Visualization

CS 5135/6035 Learning Probabilistic Models

Lecture 2b: Visualizing data with Gadfly

Gowtham Atluri

August 28, 2018

- Histograms, Density plots
- Box plots, Violin plots
- Scatter plots
- Line plots
- Heatmaps
- Bar charts

Gadfly - A Visualization Package

```
#Pkg.add("Gadfly"); #A plotting framework, based on ggplot2 {
m fc}
using Gadfly, Cairo, Fontconfig;
white_panel = Theme(
   panel_fill=colorant"white",
   default_color=colorant"blue",
   major_label_font_size=26pt,
   minor_label_font_size=22pt,
   major_label_color=colorant"black",
   minor_label_color=colorant"black"
```

Gadfly.Theme(RGB{N0f8}(0.0,0.0,1.0), 0.9mm, 0.45mm, 1.8mm,

CS 5135/6035 Learning Probabilistic Models

Histogram of categorical data: Drink

```
myplot = Gadfly.plot(data, x="Drink",
                     Geom.histogram, white_panel);
draw(PNG("./figs/hist_plot_a.png", 6inch, 6inch), myplot)
```


Histogram of continuous data: Height

```
myplot = Gadfly.plot(data, x="Height",
                     Geom.histogram(bincount=10),
                     white_panel);
draw(PNG("./figs/hist_plot_b.png", 6inch, 6inch), myplot)
```


Density of continuous data: Height

```
myplot = Gadfly.plot(data, x="Height",
                     Geom.density,
                     white_panel);
draw(PNG("./figs/density_plot.png", 6inch, 6inch), myplot)
```


Histogram of continuous random data: Number

myplot = Gadfly.plot(data, x="Number", Geom.histogram(bincount=10), white_panel); draw(PNG("./figs/hist_plot_c.png", 6inch, 6inch), myplot)

Histogram of hours of sleep

```
myplot = Gadfly.plot(data, x="HrsSleep",
                     Geom.histogram(bincount=10),
                     white_panel);
draw(PNG("./figs/hist_plot_d.png", 6inch, 6inch), myplot)
```


2D Histogram

```
using RDatasets;
womenlf = dataset("car", "Womenlf");
```


Box plot comparing hours of sleep for M and F

```
myplot = plot(data, x="Gender", y="HrsSleep",
              Geom.boxplot, white_panel);
draw(PNG("./figs/box_plot_a.png", 6inch, 6inch), myplot)
```


Box plot comparing height for M and F

```
myplot = plot(data, x="Gender", y="Height",
              Geom.boxplot, white_panel);
draw(PNG("./figs/box_plot_b.png", 6inch, 6inch), myplot)
```


Violin plot comparing height for M and F

```
myplot = plot(data, x="Gender", y="Height",
              Geom.violin, white_panel);
draw(PNG("./figs/violin_plot.png", 6inch, 6inch), myplot)
```


Density plot for comparing height for M and F

Gowtham Atluri

S 5135/6035 Learning Probabilistic Models

ugust 28, 2018 13

Scatter plot - binary values

• Relationship between :Gender and :Drink

Gowtham Atluri

CS 5135/6035 Learning Probabilistic Models

rust 28, 2018 14 /

Scatter plot - binary values (jitter)

• Relationship between :Gender and :Drink

CS 5135/6035 Learning Probabilistic Models

August 28, 2018 15

Scatter plot - continuous values

• Relationship between :ToSleep and :HrsSleep

Gowtham Atlu

CS 5135/6035 Learning Probabilistic Models

August 28, 2018 16 / :

Scatter plot - continuous values (jitter)

• Relationship between :ToSleep and :HrsSleep

Scatter plot - continuous values (smooth fit)

 $\bullet \ \ \mathsf{Relationship} \ \ \mathsf{between} \ : \mathsf{ToSleep} \ \ \mathsf{and} \ : \mathsf{HrsSleep}$

S 5135/6035 Learning Probabilistic Models

August 28, 2018

Scatter plot - continuous values (line fit, layers in Gadfly)

• Relationship between :ToSleep and :HrsSleep

```
using GLM;
ols = lm(@formula(HrsSleep ~ ToSleep), data)
## StatsModels.DataFrameRegressionModel{GLM.LinearModel{GLM.Ln}
##
## Formula: HrsSleep ~ 1 + ToSleep
##
## Coefficients:
##
                Estimate Std.Error t value Pr(>|t|)
## (Intercept)
               7.97442 0.0681373 117.035
                                             <1e-99
                -0.55519 0.0397884 -13.9536
## ToSleep
                                              <1e-37
```

Scatter plot - continuous values (line fit, layers in Gadfly)

- Relationship between :ToSleep and :HrsSleep

```
myplot = plot(
  layer(data,x=:ToSleep, y=:HrsSleep, Geom.point,white_panel),
  layer(data,x=t, y= 7.97 - 0.55 * t , Geom.line,white_panel),
  Theme(panel_fill="white")
draw(PNG("./figs/scatter_plot_f.png", 6inch, 6inch), myplot)
```

Scatter plot - continuous values (line fit, layers in Gadfly)

Line plots

```
myplot = plot(x=rand(10), y=rand(10), Geom.point,
              Geom.line, white_panel);
draw(PNG("./figs/line_plot_a.png", 6inch, 6inch), myplot)
```


Line plots

```
myplot = plot(layer(x=collect(1:10), y=rand(10),Geom.point,
           Geom.line, Theme(default_color=colorant"orange")
      layer(x=collect(1:10), y=rand(10),Geom.point,
            Geom.line, Theme(default_color=colorant"purple")
draw(PNG("./figs/line_plot_b.png", 6inch, 6inch), myplot)
```


Heatmap

```
rand_data = rand(100,100);
myplot = spy(rand_data, white_panel);
draw(PNG("./figs/spy_rand.png", 6inch, 6inch), myplot);
```


CS 5135/6035 Learning Probabilistic Models

Bar plot

df = by(dataset("datasets","HairEyeColor"),[:Eye,:Sex], d->sum(d[:Freq]))

```
## 8×3 DataFrames.DataFrame
##
   Row Eye
               Sex
##
##
         Brown Male
##
         Blue
               Male
                       101
##
        Hazel Male
                       47
##
               Male
   4
         Green
                       33
##
   5
         Brown Female 122
##
   6
         Blue
               Female 114
        Hazel Female
##
                       46
##
         Green Female 31
```

```
myplot = plot(df, color="Eye", y="x1", x="Sex",
   Geom.bar(position=:dodge), Guide.ylabel("Freq"),
   white_panel);
```

Bar plot

Bar plot - vertical stacking

D = by(dataset("datasets", "HairEyeColor"), [:Eye,:Sex], d->sum(d[:Freq]))

#	Row	Eye	Sex	x1	
##		-			
##	1	Brown	Male	98	
##	2	Blue	Male	101	
##	3	Hazel	Male	47	
##	4	Green	Male	33	
##	5	Brown	Female	122	
##	6	Blue	Female	114	
##	7	Hazel	Female	46	
##	8	Green	Female	31	

CS 5135/6035 Learning Probabilistic Models

Bar plot - vertical stacking

```
palette=["brown","blue","tan","green"];
myplot= plot(D, x=:Sex, y=:Frequency, color=:Eye,
             Geom.bar(position=:stack),
             Scale.color_discrete_manual(palette...),
             white_panel);
draw(PNG("./figs/bar_plot_b.png", 6inch, 6inch), myplot);
```

Bar plot - vertical stacking

CS 5135/6035 Learning Probabilistic Models

August 28, 2018 29 / 29