Graph and discrete structure

Myriam Preissman (GSCOP) - 4 lectures. *Lecture 3*

Reminder

- greedy seq. algorithm
- simplicial ordering of V $v_1, v_2...v_n$. v_i is simplicial in $G[v_1...v_n]$

 \Rightarrow optimal coloring

Theorem : \exists simplicial ordering <=> $\forall V', G[V']$ contains a simplicial vertex

Corollary : simplicial ordering $V(G)\Rightarrow$ has no induced chordless $C_k, k\geq 4$

Course

Theorem : G is chordal \Rightarrow G has a simplicial ordering.

Proof : G is connected.

Lemma : $G \neq$ clique, G chordal, G connected $\Rightarrow \exists$ clique W in $G \ni GW$ is not connected.

 $\begin{aligned} &GV\setminus\{x,y\}\\ &\Rightarrow \exists W\ni G-W \text{ is not connected.}\\ &\forall w\in W, G-(W\setminus\{w\}) \text{ is connected.} \end{aligned}$

 $\forall w \in W$ has a neighbourg in each cc of $G \setminus W$.

Proof

Proof of the lemma

Assume W is not a clique : $\exists w,w'\in W\ni ww'\not\in E$

 \exists Shortest path P_1 between w and w' having all interval vertices in V_1 .

 \exists Shortest path P_2 between w and w' having all interval vertices in V_2 .

 $P_1+P_2=$ chordless cycle χ of lenght \geq 4. Since V_1 and V_2 are connected by an edge.

 $\Rightarrow \exists$ clique K in $G \ni GK$ not connected.

Proof of the theorem

Theorem : G chordal, connected \Rightarrow simple ordering.

Any induced subgraph of a chordal graph is chrodal. So by the characterisation Th it is enough to show that a chordal connected graph contains simplicial vertex.

We will show that G either is a clique or it contains two non adjacent simplicial vertices.

By induction on |V|.

- smallest case of connected graph that is not a clique: 3 vertices, 2 edges.
- assume the propert is true for $|V| \leq n$. Let G be $\ni |V| = n+1$.

By the lemma there exists a clique K s.t. G-K is not connected.

$$G_1=G[K\cup V_1],\;G_2:=G[K\cup V_2]$$

 G_i chordal :

- ullet clique $orall v \in V[G_i]$, v is simplicial
- \exists two non adjacent simple vertices.

Any vertex in V_i has the same neighborhoud in G_i and in G, so our goal is to show that G_i has a simplicial vertex in V_i .

if G_i clique o all vertices in V_i are simplicial.

 $G_i \neq$ clique, by the induction hypothesis.

 G_i contains two adjacent simplicial vertives : Since K is a clique at least one of them is in $V_i \to V_1 \in V_1, v_2 \in V_2$: non adjacent vertices.

Corollaries

- Find an optimal colloring of a cordal graph is easy.
- Find a biggest clique is also easy.
- At most n maximum clique in a cordal graph (it can be exponnential in |V| in arbitrary graphs).
 - \circ (proof : $v_{max} = v_k, v_{max} \cup Neighborhood[v_{max}]$ is max.)

Back to classroom affectation problem

Course $c_1, c_2, ..., c_n$

To each course: interval o time.

Intersection graph.

G interval Graph \Rightarrow chordal.

G interval \neq clique :

 $\Rightarrow \exists$ 2 non adjacent simplicial vertices

 $[x_1, y_1], [x_2, y_2], ..., [x_n, y_n]$

Exercice: proove it.

Definition: intersection graph

G=(V,E) is an intersection graph if one can associate to every vertex v a set S_v in such a way that $vm\in E\Leftrightarrow S_v\cap S_w\neq\emptyset$

Exercice: Every graph is an intersection graph.

Theorem: chordal graphs are intersection graphs of subtrees of a tree.

Note: Interval graph are special chrodal graphs.