

11 Signal light source 12 Optical amplifier

13 Cpric/spectrum analyzer 14 Data processing portion 15 Displaying portion

NOISE FIGURE-MEASURING DEVICE AND NOISE FIGURE ASURING METHOD

Gentaro en ihara et al. 10830-079001

Fig. 2

S21: Measure input light spectrum P1(λ) and output light spectrum P2(λ).

S22: Calculate peak value of input light spectrum P1(λ)as an input light level Pin, and peak value of output light spectrum P2(λ)as an output light level Pout. Calculate signal light wavelength λ_s based on P1(λ) or P2(λ).

S23: Perform fitting process for portion excluding signal light spectrum in terms of output light spectrum $P2(\lambda)$ data to prepare an ASE spectrum $P3(\lambda)$ to calculate ASE light level P ASE = $P3(\lambda_5)$

S24: Calculate gain G and noise + Gur NF based on Pin, Pout, and P ASE.

NOISE FIGURE-MEASURING DEVICE AND NOISE FIGURE-**BURING METHOD** Gentaro Is. ara et al. 10830-079001

Calculate provisional gain GT based on input light level Pin and output light level S231: S232:

Prepare data of light spectrum for assuming ASE P3'(λ) = P2(λ) - GT × P1(λ). S233:

Perform moving average process for the data of P3'(λ). S234:

Mask data within a wavelength mask range of \pm $\Delta\lambda_{MA}$ of P3'(λ) data before and after

Perform spline interpolation process for the remaining data after masking. S235: Interporate spectrum within range of $\lambda_s \pm \Delta \lambda_m$. Calculate ASE light spectrum P3(λ). S236:

Calculate ASE light level P ASE = $P3(\lambda_s)$.

NOISE FIGURE-MEASURING DEVICE AND NOISE FIGURE-SURING METHOD Gentaro Islanda et al. 10830-079001

Fig. 5

- S51: Measure input light spectrum P1(λ) and output light spectrum P2(λ) of optical amplifier.
- Recognize peak points in P1(λ) or P2(λ) as channels, respectively. Determine the number of channels and the wavelengths λ 1, λ 2, ... λ N of respective channels.
- Analyze gains G and noise f wavelength λn (n= 1, 2, ... N) of each channel.

Fig. 7

571: Of the output light spectrum P2(λ), mask data within wavelength mask range of $\pm \Delta \lambda_m$ before and after the signal wavelength λ_s .

S72: Perform curve-fit process for the remaining data after masking. Interpolate a spectrum within the range of $\lambda_s \pm \Delta \lambda_{MA}$ Determine ASE light spectrum P3(λ).

Determine ASE light level P ASE = P3(λ_s).

