

Language Theory and Infinite Graphs

Colin Stirling
School of Informatics
University of Edinburgh

$$\frac{A \stackrel{.}{=} X}{\frac{C \stackrel{.}{=} YX}{AA \stackrel{.}{=} XX}} \text{UNF}$$

$$\frac{CA \stackrel{.}{=} YXX}{\frac{CX \stackrel{.}{=} YXX}{CX \stackrel{.}{=} YXX}} \text{BAL(L)} \qquad A \stackrel{.}{=} X$$

$$\frac{A \stackrel{.}{=} X}{\text{UNF}}$$

$$\frac{CA \stackrel{.}{=} YXX}{CX \stackrel{.}{=} YXX} \text{CUT}$$

Decidability

Sketched decidability proof of language equivalence for simple grammars using tableau proof system

Propositions

- Every tableau is finite
- $\alpha \sim \beta$ iff the tableau with root $\alpha = \beta$ is successful

Main point, given $\alpha \doteq \beta$, then every goal in the tableau has a bounded size (in terms of $|\alpha|, |\beta|$ and the size of the PDG)

Comments

What are key features that underpin decidability?

Bisimulation equivalence is a congruence with respect to stack prefixing

if
$$L(\alpha) = L(\beta)$$
 then $L(\delta\alpha) = L(\delta\beta)$

Congruence allows us to tear apart a configuration $\alpha'\alpha$ and replace its tail with a potentially equivalent configuration β , $\alpha'\beta$

• Bisimulation equivalence supports cancellation of postfixed stacks

if
$$L(\alpha\delta) = L(\beta\delta)$$
 then $L(\alpha) = L(\beta)$

Cancellation, as used in CUT, has the consequence that goals become small

Back to DPDA

• How can we tear apart DPDA (stable) configurations $p\alpha$ and replace parts with parts? What is a part of a configuration?

A configuration has state as well as stack

- $L(p\alpha) = L(q\beta)$ does not, in general, imply $L(p\delta\alpha) = L(q\delta\beta)$
- $L(p\alpha\delta) = L(q\beta\delta)$ does not, in general, imply $L(p\alpha) = L(q\beta)$

- A main attack on the decision problem in the 1960/70s examined differences between stack lengths and potentially equivalent configurations that eventually resulted in a proof of decidability for real-time DPDAs
- However, $L(pY^nX) = L(pY^mX)$ for every m and n

marktoberdorf today cps

However

Many of these problems disappear with pushdown grammars. Despite nondeterminism, stacking is a congruence with respect to pre and postfixing for language and bisimulation equivalence and both equivalences support pre and postfixed cancellation

1.
$$L(\alpha) = L(\beta)$$
 iff $L(\alpha\delta) = L(\beta\delta)$

2.
$$L(\alpha) = L(\beta)$$
 iff $L(\delta \alpha) = L(\delta \beta)$

3.
$$\alpha \sim \beta$$
 iff $\alpha \delta \sim \beta \delta$

4.
$$\alpha \sim \beta$$
 iff $\alpha \delta \sim \beta \delta$

Therefore ...

- This suggests that we should try to remain with PDGs
- Deterministic PDGs are too restricted
- Arbitrary PDGs are too rich (as they generate all the non-empty context-free languages)
- What is needed is a mechanism for constraining nondeterminism in a PDG

Textbook transformation of PDAs into PDGs

- ullet From PDA to language equivalent PDGs (with ϵ -transitions)
- Introduce stack symbols [pXq] so that $L([pXq]) = \{w : pX \xrightarrow{w} q\epsilon\}$
- Convert basic transitions into sets of transitions:

$$\begin{array}{c} pX \stackrel{a}{\longrightarrow} q\epsilon \text{ is } \{[pXq] \stackrel{a}{\longrightarrow} \epsilon\} \\ pX \stackrel{a}{\longrightarrow} rY \text{ is } \{[pXq] \stackrel{a}{\longrightarrow} [rYq]\} \\ pX \stackrel{a}{\longrightarrow} rYZ \text{ is } \{[pXq] \stackrel{a}{\longrightarrow} [rYp'][p'Zq] \,:\, p' \in \mathsf{P}\} \end{array}$$

• $w \in L(pX_1 \dots X_n)$ iff $w \in L([pX_1q_1][q_1X_2q_2]\dots[q_{n-1}X_nq_n])$ for some q_i

- $[pXq] \xrightarrow{a} [pXp][pXq] \dots$
- $[pXq] \xrightarrow{a} [pXq][qXq] \dots$
- Introducing extra nondeterminism

For DPDA

- Transform into normal form PDG without ϵ -transitions
- We only convert transitions for $a \in A$
- A stack symbol [pXq] is an ε -symbol, if $pX \stackrel{\epsilon}{\longrightarrow} q\epsilon \in T$. All ε -symbols are erased from the right hand side of any transition in the SDG
- Next, the SDG is normalised by removing all unnormed stack symbols

There are two ϵ -stack symbols, [rXp] and [rYr]

$$\begin{array}{ll} [pXp] \stackrel{a}{\longrightarrow} [pXp] & [pXp] \stackrel{b}{\longrightarrow} \epsilon & [pXp] \stackrel{c}{\longrightarrow} [pXp] \\ [pYp] \stackrel{a}{\longrightarrow} \epsilon & [pYr] \stackrel{b}{\longrightarrow} \epsilon & [pYp] \stackrel{c}{\longrightarrow} [pYp] [pYp] \\ [pYr] \stackrel{c}{\longrightarrow} [pYp] [pYr] & [pYr] \stackrel{c}{\longrightarrow} [pYr] \end{array}$$

Extra nondeterminism: consider G([pYr])

Main problem

- Transformation does not preserve bisimulation equivalence
- How to overcome this?
- Need to preserve structure

Sum configurations

Convert transitions into transitions over SUMS:

$$\begin{array}{c} pX \stackrel{a}{\longrightarrow} q\epsilon \text{ is } [pXq] \stackrel{a}{\longrightarrow} \epsilon \\ \\ pX \stackrel{a}{\longrightarrow} rY \text{ is } [pXq] \stackrel{a}{\longrightarrow} [rYq] \\ \\ pX \stackrel{a}{\longrightarrow} rYZ \text{ is } [pXq] \stackrel{a}{\longrightarrow} \sum \{ [rYp'][p'Zq] \, : \, p' \in \mathsf{P} \} \end{array}$$

- Convert $pX_1 ... X_n$ to $\sum \{ [pX_1q_1][q_1X_2q_2] ... [q_{n-1}X_nq_n] : q_i \in \mathsf{P} \}$
- Language of a sum is union of languages of summands
- For DPDA determinize transitions for sum configurations: preserve structure

$$\begin{array}{ll} [pXp] \stackrel{a}{\longrightarrow} [pXp] & [pXp] \stackrel{b}{\longrightarrow} \epsilon & [pXp] \stackrel{c}{\longrightarrow} [pXp] \\ [pYp] \stackrel{a}{\longrightarrow} \epsilon & [pYr] \stackrel{b}{\longrightarrow} \epsilon & [pYp] \stackrel{c}{\longrightarrow} [pYp] [pYp] \\ [pYr] \stackrel{c}{\longrightarrow} [pYp] [pYr] & [pYr] \stackrel{c}{\longrightarrow} [pYr] \end{array}$$

• Let A = [pXp], B = [pYp], C = [pYr]. So, pYX is BA + C

Determinized transitions

$$\begin{array}{ccccc} A \stackrel{a}{\longrightarrow} A & A \stackrel{b}{\longrightarrow} \epsilon & A \stackrel{c}{\longrightarrow} A \\ B \stackrel{a}{\longrightarrow} \epsilon & C \stackrel{b}{\longrightarrow} \epsilon & B \stackrel{c}{\longrightarrow} BB \\ C \stackrel{c}{\longrightarrow} BC + C & \end{array}$$

• Let A = [pXp], B = [pYp], C = [pYr]. So, pYX is BA + C

Strict deterministic grammars

Due to Harrison and Havel in 1970s

Add an extra component to a PDG

• An equivalence relation \equiv on S (stack symbols)

 \equiv partitions the stack symbols S into disjoint subsets S_1, \ldots, S_k : for each i, and pair of stack symbols $X, Y \in S_i$, $X \equiv Y$

INTUITION FROM DPDA: $X \equiv Y$ iff X = [pZq] and Y = [pZr]

Sequences

Extend \equiv on S to a relation on S* $\alpha \equiv \beta$ iff

- $\alpha = \beta$, or
- there is a $\delta \in S^*$, $\alpha = \delta X \alpha'$, $\beta = \delta Y \beta'$, $X \equiv Y$ and $X \neq Y$

For instance, if $Y \equiv Z$ then $XY\alpha \equiv XZ$ for any α

≡ on stacks is not an equivalence relation

Properties

- $\bullet \ \alpha\beta \equiv \alpha \ \text{iff} \ \beta = \epsilon$
- $\alpha \equiv \beta$ iff $\delta \alpha \equiv \delta \beta$
- If $\alpha \equiv \beta$ and $\gamma \equiv \delta$ then $\alpha \gamma \equiv \beta \delta$
- If $\alpha \equiv \beta$ and $\alpha \neq \beta$ then $\alpha \gamma \equiv \beta \delta$
- If $\alpha\gamma\equiv\beta\delta$ and $|\alpha|=|\beta|$ then $\alpha\equiv\beta$

Strict deterministic

\equiv on S is strict when

$$X \xrightarrow{a} \alpha \in \mathsf{T} \qquad \alpha$$
1. if
$$||| \qquad \text{then} \qquad ||| \\ Y \xrightarrow{a} \beta \in \mathsf{T} \qquad \beta$$

$$X \xrightarrow{a} \alpha \in \mathsf{T} \qquad X$$
2. if
$$||| \qquad \text{then} \qquad || \\ Y \xrightarrow{a} \alpha \in \mathsf{T} \qquad Y$$

A PDG with \equiv is strict determinisitic, an SDG, if its relation \equiv is strict

Strict: partition $\{\{X\}, \{Y, Z\}\}$

$$Y \xrightarrow{c} YY$$
, $Z \xrightarrow{c} Z$, $Z \xrightarrow{c} YZ$ and $YY \equiv Z$, $YY \equiv YZ$ and $Z \equiv YZ$

Constrained nondeterminism

- If each set in the partition is a singleton then the SDG is deterministic, a simple grammar, and $\alpha \equiv \beta$ iff $\alpha = \beta$
- In general, constrained nondeterminism

 $X \stackrel{a}{\longrightarrow} \epsilon \in T$, $X \equiv Y$ and $X \neq Y$ implies no a-transition $Y \stackrel{a}{\longrightarrow} \beta \in T$

Suppose $Y \stackrel{a}{\longrightarrow} \beta$. By condition 1 of being strict $\epsilon \equiv \beta$, so $\beta = \epsilon$.

By condition 2 of being strict X = Y, which is a contradiction.

Key property

Strictness conditions generalise to words and stacks

1. if
$$\alpha \xrightarrow{w} \alpha'$$
 α' α' $\beta \xrightarrow{w} \beta'$ β'

2. if
$$\alpha \xrightarrow{w} \alpha'$$
 α $\beta \xrightarrow{a} \alpha'$ β

Proof in the notes page 25

Corollaries

• If $\alpha \equiv \beta$ and $w \in L(\alpha)$, then for all words v, and $a \in A$, $wav \notin L(\beta)$

• If $\alpha \equiv \beta$ and $\alpha \neq \beta$ then $L(\alpha) \cap L(\beta) = \emptyset$

DPDA intuition: properties hold for [pXq], [pXr]

Sum configurations

- Extend configuration to sets of sequences of stack symbols, $\{\alpha_1, \ldots, \alpha_n\}$
- Write it as a sum $\alpha_1 + \ldots + \alpha_n$ without repeated elements
- Degenerate case is the empty sum, \emptyset
- $L(\alpha_1 + \ldots + \alpha_n) = \bigcup \{L(\alpha_i) : 1 \le i \le n\}$
- \bullet $L(\emptyset) = \emptyset$

Admissible sums

- $\beta_1 + \ldots + \beta_n$ is admissible if $\beta_i \equiv \beta_j$ for each i and j
- Admissible configurations are preserved by transitions

If $\alpha_1 + \ldots + \alpha_n$ admissible then for all w the sum configuration

$$\{\beta_i^1 : \alpha_1 \xrightarrow{w} \beta_i^1\} \cup \ldots \cup \{\beta_i^n : \alpha_n \xrightarrow{w} \beta_i^n\}$$

is admissible

ullet DPDA intuition: $\{[pX_1q_1]\dots[q_{n-1}X_nq_n]:q_i\in\mathsf{P}\}$ is admissible

Strict: partition $\{\{X\}, \{Y, Z\}\}$

Admissible: XX, ZZZ + ZZY, YX + Z, Z + YZ, Z + YZ + YYZ

Not admissible X+Z, $Y+\epsilon$

Determinization

• T is changed to T^d. For each stack symbol X and $a \in A$, the family of transitions $X \xrightarrow{a} \alpha_1, \ldots, X \xrightarrow{a} \alpha_n \in T$ is determinized

$$X \stackrel{a}{\longrightarrow} \alpha_1 + \ldots + \alpha_n \in \mathsf{T}^\mathsf{d}$$

• For each X, a a unique transition $X \stackrel{a}{\longrightarrow} \sum \alpha_i \in \mathsf{T}^\mathsf{d}$ as sum could be \emptyset

Determinization cont.

Prefix rule for generating transitions is generalised

If
$$X_i \xrightarrow{a} \alpha_1^i + \ldots + \alpha_{n_i}^i$$
 for each $i: 1 \leq i \leq m$ then $X_1\beta_1 + \ldots + X_m\beta_m \xrightarrow{a} \alpha_1^1\beta_1 + \ldots + \alpha_{n_1}^1\beta_1 + \ldots + \alpha_{n_m}^m\beta_m + \ldots + \alpha_{n_m}^m\beta_m$

• Determinized graph $G^d(\alpha_1 + \ldots + \alpha_n)$ using T^d and the extended prefix rule

 $S = \{X, Y, Z\}$, $A = \{a, b, c\}$ and the partition of $S = \{\{X\}, \{Y, Z\}\}$. And T^d is

$$G^{d}(YX+Z)$$
 is

Which is \sim

Characterising DPDA

• A DPDA can be converted into a determinized SDG, and configuration $p\alpha$ is converted into sum configuration sum $(p\alpha)$ of the SDG where

$$\mathsf{G}^{\mathsf{c}}(p\alpha) \sim \mathsf{G}^{\mathsf{d}}(\mathrm{sum}(p\alpha))$$

- (Conversely, a determinized SDG can be transformed into a DPDA)
- DPDA equivalence problem = to deciding whether two admissible configurations of a determinized SDG are bisimulation equivalent

Notation

- \bullet E, F, G, ... range over admissible configurations
- ullet + can be extended: if E and F are admissible, $E \cup F$ is admissible, E and F are disjoint, $E \cap F = \emptyset$, then E + F is the admissible configuration $E \cup F$
- Also use sequential composition, if E and F are admissible, then EF is the admissible configuration $\{\beta\gamma:\beta\in E \text{ and }\gamma\in F\}$
- $E=E_1G_1+\ldots+E_nG_n$ is a head/tail form, if the head $E_1+\ldots+E_n$ is admissible and at least one $E_i\neq\emptyset$, and each tail $G_i\neq\emptyset$ If we write $E=E_1G_1+\ldots+E_nG_n$ then E is a head/tail form

Congruence

- Decision question $E \sim F$?
- Assume $E = E_1G_1 + \ldots + E_nG_n$
 - If each $H_i \neq \emptyset$ and each $E_i \neq \varepsilon$ and for each j such that $E_j \neq \emptyset$, $H_j \sim_m G_j$, then $E \sim_{m+1} E_1 H_1 + \ldots + E_n H_n$
 - If each $H_i \neq \emptyset$ and for each j such that $E_j \neq \emptyset$, $H_j \sim G_j$, then $E \sim E_1 H_1 + \ldots + E_n H_n$
- We can tear apart configurations and replace parts with equivalent parts

Notation

- ullet For $X\in {\sf S},\ w(X)$ is the unique shortest word $v\in {\sf A}^+$ such that $X\stackrel{v}{\longrightarrow} \epsilon$
- \bullet w(E) is the unique shortest word for configuration E
- M is the maximum norm of the SDG
- "E following u", written $E \cdot u$, is the unique F such that $E \xrightarrow{u} F$

Decision procedure

- Given by a deterministic tableau proof system where goals are reduced to subgoals
- ullet Goals and subgoals have the form $E \stackrel{.}{=} F$, is $E \sim F$
- Rules are (generalisations of) unfold, UNF, and balance rules,
 BAL(L) and BAL(R). (CUT free)