

Batched Incremental Structure-from-Motion

Hainan Cui, Shuhan Shen, **Xiang Gao**, and Zhanyi Hu NLPR, Institute of Automation, Chinese Academy of Sciences

Incremental Structure-from-Motion

Bundle Adjustment:

Refine Camera Poses

and Scene Structure

Drawbacks:

- 1. Sensitive to Seed Selection
- 2. Error Accumulation and Drift
- 3. Poor Efficiency and Scalability

- 1. Seed Reconstruction
- 2. Camera Registration
- 3. BA and Outliers Filtering

Repeat 2 and 3

Batched Incremental SfM

Strengths:

- 1. Smaller Error Accumulation
- 2. Less Bundle Adjustment
- 3. Faster Scene Reconstruction

Two Iteration Loops

Inner Loop: Tracks Triangulation,

Selection and Bundle Adjustment

Outer Loop: Batched Camera

Registration and Filtering

Main Contributions

- Batched camera registration
- Tracks selection

Quantitative Evaluation

Three median-scale benchmark image datasets

FountainP11 HerzJesuP25 CastleP30

	Accuracy (mm — deg)							
Method	FountainP11		HerzJesuP25		CastleP30			
	C_{err}	R_{err}	C_{err}	R_{err}	C_{err}	R_{err}		
Bundler [35]	7.0	0.28	21.9	0.25	206.1	0.36		
VSFM [42]	36.0	0.28	55.0	0.29	264.0	0.40		
Theia [38]	1.9	0.08	4.7	0.07	21.5	0.05		
COLMAP [34]	4.9	0.30	23.6	0.40	99.3	0.34		
our BSfM	1.9	0.06	4.7	0.04	20.6	0.06		

Bundler: IJCV 2008; VSFM: 3DV 2013; Theia: ACM MM 2015; COLMAP: CVPR 2016.

Quantitative Evaluation

- One large-scale image dataset Quad
 - Median error: DISCO 1.16m, Bundler 1.01m, VSFM 0.89m, COLMAP 0.85m, and our BSfM 0.69m.

a: with tracks selection (257K points)

Similar accuracy

b: without tracks selection (3048K points)

DISCO: IEEE TPAMI 2013; Bundler: IJCV 2008; VSFM: 3DV 2013; COLMAP: CVPR 2016.

Qualitative Evaluation

Sequential image datasets

Bundler: IJCV 2008; VSFM: 3DV 2013; Theia: ACM MM 2015; COLMAP: CVPR 2016.

Qualitative Evaluation

Unordered image datasets

	Bundler	VSFM	Theia	COLMAP	Our BSfM	Our BSfM + Full Tri
			, and	- Constitution of the Cons		
					17.7	
Temple		A Comment				
		-4				-1/
Piccadilly						
- iccaulity	**	1 1 1 1			- Charles	

Bundler: IJCV 2008; VSFM: 3DV 2013; Theia: ACM MM 2015; COLMAP: CVPR 2016.

Qualitative Evaluation

More results

Conclusion

- We propose a novel batched incremental SfM algorithm to tackle the efficiency and scalability challenges in a unified framework.
- Batched camera registration registers many cameras at a iteration, which aims to alleviate the error accumulation.
- Tracks selection finds a compact subset of tracks for the bundle adjustment, which makes the SfM become more efficient and scalable.

Thank you!