A joint normal-binary(probit) model

Research day - 11 October 2021

Author: Margaux Delporte

Co-authors: Steffen Fieuws, Geert Molenberghs, Geert

Verbeke

1 Introduction

- ► Repeated measurement of multiple responses
- Joint analysis outcomes

2 Existing methodology

Longitudinal continuous response

$$Y_{ij}|\boldsymbol{b}_{i} = \boldsymbol{x}'_{ij}\boldsymbol{\beta} + \boldsymbol{z}'_{ij}\boldsymbol{b}_{i}, +\epsilon_{ij}$$

$$\boldsymbol{b}_{i} \sim N(\boldsymbol{0}, D)$$

$$\epsilon_{i} \sim N(\boldsymbol{0}, \sigma_{i}^{2}I_{n_{i}})$$

Longitudinal binary response

$$\Phi^{-1}(P(\mathbf{Y}_{ij}=1)) = \mathbf{x}_{ij}\boldsymbol{\beta} + \mathbf{z}'_{ij}\mathbf{b}_{i}$$
$$\mathbf{b}_{i} \sim N(\mathbf{0}, D)$$

3 Joint model

- Model both responses with a mixed model
- Let the random effects correlate

3 Joint model

$$\begin{split} f(\boldsymbol{y}_{1i}, \boldsymbol{y}_{2i} = 1) &= \left(\int_{-\infty}^{+\infty} \right)^{q} \int_{t=-\infty}^{t=X_{2i}\beta + Z_{2i}\boldsymbol{b}_{i}} \frac{1}{(2\pi)^{\frac{(q+n_{i}+p_{i})}{2}} |D|^{1/2} |\Sigma_{i}|^{1/2}} \\ &\times \exp \left\{ -\frac{1}{2} [\boldsymbol{b}_{i}'D^{-1}\boldsymbol{b}_{i}] \right\} \\ &\times \exp \left\{ -\frac{1}{2} [(\boldsymbol{y}_{1i} - X_{1i}\beta - Z_{1i}\boldsymbol{b}_{i})'\Sigma_{i}^{-1} \right. \\ &\left. (\boldsymbol{y}_{1i} - X_{1i}\beta - Z_{1i}\boldsymbol{b}_{i}) + \boldsymbol{t}'\boldsymbol{t}] \right\} d\boldsymbol{b}_{i} d\boldsymbol{t} \\ &= \phi(y_{1i}; X_{1i}\beta; V_{i}) \Phi(X_{2i}\beta - \alpha_{i}; B_{i}) \end{split}$$

4 Correlation function

$$\begin{split} &\rho_{Y_{1ij},Y_{2ik}} = \\ &\frac{\left(\frac{1}{|D|^{1/2}}\frac{1}{|M|^{1/2}}\frac{1}{L^{1/2}} - 1\right) \boldsymbol{x}_{1ij}'\boldsymbol{\beta}\Phi(L^{1/2}\boldsymbol{x}_{2ik}'\boldsymbol{\beta})}{\sqrt{\left(Z_{1ij}'DZ_{1ij} + \Sigma_{1ij}\right)\Phi(L^{1/2}\boldsymbol{x}_{2ik}'\boldsymbol{\beta})\left(1 - \Phi(L^{1/2}\boldsymbol{x}_{2ik}'\boldsymbol{\beta})\right)}} \\ &+ \frac{\frac{1}{|D|^{1/2}}\frac{1}{|M|^{1/2}}\frac{1}{L}Z_{1ij}'M^{-1}Z_{2ik}\phi(L^{1/2}\boldsymbol{x}_{2ik}'\boldsymbol{\beta})}{\sqrt{\left(Z_{1ij}'DZ_{1ij} + \Sigma_{1ij}\right)\Phi(L^{1/2}\boldsymbol{x}_{2ik}'\boldsymbol{\beta})\left(1 - \Phi(L^{1/2}\boldsymbol{x}_{2ik}'\boldsymbol{\beta})\right)}} \end{split}$$

$$f(\widetilde{\boldsymbol{y}}_{2i} = 1 | \widetilde{\boldsymbol{y}}_{1i}) = \frac{\phi(\widetilde{X}_{1i}\boldsymbol{\beta}; V_i)\Phi(\widetilde{X}_{2i}\boldsymbol{\beta} - \alpha_i; B_i)}{\phi(\widetilde{X}_{1i}\boldsymbol{\beta}; V_i)}$$
$$= \Phi(\widetilde{X}_{2i}\boldsymbol{\beta} - \alpha_i; B_i)$$

$$E[\widetilde{Y}_{1i}|\widetilde{y}_{2i} = 1] = \int_{\widetilde{y}_{1i} = -\infty}^{\widetilde{y}_{1i} = \infty} \widetilde{y}_{1i} \frac{\phi(X_{1i}\beta; W_i)\Phi(X_{2i}\beta - \alpha_i; B_i)}{\Phi(\widetilde{X}'_{2i}\beta, L^{-1})} d\widetilde{y}_{1i}$$

$$= \frac{e^{-\frac{1}{2}G_i}}{\Phi(\widetilde{X}_{2i}\beta; L^{-1})} \sqrt{\frac{|E_i||T_i|}{|V_i||B_i|}} \Phi(\widetilde{X}'_{2i}\beta + H_i\widetilde{X}'_{1i}\beta, F_i, T_i)$$

$$\left(E_i(V_i^{-1}\widetilde{X}'_{1i}\beta + H'_iB_i^{-1}F_i) + E_iH'_iB_i^{-1}T_i[-F_1(o_1) - F_2(o_2) \dots - F_p(o_p)]\right)$$

$$f(\widetilde{\mathbf{y}}_{2i}^{a} = \mathbf{1}|\widetilde{\mathbf{y}}_{1i}, \widetilde{\mathbf{y}}_{2i}^{b} = \mathbf{1}) = \frac{\Phi(\widetilde{X}_{2i}\boldsymbol{\beta} - H_{i}(\widetilde{\mathbf{Y}}_{1i} - \widetilde{X}_{1i}\boldsymbol{\beta}); B_{i})}{\Phi(\widetilde{X}_{2i}^{b}\boldsymbol{\beta} - H_{i}^{b}(\widetilde{\mathbf{Y}}_{1i} - \widetilde{X}_{1i}\boldsymbol{\beta}); B_{i}^{bb})}$$

$$E[\widetilde{Y}_{1i}^{a}|\widetilde{Y}_{1i}^{b} = \widetilde{y}_{1i}^{b}, \widetilde{y}_{2i} = 1] = \frac{e^{-0.5G_{i}}}{(2\pi)^{\frac{n_{b}}{2}}f(\widetilde{y}_{1i}^{b}, \widetilde{y}_{2i} = 1)} \frac{\sqrt{|E_{i}||T_{i}|}}{\sqrt{|V_{i}||B_{i}||E_{i}^{bb}|}} \Phi(\widetilde{X}_{2i}'\beta + H_{i}\widetilde{X}_{1i}'\beta, F_{i}, T_{i})$$

$$\left\{ \left((E_{i}V_{i}^{-1}\widetilde{X}_{1i}\beta_{1})^{a} + E_{i}^{ab}(E_{i}^{bb})^{-1}(\widetilde{y}_{1i}^{b} - (E_{i}V_{i}^{-1}\widetilde{X}_{1i}\beta_{1})^{b}) \right) + \left((E_{i}H_{i}'B_{i}^{-1})^{a} - E_{i}^{ab}(E_{i}^{bb})^{-1}(E_{i}H_{i}B_{i}^{-1})^{b} \right) \right\}$$

$$\times \left(T_{i}[F_{1}(o_{1}) \quad F_{2}(o_{2}) \quad \dots \quad F_{p}(o_{p})] + F_{i}) \right\}$$

5 Results

year(ABPA)			-						
year(FEV)	0	1	2	3	4	5	6	7	8
0	0.146	0.148	0.150	0.151	0.151	0.151	0.150	0.149	0.147
1	0.155	0.157	0.159	0.159	0.159	0.159	0.158	0.157	0.155
2	0.163	0.165	0.166	0.167	0.167	0.166	0.165	0.163	0.161
3	0.169	0.171	0.172	0.173	0.172	0.171	0.170	0.168	0.166
4	0.174	0.177	0.177	0.177	0.177	0.176	0.174	0.172	0.170
5	0.179	0.180	0.181	0.181	0.180	0.179	0.177	0.175	0.173
6	0.182	0.183	0.184	0.184	0.183	0.181	0.180	0.177	0.175
7	0.184	0.185	0.186	0.185	0.184	0.183	0.181	0.178	0.176
8	0.185	0.186	0.187	0.186	0.185	0.184	0.181	0.179	0.176

5 Results

		$Y_{1i(j-2)}$	$Y_{1i(j-1)}$	No	ABPA	ABPA		
j	$Y_{1i(j-3)}$			$E[Y_{1ij}]$	PI Y_{1ij}	$E[Y_{1ij}]$	PI Y_{1ij}	
3	64.9	64.9	64.9	62.70	[49.9;78.7]	62.43	[49.2;79.3]	
4	64.9	64.9	64.9	62.41	[49.7;78.4]	62.18	[48.9;79.1]	
5	64.9	64.9	64.9	62.17	[49.6;77.9]	61.98	[48.7;78.9]	
6	64.9	64.9	64.9	61.97	[49.3;77.9]	61.82	[48.6;78.7]	
7	64.9	64.9	64.9	61.83	[49.1;77.9]	61.72	[48.5;78.6]	
8	64.9	64.9	64.9	61.74	[49.1;77.6]	61.66	[48.4;78.5]	
3	84	84	84	81.66	[68.6;97.2]	81.48	[67.5;98.4]	
4	84	84	84	81.62	[68.5;97.2]	81.47	[67.4;98.4]	
5	84	84	84	81.61	[68.3;97.5]	81.48	[67.4;98.5]	
6	84	84	84	81.61	[68.7;96.9]	81.51	[67.4;98.5]	
7	84	84	84	81.65	[68.5;97.3]	81.57	[67.5;98.6]	
8	84	84	84	81.71	[68.4;97.6]	81.65	[67.6;98.6]	

6 Conclusion and discussion

- Latent versus manifest correlations
- Time dependent covariates
 - Missing data
 - Characterization of the lag relationship
 - Endogenous or exogenous
 - Intermediate variable
- Random effects structure