Example 2: Greatest Common Divisor

Theoretical analysis of time efficiency

Theoretical analysis of time efficiency

Example 1: Sequential

Search

Example 1: Sequential

Search

Example 1: Sequential

Search

Example 2: Greatest

Common Divisor Example 2: Greatest

Common Divisor

Asymptotic Notation

- \Box Best case:
 - 1. When does the best case happen? when gcd(a, b) = min(a, b)
 - 2. What is $C_{best}(n)$? $C_{best}(n) = 1$
- ☐ Average case:
 - 1. Assumptions:
 - Assume that a and b are two randomly chosen integers
 - Assume that all integers have the same probability of being chosen
 - **hint**: The probability that an integer d is a and b's greatest common divisor is $P_{a,b}(d) = \frac{6}{\pi^2 d^2}$
 - 2. When does the average case happen? when *K* and *A* satisfy our assumptions

Question: what is the tightest upper bound of $C_{avg}(n)$? is it O(n), $O(n^2)$ or $O(n\log n)$ and why?

3. What is $C_{avg}(n)$?

Let us denote $n = \min(a, b)$

$$C_{avg}(n) = 1 \cdot P_{a,b}(n) + 2 \cdot P_{a,b}(n-1) + \dots + (n) \cdot P_{a,b}(1) = \frac{6}{\pi^2} \left(\frac{1}{n^2} + \frac{2}{(n-1)^2} + \dots + \frac{n}{1^2} \right)$$

(when n = 10.

$$\left(\frac{1}{100} + \frac{2}{81} + \frac{3}{64} + \frac{4}{49} + \frac{5}{36} + \frac{6}{25} + \frac{7}{16} + \frac{8}{9} + \frac{9}{4} + 10\right) \cdot (6/\pi^2) = 8.58300468$$

Useful Property

Theoretical analysis of time efficiency

Theoretical analysis of time efficiency

Example 1: Sequential

Search

Example 1: Sequential

Search

Example 1: Sequential

Search

Example 2: Greatest

Common Divisor

Example 2: Greatest

Common Divisor

Asymptotic Notation

O-notation

 Ω -notation

 Θ -notation

Useful Property

Comparing Orders of

Growth

Orders of growth of some important functions

1. $f(n) \in O(f(n))$

Proof.

2. $f(n) \in O(g(n))$ if and only if $g(n) \in \Omega(f(n))$

Proof.

3. $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$

Proof.

4. $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then $f_1(n) + f_2(n) \in O(\max\{g_1(n), g_2(n)\})$

Proof.

Orders of growth of some important functions

Theoretical analysis of time efficiency

Theoretical analysis of time efficiency

Example 1: Sequential

Search

Example 1: Sequential

Search

Example 1: Sequential

Search

Example 2: Greatest

Common Divisor

Example 2: Greatest

Common Divisor

Asymptotic Notation

O-notation

 Ω -notation

 Θ -notation

Useful Property

Comparing Orders of Growth

Orders of growth of some important

> functions

1. All logarithmic functions $\log_a n$ belong to the same class $\Theta(\log n)$ no matter what the logarithm's base a>1 is

Proof.

2. All polynomials of the same degree k belong to the same class:

$$a_k n^k + a_{k-1} n^{k-1} + \dots + a_0 \in \Theta(n^k)$$

Proof.

3. Exponential functions a^n have different orders of growth for different a's, i.e., $2^n \notin \Theta(3^n)$

Proof.

4. order $\log n < \text{order } n^{a>0} < \text{order } a^n < \text{order } n! < \text{order } n^n$