

Programação dinâmica Projeto e Análise de Algoritmos

Bruno Prado

Departamento de Computação / UFS

- O que é programação dinâmica?
 - É uma estratégia de resolução de problemas similar a divisão e conquista, onde a solução é obtida através da resolução e armazenamento das soluções parciais

- O que é programação dinâmica?
 - É uma estratégia de resolução de problemas similar a divisão e conquista, onde a solução é obtida através da resolução e armazenamento das soluções parciais
 - Esta estratégia é geralmente aplicada em problemas de otimização que possuem várias soluções possíveis

- O que é programação dinâmica?
 - É uma estratégia de resolução de problemas similar a divisão e conquista, onde a solução é obtida através da resolução e armazenamento das soluções parciais
 - Esta estratégia é geralmente aplicada em problemas de otimização que possuem várias soluções possíveis

```
Programação → Organização
Dinâmica → Tempo de execução
```

- Quando utilizar programação dinâmica?
 - Sobreposição de problemas

- Quando utilizar programação dinâmica?
 - Sobreposição de problemas
 - Os subproblemas s\u00e3o repetidamente resolvidos

- Quando utilizar programação dinâmica?
 - Sobreposição de problemas
 - Os subproblemas são repetidamente resolvidos
 - ▶ É comum em implementações recursivas

- Quando utilizar programação dinâmica?
 - Sobreposição de problemas
 - Os subproblemas são repetidamente resolvidos
 - ▶ É comum em implementações recursivas
 - Subestrutura ótima

- Quando utilizar programação dinâmica?
 - Sobreposição de problemas
 - Os subproblemas s\u00e3o repetidamente resolvidos
 - ▶ É comum em implementações recursivas
 - Subestrutura ótima
 - A partir da combinação das soluções parciais ótimas é obtida a solução completa ótima do problema

- Implementação recursiva do algoritmo de Fibonacci
 - ightharpoonup Caso base $(n \le 1)$

```
// Padrão de tipos por tamanho
tinclude <stdint.h>
// Fibonacci recursivo
uint64_t fibonacci(uint32_t n) {
   if(n <= 1)
      return n;
   else
      return fibonacci(n - 1) + fibonacci(n - 2);
}</pre>
```

$$F(n) = \begin{cases} 0 & n = 0 \\ 1 & n = 1 \\ F(n-1) + F(n-2) & n > 1 \end{cases}$$

- Implementação recursiva do algoritmo de Fibonacci
 - Recorrência (n > 1)

```
// Padrão de tipos por tamanho
tinclude <stdint.h>
// Fibonacci recursivo
uint64_t fibonacci(uint32_t n) {
   if(n <= 1)
      return n;
   else
      return fibonacci(n - 1) + fibonacci(n - 2);
}</pre>
```

$$F(n) = \begin{cases} 0 & n = 0 \\ 1 & n = 1 \\ F(n-1) + F(n-2) & n > 1 \end{cases}$$

Árvore de execução do algoritmo de Fibonacci

Implementação iterativa do algoritmo de Fibonacci

```
// Padrão de tipos por tamanho
   #include <stdint.h>
   // Fibonacci com programação dinâmica
   uint64_t fibonacci_pd(uint32_t n) {
       // Alocação estática de vetor de respostas
       static uint64_t* V = NULL;
       // Checagem de índice para cálculo de valores
       for(uint32_t i = indice(V, n); i <= n; i++) {</pre>
           // F(n) = F(n - 1) + F(n - 2)
           V[i] = V[i - 1] + V[i - 2]:
10
       }
11
       // Retorno do resultado armazenado no vetor
12
       return V[n];
1.3
14
```

Armazenamento dos resultados já calculados

Implementação iterativa do algoritmo de Fibonacci

```
// Padrão de tipos por tamanho
   #include <stdint.h>
   // Fibonacci com programação dinâmica
   uint64_t fibonacci_pd(uint32_t n) {
       // Alocação estática de vetor de respostas
       static uint64_t* V = NULL;
       // Checagem de índice para cálculo de valores
       for(uint32_t i = indice(V, n); i <= n; i++) {</pre>
           // F(n) = F(n - 1) + F(n - 2)
           V[i] = V[i - 1] + V[i - 2];
10
       }
11
       // Retorno do resultado armazenado no vetor
12
       return V[n];
1.3
14
```

Checagem de novos subproblemas não resolvidos

Implementação iterativa do algoritmo de Fibonacci

```
// Padrão de tipos por tamanho
   #include <stdint.h>
   // Fibonacci com programação dinâmica
   uint64_t fibonacci_pd(uint32_t n) {
       // Alocação estática de vetor de respostas
       static uint64_t* V = NULL;
       // Checagem de índice para cálculo de valores
       for(uint32_t i = indice(V, n); i <= n; i++) {</pre>
           // F(n) = F(n - 1) + F(n - 2)
           V[i] = V[i - 1] + V[i - 2];
10
11
       // Retorno do resultado armazenado no vetor
12
13
       return V[n]:
14
```

Execução com espaço $\Theta(n)$ e tempo entre $\Omega(1)$ e O(n)

- Implementação iterativa do algoritmo de Fibonacci
 - Execução de fibonacci_pd(7)

Inicialização do vetor com 8 posições, valores casos base e índice *i* na posição 2

- Implementação iterativa do algoritmo de Fibonacci
 - Execução de fibonacci_pd(7)

- Implementação iterativa do algoritmo de Fibonacci
 - ► Execução de fibonacci_pd(7)

- Implementação iterativa do algoritmo de Fibonacci
 - Execução de fibonacci_pd(7)

- Implementação iterativa do algoritmo de Fibonacci
 - Execução de fibonacci_pd(7)

- Implementação iterativa do algoritmo de Fibonacci
 - ► Execução de fibonacci_pd(7)

- Implementação iterativa do algoritmo de Fibonacci
 - ► Execução de fibonacci_pd(7)

- Implementação iterativa do algoritmo de Fibonacci
 - Execução de fibonacci_pd(7)

V[7] é o resultado de fibonacci_pd(7)

- ► Algoritmo de Fibonacci com programação dinâmica
 - ✓ Eficiência de tempo entre $\Omega(1)$ e O(n)

- Algoritmo de Fibonacci com programação dinâmica
 - ✓ Eficiência de tempo entre $\Omega(1)$ e O(n)
 - ✓ Não calcula repetidamente valores já processados

- Algoritmo de Fibonacci com programação dinâmica
 - ✓ Eficiência de tempo entre $\Omega(1)$ e O(n)
 - ✓ Não calcula repetidamente valores já processados
 - X Maior complexidade de implementação

- Algoritmo de Fibonacci com programação dinâmica
 - ✓ Eficiência de tempo entre $\Omega(1)$ e O(n)
 - ✓ Não calcula repetidamente valores já processados
 - X Maior complexidade de implementação
 - \times Espaço linear $\Theta(n)$ para armazenamento dos resultados

- Algoritmo de Fibonacci com programação dinâmica
 - ✓ Eficiência de tempo entre $\Omega(1)$ e O(n)
 - ✓ Não calcula repetidamente valores já processados
 - X Maior complexidade de implementação
 - \times Espaço linear $\Theta(n)$ para armazenamento dos resultados

E a subestrutura ótima?

- Subestrutura ótima do algoritmo de Fibonacci
 - Para obter o valor da n-ésima posição da sequência, todos os n − 1 valores precisam ser calculados

- Subestrutura ótima do algoritmo de Fibonacci
 - Para obter o valor da n-ésima posição da sequência, todos os n – 1 valores precisam ser calculados
 - ▶ Por sua vez, cada um destes n − 1 valores representa um subproblema com sua respectiva solução parcial

- Subestrutura ótima do algoritmo de Fibonacci
 - Para obter o valor da n-ésima posição da sequência, todos os n – 1 valores precisam ser calculados
 - ▶ Por sua vez, cada um destes n − 1 valores representa um subproblema com sua respectiva solução parcial
 - ▶ A composição das n − 1 soluções parciais calculadas contribui para obtenção da solução completa

- Problema da Mochila
 - Existem n itens distintos e únicos com valores v₁ e pesos não negativos w₁ para serem guardados em uma mochila com capacidade máxima de peso W, onde 1 ≤ i ≤ n e 1 ≤ w ≤ W

- Problema da Mochila
 - Existem n itens distintos e únicos com valores v₁ e pesos não negativos w₁ para serem guardados em uma mochila com capacidade máxima de peso W, onde 1 ≤ i ≤ n e 1 ≤ w ≤ W
 - Função objetivo: maximizar o valor dos itens na mochila, sem exceder a capacidade total W

$$max\left(\sum_{i=1}^{n}v_{i}\times x_{i}\right)\leftrightarrow\sum_{i=1}^{n}w_{i}\times x_{i}\leq W,\quad x_{i}\in\{0,1\}$$

- Problema da Mochila com programação dinâmica
 - Sobreposição de problemas
 - Uma mesma coleção de itens com o mesmo valor pode ser organizado de maneiras distintas na mochila

- Problema da Mochila com programação dinâmica
 - Sobreposição de problemas
 - Uma mesma coleção de itens com o mesmo valor pode ser organizado de maneiras distintas na mochila
 - Estas soluções repetidas não contribuem para encontrar o major valor dos itens na mochila

- Problema da Mochila com programação dinâmica
 - Sobreposição de problemas
 - Uma mesma coleção de itens com o mesmo valor pode ser organizado de maneiras distintas na mochila
 - Estas soluções repetidas não contribuem para encontrar o maior valor dos itens na mochila
 - Subestrutura ótima
 - Aplicando a programação dinâmica, para cada iteração é armazenada a solução parcial ótima

- Problema da Mochila com programação dinâmica
 - Sobreposição de problemas
 - Uma mesma coleção de itens com o mesmo valor pode ser organizado de maneiras distintas na mochila
 - Estas soluções repetidas não contribuem para encontrar o maior valor dos itens na mochila
 - Subestrutura ótima
 - Aplicando a programação dinâmica, para cada iteração é armazenada a solução parcial ótima
 - A combinação de soluções parciais ótimas dos itens permitem obter o valor total máximo na mochila

- Problema da Mochila
 - ► Cenário com n = 4 itens, com valores v_i , pesos w_i e mochila capacidade máxima de peso W = 5

i	1	2	3	4
i	12	Ю	20	15
Wi	2	1	3	2

- Problema da Mochila
 - ► Cenário com n = 4 itens, com valores v_i , pesos w_i e mochila capacidade máxima de peso W = 5

Ì	1	2	2 3 1	
√ _i	12	Ю	20	15
Wi	2	1	3	2

▶ Busca exaustiva $\sum_{k=0}^{n} \binom{n}{k} = \binom{n}{0} + \cdots + \binom{n}{n} = \Theta(2^n)$

- Problema da Mochila
 - Cenário com n = 4 itens, com valores v_i , pesos w_i e mochila capacidade máxima de peso W = 5

Ì	1	2	3	4
√ _i	12	Ю	20	15
wi	2	1	3	2

Evitar soluções repetidas e que excedem o peso máximo

- Problema da Mochila
 - A função V(i, w) é usada para calcular o valor dos itens contidos na mochila, com valor 0 para nenhum item i = 0 ou com peso nulo w = 0

(w,i)V	0	1	2	3	4	5
0						
1						
2						
3						
4						

- Problema da Mochila
 - A função V(i, w) é usada para calcular o valor dos itens contidos na mochila, com valor 0 para nenhum item i = 0 ou com peso nulo w = 0

(w,i)V	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

- Problema da Mochila
 - O item i não cabe na mochila
 - A capacidade disponível w é menor que o peso w_i adicionado pelo novo item

- Problema da Mochila
 - O item i não cabe na mochila
 - A capacidade disponível w é menor que o peso w_i adicionado pelo novo item
 - O valor total atingido pelo último item é repetido

- Problema da Mochila
 - O item i não cabe na mochila
 - A capacidade disponível w é menor que o peso w_i adicionado pelo novo item
 - O valor total atingido pelo último item é repetido
 - O item i cabe na mochila
 - A capacidade disponível w é maior ou igual ao peso w_i do novo item inserido na mochila

- Problema da Mochila
 - O item i não cabe na mochila
 - A capacidade disponível w é menor que o peso w_i adicionado pelo novo item
 - O valor total atingido pelo último item é repetido
 - O item i cabe na mochila
 - A capacidade disponível w é maior ou igual ao peso w_i do novo item inserido na mochila
 - Para o valor do item adicionado ser considerado, é incrementado o valor total contido na mochila

- Problema da Mochila
 - O item i não cabe na mochila
 - A capacidade disponível w é menor que o peso w_i adicionado pelo novo item
 - O valor total atingido pelo último item é repetido
 - O item i cabe na mochila
 - A capacidade disponível w é maior ou igual ao peso w_i do novo item inserido na mochila
 - Para o valor do item adicionado ser considerado, é incrementado o valor total contido na mochila

$$V(i, w) = \begin{cases} V(i-1, w) & w - w_i < 0 \\ max(V(i-1, w), V(i-1, w - w_i) + v_i) & w - w_i \ge 0 \end{cases}$$

Problema da Mochila

Ì	- 1	2	3	4
√ _i	12	0	20	15
wi	2	1	3	2

V(i,W)	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

Problema da Mochila

i	- 1	2	3	4
Vi	12	10	20	15
wi	2	I	3	2

V(i,W)	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

O item 1 não cabe na mochila $w = 1 < w_1$ V(1, 1) = V(0, 1)

Problema da Mochila

Ì	- 1	2	3	4
√i	12	Ю	20	15
Wi	2	I	3	2

V(i,W)	0	l	2	3	4	5
0	0	0	0	0	0	0
1	0	0				
2	0					
3	0					
4	0					

O item 1 cabe na mochila $w = 2 \ge w_1$ V(1,2) = max(V(0,2), V(0,0) + 12)

Problema da Mochila

Ì	- 1	2	3	4
√i	12	Ю	20	15
Wi	2	I	3	2

V(i,W)	0	l	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12			
2	0					
3	0					
4	0					

O item 1 cabe na mochila $w = 3 \ge w_1$ V(1,3) = max(V(0,3), V(0,1) + 12)

Problema da Mochila

Ì	- 1	2	3	4
Vi	12	10	20	15
Wi	2	1	3	2

(w,i)V	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12		
2	0					
3	0					
4	0					

O item 1 cabe na mochila $w = 4 \ge w_1$ V(1,4) = max(V(0,4), V(0,2) + 12)

Problema da Mochila

Ì	-1	2	3	4
√ _i	12	10	20	15
Wi	2	I	3	2

(w,i)V	0	I	2	3	4	5
0	0	0	0	0	0	0
- 1	0	0	12	12	12	
2	0					
3	0					
4	0					

O item 1 cabe na mochila $w = 5 \ge w_1$ V(1,5) = max(V(0,5), V(0,3) + 12)

▶ Problema da Mochila

i	1	2	3	4
Vi	12	0	20	15
Wi	2	l	3	2

V(i,W)	0	1	2	3	4	5
0	0	0	0	0	0	0
- 1	0	0	12	12	12	12
2	0					
3	0					
_ +	0					

▶ Problema da Mochila

Ì	- 1	2	3	4
Vi	12	0	20	15
Wi	2	l	3	2

(w,i)V	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0					
3	0					
4	0					

Problema da Mochila

Ì	- 1	2	3	4
√ _i	12	10	20	15
Wi	2	- 1	3	2

V(i,W)	0	l	2	3	4	5_
0	0	0	0	0	0	0
- 1	0	0	12	12	12	12
2	0					
3	0					
4	0					

Somente o item 2 cabe na mochila $w = 1 \ge w_2$ V(2, 1) = max(V(1, 1), V(1, 0) + 10)

Problema da Mochila

Ì	- 1	2	3	4
√ _i	12	10	20	15
Wi	2	- 1	3	2

(w,i)V	0	ı	2	3	4	5
0	0	0	0	0	0	0
- 1	0	0	12	12	12	12
2	0	0				
3	0					
4	0					

Somente o item 1 cabe na mochila $w = 2 \ge w_2$ V(2,2) = max(V(1,2), V(1,1) + 10)

Problema da Mochila

Ì	1	2	3	4
Vi	12	10	20	15
wi	2	- 1	3	2

V(i,W)	0	I	2	3	4	5_
0	0	0	0	0	0	0
- 1	0	0	12	12	12	12
2	0	0	12			
3	0					
4	0					

Os itens 1 e 2 cabem na mochila $w = 3 \ge w_2$ V(2,3) = max(V(1,3), V(1,2) + 10)

Problema da Mochila

Ì	1	2	3	4
Vi	12	10	20	15
wi	2	- 1	3	2

(w,i)V	0	1	2	3	4	5_
0	0	0	0	0	0	0
- 1	0	0	12	12	12	12
2	0	Ю	12	22		
3	0					
4	0					

Os itens 1 e 2 cabem na mochila $w = 4 \ge w_2$ V(2,4) = max(V(1,4), V(1,3) + 10)

Problema da Mochila

Ì	- 1	2	3	4
√ _i	12	10	20	15
Wi	2	- 1	3	2

(w,i)V	0	1	2	3	4	5
0	0	0	0	0	0	0
- 1	0	0	12	12	12	12
2	0	Ю	12	22	22	
3	0					
4	0					

Os itens 1 e 2 cabem na mochila $w = 5 \ge w_2$ V(2,5) = max(V(1,5), V(1,4) + 10)

▶ Problema da Mochila

Ì	- 1	2	3	4
Vi	12	10	20	15
Wi	2	1	3	2

V(i,W)	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	0	12	22	22	22
3	0					
4	0					

▶ Problema da Mochila

i	-	2	3	4
Vi	12	Ю	20	15
ω_{i}	2	1	3	2

(w,i)V	0	l	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	0	12	22	22	22
3	0					
4	0					

Problema da Mochila

i	- 1	2	3	4
Vi	12	Ю	20	15
wi	2	1	3	2

V(i,W)	0	- 1	2	3	4	5
0	0	0	0	0	0	0
- 1	0	0	12	12	12	12
2	0	Ю	12	22	22	22
3	0					
4	0					

Somente o item 2 cabe na mochila $w = 1 < w_3$ V(3, 1) = V(2, 1)

▶ Problema da Mochila

Ì	- 1	2	3	4
Vi	12	Ю	20	15
Wi	2	1	3	2

(w,i)V	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	Ю	12	22	22	22
3	0	Ю				
4	0					

Somente o item 1 cabe na mochila $w = 1 < w_3$ V(3,2) = V(2,2)

Problema da Mochila

Ì	- 1	2	3	4
Vi	12	Ю	20	15
Wi	2	1	3	2

(w,i)V	0	I	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	0	12	22	22	22
3	0	0	12			
4	0					

Os itens 1 e 2 cabem na mochila $w = 3 \ge w_3$ V(3,3) = max(V(2,3), V(2,0) + 20)

Problema da Mochila

Ì	1	2	3	4
Vi	12	Ю	20	15
Wi	2	1	3	2

V(i,W)	0	1	2	3	4	5
0	0	0	0	0	0	0
- 1	0	0	12	12	12	12
2	0	Ю	12	22	22	22
3	0	Ю	12	22		
4	0					

Os itens 2 e 3 cabem na mochila $w = 4 \ge w_3$ V(3,4) = max(V(2,4), V(2,1) + 20)

Problema da Mochila

Ì	1	2	3	4
Vi	12	Ю	20	15
Wi	2	1	3	2

V(i,W)	0	I	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12_
2	0	0	12	22	22	22
3	0	0	12	22	30	
4	0					

Os itens 1 e 3 cabem na mochila $w = 5 \ge w_3$ V(3,5) = max(V(2,5), V(2,2) + 20)

Problema da Mochila

Ì	- 1	2	3	4
Vi	12	Ю	20	15
Wi	2	1	3	2

(w,i)V	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	Ю	12	22	22	22
3	0	Ю	12	22	30	32
4	0					

Problema da Mochila

Ì	- 1	2	3	4
	12	0	20	15
Wi	2	l	3	2

(w,i)V	0	- 1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	Ю	12	22	22	22
3	0	10	12	22	30	32
4	0					

▶ Problema da Mochila

Ì	1	2	3	4
Vi	12	Ю	20	15
Wi	2	1	3	2

(w,i)V	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	Ю	12	22	22	22
3	0	10	12	22	30	32
4	0					

Somente o item 2 cabe na mochila $w = 1 < w_4$ V(4, 1) = V(3, 1)

Problema da Mochila

Ì	- 1	2	3	4
Vi	12	Ю	20	15
Wi	2	1	3	2

(w,i)V	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	Ю	12	22	22	22
3	0	10	12	22	30	32
4	0	Ю				

Somente o item 4 cabe na mochila $w = 3 \ge w_4$ V(4,2) = max(V(3,2), V(3,0) + 15)

Problema da Mochila

i	- 1	2	3	4
Vi	12	10	20	15
Wi	2	1	3	2

(w,i)V	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12_
2	0	0	12	22	22	22
3	0	0	12	22	30	32
4	0	Ю	15			

Os itens 1 e 4 cabem na mochila $w = 3 \ge w_3$ V(4,3) = max(V(3,3), V(3,1) + 15)

Problema da Mochila

i	- 1	2	3	4
Vi	12	10	20	15
Wi	2	1	3	2

(w,i)V	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12_
2	0	0	12	22	22	22
3	0	Ю	12	22	30	32
4	0	Ю	15	25		

Os itens 2 e 3 cabem na mochila $w = 4 \ge w_3$ V(4,4) = max(V(3,4), V(3,2) + 15)

Problema da Mochila

Ì	- 1	2	3	4
Vi	12	Ю	20	15
Wi	2	1	3	2

(w,i)V	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12_
2	0	0	12	22	22	22
3	0	Ю	12	22	30	32
4	0	Ю	15	25	30	

Os itens 1, 2 e 4 cabem na mochila $w = 5 \ge w_3$ V(4,5) = max(V(3,5), V(3,3) + 15)

▶ Problema da Mochila

Ì	- 1	2	3	4
Vi	12	Ю	20	15
ω_{i}	2	1	3	2

(w,i)V	0	l	2	3	4	5_
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	0	12	22	22	22
3	0	Ю	12	22	30	32
4	0	Ю	15	25	30	31

Como determinar algoritmicamente quais são os itens que maximizam o valor armazenado pela mochila?

Problema da Mochila

i	I	2	3	4
Vi	12	Ю	20	15
wi	2	1	3	2

(w,i)V	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	0	12	22	22	22
3	0	10	12	22	30	32
+	0	Ю	15	25	30	31

Como $V(i,j) \neq V(i-1,j)$, então o item i=4 faz parte da solução e $i=i-1, j=j-w_i$

Problema da Mochila

i	1	2	3	4
Vi	12	Ю	20	15
Wi	2	1	3	2

V(i,W)	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	0	12	22	22	22
3	0	Ю	12	22	30	32
4	0	Ю	15	25	30	31

Como V(i,j) = V(i-1,j), o item i=3 não faz parte da solução e i=i-1

Problema da Mochila

Ì	- 1	2	3	4
Vi	12	10	20	15
Wi	2	1	3	2

(w,i)V	0	l	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	0	12	22	22	22
3	0	0	12	22	30	32
+	0	Ю	15	25	30	31

Como $V(i,j) \neq V(i-1,j)$, então o item i=2 faz parte da solução e $i=i-1, j=j-w_i$

Problema da Mochila

Ì	- 1	2	3	4
Vi	12	0	20	15
wi	2	l	3	2

V(i,W)	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	0	12	22	22	22
3	0	Ю	12	22	30	32
4	0	Ю	15	25	30	31

Como $V(i,j) \neq V(i-1,j)$, então o item i=1 faz parte da solução e $i=i-1, j=j-w_i$

Problema da Mochila

i	- 1	2	3	4
Vi	12	10	20	15
ω_{i}	2	1	3	2

V(i,W)	0	1	2	3	4	5_
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	0	12	22	22	22
3	0	Ю	12	22	30	32
4	0	Ю	15	25	30	31

A solução ótima possui valor 37, sendo composta pelos itens 1, 2 e 4

- Análise de complexidade
 - ▶ Pseudo-polinomial $O(n \times W)$
 - É polinomial para o tamanho da entrada n que é o número de itens que podem ser colocados na mochila

- Análise de complexidade
 - ▶ Pseudo-polinomial $O(n \times W)$
 - É polinomial para o tamanho da entrada n que é o número de itens que podem ser colocados na mochila
 - A capacidade máxima da mochila W possui um crescimento exponencial para o valor numérico que pode ser descrito por sua largura em bits

$$\log_2 W = m$$

$$W = 2^m$$

- Aplicações do problema da Mochila
 - Criação cópia de arquivos: armazenar o máximo de arquivos do disco, sem exceder a capacidade

- Aplicações do problema da Mochila
 - Criação cópia de arquivos: armazenar o máximo de arquivos do disco, sem exceder a capacidade
 - Logística e transporte: otimizar a carga de veículos, maximizando a prioridade ou valor dos itens

- Aplicações do problema da Mochila
 - Criação cópia de arquivos: armazenar o máximo de arquivos do disco, sem exceder a capacidade
 - Logística e transporte: otimizar a carga de veículos, maximizando a prioridade ou valor dos itens
 - Alocação de recursos em um sistema: escalonar os processos para execução e utilização dos dispositivos

- Aplicações do problema da Mochila
 - Criação cópia de arquivos: armazenar o máximo de arquivos do disco, sem exceder a capacidade
 - Logística e transporte: otimizar a carga de veículos, maximizando a prioridade ou valor dos itens
 - Alocação de recursos em um sistema: escalonar os processos para execução e utilização dos dispositivos
 - **.**..

Exemplo

Considerando o problema da Mochila e aplicando as técnicas de programação dinâmica vistas, encontre o conjunto de itens que maximiza o valor da mochila que possui capacidade W = 10

i	1	2	3	4	5
Vi	35	44	33	10	55
Wi	3	2	4	1	5

Exercício

- A empresa de transportes Poxim Tech está tornando as entregas de encomendas de última milha mais eficientes e rápidas, através da maximização do valor total do frete e levando em consideração as características de cada tipo de veículo
 - Para codificação das placas de trânsito dos veículos e dos códigos de rastreamento dos pacotes são utilizados os símbolos L e N, que representam letras maiúsculas e números, respectivamente
 - As unidades utilizadas para peso é quilo (kg), valor é reais (R\$) e volume é litro (I)
 - Cada veículo é identificado pela sua placa de trânsito, nos formatos LLLNNNN ou LLLNLNN, além da sua capacidade máxima de carga (peso e volume)
 - Os pacotes possuem um código de rastreamento descrito no padrão LLNNNNNNNNNLL, juntamente com informações sobre o valor, peso e volume

Exercício

Formato do arquivo de entrada

```
    [#n]
    [Placa<sub>0</sub>] [Peso<sub>0</sub>] [Volume<sub>0</sub>]
    :
    [Placa<sub>n-1</sub>] [Peso<sub>n-1</sub>] [Volume<sub>n-1</sub>]
    [#m]
    [Código<sub>0</sub>] [Valor<sub>0</sub>] [Peso<sub>0</sub>] [Volume<sub>0</sub>]
    :
    [Código<sub>m-1</sub>] [Valor<sub>m-1</sub>] [Peso<sub>m-1</sub>] [Volume<sub>m-1</sub>]
```

```
1 2
2 AAA1234_50_100
3 BBB5C67_2000_12000
4 5
5 AB111222333CD_49.99_2_1
6 EF444555666GH_5000.01_1234_7000
7 IJ777888999KL_100_49_10
8 MN0001112220P_65.01_3_125
9 QR333444555ST_200.01_13_4875
```

Exercício

- Formato do arquivo de saída
 - Para cada veículo é gerada uma sequência de carregamento dos pacotes que maximizam o valor transportado sem exceder a capacidade de carga

```
1  [AAA1234]R$100.00,49KG(98%),10L(10%)
2  IJ777888999KL
3  [BBB5C67]R$5265.03,1250KG(63%),12000L(100%)
4  EF444555666GH
5  MN0001112220P
6  QR333444555ST
7  [PENDENTE]R$49.99,2KG,1L
8  AB111222333CD
```