

Differentially Private Stochastic Coordinate Descent

EPFL1

EBEL

2

Georgios Damaskinos,^{1,2} Celestine Mendler-Dünner,^{2,3} Rachid Guerraoui,¹ Nikolaos Papandreou,² Thomas Parnell ²

PPML @ NeurIPS 2020

SVMs

Problem

SCD is popular in both Academia and Industry

- 154 research articles with "coordinate descent" in the title since 2019
- Default solver for *Scikit-Learn, TensorFlow, Liblinear, IBM Snap-ML*

Why so popular?

- Low tuning cost (no learning rate)
- ✓ Often favorable convergence guarantees
- > In particular for GLMs

SCD applications involve sensitive data

- healthcare
- finance
- social media
- recommenders

. . .

Can SCD maintain its benefits alongside strong privacy guarantees?

DP-SCD

<u>Challenge</u>

Differential privacy requires *independent* noise added to α and w

- => No consistency: $\mathbf{w} \neq \mathbf{X}^T \cdot \mathbf{\alpha}$
- 1. Convergence guarantees?
- 2. Competitive privacy-utility trade-off?

<u>Design</u>

Parallel updates (mini-batch)

Ridge regression

0.0

0.5

Update scaling

Notation

X Input dataset (Rm x n)

w Shared vector

α Dual vector

N(0, σ) Gaussian noise

ε Privacy loss bound

C Scaling factor

L mini-batch size

M Coordinate update mechanism

Convergence

Consistency holds in expectation

Method	Perturbation	Utility Bound
(Zhang et al. 2017)	Output	$\mathcal{O}\left(rac{m}{n^2\epsilon^2} ight)$
(Chaudhuri and Monteleoni 2009) (Chaudhuri, Monteleoni, and Sarwate 2011)	Inner (objective)	$\mathcal{O}\left(rac{m}{n^2\epsilon^2} ight)$
(Wang, Ye, and Xu 2017)	Inner (update)	$\mathcal{O}\left(rac{m \cdot \log(n)}{n^2 \epsilon^2} ight)$
DP-SCD	Inner (update)	$\mathcal{O}\left(rac{L^3 \cdot \log(rac{n}{L})}{n^4 \epsilon^2} ight)$

Evaluation

DP-SCD outperforms DP-SGD for the applications that enable exact update steps (ridge regression and SVMs)

1.0

1.5

Deviating from the best choice for C
(C = 0.5 for this setup), reduces the width of
the flat area and moves the minimum to the
right (for smaller C values) or
upwards (for larger C values)

https://github.com/gdamaskinos/dpscd

contact: georgios.damaskinos@gmail.com