Numerical method of solving a problem of calculus of variation with boundary conditions

SeBeom Lee

December 2019

1 Problem Statement

Let $y(x) : \mathbb{R} \to \mathbb{R}$ be a C^1 function which represents a curve in \mathbb{R}^2 , with boundary conditions of $y(x_a) = y_a$ and $y(x_b) = y_b$. Then, for a function f(y, y', x), a functional

$$F[y] = \int_{x_a}^{x_b} f(y, y', x) dx, \tag{1}$$

can be defined in a given domain. Our goal is to find the curve y(x) at which F[y] is at its extremum.

2 Numerical method

Let y(x) be an arbitrary curve that satisfies the boundary condition. If $y_0(x)$ is a straight line from (x_a, y_a) to (x_b, y_b) , then y_0 is

$$y_0(x) = \frac{y_b - y_a}{x_b - x_a}(x - x_a) + y_a.$$
 (2)

Then, we can express the curve y(x) as $y(x) = y_0(x) + \eta(x)$. Since $\eta(x) = y(x) - y_0(x)$ and both y(x) and $y_0(x)$ are C^1 functions, $\eta(x)$ is also a C^1 function. Also, $\eta(x)$ must satisfy a boundary condition $\eta(x_a) = 0$ and $\eta(x_b) = 0$, as $y_0(x_a) = y_a$ and $y_0(x_b) = y_b$.

Using the representation of the curve as $y(x) = y_0(x) + \eta(x)$, we can express any admissible that satisfies the boundary condition by setting an appropriate $\eta(x)$. Then, the problem of finding y(x) reduces down to the problem of finding $\eta(x)$ such that $y(x) = y_0(x) + \eta(x)$ makes F[y] to be its minimum.

To find $\eta(x)$, we can parameterize $\eta(x)$ using Fourier series as

$$\eta(x) = \sum_{n=1}^{\infty} C_n \sin\left(\frac{n\pi}{x_b - x_a}(x - x_a)\right),\tag{3}$$

which satisfies the boundary conditions of $\eta(x)$. Using the parameterization, we can further reduce the problem to finding an appropriate sequence C_n which minimizes F[y]. To find such a sequence we use the method of gradient descent.

For each element C_n , we can observe how the value of F[y] changes as C_n changes. Figure 1 is an example of how F[y] depends on C_1 , for F[y] defined with $f(y, y', x) = y'(1 + x^2y')dx$. If each C_n is the value that minimizes F[y], then $y_0(x) + \eta(x)$ must be the curve that minimizes F[y].

Figure 1: Plot of F[y] as a function of C_n for a fixed n.

If C_n minimizes F[y], the necessary condition for such C_n is that

$$\frac{\partial F}{\partial C_n} = 0. (4)$$

To find the point where the above condition is satisfied, we use the method of gradient descent, starting from the arbitrary value of C_n . In our method, we used the initial value of $C_n = 0$. As described in Figure 2, If the value of $\frac{\partial F}{\partial C_n}$ is smaller than 0, it means that the value of F is decreasing, and C_n should be bigger to get a smaller value of F[y]. Therefore, we increase C_n by the amount proportional to the value of $\frac{\partial F}{\partial C_n}$ scaled by some constant, namely a descending rate. Therefore, the change of C_n after one iteration will be

$$C_n' = C_n - \frac{\partial F}{\partial C_n} \times r,\tag{5}$$

where 0 < r < 1 is a constant descending rate. By changing the value of C_n through iteration, C_n will converge to a point where $\frac{\partial F}{\partial C_n} = 0$, with appropriately small value of r. If we wanted to find the maximum of F[y], then we can use the method of gradient ascent, in which we update the value of C_n to an opposite direction.

Figure 2: Gradient descent method.

By iterating the gradient descent on many values of n, the function $y(x) = y_0(x) + \eta(x)$ will converge to a curve which minimizes F[y]. The overall algorithm of finding $\eta(x)$ is described in Figure 3.

Figure 3: Flowchart of the numerical method. We start with $y_0(x)$, which is a line that connects two boundary points. For n=1, we test by adding the 1st order term of Fourier series. After finding an optimized value of C_1 , we move on to the next n, and start optimizing next term of Fourier series. The process continues until n reaches the limit we set. This iteration of gradient descent isi repeated finite times.

3 Comparison to analytical solutions

3.1 Geodesics on a plane

For $F[y] = \int_1^2 \sqrt{1 + (y')^2} dx$, y(1) = 1 and y(2) = 5, find y(x) such that F[y] is minimized.

The analytical solution is y(x) = 4x + 1. Figure 4 shows both the plot of the analytical solution and the numerical solution. F[y] of both curve was calculated to be 4.12, and mean squared error between two curves was 0.

3.2 Hyperbola

For $F[y] = \int_1^2 y'(1+x^2y')dx$, y(1) = 1 and y(2) = 0.5, find y(x) such that F[y] is minimized.

The analytical solution is $y(x) = \frac{1}{x}$. Figure 6 shows both the plot of the

Figure 4: Analytical and numerical solution to the geodesics problem.

analytical solution and the numerical solution. F[y] of the analytical solution was 0.00019, that of the numerical solution was 0.00034, and mean squared error between two curves was 0.015.

Figure 5: Analytical and numerical solution to the problem.

3.3 Brachistochrone

For $F[y] = \int_0^{\pi} \sqrt{\frac{1+(y')^2}{-y}}$, y(0) = 0 and $y(\pi) = -2$, find y(x) such that F[y] is minimized.

The analytical solution is a cycloid. Figure 6 shows both the plot of the analytical solution and the numerical solution. F[y] of the analytical solution was calculated to be 4.337, and that of the numerical solution was 4.308.

Figure 6: Analytical and numerical solution to the brachistochrone problem.