Experiment_6_data_mining

February 12, 2025

- 1 Data Mining and machine Learning
- 2 Experiment 6
- 2.1 12 February
- 3 Name: Tufan Kundu
- 4 Reg no.: 24MDT0184
- 4.1 Performance measures: Cross validation
- 4.1.1 Q1. Today we will try to perform cross validation to check how well the model generalizes to a unseen data. We will see how to implement K fold cross validation and stratified K fold cross validation.

```
[36]: ## Loading the necessary libraries
import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split, KFold,cross_val_score
```

```
[18]:
            Age
                 Gender
                          Total_Bilirubin
                                             Direct_Bilirubin
                                                                 Alkaline_Phosphotase
             65
                 Female
                                        0.7
      1
             62
                   Male
                                      10.9
                                                            5.5
                                                                                    699
      2
             62
                   Male
                                       7.3
                                                                                    490
                                                            4.1
      3
             58
                   Male
                                        1.0
                                                            0.4
                                                                                    182
      4
             72
                   Male
                                        3.9
                                                            2.0
                                                                                    195
                                                                                    500
      578
             60
                   Male
                                       0.5
                                                            0.1
      579
             40
                   Male
                                       0.6
                                                            0.1
                                                                                     98
```

580	52 I	Male	0.8	0.2	245	
581	31 I	Male	1.3	0.5	184	
582		Male	1.0	0.3	216	
	Alamine	_Aminotransferase	Total_Protiens	\		
0		16	_	18	6.8	
1		64		100	7.5	
2		60		68	7.0	
3		14		20	6.8	
4		27		59	7.3	
		•••		•••	•••	
578		20		34	5.9	
579		35		31	6.0	
580		48		49	6.4	
581	29			32	6.8	
582		21		24	7.3	
	Albumin	Albumin_and_Glo	bulin_Ratio	liver_disease		
0	3.3		0.90	1		
1	3.2		0.74	1		
2	3.3		0.89	1		
3	3.4		1.00	1		
4	2.4		0.40	1		
	•••		***	•••		
578	1.6		0.37	0		
579	3.2		1.10	1		
580	3.2		1.00	1		
581	3.4		1.00	1		
582	4.4		1.50	0		
				v		
		_				

[583 rows x 11 columns]

[19]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 583 entries, 0 to 582
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Age	583 non-null	int64
1	Gender	583 non-null	object
2	Total_Bilirubin	583 non-null	float64
3	Direct_Bilirubin	583 non-null	float64
4	Alkaline_Phosphotase	583 non-null	int64
5	Alamine_Aminotransferase	583 non-null	int64
6	Aspartate_Aminotransferase	583 non-null	int64
7	Total_Protiens	583 non-null	float64
8	Albumin	583 non-null	float64

```
9 Albumin_and_Globulin_Ratio 583 non-null float64
10 liver_disease 583 non-null int64
dtypes: float64(5), int64(5), object(1)
memory usage: 50.2+ KB
```

4.1.2 Dropping the unnecessary Age and Gender column

```
[20]: df.drop(['Age','Gender'],axis=1,inplace = True)
```

4.1.3 Perform Min-Max scaling

```
[21]: from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()
X = scaler.fit_transform(df)
```

```
[25]: X
```

4.1.4 Do the train test split of the data with test size 20%

```
[32]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=. 
-2,random_state=42)
```

4.1.5 Fit the LogisticRegression model to the this training data.

```
[35]: model = LogisticRegression()
   model.fit(x_train,y_train)
   y_pred = model.predict(x_test)
```

```
## Print the accuracy which is also a performance measure as far as a

classification problem is concerned with.

print(f"The accuracy of the model is:

√{round(accuracy_score(y_test,y_pred)*100,3)} %")
```

The accuracy of the model is:74.359 %

- 4.1.6 Now import Kfold and cross val score functions from the available modules for performing Kfold cross validation.
- 4.1.7 Now you can create a new object of the class LogisticRegression as logisticR

```
[39]: logisticR = LogisticRegression()

## now let us perform the KFold class to split the data into 5 folds.

kfold_validation = KFold(n_splits = 5, shuffle = True, random_state=42)
```

4.1.8 Now we will use cross val score function to perform the 5 fold cross validation and print the accuracy scores in each case.

```
result = cross_val_score(logisticR,x_train,y_train,scoring = 'accuracy',cv = \( \text{$\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex
```

Cross validation accuracy scores: [0.74468085 0.77419355 0.62365591 0.65591398 0.7311828]

Mean accuracy: 70.59254175245938%

4.1.9 Now we can try how we can implement StratifiedKFold cross validation

```
[44]: from sklearn.model_selection import StratifiedKFold

skf = StratifiedKFold(n_splits=5,shuffle=True,random_state=42)

scores = cross_val_score(logisticR,x_train,y_train,scoring = "accuracy",cv = skf)

print("Stratified Cross validation scores:",scores)
print(f"Mean accuracy: {scores.mean()*100}%")
```

Stratified Cross validation scores: [0.70212766 0.70967742 0.70967742 0.70967742 0.69892473]

Mean accuracy: 70.60169297643561%

- 4.2 Performance measures: Confusion matrix, Precision, Recall, F1 score
- 4.3 Q2. Now fit the logistic regression model for the liver patient data without performing cross validation with a train test split of 80:20.

The accuracy of the model is:74.359 %

4.3.1 we can also print the confusion matrix, precision and recall

```
[47]: from sklearn.metrics import confusion matrix, precision_score,
       →recall_score,f1_score,ConfusionMatrixDisplay
      cm = confusion_matrix(y_test,y_pred_new)
      print("Confusion matrix:\n",cm)
      precision = precision_score(y_test,y_pred_new)
      recall = recall_score(y_test,y_pred_new)
      f1 = f1_score(y_test,y_pred_new)
      print("Precision:",precision)
      print("Recall:",recall)
      print("F1 score:",f1)
     Confusion matrix:
      [[ 0 30]
      [ 0 87]]
     Precision: 0.7435897435897436
     Recall: 1.0
     F1 score: 0.8529411764705882
```

4.3.2 The same confusion matrix if we want can be printed in a more better manner using the below code.

```
[52]: # Plot confusion matrix using seaborn heatmap import seaborn as sns import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(6, 4)) sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=["Nousease", "Disease", "Disease"]) plt.xlabel("Predicted Label") plt.ylabel("True Label")
```

```
plt.title("Confusion Matrix")
plt.show()
```


- 4.4 Deicsion trees: Regression and classification
- 4.4.1 Let's try to fit a decision tree for a classification problem and view the same and see how the predictions can be made using the same.

```
[54]: from sklearn.tree import DecisionTreeClassifier

model_dc = DecisionTreeClassifier()
model_dc.fit(x_train,y_train)
prediction1 = model_dc.predict(x_test)
print(f"Accuracy score:{accuracy_score(y_test,prediction1)*100}%")
```

Accuracy score:70.08547008547008%

4.4.2 We can print and check the Decision tree.

```
[59]: from sklearn.tree import plot_tree
plt.figure(figsize=(100,50),dpi = 150)
plot_tree(model_dc)
plt.show()
```


4.5 Compare the accuracy of logistic regression model and decision tree model you have fitted.

Accuracy of Logistic Regression model:74.35897435897436% Accuracy of Decision Tree model:70.08547008547008%

4.6 Now use the Book1.csv file we used in multiple regression fitting in Labsheet 3.

```
[61]: df = pd.read_csv(r"C:\Users\Batch1\Documents\Downloads\TK\12_feb\Book1.csv") df
```

[61]:		price	area	bedrooms	bathrooms	stories	parking	furnishingstatus
	0	13300000	7420	4	2	3	2	furnished
	1	12250000	8960	4	4	4	3	furnished
	2	12250000	9960	3	2	2	2	semi-furnished
	3	12215000	7500	4	2	2	3	furnished
	4	11410000	7420	4	1	2	2	furnished
			•••	•••		•••		•••
	244	4550000	5320	3	1	2	0	semi-furnished
	245	4550000	5360	3	1	2	2	unfurnished
	246	4550000	3520	3	1	1	0	semi-furnished
	247	4550000	8400	4	1	4	3	unfurnished
	248	4543000	4100	2	2	1	0	semi-furnished

```
[249 rows x 7 columns]
```

4.6.1 Do the necessary preprocessing of the data and train test split of the data and fit a multiple regression model and compute the error.

```
[62]: df['furnishingstatus'].value_counts()
[62]: furnishingstatus
      semi-furnished
                        118
      furnished
                         81
      unfurnished
                         50
     Name: count, dtype: int64
[65]: from sklearn.preprocessing import LabelEncoder
      le = LabelEncoder()
      encoded = le.fit_transform(df['furnishingstatus'])
      df.drop(['furnishingstatus'],axis = 1)
      df['furnishingstatus'] = encoded
      df
[65]:
                           bedrooms
                                      bathrooms
                                                 stories parking furnishingstatus
              price area
      0
           13300000 7420
                                   4
                                              2
                                                        3
                                                                 2
                                                                                    0
      1
           12250000 8960
                                   4
                                              4
                                                        4
                                                                 3
                                                                                    0
      2
                                   3
                                              2
                                                        2
                                                                 2
           12250000 9960
                                                                                    1
                                              2
      3
           12215000 7500
                                   4
                                                        2
                                                                 3
                                                                                    0
                                                        2
                                                                 2
      4
           11410000 7420
                                   4
                                              1
                                                                                    0
      . .
      244
            4550000 5320
                                   3
                                              1
                                                        2
                                                                 0
                                                                                    1
      245
            4550000 5360
                                   3
                                              1
                                                        2
                                                                 2
                                                                                    2
      246
            4550000 3520
                                   3
                                              1
                                                        1
                                                                 0
                                                                                    1
                                                                                    2
      247
            4550000 8400
                                   4
                                              1
                                                        4
                                                                 3
                                   2
                                              2
      248
            4543000 4100
                                                        1
                                                                 0
                                                                                    1
      [249 rows x 7 columns]
[68]: scaler = MinMaxScaler()
      X = scaler.fit_transform(df)
[69]: x = X[:,1:]
      y = X[:,0]
     4.6.2 Train test split
[78]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.
       →2,random_state=42)
```

4.7 Now use the DecisionTreeRegressor class to fit a decision tree model and check the decision tree and errors

```
[79]: from sklearn.tree import DecisionTreeRegressor
  from sklearn.metrics import mean_squared_error,r2_score
  model_dr = DecisionTreeRegressor()
  model_dr.fit(x_train,y_train)
  y_pred = model_dr.predict(x_test)
  print("Mean squared error:",mean_squared_error(y_test,y_pred))
  print("R2 score:",r2_score(y_test,y_pred))
```

Mean squared error: 0.08041115309191495 R2 score: -1.4174264960281975

4.8 Now plot the decision tree as done in the classifier case above.

```
[80]: from sklearn.tree import plot_tree
plt.figure(figsize=(100,50),dpi = 150)
plot_tree(model_dr)
plt.show()
```


4.9 Checking the result using Multiple linear regression model

```
[81]: from sklearn.linear_model import LinearRegression
multi_model = LinearRegression()
multi_model.fit(x_train,y_train)
y_pred2 = multi_model.predict(x_test)

print("Mean squared error:",mean_squared_error(y_test,y_pred2))
```

```
print("R2 score:",r2_score(y_test,y_pred2))
```

Mean squared error: 0.022324532863058973 R2 score: 0.3288503499891078

4.10 Further also compare the errors you received in both the case and print and compare them.

```
[84]: print("Mean squared error(Decision Tree Regressor):

",mean_squared_error(y_test,y_pred))

print("Mean squared error(Multiple linear regression):

",mean_squared_error(y_test,y_pred2))
```

Mean squared error(Decision Tree Regressor): 0.08041115309191495 Mean squared error(Multiple linear regression): 0.022324532863058973

4.11 Using cross validation and hyper parameter tuning in Decision Tree

```
[92]: import pandas as pd
      import numpy as np
      from sklearn.tree import DecisionTreeClassifier
      from sklearn.model_selection import GridSearchCV
      from sklearn.preprocessing import MinMaxScaler
      from sklearn.metrics import accuracy_score
      from sklearn.model_selection import train_test_split
      data = pd.read_csv(r'C:
       →\Users\Batch1\Documents\Downloads\TK\12_feb\liver_patient.csv')
      data.drop('Gender', axis=1, inplace=True)
      scaler = MinMaxScaler()
      x = scaler.fit transform(data)
      X = x[:, 0:9]
      Y = x[:, 9]
      X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2,_
       ⇒random state=42)
      param_grid = {
       'max_depth': [1,3, 5,6,8, 10],
       'min_samples_leaf': [1, 5, 10, 20]
      }
      dt_model = DecisionTreeClassifier(random_state=42)
      grid_search = GridSearchCV(estimator=dt_model, param_grid=param_grid, cv=5,_
       ⇔scoring='accuracy', n_jobs=-1)
      grid_search.fit(X_train, Y_train)
      best_params = grid_search.best_params_
      best_model = grid_search.best_estimator_
      Y_pred = best_model.predict(X_test)
      accuracy = accuracy_score(Y_test, Y_pred)
      print("Best Parameters:", best_params)
      print("Best Cross-validation Accuracy:", grid_search.best_score_)
```

print("Test Accuracy:", accuracy)

Best Parameters: {'max_depth': 1, 'min_samples_leaf': 1}

Best Cross-validation Accuracy: 0.7060169297643561

Test Accuracy: 0.7435897435897436