Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US05/004655

International filing date: 11 February 2005 (11.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: US Number: 60/623.021

Filing date: 27 October 2004 (27.10.2004)

Date of receipt at the International Bureau: 11 March 2005 (11.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

THE INTERED STATES OF ANTER OF

TO ALL TO WIGH THISE, PRESENTS, SHAME COME:

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

March 02, 2005

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

> APPLICATION NUMBER: 60/623.021 FILING DATE: October 27, 2004

RELATED PCT APPLICATION NUMBER: PCT/US05/04655

Certified by

Under Secretary of Commerce for Intellectual Property and Director of the United States Patent and Trademark Office

PTO/SB/16 (09-04)
PTO/SB/16 (09-04)
PTO/SB/16 (09-04)
U.S. Patent and Trademark office; U.S. DEPARTMENT OF COMMERCE on to a collection of information unless it displays a valid OMB control pumber. the Paperwork Reduction Act of 1995, no persons are required to resp

PROVISIONAL APPLICATION FOR PATENT COVER SHEET

Express Mail Label No. EV471075440US

This is a request	for filing a PROVISIONAL	APPLICATION FOR	R PATENT under 37 CFR 1.53

		INVENTOR(S)	86	
Given Name (first and middle [if any])	Family I	Name or Surname	Residence (City and either State or Foreign Country)	
Valentina		Molteni	San Diego, California	
Xiaolin		Li	Del Mar, California	
Additional inventors are being named on the	separa	itely numbered sheet	s attached hereto	
т	TLE OF TH	E INVENTION (500 c	:haracters max)	
COMPOUNDS AND COMPOSITIONS AS LX	R MODULA	TORS		
Direct all correspondence to: CORRES	PONDEN	CE ADDRESS		
☐ The address corresponding to Customer Number: 29490				
OR				
Firm or Individual Name				
Address				
City		State	Zip	
Country		Telephone	Fax	
ENCL	OSED APP	LICATION PARTS (d	check all that apply)	
Specification Number of Pages	<u>64</u>		CD(s), Number	
☐ Drawing(s) Number of Sheets		_ 🗆 🗆 c	Other (specify)	
Application Data Sheet. See 37 C	FR 1.76			
METHOD OF PAYMENT OF FILING FEES FOR THI	S PROVISIO	NAL APPLICATION FOR	RPATENT	
Applicant claims small entity status. See 37 CFR 1.27. FILING FEE				
A check or money order is enclosed to cover the filing fees Amount(\$)				
Payment by credit card. Form PTO-	2038 is att	ached.	160	
The Director is hereby authorized to chan	ge filing fee:	s or credit any overpa	yment to Deposit Account Number: 50-1885	

The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government. ⋈ No.

Yes, the name of the U.S. Government agency and the Government contract number are: _

A duplicative copy of this form is enclosed for fee processing.

Respectfully submitted,	Date	October 27, 2004
TYPED or PRINTED NAME Scott W. Reid, D. Phil.	REGISTRATION N	o. <u>48,097</u>
TELEPHONE 858-812-1796	(if appropriate) Docket Number:	P1165US00
TELEPHONE 858-812-1796	Dooner Hember.	1 11000000

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT
This collection of information is required by 17 CFR 1.51. The information is required by 17 CFR 1.51. The information is required by 17 CFR 1.51. The information is required by 18 U SC, 122 and 37 CFR 1.11 and 1.14. This collection is elemented to take 8 hours to complete, excluding gathering collections are provided by 18 U SC, 122 and 37 CFR 1.11 and 1.14. This collection is elemented to take 8 hours to complete, excluding gathering to the 18 CFR 1.11 and 1.14. This collection is elemented to take 8 hours to complete, excluding gathering to the 18 CFR 1.11 and 1.14. This collection is elemented to take 8 hours to complete pattern of the 18 CFR 1.11 and 1.14. This collection is elemented to take 8 hours to complete pattern of the 18 CFR 1.11 and 1.14. This collection is elemented to the 18 CFR 1.11 and 1.14. This collection is elemented to the 18 CFR 1.11 and 1.14. This collection is elemented to the 8 this collection is elemented to the 18 CFR 1.11 and 1.14. This collection is elemented to the 8 this collection is elemented to the 18 CFR 1.11 and 1.14. This collection is elemented to the 8 this collection is elemented to the 18 this collection is el

PROVISIONAL APPLICATION COVER SHEET Additional Page

PTO/SB/16 (09-04)
Approved for use through 07/31/2006. OMB 0651-0032
Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

First Named Inventor	MOLTENI, Valentina		Docket Number P1165US00	
		INVENTOR(S)/APPLICA	ANT(S)	
Given Name (first and middle (if any))		Family or Sumame	Residence (City and either State or Foreign Country)	
Juliet		Nabakka	San Diego, California	
David Archer		Ellis	San Diego, California	
Beth Marie		Anaclerio	San Diego, California	
John		Wityak	Carlsbad, California	
Enrique		Saez	San Diego, California	

[Page 2 of 2]

Number 1 of 1

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-.

Docket No.: P1165US00 Express Mail Label No.: EV471075440US

United States Provisional Patent Application

COMPOUNDS AND COMPOSITIONS AS LXR MODULATORS

Inventors: MOLTENI, Valentina, a citizen of Italy,

residing at 2475 E Street, San Diego, California 92102

LI, Xiaolin, a citizen of People's Republic of China,

residing at 14059-G Mango Drive, Del Mar, California 92014

NABAKKA, Juliet, a citizen of United States of America, residing at 6120 Decema Drive #105. San Diego, California 92120

ELLIS, David Archer, a citizen of United States of America,

residing at 1631 State Street, #2. San Diego, California 92101

ANACLERIO, Beth Marie, a citizen of United States of America,

residing at 10721 Ballystock Court, San Diego, California 92130 WITYAK, John, a citizen of United States of America,

residing at 3377 Avenida Nieve, Carlsbad, California

SAEZ, Enrique, having dual citizenship in Spain and United States of America, residing at 1547 1/2 Felspar Street, San Diego, California 92109

AS FILED IN USPTO ON OCTOBER 27, 2004

Assignee: IRM LLC, a Delaware Limited Liability Company

P.O. Box HM 2899

Hamilton HM LX, BERMUDA

Entity: Large

Scott W. Reid, Reg. No. 48,097 10675 John Jay Hopkins Drive San Diego, CA 92121 Tel 858 812-1796 Fax 858 812-1981 sreid@gnf.org

Docket No.: P1165US00 Express Mailing Label No.: EV471075440US

COMPOUNDS AND COMPOSITIONS AS

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The invention provides compounds, pharmaceutical compositions comprising such compounds and methods of using such compounds to treat or prevent diseases or disorders associated with the activity of liver X receptors (LXRs).

Background

[0002] Liver X receptors (LXRs), LXRα and LXRβ, are nuclear receptors that regulate the metabolism of several important lipids, including cholesterol and bile acids. While LXRB is expressed ubiquitously in the body, LXRa is expressed in the liver and to a smaller degree in the kidneys, small intestine, adipose tissue, spleen and adrenal glands. [0003] LXRs bind to the ATP binding cassette transporter-1 (ABCA1) promoter and increase expression of the gene to produce ABCA1 protein. ABCA1 is a membrane bound transport protein that is involved in the regulation of cholesterol efflux from extrahenatic cells onto nascent high-density lipoprotein (HDL) particles. Mutations in the ABCA1 gene result in low levels of HDL and an accompanying increased risk of cardiovascular diseases such as atherosclerosis, myocardial infarction and ischemic stroke. LXRα and β agonists have been shown to increase ABCA1 gene expression thereby increasing HDL cholesterol and, as a consequence, decreasing both the net absorption of cholesterol and the risk of cardiovascular disease. LXR agonists also upregulate macrophage expression of apolipoprotein E (apoE) and ABCG1, both of which contribute to the efflux of cellular cholesterol. By stimulating macrophage cholesterol efflux through upregulation of ABCA1, ABCG1 and/or apoE expression, as well as increasing the expression of other target genes including cholesterol ester transfer protein and lipoprotein lipase, LXR agonists influence plasma lipoproteins.

[0004] The novel compounds of this invention modulate the activity of LXRs and are, therefore, expected to be useful in the treatment of LXR-associated diseases such as cardiovascular diseases, inflammation and disorders of glucose metabolism such as insulin resistance and obesity.

SUMMARY OF THE INVENTION

[0005] In one aspect, the present invention provides compounds of Formula I:

in which

n is selected from 0, 1, 2 and 3;

Z is selected from C and S(O); each

Y is independently selected from $-CR_4$ = and -N=; wherein R_4 is selected from hydrogen, cyano, hydroxyl, $C_{1.6}$ alkyl, $C_{1.6}$ alkoxy, halo-substituted- $C_{1.6}$ alkyl and halo-substituted- $C_{1.6}$ alkoxy;

 R_1 is selected from halo, cyano, hydroxyl, C_{1-6} alkyl, C_{1-6} alkoxy, halosubstituted- C_{1-6} alkyl, halo-substituted- C_{1-6} alkoxy and $-C(O)OR_4$; wherein R_4 is as described above:

 R_2 is selected from the group consisting of C_{6-10} aryl, C_{5-10} heteroaryl, C_{3-12} cycloalkyl and C_{3-6} heterocycloalkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R_2 is optionally substituted with 1 to 5 radicals independently selected from halo, hydroxy, cyano, nitro, C_{1-6} alkyl, C_{1-6} alkoxy, halo-substituted- C_{1-6} alkyl, halo-substituted- C_{1-6} alkoxy, $-C(O)N_5$ 3 nd $-NR_5C(O)R_5$, $-NR_5$ 4, $-C(O)R_5$ 3 and $-NR_5C(O)R_5$ 3; wherein R_5 3 and R_6 3 are independently selected from hydrogen, C_{1-6} alkyl, C_{1-6} alkoxy, halo-substituted- C_{1-6} alkyl, C_{1-12} cycloalkyl- C_{1-6} alkyl, C_{1-12} cycloalkyl- C_{1-6} alkyl, and C_{3-6} heterocycloalkyl- C_{6-1}

 $_4$ alkyl; or R_5 and R_6 together with the nitrogen atom to which R_5 and R_6 are attached form C_{5-10} heteroaryl or C_{3-8} heterocycloalkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R_5 or the combination of R_5 and R_6 is optionally substituted with 1 to 4 radicals independently selected from halo, hydroxy, cyano, nitro, C_{1-6} alkyl, C_1 . $_6$ alkoxy, halo-substituted- C_{1-6} alkyl and halo-substituted- C_{1-6} alkoxy;

100061 is selected from the group consisting of C₆₋₁₀aryl, C₅. Rз 10heteroaryl, C3-12cycloalkyl and C3-8heterocycloalkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R3 is substituted with 1 to 5 radicals independently selected from halo, C1-salkoxy, halo-substituted-C1-salkyl, halo-substituted-C1-salkoxy, -OXR7, -OXC(O)NR7R8, -OXC(O)NR7XC(O)OR8, -OXC(O)NR7XOR8, -OXC(O)NR7XNR7R8, -OXC(O)NR7XS(O)0.2R8, -OXC(O)NR7XNR7C(O)R8, - $OXC(O)NR_7XC(O)XC(O)OR_8$, $-OXC(O)NR_7R_9$, $-OXC(O)OR_7$, $-OXOR_7$, $-OXR_9$, $-XR_9$, -OXC(O)Ro. -OXS(O)n-2Ro and -OXC(O)NR2CR2[C(O)Rol2:wherein X is a selected from a bond and Cisalkylene wherein any methylene of X can optionally be replaced with a divalent radical selected from C(O), NR7, S(O)2 and O; R7 and R8 are independently selected from hydrogen, cyano, C1-6alkyl, halo-substituted-C1-6alkyl, C2-6alkenyl and C3. 12cvcloalkyl-C04alkyl; Ro is selected from C6-10aryl-C04alkyl, C5-10heteroaryl-C04alkyl, C3.12cvcloalkyl-C0.4alkyl and C3.8heterocycloalkyl-C0.4alkyl; wherein any alkyl of R9 can have a hydrogen replaced with -C(O)OR10; and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of Ro is optionally substituted with 1 to 4 radicals independently selected from halo, C1-6alkyl, C3-12cycloalkyl, halo-substituted-C1-6alkyl, C1-6alkoxy, halosubstituted-C₁₋₆alkoxy, -XC(O)OR₁₀, -XC(O)R₁₀, -XC(O)NR₁₀R₁₀, -XS(O)₀₋₂NR₁₀R₁₀ and -XS(O)_{0.2}R₁₀; wherein R₁₀ is independently selected from hydrogen and C_{1.6}alkyl; and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixture of isomers thereof; and the pharmaceutically acceptable salts and solvates (e.g. hydrates) of such compounds.

[0007] In a second aspect, the present invention provides a pharmaceutical composition which contains a compound of Formula I or a N-oxide derivative, individual isomers and mixture of isomers thereof; or a pharmaceutically acceptable salt thereof, in admixture with one or more suitable excipients.

[0008] In a third aspect, the present invention provides a method of treating a disease in an animal in which modulation of LXR activity can prevent, inhibit or ameliorate the pathology and/or symptomology of the diseases, which method comprises administering to the animal a therapeutically effective amount of a compound of Formula 1 or a N-oxide derivative, individual isomers and mixture of isomers thereof, or a pharmaceutically acceptable salt thereof.

[0009] In a fourth aspect, the present invention provides the use of a compound of Formula I in the manufacture of a medicament for treating a disease in an animal in which LXR activity contributes to the pathology and/or symptomology of the disease.

[0010] In a fifth aspect, the present invention provides a process for preparing compounds of Formula I and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixture of isomers thereof, and the pharmaceutically acceptable salts thereof.

DETAILED DESCRIPTION OF THE INVENTION

Definitions

[0011] "Alkyl" as a group and as a structural element of other groups, for example halo-substituted-alkyl and alkoxy, can be either straight-chained or branched. C₁₋₆alkoxy includes, methoxy, ethoxy, and the like. Halo-substituted alkyl includes trifluoromethyl, pentafluoroethyl, and the like.

[0012] "Aryl" means a monocyclic or fused bicyclic aromatic ring assembly containing six to ten ring carbon atoms. For example, aryl can be phenyl or naphthyl, preferably phenyl. "Arylene" means a divalent radical derived from an aryl group. "Heteroaryl" is as defined for aryl where one or more of the ring members are a heteroatom. For example heteroaryl includes pyridyl, indolyl, indazolyl, quinoxalinyl, quinolinyl, benzofuranyl, benzopyranyl, benzothiopyranyl, benzo[1,3]dioxole, imidazolyl, benzo-imidazolyl, pyrimidinyl, furanyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrazolyl, thienyl, etc. "C₆₋₁₀arylC₀₋₄alkyl" means an aryl as described above connected via a alkylene grouping. For example, C₆₋₁₀arylC₀₋₄alkyl includes phenethyl, benzyl, etc.

[0013] "Cycloalky!" means a saturated or partially unsaturated, monocyclic, fused bicyclic or bridged polycyclic ring assembly containing the number of ring atoms indicated. For example, C₃₋₁₀cycloalky! includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc. "Heterocycloalky!" means cycloalkyl, as defined in this application, provided that one or more of the ring carbons indicated, are replaced by a moiety selected from -O₃-Ne₃-NR₃-C(O) -, -S₃-S(O) - or -S(O)₂₇, wherein R is hydrogen, C₁₋₄alkyl or a nitrogen protecting group. For example, C₃₋₈heterocycloalkyl as used in this application to describe compounds of the invention includes morpholino, pyrrolidinyl, piperazinyl, piperidinyl, piperidinyl, piperidinyl, piperidinyl, piperazinyl, piperidinyl, piperidinyl, properazinyl, piperidinyl, piperazinyl, p

[0015] The term "modulate" with respect to an LXR receptor refers to activation of the LXR receptor and its biological activities associated with the LXR pathway (e.g., transcription regulation of a target gene). Modulation of LXR receptor can be upregulation (i.e., agonizing, activation or stimulation) or down-regulation (i.e. antagonizing, inhibition or suppression). The mode of action of an LXR modulator can be direct, e.g., through binding to the LXR receptor as a ligand. The modulation can also be indirect, e.g., through binding to and/or modifying another molecule which otherwise binds to and activates the LXR receptor, or by stimulating the generation of an endogenous LXR ligand. Thus, modulation of LXR includes a change in the bioactivities of an LXR agonist ligand (i.e., its activity in binding to and/or activating an LXR receptor) or a change in the cellular level of the ligand.

[0016] "Treat", "treating" and "treatment" refer to a method of alleviating or abating a disease and/or its attendant symptoms.

Description of the Preferred Embodiments

[0017] The present invention provides compounds, compositions and methods for the treatment of diseases in which modulation of LXR activity can prevent, inhibit or ameliorate the pathology and/or symptomology of the

diseases, which method comprises administering to the animal a therapeutically effective amount of a compound of Formula I.

[0018] In one embodiment, compounds of the invention are of Formula Ia:

in which

n is selected from 1, 2 and 3;

Y is selected from -CH= and -N=:

 R_1 is selected from halo, C_{1-6} alkyl, and $-C(O)OR_4$; wherein R_4 is selected from hydrogen and C_{1-6} alkyl;

 R_2 is selected from the group consisting of C_{6-10} aryl, C_{3-10} heteroaryl, C_{3-12} cycloalkyl and C_{3-8} heterocycloalkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R_2 is optionally substituted with 1 to 4 radicals independently selected from halo, hydroxy, C_{1-6} alkyl, halo-substituted- C_{1-6} alkyl and $-OC(O)R_5$; wherein R_5 is selected from hydrogen and C_{1-6} alkyl; and

 $R_3 \qquad is selected from the group consisting of $C_{6+10}aryl$, C_{5+10}heteroaryl$, C_{3+10}heteroaryl$, and C_{3+8}heterocycloalkyl$; wherein any aryl$, heteroaryl$, cycloalkyl$ or heterocycloalkyl$ of R_3 is substituted with 1 to 5 radicals independently selected from halo, hydroxyl$, C_{1+6}llkoxy$, halo-substituted-C_{1+6}llkoxy$, -OXK(O)NR_7$K9$, -OXC(O)NR_7$K9$, -OXC(O)R_5$, -OXC(O)NR_7$K9$, -OXC(O)NR_7$K9$, -OXC(O)NR_7$K9$, -OXC(O)R_5$, -OXC(O)R_5$, -OXC(O)NR_7$K9$, -OXC(O)R_5$, -O$

 $-C(O)OR_{10}$; and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R_9 is optionally substituted with 1 to 4 radicals independently selected from halo, C_{1-6} alkyl, C_{3-12} cycloalkyl, halo-substituted- C_{1-6} alkyl, C_{1-6} alkyl, C_{1-6} alkoxy, halo-substituted- C_{1-6} alkoxy, - $XC(O)OR_{10}$, $-XC(O)R_{10}$, $-XC(O)R_{10}$, $-XS(O)_{0-2}NR_{10}R_{10}$ and $-XS(O)_{0-2}R_{10}$; wherein R_{10} is independently selected from hydrogen and C_{1-6} alkyl.

[0019] In another embodiment, R_1 is selected from fluoro, chloro, methyl and $-C(O)OCH_3$; and R_2 is selected from the group consisting of phenyl, cyclohexyl, cyclopentyl and pyridinyl; wherein any aryl, heteroaryl or cycloalkyl of R_2 is optionally substituted with 1 to 4 radicals independently selected from fluoro, chloro, bromo, hydroxy, methyl, methoxy, trifluoromethyl and $-OC(O)CH_3$.

[0020] In another embodiment, R₃ is selected from the group consisting of phenyl, benzo[1,3]dioxolyl, pyridinyl and benzooxazolyl; wherein any aryl or heteroaryl of R₃ is substituted with 1 to 5 radicals independently selected from fluoro, chloro, bromo, methoxy, hydroxyl, difluoromethoxy, -OCH2C(O)NH2, -OCH2C(O)OCH3, -OCH2C(O)NHCH3, -OCH2C(O)N(CH3)2, -Rq, -ORq, -OCH2Rq, -OCH2C(O)Rq, -OCH2C(O)NHR9, -OCH2C(O)N(CH3)R9, -OCH2CN, -OCH2C2H3, -OCH2C2H4, -O(CH2)2OH, -OCH2C(O)NH(CH2)2C(O)OC2H4, -OCH2C(O)NH(CH2)2CH2F, -OCH2C(O)NH(CH2)2C(O)OH, -OCH2C(O)NHC(O)(CH2)2C(O)OCH3, -OCH2C(O)NH(CH2)2NHC(O)CH3, -OCH2C(O)NHCH2C(O)C2H5, -OCH2C(O)NH(CH2)2C(O)OC4H9, -OCH2C(O)NHCH2C(O)OC2H5, -OCH2C(O)NHCHIC(O)OC2H322, -S(O)2CH32, -OCH2C(O)NHCH2CF32, -OCH2C(O)NHCH2C(O)(CH2)2C(O)OCH3, -OCH2C(O)N(CH3)CH2C(O)OCH3, -OCH2C(O)NH(CH2)3OC2H5, -OCH2C(O)NH(CH2)3OCH(CH3)2, -OCH2C(O)NH(CH2)2SCH3, -OCH2C(O)NHCH2CH(CH3)2, -OCH2C(O)NHCH2CH(CH3)C2H5, -OCH2C(O)NHCH(CH3)C(O)OC2H5, -OCH2C(O)NHCH2CH(CH3)2 and -OCH2C(O)(CH2)3OCH(CH3)2; wherein R9 is phenyl, cyclopropyl-methyl, isoxazolyl, benzthiazolyl, furanyl, furanyl-methyl, pyridinyl, 4-oxo-4,5-dihydro-thiazol-2-yl, pyrazolyl, isothiazolyl, 1,3,4-thiadiazolyl, thiazolyl, phenethyl, morpholino, morpholino-propyl, isoxazolyl-methyl, pyrimidinyl, tetrahydro-pyranyl, 2oxo-2,3-dihydro-pyrimidin-4-yl, piperazinyl, pyrrolyl, piperidinyl, pyrazinyl, imidazolyl, imidazolyl-propyl, benzo[1,3]dioxolyl, benzo[1,3]dioxolyl-propyl, 2-oxo-pyrrolidin-1-yl

and 2-oxo-pyrrolidin-1-yl-propyl; wherein any alkyl of R_9 can have a hydrogen replaced with $-C(O)OC_2H_5$; wherein any aryl, heteroaryl or heterocycloalkyl of R_9 is optionally substituted with 1 to 4 radicals independently selected from methyl, ethyl, cyclopropyl, methoxy, trifluoromethyl, $-OC(O)CH_3$, -COOH, $-CH_2C(O)OH$, $-CH_2C(O)OC_2H_5$, $-CH_2C(O)OC_3$, $-C(O)OCH_3$, -C(O)

[0021] Preferred compounds of Formula I are detailed in the Examples and Table I, infra.

Pharmacology and Utility

[0022] Compounds of the invention modulate the activity of LXRs and, as such, are useful for treating diseases or disorders in which LXRs contribute to the pathology and/or symptomology of the disease. This invention further provides compounds of this invention for use in the preparation of medicaments for the treatment of diseases or disorders in which LXRs contribute to the pathology and/or symptomology of the disease. LXR mediated diseases or conditions include inflammation, cardiovascular disease including atherosclerosis, arteriosclerosis, hypercholesteremia, hyperlipidemia and disorders of glucose homeostasis, including insulin resistance, type II diabetes, and obesity.

[0023] Lipoprotein metabolism is a dynamic process comprised of the production of triglyceride and cholesterol rich particles from the liver as very low-density lipoprotein (VLDL), modification of these lipoprotein particles within the plasma (VLDL to intermediate density (IDL) to low-density lipoprotein (LDL)) and clearance of the particles from the plasma, again by the liver. This process provides the transport of triglycerides and free cholesterol to cells of the body. Reverse cholesterol transport is the proposed mechanism by which excess cholesterol is returned to the liver from extrahepatic tissue.

[0024] The process is carried out by high-density lipoprotein (HDL) cholesterol. The combination of lipoprotein production (VLDL, HDL) from the liver, modification of particles (all) within the plasma and subsequent clearance back to the liver, accounts for the steady state cholesterol concentration in plasma. Compounds of this invention increase reverse cholesterol transport by increasing cholesterol efflux from the arteries.

This invention includes the use of compounds of this invention for the preparation of a medicament for increasing reverse cholesterol transport. Additionally, this invention provides compounds for inhibiting cholesterol absorption and the use of compounds of this invention for the preparation of a medicament for inhibiting net cholesterol absorption.

100251 The compounds of this invention can also be useful for the prevention or treatment of inflammation and neurodegenerative diseases or neurological disorders. Accordingly, this invention also provides a method for preventing or treating inflammation and a method for preventing or treating neurodegenerative diseases or neurological disorders, particularly neurodegenerative diseases or disorders characterized by neuron degeneration, neuron injury or impaired plasticity or inflammation in the CNS. Particular diseases or conditions that are characterized by neuron degeneration and inflammation and thus benefiting from the growth and/or repair of neurons include stroke. Alzheimer's disease, fronto-temporal dementias (tauopathies), peripheral neuropathy, Parkinson's disease, dementia with Lewy bodies, Huntington's disease, amyotrophic lateral sclerosis and multiple sclerosis. Diseases or conditions that are characterized by neuron degeneration and/or impaired plasticity include psychiatric disorders such as schizophrenia and depression. Particular diseases or conditions that are characterized by neuronal injury include those conditions associated with brain and/or spinal cord injury, including trauma. In addition, the compounds of this invention can be used to treat or prevent various diseases with an inflammatory component, such as rheumatoid arthritis, osteoarthritis, psoriasis, asthma, etc.

[0026] LXR agonists improve glucose tolerance and enhance glut4 expression (U.S. Provisional Patent Application 60/436,112, filed 12/23/2002; U.S. Patent Application 10/745,334, filed 12/22/2003). There is a coordinated regulation of genes involved in glucose metabolism in liver and adipose tissue. In the liver, LXR agonists inhibit expression of several genes that are important for hepatic gluconeogenesis, e.g., PGC-1, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase expression. Inhibition of these gluconeogenic genes is accompanied by an induction in expression of glucokinase, which promotes hepatic glucose utilization. It was also found

that glut4 mRNA levels were upregulated by LXR agonists in adipose tissue, and that glucose uptake in 3T3-L1 adipocytes was enhanced in vitro.

[0027] In accordance with these discoveries, the present invention provides methods for enhancing glut4 expression in cells in a subject by administering a compound of the invention to the subject. The present invention also provides methods for treating diabetes mellitus and related disorders, such as obesity or hyperglycemia, by administering to a subject an effective amount of a compound of the invention to ameliorate the symptoms of the disease. For example, type II diabetes is amenable to treatment with methods of the present invention. By enhancing sensitivity to insulin and glucose uptake by cells, administration with a compound of the invention can also treat other diseases characterized by insulin dysfunction (e.g., resistance, inactivity or deficiency) and/or insufficient glucose transport into cells.

[0028] Compounds of the present invention also regulate expression levels of a number of genes that play important roles in liver gluconeogenesis. Accordingly, the present invention further provides methods for reducing gluconeogenesis in a subject by modulating expression of such genes (e.g., PGC-1 and PEPCK).

[0029] In accordance with the foregoing, the present invention further provides a method for preventing or treating any of the diseases or disorders described above in a subject in need of such treatment, which method comprises administering to said subject a therapeutically effective amount (See, "Administration and Pharmaceutical Compositions", infra) of a compound of Formula I or a pharmaceutically acceptable salt thereof. For any of the above uses, the required dosage will vary depending on the mode of administration, the particular condition to be treated and the effect desired.

Administration and Pharmaceutical Compositions

[0030] In general, compounds of the invention will be administered in therapeutically effective amounts via any of the usual and acceptable modes known in the art, either singly or in combination with one or more therapeutic agents. A therapeutically effective amount can vary widely depending on the severity of the disease, the age and relative health of the subject, the potency of the compound used and

other factors. In general, satisfactory results are indicated to be obtained systemically at daily dosages of from about 0.03 to 2.5mg/kg per body weight. An indicated daily dosage in the larger mammal, e.g. humans, is in the range from about 0.5mg to about 100mg, conveniently administered, e.g. in divided doses up to four times a day or in retard form. Suitable unit dosage forms for oral administration comprise from ca. 1 to 50mg active ingredient.

[0031] Compounds of the invention can be administered as pharmaceutical compositions by any conventional route, in particular enterally, e.g., orally, e.g., in the form of tablets or capsules, or parenterally, e.g., in the form of injectable solutions or suspensions, topically, e.g., in the form of lotions, gels, ointments or creams, or in a nasal or suppository form. Pharmaceutical compositions comprising a compound of the present invention in free form or in a pharmaceutically acceptable salt form in association with at least one pharmaceutically acceptable carrier or diluent can be manufactured in a conventional manner by mixing, granulating or coating methods. For example, oral compositions can be tablets or gelatin capsules comprising the active ingredient together with a) diluents, e.g., lactose, dextrose, sucrose, mannitol, sorbitol, cellulose and/or glycine; b) lubricants, e.g., silica, talcum, stearic acid, its magnesium or calcium salt and/or polyethyleneglycol; for tablets also c) binders, e.g., magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose and or polyvinylpyrollidone; if desired d) disintegrants, e.g., starches, agar, alginic acid or its sodium salt, or effervescent mixtures; and/or e) absorbents, colorants, flavors and sweeteners. Injectable compositions can be aqueous isotonic solutions or suspensions, and suppositories can be prepared from fatty emulsions or suspensions. The compositions can be sterilized and/or contain adjuvants, such as preserving, stabilizing, wetting or emulsifying agents, solution promoters, salts for regulating the osmotic pressure and/or buffers. In addition, they can also contain other therapeutically valuable substances. Suitable formulations for transdermal applications include an effective amount of a compound of the present invention with a carrier. A carrier can include absorbable pharmacologically acceptable solvents to assist passage through the skin of the host. For example, transdermal devices are in the form of a bandage comprising a backing member, a reservoir containing the compound optionally

with carriers, optionally a rate controlling barrier to deliver the compound to the skin of the host at a controlled and predetermined rate over a prolonged period of time, and means to secure the device to the skin. Matrix transdermal formulations can also be used. Suitable formulations for topical application, e.g., to the skin and eyes, are preferably aqueous solutions, ointments, creams or gels well-known in the art. Such can contain solubilizers, stabilizers, tonicity enhancing agents, buffers and preservatives.

[0032] Compounds of the invention can be administered in therapeutically effective amounts in combination with one or more therapeutic agents (pharmaccutical combinations). For example, synergistic effects can occur with other substances used in the treatment of cardiovascular, inflammatory and/or neurodegenerative diseases. Examples of such compounds include fibrates, TZDs, metformin, etc. Where the compounds of the invention are administered in conjunction with other therapies, dosages of the co-administered compounds will of course vary depending on the type of co-drug employed, on the specific drug employed, on the condition being treated and so forth

[0033] The invention also provides for a pharmaceutical combinations, e.g. a kit, comprising a) a first agent which is a compound of the invention as disclosed herein, in free form or in pharmaceutically acceptable salt form, and b) at least one co-agent. The kit can comprise instructions for its administration.

[0034] The terms "co-administration" or "combined administration" or the like as utilized herein are meant to encompass administration of the selected therapeutic agents to a single patient, and are intended to include treatment regimens in which the agents are not necessarily administered by the same route of administration or at the same time.

[0035] The term "pharmaceutical combination" as used herein means a product that results from the mixing or combining of more than one active ingredient and includes both fixed and non-fixed combinations of the active ingredients. The term "fixed combination" means that the active ingredients, e.g. a compound of Formula I and a co-agent, are both administered to a patient simultaneously in the form of a single entity or dosage. The term "non-fixed combination" means that the active ingredients, e.g. a compound of Formula I and a co-agent, are both administered to a patient as separate entities either simultaneously, concurrently or sequentially with no specific time

limits, wherein such administration provides therapeutically effective levels of the 2 compounds in the body of the patient. The latter also applies to cocktail therapy, e.g. the administration of 3 or more active ingredients.

Processes for Making Compounds of the Invention

[0036] The present invention also includes processes for the preparation of compounds of the invention. In the reactions described, it can be necessary to protect reactive functional groups, for example hydroxy, amino, imino, thio or carboxy groups, where these are desired in the final product, to avoid their unwanted participation in the reactions. Conventional protecting groups can be used in accordance with standard practice, for example, see T.W. Greene and P. G. M. Wuts in "Protective Groups in Organic Chemistry", John Wiley and Sons, 1991.

[0037] Compounds of Formula I can be prepared by proceeding as in the following Reaction Scheme I:

Reactions Scheme I

$$(R_1) \xrightarrow{n} (R_2) \xrightarrow{R_3 - CHO} (R_1) \xrightarrow{N-NH} (R_2) \xrightarrow{(A_1)^{-1}} (R_2) \xrightarrow{(A_2)^{-1}} (R_3) \xrightarrow{(A_1)^{-1}} (R_3) (R_3) (R_4) (R_4) (R_5) (R$$

in which n, Y, Z, R_1 , R_2 and R_3 are as defined in the Summary of the Invention. Compounds of Formula 1 are prepared by reacting a compound of formula 2 with a compound of formula 3 to form a compound of formula 4 which is further reacted with a compound of formula 5 or 6. The entire reaction is carried out in the presence of a suitable solvent (e.g., dichloromethane, or the like) and a suitable base (e.g., DIEA, or the like). The reaction is carried out in the temperature range of about 5 to about 30°C and takes up to 20 hours to complete.

Additional Processes for Making Compounds of the Invention

[0038] A compound of the invention can be prepared as a pharmaceutically acceptable acid addition salt by reacting the free base form of the compound with a pharmaceutically acceptable inorganic or organic acid. Alternatively, a pharmaceutically acceptable base addition salt of a compound of the invention can be prepared by reacting the free acid form of the compound with a pharmaceutically acceptable inorganic or organic base. Alternatively, the salt forms of the compounds of the invention can be prepared using salts of the starting materials or intermediates.

[0039] The free acid or free base forms of the compounds of the invention can be prepared from the corresponding base addition salt or acid addition salt from, respectively. For example a compound of the invention in an acid addition salt form can be converted to the corresponding free base by treating with a suitable base (e.g., ammonium hydroxide solution, sodium hydroxide, and the like). A compound of the invention in a base addition salt form can be converted to the corresponding free acid by treating with a suitable acid (e.g., hydrochloric acid, etc.).

[0040] Compounds of the invention in unoxidized form can be prepared from Noxides of compounds of the invention by treating with a reducing agent (e.g., sulfur, sulfur dioxide, triphenyl phosphine, lithium borohydride, sodium borohydride, phosphorus trichloride, tribromide, or the like) in a suitable inert organic solvent (e.g. acetonitrile, ethanol, aqueous dioxane, or the like) at 0 to 80°C.

[0041] Prodrug derivatives of the compounds of the invention can be prepared by methods known to those of ordinary skill in the art (e.g., for further details see Saulnier et

al., (1994), Bioorganic and Medicinal Chemistry Letters, Vol. 4, p. 1985). For example, appropriate prodrugs can be prepared by reacting a non-derivatized compound of the invention with a suitable carbamylating agent (e.g., 1,1-acyloxyalkylcarbanochloridate, para-nitrophenyl carbonate, or the like).

[0042] Protected derivatives of the compounds of the invention can be made by means known to those of ordinary skill in the art. A detailed description of techniques applicable to the creation of protecting groups and their removal can be found in T. W. Greene, "Protecting Groups in Organic Chemistry", 3rd edition, John Wiley and Sons, Inc., 1999.

[0043] Compounds of the present invention can be conveniently prepared, or formed during the process of the invention, as solvates (e.g., hydrates). Hydrates of compounds of the present invention can be conveniently prepared by recrystallization from an aqueous/organic solvent mixture, using organic solvents such as dioxin, tetrahydrofuran or methanol.

Compounds of the invention can be prepared as their individual [0044] stereoisomers by reacting a racemic mixture of the compound with an optically active resolving agent to form a pair of diastereoisomeric compounds, separating the diastereomers and recovering the optically pure enantiomers. While resolution of enantiomers can be carried out using covalent diastereomeric derivatives of the compounds of the invention, dissociable complexes are preferred (e.g., crystalline diastereomeric salts). Diastereomers have distinct physical properties (e.g., melting points, boiling points, solubilities, reactivity, etc.) and can be readily separated by taking advantage of these dissimilarities. The diastercomers can be separated by chromatography, or preferably, by separation/resolution techniques based upon differences in solubility. The optically pure enantiomer is then recovered, along with the resolving agent, by any practical means that would not result in racemization. A more detailed description of the techniques applicable to the resolution of stereoisomers of compounds from their racemic mixture can be found in Jean Jacques, Andre Collet, Samuel H. Wilen, "Enantiomers, Racemates and Resolutions", John Wiley And Sons, Inc., 1981.

[0045] In summary, the compounds of Formula I can be made by a process, which involves:

- (a) that of reaction scheme I; and
- (b) optionally converting a compound of the invention into a pharmaceutically acceptable salt;
- (c) optionally converting a salt form of a compound of the invention to a nonsalt form:
- (d) optionally converting an unoxidized form of a compound of the invention into a pharmaceutically acceptable N-oxide;
- (e) optionally converting an N-oxide form of a compound of the invention to its unoxidized form:
- (f) optionally resolving an individual isomer of a compound of the invention from a mixture of isomers:
- (g) optionally converting a non-derivatized compound of the invention into a pharmaceutically acceptable prodrug derivative; and
- (h) optionally converting a prodrug derivative of a compound of the invention to its non-derivatized form.
- [0046] Insofar as the production of the starting materials is not particularly described, the compounds are known or can be prepared analogously to methods known in the art or as disclosed in the Examples hereinafter.
- [0047] One of skill in the art will appreciate that the above transformations are only representative of methods for preparation of the compounds of the present invention, and that other well known methods can similarly be used.

Examples

[0048] The present invention is further exemplified, but not limited, by the following examples that illustrate the preparation of compounds of Formula I according to the invention.

Example 1

5-(4-Chloro-phenyl)-2-(2-difluoromethoxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2-fluoro-

phenyl)-methanone

Preparation of 4-chloro-thiobenzoic acid hydrazide

[0049] One half of volume of a solution of KOH (1.06 mol) in 400 ml of EtOH is saturated with $\rm H_2S$. This solution is recombined with the other half of the KOH solution and the resulting solution is stirred under $\rm N_2$ at 45-50 °C before adding 4-chlorobenzotrichloride (0.25 mol) at a rate to keep the temperature at 50-60 °C (-1.5 hours). The deep red mixture is refluxed for 30 minutes, then treated with a solution of chloroacetic acid (0.35 mol) and NaHCO₃ (0.35 mol) in $\rm H_2O$ (200 mL). The reaction mixture is reheated under reflux for an additional 5 minutes. The resulting brownish-red solution is decanted from the sticky resin and acidified with concentrated HCl to pH = 1. The red solution on crystallization yields (4-chloro-thiobenzoylsulfanyl)-acetic acid: 1 H NMR (400 MHz, CDCl₃): 8 7.75 (d, 2H), 7.15 (d, 2H), 4.04 (s, 2H), 4.04 (s, 2H), 4.04 (s, 2H), 4.05 (s, 2H), 4.05 (s, 2H), 4.05 (s, 2H), 4.06 (s, 2H), 4.06 (s, 2H), 4.07 (s, 2H), 4.07 (s, 2H), 4.07 (s, 2H), 4.08 (s, 2H), 4.08 (s, 2H), 4.09 (s, 2

[0050] To a mixture of (4-chloro-thiobenzoylsulfanyl)-acetic acid (8.31 mmol) in 9 mL of NaOH (1N) is added hydrazine hydrate (36.7 mL). Glacial acetic acid (2.7 mL) is then added to the solution and the mixture is vigorously stirred. The reaction mixture is diluted with CH₂Cl₂ and the organic layer dried over MgSO₄ to yield 4-chloro-thiobenzoic acid hydrazide: LC/MS (ES*) 186.9 (M+1)*.

To a heterogeneous mixture of 4-chloro-thiobenzoic acid hydrazide (0.107 mmol) in CH₂Cl₂ (1 mL) is added 2-difluoromethoxy-benzaldehyde (0.128 mmol) and DIEA (0.128 mmol). After 10 minutes the mixture become homogenous and the reaction is complete by TLC and LCMS to give 5-(4-chloro-phenyl)-2-(2-difluoromethoxy-phenyl)

2,3-dihydro-[1,3,4]thiadiazole which is used in the next step without evaporation of the solvent.

[0051] To the solution of 5-(4-chloro-phenyl)-2-(2-difluoromethoxy-phenyl)-2,3-dihydro-[1,3,4]thiadiazole is added DIEA (0.16 mmol) and 2-fluorobenzoyl chloride (0.16 mmol) and the reaction mixture is stirred for 12 hours at room temperature. After evaporation of the solvent, the residue is purified by automated chromatography (hexane/EtOAc) to give $\underline{5-(4-chloro-phenyl)-2-(2-difluoromethoxy-phenyl)-}$ [1,3,4]thiadiazol-3-yl-[4-fluoro-phenyl)-methanone: 1H NMR (400 MHz, CDCl₃) δ 7.39-7.35 (m, 1H), 7.34-7.29 (m, 4H), 7.25 (dd, J_1 = 7.8 Hz, J_2 = 1.2 Hz, 1H), 7.19-7.13 (m, 3H), 7.04 (m, 1H), 6.97 (m, 2H), 6.50 (dd, J_1 = 71.6 Hz, J_2 = 71.2Hz, 1H). LC/MS: (ES¹) 462.8 (M+1)*.

Example 2

2-{2-[5-(4-Chloro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxy}-acetamide

[0052] To a heterogeneous mixture of 4-chloro-thiobenzoic acid hydrazide (1.3 mmol) in 12 mL of CH₂Cl₂ is added 2-(2-formylphenoxy)acetamide (1.53 mmol) and DIEA (1.53 mmol). After 10 minutes the mixture become homogeneous and the reaction is complete by TLC and LCMS to give 2-(2-(5-(4-chlorophenyl)-2,3-dihydro-1,3,4-thiadiazol-2-yl)phenoxy)-acetamide which is used as such in the next step without evaporation of the solvent.

[0053] To the solution of 2-(2-(5-(4-chlorophenyl)-2,3-dihydro-1,3,4-thiadiazol-2-yl)phenoxy)acetamide is added DIEA (2.0 mmol) and 2,4,6-tri-fluorobenzoyl chloride (2.0 mmol) and the reaction mixture is stirred for 12 hours at room temperature. After evaporation of the solvent, the residue is purified by automated chromatography (hexane/EtOAc) to give $2-\{2-\{5-(4-chloro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxy)-acetamide: \begin{array}{c} 1 \text{ NMR (400 MHz, CDCl}_3\) \delta 7.43 (s, 1H), 7.27 (d, <math>J=8.4$ Hz, 2H), 7.15 (m, 2H), 7.14 (d, J=8.4 Hz, 2H) 6.99 (bs, 1H), 6.84 (t, J=6.4 Hz, 3H), 6.66 (d, J=8.4 Hz, 1H), 6.53 (t, J=8.0 Hz, 2H), 5.29 (bs, 1H), 4.47 (d, J=1.6 Hz, 2H); LC/MS: (ES') 506.2 (M+1)*

Example 3

2-{2-[5-(4-Fluoro-phenyl)-3-(2.4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-6-methoxy-phenoxy}-acetamide

Preparation of 4-fluorobenzothiohydrazide trifluoroacetic acid salt or hydrochloride salt

[0054] To a solution of 4-fluorobenzoic acid (35.7 mmol) in 72 mL of a mixture of DMF and THF (1:1), is added *tert*-butyl carbazate (37.5 mmol), EDC (39.3 mmol) and N,N-dimethylaminopyridine (0.54 mmol). After 10 minutes the mixture becomes homogeneous and stirring is continued for 3 hours until the reaction is complete by TLC and LC/MS. The reaction mixture is poured into icc. Upon addition of diethylether the organic layer is

separated. The organic layer is washed with sodium bisulfite, saturated sodium bicarbonate and saturated sodium chloride solution, dried over magnesium sulfate and concentrated to yield N'-(4-fluoro-benzoyl)-hydrazinecarboxylic acid tert-butyl ester: MS: (ES*) 255 (M+1)*.

[0055] To a mixture of N'-(4-fluoro-benzoyl)-hydrazinecarboxylic acid *tert*-butyl ester (11.1 mmol) in 10 mL of dry THF is added Lawesson's reagent (11.6 mmol) and the mixture is heated in the microwave oven at 80 °C for 20 minutes The reaction mixture is concentrated and purified by automated column chromatography using hexanes/EtOAc: 1 H NMR (400 MHz, CDCl₃) 3 9.8 (bs, 1H), 9.05 (bs, 1H); 8.0-7.97 (m, 2H), 7.31 (t, 2 = 8.4Hz, 2H), 1.73 (s, 9H). LC/MS: (ES 5) 271 (M+1) 5 .

[0056] Trifluoroacetic salt. To a solution of N'-(4-fluoro-thiobenzoyl)-hydrazinecarboxylic acid tert-butyl ester (1.97 mmol) in CH₂Cl₂ is added trifluoroacetic acid (3 mL) and thioanisole (2.7 mmol). The mixture is stirred at room temperature for 1 hour. After evaporation of the solvent the mixture is purified by automated column chromatography (hexanes/EtOAc) to yield 4-fluoro-thiobenzoic acid hydrazide trifluoroacetic acid salt: ¹H NMR (400 MHz, CDCl₃) δ 9.5 (bs, 3H), 7.8-7.76 (m, 2H), 7.05 (t, J = 8.4 Hz, 2H); LC/MS: (ES*) 171 (M+1)*.

[0057] Hydrochloride salt. To N'-(4-fluoro-thiobenzoyl)-hydrazinecarboxylic acid terr-butyl ester (18.5 mmol) is added HCl (4 N) in 1,4-dioxane (185 mmol). The mixture is stirred at room temperature for 1 hour. Hexanes is added to further precipitate the product. The product is filtered off yielding 4-fluoro-thiobenzoic acid hydrazide hydrochloride salt: 1 H NMR (400 MHz, CH₃OD) δ 7.8 – 7.75 (m, 2H), 7.09 (t, J = 11.6 Hz, 2H). LC/MS: (ES*) 171 (M+1)*.

Preparation of 3-methoxy-2-triisopropylsilanyloxy-benzaldehyde

[0058] *O*-vanillin (26.3 mmol) is mixed with TIPSCI (39.6 mmol) and imidazole (78.7 mmol) in a microwave vessel. The mixture is heated in the microwave at 100 °C for 3

minutes. The oily mixture is diluted with EtOAc (100 mL) and washed with NaHSO₄ (1 M) (2x50 mL) and brine (50 mL). After drying with MgSO₄, the filtrate is concentrated. The resultant crude mixture is purified by silica flash chromatography (2% EtOAc/hexane) to yield 3-methoxy-2-triisopropylsilanyloxy-benzaldehyde as an oil: 1 H NMR (400 MHz, CDCl₃) δ 10.6 (s, 1H), 7.38 (dd, J_1 = 1.6 Hz, J_2 = 8 Hz, 1H), 7.04 (dd, J_1 = 1.6 Hz, J_2 = 8 Hz, 1H), 6.93 (td, J_1 = 8 Hz, J_2 = 0.8 Hz, 1H), 3.82 (s, 3H), 1.34-1,25 (m, 3H), 1.1 (s, 18H); LC/MS (ES*): 309 (M+1)*

[0059] To a heterogeneous mixture of 4-fluoro-thiobenzoic acid hydrazide salt (2.06 mmol) in 8 mL of CH₂Cl₂ is added 3-methoxy-2-triisopropylsilanyloxy-benzaldehyde (2.27 mmol) and DIEA (4.13 mmol). After 15 minutes the mixture becomes homogenous and the reaction is complete by TLC and LCMS to give 5-(4-fluoro-phenyl)-2-(3-methoxy-2-triisopropylsilanyloxy-phenyl)-2,3-dihydro-[1,3,4]thiadiazole which is used in the next step without evaporation of the solvent.

To the solution of 5-(4-fluoro-phenyl)-2-(3-methoxy-2-triisopropylsilanyloxy-

phenyl)-2,3-dihydro-[1,3,4]thiadiazole is added DIEA (3.09 mmol) and 2,4,6-trifluorobenzoyl chloride (3.09 mmol) and the reaction mixture is stirred for 12 hours at room temperature. After concentration, the residue is purified by automated column chromatography (hexane/EtOAc) to yield [5-(4-fluoro-phenyl)-2-(3-methoxy-2triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone. [0061] To [5-(4-fluoro-phenyl)-2-(3-methoxy-2-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone (32.3 µmol) is added tetrabutylammonium fluoride in tetrahydrofuran (1 M) (48.5 μmol). The mixture is stirred for an hour and 2-bromo-acetamide (48.5 umol) is added. The mixture is stirred at room temperature for 12 hours. After evaporation of the solvent the residue is purified by preparative LC/MS (20-100 % MeCN/H2O) to give 2-{2-[5-(4-fluoro-phenyl)-3-(2,4,6trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-6-methoxy-phenoxy}-acetamide: ¹H NMR (400 MHz, CDCl₃): δ 7.63-7.62 (m, 2H), 7.57 (s, 1H), 7.22-7.12 (m, 3H), 7.02 (dd, J_I = 8.4Hz, $J_2 = 2$ Hz, 2H), 6.9 (bs, 1H), 6.85 (t, J = 8.4Hz, 2H), 6.10 (s, 1H), 4.83 (d, J = 15.2Hz, 1H), 4.68 (d, J = 15.2 Hz, 1H), 3.94 (s, 3H).

Example 4

[0060]

3-{3-[5-(4-Fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-

yl]-2-methoxy-phenoxymethyl}-benzoic acid methyl ester

Preparation of 2-Methoxy-3-triisopropylsilanyloxy-benzaldehyde

[0062] Guaiacol (2-methoxy-phenol, 34.6 mmol) is mixed with TIPSCI (51.9 mmol) and imidazole (103.8 mmol) in a tube. The mixture is heated in the microwave oven at 180 °C for 3 minutes. The oily mixture is diluted with EtOAc (100 mL) and washed with NaHSO₄ (1 M) (2x50 mL) and brine (50 mL). After drying over anhydrous Na₂SO₄, the filtrate is concentrated. The resultant crude mixture is purified by silica flash chromatography (2 % EtOAc/hexane) to yield triisopropyl-(2-methoxy-phenoxy)-silane as a colorless oil. Yield: 69%. ¹H NMR (400 MHz, CDCl₃) δ 6.8-6.89 (m, 4H), 3.8 (s, 3H), 1.22-1.28 (m, 3H), 1.1 (s, 9H), 1.08 (s, 9H). LC/MS (ES^{*}): (M+1), 281.2. R_f = 0.8 (5 % EtOAc/hexane). (Note: Alternatively, conventional heating might be adopted in which case NMP is the solvent of choice).

[0063] nBuLi (2.5 M in hexanes) (36 mmol) is mixed with TMEDA (36 mmol) at 0

C in a dry round bottom flask for 10 minutes. A solution of triisopropyl-(2-methoxyphenoxy)-silane (24 mmol) in 25 mL of dry THF is added to the above mixture. The mixture

is warmed up to room temperature in 2 hours by removal of the ice bath. The slightly yellow solution is then transferred to another dry flask containing dry 7.5 mL of DMF at room temperature. The mixture is stirred overnight. HCl (1 M) is added to the mixture to quench the reaction. The mixture is diluted with EtOAc (100 mL), washed with HCl (1 M) (2X100 mL) and brine (50 mL) and finally dried over anhydrous Na₂SO₄. Purification is accomplished by silica flash chromatography (5 % EtOAc/hexane) to yield 3-methoxy-2triisopropylsilanyloxy-benzaldehyde as a colorless oil which needs to be stored at low temperatures: ¹H NMR (400 MHz, CDCl₃) δ 10.4 (s, 1H), 7.42 (dd, $J_1 = 7.7$ Hz, $J_2 = 1.7$ Hz, 1H), 7.67 (d, $J_1 = 8$ Hz, $J_2 = 1.7$ Hz, 1H), 7.04 (t, J = 8.4 Hz, 1H), 3.96 (s, 3H), 1.26-1.35 (m, 3H), 1.13 (s. 9H), 1.12 (s. 9H), LC/MS (ES⁺); (M+1) 309.2, R_f = 0.4 (5 % EtOAc/hexane). N'-(4-fluoro-thiobenzoyl)-hydrazinecarboxylic acid tert-butyl ester (1.23 mmol) is dissolved in 5 mL of CH2Cl2 at room temperature in a dry round bottom flask. Removal of the ester group is accomplished adding TFA (2 mL) to the solution at room temperature. The reaction is complete after 30 minutes as determined by LC/MS. Solvent is removed in vacuo. The resultant oil is dried on the vacuum line for 30 minutes and dissolved in 1 mL of dry CH2Cl2. This solution is added to a mixture of 3-methoxy-2triisopropylsilanyloxy-benzaldehyde (1.23 mmol) and DIEA (4.9 mmol) in 1 mL of dry CH2Cl2. The mixture is allowed to stand at room temperature in the presence of molecular sieves for 5 minutes. 2.4.6-Trifluorobenzovl chloride (1.6 mmol) is added and the reaction mixture is kept at room temperature for 16 hours. HCl (1 M) (10 mL) is added to the mixture to quench the reaction. The mixture is diluted with EtOAc (50 mL), washed with HCl (1 M) (2X10 mL) and brine (50 mL) and dried over anhydrous Na2SO4. Purification is accomplished by silica flash chromatography (5 % EtOAc/hexane) to give [5-(4-fluorophenyl)-2-(2-methoxy-3-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6trifluoro-phenyl)-methanone as a colorless oil: ${}^{1}H$ NMR (400 MHz, CDCl₃) δ 7.54 (dd, J_{I} = 8.8 Hz, $J_2 = 5.3$ Hz, 2H), 7.51 (s, 1H), 7.04 (t, J = 8.6 Hz, 2H), 6.95 (t, J = 7.8 Hz, 1H), 6.87 $(t, J = 8.8 \text{ Hz}, 2H), 6.77 (t, J = 7.9 \text{ Hz}, 2H), 4.03 (s, 3H), 1.27-1.36 (m, 3H), 1.14 (dd, <math>J_I = J_2$ = 6.3 Hz, 18H); LC/MS (ES+): (M+1) 309.2. R_f = 0.4 (5 % EtOAc/hexanes). [0065] [5-(4-fluoro-phenyl)-2-(2-methoxy-3-triisopropylsilanyloxy-phenyl)-[1.3.4]thiadiazol-3-yl]-(2.4.6-trifluoro-phenyl)-methanone (0.02 mmol) is treated with

3-Bromomethyl-benzoic acid methyl ester (0.04 mmol) is then added. After 30 minutes, the reaction is complete as determined by LC/MS. The mixture is diluted with acetonitrile and purified by preparative LC/MS (20-100 % McCN/H₂O) to give 3-{3-{15-(4-fluoro-phenyl)-3-(2.4.6-trifluoro-benzoyl)-2.3-dihydro-[1.3.4|thiadiazol-2-yl]-2-methoxy-phenoxymethyl)-benzoic acid methyl ester as white solid after evaporation of solvent: ¹H NMR (400 MHz, CDCl₃) & 8.14 (s, 1H), 8.02 (d, J = 7.8 Hz, 1H), 7.67 (d, J = 7.7 Hz, 1H), 7.47-7.55 (m, 4H), 7.01-7.07 (m, 3H), 6.94 (t, J = 8.3 Hz, 2H), 6.77 (t, J = 8.5 Hz, 2H), 5.16 (s, 2H), 4.07 (s, 3H), 3.94 (s, 3H). LC/MS (ES'): (M+1) 610.9.

Example 5

4-{3-[5-(4-Fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]2-methoxy-phenoxymethyl}-benzoic acid

[0066] [5-(4-fluoro-phenyl)-2-(2-methoxy-3-triisopropylsilanyloxy-phenyl)[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone (0.02 mmol) is treated with
tetrabutylammonium fluoride (1.0 M in THF) (0.04 mmol) at room temperature for 30
minutes. The reaction is complete by LC/MS analysis. 4-Bromomethyl-benzoic acid methyl
ester (0.04 mmol) is added. After 30 minutes, the reaction is complete as determined by
LC/MS. After dilution with with MeOH (0.5 mL), LiOH (1 M) (0.5 mL) is added. After
stirring for 1 hour, the solvent is removed from the reaction mixture. A mixture of
MeOH/DMSO is added to the residue and resultant solution is filtered. The clear solution is

purified by preparative LC/MS (20-100 % MeCN/H₂O) to give 4-{3-[5-(4-fluoro-phenyl)-3-(2.4.6-trifluoro-benzoyl)-2.3-dihydro-[1.3.4]thiadiazol-2-yl]-2-methoxy-phenoxymethyl}-benzoic acid as white solid after removal of solvent: 1 H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8 Hz, 2H), 7.53-7.58 (m, 5H), 7.03-7.05 (m, 3H), 6.94-6.95 (m, 2H), 6.77 (t, J = 8.2 Hz, 2H), 5.2 (s, 2H), 4.08 (s, 3H); LC/MS (ES'): (M+1) 597.3.

Example 6

2-{2-[5-(4-Chloro-phenyl)-3-{2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxy}-N-methyl-acetamide

[0067] (2-Formyl-phenoxy)-acetic acid (0.5 mmol) is dissolved in 1 mL of CH_2Cl_2 . Oxalyl chloride (0.066 mL) is added along with one drop of DMF. After 1 hour, the solvent is removed from the mixture. The resultant residue is dissolved in 1 mL of CH_2Cl_2 and added to 1 mL of NH_2Me in THF (2 M) at ambient temperature. After 16 hours of stirring, the solvent is removed and the mixture is purified by preparative TLC (10 % MeOH/EtOAc) to yield the product 2-(2-formyl-phenoxy)-N-methyl-acetamide as an off white solid: LC/MS (ES1): 194.1 (M+1)*.

[0068] The 2-(2-formyl-phenoxy)-N-methyl-acetamide (0.0311 mmol) is added to 4-chloro-thiobenzoic acid hydrazide (0.0342 mmol) in 0.1 mL of CH₂Cl₂. After 10 minutes, DIEA (0.05 mL) and 2,4,6-trifluoro-benzoyl chloride (0.0467 mmol) are added. The mixture is kept at room temperature overnight. After removal of solvent, the residue is purified by preparative HPLC (20-100% MeCN/H₂O gradient) to give the product 2-(2-[5-(4-chloro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxy}-

Example 7

N-Cyclopropylmethyl-2-{3-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxy}-acetamide

[0069] [5-(4-fluoro-phenyl)-2-(2-methoxy-3-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone (3.31 mmol), prepared as described in example 4, is treated with tetrabutylammonium fluoride (1 M in THF) (4.97 mmol) at room temperature for 40 minutes. Methyl bromoacetate (4.97 mmol) is then added. After 12 hours, the reaction is complete as determined by LC/MS. Purification is accomplished by silica flash chromatography (25 % EtOAc/hexame) to give $\{3-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxyl-acetic acid methyl ester: <math>{}^{1}$ H NMR (400 MHz, CDCl₃) δ 7.52 (m, 3H), 7.04 (m, 3H), 6.95 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.6$ Hz, $J_3 = 1.6$ Hz, J_3

[0070] To a solution of {3-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxy}-acetic acid methyl ester (2.47 mmol) in 30 mL of a mixture of THF and MeOH (3:2), is added LiOH (1 M) (25 mL). After stirring for 12 hours the reaction is complete as determined by LC/MS. The reaction is diluted with ethyl acetate and water, washed with brine and dried over MgSO₄ and the solvent is removed from the reaction mixture to yield {3-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxy}-acetic acid: LC/MS (ES'): 521.1(M+1)*.

[0071] To a solution of {3-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxy}-acetic acid (0.029 mmol) in 1 mL of DMF is added DIEA (0.058 mmol), HATU (0.058 mmol) and cyclopropyl methylamine (0.058 mmol). The reaction mixture is stirred for 12 hours. The mixture is purified by preparative LC/MS (20-100 % MeCN/H₂O) to give N-cyclopropylmethyl-2-{3-[5-(4-fluoro-phenyl)-3-(2.4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxyl-acetamide: ¹H NMR (400 MHz, CDCl₃) 8 7.55-7.51 (m, 3H), 7.12 - 6.99 (m, 4H), 6.9 (d, *J* = 7.6 Hz, 2H), 6.77 (t, *J* = 8.4 Hz, 2H), 4.56 (s, 2H), 4.08 (s, 3H), 3.26–3.2 (m, 2H), 1.02–0.99 (m, 1H), 0.57–0.52 (m, 2H), 0.25 (m, 2H), LC/MS (ES*): 574.1 (M+1)*.

Example 8

2-{2-[5-(4-Fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yll-phenoxy}-N-(5-methyl-isoxazol-3-yl)-acetamide

[0072] [5-(4-Fluoro-phenyl)-2-(2-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone (3.4 mmol), prepared in a similar manner as described for [5-(4-fluoro-phenyl)-2-(3-methoxy-2-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone in example 3, is treated with tetrabutylammonium fluoride (1.0 M in THF) (5.1 mmol) at room temperature for 40 minutes. Methyl bromoacetate (5.1 mmol) is then added. After 12 hours, the reaction is complete as determined by LC/MS. Purification is accomplished by silica flash chromatography (25% EtOAc/hexane) to give {2-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxy}-acetic acid methyl ester: ¹H NMR (400 MHz, CDCl₃) 8 7.61

(s, 1H), 7.54 (m, 2H), 7.04 (m, 3H), 7.01 (d, *J* = 8.4 Hz, 1H) 6.95 (bs, 2H), 4.94 (s, 2H), 4.01 (s, 3H). MS: (ES⁺) 535.1 (M+1); LC/MS (ES⁺): 535.1 (M+1)⁺.

[0073] To a solution of $\{2-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxy}-acetic acid methyl ester (2.93 mmol) in 30 mL of a mixture of THF and MeOH (3:2), is added LiOH (1 M) (30 mL). After stirring for 12 hours the reaction is complete as determined by LC/Ms. The reaction is diluted with ethyl acetate and water, washed with brine and dried over MgSO₄ and the solvent is removed from the reaction mixture to yield <math>\{2-[5-(4-Fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxy\}-acetic acid: ¹H NMR (400 MHz, acetone-d₆) 8 7.66 (m, 3H), 7.39 (m, 1H), 7.3 (dd, <math>J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, $J_1 = 1.6$ Hz, $J_2 = 1.6$ Hz, $J_1 = 1.6$ Hz, $J_1 = 1.6$ Hz, $J_2 = 1.6$ Hz, $J_2 = 1.6$ Hz, $J_1 = 1.6$ Hz, $J_1 = 1.6$ Hz, $J_2 = 1.6$ Hz, $J_1 = 1.6$ Hz, $J_2 = 1.6$ Hz, $J_1 = 1.6$ Hz, $J_1 = 1.6$ Hz, $J_2 = 1.6$ Hz, $J_1 = 1.6$ Hz, $J_1 = 1.6$ Hz, $J_1 = 1.6$ Hz, $J_1 = 1.6$ Hz, $J_2 = 1.6$ Hz, $J_1 = 1.6$ Hz,

[0074] To a solution of {2-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxy}-acetic acid (0.031 mmol) in DMF (1 mL) is added DIEA (0.058 mmol), HATU (0.058 mmol) and 5-methyl-isoxazol-3-ylamine (0.058 mmol). The reaction mixture is stirred for 12 hours. The mixture is purified by preparative LC/MS (20-100% MeCN/H₂O) to give 2-{2-[5-(4-fluoro-phenyl)-3-(2,4.6-trifluoro-benzoyl)-2,3-dihydro-[1.3.4]thiadiazol-2-yl]-phenoxy}-N-(5-methyl-isoxazol-3-yl)-acetamide: 'H NMR (400 MHz, CDCl₃) δ 7.55-7.51 (m, 3H), 7.35-7.26 (m, 2H), 7.05-6.96 (m, 3H), 6.85 (d, J= 8 Hz, 1H), 6.69 (t, J= 7.6 Hz, 2H), 6.56 (s, 1H), 4.72 (s, 2H), 2.33 (s, 3H); LC/MS (ES'): 571.1 (M+1)⁵.

Example 9

3-{2-[5-(4-Fluoro-phenyl)-3-(2.4.6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yll-phenoxymethyl}-benzamide

[0075] [5-(4-Fluoro-phenyl)-2-(2-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone (41 µmol), prepared in a similar manner as described for [5-(4-fluoro-phenyl)-2-(3-methoxy-2-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone in example 3, is treated with tetrabutylammonium fluoride (1.0 M in THF) (48 µmol) at room temperature for 40 minutes. The solvent is removed in vacuo and dried over MgSO₄ to yield [5-(4-fluoro-phenyl)-2-(2-hydroxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone to be used without further purification.

[0076] To [5-(4-fluoro-phenyl)-2-(2-hydroxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone (41 μ mol) dissolved in acetonitrile (1 mL) is added K₂CO₃ (61.5 μ mol) and 3-bromomethyl-benzamide (94.2 μ mol) and the mixture is heated at 90 °C. After 12 hours, the reaction is complete as determined by LC/MS. Purification is accomplished by preparative LC/MS (20-100 % MecN/H₂O) to give $\frac{3-(2-[5-(4-fluoro-phenyl)-3-(2-4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxymethyl]-benzamide: <math>^1$ H NMR (400 MHz, CDCl₃) 3 8.09 (s, 1H), 7.9 (d, J = 7.6Hz, 1H), 7.7 (s, 1H), 7.6-7.5 (m, 4H) 7.35 (d, J = 7.6Hz, 1H), 7.06 (t, J = 8.4Hz, 1H), 6.26 (bs. 1H), 5.31 (d, J = 7.6Hz): LC/MS (ES⁵): 566.1 (M+1)*.

Example 10

2-{2-[5(4-Fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]phenoxymethyl}-furan-3-carboxylic acid

[0077] [5-(4-Fluoro-phenyl)-2-(2-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone (0.67 mmol), prepared as described for [5-(4-fluoro-phenyl)-2-(3-methoxy-2-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone in example 3, is treated with tetrabutylammonium fluoride (1.0 M in THF) (1.3 mmol) at room temperature. After 15 minutes, methyl 2-(bromomethyl)-3-furoate (0.74 mmol) is added and the mixture is stirred for an additional 12 hours. The solvent is removed *in vacuo* and the residue is purified on silica to yield 2-{2-[5(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxymethyl}-furan-3-carboxylic acid methyl ester as a yellow solid: LC/MS (ES*): 571.1 (M+1)*.

[0078] To a solution of 2-{2-[5(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxymethyl}-furan-3-carboxylic acid methyl ester (0.49 mmol) in THF/MeOH/H₂O (3:2:1), is added LiOH (3 N) (4.9 mmol). After stirring for 12 hours, the reaction is acidified with HCl (1 N) and extracted with ethyl acetate. The organic layer is dried over MgSO₄, filtered, and concentrated. The residue is purified using preparative LC/MS to give 2-{2-[5(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxymethyl}-furan-3-carboxylic acid as a white solid: ¹H NMR (400 MHz, CDCl₃) & 7.26-7.23 (m, 3H), 7.20 (d, *J*=1.9, 1H), 7.10-7.05 (m, 1H), 7.03-6.99 (m, 1H), 6.86 (d, *J*=8.1, 1H), 6.78-6.74 (m, 3H), 6.55 (d, *J*=1.9, 1H), 6.55-6.50 (m, 2H), 5.38-5.21 (m, 2H); LC/MS (ES*): 557.1 (M+1)*.

Example 11

[2-(2-Difluoromethoxy-phenyl)-5-(6-methyl-pyridin-3-yl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-

trifluoro-phenyl)-methanone

[0079] N'-(6-Methyl-pyridine-3-carbothioyl)-hydrazinecarboxylic acid tert-butyl ester (0.1 mmol) prepared as described in example 3 for N'-(4-fluoro-benzoyl)-hydrazinecarboxylic acid tert-butyl ester, is treated with TFA (1 mmol) in dry CH₂Cl₂ (1 mL) at room temperature for 30 minutes. Solvent is removed and the residue is dissolved in dry CH₂Cl₂ (1 mL). DIEA (0.287 mmol) is added to the solution and the mixture is treated with 2-difluoromethoxy-benzaldehyde (0.12 mmol) in the presence of 4 Å molecular sieves. 2,4,6-Trifluorobenzoyl chloride (0.15 mmol) is added after 5 minutes. The mixture is kept at ambient temperature for 16 hours and purified by preparative HPLC (20-100 % MeCN/H₂O) to yield [2-(2-difluoromethoxy-phenyl)-5-(6-methyl-pyridin-3-yl)-[1,3,4]thiadiazol-3-yl]-(2,4.6-trifluoro-phenyl)-methanone: ¹H NMR (400 MHz, CDCl₃) 8.71 (d, J = 2.1 Hz, 1H), 7.81 (dd, J₁ = 8.2 Hz, J₂ = 2.2 Hz, 1H), 7.53 (s, 1H), 7.36-7.4 (m, 2H), 7.26 (d, J = 8.1 Hz, 2H), 6.78 (d, J = 8.3 Hz, 1H), 6.78 (t, J = 8.3 Hz, 2H), 6.67 (dd, J₁ = 75.0 Hz, J₂ = 71.7 Hz, 1H), 2.64 (s, 3H); LC/NS (ES³): (M+1) 480.1.

Example 12

[2-(2-Difluoromethoxy-phenyl)-5-(6-methyl-pyridin-3-yl)-[1,3,4]thiadiazol-3-yl]-(2hydroxy-phenyl)-methanone

[0080] (2-(2-(Difluoromethoxy)phenyl)-5-(6-methylpyridin-3-yl)-1,3,4-thiadiazol-3(2H)-yl)(2-acetoxyphenyl)methanone (0.02 mmol) prepared in a similar manner as described in experiment 11 for [2-(2-difluoromethoxy-phenyl)-5-(6-methyl-pyridin-3-yl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone, is dissolved in THF/MeOH (1 mL/0.5 mL) and treated with aqueous LiOH (1 M) (0.5 mL) at room temperature for 30 minutes. Aqueous HCl (3 M) is added to adjust the pH to 5-6. Solvent is removed and the residue is purified by preparative HPLC (20-100 % MeCN/H₂O) to yield [2-(2-difluoromethoxy-phenyl)-5-(6-methyl-pyridin-3-yl)-[1,3,4]thiadiazol-3-yl]-(2-hydroxy-phenyl)-methanone: 1 H NMR (400 MHz, CDCl₃) 9.02 (d, J = 2.0 Hz, 1H₃, 8.1 (d, J = 8.6 Hz, 1H₃, 8.23 (dd, J₁ = 8.2 Hz, J₂ = 2.2 Hz, 1H₃, 7.77 (d, J = 7.5 Hz, 1H₃, 7.65 (s, 1H₃), 7.62 (dd, J₁ = 7.8 Hz, J₂ = 1.3 Hz, 1H₃, 7.45-7.53 (m, 5H₃, 6.97-7.01 (m, 2H₃), 2.79 (s, 3H₃); LC/MS (ES⁺): (M+1) 442.1.

Example 13

[2-(2-Difluoromethoxy-phenyl)-5-(6-fluoro-pyridin-3-yl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone

[0081] N'-(6-Fluoro-pyridine-3-carbothioyl)-hydrazinecarboxylic acid tert-butyl ester (0.044 mmol) prepared as described in example 3 for N'-(4-fluoro-benzoyl)-hydrazinecarboxylic acid tert-butyl ester, is treated with TFA (0.44 mmol) and thioanisole (0.44 mmol) in dry CH_2Cl_2 (1 mL) at room temperature for 30 minutes. The solvent is removed and the residue is dissolved in dry CH_2Cl_2 (1 mL). DIEA (0.22 mmol) is added to the solution and the mixture is treated with 2-difluoromethoxy-benzaldehyde (0.067 mmol) in the presence of 4 Å molecular sieves. 2,4,6-Trifluorobenzoyl chloride (0.089 mmol) is added after 5 minutes. The mixture is kept at room temperature for 16 hours and purified by preparative silica gel TLC (30% EtOAc/hexane) to yield [2-(2-difluoromethoxy-phenyl)-5-(6-fluoro-pyridin-3-yl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanones: ¹H NMR (400 MHz, CDCl₃) 8.39 (s, 1H), 7.93-7.97 (m, 1H), 7.54 (s, 1H), 7.37-7.41 (m, 2H), 7.24-7.27 (m, 1H), 7.19 (d, J = 8.1 Hz, 1H), 6.97 (dd, J₁ = 8.6 Hz, J₂ = 2.7 Hz, 1H), 6.78 (t, J = 8.3 Hz, 2H), 6.67 (dd, J₁ = 7.50 Hz, J₂ = 71.7 Hz, 1H); LC/MS (ES'): (M+1) 484.1.

Example 14
3-{4-[5-(3,4-Difluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl}-benzooxazol-2-yl}-benzoic acid

[0082] 2-Amino-3-methyl-phenol (6.09 mmol) is heated with 3-formyl-benzoic acid methyl ester (6.09 mmol) in MeOH (6 mL) at 60 °C for 30 minutes. The solvent is removed from the mixture to obtain a dark red oil which is dissolved in dry CH₂Cl₂ (6 mL) at room temperature and treated with DDQ (6.4 mmol) for 16 hours. The mixture is diluted with

EtOAc and poured onto saturated aqueous NaHCO₃. The aqueous phase is further extracted with EtOAc and the combined organic phases are dried over Na₂SO₄. Filtration and removal of the solvent yields a residue which is purified by silica gel chromatography (5-10 % EtOAc/hexane) to yield 3-(4-methyl-benzooxazol-2-yl)-benzoic acid methyl ester as a white solid: ¹H NMR (400 MHz, CDCl₃) 8.92 (d, J = 1.6 Hz, 1H), 8.47 (dt, J₁ = 7.8 Hz, J₂ = 1.5 Hz, 1H), 8.2 (dt, J₁ = 7.8 Hz, J₂ = 1.4 Hz, 1H), 7.61 (t, J = 7.9 Hz, 1H), 7.43 (d, J = 8.1 Hz, 1H), 7.77 (t, J = 7.7 Hz, 1H), 7.17 (t, J = 7.5 Hz, 1H), 3.99 (s, 3H), 2.69 (s, 3H); LC/MS (ES); (M+1) 268.1.

[0083] A solution of 3-(4-methyl-benzooxazol-2-yl)-benzoic acid methyl ester (1.2 mmol), N-bromo succinimide (1.5 mmol) and AIBN (0.3 mmol) in CCl₄ are heated in microwave at 100 °C for 30 minutes (1 mL). The mixture is filtered and concentrated to yield the crude 3-(4-bromomethyl-benzooxazol-2-yl)-benzoic acid methyl ester. LC/MS (ES*): (M*) 346.1, 348.1, (M-Br) 266.1, 268.1.

[0084] The crude 3-(4-bromomethyl-benzooxazol-2-yl)-benzoic acid methyl ester is treated with HMTA (1.8 mmol) in acetic acid/H₂O (3 mL/1.5 mL) in a microwave oven at 130 °C for 20 minutes. The solvent is removed and the mixture is purified by silica gel chromatography (10-20 % EtOAc/hexane) to yield 3-(4-formyl-benzooxazol-2-yl)-benzoic acid methyl ester as a white solid. Yield: 32 %. ¹H NMR (400 MHz, CDCl₃) 10.8 (s, 1H), 8.97 (s, 1H), 8.53 (d, J = 7.8 Hz, 1H), 8.26 (d, J = 7.8 Hz, 1H), 7.94 (dd, $J_1 = 7.7$ Hz, $J_2 = 1$ Hz, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.66 (t, J = 7.8 Hz, 1H), 7.51 (t, J = 7.9 Hz, 1H), 4.0 (s, 3H), LC/MS (ES⁵): (M+1) 282.1, (M+Na) 304.1.

[0085] N'-(3,4-Difluoro-thiobenzoyl)-hydrazinecarboxylic acid tert-butyl ester (0.1 mmol) prepared as described in example 3 for N'-(4-fluoro-benzoyl)-hydrazinecarboxylic acid tert-butyl ester, is treated with TFA (1 mmol) in dry CH₂Cl₂(1 mL) at room temperature for 30 minutes. Solvent is removed and the residue is dissolved in dry CH₂Cl₂(1 mL). DIEA (0.57 mmol) is added to the solution and the mixture is treated with 3-(4-formyl-benzooxazol-2-yl)-benzoic acid methyl ester (0.064 mmol) in the presence of 4 Å molecular sieves. 2,4,6-trifluorobenzoyl chloride (0.15 mmol) is added after 5 minutes. The mixture is kept at room temperature for 16 hours and purified by preparative HPLC (20-100 % MeCN/H₂O) to yield 3-{4-[5-(3,4-difluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-benzoo xazol-2-yl]-benzoic acid methyl ester. LC/MS (ES*): (M+1) 610.0, (M+Na) 632.0.

[0086] 3-{4-[5-(3,4-Difluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-benzooxazol-2-yl}-benzoic acid methyl ester (0.02 mmol) is dissolved in THF/MeOH (1 mL/0.5 mL) and treated with aqueous LiOH (1 M) (0.5 mL) at room temperature for 30 minutes. Aqueous HCl (3 M) is added to adjust the pH to 5-6. The solvent is removed and the residue is purified by preparative HPLC (20-100% MeCN/H₂O) to yield 3-(4-[5-(3,4-difluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-benzooxazol-2-yl]-benzoic acid: ¹H NMR (400 MHz, CDCl₃) 8.95 (s, 1H), 8.48 (d, J = 7.9 Hz, 1H), 8.27 (d, J = 7.8 Hz, 1H), 7.92 (s, 1H), 7.66 (t, J = 7.8 Hz, 1H), 7.6 (dd, J₁ = 7.7 Hz, J₂ = 1.2 Hz, 1H), 7.46 (m, 1H), 7.29-7.42 (m, 3H), 7.19 (q, J = 8.2 Hz, 1H), 6.76-6.81 (m, 2H), LCMS (ES'): (M+N) 56.0, (M+N)a) 618.0.

Example 15

5-{3-[5-(4-Fluoro-phenyl)-3-{2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yll-2-methoxy-phenoxy}-furan-2-carboxylic acid

[0087] [5-(4-Fluoro-phenyl)-2-(2-methoxy-3-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone (0.03 mmol) prepared as described in example 4, and methyl 5-bromo-2-furate (12 mg, 0.06 mmol) are treated with TBAF (1.0 M in THF) (0.05 mmol) at room temperature under nitrogen. Pd₂(dba)₃ (0.003 mmol) and biphenyl-2-yl-di-tert-butyl-phosphane (0.009 mmol) are added along with trifluoromethyl-benzene (0.1 mL) and the mixture is heated in the microwave oven at 150 °C for 30 minutes. After filtration, the solvent is removed and the resultant residue is purified by preparative HPLC (20-100 % MeCN/H₂O) to give 5-(3-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxy)-furan-2-carboxylic acid methyl

ester: ¹H NMR (400 MHz, ppm, CDCl₃) 7.51-7.56 (m, 3H), 7.49 (s, 1H), 7.16 -7.18 (m, 1H), 7.04-7.11 (m, 5H), 6.75-6.81 (m, 2H), 4.08 (s, 3H), 3.88 (s, 3H); LC/MS (ES⁺): (M-OMe) 555.1, (M+1) 587.1, (M+Na) 609.1.

[0088] The ester is dissolved in THF/MeOH (1 mL/0.5 mL) and treated with aqueous LiOH (1 M) (0.5 mL) at room temperature for 30 minutes. Aqueous HCl (3 M) is added to adjust the pH to 5-6. The solvent is removed and the residue is purified by preparative HPLC (20-100 % MeCN/H₂O) to yield 5-(3-[5-(4-fluoro-phenyl)-3-(2.4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxy]-furan-2-carboxylic acid. ¹H NMR (400 MHz, ppm, CDCl₃) 7.52-7.56 (m, 3H), 7.49 (s, 1H), 7.19 (dd, J₁ = 7.5 Hz, J₂ = 2.1 Hz, 1H), 7.04-7.15 (m, 5H), 6.78 (t, J = 7.9 Hz, 2H), 4.08 (s, 3H). LC/MS (ES*): (M-OH) 555.1, (M+Na) 595.1.

[0089] By repeating the procedures described in the above examples, using appropriate starting materials, the following compounds of Formula I, as identified in Table 1, are obtained.

Table 1

Example	Structure	LCMS (M+1)+	NMR	Synthesis
,	, 54.6 543,	462.8	³ H NMR (400 MHz, CDCs) 6 7.39-7.35 (m. 110, 7.34-7.29 (m. 410, 7.25 (ed. J., = 7.8 Hz, J.= 1.2 Hz, 110, 7.19-7.13 (m. 34), 7.07-7.03 (m. 11), 6.92-6.95 (m. 21), 6.50 (ed. J., = 71.6 Hz, J ₂ = 71.2 Hz, 110,	Described
2	-0% \$	506.2	H NMR (400 MHz, CDCl ₃) 6 7.43 (s. 110, 7.27 (d. J = 8.6, 220, 7.15 (m. 220, 7.14 (d. J = 8.4 tr., 220, 6.20 (s. 110, 6.54 (t. J = 6 4 kz, 311), 6.65 (d. J = 0.4 tr., 110, 5.33 (t. J = 6.6 kz, 221), 5.29 (ss., 110, 4.47 (d. J = 1.6 kz, 221), 5.29	Described
,	TAS.	520,3	⁵ H NMR (400 MHz, CDC ₃) 6 7.63-7.62 (m, 29), 7.57 (s. 14), 7.22-7.12 (m, 34), 7.02 (ed, 24), J = 0.4 Hz, J = 2 Hz, 5.9 (bs., 14), 6.85 (t. 24, J = 6.44z), 6.16 (s. 14), 4.63 (t. 14, J = 15.24z), 4.68 (d. 14, J = 15.24z), 3.04 (s. 34).	Described
	435.5	616.9	"H NMR (400 MHz, CDCb) 6 6.14 (s, 119, 8.02 (d, J = 7.8 Nz, 119, 7.87 (d, J = 7.7 Hz, 111), 7.47-7.55 (m, 419, 7.91-7.97 (m, 319, 6.94 (t, J = 6.3 Hz, 224), 6.77 (t, J = 8.5 Hz, 239, 5.16 (s, 239, 4.07 (s, 319, 3.24 (s, 319).	Described
,	Fra	597.3	¹ H NMR (400 MHz, CDCl ₃) 8 8.14 (d, <i>J</i> = 6 Hz, 219, 7.53-7.56 (m, 519, 7.03-7.05 (m, 29, 6.77 (l, <i>J</i> = 0.2 Hz, 219, 5.2 (s, 219, 4.06 (s, 319)	Described
٠		520.2		Described
7	Agam	574.2	H NMR (400 MHz, CDCI ₃) 8 7.54-7.51 (m. 349, 7.12 - 6.99 (m. 449, 6.8 (d. J = 7.9 Hz, 249, 6.77 (t.) = 0.4 Hz, 29, 4.56 (s. 249, 4.98 (s. 349, 3.26-3.2 (m. 249, 1.02-0.89 (m. 149, 0.57-0.52 (m. 249, 0.25 (m. 24),	Described
•	र्यकुष्ट	571.1	¹ H NMR (400 MHz, CDCL) 6 7.55–7.51 (m. 3H), 7.35–7.26 (m. 2H), 7.05–8.36 (m. 3H), 0.05 (d. J. = 8 Hz, 1H), 6.69 (t. J. = 7.6 Hz, 2H), 6.56 (s. 1H), 4.72 (s. 2H), 2.33 (s. 3H).	Described
	40	506.1	H NBMR (400 MRtz, CDCL) 5 0.60 (s. 114), 7.9 (d. J = 7.6Hz, 114), 7.7 (s. 114), 7.6- 7.5 (m. 41) 7.35 (d. J = 7.0Hz, 114), 7.06 (t. J = 9.4Hz, 114), 6.99 (t. J = 7.6Hz, 214), 6.88 (d. J = 8Hz), 6.79 (t. J = 0.4Hz, 214), 6.26 (bs. 114), 5.33 (d. J = 7.6Hz).	Described
10	A.	556.5	"H NMR (460 MHz, CDCI) 8 7.24-7.22 (m, 34), 7.20 (d, J=1.9, 110, 7.10-7.05 (m, 11), 7.20 (d, J=1.9, 110, 7.10-7.05 (m, 11), 7.30-4.29 (m, 11), 6.86 (d, J=8.1, 11), 6.76-6.74 (m, 31), 6.55 (d, J=1.8, 11), 6.55-6.50 (m, 21), 5.36-3.21 (m, 21).	Described .
"	3,56	480,0	"H NMR (400 MHz, CDCh) 0 8.71 (d, J = 2.1 Hz, 1H3), 7.81 (dd, J = 8.2 Hz, J = 2.2 Hz, 1H3), 7.30 (s, 1H9, 7.36-7.4 (m, 2H3), 7.26 (d, J = 0.3 Hz, 2H3), 7.36 (d, J = 0.3 Hz, 2H3, 6.87 (dd, J = 73.0 Hz, J = 71.7 Hz, 1H3, 24.6 (e, 3H3, 2H3), 6.87 (e, 4H3, 2H3), 6.87 (e, 4H3, 2H3), 6.87 (e, 4H3), 6.87 (e, 4H3	Described
12	280	442.1	H NAR (400 MHz, CDCh) 5 9.02 (d, $J =$ 2.0 Hz, 1H), 8.41 (d, $J =$ 8.5 Hz, 1H), 0.21 (d, $J =$ 8.5 Hz, 1H), 7.77 (d, $J =$ 7.5 Hz, 1H), 7.65 (s, 1H), 7.57 (d, $J =$ 7.5 Hz, $J =$ 1.3 Hz, 1H), 7.45 7.35 (m, 5H), 6.67-7.01 (m, 2H), 2.79 (e, 2H)	Described
13	345	484.4	H NAM (466 MHz, CDCL) 6 6 39 (s, 114), 7.63-7.97 (m, 114), 7.54 (s, 114), 7.37-7.41 (m, 214), 7.26-7.27 (m, 115), 7.19 (d, $J = 8.1$ Hz, 114), 6.97 (dd, $J_1 = 8.0$ Hz, $J_2 = 9.0$ (dd, $J_3 = 9.0$ Hz, $J_$	Described

14	\$5.00 m	595.2	"H NMR (400 Metz, CDCL), 8 8,95 (s. 11-9), 8,48 (d. J. – 7,9 Hz, 11-9), 8,27 (d. J. – 7,8 Hz, 11-9), 7,92 (s. 11-9), 7,68 (s. J. – 7,8 Hz, 11-9), 7,8 (dd. J. – 7,7 Hz, J. – 1,2 Hz, 11-9), 7,46 (m. 11-9), 7,29-7,42 (m. 31-0), 7,19 (d. J. – 8,2 Hz, 11-9), 6,76-6,61 (m. 20-0).	Described
15	95.70 .400	573.1	"H HARR (400 MP4z, CDC13) & 7.52-7.56 (m. 34), 7.49 (s. 11), 7.19 (dd. J. = 7.5 Hz, J. = 2.1 Hz, 11), 7.04-7.15 (m. 51), 8.78 (l. J. = 7.9 Hz, 21), 4.08 (s. 31).	Described
18	350	\$57.1		Synthesized as described in example 15
17	a de la companya de l	543.1		Synthesized as described in example 15
18	330	500.0		Synthesized as described in example 1
19	, pra	529.1		Synthesized as described in example 1
20	**************************************	513.0		Synthesized as described in example 1
21	, \$, \$	508.0	"H NAR (400 MHz, CDCI) δ 9.21 (s, 110, 8.62 (s, 110, 8.44 (s, 110, 7.68 (dd, J_1 = 8.6 Hz, J_2 = 5.2 Hz, 270, 7.54 (s, 110, 7.34 7.30 (m, 290, 7.18 7.26 (m, 290, 7.13 (t, J_2 = 8.5 Hz, J_3 = 78 Hz, J_3 = 71 Hz, 110,	Synthesized as described in exemple 4
22	, gc ² ,	\$35.3	'Ht NMR (400 MHz, CDCi.) 5 7.5-7.55 (m. 199, 7.04 (q. J = 5.8 Hz, 449, 5.95 (std. 7) = 7.9 Hz, J ₂ = 1.2 Hz, 119, 5.81 (ctd. J ₁ = 5.1 Hz, J ₂ = 1.3 Hz, 119, 5.77 (t. J = 8.3 Hz, 119, 4.7 (s. 219, 4.1 (s. 319, 3.52 (s. 319, 3.52 (s. 319))	Synthesized as described in example 3
zı	\$5.5¢	509.2		Synthesized as described in example 1
24	45	502 2		Synthesized as described in example 1
25	539-a	507.3	"H NMR (400 MHz, CDCL) 6 8.21 (s, 11-), 8.09 (d, J = 7.81+z, 11-), 7.73 (d, J = 7.8 Hz, 11-), 7.51-7.55 (m, 41-), 7.05 (m, 31-), 8.05 (t, J = 6.01+z, 20-), 8.77 (t, J = 8.3 Hz, 29-), 5.16 (s, 29-), 4.08 (s, 31-),	Synthesized as described in example 5
26	\$ 7 3 35	479,0		Synthesized as described in example 1

27	+2 ² 50.	479.3		Synthesized as described in example 1
28	7320	520.3	"H NAIR (400 MHz, CDCs), 8 7.54 (m., 210, 7.5 (s. 110, 7.0-7.13 (m. 48), 6.52 (s. J = 6.2 Hz, 110, 6.52 (s. 110, 6.77 (t. J = 8.3 Hz, 110, 5.78 (s. 110, 4.58 (s., 210, 4.00 (s. 310,	Synthesized as described in example 4
29	\$ 0 800	626.3		Synthesized as described in example 1
30	\$ son	811.2		Synthesized as described in example 5
31	94 of 50%	598 2		Synthesized as described in example 3
32) & C	447.0	"H NASR (400 MHz, CDCh) 5 7.78 (d, $J = 7.7$ Hz, 110, 7.73 (d, $J = 9.8$ Hz, 110, 7.86 (dd, $J_1 = 9.8$ Hz, 110, 7.86 (dd, $J_2 = 8.7$ Hz, $J_2 = 5.3$ Hz, 210, 7.56 (d, 110, 7.44 (q, $J = 8.0$ Hz, 110, 7.35-7.37 (m, 210, 7.17-7.20 (m, 330, 7.12 (q, $J = 8.5$ Hz, 270, 8.7 (8d, $J_1 = 7.8$ Hz, $J_2 = 7.1$ Hz, 110,	Synthesized as described in example 1
33	3,0	479.3		Synthesized as described in example 1
м	\$\$\$	461 2		Synthesized as described in example 1
35	ر و ميم	518.2	"H NAST (400 MHz, CDCL) 8 7.39 (n. 1H), 7.35 (t) J = 8.0 Hz, 229, 7.21 (d, J = 8.0 Hz, 270, 7 02 (t), 1H), 8.62 (t) J = 8.0 Hz, 210, 8.62 (t) J = 8.0 Hz, 210, 8.62 (t) J = 8.0 Hz, = 6.8 Hz, 219, 3.78 (n. 319,	Synthesized as described in example 1
35	226	483.0	"H NARR (400 MHz, CDCL), 5 7.54 (dd, J,	Synthesized as described in example 1
37	3550	558.2		Synthesized as described in example 4
38	ig de la companya de	451.0		Synthesized as described in example 1
39	₽°a.	495,0		Synthesized as described in exemple 1

40	i de la companya de l	480.0		Synthesized as described in example 1
41	-07E	443.0	"H N84R (400 MHz, CDCl ₃) 7,4-7,44 (m, 296, 7,23-7,32 (m, 34), 7,12-7,16 (m, 596, 7,05 (t, J = 7,9 Hz, 116, 6,93 (t, J = 8,5 Hz, 24), 6,6 (dd, J ₂ = 71 Hz, J ₂ = 76 Hz, 110, 2 24 (s, 39),	Synthesized as described in example 1
42	7 d 3075	561.3		Synthesized as described in example 3
43	æ.	562 1		Synthesized as described in example 3
4	25°	589.9		Synthesized as described in exemple 3
45	35	499.2		Synthesized as described in example 1
48	&-a	479.2		Synthesized as described in example 1
47		514.9		Synthesized as described in example 1
48	****	518,0	"H FMR (400 MHz, CDCI3) 5 7 40-7 35 (m, 31-), 7.22 (d, 21-), J = 0.6 1-2), 7.05 (, 11-), J = 61-13, 6.85-6.80 (m, 20-), 6.83 (m, 21-), 4.87 (d, 21-), J = 7.2 1-13), 3.79 (s, 38-9).	Synthesized as described in example 1
49	ga.	493.0		Described as described in extemple 10
50		517.0		Synthesized as described in exemple 1
51	٠ کې	463.0		Synthesized as described in example 1
52	450	639,3		Synthesized as described in example 4

53	, \$ }	451.1		Synthesized as described in example 1
54	6.45 \$	475.6		Gynthesized as described in example 1
55	9254 1 S	532.3		Synthesized as described in example 1
56	\$a	492 6		Synthesized as described in example 1
57	, ² 22	479.0		Synthesized as described in example 1
58	643	459 0		Synthesized as described in example 1
59	**************************************	509.3	H NMR (400M-tz, CDCI ₃) 5 7.85-7.65 (m, 29, 7.71 α , 14, J = 7.6 He), 7.67- 7.62 (m, 29), 7.55 (c. 119, 7.11 α , 294, J = 1.18 Hz), 7.030, 14, J = 6 Hz), 6.90 (cd. 114, J = 8 Hz, J ₂ = 1.6 Hz), 6.92 (cd. 114, J ₁ = 7.6 Hz, J ₂ = 1.2 Hz), 4.03 (c. 341), 3.86 (s. 34).	Synthesized as described in example 1
60	gra.	443.0	"H NAMR (400 NMtz, CDCs) 5 7 79 (d, J = 6.2 Hz, 11-6, 7.76 (s, 11-6, 7.66 (ad, J) = 6.7 Hz, J = 5.3 Hz, 21-6, 7.56 (a, 11-6, 7.32-7.37 (m, 41-6, 7.19 (a, J = 7.6 Hz, 21-6, 7.1 (ad, J) = 7.1 Hz, J = 7.8 Hz, 21-6, 6.71 (ad, J) = 7.1 Hz, J = 7.8 Hz, 21-6, 6.71 (ad, J) = 7.1 Hz, J = 7.8 Hz, 11-6, 24.2 (a, 31-6).	Synthesized as described in example 1
61	6 220	490.2	"H NAR? (400 MHz, CDCL) 5 7.58 (s. 114), 7.49 (m. 214), 7.33 (85, $J_{\tau} = 7.6$ Hz, $J_{\tau} =$ 1.2 Hz, 114, 7.25 (d. $J_{\tau} = 6.4$ Hz, $J_{\tau} =$ 1.2 Hz, 116, 7.13 (bs. 114), 5.99 (m. 314), 8.61 (d. $J = 6$ Hz, 114), 6.63 (j. $J = 6.4$ Hz, 214), 5.76 (bs. 114), 4.61 (d. $J = 1.8$ Hz, 224),	Synthesized as described in example 2
62	iro por	459.0	¹ H NMR (400MHz, CDCl ₃) 8 7.91 (d. 294 J = 8 Fe), 7.61-7.57 (m. 249, 7.39-7.30 (m. 44), 7.29-7.20 (m. 29), 7.21-7.16 (m. 29), 6.7(od.1H, J ₁ = 76 Hz, J ₂ = 71.2 kg).	Synthesized as described in example 1
63	gra.	472.9		Synthesized as described in example 1
64	, ott.	544.8		Synthesized as described in example 1
65	Frai	611.3	· ·	Synthesized as described an example 5

66	م کورځ	625.1		Synthesized as described in example 4
87	~33°a.	517.3		Synthesized in a similar way as described in example 4
68	354		"H NAKR (400 MHz. COCK) 5 7.53 (64, J _J = 8,7 Hz, J _J = 5.3 Hz, 210, 7.5 (s. 110, 7.03-7.08 (m, 310, 8.94 (d, J = 8.4 Hz, 210, 8.77 (t, J = 8.5 Hz, 210, 4.15 (t, J = 4,5 Hz, 210, 4.05 (s, 310, 3.98-4.02 (m, 210).	Synthesized in a similar way as described in example 4
69	9 9 9	****	'H NAM (400Metz, CDCIs) 5 8.05 (d, 114, J = 814), 7.95 (d, 114, J = 8142, 7.65 (s, 119, 7.52-7 42 (m, 419, 7.13 (t, 114, J = 8 140, 7.03-6.94 (m, 419, 8.77 (bs, 249, 5.7 (s, 249, 3.90 (s, 319).	Synthesized as described in example 1
70	٠٠٠ ١٥٦ <u>٠</u> ١٥٦ <u>٠</u>	558.3		Synthesized as described in axample 3
71	-350 D	504.1	"H NAIR (400MHz, CDCH) 8 7.63 (s, 114), 7.6-7.55 (m, 219, 7.41-7.39 (m, 114), 7.35-7.31 (m, 114), 7.25-7.21 (m, 114), 7.11-7.04 (m, 304), 0.87 (d, J = 8.4 Hz, 119, 8.78 (t, J = 8.4 Hz, 114), 4.89 (d, J 7.2 Hz, 224), 2.81 (d, J = 4.8Hz, 349).	Synthesized as described in example 3
72	-619	518.3		Synthesized as described in exemple 8
73	\$5.50 A	574.4		Symbolized as described in example 8
74	1800	590.4		Synthesized as described in example 8
75	£25.	S89.3		Synthesized as described in example 8
78	St. a	584.4		Synthesized as described in example 8
77	केंद्र _स	587.3		Synthesized as described in example 8
78	33500	559.1		Synthesized as described in example 5

79	gro-o	571.3		Synthesized as described in example 5
80	منهدمه	587.2		Synthesized as described in example 4
81	76.78 a	598.1		Synthesized as described in example 5
82	o dispose	627.1		Synthesized as described in example 5
83	\$ 25.00 \$ 25.00 \$ 25.00	627.1		Synthesized as described in example 5
54	3500	568.2		Synthesized as described in example 7
65	27.5820	591.2	"H NARR (400 MHz, CDCly 5 7,35 (m, 41), 8 89-6 59 (m, 64), 4 38 (s, 21), 3 8 (s, 33), 3,44 (m, 11), 3,32 (m, 11), 2,29 (s, 11)	Synthesized as described in example 7
56	,0°84.	4720		Described as described in example 10
87	riffyy.	567.1	"H NMR (400 MHz, CDCI ₃) 5 7.53 (cd. J., = 8.7 Hz, J., = 5.3 Hz, 220, 7.5 s., 110, 7.16 (d. J. = 3.4 Hz, 110, 7.02-7.07 (m., 310, 0.94-0.97 (m., 220, 0.77 (t. J. = 8.4 (s., 20), 0.54 (d., 3.4 hz, 24), 5.52 (d., 22), 0.55 (d., 3.4 hz, 24), 5.12 (s., 22), 0.55 (d., 3.10, 3.91), 5.31	Described as described in example 8
86	35ga	588.1		Synthesized as described in example 8
89	to gra	563.1	"H NMR (400 MHz, CDCls) 6 7.53 (5d, J, = 8.94z, J ₂ = 5.24z, 27t), 7.5 to, 11t), 7.3 (d, J = 3.5 Hz, 11t), 7.03-7.07 (m, 31t), 8.95 (d, J = 0.3 Hz, 21t), 8.77 (t, J = 8.3 Hz, 27t), 6.55 (d, J = 3.5 Hz, 11t), 5.15 (s, 27t), 4.05 (s, 37t), 2.9 (bs, 11t).	Synthesized as described in example 5
80	\$ 25 PM	612.2		Synthesized as described in ecomple 4
91	ig Selfy	601.0	"H NAIR (400 MHz, CDC4) 6 7.53 (64, J, = 8.71tz, J, = 5.3 Hz, 290, 7.5 (s. 114), 7.16 (a, J= 3.4 Hz, 110, 7.92-7.07 (m, 390, 6.94-6.97 (m, 24), 6.77 (a, J= 8.4 Mz, 290, 6.54 (a, J= 3.4 Hz, 110, 5.12 (s. 210, 4.04 (s. 310, 3.9 (s. 310).	Synthesized as described in example 4

82	35.67	648.2		Synthesized as described in example 7
83	25.55	573.1		Synthasized as described in example 8
94	ر رخ نوري نوري	518.0	"H NMR (400 MHz, CDCk) 8 7.39 (s, 1H), 7.35 (d, J = 8.0 Hz, 249, 7.21 (d, J = 8.0 Hz, 249, 7.92 (t, 1H), 6.82 (t, J = 8.0 Hz, 2H), 6.82 (t, J = 8.0 Hz, 2H), 6.82 (t, J = 8.0 Hz, 6.8 Hz, 2H), 3.78 (s, 3H).	Synthesized as described in example 1 followed by chiral HPLC
95	gegne	615.2		Synthesized as described in example 7
25	م جزئي برن	696.2		Synthesized as described in exemple 7
97	Sp. Sp.	544 2		Synths sized as described in exemple 8
54	akdrino .	647.2		Synthesized as de Eurlbed in example 7
89	*7782a	605 2	"H NMR (400MHz, CDCt ₃) 5 7.74 - 7.7 (m, 34), 7 3 - 7.18 (m, 44), 7.11 (d, J = 5.4 Hz, 14), 8.97 (t, J ₁ = 8.4 Hz, J ₂ = 2 Hz), 6.33 (bs. 14), 4.76 (s. 24), 4.27 (s. 34), 3.74-3.54 (m, 44), 2.3 (s. 14), 2.15 (s. 34), 3.74-3.54 (m, 44), 2.3 (s. 14), 2.15	Synthesized as detailbed in example 7
100	-0420 Q	490 0	¹ H NMR (400MHz, CDCl ₃) 8 7.63-7.62 (m, 2H), 7.57 (s. 1H), 7.22-7.12 (m, 3H), 7.02 (dd, 2H, J, = 8.4 Hz, J ₂ = 2 Hz), 6.9 (ss. 1H), 6.85 (s. 2H, J = 8.4 Hz), 6.9 (st. 1H), 4.81 (d. 1H, J = 15.2 Hz), 4.86 (d. 1H, J = 15.2 Hz), 3.86 (s. 3H),	Synthesized as described in example 2 followed by chiral HPLC
101	359-04-	559,1		Synthesized as described in example 5
102	**************************************	654.2		Synthesized as described in example 7
103	~ 5 g	576 2		Synthesized as described in example 8
104	4444	653.2		Symbolized as described in example 7

105	***	568.1		Synthesized as described in example 5
106	\$\$\$\$\$\$	585.2		Synthesized as described in exemple 8
107) Je	528.0		Synthesized we described in example 9
108	क्रू <i>र्स</i>	568.1		Synthesized se described in exemple 8
109	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	597.2		Synthesized as described in example 10
110	o ₇ ,007,0	604.2		Synthesized as described in exemple 7
111	or or	598.2	¹ H NAR (400814z, CDCI ₃) 3 9.33 (be, 1H), 902 (s. 1H), 6.77 (d. J = 6 Hz, 1H), 6 31 (d. J = 6 Hz, 1H), 7.02 (b. M), 7.22 - 7.12 (m. 4H), 7.04 (d. J = 8 Hz, 1H), 6.86 (t. J = 8 Hz, 2H), 4.6 (s. 2H), 4.23 (s. 3H)	Synthesized as described in example 7
112	œ, œ,	497.1		Synthesizad as described in example 4
113	45. A.	575.1		Synthesized as described in example 6
114	مريخ مريخ	506-0	H HMR (400 MHz, CDCL) 6 7.43 (s, 114), 7 27 (d, J = 8.8, 24), 7 15 (m, 24), 7.14 (d, J = 8.4 Hz, 24), 6.96 (d, J = 8.4 Hz, 114), L J = 6.4 Hz, 34), 6.66 (d, J = 8.4 Hz, 114), 6.53 (t, J = 6.0 Hz, 24), 5.29 (bs. 114), 4.47 (d, J = 1.6 Hz, 24).	Oynthesized as described in example 2 followed by chiral HPLC
115	**************************************	670.2 [M+23]		Synthesized se described in exemple 7
116	-stbert	606.2		Synthesized as described in example 7
117	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	712.2		Synthesized on described in exemple 7

_			
118	760 255	S82.0	Oynthesized as described in example 9
110	255	540.0	Dynthesized as described in exemple 9
120	frans	614.1	Synthesized in a similar way as described in exemple 7
121	-ygg/44	648.2	Synthesized as described in example 5
122	1975 A	524 0	Synthesized as described in example 9
123	25.55	504.2	Synthesized as described in exemple 8
124	*01.92°	659 1	Synthesized as described in example 4
125	akiria .	617.1	Dynthesized as described in example 7
126	****	678.2	Synthetized as described in example 7
127	+50-55	640.2 (M-23)	Synthesized as described in example 8
128	256	601.2	Oprification as described in example 9
129	Tigarot	646.2	Synthesized as described in exemple 7
130	\$5.0 \$7.0	603.1	Synthesized as described in example 7
131	adorga	641.1	Synthesized as described in example 4

132	9.3	505.2	"H NASR (400M94z, CDCi ₃) 5.7 41-7 38 (m. 31), 7.32(d, J = 6 Hz, 21), 7.2(d, J = 7.6 Hz, 29), 7.16 (m. 11), 5.92 6.85 (m. 41), 6.72 - 6.58 (bs. 31), 5.93 (s. 21), 3.59 (s. 31), 3.53 (s. 21).	Synthesized in a similar way as described in example 4
133	755	552,1		Synthesized as described in example 9
134	55° Ž	587.1		Synthesized as described in example 6
135	To the state of th	602.1		Synthesized as described in example 8
136	4484	675.2		Synthesized as described in example 7
137	75	567.1		Synthesized as described in example 10
138	38900	617.1		Synthesized as described in example 7
139	\$ 50 pt	660.2		Symbosized as described in example 7
140	de de la companya de	616.2		Synthesized as described in example 6
141	of Section 1	608.2		Symbesized as described in example 7
142	\$ 800 P	645.2		Synthesized as described in example 8
143	W. S.	624.2		Synthesized as described in example 8
144	3330	590.2		Synthesized as described in example 4
165		632.1	-	Synthesized as described in example 7

148	30.33	597.1		Synthesized as described in example 5 followed by chiral HPLC
147	प्रदेश	609.2	"H NARR (460MHz. CDCk) & 7.53-7.50 (m. 31), 7.4-7.35 (m. 31), 7.52-7.26 (m. 31), 7.65-6.97 (m. 41), 6.77 (m. 21), 5.16 (n. 29, 4.16 (n. J. 7.2 Hz. 22), 3.66 (n. 21), 1.26 (n. J. = 3.2 Hz. 31).	Synthesized in a similar way as described in exemple 10
148	350-	445.0		Dynthesized as described in example 1
149	, or the contract of the contr	495,1		Synthesized as described in example 1
150	-0-130 -0-130	582.1	"H NMR (400 MHz, CDCL) 5 9 23 (s, 11-0, 5-4 (sd. J., = 8.2 Ptz. J., = 2.0 Ptz. 11-0, 7.8 (st. H), 7.49-7.53 (m. 21-0, 7.42-7.53 (m. 21-0, 7.42-7.53 (m. 21-0, 7.42-7.53 (m. 21-0, 7.42-7.53 (m. 21-0, 7.42-7.54 (st. J. + 3.45 (st. J.	Synthesized as described in example 10
151	Ž.	572.1	"H NARR (400 MHz, CDC), J 6 0.25 (s., 1+0, 7.45-7.52 (m. 3+0, 7.25-7.35 (m. 2+0, 7.01-7.09 (m. 4+0, 6.76 (m. 2+0, 5.32 (d. J = 2.3 Hz, 2+0, 3.64 (s., 3+0,	Synthesized as described in example 10
152	~0.00 -0.00	585.1		Synthesized as described in example 10
153	مؤلف	571.1	"H NAMR (400 MStz, CDCt.) 8 7.48-7.52 (m. 38), 7.42 (d. J. = 2.0 Hz, 11-), 7.32 (d. J. = 7.8 Hz, J. = 1.6 Hz, 11-), 7.24 (m. 11-), 7.12 (d. J. = 8.2 Hz, 11-), 8.98- 7.05 (m. 31-), 8.72-0.61 (m. 31-), 5.49 (d. J. = 8.1 Hz, 21-), 7.42 (j. 2.1), 7.22 (d. J. = 8.2 Hz, 11-), 8.98- 7.05 (m. 31-), 8.72-0.61 (m. 31-), 8.49 (d. J. = 8.1 Hz, 21-), 3.68 (d. J. = 8.1 Hz, 21-)	Synthesized as described in example 10
154	, page	812.2	"H NAIR (400 MHz, CDCi) 5 9 24 (d, J = 1.5 Hz, 119, 8.05 (d), J = 8.2 Hz, J = 2.2 Hz, 119, 1.70 (d, J = 9.2 Hz, 119, 7.52 7.56 (m, 30, 7.05 (e), J = 8.5 Hz, J, = 2.5 Hz, 319, 8.06 (e, J = 7.57 6.5 Hz, 319, 8.06 (e, J = 7.57 (e), J = 8.4 Hz, 229, 5.37 (e), 219, 4.11 (e), 319, 3.96 (e), J = 8.4 Hz, 329, 3.98 (e), 319, 6.3 Hz, 329 (e), 319	Synthesized as described in example 4
155	A STATE OF THE STA	602.1	¹ H NMR (400 MHz, CDCl ₃) 3 8,28 (s. 11), 7.53 (m. 29),7.49 (s. 11), 7.02-7.97 (m. 410, 637 (dd, J1 = 5.0 tz, J2 = 3.2 tz, 110, 8.77 (j. 1 = 6.2 tz, 2), 5.25 (d. J= 1.6 Hz, 270, 4.05 (s. 310, 3.94 (s. 310,	Synthesized as described in example 4
158	£000	601.2		Synthesized as described in exemple 4
157	7°33°0	568.1	H NNR (400 MHz, CDCs) 8 8.35 (s, 11-), 7.53 (d, J = 8.7 Hz, 11-), 7.52 (d, J = 8.6 Hz, 11-), 7.49 (s, 11-), 7.01-7.07 (m, 44-), 6.38 (d, J = 7.2 Hz, 11-), 6.77 (l, J = 8.2 Hz, 24-), 5.26 (s, 24-), 4.05 (s, 31-).	Synthosized as described in example 5
158	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	588.1	"H NAME (600 No.t., CDCI.) 8.7.54 (dd, J , = 8.8 kz, J , = 5.2 kz, 290, 7.5 (s. 110), 7.00-7.00 (m, 310, 7.0 (dd, J , = 8.7 kz, J) = 1.2 kz, 110, 8.95 (dd, J , = 6.0 kz, J , = 1.2 kz, 110, 8.94 (s. 110, 6.77 (t. J) = 8.2 kz, 291, 4.05 (s. 310).	Bymbesized as described in example 5

159	ito Ba	567.1	"H NMR (400 MHz, ppm, CDCL) 7.51- 7.55 (m, 219), 7.5 (a, 114), 7.45 (d, J = 1.9 1tz, 119, 6.98-7.07 (m, 514), 6.04 (ad, J, ~7.1 Hz, J, ~2.0 Hz, 119, 6.77 (t, J = 8 Hz, 219), 5.46 (d, J = 12.7 Hz, 219), 5.38 (d, J = 12.5 Hz, 119), 4.04 (a, 319).	Synthesized as described in example 5
160	orgeo.	592.2		Synthesized in asimital way as described in example 8
181	-0500 O	508.1		Synthesized in a similar way as described in example 8
162	0-1860 0-1860	592.2		Symbosized in a similar way as described in exempte 8
163	<i>न</i> दुर्ज	585.2		Synthesized in a similar way as described in example 8
164	\$\$\$	508.1		Ocsofbed in a similar way as described in exemple 9
165	000	566.1		Synthesized as described in example 9
155	, 30 20 20 20 20 20 20 20 20 20 20 20 20 20	596 1		Described in a similar way as described in exemple 9
167	,	506.2		Described in a similar way as described in example 9
168	*arga	632.1		Described in a similar way as described in exemple 9
169	400	681.1		Synthesized as described in exemple 8
170	97.6 07.p	581.1		Synthesized as described in exemple 9
171	×देस्ध्	642.1		Symbosized as described in example 8

172	*स्ट्रेस्ट्र	614.1		Synthesized as described in example 6
173	*4.95.95	659.1		Synthesized as described in exemple 8
174		572.1		Synthesized as described in assumpts 8
175	-35°20	576.2		Synthesized as described in example 8
178	±\$5	536.1	¹ H MAR (400 MHz, CDCs) 5 7.79-7.77 (m. 249, 7.73-7.69 (m. 249, 7.55 (66, J.) = 5.1 ftz, J.) = 1.5 ft, 119, 7.50-7.45 (m. 119, 7.24-7.16 (m. 349, 7.02 (d.) = 6.1 ftz, 119, 6.92-6.87 (m. 249, 4.89 (d.) = 6. 8.8 ftz, 204, 8.64-6.30 (m. 119, 4.54-4.51 (m. 119, 3.84-3.62 (m. 219).	Symbolized as described in example 8
177	,23 25 20	500.2		Synthesized as described in example 8
178	:3;%	564.1		Synthesized as described in example 8
176	\$5.55 50.50	646.2		Synthesized as described in exemple 8
180	346	560.2		Synthesized as described in example 8
181	370	484.0	"H NMR (400 MHz, CDCk) δ 8 75 (d, J = 18 Hz, 14), 8.17 (dd, J_1 = 5.3 Hz, J_2 = 1.9 Hz, 14), 7.52 7.81 (m, 3H), 7.31.7.44 (m, 4H), 7.16-7.24 (m, 3H), 5.68 (dd, J_1 = 75.2 Hz, J_2 = 71.6 Hz, 14), 2.75 (s, 3H), 2.10 (s, 3H).	Synthesized as described in exemple 11
182	**************************************	530.1		Synthesized as described in example 8
183	केर्स्ड ^{र्}	560.2		Synthesized se described in exemple 8
184	\$\dot{\dot{\dot{\dot{\dot{\dot{\dot{	568 2	⁵ H NARR (400 MHz, CDCL) 5 7.55 (s. 119), 7 46-7.41 (m. 29), 7 24-7 18 (m. 24), 6:06-05 21 (m. 49), 6.79 (d. J = 8.2 Hz, 11), 6:88-6:63 (m. 24), 5.76 (d. J = 2.3 1tz, 11), 4:30-4.87 (m. 29), 2.30 (s. 34), 2.16 (s. 34)	Synthesized an described in exemple 8

185	के दु ^{र्}	557.1	H NAR (400 MHz. COCL) 6 9.51 (c. 116). 6.00 (d.) J = 1.6 Hz. 116, 7.45-7.38 (m. 30), 7.24 (d.) J ₁ = 5.0 Hz. J ₂ = 1.5 Hz. 119, 7.19-7.15 (m. 110). 6.03-6.84 (m. 30), 6.78 (d.) J = 1.6 Hz. 119, 6.74 (d.) J = 6.3 Hz. 119, 6.61-6.52 (m. 219, 4.62 (s. 219, 4	Synthesized as described in example 6
160	5-3-7a	594.1	"IN NAME (400 MeVs, CDCIs) 6 8.00 (6, $J=1$ 1.4 bc; 110, 8.1 g6.3, $J=6$ 1.4 bc; 110, 8.1 g6.3, $J=6$ 1.6 co 14c; $J=1.4$ bc; 100, $J=6$ 1.0 co 14c; 110, $J=6$ 1.0 co 14c; 110, $J=6$ 1.0 co 14c; $J=7.5$ 1.c. 110, $J=6$ 1.0 co 14c; $J=7.5$ 1.c. 111, $J=6$ 1.0 co 14c; $J=7.5$ 1.c. 111, $J=6$ 1.0 co 14c; $J=7.5$ 1.c. $J=5$ 1.0 co 14c; $J=7.5$ 1.0 co 15c; $J=5$ 1.0 co 1	Synthesized as described in example 5
167	2000	568.2		Synthesized as described in example 4
188	-\26	459.2		Synthesized as described in example 4
189	***************************************	537.1		Synthesized as described in example 4
190	-33°-a	532.1		Synthesized as described in example 4
101	~3°~	471.1		Synthesized as described in example 4
192	· Pra	468.2		Synthesized as described in example 4
193	, 2 60	457.2		Synthesized as described in example 4
194	,20°F	539.2		Synthesized as described in example 4
195	130 x	565 2		Synthesized as described in example 4
190	7.70	560.1		Synthesized as described in example 4
197	7.70	499.1		Syntheolied as described in example 4

198	بىلار	472.2		Synthesized as described in example 4
199	45,55	550.2		Synthesized as described in example 4
200	~4°22, 5°-4,	659.6		Synthesized as described in example 7
201	arrest to	631.2		Synthesized as described in example 7
202	, ges	609.2		Synthesized as described in example 5
203	, 73.00 o	605.2		Synthesized as described in example 7
204	Light	631.2		Synthesized as described in example 7
206	France	631.2		Synthesizad as described in example 7
206	7200	590.2	"H NMF (400 MHz, CDCL) 5 7 55-7.51 (m, 29, 7.50 (s, 110, 7.12-7.04 (m, 310, 7.02 (64, J.) = 6.01 kz, J.] = 1.1 kz, 110, 6.00 (64, J.) = 6.01 kz, J.] = 1.2 kz, 110, 6.30 (ss, 110, 5.04-25 (m, 20), 4.58 (s, 271, 4.05 (s, 310, 3.40-3.35 (m, 210, 1.66- 1.55 (m, 110), 1.46-1.42 (m, 210, 0.930 (st, J = 6.5 ftz, 68),	Synthesized as described in example 7
207	giorro	625.2		Synthesized as described in example 7
208	ory Bra	653.09		Synthesized as described in example 7
209	From	633.2		Symthesized as described in example 7
210	gia.	444.1	"H NAME (400 MPE, CDCI ₃) 5 6.37 (s, 110, 7.95 (dt. J. = 6.5 Hz, J. = 2.3 Hz, 119, 7.96 (s, 110, 7.35-7.43 (m, 40, 7.16-726 (m, 30, 7.16-726 (m, 30, 7.16-726 (m, 30, 7.16-126 Hz, 170, 6.94 (dd. J. = 6.8 Hz, J.) = 2.6 Hz, 110, 6.7 (dd. J. = 76.1 Hz, J. = 7.1 Hz, 110).	Synthesized as described in example 13

_			
211	***	646.2	Dynthesized as described in example 7
212	Bors	611.2	Synthesized as described in example 7
213	0.75332a	660.3	Synthesized as described in example 7
214	, 753%	591.2	Dynaheszed as described in exemple 7
215	Agrania Agrania	632.2	Synthesized as described in example 7
216	0~, 35°a	659.3	Synthesized as described in exemple 7
217	70-73 24-04	679.2	Oynthesized as described in exemple 5
218	A. Sara	625.2	Oynthonized as described in exemple 7
218	giano	625.2	Symhelized as described in exemple 7
220	ation o	628.2	Synthesized as decorded in exemple 7
221	रू १०-२४४	557.2	Synthesized as described in excepts 5
222	Fra	620.2	Symbosized as Georibed in example 5
223	4,80%	620.2	Dynthesized as described in example 7
224	ک ⁰⁻² 0گ	549.2	Synthesized as described in example 5

225	7	689.1		Synthesized as described in example 7
226	, \$ \$	622.1	"H NARY (400 MHz, CDCs) 8 9.26 (a. 14), 6.35 (a. 14), 6.27 (a. 12), 7.36 (d. 1 - 8.7 Hz, 24), 7.36 (d. 1 - 8.7 Hz, 1 - 1 Hz, 14), 6.36 (d. 1 - 8.7 Hz, 1 - 4), 7.1 LJ = 1.0 Hz, 14), 5.2 (a. 29), 4.06 (a. 34),	Synthesized as described in example 5
227	o Sero	525.2		Synthesized as described in example 5
228	7jjan	576.2	"H NASK (400 MHz, CDC) ₃ 3 7.64-7.61 (m, 29), 7.59 (a, 11), 7.21-7.13 (m, 31), 7.09 (ed. J., e. 5.71z, J., p. 11, 114z, 114), 7.05 (b., 11), 7.01 (ed. J., e. 6.71z, J., p. 1.31z, 114, 687 (m, 29), 4.69 (a, 29), 4.15 (s, 32), 3.29 (t, J = 6.81z, 29), 1.56-1.68 (m, 11), 1.03 (d, J = 6.61z, 61).	Synthesized as described in example 7
229	455	620.2		Synthesized as described in example 7
230	gra-or	579.2		Synthesized as described in exemple 6
231	25.25	668.2		Synthesized as described in example 7
232	C77820	645 2		Synthesized as described in example 7
233	ger-or	551.1		Cynthosized as described in example 5
234	Though	630.2		Synthesized as described in exemple 7
235	France.	619.2		Synthesized as described in example 6
236	25 ²⁵ -p.	810.2		Synthesized as described in example 14
237	gen or	567.1		Synthesized as described in example 5

238	Fa.	587.1	"H NMR (400 MHz, CDCs) 8 7.54 (d, J = 8.8 Hz, 29), 7.53 (j, J = 8.7 Hz, 19), 7.5 (s, 14), 7.31 (d, J = 3.5 Hz, 19), 7.03 (s, 14), 7.31 (d, J = 3.5 Hz, 19), 7.03 (s, 14), 8.97 (d, J = 2.5 Hz, 19), 8.90 (s, 11), 8.77 (j, J = 8.3 Hz, 29), 8.59 (d, J = 3.5 Hz, 19), 8.15 (d, 29), 4.05 (s, 34).	Synthesized as described in example 5
239	diser,	592.2		Synthesized as described in example 7
240	-733-a	469,1		Synthesized as described in example 4
241	-0.55	617.2		Synthesized as described in example 5
242	76.33° a	598.2	"H NMR (400 MHz, CDCh) 5 6 2 (d, J = 7.7 Hz, 140, 8.03 (t, J = 7.8 Hz, 140, 7.87 (d, J = 7.8 Hz, 140, 7.87 (m, 340, 7.05 -7.80 (m, 340, 5.97 (d, J = 7.9 Hz, 140), 6.57 (t, J = 7.9 Hz, 140), 6.52 (d, J = 7.0 Hz, 140, 6.77 (t, J = 6.4 Hz, 240, 5.32 (c, 241, 4.11 (s, 340),	Synthesized as described in exemple 5
243	derest de	625.2	"H NMR (460 MHz, CDCL) 5 8.91 (bs, 119, 7.62 (s, 11), 7.46-7.42 (m, 31), 7.00- 6.85 (m, 31), 6 69-6.65 (m, 31), 4.58 (s, 21), 4.05 (s, 31), 2.34 (s, 31), 2.25 (s, 31),	Synthesized as described in example 7
244	g 25.26	539.1	H THINK (NO. DE BL., COCK) 5 7.70 (89, 7). 5.2 Hz., 76.8 5 Hz., 291, 7.28 (m. 24). 7.1 (m. 24), 5.9 (m. 24), 5.74 (dd, 14), 5.56 (s. 37-3.56 Hz., 14), 5.11 (s. 24), 3.56 (s. 370, 3.24 (m. 14), 268 (m. 14), 1.50-1.83 (m. 34), 1.72 (m. 14), 1.59-1.3 (m. 54).	Synthesized as described in sxemple 5
245	Spro	611.2		Synthesized as described in example 7
248	Zenor	569.1		Synthesized as described in excepts 5

Assayl - Transcriptional Assay

[0090] Transfection assays are used to assess the ability of compounds of the invention to modulate the transcriptional activity of the LXRs. Briefly, expression vectors for chimeric proteins containing the DNA binding domain of yeast GAL4 fused to the ligand-binding domain (LBD) of either LXR α or LXR β are introduced via transient transfection into mammalian cells, together with a reporter plasmid where the luciferase gene is under the control of a GAL4 binding site. Upon exposure to an LXR modulator, LXR transcriptional activity varies, and this can be monitored by changes in luciferase levels. If transfected cells are exposed to an LXR agonist, LXR-dependent transcriptional activity increases and luciferase levels rise.

[0091] 293T human embryonic kidney cells (8x106) are seeded in a 175cm2 flask 2 days prior to the start of the experiment in 10% FBS, 1% Penicillin/Streptomycin/Fungizome, DMEM Media. The transfection mixture for chimeric proteins is prepared using GAL4-LXR LBD expression plasmid (4ug), UASluciferase reporter plasmid (5μg), Fugene (3:1 ratio; 27μL) and serum-free media (210µL). The transfection mixture is incubated for 20 minutes at room temperature. The cells are harvested by washing with PBS (30ml) and then dissociating using trypsin (0.05%; 3ml). The trypsin is inactivated by the addition of assay media (DMEM, lipoprotein-deficient fetal bovine serum (5%), statin (e.g. lovastatin 7.5µM), and mevalonic acid (100μM)) (10ml). The cells are counted using a 1:10 dilution and the concentration of cells adjusted to 160,000cells/ml. The cells are further incubated for 30 minutes at room temperature with periodic mixing by inversion. Transfection mixtures are added to the cells, and cells (50µl/well) are then plated into 384 white, solid-bottom, TC-treated plates. The cells are further incubated at 37°C, 5.0% CO2 for 24 hours. A 12point series of dilutions (half-log serial dilutions) are prepared for each test compound in DMSO with a starting concentration of compound of LuM. Test compound (500nl) is added to each well of cells in the assay plate and the cells are incubated at 37°C, 5.0% CO2 for 24 hours. The cell lysis/luciferase assay buffer, Bright-GloTM (25%: 25ul:

[0092] Raw luminescence values are normalized by dividing them by the value of the DMSO control present on each plate. Normalized data is visualized using XLfit3 and dose-response curves are fitted using a 4-parameter logistic model or sigmoidal single-site dose-response equation (equation 205 in XLfit3.05). EC50 is defined as the concentration at which the compound elicits are response that is half way between the maximum and minimum values. Relative efficacy (or percent efficacy) is calculated by comparison of the response elicited by the compound with the maximum value obtained for a reference LXR modulator.

Promega), is added to each well. After a further incubation for 5 minutes at room

temperature, the luciferase activity is measured.

Assay2 - FRET Co-activator Recruitment Assay

[0093] A FRET assay is used to assess the ability of a compound of the invention to bind directly to the LXR ligand-binding domain (LBD) and promote the recruitment of proteins that potentiate the transcriptional activity of LXRs (e.g. co-activators). This cellfree assay uses a recombinant fusion protein composed of the LXR LBD and a tag (e.g. GST, His, FLAG) that simplifies its purification, and a synthetic biotinylated peptide derived from the nuclear receptor interacting domain of a transcriptional co-activator protein, such as steroid receptor co-activator 1 (SRC-1). In one format, the tagged LBD fusion protein can be labeled using an antibody against the LBD tag coupled to europium (e.g. EU-labeled anti-GST antibody), and the co-activator pentide can be labeled with allophycocyanin (APC) coupled to streptavidin. In the presence of an agonist for LXR. the co-activator peptide is recruited to the LXR LBD, bringing the EU and APC moieties in close proximity. Upon excitation of the complex with light at 340nM, EU absorbs and transfers energy to the APC moiety resulting in emission at 665 nm. If there is no energy transfer (indicating lack of EU-APC proximity), EU emits at 615nm. Thus the ratio of the 665 to 615nm light emitted gives an indication of the strength of co-activator peptide recruitment, and thus of agonist binding to the LXR LBD.

[0094] Fusion proteins, amino acids 205-447 (Genbank NM_005693) for LXR α (NR1H3) and amino acids 203-461 (NM_007121for β) for LXR β (NR1H3), were cloned in-frame at the Sal1 and Not1 sites of pGEX4T-3 (27-4583-03 Amersham Pharmacia Biotech). A biotinylated peptide sequence was derived from SRC-1 (amino acids 676 to 700); biotin-CPSSHSSLTERHKILHRLLOEGSPSC-OH.

[0095] A master mix is prepared (5nM GST-LXR-LBD, 5nM Biotinylated SRC-1 peptide, 10nM APC-Streptavidin (Prozyme Phycolink streptavidin APC, PI25S), and 5n MEU-Anti-GST Antibody) in FRET buffer (50mM Tris pH 7.5, 50mM KCl 1mM DTT, 0.1% BSA). To each well of a 384 well plate, 20µL of this master mix is added. Final FRET reaction: 5nM fusion protein, 5nM SRC-1 peptide, 10nM APC-Streptavidin, 5nm EU-Anti-GST Antibody (PerkinElmer AD0064). Test compounds are diluted in half-log, 12-point serial dilutions in DMSO, starting at 1mM and 100nL of compound is transferred to the master mix for a final concentration of 5µM-28pM in the assay wells. Plates are incubated at room temperature for 3 hours and fluorescence resonance energy

transfer read. Results are expressed as the ratio of APC fluorescence to EU fluorescence times one thousand.

[0096] The ratio of 665nm to 615nm is multiplied by a factor of 1000 to simplify data analysis. DMSO values are subtracted from ratios to account for background. Data is visualized using XLfit3 and dose-response curves are fitted using a 4-parameter logistic model or sigmoidal single-site dose-response equation (equation 205 in XLfit3.05). EC50 is defined as the concentration at which the compound elicits a response that is half way between the maximum and minimum values. Relative efficacy (or percent efficacy) is calculated by comparison of the response elicited by the compound with the maximum value obtained for a reference LXR modulator.

[0097] Compounds of Formula I, in free form or in pharmaceutically acceptable salt form, exhibit valuable pharmacological properties, for example, as indicated by the *in vitro* tests described in this application. It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference for all purposes.

WE CLAIM:

1. A compound of Formula I:

$$\begin{pmatrix} R_1 \end{pmatrix}_n$$
 $\begin{pmatrix} P_1 \\ P_2 \end{pmatrix}_{R_3}$
 $\begin{pmatrix} P_2 \\ P_3 \end{pmatrix}_{R_3}$

in which

n is selected from 0, 1, 2 and 3;

Z is selected from C and S(O); each

Y is independently selected from $-CR_4$ = and -N=; wherein R_4 is selected from hydrogen, cyano, hydroxyl, C_{1-6} alkyl, C_{1-6} alkoxy, halo-substituted- C_{1-6} alkyl and halo-substituted- C_{1-6} alkoxy:

 R_1 is selected from halo, cyano, hydroxyl, C_{1-6} alkyl, C_{1-6} alkyl, halo-substituted- C_{1-6} alkyl, halo-substituted- C_{1-6} alkoxy and $-C(O)OR_4$; wherein R_4 is as described above:

 R_2 is selected from the group consisting of C_{6-10} aryl, C_{5-10} heteroaryl, C_{3-12} evcloalkyl and C_{3-4} heterocycloalkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R_2 is optionally substituted with 1 to 5 radicals independently selected from halo, hydroxy, cyano, nitro, C_{1+6} alkyl, C_{1+6} alkoxy, halo-substituted- C_{1+6} alkoxy, $-C(O)N_{85}$, $-OR_{5}$, $-OC(O)R_{5}$, $-NR_{5}R_{6}$, $-C(O)R_{5}$ and $-NR_{5}C(O)R_{5}$, wherein R_{5} and R_{6} are independently selected from hydrogen, C_{1+6} alkyl, C_{1-6} alkoxy, halo-substituted- C_{1+6} alkyl, halo-substituted- C_{1+6} alkyl, C_{3-12} cycloalkyl- C_{0+6} lkyl and C_{3+6} heterocycloalkyl- C_{0+6} lkyl; or R_{5} and R_{6} together with the nitrogen atom to which R_{5} and R_{6} are attached form C_{5-10} heteroaryl or C_{3+6} heterocycloalkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R_{5} or the combination of R_{5} and R_{6} is optionally substituted with 1 to 4 radicals independently

selected from halo, hydroxy, cyano, nitro, C_{1-6} alkyl, C_{1-6} alkoxy, halo-substituted- C_{1-6} alkyl and halo-substituted- C_{1-6} alkoxy;

 R_3 is selected from the group consisting of C6-10aryl, C5-10heteroaryl, C3-12cycloalkyl and C3.8heterocycloalkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R3 is substituted with 1 to 5 radicals independently selected from halo, C1.5alkoxy, halo-substituted-C1.5alkyl, halo-substituted-C1.5alkoxy, -OXR7, -OXC(O)NR7R8. -OXC(O)NR7XC(O)OR8, -OXC(O)NR7XOR8, -OXC(O)NR7XNR7R8, - $OXC(O)NR_7XS(O)_{0.7}R_{8.7} - OXC(O)NR_7XNR_7C(O)R_{8.7} - OXC(O)NR_7XC(O)XC(O)OR_{8.7}$ $OXC(O)NR_7R_9$, $-OXC(O)OR_7$, $-OXOR_7$, $-OXR_9$, $-XR_9$, $-OXC(O)R_9$, $-OXS(O)_{0.2}R_9$ and -OXC(O)NR2CR2[C(O)R8]2; wherein X is a selected from a bond and C1.6alkylene wherein any methylene of X can optionally be replaced with a divalent radical selected from C(O), NR₇, S(O)₂ and O; R₇ and R₈ are independently selected from hydrogen, evano, C_{1.6}alkyl, halo-substituted-C1.6alkyl, C2.6alkenyl and C3.12cycloalkyl-C0.4alkyl; R9 is selected from C6. 10aryl-C0-4alkyl, C5-10heteroaryl-C0-4alkyl, C3-12cycloalkyl-C0-4alkyl and C3sheterocycloalkyl-C₀₋₄alkyl; wherein any alkyl of R₉ can have a hydrogen replaced with -C(O)OR₁₀; and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R₉ is optionally substituted with 1 to 4 radicals independently selected from halo, Cicalkyl, Caracycloalkyl, halo-substituted-C1-6alkyl, C1-6alkoxy, halo-substituted-C1-6alkoxy, -XC(O)OR10, -XC(O)R₁₀, -XC(O)NR₁₀R₁₀, -XS(O)₀₋₂NR₁₀R₁₀ and -XS(O)₀₋₂R₁₀; wherein R₁₀ is independently selected from hydrogen and C1-6alkyl; and the pharmaceutically acceptable salts, hydrates, solvates and isomers thereof.

2. The compound of claim 1 of Formula Ia:

in which

is selected from 1, 2 and 3;

- Y is selected from -CH= and -N=;
- R_1 is selected from halo, C_{1-6} alkyl, and $-C(O)OR_4$; wherein R_4 is selected from hydrogen and C_{1-6} alkyl;
- R_2 is selected from the group consisting of C_{6-10} aryl, C_{5-10} heteroaryl, C_{3-12} cycloalkyl and C_{3-6} heterocycloalkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R_2 is optionally substituted with 1 to 4 radicals independently selected from halo, hydroxy, C_{1-6} alkyl, halo-substituted- C_{1-6} alkyl and $-OC(O)R_5$; wherein R_3 is selected from hydrogen and C_{1-6} alkyl; and
- is selected from the group consisting of C6.10aryl, C5.10heteroaryl, C3. 12cycloalkyl and C3.8heterocycloalkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R₃ is substituted with 1 to 5 radicals independently selected from halo. hydroxyl, C1-salkoxy, halo-substituted-C1-salkyl, halo-substituted-C1-salkoxy, -OXR7, -OXC(O)NR7R8, -OXC(O)NR7XC(O)OR8, -OXC(O)NR7XOR8, -OXC(O)NR7XNR7R8, -OXC(O)NR7XS(O)0-2R8, -OXC(O)NR7XNR7C(O)R8, -OXC(O)NR7XC(O)XC(O)OR8, -OXC(O)NR7R9, -OXC(O)OR7, -OXOR7, -OXR9, -XR9, -OXC(O)R9 and -OXC(O)NR7CR7[C(O)R8]2; wherein X is a selected from a bond and C1.6alkylene; R7 and R8 are independently selected from hydrogen, cyano, Cisalkyl, halo-substituted-Cisalkyl, Ca-6alkenyl and C3-12cycloalkyl-C0-4alkyl; Ro is selected from C6-10aryl-C0-4alkyl, C5. 10heteroaryl-C₀₋₄alkyl, C₃₋₁₂cycloalkyl-C₀₋₄alkyl and C₃₋₈heterocycloalkyl-C₀₋₄alkyl; wherein any alkyl of R₉ can have a hydrogen replaced with -C(O)OR₁₀; and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R9 is optionally substituted with 1 to 4 radicals independently selected from halo, C1.6alkyl, C3.12cycloalkyl, halo-substituted-C1.6alkyl, C1. salkoxy, halo-substituted-CLsalkoxy, -XC(O)OR10, -XC(O)R10, -XC(O)NR10R10, -XS(O)0. 2NR₁₀R₁₀ and -XS(O)_{0.2}R₁₀; wherein R₁₀ is independently selected from hydrogen and C₁. 6alkyl.
 - 3. The compound of claim 2 in which
 - R₁ is selected from fluoro, chloro, methyl and -C(O)OCH₃; and
- R₂ is selected from the group consisting of phenyl, cyclohexyl, cyclopentyl and pyridinyl; wherein any aryl, heteroaryl or cycloalkyl of R₂ is optionally substituted with

1 to 4 radicals independently selected from fluoro, chloro, bromo, hydroxy, methyl, methoxy, trifluoromethyl and -OC(O)CH₁.

4. The compound of claim 3 in which R₃ is selected from the group consisting of phenyl, benzo[1,3]dioxolyl, pyridinyl and benzooxazolyl; wherein any aryl or heteroaryl of R₃ is substituted with 1 to 5 radicals independently selected from fluoro, chloro, bromo. methoxy, hydroxyl, difluoromethoxy, -OCH2C(O)NH2, -OCH2C(O)OCH3, -OCH2C(O)NHCH3, -OCH2C(O)N(CH3)2, -R9, -OR9, -OCH2R9, -OCH2C(O)R9, -OCH2C(O)NHRq, -OCH2C(O)N(CH3)Rq, -OCH2CN, -OCH2C2H3, -OCH2C3H4, -O(CH2)2OH, -OCH2C(O)NH(CH2)2C(O)OC2H5, -OCH2C(O)NH(CH2)2CH2F, -OCH2C(O)NH(CH2)2C(O)OH, -OCH2C(O)NHC(O)(CH2)2C(O)OCH3, -OCH2C(O)NH(CH2)2NHC(O)CH3, -OCH2C(O)NHCH2C(O)C2H5, -OCH2C(O)NH(CH2)2C(O)OC4H4, -OCH2C(O)NHCH2C(O)OC2H5, -OCH2C(O)NHCH[C(O)OC2H5]2, -S(O)2CH3, -OCH2C(O)NHCH2CF3, -OCH2C(O)NHCH2C(O)(CH2)2C(O)OCH3, -OCH2C(O)N(CH3)CH2C(O)OCH3, -OCH2C(O)NH(CH2)3OC2H5, -OCH2C(O)NH(CH2)3OCH(CH3)2, -OCH2C(O)NH(CH2)2SCH3, -OCH2C(O)NHCH2CH(CH3)2, -OCH2C(O)NHCH2CH(CH3)C2H5, -OCH2C(O)NHCH(CH3)C(O)OC2H5, -OCH2C(O)NHCH2CH(CH3)2 and -OCH2C(O)(CH2)3OCH(CH3)2;

wherein R_0 is phenyl, cyclopropyl-methyl, isoxazolyl, benzthiazolyl, furanyl, furanyl-methyl, pyridinyl, 4-oxo-4,5-dihydro-thiazol-2-yl, pyrazolyl, isothiazolyl, 1,3,4-thiadiazolyl, thiazolyl, phenethyl, morpholino, morpholino-propyl, isoxazolyl-methyl, pyrimidinyl, tetrahydro-pyranyl, 2-oxo-2,3-dihydro-pyrimidin-4-yl, piperazinyl, pyrrolyl, piperidinyl, pyrazinyl, imidazolyl, imidazolyl-propyl, benzo[1,3]dioxolyl-propyl, 2-oxo-pyrrolidin-1-yl and 2-oxo-pyrrolidin-1-yl-propyl; wherein any alkyl of R_0 can have a hydrogen replaced with $-C(O)OC_2H_3$; wherein any aryl, heteroaryl or heterocycloalkyl of R_0 is optionally substituted with 1 to 4 radicals independently selected from methyl, ethyl, cyclopropyl, methoxy, trifluoromethyl, $-OC(O)CH_3$, -COOH, $-CH_2C(O)OH$, $-CH_2C(O)OC_3$, -CCOOH, $-CH_2C(O)OH$, $-CH_2C(O)OC_3$, -CCOOH, -CCOOH, $-CH_2C(O)OC_3$, -CCOOH, -

- A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 1 in combination with a pharmaceutically acceptable excipient.
- 6. A method for treating a disease or disorder in an animal in which modulation of LXR activity can prevent, inhibit or ameliorate the pathology and/or symptomology of the disease, which method comprises administering to the animal a therapeutically effective amount of a compound of Claim 1.
- The method of claim 6 wherein the diseases or disorder are selected from cardiovascular disease, diabetes, neurodegenerative diseases and inflammation.
- 8. The use of a compound of claim 1 in the manufacture of a medicament for treating a disease or disorder in an animal in which LXR activity contributes to the pathology and/or symptomology of the disease, said disease being selected from cardiovascular disease, diabetes, neurodegenerative diseases and inflammation.

Docket No.: P1165US00

Express Mailing Label No.: EV471075440US

COMPOUNDS AND COMPOSITIONS AS LXR MODULATORS

ABSTRACT OF THE DISCLOSURE

The invention provides compounds, pharmaceutical compositions comprising such compounds and methods of using such compounds to treat or prevent diseases or disorders associated with the activity of liver X receptors (LXRs).

Application Data Sheet

Application Information

Application number::

Filing Date::

Application Type:: Provisional

Subject Matter:: Utility

Suggested classification::
Suggested Group Art Unit::
CD-ROM or CD-R??::

Number of CD disks:: Number of copies of CDs::

Sequence Submission::

Computer Readable Form (CRF)?::

Number of copies of CRF::

Title:: COMPOUNDS AND COMPOSITIONS AS

Nο

LXR MODULATORS

Attorney Docket Number:: P1165US00

Request for Early Publication:: No

Request for Non-Publication::
Suggested Drawing Figure::

Total Drawing Sheets:: 0
Small Entity?:: No

Small Entity?::

Variety denomination name::

Petition included?::

Petition Type::

Licensed US Govt. Agency::

Contract or Grant Numbers One::

Secrecy Order in Parent Appl.:: No

Applicant Information

Applicant Authority Type:: Inventor

Primary Citizenship Country:: Italy

Status:: Full Capacity

Status:: Full Capacit
Given Name:: Valentina

Middle Name::

Family Name:: Molteni

Name Suffix::

City of Residence:: San Diego
State or Province of Residence:: California

Country of Residence:: US

Street of Mailing Address:: 2475 E Street

City of Mailing Address:: San Diego State or Province of Mailing Address:: California

Country of Mailing Address:: US

Postal or Zip Code of Mailing Address:: 92102

Applicant Authority Type:: Inventor

Primary Citizenship Country:: People's Republic of China

Status:: Full Capacity

Given Name:: Xiaolin

Middle Name::

Family Name::

Li

Name Suffix:

City of Residence:: Del Mar

State or Province of Residence:: California

Country of Residence:: US

Street of Mailing Address:: 14059-G Mango Drive
City of Mailing Address:: Del Mar

State or Province of Mailing Address:: California

Country of Mailing Address:: US

Postal or Zip Code of Mailing Address:: 92014

Express Mail Label No. EV471075440US

Applicant Authority Type:: Inventor

Primary Citizenship Country:: United States of America

Status:: Full Capacity

Given Name:: Juliet

Middle Name::

Family Name:: Nabakka

Name Suffix::

City of Residence:: San Diego
State or Province of Residence:: California

Country of Residence::

Street of Mailing Address:: 6120 Decena Drive #105

US

Filis

City of Mailing Address:: San Diego State or Province of Mailing Address:: California

Country of Mailing Address:: US

Postal or Zip Code of Mailing Address:: 92120

Applicant Authority Type:: Inventor

Primary Citizenship Country:: United States of America

Status:: Full Capacity
Given Name: David Archer

Middle Name::

Family Name::

Name Suffix::

City of Residence:: San Diego

State or Province of Residence:: California

Country of Residence:: US

Street of Mailing Address:: 1631 State Street, #2

City of Mailing Address:: San Diego

State or Province of Mailing Address:: California

Country of Mailing Address:: US
Postal or Zip Code of Mailing Address:: 92101

Applicant Authority Type:: Inventor

Primary Citizenship Country:: United States of America

Status:: Full Capacity

Page 3 Initial 10/27/2004

Given Name...

Beth Marie

Middle Name::

Family Name::

Anaclerio

Name Suffix**

City of Residence::

San Diego

State or Province of Residence::

California

Country of Residence::

US

Street of Mailing Address::

10721 Ballystock Court City of Mailing Address::

State or Province of Mailing Address::

San Diego California

Country of Mailing Address::

US

Postal or Zip Code of Mailing Address:: 92130

Applicant Authority Type::

Inventor

United States of America Primary Citizenship Country:: Status::

Full Capacity

Given Name:: Middle Name:: John

Family Name::

Name Suffix:

Witvak Carlsbad

City of Residence:: State or Province of Residence::

California

Country of Residence:: Street of Mailing Address:: US 3377 Avenida Nieve

City of Mailing Address::

Carlshad

State or Province of Mailing Address::

California

Country of Mailing Address::

US

Postal or Zip Code of Mailing Address:: 92009

Applicant Authority Type::

Inventor

Primary Citizenship Country::

Spain/United States of America

Status::

Full Capacity

Given Name::

Enrique

Middle Name::

Page 4

Initial 10/27/2004

Express Mail Label No. EV471075440US

Family Name::

Name Suffix::

Saez

City of Residence::

San Diego

State or Province of Residence::

California

Country of Residence::

US

Street of Mailing Address::

1547 1/2 Felspar Street

San Diego

City of Mailing Address::

State or Province of Mailing Address::

Country of Mailing Address::

California

Postal or Zip Code of Mailing Address:: 92109

us

Correspondence Information

29490 Correspondence Customer Number::

Representative Information

Representative Customer Number:: 29490

Assignee Information

Assignee Name::

IRM LLC

Street of mailing address::

PO Box HM 2899

City of mailing address::

Hamilton

Country of mailing address::

Bermuda

Postal or Zip Code of mailing address:: HM LX

State or Province of mailing address::