# CMPT 210: Probability and Computing

Lecture 12

Sharan Vaswani

February 10, 2023

# Recap

**Random variable**: A random "variable" R on a probability space is a total function whose domain is the sample space S. The codomain is denoted by V (usually a subset of the real numbers), meaning that  $R: S \to V$ .

*Example*: Suppose we toss three independent, unbiased coins. In this case,  $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$ . C is a random variable equal to the number of heads that appear such that  $C : S \to \{0, 1, 2, 3\}$ . C(HHT) = 2.

**Indicator Random Variable**: An indicator random variable corresponding to an event E is denoted as  $\mathcal{I}_E$  and is defined such that for  $\omega \in E$ ,  $\mathcal{I}_E[\omega] = 1$  and for  $\omega \notin E$ ,  $\mathcal{I}_E[\omega] = 0$ .

Example: When throwing two dice, if E is the event that both throws of the dice result in a prime number, then  $\mathcal{I}_E((2,4))=0$  and  $\mathcal{I}_E((2,3))=1$ .

An indicator random variable partitions the sample space into those outcomes mapped to 1 and those outcomes mapped to 0.

1

#### Random Variables and Events

In general, a random variable that takes on several values partitions  $\mathcal{S}$  into several blocks. Example: When we toss a coin three times, and define  $\mathcal{C}$  to be the r.v. that counts the number of heads,  $\mathcal{C}$  partitions  $\mathcal{S}$  as follows:  $\mathcal{S} = \{\underbrace{HHH}, \underbrace{HHT}, \underbrace{HHT}, \underbrace{THH}, \underbrace{TTT}, \underbrace{TTT}, \underbrace{TTT}\}$ .

Each block is a subset of the sample space and is therefore an event. For example, [C = 2] is the event that the number of heads is two and consists of the outcomes  $\{HHT, HTH, THH\}$ .

Since it is an event, we can compute its probability i.e.

 $\Pr[C=2] = \Pr[\{HHT, HTH, THH\}] = \Pr[\{HHT\}] + \Pr[\{HTH\}] + \Pr[\{THH\}].$  Since this is a uniform probability space,  $\Pr[\omega] = \frac{1}{8}$  for  $\omega \in \mathcal{S}$  and hence  $\Pr[C=2] = \frac{3}{8}$ .

Q: What is Pr[C = 0], Pr[C = 1] and Pr[C = 3]?

Q: What is  $\sum_{i=0}^{3} \Pr[C = i]$ ?

Since a random variable R is a total function that maps every outcome in S to some value in the codomain,  $\sum_{i \in \text{Range of R}} \Pr[R = i] = \sum_{i \in \text{Range of R}} \sum_{\omega \text{ s.t. } R(\omega) = i} \Pr[\omega] = \sum_{\omega \in S} \Pr[\omega] = 1$ .

# Back to throwing dice

Q: Suppose we throw two standard dice one after the other. Let us define R to be the random variable equal to the sum of the dice. What are the outcomes in the event [R=2]?

Q: What is Pr[R = 4], Pr[R = 9]?

Q: If M is the indicator random variable equal to 1 iff both throws of the dice produces a prime number, what is Pr[M=1]?

3

# Random Variables - Example

Q: Suppose that an individual purchases two electronic components, each of which may be either defective or acceptable. In addition, suppose that the four possible results — (d, d), (d, a), (a, d), (a, a) — have respective probabilities 0.09, 0.21, 0.21, 0.49 [where (d, d) means that both components are defective, (d, a) that the first component is defective and the second acceptable, and so on]. If we let X be a random variable that denotes the number of acceptable components obtained in the purchase and E be the event that there was at least one acceptable component in the purchase,

- What is the domain, codomain of X?
- For every i in the codomain of X, compute Pr[X = i]?
- What is the domain, codomain of  $\mathcal{I}_E$ ?
- For every i in the codomain of  $\mathcal{I}_E$ , compute  $\Pr[\mathcal{I}_E = i]$ ?
- How does X relate to  $\mathcal{I}_E$ ?

#### **Distribution Functions**

**Probability density function (PDF)**: Let R be a random variable with codomain V. The probability density function of R is the function  $PDF_R: V \to [0,1]$ , such that  $PDF_R[x] = Pr[R = x]$  if  $x \in Range(R)$  and equal to zero if  $x \notin Range(R)$ .

$$\textstyle \sum_{x \in V} \mathsf{PDF}_R[x] = \textstyle \sum_{x \in \mathsf{Range}(\mathsf{R})} \mathsf{Pr}[R = x] = 1.$$

**Cumulative distribution function (CDF)**: If the codomain is a subset of the real numbers, then the cumulative distribution function is the function  $CDF_R : \mathbb{R} \to [0,1]$ , such that  $CDF_R[x] = Pr[R \le x]$ .

Importantly, neither  $PDF_R$  nor  $CDF_R$  involves the sample space of an experiment.

Example: If we flip three coins, and C counts the number of heads, then  $PDF_C[0] = Pr[C = 0] = \frac{1}{8}$ , and  $CDF_C[2.3] = Pr[C \le 2.3] = Pr[C = 0] + Pr[C = 1] + Pr[C = 2] = \frac{7}{8}$ .

Q: What is  $CDF_C[5.8]$ ?.

For a general random variable R, as  $x \to \infty$ ,  $\mathsf{CDF}_R[x] \to 1$  and  $x \to -\infty$ ,  $\mathsf{CDF}_R[x] \to 0$ .

# Back to throwing dice

Q: Suppose we throw two standard dice one after the other. Let us define T to be the random variable equal to the sum of the dice. Plot PDF<sub>T</sub> and CDF<sub>T</sub>

Recall that  $T: \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\} \rightarrow V$  where  $V = \{2, 3, 4, \dots 12\}$ .

 $\mathsf{PDF}_{\mathcal{T}}: V \to [0,1] \text{ and } \mathsf{CDF}_{\mathcal{T}}: \mathbb{R} \to [0,1].$ 

For example,  $PDF_T[4] = Pr[T=4] = \frac{3}{36}$  and  $PDF_T[12] = Pr[T=12] = \frac{1}{36}$ .





# **Distribution Functions - Examples**

Q: Suppose we toss three independent, unbiased coins. Let C be the number of heads that appear. What is  $PDF_C$  and  $CDF_C$ ?

Q: What is  $Pr[1 \le C \le 3]$ ?

Q: If E is the event that three tosses have the same result,  $PDF_{\mathcal{I}_E}$  and  $CDF_{\mathcal{I}_E}$ ?



#### **Distributions**

Many random variables turn out to have the same PDF and CDF. In other words, even though R and T might be different random variables on different probability spaces, it is often the case that PDF $_R = \text{PDF}_T$ . Hence, by studying the properties of such PDFs, we can study different random variables and experiments.

**Distribution** over a random variable can be fully specified using the cumulative distribution function (CDF) (usually denoted by F). The corresponding probability density function (PDF) is denoted by f.

### Common Discrete Distributions in Computer Science:

- Bernoulli Distribution
- Uniform Distribution
- Binomial Distribution
- Geometric Distribution

#### Bernoulli Distribution

Canonical Example: We toss a biased coin such that the probability of getting a heads is p. Let R be the random variable such that R=1 when the coin comes up heads and R=0 if the coin comes up tails. R follows the Bernoulli distribution.

**PDF**<sub>R</sub> for Bernoulli distribution:  $f: \{0,1\} \to [0,1]$  meaning that Bernoulli random variables take values in  $\{0,1\}$ . It can be fully specified by the "probability of success" (of an experiment) p (probability of getting a heads in the example). Formally, PDF<sub>R</sub> is given by:

$$f(1) = p$$
 ;  $f(0) = q := 1 - p$ .

In the example, Pr[R = 1] = f(1) = p = Pr[event that we get a heads].

 $\mathsf{CDF}_R$  for Bernoulli distribution:  $F: \mathbb{R} \to [0,1]$ :

$$F(x) = 0$$
 (for  $x < 0$ )  
= 1 - p (for  $0 \le x < 1$ )  
= 1 (for  $x \ge 1$ )

#### **Uniform Distribution**

Canonical Example: We roll a standard die. Let R be the random variable equal to the number that shows up on the die. R follows the uniform distribution.

A random variable R that takes on each possible value in its codomain V with the same probability is said to be uniform.

**PDF**<sub>R</sub> for Uniform distribution:  $f: V \to [0,1]$  such that for all  $v \in V$ , f(v) = 1/|v|. In the example,  $f(1) = f(2) = \ldots = f(6) = \frac{1}{6}$ .

 $\mathsf{CDF}_R$  for Uniform distribution: For n elements in V arranged in increasing order –  $(v_1, v_2, \ldots, v_n)$ , the CDF is:

$$F(x) = 0$$
 (for  $x < v_1$ )  
 $= {}^k/n$  (for  $v_k \le x < v_{k+1}$ )  
 $= 1$  (for  $x \ge v_n$ )

Q: If X has a Bernoulli distribution, when is X also uniform?

#### **Binomial Distribution**

Canonical Example: We toss n biased coins independently. The probability of getting a heads for each coin is p. Let R be the random variable equal to the number of heads in the n coin tosses. R follows the Binomial distribution.

**PDF**<sub>R</sub> for Binomial distribution:  $f: \{0, 1, 2, ..., n\} \rightarrow [0, 1]$ . For  $k \in \{0, 1, ..., n\}$ ,  $f(k) = \binom{n}{k} p^k (1-p)^{n-k}$ .

*Proof*: Let  $E_k$  be the event we get k heads. Let  $A_i$  be the event we get a heads in toss i.

$$E_{k} = (A_{1} \cap A_{2} \dots A_{k} \cap A_{k+1}^{c} \cap A_{k+2}^{c} \cap \dots \cap A_{n}^{c}) \cup (A_{1}^{c} \cap A_{2} \dots A_{k} \cap A_{k+1} \cap A_{k+2}^{c} \cap \dots \cap A_{n}^{c}) \cup \dots$$

$$Pr[E_{k}] = Pr[(A_{1} \cap A_{2} \dots A_{k} \cap A_{k+1}^{c} \cap A_{k+2}^{c} \cap \dots \cap A_{n}^{c})] + Pr[A_{1}^{c} \cap A_{2} \dots A_{k} \cap A_{k+1} \cap \dots \cap] + \dots$$

$$= Pr[A_{1}] Pr[A_{2}] Pr[A_{k}] Pr[A_{k+1}^{c}] Pr[A_{k+2}^{c}] \dots Pr[A_{n}^{c}] + \dots \quad \text{(Independence of tosses)}$$

$$= p^{k} (1 - p)^{n-k} + p^{k} (1 - p)^{n-k} + \dots$$

$$\implies \Pr[E_k] = \binom{n}{k} p^k (1-p)^{n-k}$$

(Number of terms = number of ways to choose the k tosses that result in heads =  $\binom{n}{k}$ )

## **Binomial Distribution**

For the Binomial distribution,  $PDF_R(k) = \binom{n}{k} p^k (1-p)^{n-k}$ .



**Q**: Prove that  $\sum_{k \in \text{Range}(R)} \text{PDF}_R[k] = 1$ .

By the Binomial Theorem,  $\sum_{k \in \text{Range}(R)} \text{PDF}_R[k] = \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} = (p+1-p)^n = 1.$ 

 $\mathsf{CDF}_R$  for Binomial distribution:  $F: \mathbb{R} \to [0,1]$ :

$$F(x) = 0$$

$$= \sum_{i=0}^{k} {n \choose i} p^{i} (1-p)^{n-i}$$

$$= 1.$$
(for  $k \le x < k+1$ )
(for  $x \ge n$ )

#### Geometric Distribution

Canonical Example: We toss a biased coin independently multiple times. The probability of getting a heads is p. Let R be the random variable equal to the number of tosses needed to get the first heads. R follows the geometric distribution.

**PDF**<sub>R</sub> for Geometric distribution: 
$$f: \{1, 2, ...\} \rightarrow [0, 1]$$
. For  $k \in \{1, 2, ..., \infty\}$ ,  $f(k) = (1 - p)^{k-1} p$ .

*Proof*: Let  $E_k$  be the event that we need k tosses to get the first heads. Let  $A_i$  be the event that we get a heads in toss i.

$$\begin{split} E_k &= A_1^c \cap A_2^c \cap \ldots \cap A_k \\ \Pr[E_k] &= \Pr[A_1^c \cap A_2^c \cap \ldots \cap A_k] = \Pr[A_1^c] \Pr[A_2^c] \ldots \Pr[A_k] \quad \text{(Independence of tosses)} \\ &\implies \Pr[E_k] = (1-p)^{k-1} p \end{split}$$

**Q**: Prove that  $\sum_{k \in \mathsf{Range}(\mathsf{R})} \mathsf{PDF}_R[k] = 1$ .

By the sum of geometric series,  $\sum_{k \in \mathsf{Range}(R)} \mathsf{PDF}_R[k] = \sum_{k=1}^\infty (1-p)^{k-1} p = \frac{p}{1-(1-p)} = 1$ .

### Geometric Distribution

For the Geometric distribution,  $PDF_R(k) = (1 - p)^{k-1}p$ .

 $\mathsf{CDF}_R$  for Geometric distribution:  $F: \mathbb{R} \to [0,1]$ :

$$F(x) = 0$$

$$= \sum_{i=0}^{k} (1 - p)^{i-1} p$$



(for 
$$x < 1$$
)

(for 
$$k \le x < k + 1$$
)

