Ejercicio 5.- Prueba que la superficie $S = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 + y^2\}$ (paraboloide elíptico), es difeomorfa con la supercie $C = \{(x, y, z) \in \mathbb{R}^3 : y = x^3\}$.

Para ver si C y S son difeomorfas, necesitamos encontrar una difeomorfismo $F: S \longrightarrow C$, es decir, que F sea diferenciable y biyectiva con $F^{-1}: S_2 \longrightarrow S_1$ diferenciable.

Para encontrar F, usamos una parametrización de cada una de las superficies:

$$\widetilde{x}_1 : \mathbb{R}^2 \longrightarrow S, \quad \widetilde{x}_1(u,v) = (u,v,u^2+v^2)$$

$$\widetilde{x}_2 : \mathbb{R}^2 \longrightarrow C, \quad \widetilde{x}_2(u,v) = (u,u^3,v)$$

 $\widetilde{x_1}$ y $\widetilde{x_2}$ son parametrizaciones y son diferenciables (por serlo todas sus componentes) y sus diferenciales son inyectivas porque:

$$rango\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2u & 2v \end{pmatrix} = 2$$
, $rango\begin{pmatrix} 1 & 0 \\ 3u^2 & 0 \\ 0 & 1 \end{pmatrix} = 2$, $\forall (u, v) \in \mathbb{R}^2$

El candidato a difeomorfismo será: $F = \widetilde{x_2} \circ \widetilde{x_1}^{-1}$ con $F(x,y,z) = (u,u^3,v)$. Queda comprobar que F sea efectivamente un difeomorfismo. Como la extensión de F a \mathbb{R}^3 , \widetilde{F} : $\mathbb{R}^3 \longrightarrow \mathbb{R}^3$, es evidentemente diferenciable, tenemos que $F = \widetilde{F}_{|S|}$ también lo es. Con un argumento análogo, se ve que $F^{-1}: C \longrightarrow S$, definida por $F^{-1}(x,y,z) = (x,y,x^2+y^2)$, también lo es.

Para ver que $F: S \longrightarrow C$ es biyectiva solo hay que comprobar que sea inyectiva ya que F(S) = C: si $\widetilde{x_1}(u_1, v_1) = \widetilde{x_2}(u_2, v_2)$, entonces $(u_1, v_1, u_1^2 + v_1^2) = (u_2, v_2, u_2^2 + v_2^2)$, luego $(u_1, v_1) = (u_2, v_2)$. Por lo tanto, F es un difeomorfismo. También se podría haber argumentado usando que $\widetilde{x_1}$ y $\widetilde{x_2}$ son difeomorfismos ya que la composición de difeomorfismos también es un difeomorfismo.