Universidade Federal do Amazonas Bacharelado em Matemática

Laboratório de Física I Relatório III

Gabriel Bezerra de M. Armelin - 21550325 Mario Alves Pardo Junior - 21553964 Jonas Miranda Cascais Júnior - 21553844 Fabrício Yuri Costa da Silva - 21454545

Introdução

Este relatório descreve e analisa o experimento realizado em sala de aula na disciplina Laboratório de Física I do curso de Bacharelado em Matemática.

Parte Experimental

O experimento consiste em estimar o valor da aceleração da gravidade no local de realizazação do experimento. Para isto, as seguintes etapas foram realizadas por 4 alunos:

- 1) Coleta do tempo de queda de uma esfera em diversas alturas diferentes. Para a medição deste tempo, foi utilizado um aparelho apropriado para a tarefa. Este aparelho é capaz de medir o tempo de queda com precisão de 0.001 segundos.
- 2) Estimatica da aceleração da gravidade
- 3) Estimativa do erro

Tratamento de Dados

Esta seção apresenta os dados e cálculos em cada atividade descrita na seção Parte Experimental.

1) Coleta das amostras

A primeira atividade diz respeito à coleta das amostras de tempo de queda da espera em diversas distâncias e por 4 alunos diferentes. A próxima tabela apresenta os valores coletados:

Table 1: Amostras dos tempos de queda da esfera em segundos.

	0.10 m (s)	$0.15 \mathrm{m} \mathrm{(s)}$	0.20 m (s)	$0.25 \mathrm{\ m\ (s)}$	0.30 m (s)	0.35 m (s)
Aluno1	0.13710	0.17010	0.1963	0.22130	0.24430	0.2653
Aluno2	0.13810	0.17180	0.1997	0.22410	0.24600	0.2656
Aluno3	0.13620	0.17030	0.1980	0.22220	0.24480	0.2650
Aluno4	0.13570	0.17160	0.1972	0.22230	0.24340	0.2657
Média	0.13677	0.17095	0.1978	0.22248	0.24462	0.2654

2) Estimativa da aceleração da gravidade

Esta seção descreve o processo utilizado para estimar a aceleração da gravidade. O primeiro será apresentar graficamente a relação de tempo de queda médio da esfera (calculado na seção anterior) com a distância percorrida. O próxmo gráfico apresenta o resultado obtido:

O gráfico se assemelha a uma reta ou uma leve curva. Esperava-se que a curva fosse mais acentuada já que o gráfico da relação distância-tempo em um movimento uniformemente variado é uma meia parábola. Entendemos que este gráfico se apresentou desta maneira devido ao número pequeno de amostras coletadas.

Pode calcular a aceleração utilizando a seguinte fórmula:

$$s = s_0 + v_0 t + \frac{1}{2} a t^2 \tag{1}$$

Onde:

s = corresponde a posição final. Os valores 5cm, 10cm, 15cm, 20cm, 25cm, 30cm e 35cm foram utilizados como posição final.

 $s_0 =$ corresponde a posição inicial. Neste caso será considerado 0 a posição inicial.

 v_0 = corresponde a velocidade inicial. Como a esfera está em repouso em t=0, a velocidade inicial é 0.

t = corresponde ao tempo final de queda, Neste caso serão utilizados os valores dos tempos médios para cada distância percorrida que foram apresentados na tabela 1.

A seguinte tabela apresenta a aceleração da gravidade para cada distância percorrida:

Table 2: Acelerações da gravidade para cada altura da esfera.

	0.10 m (s)	$0.15 \mathrm{\ m\ (s)}$	$0.20 \mathrm{\ m\ (s)}$	$0.25 \mathrm{\ m\ (s)}$	$0.30 \mathrm{\ m\ (s)}$	0.35 m (s)
Aceleração	10.69096	10.26557	10.22368	10.102	10.0265	9.93794

A média das acelerações é:

 $10.2077759281 \ m/s^2$.

3) Estimativa do erro

Esta seção apresenta as estimativas dos erro de medição da seção anterior. Inicialmente, calculamos o erro de cada medição em relação a média dos tempos de queda, conforme a tabela abaixo.

Table 3: Erros de medição dos tempos de queda da esfera em segundos.

	$0.10 \mathrm{\ m\ (s)}$	$0.15 \mathrm{\ m\ (s)}$	$0.20 \mathrm{\ m\ (s)}$	$0.25 \mathrm{\ m\ (s)}$	$0.30 \mathrm{\ m\ (s)}$	$0.35 \mathrm{\ m\ (s)}$
Aluno1	0.00033	0.00085	0.00150	0.00118	0.00032	0.00010
Aluno2	0.00133	0.00085	0.00190	0.00162	0.00138	0.00020
Aluno3	0.00057	0.00065	0.00020	0.00027	0.00018	0.00040
Aluno4	0.00107	0.00065	0.00060	0.00018	0.00122	0.00030
Média	0.00083	0.00075	0.00105	0.00081	0.00077	0.00025

A partir dos erros médios dos tempos de queda, podemos estimar a variação de erro inferior da aceleração da gravidade. A tabela abaixo apresenta os resultados:

Table 4: Intervalo inferior da estimativa das acelerações da gravidade para cada altura da esfera.

	0.10 m (s)	$0.15 \mathrm{m} \mathrm{(s)}$	$0.20 \mathrm{\ m\ (s)}$	$0.25 \mathrm{\ m\ (s)}$	0.30 m (s)	0.35 m (s)
Aceleração	10.56314	10.17608	10.116	10.02862	9.96328	9.91924

A média das acelerações é:

 $10.127726812 \ m/s^2$.

Por fim, estimamos a variação de erro superior da aceleracao da gravidade. A próxima tabela apresenta os resultados obtidos.

Table 5: Intervalo superior das estimativas das acelerações da gravidade para cada altura da esfera.

	0.10 m (s)	0.15 m (s)	0.20 m (s)	0.25 m (s)	0.30 m (s)	0.35 m (s)
Aceleração	10.8211	10.35624	10.3331	10.1762	10.09034	9.95669

A média das acelerações é:

 $10.2889439344 \ m/s^2$.

Conclusão

De acordo com os dados apresentados, pode-se concluir que a estimativa da aceleração da gravidade está no seguinte intervalo:

Table 6: Intervalo de estimativa da aceleração da gravidade

Intervalo inferior	Intervalo superior
10.12773	10.28894