

.WV

ENTERICALLY TRANSMITTED NON-A, NON-B HEPATITIS
VIRAL AGENT AND CHARACTERISTIC EPITOPEs THEREOF

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. Application Serial No. 06/879,823, filed July 25, 1994, which is a continuation of U.S. Application Serial No. 07/681,078, filed April 5, 1991, now abandoned, which is a continuation-in-part of U.S. Application Serial No. 07/505,888, filed April 5, 1990, now abandoned, which is a continuation-in-part of U.S. Application Serial No. 07/420,921, filed October 13, 1989, now abandoned, which is a continuation-in-part of U.S. Application Serial No. 07/367,486, filed June 16, 1989, now abandoned, 15 which is a continuation-in-part of U.S. Application Serial No. 07/336,672, filed April 11, 1989, now abandoned, which is a continuation-in-part of U.S. Application Serial No. 07/208,997, filed June 17, 1988, now abandoned, all of which are herein incorporated by reference.

20

INTRODUCTION

Field of Invention

This invention relates to recombinant proteins, genes, and gene probes and more specifically to such proteins and probes derived from an enterically transmitted nonA/nonB hepatitis viral agent, to diagnostic methods and vaccine applications which employ the proteins and probes, and to gene segments that encode specific epitopes (and proteins artificially produced to contain those epitopes) that are particularly useful in diagnosis and prophylaxis.

Background

Enterically transmitted non-A/non-B hepatitis viral agent (ET-NANB; also referred to herein as HEV) is the reported cause of hepatitis in several epidemics and sporadic cases in Asia, Africa, Europe, Mexico, and the Indian subcontinent. Infection is usually by water contaminated with feces, although

the virus may also spread by close physical contact. The virus does not seem to cause chronic infection. The viral etiology in ET-NANB has been demonstrated by infection of volunteers with pooled fecal isolates; 5 immune electron microscopy (IEM) studies have shown virus particles with 27-34 nm diameters in stools from infected individuals. The virus particles reacted with antibodies in serum from infected individuals from geographically distinct regions, suggesting that 10 a single viral agent or class is responsible for the majority of ET-NANB hepatitis seen worldwide. No antibody reaction was seen in serum from individuals infected with parenterally transmitted NANB virus (also known as hepatitis C virus or HCV), indicating 15 a different specificity between the two NANB types.

In addition to serological differences, the two types of NANB infection show distinct clinical differences. ET-NANB is characteristically an acute infection, often associated with fever and arthralgia, 20 and with portal inflammation and associated bile stasis in liver biopsy specimens (Arankalle). Symptoms are usually resolved within six weeks. Parenterally transmitted NANB, by contrast, produces a chronic infection in about 50% of the cases. Fever and 25 arthralgia are rarely seen, and inflammation has a predominantly parenchymal distribution (Khuroo, 1980). The course of ET-NANBH is generally uneventful in healthy individuals, and the vast majority of those infected recover without the chronic sequelae seen 30 with HCV. One peculiar epidemiologic feature of this disease, however, is the markedly high mortality observed in pregnant women; this is reported in numerous studies to be on the order of 10-20%. This finding has been seen in a number of epidemiologic 35 studies but at present remains unexplained. Whether this reflects viral pathogenicity, the lethal consequence of the interaction of virus and immune suppressed (pregnant) host, or a reflection of the

debilitated prenatal health of a susceptible malnourished population remains to be clarified.

The two viral agents can also be distinguished on the basis of primate host susceptibility.

5 ET-NANB, but not the parenterally transmitted agent, can be transmitted to cynomolgus monkeys. The parenterally transmitted agent is more readily transmitted to chimpanzees than is ET-NANB (Bradley, 1987).

10 There have been major efforts worldwide to identify and clone viral genomic sequences associated with ET-NANB hepatitis. One goal of this effort, requiring virus-specific genomic sequences, is to identify and characterize the nature of the virus and 15 its protein products. Another goal is to produce recombinant viral proteins which can be used in antibody-based diagnostic procedures and for a vaccine. Despite these efforts, viral sequences associated with ET-NANB hepatitis have not been 20 successfully identified or cloned heretofore, nor have any virus-specific proteins been identified or produced.

Relevant Literature

25 Arankalle, V.A., et al., The Lancet, 550 (March 12, 1988).

Bradley, D.W., et al., J Gen. Virol., 69:1 (1988).

30 Bradley, D.W. et al., Proc. Nat. Acad. Sci., USA, 84:6277 (1987).

Gravelle, C.R. et al., J. Infect. Diseases, 131:167 (1975).

Kane, M.A., et al., JAMA, 252:3140 (1984).

Khuroo, M.S., Am. J. Med., 48:818 (1980).

35 Khuroo, M.S., et al., Am. J. Med., 68:818 (1983).

Maniatis, T., et al. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory (1982).

Seto, B., et al., Lancet, 11:941 (1984).

5 Sreenivasan, M.A., et al., J. Gen. Virol., 65:1005 (1984).

Tabor, E., et al., J. Infect. Dis., 140:789 (1979).

10

SUMMARY OF THE INVENTION

Novel compositions, as well as methods of preparation and use of the compositions are provided, where the compositions comprise viral proteins and fragments thereof derived from the viral agent for ET-
15 NANB. A number of specific fragments of viral proteins (and the corresponding genetic sequences) that are particularly useful in diagnosis and vaccine production are also disclosed. Methods for preparation of ET-NANB viral proteins include isolating ET-NANB genomic sequences which are then cloned and expressed
20 in a host cell. The resultant recombinant viral proteins find use as diagnostic agents and as vaccines. The genomic sequences and fragments thereof find use in preparing ET-NANB viral proteins and as
25 probes for virus detection.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows vector constructions and manipulations used in obtaining and sequencing cloned
30 ET-NANB fragment; and

Figures 2A-2B are representations of Southern blots in which a radiolabeled ET-NANB probe was hybridized with amplified cDNA fragments prepared from RNA isolated from infected (I) and non-infected
35 (N) bile sources (2A), and from infected (I) and non-infected (N) stool-sample sources (2B).

DESCRIPTION OF SPECIFIC EMBODIMENTS

Novel compositions comprising generic sequences and fragments thereof derived from the viral agent for ET-NANB are provided, together with recombinant viral proteins produced using the genomic sequences and methods of using these compositions. Epitopes on the viral protein have been identified that are particularly useful in diagnosis and vaccine production. Small peptides containing the epitopes are recognized by multiple sera of patients infected with ET-NANB.

The molecular cloning of HEV was accomplished by two very different approaches. The first successful identification of a molecular clone was based on the differential hybridization of putative HEV cDNA clones to heterogeneous cDNA from infected and uninfected cyno bile. cDNAs from both sources were labeled to high specific activity with ^{32}P to identify a clone that hybridized specifically to the infected source probe. A cyno monkey infected with the Burma isolate of HEV was used in these first experiments. The sensitivity of this procedure is directly related to the relative abundance of the specific sequence against the overall background. In control experiments, it was found that specific identification of a target sequence may be obtained with as little as 1 specific part per 1000 background sequences. A number of clones were identified by this procedure using libraries and probes made from infected (Burma isolate) and control uninfected cyno bile. The first extensively characterized clone of the 16 plaques purified by this protocol was given the designation ET1.1.

ET1.1 was first characterized as both derived from and unique to the infected source cDNA. Heterogeneous cDNA was amplified from both infected and uninfected sources using a sequence independent single premier amplification technique (SISPA). This

technique is described in copending application serial No. 208,512, filed June 17, 1988. The limited pool of cDNA made from Burma infected cyno bile could then be amplified enzymatically prior to cloning or
5 hybridization using putative HEV clones as probes. ET1.1 hybridized specifically to the original bile cDNA from the infected source. Further validation of this clone as derived from the genome of HEV was demonstrated by the similarity of the ET1.1 sequence
10 and those present in SISPA cDNA prepared from five different human stool samples collected from different ET-NANBH epidemics including Somalia, Tashkent, Borneo, Mexico and Pakistan. These molecular epidemiologic studies established the
15 isolated sequence as derived from the virus that represented the major cause of ET-NANBH worldwide.

The viral specificity of ET1.1 was further established by the finding that the clone hybridized specifically to RNA extracted from infected cyno liver. Hybridization analysis of polyadenylated RNA demonstrated a unique 7.5 Kb polyadenylated transcript not present in uninfected liver. The size of this transcript suggested that it represented the full length viral genome. Strand specific
20 oligonucleotides were also used to probe viral genomic RNA extracted directly from semi-purified virions prepared from human stool. The strand specificity was based on the RNA-directed RNA polymerase (RDRP) open reading frame (ORF) identified in ET1.1 (see below).
25 Only the probe detecting the sense strand hybridized to the nucleic acid. These studies characterized HEV as a plus sense, single stranded genome. Strand specific hybridization to RNA extracted from the liver also established that the vast majority of
30 intracellular transcript was positive sense. Barring any novel mechanism for virus expression, the negative strand, although not detectable, would be present at a
35

ratio of less than 1:100 when compared with the sense strand.

ET1.1 was documented as exogenous when tested by both Southern blot hybridization and PCR using genomic DNAs derived from uninfected humans, infected and uninfected cynos and also the genomic DNAs from E. coli and various bacteriophage sources. The latter were tested in order to rule out trivial contamination with an exogenous sequence introduced during the numerous enzymatic manipulations performed during cDNA construction and amplification. It was also found that the nucleotide sequence of the ET1.1 clone was not homologous to any entries in the Genebank database. The translated open reading frame of the ET1.1 clone did, however, demonstrate limited homology with consensus amino acid residues consistent with an RNA-directed RNA polymerase. This consensus amino acid motif is shared among all positive strand RNA viruses and, as noted above, is present at the 3' end of the HCV genome. The 1.3 Kb clone was therefore presumed to be derived, at least in part, from the nonstructural portion of the viral genome.

Because of the relationship of different strains of ET-NANB to each other that has been demonstrated by the present invention, the genome of the ET-NANB viral agent is defined in this specification as containing a region which is homologous to the 1.33 kb DNA EcoRI insert present in plasmid pTZKF1 (ET1.1) carried in E. coli strain BB4 and having ATCC deposit no. 67717. The entire sequence, in both directions, has now been identified as set forth below. The sequences of both strands are provided, since both strands can encode proteins. However, the sequence in one direction has been designated as the "forward" sequence because of statistical similarities to known proteins and because the forward sequence is known to be predominately protein-encoding. This sequence is set forth below

along with the three possible translation sequences. There is one long open reading frame that starts at nucleotide 145 with an isoleucine and extends to the end of the sequence. The two other reading frames have 5 many termination codons. Standard abbreviations for nucleotides and amino acids are used here and elsewhere in this specification.

The gene sequence given below is substantially identical to one given in the parent 10 application. The present sequence differs in the omission of the first 37 nucleotides at the 5' end and last 13 nucleotides at the 3' end, which are derived from the linker used for cloning rather than from the virus. In addition, a G was omitted at position 227 15 of the sequence given in the parent application.

The following gene sequence has SEQ ID NO.1; the first amino acid sequence in reading frame beginning with nucleotide 1 has SEQ ID NO.2; the second amino acid sequence in reading frame beginning 20 with nucleotide 2 has SEQ ID NO.3; and the third amino acid sequence in reading frame beginning with nucleotide 3 has SEQ ID NO.4.

Forward Sequence

SEQ ID NO. 1:

25	AGACCTGTCC CTGTTGCAGC TGTTCTACCA CCCTGCCCG AGCTCGAACAA GGGCCTTCTC	60
	TACCTGCCCG AGGAGCTCAC CACCTGTGAT AGTGTGTTAA CATTGAAATT AACAGACATT	120
30	GTGCACTGCC GCATGGCCGC CCCGAGCCAG CGCAAGGCCG TGCTGTCCAC ACTCGTGGGC	180
	CGCTACGGCG GTCGCACAAA GCTCTACAAT GCTTCCCCT CTGATGTTCG CGACTCTCTC	240
35	GCCCCGTTTA TCCCGGCCAT TGGCCCGTAA CAGGTTACAA CTTGTGAATT GTACGAGCTA	300
	GTGGAGGCCA TGGTCGAGAA GGGCCAGGAT GGCTCCGCCG TCCTTGAGCT TGATCTTGC	360
	AACCGTGACG TGTCAGGAT CACCTTCTTC CAGAAAGATT GTAACAAGTT CACCACAGGT	420
40	GAGACCATTG CCCATGGTAA AGTGGCCCG AGCTCGG CCTGGAGCAA GACCTTCTGC	480
	GCCCTCTTG GCCCTTGGTT CGCGCTATT GAGAAGGCTA TTCTGGCCCT GCTCCCTCAG	540
45	GGTGTGTTT ACGGTGATGC CTTTGATGAC ACCGTCTTCT CGGGGGCTGT GGCCGCAGCA	600

	AAGGCATCCA	TGGTGTGGA	GAATGACTTT	TCTGAGTTG	ACTCCACCCA	GAATAACTTT	660
	TCTCTGGGTC	TAGAGTGTGC	TATTATGGAG	GAGTGTGGGA	TGCCGCAGTG	GCTCATCCGC	720
5	CTGTATCACC	TTATAAGGTC	TGCGTGGATC	TTGCAGGCC	CGAAGGAGTC	TCTGCAGGG	780
	TTTTGAAAGA	AACACTCCGG	TGAGCCCCGGC	ACTCTTCTAT	GGAATACTGT	CTGGAATATG	840
10	GCCGTTATTA	CCCACTGTTA	TGACTTCCGC	GATTTCAAGG	TGGCTGCCCT	TAAAGGTGAT	900
	GATTGATAG	TGCTTGAG	TGAGTATCGT	CAGAGTCCAG	GAGCTGCTGT	CCTGATGCC	960
	GGCTGTGGCT	TGAAGTTGAA	GGTAGATTTC	CGCCCGATCG	GTTGTATGC	AGGTGTTGTG	1020
15	GTGGCCCCCG	GCCTTGGCGC	GCTCCCTGAT	GTTGTGCCT	TCGCCGGCCG	GCTTACCGAG	1080
	AAGAAATTGGG	GCCCTGGCCC	TGAGCGGGCG	GAGCAGCTCC	GCCTCGCTGT	TAGTGATTTC	1140
20	CTCCGCAAGC	TCACGAATGT	AGCTCAGATG	TGTGTGGATG	TTGTTTCCCG	TGTTTATGGG	1200
	GTTCCTCCCTG	GACTCGTTCA	TAACCTGATT	GGCATGCTAC	AGGCTGTTGC	TGATGGCAAG	1260
	GCACATTTCA	CTGAGTCAGT	AAAACCAGTG	CTCGA			1295
25	<u>SEQ ID NO. 2:</u>						
	Arg Pro Val Pro Val Ala Ala Val Leu Pro Pro Cys Pro Glu Leu Glu						
	1	5	10	15			
30	Gln Gly Leu Leu Tyr Leu Pro Gln Glu Leu Thr Thr Cys Asp Ser Val						
	20	25	30				
	Val Thr Phe Glu Leu Thr Asp Ile Val His Cys Arg Met Ala Ala Pro						
	35	40	45				
35	Ser Gln Arg Lys Ala Val Leu Ser Thr Leu Val Gly Arg Tyr Gly Gly						
	50	55	60				
40	Arg Thr Lys Leu Tyr Asn Ala Ser His Ser Asp Val Arg Asp Ser Leu						
	65	70	75	80			
	Ala Arg Phe Ile Pro Ala Ile Gly Pro Val Gln Val Thr Thr Cys Glu						
	85	90	95				
45	Leu Tyr Glu Leu Val Glu Ala Met Val Glu Lys Gly Gln Asp Gly Ser						
	100	105	110				
	Ala Val Leu Glu Leu Asp Leu Cys Asn Arg Asp Val Ser Arg Ile Thr						
	115	120	125				
50	Phe Phe Gln Lys Asp Cys Asn Lys Phe Thr Thr Gly Glu Thr Ile Ala						
	130	135	140				
55	His Gly Lys Val Gly Gln Gly Ile Ser Ala Trp Ser Lys Thr Phe Cys						
	145	150	155	160			

	Ala Leu Phe Gly Pro Trp Phe Arg Ala Ile Glu Lys Ala Ile Leu Ala		
	165	170	175
5	Leu Leu Pro Gin Gly Val Phe Tyr Glu Asp Ala Phe Asp Asp Thr Val		
	180	185	190
	Phe Ser Ala Ala Val Ala Ala Lys Ala Ser Met Val Phe Glu Asn		
	195	200	205
10	Asp Phe Ser Gin Phe Asp Ser Thr Gin Asn Asn Phe Ser Leu Gly Leu		
	210	215	220
	Glu Cys Ala Ile Met Glu Glu Cys Glu Met Pro Gln Trp Leu Ile Arg		
	225	230	240
15	Leu Tyr His Leu Ile Arg Ser Ala Trp Ile Leu Gin Ala Pro Lys Glu		
	245	250	255
20	Ser Leu Arg Gly Phe Trp Lys Lys His Ser Gin Glu Pro Gly Thr Leu		
	260	265	270
	Leu Trp Asn Thr Val Trp Asn Met Ala Val Ile Thr His Cys Tyr Asp		
	275	280	285
25	Phe Arg Asp Phe Gln Val Ala Ala Phe Lys Gly Asp Asp Ser Ile Val		
	290	295	300
	Leu Cys Ser Glu Tyr Arg Gin Ser Pro Gly Ala Ala Val Leu Ile Ala		
	305	310	315
30	Gly Cys Gly Leu Lys Leu Lys Val Asp Phe Arg Pro Ile Gly Leu Tyr		
	325	330	335
	Ala Gly Val Val Val Ala Pro Gly Leu Gly Ala Leu Pro Asp Val Val		
35	340	345	350
	Arg Phe Ala Gly Arg Leu Thr Glu Lys Asn Trp Gly Pro Gly Pro Glu		
	355	360	365
40	Arg Ala Glu Gln Leu Arg Leu Ala Val Ser Asp Phe Leu Arg Lys Leu		
	370	375	380
	Thr Asn Val Ala Gln Met Cys Val Asp Val Val Ser Arg Val Tyr Gly		
	385	390	400
45	Val Ser Pro Gly Leu Val His Asn Leu Ile Gly Met Leu Gln Ala Val		
	405	410	415
	Ala Asp Gly Lys Ala His Phe Thr Glu Ser Val Lys Pro Val Leu		
50	420	425	430
	<u>SEQ ID NO. 3:</u>		
55	Asp Leu Ser Leu Leu Gin Leu Phe Tyr His Pro Ala Pro Ser Ser Asn		
	1	5	10
	15		

	Arg Ala Phe Ser Thr Cys Pro Arg Ser Ser Pro Pro Val Ile Val Ser			
	20	25	30	
5	. His Leu Asn . Gln Thr Leu Cys Thr Ala Ala Trp Pro Pro Arg			
	35	40	45	
	Ala Ser Ala Arg Pro Cys Cys Pro His Ser Trp Ala Ala Thr Ala Val			
	50	55	60	
10	Ala Gln Ser Ser Thr Met Leu Pro Thr Leu Met Phe Ala Thr Leu Ser			
	65	70	75	80
	Pro Val Leu Ser Arg Pro Leu Ala Pro Tyr Arg Leu Gln Leu Val Asn			
	85	90	95	
15	Cys Thr Ser . Trp Arg Pro Trp Ser Arg Arg Ala Arg Met Ala Pro			
	100	105	110	
20	Pro Ser Leu Ser Leu Ile Phe Ala Thr Val Thr Cys Pro Gly Ser Pro			
	115	120	125	
	Ser Ser Arg Lys Ile Val Thr Ser Ser Pro Gln Val Arg Pro Leu Pro			
	130	135	140	
25	Met Val Lys Trp Ala Arg Ala Ser Arg Pro Gly Ala Arg Pro Ser Ala			
	145	150	155	160
	Pro Ser Leu Ala Leu Gly Ser Ala Leu Leu Arg Arg Leu Phe Trp Pro			
	165	170	175	
30	Cys Ser Leu Arg Val Cys Phe Thr Val Met Pro Leu Met Thr Pro Ser			
	180	185	190	
35	Ser Arg Arg Leu Trp Pro Gln Gln Arg His Pro Trp Cys Leu Arg Met			
	195	200	205	
	Thr Phe Leu Ser Leu Thr Pro Pro Arg Ile Thr Phe Leu Trp Val .			
	210	215	220	
40	Ser Val Leu Leu Trp Arg Ser Val Gly Cys Arg Ser Gly Ser Ser Ala			
	225	230	235	240
	Cys Ile Thr Leu . Gly Leu Arg Gly Ser Cys Arg Pro Arg Arg Ser			
	245	250	255	
45	Leu Cys Glu Gly Phe Gly Arg Asn Thr Pro Val Ser Pro Ala Leu Phe			
	260	265	270	
50	Tyr Gly Ile Leu Ser Gly Ile Trp Pro Leu Leu Pro Thr Val Met Thr			
	275	280	285	
	Ser Ala Ile Phe Arg Trp Leu Pro Leu Lys Val Met Ile Arg . Cys			
	290	295	300	
55	Phe Ala Val Ser Ile Val Arg Val Gln Glu Leu Leu Ser . Ser Pro			
	305	310	315	320

	Ala Val Ala . Ser . Arg . Ile Ser Ala Arg Ser Val Cys Met			
	325	330	335	
5	Gln Val Leu Trp Trp Pro Pro Ala Leu Ala Arg Ser Leu Met Leu Cys			
	340	345	350	
	Ala Ser Pro Ala Gly Leu Pro Arg Arg Ile Gly Ala Leu Ala Leu Ser			
	355	360	365	
10	Gly Arg Ser Ser Ser Ala Ser Leu Leu Val Ile Ser Ser Ala Ser Ser			
	370	375	380	
15	Arg Met . Leu Arg Cys Val Trp Met Leu Phe Pro Val Phe Met Gly			
	385	390	395	400
	Phe Pro Leu Arg Ser Phe Ile Thr . Leu Ala Cys Tyr Arg Leu Leu			
	405	410	415	
20	Leu Met Ala Arg His Ile Ser Leu Ser Gln . Asn Gln Cys Ser			
	420	425	430	
	<u>SEQ ID NO. 4:</u>			
25	Thr Cys Pro Cys Cys Ser Cys Ser Thr Thr Leu Pro Arg Ala Arg Thr			
	1	5	10	15
	Gly Pro Ser Leu Pro Ala Pro Gly Ala His His Leu . . Cys Arg			
	20	25	30	
30	Asn Ile . Ile Asn Arg His Cys Ala Leu Pro His Gly Arg Pro Glu			
	35	40	45	
35	Pro Ala Gln Gly Arg Ala Val His Thr Arg Gly Pro Leu Arg Arg Ser			
	50	55	60	
	His Lys Ala Leu Gln Cys Phe Pro Leu . Cys Ser Arg Leu Ser Arg			
	65	70	75	80
40	Pro Phe Tyr Pro Gly His Trp Pro Arg Thr Gly Tyr Asn Leu . Ile			
	85	90	95	
	Val Arg Ala Ser Gly Gly His Gly Arg Glu Gly Pro Gly Trp Leu Arg			
	100	105	110	
45	Arg Pro . Ala . Ser Leu Gln Pro . Arg Val Gln Asp His Leu			
	115	120	125	
	Leu Pro Glu Arg Leu . Gln Val His His Arg . Asp His Cys Pro			
50	130	135	140	
	Trp . Ser Gly Pro Gly His Leu Gly Leu Glu Gln Asp Leu Leu Arg			
	145	150	155	160
55	Pro Leu Trp Pro Leu Val Pro Arg Tyr . Glu Gly Tyr Ser Gly Pro			
	165	170	175	

Ala Pro Ser Gly Cys Val Leu Arg . . Cys Leu . . His Arg Leu
 180 185 190

5 Leu Gly Gly Cys Gly Arg Ser Lys Gly Ile His Gly Val . Glu .
 195 200 205

Leu Phe . . Val . . Leu His Pro Glu . . Leu Phe Ser Gly Ser Arg
 210 215 220

10 Val Cys Tyr Tyr Gly Gly Val Thr Asp Ala Ala Val Ala His Pro Pro
 225 230 235 240

15 Val Ser Pro Tyr Lys Val Cys Val Asp Leu Ala Gly Pro Glu Gly Val
 245 250 255

Ser Ala Arg Val Leu Glu Glu Thr Leu Arg . Ala Arg His Ser Ser
 260 265 270

20 Met Glu Tyr Cys Leu Glu Tyr Gly Arg Tyr Tyr Pro Leu Leu . Leu
 275 280 285

Pro Arg Phe Ser Gly Gly Cys Leu . Arg . . Phe Asp Ser Ala
 290 295 300

25 Leu Gln . Val Ser Ser Glu Ser Arg Ser Cys Cys Pro Asp Arg Arg
 305 310 315 320

30 Leu Trp Leu Glu Val Glu Gly Arg Phe Pro Pro Asp Arg Phe Val Cys
 325 330 335

Arg Cys Cys Gly Gly Pro Arg Pro Trp Arg Ala Pro . Cys Cys Ala
 340 345 350

35 Leu Arg Arg Pro Ala Tyr Arg Glu Glu Leu Gly Pro Trp Pro . Ala
 355 360 365

Gly Gly Ala Ala Pro Pro Arg Cys . . Phe Pro Pro Gln Ala His
 370 375 380

40 Glu Cys Ser Ser Asp Val Cys Gly Cys Cys Phe Pro Cys Leu Trp Gly
 385 390 395 400

Phe Pro Trp Thr Arg Ser . Pro Asp Trp His Ala Thr Gly Cys Cys
 405 410 415

. Trp Gln Gly Thr Phe His . Val Ser Lys Thr Ser Ala Arg
 420 425 430

50 The complementary strand, referred to here
 as the "reverse sequence," is set forth below in the
 same manner as the forward sequence set forth above.
 Several open reading frames, shorter than the long
 open reading frame found in the forward sequence, can

be seen in this reverse sequence. Because of the relative brevity of the open reading frames in the reverse direction, they are probably not expressed.

The following gene sequence has SEQ ID NO.5.

5 Reverse Sequence

Seq. ID No. 5.

	TCGAGCACTG	GTTTACTGA	CTCAGTGAAC	TGTGCTTGC	CATCAGCAAC	AGCCTGTAGC	60
10	ATGCCAATCA	GGTTATGAAC	GAAGTCCAGGG	AAACACCCAT	AAACACGGGA	AACAACATCC	120
	ACACACATCT	GAGCTACATT	CGTGAGCTTG	CGGAGGAAAT	CACTAACAGC	GAGGCGGAGC	180
15	TGCTCCGCC	GCTCAGGGCC	AGGGCCCCAA	TTCTTCTCGG	TAAGCCGGCC	GGCGAAGCGC	240
	ACAACATCAG	GGAGCGCGCC	AAGGCCGGGG	GCCACCACAA	CACCTGCATA	CAAACCGATC	300
	GGGCGGAAAT	CTACCTCAA	CTTCAAGCCA	CAGCCGGCGA	TCAGGACAGC	AGCTCCTGGA	360
20	CTCTGACGAT	ACTCACTGCA	AAGCACTATC	GAATCATCAC	CTTTAAAGGC	AGCCACCTGA	420
	AAATCGCGGA	AGTCATAACA	GTGGGTAATA	ACGGCCATAT	TCCAGACAGT	ATTCCATAGA	480
25	AGAGTGCCGG	GCTCACCGGA	GTGTTCTTC	AAAAACCTC	GCAGAGACTC	CTTCGGGCC	540
	TGCAAGATCC	ACGCAGACCT	TATAAGGTGA	TACAGGCGGA	TGAGCCACTG	CGGCATCCCA	600
	CACTCCTCCA	TAATAGCACA	CTCTAGACCC	AGAGAAAAGT	TATTCTGGGT	GGAGTCAAAC	660
30	TCAGAAAAGT	CATTCTCAA	CAACATGGAT	GCCUTTGCTG	CGGCCACAGC	CGCCGAGAAG	720
	ACGGTGTCA	CAAAGGCATC	ACCGTAAAAC	ACACCCCTGAG	GGAGCAGGGC	CAGAATAGCC	780
35	TTCTCAATAG	CGCGGAACCA	AGGGCCAAAG	AGGGCGCAGA	AGGTCTTGCT	CCAGGCCGAG	840
	ATGCCCTGGC	CCACTTTACC	ATGGGCAATG	GTCTCACCTG	TGGTGAACCT	GTTACAATCT	900
	TTCTGGAAGA	AGGTGATCCT	GGACACGTCA	CGGTTGCAAA	GATCAAGCTC	AAGGACGGCG	960
40	GAGCCATCCT	GGCCCTTCTC	GACCATGGCC	TCCACTAGCT	CGTACAATT	ACAAGTTGTA	1020
	ACCTGTACGG	GGCCAATGGC	CGGGATAAAA	CGGGCGAGAG	AGTCGCAAC	ATCAGAGTGG	1080
45	GAAGCATTGT	AGAGCTTGT	GCGACCGCCG	TAGCGGCCCA	CGAGTGTGGA	CAGCACGGCC	1140
	TTGCCTGGC	TCGGGGCGGC	CATGCGGCA	TGACACAATGT	CTGTTAAC	AAATGTTACG	1200
	ACACTATCAC	AGGTGGTGAG	CTCCTGGGGC	AGGTAGAGAA	GGCCCTGTT	GAGCTCGGGG	1260
50	CAGGGTGGTA	GAACAGCTGC	AACAGGGACA	GGTCT			1295

Identity of this sequence with sequences in etiologic agents has been confirmed by locating a

corresponding sequence in a viral strain isolated in Burma. The Burmese isolate contains the following sequence of nucleotides (one strand and open reading frames shown). The following gene sequence has SEQ ID NO.6; the protein sequence corresponding to ORF1 has SEQ ID NO.7; ORF2 has SEQ ID NO.8; and ORF3 has SEQ ID NO.9.

SEQUENCE OF HEV (BURMA STRAIN)
-ORF1-->
10 M E A H Q F I K A P G
AGGCAGACCACATATGTGGTCGATGCCATGGAGGCCATCAGTTATTAGGCTCCTGGC

15 I T T A I E Q A A L A A A N S A L A N A
ATCACTACTGCTATTGAGCAGGCTGCTCTAGCAGCGGCCAACTCTGCCCTGGCGAATGCT 120

20 V V V R P F L S H Q Q I E I L I N L M Q
GTGGTAGTTAGGCCTTTCTCTCACAGCAGATTGAGATCCTCATTAACCTAACGAA

25 P R Q L V F R P E V F W N H P I Q R V I
CCTGCCAGCTGTTCCGCCGGAGGTTCTGGAATCATCCCATCCAGCGTGTATC 240
H N E L E L Y C R A R S G R C L E I G A
CATAACGAGCTGGAGCTTACTGCCGCCGCTCCGGCCGTGTCTGAAATTGGCGCC

30 25 H P R S I N D N P N V V H R C F L R P V
CATCCCCGCTCAATAATGATAATCCTAATGTGGTCCACCGCTGCTTCCTCCGCCGT 360
G R D V Q R W Y T A P T R G P A A N C R
GGCGGTGATGTTAGCGCTGGTATACTGCTCCACTCGCGGCCGGCTGCTAATTGCCGG

35 30 R S A L R G L P A A D R T Y C L D G F S
CGTTCCGCGCTGCCGGCTTCCCGCTGCTGACCGCACTTACTGCCCGACGGGTTCT 480
G C N F P A E T G I A L Y S L H D M S P
GGCTGTAACCTCCCGCCGAGACTGGCATGCCCTACTCCCTCATGATATGTCACCA

40 35 S D V A E A M F R H G M T R L Y A A L H
TCTGATGTCGCCGAGGCCATGTTCCGCCATGGTATGACGCCGCTCTATGCCGCCAT 600
L P P E V L L P P G T Y R T A S Y L L I
CTTCCGCCCTGAGGTCTGCTGCCCTGGCACATATGCCACCGCATGTTATTGCTAATT

45 40 H D G R R V V V T Y E G D T S A G Y N H
CATGACGGTAGGCCGTTGTGGTGACGTATGAGGGTGATACTAGTGCTGGTACAACCAC 720
D V S N L R S W I R T T K V T G D H P L
GATGTCCTCAAATTGCGCTCTGGATTAGAACCAAGGTACCGAGACCATCCCTC

50 45 V I E R V R A I G C H F V L L L T A A P
GTTATCGAGCGGGTAGGGCATTGGCTGCCACTTGTCTTGCTCACGGCAGCCCCG 840
E P S P M P Y V P Y P R S T E V Y V R S
GAGCCATCACCTATGCCATTGTCCTAACCCGGTCTACCGAGGTCTATGTCCGATCG
55

I F G P G G T P S L F P T S C S T K S T
 ATCTCGGCCGGTGGCACCCCTTCTTAATTGCAACCTCATGCTCCACTAAGTCGACC 960
 5 F H A V P A H I W C R L M L F G A T L D
 TTCCATGCTGTCCCCATGGGACCGTCTTATGCTGTCGGGGCACCTGGAT
 D Q A F C C S R L M T F L A G I S Y K V
 GACCAAGCCTTTGTGCTCCGTTAATGACCTACCTCCGGCATTAGCTACAAGGTC 1080
 10 T V G T L V A N E G W N A S E D A L T A
 ACTGTTGGTACCCCTGTGGCTAATGAAGGTGGAAATGCCCTGAGGACGCCCTCACAGCT
 V I T A A Y S T I C H Q R Y L R T Q A I
 GTTATCACTGCCGCTACCTTACCATTTGCCACCCAGGGTATCTCCGACCCAGGCTATA 1200
 15 S K G M R R L E R E H A Q * F I T R L Y
 TCCAAGGGATGCGTCGTGGAACGGAGATGCCAGAAGTTATAACACGCCCTAC
 S W L F E K S G R O Y I P G R Q L E F Y
 AGCTGGCTCTTGAGAAGTCCGGCGTGTGATTACATCCCTGGCGTCAGTTGGAGTTCTAC 1320
 A Q C R R W L S A G F H L D P R V L V F
 GCCCAGTGCAGGCCTGGCTCCGCCGGTTCATCTTGATCCACGGGTGTTGGTTTT
 25 D E S A P C H C R T A I R K A L S K F C
 GACGAGTCGGCCCCCTGCCATTGTAGGACCGCGATCGTAAGGCCTCTCAAAGTTTG 1440
 C F M K W L G Q E C T C F L Q P A E G A
 TGCTTCATGAAGTGGCTGGTCAGGAGTGCACCTGCTTCAGCCTGCAGAAGCGCC
 30 V G D Q G H D N E A Y E G S D V D P A E
 GTCGCGACCAGGGTCATGATAATGAAGCTATGAGGGTCCGATGTTGACCCGTGAG 1560
 S A I S D I S G S Y V V P G T A L Q P L
 TCCGCCATTAGTGCACATATCTGGTCCATGTCGTCCTGGCACTGCCCTCCAACCGCTC
 Y Q A L D L P A E I V A R A G R L T A T
 TACCAAGGCCCTCGATCTCCCGCTGAGATTGTTGGCTCGCGCGGGCGCTGACCGCCACA 1680
 40 V K V S Q V D G R I D C E T L L G N K T
 GTAAAGGTCTCCAGGTGATGGCGGATCGATTGCGAGACCTTCTGGTAACAAAACC
 F R T S F V D G A V L E T N G P E R H N
 TTTCGCACGTCGTTGACGGGGCGTCTTAGAGACCAATGGCCAGAGCGCCACAAT 1800
 45 L S F D A S Q S T M A A G P F S L T Y A
 CTCTCCTCGATGCCAGTCAGAGCACTATGGCCGCTGGCCCTTCAGTCTCACCTATGCC
 A S A A G L E V R Y V A A G L D H R A V
 GCCTCTGCAGCTGGCTGGAGGTGCGCTATGTTGCTGCCGGCTTGACCATGGCGGTT 1920
 50 F A P G V S P R S A P G E V T A F C S A
 TTTGCCCGGTGTTCACCCGGTCAGCCCCGGGAGGTTACCGCCTCTGCTCTGCC
 L Y R F N R E A Q R H S L I G N L W F H
 CTATACAGGTTAACCGTGAGGCCAGCGCATTGCTGATCGTAACCTATGGTCCAT 2040
 55 P E G L I G L F A P F S P G H V W E S A
 CCTGAGGGACTCATGGCCTTCCGCCCCGTTTGCCCGGGCATGTTGGAGTCGGCT
 60

N P F C G E S T L Y T R T W S E V D A V
 AATCCATTCTGTGGCGAGAGCACACTTACACCCGTA
 5 S S P A R P D L G F M S E P S I P S R A
 TCTAGTCCAGCCCCGGCCTGACTTAGGTTTATGTCGAGCCTCTATA
 CACTAGTAGGGCC
 A T P T L A A P L P P P A P D P S P P P
 GCCACGCGCTACCCCTGGGGGGCCCCCTGACCCCCCCCCCTGCACCGGACCCTCCCCCCCCTCCC 2280
 10 S A P A L A E P A S G A T A G A P A I T
 TCTGCCCGGGCGCTTGCTGAGCGGGCTCTGGCGTACCGCCGGGGCCCCGGCCATAACT
 H Q T A R H R R L L F T Y P O G S K V F
 CACCAAGACGGGCCGGCAGCGCCGCGCTGCTCTCACCTACCCGGATGGCTAAGGTATT 2400
 15 A G S L F E S T C T W L V N A S N V D H
 GCCGGCTCGTGTGAGTCGACATGCACGTGGCTCGTAAACCGTCAATGTTGACCAC
 R P G G G L C H A F Y Q R Y P A S F D A
 CGCCCTGGCGGGGGCTTGCCATGCATTTACCAAAGGTACCCCGCCTCCTTGATGCT 2520
 20 A S F V M R D G A A A Y T L T P R P I I
 GCCTCTTTGTGATGCCGACGGCGGGCGTACACACTAACCCCCGGCCAATAATT
 H A V A P D Y R L E H N P K R L E A A Y
 CACGCTGTCGCCCTGATTATAGGTTGGAACATAACCAAAGAGGCTTGAGGCTGTTAT 2640
 25 R E T C S R L G T A A Y P L L G T G I Y
 CGGGAAACTTGCTCCGCCCTGGCACCGCTGCATACCCGCTCTCGGACCGCATATAC
 30 Q V P I G P S F D A W E R N H R P G D E
 CAGGTGCCGATGGCCCCAGTTTGACGCCCTGGAGCGGAACCAACCGCCCCGGGATGAG 2760
 L Y L P E L A A R W F E A N R P T R P T
 TTGTAACCTTCCTGAGCTTGCTGCCAGATGGTTGAGGCCAATAGGCCGACCCGCCGACT
 35 L T I T E D V A R T A N L A I E L D S A
 CTCACTATAACTGAGGATGTTGACGGACAGCGAATCTGGCATCGAGCTTGACTCAGCC 2880
 40 T D V G R A C A G C R V T P G V V Q Y Q
 ACAGATGTCGGCCGGGCTGTGCCGGCTGCGGGTACCCCCGGCGTTGTTCACTACAG
 F T A G V P G S G K S R S I T Q A D V D
 TTTACTGCAGGTGTGCCCTGGATCCGGCAAGTCCCGCTATCACCAAGCCGATGTGGAC 3000
 45 V V V V P T R E L R N A W R R R G F A A
 GTTGTGTTGGTCCCGACGCGTGAGTTGCGTAATGCCCTGGCGCCGTCGCGGCTTGCTGCT
 F T P H T A A R V T Q G R R V V I D E A
 50 TTTACCCCGCATACTGCCAGAGTCACCCAGGGCGCCGGTTGTCATTGATGAGGCT 3120
 P S L P P H L L L H M Q R A A T V H L
 CCATCCCTCCCCCTCACCTGCTGCTGCCACATGCAGCGGGCCGCCACCGTCCACCTT
 55 L G D P N Q I P A I D F E H A G L V P A
 CTTGGCGACCCGAACCAAGATCCAGCCATGACTTGA
 60 I R P D L G P T S W W H V T H R W P A D
 ATCAGGCCGACTTAGGCCCCACCTCTGGTGGCATGTTACCCATCGCTGGCCTGCGGAT

V C E L I R G A Y P M I Q T T S R V L R
 GTATGGAGCTCATCGTGGCATACCCSATGATCCAGACCACTAGCCGGTTCTCCGT 3360
 5 S L F W G E P A V G Q K L V F T Q A A K
 TCGTTGTTCTGGGTGAGCCTGCCGTGGGAGAAACTAGTGTTCACCCAGGCAGGCAAG
 P A N P G S V T V H E A Q G A T Y T E T
 CCCGCCAACCCCCGGCTCACTGACGGTCCACGGGCGCTACCTACACGGAGACC 3480
 10 T I I A T A C A R G L I Q S S R A H A I
 ACTATTATTGCCAGAGCAGATGCCCGGGGCTTATTCACTGCTGCTGGGCTCATGCCATT
 V A L T R H T E K C I I D A P G L L R
 GTTGCCTGACGCCAACACTGAGAAGTGGCTCATATTGACGCCACAGGCCGCTGCTCGC 3600
 15 E V G I S D A I V N N F F L A G G E I G
 GAGGTGGGCATGCCGATGCAATCTTAACCTTTCTCGCTGGTGGCGAAATTGGT
 H Q R P S V I P R G N P D A N V D T L A
 CACCAAGCGCCCATCAGTTATTCCCCGTGCAACCCGTGACGCCAATGTTGACACCCCTGGCT 3720
 20 A F P P S C Q I S A F H Q L A E E L G H
 GCCTTCCCAGGGCTTGCAGATAGTGCCTCCATCAGTTGGTGAGGAGCTGGCCAC
 R P V P V A A V L P P C P E L E Q G L L
 AGACCTGTCCCTGTTGCAGCTGTTCTACCACCTGCCGGAGCTCGAACAGGCCCTCTC 3840
 25 Y L P Q E L T T C D S V V T F E L T D I
 TACCTGCCCAAGGAGCTCACCAACCTGTGATAAGTGTGTAACATTGAATTACAGACATT
 30 V H C R M A A P S Q R K A V L S T L V G
 GTGCACTGCCGCATGGCCGCCAGGCCAGCGCAAGGCCGTGCTGTCACACTCGTGGC 3960
 R Y G G R T K L Y N A S H S D V R D S L
 CGCTACGGCGGTGCAACAAAGCTCTACAATGCTTCCACTCTGATGTTGCGACTCTC
 A R F I P A I G P V Q V T T C E L Y E L
 GCCCGTTTATCCCGGCCATTGGCCCGTACAGGTTACAACCTGTGAATTGTACGAGCTA 4080
 40 V E A M V E K G Q D G S A V L E L D L C
 GTGGAGGCCATGGTCGAGAAGGCCAGGATGGCTCCGCGCTTGAGCTGATCTTG
 N R D V S R I T F F Q K D C N K F T T G
 AACCGTGACGTGTCAGGATCACCTCTTCAGAAAGATTGTAACAAGTTCACCAAGGT 4200
 45 E T I A H G K V G Q G I S A S K T F C
 GAGACCATTGCCATGGTAAAGTGGCCAGGGCATCTGGCTGGAGCAAGACCTCTGC
 A L F G P W F R A I E K A I L A L L P Q
 GCCCTTTGGCCCTTGGTCCGCGCTATTGAGAAGGCTATTCTGGCCCTGCTCCCTCAG 4320
 50 G V F Y G D A F D D T V F S A A V A A A
 GGTGTGTTTACGGTGATGCCCTTGTGACACCGCTTCTCGGCCGCTGTGGCCGCAGCA
 K A S M V F E N D F S E F D S T Q N N F
 AAGGCATCCATGGTGGTGAATGACTTTCTGAGTTGACTCCACCCAGAATAACTT 4440
 55 S L G L E C A I M E E C G M P Q W L I R
 TCTCTGGGTCTAGAGTGTGCTATTATGGAGGAGTGTGGGATGCCGAGTGGCTCATCCGC
 60

L Y H L I R S A W I L Q A P K E S L R G
 CTGTATCACCTTATAAGGTCTGCGTGGATCTGCAGGCCCGAAGGAGTCTCTGCAGGG 4560
 F W K K H S G E P G T L L W N T V W N M
 5 TTTTGAAGAACACTCCGGTAGGCCGGACTCTTATGAAATACTGTCCTGAAATATG
 A V I T H C Y D F R D F Q V A A F K G D
 GCCGTTATTACCCACTGTATGACTCCCGATTTCAAGGTGGCTGCCTTAAAGGTGAT 4680
 10 D S I V L C S E Y R Q S P G A A V L I A
 GATTGATAGTGCCTTGAGTAGTATCGTCAGAGTCCAGGAGCTGCTGCCTGATGCC
 G C G L K L K V D F R P I G L Y A G V V
 15 GGCTGTGGCTTAAGTTGAAGGTAGATTCCGCCGATGGCTTGTATGCAGGTGTTG 4800
 V A P G L G A L P D V V R F A G R L T E
 GTGGCCCCCGGCCCTGGCGCCTGGATGTTGTGCCTGCCGGCTTACCGAG
 K N W G P G P E R A E Q L R L A V S D F
 20 AAGAATTGGGGCCCTGGCCCTGAGCGGGCGGAGCAGCTCCGCCTCGCTGTTAGTGA 4920
 L R K L T N V A Q M C V D V V S R V Y G
 CTCCGCAAGCTACGAATGTAGCTCAGATGTGTGGATGTTGTTCCGTGTTATGGG
 V S P G L V H N L I G M L Q A V A D G K
 25 GTTTCCCTGGACTCGTCATAACCTGATTGCATGCTACAGGCTGTTGATGGCAAG 5040
 A H F T E S V K P V L | D L T N S I L C R
 30 GCACATTCACTGAGTCAGTAAACCAAGTGCTCGACTTGACAAATTCAATTTGTGTCGG
 |-ORF3-->
 M N N M S F A A P M G S R P C A L G
 M R P R P
 35 V E Z | -ORF2-->
 GTGGAATGAATAACATGTCTTGCTGCCTGCCATGGGTCGACCATGCGCCCTGGCC 5160
 L F C C C S S C F C L C C P R H R P V S
 40 I L L L L M F L P M L P A P P P P G Q P
 TATTTGTTGCTGCTCCTCATGTTTGCTATGCTGCCCGCCACCGCCGGTCAGCC
 R L A A V V G G A A A V P A V V S G V T
 45 S G R R R G R R S G G S G G G F W G D R
 GTCTGGCCGCCGTGGCGGCCAGCGCGGTTCCGGCGGTGGTTCTGGGTGACCG 5280
 G L I L S P S Q S P I F I Q P T P S P P
 50 V D S Q P F A I P Y I H P T N P F A P D
 GGTTGATTCTCAGCCCTCGCAATCCCCTATATTCAACCAACCCCTCGCCCCCGA
 M S P L R P G L D L V F A N P P D H S A
 55 V T A A A G A G P R V R Q P A R P L G S
 TGTCACCGCTGCGGCCGGGCTGGACCTCGTGTGCAACCGCCCGACCAACTCGGCTC 5400

P L G V T R P S A P P L P H V V D L P Q
 A W R D C A Q R P A V A S R R R P T T A
 CGCTTGGCGTGACCGAGGCCCCAGCAGCCCCGCGTTGCCTCACGTCTGAGACCTACCAACAGC
 5
 E G P R R Z
 G A A P L T A , A P A H D T P P V P D V
 TGGGGCCCGCGCCGCTAACCGCGCTCGCTCCGCCATGACACCCCGCCAGTGCCTGATGT 5520
 10
 D S R G A I L R P , Y N L S T S P L T S
 CGACTCCCAGGGGCCATTTGGCGGCCAGTATAACCTATAACACATCTCCCTTACCTC
 15
 S V A T G T N L , L Y A A P L S P L L P
 TTCCGTGGCCACCGGCACTAACCTGGTTCTTATGCCGCCCTCTTAGTCCGTTTAC 5640
 L Q D G T N T H I M A T E A S N Y A Q Y
 20
 CCTTCAGGACGGCACCAAATACCCATATAATGCCACGGAAAGCTCTAATTATGCCAGTA
 R V A R A T I R , R P L V P N A V G G Y
 25
 CCGGGTTGCCCGTGCCACAATCCGTTACCGCCCGCTGGTCCCCATGCTGTCGGCGGTTA 5760
 A I S I S F W P Q T T T T P T S V D M N
 CGCCATCTCCATCTCATTCTGGCCACAGACCACCAACCCCCGACGTCCGTTGATATGAA
 30
 S I T S T D V R ! L V Q P G I A S E L V
 TTCAATAACCTGACGGATGTTGTATTTAGTCAGCCGGCATAGCCTCTGAGCTGT 5880
 I P S E R L H Y R N Q G W R S V E T S G
 35
 GATCCCAAGTGAGCGCTACACTATCGTAACCAAGGCTGGCGCTCCGTCGAGACCTCTGG
 V A E E E A T S G L V M L C I H G S L V
 40
 GGTGGCTGAGGAGGGAGGCTACCTCTGGTCTTGTATGCTTGCATACATGGCTCACTCGT 6000
 N S Y T N T P Y T G A L G L L D F A L E
 45
 AAATTCCATACAAATACACCCCTACCGGTGCCCTGGGCTGTTGGACTTGCCTTGA
 L E F R N L T P G N T N T R V S R Y S S
 GCTTGAGTTTCGAAACCTAACCCCGTAACACCAATACGCGGGTCTCCGTTATTCCAG 6120
 50
 T A R H R L R R G A D G T A E L T T T A
 CACTGCTGCCACCGCCTCGTCGCGGTGCGGACGGACTGCCGAGCTACCAACACGGC
 55
 A T R F M K D L Y F T S T N G V G E I G
 TGCTACCCGCTTATGAAGGACCTCTATTTACTAGTACTAATGGTGTGGAGATCGG 6240

R G I A L T L F N L A D T L L G G L P T
 CCGGGGGATAGCCCTACCCCTGTTAACCTTGCTGACACTCTGCTGGCGGCCTGCCGAC
 5 E L I S S A G G Q L F Y S R P V V S A N
 AGAATTGATTCGTGGCTGGTGGCCAGCTGTTACTCCCGTCCCGTTGTCTAGCCAA 6360
 G E P T V K E Y T S V E N A Q Q D K G I
 10 TGGCGAGCGACTGTTAAGTTGATAACATGTAGAGAATGCTCAGCAGGATAAGGGTAT
 A I P H D I D L G E S R V V I Q D Y D N
 15 TGCATCCCGCATGACATTGACCTCGGAGAACCTCGTGTGGTTATTAGGATTATGATAA 6480
 Q H E Q C D A P T P S P A P S R P F S V L
 CCAACATGAACAAGATCGGCCGACGCCCTCTCCAGCCCCATCGGCCCTTCTGTCCCT
 20 R A N D V L W L S L T A A E Y D Q S T Y
 TCGAGCTAATGATGTGTTGGCTCTCTCACCGCTGCCGAGTATGACCAGTCCACTTA 6600
 25 G S S T G P V Y V S D S V T L V N V A T
 TGGCTCTCGACTGGCCCAGTTATGTTCTGACTCTGTGACCTTGGTTAATGTTGCGAC
 30 G A Q A V A R S L D W T K V T L D G R P
 CGGCGCGCAGGCCGTTGCCCGTCGCTCGATTGGACCAAGGTACACTTGACGGTCGCC 6720
 L S T I Q Q Y S K T F F V L P L R G K L
 35 CCTCTCCACCATCCAGCAGTACTCGAAGACCTCTTGCTGCCGCTCCGGTAAGCT
 S F W E A G T T K A G Y P Y N Y N T T A
 CTCTTCTGGAGGCAGGCACAACAAAGCCGGTACCCCTATAATTATAACACCACTGC 6840
 40 S D Q L L V E N A A G H R V A I S T Y T
 TAGCGACCAACTGCTTGTCGAGAATGCCGCCGGCACCGGGTCGCTATTCACCTACAC
 45 T S L G A G P V S I S A V A V L A P H S
 CACTAGCCTGGGTGCTGGTCCCGTCTCCATTCTGCCGTTGCCGTTAGCCCCCACTC 6960
 50 A L A L L E D T L D Y P A R A H T F D D
 TGCGCTAGCATTGCTTGAGGATACCTGGACTACCCCTGCCGCCACTTTGATGA
 F C P E C R P L G L Q G C A F Q S T V A
 55 TTTCTGCCAGAGTGCCGCCCTGGCTTCAGGGCTGCCCTTCCAGTCTACTGTCG 7080
 E L Q R L K M K V G K T R E L Z
 TGAGCTTCAGCGCCTTAAGATGAAGGTGGTAAAACCTGGAGTTGAGTTATTTGCTT
 60

GTGCCCGCCCTTCTTCGTGCTTATTTTGATTTCTGGGTCCGGCTCCCTGA 7195

Total number of bases in this sequence as
presented is 7195. The poly-A tail present in the
5 cloned sequence has been omitted.

The ability of the methods described herein to
isolate and identify genetic material from other NANB
hepatitis strains has been confirmed by identifying
genetic material from an isolate obtained in Mexico.
10 The sequence of this isolate was about 75% identical
to the ET1.1 sequence set forth in SEQ ID NO.1 above.
The sequence was identified by hybridization using the
conditions set forth in Section II.B below.

In this different approach to isolation of the
15 virus, cDNA libraries were made directly from a semi-
purified human stool specimen collected from an
outbreak of ET-NANB in Telixtac. The recovery of
cDNA and the construction of representative libraries
was assured by the application of sequence independent
20 single premier amplification (SISPA). A cDNA library
constructed in lambda gt11 from such an amplified cDNA
population was screened with a serum considered to
have "high" titer anti-HEV antibodies as assayed by
direct immunofluorescence on liver sections from
25 infected cynos. Two cDNA clones, denoted 406.3-2 and
406.4-2, were identified by this approach from a total
of 60,000 screened. The sequence of these clones was
subsequently localized to the 3' half of the viral
genome by homology comparison to the HEV (Burma)
30 sequence obtained from clones isolated by
hybridization screening of libraries with the
original ET1.1 clone.

These isolated cDNA epitopes when used as
hybridization probes on Northern blots of RNA
35 extracted from infected cyno liver gave a somewhat
different result when compared to the Northern blots
obtained with the ET1.1 probe. In addition to the
single 7.5 Kb transcript seen using ET1.1, two

additional transcripts of 3.7 and 2.0 Kb were identified using either of these epitopes as hybridization probes. These polyadenylated transcripts were identified using the extreme 3' end 5 epitope clone (406.3-2) as probe and therefore established these transcripts as co-terminal with the 3' end of the genome (see below). One of the epitope clones (406.4-2) was subsequently shown to react in a specific fashion with antisera collected from 5 10 different geographic epidemics (Somalia, Burma, Mexico, Tashkent and Pakistan). The 406.3-2 clone reacted with sera from 4 out of these same 5 epidemics (Yarbough et al., 1990). Both clones reacted with only post inoculation antisera from infected cynos. 15 The latter experiment confirmed that seroconversion in experimentally infected cynos was related to the isolated exogenous cloned sequence.

A composite cDNA sequence (obtained from several clones of the Mexican strain) is set forth below.

20 Composite Mexico strain sequence (SEQ ID NO.10):

SEQ ID NO. 10:

	GCCATGGAGG CCCACCAAGTT CATTAAGGCT CCTGGCATCA CTACTGCTAT TGAGCAAGCA	60
25	GCTCTAGCAG CGGCCAACTC CGCCCTTGCG AATGCTGTGG TGGTCCGGCC TTTCCCTTCC	120
	CATCAGCAGG TTGAGATCCT TATAAATCTC ATGCAACCTC GGCAGCTGGT GTTTCGTCT	180
30	GAGGTTTTTT GGAATCACCC GATTCAACGT GTTATACATA ATGAGCTTGA GCAGTATTGC	240
	CGTGCTCGCT CGGGTCGCTG CCTTGAGATT GGAGGCCACC CACGCTCCAT TAATGATAAT	300
	CCTAATGTCC TCCATCGCTG CTTCTCCAC CCCGTCGGCC GGGATGTTCA GCGCTGGTAC	360
35	ACAGCCCCGA CTAGGGGACC TGCGGGGAAC TGTCGCCGCT CGGCACCTTG TGGTCTGCCA	420
	CCAGCCGACC GCACTTACTG TTTTGATGGC TTTGCCGGCT GCCGTTTTGC CGCCGAGACT	480
40	GGTGTGGCTC TCTATTCTCT CCATGACTTG CAGCCGGCTG ATGTTGCCGA GGCAGATGGCT	540
	CGCCACGGCA TGACCCGCCT TTATGCAGCT TTCCACTTGC CTCCAGAGGT GCTCCTGCC	600
	CCTGGCACCT ACCGGACATC ATCCTACTTG CTGATCCACG ATGGTAAGCG CGCGGTTGTC	660
45	ACTTATGAGG GTGACACTAG CGCCGGTTAC AATCATGATG TTGCCACCCCT CCGCACATGG	720

	ATCAGGACAA CTAAGGTGT GGGTGAAACAC CCTTTGGTGA TCGAGCGGGT CGGGGGTATT	780
	GGCTGTCACT TTGTGTTGTT GATGACTGCG GCCCCGTAGC CCTCCCCGAT GCCCTACGTT	840
5	CCTTACCCGC GTTGCACCGA GGTGTATGTC GGGTGTATCT TTGGGCCCGG CGGGTCCCCG	900
	TGGCTGTTCC CGACCGCTTG TGCTGTCAGG TCCACTTTTC AGCGCGTCCC CACGCACATC	960
10	TGGGACCGTC TCACTGCTT TGGGACGAGG GTGACGACCC AGGCCTTTG CTGCTCCAGG	1020
	CTTATGACGT ACCTTGTGG TATTAACAT AAGGTAACTG TGGGTGCCCT GGTCGCTAAT	1080
	GAAGGCTGGA ATGCCACCGA GGAATGCGTC ACTGCGTTA TTACGGCGGC TTACCTCACA	1140
15	ATATGTCATC AGCGTTATTT CGCGACCGAG CGGATTTCTA AGGGCATGCG CGGGCTTGAG	1200
	CTTGAACATG CTCAGAAATT TATTCACGC CTCTACAGCT GGCTATTGTA GAAGTCAGGT	1260
20	CGTGATTACA TCCCAGGCCG CGAGCTGAG TTCTACGCTC AGTGCCGCCG CTGGTTATCT	1320
	GCCGGGTTCC ATCTCGACCC CGGCACCTTA STTTTGATG AGTCAGTGCC TTGTAGCTGC	1380
	CGAACACCACCA TCCGGCGGAT CGCTGGAAAAA TTTTGCTGTT TTATGAAGTG GCTCGGTAG	1440
25	GAGTGTTCCTT GTTCTCCA GCGCGCGAG GGGCTGGCGG GCGACCAAGG TCATGACAAT	1500
	GAGGCCTATG AAGGCTCTGA TGTTGATACT GCTGAGCCTG CCACCCCTAGA CATTACAGGC	1560
	TCATACATCG TGGATGGTCG GTCTCTGCAA ACTGTCTATC AAGCTCTGA CCTGCCAGCT	1620
30	GACCTGGTAG CTCGCGAGC CCGACTGTCT GCTACAGTTA CTGTTACTGA AACCTCTGGC	1680
	CGTCTGGATT GCCAAACAAT GATCGGAAT AAGACTTTTC TCACTACCTT TGTTGATGGG	1740
35	GCACGCCTTG AGGTTAACCG GCCTGAGCAG CTTAACCTCT CTTTGACAG CCAGCAGTGT	1800
	AGTATGGCAG CGGGCCCGTT TTGCTCACC TATGCTGCCG TAGATGGCGG GCTGGAAGTT	1860
	CATTTTCCA CCGCTGGCT CGAGAGCCGT GTTGTGTTCC CCCCTGGTAA TGCCCCGACT	1920
40	GCCCCGCCGA GTGAGGTCAC CGCCTCTGC TCAGCTCTT ATAGGCACAA CGGGCAGAGC	1980
	CAGCGCCAGT CGGTTATTGG TAGTTGTGG CTGCACCCCTG AAGGTTTGCT CGGCCTGTC	2040
45	CCGCCCTTT CACCGGGCA TGAGTGGCGG TCTGCTAACCATTTGCGG CGAGAGCAGC	2100
	CTCTACACCC GCACCTGGTC CACAATTACA GACACACCT TAATGTCGG GCTAATTTC	2160
	GGTCATTTGG ATGCTGCTCC CCACTGGGG GGGCCACCTG CTACTGCCAC AGGCCCTGCT	2220
50	GTAGGCTCGT CTGACTCTCC AGACCCCTGAC CGCGTACCTG ATGTTACAGA TGGCTCACGC	2280
	CCCTCTGGGG CCCGTCCGGC TGGCCCCAAC CGGAATGGCG TTCCGAGCG CCGCTTACTA	2340
55	CACACCTACC CTGACGGCGC TAAGATCTAT GTGGGCTCCA TTTTCGAGTC TGAGTGCACC	2400

	TGGCTTGTCA	ACGCATCTAA	CGCCGGCCAC	CGCCCTGGTG	GCGGGCTTTG	TCATGCTTT	2460
	TTTCAGCGTT	ACCCGTGATTG	GTTCGACGCC	ACCAAGTTG	TGATGCGTGA	TGGTCTTGCC	2520
5	GCGTATAACCC	TTACACCCCCG	GGCGATCATT	CATGCGGTGG	CCCCGGACTA	TCGATTGGAA	2580
	CATAACCCCCA	AGAGGGCTCGA	GGCTGCCTAC	CGCGAGACTT	GCGCCGCCG	AGGCAGTGCT	2640
10	GCCTATCCAC	TCTTACGGCG	TGGCATTTAC	CAGGTGCCTG	TTAGTTGAG	TTTGATGCC	2700
	TGGGAGCGGA	ACCAACCCCC	GTTCGACGAG	CTTTACCTAA	CAGAGCTGGC	GGCTCGGTGG	2760
	TTTGAATCCA	ACCGCCCCGG	TCAGCCCCAGC	TTGAACATAA	CTGAGGATAC	CGCCCGTGC	2820
15	GCCAACCTGG	CCCTGAGCT	TGACTCGGGG	AGTGAAGTAG	GCGCGCATG	TGCCGGGTGT	2880
	AAAGTGGAGC	CTGGCGTTGT	CGCGTATCAG	TTTACAGCCG	GTGTCCCCGG	CTCTGGCAAG	2940
20	TCAAAGTCG	TGCAACAGGC	GGATGTGGAT	GTTGTTGTTG	TGCCCACTCG	CGAGCTTCGG	3000
	AACGCTTGGC	GGCGCCGGGG	CTTTCGGCA	TTCACTCCGC	ACACTGGGGC	CCGTGTC	3060
	AGCGGCCGTA	GGGTTGTCAT	TGATGAGGCC	CCTTCGCTCC	CCCCACACTT	GCTGTTTTA	3120
25	CATATGCAGC	GTGCTGCATC	TGTGCACCTC	CTTGGGGACC	CGAACAGAT	CCCCGCCATA	3180
	GATTTGAGC	ACACCGGTCT	GATTCCAGCA	ATACGGCCGG	AGTTGGTCCC	GACTTCATGG	3240
30	TGGCATGTCA	CCCACCGTTG	CCCTGCAGAT	GTCTGTGAGT	TAGTCGTGG	TGCTTACCC	3300
	AAAATCCAGA	CTACAAGTAA	GGTGCTCCGT	TCCCTTTCT	GGGGAGAGCC	AGCTGTC	3360
	CAGAAGCTAG	TGTTCACACA	GGCTGCTAAG	GCCGCGCAC	CCGGATCTAT	AACGGTCCAT	3420
35	GAGGCCAGG	GTGCCACTT	TACCACTACA	ACTATAATTG	CAACTGCAGA	TGCCGTGGC	3480
	CTCATACAGT	CCTCCGGGC	TCACGCTATA	GTTGCTCTCA	CTAGGCATAC	TGAAAAATGT	3540
40	GTTATACTTG	ACTCTCCGG	CCTGTTGCGT	GAGGTGGGTA	TCTCAGATGC	CATTGTTAAT	3600
	AATTCTTCC	TTTCGGGTGG	CGAGGTTGGT	CACCAAGAGAC	CATCGGTCA	TCCGCGAGGC	3660
	AACCCCTGACC	GCAATGTTGA	CGTGCTTGCG	GCGTTCCAC	CTTCATGCCA	AATAAGCGCC	3720
45	TTCCATCAGC	TTGCTGAGGA	GCTGGGCCAC	CGGCCGGCGC	CGGTGGCGGC	TGTGCTACCT	3780
	CCCTGCCCTG	AGTTGAGCA	GGGCCTTCTC	TATCTGCCAC	AGGAGCTAGC	CTCCTGTGAC	3840
	AGTGTGTGA	CATTTGAGCT	AACTGACATT	GTGCACTGCC	GCATGGCGGC	CCCTAGCCAA	3900
50	AGGAAAGCTG	TTTGTCCAC	GCTGGTAGGC	CGGTATGGCA	GACGCACAAG	GCTTTATGAT	3960
	GCGGGTCACA	CCGATGTCCG	CGCCTCCCTT	GCGCGCTTTA	TTCCCACTCT	CGGGCGGGTT	4020
55	ACTGCCACCA	CCTGTGAACT	CTTGAGCTT	GTAGAGGGGA	TGGTGGAGAA	GGGCCAAGAC	4080

	GGTCAGCCG TCTCGAGTT GGATTTGTC AGCGAGATG TCTCCGCAT AACCTTTTC	4140
	CAGAAGGATT GTAACAAGTT CACGACCGC GAGACAATTG CGCATGGCAA AGTCGGTCAG	4200
5	GGTATC CCC GCTGGAGTAA GACGTTTGT GCGCTGTTTG GCCCCTGGTT CGTGCGATT	4260
	GAGAAGGCTA TTCTATCGCT TTTCACACA AGCTGTTCT ACGGGGATGC TTATGACGAC	4320
10	TCACTATTCT CTGCTGCCGT GGCTGCCGCC AGCGATGCCA TGCTGTTGA AAATGATTT	4380
	TCTGAGTTG ACTCGACTCA GAATAACCTT TCCCTAGGTC TTGAGTGC CATTATGGAA	4440
	GAGTGTGGTA TGCCCCAGTG GCTTGTAGG TTGTAACATG CGCTCCGGTC GGCGTGGATC	4500
15	CTGCAGGCCG CAAAAGAGTC TTGAGAGGG TTCTGGAAGA AGCATTCTGG TGAGCCGGGC	4560
	AGCTTGCTCT GGAATACGGT GTGGAACATG GCAATCATTG CCCATTGCTA TGAGTTCCGG	4620
20	GACCTCCAGG TTGCCGCCTT CAAGGGCGAC GACTCGGTG TCCTCTGTAG TGAATACCGC	4680
	CAGAGCCAG GCGCCGGTTC GCTTATAGCA GGCTGTGGTT TGAAAGTGAA GGCTGACTTC	4740
	CGGCCGATTG GGCTGTATGC CGGGTTGTC GTGCCCGGG GGCTCGGGC CCTACCCGAT	4800
25	GTCGTTCGAT TCGCCGGACG GCTTCGGAG AAGAACCTGGG GGCTGATCC GGAGCGGGCA	4860
	GAGCAGCTCC GCCTCGCCGT GCAGGATTTC CTCCGTAGGT TAACGAATGT GGCCAGATT	4920
30	TGTGTTGAGG TGGTGTCTAG AGTTTACGGG GTTTCCCCGG GTCTGGTCA TAACCTGATA	4980
	GGCATGCTCC AGACTATTGG TGATGGAAG GCGCATTTA CAGAGTCTGT TAAGCCTATA	5040
	CTTGACCTTA CACACTCAAT TATGCCACCG TCTGAATGAA TAACATGTGG TTTGCTGC	5100
35	CCATGGGTTTC GCCACCATGC GCCCTAGGCC TCTTTGCTG TTGTTCTCT TGTTCTGCC	5160
	TATGTTGCC CCGCCACCGA CCGGTCAGCC GTCTGGCCGC CGTCGTGGGC GGCGCAGCGG	5220
40	CGGTACCGGC GGTGGTTCT GGGGTGACCG GGTTGATTCT CAGCCCTCG CAATCCCTA	5280
	TATTCACTCCA ACCAACCCCT TTGCCCGAGA CGTTGCCGCT GCGTCCGGGT CTGGACCTCG	5340
	CTTCGCCAA CCAGCCGGC CACTTGGCTC CACTTGGCGA GATCAGGCC AGCGCCCCTC	5400
45	CGCTGCCTCC CGTCGCCGAC CTGCCACAGC CGGGGCTGCG GCGCTGACGG CTGTGGGCC	5460
	TGCCCATGAC ACCTCACCCG TCCCGGACGT TGATTCTCGC GGTGCAATTG TACGCCGCCA	5520
50	GTATAATTTG TCTACTTCAC CCCTGACATC CTCTGTGGCC TCTGGCACTA ATTTAGTCCT	5580
	GTATGCAGCC CCCCTTAATC CGCCCTGC GCTGCAGGAC GGTACTAATA CTCACATTAT	5640
	GGCCACAGAG GCCTCCAATT ATGCACAGTA CGGGTTGCC CGCGCTACTA TCCGTTACCG	5700
55	GCCCCTAGTG CCTAATGCAG TTGGAGGCTA TGCTATATCC ATTTCTTCT GGCTCAAAC	5760

	AACCACAAACC CCTACATCTG TTGACATGAA TTCCATTACT TCCACTGATG TCAGGATTCT	5820
	TGTTCAACCT GGCATAGCAT CTGAATTGGT CATCCCAGC GAGCGCCTTC ACTACCGCAA	5880
5	TCAAGGTTGG CGCTCGGTTG AGACATCTGG TGTTGCTGAG GAGGAAGCCA CCTCCGGTCT	5940
	TGTCAATGTTA TGCATACATG GCTCTCCAGT TAACCTCTAT ACCAATACCC CTTATACCGG	6000
10	TGCCCTTGGC TTACTGGACT TTGCGTTAGA GCTTGAGTTT CGCAATCTCA CCACCTGTAA	6060
	CACCAATACA CGTGTGTCCC GTTACTCGAG CACTGCTGT CACTCCGCC GAGGGGCCGA	6120
	CGGGACTGCG GAGCTGACCA CAACTGAGC CACCAAGTTG ATGAAAGATC TCCACTTAC	6180
15	CGGCCTTAAT GGGTAGGTG AAGTCCGCCG CGGGATAAGT CTAACATTAC TTAACCTTGC	6240
	TGACACGCTC CTGGGGGGGC TCCCGACAGA ATTAAATTCTG TCGGCTGGCG GGCAACTGTT	6300
20	TTATTCCCGC CCGGTTGTCT CAGCCAATGG CGAGCCAACC GTGAAGCTCT ATACATCAGT	6360
	GGAGAAATGCT CAGCAGGATA AGGGTGTGCA TATCCCCCAC GATATCGATC TTGGTGATTC	6420
	GCGTGTGGTC ATTCAGGATT ATGACAAACCA GCATGAGCAG GATCGGCCCA CCCCCTGCC	6480
25	TGCGCCATCT CGGCCCTTTT CTGTTCTCG AGCAAATGAT GTACTTTGGC TGTCCCTCAC	6540
	TGCAGCCGAG TATGACCAAGT CCACTTACGG GTCGTCAACT GGCCCGGTT ATATCTCGGA	6600
30	CAGCGTGAATG TTGGTGAATG TTGCGACTGG CGCGCAGGCC GTAGCCCGAT CGCTTGACTG	6660
	GTCCAAAGTC ACCCTCGACG GGCGGCCCT CCCGACTGTT GAGCAATATT CCAAGACATT	6720
	CTTTGTGTC CCCCTTCGTG GCAAGCTCTC CTTTGGGAG GCCGGCACAA CAAAAGCAGG	6780
35	TTATCCTTAT AATTATAATA CTACTGCTAG TGACCAAGATT CTGATTGAAA ATGCTGCCG	6840
	CCATCGGGTC GCCATTTCAA CCTATACCAC CAGGCCTGGG GCCGGTCCGG TCGCCATTTC	6900
40	TGCGGCCGCG GTTTGGCTC CACGCTCCGC CCTGGCTCTG CTGGAGGATA CTTTGATTA	6960
	TCCGGGGCGG GCGCACACAT TTGATGACTT CTGCCCTGAA TGCCGCGCTT TAGGCCTCCA	7020
	GGGTTGTGCT TTCCAGTCAA CTGTCGCTGA GCTCCAGCGC CTTAAAGTTA AGGTGGTAA	7080
45	AACTCGGGAG TTGTAGTTA TTTGGCTGTG CCCACCTACT TATATCTGCT GATTCCTTT	7140
	ATTTCTTTT TCTCGGTCCC GCGCTCCCTG A	7171

50 The above sequence was obtained from
 polyadenylated clones. For clarity the 3' polyA
 "tail" has been omitted.

The sequence above includes a partial cDNA sequence consisting of 1-61 nucleotides that was identified in a previous application in this series. The previously identified partial sequence is set forth below, with certain corrections (SEQ ID NO.11). The corrections include deletion of the first 80 bases of the prior reported sequence, which are cloning artifacts; insertion of G after former position 174, of C after 270, and of GGCG after 279; change of C to T at former position 709, of GC to CG at 722-723, of CC to TT at 1238-39, and of C to G at 1606; deletion of T at former position 765; and deletion of the last 11 bases of the former sequence, which are part of a linker sequence and are not of viral origin.

15 Non-A Non-B T: Mexican Strain; SEQ ID NO.11
 SEQ ID NO. 11:

20	GTTGCGTGAG GTGGGTATCT CAGATGCCAT TGTTAATAAT TTCTTCCTTT CGGGTGGCGA	60
25	GGTTGGTCAC CAGAGACCAT CGGTCAATTCC GCGAGGCAAC CCTGACCGCA ATGTTGACGT	120
30	GCTTGCAGCG TTTCCACCTT CATGCCAAAT AAGCGCCTTC CATCAGCTTG CTGAGGAGCT	180
35	GGGCCACCGG CCGCGCCGG TGGCGGCTGT GCTACCTCCC TGCCCTGAGC TTGAGCAGGG	240
40	CCTTCTCTAT CTGCCACAGG AGCTAGCCTC CTGTGACAGT GTTGTGACAT TTGAGCTAAC	300
45	TGACATTGTG CACTGCCGCA TGGCGGCCCG TAGCCAAAGG AAAGCTGTTT TGTCCACGCT	360
	GGTAGGCCGG TATGGCAGAC GCACAAGGCT TTATGATGCG GGTACACCCG ATGTCCGCGC	420
	CTCCCTTGCG CGCTTTATTC CCACCTCTGG GCGGGTTACT GCCACCACCT GTGAACCTTT	480
	TGAGCTTGTA GAGGCGATGG TGGAGAAAGGG CCAAGACGGT TCAGCCGTCC TCGAGTTGGA	540
	TTTGTGCAGC CGAGATGTCT CCCGCATAAC CTTTTCCAG AAGGATTGTA ACAAGTTCAC	600
	GACCGGGCGAG ACAATTGCGC ATGGCAAAAGT CGGTCAGGGT ATCTTCCGCT GGAGTAAGAC	660
	CTTTTGTGCC CTGTTTGGCC CCTGGTTTCG TGCGATTGAG AAGGCTATTC TATCCCTTT	720
	ACCACAAGCT GTGTTCTACG GGGATGCTTA TGACGACTCA GTATTCTCTG CTGCCGTGGC	780
	TGGCGCCAGC CATGCCATGG TGTGTTGAAAA TGATTTTCT GAGTTTGACT CGACTCAGAA	840
	TAACTTTCC CTAGGTCTTG AGTGCACCAT TATGGAAGAG TGTGGTATGC CCCAGTGGCT	900
	TGTCAGGTTG TACCATGCCG TCCGGTGGC GTGGATCCTG CAGGCCCAA AAGAGTCTTT	960

	GAGAGGGTTC TGGAAAGAAAGC ATTCTGCTGA GCGGGGCACG TTGCTCTGGA ATACGGTGTG	1020
	GAACATGGCA ATCATTGCCC ATTGCTATGA GTTCCGGGAC CTCCAGGTTG CCGCCTCAA	1080
5	GGGCGACGAC TCGGTGTCG TCTGTAGTGA ATACCGCCAG AGCCCAGGCG CCGGTTCGCT	1140
	TATAGCAGGC TGTGGTTCA AGTTGAAAGC TGACTTCGG CGGATTGGGC TGTATGCCGG	1200
10	GGTTGTCGTC GCGCGGGGCG TCGGCGCCCT ACCCGATGTC GTTGATTCG CCGGACGGCT	1260
	TTCCGGAGAAG AACCTGGGGC CTGAGTGGGAG CGGGGAGAG CAGCTCCGCC TCGCCGTGCA	1320
	GGATTCCTC CGTAGGTTAA CGAATGTTGGC CGAGATTTGT GTTGAGGTGG TGTCTAGAGT	1380
15	TTACGGGGTT TCCCCGGGTC TGGTCATAA CCTGATAGGC ATGCTCCAGA CTATTGGTGA	1440
	TGGTAAGGCG CATTAAACAG AGTCTGTTAA GCCTATACTT GACCTTACAC ACTCAATTAT	1500
20	GCACCGGTCT GAATGAATAA CATGTGGTTT GCTGCGCCCA TGGGTTGCC ACCATGCGCC	1560
	CTAGGCCTCT TTTGC	1575

When comparing the Burmese and Mexican
 25 strains, 75.7% identity is seen in a 7189 nucleotide
 overlap beginning at nucleotide 1 of the Mexican
 strain and nucleotide 25 of the Burmese strain.

In the same manner, a different strain of
 HEV was identified in an isolate obtained in Tashkent,
 30 U.S.S.R. The Tashkent sequence is given below (SEQ ID
 NO.12):

SEQ ID NO. 12:

35	CGGGCCCCGT ACAGGTACA ACCTGTGAGT TGTACGAGCT AGTGGAGGCC ATGGTCGAGA	60
	AAGGCCAGGA TGGCTCCGCC GTCCTTGAGC TCGATCTCTG CAACCGTGAC GTGTCCAGGA	120
	TCACCTTTT CCAGAAAGAT TGCAATAAGT TCACCACGGG AGAGACCATC GCCCATGGTA	180
40	AAGTGGGCCA GGGCATTTCG GCCTGGAGTA AGACCTTCTG TGCCCTTTG GGCCCTGGT	240
	TCCGTGCTAT TGAGAAGGCT ATTCTGGCCC TGCTCCCTCA GGGTGTGTTT TATGGGGATG	300
	CCTTGATGA CACCGTCTTC TCGGCGCGTG TGGCCGCAGC AAAGGCGTCC ATGGTGTGTTG	360
45	AGAATGACTT TTCTGAGTTT GACTCCACCC AGAATAATT TTCCCTGGGC CTAGAGTGTG	420
	CTATTATGGA GAAGTGTGGG ATGCCGAAGT GGCTCATCCG CTTGTACCAAC CTTATAAGGT	480
50	CTGCGTGGAT CCTGCAGGCC CGGAAGGAGT CCCTGCGAGG GTGTTGGAAG AAACACTCCG	540
	GTGAGCCCGG CACTCTTCTA TGGAATACTG TCTGGAACAT GGCCGTTATC ACCCATTGTT	600

	ACGATTTCCG CGATTTCCAG GTGGCTGCCT TTAAAGGTGA TGATTCGATA GTGCTTGCA	660
5	GTGAGTACCG TCAGAGTCCA GGGGCTGCTG TCCGTATTGC TGGCTGTGGC TTAAAGCTGA	720
	AGGTGGGTTT CCGTCCGATT GGTGGTATG CAGGTGGTGT GGTGACCCCC GGCCTTGGCG	780
	CCTTCCCGA CGTCGTGCCG TTGTCCGGCG GGCTTACTGA GAAGAATTGG GGCCCTGGCC	840
10	CTGAGCGGGC GGAGCAGCTC CGCCTTGCTG TGCG	874

As shown in the following comparison of sequences, the Tashkent (Tash.) sequence more closely resembles the Burma sequence than the Mexico sequence, as would be expected of two strains from more closely related geographical areas. The numbering system used in the comparison is based on the Burma sequence. As indicated previously, Burma has SEQ ID NO:6; Mexico, SEQ ID NO:10; and Tashkent, SEQ ID NO:12. The letters present in the lines between the sequences indicate conserved nucleotides.

		10v	20v	30v	40v	50v	60v
25	-BURMA	AGGCAGACCACATATGTGGTCGATGCCATGGAGGCCATCAGTTATTAAGGCTCCTGGCA GCCATGGAGGCCA CAGTT ATTAAGGCTCCTGGCA					
	-MEXICO	GCCATGGAGGCCACCAGTTCATTAAGGCTCCTGGCA					
30	-BURMA	70v	80v	90v	100v	110v	120v
	-MEXICO	TCACTACTGCTATTGAGCAGGCTGCTCTAGCAGCGGCCAACTCTGCCCTGGCAATGCTG TCACTACTGCTATTGAGCA GC GCTCTAGCAGCGGCCAACTC GCCCT GCGAATGCTG					
35	-BURMA	130v	140v	150v	160v	170v	180v
	-MEXICO	TGGTAGTTAGGCCTTCTCTCACCAAGCAGATTGAGATCCTCATTAACCTAAC TGGT GT GGCCTT CT TC CA CAGCAG TTGAGATCCT AT AA CT ATGCAAC					
40	-BURMA	190v	200v	210v	220v	230v	240v
	-MEXICO	CTCGCAGCTGTTCCGCCCCGAGGTTTCTGGAAATCCTCCATCCAGCGTGT CTCG CAGCT GT TT CG CC GAGGTTT TGGAATCA CC AT CA CGTGT AT C					
45	-BURMA	250v	260v	270v	280v	290v	300v
	-MEXICO	ATAACGAGCTGGAGCTTACTGCCGCCGCTCCGGCCGCTGTCTTGAATTGGCGCCC ATAA GAGCT GAGC TA TGCCG GC CGCTC GG CGCTG CTTGA ATTGG GCCC					
50	-BURMA	310v	320v	330v	340v	350v	360v
	-MEXICO	ATCCCCGCTCAATAATGATAATCCTAATGTGGTCCACCGCTGCTTCCGCCCTGTT A CC CGCTC AT AATGATAATCCTAATGT TCCA CGCTGCTT CTCC CCC GT G					
		ACCCACGCTCCATTAAATGATAATCCTAATGTCCATCGCTGCTTCCACCCCGTCG					

		1030v	1040v	1050v	1060v	1070v	1080v
	-BURMA	ACCAAGCCTTTGCTGCTTAACTGACCTACCTTCGGGCATTAGCTACAAGGTCA					
5	-MEXICO	ACCA GCGTTTGCTGCTTAACTGACCTACCTTCGGGCATTAGCTACAAGGTAA					
		1090v	1100v	1110v	1120v	1130v	1140v
	-BURMA	CTGTGGCTAACCTGCTGCTTAACTGACCTACCTTCGGGCATTAGCTACAAGGTCA					
10	-MEXICO	CTGTGGCTAACCTGCTGCTTAACTGACCTACCTTCGGGCATTAGCTACAAGGTAA					
		1150v	1160v	1170v	1180v	1190v	1200v
	-BURMA	TTATCACTGCGGCTAACCTTACCATTTGCCACCGGGAGTATCTCCGCACCCAGGCTATAT					
15	-MEXICO	TTATCACTGCGGCTAACCTTACCATTTGCCACCCAGGCTATAT					
		1210v	1220v	1230v	1240v	1250v	1260v
	-BURMA	CCAAGGGGATGCGCTGCTGGAAACGGGAGCATGCCAGAAGTTATAACACGCCCTCTACA					
20	-MEXICO	CCAAGGGGATGCGCTGCTGGAAACGGGAGCATGCCAGAAGTTATAACACGCCCTCTACA					
		1270v	1280v	1290v	1300v	1310v	1320v
	-BURMA	GCTGGCTTTCGAGAAGTCGGCGCTGATTACATCCCTGGCGTCAGTTGGAGTTCTACG					
25	-MEXICO	GCTGGCTTTCGAGAAGTCGGCGCTGATTACATCCCTGGCGTCAGTTGGAGTTCTACG					
		1330v	1340v	1350v	1360v	1370v	1380v
	-BURMA	CCCAGTGCAGGCCGCTGGCTCCGCCGGTTTATCTTGATCCACGGGTGTTGGTTTTTG					
30	-MEXICO	CCCAGTGCAGGCCGCTGGCTCCGCCGGTTTATCTTGATCCACGGGTGTTGGTTTTTG					
		1390v	1400v	1410v	1420v	1430v	1440v
	-BURMA	ACGAGTCGGCCCCCTGCCATTGTAGGACCGCGATCCGTAAGCGCTCTCAAAGTTTGCT					
35	-MEXICO	ACGAGTCGGCCCCCTGCCATTGTAGGACCGCGATCCGTAAGCGCTCTCAAAGTTTGCT					
		1450v	1460v	1470v	1480v	1490v	1500v
	-BURMA	GCTTCATGAAGTGGCTTGGTCAGGAGTGCACCTGCTTCCCTCAGCCTGCAGAAGGGCGCCG					
40	-MEXICO	GCTTCATGAAGTGGCTTGGTCAGGAGTGCACCTGCTTCCCTCAGCCTGCAGAAGGGCGCCG					
		1510v	1520v	1530v	1540v	1550v	1560v
	-BURMA	TCGGCGACCAGGGTATGATAATGAAGCTATGAGGGGTCGGATGTTGACCTGCTGAGT					
45	-MEXICO	TCGGCGACCAGGGTATGATAATGAAGCTATGAGGGGTCGGATGTTGACCTGCTGAGT					
		1570v	1580v	1590v	1600v	1610v	1620v
	-BURMA	CCGCCATTAGTGCACATATCTGGCTTATGTCGCTCCCTGGCACTGCCCTCCAACCGCTCT					
50	-MEXICO	CCGCCATTAGTGCACATATCTGGCTTATGTCGCTCCCTGGCACTGCCCTCCAACCGCTCT					
		1630v	1640v	1650v	1660v	1670v	1680v
	-BURMA	ACCAGGCCCTGATCTCCCGCTGAGATTGTGGCTCGCGCGGGCTGACCGCCACAG					
55	-MEXICO	ACCAGGCCCTGATCTCCCGCTGAGATTGTGGCTCGCGCGGGCTGACCGCCACAG					

		1630v	1700v	1710v	1720v	1730v	1740v
	-BURMA	TAAAGGTCTCCAGGTCGATGGCGGATCGATTGCGAGACCTTCTTGGTAACAAAACCT					
5	-MEXICO	T A GT C A C TGG CG T GATTGC A AC T T GG AA AA AC T					
		TTACTGTTACTGAAACCTCTGCCGTCTGGATTGCCAACATGATCGGAATAAGACTT					
		1750v	1760v	1770v	1780v	1790v	1800v
	-BURMA	TTCGCACGTCGTTGACGGGGCGGTCTTAGAGACCAATGGCCCAGAGCGCCACAATC					
10	-MEXICO	TTC CAC C TT GTTGA GGGGC C T GAG AA GG CC GAGC C AA C					
		TTCTCACTACCTTGTGATGGGGCACGCCCTTGAGGTTAACGGGCTGAGCAGCTAAC					
		1810v	1820v	1830v	1840v	1850v	1860v
	-BURMA	TCTCCTCGATGCCAGTCAGGACTATGGCCGCTGGCCCTTCAGTCTCACCTATGCCG					
15	-MEXICO	TCTC TT GA C CAG G A TATGGC GC GGGCC TT G CTCACCTATGC G					
		TCTCTTTGACAGGCGAGCAGTSTAGTATGGCAGGCCGGCGTTTGCCCTCACCTATGCTG					
		1870v	1880v	1890v	1900v	1910v	1920v
	-BURMA	CCTCTGAGCTGGCTGGAGGTGGCTATGTTGCTGCCGGCTTGACCATCGGGCGTT					
20	-MEXICO	CC G G GGGCTGGA GT C T T C GC GG CT GA CG G GTTT					
		CCGTAGATGGCGGGCTGGAAGTTCTTTTCCACCGCTGGCTCGAGAGCCGTGTTGTT					
		1930v	1940v	1950v	1960v	1970v	1980v
	-BURMA	TTGCCCGGGTGTTCACCCCGGTCAAGCCCCGGTCAGCCCCGGCGAGGTTACCGCCTTCTGCTCTGCC					
25	-MEXICO	T CCCC GGT T C CC C C CC G GAGGT ACCGCCTTCTGCTC GC C					
		TCCCCCTGGTAATGCCCGACTGCCCGCCGAGTGAGGTACCGCCTTCTGCTCAGCTC					
		1990v	2000v	2010v	2020v	2030v	2040v
	-BURMA	TATACAGGTTAACCGTGAGGCCAGCGCCATTGCTGATCGGTAACCTATGGTTCCATC					
30	-MEXICO	T TA AGG AACCG AG CCAGCGCCA TCG T AT GGTA TT TGG T CA C					
		TTTATAGGCACAACCGGAGAGCCAGCGCAGCGCAGTCGGTTATTGGTAGTTGTGGCTGCACC					
		2050v	2060v	2070v	2080v	2090v	2100v
	-BURMA	CTGAGGGACTCATTGGCCTCTCGCCCCGTTTCGCCGGCATGTTGGAGTCGGCTA					
35	-MEXICO	CTGA GG T T GGCCT TTC C CC TTTCCCGGGCATG TGG GTC GCTA					
		CTGAAGGTTGCTGGCCTGTTCCCGCCCTTTCACCCGGCATGAGTGGCGGTCTGCTA					
		2110v	2120v	2130v	2140v	2150v	2160v
	-BURMA	ATCCATTCTGTGGCAGAGCACACTTACACCCGTAACGGTCTGGCGAGGTTGATGCCGTCT					
40	-MEXICO	A CCATT TG GGGAGAGCAC CT TACACCCG ACTTGGTC TT G C					
		ACCCATTTCGGCGAGAGCACGCTACACCCGACTTGGTCACAATTACAGACACAC					
		2170v	2180v	2190v	2200v	2210v	2220v
	-BURMA	CTAGTCCAGCCGGCCTGACTTAGGTTATGCTGAGCCTCTACCTAGTAGGGCCG					
45	-MEXICO	C C G C GGC T GGT T TG TG CT C C G GG C					
		CCTTAACTGTCGGCTAATTCCGGTACGGATGCTGCTCCCCACTCGGGGGGGCCAC					
		2230v	2240v	2250v	2260v	2270v	2280v
	-BURMA	CCACGCCCTACCCCTGGCGGCCCCCTACCCCCCCCCCTGACCGGACCCCTCCCCCCTCCCT					
50	-MEXICO	C C CT CC G C CT TA C C CTG C C CCC C					
		CTGCTACTGCCACAGGCCCTGCTGAGGCTGCTGACTCTCCAGACCCCTGACCGCTAC					
		2290v	2300v	2310v	2320v	2330v	2340v
	-BURMA	CTGCCCGGGCGCTTGCTGAGGCCGCTCTGGCGCTACCGCCGGGGCCCCGGCATAACTC					
55	-MEXICO	CTG C C TG C C C TCTGG GC C G G CCC C A T					
		CTGATGTTACAGATGGCTACGCCCTCTGGGCCGTCCGGCTGGCCCCAACCGAATG					

	2350v	2360v	2370v	2380v	2390v	2400v
-BURMA	ACCGAGCAGGCGGGCGCAATCGCGCGCTGCTTACGTACCCGGATGGCTCTAAGGTATTG	C	CG	CGCGCG	T CT	ACCTACCC GA GGC CTAAG T T G
-MEXICO	GCGTTCCCGAG-----	CGCGCGCTTACTACACACCTACCCGTACGGCGCTAAGATCTATG				
5	2410v	2420v	2430v	2440v	2450v	2460v
-BURMA	CGCGTGGCTGTTTGAGTCAGATCGCGCTGCTTAACCGGTCTAATGTTGACCACCG	CGCGTC	T TTGAGTC	TGCGAC	TGGCT GT AACGC	TCTAA G G CCACC
-MEXICO	TCGGTGGCATTTTGAGTGTAGTGCACCTGCGCTGTCAACGCATCTAACGCCGGCCACC					
10	2470v	2480v	2490v	2500v	2510v	2520v
-BURMA	GCCTGGCGGGCGGCGCTTGTAGTACCTTACCAAAGGTACCCCGCCTCTTGATGCTG	GCCTGG	GGGGGGCTTGTAGTACCTTAC	GA G	TACCG G TC TTTGA	GC
-MEXICO	GCCTGGTGGCGGGCGCTTGTAGTACCTTACCGTTACCGTTGATTGTTGACGCCA					
15	2530v	2540v	2550v	2560v	2570v	2580v
-BURMA	CCTCTTTGTGATGCGCGACGGCGCGCGTACACACTAACCCCCCGGCCAATAATTC	CC	TTTGTGATGCG	GA GG	GGCGCGTA AC CT AC	CCCCGGCC AT ATTC
-MEXICO	CCAAGTTGTGATGGGTGATGGTCTTGGCGGTATACCTTACACCCCGGCCGATCATTC					
20	2590v	2600v	2610v	2620v	2630v	2640v
-BURMA	ACGCTGTCGCGCGCTGATTATAGTTGGAAACATAACCCAAAGAGGCTTGAGGCTGCTTATC	A	GC GT	GGGG	GA TAT G	TTGGAAACATAACCC AAGAGGCT GAGGCTGC TA C
-MEXICO	ATGCCGTGGCCCCGGACTATGGATTGGAAACATAACCCAAAGAGGCTCGAGGCTGCCCTACC					
25	2650v	2660v	2670v	2680v	2690v	2700v
-BURMA	GGGAAACCTTGCTCCCGCCTGGCACCGCTGCATACCCGCTCTCGGGACCGGCATATACC	G	GA ACTTGC	CCGCC	GGCAC	GCTGC TA CC CTC T GG C
-MEXICO	GCGAGACTTGCGCCCGGCCAGGGCACTGCTGCCTATCCACTCTAGGCCTGGCATTAC	GGCAT	TACC			
30	2710v	2720v	2730v	2740v	2750v	2760v
-BURMA	AGGTGCCGATGGCCCCAGTTTGACGCTGGGGAGCGGAACCCGCCCCGGGATGAGT	AGGTGCC	T G	AGTTTG	GCCTGGGGAGCGGAACCCGCCC	GA GAG
-MEXICO	AGGTGCCTGTTAGTTGAGTTTGATGCCTGGGAGCGGAACCCGCCCCGGTACGAGC					
35	2770v	2780v	2790v	2800v	2810v	2820v
-BURMA	TGTACCTTCTGAGCTTGCAGATGGTTGAGGCAATAGGCCGACCCGCCGACTC	T	TACCT	C GAGCT	GC GC	G TGGTTGA CCAA G CC
-MEXICO	TTTACCTAACAGAGCTGGGGCTGGTGGTTGAATCCAACCGCCCCGGTACGCCACGT	C	CC AC			
40	2830v	2840v	2850v	2860v	2870v	2880v
-BURMA	TCACTATAACTGAGGGATGTTGCACGGAAAGCGA	T A	ATAACTGAGGGAT	GC CG	C GC	AA CTGGCC T GAGCTTGACTC G A
-MEXICO	TGAACATAACTGAGGGATAACGCCGTGCGGCCAACCTGGCCCTGGAGCTTGACTCCGGGA					
45	2890v	2900v	2910v	2920v	2930v	2940v
-BURMA	CAGATGTGGCCGGGCTGTGCCGGTGTGGGTACCCCCGGCGTTGAGTACCACTG	GA	GT	GGCCG	GC	TGTGCCGG
-MEXICO	GTGAAGTAGGCCGCGCATGTGCCGGTGTAAAGTCGAGCCTGGCGTTGCGGTATCAGT	TGT	CC	GGCGTTGT	C	GTA CAGT
50	2950v	2960v	2970v	2980v	2990v	3000v
-BURMA	TTACTGCAGGTGTGCGCTGGATCCGGCAAGTCCCGCTATCACCAAGCCGATGTGGACG	TTAC	GC GGTGT	CC GG	TC GGCAAGTC	TC T CA GC GATGTGGA
-MEXICO	TTACAGCCGGTGTCCCCGGCTCGCAAGTCAGTCCGTGCAACAGGGCGATGTGGATG					
55						

	3010v	3020v	3030v	3040v	3050v	3060v
-BURMA	TTGTCGTGGTCCCCAACCGCTGAGTTGCCTAATGCCCTGGCGCCGCGCTTGCTGCTT					
	TTGT GT GT CC AC CC GAG T CG AA GC TGGCG CG CG GGCTTTGC GL I					
-MEXICO	TTGTTGTTGTGCCCCACTCGCGAGCTTGGAACCGCTTGGCGGCCGGGCTTGCGGCAT					
5	3070v	3080v	3090v	3100v	3110v	3120v
-BURMA	TTACCGCGATACTGGCGAGAGTCACCCAGGGCGCCGGGTTGTCATTGATGAGGCTC					
	T AC CGCGA ACTGC GTC G GCG CG GGGTTGTCATTGATGAGGC C					
-MEXICO	TCACCGCGAACACTGGGGCGCTGTCAGTAGGGCGCTAGGGTTGTCATTGATGAGGCC					
10	3130v	3140v	3150v	3160v	3170v	3180v
-BURMA	CATCCCTCCCCCTCACCTGCTGCTCCACATGCAGCGGGGCCACCGTCCACCTTC					
	C TC CTCCCCC CAC TGCTGCT T CA ATGCAGCG GC GC C GT CACCT C					
-MEXICO	CTTGGTCCCCCACCTTGCTGCTTTACATATGCAGCGTGCATCTGTCACCTCC					
15	3190v	3200v	3210v	3220v	3230v	3240v
-BURMA	TTGGCGACCCGAACAGATCCCAGCCATCGACTTGGCCTCGTCCCCGCCA					
	TTGG GACCCGAA CAGATCCC GCCAT GA TTTGAGCAC C GG CT T CC GC A					
-MEXICO	TTGGGGACCCGAATCAGATCCCCGCATAGATTTGAGCACACCGGTCTGATTCCAGCAA					
20	3250v	3260v	3270v	3280v	3290v	3300v
-BURMA	TCAGGCCGACTTGGGCCACCTCCCTGGTGGCATGTTACCCATCGCTGGCCTGCGGATG					
	T GGCC GA TT G CCC AC TC TGGTGGCATGT ACCCA CG TG CCTGC GATG					
-MEXICO	TACGGCCGGAGTTGGTCCCAGCTCATGGTGGCATGTCACCCACCGTTGCCCTGCAGATG					
25	3310v	3320v	3330v	3340v	3350v	3360v
-BURMA	TATGCGAGCTCATCGTGGTGCTACCCCATGATCCAGACCACTAGCCGGTTCTCCGTT					
	T TG GAG T TCCGTGGTGC TACCC A ATCCAGAC AC AG GGT CTCCGTT					
-MEXICO	TCTGTGAGTTAGTCCGTGGTGCTACCTAAAATCCAGACTACAAGTAAGGTGCTCCGTT					
30	3370v	3380v	3390v	3400v	3410v	3420v
-BURMA	CGTTGTTCTGGGGTGAGCCTGCCGTGGCAGAAACTAGTGGTACCCAGGGCGCCAAGC					
	C T TTCTGGGG GAGCC GC GTCGG CAGAA CTAGTGGTCAC CAGGC GC AAG					
-MEXICO	CCCTTTCTGGGGAGAGCCAGCTGTCGGCCAGAAGCTAGTGGTCACACAGGCTGCTAAGG					
35	3430v	3440v	3450v	3460v	3470v	3480v
-BURMA	CCGCCAACCCCGGCTCAGTGACGGTCCACGAGGCGCAGGGCGCTACCTACACGGAGACCA					
	CCGC ACCCCGG TC T ACGGTCCA GAGGC CAGGG GC AC T AC A					
-MEXICO	CCGCGCACCCCGGATCTATAACGGTCCATGAGGCCAGGGTGCCACTTTACCACTACAA					
40	3490v	3500v	3510v	3520v	3530v	3540v
-BURMA	CTATTATTGCCACAGCAGATGCCGGGGCTTATTCACTGCTCGGGCTCATGCCATTG					
	CTAT ATTGC AC GCAGATGCCCG GGCT AT CAGTC TC CGGGCTCA GC AT G					
-MEXICO	CTATAATTGCAACTGCAGATGCCGTGGCCTCATACAGTCTCCGGGCTCACGCTATAG					
45	3550v	3560v	3570v	3580v	3590v	3600v
-BURMA	TTGCTCTGACCGCCACACTGAGAAGTGCCTCATTTGACGCCAGGCGCTTCGCG					
	TTGCTCT AC G CA ACTGA AA TG GT AT TTGAC C CC GGCTG T CG G					
-MEXICO	TTGCTCTCACTAGGCATACTGAAAAATGTTATACTGACTCTCCGGCCTGGTGCCTG					
50	3610v	3620v	3630v	3640v	3650v	3660v
-BURMA	AGGTGGGCATCTCGATGCAATGTTAATAACTTTTCTCGCTGGTGGCGAAATTGGTC					
	AGGTGGG ATCTC SATGC AT GTTAAATA TT TTCT C GGTGGCGA TTGGTC					
-MEXICO	AGGTGGGTATCTCAGATGCCATTGTTAATAATTCTTCTCGGGTGGCGAGGTTGGTC					

	3670v	3680v	3690v	3700v	3710v	3720v
-BURMA	ACCAAGCGCCCATCAGTTATTCCCGTGGCAACCCCTGACGCCAATGTTGACACCCCTGGCTG					
-MEXICO	ACCAAG G CCATC GT ATTCC CG GGCAACCCCTGAC CAATGTTGAC CT GC G					
5	ACCAAGAGACCATCGGTCAATTCCCGAGGCACCCCTGACCGCAATGTTGACGTGCTTGCGG					
	3730v	3740v	3750v	3760v	3770v	3780v
-BURMA	CCTCCCGCGCGTCTTGCCTGAGTTAGTGCCTTCATCAGTTGGCTGAGGAGCTTGGCCACA					
-MEXICO	C AT T C C T C T C C A T T A T AG GCCTTCCATCAG T GCTGAGGAGCT GGCCAC					
10	CGTTTCCACCTTCATGCCTAAATAAGCGCCCTTCATCAGTTGCTGAGGAGCTGGGCCACC					
	3790v	3800v	3810v	3820v	3830v	3840v
-BURMA	GACCTGTTCCCTGTTGCGAGCTGTTCTACCAACCTGCGCCCGAGGCTCGAACAGGGCCTCTCT					
-MEXICO	G CG C G CC GT GC GCTGT CTACCG CCTGCCT GAGCT GA CAGGGCCTCTCT					
15	GGCCGGCGCGCGTGGCGGTTATGCTACCTGCTGCCTGAGCTTGAGCAGCAGGGCCTCTCT					
	3850v	3860v	3870v	3880v	3890v	3900v
-BURMA	ACCTGCCCCAGGAGCTGACCAACTGTTGATAGTGTGCTAACATTGAATTAAACAGACATTG					
-MEXICO	A CTGG CAGGAGCT GC CCTGTGA AGTGT GT ACATTGA TAAC GACATTG					
20	ATCTGCCACAGGAGCTAGCCTCTGTGACAGTGTGACATTGAGCTAACTGACATTG					
	3910v	3920v	3930v	3940v	3950v	3960v
-BURMA	TGCACTGCCGCATGGCGCCGGGGAGCCAGCGCAAGGCGTGCTGTCCACACTCGTGGGCC					
-MEXICO	TGCACTGCCGCATGGCGCCGGGGTAGCCAAGGAAAGCTGTTGTCCACCGCTGGTAGGCC					
25						
	3970v	3980v	3990v	4000v	4010v	4020v
-BURMA	GCTACGGCGGTGCGCACAAAGCTCTACAATGCTTCCCACACTCTGATGTTCGCGACTCTCG					
-MEXICO	G TA GGC G CGCACAA GCT TA ATGC CAC C GATGT CGCG CTC CT G					
30	GGTATGGCAGACGCACAAGGTTATGATGCGGGTCACACCAGTGTCCCGCCCTCCCTTG					
	4030v	4040v	4050v	4060v	4070v	4080v
-TASHKENT	GGCCCCGTACAGGTACAACCTGTGAGTTGACCGAGCTAG					
	GGCCCCGTACAGGT ACAAC TGTGA TTGTACCGAGCTAG					
35	-BURMA	CCCGTTTATCCCGGCCATTGGCCCCGTACAGGTACAACCTGTGAATTGTACCGAGCTAG				
-MEXICO	C CG TTTAT CC C T GG C GT G AC AC TGTGAA T T GAGCT G					
	CGCGCTTATTCCCACTCTGGCGGGTTACTGCCACCCACTGTGAACCTTTGAGCTTG					
	4090v	4100v	4110v	4120v	4130v	4140v
-TASHKENT	TGGAGGCCATGGTCGAGAAAGGCCAGGATGGCTCCGCCGTCTTGAGCTGATCTCGCA					
	TGGAGGCCATGGTCGAGAA GGCCAGGATGGCTCCGCCGTCTTGAGCT GATCT TGCA					
40	-BURMA	TGGAGGCCATGGTCGAGAAAGGCCAGGATGGCTCCGCCGTCTTGAGCTTGATCTTGCA				
-MEXICO	T GAGGC ATGGT GAGAAGGCCA GA GG TC GCCGTCT GAG T GAT T TGCA					
	TAGAGGCCATGGGGAGAAGGGCCAAGACGGTTCAGCCGTCTCGAGTTGGATTGTGCA					
	4150v	4160v	4170v	4180v	4190v	4200v
-TASHKENT	ACCGTGACGTGTCAGGATCACCTTTCCAGAAAGATTGCAATAAGTTACCAACGGGAG					
	ACCGTGACGTGTCAGGATCACCT TTCCAGAAAGATTG AA AAGTTACCAACGGGAG					
-BURMA	ACCGTGACGTGTCAGGATCACCT TTCCAGAAAGATTGTAACAAGTTACCAACGGGAG					
-MEXICO	CCG GA GT TCC G AT ACCTT TTCCAGAA GATTGTAACAAGTTACACGGGAG					
50	GGCGAGATGTCTCCCGATAACCTTTCCAGAAGGATTGTAACAAGTTACGACCGGGCG					

	4210v	4220	4230v	4240v	4250v	4260v
-TASHKENT	AGACCATGCCATGGTAAAGTGGCCAGGGCATTTCGGCCTGGAGTAAGACCTCTGTG					
	AGACCAT GCCCATGGTAAAGTGGCCAGGGCATTTCGGCCTGGAG AAGACCTCTG G					
5	-BURMA	AGACCATGGCATGGTAAAGTGGCCAGGGCATTCTGGCCTGGAGCAAGACCTCTGC				
	AGAC ATTGC CATGG AAAGT GG CAGGG ATCT CTGGAG AAGAC TT TG G					
	-MEXICO	AGACAATTGCCATGGCAAAGTCGGTCAGGGTATCTCCGCTGGAGTAAGACGTTTG				
			4270v	4280v	4290v	4300v
10	-TASHKENT	CCCTTTCGGCCCTGGTCCGTGCTATTGAGAAGGCTATTCTGGCCCTGCTCCCTCAGG				
	CCCT TT GGCCC TGGTCCG GC TATTGAGAAGGCTATTCTGGCCCTGCTCCCTCAGG					
	-BURMA	CCCTTTGGGCCCTGGTCCGGCTATTGAGAAGGCTATTCTGGCCCTGCTCCCTCAGG				
	CCCT TTGGCCC TGGTCCG GC ATTGAGAAGGCTATTCT CCCT T CC CA G					
	-MEXICO	CCCTTTGGGCCCTGGTCCGGCTATTGAGAAGGCTATTCTATCCCTTACACACAAG				
			4310v	4320v		
15	-TASHKENT	GTGTGTTTATGGGGATGCCATTGATGACACCGCTTCTCGCGCGTGTGGCCGCAGCAA				
	GTGTGTTTAA GG GATGCCATTGATGACACCGCTTCTCGCGCG TGTGGCCGCAGCAA					
	-BURMA	GTGTGTTTACGGGTGATGCCATTGATGACACCGCTTCTCGCGCGTGTGGCCGCAGCAA				
	TGTGTT TACGG GATGC T TGA GAC C GT TTCTC GC GC GTGGC G GC A					
20	-MEXICO	CTGTGTTTACGGGGATGCCATTGACGACTCAAGTATTCTCTGCTGCCGTGGCTGGCGCCA				
			4330v	4340v	4350v	4360v
	-TASHKENT	AGGGCGCCATGGTGTGAGAATGACTTTCTGAGTTGACTCCACCCAGAATAATT				
	AGGC TCCATGGTGTGAGAATGACTTTCTGAGTTGACTCCACCCAGAATAA TTTT					
25	-BURMA	AGGCATCCATGGTGTGAGAATGACTTTCTGAGTTGACTCCACCCAGAATAACT				
	CCATGGTGTGAA ATGA TTTCTGAGTTGACTC AC CAGAATAACT					
	-MEXICO	GCCATGCCATGGTGTGAAATGATTCTGAGTTGACTCAGAATAACT				
			4370v	4380v		
	-TASHKENT	4390v	4400v	4410v	4420v	4430v
	-BURMA	4440v				
	-MEXICO					
			4450v	4460v	4470v	4480v
30	-TASHKENT	CCCTGGGCCTAGAGTGTGCTATTATGGAGAAGTGTGGGATGCCGAAGTGGCTCATCCG				
	C CTGGG CTAGAGTGTGCTATTATGGAG AGTGTGGGATGCC AGTGGCTCATCCG					
	-BURMA	CTCTGGGCTAGAGTGTGCTATTATGGAGGAGTGTGGGATGCCAGTGGCTCATCCG				
	C CT GGTCT GAGTG GC ATTATGGA GAGTGTGG ATGCC CAGTGGCT TC G					
	-MEXICO	CCCTAGGTCTTGAGTGCGCCATTATGGAAGAGTGTGGTATGCCCAAGTGGCTTGTCA				
			4490v	4500v		
35						
	-TASHKENT	4510v	4520v	4530v	4540v	4550v
	-BURMA	TGTACCCATTATAAGGTCTCGCTGGATCTCGCAGGCCCCGAAGGAGTCCCTGCGAGGGT				
	-MEXICO	TGTA CACCTTATAAGGTCTCGCTGGATCTCGCAGGCCCCGAAGGAGTC CTGCGAGGGT				
40						
	-TASHKENT	TGTA CA T GGTC CGCTGGATC TGCAAGGCCCC AA GAGTCT TG GAGGGT				
	-BURMA	TGTA CA T GGTC CGCTGGATC TGCAAGGCCCC AA GAGTCT TG GAGGGT				
	-MEXICO	TGTACCATGCCGTCCGGTCGGCGTGGATCTGCAGGCCCCAAAAGAGTCTTGAGAGGGT				
			4560v			
45						
	-TASHKENT	4570v	4580v	4590v	4600v	4610v
	-BURMA	4620v				
	-MEXICO	GTTGAAGAACACTCCGGTGAGCCCGGACTCTTCTATGAAACTGTCTGAAACATGG				
	TTGGAAAGAACACTCCGGTGAGCCCGGACTCTTCTATGAAACTGTCTGAA ATGG					
	-TASHKENT	TTGGAAAGAACACTCCGGTGAGCCCGGACTCTTCTATGAAACTGTCTGAA ATGG				
	-BURMA	TTGGAAAGAACACTCCGGTGAGCCCGGACTCTTCTATGAAACTGTCTGAA ATGG				
	-MEXICO	TGGAAAGAACACTCCGGTGAGCCCGGACTCTTCTATGAAACTGTCTGAA ATGG				
50						
	-TASHKENT	4630v	4640v	4650v	4660v	4670v
	-BURMA	4680v				
	-MEXICO	CCGTTATCACCCATTGTTACGATTCGGCGATTGAGGTGGCTGCCCTTAAAGGTGATG				
	CCGTTAT ACCCA TGTTA GA TTCCCGCGATT AGGTGGCTGCCCTTAAAGGTGATG					
	-TASHKENT	CCGTTATTACCCACTGTTATGACTTCGGCGATTTCAGGTGGCTGCCCTTAAAGGTGATG				
	-BURMA	C T ATT CCCA TG TATGA TTCCG GA T CAGGT GC GCCTT AA GG GA G				
	-MEXICO	CAATCATTGCCATTGCTATGAGTTCCGGGACTCCAGGTTGCCCTCAAGGGCGACG				

	4690v	4700v	4710v	4720v	4730v	4740v
5	-TASHKENT ATTGGATAGTGCTTGCAAGTGAGTACCGTCAGAGTCAGGGCTGCTGTCCCTGATTGCTG ATTGGATAGTGCTTGCAAGTGAGTACCGTCAGAGTCAGGGCTGCTGTCCCTGATTGCTG -BURMA ATTGGATAGTGCTTGCAAGTGAGTACCGTCAGAGTCAGGGCTGCTGTCCCTGATGCCG A TCG T GT CT TG ATGTA TA CG CAGAG CCAGG GC G T CT AT GC G -MEXICO ACTCGGTGTCCTGTAATGAAATACCGCCAGAGCCCAGGCAGGGTCGCTTATAGCAG					
10	4750v	4760v	4770v	4780v	4790v	4800v
	-TASHKENT GCTGTGGCTTAAAGTGAAAGTGAGTTGGGTTGGCTCCGATTGGTTGTATGCAGGTGTTGTGG GCTGTGGCTTAAAGTGAAAGTGAGTTGGCTCCGATTGGCTCCGATTGGTTGTATGCAGGTGTTGTGG -BURMA GCTGTGGCTTGAAGTTGAAGTGAGTTGGCTCCGCTGGCTGGTTGTATGCAGGTGTTGTGG GCTGTGG TTGAAGTTGAAGTGAGTTGGCTCCGATTGGCTGGCTGGTTGTATGCAGGTGTTGTGG -MEXICO GCTGTGGTTGAAGTTGAAGTGAGTTGGCTCCGATTGGCTGGCTGGTTGTATGCAGGTGTTGTGG					
15	4810v	4820v	4830v	4840v	4850v	4860v
	-TASHKENT TGACCCCCGGCCTTGGCGCGCTTCCGAGCTCGTGCCTGGCCGGCTTACTGAGA TG CCCCCGGCCTTGGCGCGCTTCCGAGCTCGTGCCTGGCCGGCTTACTGAGA -BURMA TGGCCCCGGCCTTGGCGCGCTTCCGAGCTCGTGCCTGGCCGGCTTACTGAGA T GCGCC GG CT GG GC CT CC GATGT GT CG TCGCCGG CGGCTT C GAGA -MEXICO TCGCCCCGGGGCTCGGGGCCCTACCGATGTCGTTGATTGCGGGACGGCTTCGGAGA					
20	4870v	4880v	4890v	4900v	4910v	4920v
	-TASHKENT AGAATTGGGGCCCTGGCCCTGAGCGGGCGGAGCAGCTCCGCCTTGCCTG AGAATTGGGGCCCTGGCCCTGAGCGGGCGGAGCAGCTCCGCCTTGCCTG -BURMA AGAATTGGGGCCCTGGCCCTGAGCGGGCGGAGCAGCTCCGCCTCCTGCTGTTAGTGA AGAA TGGGG CCTG CC GAGCGGGC GAGCAGCTCGCCCTCGC GT GATTTC -MEXICO AGAACTGGGGCCCTGATCGGGAGCGGGAGAGCAGCTCCGCCTCGCCGTGCAGGATTTC					
25	4930v	4940v	4950v	4960v	4970v	4980v
	-BURMA TCCGCAAGCTCACGAATGTAGCTCAGATGTGTGGATGTTCCGCTGTTATGGGG TCCG A G T ACGAATGT GC CAGAT TGTGT GA GT GT TC G GTTA GGGG -MEXICO TCCGTAGGTTAACGAATGTGGCCAGATTGTGTTGAGGTGGTGTCTAGAGTTACGGGG					
30	4990v	5000v	5010v	5020v	5030v	5040v
	-BURMA TTTCCCTGGACTCGTTCATAACCTGATGGCATGCTACAGGCTGTTGCTATGGCAAGG TTTCCCC GG CT GTTCATAACCTGAT GGCACTG CAG CT TTG TGATGG AAGG -MEXICO TTTCCCCGGGTCTGGTTCATACCTGATAGGCATGCTCCAGACTATTGGTATGGTAAGG					
35	5050v	5060v	5070v	5080v	5090v	5100v
	-BURMA CACATTCACtgAGTCAGTAAAACCAGTGCTGACTTGACAAATTCAATCTTGTGTCGGG C CATT AC GAGTC GT AA CC T CT GAC T ACA A TCAAT TG CGG -MEXICO CGCATTTCACAGAGTCTGTTAACGCTATACGGTACACACTCAATTATGCACCGGT					
40	5110v	5120v	5130v	5140v	5150v	5160v
	-BURMA TGGAATGAATAACATGTTGGCTGCGCCCATGGGTTGCGACCATGCGCCCTCGGCCT GAATGAATAACATGTTGGCTGCGCCCATGGGTTGCGACCATGCGCCCTCGGCCT -MEXICO CTGAATGAATAACATGTTGGCTGCGCCCATGGGTTGCGACCATGCGCCCTAGGCCT					
45	5170v	5180v	5190v	5200v	5210v	5220v
	-BURMA ATTTTGGCTGCTCTCATGTTGGCTATGCTGCTGGCCGCCACCGCCGGTCAGCCG TTTG TG TG TCTG TGTT TGCTATG TGCCCGGCCACCG CCGGTCA -MEXICO CTTTTGGCTGTTGGCTATGCTGCTATGTTGCCCAGCCACCGACCGGTCA CGCC					

	5230v	5240v	5250v	5260v	5270v	5280v
-BURMA	TCTGGCGCCGCTCGTGGCGGCAGCGGGTTCCGGCGGTGGTTCTGGGGTGACCGG					
-MEXICO	TCTGGCGCCGCTCGTGGCGGCAGCGGGT CGCGGTGGTTCTGGGGTGACCGG					
5	5290v	530v	5310v	5320v	5330v	5340v
-BURMA	GTTGATTCTCAGCCCTTGCAATCCCTATATTATCCAAACCAACCCCTTCGCCCGAT					
-MEXICO	GTTGATTCTCAGCCCTTGCAATCCCTATATTATCCAAACCAACCCCTT GCCCC GA					
10	5350v	5360v	5370v	5380v	5390v	5400v
-BURMA	GTCACCGCTGCGGCGGGCTGGACCTCGTGTGCGCAACCCGCCGACACTCGGCTCC					
-MEXICO	GT CGCGTGC CGGG CTGGACCTCG TCGCGCAACC GCGG CCACT GGCTCC					
15	5410v	5420v	5430v	5440v	5450v	5460v
-BURMA	GCTTGGCGTAGCCAGGCCAGCGCCCGCCGTGCGCTCACGTCGTAGACCTACACAGCT					
-MEXICO	CTTGGCG GA CAGGCCAGGCC CCG TGCGCT CGTCG GACCT CCACAGC					
20	5470v	5480v	5490v	5500v	5510v	5520v
-BURMA	GGGGCCGCGCCGCTAACCGCGCGTGCCTCGGCCCATGACACCCGCCAGTGCGCTGATGTC					
-MEXICO	GGGGC GCG CGCT AC GC GT GC CC GCCATGACACC C CC GT CC GA GT					
25	5530v	5540v	5550v	5560v	5570v	5580v
-BURMA	GACTCCCGCGGCCATCTTGCCTGGCAGTATAACCTATCAACATCTCCCTTACCTCT					
-MEXICO	GA TC CGCGG GC AT T CGCCG CAGTATAA T TC AC TC CCCCT AC TC					
30	5590v	5600v	5610v	5620v	5630v	5640v
-BURMA	TCCGTGGCCACCGCACTAACCTGGTTCTTATGCCGCCCTCTTAGTCCGCTTTACCC					
-MEXICO	TC GTGGCC C GGCCTAA T GT CT TATGC GCCCC CTTA TCCGC T T CC					
35	5650v	5660v	5670v	5680v	5690v	5700v
-BURMA	CTTCAGGACGGCACCAATACCCATATAATGGCACGGAGCTTCTAATTATGCCAGTAC					
-MEXICO	CT CAGGACGG AC AATAC CA AT ATGGCAC GA GC TC AATTATGC CAGTAC					
40	5710v	5720v	5730v	5740v	5750v	5760v
-BURMA	CGGGTTGCCCGTGCACAATCGTTACCGCCGCTGGTCCCAATGCTGTCGGCGGTTAC					
-MEXICO	CGGGTTGCCCG GC AC ATCCGTTACCG CC CT GT CC AATGC GT GG GG TA					
45	5770v	5780v	5790v	5800v	5810v	5820v
-BURMA	GCCATCTCCATCTCATTCTGGCACAGACCACCAACCCGACGTCCGTTGATGAAT					
-MEXICO	GC AT TCCAT TC TTCTGGCC CA AC ACCAC ACCCC AC TC GTTGA ATGAAT					
50	GCTATATCCATTCTTCTGGCTCAAACACACAAACCCCTACATCTTTGACATGAAT					

		5830v	5840v	5850v	5860v	5870v	5880v
	-BURMA	TCAATAACCTCGAGGGATTTGTTGATTTAGTCCAGGCCGGCATAGCCTCTGAGCTTGTC					
	-MEXICO	TC AT AC TC AC GATGT G ATT T GT CA CC GGCA TAGC TCTGA T GT					
5		TCCATTACTTCCACTGATGTCAGGATTCTGTTCAACCTGGCATAGCATCTGAATTGGTC					
		5890v	5900v	5910v	5920v	5930v	5940v
	-BURMA	ATCCCAGTGA CGCCCTACACTATCGTAACCAAGGCTGGCGCTCCGTCAGACCTCTGGG					
	-MEXICO	ATCCCAG GAGCGCC CACTA CG AA CAAGG TGGCGTC GT GAGAC TCTGG					
10		ATCCCAGCGAGCGCCCTACACTACCGCAATCAAGGTTGGCGCTCGGTTGAGACATCTGGT					
		5950v	5960v	5970v	5980v	5990v	6000v
	-BURMA	GTGGCTGAGGGAGGGCTAACCTGTTGTTGTTATGCTTGCATACATGGCTCACTCGTA					
	-MEXICO	GT GCTGAGGAGGA GC AGCTG GGTTTGT ATG T TGCA TACATGGCTC C GT					
15		GTTGCTGAGGAGGAAGCCATCTCGGTCTTGTATGTTATGCATACATGGCTCTCCAGTT					
		6010v	6020v	6030v	6040v	6050v	6060v
	-BURMA	AA TTCTATACTAATAACCGCTATACCGGTGCCCTCGGGCTTGGACTTTGCCCTTGAG					
	-MEXICO	AA TTCTATACT AATACTC TATACCGGTGCCCT GG T TGGACTTTGCC T GAG					
20		AACTCTATACCAATAACCGCTTATACCGGTGCCCTGGCTACTGGACTTTGCCCTAGAG					
		6070v	6080v	6090v	6100v	6110v	6120v
	-BURMA	CTTGAGTTTCGCAACCTTACCCCCGGTAACACCAATACCGGGTCTCCGTTATTCCAGC					
	-MEXICO	CTTGAGTTTCGCAA CT AC CC GTAACACCAATAC CG GT TCCCGTTA TCCAGC					
25		CTTGAGTTTCGCAATCTCACCCACTGTAAACACCAATACCGTGTGTCGGCTACTCCAGC					
		6130v	6140v	6150v	6160v	6170v	6180v
	-BURMA	ACTGCTGCCACC CGCCTTCGTCGCGGTGCGGACGGGACTGCCGAGCTCACCAACCGC					
	-MEXICO	ACTGCTCG CAC C CG G G GACGGGACTGC GAGCT ACCAC AC GC					
30		ACTGCTCGTCACTCCGCCGAGGGGCC---GACGGGACTGCCGAGCTGACCACAACGTCA					
		6190v	6200v	6210v	6220v	6230v	6240v
	-BURMA	GCTACCCGCTTATGAAGGACCTCTATTTACTAGTACTAATGGTGTGGTGAGATCGGC					
	-MEXICO	GC ACC G TT ATGAA GA CTC A TTTAC G TAATGG GT GGTGA TCGGC					
35		GCCACCAAGGTTCATGAAAGATCTCACTTACCGGCCTTAATGGGTAGGTGAAGTCGGC					
		6250v	6260v	6270v	6280v	6290v	6300v
	-BURMA	CGCGGGATAGCCCTCACCTGTTAACCTTGCTGACACTCTGCTGGCGGCCCTGCCGACA					
	-MEXICO	CGCGGGATAGC CT AC T T AACCTTGCTGACAC CT CT GGC GG CT CCGACA					
40		CGCGGGATAGCTAACATTACTTAACCTTGCTGACACGCTCTCGGCCGGCTCCCGACA					
		6310v	6320v	6330v	6340v	6350v	6360v
	-BURMA	GAATTGATTTCTCGTGGCTGGTGGCCAGCTGTTACTCCCGTCCCGTTGTCAGCCAAT					
	-MEXICO	GAATT ATTTCGTCGGCTGG GG CA CTGTT TA TCCCG CC GTTGTCTCAGCCAAT					
45		GAATTAATTTCTCGTGGCTGGCGGGCAACTGTTTATTCCGCCGGTTGTCAGCCAAT					
		6370v	6380v	6390v	6400v	6410v	6420v
	-BURMA	GGCGAGCCGACTGTTAAGTGTATACATCTGAGAGAATGCTCAGCAGGATAAGGGTATT					
	-MEXICO	GGCGAGCC AC GT AAG T TATACATC GT GAGAATGCTCAGCAGGATAAGGGT TT					
50		GGCGAGCCAACCGTGAAGCTATACATCAGTGGAGAATGCTCAGCAGGATAAGGGTGT					
		6430v	6440v	6450v	6460v	6470v	6480v
	-BURMA	GCAATCCCGCATGACATTGACCTCGGAGAACTCGTGTGGTTATTCAAGGATTATGATAAC					
	-MEXICO	GC ATCCC CA GA AT GA CT GG GA TC CGTGTGGT ATTCAAGGATTATGA AAC					
55		GCTATCCCCACGATATCGATCTGGTATTCCGCGTGTGGTCATTCAAGGATTATGACAAC					

	6490v	6500v	6510v	6520v	6530v	6540v
-BURMA	CAACATGAAAGAATGGGCCGAGCGCTTCTCCAGCCCCATCGGCCCTTCTGTCTCCTT					
-MEXICO	CA CATGA CA GATCGGAC AC CC TC CC GC CCATC CG CCTTT TCTGT CT					
5	CAGCATGAGCAGGATCGTACACCCCGTCGCCTGCGCATCTCGGCCTTTCTGTTCTC					
	6550v	6560v	6570v	6580v	6590v	6600v
-BURMA	CGAGCTAATGATGTGCTTGGCTCTCTCACCGCTGCCGAGTATGACCGACTTAC					
-MEXICO	CGAGC AATGATGT CTTGGCT TC CTCAC GC GCCGAGTATGACCGACTTAC					
10	CGAGCAAATGATGTACTTGGCTGCCTCACTGCAGCCGAGTATGACCGACTTAC					
	6610v	6620v	6630v	6640v	6650v	6660v
-BURMA	GGCTCTCGACTGGCCCAGTTATGTTCTGACTCTGTGACCTTGGTTAATGTTGCGAC					
-MEXICO	GG TC TC ACTGGCCC GTTAT T TC GAC GTGAC TTGGT AATGTTGCGAC					
15	GGGTCGTCAACTGGCCCGTTTATATCTCGGACAGCGTACTTGGTAATGTTGCGACT					
	6670v	6680v	6690v	6700v	6710v	6720v
-BURMA	GGCGCGCAGGCCGTTGCCCGGTCGCTCGATTGGACCAAGGTACACTTGACGGTCGCC					
-MEXICO	GGCGCGCAGGCCGTTGCCCGTGAAGACAGCGTACTGGTCAAAGTCACCTCGACGGCGGCC					
20	GGCGCGCAGGCCGTTGCCCGTGAAGACAGCGTACTGGTCAAAGTCACCTCGACGGCGGCC					
	6730v	6740v	6750v	6760v	6770v	6780v
-BURMA	CTCTCCACCATCCAGCAGTACTCGAACGACCTTCTTGCTCTCCGCGTAAGCTC					
-MEXICO	CTC C AC T AGCA TA TC AAGAC TTCTTGT CT CC CT CG GG AAGCTC					
25	CTCCGACTGTTGAGCAATATTCAAAGACATTCTTGCTCCCCCTCGTGGCAAGCTC					
	6790v	6800v	6810v	6820v	6830v	6840v
-BURMA	TCTTCTGGGAGGCAGGCACAACATAAGCCGGTACCCCTATAATTATAACACCACTGCT					
-MEXICO	TC TT TGGGAGGC GGCACAAAC AAAGC GG TA CCTTATAATTATAAC ACTGCT					
30	TCCTTTGGGAGGCCGGCACAAACAAAGCAGGTTATCCTATAATTATAACTACTGCT					
	6850v	6860v	6870v	6880v	6890v	6900v
-BURMA	AGCGACCAACTGCTTGAGAACATGCCGCCGGCACCGGGTCGCTATTCACTTACACC					
-MEXICO	AG GACCA T CT T GA AATGC GCCGG CA CGGGTCGC ATTTC AC TA ACC					
35	AGTGACCAGATTCTGATTGAAAATGCTGCCGCCATGGTCGCCATTCAACCTATACC					
	6910v	6920v	6930v	6940v	6950v	6960v
-BURMA	ACTAGCCTGGGTGCTGGTCCCGTCTCCATTCTGCGGTTGCCGTTAGCCCCCACTCT					
-MEXICO	AC AG CT GG GC GGTCC GTC CCATTCTGCGG GC GTTTT GC CC C CTC					
40	ACCAGGCTTGGGCCGGTCCGGTCGCCATTCTGCGGCCGGTTGGCTCCACGCTCC					
	6970v	6980v	6990v	7000v	7010v	7020v
-BURMA	GCGCTAGATTGCTGAGGATACTTGGACTACCCCTGCCGCCACTTTGATGAT					
-MEXICO	GC CT GC TGCT GAGGATAC TT GA TA CC G CG GC CA AC TTTGATGA					
45	GCCCTGGCTCTGCTGGAGGATACTTTGATTATCCGGGGCGGGCACACATTGATGAC					
	7030v	7040v	7050v	7060v	7070v	7080v
-BURMA	TTCTGCCAGAGTGCCGCCCTTGGCCTCAGGGCTGCGCTTCCAGTCTACTGTCGCT					
-MEXICO	TTCTGCCCTGAATGCCGCCTTGGCTCCAGGGTTGTGCTTCCAGTCAACTGTCGCT					
50	TTCTGCCCTGAATGCCGCCTTGGCTCCAGGGTTGTGCTTCCAGTCAACTGTCGCT					
	7090v	7100v	7110v	7120v	7130v	7140v
-BURMA	GAGCTCAGCGCCTTAAGATGAAGGTGGTAAACACTGGGAGTTGAGTTATTTGCTTG					
-MEXICO	GAGCT CAGCGCCTAA T AAGGTGGTAAACACTGGGAGTTGAGTTATTTG TG					
55	GAGCTCCAGCGCCTAAAGTTAAGGTGGTAAACACTGGGAGTTGAGTTATTTGCTG					

	7150v	7161	7170v	7180v	7190v
-BURMA	TGCCCCCCTTCTTCTGTTGCT-----		TTATTTCTCATTTCTGCCTCCGGCTCCC		
	TGCC CCT CTT	TGT	TTATTT	TTTCT	GT CGCGCTCCC
-MEXICO	TGCCCCACCTACTTATACTGCTGTTCTTTATTTCTTTCTCGGTCCCGCGCTCCC				
5		✓ 7195			
	-BURMA	TGA			
		TGA			
10	-MEXICO	TGA			

A number of open reading frames, which are potential coding regions, have been found within the DNA sequences set forth above. As has already been noted, consensus residues for the RNA-directed RNA polymerase (RDRP) were identified in the HEV (Burma) strain clone ET1.1. Once a contiguous overlapping set of clones was accumulated, it became clear that the nonstructural elements containing the RDRP as well as what were identified as consensus residues for the helicase domain were located in the first large open reading frame (ORF1). ORF1 covers the 5' half of the genome and begins at the first encoded met, after the 27th bp of the apparent non-coding sequence, and then extends 5079 bp before reaching a termination codon. Beginning 37 bp downstream from the ORF1 stop codon in the plus 1 frame is the second major opening reading frame (ORF2) extending 1980 bp and terminating 68 bp upstream from the point of poly A addition. The third forward ORF (in the plus 2 frame) is also utilized by HEV. ORF3 is only 370 bp in length and would not have been predicted to be utilized by the virus were it not for the identification of the immunoreactive cDNA clone 406.4-2 from the Mexico SISPA cDNA library (see below for detailed discussion). This epitope confirmed the utilization of ORF3 by the virus, although the means by which this ORF is expressed has not yet been fully elucidated. If we assume that the first ~~met~~ is utilized, ORF3 overlaps ORF1 by 1 bp at its 5' end and ORF2 by 328 bp at its 3'end. ORF2 contains the broadly reactive 406.3-2 epitope and also

a signal sequence at its extreme 5' end. The first half of this ORF2 also has a high pI value (>10) similar to that seen with other virus capsid proteins. These data suggest that the ORF2 might be the predominant structural gene of HEV.

The existence of subgenomic transcripts prompted a set of experiments to determine whether these RNAs were produced by splicing from the 5' end of the genome. An analysis using subgenomic probes from throughout the genome, including the extreme 5' end, did not provide evidence for a spliced transcript. However, it was discovered that a region of the genome displayed a high degree of homology with a 21 bp segment identified in Sindbis as a probably internal initiation site for RNA transcription used in the production of its subgenomic messages. Sixteen of 21 (76%) of the nucleotides are identical.

Two cDNA clones which encode an epitope of HEV that is recognized by sera collected from different ET-NANB outbreaks (i.e., a universally recognized epitope) have been isolated and characterized. One of the clones immunoreacted with 8 human sera from different infected individuals and the other clone immunoreacted with 7 of the human sera tested. Both clones immunoreacted specifically with cyno sera from infected animals and exhibited no immunologic response to sera from uninfected animals. The sequences of the cDNAs in these recombinant phages, designated 406.3-2 and 406.4-2 have been determined. The HEV open reading frames are shown to encode epitopes specifically recognized by sera from patients with HEV infections. The cDNA sequences and the polypeptides that they encode are set forth below.

Epitopes derived from Mexican strain of HEV:
35 406.4-2 sequence (nucleotide sequence has SEQ ID NO.13; amino acid sequence has SEQ ID NO.14):

SEQ ID NO. 13:

	C GCC AAC CAG CCC GGC AAC TTG ACT CCA CTT GGC GAG ATC AGG CCC Ala Asn Gln Pro Gly His Leu Ala Pro Leu Gly Glu Ile Arg Pro	46
5	1 5 10 15	
	AGC GCG CCT CGG CTG CCT CCC GTC GCG GAC CTG CCA CAG CCG GGG CTG Ser Ala Pro Pro Leu Pro Pro Val Ala Asp Leu Pro Gln Pro Gly Leu	94
	20 25 30	
10	CGG CGC TGA CGGCTGTGGC GCCTGCCAT GACACCTCAC CGGTCCCCGGA Arg Arg .	143
15	CGTTGATTCT CGCGGTGCAA TTCTACGCG CAGTATAAT TTGTCTACTT CACCCCTGAC ATCCTCTGTG GCCTCTGGCA CTAATTTAGT CCTGTATGCA GCCCCCTTA ATCCGCCCTCT	203
20	GCCGCTGCAG GACGGTATAA ATACTGACAT TATGCCACA GAGGCCTCCA ATTATGCACA GTACCGGGTT GCCCGGGCTA CTATCGCTTA CGGGCCCTA GTGCCATAATG CAGTTGGAGG	263
25	CTATGCTATA TCCATTCTT TCTGGCTCA AAGAACCCACA ACCCCTACAT CTGTTGACAT GAATTC	323
		383
		443
		449

SEQ ID NO. 14:

406.3-2 sequence (nucleotide sequence has SEQ ID NO.15; amino acid sequence has SEQ ID NO.16):

SEQ ID NO. 15:

40	GGAT ACT TTT GAT TAT CCG GGG CGG GCG CAC ACA TTT GAT GAC TTC TGC Thr Phe Asp Tyr Pro Gly Arg Ala His Thr Phe Asp Asp Phe Cys 1 5 10 15	49
45	CCT GAA TGC CGC GCT TTA GGC CTC CAG GGT TGT GCT TTC CAG TCA ACT Pro Glu Cys Arg Ala Leu Gly Leu Gln Gly Cys Ala Phe Gln Ser Thr 20 25 30	97
50	GTC GCT GAG CTC CAG CGC CTT AAA GTT AAG GTT Val Ala Glu Leu Gln Arg Leu Lys Val Lys Val 35 40	130

SEQ ID NO. 16:

Thr Phe Asp Tyr Pro Gly Arg Ala His Thr Phe Asp Asp Phe Cys Pro
1 5 10 15

5 Glu Cys Arg Ala Leu Gly Leu Gln Gly Cys Ala Phe Gln Ser Thr Val
 20 25 30

Ala Glu Leu Gln Arg Leu Lys Val Lys Val
10 35 40

The universal nature of these epitopes is evident from the homology exhibited by the DNA that encodes them. If the epitope coding sequences from the Mexican strains shown above are compared to DNA sequences from other strains, such as the Burmese strain also set forth above, similarities are evident, as shown in the following comparisons.

Comparison of 406.4-2 epitopes, HEV Mexico and Burma strains:

20	10	20	30
MEXICAN (SEQ ID NO. 17)	ANQPGHLAPLGEIRPSAPPLPPADLPQPGGLRR : : . . : : : : . : : : : : : : : : : : : : : :		
BURMA (SEQ ID NO. 18)	ANPPDHSAPLGVTRPSAPPLPHVVVDLPQLGPRR 10	20	30

There is 73.5% identity in a 33-amino acid overlap.

Comparison of 406.3-2 epitopes, HEV Mexico and Burma strains:

MEXICAN (SEO ID No. 19)

30	10	20	30	40
	TFDYPGRAHTFDDFCPECRALGLQGCAFQSTVAELQRLKVKV			
			
	TLDYPARAHTFDDFCPECRPLGLQGCAFQSTVAELQRLKMKV			
	10	20	30	40

35 BURMA (SEQ ID No. 20)

There is 90.5% identity in the 42-amino acid overlap.

It will be recognized by one skilled in the art of molecular genetics that each of the specific DNA sequences given above shows a corresponding complementary DNA sequence as well as RNA sequences corresponding to both the principal sequence shown and

20309587
040591

other sources of genetic material), as is well known in the art.

3. Two amino acid sequences or two nucleotide sequences (in an alternative definition for homology between two nucleotide sequences) are considered homologous (as this term is preferably used in this specification) if they have an alignment score of >5 (in standard deviation units) using the program ALIGN with the mutation gap matrix and a gap penalty of 6 or greater. See Dayhoff, M.O., in Atlas of Protein Sequence and Structure (1972) Vol. 5, National Biomedical Research Foundation, pp. 101-110, and Supplement 2 to this volume, pp. 1-10. The two sequences (or parts thereof, preferably at least 30 amino acids in length) are more preferably homologous if their amino acids are greater than or equal to 50% identical when optimally aligned using the ALIGN program mentioned above.

4. A DNA fragment is "derived from" an ET-NANB viral agent if it has the same or substantially the same basepair sequence as a region of the viral agent genome.

5. A protein is "derived from" an ET-NANB viral agent if it is encoded by an open reading frame of a DNA or RNA fragment derived from an ET-NANB viral agent.

II. Obtaining Cloned ET-NANB Fragments

According to one aspect of the invention, it has been found that a virus-specific DNA clone can be produced by (a) isolating RNA from the bile of a cynomolgus monkey having a known ET-NANB infection, (b) cloning the cDNA fragments to form a fragment library, and (c) screening the library by differential hybridization to radiolabeled cDNAs from infected and non-infected bile sources.

A. cDNA Fragment Mixture

ET-NANB infection in cynomolgus monkeys is initiated by inoculating the animals intravenously with a 10% w/v suspension from human case stools positive for 27-34 nm ET-NANB particles (mean diameter 32 nm). An infected animal is monitored for elevated levels of alanine amino transferase, indicating hepatitis infection. ET-NANB infection is confirmed by immunospecific binding of seropositive antibodies to virus-like particles (VLPs), according to published methods (Gravelle). Briefly, a stool (or bile) specimen taken from the infected animal 3-4 weeks after infection is diluted 1:10 with phosphate-buffered saline, and the 10¹t suspension is clarified by low-speed centrifugation and filtration successively through 1.2 and 0.45 micron filters. The material may be further purified by pelleting through a 30% sucrose cushion (Bradley). The resulting preparation of VLPs is mixed with diluted serum from human patients with known ET-NANB infection. After incubation overnight, the mixture is centrifuged overnight to pellet immune aggregates, and these are stained and examined by electron microscopy for antibody binding to the VLPs.

ET-NANB infection can also be confirmed by seroconversion to VLP-positive serum. Here the serum of the infected animal is mixed as above with 27-34 nm VLPs isolated from the stool specimens of infected human cases and examined by immune electron microscopy for antibody binding to the VLPs.

Bile can be collected from ET-NANB positive animals by either cannulating the bile duct and collecting the bile fluid or by draining the bile duct during necropsy. Total RNA is extracted from the bile by hot phenol extraction, as outlined in Example 1A. The RNA fragments are used to synthesize corresponding duplex cDNA fragments by random priming, also as referenced in Example 1A. The cDNA fragments may be fractionated by gel electrophoresis or density

gradient centrifugation to obtain a desired size class of fragments, e.g., 500-4,000 basepair fragments.

Although alternative sources of viral material, such as VLPs obtained from stool samples (as described in Example 4), may be used for producing a cDNA fraction, the bile source is preferred. According to one aspect of the invention, it has been found that bile from ET-NANB-infected monkeys shows a greater number of intact viral particles than material obtained from stool samples, as evidenced by immune electron microscopy. Bile obtained from an ET-NANB infected human or cynomolgus macaque, for use as a source of ET-NANB viral protein or genomic material, or intact virus, forms part of the present invention.

15

B. cDNA Library and Screening

The cDNA fragments from above are cloned into a suitable cloning vector to form a cDNA library. This may be done by equipping blunt-ended fragments with a suitable end linker, such as an EcoRI sequence, and inserting the fragments into a suitable insertion site of a cloning vector, such as at a unique EcoRI site. After initial cloning, the library may be re-cloned, if desired, to increase the percentage of vectors containing a fragment insert. The library construction described in Example 1B is illustrative. Here cDNA fragments were blunt-ended, equipped with EcoRI ends, and inserted into the EcoRI site of the lambda phage vector gt10. The library phage, which showed less than 5% fragment inserts, was isolated, and the fragment inserts re-cloned into the lambda gt10 vector, yielding more than 95% insert-containing phage.

The cDNA library is screened for sequences specific for ET-NANB by differential hybridization to cDNA probes derived from infected and non-infected sources. cDNA fragments from infected and non-infected source bile or stool viral isolates can be prepared as above. Radiolabeling the fragments is by random

labeling, nick translation, or end labeling, according to conventional methods (Maniatis, p. 109). The cDNA library from above is screened by transfer to duplicate nitrocellulose filters, and hybridization 5 with both infected-source and non-infected-source (control) radiolabeled probes, as detailed in Example 2. In order to recover sequences that hybridize at the preferred outer limit of 25-30% basepair mismatches, clones can be selected if they hybridize under the 10 conditions described in Maniatis *et al.*, op. cit., pp. 320-323, but using the following wash conditions: 2 x SCC, 0.1% SDS, room temperature - twice, 30 minutes each; then 2 x SCC, 0.1% SDS, 50°C - once, 30 minutes; then 2 x SCC, room temperature - twice, 10 minutes 15 each. These conditions allowed identification of the Mexican isolate discussed above using the ET1.1 sequence as a probe. Plaques which show selective hybridization to the infected-source probes are preferably re-plated at low plating density and re-screened as above, to isolate single clones which are 20 specific for ET-NANB sequences. As indicated in Example 2, sixteen clones which hybridized specifically with infected-source probes were identified by these procedures. One of the clones, 25 designated lambda gt101.1, contained a 1.33 kilobase fragment insert.

C. ET-NANB Sequences

The basepair sequence of cloned regions of the 30 ET-NANB fragments from Part B are determined by standard sequencing methods. In one illustrative method, described in Example 3, the fragment insert from the selected cloning vector is excised, isolated by gel electrophoresis, and inserted into a cloning 35 vector whose basepair sequence on either side of the insertion site is known. The particular vector employed in Example 3 is a pTZKf1 vector shown at the left in Figure 1. The ET-NANB fragment from the gt10-

1.1 phage was inserted at the unique EcoRI site of the pTZKF1 plasmid. Recombinants carrying the desired insert were identified by hybridization with the isolated 1.33 kilobase fragment, as described in
5 Example 3. One selected plasmid, identified as pTZKF1 (ET1.1), gave the expected 1.33 kb fragment after vector digestion with EcoRI. E. coli strain BB4 infected with the pTZKF1(ET1.1) plasmid has been deposited with the American Type Culture Collection,
10 Rockville, MD, and is identified by ATCC deposit number 67717.

The pTZKF1(ET1.1) plasmid is illustrated at the bottom in Figure 1. The fragment insert has 5' and 3' end regions denoted at A and C, respectively, and an
15 intermediate region, denoted at B. The sequences in these regions were determined by standard dideoxy sequencing and were set forth in an earlier application in this series. The three short sequences (A, B, and C) are from the same insert strand. As will
20 be seen in Example 3, the B-region sequence was actually determined from the opposite strand, so that the B region sequence shown above represents the complement of the sequence in the sequenced strand.
The base numbers of the partial sequences are
25 approximate.

Later work in the laboratory of the inventors identified the full sequence, set forth above. Fragments of this total sequence can readily be prepared using restriction endonucleases. Computer
30 analysis of both the forward and reverse sequence has identified a number of cleavage sites.

III. ET-NANB Fragments

According to another aspect, the invention includes ET-NANB-specific fragments or probes which hybridize with ET-NANB genomic sequences or cDNA
35 fragments derived therefrom. The fragments may include full-length cDNA fragments such as described in

Section II, or may be derived from shorter sequence regions within cloned cDNA fragments. Shorter fragments can be prepared by enzymatic digestion of full-length fragments under conditions which yield 5 desired-sized fragments, as will be described in Section IV. Alternatively, the fragments can be produced by oligonucleotide synthetic methods, using sequences derived from the cDNA fragments. Methods or commercial services for preparing selected-sequence 10 oligonucleotide fragments are available. Fragments are usually at least 12 nucleotides in length, preferably at least 14, 16, 18 or 20 nucleotides, when used as probes. Probes can be full length or less than 500, preferably less than 300 or 200, nucleotides 15 in length.

To confirm that a given ET-NANB fragment is in fact derived from the ET-NANB viral agent, the fragment can be shown to hybridize selectively with cDNA from infected sources. By way of illustration, to 20 confirm that the 1.33 kb fragment in the pTZKF1(ET1.1) plasmid is ET-NANB in origin, the fragment was excised from the pTZKF1(ET1.1) plasmid, purified, and radiolabeled by random labeling. The radiolabeled fragment was hybridized with fractionated cDNAs from 25 infected and non-infected sources to confirm that the probe reacts only with infected-source cDNAs. This method is illustrated in Example 4, where the above radiolabeled 1.33 kb fragment from pTZKF1(ET1.1) plasmid was examined for binding to cDNAs prepared 30 from infected and non-infected sources. The infected sources are (1) bile from a cynomolgus macaque infected with a strain of virus derived from stool samples from human patients from Burma with known ET-NANB infections and (2) a viral agent derived from the 35 stool sample of a human ET-NANB patient from Mexico. The cDNAs in each fragment mixture were first amplified by a linker-primer amplification method described in Example 4. Fragment separation was on

agarose gel, followed by Southern blotting and then hybridization to bind the radiolabeled 1.33 kb fragment to the fractionated cDNAs. The lane containing cDNAs from the infected sources showed a 5 smeared band of bound probe, as expected (cDNAs amplified by the linker/primer amplification method would be expected to have a broad range of sizes). No probe binding to the amplified cDNAs from the non-infected sources was observed. The results indicate 10 that the 1.33 kb probe is specific for cDNA fragments associated with ET-NANB infection. This same type of study, using ET 1.1 as the probe, has demonstrated hybridization to ET-NANB samples collected from Tashkent, Somalia, Borneo and Pakistan. Secondly, the 15 fact that the probe is specific for ET-NANB related sequences derived from different continents (Asia, Africa and North America) indicates the cloned ET-NANB Burma sequence (ET1.1) is derived from a common ET-NANB virus or virus class responsible for ET-NANB 20 hepatitis infection worldwide.

In a related confirmatory study, probe binding to fractionated genomic fragments prepared from human or cynomolgus macaque genomic DNA (both infected and uninfected) was examined. No probe 25 binding was observed to either genomic fraction, demonstrating that the ET-NANB fragment is not an endogenous human or cynomolgus genomic fragment and additionally demonstrating that HEV is an RNA virus.

Another confirmation of ET NANB specific 30 sequences in the fragments is the ability to express ET-NANB proteins from coding regions in the fragments and to demonstrated specific sero-reactivity of these proteins with sera collected during documented outbreaks of ET-NANB. Section IV below discusses 35 methods of protein expression using the fragments.

One important use of the ET-NANB-specific fragments is for identifying ET-NANB-derived cDNAs which contain additional sequence information. The

newly identified cDNAs, in turn, yield new fragment probes, allowing further iterations until the entire viral genome is identified and sequenced. Procedures for identifying additional ET-NANB library clones and generating new probes therefrom generally follow the cloning and selection procedures described in Section II.

The fragments (and oligonucleotides prepared based on the sequences given above) are also useful as primers for a polymerase chain reaction method of detecting ET-NANB viral genomic material in a patient sample. This diagnostic method will be described in Section V below.

Two specific genetic sequences derived from the Mexican strain, identified herein as 406.3-2 and 406.4-2, have been identified that encode immunogenic epitopes. This was done by isolating clones which encode epitopes that immunologically react specifically with sera from individuals and experimental animals infected with HEV. Comparison of the isolated sequences with those in the Genebank collection of genetic sequences indicate that these viral sequences are novel. Since these sequences are unique, they can be used to identify the presence of HEV and to distinguish this strain of hepatitis from HAV, HBV, and HCV strains. The sequences are also useful for the design of oligonucleotide probes to diagnose the presence of virus in samples. They can be used for the synthesis of polypeptides that themselves are used in immunoassays. The specific 406.3-2 and 406.4-2 sequences can be incorporated into other genetic material, such as vectors, for ease of expression or replication. They can also be used (as demonstrated above) for identifying similar antigenic regions encoded by related viral strains, such as the Burmese strain.

IV. ET-NANB Proteins

As indicated above, ET-NANB proteins can be prepared by expressing open reading-frame coding regions in ET-NANB fragments. In one preferred approach, the ET-NANB fragments used for protein expression are derived from cloned cDNAs which have been treated to produce desired-size fragments, and preferably random fragments with sizes predominantly between about 100 to about 300 base pairs. Example 5 describes the preparation of such fragments by DNAs 5 digestion. Because it is desired to obtain peptide antigens of between about 30 to about 100 amino acids, the digest fragments are preferably size fractionated, for example by gel electrophoresis, to 10 select those in the approximately 100-300 basepair 15 size range. Alternatively, cDNA libraries constructed directly from HEV-containing sources (e.g., bile or stool) can be screened directly if cloned into an appropriate expression vector (see below).

For example, the ET-NANB proteins expressed 20 by the 406.3-2 and 406.4-2 sequences (and peptide fragments thereof) are particularly preferred since these proteins have been demonstrated to be immunoreactive with a variety of different human sera, thereby indicating the presence of one or more 25 epitopes specific for HEV on their surfaces. These clones were identified by direct screening of a gt11 library.

A. Expression Vector

The ET-NANB fragments are inserted into a 30 suitable expression vector. One exemplary expression vector is lambda gt11, which contains a unique EcoRI insertion site 53 base pairs upstream of the translation termination codon of the beta- 35 galactosidase gene. Thus, the inserted sequence will be expressed as a beta-galactosidase fusion protein which contains the N-terminal portion of the beta-galactosidase gene, the heterologous peptide, and

optionally the C-terminal region of the beta-galactosidase peptide (the C-terminal portion being expressed when the heterologous peptide coding sequence does not contain a translation termination codon). This vector also produces a temperature-sensitive repressor (c1857) which causes viral lysogeny at permissive temperatures, e.g., 32°C, and leads to viral lysis at elevated temperatures, e.g., 37°C. Advantages of this vector include: (1) highly efficient recombinant generation, (2) ability to select lysogenized host cells on the basis of host-cell growth at permissive, but not non-permissive, temperatures, and (3) high levels of recombinant fusion protein production. Further, since phage containing a heterologous insert produces an inactive beta-galactosidase enzyme, phage with inserts can be readily identified by a beta-galactosidase colored-substrate reaction.

For insertion into the expression vector, the viral digest fragments may be modified, if needed, to contain selected restriction-site linkers, such as EcoRI linkers, according to conventional procedures. Example 1 illustrates methods for cloning the digest fragments into lambda gt11, which includes the steps of blunt-ending the fragments, ligating with EcoRI linkers, and introducing the fragments into EcoRI-cut lambda gt11. The resulting viral genomic library may be checked to confirm that a relatively large (representative) library has been produced. This can be done, in the case of the lambda gt11 vector, by infecting a suitable bacterial host, plating the bacteria, and examining the plaques for loss of beta-galactosidase activity. Using the procedures described in Example 1, about 50% of the plaques showed loss of enzyme activity.

B. Peptide Antigen Expression

The viral genomic library formed above is screened for production of peptide antigen (expressed as a fusion protein) which is immunoreactive with antiserum from ET-NANB seropositive individuals . In
5 a preferred screening method, host cells infected with phage library vectors are plated, as above, and the plate is blotted with a nitrocellulose filter to transfer recombinant protein antigens produced by the cells onto the filter. The filter is then reacted with
10 the ET-NANB antiserum, washed to remove unbound antibody, and reacted with reporter-labeled, anti-human antibody, which becomes bound to the filter, in sandwich fashion, through the anti-ET-NANB antibody.

Typically phage plaques which are identified
15 by virtue of their production of recombinant antigen of interest are re-examined at a relatively low density for production of antibody-reactive fusion protein. Several recombinant phage clones which produced immunoreactive recombinant antigen were
20 identified in the procedure.

The selected expression vectors may be used for scale-up production, for purposes of recombinant protein purification. Scale-up production is carried out using one of a variety of reported methods for (a) lysogenizing a suitable host, such as E. coli, with a
25 selected lambda gt11 recombinant (b) culturing the transduced cells under conditions that yield high levels of the heterologous peptide, and (c) purifying the recombinant antigen from the lysed cells.

In one preferred method involving the above lambda gt11 cloning vector, a high-producer E. coli host, BNN103, is infected with the selected library phage and replica plated on two plates. One of the plates is grown at 32°C, at which viral lysogeny can occur, and the other at 42°C, at which the infecting phage is in a lytic stage and therefore prevents cell growth. Cells which grow at the lower but not the
35

higher temperature are therefore assumed to be successfully lysogenized.

The lysogenized host cells are then grown under liquid culture conditions which favor high 5 production of the fused protein containing the viral insert, and lysed by rapid freezing to release the desired fusion protein.

C. Peptide Purification

10 The recombinant peptide can be purified by standard protein purification procedures which may include differential precipitation, molecular sieve chromatography, ion-exchange chromatography, isoelectric focusing, gel electrophoresis and 15 affinity chromatography. In the case of a fused protein, such as the beta-galactosidase fused protein prepared as above, the protein isolation techniques which are used can be adapted from those used in isolation of the native protein. Thus, for isolation 20 of a soluble betagalactosidase fusion protein, the protein can be isolated readily by simple affinity chromatography, by passing the cell lysis material over a solid support having surface-bound anti-beta-galactosidase antibody.

25

D. Viral Proteins

The ET-NANB protein of the invention may also be derived directly from the ET-NANB viral agent. VLPs or protein isolated from stool or liver samples 30 from an infected individual, as above, are one suitable source of viral protein material. The VLPs isolated from the stool sample may be further purified by affinity chromatography prior to protein isolation (see below). The viral agent may also be raised in 35 cell culture, which provides a convenient and potentially concentrated source of viral protein. Co-owned U.S. Patent Application Serial No. 846,757, filed April 1, 1986, describes an immortalized trioma

liver cell which supports NANB infection in cell culture. The trioma cell line is prepared by fusing human liver cells with a mouse/human fusion partner selected for human chromosome stability. Cells 5 containing the desired NANB viral agent can be identified by immunofluorescence methods, employing anti-ET-NANB human antibodies.

The viral agent is disrupted, prior to protein isolation, by conventional methods, which can 10 include sonication, high- or low-salt conditions, or use of detergents.

Purification of ET-NANB viral protein can be carried out by affinity chromatography, using a purified anti-ET-NANB antibody attached according to 15 standard methods to a suitable solid support. The antibody itself may be purified by affinity chromatography, where an immunoreactive recombinant ETNANB protein, such as described above, is attached to a solid support, for isolation of anti-ET-NANB 20 antibodies from an immune serum source. The bound antibody is released from the support by standard methods.

Alternatively, the anti-ET-NANB antibody may be an antiserum or a monoclonal antibody (Mab) 25 prepared by immunizing a mouse or other animal with recombinant ETNANB protein. For Mab production, lymphocytes are isolated from the animal and immortalized with a suitable fusion partner, and successful fusion products which react with the 30 recombinant protein immunogen are selected. These in turn may be used in affinity purification procedures, described above, to obtain native ET-NANB antigen.

V. Utility

35 Although ET-NANB is primarily of interest because of its effects on humans, recent data has shown that this virus is also capable of infecting other animals, especially mammals. Accordingly, any

discussion herein of utility applies to both human and veterinary uses, especially commercial veterinary uses, such as the diagnosis and treatment of pigs, cattle, sheep, horses, and other domesticated animals.

5 A. Diagnostic Methods

The particles and antigens of the invention, as well as the genetic material, can be used in diagnostic assays. Methods for detecting the presence of ET-NANB hepatitis comprise analyzing a biological 10 sample such as a blood sample, stool sample or liver biopsy specimen for the presence of an analyte associated with ET-NANB hepatitis virus.

The analyte can be a nucleotide sequence which hybridizes with a probe comprising a sequence of 15 at least about 16 consecutive nucleotides, usually 30 to 200 nucleotides, up to substantially the full sequence of the sequences shown above (cDNA sequences). The analyte can be RNA or cDNA. The analyte is typically a virus particle suspected of 20 being ET-NANB or a particle for which this classification is being ruled out. The virus particle can be further characterized as having an RNA viral genome comprising a sequence at least about 70% homologous to a sequence of at least 12 consecutive 25 nucleotides of the "forward" and "reverse" sequences given above, usually at least about 80% homologous to at least about 60 consecutive nucleotides within the sequences, and may comprise a sequence substantially homologous to the full-length sequences. In order to 30 detect an analyte, where the analyte hybridizes to a probe, the probe may contain a detectable label. Particularly preferred for use as a probe are sequences of consecutive nucleotides derived from the 406.3-2 and 406.4-2 clones described herein, since 35 these clones appear to be particularly diagnostic for HEV.

The analyte can also comprise an antibody which recognizes an antigen, such as a cell surface

antigen, on a ET-NANB virus particle. The analyte can also be a ET-NANB viral antigen. Where the analyte is an antibody or an antigen, either a labelled antigen or antibody, respectively, can be used to bind to the analyte to form an immunological complex, which can then be detected by means of the label.

Typically, methods for detecting analytes such as surface antigens and/or whole particles are based on immunoassays. Immunoassays can be conducted either to determine the presence of antibodies in the host that have arisen from infection by ET-NANB hepatitis virus or by assays that directly determine the presence of virus particles or antigens. Such techniques are well known and need not be described here in detail. Examples include both heterogeneous and homogeneous immunoassay techniques. Both techniques are based on the formation of an immunological complex between the virus particle or its antigen and a corresponding specific antibody.

Heterogeneous assays for viral antigens typically use a specific monoclonal or polyclonal antibody bound to a solid surface. Sandwich assays are becoming increasingly popular. Homogeneous assays, which are carried out in solution without the presence of a solid phase, can also be used, for example by determining the difference in enzyme activity brought on by binding of free antibody to an enzyme-antigen conjugate. A number of suitable assays are disclosed in U.S. Patent Nos. 3,817,837, 4,006,360, 3,996,345.

When assaying for the presence of antibodies induced by ET-NANB viruses, the viruses and antigens of the invention can be used as specific binding agents to detect either IgG or IgM antibodies. Since IgM antibodies are typically the first antibodies that appear during the course of an infection, when IgG synthesis may not yet have been initiated, specifically distinguishing between IgM and IgG antibodies present in the blood stream of a host will

enable a physician or other investigator to determine whether the infection is recent or convalescent.

Proteins expressed by the 406.3-2 and 406.4-2 clones described herein and peptide fragments thereof are

5 particularly preferred for use as specific binding agents to detect antibodies since they have been demonstrated to be reactive with a number of different human HEV sera. Further, they are reactive with both acute and convalescent sera.

10 In one diagnostic configuration, test serum is reacted with a solid phase reagent having surface-bound ET-NANB protein antigen. After binding anti-ET-NANB antibody to the reagent and removing unbound serum components by washing, the reagent is reacted with reporter-labeled anti-human antibody to bind reporter to the reagent in proportion to the amount of bound anti-ET-NANB antibody on the solid support. The reagent is again washed to remove unbound labeled antibody, and the amount of reporter associated with the reagent is determined. Typically, the reporter is an enzyme which is detected by incubating the solid phase in the presence of a suitable fluorometric or colorimetric substrate.

15 The solid surface reagent in the above assay prepared by known techniques for attaching protein material to solid support material, such as polymeric beads, dip sticks, or filter material. These attachment methods generally include non-specific adsorption of the protein to the support or covalent 20 attachment of the protein, typically through a free amine group, to a chemically reactive group on the solid support, such as an activate carboxyl, hydroxyl, or aldehyde group.

25 In a second diagnostic configuration, known as a homogeneous assay, antibody binding to a solid support produces some change in the reaction medium which can be directly detected in the medium. Known general types of homogeneous assays proposed

heretofore include a spin-labeled reporters, where antibody binding to the antigen is detected by a change in reported mobility (broadening of the spin splitting peaks), (b) fluorescent reporters, where binding is detected by a change in fluorescence efficiency, (c) enzyme reporters, where antibody binding effects enzyme substrate interactions, and (d) liposome-bound reporters, where binding leads to liposome lysis and release of encapsulated reporter.

10 The adaptation of these methods to the protein antigen of the present invention follows conventional methods for preparing homogeneous assay reagents.

In each of the assays described above, the assay method involves extracting the serum from a test individual with the protein antigen and examining the antigen for the presence of bound antibody. The examining may involve attaching a labeled anti-human antibody to the antibody being examined, either IgM (acute phase) or IgG (convalescent phase), and measuring the amount of reporter bound to the solid support, as in the first method, or may involve observing the effect of antibody binding on a homogeneous assay reagent, as in the second method.

Also forming part of the invention is an assay system or kit for carrying out the assay method just described. The kit generally includes a support with surface-bound recombinant protein antigen which is (a) immunoreactive with antibodies present in individuals infected with enterically transmitted nonA/nonB viral agent and (b) derived from a viral hepatitis agent whose genome contains a region which is homologous to the 1.33 kb DNA EcoRI insert present in plasmid pTZKF1(ET1.1) carried in E. Coli strain BB4, and having ATCC deposit no. 67717. A reporter-labeled anti-human antibody in the kit is used for detecting surface-bound anti-ET-NANB antibody.

B. Viral Genome Diagnostic Applications

The genetic material of the invention can itself be used in numerous assays as probes for genetic material present in naturally occurring infections. One method for amplification of target nucleic acids, for later analysis by hybridization assays, is known as the polymerase chain reaction or PCR technique. The PCR technique can be applied to detecting virus particles of the invention in suspected pathological samples using oligonucleotide primers spaced apart from each other and based on the genetic sequence set forth above. The primers are complementary to opposite strands of a double stranded DNA molecule and are typically separated by from about 50 to 450 nt or more (usually not more than 2000 nt). This method entails preparing the specific oligonucleotide primers and then repeated cycles of target DNA denaturation, primer binding, and extension with a DNA polymerase to obtain DNA fragments of the expected length based on the primer spacing. Extension products generated from one primer serve as additional target sequences for the other primer. The degree of amplification of a target sequence is controlled by the number of cycles that are performed and is theoretically calculated by the simple formula 2^n where n is the number of cycles. Given that the average efficiency per cycle ranges from about 65% to 85%, 25 cycles produce from 0.3 to 4.8 million copies of the target sequence. The PCR method is described in a number of publications, including Saiki *et al.*, Science (1985) 230:1350-1354; Saiki *et al.*, Nature (1986) 324:163-166; and Scharf *et al.*, Science (1986) 233:1076-1078. Also see U.S. Patent Nos. 4,683,194; 4,683,195; and 4,683,202.

The invention includes a specific diagnostic method for determination of ET-NANB viral agent, based on selective amplification of ET-NANB fragments. This method employs a pair of single-strand primers derived

from non-homologous regions of opposite strands of a DNA duplex fragment, which in turn is derived from an enterically transmitted viral hepatitis agent whose genome contains a region which is homologous to the
5 1.33 kb DNA EcoRI insert present in plasmid pTZKF1(ET1.1) carried in E. coli strain BB4, and having ATCC deposit no. 67717. These "primer fragments," which form one aspect of the invention, are prepared from ET-NANP fragments such as described
10 in Section III above. The method follows the process for amplifying selected nucleic acid sequences as disclosed in U.S. Patent No. 4,683,202, as discussed above.

15 C. Peptide Vaccine

Any of the antigens of the invention can be used in preparation of a vaccine. A preferred starting material for preparation of a vaccine is the particle antigen isolated from bile. The antigens are
20 preferably initially recovered as intact particles as described above. However, it is also possible to prepare a suitable vaccine from particles isolated from other sources or non-particle recombinant antigens. When non-particle antigens are used (typically soluble
25 antigens), proteins derived from the viral envelope or viral capsid are preferred for use in preparing vaccines. These proteins can be purified by affinity chromatography, also described above.

If the purified protein is not immunogenic
30 per se, it can be bound to a carrier to make the protein immunogenic. Carriers include bovine serum albumin, keyhole limpet hemocyanin and the like. It is desirable, but not necessary, to purify antigens to be substantially free of human protein. However, it is
35 more important that the antigens be free of proteins, viruses, and other substances not of human origin that may have been introduced by way of, or contamination of, the nutrient medium, cell lines,

tissues, or pathological fluids from which the virus is cultured or obtained.

Vaccination can be conducted in conventional fashion. For example, the antigen, whether a viral particle or a protein, can be used in a suitable diluent such as water, saline, buffered salines, complete or incomplete adjuvants, and the like. The immunogen is administered using standard techniques for antibody induction, such as by subcutaneous administration of physiologically compatible, sterile solutions containing inactivated or attenuated virus particles or antigens. An immune response producing amount of virus particles is typically administered per vaccinating injection, typically in a volume of one milliliter or less.

A specific example of a vaccine composition includes, in a pharmacologically acceptable adjuvant, a recombinant protein or protein mixture derived from an enterically transmitted nonA/nonB viral hepatitis agent whose genome contains a region which is homologous to the 1.33 kb DNA EcoRI insert present in plasmid pTZKF1(ET1.1) carried in E. coli strain BB4, and having ATCC deposit no. 67717. The vaccine is administered at periodic intervals until a significant titer of anti-ET-NANB antibody is detected in the serum. The vaccine is intended to protect against ET-NANB infection.

Particularly preferred are vaccines prepared using proteins expressed by the 406.3-2 and 406.4-2 clones described herein and equivalents thereof, including fragments of the expressed proteins. Since these clones have already been demonstrated to be reactive with a variety of human HEV-positive sera, their utility in protecting against a variety of HEV strains is indicated.

D. Prophylactic and Therapeutic Antibodies and Antisera

In addition to use as a vaccine, the compositions can be used to prepare antibodies to ET-NANB virus particles. The antibodies can be used directly as antiviral agents. To prepare antibodies, a host animal is immunized using the virus particles or, as appropriate, non-particle antigens native to the virus particle are bound to a carrier as described above for vaccines. The host serum or plasma is collected following an appropriate time interval to provide a composition comprising antibodies reactive with the virus particle. The gamma globulin fraction or the IgG antibodies can be obtained, for example, by use of saturated ammonium sulfate or DEAE Sephadex, or other techniques known to those skilled in the art.

The antibodies are substantially free of many of the adverse side effects which may be associated with other anti-viral agents such as drugs.

The antibody compositions can be made even more compatible with the host system by minimizing potential adverse immune system responses. This is accomplished by removing all or a portion of the FC portion of a foreign species antibody or using an antibody of the same species as the host animal, for example, the use of antibodies from human/human hybridomas.

The antibodies can also be used as a means of enhancing the immune response since antibody-virus complexes are recognized by macrophages. The antibodies can be administered in amounts similar to those used for other therapeutic administrations of antibody. For example, pooled gamma globulin is administered at 0.02-0.1 ml/lb body weight during the early incubation of other viral diseases such as rabies, measles and hepatitis B to interfere with viral entry into cells. Thus, antibodies reactive with the ET-NANB virus particle can be passively administered alone or in conjunction with another anti-viral agent to a host infected with an ET-NANB virus to enhance the immune

response and/or the effectiveness of an antiviral drug.

Alternatively, anti-ET-NANB-virus antibodies can be induced by administering anti-idiotype anti-bodies as immunogens. Conveniently, a purified anti-ET-NANB-virus antibody preparation prepared as described above is used to induce anti-idiotype antibody in a host animal. The composition is administered to the host animal in a suitable diluent. Following administration, usually repeated administration, the host produces anti-idiotype antibody. To eliminate an immunogenic response to the Fc region, antibodies produced by the same species as the host animal can be used or the Fc region of the administered antibodies can be removed. Following induction of anti-idiotype antibody in the host animal, serum or plasma is removed to provide an antibody composition. The composition can be purified as described above for anti-ET-NANB virus antibodies, or by affinity chromatography using anti-ET-NANB-virus antibodies bound to the affinity matrix. The anti-idiotype antibodies produced are similar in conformation to the authentic ET-NANB antigen and may be used to prepare an ET-NANB vaccine rather than using a ET-NANB particle antigen.

When used as a means of inducing anti-ET-NANB virus antibodies in a patient, the manner of injecting the antibody is the same as for vaccination purposes, namely intramuscularly, intraperitoneally, subcutaneously or the like in an effective concentration in a physiologically suitable diluent with or without adjuvant. One or more booster injections may be desirable. The anti-idiotype method of induction of anti-ET-NANB virus antibodies can alleviate problems which may be caused by passive administration of anti-ET-NANB-virus antibodies, such as an adverse immune response, and those associated

with administration of purified blood components, such as infection with as yet undiscovered viruses.

The ET-NANB derived proteins of the invention are also intended for use in producing antiserum designed 5 for pre- or post-exposure prophylaxis. Here an ET-NANB protein, or mixture of proteins is formulated with a suitable adjuvant and administered by injection to human volunteers, according to known methods for producing human antisera. Antibody response to the 10 injected proteins is monitored, during a several- week period following immunization, by periodic serum sampling to detect the presence an anti-ET-NANB serum antibodies, as described in Section IIA above.

The antiserum from immunized individuals may 15 be administered as a pre-exposure prophylactic measure for individuals who are at risk of contracting infection. The antiserum is also useful in treating an individual post-exposure, analogous to the use of high titer antiserum against hepatitis B virus for post- 20 exposure prophylaxis.

E. Monoclonal Antibodies

For both in vivo use of antibodies to ET- 25 NANB virus particles and proteins and anti-idiotype antibodies and diagnostic use, it may be preferable to use monoclonal antibodies. Monoclonal anti-virus particle antibodies or anti-idiotype antibodies can be produced as follows. The spleen or lymphocytes from an immunized animal are removed and immortalized or used 30 to prepare hybridomas by methods known to those skilled in the art. To produce a human-human hybridoma, a human lymphocyte donor is selected. A donor known to be infected with a ET-NANB virus (where infection has been shown for example by the presence 35 of anti-virus antibodies in the blood or by virus culture) may serve as a suitable lymphocyte donor. Lymphocytes can be isolated from a peripheral blood sample or spleen cells may be used if the donor is

subject to splenectomy. Epstein-Barr virus (EBV) can be used to immortalize human lymphocytes or a human fusion partner can be used to produce human-human hybridomas. Primary in vitro immunization with 5 peptides can also be used in the generation of human monoclonal antibodies.

Antibodies secreted by the immortalized cells are screened to determine the clones that secrete antibodies of the desired specificity. For 10 monoclonal anti-virus particle antibodies, the antibodies must bind to ET-NANB virus particles. For monoclonal anti-idiotype antibodies, the antibodies must bind to anti-virus particle antibodies. Cells producing antibodies of the desired specificity are 15 selected.

The following examples illustrate various aspects of the invention, but are in no way intended to limit the scope thereof.

20

Material

The materials used in the following Examples were as follows:

Enzymes: DNase I and alkaline phosphatase were obtained from Boehringer Mannheim Biochemicals 25 (BMB, Indianapolis, IN); EcoRI, EcoRI methylase, DNA ligase, and DNA Polymerase I, from New England Biolabs (NEB, Beverly MA); and RNase A was obtained from Sigma (St. Louis, MO) .

Other reagents: EcoRI linkers were obtained 30 from NEB; and nitro blue tetrazolium (NBT), S-bromo-4-chloro-3-indolyl phosphate (BCIP) S-bromo-4-chloro-3-indolyl-B-D-galactopyranoside (Xgal) and isopropyl B-D-thiogalactopyranoside (IPTG) were obtained from Sigma.

35 CDNA synthesis kit and random priming labeling kits are available from Boehringer-Mannheim Biochemical (BMB, Indianapolis, IN).

Example 1
Preparing cDNA Library

A. Source of ET-NANB virus

Two cynomolgus monkeys (cynos) were
5 intravenously injected with a 10% suspension of a
stool pool obtained from a second-passage cyno (cyno
#37) infected with a strain of ET-NANB virus isolated
from Burma cases whose stools were positive for ET-
NANB, as evidenced by binding of 27-34 nm virus-like
10 particles (VLPs) in the stool to immune serum from a
known ETNANB patient. The animals developed elevated
levels of alanine aminotransferase (ALT) between 24-36
days after inoculation, and one excreted 27-34 nm
VLPs in its bile in the pre-acute phase of infection.

15 The bile duct of each infected animal was
cannulated and about 1-3 cc of bile was collected
daily. RNA was extracted from one bile specimen (cyno
#121) by hot phenol extraction, using a standard RNA
isolation procedure. Double-strand cDNA was formed
20 from the isolated RNA by a random primer for first-
strand generation, using a cDNA synthesis kit obtained
from Boehringer-Mannheim (Indianapolis, IN).

B. Cloning the Duplex Fragments

25 The duplex cDNA fragments were blunt-ended
with T4 DNA polymerase under standard conditions
(Maniatis, p. 118), then extracted with
phenol/chloroform and precipitated with ethanol. The
blunt-ended material was ligated with EcoRI linkers
30 under standard conditions (Maniatis, pp. 396-397) and
digested with EcoRI to remove redundant linker ends.
Non-ligated linkers were removed by sequential
isopropanol precipitation.

Lambda gt10 phage vector (Huynh) was
35 obtained from Promega Biotec (Madison, WI). This
cloning vector has a unique EcoRI cloning site in the
phage CI repressor gene. The cDNA fragments from above
were introduced into the EcoRI site by mixing 0.5 -

1.0 μ g EcoRI-cleaved gt10, 0.5-3 μ l of the above duplex fragments, 0.5 μ l 10X ligation buffer, 0.5 μ l ligase (200 units), and distilled water to 5 μ l. The mixture was incubated overnight at 14°C, followed by 5 in vitro packaging, according to standard methods (Maniatis, pp. 256-268).

The packaged phage were used to infect an E. coli hfl strain, such as strain HG415. Alternatively, E. coli, strain C600 hfl available from Promega 10 Biotec, Madison, WI, could be used. The percentage of recombinant plaques obtained with insertion of the EcoRI-ended fragments was less than 5% by analysis of 20 random plaques.

The resultant cDNA library was plated and 15 phage were eluted from the selection plates by addition of elution buffer. After DNA extraction from the phage, the DNA was digested with EcoRI to release the heterogeneous insert population, and the DNA fragments were fractionated on agarose to remove phage 20 fragments. The 500-4,000 basepair inserts were isolated and recloned into lambda gt10 as above, and the packaged phage was used to infect E. coli strain HG415. The percentage of successful recombinants was greater than 95%. The phage library was plated on E. coli strain HG415, at about 5,000 plaques/plate, on a 25 total of 8 plates.

Example 2

Selecting ET-NANB Cloned Fragments

30 A. cDNA Probes

Duplex cDNA fragments from noninfected and ETNANB-infected cynomolgus monkeys were prepared as in Example 1. The cDNA fragments were radiolabeled by random priming, using a random-priming labeling kit 35 obtained from Boehringer-Mannheim (Indianapolis, IN).

B. Clone Selection

The plated cDNA library from Example 1 was transferred to each of two nitrocellulose filters, and the phage DNA was fixed on the filters by baking, according to standard methods (Maniatis, pp. 320323).

5 The duplicate filters were hybridized with either infected-source or control cDNA probes from above. Autoradiographs of the filters were examined to identify library clones which hybridized with radiolabeled cDNA probes from infected source only,

10 i.e., did not hybridize with cDNA probes from the non-infected source. Sixteen such clones, out of a total of about 40,000 clones examined, were identified by this subtraction selection method.

Each of the sixteen clones was picked and replated at low concentration on an agar plate. The clones on each plate were transferred to two nitro-cellulose ag duplicate lifts, and examined for hybridization to radiolabeled cDNA probes from infected and noninfected sources, as above. Clones were selected

15 which showed selective binding for infected-source probes (i.e., binding with infected-source probes and substantially no binding with non-infected-source probes). One of the clones which bound selectively to probe from infected source was isolated for further

20 study. The selected vector was identified as lambda gt10-1.1, indicated in Figure 1.

Example 3
ET-NANB Sequence

30 Clone lambda gt10-1.1 from Example 2 was digested with EcoRI to release the heterologous insert, which was separated from the vector fragments by gel electrophoresis. The electrophoretic mobility of the fragment was consistent with a 1.33 kb fragment. This

35 fragment, which contained EcoRI ends, was inserted into the EcoRI site of a pTZKF1 vector, whose construction and properties are described in co-owned U.S. patent application for "Cloning Vector System and

Method for Rare Clone Identification", Serial No. 125,
650, filed November 25, 1987. Briefly, and as
illustrated in Figure 1, this plasmid contains a
unique EcoRI site adjacent a T7 polymerase promoter
5 site, and plasmid and phage origins of replication.
The sequence immediately adjacent each side of the
EcoRI site is known. *E. coli* BB4 bacteria, obtained
from Stratagene (La Jolla, CA, were transformed with
the plasmid.

10 Radiolabeled ET-NANB probe was prepared by
excising the 1.33 kb insert from the lambda gt10-1.1
phage in Example 2, separating the fragment by gel
electrophoresis, and randomly labeling as above.
Bacteria transfected with the above pTZKF1 and
15 containing the desired ET-NANB insert were selected by
replica lift and hybridization with the radiolabeled
ET-NANB probe, according to methods outlined in
Example 2.

One bacterial colony containing a
20 successful recombinant was used for sequencing a
portion of the 1.33 kb insert. This isolate,
designated pTZKF1(ET1.1), has been deposited with the
American Type Culture Collection, and is identified by
ATCC deposit no. 67717. Using a standard dideoxy
25 sequencing procedure, and primers for the sequences
flanking the EcoRI site, about 200-250 basepairs of
sequence from the 5'-end region and 3'-end region of
the insert were obtained. The sequences are given
above in Section II. Later sequencing by the same
30 techniques gave the full sequence in both directions,
also given above.

Example 4

Detecting ET-NANB Sequences

35 cDNA fragment mixtures from the bile of
noninfected and ET-NANB-infected cynomolgus monkeys
were prepared as above. The cDNA fragments obtained
from human stool samples were prepared as follows.

Thirty ml of a 10% stool suspension obtained from an individual from Mexico who was infected with ET-NANB as a result of an ET-NANB outbreak, and a similar volume of stool from a healthy, non-infected 5 individual, were layered over a 30% sucrose density gradient cushion, and centrifuged at 25,000 x g for 6 hr in an SW27 rotor, at 10 C. The pelleted material from the infected-stool sample contained 27-34 nm VLP particles characteristic of ET-NANB infection in the 10 infected-stool sample. RNA was isolated from the sucrose-gradient pellets in both the infected and non-infected samples, and the isolated RNA was used to produce cDNA fragments as described in Example 1.

The cDNA fragment mixtures from infected and 15 non-infected bile source, and from infected and non-infected human-stool source were each amplified by a novel linker/primer replication method described in co-owned patent application serial number 07/208,512 for "DNA Amplification and Subtraction Technique," 20 filed June 17, 1988. Briefly, the fragments in each sample were blunt-ended with DNA Pol I then extracted with phenol/chloroform and precipitated with ethanol. The blunt-ended material was ligated with linkers having the following sequence (top or 5' sequence has 25 SEQ ID NO:21; bottom or 3' sequence has SEQ ID NO:22):

5'-GGAATTCGGGCCGCTCG-3'

3'-TTCCTTAAGCGCCGGCGAGC-5'

The duplex fragments were digested with 30 NruI to remove linker dimers, mixed with a primer having the sequence 5'-GGAATTCGGGCCGCTCG-3', and then heat denatured and cooled to room temperature to form single-strand DNA/primer complexes. The complexes were replicated to form duplex fragments by addition of 35 *Thermus aquaticus* (Taq) polymerase and all four deoxynucleotides. The replication procedures, involving successive strand denaturation, formation of

strand/primer complexes, and replication, was repeated 25 times.

The amplified cDNA sequences were fractionated by agarose gel electrophoresis, using a 5 2% agarose matrix. After transfer of the DNA fragments from the agarose gels to nitrocellulose paper, the filters were hybridized to a random-labeled ^{32}p probe prepared by (i) treating the pTZKF1(ET1.1) plasmid from above with EcoRI, (ii) isolating the released 10 1.33 kb ET-NANB fragment, and (iii) randomly labeling the isolated fragment. The probe hybridization was performed by conventional Southern blotting methods (Maniatis, pp. 382-389). Figure 2 shows the 15 hybridization pattern obtained with cDNAs from infected (I) and non-infected (N) bile sources (2A) and from infected (I) and noninfected (N) human stool sources (2B). As seen, the ET-NANB probe hybridized with fragments obtained from both of the infected sources, but was non-homologous to sequences obtained 20 from either of the non-infected sources, thus confirming the specificity of derived sequence.

Southern blots of the radiolabeled 1.33 kb fragment with genomic DNA fragments from both human and cynomolgus-monkey DNA were also prepared. No 25 probe hybridization to either of the genomic fragment mixtures was observed, confirming that the ET-NANB sequence is exogenous to either human or cynomolgus genome.

30

Example 5

Expressing ET-NANB Proteins

A. Preparing ET-NANB Coding Sequences

The pTZKF1(ET1.1) plasmid from Example 2 was digested with EcoRI to release the 1.33 kb ET-NANB 35 insert which was purified from the linearized plasmid by gel electrophoresis. The purified fragment was suspended in a standard digest buffer (0.5M Tris HCl, pH 7.5; 1 mg/ml BSA; 10mM MnCl₂) to a concentration of

about 1 mg/ml and digested with DNase I at room temperature for about 5 minutes. These reaction conditions were determined from a prior calibration study, in which the incubation time required to produce predominantly 100-300 basepair fragments was determined. The material was extracted with phenol/chloroform before ethanol precipitation.

The fragments in the digest mixture were blunt-ended and ligated with EcoRI linkers as in Example 1. The resultant fragments were analyzed by electrophoresis (5-10V/cm) on 1.2% agarose gel, using PhiX174/HaeIII and lambda/HindIII size markers. The 100-300 bp fraction was eluted onto NA45 strips (Schleicher and Schuell), which were then placed into 1.5 ml microtubes with eluting solution (1 M NaCl, 50 mM arginine, pH 9.0), and incubated at 67°C for 30-60 minutes. The eluted DNA was phenol/chloroform extracted and then precipitated with two volumes of ethanol. The pellet was resuspended in 20 µl TE (0.01 M Tris HCl, pH 7.5, 0.001 M EDTA).

B. Cloning in an Expression Vector

Lambda gt11 phage vector (Huynh) was obtained from Promega Biotec (Madison, WI). This cloning vector has a unique EcoRI cloning site 53 base pairs upstream from the beta-galactosidase translation termination codon. The genomic fragments from above, provided either directly from coding sequences (Example 5) or after amplification of cDNA (Example 4), were introduced into the EcoRI site by mixing 0.5-1.0 µg EcoRI-cleaved gt11, 0.3-3 µl of the above sized fragments, 0.5 µl 10X ligation buffer (above), 0.5 µl ligase (200 units), and distilled water to 5 µl. The mixture was incubated overnight at 14°C, followed by in vitro packaging, according to standard methods (Maniatis, pp. 256-268).

The packaged phage were used to infect E. coli strain KM392, obtained from Dr. Kevin Moore, DNAX

(Palo Alto, CA). Alternatively, E. Coli strain Y1090, available from the American Type Culture Collection (ATCC #37197), could be used. The infected bacteria were plated and the resultant colonies were checked
5 for loss of beta-galactosidase activity-(clear plaques) in the presence of X-gal using a standard X-gal substrate plaque assay method (Maniatis). About 50% of the phage plaques showed loss of beta-galactosidase enzyme activity (recombinants).

10

C. Screening for ET-NANB Recombinant Proteins

ET-NANB convalescent antiserum was obtained from patients infected during documented ET-NANB outbreaks in Mexico, Borneo, Pakistan, Somalia, and
15 Burma. The sera were immunoreactive with VLPs in stool specimens from each of several other patients with ET-NANB hepatitis.

A lawn of E. coli KM392 cells infected with about 104 pfu of the phage stock from above was
20 prepared on a 150 mm plate and incubated, inverted, for 5-8 hours at 37°C. The lawn was overlaid with a nitrocellulose sheet, causing transfer of expressed ETNANB recombinant protein from the plaques to the paper. The plate and filter were indexed for matching
25 corresponding plate and filter positions.

The filter was washed twice in TBST buffer (10 mM Tris, pH 8.0, 150 mM NaCl, 0.05% Tween 20), blocked with AIB (TBST buffer with 1% gelatin), washed again in TBST, and incubated overnight after addition
30 of antiserum (diluted to 1:50 in AIB, 12-15 ml/plate). The sheet was washed twice in TBST and then contacted with enzyme-labeled anti-human antibody to attach the labeled antibody at filter sites containing antigen recognized by the antiserum. After a final washing,
35 the filter was developed in a substrate medium containing 33 µl NBT (50 mg/ml stock solution maintained at 4°C) mixed with 16 µl BCIP (50 mg/ml stock solution maintained at 4°C) in 5 ml of alkaline

phosphatase buffer (100 mM Tris, 9.5, 100 mM NaCl, 5 mM MgCl₂). Purple color appeared at points of antigen production, as recognized by the antiserum.

5 D. Screening Plating

The areas of antigen production determined in the previous step were replated at about 100-200 pfu on an 82 mm plate. The above steps, beginning with a 5-8 hour incubation, through NBT-BCIP development,
10 were repeated in order to plaque purify phage secreting an antigen capable of reacting with the ET-NANB antibody. The identified plaques were picked and eluted in phage buffer (Maniatis, p. 443).

15 E. Epitope Identification

A series of subclones derived from the original pTZKF1 (ET1.1) plasmid from Example 2 were isolated using the same techniques described above. Each of these five subclones were immunoreactive with
20 a pool of anti-ET antisera noted in C. The subclones contained short sequences from the "reverse" sequence set forth previously. The beginning and ending points of the sequences in the subclones (relative to the full "reverse" sequence), are identified in the table
25 below.

TABLE 1

	<u>Subclone</u>	<u>Position in "Reverse" Sequence</u>	
		<u>5'-end</u>	<u>3'-end</u>
5	Y1	522	643
	Y2	594	667
	Y3	508	665
	Y4	558	752
10	Y5	545	665

Since all of the gene sequences identified in the table must contain the coding sequence for the epitope, it is apparent that the coding sequence for the epitope falls in the region between nucleotide 594 (5'-end) and 643 (3'-end). Genetic sequences equivalent to and complementary to this relatively short sequence are therefore particularly preferred aspects of the present invention, as are peptides produced using this coding region.

A second series of clones identifying an altogether different epitope was isolated with only Mexican serum.

25

	<u>Subclone</u>	<u>Position in "Forward" Sequence</u>	
		<u>5' end</u>	<u>3' end</u>
30	ET 2-2	2	193
	ET 8-3	2	135
	ET 9-1	2	109
	ET 13-1	2	101

The coding system for this epitope falls between nucleotide 258 and 101 (3'-end). Genetic sequences related to this short sequence are therefore also preferred, as are peptides produced
5 using this coding region.

Two particularly preferred subclones for use in preparing polypeptides containing epitopes specific for HEV are the 406.3-2 and 406.4-2 clones whose sequences are set forth above. These sequences were
10 isolated from an amplified cDNA library derived from a Mexican stool. Using the techniques described in this section, polypeptides expressed by these clones have been tested for immunoreactivity against a number of different human HEV-positive sera obtained from
15 sources around the world. As shown in Table 3 below, 8 sera immunoreactive with the polypeptide expressed by the 406.4-2, and 6 sera immunoreacted with polypeptide expressed by the 406.3-2 clone.

For comparison, the Table also shows
20 reactivity of the various human sera with the Y2 clone identified in Table 1 above. Only one of the sera reacted with the polypeptide expressed by this clone. No immunoreactivity was seen for normal expression products of the λ gt11 vector.
25

Table 3
Immunoreactivity of HEV Recombinant Proteins: Human Sera

30	Sera	Source	Stage 1	406.3-2	406.4-2	Y2	λ gt11
	FVH-21	Burma	A	-	-	-	-
	FVH-8	Burma	A	-	+	+	-
35	SOM-19	Somalia	A	+	+	-	-
	SOM-20	Somalia	A	+	+	-	-
	IM-35	Borneo	A	+	+	-	-
	IM-36	Borneo	A	-	-	-	-
	PAK-1	Pakistan	A	+	+	-	-
40	FFI-4	Mexico	A	+	+	-	-

FFI-125	Mexico	A	-	+	-	-
F 387 IC	Mexico	C	+	+	ND	-
Normal	U.S.A.	-	-	-	-	-

5 1A = acute; C = convalescent

While the invention has been described with reference to particular embodiments, methods, construction and use, it will be apparent to those skilled in the art that various changes and

10 modifications can be made without departing from the invention.