Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Методи наукових досліджень Лабораторна робота №1

«Загальні принципи організації експериментів з довільними значеннями факторів»

Виконав:

студент 2 курсу, групи IB-91 Коренюк Андрій Олександрович Залікова книжка № IB-9115

Варіант: 14

Перевірив: ас. Регіда П.Г.

Мета: вивчити основні поняття, визначення, принципи теорії планування експерименту, на основі яких вивчити побудову формалізованих алгоритмів проведення експерименту і отримання формалізованої моделі об'єкта. Закріпити отримані знання практичним їх використанням при написанні програми, що реалізує завдання на лабораторну роботу.

Завдання

Варіант	Критерій вибору					
114	$\min((Y-Y_{\mathfrak{I}T})^2)$					

Лістинг програми

from random import randint from beautifultable import BeautifulTable

```
FACTOR MAX SIZE = 20
A0, A1, A2, A3 = 1, 2, 3, 4
x1 = [randint(0, FACTOR_MAX_SIZE) for _ in range(8)]
x2 = [randint(0, FACTOR MAX SIZE) for in range(8)]
x3 = [randint(0, FACTOR_MAX_SIZE) for _ in range(8)]
x0 = [(max(x1) + min(x1))/2, (max(x2) + min(x2))/2, (max(x3) + min(x3))/2]
dx = [max(x1) - x0[0], max(x2) - x0[1], max(x3) - x0[2]]
nx1 = list()
nx2 = list()
nx3 = list()
response function = list()
y_et = A0 + A1 * x0[0] + A2 * x0[1] + A3 * x0[2]
criterion = list()
for i in range(8):
  nx1.append((x1[i] - x0[0])/dx[0])
  nx2.append((x2[i] - x0[1])/dx[1])
  nx3.append((x3[i] - x0[2])/dx[2])
  y = A0 + A1 * x1[i] + A2 * x2[i] + A3 * x3[i]
  response_function.append(y)
  criterion.append((y - y \text{ et}) ** 2)
opt = criterion.index(min(criterion))
plan matrix = BeautifulTable()
plan_matrix.column_headers = ["Nº", "X1", "X2", "X3", "Нормоване X1", "Нормоване X2",
```

"Нормоване ХЗ",

"Значення Ү", "Дані критерія вибору"]

for i in range(8):

```
plan_matrix.append_row([i + 1, x1[i], x2[i], x3[i], nx1[i], nx2[i], nx3[i], response_function[i], criterion[i]])
plan_matrix.append_row(["x0", x0[0], x0[1], x0[2], "", "", "", y_et, ""])
plan_matrix.append_row(["dx", dx[0], dx[1], dx[2], "", "", "", "", ""])
print(plan_matrix)
print(f"Шуканий вираз функції відгуку: {A0} + {A1} * {x1[opt]} + {A2} * {x2[opt]} + {A3}
* {x3[opt]} = {response_function[opt]}")
```

Результат виконання роботи

N ⁰ 	I I	X1	1	X2	1	Х3	 	Нормов ане X1	Нормов ане X2	l	Нормов ане ХЗ		Значе ння Ү	++ Дані критері я вибору +
1	I	6	1	4	1	14	ĺ	-0.833	-0.684	I	0.333	I	81	306.25
2	I	16	1	20	1	8	I	0.833	1.0	I	-0.333	l	125	702.25
3	I	15	1	1	1	3	I	0.667	-1.0	I	-0.889	l	46	2756.25
4	I	5	1	1	1	16	Ī	-1.0	-1.0	I	0.556	I	78	420.25
5	Ī	8	1	8	Ī	20	Ī	-0.5	-0.263	I	1.0	I	121	506.25
6	I	17	1	13	1	7	I	1.0	0.263	I	-0.444	l	102	12.25
7	I	14	1	18	1	2	I	0.5	0.789	I	-1.0	l	91	56.25
8	I	5	1	10	1	10	Ī	-1.0	-0.053	I	-0.111	I	81	306.25
x0	I	11.0	1	10.5	1	11.0	ĺ		I	I		I	98.5	
dx	I	6.0	1	9.5	1	9.0	ĺ		I	I		I		I I
	+++++													

Відповіді на контрольні запитання

1. З чого складається план експерименту?

Biдповідь: план експерименту складається із точок (векторів $X_i = (X_{i1}, X_{i2}, ..., X_{iK})$), кожна з яких є одним набором конкретних значень усіх факторів.

2. Що називається спектром плану?

Відповідь: Сукупність усіх точок плану, що відрізняються рівнем хоча б одного фактора.

3. Чим відрізняються активні та пасивні експерименти?

Bidnoвidь: в пасивному експерименті існують контрольовані, але некеровані вхідні параметри. В активному експерименті всі фактори є керованими.

4. Чим характеризується об'єкт досліджень? Дайте визначення факторному простору.

Відповідь: Об'єкт досліджень характеризується властивостями та якостями, які можуть описуватися числовими значеннями. Факторний простір — це декартова система координат, осі якої — кодовані значення факторів $\overline{x}_1, \overline{x}_2, ..., \overline{x}_k$.