Parsing

Natural Language Processing

Master in Business Analytics and Big Data

acastellanos@faculty.ie.edu

Two Types of Parsing

Constituency: Phrases and their recursive structure

Dependency: Relationships between words

- Words → nested constituents.
- What is a constituent?
 - Distribution: unit that can appear in different places:
 - John talked [to the children] [about drugs].
 - John talked [about drugs] [to the children].
 - *John talked drugs to the children about
 - Substitution/expansion:
 - I sat [on the box/right on top of the box/there].
 - Coordination, regular internal structure, no intrusion, fragments, semantics, ...

Influential members of the House Ways and Means Committee introduced legislation that would restrict how the new savings-and-loan bailout agency can raise capital, creating another potential obstacle to the government's sale of sick thrifts.

https://en.wikipedia.org/wiki/Buffalo_buffalo_

Probabilistic Parsing Probabilistic Context Free Gramma CKY Algorithm

Evaluating Constituency Parsing

Classical ("Pre 1990") NLP Parsing

Wrote symbolic grammar (CFG) and lexicon

Grammar (CFG)

$$S \rightarrow NP VP$$

$$NP \rightarrow (DT) NN$$

$$NP \rightarrow NN NNS$$

$$NP \rightarrow NP PP$$

$$VP \rightarrow V NP$$

$$VP \rightarrow VBP NP$$

$$VP \rightarrow VBP NP PP$$

$$PP \rightarrow IN PP$$

Lexicon

$$NN \rightarrow interest$$

$$NNS \rightarrow rates$$

$$NNS \rightarrow raises$$

$$VBP \rightarrow interest$$

$$VBZ \rightarrow rates$$

Grammars

Parsers

- Build one or more constituent structure from a sentence
 - Based on grammar productions
- Top-down
 - E.g. Recursive Descent Parsing
- Bottom-up
 - E.g. Shift-reduce parsing.

Recursive Descent Parsing

S -> NP VP

NP -> Det N PP

NP -> Det N

VP -> V NP PP

VP -> V NP

 $VP \rightarrow V$

PP -> P NP

NP -> 'I'

Det -> 'the'

Det -> 'a'

N -> 'man'

N -> 'park'

N -> 'dog'

N -> 'telescope'

V -> 'ate'

V -> 'saw'

P -> 'in'

P -> 'under'

P -> 'with'

1. Initial stage

s

the dog saw a man in the park

4. Cannot match man

the dog saw a man in the park

2. Second production

the dog saw a man in the park

5. Completed parse

3. Matching *the*

6. Backtracking

http://www.nltk.org/book/ch08.html

Why parsing

Classical NLP Parsing

Probabilistic Parsing
Probabilistic Context Free Grammar
CKY Algorithm
Evaluating Constituency Parsing

Shift-reduce parsing

S -> NP VP

NP -> Det N PP

NP -> Det N

VP -> V NP PP

VP -> V NP

VP -> V

PP -> P NP

NP -> 'I'

Det -> 'the'

Det -> 'a'

N -> 'man'

N -> 'park'

N -> 'dog'

N -> 'telescope'

V -> 'ate'

V -> 'saw'

P -> 'in'

P -> 'under'

P -> 'with'

1. Initial state

Stack	Remaining Text			
	the dog saw a man in the park			

3. After reduce shift reduce

Stack	Remaining Text		
Det N the dog	saw a man in the park		

5. After building a complex NP

Stack				Remaining Text
NP	٧	NP		
Det N	saw	NP PP		
1 1	5411			
the dog		Det N P	ÑΡ	
		a man in Dé	t N	
		th	e park	
			pain	

2. After one shift

Stack	Remaining Text			
the	dog saw a man in the park			

4. After recognizing the second NP

Stack					Remaining Text	
N	Р	٧	N	P	in	the park
Det	Ņ	saw	Det	N		
 the	dog		 a	 man		

6. Built a complete parse tree

http://www.nltk.org/book/ch08.html

Probabilistic Parsing Probabilistic Context Free Gramma CKY Algorithm

Evaluating Constituency Parsing

Classical ("Pre 1990") NLP Parsing

Wrote symbolic grammar (CFG) and lexicon

Grammar (CFG)

 $VP \rightarrow VNP$

 $NN \rightarrow interest$

Lexicon

 $NP \rightarrow (DT) NN$

 $S \rightarrow NP VP$

 $VP \rightarrow VBP NP$

 $NNS \rightarrow rates$

 $NP \rightarrow NN NNS$

 $VP \rightarrow VBP NP PP$

NNS \rightarrow raises

 $NP \rightarrow NP PP$

 $PP \rightarrow IN PP$

 $VBP \rightarrow interest$

 $VBZ \rightarrow rates$

Deduct parses from words

Fed raises interest rates 0.5 percent

Minimal grammar:

36 parses

Simple 10 rule grammar:

592 parses

Real-size broad-coverage grammar:

millions of parses

Classical ("Pre 1990") NLP Parsing

$$S \rightarrow NP VP$$

$$NP \rightarrow (DT) NN$$

$$NP \rightarrow NN NNS$$

$$NP \rightarrow NNP$$

$$VP \rightarrow VNP$$

$$NN \rightarrow interest$$

$$NNS \rightarrow rates$$

$$NNS \rightarrow raises$$

$$VBP \rightarrow into M$$

Probabilistic Parsing

 Given a sentence X, predict its most probable parse tree T

$$argmax_Y P(T|X)$$

Probabilistic Generative Parsing

 We assume some probabilistic model generated the sentence X and the parse tree T jointly

The parse tree with highest joint probability given X also has the highest conditional probability.

$$\operatorname{argmax}_{Y} P(T|X) = \operatorname{argmax}_{Y} P(T,X)$$

Probabilistic Generative Parsing

PCFG Learning

$$P(A \to BC) = P(B, C|A) = \frac{count(A \to BC)}{count(A \to \setminus *)}$$

```
tbank_grammar = nltk.grammar.induce_pcfg(Nonterminal('5'), tbank_productions)
```

https://www.nltk.org/modules/nltk/grammar.html#inducepcfg

Probabilistic Context Free Grammar

- A context-free grammar is a tuple $\langle N, T, S, R \rangle$
 - N: the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB
 - T: the set of terminals (the words)
 - S: the start symbol
 - Often written as ROOT or TOP
 - R: the set of rules
 - Of the form $X \to Y1 Y2 \dots Yk$, with $X, Yi \in N$
 - Examples: S → NP VP, VP → VP CC VP
- A PCFG adds:
 - A top-down production probability per rule $P(Y1 \ Y2 \ ... \ Yk \mid X)$

Probabilistic Context Free Grammar

PCFG: Define probability for each node

Parse tree probability is product of node probabilities

```
P(S \rightarrow NP \ VP) \ ^*P(NP \rightarrow PRP) \ ^*P(PRP \rightarrow "I") \ ^*P(VP \rightarrow VBD \ NP \ PP) \ ^*\\ P(VBD \rightarrow "saw") \ ^*P(NP \rightarrow DT \ NN) \ ^*P(DT \rightarrow "a") \ ^*P(NN \rightarrow "girl") \ ^*P(PP \rightarrow IN \ NP) \ ^*\\ P(IN \rightarrow "with") \ ^*P(NP \rightarrow DT \ NN) \ ^*P(DT \rightarrow "a") \ ^*P(NN \rightarrow "telescope")
```

PCFG Example

$S \rightarrow NP VP$	1.0	$N \rightarrow people$	0.5
$VP \rightarrow V NP$	0.6	$N \rightarrow fish$	0.2
$VP \rightarrow V NP PP$	0.4	$N \rightarrow tanks$	0.2
$NP \rightarrow NP NP$	0.1	$N \rightarrow rods$	0.1
$NP \rightarrow NP PP$	0.2	$V \rightarrow people$	0.1
		$V \rightarrow fish$	0.6
$NP \rightarrow N$	0.7	$V \rightarrow tanks$	0.3
$PP \rightarrow P NP$	1.0	P o with	1.0

PCFG Example

S = people fish tanks with rods

PCFG Example

•
$$P(t_1)$$
 = $1.0 \times 0.7 \times 0.4 \times 0.5 \times 0.6 \times 0.7 \times 1.0 \times 1.0 \times 0.2 \times 0.7 \times 0.1$
= $\mathbf{0.0008232}$

•
$$P(t_2)$$
 = $1.0 \times 0.7 \times 0.6 \times 0.5 \times 0.6 \times 0.2$
 $\times 1.0 \times 0.2 \times 1.0 \times 0.7 \times 0.1$

= 0.00024696

PCFG would choose t_1

- All rules are of the form $X \rightarrow Y Z$ or $X \rightarrow w$
 - $X,Y,Z \in N$ and $w \in T$
 - Empties and unaries are removed recursively
 - n-ary rules → new nonterminals (n > 2)
- Doesn't change the weak generative capacity of a CFG
 - That is, it recognizes the same language
- Makes parsing easier!

$$S \rightarrow NPVP$$

$$VP \rightarrow VNP$$

$$VP \rightarrow V NP PP$$

$$NP \rightarrow NP NP$$

$$NP \rightarrow NP PP$$

$$NP \rightarrow N$$

$$NP \rightarrow e$$

$$PP \rightarrow PNP$$

$$N \rightarrow people$$

$$N \rightarrow fish$$

$$N \rightarrow tanks$$

$$N \rightarrow rods$$

$$V \rightarrow people$$

$$V \rightarrow fish$$

$$V \rightarrow tanks$$

$$P \rightarrow with$$

Step 1: Remove epsilon rules

$$S \rightarrow NPVP$$

$$VP \rightarrow VNP$$

$$VP \rightarrow V NP PP$$

$$NP \rightarrow NP NP$$

$$NP \rightarrow NP PP$$

$$NP \rightarrow N$$

$$NP \rightarrow e$$

$$PP \rightarrow P NP$$

Recognizing the same language? For every rule with NP, create a unary rule

$$N \rightarrow people$$

$$N \rightarrow fish$$

$$N \rightarrow tanks$$

$$N \rightarrow rods$$

$$V \rightarrow people$$

$$V \rightarrow fish$$

$$V \rightarrow tanks$$

$$P \rightarrow with$$

Step 1: Remove epsilon rules

$$S \rightarrow NP VP$$

$$S \rightarrow VP$$

$$VP \rightarrow V NP$$

$$VP \rightarrow V$$

$$VP \rightarrow V NP PP$$

$$VP \rightarrow VPP$$

$$NP \rightarrow NP NP$$

$$NP \rightarrow NP$$

$$NP \rightarrow NP PP$$

$$NP \rightarrow PP$$

$$NP \rightarrow N$$

$$PP \rightarrow P NP$$

$$PP \rightarrow P$$

$$N \rightarrow people$$

$$N \rightarrow fish$$

$$N \rightarrow tanks$$

$$N \rightarrow rods$$

$$V \rightarrow people$$

$$V \rightarrow fish$$

$$V \rightarrow tanks$$

$$P \rightarrow with$$

Step 2: Remove unary rules

 $S \rightarrow NP VP$

 $S \rightarrow VP$

 $VP \rightarrow V NP$

 $VP \rightarrow V$

 $VP \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow PP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

 $PP \rightarrow P$

Recognizing the same language? Work your way

down to

propagate

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $P \rightarrow with$

Step 2: Remove unary rules

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V$

 $S \rightarrow V$

 $VP \rightarrow V NP PP$

 $S \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow PP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

 $PP \rightarrow P$

Just added a unary rule!
Need to apply until they are all gone

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $P \rightarrow with$

Step 2: Remove unary rules

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V$

 $S \rightarrow V$

 $VP \rightarrow V NP PP$

 $S \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow PP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

 $PP \rightarrow P$

Just added a unary rule!
Need to apply until they are all gone

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $P \rightarrow with$

Step 2: Remove unary rules

gone

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V$

S→¥

 $VP \rightarrow V NP PP$

 $S \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow PP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

 $PP \rightarrow P$

Just added a unary rule! Need to apply until they are all $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $P \rightarrow with$

Step 2: Remove unary rules

```
S \rightarrow NP VP
```

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

$VP \rightarrow V$

 $VP \rightarrow V NP PP$

 $S \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow PP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

 $PP \rightarrow P$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $P \rightarrow with$

Step 2: Remove unary rules

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $S \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow PP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

 $PP \rightarrow P$

Recognizing the same language? Yes!

Only place N appears

So can get rid of it altogether

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $P \rightarrow with$

Step 2: Remove unary rules

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $S \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow PP$

 $PP \rightarrow P NP$

 $PP \rightarrow P$

 $NP \rightarrow people$

 $NP \rightarrow fish$

 $NP \rightarrow tanks$

 $NP \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $VP \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

 $P \rightarrow with$

Parsing

 $PP \rightarrow with$

Step 3: Binarize

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $S \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $PP \rightarrow P NP$

 $NP \rightarrow people$

 $NP \rightarrow fish$

 $NP \rightarrow tanks$

 $NP \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $VP \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

 $P \rightarrow with$

Parsing

 $PP \rightarrow with$

Step 3: Binarize

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V @VP_V$

 $@VP_V \rightarrow NPPP$

 $S \rightarrow V @S V$

 $@S_V \rightarrow NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $PP \rightarrow P NP$

 $NP \rightarrow people$

 $NP \rightarrow fish$

 $NP \rightarrow tanks$

 $NP \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $VP \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

 $P \rightarrow with$

Parsing

 $PP \rightarrow with$

CKY Algorithm

Cocke-Kasami-Younger

people fish tanks fish

CKY Algorithm

PCFG

$S \rightarrow NP VP$	0.9
$S \rightarrow VP$	0.1
$VP \rightarrow V NP$	0.5
$VP \rightarrow V$	0.1
$VP \rightarrow V @VP_V$	0.3
$VP \rightarrow VPP$	0.1
$@VP_V \rightarrow NPPP$	1.0
$NP \rightarrow NP NP$	0.1
$NP \rightarrow NP PP$	0.2
$NP \rightarrow N$	0.7
$PP \rightarrow P NP$	1.0

$S \rightarrow NP VP$	0.9
$S \rightarrow VP$	0.1
$VP \rightarrow V NP$	0.5
$VP \rightarrow V$	0.1
$VP \rightarrow V @VP_V$	0.3
$VP \rightarrow VPP$	0.1
$@VP_V \rightarrow NPPP$	1.0
$NP \rightarrow NP NP$	0.1
$NP \rightarrow NP PP$	0.2
$NP \rightarrow N$	0.7
$PP \to P \; NP$	1.0

$$N \rightarrow people$$
 0.5
 $N \rightarrow fish$ 0.2
 $N \rightarrow tanks$ 0.2
 $N \rightarrow rods$ 0.1
 $V \rightarrow people$ 0.1
 $V \rightarrow fish$ 0.6
 $V \rightarrow tanks$ 0.3
 $P \rightarrow with$ 1.0

Parsing

			fish	1	people	2	fish	3	tanks	4
$S \rightarrow NP VP$	0.9	0_	11511		people		11311		tariks	
$S \rightarrow VP$	0.1									
$VP \rightarrow V NP$	0.5									
$VP \rightarrow V$	0.1									
$VP \rightarrow V @VP_V$	0.3									
$VP \rightarrow VPP$	0.1	1								
$@VP_V \rightarrow NPPP$	1.0									
$NP \rightarrow NP NP$	0.1									
$NP \rightarrow NP PP$	0.2									
$NP \rightarrow N$	0.7	2								
$PP \rightarrow P NP$	1.0	2								
$N \rightarrow people$	0.5									
$N \rightarrow fish$	0.2									
$N \rightarrow tanks$	0.2	2								
$N \rightarrow rods$	0.1	3								
$V \rightarrow people$	0.1									
$V \rightarrow fish$	0.6									
$V \rightarrow tanks$	0.3									
$P \rightarrow with$	1.0	4								

Classical NLP Parsing
Probabilistic Parsing
Probabilistic Context Free Grammar

CKY Algorithm

Evaluating Constituency Parsir

Classical NLP Parsing Probabilistic Parsing Probabilistic Context Free Gramma

CKY Algorithm

Evaluating Constituency Parsir

Classical NLP Parsing Probabilistic Parsing Probabilistic Context Free Grammar

CKY Algorithm

Evaluating Constituency Parsin

$S \rightarrow NP VP$	0.9	o fish	1 people	2 fish	3 tanks 4
$S \rightarrow VP$	0.1	$N \rightarrow \text{fish } 0.2$	$NP \rightarrow NPNP 0.004$	9	
$VP \rightarrow V NP$	0.5	$V \rightarrow fish \ 0.6$	$VP \rightarrow VNP 0.105$		
$VP \rightarrow V$	0.1	$NP \rightarrow N \ 0.14$	$S \rightarrow VP \ 0.0105$		
$VP \rightarrow V @VP_V$	0.3	$VP \rightarrow V 0.06$			
$VP \rightarrow V PP$	0.1	$1^{S \rightarrow VP \ 0.006}$			
$@VP_V \rightarrow NPPP$	1.0		$N \rightarrow \text{people 0.5}$	$NP \rightarrow NPNP \ 0.0049$ $VP \rightarrow V \ NP \ 0.007$	
$NP \rightarrow NP NP 0.1$			$V \rightarrow \text{people 0.1}$	$S \rightarrow NP VP 0.0189$	
$NP \rightarrow NP PP 0.2$			$NP \rightarrow N \ 0.35$ $VP \rightarrow V \ 0.01$		
$NP \rightarrow N$	0.7	2	$S \rightarrow VP 0.001$		
$PP \rightarrow P NP$	1.0	2		N 6: 1 0 2	$NP \rightarrow NPNP \ 0.00196$
				$N \rightarrow fish 0.2$ V $\rightarrow fish 0.6$	$VP \rightarrow V NP 0.042$
$N \rightarrow people$	0.5			$V \rightarrow 11511 \ 0.00$ NP \rightarrow N 0.14	$S \rightarrow VP 0.0042$
$N \rightarrow fish$	0.2	<pre>//handle unaries boolean added = true</pre>		$VP \rightarrow V 0.06$	
$N \rightarrow tanks$	0.2	while added		$S \rightarrow VP 0.006$	
$N \rightarrow rods$	0.1	added = false			N → tanks 0.2
$V \rightarrow people$	0.1	for A, B in nonterms prob = P(A->B)*score		$V \rightarrow tanks 0.1$	
$V \rightarrow fish$	0.6	if prob > score[begin	n][end][A]		$NP \rightarrow N \ 0.14$
$V \rightarrow tanks$	0.3	score[begin][end][A] back[begin][end][A]	_		$VP \rightarrow V 0.03$
$P \rightarrow with$	1.0	added = true			$S \rightarrow VP 0.003$

Classical NLP Parsing Probabilistic Parsing Probabilistic Context Free Grammar

CKY Algorithm

Evaluating Constituency Parsir

Classical NLP Parsing Probabilistic Parsing Probabilistic Context Free Grammar

CKY Algorithm

Evaluating Constituency Parsir

Evaluating constituency parsing

Gold standard brackets:

S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), NP-(9:10)

Candidate brackets:

S-(0:11), **NP-(0:2)**, VP-(2:10), VP-(3:10), **NP-(4:6)**, PP-(6-10), NP-(7,10)

Labeled Precision 3/7 = 42.9%

Labeled Recall 3/8 = 37.5%

LP/LR F1 40.0%

Tagging Accuracy 11/11 = 100.0%

Penn WSJ parsing accuracy: about 73% LP/LR F1

Dependency Parsing

Dependency structure

- Which words depend on (modify or are arguments of) which other words.
- Defined as **directed graph** G = (V, E)
 - **Connected:** For every node $i \in V$ there is a node $j \in V$, such that $i \to j$ or $j \to i$
 - Acvclic: No cvcles
 - Single-head: Have only one parent (except for root token)
- Captures the **syntactic relations**

Methods of Dependency Parsing

Dynamic programming (like in the CKY algorithm)

Graph algorithms

- Constraint Satisfaction
 - Edges are eliminated that don't satisfy hard constraints
- "Deterministic parsing"
 - Greedy choice of attachments guided by machine learning classifiers

Evaluation

Unlabeled Attachment Score (UAS)
Labeled Attachment Score (LAS)
Label Accuracy (LA)

Go	old		
1	She	2	subj
2	saw	0	root
3	the	5	det
4	video	5	nmod
5	lecture	2	dobj

Pa	Parsed				
1	She	2	subj		
2	saw	0	root		
3	the	4	det		
4	video	5	vmod		
5	lecture	2	iobj		

Evaluation: State of the art

 The CoNLL-X (2006) shared task provides evaluation numbers for various dependency parsing approaches over 13 languages

Parser	UAS%
Sagae and Lavie (2006) ensemble of dependency parsers	92.7
Charniak (2000) generative, constituency	92.2
Collins (1999) generative, constituency	91.7
McDonald and Pereira (2005) – MST graph-based dependency	91.5
Yamada and Matsumoto (2003) – transition-based dependency	90.4

Evaluation: State of the art

Neural Approaches: Neural Span Parser

Evaluation: State of the art

Neural Approaches: Neural Span Parser

Parser	F
Automatic splitting (Petrov 2006)	89.6
Non-neural re-ranking parser (Charniak 2005)	91.0
Neural span parser (Stern 2017)	91.7
State-of-the-art neural (Kitaev 2018)	93.6
+ extra unlabeled data (Kitaev 2018)	95.1

Chatbot

- Identify root of the user request
- Extract related objects

show(invoices)
$$\rightarrow$$
 invoices = ACME \rightarrow num(invoices) = 10

- Chatbot
- Machine Translation
 - Extract a language-agnostic representation such as UNL http://www.unlweb.net/wiki/index.php/Introduction to UNL

Hace tiempo, en la ciudad de Babilonia, la gente comenzo a construir una corre enorme, que parecia alcanzar los cielos.

- Chatbot
- Machine Translation
- Relation Extraction

Who is the governor general?

- Chatbot
- Machine Translation
- Relation Extraction
- Enhance NER

- Chatbot
- Machine Translation
- Relation Extraction
- Enhance NER
- Many more...
 - A survey of parsing and its applications:
 http://web.science.mq.edu.au/~mjohnson/papers/Johnson15ParsingSurvey.pdf

Practicals

- NLTK Parsers are outdated and slow
- Use Stanford Parser
 - Download CoreNLP server: https://stanfordnlp.github.io/CoreNLP/corenlp-server.html

```
from nltk.parse.corenlp import CoreNLPDependencyParser
dep_parser = CoreNLPDependencyParser(url='http://localhost:9000')

parse, = dep_parser.raw_parse('The quick brown fox jumps over the lazy dog.')
print(parse.tree())
```

The	DT	4	det
quick	33	4	amod
brown	33	4	amod
fox	NN	5	nsubj
jumps	VBZ	0	ROOT
over	IN	9	case
the	DT	9	det
lazy	33	9	amod
dog	NN	5	nmod
		5	punct

Practicals

- NLTK Parser are outdate and slow
- Use Stanford Parser
- or spacy
 - https://spacy.io/usage/linguistic-features#dependency-parse

```
import spacy
nlp = spacy.load('en')
doc = nlp('The quick brown fox jumps over the lazy dog.')
```

Practical examples:

https://shirishkadam.com/2016/12/23/dependency-parsing-in-nlp/