Overenie vlastností DTFC riadenia SMPM simuláciou

NPAE Zadanie projektu č. 2

Bc. Oliver Hollý

Teoretický úvod

SMPM (Synchrónny Motor s Permanentnými Magnetmi)

- Nemá vinutie na rotore
- Stator je napájaný harmonickým striedavým napätím z frekvenčného meniča
- Riadenie: 1. zmenou frekvencie napájacieho napätia
 - 2. dynamické vektorové alebo DTC riadenie
- Realizácia riadenia: 1. Meraním mech. a elek. veličín (poloha, rýchlosť rotora, statorové prúdy)
 - 2. Meraním len elektrických veličín (statorové prúdy a napätia)

Napäťové rovnice statora: Magnetické toky:

$$\begin{split} u_{\mathit{sd}} &= R_{\mathit{s}} i_{\mathit{sd}} + L_{\mathit{d}} \frac{d \, i_{\mathit{sd}}}{dt} - \omega \, \psi_{\mathit{q}} & \psi_{\mathit{d}} = L_{\mathit{d}} \, i_{\mathit{sd}} + \psi_{\mathit{PM}} \\ u_{\mathit{sq}} &= R_{\mathit{s}} i_{\mathit{sq}} + L_{\mathit{q}} \frac{d \, i_{\mathit{sq}}}{dt} + \omega \, \psi_{\mathit{d}} & \psi_{\mathit{q}} = L_{\mathit{q}} i_{\mathit{sq}} & \text{q} & \text{p}_{\mathit{pM}} \\ \text{kde} \, \psi_{\mathit{PM}} \, \text{je magnetický tok permanentných magnetov.} & \omega \end{split}$$

$$M_{m} = \frac{3}{2} p' \left[\psi_{d} i_{sq} - \psi_{q} i_{sd} \right] = \frac{3}{2} p' \left[\psi_{PM} i_{sq} + \left(L_{d} - L_{q} \right) i_{sd} i_{sq} \right]$$

Pohybová rovnica:

Moment motora:

$$M_m - M_z = J \frac{d \omega_m}{dt}$$

 $M_{\it m}-M_{\it z}=Jrac{d\omega_{\it m}}{dt}$ kde J je moment zotrvačnosti a $\omega_{\it m}$ mechanická uhlová rýchlosť

Figure 1. Matematický opis modelu synchrónneho elektromotoru (Zdroj: NPAE, Igor Bélai)

DTFC (Direct Torque and Stator Flux Control)

Priame riadenie momentu a magnetického toku

- Výhody: 1. jednoduchosť (žiadna transformácia súradníc)
 - 2. rýchla odozva momentu
- Nevýhody: 1. problém pri štartovaní a nízkej rýchlosti otáčania
 - 2. premenlivá spínacia frekvencia

Porovnanie medzi vektorovým riadením a DTFC [7]

	DTFC	Vektorové riadenie	
Rýchlosť odozvy momentu	∨yššia	Nižšia	
Zvlnenie a skreslenie momentu, toku a prúdov	Vysoké	Nízke	
Potreba znalosti presnej polohy rotora	Nie	Áno	
Regulácia prúdu	Nie	Áno	
PWM modulátor	Nie	Áno	
Súradnicová transformácia veličín	Nie	Áno	
Spínacia frekvencia	Premenlivá, závislá na pracovnom bode a režime činnosti	Konštantná (ak sú regulátory vektora prúdu implementované v súradnicovom systéme rotora)	
Akustický hluk	Širokospektrálny, závislý na pracovnom bode a režime činnosti	Nízky, s konštantnou frekvenciou	
Nastavovanie regulátorov	Šírka hysterézie	Zosilnenia PI regulátorov	
Zložitosť	Nižšia	∨yššia	

Figure 2 Teoretické porovnanie medzi vektorovým a DTFC riadením (Zdroj: NPAE, Igor Bélai)

2 Zadanie

Motor číslo 4.: EMRAX 208 High Voltage

Tab. 1. Hodnoty parametrov motora EMRAX pre výpočet regulátorov prúdu

Parameter	Hodnota	Jednotka	Popis			
L _d , L _q	125/130	uН	Indukcia jednej fazy			
$R_d = R_q$	14	mΩ	Vnutorny odpor fazy pri 25 deg C			
T _d	0.0089	S	$T_d = L_d / R_d$			
Tq	0.0093	S	$T_q = L_q/R_q$			

Tab. 2. Zvolene a vypočítane hodnoty parametrov regulátorov prúdu

Parameter	Hodnota		Jednotka	Popis
ξ	0.8		-	Zvolíme {∈Π0.7 .1Π. ziadane tlmenie
ω_{0l}	250	500	Rad/s	vlastná frekvencia regulačného obvodu prúdu
K _{pd}	0.036	0.09	V/A	$K_{pd} = 2* \xi * \omega_{0l} * L_d - R_d$
T _{id}	0.0046	0.0028	S	$T_{id} = K_{pd} / (L_d * \omega_{0l} ^2)$
K _{pq}	0.038	0.09	V/A	$K_{pq} = 2* \xi * \omega_{01} * L_{q} - R_{q}$
T _{iq}	0.0047	0.0028	S	$T_{iq} = K_{pq} / (L_q * \omega_{0l} ^2)$

3 Simulácia vektorového riadenia

Figure 3. Simulačný model vektorového riadenia SMPM

Figure 4. Regulátory momentovej a tokotvornej zložky vektora prúdu. Pid, Piq

$$\delta = 100 \times \frac{i_{q,max} - i_{q,\infty}}{i_{q,\infty}} \ [\%]$$

Figure 5. Výpočet preregulovania

```
% *** motor parameters EMRAX ***
Kx = 200;
Vdc= 470;
         % Maximal battery voltage [Vdc]
KT = 0.8;  % Torque/motor current [Nm/1Aph rms]
TorqueMax= 140; % Maximal motor torque [Nm]
TorqueNom= 80; % Continuous motor torque [Nm]
R = 14e-3;  % Internal phase resistance [Ohm]
KE = 0.0487;
          % AC voltage between two phases
[Vrms/1RPM]
Phi= 0.0393; % Magnetic flux - axial [Vs]
p = 10; % Number of pole pairs
J = 0.023; % Rotor inertia LC motor [kg.m^2]
```

```
% calculated values:
wn=nn/60*2*pi;
Fn=nn*p/60;
Vn=Vdc/2;
F=0;
Vm=sqrt(2/3)*Vdc;
iq_ref = 150

% PI controller:
w0 = 500;
xi = 0.8;

Kpd = 2*xi*w0*Ld-R
Tid = Kpd/(Ld*w0^2)
Kpq = 2*xi*w0*Lq-R
Tiq = Kpq/(Lq*w0^2)
```

Figure 6. Simulačný script vektorového riadenia so vstupnými parametrami a vzorcami

Table 1. Výsledky simulácie opisujúce vektorové riadenie

ξ	ω _{0ι} [rad/s]	Kp [V/A]	Ti [s]	Iq* [A]	Preregulovanie [%]	Treg [s]
	250	0.038	0.0047	1	1.50	0.034
0.8				150	1.51	0.0343
	500	0.09	0.0028	1	1.54	0.018
				150	1.51	0.017

Tabulka 1. Obsahuje vypočítané hodnoty parametrov regulátorov a graficky zistené hodnoty času regulácie a preregulovanie. Graficky odčítané hodnoty hovoria o kvalite regulácie.

4 Simulácia DTFC riadenia

Figure 7. Bloková schéma generátora momentu SMPM s využitím DTFC

Figure 8. Simulačná schema DTFC pre SMPM

Opis simulácie:

V simulačnej štruktúre s DTFC riadením vykonáme dve simulácie, ktoré sa budú líšiť veľkosťou skoku žiadaného momentu motora. Žiadaný moment motora vypočítame zo žiadanej momentotovornej zložky vektora prúdu iq:

$$M_{m}^{*} = \frac{3 p}{2} i_{q}^{*} \psi_{pm}$$

kde p je počet polových dvojíc motora a ψ je veľkosť magnetického toku permanentných magnetov.

Na vypočet žiadaneho momentu motora použite hodnoty iq * zo simulacii na cvičeni č. 4.

Table 2. Výsledky simulácie popisujúce DTFC riadenie

Iq* [A]	Preregulovanie [%]	Treg [s]		
1	0.5	0.0000003		
150	0.52	0.000048		

 $\omega_{01} = 500$

id = 0

5 Porovnanie výsledkov simulácií

6 Zhodnotenie

Table 3. Porovnanie vektorového riadenia VR a DTFC

Riadenie	ξ	ω _{0ι} [rad/s]	Kp [V/A]	Ti [s]	Iq* [A]	Preregulovanie [%]	Treg [s]
		250	0.038	0.0047	1	1.50	0.034
VR	0.8				150	1.51	0.0343
		500	0.09	0.0028	1	1.54	0.018
					150	1.51	0.017
DTFC	0.8	500			1	0.5	0.000003
					150	0.52	0.000048

V tomto cvičení sme porovnávali riadenie **Synchrónneho Motora s Permanentnými Magnetmi** vektorovým riadením a DTFC (Priame riadenie momentu a magnetického toku). Výstup v Table 3. jasne znázorňuje praktickú prevahu riadenia DTFC a to v kvalite regulácie (preregulovanie, čas regulácie). Navyše je DTFC jednoduchšie implmentovateľné.