

BCD DECADE/MODULO 16 BINARY SYNCHRONOUS BI-DIRECTIONAL COUNTERS

The SN54/74LS168 and SN54/74LS169 are fully synchronous 4-stage up/down counters featuring a preset capability for programmable operation, carry lookahead for easy cascading and a U/D input to control the direction of counting. The SN54/74LS168 counts in a BCD decade (8, 4, 2, 1) sequence, while the SN54/74LS169 operates in a Modulo 16 binary sequence. All state changes, whether in counting or parallel loading, are initiated by the LOW-to-HIGH transition of the clock.

- Low Power Dissipation 100 mW Typical
- High-Speed Count Frequency 30 MHz Typical
- Fully Synchronous Operation
- Full Carry Lookahead for Easy Cascading
- Single Up/Down Control Input
- Positive Edge-Trigger Operation
- Input Clamp Diodes Limit High-Speed Termination Effects

CONNECTION DIAGRAM DIP (TOP VIEW)

PIN NAMES

HIGH I OW

		HIGH	LOVV
CEP	Count Enable Parallel (Active LOW) Input	0.5 U.L.	0.25 U.L.
CET	Count Enable Trickle (Active LOW) Input	1.0 U.L.	0.5 U.L.
CP	Clock Pulse (Active positive going edge) Input	0.5 U.L.	0.25 U.L.
PE_	Parallel Enable (Active LOW) Input	0.5 U.L.	0.25 U.L.
U/D	Up-Down Count Control Input	0.5 U.L.	0.25 U.L.
$P_0 - P_3$	Parallel Data Inputs	0.5 U.L.	0.25 U.L.
Q_0 – Q_3	Flip-Flop Outputs	10 U.L.	5 (2.5) U.L.
TC	Terminal Count (Active LOW) Output	10 U.L.	5 (2.5) U.L.
NOTES:			

a. 1 TTL Unit Load (U.L.) = $40 \mu A HIGH/1.6 mA LOW$.

b. The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

SN54/74LS168 SN54/74LS169

BCD DECADE/MODULO 16 BINARY SYNCHRONOUS BI-DIRECTIONAL COUNTERS

LOW POWER SCHOTTKY

J SUFFIX CERAMIC CASE 620-09

N SUFFIX PLASTIC CASE 648-08

D SUFFIX SOIC CASE 751B-03

ORDERING INFORMATION

SN54LSXXXJ Ceramic SN74LSXXXN Plastic SN74LSXXXD SOIC

STATE DIAGRAMS

Count Up Count Down

SN54/74LS168 UP/DOWN DECADE COUNTER

0 1 2 3 4 15 5 14 6 7

SN54/74LS168

 $\begin{array}{ll} \text{UP:} & \text{TC} = \underline{Q}_0 \cdot \underline{Q}_3 \cdot \underline{(U/D)} \\ \text{DOWN:} & \text{TC} = \overline{Q}_0 \cdot \overline{Q}_1 \cdot \overline{Q}_2 \cdot \overline{Q}_3 \cdot \underline{(U/D)} \end{array}$

SN54/74LS169

SN54/74LS169

 $\begin{array}{ll} \text{UP:} & \text{TC} = \underline{Q}_0 \cdot \underline{Q}_1 \cdot \underline{Q}_2 \cdot \underline{Q}_3 \cdot (\underline{U/D}) \\ \text{DOWN:} & \text{TC} = \overline{Q}_0 \cdot \overline{Q}_1 \cdot \overline{Q}_2 \cdot \overline{Q}_3 \cdot (\overline{U/D}) \end{array}$

LOGIC DIAGRAMS

SN54/74LS168

LOGIC DIAGRAMS (continued)

SN54/74LS169

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
loн	Output Current — High	54, 74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Tes	t Conditions
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
\/	Input I OW Voltage	54			0.7	V	Guaranteed Input	t LOW Voltage for
V _{IL}	Input LOW Voltage	74			0.8	V	All Inputs	
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN} =	-18 mA
V	Output HIGH Voltage	54	2.5	3.5		V	V _{CC} = MIN, I _{OH}	= MAX, V _{IN} = V _{IH}
VOH	Output HIGH voltage	74	2.7	3.5		V	or V _{IL} per Truth T	able
Voi	Output LOW Voltage	54, 74		0.25	0.4	V	I _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$ $V_{IN} = V_{II} \text{ or } V_{IH}$
VOL	Output LOW voltage	74		0.35	0.5	٧	I _{OL} = 8.0 mA	per Truth Table
IIH	Input HIGH Current Other Inputs CET Input				20 40	μΑ	V _{CC} = MAX, V _{IN}	= 2.7 V
	Other Input CET Input				0.1 0.2	mA	V _{CC} = MAX, V _{IN}	= 7.0 V
IIL	Input LOW Current Other Input CET Input				-0.4 -0.8	mA	V _{CC} = MAX, V _{IN} = 0.4 V	
los	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX	
lcc	Power Supply Current				34	mA	V _{CC} = MAX	

Note 1: Not more than one output should be shorted at one time, nor for more than 1 second.

FUNCTIONAL DESCRIPTION

The SN54/74LS168 and SN54/74LS169 use edgetriggered D-type flip-flops that have no constraints on changing the control or data input signals in either state of the Clock. The only requirement is that the various inputs attain the desired state at least a set-up time before the rising edge of the clock and remain valid for the recommended hold time thereafter.

The parallel load operation takes precedence over the $\underline{\text{oth}}$ er operations, as indicated in the Mode Select Table. When PE is LOW, the data on the P $_0$ -P $_3$ inputs enters the flip-flops on the next $\underline{\text{rising}}$ edge of the Clock. In order $\underline{\text{for}}$ counting to occur, both CEP and CET must be LOW and PE must be HIGH. The U/D input then determines the direction of counting.

The Terminal Count (TC) output is normally HIGH and goes LOW, provided that CET is LOW, when a counter reaches zero in the COUNT DOWN mode or reaches 15 (9 for the SN54/74LS168) in the COUNT UP mode. The TC output state is not a function of the Count Enable Parallel (CEP) input level. The TC output of the SN54/74LS168 decade counter can also be LOW in the illegal states 11, 13 and 15, which can occur when power is turned on or via parallel loading. If illegal state occurs, the SN54/74LS168 will return to the legitimate sequence within two counts. Since the TC signal is derived by decoding the flip-flop states, there exists the possibility of decoding spikes on TC. For this reason the use of TC as a clock signal is not recommended.

MODE SELECT TABLE

PE	CEP	CET	U/D	Action on Rising Clock Edge
L	X	X	X	Load (Pn Qn) Count Up (increment) Count Down (decrement)
H	L	L	H	
H	L	L	L	
H	H	X	X	No Change (Hold)
H	X	H	X	No Change (Hold)

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

AC CHARACTERISTICS ($T_A = 25$ °C, $V_{CC} = 5.0 \text{ V}$)

			Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
fMAX	Maximum Clock Frequency	25	32		MHz	
^t PLH ^t PHL	Propaga <u>tion</u> Delay, Clock to TC		23 23	35 35	ns	
^t PLH ^t PHL	Propagation Delay, Clock to any Q		13 15	20 23	ns	V _{CC} = 5.0 V C _L = 15 pF
^t PLH ^t PHL	Propagation Delay, CET to TC		15 15	20 20	ns	- '
^t PLH ^t PHL	Propag <u>atio</u> n Delay, U/D to TC		17 19	25 29	ns	

AC SETUP REQUIREMENTS $(T_A = 25^{\circ}C)$

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
t _W	Clock Pulse Width	25			ns	
t _S	Setup Time, Data or Enable	20			ns	
t _S	<u>Se</u> tup Time PE	25			ns	V _{CC} = 5.0 V
t _S	Se <u>tu</u> p Time U/D	30			ns	
th	Hold Time Any Input	0			ns	

AC WAVEFORMS

Figure 1. Clock to Output Delays, Count Frequency, and Clock Pulse Width

Figure 2. Count Enable Trickle Input To Terminal Count Output Delays

Figure 3. Clock to Terminal Delays

Figure 4. Setup Time (t_S) and Hold (t_h) for Parallel Data Inputs

Figure 5. Setup Time and Hold Time for Count Enable and Parallel Enable Inputs, and Up-Down Control Inputs

Figure 6. Up-Down Input to Terminal Count Output Delays

Case 648-08 N Suffix 16-Pin Plastic

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE.
 751B-01 IS OBSOLETE, NEW STANDARD
 751B-03.

	MILLIM	ETERS	INC	HES			
DIM	MIN	MAX	MIN	MAX			
Α	9.80	10.00	0.386	0.393			
В	3.80	4.00	0.150	0.157			
С	1.35	1.75	0.054	0.068			
D	0.35	0.49	0.014	0.019			
F	0.40	1.25	0.016	0.049			
G	1.27	BSC	0.050 BSC				
J	0.19	0.25	0.008	0.009			
K	0.10	0.25	0.004	0.009			
M	0°	7°	0°	7°			
P	5.80	6.20	0.229	0.244			
R	0.25	0.50	0.010	0.019			

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- TO THE STATE OF LEADS WHEN FORMED PARALLEL.
- DIMENSION "B" DOES NOT INCLUDE MOLD
- ROUNDED CORNERS OPTIONAL. 648-01 THRU -07 OBSOLETE, NEW STANDARD 648-08.

	MILLIM	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	18.80	19.55	0.740	0.770	
В	6.35	6.85	0.250	0.270	
С	3.69	4.44	0.145	0.175	
D	0.39	0.53	0.015	0.021	
F	1.02	1.77	0.040	0.070	
G	2.54	BSC	0.100 BSC		
Н	1.27	BSC	0.050 BSC		
J	0.21	0.38	0.008	0.015	
K	2.80	3.30	0.110	0.130	
L	7.50	7.74	0.295	0.305	
M	0°	10°	0°	10°	
9	0.51	1.01	0.020	0.040	

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
 4. DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.
 5. 620-01 THRU-08 OBSOLETE, NEW STANDARD 620-09.

	MILLIM	IETERS	INC	HES			
DIM	M MIN MAX		MIN	MAX			
Α	19.05	19.55	0.750	0.770			
В	6.10	7.36	0.240	0.290			
С	_	4.19	_	0.165			
D	0.39	0.53	0.015	0.021			
E	1.27	BSC	0.050 BSC				
F	1.40	1.77	0.055	0.070			
G	2.54	BSC	0.100 BSC				
J	0.23	0.27	0.009	0.011			
K	_	5.08	_	0.200			
L	7.62 BSC		0.300	BSC			
M	0°	15°	0°	15°			
N	0.39	0.88	0.015	0.035			

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

