Düzenli (Steady) Elektrik Akımları

Her biri q yüke sahip pareacıkların, As ara kesit yüzeyli bir bölgeden u hızı ile düzenli geçişini ele alalım. Birin hacim basına düşen yüklü pareacık sayısı N ise; At kadar süre içerisinde her bir pareacık üAt 'nin siddeti kadar yol kat edecektir. Bu durumda As ara kesitli yüzeyden geçen yük miktarı

Akım, birim zomandaki yük değişimi olduğundan:

Not: "Hocimsel" akım yoğunluğunun birimi neden "Amper/metre 3 değil?
Cünkü, bir hocimden düzenli bir şekilde akon akım; ara kesit olarak bir yüzeyi

Bu terim; hacimsel akum yoğunluğu yani J (Amper/metre?) olarak adlandırılır.

delip geçer. Akım yoğunluğunun fiziksel anlamı; birim yüzeyden birim zamanda geçen yük miktarı (yani Coulomb/metre².saniye = Amper/metre²) olarak yorumlanmalıdır.

Not 2: Bu durunda, yüzeyden akan bir akım (yani bir yüzey akımı) varsa, onun birimi de Js (Amper/metre) obacaktir. Cünkü bir yüzeyin ara kesiti bir doğru (veya doğru parçası) ola aktır. Yüzey akım yoğunluğunun fiziksel anlamı; birin vzunluktan birin zamanda gecen yük miktarı (yani Coulomb/metre. saniye = Amper/metre) olarak grumlannddir.

Konumuza dönecek olursak; bir S yüzeyinde hazimsel akim yoğunluğu J'nin olusturduğu akı, aslada bize akımı verir (BKZ: önceki sayfadaki sekil)

$$I = \int \overline{J} \cdot d\overline{s} \quad (A)$$

$$(A/m^2) \quad (m^2)$$

Metalik iletkenleria içerisinde elektronların hızı, "elektron mobilitesi (me)" olarak adlandirdigimiz skaler bir biyüklük ile doğru orantılıdır.

Bir elektronun yükü u = -M = (m/s) $(1.6 \times 10^{-19} \text{ Coulomb})$

$$\overline{u} = -\mu_e \overline{E} \quad (m/s)$$

$$(m^2/v.s) \leftarrow (v/m)$$

J = N q u seklinde tanımlarmıştı.

Elektron mobilitesi (Me); her bir cisme fortama has bir özellik olduğu için; iletkenlik (or) de her bir cisme/ortama has bir özelliktir

Mükemmel iletken olarak kabul ettigimiz (= cisim/ortamlarda Me > 00 ve

O -> ON Varsayariz!...

Neder Genel Hali? Devre analizi dersinde, V = IR ifadesi için aralarındaki potansiyel farkı ve eşdeğer direnci ölemek için "iki" nokta gerekmektedir.

Ancak $J(x_0, y_0, z_0) = \sigma(x_0, y_0, z_0) E(x_0, y_0, z_0)$ ifadesi, uzaydaki tek bir (x_0, y_0, z_0) noktası için (y_0) ikinci bir noktaya gerek olmaksızın) yazılabilir. Bu yüzden bu ifadeye "Ohm Yasası'nın Nokta Formu" veya "Ohm Yasası'nın Genel Hali" adı verilmektedir.

Sureklilik Denklemi

"Yüklerin konnumu" prensibi, fiziksel olarak temel gerçeklerimizden biridir.

S yüzeyi tarafından çevrelenen bir V hacmi düşünelim. Bu hacimde Q kadar yükümüz olsun. Eğer bu hacimden dişarı doğru bir I akımı varsa; birim zamanda hacimdeki toplam yükün düşüş miktarı bu I akımı varsa; birim (veya hacimden içeri doğru bir I akımı varsa; birim zamandaki yük artış miktarı I'ya eşit olmalıdır.)

Haumden dişarı okan akım; hacmi cevreleyen S yüzeyi üzerinde akım yağımluğu vektörü tarafından oluşturulan akıya eşit olacaktır.

$$I = \oint \bar{J} \cdot d\bar{s}$$

Ote yondon:
$$I = -\frac{dQ}{dt} - \frac{d}{dt} \int \rho d\sigma$$
 olarak yazılabilir.

Divergens teoremi ile de
$$\oint \bar{J} \cdot d\bar{s} = \int (\bar{\nabla}.\bar{J}) d\sigma' dir.$$

$$\int (\nabla \cdot \vec{J}) d\theta = -\int (\frac{\partial P}{\partial t}) d\theta \quad \text{yazılabilir}$$

$$-\frac{d}{dt} \int P d\theta = -\int (\frac{\partial P}{\partial t}) d\theta$$

$$\int \text{Neden Klsmi turev?}$$

Bu ifade O'den bağımsız olduğuna göre (yani her sekil ve bayuttaki O için geçerli olduğuna göre); aslında integrali alınan değerler birbirine esit olmalıdır.

$$\frac{1}{\sqrt{m}} \frac{A}{m^2} \frac{C}{\sqrt{m}^3} = A/m^3$$

Bu denkleme, "Süreklilik Denklemi adı verilir.

Günkü P, uzay koordinatlarına

da bajeli olabilir !...

Düzenli abmlarda yük yoğunluğu zamanla değişmez; yani ap/at=0

=> Digenli akımların akım yoğunluğu vektörleri salenotdoldir; kapalı döngüler oluşturur!...

Bu ifade integral formunda \$ J. ds = 0 seklinde yazılabilir

Done analizi dersinde; bir

düğün noktasına giren/qıkan

Virchofi'in Akım Yasası'nın

akimlarin toplami: [] I = 0 Kirchoff'un]

Hirchoff'un Akım Yasası'nın Genel Hali