THE ALGEBRAIC APPROACH TO CSP

CSPs of Commutative Idempotent Binars

William DeMeo

williamdemeo@gmail.com

joint work with Cliff Bergman

Cliff Bergman

Iowa State University

BLAST 2015 University of North Texas

slides available at

https://qithub.com/williandeneo/Talks

CONSTRAINT SATISFACTION PROBLEMS

Input

- \mathbf{m} variables: $V = \{v_1, \dots, v_n\}$
- domain: D = {0,1}
- constraints: a formula, sav.

 $f(y_1, \dots, y_n) = (y_1 \lor y_2 \lor \neg y_3) \land (\neg y_1 \lor y_3 \lor y_4) \land \dots$

Output

m "ves" if there is a solution: $\sigma: V \to D$ such that

$$f(\sigma v_1, \dots, \sigma v_n) = 1$$

■ "no" otherwise

CONSTRAINT SATISFACTION PROBLEMS

Input

- \blacksquare variables: $V = \{v_1, v_2, ...\}$
- m domain: D
- constraints: C₁, C₂, . . .

Output

- "yes" if there is a solution
 - $\sigma: V \to D \quad \text{ (an assignment of values to variables that satisfies all } C_i)$
- "no" otherwise

CONSTRAINT SATISFACTION PROBLEMS EXAMPLE: NAE-SAT

.....

- Input
- wariables: $V = \{v_1, \dots, v_n\}$ domain: $D = \{0, 1\}$
- \square constraints: $(s_1, C_1), (s_2, C_2), \ldots$ of the form
 - istrairits. $(s_1, C_1), (s_2, C_2), ...$ or the form

$$s = (i, j, k) \in \{1, \dots, n\}^3$$
 (scopes)
 $C = \neg(v_i = v_i = v_k)$

In terms of relational structures

Let
$$S := \{(v_i, v_j, v_k) : (i, j, k) \text{ is a scope } \} \subseteq V^3$$

$$R := \{(0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0)\} \subseteq D^3$$

Then a solution σ must satisfy " $\sigma S \subseteq R$ "

that is,
$$(x, y, z) \in S \implies (\sigma x, \sigma y, \sigma z) \in R$$

Solutions are homomorphisms!

$$\sigma: \langle V,S\rangle \to \langle D,R\rangle$$

CSP: RELATIONAL FORMULATION

Let $\mathbb{D} = \langle D, \mathcal{R} \rangle$ be a relational structure.

 $CSP(\mathbb{D})$ (or $CSP(\mathcal{R})$) is the decision problem with

Input

■ A structure V = ⟨V, C⟩ similar to D.

Output

 \blacksquare "yes" if there is a homomorphism $\sigma : \mathbb{V} \to \mathbb{D}$ \blacksquare "no" otherwise

Alternatively, let ⇒ be the binary relation on similar structures:

$$V \Rightarrow D$$
 iff there is a homomorphism $\sigma : V \rightarrow D$

Then the CSP of $\ensuremath{\mathbb{D}}$ is the membership problem for the set

$$CSP(\mathbb{D}):=\{\mathbb{V}:\mathbb{V}\Rightarrow\mathbb{D}\}$$

CSP: ALGEBRAIC FORMULATION

Let
$$\mathbb{D} = \langle D, \mathbb{R} \rangle$$
 be a relational structure.
For $R \subseteq \mathbb{R}$ define the polymorphisms of R ,

$$pol(R) := \{f : D^k \rightarrow D \mid f(\rho) \subseteq \rho \text{ for every } \rho \in R\}$$

that is,
$$f \in pol(R)$$
 iff for every $\rho \in R$

$$(a_1, b_1, \dots, z_1) \in \rho$$

 \vdots
 $(a_k, b_k, \dots, z_k) \in \rho$

$$(f(a_1,\ldots,a_k),\ldots,f(z_1,\ldots,z_k))\quad\in\quad\rho$$

CSP: RELATIONAL FORMULATION

Let $\mathbb{D} = \langle D, \mathcal{R} \rangle$ be a relational structure.

CSP(D) (or CSP(R)) is the decision problem with

Input

■ A structure V = (V, C) similar to D.

Output

 \quad "yes" if there is a homomorphism $\sigma : \mathbb{V} \to \mathbb{D}$

m "no" otherwise

We call $\mathbb D$ (or $\mathfrak R$) "tractable" if there is a polynomial-time algorithm for solving $CSP(\mathbb D)$ (or $CSP(\mathcal R)$).

CSP: ALGEBRAIC FORMULATION

Let $\mathbb{D} = \langle D, \mathcal{R} \rangle$ be a relational structure. For $R \subseteq \mathcal{R}$ define the polymorphisms of R,

 $pol(R) := \{f : D^k \rightarrow D \mid f(\rho) \subseteq \rho \text{ for every } \rho \in R\}$

Define the algebra $\mathbf{D} := \langle D, pol(R) \rangle$.

We call \mathbf{D} "tractable" if the corresponding structure (D, R) is tractable.

CSP: ALGEBRAIC FORMULATION

For F a set of operations on D, define the relational clone of F,

 $\mathsf{rel}(F) := \{ \rho \subseteq D^{^{\mathsf{g}}} \, | \, f(\rho) \subseteq \rho \text{ for every } f \in F \}$

Let $\bar{R} := rel(pol(R))$ be the "closure" of R.

Then, $\mathrm{CSP}\langle D,R\rangle$ is poly-time reducible to $\mathrm{CSP}\langle D,\bar{R}\rangle.$ In fact,

THEOREM $CSP(D,R) \equiv_P CSP(D,\bar{R})$

Corollary $pol(R) = pol(S) \implies CSP(R) \equiv_{P} CSP(S)$

The algebra (D, pol(R)) determines the complexity of the corresponding CSP!

GENERAL PROBLEM

Find properties (of algebras) that characterize the complexity of CSPs.

CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

CSP(A) is tractable \implies A has a weak-nu term operation \checkmark

The left-to-right direction is known.

GENERAL PROBLEM

Find properties (of algebras) that characterize the complexity of CSPs.

CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

CSP(A) is tractable \iff A has a weak-nu term operation

GENERAL PROBLEM

Find properties (of algebras) that characterize the complexity of CSPs.

CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

CSP(A) is tractable ← A has a weak-nu term operation (?)

The right-to-left direction is open.

GENERAL PROBLEM

Find properties (of algebras) that characterize the complexity of CSPs.

CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

CSP(A) is tractable

A has a weak-nu term operation (?)

A weak near unanimity (weak-nu) term operation is one that satisfies

$$t(x, x, \dots, x) \approx x$$
 (idempotent)

$$t(y, x, \dots, x) \approx t(x, y, \dots, x) \approx \dots \approx t(x, x, \dots, y)$$

A binary operation t(x, y) is weak-nu if

 $t(x, x) \approx x$ (idempotent)

 $t(y, x) \approx t(x, y)$ (commutative)

So let's try to prove (?) for commutative idempotent binars.

GENERAL CASE

SOME WELL KNOWN FACTS

Let A be a finite idempotent algebra. Let S, be the 2-elt semilattice.

V(A) is CP ← A has Malcev term

→ A has cube term ⇒ V(A) is CM

⇒ S₂ is not in V(A)

COMMUTATIVE IDEMPOTENT RINARS

A CIB is an algebra $\mathbf{A} = \langle A, \cdot \rangle$ satisfying $x \cdot y \approx y \cdot x$ and $x \cdot x \approx x$.

OUESTION

Is every finite commutative idempotent binar tractable?

First Example: a semilattice is an associative CIB. Semilattices are tractable

Pause to consider more general case for a minute...

FIRST REDUCTION

Marković, M. Maróti, McKenzie (M4)

"Finitely related clones and algebras with cube terms" (2012)

A cube-term blocker (CTB) is a pair (C.B) of subuniverses satisfying $\emptyset < C < B \le A$ and for every $t(x_1, \dots, x_n)$ there is an index $i \in [n]$ with

$$(\forall (b_1,\ldots,b_n)\in B^n)(b_i\in C\longrightarrow t(b_1,\ldots,b_n)\in C)$$

$$t(b_1, \ldots, b_{i-1}, c, b_{i+1}, \ldots, b_n) \in C$$

M⁴ prove a finite idempotent algebra has a cube term iff it has no CTB.

LEMMA

A finite CIB A has a CTB if and only if S2 E HS(A).

PROOF

(C,B) a CTB implies $\theta = C^2 \cup (B-C)^2$ a congruence with $B/\theta \cong S_2$. Conversely, suppose $S_2 \in HS(A)$, and B is a subalgebra of A with B/θ a meet-SL for some θ . Let C/θ be the bottom of B/θ , then (C,B) is a CTB. \square

SECOND REDUCTION

Kearnes and Tschantz

"Automorphism groups of squares and of free algebras" (2007)

LEMMA

If V is an idempotent variety that is not congruence permutable, then there are subuniverses U and W of $\mathbf{F} := \mathbf{F}_{\mathbf{Y}}\{x,y\}$ satisfying

x ∈ U ∩ W
 v ∈ U^c ∩ W^c

3. $(U \times F) \cup (F \times W) \leq \mathbb{F}^2$

For CIB's, either U or W will be an ideal.

This implies a CTB and a semilattice.

A = a finite CIB $S_2 = the 2-elt$ semilattice

V(A) is $CP \iff A$ has a Malcev term $\implies A$ has a cube term $\implies V(A)$ is CM

 \implies S₂ is not in V(A)

→ A has a cube term

1st reduction by cube-term blockers.

A = a finite CIB $S_2 = the 2-elt$ semilattice.

V(A) is $CP \iff A$ has a Malcev term $\implies A$ has a cube term $\implies V(A)$ is CM $\implies S_2$ is not in V(A)

A = a finite CIB $S_2 = the 2-elt semilattice.$

V(A) is $CP \iff A$ has a Malcev term $\implies A$ has a cube term $\implies V(A)$ is CM $\implies S_2$ is not in V(A) $\implies A$ has a cube term $\implies V(A)$ is CP

- 1st reduction by cube-term blockers.
- 2nd reduction by Kearnes-Tschantz.

REMAINING QUESTIONS FOR FINITE CIBS

CONCLUSION

Let A he a finite CIR Then

 $S_2 \notin HS(A)$ if and only if V(A) is congruence permutable.

(so CSP(A) tractable in this case)

OPEN QUESTION

Let A be a finite CIB with S2 in HS(A). Is CSP(A) tractable?

Recall, if V(A) is SD_{\wedge} , then CSP(A) is tractable.

REVISED QUESTION

Let A be a finite CIB with S_2 in HS(A), and V(A) not SD_{\wedge} .

Is CSP(A) tractable?

EXAMPLE 1 Cliff's trick: replace binary operation with a term from clo(A), say . 0 1 2 3 $x * y = (x \cdot (x \cdot y)) \cdot (y \cdot (x \cdot y))$ 0 0 0 0 1 1 0 1 3 2 If $\langle A, * \rangle$ tractable, then so is $A = \langle A, \cdot \rangle$. 2 0 3 2 1 3 1 2 1 3 $\{*\} \subseteq \mathsf{clo}(A) \implies \mathsf{rel}(\mathsf{clo}(A)) \subseteq \mathsf{rel}(\{*\})$ \implies CSP(A) \leq_P CSP(A, *) * | 0 1 2 3 0 0 0 0 1 0 1 3 2 $\langle A, * \rangle$ tractable \implies A tractable 2 0 3 2 1 3 0 2 1 3

...and about 25 others.

mark Chine		Value V D Int of	MINTER O	
a rate and halo, halous the species day, squaling drawing the				
Office Olyaters Computations Com Ind. Departure				
ner (10.00) televity (new (0.00))				
personne (410 x 1 del 1 del 1 del 1 de 1 de 1 de 1				
	Constitution of the	man, Chilaiphiphical lan		
	O terrories tons	Coden Dat Day No.		
[Graphed Safest Street, Sold 4	[] LPCsc / AlgebraFiles		d man	
med the light	A SQUADO STAGRES SHOTE THE UNHORN ADDRESS CHARRY — EST.			
	Owner Steen	1 France	(1) Common	
,	DE Front Meet Migdan Plan I v			
	THE SECURIO			
about .	G Marketon action 1 to a gr			
	Marie Marie Construction			
	Margan maranan			
Secure Sea September (Controller	Married Married			

To see them, load UACalc with files from the Bergman directory at https://github.com/UACalc/AlgebraFiles
Thank you for listening!

