Introduction to Audio Content Analysis

Module 5.3: Instantaneous Frequency

alexander lerch

introduction

overview

corresponding textbook section

- Chapter 2 Fundamentals: pp. 21–23
- Chapter 5 Tonal Analysis: pp. 92–93
- lecture content
 - frequency detection error for sampled signals
 - instantaneous frequency/frequency reassignment
- learning objectives
 - list the factors influencing frequency resolution in time and frequency domains
 - explain the frequency error in Cent
 - implement an instantaneous frequency estimate

introduction

overview

corresponding textbook section

- Chapter 2 Fundamentals: pp. 21–23
- Chapter 5 Tonal Analysis: pp. 92–93

lecture content

- frequency detection error for sampled signals
- instantaneous frequency/frequency reassignment

learning objectives

- list the factors influencing frequency resolution in time and frequency domains
- explain the frequency error in Cent
- implement an instantaneous frequency estimate

- (fundamental) frequency detection on digital signals (discrete in time and frequency)
- ⇒ quantized result

error being made due to discrete signal processing

- time domain
 - detection of period length
 - ⇒ maximum error depends on distance between two samples (sample rate)
- frequency domain
 - detection of bin frequency
 - maximum error depends on distance between two frequency bins (block length and sample rate)

pitch detection resolution introduction

- (fundamental) frequency detection on digital signals (discrete in time and frequency)
- ⇒ quantized result

error being made due to discrete signal processing

- time domain:
 - detection of period length
 - ⇒ maximum error depends on distance between two samples (sample rate)
- frequency domain:
 - detection of bin frequency
 - ⇒ maximum error depends on distance between two frequency bins (block length and sample rate)

- (fundamental) frequency detection on digital signals (discrete in time and frequency)
- ⇒ quantized result

error being made due to discrete signal processing

- time domain:
 - detection of period length
 - → maximum error depends on distance between two samples (sample rate)
- frequency domain:
 - detection of bin frequency
 - ⇒ maximum error depends on distance between two frequency bins (block length and sample rate)

pitch detection resolution time domain (e.g., ACF)

Georgia Center for Music Tech College of Design

period length quantized to multiple of inter-sample interval $T_{
m S}$

$$egin{array}{ll} {\mathcal T}_{
m Q} &= j \cdot {\mathcal T}_{
m S} \ \Rightarrow & f_{
m Q} &= rac{1}{j \cdot {\mathcal T}_{
m S}} \end{array}$$

pitch detection resolution frequency domain (e.g., HPS)

frequency quantized to multiple of inter-bin interval

$$f_{\mathrm{Q}} = k \cdot \frac{f_{\mathrm{S}}}{\mathcal{K}}$$

\mathcal{K}	Δf [Hz]	$k_{ m ST}$	$f(k_{ m ST})$ [Hz]
256	187.5	35	6562.5
512	93.75	35	3281.25
1024	46.875	35	1640.625
2048	23.4375	35	820.3125
4096	11.7188	35	410.1563
8192	5.8594	35	205.0781
16384	2.9297	35	102.5391

pitch detection resolution frequency domain (e.g., HPS)

Georgia Center for Music Tech College of Design

frequency quantized to multiple of inter-bin interval

$$f_{\mathrm{Q}} = k \cdot \frac{f_{\mathrm{S}}}{\mathcal{K}}$$

pitch detection resolution simple fix

- assumption: pitch is stationary with minor deviations over time
- simple solution:
 - average pitch observations over blocks
 - the more blocks are averaged, the more result might approximate the real (population) mean
- problems:
 - adds significant latency (non-realtime)
 - will not work for time-variant signals (speech, music)

pitch detection resolution simple fix

- assumption: pitch is stationary with minor deviations over time
- simple solution:
 - average pitch observations over blocks
 - the more blocks are averaged, the more result might approximate the real (population) mean
- problems:
 - adds significant latency (non-realtime)
 - will not work for time-variant signals (speech, music)

pitch detection resolution simple fix

• assumption: pitch is stationary with minor deviations over time

simple solution:

- average pitch observations over blocks
- the more blocks are averaged, the more result might approximate the real (population) mean

problems:

- adds significant latency (non-realtime)
- will not work for time-variant signals (speech, music)

pitch detection resolution time domain observations

Georgia Center for Music Technology

- error depends on fundamental frequency
- error depends on sample rate

pitch detection resolution time domain workarounds

Georgia **Center for Music** Tech | Technology College of Design

virtually increase time resolution by upsampling

- higher virtual resolution
- significant workload increase

pitch detection resolution frequency domain workarounds

different ways of increasing frequency resolution in the frequency domain

- increasing the FFT window length (decreases time resolution)
- interpolating the spectrum
- applying frequency reassignment

pitch detection resolution frequency domain workarounds

different ways of increasing frequency resolution in the frequency domain

- increasing the FFT window length (decreases time resolution)
- interpolating the spectrum
- applying frequency reassignment

pitch detection resolution frequency domain workarounds

different ways of increasing frequency resolution in the frequency domain

- increasing the FFT window length (decreases time resolution)
- interpolating the spectrum
- applying frequency reassignment

pitch detection resolution spectrum interpolation

Georgia **Center for Music** Tech | Technology College of Design

zeropad in time domain

use standard interpolation on magnitude spectrum

Tech | Technology

College of Design

pitch detection resolution

frequency reassignment: relation of phase and frequency 1/2

- phasor representation:
 - sine value is defined by magnitude and phase

 - increasing the frequency ⇒ increasing speed

Georgia Center for Music Tech College of Pesign

frequency reassignment: relation of phase and frequency 2/2

- relation of frequency and phase change:
 - time for full rotation is period length T with

$$f = \frac{1}{7}$$

• time for fractional rotation $\Delta \Phi$ is corresponding fraction of period length

$$f = \frac{\Delta d}{\Delta t}$$

• in other words:

$$\Phi(t) = \omega \cdot t$$

$$\Rightarrow \frac{d\Phi(t)}{dt} = \omega = 2\tau$$

frequency reassignment: relation of phase and frequency 2/2

- relation of frequency and phase change:
 - time for full rotation is period length T with

$$f=rac{1}{T}$$

$$f = \frac{\Delta \Phi}{\Delta t}$$

$$\Phi(t) = \omega \cdot t$$

$$\Rightarrow \frac{d\Phi(t)}{dt} = \omega = 2\tau$$

frequency reassignment: relation of phase and frequency 2/2

- relation of frequency and phase change:
 - ullet time for full rotation is period length ${\cal T}$ with

$$f=rac{1}{T}$$

• time for fractional rotation $\Delta \Phi$ is corresponding fraction of period length

$$f = \frac{\Delta \Phi}{\Delta t}$$

in other words:

Georgia Center for Music Tech Echnology

frequency reassignment: relation of phase and frequency 2/2

- relation of frequency and phase change:
 - ullet time for full rotation is period length ${\cal T}$ with

$$f = \frac{1}{T}$$

• time for fractional rotation $\Delta \Phi$ is corresponding fraction of period length

$$f = \frac{\Delta \Phi}{\Delta t}$$

in other words:

pitch detection resolution frequency reassignment: principles

frequency domain:

• instead of using the bin frequency

$$f(k) = k * \frac{f_{\rm S}}{\mathcal{K}}$$

- we use the phase of each bin $\Phi(k, n)$
- to compute the frequency from the phase difference of neighboring blocks

$$\omega_{\rm I}(k,n) \propto \Phi(k,n) - \Phi(k,n-1)$$

• $\omega_{\rm I}(k,n)$ is called **instantaneous frequency** per block per bin

pitch detection resolution frequency reassignment: principles

frequency domain:

• instead of using the bin frequency

$$f(k) = k * \frac{f_{\rm S}}{\mathcal{K}}$$

- we use the phase of each bin $\Phi(k, n)$
- to compute the frequency from the phase difference of neighboring blocks

$$\omega_{\rm I}(k,n) \propto \Phi(k,n) - \Phi(k,n-1)$$

• $\omega_{\rm I}(k,n)$ is called **instantaneous frequency** per block per bin

Georgia Center for Music Tech Technology

frequency reassignment: scaling factor

- instantaneous frequency calculation has to take into account
 - ullet hop size ${\cal H}$
 - ullet sample rate $f_{
 m S}$

$$\omega_{\mathrm{I}}(k,n) = \frac{\Delta\Phi_{\mathrm{u}}(k,n)}{\mathcal{H}} \cdot f_{\mathrm{S}}$$

problem: phase ambiguity

$$\Phi(k,n) = \Phi(k,n) + j \cdot 2\pi$$

⇒ phase unwrapping

frequency reassignment: scaling factor

Georgia Center for Music Tech Technology

- instantaneous frequency calculation has to take into account
 - ullet hop size ${\cal H}$
 - ullet sample rate $f_{
 m S}$

$$\omega_{\mathrm{I}}(k,n) = \frac{\Delta\Phi_{\mathrm{u}}(k,n)}{\mathcal{H}} \cdot f_{\mathrm{S}}$$

• problem: phase ambiguity

$$\Phi(k,n) = \Phi(k,n) + j \cdot 2\pi$$

⇒ phase unwrapping

Georgia Center for Music Tech Technology

frequency reassignment: phase unwrapping

o compute unwrapped phase $\Phi_{\rm u}(k, n)$ estimate unwrapped bin phase

$$\hat{\Phi}(k,n) = \Phi(k,n-1) + \underbrace{2\pi k \cdot \frac{\mathcal{H}}{\mathcal{K}}}_{=\omega_k \cdot \frac{\mathcal{H}}{f_{\text{fig}}}}$$

unwrap phase by shifting current phase to estimate's range

$$\Phi_{\mathrm{u}}(k,n) = \hat{\Phi}(k,n) + \operatorname{princarg}\left[\Phi(k,n) - \hat{\Phi}(k,n)\right]$$

2 compute unwrapped phase difference

$$\begin{split} \Delta \Phi_{\mathbf{u}}(k,n) &= & \Phi_{\mathbf{u}}(k,n) - \Phi(k,n-1) \\ &= & \hat{\Phi}(k,n) + \operatorname{princarg}\left[\Phi(k,n) - \hat{\Phi}(k,n)\right] - \Phi(k,n-1) \\ &= & \frac{2\pi k}{\mathcal{K}}\mathcal{H} + \operatorname{princarg}\left[\Phi(k,n) - \Phi(k,n-1) - \frac{2\pi k}{\mathcal{K}}\mathcal{H}\right] \end{split}$$

Georgia Center for Music Tech Technology

frequency reassignment: phase unwrapping

o compute unwrapped phase $\Phi_{\rm u}(k, n)$ • estimate unwrapped bin phase

$$\hat{\Phi}(k,n) = \Phi(k,n-1) + \underbrace{2\pi k \cdot \frac{\mathcal{H}}{\mathcal{K}}}_{=\omega_k \cdot \frac{\mathcal{H}}{f_{\text{fis}}}}$$

unwrap phase by shifting current phase to estimate's range

$$\Phi_{\mathrm{u}}(k,n) = \hat{\Phi}(k,n) + \mathsf{princarg}\left[\Phi(k,n) - \hat{\Phi}(k,n)
ight]$$

compute unwrapped phase difference

$$\begin{array}{lcl} \Delta \Phi_{\mathrm{u}}(k,n) & = & \Phi_{\mathrm{u}}(k,n) - \Phi(k,n-1) \\ & = & \hat{\Phi}(k,n) + \operatorname{princarg}\left[\Phi(k,n) - \hat{\Phi}(k,n)\right] - \Phi(k,n-1) \\ & = & \frac{2\pi k}{K}\mathcal{H} + \operatorname{princarg}\left[\Phi(k,n) - \Phi(k,n-1) - \frac{2\pi k}{K}\mathcal{H}\right] \end{array}$$

Georgia Center for Music Tech Technology

frequency reassignment: phase unwrapping

o compute unwrapped phase $\Phi_{\rm u}(k, n)$ o estimate unwrapped bin phase

$$\hat{\Phi}(k,n) = \Phi(k,n-1) + \underbrace{2\pi k \cdot \frac{\mathcal{H}}{\mathcal{K}}}_{=\omega_k \cdot \frac{\mathcal{H}}{f_k}}$$

• unwrap phase by shifting current phase to estimate's range

$$\Phi_{\mathrm{u}}(k,n) = \hat{\Phi}(k,n) + \operatorname{princarg}\left[\Phi(k,n) - \hat{\Phi}(k,n)\right]$$

compute unwrapped phase difference

$$\begin{split} \Delta\Phi_{\mathrm{u}}(k,n) &= & \Phi_{\mathrm{u}}(k,n) - \Phi(k,n-1) \\ &= & \hat{\Phi}(k,n) + \mathsf{princarg}\left[\Phi(k,n) - \hat{\Phi}(k,n)\right] - \Phi(k,n-1) \\ &= & \frac{2\pi k}{\mathcal{K}}\mathcal{H} + \mathsf{princarg}\left[\Phi(k,n) - \Phi(k,n-1) - \frac{2\pi k}{\mathcal{K}}\mathcal{H}\right] \end{split}$$

Georgia Center for Music Tech College of Pesign

frequency reassignment: problems

overlapping spectral components

- sinusoidal components often overlap (spectral leakage, several instruments playing the same pitch, ...)
 - ⇒ "incorrect" phase estimate
 - spectrum should be as sparse as possible, increase STFT length

inaccurate phase unwrapping

- unwrapping algorithm is based on assumption of similarity between predicted and measured phase
- decrease hop size

frequency reassignment: problems

overlapping spectral components

- sinusoidal components often overlap (spectral leakage, several instruments playing the same pitch, ...)
 - ⇒ "incorrect" phase estimate
 - spectrum should be as sparse as possible, increase STFT length

inaccurate phase unwrapping

- unwrapping algorithm is based on assumption of similarity between predicted and measured phase
- decrease hop size

frequency reassignment: example

pitch detection resolution frequency reassignment: applications

Georgia Center for Music Technology

- improving frequency resolution
 - e.g., for detecting signal frequencies when using a filter bank
- improving phase extrapolation
 - e.g., for accurate phase estimation in the phase vocoder
- grouping spectral bins
 - spectral leakage sidelobes have the same instantaneous frequency
- tonalness detection
 - the instantaneous frequency should be reasonably close to the bin frequency for the component to be considered tonal

Georgia Center for Music Tech Technology

frequency reassignment: applications

- improving frequency resolution
 - e.g., for detecting signal frequencies when using a filter bank
- improving phase extrapolation
 - e.g., for accurate phase estimation in the phase vocoder
- grouping spectral bins
 - spectral leakage sidelobes have the same instantaneous frequency
- tonalness detection
 - the instantaneous frequency should be reasonably close to the bin frequency for the component to be considered tonal

Georgia Center for Music Technology

- frequency reassignment: applications
 - improving frequency resolution
 - e.g., for detecting signal frequencies when using a filter bank
 - improving phase extrapolation
 - e.g., for accurate phase estimation in the *phase vocoder*
 - grouping spectral bins
 - spectral leakage sidelobes have the same instantaneous frequency
 - tonalness detection
 - the instantaneous frequency should be reasonably close to the bin frequency for the component to be considered tonal

pitch detection resolution frequency reassignment: applications

Georgia Center for Music Technology

- improving frequency resolution
 - e.g., for detecting signal frequencies when using a filter bank
- improving phase extrapolation
 - e.g., for accurate phase estimation in the phase vocoder
- grouping spectral bins
 - spectral leakage sidelobes have the same instantaneous frequency
- tonalness detection
 - the instantaneous frequency should be reasonably close to the bin frequency for the component to be considered tonal

summary

lecture content

- frequency resolution of sampled signals depends on
 - time domain: sample rate
 - freq domain: sample rate, block size
- pitch detection error in Cent also depends on input frequency
 - time domain: high error at high frequencies
 - freq domain: high error at low frequencies
- possible solutions
 - time domain:
 - upsampling/interpolation
 - freq domain:
 - zeropadding/interpolation
 - frequency reassignment (instantaneous frequency)

