

^{OGY} 17μA Max, Dual and Quad, Single Supply, Precision Op Amps

FEATURES

- 17µA Max Supply Current per Amplifier
- 70µV Max Offset Voltage
- 250pA Max Offset Current
- 5nA Max Input Bias Current
- 0.9µV_{P-P} 0.1Hz to 10Hz Voltage Noise
- 1.5pA_{P-P} 0.1Hz to 10Hz Current Noise
- 0.5µV/°C Offset Voltage Drift
- 85kHz Gain-Bandwidth Product
- 0.04V/us Slew Rate
- Single Supply Operation:

 Input Voltage Range Includes Ground
 Output Swings to Ground While Sinking Current
 No Pull Down Resistors are Needed
- Output Sources and Sinks 5mA Load Current

APPLICATIONS

- Battery or Solar Powered Systems
 Portable Instrumentation
 Remote Sensor Amplifier
 Satellite Circuitry
- Micropower Sample-and-Hold
- Thermocouple Amplifier
- Micropower Filters

T, LTC and LT are registered trademarks of Linear Technology Corporation.

DESCRIPTION

The LT $^{\odot}$ 1178 is a micropower dual op amp in the standard 8-pin configuration; the LT1179 is a micropower quad op amp offered in the standard 14-pin packages. Both devices are optimized for single supply operation at 5V. Specifications are also provided at $\pm 15V$ supplies.

The extremely low supply current is combined with true precision specifications: offset voltage is $30\mu V$, offset current is 50pA. Both offset parameters have low drift with temperature. The 1.5pAp-p current noise and picoampere offset current permit the use of megaohm level source resistors without introducing serious errors. Voltage noise, at $0.9\mu Vp$ -p, is remarkably low considering the low supply current.

Both the LT1178 and LT1179 can be operated from a single supply (as low as one lithium cell or two NiCd batteries). The input range goes below ground. The all-NPN output stage swings to within a few millivolts of ground while sinking current—no power consuming pull down resistors are needed.

For applications where three times higher supply current is acceptable, the micropower LT1077 single, LT1078 dual and LT1079 quad are recommended. The LT1077/78/79 have significantly higher bandwidth, slew rate, lower voltage noise and better output drive capability.

TYPICAL APPLICATION

Self-Buffered, Dual Output, Micropower Reference

Supply Current vs Temperature

11789fb

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage		±22V
Differential Input Voltag	e	±30V
Input Voltage	Equal to Positive	Supply Voltage
Input Voltage5	V Below Negative	Supply Voltage
Output Short-Circuit Du	ration	Indefinite

Operating Temperature Range	
LT1178I/LT1179I	40°C to 85°C
LT1178C/LT1178S/LT1179C/LT1179S	6 0°C to 70°C
Storage Temperature Range	-65°C to 150°C
Lead Temperature (Soldering, 10 sec.)	300°C

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges. Please note that the LT1178S8 surface mount pinout differs from that of the LT1178 standard plastic or ceramic dual-in-line packages. For similiar performance with standard pinout, see the LT2178.

ELECTRICAL CHARACTERISTICS $V_S = 5V$, 0V; $V_{CM} = 0.1V$, $V_0 = 1.4V$, $T_A = 25^{\circ}C$, unless noted.

			LT11	78AC/LT1	179AC	LT1178			
SYMBOL	PARAMETER	CONDITIONS (NOTE 2)	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	LT1178 LT1179 LT1178SW LT1179SW LT1178S8		30 35	70 100		40 40 80 90 60	120 150 450 600 180	Vպ Vպ Vպ Vպ
ΔV _{OS} ΔTime	Long Term Input Offset Voltage Stability			0.5			0.6		μV/Mo
I _{OS}	Input Offset Current			0.05	0.25		0.05	0.35	nA

11789fb

$\begin{tabular}{ll} \textbf{ELECTRICAL CHARACTERISTICS} & $v_S = 5V$, $0V$; $V_{CM} = 0.1V$, $V_0 = 1.4V$, $T_A = 25^\circ C$, unless noted. \\ \end{tabular}$

CVMDOL	DADAMETED	CONDITIONS (NOTE 0)	1	78AC/LT11			I/C/S/LT11		шито
2 I MIROT	PARAMETER	CONDITIONS (NOTE 2)	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
I _B	Input Bias Current			3	5		3	6	nA
e_{n}	Input Noise Voltage	0.1Hz to 10Hz (Note 3)		0.9	2.0		0.9		μV _{P-P}
	Input Noise Voltage Density	f ₀ = 10Hz (Note 3) f ₀ = 1000Hz (Note 3)		50 49	75 65		50 49		nV/√Hz nV/√Hz
i _n	Input Noise Current	0.1Hz to 10Hz (Note 3)		1.5	2.5		1.5		рАр-р
CMRR PSRR A _{VOL} SR GBW	Input Noise Current Density	f ₀ = 10Hz (Note 3) f ₀ = 1000Hz		0.03 0.01	0.07		0.03 0.01		pA/√Hz pA/√Hz
	Input Resistance Differential Mode Common Mode	(Note 4)	0.8	2.0 12	0.6	2.0 12		GΩ GΩ	
OMPD	Input Voltage Range		3.5 0	3.9 -0.3		3.5 0	3.9 -0.3		V
CMRR	Common Mode Rejection Ratio	V _{CM} = 0V to 3.5V	93	103		90	102		dB
PSRR	Power Supply Rejection Ratio	V _S = 2.2V to 12V	94	104		92	104		dB
A _{VOL}	Large Signal Voltage Gain	V ₀ = 0.03V to 4V, No Load (Note 4)	140	700		110	700		V/mV
		$V_0 = 0.03V$ to 3.5V, $R_L = 50k$	80	200		70	200		V/mV
	Maximum Output Voltage Swing	Output Low, No Load Output Low, 2k to GND Output Low, I _{SINK} = 100µA Output High, No Load Output High 2k to GND	4.2 3.5	6.5 0.2 120 4.4 3.8	9 0.6 160	4.2 3.5	6.5 0.2 120 4.4 3.8	9 0.6 160	mV mV mV V
SR	Slew Rate	$A_V = 1$, $C_L = 10pF$ (Note 4)	0.013	0.025		0.013	0.025		V/µs
GBW	Gain Bandwidth Product	f ₀ ≤ 5kHz		60			60		kHz
I _S	Supply Current per Amplifier	$V_S = \pm 1.5V, V_0 = 0V$		13 12	18 17		14 13	21 20	μ Α μ Α
CMRR PSRR A _{VOL} SR GBW	Channel Separation	$\Delta V_{IN} = 3V$, $R_L = 10k$		130			130		dB
	Minimum Supply Voltage	(Note 5)		2.0	2.2		2.0	2.2	V

ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full operating temperature range of $-40^{\circ}\text{C} \le T_{A} \le 85^{\circ}\text{C}$ for I grades, $0^{\circ}\text{C} \le T_{A} \le 70^{\circ}\text{C}$ for SW grades, $V_{S} = 5V$, 0V; $V_{CM} = 0.1V$, $V_{O} = 1.4V$, unless noted. (Note 7)

CAMBUI	DADAMETED	CONDITIONS			LT1178I/LT1179I MIN TYP MAX			LT1178SW/LT1179SW		
SYMBOL	PARAMETER	CONDITIONS		MIN	ITP	MAX	MIN	TYP	MAX	UNITS
V_{OS}	Input Offset Voltage	LT1178 LT1179	•		80 80	315 345		120 130	650 800	μV μV
$\Delta V_{OS}/\Delta T$	Input Offset Voltage Drift	(Note 6)	•		0.6	3.0		0.8	4.5	μV/°C
I _{OS}	Input Offset Current		•		0.07	0.7		0.06	0.50	nA
I _B	Input Bias Current		•		4	8		3	7	nA
CMRR	Common Mode Rejection Ratio	V_{CM} = 0.05V to 3.2V I grade V_{CM} = 0V to 3.4V S grade	•	84	98		86	100		dB
PSRR	Power Supply Rejection Ratio	$V_S = 3.0V$ to 12V I grade $V_S = 2.5V$ to 12V S grade	•	86	100		88	102		dB
A _{VOL}	Large-Signal Voltage Gain	$V_0 = 0.05V$ to 4V, No Load (Note 4) $V_0 = 0.05V$ to 3.5V, $R_L = 50k$	•	55 35	350 130		80 45	500 160		V/mV V/mV
	Maximum Output Voltage Swing	Output Low, No Load Output Low, I _{SINK} = 100µA Output High, No Load Output High, 2k to GND	•	3.9 3.0	9 160 4.2 3.7	13 220	4.1 3.3	8 140 4.3 3.8	11 190	mV mV V
Is	Supply Current per Amplifier		•		15	27		15	24	μА

The ullet denotes specifications which apply over the full operating temperature range of $0^{\circ}C \leq T_A \leq 70^{\circ}C$, $V_S = 5V$, 0V, $V_{CM} = 0.1V$, $V_0 = 1.4V$, unless noted.

				LT117	8AC/LT1	179AC	LT117			
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V_{0S}	Input Offset Voltage	LT1178	•		50	170		65	250	μV
		LT1178S8	•					85	350	μV
		LT1179	•		60	200		70	290	μV
$\Delta V_{OS}/\Delta T$	Input Offset Voltage Drift	(Note 6)	•		0.5	2.2		0.6	3.0	μV/°C
		LT1178S8	•					0.6	3.5	μV/°C
I _{OS}	Input Offset Current		•		0.06	0.35		0.06	0.50	nA
I _B	Input Bias Current		•		3	6		3	7	nA
CMRR	Common Mode Rejection Ratio	V _{CM} = 0V to 3.4V	•	90	101		86	100		dB
PSRR	Power Supply Rejection Ratio	V _S = 2.5V to 12V	•	90	102		88	102		dB
A_{VOL}	Large-Signal Voltage Gain	$V_0 = 0.05V \text{ to } 4V, \text{ No Load (Note 4)}$	•	105	500		80	500		V/mV
		$V_0 = 0.05V \text{ to } 3.5V, R_L = 50k$	•	55	160		45	160		V/mV
	Maximum Output Voltage	Output Low, No Load	•		8	11		8	11	mV
	Swing	Output Low, I _{SINK} = 100μA	•		140	190		140	190	mV
		Output High, No Load	•	4.1	4.3		4.1	4.3		V
		Output High, 2k to GND	•	3.3	3.8		3.3	3.8		V
I _S	Supply Current per Amplifier		•		14	21		15	24	μА

ELECTRICAL CHARACTERISTICS $V_S = \pm 15 V$, $T_A = 25 ^{\circ} C$, unless noted.

			LT11	78AC/LT1	179AC	LT1178			
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
$\overline{V_{0S}}$	Input Offset Voltage			80	350		100	480	μV
		LT1178SW					150	900	μV
		LT1179SW					160	1050	μV
		LT1178S8					120	350	μV
I _{OS}	Input Offset Current			0.05	0.25		0.05	0.35	nA
I _B	Input Bias Current			3	5		3	6	nA
	Input Voltage Range		13.5	13.9		13.5	13.9		V
			-15.0	-15.3		-15.0	-15.3		V
CMRR	Common Mode Rejection Ratio	V _{CM} = 13.5V, -15V	97	106		94	106		dB
PSRR	Power Supply Rejection Ratio	$V_S = 5V$, 0V to ±18V	96	112		94	112		dB
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 10V, R_L = 50k$	300	1200		250	1000		V/mV
		$V_0 = \pm 10V$, No Load	600	2500		400	2500		V/mV
V _{OUT}	Maximum Output Voltage Swing	R _L = 50k	±13.0	±14.2		±13.0	±14.2		V
		$R_L = 2k$	±11.0	±12.7		±11.0	±12.7		V
SR	Slew Rate	A _V = 1	0.02	0.04		0.02	0.04		V/µs
GBW	Gain Bandwidth Product	f ₀ ≤ 5kHz		85			85		kHz
I _S	Supply Current per Amplifier			16	21		17	25	μА

The ullet denotes specifications which apply over the full operating temperature range of $-40^{\circ}C \le T_A \le 85^{\circ}C$ for I grades, $0^{\circ}C \le T_A \le 70^{\circ}C$ for SW grades, $V_S = \pm 15V$, unless noted.

SYMBOL	PARAMETER	CONDITIONS		LT1 MIN	178I/LT1 ⁻ TYP	179I MAX	LT117 MIN	8SW/LT1 TYP	179SW Max	UNITS
V _{OS}	Input Offset Voltage	LT1178 LT1179	•		130 130	740 740		190 200	1150 1300	μV μV
$\Delta V_{OS}/\Delta T$	Input Offset Voltage Drift	(Note 6)	•		0.7	4.0		0.9	5.5	μV/°C
I _{OS}	Input Offset Current		•		0.07	0.7		0.06	0.35	nA
I _B	Input Bias Current		•		4	8		3	7	nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 10V, R_L = 50k$	•	100	500		150	750		V/mV
CMRR	Common Mode Rejection Ratio	V _{CM} = 13V, -14.9V	•	88	103		91	104		dB
PSRR	Power Supply Rejection Ratio	$V_S = 5V$, 0V to ±18V	•	88	109		91	110		dB
	Maximum Output Voltage Swing	R _L = 5k	•	±11.0	±13.5		±11.0	±13.5		V
Is	Supply Current per Amplifier		•		19	30		18	28	μΑ

ELECTRICAL CHARACTERISTICS ture range of $0^{\circ}C \le T_A \le 70^{\circ}C$, $V_S = \pm 15V$, unless noted.

The • denotes specifications which apply over the full operating tempera-

						179AC	LT117			
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	LT1178S8	•		100	480		130 150	660 540	μV μV
$\Delta V_{OS}/\Delta T$	Input Offset Voltage Drift	(Note 6) LT1178S8	•		0.6	2.8		0.7 0.7	4.0 3.8	μV/°C μV/°C
I _{OS}	Input Offset Current		•		0.06	0.35		0.06	0.35	nA
I _B	Input Bias Current		•		3	6		3	7	nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 10V, R_L = 50k$	•	200	800		150	750		V/mV
CMRR	Common Mode Rejection Ratio	V _{CM} = 13V, -15V	•	94	104		91	104		dB
PSRR	Power Supply Rejection Ratio	V _S = 5V, 0V to ±18V	•	93	110		91	110		dB
•	Maximum Output Voltage Swing	R _L = 5k	•	±11.0	±13.6		±11.0	±13.6		V

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: Typical parameters are defined as the 60% yield of parameter distributions of individual amplifiers; (i.e., out of 100 LT1179s, or 100 LT1178s, typically 240 op amps, or 120, will be better than the indicated specification).

Note 3: This parameter is tested on a sample basis only. All noise parameters are tested with $V_S = \pm 2.5$, $V_0 = 0V$.

Supply Current per Amplifier

Note 4: This parameter is guaranteed by design and is not tested.

24

Note 5: Power supply rejection ratio is measured at the minimum supply voltage. The op amps actually work at 1.7V supply but with a typical offset skew of $-300\mu V$.

18

28

μΑ

Note 6: This parameter is not 100% tested.

17

Note 7: During testing at -40° C, the 5V power supply turn on-time is less than 0.5 seconds.

TYPICAL PERFORMANCE CHARACTERISTICS

11789fb

TYPICAL PERFORMANCE CHARACTERISTICS

Input Bias and Offset Currents vs

Output Saturation vs Temperature

0.1Hz to 10Hz Noise (NONTE) (NONTE) (CHANNEL A (CHANNEL B 0 2 4 6 8 10 12 TIME (SECONDS)

TYPICAL PERFORMANCE CHARACTERISTICS

10,000

LT1178/LT1179 • TPC13

Capacitive Load Handling 120 = 5V, 0V 100 80 60 40

OVERSHOOT (%)

20

0 10

Large-Signal Transient Response $V_S = \pm 15V$

Large-Signal Transient Response $V_S = 5V, 0V$

Small-Signal Transient Response $V_S = \pm 2.5V$

CAPACITIVE LOAD (pF)

1000

100

Small-Signal Transient Response $V_S = \pm 15V$

Small-Signal Transient Response $V_S = 5V, \breve{0}V$

Common Mode Rejection Ratio vs **Frequency**

Power Supply Rejection Ratio vs

Closed Loop Output Impedance

LT1178/1179 • TPC21

APPLICATIONS INFORMATION

Please see the LT1078/LT1079 data sheet for applications information. All comments relating to specifications, single

supply operation and phase reversal protection are directly applicable to the LT1178/LT1179.

PACKAGE DESCRIPTION

PACKAGE DESCRIPTION

N8 Package 8-Lead PDIP (Narrow .300 Inch)

(Reference LTC DWG # 05-08-1510)

NOTE: 1. DIMENSIONS ARE $\frac{\text{INCHES}}{\text{MILLIMETERS}}$

N Package 14-Lead PDIP (Narrow .300 Inch)

(Reference LTC DWG # 05-08-1510)

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

^{*}THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

PACKAGE DESCRIPTION

S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch)

(Reference LTC DWG # 05-08-1610)

SW Package 16-Lead Plastic Small Outline (Wide .300 Inch)

(Reference LTC DWG # 05-08-1620)

- THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS
 4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)