МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Методы оптимизации»

Тема: Решение прямой и двойственной задачи

Студентка гр. 1304	Чернякова В.А.
Преподаватель	Мальцева Н.В.

Санкт-Петербург

Цель работы.

- а. Постановка задачи линейного программирования и её решение с помощью стандартной программы.
 - б. Исследование прямой и двойственной задачи.

Задание.

1. По заданной содержательной постановке задачи поставить задачу формально (т.е. привести к виду (3.1)).

$$X = \left\{ x \in \mathbf{R}^n : Ax \ge B, x \ge 0 \right\},\,$$

- 2. Решить поставленную задачу с помощью готовой программы.
- 3. Поставить двойственную задачу с помощью готовой программы.
- 4. Решить двойственную задачу с помощью той же программы.
- 5. Определить коэффициенты чувствительности исходной задачи по координатам правой части ограничений (вектора). Для этого:
 - а) увеличить і-ю координату вектора ограничений правой части на $\varepsilon = 10^{-3}$;
 - б) решить задачу с новым вектором $B = B + \varepsilon_{e_i}$, ответ $\varphi_i(\varepsilon)$;
 - в) вычислить $\overset{\sim}{\chi_i} = (\varphi_i(\varepsilon) \varphi_i(0))/\varepsilon$;
- г) сравнить полученное число с i-й координатой оптимальной точки двойственной задачи.
- 6. Повторить процедуру, описанную в п.5, но варьировать на этот раз коэффициенты целевой функции компоненты вектора C и сопоставить результаты с координатами вектора-решения исходной задачи.

Основные теоретические положения.

Если исходная задача линейного программирования представлена в виде: найти минимум функции f = (c, x) на множестве

$$X = \left\{ x \in \mathbf{R}^n : Ax \ge B, x \ge 0 \right\},\tag{3.1}$$

то двойственная задача линейного программирования может быть сформулирована следующим образом:

найти максимум функции (B, λ) на множестве $\lambda = \{\lambda \in \mathbf{R}^m : \mathbf{A}^T \lambda \le c, \lambda \ge 0\}$ где \mathbf{A}^T - матрица, транспонированная к \mathbf{A} . Двойственная к двойственной задаче есть исходная задача.

Известно, что если существует решение исходной задачи, то существует решение и двойственной задачи, причем значения экстремумов совпадают. При этом координаты экстремальной точки для двойственной задачи являются коэффициентами чувствительности результата в исходной задаче по коэффициентам вектора B.

Рассмотрим видоизмененную исходную задачу:

Найти min(c,x) на множестве $\{x: x \ge 0, Ax \ge B + \varepsilon_{e_i}\}$, где $\varepsilon > 0$,

$$e_{i} = \begin{pmatrix} 0 \\ \cdot \\ \cdot \\ 1 \\ \cdot \\ \cdot \\ \cdot \\ 0 \end{pmatrix}$$

Если исходная задача имеет единственное решение, то при малых $\varepsilon > 0$ и видоизмененная задача имеет решение; причем если α_{ε}^{i} -значение минимума, то существует

$$\lim_{\varepsilon \to 0} \left(\alpha_{\varepsilon}^{i} - \alpha_{0}^{i} \right) / \varepsilon = \beta_{i}$$

Оказывается, что eta есть і-я координата оптимальной точки для двойственной задачи.

Для проведения лабораторной работы составлена программа, обеспечивающая решение задачи линейного программирования при задании с терминала исходных значений параметров.

Содержательная постановка задачи.

Вариант 2.

Рассмотрим задачу оптимального использования материалов при условии, что заданный план изготовления может быть выполнен или перевыполнен: при изготовлении обуви используют, в частности, жесткую кожу — черпак, ворот и др. Каждый из видов в свою очередь делится на несколько категорий по средней толщине. ГОСТом предусмотрено изготовление деталей из определенного вида кожи. Одна и та же деталь может быть изготовлена из разных видов кожи, причем из этих же кож изготовляют и другие детали. Исходные данные приведены в таблице.

В наличии имеется 0,9 тыс. кв. м. чепрака толщиной 4,01-4,5 мм по цене 14,4 р. за 1 кв. м.; 0,8 тыс. кв. м. черпака толщиной 4,51-5,0 мм по цене 16 р. за 1 кв. м.; 5,0 тыс. кв. м. ворота толщиной 3,5-4,0 мм по цене 12,8 р. за 1 кв. м.; 7,0 тыс. кв. м. ворота толщиной 4,51-5,0 мм по цене 10,5 р. за 1 кв. м.

Толщиа детали, мм	Количество дета- лей по плану,					
	тыс. шт.	чепрак	а, мм	I	ворота, мм	
		4,01-4,5	4,51-5,0	3,5-4,0	4,51-5,0	
3,9	21	26,5	7,8	-	-	
3,0	30	51,0	26	45,7	-	
2,5	500	-	-	5,0	72,5	

Формальная постановка задачи.

Минимизация расходов на материалы так, чтоб план был выполнен или перевыполнен – суть представленной задачи.

Для каждой непустой ячейки таблицы зададим x_j , которая будет отражать расход определённого типа кожи на определенный тип детали. Такие обозначения вводятся потому, что из 1000 кв. м кожи можно изготовить фиксированное количество деталей определенной толщины.

Таким образом, наша задача будет иметь 7 переменных. Распишем их подробно:

 x_1 – расход чепрака 4,01 – 4,5 мм на детали толщиной 3,9 мм;

 x_2 – расход чепрака 4,51 – 5,0 мм на детали толщиной 3,9 мм;

 x_3 – расход чепрака 4,01 – 4,5 мм на детали толщиной 3,0 мм;

 x_4 – расход чепрака 4,51 – 5,0 мм на детали толщиной 3,0 мм;

 x_5 – расход ворота 3,5 – 4,0 мм на детали толщиной 3,0 мм;

 x_6 – расход ворота 3,5 – 4,0 мм на детали толщиной 2,5 мм;

 x_7 – расход ворота 4,51 – 5,0 мм на детали толщиной 2,5 мм.

Целевая функция есть функция стоимости выполнения плана. Итого формальная постановка задачи выглядит так:

$$\phi(x)=14.4(x_1+x_3)+16.0(x_2+x_4)+12.8(x_5+x_6)+10.5x_7 \rightarrow \min$$
 Система ограничений для данной задачи имеет вид:

$$egin{cases} 26.5x_1+7.8x_2-21 \geq 0 \ 51.0x_3+26.0x_4+45.7x_5-30 \geq 0 \ 5.0x_6+72.5x_7-500 \geq 0 \ -x_1-x_3+0.9 \geq 0 \ -x_2-x_4+0.8 \geq 0 \ -x_5-x_6+5.0 \geq 0 \ -x_7+7.0 \geq 0 \ x_j \geqslant 0 \quad orall \quad j=1...7 \end{cases}$$

В матричном виде:

$$\begin{pmatrix} 26.5 & 7.8 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 51.0 & 26.0 & 45.7 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 5.0 & 72.5 \\ -1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix} = \begin{pmatrix} 21 \\ 30 \\ 500 \\ -0.9 \\ -0.8 \\ -5.0 \\ -7.0 \end{pmatrix}$$

Решение исходной задачи линейного программирования.

С помощью программы была поставлена задача. Постановка на рисунке 1.

Целев	вая фуні	кция:					
14.4	16.0	14.4	16.0	12.8	12.8	10.5	> min
UFPAI	ничения	•	A				R
26.5	7.8	0	0 "	0	0	0	>=21
0	0	51.0	26.0	45.7	0	0	>=30
0	0	0	0	0	5.0	72.5	>=500
-1	0,	-1	0,	U	0	0	>=-0.9
0 0	−1 N	0 0	-1 N	0 -1	0 -1	0 0	>=-0.8 >=-5.0
Ö	Ö	Ö	Ŏ	0	0	-1	>=-7.0

Рисунок 1. Постановка исходной задачи в программе

Рисунок 2. Программное решение исходной задачи

Оптимальная точка $x^* = (0.792, 0.000, 0.000, 0.000, 0.656, 0.000, 6.897)^T$, значение в оптимальной точке $\varphi(x^*) = 92.228$.

То есть, для достижения минимальных затрат и выполнения плана необходимо выделить 0.792 тыс. кв. м. чепрака толщиной 4.01-4.5 мм на изготовление деталей толщиной 3.9 мм, 0.656 тыс. кв. м. ворота толщиной 3.5-4.0 мм на детали толщиной 3.0 мм, 6.897 тыс. кв. м. ворота толщиной 4.51-5.0 мм на детали толщиной 2.5 мм.

Чепрак толщиной 4.01-4.5 мм для изготовления деталей толщиной 3.0 мм, чепрак толщиной 4.51-5.0 мм на изготовление деталей толщиной 3.9 мм, чепрак толщиной 4.51-5.0 мм на изготовление деталей толщиной 3.0 мм и ворот толщиной 3.5-4.0 мм на изготовление деталей толщиной 2.5 мм не используются в рамках данной задачи минимизации расходов.

Постановка двойственной задачи.

Двойственная задача линейного программирования — задача максимизации. Целевая функция $\psi(\lambda) = (b,\lambda) \to \max$.

То есть найти максимум функции (B, λ) на множестве $\lambda = \left\{\lambda \in \textbf{\textit{R}}^m : \textbf{\textit{A}}^T \lambda \leq c, \lambda \geq 0\right\}, \ \text{где } \textbf{\textit{A}}^T - \text{матрица, транспонированная к A}.$

Транспонируем матрицу из исходной задачи:

$$A^T = egin{pmatrix} 26.5 & 0 & 0 & -1 & 0 & 0 & 0 \ 7.8 & 0 & 0 & 0 & -1 & 0 & 0 \ 0 & 51.0 & 0 & -1 & 0 & 0 & 0 \ 0 & 26.0 & 0 & 0 & -1 & 0 & 0 \ 0 & 45.7 & 0 & 0 & 0 & -1 & 0 \ 0 & 0 & 5.0 & 0 & 0 & -1 & 0 \ 0 & 0 & 72.5 & 0 & 0 & 0 & -1 \end{pmatrix}$$

Целевая функция двойственной задачи:

$$\psi(\lambda) = 21\lambda_1 + 30\lambda_2 + 500\lambda_3 - 0.9\lambda_4 - 0.8\lambda_5 - 5.0\lambda_6 - 7.0\lambda_7 \longrightarrow max$$

Система ограничений (меняем знаки неравенств на противоположные в отличие от исходной задачи):

$$\begin{cases} 26.5\lambda_1 - \lambda_4 - 14.4 \leq 0 \\ 7.8\lambda_1 - \lambda_5 - 16.0 \leq 0 \\ 51.0\lambda_2 - \lambda_4 - 14.4 \leq 0 \\ 26.0\lambda_2 - \lambda_5 - 16.0 \leq 0 \\ 45.7\lambda_2 - \lambda_6 - 12.8 \leq 0 \\ 5.0\lambda_3 - \lambda_6 - 12.8 \leq 0 \\ 72.5\lambda_3 - \lambda_7 - 10.5 \leq 0 \\ \lambda_j \geqslant 0 \quad \forall \quad j = 1...7 \end{cases}$$

Решение двойственной задачи линейного программирования.

С помощью программы была поставлена двойственная задача. Постановка на рисунке 3.

0> m a x
В
<= 14.4
<=16.0
<=14 .4
<=16.0
<=12.8
<=12.8
<=10 .5
(

Рисунок 3. Постановка двойственной задачи в программе

```
x1= 0.543
x2= 0.280
x3= 0.145
x4= 0.000
x5= 0.000
x6= 0.000
x7= 0.000
Значение целевой функции f = 92.228
```

Рисунок 4. Программное решение двойственной задачи

Оптимальная точка $\lambda^* = (0.543, 0.280, 0.145, 0.000, 0.000, 0.000, 0.000)^T$ значение в оптимальной точке $\psi(\lambda^*) = 92.228$.

Из полученных результатов можно увидеть, что при увеличении плана по изготовлению деталей толщиной 3.9 мм на Δb общая стоимость возрастёт на $0.543\Delta b$, на $0.280\Delta b$ при увеличении плана по изготовлению деталей толщиной 3.0 мм на Δb и на $0.145\Delta b$ возрастёт стоимость при увеличении плана по изготовлению деталей толщиной 2.5 мм на Δb . Повышение доступного количества материалов каждого типа к увеличению затрат не приведет, это видно из рисунка $4 - \lambda_4 = \lambda_5 = \lambda_6 = \lambda_7 = 0$.

Определить коэффициенты чувствительности исходной задачи.

Определим чувствительность коэффициентов исходной задачи по координатам правой части ограничений (вектора B). Будем последовательно увеличивать координаты вектора B на $\varepsilon = 10^{-2}$. Также запишем оптимальное значение целевой функции $\phi_i(0) = 92.228$.

Далее составим таблицу вычисленных значений коэффициентов чувствительности и добавим столбец с координатами оптимальной точки двойственной задачи. Результаты решения приведены в таблице 1.

Таблица 1.

i	b_i	$b_i + \varepsilon_{e_i}$	x_i^*	$\varphi_i(\varepsilon)$	$\widetilde{x}_i = \frac{\varphi_i(\varepsilon) - \varphi_i(0)}{\varepsilon}$	λ_i
					$x_l = \frac{x_l}{\varepsilon}$	
1	21	21.01	$(0.793, 0, 0, 0, 0.656, 0, 6.897)^T$	92.233	0.5	0.543
2	30	30.01	$(0.792, 0, 0, 0, 0.657, 0, 6.897)^T$	92.231	0.3	0.280
3	500	500.01	$(0.792, 0, 0, 0, 0.656, 0, 6.897)^T$	92.229	0.1	0.145
4	-0.9	-0.89	$(0.792, 0, 0, 0, 0.657, 0, 6.897)^T$	92.228	0	0
5	-0.8	-0.79	$(0.792, 0, 0, 0, 0.657, 0, 6.897)^T$	92.228	0	0
6	-5.0	-4.99	$(0.792, 0, 0, 0, 0.657, 0, 6.897)^T$	92.228	0	0
7	-7.0	-6.99	$(0.792, 0, 0, 0, 0.656, 0, 6.897)^T$	92.228	0	0

Вектор коэффициентов чувствительности можно записать следующим образом $\tilde{x} = (0.5, 0.3, 0.1, 0, 0, 0, 0)^T$. Заметим, что полученный вектор почти в точности совпадает с вектором координат оптимальной точки решения двойственной задачи. Значения координат отличаются на небольшую погрешность.

Изучение поведения функции при варьировании компонент вектора

C.

Определим чувствительность коэффициентов исходной задачи по координатам вектора C. Будем последовательно увеличивать координаты вектора C на $\varepsilon = 10^{-2}$. Также запишем оптимальное значение целевой функции $\phi_i(0) = 92.228$.

Далее составим таблицу вычисленных значений коэффициентов чувствительности и добавим столбец с координатами оптимальной точки исходной задачи. Результаты решения приведены в таблице 2.

Таблица 2.

i	c_i	$c_i + \varepsilon_{e_i}$	x_i^*	$\varphi_i(\varepsilon)$	$\widetilde{x}_i = \frac{\varphi_i(\varepsilon) - \varphi_i(0)}{\varepsilon}$	x_i
					$\kappa_l = \varepsilon$	
1	14.4	14.41	$(0.792, 0, 0, 0, 0.656, 0, 6.897)^T$	92.236	0.8	0.792
2	16.0	16.01	$(0.792, 0, 0, 0, 0.656, 0, 6.897)^T$	92.228	0	0
3	14.4	14.41	$(0.792, 0, 0, 0, 0.656, 0, 6.897)^T$	92.228	0	0
4	16.0	16.01	$(0.792, 0, 0, 0, 0.656, 0, 6.897)^T$	92.228	0	0
5	12.8	12.81	$(0.792, 0, 0, 0, 0.656, 0, 6.897)^T$	92.234	0.6	0.656
6	12.8	12.81	$(0.792, 0, 0, 0, 0.656, 0, 6.897)^T$	92.228	0	0
7	10.5	10.51	$(0.793, 0, 0, 0, 0.656, 0, 6.897)^T$	92.297	6.9	6.897

Вектор коэффициентов чувствительности можно записать следующим образом $\tilde{x} = (0.8, 0, 0, 0, 0.6, 0, 6.9)^T$. Заметим, что полученный вектор почти в точности совпадает с вектором координат оптимальной точки решения исходной задачи. Значения координат отличаются на небольшую погрешность.

Выводы.

В ходе выполнения лабораторной работы по содержательной постановке задачи была составлена задача оптимизации. С помощью предоставленной программы была решена поставленная задача. Решены исходная и двойственная задача линейного программирования. Практически было подтверждено, что если существует решение исходной задачи, то существует решение и двойственной задачи, причем значения экстремумов совпадают, это значение равно 92.228 (теорема двойственности). Найдены коэффициенты чувствительности исходной координатам правой части ограничений. По задачи ПО результатам представленным в таблице 1 также подтверждается следующее из теоретических положений: координаты экстремальной точки для двойственной задачи являются коэффициентами чувствительности в исходной задаче по коэффициентам вектора B, то есть равенство $\lambda^* = (0.543, 0.280, 0.145, 0.000, 0.000, 0.000, 0.000)^T$ и $\tilde{x} = (0.5, 0.3, 0.1, 0, 0, 0, 0)^T$. Также были найдены коэффициенты чувствительности исходной задачи относительно вектора С. По результатам, представленным в таблице 2, координаты вектора чувствительности $\tilde{x} = (0.8, 0, 0, 0, 0.6, 0, 6.9)^T$ совпали с вектором координат оптимальной точки исходной задачи $x^* =$ $(0.792, 0.000, 0.000, 0.000, 0.656, 0.000, 6.897)^T$.