9 & 11 & 10 \\ 17 & 8 & 5 & 17 \\ 6 & 14 & 4 & 14 \\ 11 & 1 & 10 & 9 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t^3 + t + 2}{t}$$
 $y = \frac{t}{t^2 - 3}$

$$f(x)=\sqrt{5x+3}$$
 на отрезке $[1,\,5]$ по норме $|h|_T=\sqrt{\int_1^5 rac{h(x)^2}{\sqrt{1-(2x-6)^2/16}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 6 & 7\\ 4 & -4 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -2.04 & 0.07 \\ 6.18 & -5.19 \end{pmatrix}, b = \begin{pmatrix} -1.83 \\ 1.05 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 24x + 2y + 6z = 9, \\ 5x + 24y + 7z = 9, \\ 5x + 2y + 19z = 6. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+6), где

$$A = \begin{pmatrix} 5 & 1 & -1 \\ -11 & -2 & 3 \\ -12 & -5 & 4 \end{pmatrix}$$

$$M = \begin{bmatrix} 10 & 0 & 13 & 6 \\ 19 & 12 & 12 & 12 \\ 1 & 13 & 17 & 6 \\ 5 & 5 & 9 & 1 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{1 - t^2}{t^2 + t + 3} \qquad y = \frac{t^3 + 2t^2}{t^2 + t + 1}$$

$$f(x)=\sqrt{5x+4}$$
 на отрезке [2, 3] по норме $|h|_T=\sqrt{\int_2^3 rac{h(x)^2}{\sqrt{1-(2x-5)^2/1}}dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 4 & -9 \\ 9 & 2 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -4.93 & 0.03 \\ 7.81 & -3.8 \end{pmatrix}, b = \begin{pmatrix} -4.87 \\ 4.09 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 26x + 8y + 1z = 6, \\ 5x + 23y + 9z = 8, \\ 4x + 8y + 27z = 4. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+3}$, где

$$A = \begin{pmatrix} 11 & 1 & -2 \\ -4 & 2 & 1 \\ 36 & 4 & -6 \end{pmatrix}$$

$$M = \begin{bmatrix} 2 & 13 & 12 & 4 \\ 20 & 14 & 15 & 21 \\ 12 & 16 & 21 & 11 \\ 11 & 3 & 3 & 9 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^3 + 1} \qquad y = \frac{t^3 - t^2 + 1}{2}$$

$$f(x)=\sqrt{4x+6}$$
 на отрезке $[0,\,4]$ по норме $|h|_T=\sqrt{\int_0^4 rac{h(x)^2}{\sqrt{1-(2x-4)^2/16}}}dx$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -9 & 9 \\ -7 & 3 \end{array} \right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -5.0 & -0.1 \\ -3.0 & -6.05 \end{pmatrix}, b = \begin{pmatrix} -4.9 \\ -9.1 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 21x + 8y + 5z = 5, \\ 2x + 22y + 9z = 3, \\ 7x + 3y + 19z = 8. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+5), где

$$A = \begin{pmatrix} 0 & 9 & -8 \\ -1 & -6 & 8 \\ -1 & -11 & 13 \end{pmatrix}$$

$$M = \begin{bmatrix} 19 & 18 & 9 & 14 \\ 8 & 4 & 14 & 14 \\ 0 & 18 & 15 & 9 \\ 0 & 15 & 9 & 18 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^2 + 2} \qquad y = \frac{t^2 + 1}{t^3 - t^2 + 1}$$

$$f(x)=\sqrt{3x+4}$$
 на отрезке [1, 3] по норме $|h|_T=\sqrt{\int_1^3 rac{h(x)^2}{\sqrt{1-(2x-4)^2/4}}dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -1 & -9 \\ -5 & 8 \end{array} \right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -5.0 & 0.05 \\ -3.03 & -7.1 \end{pmatrix}, b = \begin{pmatrix} -5.11 \\ -9.94 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 23x + 2y + 1z = 5, \\ 2x + 22y + 9z = 2, \\ 5x + 6y + 21z = 4. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+6), где

$$A = \begin{pmatrix} -18 & -10 & -9\\ 15 & 9 & 7\\ 27 & 14 & 14 \end{pmatrix}$$

$$M = \begin{bmatrix} 19 & 18 & 9 & 14 \\ 8 & 4 & 14 & 14 \\ 0 & 18 & 15 & 9 \\ 0 & 15 & 9 & 18 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t^3 + t + 1}{t}$$
 $y = \frac{t}{t^2 - 3}$

$$f(x)=\sqrt{3x+7}$$
 на отрезке $[0,\,5]$ по норме $|h|_T=\sqrt{\int_0^5 rac{h(x)^2}{\sqrt{1-(2x-5)^2/25}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -3 & 9\\ 9 & -8 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} 4.07 & -0.17 \\ 0.9 & -8.83 \end{pmatrix}, b = \begin{pmatrix} 4.14 \\ -7.94 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 27x + 4y + 3z = 4, \\ 9x + 26y + 6z = 3, \\ 4x + 7y + 19z = 1. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+4), где

$$A = \begin{pmatrix} 11 & 7 & 8 \\ 15 & 15 & 14 \\ -21 & -17 & -17 \end{pmatrix}$$

$$M = \begin{bmatrix} 9 & 12 & 3 & 7 \\ 0 & 14 & 0 & 14 \\ 12 & 19 & 18 & 10 \\ 2 & 10 & 12 & 6 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{1 - t^2}{t^2 + t + 3} \qquad y = \frac{t^3 + 2t^2}{t^2 + t + 1}$$

$$f(x)=\sqrt{x+5}$$
 на отрезке $[2,\,3]$ по норме $|h|_T=\sqrt{\int_2^3 rac{h(x)^2}{\sqrt{1-(2x-5)^2/1}}}dx$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -9 & -1\\ 1 & -8 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} 1.96 & 0.12 \\ -2.84 & -7.18 \end{pmatrix}, b = \begin{pmatrix} 1.92 \\ -10.05 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 23x + 6y + 7z = 8, \\ 8x + 22y + 7z = 8, \\ 9x + 5y + 21z = 9. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+1}$, где

$$A = \begin{pmatrix} -2 & 13 & -14\\ 9 & -23 & 27\\ 9 & -27 & 31 \end{pmatrix}$$

$$M = \begin{bmatrix} 6 & 9 & 11 & 4 \\ 18 & 0 & 6 & 12 \\ 2 & 3 & 7 & 6 \\ 7 & 7 & 9 & 17 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^3 + 3} \qquad y = \frac{t^3 - t^2 + 1}{3}$$

$$f(x)=\sqrt{3x+4}$$
 на отрезке [2, 5] по норме $|h|_T=\sqrt{\int_2^5 rac{h(x)^2}{\sqrt{1-(2x-7)^2/9}}dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \begin{pmatrix} -3 & 2 \\ 6 & -8 \end{pmatrix}$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -4.97 & -0.14 \\ -0.06 & -0.96 \end{pmatrix}, b = \begin{pmatrix} -5.18 \\ -1.08 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 23x + 8y + 1z = 9, \\ 3x + 19y + 5z = 4, \\ 9x + 7y + 23z = 5. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+1}$, где

$$A = \begin{pmatrix} -9 & 2 & 3\\ -4 & 1 & 2\\ -52 & 12 & 15 \end{pmatrix}$$

$$M = \begin{bmatrix} 0 & 8 & 5 & 13 \\ 0 & 17 & 5 & 4 \\ 5 & 10 & 8 & 9 \\ 10 & 13 & 11 & 7 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^2 + 1} \qquad y = \frac{t^2 + 1}{t^3 - t^2 + 2}$$

$$f(x)=\sqrt{x+9}$$
 на отрезке $[0,\,4]$ по норме $|h|_T=\sqrt{\int_0^4 rac{h(x)^2}{\sqrt{1-(2x-4)^2/16}}dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 1 & -7 \\ 6 & -4 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} 3.93 & 0.04 \\ 0.88 & -8.17 \end{pmatrix}, b = \begin{pmatrix} 4.01 \\ -7.01 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 21x + 8y + 6z = 2, \\ 9x + 24y + 9z = 5, \\ 6x + 3y + 27z = 7. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+3}$, где

$$A = \begin{pmatrix} 17 & 5 & -4 \\ -49 & -14 & 11 \\ -16 & -5 & 5 \end{pmatrix}$$

$$M = \begin{bmatrix} 10 & 16 & 20 & 4 \\ 11 & 17 & 5 & 7 \\ 18 & 3 & 21 & 14 \\ 6 & 4 & 0 & 12 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t^3 + t + 1}{t}$$
 $y = \frac{t}{t^2 - 3}$

$$f(x)=\sqrt{4x+2}$$
 на отрезке $[0,\,5]$ по норме $|h|_T=\sqrt{\int_0^5 rac{h(x)^2}{\sqrt{1-(2x-5)^2/25}}dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 5 & -1 \\ -9 & -8 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} 2.94 & 0.12 \\ -1.86 & -7.12 \end{pmatrix}, b = \begin{pmatrix} 3.02 \\ -8.96 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 20x + 8y + 8z = 8, \\ 6x + 23y + 5z = 7, \\ 1x + 8y + 21z = 6. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+3}$, где

$$A = \begin{pmatrix} 8 & 2 & -1 \\ -13 & -3 & 1 \\ 7 & 2 & 0 \end{pmatrix}$$

$$M = \begin{bmatrix} 17 & 18 & 22 & 16 \\ 14 & 2 & 16 & 10 \\ 17 & 12 & 6 & 13 \\ 17 & 2 & 16 & 15 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{1 - t^2}{t^2 + t + 3} \qquad y = \frac{t^3 + 2t^2}{t^2 + t + 1}$$

$$f(x)=\sqrt{4x+3}$$
 на отрезке [2, 6] по норме $|h|_T=\sqrt{\int_2^6 rac{h(x)^2}{\sqrt{1-(2x-8)^2/16}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 1 & -8 \\ -8 & -5 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} 3.96 & -0.1 \\ -4.9 & -4.9 \end{pmatrix}, b = \begin{pmatrix} 3.85 \\ -9.96 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 27x + 1y + 3z = 3, \\ 8x + 20y + 1z = 5, \\ 5x + 5y + 26z = 4. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+3}$, где

$$A = \begin{pmatrix} 43 & -21 & 11 \\ 99 & -49 & 27 \\ 46 & -24 & 15 \end{pmatrix}$$

$$M = \begin{bmatrix} 4 & 5 & 13 & 1 \\ 12 & 10 & 10 & 4 \\ 6 & 9 & 18 & 0 \\ 12 & 1 & 11 & 5 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^3 + 3} \qquad y = \frac{t^3 - t^2 + 1}{1}$$

$$f(x)=\sqrt{x+5}$$
 на отрезке $[2,\,3]$ по норме $|h|_T=\sqrt{\int_2^3 rac{h(x)^2}{\sqrt{1-(2x-5)^2/1}}}dx$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -6 & -7 \\ 6 & 6 \end{array} \right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} 3.06 & 0.01 \\ 5.07 & -7.82 \end{pmatrix}, b = \begin{pmatrix} 3.17 \\ -3.02 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 24x + 5y + 3z = 7, \\ 7x + 19y + 8z = 1, \\ 3x + 9y + 25z = 2. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+1}$, где

$$A = \begin{pmatrix} 0 & 12 & -13 \\ 1 & -21 & 23 \\ 1 & -27 & 29 \end{pmatrix}$$

$$M = \begin{bmatrix} 17 & 11 & 13 & 14 \\ 6 & 9 & 12 & 3 \\ 20 & 1 & 7 & 8 \\ 16 & 12 & 5 & 15 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^2 + 3} \qquad y = \frac{t^2 + 1}{t^3 - t^2 + 2}$$

$$f(x)=\sqrt{2x+5}$$
 на отрезке [2, 4] по норме $|h|_T=\sqrt{\int_2^4 rac{h(x)^2}{\sqrt{1-(2x-6)^2/4}}dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 9 & 0 \\ -9 & 8 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} 1.99 & -0.04 \\ -2.19 & -6.95 \end{pmatrix}, b = \begin{pmatrix} 2.01 \\ -9.1 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 27x + 4y + 8z = 6, \\ 5x + 25y + 8z = 7, \\ 7x + 1y + 25z = 6. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+6), где

$$A = \begin{pmatrix} 38 & 22 & -7 \\ -54 & -31 & 10 \\ 3 & 2 & 0 \end{pmatrix}$$

$$M = \begin{bmatrix} 12 & 4 & 2 & 6 \\ 0 & 20 & 10 & 0 \\ 0 & 20 & 8 & 2 \\ 5 & 8 & 9 & 10 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t^3 + t + 3}{t}$$
 $y = \frac{t}{t^2 - 3}$

$$f(x)=\sqrt{3x+4}$$
 на отрезке [2, 6] по норме $|h|_T=\sqrt{\int_2^6 rac{h(x)^2}{\sqrt{1-(2x-8)^2/16}}dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 0 & -4 \\ -1 & 9 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} 4.01 & 0.2 \\ -2.87 & -9.15 \end{pmatrix}, b = \begin{pmatrix} 4.0 \\ -12.01 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 19x + 6y + 7z = 6, \\ 5x + 20y + 8z = 5, \\ 5x + 1y + 20z = 4. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+1}$, где

$$A = \begin{pmatrix} -16 & 11 & 5\\ -48 & 31 & 13\\ 36 & -21 & -7 \end{pmatrix}$$

$$M = \begin{bmatrix} 6 & 7 & 8 & 8 \\ 4 & 1 & 17 & 6 \\ 12 & 5 & 13 & 3 \\ 0 & 12 & 8 & 6 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{1 - t^2}{t^2 + t + 1} \qquad y = \frac{t^3 + 2t^2}{t^2 + t + 3}$$

$$f(x)=\sqrt{2x+1}$$
 на отрезке $[0,\,5]$ по норме $|h|_T=\sqrt{\int_0^5 rac{h(x)^2}{\sqrt{1-(2x-5)^2/25}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -2 & -2 \\ -1 & 9 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} 5.07 & -0.07 \\ -0.18 & -2.19 \end{pmatrix}, b = \begin{pmatrix} 4.97 \\ -2.0 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 24x + 9y + 2z = 6, \\ 9x + 22y + 9z = 5, \\ 9x + 9y + 22z = 3. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+2}$, где

$$A = \begin{pmatrix} -42 & -29 & 15\\ 32 & 23 & -11\\ -80 & -53 & 29 \end{pmatrix}$$

$$M = \begin{bmatrix} 0 & 18 & 11 & 4 \\ 12 & 8 & 3 & 0 \\ 6 & 14 & 4 & 8 \\ 16 & 3 & 7 & 4 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^3 + 2} \qquad y = \frac{t^3 - t^2 + 1}{2}$$

$$f(x)=\sqrt{2x+8}$$
 на отрезке $[1,\,4]$ по норме $|h|_T=\sqrt{\int_1^4 rac{h(x)^2}{\sqrt{1-(2x-5)^2/9}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -9 & -3\\ 2 & -6 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} 3.0 & 0.15 \\ 1.88 & -0.92 \end{pmatrix}, b = \begin{pmatrix} 3.08 \\ 1.01 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 26x + 6y + 3z = 8, \\ 6x + 19y + 6z = 6, \\ 2x + 5y + 24z = 9. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+1}$, где

$$A = \begin{pmatrix} 7 & 13 & -7 \\ -10 & -20 & 11 \\ -18 & -37 & 20 \end{pmatrix}$$

$$M = \begin{bmatrix} 17 & 8 & 6 & 1\\ 3 & 16 & 14 & 19\\ 18 & 12 & 8 & 2\\ 6 & 8 & 20 & 13 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^2 + 1} \qquad y = \frac{t^2 + 1}{t^3 - t^2 + 3}$$

$$f(x)=\sqrt{4x+3}$$
 на отрезке $[0,\,5]$ по норме $|h|_T=\sqrt{\int_0^5 rac{h(x)^2}{\sqrt{1-(2x-5)^2/25}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 4 & -6 \\ -2 & 8 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -5.01 & -0.18 \\ 1.14 & -5.0 \end{pmatrix}, b = \begin{pmatrix} -4.98 \\ -4.04 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 25x + 5y + 4z = 4, \\ 7x + 21y + 6z = 6, \\ 7x + 1y + 24z = 4. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+1}$, где

$$A = \begin{pmatrix} 5 & 1 & 0 \\ -4 & 1 & 1 \\ -2 & -1 & 1 \end{pmatrix}$$

$$M = \begin{bmatrix} 1 & 13 & 1 & 10 \\ 4 & 14 & 14 & 10 \\ 2 & 20 & 8 & 12 \\ 4 & 12 & 18 & 18 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t^3 + t + 1}{t}$$
 $y = \frac{t}{t^2 - 3}$

$$f(x)=\sqrt{4x+5}$$
 на отрезке $[0,\,5]$ по норме $|h|_T=\sqrt{\int_0^5 rac{h(x)^2}{\sqrt{1-(2x-5)^2/25}}dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -1 & 9 \\ 7 & 9 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} 2.9 & -0.04 \\ -1.9 & -4.89 \end{pmatrix}, b = \begin{pmatrix} 2.85 \\ -7.0 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 26x + 6y + 6z = 7, \\ 1x + 20y + 9z = 2, \\ 5x + 8y + 27z = 4. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+5), где

$$A = \begin{pmatrix} -15 & 11 & 5 \\ -25 & 18 & 8 \\ -7 & 5 & 3 \end{pmatrix}$$

$$M = \begin{bmatrix} 6 & 14 & 9 & 16 \\ 10 & 9 & 12 & 8 \\ 15 & 19 & 7 & 2 \\ 1 & 12 & 17 & 22 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{1 - t^2}{t^2 + t + 2} \qquad y = \frac{t^3 + 2t^2}{t^2 + t + 1}$$

$$f(x)=\sqrt{4x+5}$$
 на отрезке [1, 3] по норме $|h|_T=\sqrt{\int_1^3 rac{h(x)^2}{\sqrt{1-(2x-4)^2/4}}dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 7 & -1 \\ 0 & -7 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} 0.94 & 0.16 \\ 2.91 & -7.18 \end{pmatrix}, b = \begin{pmatrix} 0.87 \\ -4.09 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 25x + 1y + 2z = 1, \\ 9x + 25y + 3z = 9, \\ 5x + 9y + 20z = 3. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+3}$, где

$$A = \begin{pmatrix} 26 & 9 & 8 \\ -37 & -12 & -12 \\ -32 & -12 & -9 \end{pmatrix}$$

$$M = \begin{bmatrix} 1 & 5 & 8 & 15 \\ 15 & 20 & 1 & 9 \\ 0 & 15 & 5 & 0 \\ 21 & 18 & 2 & 12 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^3 + 3} \qquad y = \frac{t^3 - t^2 + 1}{2}$$

$$f(x)=\sqrt{x+3}$$
 на отрезке $[2,\,4]$ по норме $|h|_T=\sqrt{\int_2^4 rac{h(x)^2}{\sqrt{1-(2x-6)^2/4}}dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 3 & -6 \\ 0 & -9 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -4.98 & 0.06 \\ 3.12 & -6.89 \end{pmatrix}, b = \begin{pmatrix} -4.84 \\ -4.06 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 22x + 1y + 3z = 3, \\ 9x + 19y + 1z = 7, \\ 4x + 9y + 21z = 1. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+1}$, где

$$A = \begin{pmatrix} 14 & -5 & 6 \\ -23 & 11 & -11 \\ -39 & 15 & -17 \end{pmatrix}$$

$$M = \begin{bmatrix} 0 & 8 & 6 & 11 \\ 10 & 0 & 1 & 17 \\ 10 & 10 & 5 & 6 \\ 10 & 16 & 13 & 6 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^2 + 1} \qquad y = \frac{t^2 + 1}{t^3 - t^2 + 1}$$

$$f(x)=\sqrt{2x+3}$$
 на отрезке $[0,\,3]$ по норме $|h|_T=\sqrt{\int_0^3 rac{h(x)^2}{\sqrt{1-(2x-3)^2/9}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -3 & 5 \\ -9 & -6 \end{array} \right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -1.95 & 0.04 \\ 4.02 & -4.82 \end{pmatrix}, b = \begin{pmatrix} -1.93 \\ -1.0 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 27x + 7y + 1z = 3, \\ 8x + 20y + 4z = 4, \\ 6x + 7y + 21z = 7. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+3}$, где

$$A = \begin{pmatrix} -36 & 35 & -36 \\ 7 & -4 & 6 \\ 49 & -45 & 48 \end{pmatrix}$$

$$M = \begin{bmatrix} 0 & 8 & 6 & 11\\ 10 & 0 & 1 & 17\\ 10 & 10 & 5 & 6\\ 10 & 16 & 13 & 6 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t^3 + t + 1}{t}$$
 $y = \frac{t}{t^2 - 3}$

$$f(x)=\sqrt{2x+5}$$
 на отрезке $[0,\,6]$ по норме $|h|_T=\sqrt{\int_0^6 rac{h(x)^2}{\sqrt{1-(2x-6)^2/36}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -8 & -8 \\ 0 & 7 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -1.04 & -0.11 \\ 0.9 & -9.16 \end{pmatrix}, b = \begin{pmatrix} -0.95 \\ -7.97 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 24x + 6y + 2z = 5, \\ 4x + 26y + 6z = 3, \\ 1x + 8y + 25z = 3. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+6), где

$$A = \begin{pmatrix} -9 & -6 & -5 \\ 17 & 11 & 8 \\ 11 & 6 & 7 \end{pmatrix}$$

$$M = \begin{bmatrix} 10 & 0 & 15 & 15 \\ 16 & 6 & 8 & 3 \\ 3 & 0 & 13 & 21 \\ 15 & 15 & 5 & 0 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{1 - t^2}{t^2 + t + 1} \qquad y = \frac{t^3 + 2t^2}{t^2 + t + 1}$$

$$f(x)=\sqrt{5x+7}$$
 на отрезке $[0,\,6]$ по норме $|h|_T=\sqrt{\int_0^6 rac{h(x)^2}{\sqrt{1-(2x-6)^2/36}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 6 & -7 \\ -6 & 0 \end{array} \right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -3.91 & 0.17 \\ -4.12 & -9.0 \end{pmatrix}, b = \begin{pmatrix} -4.19 \\ -12.96 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 24x + 2y + 2z = 3, \\ 8x + 24y + 3z = 4, \\ 1x + 1y + 24z = 8. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+2}$, где

$$A = \begin{pmatrix} 1 & 3 & 1 \\ -6 & 10 & 5 \\ 9 & -9 & -5 \end{pmatrix}$$

$$M = \begin{bmatrix} 10 & 0 & 15 & 15 \\ 16 & 6 & 8 & 3 \\ 3 & 0 & 13 & 21 \\ 15 & 15 & 5 & 0 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^3 + 2} \qquad y = \frac{t^3 - t^2 + 1}{3}$$

$$f(x)=\sqrt{2x+1}$$
 на отрезке $[1,\,5]$ по норме $|h|_T=\sqrt{\int_1^5 rac{h(x)^2}{\sqrt{1-(2x-6)^2/16}}}dx$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 8 & 9 \\ -8 & 8 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -0.91 & 0.06 \\ 0.19 & -6.81 \end{pmatrix}, b = \begin{pmatrix} -1.15 \\ -6.93 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 19x + 1y + 2z = 3, \\ 9x + 24y + 9z = 3, \\ 1x + 8y + 22z = 9. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+1}$, где

$$A = \begin{pmatrix} 1 & -19 & 20 \\ -1 & -11 & 14 \\ -1 & -16 & 19 \end{pmatrix}$$

$$M = \begin{bmatrix} 1 & 8 & 19 & 8 \\ 0 & 9 & 4 & 12 \\ 12 & 5 & 4 & 11 \\ 0 & 10 & 16 & 22 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^2 + 1} \qquad y = \frac{t^2 + 1}{t^3 - t^2 + 2}$$

$$f(x)=\sqrt{3x+4}$$
 на отрезке $[0,\,4]$ по норме $|h|_T=\sqrt{\int_0^4 rac{h(x)^2}{\sqrt{1-(2x-4)^2/16}}}dx$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -1 & 8\\ 9 & 4 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -4.1 & -0.16 \\ -3.16 & -7.95 \end{pmatrix}, b = \begin{pmatrix} -4.02 \\ -11.08 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 21x + 1y + 1z = 8, \\ 2x + 24y + 5z = 7, \\ 4x + 1y + 22z = 2. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+3), где

$$A = \begin{pmatrix} 2 & 7 & -4 \\ 1 & 14 & -7 \\ 2 & 20 & -10 \end{pmatrix}$$

$$M = \begin{bmatrix} 1 & 8 & 19 & 8 \\ 0 & 9 & 4 & 12 \\ 12 & 5 & 4 & 11 \\ 0 & 10 & 16 & 22 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t^3 + t + 2}{t}$$
 $y = \frac{t}{t^2 - 3}$

$$f(x)=\sqrt{2x+2}$$
 на отрезке $[1,\,5]$ по норме $|h|_T=\sqrt{\int_1^5 rac{h(x)^2}{\sqrt{1-(2x-6)^2/16}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 2 & -9 \\ 2 & 4 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} 3.94 & 0.01 \\ -3.82 & -7.14 \end{pmatrix}, b = \begin{pmatrix} 3.99 \\ -10.99 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 22x + 2y + 5z = 6, \\ 9x + 22y + 1z = 8, \\ 3x + 4y + 19z = 4. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+3), где

$$A = \begin{pmatrix} 4 & 4 & 5 \\ 4 & 7 & 7 \\ -4 & -2 & -2 \end{pmatrix}$$

$$M = \begin{bmatrix} 18 & 16 & 17 & 0 \\ 9 & 18 & 3 & 6 \\ 2 & 14 & 10 & 9 \\ 13 & 10 & 8 & 0 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{1 - t^2}{t^2 + t + 1} \qquad y = \frac{t^3 + 2t^2}{t^2 + t + 2}$$

$$f(x)=\sqrt{3x+4}$$
 на отрезке $[0,\,4]$ по норме $|h|_T=\sqrt{\int_0^4 rac{h(x)^2}{\sqrt{1-(2x-4)^2/16}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -2 & -7 \\ 8 & -5 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -2.08 & 0.16 \\ 4.91 & -8.9 \end{pmatrix}, b = \begin{pmatrix} -1.86 \\ -3.97 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 20x + 2y + 1z = 9, \\ 6x + 25y + 3z = 3, \\ 8x + 5y + 20z = 6. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+4), где

$$A = \begin{pmatrix} 11 & -24 & -5\\ 1 & -2 & -1\\ 5 & -8 & 1 \end{pmatrix}$$

$$M = \begin{bmatrix} 9 & 21 & 11 & 14 \\ 0 & 6 & 14 & 14 \\ 1 & 6 & 24 & 14 \\ 9 & 15 & 7 & 10 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^3 + 3} \qquad y = \frac{t^3 - t^2 + 1}{2}$$

$$f(x)=\sqrt{2x+1}$$
 на отрезке [2, 6] по норме $|h|_T=\sqrt{\int_2^6 rac{h(x)^2}{\sqrt{1-(2x-8)^2/16}}}dx$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -2 & 6 \\ 0 & -5 \end{array} \right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} 4.91 & 0.06 \\ 1.9 & -6.85 \end{pmatrix}, b = \begin{pmatrix} 5.14 \\ -4.92 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 22x + 4y + 5z = 7, \\ 7x + 23y + 8z = 5, \\ 5x + 6y + 25z = 2. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+3), где

$$A = \begin{pmatrix} 1 & 6 & -5 \\ -1 & 20 & -17 \\ -1 & 15 & -12 \end{pmatrix}$$

$$M = \begin{bmatrix} 6 & 9 & 6 & 1 \\ 9 & 3 & 17 & 0 \\ 21 & 14 & 7 & 13 \\ 18 & 6 & 4 & 6 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^2 + 2} \qquad y = \frac{t^2 + 1}{t^3 - t^2 + 3}$$

$$f(x)=\sqrt{3x+2}$$
 на отрезке $[1,\,6]$ по норме $|h|_T=\sqrt{\int_1^6 rac{h(x)^2}{\sqrt{1-(2x-7)^2/25}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -5 & -8 \\ -7 & -7 \end{array} \right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} 3.03 & 0.04 \\ 3.92 & -4.86 \end{pmatrix}, b = \begin{pmatrix} 3.13 \\ -1.03 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 22x + 7y + 4z = 7, \\ 2x + 27y + 7z = 9, \\ 9x + 6y + 22z = 5. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+6), где

$$A = \begin{pmatrix} 19 & -9 & 5\\ 43 & -21 & 13\\ 22 & -12 & 9 \end{pmatrix}$$

$$M = \begin{bmatrix} 3 & 6 & 9 & 15 \\ 4 & 4 & 2 & 4 \\ 19 & 9 & 22 & 15 \\ 8 & 16 & 4 & 4 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t^3 + t + 3}{t}$$
 $y = \frac{t}{t^2 - 2}$

$$f(x)=\sqrt{2x+5}$$
 на отрезке [2, 6] по норме $|h|_T=\sqrt{\int_2^6 rac{h(x)^2}{\sqrt{1-(2x-8)^2/16}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 2 & -3 \\ 6 & -6 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -2.04 & 0.16 \\ -1.18 & -8.15 \end{pmatrix}, b = \begin{pmatrix} -2.14 \\ -9.04 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 22x + 2y + 5z = 3, \\ 4x + 20y + 3z = 7, \\ 4x + 3y + 19z = 6. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+7), где

$$A = \begin{pmatrix} 3 & -5 & -2 \\ 4 & -12 & -5 \\ -14 & 46 & 18 \end{pmatrix}$$

$$M = \begin{bmatrix} 13 & 13 & 17 & 19 \\ 15 & 5 & 2 & 13 \\ 16 & 12 & 13 & 3 \\ 1 & 12 & 13 & 8 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{1 - t^2}{t^2 + t + 1} \qquad y = \frac{t^3 + 2t^2}{t^2 + t + 2}$$

$$f(x)=\sqrt{3x+3}$$
 на отрезке $[0,\,4]$ по норме $|h|_T=\sqrt{\int_0^4 rac{h(x)^2}{\sqrt{1-(2x-4)^2/16}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -7 & -4 \\ 8 & -2 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} 2.0 & 0.19 \\ -2.08 & -1.82 \end{pmatrix}, b = \begin{pmatrix} 1.88 \\ -3.99 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 26x + 4y + 5z = 6, \\ 3x + 24y + 5z = 9, \\ 8x + 9y + 25z = 1. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+3), где

$$A = \begin{pmatrix} 14 & 7 & -2 \\ -24 & -11 & 3 \\ -22 & -10 & 3 \end{pmatrix}$$

$$M = \begin{bmatrix} 9 & 11 & 8 & 4 \\ 6 & 2 & 16 & 12 \\ 5 & 6 & 18 & 14 \\ 16 & 10 & 10 & 6 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^3 + 3} \qquad y = \frac{t^3 - t^2 + 1}{3}$$

$$f(x)=\sqrt{4x+8}$$
 на отрезке [2, 5] по норме $|h|_T=\sqrt{\int_2^5 rac{h(x)^2}{\sqrt{1-(2x-7)^2/9}}dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -8 & 5\\ 0 & 3 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -2.93 & 0.13 \\ 0.2 & -1.15 \end{pmatrix}, b = \begin{pmatrix} -3.16 \\ -0.94 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 22x + 5y + 2z = 5, \\ 5x + 20y + 7z = 1, \\ 9x + 6y + 26z = 2. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+1}$, где

$$A = \begin{pmatrix} 34 & 13 & -7 \\ -81 & -31 & 18 \\ -17 & -7 & 6 \end{pmatrix}$$

$$M = \begin{bmatrix} 9 & 11 & 8 & 4 \\ 6 & 2 & 16 & 12 \\ 5 & 6 & 18 & 14 \\ 16 & 10 & 10 & 6 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^2 + 3} \qquad y = \frac{t^2 + 1}{t^3 - t^2 + 2}$$

$$f(x)=\sqrt{x+2}$$
 на отрезке $[2,\,4]$ по норме $|h|_T=\sqrt{\int_2^4 rac{h(x)^2}{\sqrt{1-(2x-6)^2/4}}dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -9 & -9 \\ -2 & 8 \end{array} \right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -4.06 & 0.15 \\ 4.02 & -4.83 \end{pmatrix}, b = \begin{pmatrix} -3.86 \\ -0.98 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 26x + 3y + 3z = 9, \\ 3x + 22y + 3z = 2, \\ 7x + 9y + 25z = 4. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+5), где

$$A = \begin{pmatrix} -5 & 5 & 1\\ -16 & 14 & 3\\ 24 & -19 & -4 \end{pmatrix}$$

$$M = \begin{bmatrix} 8 & 7 & 14 & 8 \\ 2 & 12 & 12 & 3 \\ 16 & 17 & 8 & 17 \\ 17 & 18 & 21 & 12 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t^3 + t + 2}{t}$$
 $y = \frac{t}{t^2 - 3}$

$$f(x)=\sqrt{2x+5}$$
 на отрезке $[1,\,5]$ по норме $|h|_T=\sqrt{\int_1^5 rac{h(x)^2}{\sqrt{1-(2x-6)^2/16}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -2 & 9 \\ 0 & -2 \end{array} \right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -5.07 & -0.15 \\ -5.15 & -1.86 \end{pmatrix}, b = \begin{pmatrix} -4.83 \\ -7.08 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 26x + 4y + 4z = 1, \\ 7x + 27y + 8z = 7, \\ 8x + 7y + 25z = 9. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+2}$, где

$$A = \begin{pmatrix} 6 & 1 & 0 \\ -7 & 7 & -9 \\ -6 & 3 & -4 \end{pmatrix}$$

$$M = \begin{bmatrix} 8 & 7 & 14 & 8 \\ 2 & 12 & 12 & 3 \\ 16 & 17 & 8 & 17 \\ 17 & 18 & 21 & 12 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{1 - t^2}{t^2 + t + 1} \qquad y = \frac{t^3 + 2t^2}{t^2 + t + 1}$$

$$f(x)=\sqrt{4x+5}$$
 на отрезке $[0,\,3]$ по норме $|h|_T=\sqrt{\int_0^3 rac{h(x)^2}{\sqrt{1-(2x-3)^2/9}} dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} 2 & -8 \\ 6 & 2 \end{array}\right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} 3.05 & 0.03 \\ -2.87 & -1.91 \end{pmatrix}, b = \begin{pmatrix} 3.13 \\ -5.05 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 19x + 9y + 6z = 1, \\ 8x + 24y + 6z = 4, \\ 2x + 1y + 27z = 9. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции f(l) = ln(l+2), где

$$A = \begin{pmatrix} -8 & -28 & 9\\ 8 & 24 & -7\\ 12 & 32 & -8 \end{pmatrix}$$

$$M = \begin{bmatrix} 15 & 0 & 15 & 5 \\ 18 & 2 & 15 & 2 \\ 8 & 10 & 2 & 8 \\ 0 & 6 & 9 & 0 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^3 + 3} \qquad y = \frac{t^3 - t^2 + 1}{2}$$

$$f(x)=\sqrt{5x+8}$$
 на отрезке [2, 4] по норме $|h|_T=\sqrt{\int_2^4 rac{h(x)^2}{\sqrt{1-(2x-6)^2/4}}dx}$

Во всех задачах дроби в ответе необходимо округлять к десятичным.

1. Найти приближенно обратную матрицу к матрице A и оценить погрешность приближения относительно равномерной нормы $\|\cdot\|_1$ если элементы матрицы A известны с абсолютной погрешностью 0.01:

$$A \approx \left(\begin{array}{cc} -5 & -2 \\ -7 & 5 \end{array} \right)$$

2. Оценить относительную погрешность приближенного решения (1,1) системы Ax=b по нормам $|\cdot|_1$ и $|\cdot|_2$ с помощью числа обусловленности матрицы A, где

$$A = \begin{pmatrix} -4.03 & 0.08 \\ 5.84 & -4.83 \end{pmatrix}, b = \begin{pmatrix} -4.11 \\ 0.93 \end{pmatrix}$$

3. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с коэффициентом ослабления $1-\beta=0.85,$ где матрица смежности графа равна

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

4. Решить систему линейных уравнений методом итераций, преобразовав, если нужно, систему.

$$\begin{cases} 27x + 1y + 3z = 2, \\ 3x + 27y + 2z = 2, \\ 1x + 9y + 19z = 4. \end{cases}$$

Определить номер итерации, после которой погрешность приближения по каждой координате не превосходит 0.01 и найти соответствующее приближенное решение. За нулевое приближение принять вектор $x_0 = [0,0,0]^T$.

5. Найти значение f(A) функции $f(l) = e^{l+3}$, где

$$A = \begin{pmatrix} 13 & 9 & 8 \\ -38 & -25 & -22 \\ 31 & 22 & 20 \end{pmatrix}$$

$$M = \begin{bmatrix} 6 & 3 & 12 & 13 \\ 10 & 4 & 14 & 6 \\ 7 & 15 & 2 & 8 \\ 10 & 14 & 2 & 6 \end{bmatrix}$$

7. Найдите неявное выражение кривой f(x,y)=0 по данной параметризации

$$x = \frac{t}{t^2 + 2} \qquad y = \frac{t^2 + 1}{t^3 - t^2 + 2}$$

$$f(x)=\sqrt{4x+5}$$
 на отрезке $[1,\,6]$ по норме $|h|_T=\sqrt{\int_1^6 rac{h(x)^2}{\sqrt{1-(2x-7)^2/25}} dx}$