الوحدة : 07 الشعبة : 3 ع ت

الاهتزازات الحرة لجملة ميكانيكية – الدرس الأول -

تطبيق: النواس المرن:

* كتابة المعادلة التفاضلية: الاهتزازات الغير متخامدة:

الجملة المدروسة هي الجسم (S) و بإسناد الدراسة لمرجع غاليلي مرتبط بالأرض تكون

$$ec{P}(S)$$
 المؤثرة هي : $ec{P}(S)$ قوة ثقل الجسم

 \vec{R} قوة رد الفعل \vec{R}

طوة توتر النابض \vec{T} حيث : T=k.x قانون هوك)

. m النابض وحدته x ، N/m وحدته) النابض وحدته x ، مقدار الاستطالة وحدته x

. $\sum \vec{F}_{ext} = m.\vec{a}$: بتطبیق قانون نیوتن الثانی

$$\Rightarrow \vec{P} + \vec{R} + \vec{T} = m.\vec{a}$$

 $+ k.x = m.a \Rightarrow -k.x = m. \frac{d^2x}{dt^2} : (xx') : يالإسقاط على المحور$

$$\frac{d^2x}{dt^2} + \frac{k}{m}.x = 0$$

* الدراسة الطقوية للنواس المرن:

نعتبر الوضع المرجعي للطاقة الكامنة الثقالية هو المستوي الأفقي الذي يتحرك فوقه الجسم : $E_m=E_C+E_{Pe}=rac{1}{2}mv^2+rac{1}{2}k.x^2$: فمل الاحتكاك بنوعيه

$$E_m = rac{1}{2} m x_m^2 \omega_0^2 \sin^2(\omega_0 t + \varphi) + rac{1}{2} k x_m^2 \cos^2(\omega_0 t + \varphi)$$
 الحصيلة الطقوية $E_{D_0(1)}$: و لدينا $E_{D_0(1)}$

تيجة : تبقى الطاقة الميكانيكية للجملة (جسم - نابض) محفوظة مهما كان الزمن

* مخططات الطاقة:

$$x_{m} = \frac{d}{2} = \frac{AB}{2}$$

$$x_{m} = \frac{d}{2} = \frac{AB}{2}$$

$$x \in \mathbf{A}$$

$$x \in \mathbf{$$

* المعادلة الزمنية للتسارع: باشتقاق العلاقة (2) نجد:

$$a = \ddot{x} = \frac{dv}{dt} = \frac{d^2x}{dt^2} = -x_m \cdot \omega_0^2 \cos(\omega_0 t + \varphi) = -\omega_0^2 \cdot x$$

. 3- يعطى بالشكل a=f(t) : عطط التسارع

 $\frac{d^2x}{dt^2} + \omega_0^2.x = 0$ ڪمن کتابة العلاقة ($\mathbf{4}$) کما يلي : يکن کتابة العلاقة

 $\omega_0 = rac{2\pi}{T_0}$: من العلاقتين ($\mathbf{1}$) و ($\mathbf{5}$) نجد أن : فيد أن : فيد أن العلاقتين ($\mathbf{5}$) و ($\mathbf{5}$) و أن العلاقتين العلاقتين ($\mathbf{5}$) و أن العلاقتين العلاقتين ($\mathbf{5}$) و أن العلاقتين (

$$T_0=2\pi\sqrt{rac{m}{k}}$$
 و منه :

ملاحظة :حالة الاحتكاك الصلب (الاحتكاك مع السطوح) :

في هذه الحالة تكون قوة الاحتكاك ثابتة مهما كان الزمن .

$$-k.x+f=rac{d^2x}{dt^2}$$
 : و بالإسقاط نجد أن $ec{P}+ec{R}+ec{f}+ec{T}=m.ec{a}$ لدينا

. و منه المعادلة التفاضلية هي :
$$\frac{d^2x}{dt^2} + \frac{k}{m}.x - \frac{f}{m} = 0$$
 : و منه المعادلة التفاضلية و البرنامج

و هي معادلة تفاضلية متجانسة من الدرجة الثانية تقبل حلا من الشكل:

$$x(t) = x_m \cos(\omega_0 t + \varphi)$$

x : حيث x هي المطال اللحظي

. هي المطال الأعظمي (سعة الحركة) و هي مقدار موجب دائما x_m

.
$$Rad/s$$
 و حدتما $\omega_0=rac{2\pi}{T_0}=2\pi N_0$: هي نبض الحركة بحيث ω_0

 $_{0}$. $_{0}$ يسمى الدور الذاتي للنواس المرن وحدته هي $_{0}$

 $N_0=rac{1}{T_0}$: يسمى التواتر الذاتي للنواس المرن حيث : $N_0=rac{1}{T_0}$ و حدته هي الهرتز $N_0=1$

. t=0 الصفحة الابتدائية و تحدد من الشروط الابتدائية أي عندما φ

. 1- يعطى بالشكل x = f(t) : غطط الحركة -

* المعادلة الزمنية للسرعة : باشتقاق العلاقة (1) نجد :

$$v = \dot{x} = \frac{dx}{dt} = -x_m.\omega_0 \sin(\omega_0.t + \varphi)$$

الشعبة: 3 ع ت الوحدة: 07

الاهتزازات الحرة لجملة ميكانيكية – الدرس الأول – " تابع "

تطبيق: النواس الثقلي البسيط:

1 – تعريف النواس الثقلي :

هو كل جسم قابل للدوران حول محور لا يمر من مركز ثقله .

d=OG : المسافة بين محور الدوران و مركز ثقل النواس هي

2 – النواس الثقلي البسيط :

إذا ربطنا حسما بواسطة خيط معلق أو سلك وكانت

أبعاد الجسم مهملة أمام طول الخيط نكون قد شكلنا فواس ثقلي بسيط

نواسا ثقليا بسيطا .

3 - كتابة المعادلة التفاضلية: الاهتزازات الغير متخامدة:

نحرف الخيط ابتداء من وضع توازن النواس (G_0) بزاوية $heta_0$ و نتركه بدون سرعة ابتدائية. نطبق مبدأ انحفاظ الطاقة الميكانيكية للجملة (نواس-أرض) عندما يصبح الخيط صانعا مع الشاقول الزاوية $\, heta\,$. (نعتبر الوضع المرجعي للطاقة الكامنة الثقالية عند وضع التوازن) .

$$E = E_C + E_{PP}$$
 : لدينا

$$E = \frac{1}{2}mv^2 + mgh$$

$$v = \frac{d\theta}{dt} \times l$$

$$E = \frac{1}{2}ml^2\left(\frac{d\theta}{dt}\right)^2 + mgl(1-\cos\theta)$$
 : بالتعویض نجد أن $h = l(1-\cos\theta)$

مع العلم أن السرعة $\left(v
ight)$ تساوي السرعة الزاوية $\left(rac{d heta}{dt}
ight)$ نصف القطر $\left(v
ight)$

بالشتقاق طرفي العلاقة (01) بالنسبة للزمن:

: و منه
$$2 \times \frac{1}{2} m \left(\frac{d\theta}{dt} \right) \times l^2 \left(\frac{d^2\theta}{dt^2} \right) + mgl \frac{d\theta}{dt} \sin \theta = 0$$

الاهتزازات الحرة لجملة كهربائية – الدرس الثاني –

* إبراز ظاهرة التفاهد : (الدراسة العملية)

نحقق الدارة المبينة في الشكل التالي : تفريغ المكثفة في الوشيعة

1 - تأثير عامل التحريبي ـــ.

... يتبع

تمرین تطبیقی :

يتشكل هزاز مرن من نابض مهمل الكتلة، حلقاته غير

متلاصقة و ثابت مرونته
$$k$$
 . يستلقي هذا النابض على

بطرفه الآخر جسم صلب كتلته
$$m = 170g$$
 و يمكنه أن

يقوم بحركة انسحابية أفقية.

t يسمح تجهيز مناسب بالحصول على تسجيل المطال x لمركز عطالة الجسم بدلالة الزمن و الممثل في البيان التالى:

1 اعتمادا على التسجيل السابق، هل حركة الهزاز متخامدة؟ برر إجابتك.

2- أ/ أي من العبارات التالية تمثل الدور الذاتي للهزاز:

ب/ ما هي قيمة الدور الذاتي لهذا الهزاز؟

k استنتج قيمة ثابت المرونة

$$x(t) = X_m \cdot \cos\left(\frac{2\pi}{T_0}t + \zeta_0\right)$$
 المعدلة الزمنية للمنحنى البياني هي من الشكل -3

أ/ عين بيانا سعة الاهتزازات X_m و الصفحة ζ_0 في مبدأ الأزمنة.

.
$$E_m = E_c + E_p$$
 بالعلاقة الميكانيكية والطاقة الميكانيكية بالعلاقة الميكانيكية الطاقة الميكانيكية الميكانيكية

أكتب عبارة الطاقة الميكانيكية لهذا الهزاز بدلالة k و M ما هي قيمة هذه الطاقة؟

. x=0 استنتج قيمة سرعة الجسم عندما يمر بالمطال

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\sin\theta = 0$$

(rad) إذا كانت الزاوية $heta \leq 10^\circ$ زاوية صغيرة) فإن $heta \approx heta \approx \sin heta pprox \sin heta$ بالراديان

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}.\theta = 0$$
 تصبح العلاقة ($\mathbf{02}$) بالشكل :

و هي معادلة تفاضلية من الدرجة الثانية تقبل حلا من الشكل:

$$\theta = \theta_0 \cos(\omega_0 t + \varphi)$$

. (المطال الزاوية (المطال الزاوي الله الناوية (المطال الأعظمي اheta : الفاصلة الزاوية المطال الأعظمي ا

. النبض الذاتي ، arphi : الصفحة الابتدائية . ω_0

$$\frac{d^2 heta}{dt^2} = -\omega_0^2 heta$$
 : باشتقاق المعادلة الزمنية ($\mathbf{04}$) مرتين بالنسبة للزمن نجد

$$\frac{d^2\theta}{dt^2} + \omega_0^2 \theta = 0$$
 : و منه :

$$T_0=2\pi\sqrt{rac{l}{g}}$$
: مطابقة العلاقتين ($\mathbf{05}$) و ($\mathbf{05}$) بخد أن بمطابقة العلاقتين العالقة العلاقتين الع

: عبارة الدور بالعلاقة : (22°) عبارة الدور بالعلاقة :

$$T = T_0 \left(1 + \frac{\theta_0^2}{16} \right)$$

. حيث T_0 هو الدور من أجل السعات الصغيرة

تشبه تماما $(heta=f(t),\omega=\dot{ heta}=f(t),\ddot{ heta}=f(t))$ تشبه تماما الحركة للمعادلات الزمنية مخططات الحركة في النواس المرن الأفقي وكذا مخططات الطاقة .

بين أن الطاقة الكلية للجملة (نواس – أرض) تساوي مقدار ثابت يطلب تحديده .

$$T_0=2\pi\sqrt{LC}$$
 : فإن $\omega_0=rac{2\pi}{T_0}$: و حيث أن $f_0=rac{1}{2\pi\sqrt{LC}}$ و لدينا $f_0=rac{1}{T_0}$ و منه $f_0=rac{1}{T_0}$: الدينا و الدينا و منه $f_0=rac{1}{T_0}$

تطبيق 01

أكتب المعادلة الزمنية للتيار و i = f(t) كذلك التوتر بين طرفي المكثفة .

تطبي*ق 02* :

حسب قانون التوترات:

بين أن الطاقة الكهربائية الكلية في الدارة المثالية (${f LC}$) تساوي مقدار ثابت يطلب تعينه .

كتابة المعادلة التفاضلية : (الدارة الحقيقية) : (L.C.R

$$u_C + u_L + u_R = 0$$
 $u_C = \frac{q}{C}$ $u_C =$

$$i=rac{dq}{dt}$$
 جُد : $i=rac{dq}{dt}$ جُد $i=rac{dq}{dt}$ جُد $i=rac{dq}{dt}$ جُد $i=rac{dq}{dt}$ جُد $i=rac{dq}{dt}$

بالقسمة على L:

$$\frac{d^2q}{dt^2} + \frac{R_T}{L} \cdot \frac{dq}{dt} + \frac{1}{LC} \cdot q = 0$$

و هي معادلة تفاضلية من الدرجة الثانية حلها خارج البرنامج .

$(\mathbf{R}_{\mathrm{T}} = \mathbf{0} \longleftarrow \mathbf{L}\mathbf{C}$ کتابة المعادلة التفاضلية : (الدارة المثالية

أ - المعادلة التفاضلية أثناء التفريغ :

نضع البادلة في الوضع 2 في الشكل المقابل .

حسب قانون التوترات لدينا :

$$u_C + u_L = 0$$

$$u_C = rac{q}{C}$$
 : بالتعويض نجد أن
$$u_L = L. rac{di}{dt}$$

: بالتعويض نجد
$$\frac{q}{C} + L..\frac{di}{dt} = 0$$

$$i = \frac{dq}{dt} \Rightarrow \frac{di}{dt} = \frac{d^2q}{dt^2}$$

$$\frac{d^2q}{dt^2} + \frac{1}{LC}q = 0$$
 و منه $\frac{q}{C} + L..\frac{d^2q}{dt^2} = 0$

العلاقة (01) هي معادلة تفاضلية من الدرجة الثانية تقبل حلا من الشكل :

$$q = q_m \cdot \cos(\omega_0 t + \varphi)$$

حيث : q_m هي القيمة العظمي للشحنة .

ب - عبارة نبض و دور و تواتر الاهتزازات الكهربائية :

نشتق العلاقة (02) مرتين فنجد:

$$\omega_0 = \sqrt{\frac{1}{LC}} \qquad \qquad : \omega_0^2 = \frac{1}{LC}$$

* الدارة المثالية (الغير متخامدة) : مقاومة الدارة منعدمة

* الدراسة الطقوية:

