

Introduction

- Parallel LL parser generator.
- $LLP(q, k) \subseteq LL(k)$.
- Pareas uses LLP(1, 1).
- Two mistakes in the paper that describes LLP.
- Tested the parser generator thoroughly.

- 1) $T \rightarrow R$ 2) $T \rightarrow aTc$ 3) $R \rightarrow \varepsilon$ 4) $R \rightarrow bR$

Here is a LL(1) grammar.

- 1) $T \rightarrow R$ 2) $T \rightarrow aTc$ 3) $R \rightarrow \varepsilon$ 4) $R \rightarrow bR$

(abc, T, ())

1)
$$T \rightarrow F$$

2)
$$I \rightarrow aI$$

1)
$$T \rightarrow R$$
 2) $T \rightarrow aTc$ 3) $R \rightarrow \varepsilon$ 4) $R \rightarrow bR$

4)
$$R o bK$$

$$(abc, T, ()) \vdash (abc, aTc, 2)$$

1)
$$T \rightarrow F$$

1)
$$T \rightarrow R$$
 2) $T \rightarrow aTc$ 3) $R \rightarrow \varepsilon$ 4) $R \rightarrow bR$

$$+)$$
 $K \rightarrow DK$

$$(abc, T, ()) \vdash (abc, aTc, 2) \vdash (bc, Tc, 2)$$

1)
$$T \rightarrow R$$
 2) $T \rightarrow aTc$ 3) $R \rightarrow \varepsilon$ 4) $R \rightarrow bR$

3)
$$R \to \varepsilon$$

$$(abc, T, ()) \vdash (abc, aTc, 2) \vdash (bc, Tc, 2) \vdash (bc, Rc, (2, 1))$$

1)
$$T \rightarrow R$$
 2) $T \rightarrow aTc$ 3) $R \rightarrow \varepsilon$ 4) $R \rightarrow bR$

2)
$$I \rightarrow aI$$

$$S) \ \ \ \ \ \ \rightarrow \varepsilon$$

$$R \to bR$$

$$(abc, T, ()) \vdash (abc, aTc, 2) \vdash (bc, Tc, 2) \vdash (bc, Rc, (2, 1))$$

 $\vdash (bc, bRc, (2, 1, 4))$

Here is a LL(1) grammar.

1)
$$T \rightarrow F$$

3)
$$R \to \varepsilon$$

1) $T \rightarrow R$ 2) $T \rightarrow aTc$ 3) $R \rightarrow \varepsilon$ 4) $R \rightarrow bR$

$$(abc, T, ()) \vdash (abc, aTc, 2) \vdash (bc, Tc, 2) \vdash (bc, Rc, (2, 1))$$

 $\vdash (bc, bRc, (2, 1, 4)) \vdash (c, Rc, (2, 1, 4))$

1)
$$T \rightarrow R$$
 2) $T \rightarrow aTc$ 3) $R \rightarrow \varepsilon$ 4) $R \rightarrow bR$

$$2) I \rightarrow aI$$

$$s$$
) $\kappa \to \varepsilon$

$$+)$$
 $R o bR$

$$(abc, T, ()) \vdash (abc, aTc, 2) \vdash (bc, Tc, 2) \vdash (bc, Rc, (2, 1))$$

 $\vdash (bc, bRc, (2, 1, 4)) \vdash (c, Rc, (2, 1, 4))$
 $\vdash (c, c, (2, 1, 4, 3))$

Here is a LL(1) grammar.

1)
$$T \rightarrow R$$
 2) $T \rightarrow aTc$ 3) $R \rightarrow \varepsilon$ 4) $R \rightarrow bR$

$$(abc, T, ()) \vdash (abc, aTc, 2) \vdash (bc, Tc, 2) \vdash (bc, Rc, (2, 1))$$

 $\vdash (bc, bRc, (2, 1, 4)) \vdash (c, Rc, (2, 1, 4))$
 $\vdash (c, c, (2, 1, 4, 3)) \vdash (\varepsilon, \varepsilon, (2, 1, 4, 3))$

Accepted! the string "abc" can be parsed.

LLP Parsing

Augment the grammar, this grammar is LL(1) and LLP(1, 1).

$$0) \ T' \rightarrow \vdash T \dashv$$

Now we parse the string " \vdash abc \dashv " instead and a LLP table is needed.

- 1. Initial pushdown store.
- 2. Final pushdown store.
- 3. Left parse.

	⊢	a	Ь	с	-
ε	$(T', T \dashv, 0)$				
-		(T, Tc, 2)	(T, R, (1, 4))		$(T \dashv, \varepsilon, (1,3))$
а		(T, Tc, 2)	(T, R, (1, 4))	$(\mathit{Tc}, \varepsilon, (1,3))$	
b			(R, R, 4)	$(Rc, \varepsilon, 3)$	$(R\dashv, \varepsilon, 3)$
С				$(c, \varepsilon, ())$	$(\dashv, \varepsilon, ())$

LLP Parsing

Augment the grammar, this grammar is LL(1) and LLP(1, 1).

$$0) \ T' \rightarrow \vdash T \dashv$$

Now we parse the string " \vdash abc \dashv " instead and a LLP table is needed.

- Initial pushdown store.
- 2. Final pushdown store.
- Left parse.

$$(T', \varepsilon, (0, 2, 1, 4, 3))$$
 $(T', \dashv, (0, 2, 1, 4, 3))$
 $(T', Tc\dashv, (0, 2))$
 $(Tc, \varepsilon, (1, 4, 3))$
 $(T', T\dashv, 0)$
 $(T, Tc, 2)$
 $(T, R, (1, 4))$
 $(Rc, \varepsilon, 3)$

$$(T', \varepsilon, (0, 2, 1, 4, 3))$$
 $(T', \neg, (0, 2, 1, 4, 3))$
 $(T', Tc \neg, (0, 2))$
 $(Tc, \varepsilon, (1, 4, 3))$
 $(T', T \neg, 0)$
 $(T, Tc, 2)$
 $(T, R, (1, 4))$
 $(Rc, \varepsilon, 3)$

$$(T', \varepsilon, (0, 2, 1, 4, 3))$$

$$(T', \dashv, (0, 2, 1, 4, 3)) \qquad (\dashv, \varepsilon, ())$$

$$(T', Tc\dashv, (0, 2)) \qquad (Tc, \varepsilon, (1, 4, 3))$$

$$(T', T\dashv, 0) \qquad (T, Tc, 2) \qquad (T, R, (1, 4)) \qquad (Rc, \varepsilon, 3)$$

$$(T', \varepsilon, (0, 2, 1, 4, 3))$$
 $(T', \neg, (0, 2, 1, 4, 3))$
 $(T', Tc \neg, (0, 2))$
 $(Tc, \varepsilon, (1, 4, 3))$
 $(T', T \neg, 0)$
 $(T, Tc, 2)$
 $(T, R, (1, 4))$
 $(Rc, \varepsilon, 3)$

$$(T', \varepsilon, (0, 2, 1, 4, 3))$$
 $(T', \dashv, (0, 2, 1, 4, 3))$
 $(T', Tc \dashv, (0, 2))$
 $(Tc, \varepsilon, (1, 4, 3))$
 $(T', Td \dashv, (0, 2))$
 $(Tc, \tau, (1, 4, 3))$
 $(T', Td \dashv, (0, 2))$
 $(Tc, \tau, (1, 4, 3))$
 $(T', Td \dashv, (0, 2))$
 $(Tc, \tau, (1, 4, 3))$

$$(T', \varepsilon, (0, 2, 1, 4, 3))$$
 $(T', \dashv, (0, 2, 1, 4, 3))$
 $(T', Tc \dashv, (0, 2))$
 $(Tc, \varepsilon, (1, 4, 3))$
 $(T', Td \dashv, (0, 2))$
 $(Tc, \tau, (1, 4, 3))$
 $(T', Td \dashv, (0, 2))$
 $(Tc, \tau, (1, 4, 3))$
 $(T', Td \dashv, (0, 2))$
 $(Tc, \tau, (1, 4, 3))$

(ε,\vdash)	(⊢, a)	(a,b)	(b,c)	(c,\dashv)
$(T', T\dashv, 0)$	(T, Tc, 2)	(T, R, (1, 4))	$(Rc, \varepsilon, 3)$	$(\dashv, \varepsilon, ())$
$(T', \overline{T}\dashv)$	(T, Tc)	(T,R)	(Rc, arepsilon)	(\dashv, ε)

(ε,\vdash)	(⊢, a)	(a, b)	(b,c)	(c,\dashv)
$(T', T\dashv, 0)$	(T, Tc, 2)	(T, R, (1, 4))	$(Rc, \varepsilon, 3)$	$(\dashv, \varepsilon, ())$
$\overline{(T',T\dashv)}$	(T, Tc)	(T,R)	(Rc, ε)	(\dashv, ε)
$T', \dashv T$	(T, cT)	(T,R)	(Rc, arepsilon)	(\dashv, ε)

(ε,\vdash)	(⊢, a)	(a, b)	(b,c)	(c,\dashv)
$(T', T\dashv, 0)$	(T, Tc, 2)	(T, R, (1, 4))	$(Rc, \varepsilon, 3)$	$(\dashv, \varepsilon, ())$
$(T', T \dashv)$	(T, Tc)	(T,R)	(Rc, arepsilon)	(\dashv, ε)
$T', \dashv T$	(T, cT)	(T,R)	(Rc, arepsilon)	(\dashv, ε)
$(\varepsilon, [\dashv [^T)]$	$(]^T,[^c[^T)$	$(]^T,[^R)$	$(]^R]^c, \varepsilon)$	$(]^\dashv, \varepsilon)$

(ε,\vdash)	(\vdash,a)	(a,b)	(b,c)	(c,\dashv)
$(T', T\dashv, 0)$	(T, Tc, 2)	(T, R, (1, 4))	$(Rc, \varepsilon, 3)$	$(\dashv, \varepsilon, ())$
$(T', T \dashv)$	(T, Tc)	(T,R)	$(\mathit{Rc}, arepsilon)$	(\dashv, ε)
$(T', \dashv T)$	(T, cT)	(T,R)	$(\mathit{Rc}, arepsilon)$	(\dashv, ε)
$(\varepsilon, [\dashv [^T)]$	$(]^T,[^c[^T)$	$(]^T,[^R)$	$(]^R]^c, \varepsilon)$	$(]^\dashv, \varepsilon)$

Now perform bracket matching and assert their types match up.

$$[^{\dashv}[^T]^T[^c[^T]^T[^R]^R]^c]^{\dashv}$$

$(arepsilon, \vdash)$	(⊢, a)	(a,b)	(b,c)	(c,\dashv)
$(T', T\dashv, 0)$	(T, Tc, 2)	(T, R, (1, 4))	$(Rc, \varepsilon, 3)$	$(\dashv, \varepsilon, ())$
$(T', T \dashv)$	(T, Tc)	(T,R)	$(\mathit{Rc}, arepsilon)$	(\dashv, ε)
$(T', \dashv T)$	(T, cT)	(T,R)	$(\mathit{Rc}, arepsilon)$	(\dashv, ε)
$(\varepsilon, [\dashv [^T)]$	$(]^T,[^c[^T)$	$(]^T,[^R)$	$(]^R]^c, \varepsilon)$	$(]^\dashv, \varepsilon)$

Now perform bracket matching and assert their types match up.

$$[^{\dashv}[^T]^T[^c[^T]^T[^R]^R]^c]^{\dashv}$$

Construct the production sequence.

Syntax Tree

1)
$$E \to TE'$$
 2) $E' \to +TE'$ 3) $E' \to \varepsilon$ 4) $T \to a$ $(a + [a + a], E, ()) \vdash^* (\varepsilon, \varepsilon, (1, 4, 2, 5, 1, 4, 2, 4, 3, 3))$

LLP Table

To perform LLP parsing a LLP table is needed.

- 1. Find the initial pushdown.
- 2. Parse the first symbol of the lookahead string to get the final pushdown store.
- 3. Construct LLP configuration.

Consider the following augmented LL(2) grammar.

- 0) $S' \rightarrow \vdash S \dashv$ 1) $A \rightarrow \varepsilon$ 2) $S \rightarrow aAa$ 3) $A \rightarrow a$

Consider the following augmented LL(2) grammar.

0)
$$S' \rightarrow \vdash S \dashv$$
 1) $A \rightarrow \varepsilon$ 2) $S \rightarrow aAa$ 3) $A \rightarrow a$

1)
$$A \rightarrow \epsilon$$

2)
$$S \rightarrow aAa$$

3)
$$A \rightarrow A$$

The PSLS (Prefix of a Suffix of a Leftmost Sentential) table. The grammar is LLP(2,2) since all the sets are singletons.

		a⊢	aa
⊢			{ <i>S</i> }
⊢ <i>a</i>		{ <i>A</i> }	{ <i>A</i> }
aa	{⊢}	{a}	

Consider the following augmented LL(2) grammar.

0)
$$S' \rightarrow \vdash S \dashv$$
 1) $A \rightarrow \varepsilon$ 2) $S \rightarrow aAa$ 3) $A \rightarrow a$

1)
$$A \rightarrow \varepsilon$$

2)
$$S \rightarrow aAa$$

3)
$$A \rightarrow a$$

The PSLS (Prefix of a Suffix of a Leftmost Sentential) table. The grammar is LLP(2,2) since all the sets are singletons.

	\vdash	a	aa
-			<i>{S}</i>
⊢ <i>a</i>		{ <i>A</i> }	{ <i>A</i> }
aa	{⊢}	{a}	

A small example of a PSLS value.

$$S \Rightarrow_{lm}^* \vdash S \dashv \Rightarrow \vdash aAa \dashv \Rightarrow^* \vdash aa \dashv$$

This corresponds to the entry $PSLS(\vdash a, a \dashv) = \{A\}.$

Construct the LL(2) table.

	- <i>a</i>	aa	a
S'	$S' o \vdash S \dashv$		
S		S o aAa	
A		A ightarrow a	$A \rightarrow \varepsilon$

Construct the LL(2) table.

	⊢ <i>a</i>	aa	a
S'	$S' o \vdash S \dashv$		
S		S o aAa	
Α		A o a	A o arepsilon

Try LL parsing the initial pushdown store PSLS($\vdash a, a \dashv$) = {A}.

$$(a\dashv,A,())\vdash(a\dashv,\varepsilon,1)$$

Due to this the final pushdown store cannot be determined since the first symbol can not be parsed.

The problem is due to the PSLS definition.

```
\mathsf{PSLS}(x,y) = \{\alpha : \exists S \Rightarrow_{lm}^* \mathsf{wu} \mathsf{A}\beta \Rightarrow \mathsf{wx} \mathsf{B}\gamma \Rightarrow^* \mathsf{wxy}\delta,
                                w, u \in T^*, A, B \in \mathbb{N}, \alpha, \beta, \gamma, \delta \in (\mathbb{N} \cup T)^*, u \neq x,
                                \alpha is the shortest prefix of B\gamma such that \mathsf{FIRST}_1(\gamma) \subseteq \mathsf{FIRST}_1(\alpha)
                         \cup \{a : \exists S \Rightarrow^* wuA\beta \Rightarrow wxa\gamma \Rightarrow^* wxy\delta,
                                a = \mathsf{FIRST}_1(y), w, u \in T^*, \beta, \gamma, \delta \in (\mathsf{N} \cup T)^*, u \neq x\}
```

10

The Problem

The problem is due to the PSLS definition.

$$\begin{aligned} \mathsf{PSLS}(x,y) &= \{\alpha : \exists S \Rightarrow_{lm}^* wuA\beta \Rightarrow wxB\gamma \Rightarrow^* wxy\delta, \\ & w, u \in T^*, A, B \in \mathsf{N}, \alpha, \beta, \gamma, \delta \in (\mathsf{N} \cup T)^*, u \neq x, \\ & \alpha \text{ is the shortest prefix of } B\gamma \text{ such that } \mathsf{FIRST}_1(y) \subseteq \mathsf{FIRST}_1(\alpha) \} \\ & \cup \{a : \exists S \Rightarrow^* wuA\beta \Rightarrow wxa\gamma \Rightarrow^* wxy\delta, \\ & a = \mathsf{FIRST}_1(y), w, u \in T^*, \beta, \gamma, \delta \in (\mathsf{N} \cup T)^*, u \neq x \} \end{aligned}$$

 $(y, \mathsf{PSLS}(x, y), ()) \vdash^* (b, \omega, \pi)$ where $ab = y, a \in T$ and $b \in T^*$

 $FIRST_1(y) \subseteq FIRST_1(\alpha)$

$$\begin{split} \mathsf{PSLS}_{\pmb{k}}(x,y) &= \{\alpha: \exists S \Rightarrow_{lm}^* wuA\beta \Rightarrow wxB\gamma \Rightarrow^* wxy\delta, \\ w,u &\in T^*, A, B \in N, \alpha, \beta, \gamma, \delta \in (\mathsf{N} \cup T)^*, u \neq x, \\ \alpha \text{ is the shortest prefix of } B\gamma \text{ such that } y \in \mathsf{FIRST}_{\pmb{k}}(\alpha)\} \\ &\cup \{y: \exists S \Rightarrow^* wuA\beta \Rightarrow wxa\gamma \Rightarrow^* wxy\delta, \\ a &= \mathsf{FIRST}_1(y), w, u \in T^*, \beta, \gamma, \delta \in (\mathsf{N} \cup T)^*, u \neq x\} \end{split}$$

$$\begin{split} \mathsf{PSLS}_{\pmb{k}}(x,y) &= \{\alpha : \exists S \Rightarrow_{lm}^* wuA\beta \Rightarrow wxB\gamma \Rightarrow^* wxy\delta, \\ w,u &\in T^*, A, B \in N, \alpha, \beta, \gamma, \delta \in (\mathsf{N} \cup T)^*, u \neq x, \\ \alpha \text{ is the shortest prefix of } B\gamma \text{ such that } \underline{y} \in \mathsf{FIRST}_{\pmb{k}}(\alpha)\} \\ &\cup \{\underline{y} : \exists S \Rightarrow^* wuA\beta \Rightarrow wxa\gamma \Rightarrow^* wxy\delta, \\ a &= \mathsf{FIRST}_1(y), w, u \in T^*, \beta, \gamma, \delta \in (\mathsf{N} \cup T)^*, u \neq x\} \end{split}$$

- The time complexity is not impacted.
- The problem of deriving too many symbols.

"Since the length of both α_i and ω_i is limited by some constant z for the grammar, the time complexity is O(z) = O(1)." (Vagner, 2007)

Construct the new $PSLS_2$ table.

		a⊢	aa
-			<i>{S}</i>
⊢ <i>a</i>		{ <i>Aa</i> ⊣}	{ <i>Aa</i> }
aa	{⊣}	{ a ⊢}	

Construct the new PSLS₂ table.

		a⊢	aa
-			<i>{S}</i>
⊢ <i>a</i>		{ <i>Aa</i> ∃}	{ <i>Aa</i> }
aa	{⊣}	{ a ⊢}	

Try LL parsing the initial pushdown store $PSLS_2(\vdash a, a \dashv) = \{A\}.$

$$(a\dashv,Aa\dashv,())\vdash(a\dashv,a\dashv,1)\vdash(\dashv,\dashv,1)$$

Now the final pushdown store can be found. Resulting in the LLP configuration ($Aa \dashv, \dashv, 1$).

The problem is due to the PSLS definition.

```
\mathsf{PSLS}(x,y) = \{\alpha : \exists S \Rightarrow_{lm}^* \mathsf{wu} \mathsf{A}\beta \Rightarrow \mathsf{wx} \mathsf{B}\gamma \Rightarrow^* \mathsf{wxy}\delta,
                             w, u, v' \in T^*, a \in T, A, B \in N, \alpha, \beta, \gamma, \delta \in (N \cup T)^*, u \neq x,
                             v = av', \alpha is the shortest prefix of B\gamma
                              such that (y, \alpha, ()) \vdash^* (y', \omega, \pi)
                      \cup \{a : \exists S \Rightarrow^* wuA\beta \Rightarrow wxa\gamma \Rightarrow^* wxy\delta,
                             a = FIRST_1(y), w, u \in T^*, \beta, \gamma, \delta \in (N \cup T)^*, u \neq x
```

The problem is due to the PSLS definition.

```
\mathsf{PSLS}(x,y) = \{\alpha : \exists S \Rightarrow_{lm}^* \mathsf{wu} \mathsf{A}\beta \Rightarrow \mathsf{wx} \mathsf{B}\gamma \Rightarrow^* \mathsf{wxy}\delta,
                             w, u, v' \in T^*, a \in T, A, B \in N, \alpha, \beta, \gamma, \delta \in (N \cup T)^*, u \neq x,
                             v = av', \alpha is the shortest prefix of B\gamma
                              such that (y, \alpha, ()) \vdash^* (y', \omega, \pi)
                      \cup \{a : \exists S \Rightarrow^* wuA\beta \Rightarrow wxa\gamma \Rightarrow^* wxy\delta.
                             a = FIRST_1(y), w, u \in T^*, \beta, \gamma, \delta \in (N \cup T)^*, u \neq x
```

- Not tested.
- 2. It was created by Vladislav Vagner.

Using Vladislav Vagners newer PSLS definition.

	\dashv	a⊢	aa
-			<i>{S}</i>
⊢ <i>a</i>		{ <i>Aa</i> }	{ <i>A</i> }
aa	{⊢}	{ a}	

Do LL parsing.

$$(a\dashv,Aa,())\vdash(a\dashv,a,1)\vdash(\dashv,\varepsilon,1)$$

• The dictionaries are not surjective functions.

- The dictionaries are not surjective functions.
- The property tested for is $\forall s \in T^* : \Pi(s) = \varphi(s)$.

- The dictionaries are not surjective functions.
- The property tested for is $\forall s \in T^* : \Pi(s) = \varphi(s)$.
- "This changed definition would still work for LLP parsing." is conjecture.

- The dictionaries are not surjective functions.
- The property tested for is $\forall s \in T^* : \Pi(s) = \varphi(s)$.
- "This changed definition would still work for LLP parsing." is conjecture.
- The stack and input string does not need to equal each other in the definition of \vdash .

- The dictionaries are not surjective functions.
- The property tested for is $\forall s \in T^* : \Pi(s) = \varphi(s)$.
- "This changed definition would still work for LLP parsing." is conjecture.
- The stack and input string does not need to equal each other in the definition of \vdash .
- " $\mathcal{M}_0(A) = \emptyset$ for all $A \in \mathcal{N}' \setminus \{S\}$ and $\mathcal{M}_0(S) = \{\Box^k\}$ " is the correct initial dictionary when constructing FOLLOW_k.

15

- The dictionaries are not surjective functions.
- The property tested for is $\forall s \in T^* : \Pi(s) = \varphi(s)$.
- "This changed definition would still work for LLP parsing." is conjecture.
- The stack and input string does not need to equal each other in the definition of \vdash .
- " $\mathcal{M}_0(A) = \emptyset$ for all $A \in \mathcal{N}' \setminus \{S\}$ and $\mathcal{M}_0(S) = \{\Box^k\}$ " is the correct initial dictionary when constructing FOLLOW_k.
- N' should be used in step 3. of the FOLLOW_k algorithm.

15

- The dictionaries are not surjective functions.
- The property tested for is $\forall s \in T^* : \Pi(s) = \varphi(s)$.
- "This changed definition would still work for LLP parsing." is conjecture.
- The stack and input string does not need to equal each other in the definition of \vdash .
- " $\mathcal{M}_0(A) = \emptyset$ for all $A \in \mathcal{N}' \setminus \{S\}$ and $\mathcal{M}_0(S) = \{\Box^k\}$ " is the correct initial dictionary when constructing FOLLOW_k.
- N' should be used in step 3. of the FOLLOW_k algorithm.
- Algorithm 2.3 should use $v_i \in \mathsf{FIRST}_k(\gamma)$ not $y \in \mathsf{FIRST}_k(\gamma)$.

- The dictionaries are not surjective functions.
- The property tested for is $\forall s \in T^* : \Pi(s) = \varphi(s)$.
- "This changed definition would still work for LLP parsing." is conjecture.
- The stack and input string does not need to equal each other in the definition of ⊢.
- " $\mathcal{M}_0(A) = \emptyset$ for all $A \in \mathcal{N}' \setminus \{S\}$ and $\mathcal{M}_0(S) = \{\Box^k\}$ " is the correct initial dictionary when constructing FOLLOW_k.
- N' should be used in step 3. of the FOLLOW_k algorithm.
- Algorithm 2.3 should use $v_i \in \mathsf{FIRST}_k(\gamma)$ not $y \in \mathsf{FIRST}_k(\gamma)$.
- When showing the infinite loop, FIRST_k shoud be FIRST₁.

- Parsing large quantities of a formal language.
 - JSON.

- Parsing large quantities of a formal language.
 - JSON.
 - Large code bases in reproducible environments.

- Parsing large quantities of a formal language.
 - JSON.
 - Large code bases in reproducible environments.
- The LLP grammar class is limited: problems with JSON, Lua, Regular Language.

- Parsing large quantities of a formal language.
 - JSON.
 - Large code bases in reproducible environments.
- The LLP grammar class is limited: problems with JSON, Lua, Regular Language.
- I had trouble finding useful grammars that are LL(k) grammars where k > 1. But extending the lookback is somewhat different to the lookahead.

- Parsing large quantities of a formal language.
 - JSON.
 - Large code bases in reproducible environments.
- The LLP grammar class is limited: problems with JSON, Lua, Regular Language.
- I had trouble finding useful grammars that are LL(k) grammars where k > 1. But extending the lookback is somewhat different to the lookahead.
- Parsing more complex grammars, an example is allowing "-" to mean both the binary and unary operation for numbers, while ignore parenthesis. When testing this such a grammar was found to be LLP(2, 1).

- Parsing large quantities of a formal language.
 - JSON.
 - Large code bases in reproducible environments.
- The LLP grammar class is limited: problems with JSON, Lua, Regular Language.
- I had trouble finding useful grammars that are LL(k) grammars where k > 1. But extending the lookback is somewhat different to the lookahead.
- Parsing more complex grammars, an example is allowing "-" to mean both the binary and unary operation for numbers, while ignore parenthesis. When testing this such a grammar was found to be LLP(2, 1).
- There exists a larger grammar class LLP* which can parse all regular languages and more of LL.

A Little Example

A LISP Parser