请检查后使用!

一、选择题(1-5小题,每小题4分,共20分)

- **1.** 设 A 为 n 阶矩阵, $A^2 = A$,则下列成立的是【D】

- (A) A = O (B) A = E (C) 若A不可逆,则 A = O (D) 若A可逆,则 A = E

2. 若n阶矩阵 A 经过若干次初等变换化为矩阵 B ,则【C】

(A) |A| = |B|

- **(B)** $|A| \neq |B|$
- (C) $\ddot{A} \mid A \models 0$, $M \mid B \models 0$ (D) $\ddot{A} \mid A \mid > 0$, $M \mid B \mid > 0$

3. 下列矩阵中不能相似于对角矩阵的是【D】

(A)
$$\begin{pmatrix} 1 & 1 & a \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$
 (B) $\begin{pmatrix} 1 & 1 & a \\ 1 & 2 & 0 \\ a & 0 & 3 \end{pmatrix}$ (C) $\begin{pmatrix} 1 & 1 & a \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ (D) $\begin{pmatrix} 1 & 1 & a \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}$

- **4.** 若 $\alpha_1, \alpha_2, \alpha_3$ 线性相关, $\alpha_2, \alpha_3, \alpha_4$ 线性无关,则【A】
- (A) α_1 可由 α_2 , α_3 线性表示 (B) α_4 可由 α_1 , α_2 , α_3 线性表示
- (C) α_4 可由 α_1, α_3 线性表示 (D) α_4 可由 α_1, α_2 线性表示

5. 设 α_1, α_2 是齐次方程组Ax = 0的基础解系, β_1, β_2 是非齐次方程组Ax = b的两个不同解, 则方程组 Ax = b 的通解为【D】

(A)
$$k_1\alpha_1 + k_2(\alpha_1 - \alpha_2) + \frac{\beta_1 - \beta_2}{2}$$
 (B) $k_1\alpha_1 + k_2(\beta_1 - \beta_2) + \frac{\beta_1 + \beta_2}{2}$

(B)
$$k_1 \alpha_1 + k_2 (\beta_1 - \beta_2) + \frac{\beta_1 + \beta_2}{2}$$

(c)
$$k_1\alpha_1 + k_2(\beta_1 + \beta_2) + \frac{\beta_1 - \beta_2}{2}$$
 (D) $k_1\alpha_1 + k_2(\alpha_1 + \alpha_2) + \frac{\beta_1 + \beta_2}{2}$

(D)
$$k_1 \alpha_1 + k_2 (\alpha_1 + \alpha_2) + \frac{\beta_1 + \beta_2}{2}$$

二、填空题(6-11小题,每小题5分,共30分)

6. 行列式
$$\begin{vmatrix} 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{vmatrix} =$$

A:
$$A^n = 3^{n-1} \begin{pmatrix} 2 & 1 & 1 \\ -2 & -1 & -1 \\ 4 & 2 & 2 \end{pmatrix}$$

8. 设
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ 和 $\beta_1 = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix}$, $\beta_2 = \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix}$ 是向量空间 V 的两组基,则从 α_1 , α_2

到
$$\beta_1$$
, β_2 的过渡矩阵为 $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$

9. 设
$$A = \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix}$$
, $\alpha = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$, 则向量 $A^2 \alpha$ 的模 $\|A^2 \alpha\| = 125$

10. 设
$$A$$
 , B 都 是 三 阶 矩 阵 , A 相 似 于 B , 且 $|E-A|=|E-2A|=|E-3A|=0$,则 $|B^{-1}+2E|=60$

11. 二次型
$$f(x_1, x_2, x_3) = (x_1 + x_2 - x_3)^2 + (x_2 + x_3)^2$$
 是否正定(填"是"或"否")

三、解答题(12-14 小题,每小题 12 分,共 36 分)

12. 讨论含参数
$$a$$
 的线性方程组
$$\begin{cases} ax_1 + (a+3)x_2 + x_3 = -2 \\ x_1 + ax_2 + x_3 = a \\ x_1 + x_2 + ax_3 = a^2 \end{cases}$$
解的情况,在有无穷多解时求

出结构式通解。

(1) 当 $a \neq 1, \neq 2, \neq -2$ 时,方程组有唯一解。.......2'

(2) 当a = 1时,

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 4 & 1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 3 & 0 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

此时方程组有无穷多解,通解为 $\begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} + k \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 3'

(3) 当a = 2时

$$\begin{pmatrix} 1 & 1 & 2 & | & 4 \\ 1 & 2 & 1 & | & 2 \\ 2 & 5 & 1 & | & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & | & 4 \\ 0 & 1 & -1 & | & 2 \\ 0 & 3 & -3 & | & -10 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & | & 4 \\ 0 & 1 & -1 & | & 2 \\ 0 & 0 & 0 & | & -16 \end{pmatrix}$$

此时方程组无解。......2'

(4) 当a = -2时

$$\begin{pmatrix} 1 & 1 & -2 & | & 4 \\ 1 & -2 & 1 & | & -2 \\ -2 & 1 & 1 & | & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 & | & 4 \\ 0 & -3 & 3 & | & -6 \\ 0 & 3 & -3 & | & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 & | & 4 \\ 0 & 1 & -1 & | & 2 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & | & 2 \\ 0 & 1 & -1 & | & 2 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

此时方程组有无穷多解,通解为 $\begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} + k \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ 3'

13. 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \\ 5 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 0 \\ 3 \\ -1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 1 \\ 3 \\ 3 \\ 7 \end{pmatrix}$ 的秩和一个极大线性无关组,

并将其余向量用此极大线性无关组表示。

向量组的秩为 2, 极大线性无关组为 α_1,α_24

$$\alpha_3 = 2\alpha_1 - \alpha_2$$

$$\alpha_4 = \alpha_1 + \alpha_2$$
4'

14. 设
$$A = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & -2 \\ 2 & -2 & 4 \end{pmatrix}$$
, 求正交矩阵 Q 使得 $Q^T A Q$ 为对角矩阵。

解:特征值为
$$\lambda_1=\lambda_2=6,\lambda_3=0$$
,______4'

当
$$\lambda_3 = 0$$
时,特征向量为 $e_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} -1\\1\\1 \end{pmatrix}$,2'

取
$$Q = (e_1, e_2, e_3)$$
为正交矩阵,可,使 $Q^{-1}AQ = diag(6,6,0)$2

四、证明题(15-16小题,每小题7分,共14分)

15. 设 $\lambda_1, \lambda_2, \lambda_3$ 是 A 的三个不同的特征值,对应的特征向量为 α_1 , α_2 , α_3 , 令 $\beta = \alpha_1 + \alpha_2 + \alpha_3$.证明: 向量组 β , $A\beta$, $A^2\beta$ 线性无关.

证明: 设
$$k_1\beta + k_2A\beta + k_3A^2\beta = 0$$
 ·····(*).

根据特征值特征向量的定义可得

$$A\beta = A(\alpha_1 + \alpha_2 + \alpha_3) = \lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \lambda_3 \alpha_3,$$

$$A^{2}\beta = A^{2}(\alpha_{1} + \alpha_{2} + \alpha_{3}) = \lambda_{1}^{2}\alpha_{1} + \lambda_{2}^{2}\alpha_{2} + \lambda_{3}^{2}\alpha$$

代入(*)并整理得

$$(k_1 + k_2\lambda_1 + k_3\lambda_1^2)\alpha_1 + (k_1 + k_2\lambda_2 + k_3\lambda_2^2)\alpha_2 + (k_1 + k_2\lambda_3 + k_3\lambda_3^2)\alpha_3 = 0$$

 $: \alpha_1$, α_2 , α_3 线性无关,

$$\therefore k_1 + k_2 \lambda_1 + k_3 \lambda_1^2 = 0, \quad k_1 + k_2 \lambda_2 + k_3 \lambda_2^2 = 0, \quad k_1 + k_2 \lambda_3 + k_3 \lambda_3^2 = 0 \dots 3'$$

$$\therefore$$
 $\lambda_1,\lambda_2,\lambda_3$ 互不相同, \therefore $k_1=k_2=k_3=0$.(Vandermonde 行列式)2'

16. 设A,B 为n阶正定矩阵,证明: A+B为正定矩阵。

证明: 因为A,B 为n阶正定矩阵,故对任意 $x \in \mathbb{R}^n$,

$$x^{T} A x \ge 0$$
, $x^{T} B x \ge 0$3'

$$\mathbb{H} x^T A x = 0 \Rightarrow x = 0, \quad x^T B x = 0 \Rightarrow x = 0$$

于是任意 $x \in \mathbb{R}^n$,

$$x^{T}(A+B)x = x^{T}Ax + x^{T}Bx \ge 0$$
.....2'

$$\nearrow$$
 $x^T(A+B)x=0 \Rightarrow x=0$ 2'

故A+B为正定矩阵。