Practice Assignment 10

Create a GitHub repository called "st2195_assignment_10" and include a package in R and Python able to replicate:

- 1. the basic structure of the EDA in the assignment for modules on data visualisation [4 points]
- 2. the analysis in practice assignment 9 [4 points]

for any given dataset, pre-set of features and a categorical target. Add also two examples (one in R and one in Python) based on the titanic dataset and a small documentation to describe your packages and their basic functionalities. [2 points]

Note that GitHub provides different ways for documenting your repo. More details can be found at https://guides.github.com/features/wikis/.

Additional Notes:

- Objective -- <u>Create both R and Python packages</u> based on the analysis we have done for Practice Assignments 7 to 9 on titanic dataset
 - Relevant practice assignments:
 - R Use Practice Assignments 7 and 9 as a starting point
 - Python Use Practice Assignments 8 (Part 1) and 9 as a starting point
 - Convert the code in those practice assignments into separate functions within a package, so that it can take any dataset and do the following:
 - 1. Exploratory data analysis (EDA)
 - 2. Fit models
 - 3. Plot and compare models
- Hints/Suggestions:
 - Exploratory data analysis (EDA)
 - R and Python
 - For each variable (including target): (i) plot bar chart if variable is factor/category; (ii) plot histogram if variable is numeric
 - Additionally, for each <u>non-target</u> variable: (i) plot stacked bar charts by target if variable is factor/category; (ii) plot violin charts by target if variable is numeric
 - o Fit models
 - R
- Allow user to specify any dataframe as input data, the target variable, and the machine learning algorithms/models
- Many of the algorithms follow a similar process for fitting a model that includes pre-processing and training/fitting
- Python
 - Most of the code for fitting a model are the same across algorithms, with differences mainly in the pipeline steps.
 - You can store the specific pipeline for each algorithm in a dictionary and access the appropriate one to fit the model as needed
 - Similarly, you can store the fitted models as a dictionary.
- Plot and compare models
 - R
- Once the models have been fitted, you can plot and compare the differences (e.g., using boxplots)
- Python
 - Since you have stored the fitted models in a dictionary, you can just plot for each of the models in there (e.g., ROC curve).

- Putting your R package on GitHub (let's name it "analysis")
 - Useful reference -- https://kbroman.org/pkg primer/pages/github.html
 - o GitHub:
 - Create a new empty repository with a suitable name.
 - Navigate to Settings -> Developer Settings -> Personal Access
 Tokens to generate an authorization token
 - Make sure to select the required scope for it to work
 - Note down the authorization token
 - Command Prompt:
 - Change to the local package directory -- in our case, the directory that contains the "analysis" folder
 - Initialize the repository with "git init"
 - Add and commit everything with "git add ." and "git commit"
 - Create a new repository on GitHub (as described in section above)
 - Connect your local repository to the one on GitHub
 - git remote add origin https://token@github.com/username/repository.git
 - git branch -M main
 - git push -u origin main
- Installing your R package from GitHub (named "analysis")
 - o RStudio Console:
 - library(devtools) #load library containing install_github function
 - install_github("username/repository/analysis", auth_token="token")#if repository set as private
 - install_github("username/repository/analysis") #if repository set as public
 - library(analysis)