Munkres Topology Solutions

Michael You

# Contents

| 1 | $\mathbf{Set}$ | Theory and Logic     | - |
|---|----------------|----------------------|---|
|   | 1.1            | Fundamental Concepts |   |

ii CONTENTS

# Forward

These solutions are for the  $2^{\rm nd}$  edition Topology textbook by Munkres.

iv CONTENTS

### Chapter 1

### Set Theory and Logic

### 1.1 Fundamental Concepts

#### Exercise 1.1.1

We will check  $\cup$ ,  $\cap$  in DeMorgan's laws.

Let's use

- $A = \{1, 2, 3, 4\}$
- $B = \{-1, 2, 3, 5\}$
- $C = \{3, 9, 11\}$

Check

$$A - (B \cup C) = \{1, 2, 3, 4\} - \{-1, 2, 3, 5, 9, 11\}$$
$$= \{1, 4\}$$
$$= (A - B) \cap (A - C)$$
$$= \{1, 4\} \cap \{1, 2, 4\} = \{1, 4\}$$

$$A - (B \cap C) = \{1, 2, 3, 4\} - \{3\}$$

$$= \{1, 2, 4\}$$

$$= (A - B) \cup (A - C)$$

$$= \{1, 4\} \cup \{1, 2, 4\} = \{1, 2, 4\}$$

#### Exercise 1.1.2

- (a)  $\implies$  is true.  $\iff$  is not true, consider  $A = \{1, 2, 3\}, B = \{1, 3\}, C = \{2\}.$
- (b)  $\implies$  is true.  $\iff$  is not true, consider  $A = \{1, 2, 3\}, B = \{1, 3\}, C = \{2\}.$
- (c) True.
- (d)  $\implies$  is not true. Consider  $A = \{1\} \subset B = \{1, 2\}, C = \emptyset$ .  $\iff$  is true.
- (e) Not true. Consider  $A = \{1\}, B = \{2\}$ . I think  $\subset$  works.
- (f) Not true. Consider  $A = \{1, 2\}, B = \{2, 3\}$ . LHS is equivalent to A, so this should be  $\supset$ .
- (g) True.
- (h) ⊃

- (i) True.
- (j) True.
- (k) Not true, if  $A = \emptyset$  for example, we have  $(A \times B) \subset (C \times D) = \emptyset \subset (C \times D)$ , but we can set B to whatever and this statement is still true, so we can make B have an element that is not in D, and therefore  $B \not\subset D$ .
- (l) True.
- (m) C
- (n) C
- (o) True.
- (p) I think this is true at first glance...at least  $\subset$  looks good.
- (q) >

#### Exercise 1.1.3

- (a) Original: If x < 0 then  $x^2 x > 0$ . True.
  - Contrapositive: If  $x^2 x \le 0$  then  $x \ge 0$ . True.
  - Converse: If  $x^2 x > 0$  then x < 0. False.



Figure 1.1: Showing how to visualize where  $x^2 - x > 0$ 

- (b) Original: If x > 0 then  $x^2 x > 0$ . False.
  - Contrapositive: If  $x^2 x \le 0$  then  $x \le 0$ . False.
  - Converse: If  $x^2 x > 0$  then x > 0. False.

#### Exercise 1.1.4

- (a)  $\exists a \in A \text{ such that } a^2 \notin B$
- (b)  $\forall a \in A, a^2 \notin B$
- (c)  $\exists a \in A \text{ such that } a^2 \in B$ .
- (d)  $\exists a \notin A \text{ such that } a^2 \notin B$ .

#### Exercise 1.1.5

(a) True. True.

#### 1.1. FUNDAMENTAL CONCEPTS

3

- (b) False. True.
- (c) True. False.
- (d) True. True.

#### Exercise 1.1.6

**TODO** too lazy

#### Exercise 1.1.7

$$D = A \cap (B \cup C)$$
$$E = (A \cap B) \cup C$$
$$F = A$$

For F, I was thinking  $x \in B \implies x \in C$  means that either  $x \in B$  and  $x \in C$ , or  $x \notin B$  and x can be anything. This sounds like x can be anything in the second case, so we have  $A \cap \mathcal{U} = A$ .

#### Exercise 1.1.8

$$A = \{0, 1\}. \ \mathcal{P}(A) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}.$$

If A has one element,  $|\mathcal{P}(A)| = 2$ . It is called the power set because it contains all the subsets of A, and that  $|\mathcal{P}(A)| = 2^{|A|}$ .

#### Exercise 1.1.9

**TODO**: You can honestly find this everywhere online. Standard proof.

#### Exercise 1.1.10

- (a)  $\mathbb{Z} \times \mathbb{R}$
- (b)  $\mathbb{R} \times (0,1]$
- (c) No. You can do a contradiction proof with cases that the first and second set are disjoint, and then that they are not disjoint.
- (d) Yes,  $(\mathbb{R} \mathbb{Z}) \times \mathbb{Z}$
- (e) No. The cartesian product will produce a box, while this set is a circle.