### **Advanced MOSFETs and Novel Devices**

Dr.-Ing. Josef Biba

8. Tutorial & Exercise

**Gate Depletion** 



# **Poly Gate Depletion - Introduction**

- For a switched on n-channel MOSFET the n+ polysilicon gate is biased in depletion
- High doping of polysilicon (5\*10<sup>19</sup> 1\*10<sup>20</sup> cm<sup>-3</sup>) => small depletion region  $w_{poly}$  (1 2 nm) <  $w_{max}$
- Additional space charge capacitance

$$C_{poly}^{\prime\prime} = \frac{\epsilon_0 \epsilon_{poly}}{w_{poly}}$$





# **Poly Gate Depletion - Introduction**

$$C''_{poly} = \frac{\epsilon_0 \epsilon_{poly}}{w_{poly}}$$

$$C''_{ox} = \frac{\epsilon_0 \epsilon_{SiO_2}}{d_{ox}}$$

$$C_{ox}$$

$$C''_{qm} = \frac{\epsilon_0 \epsilon_{Si}}{d_{qm}}$$

$$C_{qm}$$



Capacities in series order.

Capacity of Cdep?

Answer: the device is switched on, so the channel inversion charge is shielding the Cdep, so we do not have to take into account!

### **Poly Gate Depletion - Exercise**

#### **Exercise:**

Determine the influence of the poly gate depletion effect on the *p*-channel MOSFET from tutorial #4 (180 nm technology node). Calculate the change of the threshold voltage  $V_T$  for the original device and for the two following scaling steps (constant voltage scaling;  $S = \sqrt{2}$ ).

How does the saturation current  $I_{\text{sat}}$  change at  $V_{\text{GS}}$ =- $V_{\text{DD}}$ .

Use the gradual channel approximation. Neglect oxide charges and the effect of quantum mechanical charge distribution in the channel. Assume that the depletion region in the poly gate has a width  $w_{poly} = 1.5$  nm.

| $V_{DD}$ | $d_{OX}$ | $N_{D}$               | L      | W   | φ <sub>m</sub> -χ <sub>Si</sub> | $\mu_{ ho}$              |
|----------|----------|-----------------------|--------|-----|---------------------------------|--------------------------|
| 1.8 V    | 3 nm     | 1e18 cm <sup>-3</sup> | 140 nm | 3*L | 1.12 V                          | 500 cm <sup>2</sup> / Vs |

#### Results from tutorial #4:

| L       | 140 nm  | 100 nm  | 70 nm   |
|---------|---------|---------|---------|
| $V_{T}$ | -400 mV | -340 mV | -280 mV |



# **Poly Gate Depletion - Results**



| L                                  | 140 nm  | 100 nm  | 70 nm   |  |
|------------------------------------|---------|---------|---------|--|
| $V_{T}$                            | -400 mV | -340 mV | -280 mV |  |
| $V_{Tpolydepletion}$               | -479 mV | -432 mV | -400 mV |  |
| // <sub>D sat</sub>                | 1.69 mA | 2.62 mA | 3.98 mA |  |
| // <sub>D sat poly depletion</sub> | 1.29 mA | 1.85 mA | 2.54 mA |  |
| I <sub>D sat</sub><br>reduction    | 24%     | 29%     | 36%     |  |



### **Poly Gate Depletion - Results**



Wider poly depletion zone causes lower gate capacitance. This results in reduced charging times and therefore in reduced circuit frequency.

