Задачи по курсу «Вариационное исчисление и оптимальное управление»

Осенний семестр 2023

Аннотация

В документе собраны решения задач к экзамену по вариационному исчислению и оптимальному управлению осеннего семестра 2023 года. Лектор: Васильева А. А. Задачи могут содержать ошибки и опечатки. Исходники, материалы и информацию по участию в дополнении теха можно найти тут.

Задача 1. Предварительный материал из лекции (Гармонический осциллятор):

Рассмотрим задачу:

$$\mathcal{L}(x) := \int_0^{T_0} (\dot{x}^2 - x^2) dt \to \inf, \quad x(0) = x(T_0) = 0$$

Тогда $L_{\dot{x}}=2\dot{x}, L_{x}=-2x;$ уравнение Эйлера имеет вид $-\frac{d}{dt}(2\dot{x})-2x=0,$ т.е. $\ddot{x}+x=0.$

Заметим, что $\hat{x}=0$ является допустимой экстремалью. Выясним, является ли она точкой локального или глобального минимума. Для этого используем следующий прием.

Пусть $\omega \in C^1[0, T_0]$. Тогда

$$\int_{0}^{T_{0}} \left(\dot{\omega}x^{2} + 2\omega x\dot{x}\right)dt = \int_{0}^{T_{0}} \frac{d}{dt} \left(\omega x^{2}\right)dt = \left.\omega x^{2}\right|_{0}^{T_{0}} = 0, \text{ если } x \in C_{0,0}^{1}\left[0, T_{0}\right].$$

Значит, можно добавить этот ноль к интегралу:

$$\int_0^{T_0} (\dot{x}^2 - x^2) dt = \int_0^{T_0} (\dot{x}^2 - x^2 - \dot{\omega}x^2 - 2\omega x\dot{x}) dt$$

Подберем ω так, чтобы $\dot{x}^2 - x^2 - \dot{\omega}x^2 - 2\omega x\dot{x}$ было полным квадратом: $\dot{x}^2 - x^2 - \dot{\omega}x^2 - 2\omega x\dot{x} = (\dot{x} - \omega x)^2$, т.е. $-1 - \dot{\omega} = \omega^2$. (Тогда $\int_0^{T_0} \left(\dot{x}^2 - x^2\right) dt = \int_0^{T_0} (\dot{x} - \omega x)^2 dt \ge 0$.) Получаем, что $\omega = \operatorname{ctg}(t - t_*)$.

Задача

- 1) Пусть $T_0 > \pi$, $x(t) = c \sin \frac{\pi t}{T_0}$. Показать, что $\mathcal{L}(x) < 0$ при $c \neq 0$. Почему проведенные выше рассуждения не проходят при $T_0 > \pi$ и проходят при $T_0 < \pi$?
- проходят при $T_0 > \pi$ и проходят при $T_0 < \pi$? 2) Показать, что $\int_0^\pi \left(\dot{x}^2 x^2\right) dt = \int_0^\pi (\dot{x} x \cdot \operatorname{ctg} t)^2 dt \geqslant 0$.

Решение. 1) Вычисляем:

$$\int_0^{T_0} \left(\dot{x}^2 - x^2 \right) dt = c^2 \int_0^{T_0} \left(\frac{\pi^2}{T_0} \cos^2 \frac{\pi t}{T_0} - \sin^2 \frac{\pi t}{T_0} \right) dt =$$

$$= \frac{c^2}{2} \left(\frac{\pi^2}{T_0^2} \int_0^{T_0} \left(1 + \cos \frac{2\pi t}{T_0} \right) dt - \int_0^{T_0} \left(1 - \cos \frac{2\pi t}{T_0} \right) dt \right) = \frac{c^2 T_0}{2} \left(\frac{\pi^2}{T_0^2} - 1 \right) < 0.$$

Напомним, что мы подбирали гладкую функцию ω так, чтобы

$$\int_0^{T_0} (\dot{x}^2 - x^2) dt = \int_0^{T_0} (\dot{x} - \omega x)^2 dt$$

при этом ω была решением дифференциального уравнения $\dot{\omega} = -1 - \omega^2$. Значит, $\omega(t) = \text{ctg}(t-a)$.

Если $T_0 < \pi$, то можно подобрать a (в данном случае подойдет a=0) так, чтобы $\operatorname{ctg}(t-a)$ была гладкой на $[0,T_0]$. Если $T_0 > \pi$, то для любого a функция ω будет иметь точку разрыва в интервале $(0,T_0)$, т.к. ctg гладко определен на $(\pi n, \pi n + \pi)$ и имеет разрывы в точках πn .

2) Преобразуем правую часть условия:

$$0 \le \int_0^{\pi} (\dot{x} - x \cdot \operatorname{ctg} t)^2 dt = \int_0^{\pi} (\dot{x}^2 - 2x\dot{x}\operatorname{ctg} t + x^2\operatorname{ctg}^2 t) dt =$$

интегрируем среднее слагаемое по частям и используем $c\dot{t}g + ctg^2 = -1$:

$$= \int_0^{\pi} \left(\dot{x}^2 + x^2 (\operatorname{ctg} t)' + x^2 \operatorname{ctg}^2 t \right) dt + x^2(t) \operatorname{ctg} t \Big|_0^{\pi} = \int_0^{\pi} \left(\dot{x}^2 - x^2 \right) dt + x^2(t) \operatorname{ctg} t \Big|_0^{\pi}.$$

Так как $x \in C^1[0,\pi]$ и x(0)=0, то x(t)=O(t) в окрестности нуля; так как $\cot t=O(1/t)$ в окрестности нуля, то $x^2(t)\cot t=O(t) \underset{t\to 0}{\to} 0$. Аналогично $x^2(t)\cot t=O(\pi-t) \underset{t\to \pi}{\to} 0$. Значит, $x^2(t)\cot t\Big|_0^\pi=0$ и равенство доказано.

Задача 2. Доказать, что в задаче

$$\int_0^1 t^{1/2} \dot{x}^2 dt \to \inf, \quad x(0) = 0, \quad x(1) = 1$$

точки локального минимума в пространстве $C^1[0,1]$ не существует; найти точку глобального минимума для той же задачи в пространстве

$$W = \left\{ f \in AC[0,1] : \int_0^1 t^{1/2} \dot{x}^2 dt < \infty \right\}$$

Решение. Напишем уравнение Эйлера: $\frac{d}{dt}\left(2t^{1/2}\dot{x}\right)=0$, откуда $t^{1/2}\dot{x}=c$. Значит, $x=2ct^{1/2}+b$. Подставляя граничные условия, получаем $x=t^{1/2}\notin C^1[0,1]$.

Пусть $h \in W, h(0) = h(1) = 0$. Тогда

$$\int_0^1 t^{1/2} (\dot{x} + \dot{h})^2 dt - \int_0^1 t^{1/2} \dot{x}^2 dt = \int_0^1 t^{1/2} \left(2\dot{x}\dot{h} + \dot{h}^2 \right) dt = \int_0^1 t^{1/2} \left(t^{-1/2}\dot{h} + \dot{h}^2 \right) dt =$$

$$= \int_0^1 \dot{h} dt + \int_0^1 t^{1/2} \dot{h}^2 dt = \int_0^1 t^{1/2} \dot{h}^2 dt \geqslant 0.$$

Задача 3. Доказать, что в задаче

$$\int_0^1 (1 - \dot{x}^2)^2 dt \to \inf, \quad x(0) = 0, \quad x(1) = 0$$

точки локального минимума в пространстве $C^1[0,1]$ не существует, при этом точная нижняя грань функционала равна 0.

Решение. Заметим, что $\int_0^1 \left(1 - \dot{x}^2\right)^2 dt \geqslant 0$. Если $\int_0^1 \left(1 - \dot{x}^2\right)^2 dt = 0$, то $\dot{x}^2(t) \equiv 1$, откуда $\dot{x}(t) = \pm 1$ для любого t. Так как \dot{x} непрерывна, то $\dot{x} \equiv 1$ или $\dot{x} \equiv -1$. Получаем противоречие с граничными условиями. Значит, нулевое значение не достигается.

Теперь покажем, что для любого $\varepsilon > 0$ существует допустимая функция $x \in C^1[0,1]$ такая, что $\int_0^1 \left(1 - \dot{x}^2\right)^2 dt \leqslant \varepsilon$. Положим

$$z(t) = \begin{cases} 1, & 0 \leqslant t \leqslant \frac{1}{2} - \delta \\ \frac{1}{\delta} \left(\frac{1}{2} - t\right), & \frac{1}{2} - \delta \leqslant t \leqslant \frac{1}{2} + \delta, \\ -1, & \frac{1}{2} + \delta \leqslant t \leqslant 1 \end{cases}$$

 $x(t)=\int_0^t z(s)ds$. Тогда $x\in C^1[0,1], x(0)=x(1)=0$. При этом $|\dot{x}|\leqslant 1$. Значит,

$$\int_{0}^{1} (1 - \dot{x}^{2})^{2} dt = \int_{\frac{1}{2} - \delta}^{\frac{1}{2} + \delta} (1 - \dot{x}^{2})^{2} dt \leqslant 2\delta.$$

Значит, достаточно взять $\delta = \frac{\varepsilon}{2}$.

Задача 4. (задача о геодезических на плоскости Лобачевского.) Найти допустимые экстремали в задаче

$$\int_{t_0}^{t_1} \frac{\sqrt{1+\dot{x}^2}}{x} dt \to \text{extr}, x(t_0) = x_0, \quad x(t_1) = x_1, \quad x > 0$$

Решение. Имеем $L_{\dot{x}} = \frac{\dot{x}}{x\sqrt{1+\dot{x}^2}}, L_{\dot{x}\dot{x}} = \frac{1}{x(1+\dot{x}^2)^{3/2}} > 0$. Значит, $\hat{x} \in C^2[t_0,t_1]$ и $\dot{\hat{x}}(t)L_{\dot{x}}(\hat{x}(t),\dot{\hat{x}}(t)) - L(\hat{x}(t),\dot{\hat{x}}(t)) = \text{const.}$ Проверим, что допустимая экстремаль не может обращаться в константу ни на каком невырожденном интервале. Это видно из уравнения Эйлера:

$$-\frac{d}{dt}\frac{\dot{x}}{x\sqrt{1+\dot{x}^2}} - \frac{\sqrt{1+\dot{x}^2}}{x^2} = 0$$

(тогда бы получилось равенство $1/\hat{x}^2(t) \equiv 0$).

Из уравнения $\dot{x}L_{\dot{x}}-L=\mathrm{const}$ получаем

$$\dot{x} \cdot \frac{\dot{x}}{x\sqrt{1+\dot{x}^2}} - \frac{\sqrt{1+\dot{x}^2}}{x} = \text{ const.}$$

Значит, $\frac{1}{x\sqrt{1+\dot{x}^2}}=\mathrm{const.}$ Получаем $1+\dot{x}^2=\frac{c^2}{x^2}$, или $\dot{x}=\pm\sqrt{\frac{c^2}{x^2}-1}$. На промежутках, где $\dot{x}\neq 0$, решаем это дифференциальное уравнение и получаем

$$t - a = \pm \int \frac{dx}{\sqrt{\frac{c^2}{x^2} - 1}} = \pm \frac{1}{2} \int \frac{dx^2}{\sqrt{c^2 - x^2}} = \pm \sqrt{c^2 - x^2}$$

Возводим в квадрат и получаем $x^2 + (t-a)^2 = c^2$. Это уравнение окружности с центром на горизонтальной оси. Если в какой-то точке \dot{x} обращается в 0, то условия теоремы единственности нарушаются, но всё равно экстремаль задается уравнением окружности (склеивается из двух дуг окружностей; в силу гладкости обе дуги принадлежат одной и той же окружности; горизонтальных "вставок"быть не может, т.к. экстремаль не равна константе на интервалах).

Итак, геодезические - дуги окружности с центром на горизонтальной оси.

Утверждается, что найденная допустимая экстремаль будет точкой глобального минимума. В самом деле, $L_{\dot{x}\dot{x}}>0$ при x>0, так что L выпукла по \dot{x} .

Задача 5. Найти допустимые экстремали в задаче

$$\int_{t_0}^{t_1} \frac{\sqrt{1+\dot{x}^2}}{\sqrt{x}} dt \to \max, \quad x(t_0) = x_0, \quad x(t_1) = x_1, \quad x > 0$$

Решение. L явно не зависит от t. Если \hat{x} - экстремаль, $\hat{x} \in C^2$, то

$$\dot{x}L_{\dot{x}} - L = const$$

Так как $L\in C^2$, достаточно доказать, что $L_{\dot x\dot x}\neq 0$ $L_{\dot x\dot x}=\frac{1}{\sqrt{x}(1+\dot x^2)^{3/2}}$ $\hat x\in C^2, L\in C^2$ удовлетворяют $\dot xL_{\dot x}=const$

$$L_{\dot{x}\dot{x}} = \frac{1}{\sqrt{x}(1+\dot{x}^2)^{3/2}}$$

 \hat{x} не равна константе ни на каком интервале $\Longrightarrow \hat{x}$ удовлетворяет уравнению Эйлера

$$-\frac{d}{dt}\frac{\dot{x}}{\sqrt{x}\sqrt{1+\dot{x}^2}} + \frac{1}{2}x^{-3/2}\sqrt{1+\dot{x}^2} = 0$$

x=0 на интервато $-\frac{d}{dt}\frac{\dot{x}}{\sqrt{x}\sqrt{1+\dot{x}^2}}+\frac{1}{2}x^{-3/2}\sqrt{1+\dot{x}^2}=0$ Первое слагаемое ноль, второе - ненулевая константа. Противоречие.

$$\dot{x}L_{\dot{x}} - L = const$$

$$\dot{x}\frac{\dot{x}}{\sqrt{x}\sqrt{1+\dot{x}^2}} - \frac{\sqrt{1+\dot{x}^2}}{\sqrt{x}} = const$$

$$x(1+\dot{x}^2) = const$$

$$\dot{x}^2 = \frac{c}{x} - 1$$

$$\dot{x} = \pm \sqrt{\frac{c}{x}} - 1$$

$$x = c\sin^2\frac{\tau}{2} = \frac{c}{2}(1 - \cos\tau)$$

$$t + a = \pm \int \frac{dx}{\sqrt{\frac{c}{x}} - 1} = \pm \int \frac{2c\sin\frac{\tau}{2}\cos\frac{\tau}{2}d\tau}{\sqrt{\frac{1}{\sin^2\frac{\tau}{2}} - 1}} = \pm c \int \sin\frac{\tau}{2}\cos\frac{\tau}{2}\left|\tan\frac{\tau}{2}\right|d\tau$$

$$c \int \sin^2\frac{\tau}{2}d\tau = \frac{c}{2}\int (1 - \cos\tau)d\tau = \frac{c}{2}(\tau - \sin\tau)$$

Задача 6. Найти допустимые экстремали в задаче

$$\int_{-T_0}^{T_0} x\sqrt{1+\dot{x}} \, dt \to extr, \, x(-T_0) = x(T_0) = \xi, \, x > 0$$

В зависимости от $\xi > 0$ установить, сколько может быть допустимых экстремалей.

Репление

$$L_{\dot{x}} = \frac{x\dot{x}}{\sqrt{1+\dot{x}^2}}$$

$$L_{\dot{x}\dot{x}} = \left(\frac{x}{(1+\dot{x}^2)}\right)^{3/2} > 0,$$

Решение уравнения Эйлера $\hat{x} \in C^2[-T_0, T_0]$ и $\hat{x}(t)\dot{L_x}(\hat{x}(t), \dot{\hat{x}}(t)) - L(\hat{x}(t), \dot{\hat{x}}(t)) = const.$

Проверим, что допустимая экстремаль не может обращаться в константу ни на каком невырожденном отрезке. Это видно из уравнения Эйлера:

$$-\frac{d}{dt}\frac{x\dot{x}}{\sqrt{1+\dot{x}^2}} + \sqrt{1+\dot{x}^2} = 0$$

Решений нет.

Из уравнения $\dot{x}L_{\dot{x}}-L=const$ получаем:

$$\dot{x}\frac{x\dot{x}}{\sqrt{1+\dot{x}^2}} - x\sqrt{1+\dot{x}^2} = const$$

$$\frac{x}{\sqrt{1+\dot{x}^2}} = const = C \Rightarrow 1+\dot{x}^2 = \frac{x^2}{C^2} \Rightarrow \dot{x} = \pm\sqrt{\frac{x^2}{C^2} - 1} \Rightarrow dt = \pm\frac{dx}{\sqrt{\frac{x^2}{C^2} - 1}}$$

$$t+a = \pm\int\frac{1}{\sqrt{\frac{x^2}{C^2} - 1}} dx = |x = Cch(\tau)| = \pm\int\frac{Csh(\tau)}{|sh(\tau)|} d\tau$$

$$t+a = \pm C\tau \Rightarrow \frac{t+a}{C} = \pm\tau \Rightarrow ch\left(\frac{t+a}{C}\right) = ch(\tau) = \frac{x}{C} \Rightarrow x = Cch\left(\frac{t+a}{C}\right)$$

$$x(-T_0) = x(T_0) \Rightarrow x = Cch\left(\frac{t}{C}\right)$$

C — решение уравнения $Cch\left(\frac{T_0}{C}\right)=\xi$. Пусть $b=\frac{1}{C}$, тогда $ch(T_0b)=\xi b$. $ch(T_0b)$ — выпуклая вниз функция, а ξb — линейная \Rightarrow может быть 0, 1 или 2 решениия.

$$\xi_* > 0$$
 — случай касания.

$$\xi > \xi_*$$
 — два решения.

$$\xi < \xi_*$$
 — нет решений.

 $ch(T_0b) = \xi_*b, T_0sh(T_0b) = \xi_*.$ Исключаем $\xi_*.$

$$ch(T_0b) = T_0bsh(T_0b)$$

Отсюда находим b, а потом ξ_* .

Задача 7. 1. Пусть $F: \mathbb{R}^2 \to \mathbb{R}$ задано равенством $F(x_1, x_2) = \sqrt[3]{x_1^2 x_2}$. Показать, что F имеет вариацию по Лагранжу, но не дифференцируемо по Гато в нуле. **2.** Пусть X — бесконечномерное нормированное пространство, $F: X \to \mathbb{R}$ — линейный неограниченный функционал. Показать, что F имеет вариацию по Лагранжу в нуле, но не дифференцируемо по Гато.

Решение. 1) Пусть
$$h=(h_1,h_2)$$
. Тогда $F\left(th_1,th_2\right)=\sqrt[3]{\left(th_1\right)^2th_2}=t\sqrt[3]{h_1^2h_2}$. Значит,

$$\frac{F(th_1, th_2) - F(0, 0)}{t} = \sqrt[3]{h_1^2 h_2}, \quad F'(0, 0) [(h_1, h_2)] = \sqrt[3]{h_1^2 h_2}$$

легко видеть, что это отображение нелинейно.

2) Если функционал F линеен, то F(th) - F(0) = tF(h); значит, F'(0)[h] = F(h). Это отображение линейно, но разрывно.

Задача 8. Пусть $M=\left\{(x_1,x_2)\in\mathbb{R}^2:x_1>0,x_2=x_1^2\right\},f:\mathbb{R}^2\to\mathbb{R},$

$$f(x_1, x_2) = \begin{cases} 1, & (x_1, x_2) \in M \\ 0, & (x_1, x_2) \notin M \end{cases}$$

Показать, что f дифференцируемо по Гато, но не дифференцируемо по Фреше в т. (0,0).

Решение. Вычислим вариацию по Лагранжу в нуле. Пусть $h \in \mathbb{R}^2$. Заметим, что прямая $\{th: t \in \mathbb{R}\}$ пересекается с множеством M не более, чем в одной точке. Значит, при малых t выполнено $th \notin M, F(th) - F(0) = 0$. Поэтому F'(0)[h] = 0. Это линейный непрерывный функционал. Значит, F дифференцируемо по Гато в 0. При этом F в нуле разрывно и, следовательно, не дифференцируемо по Фреше.

Задача 9. Построить пример отображений $F: \mathbb{R} \to \mathbb{R}^2, G: \mathbb{R}^2 \to \mathbb{R}$ таких, что F дифференцируемо по Фреше в т. 0, G дифференцируемо по Гато в т. (0,0), F(0)=(0,0), при этом $G\circ F$ не имеет вариации по Лагранжу в т. 0.

Решение.

$$F: \mathbb{R} \to \mathbb{R}^2, \quad x \to (x, x^2)$$
$$G: \mathbb{R}^2 \to \mathbb{R}, (x_1, x_2) \to \begin{cases} 1, (x_1, x_2) \in M \\ 0, (x_1, x_2) \notin M \end{cases}$$

Где $M = \{(x_1, x_2) | x_2 = x_1, x_1 > 0\}$, уже знаем что G дифференцируемо по Гато в т. (0,0) (но не по Фреше). Покажем, что F дифференцируемо по Фреше в т. 0.

$$\lim_{\lambda \to 0} \frac{F(\lambda h) - F(0)}{\lambda} = \lim_{\lambda \to 0} \frac{(\lambda h, \lambda^2 h^2) - (0, 0)}{\lambda} = (h, 0) = F'(0)[h]$$

$$F(\lambda h) = (\lambda h, \lambda^2 h^2) = (0, 0) + (h, 0) + ((\lambda - 1)h, \lambda^2 h^2)$$

Последнее слагаемое это $\bar{o}(\|h\|)$.

 \Rightarrow F дифференцируемо по Фреше в 0. $G \circ F : \mathbb{R} \to \mathbb{R}$:

$$x \to \begin{cases} 1, x \neq 0 \\ 0, x = 0 \end{cases}$$

$$\lim_{\lambda \to 0} = \frac{G \circ F(\lambda h) - G \circ F(0)}{\lambda} = \lim_{\lambda \to 0} \left(\frac{1}{\lambda}\right)$$

⇒ нет вариации по Лагранжу.

Задача 10. Привести пример функции $f: \mathbb{R} \to \mathbb{R}$, всюду дифференцируемой по Фреше, но не строго дифференцируемой в нуле.

Доказательство: Рассмотрим функцию f:

$$f(x) = \begin{cases} 0, & x = 0\\ x^2 \sin\left(\frac{1}{x}\right), & x \neq 0 \end{cases}$$

f дифференцируема по Фреше в $x \neq 0$ (по правилу Лейбница):

$$(x+h)^2 = x^2 + 2xh + \bar{o}(|h|)$$

$$\sin\frac{1}{x+h} = \sin\frac{1}{x} + \frac{-1}{x^2}\cos\frac{1}{x}h + \bar{o}(|h|)$$

 $|f(x)| \le x^2 \implies f'(0) = 0$ и $f(x) - f(0) = f(x) = \bar{o}(|x|), |x| \to 0$ то есть f диф. по Фреше в 0, тогда и на всем $\mathbb R$ Предположим противное: f строго дифференцируемо в 0.

По определению, для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что для любых $x_1, x_2 \in O_\delta(x_0)$ выполнено

$$\begin{split} &|f\left(x_{1}\right)-f\left(x_{2}\right)-A\left(x_{1}-x_{2}\right)|\leq\varepsilon|x_{1}-x_{2}|\\ &f'(0)=0\implies|f\left(x_{1}\right)-f\left(x_{2}\right)|\leq\varepsilon|x_{1}-x_{2}|\leq2\varepsilon\delta\\ &x\neq0:f'(x)=2x\sin\frac{1}{x}+x^{2}\cos\frac{1}{x}\left(-1\cdot\frac{1}{x^{2}}\right)=2x\sin\left(\frac{1}{x}\right)-\cos\frac{1}{x}\nrightarrow0,x\rightarrow0\\ &\text{потому что }\lim_{x\to0}x\sin\frac{1}{x}=0\text{ и }\lim_{x\to0}\cos\frac{1}{x}\text{ не существует.}\\ &\text{Тогда }\exists\xi_{n}\to0\quad|f'\left(\xi_{n}\right)|\geqslant c>0\\ &f\left(\xi_{n}+h_{n}\right)-f\left(\xi_{n}\right)=f'\left(\xi_{n}\right)h_{n}+\bar{o}\left(h_{n}\right)\text{ (по опр. диф. по Фреше)}\\ &h_{n}\longrightarrow0:\\ &|f\left(\xi_{n}+h_{n}\right)-f\left(\xi_{n}\right)|\geqslant C\left|h_{n}\right| \end{split}$$

Получили противоречие. f не является строго дифференцируемой в нуле.

Задача 11. 1) Если $F: X \to \mathbb{R}$, то существует $x \in [x_0, x_1]$ такое, что $F(x_1) - F(x_0) = F'(x)[x_1 - x_0].2$) Если $F: X \to Y$, $\dim Y > 1$, то утверждение из п. 1 может быть неверным.

Решение. 1) Положим $\varphi(t) = F((1-t)x_0 + tx_1)$. Тогда $\varphi'(t) = F'((1-t)x_0 + tx_1)[x_1 - x_0]$. По теореме Лагранжа, существует $\tau \in (0,1)$ такое, что $\varphi(1) - \varphi(0) = \varphi'(\tau)$. Значит,

$$F(x_1) - F(x_0) = \varphi(1) - \varphi(0) = \varphi'(\tau) = F'((1 - \tau)x_0 + \tau x_1)[x_1 - x_0].$$

2) Пусть $F: \mathbb{R} \to \mathbb{R}^2, F(t) = (\cos t, \sin t)$. Тогда $F(2\pi) - F(0) = (0,0), F'(t) = (-\sin t, \cos t)$; значит, если $F(2\pi) - F(0) = 2\pi F'(t)$ для некоторого t, то $(0,0) = 2\pi (-\sin t, \cos t)$ - противоречие.

Задача 12. Показать, что если отображение F строго дифференцируемо в нуле и дифференцируемо по Гато в окрестности 0, то производная по Гато $F_G(x): h \mapsto F_G(x)[h]$ непрерывна в 0.

Решение

Если F строго дифференцируемо в 0 , т.е.

$$||F(x) - F(y) - F'(0)(x - y)|| \le \varepsilon ||x - y|| \implies ||F(x) - F(y) - F'_G(0)(x - y)|| \le \varepsilon ||x - y||$$

при $||x|| \le \delta(\varepsilon)$ и $||y|| \le \delta(\varepsilon)$, то константа Липшица отображения $x \mapsto F(x) - F'(0)[x]$, обозначенная здесь через ε стремится к 0 в дельта-окрестности 0 при дельта стремящемся к 0 .

Поскольку отображение $\Phi: h \mapsto (F'_G(x) - F'_G(0))[h]$ липшицево с константой эпсилон в окрестности 0, то в каждой точке этой окрестности норма производной Φ не больше эпсилон. Поэтому приходим к заключению: $\|F'_G(x) - F'_G(0)\|$ не больше эпсилон, если x в маленькой окрестности нуля. Требуемая непрерывность установлена.

Задача 13. Пусть $T:L^2(0,1)\to L^2(0,1), Tx(t)=\sin x(t)$. Показать, что T дифференцируемо по Гато в каждой гочке, но нигде не дифференцируемо по Фреше. **Решение.**

1. Дифференцируемость по Гато.

Сначала зафиксируем вектор $h \in L^2(0,1)$. Нусть $\lambda \in \mathbb{R}$. Для любого t

$$\lim_{\lambda \to 0} \frac{\sin[x(t) + \lambda h(t)] - \sin x(t)}{\lambda} \stackrel{(\sin x)' = \cos x}{=} \cos x(t) \cdot h(t).$$

Таким же будет предел в $L^2(0,1)$, т.е.

$$\lim_{\lambda \to 0} \int_0^1 \left(\frac{\sin[x(t) + \lambda h(t)] - \sin x(t)}{\lambda} - \cos x h(t) \right)^2 dt = 0,$$

поскольку поточечная сходимость есть, а подинтегральная функция мажорируется функцией из L^1 ,

$$\left|\frac{\sin[x(t)+\lambda h(t)]-\sin x(t)}{\lambda}\right| \leq |h(t)|.$$

2. Однако нет дифференцируемости по Фреше.

Следуя указанию А.А. Васильевой, рассмотрим два случая.

А) Если $\mu\{t: |\cos x(t)| \neq 0\} > 0$, то существует $\varepsilon > 0$ и $E = \{t: |\cos x(t)| \geq \varepsilon\} > 0$. Пусть $E_n \subset E$, что $\mu E_n \to 0$ при $n \to \infty$. Возьмем $h_n = 2\pi \cdot 1_{E_n}$. Тогда $\sin (x(t) + h_n(t)) - \sin x(t) \equiv 0$. Поэтому

$$\frac{\|\cos x(\cdot)h_n(\cdot)\|_{L^2}}{\|h_n(\cdot)\|_{L^2}} \ge \frac{\varepsilon (\mu E_n)^{1/2}}{(\mu E_n)^{1/2}} = \varepsilon.$$

В). Если $\mu\{t:|\cos x(t)|\neq 0\}>0$, то возьмем $h_n=\pi\cdot 2\cdot 1_{E_n}$. Далее аналогично. Получается, что T не дифференцируемо и по Фреше.

Задача 14. Пусть $A: l_2 \to l_2$,

$$A(x_1, x_2, \dots, x_n, \dots) = (x_1, x_2/2, \dots, x_n/n, \dots),$$

 $(y_1,\ldots,y_n,\ldots)\in l_2\backslash\operatorname{Im} A$ (почему такая точка существует?). Рассмотрим задачу

$$\sum_{n=1}^{\infty} y_n x_n \to \inf, \quad A(x_1, x_2, \dots, x_n, \dots) = 0.$$

Какая точка будет точкой минимума в этой задаче? Показать, что для этой задачи принцип Лагранжа неверен. Какое из условий теоремы о необходимом условии локального минимума здесь не выполнено?

Решение.

- 1) В качестве точки y можно взять последовательность $(1,1/2,\ldots,1/n,\ldots)\in l_2$. Если Ax=y, то $x_n=1$ для любого $n\in\mathbb{N}$, но $(1,\ldots,1,\ldots)\notin l_2$.
- 2) Если $A(x_1, x_2, \dots, x_n, \dots) = 0$, то $\frac{x_n}{n} = 0$ для любого n. Значит, x = 0-единственная допустимая точка, она же и будет точкой минимума.
- 3) Пусть $f_0(x) = \sum_{n=1}^{\infty} y_n x_n, F(x) = A(x)$. Тогда $f_0'(x)[h] = \sum_{n=1}^{\infty} y_n h_n, F'(x)[h] = A'(h) = (h_1, h_2/2, \dots, h_n/n, \dots)$. Если z^* линейный непрерывный функционал на l_2 , то существует вектор $z = (z_1, \dots, z_n, \dots) \in l_2$ такой, что $z^*(x) = \sum_{n=1}^{\infty} z_n x_n$.

Таким образом, если принцип Лагранжа выполнен, то существуют $\lambda_0 \in \mathbb{R}$ и $z \in l_2$, одновременно не равные нулю, такие, что для любого $h \in l_2$ выполнено

$$\lambda_0 \sum_{n=1}^{\infty} y_n h_n + \sum_{n=1}^{\infty} z_n \frac{h_n}{n} = 0.$$

Значит, $\lambda_0 y_n + \frac{z_n}{n} = 0, n \in \mathbb{N}$. Если $\lambda_0 \neq 0$, то $y_n = -\frac{z_n}{\lambda_0 n}$, то есть $y = A\left(-z/\lambda_0\right)$. Но $y \notin \operatorname{Im} A$ - противоречие. Если $\lambda_0 = 0$, то $\frac{z_n}{n} = 0$ для любого n, поэтому z = 0. Получили, что оба множителя Лагранжа нулевые.

4) Пространства $X = Y = l_2$ банаховы, f_0 и F непрерывно дифференцируемы (это линейные непрерывные отображения). Но $\operatorname{Im} F'(0) = \operatorname{Im} A$ незамкнут (он всюду плотен в l_2 , но не совпадает с l_2).

Задача 15. Привести пример гладких функций $f_0: \mathbb{R} \to \mathbb{R}, f_1: \mathbb{R} \to \mathbb{R}$ таких, что в задаче $f_0(x) \to \min, f_1(x) = 0$ будет существовать точка локального минимума и в принципе Лагранжа будет $\lambda_0 = 0$ (а с $\lambda_0 \neq 0$ принцип Лагранжа не выполнен).

Решение. Рассмотрим задачу

$$x \to \inf, \quad x^2 = 0$$

Единственная допустимая точка $-\hat{x}=0$. Значит, она и будет точкой минимума. Запишем функцию Лагранжа: $\mathcal{L}=\lambda_0 x+\lambda_1 x^2$. Приравнивая ее производную в \hat{x} к нулю, получаем $\lambda_0=0$.

Задача 16. Пусть $\hat{x} \in M$ - точка локального минимума в задаче

$$\begin{cases} f_0(x) \to \inf \\ x \in M \end{cases}$$

функция f_0 дифференцируема по Гато в точке \hat{x} .

Верно ли, что тогда $f_0'(\hat{x})[h] = 0$ для любого $h \in T_{\hat{x}}M$?

Ответ: нет, неверно.

Пример: Пусть $M = \left\{ (x,y) : y = x^2 \right\}$ (т.е. парабола на плоскости),

$$f_0(x,y) = egin{cases} 0, & ext{ если } y = x^2 \ x, & ext{ иначе.} \end{cases}$$

Тогда $f_0=0$ на M, поэтому (0,0) - точка минимума f_0 на M. При $f_0(th,tg)=th$ при малых t (если $t<\frac{g}{h}$, то $t^2h^2< tg$), поэтому $f_0'(0,0)[(h,g)]=h$.

Касательный вектор в (0,0) к параболе M имеет вид (h,0), так что на нем производная равна $h \neq 0$.

Задача 17. Пусть l > 0. Доказать, что допустимые экстремали в задаче

$$\int_0^1 (y\dot{x} - x\dot{y})dt \to \max, \quad \int_0^1 \sqrt{\dot{x}^2 + \dot{y}^2}dt = l, \quad x(0) = x(1) = y(0) = y(1) = 0, \quad \dot{x}^2 + \dot{y}^2 > 0$$

являются параметризацией окружности.

Решение. Функция Лагранжа имеет вид

$$\int_0^1 \left(\lambda_0 (-y\dot{x} + x\dot{y}) + \lambda_1 \sqrt{\dot{x}^2 + \dot{y}^2} \right) dt$$

Значит, уравнения Эйлера имеют вид

$$-\frac{d}{dt}\left(\lambda_1 \frac{\dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} - \lambda_0 y\right) + \lambda_0 \dot{y} = 0,$$
$$-\frac{d}{dt}\left(\lambda_1 \frac{\dot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2}} + \lambda_0 x\right) - \lambda_0 \dot{x} = 0.$$

Если $\lambda_1=0$, то $\lambda_0\dot{y}=0, \lambda_0\dot{x}=0$. Так как $\lambda_0\neq 0$, то $\dot{y}=0, \dot{x}=0$, что противоречит условию $\dot{x}^2+\dot{y}^2>0$. Пусть $\lambda_1\neq 0$. Можно считать, что $\lambda_1=2$. Тогда

$$-\frac{d}{dt}\frac{\dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} + \lambda_0 \dot{y} = 0$$
$$-\frac{d}{dt}\frac{\dot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2}} - \lambda_0 \dot{x} = 0$$

откуда

$$\frac{\dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2}} = \lambda_0 y + a, \quad \frac{\dot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2}} = -\lambda_0 x + b$$

Возведем обе части равенств в квадрат и получим

$$1 = (-\lambda_0 y + a)^2 + (\lambda_0 x + b)^2$$

Заметим, что $\lambda_0 \neq 0$, иначе $\frac{dy}{dx} = \text{const}$ или $\frac{dx}{dy} = \text{const}$, при этом (\dot{x}, \dot{y}) нигде не обращается в (0,0). Тогда будет движение по отрезку всё время в одном направлении, что противоречит граничным условиям. А если $\lambda_0 \neq 0$, то (3) - уравнение окружности.

Задача 18. Привести пример такой задачи выпуклого программирования, что допустимая \hat{x} — не есть точка минимума, но существует ненулевой набор $(\lambda_0, \dots, \lambda_m)$, удовлетворяющий условиям a)-c) теоремы Куна-Таккера.

Теорема 1. (Каруш - Кун - Таккер). Пусть X — линейное пространство, $f_0, \ldots, f_m : X \to \mathbb{R} \cup \{+\infty\}$ — выпуклые функии.

1. (необходимое условие). Пусть \hat{x} - точка минимума в задаче: $\left\{ \begin{array}{l} f_0(x) \to \inf \\ f_j(x) \leq 0, \quad 1 \leq j \leq m \end{array} \right.$

Тогда существует ненулевой набор чисел $\lambda_0, \lambda_1, \ldots, \lambda_m$ со следующими свойствами:

- (a) $\lambda_j \geq 0, 0 \leq j \leq m$ (условие неотрицательности);
- $(b)\ \lambda_j f_j(\hat{x}) = 0, 1 \leq j \leq m$ (условие дополняющей нежесткости);
- (c) \hat{x} является точкой минимума функции $\mathcal{L}(x):=\sum_{j=0}^m \lambda_j f_j(x)$ (условие минимума).
- 2. (достаточное условие). Пусть $\hat{x}-$ допустимая точка. Пусть существует набор чисел $\lambda_0, \lambda_1, \ldots, \lambda_m$ со свойствами a)-c), при этом $\lambda_0 > 0$. Тогда $\hat{x}-$ точка минимума в рассматриваемой задаче.
- 3. Пусть существует точка $\bar{x} \in X$ такая, что $f_j(\bar{x}) < 0, 1 \le j \le m$ (условие Слейтера). Тогда, если $\lambda_0, \lambda_1, \ldots, \lambda_m$ ненулевой набор чисел со свойствами a)-c), то $\lambda_0 > 0$.

Пример. Если \hat{x} - решение задачи на минимум $f_0(x)$ при условии $f_1(\hat{x})=0, f_2(\hat{x})=0,$ где функционалы выпуклы, то для функции Лагранжа $\mathcal{L}(x)=\sum_{j\geq 0}\lambda_j f_j(x)$ справедливы условия

- а) минимум функции Лагранжа достигается на решении;
- b) $\lambda_j f_j(\hat{x}) = 0, j \ge 1;$
- c) $\lambda_i \geq 0, j \geq 0$.

Пусть $x=(x_1,x_2)\in\mathbb{R}^2$, $f_1(x)=x_1$, $f_2(x)=x_2$, а $f_0(x)=x_1^2+(x_2-1)^2$. Тогда для функции Лагранжа $\mathcal{L}(x)=f_1(x)+f_2(x)$ имеем: точка $\hat{x}=(0,0)$ - допустимая, условия а)-с) выполнены, но минимум $f_0(x)$ достигается в точке (0,1).

Задача 19. (распределение с максимальной энтропией; см. тему про достаточное условие глобального минимума в задаче с равенствами и неравенствами). Пусть $\rho:[0,+\infty)\to (0,+\infty), \int_0^\infty \rho(x)dx=1$ (функция ρ имеет смысл плотности распределения). Энтропией называется величина $S=-\int_0^\infty \rho(x)\ln\rho(x)dx$. Найти функцию ρ , для которой энтропия максимальна при заданном среднем (т.е. задано ограничение $\int_0^\infty x \rho(x)dx=C_1$).

Решение. Напишем задачу на экстремум:

$$\int_0^\infty \rho(x) \ln \rho(x) dx \to \inf, \quad \int_0^\infty \rho(x) dx = 1, \quad \int_0^\infty x \rho(x) dx = C_1$$

Составим функцию Лагранжа с $\lambda_0 = 1$:

$$\mathcal{L} = \int_0^\infty \rho(x) \ln \rho(x) dx + \lambda_1 \int_0^\infty \rho(x) dx + \lambda_2 \int_0^\infty x \rho(x) dx =$$
$$= \int_0^\infty (\rho(x) \ln \rho(x) + \lambda_1 \rho(x) + \lambda_2 x \rho(x)) dx.$$

Найдем минимум у функции \mathcal{L} . Для этого при каждом фиксированном $x \in [0, \infty)$ найдем точку минимума у $f(v) = v \ln v + \lambda_1 v + \lambda_2 x v$. Вычислим производную: $f'(v) = \ln v + 1 + \lambda_1 + \lambda_2 x$. Эта функция строго возрастает по v; f'(v) = 0 в точке $\hat{\rho}(x) = e^{-1-\lambda_1-\lambda_2 x}$. Значит, $\hat{\rho}(x) = e^{-1-\lambda_1-\lambda_2 x}$ является точкой минимума $v \ln v + \lambda_1 v + \lambda_2 x v$. Из условий $\int_0^\infty e^{-1-\lambda_1-\lambda_2 x} dx = 1$ и $\int_0^\infty x e^{-1-\lambda_1-\lambda_2 x} dx = C_1$ находим λ_1 и λ_2 :

$$e^{\lambda_1+1} = \frac{1}{\lambda_2}, \quad C_1 e^{\lambda_1+1} = \frac{1}{\lambda_2^2}$$

Докажем, что найденная функция будет точкой минимума в задаче. В самом деле, пусть $\rho(x)$ - допустимая функция. Тогда для любого $x \in [0, \infty)$ получаем

$$\rho(x)\ln\rho(x) + \lambda_1\rho(x) + \lambda_2x\rho(x) \ge \hat{\rho}(x)\ln\hat{\rho}(x) + \lambda_1\hat{\rho}(x) + \lambda_2x\hat{\rho}(x).$$

Интегрируем это неравенство и получаем $\mathcal{L}(\rho) \geq \mathcal{L}(\hat{\rho})$, т.е.

$$\int_0^\infty \rho(x) \ln \rho(x) dx + \lambda_1 \int_0^\infty \rho(x) dx + \lambda_2 \int_0^\infty x \rho(x) dx \ge$$

$$\ge \int_0^\infty \hat{\rho}(x) \ln \hat{\rho}(x) dx + \lambda_1 \int_0^\infty \hat{\rho}(x) dx + \lambda_2 \int_0^\infty x \hat{\rho}(x) dx.$$

Воспользуемся ограничениями в задаче и получим, что $\int_0^\infty \rho(x) \ln \rho(x) dx \ge \int_0^\infty \hat{\rho}(x) \ln \hat{\rho}(x) dx$. Теперь докажем, что других точек минимума в задаче нет. Пусть ρ_1 и ρ_2 - две разные точки минимума. Обозначим минимальное значение через m; тогда $\int_0^\infty \rho_1(x) \ln \rho_1(x) dx = \int_0^\infty \rho_2(x) \ln \rho_2(x) dx = m$. Функции ρ_1 и ρ_2 различаются на множестве положительной меры. Заметим, что функция $\rho = (\rho_1 + \rho_2)/2$ также является допустимой. Покажем, что $\int_0^\infty \rho(x) \ln \rho(x) dx < m$ $\int_0^\infty \rho(x) \ln \rho(x) dx < m.$

В самом деле, функция $\varphi(v)=v\ln v$ строго выпукла, т.е. для любых $u\neq w, \lambda\in(0,1)$ выполнено $\varphi((1-\lambda)u+\lambda w)<$ $(1-\lambda)\varphi(u)+\lambda\varphi(w)$. Это верно, так как $\varphi''(v)>0$ для любого v>0.

Значит, на множестве положительной меры

$$\frac{\rho_1(x) + \rho_2(x)}{2} \ln \left(\frac{\rho_1(x) + \rho_2(x)}{2} \right) < \frac{1}{2} \rho_1(x) \ln \rho_1(x) + \frac{1}{2} \rho_2(x) \ln \rho_2(x),$$

поэтому

$$\int_{0}^{\infty} \rho(x) \ln \rho(x) dx < \frac{1}{2} \int_{0}^{\infty} \rho_{1}(x) \ln \rho_{1}(x) dx + \frac{1}{2} \int_{0}^{\infty} \rho_{2}(x) \ln \rho_{2}(x) dx = m.$$

Задача 20. (аэродинамическая задача Ньютона). Найти допустимые экстремали в задаче

$$\begin{cases} \int_0^{T_0} \frac{t}{1+u^2} dt \to \inf \\ x(0) = 0, x(T_0) = \xi \\ \dot{x} = u \\ u \ge 0 \end{cases}$$

здесь $T_0 > 0, \xi > 0$ - заданные параметры. (Ответ для $\hat{x}(t)$ записывается в параметрическом виде: x = x(v), t = t(v).) Доказать, что допустимая экстремаль существует и единственна, и что она будет точкой глобального минимума в данной задаче.

Решение.

Составим функцию Лагранжа:

$$\mathcal{L} = \lambda_0 \int_0^{T_0} \frac{t}{1 + u^2} dt + \int_0^{T_0} p(t)(\dot{x} - u) dt + \lambda_1 x(0) + \lambda_2 (x(T_0) - \xi).$$

Необходимые условия локального минимума имеют вид $\lambda_0 \geq 0$ (условие неотрицательности), $\dot{p} = 0$ (уравнение Эйлера), $p(0) = \lambda_1$, $p(T_0) = -\lambda_2$ (условие трансверсальности),

$$\min_{v \ge 0} \left(\frac{\lambda_0 t}{1 + v^2} - p(t)v \right) = \frac{\lambda_0 t}{1 + \hat{u}(t)^2} - p(t)\hat{u}(t)$$

(принцип максимума Понтрягина).

Из уравнения Әйлера получаем, что p(t)=c. Пусть $\lambda_0=0$. Тогда $\min_{v\geq 0}(-cv)=-c\hat{u}(t)$. Если c=0, то $p(t)\equiv 0$; из условия трансверсальности следует, что $\lambda_1=\lambda_2=0$, то есть все множители Лагранжа нулевые. Если c>0, то у функции -cv на $[0,+\infty)$ точки минимума нет. Если c<0, то $\hat{u}(t)\equiv 0$. В силу граничного условия в нуле, $\hat{x}(t)\equiv 0$, что прогиворечиг с условием $x(T_0)=\xi>0$.

Пусть $\lambda_0 > 0$. Без ограничения общности можно взять $\lambda_0 = 1$. Также обозначим q = -c. Получаем

$$\min_{v \ge 0} \left(\frac{t}{1 + v^2} + qv \right) = \frac{t}{1 + \hat{u}(t)^2} + q\hat{u}(t).$$

Для фиксированного $t\in [0,T_0]$ положим $f(v)=\frac{t}{1+v^2}+qv$. Если $q\leq 0$, то минимум функции f не достигается, так как она строго убывает. Значит, остается случай q>0. Найдем участки монотонности функции f на \mathbb{R}_+ . Имеем: $f'(v)=-\frac{2tv}{(1+v^2)^2}+q$. Условие f'(v)=0 эквивалентно уравнению

$$q(1+v^2)^2 - 2tv = 0. (1)$$

В левой части стоит строго выпуклая функция, поэтому у нее количество нулей не больше 2. Также заметим, что максимальный корень строго возрастает по t. В самом деле, если $t_1 < t_2$, $q \left(1 + u_1^2\right)^2 - 2t_1u_1 = 0$, то $q \left(1 + u_1^2\right)^2 - 2t_2u_1 < 0$. Кроме того, максимальный корень стремится к $+\infty$ при $t \to +\infty$.

Игак, либо f строго возрастает (тогда 0 гочка минимума), либо сначала возрастает, погом убывает и затем снова возрастает. Во втором случае минимум либо при v=0, либо в точке u_* , являющейся максимальным корнем уравнения (??). Сравним значения f(0) и $f(u_*)$. Запишем неравенство $f(0) \leq f(u_*)$, получим $\frac{tu_*}{1+u_*^2} \leq q$; подставим из (??) $t=\frac{q(1+u_*^2)^2}{2u_*}$ и получим после вычислений $u_*\leq 1$. Итак, если f строго возрастает или $u_*<1$, то минимум достигается в 0; если $u_*>1$, то минимум достигается в

Итак, если f строго возрастает или $u_* < 1$, то минимум достигается в 0; если $u_* > 1$, то минимум достигается в u_* . Заметим, что $u_* = 1$ при t = 2q. Так как u_* строго возрастает по t, то при t < 2q минимум функции f достигается в 0, а при t > 2q в u_* . Итак,

$$\hat{u}(t) = \begin{cases} 0, & t < 2q, \\ u_*(t), & t > 2q \end{cases}$$

В силу условия x(0)=0, при $0\leq t\leq 2q$ получаем $\hat{x}(t)=0$. При $t\geq 2q$ функцию x(t) запишем параметрически. Выражая t через v из (2), получаем $t(v)=\frac{q}{2}\left(\frac{1}{v}+2v+v^3\right)$. Далее, $\frac{dx}{dv}=\frac{dx}{dt}\cdot\frac{dt}{dv}=v\cdot\frac{q}{2}\left(-\frac{1}{v^2}+2+3v^2\right)=\frac{q}{2}\left(-\frac{1}{v}+2v+3v^3\right)$. Значит, $x(v)=\frac{q}{2}\left(-\ln v+v^2+\frac{3}{4}v^4\right)+C$; константа C находится из условия x(1)=0 (здесь мы вос пользовались тем, что x непрерывна по t и $u_*(2q)=1$), т.е. $x(v)=\frac{q}{2}\left(-\ln v+v^2+\frac{3}{4}v^4-\frac{7}{4}\right)$. Игак,

$$t(v) = \frac{q}{2} \left(\frac{1}{v} + 2v + v^3 \right), \quad x(v) = \frac{q}{2} \left(-\ln v + v^2 + \frac{3}{4}v^4 - \frac{7}{4} \right).$$

Теперь покажем, что для любых $T_0>0, \xi>0$ найдется q>0 такое, что $x\left(T_0\right)=\xi$. Пусть $a=\frac{\xi}{T_0}$. Возьмем q=2. Покажем, что если $x_0(t)=0$ при $t\leq 2q=4$, а при t>4 задано парамегрически :

$$t(v) = \frac{1}{v} + 2v + v^3$$
, $x_0(v) = -\ln v + v^2 + \frac{3}{4}v^4 - \frac{7}{4}$,

то найдется такое $t_*>4$, что $x_0\left(t_*\right)=at_*$. Затем определим q из равенства $\frac{qt_*}{2}=T_0$. Мы уже говорили, что $\dot{x}_0(t)$ строго возрастает при t>4 и $\dot{x}_0(t)\underset{t\to\infty}{\to}+\infty$. Значит, $x_0(t)$ — at $\underset{t\to+\infty}{\to}+\infty$. Кроме того, $x_0(4)-4a<0$. Поэтому уравнение $x_0(t)=at$ имеет корень на $(4,+\infty)$. Единственность корня следует из строгой выпуклости x_0 на $[4,+\infty)$.

Теперь покажем, что найденная экстремаль является точкой минимума. Достаточно показать, что она является точкой минимума функции \mathcal{L} . Из условий трансверсальности следует, что $\lambda_1 = -q, \lambda_2 = q$. Имеем: $\mathcal{L}(x,u) = \mathcal{L}_1(x) + \mathcal{L}_2(u)$, где

$$\mathcal{L}_{1}(x) = -\int_{0}^{T_{0}} q\dot{x}dt - qx(0) + q(x(T_{0}) - \xi) \equiv -q\xi T_{0}, \quad \mathcal{L}_{2}(u) = \int_{0}^{T_{0}} \left(\frac{t}{1 + u^{2}} + qu\right)dt.$$

Из принципа максимума Понтрягина следует, что $\mathcal{L}_2(u) \geq \mathcal{L}_2(\hat{u})$. Значит, $\mathcal{L}(x,u) \geq \mathcal{L}(\hat{x},\hat{u})$ для любой допустимой пары (x,u).

Задача 21. (из лекций) Сделав замену $\dot{x}=u$, вывести необходимое условие сильного минимума в простейшей задаче вариационного исчисления (условие Вейерштрасса и непрерывность $L_{\dot{x}}(t,\hat{x}(t),\dot{\hat{x}}(t))$) из принципа максимума Понтрягина.

Решение. Задача записывается в виде

$$\int_{t_0}^{t_1} L(t, x(t), u(t)) dt \to \inf, \quad x(t_0) = x_0, \quad x(t_1) = x_1, \quad \dot{x} = u.$$

Функция Лагранжа имеет вид

$$\mathcal{L} = \int_{t_0}^{t_1} \left(\lambda_0 L(t, x(t), u(t)) + p(t)(\dot{x}(t) - u(t)) \right) dt + \lambda_1 x(t_0) + \lambda_2 x(t_1).$$

Условие неотрицательности: $\lambda_0 \ge 0$.

У равнение Эйлера: $-\dot{p}(t) + \lambda_0 L_x(t, \hat{x}(t), \hat{u}(t)) = 0.$

Условие трансверсальности: $p(t_0) = \lambda_1, p(t_1) = -\lambda_2$.

Принцип максимума Понтрягина: $\min_{v \in \mathbb{R}} (\lambda_0 L(t, \hat{x}(t), v) - p(t)v) = \lambda_0 L(t, \hat{x}(t), \hat{u}(t)) - p(t)\hat{u}(t)$.

Так как L гладкая и минимум берется по $v \in \mathbb{R}$, то получаем $\lambda_0 L_{\dot{x}}(t, \hat{x}(t), \hat{u}(t)) - p(t) = 0$.

Если $\lambda_0=0$, то отсюда p=0; в силу условий трансверсальности, $\lambda_1=\lambda_2=0$, то есть все множители Лагранжа нулевые.

Итак, $\lambda_0 > 0$. Можно считать, что $\lambda_0 = 1$. Так как $\dot{\hat{x}} = \hat{u}$, то $L_{\dot{x}}(t,\hat{x}(t),\dot{\hat{x}}(t)) = p(t)$. В теореме о необходимом условии сильного минимума в задаче оптимального управления функция p кусочно непрерывно-дифференцируемая и, значит, непрерывная. Отсюда получаем непрерывность $t \mapsto L_{\dot{x}}(t,\hat{x}(t),\dot{\hat{x}}(t))$.

Еще раз запишем принцип максимума Понтрягина: для любого $v \in \mathbb{R}$

$$L(t, \hat{x}(t), v) - L_{\dot{x}}(t, \hat{x}(t), \dot{\hat{x}}(t))v \ge L(t, \hat{x}(t), \hat{u}(t)) - L_{\dot{x}}(t, \hat{x}(t), \dot{\hat{x}}(t))\hat{u}(t)$$

Подставим $\hat{u} = \dot{\hat{x}}$, перенесем все в левую часть и получим условие Вейерштрасса.

Задача 22. Показать, что если L явно не зависит от x (т.е. $L = L(t, \dot{x}(t))$), то условие Вейерштрасса будет достаточным условием глобального минимума.

Решение. В силу уравнения Эйлера, $L_{\dot{x}}(t,\dot{\hat{x}}(t)) \equiv c$.

Пусть x - произвольная допустимая функция. В силу условия Вейерштрасса

$$\int_{t_0}^{t_1} \mathcal{E}(t, \hat{x}(t), \dot{\hat{x}}(t), \dot{x}(t)) dt \ge 0$$

откуда

$$\int_{t_0}^{t_1} \left(L(t, \dot{x}(t)) - L(t, \dot{\hat{x}}(t)) - L_{\dot{x}}(t, \dot{\hat{x}}(t)) (\dot{x}(t) - \dot{\hat{x}}(t)) \right) dt \ge 0$$

Значит,

$$\begin{split} \int_{t_0}^{t_1} L(t, \dot{x}(t)) dt &\geq \int_{t_0}^{t_1} L(t, \dot{\hat{x}}(t)) dt + \int_{t_0}^{t_1} c(\dot{x}(t) - \dot{\hat{x}}(t)) dt = \\ &= \int_{t_0}^{t_1} L(t, \dot{\hat{x}}(t)) dt + cx|_{t_0}^{t_1} - c\hat{x}|_{t_0}^{t_1} = \int_{t_0}^{t_1} L(t, \dot{\hat{x}}(t)) dt \end{split}$$

так как $x(t_0) = \hat{x}(t_0)$ и $x(t_1) = \hat{x}(t_1)$.

Задача 23. Рассмотрим задачу $\int_0^\pi \left(\dot{x}^2-x^2-x^4\right)dt \to \inf$, $x(0)=x(\pi)=0$. Показать, что для $\hat{x}=0$ выполнено усиленное условие Лежандра, условие Якоби, при этом $\hat{x}=0$ не является точкой слабого минимума.

Решение. Имеем $\hat{L}_{\dot{x}\dot{x}}(t) = 2$, $\hat{L}_{\dot{x}x} = 0$, $\hat{L}_{xx} = -2$. Значит, выполнено усиленное условие Лежандра. Уравнение Якоби имеет вид $\ddot{h} + h = 0$; его нетривиальное решение, зануляющееся при t = 0, имеет вид $h(t) = a \sin t$, $a \neq 0$. Тогда $h(t) \neq 0$ при $t \in (0, \pi)$, но $h(\pi) = 0$. Значит, выполнено условие Якоби, но не усиленное. Возьмем $x(t) = \varepsilon \sin t$. Тогда

$$\int_0^{\pi} \left(\dot{x}^2 - x^2 - x^4\right) dt = \varepsilon^2 \int_0^{\pi} \left(\cos^2 t - \sin^2 t\right) dt - \varepsilon^4 \int_0^{\pi} \sin^4 t dt =$$
$$= \varepsilon^2 \int_0^{\pi} \cos 2t dt - \varepsilon^4 \int_0^{\pi} \sin^4 t dt = -\varepsilon^4 \int_0^{\pi} \sin^4 t dt < 0.$$

Так как $\varepsilon > 0$ может быть сколь угодно мало, то слабого минимума нет.

Задача 24.

$$F(x) = \int_0^{3/2} (\dot{x}^3 + 2x) dt \to \inf, x(0) = 0, x(3/2) = 1$$

Доказать, что выполнено (неусиленное) условие Лежандра, усиленное условие Якоби, а допустимая экстремаль не дает слабый минимум.

Примечание. Усиленное условие Якоби предполагает 2й порядок этого линейного уравнения. В моем файле TU усиленное условие Якоби трактовалось при выполнении усиленного условия Лежандра, которое обеспечивает 2й порядок уравнения Якоби.

Решение.

Уравнение экстремалей $f_x = \frac{d}{dt} f_{\dot{x}}$ для $f = \dot{x}^3 + 2x$ имеет вид $2 = 6\dot{x}\ddot{x}$, т.е. $3y\dot{y} = 1$ для $y = \dot{x}$. Имеем 3ydy = dt, т.е. $\frac{3}{2}y^2 = t + C$. При C = 0 имеем $\dot{x}(t) = \left(\frac{2}{3}t\right)^{1/2}$, что при условии x(0) = 0 дает

$$\hat{x}(t) = \left(\frac{2}{3}\right)^{1/2} t^{3/2} \cdot \frac{2}{3} = \left(\frac{2}{3}t\right)^{3/2} \Longrightarrow \hat{x}\left(\frac{3}{2}\right) = 1$$

т.е. допустимую экстремаль \hat{x} . Имеем

$$F(\hat{x}+h) - F(\hat{x}) = \int_0^{3/2} \left\{ \left([\dot{\hat{x}} + \dot{h}]^3 + 2[\hat{x} + h] \right) - \left([\dot{\hat{x}}]^3 + 2[\hat{x}] \right) \right\} dt = \int_0^{3/2} \left\{ 3(\dot{\hat{x}})^2 \dot{h} + 3\dot{\hat{x}}(\dot{h})^2 + (\dot{h})^3 + 2h \right\} dt = \int_0^{3/2} \left\{ 3\dot{\hat{x}}(\dot{h})^2 + (\dot{h})^3 \right\} dt$$

Последнее равенство верно, т.к. на экстремали \hat{x} линейная по h часть разности $F(\hat{x}+h)-F(\hat{x})$ равна нулю. Таким образом,

$$F(\hat{x}+h) - F(\hat{x}) = \int_0^{3/2} \left\{ 3\dot{\hat{x}}(\dot{h})^2 + (\dot{h})^3 \right\} dt = \int_0^{3/2} \left\{ 3\left(\frac{2t}{3}\right)^{1/2} (\dot{h})^2 + (\dot{h})^3 \right\} dt$$

Заметим, что усиленное условие Лежандра $\hat{f}_{\dot{x}\dot{x}}(t)>0$ при $t\in[0,3/2]$ нарушается при t=0. Учитывая это есть резон быстро уйти от нуля, взяв функцию h кусочно-линейной, такую, что h(0)=h(3/2)=0, а $\dot{h}=-\varepsilon<0$ при $0< t<\delta\ll 1$ и $\dot{h}=a>0$ при $0< t<\delta$. Тогда h(t)=a(t-3/2) при $t>\delta$ и $a\approx\frac{2}{3}\delta$. Отсюда получаем

$$\begin{split} F(\hat{x}+h) - F(\hat{x}) &\approx \int_0^\delta \sqrt{6} t^{1/2} \varepsilon^2 dt - \varepsilon^3 \delta + \int_0^{3/2} \sqrt{6} t^{1/2} a^2 dt + \frac{3}{2} a^3 = \\ \varepsilon^3 \delta \left\{ \frac{2}{3} \sqrt{6} \frac{\delta^{1/2}}{\varepsilon} + \left(\frac{3}{2}\right)^{3/2} (2/3)^2 \frac{\delta}{\varepsilon} + \frac{3}{2} (2/3)^3 \delta^2 \right\} - \varepsilon^3 \delta < 0 \quad \text{при} \quad \frac{\delta^{1/2}}{\varepsilon} \ll 1. \end{split}$$

Задача 25. $F(x) = \int_0^1 \left(\dot{x}^2 - x\dot{x}^3\right) dt \to extr, x(0) = x(1) = 0$. Показать, что для экстремали $\hat{x} = 0$ выполнено усиленное условие Лежандра, усиленное условие Якоби, условие Вейерштрасса (не усиленное), и \hat{x} не является точкой сильного минимума.

Решение.

Имеем $\hat{L}_{\dot{x}\dot{x}}(t)=2, \hat{L}_{\dot{x}x}(t)=0, \hat{L}_{xx}(t)=0$. Значит, выполнено усиленное условие Лежандра. Уравнение Якоби имеет вид $\ddot{h}=0$. Если h - нетривиальное решение и h(0)=0, то h(t)=at, где $a\neq 0$. Эта функция зануляется только при t=0. Значит, выполнено усиленное условие Якоби.

Далее, $\mathcal{E}(t,\hat{x}(t),\dot{\hat{x}}(t),v)=v^2\geq 0$. Значит, выполнено условие Вейерштрасса.

Теперь покажем, что \hat{x} не является точкой сильного минимума. Пусть $R>0, 0<\delta<\frac{1}{2}$. Положим

$$\dot{h}(t) = \left\{ \begin{array}{l} R, \ 0 \leq t < \delta \\ -\frac{R\delta}{1-\delta}, \quad \delta < t \leq 1 \end{array} \right.$$

$$h(t) = \int_0^t \dot{h}(s) ds$$
. Тогда

$$h(t) = \begin{cases} Rt, & 0 \le t \le \delta \\ \frac{R\delta}{1-\delta}(1-t), & \delta \le t \le 1 \end{cases}$$

Получаем

$$\int_{0}^{1} \left(\dot{h}^{2} - h\dot{h}^{3}\right) dt = \int_{0}^{\delta} \left(R^{2} - R^{4}t\right) dt +$$

$$+ \int_{\delta}^{1} \left(\frac{R^{2}\delta^{2}}{(1 - \delta)^{2}} - \frac{R^{4}\delta^{4}}{(1 - \delta)^{4}}(1 - t)\right) dt \le$$

$$\le R^{2}\delta - \frac{R^{4}\delta^{2}}{2} + C_{1}R^{2}\delta^{2} + C_{2}R^{4}\delta^{4},$$

где C_1, C_2 - положительные константы. Сделав замену $R\delta = \varepsilon$, получим

$$\int_0^1 \left(\dot{h}^2 - h\dot{h}^3 \right) dt \le R\varepsilon - \frac{R^2 \varepsilon^2}{2} + C_1 \varepsilon^2 + C_2 \varepsilon^4$$

Если $R = \frac{1}{\varepsilon^2}$, то при малых ε получим отрицательное число. При этом $\|h\|_C = \varepsilon$; это число можно выбрать сколь угодно малым, так что сильного минимума нет.

$$\int_{-T_0}^{T_0} x \sqrt{\dot{x}^2 + 1} dt \to \min, x(T_0) = x(-T_0) = \xi.$$

- 1. Выписать уравнение Якоби, подобрать одно из его решений, затем найти общее решение.
- 2. Пусть допустимых экстремалей две. Доказать, что одна из них является точкой сильного минимума, а вторая не является точкой слабого минимума.

Решение.

Определение 1. Скажем, что выполнено усиленное условие Лежандра, если $\hat{L}_{\dot{x}\dot{x}}>0 \ \forall t\in[-T_0,T_0].$

Определение 2. Скажем, что выполнено условие Якоби, если справедливо усиленное условие Лежандра, а решение уравнения Якоби

$$-\frac{d}{dt}\left(\widehat{L}_{\dot{x}\dot{x}}(t)\dot{h} + \widehat{L}_{\dot{x}x}(t)h\right) + \left(\widehat{L}_{\dot{x}x}(t)\dot{h} + \widehat{L}_{xx}(t)h\right) = 0 \quad \Leftrightarrow \quad \frac{d}{dt}\left(\widehat{L}_{\dot{x}\dot{x}}(t)\dot{h}\right) = \left(\widehat{L}_{xx}(t) - \frac{d}{dt}\widehat{L}_{\dot{x}x}(t)\right)h \tag{2}$$

не обращается в ноль на интервале $(-T_0, T_0)$ при начальных условиях: $h(-T_0) = 0$, $\dot{h}(-T_0) = 1$.

Определение 3. Скажем, что выполнено усиленное условие Якоби, если справедливо усиленное условие Лежандра, а решение уравнения (??) не обращается в ноль на полусегменте $(-T_0, T_0]$ при начальных условиях: $h(-T_0) = 0$, $\dot{h}(-T_0) = 1$.

Определение 4. Скажем, что выполнено усиленное условие Вейерштрасса, если функиия $\dot{x} \mapsto L(t, x(t), \dot{x})$ выпукла в 'C'-окрестности экстремали \hat{x} при любом $t \in [-T_0, T_0]$, т.е. для любого $t \in [-T_0, T_0]$ и $x(t) \in \mathcal{O}(\hat{x}, \varepsilon)$ (с некоторым $\varepsilon > 0$) функиия $\dot{x} \mapsto L(t, x(t), \dot{x})$ выпукла.

Теорема 2. Если выполнены усиленное условие Якоби и усиленное условие Вейерштрасса, то экстремаль доставляет сильный максимум.

Для упрощения формул, будем считать, что $T_0 = 1$. Ясно, что это не ограничивает общность рассуждений.

1. Уравнение Якоби в данном случае имеет вид:

$$\ddot{h} - \frac{2}{C}\operatorname{th}(\frac{t}{C})\dot{h} + \frac{1}{C^2}h = 0$$

Оно имеет два линейно независимых решения: $h_1(t) = \sinh \frac{t}{C}$ и $h_2(t) = \cosh \frac{t}{C} - \frac{t}{C} \sinh \frac{t}{C}$. Общее решение, подчиненное условию h(-1) = 0, таково:

$$h(t) = \left(\operatorname{ch}\frac{t}{C} - \frac{t}{C}\operatorname{sh}\frac{t}{C}\right)\operatorname{sh}\frac{1}{C} + \left(\operatorname{ch}\frac{1}{C} - \frac{1}{C}\operatorname{sh}\frac{1}{C}\right)\operatorname{sh}\frac{t}{C}.$$

2. Было показано (см. ??), что экстремали существуют, если и только если $\xi \geq \xi_* = \sinh \frac{1}{C_0}$, где $C_0 = \tanh \frac{1}{C_0} \approx 1.5088\dots$ При этом, экстремаль задается формулой $x(t) = C \cosh \frac{t}{C}$, а параметр C > 0 есть корень уравнения $\varphi(C) = \xi$, где $\varphi(C) \stackrel{\text{def}}{=} C \cosh \frac{1}{C}$.

Функция $C\mapsto \varphi(C)$ выпукла, т.к. $\varphi''(C)=C^{-3}$ ch $\frac{1}{C}$. Ее минимум достигается в точке C_0 , где $\varphi'\left(C_0\right)=0$. Отметим, что

$$\varphi'(C) = \left[\operatorname{ch} \frac{1}{C} - \frac{1}{C} \operatorname{sh} \frac{1}{C} \right]$$

Если $\xi > \xi_*$, то существуют ровно два значения $C_1 \in (0,C_0)$ и $C_2 > C_0$, которые удовлетворяют условию $\varphi(C) = R$. Покажем, что экстремаль $\hat{x}_2 = C_2 \operatorname{ch} \frac{1}{C_2}$ доставляет сильный (локальный) минимум, а экстремаль $\hat{x}_1 = C_1 \operatorname{ch} \frac{1}{C_1}$ не является ни слабым минимумом, ни слабым максимумом. Прежде всего, отметим, что для обеих экстремалей выполнено усиленное условие Лежандра, а именно: $\hat{f}_{\dot{x}\dot{x}}(t) = C \operatorname{ch}^{-2} \frac{t}{C} > 0$ и потому ни одна из них не является локальным максимумом.

Так как $h(0) = \sinh \frac{1}{C} \neq 0$, то нули функции h совпадают с нулями функции

$$z: t \mapsto z(t) = \frac{h(t)}{\sinh \frac{1}{C} \sinh \frac{t}{C}} = \left(\coth \frac{t}{C} - \frac{t}{C}\right) + \left(\coth \frac{1}{C} - \frac{1}{C}\right)$$

Заметим, что z'(t) < 0, а $z(1) = \frac{2\varphi'(C)}{\sinh\frac{1}{C}}$. Поэтому, если $z(1) < 0 \Leftrightarrow C = C_1$, то условие Якоби не выполнено, а если $z(1) > 0 \Leftrightarrow C = C_2$, то выполнено усиленное условие Якоби.