COMP9418: Advanced Topics in Statistical Machine Learning

Assignability Calculus

https://tutorcs.com

WeChat: cstutorcs

Instructor: Gustavo Batista

University of New South Wales

Introduction

- In this lecture, we introduce probability calculus
 - Framework for reasoning with uncertain beliefs
 - Each event is assigned an edgree of the left which quantifies the belief in that event
 https://tutorcs.com

WeChat: cstutorcs

- This topic covered in this lecture will be fundamental to build a framework for reasoning with uncertainty
 - Degree of belief updating
 - The notion of independence

Degrees of Belief

- lacktriangle A propositional knowledge base Δ classifies sentences into three categories
 - Sentences implied by Δ
 - Sentences whose negations ariginal Project Exam Help
 - All other sentences
- https://tutorcs.com

 We can obtain a much finer classification of sentences through a finer classification of sentences through a finer classification of sentences.
 - Assigning a degree of belief or probability in [0,1] to each world w(P(w))
 - The belief in, or probability of, a sentence α is defined as

$$P(\alpha) \stackrel{\text{def}}{=} \sum_{w \models \alpha} P(w)$$

• That is, the sum of probabilities assigned to worlds at which α is true

Degrees of Belief

This table shows a state of belief or joint probability distribution

We require the degrees of belief assigned to all words sum up to 1
 Assignment Project

This is a normalization convention

It allows to directly compare the degrees of belief. Compare the degrees of belief.

The joint probability distribution is usually too large for direct representation

	20 binary	variables –	1,048,576	entries
--	-----------	-------------	-----------	---------

- 40 binary variables 1,099,511,627,776 entries
- We will deal with this issue by using Graphical Models

world	Earthquake	Burglary	Alarm	$P(\cdot)$
w_1	true	true	true	.0190
w_2	true	true	false	.0010
Ewan	n Hetpe	false	true	.0560
w_4	true	false	false	.0240
om ₅	false	true	true	.1620
W_6	false	true	false	.0180
rcs w ₇	false	false	true	.0072
<i>w</i> ₈	false	false	false	.7128

$$P(Earthquake) = P(w_1) + P(w_2) + P(w_3) + P(w_4) = .1$$

 $P(Burglary) = .2$
 $P(\neg Burglary) = .8$
 $P(Alarm) = .2442$

Properties of Beliefs

- Some degrees of belief (or simply, beliefs) properties
 - Beliefs are bounded for any sentence α into the [0,1]
 interval Assignment Project Exam Help
 - An inconsistent sentence α have belief equal to zero
 - A valid sentence α has belief equal to one utores.com
 - We can compute the belief of a sentence given the belief in its negation
 - We can also compute the belief in a disjunction

$$0 \le P(\alpha) \le 1$$

$$P(\alpha) = 0$$
 when α is inconsistent

$$P(\alpha) = 1$$
 when α is valid

$$P(\alpha) + P(\neg \alpha) = 1$$

$$P(\alpha \vee \beta) = P(\alpha) + P(\beta) - P(\alpha \wedge \beta)$$

Quantifying Uncertainty

- This tables summarises the beliefs associated with the alarm example
 - The beliefs seem most certain that an Earthquake has occurred
 Assignment Project Ex

We are least certain if an alarm has triggered

We can quantify uncertainty using entropy

• Where $0 \log 0 = 0$ by conventioneChat: cstutorcs

- This plot shows the entropy for different probabilities
 - When p=0 or p=1, the entropy is zero, indicating no uncertainty
 - When $p = \frac{1}{2}$, the entropy is at a maximum value

	Earthquake	Burglary	Alarm
true	.1	.2	.2442
false xam He	.9	.8	.7558
xam.He	.469	.722	.802

- Suppose now that we know that the alarm has triggered
 - \blacksquare Alarm = true
- We need to accommodate the state of belief to this new piece of information we call evidence
 - Evidence is represented by an everthal say β
 - Our objective is to update the state of belief $P(\cdot)$ into a new state of belief we will denote $P(\cdot | \beta)$

world	Earthquake	Burglary	Alarm	$P(\cdot)$	$P(\cdot Alarm)$
w_1	true	true	true	.0190	
W_2	true	true	false	.0010	
t Proje	ect Exam I	Telfølse	true	.0560	
W_4	true	false	false	.0240	
tutorc	s.com _e	true	true	.1620	
W ₆	false	true	false	.0180	
	false utorcs false	false	true	.0072	
w_8	false	false	false	.7128	

- Given that β is known for sure
 - The new state of belief $P(\cdot | \beta)$ should assign a belief 1 to β

• $P(\beta|\beta) = 1$ Assignment

- This implies that $P(\neg \beta | \beta) = 0$ This implies that every world w that
 - satisfies $\neg \beta$ must be assigned twecha belief 0

$$P(w|\beta) = 0$$
 for all $w = \neg \beta$

world	Earthquake	Burglary	Alarm	$P(\cdot)$	$P(\cdot Alarm)$
w_1	true	true	true	.0190	
w_2	true	true	false	.0010	0
t Proje	ect Exam I	Telfølse	true	.0560	
w_4	true	false	false	.0240	0
tutorc	s.com _e	true	true	.1620	
W_6	false	true	false	.0180	0
w_7	false utorcs false	false	true	.0072	
w_8	false	false	false	.7128	0

We know that

$$\sum_{w \models \beta} P(w|\beta) = 1$$

- $\sum_{w \in \beta} P(w|\beta) = 1$ But these leaves many options for the $P(w|\beta)$ for w sthat satisfies β
- It is reasonable to perturb the beliefs as hittle as possible, so
 - $P(w|\beta) = 0$ for all w where P(w) = 0
- With these three constraints, the only options for the new beliefs is
 - $P(w|\beta) = \frac{P(w)}{P(\beta)}$ for all $w \models \beta$

The new beliefs are just the normalization of old beliefs

• The normalization constant is $P(\beta)$

$$P(w|\beta) \stackrel{\text{def}}{=} \begin{cases} 0 & \text{Assign} \\ \frac{P(w)}{P(\beta)} & \text{if } w \text{ https://t} \end{cases}$$

The new state of belief is referrecha as *conditioning* the old state *P* on evidence β

world	Earthquake	Burglary	Alarm	$P(\cdot)$	$P(\cdot Alarm)$
w_1	true	true	true	.0190	.0190/.2442
W_2	true	true	false	.0010	0
t Proje	ect Exeam H	Telfølse	true	.0560	.0560/.2442
w_4	true	false	false	.0240	0
tutorc	s.com _e	true	true	.1620	.1620/.2442
W_6	false	true	false	.0180	0
w_7	false utorcs false	false	true	.0072	.0072/.2442
<i>w</i> ₈	false	false	false	.7128	0

Updating Beliefs: Example

 Let us suppose Alarm = true and compute some conditional probabilities

• P(Burglary) =

• P(Burglary|Alarm) =

Also,

• P(Earthquake) =

• P(Earthquake|Alarm) =

=	world	Earthquake	Burglary	Alarm	$P(\cdot)$	$P(\cdot Alarm)$
ie	w_1	true	true	true	.0190	.0778
!S	w_2	true	true	false	.0010	0
Assignmen	t Proje	ect Exam I	Telfølse	true	.0560	.2293
: <u> </u>	w_4	true	false	false	.0240	0
https://	tutorc	s.com _e	true	true	.1620	.6634
WoCh	W_6	false	true	false	.0180	0
WeCha	w_7	false	false	true	.0072	.0295
, —	<i>w</i> ₈	false	false	false	.7128	0

Updating Beliefs: Example

Let us suppose Alarm =true and compute some conditional probabilities

• P(Burglary) = .2

Assignment

• P(Burglary|Alarm) = .741

Also,

• P(Earthquake) = .1

• P(Earthquake|Alarm) = .307

	world	Earthquake	Burglary	Alarm	$P(\cdot)$	$P(\cdot Alarm)$
	w_1	true	true	true	.0190	.0778
	w_2	true	true	false	.0010	0
signmen	t Proje	ect Exeam F	Telfølse	true	.0560	.2293
	W_4	true	false	false	.0240	0
https://	tutorc	s.com _e	true	true	.1620	.6634
WaCh	w ₆	false utorcs false	true	false	.0180	0
07	w_7	false	false	true	.0072	.0295
07	W_8	false	false	false	.7128	0

Updating Beliefs: Closed Form

There is a simple closed form to compute the updated belief

$$P(\alpha|\beta) = \sum_{w \models \alpha} P(w|\beta)$$

$$= \sum_{w \models \alpha, w \models \beta} P(w|\beta) + \sum_{w \models \alpha, w \models \neg \beta} P(w|\beta) + \sum_{w \models \alpha, w \models \neg \beta} P(w|\beta)$$

$$= \sum_{w \models \alpha, w \models \beta} P(w|\beta)$$

$$= \sum_{w \models \alpha \land \beta} P(w|\beta)$$
This equation is known as Bayes' conditioning. It is only defined when $P(\beta) \neq 0$

Bayes Conditioning

- Bayes conditioning follows the following commitments:
 - Worlds that contradict the evidence β will have zeroAssignment Project Ex probability
 - Worlds that have zero probability
 continue to have zero probability
 - Worlds that are consistent with WeChat: cstutorcs evidence β and have positive probability will maintain their relative beliefs

	Earthquake	Burglary	Alarm	$P(\cdot)$
	true	true	true	.0190
	true	true	false	.0010
x 21	m Help	false	true	.0560
X	true	false	false	.0240
1	false	true	true	.1620
	false	true	false	.0180
3	false	false	true	.0072
	false	false	false	.7128

	Earthquake	Burglary	Alarm
true	.1	.2	.2442
false	.9	.8	.7558

- Let us analyse how some beliefs would change given evidence Earthquake
 - P(Burglary) =
 - P(Burglary|Earthquakessignment Project Example 1)
- Also,
 - P(Alarm) =
 - P(Alarm|Earthquake) = WeChat: cstutorcs
- Now, considering evidence Burglary
 - \blacksquare P(Alarm) =
 - P(Alarm|Burglary) =
- Also,
 - P(Earthquake) =
 - P(Earthquake|Burglary) =

liefs would	Earthquake	Burglary	Alarm	$P(\cdot)$
hquake	true	true	true	.0190
пушке	true	true	false	.0010
ignment Project Ex	am Heln	false	true	.0560
igimient i roject En	true	false	false	.0240
https://tutorcs.com	false	true	true	.1620
****	false	true	false	.0180
WeChat: cstutorcs	false	false	true	.0072
Burglary	false	false	false	.7128

	Earthquake	Burglary	Alarm
true	.1	.2	.2442
false	.9	.8	.7558

- Let us analyse how some beliefs would change given evidence Earthquake
 - P(Burglary) = .2
- Also,

https://tutorcs.com

- P(Alarm) = .2442
- $P(Alarm|Earthquake) \approx .75$ WeChat: cstutorcs
- Now, considering evidence Burglary
 - P(Alarm) = .2442
 - $P(Alarm|Burglary) \approx .905$
- Also,
 - P(Earthquake) = .1
 - P(Earthquake|Burglary) = .1

Ear	thquake	Burglary	Alarm	$P(\cdot)$
	true	true	true	.0190
	true	true	false	.0010
am	Help	false	true	.0560
Lair	true	false	false	.0240
1	false	true	true	.1620
	false	true	false	.0180
	false	false	true	.0072
	false	false	false	.7128

	Earthquake	Burglary	Alarm
true	.1	.2	.2442
false	.9	.8	.7558

- These beliefs dynamics are a property of the state of belief in this table
 - It may not hold for other states of belief
 - For instance, we can conceive is the life of the lif
- A central question is synthetizing states of beliefs that are faithful
 - For instance, those that correspond to the beliefs held by some human expert
 - We will see this is a central issue of modelling a real problem

arthquake	Burglary	Alarm	$P(\cdot)$
true	true	true	.0190
true	true	false	.0010
true 1n	false	true	.0560
true	false	false	.0240
false	true	true	.1620
false	true	false	.0180
false	false	true	.0072
false	false	false	.7128
	true Help true false false false	true true true true false	true true true true true false true false true false false false true

	Earthquake	Burglary	Alarm
true	.1	.2	.2442
false	.9	.8	.7558

- Let us look at one more example as we add more evidence
 - P(Burglary|Alarm) =
 - P(Burglary|Alarm ∧ Earth gamment Project Exa
- Also,
 - https://tutorcs.com $P(Burglary|Alarm \land \neg Earthquake) =$

WeChat: cstutorcs

Earthquake	Burglary	Alarm	$P(\cdot)$
true	true	true	.0190
true	true	false	.0010
n Heln	false	true	.0560
true	false	false	.0240
false	true	true	.1620
false	true	false	.0180
false	false	true	.0072
false	false	false	.7128
	true true n true p true false false false	true true true true false	true true true true true false false true false false false true

	Earthquake	Burglary	Alarm
true	.1	.2	.2442
false	.9	.8	.7558

- Let us look at one more example as we add more evidence
 - $P(Burglary|Alarm) \approx .741$
 - P(Burglary|Alarm ∧ Earsignment2Project Exa
- Also,
 - https://tutorcs.com $P(Burglary|Alarm \land \neg Earthquake) \approx .957$

WeChat: cstutorcs

Earthquake	Burglary	Alarm	$P(\cdot)$
true	true	true	.0190
true	true	false	.0010
am ^{true} ln	false	true	.0560
true	false	false	.0240
false	true	true	.1620
false	true	false	.0180
false	false	true	.0072
false	false	false	.7128
	true true am Help true false false false	true true true true am true false false false true false false false false false false false	true true true true true false am true false true false false false true true false true false true false true false true false true false true

	Earthquake	Burglary	Alarm
true	.1	.2	.2442
false	.9	.8	.7558

Conditional Entropy

■ The *conditional entropy* of a variable *X* given another variable *Y*

$$H(X|Y) \stackrel{\text{def}}{=} \sum_{y} P(y)H(X|y)$$

It quantifies the average uncertainty about X after observing Y
 Assignment Projec

Assignment Project Exam Help $H(X|y) \stackrel{\text{def}}{=} -\sum_{x} P(x|y) \log_2 P(x|y)$ entropy never increases

We can show that the entropy never increases after conditioning

$$H(X|Y) \le H(X)$$
 WeChat: cstutoro

• Although for a specific value y we may have H(X|y) > H(X)

CS	B	B a	$B \neg a$
true	.2	.741	.025
false	.8	.259	.975
$H(\cdot)$.722	.825	.169

Conditional Entropy

■ The *conditional entropy* of a variable *X* given another variable *Y*

$$H(X|Y) \stackrel{\text{def}}{=} \sum_{y} P(y)H(X|y)$$

- It quantifies the average uncertainty about *X* after observing *Y* Assignment Projec
- We can show that the entropy never increases after conditioning

Assignment Project Exam Help
$$H(X|y) \stackrel{\text{def}}{=} -\sum_{x} P(x|y) \log_2 P(x|y)$$
 entropy never increases

 $H(X|Y) \le H(X)$ WeChat: cstutore Although for a specific value y we may have

H(X|y) > H(X)

H(B A) = H(B a)P(a)	+	$H(B \neg a)P(\neg a)$
= .329		

CS	B	B a	$B \neg a$
true	.2	.741	.025
false	.8	.259	.975
$H(\cdot)$.722	.825	.169

Independence

- We observed that evidence Burglary does not change belief in Earthquake
- P(Earthquake) = .1P(Earthquake|Burglary) = .1

P(Burglary|Earthquake) = .2

- More generally, we say that event α is independent of event β iff Assignment Project Exam Help
 - $P(\alpha|\beta) = P(\alpha)$ or

https://tutorcs.com

- $P(\beta) = 0$
- We also found Burglary inderedeatt of statoropuake
- P(Burglary) = .2

- It is indeed a general property
 - If α is independent of β then β is independent of α
- P finds α and β are independent iff
 - $P(\alpha \wedge \beta) = P(\alpha)P(\beta)$
 - This equation is often taken as the definition of independence

Independence

- We observed that evidence Burglary does not change belief in Earthquake
- P(Earthquake) = .1P(Earthquake|Burglary) = .1

P(Burglary|Earthquake) = .2

- More generally, we say that event α is independent of event β iff Assignment Project Exam Help
 - $P(\alpha|\beta) = P(\alpha)$ or

https://tutorcs.com

- $P(\beta) = 0$
- We also found Burglary independent of statorapuake
- P(Burglary) = .2

- It is indeed a general property
 - If α is independent of β then β is independent of α
- P finds α and β are independent iff
 - $P(\alpha \wedge \beta) = P(\alpha)P(\beta)$
 - This equation is often taken as the definition of independence

Independence and Mutual Exclusiveness

- Independence and mutual exclusiveness are not the same notion
- Two events α and β are mutually exclusive (logically disjoint) iff they do not share any models

 - They cannot hold together at the same world https://tutorcs.com
- Events α and β are independent iff $P(\alpha \land \beta) = P(\alpha)P(\beta)$ WeChat: cstutorcs

Conditional Independence

Independence is a dynamic notion

- Two independent events may become dependent after some evidence
- For example, we saw that Assignment dependent became Earthquake. However, these events are dependent after accepting evidence Alarm
 https://tutorcs.com
- This is expected since *Earthquake* and *Burglary* are competing explanations to *Ala**MeChat: cstutorcs
- Consider this table for another example
 - We have two sensors that can detect the current state of temperature
 - The sensors are noisy and have different reliabilities

 $P(Burglary|Alarm) \approx .741$ $P(Burglary|Alarm \land Earthquake) \approx .253$

world	Temp	Sensor1	Sensor2	$ extbf{ extit{P}}(\cdot)$
w_1	normal	normal	normal	.576
w_2	normal	normal	extreme	.144
W_3	normal	extreme	normal	.064
W_4	normal	extreme	extreme	.016
w_5	extreme	normal	normal	.008
w_6	extreme	normal	extreme	.032
w_7	extreme	extreme	normal	.032
w_8	extreme	extreme	extreme	.128

Conditional Independence

- We have the following initial beliefs
 - P(Temp = normal) = .80
 - P(Sensor1 = normal) = .76
 - P(Sensor2 = normal) Assignment Project Exam
- If the first sensor reads normal https://tutorcs.com
 - Our belief that the second sensor also reads normal increases
 WeChat: cstutorcs
 - $P(Sensor2 = normal | Sensor1 = normal) \approx .768$
 - Therefore the sensors readings are dependent
- However, they will become independent if we observe the temperature is normal
 - P(Sensor2 = normal|Temp = normal) = .80
 - P(Sensor2 = normal|Temp = normal, Sensor1 = normal) = .80

world	Temp	Sensor1	Sensor2	$P(\cdot)$
w_1	normal	normal	normal	.576
w_2	normal	normal	extreme	.144
Help	normal	extreme	normal	.064
w_4	normal	extreme	extreme	.016
w_5	extreme	normal	normal	.008
w_6	extreme	normal	extreme	.032
w_7	extreme	extreme	normal	.032
<i>w</i> ₈	extreme	extreme	extreme	.128

Conditional Independence

- In general,
 - Independent event may become dependent given new evidence
 - Dependent events may beconigindependent events may beconigindependent events may beconigindependent events may be evidence
- Event α is conditionally independent by the vent γ iff we Chat: cstutores
- Conditional independence is also symmetric
 - α is conditionally independent of β given γ iff β is conditionally independent of α given γ
- This equation is often taken as definition of conditional independence

$$P(\alpha|\beta \wedge \gamma) = P(\alpha|\gamma)$$
 or $P(\gamma) = 0$

$$P(\alpha \land \beta | \gamma) = P(\alpha | \gamma) P(\beta | \gamma)$$
 or $P(\gamma) = 0$

Variable Independence

- It is useful to talk about independence of sets of variables
 - Let X, Y and Z be three disjoint sets of variables
- X is independent of Y given zero denoted by Exam Help
 - It means that x is independent of y given z for all instantiations of x, y and z
- - Where A, B, C, D and E are propositional variables
 - The statement $X \perp Y | Z$ is a compact notation for several statements about independence

 $A \wedge B$ is independent of C given $D \wedge E$ $A \wedge \neg B$ is independent of C given $D \wedge E$ $\neg A \wedge \neg B$ is independent of C given $D \wedge E$

 $I_P(X, Z, Y)$

 $\neg A \land \neg B$ is independent of $\neg C$ given $\neg D \land \neg E$

Mutual Information

- Independence is a special case of a more general notion known as mutual information
 - Mutual information quantifies the impact of observing one variable on Assignments Projecter Exam $\mathop{\rm Help}^{ML(X;Y)} \stackrel{\text{def}}{=} \sum_{x,y} P(x,y) \log_2 \frac{P(x,y)}{P(x)P(y)}$

https://tutorcs.com

WeChat: cstutorcs

Mutual information is

Non-negative

• Equal to zero only if X and Y are independent

 It measures the extent to which observing one variable will reduce the uncertainty in another

$$MI(X;Y) = H(X) - H(X|Y)$$

$$MI(X;Y) = H(Y) - H(Y|X)$$

Conditional Mutual Information

Conditional mutual information can be defined as

$$MI(X;Y|Z) \stackrel{\text{def}}{=} \sum_{x,y,z} P(x,y,z) \log_2 \frac{P(x,y|z)}{P(x|z)P(y|z)}$$

It has the following properties

Assignment Project Exam Help

$$MI(X;Y|Z) = H(X|Z) - H(X|Y,Z)$$

https://tutorcs.com MI(X;Y|Z) = H(Y|Z) - H(Y|X,Z)

WeChat: cstutorcs

- Entropy and mutual information can be extended to sets of variables
 - For instance, entropy can be generalized to a set of variables X as follows

$$H(X) = -\sum_{x} P(x) \log_2 P(x)$$

Conditional Probability for Multiple Variables

We can extend the definition for conditional probabilities for multiple variables

$$P(A|B) = \frac{P(A,B)}{P(B)} \qquad P(A,B) = P(A|B)P(B)$$

Bayes' conditioning Product rule

• For three variables A, B and C, we have $P(A, B|C) = \frac{P(A, B, C)}{P(C)}$ https://tutorcs.com

$$P(A,B|C) = \frac{P(A,B,C)}{P(C)}$$

WeChat: cstutorcs
$$P(A|B,C) = \frac{P(A,B,C)}{P(B,C)}$$

Case Analysis

Also known as law of total probability

$$P(\alpha) = \sum_{i=1}^{n} P(\alpha \wedge \beta_i)$$

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

The events β_1, \dots, β_n are mutually exclusive and exhaustive

Chain Rule

It is the repeated application of Bayes conditioning

$$P(\alpha_1 \land \alpha_2 \land \dots \land \alpha_n) = P(\alpha_1 | \alpha_2 \land \dots \land \alpha_n) P(\alpha_2 | \alpha_3 \land \dots \land \alpha_n) \dots P(\alpha_n)$$
Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Bayes Rule

Bayes rule or Bayes theorem

- $P(\alpha|\beta) = \frac{P(\beta|\alpha)P(\alpha)}{P(\beta)}$
- The classical usage of this rule is when event α is perceived to be a cause of event β
- For example, α is a disease solution in the same of the same
- Our goal is to assess our belief in the cause given the effect https://tutorcs.com

Example

WeChat: cstutorcs

Suppose that we have a patient who was just tested for a particular disease and the test came out positive. We know that one in every thousand people has this disease. We also know that the test is not reliable: it has a false positive rate of 2% and a false negative rate of 5%. Our goal is then to assess our belief in the patient having the disease given that the test came out positive.

Conclusion

- In this lecture, we discussed some fundamental aspects of probabilistic calculus
 - Belief update Assignment Project Exam Help
 - Independence and Conditional Independence
 - Bayes conditioning, case analysis, WeChat: cstutorcs
 - Chain rule, Bayes rule

- Tasks
 - Read Chapter 3, but Sections 3.6 and 3.7 from the textbook (Darwiche)