

<u>Junaidfazal08@gmail.com</u> Bc190202640@vu.edu.pk

MTH501-Linear Algebra

(Solved MCS's)

LECTURE FROM (23 to 45)

FOR MORE VISIT VULMSHELP.COME

JUNAID MALIK 0304-1659294

AL-JUNAID TECH INSTITUTE

www.vulmshelp.com

Language Courses Training Available

I'm providing paid courses in different languages within 3 Months, Certificate will be awarded after completion.

- HTML
- <u>IQUERY</u>

• CSS

- PHP MYSQL
- JAVASCRIPT
- NODES.JS
- BOOTSTRAPS
- REACT IS

LMS Handling Services

LMS Activities Paid Task

Assignments 95% Results

Quizes 95% Results

GDB 95% Results

For CS619 Project Feel Free To Contact With Me

Ph# 0304-1659294 Email: junaidfazal08@gmail.com

ALL answers are verified if found any mistake then Correct ACCORDINGLY

- 1. Which statement about the General Least Square Method is true?
 - Solution obtained by this method is always Unique.
 - ❖ This is a numerical method for the solution of system of Linear Equations.
 - This method find an X that make Ax as close possible to the b.
 - This method gives us exact solution of the System.
- 2. Let v = (1, -2, 2, 0). The unit vector in the same direction as v is:

$$4 \frac{1}{3}, \frac{2}{3}, \frac{2}{3}, 0$$

$$\frac{1}{3}, \frac{2}{3}, \frac{2}{3}, \frac{1}{3}, \frac{1}{3}$$

0304-1659294

3. Let u = (3, -2), v = (4, 5). For the weighted Euclidean inner product $(u, v) = 4u_1v_1 + 5u_2v_2$

$$(v, u) =$$

- 4. Let v = (0, 2, 2, 1). The unit vector in the same direction as v is
 - \bullet 0, $\frac{2}{3}$, $\frac{2}{3}$, $\frac{21}{3}$
 - $0, \frac{22}{3}, \frac{2}{3}, \frac{21}{3}$
- 5. Let I^3 have the Eduction inner product. Then u = (2, 1, 3), V = (1, 7, k) are orthogonal for
 - **♦** K=9
 - $\star K = -3$
 - **♦** K = -9
 - $\star K = 3$
- 6. Let A ben x n Matrix whose entries are real. If $\ \ \,$ is an eigenvalue of A with x a corresponding eigenvector in $\ \ \, ^n$, then
 - $A \overline{x} = 2 x$
 - $A \overline{x} = \overline{2} x$
 - $A \overline{x} = \overline{2} \overline{x}$
 - $A \overline{x} = 2 x$
- 7. Suppose that $A = \begin{bmatrix} 11.25 \\ 1.75 \end{bmatrix}$ has eigenvalues 2 and 0.5.

then Origin is a

- Saddle point
- **❖** Repellor

- **❖** Attractor
- has eigenvalues 0.8 and 8. Suppose that $A = \begin{bmatrix} 0.5 \\ 1-0.3 \end{bmatrix}$
- 1.1. then Origin is a
 - Saddle point
 - *Repellor
 - **❖** Attractor
- 9. if A is an m x n matrix with linearly independent column vector, then A can be factored as

$$A = QR$$

TECHIN

Where Q is an m X n matrix orthonormal column vector, and R is an n x m.

- ❖ Upper triangular matrix
- **❖** Invertible matrix
- ❖ Invertible lower triangular matrix
- invertible Upper triangular matrix
- 10. The matrix equation $A^T A x^{\hat{}} = A^T b$ represent a system of liner equation Commonly referred to as the
 - ❖ Normal equation for x
- •• Normal equation for b
 •• By the best ↑ 11. By the best Approximation theorem, the distance from y to W is $||y - Y^{\dagger}||$, where $Y^{\dagger} =$
 - **❖** Projw Y[^]
 - Projwy

- projy W
- 12. $||\mathbf{u} + \mathbf{v} + \mathbf{w}|| \, ||\mathbf{u}|| + ||\mathbf{v}|| + ||\mathbf{w}||$ for all vectors \mathbf{u} , \mathbf{v} and \mathbf{w} in an inner product space.
 - * True
 - *False
- 13. The dominate for the matrix $A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ is
 - **♦** 2 = 1
 - **♦** ? = **-**3
 - **♦** ? = **-**1
 - * = 0
- 14. A square matrix A I invertible if and only if and only is X = 0 is not an Eigen Value of A
 - * True
 - *False
- 15. A square matrix with orthogonal columns -----matrix.
 - ❖ Is an orthogonal
 - ❖ May be an orthogonal
 - May not be an orthogonal
 - ❖ Is not an orthogonal
- 16. if two row are orthogonal, they are -----------
 - Linearly independent
 - Linearly Dependent

- 17. if X is orthogonal to both U and V, then must be ----to u+v.
 - Orthogonal
 - Orthonormal
 - *Perpendicular
 - **❖** Parallel
- 18. the given system 2x + 3y = 3 has 6x + 9y = 7
 - Unique solution
 - Infinitely many solution
 - *No solution
 - None of these
- 19. Which statement about the matrix $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 27 & 2 & 0 & 0 & 0 \end{bmatrix}$ is

$$\begin{bmatrix} 19 & 1 & 2 & 0 & 1 \\ 5 & 4 & 2 & & -1 & 1 \end{bmatrix}$$

false?

- **❖** Eigenvalue 2 has algebraic multiplicity 1
- ❖ Eigenvalue of the matrix 1, 2 and -1
- ♦ Characteristic polynomial of the matrix is $(1- \boxed{2})(2-\boxed{2})^2(-1-\boxed{2})$
- ❖ Eigenvalue -1 has multiplicity 1
- 20 .if $A = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is diagonalizable A has 2 district

? 21 22 E

eigenvalues.

- **True**
- False

21. A is diagonalizable if $A = PDP^{-1}$ where

- ❖ D is any matrix and P is an invertible matrix
- ❖D is a diagonal matrix and P is any matrix
- ❖ D is a diagonal matrix and P is invertible
- ❖D is a invertible matrix and p is any matrix

22. How many trems are there the algebraic expression $8X^2 + \sqrt{9}x \times 25X^3$?

- *****4

23. if two matrixes are added, then which of following should be true for them?

- ❖ Both must have same order
- ❖ Both must have different order
- ❖ Both must be rectangular
- ❖ Both must be square

24. if a matrix
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 6 & 1 & 1 \end{bmatrix}$$
, then which of the

following is true for A?

- ❖It is a rectangular matrix
 ❖It is row matrix
- **❖** It is row matrix
- **❖ It is singular matrix**
- ❖ It is scalar matrix

25. if v_1 , v_2 and v_3 are in \mathbb{R}^m then which of the

2, 3,

following is equivalent to $[v_1, v_2, v_3]$ [7]?

$$+2^{i}v_{1}$$
 $-7^{i}v_{2}$ $+5^{i}v_{3}$

\$\ldot*
$$5^{i}v_{1,}$$
 $-7^{i}v_{2,}$ $+2^{i}v_{3,}$
\$\ldot* $5^{i}v_{1,}$ $+2^{i}v_{2,}$ $-7^{i}v_{3,}$

$$*5^{i}v_{1}$$
 + $2^{i}v_{2}$ - $7^{i}v_{3}$

$$+5^{i}v_{1,}+5^{i}v_{2,}-7^{i}v_{3,}$$

26. if $(r_{v_1}, r_{v_2}, r_{v_3})$ is linearly dependent set and $i_v \ \mathbb{C} c^i v$

(where 'c'is a scalar), which option is true?

$$\begin{array}{c} & \stackrel{r}{\overset{}{\checkmark}} v_{1,} \text{ span} \left(\stackrel{r}{\overset{}{\lor}} v_{1,}, \stackrel{r}{\overset{}{\lor}} v_{2,} \right) \\ & \stackrel{r}{\overset{}{\checkmark}} v_{3,} \text{ span} \left(\stackrel{r}{\overset{}{\lor}} v_{1,}, \stackrel{r}{\overset{}{\lor}} v_{2,} \right) \\ & \stackrel{r}{\overset{}{\checkmark}} v_{2,} \text{ span} \left(\stackrel{r}{\overset{}{\lor}} v_{1,}, \stackrel{r}{\overset{}{\lor}} v_{2,} \right) \end{array}$$

$$rac{1}{2}$$
 span (rv_1, rv_2, rv_3)

27. if $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix}$, then which of the following is true

for the matrix A?

- ❖ It is an invertible matrix
- ❖ It is a singular matrix
- ❖ It is a non invertible matrix
- ❖ It is a rectangular matrix

28. which of the following is true for the partitioned matrices $A = (C \ D)$ and $B = (E \ F)$, where Sub-

matrices C and D have the same size As E and F respectively?

$$A + B = (CE DF)$$

$$A + B = (CE DF)$$

$$D + F$$

- 29. If a matrix A is factorized into lower and upper triangular matrices, then which of the following is true for the matrix?
 - ❖ It is called an LU- procedure.
 - **❖ It is called an LU –decomposition**
 - ❖ It is called an LU- matrices.
 - ❖ It is called an LU- algorithm.

30. if the matrix
$$A = \begin{bmatrix} 1 & 5 & 4 \\ 0 & 1 & 7 \\ 0 & 0 & 0 \end{bmatrix}$$
, then which of the

following is true about it?

- **❖ Its determinant is 0.**

- Let a set S is 1 31. Let a set S is a basis of a vector space V, then which of the following is NOT true about it?
 - ❖ It is linearly dependent.
 - ❖ Each element of S belong to V.

- ❖ It spans V.
- **❖** It is linearly independent.

32. if B =
for R² and sn x¹
$$\otimes$$
 R² has coordinate vector \otimes x² \otimes
for R² and sn x¹ \otimes R² has coordinate vector \otimes x² \otimes

$$x^r = \begin{bmatrix} 60 \\ 0 \\ 1 \end{bmatrix}$$

$$x^r = \begin{bmatrix} 20 \\ 0 \\ 1 \end{bmatrix}$$

33.if a set $S=\{1, x, x^2\}$ is a for p_2 and $[p^1]_s=(2, 4, 7)$, then which of the following is the most appropriate option?

$$P_2 = 2 - 4x + 7x^2$$

$$P_2 = 2 - 4x - 7x^2$$

$$P_2 = 2 + 4x + 7x^2$$

♦
$$P_2$$
 = 4x+7 x²

34. which of the following is the set of standard basis for R³?

$$\{(1, 1, 0), (0, 1, 0), (1, 0, 1)\}$$

$$* \{(1,0,0),(0,1,1),(0,0,1)\}$$

$$\{(1,0,0),(1,1,0),(0,0,1)\}$$

$$\{(1,0,0),(0,1,0),(1,1,1)\}$$

35. Consider the bases for R^3 given by $B = \{ rb, rb \}$

and
$$C = \{ r_c, r_c \}; \text{ where } r_b = 10, r_b = 10, r_c = 10, r$$

also assume that $p = 10^{-10}$; then which of the

following is the change of –coordinates matrix form B to C?

$$p_{me} \equiv r^5 - r^2$$

$$p_{BRC} = \begin{bmatrix} -8 & -3 \end{bmatrix}$$

36.if the general term of a typical signal is $(0.6)^k$, then determine which of the following is the signal for k = -2?

$$(0.6)^{-2} = 0$$

$$(0.6)^{-2} = 0.6$$

$$(0.6)^{-2} = (0.6)^2$$

37. if the casorati matrix is not is not invertible, then which of the following is the most appropriate option regarding ding the associated signals?

- **❖** The signals are linearly independent.
- ❖ The signals are linearly dependent.
- ❖ The signals may or may not dependent
- ❖ The signals may or may not independent

38. if $\{Y_k\} = \{..., 1, 0.7, 0, -0.7, 0, 0.7, 1, 0.7, 0,\}$ and $0.35Y_{K+2} + 0.6Y_{K+1} + 0.42Y_K = Z_k;$

K=0

Then which of the following is the value of \mathbb{Z}_0 ?

- **❖**0.840
- *****0.049
- **❖**-0.770
- *****-1.139

39.A system of linear equation is said to be homogenous if it can be written in the from-----

- AX = B
- AX = 0

40.if AB = I = BA for matrices A, B and I, where I is an identity matrix, then

- * B is Inverse of A
- * A is inverse of B
- * $A^{(-1)} = B$, $B^{(-1)} = A$
- All of the above

41. A square matrix A is said to be diagonal if A is similar to a matrix

- Column matrix
- Zero matrix
- Diagonal matrix
- * None of these

- 42. Let A be the matrix of order 2X3 and B be the matrix order 3X5, then which of the following is the order of the matrix AB?
 - * 2x3
 - * 3x5
 - * 3x3
 - * 2x5
- 43. Let 'Ax = 0' be a homogeneous liner system of 'n' equation and 'n' unknowns. Then, the coefficient matrix 'A' is invertible if and only if this system has --- solution.

ID TECH IN

- * No
- Trivial
- Non-trivial
- * Infinite many
- 44. If X 2 is a factor of the characteristic polynomial of matrix C then an eigenvalue of C is.
 - 2
 - ***** -2
 - ***** 1/2
 - ***** 0
- 45.if 2 +2 is a factor of the characteristic polynomial of matrix C. then which of the following is the eigenvalue of C?
 - ***** 2
 - **∗** -2

- 1/2
- ***** 0

46. Let A and B be the square matrices. Then A and B are invertible with $B = A^{-1}$ and $A = B^{-1}$ if and only if AB = BA equals to a (an) ----matrix

- * Singular
- Square
- Identity
- Rectangular

47. Let V be a five – dimensional vector space . and let S be a subset of V which spans V. Then S

- Must be linearly dependent
- * Must be a basis for V
- Must have infinitely many elements
- Must have at most five element.

48. If U + V = U + W then

- ❖ V+ W
- ❖ V ② W
- $\star V = W$
- * None of the above

49. if one of the eigenvalues of $[A]_{nxn}$ is zero, it implies-----

- * The solution to [A][X] =[C] a system of equation is unique
- ❖ The determinant of [A] is zero.

<u>AL-JUNAID INSTITUTE GROUP</u>

- * The solution to [A][X] = [0] system of equation is trivial
- The determinant of [A] is nonzero

50.le a matrix A has both negative and positive Eigen values, so in this case origin behaves as a----- point

- Saddle
- Critical

51. If a is an eigenvector of A, then every nonzero vector x such that Ax = x is called an ----- of A corresponding to---

- * Eigenvalue. 2
- * Eigenvector. 2
- * Eigenvalue. A
- * Eigenvector. A

52. Let A be n x n matrix, then A invertible if and only if

- * Det A is not Zero 304-1659294
- * Det A is zero

53. The invertible matrix theorem applies only to ----------matrices.

- Rectangular
- Square
- * Identity
- * Scalar

- 54. A 3x 3 identity matrix have three and -----eigenvalues.
 - Same
 - * District
- 55. An n x n matrix A is said to be diagonalizable if and only if A as n----- eigenvectors.
 - Linearly dependent
 - Linearly independent
- 56. What is Eigen value?
 - * A vector obtained from the coordinates
 - * A matrix determined from the algebraic equation
 - A scalar associated with a given linear transformation
 - * It is the inverse of the transform
- 57. A column replacement operation on A does not change the
 - Determinant
 - * Matrix
 - * Row
 - Column
- 0304-1659294
- 58. Le a matrix A has both negative and positive eigen values, so in this case origin behaves as a---- point
 - Saddle
 - * Critical
- 59. A null space is a vector space

- True
- * False
- 60. Each pair of eigenvalue and its corresponding eigenvector provides a solution of the equation X' = Ax which is called
 - * Eigen solution
 - Eigen function
- 61. If A is invertible and b in Rⁿ be any vector. Then, we must have a matrix A⁻¹ b, which is a solution of ---
 - A⁻¹ □=b
 - $A^2 = b$
 - $A^t = b$
 - Ax = b
- 62. What is the maximum possible number of pivots in a 6 x 6 matrix?
 - ***** 0
 - ***** 2
 - ***** 4
 - <u>* 6</u>
- 63. If 3 is an eigenvalue of A and x is corresponding eigenvector, then what is the eigenvalue of A^2 ?
 - * 12
 - ***** 9
 - * 6
 - ***** 3

64. The characteristics polynomial of 3 X 3 identity matrix is ----- if x is the eigen values of the given 3 x 3 identity matrix.

DTECHIN

- $(x 1)^3$
- $(x + 1)^3$
- * X^3
- $(1 x)^3$
- 65. A partitioned matrix 'A' is said to be block diagonal if the matrices on the main diagonal are square and all other position matrices are
 - Zero
 - * Unit
 - NonZero Symmetric
 - nonzero Skew Symmetric
- 66. If A is an invertible square matrix then
 - $(A^T)^{-1} = (A^{-1})^T$
 - $(A^T)^T = (A^{-1})^T$
 - $(A^T)^{-1} = (A^{-1})^{-1}$
 - None of these 304-165929
- 67.A blocked matrix in which block are repeated the down the diagonals of the matrix is called a ---- matrix.
 - Blocked Square
 - Blocked diagonal- constant
 - Blocked identity

- Blocked rectangular
- 68. Two equivalent vector must have the same initial point.
 - * True
 - False
 - May be
- 69. \lambda is an eigenvalue of a matrix A if and only if the equation $(A \lambda x) = 0$ has a-----

TECHIN

- Non- trivial solution
- Trivial solution
- 70. which of following is the eigenvalue of the matrix?
 - ***** 3
 - * 5
 - * 3.4
 - * 3.5
- 71. the complex conjugate of a vector in \mathbb{C}^n is the vector x in \mathbb{C}^n whose entries the conjugates of the entries in x
 - * Real
 - Complex
- 72. Multiplication of a partitioned matrix by a scalar is also computed-----
 - Row by Row
 - Column by column
 - Diagonal by diagonal

<u>AL-JUNAID INSTITUTE GROUP</u>

- Block by block
- 73. if the real part the eigenvalue is zero, then the trajectories from ---- around the origin.
 - * Parabola
 - * Hyperbola
 - Ellipse
 - None of these
- 74. A row interchange ----- the of the determinant.

TECH INST

- Change
- * Does not change
- 75. For any subspace W of a vector space V, which one is not the axiom for subspace. 0 must be in W.
 - * For all u, v in W and u v must be in W.
 - * For all u, v in W and u.v must be in W.
 - * For any scalar k and u in W then k.u in W.
- 76. Which one is not the axiom for vector space?
 - * 0 + u = u
 - ◆ 0.u = u

 ◆ 0.u = u

 ◆ 0.u = u

 - * 1.u = u* u + v = v + u
- 77. The Gauss-Seidel method is applicable to strictly diagonally dominant matrix.
 - * TRUE
 - * FALSE

78. If a multiple of one row of a square matrix A is added to another row to produce a matrix B, then which of the following condition is true?

- \star detB = detA
- \star detB = k detA
- \star detA detB = 0
- TECHINS \star detA detB = detA

79. Which of the following is the volume of the parallelepiped determined by the columns of A where A is a 3 x 3 matrix?

- det A
- * [A]
- det A
- * A^(-1), that is inverse of A

80. Determinant of a non-invertible(singular) matrix always

- * vanish
- * unity
- non zero negative
- non zero positive

81. Rank of a zero matrix of any order is

- * zero
- * three
- * four
- * nine

AL-JUNAID INSTITUTE GROU
82. can add the matrices of
same order
► same number of columns.
➤ same number of rows
► different orde
83. solving system of equations with iterative method
we stop the process when the entries in two successive
iterations are
repeat
► large difference
► different
84. Jacobi's Method isconverges to
solution than Gauss Siedal Method.
slow
► fast
better 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
85. is invertible, then $det(A)det(A-1)=1$.
True True
False
86. The determinant of A is the product of the pivots
in any echelon form U of A, multiplied by (-1)r,
Where r is
► the number of rows of A • the number of rows intenshances made during rows
► the number of row interchanges made during row reduction from A to II
reduction from A to U

▶ the number of row interchanges made during row

► the number of rows of U

reduction U to

87. If a system of equations is solved using the Gauss-Seidel method, then which of the following is the most appropriate answer about the matrix M that is derived from the coefficient matrix?

- * All of its entries on the diagonal must be zero.
- * All of its entries below the diagonal must be zero.
- * All of its entries above the diagonal must be zero
- * All of its entries below and above the diagonal must

88. If M is a square matrix having two rows equal then which of the following about the determinant of the matrix is true?

- det (M) is not equal to '1'
- \star det (M)=1
- det (M) is not equal to '0'
- * det (M)=0

89. if both the Jacobi and Gauss-Seidel sequences converge for the solution of Ax=b, for any initial x(0), then which of the following is true about both the solutions? No solution
Unique solution

- * Different solutions

90. Let t be any m x n matrix with orthonormal columns and v be any vector then $||t \cdot v|| =$

- * | V |
- * V
- * t. || v ||
- 91. If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.
 - * TRUE
 - * FALSE
- 92. Every linear transformation is a matrix transformation.
- **True**
- ► False
- 93. All the lines those passes through origin are not the subspace of a plane.
 - * FALSE
 - * TURE
- 94. Why inverse of the matrix A= [1 2] is NOT possible?
 - Because it is a square matrix
 - Because it is a zero matrix.
 - Because it is an identity matrix.
 - Because it is a rectangular matrix.
- 95. Let $W = \{(1, y) \text{ such that } y \text{ in } R\}$. Is W a vector subspace of plane.

- * YES
- * NO
- 96. If a system of equations is solved using the Jacobi's method, then which of the following is the most appropriate answer about the matrix M that is derived from the coefficient matrix?
 - * All of its entries on the diagonal must be zero.
 - * All of its entries above the diagonal must be zero.
 - All of its entries below and above the diagonal must
 - * All of its entries below the diagonal must be zero.
- 97. How many different permutations are there in the set of integers {1,2,3}?
 - ***** 2
 - ***** 4
 - * 6
 - ***** 8
- 98. Which one is the numerical method used for approximation of dominant eigenvalue of a matrix.

shelp.con

- ► Power method
- ► Jacobi's method
- Guass Seidal method
- Gram Schmidt process
- 99. The inverse of an invertible lower triangular matrix is.
- lower triangular matrix

- ► upper triangular matrix
- ► diagonal matrix

100. A is diagonalizable if $A = PDP^{-1}$ Where.

- ▶ D is any matrix and P is an invertible matrix
- ▶ D is a diagonal matrix and P is any matrix
- D is a diagonal matrix and P is invertible matrix
- ▶ D is a invertible matrix and P is any matrix.

101. The characteristic polynomial of a 525 matrix is, 25 and 424 a 4523 = 0 the eigenvalues are:

- **▶** 0,-5, 9
- **▶** 0,0,0,5,9
- \triangleright 0,0,0,-5,9 (true)
- **▶** 0,0,5,-9

102: A partitioned square matrix 'A' is said to the matrix if the matrices on the main diagonal square and all matrices above the main diagonal are zero.

Block lower triangular

103: if there is a vector v = (2, 1, 0) then ||v|| is

• 5

104: Each pair of eigenvalue and its corresponding eigenvectors provide a solution of equation.

Eigen function

105: which of the following is true for the matrix

Where M_{11} . M_{22} and M_{33} are square sub – matrices, and O is Zero sub matrix?

It is block upper triangular matrix

106: suppose that real solution y_1 and y_2 of $x^1 = Ax$ from a basis for the two- dimensional real vector space if y_1 and y_2 are

Linearly independent

107: Let W be a subspace of R and $(u_1, u_2, ..., u_p)$ is any orthogonal basis of W, then $y = c_1u_1 + c_2u_2 c_nu_n$ where

$$Cj = \underbrace{y.uj}_{uj.uj}$$

108: Elementary row operation on a matrix do not affect the relation among the column of the matrix Linear dependence

109: Two vector are if at least one of the vector is a multiple of the other

Linearly dependent

110: Electric circuit rotation is caused by sine and cosine function if there eigenvalues are complex and hence the origin is called....

Spiral point

111: Multiplication of a partitioned matrix by a scalar is also computed.....

Column by column

112: The invariable Matrix . Theorem applies only to.....

Square

113:Let A be a real 2 by 2 matrix with complex eign values a = a - b + I, $(b \ a)$ and associated eigenvectors vin C^2 then A PCP ⁻¹ where p= -----

P = [Revlmv]

114: Let Ax = 0 be a homogeneous linear system of 'n' unknown, then the coefficient matrix 'A' is invertable if and only if this system has ----- solution

T<mark>rivial</mark>

115: the two vector are said to b equivalent if

Same length and same direction

116: if one of the eigenvalues of $[A]_{nxn}$ is zero .it implies

The determined of [A] is zero

117: let be a five – dimensional vector space. And let ba subset of consisting of five vectors.

Mast be linearly dependent, but may or may

not span V

118: Suppose x, y, z are some vectors in an inner product space (v,<,>) such that < X,Y > = < X,Z > for all x

? V then Y=Z

TRUE

119: let U,V and W be vectors in Rⁿ, then

(U+v), W=U.W+V.W

Q120: if u and v non zero vector in either R2orR3 then by the law of cosines $\|\mathbf{u} - \mathbf{vii}^2 \dots$

$$||\mathbf{u} - \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 - 2 ||\mathbf{u}|| ||\mathbf{v}|| \cos$$

121: If u + v - w, then

$$V = w$$

122: Two vectors u and v in Rⁿ are orthogonal if.....

u.v = o

123:A vector whose length 1 is called

Unit vector

124: A Matrix whit orthogonal columns is an orthogonal matrix.

Square 1:

125: if a square matrix has orthogonal columns then it also has rows.

Orthogonal

126: The norm of v is the non-negative scalar ||v|| defined by

 $||\mathbf{v}|| = \sqrt{v^2}_1 + \mathbf{v_2}^2 + \dots \mathbf{v_n}^2$

127: the matrix A ^ T x A is invertable if and only if the columns of A are linearly independent

True

128: let V be a one Eigen vector then conjugate eigen vector is repented by.

V

129: Any finite dimensional inner product space an orthonormal basis.

True

130: the vector is orthogonal to every vector in Rⁿ.

Zero

131: Each pair of eigenvalue and this its corresponding eigenvector provides a solution of the

equation $X^1 = Ax$ which is called of the differential equation.

Eigen function

132: if we divide a non – zero vector by its length we get a

Unit vector

133: A matrix A – (n\time n) has both positive and negative eigenvalues so in this case origin behave as a Saddle point

