

MÁQUINAS ELÉCTRICAS: INTRODUCCIÓN

EDUARDO MOJICA NAVA, Ph.D.

PAAS-UN Research Group
Department of Electrical and Electronics Engineering
National University of Colombia
2013

Elementos Básicos de las Máquinas Eléctricas

Aspectos Constructivos

Configuraciones de Estator-Rotor

M. Faraday

$$e = \frac{d\lambda}{dt}$$

Permite determinar los voltajes inducidos por campos magnéticos variantes en el tiempo.

Voltaje Inducido en un Campo Magnético

Voltaje inducido en un conductor en movimiento en un campo magnético

$$e_{ind} = (v \times B) \cdot l$$

v=velocidad del alambre

B=vector de densidad de flujo

/=longitud del conductor en el campo magnético (apunta hacia el extremo que forma el ángulo más pequeño con el producto del campo)

Fuerza en un Alambre Conductor

Fuerza sobre un alambre conductor en presencia de un campo magnético

$$\mathbf{F} = i(\mathbf{l} \times \mathbf{B})$$

F=fuerza sobre el alambre

i=magnitud de la corriente en el alambre

I=longitud del alambre

B=vector de densidad de flujo magnético

El torque=(fuerza)(distancia perpendicular)

$$\tau = \mathbf{E}(n \sin \Omega)$$

Fundamentos de Máquinas Alternas

Espira sencilla en un campo magnético Uniforme

Figure 10-103. Generation of a sine wave.

$$e_{ind} = 2vBL\sin\theta$$

$$\theta = \omega t$$
 $v = r\omega$

$$e_{ind} = 2r\omega BL\sin\omega t$$

Como el área es A=2rl y el flujo $\phi_{max}=AB$

$$e_{ind} = \phi_{max}\omega \sin \omega t$$

Forma final de voltaje

Síntesis

"el voltaje generado en la espira es una sinusoide cuya magnitud es igual al producto del flujo dentro de la máquina y la velocidad de rotación de la máquina" esto también es cierto en las máquinas AC reales. Dependencia:

- 1. El flujo en la máquina
- La velocidad de rotación
- 3. Una constante que representa la construcción de la máquina (número de espiras, etc.)

Par inducido en una espira que porta corriente

¢)

d)

$$\tau_{ind} = 2riBL\sin\theta = k\boldsymbol{B}_{espira}\boldsymbol{B}_{S}\sin\theta$$

$$\tau_{ind} = k \boldsymbol{B}_{espira} \times \boldsymbol{B}_{S}$$

Síntesis

"el par inducido en la espira es proporcional a la intensidad del campo magnético de la espira, a la intensidad del campo magnético externo a la espira y al seno del ángulo comprendido entre ellos". Dependencia:

- La intensidad del campo magnético del rotor
- 2. La intensidad del campo magnético externo
- 3. El seno del ángulo comprendido entre ellos
- Una constante de construcción de la máquina (geometría, etc.)

Campo Magnético Rotacional

- Se mostró que si 2 campos magnéticos están presentes en una máquina, se creará un par que tiende a alinearlos
- Necesitamos que el campo magnético del ESTATOR rote, para que se efectúe una "persecución" circular!
- ¿qué puede hacerse para que rote?

Campo Magnético Rotacional

Si un grupo de corrientes trifásicas, cada una de igual magnitud desfasadas 120°, se producirá un campo magnético rotacional de magnitud constante.

$$i_{aa'}(t) = I_M \operatorname{sen} \omega t$$
 A
 $i_{bb'}(t) = I_M \operatorname{sen} (\omega t - 120^\circ)$ A
 $i_{cc'}(t) = I_M \operatorname{sen} (\omega t - 240^\circ)$ A

$$\mathbf{H}_{aa'}(t) = H_M \operatorname{sen} \omega t \angle 0^{\circ}$$
 A · vuelta/ m

$$\mathbf{H}_{bb'}(t) = H_M \operatorname{sen} (\omega t - 120^{\circ}) \angle 120^{\circ}$$
 A · vuelta/m

$$\mathbf{H}_{cc'}(t) = H_M \operatorname{sen}(\omega t - 240^\circ) \angle 240^\circ$$
 A · vuelta/m

$$\mathbf{B}_{aa'}(t) = B_M \operatorname{sen} \omega t \angle 0^{\circ}$$
 T

$$\mathbf{B} = \mu \mathbf{H} - \mathbf{B}_{bb'}(t) = B_M \operatorname{sen}(\omega t - 120^\circ) \angle 120^\circ$$

$$\mathbf{B}_{cc'}(t) = B_M \operatorname{sen}(\omega t - 240^\circ) \angle 240^\circ$$
 T

Figura 4-9

a) Vector de campo magnético en el estator durante el instante $\omega t = 0^{\circ}$. b) Vector de campo magnético en el estator durante el instante $\omega t = 90^{\circ}$.

- Nota: Aunque la dirección del campo magnético cambia con el tiempo, la magnitud es constante. El campo conserva magnitud constante mientras rota en dirección contraria a las manecillas del reloj.
- La magnitud es Bnet=1,5Bm y se mantiene a una frecuencia angular w.

$$\mathbf{B}_{\text{nei}}(t) = \mathbf{B}_{\alpha\alpha'}(t) + \mathbf{B}_{bb'}(t) + \mathbf{B}_{cc'}(t)$$

$$= B_M \operatorname{sen} \omega t \angle 0^\circ + B_M \operatorname{sen} (\omega t - 120^\circ) \angle 120^\circ + B_M \operatorname{sen} (\omega t - 240^\circ) \angle 240^\circ \text{ T}$$

$$\mathbf{B}_{\text{net}}(t) = (1.5B_M \operatorname{sen} \omega t)\hat{\mathbf{x}} = (1.5B_M \cos \omega t)\hat{\mathbf{y}}$$

Relación entre frecuencia eléctrica y velocidad de rotación

$$f_e = f_m$$
 dos polos $\omega_e = \omega_m$ dos polos

$$f_e$$
 = $2f_m$ cuatro polos ω_e = $2\omega_m$ cuatro polos

Voltaje inducido en Máquinas AC

 Un campo magnético rotacional puede producir un conjunto trifásico de voltajes en los devanados del estator.

La densidad de flujo en el roto $B = B_M \cos \alpha$

Si 3 bobinas de Nc vueltas ubicadas a 120°.

$$\begin{split} e_{aa'}(t) &= N_C \ \phi \omega \ \text{sen} \ \omega t \qquad V \\ e_{bb'}(t) &= N_C \ \phi \omega \ \text{sen} (\omega t - 120^\circ) \qquad V \\ e_{cc'}(t) &= N_C \ \phi \omega \ \text{sen} (\omega t - 240^\circ) \qquad V \end{split}$$

Síntesis: Un grupo trifásico de corrientes puede generar un campo magnético uniforme rotacional, en el estator de una máquina, y un campo magnético uniforme rotacional puede generar un grupo trifásico de voltajes en tal estator