

Rec'd PCT/PTO 14 FEB 2005
PCT/KR 02/01875
RECD 08 NOV 8 2002 2002
WIPO PCT

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto
is a true copy from the records of the Korean Intellectual
Property Office.

BEST AVAILABLE COPY

출원번호 : 10-2002-0054936
Application Number PATENT-2002-0054936

출원년월일 : 2002년 09월 11일
Date of Application SEP 11, 2002

출원인 : 김태윤
Applicant(s) KIM TAE YOUN

2002년 10월 08일

특허청

COMMISSIONER

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

【서지사항】

【서류명】	특허출원서
【권리구분】	특허
【수신처】	특허청장
【제출일자】	2002.09.11
【발명의 명칭】	피토스핑고신 유도체를 함유하는 아폽토시스 유도용 조성물
【발명의 영문명칭】	A composition comprising phytosphingosine derivatives for apoptosis induction
【출원인】	
【성명】	김태윤
【출원인코드】	4-2000-001156-2
【대리인】	
【성명】	박승문
【대리인코드】	9-1999-000536-0
【포괄위임등록번호】	2002-061058-1
【대리인】	
【성명】	조용식
【대리인코드】	9-1999-000634-5
【포괄위임등록번호】	2002-061059-9
【대리인】	
【성명】	안소영
【대리인코드】	9-2000-000155-5
【포괄위임등록번호】	2002-061062-6
【발명자】	
【성명】	김태윤
【출원인코드】	4-2000-001156-2
【발명자】	
【성명의 국문표기】	김혜정
【성명의 영문표기】	KIM, Hye Jung
【주민등록번호】	730403-2548013
【우편번호】	137-701

【주소】	서울특별시 서초구 반포4동 가톨릭대학교 의과학연구원 4 층 피부과연 구실		
【국적】	KR		
【발명자】			
【성명의 국문표기】	김신희		
【성명의 영문표기】	KIM,Shin Hee		
【주민등록번호】	781030-2332919		
【우편번호】	137-855		
【주소】	서울특별시 서초구 서초동 1303-9		
【국적】	KR		
【발명자】			
【성명의 국문표기】	황하영		
【성명의 영문표기】	HWANG,Ha Young		
【주민등록번호】	720609-2690419		
【우편번호】	151-061		
【주소】	서울특별시 관악구 봉천11동 196-151		
【국적】	KR		
【우선권주장】			
【출원국명】	KR		
【출원종류】	특허		
【출원번호】	10-2002-0048277		
【출원일자】	2002.08.14		
【증명서류】	첨부		
【심사청구】	청구		
【취지】	특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의한 출원심사 를 청구합니다. 대리인 박승문 (인) 대리인 조용식 (인) 대리인 안소영 (인)		
【수수료】			
【기본출원료】	20	면	29,000 원
【가산출원료】	19	면	19,000 원
【우선권주장료】	1	건	26,000 원
【심사청구료】	14	항	557,000 원

0020054936

출력 일자: 2002/10/31

【합계】	631,000 원
【감면사유】	개인 (70%감면)
【감면후 수수료】	207,500 원
【첨부서류】	1. 요약서·명세서(도면)_1통

【요약서】

【요약】

본 발명은 피토스핑고신 유도체를 유효성분으로 함유하는 아폽토시스 유도용 조성물에 관한 것이다.

본 발명은 피토스핑고신 유도체에, 추가로 비타민 D₃ 또는 칼시포트리올을 유효성분으로 함유하는 아폽토시스 유도용 조성물에 관한 것이다.

본 발명은 피토스핑고신 유도체에, 추가로 UVB를 조사한 세포의 배지를 유효성분으로 함유하는 아폽토시스 유도용 조성물에 관한 것이다.

본 발명의 조성물은 아폽토시스 유도 활성을 갖는 약학 조성물 또는 화장료 조성물을 포함한다.

본 발명은 피토스핑고신 유도체를 유효성분으로 함유하는 아폽토시스 유도용 조성물을 투여하고, 환부에 UVB를 조사하는 것으로 이루어진 건선치료 방법을 제공한다.

본 발명의 조성물은 생체내 아폽토시스 유도에 의해 예방 또는 치료가 가능한 각종 피부질환, 각종 종양, 각종 암 등의 예방 또는 치료에 유용하다.

【대표도】

도 1

【명세서】**【발명의 명칭】**

피토스핑고신 유도체를 함유하는 아폽토시스 유도용 조성물 {A composition comprising phytosphingosine derivatives for apoptosis induction}

【도면의 간단한 설명】

도 1은 본 발명의 조성물의 유효성분인 피토스핑고신 유도체의 농도에 따른 세포독성 효과를 나타낸 도이다.

도 2는 본 발명의 조성물이 생쥐의 비장세포로부터 분리한 면역세포의 세포독성에 미치는 영향을 관찰한 도이다.

도 3은 본 발명의 조성물이 사람말초혈액 단핵세포의 세포독성에 미치는 영향을 관찰한 도이다.

도 4는 본 발명의 조성물이 혼합 백혈구 반응에 의한 사람의 Th1 세포 활성화에 미치는 영향을 관찰한 도이다.

도 5는 본 발명의 조성물이 이종세포간의 반응에 의한 사람의 Th1 세포 활성화에 미치는 영향을 관찰한 도이다.

도 6은 본 발명의 조성물이 터널 어세이에 의한 아폽토시스 효과를 나타낸 도이다.

도 7은 본 발명의 조성물의 유효성분인 NAPS와 TAPS 30 μM 농도에서의 시간에 따른 아폽토시스 유도 효과를 나타낸 도이다.

도 8은 본 발명의 조성물의 유효성분인 TAPS가 세포주기에 미치는 효과를 나타낸 도이다.

도 9는 본 발명의 조성물의 유효성분인 TAPS 처리에 의한 체세포분열을 관찰한 도이다.

도 10은 본 발명의 조성물의 유효성분인 TAPS에 의해 유도되는 아폽토시스에 관여하는 유전자를 관찰한 도이다.

도 11은 본 발명의 조성물의 유효성분인 NAPS, TAPS가 카스파제-3의 발현 유도에 미치는 영향을 시간대별로 관찰한 도이다.

도 12는 본 발명의 조성물의 유효성분인 TAPS 30 μM 농도에서 p53과 Chk1 단백질의 발현 정도를 나타낸 도이다.

도 13은 본 발명의 조성물의 유효성분인 NAPS와 TAPS의 시간에 따른 Chk1 단백질의 발현 정도를 나타낸 도이다.

도 14는 본 발명의 조성물의 유효성분인 NAPS를 병변부위에 바른 후, 5~7일 후 치료효과를 관찰한 도이다.

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

<15> 본 발명은 피토스핑고신 유도체를 함유하는 아폽토시스 유도용 조성물에 관한 것이다.

<16> 아폽토시스(Apoptosis)는 예정된 세포사(programmed cell death)를 의미하는 것으로서 생리 및 병리적 상황하에서 일어나는 세포사멸의 한 형태이다.

<17> 생체내 정상 세포 조직에서는 세포의 증식과 아폽토시스가 균형을 이루어 조직의 세포수가 일정하게 유지되는 반면, 종양 세포 조직에서는 급속한 세포증식에 비해 아폽토시스가 적절히 이루어지지 못하기 때문에 세포수가 일방적으로 증가되어 암세포의 증식이 일어나는 것으로 알려져 있다(Raff.M.C., Nature, 356:397, 1992). 아폽토시스 유도에 관련된 인자로는 p53, bcl-2, bcl-XL, 카스파제 등이 알려져 있으며(Wyllie,A., Nature, 389:237, 1997), 아폽토시스 프로그램이 활성화되면, 세포막의 수포, 누클레아제에 의한 염색체의 DNA 분해, DNA 응축 및 분절 (fragmentation)이 일어난다.

<18> 아폽토시스는 태아의 발생과정, 피부, 내장기관, 면역기관의 기능에 중요한 역할을 한다.

<19> 염증성 피부질환은 궁극적으로 임파구를 비롯한 여러 면역세포들이 피부에 침투되어 피부세포의 대다수를 차지하는 피부각질형성세포 즉, 케라티노사이트와의 상호작용에 의해 야기된다. 이들 케라티노사이트들은 면역기능에 관여하는 여러 가지 사이토카인을 분비하여 이들 면역세포들의 증식에 관여하며, 또한 면역세포로부터 케라티노사이트의 증식에 관여하는 여러 인자들을 공급받는다. 이런 세포들과 주변의 임파절을 포함하여 SALT(skin-assoaciated lymphoid issue)라고 하며, 이런 측면에서 피부는 단순히 우리 몸을 보호하는 보호막 뿐만 아니라 하나의 면역기관으로 간주되고 있다.

<20> 아폽토시스와 관련된 피부질환중 특히 건선(psoriasis)은 각질세포의 이상증식, 다양한 염증성 세포, 특히 T 세포가 침윤(infiltration) 되어 있고 활성화되어 있는 질환이다. 건선은 혈관신생(angiogenesis)과 함께 피부각질형성 세포를 빠르게 증식시키므로 이러한 피부각질형성 세포에 아폽토시스를 유도하는 제제가 효과적인 치료약으로 제시되어 왔다.

<21> 특히 스팽고리피드 유도체인 세라마이드는 종양괴사인자- α (TNF- α), 인터루킨-1 (IL-1), 인터페론- γ (INF- γ), FAS 리간드 (ligand) 및 방사선 조사와 같은 자극들에 의해 활성화된 SMase(sphingomyelinase)가 스팽고마이에린을 분해시켜 생성된 산물로서 세포내 신호전달매개물질로 작용하여 세포 분화, 세포주기 저지, 증식 및 아폽토시스 등에 관여하는 것으로 알려져 있다.

<22> 또한 비타민 D₃ 또는 칼시포트리올(calcipotriol)은 과증식되어 있는 케라티노사이트에 아폽토시스 및 세포독성을 유도하는 것으로 알려져 있다.

<23> 또한 자외선 조사에 의해 SMase가 활성화되어 세포내 세라마이드 형성을 증가시켜 아폽토시스를 유도한다는 보고가 있다. 뿐만 아니라 자외선 조사에 의해 생성된 많은 성장인자들이나 사이토카인 세포표면 수용체들이 활성화되어 사이토카인이나 성장인자 신호전달경로(growth factor signal transduction pathway)를 활성화한다고 알려져 있다

<24> 자외선은 파장에 따라 UVA(200~290nm), UVB(290~320nm) 및 UVC(320~400nm)로 나누어지며, 이들은 *in vivo*나 배양세포에서 면역억제기능 및 아폽토시스를 일으킨다는 보고가 있다.

<25> 본 발명자들은 아폽토시스 활성 유도에 의해 예방 또는 치료 효과가 나타나는 각종 질병에 유효한 물질을 찾던 중 특정한 피토스핑고신 유도체에서 아폽토시스 유도 효과가 현저하게 나타남을 발견하고 본 발명을 완성하였다.

【발명이 이루고자 하는 기술적 과제】

<26> 본 발명에서는 피토스핑고신 유도체를 유효성분으로 하는 아폽토시스 유도용 조성물을 제공하고자 한다.

【발명의 구성 및 작용】

<27> 본 발명은 피토스핑고신(phytosphingosine, PS), 피토스핑고신-HCl(PS-HCl), C6-피토스핑고신(C6-PS), CLA-피토스핑고신(CLA-PS), 테트라아세틸 피토스핑고신 (TAPS) 및 N-아세틸 피토스핑고신(NAPS)으로 이루어진 군으로부터 선택된 1종 이상을 유효성분으로 함유하는 아폽토시스 유도용 조성물을 제공한다.

<28> 본 발명은, 피토스핑고신, 피토스핑고신-HCl, C6-피토스핑고신, CLA-피토스핑고신, 테트라아세틸 피토스핑고신 및 N-아세틸 피토스핑고신으로 이루어진 군으로부터 선택된 1종 이상의 유효성분에, 추가로 비타민 D₃ 또는 칼시포트리올을 유효성분으로 함유하는 아폽토시스 유도용 조성물을 제공한다.

<29> 본 발명은 피토스핑고신, 피토스핑고신-HCl, C6-피토스핑고신, CLA-피토스핑고신, 테트라아세틸 피토스핑고신 및 N-아세틸 피토스핑고신으로 이루어진 군으로부터 선택된 1종 이상의 유효성분에, 추가로 UVB를 조사한 세포의 배지를 유효성분으로 함유하는 아폽토시스 유도용 조성물을 제공한다.

<30> 본 발명의 조성물은 아폽토시스 유도 활성을 갖는 약학 조성물 또는 화장료 조성물을 포함한다.

<31> 본 발명은 피토스핑고신, 피토스핑고신-HCl, C6-피토스핑고신, CLA-피토스핑고신, 테트라아세틸 피토스핑고신 및 N-아세틸 피토스핑고신으로 이루어진 군으로부터 선택된

1종 이상을 유효성분으로 함유하는 아폽토시스 유도용 조성물을 투여하고, 환부에 UVB를 조사하는 것으로 이루어진 건선치료 방법을 제공한다.

<32> 본 발명의 조성물은 인간 각질형성세포주, 인간 피부상피세포암 세포주, 사람 제대 혈관내피세포, 비장내 면역세포 및 말초혈액단핵세포에서 모두 세포독성을 효과를 나타낸다.

<33> 본 발명의 조성물중 TAPS와 NAPS를 유효성분으로 하는 경우, 인간 각질형성세포주에서 현저한 아폽토시스 효과를 나타낸다.

<34> 본 발명의 조성물중 TAPS, NAPS 및 PS를 유효성분으로 함유하는 경우에는 특히 건선유발과 관련이 있는 Th1 세포의 활성화를 억제하는 효과가 있다.

<35> 본 발명의 조성물중 효과적인 건선 치료제 및 증상 완화제로 사용되고 있는 비타민 D₃ 또는 칼시포트리올을 추가의 유효성분으로 함유한 조성물은, 피토스핑고신 유도체를 단독으로 함유하는 본 발명의 다른 조성물에 비하여 현저히 상승된 아폽토시스 효과를 나타낸다.

<36> 본 발명의 조성물중 UVB를 조사한 세포의 배지를 추가의 유효성분으로 함유한 조성물은, 피토스핑고신 유도체를 단독으로 함유하는 본 발명의 다른 조성물에 비하여 현저히 상승된 아폽토시스 효과를 나타낸다. 상기 UVB를 조사한 세포의 배지는, 인간 각질형성세포주에 UVB를 조사한 후, 이들 세포를 배양하면서 이들 세포로부터 분비되는 각종 사이토카인을 포함하도록 세포배양액의 상등배지를 모은 것을 의미한다.

<37> 본 발명의 조성물을 투여하고, 환부에 UVB를 조사하는 본 발명의 건선 치료방법에서 UVB 조사량은 50 mJ/cm² ~ 2 J/cm²이다.

<38> 본 발명의 조성물에 의한 아폽토시스 유도에 관여하는 단백질은 카스파제-3, p53, Chk1 등이다.

<39> 본 발명의 조성물을 처리후 3시간에 카스파제-3가 최고로 발현되어, 탁월한 아폽토시스 유도능을 나타낸다.

<40> 본 발명의 조성물은 생체내 아폽토시스 유도에 의해 예방 또는 치료가 가능한 각종 피부질환, 각종 종양, 각종 암 등의 예방 또는 치료에 유용하다.

<41> 본 발명의 조성물로 예방 또는 치료가 가능한 질환은 구체적으로 습진, 건선, 어린선 등과 같은 각질이상 질환; 아토피성 피부염, 피부염증, 소양증, 세균감염증, 여드름 또는 창상 등과 같은 피부질환; 장시간 자외선에 노출되어 유발되는 각질이상 피부질환 및 피부노화; 피부암 등이다.

<42> 특히, 본 발명의 조성물은 건선, 어린선 등과 같은 각질화성 질환, 장시간 자외선에 노출되어 유발되는 각질이상 피부질환 및 피부노화, 피부암의 예방 또는 치료에 유용하다.

<43> 본 발명의 조성물은 추가로 동일 또는 유사한 기능을 나타내는 유효성분을 1종 이상 함유할 수 있다.

<44> 본 발명의 조성물은 추가로 다른 기능을 나타내는 유효성분을 1종 이상 함유할 수 있다.

<45> 본 발명의 조성물은, 투여를 위해서 상기 기재한 유효성분 이외에 추가로 약제학적으로 허용 가능한 담체를 1종 이상 포함할 수 있다. 약제학적으로 허용 가능한 담체는 식염수, 멸균수, 링거액, 완충 식염수, 텍스트로즈 용액, 말토 텍스트린 용액, 글리세롤

, 에탄올 및 이를 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 제제화할 수 있다. 더 나아가 당분야의 적정한 방법으로 또는 Remington's Pharmaceutical Science(최근판), Mack Publishing Company, Easton PA에 개시되어 있는 방법을 이용하여 각 질환에 따라 또는 성분에 따라 바람직하게 제제화할 수 있다.

<46> 본 발명의 조성물은 국부 투여가 바람직하며, 피부 및 점막 치료용으로 연고, 크림, 유액, 고약, 파우더, 합침 패드, 용액, 젤, 스프레이, 로션 또는 혼탁액 형태로 제공될 수 있다.

<47> 본 발명의 조성물 중 피토스핑고신 유도체는 조성물 총 중량에 대해 0.05~10.0 중량부, 바람직하게는 0.1~5.0 중량부를 포함한다.

<48> 본 발명의 조성물은 일회 약 10~30ml 또는 10~30g씩 수회에 걸쳐 환부에 바른다.

<49> 본 발명의 화장료 조성물은 그 제형에 있어서 특별히 한정되지 않고, 예를 들면, 유연화장수, 수렴화장수, 영양화장수, 아이크림, 영양크림, 맷사지크림, 클렌징크림, 클렌징폼, 클렌징워터, 파우더, 에센스, 팩, 유액, 로션, 연고, 젤, 고분자 또는 지질 소포 또는 나노스피어 또는 마이크로스피어, 비누 또는 샴푸 등의 제형을 가질 수 있다. 그리고, 각 제형의 화장료 조성물에 있어서, 피토스핑고신 유도체 외에 다른 성분들은 기타 화장료의 제형 또는 사용목적 등에 따라 당업자가 적의 선정하여 배합할 수 있다.

<50> 이하, 본 발명의 이해를 돋기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.

<51> 실시예 1 : 세포독성 측정(MTT 어세이)

<52> 피토스핑고신(phytosphingosine, PS), 피토스핑고신-HCl(PS-HCl), C6-피토스핑고신(C6-PS), CLA-피토스핑고신 (CLA-PS), 테트라아세틸 피토스핑고신 (TAPS) 및 N-아세틸 피토스핑고신(NAPS)을 DMSO에 용해하여 최종 1~100 μM 농도로 사용하였다.

<53> 1. 본 발명의 조성물이 인간 각질형성 세포주에서 세포독성에 미치는 영향

<54> 본 발명의 조성물이 인간 각질형성 세포주(Human keratinocyte cell line)인 HaCaT 세포에서 세포독성에 미치는 영향을 알아보기 위하여, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) 어세이로 세포 생존률 (cell viability)을 분석하였다.

<55> HaCaT 세포는 독일 암연구소(German Cancer Research, Germany) N. Fuseng 교수로부터 공급받았다.

<56> HaCaT 세포는 100mm 디쉬에 1×10^6 의 개수로 접종(seeding) 한 후, 10% 우태아혈청 (FBS, GIBCO), 100 units/ml 페니실린, 100 $\mu\text{g}/\text{ml}$ 스트렙토마이신이 함유된 DMEM(Dulbecco's Modified Eagle Medium)에서 48시간 동안 배양하였다. 트립신을 처리하여 다시 96 웰 플레이트에 웰당 $1-2\times 10^4$ 개의 세포를 무혈청 배지를 이용하여 접종한

후, 약 3시간 후에 스피고신 유도체들을 처리하여 배양하였다. 24시간 배양후 MTT 시약을 2mg/ml의 농도로 넣고 4시간 동안 배양한 후, 배지를 완전히 제거하고 DMSO에 혼탁시켜 540nm에서 O.D.를 측정하였다.

<57> 비교군으로는 C2-세라마이드를 사용하였다.

<58> 측정 결과는 표 1 및 도 1에 나타내었다.

<59> 【표 1】

피토스피고신 유도체의 농도(1-30 μ M)에 따른 세포생존률

	PS	PS-HCl	C6-PS	CLA-PS	NAPS	TAPS	C2-세라마이드
con	100 \pm 6.2	100 \pm 9.6	100 \pm 7.3	100 \pm 0.6	100 \pm 8.6	100 \pm 1.2	100 \pm 2.0
1 μ M	97 \pm 1.1	100 \pm 4.1	84 \pm 6.8	66 \pm 7.8	103 \pm 6.9	94 \pm 0.1	97 \pm 3.8
3 μ M	93 \pm 3	101 \pm 2.2	96 \pm 7.2	64 \pm 9.9	99 \pm 3.5	93 \pm 2.9	98 \pm 2.5
10 μ M	86 \pm 0.1	79 \pm 7.0	74 \pm 0.1	58 \pm 0.4	86 \pm 2.1	76 \pm 1.4	75 \pm 1.3
30 μ M	51 \pm 9.6	36 \pm 6.8	87 \pm 3	55 \pm 9.1	17 \pm 0.8	17 \pm 1.1	33 \pm 0.6

<60> 표 1과 도 1에 나타난 바와 같이, 본 발명의 6 종류의 피토스피고신 유도체 모두 세포증식을 억제하였다. 특히 30 μ M에서 NAPS 및 TAPS는 각각 83%의 세포독성을 나타낸 반면 C2-세라마이드는 67%의 세포독성을 나타내어 NAPS 및 TAPS가 C2-세라마이드 보다 16%의 우수한 세포독성효과가 있음을 알 수 있다.

<61> 2. 본 발명의 조성물이 인간 피부상피세포암 세포주에서 세포독성에 미치는 영향

<62> 본 발명의 조성물이 인간 피부상피세포암 세포주인 A431 세포에서 세포독성에 미치는 영향을 알아보기 위하여 MTT 어세이를 이용하여 관찰하였다.

<63> 세포배양 방법 및 MTT 어세이는 상기 1의 방법과 동일하게 하였다.

<64> 비교군으로는 C2-세라마이드를 사용하였다.

<65> 측정결과는 표 2에 나타내었다.

<66> 【표 2】

피토스핑고신 유도체의 농도(3~50 μM)에 따른 세포생존률

	PS	PS-HCl	C6-PS	CLA-PS	NAPS	TAPS	C2-세라마이드
con	100±0.8	100±0.8	100±0.8	100±0.8	100±0.8	100±0.8	100±0.8
3 μM	85±0.7	105±5.8	106±9.7	91±1.0	100±0.2	113±1.2	131±9.8
10 μM	30±1.9	109±8.6	61±8.1	98±2.9	75±6.9	83±3.9	97±4.7
30 μM	2±0.1	7±1.6	57±0.4	60±6.2	31±0.0	12±1.7	82±1.4
50 μM	2±0.2	2±0.2	44±9.6	65±5.5	1±0.2	5±1.2	74±2.8

<67> 표 2에 나타난 바와 같이, 50 μM 에서 PS, PS-HCl, NAPS 및 TAPS는 95~98%의 세포 독성을 나타낸 반면 C2-세라마이드는 26%의 세포독성을 나타내어 PS, PS-HCl, NAPS 및 TAPS가 C2-세라마이드 보다 69~72%의 우수한 세포독성효과가 있음을 알 수 있다.

<68> 3. 본 발명의 조성물이 사람 제대혈관내피세포(Human Umbilical Vein Endothelial Cell; HUVEC)에서 세포독성에 미치는 영향

<69> 본 발명의 조성물이 사람 제대혈관내피세포에서 세포독성에 미치는 영향을 알아보기 위하여 MTT 어세이를 이용하여 관찰하였다.

<70> 사람 제대혈관내피세포는, 사람의 제대혈관으로부터 primary culture하여 사용하였다.

<71> 세포배양 방법 및 MTT 어세이 방법은 상기 1의 방법과 동일하게 하였다.

<72> 비교군으로는 C2-세라마이드를 사용하였다.

<73> 측정결과는 표 3에 나타내었다.

<74> 【표 3】

피토스핑고신 유도체의 농도(3.5-30 μM)에 따른 세포생존률

	PS	NAPS	TAPS	C2-세라마이드
con	100±0.6	100±3.5	100±0.1	100±5.7
3.5 μM	64±7.7	66±7.5	47±3.4	90±11.6
7 μM	19±1.8	51±0.5	22±1.9	60±7.7
15 μM	14±0.9	19±3.4	15±0.7	61±8.4
30 μM	13±1.0	14±0.6	9±0.5	34±2.3

<75> 표 3에 나타난 바와 같이, 30 μM 에서 PS, NAPS 및 TAPS는 86~91%의 세포독성을 나타낸 반면 C2-세라마이드는 66%의 세포독성을 나타내어 PS, NAPS 및 TAPS가 C2-세라마이드 보다 20~25%의 우수한 세포독성효과가 있음을 알 수 있다.

<76> 4. 본 발명의 조성물이 생쥐의 비장세포로부터 분리한 면역세포에서 세포독성에 미치는 영향

<77> 본 발명의 조성물이 면역세포(T 세포, B 세포, 대식세포 및 단핵세포 등)에서 세포독성에 미치는 영향을 알아보았다.

<78> 정상생쥐(BDF)로부터 비장을 적출한 후, 물리적 방법을 이용하여 비장으로부터 단핵구 세포를 얻었다. 이 세포들을 PBS에 용해한 후, Ficoll-Hypaque 용액에 중첩시키고, 원심분리를 통해 Ficoll-Hypaque 용액의 경계 부위에 모인 세포들을 회수한 후, PBS로 세 번 세척하였다.

<79> 상기 세포에 본 발명의 조성물중 NAPS, TAPS 및 PS를 1, 10, 50, 100 μM 이 되도록 첨가한 후 24시간동안 배양하여, 세포증식정도를 MTT 어세이를 통해 확인하였다.

<80> 비교군으로는 C2-세라마이드를 사용하였다.

<81> 결과는 도 2에 나타내었다.

<82> 도 2에 나타난 바와 같이, C2-세라마이드 및 NAPS, PS의 IC_{50} 는 약 $75\ \mu M$, TAPS의 IC_{50} 는 $100\ \mu M$ 로, 본 발명의 조성물이 생쥐 비장세포에서 얻은 면역세포에 대해 독성을 나타낼 수 있다.

<83> 5. 본 발명의 조성물이 사람말초혈액 단핵세포(peripheral blood mononuclear cell; PBMC)에서 세포독성에 미치는 영향

<84> 본 발명의 조성물이 사람의 혈액내에 존재하는 면역세포들에서 세포독성에 미치는 영향을 알아보았다.

<85> 정상인으로부터 채혈한 후, 혈액을 Ficoll-Hypaque 용액에 중첩시켰다. 그리고 원심분리 후, Ficoll-Hypaque 용액의 경계 부위에 모인 세포들을 회수한 후, PBS로 세 번 세척해 주었다. 다른 사람으로부터 얻은 PBMC를 각각 2×10^5 개씩 섞어서 96-웰 플레이트에서 5일간 배양하였으며, 배양액은 10% 세럼이 포함된 RPMI 배양액을 사용하였다.

<86> 상기 세포에 본 발명의 조성물중 NAPS, TAPS 및 PS를 1, 10, 50, $100\ \mu M$ 이 되도록 첨가한 후 24시간동안 배양하여, 세포증식정도를 MTT 어세이를 통해 확인하였다.

<87> 비교군으로는 C2-세라마이드를 사용하였다.

<88> 결과는 도 3에 나타내었다.

<89> 도 3에 나타난 바와 같이, C2-세라마이드는 $100\ \mu M$ 까지 처리를 해 보아도 독성효과는 나타나지 않았다. 반면에 NAPS, TAPS, PS는 사람말초혈액 단핵세포에 대해 독성을 나

타내었다. NAPS의 경우에는 $100\text{ }\mu\text{M}$ 에서, TAPS와 PS의 경우에는 $50\text{ }\mu\text{M}$ 에서 강한 세포독성을 나타내었다.

- <90> 6. 본 발명의 조성물이 건선유발과 관련 있는 Th1 세포 활성화에 미치는 영향
- <91> 6-1. 혼합 백혈구 반응(Mixed Leukocyte Reaction; MLR)
- <92> 본 발명의 조성물이, TNBSO₃(헵텐)에 반응하여 IFN- γ 및 IL-12 등을 유리하는 Th1 세포의 활성화를 억제하는 효과가 있는지를 알아보았다.
- <93> 상기 4에서 얻은 세포를 반응세포(responder cell)로 사용하였으며, TNBSO₃-conjugated 세포를 자극세포(stimulator cell)로 사용하였다.
- <94> 자극세포의 준비는 다음과 같이 하였다. 단일 세포를 $2\times 10^7/\text{ml}$ 이 되도록 준비한 후, 동량의 20mM TNBSO₃를 첨가하여 37°C에서 반응시켰다. 반응 후, PBS로 세 번 세척해 주었다.
- <95> 반응세포와 자극세포를 각각 2×10^5 개씩 섞어서 96-웰 플레이트에서 5일간 배양하였으며, 배양액은 10% 세럼이 포함된 RPMI 배양액을 사용하였다.
- <96> 상기 세포에 본 발명의 조성물중 NAPS, TAPS 및 PS를 1, 10, 50, $100\text{ }\mu\text{M}$ 이 되도록 첨가한 후 24시간동안 배양하여, 세포증식정도를 MTT 어세이를 통해 확인하였다.
- <97> 비교군으로는 C2-세라마이드를 사용하였다.
- <98> 결과는 도 4에 나타내었다.
- <99> 도 4에 나타난 바와 같이, C2-세라마이드, NAPS 및 PS는 $50\text{ }\mu\text{M}$ 에서 억제효과를 나타되었으며, TAPS는 $10\text{ }\mu\text{M}$ 에서 억제효과를 나타내었다.

<100> 따라서, 본 발명의 조성물은 모두 TNBSO₃에 대한 세포활성화를 억제하는 기능이 있음을 알 수 있다.

<101> 6-2. 이종세포(allogenic cell)간의 반응

<102> 본 발명의 조성물이 이종세포간의 반응에 의한 사람의 Th1 세포의 활성화를 억제하는 효과가 있는지 알아보았다.

<103> 이종세포간의 반응을 알아보기 위해 상기 5의 방법에 의해 두 사람으로부터 얻은 PBMC를 각각 반응세포와 자극세포로 사용하였다. 자극세포로 사용된 PBMC는 X-레이 조사 를 수행한 후 사용하였다.

<104> 반응세포와 자극세포는 상기 6-1에서와 같이 혼합배양한 후, 본 발명의 조성물중 NAPS, TAPS 및 PS를 1, 10, 50, 100 μ M이 되도록 첨가한 후 24시간동안 배양하여, 세포 증식정도를 MTT 어세이를 통해 확인하였다.

<105> 비교군으로는 C2-세라마이드를 사용하였다.

<106> 결과는 도 5에 나타내었다.

<107> 도 5에 나타나 바와 같이, C2-세라마이드는 억제효과가 거의 없었으며, NAPS는 50 μ M이상에서 이종세포에 대해 활성화되어 증식하는 반응을 억제하는 효과가 있다. TAPS 와 PS는 50 μ M에서 세포증식을 완전히 억제함을 알 수 있다.

<108> 실시예 2 : 아폽토시스 유도 측정

<109> 본 발명의 조성물에 의한 HaCaT 세포의 아폽토시스 유도는 *in situ* cell death detection kit, POD(Enzo, 1684817, Boeringer Mannheim)를 이용하여 터널 어세이 (TUNEL-TdT-mediated dUTP nick end labeling- assay)로 관찰하였다.

<110> TC 챔버(Lab-TEK chamber Slide w/cover Permanox Slide sterile 1 well, 177410)에 HaCaT 세포를 1×10^6 의 개수로 접종하여 DMEM 배지에서 18시간 이상 배양한 후 피토스핑고신 유도체를 처리하였다. 약물 처리 후 24시간에 세포를 고정시킨 후 차단용액 (blocking solution, 3% H_2O_2 in MeOH)으로 내인성 펴옥시다제를 차단하고 투과용액 (permeabilization solution, 0.1% Triton X-100 in 0.1% sodium citrate)으로 세포의 투과를 증대시킨 후 터널 반응 혼합물을 이용하여 아폽토틱 세포를 라벨링 시켰고 DAB 기질(DAKO, K3465)을 이용하여 발색시켰다. 발색된 세포는 현미경을 이용하여 관찰하였다.

<111> 측정 결과는 도 6과 도 7에 나타내었다.

<112> 도 6은 10 μM 과 30 μM 농도의 피토스핑고신 유도체를 24시간 처리하여 터널 어세이를 실시한 결과를 나타낸 도이며, 피토스핑고신 유도체 모두 세포사멸을 일으켰고, 특히 NAPS와 TAPS가 가장 현저한 세포사멸 효과를 나타내었다.

<113> 도 7은 NAPS와 TAPS 30 μM 농도에서의 시간에 따른 아폽토시스 유도 효과를 나타낸 도이며, NAPS와 TAPS를 30 μM 농도로 처리한 후 4시간부터 아폽토시스가 유도됨을 알 수 있다.

<114> 실시예 3 : 본 발명의 조성물이 세포주기에 미치는 효과

<115> 1. 세포주기 관찰 1(Flow cytometric analysis)

<116> 주어진 시간대별로 세포를 트립신으로 처리하여 수거한 후 PBS로 세척하였다. 세포는 80% 에탄올을 이용하여 고정화시킨 다음 요오드화 프로피디움 (propidium iodide)과 RNase를 첨가한 후 유동세포 분석기(flow cytometer)를 이용하여 세포주기를 분석하였다.

<117> 결과는 도 8에 나타내었다.

<118> 도 8에 나타난 바와 같이, TAPS 처리후 12시간까지는 S 단계가 감소하고 상대적으로 G₂/M 단계가 증가하는 경향을 나타내었다. 이후 24시간 때까지 G₂/M 단계는 계속 감소하면서 상대적으로 sub G₁이 증가하는 경향을 나타내었다. Sub G₁은 아폽토틱 세포를 나타내는 것으로 피토스狞고신 유도체에 의한 아폽토시스 유도가 24시간 때에 급격히 증가하는 것을 볼 수 있다. 이러한 아폽토틱 세포의 증가는 동일 시간대에 그 분포가 감소하는 G₂/M 단계의 세포에서 유래되었다고 볼 수 있다. (24시간 때에 G₁단계의 증가는 아폽토틱 세포를 제외한 살아있는 세포만을 분석한 결과이다.)

<119> 2. 세포주기 관찰 2(면역형광법; Immunofluorescence)

<120> TAPS에 의한 아폽토시스 유도가 G₂/M단계 중 어느 단계로부터 유도되는지를 조사하기 위하여 베타-튜불린(β-tubulin)을 이용하여 체세포분열(mitosis)을 관찰하였다.

<121> HaCaT 세포를 커버슬립이 놓인 디쉬에 배양한 후 TAPS(30 μM)를 처리하였다. 시간 대별로 세포를 PBS로 세척한 다음 5% 파라포름알데하이드 (paraformaldehyde)로 15분간 고정화시키고 베타-튜불린 항체(1:100)와 1시간동안 반응시켰다. PBS로 세척 후

Cy3-conjugated anti-mouse IgG로 2차 반응을 실시하였다. DNA 염색을 위해 $0.3\mu\text{g}/\text{ml}$ 의 DAPI(Sigma)를 첨가한 후 형광현미경을 이용하여 세포를 관찰하였다.

<122> 결과는 도 9에 나타내었다.

<123> 도 9에 나타난 바와 같이, TAPS 처리후 12시간 때보다 24시간 때 염색체가 응축된 체세포들이 더 많이 관찰되었다. 따라서 체세포분열 중기에 아폽토시스 기전이 일어남을 알 수 있다.

<124> 실시예 4 : 본 발명의 조성물과 Vit D₃ 또는 칼시포트리올과의 병용투여에 의한 세포독성의 상승효과

<125> 본 발명의 조성물과 Vit D₃ 또는 칼시포트리올을 병용투여 하였을때, 세포독성 상승효과를 알아보기 위하여, 인간 각질형성 세포주인 HaCaT 세포를 사용하여 MTT 어세이로 세포 생존률을 분석하였다.

<126> HaCaT 세포에 Vit D₃ 또는 칼시포트리올을 $1\ \mu\text{M}$ 의 농도로, NAPS 및 TAPS를 각각 $10\ \mu\text{M}$ 의 농도로 단독 혹은 병용투여 하여 24시간 배양후 MTT 어세이에 의하여 이들 약제가 단독 혹은 병용투여에 의해 세포독성에 미치는 효과를 관찰하였다.

<127> 비교군으로는 C2-세라마이드를 사용하였다.

<128> 결과는 표 4에 나타내었다.

<129> 【표 4】

본 발명의 조성물과 Vit D₃ 또는 칼시포트리올의 병용투여에 따른 세포생존률

	control	NAPS(10 μM)	TAPS(10 μM)	C2-세라마이드(10 μM)
control	100±5	86±2	76±2	78±2
Vit D ₃ (1 μM)	68±5	1±0.02	19±4	34±0
칼시포트리올(1 μM)	74±3	24±3	28±3	60±4

<130> 표 4에 나타난 바와 같이, Vit D₃ 또는 칼시포트리올을 1 μM의 농도로 24 시간 투여하였을 때는 각각 32% 및 26%의 독성을 나타내었다. NAPS 10 μM 단독은 14%의 세포독성, TAPS 10 μM 단독은 24%의 세포독성을 나타낸 반면, Vit D₃ 또는 칼시포트리올과 병용투여 하였을 때, NAPS의 경우 각각 99% 및 76% 이상의 세포독성 효과를 나타냈고, TAPS의 경우 각각 81% 및 72%의 세포독성효과를 나타내어, Vit D₃ 및 칼시포트리올 혹은 NAPS 및 TAPS 단독에 의한 세포독성 보다 동시 투여에 의해 세포독성 효과가 현저히 상승함을 관찰할 수 있다.

<131> 실시예 5 : 본 발명의 조성물과 UVB를 조사한 세포의 배지와의 병용투여에 의한 세포독성의 상승효과

<132> 본 발명의 조성물과 UVB를 조사한 세포의 배지를 병용투여 하였을 때, 세포독성 상승효과를 알아보기 위하여 HaCaT 세포를 사용하여 MTT 어세이로 세포생존률을 분석하였다.

<133> 1. UVB를 조사한 세포의 배지의 제조

<134> HaCaT 세포를 100mm 디쉬에 1×10^5 cells/ml로 분주하였고, 배지는 10% 우태아혈청 및 100 units/ml 페니실린, 100 μ g/ml 스트렙토마이신이 함유된 DMEM을 사용하여 5% CO₂, 37°C의 조건에서 배양하였다. 배지를 제거한 후 PBS로 HaCaT 세포를 3차례 세척한 후 플레이트당 PBS 3.5ml를 가하여 UVB 200 J/m²의 용량으로 조사하였다. UVB 조사후 다시 DMEM 배지로 갈아준 후 24시간동안 5% CO₂, 37°C의 조건에서 배양한 후, 그 상등배지를 모아서 MTT 어세이용으로 사용하였다.

<135> 2. 세포독성 측정

<136> HaCaT 세포는 100mm 디쉬에 1×10^6 의 개수로 접종 한 후, 10% 우태아혈청, 100 units/ml 페니실린, 100 μ g/ml 스트렙토마이신이 함유된 DMEM에서 48시간 동안 배양하였다. 트립신을 처리하여 다시 96 웰 플레이트에 웰당 $1-2 \times 10^4$ 개의 세포를 무혈청 배지를 이용하여 접종한 후, 약 3시간 후에 상기 1에서 제조한 배지로 교체하였다. 그 배지상태에서 본 발명의 피토스핑고신 유도체들을 처리하여 24시간 배양하고 MTT 시약을 2mg/ml의 농도로 가한 후 4시간 동안 배양하였다. 배지를 완전히 제거하고 세포를 DMSO에 혼탁시켜 540nm에서 O.D.를 측정하였다.

<137> 측정 결과는 표 5에 나타내었다.

<138> 【표 5】

본 발명의 조성물과 UVB를 조사한 세포의 배지의 병용투여에 따른 세포생존률

	PS	UVB +PS	PS-HCl	UVB+ PS-HCl	NAPS	UVB+ NAPS	TAPS	UVB+ TAPS
con	100±2.4	100±2.4	100±5.2	100±5.2	100±9.7	100±6.4	100±8.5	100±8.5
UVB (200 J/m ²)	-	38±3.3	-	39±3.5	-	30±6.6	-	36±8.0
1 μM	133±3.4	38±7.9	83±7.9	39±4.5	130±0.0	27±5.8	111±7.0	27±7.1
3 μM	93±5.5	30±3.3	78±0.0	24±2.0	117±7.7	17±1.6	97±0.0	27±3.9
5 μM	85±0.6	28±2.3	78±6.7	25±1.9	110±4.0	11±1.3	83±0.0	16±3.2
10 μM	71±7.6	3±0.9	75±8.2	2±0.5	67±2.0	1±0.1	43±4.0	2±0.1

<139> 표 5에 나타난 바와 같이, UVB를 조사한 세포의 배지를 단독으로 처리한 경우에는 약 61~70%의 세포독성을 나타내었고, NAPS만을 10 μM 처리한 경우에는 33%, TAPS만을 10 μM 처리한 경우에는 57%의 세포독성을 나타내었다. UVB를 조사한 세포의 배지와 NAPS 및 TAPS를 병용투여 하였을 때는 세포독성 효과가 각각 약 98% 이상으로 나타났다.

<140> 따라서 NAPS 및 TAPS 단독에 의한 세포독성 유도보다 UVB를 조사한 세포의 배지와 병용투여에 의해서 세포독성 효과가 현저히 상승함을 관찰할 수 있다.

<141> 실시예 6 : 본 발명의 조성물에 의한 아폽토시스에 관여하는 유전자 및 단백질 확인

<142> 1. 유전자 확인

<143> 본 발명의 조성물에 의하여 유도되는 아폽토시스에 관여하는 유전자를 알아내고자, TAPS를 30 μM의 농도로 24시간 처리하여 mRNA를 분리한 후 아폽토시스 어레이 키트를 이용하여 관찰하였다.

<144> Human Apoptosis Expression Array(R&D system, Minneapolis, MN)에서 제공하는 아폽토시스-특이적 프라이머(apoptosis-specific primers)를 이용하여 labeled cDNA를 합성하고, 이것을 프로브로 하여 2 μ g의 총 RNA와 65°C에서 하룻밤 동안 항온배양한 후 세척용액 I(0.5%SSPE, 1%(w/v) SDS)으로 상온에서 3차례, 세척용액 II(0.1% SSPE, 10% (w/v) SDS)로 65°C에서 1시간동안 세척하였다. 세척된 멤브레인(membrane)을 X-레이 필름에 노출시켜 -70°C에서 피폭시킨 후 현상하였다.

<145> 결과는 도 10에 나타내었다.

<146> 도 10에 나타난 바와 같이, 아폽토시스 관련 유전자로는 COX-2 및 PIN 유전자의 발현이 증가하였고, 아폽토시스 억제유전자인 서비빈(survivin)이 감소하였으며, Bcl-2 관련 유전자인 Mc1-1과 Bcl-10이 증가하였다. 또한 사이토카인중 IL-1 β 가 증가하였고, 세포주기 조절자(cell cycle regulator)인 p21은 증가한 반면, p53은 감소하였다.

<147> 2. 아폽토시스 관련 단백질 확인

<148> 본 발명의 조성물이 아폽토시스 유도에 관련된 카스파제-3, p53, Chk1 단백질의 발현에 미치는 영향을 알아보기 위하여 면역화학적 분석법(Immunoblot analysis)을 실시하였다.

<149> HaCaT 세포를 100-mm 디쉬에 배양한 후 시간대별로 수거하였다. 500 μ l RIPA lysis buffer(1% Nonidet P-40, 1% sodium deoxycholate, 0.1% SDS, 0.15 M SDS, 0.01 M sodium phosphate, pH 7.2, 2mM EDTA, 50mM sodium fluoride, 0.2mM sodium vanadate)를 첨가하여 단백질을 추출한 후 Bradford 방법을 이용하여 농도를 측정하였다.

<150> 추출된 단백질은 12% 폴리아크릴아미드겔을 이용하여 전기영동을 실시한 후 니트로셀루로즈 멤브레인으로 전이하였다. 5% non-fat milk로 차단한 멤브레인을 1차 항체(카스파제-3, p53, Chk1)와 반응시킨 다음, 멤브레인을 세척한 후 HRP-conjugated 2차 항체와 반응시켰다.

<151> ECL kit를 이용하여 단백질 강도(protein intensity)를 분석하였다.

<152> 결과는 도 11, 도 12 및 도 13에 나타내었다.

<153> 도 11에 나타난 바와 같이, 시간대별로 NAPS, TAPS 및 C2-세라마이드에 의한 카스파제-3 유도를 관찰한 결과, 카스파제-3는 NAPS 처리한 후 30분부터 현저히 증가되어 3시간에 최고 6배의 유도발현을 나타내었으며 증가발현된 카스파제-3는 12시간까지 유지된 후 24시간에 대조군 수준으로 떨어졌다.

<154> 반면, TAPS는 NAPS에 비해 비교적 늦게 유도발현되기 시작하였으나 약처치 3시간에 최고 5배의 유도발현을 나타낸 후 24시간까지 유도발현이 지속되었다.

<155> C2-세라마이드 역시 약처치 3시간에 카스파제-3를 최고 유도발현시켰으나 그 증가배수는 NAPS 및 TAPS에 비해 현저히 약하였다(2.5배 증가).

<156> 이러한 결과를 통해 피토스핑고신 유도체는 탁월한 아폽토시스 유도능을 가지며, 아폽토시스 유도에 관한 효능에 있어서 기준에 알려져 있는 C2-세라마이드에 비해 우수함을 알 수 있다.

<157> 도 12 및 도 13에서 보는 바와 같이, p53과 Chk1 단백질은 8시간 때는 TAPS 처리에 의해 큰 변화가 없었지만, 아폽토시스가 일어나는 24시간 때에는 급격히 감소하는 경향을 나타내었다. 이러한 결과는 세라마이드에 의한 아폽토시스 유도에 p53과 Chk1 경로가

관여되고 있다는 것을 의미한다. 특히 Chk1은 DNA 손상에 의한 G₂/M 저지에 관여하는 단백질임을 알 수 있다.

<158> 실시예 7 : 본 발명의 조성물에 의한 건선치료 효과

<159> 본 발명의 조성물의 유효성분인 NAPS를 0.5% 농도로 하여, 하기 성분의 조성비로 크림 제제를 제조한 후 시료로 사용하였다.

<160>	NAPS	0.5g
<161>	스테아르산	1.0g
<162>	세틸알콜	1.4g
<163>	스테아릴알콜	1.4g
<164>	글리세릴 모노스테아레이트	2.0g
<165>	솔비탄 모노스테아레이트	0.2g
<166>	메틸 파라벤	0.2g
<167>	프로필 파라벤	0.1g
<168>	미네랄 오일	10.0g
<169>	카프릴릭/카프릭산	3.0g
<170>	MDF(meadow foam seed oil)	3.0g
<171>	디메치콘(메틸 폴리실록산)	0.5g
<172>	솔비탄 세스퀴올레이트	0.3g

<173>	트원 60	1.2g
<174>	디소디움 이디티에이	0.02g
<175>	글리세린	3.0g
<176>	트리에탄올아민	0.2g
<177>	세파겔 305	0.5g
<178>	제르몰 115	0.2g
<179>	정제수	71.28g

<180> 20~40세의 남성 환자 4명, 여성 환자 4명을 실험군으로 하였다.

<181> 상기에서 제조한 시료를 8명의 환자의 병변 부위에 바른후, 변화를 관찰하였다.

<182> 각 병변 부위 별로 호전된 증상을 도 14에 나타내었다(Case 1 : 팔꿈치, Case 2 : 이마, Case 3 : 무릎).

<183> 8명의 환자중 7명이 본 발명의 조성물의 크림제제를 바른후, 5~7일 후에 상당히 호전됨을 확인하였다.

<184> 따라서, 본 발명의 조성물이 건선치료에 있어서 효과가 있음을 알 수 있다.

【발명의 효과】

<185> 본 발명에 사용된 6종의 피토스핑고신 유도체는 세포독성 및 아폽토시스 유도에 있어서 탁월한 효과를 나타낸다.

<186> 따라서 이들 피토스핑고신 유도체를 유효성분으로 함유하는 본 발명의 조성물은 생체내 아폽토시스 유도에 의해 예방 또는 치료가 가능한 각종 피부질환, 각종 종양, 각종 암 등의 예방 또는 치료에 유용하다.

【특허청구범위】**【청구항 1】**

피토스핑고신(phytosphingosine, PS), 피토스핑고신-HCl(PS-HCl), C6-피토스핑고신(C6-PS), CLA-피토스핑고신(CLA-PS), 테트라아세틸 피토스핑고신(TAPS) 및 N-아세틸 피토스핑고신(NAPS)으로 이루어진 군으로부터 선택된 1종 이상의 피토스핑고신 유도체를 유효성분으로 함유하는 아폽토시스 유도용 약학 조성물

【청구항 2】

제 1항에 있어서, 상기 피토스핑고신 유도체에 비타민 D₃ 또는 칼시포트리올을 추가로 함유하는 것을 특징으로 하는 아폽토시스 유도용 약학 조성물

【청구항 3】

제 1항에 있어서, 상기 피토스핑고신 유도체에 UVB를 조사한 세포의 배지를 추가로 함유하는 것을 특징으로 하는 아폽토시스 유도용 약학 조성물

【청구항 4】

제 1항 내지 제 3항에 있어서, 생체내 아폽토시스 활성 유도에 의해 예방 또는 치료가 가능한 각종 피부질환, 각종 종양, 각종 암 등의 예방 또는 치료에 유용한 아폽토시스 유도용 약학 조성물

【청구항 5】

제 4항에 있어서, 습진, 건선, 어린선 등과 같은 각질이상 질환; 아토피성 피부염, 피부염증, 소양증, 세균감염증, 여드름 또는 창상 등과 같은 피부질환; 장시간 자외선에

노출되어 유발되는 각질이상 피부질환 및 피부노화; 피부암 등의 예방 또는 치료에 유용한 아폽토시스 유도용 약학 조성물

【청구항 6】

제 5항에 있어서, 건선, 어린선 등과 같은 각질이상 질환, 장시간 자외선에 노출되어 유발되는 각질이상 피부질환 및 피부노화의 예방 또는 치료에 유용한 아폽토시스 유도용 약학 조성물

【청구항 7】

제 5항에 있어서, 피부암의 예방 또는 치료에 유용한 아폽토시스 유도용 약학 조성물

【청구항 8】

피토스핑고신, 피토스핑고신-HCl, C6-피토스핑고신, CLA-피토스핑고신, 테트라아세틸 피토스핑고신 및 N-아세틸 피토스핑고신으로 이루어진 군으로부터 선택된 1종 이상의 피토스핑고신 유도체를 유효성분으로 함유하는 아폽토시스 유도용 화장료 조성물

【청구항 9】

제 8항에 있어서, 상기 피토스핑고신 유도체에 비타민 D₃ 또는 칼시포트리올을 추가로 함유하는 것을 특징으로 하는 아폽토시스 유도용 화장료 조성물

【청구항 10】

제 8항에 있어서, 상기 피토스핑고신 유도체에 UVB를 조사한 세포의 배지를 추가로 함유하는 것을 특징으로 하는 아폽토시스 유도용 화장료 조성물

【청구항 11】

제 8항 내지 제 10항에 있어서, 생체내 아폽토시스 활성 유도에 의해 예방 또는 치료가 가능한 각종 피부질환, 각종 종양, 각종 암 등의 예방 또는 치료에 유용한 아폽토시스 유도용 화장료 조성물

【청구항 12】

제 11항에 있어서, 습진, 건선, 어린선 등과 같은 각질이상 질환; 아토피성 피부염, 피부염증, 소양증, 세균감염증, 여드름 또는 창상 등과 같은 피부질환; 장시간 자외선에 노출되어 유발되는 각질이상 피부질환 및 피부노화; 피부암 등의 예방 또는 치료에 유용한 아폽토시스 유도용 화장료 조성물

【청구항 13】

제 12항에 있어서, 건선, 어린선 등과 같은 각질이상 질환, 장시간 자외선에 노출되어 유발되는 각질이상 피부질환 및 피부노화의 예방 또는 치료에 유용한 아폽토시스 유도용 화장료 조성물

【청구항 14】

제 12항에 있어서, 피부암의 예방 또는 치료에 유용한 아폽토시스 유도용 화장료 조성물

【도면】

【도 1】

【도 2】

【도 3】

【도 4】

【도 5】

【도 6】

【도 7】

【도 8】

Time(h)	Cells in phase(% of total)		
	G ₁	S	G ₂ /M
0	31.85	63.07	5.08
4	29.17	66.26	4.58
8	34.84	47.37	17.79
12	36.97	38.65	24.38
24	56.40	24.38	16.85

【도 9】

【도 10】

Apoptosis Array

Control

TAPS

COX-2 (Apoptosis related)

p16 (Cell Cycle Regulator) p100/NF- κ B2 (Signal Transduction Factor)

PIN (Apoptosis related)

p21 (Cell Cycle Regulator) ref-1 (Signal Transduction Factor)

Survivin (Apoptosis Suppressor)

p53 (Cell Cycle Regulator) TRAIL (TNF-super family)

Mcl-1 (BCI-2 related)

RbAp48 (Cell Cycle Regulator)

PARP (Caspase related)

IL-1 β (Cytokine)

c-myc (Cell Cycle Regulator)

14-3-3 protein (Signal Transduction Factor)

Cyclin A2 (Cell Cycle Regulator)

BCI-10 (Signal Transduction Factor)

020054936

출력 일자: 2002/10/31

【도 11】

Caspase-3 induction by NAPS, TAPS and C2-ceramide

【도 12】

【도 13】

【도 14】

Case 1

Case 2

Case 3

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.