

GRADUATE APTITUDE TEST IN ENGINEERING 2024

ORGANISING INSTITUTE: INDIAN INSTITUTE OF SCIENCE, BENGALURU

Chemical Engineering (CH) Final Answer Key

i illat Aliswei Key								
Q. No.	Session	Question Type	Section	Key/Range	Mark			
1	3	MCQ	GA	В	1			
2	3	MCQ	GA	А	1			
3	3	MCQ	GA	А	1			
4	3	MCQ	GA	D	1			
5	3	MCQ	GA	С	1			
6	3	MCQ	GA	D	2			
7	3	MCQ	GA	Α	2			
8	3	MCQ	GA	А	2			
9	3	MCQ	GA	С	2			
10	3	MCQ	GA	В	2			
11	3	MCQ	СН	D	1			
12	3	MCQ	СН	В	1			
13	3	MCQ	СН	В	1			
14	3	MCQ	СН	С	1			
15	3	MCQ	CH	С	1			
16	3	MCQ	CH	В	1			
17	3	MCQ	CH	Α	1			
18	3	MCQ	CH	Α	1			
19	3	MCQ	CH	Α	1			
20	3	MCQ	CH	Α	1			
21	3	MCQ	CH	В	1			
22	3	MCQ	CH	В	1			
23	3	MCQ	CH	D	1			
24	3	MCQ	CH	В	1			
25	3	MCQ	CH	Α	1			
26	3	MSQ	CH	A;C	1			
27	3	MSQ	CH	B;D	1			
28	3	MSQ	CH	A;C;D	1			
29	3	MSQ	CH	A;B;C	1			

30	3	NAT	CH	-2 to -2	1
31	3	NAT	CH	40 to 40	1
32	3	NAT	CH	0.44 to 0.46	1
33	3	NAT	CH	0.019 to 0.021	1
34	3	NAT	CH	48 to 48	1
35	3	NAT	CH	57.5 to 57.7	1
36	3	MCQ	CH	А	2
37	3	MCQ	CH	А	2
38	3	MCQ	CH	А	2
39	3	MCQ	CH	С	2
40	3	MCQ	CH	В	2
41	3	MCQ	CH	В	2
42	3	MCQ	CH	В	2
43	3	MCQ	CH	В	2
44	3	MCQ	CH	В	2
45	3	MCQ	CH	Α	2
46	3	MCQ	CH	Α	2
47	3	MCQ	CH	Α	2
48	3	MCQ	CH	С	2
49	3	MCQ	CH	С	2
50	3	NAT	CH	-0.01 to 0.01	2
51	3	NAT	CH	4.91 to 4.95	2
52	3	NAT	CH	4.00 to 4.08	2
53	3	NAT	CH	1.39 to 1.43	2
54	3	NAT	CH	18.1 to 18.3	2
55	3	NAT	CH	1719.0 to 1730.0	2
56	3	NAT	CH	396.6 to 397.0	2
57	3	NAT	CH	-101.0 to -99.0	2
58	3	NAT	CH	14.30 to 14.60	2
59	3	NAT	CH	30.40 to 30.50	2
60	3	NAT	CH	4 to 4	2
61	3	NAT	CH	0.24 to 0.26	2
62	3	NAT	CH	2.9 to 3.1	2
63	3	NAT	CH	0.32 to 0.34	2
64	3	NAT	CH	22.1 to 22.3	2
65	3	NAT	CH	10.0 to 10.3	2
	•	•	•	•	