Econ homework 2 - OSM Bootcamp 2018

Cooper Nederhood

2018.07.03

Proof 1

Suppose by contradiction that $g(\hat{x}) = y \neq \hat{x}$. Then, $\exists \epsilon > 0$ such that $\hat{x} \notin (y - \epsilon, y + \epsilon)$ but $g(\hat{x}) = y \in (y - \epsilon, y + \epsilon)$.

Further, g is continuous at \hat{x} thus $\exists \delta > 0$ such that $\forall x \in (\hat{x} - \delta, \hat{x} + \delta)$ then $g(x) \in (y - \epsilon, y + \epsilon)$.

But, $\{g^t(x)\} \to \hat{x}$ so $\exists T \in \mathbb{N}$ such that $\forall t > T$ then $g^t(x) \in (\hat{x} - \delta, \hat{x} + \delta)$

But by continuity if $g^t(x) \in (\hat{x} - \delta, \hat{x} + \delta)$ then $g(g^t(x)) \in (y - \epsilon, y + \epsilon)$ which violates the assumption that $g^t(x) \to \hat{x}$.

Thus, it must be that $g(\hat{x}) = \hat{x}$

Proof 2

From Gelfand's we have $||A^k||^{1/k} \to r(A)$, so $||A^k|| \to r(A)^k$. But if r(A) < 1 and $k \to \infty$ then $r(A)^k \to 0$ Thus, $||A^k|| \to 0$