ADSP 3과목 Part2

통계 분석 개요

추출(sampling)

모집단(population) → 표본(sample) 모수(parameter) ← 통계량(statistic)

추론(inference)

	- 잘 정의된 연구목적과 이와 연계된
모집단	명확한 연구대상(데이터 전체 집합)
	ex) 대통령 후보의 지지율-유권자
	- 모집단의 개체 수가 많아 전부 조사
	하기 힘들 때 모집단에서 추출 한 것
표본	- 추출한 표본으로 모집단의 특성을 추
	론함(오차 발생)
	ex) 각종 여론조사에 참여한 유권자
통계량	- 표본의 특성을 나타내는 수치들
	- 모집단의 특성을 나타내는 수치들
모수	- 모집단의 평균(),분산()같은 수치들
	을 모수라고함

확률적 표본추출법의 종류

	- 모집단의 각 개체가 표본으로 선
	택될 확률이 동일하게추출되는 경
단순 무작위	우
추출	- 모집단의 개체 수 N, 표본 수 n
	일 때 개별 개체가 선택될 확률은
	n/N 임
	- 첫 번째 표본을 임의로 선택하고
	일정 간격으로 다음 표본을
계통추출	선택함
	- 1~100번호 부여 후 , 1면
	[1,11,21,3191]선택
	- 모집단을 서로 겹치지 않게 몇 개
	의 집단 또는 층으로 나누고, 각
층화추출	집단 내에서 원하는 크기의 표본
<u> </u>	을 단순 무작위추출법으로 추출함
	- 층:성별,나이대,지역 등 차이가 존
	재하는 그룹
	- 모집단을 차이가 없는 여러 개의
군집추출	집단(cluster)로 나눔
고 <u>라</u> 구 글	ex) 경상대학 내에 경영학과
	경제학과

** 비확률 표본 추출법은 특정 표본이 선정될 확률을 알 수 없어 통계학에서 사용할 수 없음

표본 추출 관련 오차의 종류 및 특징

	- 모집단을 대표하지 못하는 표본을		
	추출하여 발생하는 오차		
표본오차/	- 모집단을 전수 조사하는 것이 아니		
표본추출	라 표본을 추출하기 때문에 발생하		
오차	는 오차		
,	 - 표본 오차는 표본의 크기가 커지만		
	작아짐, 전수조사에서는 0이됨		
	- 표본 오차를 제외한 조사,집계,분		
	석 과정에서 발생할 수 있는 모든		
	오차		
비표본추출	ex)설문/측정 방식이 잘못됨.무응답/		
오차	, , , , , , , , , , , , , , , , , , , ,		
<u> </u>	오류등		
	- 비표본 추출 오차는 표본의 크기에		
	비례하여 커짐, 표본의 크기가 크		
	다고 반드시 좋은 것은 아님		
	- 표본 추출 과정에서 발생하는 편의		
	(bias), 편의=추정값의 기댓값과		
	모수의 차이		
	ex)일반인으로부터 피험자를 모집했		
표본 편의	을 때,참여자들은 내용에 관심이 높		
	은 사람일 가능성이 있어 표본이 치		
	우칠 수 있음		
	' ' ' ^ ' ' - 확륨화에 의해 최소화하거나 없앨		
	'- ' " ' " ' ' ' ' ' ' ' ' ' ' ' ' ' '		
	수 있음		

척도의 종류

	- 단순히 측정 대상의 특성을 분류하
	거나 확인하기 위한 목적
명목척도	- 숫자로 바꾸어도 그 값이 크고 작
	음을 나타내지 않고 범주를 표시함
	ex) 성별,혈액형,출생지 등
서열(순위)	- 대소 또는 높고 낮음 등의 순위만
1 -1 - 11	제공할 뿐 양적인 비교는 X
척도	ex) 금,은,동메달,선호도 등
	- 순위를 부여하되 순위 사이의 간격
등간척도	이 동일하여 양적인 비교 ()
(구간척도)	- 절대 0점이 존재 X
	ex) 온도계 수치, 물가지수
	- 절대 0점이 존재하여 측정값 사이
비율척도	의 비율 계산이 가능한 척도
	ex) 몸무게,나이,형제의 수 등

- ※ 절대 0점: 없음을 의미함(무)
- 온도의 0은 상대 0점으로 없음이 아니라 영상,영하의 중간 지점을 나타냄
- ※ 연속형 자료를 나타내는 척도로는 등간척도와 비율척 도가 있다

집중화 경향측정에 사용되는 값들

평균(Mean) : 이상치에 영향을 받음

중앙값(Median)

최빈값(Mode) : 이상치에 영향을 받지 않음

데이터 집합이 얼마나 퍼져 있는지 알아보는데 사용 하는 값들

	- 자료의 변량들이 흩어져 있는 정도
	를 하나의 수로 나타낸 값
산포도	- 산포도가 크면 변량들이 평균으로부
인포포	터 멀리흩어져 있음, 변동성이 커짐
	- 산포도가 작으면 변량들이 평균 주
	위에 밀집, 변동성이 작아짐
편차	- 어떤 자료의 변량에서 평균을 뺀 값
원시	을 편차라고 한다. (편차 = 변량-평균)
- 데이터 집합이 얼마나 퍼져 있	
분산(s2)	알아볼 수 있는 수치
	- 편차의 제곱의 합을 n-1로 나눈것
	- 자료의 산포도를 나타내는 수치,분
표준편차	산의 양의 제곱근
(s)	- 평균으로부터 각 데이터의 관찰 값
	까지의 평균거리

분산,표준편차의 이해

- 툭정도시의 10가구를 표본으로 추출해 자녀수를 조사 한 결과가 0,0,0,1,1,2,2,3,3,3 일 때
- 표본 평균 : 1.5 , 표본 분산 : 1.61 , 표본 표준편차 : 1.27 이 나옴
- 특정도시의 각 가구는 평균 1.5명의 자녀를 가지고, 각 가구는 약 1.27명의 자녀를 더하거나 뺀 범위 안 에 있을 것으로 예상
- * 부산과 표준편차가 작을수록 자료들은 평균에 가까이 있음
- ※ 표준편차+평균+분산을 이용하면 변량을 구할수있음

변동계수(CV)

- A학생이 평균 3시간 공부하고 표준편차는 0.4였고,B 학생은 평균 6시간 공부하고 표준편차가 0.9이었다면 ㅇ떤 학생이 꾸준하게 공부했을까? CV=
- 이때, B학생의 표준편차가 0.8이라면 A,B학생의 변동 계수가 같아짐.
- 관측되는 자료가 모두 양수일 때 사용

범위(Range)

- 최소값과 최대값의 차이
- 데이터가[1,3,5,7,10]인 경우 범위 → 9

통계 기본 용어

표본점	- ㅇ떤 행위를 했을 때 나올수 있는값
五七·省	ex) 주사위 1.2.3.4.5.6 중 하나
	- 모든 표번점의 집합
표본공간	ex) 주사위 굴리는 행위에 대한 표본
	공간S = [1,2,3,4,5,6]
	- 표본점의 특정한 집합
사건	ex) 주사위를 한 번 굴렸을 때 홀수가
	나오는 사건을 A라고하면 A =[1.3.5]
	- 사건이 일어날 수 있는 가능성을 수
	로 나타낸 것
확률	- 어떤 사건을 A라고 했을 때, A가
적팔	발생할 확률은 P(A)로 표시
	- 확률 = 사건/표본공간
	- 확률값 = 0<=P(A)<=1

사건의 종류

	- A의 발생이 B가 발생할 확률을 바
	꾸지 않는 사건
	- 두 사건 A,B가 독립이면
_ , , , ,	
독립사건	ex) 주사위 던져서 나오는 눈의 값과
	동전을 던져 나오는 앞/뒤 사건
	ex) 서로 다른 사람이 총을 쏘아 과녁
	에 명중할 사건
	- 교집합이 공집합인 사건, 한쪽이 일
	어나면 다른 쪽이 일어나지 않을 때
	의 두 사건
배반사건	. ,
	 ex) 동전 하나를 던져 앞면 나오는 사
	건, 뒷면 나오는 사건
	- 두 사건 A와 B에서 한 사건의 결과
	가 다른 사건에 영향을 주는 사건
종속사건	
	1
o 크게 및	

조건부확률

- 사건 B가 발생했다는 조건 아래서 사건 A가 발생할 조건부 확률
- 두 사건 A,B가 독립사건인 경우

ex) P(음주I사고)는 얼마인가?

	사고	무사고
음주자	0.07	0.23
비음주자	0.06	0.64

- = (음주사고)/(음주사고+비음주사고)
- = 0.07/0.13 = 0.54

확률분포

분포	- 일정한 범위 안에 흩어져 퍼져 있
七羊	는 정도
	- 확률현상: 어떤 결과들이 나올지
확률변수	알지만, 가능한 결과들 중 어떤 결과
	가 나올지 모르는 현상
	- 어떤 확류변수가 취할 수 있는 모
확률분포	든 값들과 그 값을 취할 확률의 대응
	관계로 표시하는 것

확률변수

→ 동전을 2번 던질 때 앞면이 나온 횟수

확률분포는 다음과 같음(이산형 확률분포)

앞면횟수	0	1	2	합
확률	1/4	1/2	1/4	1

	- Discrete(별개의), 확률변수가 몇
	개의 한정된 가능한 값을 가지는 분
이산형	
확률분포	- 각 사건은 서로 독립이어야 함
	ex) 이항분포/베르누이분포/기하분포
	/포아송분포 등
	- Continuous,확률변수의 가능한 값
연속형	이 무한개이며 사실상 셀 수 없을
	때
확률분포	ex) 정규분포/지수분포/연속균일분포
	/카이제곱분포/F분포

베르누이분포

- 싫험 결과 두 가지 중의 하나로 나오는 시행의 결과 를 0 또는 1 값으로 대응시키는 확률변수 X에 대해 아 래 식을 만족하는 확률변수 X가 따르는 확률분포
- 모수가 하나이며 서로 반복되는 사건이 일어나는 실 험의 반복적 실행을 확률분포로 나타낸 것

베르누이분포의 예)

동전을 던져서 앞면이	p = 1/2 , q = 1/2
나올 확률	p - 1/2 , q - 1/2
주사위를 던져서 4가	p = 1/6 , q = 5/6
나올 확률	p - 1/6 , q - 5/6
주사위를 던져서 4,5가	p = 1/3 , q = 2/3
나올확률	p - 1/3 , q - 2/3

이항분포

- 서로 독립된 베르누이 시행을 n회 반복할 때 성공한 횟수를 x라 하면, 성공한 x의 확률분포를 말함
- 확률변수 K가 n,p 두 개의 모수를 갖으며, K~B(n,p) 로 표시함
- n =1일 때 이항분포가 베르누이분포임
- 이항분포의 기댓값 : E(x) = np
- 이항분포의 분산 : V(x) = np(1-p)

이항분포의 예)

동전을 50번 던져서 앞면이	n = 50, $p = 1/2$
나올 경우는?	11 - 30 , p - 1/2
주사위를 10번 던져서 나오	n = 10 , p = 1/6
는 눈이 5일 경우는?	II - 10 , p - 1/0
타율 3할인 타자가 100번	
타석에 들어서면 안타를 얼	n = 100, $p = 0.3$
마나 칠 것인가?	

기하분포

- 베르누이 시행에서 처음 성공까지 시도한 횟수 x의 분포, 지지집합(x) = [1,2,3 ...]

포아송분포

- 단위 시간이나 단위 공간에서 어떤 사건이 몇 번 발 생할 것인지 표현하는 분포
- 특정 기간 동안 사건발생의 확률을 구할 때 사용

포아송분포의 예)

- 1. 어느 AS센터에 1시간당 평균 120건의 전화가 온다, 이때 1분 동안 걸려오는 전화 요청이 4건 이하일 확 률은?
- 2. 어느 가게에 1시간당 평균 8명의 손님이 온다. 이때, 1시간 동안 손님이 10명 올 확률은?
- 3. 확률은 에서 최대이며, x가 커질수로 0에 근접
- # 기댓값 : 확률변수 X의 가능한 모든 값들의 가중평균
- 이산적 확률변수 기댓값
- 연속적 확률변수 기댓값

기댓값 예)

주사위 1개를 반복해서 던질 때 나타나는 기댓값 1(1/6) + 2(1/6) + 3(1/6) + 4(1/6) + 5(1/6) + 6(1/6) = 3.5

정규분포

- -가우스 분포라고도 하며, 수집된 자료의 분포를 근사 하는데 자주 사용함
- _
- 평균0, 표준편차/분산 1인 정규 분포, N(0,1)를 표준 정규 분포, z 분포라고 함
 - 예) 키,몸무게,시험 점수 등 거의 대부분의 측정값이 정규분포를 따름
- 정규분포의 평균 주위로 표준편차의 1배 범위에 있을 확률 68%, 2배 범위 안 95%, 3배 범위 안 99.7%
- ※ 확률 밀도 함수
- 특정 구간에 속할 확률을 계산하기 위한 함수

대부분의 측정값을 정규분포로 가정하는 이유 "정규분포의 당위성"

이항분포의 근사	- 시행횟수 N이 커질 때,이항분
	포B(N,p)는 평균Np, 분산Npq인
	정규분포와 N(Np,Npq)와 거의
	같아짐
	- 표본의 크기가 N인 확률표본
	의 표본평균은 N이 충분히 크
	면 근사적으로 정규분포를 따
T 1 7 7 7 7 1 1	르게 됨
중심 극한 정리	- 모집단의 분포와 상관없이 표
	본의 크기가 30이상이 되면
	N이 커짐에 따라 표본평균의
	부포가 정규분포에 근사해짐
	-
오차의 법칙	- MLE : 실제 값일 가능성이
	가장 높은 값
	- 실제 값의 MLE가 측정값의
	평균이라면, 오차는 정규분포
	를 따른다 → 오차의 법칙

지수분포

- 사건이 서로 독립적일 때 다음 사건이 일어날 때가지 대기 시간은 지수분포를 따름

지수분포의 예)

전자 제품의 5년간 고장횟수가 평균 1회일 때, 1년 안에 고장 날 확률

t-분포

- 정규분포는 표본의 수가 적으면 신뢰도가 낮아짐 (no) 30개 미만인 경우)
- 표본을 많이 뽑지 못하는 경우에 대한 대응책으로 예 측범위가 넓은 분포를 사용하며, 이것이 t-분포임
- t-분포는 표본의 개수에 또라 그래프의 모양이 변함 (표본의 개수가 많아질수록 정규분포와 비슷하며, 적 을수록 옆으로 퍼짐)
- t-분포는 표본의 수가 30개 미만일 때 사용하며, '신 뢰구간','가설검정'에 사용함

카이제곱 분포

- 분산의 특징을 확률분포로 만든 것
- 카이제곱은 표준정규분포를 제곱한다는 의미가 내포
- 신뢰구간,가설검정에 사용하며, 그래프의 x축 좌표를 카이제곱값이라 부르며, 카이제곱분포표를 사용해 구 하고 검정에 사용함
- 0이상의 값만 가질 수 있으며, 오른쪽 꼬리가 긴 비 대칭모양
- 0의 오른쪽 부분에 분포가 많고, 0에서 멀어질수록 분포 감소
- 표본의 수가 많아지면 옆으로 넓적한 정규분포 형태 가 됨

F분포

- 카이제곱분포와 같이 분산을 다룰 때 사용하는 분포
- 카이제곱분포는 한 집단의 분산, F분포는 두 집단의 분산을 다룸
- 두 집단의 분산이 크기가 서로 같은지 또는 다른지 비교하는데 사용함
- 카이제곱과 비슷하게 비대칭 모양이며, 양수만 존재
- ※ 언제 사용되는 분포일까?
- ex) 한 집단 또는 두 두집단의 평균이 같은지를 검정 = z분포, t분포
- ex) 한 집단의 모분산 검정(모수)

=

- ex) 두 집단의 분산이 같은지를 검정
 - = F분포

모집단에 대한 가정 여부에 따른 통계적 추론 의 분류

모수적 추론	모집단에 특정 분포
, , , _	를 가정하고 모수에
(Parametric Inference)	대해 추론함
비모수적 추론	모집단에 대해 특정
(Non-parametric Inference)	분포 가정을 하지
(Non-parametric interence)	않음

추론 목적에 따른 통계적 추론의 분류

	-하나의 값으로 모수의
	값이 얼마인지 추측함
점추정	- 가장 참값이라고 여겨
	지는 하나의 모수의
	값
	- 모수를 포함할 것으로
	기대되는 구간을 확률적
	으로 구함
구간 추정	- 일정한 크기의 신뢰수
	준으로 모수가 특정한
	구간에 있을 것이라
	선언하는 것

표준오차(SE)

- 모집단에서 샘플을 무한 번 뽑아서 각 샘플마다 평균을 구했을 때, 그 평균들의 표준편차를 표준오차라 할 수 있음
- 표본평균이 모평균과 얼마나 떨어져 있는가를 나타냄 n이 클수록 작은 값

추정량

좋은 추정량 판단기준

일치성	- 표본의 크기가 커짐에
	따라 표본 오차가 작
	아져야 한다.
	- 편향(bias) = 추정량
	의 기댓값 - 실제값(=
미화하다 보파다	모수의 값)
비편향성,불편성	- 추정량의 기댓값이 모
	수의 값과 같아야 한
	다 (편향 == 0)
	- 추정량의 분산이 될
	수 있는 대로 작아야
효율성	한다. (최소분산 추정
	량)
	- MSE가 작아야 한다.

점추정

- 통계량 하나를 구하고 그것을 가지고 모수를 추정하 는 방법
- '모수가 특정한 값일 것'이라고 추정하는 것 (사실상 추정이 얼마나 정확한가 판단하기 불가능) ex) A과목 수강 전체 학생 중 50명을 뽑아 조사한 결 과 기말 점수가 80점 이었다면, 50명 뿐 아니라 나머지 A과목을 수강한 학생들의 점수도 80점 정도로 추정하 는 것

- ※ 점추정량 구하는 법
- 1) 적률법 표본의 기댓값을 통해 모수를 추정
- 2) 최대가능도추정법(최대우도법) 함수를 미분해서 기 울기가 0인 위치에 존재하는 MLE를 찾는 방법
- 3) 최소제곱법 함수값과 측정값의 차이인 오차를 제 곱한 합이 최소가 되는 함수를 구하는 방법

구간추정

구간추정	- 점추정의 정확성을 보완하는 방법
	- 통계량을 제시하는 것은 같지만
	신뢰구간을 만들어서 추정하는 것
11=1 = =1	- 모수가 포함되리라고 기대되는
신뢰구간	'범위'
	- 모수값이 정해져 있을 때 다수 신
	뢰구간 중 모수값을 포함하는 신
	뢰구간이 존재할 확률
신뢰수준	- 신뢰수준 95%의 의미 : n번 반복
	추출하여 산정하는 신뢰구간들 중
	에서 평균적으로 95%는 모수 값
	을 포함하고 있을 것이라는 의미

ex1) 신뢰수준 95%에서 투표자의 35%~45%가 A후보를 지지하고 있다.

= 95%는 신뢰수준, 35%~45%는 신뢰구간이다.

ex2) 정치인 지지율 조사에서 A후보는 40%, B후보는 25%의 지지율을 얻었다. 신뢰수준 95%에서 표본오차는 3.1%포인트이다.

= 동일한 형태의 여론조사를 100번 실시했을 경우에 95번은 A후보가 40%에서 3.1%인 36.9%~43.1%, B후보는 25%에서 3.1%인 21.9%~28.1% 사이의 지지율을얻을 것으로 기대된다는 의미이다.

※ 신뢰구간

가설검정1

: 모집단에 대해 가설 설정 후, 표본관찰을 통해 그 가설의 채택 여부를 결정하는 통계적 추론 방법

추출(sampling)

모집단(population) \rightarrow 표본(sample) 모수(parameter) \leftarrow 통계량(statistic) 추론(inference)

귀무가설	- 가설검정의 대상이 되는 가설
	- 연구자가 부정하고자 하는 가설
	- 효과 없음에 대한 가설
대립가설	- 귀무가설이 기각되면 채택되는 가설
	- 연구자가 연구를 통해 입증/증명되
	기를 기대하는 예상이나 주장
	- 효과 있음에 대한 가설

- ex) 성적 관련 선생님의 가설
- 1) 귀무가설 (남학생과 여학생의 평균은 같다)
- 2) 대립가설 (남학생과 여학생의 평균은 다르다)

가설검정2

제1종오류	- 귀무가설이 참인데 기각되는 오류	
	-	
	생산자 입장에서 정상제품을 불량품으	
	로 판정하는 생산자 위험오류	
	- 귀무가설이 거짓인데 채택하는 오류	
제2종오류	-	
	소비자 입장에서 불량품을 정상품으로	
	판정하는 소비자 위험오류	

- 신뢰수준 : 1종오류를 범하지 않을 확률- 검정력 : 2종오류를 범하지 않을 확률

- * 1) 두 가지 오류가 작을수록 바람직함2)
- 3) 제1종 오류를 범할 확률의 최대 허용치를 특정값 (유의수준)으로 지정해 놓고 제2종 오류의 확률을 가장 작게 해주는 검정 방법을 사용함

가설검정3

	- 귀무가설을 기각하고 대립가설을 채택
	하게 되는 영역
기각역	- 귀무가설이 옳다는 전제하에 구한 검정
	통계량의 분포에서 확률이 유의수준
	인 부분을 말한다.

	- 귀무가설이 참인데도 기각시키는 확률
	(제1종 오류 발생 확률)의 최대 허용
	한계
	- 가능성이 '크다' 또는 '작다'의 판단기
유의수준	준
	- 유의수준 0.05(5%) : 100번 실험에서
	제1종 오류를 범하는 최대 허용 한계가
	5번
	- 유의수준 = 1-신뢰수준,유의수준 =

가설점정4

유의확률(P-value)

- 귀무가설이 사실일 때 기각하는 1종 오류시, 우리가 내린 판정이 잘못되었을 확률
- 귀무가설의 신뢰구간을 벗어나는 확률
- 판정이 잘못되었을 확률
- P-value가 작을수록 그 정도가 약하다고 보며, P-value < 일 때, 귀무가설을 기각, 대립가 설을 채택
- P-value가 0.05(5%) : 귀무가설을 기각했을 때 기각 결정이 잘못될 확률이 5%임

모수적,비모수적 추론

	- 모집단에 특정 분포를 가정하고
	분포의 특성을 결정하는 모수에
	대해 추론하는 방법
모수적 추론	- 모수로는 평균,분산등을 사용
	- 자료가 정규분포,등간척도,비율
	척도인 경우
	- ex) 온도의평균,몸무게의 표준

	편차 등
	- 모집단에 대해 특정 분포 가정
	을 하지 않음
	- 모수 자체보다 분포 형태에 고
비모수적 추론	나한 검정을 실시함
	- 표본 수가 적고, 명목척도,서열
	척도인 경우
	ex) 성별,혈액형,두 그룹의 성비

- ※ 모수적 검정
- 1) 가정된 분포의 모수에 대해 가설 설정
- 2) 관측된 자료를 이용해 구한 표본 평균,표본 분산등을 이용해 검정 실시
- ※ 모수적 통계의 조건
- 표본의 모집단이 정규분포를 이루어야 하며, 집단 내 의 분산은 같아야 함
- 변인(=변수)은 등간척도나 비율척도로 측정되어야 함 (아니면 비모수 통계 사용)
- ※ 모수 검정방법
- : T test, ANOVA test, z분포, t분포 F분포,카이스퀘어 분포

T test

- 평균값이 올바른지, 두 집단의 평균 차이가 있 는지를 검정하는 방법으로 t값을 사용함
- t값이 커질수록 p-value는 작아지며, 집단간 유의한 차이를 보일 가능성이 높아짐

t-검정 방법	예시
One Sample t-test	- 단일 표본의 평균 검정 을 위한 방법
	ex) S사 usb의 평균 수명
	은 20000 시간이다
	- 동일 개체에 어떤 처리
	를 하기 전, 후의 자료
	를 얻을 때 차이 값에
	대한 평균 검정을 위한
	방법
	ex) 매일 1시간 한달 걸으
Paired t-test	면 2kg이 빠진다(걷기 전/
	수행 후)
	- 가능한 동일한 특성을
	갖는 두 개체에 서로 다
	른 처리를 하여 그 처리
	의 효과를 비교하는 방
	범
	ex) X질병 환자들을 두 집
	다으로 나누어 AB 약을

	투약해 약 효과비교
Two sample t-test	- 서로 다른 두 그룹의 평
	균을 비교하여 두 표본
	의 차이가 있는지 검정
	하는 방법
	- 귀무가설 - 두 집단의
	평균 차이 값이 0이다
	ex) 2학년과 3학년의결석
	률은 같다

One Sample t-test 예) <임금의 평균이 100이다>

Wage=read.csv('../date/Wage.csv", fileEncoding='UTF-8-BOM') t.test(Wage\$wage, mu=100)

One sample t-test

date: Wage\$wage

t = 15.362, df = 2999,p-value < 2.2e-16 alternative hypothesis: true mean in not equlq to 100

95 percent confidence inferval:

110,2098 113.1974

sample estimates:

mean of x

111.7036

해석

- 1) df-2999 : n=df+1, 데이터의 수 3000개
- 2) 유의수준 5%에서 평균 wage=100 이라는 귀무 가설 은 기각됨
- 3) 95% 신뢰구간: 110.2098 ~ 113.1974
- 4) 귀무 가설에서 설정한 평균이 신뢰구간내에 존재하지 않음 (범위안에 평균=100 이없음!)

paired t-test (대응표본-t검정)의 예) <수면유도제 데이터를 통한 '두 집단의 평균이 같 다'는 가설>

t.test(extra~group, date=sleep, paired=TRUE)

paired t-test

data: extra by group

t = -4.0621, df = 9, p-value - 0.002833

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:
-2.4598858 -0.7001142

sample estimates:
mean of the differences - 1.58

해석

- 1) paried=TRUE: Paired t-test, 짝을 이루는 데 이터인 경우 분석 전 등분산성 검정 필요 없음
- 2) df = 9 : 그룹별 데이터의 수 10개
 - → 분석 전 정규성 검정 실시
- 3) p-value가 0.002833으로 두 집단의 평균이 가다는 귀무가설이 기각할 수 있다.
- 4) 신뢰구간에 0이포함되지 않음

Two Sample t-test (=독립표본 t-test)의 예) <수면유도제 데이터를 통한 '집단 간 평균이 같다'는 가설>

t.test(extra~group,date=sleep,var.equal=true)

Two sample t-test

data: extra by group

t = -1.8608, df = 18, p-value = 0.07919

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-3.363874 0.203874

sample estimates:

mean in group 1 mean on group 2

0.75 2.33

해석

- 1) var.equal=TRUE: 두 집단의 분산이 같다는 등분산성 만족 \rightarrow 분석 전 등분산성 검정 실시
- 2) df = 18 : 그룹이 2개이므로 데이터 수 20개
 - → 분석 전 정규성 검정 실시
- 3) p-value가 0.07919로 두 집단의 평균이 같다 는 귀무가설을 기각할 수 없다.
- 4) 신뢰구간에 0이 포함되므로 두 집단간 평균에 차이가 없다고 해석할 수 있음

자유도 (df = n-1)

-통계적 추정에서 표본자료 중 모집단에 대한 정 보를 주는 독립적인 자료의 수

데이터 정규성 검정 종류 (Durbin-Watson X)

0 0 1 1	11717107 Flot 11 11 11 11
Q_Q plot	- 시각적으로 확인 하는 방법
Histogram	- 구간별 돗수를 그래프로 표시하여 시
Thstogram	각적으로 정규분포를 확인하는 방법
Shapiro-Wilk	- 귀무가설은 정규분포를 따른다로
test	p-value 가 0.05보다 크면 정규성을
test	가정하게 됨
	- K-S tsst, 두 모집단의 분포가 같은
Kolmogorov-	지 검정하는 것
Smirnov test	- P-value가 0.05보다 크면 정규성을
	가정하게 됨

비모수적 추론

	- 모집단의 분포에 대해 제약
	(정규분포,집단의 등분산 등)
	을 가하지 않고 실시하는 검
	정방법
	- 평균,분산과 같은 모수 자체
	보다 분포 형태에 관한 검정
비모수적 검정	을 실시함
	- 모수적 방법보다 훨씬 단순
	함, 민감성을 잃을 수 있음
	- 데이터의 개수가 작거나 범
	주형(명목,서열척도)데이터에
	사용
비모수적 검정의 종류	- 명목척도 기준 : 카이스퀘어
	검정
	- 서열척도 기준 : Sign Test

모수/비모수적 추론 방법

비교대상집 단수	관계	비모수- 명목척도	비모수- 서열척도	모수
1		$\chi 2$ 적 합 성 검정	kolmogo rov-Smi r n o v test	O n e sample T test
	독립	Crossta b χ2 독립성검 정	Mann- Whitney	T w o sample T test
2	대응 자료	Mcnema r test	Wilcoxo n signed- rank test Sign test	Paired T test
k(다변량)	독립	χ2동 질 성 검정	Kruskal -Wallis test	ANOVA test
	대응 자료	Cochra n test	Friedma n test	

ex) 다음 중 비모수적 추론이 아닌 것은?

카이스퀘어

카이스퀘어 검정	- 한 개 범주형 변수와 각 그룹
	별 비율과 특정 상수비가 같은
	지 검정하는 적합도 검정
	- 각 집단이 서로 유사한 성향을
	갖는지 분석하는 동질성 검정
	- 두 개 범주형 변수가 서로 독
	립이닞 검정하는 독립성 검정
예	1)적합도 검정
	2)동질성 검정
	3)독립성 검정

부호검정

	- 표본들이 서로 관련되어 있는
	경우, 짝지어진 두 개의 관찰
부호검정	치들의 크고 작음을 +와 -로
(Sign test)	표시하여 그 개수를 가지고 두
	그룹의 분포 차이가 있는가에
	대한 가설을 검증하는 방법
예	1)귀무가설
બા	2)대립가설

회귀분석

<용어정리>

	- 다른 변수에 영향을 받지 않고
E alph Y	독립적으로 변화하는 수, 설명
	변수라고도 함
독립변수	- 입력 값이나 원인을 나타내는 변
	수
	y=f(x)에서 x에 해당
	- 독립변수의 영향을 받아 값이 변
	화하는 수, 분석의 대상이 되는
不太出人	변수
종속변수	- 결과물이나 효과를 나타내는 변
	수
	y=f(x)에서 y에 해당
잔차(오차항)	- 계산에 의해 얻어진 이론 값과
	실제 관측이나 측정에 의해 얻어
	진 값의 차이
	- 오차(Error) : 모집단
	- 잔차(Residual) : 표본집단

※ 회귀분석

(ex, 영하 -5도에서는 오뎅이 몇 개나 팔릴까?)

- 변수와 변수 사이의 관계를 알아보기 위한 통계적 분 석방법
- 독리변수의 값에의해 종속변수의 값을 예측하기 위함
- 일반 선형회귀는 종속변수가 연속형 변수일 때 가능
- 이산형(범주형) 명목,서열척도
- 연속형 구간,비율척도

회귀모형

- 선형회귀모형

한 개의 독립변수 : 단순 선형회귀 둘 이상의 독립변수 : 다중 선형회귀

단일회귀 모형의 예)

2 set. seed (2)

3 x = runif (50, 0, 5)

4 y = 5 + 2 * x + rnorm (50, 0, 0.5)

5 df <- data.frame (x,y)

6 fit <- $lm(y\sim x, data=df)$

7 fit

Call:

 $lm(formula = y \sim x, data = dfrm)$

coefficients:

(Intercept)

4.748 → 절편 x 2.072 → 회귀계수

회귀방정식: y=2.072*x + 4.748

runif(개수,시작,끝) : 시작~끝 범위에서 개수 만큼의 균

일분포를 따르는 난수 발생

 $lm(y\sim x, data = df)$: df에서 y를 종속변수, x를 독립

변수로 회귀모형 생성

다중 회귀 모형의 예)

14 rm(list=is())

15 set.seed(10)

16 u <- runif (50, 0, 6)

17 v <- runif (50, 6, 12)

18 w <- runif (50, 3, 25)

19 y = 3 + 0.5 * u + 1* v - 2*w + rnorm (50, 0, 0.5)

20 df <- data. frame (y, u, v, w)

 $a \leftarrow lm(y\sim u+v+w, df)$

Call:

 $lm(formula = y \sim u + v + w, data = df)$

Coefficients:

(Intercept) u v w 3.4374 0.4676 0.9556 -1.9923

회귀방정식 : y=3.4374 + 0.4676*u + 0.9556*v - 1.9923*w

최소자승법

- Y = aX + b 일 때 잔차를 제곱한 것의 합이 최소가 되도록 하는 상수 a.b를 찾는 것
- 큰 폭의 잔차에 대해 보가 더 큰 가중치를 부여하여, 독립변수 값이 동일한 평균치를 갖는 경우 가능한 변 동 폭이 적은 표본회귀선을 도출하기 위한 것

회귀 모형의 가정

- 선형성 : 독립변ㅂ수의 변화에 따라 종속변수도 변화하는 선형(linear)모형이다.
- 독립성 : 잔차와 독립변수의 값이 관련되어 있지 않

- 정규성 : 잔차항이 정규분포를 이뤄야 한다.

- 등분산성 : 잔차항들의 분포는 동일한 분산을 갖는다.

- 비상관성 : 잔차들끼리 상관이 없어야 한다.

	- 정규성(정상성), 잔차
	가 정규분포를 잘 따
Normal Q-Q plot	르고 있는지를 확인하
	는 그래프
	- 자차득이 그래프 선상

	에 있어야 이상적임
Scale-Location	- 등분산성, y축이 표준
	화 잔차를 나타내며,
	기울기 0인 직선이 이
	상적임
Cook's Distance	- 일반적으로 1값이 넘
	어가면 관측치를 영향
	점(이상치)로 판별

Residuals vs Fitted는 선형성, 등분산성에 대해 알아볼 수 있는 그래프

- 선형성 : y값의 기울기가 0인 직선이 이상적
- 등분산성 : 점의 위치가 그래프에 고르게 분포하는 것이 이상적

회귀모형 해석(평가방법)

- 표본 회귀선의 유의성 검정
- : 두 변수 사이에 선형관계가 성립하는지 검정하는 것
- 회귀모형 해석
 - 1)모형이 통계적으로 유의미한가?
 - : F통계량,유의확률(p-value)로 확인 2)회귀계수들이 유의미한가?
 - : 회귀계수의 t값, 유의확률(p-value)로 확인

	- 모델의 통계적 유의성을 검정하기 위
	한 검정 통계량
	- F통계량 = 회귀제곱평균(MSR) / 잔
F통계량	차제곱평균(MSE)
	- F통계량이 클수록 회귀모형은 통계적
	으로 유의미하다, p-value < 0.05
	일 때 유의미함
	- 회귀식의 적합도를 재는 척도
결정계수	- 결정계수는 0~1 사이의 범위를 갖음
	- 결정계수가 커질수록 회귀방정식의
	설명력이 높아짐

SST : Y의 변동성

SSE: X,Y를 통해 설명하지 못하는 변동성

SSR: Y를 설명하는 X의 변동성

회귀모형 해석(평가방법) 예)

 $a \leftarrow lm(y\sim u+v+w, df)$ summary(a)

Call:

 $lm(formula = y \sim u + v + w, data = df)$

Residuals:

Min 10 Median 30 max -1.06096 -0.31857 0.06092 0.32280 1.03220

Coefficients:

Estimate Std. Error t value Pr(p>:t:)
(Intercept) 3.43742 0.46949 7.322 3.01e-09 ***
u 0.46762 0.04419 10.581 6.55e-14 ***
v 0.95558 0.04546 21.019 < 2e-16 ***
w -1.99230 0.01052 -189.459 < 2e-16 ***

Signif. Codes: 0 "***' 0.001 '**' 0.01 '*' 0.05 '*' 0.1 ' ' 1

Residual standard error: 0.4695 on 46 degrees of freedom

Multiple R-squared: 0.9988 Adjusted R-squared: 0.9987

F-statisticL; 1.254e+04 on 3 and 46 DFm

p-value: < 2.2e-16

해석

t통계량 = Estimate(회귀계수)/Std.Error(표준오차) t통계량이 크다는 것은 표준오차가 작다는 의미 t통계량이 클수록 회귀계수가 유의하다.

- 다중회귀모형의 자유도(df) = n - k - 1 (n은 sample의 수, k는 독립변수의 수)

다중공선성

- 모형의 일부 설명변수(=예측변수)가 다른 설명변수와 상관되어 있을 때 발생하는 조건
- 중대한 다중공선성은 회귀계수의 분산을 증가시켜 불 안정하고 해석하기 어렵게 만들기 때문에 문제가 됨
- R의 vif함수를 사용해 구할 수 있으며, VIF값이 10이 넘으면 다중공선성이 존재한다고 봄
- 높은 상관 관계가 있는 설명변수를 모형에서 제거하 는 것으로 해결해야함
- 설명변수를 제거하면 대부분 R-square가 감소함
- ※ 설명변수의 선택 원칙
- y에 영향을 미칠 수 있는 모든 설명변수 x들은 y의 값을 예측하는데 참여시킴
- 설명변수 x들의 수가 많아지면 관리에 많은 노력이 요구되므로 가능한 범위 내에서 적은 수의 설명변수 를 포함시켜야 함
- 두 원칙이 이율배반적이므로 적절한 설명변수 선택이 필요함

설명변수 선택 방법

	- 모든 가능한 독립변수들의
	조합에 대한 회귀모형을
	고려해 AIC,BIC의 기준으
모든 가능한 조합	로 가장 적합한 회귀 모형
	선택
	- AIC,BIC는 작은 값이 좋
	<u>o</u>
	- 독립변수 후보 모두를 포
	함한 모형에서 출발해 제
	곱합의 기준으로 가장적은
	영향을 주는 변수로부터
후진제거법	하나씩 제거하면서 더 이
	상 유의하지 않은 변수가
	없을 때까지 설명변수를
	제거하고, 이때 모형을 선
	택
	절편만 있는 모델에서 출발
전진선택법	해 기준 통계치를 가장 많이
선선선택됩	개선시키는 변수를 차례로
	추가하는 방법
	모든 변수가 포함된 모델에
단계별 선택법	서 출발해 기준 통계치에 가
	장 도움이 되지 않는 변수를
	삭제하거나, 모델에서 빠져
	있는 변수 중에서 기준 통계
	치를 가장 개선시키는 변수
	를 추가함

과적합

- 주어진 샘플들의 설명변수와 종속변수의 관계를 필요 이상 너무 자세하고 복잡하게 분석
- 샘플에 심취한 모델로 새로운 데이터가 주어졌을 때 제대로 예측해내기 어려울 수 있음
- 해결 방법으로 Feature(독립변수)의 개수를 줄이거나, Regularization(정규화)을 수행하는 방법이 있음

정규화(Regularization)개념

- 베타값에 제약을 주어 모델에 변화를 주는 것
- ┧값은 정규화 모형을 조정하는 hyper parameter
- λ 값이 클수록 제약이 많아져 적은 변수가 사용되고, 해석이 쉬어지지만 underfitting 됨
- ┧값이 작아질수록 제약이 적어 많은 변수가 사용되고.해석이 어려워지며 overfitting 됨

norm : 선형대수학에서 백터의 크기 또는 길이를 측정하는 방법

- L1 norm(=Manhattan norm) : 백터의 모든 성분의 절대값을 더함
- L2 norm(=Euclidean norm) : 출발점에서 도착점까지의 거리를 직선거리로 측정함

라쏘(Lasso) 회귀 특징

- 변수 선택이 가능하며, 변수간 상관관계가 높으면 성 능이 떨어짐
- L1 norm을 패널티를 가진 선형회귀방법, 회귀계수의 절대값이 클수록 패널티 부여
- w의 모든 원소가 0이 되거나 0에 가깝게 되게 해야 함 => 불필요 특성 제거

<장점>

- 제약 조건을 통해 일반화된 모형을 찾는다
- 가중치들이 0이 되게 함으로써 그에 해당하는 특성들을 제외해준다.

#Ridge 회귀 특성

- L2 norm을 사용해 패널티를 주는 방식
- 변수 선택이 불가능
- 변수간 상관관계가 높아도 좋은 성능을 가짐
- Lasso는 가중치들이 0이 되지만, Ridge의 가중치들 은 0에 가까워질뿐 0이 되지는 않음

#엘라스틱넷 특성

- L1,L2 norm regularization
- 변수 선택 가능
- 변수 간 상관관계를 반영한 정규화가능

상관계수의 이해

- 상관계수는 두 변수의 관련성의 정도를 의미함 (-1~1 의 값으로 나타냄)
- 두 변수의 상관관계가 존재하지 않을 경우 상관계수 는 '0'임
- 상관관계가 높다고 인과관계가 있다고 할수없음
- 피어슨 상관계수와 스피어만 상관계수가 있음
- 피어슨 상관계수 : 두 변수 간의 선형적인 크기만 측 정가능
- 스피어만 상관계수 : 두 변수 간의 비선형적인 관계 고 나타낼 수 있음
- R의 cor.test()함수를 사용해 상관계수 검정을 수행하고, 유의성검정을 판달할 수 있음
- 이때 귀무가설은 '상관계수가 0이다'.
- 대립가설은 '상관계수가 0이 아니다'

	- 대상자료는 서열척도
	사용, 두 변수 간의
	비선형적인 관계를 나
	''' ''' ''' '
	타낼 수 있음
	- 연속형 외에 이산형도
	가능.
	- 관계가 랜덤이거나 존재
	하지 않을 경우 상관 계
	수 모두 0에 가깝다
스피어만 상관계수	- 원시 데이터가 아니라
—-110 60/11	각 변수에 대해 순위
	를 매긴 값을 기반으
	로 함
	- 두 변수 안의 순위가
	완전 일치하면 1, 완
	전 반대면 -1
	ex) 수학 잘하는 학생이
	영어도 잘하는 것과 상
	관있는지 알아보는데 사
	용할 수 있음
	- 대상자료는 등간척도,
	비율척도 사용
피어슨 상관계수	- 두 변수 간의 선형적
	인 크기만 측정가능
	- 2개의 확률변수의 선
	형 관계를 나타내는 값
공분산	- 하나의 변수가 상승하
	는 경향을 보일 때 다
	른 강동을 모을 때 다
	형 상관성이 있다면
	양의 공분산을 갖음
	- 공분산이 0이면 서로
	독립이며, 관측값들이
	4면에 균일하게 분포
	되어 있다고 추정

상관분석의 예)

*귀무가설 : 상관계수가 0이다.

cor.test(c(1,3,5,7,9), c(1,2,4,6,8), method='pearson' pearson's product-moment correlation

data: c(1,3,5,7,9) and c(1,2,4,6,8) t = 15.588, df = 3, p-value = 0.0005737 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9065015 0.9996163 sample estimates:

0.9938837

차워축소기법

- 1. 주성분분석
- 2. 요인분석
- 3. 판별분석
- 4. 군집분석
- 5. 정준상관분석
- 6. 다차원척도법

다차원 척도법(MDS)

- 개체들 사이의 유사성,비유사성을 2차원 혹은 3차원 공간상에 점으로 표현하여 개체 사이의 군집을 시각 적으로 표현하는 분석 방버
- 개체들의 거리는 유클리드(Euclidean) 거리와 유사도 를 이용하여 구함
- 관측 대상의 상대적 거리의 정확도를 높이기 위해 적합 정도를 스트레스 값으로 나타내며, 0에 가끽울수록 적합도가 좋음

주성분분석(PCA)

- 데이터를 분석할 때 변수의 개수가 많다고 모두활용 하는 것이 꼭 좋은 것은 아님
- 오히려 변수가 '다중공선성'이 있을 경우 분석 결과에 영향을 줄 수 있음
- 공분산행렬 또는 상관계수 행렬을 사용해 모든 변수 들을 가장 잘 설명하는 주성분을 찾는 방법
- 상관관계가 있는 변수들을 선형 결합에 의해 상관관 계가 없는 새로운 변수(주성분)을 만들고 분산을 극대 화하는 변수로 축약함
- 주성분은 변수들의 선형결헙으로 이루어져 있음
- 독립변수들과 주성분과의 거리인'정보손실량'을 최솨 하하거나 분산을 최대화함
- * 공분산 행렬(default) vs 상관계수 행렬
- 공분산 행렬은 변수의 측정단위를 그대로 반영
- 상관계수 행렬은 모든 변수의 측정단위를 표준화함
- 공분산행렬을 이용한 경우 측정 단위를 그대로 반영 하였기 때문에 변수들의 측정 단위에 민감
- 주성분 분석은 거리를 사용했기 때문에 척도에 영향 받음 (정규화 전후의 결과가 다르다)
- 설문조사처럼 모든 변수들이 같은 수준으로 점수화 된 경우 공분산행렬을 사용한다
- 변수들의 scale이 서로 많이 다른 경우에는 상관계수 행렬을 사용한다.
- ※ 주성분 분석에서 상관계수 행렬 사용
- prcomp(data, scale=TRUE)
- princomp(data, cor=TRUE)

시계열 자료

	- 시간의 흐름에 따라
	관측된 데이터
시계열 자료	- 시계열 분석을 위해서
	는 정상성을 만족해야
	함
	- 시계열의 수준과 분산
	에 체계적인 변화가
73 11 13	없고, 주기적 변동이
정상성	없다는 것
	- 미래는 확률적으로 과
	거와 동일하다는 것
	- 평균은 모든 시점(시
	간t)에 대해 일정하다
정상 시계열의 조건	- 분산은 모든 시점(시
	간t)에 대해 일정하다
	- 공분산은 시점(시간t)
	에 의존하지 않고, 단
	지 시차에만 의존한다

정상시계열로 전환하는 방법

평균이 일정하지 않은 경우	원계열에 차분 사용
계절성을 갖는 비정상시계열	계절 차분 사용
분산이 일정하지 않은 경우	원계열에 자연로그(변환)사용

차분 : 현 시점의 자료 값에서 전 시점의 자료 값을 빼 주는 것을 의미

	- AR(P) : 현 시점의 자
	료를 P시점 전의 유한
	표글 『시점 전의 규인 개의 자기 자신의 과거
	" ' ' ' ' ' ' ' ' ' ' ' '
	값을 사용하여 설명
AR모형 자기회귀모형	- 백색 잡음의 현재 값
	과 자기 자신의 과거
	값의 선형 가중 값으
	로 이루어진 정상 확
	률 모형
	- MA(q) : 과거 q시점
	이전 오차들에서 현재
	항의 상태를 추론한다
	- 각 과거치는 동일 가
MA모형 이동평균 모형	중치가 주어짐
MVT 9 10 9 11 T 9	- 현시점의 자료가 유한
	개의 과거 백색잡음의
	선형결합으로 표현되
	었기 때문에 항상 정
	상성을 만족함
	- 현재와 추세간의 관계
	를 정의한 것
	- 많은 시계열 자료가
	ARIMA모형을 따름
ARIMA모형	- 비정상시계열 모형
	- 차분/변환을 통해
	AR,MA,ARMA 모형으
	로 정상화 할 수 있음
	- ARIMA(p,d,q)
	p:AR모형차수 d:차분
	q:MA모형 차수
	Y·WITL 5 7 T

ex) ARIMA(1,2,3)이라면 2번 차분해서 ARMA모형이 될 수 있음

ex) ARIMA(0,1,3) : IMA(1,3)모형이고 이것을 1번 차분 하면 MA(3) 모형이됨

ex) ARIMA(2,3,0) : ARI(2,3)모형이고, 이것을 3번 차 분하면 AR(2) 모형이됨

분해시계열

: 시계열에 영향을 주는 일반적인 요인을 시계열에서 분리해 분석하는 방법

	자료의 그림을 그렸을 때 그 형태가
추세요인	오르거나 내리는 등 자료가 어떤 특
	정한 형태를 취할 때
계절요인	계절에따라, 고정된 주기에 따라 자료
계절표한	가 변화하는 경우
. - 1 0 01	알려지지 않은 주기를 가지고 자료가
순환요인	변화하는 경우
	위 세 가지 요인으로 설명할 수 없는
불규칙요인	회귀분석에서 오차에 해당하는 요인
	에 의해 발생하는 경우

ADSP 3과목 Part3

시계열 모형

데이터마이닝

: 모든 사용가능한 원천 데이터를 기반으로 감춰진지식, 기대하지 못했던 경향 또는 새로운 규칙 등을 발견하고 이를 실제 비즈니스 의사결정 등에 유용한정보로 활용 하는 일련의 작업

※ 데이터 마이닝 5단계

1. 목적 정의 : 데이터 마이닝 도입 목적을 명확

2. 데이터 준비 : 데이터 경제를 통해 데이터의 품질 확

보까지 포함, 필요시 데이터 양 충분

하게 확보

3. 데이터 가공 : 목적 변수를 정의하고, 필요한 데이터

를 데이터 마이닝 소프트웨어에 적용 할 수 있게 가공 및 준비하는 단계

4. 데이터 마이닝 기법 적용

5. 검증

데이터 마이닝 기법

분류	- 기존의 분류, 정의된 집합에 배정하
	는 것
추정	- 알려지지 않은 결과의 값을 추정하는
Τ 0	것
	- '같이 팔리는 물건' 같이 아이템의
	연관성을 파악하는 분석
연관분석	- 카탈로그 배열 및 교차판매
	- 공격적 판촉행사 등의 마케팅 계획에
	사용
예측	- 미래에 대한 것을 예측
	- 미리 정의된 기준이나 예시에 의해서
군집	가 아닌 레코드 자체가 가진 다른 레
正语	코드와의 유사성에 의해 그룹화되고
	이질성에 의해 세분화됨
기술	- 데이터가 가진 특징 및 의미를 단순
기호	하게 설명하는 것

- 독립변수는 연속형, 종속변수가 범주형인 경우 적용 되는 회귀분석 모형
- 종속변수가 성공/실패, 사망/생존과 같이 이항변수 (0.1)로 되어 있을 때 종속변수와 독립변수 간의 관계 식을 이용하여 두 집단 또는 그 이상의 집단을 분류하고자 할 때 사용하는 분석기법

	일반 성형	로지스틱
회귀분석		회귀분석
종속변수	여소현 버스	이산형(범주형)
중국인구	연속형 변수	변수
	최 소 자 승 법	최 대 우 도 법
모형 탐색 방법	(LSM,최소제곱	(MLE),가중최
	법)	소자승법
모형 검정	F-test, T-test	x2 test

** sigmoid : Logistic 함수라 불리기도 하며, 비선형적 값을 얻기 위해 사용

※ 회귀식에 대한 해석 방법이 선형회귀와 다름

2 prob <- 0.8

3 odds <- prob / (1-prob)

4 log_odds <- log(odds)

 $5 r <- 1 / (1 + exp(-log_odds))$

values	
log_odds	1.38629436111989
odds	4
prob	0.8
r	0.8

해석)

승산(odds) = 성공률/실패율, Pi/(1-P) 단, Pi=성공률

- 성공이 일어날 가능성이 높은 경우는 1.0 보다 큰 값
- 실패가 발생할 가능성이 높은 경우는 1.0 보다작은값
- 확률에 대해 0~무한값으로 변환한 값

log odds, logit transformation = log(odds)

- 선형화의 하나로, odds값에 log를 취하여 값의 범위 를 전체 실수 범위로 확장함

sigmoid 함수

- log_odds 값을 연속형 0~1 사이의 값으로 바꾸는 함 수
- 비선형 값을 얻기 위해 사용

로지스틱 회귀분석

※ 로지스틱 회귀분석 해석

8 prob_a <- 0.5

9 prob_b <- 0.2

10 odds_a <- prob_a / (1-prob_a)

11 odds_b <- prob_b / (1-prob_b)

12 odds_ratio <- odds_a / odds_b

Values	
odds_a	1
odds_b	0.25
odds_ratio	4

승산비(odds ratio) = 관심있는 사건이 발생할 상대 비율, x=1일 때, y=1이 되는 상대적 비율

- 로지스틱 회귀에서 exp(x1)의 의미(단,x1:회귀계수)
- 나머지 변수가 주어질 때x1이 한 단위 증가할 때마다 성공(Y=1)의 odds가 몇 배 증가하는지를 나타냄

의사 결정 나무모형

- 의사 결정 규칙을 나무 구조로 나타내 전체 자료를 몇 개의 소집단으로 분류하거나 예측을 수행하는 분 석 방법
- 분석과정이 직관적이고 이해하기 쉬움

	- 새로운 데이터를 분류하거나 값을 예
	측하는 것
	- 분리 변수 p차원 공간에 대한 현재
특징	분할은 이전 분할에 영향을 받는다.
	- 부모마디보다 자식마디의 순수도가 증
	가하도록 분류나무를 형성해 나간다
	(불순도 감소)
	- 목표변수(=종속변수)가 이산형인 경우
종류	의 분류나무
	- 목표변수가 연속형인 경우의 회귀나무
	- 구조가 단순하여 해석이 용이함
	- 비모수적 모형으로 선형성,정규성,등
장점	분산성 등의 수학적 가정이 필요없음
	- 범주형(이산형)과 수치형(연속형)변수
	를 모두 사용할 수 있음
	- 분류 기준값의 경계선 부근의 자료
	값에 대해서는 오차가 큼(비연속성)
단점	- 로지스틱회귀와 같이 각 예측변수의
	효과를 파악하기 어려움
	- 새로운 자료에 대한 예측이 불안정할
	수 있음

* 독립변수 : 설명변수/예측변수/Feature* 종속변수 : 목표변수/반응변수/Label

의사결정나무의 결정규칙

	- 순수도가 높아지는 방향으로 분
분리기준	리
	- 불확실성이 낮아지는 방향
	- 더 이상 분리가 일어나지 않고
	현재의 마디가 최종마디가 되도
정지규칙	록 하는 규칙
	- '불순도 감소량'이 아주 작을 때
	정지함
	- 최종 노드가 너무 많으면
	Overfitting 가능성이 커짐, 이
	를 해결하기위해 사용
가지치기 규칙	- 가지치기의 비용함수을 최소로
	하는 분기를 찾아내도록 학습
	- 별도 규칙을 제공하거나 경험에
	의해 실행할 수 있음

불순도 측정 지표

: 목표변수가 범주형일 때 사용하는 지표

지니 지수	- 불순도 측정지표, 값이 작을수록 순수도가 높음(분류 잘됨
엔트로피 지수	- 불순도 측정지표, 가장 작 은 값을 갖는 방법 선택
카이제곱 통계량의	- 가장 작은 값을 갖는 방법
유의 확률(p-value)	선택

의사결정나무를 위한 알고리즘

- : 의사결정나무를 위한 알고리즘은 CHAID,CART,ID2, C5.0,C4.5가 있으며 **하향식 접근 방법**을 이용
- ※ 알고리즘 별 분리,정지 기준변수 선택법

알고리즘	이산형 목표변수	연속형 목표변
	(분류나무)	수(회귀나무)
CART		
(Classification		
And	지니지수	분산 감소량
Regression		
Tree)		
C5.0	엔트로피지수	
CHAID		
(Chi-squared	 카이제곱 통계량	ANOVA F-통
Automatic	기이제급 공계당 의 P-value	ANOVA r-공 계량-P-value
interaction	== r-value	71175 - F = Value
Detection)		

의사결정 트리 예)

- 2 # CART 알고리즘
- 3 library(rpart)
- 4 a <- rpart(species~. , data=iris)
- 5 a
- 6 plot(a, compress=T, margin=.3)
- 7 text(a, cex=1)
- 9 install.packages('rpart.plot')
- 10 library(rpart.plot)
- 11 prp(a, type=4, extra=2, digits=3)

n = 150

node), split, n, loss, yval, (yprob)

- * denotes terminal node
- 1) root 150 100 setosa (0.33333 0.33333 0.33333)
- 2) petal.Length< 2.45 50 0 setosa (1.0000 0.0000 0.0000) *
- 3) petal.Length>= 2.45 100 50setosa (1.0000 0.0000 0.0000) *

앙상블 모형

- 여러 개의 분류 모형에 의한 결과를 종합하여 분류의 정확도를 높이는 모형
- 약하게 학습 된 여러 모델들을 결합하여 사용
- 성능을 분산시키기 때문에 과적합 감소효과가 있음 <종류>

Voting
Bagging
Boosting
Random Forest

* Voting

- 서로 다른 여러 개 알고리즘 분류기 사용
- 각 모델의 결과를 취합하여 많은 결과 또는 높은 확 률로 나온 것을 최종 결과로 채택하는 것

* 배깅(Bagging)

- 서로 다른 훈련 데이터 샘플로 훈련, 서로 같은 알고 리즘 분류기 결합
- 원 데이터에서 중복을 허용하는 크기가 같은 표본을 여러 번 단순 임의 복원추출하여 각 표본에 대해 분 류기를 생성하는 기법
- 여러 모델이 병렬로 학습, 그 결과를 집계하는 방식
- 같은 데이터가 여러 번 추출될 수도 있고, 어띤 데이 터는 추출되지 않을 수 있음
- 데이터 집합으로부터 크기가 같은 표본을 여러번 단순 임의 복원 추출하여 각 표본에 대해 분류기를 생성한 후 그 결과를 앙상블하는 방법

※부스팅(Boosting)

- 여러 모델이 순차적으로 학습
- 재표본 과정에서 각 자료에 동일한 확률을 부여하지 않고, 분류가 잘못된 데이터에 더 가중을 주어 표본 을 추출하는 분석방법
- 맞추기 어려운 문제를 맞추는데 초점이 맞춰져있고, 이상치(outlier)에 약함
- 대표적 알고리즘 : Light GMB (Leaf-wise-node 방법을 사용하는 알고리즘)

* 랜덤 포레스트(Random forest)

- 배깅에 랜덤 과정을 추가한 방법
- 설명변수의 일부분만을 고려함으로 성능을 높이는 방 번 사용
- 여러 개 의사결정 나무를 사용해, 하나의 나무를 사용할 때보다 과적합 문제를 피할 수 있음

k-NN

- 새로운 데이터에 대해 주어진 이웃의 개수(k)만큼 가 까운 멤버들과 비교하여 결과를 판단하는 방법
- k값에 따라 소속되는 그룹이 달라질 수 있음 (k값은 hyper parameter)
- 거리를 측정해 이웃들을 뽑기 때문에 스케일링이 중 요함
- 모형을 미리 만들지 않고, 새로운 데이터가 들어오면 그때부터 계산을 시작하는 lazy learning이 사용되는 지도학습 알고리즘

SVM

- 아래 그림에서 H3는 분류를 올바르게 하지 못하며, H1, H2는 분류를 올바르게 하는데 H1가 H1보다 더 큰 간격을 갖고 분류하므로 이것이 분류 기준이 됨

인공 신경망(ANN) 모형

- 인공신경망을 이용하면 분류 및 예측을 할 수 있음.
- 분석가의 주관과 경험에 따른다.
- 입력층,은닉층,출력층 3개의 층으로 구성되어 있고, 각 층에 뉴런이 여러 개 포함되어 있음
- 학습 : 입력에 대한 올바른 출력이 나오도록 가중치 (weights)를 조절하는 것
- bias, variance : 학습 알고리즘이 갖는 두 가지 종
 류의 error로 trade off관계임
- ** bias : 지나치게 단순한 모델로 인한 error, bias가 크면 과소 적합을 야기함
- * variance : 지나치게 복잡한 모델로 인한 error, cariance가 크면 과대 적합이 야기됨
- * 학습 모형이 유연하다는 것은 복잡도가 증가한다는 것을 의미 (bias 낮고, variance가 높음)

경사하강법

- 함수 기울기를 낮은 쪽으로 계속 이동시켜 극값에이 를 때까지 반복시키는 것
- 제시된 함수의 기울기의 최소값을 찾아내는 머신러닝 악고리즌
- 비용함수를 최소화 하기 위해 parameter를 반복적으로 조정하는 과정

인공 신경망 모형의 장/단점

	- 복잡한 비선형 관계에 유용
	- 이상치 잡음에 대해서도 민감하게 반응
장점	하지 않음
	- 입력변수와 결과변수가 연속형이나 이산
	형인 경우 모두 처리 가능
	- 결과에 대한 해석이 쉽지 않음
	- 최적의 모형을 도출하는 것이 상대적으
단점	로 어려움
	- 데이터를 정규화 하지 않으면 지역해
	(local minimum)에 빠질 위험이 있음

신경망 활성화 함수

- 결과값을 내보낼 때 사용하는 함수로, 가중치 값을 학습할 때 에러가 적게 나도록 도움
- 풀고자 하는 문제 종류에 따라 활성화 함수의 선택이 달라짐
- ※ 활성화 함수의 종류

신경망 활성화 함수

	- 연속형 0~1, Logistic함수라
sigmoid 함수	불리기도 함
	- 선형적인 멀티-퍼셉트론에서
	비선형 값을 얻기 위해 사용
	- 모든 logits의 합이 1이 되도
	록 output을 정규화
	- 주로 3개이상 분류시 사용함
softmax 함수	- sigmoid 함수의 일반화된 형
	태로 목표치가 다 범주인 경
	우 각 범주에 속할 사후 확률
	을 제공하는 활성화 함수

신경망 은닉 층, 은닉 노드

- 다층신경망은 단층신경망에 비해 훈련이 어려움
- 은닉층 수와 은닉 노드 수의 결정은 '분석가가 분석 경험에 의해 설정'함

- 네트워크가 복잡한 의사 절정 경계를 만들 수 없음 가입 경제를 만들 수 없음 가입 경제를 만들 수 없음 장이낼 수있지만, 일반화가 어렵다 레이어가 많아지면 기울기 소실 문제가 발생할수 있다 - 과적합(Overfitting)문제발생 - 출력층에서 제시한 값에 대해, 실제 원하는 값으로 학습하는 방법으로 사용 - 동일 입력층에 대해 원하는 값이 출력되도록 개개의 weight를 조정하는 방법으로 사용된 - 다층신경망에서 은닉층이많아 인공신경망 기울기 값을 베이스로하는 역전파 알고리즘으로 학습시키려고할 때 발생하는 문제		
적으면 음 - unerfitting 문제 발생 - 복잡성을 잡아낼 수있지 만, 일반화가 어렵다 레이어가 많아지면 기울 기 소실 문제가 발생할 수 있다 - 과적합(Overfitting)문제 발생 - 출력층에서 제시한 값에 대해, 실제 원하는 값으로 학습하는 방법으로 사용 - 동일 입력층에 대해 원하는 값이 출력되도록 개개의 weight를 조정하는 방법으로 사용됨 - 다층신경망에서 은닉층이 많아 인공신경망 기울기 값을 베이스로하는 역전파 알고리즘으로 학습시키려고 할 때 발생하는		- 네트워크가 복잡한 의사
- unerfitting 문제 발생 - 복잡성을 잡아낼 수있지 만, 일반화가 어렵다 레이어가 많아지면 기울 기 소실 문제가 발생할 수 있다 - 과적합(Overfitting)문제 발생 - 출력층에서 제시한 값에 대해, 실제 원하는 값으 로 학습하는 방법으로 사용 - 동일 입력층에 대해 원하 는 값이 출력되도록 개개 의 weight를 조정하는 방법으로 사용됨 - 다층신경망에서 은닉층이 많아 인공신경망 기울기 값을 베이스로하는 역전 파 알고리즘으로 학습시 키려고 할 때 발생하는		결정 경계를 만들 수 없
- 복잡성을 잡아낼 수있지 만, 일반화가 어렵다. - 레이어가 많아지면 기울 기 소실 문제가 발생할 수 있다 - 과적합(Overfitting)문제 발생 - 출력층에서 제시한 값에 대해, 실제 원하는 값으 로 학습하는 방법으로 사 용 - 동일 입력층에 대해 원하 는 값이 출력되도록 개개 의 weight를 조정하는 방법으로 사용됨 - 다층신경망에서 은닉층이 많아 인공신경망 기울기 값을 베이스로하는 역전 파 알고리즘으로 학습시 키려고 할 때 발생하는		<u></u>
만, 일반화가 어렵다 레이어가 많아지면 기울 기 소실 문제가 발생할 수 있다 - 과적합(Overfitting)문제 발생 - 출력층에서 제시한 값에 대해, 실제 원하는 값으 로 학습하는 방법으로 사 용 - 동일 입력층에 대해 원하 는 값이 출력되도록 개개 의 weight를 조정하는 방법으로 사용됨 - 다층신경망에서 은닉층이 많아 인공신경망 기울기 값을 베이스로하는 역전 파 알고리즘으로 학습시 키려고 할 때 발생하는		- unerfitting 문제 발생
- 레이어가 많아지면 기울 기 소실 문제가 발생할 수 있다 - 과적합(Overfitting)문제 발생 - 출력층에서 제시한 값에 대해, 실제 원하는 값으 로 학습하는 방법으로 사 용 - 동일 입력층에 대해 원하 는 값이 출력되도록 개개 의 weight를 조정하는 방법으로 사용됨 - 다층신경망에서 은닉층이 많아 인공신경망 기울기 값을 베이스로하는 역전 파 알고리즘으로 학습시 키려고 할 때 발생하는		- 복잡성을 잡아낼 수있지
은닉 층 노드가 너무 많으면 기 소실 문제가 발생할 수 있다 - 과적합(Overfitting)문제 발생 - 출력층에서 제시한 값에 대해, 실제 원하는 값으로 학습하는 방법으로 사용 - 동일 입력층에 대해 원하는 값이 출력되도록 개개의 weight를 조정하는 방법으로 사용된 - 다층신경망에서 은닉층이많아 인공신경망 기울기 값을 베이스로하는 역전파 알고리즘으로 학습시키려고 할 때 발생하는		만, 일반화가 어렵다.
망으면 기 소실 문제가 발생할 수 있다 - 과적합(Overfitting)문제 발생 - 출력층에서 제시한 값에 대해, 실제 원하는 값으로 학습하는 방법으로 사용 - 동일 입력층에 대해 원하는 값이 출력되도록 개개의 weight를 조정하는 방법으로 사용됨 - 다층신경망에서 은닉층이 많아 인공신경망 기울기 값을 베이스로하는 역전파 알고리즘으로 학습시키려고 할 때 발생하는	O디 ᄎ ᇿᄃᆉ ᅥᄆ	- 레이어가 많아지면 기울
수 있다 - 과적합(Overfitting)문제 발생 - 출력층에서 제시한 값에 대해, 실제 원하는 값으 로 학습하는 방법으로 사 용 - 동일 입력층에 대해 원하 는 값이 출력되도록 개개 의 weight를 조정하는 방법으로 사용됨 - 다층신경망에서 은닉층이 많아 인공신경망 기울기 값을 베이스로하는 역전 파 알고리즘으로 학습시 키려고 할 때 발생하는		기 소실 문제가 발생할
발생 - 출력층에서 제시한 값에 대해, 실제 원하는 값으로 학습하는 방법으로 사용 - 동일 입력층에 대해 원하는 값이 출력되도록 개개의 weight를 조정하는 방법으로 사용됨 - 다층신경망에서 은닉층이많아 인공신경망 기울기 값을 베이스로하는 역전파 알고리즘으로 학습시키려고할때 발생하는	1층 <u>~</u> 긴	수 있다
- 출력층에서 제시한 값에 대해, 실제 원하는 값으로 학습하는 방법으로 사용 - 동일 입력층에 대해 원하는 값이 출력되도록 개개의 weight를 조정하는 방법으로 사용됨 - 다층신경망에서 은닉층이많아 인공신경망 기울기 값을 베이스로하는 역전파 알고리즘으로 학습시키려고할때 발생하는		- 과적합(Overfitting)문제
대해, 실제 원하는 값으로 학습하는 방법으로 사용 - 동일 입력층에 대해 원하는 값이 출력되도록 개개의 weight를 조정하는 방법으로 사용됨 - 다층신경망에서 은닉층이많아 인공신경망 기울기값을 베이스로하는 역전파 알고리즘으로 학습시키려고할때 발생하는		발생
로 학습하는 방법으로 사용 - 동일 입력층에 대해 원하는 값이 출력되도록 개개의 weight를 조정하는 방법으로 사용됨 - 다충신경망에서 은닉층이많아 인공신경망 기울기값을 베이스로하는 역전파 알고리즘으로 학습시키려고할때 발생하는		- 출력층에서 제시한 값에
용 - 동일 입력층에 대해 원하는 값이 출력되도록 개개의 weight를 조정하는 방법으로 사용됨 - 다층신경망에서 은닉층이 많아 인공신경망 기울기 값을 베이스로하는 역전 파 알고리즘으로 학습시키려고 할 때 발생하는		대해, 실제 원하는 값으
역전파 알고리즘 - 동일 입력층에 대해 원하는 값이 출력되도록 개개의 weight를 조정하는 방법으로 사용됨 - 다층신경망에서 은닉층이많아 인공신경망 기울기값을 베이스로하는 역전파 알고리즘으로 학습시키려고할때 발생하는		로 학습하는 방법으로 사
- 동일 입력층에 대해 원하는 값이 출력되도록 개개의 weight를 조정하는 방법으로 사용됨 - 다층신경망에서 은닉층이 많아 인공신경망 기울기 값을 베이스로하는 역전 파 알고리즘으로 학습시키려고 할 때 발생하는	어디를 아그리지	<u>용</u>
의 weight를 조정하는 방법으로 사용됨 - 다층신경망에서 은닉층이 많아 인공신경망 기울기 값을 베이스로하는 역전 파 알고리즘으로 학습시 키려고 할 때 발생하는	역신파 일고리즘	- 동일 입력층에 대해 원하
방법으로 사용됨 - 다층신경망에서 은닉층이 많아 인공신경망 기울기 값을 베이스로하는 역전 파 알고리즘으로 학습시 키려고 할 때 발생하는		는 값이 출력되도록 개개
- 다층신경망에서 은닉층이 많아 인공신경망 기울기 값을 베이스로하는 역전 파 알고리즘으로 학습시 키려고 할 때 발생하는		의 weight를 조정하는
- 다층신경망에서 은닉층이 많아 인공신경망 기울기 값을 베이스로하는 역전 파 알고리즘으로 학습시 키려고 할 때 발생하는		방법으로 사용됨
기울기 소실 문제 값을 베이스로하는 역전 파 알고리즘으로 학습시 키려고 할 때 발생하는	기울기 소실 문제	
기울기 소실 문제 파 알고리즘으로 학습시 키려고 할 때 발생하는		많아 인공신경망 기울기
파 알고리즘으로 학습시 키려고 할 때 발생하는		값을 베이스로하는 역전
키려고 할 때 발생하는		파 알고리즘으로 학습시
문제		
		문제

기울기 소실

- 다층신경망에서는 역전파 알고리즘이 입력층으로 갈 수록 Gradient가 점차적으로 작아져 0에 수렴하여, weight가 업데이트 되지 않는 현상
- 은닉층이 늘어나면서 기울기가 중간에 0이 되어 버리 는 문제

모형 평가

홀드아웃	- 원천 데이터를 랜덤하게 두 분류로 분리하여 교차검정을 실시하는 방 법으로 하나는 모형 학습 및 구축 을 위한 훈련용 자료로 다른 하나 는 성과평가를 위한 검증용 자료로 사용하는 방법 - 과적합 발생 여부를 확인하기 위해 서 주어진 데이터의 일정 부분을 모델을 만드는 훈련데이터로 사용 하고, 나머지 데이터를 사용해 모델 을 평가 - 2종 오류의 발생을 방지
	iris데이터를 7:3 비율로 나누어 Training에서 70%, Testing에 30% 사용하도록 하는 것
교차검증	- 데이터가 충분하지 않을 경우 Hold-out으로 나누면 많은 양의 분산 발생 - 이에 대한 해결책으로 교차검증을 사용할 수 있음, 그러나 클래스 불 균형 데이터에는 적합하지않음 - 주어진 데이터를 가지고 반복적으 로 성과를 측정하여 그 결과를 평 균한 것으로 분류 분석 모형의 평 가 방법
붓스트랩	- 평가를 반복하는 측면에서 교차검 증과 유사하지만, 훈련용 자료를 반 복 재선정한다는 점에서 차이 - 관측치를 한 번 이상 훈련용 자료 로 사용하는 복원추출법에 기반 - 훈련 데이터를 63.2% 사용하는 0.632 붓스트랩이 있음 - 반복 수행 시 매회 다른 데이터 분 할이 된다.

데이터 분할 시 고려사항

- class의 비율이 한쪽에 치우쳐 있는 클래스 불균형 상태라면 다음 기법 사용을 고려한다.
- 1) under sampling : 적은 class의 수에 맞추는 것
- 2) over sampling : 많은 class의 수에 맞추는 것
- ※ 훈련 데이터에 대한 학습만을 바탕으로 모델의 설정 (Hyperparameter)를 튜닝하게 되면 과대적합이 일어날 가능성이 매우 크다.
- * tsst set결과가 일반적으로 training set 결과보다 좋지 않다.

오분류표를 활용한 평가 지표

T/F	P/N	
실제 == 예측 : TRUE	TRUE 예측 : Positive	
실제 ! = 예측 : FALSE	FALSE 예측 : Negative	

TP = positive로 예측해서 맞춘 것 FP = 예측을 Positive로 했는데 틀림(=negative)

구분		실제	
		FALSE	TRUE
예측	FALSE	TN	FN(2 종)
	TRUE	FP(1 종)	TP

* Pricision(정밀도)

(예측값이 TRUE인것에 대해 실제 값이 TRUE인 지표)

- = TP/(TP+FP)
- * Error Rate

(전체 예측에서 틀린 예측의 비율)

 $= (FP+FN) / (TP_TN+FP+FN)$

* Sensitivity, Recall

(실제 값이 TRUE인것에 대해 예측 값이 TRUE인 지표)

= TP/(TP+FN)

* Accuracy

(전체 예측에서 옳은 예측의 비율)

(불균형한 레이블 값 분포의 데이터에서는 모델의 성능이 실 제로 좋지 못하더라도 정확도가 높을 수 있음)

- = (TP+TN) / (TP+TN+FP+FN)
- * Specificity (특이도)
 - = TN / (TN+FP)

* F1 Score

(불균형한 데이터 평가에 사용)

= 2*(Precision*Recall) / (Precision+Recall)

카파 상관계수(kappa)

- 코헨(Cohen)의 상관계수로 두 평가자의 평가가 얼마 나 일치하는지 평가하는 값

ROC Curve

- ROC 그래프의 밑부분의 면적이 넓을수록 좋은 모형 으로 평가함
- FP-Ratio(1-특이도), 민감도를 나타내어 이 두 평면 값의 관계로 하는 모형평가
- FP-Rate : FP/(FP+TN)
- 1-Specificity : 실제가 FALSE인데 예측이 TRUE로 된 비율(1종오류비율)
- * Perfect classifier
- : 긍정,부정 모두 다 맞추는 위치로 classification성능이 우수하다고 봄. (X=0, Y=1인 경우)

이익 도표

- 분류 모형의 예측 성능을 평가하기 위한 척도, 주로 불균형 데이터 집합에 사용됨
- 랜덤 모델과 비교하여 해당 분류 모델의 성과가 얼마 나 향상되었는지각 등급별로 파악할 수 있음
- 정보를 산출하여 나타내는 표

향상도 차트

- 좋은모델 : Lift Curve가 빠른 속도로 감소 추세를 보임

군집분석

- 여러 변수 값들로부터 n개의 개체를 유사한 성격을 가지는 몇 개의 군집으로 집단화하고 형성된 군집들 의 특성을 파악해 군집들 사이의 관계를 분석하는 다 변량분석 기법

계층적 군집	응집형 : 단일(최단)연결법,ward 연
	결법
	분리형 : 다이아나 방법
분할적 군집	프로토타입-기반 - K-중심 군집 :
	k-평균 군집, k-중앙값 군집, k-메
	도이드 군집
	분포기반 - 혼합 분포 군집
	밀도기반 - 중심밀도 군집,격자기반
	군집

계층적 군집 분석의 특징

- 가장 유사한 개체를 묶어 나가는 과정을 반복하여 원 하는 개수의 군집으 형성하는 방법
- 유사도 판단은 두 개체 간의 거리에 기반하므로 거리 측정에 대한 정의가 필요함
- 이상치에 민감함
- 사전에 군집 수 k를 설정할 필요가 없는 탐색적 모형
- 병합적 방법에서 한 번 군집이 형성되면 군집에 속한

개체는 다른 군집으로 이동할 수 없음

계층적 군집 - 응집형(병합군집)군집방법

최단연결법	- 단일연결법 이라고도 하며, 두 군
	집 사이의 거리를 군집에서 하나
	씩 관측 값을 뽑았을 때 나타날
	수 있는 거리의 최솟값 을 추정
최장연결법	- 완전연결법 이라고도 하며, 거리의
	최대값 을 측정
중심 연결법	- 두 군집의 중심 간의 거리를 측정
와드 연결법	- 계층적 군집내의 오차제곱합에 기
	초하여 군집을 수행하는 군집방법
평균 연결법	- 계산양이 많아질 수 있음

계층적 군집의 거리

수학적 거리 개념 : 유클리드,맨해튼,민코프스키 통계적 거리 개념 : 표준화, 마할라노비스

유클리드	- 두 점 사이의 가장 직관적이고 일반적
	인 거리의 개념,
	- 방향성이 고려되지 않음
맨해튼	- 두 점의 각 성분별 차의 절대값 합
미크규소키	- q=2이면 유클리드
민코프스키	- q=1이면 맨해튼
	- 각 변수를 해당 변수의 표준편차로 척
표준화 거리	도 변환한 후 유클리드 거리를 계산한
	것으로 통계적 거리라고함
ກໄລ້ໄລໄາ ນໄລ	- 변수의 표준화와 함께 변수 간의 상관
마할라노비스	성을 동시에 고려한 통계적 거리
	- 거리측정에 사용하는 함수로 사용가능
dist 함수	한 거리 개념으로 유클리드,맨해튼,민
	코프스키,Maximum,canberra,binary
	등이 있음
코사인 거리	- 두 벡터 사이의 사잇각을 계산해서 유
	사한 정도를 구하는 것

비계층적 군집 - 분할적 군집 방법 (k-중심 군집)

k-means : k-mean 방법은 사전에 군집의 수k를 정해 주어야 함 (k:hyper-parameter)

k-means 절차

1)초기 군집의 중심으로 k개의 객체를 임의로 선택한다 2)각 자료를 가장 가꾸운 군집의 중심에 할당한다 3)각 군집 내의 자료들의 평균을 계산하여 군집의 중심 을 갱신한다.

4)군집 중심의 변화가 거의 없을 때까지 2,3을 반복

비계층적군집

	- 밀도 기반 클러스터링으로 점이
	세밀하게 몰려 있어 밀도가 높은
	부분을 클러스터링 함
	- 어느 점을 기준으로 반경 내에
DDGG111	점이 n개 이상 있으면 하나의 군
DBSCAN	집으로 인식
	- 임의적 모양의 군집분석에 적합
	- k 값을 정할 필요 없음
	- 이상치(outlier)에 의한 성능 하
	락을 완화할 수 있음
혼합분포군집	72 C42 1 MB
全省七半正省	4 - 1/-1 - 1111-111 -11-11
	1. 모수(평균,분산,혼합계수)에 대해
	임의의 초기값을 정함
	2. E step : k개의 모형 군집에 대
EM 알고리즘	해 모수를 사용해 각 군집에 속할
	사후 확률을 구함
	3. M step : 사후확률을 이용해 최
	대 우도 추정으로 모수를 다시 추
	정하고, 이를 반복함

실루엣 계수

- 군집분석에서 중요한 지표로서,거리가 가까울수록 높 고 멀수록 낮은 지표이자 완벽히 분리된 경우 1이 되 는 지표
- 군집내 거리와 군집 간의 거리를 기준으로 군집 분할 성과를 측정하는 방식
- 클러스터 안의 데이터들이 다른 클러스터와 비교해 얼마나 비슷한가를 나타내는 군집평가
- 실루엣 지표가 1에 가까울수록 군집화가 잘 되었다고 판단

- ※ 군집 결과에 대한 안정성 검토는 실루엣,Dunn Index를 사용함
 - * Height 150에서 선을 그어 만나는 선의 수가 군집의 수이다.

SOM (Self-Organizing Maps)

- 자기조직화지도
- 인공신경망의 한 종류로, 차원축소와 군집화를 동시 에 수행하는 기법
- 비지도 학습
- 고차원으로 표현된 데이터를 저차원으로 변환해서 보 는데 유용함
- 주요 기능 중에 데이터의 특징을 파악하여 유사 데이 터를 클러스터링한다.
- 2개의 층으로 구성 (다층x)

SOM Process

1단계 : SOM의 노드에 대한 연결강도(weight)초기화 2단계 : 입력 벡터와 경쟁 층 노드 간의 거리 계산 및 입력벡터와 가까운 노드 선택 \rightarrow 경쟁

3단계 : 경쟁에서 선택된 노드와 이웃 노드의 가중치(연 결강도)갱신 → 협력 및 적응

4단계 : 단계 2로 가서 반복

- 승자만이 출력을 내고, 승자와 그의 이웃만이 연결강 도를 수정하는 승자 독점 구조로 인해 경쟁층에는 승 자 뉴련만 나타남

신경망 모형 vs SOM

	- 연속적인 layer로 구성
신경망 모형	- 에러 수정을 학습
	- 역전파 알고리즘
	- 2차원(입력층/경쟁층)의 그리드(격
	자)로 구성
SOM	- 경쟁학습 실시
	- 전방패스를 사용해 속도가 매우
	빠름

연관분석

	- 연관규칙:항목들 간의
	'조건-결과'식으로 표
	현되는 유용한 패턴
	- 이러한 패턴 규칙을
	발견해내는 것을 연관
어기보기	분석이라고 함
연관분석	- 장바구니 분석이라고
	함
	- 연관규칙을 찾기 위해
	세분화 분석 품목이
	필요하다, 다만 너무
	세분화된 품목을 가지

	고 찾으려면 의미 없
	는 분석 결과가 도출
	된다.
	- 데이터들에 대한 발생
Anioni Otaala	빈도를 기반으로 각
Ariori 알고리즘	데이터 간의 연관관계
	를 밝히는 방법
FP Growth	- Apriori 단점을 보완
rr Giowili	하기 위해
	- 조건반응(if-then)으로
	표현되는 연관 분석의
717]	결과를 이해하기 쉬움
장점	- 강력한 비목적성 분석
	기법이며, 분석 계산
	이 간편함
	- 분석 품목 수가 증가
단점	하면 분석 계산이 기
	하급수적으로 증가함

연관규칙 측정지표

규칙표기 : A→B

- if A then B → A가 팔리면 B가 같이 팔린다.

지지도	- 전체 거래 중 차지하는 비율을 통해 해당 연관 규칙이 얼마나 의미가 있 는 것인지 확인함 - 전체 거래항목 중 상품A와 상품 B를 동시에 포함하여 거래하는 비율 - 지지도 = P(A∩B): A와 B가 동시에
	포함된 거래 수 / 전체 거래 수
신뢰도	 상품 A를 구매했을 때 상품 B를 구매할 확률이 어느 정도 되는지를 확인 상품 A를 포함하는 거래 중 A와 B가동시에 거래되는 비율 신뢰도 = P(A ∩ B) / P(A) : A와 B가동시에 포함된 거래 수 / A가 포함된 거래 수
향상도 (~대비)	- A가 주어지지 않았을 때 B의 확률 대 비 A가 주어졌을 때 B의 확률 증가 비율 - 향상도 = P(A∩B) / (P(A)*P(B)) : A와 B가 동시에 일어난 확률 / A,B 가 독립된 사건일 때 A,B가 동시에 일어날 확률

향상도 해석

- 향상도가 1보다 높아질수록 연고나성이 높다
- 향상도가 1보다 크면 이 규칙은 결과를 예측하는데 있어 우수하다는 것을 의미함
- 향상도가 1보다 크면 서로 양의 관계로 품목 B를 구매 할 확률보다 품목A를 구매한 후에 품목 B를 구매할 확률이 더 높다는 것을 의미함

- 향상도=1 : 품목 A와 B사이에 아무런 상호관계없음
- 향상도가 1보다 작으면 두 품목이 서로 음의 상관관 계가 있음을 의미함

ex) 어떤 슈퍼마켓 고객 6명의 장바구니별 구입품목이 다음과 같다고 하자, 연관 규칙(콜라→맥주)의 지지도 는?

거래번호	판매상품
1	소주,콜라,맥주
2	소주,콜라,와인
3	소주,주스
4	콜라,맥주
5	소주,콜라,맥주,와인
6	주스

지지도 : A와 B가 동시에 포함된 거래 수/전체 거래 수 콜라+맥주 (3) / 전체거래 (6) 3/6 = 0.5

ex) 어느 마트에서 A제품과 B제품을 판매하고 있다. A 제품 \rightarrow B제품의 지지도는 0.3이고, 신뢰도가 0.6이다. A제품과 B제품의 판매 수량이 동일할 때, 향상도는?

향상도 : P(A∩B) / (P(A)*P(B))

지지도 : P(A ∩ B) = 0.3

신뢰도 : P(A∩B) / P(A) = 0.6

0.3 / P(A) = 0.6

0.3 = 0.6 * P(A)

P(A) = 0.5 = 동일하다고 했으니 P(B) = 0.5

향상도 : P(A ∩ B) / (P(A)*P(B))

0.3 / 0.5 x 0.5

= 1.2

```
model = glm(default ~ ., data=Dafault, Family=binomial)
summary(model)
```

Call:

glm(formula = dafault ~ ., family = binomial , data = Dafault)

Deviance Residuals:

MIn 1Q Median 3Q Max -2.4691 -0.1418 -0.0557 -0.0203 3.7383

Coefficients:

Estimate Std. Error z value Pr(>:z:) -1.087e+01 4.923e-01 -22.080 < 2e-16 *** (Intercept) studentYes -6.468e-01 2.363e-01 -2.738 0.00619 ** 5.737e-03 2.319e-04 24.738 < 2e-16 *** 3.033e-06 8.203e-06 0.370 0.71152 balance income

Signif. codes:

0 '***' 0.001'**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2920.6 on 9999 degrees of freedom Residual deviance: 1571.5 on 9996 degrees of freedom

AIC: 1579.5