Matematika Diskrit [KOMS124210] - 2024/2025

12.1. **Graf** (bagian 1)

Dewi Sintiari

Program Studi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 12 (Mei 2025)

Graf

Contoh graf

Sejarah graf

Figure: Permasalahan jembatan Königsberg

Permasalahan: bisakah seseorang mengunjungi setiap kota dengan melalui jembatan tepat satu kali, dan kembali ke titik awal?

Sejarah graf

Figure: Solusi permasalahan jembatan Königsberg oleh Leonhard Euler

Notasi Graf

Graf G = (V, E) memiliki dua komponen, yaitu:

- ightharpoonup Simpul/titik/verteks, himpunannya dinotasikan dengan V(G)
- ightharpoonup Sisi, himpunannya dinotasikan dengan E(G)

Latihan: Tentukan himpunan simpul dan himpunan sisi dari graf pada gambar di atas.

Jenis graf: graf sederhana dan tak-sederhana

Figure: Graf sederhana (1) dan graf tak-sederhana (2 dan 3)

Contoh permasalahan pada graf sederhana

Contoh permasalahan: misalnya pada pencarian jalur terpendek antar-kota

- setiap kota dilambangkan dengan simpul graf;
- dua simpul dihubungkan oleh sebuah sisi jika terdapat jalan yang menghubungkan kedua kota tersebut.

Pemodelan menggunakan graf sederhana misalnya pada skenario bahwa setiap kota dihubungkan oleh paling banyak satu jalan.

Contoh permasalahan pada graf tak-sederhana

Pemodelan seperti pada slide sebelumnya, namun beberapa kota mungkin terhubung dengan lebih dari satu jalan langsung.

Jenis graf: graf berarah dan tak berarah

Tugas:

Buatlah tabel jenis-jenis graf beserta karakteristik sisi-sisinya.

Contoh permasalahan pada graf berarah

Penjadwalan pesawat:

- Kota-kota (bandara) dijadikan sebagai simpul;
- ► Terdapat sebuah sisi berarah (busur) dari dua kota a ke b jika terdapat penerbangan dengan asal a ke tujuan b.

Contoh permasalahan:

- Sisi-sisi pada graf memiliki bobot yang sebanding dengan banyaknya kru pesawat yang bertugas.
- Pencarian jalur dengan total bobot minimal yang mengunjungi setiap kota yang menjadi destinasi meminimisasi jumlah kru yang dibutuhkan.

Contoh permasalahan pada graf tak-berarah

Contoh serupa dengan contoh yang diberikan sebelumnya.

Latihan

Rangkumlah karakteristik dari jenis-jenis graf: sederhana, tak sederhana, berarah, dan tak berarah.

Aplikasi Teori Graf

Aplikasi graf 1: Rangkaian listrik

Aplikasi graf 2: Isomer senyawa kimia karbon

Aplikasi graf 3: Transaksi konkuren pada basis data terpusat

- ightharpoonup Transaksi T_0 menunggu transaksi T_1 dan T_2 ;
- ▶ Transaksi T_2 menunggu transaksi T_1 ;
- ► Transaksi *T*₁ menunggu transaksi *T*₃;
- ightharpoonup Transaksi T_3 menunggu transaksi T_2 ;

Aplikasi graf 4: Turnamen Round-Robin

Figure: Turnamen Round-Robin untuk 6 tim. Busur (a, b) berarti tim a berhasil memukul tim b.

Terminologi graf

Terminologi Dasar

- 1. Bertetangga (adjacent)
- 2. Bersisian (incident)
- 3. Simpul terpencil (isolated vertex)
- 4. Graf kosong (null graph atau empty graph)
- 5. Derajat (degree)

Ketetanggaan (adjacency)

Dua simpul dikatakan bertetangga jika keduanya terhubung langsung oleh sebuah sisi.

Insidensi

Misal $e = (v_1, v_2)$ adalah sisi pada graf. Maka dikatakan bahwa:

- ▶ e bersisisian dengan v₁; dan
- \triangleright e bersisisian dengan v_2 .

Simpul terpencil (isolated vertex)

Sebuah simpul dikatakan terpencil (*isolated*) jika tidak ada sisi yang bersisian dengannya.

Graf kosong (null graph)

Graf yang tidak memiliki sisi.

Dengan kata lain, semua simpulnya merupakan simpul terpencil.

Derajat simpul (degree)

Derajat dari suatu simpul adalah banyaknya sisi yang bersisian dengan simpul tersebut.

Derajat simpul (degree)

Latihan 1: derajat simpul pada graf berarah

Tentukan derajat dari setiap simpul pada graf tersebut.

Untuk setiap simpul pada graf:

- Derajat masuk (in-degree)
- Derajat keluar (out-degree)

Latihan 2: derajat simpul

Tunjukkan bahwa:

Lemma

Untuk setiap graf G, banyaknya simpul berderajat ganjil selalu genap.

Lemma

Setiap graf G = (V, E) memenuhi:

$$\sum_{v\in V}d(v)=2|E|$$

Ilustrasikan lemma tersebut pada graf berikut.

Komponen graf

Lintasan (*Path*)

Lintasan dengan panjang n dari simpul awal v_0 ke simpul akhir v_n pada graf G adalah barisan simpul dan sisi yang terbentuk

$$v_0, e_1, v_1, e_2, v_2, \ldots, v_{n-1}, e_n, v_n$$

sedemikian sehingga

$$e_1 = (v_0, v_1), e_2 = (v_1, v_2), \ldots, e_n = (v_{n-1}, v_n)$$

adalah sisi-sisi dari graf G.

Panjang lintasan adalah banyaknya sisi pada lintasan tersebut

Siklus (cycle) atau sirkuit (circuit)

Siklus adalah lintasan yang berawal dan berakhir pada simpul yang sama.

Panjang sirkuit adalah banyaknya sisi pada lintasan tersebut.

Konektivitas/keterhubungan (connectivity)

Sebuah graf G dikatakan terhubung jika untuk setiap simpul u dan v di G, terdapat lintasan yang menghubungkan u dan v.

Subgraf

Subgraf

Contoh masalah terkait subgraf (1)

Diberikan graf *G* berikut:

Tentukan dua subgraf berbeda dari graf G yang memenuhi sifat berikut:

- 1. Subgraf pertama hanya memiliki simpul $\{A, B, C\}$ beserta semua sisi yang menghubungkannya.
- 2. Subgraf kedua hanya memiliki sisi $\{(A, B), (B, D)\}$.

Solusi 1

Subgraf 1:

Subgraf pertama hanya memiliki simpul $\{A,B,C\}$ beserta semua sisi yang menghubungkannya. Berikut adalah gambarnya:

Subgraf 2:

Subgraf kedua hanya memiliki sisi $\{(A, B), (B, D)\}$. Berikut adalah gambarnya:

Contoh masalah terkait subgraf (2)

Diberikan graf G berikut:

Tentukan subgraf H dari graf G yang hanya memiliki simpul $\{C, B, D\}$. Gambarkan graf H.

Solusi 2

Subgraf H hanya memiliki simpul $\{B, C, D\}$:

Subgraf H hanya memiliki simpul $\{B, C, D\}$:

Subgraf H hanya memiliki simpul $\{B, C, D\}$:

Beberapa contoh graf

Graf lengkap

Graf lengkap adalah graf yang setiap pasang simpulnya dihubungkan oleh sebuah sisi.

Permasalahan terkait graf lengkap

Diberikan graf lengkap K_6 dengan 6 simpul, yang diberi label A, B, C, D, E, F.

- 1. Hitung jumlah sisi pada graf K_6 .
- 2. Tentukan banyaknya jalur berbeda yang menghubungkan simpul A ke simpul C melalui tepat dua simpul lain.
- 3. Tentukan jumlah subgraf berbeda yang dapat dibentuk dari K_6 , di mana setiap subgraf memiliki tepat 4 simpul dan 3 sisi.

Graf siklus

Graf siklus (cycle) adalah sebuah graf yang sisi-sisinya membentuk sebuah sirkuit.

Permasalahan terkait graf siklus

Diberikan graf siklus C_n dengan n simpul, yang diberi label v_1, v_2, \ldots, v_n .

- 1. Buktikan bahwa jika n adalah bilangan ganjil, maka graf C_n tidak memiliki pewarnaan 2 warna.
- 2. Misalkan n = 6, hitung banyaknya jalur Hamiltonian berbeda pada graf C_6 .
- 3. Untuk graf C_n dengan n=10, tentukan jumlah subgraf berbeda yang merupakan graf siklus dengan panjang 4.

Pewarnaan 2 warna pada C_n untuk n ganjil

Graf siklus C_n dengan n simpul adalah n-reguler dengan setiap simpul memiliki derajat 2. Jika C_n memiliki pewarnaan 2 warna, maka simpul-simpul v_1, v_2, \ldots, v_n harus diwarnai sedemikian rupa sehingga tidak ada dua simpul bertetangga yang memiliki warna yang sama.

- 1. Warna A diberikan ke v_1 , warna B diberikan ke v_2 , warna A ke v_3 , dan seterusnya.
- 2. Karena n adalah ganjil, simpul terakhir (v_n) akan memiliki warna yang sama dengan simpul pertama (v_1) , karena pola pewarnaan A, B, A, B, \ldots akan berulang.

Hal ini melanggar aturan pewarnaan graf, sehingga C_n tidak memiliki pewarnaan 2 warna jika n adalah bilangan ganjil.

Jalur Hamiltonian pada C_6

Graf siklus C_n selalu memiliki jalur Hamiltonian. Untuk n=6, setiap jalur Hamiltonian mengunjungi setiap simpul tepat satu kali dan kembali ke simpul awal.

- 1. Terdapat 6! cara untuk mengatur urutan kunjungan simpul (v_1, v_2, \ldots, v_6) .
- 2. Namun, karena jalur Hamiltonian pada siklus C_6 bersifat melingkar, urutan rotasi dan pembalikan dianggap sama. Oleh karena itu, jumlah jalur Hamiltonian berbeda adalah:

$$\frac{6!}{2\times 6} = \frac{720}{12} = 60$$

Subgraf siklus panjang 4 pada C_{10}

- 1. Pilih 4 simpul dari 10 simpul. Banyaknya cara memilih 4 simpul adalah: $\binom{10}{4} = 210$.
- 2. Untuk setiap 4 simpul yang dipilih, hanya ada satu cara untuk membentuk graf siklus panjang 4 karena simpul-simpul harus dihubungkan secara melingkar.
- 3. Maka, jumlah subgraf berbeda yang merupakan siklus panjang 4 adalah: 210.

Graf teratur (1)

Sebuah graf dikatakan teratur (regular) jika setiap simpul pada graf tersebut memiliki derajat yang sama.

Graf teratur (2)

Permasalahan terkait graf teratur

Sebuah graf sederhana dan tidak berarah G memiliki n simpul dan merupakan k-reguler, artinya setiap simpul di graf memiliki derajat k. Jawab pertanyaan berikut:

- 1. Buktikan bahwa $n \cdot k$ harus genap untuk graf k-reguler G.
- 2. Misalkan G adalah graf k-reguler dengan n=8 dan k=3. Tentukan apakah G dapat menjadi graf planar. Jika ya, gambarkan. Jika tidak, berikan alasannya.
- 3. Misalkan G adalah graf k-reguler dengan n=10 dan k=4. Tentukan jumlah sisi (m) dalam G, dan buktikan apakah G memiliki kemungkinan menjadi graf lengkap.

Buktikan bahwa $n \cdot k$ harus genap

Setiap sisi dalam graf sederhana dihubungkan oleh dua simpul. Maka, jumlah total derajat semua simpul dalam graf, yang merupakan $n \cdot k$, sama dengan 2m, di mana m adalah jumlah sisi dalam graf. Karena 2m selalu genap, $n \cdot k$ juga harus genap.

Apakah G planar untuk n = 8 dan k = 3?

Graf G memiliki n=8 simpul dan setiap simpul memiliki derajat k=3. Jumlah sisi (m) dapat dihitung sebagai:

$$m=\frac{n\cdot k}{2}=\frac{8\cdot 3}{2}=12.$$

Dengan menggunakan formula Euler untuk graf planar (n-m+f=2), di mana f adalah jumlah daerah:

$$8-12+f=2 \implies f=6.$$

Karena G memenuhi syarat jumlah sisi $m \leq 3n-6$ untuk graf planar (di mana $3\cdot 8-6=18$), G dapat menjadi graf planar. Salah satu contoh graf planar G adalah graf kubus.

Apakah G graf lengkap untuk n = 10 dan k = 4?

Graf G memiliki n = 10 simpul dan setiap simpul memiliki derajat k = 4. Jumlah sisi (m) dapat dihitung sebagai:

$$m=\frac{n\cdot k}{2}=\frac{10\cdot 4}{2}=20.$$

Graf lengkap dengan n = 10 simpul memiliki jumlah sisi sebanyak:

$$\binom{10}{2}=45.$$

Karena $m=20 \neq 45$, G tidak dapat menjadi graf lengkap. G adalah graf 4-reguler, yang berarti setiap simpul terhubung dengan 4 simpul lainnya, tetapi tidak semua pasangan simpul terhubung.

Graf bipartit

Sebuah graf merupakan graf bipartit jika simpul-simpulnya dapat dipartisi menjadi dua sub-himpunan yang saling lepas (disjoint atau tidak beririsan), yaitu A dan B, dimana A dan B masing-masing tidak memuat sisi (dengan kata lain, A dan B adalah graf kosong).

Permasalahan terkait graf bipartit

Diberikan sebuah graf G = (V, E) yang merupakan graf bipartit lengkap $K_{m,n}$ dengan jumlah simpul m + n dan jumlah sisi $m \cdot n$. Jawab pertanyaan berikut:

- 1. Buktikan bahwa graf $K_{m,n}$ tidak mengandung siklus ganjil.
- 2. Misalkan G adalah graf bipartit lengkap $K_{3,4}$. Tentukan apakah G planar. Jika tidak planar, buktikan menggunakan ketidaksamaan Euler.
- 3. Misalkan G adalah graf bipartit lengkap $K_{5,6}$. Hitung jumlah lintasan sederhana dengan panjang 4 yang dapat dibentuk pada graf tersebut.

Bukti bahwa $K_{m,n}$ tidak mengandung siklus ganjil

Graf bipartit $K_{m,n}$ terdiri dari dua himpunan simpul U dan V sedemikian sehingga setiap sisi hanya menghubungkan simpul di U dengan simpul di V.

Karena simpul-simpul dalam satu himpunan tidak terhubung satu sama lain, panjang siklus dalam graf $K_{m,n}$ harus merupakan bilangan genap. Oleh karena itu, $K_{m,n}$ tidak mengandung siklus ganjil.

Apakah $K_{3,4}$ planar?

Graf $K_{3,4}$ memiliki m=3 dan n=4, sehingga jumlah simpul adalah:

$$|V| = m + n = 3 + 4 = 7.$$

Jumlah sisi adalah:

$$|E|=m\cdot n=3\cdot 4=12.$$

Menggunakan ketidaksamaan Euler untuk graf planar $(|E| \le 3|V| - 6)$:

$$|E| = 12$$
, $3|V| - 6 = 3 \cdot 7 - 6 = 15$.

Karena $|E| \le 3|V| - 6$ terpenuhi, graf $K_{3,4}$ dapat planar. Dengan pengaturan simpul dan sisi yang tepat, graf ini dapat digambarkan sebagai graf planar.

Jumlah lintasan sederhana panjang 4 dalam $K_{5,6}$

Graf $K_{5,6}$ memiliki m=5 dan n=6. Untuk membentuk lintasan sederhana dengan panjang 4:

- Pilih simpul awal dari himpunan U (m = 5) dan simpul akhir dari himpunan V (n = 6).
- Panjang lintasan 4 berarti lintasan harus memiliki pola $U \to V \to U \to V \to U$, dengan simpul yang tidak berulang.

Jumlah lintasan sederhana dihitung sebagai:

Jumlah lintasan =
$$m \cdot n \cdot (m-1) \cdot (n-1) = 5 \cdot 6 \cdot 4 \cdot 5 = 600$$
.

Jadi, terdapat 600 lintasan sederhana dengan panjang 4 pada graf $K_{5.6}$.

Tugas

Pilihlah sebuah topik terkait dengan graf yang dibahas pada slide (misalnya graf teratur, derajat simpul, dsb.)

Carilah contoh penerapan konsep graf yang terkait dengan topik yang dipilih.