Algebra Autumn 2023 Frank Sottile

13 November 2023

Twelfth Homework

Write your answers neatly, in complete sentences. I highly recommend recopying your work before handing it in. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

Hand in for the grader Monday 27 November:

- 61. Let S be a multiplicative subset of an integral domain R with $0 \notin S$. Show that if R is a principal ideal domain, then so is $R[S^{-1}]$.
 - Show that if R is a unique factorization domain, then so is $R[S^{-1}]$.
- 62. Let R be an integral domain, and for each maximal ideal \mathfrak{m} of R, show that the localization $R_{\mathfrak{m}}$ is a subring of the quotient field of R.
- 63. Continuing the previous problem, show that the intersection of the rings $R_{\mathfrak{m}}$, as \mathfrak{m} ranges over all maximal ideals of R, is R itself.
- 64. Show that the equation $x^2 + 1 = 0$ has infinitely many solutions in Hamilton's Quaternions, \mathbb{H} , which is $\mathbb{R} \oplus i\mathbb{R} \oplus j\mathbb{R} \oplus k\mathbb{R}$, where ij = k, ji = -k, etc. These are defined in the Example on page 117 of my copy of Hungerford in Section III.1.
- 65. Let R be a ring and G be an infinite multiplicative cyclic group with generator ξ . Prove or disprove: The group ring R[G] is isomorphic to the polynomial ring R[x] in one indeterminate x.
- 66. Show that the polynomial x+1 is a unit in the power series ring $\mathbb{Z}[[x]]$, but not in the polynomial ring $\mathbb{Z}[x]$. Show that the polynomial $x^2 + 3x + 2$ is irreducible in $\mathbb{Z}[[x]]$, but not in $\mathbb{Z}[x]$.
- 67. (a) If D is an integral domain and c is an irreducible element in D, show that D[x] is not a principal ideal domain. (Hint: consider the ideal generated by x and c.)
 - (b) Show that $\mathbb{Z}[x]$ is not a principal ideal domain.
 - (c) If $\mathbb F$ is a field and $n\geq 2$, show that $\mathbb F[x_1,\dots,x_n]$ is not a principal ideal domain. (Hint: show that x_1 is irreducible in $\mathbb F[x_1,\dots,x_{n-1}]$.)
- 68. Let \mathbb{F} be a field. Show that the subring $\mathbb{F}[[x]][x^{-1}]$ of the quotient field of $\mathbb{F}[[x]]$ is a field. This is the field of formal Laurent series in x.
- 69. The *nth cyclotomic polynomial* is

$$f_n := (x^n - 1)/(x - 1) = x^{n-1} + \dots + 1 \in \mathbb{Z}[x].$$

Use Eisenstein's criterion to show that if p is prime, then $f_p(x+1)$ is irreducible, and deduce that f_p is irreducible.

70. If c_0, c_1, \ldots, c_n are distinct elements of an integral domain D, and d_0, \ldots, d_n are elements of D, then there is at most one polynomial $f \in D[x]$ of degree n such that $f(c_i) = d_i$ for each $i = 0, \ldots, n$.