

Japan-Taiwan Data and AI Module Platform for Analyzing Remote Sensing data, Part 2

Hidemoto Nakada, Ryosuke Nakamura, Kyoung-Sook Kim, Jason Haga, Yusuke Tanimura, Ryousei Takano, Yoshio Tanaka (AIST) Hsiu-Mei Chou, Hsi-En Yu, Chun Hung Huang, Weicheng Huang (NCHC)

Bo Chen, Scarlet Peng (NSPO)

This work is partially based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

The Goal

- We want to share our
 - -Programs
 - -Computational resources
 - -Data resources

Background

- Program
 - AIST Machine Learning module that detect objects in the satellite images
- Computers
 - AIST- ABCI a cluster for AI
 - NCHC Clusters
- Data
 - AIST Landsat 8 satellite images
 - NCHC/NSPO Formosat satellite images
 - → How can we share them?

Issues and solution

- Program Sharing
 - → Dockerhub
- Computational resource interoperability
 - Linux version, software stack ...
 - → Docker Image
- Data interoperability
 - Satellite data format / protocol
 - Data format and protocol are different
 - → Dedicated data retrieval layer for each site
 - Satellite image difference #channels, resolution
 - → Developed a network that can handle both

NİRC

Overview of the Demo at PRAGMA 36

- Sharing computing resources and data resources
- Interoperable ML module on Docker hub
- Deploy and run the module for any combination of the resources.

The application

- Detect the solar panel in the satellite image
 - Just an example of object detection
 - The system could be easily reused for other purpose, with appropriate training data

Workflow

- Download container image from dockerhub
- Launch it in the container
- Download satellite image from storage
- Split the satellite image into small patches with labels
- Train the model with the training data
- Shutdown the container

Behind the scene

Singularity

- Container for HPC environment
 - Docker is not appropriate NFS environment
 - NFS depends on the unix accountting and Docker ruins it – anybody can access anyfile
 - Singularity is NFS compliant
- Docker compatible
 - Docker Image could be automatically converted and deployed

Neural Network Architecture

- MUSIC4P3
 - Conventional CNN

Implemented in Chainer

Conclusion

- Computational resource interoperability problem is nearly solved thanks to Docker images
 - Easy to build and easy to use
 - We can safely ignore the software dependencies
- Data interoperability is still the problem
 - Protocol
 - Data format
 - We have to keep the effort on standardization

NIRC

Demo at PRAGMA 35

- Deploy the preconfigured 'Module' docker container on NCHC node
- Only use NCHC computing resources
- Data is embedded in the docker image

