Mathcord Mathematical Logic Problem Set 2

 $Submission\ to\ mathcord.pset.submissions@gmail.com$

Problem 1

Prove the following:

$$\frac{X \vdash \alpha \to \beta}{X, \alpha \vdash \beta}, \qquad \frac{X, \alpha \vdash \beta}{X \vdash \alpha \to \beta}$$

Problem 2

Complete section 2.4: prove claims 2.4.2 through 2.4.8.

Problem 3

A substitution is a mapping $\sigma: V \longrightarrow \mathcal{F}$, which we extend to $\sigma: \mathcal{F} \longrightarrow \mathcal{F}$ using recursion:

$$(\alpha \wedge \beta)^{\sigma} = \alpha^{\sigma} \wedge \beta^{\sigma}, \qquad (\neg \alpha)^{\sigma} = \neg \alpha^{\sigma}$$

For a set of formulas $X \subseteq \mathcal{F}$, define $X^{\sigma} = \{ \varphi^{\sigma} \mid \varphi \in X \}$. Verify that \vDash is substitution invariant:

$$X \vDash \alpha \implies X^{\sigma} \vDash \alpha^{\sigma}$$

(Hint: for valuation w, define w^{σ} such that $w \models \alpha^{\sigma} \iff w^{\sigma} \models \alpha$)

Problem 4

Let $\vdash \subseteq \mathcal{P}(\mathcal{F}) \times \mathcal{F}$ be a relation between sets of formulas and formulas (we write $X \vdash \varphi$). \vdash is a *consequence relation* if it satisfies:

- (1) Reflexivity: $\{\alpha\} \vdash \alpha$
- (2) Monotonicity: $X \subseteq X'$ and $X \vdash \alpha$ implies $X' \vdash \alpha$
- (3) Transitivity: $X \vdash Y$ ($X \vdash \varphi$ for all $\varphi \in Y$) and $Y \vdash \alpha$ implies $X \vdash \alpha$
- (4) Substitution invariance: $X \vdash \alpha \implies X^{\sigma} \vdash \alpha^{\sigma}$ (see the previous question).

A consequence relation is called *finitary* if $X \vdash \alpha$ implies there exists a finite $X_0 \subseteq X$ such that $X_0 \vdash \alpha$. Call a consequence relation \vdash *inconsistent* if it is trivial: $\vdash \alpha$ for all α . Otherwise \vdash is consistent.

- (1) Let \vdash be a consistent finitary consequence relation in $\mathcal{F}_{\{\wedge,\neg\}}$ which satisfies the properties $(\wedge 1)$ through $(\neg 2)$. Show that \vdash is maximally consistent (meaning any consequence relation which contains \vdash is inconsistent).
- (2) Show that there is exactly one consistent consequence relation in $\mathcal{F}_{\{\wedge,\neg\}}$ which satisfies $(\wedge 1)$ through $(\neg 2)$.
- (3) Conclude that \vdash (our Gentzen calculus) is complete.

Problem 5

A Horn formula is one which is of one of the following forms:

$$\alpha_0 \vee \neg \alpha_1 \vee \cdots \vee \alpha_n$$
 or $\neg \alpha_0 \vee \neg \alpha_1 \vee \cdots \vee \alpha_n$ for $n \geq 0$, α_i prime

Let $w: V \longrightarrow \{0,1\}$ be a valuation, we can also equivalently view it as a set $A \subseteq V$. We say that a set of formulas X is preserved under intersections if $A \models X$ and $B \models X$ implies $A \cap B \models X$. And X is preserved under arbitrary intersections if $\{A_i\}_{i \in I}$ all model X then so too does $B = \bigcap_{i \in I} A_i$. Show that

- (1) X is preserved under finite intersections if and only if it is closed under arbitrary intersections.
- (2) X is preserved under intersections if and only if it can be axiomatized (meaning it has the same models as) by a set of Horn formulas.
- (3) A formula φ is preserved under intersections if and only if it is equivalent to a Horn formula.