PATENT ABSTRACTS OF JAPAN

(11) Publication number:

08-319326

(43) Date of publication of application: 03.12.1996

(51)Int.Cl.

C08F265/06 CO8F 2/44

CO8L 51/00

(21)Application number : 07-152763

(71)Applicant: MITSUBISHI RAYON CO

LTD

(22)Date of filing:

29.05.1995

(72)Inventor: HAYASHIDA KAZUAKI

HATAKEYAMA HIROKI

(54) MULTISTAGE POLYMER WITH IMPROVED WEATHERABILITY

(57)Abstract:

PURPOSE: To obtain a multistage polymer useful for e.g. protective films or sheets excellent in transparency and resistance to whitening under stress and improved in weatherability, copolymerized with an ultravioletlight-absorbing monomer of specific structure. CONSTITUTION: This multistage polymer ≥ 50wt.% in gel content is obtained by multistage seed emulsion polymerization in the order of component A →component B → component D → component C. These components are as follows: (A) a 1st stage polymer obtained by polymerization between (i) a 1-8C alkyl acrylate or (ii) a 1-4C alkyl methacrylate, (iii) a monomer having a copolymerizable double bond, (iv) a polyfunctional monomer, (v) a graft crossing

agent and (vi) an ultraviolet-light-absorbing monomer of the formula (R is H or methyl) in specified proportions; (B) a 2nd stage polymer obtained by polymerization between the components (i), (III), (iv), (v) and (vi) in specified proportions; (C) the final stage polymer ≥50° C in glass transition temperature obtained by polymerization between the components (ii), (iii) and (iv) in specified proportions; and (D) an intermediate stage polymer obtained by polymerization between the components (i), (ii), (iii), (iv), (v) and (vi) in specified proportions.

LEGAL STATUS

[Date of request for examination]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-319326

(43)公開日 平成8年(1996)12月3日

(51) Int.Cl. ⁶	酸別記号	庁内整理番号	FΙ			技術表示箇所
COSF 265/06	MQM		C08F 265/06		MQM	
2/44	MCS		2	2/44	MCS	
C 0 8 L 51/00	LKP		C08L 5	1/00	LKP	
			審査請求	未請求	請求項の数3	FD (全 7 頁)
(21)出願番号	特願平7-152763		(71)出願人	0000060	35	
				三菱レイ	イヨン株式会社	
(22)出顧日	平成7年(1995)5		東京都中	中央区京橋2丁	目3番19号	
			(72)発明者 林田 和明			
					大竹市御幸町20社 会社大竹事業所に	番1号 三菱レイヨ 内
			(72)発明者	畠山 匆	宏毅	
					大竹市御幸町20년 会社大竹事業所	番1号 三菱レイヨ 内
			(74)代理人		吉沢 敏夫	Ž

(54) 【発明の名称】 耐候性の改良された多段重合体

(57)【要約】

【目的】 透明で、ストレス白化性に優れ、かつ耐候性 の改良された保護フィルム、シート等を得るのに有用な 重合体の提供。

【構成】 アルキル(メタ)アクリレート系の第一段重合体(A)、アルキルアクリレート系の第二段重合体(B)、アルキル(メタ)アクリレート系の中間段重合体(D)およびアルキルメタクリレート系の最終段重合体(C)からなり、ゲル含有量が50%以上である多段重合体。

2

【特許請求の範囲】

【請求項1】 下記に示す第一段重合体(A)、第二段 重合体(B)、最終段重合体(C)、および中間段重合 体(D)からなり、かつ上記重合体が(A)、(B)、

1

(D) および (C) の順に配されてなる多段重合体であって、ゲル含有量が少なくとも50%であることを特徴とする耐候性の改良された多段重合体。

記

(A) 80~100重量部の炭素数1~8のアルキル基*

* を有するアルキルアクリレートまたは炭素数1~4のアルキル基を有するアルキルメタクリレート(A1)、0~20重量部の共重合可能な二重結合を有する単量体(A2)、

0~10重量部の多官能単量体(A3)、

0. 1~5 重量部のグラフト交叉剤、および0~2 重量 部の下記一般式 (I)

【化1】

$$\begin{array}{c|c}
 & OH \\
 & R \\
 & R \\
 & CH_2CH_2OCC = CH_2 \\
 & O
\end{array}$$

(式中、Rは水素またはメチル基を示す。)

で示される紫外線吸収単量体(以下、紫外線吸収単量体(I)と略記する。)を重合して得られる第一段重合体。

(B) $80\sim100$ 重量部の炭素数 $1\sim8$ のアルキル基を有するアルキルアクリレート(B1)、

0~20重量部の共重合可能な二重結合を有する単量体 (B2)、

0~10重量部の多官能単量体(B3)、

- 0. 1~5重量部のグラフト交叉剤、および0~2重量 部の紫外線吸収単量体(I)、を重合して得られる第二 30 段重合体。
- (C) 51~100重量部の炭素数1~4のアルキル基 を有するアルキルメタクリレート(C1)、
- 0~49重量部の共重合可能な二重結合を有する単量体 (C2)、および0.1~10重量部の紫外線吸収単量 体(I)、を重合して得られるガラス転移温度が少なく とも50℃以上である最終段重合体。
- (D) 10~90重量部の炭素数1~8のアルキル基を 有するアルキルアクリレート(D1)、

10~90重量部の炭素数1~4のアルキル基を有する 40 アルキルメタクレート(D2)、

 $0\sim20$ 重量部の共重合可能な二重結合を有する単量体 (D3)、

0~10重量部の多官能単量体(D4)、

0. 1~5重量部のグラフト交叉剤、および0~5重量部の紫外線吸収単量体(I)を重合して得られるアルキルアクリレート量が上記第二段重合体(B)から上記最終段重合体(C)に向って単調に減少するような中間段重合体。

【請求項2】 多段重合体が第一段重合体(A)、第二 50

段重合体(B)、中間段重合体(D)、最終段重合体(C)の順に多層構造で構成されてなることを特徴とする請求項1記載の耐候性の改良された多段重合体。

【請求項3】 多段重合体が第一段重合体(A)、第二段重合体(B)、中間段重合体(D)、最終段重合体(C)の順に多段シード乳化重合法によって得られたものであることを特徴とする請求項1または2記載の耐候

性の改良された多段重合体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、透明性、ストレス白化性に優れ、耐候性の改良された保護フィルム、シート等の用途に適したアクリル系の多段重合体に関する。

[0002]

【従来の技術】アクリル樹脂、特にメチルメタクリレート系の重合体はその美麗な外観のため様々な分野で成形材料として使用されているが、弾性が不足して硬くて脆いために保護フィルムやシート等の特殊な用途に使用することができない。これを改良する方法として、例えば特開昭57-140161号公報および特公昭59-36646号公報に弾性重合体を用いたアクリル系の多段重合体が提案されている。また、これらのアクリル系の多段重合体の耐候性を改良する方法としては、紫外線吸収剤を混練する方法が一般に用いられている。

【0003】しかし、多段重合体に紫外線吸収剤を混練して耐候性を改良する方法は、種々の紫外線吸収剤を混練でき、またその製法も簡便であるが、紫外線吸収剤の一部が成形、混練時にブリードアウトし、また揮発するなどの欠点がある。

[0004]

【発明が解決しようとする課題】本発明の目的は、成 形、混練時に紫外線吸収剤のブリードアウトおよび揮発 がなく、透明性、ストレス白化性に優れ、かつ耐候性の 改良された保護フィルム、シート等を得るのに適したア クリル系の多段重合体を提供することにある。

[0005]

【課題を解決するための手段】本発明者らは、上記の目 的を達成するために鋭意検討を進めた結果、多段重合体 を得るに当たり、特定構造の紫外線吸収単量体を共重合 出し、本発明に到達した。

【0006】本発明の要旨は、第一段重合体(A)、第 二段重合体(B)、最終段重合体(C)、および中間段 重合体(D)からなり、かつ上記重合体が(A)、

(B) 、(D) および (C) の順に配されてなる多段重 合体であって、ゲル含有量が少なくとも50%であるこ とを特徴とする耐候性の改良された多段重合体である。 【0007】本発明の多段重合体を構成する第一段重合 体(A)は、80~100重量部のアルキルアクリレー トまたはアルキルメタクリレート(A1)、0~20重 20 量部の共重合可能な二重結合を有する単量体(A2)、 0~10重量部の多官能単量体(A3)、および該単量 体 (A1) ~ (A3) の合計量100重量部に対して 0.1~5重量部のグラフト交叉剤と0~2重量部の紫 外線吸収単量体(I)から構成される。

【0008】第一段重合体(A)を構成するのに使用さ れるアルキルアクリレートおよびアルキルメタクリレー ト (A1) としては、炭素数1~8のアルキル基を有す るアルキルアクリレート、例えばメチルアクリレート、 エチルアクリレート、プロピルアクリレート、ブチルア 30 クリレート、2-エチルヘキシルアクリレート、オクチ ルアクリレート等、および炭素数1~4のアルキル基を 有するアルキルメタクリレート、例えばメチルメタクリ レート、エチルメタクリレート、プロピルメタクリレー ト、ブチルメタクリレート等が挙げられ、これらのアル キルアクリレートおよびアルキルメタクリレートは、1 種または2種以上の混合物として用いられる。

【0009】この第一段重合体(A)は、弾性体として 作用する役目もあるためガラス転移温度(以下、Tgと 略記する)が低い方が良く、好ましくは主成分である (A1) の単量体としてはブチルアクリレート、または ブチルアクリレートとメチルまたはエチルメタクリレー トとの混合物が好ましい。また、アルキルアクリレート およびアルキルメタクリレート(A1)は、その後に続 いて重合される各段の重合体において統一して用いる場 合が最も好ましいが、最終目的によっては2種以上の単 量体を用いたり、別種のアルキルアクリレートおよびア ルキルメタクリレートを用いても差し支えない。

【0010】共重合可能な二重結合を有する単量体(A 2) としては、アルキル (メタ) アクリレート、アルコ キシ(メタ)アクリレート、シアノエチル(メタ)アク リレート、(メタ) アクリル酸、アクリルアミド等のア クリル系単量体、スチレン、4-メチルスチレン等のス チレン類、その他 (メタ) アクリロニトリル等が挙げら させることにより、上記の目的が達成できることを見い 10 れる。これらの単量体は、1種または2種以上の混合物 として用いられるが、全体の屈折率を近づけ、透明性を 良くするためには20重量部を超えない範囲で使用する ことが好ましい。

> 【0011】多官能単量体(A3)としては、エチレン グリコールジメタクリレート、1,3-ブチレングリコ ールジメタクリレート、グリセロールジメタクリレー ト、1,6-ヘキサンジオールジメタクリレート、1, 4-ブチレンジオールジメタクリレート、プロピレンジ メタクリレート等のジメタクリレート類が好ましく、ジ ビニルベンゼン、アルキレングリコールジアクリレート 等を用いても良い。これらの多官能単量体は、有効に架 橋するために1種または2種以上の混合物として用いる ことができるが、弾性体の物性を向上させるためには1 0 重量部を超えない範囲で使用することが好ましい。そ の使用量が10重量部を超える場合は、架橋密度が大き くなり弾性体としての機能が低下し、ストレス白化性が 低下するため好ましくない。

 $【0012】グラフト交叉剤としては、共重合性の<math>\alpha$, β-不飽和(ジ)カルボン酸のアリル、メタクリル、ま たはクロチルエステル、もしくはアクリル酸、メタクリ ル酸、マレイン酸、またはフマル酸のアリルエステルが 挙げられる。好ましくはアリルエステル類、特にアリル メタクリレートが優れた効果を奏する。

【0013】これらのグラフト交叉剤は、目的によって は1種または2種以上の混合物として使用することがで きる。グラフト交叉剤の使用量は、上記単量体 (A1) ~ (A3) の合計量100重量部に対して0.1~5重 量部、好ましくは0.5~2重量部の範囲である。0. 1 重量部未満ではグラフト結合の有効量が少ないため、 成形の溶融混練時に容易に層破壊が起り目的とする多段 重合体が得られず、また、5重量部を超えると弾性体の 物性を低下させるため好ましくない。

【0014】また、本発明において使用される紫外線吸 収単量体(I)は、下記一般式(I)

【化2】

$$\begin{array}{c|c}
 & OH \\
 & R \\
 & R \\
 & CH_2CH_2OCC = CH_2
\end{array}$$

(式中、Rは水素またはメチル基を示す。)

で示される分子中に (メタ) アクリロイルオキシ基を有 する化合物である。

【0015】この紫外線吸収単量体(I)は、アクリル 系単量体との共重合性に優れており、得られる多段重合 体の耐候性を向上させる成分であり、第一段重合体

(A) においては、上記単量体 (A1) ~ (A3) の合 計量100重量部に対して0~2重量部の範囲で使用さ れる。その使用量が2重量部を超える場合には重合体の 物性を低下させるため好ましくない。

【0016】多段重合体における第一段重合体(A)の 含有率は5~35重量%の範囲が好ましく、より好まし くは5~15重量%の範囲である。特に乳化重合により 多段重合体を合成する場合、全体の粒径を制御するため には、5~15重量%の範囲が好ましい。

【0017】次に、本発明の多段重合体を構成する第二 段重合体(B)は、80~100重量部の炭素数1~8 のアルキル基を有するアルキルアクリレート(B1)、 0~20重量部の共重合可能な二重結合を有する単量体 (B2)、0~10重量部の多官能単量体(B3)、お 30 よび該単量体 (B1) ~ (B3) の合計量100重量部 に対して0.1~5重量部のグラフト交叉剤と0~2重 量部の紫外線吸収単量体(I)から構成される。

【0018】第二段重合体(B)を構成するのに使用さ れるアルキルアクリレート(B1)としては、上記第一 段重合体(A)の(A1)で記載したものと同様の炭素 数1~8のアルキル基を有するアルキルアクリレートが 用いられる。特に第二段重合体(B)は、弾性体である ためTgが低い方が好ましく、主成分であるアルキルア クリレート(B1)としてはブチルアクリレートの使用 40 が好ましい。

【0019】共重合可能な二重結合を有する単量体(B 2) としては、上記第一段重合体(A)の(A2)で記 載したものと同様のものが用いられる。この単量体(B 2) は、全体の屈曲率を近づけ透明性を良くするために は20重量部を超えない範囲で用いることが必要であ り、好ましくは最終段重合体(C)で使用されるアルキ ルメタクリレート (C1) と同じものが良く、特にメチ ルメタクリレートの使用が透明性に優れているため好ま しい。

【0020】多官能単量体(B3)としては、上記第一 段重合体(A)の(A3)で記載したものと同様のもの が用いられる。また、弾性体の物性を向上させるために は多官能単量体(B3)を10重量部を超えない範囲で 使用することが好ましい。使用量が10重量部を超える 場合は架橋密度が大きくなり、弾性体としての機能が低 下しストレス白化性が低下する。

・【0021】グラフト交叉剤および紫外線吸収単量体 (I) としては、上記第一段重合体(A)で記載したも 20 のと同様な単量体が用いられる。

【0022】多段重合体における第二段重合体(B)の 含有率は10~45重量%の範囲が好ましく、より好ま しくは第一段重合体(A)の含有量より高いことが弾性 体としての機能を引き出し衝撃強度を向上させる上で好 ましい。

【0023】本発明の多段重合体を構成する最終段重合 体(C)は、51~100部の炭素数1~4のアルキル 基を有するアルキルメタクリレート (C1)、0~49 部の共重合可能な二重結合を有する単量体(C2)、お よび上記単量体 (C1) ~ (C2) の合計量100重量 部に対して0.1~10重量部の紫外線吸収単量体

(1) から構成され、多段重合体の成形性、機械的性質 の点からTgが50℃以上であることが必要である。

【0024】最終段重合体(C)を構成するのに使用さ れるアルキルメタクリレート (C1) としては、上記第 一段重合体 (A) の (A1) で記載したものと同様のも のが用いられるが、透明性の点からメチルメタクリレー トの使用が好ましい。

【0025】共重合可能な二重結合を有する単量体(C 2) としては、上記第一段重合体(A)の(A2)で記 載したものと同様のものが用いられる。この単量体(C 2) は、成形品の外観等を良くするためには上記第一段 重合体(A)および第二段重合体(B)において用いた アルキルアクリレートの使用が好ましく、特にブチルア クリレートの使用が最も好ましい。

【0026】紫外線吸収単量体(1)の使用量は、上記 単量体 (C1) ~ (C2) の合計量100重量部に対し て0.1~10重量部の範囲であり、0.1重量部未満 50 では耐候性の改良効果が十分でなく、また、10重量部

くな

を超えると重合体の物性を低下させるため好ましくない。

【0027】多段重合体における最終段重合体(C)の 含有率は30~80重量%の範囲が好ましく、より好ま しくは40~60重量%の範囲である。

【0028】本発明の多段重合体を構成する中間段重合体(D)は、上記の第一段重合体(A)、第二段重合体(B)および最終段重合体(C)からなる基本構造単位において第二段重合体(B)と最終段重合体(C)との間に少なくとも一段が設けられるが、多段重合体のストレス白化性、透明性を改良するためには二段以上を設けることが好ましい。

【0029】中間段重合体 (D) は、 $10\sim90$ 重量部の炭素数 $1\sim8$ のアルキル基を有するアルキルアクリレート (D1)、 $10\sim90$ 重量部の炭素数 $1\sim4$ のアルキル基を有するアルキルメタクリレート (D2)、 $0\sim20$ 重量部の共重合可能な二重結合を有する単量体 (D3)、 $0\sim10$ 重量部の多官能単量体 (D4) および上記単量体 (D1) \sim (D4) の合計量100重量部に対して $0.1\sim5$ 重量部のグラフト交叉剤と $0\sim5$ 重量部の紫外線吸収単量体 (I) から構成される。

【0030】中間段重合体(D)は、第二段重合体

(B)、最終段重合体(C)との間をつなぐ層であり、ストレス白化性に影響するため、中間段重合体(D)を構成するアクリレート(D1)の量が、第二段重合体

(B) から最終段重合体(C) に向かって単調に減少するような範囲で設定する必要がある。この設定は中間段重合体(D)を第二段重合体(B)、最終段重合体

(C) の間に二段以上を設ける場合にも同様に行うことが必要である。

【0031】中間段重合体(D)を構成するのに使用されるアルキルアクリレート(D1)としては、上記第一段重合体(A)および上記第二段重合体(B)の(A1)および(B1)で記載したものと同様のアクリレートが用いられ、特にブチルアクリレートの使用が好ましい

【0032】アルキルメタクリレート(D2)としては、上記第一段重合体(A)および上記最終段重合体(C)の(A1)および(C1)で記載したものと同様のアルキルメタクリレートが用いられ、特にメチルメタ 40 クリレートの使用が好ましい。

【0033】共重合可能な二重結合を有する単量体(D3)および多官能単量体(D4)としては、上記の(D1)および(D2)の使用目的と同様の理由より、第二段重合体(B)の(B2)および(B3)で記載したものと同様のものを用いることが好ましい。

【0034】本発明の多段重合体中における中間段重合体(D)の含有率は5~35重量%の範囲が好ましく、5重量%未満では中間段重合体としての機能がなく、一方、35重量%を超えると多段重合体のバランスが損な50

われるので好ましくない。

【0035】本発明の多段重合体は、上記の重合体

8

(A)、(B)、(C)および(D)から構成されるものであるが優れたストレス白化性を得るためには、ゲル含有量が少なくとも50%、好ましくは少なくとも60%であることが必要である。しかし、ゲル含有量が高くなると成形性が低下する傾向にあるのでゲル含有量は80%を超えないようにすることが好ましい。

【0036】本発明の多段重合体は、上記の重合体が

(A)、(B)、(D)および(C)の順に内部より多 層構造で構成されていることが透明性、ストレス白化性 に優れた保護フィルム、シートを得るために好ましい。

【0037】本発明の多段重合体の製法としては、特に限定されず公知の重合方法を用いることができるが最も効果的な製法としては、各々の重合体が(A)、

(B)、(D) および(C)の順に内部より多層構造を形成する多段シード乳化重合法を用いるのが有利である。このときの最終重合体の粒径は、特に制限されないが500~3000オングストローム程度がストレス白化性と機械的物性のバランスのとれた構造のものが得られるので好ましい。

[0038]

【実施例】以下実施例および比較例により本発明を具体 的に説明するが、実施例および比較例における部は重量 部を示す。

【0039】なお、実施例および比較例中に用いる略記 号は次の化合物を表わす。

MMA:メチルメタクリレート

BA: ブチルアクリレート

30 BD:1,3-ブチレングリコールジメタクリレート

AMA: アリルメタクリレート

CHP: クメンハイドロパーオキサイド

SFS:ホルムアルデヒドナトリウムスルフォキシレート

【0040】また、実施例および比較例における物性の評価は以下に示す方法を用いて行った。

【0041】(1)最終段重合体(C)のTg ポリマーハンドブックに記載されているTgの値から下 記のFOX式により計算で求めた。

10 1/T g = a 1/T g 1 + a 2/T g 2

【0042】(2)ゲル含有量

多段重合体の1重量%アセトン溶液を調製し25℃にて 一昼夜放置した後4時間還流し、これを遠心分離機にて 14000r.p.mで60分間遠心分離した後の不溶 分を測定した。

【0043】(3)全光線透過率

厚さ50μmのフィルムをASTM D1003-61 に準拠し、反射・透過率計HR-100型((株)村上 色彩技術研究所製)により測定した。

【0044】(4)引張試験

10

厚さ 50μ mのフィルムを用い、幅1.5cm、測定長5cmの測定サンプルを準備し、STOROGRAPH-T((株) 東洋精機製)にて破断強度および破断伸度を測定した。

【0045】(5)ストレス白化性

厚さ50μmのフィルムを180度折り曲げたときの状態を目視で観察した。

〇…ほとんど白化せず。

×…白化する。

【0046】(6)耐候性

厚さ 50μ mのフィルムを厚さ3mmのポリカーボネート板にラミネートして作製した寸法約6cm×4.5cmのサンプル板をアイスパーUVテスター(大日本プラスチック(株)製)にて100時間処理した後の色差(Δ E)を測定した。

【0047】 [実施例1] 冷却器付き重合容器内に、イオン交換水250部、スルホコハク酸のエステルソーダ塩2部およびSFS0.05部を仕込み窒素雰囲気下で撹拌した後、MMA1.6部、BA8部、BD0.4部、AMA0.1部およびCHP0.04部からなる混 20合物を仕込んだ。次いで70℃に昇温した後、60分間反応を継続させて第一段重合体(A)の重合を完結した。

【0048】続いて、MMA1.5部、BA22.5 部、BD1部、AMA0.25部、RUVA-93 (大塚化学 (株) 製、2-(2'-ヒドロキシー5'-メタクリロイルオキシエチルフェニル)-2H-ベンゾトリアゾール)0.1部およびCHP0.02部の混合物を60分間にわたって添加して、第二段重合体(B)の重合を完結した。

【0049】さらに、MMA5部、BA5部、AMA 0.1部、RUVA-93 0.01部およびCHP 0.01部の混合物を添加して、中間段重合体(D)の 重合を完結した。

【0050】最後に、MMA49.5部、BA5.5部 およびRUVA-93 1.8部の混合物を添加し、最終段集合体(C)の重合を完結した。得られたラテック ス中の多段重合体の粒径は1200オングストロームであった。

【0051】そのラテックスを塩化カルシウムで凝析、 凝集、固化反応を行い、濾過、水洗後乾燥して多段重合 体の乾粉を得た。 【0052】次いでこの多段重合体をフィルム成形用押出機に供給し、240℃で溶融し、ダイより押出して厚さ50μmのフィルムを得た。

【0053】表1に得られた多段重合体およびフィルムについての評価結果を示す。

【0054】 [実施例2] 実施例1の第二段重合体

(B) および中間段重合体 (D) の重合において、RU VA-93を用いない以外は、実施例1と同様な方法を 用いて多段重合体および厚さ50 μ mのフィルムを得 た。表1に得られた多段重合体およびフィルムについて の評価結果を示す。

【0055】 [実施例3] 実施例2において、RUVA -93の使用量を1.0とした以外は、実施例2と同様な方法を用いて多段重合体および厚さ 50μ mのフィルムを得た。表1に得られた多段重合体およびフィルムについて評価結果を示す。

【0056】 [実施例4] 実施例2において、RUVA -93の代わりに2-(2'-ヒドロキシ-5'-アクリロイルオキシエチルフェニル) <math>-2H-ベンゾトリアゾールを用いる以外は、実施例2と同様な方法を用いて多段重合体および厚さ 50μ mのフィルムを得た。表1に得られた多段重合体およびフィルムについての評価結果を示す。

【0057】 [比較例1] 実施例1の最終段重合体

(C) の重合において、RUVA-93を用いない以外は、実施例1と同様な方法を用いて多段重合体および厚さ 50μ mのフィルムを得た。表1に得られた多段重合体およびフィルムについての評価結果を示す。

【0058】 [比較例2] 実施例1においてRUVA-30 93を用いない以外は、実施例1と同様な方法を用いて 多段重合体および厚さ50μmのフィルムを得た。表1 に得られた多段重合体およびフィルムについての評価結 果を示す。

【0059】 [比較例3] 実施例1においてRUVA-93の代わりに4-(2-アクリロイルオキシエトキシ) -2-ヒドロキシベンゾフェノンを用いる以外は、実施例1と同様な方法を用いて多段重合体および厚さ 50μ mのフィルムを得た。表1に得られた多段重合体およびフィルムについての評価結果を示す。

40 [0060]

【表1】

,

11							12
	多段重	宣合体	フィルム				
	最終段	ゲル	全 光透過率	引張試験**)		ストレス	耐候性
	重合体 のTg (℃)	含有量 (%)	透過率 (%)	破断強度 (kg/cm²)	破断伸度 (%)	白化性	(AE)
実施例 1 " 2 " 3 " 4 比較例 1 " 2 " 3 " 4	79 79 79 79 79 79	63 64 61 63 63 62 61	92. 3 92. 5 92. 1 92. 6 92. 6 92. 8 92. 1	370 388 375 385 379 381 379	1 1 5 1 2 0 1 2 2 1 1 9 1 1 0 1 2 5 1 1 5	0000000	0. 2 0. 3 0. 9 0. 4 6. 0 11. 8 4. 5 12. 5

(注) 比較例4はフィルムをラミネートしていないポリカーポネート板

*1)押出方向

[0061]

【発明の効果】本発明の多段重合体は、成形、混練時に 紫外線吸収剤のブリードアウトおよび揮発がなく、耐候 性、透明性およびストレス白化性に優れているため、保 護フィルム、シート等の用途に極めて有用である。