2

Gelijkstroomtheorie

2.1 Speciale weerstanden

De weerstand zoals we die nu besproken hebben, geeft een recht evenredig verband aan tussen de spanning over de weerstand en de stroom door de weerstand. De weerstandswaarde is dus constant. Maar er zijn ook weerstanden waarbij de weerstand niet afhangt van de spanning of stroom. We laten een aantal van deze weerstanden de revue passeren.

2.1.1 Negative Temperature Coefficient Resistor

Bij een *Negative Temperature Coefficient Resistor*, afgekort tot NTC, is de weerstandswaarde afhankelijk van de temperatuur van de NTC. De weerstandswaarde neemt af met toenemende temperatuur, vandaar de term "Negative". De relatie tussen de weerstandswaarde werd voor het eerst beschreven door Steinhart en Hart in 1968:

$$\frac{1}{T} = a + b \ln R + c(\ln R)^3 \tag{2.1}$$

Hierin is *T* de temperatuur in kelvin en *R* de weerstandswaarde van de NTC. De coëfficienten *a*, *b* en *c* worden de Steinhart-Hart coëfficiënten genoemd en moeten met behulp van nauwkeurige metingen bepaald worden. Merk op dat het verband tussen temperatuur en weerstand niet lineair is.

Over het algemeen wordt niet de weerstandswaarde maar een afgeleide spanning gebruikt. Dat kan met een eenvoudige spanningsdeling. In figuur 2.1 is een netwerk te zien.

Voor U_{uit} kunnen we opschrijven:

$$U_{uit} = \frac{R_s}{R_s + R_{ntc}} U_{in} \tag{2.2}$$

Elektrische Netwerken 1

Figuur 2.1: Spanningsdeling met een NTC.

Dit kan worden omgewerkt tot:

$$R_{ntc} = \frac{U_{in} - U_{uit}}{U_{vit}} R_s \tag{2.3}$$

De NTC is een weerstand en een weerstand dissipeert vermogen. Hierdoor wordt de weerstand warm. Een NTC heeft dus last van zelfverwarming. Daardoor wijkt de gemeten temperatuur van de NTC af van de omgevingstemperatuur. De zelfverwarming betreft meestal enkele tienden van graden Celsius. Een beproefde methode om zelfverwarming te vermijden is door een schakelaar in het netwerk in figuur 2.1 op te nemen. Alleen als een meting moet worden uitgevoerd wordt de schakelaar even gesloten. Na de meting wordt de schakelaar geopend. Hierdoor wordt de zelfverwarming tot een minimum beperkt.

2.1.2 Positive Temperature Coefficient Resistor

Bij een *Positive Temperature Coefficient Resistor*, afgekort tot PTC, is de weerstandswaarde afhankelijk van de temperatuur van de PTC. De weerstandswaarde neemt toe met toenemende temperatuur (vandaar de term "Positive") maar alleen binnen een bepaald bereik van de weerstandswaarde. De relatie tussen weerstandswaarde en temperatuur is niet met een eenvoudige formule te beschrijven. Vandaar dat de PTC niet gebruikt wordt om de temperatuur nauwkeurig te meten.

2.1.3 Light Dependent Resistor

Bij een *Light Dependent Resistor*, afgekort tot LDR, is de weerstand afhankelijk van de hoeveelheid licht die op de LDR valt. Bij weinig licht is de weerstandswaarde zeer hoog, in de orde van $1\times 10^8\,\Omega$ tot $1\times 10^{12}\,\Omega$. Bij voldoende licht is de weerstandswaarde zeer laag, in de orde $1\,\mathrm{k}\Omega$. De relatie tussen lichtintensiteit en weerstandswaarde is nietlineair. Daarbij is de spreiding van de weerstandswaarde tussen LDR's van hetzelfde type vrij groot en daardaar is de LDR niet te gebruiken als nauwkeurige temperatuursensor.

2 Elektrische Netwerken

2.1.4 Diode

Een *diode* kan gezien worden als een niet-lineaire weerstannd, alhoewel hij daar meestal niet voor gebruikt wordt. Het netwerksymbool is te zien in figuur 2.2.

Figuur 2.2: Netwerksymbool van een diode.

De kant waar de stroom in gaat wordt de *anode* genoemd. De kant waar de stroom uit komt wordt *kathode* genoemd.

De relatie tussen de spanning over de diode en de stroom door de diode wordt gegeven voor de formule van Shockley:

$$I_d = I_s \left(e^{\frac{kT}{nq}U_d} - 1 \right) \tag{2.4}$$

In deze formule is I_s de *donkerstroom* (Engels: saturation current, een typische waarde is 1×10^{-12} A voor siliciumdiodes), k de constante van Boltzmann ($k = 1,38 \times 10^{-23}$ J K⁻¹), T de temperatuur in K, q de elementaire lading ($q = 1,602 \times 10^{-19}$ C) en n de emissie-coëfficiënt (n ligt tussen 1,0 en 2,0). De factor $\frac{kT}{q}$ wordt ook wel de *thermische spanning* genoemd en heeft bij kamertemperatuur de waarde van ongeveer 26 mV.

Bij een voldoende grote spanning U_d is de -1 te verwaarlozen en gaat de formule over in een exponentiële functie. Bij een stroom van enkele milliampere is de spanning over de diode tussen de $0,6\,\mathrm{V}$ en $0,7\,\mathrm{V}$ (bij een siliciumdiode). Dit wordt de *voorwaardse spanning* genoemd. Bij een negatieve spanning over de diode vloeit er nauwelijks stroom. De diode wordt daarom ook vaak ingezet als component om de stroom slechts één kant op te laten vloeien, bijvoorbeeld in gelijkrichtschakelingen.

Figuur 2.3: Vervorming van een sinusvormig signaal.

Elektrische Netwerken 3