IA02 - Examen Médian	Page 1	
IA02 Examen Median	i age i	

UTC/GI - 21 Avril 2015 Prénom :

IAO2 MEDIAN-2015

Une rédaction lisible et argumentée est préconisée ... En cas de manque de place, rédigez sur la page de gauche

POUR LA BONNE CLAUSE

[3 pts]

Nom:

Soit la phrase suivante :

On connaît un homme qui aime toutes les femmes aimant au moins un végétarien.

OI.	comment an nomine qui anne toutes les formines annant du mome un vegetarion.
1)	Traduire cette phrase en une formule logique (ω) du calcul des prédicats du premier ordre. Prédicats : <u>FEMME(x)</u> , <u>HOMME(x)</u> , <u>VEG</u> ETARIEN(x), <u>AIME(x,y)</u> . Attention au parenthésage ! [1,5 pt]
	ω:
2)	Et maintenant, clausons un peu : mettre (¬ ω) sous forme clausale. [1,5 pt]
	¬ω:

UTC/GI - 21 Avril 2015 Prénom :

MODELES [2 pts]

P et Q sont deux prédicats d'arité 2 de la Logique des Prédicats du 1er ordre. On considère les deux formules suivantes :

- (ω_1) $\exists x \ \forall y \ (P(x,y) \Rightarrow Q(x,y))$
- (ω_2) $\forall x \exists y (P(x,y) \Rightarrow Q(x,y))$

Le domaine d'interprétation D est ici l'ensemble des entiers naturels supérieurs ou égaux à 2. L'interprétation de P est la relation d'inégalité \leq , celle de Q est la relation divise (souvent notée |), au sens de la division euclidienne définie sur les entiers.

- 1. Donner, selon cette interprétation, les valeurs de vérité respectives des formules (ω_1) et (ω_2). On ne vous demande pas de faire de calcul ; en revanche, des explications seront bienvenues.
- 2. En gardant les mêmes interprétations pour *P* et *Q*, modifier le domaine d'interprétation *D* pour que les deux formules soient vraies.

3 Nom:	
Prénom :	
	Nom :

<u>TIENS-TIENS</u> [2 pts]
Soient les deux atomes suivants : $P(x,f(A,y),x)$ et $P(f(u,u),z,z)$.
Si ceci vous rappelle quelque chose, vous n'avez pas tout à fait tort Il vous est simplement demandé d'appliquer l'algorithme de Robinson encore appelé <i>unifier2</i> à ces deux atomes et d'en tirer les conséquences.

A02 - Examen Médian	Page 4	Nom:
---------------------	--------	------

UTC/GI - 21 Avril 2015 Prénom :

VOUS AVEZ DIT BIZARRE?

[8 pts]

Les propos qui suivent ne sont que pure conjecture.... et toute ressemblance avec des personnages ou des événements réels ne serait que fortuite.....

- 1) Exprimer en calcul des prédicats L1 les énoncés ci-dessous :
 - H₁: "Seuls les gens bizarres font des cours d'IA"

H₂: "Les gens bizarres et enfermés ne font pas de cours d'IA"

H₃: "Tout cours d'IA est fait par quelqu'un"

H₄: "On n'enferme que les gens bizarres"

H₅: "Il y a des cours d'IA"

Et enfin C: "Il y a des gens bizarres en liberté"

On utilisera à cet effet les prédicats suivants (ou leurs abréviations soulignées) :

COURS-IA(x): x est un cours d'IA

FAIRE-COURS(x,y): x fait un cours y

<u>BIZARRE(x)</u>: x est bizarre <u>ENFERME(x)</u>: x est enfermé

H ₁ :		
H ₁ : H ₂ : H ₃ : H ₄ : H ₅ : C:		
H ₃ :		
H ₄ :		
H ₅ :		
C :		

- 2) On veut montrer que (ω) : (H₁ \wedge H₂ \wedge H₃ \wedge H₄ \wedge H₅) \Rightarrow C, est une formule valide.
 - 2.1 Rappeler le principe de la méthode, et les théorèmes qui la légitiment.

2	2.2 Mettre le problème sous forme clausale (détails d'obtention recommandés).
	Déterminer un graphe de réfutation. Aucune stratégie de développement n'est imposée. Attention ! Il se peut qu'une clause ne soit pas utile
	Conséquences (à tirer après avoir obtenu un graphe de réfutation) :

IA02 - Examen Médian Page 6 Nom :

UTC/GI - 21 Avril 2015 Prénom :

Graphe de réfutation :		

MYSTERE [5 pts]

On considère les implications suivantes :

- (R1) $\forall e \ \forall x \ \forall s \ \{MYS(x,s) \Rightarrow MYS(cons(e,x), cons(e,s))\}$
- (R2) $\forall e \ \forall x \ \forall s \ \{MYS(x,s) \Rightarrow MYS(x, cons(e,s))\}$
- (R3) MYS(nil, nil)

où *x,s* et *e* sont des symboles de variable, *cons* un symbole de fonction, *nil* un symbole de constante, et enfin MYS est l'abréviation du prédicat MYSTERE.

a) Appliquer la <u>stratégie Prolog</u> à la question : ∃x MYS(x,cons(1,cons(2,nil))). On développera le graphe de réfutation jusqu'à l'obtention de <u>deux</u> solutions.

IA02 - Examen Médian	Page 7	Nom :
UTC/GI - 21 Avril 2015		Prénom :

Ecriture des clauses :
Graphe de réfutation Prolog :

On rappelle que la stratégie Prolog, dès qu'une solution a été trouvée, revient en arrière pas à pas (backtracking chronologique) pour rechercher d'éventuelles autres solutions.

UT	C/GI - 21 Avril 2015 Prénom :
b)	Quelles sont, à votre avis, les autres solutions?
c)	Bonus : expliquez simplement ce que fait le prédicat MYSTERE. Une traduction explicite des règles serait appréciée !
	Indication : précisez ce que calcule ce prédicat quand le premier argument de la question est une variable x et que le second argument est une liste d'un nombre quelconque d'éléments représentée par $(cons(e_1, cons(e_2, cons(e_n, NIL)))$.
	Que fait Mystère ?
	Interprétation des Règles :

Page 8

Nom:

IA02 - Examen Médian