BASIC PHD WRITTEN EXAMINATION IN BIOSTATISTICS

THEORY, SECTION 1

(9:00 AM- 1:00 PM Wednesday, August 12, 2009)

INSTRUCTIONS:

- a) This is a CLOSED-BOOK examination.
- b) The time limit for this Examination is four hours.
- c) Answer any TWO (2) (BUT ONLY TWO) of the THREE (3) questions that follow.
- d) Put the answers to different questions on separate sets of paper.
- e) Put your code letter, NOT YOUR NAME, on each page. The same code will be used for Section 1 and Section 2 of the PhD Theory Exam. Please keep the code confidential and do not share this information with any students or faculty.
- f) Return the examination with a signed statement of the UNC honor pledge, separately from your answers. The pledge statement is given on the last page of the exam handout.
- g) In the questions to follow, you are required to answer only what is asked, and not to tell all you know about the topics involved.

1. Let A and B be two different events in a probability space related to a random experiment. Suppose that n independent and identical trials of the experiment are carried out and that we observe the frequencies of occurrence of the events $A \cap B$, $A \cap B^c$, $A^c \cap B$, and $A^c \cap B^c$. The results can be summarized in the following 2×2 contingency table:

(a) Let $p_{ij} = E(X_{ij})/n$, i = 1, 2, j = 1, 2, where $\sum_{ij} p_{ij} = 1$. The distribution of $X = (X_{11}, X_{12}, X_{21}, X_{22})$ is multinomial, wih probability function given by

$$f(x_{11}, x_{12}, x_{21}, x_{22}) = \frac{n!}{\prod_{i} \prod_{j} x_{ij}!} \prod_{i} \prod_{j} p_{ij}^{x_{ij}}.$$

Verify that this distribution is in the exponential family of distributions, and write the distribution in its canonical form.

- (b) Show that A and B are independent if and only if $\log(\frac{p_{11}}{p_{22}}) = \log(\frac{p_{12}}{p_{22}}) + \log(\frac{p_{21}}{p_{22}})$.
- (c) Let $\theta = a_0 \log(\frac{p_{11}}{p_{22}}) + a_1 \log(\frac{p_{12}}{p_{22}}) + a_2 \log(\frac{p_{21}}{p_{22}})$, where (a_0, a_1, a_2) are given constants. Assuming that $a_0 = 1$ and $a_1 = a_2 = -1$, derive a UMPU size α test for testing $H_0: \theta = 0$ versus $H_1: \theta \neq 0$, and derive the conditional power function of the test. (Hint: Use a theorem for multiparameter exponential families to construct the UMPU test).
- (d) Derive a UMPU size α test for testing $H_0: P(A) \geq P(B)$ versus $H_1: P(A) < P(B)$. (Hint: Use the techniques of part (c) in setting up the hypothesis in terms of θ and then constructing the test).
- (e) Derive the likelihood ratio statistic, denoted by Λ_n , for the hypothesis in part (c) and show that it is asymptotically equivalent to the Pearson chi-square statistic. Specifically,
 - (i) show that

$$-2\log(\Lambda_n) = \sum_{j=1}^2 \sum_{i=1}^2 \frac{(X_{ij} - n\hat{p}_{ij})^2}{n\hat{p}_{ij}} + o_p(1),$$

where \hat{p}_{ij} denotes the maximum likelihood estimate of p_{ij} under H_0 .

(ii) find the asymptotic distribution of $-2\log(\Lambda_n)$ under H_0 and H_1 .

Scoring: (a) (2 points); (b) (3 points); (c) (7 points); (d) (6 points); (e)(i)(5 points), (ii) (2 points).

- 2. Let λ have exponential density $\theta e^{-\theta \lambda}$, for $0 < \theta < \infty$. Conditional on λ , let (X,Y) be a pair of independent Poisson random variables with respective p.m.f.'s $\lambda^x e^{-\lambda}/x!, x = 0, 1, \ldots$, and $(\beta \lambda)^y e^{-\beta \lambda}/y!, y = 0, 1, \ldots$, for $0 < \beta < \infty$. Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be an i.i.d. sample where (X_1, Y_1) has the same unconditional joint distribution as (X, Y). Do the following:
 - (a) Determine the following properties of the unconditional distribution of (X,Y):
 - (i) Show that $EX = \theta^{-1}$, $EY = \beta \theta^{-1}$, $var(X) = \theta^{-1} + \theta^{-2}$, $var(Y) = \beta \theta^{-1} + \beta^2 \theta^{-2}$, and $cov(X, Y) = \beta \theta^{-2}$.
 - (ii) Show that the unconditional joint density of (X, Y) is

$$\left(\frac{\theta}{\theta+\beta+1}\right)\frac{(x+y)!}{x!y!}\left(\frac{1}{\theta+\beta+1}\right)^x\left(\frac{\beta}{\theta+\beta+1}\right)^y.$$

- (b) Show that the maximum likelihood estimator based on a sample of size n for θ is $\hat{\theta}_n = \overline{X}_n^{-1}$ and for β is $\hat{\beta}_n = \overline{Y}_n/\overline{X}_n$, where $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$ and $\overline{Y}_n = n^{-1} \sum_{i=1}^n Y_i$.
- (c) Show that

$$\sqrt{n} \left(\begin{array}{c} \hat{\theta}_n - \theta \\ \hat{\beta}_n - \beta \end{array} \right) \rightarrow_d N \left(0, \left[\begin{array}{cc} \theta^2(\theta+1) & \beta\theta^2 \\ \beta\theta^2 & \theta\beta(\beta+1) \end{array} \right] \right).$$

- (d) Let $T_1 = \sqrt{n\overline{X}_n/2} \left(\overline{Y}_n/\overline{X}_n 1\right)$ and $T_2 = \sqrt{n\overline{X}_n/2} \ln \left(\overline{Y}_n/\overline{X}_n\right)$, and show that under the null hypothesis $H_0: \beta = 1$, that
 - (i) $T_1 \to_d N(0,1)$,
 - (ii) $T_1 T_2 \rightarrow_p 0$, and
 - (iii) $T_2 \rightarrow_d N(0,1)$.
- (e) Suppose $\beta = 1$ and we wish to make inference on $\tau = \theta/(\theta + 2)$. Using result (ii) of part (a), derive the Bayes estimator of τ under squared error loss with prior density

$$\pi(\tau) \propto \tau^{a_0 - 1} (1 - \tau)^{b_0 - 1},$$

where the scalars $a_0 > 0$ and $b_0 > 0$ are specified hyperparameters. Show that this Bayes estimator is admissible.

Scoring:

(a)(i)(3 points), (ii) 3 points; (b) (4 points); (c) (5 points); (d)(i)(2 points), (ii) (2 points),

(iii) (1 point); (e) (5 points).

3. Suppose that there is a random variable A having discrete probability distribution with support on the non-negative integers. Assume that $P(A = j) = p_j, j = 0, 1, 2, ...$, such that $p_j > 0$ and $\dot{\Sigma}_j p_j = 1$.

Define the random variables B_n , n = 1, 2, ... recursively:

$$B_{n+1} = \sum_{k=1}^{B_n} A_{nk},$$

where A_{nk} , $n=1,2,\ldots,k=1,\ldots,B_n$ are iid with the same distribution as A. Assume that B_0 is a known positive integer and let $P_{ij}=P(B_{n+1}=j|B_n=i)=P(\sum_{k=1}^i A_{nk}=j)$.

(a) Show that, in general, $E(B_{n+1}) = E(B_n)E(A_{nk})$ and $Var(B_{n+1}) = E(B_n)Var(A_{nk}) + Var(B_n)\{E(A_{nk})\}^2$, $n \ge 1$.

In the sequel, suppose that $B_0=1$ and that $E(A_{nk})=\mu<\infty$ and ${\rm Var}(A_{nk})=\sigma^2<\infty, n=1,2,\ldots,k=1,\ldots,B_n$

- (b) Show that for $n \ge 1$, $E(B_n) = \mu^n$ and $Var(B_n) = \sigma^2 \mu^{n-1} (1 \mu^n) \{1 \mu\}^{-1}$ if $\mu \ne 1$ and $n\sigma^2$ if $\mu = 1$.
- (c) Under the conditions in (b), show that if $\mu < 1$ then $P(B_n = 0) \to 1$ as $n \to \infty$.
- (d) Define $P_{1j}^{(n)} = P(B_n = j|B_0 = 1)$. Show that $E(z^{B_n})$, denoted by $\phi_n(z)$, may be expressed as $\sum_{j=0}^{\infty} P_{1j}^{(n)} z^j$, for a scalar z such that $|z| \leq 1$. Demonstrate that $\phi_n(0) = P(B_n = 0|B_0 = 1)$.
- (e) Define $\phi(z) = E(z^{A_{nk}}) = \sum_{j=0}^{\infty} p_j z^j$, for a scalar z, with $|z| \leq 1$, for $k = 1, \ldots, B_n$. Show that $\sum_{j=0}^{\infty} P(A_{n1} + A_{n2} + \ldots A_{nk} = j | B_n = k) z^j = \{\phi(z)\}^k$.
- (f) Establish that the following recursive relationship holds:

$$\phi_n(z) = \phi_{n-1} \{\phi(z)\}, n \ge 1.$$

(Hint: condition on B_{n-1}).

Scoring:

(a) (3 points); (b) (4 points); (c) (5 points); (d) (4 points); (e) (5 points); (f) (4 points).