Compito n. 0	06/06/2024	1

Nome	Cognome		Numero di matricola	

Primo Appello di Fisica del 06/06/2024.

Istruzioni per la consegna: Consegnare il presente foglio compilato, marcando le risposte corrette; per lo svolgimento, usare solo fogli bianchi forniti dai docenti; scrivere solo su un lato di ogni foglio; scrivere il proprio nome su ogni foglio consegnato; indicare chiaramente a quale domanda si riferisce ogni parte dello svolgimento; motivare i passaggi svolti.

Costanti numeriche: intensità dell'accelerazione gravitazionale in prossimità della superficie terrestre: $g = 10.0 \text{ m/s}^2$.

Problema 1: Un punto materiale di massa m si muove su un piano secondo la seguente legge oraria, in coordinate polari: $r(t) = \ell_0[1 + \cos{(2\Omega t)}]$, $\theta(t) = \Omega t$. Sia t_1 il primo istante di tempo a cui la distanza dall'origine è pari a un quarto del proprio valore massimo e la velocità radiale è negativa.

Si utilizzino i seguenti valori numerici: m=1.30 kg, $\ell_0=2.60$ m, $\Omega=2.70$ rad/s.

Determinare:

- 1.1) il modulo v_1 della velocità all'istante t_1 ; v_1 [m/s] = A $\boxed{6.27}$ B $\boxed{4.92}$ C $\boxed{5.38}$ D $\boxed{7.24}$ **X** $\boxed{12.7}$
- 1.2) il modulo L_0 del momento angolare, rispetto all'origine, all'istante t_1 ; $L_0 \ [N m] = A \ \boxed{3.26} \ B \ \boxed{4.46} \ C \ \boxed{11.2} \ D \ \boxed{12.6} \ \boxed{\textbf{X}} \ \boxed{5.93}$
- 1.3) la componente radiale F_r della forza agente sul punto materiale all'istante t_1 ; F_r [N] = A 150 B 41.3 X 37.0 D 46.1 E 134
- 1.4) il modulo M_0 del momento, rispetto all'origine, della forza agente sul punto materiale all'istante t_1 ; M_0 [N m] = \mathbf{X} [46.9] B [80.6] C [23.3] D [59.6] E [27.6]
- 1.5) il lavoro \mathcal{L} compiuto sul punto materiale tra l'istante iniziale e l'istante t_1 . $\mathcal{L}\left[J\right] = A \begin{bmatrix} -29.2 \end{bmatrix} B \begin{bmatrix} 18.8 \end{bmatrix} C \begin{bmatrix} 9.64 \end{bmatrix} X \begin{bmatrix} -24.0 \end{bmatrix} E \begin{bmatrix} -32.4 \end{bmatrix}$

Problema 2: Un cilindro di massa M e raggio R rotola all'interno di una guida cilindrica fissa, di raggio 4R, senza strisciare né staccarsi. All'istante t_0 il cilindro si trova nel punto più basso della guida e il suo centro di massa ha velocità v_0 . Sia t_1 l'istante di tempo a cui il cilindro raggiunge il punto più alto della guida.

PS: La guida cilindrica giace su un piano perpendicolare al suolo e il cilindro di massa M è soggetto alla forza peso.

Si utilizzino i seguenti valori numerici: M=1.10 kg, R=0.160 m, $v_0=5.30$ m/s.

Determinare:

- 2.1) il modulo ω_0 della velocità angolare di rotazione del cilindro all'istante t_0 ; ω_0 [rad/s] = \mathbf{X} 33.1 B 105 C 63.6 D 124 E 47.5
- 2.2) l'energia cinetica K_0 all'istante t_0 ; K_0 [J] = A $\boxed{20.0}$ B $\boxed{58.2}$ C $\boxed{27.3}$ $\boxed{\textbf{X}}$ $\boxed{23.2}$ E $\boxed{79.4}$
- 2.3) la velocità v_1 del centro di massa del cilindro all'istante t_1 ; v_1 [m/s] = A $\begin{bmatrix} 7.63 \end{bmatrix}$ B $\begin{bmatrix} 3.54 \end{bmatrix}$ C $\begin{bmatrix} 3.35 \end{bmatrix}$ **X** $\begin{bmatrix} 3.91 \end{bmatrix}$ E $\begin{bmatrix} 3.03 \end{bmatrix}$
- 2.4) il modulo N della reazione normale della guida all'istante t_1 ;
- N [N] = A [13.6] B [12.0] **X** [24.0] D [37.9] E [19.8] 2.5) il modulo F_a della forza di attrito statico esercitata dalla guida sul cilindro all'istante t_1 .
- $F_{\rm a}$ [N] = A $\boxed{11.0}$ X $\boxed{0.00}$ C $\boxed{48.1}$ D $\boxed{12.0}$ E $\boxed{24.0}$