Practical Garbled Circuit Optimizations

Collaborators: David Evans / Vlad Kolesnikov / Payman Mohassel / Samee Zahur

Garbling a circuit:

▶ Pick random **labels** W_0 , W_1 on each wire

Garbling a circuit:

▶ Pick random **labels** W_0 , W_1 on each wire

Garbling a circuit:

- Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate

Garbling a circuit:

- ▶ Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate
- Garbled circuit ≡ all encrypted gates

Garbling a circuit:

- Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate
- **Garbled circuit** ≡ all encrypted gates
- **Garbled encoding** ≡ one label per wire

Garbling a circuit:

- Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate
- **Garbled circuit** ≡ all encrypted gates
- **Garbled encoding =** one label per wire

Garbled evaluation:

Only one ciphertext per gate is decryptable

Garbling a circuit:

- Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate
- **Carbled circuit** ≡ all encrypted gates
- **Carbled encoding** ≡ one label per wire

- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire

Garbling a circuit:

- Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate
- **Carbled circuit** ≡ all encrypted gates
- **Carbled encoding** ≡ one label per wire

- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire

Garbling a circuit:

- Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate
- **Garbled circuit** ≡ all encrypted gates
- **Carbled encoding** ≡ one label per wire

- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire

Garbling a circuit:

- Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate
- **Carbled circuit** ≡ all encrypted gates
- **Carbled encoding** ≡ one label per wire

- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire

Private function evaluation, zero-knowledge proofs, encryption with key-dependent message security, randomized encodings, secure outsourcing, one-time programs, . . .

Private function evaluation, zero-knowledge proofs, encryption with key-dependent message security, randomized encodings, secure outsourcing, one-time programs, . . .

Garbling is a fundamental primitive [BellareHoangRogaway12]

Syntax [BellareHoangRogaway12]

Syntax [BellareHoangRogaway12]

Syntax [BellareHoangRogaway12]

Security properties:

Privacy: (F, X, d) reveals nothing beyond f(x)

Obliviousness: (F, X) reveals nothing

Authenticity: given (F, X), hard to find \widetilde{Y} that decodes $\notin \{f(x), \bot\}$

Parameters to optimize

Parameters to optimize

Average bits per garbled gate

Average bits per garbled gate

Average bits per garbled gate

Prediction: by 2026, all garbled circuits will have zero size.

Position in this list leaks semantic value

Position in this list leaks semantic value

▶ Position in this list leaks semantic value ⇒ permute ciphertexts

- ▶ Position in this list leaks semantic value ⇒ permute ciphertexts
- Need to detect [in]correct decryption

- ▶ Position in this list leaks semantic value ⇒ permute ciphertexts
- Need to detect [in]correct decryption
- (Apparently) no one knows exactly what Yao had in mind:

▶
$$\mathbb{E}_{K_0,K_1}(M) = \langle E(K_0,S_0), E(K_1,S_1) \rangle$$
 where $S_0 \oplus S_1 = M$

[GoldreichMicaliWigderson87]

$$\mathbb{E}_{K_0,K_1}(M) = E(K_1,E(K_0,M))$$

[LindellPinkas09]

- ▶ Randomly assign (•,•) or (•,•) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)

- ▶ Randomly assign (•,•) or (•,•) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys

- ▶ Randomly assign (•,•) or (•,•) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys

Permute-and-Point [BeaverMicaliRogaway90]

- ► Randomly assign (•,•) or (•,•) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys
- Evaluate by decrypting ciphertext indexed by your colors

Permute-and-Point [BeaverMicaliRogaway90]

- ▶ Randomly assign (•,•) or (•,•) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys
- Evaluate by decrypting ciphertext indexed by your colors

Permute-and-Point [BeaverMicaliRogaway90]

- ▶ Randomly assign (•,•) or (•,•) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys
- Evaluate by decrypting ciphertext indexed by your colors

Can use **one-time-secure** symmetric encryption!

 $\mathbb{E}_{A,B}(C)$:

cost to garble AES

 $PRF(A, gateID) \oplus PRF(B, gateID) \oplus C$ [NaorPinkasSumner99]

~6s [extrapolated]

time from Fairplay [MNPS04]: PRF = SHA256

 $2 hash \gg 1 hash$

 $\underline{\mathbb{E}_{A,B}(C)}$:

cost to garble AES

 $PRF(A, gateID) \oplus PRF(B, gateID) \oplus C$

[NaorPinkasSumner99]

~6s [extrapolated]

time from Fairplay [MNPS04]: PRF = SHA256

 $H(A||B||gateID) \oplus C$

0.15s

 $[LindellPinkasSmart08] \\ time from [sS12]; H = SHA256$

 $2 hash \gg 1 hash \gg 1 block cipher$

 $PRF(A, gateID) \oplus PRF(B, gateID) \oplus C$

[NaorPinkasSumner99]

 $H(A||B||gateID) \oplus C$

[LindellPinkasSmart08]

 $AES256(A||B, gateID) \oplus C$

[shelatShen12]

 $\mathbb{E}_{AB}(C)$:

cost to garble AES

~6s [extrapolated]

time from Fairplay [MNPS04]: PRF = SHA256

0.15s

time from [sS12]; H = SHA256

0.12s

2 hash \gg 1 hash \gg 1 block cipher \gg 1 block cipher w/o key schedule

$\square A, B(C)$.			

cost to garble AES

 $PRF(A, gateID) \oplus PRF(B, gateID) \oplus C$ [NaorPinkasSumner99]

~6s [extrapolated] time from Fairplay [MNPS04]: PRF = SHA256

 $H(A||B||gateID) \oplus C$ [LindellPinkasSmart08]

0.15s time from [sS12]; H = SHA256

 $AES256(A||B, gateID) \oplus C$

0.12s

[shelatShen12]

 \mathbb{P} (C).

AES(const, K) \oplus K \oplus Cwhere $K = 2A \oplus 4B \oplus gateID$ 0.0003s

[BellareHoangKeelveedhiRogaway13]

Scoreboard

	size ($\times \lambda$)	garble cost	eval cost	assumption
Classical	large?	8	5	PKE
P&P	4	4/8	1/2	hash/PRF

► What wire label will be payload of 1st (••) ciphertext?

- ▶ What wire label will be payload of 1st (••) ciphertext?
- Choose that label so that 1st ciphertext is 0ⁿ

- ▶ What wire label will be payload of 1st (••) ciphertext?
- Choose that label so that 1st ciphertext is 0ⁿ

- ▶ What wire label will be payload of 1st (••) ciphertext?
- Choose that label so that 1st ciphertext is 0ⁿ
- No need to include 1st ciphertext in garbled gate

- ▶ What wire label will be payload of 1st (••) ciphertext?
- Choose that label so that 1st ciphertext is 0ⁿ
- No need to include 1st ciphertext in garbled gate
- Evaluate as before, but imagine ciphertext 0^n if you got ••.

Scoreboard

	size ($\times \lambda$)	garble cost	eval cost	assumption
Classical	large?	8	5	PKE
P&P	4	4/8	1/2	hash/PRF
GRR3	3	4/8	1/2	hash/PRF

$$\begin{array}{c}
A, A \oplus \Delta_A \\
\hline
B, B \oplus \Delta_B
\end{array}$$

$$C, C \oplus \Delta_C$$

Wire's offset ≡ XOR of its two labels

$$\begin{array}{c|c}
A, A \oplus \Delta \\
\hline
B, B \oplus \Delta
\end{array}$$

- Wire's offset ≡ XOR of its two labels
- Choose all wires to have same (secret) offset Δ

- Wire's offset ≡ XOR of its two labels
- Choose all wires to have same (secret) offset Δ

$$C := A \oplus B$$

$$B, B \oplus \Delta$$

$$\underbrace{A \oplus B}_{\text{FALSE}} \oplus \underbrace{B}_{\text{FALSE}} = \underbrace{A \oplus B}_{\text{FALSE}}$$

- ► Wire's **offset** = XOR of its two labels
- Choose all wires to have same (secret) offset Δ
- ► Choose false output = false input ⊕ false input

$$\underbrace{A}_{\text{FALSE}} \oplus \underbrace{B \oplus \Delta}_{\text{TRUE}} = \underbrace{A \oplus B \oplus \Delta}_{\text{TRUE}}$$

- Wire's offset ≡ XOR of its two labels
- Choose all wires to have same (secret) offset Δ
- ► Choose false output = false input ⊕ false input
- Evaluate by xoring input wire labels (no crypto)

$$C := A \oplus B$$

$$B \oplus A$$

$$\underbrace{A \oplus \Delta}_{\mathsf{TRUE}} \oplus \underbrace{B}_{\mathsf{FALSE}} = \underbrace{A \oplus B \oplus \Delta}_{\mathsf{TRUE}}$$

- Wire's offset ≡ XOR of its two labels
- Choose all wires to have same (secret) offset Δ
- ► Choose false output = false input ⊕ false input
- Evaluate by xoring input wire labels (no crypto)

$$C := A \oplus B$$

$$B \oplus \Delta$$

$$\underbrace{A \oplus \Delta}_{\mathsf{TRUE}} \oplus \underbrace{B \oplus \Delta}_{\mathsf{TRUE}} = \underbrace{A \oplus B}_{\mathsf{FALSE}}$$

- Wire's offset ≡ XOR of its two labels
- Choose all wires to have same (secret) offset Δ
- ► Choose false output = false input ⊕ false input
- Evaluate by xoring input wire labels (no crypto)

Still need to garble AND gates

- Still need to garble AND gates
- Compatible with garbled row-reduction

- Still need to garble AND gates
- Compatible with garbled row-reduction

- Still need to garble AND gates
- Compatible with garbled row-reduction
- Secret Δ used in key and payload of ciphertexts!

- Still need to garble AND gates
- Compatible with garbled row-reduction
- ▶ Secret ∆ used in key and payload of ciphertexts!
- ► Requires related-key + circularity assumption [ChoiKatzKumaresanZhou12]

Scoreboard

	size ($\times \lambda$)		garbl	e cost	st eval co		assumption
	XOR	AND	XOR	AND	XOR	AND	
Classical	lar	ge?	3	3	į	5	PKE
P&P	4	4	4/8	4/8	1/2	1/2	PRF/hash
GRR3	3	3	4/8	4/8	1/2	1/2	PRF/hash
Free XOR	0	3	0	4	0	1	circ. hash

Garbled gates with only 2 ciphertexts!

$$\begin{array}{c} A_0, A_1 \\ \hline B_0, B_1 \end{array} \qquad \begin{array}{c} C_0, C_1 \\ \hline \end{array}$$

Garbled gates with only 2 ciphertexts!

$$K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n)$$

$$K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n)$$

$$K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n)$$

$$K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n)$$

Garbled gates with only 2 ciphertexts!

$$K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$
 $K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$
 $K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$
 $K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$

$$\begin{array}{c|c} A_0, A_1 \\ \hline B_0, B_1 \end{array} \qquad \begin{array}{c|c} C_0, C_1 \\ \hline \end{array}$$

Garbled gates with only 2 ciphertexts!

$$K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

 $K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$
 $K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$
 $K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$

$$\underbrace{\begin{array}{c} A_0, A_1 \\ \hline B_0, B_1 \end{array}} \circ \underbrace{\begin{array}{c} C_0, C_1 \\ \hline \end{array}}$$

$$(3, K_3)$$
 $(4, K_4)$

$$(1, K_1), (3, K_3), (4, K_4)$$

Garbled gates with only 2 ciphertexts!

$$K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

 $K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$
 $K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$
 $K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$

$$A_0, A_1 \longrightarrow C_0, C_1$$

$$B_0, B_1$$

$$P = \text{uniq deg-2 poly thru}$$

(1, K_1), (3, K_3), (4, K_4)

Garbled gates with only 2 ciphertexts!

$$K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$$

$$K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$P = \text{uniq deg-2 poly thru}$$

 $(1, K_1), (3, K_3), (4, K_4)$

$$(2, K_2), (5, P(5)), (6, P(6))$$

Garbled gates with only 2 ciphertexts!

Evaluator can know exactly one of:

$$K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$$

$$K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$A_0, A_1 \longrightarrow C_0, C_1$$

$$B_0, B_1$$

P = uniq deg-2 poly thru(1, K_1), (3, K_3), (4, K_4)

Q = uniq deg-2 poly thru $(2, K_2), (5, P(5)), (6, P(6))$

Garbled gates with only 2 ciphertexts!

Evaluator can know exactly one of:

$$K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

 $K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$
 $K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$
 $K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$

$$C_0 = P(0); C_1 = Q(0)$$

P = uniq deg-2 poly thru(1, K_1), (3, K_3), (4, K_4)

Q = uniq deg-2 poly thru(2, K_2), (5, P(5)), (6, P(6))

Garbled gates with only 2 ciphertexts!

Evaluator can know exactly one of:

$$K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

 $K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$
 $K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$
 $K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$

Garbled gates with only 2 ciphertexts!

Evaluator can know exactly one of:

$$K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

 $K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$
 $K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$
 $K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$

Evaluate by interpolating poly thru
 K_i, P(5) and P(6)

Garbled gates with only 2 ciphertexts!

Evaluator can know exactly one of:

$$K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$
 $K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$
 $K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$
 $K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$

Evaluate by interpolating poly thru K_i , P(5) and P(6)

$$P = \text{uniq deg-2 poly thru}$$

 $(1, K_1), (3, K_3), (4, K_4)$
 $Q = \text{uniq deg-2 poly thru}$
 $(2, K_2), (5, P(5)), (6, P(6))$

Garbled gates with only 2 ciphertexts!

Evaluator can know exactly one of:

$$K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$$

$$K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

Evaluate by interpolating poly thru K_i , P(5) and P(6)

P = uniq deg-2 poly thru $(1, K_1), (3, K_3), (4, K_4)$ Q = uniq deg-2 poly thru $(2, K_2), (5, P(5)), (6, P(6))$

Garbled gates with only 2 ciphertexts!

Evaluator can know exactly one of:

$$K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$$

$$K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

Evaluate by interpolating poly thru K_i , P(5) and P(6)

P = uniq deg-2 poly thru(1, K_1), (3, K_3), (4, K_4)

Q = uniq deg-2 poly thru(2, K_2), (5, P(5)), (6, P(6))

Garbled gates with only 2 ciphertexts!

Evaluator can know exactly one of:

$$K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$$

$$K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

Evaluate by interpolating poly thru K_i , P(5) and P(6)

P = uniq deg-2 poly thru(1, K_1), (3, K_3), (4, K_4)

Q = uniq deg-2 poly thru(2, K_2), (5, P(5)), (6, P(6))

Garbled gates with only 2 ciphertexts!

Evaluator can know exactly one of:

$$K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

 $K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$
 $K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$
 $K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$

Evaluate by interpolating poly thru K_i , P(5) and P(6)

Q = uniq deg-2 poly thru

Garbled gates with only 2 ciphertexts!

Evaluator can know exactly one of:

$$K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightarrow \text{learn } C_0$$
 $K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightarrow \text{learn } C_1$
 $K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightarrow \text{learn } C_0$
 $K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightarrow \text{learn } C_0$

- ► Evaluate by interpolating poly thru K_i , P(5) and P(6)
- ► **Incompatible** with Free-XOR: can't ensure $C_0 \oplus C_1 = \Delta$

P = uniq deg-2 poly thru $(1, K_1), (3, K_3), (4, K_4)$ Q = uniq deg-2 poly thru

 $(2, K_2), (5, P(5)), (6, P(6))$

Scoreboard

	size ($\times \lambda$)		garble cost		eval cost		assumption
	XOR	AND	XOR	AND	XOR	AND	
Classical	large?		8		5		PKE
P&P	4	4	4/8	4/8	1/2	1/2	hash/PRF
GRR3	3	3	4/8	4/8	1/2	1/2	PRF/hash
Free XOR	0	3	0	4	0	1	circ. hash
GRR2	2	2	4/8	4/8	1/2	1/2	PRF/hash

$$A, A \oplus \Delta_1 \qquad A^*, A^* \oplus \Delta_2 \longrightarrow$$

Translate to a new wire offset

► Translate to a new wire offset (unary $a \mapsto a$ gate) using 1 ciphertext

► Translate to a new wire offset (unary $a \mapsto a$ gate) using 1 ciphertext

▶ Adjust inputs to target offset Δ_C (1 ciphertext each)

▶ Adjust inputs to target offset Δ_C (1 ciphertext each), then XOR is free

- ▶ Adjust inputs to target offset Δ_C (1 ciphertext each), then XOR is free
- ▶ If input wire already suitable, no need to adjust

- ▶ Adjust inputs to target offset Δ_C (1 ciphertext each), then XOR is free
- ▶ If input wire already suitable, no need to adjust
- ► Total cost: 0, 1 or 2 depending on how many $\{\Delta_A, \Delta_B, \Delta_C\}$ distinct.

- ▶ Adjust inputs to target offset Δ_C (1 ciphertext each), then XOR is free
- If input wire already suitable, no need to adjust
- ► Total cost: 0, 1 or 2 depending on how many $\{\Delta_A, \Delta_B, \Delta_C\}$ distinct.

Combinatorial optimization problem: Choose an offset for each wire, minimizing total cost of XOR gates

- Subj. to compatibility with 2-ciphertext row-reduction of AND gates
- ► (or) Subj. to removing circularity property of free-XOR

Scoreboard

	size ($\times\lambda$)		garble cost		eval cost		assumption
	XOR	AND	XOR	AND	XOR	AND	
Classical	large?		8		5		PKE
P&P	4	4	4/8	4/8	1/2	1/2	hash/PRF
GRR3	3	3	4/8	4/8	1/2	1/2	PRF/hash
Free XOR	0	3	0	4	0	1	circ. hash
GRR2	2	2	4/8	4/8	1/2	1/2	PRF/hash
FleXOR	{0, 1, 2}	2	{0,1,2}	4	{0, 1, 2}	1	circ. hash

$$\begin{array}{c|c}
A,A \oplus \Delta \\
\hline
B,B \oplus \Delta
\end{array}$$

$$\begin{array}{c|c}
A & A \oplus \Delta \\
\hline
B, B \oplus \Delta
\end{array}$$

$$A A \oplus \Delta$$

$$B, B \oplus \Delta$$

$$C, C \oplus \Delta$$

$$C, C \oplus \Delta$$

$$C \oplus \Delta$$

$$0 \quad 0$$

$$1 \quad 0$$

$$1 \quad 0$$

$$unary gate $b \mapsto 0$$$

$$A \land \oplus \triangle$$

$$B, B \oplus \triangle$$

$$C, C \oplus \triangle$$
if $a = 0$:
$$B \land C$$

$$B \oplus \triangle C$$
unary gate $b \mapsto 0$

$$A \land \oplus \triangle$$

$$B, B \oplus \triangle$$

$$C, C \oplus \triangle$$

$$E_{B} \quad (C)$$

$$E_{B \oplus \triangle} (C)$$
unary gate $b \mapsto 0$

$$\begin{array}{c}
A, A \oplus \Delta \\
B, B \oplus \Delta
\end{array}$$

$$C, C \oplus \Delta$$
if $a = 1$:
$$\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$
unary gate $b \mapsto b$

$$C, C \oplus \Delta$$
if $a = 1$:
$$\mathbb{E}_{B} (C)$$

$$\mathbb{E}_{B \oplus \Delta} (C \oplus \Delta)$$
unary gate $b \mapsto b$

$$A \oplus \Delta$$

$$B, B \oplus \Delta$$

$$C, C \oplus \Delta$$

$$E_{B} (C)$$

$$E_{B} (C)$$

$$E_{B} (C)$$

$$E_{B} (C \oplus \Delta)$$

$$E_{B} (C \oplus \Delta)$$

$$E_{B} (C \oplus \Delta)$$

$$E_{B} (C \oplus \Delta)$$
unary gate $b \mapsto b$

What if garbler knows in advance the truth value on one input wire?

Fine print: permute ciphertexts with permute-and-point.

What if evaluator knows the truth value on one input wire?

$$\begin{array}{c|c}
A,A \oplus \Delta \\
\hline
B,B \oplus \Delta
\end{array}$$

What if evaluator knows the truth value on one input wire?

$$A, A \oplus \Delta$$

$$B, B \oplus \Delta$$

$$C, C \oplus \Delta$$

What if **evaluator** knows the truth value on one input wire?

$$A, A \oplus \Delta$$

$$B \oplus A$$

$$C, C \oplus \Delta$$

Evaluator has *B* (knows false):

 \Rightarrow should obtain C (FALSE)

What if **evaluator** knows the truth value on one input wire?

$$\begin{array}{c|c}
A, A \oplus \Delta \\
\hline
B & B \oplus \Delta
\end{array}$$

$$\begin{array}{c|c}
C, C \oplus \Delta \\
\hline
\end{array}$$

$$\begin{array}{c|c}
\mathbb{E}_B(C)
\end{array}$$

Evaluator has *B* (knows false):

 \Rightarrow should obtain C (FALSE)

What if **evaluator** knows the truth value on one input wire?

Evaluator has *B* (knows FALSE):

Evaluator has $B \oplus \Delta$ (knows TRUE):

 \Rightarrow should obtain C (FALSE)

What if **evaluator** knows the truth value on one input wire?

Evaluator has *B* (knows false):

 \Rightarrow should obtain C (FALSE)

Evaluator has $B \oplus \Delta$ (knows TRUE):

⇒ should be able to *transfer* truth value from "a" wire to "c" wire

What if **evaluator** knows the truth value on one input wire?

Evaluator has *B* (knows false):

 \Rightarrow should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "a" wire to "c" wire
 - ▶ Suffices to learn $A \oplus C$

What if **evaluator** knows the truth value on one input wire?

Evaluator has *B* (knows false):

 \Rightarrow should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "a" wire to "c" wire
 - ▶ Suffices to learn $A \oplus C$

What if **evaluator** knows the truth value on one input wire?

Evaluator has *B* (knows false):

 \Rightarrow should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "a" wire to "c" wire
 - ▶ Suffices to learn $A \oplus C$

What if **evaluator** knows the truth value on one input wire?

Evaluator has *B* (knows FALSE):

 \Rightarrow should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "a" wire to "c" wire
 - ▶ Suffices to learn $A \oplus C$

What if **evaluator** knows the truth value on one input wire?

Evaluator has *B* (knows false):

 \Rightarrow should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "a" wire to "c" wire
 - ▶ Suffices to learn $A \oplus C$

What if **evaluator** knows the truth value on one input wire?

Evaluator has *B* (knows false):

 \Rightarrow should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "a" wire to "c" wire
 - ▶ Suffices to learn $A \oplus C$

What if **evaluator** knows the truth value on one input wire?

Evaluator has *B* (knows false):

 \Rightarrow should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "a" wire to "c" wire
 - ▶ Suffices to learn $A \oplus C$

What if **evaluator** knows the truth value on one input wire?

Evaluator has *B* (knows false):

 \Rightarrow should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "a" wire to "c" wire
 - ▶ Suffices to learn $A \oplus C$

What if **evaluator** knows the truth value on one input wire?

Evaluator has *B* (knows false):

 \Rightarrow should obtain C (FALSE)

Evaluator has $B \oplus \Delta$ (knows TRUE):

- ⇒ should be able to *transfer* truth value from "a" wire to "c" wire
 - ▶ Suffices to learn $A \oplus C$

Fine print: no need for permute-and-point here

 $a \wedge b$

$$a \wedge b = (a \oplus r \oplus r) \wedge b$$

Garbler chooses random bit r

$$a \wedge b = (a \oplus r \oplus r) \wedge b$$

= $[(a \oplus r) \wedge b] \oplus [r \wedge b]$

Garbler chooses random bit r

$$a \wedge b = (a \oplus r \oplus r) \wedge b$$

= $[(a \oplus r) \wedge b] \oplus [r \wedge b]$

- Garbler chooses random bit r
- ► Arrange for evaluator to learn $a \oplus r$ in the clear

$$a \wedge b = (a \oplus r \oplus r) \wedge b$$

= $\underbrace{[(a \oplus r) \wedge b]}_{\text{one input known to evaluator}} \oplus [r \wedge b]$

- Garbler chooses random bit r
- ► Arrange for evaluator to learn $a \oplus r$ in the clear

$$a \wedge b = (a \oplus r \oplus r) \wedge b$$

= $[(a \oplus r) \wedge b] \oplus [r \wedge b]$
one input known to garbler

- Garbler chooses random bit r
- ▶ Arrange for evaluator to learn $a \oplus r$ in the clear

$$a \wedge b = (a \oplus r \oplus r) \wedge b$$

= $[(a \oplus r) \wedge b] \oplus [r \wedge b]$
one input known to garbler

- Garbler chooses random bit r
- ▶ Arrange for evaluator to learn $a \oplus r$ in the clear
- ► Total cost = 2 "half gates" + 1 XOR gate = 2 ciphertexts

$$a \wedge b = (a \oplus r \oplus r) \wedge b$$

= $[(a \oplus r) \wedge b] \oplus [r \wedge b]$
one input known to garbler

- Garbler chooses random bit r
 - ightharpoonup r = color bit of FALSE wire label A
- ► Arrange for evaluator to learn $a \oplus r$ in the clear
 - ► $a \oplus r$ = color bit of wire label evaluator gets (A or $A \oplus \Delta$)
- ► Total cost = 2 "half gates" + 1 XOR gate = 2 ciphertexts

Scoreboard

	size ($\times \lambda$)		garble cost		eval cost		assumption
	XOR	AND	XOR	AND	XOR	AND	
Classical	large?		8		5		PKE
P&P	4	4	4/8	4/8	1/2	1/2	hash/PRF
GRR3	3	3	4/8	4/8	1/2	1/2	PRF/hash
Free XOR	0	3	0	4	0	1	circ. hash
GRR2	2	2	4/8	4/8	1/2	1/2	PRF/hash
FleXOR	{0, 1, 2}	2	{0, 1, 2}	4	{0, 1, 2}	1	circ. symm
HalfGates	0	2	0	4	0	2	circ. hash

Scoreboard

	size ($\times \lambda$)		garble cost		eval cost		assumption
	XOR	AND	XOR	AND	XOR	AND	-
Classical	large?		8		5		PKE
P&P	4	4	4/8	4/8	1/2	1/2	hash/PRF
GRR3	3	3	4/8	4/8	1/2	1/2	PRF/hash
Free XOR	0	3	0	4	0	1	circ. hash
GRR2	2	2	4/8	4/8	1/2	1/2	PRF/hash
FleXOR	{0, 1, 2}	2	{0, 1, 2}	4	{0, 1, 2}	1	circ. symm
HalfGates	0	2	0	4	0	2	circ. hash
[XYZ26]?	0	< 2?	?	?	?	?	?

Optimality

Every practical garbling scheme is combination of:

- ► Calls to symmetric primitive (can be modeled as random oracle)
- $GF(2^{\lambda})$ -linear operations (xor, polynomial interpolation)

Optimality

Every practical garbling scheme is combination of:

- Calls to symmetric primitive (can be modeled as random oracle)
- $GF(2^{\lambda})$ -linear operations (xor, polynomial interpolation)

Theorem ([ZahurRosulekEvans15])

Garbling a single AND gate requires 2 ciphertexts (2λ bits), if garbling scheme is "linear" in this sense.

Optimality

Every practical garbling scheme is combination of:

- Calls to symmetric primitive (can be modeled as random oracle)
- $GF(2^{\lambda})$ -linear operations (xor, polynomial interpolation)

Theorem ([ZahurRosulekEvans15])

Garbling a single AND gate requires 2 ciphertexts (2λ bits), if garbling scheme is "linear" in this sense.

Half-gates construction is *size-optimal* among schemes that:

- ... use "known techniques"
- ... work gate-by-gate in {xor, AND, NOT} basis

Ways forward?

Consider larger "chunks" of circuit, beyond {xor, and, not} basis?

Ways forward?

- Consider larger "chunks" of circuit, beyond {xor, and, not} basis?
- Discover some clever non-linear approach to garbling?

Ways forward?

- Consider larger "chunks" of circuit, beyond {xor, and, not} basis?
- Discover some clever non-linear approach to garbling?
- Wait for break-even point for asymptotically superior methods?

Ways forward?

- Consider larger "chunks" of circuit, beyond {хол, анд, нот} basis?
- Discover some clever non-linear approach to garbling?
- Wait for break-even point for asymptotically superior methods?
- Use weaker security when situation calls for it.

" $\exists w : R(x, w) = 1$ "

Prover knows entire input to garbled circuit!

Privacy-free garbling [FrederiksenNielsenOrlandi15]

For this ZK protocol, garbled circuit does not require privacy property

- Only authenticity is needed
- Garbled circuits can be significantly smaller in this case

For this ZK protocol, garbled circuit does not require privacy property

- Only authenticity is needed
- Garbled circuits can be significantly smaller in this case

	size ($\times \lambda$)		garble cost		eval cost		assumption
	XOR	AND	XOR	AND	XOR	AND	
Classical	large?		8		5		PKE
P&P	4	4	4/8	4/8	1/2	1/2	hash/PRF
GRR3	3	3	4/8	4/8	1/2	1/2	hash/PRF
Free XOR	0	3	0	4	0	1	circ. hash
GRR2	2	2	4/8	4/8	1/2	1/2	hash/PRF
FleXOR	{0, 1, 2}	2	{0, 1, 2}	4	{0, 1, 2}	1	circ. hash
HalfGates	0	2	0	4	0	2	circ. hash
PrivFree *	0	1	0	2	0	1	circ. hash

A success story!

- Reduction in size by 10x
- ► Reduction in computation by 10000x

the end!

