Теория конечных графов

Алгоритм Уоршалла-Флойда

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Литература

- 1. Зарипова Э.Р., Кокотчикова М.Г. Лекции по дискретной математике: Теория графов. Учебное пособие. М., изд-во: РУДН, 2013, 162 с.
- 2. Харари Ф. «Теория графов», М.: КомКнига, 2006. 296 с.
- 3. Судоплатов С.В., Овчинникова Е.В. «Элементы дискретной математики». Учебник. М.: Инфра-М; Новосибирск: НГТУ, 2003. 280 с.
- 4. Шапорев С.Д. «Дискретная математика. Курс лекций и практических занятий». СПб.: БХВ-Петербург, 2007. 400 с.: ил.
- 5. Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- 6. Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- 7. Учебный портал РУДН, раздел «Теория конечных графов» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26342

Алгоритм Дейкстры и алгоритм Уоршалла-Флойда

Для решения задачи определения расстояния между всеми парами вершин можно использовать n(n-1) раз алгоритм Дейкстры.

Но существуют более эффективные алгоритмы, в частности, алгоритм Уоршалла-Флойда. Любое расстояние между двумя вершинами сравнивается с длиной маршрута через все остальные вершины. Алгоритм разработан Стивеном Уоршаллом и Робертом Флойдом в 1962 году.

Заметим, что алгоритм Дейкстры позволяет найти путь наименьшей длины (последовательность вершин), а алгоритм Уоршалла-Флойда находит лишь минимальное расстояние между вершинами.

Алгоритм Уоршалла-Флойда

<u>Начало.</u> Рассмотрим орграф $G = \langle \mathbf{V}, \mathbf{E} \rangle$, где

$$\mathbf{V} = \{V_1, V_2, ..., V_n\}, |\mathbf{V}| = n.$$

Пусть матрица $D^{\scriptscriptstyle (m)} = [d_{\scriptscriptstyle i,i}^{\scriptscriptstyle (m)}]$ и ее элементы

 $d_{ij}^{(m)}=d^{(m)}(V_i,V_j),\;\;i,j=\overline{1,n}\;,$ где $d_{ij}^{(m)}-$ длина кратчайшего из путей из V_i в V_j с промежуточными вершинами из множества $\{V_1,V_2,...,V_m\}\;,$ $m\leq n\;.$

Шаг 1. Построение матрицы $D^{(0)}$.

$$D^{\scriptscriptstyle (0)}\coloneqq \left[d_{\scriptscriptstyle ij}^{\scriptscriptstyle (0)}
ight]_{\scriptscriptstyle i,j=\overline{1,n}} = egin{cases} \min\left(w_{ij}
ight),\, \mathrm{если}\,\,<\!V_{\scriptscriptstyle i},\!V_{\scriptscriptstyle j}> \in \mathbf{E}, \ \infty,\,\, \mathrm{если}\,\,<\!V_{\scriptscriptstyle i},\!V_{\scriptscriptstyle j}>
ot\in \mathbf{E}. \end{cases}$$

Алгоритм Уоршалла-Флойда

<u>Шаг 2.</u> m := m+1. Построение матрицы $D^{\scriptscriptstyle (m)}$, $m=\overline{1,n}$:

$$d_{ij}^{(m)} := \min(d_{ij}^{(m-1)}, d_{im}^{(m-1)} + d_{mj}^{(m-1)}).$$

- 1) Если m < n, то вернуться к началу шага 2.
- 2) Если m = n, то $D^{(n)}$ и есть матрица кратчайших путей между всеми парами вершин.

Конец алгоритма. $D^{\scriptscriptstyle (n)}$ — матрица кратчайших путей в графе $G = <\mathbf{V},\mathbf{E}>$.

Пример поиска кратчайших расстояний по алгоритму Уоршалла-Флойда

Пример 1. Найти минимальное расстояние между всеми парами вершин по алгоритму Уоршалла-Флойда.

Решение для примера 1

Для решения задачи применяем алгоритм Уоршалла-Флойда.

1)
$$d_{i,j}^{(1)} := \min(d_{i,j}^{(0)}, d_{i,1}^{(0)} + d_{1,j}^{(0)}), i, j = \overline{1,3}$$

$D^{\scriptscriptstyle{(1)}}$	$V_{_1}$	$V_{_2}$	$V_{_3}$
$\overline{V_{_1}}$	∞	2	5
$V_{_2}$	∞	∞	1
V_{3}	1	3	6

первая строка и первый столбец не меняются в силу определения матрицы $D^{\ ^{(1)}}$.

Решение для примера 1

2)
$$d_{i,j}^{(2)} := \min(d_{i,j}^{(1)}, d_{i,2}^{(1)} + d_{2,j}^{(1)}), i, j = \overline{1,3},$$

$D^{(2)}$	$V_{_1}$	$V_{_2}$	$V_{_3}$
$\overline{V}_{_{1}}$	8	2	3
$V_{_2}$	∞	∞	1,
$V_{_3}$	1	3	4

вторая строка и второй столбец не меняются в силу определения матрицы $D^{(2)}$.

Решение для примера 1

3)
$$d_{i,j}^{(3)} := \min(d_{i,j}^{(2)}, d_{i,3}^{(2)} + d_{3,j}^{(2)}), i, j = \overline{1,3},$$

$D^{(3)}$	$V_{_1}$	$V_{_2}$	$V_{_3}$
$\overline{V}_{_{1}}$	4	2	3
$V_{_2}$	2	4	1
$V_{_3}$	1	3	4

третья строка и третий столбец не меняются в силу определения матрицы $D^{\scriptscriptstyle{(3)}}$.

Элементы матрицы $D^{(3)}$ показывают кратчайшие расстояния между всеми парами вершин. Например, расстояние от V_3 к V_2 , равное трем, получается переходом из вершины V_3 в V_1 , вес этой дуги равен 1, и из V_1 в V_2 , вес дуги 2, суммируя, получаем 3.

Ответ для примера 1

Тема следующей лекции:

«Транзитивное замыкание»