

Lecture 13: Visual Bag of Words

Visual bag of words: applications

Juan Carlos Niebles and Jiajun Wu
CS131 Computer Vision: Foundations and Applications

What will we learn today?

- Visual bag of words: applications
 - Image search
 - Action recognition

Image classification

• Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?

Uses of the BoW representation

- Treat as the input feature vector for a standard classifier
 - e.g k-nearest neighbors, support vector machine

- Cluster BoW vectors over image collection
 - Discover visual themes

What will we learn today?

- Visual bag of words: applications
 - Image search
 - Action recognition

11,400 images of game covers (Caltech games dataset)

 Bag-of-words models have been useful in matching an image to a large database of object *instances*

how do I find this image in the database?

Build the database:

- Extract features from the database images
- Learn a vocabulary using k-means (typical k: 100,000)
- Compute weights for each word
- Create an inverted file mapping words → images

Weighting the words

1

Just as with text, some visual words are more discriminative than others

the, and, or vs. cow, AT&T, Cher

- the bigger fraction of the documents a word appears in, the less useful it is for matching
 - e.g., a word that appears in all documents is not helping us

- Cons:
 - performance degrades as the database grows

- Pros:
 - Works well for CD covers, movie posters
 - Real-time performance possible

real-time retrieval from a database of 40,000 CD covers

Nister & Stewenius, Scalable Recognition with a Vocabulary Tree

Example bag-of-words matches

Example bag-of-words matches

What will we learn today?

- Visual bag of words: applications
 - Image search
 - Action recognition

Bags of features for action recognition

Space-time interest points

Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, <u>Unsupervised Learning of Human Action</u> <u>Categories Using Spatial-Temporal Words</u>, IJCV 2008.

Bags of features for action recognition

Feature extraction and description

Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, <u>Unsupervised Learning of Human Action</u>
<u>Categories Using Spatial-Temporal Words</u>, IJCV 2008.

Summary

- Visual bag of words: applications
 - Image search
 - Action recognition