

## Quadrilaterals Ex 14.4 Q1

## Answer:

 $\Delta ABC$  is given with D,E and F as the mid-points of BC, CA and AB respectively as shown below:



Also, AB = 7cm , BC = 8cm and AC = 9cm

We need to find the perimeter of  $\Delta\!D\!E\!F$ 

In  $\Delta ABC$ , E and F are the mid-points of CA and AB respectively.

Theorem states, the line segment joining the mid-points of any two sides of a triangle is parallel to the third side and equal to half of it.

Therefore, we get:

$$EF = \frac{1}{2}BC$$

$$EF = \frac{1}{2}(8cm)$$

$$EF = 4cm$$

$$EF = \frac{1}{2}(8cm)$$

$$EF = 4cm$$

Similarly, we get

$$DE = \frac{1}{2} AB$$

$$DE = \frac{1}{2}(7cm)$$

$$DE = \frac{7}{2}cm$$

And

$$DF = \frac{1}{2}AC$$

$$DF = \frac{1}{2}(9cm)$$

$$DF = \frac{9}{2}cm$$

Perimeter of  $\Delta DEF = DE + EF + DF$ 

$$=4cm+\frac{7}{2}cm+\frac{9}{2}cm$$

$$=12cm$$

Hence, the perimeter of  $\Delta DEF$  is 12cm.

Quadrilaterals Ex 14.4 Q2

## Answer:

It is given that D, E and F be the mid-points of BC, CA and AB respectively.



Then,

 $DE \parallel AB$ ,  $EF \parallel BC$  and  $DF \parallel CA$ .

Now,  $DE \parallel AB$  and transversal CB and CA intersect them at D and E respectively. Therefore,

$$\angle CDE = \angle B$$

$$\angle CDE = 60^{\circ} \ [\angle B = 60^{\circ} \ (Given)]$$

and 
$$\angle CED = \angle A$$

$$\angle CED = 50^{\circ} \ [\angle A = 50^{\circ} (Given)]$$

Similarly,  $EF \parallel BC$ 

Therefore,

$$\angle AEF = \angle C$$

$$\angle AEF = \angle C$$
 $\angle AEF = 70^{\circ} \ [\angle C = 70^{\circ} \ (Given)]$ 
and  $\angle AFE = \angle B$ 
 $\angle AFE = 60^{\circ} \ [\angle B = 60^{\circ} \ (Given)]$ 
Similarly,  $DF \ || CA$ 
Therefore,
 $\angle BDF = \angle C$ 
 $\angle BDF = 70^{\circ} \ [\angle C = 70^{\circ} \ (Given)]$  and  $\angle BFD = \angle A$ 
 $\angle BFD = 50^{\circ} \ [\angle A = 50^{\circ} \ (Given)]$ 
Now  $BC$  is a straight line.
$$\angle BDF + \angle FDE + \angle EDC = 180^{\circ}$$

$$70^{\circ} + \angle FDE + 60^{\circ} = 180^{\circ}$$

$$\angle FDE + 130^{\circ} = 180^{\circ}$$

$$\angle FDE = \boxed{50^{\circ}}$$
Similarly,  $\angle DEF = \boxed{60^{\circ}}$ 

and  $\angle EFD = \boxed{70^{\circ}}$ 

Hence the measure of angles are  $\boxed{50^0}$  ,  $\boxed{60^0}$  and  $\boxed{70^0}$  .

\*\*\*\*\*\*\*\*\*\* END \*\*\*\*\*\*\*\*