Package 'LUCIDus'

October 5, 2023

Title LUCID with Multi-omics Data

Version 3.0.1
Description LUCID version 3, a major update and enhancement from the original release. LUCID version 3 is more robust, and features more powerful model selection, model visualization, inference based on bootstrap resampling, and implements different analysis strategies for multi-omics data with multiple layers. It also incorporates methods to deal with missing ness in multi-omics data.
License MIT + file LICENSE
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
Imports mclust, nnet, boot, jsonlite, networkD3, progress
NeedsCompilation no
Author Qiran Jia [aut, cre] (https://orcid.org/0000-0002-0790-5967)
Maintainer Qiran Jia <qiranjia@usc.edu></qiranjia@usc.edu>
Waintainer Quantita anglaedsc.edd>
R topics documented:
boot_lucid
check_K
check_na
estimate_lucid
est_lucid
fill_data
f_GtoX
f_XtoY
f_XtoZ
gen_ci
initialize Beta
initialize Delta
initialize Mu
initialize_Mu_Sigma
initialize Sigma

2 boot_lucid

Istep_Z	14
lastInd	14
LogSumExp	15
lucid	15
plot_lucid	17
predict_lucid	
pred_lucid	19
print.lucid	20
print.sumlucid	20
reorder_lucid	
summary_lucid	
tune_lucid	
vec_to_array	24
	25

boot_lucid

Index

Inference of LUCID model based on bootstrap resampling

Description

Generate R bootstrap replicates of LUCID parameters and derive confidence interval (CI) base on bootstrap. Bootstrap replicates are generated based on nonparameteric resampling, implemented by ordinary method of codeboot::boot function. Now only work for LUCID early.

Usage

```
boot_lucid(
   G,
   Z,
   Y,
   lucid_model = c("early", "parallel", "serial"),
   CoG = NULL,
   CoY = NULL,
   model,
   conf = 0.95,
   R = 100
)
```

Arguments

G	Exposures, a numeric vector, matrix, or data frame. Categorical variable should be transformed into dummy variables. If a matrix or data frame, rows represent observations and columns correspond to variables.
Z	Omics data, a numeric matrix or data frame. Rows correspond to observations and columns correspond to variables.
Υ	Outcome, a numeric vector. Categorical variable is not allowed. Binary outcome should be coded as 0 and 1 .
lucid_model	Specifying LUCID model, "early" for early integration, "parallel" for lucid in parallel, "serial" for LUCID in serial. Now only work for LUCID early. If "parallel" or "serial", the function will do nothing.

check_K

CoG Optional, covariates to be adjusted for estimating the latent cluster. A numeric vector, matrix or data frame. Categorical variable should be transformed into dummy variables.

CoY Optional, covariates to be adjusted for estimating the association between latent cluster and the outcome. A numeric vector, matrix or data frame. Categorical variable should be transformed into dummy variables.

model A LUCID model fitted by estimate_lucid.

conf A numeric scalar between 0 and 1 to specify confidence level(s) of the required interval(s).

R An integer to specify number of bootstrap replicates for LUCID model. If fea-

sible, it is recommended to set R >= 1000.

Value

A list, containing the following components:

beta effect estimate for each exposure

mu cluster-specific mean for each omics feature

gamma effect estiamte for the association btween latent cluster and outcome

bootstrap The boot object returned by boot:boot

Examples

```
## Not run:
# use simulated data
G <- sim_data$G
Z <- sim_data$Z
Y_normal <- sim_data$Y_normal

# fit lucid model
fit1 <- estimate_lucid(G = G, Z = Z, Y = Y_normal, lucid_model = "early", family = "normal", K = 2, seed = 1008)

# conduct bootstrap resampling
boot1 <- boot_lucid(G = G, Z = Z, Y = Y_normal, lucid_model = "early", model = fit1, R = 100)

# check distribution for bootstrap replicates of the variable of interest
plot(boot1$bootstrap, 1)

# use 90% CI
boot2 <- boot_lucid(G = G, Z = Z, Y = Y_normal, lucid_model = "early", model = fit1, R = 100, conf = 0.9)

## End(Not run)</pre>
```

check_K

Check Validity of 'K'

Description

Checks if the elements in 'K' are integers and greater than or equal to 2.

4 estimate_lucid

Usage

```
check_K(K)
```

Arguments

Κ

A vector of integers.

check_na

Check missing patterns in omics data Z

Description

Check missing patterns in omics data Z

Usage

```
check_na(Z)
```

Arguments

Ζ

A data matrix representing omics data

Value

- 1. index:indeces for missing values in omics data
- 2. indicator_na: missing pattern for each observation
- 3. impute_flag: flag to initialize imputation. Only happens when sporadic missing pattern is observed

estimate_lucid

Fit LUCID models with one or multiple omics layers

Description

EM algorithm to estimate LUCID with one or multiple omics layers

Usage

```
estimate_lucid(
   lucid_model = c("early", "parallel", "serial"),
   G,
   Z,
   Y,
   CoG = NULL,
   CoY = NULL,
   K,
   init_omic.data.model = "EEV",
   useY = TRUE,
   tol = 0.001,
```

estimate_lucid 5

```
max_itr = 1000,
max_tot.itr = 10000,
Rho_G = 0,
Rho_Z_Mu = 0,
Rho_Z_Cov = 0,
family = c("normal", "binary"),
seed = 123,
init_impute = c("mix", "lod"),
init_par = c("mclust", "random"),
verbose = FALSE
)
```

Arguments

S	
lucid_model	Specifying LUCID model, "early" for early integration, "parallel" for lucid in parallel, "serial" for lucid in serial
G	an N by P matrix representing exposures
Z	If "early", an N by M matrix; If "parallel", a list, each element is a matrix with N rows; If "serial", a list, each element is a matrix with N rows or a list with two or more matrices with N rows
Υ	a length N vector
CoG	an N by V matrix representing covariates to be adjusted for G -> X
CoY	an N by K matrix representing covariates to be adjusted for X -> Y
К	If "early", an integer; If "parallel", an integer vector, same length as Z; If "serial", a list, each element is either an integer or an list of integers, same length as Z
init_omic.data	
	a vector of strings specifies the geometric model of omics data. If NULL, See more in ?mclust::mclustModelNames
useY	logical, if TRUE, EM algorithm fits a supervised LUCID; otherwise unsupervised LUCID.
max_itr	Maximum iterations of the EM algorithm. If the EM algorithm iterates more than max_itr without converging, the EM algorithm is forced to stop.
max_tot.itr	Max number of total iterations for est_lucid function. est_lucid may conduct EM algorithm for multiple times if the algorithm fails to converge.(to be done)
Rho_G	A scalar. This parameter is the LASSO penalty to regularize exposures. If user wants to tune the penalty, use the wrapper function lucid
Rho_Z_Mu	A scalar. This parameter is the LASSO penalty to regularize cluster-specific means for omics data (Z). If user wants to tune the penalty, use the wrapper function lucid
Rho_Z_Cov	A scalar. This parameter is the graphical LASSO penalty to estimate sparse cluster-specific variance-covariance matrices for omics data (Z). If user wants to tune the penalty, use the wrapper function lucid
family	The distribution of the outcome
seed	Random seed to initialize the EM algorithm
init_impute	Method to initialize the imputation of missing values in LUCID. mix will use mclust: imputeData to implement EM Algorithm for Unrestricted General Location Model by the mix package to impute the missing values in omics data;

lod will initialize the imputation via replacing missing values by LOD / sqrt(2).

LOD is determined by the minimum of each variable in omics data.

6 est_lucid

init_par For "early", an interface to initialize EM algorithm, if mclust, initiate the param-

eters using the mclust package, if random, initiate the parameters by drawing from a uniform distribution; For "parallel", mclust is the default for quick convergence; For "serial", each sub-model follows the above depending on it is a

"early" or "parallel"

verbose A flag indicates whether detailed information for each iteration of EM algorithm

is printed in console. Default is FALSE.(to be done)

Value

A list contains the object below:

- 1. res_Beta: estimation for G->X associations
- 2. res_Mu_Sigma: estimation for X->Z associations
- 3. res_Gamma: estimation for X->Y associations
- 4. loglik: log likelihood of LUCID model
- 5. inclusion.p: inclusion probability of cluster assignment for each observation
- 6. K: umber of latent clusters for "early"/list of numbers of latent clusters for "parallel" and "serial"
- 7. N: number of observations

Examples

```
## Not run:
i <- 1008
set.seed(i)
G \leftarrow matrix(rnorm(500), nrow = 100)
Z1 <- matrix(rnorm(1000), nrow = 100)</pre>
Z2 <- matrix(rnorm(1000), nrow = 100)</pre>
Z3 <- matrix(rnorm(1000), nrow = 100)
Z4 <- matrix(rnorm(1000), nrow = 100)
Z5 <- matrix(rnorm(1000), nrow = 100)</pre>
Z \leftarrow list(Z1 = Z1, Z2 = Z2, Z3 = Z3, Z4 = Z4, Z5 = Z5)
Y <- rnorm(100)
CoY <- matrix(rnorm(200), nrow = 100)
CoG \leftarrow matrix(rnorm(200), nrow = 100)
fit1 <- estimate_lucid(G = G, Z = Z, Y = Y, K = list(2,2,2,2,2),
lucid_model = "serial",
family = "normal",
seed = i,
CoG = CoG, CoY = CoY,
useY = TRUE)
## End(Not run)
```

est_lucid

Fit LUCID models with one or multiple omics layers.

Description

EM algorithm to estimate LUCID with one or multiple omics layers, workhorse function of estimate_lucid. Don't directly call it.

est_lucid 7

Usage

```
est_lucid(
  lucid_model = c("early", "parallel"),
  Ζ,
  Υ,
  CoG = NULL,
  CoY = NULL,
  Κ,
  init_omic.data.model = "EEV",
  useY = TRUE,
  tol = 0.001,
  \max_{i} = 1000,
  max_tot.itr = 10000,
  Rho_G = 0,
  Rho_Z_Mu = 0,
  Rho_Z_Cov = 0,
  family = c("normal", "binary"),
  seed = 123,
  init_impute = c("mix", "lod"),
  init_par = c("mclust", "random"),
  verbose = FALSE
```

Arguments

lucid_model	Specifying LUCID model, "early" for early integration, "parallel" for lucid in parallel
G	an N by P matrix representing exposures
Z	If "early", an N by M matrix; If "parallel", a list, each element is a matrix with N rows
Υ	a length N vector
CoG	an N by V matrix representing covariates to be adjusted for G -> X
CoY	an N by K matrix representing covariates to be adjusted for X -> Y
K	If "early", an integer; If "parallel", an integer vector, same length as Z
init_omic.data	.model
	a vector of strings specifies the geometric model of omics data. If NULL, See more in ?mclust::mclustModelNames
useY	logical, if TRUE, EM algorithm fits a supervised LUCID; otherwise unsupervised LUCID.
max_itr	Maximum iterations of the EM algorithm. If the EM algorithm iterates more than max_itr without converging, the EM algorithm is forced to stop.
max_tot.itr	Max number of total iterations for est_lucid function. est_lucid may conduct EM algorithm for multiple times if the algorithm fails to converge.(to be done)
Rho_G	A scalar. This parameter is the LASSO penalty to regularize exposures. If user wants to tune the penalty, use the wrapper function lucid
Rho_Z_Mu	A scalar. This parameter is the LASSO penalty to regularize cluster-specific means for omics data (Z). If user wants to tune the penalty, use the wrapper function lucid

8 est_lucid

Rho_Z_Cov A scalar. This parameter is the graphical LASSO penalty to estimate sparse cluster-specific variance-covariance matrices for omics data (Z). If user wants to

tune the penalty, use the wrapper function lucid

family The distribution of the outcome

seed Random seed to initialize the EM algorithm

init_impute Method to initialize the imputation of missing values in LUCID. mix will use

mclust:imputeData to implement EM Algorithm for Unrestricted General Location Model by the mix package to impute the missing values in omics data; lod will initialize the imputation via replacing missing values by LOD / sqrt(2).

LOD is determined by the minimum of each variable in omics data.

init_par For "early", an interface to initialize EM algorithm, if mclust, initiate the param-

eters using the mclust package, if random, initiate the parameters by drawing from a uniform distribution; For "parallel", mclust is the default for quick con-

vergence

verbose A flag indicates whether detailed information for each iteration of EM algorithm

is printed in console. Default is FALSE.(to be done)

Value

A list contains the object below:

1. res_Beta: estimation for G->X associations

2. res_Mu_Sigma: estimation for X->Z associations

3. res_Gamma: estimation for X->Y associations

4. loglik: log likelihood of LUCID model

5. inclusion.p: inclusion probability of cluster assignment for each observation

6. K: number of latent clusters for "early"/list of numbers of latent clusters for "parallel"

7. N: number of observations

Examples

```
## Not run:
i <- 1008
set.seed(i)
G \leftarrow matrix(rnorm(500), nrow = 100)
Z1 <- matrix(rnorm(1000), nrow = 100)</pre>
Z2 <- matrix(rnorm(1000), nrow = 100)</pre>
Z3 <- matrix(rnorm(1000), nrow = 100)</pre>
Z \leftarrow list(Z1 = Z1, Z2 = Z2, Z2 = Z3)
CoY <- matrix(rnorm(200), nrow = 100)
CoG <- matrix(rnorm(200), nrow = 100)</pre>
Y \leftarrow rnorm(100)
fit1 <- est_lucid(G = G, Z = Z, Y = Y, K = c(2, 2, 2), CoG = CoG, CoY = CoY,
lucid_model = "parallel",
family = "normal",
init_omic.data.model = "VVV",
seed = i.
init_impute = "mclust",
init_par = "mclust",
useY = TRUE)
## End(Not run)
```

fill_data 9

fill_data	Impute missing data by optimizing the likelihood function	

Description

Impute missing data by optimizing the likelihood function

Usage

```
fill_data(obs, mu, sigma, p, index, lucid_model)
```

Arguments

obs a vector of length M

mu a matrix of size M x K

sigma a matrix of size M x M x K

p a vector of length K

index a vector of length M, indicating whether a value is missing or not in the raw data

Value

an observation with updated imputed value

```
f\_\mathsf{GtoX} log S(X|G)
```

Description

Calculate the log prior inclusion probability for omics layer X_j given the exposures G

Usage

```
f_GtoX(G, Beta_matrix)
```

Arguments

```
G an N by P matrix  a (P+1) by (K-1) matrix
```

Value

```
an N by K matrix
```

 f_X toZ

 f_XtoY log f(Y|X)

Description

Calculate the log likelihood of outcome Y given all latent variables X

Usage

```
f_XtoY(Y, Delta, family)
```

Arguments

Y an N by 1 matrix

Delta a list with parameters related to outcome family a string, either gaussian or binomial

Value

for 2 omics layers, an K1 by K2 by N matrix; for 3 omics layers, an K1 by K2 by K3 by N matrix

 f_XtoZ log f(Z|X)

Description

calculate the log likelihood for omics layer Z_j given the latent cluster X_j

Usage

```
f_XtoZ(Z, Mu_matrix, Sigma_matrix)
```

Arguments

Value

an N by K matrix

gen_ci

gen_ci

generate bootstrp ci (normal, basic and percentile)

Description

generate bootstrp ci (normal, basic and percentile)

Usage

```
gen_ci(x, conf = 0.95)
```

Arguments

x an object return by boot function

conf A numeric scalar between 0 and 1 to specify confidence level(s) of the required

interval(s).

Value

a matrix, the first column is t0 statistic from original model

indicator

Indicator Function

Description

Computes an indicator function.

Usage

```
indicator(x)
```

Arguments

Х

A numeric value.

Value

```
1 if x > 1, otherwise 0.
```

12 initialize_Mu

initialize_Beta

Initialize Beta

Description

Initializes the Beta parameter for the EM algorithm.

Usage

```
initialize_Beta(K, nG)
```

Arguments

K A vector specifying the number of clusters for each omics layer.

nG The number of exposures.

initialize_Delta

Initialize Delta

Description

Initializes the Delta parameter for the EM algorithm.

Usage

```
initialize_Delta(K, CoY, family = c("gaussian", "binomial"), z, Y)
```

Arguments

K A vector specifying the number of clusters for each omics layer.

CoY A data frame for covariates (optional).

family The distribution family ("gaussian" or "binomial").

z A list of matrices representing the clustering assignments for each omics layer.

Y The outcome variable.

initialize_Mu

Initialize Mu

Description

Initializes the Mu parameter for the EM algorithm.

Usage

```
initialize_Mu(K, nZ)
```

Arguments

K A vector specifying the number of clusters for each omics layer.

nZ A vector specifying the number of variables for each omics layer.

initialize_Mu_Sigma 13

Description

Initializes the Mu and Sigma parameters for the EM algorithm.

Usage

```
initialize_Mu_Sigma(K, Z, modelNames, na_pattern)
```

Arguments

K A vector specifying the number of clusters for each omics layer.

Z A list of matrices representing the data for each omics layer.

modelNames A list of model names for each omics layer.

 ${\tt na_pattern} \qquad \quad A \ list \ of \ NA \ patterns \ for each \ omics \ layer.$

Description

Initializes the Sigma parameter for the EM algorithm.

Usage

```
initialize_Sigma(K, nZ)
```

Arguments

K A vector specifying the number of clusters for each omics layer.

nZ A vector specifying the number of variables for each omics layer.

14 lastInd

Istep_Z	I-step of LUCID

Description

Impute missing data in Z by maximizing the likelihood given fixed parameters of LUCID

Usage

```
Istep_Z(Z, p, mu, sigma, index, lucid_model)
```

Arguments

p an N by K matrix representing inclusion probability for each latent cluster

mu an M by K matrix representing cluster-specific means

sigma an M by M by K array representing cluster-specific covariance

index an N by M matrix representing missing values in Z

Value

a complete dataset of Z

lastInd Get the Last 'n' Elements of an Array

Description

Retrieves the last 'n' elements from a vector or array.

Usage

```
lastInd(x, n)
```

Arguments

x A vector or array.

n The number of elements to retrieve.

Value

A vector or array containing the last 'n' elements.

LogSumExp 15

LogSumExp

Log-Sum-Exp Trick

Description

Computes the log-sum-exp trick for a vector.

Usage

```
LogSumExp(vec)
```

Arguments

vec

A numeric vector.

Value

The result of the log-sum-exp trick.

lucid

Fit a lucid model for integrated analysis on exposure, outcome and multi-omics data, allowing for tuning

Description

Fit a lucid model for integrated analysis on exposure, outcome and multi-omics data, allowing for tuning

Usage

```
lucid(
   G,
   Z,
   Y,
   CoG = NULL,
   CoY = NULL,
   family = c("normal", "binary"),
   K = 2,
   lucid_model = c("early", "parallel", "serial"),
   Rho_G = 0,
   Rho_Z_Mu = 0,
   Rho_Z_Cov = 0,
   verbose_tune = FALSE,
   ...
)
```

16 lucid

Arguments

G Exposures, a numeric vector, matrix, or data frame. Categorical variable should be transformed into dummy variables. If a matrix or data frame, rows represent observations and columns correspond to variables. Ζ Omics data, a numeric matrix or data frame. Rows correspond to observations and columns correspond to variables. If "early", an N by M matrix; If "parallel", a list, each element is a matrix with N rows; If "serial", a list, each element is a matrix with N rows or a list with two or more matrices with N rows Outcome, a numeric vector. Categorical variable is not allowed. Binary outcome Υ should be coded as 0 and 1. Optional, covariates to be adjusted for estimating the latent cluster. A numeric CoG vector, matrix or data frame. Categorical variable should be transformed into dummy variables. CoY Optional, covariates to be adjusted for estimating the association between latent cluster and the outcome. A numeric vector, matrix or data frame. Categorical variable should be transformed into dummy variables. family Distribution of outcome. For continuous outcome, use "normal"; for binary outcome, use "binary". Default is "normal". Κ Number of latent clusters (should be greater or equal than 2). Either an integer or a vector of integer. If K is a vector, model selection on K is performed. If "early", an integer; If "parallel", an integer vector, same length as Z; If "serial", a list, each element is either an integer or an list of integers, same length as Z lucid_model Specifying LUCID model, "early" for early integration, "parallel" for lucid in parallel, "serial" for lucid in serial Rho G A scalar or a vector. This parameter is the LASSO penalty to regularize exposures. If it is a vector, lucid will call tune_lucid to conduct model selection and variable selection. User can try penalties from 0 to 1. Work or LUCID early A scalar or a vector. This parameter is the LASSO penalty to regularize cluster-Rho_Z_Mu specific means for omics data (Z). If it is a vector, lucid will call tune_lucid to conduct model selection and variable selection. User can try penalties from 1 to 100. Work or LUCID early only. Rho_Z_Cov A scalar or a vector. This parameter is the graphical LASSO penalty to estimate sparse cluster-specific variance-covariance matrices for omics data (Z). If it is a vector, lucid will call tune_lucid to conduct model selection and variable selection. User can try penalties from 0 to 1. Work or LUCID early only.

A flag to print details of tuning process. verbose_tune

Other parameters passed to estimate_lucid

init_omic.data.model

a vector of strings specifies the geometric model of omics

Value

An optimal lucid model

plot_lucid 17

Description

In the Sankey diagram, each node either represents a variable (exposure, omics or outcome) or a latent cluster. Each line represents an association. The color of the node represents variable type, either exposure, omics or outcome. The width of the line represents the effect size of a certain association; the color of the line represents the direction of a certain association. Only work for LUCID early for now.

Usage

```
plot_lucid(
    X,
    G_color = "dimgray",
    X_color = "#eb8c30",
    Z_color = "#2fa4da",
    Y_color = "#afa58e",
    pos_link_color = "#67928b",
    neg_link_color = "#d1e5eb",
    fontsize = 7
)
```

Arguments

X	A LUCID model fitted by estimate_lucid
G_color	Color of node for exposure
X_color	Color of node for latent cluster
Z_color	Color of node for omics data
Y_color	Color of node for outcome
pos_link_color	Color of link corresponds to positive association
neg_link_color	Color of link corresponds to negative association
fontsize	Font size for annotation

Value

A DAG graph created by sankeyNetwork

predict_lucid

predi	ct I	ucid

Predict cluster assignment and outcome based on LUCID model

Description

Predict cluster assignment and outcome based on LUCID model

Usage

```
predict_lucid(
  model,
  lucid_model = c("early", "parallel", "serial"),
  G,
  Z,
  Y = NULL,
  CoG = NULL,
  CoY = NULL,
  response = TRUE
)
```

Arguments

model	A model fitted and returned by estimate_lucid
lucid_model	Specifying LUCID model, "early" for early integration, "parallel" for lucid in parallel "serial" for lucid in serial.
G	Exposures, a numeric vector, matrix, or data frame. Categorical variable should be transformed into dummy variables. If a matrix or data frame, rows represent observations and columns correspond to variables.
Z	Omics data,if "early", a numeric matrix or data frame. Rows correspond to observations and columns correspond to variables; if "parallel", a list, each element is a matrix with N rows; If "serial", a list, each element is a matrix with N rows or a list with two or more matrices with N rows
Υ	Outcome, a numeric vector. Categorical variable is not allowed. Binary outcome should be coded as 0 and 1 .
CoG	Optional, covariates to be adjusted for estimating the latent cluster. A numeric vector, matrix or data frame. Categorical variable should be transformed into dummy variables.
СоУ	Optional, covariates to be adjusted for estimating the association between latent cluster and the outcome. A numeric vector, matrix or data frame. Categorical variable should be transformed into dummy variables.
response	If TRUE, when predicting binary outcome, the response will be returned. If FALSE, the linear predictor is returned.

Value

A list contains predicted latent cluster, PIP and outcome for each observation

pred_lucid 19

Examples

```
## Not run:
# prepare data
G <- sim_data$G
Z <- sim_data$Z
Y_normal <- sim_data$Y_normal

# fit lucid model
fit1 <- estimate_lucid(G = G, Z = Z, Y = Y_normal, lucid_model = "early", K = 2, family = "normal")

# prediction on training set
pred1 <- predict_lucid(model = fit1, G = G, Z = Z, Y = Y_normal, lucid_model = "early")
pred2 <- predict_lucid(model = fit1, G = G, Z = Z, lucid_model = "early")

## End(Not run)

Predict cluster assignment and outcome based on LUCID model or
"early" and "parallel" only.</pre>
```

Description

Sub function for predict_lucid_all(). Don't directly call it. Not including lucid in serial.

Usage

```
pred_lucid(
  model,
  lucid_model = c("early", "parallel"),
  G,
  Z,
  Y = NULL,
  CoG = NULL,
  CoY = NULL,
  response = TRUE
)
```

Arguments

model	A model fitted and returned by estimate_lucid, "early" and "parallel".
lucid_model	Specifying LUCID model, "early" for early integration, "parallel" for lucid in parallel.
G	Exposures, a numeric vector, matrix, or data frame. Categorical variable should be transformed into dummy variables. If a matrix or data frame, rows represent observations and columns correspond to variables.
Z	Omics data,if "early", a numeric matrix or data frame. Rows correspond to observations and columns correspond to variables; if "parallel", a list, each element is a matrix with N rows.
Υ	Outcome, a numeric vector. Categorical variable is not allowed. Binary outcome should be coded as 0 and 1.

20 print.sumlucid

Cog Optional, covariates to be adjusted for estimating the latent cluster. A numeric	CoG	Optional,	covariates to	be ac	ljusted f	for esti	mating t	he	latent	cluster.	A	numeric
--	-----	-----------	---------------	-------	-----------	----------	----------	----	--------	----------	---	---------

vector, matrix or data frame. Categorical variable should be transformed into

dummy variables.

CoY Optional, covariates to be adjusted for estimating the association between latent

cluster and the outcome. A numeric vector, matrix or data frame. Categorical

variable should be transformed into dummy variables.

response If TRUE, when predicting binary outcome, the response will be returned. If

FALSE, the linear predictor is returned.

Value

A list contains predicted latent cluster and outcome for each observation

print.lucid

Print the output of est_lucid

Description

Print the output of est_lucid

Usage

```
## S3 method for class 'lucid'
print(x, ...)
```

Arguments

x An object of LUCID model, returned by est_lucid

... Other arguments to be passed to print

print.sumlucid

Print the output of LUCID in a nicer table

Description

Print the output of LUCID in a nicer table

Usage

```
## S3 method for class 'sumlucid' print(x, ...)
```

Arguments

x An object returned by summary_lucid

... Other parameters to be passed to print

reorder_lucid 21

reorder_lucid

function to reorder all model parameters

Description

function to reorder all model parameters

Usage

```
reorder_lucid(model)
```

Arguments

model

A model returned by EM_lucid

Value

A LUCID model reordered by effect size of outcome

summary_lucid

Summarize results of LUCID model

Description

Summarize results of LUCID model

Usage

```
summary_lucid(object, boot.se = NULL)
```

Arguments

object A LUCID model fitted by estimate_lucid

boot.se An object returned by boot_lucid, which contains the bootstrap confidence

intervals

Examples

```
## Not run:
# use simulated data
G <- sim_data$G
Z <- sim_data$Z
Y_normal <- sim_data$Y_normal

# fit lucid model
fit1 <- estimate_lucid(G = G, Z = Z, Y = Y_normal, lucid_model = "early", family = "normal", K = 2, seed = 1008)

# conduct bootstrap resampling
boot1 <- boot_lucid(G = G, Z = Z, Y = Y_normal, lucid_model = "early", model = fit1, R = 100)</pre>
```

22 tune_lucid

```
# summarize lucid model
summary_lucid(fit1)

# summarize lucid model with bootstrap CIs
summary_lucid(fit1, boot.se = boot1)

## End(Not run)
```

tune_lucid

A wrapper function to perform model selection for LUCID

Description

Given a grid of K and L1 penalties (incluing Rho_G, Rho_Z_mu and Rho_Z_Cov; for LUCID early only), fit LUCID model over all combinations of K and L1 penalties to determine the optimal penalty. Note that the input of the grid of K differs for different LUCID models. i.e. For LUCID Early, K = 3.5; for LUCID in parallel, K = list(2.3, 2.3); for LUCID in serial, K = list(list(2.3, 2).2.3)

Usage

```
tune_lucid(
   G,
   Z,
   Y,
   CoG = NULL,
   CoY = NULL,
   family = c("normal", "binary"),
   K,
   lucid_model = c("early", "parallel", "serial"),
   Rho_G = 0,
   Rho_Z_Mu = 0,
   Rho_Z_Cov = 0,
   ...
)
```

Arguments

G	Exposures, a numeric vector, matrix, or data frame. Categorical variable should be transformed into dummy variables. If a matrix or data frame, rows represent observations and columns correspond to variables.
Z	If "early", an N by M matrix; If "parallel", a list, each element is a matrix with N rows; If "serial", a list, each element is a matrix with N rows or a list with two or more matrices with N rows.
Υ	Outcome, a numeric vector. Categorical variable is not allowed. Binary outcome should be coded as 0 and 1.
CoG	Optional, covariates to be adjusted for estimating the latent cluster. A numeric vector, matrix or data frame. Categorical variable should be transformed into dummy variables.
CoY	Optional, covariates to be adjusted for estimating the association between latent cluster and the outcome. A numeric vector, matrix or data frame. Categorical

variable should be transformed into dummy variables.

tune_lucid 23

family Distribution of outcome. For continuous outcome, use "normal"; for binary outcome, use "binary". Default is "normal".

Number of latent clusters. If "early", an integer; If "parallel", an integer vector, same length as Z; If "serial", a list, each element is either an integer or an list of integers, same length as Z. If K is given as a grid, the input of the grid of K differs for different LUCID models. i.e. For LUCID Early, K = 3:5; for LUCID in parallel, K = list(2:3, 2:3); for LUCID in serial, K = list(list(2:3,2),2:3)

A scalar or a vector. This parameter is the LASSO penalty to regularize exposures. If it is a vector, tune_lucid will conduct model selection and variable selection. User can try penalties from 0 to 1. Work or LUCID early only.

A scalar or a vector. This parameter is the LASSO penalty to regularize cluster-specific means for omics data (Z). If it is a vector, tune_lucid will conduct model selection and variable selection. User can try penalties from 1 to 100. Work or LUCID early only.

A scalar or a vector. This parameter is the graphical LASSO penalty to estimate sparse cluster-specific variance-covariance matrices for omics data (Z). If it is a vector, tune_lucid will conduct model selection and variable selection. User can try penalties from 0 to 1. Work or LUCID early only.

.. Other parameters passed to est_lucid

Value

K

Rho_G

Rho_Z_Mu

Rho_Z_Cov

A list:

the best model over different combination of tuning parameters

tune_list a data frame contains combination of tuning parameters and c orresponding BIC

res_model a list of LUCID models corresponding to each combination of tuning parameters

Examples

```
## Not run:
# use simulated data
G <- sim_data$G
Z <- sim_data$Z
Y_normal <- sim_data$Y_normal
\mbox{\tt\#} find the optimal model over the grid of K
tune_K <- tune_lucid(G = G, Z = Z, Y = Y_normal, lucid_model = "early", useY = FALSE, tol = 1e-3,</pre>
seed = 1, K = 2:5)
# tune penalties
tune_Rho_G <- tune_lucid(G = G, Z = Z, Y = Y_normal, lucid_model = "early", useY = FALSE, tol = 1e-3,</pre>
seed = 1, K = 2, Rho_G = c(0.1, 0.2, 0.3, 0.4))
tune_Rho_Z_Mu <- tune_lucid(G = G, Z = Z, Y = Y_normal, lucid_model = "early", useY = FALSE, tol = 1e-3,</pre>
seed = 1, K = 2, Rho_Z_Mu = c(10, 20, 30, 40)
tune_Rho_Z_Cov <- tune_lucid(G = G, Z = Z, Y = Y_normal, lucid_model = "early", useY = FALSE, tol = 1e-3,
seed = 1, K = 2, Rho_Z_Cov = c(0.1, 0.2, 0.3))
## End(Not run)
```

24 vec_to_array

vec_to_array

Transform Mu to an Array

Description

Transforms a vector of Mu values to an array based on the number of clusters.

Usage

```
vec_to_array(K, mu)
```

Arguments

K A vector specifying the number of clusters for each omics layer.

mu A vector of Mu values.

Value

A multi-dimensional array of Mu values.

Index

```
boot_lucid, 2, 21
check_K, 3
check_na, 4
est_lucid, 6
estimate_lucid, 4, 17-19, 21
f_GtoX, 9
f_XtoY, 10
f_XtoZ, 10
fill_data, 9
gen_ci, 11
indicator, 11
initialize_Beta, 12
initialize_Delta, 12
initialize\_Mu,\, \textcolor{red}{12}
initialize_Mu_Sigma, 13
initialize_Sigma, 13
Istep_Z, 14
lastInd, 14
LogSumExp, 15
lucid, 15
plot_lucid, 17
pred_lucid, 19
predict_lucid, 18
print.lucid, 20
\verb|print.sumlucid|, 20
reorder_lucid, 21
sankeyNetwork, 17
summary_lucid, 21
tune_lucid, 22
vec_to_array, 24
```