Bases de Datos

Clase 15: Privacidad

El uso de datos personales tiene riesgos

Los datos pueden contener información sensible o confidencial

de individuos

Y su uso puede filtrar (parte de) esta información sensible

Agenda

- Informalmente: Evitar que los datos de un individuo se hagan públicos o conocidos por terceros se llama *privacidad*
- Dada la gran cantidad de datos que existe hoy se hace necesario asegurar la privacidad de las bases de datos y sus usos
- Para intentar preservar privacidad hay distintas técnicas. Esta clase veremos algunas:
 - De-identificación / Anonimización
 - *k*-anonimato
 - *C*-diversidad
 - Privacidad diferencial

Privacidad

Un análisis de datos preserva privacidad si:

- 1. Aprendes algo útil del análisis
- 2. El análisis no viola la privacidad de algún individuo La **privacidad** de un individuo A es **violada** si:
 - El analista aprende B si no cuenta con los datos del individuo A
 - 2. El analista ahora aprende B+C si agrega los datos de A al conjunto de datos

 Un análisis preserva privacidad de un

Un análisis preserva privacidad de un individuo si no importa si sus datos son considerados en el análisis.

Privacidad vs Seguridad

- Privacidad es distinto de seguridad
- Seguridad de los datos tiene que ver con quien puede manipular los datos
- Confidencialidad: quien puede ver los datos
- Integridad: quien puede modificar los datos
- Privacidad tiene que ver con qué podemos
- aprender de los datos (el contenido)

El caso de Netflix

Competencia Netflix 2007

Competencia abierta para mejorar el sistema de recomendación:

PREMIO: 1.000.000 USD

Participantes: acceso a un dataset de entrenamiento **anonimizado**

"To protect customer privacy, all personal information identifying individual customers has been removed and all customer ids [sic] have been replaced by randomly assigned ids [sic]."

Netflix anonymised dataset		
X		
X		
X		
X		

IMDB public (nonanonymised) records

Alice

Bob

Caty

Tim

Netflix deanonymised dataset

Alice
Bob

Tim

Ataque de asociación de registros

El caso del gobernador de Massachusetts

En 1997, William Weld, gobernador de MA aprobó la liberación de los registros médicos de funcionarios públicos, post anonimización:

Dos días después, Latanya Sweeney, una estudiante de doctorado del MIT, le envió un correo con sus registros médicos

ALGUNAS DE TÉCNICAS DE PRIVACIDAD

Datos sintéticos y respuesta de consultas

Los datos sintéticos son datos generados artificialmente, como forma opuesta a recolectarlos del mundo real.

Las **respuestas a consultas** se refiere a datos agregados de alguna forma

Algunas técnicas de privacidad

Técnica	Funcionalidad
Anonimización	Datos sintéticos
k-Anonimato	Datos sintéticos
l-diversidad	Datos sintéticos
Privacidad diferencial	Respuestas a consultas

Datos sintéticos vs respuesta de consultas

Los datos sintéticos lucen como los datos originales:

Nombre	Fecha Nac.	Sexo	Coding Postal
Rashad Arnold	26/02/2018	M	73909
Alyssa Cherry	08/05/2018	М	14890
Myra Ford	11/05/2018	F	58821
Meredith Perry	31/03/2019	F	465113
Aimee Thornton	26/04/2018	F	90825

Nombre	Fecha Nac.	Sexo	Coding Postal
*****	26/02/2018	М	73909
*****	08/05/2018	М	14890
*****	11/05/2018	F	58821
*****	31/03/2019	F	465113
*****	26/04/2018	F	90825

Datos sintéticos vs respuesta de consultas

Las respuestas a consultas requieren una consulta en particular:

Nombre	Fecha Nac.	Sexo	Coding Postal
Rashad Arnold	26/02/2018	М	73909
Alyssa Cherry	08/05/2018	М	14890
Myra Ford	11/05/2018	F	58821
Meredith Perry	31/03/2019	F	465113
Aimee Thornton	26/04/2018	F	90825

¿Cuántas personas nacieron en el 2018?

¿Cuántas personas hay de cada sexo?

Datos sintéticos vs respuesta de consultas

Datos sintéticos

- 1. Permite re-utilizar análisis de datos existentes
- 2. Funciona para todas las consultas
- 3. Facilita las cosas a los analistas
- 4. Imposible de obtener perfecta utilidad y fuerte privacidad

Respuestas de consultas

- 1. Requiere a veces análisis de datos modificados
- 2. Depende de cada consulta
- 3. Dificulta las cosas para los analistas
- 4. La especialización a *una consulta* permite obtener mejor utilidad y privacidad.

Utilidad

"Qué tan útil es la respuesta"

(depende de en que será usada la respuesta)

¿Cuántas personas se llaman Ford?

ANONIMIZACIÓN / DE-IDENTIFICACIÓN

Definiciones y convenciones básicas

Los atributos de una tabla se clasifican en 4 categorías disjuntas

Identificador explícito (IdE)	conjunto de atributos que individualmente identifican de manera explícita al "dueño" de un registro. Por ejemplo, nombre y RUT.
Cuasi identificador (CId)	Datos conjunto de atributos que colectivamente tienen el potencial de identificar al dueño de un registro. Por ejemplo, día de nacimiento y dirección.
Atributos sensibles (AS)	conjunto de atributos cuyo valor se desea proteger. Por ejemplo, religión, etnia, enfermedad.
Atributos no-sensibles (AnS)	conjunto de atributos que no tienen un carácter privado (y por lo tanto no se busca proteger). Por ejemplo, equipo de futbol o película favorita.

Definiciones y convenciones básicas

Los atributos de una tabla se clasifican en 4 categorías disjuntas

De-identificación

De-identificación es el proceso que remueve la asociación entre una persona y un conjunto de datos.

Objetivos:

- Reducir el riesgo de violación de privacidad
- Maximizar la utilidad de los datos

Técnicas:

- Supresión (remover datos)
- Variación ("revolver" los datos)
- Enmascaramiento

De-identificación: Ejemplo

Nombre	Fecha Nac.	Sexo	Coding Postal
Rashad Arnold	26/02/2018	M	73909
Alyssa Cherry	08/05/2018	М	14890
Myra Ford	11/05/2018	F	58821
Meredith Perry	31/03/2019	F	465113
Aimee Thornton	26/04/2018	F	90825

Nombre	Fecha Nac.	Sexo	Coding Postal
*****	26/02/2018	M	73909
*****	08/05/2018	М	14890
*****	11/05/2018	F	58821
*****	31/03/2019	F	465113
*****	26/04/2018	F	90825

En estos datos, los nombres han sido enmascarados

Re-identificación: Ataque de asociación de registros

La re-identificación es el proceso que re-asocia una persona con un conjunto de datos.

Nombre	Fecha Nac.	Sexo	Coding	Enfermedad
****	26/02/2018	М	73909	Resfrío
****	08/05/2018	М	14890	Hepatitis
****	11/05/2018	F	58821	Hepatitis
****	31/03/2019	F	465113	VIH
****	26/04/2018	F	90825	Bronquitis

+

Depende de datos auxiliares

También llamado ataque de asociación de registros

Nombre Fecha Nac.
Rashad Arnold 08/05/2018

Pudimos re-identificar a Rashad!

Nombre	Fecha Nac.	Sexo	Coding Postal	Enfermedad
Rashad Arnold	08/05/2018	М	14890	Hepatitis

Re-identificación: Ataque de diferenciación

El problema puede ser peor cuando uno puede diseñar sus propias consultas.

Una consulta de la "suma" en un grupo grande puede parecer adecuada:

SELECT sum (age) FROM person;

1256257

Podemos hacer otra consulta en un grupo grande

```
SELECT sum(age) FROM person
WHERE nombre<>'Alan Brito';
```

1256218

Descubrimos que Alan tiene 39 años!

1256257 - 1256218 = 39

Resumen

- Un ataque de asociación implica combinar datos auxiliares con datos no identificados para volver a identificar a las personas.
- En el caso más simple, un ataque de enlace se puede realizar a través de una combinación de dos tablas que contienen estos conjuntos de datos.
- Los ataques de enlace simples son sorprendentemente efectivos:
 - Una solo Cld es suficiente para reducir las cosas a unos pocos registros.
 - Dos Cld a menudo son lo suficientemente buenos como para volver a identificar a una gran fracción de la población en un conjunto de datos en particular
 - Tres CId (sexo, código postal y fecha de nacimiento) identifican de forma exclusiva al 87% de las personas en los EE.UU.

k-Anonimato

¿Qué es k-Anonimato?

Garantía formal

Sea $T(A_1, \ldots, A_n)$ una tabla y \mathcal{Q} los Clds asociados a ella.

Se dice que T satisface k-anonimato si y solo si cada grupo de Clds $Q_i \in \mathcal{Q}$ aparece al menos k

veces en T

Asegura que ningún individuo es únicamente identificable de un grupo de tamaño k

Aún requiere identificar a todos los cuasi-identificadores

$$\geq k$$

k-Anonimato: Ejemplo

name	ssn	age	eduction_num		target
Haine	3311	age	eduction_num	•••	taiget
Karrie Trusslove	732-14-61	39	13		<=50K
Brandise Tripony	150-19-27	50	13		<=50K
Brenn McNeely	725-59-98	38	9		<=50K
Dorry Poter	659-57-49	53	7		<=50K
Dick Honnan	220-93-38	28	13		<=50K
Ardyce Golby	212-61-83	27	12		<=50K
Jean O'Connor	737-32-29	40	9		>50K
Reuben Skrzynski	314-48-02	58	9		<=50K
Caye Biddle	647-75-35	22	9		<=50K
Hortense Hardesty	690-42-56	52	9		>50K

а	e	С			
81	15	1			
73	14	1			
30	1	1			
68	2	1			
71	1	1			
33	9	313			
35	9	320			
19	10	329			
21	10	372			
20	10	413			

1-anonima!

SELECT age, eduction_num, count(*)as c FROM person
GROUP BY age, eduction num ORDER BY c ASC;

k-Anonimato: Generalización

name	ssn	age	eduction_num	 target
Karrie Trusslove	732-14-61	39	13	 <=50K
Brandise Tripony	150-19-27	50	13	 <=50K
Brenn McNeely	725-59-98	38	9	 <=50K
Dorry Poter	659-57-49	53	7	 <=50K
Dick Honnan	220-93-38	28	13	 <=50K
Ardyce Golby	212-61-83	27	12	 <=50K
Jean O'Connor	737-32-29	40	9	 >50K
Reuben Skrzynski	314-48-02	58	9	 <=50K
Caye Biddle	647-75-35	22	9	 <=50K
Hortense Hardesty	690-42-56	52	9	 >50K

Mejoró pero...

Sigue siendo 1-anonima!

90


```
SELECT (age/10)*10 as a, (eduction_num/10)*10 as e,
count(*)as c
FROM person
GROUP BY (age/10)*10, (eduction_num/10)*10
ORDER BY c ASC;
```

k-Anonimato: Valores atípicos

en	С
0	1
0	2
0	7
10	9
10	12
10	13
0	122
10	148
10	157
10	160
	0 0 10 10 10 0 10

Idea: eliminar outliers

El problema son los valores atípicos (outliers)

k-Anonimato: Eliminando outliers

name	ssn	age	eduction_num	 target
Karrie Trusslove	732-14-61	39	13	 <=50K
Brandise Tripony	150-19-27	50	13	 <=50K
Brenn McNeely	725-59-98	38	9	 <=50K
Dorry Poter	659-57-49	53	7	 <=50K
Dick Honnan	220-93-38	28	13	 <=50K
Ardyce Golby	212-61-83	27	12	 <=50K
Jean O'Connor	737-32-29	40	9	 >50K
Reuben Skrzynski	314-48-02	58	9	 <=50K
Caye Biddle	647-75-35	22	9	 <=50K
Hortense Hardesty	690-42-56	52	9	 >50K

Logramos 12-anonimato!

Truncamos valores mayores que 60 a 60

```
SELECT LEAST((age/10)*10,60) as a, (eduction_num/10)*10 as e,
count(*)as c
FROM person
GROUP BY LEAST((age/10)*10,60), (eduction_num/10)*10
ORDER BY c ASC;
```

k-Anonimato: Agregando mas datos

name	ssn	age	eduction_num	 target
Karrie Trusslove	732-14-61	39	13	 <=50K
Brandise Tripony	150-19-27	50	13	 <=50K
Brenn McNeely	725-59-98	38	9	 <=50K
Dorry Poter	659-57-49	53	7	 <=50K
Dick Honnan	220-93-38	28	13	 <=50K
Ardyce Golby	212-61-83	27	12	 <=50K
Jean O'Connor	737-32-29	40	9	 >50K
Reuben Skrzynski	314-48-02	58	9	 <=50K
Caye Biddle	647-75-35	22	9	 <=50K
Hortense Hardesty	690-42-56	52	9	 >50K

ORDER BY c ASC;

а	e	С
10	10	455
60	10	1172
10	0	1202
60	0	1472
50	0	2172
50	10	2246
40	0	2795
20	0	3380
30	0	3733
40	10	4380
20	10	4674
30	10	4880

Logramos 455anonimato!

```
SELECT LEAST((age/10)*10,60) as a, (eduction_num/10)*10 as e,
count(*)as c
FROM person
GROUP BY LEAST((age/10)*10,60), (eduction num/10)*10
```

k-Anonimato: Otro ejemplo

zip	age	nationality	disease
13053	28	Russian	Heart
13068	29	American	Heart
13068	21	Japanese	Flu
13053	23	American	Flu
14853	50	Indian	Cáncer
14853	55	Russian	Heart
14850	47	American	Flu
14850	59	American	Flu
13053	31	American	Cáncer
13053	37	Indian	Cáncer
13068	36	Japanese	Cáncer
13068	32	American	Cáncer

1-anónimo

zip	age	nationality	disease
130**	<30	*	Heart
130**	<30	*	Heart
130**	<30	*	Flu
130**	<30	*	Flu
1485*	>40	*	Cáncer
1485*	>40	*	Heart
1485*	>40	*	Flu
1485*	>40	*	Flu
130**	30-40	*	Cáncer
130**	30-40	*	Cáncer
130**	30-40	*	Cáncer
130**	30-40	*	Cáncer

4-anónimo

Hay algún problema?

Ataque de k-Anonimato #1: Homogeneidad

	name	zip	age	nationality
Bob		13053	35	??

zip	age	nationality	disease
130**	<30	*	Heart
130**	<30	*	Heart
130**	<30	*	Flu
130**	<30	*	Flu
1485*	>40	*	Cáncer
1485*	>40	*	Heart
1485*	>40	*	Flu
1485*	>40	*	Flu
130**	30-40	*	Cáncer
130**	30-40	*	Cáncer
130**	30-40	*	Cáncer
130**	30-40	*	Cáncer

Aprendemos que Bob tiene cáncer

Ataque de k-Anonimato #2: Data auxiliar

name	zip	age	nationality
Umeko	13068	24	Japan

Los japoneses tiene una muy baja incidencia de enfermedades al corazón

zip	age	nationality	disease
130**	<30	*	Heart
130**	<30	*	Heart
130**	<30	*	Flu
130**	<30	*	Flu
1485*	>40	*	Cáncer
1485*	>40	*	Heart
1485*	>40	*	Flu
1485*	>40	*	Flu
130**	30-40	*	Cáncer
130**	30-40	*	Cáncer
130**	30-40	*	Cáncer
130**	30-40	*	Cáncer

Aprendemos que Umeko está resfriada

C-DIVERSIDAD

¿Qué es l'-Diversidad?

Adicionalmente a lo que requiere k-anonimato: Una tabla T es ℓ -diversa si para cada grupo de filas con los mismos Clds, por cada atributo sensible S, existen al menos ℓ valores distintos.

Previene ataque #1 (homogeneidad)

Incrementa la resistencia frente al ataque #2 (data auxiliar)

SELECT CIds, count (DISTINCT S) FROM T GROUP BY CIds

Ataque de *C*-Diversidad: Data auxiliar

name	zip	age	nationality
Umeko	13068	24	Japan

Umeko no tiene cáncer

Umeko no tiene una enfermedad al corazón

zip	age	nationality	disease
130**	<30	*	Heart
130**	<30	*	Diabetes
130**	<30	*	Cáncer
130**	<30	*	Flu
1485*	>40	*	Cáncer
1485*	>40	*	Heart
1485*	>40	*	Flu
1485*	>40	*	Flu
130**	30-40	*	Cáncer
130**	30-40	*	Cáncer
130**	30-40	*	Cáncer
130**	30-40	*	Cáncer

Umeko puede tener diabetes o estar resfriada

Ataque de *C*-Diversidad: Data auxiliar

name	zip	age	nationality
Umeko	13068	24	Japan

Umeko no tiene cáncer

Umeko no tiene una enfermedad al corazón

Umeko no tiene diabetes

zip	age	nationality	disease
130**	<30	*	Heart
130**	<30	*	Diabetes
130**	<30	*	Cáncer
130**	<30	*	Flu
1485*	>40	*	Cáncer
1485*	>40	*	Heart
1485*	>40	*	Flu
1485*	>40	*	Flu
130**	30-40	*	Cáncer
130**	30-40	*	Cáncer
130**	30-40	*	Cáncer
130**	30-40	*	Cáncer

Aprendemos que Umeko está resfriada

Resumen

- Enfoques formales y sistemáticos de de-identificación
- Una mejora sustentable con respecto a enfoques ad-hoc
- Aún así susceptible a ataques
 - La protección de privacidad depende de la información auxiliar del adversario/atacante.
- Automatización tiene un alto costo computacional:
 - Dada una tabla T, encontrar una tabla T' que satisfaga k-anonimidad y maximize la utilidad
 - NP-Complejo (Meyerson & Williams, 2004)

PRIVACIDAD DIFERENCIAL

¿Qué es privacidad diferencial?

Decimos que f is diferencialmente privada si....

¿Qué es privacidad diferencial?

¿Qué es privacidad diferencial?

Pero cuánto ruido?

Depende en la sensibilidad de la consulta

Privacidad diferencia: Ejemplo

¿Cuántas personas en el conjunto de datos tienen 40 años o más?

SELECT count(*) FROM person WHERE age>=40

14237

¿Cuál es la sensibilidad de está consulta?

¿En cuánto puede variar (máximo) el resultado si saco o agrego un individuo?

En 1!

Privacidad diferencia: Ejemplo

SELECT count(*) FROM person WHERE age>=40

14237

El mecanismo de Laplace

Sensibilidad

 $F(x) = f(x) + \text{Lap}(\frac{3}{-})$ Presupuesto de privacidad 0.1

$$F(x) = 14211.230613$$

F(x) = 14265.770017

$$F(x) = 14265.917434$$
 $F(x) = 14209.093826$

¿Cuánto ruido es suficiente?

SELECT count(*) FROM person WHERE name='Alan Brito' AND target='<=50k' Consulta maliciosa Ruido Es realmente útil la consulta? No, pero no importa porque la consulta era maliciosa (muy selectiva) 18.475044 15.158466 -0.688716 -2.115105 -0.203654

13.167499

¿Qué pasa si repetimos la consulta muchas veces?

SELECT count(*) FROM person
WHERE name='Alan Brito' AND target='<=50k'</pre>

1

Podemos deducir que es 1!

Es por eso que ϵ se le llama presupuesto

- Las consultas no son independientes!
- El presupuesto debe distribuirse por cada una de las consultas ⇒ resultados mas ruidosos

¿Qué pasa si repetimos la consulta muchas veces?

```
SELECT count(*) FROM person
WHERE name='Alan Brito' AND target='<=50k'</pre>
```

```
SELECT count(*) FROM person
WHERE name='Alan Brito' AND target='<=50k'</pre>
```

```
SELECT count(*) FROM person
WHERE name='Alan Brito' AND target='<=50k'</pre>
```

```
SELECT count(*) FROM person
WHERE name='Alan Brito' AND target='<=50k'</pre>
```

Si ejecutamos 4 veces la consulta dividimos ϵ en 4

$$f(x) + \operatorname{Lap}(\frac{1}{\frac{\epsilon}{4}})$$

El ruido será mayor en cada consulta

Composición secuencial

- Si $F_1(x)$ satisface ϵ_1 -privacidad diferencial
- Si $F_2(x)$ satisface ϵ_2 -privacidad diferencial
- Entonces el mecanismo $G(x)=(F_1(x),F_2(x)) \text{ que libera ambos}$ resultados satisface $(\epsilon_1+\epsilon_2)$ -privacidad diferencial

Composición paralela

- Si F(x) satisface ϵ_1 -privacidad diferencial
- Y dividimos un conjunto de datos X en k pedazos distintos de modo que $x_1 \cup \ldots \cup x_k = X$
- Luego, el mecanismo que libera todos los resultados $F(x_1), \ldots, F(x_k)$ satisface ϵ -privacidad diferencial

Este límite es mucho mejor que lo que daría la composición secuencial: $k\epsilon$ -privacidad diferencial

Composición paralela

Education	Female	Male
10th	295	638
11th	432	743
12th	144	289
1st-4th	46	122
5th-6th	84	249
7th-8th	160	486
9th	144	370
Assoc-acdm	421	646
Assoc-voc	500	882
Bachelors	1619	3736
Doctorate	86	327
HS-grad	3390	7111
Masters	536	1187
Preschool	16	35
Prof-school	92	484
Some-college	2806	4485

Education	Female	Male
10th	295.591316	638.730833
11th	433.991320	742.901816
12th	144.546311	289.543775
1st-4th	45.877242	123.385749
5th-6th	86.657895	249.939610
7th-8th	161.499974	485.533936
9th	143.441692	367.792887
Assoc-acdm	420.879967	644.833957
Assoc-voc	500.347331	881.176781
Bachelors	1618.321878	3736.108821
Doctorate	83.983045	325.787201
HS-grad	3390.710973	7112.123852
Masters	537.215908	1185.515231
Preschool	15.782764	32.575344
Prof-school	90.655808	483.799082
Some-college	2804.440558	4485.117936

¿Cuales son las garantías de PD?

- El resultado del mecanismo no deja que un adversario pueda distinguir entre las dos bases de datos
- El resultado es el mismo ya sea un individuo participa o no
- Calza con una buena intuición de privacidad: "nada malo me pasa a mí como resultado de mi participación en el análisis"
 - Si algo malo pasa, hubiera pasado *aun si* yo no hubiera participado
- Definiciones formales permite probar que el mecanismo satisface privacidad diferencial
- Se mantiene independiente de los datos auxiliares que pudiera tener un adversario!
 - Incluido el caso donde el adversario conoce toda la base de datos excepto la fila objetivo
 - Previene ataques de asociación en k-anonimato y ℓ -diversidad
 - La única forma conocida que se acerca a una "anonimización verdadera"

¿Que es lo malo?

- No funciona para datos sintéticos, solo respuesta de consultas
 - Privacidad diferencial es una propiedad de un mecanismo, no una propiedad de los datos
 - En muchos casos, el mecanismo puede generar data sintética "lo suficientemente buena"
- Garantía difícil de interpretar
 - ullet La garantía está parametrizada por el misterioso ϵ
 - ¿Qué ϵ es suficiente?
 - ullet muy chico \Longrightarrow poca utilidad

$$Lap(\frac{S}{\epsilon})$$

- \bullet ϵ muy grande \Longrightarrow re-identificación es posible nuevamente
- No se sabe la respuesta aún

RESUMEN

Resumen (1)

- De-identificación / Anonimización
 - Elimina los identificadores exclusivos para reducir el riesgo de re-identificación
 - Enfoques ad-hoc se traducen en un alto riesgo de errores
 - Técnica más usada

• k-Anonimato

- Formaliza de-identificación sistemática
- ullet Requiere grupos de tamaño al menos k
- Sujeto a ataques de homogeneidad y datos auxiliares

Resumen (2)

\bullet \mathscr{C} -Diversidad

- Requiere grupos diversos
- Previene ataques de homogeneidad
- ullet Previene ataques de datos auxiliares cuando el adversario conoce menos de ℓ -2 datos negativos acerca del grupo

Privacidad diferencial

- Propiedad formal de un *mecanismo* (algoritmo o análisis)
- Corresponde a la noción de indistinguibilidad: mismo resultado, ya sea si participé o no
- La garantía se mantiene independiente de los datos auxiliares del adversario

Preguntas?

