How to Leverage Unlabeled Data in Offline RL

Tianhe Yu, Aviral Jumar, Yevgen Chebotar, Karol Hausman, Chelsea Finn, Sergey Levine ICML 2022

Presented by: William Loh

David R. Cheriton School of Computer Science
University of Waterloo
wmloh@uwaterloo.ca

April 3, 2023

Outline

- 1 Introduction
- 2 Unlabeled Data Sharing (UDS)
- 3 Optimality and Implementation of UDS
- 4 Experimental Results

Motivation

- Targeted sampling in offline reinforcement learning is difficult
- In some domains, rewards has to be labelled by humans (especially in robotics)
- Data without reward annotations are relatively abundant

Question 1: Can unlabeled data improve performance?

Question 2: How to incorporate unlabeled data into offline reinforcement learning training?

Motivating Example

- Task of interest: Robot cutting an onion
- Problem: Relatively small labeled dataset on robots cutting an onion
- Prior dataset: Lots of data on robots cutting an onion without reward annotations, as well as plenty of data on picking up onions and chopping a carrot

Question 1: Which prior dataset (if any) should be included for the new task?

Question 2: How should the reward labels of the prior data be determined for learning a new task?

Related Works on Offline RL + Unlabeled Data

- Using all prior labeled data only applicable to structurally, highly similar tasks
- Label propagation for rewards requires a learned classifier and adds complexity to the pipeline
- Multi-task data sharing requires access to the functional form of the reward for relabeling or limited to goal-conditioned settings

Illustration

Prior reward predictor methods Unlabeled data sharing (s,a,s',\hat{r}) Unlabeled data Offline RL Labeled data Labeled data Labeled data Unlabeled data Offline RL Labeled data

Figure 1: Comparison of methods on unlabeled data

Objective

Investigate the efficacy of labeling unlabeled data with reward of zero¹ in various cases.

- without needing access to a functional form of rewards
- without additional modeling and learning

¹Set reward to the minimum reward in the dataset, or without loss of generality, zero via rescaling

Notation

- $\mathcal{D}_L = \{(s, a, s', r)\}$ is the labeled dataset
- $\mathcal{D}_U = \{(s, a, s', 0)\}$ is the unlabeled dataset
- \blacksquare π_{β} is the **behaviour policy** in the static dataset
- d^{π} is the state-action marginal of policy π
- J is the objective function

Outline

- Introduction
- 2 Unlabeled Data Sharing (UDS)
- 3 Optimality and Implementation of UDS
- 4 Experimental Results

Formulation

Unlabeled data sharing (UDS) assigns the lowest possible reward to all transitions in \mathcal{D}_U .

- Claim that this strategy works in theory and practice under certain conditions
- lacksquare UDS uses a combined dataset $\mathcal{D}^{\mathsf{eff}} := \mathcal{D}_{L} \cup \mathcal{D}_{U}$

Implications of UDS in Offline Setting (Part 1)

Reward Bias

000000000000

 Suboptimality due to using incorrect reward (since we're using reward of 0 for all unlabeled data)

$$\begin{aligned} & \mathsf{RewardBias}(\pi_{\mathsf{UDS}}^*, \pi_\beta^{\mathsf{eff}}) \\ &= \frac{1}{1 - \gamma} \sum_{s, a} \underbrace{\Delta(d^{\pi_\beta^{\mathsf{eff}}}, d^{\pi_{\mathsf{UDS}}^*})}_{\mathsf{statistical \ distance}} \cdot (1 - \underbrace{f(s, a)}_{\mathsf{ratio \ of \ labeled \ data}}) \cdot \underbrace{r(s, a)}_{\mathsf{true \ reward}} \end{aligned}$$

where

$$f(s,a) = rac{|\mathcal{D}_L(s,a)|}{|\mathcal{D}^{ ext{eff}}(s,a)|}, \hspace{5mm} \Delta(d^{\pi^{ ext{eff}}_eta},d^{\pi^*_ ext{UDS}}) = d^{\pi^{ ext{eff}}_eta}(s,a) - d^{\pi^*_ ext{UDS}}(s,a)$$

Implications of UDS in Offline Setting (Part 2)

Sampling Error

 Epistemic error incurred from the lack of data (taken from a paper on multi-task offline RL)

$$\begin{split} & \mathsf{SamplingError}(\pi^*_{\mathsf{UDS}}, \pi^{\mathsf{eff}}_{\beta}) \\ &= \mathcal{O}\left(\frac{\gamma}{(1-\gamma)^2}\right) \mathbb{E}_{s, a \sim \hat{d}^{\pi}} \left[\sqrt{\frac{D_{\mathsf{CQL}}(\pi^*_{\mathsf{UDS}}, \pi^{\mathsf{eff}}_{\beta})(s)}{|\mathcal{D}^{\mathsf{eff}}(s)|}} \right] \end{split}$$

where D_{COL} is the statistical distance under conservative Q-learning.

Implications of UDS in Offline Setting (Part 3)

Policy Improvement

lacktriangle Performance improvement induced by the transitions in $\mathcal{D}^{\mathrm{eff}}$ that occurs as a result of offline RL

$$\mathsf{PolicyImprov}(\pi^*_{\mathsf{UDS}}, \pi^{\mathsf{eff}}_\beta) = \frac{\alpha}{1 - \gamma} D(\pi^*_{\mathsf{UDS}}, \pi^{\mathsf{eff}}_\beta)$$

where D is a statistical distance.

Theorem 1

Policy improvement guarantee for UDS

Theorem

Let π^*_{UDS} denote the policy learned by UDS and $\pi^{\rm eff}_{\beta}(a|s)$ denote the behaviour policy for the combined dataset $\mathcal{D}^{\rm eff}$. Then with high probability of at least $1-\delta$, π^*_{UDS} is a safe policy improvement over $\pi^{\rm eff}_{\beta}$.

$$J(\pi^*_{UDS}) \geq J(\pi^{\mathsf{eff}}_{eta}) - \zeta_{\mathsf{err}} + \mathsf{PolicyImprov}(\pi^*_{UDS}, \pi^{\mathsf{eff}}_{eta})$$

where $\zeta_{err} = RewardBias(\pi_{UDS}^*, \pi_{\beta}^{eff}) + SamplingError(\pi_{UDS}^*, \pi_{\beta}^{eff})$.

Implications of Theorem 1

$$\mathsf{RewardBias}(\pi^*_{\mathsf{UDS}}, \pi^{\mathsf{eff}}_{\beta}) = \frac{1}{1 - \gamma} \sum_{s, a} \Delta(d^{\pi^{\mathsf{eff}}_{\beta}}, d^{\pi^*_{\mathsf{UDS}}}) \cdot (1 - f(s, a)) \cdot r(s, a)$$

$$\mathsf{SamplingError}(\pi^*_{\mathsf{UDS}}, \pi^{\mathsf{eff}}_{\beta}) = \mathcal{O}\left(\frac{\gamma}{(1-\gamma)^2}\right) \mathbb{E}_{s, a \sim \hat{d}^{\pi}}\left[\sqrt{\frac{D_{\mathsf{CQL}}(\pi^*_{\mathsf{UDS}}, \pi^{\mathsf{eff}}_{\beta})(s)}{|\mathcal{D}^{\mathsf{eff}}(s)|}}\right]$$

- Notice that in the error term $\zeta_{\rm err}$, the size of the unlabeled dataset $|\mathcal{D}_{U}|$ has an opposing effect on RewardBias and SamplingError
 - As $|\mathcal{D}_U|$ proportionately increases, the ratio of labeled data f(s, a) decreases so the RewardBias increases
 - As $|\mathcal{D}_U|$ increases, the overall effective dataset size $|\mathcal{D}^{\text{eff}}|$ increases so the SamplingError decreases

Analysis of Trade-offs (Case 1)

0000000000000

Case 1 - unlabeled data is distributed identically as labeled data

- Large amount of offline data is available but only a limited uniformly sampled fraction is annotated with rewards
- This means that RewardBias is proportional to the sum of difference of performance (overall rewards) in the empirical MDP
- Learned policy in offline RL π^*_{HDS} improve over the effective behaviour policy π_{β}^{eff} so the RewardBias will be negative
- SamplingError will also decrease due to more data
- UDS improves performance without incurring additional cost due to the wrong reward

Analysis of Trade-offs (Case 2)

0000000000000

Case 2 - Low true reward of the unlabeled dataset

- When the unlabeled dataset in reality does not contain high true rewards, and we annotated them with a reward of 0, this does not incur much RewardBias
- We still get the benefits of implicitly or explicitly learning transitions in unlabeled dataset so it reduces SamplingError

Analysis of Trade-offs (Case 3)

Case 3 – large unlabeled datasets for long-horizon tasks

- In long-horizon tasks, $H:=\frac{1}{1-\gamma}$ is large, and it affects RewardBias and SamplingError in different rate of growth
 - RewardBias grows linearly with H while SamplingError grows quadratically with H
- For cases where $|\mathcal{D}^{\text{eff}}(s)| = \Omega(H^2)|\mathcal{D}_L(s)|$, the overall ζ_{err} is asymptotically unchanged, while having more data for PolicyImprov

Discussion of Comparison with Reward Prediction (Part 1)

The general expression for reward bias is

$$\mathsf{RewardBias}(\pi, \pi^{\mathsf{eff}}_{\beta}) = \frac{1}{1 - \gamma} \sum_{s, a} \Delta(\hat{d}^{\pi^{\mathsf{eff}}_{\beta}}, \hat{d}^{\pi}) \cdot \Delta r(s, a)$$

where $\Delta r(s,a)$ is the error in the reward applied to the unlabeled data.

In UDS, $\Delta r(s,a) = r(s,a) - 0$ but in a reward prediction method, it would be $\Delta r(s,a) = r(s,a) - \hat{r}(s,a)$. Note that $r(s,a) \geq 0$ since without loss of generality, 0 is the minimum reward.

Discussion of Comparison with Reward Prediction (Part 2)

Unlabeled Data Sharing

- $\Delta r(s,a) = r(s,a) \ge 0$ for all (s,a)
- Whenever $\hat{d}^{\pi_{\beta}^{\text{eff}}}(s,a) < \hat{d}^{\pi}(s,a)$, i.e. (s,a) appearing more frequently under the learned policy than the effective behaviour policy, this might reduce the sub-optimality from reward bias
- Intuitively can be seen as inducing a conservative behaviour on unlabeled data

Discussion of Comparison with Reward Prediction (Part 3)

Reward Prediction

- $\Delta r(s,a) = r(s,a) \hat{r}(s,a)$ may not be positive on all (s,a) pairs and hence may incur reward bias
- Policy optimization seeks out policies that maximize $\hat{d}^{\pi}(s,a)$ on (s,a) with high rewards so $\Delta(\hat{d}^{\pi_{\beta}^{\text{eff}}},\hat{d}^{\pi})<0$
- Reward prediction models tend to be biased towards out-of-distribution (OOD) action so $r(s, a) < \hat{r}(s, a)$ and hence $\Delta r(s, a) < 0$

Outline

- Introduction
- 2 Unlabeled Data Sharing (UDS)
- 3 Optimality and Implementation of UDS
- 4 Experimental Results

Controlling and Optimizing Trade-offs

From the theoretical analysis, UDS only has benefits on selected conditions. To harness its potential and reduce sub-optimality induced by reward bias, we have to preferentially reweight transitions in \mathcal{D}_L .

- In existing literature, there are efforts to reduce distributional shift
- The scheme to reduce reward bias intuitively matches the scheme to reduce distributional shift

Theorem II

Optimized reward bias reduction

Theorem

The optimal effective behaviour policy that minimizes $RewardBias(\pi_{UDS}^*, \pi_{\beta}^{eff})$ satisfies

$$d^{\pi_{eta}^{ ext{eff}}}(s,a) \propto \sqrt{d_L(s,a)d^\pi(s,a)}$$

where d^{π} denotes the state-action marginal of policy π and $d_L(s, a)$ denotes the density of state-action pair (s, a) under the labeled dataset

Implementation of Theorem II

- Theorem II essentially states that the effective behaviour policy $\pi_{\beta}^{\rm eff}$ must place mass on state-action tuples that are likely under the learned policy d^{π} and distribution induced by the label dataset d_L
- Computing state-action marginals can be challenging so authors utilize an existing method called conservative data sharing (CDS) to reweigh unlabeled data efficiently
 - CDS is meant for multi-task offline RL but they offer a practical solution on reweighting data from other sources efficiently
 - In this paper, the method of using UDS but with efficient reweighting of unlabeled data is called UDS+CDS

- 4 Experimental Results

Evaluated Methods

- UDS
- UDS + CDS reweighting
- Variational inverse control with events (VICE) learns a reward function through inverse RL on samples of desired goal states
- Recursive classification of examples (RCE) learns a classifier to determine success or failure
- No sharing using only labeled data (baseline)
- Reward prediction naïve reward regressor

Single-task Domains

- 10,000 labeled transitions and 1,000,000 unlabeled transitions
- Unlabeled data is low-quality (i.e. low rewards and possibly irrelevant to target task)

Environment	Labeled data	Unlabeled data	CDS+UDS	UDS	No Sharing	Reward Pred.	VICE	RCE
D4RL hopper	expert expert	random medium	81.5 78.3	78.6 64.4	77.1 77.1	67.6 51.7	n/a n/a	n/a n/a
D4RL AntMaze	expert expert	medium-play large-play	82.6 47.1	82.7 33.1	17.2 0.7	0.0 0.0	0.0 0.0	0.0 0.0

Figure 2: Single task environments - Hopper and AntMaze

Multi-task Imaged-based Robotic Manipulation

lacksquare Use data from other tasks as \mathcal{D}_U to train for a target task

Environment	Tasks	CDS+UDS	UDS	VICE	RCE	No Sharing	Reward Pred.
Meta-World	door open	61.3%±7.9%	$51.9\% \pm 25.3\%$	$0.0\% \pm 0.0\%$	$0.0\% \pm 0.0\%$	$14.5\% \pm 12.7\%$	$0.0\% \pm 0.0\%$
	door close	54.0% ±42.5%	$12.3\% \pm 27.6\%$	66.7%%±47.1%	$0.0\%\pm0.0\%$	$4.0\%\pm6.1\%$	99.3%±0.9%
	drawer open	$73.5\% \pm 9.6\%$	$61.8\% \pm 16.3\%$	$0.0\% \pm 0.0\%$	$0.0\%\pm0.0\%$	$16.0\% \pm 17.5\%$	$13.3\% \pm 18.9\%$
	drawer close	$99.3\% \pm 0.7\%$	$99.6\% \pm 0.7\%$	$19.3\% \pm 27.3\%$	$2.7\%\pm1.7\%$	$99.0\% \pm 0.7\%$	50.3%±35.8%
	average	71.2% ± 11.3%	$56.4\% \pm 12.8\%$	$21.5\% \pm 0.7\%$	$0.7\% \pm 0.4\%$	$33.4\% \pm 8.3\%$	$41.0\% \pm 11.9\%$
AntMaze	medium (3 tasks)	31.5%±3.0%	26.5%±9.1%	2.9%±1.0%	0.0%±0.0%	21.6%±7.1%	3.8%±3.8%
	large (7 tasks)	$18.4\% \pm 6.1\%$	$14.2\% \pm 3.9\%$	$2.5\%\pm1.1\%$	$0.0\% \pm 0.0\%$	$13.3\% \pm 8.6\%$	$5.9\%{\pm}4.1\%$

Figure 3: Multi-task robotic manipulation and navigation environment

Summary of Empirical Analysis

Figure 4: Conditions to use UDS and optimized reweighting (CDS) with UDS

Thank you!