ESE5001 Environmental Engineering Principles

Lecture Notes Chemical Principles

Introduction

• Lecturer:

Associate Prof. Ng How Yong

E2-02-21

Tel: 65164777

Email: howyongng@nus.edu.sg

Concentrations: Quantity of species per volume

Common Units:

1. Moles per Volume

Eg.
$$M = \frac{mol}{L}$$
 (in H₂O, generally not apply in air)

where mole = Avogadro's number of elements:

$$N_{\rm av} = 6.02 \times 10^{23}$$

2. Mass per Volume

- Common concentration units for contaminants in water.
- Eg. mg/L, μ g/m³
- Milli-: 10⁻³
- Micro-: 10⁻⁶

Density

- Mass conc. Summed over all constituents.
 - Fresh water: 1 g cm⁻³
 - Salt water: 1.03 g cm⁻³
 - Pressure has very little influence on density of water
 - Temperature (Yes)
- Air (293K, 1 atm): 1.2 kg m⁻³

1.2 mg cm⁻³

Air ~ 1000 x less dense than water

3. Mass or Mole Fraction

- Quantity of species per quantity of base material, both expressed with same measure.
 - ppm $\equiv 10^{-6} = 1$ part per 10^6 parts solution (fluid plus species).
 - ppb $\equiv 10^{-9} = 1$ part per 10^9 parts solution
 - ppt $\equiv 10^{-12} = 1$ part per 10^{12} parts solution
 - $\% \equiv 10^{-2} = 1$ part per 100 parts solution
 - $\% \equiv 10^{-3} = 1$ part per 1000 parts solution
- In Air always means _____ Fraction
- In Water always means _____ Fraction

Example 1 (1.C.1 of text): One gram of table salt (NaCl) is dissolved in pure water to make 1 L of solution. Determine mass fraction, mass concentration and molarity of Na⁺ in solution.

Soln:

Example 2: A solution contains 8 μ g/L Lead (Pb, atomic mass 207). Express this concentration as moles per litre, ppm, and the mole fraction of Pb. Assume the solution has a density of 1 g/mL.

Soln

Unit Conversion

Mass and Molar Concentrations Conversion:

$$C_i = MW_i[i]$$

where MW_i = molecular weight of species i

[i] = molar concentration of species I

Eg. Convert 50 mg/L of Benzene (C₆H₆) into molar concentration?

Example

A natural water had DOC concentration of 3.5 mg/L. The average composition of the organic molecules in the solution is $C_{30}H_{33}O_{18}N$. Assuming that all the molecules actually have that composition, compute the molar concentration and mass concentration of the molecules in the sample.

Soln:

Unit Conversion

In water, species presents are in dilute levels → density of aqueous solution ≈ density of fresh water = 1000 g/L

Therefore:

$$\begin{array}{ll} \underline{\text{Mass Conc}} & \underline{\text{Mass Fraction}} \\ 1 \ \mu\text{g/L} & \equiv & 1 \ \text{ppb} \\ 1 \ \text{mg/L} & \equiv & 1 \ \text{ppm} \end{array}$$

Eg. Benzene (C_6H_6): WHO standard in drinking water = 10 μ g/L, as mass fraction?

Benzene Conc. in air: Singapore outdoor air: $4 \, \mu g/m^3$, convert to mole fraction Consider 1 m³ of air,

In Air: $1 \mu g/m^3 \sim ppb$; $1 mg/m^3 \sim ppm$

•

Unit Conversion

Mass Fraction to Mass Concentration:

$$C_i = \rho_s X_i$$

where

 ρ_s = solution density (with units of mass per volume).

 X_i = mass fraction

Impurities

- Components
- Constituents
- Impurities
- Contaminants
- Pollutants

Impurities

- Inorganic versus Organic (H₂S vs. Benzene)
- Ionic versus nonionic (HCO₃⁻ vs. SiO₂)
- Elements versus compounds (Pb vs. HCHO)
- Molecular versus particulate (O₂ vs. clay grain)
- Abiotic versus Biotic (soot vs. bacterium)

Impurities

Example of impurity classes — Gases in H₂O

- Air & water in equlibrium
- O₂ in H₂O depends on amount in air & originally in H₂O

Henry's Law

1st form:
$$C_w = K_{H,g} \times P_g$$

(M) (M atm⁻¹) (in atm)
2nd form: $P_g = H_g \times C_w$
(atm) (atm M⁻¹) (M)

i.e. Henry's law constants relationship:

$$K_{H,g} = H_g^{-1}$$

Henry's Law Constant for Water

$$[O_2] = K_{H,O2} \times P_{O2}$$

Figure 3.B.2 Henry's law constant for oxygen (O₂) in distilled water as a function of temperature (Whipple and Whipple, 1911).

H₂O Vapor in AIR

$$Y_{H2O} = \frac{P_{H2O}}{P}$$

Figure 3.B.1 Saturation vapor pressure of water as a function of temperature.

At P = 1 atm = 1.01×10^5 Pa & Temp = 20° C

$$Y_{H2O} =$$

Relative Humidity = Actual partial pressure/Sat. vapor pressure

O_2 in H_2O

```
At Temp. = 20°C,

K_{H, O2} = M \text{ atm}^{-1}

[O_2] = K_{H, O2} \times P_{O2}
```

At sea level:
$$P_{O2} =$$
, $[O_2] =$

When bottle opened at Genting Highlands (2 km) above sea level, [O₂]?

lonic Impurities in H₂O

 H_2O

$$H_2O \Leftrightarrow H^+ + OH^-$$

- 1. $K_W = [H^+][OH^-] = 10^{-14} M^2$ in pure H_2O , eq. conc. of H^+ , OH^- ?
- Relationship: [H⁺] = [OH⁻]
 → [H⁺] = 10⁻⁷ M

Steps:

- 1. Unknowns
- 2. Relationships
- 3. Solve mathematically

pН

Note:
$$pH \equiv -\log_{10} [H^+]$$

Except when in highly concentrated solution, [H⁺] has to be replaced by activity.

lons

Common Drinking Water Ions:

<u>Cations</u>

<u>Anions</u>

Ca²⁺

CI-

Mg²⁺

SO₄²-

Na⁺

HCO₃-

 K^+

Electroneutrality

 Sum of normalities of cations = sum of normalities of anions

$$\Sigma$$
 cations = Σ anions [=] eq/L

Note: 1 eq = 1 mole of net elect. Charge

Acceptable Limits for charge balance:

 $|\Sigma$ anions - Σ cations $| \le (0.1065 + 0.0155\Sigma$ anions)

Electroneutrality

Eg. Determine the acceptability of the following water analysis submitted by a commercial analytical lab.

Cation	Conc	Anion	Conc
	mg/L		mg/L
Ca ²⁺	93.8	HCO ₃ -	164.7
Mg ²⁺	28.0	SO ₄ ²⁻	134.0
Na ⁺	13.7	CI-	92.5
K ⁺	30.2		

Approach:

- Convert all ions concentration into normality
- Check with acceptable limits

Electroneutrality

Solution:

Cation	Conc mg/L	Conc M	meq /L	Anion	Conc mg/L	Conc mM	meq/L
Ca ²⁺	93.8	2.34	4.68	HCO ₃ -	167.4	2.74	2.74
Mg ²⁺	28.0	1.15	2.30	SO ₄ ²⁻	134.0	1.39	2.79
Na ⁺	13.7	0.60	0.60	Cl ⁻	92.5	2.61	2.61
K ⁺	30.2	0.77	0.77				
Total			8.35				8.14

Check accuracy:

$$|\Sigma anions - \Sigma cations| \le (0.1065 + 0.0155\Sigma anions)$$
 $|8.14 - 8.35| \le [0.1065 + 0.0155(8.14)]$ $0.21 \le (0.2327)$

Accuracy within allowable limits, water analysis is acceptable.

Ionic Strength

- Intensity of electric field in a solution

$$\mu = \frac{1}{2} \sum_{i} z_i^2 [i] \qquad [=] M$$

where z_i = charge of species I

[i] = molarity of species i

Ionic Strength

Eg. Compute the ionic strength of a solution containing the following concentration of ions:

$$[Ca^{2+}] = 10^{-4} \text{ M}, [CO_3^{2-}] = 10^{-5} \text{ M}, [HCO_3^{-}] = 10^{-3} \text{ M},$$

 $[SO_4^{2-}] = 10^{-4} \text{ M}, [Na^+] = 1.02 \times 10^{-3} \text{ M}$

lonic Strength

Find the ionic strength of solution with 50 mg/L of NaCl & 100 mg/L of CaSO₄.

Ionic Strength

Why need to know ionic strength?

- Used for computation of activity for non-diluted solution.
- As concentration of ions in solution increases, electrostatic interactions between ions also increase and the activity of ions becomes somewhat less than their measured or analytical concentrations

Activity:
$$\{i\} = \gamma_i [i]$$

Where activity coefficient, γ_i (Debye-Hückey relationship):

$$\log \gamma_i = -0.5 Z_i^2 \frac{\sqrt{\mu}}{1 + \sqrt{\mu}}$$

Eg. Calculate the activity coefficients and activities of each ion solution containing 0.01M MgCl₂ and 0.02 M Na₂SO₄.

Soln: When salts are dissolved:

lon	C (M)	Z	CZ ²
Mg ²⁺	0.01	+2	0.04
Na+	0.04	+1	0.04
Cl-	0.02	-1	0.02
SO ₄ ²⁻	0.02	-2	0.08
		$\Sigma C_i Z_i^2 =$	0.18

lon	Activity Coefficient (γ)	Activity (γC)
Mg ²⁺	0.35	0.0035
Na+	0.77	0.031
CI-	0.77	0.015
SO ₄ ²⁻	0.35	0.007

Ionic strength, $\mu = 1/2 \Sigma_i C_i Z_i^2 = 0.09$

$$\log \gamma_i = -0.5Z_i^2 \frac{\sqrt{0.09}}{1 + \sqrt{0.09}} = -0.115Z_i^2$$

Hardness

- Hard Waters? Water containing multivalents ions
- → scales in hot-water pipes, heaters, boilers, teapots & precipitates in soap water.
- Expressed as normality (eq/L or meq/L) or as CaCO₃
- Each mole of CaCO₃ (MW=100 g/mol) liberates 2 moles of cationic charge → a hardness of 1 meq/L is the same as a hardness of 50 mg/L as CaCO₃.

Classification	Hardness (meq/L)	Hardness (mg/L as CaCO ₃)
Soft	< 1.5	< 7.5
Moderately hard	1.5 - 3	75 -100
Hard	3 - 6	150 - 300
Very hard	>6	≽300

Hardness

- Total hardness (TH) = sum of normalities of all multivalet cations.
- Carbonate hardness (CH) associated with CO₃²⁻ & HCO₃⁻
- Noncarbonate hardness (NCH): the rest

TH = Σ (normalities of multivalent cations)

 In DW Treatment, hardness removal (also called softening) refers to removal of calcium (Ca²⁺) and magnesium (Mg²⁺).

Hardness

- To find CH & NCH:
- Compute TH
- $N_c = [HCO_3^-] + 2[CO_3^2] = eq/L \text{ or } meq/L$
- If $N_c < TH$, $CH = N_c & NCH = TH CH$
- If $N_c > TH$, CH = TH & NCH = 0

Alkalinity

- In natural waters, akalinity is attributable to bases such as CO₃⁻, HCO₃⁻ & OH⁻, ammonia, phosphates, organic bases, etc.
- Refers to the capacity of water to neutralize acids.

$$A = [OH^{-}] + [HCO_{3}^{-}] + 2[CO_{3}^{2-}] - [H^{+}]$$

- Expressed in equivalent per litre.
- Measured by titration: addition of strong acid to water until pH reaches ~ 4.5. Amount of acid added per liter of water sample is the measured alkalinity.

Alkalinity

Eg. NaHCO₃ dissolved in H₂O

Adding vinegar → bubbling due to CO₂

Organics

 Molecule that has carbon and hydrogen, except carbonate and bicarbonate.

Table C.1 Number of Bonds Associated with Elements in Organic Molecules

Element	Atomic number	Typical number of bonds		
H	1	1		
С	6	4		
N	7	3		
0	8	2		
F	9	1		
P	15	3		
S	16	2		
Cl	17	1		
Br	35	1		
I	53	. 1		

Organics: Alkanes

Figure C.1 Structures and names of straight-chain alkanes with carbon numbers 1–5.

Organics: Alkenes

Figure C.2 Structures of some alkenes.

Organics: Aromatic

Figure C.3 Some aromatic compounds.

Organics: Oxygenated

Figure C.4 Representative classes and examples of oxygenated organic compounds of environmental significance.

Organics: Chlorinated

Dichloromethane 1,1,1-Trichloroethane Trichloroethene (TCA) (TCE) (PCE)

Figure C.5 Chlorinated solvents.

Organics: Sulfur and Nitrogen Containing

Class	Structure	Example	
Mercaptan	R-S-H	H H-C-S-H H	Methyl mercaptan
Sulfide	R-S-R'	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dimethyl sulfide
Amine (primary)	R-N H	H H H-C-N H H	Methyl amine
Nitrosamines	$ \begin{array}{c} R \\ N-N=0 \end{array} $		N-Nitroso-dimethylamine
muosammes	R - N = 0	N-N=O H-C-H H	

Figure C.7 General structures and specific examples of some organic compounds that contain either sulfur or nitrogen.

Environmental Transformation

- Partitioning
- Stoichiometry
- Equlibrium
- Kinetics

Partitioning

Equilibrium
Relationship (or data)

- 1) Water-gas phase Henry's Law
- 2) Liquid (NAPL)-water Solubility
- 3) Solid-water Solubility

Vapor Pressure of Some Organic Substances at 25°C

Table 3.B.1 Vapor Pressure of Some Organic Substances at 25 °C

Species	Chemical formula	Molecular weight (g/mol)	Vapor pressure (Pa)
Acetone	C ₃ H ₆ O	58	28,600
Benzene	C_6H_6	78	12,800
Benzo(a)pyrene	$C_{20}H_{12}$	252	7×10^{-7}
Chloroform	CHCl ₃	119.4	26,000
Dieldrin	$C_{12}H_8Cl_6O$	380	7×10^{-4}
Ethylbenzene	C_8H_{10}	106	1,280
Ethylene dibromide	CH_4Br_2	176	270
n-Octane	C_8H_{18}	114	1,890
Naphthalene	$C_{10}H_8$	128	10.6
Phenol	C_6H_6O	94	26
2,3,7,8-TCDD	$C_{12}H_4O_2Cl_4$	322	2×10^{-7}
Tetrachloroethylene	C_2Cl_4	166	2,550
Toluene	C_7H_8	92	3,850
1,1,1-Trichloroethane	$C_2H_3Cl_3$	133.4	16,800
Trichloroethylene	C ₂ HCl ₃	131.4	9,900

Source: Schwarzenbach et al., 1993.

Henry's Constant

Table 3.B.2 Henry's Law Constants for Selected Species

Species	Formula	$K_H (\mathrm{M \ atm}^{-1})$	H_g (atm M ⁻¹)	Temperature (°C)
Ammonia ^a	NH ₃	62	0.016	25
Benzene	C_6H_6	0.18	5.6	20
Benzo(a)pyrene	$C_{20}H_{12}$	2040	4.9×10^{-4}	20
Carbon dioxide ^a	CO_2	0.034	29	25
Carbon monoxide	CO	0.0010	1000	20
Chloroform	CHCl ₃	0.31	3.2	20
Ethylbenzene	C_8H_{10}	0.11	9.1	20
Formaldehyde	HCHO	6300	1.6×10^{-4}	25
Hydrogen sulfide ^a	H_2S	0.115	8.7	20
Methane	$\tilde{\mathrm{CH}_4}$	0.0015	670	20
Naphthalene	$C_{10}H_8$	2.2	0.45	20
Nitric acid ^a	HNO ₃	2.1×10^{5}	4.8×10^{-6}	25
Nitrogen	N_2	0.00067	1500	20
Oxygen	O_2^-	0.00138	720	20
Phenol	C_6H_6O	2200	4.5×10^{-4}	20
Sulfur dioxide ^a	SO_2	1.24	0.81	25
Tetrachloroethylene	C_2Cl_4	0.083	12	20
Toluene	C_7H_8	0.15	6.7	20
1,1,1-Trichloroethane	$C_2H_3Cl_3$	0.055	18	20
Trichloroethylene	C ₂ HCl ₃	0.11	9.1	20

^aThese species participate in acid-base reactions when dissolved in water. The coefficients listed refer to the solubility of the unreacted species only.

Solubility of selected organics

 Table 3.B.3
 Water Solubility of Selected Organic Liquids

Species	Solubility (mg/L) ^a
Benzene	1,780
Benzo(a)pyrene	0.0038
Chloroform	8,200
Dieldrin	0.2
Ethylbenzene	152
Ethylene dibromide	4,300
<i>n</i> -Octane ^b	0.72
Naphthalene ^b	31
Phenol	93,000
2,3,7,8-TCDD	0.0002
Tetrachloroethylene	200
Toluene	535
1,1,1-Trichloroethane	4,400
Trichloroethylene	1,100

^aAt 20 °C unless otherwise noted.

Source: Sawyer et al., 1994; LaGrega et al., 1994; Schwarzenbach et al., 1993.

^bAt 25 °C.

Water-Gas Partitioning

• Henry's Law: $[i] = K_{H,I} P_i$

$$[i] = K_{H,I} P_i$$

• Eg. 3.11

Solid Solubility

$$A_xB_y$$
 dissolution A_xB_y $A^{(+)} + yB^{(-)}$ precipitation

$$K_{sp} = [A^{(+)}]^{x} [B^{(-)}]^{y}$$

Note: Valid only if solid is present at Equilibrium!

Eg. $AI(OH)_3 \leftarrow AI^{3+} + 3 OH^{-}$ Al can also be in (+2) or (+4) state, but not common.

$$K_{sp} = [AI^{3+}][OH^{-}]^{3}$$

Solubility Product

Table 3.B.4 Solubility Products for Some Ionic Solids at T = 25 °C

Compound	Equilibrium relationship	$K_{\rm sp}^{a}$	$K_{\mathrm{sp}}^{}\mathrm{b}}$
Aluminum hydroxide	$Al(OH)_3 \Leftrightarrow Al^{3+} + 3 OH^{-}$	$1 \times 10^{-32} \mathrm{M}^4$	$2 \times 10^{-32} \mathrm{M}^4$
Cadmium hydroxide	$Cd(OH)_2 \Leftrightarrow Cd^{2+} + 2OH^{-}$	$2 \times 10^{-14} \mathrm{M}^3$	$5.9 \times 10^{-15} \mathrm{M}^3$
Calcium carbonate	$CaCO_3 \Leftrightarrow Ca^{2+} + CO_3^{2-}$	$5 \times 10^{-9} \mathrm{M}^2$	$8.7 \times 10^{-9} \mathrm{M}^2$
Calcium fluoride	$CaF_2 \Leftrightarrow Ca^{2+} + 2 F^{-}$	$3 \times 10^{-11} \mathrm{M}^3$	$4 \times 10^{-11} \mathrm{M}^3$
Calcium hydroxide	$Ca(OH)_2 \Leftrightarrow Ca^{2+} + 2 OH^-$	$8 \times 10^{-6} \mathrm{M}^3$	$5.5 \times 10^{-6} \mathrm{M}^3$
Calcium phosphate	$Ca_3(PO_4)_2 \Leftrightarrow 3 Ca^{2+} + 2 PO_4^{3-}$	$1 \times 10^{-27} \mathrm{M}^5$	$2.0 \times 10^{-29} \mathrm{M}^5$
Calcium sulfate	$CaSO_4 \Leftrightarrow Ca^{2+} + SO_4^{2-}$	$2 \times 10^{-5} \mathrm{M}^2$	$1.9 \times 10^{-4} \mathrm{M}^2$
Chromium(III) hydroxide	$Cr(OH)_3 \Leftrightarrow Cr^{3+} + 3 OH^{-}$	$6 \times 10^{-31} \mathrm{M}^4$	$6 \times 10^{-31} \mathrm{M}^4$
Iron(II) hydroxide	$Fe(OH)_2 \Leftrightarrow Fe^{2+} + 2 OH^{-}$	$5 \times 10^{-15} \mathrm{M}^3$	$8 \times 10^{-16} \mathrm{M}^3$
Iron(III) hydroxide	$Fe(OH)_3 \Leftrightarrow Fe^{3+} + 3 OH^{-}$	$6 \times 10^{-38} \mathrm{M}^4$	$4 \times 10^{-38} \mathrm{M}^4$
Magnesium carbonate	$MgCO_3 \Leftrightarrow Mg^{2+} + CO_3^{2-}$	$4 \times 10^{-5} \mathrm{M}^2$	$1 \times 10^{-5} \mathrm{M}^2$
Magnesium hydroxide	$Mg(OH)_2 \Leftrightarrow Mg^{2+} + 2OH^-$	$9 \times 10^{-12} \mathrm{M}^3$	$1.2 \times 10^{-11} \mathrm{M}^3$
Nickel hydroxide	$Ni(OH)_2 \Leftrightarrow Ni^{2+} + 2 OH^-$	$2\times10^{-16}\mathrm{M}^3$	$6.5 \times 10^{-18} \mathrm{M}^3$

^aSawyer et al., 1994, p. 38.

^bBenefield and Morgan, 1990.

Solid Solubility

Eg. 3.14: $CaSO_4 \leftarrow Ca^{2+} + SO_4^{2-}$

At Equilibrium,

$$K_{sp} = 2 \times 10^{-5} = [Ca^{2+}][SO_4^{2-}]$$

Stoichiometry

- A chemical reaction must conserve the number of atoms for each element involved in the reaction and the electrical charge associated with ions.
- Eg.

$$C_3H_6Cl_{2(I)} + aO_2$$
 $bCO_2 + cH_2O_{(I)} + dHCl$

Chemical Equilibrium

Equilibrium:

- 1. Not vary with time.
- 2. Internally uniform.
- 3. NO net flows of mass, heat, or species within system or between system and its surroundings.
- 4. Net rate of chemical reactions is ZERO.

Chemical Equilibrium

$$A + B \Leftrightarrow C + D$$

1) Rate of reaction in forward direction:

$$R_f = k_f [A][B]$$

2) Rate of reaction in reverse direction:

$$R_r = k_r [C][D]$$

At equilibrium: $R_f = R_r$

 \rightarrow $k_f[A][B] = k_r[C][D]$

or
$$\frac{[C][D]}{[A][B]} = \frac{k_f}{k_r} = K$$

where K = equilibrium constant of the reaction

Acid-Base Reaction

•pH =
$$-\log_{10} [H^+]$$

A generic expression:

$$HA \longrightarrow H^+ + A^-$$

$$K_{A} = \frac{[H^{+}][A^{-}]}{[HA]}$$

Strength of Acid

Define $pK_A = -log_{10}(K_A)$

- Strong acid: pK_A ≤ 1 (fully dissociate)
- Weak acid: $pK_A \ge 1$ (partially dissociate)

Acid Dissociation Constants

Table 3.C.1 Acid Dissociation Constants (T = 25 °C)

Species	Chemical formula	pK_A
Perchloric acid	HClO ₄	-7
Hydrochloric acid	HC1	-3
Sulfuric acid	H_2SO_4	-3
Nitric acid	HNO ₃	-1.2
Sulfonic acid	H_2SO_3	1.89
Bisulfate	HSO ₄	1.92
Phosphoric acid	H_3PO_4	2.12
Acetic acid	CH ₃ COOH	4.7
Butyric acid	C ₃ H ₇ COOH	4.8
Propionic acid	C ₂ H ₅ COOH	4.9
Carbonic acid	H_2CO_3	6.35
Hydrogen sulfide	H_2S	7.1
Dihydrogen phosphate	$H_2^-PO_4^-$	7.21
Bisulfite	HSO ₃	7.22
Hypochlorous acid	HOCl	7.6
Hydrogen cyanide	HCN	9.2
Ammonium	$\mathrm{NH_4}^+$	9.23
Bicarbonate	HCO ₃	10.33
Hydrogen phosphate	HPO_4^{2-}	12.32
Bisulfide	HS ⁻	12.9

Acid-Base Reaction

• $pK_A = pH \rightarrow 50\%$ of acid is dissociated.

If pH >> pK_A, acid is fully _____

If pH << pK_A, aicd is fully _____

Acid-Base Reaction Example: Carbonate System

Figure 3.C.1 Species and transformations for the carbonate system in natural air-water-limestone environments.

Acid-Base Reaction Example: Carbonate System

Species involved: $CO_{2(g)}$, $H_2CO_3^*$, HCO_3^- , CO_3^{2+} .

$$[CO_2(aq)] = K_H P_{CO2}$$

 $CO_2(aq) + H_2O \Leftrightarrow H_2CO_3$ $[H_2CO_3]/[CO_2(aq)] = K_m = 1.58x10^{-3}$

$$[H_2CO_3^*]=[CO_2(aq)]+[H_2CO_3]=[CO_2(aq)](1+K_m)$$

1)
$$CO_{2(g)} \xrightarrow{H_2O} H_2CO_3^*$$

$$[H_2CO_3^*] = (1+K_m)K_HP_{CO2}$$

2)
$$H_2CO_3^* + H^+ + HCO_3^-$$

$$K_{C1} = \frac{[H^+][HCO_3^-]}{[H_2CO_3^*]}$$

3)
$$HCO_3^- + CO_3^2$$

$$K_{C2} = \frac{[H^+][CO_3^{2-}]}{[HCO_3^{-}]}$$

Eg. Carbonate System

What is the pH of soda "Coca-Cola" (when it is still haven't been opened)?

Assume $P_{CO2} = 2$ atm

Unknowns (5): [H⁺], [OH⁻], [HCO₃⁻],

Solve using algorithm:

- Use one equation (EN) and pick one variable [H⁺]
- 2) Transform that equation in terms of one unknown. e.g., [H⁺]

Chemical Equilibrium

Coca-cola Example:

• EN + equilibrium:

$$[H^{+}] = \frac{K_{W}}{[H^{+}]} + \frac{K_{c1}K_{H}P_{CO2}}{[H^{+}]} + 2\frac{K_{c1}K_{C2}P_{CO2}}{[H^{+}]^{2}}$$

Where do we get the parameters?

- P_{CO2}: 2 atm (given)
- K_{H,CO2}: Table 3.B.2: K_{H,CO2}=0.034 M atm⁻¹ (25°C)

Chemical Equilibrium

Where do we get the parameters?

$$K_{C1} = \frac{[H^{+}][HCO_{3}^{-}]}{[H_{2}CO_{3}^{*}]}$$
 $(H_{2}CO_{3}^{*} \longrightarrow H^{+} + HCO_{3}^{-})$

Table 3.C.1: For
$$H_2CO_3$$
, $pK_A = 6.35$
 $pK_A = -log_{10}$ (K)
 $K_A = 10^{-6.35}$

$$K_{C2} = 10^{-10.33}$$

Henry's Constants

Table 3.B.2 Henry's Law Constants for Selected Species

Species	Formula	$K_H (\mathrm{M \ atm^{-1}})$	H_g (atm M^{-1})	Temperature (°C)
Ammonia ^a	NH ₃	62	0.016	25
Benzene	C_6H_6	0.18	5.6	20
Benzo(a)pyrene	$C_{20}H_{12}$	2040	4.9×10^{-4}	20
Carbon dioxide ^a	CO_2	0.034	29	25
Carbon monoxide	CO	0.0010	1000	20
Chloroform	CHCl ₃	0.31	3.2	20
Ethylbenzene	C_8H_{10}	0.11	9.1	20
Formaldehyde	HCHO	6300	1.6×10^{-4}	25
Hydrogen sulfide ^a	H_2S	0.115	8.7	20
Methane	$\overline{\mathrm{CH}_{4}}$	0.0015	670	20
Naphthalene	$C_{10}H_{8}$	2.2	0.45	20
Nitric acid ^a	HNO ₃	2.1×10^{5}	4.8×10^{-6}	25
Nitrogen	N_2	0.00067	1500	20
Oxygen	O_2	0.00138	720	20
Phenol	C_6H_6O	2200	4.5×10^{-4}	20
Sulfur dioxide ^a	SO_2	1.24	0.81	25
Tetrachloroethylene	C_2Cl_4	0.083	12	20
Toluene	C_7H_8	0.15	6.7	20
1,1,1-Trichloroethane	$C_2H_3Cl_3$	0.055	18	20
Trichloroethylene	C ₂ HCl ₃	0.11	9.1	20

^aThese species participate in acid-base reactions when dissolved in water. The coefficients listed refer to the solubility of the unreacted species only.

Table 3.C.1 Acid Dissociation Constants (T = 25 °C)

		<u> </u>
Species	Chemical formula	pK_A
Perchloric acid	HClO ₄	- 7
Hydrochloric acid	HC1	-3
Sulfuric acid	H_2SO_4	-3
Nitric acid	HNO ₃	-1.2
Sulfonic acid	H_2SO_3	1.89
Bisulfate	HSO ₄	1.92
Phosphoric acid	H_3PO_4	2.12
Acetic acid	CH ₃ COOH	4.7
Butyric acid	C ₃ H ₇ COOH	4.8
Propionic acid	C ₂ H ₅ COOH	4.9
Carbonic acid	H ₂ CO ₃	6.35
Hydrogen sulfide	H_2S	7.1
Dihydrogen phosphate	$H_2PO_4^-$	7.21
Bisulfite	HSO ₃	7.22
Hypochlorous acid	HOCI	7.6
Hydrogen cyanide	HCN	9.2
Ammonium	$\mathrm{NH_4}^+$	9.23
Bicarbonate	HCO ₃ -	10.33
Hydrogen phosphate	HPO_4^{2}	12.32
Bisulfide	HS-	12.9

Chemical Equilibrium

How to solve using a spread sheet?

$$[H^{+}] = \frac{K_{W}}{[H^{+}]} + \frac{K_{c1}K_{H}P_{CO2}}{[H^{+}]} + 2\frac{K_{c1}K_{C2}P_{CO2}}{[H^{+}]}$$

What is the pH of water in a carbonated beverage? (Using a spread sheet)

KHC	0.034	M/atm			
pCO2	2	atm			
H2CO3*	0.068	М			
Kc1	4.47E-07	М			
Kc2	4.68E-11	М			
Kw	1.00E-14	М			
рН	[H+]	[OH-]	[HCO3-]	[CO32-]	EN
1	1.00E-01	1.00E-13	3.04E-07	1.42E-16	1.00E-01
2	1.00E-02	1.00E-12	3.04E-06	1.42E-14	1.00E-02
3	1.00E-03	1.00E-11	3.04E-05	1.42E-12	9.70E-04
4	1.00E-04	1.00E-10	3.04E-04	1.42E-10	-2.04E-04
5	1.00E-05	1.00E-09	3.04E-03	1.42E-08	-3.03E-03
6	1.00E-06	1.00E-08	3.04E-02	1.42E-06	-3.04E-02
7	1.00E-07	1.00E-07	3.04E-01	1.42E-04	-3.04E-01
8	1.00E-08	1.00E-06	3.04E+00	1.42E-02	-3.07E+00
9	1.00E-09	1.00E-05	3.04E+01	1.42E+00	-3.32E+01
10	1.00E-10	1.00E-04	3.04E+02	1.42E+02	-5.88E+02
11	1.00E-11	1.00E-03	3.04E+03	1.42E+04	-3.15E+04
12	1.00E-12	1.00E-02	3.04E+04	1.42E+06	-2.88E+06
13	1.00E-13	1.00E-01	3.04E+05	1.42E+08	-2.85E+08
14	1.00E-14	1.00E+00	3.04E+06	1.42E+10	-2.85E+10

рН	[H+]	[OH-]	[HCO3-]	[CO32-]	EN
3	1.00E-03	1.00E-11	3.04E-05	1.42E-12	9.70E-04
3.1	7.94E-04	1.26E-11	3.83E-05	2.25E-12	7.56E-04
3.2	6.31E-04	1.58E-11	4.82E-05	3.57E-12	5.83E-04
3.3	5.01E-04	2.00E-11	6.06E-05	5.66E-12	4.41E-04
3.4	3.98E-04	2.51E-11	7.64E-05	8.98E-12	3.22E-04
3.5	3.16E-04	3.16E-11	9.61E-05	1.42E-11	2.20E-04
3.6	2.51E-04	3.98E-11	1.21E-04	2.25E-11	1.30E-04
3.7	2.00E-04	5.01E-11	1.52E-04	3.57E-11	4.72E-05
3.8	1.58E-04	6.31E-11	1.92E-04	5.66E-11	-3.33E-05
3.9	1.26E-04	7.94E-11	2.41E-04	8.98E-11	-1.16E-04

3.7	2.00E-04	5.01E-11	1.52E-04	3.57E-11	4.72E-05
3.71	1.95E-04	5.13E-11	1.56E-04	3.74E-11	3.91E-05
3.72	1.91E-04	5.25E-11	1.60E-04	3.92E-11	3.10E-05
3.74	1.82E-04	5.50E-11	1.67E-04	4.30E-11	1.49E-05
3.75	1.78E-04	5.62E-11	1.71E-04	4.50E-11	6.90E-06
3.76	1.74E-04	5.75E-11	1.75E-04	4.71E-11	-1.13E-06
3.78	1.66E-04	6.03E-11	1.83E-04	5.16E-11	-1.72E-05
3.79	1.62E-04	6.17E-11	1.87E-04	5.41E-11	-2.52E-05
	3.71 3.72 3.74 3.75 3.76 3.78	3.71 1.95E-04 3.72 1.91E-04 3.74 1.82E-04 3.75 1.78E-04 3.76 1.74E-04 3.78 1.66E-04	3.71 1.95E-04 5.13E-11 3.72 1.91E-04 5.25E-11 3.74 1.82E-04 5.50E-11 3.75 1.78E-04 5.62E-11 3.76 1.74E-04 5.75E-11 3.78 1.66E-04 6.03E-11	3.71 1.95E-04 5.13E-11 1.56E-04 3.72 1.91E-04 5.25E-11 1.60E-04 3.74 1.82E-04 5.50E-11 1.67E-04 3.75 1.78E-04 5.62E-11 1.71E-04 3.76 1.74E-04 5.75E-11 1.75E-04 3.78 1.66E-04 6.03E-11 1.83E-04	3.71 1.95E-04 5.13E-11 1.56E-04 3.74E-11 3.72 1.91E-04 5.25E-11 1.60E-04 3.92E-11 3.74 1.82E-04 5.50E-11 1.67E-04 4.30E-11 3.75 1.78E-04 5.62E-11 1.71E-04 4.50E-11 3.76 1.74E-04 5.75E-11 1.75E-04 4.71E-11 3.78 1.66E-04 6.03E-11 1.83E-04 5.16E-11

Answer: pH = 3.76

Chemical Equilibrium Example

 Hypochlorus acid (HOCl), a weak acid, can be used for disinfecting water. If 1 mg of HOCL is added to pure water to make up 1 L of liquid volume, what is the equilibrium pH?

Chemical Kinetics

- Time scale for reaction to achieve equilibrium is "large"
 → Kinetics.
- Example: Glucose in oxygenated water

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$

- Glucose in sterile (no bugs) distilled H₂O at pH 7 in contact with air is stable "forever", i.e., a kinetic barrier to its oxidation.
- When pH is > 13, oxidation will occur.
- Methylene Blue (MeB) is a redox indicator which is blue when
 O₂ is present and colourless when O₂ is absent.

$$H_2O + Glucose + O_2 + MeB @ pH>7 \rightarrow blue$$

$$H_2O + Glucose + O_2 + MeB @ pH>13 \rightarrow colourless$$

Definitions

- An eelementary reaction is one that proceeds as stoichiometrically written.
- Rate law for irreversible elementary reaction:

$$aA + bB \xrightarrow{\gamma} cC + dD$$

$$R_{\gamma} = -\frac{1}{a} \left(\frac{d[A]}{dt} \right) = -\frac{1}{b} \left(\frac{d[B]}{dt} \right) = \frac{1}{c} \left(\frac{d[C]}{dt} \right) = \frac{1}{d} \left(\frac{d[D]}{dt} \right)$$

&

where a,b,c,d = constants = stoichiometric coefficients k_{γ} = reaction rate constant

• Example of Rate Calculations: Reaction of disinfectant HOCL (hypochlorous acid) with NH₃ (ammonia) to form NH₂Cl (monochloramine):

$$NH_3 + HOCI \rightarrow NH_2CI + H_2O$$

k = 5.1 x 10⁶ l/mole, sec at 25°C

If initial NH₃ and HOCL concentrations are both 10⁻³ M, what is the overall reaction rate?

Batch Reactor

Consider chemical reaction in batch reactor.

1st order decay rxn.: A — → products

Rate Law: $R_1 = k_1[A]$

In a batch reactor with only rxn. 1 occurring:

$$\frac{d[A]}{dt} = -R_1 = -k_1[A]$$

1) 1st Order Decay Reaction

Consider chemical reaction in batch reactor.

1st order decay rxn.: A — 1 → products

Rate Law: $R_1 = k_1[A]$

$$\frac{d[A]}{dt} = -R_1 = -k_1[A]$$

$$[A](t) = A_o e^{-k_1 t}$$

Characteristics time,

 $\tau = \frac{\text{Stock}}{\text{Outflow Rate}}$

$$\tau \sim \frac{A}{k_1 A_0} = \frac{1}{k_1}$$

Other variations:

2) Oth Order Decay Reaction:

$$B \xrightarrow{2}$$
 products

Rate Law: $R_2 = k_2$ & [B](t=0) = B_0 In a batch reactor,

$$\frac{d[B]}{dt} = -R_2 = -k_2$$

- Characteristics time,

$$\tau = \frac{\text{Stock}}{\text{Outflow Rate}}$$

$$au \sim rac{B_0}{k_2}$$

3) <u>i) 2th Order Decay Reaction</u>:

Rate Law: $R_3 = k_3[C]^2$

$$\frac{1}{2}\frac{d[C]}{dt} = -R_3 = -k_3[C]^2$$

- Characteristics time,

$$\tau = \frac{\text{Stock}}{\text{Outflow Rate}}$$

au ~

3.

ii) 2th Order Decay Reaction:
$$A + B \xrightarrow{4}$$
 products

Rate Law: $R_4 = k_4[A][B]$ Note: 1st order in [A] &[B]; 2nd order over all.

In a batch reactor with A_o, B_o at t=0

$$\frac{d[A]}{dt} = \frac{d[B]}{dt} = -R_4 = -k_4[A][B]$$

Characteristics Time:
$$\tau \sim \frac{\min (A_o, B_o)}{k_4 A_o B_o}$$

If $A_0 = B_0$, all A_0 and B_0 will be consumed.

If $A_0 > B_0$, all B_0 will be consumed

Case 2: (Function of A but not B)

$$\frac{d[A]}{dt} = \frac{d[B]}{dt} = -R_4 = -k_4[A]$$

4) 2 Reaction in series:
$$A \xrightarrow{1} B \longrightarrow C$$

 $R_1 = k_1[A];$ $R_2 = k_2[B]$

i) Seek [A](t)
$$\frac{d[A]}{dt} = -R_1 = -k_1[A]$$

i) Seek [A](t)
$$\frac{d[A]}{dt} = -R_1 = -k_1[A]$$

ii) Seek [B](t) $\frac{d[B]}{dt} = R_1 - R_2 = k_1[A] - k_2[B]$

4) <u>2 Reaction in parallel</u>: $A \xrightarrow{1} B$ $R_1 = k_1[A]$ $A \xrightarrow{2} C$ $R_2 = k_2[A]$

$$\frac{d[A]}{dt} = -R_1 - R_2 = -(k_1 + k_2)[A]$$

Given $[A](t=0) = A_o$, [A](t) =

$$\frac{d[B]}{dt} = R_1 = k_1[A]$$

$$\frac{d[B]}{dt} =$$

$$\frac{d[A]}{dt} = -k_0 \qquad \tau \sim \frac{A_0}{k_0}$$

$$\tau \sim \frac{A_0}{k_0}$$

$$\frac{d[A]}{dt} = -k_1[A]$$

$$\frac{d[A]}{dt} = -k_1[A]$$
 $\tau \sim \frac{A_0}{k_0 A_0} = \frac{1}{k_0}$

2nd Order:

$$\frac{d[A]}{dt} = -2k_{2a}[A]^2 \qquad \tau_{2a} \sim \frac{A_0}{2k_{2a}A_0^2} = \frac{1}{2k_{2a}A_0}$$

$$\frac{d[{\rm A}]}{d{\rm t}} = \frac{d[{\rm B}]}{d{\rm t}} = -{\rm k}_{\rm 2b}[{\rm A}][{\rm B}] \ \tau_{2b} \sim \frac{\min(A_0,B_0)}{k_{2b}A_0B_0}$$

Redox Reactions

• Chemical species can be characterized by their oxidation state which describes whether they have lost or gained electrons (e-) with respect to a reference state (the element; oxidation state = 0).

E.g. Mg²⁺ (magnesium ion) has lost 2e⁻ compared to Mg⁰ (magnesium metal) Cl⁻ (chloride ion) has gained 1e⁻ compared to 1/2Cl₂⁰ (chlorine gas)

- A loss of e⁻ is an oxidation
- A gain of e⁻ is a reduction

Rules for determining oxidation state

- Uncombined elements = 0
 e.g. C, O₂ and H₂
- 2. Sum of oxidation state for compound = ionic charge (element or molecule)
- 3. O in compound is -II
- 4. H in compound is +I

Oxidation State

Example: Determine the oxidation number of C in

i) CO₂, ii) CO₃²-, iii) HCO₃- and iv) C₂H₄O₂

Oxidation/Reduction

Involve a change in oxidation state of reactants

e.g.
$$2H_2 + O_2 \rightarrow 2H_2O$$

 $C + O_2 \rightarrow 4CO_2$
 $2Fe^{2+} + CI_2 \rightarrow 2Fe^{3+} + 2CI^{-1}$

Note: sum of oxidation states on both sides of equations are equal – a requirement for a balanced redox reaction.

In last equation,

Fe²⁺ is a **reducing agent**; it loses e⁻; it becomes oxidized. Cl₂ is an **oxidizing agent**; it gains e⁻; it becomes reduced.

Considering C in:

$$CO_2(g) < ----> H_2CO_3^* < ----> HCO_3^- + H^+$$

$$HCO_3^- < ----> CO_3^{2-} + H^+$$

Balancing Redox Reaction – Electron Balancing Method

- Consist of two half reactions an oxidation half-reaction and a reduction half reaction
- Steps:
 - For each ½ rxn, balance major species (anything but O &H
 - 2. For each $\frac{1}{2}$ rxn, balance any O with H₂O
 - 3. For each ½ rxn, balance any H with H⁺
 - 4. For each ½ rxn, balance charge with e
 - 5. Balance both ½ rxns by eliminating e
 - 6. If solution is alkaline (high pH), cancel out any H+ by adding OH- to both side of rxn; sum up H₂O

Previous Example

1. Balance major species:

Fe²⁺
$$\Leftrightarrow$$
 Fe(OH)₃
Cr₂O₇²⁻ \Leftrightarrow 2Cr(OH)₂⁺

2. Balance any O with H₂O

Fe²⁺ +
$$3H_20 \Leftrightarrow Fe(OH)_3$$

Cr₂O₇²⁻ \Leftrightarrow 2Cr(OH)₂⁺+ $3H_20$

3. Balance any H with H⁺

Fe²⁺ +
$$3H_20 \Leftrightarrow Fe(OH)_3 + 3H^+$$

Cr₂O₇²⁻ + $10H^+ \Leftrightarrow 2Cr(OH)_2^+ + 3H_2^0$

4. Balance charge with e

Fe²⁺ +
$$3H_20 \Leftrightarrow Fe(OH)_3 + 3H^+ + e^-$$

Cr₂O₇²⁻ + $10H^+ + 6e^- \Leftrightarrow 2Cr(OH)_2^+ + 3H_2^0$

5. Balance both ½ rxns by eliminating e

$$(Fe^{2+} + 3H_2O \Leftrightarrow Fe(OH)_3 + 3H^+ + e^-) \times 6$$
 $Cr_2O_7^{2-} + 10H^+ + 6e^- \Leftrightarrow 2Cr(OH)_2^+ + 3H_2O$

 $6 \text{ Fe}^{2+} + \text{Cr}_2\text{O}_7^{2-} + 15\text{H}_2\text{O} \Leftrightarrow 6\text{Fe}(\text{OH})_3 + 2\text{Cr}(\text{OH})_2^{++} 8\text{H}^+$

Another Example

Balance the reaction in which ferrous iron (Fe²⁺) is converted to ferric iron (Fe³⁺) by permanganate (MnO₄-), which itself is reduced to manganese dioxide (MnO_{2(s)}). The reaction takes place in alkaline solution.

1. Balance major species:

$$Fe^{2+} \Leftrightarrow Fe^{3+}$$

 $MnO_4^- \Leftrightarrow MnO_{2(s)}$

Balance any O with H₂O

$$Fe^{2+} \Leftrightarrow Fe^{3+}$$

 $MnO_4^- \Leftrightarrow MnO_{2(s)} + 2H_20$

3. Balance any H with H⁺

$$Fe^{2+} \Leftrightarrow Fe^{3+}$$

 $4H^{+} + MnO_4^{-} \Leftrightarrow MnO_{2(s)} + 2H_20$

4. Balance charge with e

$$Fe^{2+} \Leftrightarrow Fe^{3+} + e^{-}$$

 $3e^{-} + 4H^{+} + MnO_{4}^{-} \Leftrightarrow MnO_{2(s)} + 2H_{2}0$

5. Balance both ½ rxns by eliminating e

$$(Fe^{2+} \Leftrightarrow Fe^{3+} + e^{-}) \times 3$$
 $3e^{-} + 4H^{+} + MnO_{4}^{-} \Leftrightarrow MnO_{2(s)} + 2H_{2}0$
 $4H^{+} + 3Fe^{2+} + MnO_{4}^{-} \Leftrightarrow 3Fe^{3+} + MnO_{2(s)} + 2H_{2}0$

6. Rxn takes place in alkaline soln, add water dissociation equation to eliminate H+ as a reactant:

$$4H^{+} + 3Fe^{2+} + MnO_{4}^{-} \Leftrightarrow 3Fe^{3+} + MnO_{2(s)} + 2H_{2}0$$

 $4H_{2}0 \Leftrightarrow 4H^{+} + 4OH^{-}$
 $2H_{2}0 + 3Fe^{2+} + MnO_{4}^{-} \Leftrightarrow 3Fe^{3+} + MnO_{2(s)} + 4OH^{-}$

7. In alkaline soln, Fe³⁺ will combine with OH⁻ to form Fe(OH)_{3/s)}:

$$2H_2O + 3Fe^{2+} + MnO_4^- \Leftrightarrow 3Fe^{3+} + MnO_{2(s)} + 4OH^-$$

 $3 \times (Fe^{3+} + 3OH^-) \Leftrightarrow Fe(OH)_{3(s)}$

$$2H_20 + 3Fe^{2+} + MnO_4^- + 5OH^- \Leftrightarrow 3 Fe(OH)_{3(s)} + MnO_{2(s)}$$

Last step would not have been necessary if in step (1) we had taken $Fe(OH)_{3(s)}$ as the product rather than Fe^{3+}

Corrosion

Corrosion

Typical corrosion reaction of metal in oxygen containing H₂O:

$$Fe^0 + 2H^+ + \frac{1}{2}O_2 \rightarrow Fe^{2+} + H_2O$$

Fe oxidized from 0 to +II

Oxygen reduced from 0 to -II

Another Corrosion Example

Q3.35 Write a balanced chemical reaction for the corrosion of pure zinc metal by dissolved oxygen in water to produced zinc rust, Zn(OH)₂.

Theorectical Oxygen Demand

Consider $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$

Biochemical Oxygen Demand (BOD)

- Microbiologically-mediated degradation of organic material (redox reaction) in water using dissolved oxygen.
- BOD + DO → products
- Consider a batch reactor,

$$\frac{d[BOD]}{dt} = -R = -k[BOD]$$

$$\frac{d[DO]}{dt} = -R = -k[BOD]$$

where $[BOD](t=0) = BOD_0$; $[DO](t=0) = DO_0$

Biochemical Oxygen Demand (BOD)

- Microbiologically-mediated degradation of organic material (redox reaction) in water using dissolved oxygen.
- BOD + DO → products
- Consider a batch reactor,

$$\frac{d[BOD]}{dt} = -R = -k[BOD]$$

$$\frac{d[DO]}{dt} = -R = -k[BOD]$$

where
$$[BOD](t=0) = BOD_0$$
; $[DO](t=0) = DO_0$

BOD

BOD(t) = BOD_u exp(
$$-k_{BOD}t$$
)
DO(t) = DO(0) - BOD_u[1-exp($-k_{BOD}t$)]

Figure 3.D.5 Idealized decrease in dissolved oxygen concentration in a batch reactor during measurement of BOD.

BOD

How to determine k_{BOD} and BOD_{\parallel} ?

- Conduct experiment to determine DO(0) & DO (t).
- Fit data by plotting natural logarithm of time derivative of (DO(t) – DO(0)) against time:

$$\ln\left(\frac{d[DO(0) - DO(t))]}{dt}\right) = \ln(k_{BOD}BOD_{u}) - k_{BOD}t$$

- Slope = $-k_{BOD}$
- Y Intercept = $ln(k_{BOD} x BOD_u)$

END