EEE104 – Digital Electronics (I) Lecture 18

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

Shift Registers

- A shift register is made up of a set of cascaded flip-flops which store and move data.
- Each flip-flop (a stage) stores one bit of the data.
- The data moves from stage to stage at the triggering edges of a clock signal.

Types of shift registers

Applications of shift registers

1. To convert serial data to parallel data

A computer system commonly requires incoming data to be in parallel format. But frequently, these systems must communicate with external devices that send or receive serial data.

Applications of shift registers

2. To produce time delay

The SI/SO shift register can be used as a time delay device. The amount of delay can be controlled by the number of registers and the clock frequency.

3. Hardware Division or Multiplication by Two

Many computers and microprocessors support instructions 'shift right' and 'shift left' for the data in a register, efficiently dividing or multiplying the data by two.

```
0000 1100 (12)
0000 0110 (6)
0000 0011 (3)
```

Serial In/Serial Out Shift Registers

Serial In/Serial Out Shift Registers

- Note the role of propagation delay.
- Data bits 1101
 are stored after
 4 clock cycles.

Serial In/Parallel Out Shift Registers

Serial In/Parallel Out Shift Registers

The circuit is the same with SI/SO ones, except the output of each stage is available.

Serial In/Parallel Out Shift Registers

- 74HC164: an IC with 8bit output.
- When inputs A and B are HIGH, the first FF is set; otherwise, it is reset.

Data in

- 1. A LOW on S/L will enable G_1 to G_3 load data.
- Serial data out 2.A High on S/L will enable G_4 to G_6 shift data.

Data in

- 1. A LOW on S/L will enable G_1 to G_3 load data.
- Serial 2. A High on S/L will enable G_4 to G_6 shift data.

- When D = 0, $\overline{S} = 1$, $\overline{R} = 0$, so Q = 0.
- When D = 1, S = 0, R = 1, so Q = 1.
- A HIGH on SH/LD makes S and R HIGH shift data

- When D = 0, S = 1, R = 0, so Q = 0.
- When D = 1, S = 0, R = 1, so Q = 1.
- A HIGH on SH/LD makes S and R HIGH shift data

- When D = 0, S = 1, R = 0, so Q = 0.
- When D = 1, S = 0, \overline{R} = 1, so Q = 1.

17

 A HIGH on SH/LD makes S and R HIGH – shift data

- When D = 0, $\overline{S} = 1$, $\overline{R} = 0$, so Q = 0.
- When D = 1, S = 0, \overline{R} = 1, so Q = 1.

18

 A HIGH on SH/LD makes S and R HIGH – shift data

Parallel In/Parallel Out Shift Registers

