Year 2 — Complex Analysis

Based on lectures by Ana Rodrgiues $$\operatorname{Notes}$$ taken by James Arthur

Summer Term 2020

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine.

Contents

1	Introduction to Complex Analysis 1.1 Roots of complex numbers and equations 1.2 Complex Functions	4
2	Topology	7
3	Continuity	8
4	Holomorphic Functions	ę
5	Integration 5.1 Path Integrals	10 10 10 11
6	Sequences and Series of Complex Numbers 6.1 Sequences of functions	12 12
7	Cauchy Theorem(s) - Many of them 7.1 Nested Sequence of compact sets 7.2 Jordan Closed Curve 7.3 Cauchys Integral Formula for the nth derivative 7.4 Morera's Theorem 7.5 Cauchy Estimates	14 15 16 16 17
8	Power Series 8.1 Radius of Convergence	18 19
	Zeros of holomorphic functions 9.1 Laurent Series	21 22 23 24 25
11	How to integrate 101 11.1 Integrating Trigonometric Functions 11.2 Semi-circle Method	28 28 29 30 31 32 33
12	Argument Principle and Rouche's Theorem	35

1 Introduction to Complex Analysis

In this introduction we are going to prove some foundational things about complex numbers, which make them a field. Firstly we define the set,

$$\mathbb{C} = \{x + iy : x, y \in \mathbb{R}\}\$$

as the complexes, so they are a set of '2D numbers'. This is most obvious in Lean where my convention is to write them as $\langle a,b\rangle=a+ib$.

Addition: Let z = a + ib and w = c + id, then we can deduce,

$$z + w = (a+c) + (b+d)i$$

hence C is closed under addition (and by sub_eq_neg_add subtraction aswell).

Multiplication: Again let z = a + ib and w = c + id, then we can deduce,

$$z \cdot w = (ac - bd) + (ad - bc)i$$

hence \mathbb{C} is closed under multiplication.

Division: Again let z = a + ib and w = c + id, then we can deduce,

$$\frac{z}{w} = \frac{z\overline{w}}{|w|}$$

hence closed. In technicalities with a few more lemmas we have a field, but we don't bother too much about that, yet (hopefully).

Lemma 1.1. Let $z \in \mathbb{C}$, then we can say $z\overline{z} = |z|^2$

Proof.

$$z\overline{z} = (x + iy)(x - iy) = x^2 + y^2 = |z|^2$$

Argand Diagrams: An argand diagram is a way to visualise complex numbers. Let us plot z = -3 + 2i and w = 1 + i.

Lemma 1.2. Let $z, w \in \mathbb{C}$, then,

(i) $(z \pm \overline{w}) = (\overline{z} \pm \overline{w})$

(ii)
$$\overline{(zw)} = \overline{zw}$$

(iii)
$$\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}$$
 if $w \neq 0$

Corollary 1.3. If $z, w \in \mathbb{C}$, then |zw| = |z||w|

Proof.
$$|zw|^2 = (zw)(\overline{zw}) = (z\overline{z})(w\overline{w}) = |z|^2|w|^2$$

Corollary 1.4. Triangle Inequality If $z, w \in \mathbb{C}$ then, $|z+w| \leq |z| + |w|$.

Proof. If z + w = 0, then proof complete. If $z + w \neq 0$,

$$\frac{z}{z+w} + \frac{w}{z+w} = 1$$

and then,

$$\operatorname{Re}\left(\frac{z}{z+w}\right) + \operatorname{Re}\left(\frac{w}{z+w}\right) = 1$$

We know also that,

$$Re\left(\frac{z}{z+w}\right) \leq \left|\frac{z}{z+w}\right|$$

and similarly for the other. Hence,

$$\left| \frac{z}{z+w} \right| + \left| \frac{w}{z+w} \right| \ge 1$$
$$|z+w| \le |z| + |w|$$

Polar Form: We can say

$$z = re^{i\theta} = r(\cos\theta + i\sin\theta)$$

1.1 Roots of complex numbers and equations

Lemma 1.5. Every complex number has n-distinct $n^t h$ roots

Theorem 1.6. (De Mouvire's) For all, $z \in \mathbb{C}$, then $r, \theta \in \mathbb{R}$,

$$z^n = r^n(\cos n\theta + i\sin n\theta)$$

Let $z = re^{i\theta} = r(\cos\theta + i\sin\theta)$ and $\mu = \rho e^{i\alpha} = \rho(\cos\alpha + i\sin\alpha)$, then,

$$r(\cos\theta + i\sin\theta) = \rho^n(\cos n\alpha + i\sin n\alpha)$$

Which implies,

$$\rho^n = r \qquad n\alpha = \theta + 2k\pi \quad (k \in \mathbb{Z}^+)$$

Hence,

$$\rho = r^{\frac{1}{n}} \qquad \alpha = \frac{\theta + 2k\pi}{n}$$

1.2 Complex Functions

We shall consider functions of the form $f: D \to \mathbb{C}$, where $D \subset \mathbb{C}$.

Lemma 1.7. (Remainder Theorem) If g is a polynomial over $\mathbb C$ and $b \in \mathbb C$, then $\exists h(z)$ over $\mathbb C$ st, g(z) = (z-b)h(z) + g(b).

Theorem 1.8. If $g(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$ with $a_n \neq 0$ and $a_i \in \mathbb{C}(i \in \mathbb{N}_1)$, then g(z) has at most n complex roots.

Proof. In general, every polynomial over \mathbb{C} can be written as,

$$a(z-z_1)(z-z_2)\dots(z-z_n)$$

and the only polynomials p(z) over \mathbb{C} with no solutions are p(z) = 0 (by FTA).

1.2.1 Exponential and Logarithm

Definition 1.9. The complex Exponential is defined as,

$$e^z = e^x(\cos y + i\sin y)$$

Lemma 1.10. $\forall z \in \mathbb{C}$, we have,

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

Lemma 1.11. $\forall z, w \in \mathbb{C}$,

- (i) $e^{z+w} = e^z e^w$
- (ii) $e^{z+2\pi i} = e^z$
- (iii) $|e^z| = e^{\operatorname{Re}(z)}$

Proof.

$$|e^{z}| = |e^{x+iy}|$$

$$= |e^{x}||e^{iy}|$$

$$= |e^{x}||\cos y + i\sin y|$$

$$= |e^{x}| \cdot 1$$

$$= e^{x} = e^{\text{Re}(z)}$$

Definition 1.12. (Complex Trigonometry) $\forall z \in \mathbb{C}$,

$$\cos z = \frac{e^{iz} - e^{-iz}}{2}$$
 $\sin z = \frac{e^{iz} + e^{-iz}}{2i}$

Definition 1.13. (Complex Hyperbolic Trigonometry) $\forall z \in \mathbb{C}$,

$$\cos ix = \frac{e^{-x} - e^x}{2} = \cosh x \qquad \sin ix = \frac{e^{-x} + e^x}{2i} = i \sinh x$$

Lemma 1.14. For $\theta, \phi \in \mathbb{R}$, we have $e^{i(\theta+\phi)} = e^{i\theta}e^{i\phi}$

```
Proof.
           lemma comp_exp_add (\theta \varphi : \mathbb{R}) : \exp(\theta * I) * \exp(\varphi * I) = \exp((\theta + \varphi) * I) :=
  begin
     repeat {rw exp_mul_I},
     simp only [add_mul, mul_add],
     rw [add_comm, mul_comm (sin \uparrow \varphi) I, mul_assoc _ I _,
           tactic.ring.mul_assoc_rev I I _, ← pow_two, I_sq],
     simp only [neg_mul_eq_neg_mul_symm, one_mul, mul_neg_eq_neg_mul_symm],
     rw \leftarrow [ mul_assoc (cos \uparrow\theta), mul_comm (cos \uparrow\theta), \leftarrow add_assoc, add_comm (I * cos \uparrow\theta *
     \sin \uparrow \varphi),
           add_right_comm (-(sin \uparrow \theta * \sin \uparrow \varphi)), add_comm (-(sin \uparrow \theta * \sin \uparrow \varphi)),
           tactic.ring.add_neg_eq_sub, \( \) cos_add, mul_comm _ I, add_assoc],
     have H1 : I * cos \uparrow \theta * sin \uparrow \varphi + I * sin \uparrow \theta * cos \uparrow \varphi = I * (cos \uparrow \theta * sin \uparrow \varphi + sin \uparrow \theta *
      \cos \uparrow \varphi),
     { ring},
     rw [H1, add_comm (cos \uparrow \theta * \sin \uparrow \varphi), \leftarrow \sin_a dd, mul_comm],
```


Corollary 1.15. For $r, s, \theta, \phi \in \mathbb{R}$, we have $re^{i\phi}(se^{i\theta}) = rse^{i(\theta + \phi)}$

Proof. lemma exp_form_mul $(\varphi \ \theta : \mathbb{R})$ (r s : \mathbb{C}) : $(r*exp(\varphi * I)) * (s*exp(\theta * I)) = r * s * exp((\theta + \varphi) * I) := by rw [mul_mul_comm, comp_exp_add, add_comm]$

Definition 1.16. (Complex Logarithm) If we have $e^z = w$, then we can solve and get,

$$z = \log r + i(\theta + 2k\pi)$$
 $k \in \mathbb{Z}^+$

Definition 1.17. (Principle Complex Logarithm) We define the principle logarithm as,

$$Log(w) = log|w| + i\arg(w)$$

and we can deduce that,

Lemma 1.18. $\forall z, w \in \mathbb{C} \setminus 0$,

$$log(zw) = Log(z) + Log(w) + 2n\pi \qquad (n \in \mathbb{N})$$

2 Topology

Definition 2.1. (*Open Disc*) $D(a,r) = \{z \in \mathbb{C} : |z-a| < r\}$

Definition 2.2. (Closed Disc) $\overline{D}(a,r) = \{z \in \mathbb{C} : |z-a| \le r\}$

Definition 2.3. (Punctured Disc) $D'(a,r) = \{z \in \mathbb{C} : 0 < |z-a| < r\}$

Definition 2.4. (Open Set) A set $S \subset \mathbb{C}$ is open $\forall z \in \mathbb{C}, \exists r > 0, D(z;r) \subset S$.

Definition 2.5. (Closed Set) A set $S \subset \mathbb{C}$ is closed if $\mathbb{C} \setminus S$ is open.

Definition 2.6. (Limit point) A point $z \in \mathbb{C}$ is a limit point of S if $D'(z;r) \cap S \neq 0 \ \forall r > 0$. A point of S which isn't a limit point is an isolated point.

Definition 2.7. (Closure) the closure of S is the union of S and it's limit points.

Definition 2.8. (Interior Point) $\exists r > 0, D(z; r) \subset S$

Definition 2.9. (Exterior Point) $\exists r > 0, D(z; r) \cap S = \emptyset$

Definition 2.10. (Boundary Point) z is a boundary point if it's neither a interior or exterior point of S.

Lemma 2.11. Let $A \subset \mathbb{C}$, each point $a \in \mathbb{C}$ is either an interior of A, an exterior of A or a boundary point of A.

Proposition 2.12. (i) The following three statements are equivalent,

- S is closed.
- S contains all it's limit points.
- $-\overline{S}=S.$
- (ii) $z \in \overline{S} \iff V \cap S \neq \emptyset \ \forall z \in \text{open set } V$
- (iii) \overline{S} is a closed set.

A disk, $D(\lambda_0; r)$ in an open set S.

Proof. TO DO

- **Definition 2.13.** (Bounded Set) $S \subset \mathbb{C}$ is bounded if $\exists M \in \mathbb{R}, |z| \leq M \, \forall z \in S$.
- **Definition 2.14.** (Compactness) A set is bounded and closed is compact.

Definition 2.15. An open set $U \subset \mathbb{C}$ is connected if any two points a and b in U, one can join a to b in a finite sequence of straight lines segments contained within U.

Definition 2.16. (*Domain*) If $A \subset \mathbb{C}$ is a domain if A is nonempty, open and connected.

3 Continuity 2 Complex Analysis

3 Continuity

Definition 3.1. (*Limit*) Let $A \subset \mathbb{C}$, $f: A \to \mathbb{C}$ and $a \in \mathbb{C}$ be a limit point of A. $f(z) \to l$, as $z \to a$ if $\forall \varepsilon > 0 \ \exists \delta > 0, z \in D(a, \delta) \cap A$ then $f(z) \in D(l, \varepsilon)$.

Theorem 3.2. Let $f: A \to \mathbb{C}$ and $a \in \mathbb{C}$ be a limit point of A. Then $f(z) \to l$ as $z \to a \iff f(a_n) \to l$, $\forall a_n : \mathbb{N} \to \mathbb{C}, a_n \to a$.

Question. Does a limit only exist when a is a limit point?

Definition 3.3. (Continuous at) Let $f: A \to \mathbb{C}$. If $a \in A$ is a limit point of A, and if $f(z) \to f(a)$ as $z \to a$, we say that f is continuous at a.

Definition 3.4. (Continuous on) Let $f: A \to \mathbb{C}$. Suppose that each point of A is a limit point of A. We say f is continuous on A if f is continuous at all $a \in A$.

Theorem 3.5. Continuity holds under addition, multiplication and their inverses, with the usual caveats.

Remark. Polynomials are continuous on all of \mathbb{C} , rational functions are continuous where defined.

4 Holomorphic Functions

Definition 4.1. (Differentiable) Let $A \subset \mathbb{C}$ be open, $f: A \to \mathbb{C}$. We say f is differentiable at $a \in A$ if,

$$\lim_{z \to a} \frac{f(z) - f(a)}{z - a} \quad \text{exists}$$

This limit is called f'(a).

Definition 4.2. (Holomorphic) Let $f: U \to \mathbb{C}$, which is differentiable at every point of U is Holomorphic.

Theorem 4.3. If $f: A \to \mathbb{C}$ and g are differentiable then,

$$f \pm g$$
 fg fg^{-1} $f \circ g$ $g \circ f$

are differentiable

Theorem 4.4. (Cauchy Riemann Equations) Let $U \subset \mathbb{C}$ be open. Suppose that $f: U \to \mathbb{C}$ is a function,

$$f(x+iy) = u(x,y) + iv(x,y)$$

 $x, y \in \mathbb{R}, u, v : \mathbb{R} \to \mathbb{R}$. If $z_0 \in U$ and if f is differentiable at z_0 ,

$$u_x = v_y$$
 $u_y = -v_x$

Lemma 4.5. (Partial Converse of C-R) Suppose f(x+iy) = u(x,y) + iv(x,y) is a function on an open set U and suppose $z_0 \in U$. If f satisfies the CR (with u_x, v_y are continuous at z_0), then f is differentiable.

5 Integration 2 Complex Analysis

5 Integration

5.1 Path Integrals

Definition 5.1. (*Path*) A path is a continuous map $\gamma : [a, b] \to \mathbb{C}$. It is called smooth if γ is differentiable and γ' is continuous.

We write $\gamma(t) + x(t) + iy(t)$ where $x, y : [a, b] \to \mathbb{R}$.

- γ is continuous if x(t) and y(t) are continuous.
- γ is differentiable if x(t) and y(t) are differentiable.

Example. Let $z_1, z_2 \in \mathbb{C}$. The line segment from $z_1 \to z_2$ is the path $\gamma : [0, 1] \to \mathbb{C}$,

$$\gamma(t) = z_1 + (z_2 - z_1)t$$

Example. Let $z_0 \in \mathbb{C}$, $(r \in \mathbb{R}) > 0$, $\alpha, \beta \in \mathbb{R}$, $\alpha < \beta$. We define $\gamma : [\alpha, \beta] \to \mathbb{C}$,

$$\gamma(t) = z_0 + re^{it}$$

Let $\gamma: [a, b] \to \mathbb{C}$,

- $-\gamma(a)$ is the starting point
- $-\gamma(b)$ is the end point
- If $\gamma(a) = \gamma(b)$, then the path is closed
- If $\forall t, s \in (a, b)$ and $\gamma(t) = \gamma(s) \iff t = s$ (i.e. γ is injective)

Notation. γ^- is a map $\gamma^-: [-b, -a] \to \mathbb{C}$, i.e. the reversal of γ

Definition 5.2. (*Path Integral*) Let f be continuous on an open set $U, \gamma : [a, b] \to \mathbb{C}$ be a smooth path contained within U. The path integral is defined as,

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt$$

Example. Let f(z) = z and γ be the line segment from 1 to 2 + 2i,

$$\gamma(t) = 1 + (1+2i)t$$
 $t \in [0,1]$

then,

$$\int_{\gamma} z \, dz = \int_{0}^{1} (1 + (1+2i)t)(1+2i)dt = -\frac{1}{2} + 4i$$

5.1.1 Properties of the path integral

$$\int_{\gamma} f + g \, dz = \int_{\gamma} f \, dz + \int_{\gamma} g \, dz$$
$$\int_{\gamma} af \, dz = a \int_{\gamma} f \, dz \qquad \forall \, a \in \mathbb{C}$$
$$\int_{\gamma^{-}} f \, dz = -\int_{\gamma} f \, dz$$

5 Integration 2 Complex Analysis

Theorem. (FTC for \mathbb{C}) Assume $f: U \to \mathbb{C}$ is holomorphic and U is open. Assume also that f' is continuous. Then,

$$\int_{\gamma} f'(z) dz = f(\gamma(b)) - f(\gamma(a))$$

If γ is closed, then,

$$\int_{\gamma} f'(z) \, dz = 0$$

5.2 Contour Integral

Definition. (Contour) A contour, $\gamma = (\gamma_1, \dots, \gamma_n)$ is a sequence of smooth paths arranged end to end.

Definition. (Closed Contour) A contour is closed if $\gamma_1 = \gamma_n$.

Definition. (Contour Integral) We define an integral over the contour γ as,

$$\int_{\gamma} f(z) dz = \sum_{i=1}^{n} \int_{\gamma_i} f(z) dz$$

Definition. (Path Length) If γ is a smooth path, $\gamma:[a,b]\to\mathbb{C}$, then we define it's length to be,

$$\ell(\gamma) = \int_{a}^{b} |\gamma'(t)| dt$$

Definition. (Contour Length) If we have a smooth contour we define it's length to be,

$$\ell\left(\gamma\right) = \sum_{i=1}^{n} \int_{a}^{b} \left|\gamma_{i}'(t)\right| dt$$

Example. If γ is a line segment from w_1 to w_2 , $\gamma:[0,1]\to\mathbb{C}$, then,

$$\ell(\gamma) = \int_0^1 |w_2 - w_1| \, dt = |w_2 - w_1|$$

Lemma. If f is complex valued then,

$$\left| \int_{a}^{b} f(t) \, dt \right| \le \int_{a}^{b} |f(t)| \, dt$$

Corollary 5.3. (*M-L Bounds*) Consider a contour γ and continuous function f on γ . Suppose $|f(z)| \leq M \quad \forall z \in \gamma$. Then,

$$\left| \int_{\gamma} f(z) dz \right| \le ML$$
 where $L = \ell(\gamma)$

6 Sequences and Series of Complex Numbers

Let a_n be a sequence of complex numbers, let $a \in \mathbb{C}$, we say that a is the limit of a_n as $n \to \infty$ if $\forall \varepsilon > 0, \exists N \in \mathbb{R}, \forall n > N$,

$$|a_n - a| < \varepsilon$$

Theorem 6.1. Let z_n be a sequence of complex numbers, let $z \in \mathbb{C}$, then the following are equivalent,

- (i) $z_n \to z$ as $n \to \infty$
- (ii) $|z_n z| \to 0$ as $n \to \infty$
- (iii) $Re(z_n) \to Re(z)$, $Im(z_n) \to Im(z)$ as $n \to \infty$

Definition 6.2. (Cauchy Sequences) A sequence a_n of complex numbers is a cauchy sequence if $\forall \varepsilon > 0, \exists N \in \mathbb{R}$, if $n, m \geq N$, then

$$|a_n - a_m| < \varepsilon$$

Theorem 6.3. If a_n is a convergent sequence of complex numbers, then (a_n) is cauchy.

Proof. Since a_n is convergent $a_k \to l$ as $n \to \infty$. Take $\varepsilon > 0$, by def, $\exists N$, if n > N, then $|a_n - l| < \frac{\varepsilon}{2}$. Suppose n, m > N,

$$|a_n - a_m| = |a_n - l + l - a_m|$$

$$\leq |a_n - l| + |a_m - l|$$

$$< \varepsilon$$

Definition 6.4. (Convergent Series) Let $\sum_{n=0}^{\infty} z_n$ be an infinite series of complex numbers, we say the series converges if, $\sum_{n=0}^{\infty} z_n$ converges.

Definition 6.5. (Absolutely convergent) $\sum_{n=0}^{\infty} z_n$ converges absolutely if $\sum_{n=0}^{\infty} |z_n|$ converges.

Lemma 6.6. If $\sum_{n=0}^{\infty} |z_n|$ converges so does, $\sum_{n=0}^{\infty} z_n$.

Corollary 6.7. Let $(z_n)_{n=0}^{\infty}$ be a sequence of complex numbers. If $\forall \varepsilon > 0 \exists N$, $\left| \sum_{m=1}^{n} z_k \right| < \varepsilon$ and n, m > N, then $\sum_{k=0}^{\infty} z_k$ is convergent.

6.1 Sequences of functions

Definition 6.8. (Pointwise Limit of a sequence of functions) Let (f_n) be a sequence of functions on U. Let $f: U \to \mathbb{C}$, we say that f is pointwise limit on f of f_n if $\forall x \in U$, we have $f_n(x) \to f(x)$ as $n \to \infty$

Definition 6.9. (Uniform Convergence) Let (f_n) be a sequence of functions in U, we say that f is the uniform limit of f_n if,

$$\sup_{x \in U} |f_n - f| \to 0 \text{ as } n \to \infty$$

we say that (f_n) is uniformly convergent to f.

Theorem 6.10. Let (f_n) be a sequence of continuous functions that converge uniformly to f on $U \subset \mathbb{C}$, st, $\forall z \in U, z$ is a limit point. Then f is continuous.

Theorem 6.11. Let γ be a contour and f_n a sequence of functions integrable on γ . Assume that $f_n \to f$ uniformly on g. Then,

$$\int_{\gamma} f_n \, dz \to \int_{\gamma} f \, dz$$

Definition 6.12. (Uniform Cauchy) $(f_n)_{n=1}^{\infty}$ defined on U is uniformly cauchy on U if $\forall \varepsilon > 0 \exists N, \forall n, m > N, \forall z \in U$,

$$|f_n(z) - f_m(z)| < \varepsilon$$

Lemma 6.13. A sequence of functions defined on U is uniformly convergent on U if and only if it is uniformly cauchy on U.

Lemma 6.14. Let $(f_n)_{n=1}^{\infty}$ be a sequence of functions on U, the series $\sum_{n=0}^{i} nfty f_n(z)$ converges uniformly on U if,

$$S_N(z) = \sum_{1}^{N} f_n(z)$$

Theorem 6.15. (Weirstrass M-Test) Let $(f_n)_{n=1}^{\infty}$ be a sequence of functions defined on a subset of $U \subset \mathbb{C}$. The series, $\sum_{1}^{\infty} f_n$ converges uniformly and absolutely on U if, $\exists (M_n)_{n=1}^{\infty} \geq 0 \in \mathbb{R}$, st, $\forall n \in \mathbb{N}, \forall z \in U$ we have,

$$|f_n(z)| \leq M_n$$
 and $\sum_{n=0}^{\infty} M_n$ converges

7 Cauchy Theorem(s) - Many of them

Theorem 7.1. (Vauge Cauchy Theorem) If f is holomorphic at every $z \in \gamma$ (a closed contour) then,

$$\int_{\gamma} f(z) \, dz = 0$$

Definition 7.2. (Interior point γ in triangles) Given any two edge points on distinct edges any point on the interval between these two points on the interior point.

Theorem 7.3. If f is holomorphic on a domain U and $T \subset U$ is a triangle in U, then $\partial T = \partial T_1 + \partial T_2 + \partial T_3$ and,

$$\int_{\partial T} f(z) \, dz = 0$$

Lemma 7.4. Take a triangle T with vertices w_1 , w_2 , w_3 . Subdivide T into subtraingles T_1, T_2, T_3, T_4 , where each subtriangle has half the dimensions of the original triangle. Then,

$$\int_{\partial T} f(z) dz = \sum_{j=1}^{4} \int_{\partial T_j} f(z) dz$$

Lemma 7.5. (Gorsats Lemma) Let f be holomorphic in $U \subset \mathbb{C}$ and take $\alpha \in U$. Then, $\exists v(z)$ defined on U, st,

$$f(z) = f(\alpha) + (z - \alpha)f'(\alpha) + (z - \alpha)v(z)$$

and such that, $v(z) \to 0$ as $z \to \alpha$

7.1 Nested Sequence of compact sets

Lemma 7.6. Let U be a closed subset of \mathbb{C} and let (a_n) be a convergent sequence of elements of U with limit a. Then $a \in U$.

Lemma 7.7. Let $U_1 \supseteq U_2 \supseteq \ldots \supseteq U_n \supseteq \ldots$ be a decreasing sequence of compact subsets of \mathbb{C} . Then $\exists \alpha \in \mathbb{C}$, st, $\alpha \in U_n \forall n \in \mathbb{N}$

Definition 7.8. (Star Domain) A domain in \mathbb{C} is star if it has a star center.

Definition 7.9. (Star Center) We call $z_0 \in \mathbb{C}$ a star center of U if, $\forall z \in U$, the line segment between z_0 and z is contained in U.

Theorem 7.10. If f is holomorphic on a star domain U, then f = g' for some g holomorphic on U.

Corollary 7.11. (Cauchy Theorem on Star Domains) If U is a star domain with f as holomorphic on U, and γ is closed contour on U, then,

$$\int_{\gamma} f(z) \, dz = 0$$

Theorem 7.12. (Cauchy Theorem) Let U be a domain. Let γ be a closed contour, st, U contains $\gamma*$ and the interior of γ . Let F be holomorphic on U, then,

$$\int_{\gamma} f(z) \, dz = 0$$

7.2 Jordan Closed Curve

Theorem 7.13. Let γ be a simple closed curve, then $\mathbb{C} \setminus \gamma *$ is the disjoint union of a bounded region called the interior of γ and an unbounded region called the exterior of γ .

Theorem 7.14. (*Deformation Theorem*) Let f be a function, holomorphic on a domain U. Let γ_1 , γ_2 be contours with the same start and end points, st, U contains γ_1* and γ_2* and the region between them. Then,

$$\int_{\gamma_1} f(z) \, dz = \int_{\gamma_2} f(z) \, dz$$

Figure 1: Diagram for Deformation Theorem

Definition 7.15. (Positively Oriented Curve) A simple closed curve is said to be positively oriented if the interior is to the left of the curve when travelling in the direction of the contour.

Theorem 7.16. Let γ_1 and γ_2 be positively oriented simple contours with γ_2* lying inside γ_1 . If f is holomorphic on some domain that contains γ_1* and γ_2* and the region between the contours,

$$\int_{\gamma_1} f(z) \, dz = \int_{\gamma_2} f(z) \, dz$$

Figure 2: Diagram for Thm7.16

Theorem 7.17. (Cauchy Integral Formula) Let U be a domain, γ be a positively oriented simple contour with it's image and interior lying entirely inside U. Suppose that $a \in \gamma$. If f is holomorphic on U, then,

$$f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - a} \, dz$$

Example. Let γ be the circle with center (0,0) and radius 2. Then,

$$\int_{\gamma} \frac{e^{z^2}}{z+1} \, dz = 2\pi i e$$

We can then get from CIF,

$$\int_{\gamma} \frac{f(z)}{z - a} \, dz = 2\pi i f(a)$$

Let a = -1 and $f(z) = e^{z^2}$,

$$\int_{\mathcal{A}} \frac{e^{z^2}}{z+1} \, dz = 2\pi i f(-1) = 2\pi i e$$

7.3 Cauchys Integral Formula for the nth derivative

Theorem 7.18. (Cauchys Integral Formula for the nth derivative) Let U be a domain, γ a positively oriented simple contour with it's image and interior lying entirely in U. Suppose a is a path in the interior of γ . If f is holomorphic on U, then,

$$f^{(n)}(a) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} dz$$

Example. Let γ be the unit circle, compute $\int_{\gamma} \frac{\sin z}{z^4}$. First take a=0 and n=3,

$$\int_{\gamma} \frac{f(z)}{z^4} = \frac{2\pi i}{3!} f^{(3)}(0) = -\frac{\pi i}{3}$$

7.4 Morera's Theorem

Theorem 7.19. Let U be a domain, f continuous on U, st, for all positively oriented simple contours γ ,

$$\int_{\gamma} f(z) \, dz = 0$$

st, $\gamma*$ and it's interior are contained in U, then $\exists g: U \to \mathbb{C}$ st,

$$g' = f' \qquad \forall z \in U$$

Theorem 7.20. (Morera's Theorem) Let U be a domain, let f be continuous on U. If

$$\int_{\gamma} f(z) dz = 0 \qquad \forall \text{ positively oriented simple closed contours}$$

st, $\gamma*$ and it's interior is contained in U, then f is holomorphic on U.

7.5 Cauchy Estimates

Let f be holomorphic on a domain containing $\overline{D}(a,r)$. If M is an upper bound for |f(z)| on the boundary of the disc, st,

$$|f(z)| \le M, \, \forall \, z \in D(a,r)$$

then,

$$f^{(n)}(a) \le \frac{n!M}{r^n} \qquad \forall n \in Z^+$$

Proposition 7.21. Let U be a compact subset of \mathbb{C} and let $f:U\to\mathbb{C}$ be continuous. Then, f is bounded.

Definition 7.22. (Entire Function) An entire function is holomorphic on \mathbb{C}

Theorem 7.23. (Louiville's Theorem) Let f be entire, if f is bounded then, f is constant.

Theorem 7.24. (Generalised Louville) Let f be entire, if $\exists n, C, R$, st,

$$|f(z)| \le C|z|^n$$

whenever |z| > R. Then f is a polynomial of degree at most n.

Example. Suppose f is an entire function, satisfying

$$|f(z)| \le |z| + 1 \qquad \forall z \in \mathbb{C}$$

Prove that f(z) is a polynomial of degree 1, where $|A| \le 1$ and $B \le 1$. So let n = 1, and so we want to show things when $|z| \ge 1$, then,

$$|z| + 1 < 2|z|$$
 so let $C = 2$ and $R = 1$

We now know that f(z) = Az + B. We can differentiate and plug in zero to get the required inequalities,

$$|f(0)| = |A(0) + B|$$

 $\leq |0| + 1$
 $|B| \leq 1$

and now use Cauchy's estimate,

$$|f^{(n)}(a)| \le \frac{n!M}{r^n}$$

$$= \frac{M}{r}$$
 as $n = 1$

$$\le \frac{1}{r}$$
 as $z = 0$

$$\le 1$$
 as we are in $D(1,1)$

8 Power Series 2 Complex Analysis

8 Power Series

Let $a \in \mathbb{C}$, (a_n) is a sequence of complex numbers, $\forall n \geq 0$ we define $f_n : \mathbb{C} \to \mathbb{C}$ by $f_n(z) = a_n(z-a)^n$,

$$\sum_{n=0}^{\infty} f_n \qquad \text{is the power series about } a$$

Lemma 8.1. Any differentiable complex function has a local power series expansion.

Theorem 8.2. (Taylors Theorem) Let f be holomorphic on a domain U, suppose that the $D(a,r) \subset U$, where $a \in \mathbb{C}$, r > 0. Then $\exists (a_n)_{n=0}^{\infty}$ of complex numbers st, $\forall z \in D(a,r)$

$$f(z) = \sum_{n=0}^{\infty} a_n (z - a)^n$$

 γ is a circular contour, D(a,r), where,

$$a_n = \frac{f^{(n)}(a)}{n!} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}}$$

Proof. Assume a = 0, let f be holomorphic on a domain U. Suppose that $D(0, R) \subset U$. Let $z \in D(0, R)$, st, |z| < R. Let $\mu = D(0, S)$ with |z| < S < R.

By Cauchy's Integral Formula we have,

$$f^{(n)}(a) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} dw \tag{*}$$

Take n = 0 in (*),

$$f^{(0)}(z) = \frac{1}{2\pi i} \int_{\mu} \frac{f(w)}{(w-z)} dw$$

$$= \frac{1}{2\pi i} \int_{\mu} \frac{f(w)}{w(1-\frac{z}{w})} dw$$

$$= \frac{1}{2\pi i} \int_{\mu} \frac{f(w)}{w} \cdot \frac{1}{(1-\frac{z}{w})} dw$$

$$= \frac{1}{2\pi i} \int_{\mu} \frac{f(w)}{w} \sum_{n=0}^{\infty} \left(\frac{z}{w}\right)^{n} dw$$

$$= \frac{1}{2\pi i} \int_{\mu} \sum_{n=0}^{\infty} \left(\frac{f(w)}{w^{n+1}} z^{n}\right) dw$$

$$= \sum_{n=0}^{\infty} \frac{1}{2\pi i} \int_{\mu} \left(\frac{f(w)}{w^{n+1}}\right) dw z^{n}$$

$$= \sum_{n=0}^{\infty} f^{(n)}(0) z^{n}$$

Let f be holomorphic on a domain U and suppose id $aR \subset U$, where $a \in \mathbb{C}$ and R > 0. Then, $\exists (a_n)_{n=0}^{\infty}$ of complex numbers, $\forall z \in D(a, R)$,

$$f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$$
 where $a_n = \frac{f^{(n)}(a)}{n!}$

 γ is any circular contour, D(a,r), (r < R).

8 Power Series 2 Complex Analysis

8.1 Radius of Convergence

The sum $\sum_{n=0}^{\infty} z^n$ converges if |z| < 1 and diverges if |z| > 1. This is the series converges inside the unit circle at (0,0) and diverges outside. So we can ask,

$$\sum_{n=0}^{\infty} a_n (z-a)^n$$
 for what values does it converge?

There are three possibilities,

- (i) The series converges only when z = a
- (ii) The series converges everywhere $\forall z \in \mathbb{C}$
- (iii) The series converges where $\exists R$, st, the series converges in D(a,R) only.

Lemma 8.3. Let $\sum_{n=0}^{\infty} a_n (z-a)^n$ be a power series. If the series converges for $z_0 \in \mathbb{C}$ with $z_0 \neq a$, $\forall r$, st, $0 < z < |z_0 - a|$ the series converges uniformly and absolutely on $\overline{D}(a, r)$

Theorem 8.4. (Radius of Convergence) Let $\sum_{n=0}^{\infty} a_n (z-a)^n$ be a power series. Suppose $\exists z_0 \neq a$, st, the power series converges when $z=z_0$. If the series doesn't converge $\forall z \in \mathbb{C}$, then $\exists R>0$, $R\in \mathbb{R}$, st, the series converges absolutely when |z-a|< R and diverges when |z-a|> R.

The number R is called a radius of convergence of the power series,

- If a power series converges $\forall z \in \mathbb{C}$, we say it has infinite radius of convergence.
- If the series converges only at a, the radius of convergence must be zero.

Theorem 8.5. Let f be a function of $z \in \mathbb{C}$ defined by,

$$f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$$
 with Radius of convergence, R

Then, f is holomorphic on D(a, R) and,

$$f'(z) = \sum_{n=0}^{\infty} na_n (z-a)^{n-1} \quad \forall z \in D(a,R)$$

Theorem 8.6. If, $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ is a power series that converges in a domain containing a D(a,R)

where $a \in \mathbb{C}$ and R > 0 $(R \in \mathbb{R})$ then, f(z) is holomorphic on D(a, R) and $a_n = \frac{f^{(n)}(a)}{n!} \quad \forall n \in \mathbb{N}$

Example. What is the power series of $f(z) = z \sin z$ around π ? We know that,

$$\sin w = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} w^{2n+1}$$

Let $w = z - \pi$,

$$\sin(z-\pi) = \sum_{n=0}^{\infty} \frac{(-1)^n (z-\pi)^{2n+1}}{(2n+1)!}$$

and so,

$$z \sin z = (w + \pi) \sin(w + \pi)$$

$$= w \sin(w + \pi) + \pi \sin(w + \pi)$$

$$= -w \sin w - \pi \sin w$$

$$= -(w + \pi) \sum_{n=0}^{\infty} \frac{(-1)^n w^{2n+1}}{(2n+1)!}$$

Example. Find the taylor series for $f(z) = \cos(3z^2)$ around z = 0 and state the radius of convergence, Let $w = 3z^3$ and let us use the taylor series for $\cos w$,

$$\cos w = \sum_{n=0}^{\infty} \frac{(-1)^n w^{2n}}{(2n)!}$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n (3z^3)^{2n}}{(2n)!}$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n 9^n z^{6n}}{(2n)!}$$

This series converges $\forall w$ and so it converges $\forall z$.

9 Zeros of holomorphic functions

Let f be a holomorphic function of a complex variable. A zero of f is a complex number z_0 , st, $f(z_0) = 0$. Suppose f is holomorphic in a domain containing a point $a \in \mathbb{C}$. Then, $\exists r > 0$, st, f has a power series,

$$f(z) = \sum_{n=0}^{\infty} a_n (z - a)^n \quad \text{in } D(a, r)$$

and now suppose that a is a zero of f. Then,

- Either all of $a_n = 0$, $\forall n > 0 \implies f(x) = 0$ on D(a, r).
- $-\exists N \in \mathbb{N}$, st, $a_0 = a_1 = \cdots = a_{N-1}$ and $a_N \neq 0$.

For the second point there, we say that f has a zero of order N at a. By Taylors Theorem, f has a zero of order N at $a \in \mathbb{C}$ if $f(a) = f'(a) = \cdots = f^{(n-1)}(a) = 0$ and $f^{(n)}(a) \neq 0$.

Definition. (Simple Zero) A zero of order one is a simple zero, i.e. f(a) = 0, but $f'(a) \neq 0$.

Definition. (Double Zero) A zero of order two is a double zero.

Example. Let f(z) = z, then we have a simple zero at z = 0 as,

- -f(0) = 0
- $f'(z) = 1 \implies f'(0) = 1$

and now let $f(z) = z^2$, then we have a double zero at z = 0 as,

- $-f(0) = 0^2 = 0$
- $f'(z) = 2z, \implies f'(0) = 0$
- $-f''(z) = 2, \implies f''(0) = 2$

Lemma 9.1. Suppose that f and g have zeros of order n and m respectively at $a \in \mathbb{C}$, then fg has a zero of order n+m at a.

Lemma 9.2. (Isolated Zeros) Let f be holomorphic on a domain U containing a point a. If $\exists m \in \mathbb{N}$, st, f has a zero of order m at a, then the zero is isolated.

More intuitively, a zero is isolated, if $\exists r > 0$, st, $f(z) \neq 0$ if $z \in D'(a, r)$

Theorem 9.3. Let f be holomorphic on a domain U, if $\exists a \in U$ and r > 0, st, $D(a,r) \subset U$ and st, $f(z) = 0 \forall z \in D(a,r)$, then $f(z) = 0 \forall z \in U$.

Figure 3: Diagram for locally zero \implies globally zero

Let S be an open subset of \mathbb{C} , consider all $A \subset S$, st,

- A is open

 $-S \setminus A$ is open

If the only set A that satisfy (1) and (2) are \varnothing and S itself, then S is topologically connected.

Lemma 9.4. S is topologically connected if and only if it is connected.

Theorem 9.5. (*Identity Theorem*) Let U be a domain and let $f:U\to\mathbb{C}$ be holomorphic. The following are equivalent:

- (i) $f(z) = 0 \quad \forall z \in U$
- (ii) $\exists a \in U, r > 0, \text{ st}, f(z) = 0, \forall z \in D(a, r)$
- (iii) The set S of zeros of f has a limit point $z_0 \in U$.

9.1 Laurent Series

Let,

$$f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n = a_0 + a_1 (z-a) + \dots$$

Theorem 9.6. (Laurent Theorem) If f is holomorphic on an annulus,

$$A = \{ z \in \mathbb{C} : R < |z - a| < S \}$$

for $0 < R \le S$, then, $\exists (b_n)_{n \in \mathbb{Z}^+} \in \mathbb{C}$, st,

$$f(z) = \sum_{n=-\infty}^{\infty} b_n (z-a)^n$$
 the laurent series $\forall z \in A$

Figure 4: Then annulus A from R to S

f(z) moreover $\forall r$, st, R < r < S and $\forall n \in \mathbb{Z}^+$, if γ is the circular contour with center a and center r, then,

$$b_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}}$$

Suppose $\sum_{n=-\infty}^{\infty} a_n (z-a)^n$ is a laurent series convergent on the annulus. Then,

$$\sum_{n=-\infty}^{-1} a_n (z-a)^n$$
 is the principle part of the Laurent Series.

Theorem 9.7. (Uniqueness) Let $A = \{z \in \mathbb{C} : R < |z - a| < S\}$, $0 < R < S < \infty$. If the series $\sum_{n = -\infty}^{\infty} b_n (z - a)^n \text{ converges } \forall z \in A, \text{ then,}$

$$f(z) = \sum_{n=-\infty}^{\infty} b_n (z-a)^n$$
 is holomorphic on A and $\forall n \in \mathbb{Z}^+$ with the usual b_n defined above.

where γ is the circular contour, D(a, r), R < r < S.

Example. $A = \{z \in \mathbb{C} : 1 < |z| < 2\}$. Let $f : \mathbb{C} \setminus \{1,2\} \to \mathbb{C}$, st, $f(z) = \frac{1}{(z-1)(z-2)}$ and find the Laurent series about 0.

$$f(z) = \frac{1}{z - 2} - \frac{1}{z - 1}$$

$$= \frac{1}{-2\left(1 - \frac{z}{2}\right)} + \frac{1}{z\left(1 - \frac{1}{z}\right)}$$

$$= -\frac{1}{2} \sum_{n=0}^{\infty} \frac{z^n}{2^n} + \sum_{n=-\infty}^{-1} z^n$$

which is the Laurent expansion around 0.

Example. Let μ be the circular contour, $D(0, \frac{3}{2})$. Compute,

$$I = \mu_{\mu} f(z) dz$$
 with $f(z) = \frac{1}{(z-1)(z-2)}$

and we know that,

$$f(z) = \sum_{n=-\infty}^{\infty} a_n z^n \qquad a_n = \int_{\mu} \frac{f(w)}{w^{n+1}}$$

and so let n = -1,

$$a_{-1} = \frac{1}{2\pi i} \int_{\mu} f(w) dw$$
$$2\pi i a_{-1} = \int_{\mu} f(w) dw$$

and so as we know that $f(z) = -\frac{1}{2} \sum_{n=0}^{\infty} \frac{z^n}{2^n} + \sum_{n=-\infty}^{-1} z^n$. So now compute a_{-1} . WE can get that $a_{-1} = -1$, and so,

$$\int_{u} f(w) \, dw = -2\pi i$$

9.2 Singularities

Definition 9.8. (Isolated Singularity) Let U be a domain on which f is holomorphic. If $a \notin U$, st, D'(a, r) is a subset of U for some r > 0. Then, f has an isolated singularity.

If f has an isolated singularity at a, then by Laurents Theorem,

$$f(z) = \sum_{n=-\infty}^{\infty} b_n (z-a)^n$$
 above $D'(a,r)$ for some $r > 0$

Example. Find the Laurent Series of $f(z) = \frac{\sin z}{z}$,

$$f(z) = \frac{1}{z} \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n+1)!}$$

Definition 9.9. (Removable Singularity) f has a removable singularity if it's Laurent Series has zero principle part, $b_n = 0$, $\forall n < 0$

Example. $f(z) = e^{\frac{1}{z}}$ has a laurent series about z = 0,

$$f(z) = \sum_{n=0}^{\infty} (\frac{1}{z})^n \frac{1}{n!}$$

$$= \sum_{n=0}^{\infty} \frac{1}{z^n n!}$$

$$= \frac{1}{n!} + \sum_{n=-\infty}^{-1} \frac{1}{(-n)!} z^n$$

Definition 9.10. (Essential Singularity) There are infinitely many terms in the principle part, hence, it is a essential singularity. $\nexists m$, st, $b_n = 0$, $\forall n < -m$.

To find singulaties look at the Laurent Series.

$$\cdots + \frac{1}{z^3} + \frac{1}{z^2} + \frac{1}{z} + 1 + z + z^2 + \dots$$

- principle part all zeros, f has a removable singularity
- principle part not all zero, f has an essential singularity

Theorem 9.11. (*Picards Great Theorem*) If f is defined on a punctured disc and has an essential singularity at a, then f takes all complex values with at most one exception on D'(a, r).

10 Residues and Cauchy (again...)

If f is a function holomorphic on a punctured disc, D'(a,r) for some $a \in \mathbb{C}$ and r > 0, with Laurent Series,

$$\sum_{n=-\infty}^{\infty} b_n (z-a)^n \quad \text{for } z \in D'(a,r), \text{ then,}$$

the residue of f at a is,

$$Res(f, a) = b_{-1}$$

The residue of f at a is, $\operatorname{Res}(f, a) = b_{-1}$ and if f has a removable singularity at a, then, $\operatorname{Res}(f, a) = 0$ and if a is a simple pole, then, $\operatorname{Res}(f, a) \neq 0$

Theorem 10.1. (Cauchy Residue Theorem) If γ is a closed simple contour, traversed anticlockwise, if f is a holomorphic function on a domain containing the image and the interior of γ except for a finite number of isolated singularities in the interior of the whole curve (a_1, a_2, \ldots, a_n) , then,

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{j=0}^{n} \operatorname{Res}(f, a_j)$$

10.1 Computing Residues

If f has laurent series,

$$\sum_{\infty}^{\infty} b_n (z - a)^n \qquad \text{for } t \in D'(a, r)$$

Then.

$$res(f, a) = b_{-1}$$

Given this, we have Cauchy Residue Theorem, suppose γ is a closed, simple contour traversed anticlockwise. f is holomorphic except at a finite number of isolated singulairties, say (a_1, \ldots, a_k) , then,

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{j=0}^{k} \operatorname{res}(f, a_j)$$

If f has a simple pole at a, then f has a laurent series,

$$f(z) = \frac{b_{-1}}{z - a} + b_0 + b_1(z - a) + b_2(z - a)^2 + \dots$$

and we have,

$$res(f, a) = b_{-1} = \lim_{z \to a} (z - a)f(z)$$

Example. Let γ be D(0,3) and $f(z) = \frac{1}{(z-1)(z-2)}$. f has two singularities.

$$\operatorname{res}(f,1) = \lim_{z \to 1} (z-1) \frac{1}{(z-1)(z-2)} = \lim_{z \to 1} \frac{1}{z-2} = -1$$

$$\operatorname{res}(f,2) = \lim_{z \to 2} (z-2) \frac{1}{(z-1)(z-2)} = \lim_{z \to 2} \frac{1}{z-1} = 1$$

and so,

$$\int_{\gamma} f(z) \, dz = 2\pi i (-1 + 1) = 0$$

Lemma 10.2. If $f(z) = \frac{h(z)}{k(z)}$ and it has an isolated singularity at a, h and k are holomorphic on D(a, r) if $h(a) \neq 0$ and k has a simple zero at a. Then,

$$res(f, a) = \frac{h(a)}{k'(a)}$$

Example. Consider $f(z) = \frac{\sin z}{\cos z}$ and

$$\operatorname{res}\left(f, \frac{3\pi}{2}\right) = \frac{\sin\frac{3\pi}{2}}{-\sin\frac{3\pi}{2}} = -1$$

For poles of higher order, we look towards the laurent series.

Example. Compute the residue of $f(z) = \frac{\sin z}{(z-\pi)^6}$. Firstly, let $w = z - \pi$.

$$f(z+\pi) = \frac{\sin(w+\pi)}{w^6}$$

$$= -\frac{\sin w}{w^6}$$

$$= -\frac{1}{w^6} \left(w - \frac{w^3}{3!} + \frac{w^5}{5!} + \dots \right)$$

$$= -\frac{1}{w^5} + \frac{1}{3!w^3} - \frac{1}{5!w} + \dots$$

Hence, $b_{-1} = -\frac{1}{5!}$ an hence $\operatorname{res}(f, \pi) = \frac{1}{5!}$

Notation. Note that,

$$1 + w + w^{2} + w^{3} + \dots$$
$$1 + w + w^{2} + w^{3} + \mathcal{O}(w^{4})$$

Proposition 10.3. Suppose f has a pole of order n at $a \in \mathbb{C}$, then,

$$res(f, a) = \lim_{z \to a} \frac{g^{(n-1)(z)}}{(n-1)!}$$

where $g(z) = (z - a)^n f(z)$.

Example. Let $f(z) = \frac{\sin z}{(z-1)^3}$ and f has a triple pole at z=1. Let us write,

$$g(z) = (z-1)^3 f(z) = \sin z$$

and so,

$$res(f,1) = \lim_{z \to 1} \frac{(\sin z)''}{2!} = -\frac{1}{2}\sin 1$$

When we consider residues at essential singularities, it suffices to just compute and consider the laurent series,

Example. Find res(f,0) where $f(z) = e^{\frac{2}{z}}$. Let $w = \frac{2}{z}$.

$$f\left(\frac{w}{2}\right) = e^{w}$$

$$= 1 + w + w^{2} + w^{3} + \dots$$

$$= 1 + \frac{2}{z} + \frac{4}{z^{2}} + \frac{8}{z^{3}} + \dots$$

and so, res(f, 0) = 2

11 How to integrate 101

Complex Analysis is very useful for solving a wide amount of integrals.

11.1 Integrating Trigonometric Functions

If $z = e^{it}$, then we can write,

$$\cos t = \frac{1}{2}(z + z^{-1})$$
 and $\sin t = \frac{1}{2i}(z - z^{-1})$

We want to write,

$$\int_0^{2\pi} F(\cos t, \sin t) \, dt$$

as a function of z alone.

Example. Compute,

$$\int_0^{2\pi} \frac{\cos 2t}{5 - 3\cos t} \, dt$$

Firstly we can let $z = e^{it}$ and preform a substitution.

$$\int_0^{2\pi} \frac{\cos 2t}{5 - 3\cos t} dt = \int_0^{2\pi} \frac{\frac{1}{2}z^2 + z^{-2}}{5 - \frac{3}{2}(z + z^{-1})} dt$$
$$= \int_0^{2\pi} \frac{\frac{1}{2}z^2 + z^{-2}}{5 - \frac{3}{2}(z + z^{-1})} \frac{dz}{iz}$$
$$= \int_0^{2\pi} \frac{z^4 + 1}{z^2(3z^2 - 10z + 3)} dt$$

This step took half an hour of the lecture

Looking at the integrand we can say, it has a double pole at z = 0 and simple poles at z = 3 and $z = \frac{1}{3}$. We shall take the disc of center 0 and radius 1. Now we can say that we want the residue of z = 0 and $z = \frac{1}{3}$.

We can calculate the residue at z = 0, by doing the following,

$$\operatorname{res}(f,0) = \lim_{z \to 0} g'(z)$$

$$= \lim_{z \to 0} (z^2 f(z))'$$

$$= \lim_{z \to 0} (\frac{z^4 + 1}{3z^2 - 10z + 3})$$

$$= \frac{10}{9}i$$

and now the other residue as $z = \frac{1}{3}$ is a simple pole,

$$\operatorname{res}\left(f, \frac{1}{3}\right) = \lim_{z \to \frac{1}{3}} \left(z - \frac{1}{3}\right) f(z)$$
$$= \lim_{z \to \frac{1}{3}} \frac{i(z^4 + 1)}{z^2}$$
$$= -\frac{41}{36}i$$

and then by Cauchy Residue Theorem,

$$\int_0^{2\pi} \frac{\cos 2t}{5 - 3\cos t} dt = 2\pi i \left[\operatorname{res}(f, 0) + \operatorname{res}\left(f, \frac{1}{3}\right) \right]$$
$$= 2\pi i \left[\frac{10}{9} i + \frac{41}{36} i \right] = \frac{\pi}{18}$$

11.2 Semi-circle Method

We want to compute $\int_{-\infty}^{\infty} f(x) dx$ using a semicircle contour with radius R and letting $R \to \infty$.

Figure 5: Semicircle Method Diagram

11.2.1 Odd function using Semi-circle

Consider,

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx$$

We can consider the following integral over $\gamma = \gamma_1 + \gamma_2$, where we define $\gamma_1 = [-R, R]$ and $\gamma_2 = Re^{it}$ where $t \in [0, \pi]$. The integrand has two singularities, $z = \pm i$, only one of which is in γ , z = i. Consider the residue of the single pole z = i,

$$\operatorname{res}(f, i) = \lim_{z \to i} (z - i) f(z)$$
$$= \lim_{z \to i} \frac{1}{z + i}$$
$$= \frac{1}{2i} = -\frac{i}{2}$$

Hence we can say that,

$$\int_{\gamma}\frac{1}{1+z^2}\,dz=2\pi i(-\frac{i}{2})=\pi$$

and we can also split up,

$$\int_{\gamma} \frac{1}{1+z^2} dz = \int_{\gamma_1} \frac{1}{1+z^2} dz + \int_{\gamma_2} \frac{1}{1+z^2} dz$$
$$= \int_{-R}^{R} \frac{1}{1+z^2} dz + \int_{\gamma_2} \frac{1}{1+z^2} dz$$

So we now consider I_2 as $R \to \infty$, so do the ML-inequality,

$$|f(z)| = \left| \frac{1}{1+z^2} \right|$$

$$\leq \frac{1}{R^2 - 1}$$

and we know that $\ell(\gamma) = \pi R$, hence,

$$\left| \int_{\gamma_1} \frac{1}{1+z^2} \, dz \right| \le \frac{\pi R}{R^2 - 1}$$

and so as $R \to \infty$,

$$\int_{\gamma_1} \frac{1}{1+z^2} \, dz \to 0$$

and now,

$$\int_{-R}^{R} f(z) dz = \pi - \int_{\gamma_1} \frac{1}{1+z^2} dz$$
$$= \pi$$

as $R \to \infty$

11.2.2 Trigonometric using Jordan's Inequality and Semi-circle

Lemma 11.1. (Jordan's Inequality) If $0 < t < \frac{\pi}{2}$, then, $\sin t \ge \frac{2t}{\pi}$

Example. Compute,

$$I = \int_0^\infty \frac{x \sin x}{x^2 + 1} \, dx$$

Take $f(z) = \frac{ze^{iz}}{z^2 + 1}$ and so,

$$I = \operatorname{Im}\left(\int_0^\infty \frac{ze^{iz}}{z^2 + 1} \, dz\right)$$

and so let γ be defined the same as before, then we consider I_2 ,

$$\begin{split} I_2 &= \int_{\gamma_2} \frac{z e^{iz}}{z^2 + 1} \, dz \\ &\leq \int_0^\pi \left| \frac{R e^{it} e^{R e^{it}}}{(R e^{it})^2 + 1} \, i R e^{it} \right| \, dt \\ &\leq \frac{R^2}{R^2 - 1} \int_0^\pi \left| e^{R e^{it}} \right| \, dt \\ &= \frac{R^2}{R^2 - 1} \int_0^\pi e^{-R \sin t} \, dt \\ &= \frac{2R^2}{R^2 - 1} \int_0^{\frac{\pi}{2}} e^{-R \sin t} \, dt \\ &\leq \frac{2R^2}{R^2 - 1} \int_0^{\frac{\pi}{2}} e^{-\frac{2Rt}{\pi}} \, dt \\ &= \frac{2R^2}{R^2 - 1} K \end{split}$$

 $K \in \mathbb{C}$

Hence as $R \to \infty$, $I_2 \to 0$ and so we can just apply CRT to the integral and achieve the solution. There are two simple poles in the integrand at $z = \pm i$ and as before only $i \in \gamma$ and so we only need to calculate one residue.

$$\operatorname{res}(f, i) = \lim_{z \to i} (z - i) \frac{ze^{iz}}{z^2 + 1}$$
$$= \lim_{z \to i} \frac{ze^{iz}}{z + i} = \frac{1}{2e}$$

and so, by CRT,

$$\int_{\gamma} f(z) dz = 2\pi i \operatorname{res}(f, i)$$
$$= \frac{\pi i}{e}$$

and so,

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx = \frac{\pi}{e}$$

11.2.3 Even integrand using Semi-Circle

Let us consider the following integral,

$$I = \int_0^\infty \frac{dx}{(1+x^2)^2} \, dx$$

and, as the integrand is even,

$$I = \frac{1}{2} \int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^2} \, dx \tag{*}$$

Hence, we consider $f(z) = \frac{1}{(1+z^2)^2}$ over the contour $\gamma = \gamma_1 + \gamma_2$, where $\gamma_1 = [-R, R]$ and $\gamma_2 = Re^{it}$ with $t \in [0, \pi]$.

Figure 6: Diagram of γ

The singularity of f(z) is z = i, if R > i. As i is a double pole, then let $g(z) = (z - i)^2 f(z)$ and now,

$$g'(z) = \frac{-2}{(z+i)^3}$$

and hence,

$$res(f, i) = \lim_{z \to i} \frac{-2}{(z+i)^3} = -\frac{i}{4}$$

and so, by CRT,

$$\int_{\gamma} f(z) dz = 2\pi i (\operatorname{res}(f, i))$$
$$= -2\pi i \cdot \frac{i}{4} = \frac{\pi}{2}$$

and now consider I_2 under the ML-bound. We can say,

$$\left| \int_{\gamma_2} f(z) dz \right| \le \frac{1}{(R^2 - 1)^2} \ell(\gamma)$$
$$\le \frac{\pi R}{(R^2 - 1)^2}$$

and so as $R \to \infty$, $I_2 \to 0$. Hence as we take $R \to \infty$,

$$\int_{\gamma} f(z) dz = \int f(z) dz$$

$$= \int_{-\infty}^{\infty} \frac{1}{(1+z^2)^2} dz$$

$$= \frac{\pi}{2}$$

and as (*) we can say,

$$\int_0^\infty \frac{1}{(1+z^2)^2} \, dz = \frac{\pi}{4}$$

11.2.4 Large powered denomenator using Semicircle

Now, we shall evaluate the following integral,

$$\int_0^\infty \frac{dx}{x^{1000} + 1}$$

and let $f(z) = \frac{1}{z^{1000}+1}$, which has a simple pole at $\alpha = e^{\frac{\pi}{1000}i}$. Now, we let $\gamma_1 = [-R, R]$ and then $\gamma_2 = Re^{it}$ where $t \in [0, \frac{\pi}{500}]$ and γ_3 is reversal for $[0, \alpha^2 R]$ which we let,

$$\gamma_3^- = \alpha^2 t \qquad t \in [0, R]$$

Then α is inside γ . Now, consider I_3 ,

$$\begin{split} I_3 &= \int_{\gamma_3^-} \frac{dx}{z^{1000} + 1} \\ &= -\int_{\gamma} \frac{\alpha^2}{(\alpha^2 t)^{1000} + 1} \\ &= -\int_0^R \frac{\alpha^2}{(\alpha^2 t)^{1000} + 1} \\ &= -\alpha^2 I_1 \end{split}$$

We can now see that the integrand in γ_2 is $mathcalO(\frac{1}{R^{1000}})$, hence, the length of γ is $\frac{\pi R}{500}$, by the ML-inequality, $mathcalO(\frac{1}{R^{999}}) \to 0$ as $R \to \infty$. This means,

$$\int_{\gamma_2} f(z) dz \to 0 \quad \text{as } R \to \infty$$

Then the residue at f is simply,

$$\operatorname{res}(f,\alpha) = \frac{1}{1000\alpha^{999}}$$

and by Cauchy Residue Theorem,

$$I = 2\pi i \operatorname{res}(f, \alpha)$$
$$= \frac{2\pi i}{1000\alpha^{999}}$$

and so,

$$I = I_1 + I_2 + I_3$$

$$= (1 - \alpha^2)I_2 + I_3$$

$$\frac{2\pi i}{1000\alpha^{999}} = (1 - \alpha^2)I_2$$
as $R \to \infty$

$$\frac{2\pi i}{1000(1 - \alpha^2)\alpha^{999}} = I_2$$

$$\frac{2\pi i}{1000(\alpha^{-1} + \alpha)} = I_2$$

$$\frac{\pi}{1000} \frac{2i}{\alpha^{-1} + \alpha} = I_2$$

$$\frac{\pi}{1000} \csc\left(\frac{\pi}{1000}\right) = I_2$$

then,

$$\int_0^\infty \frac{1}{1 + x^{1000}} \, dx = \frac{\pi}{1000} \csc\left(\frac{\pi}{1000}\right)$$

11.2.5 Large powered denomenator and powered numerator using Semicircle

Compute,

$$\int_0^\infty \frac{x^{666}}{x^{1000} + 1} \, dx$$

Consider, $\gamma = \gamma_1 + \gamma_2 + \gamma_3$, where $\gamma_1 = [0, R]$, $\gamma_2 = Re^{it}$ where $t \in [0, \frac{\pi}{500}]$ and γ_3 is the reversal of $[0, \alpha^2 R]$, which we parameterised as,

$$\gamma_3^- = \alpha^2 t \qquad t \in [0, R]$$

We can show $I_2 \to 0$ as $R \to \infty$. Then the integral over γ_3 is,

$$I_3 = -\int_0^R \frac{(\alpha^2 t)^{666}}{(\alpha^2 t)^{1000} + 1} \alpha^2 dt$$
$$= -\alpha^{2 \times 667} I_1$$

We see that the residue of the integrand at α is,

$$\operatorname{res}(f,\alpha) = \frac{\alpha^{666}}{1000\alpha^{999}}$$

and so by Cauchy Residue Theorem, as $R \to \infty$,

$$2\pi i \frac{\alpha^{666}}{1000\alpha^{999}} = I_1 + I_2 + I_3$$
$$= (1 - \alpha^{2 \times 667})I_1$$

Hence,

$$I_{1} = \frac{2\pi i \alpha^{666}}{1000(1 - \alpha^{2 \times 667})a^{999}}$$

$$= \frac{\pi}{1000} \frac{2i\alpha^{666}}{\alpha^{667}\alpha^{999}(\alpha^{-667} + \alpha^{667})}$$

$$= \frac{\pi}{1000} \frac{2i}{(\alpha^{-667} + \alpha^{667})}$$

$$= \frac{\pi}{1000} \csc\left(\frac{667\pi}{1000}\right)$$

12 Argument Principle and Rouche's Theorem

Definition 12.1. (*Meromorphic*) Let $U \subseteq \mathbb{C}$ be a domain and take $S \subseteq U$. A function $f: U \setminus S \to \mathbb{C}$ is meromorphic on U if f is differentiable at every point of $U \setminus S$, and every point of S is a pole of f.

Figure 7: A Meromorhic function is holomorphic on $U \setminus S$.

Theorem 12.2. (Argument Principle) Let U be a domain and f be meromorphic on U. If γ is a simple positively oriented closed contour, such that, γ and it's interior is contained in U, and γ passes through no zero or poles of f, then,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = Z + P$$

number of poles in the interior of γ (counted w/ multiplicity) number of zeros in the interior of γ

and the final main result of the course,

Theorem 12.3. (*Rouche's Theorem*) Let γ be a simple closed contour. Let f and g be holomorphic in a domain that contains the image and the interior of γ . Suppose for all $z \in \gamma^*$ we have that,

$$|f(z) - g(z)| < |f(z)| + |g(z)|$$

then, f and g are non-zero on γ^* and $Z_f = Z_g$.

Example. Prove that all of the zeros of $f(z) = z^5 + 7z + 12$ lie in the annulus,

$$A=\{z\in\mathbb{C}:1\leq |z|<2\}$$

Let γ be D(0,2) and we seek a function g(z) that approximates f well on γ ,

$$|f(z) - g(z)| < |f(z)| + |g(z)|$$

Take $g(z) = z^5$ and hence, in D(0, 2),

$$|f(z) - g(z)| = |z^5 + 7z + 12 - z^5|$$

$$= |7z + 12|$$

$$\leq 7|z| + 12$$

$$= 26$$

and so now we consider $|g(z)|=|z^5|=|z|^5=32$. Hence, we have shown that, |f(z)-g(z)|<|f(z)|-|g(z)|. Hence, by Rouche's theorem, we can say that $Z_f=Z_g$ on D(0,2). So we find all the zeros of g(z) on D(0,2) and we can say that f(z) has 5 zeros on D(0,2). Now, let γ be the circular contour D(0,1) and again $f(z)=z^5+7z+12$. Now we want to select our g(z). We take g(z)=12. Then,

$$|f(z) - g(z)| = |z^{5} + 7z + 12 - 12|$$

$$= |z^{5} + 7z|$$

$$\leq |z|^{5} + 7|z|$$

$$= 8$$

and as we can say that |g(z) = 12|, then using Rouche's Theorem we can say $Z_f = Z_g$ and g(z) has zero zeros on f(z) on D(0,1). Hence,

- f has 5 zeros on D(0,2)
- f has 0 zeros on D(0,1).

and so all of f's zeros are in A.