SRI KRISHNA INSTITUTIONS

BOOTATHON PROJECT

VEHICLE PARKING MANAGEMENT SYSTEM

TEAM : **S10**

TEAM NAME : KEKRAN MEKRAN

TEAM LEAD : DHANISH AHMED

TEST LEAD : VENMUHILAN

BUSINESS ANALYST: PRAMOTH KUMAR

DEPUTY BUSINESS ANALYST: HARI PRIYA

DEVELOPERS : AJAY

JULLIAN SHARON

MANICKA BHARATH

ABISHEK

SIVA KUMAR

VEHICLE MANGEMENT SYSTEM

BUSINESS REQUIREMENTS

The following are the business requirements of this project

S.I	Requirements	status
1	Login	
2	Vehicle details	
3	Slot allotment	
4	Payment	
5	Display	

1.LOGIN

This section contains the login details.

- The username and password should not exceed 20 characters long.
- String compare checks the username and password.
- If both are matching it displays "Login Successfully" otherwise it displays "Username or Password is incorrect".

2.VEHICLE DETAILS

This section deals with the identification of the vehicle.

- By macros, BIKE and CAR are assigned as 0 and 1.
- According to the type of vehicle the security gives the input.
- The vehicle number is stored in string of 11 characters.
- The entry time is based on the system time which is in 24 hr format.
- Based on the above details token is generated.

3.SLOT ALLOTMENT

This section allocates the space for vehicles.

- Based on the token ,the type of vehicle is identified.
- For the Two wheeler parking 5 floors and 50 columns are allocated.
- And for the four wheeler parking 2 rows and 50 columns are allocated.
- If the type is found ,specified space is allocated for its token number.
- A message is displayed when there is no space.

4.PAYMENT

This module deals with the amount to be paid.

- All the fields are mandatory.
- The exit time is noted.
- According to entry and exit time of the respective vehicle, the parking fee is generated.

5.DISPLAY

This module displays the status of the parking area.

- By Switch case ,various display tasks have been done.
- It displays the entry and exit time log of vehicle.
- It also displays the availability of parking space
- All are user demand cases.

SCREENSHOT:

```
C\Users\venmuhilan\Downloads\Parking_managment\proj.exe — X

Add:
Enter vehicle type (1 for Car / 2 for Scooter ):
Enter vehicle number: 1212

Press any key to continue...
```


VEHICLE PARKING MANAGEMENT SYSTEM

TEAM: S10

CONTROL FLOW DIAGRAM

FLOW CHART

MODULE 1 (LOGIN)

ALGORITHM

Step 1: Start the program

Step 2: Get username and password from security

Step 3: Compare the username and password entered by the security with the existing password

Step 4: If the username and the password is correct, the security can login

Step 5: Otherwise, the security cannot login.

Step 6: Stop the program

PSEUDO CODE

BEGIN

Print "username"

Input uname

Print "password"

Input pass

If(uname=="admin1 or admin2") & amp; & amp; if (pass=="pass")

True: Print "login successfull"

False: Print "Invalid username or password"

END

MODULE 2(VEHICLE DETAILS)

ALGORITHM

step 1: start the program

step 2: get the registration number and vehicle type

step 3: record its entry time and write all details into log file

step 4: allocate token no and allocate parking

step 5: stop the program

PSEUDO CODE

BEGIN

case input

get regno and vehicle type

time t mytime = time(NULL)

initialize tokenno

get start time = ctime(&mytime)

fputs(text,fptr)

END

MODULE 3 (SLOT ALLOCATION)

ALGORITHM:

Step 1: Start

Step 2: Get the token number and the type of the vehicle

Step 3: If the type is two wheeler then store it in array "two"

Step 4: Free spaces are represented as "0"

Step 5: Traverse the array and place the vehicle in the free space

Step 6: Return the slot number

Step 7: Stop

PSEUDOCODE

BEGIN

Input tokennumber

Input type

If type==1

Loop i=0-2,j=0-50

a[i][i]=0

Loop i=0-2,j=0-50

If(two[i][j]==0) do two[i][j]=tokennumber

Display slotnumber

If type==2

Loop i=0-2,j=0-50

a[i][j]=0

Loop i=0-2,j=0-50

If(four[i][j]==0) do four[i][j]=tokennumber

Display slotnumber

End

MODULE 4 (PAYMENT)

ALGORITHM

step 1: start the program

step 2: get the registration number

step 3: check its entry time and note exit time

step 4: calculate total durations and calculate charges

step 5: display total charges

step 6: write all details into log file

step 7: stop the program

PSEUDO CODE

BEGIN time_t mytime = time(NULL) get tokenno get exit time = ctime(&mytime) totalduration=endtime-starttime parkingcharges=totalduration*fare fputs(text,fp)

MODULE 5 (DISPLAY)

ALGORITHM

step 1: start the program

step 2: get the switch case variable

step 3: based on the case variable execute the functions.

step 4: 1 deals with allocation representation,2 deals with total vehicle count in parking,3 arrival log file,4 with departure log file

step 5: display the required case.

step 6: stop the program.

PSEUDO CODE

BEGIN

Input casevariable switch casevariable

case 1: Display allocation representation

case 2: Display total vehicle count in parking

case 3: Display arrival log

case 4: Display departure log

END