Partitions of Unity and Proving the Change of Variables Theorem

Professor David Barrett

Transcribed by Thomas Cohn

Recall

Type (1) diffeomorphisms: coordinate transposition

Type (1) diffeomorphisms: $\begin{pmatrix} x_1 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} x_1 \\ \vdots \\ x_{n-1} \\ \alpha(\vec{x}) \end{pmatrix}$

We can combine these to obtain type (3) diffeomorphisms: "generalized shears"

 $\left(\begin{array}{c} \vdots \\ x_{j-1} \\ x_j \\ x_{j+1} \\ \vdots \end{array} \right) \mapsto \left(\begin{array}{c} \vdots \\ x_{j-1} \\ \eta(\vec{x}) \\ x_{j+1} \\ \vdots \end{array} \right)$

Prop: Any invertible affine map may be factored into a composition of affine maps of type (1) or (2) (equivalently, type (1) or (3)).

Proof: For linear maps, use "elementary matrix factorization" (Thm 2.4)

For translations, move coord at a time.

Fun fact: type (1) is just the composition of three type (3) maps.

Ex: $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$

Thm: In some neighborhood of \vec{p} , g can be factored into a composition of diffeomorphisms of type (1) or (2) (equivalently (1) or (3)).

Step 1: Pick $T_1, T_2 : \mathbb{R}^n \to \mathbb{R}^n$ invertible, affine such that $g = T_1 \circ \tilde{g} \circ T_2$ with $T_2(\vec{p}) = \vec{0}$ and $T_1(\vec{0}) = \vec{q}$, $D\tilde{g}(\vec{0}) = \text{Id}$. So $\tilde{g}(\vec{0}) = \vec{0}$, and we can take $DT_2 = Dg(\vec{p})$ and $DT_1 = \text{Id}$.

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} \tilde{g}_1(\vec{x}) \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} \text{ So } D\tilde{g}_k(\vec{0}) = e_k^-, \text{ so the derivative at } \vec{0} \text{ is Id, so it's locally diffeomorphic.}$$
 Step 2:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} \tilde{g}_1(\vec{x}) \\ \tilde{g}_2(\vec{x}) \\ x_3 \\ \vdots \\ x_n \end{pmatrix} \xrightarrow{\downarrow} \text{ local diffeomorphism*}$$
 Also has derivative at $\vec{0}$ is Id, so locally diffeomorphic.
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} \tilde{g}_1(\vec{x}) \\ \tilde{g}_2(\vec{x}) \\ \tilde{g}_3(\vec{x}) \\ \vdots \\ x_n \end{pmatrix} \xrightarrow{\downarrow} \text{ local diffeomorphism*}$$

$$\downarrow \text{ local diffeomorphism*}$$

$$\downarrow \text{ local diffeomorphism*}$$

$$\downarrow \text{ local diffeomorphism*}$$

So $\vec{x} \mapsto \tilde{g}(\vec{x})$ has derivative Id at $\vec{0}$, so it's locally diffeomorphic.

* These diffeomorphisms preserve n-1 coordinates, so they're type (3).

And T_1, T_2 are type (1) diffeomorphisms.

Defn: Consider $f: X^{\text{metric space}} \to V^{\text{vector space}}$. supp $f \stackrel{\text{def}}{=} \overline{\left\{\vec{x}: f(\vec{x}) \neq \vec{0}\right\}}$. So $\vec{x} \notin \text{supp } f \Leftrightarrow \exists \varepsilon > 0 \text{ s.t. } f \equiv \vec{0} \text{ on } U(\vec{x}, \varepsilon)$.

Cor: (of factorization and results from Monday):

There exists a neighborhood U of \vec{q} such that the COVT holds when supp $f \subset U$.

Proof: Picture. \square

We now have a local version of the COVT!

Thm: (Partition of Unity) Given $\Omega^{\text{open}} \subset \mathbb{R}^n$ with $\Omega = \bigcup_{\alpha \in \Gamma} U_{\alpha}^{\text{open}}$, then $\exists \varphi_1, \varphi_2, \ldots \in C^{\infty}(\Omega, [0, +\infty))$ s.t.

- (i) each supp $\varphi_i \subset \text{some } U_{\alpha_i}$
- (ii) each supp φ_i compact
- (iii) each $\vec{x} \in \Omega$ has a nbd meeting (i.e., non-empty intersection) only finitely many supp φ_i
- (iv) $\sum_{j=1}^{\infty} \varphi_j(\vec{x}) = 1$ for al $\vec{x} \in \Omega$ (locally finite sum)

Then $\{\varphi_i\}$ is a "partition of unity dominated by $\{U_\alpha\}$ ".

Proof: Nov 21, or read §16.

Lemma: Given $f \in C(B^{\text{osso}\mathbb{R}^n}, \mathbb{R})$, ext $\int_B f$ exists, $\{\varphi_j\}$ satisfies (ii), (iii), (iv).

Then ext
$$\int_{B} f = \sum_{j=1}^{\infty} \int_{B} \varphi_j \cdot f$$
.

Proof: strategy is tackle $f \geq 0$, then apply previous result to f_+ , f_- , and combine.

Assume $f \geq 0$. Then $E^{\text{cpt,rect}} \subset B \Rightarrow \exists M \text{ s.t. } U_j \equiv 0 \text{ on } E \text{ for } j \geq M$. This is compact using (iii).

Thus,
$$\int_{E} f = \int_{E} \sum_{i=1}^{M} \varphi_{j} \cdot f = \sum_{i=1}^{M} \int_{E} \varphi_{j} \cdot f \leq \sum_{j=1}^{M} \int_{B} \varphi_{j} \cdot f \leq \sum_{j=1}^{\infty} \int_{B} \varphi_{j} \cdot f.$$

Take the supremum over E, obtain $\operatorname{ext} \int_{E} f \leq \sum_{j=1}^{\infty} \int_{B} \varphi_{j} \cdot f$

$$\text{Also, } \sum_{j=1}^{\infty} \int\limits_{B} \varphi_{j} \cdot f = \lim_{M \to \infty} \sum_{j=1}^{M} \int\limits_{B} \varphi_{j} \cdot f = \lim_{M \to \infty} \int\limits_{B} \sum_{j=1}^{M} \varphi_{j} \cdot f \leq \text{ext} \int\limits_{B} f.$$

Apply to f_+, f_- .

Combine. \Box

Proof of the Change of Variables Theorem: For $\vec{y} \in B$, choose $U_{\vec{y}}$ s.t. g factors on $U_{\vec{y}}$. Choose partition of unity dominated by $\{U_{\vec{y}}: \vec{y} \in B\}$. Then

$$\operatorname{ext} \int\limits_{B} f_{+} \stackrel{\text{lemma}}{=} \sum \int\limits_{B} \varphi_{j} f_{+} = \sum \int\limits_{A} (\varphi_{1} \circ g) (f_{+} \circ g) \left| \det Dg \right| \stackrel{\text{lemma}}{=} \operatorname{ext} \int\limits_{A} (f_{+} \circ g) \cdot \left| \det Dg \right|$$

Similarly, ext
$$\int_A f_- = \operatorname{ext} \int_A (f_- \circ g) \cdot |\det Dg|$$
.

Now combine (unles both terms are infinite). \square