Kinematic Modeling and Control of a Six-Wheel Planetary Rover with Front Steering

RoboMade Team

Coordinate frames for the left side of the rover

DH Table				
Frame	γ	d	a	α
D	0	k_1	0	-90
B ₁	$k_9+ ho$	$k_3+\overline{k}_3$	k_6	0
B ₂	$k_9- ho$	$-k_3+\overline{k}_3$	k_6	0
S ₁	ρ	k_3	k_4	90
S ₂	- ho	$-k_3$	k_4	90
S ₃	eta_1-k_9	0	k_7	90
S ₄	eta_1-k_9	0	k_7	90
S ₅	eta_1-k_9	0	$-k_7$	90
S ₆	eta_1-k_9	0	$-k_7$	90
A ₁	ψ_1	$-k_5$	0	0
A ₂	ψ_2	$-k_5$	0	0
A3	0	$-k_8$	0	0
A ₄	0	$-k_8$	0	0
A5	0	$-k_8$	0	0
A ₆	0	$-k_8$	0	0

 \mathbf{R} = Rover reference frame

 \mathbf{D} = Differential frame

 \mathbf{B}_i = Bogie frames (i = 1, 2)

 \mathbf{S}_i = Steering frames $(i=1,\ldots,6)$

 $\mathbf{A}_i = \text{Axle frames} (i = 1, \dots, 6)$

Schematic diagram showing joint angles and wheel rolling angles for the the rover's left side

```
\psi_i
 = Steering angles (i = 1, 2)

\rho
 = Left rocker angle
(right\ rocker\ angle = -\rho)

\beta_i
 = Bogie angle (i = 1, 2)

\theta_i
 = Wheel rolling angle (i = 1, ..., 6)
```

Steering Angles and turning radius calculation based on input (V, ω)

 x_R = Distance from instataneous center of rotation (*ICC*) to rover reference frame R in x axis

 x_{ci} = Distance from wheel (i) center to rover reference frame R in x axis

L = Turning radius

$$L=V/\omega$$

$$\psi_i = an^{-1}igg(rac{x_{c_i}\pm x_R}{R\pm k_3}igg)$$

Wheel rolling velocities calculation based on input (V,ω)

$$egin{aligned} v_1 &= \omega \cdot \sqrt{\left(x_{c_2} + x_R
ight)^2 + \left(L - k_3
ight)^2} \ v_2 &= \omega \cdot \sqrt{\left(x_{c_2} + x_R
ight)^2 + \left(L + k_3
ight)^2} \ v_3 &= v_5 &= \omega \cdot \left(L - k_3 - \overline{k}_3
ight) \ v_2 &= v_4 &= \omega \cdot \left(L + k_3 + \overline{k}_3
ight) \ \dot{ heta}_i &= v_i/k_{10} \end{aligned}$$

