Submission 3.2

- 1. Let $f: A \to B$. Let $A_0 \subset A$ and $B_0 \subset B$.
 - (a) Show that $A_0 \subset f^{-1}(f(A_0))$ and that equality holds if f is injective.

Proof that $A_0 \subset f^{-1}(f(A_0))$:

By the definition of an inverse, $f^{-1}(C) = \{x \mid f(x) \in C\}$. Thus, $f^{-1}(f(A_0)) = \{x \mid f(x) \in f(A_0)\}$.

For every $a \in A_0$, $f(a) \in f(A_0)$, fulfilling the conditions of the set.

Therefore, $A_0 \subset f^{-1}(f(A_0))$.

Proof that $A_0 = f^{-1}(f(A_0))$ if f is injective:

By the definition of an inverse, $f^{-1}(f(A_0)) = \{x \mid f(x) \in f(A_0)\}.$

Let $a \in f^{-1}(f(A_0))$. Therefore, $f(a) \in f(A_0)$. Therefore, there is some $x \in A_0$ such that f(a) = f(x).

By the definition of injectivity, f(a) = f(x) implies that a = x.

Therefore, for every $a \in f^{-1}(f(A_0))$, $a = x \in A_0$. Thus, $f^{-1}(f(A_0)) \subset A_0$. As proven above, $A_0 \subset f^{-1}(f(A_0))$ as well, so $A_0 = f^{-1}(f(A_0))$.

(b) Show that $f(f^{-1}(B_0)) \subset B_0$ and that equality holds if f is surjective.

Proof that $f(f^{-1}(B_0)) \subset B_0$:

By the definition of a function, $f(f^{-1}(B_0)) = \{x \mid f^{-1}(x) \in f^{-1}(B_0)\}$ and by the definition of an inverse,

 $f^{-1}(B_0) = \{x \mid f(x) \in B_0\}.$ For every element $b \in f(f^{-1}(B_0)), f^{-1}(b) \in f^{-1}(B_0)$. Therefore (by assigning $x = f^{-1}(b)), f(f^{-1}(b)) \in B_0$. This means $f(f^{-1}(B_0)) \subset B_0$.

An alternate (and probably better) proof: By the definition of an inverse, $f^{-1}(B_0) = \{x \mid f(x) \in B_0\}.$

Let $x \in f^{-1}(B_0)$. By definition, $f(x) \in B_0$, so $f^{-1}(B_0) \subset B_0$.

Proof that $f(f^{-1}(B_0)) = B_0$ if f is surjective:

Let $b \in B_0$. By the definition of surjectivity, there exists an x such that b = f(x). By the definition of an inverse, $f^{-1}(b) = x$. Therefore, $b = f(x) = f(f^{-1}(b))$. Thus, every element $b \in B_0$ is equal to an element $f(f^{-1}(b)) \in f(f^{-1}(B_0))$, so $B_0 \subset f(f^{-1}(B_0))$. As proven above, $f(f^{-1}(B_0)) \subset B_0$, so $f(f^{-1}(B_0)) = B_0$.

- 2. Let $f:A\to B$ and let $A_i\subset A$ and $B_i\subset B$ for i=0 and i=1. Show that f^{-1} preserves inclusions, unions, intersections, and differences of sets.

(a) $B_0 \subset B_1 \Rightarrow f^{-1}(B_0) \subset f^{-1}(B_1)$ Let $x \in f^{-1}(B_0)$. By the definition of an inverse, $f(x) \in B_0$. Because $B_0 \subset B_1$, $f(x) \in B_1$ as well. $f^{-1}(B_1) = \{x \mid f(x) \in B_1\}$. Thus, every element in $f^{-1}(B_0)$ is also in $f^{-1}(B_1)$, so $f^{-1}(B_0) \subset f^{-1}(B_1)$.

(b) $f^{-1}(B_0 \cup B_1) = f^{-1}(B_0) \cup f^{-1}(B_1)$

Let $x \in f^{-1}(B_0 \cup B_1)$. By the definition of an inverse, $f(x) \in B_0 \cup B_1$, so $f(x) \in B_0 \vee f(x) \in B_1$.

Let $y \in f^{-1}(B_0) \cup f^{-1}(B_1)$. By the deinition of inverses, this means $f(y) \in B_0 \vee f(y) \in B_1$.

Since the definitions for being contained in either set are the same, the two sets are equivalent.

(c) $f^{-1}(B_0 \cap B_1) = f^{-1}(B_0) \cap f^{-1}(B_1)$

Let $x \in f^{-1}(B_0 \cap B_1)$. $f(x) \in B_0 \cap B_1$, so $f(x) \in B_0 \wedge f(x) \in B_1$. This can be rewritten as $f^{-1}(B_0) \cap f^{-1}(B_1)$ and all steps are reversible, showing equality.

(d) $f^{-1}(B_0 - B_1) = f^{-1}(B_0) - f^{-1}(B_1)$

Let $x \in f^{-1}(B_0 - B_1)$. $f(x) \in B_0 - B_1$, so $x \in B_0 \land x \notin B_1$. This can be rewritten as $f^{-1}(B_0) - f^{-1}(B_1)$ and all steps are reversible, again showing equality.

Show that f preserves inclusions and unions only:

(e) $A_0 \subset A_1 \Rightarrow f(A_0) \subset f(A_1)$

Let $b \in f(A_0)$. There is some $x \in A_0$ such that f(x) = a. Because $A_0 \subset A_1$, $x \in A_1$, so $f(x) \in f(A_1)$. Thus, every $a \in f(A_0)$ is also in $f(A_1)$, so $f(A_0) \subset f(A_1)$.

- (f) $f(A_0 \cup A_1) = f(A_0) \cup f(A_1)$ Let $b \in f(A_0 \cup A_1)$. There exists some $x \in A_0 \cup A_1$ such that f(x) = b. $x \in A_0 \cup A_1$ is logically equivalent to $x \in A_0 \vee x \in A_1$. Thus, $f(x) \in f(A_0) \vee f(x) \in A_1$, so $f(x) \in f(A_0) \cup f(A_1)$. Substituting b back in for f(x), we get $b \in f(A_0) \cup f(A_1)$. Because every step is reversible, $f(A_0 \cup A_1) = f(A_0) \cup f(A_1)$.
- (g) $f(A_0 \cap A_1) \subset f(A_0) \cap f(A_1)$ Let $b \in f(A_0 \cap A_1)$. There exists some $x \in A_0 \cap A_1$ such that f(x) = b. This means that $x \in A_0 \wedge x \in A_1$, so $f(x) \in f(A_0) \wedge f(x) \in f(A_1)$, so $f(x) \in f(A_0) \cap f(A_1)$. Thus, every $b \in f(A_0 \cap A_1)$ is also in $f(A_0) \cap f(A_1)$, so $f(A_0 \cap A_1) \subset f(A_0) \cap f(A_1)$.

Show that equality holds if f is injective.

Let $b \in f(A_0) \cap f(A_1)$. $b \in f(A_0) \wedge b \in f(A_1)$. There exists an $x_0 \in A_0$ such that $f(x_0) = b$ and an $x_1 \in A_1$ such that $f(x_1) = b$. Thus, $f(x_0) = f(x_1)$. By the definition of injectivity, $x_0 = x_1$. Thus, $x_0 \in A_0 \wedge x_0 \in A_1$, so $x_0 \in A_0 \cap A_1$, so $f(x_0) \in f(A_0 \cap A_1)$. Thus, every $b \in f(A_0) \cap f(A_1)$ is also in $f(A_0 \cap A_1)$, so $f(A_0) \cap f(A_1) \subset f(A_0 \cap A_1)$. As shown above, $f(A_0 \cap A_1) \subset f(A_0) \cap f(A_1)$, so $f(A_0 \cap A_1) = f(A_0) \cap f(A_1)$.

(h) $f(A_0 - A_1) \supset f(A_0) - f(A_1)$ Let $b \in f(A_0) - f(A_1)$. $b \in f(A_0) \land b \notin f(A_1)$. This means there exists an $x_0 \in A_0$ such that $f(x_0) = b$, and there does not exist an $x_1 \in A_1$ such that $f(x_1) = b$. Thus, for any x such that f(x) = b, $x \in A_0 \land x \notin A_1$, so $x \in A_0 - A_1$. Therefore, every $b \in f(A_0) - f(A_1)$ is also in $f(A_0 - A_1)$, so $f(A_0 - A_1) \supset f(A_0) - f(A_1)$.

Show that equality holds if f is injective.

Let $b \in f(A_0 - A_1)$. There exists an $x \in A_0 - A_1$ such that f(x) = b. Thus, $x \in A_0 \land x \notin A_1$. Let there be some $a \in A_1$ such that f(a) = b = f(x). However, because f is injective, this implies that a = x. $x \notin A_1$, so this presents a contradiction. We can then conclude there is no $a \in A_1$ such that f(a) = f(x), so $f(x) \notin f(A_1)$. Thus, $f(x) \in f(A_0) \land f(x) \notin f(A_1)$, so $f(x) \in f(A_0) - f(A_1)$. Therefore, every $b \in f(A_0 - A_1)$ is also in $f(A_0) - f(A_1)$, so $f(A_0) - f(A_1) \supset f(A_0 - A_1)$. As shown above, $f(A_0 - A_1) \supset f(A_0) - f(A_1)$, so $f(A_0 - A_1) = f(A_0) - f(A_1)$.

- 3. Show that 2b, 2c, 2f, and 2g of Exercise 2 hold for arbitrary unions and intersections.
 - (b) $f^{-1}(\bigcup_{B\in\mathcal{B}}B)=\bigcup_{B\in\mathcal{B}}f^{-1}(B)$ Let $x\in f^{-1}(\bigcup_{B\in\mathcal{B}}B)$. $f(x)\in\bigcup_{B\in\mathcal{B}}B$, so $f(x)\in B$ for at least one $B\in\mathcal{B}$. Thus, $x\in\bigcup_{B\in\mathcal{B}}f^{-1}(B)$. Every step is reversible, so $f^{-1}(\bigcup_{B\in\mathcal{B}}B)=\bigcup_{B\in\mathcal{B}}f^{-1}(B)$.
 - (c) $f^{-1}(\bigcap_{B\in\mathcal{B}}B)=\bigcap_{B\in\mathcal{B}}f^{-1}(B)$ Let $x\in f^{-1}(\bigcap_{B\in\mathcal{B}}B)$. $f(x)\in\bigcap_{B\in\mathcal{B}}B$, so $f(x)\in B$ for every $B\in\mathcal{B}$. Thus, $x\in\bigcap_{B\in\mathcal{B}}f^{-1}(B)$. Every step is reversible, so $f^{-1}(\bigcap_{B\in\mathcal{B}}B)=\bigcap_{B\in\mathcal{B}}f^{-1}(B)$.
 - (f) $f(\bigcup_{A\in\mathcal{A}}A)=\bigcup_{A\in\mathcal{A}}f(A)$ Let $b\in f(\bigcup_{A\in\mathcal{A}}A)$. There exists some $x\in\bigcup_{A\in\mathcal{A}}A$ such that f(x)=b. $x\in A$ for at least one $A\in\mathcal{A}$, so $f(x)=b\in f(A)$ for at least one $A\in\mathcal{A}$. Thus, every $b\in f(\bigcup_{A\in\mathcal{A}}A)$ is also in $\bigcup_{A\in\mathcal{A}}f(A)$, and because every step is reversible, $f(\bigcup_{A\in\mathcal{A}}A)=\bigcup_{A\in\mathcal{A}}f(A)$.
 - (g) $f(\bigcap_{A\in\mathcal{A}}A)\subset\bigcap_{A\in\mathcal{A}}f(A)$ Let $b\in f(\bigcap_{A\in\mathcal{A}}A)$. There exists some $x\in\bigcap_{A\in\mathcal{A}}A$ such that f(x)=b. This means $x\in A$ for every $A\in\mathcal{A}$, so $f(x)=b\in f(A)$ for every $A\in\mathcal{A}$. Thus, every $b\in f(\bigcap_{A\in\mathcal{A}}A)$ is also in $\bigcap_{A\in\mathcal{A}}f(A)$, so $f(\bigcap_{A\in\mathcal{A}}A)\subset\bigcap_{A\in\mathcal{A}}f(A)$.

Show that equality holds if f is injective.

Let $b \in \bigcap_{A \in \mathcal{A}} f(A)$. $b \in f(A)$ for every $A \in \mathcal{A}$. For every $A \in \mathcal{A}$, there exists an $x \in A$ such that f(x) = b. Because f is injective, all these x's are equal to each other, so there is a singular $x \in \bigcap_{A \in \mathcal{A}} A$. Thus, $f(x) = b \in f(\bigcap_{A \in \mathcal{A}} A)$. $\bigcap_{A \in \mathcal{A}} f(A) \subset f(\bigcap_{A \in \mathcal{A}} A)$, and because the reverse was proven above, $f(\bigcap_{A \in \mathcal{A}} A) = \bigcap_{A \in \mathcal{A}} f(A)$.

- 4. Let $f: A \to B$ and $g: B \to C$.
 - (a) If $C_0 \subset C$, show that $(g \circ f)^{-1}(C_0) = f^{-1}(g^{-1}(C_0))$. $(g \circ f)^{-1}(C_0) = \{a \mid (g \circ f)(a) \in C_0\} = \{a \mid g(f(a)) \in C_0\}$. $f^{-1}(g^{-1}(C_0)) = \{a \mid f(a) \in g^{-1}(C_0)\}$ and $g^{-1}(C_0) = \{b \mid g(b) \in C_0\}$. Therefore, $f^{-1}(g^{-1}(C_0)) = \{a \mid g(f(a)) \in C_0\}$. Both $(g \circ f)^{-1}(C_0)$ and $f^{-1}(g^{-1}(C_0))$ share a definition, so they must be equivalent.
 - (b) If f and g are injective, show that $g \circ f$ is injective. Let a_0 and a_1 such that $(g \circ f)(a_0) = (g \circ f)(a_1)$. Thus, $g(f(a_0)) = g(f(a_1))$. Because g is injective, $f(a_0) = f(a_1)$, and because f is injective, $a_0 = a_1$. Thus, $(g \circ f)(a_0) = (g \circ f)(a_1) \Rightarrow a_0 = a_1$, so $g \circ f$ is injective.
 - (c) If $g \circ f$ is injective, what can you say about the injectivity of f and g? Let a_0 and a_1 such that $f(a_0) = f(a_1)$. $g(f(a_0)) = g(f(a_1))$, and because $g \circ f$ is injective, $a_0 = a_1$. Thus, if $g \circ f$ is injective, f is injective as well. Nothing can be said about the injectivity of g.

- (d) If f and g are surjective, show that $g \circ f$ is surjective. $g \circ f : A \to C$. Let $c \in C$. Because g is surjective, there exists a $b \in B$ such that g(b) = c. Because f is surjective, there exists an $a \in A$ such that f(a) = b. Thus, for every $c \in C$, there exists an a such that g(f(a)) = c, so $g \circ f$ is surjective.
- (e) If $g \circ f$ is surjective, what can you say about the surjectivity of f and g? Let $c \in C$. Because $g \circ f$ is surjective, there is exists $a \in A$ such that $(g \circ f)(a) = g(f(a)) = c$. Let $f(a) = b \in B$; g(b) = c. Thus, $c \in C \Rightarrow c = g(b)$ for at least one $b \in B$, so g is surjective. Nothing can be said about the surjectivity of f.
- (f) f and g are injective $\Rightarrow g \circ f$ is injective. $g \circ f$ is injective $\Rightarrow f$ is injective. f and g are surjective $\Rightarrow g \circ f$ is surjective. $g \circ f$ is surjective $\Rightarrow g$ is surjective.
- 5. Let us denote the *identity function* for a set C by i_C , i.e. define $i_C : C \to C$ to be the function $i_C(x) = x$ for all $x \in C$. Given $f : A \to B$, $g : B \to A$ is a *left inverse* of f if $g \circ f = i_A$; $h : B \to A$ is a *right inverse* for f if $f \circ h = i_B$.
 - (a) Show that if f has a left inverse, f is injective. Let g be the left inverse of f. Then, g(f(x)) = x. Let $x_0 \in A$ and $x_1 \in A$ such that $f(x_0) = f(x_1)$. $g(f(x_0)) = g(f(x_1))$, but also $g(f(x_0)) = x_0$ and $g(f(x_1)) = x_1$. By substituting, we get $x_1 = x_0$, so $f(x_0) = f(x_1) \Rightarrow x_0 = x_1$, so f is injective.

Show that if f has a right inverse, f is surjective. Let h be the right inverse of f. Then, $f(h(x)) = x \in B$. Let $a \in A = h(x)$. Then, $x \in B \Rightarrow x = f(a)$ for at least one $a \in a$, so f is surjective.

- (b) Give an example of a function that has a left inverse but no right inverse. The function $f(x) = \sqrt{x}$ has a left inverse $g(x) = x^2$, but no right inverse because it is not surjective (there is no value of x such that f(x) = -1).
- (c) Give an example of a function that has a right inverse but no left inverse. The function $f(x) = x^2$ has a right inverse $h(x) = \sqrt{x}$, but no left inverse because it is not injective $(x^2 = (-x)^2)$.
- (d) Can a function have more than one left inverse? More than one right inverse? A function cannot have more than one left inverse. Let $f: A \to B$ with two left inversesm g_1 and g_2 . Thus, $g_1: B \to A$ and $g_2: B \to A$. Let $x \in A$ and let $f(x) = b \in B$. $g_1(f(x)) = x = g_2(f(x))$, so for every $b \in B$, $g_1(b) = g_2(b)$. Since g_1 and g_2 both have the same domain (B), range (A), and rule of assignment, $g_1 = g_2$. Therefore, no function has 2 or more unique left inverses. Update: A function can have more than one left inverse. See the following potato graph:

 g_1 and g_2 are both left inverses of f.

A function can have more than one right inverse. $f(x) = x^2$ has both $h_1(x) = \sqrt{x}$ and $h_2(x) = -\sqrt{x}$ as right inverses.

(e) Show that if f has both a left inverse g and a right inverse h, then f is bijective and g = h = f⁻¹.
Because f has a left inverse, f must be injective, and because f has a right inverse f must be surjective (proven in part (a)), meaning f is bijective.
Because f is bijective, it must have an inverse f⁻¹: B → A such that f⁻¹(b) = a, where f(a) = b.
By substituting, we get that f⁻¹(f(a)) = a for all a ∈ A. This means f⁻¹ is a left inverse of f, and because a function can have only one left inverse, f⁻¹ = g.

We can also substitute to reach $f(f^{-1}(b)) = b$, meaning f^{-1} is a right inverse of f. $h: B \to A$ is also a right inverse of f, so f(h(b)) = b. f is injective, so $h(b) = f^{-1}(b)$ for all $b \in B$, so $h = f^{-1}$. $g = f^{-1}$ and $h = f^{-1}$, so $g = h = f^{-1}$.

- 6. Let $f: \mathbb{R} \to \mathbb{R}$ be the function $f(x) = x^3 x$. By restricting the domain and range of f appropriately, obtain from f a bijective function g. Draw the graphs of g and g^{-1} . Let $g: [1, \infty) \to [0, \infty)$ be the function $g(x) = x^3 x$. $g(x) \qquad \qquad g^{-1}(x)$

