Consider the following tables T1 and T2.

In table T1, P is the primary key and Q is the foreign key referencing R in table T2 with on-delete cascade and on-update cascade. In table T2, R is the primary key and S is the foreign key referencing P in table T1 with on-delete set NULL and on-update cascade. In order to delete record (3,8) from table T1, the number of additional records that need to be deleted from table T1 is

			Nr.	
16	11	Cascad	T	2
P	Q		R	S
2	760	in the	2	2
3	-(8)	<i>V)</i>	8	(X)NU
7	3		3	2
5	8]	9	7
6	9	1	5	7
8	5	1	7	2
9	8]		

primary key and C is the foreign key referencing A with on-delete cascade.

The set of all tuples that must be additionally deleted to preserve referential integrity when the tuple (2,4) is deleted

- (X) (3,4) and (6,4) (B) (5,2) and (7,2)
- (E) (5,2), (7,2) and (9,5) (D) (3,4), (4,3) and (6,4)

Let R(a,b,c) and S(d,e,f) be two relations in which d is the foreign key of S that refers to the primary key of R. Consider the following four operations R and S

I. Insert into RX

M.Insert into S

MI.Delete from R

IV.Delete from SX

Which of the following can cause violation of the referential integrity constraint above?

1.Both I and IV

2.Both II and III

3.All of these

4. None of these

The maximum number of super keys for the relation schema R(E, F, G, H) with E as the key is

Given the STUDENTS relation as shown below.

For (StudentName, StudentAge) to be the key for this instance, the value X should not be equal to_

StudentID	StudentName	StudentEmail	StudentAge	CPI
> 2345	Shankar	shankar@math	X	9.4
7 1287	Swati	swati@ee	19	9.5
7832	Shankar	slaukar@cse	(19)	9.4
9876	Swati	swati@mech	18	9.3
8765	Ganesh	ganesh@civil	19	8.7

Which of the following is NOT a superkey in a relational schema with attributes V, W, X, Y, Z and primary key V Y?

- 1. VXYZ
- 2. VWXZX
- 3. VWXY
- 4. VWXYZ

Ö

Consider a relational table with a single record for each registered student with the following attributes.

- 1. Registration Num: Unique registration number of each registered student
- 2. UID: Unique identity number, unique at the national level for each citizen
- 3. BankAccount Num: Unique account number at the bank. A student can have multiple accounts or joint accounts. This attribute stores the primary account number.

থ্য

- 4. Name: Name of the student
- 5. Hostel Room: Room number of the hostel

Which one of the following option is INCORRECT

- (A) BankAccount Num is candidat (10)
- (X) Registration Num can be a primary key
- (C) UID is candidate key if all students are from the same country
- (D) If S is a superkey such that S∩UID is NULL then S∪UID is also a superkey △

/ER-model -> pictorial diagram

> Relational databases

(10)

> Malhematical: Set,

Cross - product

Table Relation (10)

altered Coloruns → Domain = Set of all the values an altib can

takes

Relations (in Math):

$$A = \begin{cases} a_1 a_2 a_3, \dots \end{cases}$$
 $A = \begin{cases} a_1 a_2 a_3, \dots \end{cases}$
 $A = \begin{cases} a_1 a_2 a_3, \dots \end{cases}$
 $A = \begin{cases} a_1 b_2 b_3, \dots$

B diag a3-S(a1,62), (a1,62), - tople sow 02 al Tabular attribuley 53 a_2

N

Relational model Multisel R={ (a1,61), (ax,61)} No two toples nows in a table relation ase the same

N

VER-diagrams - Rables

0

chame czip n-colonins RC AIX AZX-AM CID Chame (ZiP 21 1 Z_2 MI n 2 10) XBXC $(i_1, M_1, z_1),$ $(i_2, M_1, z_2), (i_3, M_2, z_2)$

N

Relational Schema: R (cid, cname, czij) + Inleanty
Constr

(10)

ER-model to (Relation model ER-models 1) Strong entily - Relation table
2) Relation - Relation Table Weak entity + Weak Relation + Relation pable detailed Cardinally, Participali

Constraints: (Ch 17) Falle > Ci E dornain of valid Domain Constraints Tople Uniqueness constraint Key constraint 10 > unique for 10 > Relation; Sel-each tople, multiple Keys, may be Entity Integrity Constraint > Unique for each

Referential Integrity constraints: foreign keys No action

— cascade

— set NULL

— No action

— set NULL

— No action

— set NULL

— set NULL

— set NULL

— set NULL Insext.

S Ch 1: Tables & Keys Keys: