SULIT SP025

LIST OF SELECTED CONSTANT VALUES SENARAI NILAI PEMALAR TERPILIH

Speed of light in vacuum Laju cahaya dalam vakum	c	$= 3.00 \times 10^8 \text{ m s}^{-1}$
Permeability of free space Ketelapan ruang bebas	μ_o	$= 4\pi \times 10^{-7} \text{ H m}^{-1}$
Permittivity of free space Ketelusan ruang bebas	ε_o	$= 8.85 \times 10^{-12} \mathrm{F m^{-1}}$
Electron charge magnitude Magnitud cas elektron	e	$= 1.60 \times 10^{-19} \mathrm{C}$
Planck constant Pemalar Planck	h	$= 6.63 \times 10^{-34} \text{ J s}$
Electron mass Jisim elektron	m_e	$= 9.11 \times 10^{-31} \text{ kg}$ $= 5.49 \times 10^{-4} \text{ u}$
Neutron mass Jisim neutron	m_n	$= 1.674 \times 10^{-27} \text{ kg}$ $= 1.008665 \text{ u}$
Proton mass Jisim proton	m_p	$= 1.672 \times 10^{-27} \text{ kg}$ $= 1.007277 \text{ u}$
Hydrogen mass Jisim hidrogen	m_H	$= 1.673 \times 10^{-27} \text{ kg}$ $= 1.007825 \text{ u}$
Deuteron mass Jisim deuteron	m_d	$= 3.34 \times 10^{-27} \text{ kg}$ $= 2.014102 \text{ u}$
Molar gas constant Pemalar gas molar	R	$= 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
Rydberg constant Pemalar Rydberg	R_H	$= 1.097 \times 10^7 \mathrm{m}^{-1}$
Avogadro constant Pemalar Avogadro	N_A	$= 6.02 \times 10^{23} \text{ mol}^{-1}$
Boltzmann constant Pemalar Boltzmann	k	$= 1.38 \times 10^{-23} \text{ J K}^{-1}$
Gravitational constant Pemalar graviti	G	$= 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$

SULIT SP025

LIST OF SELECTED CONSTANT VALUES SENARAI NILAI PEMALAR TERPILIH

Free-fall acceleration $g = 9.81 \text{ m s}^{-2}$ Pecutan jatuh bebas

Atomic mass unit 1 u = 1.66×10^{-27} kg

Unit jisim atom = $931.5 \frac{\text{MeV}}{c^2}$

Electron volt 1 eV = $1.6 \times 10^{-19} \text{ J}$ Elektron volt

Constant of proportionality $k = \frac{1}{4\pi\epsilon_0}$ = 9.0 × 10⁹ N m² C⁻²

Pemalar hukum Coulomb

Atmospheric pressure 1 atm = 1.013×10^5 Pa Tekanan atmosfera

Density of water $\rho_{\rm w} = 1000 \, \rm kg \, m^{-3}$

Ketumpatan air

LIST OF SELECTED FORMULAE SENARAI RUMUS TERPILIH

1.
$$F = \frac{Qq}{4\pi\varepsilon_0 r^2} = k \frac{Qq}{r^2}$$

16.
$$Q = Q_o \left(1 - e^{\frac{-t}{RC}} \right)$$

$$2. E = \frac{F}{q_o}$$

17.
$$\varepsilon_{\rm r} = \frac{\varepsilon}{\varepsilon_{\rm o}}$$

$$E = \frac{kQ}{r^2}$$

18.
$$C_{\rm o} = \frac{\varepsilon_{\rm o} A}{d}$$

$$4. V = \frac{W}{q_0}$$

19.
$$C = \varepsilon_r C_0$$

5.
$$V = \frac{kQ}{r}$$

20.
$$I = \frac{dQ}{dt}$$

6.
$$\Delta U = q \Delta V$$

21.
$$Q = ne$$

$$7. U = k \left(\frac{q_1 q_2}{r_{12}} \right)$$

22.
$$V = IR$$

8.
$$U = k \left(\frac{q_1 q_2}{r_{12}} + \frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}} \right)$$

23.
$$\rho = \frac{RA}{l}$$

9.
$$E = \frac{\Delta V}{d}$$

24.
$$R = R_o [1 + \alpha (T - T_o)]$$

10.
$$C = \frac{Q}{V}$$

25.
$$V = \varepsilon - Ir$$

11.
$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_2} + \dots + \frac{1}{C}$$

26.
$$R = R_1 + R_2 + R_3 + ... + R_n$$

12.
$$C = C_1 + C_2 + C_3 + ... + C_n$$

27.
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$

13.
$$U = \frac{1}{2}CV^2 = \frac{1}{2}QV = \frac{1}{2}\frac{Q^2}{C}$$

$$P = VI = I^2 R = \frac{V^2}{R}$$

29.
$$E = VIt$$

14.
$$\tau = RC$$

30.
$$V_1 = \left(\frac{R_1}{R_1 + R_2 + ...R_n}\right) V$$

15.
$$Q = Q_0 e^{\frac{-t}{RC}}$$

LIST OF SELECTED FORMULAE SENARAI RUMUS TERPILIH

31.
$$\frac{\varepsilon_1}{\varepsilon_2} = \frac{l_1}{l_2}$$

$$32. B = \frac{\mu_{\rm o}I}{2\pi r}$$

33.
$$B = \frac{\mu_{o}I}{2r}$$

34.
$$B = \mu_0 nI$$

$$35. \qquad B = \frac{1}{2} \,\mu_{\rm o} nI$$

36.
$$F = qvB\sin\theta$$

37.
$$F = IlB \sin \theta$$

$$38. \qquad \frac{F}{l} = \frac{\mu_{o} I_{1} I_{2}}{2\pi d}$$

39.
$$\tau = NIAB \sin \theta$$

40.
$$v = \frac{E}{R}$$

41.
$$\phi = BA \cos \theta$$

42.
$$\Phi = N\phi$$

43.
$$\varepsilon = -\frac{d\phi}{dt}$$

44.
$$\varepsilon = Blv\sin\theta$$

45.
$$\varepsilon = -NA \frac{dB}{dt}$$

46.
$$\varepsilon = -NB \frac{dA}{dt}$$

47.
$$\varepsilon = NAB\omega \sin \omega t$$

48.
$$\varepsilon = -L \left(\frac{dI}{dt} \right)$$

49.
$$L = \frac{N\phi}{I}$$

$$50. L_{coil} = \frac{\mu_o N^2 A}{2r}$$

$$51. L_{\text{solenoid}} = \frac{\mu_{\text{o}} N^2 A}{I}$$

$$52. \qquad U = \frac{1}{2}LI^2$$

$$53. \qquad M = \frac{\mu_{\rm o} N_{\rm 1} N_{\rm 2} A}{l}$$

54.
$$V = V_o \sin \omega t$$

55.
$$I = I_o \sin \omega t$$

56.
$$I_{\rm rms} = \frac{I_{\rm o}}{\sqrt{2}}$$

$$57. \qquad V_{\rm rms} = \frac{V_{\rm o}}{\sqrt{2}}$$

$$58. X_{\rm C} = \frac{1}{2\pi fC}$$

$$59. X_{L} = 2\pi f L$$

60.
$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

61.
$$\phi = \tan^{-1} \frac{\left(X_{L} - X_{C}\right)}{R}$$

LIST OF SELECTED FORMULAE SENARAI RUMUS TERPILIH

62.
$$\cos \phi = \frac{R}{Z}$$

63.
$$P_{av} = I_{rms} V_{rms} \cos \phi$$

64.
$$P_{\text{inst}} = IV$$

65.
$$\cos \phi = \frac{P_{\rm r}}{P_{\rm a}} = \frac{P_{\rm av}}{I_{\rm rms} V_{\rm rms}}$$

66.
$$R = 2f$$

67.
$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

$$68. m = \frac{h_1}{h_2} = -\frac{v}{u}$$

69.
$$\frac{n_1}{v} + \frac{n_2}{v} = \frac{n_2 - n_1}{R}$$

70.
$$\frac{1}{f} = \left(\frac{n_{\text{material}}}{n_{\text{medium}}} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

71.
$$y_m = \frac{m\lambda D}{d}$$

72.
$$y_m = \frac{\left(m + \frac{1}{2}\right)\lambda D}{d}$$

73.
$$\Delta y = \frac{\lambda D}{d}$$

74.
$$2nt = m\lambda$$

75.
$$2nt = \left(m + \frac{1}{2}\right)\lambda$$

76.
$$y_n = \frac{n\lambda D}{a}$$

77.
$$y_n = \frac{\left(n + \frac{1}{2}\right)\lambda D}{a}$$

78.
$$d \sin \theta = n\lambda$$

$$79. \qquad d = \frac{1}{N}$$

80.
$$E = hf = \frac{hc}{\lambda}$$

81.
$$\frac{1}{2}mv_{\text{max}}^2 = eV_{\text{s}} = hf - hf_{\text{o}}$$

82.
$$W_0 = hf_0$$

$$83. K_{\text{max}} = eV_{\text{s}} = hf - W_{\text{o}}$$

84.
$$\lambda = \frac{h}{p}$$

85.
$$\lambda = \frac{h}{\sqrt{2meV}}$$

86.
$$A = Z + N$$

87.
$$\Delta m = (Zm_{p} + Nm_{n}) - m_{nucleus}$$

88.
$$E_{\rm B} = \Delta mc^2$$

89.
$$\frac{dN}{dt} = -\lambda N$$

90.
$$N = N_{o}e^{-\lambda t}$$

91.
$$A = A_0 e^{-\lambda t}$$

92.
$$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$