RecSys рекомендации фильмов

Авторы проекта - студенты МОВС:

Владислав Панфиленко

Лилия Хорошенина

Что было сделано?

Данные

EDA

оценок

~34 млн. 86,5 тыс.

уникальных фильмов с оценкой

~331 тыс.

уникальных пользователей поставили оценку

Количество оценок по жанрам, млн.

Количество выпущенных фильмов, шт.

EDA

Количество оценок по годам

Динамика оценок пользователей по 5-бальной шкале, млн.

Пользователи, у которых больше всего оценок, в %

Предобработка данных

Сплит по данным

- Для модели брали **20 последних** оценок пользователя в тест, оставшиеся в трейн;
- Среди пользователей отбирали только тех, у кого было **более 20 оценок** за все время, что соответствует 0,4 квантилю.

Сплит по данным в млн. строк и % от всех данных

Модель

При разработке модели мы учли, что все пользователи делятся на:

- «холодных» по которым у нас нет информации;
- «известных» по которым есть информация.

IMDb-формула («холодные» пользователи):

$$w = \frac{Rv + Cm}{v + m}$$

- w взвешенный рейтинг по фильму
- v количество оценок по фильму
- m минимальное количество оценок, необходимое для попадания в число 250 лучших фильмов
- R средняя оценка фильма
- С среднее число оценок

Применение ML-моделей (пользователи с данными):

Нами были рассмотрены 3 основные модели классического ML, подходящие под задачу рекомендательных систем:

- KNN
- iALS
- LightFM

KNN: rectools + implicit

Для KNN были проанализированы 3 метода сходства между пользователями:

- Косинусное расстояние (Cosine);
- Mepa TF-IDF;
- Mepa Okapi BM25.
- Наилучший результат на MAP@10 показа TF-IDF.

Более подробная информация: recsyc_part1/KNN.ipynb

Для **iALS** также был произведен подбор гиперпараметров, среди которых были:

- Кол-во факторов (factors);
- Кол-во итераций (iterations);
- Коэффициент регуляризации (regularization);
- Веса положительного класса (alpha).

Более подробная информация: recsyc_part1/iALS.ipynb

Наилучшими гиперпараметрами были выбраны:

- factors = 3
- iterations=50
- regularization = 1.0
- alpha=4.0

LigthFM (библиотека)

Данная модель показала наилучшее качество.

Для начала было проанализировано качество модели на двух **функциях потерь**:

- WARP взвешенный приближенный ранг;
- BPR байесовский ранг.

Затем были проанализированы различия в использовании оптимизаторов для обучения:

- Adagrad
- Adadelta

Более подробная информация: recsyc_part1/LightFM.ipynb

Сравнение loss-функций WARP и BPR

Сравнение оптимизаторов Adagrad и Adadelta

Микросервис

telegram - бот 🕢

Постарались учесть простой клиентский путь, для этого разработали систему последовательных сообщений, которые учитывают статус нахождения пользователя с помощью системы конечного автомата FSM.

Старт бота Авторизация Если пользователь Если пользователь «холодный» существующий I. Авторизация Запрашиваем новый id id Если id Если id не валидный находит/не цифра Переход к основному меню Рекомендация Предсказание фильма Рекомендация фильмов по существующему II. Основной фильмов жанру пользователю функционал Пользователь выбирает жанр Выдача результата

Пример работа бота

Постарались сделать удобство пользования интуитивно понятным

Для начала работы бота необходимо нажать на «Старт»

Далее пользователь пользуется кнопками снизу

1. Использование более сложных 2. Использование моделей с применением расширенной информации нейросетевых подходов при моделировании Дальнейшие планы 3. Реализация 4. Доработка микросервиса механизма валидации в (БД, логирование, расширение

функционала взаимодействия)

модели