SoC 2022 : Competitive Coding

Week-4

Divide-Conquer Paradigm

Contents

Solving Recurrences2		
Divide & Conquer		
	Counting Inversions	
	Tiling Problem	
	Calculating x^n	
4.	Polynomial Multiplication	7
5.	Closest pair of points	8
6.	Convex Hull	10
7.	CF Question	12
Problems		

Solving Recurrences

- Useful for computing time complexities of recursive functions.
- Most of the recurrences that we see here are of the form:

$$T(n) = aT\left(\frac{n}{h}\right) + O(n^d) = aT\left(\frac{n}{h}\right) + cn^d$$

We see asymptotic solution (i.e., as $n\rightarrow\infty$), so base case doesn't really matter (should be a constant).

Master Theorem: [can prove by recurrence tree method]

Note: To use this theorem, we must have that a, b, d are constants (i.e., they shouldn't be functions of n), and $a \ge 1, b \ge 1, d \ge 0$.

If
$$a < b^d$$
, $T(n) = O(n^d)$

If
$$a = b^d$$
, $T(n) = O(n^d \log n)$

If
$$a > b^d$$
, $T(n) = O(n^{\log_b a})$

- Recurrence Tree method:

$$T(n) = 2T(\frac{n}{2}) + 0(n)$$

$$c_{1} = 2T(\frac{n}$$

$$T(n) = T(\frac{n}{2}) + T(\frac{n}{5}) + 7n$$

$$7n \longrightarrow 7n$$

$$\frac{1}{2} \times 7n \longrightarrow 7\sqrt{\frac{1}{2} + \frac{1}{5}}$$

$$\frac{1}{2}(\frac{7n}{2}) \xrightarrow{\frac{2}{5}} \times \frac{1}{2}x^{n} \qquad \frac{1}{2}x^{2}_{5}x^{n} \qquad \frac{1}{2}x^{n} \qquad \frac{1}{2}x^$$

Someone asked about the recurrence T(n) = T(n/2) + T(2n/3) + 7n. [The infinite GP won't converge.]

To get a quick loose bound, we can re-write this as T(n) = 2*T(2n/3)+7n [since T(n) is an increasing function here, so $T(n/2) \le T(2n/3)$]. Using the Master Theorem [a=2, b=3/2 (≥ 1), d=1], we get $T(n) = O(n^{\log_3 2}) \sim O(n^{1.71})$. Of course, this is not a tight bound. A tighter bound is shown in **recurrence.png**. It is just based on considering a finite number of levels.

[Wolfram Alpha gives the tight bound of $\Theta(n^{1.2932...})$. This is the Big-Theta notation. Can think of O to be an upper bound, Ω to be a lower bound, Θ to be a tight bound.]

To prove the Master Theorem, just build a recurrence tree (root node value = n^d , it has a children, each having a node value of $\left(\frac{n}{b}\right)^d$, and so on). Add all the levels up, using a finite GP in the case $a > or = b^d$.

Divide & Conquer

- Basic idea is to divide the problem into subproblems, solve them (just make recursive calls), and then try to combine these solutions to get the final result.
- Have seen mergesort: $T(n) = T\left(\left|\frac{n}{2}\right|\right) + T\left(\left|\frac{n}{2}\right|\right) + O(n) \sim 2T\left(\frac{n}{2}\right) + O(n)$. Can think of the " \sim " as follows: Given an array of size $n \neq 2^k$ for any k, can put some number of $-\infty$'s (say, -INT_MAX) at the end to get an array of size $n \leq n_1 \leq 2n$.

Since T(n) is increasing, $T(n) \le T(n_1)$, and $T(n_1) = O(n_1 \log n_1)[Master\ Th.] = O(2n \log 2n) = O(n \log n)$. So, $T(n) = O(n \log n)$.

- Similarly, quick sort:

Divide the problem: partition using pivot (most of the work done here)

Solve them: Recursive calls

Merge: (no need, already sorted in place)

1. Counting Inversions

i<j and a[i]>a[j]; (i,j) forms an inversion pair.

One way is to do it in $O(n^2)$ [nested for loops]

Use Divide and Conquer [basically, it is modification of Mergesort idea] https://www.geeksforgeeks.org/counting-inversions/

$$A := A_1 A_2$$

Observe: # inversions in A =# inv in $A_1 + \#$ inv in $A_2 + \sum_{e \in A_2} (\#elump of A_1 > e)$

Note: for uniorted A_1 and A_2 , time CX-ity is $T(n) = 2 T(n/2) + O(n^2)$ $= O(n^2)$

 \Rightarrow forted A_1 , A_2 may help.

Code: count_inv.cpp

2. Tiling Problem

Missing 1 x 1 cell in board

Given L shape tile that is to be used to fill the board with 1 missing cell

https://www.geeksforgeeks.org/tiling-problem-using-divide-and-conquer-algorithm/

Given a $2^k \times 2^k$ board, fill the board with these L-shaped trominos.

Proof of "can be filled": by induction (just like recursive calls).

Base case: $k=1.2 \times 2$ board. Can be filled.

Induction Hypothesis: for all $i \le k$, statement is true.

Induction Step: Showing for k+1.

Can see 4 smaller instances (of size $2^k \times 2^k$). Done.

To get the trominos' locations, just make recursive calls.

3. Calculating x^n

Repeated multiplication of 'x': O(n).

Better solution:

See fast-exp.cpp.

For the iterative solution:

Think in terms of binary representation of n (i.e., exponent).

Consider x^13 , where $13=1101_2$, so, $x^13 = x * x^4 * x^8$.

For every position in the binary representation (read it from the right), current power is squared (e.g., $x \rightarrow x^2 \rightarrow x^4$...), and whenever the bit is set (i.e., =1), then the current power is multiplied.

Time complexity: O(log n).

Code.

4. Polynomial Multiplication

Given 2 polynomials P (degree n) and Q (degree m) [coefficients given], give the coefficients of P.Q.

```
One way is: PQ[k]=0 \text{ for all } k \text{ in } \{0,\dots,m+n\}. For i=0 to n For j=0 \text{ to m} PQ[i+j] += (P[i]*Q[j]) 	 // \text{ coeff of } x^{i+j} \text{ in } PQ \text{ incremented}
```

Time complexity: $O(mn) = O((max(m,n))^2)$.

Using divide and conquer:

Pad these polynomials with 0 coefficient powers of x to make both to be "degree-k", where k is a power of 2.

Note that $k \le 2 * \max\{n, m\}$, so the size won't increase "that much". This is because $n = 2^{\log n} \le 2^{\lceil \log n \rceil}$. Similar for m.

Now, let the polynomials be P' and Q' [both have "degree" k (consider 0 coefficients too, in this definition of "degree")].

```
P' = Ax^{\frac{k}{2}}+B and Q' = Cx^{\frac{k}{2}}+D, where A, B, C, D are (at most) degree k/2 polynomials.
P'Q' = ACx^{k}+(AD+BC)x^{\frac{k}{2}}+BD.
```

If we just recursively compute AC, AD, BC, BD, then the time complexity is T(k) = 4*T(k/2) + O(k) [assuming constant time to add 2 numbers, so O(k) time to add these polynomials].

Plugging a=4, b=2, d=1 [a> b^d] in Master Theorem, we get $O(k^{\log_2 4}) = O(k^2)$. No improvement so far.

The trick is to write AD+BC = (A+B)(C+D) - AC - BD. Since we are calculating AC and BD in other calls, we use them in O(1) here.

So, we have T(k) = 3*T(k/2) + O(k). This gives $T(k)=O(n^{1.59...})$.

This is based on Karatsuba's algorithm for fast (same time complexity as above) integer multiplication.

5. Closest pair of points

Given n points in a 2D plane, find the closest pair of points.

 $O(n^2)$ method is to check every pair.

Using Divide and Conquer:

Let the given set of points be P.

Sort these points according to x-coordinate [set Px], and according to y-coordinate [set Py].

The function call is: ClosestPair(Px,Py).

Define Q := set of points in the left half of the plane, and R := set of points in right half. [Here, we are dividing them by their x-coordinate.]

From **sorted** Px and Py, it is just O(n) to get Qx, Qy, Rx, Ry [just do linear scans in Px or Py]. Qx is the set of points in Q, sorted by their x-coordinates, etc.

By recursive calls, we will get (p1,q1) = ClosestPair(Qx,Qy) and (p2,q2) = ClosestPair(Rx,Ry). Now, only those pairs of points (p,q) remain, such that $p \in Q$ and $q \in R$. [Note that p1, q1, p2, q2, p and q are all of the form (x, y).]

Let the distance p1-q1 be d1, and that of p2-q2 be d2. Also, d := min(d1,d2). Then, we only need to look in the region [mid-d,mid+d] (along the x-axis).

We don't need to consider points of the form (p,q) shown above, as distance $p-q \ge d$, so it will be $\ge d1$ or $\ge d2$, and thus won't get us any further in our solution [as we've already found pairs with d1 and d2].

Define Sy = set of points in P that have an x-coordinate \in [mid-d,mid+d], sorted by their y-coordinates [hence the y in Sy]. This can be built in O(n) time, using Py.

```
Now, algo is:  \begin{aligned} &\text{ClosestSplitPair}(\text{Px,Py,d}) \\ &\text{current\_best} = d \\ &\text{Best\_pair} = (\text{p1,q1}) \text{ or } (\text{p2,q2}), \text{ whichever gave the 'd'.} \\ &\text{For i=1 to } |\text{Sy}| - 7: \\ &\text{For j=1 to } 7: \\ &\text{Let } p = i^{th} \text{ point of Sy, } q = (i+j)^{th} \text{ point of Sy.} \\ &\text{If distance p-q < current\_best} \\ &\text{Best\_pair} = (\text{p,q}), \text{ current\_best} = \text{distance p-q.} \end{aligned}
```

Why the 7?

We know that all pairs of points that lie entirely in Q or R, have a distance \geq d [by the recursive calls].

For (p,q) to be the just next "best" (after (p1,q1) or (p2,q2)), we need distance p-q to be < d. So, the horizontal/vertical distance between p and q cannot be \geq d [otherwise distance p-q is \geq d].

So, for p, even in the worst case, we only need to consider the $2d \times d$ rectangle. Moreover, since any 2 points in Q or R are at least 'd' apart, so at best they can be at the corners of this rectangle. [If 2 points (both in Q or both in R) are inside this rectangle, then our work of d=min(d1,d2) is incorrect.]

Also, we are currently working on the case of "one point in Q and other in R".

Since there can be overlapping points in Q and R at 'mid', so we need to consider the next 7 points in Sy. It can't be that there are >7 points in this rectangle.

Time complexity: T(n) = 2*T(n/2) + O(n). [O(n) worst case for searching in Sy.] $\Rightarrow T(n) = O(n \log n)$.

6. Convex Hull

[Quick Hull algorithm]

Given n points in a 2D plane, return the set of points in its convex hull.

[For convex hull, can think of the points as nails in a board, and releasing a stretched rubber-band completely outside all points. The final state of the band will be the convex hull.]

Algo 1: Consider tuples of size 3. They are nC3 in count, and form a triangle. For any point inside this triangle, this internal point cannot be part of the convex hull. Checking if a point is inside a triangle can be done in O(1). For 1 triangle, checking takes $\sim O(n)$. We repeatedly remove points from our possible convex hull.

Time complexity =
$$O(nC3*n) = O(n^4)$$
. [Note that $\binom{n}{3} = \frac{n(n-1)(n-2)}{3!}$.]

Algo 2: Quick hull.

At the start, select points p and q (all points are of the form (x, y)) that have the minimum and maximum x-coordinates respectively. These points will definitely be in the convex hull [can prove by contradiction].

Then, consider the vector (directed) $p \rightarrow q$.

Find the farthest point in the anti-clockwise region of $p \rightarrow q$ [this point is shown by the topmost point in the diagram]. Call this point r. Recurse on vectors $p \rightarrow r$ and $r \rightarrow q$ [again in the anti-clockwise directions only].

Do similar operations for clockwise direction [shown by bottom region].

For finding the farthest point in the anti-clockwise direction:

Let the line p-q be ax + by + c = 0. Then for any point in the ACW region of p \rightarrow q, $d = \frac{ax + by + c}{\sqrt{a^2 + b^2}}$ will be positive. In the CW region, it will be negative. [Can think directly using the special case of x-axis: y = 0, and consider the point (3,4).]

[Note that the initial direction $p \rightarrow q$ (and not $p \leftarrow q$) matters.]

Thus, for finding the farthest point in Case-1, just maximize d. For Case-2, minimize it.

Time complexity: T(n) = T(x) + T(n-x) + O(n), where x is the number of points in the ACW region of $p \rightarrow q$ [include p in "x" and q in "n-x", just for the sake of calculation]. If we are lucky, and x=n/2 at every step, then $T(n)=2*T(n/2)+O(n) \Rightarrow T(n)=O(n \log n)$. In the worst case, x can be 1 [just includes p], and we get T(n) = T(n-1)+O(n) = T(n-1)+cn. Solution is: $T(n)=cn+c(n-1)+...+c=O(n^2)$.

7. CF Question

Jon fought bravely to rescue the wildlings who were attacked by the white-walkers at Hardhome. On his arrival, Sam tells him that he wants to go to Oldtown to train at the Citadel to become a maester, so he can return and take the deceased Aemon's place as maester of Castle Black. Jon agrees to Sam's proposal and Sam sets off his journey to the Citadel. However becoming a trainee at the Citadel is not a cakewalk and hence the maesters at the Citadel gave Sam a problem to test his eligibility.

Initially Sam has a list with a single element n. Then he has to perform certain operations on this list. In each operation Sam must remove any element x, such that $x \ge 1$, from the list and insert at the same position $\lfloor \frac{x}{2} \rfloor$, $x \mod 2$, $\lfloor \frac{x}{2} \rfloor$ sequentially. He must continue with these operations until all the elements in the list are either 0 or 1.

Now the masters want the total number of 1s in the range l to r (1-indexed). Sam wants to become a maester but unfortunately he cannot solve this problem. Can you help Sam to pass the eligibility test?

Input

The first line contains three integers n, l, r ($0 \le n \le 2^{50}, 0 \le r - l \le 10^5, r \ge 1, l \ge 1$) – initial element and the range l to r.

It is guaranteed that r is not greater than the length of the final list.

Output

Output the total number of 1s in the range l to r in the final sequence.

Examples

Note

Consider first example:

$$[7] \rightarrow [3,1,3] \rightarrow [1,1,1,1,3] \rightarrow [1,1,1,1,1,1,1] \rightarrow [1,1,1,1,1,1]$$

Elements on positions from 2-nd to 5-th in list is [1, 1, 1, 1]. The number of ones is 4.

For the second example:

$$[10] \rightarrow [1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1]$$

Elements on positions from 3-rd to 10-th in list is [1, 1, 1, 0, 1, 0, 1, 0]. The number of ones is 5.

Code: code-for-2.cpp.

Can think by bit-representation.

This gives: $101_1_101_0_101_1_101 = 101110101011101$

We need to find if a position 'x' in the final string is 0 or 1. Clearly, we can use recursion [right figure].

To do the recursion, we need the position of the middle element [e.g., the top 0 (last bit of 1010) in the above example]. In the above example, we should be able to say that the 7^{th} bit (0-indexed) is "0". For this, we need the length of the entire final array.

From the tree, we can see that the recurrence relation for T(n) = length of final array for n is

$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1$$

To ease calculations, we re-write this recurrence in terms of the number of bits in n. Let the number of bits in n be k. Then,

$$T(k) = 2 \cdot T(k-1) + 1$$

Where T(k) is the number of elements in the final array, that corresponds to a number having k bits. T(1)=1.

We can solve this using our recurrence tree:

Thus, $T(n) = 2^{number\ of\ bits\ in\ n} - 1 = 2^{\lfloor \log_2 n \rfloor + 1} - 1$. Consider n=10. Then number of bits = 4, and $\lfloor \log_2(n) \rfloor$ =3.

Note: T(n) is ~ n, and n can be as large as $2^{50} \sim 10^{15}$ [think this as $2^{10} \sim 1024 \sim 10^3$], so we cannot even store this array: it will be 10^{15} bools, i.e., 10^{15} bytes, that is 10^6 GB.

To calculate the log, we just use a function _builtin_clzll (count leading zeroes, ll).

Now we just need to use recursion.

Suppose we want to find the numbers corresponding to positions 2 and 9 (0-indexed) in the final array of 10.

Since 2<7, search in the left tree (call the function with '2' and 10/2=5). Since 9>7, search in the right tree (call the function with '9-7-1' and 10/2=5) [we had calculated this '7' earlier].

Code: code-for-1.cpp.

Problems

Codeforces: 1490D, 1167B, 1385D, 1676H2, 768B (above), 1111C.