This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

A1

(11) International Publication Number:

WO 91/10732

C12N 9/42, 15/56, C11D 3/386

(43) International Publication Date:

25 July 1991 (25.07.91)

(21) International Application Number:

PCT/DK91/00013

(22) International Filing Date:

18 January 1991 (18.01.91)

(30) Priority data:

0164/90

19 January 1990 (19.01.90) DK

(71) Applicant (for all designated States except US): NOVO NORDISK A/S [DK/DK]; Novo Allé, DK-2880 Bagsvaerd (DK).

(72) Inventors; and

(75) Inventors; and
(75) Inventors/Applicants (for US only): JØRGENSEN, Per, Lina [DK/DK]; Dronningens Tværgade 37.1, DK-1302
Copenhagen K (DK). SCHÜLEIN, Martin [DK/DK];
Wiedeweltsgade 51, DK-2100 Copenhagen Ø (DK).
HANSEN, Christian [DK/FR]; Fondation Danoise, 9, Boulevard Jourdan, F-75014 Paris (FR).

(74) Agent: NOVO NORDISK A/S; Patent Department, Novo Allé, DK-2880 Bagsvaerd (DK).

(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FI, FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent), US.

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: AN ENZYME EXHIBITING CELLULASE ACTIVITY

(57) Abstract

An enzyme which exhibits cellulase activity, which enzyme is producible by a strain of Bacillus spp., NCIMB 40250, or a related Bacillus spp. strain, or a derivative of said cellulase. In particular, the enzyme is an endoglucanase with an apparent molecular weight of 75, 56 or 45 kD or a cleavage product thereof with endoglucanase activity. An enzyme which comprises a core region derived from an endoglucanase combined with a cellulose-binding domain derived from another cellulase enzyme, or which comprises a core region derived from another cellulase enzyme combined with a cellulose-binding domain derived from an endoclucanase.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
AU	Australia	PI	Finland	ML.	Mali
BB	Barbados	FR	France	MN	Mongolia
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GN	Guinea	NL	Netherlands
BJ	Benin	GR	Greece	NO	Norway
BR	Brazil	HU	Hungary	PL	Poland
CA	Canada	IT	Italy	RO	Romania
CF	Central African Republic	JP	Japan	SD	Sudan
CG	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Korea	SN	Senegal
CI	Côte d'Ivoire	KR	Republic of Korea	SU	Soviet Union
CM	Cameroon	LI	Liechtenstein	TD	Chad
CS	Czechoslov: 539	LE	Sri Lanka	TG	Togo
DE	Germany	4.t	Luxembourg	us	United States of America
DK	Denmark	.v. ·	Monaco		•

WO 91/10732 PCT/DK91/00013

1

AN ENZYME EXHIBITING CELLULASE ACTIVITY

FIELD OF THE INVENTION

The present invention relates to an enzyme exhibiting cellulase activity, a DNA construct encoding the enzyme, a cellulolytic agent comprising the enzyme and a detergent composition containing the enzyme.

10 BACKGROUND OF THE INVENTION

Biomass which largely consists of cellulose, hemicellulose and lignin has attracted increasing attention as an important renewable source of energy (including nutritional energy). The 15 amount of carbon fixed by photosynthesis has been estimated to be 100x10° tons per year worldwide, and half of that is contained in cellulose. If this material, or at least a significant part of it, could be converted into liquid fuel, gas and feed protein, this would constitute a significant contribution to solving the problem of recycling and conservation of resources. 20 However, it has been found difficult to develop an economically viable process of converting cellulosic material fermentable sugars.

25 The currently most promising of the suggested processes involves the use of enzymes which are able to degrade cellulose. These enzymes which are collectively known as cellulases are produced by a number of microorganisms, including fungi (e.g. Trichoderma Humicola insolens, Fusarium oxysporum, etc.) 30 bacteria (e.g. <u>Clostridium thermocellum</u>, <u>Cellulomonas</u> spp., Thermonospora spp., Bacterioides spp., Microbispora bispora, etc.). The economics of the production of fermentable sugars from biomass by means of such enzymes is not yet competitive with, for instance, the production of glucose from starch by means of α -amylase due to the ineffeciency of the cellulase enzymes. The most significant problems connected with the use of cellulases is their low specific activity and the high cost of

30

1

their production. Therefore, there is a need to develop cellulases which are more efficient in degrading cellulosic materials into fermentable sugars.

5 Apart from their utility for the degradation of biomass, cellulases have also been suggested for use in detergent compositions for the treatment of cotton-containing fabrics which largely consist of cellulose. It is well known that repeated washing of cotton-containing fabrics generally causes a pronounced, unpleasant harshness in the fabric due to the 10 presence of amorphous regions in the cellulose fibres, which regions form protruding parts on the otherwise smooth fibres. Several methods for overcoming this problem have previously been suggested. For example, US 1.368.599 of Unilever Ltd. teaches the use of cellulases for reducing the harshness of cotton-15 containing fabrics. Also, US 4.435.307 (of Novo Industri A/S) teaches the use of a cellulytic enzyme derived from <u>Humicola</u> insolens as well as a fraction thereof as a harshness reducing detergent additive. Other uses of cellulases mentioned in the art include soil removal from and colour clarification of fabric 20 (cf. for instance EP 220 016).

Although the use of cellulase enzymes for harshness reduction of cotton-containing fabrics was suggested and demonstrated nearly 20 years ago the mechanism of this process has not been elucidated and is still not known in detail. Among other things, this is due to the multiplicity of the enzymes and the enzymecatalyzed reactions involved. As a matter of fact, cellulases generated in nature e.g. by microbial species are indeed complex mixtures of cellulases. Accordingly, the conversion of naturally occurring materials, like cotton, catalyzed by cellulases is exceedingly difficult to analyze in detail.

Due to these circumstances, the practical exploitation of cellulases for harshness reduction and prevention as well as colour clarification, however desirable, has not become widespread and of great practical utility: it is difficult to

WO 91/10732 PCT/DK91/00013

3

optimise production of multiple enzyme systems and thus to implement industrial cost-effective production of cellulase enzymes, and their actual use has been hampered by difficulties arising from the need to employ rather large quantities of the cellulases to achieve the desired reduction and prevention of the harshness of cotton fabrics: for instance, addition of large quantities of the enzymes to detergent compositions is not compatible with the optimal function of other ingredients in the detergent formulation nor is the addition of very large quantities of enzymes to the detergent composition in the interests of, e.g., consumer safety.

The object of the present invention is therefore to provide cellulase enzymes with a high specific activity.

15

20

25

30

35

10

SUMMARY OF THE INVENTION

The present invention relates to an enzyme which exhibits cellulase activity, which enzyme is producible by a strain of Bacillus spp., NCIMB 40250, or by a related Bacillus spp. strain, or a derivative of said cellulase. The strain NCIMB 40250 was deposited on 18 January, 1990, in the National Collection of Industrial and Marine Bacteria, 23 St Machar Drive, Aberdeen, Scotland, UK, in accordance with the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure.

In the present context, the expression "enzyme exhibiting cellulase activity" is meant to be understood as an enzyme which is involved in the process of cellulose degradation. There are three different types of cellulases which act synergistically to produce soluble sugars: endoglucanases which show affinity for cellulose and which attack amorphous regions of low crystallinity in the cellulose fibre resulting in the formation of free ends; exoglucanases which initiate degradation from the non-reducing chain ends by removing cellobiose units; and ß-glucosidases which hydrolyse cellobiose to glucose.

35

4

The expression "related <u>Bacillus</u> spp. strain" is intended to indicate a strain belonging to the same <u>Bacillus</u> species as the strain NCIMB 40250 or a strain of a closely related species. The species to which the strain NCIMB 40250 belongs has been identified as <u>Bacillus lautus</u>. The scope of the present invention is also intended at least to include cellulase enzymes producible by other <u>Bacillus lautus</u> strains than NCIMB 40250.

The term "derivative" is intended to indicate a protein which is derived from the native protein by addition of one or more amino acids to either or both the C- and N-terminal end of the the native protein, substitution of one or more amino acids at one or a number of different sites in the native amino acid sequence, deletion of one or more amino acids at either or both ends of the native protein or at one or more sites in the amino acid sequence, or insertion of one or more amino acids at one or more sites in the native amino acid sequence.

Although the enzyme of the invention may be produced by cultivating the <u>Bacillus</u> spp. strain NCIMB 40250 or a related strain and isolating the enzyme from the culture, it will generally be more advantageous to produce the enzyme by recombinant DNA techniques which make it possible to optimize the yield of the enzyme produced. Furthermore, cloned genes encoding the enzymes may be modified in order to provide enzymes with improved properties.

Thus, in another aspect, the present invention relates to a DNA construct which comprises a DNA sequence encoding an enzyme exhibiting cellulase activity, which enzyme is derivable from a strain of <u>Bacillus</u> spp., NCIMB 40250, or a related <u>Bacillus</u> spp. strain, or a derivative of said cellulase. The invention further relates to an expression vector which carries an inserted DNA construct as indicated above, as well as to a cell transformed with the DNA construct or with the vector.

In a still further aspect, the invention relates to a cellulolytic agent capable of degrading amorphous regions of cellulose fibres, the agent comprising an enzyme exhibiting cellulase activity as defined above.

5

10

25

30

The invention also relates to a detergent composition comprising the cellulolytic agent. The cellulase enzyme of the invention has surprisingly been found to be more stable during washing (for 60 minutes at 40°C) in the presence of conventional detergents than a commercial cellulase preparation (CelluzymeTM, a cellulase preparation isolated from Humicola insolens, available from Novo Nordisk, A/S). The cause of the increased stability may reside in the alkalophilic nature of the enzyme (see example 5 below). It is further speculated that it may also 15 be ascribed to stability towards oxidation or towards the proteases commonly included in detergents. If so, the celluase enzyme of the invention may also show increased storage stability in liquid detergents containing proteases.

20 DETAILED DISCLOSURE OF THE INVENTION

The cellulase enzyme of the present invention is preferably one which exhibits endoglucanase activity (referred to in the following as an endoglucanase), in particular one which exhibits an endoglucanase activity of at least about 10, more preferably at least about 20, most preferably at least about 25, such as about 30, CMC-endoase units per mg of total protein under alkaline conditions. The endoglucanase activity is determined as the viscosity decrease of a solution of carboxymethyl cellulose (CMC) after incubation with the enzyme of the present invention under the following conditions:

A substrate solution is prepared, containing 35 g/l CMC (Hercules 7 LFD) in 0.1 M tris buffer at pH 9.0. The enzyme sample 35 to be analyzed is dissolved in the same buffer.

10 ml substrate solution and 0.5 ml enzyme solution are mixed

and transferred to a viscosimeter (e.g. Haake VT 181, NV sensor, 181 rpm), thermostated at 40°C.

Viscosity readings are taken as soon as possible after mixing and again 30 minutes later. The amount of enzyme that reduces the viscosity by one half under these conditions is defined as 1 CMC-endoase unit.

It should be noted that the endoglucanase of the invention is 10 one which is active (in terms of CMC-endoase activity) under alkaline conditions. More specifically, the endoglucanase is one which has a pH optimum at a pH of about 7.5-10.5. Contrary to several known cellulases which are active at an acid pH and relatively inactive at alkaline pH values, this characteristic makes the endoglucanase of the invention particularly useful for 15 washing purposes, in particular as an ingredient of a detergent composition, as washing of clothes is typically conducted under alkaline conditions due to the alkalinity of most washing detergents. Alkalophilic cellulases are known, e.g. from EP 271 004, but they are not indicated to have a high affinity for 20 cellulose, which is the case with the cellulase enzyme of the present invention which also exhibits a higher specific activity.

The enzyme of the present invention is preferably one which is active at the temperatures at which clothes are typically washed, which is usually a temperature of up to about 60°C. Thus, the native enzyme isolated from strain NCIMB 40250 is active at temperatures between about 45 and 65°C. This, however, does not preclude the possibility that the enzyme may, under certain conditions, be active at temperatures above 65°C.

One enzyme according to the invention is an endoglucanase with an apparent molecular weight of 75 kD or a cleavage product thereof exhibiting endoglucanase activity. The term "cleavage product" is intended to indicate a shorter form of the enzyme resulting from, for instance, chemical or enzymatic cleavage

15

20

(e.g. by means of a suitable protease) after recovery of the enzyme or from posttranslational processing by the organism producing the enzyme, e.g. N- and/or C-terminal processing, which may give rise to a mature form of the enzyme. A specific example of a cleavage product of the ~75 kD enzyme which is of interest for the present purpose is a product of approximately 58 kD produced on cultivating a host organism transformed with DNA encoding the ~75 kD enzyme. The ~75 kD enzyme (and its ~58 kD cleavage product) are referred to in the following examples as Endol.

The enzyme of the invention may be an endoglucanase encoded by the DNA sequence shown in the appended Sequence Listing ID#1 (showing the sequence of the ~75 kD enzyme), or a modification thereof encoding a derivative of said endoglucanase.

Endoglucanase derivatives may conveniently be provided by suitably modifying the DNA sequence coding for the native endoglucanase. Examples of suitable modifications of the DNA sequence are nucleotide substitutions which do not give rise to another amino acid sequence of the endoglucanase, but which may correspond to the codon usage of the host organism into which the DNA construct is introduced or nucleotide substitutions which do give rise to a different amino acid sequence and therefore, possibly, a different polypeptide structure without, however, impairing the properties of the endoglucanase. Other examples of possible modifications are insertion of one or more nucleotides into the sequence, addition of one or more nucleotides at either end of the sequence and deletion of one or more nucleotides at either end of or within the sequence. Such 30 modifications of DNA coding for native proteins are well known and widely practised in the art.

Another enzyme according to the invention is an endoglucanase with an apparent molecular weight of 56 kD or a cleavage product thereof (as defined above) exhibiting endoglucanase activity. In example 2 below, this enzyme is referred to as Endo2.

The enzyme of the invention may be an endoglucanase encoded by the DNA sequence shown in the appended Sequence Listing ID#3 (showing the sequence of the ~56 kD enzyme), or a modification thereof (as defined above) encoding a derivative (as defined above) of said endoglucanase.

A further enzyme according to the invention is an endoglucanase with an apparent molecular weight of 45 kD or a cleavage product thereof (as defined above) exhibiting endoglucanase activity. A specific example of such a cleavage product is a protein of approximately 30 kD produced on cultivating a host organism transformed with DNA encoding the ~45 kD enzyme. In example 3 below, the ~45 kD enzyme is referred to as Endo3A.

15

20

25

30

35

10

The enzyme of the invention may be an endoglucanase encoded by the DNA sequence shown in the appended Sequence Listing ID#5 (showing the DNA sequence encoding the ~45 kD product), or a modification thereof (as defined above) encoding a derivative (as defined above) of said endoglucanase.

Other enzymes exhibiting endoglucanase activity produced from endoglucanase clone 3 (cf. example 3 below) are proteins of approximately 60 and 56 kD, referred to as Endo3B and Endo3B and Endo3C, respectively.

A still further enzyme according to the invention is an endoglucanase with an apparent molecular weight of 92 kD or a cleavage product thereof (as defined above) exhibiting endoglucanase activity. In example 4 below, this enzyme is referred to as Endo4. Other enzymes exhibiting endoglucanase activity produced from endoglucanase clone 4 (cf. example 4 below) are proteins of approximately 74 and 71 kD. Either or both of these may be individual enzymes or cleavage products of the ~92 kD enzyme.

It has been found that enzymes of the invention, e.g. <u>Endol</u> and <u>Endo3A</u>, are composed of a core region comprising the catalytically active domain and a region comprising a domain whose function is to mediate binding to cellulosic substrates (i.e. the cellulose-binding domain; this corresponds to a similar domain in an endocellulase from <u>Bacillus subtilis</u> (Nakamura et al., 1987). For example, the full-length ~75 kD form of <u>Endol</u> comprises a core region and a C-terminal cellulose-binding domain which, in some cases, may be cleaved off proteolytically leaving a core region of ~58 kD. The presence of the cellulose-binding domain has been found to be important for obtaining a colour clarification effect in prewashed textiles (cf. example 6 below).

Based on this finding, it may be possible to generate novel 15 derivatives of cellulase enzymes which, for instance, combine a core region derived from an endoglucanase of the present invention with a cellulose-binding domain derived from another cellulase enzyme (e.g. one derived from a Cellulomonas fimi 20 cellulase). Alternatively, it may be possible to combine a core region derived from another cellulase enzyme with a cellulosebinding domain derived from an endoqlucanase of the present invention. In a particular embodiment, the core region may be derived from a cellulase enzyme which does not, in nature, 25 comprise a cellulose-binding domain, and which is C-terminally extended with a cellulose-binding domain derived from an endoglucanase of the present invention. In this way, it may be possible to construct cellulase enzymes with improved binding properties.

30

35

10

The DNA construct of the invention may be one which comprises a DNA sequence encoding any one of the enzymes described above, or derivatives of these enzymes as defined above. The DNA construct may be of genomic or cDNA origin, for instance obtained by preparing a genomic or cDNA library of an appropriate <u>Bacillus</u> spp. strain (e.g. strain NCIMB 40250 or a related strain) and screening for DNA sequences coding for all or part of the

WO 91/10732 PCT/DK91/00013

10

appropriate cellulase by hybridization using synthetic oligonucleotide probes in accordance with standard techniques (cf. Maniatis et al., 1982).

The expression vector of the invention carrying the inserted DNA construct encoding the enzyme of the invention may be any vector which is capable of replicating autonomously in a given host organism, typically a plasmid or bacteriophage. In the vector, the DNA sequence encoding the enzyme of the invention should be operably connected to a suitable promoter sequence. The promoter may be any DNA sequence which shows transcriptional activity in the host cell and may be derived from genes encoding proteins either homologous or heterologous to the host organism. The promoter is preferably derived from a gene encoding a protein homologous to the host organism. Examples of suitable promoters are lac of E.coli, dagA of Streptomyces coelicolor and amyL of Bacillus licheniformis.

The expression vector of the invention further comprises a DNA sequence enabling the vector to replicate in the host cell. Examples of such sequences are the origins of replication of plasmids pUC19, pACYC177, pUB110 and pIJ702.

The expression vector may further comprise a DNA sequence coding 25 for a signal peptide in order to provide extracellular expression of the enzyme. The DNA sequence may, for instance, be the signal sequence from the α -amylase gene of \underline{B} . licheniformis.

The vector may also comprise a selectable marker, e.g. a gene whose product confers antibiotic resistance, such as ampicillin, chloramphenicol or tetracycline resistance, or the <u>dal</u> genes from <u>B.subtilis</u> or <u>B.licheniformis</u>.

The procedures used to ligate the DNA sequences coding for the enzyme of the invention and the promoter, respectively, and to insert them into suitable vectors containing the information necessary for replication in the host cell, are well known to

persons skilled in the art (cf., for instance, Maniatis et al., op.cit.).

The host cell of the present invention may be transformed with 5 the DNA construct of the invention encoding the cellulase enzyme described above. the In this case, DNA construct conveniently be integrated in the host chromosome which may be an advantage as the DNA sequence coding for the cellulase is more likely to be stably maintained in the cell. Integration of 10 the DNA constructs into the host chromosome may be performed according to conventional methods, e.g. by homologous recombination.

Alternatively, the host cell may be transformed with an expression vector as described above.

The host cell used in the process of the invention may be any suitable bacterium which, on cultivation, produces large amounts of the enzyme of the invention. Examples of suitable bacteria 20 may be grampositive bacteria such as bacteria belonging to the genus Bacillus, e.g. Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Bacillus brevis, Bacillus stearothermophilus, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus coaqulans, **Bacillus** circulans or Bacillus lautus, 25 gramnegative bacteria such as Escherichia coli. The transformation of the bacteria may for instance be effected by protoplast transformation or by using competent cells in a manner known per se.

In a yet further aspect, the present invention relates to a method of producing a cellulase enzyme of the invention, which method comprises cultivating a host cell as described above under conditions conducive to the production of the cellulase or derivative thereof and recovering the cellulase or derivative thereof from the cells and/or culture medium.

The medium used to cultivate the cells may be any conventional

medium suitable for growing bacteria. The cellulase may be recovered from the medium by conventional procedures including separating the cells from the medium by centrifugation or filtration, if necessary after disruption of the cells, precipitating the proteinaceous components of the supernatant or filtrate by means of a salt, e.g. ammonium sulphate, followed by purification by a variety of chromatographic procedures, e.g. ion exchange chromatography, affinity chromatography, or the like.

10

15

In a particular embodiment of the method of the invention, the cellulase is recovered in mature form, either as a result of posttranslational processing of a proenzyme as explained above or as a result of appropriate modifications of the DNA sequence encoding the enzyme in the form of deletions of DNA corresponding to truncations in the N- and/or C-terminal sequences of the enzyme.

There is reason to believe that different cellulases may exert a synergistic effect with respect to the degradation of 20 cellulose. The cellulolytic agent of the invention may therefore advantageously comprise a combination of two or more cellulase enzymes of the invention or a combination of one or more cellulase enzymes of the invention with one or more other 25 enzymes exhibiting cellulase activity. Such cellulases may be endocellulases or exocellulases dependent on the intended use of the cellulolytic agent (e.g. the degree of cellulose degradation aimed at). The other cellulases may be selected from those which may be isolated from species of Humicola such as Humicola 30 insolens (e.g. strain DSM 1800), Fusarium such as Fusarium oxysporum (e.g. strain DSM 2672), Myceliopthora such as Myceliopthora thermophile, Erwinia such as Erwinia chrysanthermis (cf. M.H. Boyer et al., Eur. J. Biochem. 162, 1987, pp. 311-316), Trichoderma such as Trichoderma reseei, Microbispora such as Microbispora bispora, Neocallimastix such 35 Neocallimastix frontalis, Piromonas such as Piromonas

communis, Robillarda spp., Cellulomonas such as Callulomonas

fimi, Clostridium such as Clostridium thermocellum, Pseudomonas spp., Thermonospora spp., Bacterioides spp. or Ruminococcus spp.

The cellulolytic agent of the invention may suitably be in the form of a non-dusting granulate, stabilized liquid or protected enzyme. Non-dusting granulates may be produced e.g. according to US 4,106,991 and 4,661,452 (both to Novo Industri A/S) and may optionally be coated by methods known in the art. Liquid enzyme preparations may, for instance, be stabilized by adding a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid according to established methods. Other enzyme stabilizers are well known in the art. Protected enzymes may be prepared according to the method disclosed in EP 238,216.

The cellulolytic agent may suitably exhibit an endoglucanase activity of 500-10,000 CMC-endoase units (as defined above) per gram of the agent. The cellulolytic agent is suitably a detergent additive which may comprise one or more other enzymes, such as a protease, lipase and/or amylase, conventionally included in detergent additives.

The detergent composition of the invention comprising the cellulolytic agent described above additionally comprises one or more surfactants which may be of the anionic, non-ionic, cationic, amphoteric, or zwitterionic type as well as mixtures of these surfactant classes. Typical examples of anionic surfactants are linear alkyl benzene sulfonates (LAS), alpha olefin sulfonates (AOS), alcohol ethoxy sulfates (AES) and alkali metal salts of natural fatty acids.

30

35

25

10

The detergent composition of the invention may contain other detergent ingredients known in the art as e.g. builders, bleaching agents, bleach activators, anti-corrosion agents, sequestering agents, anti soil-redeposition agents, perfumes, enzyme stabilizers, etc.

The detergent composition of the invention may be formulated in

35

any convenient form, e.g. as a powder or liquid. The enzyme may, if required, be stabilized in a liquid detergent by inclusion of enzyme stabilizers as indicated above. Usually, the pH of a solution of the detergent composition of the invention will be 7-12 and in some instances 7.0-10.5. Other detergent enzymes such as proteases, lipases or amylases may be included in the detergent composition of the invention, either separately or in a combined additive as described above.

The softening, soil removal and colour clarification effects 10 obtainable by means of the cellulase enzyme of the invention generally require a concentration of the cellulase in the washing solution corresponding to an endoglucanase activity of 5 - 200 CMC-endoase units per liter. The detergent composition of the invention is typically employed in concentrations of 0.5 - 20 g/l in the washing solution. Consequently, the cellulase concentration of the detergent composition of the invention is about 0.3 - 400 CMC-endoase units per gram. In general, it is most convenient to add the detergent additive in amounts of 0.1 - 5 % w/w or, preferably, in amounts of 0.2 - 2 % of the 20 detergent composition. For special applications, however, for instance when the detergent composition is to be used for colour clarification or harsness reduction of fabric which has been damaged by repeated washing, it may be convenient to include a 25 much larger amount of the cellulolytic agent, such as about 20% w/w.

In a still further aspect, the present invention relates to a method of reducing the rate at which cellulose-containing fabrics become harsh or of reducing the harshness of cellulose-containing fabrics, the method comprising treating a cellulose-containing fabric with a cellulolytic agent as described above. The method of the invention may be carried out by treating cellulose-containing fabrics during washing. The cellulolytic agent may either be added as such in the amount required to obtained the desired effect, or it may be added as an ingredient of a detergent composition as a problem above. However, if

desired, treatment of the fabrics may also be carried out during soaking or rinsing or simply by adding the cellulolytic agent to water in which the fabrics are or will be immersed.

- The cellulolytic agent of the invention may also be employed to obtain colour clarification of cellulose-containing fabrics. After repeated washing, such fabrics often develop a grayish appearance. This effect is particularly evident with coloured fabrics, especially dark fabrics, and may probably be ascribed to undyed parts of the cellulose fibres becoming apparent when 10 the cellulose fibres of which the fabric is composed are damaged by mechanical forces. The damaged parts of the fibres are assumed to be more amorphous than intact cellulose fibres and therefore more susceptible to the action of the cellulases of the present invention. The colour clarification effect is more 15 pronounced when the cellulolytic agent contains an endoglucanase which comprises a cellulose-binding domain (cf. example 6 below).
- Accordingly, the present invention further relates to a method of treating a coloured, cellulose-containing fabric in order to provide colour clarification, the method comprising treating the cellulose-containing fabric with a cellulolytic agent according to the invention. The method of the invention may be carried out by treating cellulose-containing fabrics in an aqueous medium during washing. The cellulolytic agent may either be added as such in the amount required to obtained the desired effect, or it may be added as an ingredient of a detergent composition as described above. However, if desired, treatment of the fabrics may also be carried out during soaking or rinsing or simply by 30 adding the cellulolytic agent to water in which the fabrics are or will be immersed. For colour clarification purposes, the aqueous medium may suitably exhibit an endoglucanase activity of more than about 250 CMC-endoase units per liter of the aqueous 35 medium.

It may furthermore be possible to employ a cellulolytic agent

according to the invention to provide a localized variation in the colour of a fabric to impart a "stone-washed" appearance to the fabrics (for the use generally of cellulase enzymes for this purpose, see for instance EP 307 564).

5

10

The cellulolytic agent of the invention is also contemplated to be useful in the field of paper pulp processing, e.g. pulp drainage (for the use generally of cellulase enzymes for this purpose, see for instance EP 262 040), as well as for deinking of paper intended for recycling (for the use generally of cellulase enzymes for this purpose, see for instance JP 59-9299 or JP 63-59494).

The invention is further illustrated by the following examples
which are not in any way intended to limit the scope of the
invention, with reference to the appended drawings, wherein

- Fig. 1 Restriction maps of the Bacillus spp. DNA insert contained on the plasmids in the 4 endoglucanase-positive <u>E.coli</u> clones. The position and direction of transcription of endoglucanase 1 (<u>Endo1</u>, pPL517) and endoglucanase 2 (<u>Endo2</u>, pPL382) is indicated. Restriction enzyme sites are indicated as follows: <u>PstI</u> (P), <u>HindIII</u> (H), <u>SmaI</u>, (S), <u>SalI</u> (Sa), <u>BamHI</u> (Ba), <u>BglII</u> (B), <u>SphI</u> (Sp), <u>EcoRI</u> (E). Indicates pBR322 DNA.
- Fig. 2 Restriction maps of different plasmids carrying the Endol gene (). The β-lactamase promoter of pBR322 is indicated by the arrow (Pb) and the direction of the transcription of the Endol gene is indicated by the arrow (Pb). (): pBR322, (): "tail" of pBR322 encoded amino acids. Restriction enzyme sites are indicated as follows: PstI (P), BglII (B), EcoRI, (E), ClaI (C). The endglucanase activity in extracts of E.coli MC1000 containing the indicated plasmids is shown to the right as (A) cellulase units/ml culture medium.

Fig. 3 Effect of temperature on the cellulase (Endol) in extracts of E.coli MC1000 (pPL517) and on the multiple cellulase activities in the supernatant of Bacillus spp. PL236. The activity was measured at the temperature indicated after an incubation period of 30 min. See Materials and Methods. The activity at the different temperatures is presented as cellulase units/ml of the original culture volume.

10

15

35

5

- Fig. 4 Relevant restriction sites and sequencing strategy of the endoglucanase <u>Endol</u> indicated as endocellulase 1 in the figure. (): extent and direction of sequence reactions. Abbreviations: <u>EcoRI</u> (E), <u>PstI</u> (P), <u>BglII</u> (Bg), <u>BstNI</u> (Bs), <u>AvaI</u> (A), <u>ClaI</u> (C), <u>BamHI</u> (Ba).
- Fig. 5 is a restriction map of plasmid pDN 2801. Restriction enzyme sites are indicated as follows: EcoRI(E), BglII (Bg), HindIII (H), SmaI (Sm), SalI (Sa), SphI (Sp), PstI (P), EagI (Ea), ClaI (C), BamHI (B). CAT indicates the gene mediating chloramphenical resistence. P_m indicates the <u>Bacillus</u> maltogenic α-amylase promoter.
- 25 Fig. 6 Restriction maps of different plasmids (B.<u>subtilis</u> replication origin) carrying the <u>Endol</u> gene. The maltogenic alpha-amylase promoter is indicated by the arrow (P_m), which also indicates the direction of the transcription of the <u>Endol</u> gene; (<u>Mars</u>): pDN2801,
 - (E): tail of PDN2801 encoded sequences. Restriction enzyme sites are indicated as follows: EagI (Ea), BglII (Bg), PstI (P), BamHI (B). The endocellulase activity in extracts of B. subtilis DN 1815 containing the indicated plasmids is shown to the right (A) as endoclucanase units/ml culture medium.

10

15

20

- Fig. 7a Construction of pTL05 and pLA03. (): represents the and b C-terminal "tails" encoded by vector sequences. (): indicates the expected C-terminal cleavage site. Restriction sites are abbreviated as follows: PstI (P), Pvu (Pv), BamHI (B), BgIII (Bg), SalI (S).
- Fig. 8a Construction of pCH57. (): Signal sequence of the and b alpha-amylase. (): "direct repeat" e.g. start of the glucanase (): "direct repeat" e.g. start of the mature Endol gene. () ribosome binding site of the alpha-amylase. () ribosome binding site of the Endol glucanase (): alpha-amylase promoter. Restriction sites are abbreviated as follows: PstI (P); SalI (S); KpnI (K); EagI (Ea); BglII (Bg).
- Fig. 9 Relevant restriction sites and sequencing strategy of the endoglucanase Endo2 (indicated as endocellulase 2 in the figure). (): extent and direction of sequence reactions. Abbreviations: Scal (Sc), SacI (Sa), XmnI (X), HindIII (Hc), HindIII (H), PstI (P).
- Fig. 10 Zymogram showing the molecular weight of the active proteins resulting from different plasmids carrying the original endoglucanase 3 clone (pPL591) as well as deletions in the original insert.
- Fig. 11 Restriction maps of the endoglucanase 3 clone (indicated in the figure as endocellulase 3) (pPL591) and plasmids containing deletions in the original insert.

 The position of the endoglucanase genes Endo3B
 and Endo3C, on the insert in plasmid pPL591 predicted from the data shown in the zymogram (Fig. 10) is shown on the restriction map. Restriction enzyme sites are indicated as follows: HindIII (H), Small (S), EcoRI (E).

EXAMPLES

MATERIALS AND METHODS

5 a) Bacterial strains and plasmids

The donor strain, <u>Bacillus spp.</u>, strain PL236, was isolated from a compost sample from Lyngby, Denmark, on the basis of its high cellulolytic activity. A sample of this strain was deposited on 18th January, 1990 in the National Collection of Industrial and Marine Bacteria, 23 St. Machar Drive, Aberdeen, Scotland, with the accession No. NCIMB 40250.

The following E. coli strains and plasmid were used: MC 1000 (araD139), (ara, leu)7697, lacX74, galU, galK, rpsL) (Casaba15 dan et al., 1980); CSR603 (F-, thr-1, leuB6, proA2, prh-1, RecA1, argE3, thi-1, uvrA6, ara-14, lacY1, galK2, xyl-5, mtl1, rpsL31, tsx-33, -, supE44) (Sancar et al., 1979); PL248 is MC1000 containing the plasmid pNF2690 which contains the replication origin and the kanamycin resistance gene from pACYC177 (Chang and Cohen, 1978) and the cI857 repressor gene from the coliphage lambda; pBR322 (Bolivar, 1977); pUN121 (Nilsson et al., 1983) pUC18 (Yanisch-Perron et al., 1985); pPLc28 (Remaut et al., 1981); pPL170 (Jørgensen, P.L., 1983);

For the experiments with <u>B. subtilis</u>, the following <u>B. subtilis</u> strains and plasmids were used: DN1885 (amyE, amyR, spo⁺, pro⁺) (Diderichsen, Novo Industri A/S) is a derivative of <u>B. subtilis</u> 168; PL1801 is a derivative of DN1885 lacking the two main exoproteases (apr', npr'); pDN2801 has the origin of replication from pUB110 (Keggins et al., 1987), the Cat gene of pC194 (Horinouchi and Weisblum, 1982) and the maltogenic alphaamylase promotor (Pm) from <u>B. stearothermophilus</u> (Diderichsen and Christiansen, 1988) followed by a polylinker; The <u>B. subtilis</u> is/E.coli shuttle vector pJKK3-1 is described by Kreft et al.

pUB110 and the promotor, ribosome binding site and signal sequence from the alpha-amylase gene from <u>B.licheniformis</u> (Stephens et al., 1984).

5 <u>b) Media</u>

Phosphoric acid swollen cellulose (ASC) was prepared from chromatography cellulose (MN 300, Machery, Nagel) as described by Walseth (1952) with the exception that the cellulose powder was suspended in acetone before treatment with phosphoric acid. The medium for detection of cellulase activity was prepared as standard m)-medium (Maniatis et al., 1982) containing 0.2% ASC or microcrystalline cellulose (Avicel, Merck).

Bacillus spp., B.subtilis and E.coli cells were grown in NY medium (von Meyenburg et al., 1982), LB medium (Maniatis et al., 1982), or BPX medium (100 g/l potato starch, 50 g/l barley flour, 0.1 g/l BAN 5000 SKB, 10 g/l sodium caseinate, 20 g/l soybean meal; 9 g/l Na, HPO4, 12H,O, 0.1 g/l Pluronic).

20

The media were solidified by the addition of agar (20 g/l).

Tetracycline (20 μ g/ml), or kanamycin (10 μ g/ml) were added as required.

25

c) Isolation of DNA

To isolate the chromosomal DNA from <u>Bacillus spp.</u> PL236, cells from 250 ml overnight culture were resuspended in 10 ml (50 mM Tris-HCl, pH 8.0, 100 mM EDTA), and incubated with 25 mg lysozyme for 20 min. at 37°C. To the mixture was added 2 ml of 10% (w/v) SDS, mixed and put on ice for 10 min. To the solution was then added 15 ml of phenol saturated with TE-buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA), heated to 65°C, mixed gently and cooled on ice. After centrifugation for 30 min. at 40000 g the aqueous phase was ether extracted, ethanol precipitated and the

pellet was resuspended in TE-buffer. The DNA was further purified by banding in a CsCl density gradient (Maniatis et al., 1982).

5 <u>E.coli</u> plasmid DNA was prepared by the SDS lysis method (Maniatis et al., 1982); minipreparations of plasmid DNA for restriction enzyme analysis and transformations were prepared according to Holmes and Quigley (1981). <u>B.subtilis</u> plasmid DNA was prepared by the alkaline lysis method. (Maniatis et al., 10 1982).

d) Cloning of chromosomal DNA from Bacillus spp. PL236 into E. coli

Restriction enzymes and T4 DNA ligase were obtained from New England Biolabs and used as described by the manufacturers. After digestion with PstI, EcoRI or HindIII restriction enzyme the DNA was heated to 65°C for 10 min. and ethanol precipitated. 10 μ of linearized pBR322, pJKK3-1 or pUN121 and 20 g of fragmented B. spp. chromosomal DNA were ligated with 5 units of DNA ligase in a final volume of 100 μl (16 h, 15°C). The ligated DNA was used to transform competent E.coli MC1000 to tetracycline resistance essentially as described by Mandel and Higa (1970). (pBR322: 20 μg/ml, pUN121: 7 μg/ml and pJKK3-1: 10 μg/ml).

25

e) Detection of cellulase-positive E.coli clones

The detection of cellulase activity on plates was performed using a modification of the technique of Teather and Wood (1982). E.coli clones were grown overnight on solid NY medium at 37°C. Cells were lysed by overlaying the colonies by topagar containing phosphate buffer (100 mM, pH 7.0), agar (0.7%) CMC (0.2%), SDS (0.25 mg/ml), and chloramphenicol (200 μ/ml) and subsequent incubation overnight at 37°C. Plates were then flooded with an aqueous solution of Congo red (1 mg/ml) for 15 min. and subsequently washed with 1 M NaCl. Cellulase-positive

25

30

35

3

colonies were surrounded by a yellow halo on a red background.

f) Maxicells

Plasmid-encoded proteins were analysed using the maxicell method of Sancar et al. (1979) with the following modification. After UV irradiation, the surviving cells were killed by incubating the cells with D-cycloserine (150 μ g/ml) for 48 h at 37°C.

g) Gel electrophoresis

(35S)-L.methionine labelled maxicell proteins and other proteins were analysed by electrophoresis on 15% (0.075 per cent bisacrylamide) SDS-polyacrylamide gels (Laemmli, 1970). Proteins were visualized either by staining with Coomassie Blue G 250 or by autoradiography.

Analysis of DNA was done by electrophoresis on agarose gels with the buffer described by Loening (1967).

h) Detection of cellulase activity in polyacrylamide gels

Detection of cellulase activity in protein bands separated by SDS-polyacrylamide gel electrophoresis was done by a modified zymogram technique described by Beguin (1983). Protein preparations were electrophoresed on a SDS-polyacrylamide gel as described above and the gel was washed 3 times 30 min. in phosphate buffer (100 mM, pH 7.0) layered on to a thin (0.8 mm) agarose gel (agarose, (1.8 per cent), CMC, (0.2 per cent), phosphate buffer, (100 mM, pH 7.0)), and incubated for 4 h at 42°C. Cellulase activity was visualized by staining the agarose gel for 30 min. in an aqueous solution of Congo red (1 mg/ml) followed by washing the gel in 1 M NaCl.

i) Colorimetric cellulase assay

Cellulase activity in cell extracts was analysed by measuring the increase in reducing groups released by the hydrolysis of CMC (Miller, 1959). An appropriate amount of enzyme was incubated with 1.5 ml of 1 per cent CMC in phosphate buffer (100

mM, pH 7.0). After 30 min. of incubation at 55°C, 1.5 ml of dinitrosalicyclic acid reagent was added and the samples were boiled for 5 min. The absorbance was read at 550 nm against blanks containing equivalent amounts of extract from the <u>E.coli</u> recipient strain. One unit of cellulase released 1 nM of glucose equivalents per second by reference to a standard curve.

i) DNA-Sequencing

Single end labelled DNA fragments were isolated and sequenced by the chemical modification method (Maxam and Gilbert, 1980). The cleavage products were separated on 8% or 20% polyacryl-amide gels and thereafter autoradiographed at -70°C using intensifying screens.

The dideoxyribonucleotide method of Sanger et al., (1977) was used for the sequencing of <u>Endo3A</u> using derivatives of pUC18 (Yanisch-Perron, 1985).

k) Southern analysis

Chromosomal DNA from <u>Bacillus spp.</u> (PL236) was digested with restriction enzymes as required and fractionated on 1% (w/v) agarose gels. DNA was then blotted onto nitrocellulose filters. 32_p-labelled DNA probes (recombinant plasmids) were prepared by nick translation (Rigby et al., 1977) using 32_{p-dCTP} (Amersham) and hybridization was carried out as described by Southern (1975). Autoradiography was performed at -70°C using intensifying screens.

1) Transformation of competent B. subtilis cells

A modified version of Dubnau and Davidoff-Adelson's (1971) procedure for preparing competent cells of <u>B. subtilis</u> is used.

10 ml of LB-medium is inoculated with the strain in the morning.

7 hours later sequential dilutions in KM-1-medium are made and incubated overnight at 37°C. The following morning, the second
35 most diluted and growing culture is diluted ten times in KM-2-

10

15

medium. The cells are harvested after 45-60 minutes of incubation by centrifuging for 3 minutes at 7K. They are resuspended in 1/10 volume of the supernatant and 1/50 volume of 86% glycerol is added. 0.1 ml amounts are frozen on liquid nitrogen and stored at -80°C.

In order to transform these competent cells, the method of Ehrlich (1986) is used, with some modifications. BTF is prepared and preheated to 42°C. 0.01 ml of DNA is placed in a reaction vessel, and the competent cells are thawed at 42°C. BTF is added to the cells at a ratio of 1:1, and 0.1 ml of the mixture is added to the DNA. The cells and DNA incubate with shaking for 20 minutes at 37°C. A further 30 minutes of gene expression with 0.1 ml of NY-medium is needed, if kanamycin resistance is desired. The cells are finally spread on relevant plates. Recipes for stock-solutions are as follows:

Stock solutions for making B. subtilis competent cells

20		-
	Salt mix:	10 mM CaCl ₂ , lmM FeCl ₃ and lmM MnCl ₂ .
25	10 X MM:	20 g (NH ₄) ₂ SO ₄ , 60 g KH ₂ PO ₄ , 140 g K ₂ HPO ₄ *3H ₂ O in 1L.
	KM-stock:	100 ml 10 X MM, 10 ml 10% Na- citrate, 2 ml 1M MgSO ₄ in 1L.
30	<u>KM1-stock</u> :	960 ml KM-stock, 20 ml 20% glucose, 1 ml 20% casamino acids, 20 ml 5% yeast extract, 30 l lmM MnCl ₂ in 1L.
	KM2-stock:	960 ml KM-stock, 20 ml 20% glucose, 1 ml 20% casamino acids, 20 ml 5%
35		yeast extract, 1 ml salt mix, 1 ml

0.5 M CaCl₂, and 0.8 ml 1M MgCl₂ in 1L.

BCG:

5

100 ml 10 x MM, 10 ml Na-citrate, 2 ml 1M Mgso₄, 1 ml saltmix, 20 ml 20% glucose in 1L.

BTF:

800 ml BCG, 100 ml 10mM EGTA, 100 mM MgCl₂ in 1L. (Prepared fresh before use).

10

ISOLATION AND CHARACTERIZATION OF CELLULOLYTIC STRAINS

In order to clone genes coding for cellulose-degrading enzymes
the following screening programme was set up to find suitable
cellulolytic donor strains. Various compost samples were used as
source of cellulolytic microorganisms.

Serial dilutions of compost samples were plated out on ASC agar
medium and cellulolytic activity was detected through the
formation of clearing zones around the colonies. Several
cellulolytic bacteria were isolated. One of the most active of
these isolates which was identified as <u>Bacillus spp.</u> PL236
(NCIMB 40250) was selected as the donor strain for the cloning
experiments.

The strain rapidly degraded both acid swollen cellulose and microcrystalline cellulose (Avicel, Merck) on agar medium. At the optimum temperature of growth (42°C) the clearing zones appeared in 2-3 days.

Adding small amounts of <u>Bacillus spp</u>. PL236 culture to suspensions of microcrystalline cellulose makes the cellulose crystals lump together tightly and sediment.

30

This suggests that either the <u>Bacillus</u> <u>spp.</u> PL236 cells or the extracellular cellulase enzymes have a strong affinity for the cellulose substrate and tightly bind the cellulose crystals together.

5

SCREENING ASSAY FOR RECOMBINANT CLONES

The first attempts to clone cellulases from <u>Bacillus spp. PL236</u> were directed towards the endocellulases genes from <u>Bacillus spp. PL236</u>. To facilitate the screening on plates of endocellulase positive clones, an assay using the dye Congo red (Teather and Wood, 1982) was adapted to <u>E.coli</u>.

In order to detect cellulase activity trapped inside the recombinant <u>E.coli</u> cells the cells were lysed by adding SDS to the top agar. This modification of the top agar had no measureable effect on the CMC-degrading enzymes of <u>Bacillus spp.PL236</u>, when the modified assay was used on this organism.

20 MOLECULAR CLONING OF ENDOCELLULASES

Several endocellulase genes were cloned from the cellulolytic Bacillus spp. strain (PL236). An endocellulase 1 clone (PL517) was made by ligating PstI partially digested PL236 chromosomal DNA with PstI cleaved pBR322 and subsequently transforming competent E.coli cells.

An endocellulase 2 clone (pPL382) was made by ligating <u>HindIII</u> partially digested PL236 chromosomal DNA with <u>HindIII</u> cleaved pJKK3-1 (an <u>E.coli/B.subtilis</u> shuttle-vector) and subsequently transforming competent <u>E.coli</u> cells.

An endocellulase 3 clone (pPL591) was made by ligating <u>EcoRI</u> partially digested PL236 DNA with <u>EcoRI</u> cleaved pUN121 and subsequently transforming competent <u>E.coli</u> cells.

An endocellulase 4 clone (pPL592) was made by ligating <u>HindIII</u> partially digested PL236 DNA with <u>HindIII</u> cleaved pUN121 and subsequently transforming competent <u>E.coli</u> cells.

5

Transformants derived from the use of both the pBR322 and the pUN121 plasmid vector were screened by their tetracycline resistance (pBR322: 20 g/ml, pUN121: 7 μ g/ml and pJKK3-1: 10 μ g/ml).

10

25

30

35

The transformants were replicated to another set of plates and overlayed by the modified CMC top agar. The plates were incubated overnight and stained with Congo red as described above.

Under the reisolation procedure it was observed that it was possible to detect positive clones without adding the cell lyzing agent SDS to the topagar, although the diameter of the halo was considerably smaller.

20 EXPRESSION AND CHARACTERIZATION OF THE CLONED CELLULASES

Plasmids from the cellulase-positive transformants were isolated and analyzed with restriction enzymes. Restriction enzyme maps of representative plasmids from all four cloning experiments are shown in Fig. 1.

To determine the molecular weight of the cloned endoglucanases a zymogram technique (Beguin, 1983) was used. Total protein preparations from representative endoglucanase clones were separated on a SDS-polyacrylamide gel. The proteins in the gel were then renatured by washing out the SDS and replicated onto an agarose gel containing CMC. Renatured proteins diffuse to this activity gel and proteins representing endoglucanase activity hydrolyse the CMC in the gel. The endoglucanase bands were then visualised by staining the activity gel with Congo red

WO 91/10732 PCT/DK91/00013

28

as described above.

As appears from Fig. 1, the restriction maps of the cloned DNA (as well as the molecular weight of the endoglucanases encoded by the cloned DNA) are different in the four different clones. This indicates that these four clones represent at least four different endocellulase genes from <u>Bacillus spp.</u> (PL236).

The detailed analysis of the different endocellulases represented by these four clones is described in the following.

Example 1

Endocellulase 1 (Endo1)

Physical mapping of endocellulase gene 1

15

20

25

In the cloning experiment described above several cellulase-positive <u>E.coli</u> clones were obtained, which contained different fragments of <u>PstI</u> partially cleaved <u>Bacillus spp.</u> PL236 DNA. Fig. 2 shows the restriction maps of some of these clones. The plasmids invariably contained two <u>PstI</u> fragments (1000 and 1350 bp.) indicating that both were necessary for synthesis of a polypeptide with cellulase activity: Nucleotide sequencing has later shown that the 500 bp. <u>PstI</u> fragment present the on pPL217 and pPL517 (Fig. 2) contains the C-terminal part of the complete cellulase gene (data are presented in the following). The structure of this part of the <u>B.spp.</u> chromosome was confirmed by Southern analysis (data are presented in the following).

Activity measurements

30

35

Extracts from the <u>E.coli</u> clones containing pPL212, pPL216, pPL517 and pBR322 were prepared from overnight cultures grown in NY medium supplemented with tetracycline. Cells were concentrated 10-fold in 100 mM phosphate buffer, pH 7.0. DNase was added and the cells were ruptured by passing them twice

through a French Press (12000 lb/in). The extracts were centrifuged for 60 min. at 40000 X g and the supernatants were assayed for cellulase activity. The cell-free extract of E.coli MC1000(pPL212), E.coli MC1000(pPL517) and E.coli MC1000(pPL216) contained 8 units, 7.2 units and 0.2 units respectively of cellulase/ml of original culture volume. (Fig. 2). 1/7 of the total cellulase activity in these cultures was found in the supernatant. The E.coli MC1000(pBR322) clone showed no cellulase activity.

10

The high level of cellulase activity in extracts of strains carrying the plasmids pPL212 and pPL517 is most likely due to an increased transcription of the cellulase gene originating from the β -lactamase promoter on pBR322. It was concluded that the cellulase is expressed in the direction shown in Fig. 2.

Measurements of the viscosity of a CMC solution and of the release of reducing sugars indicated that the cloned cellulase is an endo- $(1,4)-\beta$ -glucanase.

20

15

Maxicell and zymogram analysis

The molecular weight of the endoglucanase protein was analysed by the maxicell technique. The plasmids pPL212, pPL216 and pBR322 were transformed into the maxicell strain CSR603 (Sancar et al., 1979) to analyse for plasmid-encoded proteins. The plasmid pPL212 gave rise to three polypeptides of 75000 D, 65000 D and 58000 D in addition to the proteins encoded by pBR322. Apart from the pBR322 proteins, no proteins encoded by the plasmid pPL216 could be detected, due to the low expression of the cellulase gene. The three polypeptides from pPL212 were tested for cellulase activity using a gel replica technique, (Beguin, 1983).

35 A comparison of the cellulase activity bands and the bands on

15

20

25

30

35

3

the autoradiogram from the polyacrylamide gel showed that the 75000 D and at least one of the 58000 and 65000 D protein bands had cellulase activity. It was also found the supernatant of the Bacillus spp. PL236 culture contained at least three different proteins with cellulase activity. One of these proteins comigrated with the 58000 D protein synthesized in the maxicell. Cell extracts from E.coli MC1000 (pPL212) only revealed one active band comigrating with the 58000 protein from the maxicell E.coli CSR603 (pPL212). As mentioned previously, the following sequence data showed that the plasmids pPL212 and pPL216 did not contain the entire Endol endoglucanase gene. The 75000 D active protein seen in the maxicell E.coli CSR603 (pPL212) is thus a fusion protein, where 105 C-terminal amino acids are encoded by pBR322 sequences (Fig. 2). This fusion protein is apparently posttranslationally processed, ending up with the 58000 D mature endoglucanase. Cell extracts from E.coli MC1000 (pPL217) and E.coli MC1000 (pPL517), which contain the complete endoglucanase gene, also gave activity bands of M, approx 58000 D and 75000 D. The 75000 D active protein from the plasmids pPL217 and pPL517, thus represents the "genuine" initial translation product from the Endol glucanase gene, which apparently is processed more slowly than the fusion protein from pPL212. However, both the 75000 D fusion protein synthesized from pPL212 and the "genuine" 75000 D protein synthesized from pPL517 and pPL217 are processed down to a 58000 D protein with high cellulase activity.

From the sequence data it can also be predicted that the endoglucanase expressed from pPL216 is synthesized a fusion protein, where the 26 C-terminal amino acids are encoded by pBR322 sequences (Fig. 2). This protein was not detected by the maxicell technique and zymograms using extract from PL216 only revealed one active band of 58000 D, which most likely represents the processed protein. The processing in <u>E.coli</u> of the two fusion proteins from pPL212 and pPL216, which represent two different lengths of the C-terminal "tail" thus results, in both

case, in an active protein of approx. 58000 D. This indicates that the endocellulase is processed from the C-terminal, because N-terminal processing would result in two proteins with a difference in M_r of approx. 9000 D, which would easily have been detected on the zymograms.

It is therefore most likely that endoglucanase 1 (Endo1) is synthesized as a proenzyme which at least in E.coli (and possibly also in B.spp.) is modified by stepwise removal of approx. 150 C-terminal amino acid residues and approx. 30 N-terminal amino acid residues, corresponding to the removal of the signal peptide. The endoglucanase seems to be modified correctly as indicated by the fact that the final processing product, the 58000 D activity band present in E.coli MC1000 (pPL212) extract, apparently comigrate with one of the endoglucanases present in the supernatant of cultures of Bacillus spp. PL236.

Temperature optimum and stability

20

The cellulase activity of the extracts was measured at different temperatures and the highest activity of Endol produced in E.coli was found at 60°C (Fig. 3). The heat stability of the endoglucanase was tested by incubating the extracts at 50°C, 55°C and 60°C for varying periods and the residual activity was measured as outlined in Materials and Methods. Although the highest activity was observed at 60°C with a fixed incubation time of 30 min., the enzyme is inactivated at this temperature with a t_n of 1.2 h. At 50°C and 55°C no inactivation was observed after 5 h of incubation.

DNA-sequence

The nucleotide sequence of the endocellulase gene 1 (Endo1) was deduced from the plasmid pPL517 which contains approx. 2850 bp

15

20

25

\$

of Bacillus spp. PL236 DNA.

The sequence was determined by the chemical modification method (Maxam and Gilbert, 1980) using the partial restriction map and the sequencing strategy outlined in Fig. 4.

The complete nucleotide sequence is shown in Sequence listing ID#1. A computer analysis of this sequence revealed only one open reading frame long enough to encode the approx. 75000 D protein detected by the maxicell and zymogram analysis of extracts from the cellulase-positive <u>E.coli</u> MC1000(pPL517). This sequence which begins at nucleotide 677 and ends at nucleotide 2776, encodes an enzyme of 700 amino acids. The M_r calculated from the DNA sequence was 77006 D.

Within the open reading frame there were three potential initiation codons (ATG at positions 677, 737 and 749), but only the ATG codon at position 677 was preceded by a ribosome binding site (AAGGAGG) (Mclaughlin et al., 1981). It was therefore concluded that the ATG codon at position 677 was the correct initiation codon.

The initiation codon is followed by an amino acid sequence which resembles signal sequences found in gram-positive organisms. Such sequences consist of a relatively short hydrophilic region at the N-terminal followed by a longer sequence of hydrophobic residues.

By using the signal sequence cleavage model proposed by Heijne (1983) the cleavage site can be predicted to be between the two first alanine residues in the sequence Asn-Ala-Ala-Ala. The signal sequence is thus 31 amino acids long.

The upstream and downstream regions contained no significant homology to the consensus sequence of the signa 43 promoter of

B. subtilis and no terminator-like sequences.

Southern analysis

The Bacillus spp. (PL236) chomosomal DNA was digested with HindIII, PstI, EcoRI and XhoI and plasmids pPL212 and pPL509 were used as probes for the hybridization. Plasmid pPL212 contains two PstI fragments (1350 bp. and 1000 bp.) and plasmid pPL509 contains only the 500 bp. Pst1 fragment of the entire Endol gene, represented by the plasmid pPL517, which contains 10 three PstI fragments (1350 bp., 1000 bp. and 500 bp.) of Bacillus spp. PL236 DNA. The pPL212 probe recognized the expected two PStI fragments (1350 bp., 1000 bp.) and the pPL509. the 500 bp. PstI fragment in the Bacillus spp. PL236 PstI digest. Both the pPL212 and the pPL509 probe also recognized the 15 same overlapping <u>EcoRI</u> fragment and the same overlapping <u>HindIII</u> fragment in <u>Bacillus spp</u>. PL236, <u>EcoRI</u> and <u>HindIII</u> digest. These results indicate that the Bacillus spp. PL236 DNA insert in pPL517 was cloned in a non-deleted form and that the three PstI fragments in pPL517 are continuous on the Bacillus spp. PL236 20 chromosome.

Expression of the Endol gene in B. subtilis

For the cloning experiments in <u>B.subtilis</u>, pPL517 was used as the donor of the <u>Endol</u> gene and pDN2801, carrying a strong <u>Bacillus</u> promoter P_m , was used as the <u>Bacillus</u> vector (Fig. 5).

The <u>Endol</u> gene-containing <u>EagI</u> fragment was ligated to <u>EagI</u>

30 cleaved pDN2801 and by subsequent transformation to compentent

<u>B.subtilis</u> cells (DN1885), strain CH7 was obtained. To test
whether the processed C-terminal part was necessary for the
expression of the <u>Endol</u> gene in <u>B.subtilis</u> cells, a construction was made where the <u>Endol</u> gene was fused to vector sequen
35 ces in the internal <u>BglII</u> site. This fusion replaces the coding

15

20

25

region for the C-terminal 94 amino acids with 55 "random" amino acids encoded by vector sequences.

Similar constructions made in <u>E.coli</u> vectors, though fused to different vector sequences, resulted in an active periplasmic endoglucanase in <u>E.coli</u>, which was processed in the "correct" manner. Part of the <u>Endol</u> gene contained in the <u>BglII</u> fragment from pPL517 was ligated with <u>BamHI</u> cleaved pDN2801 and subsequent transformation to competent <u>B. subtilis</u> cells (DN1885) resulted in strain CH14.

Transformants were in both cases screened for their chloramphenical resistance, and the desired plasmid constructions in the strains CH7 and CH14 by restriction analysis of their plasmids. The two versions of the <u>Endol</u> gene on the plasmids pCH7 and pCH14 are thus transcribed from the same promoter P_m . A restriction map of the plasmids is shown in Fig. 6.

The <u>B. subtilis</u> DN1885 used for these experiments produces an endoglucanase of its own, which of course gave some background activity. The <u>Endol</u> gene product was exported to the culture medium from the recombinant strain CH7, and the activity measured in the culture supernatant was approximately 20 times higher than the background activity (Fig. 6). No extracellular activity above the background level was detected from the recombinant strain CH14 which contains the <u>Endol</u> gene with the substituted C-terminal.

The culture supernatants from the strains CH7 and CH14 and cell
extract from CH7 cells were analysed by the zymogram technique.
The zymogram revealed active protein bands of approx. 75000 D
and 58000 D from the CH7 cell extract and only one active
protein band of approx. 58000 D from the CH7 culture supernatant. These bands correspond to those observed in <u>E.coli</u> and the
processing of approx. 90 amino acids from the C-terminal appears

to take place in B. subtilis too.

The plasmid pCH7 was transformed to PL1801, which is a derivative of DN1885 lacking the two main exoproteases (apr,npr), resulting in the strain CH14. The <u>Endol</u> cellulase as produced from CH14 was processed "normally" indicating that the two main exoproteases from <u>B. subtilis</u> are not responsible for the C-terminal processing of the <u>Endol</u> cellulase.

A very weak active band of approx. 58000 D was detected from the CH14 culture supernatant, indicating that the manipulated gene is expressed and processed in at least almost the same way as the native gene product. Among other things, the very low expression from pCH14 and the fact that the two genes are expressed from the same expression signals may indicate that the approx. 90 C-terminal amino acids are necessary for the export of the Endol gene product from B. subtilis.

Optimization of expression of the Endol gene in E. coli

20

In order to optimize the expression of <u>Endol</u>, the <u>Endol</u> gene was combined with the strong <u>E.coli</u> promoters P_R and P_L originating from phage lambda (Remaut et al., 1981). Both promoters are repressible by the lambda cI857 repressor, which is heat labile, thus rendering the P_R and P_L promoters heat inducible, in cells producing the lambda CI857 gene product. (Ptashne et al., 1982).

The P_g promoter is contained on the expression plasmid pPL170 together with the lambda cI857 gene. (Fig. 7; Jørgensen, 1983).

30

35

The P_R promoter was placed upstream of the <u>Endol</u> gene by ligating the P_R containing <u>PvuI - SalI</u> fragment from pPL170, to the <u>Endol</u> gene containing <u>PvuI - SalI</u> fragment. Transformation to competent MC1000 cells resulted in the strain TL05 containing the plasmid pTL05. In the plasmid pTL05 the β -lactamase promoter

is deleted, thus bringing the Endol gene under transcriptional control of the P_R promoter. At this point, the <u>Endol</u> gene was believed to be contained within the BglII fragment from pPL2129. The Endol gene fusion to vector sequences on pPL212 was therefore transferred to pTL05, resulting in a fusion protein where 105 C-terminal amino acids are encoded by vector sequences. This fusion protein is however processed correctly as shown earlier with the strain PL212. The cellulase production from TL05 is completely repressed at 28°C and induced at 42°C.

10

15

20

The P promoter provided on the plasmid pPLc28 (Remaut et al., 1981) was combined with the Endol gene by ligating the BglII fragment from pPL212 to BamHI cleaved pPLc28. Transforming to competent PL248 cells, which are harbouring the lambda c1857 gene on a compatible pACYC177 based plasmid (pNF2690), resulted in the strain LA03, containing the plasmid pLA03 (Fig. 7). The Endol gene is thus fused to vector sequences, but due to unspecified DNA sequences in pPLc28 the length and nature of the resulting fusion protein is unknown. The cellulase production from LA03 was completely repressed at 28°C and induced at 40.5°C.

The cellulase production from LA03 and TL05 was evaluated at different temperatures.

25

30

LA03, TL05 and PL212 were grown overnight at 28°C in NY medium supplemented with the appropriate antibiotics (AMP + KAN, KAN and TET, respectively). For each strain the overnight cultures were diluted 100 fold in NY medium (AMP + KAN, KAN and TET, respectively), and the diluted cultures were grown at different temperatures between 28°C and 42°C. Cells from each culture were harvested at $OD_{450} = 1$ and lysed on a French Press, and the activity in the extracts was determined as described earlier.

35

LA03 which exhibited the highest cellulase production was unable

to grow at temperatures above 40.5°C. The experiment was repeated without antibiotic selection pressure in the diluted cultures. Similar results were obtained, but LA03 grew very slowly at temperatures above 40.5°C. However, this growth was followed by a significant loss of the plasmid pLA03. No significant loss of pLA03 at temperatures up to 40.5°C or pPL212 and pTL05 at any temperature, was observed.

Optimization of expression of the Endol gene in B. subtilis

10

In order to optimize the expression of the <u>Endol</u> gene in <u>B.subtilis</u>, the <u>Endol</u> gene was fused to the expression-signals (promoter, ribosome binding site and signal sequence) from the alpha-amylase gene from <u>B.licheniformis</u>, which is expressed in high amounts in <u>B.subtilis</u>.

pPL1759 contains the promoter, ribosome binding site and most of the signal peptide of the B. licheniformis alpha-amylase (Stephens et al., 1984). The downstream side of this region ends 20 with a PstI site, which again is followed by a polylinker (Fig. 8). Between the PstI and the SalI site in the polylinker of pPL1759, a synthetic DNA fragment consisting of two complementing oligonucleotides creating PstI and SalI "sticky" ends was inserted. In the resulting plasmid pCH52 the synthetic linker reconstitutes the missing part of the signal peptide of 25 the alpha-amylase and further encodes the first 14 N-terminal amino acids of the mature Endo1 cellulase (Fig. 8). The linker thus creates a hybrid signal peptide cleavage site between the alpha-amylase and the cellulase. The expected cleavage site is shown in Fig. 8. From pPL517 the Endol gene was excised without 30 promoter on an Eagl fragment and inserted into the unique Eagl site in pCH52. The plasmid in which the Endol gene was inserted in the correct orientation was named pCH54.

35 pCH54 contains two direct repeated sequences of 45 bp (e.g. the

15

٤

45 N-terminal base pairs of the mature Endol gene) which may recombine, deleting the region between them (Ehrlich et al., 1986). This recombination event, however, occurs with a very low frequency when the repeat is as small as 45 bp. In order to enrich the amount of plasmid that has recombined, a plasmid preparation of pCH54 was cut with the enrichment restriction enzyme KpnI. pCH54 contains a unique KpnI site between the two direct repeats and only non-recombinant plasmids are cut with <u>KpnI</u>, while recombinant plasmids stay circular. When <u>B.subtilis</u> (DN 1885) was retransformed with this mixture, transformants were mostly (90%) containing recombinant plasmids, B. subtilis competent cells are not transformed with linerized plasmid DNA. The recombinant plasmid was called pCH57 and is contained in the strain CH57. The structure was confirmed by restriction analysis, but the gene fusion was not confirmed by DNA sequencing. In this construction pCH57 the Endol gene is thus perfectly fused to the alpha-amylase expression signals.

The endoglucanase is produced extracellularly from the <u>B</u>.

20 <u>subtilis</u> strain CH57, indicating that the hybrid signal cleavage site is functioning. The secreted <u>Endol</u> endoglucanase is processed to the expected M_r, namely 58000 D.

The production of the <u>Endol</u> cellulase from CH57 was evaluated in two different media, NY (overnight at 37°C) and BPX (7 days at 37°C). The BPX medium is a very rich medium in which the nutrients are slowly released, thus keeping the cells in an early stationary fase for several days during fermentation. The alpha-amylase expression signals function particularly well in this medium. The results appear from Table 1 below.

Table 1

STRAIN	PLASMID	U/ml	U/ml
		NY	ВРХ
CH7	рСН7	6.5	55.0
CH57	рСН57	13.0	325.0
DN1885	4 40 40 40 40 40 40 40 40 40 40 40 40 40	0.3	40.0
	CH7 CH57	CH7 pCH7 CH57 pCH57	CH7 pCH7 6.5 CH57 pCH57 13.0

Analysis of the culture supernatant (BPX-medium) on PAGE revealed a dominant (90%) endoglucanase band corresponding to a concentration of endoglucanase in the supernatant of approx. 0.5 g/L.

20 <u>Example 2</u>

Endocellulase 2 (Endo 2)

DNA-sequence

25

30

The nucleotide sequence of endocellulase 2 (Endo2) was deduced from the plasmid pPL382 which is described above. The plasmid contains approx. 2500 bp. of <u>Bacillus spp. PL236 DNA</u>. The sequence was determined by the chemical modification method (Maxam and Gilbert, 1980) using the partial restriction map and the sequencing strategy outlined in Fig. 9.

The complete nucleotide sequence is shown in Sequence Listing ID#3. A computer analysis of this sequence revealed only one open reading frame long enough to encode for the approx. 56000 D protein detected in the zymogram analysis of the extract from

WO 91/10732 PCT/DK91/00013

40

the cellulase positive clone <u>E.coli</u> MC1000(pPL382). This sequence begins at position 172 and ends at 1869 and encodes an enzyme consisting of 566 amino acids. The calculated M_r is 62551 D which is slightly higher than the M_r of 56000 D determined by zymogram analysis. This difference could be due to inaccuracy in the zymogram analysis or to post-translational processing beyond the expected processing of the signal peptide. The ATG initiation codon in position 172 was selected because it was the only initiation codon within the open reading frame, which was proceeded by a ribosome binding site AAGGAGG (Mclaughlin et al., 1981).

ŧ

This initiation codon was followed by a signal sequence-like sequence, and by use of the signal sequence cleavage model proposed by Heijne (1983), the cleavage site could be predicted to be between the two alanine residues in the middle of the sequence Leu-Ala-Ala-Ala. The signal sequence of the Endol2 is thus 30 amino acids long.

20 The region upstream of the open reading frame contained a sequence homologous with the sigma 43 type promoters of <u>B. subtilis</u> (Johnson et al., 1983) at position 46-75.

This sequence consists of TTTACA as the -35 region and TATTAT as the -10 region; the two are separated by 18 nucleotides.

A palindromic repeat sequence of 13 bp. was found downstream of the termination codon at position 1956-1981, which seems to resemble a rho-independent terminator (Rosenberg and Court, 1979).

Southern analysis

10

15

30

The <u>Bacillus spp.</u> (PL236) chromosomal DNA was digested with 35 <u>HindIII, PstI, EcoRI</u> and <u>XhoI</u> and the plasmid pPL382 was used as

a probe for the hybridization. The hybridization pattern obtained confirmed that the <u>Bacillus spp</u>. PL236 DNA was cloned in non-deleted form, that the two <u>HindIII</u> fragments from pPL382 was continuous on the <u>Bacillus spp</u>. PL236 chromosome and that the <u>Endo2</u> gene was different from the other cloned endoglucanases.

Expression of Endo2 in B.subtilis

Plasmid pPL382 was transformed to B.subtilis DN1885 to achieve 10 secretion of the mature Endo2 product. B. subtilis DN1885 (pPL382) was grown aerobically in 640 ml LB-medium containing 10 μg/ml tetracycline for 30 hours. The supernatant concentrated by precipitation for 24 hours with $(NH_4)_2SO_4$ at 70% saturation. After 5 hours of dialysis against 100 mM Tris-HCl pH 15 7, the concentrated supernatant was heated to 55°C for 15 minutes. Denatured protein was removed by centrifugation and the soluble proteins were subsequently precipitated with $(NH_4)_2SO_4$ at 70% saturation. The resolubilized proteins were dialyzed against 100 mM Tris-HCl pH 7 with a final volume of 2 ml and were 20 applied to a 80 cm x 1 cm gel filtration column containing Ultrogel AcA Active fractions 44 (LKB). concentrated and applied to a SDS containing polyacrylamide gel, where the endoglucanase appeared as a single band at 56 kDa. The activity yield of the method was approximately 10%. 25

The endoglucanase comigrates with the endoglucanase obtained from extracts of MC1000 (pPL382) as detected by Zymogram analysis in the supernatant of DN1885 (pPL382). The endoglucanase activity of DN1885 (pPL382) is about 25 times that of strain DN1885 when grown in NY medium.

WO 91/10732 PCT/DK91/00013

42

EXAMPLE 3

10

· 35

Endocellulase 3

5 Physical mapping of the endocellulase clone 3

The endocellulase clone 3 is represented by the plasmid pPL591 which contains a 11000 bp. EcoRI fragment of <u>Bacillus spp. PL236 DNA.</u> A partial restriction map of this plasmid is shown in Fig. 10. Zymogram analysis of extracts from <u>E.coli MC1000(pPL591)</u> shows that the insert gives rise to four proteins with cellulase activity. The approx. M_r of these proteins were 60000 D, 56000 D, 45000 D and 30000 D (Fig. 10).

- Southern analysis showed that the <u>EcoRI</u> fragment from pPL591 was cloned in a non-deleted form from the <u>Bacillus spp</u>. PL236 chromosome, and indicates that the DNA did not contain the DNA-sequences encoding the <u>Endol</u> and <u>Endo2</u> genes.
- To analyse whether these proteins represented post-translational processing products from one or several cellulase genes, deletion plasmids were made using the restriction enzymes <u>HindIII</u> and <u>SmaI</u>. Deletion of the 4800 bp. <u>SmaI</u> fragment, resulting in the plasmid pPL538, did not eliminate any of the four cellulase bands on the zymogram. The <u>B.spp</u>. DNA insert on pPL591 contained 5 <u>HindIII</u> sites. Digestion of pPL591 with <u>HindIII</u> thus gave 6 fragments of 6600 bp. (vector fragment), 3200 bp., 1700 bp., 1550 bp., 1350 bp. and 900 bp., where the 1700 bp. fragment had originated from the <u>HindIII</u> site within the pUN121 vector plasmid (Fig. 11).

Elimination of all of the HindIII fragments except the 1700 bp. fragment (reinserted in the opposite direction) resulted in the plasmid pPL540. Removal of the rest of the <u>Bacillus spp. PL236</u> DNA by eliminating the <u>EcoRI</u> fragment from pPL540 resulted in

the plasmid pPL587. Both the <u>E.coli</u> MC1000(pPL540) and the <u>E.coli</u> MC1000(pPL587) were cellulase-positive and zymogram analysis of extracts from these clones revealed only the 45000 D and 30000 D proteins. The protein-coding capacity of the <u>Bacillus spp. PL236 DNA</u> (approx. 1500 bp.) is approx. 55000 D, which is too small to contain two endoclucanase genes of 45000 D and 30000 D. The 30000 D protein on the zymogram is thus most likely a result of immature post-translational processing of the 45000 D protein. The cellulase gene encoding the 45000 D protein was designated <u>Endo3A</u>. The <u>Endo3A</u> gene was cloned in both directions on the plasmids pPL587 and pPL538 giving rise to the same two proteins, thus eliminating the chance of the protein being a fusion protein.

Elimination of the 1550 bp., the 1350 bp. and the 900 bp. fragment resulted in the plasmid pPL542. Extracts from E.coli MC1000(pPL542) revealed cellulase positive proteins of approx. 30000 D, 45000 D, 49000 D and 56000 D (Fig. 10). From these preliminary results, the existence of two additional endoglucanase genes within the original insert on pPL591 and pPL538 are postulated. The additional endoglucanase genes are designated Endo3B and Endo3C. Their postulated position on the Bacillus spp. PL236 DNA is shown in Fig. 11. The postulated model is based on the assumption that the 60000 D protein made from pPL538 and pPL591 is converted to a truncated fusion protein of 49000 D made from pPL542 where the HindIII fragment of 1350 bp. is deleted.

DNA-sequence of Endo3A

30

35

10

The DNA sequence of the Endo3A gene was deduced from the plasmid pPL540 containing approx. 1500 bp. of <u>Bacillus spp</u>. PL236 DNA using the dideoxy chain termination method. The gene was placed in pUC18 in both orientations, and a number of deletions were constructed. Standard primers were used except for one synthe-

WO 91/10732 PCT/DK91/00013

44

tic oligonucleotide that was used for sequencing a region with no practical restriction sites.

Ŧ

Š

The C-terminal part of the gene was deduced from the plasmid pPL538. The partial DNA-sequence is shown in Sequence Listing ID#6. The sequence revealed an open reading frame coding for a protein with a M_r of about 62000 D which is in agreement with the observed protein of 60kD in the zymograms. The ATG start codon (position 30) is preceded by a typical ribosome binding site (Mclaughlin et al., 1981). The initiation codon is followed by a typical gram-positive signal sequence and by using the signal sequence cleavage model (Heijne, 1983) a signal sequence of 36 amino acids is revealed.

15 EXAMPLE 4

Endocellulase 4

Zymogram analysis

20

The endocellulase clone No. 4 is represented by the plasmid pPL592, which contains approx. 14000 bp. of <u>Bacillus spp</u>. PL236 DNA. A partial restriction map is shown in Fig. 1.

A zymogram analysis of extracts from <u>E.coli</u> MC1000(pPL592= revealed three cellulase active proteins with M_r values of approx. 92000 D, 74000 D and 71000 D. Further analysis is necessary to determine whether these proteins are encoded by one or several cellulase genes.

30

Southern analysis confirmed the origin of the cloned DNA on the <u>Bacillus spp.</u> PL236 chromosome, and indicates that the cloned DNA is not represented on the other endoglucanase clones.

EXAMPLE 5

A. Endol cloned and expressed in Bacillus subtilis

An agar slant was inoculated with <u>B. subtilis</u> strain CH 57 and incubated for 20 hours at 37°C. 10 ml of a 0.9 % NaCl-solution was added to the test tube which was shaken to suspend the cells. The cell suspension was used to inoculate a 2 l fermentor.

10

The following parameters were used to run the fermentation:

Temperature: 37°C.

15 Aeration: 1,1 1/minute.

Stirring: 1100 rpm.

Fermentor: A 2 1 model with a working volume of 1,5 1.

20

The pH was maintained between 6.2 and 7.2 for the first 40 hours of fermentation. After that the pH was maintained between 6.7 and 7.2. The pH was maintained within this range by dosing with NH_3 and H_3PO_4 .

25

Dosing of a glucose solution was initiated after 40 hours at a flow rate of 3.7 ml/hour.

WO 91/10732

PCT/DK91/00013

46

Substrate

	Potato starch degraded with Termamyl*	50 g	
	Soybean meal	110 g	
5	Corn steep Liquor	16.5 g	
,	Alburex (potato protein)	27.5 g	ŧ
	$(NH_4)_2$ SO4	2.2 g	
	KH ₂ PO ₄	1,2 g	
	Na ₂ HPO ₄ .2H ₂ O	5,9 g	
10	Water added up to 1100 ml.		

*Termamyl is a commercial <u>B. licheniformis</u> α -amylase avalable from Novo Nordisk A/S.

15 <u>Glucose solution</u>

Glucose.H ₂ O	600 g
Citric acid	0,6 g
Water added up to 1000 ml	

20

35

The fermentation was stopped after 166 hours of fermentation at an OD_{650} value of 122. At that time there were 1200 ml of fermentation broth in the fermentor.

The fermentation broth was centrifuged, and the extracellular volume was 400 ml containing 40 CMC-endoase units per ml (16.000 CMC-endoase units in all). The culture medium was further processed by filtration and dilution followed by concentration on an Amicon ultrafiltration module with a cut-off at 10.000 MW.

30 The concentrated enzyme solution was frozen.

Half of the frozen liquid was thawed and diluted with deionized water and then concentrated once more on an Amicon ultrafiltration module. The total yield was 4471 CMC-endoase units (from 8000 CMC-endoase units).

The total volume of 1050 ml was subjected to ion exchange chromatography at pH 7. The enzyme was bound to a DEAE-Sephacryl anion exchange column (300 ml volume) at pH 7 (50 mM tris-HCl). The Endol enzyme was eluted at pH 7 with 0.3 M NaCl.

The purified enzyme has a molecular weight of 58,000 D on SDS-PAGE. The pI is 4.0. Its activity is 30 CMC-endoase units per mg protein.

10

The protein determination is based on the amino acid composition of the enzyme deduced from the DNA sequence: 13 tryptophan, 30 tyrosine and a molecular weight of 57,566 D. The extinction coefficient is calculated by means of the following formula:

15

 $(13 \times 5559 + 30 \times 1197) / 57566 = 1.88$

The purified enzyme has an endoglucanase activity of 57 CMC-endoase units-per ml and an absorbance at 280nm of 3.6.

20 Thus, $(57 \times 1.88)/3.6 = 30$ CMC-endoase units per mg protein.

B. Stability of Endol in detergents

The following 4 detergent compositions were used:

25

- 1. USA liquid detergent: 2 gram per liter of 6° hardness water (1 part tap water to 2 parts deionized water). The pH was measured to 7,29.
- 2. USA Heavy Duty Powder detergent: 0,9 gram per liter of 6° hardness water. The pH was measured to 9,2.
- Heavy Duty Powder detergent (2) with bleach and activator:
 0.12 gram/l Na-perborate tetrahydrate and 0,088 gram/l NOBS. The
 pH was measured to 9,2.

WO 91/10732

4. European Heavy Duty Powder detergent with bleach and activator (Batch DR 8806 Europe). 5 gram per liter in 9° hardness water.

5

CelluzymeTM (batch CAX 007 crude enzyme with cellulase and other enzymes) 2353 CMC-endoase units per gram was compared with Endo1 30000 CMC-endoase units per gram.

The enzymes were diluted to 3 CMC-endoase units per ml in all 4 detergent solutions: The endoglucanase activity after dilution was measured as described above (by determining the decrease in the viscosity of CMC). The endoglucanase activity after 60 min. incubation at 40 °C was measured and compared with the initial activity. The following results were obtained:

Detergent solution

1 2 3 4

CelluzymeTM

89% 75% 66% 75%

Endo1

106% 90% 97% 98%

The standard deviation is 10%.

25

20

It appears from the table that Endol is more stable at a pH of 9-10 compared with CelluzymeTM in these detergents.

EXAMPLE 6

30

A. Preparation of full-length (~75 kD) Endol in B. subtilis

10 l of LB medium containing 1 mM $CuCl_2$ and 10 μ g/ml chloramphenical was inoculated with 10 ml of an overnight 35 culture of <u>B. subtilis</u> DN969 (B. Diderichsen et al.,

J.Bacteriol. 172(8), 1990, pp. 4315-4321) containing the plasmid pCH7 (described above in example 1), divided among 10 sterile 2 1 flasks and incubated with vigorous shaking for 36 hours at 37°C. The culture was centrifuged for 10 minutes at 10000xg and 4°C after which EDTA, pH 8, was added to the supernatant to a final concentration of 5 mM.

25 g of Avicel PH-105 which had been hydrated in ethanol and washed with destilled water was added to the supernatant which

10 was left standing with gentle stirring for 2 hours at 4°C. The supernatant/Avicel mixture was centrifuged for 10 minutes at 10000xg and 4°C. The cleared supernatant was decanted off immediately after the rotor had stopped.

- The Avicel/enzyme cake was resuspended and washed in 200 ml of lmM EDTA, and the mixture was centrifuged for 1 minute at 10000xg. This procedure was repeated twice. The Avicel/enzyme cake was then resuspended in 150 ml (1% triethylamine and 1 mM EDTA) and was left standing with vigorous stirring for 1 hour at 4°C. The mixture was centrifuged for 1 minute at 10000xg and 4°C. The supernatant was retained. This procedure was repeated twice.
- The solution of enzyme and triethylamine (about 300 ml) was was

 25 evaporated in vacuo to 100 ml. The temperature of the solution
 was not allowed to exceed 10°C. The pH was adjusted to 7 by
 adding 1M HCl, and the solution was frozen at -70°C.
- The amount of protein in the 100 ml enzyme solution was determined to be 40 mg by means of a Bradford reagent (available from BioRad) using bovine serum albumin as the standard.

B. Characterisation of the ~75 kD Endol

35 The enzyme obtained above had a purity of about 90%. The enzyme

÷

was found to have a molecular weight of 75 kD on SDS-PAGE.

In immunoprecipitation experiments (carried out by rocket immunoelectrophoresis in agarose gel as described by N. Axelsen et al., Chapter 2 in <u>A Manual of Quantitative Immunoelectrophoresis</u>, Blackwell Scientific Publ. 1973), ~75 kD <u>Endol</u> was immunoreactive with a monospecific rabbit antibody raised against the core region (~58 kD form) of Endol.

10 The ~75 kD and ~58 kD (processed) forms of Endol were tested for their ability to bind to cellulose (Avicel). 10 μg of each of ~75 kD Endol and ~58 kD Endol were added to 50 μl of a cellulose suspension (0.1% w/w Avicel, 5 mM EDTA, pH 8.0). The suspensions were shaken for 30 minutes, and the Avicel was harvested at 10000 rpm for 2 minutes. The amount of Endol cellulase remaining in the supernatant was analysed by SDS-PAGE. More than 95% of the ~75 kD Endol was bound to the cellulose, while less than 5% of the ~58 kD Endol was similarly bound. This shows that the C-terminal part of the ~75 kD Endol cellulase comprises a cellulose-binding domain.

Extensive amino acid sequence homology was found between this region (from amino acid 554 to 700) of the Endol cellulase and other cellulases, e.g. an endocellulase from Bacillus subtilis (Nakamura et al., 1987), the middle part of the bifunctional cellulase from Caldocellum saccharolyticum (D.J. Saul et al., Nucl.Acids Res. 17, 1988, p. 439), two endocellulases from Clostridium stercorarium (W. Schwarz et al., Biotech.Lett. 11, 1989, pp. 461-466).

30

35

25

C. Colour clarification effect of ~75 kD Endol

The colour clarification effect of ~75 kD <u>Endol</u> was determined by exposing a prewashed worn textile surface to the enzyme and then measuring the clarity of the surface colour compared to the

clarity of the surface colour of textiles which had not been treated with the enzyme.

Black 100% cotton swatches (15 \times 10 cm) were prewashed and 5 tumble-dried under the following conditions

Detergent:

Keminus (available from Irma A/S),

1.5g/1

Temperature:

70°C

10

Washing time:

60 minutes

Drying time:

30 minutes

No. prewashing/

drying treatments:15

The swatches were prewashed in a conventional washing machine (Miele Deluxe Electronic W761). After each wash, the swatches were dried in a tumble-drier. The visual effect of the prewashing/drying was that the surface colour turned greyish due to the presence of damaged cellulose fibres causing the worn look.

After prewashing, the swatches were washed in a Terg-O-Tometer (toploaded mini washing machine) under the following conditions

25

Liquid volume:

800 ml

Agitation:

100 movements/minute

Detergent:

Standard detergent, 5g/l

Washing time:

30 minutes

Washing tempera-

30

ture:

40°C

No. of swatches: 2

~75 kD Endol

dosage:

0 and 60 CMC endoase units/l

pH:

7.0

35

No. of treatments:3

15

20

52

Standard detergent:

LAS NANSA 1169/P: 10%
AE Berol 160: 15%
Ethanol, 96%: 10%
TEA: 5%
Water: 60%

10 After each wash, the swatches were rinsed in tap water and dried at room temperature.

The surface colour of the swatches was analysed by measuring reflected light. White light was projected onto the surface, and the reflection/remission was measured at 16 wavelengths (400 nm - 700 nm). The results from the measurements were processed (by means of an "Elrepho 2000" apparatus available from Datacolor, Switzerland) into Hunter coordinates of which the L-coordinate represents the grey scale values. Each swatch was analysed twice on each side, and the results shown below are are a total average from the measurements of the two swatches from the same treatment. In the table, white is L=100, and black is L=0.

	Dosage	0	CMC	endoas	se/160	CMC	endoase/l	
25	L		16.	78	15.50		•	
	S.D.		0.	08	0.03			
	Delta L		_		1.28			

Comparable results were obtained with CelluzymeTM (batch PPC 2174 containing a mixture of enzymes from <u>Humicola insolens</u>, DSM 1800)

Dosage (CMC endoase/1) 0 15 30 60

Delta L - 1.02 1.48 1.90

REFERENCES

- 5 Beguin, P.: Detection of cellulase activity in polyacrylamide gels using Congo red-stained agar replicas. Anal. Biochem. 131 (1983) 333-336.
- Bolivar, F., Rodriguez, R.L., Green, P.J., Betlach, M.C., 10 Heyneker, H.L., Boyer, H.W. Crosa, J.H., and Falkow, S.: Construction and characterization of new cloning vehicles II. A multipurpose cloning system. Gene 2 (1977) 95-113.
- Casadaban, J.M. and Cohen, S.N.: Analysis of gene control signals by DNA fusion and cloning in <u>Escherichia coli</u>. J. Mol. Bicl. 138 (1980) 179-207.
 - Chang, A.C.Y. and Cohen, S.N. J. Bacteriol., 134, 1141. (1978).
- Diderichsen, B. and Christiansen, L. Cloning of a maltogenic alpha-amylase from <u>Bacillus stearothermophilus</u>. FEMS Microbiol. lett. 56, 53-60. (1988).
- Dubnau, D. and Davidoff-Adelson, R. Fate of transforming DNA following uptake by competent <u>B.subtilis</u> 1. Formation and properties of the donor recipient complex. J. Mol. Biol. 56, 209-221. (1971).
- Ehrlich, S.D., Riele, H., Petit, M.A., Janniere, L., Noirot, P. and Michael, B. DNA recombination in plasmids and the chromosome of <u>B. subtilis</u>. Bacillus Mol. Genet. and Biotech. Appl. 27-33. (1986).
 - Heijne, G.: Patterns of amino acids near signal-sequence cleaage sites. Eur. J. Biochem. 133, 17-21 (1983).

Holmes, D.S. and Quigley, M.: A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 114 (1981) 193-197.

5

- Horinouchi, S. and Weisblum, B.: Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenical resistance. J. Bact. 150, 2, 815-825.
- Johnson, W.C., Moran, C.P. Jr. and Losich, R.: (1983) Two RNA polymerase sigma factors from <u>Bacillus subtilis</u> discriminate between overlapping promoters for a developmentally regulated gen.
- Jørgensen, P.L.: Construction of vectors for cloning of promotorer. M.Sc. Thesis, The Technical University of Denmark (1983).
- Keggins, K.M., Lovell, P.S. and Duvall, E.J. Molecular cloning
 of <u>Bacillus</u> DNA in Bacillus subtilis and properties of the
 vector plasmid pUB110. Proc.Natl.Acad.Sci.USA.75, 3, 1423-1427.
 (1978).
- Kreft, J., Burger, J.K. and Goebel, W.: Expression of antibi-25 otic resistance genes from <u>E.coli</u> in <u>Bacillus</u> <u>subtilis</u>. Mol.Gen.Genet. 190: 384-389 (1983).
- Laemmli, U.K.: Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 227 (1970) 680-30 685.
 - Loening, U.E.: The fractionation of high-molecular-weight ribonucleic acid polyacrylamide gel electrophoresis. Biochem. J. 102 (1967) 251-257.

Mandel, M. and Higa, A.: Calcium dependent bacteriophage DNA infection, J. Mol. Biol. 53 (1970) 154-162.

Maniatis, T., Fritsch, E.F., and Sambrook, J.: Molecular Cloning

5 - A Laboratory Manual. Cold Spring Harbor Laboratory, Cold
Spring Harbor, NY, 1982.

Maxam, A.M. and Gilbert, W.: Sequencing end-labelled DNA with base-specific chemical cleavage. In: Grossman, L. and Moldave,
10 K. (Eds., Methods in Enzymology, Vol. 65, Academic Press, New York, 1980, pp 499-560.

Mclaughlin, J.R., Murray, C.L. and Babinowitz, C.J. 1981. Unique features in the ribosome binding site sequence of the gram-positive Staphylococuccus aureus B-laclamase gene. J. Biol. Chem. 256: 11283-11291.

von Meyenburg, K., Jørgensen, B.B., Nielsen, J., and Hansen, F.G.: Promoters of the <u>atp</u> operon coding for the membrane bound 20 ATP synthase of <u>Escherichia coli</u> mapped by Tn<u>10</u> insertion mutations. Mol. Gen. Genet. 188 (1982) 240-248.

Miller, G.L.: Use of dinitrosalicyclic reagent for determination of reducing sugars, Anal. Chem. 31. (1959) 426-428.

Nakamura, A., Uozumi, T., Beppu, T. (1987). Nucleotide sequence of a cellulase gene of Bacillus subtilis. <u>Eur. J. Biochem.</u> 164, 317-320.

- Nilsson, B., Uhlen, M., Josephson, S., Gatenbeck, S. and Philipson, L.: An improved positive selection plasmid vector constructed by oligonucleotide mediated mutagenesis. Nucleic Acids Res. 11: 8019-8030.
 - 35 Ptashne, M., Johnson, A.D. and Pabo, C.O.: A genetic switch in

÷

a bacterial virus. Scientific American, November (1982).

Remaut et al., Gene 15, 1981, pp. 81-93.

- 5 Remaut, E., Stanssens, P. and Fiirs, W.: Plasmid vectors for high-efficiency expression controlled by the P_L promoter of coliphage lambda. Gene, 15, 81-93. (1981).
- Rigby, P.W.J., Dieckmann, M., Rhodes, C. and Berg, P. (1977):

 10 Labelling deoxyribonucleic acid to high specific activity in

 vitro by nick translation with DNA polymerase I. I. Mol. Biol.

 113, 237-251.
- Rosenberg, M. and Court, D.: Regulatory sequences involved in the promotion and termination of RNA transcription. Ann. Rev. Genet. 1979 13: 319-53.
- Sancar, A., Hack, A.M., and Rupp, W.D.: Simpel methods for identifications of plasmid-coded proteins, J. Bacteriol. 137 20 (1979) 692-693.
 - Sanger, F., Nichlen, S. and Coulson, A.R. (1977). Proc. Natl. Acad. Sci. USA 74, 5463-5467.
- 25 Southern, E.: Detection of specific sequences among DNA fragments separated by gel electrophoresis. I. Mol. Biol. 98, 503-517 (1975).
- Stephens, M.A., Ortlepp, S.A., Ollington, J.F. and McConnel, 30 D.J. J.bact. Vol.158, No 1, p 369-372. (1984).
 - Teather, R.M. and Wood, P.J.: Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol.
- 35 -3 (1982) 777-780.

Walseth, C.S.: Occurrence of cellulases in enzyme preparations from microorganisms. Tappi, Vol. 35, No. 5 (1952) 228-233.

5 Yanisch-Perron, C., Vieira, J. and Messing, J. Gene, 33, 103-119. (1985).

58

SEQUENCE LISTING

_	(1) GENE	RAL INFORMATION:
5	(i)	APPLICANT: Novo Nordisk A/S
	(ii)	TITLE OF INVENTION: An Enzyme Exhibiting Cellulase Activity
10	(iii)	NUMBER OF SEQUENCES: 7
15	(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Novo Nordisk A/S, Patent Department (B) STREET: Novo Alle (C) CITY: Bagsvaerd (E) COUNTRY: DENMARK (F) ZIP: DK-2880
20	(v)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: (B) COMPUTER: (C) OPERATING SYSTEM: (D) SOFTWARE:
25	(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION:
30	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: DK 164/90 (B) FILING DATE: 19-JAN-1990
35	(viii)	ATTORNEY/AGENT INFORMATION: (A) NAME: Thalsø-Madsen, Kine Birgit (B) REGISTRATION NUMBER: (C) REFERENCE/DOCKET NUMBER: 3425.204-WO
40	(ix)	TELECOMMUNICATION INFORMATION: (A) TELEPHONE: +45 4444 8888 (B) TELEFAX: +45 4449 3256 (C) TELEX: 37304
45	(2) INFO	RMATION FOR SEQ ID NO:1:
50	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 2977 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

	(ii) MOLECULE TYPE: DNA (genomic)	
5	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Bacillus lautus (B) STRAIN: NCIMB 40250</pre>	
10	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 6772776 (D) OTHER INFORMATION:	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
15	ATCTTGAAGC TTCGAGGTTC GCGTAACCAG GTCGATCGGC TGACTTTCCT CGCCAAGCTG	60
	CACCATGGCT TCATAGATTA ATTGGTGAGG AGGATCATAG AAATCTTCCG TCCGCACCGC	120
20	TCCATGGCGG TAATCAGCGC TTCCGACTGC AGTACAGAGC GGCCGATACA AATGCAGCCG	180
	ACAACCAGAT CAAGCCGTCC TTCAACATCA AAAACAACGG TACTTCGGCT GTTGATTTAA	240
	GCACGCTCAA AATCCGCTAC TACTTCACCA AGGATGGTTC TGCGGCGGTG AACGGCTGGA	300
25	TCGACTGGGC GCAGCTCGGC GGCAGCAACA TTCAGATCTC GTTTGGCAAC CATACTGGCA	360
	CGAATTCGGA TACGTACGTG GAGCTGAGCT TCTCGTCCGA GGCAGGCTCG ATTGCGGCGG	420
30	GCGGCCAATC CGGTGAAATC CAGCTGCGCA TGTCCAAGAC GGACTGGTCG AACTTTAACG	480
	AGGCGAACGA CTACTCGTTC GATGGGACGA AGACGGCCTT TGCTGACTGG GATCGGGTCG	540
	TATTGTACCA GAACGGCCAA ATAGTGTGGG GAACTGCTCC ATAAACCGAT ACAGGGGAAT	600
35	GTGCCGGAAC CGCTCTTTTG CAGGGCAGAC TGGCGGTATC CCTTGCTGAA ATGACTATTC	660
40	CTGGGAGGGA TCAAAA ATG AAG ACA AGA CAA AGA AAG CGG CTG TTC GTC Met Lys Thr Arg Gln Arg Lys Arg Leu Phe Val 1 5 10	709
	AGT GCG GCG CTG GCA GTA TCC TTG ACA ATG ACC GTA CCG ATG CCC GCT Ser Ala Ala Leu Ala Val Ser Leu Thr Met Thr Val Pro Met Pro Ala 20 25	757
45	TCT GTA AAT GCA GCT GCG AGT GAT GTC ACT TTC ACG ATT AAT ACG CAG Ser Val Asn Ala Ala Ser Asp Val Thr Phe Thr Ile Asn Thr Gln 30 35 40	805
50	TCG GAA CGT GCA GCG ATC AGC CCC AAT ATT TAC GGA ACC AAT CAG GAT Ser Glu Arg Ala Ala Ile Ser Pro Asn Ile Tyr Gly Thr Asn Gln Asp 45	853

								TCA Ser										901
5								AAC Asn										949
10								TTT Phe										997
15								GGG Gly 115									1	045
20								TAC Tyr									1	093
20								AAC Asn									1	141
25								AAG Lys									. 1	189
30								AAC Asn									1:	237
35								CGG Arg 195									1:	285
40	GGC Gly	ATC Ile 205	Lys	Ala	Tyr	Ser	Leu	GAT Asp	Asn	Glu	Pro	Ala	CTG Leu	TGG Trp	TCT Ser	GAG G1u	13	333
								GAG Glu									13	381
45								AAG Lys									14	429
50								CTT Leu									14	477

	CTG Leu	CAG G1n	GAC Asp 270	GCA Ala	CCG Pro	GAT Asp	TGG Trp	CCG Pro 275	AGT Ser	TTG Leu	CAA G1n	GGC Gly	AAC Asn 280	TAC Tyr	AGC Ser	TGG Trp	1525
5						CTG Leu											1573
10						GAT Asp 305											1621
15	CAG Gln	GGC Gly	GGA Gly	GGC Gly	CAG G1n 320	CGA Arg	ATC Ile	GTC Val	TTT Phe	GGC Gly 325	GGG Gly	GCG Ala	GGC Gly	AAT Asn	ATC Ile 330	GAT Asp	1669
20						GTA Val											1 7 17
20	TAC Tyr	CAG Gln	GAA Glu 350	GAC Asp	AGC Ser	TGG Trp	ATC Ile	GGC Gly 355	ACA Thr	TGG Trp	TTT Phe	TCA Ser	AGC Ser 360	TAC Tyr	TTG Leu	CCC Pro	1765
25						CAA Gln											1813
30	AAG Lys 380	CTG Leu	GCG Ala	ATC Ile	ACA Thr	GAG G1u 385	TTC Phe	AGC Ser	TAC Tyr	GGC Gly	GGA G1 <i>y</i> 390	GAC Asp	AAT Asn	CAC His	ATT	TCG Ser 395	1861
35						GCG Ala											1909
40	GTT Val	TAT Tyr	GCC Ala	GCG Ala 415	AAT Asn	TAC Tyr	TGG Trp	CAG Gln	ACG Thr 420	GAG G1 u	GAC Asp	AAT Asn	ACC Thr	GAT Asp 425	TAT Tyr	ACC Thr	1957
40	AGC Ser	GCT Ala	GCT Ala 430	TAC Tyr	AAG Lys	CTG Leu	TAT Tyr	CGC Arg 435	AAC Asn	TAC Tyr	GAC Asp	GGC Gly	AAT Asn 440	AAA Lys	TCG Ser	GGG Gly	2005
45						GTG Val											2053
50	TCG Ser 460	GTA Val	TAC Tyr	GCT Ala	TCG Ser	GTA Val 465	ACT Thr	GAC Asp	GAG Glu	GAG Glu	AAT Asn 470	TCC Ser	GAA Glu	CTC Leu	CAC His	CTG Leu 475	2101

						AAT Asn					Ile						2149
5						ACC Thr											2197
10	CAA Gln	ACC Thr	GGA Gly 510	TCC Ser	GAC Asp	ATT Ile	ACG Thr	GAA Glu 515	CAA Gln	GCA Ala	GCT Ala	ATA Ile	ACG Thr 520	AAT Asn	ATT Ile	AAC Asn	2245
15						TAT Tyr											2293
20						AGC Ser 545											2341
20						GAT Asp											2389
25					Ile	CAA Gln											2437
30						TAC Tyr											2485
35	AAC Asn	GGC G1y 605	TGG Trp	ATC Ile	GAT Asp	TGG Trp	GCG Ala 610	AAG Lys	CTC Leu	GGC Gly	GGC Gly	AGC Ser 615	AAC Asn	ATT Ile	CAG Gln	ATT Ile	2533
40					His	AAT Asn 625	Gly	Ala	Asp	Ser	Asp	Thr		Ala	Glu		2581
40	GGC Gly	TTC Phe	TCG Ser	TCC Ser	GGC Gly 640	GCA Ala	GGC Gly	TCG Ser	ATT Ile	GCG Ala 645	GAG Glu	GGC Gly	GGT Gly	CAA G1n	TCC Ser 650	GGC Gly	2629
45	GAA Glu	ATC Ile	CAG Gln	CTG Leu 655	CGC Arg	ATG Met	TCG Ser	AAG Lys	GCG Ala 660	GAC Asp	TGG Trp	TCG Ser	AAC Asn	TTC Phe 665	AAC Asn	GAG Glu	2677
						TTC Phe											2725

	GAT CGC GTG ACG CTA TAC CAA GAC GGA CAA CTC GTA TGG GGA ATC GAG Asp Arg Val Thr Leu Tyr Gln Asp Gly Gln Leu Val Trp Gly Ile Glu 685 690 695	2773
5	CCG TAGAAGATGA CTAGACAACA TTAGTGATGA GACGCGGCCG GCCATAACGG Pro 700	2826
	CTGTCTTGAC TCTGATTCGA TCAAAAAATC AAAGCAAAGG GGATGAAAGT AATGAATGTT	2886
10	GCGATTCAAA AGAGAATCGG ATCAATATTG ATGATTGCCT CACTAATTAT TAGCTTATTG	2946
	CCGTTAGGGA GCAGCAGAAC GTATGCTGCA G	2977
15	(2) INFORMATION FOR SEQ ID NO:2:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 700 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
	Met Lys Thr Arg Gln Arg Lys Arg Leu Phe Val Ser Ala Ala Leu Ala 1 15	
30	Val Ser Leu Thr Met Thr Val Pro Met Pro Ala Ser Val Asn Ala Ala 20 25 30	
35	Ala Ser Asp Val Thr Phe Thr Ile Asn Thr Gln Ser Glu Arg Ala Ala 35 40 45	
	Ile Ser Pro Asn Ile Tyr Gly Thr Asn Gln Asp Leu Ser Gly Thr Glu 50 60	
40	Asn Trp Ser Ser Arg Arg Leu Gly Gly Asn Arg Leu Thr Gly Tyr Asn 65 70 75 80	
	Trp Glu Asn Asn Ala Ser Ser Ala Gly Arg Asp Trp Leu His Tyr Ser 85 90 95	
45	Asp Asp Phe Leu Cys Gly Asn Gly Gly Val Pro Asp Thr Asp Cys Asp 100 105 110	
50	Lys Pro Gly Ala Val Val Thr Ala Phe His Asp Lys Ser Leu Glu Asn 115 120 125	
J 0	Gly Ala Tyr Ser Ile Val Thr Leu Gln Met Ala Gly Tyr Val Ser Arg	

	Asp. 145	Lys	Asn	Gly	Pro	Val 150	Asp	Glu	Ser	Glu	Thr 155	A1 a	Pro	Ser	Pro	Arg 160			
5	Trp	Asp	L y s	Val	G1u 165	Phe	Ala	Lys	Asn	A1a 170	Pro	Phe	Ser	Leu	Gln 175	Pro			Ş
	Asp	Leu	Asn	Asp 180	Gly	Gln	Val	Tyr	Met 185	Asp	G1u	G1u	Val	Asn 190	Phe	Leu			٤
10	Val	Asn	Arg 195	Tyr	Gly	Asn	Ala	Ser 200	Thr	Ser	Thr	ĠŢy	Ile 205	Lys	Ala	Tyr			
15	Ser	Leu 210	Asp	Asn	G1u	Pro	Ala 215	Leu	Trp	Ser	Glu	Thr 220	His	Pro	Arg	Ile			
	His 225	Pro	Glu	Gln	Leu	G1n 230	Ala	Ala	G1 u	Leu	Va1 235	Ala	Lys	Ser	Ile	Asp 240			
20	Leu	Ser	L y s	Ala	Va7 245	Lys	Asn	Val	Asp	Pro 250	His	Ala	Glu	Ile	Phe 255	Gly			
25	Pro	Ala	Leu	Tyr 260	Gly	Phe	Gly	Ala	Tyr 265	Leu	Ser	Leu	Gln	Asp 270	Ala	Pro			
25	Asp	Trp	Pro 275	Ser	Leu -	Gln	Gly	Asn 280	Tyr	Ser	Trp	Phe	Ile 285	Asp	Tyr	Tyr			
30	Leu	Asp 290	Gln	Met	Lys	Asn	A1 a 295	His	Thr	Gln	Asn	Gly 300	Lys	Arg	Leu	Leu			
	Asp 305	Val	Leu	Asp	Val	His 310	Trp	Tyr	Pro	Glu	Ala 315	Gln	Gly	Gly	Gly	G1 n 320			
35	Arg	Ile	Val	Phe	G1 y 325	Gly	Ala	Gly	Asn	Ile 330	Asp	Thr	Gln	Lys	A1a 335	Arg			
40	Val	Gln	Ala	Pro 340	Arg	Ser	Leu	Trp	Asp 345	Pro	Ala	Tyr	G1n	G1u 350	Asp	Ser			
40	Trp	He	Gly 355	Thr	Trp	Phe	Ser	Ser 360	Tyr	Leu	Pro	Leu	Ile 365	Pro	Lys	Leu			
45	Gln	Ser 370	Ser	Ile	G1n	Thr	Tyr 375	Tyr	Pro	Gly	Thr	Lys 380	Leu	Ala	Ile	Thr			
	Glu 385	Phe	Ser	Tyr	G1 y	Gly 390	Asp	Asn	His	Ile	Ser 395	Gly	G1 <i>y</i>	Ile	Ala	Thr 400			
50	Ala	Asp	Ala	Leu	Gly 405	Ile	Phe	Gly	Lys	Tyr 410	Gly	Val	Tyr	Ala	Ala 415	Asn			

	Tyr	Trp	Gln	Thr 420	Glu	Asp	Asn	Thr	Asp 425	Tyr	Thr	Ser	Ala	Ala 430	Tyr	Lys
5	Leu	Tyr	Arg 435	Asn	Tyr	Asp	Gly	Asn 440	Lys	Ser	Gly	Phe	Gly 445	Ser	Ile	Lys
	Val	Asp 450	Ala	Ala	Thr	Ser	Asp 455	Thr	G1 u	Asn	Ser	Ser 460	Val	Tyr	Ala	Ser
10	Val 465	Thr	Asp	Glu	Glu	Asn 470	Ser	Glu	Leu	His	Leu 475	Ile	Val	Leu	Asn	Lys 480
15	Asn	Phe	Asp	Asp	Pro 485	Ile	Asn	Ala	Thr	Phe 490	Gln	Leu	Ser	Gly	Asp 495	Lys
13	Thr	Tyr	Thr	Ser 500	Gly	Arg	Val	Trp	Gly 505	Phe	Asp	Gln	Thr	Gly 510	Ser	Asp
20	Ile	Thr	Glu 515	Gln	Ala	Ala	Ile	Thr 520	Asn	Ile	Asn	Asn	Asn 525	Gln	Phe	Thr
	Tyr	Thr 530	Leu	Pro	Pro	Leu	Ser 535	Ala	Tyr	His	Ile	Va1 540	Leu	Lys	Ala	Asp
2 5	Ser 545	Thr	Glu	Pro	Val	Asn 550	Ser	Asp	Leu	Val	Va1 555	Gln	Tyr	Lys	Asp	G1y 560
30	Asp	Arg	Asn	Asn	A1a 565	Thr	Asp	Asn	Gln	Ile 570	Lys	Pro	His	Phe	Asn 575	Ile
	Gln	Asn	Lys	Gly 580	Thr	Ser	Pro	Val	Asp 585	Leu	Ser	Ser	Leu	Thr 59 0	Leu	Arg
35	Tyr	Tyr	Phe 59 5	Thr	Lys	Asp	Ser	Ser 600	Ala	Ala	Met	Asn	G1 <i>y</i> 605	Trp	Ile	Asp
	Trp	Ala 610	Lys	Leu	Gly	Gly	Ser 615	Asn	Ile	Gln	Ile	Ser 620	Phe	Gly	Asn	His
40	Asn 625	G1 <i>y</i>	Ala	Asp	Ser	Asp 630	Thr	Tyr	Ala	Glu	Leu 635	Gly	Phe	Ser	Ser	G1y 640
45	Ala	Gly	Ser	Пe	A1a 645	G1 u	Gly	Gly	Gln	Ser 650	Gly	Glu	Ile	Gln	Leu 655	Arg
43	Met	Ser	Lys	A1 a 660	Asp	Trp	Ser	Asn	Phe 665	Asn	Glu	Ala	Asn	Asp 670	Tyr	Ser
50	Phe	Asp	Gly 675	Ala	Lys	Thr	Ala	Tyr 680	Ile	Asp	Trp	Asp	Arg 685	Val	Thr	Leu

	fight display Gin Leu Val Irp Gly He Glu Pro 690 695 700	
_	(2) INFORMATION FOR SEQ ID NO:3:	
5 10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2323 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
15	(vi) ORIGINAL SOURCE: (A) ORGANISM: Bacillus lautus (B) STRAIN: NCIMB 40250	
20	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1721869 (D) OTHER INFORMATION:	·
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3: GGGGTTTTGT TCATTTCAAG AAAGAGCACG AATAAACATC GCTAATTTAC ACATGATTTA	. 0
	TTCTCTAATT ATTATGGTGC ATGCCAATTG GAAAATGTAG TAGATTAGTC ATCGTAACCT	60
		120
30	GCTTTCATGC CAAGATATGT AATTTTTAAA AAAGAGTAAA GGAGAATTCA G ATG AAA Met Lys 1	177
35	AAA CGT AGA AGC AGT AAA GTT ATT CTT TCG TTG GCC ATC GTT GTT GCA Lys Arg Arg Ser Ser Lys Val Ile Leu Ser Leu Ala Ile Val Val Ala 5 10 15	225
40	TTA TTG GCA GCC GTC GAA CCT AAT GCC GCT TTA GCA GCG GCT CCA CCA Leu Leu Ala Ala Val Glu Pro Asn Ala Ala Leu Ala Ala Ala Pro Pro 20 25 30	273
45	AGT GCC ATG CAG TCC TAT GTT GAA GCG ATG CAG CCT GGC TGG AAC CTT Ser Ala Met Gln Ser Tyr Val Glu Ala Met Gln Pro Gly Trp Asn Leu 35 50	321
40	GGC AAT TCT CTG GAT GCT GTC GGT GCG GAT GAG ACG CTG GCA CGG GGC Gly Asn Ser Leu Asp Ala Val Gly Ala Asp Glu Thr Leu Ala Arg Gly 55 60 65	369
50	AAT CCG CGG ATC ACG AAA GAG CTC ATT CAG AAC ATC GCT GCG CAA GGC Asn Pro Arg Ile Thr Lys Glu Leu Ile Gln Asn Ile Ala Ala Gln Gly 70 75 80	417

	TA1 Tyi	Γ AAI ^ Ly:	G AGO S Ser 85	. 116	CGG Arg	ATI Ile	CCT Pro	GTT Val	Thr	TG6	G GAT	TC(Sei	CAT His	110	C GG e Gl	C GCG y Ala	465
5	GCC Ala	CC/ Pro 100) AST	TAT Tyr	CAA Glr	ATT Ile	GAA Glu 105	Ala	GCG Ala	G TAC Tyr	CTC Leu	AA7 Asr 110	CGA Arg	CT(G CAI	G GAG n Glu	513
10	GT(Val 115	Vd	A CAG	TG0 Trp	GCT Ala	TTG Leu 120	Asp	GCG Ala	AAC Asn	CTC Leu	TAT Tyr 125	· Va7	ATG Met	ATT ITE	AAT Asi	r GTC n Val 130	561
15	CAT His	CAT	GAT Asp	TCC Ser	TGG Trp 135	Leu	TGG Trp	ATC Ile	AGC Ser	AAA Lys 140	Met	GAG GTu	TCG Ser	CAG Glr	CAC His 145	GAT S Asp	609
20	CAA Gln	GTA Val	CTG Leu	GCC Ala 150	Arg	TAT Tyr	AAT Asn	GCG Ala	ATT Ile 155	Trp	ACG Thr	CAA Gln	ATT	GCC Ala 160	Asn	AAG Lys	657
25	TTC Phe	AAG Lys	AAC Asn 165	ser	CCG Pro	AGC Ser	AAG Lys	CTG Leu 170	ATG Met	TTC Phe	GAG G1u	AGC Ser	GTG Val 175	AAT Asn	GAG Glu	CCT Pro	705
	CGC Arg	TTT Phe 180	fffr	GAT Asp	GGC Gly	GGA Gly	ACT Thr 185	ACG Thr	GAT Asp	GAA Glu	GCC Ala	AAG Lys 190	CAG Gln	CAA G1,n	AAA Lys	ATG Met	753
30	CTG Leu 195	GAC Asp	GAG G1u	CTG Leu	AAC Asn	GTA Val 200	TCC Ser	TTT Phe	TTC Phe	AAC Asn	ATC Ile 205	GTC Val	AGA Arg	AAT Asn	TCC Ser	GGC Gly 210	801
35	GGC Gly	CAG Gln	AAC Asn	GCG Ala	ACT Thr 215	CGC Arg	CCG Pro	CTA Leu	GTT Val	CTT Leu 220	TCT Ser	ACG Thr	TTG Leu	GAG G1 u	GCC Ala 225	TCT Ser	849
40	CCC Pro	ACC Thr	CAA G1n	GAG G1u 230	AGA Arg	ATG Met	ACG Thr	GCG A1 a	CTT Leu 235	TAT Tyr	AAT Asn	ACG Thr	ATG Met	ACC Thr 240	AAA Lys	CTG Leu	897
45	AAC Asn	GAC Asp	AAG Lys 245	AAT Asn	CTG Leu	ATC Ile	Ala	ACC Thr 250	GTT Val	CAT His	TTT Phe	TAT Tyr	GGA Gly 255	TTC Phe	TGG Trp	CCG Pro	945
	rne	AGC Ser 260	GTA Val	AAT Asn	ATC Ile	Ala	GGA G1y 265	TAT Tyr	ACG Thr	AAA Lys	Phe	GAT Asp 270	GCG Ala	GAG G1 u	ACG Thr	CAA G1n	993
50	AAT Asn 275	GAT Asp	ATT Ile	ATA Ile	ınr	ACC Thr 280	TTC Phe	GAT Asp	AAC Asn	Val	TAT Tyr 285	AAC Asn	ACA Thr	TTT Phe	GTA Val	GCA Ala 290	1041

_	AAG Lys	GGA Gly	ATC Ile	CCG Pro	GTG Val 295	GTA Val	GTC Val	GGC Gly	GAA Glu	TAT Tyr 300	GGC Gly	CTT Leu	CTT Leu	GGA Gly	TTC Phe 305	GAT Asp	1089	₹
5	AAG Lys	AAT Asn	ACC Thr	GGC Gly 310	GTC Val	ATT Ile	GAA G1u	CAG Gln	GGT Gly 315	GAG Glu	AAA Lys	TTG Leu	AAA Lys	TTT Phe 320	TTC Phe	GAG Glu	1137	<u>چ</u>
10	TTT Phe	TTT Phe	GCC Ala 325	CAG G1n	TAT Tyr	GTG Val	AAG Lys	CAA Gln 330	AAA Lys	AGC Ser	ATT Ile	TCC Ser	ACT Thr 335	ATG Met	CTA Leu	TGG Trp	1185	
15	GAT Asp	AAC Asn 340	GGA Gly	CAG G1n	CAC His	TTC Phe	AAC Asn 345	CGC Arg	ACG Thr	AGC Ser	TTC Phe	AAG Lys 350	TGG Trp	TCT Ser	GAC Asp	CCG Pro	1233	
20						ATC Ile 360											1281	
25						ATC Ile											1329	
23						AAT Asn											1377	
30						CTG Leu											1425	
35						AAA Lys											1473	
40		Lys				AAC Asn 440											1521	
45						AAC Asn					Asn						1569	.8
40						ACT Thr											1617	ţ
50						ACG Thr											1665	

5	GCC GGT CCG CAT AAC TGG ACT TCC TTT AAG GAA TTC GAA ACG ACG TTC Ala Gly Pro His Asn Trp Thr Ser Phe Lys Glu Phe Glu Thr Thr Phe 500 505 510	1713
J	AGC CCC GCT TAT AGC GAG GGG AAA ATC AAA CTG CAG CAG GCG TTC TTT Ser Pro Ala Tyr Ser Glu Gly Lys Ile Lys Leu Gln Gln Ala Phe Phe 515 520 530	1761
10	AAT GAA GTG AAT GAT ACC ACA GTC ACG CTC AAG TTC CAA TTC TGG AGC Asn Glu Val Asn Asp Thr Thr Val Thr Leu Lys Phe Gln Phe Trp Ser 535	1809
15	GGG GAG ATC GTC AAC TAC ACG ATT AAA AAG AGC GGT TCG ACG GTG ACG Gly Glu Ile Val Asn Tyr Thr Ile Lys Lys Ser Gly Ser Thr Val Thr 550 555 560	1857
20	GGT ACG GCT TCA TAAGCGAGTT TGGCAAAAAA GGACCGATAT ACTGCCTAAT Gly Thr Ala Ser 565	1909
	TTGGTATTGC CTTAGTTGAA AGCAATTGCT CCGAATAAAC AGAATGAAGC CCCGGCCAGC	1969
25	TGGCCGGGAC TTATGCGTTT AGGAAGTATA AACGAATCAT CAGCAATTTA TTTAGCTCGT	2029
25	CTCAGTTCAG CAATATCGGC TTCATGTGAA ACGGAGCGGA TGAACAATCT TTCGAGCAAT	2089
	TTCTCATGCT CCTGCTGGGT TTGGAGAACG GTTTGCTGAT TAGTTTTAAG TACAGATATA	2149
30	TCCTCACGGA CTTGATTGAT TCATGTGGTC CGTTAGTTCT TCTACCTTTG TATTTGTGGC	2209
	AGCAACGATA TGAATTAATT GTTGAATGTG CCCGCCATGA CTGTTTAGCT GCTCATTGTG	2269
35	GCTTTGTAAC TGTTCTCGGA TTTCTTTGAA TTCTTGGTCG TGCTCATTAA GCTT	2323
	(2) INFORMATION FOR SEQ ID NO:4:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 566 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
4.5	(ii) MOLECULE TYPE: protein	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
50	Met Lys Lys Arg Arg Ser Ser Lys Val Ile Leu Ser Leu Ala Ile Val	
J	Val Ala Leu Leu Ala Ala Val Glu Pro Asn Ala Ala Leu Ala Ala Ala 20 25 30	

	Pro	Pro	Ser 35	Ala	Met	Gln	Ser	Tyr 4 0	Val	Glu	Ala	Met	Gln 45	Pro	Gly	Trp
5	Asn	Leu 50	Gly	Asn	Ser	Leu	Asp 55	Ala	Val	Gly	Ala	Asp 60	Glu	Thr	Leu	Ala
10	Arg 65	G1y	Asn	Pro	Arg	Ile 70	Thr	Lys	Glu	Leu	Ile 75	Gln	Asn	Ile	Ala	Ala 80
	Gln	Gly	Tyr	Lys	Ser 85	Ile	Arg	Ile	Pro	Va1 90	Thr	Trp	Asp	Ser	His 95	Ile
15	Gly	Ala	Ala	Pro 100	Asn	Tyr	Gln	Ile	Glu 105	Ala	Ala	Tyr	Leu	Asn 110	Arg	Val
	Gln	Glu	Val 115	Val	Gln	Trp	Ala	Leu 120	Asp	Ala	Asn	Leu	Tyr 125	Val	Met	Ile
20	Asn	Val 130	His	His	Asp	Ser	Trp 135	Leu	Trp	Ile	Ser	Lys 140	Met	Glu	Ser	Gln
25	His 145	Asp	Gln	Val	Leu	Ala 150	Arg	Tyr	Asn	Ala	Ile 155	Trp	Thr	Gln	Ile	Ala 160
	Asn	Lys	Phe	Lys	Asn 165	Ser	Pro	Ser	Lys	Leu 170	Met	Phe	Glu	Ser	Val 175	Asn
30	Glu	Pro	Arg	Phe 180	Thr	Asp	Gly	Gly	Thr 185	Thr	Asp	GTu	Ala	Lys 190	Gln	Gln
	L <u>y</u> .s	Met	Leu 195	Asp	Glu	Leu	Asn	Va7 200	Ser	Phe	Phe	Asn	Ile 205	Val	Arg	Asn
35	Ser	Gly 210	Gly	Gln	Asn	Ala	Thr 215	Arg	Pro	Leu	Val	Leu 220	Ser	Thr	Leu	G 1u
40	Ala 225	Ser	Pro	Thr	G1n	G1u 230	Arg	Met	Thr	Ala	Leu 235	Tyr	Asn	Thr	Met	Thr 240
	Lys	Leu	Asn	Asp	Lys 245	Asn	Leu	Ile	Ala	Thr 250	Val	His	Phe	Tyr	Gly 255	Phe
45	Trp	Pro	Phe	Ser 260	Val	Asn	Ile	Ala	G1y 265	Tyr	Thr	Lys	Phe	Asp 270	Ala	G1u
	Thr	Gln	Asn 275	Asp	Ile	Ile	Thr	Thr 280	Phe	Asp	Asn	Val	Tyr 285	Asn	Thr	Phe
50	Val	A1a 290	Lys	Gly	Ile	Pro	Va1 295	Va1	Val	G1y	G1 u	Tyr 300	Gly	Leu	Leu	Gly

	Phe 305	Asp	Lys	Asn	Thr	Gly 310	Val	Ile	Glu	Gln	Gly 315		Lys	Leu	Lys	Phe 320
5	Phe	G1 u	Phe	Phe	Ala 325	Gln	Tyr	Val	Lys	G1n 330		Ser	Ile	Ser	Thr 335	
	Leu	Trp	Asp	Asn 340	Gly	Gln	His	Phe	Asn 345	Arg	Thr	Ser	Phe	Lys 350	Trp	Ser
10	Asp	Pro	Asp 355	Leu	Phe	Asn	Met	11e 360	Lys	Ala	Ser	Trp	Thr 365	Gly	Arg	Ser
15	Ser	Thr 370	Ala	Ser	Ser	Asp	Leu 375	Ile	His	Val	Lys	G1n 380	Gly	Thr	Ala	Val
	Lys 385	Asp	Thr	Ser	Val	G1n 390	Leu	Asn	Leu	Asn	Gly 395	Asn	Thr	Leu	Thr	Ser 400
20	Leu	Ser	Val	Asn	Gly 405	Thr	Thr	Leu	Lys	Ser 410	Gly	Thr	Asp	Tyr	Thr 415	Leu
	Asn	Ser	Ser	Arg 4 20	Leu	Thr	Phe	Lys	Ala 425	Ser	Gln	Leu	Thr	Lys 430	Leu	Thr
25	Ser	Leu	Gly 435	Lys	Leu	Gly	Val	Asn 440	Ala	Thr	Ile	Val	Thr 445	Lys	Phe	Asn
30		450					455	Asn				460	•			
	465					470		Thr			475					480
35					485			Thr		490					495	
				500				Trp	5 05					510		
40			515					G1u 520					525			
15	Phe	Phe 530	Asn	Glu	Val	Asn	Asp 535	Thr	Thr	Val	Thr	Leu 540	Lys	Phe	Gln	Phe
	Trp 545	Ser	Gly	Glu	Ile	Val 550	Asn	Tyr	Thr	Ile	Lys 55 5	Lys	Ser	G1 <i>y</i>	Ser	Thr 560
50	Va1	Thr	Gly	Thr	A1 a 565	Ser										

	(2) INFORMATION FOR SEQ ID NO:5:
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1775 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA (genomic)
10	 (v) FRAGMENT TYPE: N-terminal (vi) ORIGINAL SOURCE: (A) ORGANISM: Bacillus lautus (B) STRAIN: NCIMB 40250
15	(ix) FEATURE:
20	(A) NAME/KEY: CDS (B) LOCATION: 30(1625.1775) (C) IDENTIFICATION METHOD: experimental (D) OTHER INFORMATION: /partial /evidence= EXPERIMENTAL /transl_except= (pos: 1446 1458, aa: OTR)
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
	TTGAAGCGCT GAATTCAGGA GGTTAAATAA TGCGTATTCA TGCAATTCGG CAATCTTGCC 60
30	GTTTGGTATT GACGATGGTT TTGATGCTTG GCTTATTGCT GCCTGTGGGC GCCCCCAAAG 120
	GCTATGCCGC TCCGGCTGTT CCTTTTGGCC AATTAAAAGT TCAGGGCAAT CAATTGGTAG 180
	GACAGTCCGG GCAAGCTGTT CAACTGGTTG GCATGAGCTC ACATGGATTG CAGTGGTATG 240
35	GCAATTTCGT CAACAAATCG TCGTTGCAGT GGATGAGAGA TAACTGGGGC ATCAACGTCT 300
	TCCGTGCCGC TATGTATACT TCCGAAGATG GTTACATTAC GGATCCTTCC GTCAAGAACA 360
40	AGGTGAAGGA GGCGGTTCAG GCATCCATCG ATCTGGCCTT GTACGTTATT ATTGACTGGC 420
	ATATCTTGTC TGATGGGAAT CCGAATACGT ACAAAGCGCA ATCGAAAGCG TTCTTCCAAG 480
	AGATGGCCAC ATTGTACGGC AACACGCCGA ATGTAATCTA TGAAATCGCG ACGAGCCCAA 540
45	CGGAATGTGT CCTGGGCAGA TGTCAGTCGT CGGAAGAAGT GATCACGGCC ATTCGTTCGA 600
	TTGACCCCGA CGGAGTGGTT ATCGTTGGCA GTCCAACCTG GAGCCAGGAT ATTCATCTGG 660
50	CGGCCGATAA CCCGGTATCA CATAGCAATG TCATGTATGC GCTTCATTTC TATTCAGGCA 720
	CGCATGGACA GTTTTTGAGA GACCGAATTA CCTATGCGAT GAACAAAGGA GCAGCGATCT 780

	TOUTTACCEA GIGGECACC AGIGAIGCAI CCGGGAACGG CGGGCCGTAT TTGCCTCAGT	840
5	CCAAAGAGTG GATCGATTTC TTGAATGCTC GCAAGATCAG CTGGGTGAAC TGGTCGCTCG	900
J	CTGATAAAGT AGAAACGTCT GCTGCTCTTA TGCCAGGTGC ATCGCCTACC GGCGCTGGAC	960
	CGATGCCCAA TTGTCGAATG GGCAAATCGG GTTCGCGATC AAATCCGGCA AGCAACTGGA	1020
10	GGCGGCAGGG CAATCCAACT GCACCGGCTG CCCCTACTAA CCTCTCGGCA AACGGCGGCA	1080
	ACGCCCAGGT ATCATTAACC TGGAACGCAG TTAGCGGGGC GACGAGCTAT ACCGTAAAGC	1140
15	GAGCAACGAC GAGCGGCGGT CCGTACACGA ATGTGGACCG GGGTGTCACG GCGACGAGCT	1200
	ACACGAACAC CGGGCTGACG AATGGCACGA CGTATTATTA TGTCGTGAGG GCATCCAATA	1260
	GCGCGGGCAG CAGCGCGAAC TCCGCGCAAG CGAGCGCAAC GCCGGCTAGC GGCGGCGCCA	1320
20	GTACGGGGAA CCTTGTTGTC CAATACAAAG TTGGCGACAC TAGCGCCACG GATAACCAAA	1380
	TGAAGCCTTC CTTTAACATC AAGAACAACG GTACAACCCC TGTTAACCTG AGCGGCCTCA	1440
25	AGCTTNNNNN NNNNNNNAA AAAGACGGAC CTGCGGATAT GAGCTGCTCG ATCGACTGGG	1500
	CGCAAATCGG CCGAACGAAT GTTCTGCTGG CATTCGCTAA CTTTACCGGG AGTAATACGG	1560
	ATACTTACTG TTGTGAGCTA AGCTTTAGCT GCACTGCAGG TTCGTATCCC GGCTATGCGT	1620
30	GGACNNNNN NNNNNNNNN NNNNNNNNN NNNNNNNNN NNNN	1680
	NNNNNNNN NNNNNNNN NNNNNNNNN NNNNNNNNN NNNN	1740
35	иминимими иминимими иминимимимимимимимим	1775
	(2) INFORMATION FOR SEQ ID NO:6:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1609 base pairs	
40	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
45	(v) FRAGMENT TYPE: N-terminal	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Bacillus lautus	
50	(B) STRAIN: NCIMB 40250	

5		(i:	•	(B) I	RE: NAME, LOCAT DTHER	TION:	: 30	160	07 N:		,							
		(x	i) SI	EQUE	NCE E)ESCF	RIPTI	ON:	SEQ	ID N	10:6:	:						
10	TTG	SAAG	CGCT	GAAT	TTCAG	GA G	GTTA	NAAT A	ATO Met	G CG1 Arg	ATT Ile	CAT His	GC/ S Ala	A AT	CGC Arg	G CAA g Gln	53	•
15	ser	10	s Arg	, Lei	ı vaı	Leu	1 hr 15	Met	. Val	Leu	Met	20	ı Gly	Leu	ı Lei	CTG Leu	101	
20	25	val	613	/ Ala	Pro	30	Gly	lyr	Ala	Ala	Pro 35	Ala	Val	Pro	Phe	GGC Gly 40	149	
	CAA G1n	TTA Leu	AAA Lys	GTT Val	CAG Gln 45	Gly	AAT Asn	CAA Gln	TTG Leu	GTA Val 50	Gly	CAG Gln	TCC Ser	GGG Gly	CAA Gln 55	GCT Ala	197	
25	GTT Val	CAA G1n	CTG Leu	GTT Val 60	GGC Gly	ATG Met	AGC Ser	TCA Ser	CAT His 65	GGA Gly	TTG Leu	CAG G1n	TGG Trp	TAT Tyr 70	Gly	AAT Asn	245	
30	TTC Phe	GTC Val	AAC Asn 75	Lys	TCG Ser	TCG Ser	TTG Leu	CAG Gln 80	TGG Trp	ATG Met	AGA Arg	GAT Asp	AAC Asn 85	TGG Trp	GGC Gly	ATC Ile	293	
35	AAC Asn	GTC Val 90	rne	CGT Arg	GCC Ala	GCT Ala	ATG Met 95	TAT Tyr	ACT Thr	TCC Ser	GAA Glu	GAT Asp 100	GGT Gly	TAC Tyr	ATT Ile	ACG Thr	341	
40	GAT Asp 105	CCT Pro	TCC Ser	GTC Val	AAG Lys	AAC Asn 110	AAG Lys	GTG Val	AAG Lys	GAG G1u	GCG Ala 115	GTT Val	CAG Gln	GCA Ala	TCC Ser	ATC Ile 120	389	
	GAT Asp	CTG Leu	GCC Ala	TTG Leu	TAC Tyr 125	GTT Val	ATT Ile	ATT Ile	GAC Asp	TGG Trp 130	CAT His	ATC Ile	TTG Leu	TCT Ser	GAT Asp 135	GGG Gly	437	
45	AAT Asn	CCG Pro	AAT Asn	ACG Thr 140	TAC Tyr	AAA Lys	GCG Ala	Gin	TCG Ser 145	AAA Lys	GCG Ala	TTC Phe	TTC Phe	CAA Gln 150	GAG Glu	ATG Met	48 5	;
50	GCC Ala	ACA Thr	TTG Leu 155	TAC Tyr	GGC Gly	AAC Asn	Thr	CCG Pro 160	AAT Asn	GTA Val	ATC Ile	Tyr	GAA Glu 165	ATC Ile	GCG Ala	ACG Thr	533	

	AGC Ser	CC/ Pro 170) inr	GA/ Glu	TGT Cys	GTC Val	CTG Leu 175	Gly	AGA Arg	TG1 Cys	CA6	TCO Ser 180	· Sei	G GAA	A GA/ J G1:	A GTG I Val	581
5	ATC 11e 185	Int	GCC Ala	ATT Ile	CGT Arg	TCG Ser 190	lle	GAC Asp	CCC Pro	GAC Asp	GGA G1y 195	/ Val	GTT Val	ATC Ile	GT]	GGC G1y 200	629
10	AGT Ser	CCA Pro	ACC Thr	TGG Trp	AGC Ser 205	GIn	GAT Asp	ATT Ile	CAT His	CTG Leu 210	A1a	GCC Ala	GAT Asp	AAC Asn	CC6 Pro 215	GTA Val	677
15	TCA Ser	CAT	AGC Ser	AAT Asn 220	vai	ATG Met	TAT Tyr	GCG Ala	CTT Leu 225	CAT His	TTC Phe	TAT Tyr	TCA Ser	GGC Gly 230	Thr	CAT	725
20	GIY	GIN	235	reu	Arg	Asp	Arg	11e 240	Thr	Tyr	Ala	Met	Asn 245	Lys	G1 y	GCA Ala	773
	GCG Ala	ATC 11e 250	rne	GTT Val	ACC Thr	GAG Glu	TGG Trp 255	GGC Gly	ACC Thr	AGT Ser	GAT Asp	GCA Ala 260	TCC Ser	GGG Gly	AAC Asn	GGC Gly	821
25	GGG G1y 265	CCG Pro	TAT Tyr	TTG Leu	CCT Pro	CAG Gln 270	TCC Ser	AAA Lys	GAG G1u	TGG Trp	ATC Ile 275	GAT Asp	TTC Phe	TTG Leu	AAT Asn	GCT Ala 280	869
30	CGC Arg	AAG Lys	ATC Ile	AGC Ser	TGG Trp 285	GTG Val	AAC Asn	TGG Trp	TCG Ser	CTC Leu 290	GCT Ala	GAT Asp	AAA Lys	GTA Val	GAA G1u 295	ACG Thr	917
35	TCT Ser	GCT Ala	GCT Ala	CTT Leu 300	ATG Met	CCA Pro	GGT Gly	GCA Ala	TCG Ser 305	CCT Pro	ACC Thr	GGC Gly	GCT Ala	GGA Gly 310	CCG Pro	ATG Met	965
40	CCC Pro	AAT Asn	TGT Cys 315	CGA Arg	ATG Met	GGC Gly	Lys	TCG Ser 320	GGT Gly	TCG Ser	CGA Arg	TCA Ser	AAT Asn 325	CCG Pro	GCA Ala	AGC Ser	1013
	USII	TGG Trp 330	AGG Arg	CGG Arg	CAG G1n	GGC Gly	AAT Asn 335	CCA Pro	ACT Thr	GCA A1a	CCG Pro	GCT Ala 340	GCC Ala	CCT Pro	ACT Thr	AAC Asn	1061
45	CTC Leu 345	TCG Ser	GCA Ala	AAC Asn	uly	GGC Gly 350	AAC Asn	GCC Ala	CAG G1n	Val	TCA Ser 355	TTA Leu	ACC Thr	TGG Trp	AAC Asn	GCA Ala 360	1109
50	GTT Val	AGC Ser	GGG Gly	Ala	ACG Thr 365	AGC Ser	TAT . Tyr	ACC Thr	Val	AAG Lys 370	CGA Arg	GCA Ala	ACG Thr	Thr	AGC Ser 375	GGC Gly	1157

	GGT Gly	CCG Pro	TAC Tyr	ACG Thr 380	AAT Asn	GTG Val	GAC Asp	CGG Arg	GGT Gly 385	GTC Val	ACG Thr	GCG Ala	ACG Thr	AGC Ser 390	TAC Tyr	ACG Thr	1205
5							GGC Gly										1253
10	TCC Ser	AAT Asn 410	AGC Ser	GCG Ala	GGC Gly	AGC Ser	AGC Ser 415	GCG Ala	AAC Asn	TCC Ser	GCG Ala	CAA Gln 420	GCG Ala	AGC Ser	GCA Ala	ACG Thr	1301
15	CCG Pro 425	GCT Ala	AGC Ser	GGC Gly	GGC Gly	GCC Ala 430	AGT Ser	ACG Thr	GGG Gly	AAC Asn	CTT Leu 435	GTT Val	GTC Val	CAA G1n	TAC Tyr	AAA Lys 440	1349
20	GTT Val	GGC Gly	GAC Asp	ACT Thr	AGC Ser 445	GCC Ala	ACG Thr	GAT Asp	AAC Asn	CAA Gln 450	ATG Met	AAG Lys	CCT Pro	TCC Ser	TTT Phe 455	AAC Asn	1397
	ATC Ile	AAG Lys	AAC Asn	AAC Asn 460	GGT Gly	ACA Thr	ACC Thr	CCT Pro	GTT Val 465	AAC Asn	CTG Leu	AGC Ser	GGC Gly	CTC Leu 470	AAG Lys	CTT Leu	1445
25	NNN Xaa	NNN Xaa	NNN Xaa 475	NNN Xaa	NAA Xaa	AAA Lys	GAC Asp	GGA Gly 480	CCT Pro	GCG Ala	GAT Asp	ATG Met	AGC Ser 485	TGC Cys	TCG Ser	ATC Ile	1493
30	GAC Asp	TGG Trp 490	GCG Ala	CAA G1n	ATC Ile	GGC Gly	CGA Arg 495	ACG Thr	AAT Asn	GTT Val	CTG Leu	CTG Leu 500	GCA Ala	TTC Phe	GCT Ala	AAC Asn	1541
35	TTT Phe 505	ACC Thr	GGG Gly	AGT Ser	AAT Asn	ACG Thr 510	GAT Asp	ACT Thr	TAC Tyr	TGT Cys	TGT Cys 515	GAG G1 u	CTA Leu	AGC Ser	TTT Phe	AGC Ser 520	1589
40							CCC Pro										1624

(2) INFORMATION FOR SEQ ID NO:7:

45

50

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 526 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

	Met 1	Arg	, Ile	His	Ala 5	Ile	Arg	, Gln	Ser	Cys 10	Arg	, Leu	Va1	Leu	Thr 15	Met
5	Val	Leu	ı Met	Leu 20	Gly	Leu	Leu	Leu	Pro 25	Val	Gly	' Ala	Pro	Lys 30		Tyr
	Ala	Ala	Pro 35	Ala	Val	Pro	Phe	Gly 40	Gln	Leu	Lys	Val	G1n 45		Asn	Gln
10	Leu	Va1 50	G7y	Gln	Ser	Gly	G1n 55	Ala	Val	G1 n	Leu	Va1 60		Met	Ser	Ser
15	His 65	Gly	Leu	Gln	Trp	Tyr 70	Gly	Asn	Phe	Val	Asn 75		Ser	Ser	Leu	G1n 80
	Trp	Met	Arg	Asp	Asn 85	Trp	Gly	Ile	Asn	Va1 90	Phe	Arg	Ala	Ala	Met 95	Tyr
20	Thr	Ser	Glu	Asp 100	Gly	Tyr	Ile	Thr	Asp 105	Pro	Ser	Val	Lys	Asn 110	Lys	Val
	Lys	Glu	Ala 115	Val	Gln	Ala	Ser	Ile 120	Asp	Leu	Ala	Leu	Tyr 125	Val	Ile	Ile
25	Asp	Trp 130	His	Ile	Leu	Ser	Asp 135	Gly	Asn	Pro	Asn	Thr 140	Tyr	Lys	Ala	Gln
30	Ser 145	Lys	Ala	Phe	₽he	G1n 150	Glu	Met	Ala	Thr	Leu 155	Tyr	Gly	Asn	Thr	Pro 160
	Asn	Val	Ile	Tyr	G1u 165	Ile	Ala	Thr	Ser	Pro 170	Thr	Glu	Cys	Val	Leu 175	Gly
35	Arg	Cys	Gln	Ser 180	Ser	Glu	G1 u	Va1	Ile 185	Thr	Ala	Ile	Arg	Ser 190	Ile	Asp
			195	Val				200					205			
40	His	Leu 210	Ala	Ala	Asp	Asn	Pro 215	Val	Ser	His	Ser	Asn 220	Vál	Met	Tyr	Ala
45	Leu 225	His	Phe	Tyr	Ser	G1y 230	Thr	His	Gly	Gln	Phe 235	Leu	Arg	Asp	Arg	Ile 240
	Thr	Tyr	Ala	Met	Asn 245	Lys	Gly	Ala	Ala	Ile 250	Phe	Val	Thr	G1 u	Trp 255	Gly
50	Thr	Ser	Asp	A1 a 260	Ser	Gly	Asn	Gly	G1 y 265	Pro	Tyr	Leu	Pro	G] n 270	Ser	Lys

	GTu	ı Tr	p Ile 275	Asp	Phe	e Leu	Asr	1 Ala 280	Arg	J Lys	i Ile	e Ser	7rp 285		l Ası	1 Trp
5	Ser	^ Le	u Ala O	Asp	Lys	Va1	G1u 295	ı Thr	· Ser	· Ala	ı-Ala	1 Leu 300		Pro	Gl)	/ Ala
	Ser 305	Pro) Thr	- G1y	/ Ala	Gly 310	Pro	Met	Pro	Asr	Cys 315	Arg	Met	Gly	/ Lys	Ser 320
10	Gly	/ Sei	r Arg) Ser	Asn 325	Pro	Ala	Ser	Asn	Trp 330	Arg	Arg	Gln	G1y	Asn 335	Pro
15	Thr	· A1a	a Pro	A1a 340	Ala	Pro	Thr	Asn	Leu 345	Ser	Ala	Asn	G1 <i>y</i>	G1y 350		Ala
	Gln	Va]	Ser 355	Leu	Thr	Trp	Asn	A1 a 360	Val	Ser	Gly	Ala	Thr 365	Ser	Tyr	Thr
20	Val	Lys 370	Arg	Ala	Thr	Thr	Ser 375	Gly	Gly	Pro	Tyr	Thr 380	Asn	Val	Asp	Arg
	G1y 385	Val	Thr	Ala	Thr	Ser 390	Tyr	Thr	Asn	Thr	G1y 395	Leu	Thr	Asn	Gly	Thr 400
25	Thr	Tyr	Tyr	Tyr	Va1 405	Val	Arg	Ala	Ser	Asn 410	Ser	Ala	Gly	Ser	Ser 415	Ala
30	Asn	Ser	Ala	G1n 420	Ala	Ser	Ala	Thr	Pro 425	Ala	Ser	Gly	Gly	A1 a 430	Ser	Thr
	Gly	Asn	Leu 435	Val	Val	G1 n	Tyr	Lys 440	Val	Gly	Asp	Thr	Ser 445	Ala	Thr	Asp
35	Asn	Gln 450	Met	Lys	Pro	Ser	Phe 455	Asn	Ile	Lys	Asn	Asn 460	G1 <i>y</i>	Thr	Thr	Pro
	400		Leu			4/0					475				•	480
40	Pro	Ala	Asp	Met	Ser 485	Cys	Ser	Пе	Asp	Trp 490	Ala	G1n	Ile	Gly	Arg 495	Thr
45	Asn	Val	Leu	Leu 500	Ala	Phe	Ala	Asn	Phe 50 5	Thr	G1y	Ser		Thr 510	Asp	Thr
	Tyr	Cys	Cys 515	Glu	Leu	Ser	Phe	Ser 520	Cys	Thr	Ala		Ser 525	Tyr	Pro	Gly
50	Tyr	A1a 530	Trp													

には さったったっきりょうしょ

	International Application No: PCT/ /
MICRO	RGANISMS
Optional Shoot in connection with the microorganism referred b	o on page 3 to 20 of the description I
A. IDENTIFICATION OF DEPOSIT	
Further deposits are identified on an additional sheet	
Name of depository institution 4	
NATIONAL COLLECTION OF INDI	
Address of depository institutes (including postal code and cour Torry Research Station, P. Drive, Aberdeen AB9 8DG, Sc	O. Boy 31 22 Ct Mark-
Date of depeak t	Accesses Number +
18 January 1990	NCIMB 40250
B. ADDITIONAL INDICATIONS 7 (leave blank if not applica	bie). This information is continued on a separate attached shoot
In respect of those designar patent is sought, a sample organism will be made available such a sample to an expert requesting the sample (Rulpublication of the mention of pean patent or until the designation has been refused or i	of the deposited micro- able only by the issue of nominated by the person le 28(4) EPC) until the of the grant of the Euro- late on which the appli- s deemed to be withdrawn. RE MADE: (# the indications are not by all designant Sures)
9. SEPARATE FURNISHING OF INDICATIONS - (leave ble	ink if not applicable)
The indications acted below will be submitted to the internation "Accession Number of Deposit")	al Bureau later 9 (Specify the general nature of the Indications e.g.,
E. K This shoot was received with the international application w	rhen filed (to be checked by the receiving Office)
The date of receipt (from the applicant) by the international	Chonne Jakobsen: (Authorized Officer) Yvonne Jakobsen: Head Clerk
	(At Berker's Officer)

CLAIMS

5

- 1. An enzyme which exhibits cellulase activity, which enzyme is producible by a strain of <u>Bacillus</u> spp., NCIMB 40250, or a related <u>Bacillus</u> spp. strain, or a derivative of said cellulase.
- 2. An enzyme according to claim 1, which exhibits an endoglucanase activity of at least about 10, more preferably at least about 20, most preferably at least about 25, such as about 30, CMC-endoase units (as defined herein) per mg of total protein under alkaline conditions.
 - 3. An enzyme according to claim 1, which is active at a temperature of up to about 65 °C.
- 4. An enzyme according to any of claims 1-3, which is an endoglucanase with an apparent molecular weight of 75 kD or a cleavage product thereof exhibiting endoglucanase activity.
- 5. An enzyme according to claim 4, which is an endoglucanase encoded by the DNA sequence shown in the appended Sequence Listing ID#1, or a modification thereof encoding a derivative of said endoglucanase.
- 6. An enzyme according to any of claims 1-3, which is an endoglucanase with an apparent molecular weight of 56 kD or a cleavage product thereof exhibiting endoglucanase activity.
 - 7. An enzyme according to claim 6, which is an endoglucanase encoded by the DNA sequence shown in the appended Sequence Listing ID##, or a modification thereof encoding a derivative of said endoglucanase.
 - 8. An enzyme according to any of claims 1-3, which is an endoglucanase with an apparent molecular weight of 45 kD or a cleavage product thereof exhibiting endoglucanase activity.

- 9. An enzyme according to claim 8, which is an endoglucanase encoded by the DNA sequence shown in the appended Sequence Listing ID#6, or a modification thereof encoding a derivative of said endoglucanase.
- 10. An enzyme according to any of claims 1-3, which is an endoglucanase with an apparent molecular weight of 60 kD or a cleavage product thereof exhibiting endoglucanase activity, or which is an endoglucanase with an apparent molecular weight of 56 kD or a cleavage product thereof exhibiting endoglucanase activity.

- 11. An enzyme according to any of claims 1-3, which is an endoglucanase with an apparent molecular weight of 92 kD or a cleavage product thereof exhibiting endoglucanase activity.
- 12. An enzyme which comprises a core region derived from an endoglucanase according to any of claims I-II combined with a cellulose-binding domain derived from another cellulase enzyme, or a core region derived from another cellulase enzyme combined with a cellulose-binding domain derived from an endoglucanase according to any of claims I-II.

- 13. An enzyme according to claim 12, wherein the core region is derived from a cellulase enzyme which does not, in nature, comprise a cellulose-binding domain.
- 25 14. A DNA construct which comprises a DNA sequence encoding an enzyme exhibiting cellulase activity, which enzyme is derivable from a strain of <u>Bacillus</u> spp., NCIMB 40250, or a related <u>Bacillus</u> spp. strain, or a derivative of said cellulase.
- 15. A DNA construct according to claim 14, wherein the DNA sequence encodes an endoglucanase with an apparent molecular weight of 75 kD.
- 16. A DNA construct according to claim 15, wherein the DNA sequence is the one shown in the appended Sequence Listing ID#1, or a modification thereof
 encoding a derivative of said endoglucanase.

- 17. A DNA construct according to claim 14, wherein the DNA sequence encodes an endoglucanase with an apparent molecular weight of 56 kD.
- 18. A DNA construct according to claim 17, wherein the DNA sequence is the one shown in the appended Sequence Listing ID#3, or a modification thereof encoding a derivative of said endoglucanase.
- 19. A DNA construct according to claim 14, wherein the DNA sequence encodes an endoglucanase with an apparent molecular weight of 45 kD.
 - 20. A DNA construct according to claim 19, wherein the DNA sequence is the one shown in the appended Sequence Listing ID#6, or a modification thereof encoding a derivative of said endoglucanase.
 - 21. A DNA construct according to claim 14, wherein the DNA sequence encodes an endoglucanase with an apparent molecular weight of 92 kD.
- 22. An expression vector which carries an inserted DNA construct according to any of claims 14-21.
 - 23. A cell which is transformed with a DNA construct according to any of claims 14-21 or with an expression vector according to claim 22.
- 25 24. A cell according to claim 23, which is a bacterium.
 - 25. A cell according to claim 24, which is a grampositive bacterium.
- 26. A cell according to claim 25, wherein the grampositive bacterium is selected from the group consisting of <u>Bacillus subtilis</u>, <u>Bacillus licheniformis</u>, <u>Bacillus lentus</u>, <u>Bacillus brevis</u>, <u>Bacillus stearothermophilus</u>, <u>Bacillus alkalophilus</u>, <u>Bacillus amyloliquefaciens</u>, <u>Bacillus coaqulans</u>, <u>Bacillus circulans</u> or <u>Bacillus lautus</u>.

15

- 27. A cell according to claim 24, which is a gramnegative bacterium, e.g. <u>Escherichia</u> coli.
- 28. A method of producing an enzyme according to any of claims 1-13, wherein a host cell according to any of claims 23-27 is cultured under conditions conducive to the production of the endoglucanase or a derivative thereof, and the endoglucanase or derivative thereof is subsequently recovered from the culture.
- 29. A method according to claim 28, wherein the endoglucanase is recovered in mature form.
 - 30. A cellulolytic agent capable of degrading amorphous regions of cellulose fibres, the agent comprising an enzyme according to any of claims 1-13.
 - 31. An agent according to claim 30, which comprises a combination of two or more cellulases recited in any of claims 1-13, or a combination of one or more cellulases recited in any of claims 1-13 with one or more other enzymes with cellulase activity.
 - 32. An agent according to claim 30 or 31, which is in the form of a non-dusting granulate, stabilized liquid or protected enzyme.
- 33. An agent according to any of claims 30-32, which exhibits an endoglucanase activity of 500-10,000 CMC-endoase units per gram of the agent.
 - 34. An agent according to any of claims 30-33, which is a detergent additive.
- 35. An agent according to claim 34, which additionally comprises another enzyme such a a protease, lipase and/or amylase.
 - 36. A detergent composition comprising a cellulolytic agent according to any of claims 30-35.

- 37. A detergent composition according to claim 36, which exhibits an endoglucanase activity of 0.3-400 CMC-endoase units per gram of detergent.
- 38. A method of reducing the rate at which cellulose-containing fabrics become harsh or of reducing the harshness of cellulose-containing fabrics, the method comprising treating cellulose-containing fabrics with a cellulolytic agent according to any of claims 30-35.
- 39. A method according to claim 38, wherein the treatment of the fabrics with the cellulolytic agent is conducted during soaking, washing or rinsing of the fabrics.
- 40. A method of treating a coloured, cellulose-containing fabric in order to provide colour clarification, the method comprising treating the cellulose-containing fabric with a cellulolytic agent according to any of claims 30-35.
- 41. A method according to claim 40, wherein the treatment of the fabric with the cellulolytic agent is conducted in an aqueous medium during soaking, washing or rinsing of the fabric.
 - 42. A method according to claim 41, wherein the aqueous medium exhibits an endoglucanase activity of more than about 250 CMC-endoase units per liter of the aqueous medium.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7a

REPLACEMENT SHEET

8/13

best Wair.

In vivo recombination
 Enrichment cutting
 with KpnI
 Transformation

Fig. 8b

Fig. 9

REPLACEMENT RUCE

Fig. 10

ふさみ りしきりはりしゅいここ

€

,

Fig. 11

INTERNATIONAL SEARCH REPORT

International Application No. PCT/DK 91/00013

I. CLAS	SIFICATIO	N OF SUBJECT MATTER (if several class	ssification symbols apply, indicate all) 6	7 217 327 00025
According IPC5:	ng to Interna C 12 N	ntional Patent Classification (IPC) or to bot 9/42, C 12 N 15/56, C 1	h National Classification and IPC 1 D 3/386	
II. FIELD	S SEARCH			
Classifies	Van Courte	Minimum Docu	mentation Searched 7	
Classificat	tion System		Classification Symbols	
IPC5		C 12 N		
		Documentation Searched of to the Extent that such Docume	her than Minimum Documentation ents are Included in Fields Searched ⁸	
		lasses as above		
Category *		ONSIDERED TO BE RELEVANT®		
X		on of Document,11 with Indication, where		Relevant to Claim No.13
	15	, 0270974 (KAO CORPORATI June 1988, e example 7, pages 44-47		1-11,14- 42
X	8	, 0269977 (KAO CORPORATI June 1988, e the claims	ON)	2-11,15- 42
A	15	, 0271004 (KAO CORPORATION June 1988, se the whole document	ON)	1-11,14- 42
A	4 1	, 0265832 (KAO CORPORATION 1988, the whole document	(NC	1-11,14- 42
* Specia "A" docu	I categorie	s of cited documents: ¹⁰ ng the general state of the art which is not of particular relevance	"T" later document published after to priority date and not in conflicted to understand the priority	he international filing date It with the application but
"F" earli		of particular relevance t but published on or after the internationa	Invention	or meory underlying the
"L" docu Whic	ment which	may throw doubts on priority claim(s) or establish the publication date of another	"X" document of particular relevance cannot be considered novel or ca involve an inventive step	mnot de considered to
"O" docu	ment referri r means	ng to an oral disclosure, use, exhibition o	in the art.	byious to a person skilled
later V. CERTIF		hed prior to the international filing date by conty date claimed	"&" document member of the same p	atent family
		letion of the International Search	Date of Mailing of this International Se	arch Report
6th Ma			1991 -05- 1 3	от периц
nternational	l Searching	Authority	Signature of Authorized Officer Vivos	Keen
rm PCT/ISA	SWEDI /210 (secon	SH PATENT (FFICE	Nyonne Siösteen	

Category	CUMEUTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET) * Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
A	WO, A1, 8909259 (NOVO INDUSTRI A/S) 5 October 1989, see page 4, line 7 - line 9	1-11,14- 42
Y	Chemical Abstracts, volume 108, no. 19, 9 May 1988, (Columbus, Ohio, US), Warren, R.A.J et al: "A bifunctional exoglucanase-endoglucanase fusion protein ", see page 295, abstract 163739k, & Gene 1987, 61(3), 421-427	12,13
ſ	Chemical Abstracts, volume 110, no. 23, 5 June 1989, (Columbus, Ohio, US), Greenwood, Jeffrey M et al: "Fusion to an endoglucanase allows alkaline phosphatase to bind to cellulose ", see, abstract 208834x, & FEBS Lett. 1989, 244(1), 127-131	12,13
	Chemical Abstracts, volume 111, no. 19, 6 November 1989, (Columbus, Ohio, US), Kilburn, D.G. et al: "Cellulases of Cellulomonas fimi. The enzymes and their interactions with substrate ", see page 331, abstract 170011g, & ACS Symp.Ser. 1989, 399(), 587-596	12,13
	Chemical Abstracts, volume 111, no. 21, 20 November 1989, (Columbus, Ohio, US), Ong, Edgar et al: "The cellulose-binding domains of cellulases: tools for biotechnology", see page 619, abstract 192974a, & Trends Biotechnol. 1989, 7(9), 239-243	12,13
		-

Form PCT/ISA/210 (axtra sheet) (January 1985)

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET				
THE SECOND SHEET	T			
/partly/				
V. X OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND/UNSEARCHABLE				
This international search report has not been established in respect of certain claims under Article 17/2) (a)	for the following masses			
1. Claim numbers, because they relate to subject matter not required to be searched by this Authority, namely:				
	••			
``				
7.74				
2. X Claim numbers 1, 14., because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:				
The wording of these claims are too broadly formulated to				
permit a meaningful search of the whole claims.				
·				
3. Claim numbers, because they are dependent claims and are not drafted in accordance with the second and third sen-				
The state of the s				
VI. X OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING 2				
Exercise Where Drift of Invention is Lacking				
This International Searching Authority found multiple inventions in this international application as follows	:			
·				
1. X As all required additional search fees were timely paid by the applicant, this international search report claims of the international application.	rt covers all searchable			
 As only some of the required additional search fees were timely paid by the applicant, this internation only those claims of the international application for which fees were paid, specifically claims: 	al search report covers			
3. No required additional search fees were timely paid by the applicant. Consequently, this interesting to				
 No required additional search fees were timely paid by the applicant. Consequently, this international sed to the invention first mentioned in the the claims. It is covered by claim numbers: 	earch report is restrict-			
As all searchable claims could be searched without effort justifying an additional for the lateral to				
- did not invite payment of any additional fee.	Searching Authority			
Remark on Protest				
The additional search fees were accompanied by applicant's protest.				
The additional search fees were accompanied by applicant's protest. No protest accompanied the payment of additional seach fees.				

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.PCT/DK 91/00013

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the Swedish Patent Office EDP file on 91–03–23

The Swedish Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A2- 0270974	88-06-15	JP-A- US-A- JP-A- JP-A- JP-A- JP-A-	63273474 4943532 63273475 63279790 1037286 1112982 63141586	88-11-10 90-07-24 88-11-10 88-11-15 89-02-07 89-05-01 88-06-14
EP-A2- 0269977	88-06-08	US-A- JP-A- JP-A- JP-A- JP-A- JP-A- JP-A- JP-A-	4962030 1037285 1037287 1037288 1296980 63240785 63137677 63240777	90-10-09 89-02-07 89-02-07 89-02-07 89-11-30 88-10-06 88-06-09 88-10-06
EP-A2- 0271004	88-06-15	JP-A- US-A- US-A-	63264699 4822516 4978470	88-11-01 89-04-18 90-12-18
EP-A2- 0265832	88-05-04	JP-A- US-A- JP-A- JP-A- JP-A-	63109771 4945053 63109776 63109777 63109778	88-05-14 90-07-31 88-05-14 88-05-14 88-05-14
WO-A1- 8909259	89-10-05	EP-A-	0406314	91-01-09