Работа с текстами

Елена Кантонистова

<u>elena.kantonistova@yandex.ru</u> <u>ekantonistova@hse.ru</u>

Терминология

- Документ текст
- Корпус набор документов
- *Токен* формальное определение "слова"; токен может не иметь смыслового значения (например, "12fdh" или "авыдшл"), но обычно отделен от остальных токенов пробелами или знаками препинания

Токенизация текста

Чтобы работать с текстом, необходимо разбить его на токены. В простейшем случае токены – это слова (а также наборы букв, знаки препинания и т.д.).

```
Text

"The cat sat on the mat."

Tokens

"the", "cat", "sat", "on", "the", "mat", "."
```

Bag of words (мешок слов)

- По корпусу создадим словарь из всех встречающихся в нем слов (можно убрать общеупотребительные часто встречающиеся слова и очень редкие слова).
- Каждое слово закодируем вектором, в котором стоит единица на месте, соответствующем месту этого слова в словаре, все остальные компоненты вектора 0.
- Для кодирования документа сложим коды всех его слов.

Bag of words (пример)

Пусть корпус состоит из следующих документов:

- D1 "I am feeling very happy today"
- D2 "I am not well today"
- D3 "I wish I could go to play"

Кодировка этих документов будет такой:

	I	am	feeling	very	happy	today	not	well	wish	could	go	to	play
D1	1	1	1	1	1	1	0	0	0	0	0	0	0
D2	1	1	0	0	0	1	1	1	0	0	0	0	0
D3	2	0	0	0	0	0	0	0	1	1	1	1	1

Bag of words

Используя bag of words (BOW), мы теряем информацию о порядке слов в документе.

Пример: векторы документов "I have no cats" и "No, I have cats" будут идентичны.

Tf-idf

- Слова, которые редко встречаются в корпусе, но присутствуют в документе, могут оказаться важными для характеристики документа
- Слова, которые встречаются во всех документах, наоборот, не важны.

Tf-idf

Tf-idf слова $m{t}$ в документе $m{d}$ из корпуса $m{D}$:

$$tfidf(t, d, D) = tf(t, d) \times idf(t, D)$$

- tf(t,d) частота вхождения слова t в документ d
- idf(t,D) величина, обратная частоте, с которой слово t встречается в корпусе D (обычно от нее еще берут логарифм)

Tf-idf

D1: He is a lazy boy. She is also lazy.

D2: Neeraj is a lazy person.

	He	She	lazy	boy	Neeraj	person				
D1	0.06	0.06	0	0.06	0	0				
D2	0	0	0	0	0.1	0.1				

Word2Vec

<u>Цель</u>: для каждого слова из текста получить такой числовой вектор, чтобы векторы похожих по смыслу слов были "близки".

Word2Vec

<u>Цель</u>: для каждого слова из текста получить такой числовой вектор, чтобы векторы похожих по смыслу слов были "близки".

• В 2013 году Томас Миколов и его коллеги предложили word2vec – нейронную сеть, которую можно быстро обучить на огромном объеме текстов для получения векторов слов.

Вспомогательная задача

Задача: по контексту хотим предсказать какое слово стоит внутри

Вспомогательная задача

Ответ может быть таким:

- loves 0.7
- needs 0.25
- holds 0.05

loves

Почему именно такая задача?

Мы работаем в предположении, что слова, встречающиеся в похожих контекстах, похожи!

Например, слова *бутерброд* и *сэндвич* часто встречаются в одинаковых контекстах - значит, модель присвоит им похожие векторы.

$$s = (0.51, 0.7, 0.82, ...)$$

$$b = (0.45, 0.72, 0.83, ...)$$

Где взять данные для обучения?

С помощью скользящего окна движемся по тексту:

- объекты контекст (окружение центрального слова в окне)
- ответы центральное слово

Общая схема такая:

Input layer: каждое слово подаётся в виде OneHot-вектора.

Hidden layer: полносвязный слой БЕЗ функции активации (то есть просто сумма векторов входных слов с весами).

Output layer: вектор вероятностей, предсказанный моделью.

$$egin{array}{c} a & \left(egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ catches \\ catches \\ eats \end{array} \right)$$

Какая функция потерь?

Функция потерь: Cross-Entropy Loss (Log-Loss) - используется во всех задачах классификации, где предсказываем вероятности классов

Помните, что мы ищем?

Где находятся векторы слов?

 \emph{i} -й столбец матрицы W' - это вектор \emph{i} -го слова из словаря!

Почему это работает?

• Обученный word2vec выучил некоторые важные признаки слов (на скрытом слое), и через эти признаки мы получили векторы слов.

Какие-то компоненты у слов похожи, какие-то нет - это означает, что какие-то смысловые свойства слов совпадают, а какие-то нет.

Мера близости слов

В качестве расстояния между словами используется косинусная близость:

$$\rho\left(w_{i},w_{j}\right) = \frac{\left(w_{i},w_{j}\right)}{\left|\left|w_{i}\right|\right| \cdot \left|\left|w_{j}\right|\right|}$$

$$= \frac{\left(w_{i},w_{j}\right)}{\left|\left|w_{i}\right|\right| \cdot \left|\left|w_{j}\right|\right|}$$

$$= \frac{A \cdot B}{\left\|A\right\| \left\|B\right\|}$$
Sandwich
$$= 0.6$$

CBOW и SkipGram

Свойства полученных векторов

• С полученными эмбеддингами слов можно проводить математические действия, которые приведут к осмысленным результатам!

Визуализация эмбеддингов

