Effect of Diversification

Systemic Risk Group at FIAS

Rajbir Singh Nirwan, September 28th, 2020

Diversification is a risk management strategy that mixes a wide variety of investments within a portfolio.

https://www.investopedia.com/

The more decorrelated assets we have in our portfolio, the lower the risk.

Correlation of different asset classes

Historical Correlation ¹ : January 2010 - December 2019							Click Asset Class to Highlight			ght	RESET				
	Positive	Negative													
High	0.7-1.0	(0.7)-(1.0)	ent onds		dities	ies		riven		spun	ional	ort	ъ		•
Moderate	0.4-0.7	(0.4)-(0.7)	Investment Grade Bonds	Cash	Commodities	Currencies	Equity Market	Event Driven	Global	Hedge Funds	International Equity	Long/Short Equity	Managed Futures	REITS	S&P 500®
Low	0.0-0.4	(0.0)-(0.4)													
Investme	ent Grade	Bonds	1.00												
Cash			0.11	1.00											
Commod	ities		(0.25)	0.07	1.00										
Currenci	Currencies		(0.00)	(0.08)	(0.54)	1.00									
Equity M	Equity Market Neutral		(0.03)	(0.04)	0.37	(0.64)	1.00								
Event Dr	Event Driven		(0.22)	(0.03)	0.57	(0.39)	0.41	1.00							
Global			(0.17)	0.01	0.61	(0.58)	0.47	0.80	1.00						
Hedge Fi	ınds		(0.02)	(0.03)	0.51	(0.42)	0.51	0.88	0.83	1.00					
Internati	onal Equit	Ey .	(0.11)	(0.00)	0.58	(0.66)	0.53	0.77	0.96	0.81	1.00				
Long/Sh	Long/Short Equity		(0.18)	(0.03)	0.52	(0.49)	0.56	0.84	0.90	0.91	0.86	1.00			
Managed Futures		0.42	0.02	(0.07)	0.02	0.11	0.11	0.16	0.47	0.13	0.23	1.00			
REITs	REITs		0.30	0.02	0.25	(0.31)	0.28	0.46	0.65	0.54	0.58	0.56	0.29	1.00	
S&P 500®		(0.22)	(0.00)	0.57	(0.46)	0.40	0.77	0.97	0.79	0.85	0.87	0.16	0.65	1.00	

Any finite collection of function values at $x_1, x_2, ..., x_N$ is jointly Gaussian distributed

$$p\left(f(x_1), f(x_2), ..., f(x_N)\right) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K}) = \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1N} \\ k_{21} & k_{22} & \cdots & k_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ k_{N1} & k_{N2} & \cdots & k_{NN} \end{bmatrix}\right) \qquad k_{ij} = k(x_i, x_j)$$

Any finite collection of function values at $x_1, x_2, ..., x_N$ is jointly Gaussian distributed

$$p\left(f(x_1), f(x_2), ..., f(x_N)\right) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K}) = \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1N} \\ k_{21} & k_{22} & \cdots & k_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ k_{N1} & k_{N2} & \cdots & k_{NN} \end{bmatrix}\right) \qquad k_{ij} = k(x_i, x_j)$$

$$k_{linear}(x, x') = xx'$$

$$k_{rbf}(x, x') = \exp\left(-\frac{1}{2\ell^2}(x - x')^2\right)$$

$$k_{ou}(x, x') = \exp\left(-\frac{1}{\ell}|x - x'|\right)$$

$$k_{mat32}(x, x') = \left(1 + \frac{\sqrt{3}|x - x'|}{\ell}\right) \exp\left(-\frac{\sqrt{3}|x - x'|}{\ell}\right)$$

$$k_{periodic}(x, x') = \exp\left(-\frac{2}{\ell^2}\sin^2(|x - x'|)\right)$$

Any finite collection of function values at $x_1, x_2, ..., x_N$ is jointly Gaussian distributed

$$p\left(f(x_1), f(x_2), ..., f(x_N)\right) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K}) = \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1N} \\ k_{21} & k_{22} & \cdots & k_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ k_{N1} & k_{N2} & \cdots & k_{NN} \end{bmatrix}\right) \qquad k_{ij} = k(x_i, x_j)$$

$$k_{linear}(x, x') = xx'$$

$$k_{rbf}(x, x') = \exp\left(-\frac{1}{2\ell^2}(x - x')^2\right)$$

$$k_{ou}(x, x') = \exp\left(-\frac{1}{\ell}|x - x'|\right)$$

$$k_{mat32}(x, x') = \left(1 + \frac{\sqrt{3}|x - x'|}{\ell}\right) \exp\left(-\frac{\sqrt{3}|x - x'|}{\ell}\right)$$

$$k_{periodic}(x, x') = \exp\left(-\frac{2}{\ell^2}\sin^2(|x - x'|)\right)$$

Any finite collection of function values at $x_1, x_2, ..., x_N$ is jointly Gaussian distributed

$$p\left(f(x_1), f(x_2), ..., f(x_N)\right) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K}) = \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1N} \\ k_{21} & k_{22} & \cdots & k_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ k_{N1} & k_{N2} & \cdots & k_{NN} \end{bmatrix}\right) \qquad k_{ij} = k(x_i, x_j)$$

$$k_{linear}(x, x') = xx'$$

$$k_{rbf}(x, x') = \exp\left(-\frac{1}{2\ell^2}(x - x')^2\right)$$

$$k_{ou}(x, x') = \exp\left(-\frac{1}{\ell'}|x - x'|\right)$$

$$k_{mat32}(x, x') = \left(1 + \frac{\sqrt{3}|x - x'|}{\ell}\right) \exp\left(-\frac{\sqrt{3}|x - x'|}{\ell}\right)$$

$$k_{periodic}(x, x') = \exp\left(-\frac{2}{\ell^2}\sin^2(|x - x'|)\right)$$

Any finite collection of function values at $x_1, x_2, ..., x_N$ is jointly Gaussian distributed

$$p\left(f(x_1), f(x_2), ..., f(x_N)\right) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K}) = \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1N} \\ k_{21} & k_{22} & \cdots & k_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ k_{N1} & k_{N2} & \cdots & k_{NN} \end{bmatrix}\right) \qquad k_{ij} = k(x_i, x_j)$$

$$k_{linear}(x, x') = xx'$$

$$k_{rbf}(x, x') = \exp\left(-\frac{1}{2\ell^2}(x - x')^2\right)$$

$$k_{ou}(x, x') = \exp\left(-\frac{1}{\ell}|x - x'|\right)$$

$$k_{mat32}(x, x') = \left(1 + \frac{\sqrt{3}|x - x'|}{\ell}\right) \exp\left(-\frac{\sqrt{3}|x - x'|}{\ell}\right)$$

$$k_{periodic}(x, x') = \exp\left(-\frac{2}{\ell^2}\sin^2(|x - x'|)\right)$$

Any finite collection of function values at $x_1, x_2, ..., x_N$ is jointly Gaussian distributed

$$p\left(f(x_1), f(x_2), ..., f(x_N)\right) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K}) = \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1N} \\ k_{21} & k_{22} & \cdots & k_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ k_{N1} & k_{N2} & \cdots & k_{NN} \end{bmatrix}\right) \qquad k_{ij} = k(x_i, x_j)$$

$$k_{linear}(x, x') = xx'$$

$$k_{rbf}(x, x') = \exp\left(-\frac{1}{2\ell^2}(x - x')^2\right)$$

$$k_{ou}(x, x') = \exp\left(-\frac{1}{\ell'}|x - x'|\right)$$

$$k_{mat32}(x, x') = \left(1 + \frac{\sqrt{3}|x - x'|}{\ell}\right) \exp\left(-\frac{\sqrt{3}|x - x'|}{\ell}\right)$$

$$k_{periodic}(x, x') = \exp\left(-\frac{2}{\ell^2}\sin^2(|x - x'|)\right)$$

Given N stocks, how should I weight them to get an optimal portfolio?

Given N stocks, how should I weight them to get an optimal portfolio?

Markowitz Portfolio Theory

$$\mathbf{w}_{opt} = \min_{\mathbf{w}} \left(\mathbf{w}^T \mathbf{K} \mathbf{w} - q \mathbf{w}^T \boldsymbol{\mu} \right)$$

Given N stocks, how should I weight them to get an optimal portfolio?

Markowitz Portfolio Theory

Learn weights on previous 2 years Hold portfolio for next 6 months

$$\mathbf{w}_{opt} = \min_{\mathbf{w}} \left(\mathbf{w}^T \mathbf{K} \mathbf{w} - q \mathbf{w}^T \boldsymbol{\mu} \right)$$

Given N stocks, how should I weight them to get an optimal portfolio?

Markowitz Portfolio Theory

Learn weights on previous 2 years Hold portfolio for next 6 months

$$\mathbf{w}_{opt} = \min_{\mathbf{w}} \left(\mathbf{w}^T \mathbf{K} \mathbf{w} - q \mathbf{w}^T \boldsymbol{\mu} \right)$$

Given N stocks, how should I weight them to get an optimal portfolio?

Markowitz Portfolio Theory

Learn weights on previous 2 years Hold portfolio for next 6 months

$$\mathbf{w}_{opt} = \min_{\mathbf{w}} \left(\mathbf{w}^T \mathbf{K} \mathbf{w} - q \mathbf{w}^T \boldsymbol{\mu} \right)$$

Given N stocks, how should I weight them to get an optimal portfolio?

Markowitz Portfolio Theory

Learn weights on previous 2 years Hold portfolio for next 6 months

$$\mathbf{w}_{opt} = \min_{\mathbf{w}} \left(\mathbf{w}^T \mathbf{K} \mathbf{w} - q \mathbf{w}^T \boldsymbol{\mu} \right)$$

Backtesting on S&P500 from 2002 to 2018

Model	Linear	SE	EXP	M32	Sample Cov	Ledoit Wolf	Eq. Weighted
Mean	0.142	0.151	0.155	0.158	0.149	0.148	0.182
Std	0.158	0.156	0.154	0.153	0.159	0.159	0.232
Sharpe ratio	0.901	0.969	1.008	1.029	0.934	0.931	0.786

Bayesian Quantile Matching Estimation

Country	Sample Size	25	50	75
EL	12918	4930	7500	11000
$\mathbf{E}\mathbf{S}$	19177	8803	13681	20413
FR	21325	16185	21713	29008
IT	24969	10699	16247	22944
${ m LU}$	10292	23964	33818	48692
NL	12748	16879	22733	30327
${ m SE}$	11635	17794	25164	33365
UK	17645	14897	21136	30151

Bayesian Quantile Matching Estimation

Country	Sample Size	25	50	75
EL	12918	4930	7500	11000
$\mathbf{E}\mathbf{S}$	19177	8803	13681	20413
FR	21325	16185	21713	29008
IT	24969	10699	16247	22944
${ m LU}$	10292	23964	33818	48692
${ m NL}$	12748	16879	22733	30327
${ m SE}$	11635	17794	25164	33365
UK	17645	14897	21136	30151

```
from bqme.distributions import Normal, Gamma
from bqme.models import NormalQM

N, q, X = 100, [0.25, 0.5, 0.75], [-0.1, 0.3, 0.8]

# define priors
mu = Normal(0, 1, name='mu')
sigma = Gamma(1, 1, name='sigma')

# define likelihood
model = NormalQM(mu, sigma)

# fit model
fit = model.sampling(N, q, X)
```

Bayesian Quantile Matching Estimation

Country	Sample Size	25	50	75
EL	12918	4930	7500	11000
$\mathbf{E}\mathbf{S}$	19177	8803	13681	20413
FR	21325	16185	21713	29008
IT	24969	10699	16247	22944
${ m LU}$	10292	23964	33818	48692
NL	12748	16879	22733	30327
${ m SE}$	11635	17794	25164	33365
$\mathbf{U}\mathbf{K}$	17645	14897	21136	30151

```
from bqme.distributions import Normal, Gamma
from bqme.models import NormalQM

N, q, X = 100, [0.25, 0.5, 0.75], [-0.1, 0.3, 0.8]

# define priors
mu = Normal(0, 1, name='mu')
sigma = Gamma(1, 1, name='sigma')

# define likelihood
model = NormalQM(mu, sigma)

# fit model
fit = model.sampling(N, q, X)
```


Network Analysis

Summary

- Use of Gaussian processes in Finance
- Bayesian quantile matching estimation
- Network Analysis

