## Cálculo

folha 8 -

— 2015'16 ———

Aplicações do integral de Riemann.

1. Sejam f e g duas funções integráveis em [a,b] cujas curvas de intersetam no intervalo. Nestas condições, qual o significado geométrico de cada um dos integrais?

(a) 
$$\int_{a}^{b} [f(x) - g(x)] dx$$

(b) 
$$\int_{a}^{b} |f(x) - g(x)| dx$$

2. Determine a área da região limitada por  $y=\sqrt{x}$ , pela tangente a esta curva em x=4 e pelo eixo das ordenadas.

3. Represente graficamente o conjunto A dado e calcule a sua área.

(a) A é o conjunto do plano limitado pelas retas x=1, x=4, y=0 e pela curva de  $f(x)=\sqrt{x}$ .

(b)  $A = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1 \text{ e } \sqrt{x} \le y \le -x + 2\}.$ 

(c) A é o conjunto do plano limitado superiormente pela parábola de equação  $y=-x^2+\frac{7}{2}$  e inferiormente pela parábola de equação  $y = x^2 - 1$ .

(d) A é o conjunto de todos os pontos (x, y) em  $\mathbb{R}^2$  tais que  $x^2 - 1 \le y \le x + 1$ .

4. Em cada alínea calcule a área da região limitada pelas curvas de equações:

(a) 
$$x = 0$$
,  $x = 1$ ,  $y = 3x$ ,  $y = -x^2 + 4$   
(b)  $x = 0$ ,  $x = \pi/2$ ,  $y = \sin x$ ,  $y = \cos x$   
(c)  $x = -1$ ,  $y = |x|$ ,  $y = 2x$ ,  $x = 1$   
(d)  $y = -x^3$ ,  $y = -(4x^2 - 4x)$ .

(c) 
$$x = -1$$
,  $y = |x|$ ,  $y = 2x$ ,  $x = 1$ 

(b) 
$$x = 0$$
,  $x = \pi/2$ ,  $y = \sin x$ ,  $y = \cos x$ 

(d) 
$$y = -x^3$$
,  $y = -(4x^2 - 4x)$ .

**5.** Defina a reta horizontal (y = k) que divide a área da região entre  $y = x^2$  e y = 9 em duas partes iguais.

**6.** Seja A s área limitada por  $y=\frac{1}{\sqrt{x}}, y=0, x=1$  e x=b,b>1.

(a) Calcule A.

(b) Calcule 
$$\lim_{b \to +\infty} A$$
.

7. Determine o volume do sólido gerado pela rotação da região  $\mathcal R$  definida por  $y=\sqrt{x},y=6-x$  e y=0 em torno do eixo das abcissas.

**8.** Sejam  $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3$  e  $\mathcal{R}_4$  as regiões representadas por









Expresse os seguintes volumes em termos de integrais definidos

- (a) O volume do sólido gerado pela rotação de  $\mathcal{R}_1$  em torno do eixos das abcissas.
- (b) O volume do sólido gerado pela rotação de  $\mathcal{R}_2$  em torno do eixos das abcissas.
- (c) O volume do sólido gerado pela rotação de  $\mathcal{R}_3$  em torno do eixos das ordenadas.
- (d) O volume do sólido gerado pela rotação de  $\mathcal{R}_4$  em torno do eixos das ordenadas.
- 9. Faz-se um furo de raio  $\frac{r}{2}$  através do centro de uma esfera de raio r. Estabeleça um integral que lhe permita calcular o volume do sólido resultante.
- **10.** Encontre o comprimento da curva definida por y = 2x entre os pontos de coordenadas (1,2) e (2,4):
  - (a) usando o teorema de Pitágoras;
  - (b) usando um integral definido em ordem a x;
  - (c) usando um integral definido em ordem a y;
- 11. Considere a curva definida por  $y = x^{2/3}$ .
  - (a) Esboce o arco desta curva, entre x = -1 e x = 8.
  - (b) Explique porque razão não pode usar um integral definido em ordem a x para calcular o comprimento de arco esboçado na alínea 11a.
  - (c) Calcule o comprimento da curva da 11a.
- 12. Determine o comprimento da curva definida pelas equações apresentadas, entre os pontos a e b indicados:

(a) 
$$y = \frac{2}{3}x^{\frac{2}{3}}$$
,  $A = (1, \frac{2}{3})$ ,  $B = (8, \frac{8}{3})$ 

(c) 
$$y = 6\sqrt[3]{x^2} + 1$$
,  $A = (-1,7)$ ,  $B = (-8,25)$ 

(b) 
$$y = 5 - \sqrt{x^3}$$
,  $A = (1, 4)$ ,  $B = (4, -3)$ 

(a) 
$$y = \frac{2}{3}x^{\frac{2}{3}}$$
,  $A = (1, \frac{2}{3})$ ,  $B = (8, \frac{8}{3})$    
 (b)  $y = 5 - \sqrt{x^3}$ ,  $A = (1, 4)$ ,  $B = (4, -3)$    
 (c)  $y = 6\sqrt[3]{x^2} + 1$ ,  $A = (-1, 7)$ ,  $B = (-8, 25)$    
 (d)  $y = \frac{1}{4x} + \frac{x^3}{3}$ ,  $A = (-2, \frac{67}{24})$ ,  $B = (-3, \frac{109}{12})$ .