Software Testing Project Report

Maheedhar (IMT2019074) D V N P S M Manohar (IMT2019025)

What is CFG?

A control flow graph (CFG) is the graphical representation of control flow or computation during the execution of programs or applications. Control flow graphs are mostly used in static analysis as well as compiler applications, as they can accurately represent the flow inside of a program unit

Project Information

The Source code for the project is a terminal based menu interface to execute different binary tree algorithms. The terminal menu interface looks as follows -

Binary Tree operations Menu

1.) PreOrder Traversal of Binary tree

2.) InOrder Traversal of Binary tree

3.) PostOrder Traversal of Binary tree

4.) Level Order Traversal of Binary tree

5.) Height of Binary tree

6.) Check if the Binary Tree is Symmetric

7.) Check if two Binary Trees are Mirrors of each other

8.) Bottom View of a Binary Tree

9.) Check the Children Sum Property in a Binary Tree

10.) Number of Nodes of a Binary Tree

0.) Exit

We have implemented 10 binary tree algorithms. The user would be asked which algorithm they want and the user should provide the number corresponding to that algorithm.

Tools Used

- Java
- JUnit
- Code2flow

GitHub Repository Link

 $\underline{https://github.com/manoharsuggula/SoftwareTesting-Project-Report}$

Functions used in the source code

Function	Description
PreOrderIterative	Prints the preOrder traversal of a Binary Tree
PostOrderIterative	Prints the postOrder traversal of a Binary Tree
InOrderIterative	Prints the InOrder traversal of a Binary Tree
levelOrderIterative	Prints the levelOrder traversal of a Binary Tree
bottomView	Prints the bottom View of a Binary Tree
areMirrors	Checks whether the 2 trees are mirrors to each other
CheckChildrenSum	For every node of the tree, it checks whether the sum of values of children is equal to the value of the node.
isSymmetric	Checks whether the Tree is symmetric to itself or not
numNodes	Returns the number of nodes of a Binary Tree
Height	Returns the Height of Tree

Level order

The control flow graph of Level Order Traversal is

This is simplified into a simple graph as follows

We performed the Edge coverage and Prime coverage on this simplified graph.

Edge Coverage:

The Test requirements for Edge Coverage are { [0,1], [1,2], [1,3], [3,4], [4,5], [4,6], [6,5], [5,1], [7,1], [5,7] }

The Test Paths are
[0,1,3,4,6,5,7,1,2]
[0,1,3,4,5,1,3,4,5,1,2]
[0,1,2]

Prime Path Coverage:

The Test requirements for Prime path Coverage are { [3,4,6,5,7,1,2], [3,4,6,5,7,1,3], [1,3,4,6,5,7,1], [0,1,3,4,6,5,7], [4,6,5,7,1,3,4], [5,7,1,3,4,6,5], [7,1,3,4,6,5,7], [6,5,7,1,3,4,6], [3,4,5,7,1,3], [3,4,5,7,1,2], [3,4,6,5,1,2], [3,4,6,5,1,3], [0,1,3,4,5,7], [1,3,4,5,7,1], [1,3,4,6,5,1], [4,5,7,1,3,4], [7,1,3,4,5,7], [5,1,3,4,6,5], [5,7,1,3,4,5], [4,6,5,1,3,4], [6,5,1,3,4,6], [3,4,5,1,3], [4,5,1,3,4], [3,4,5,1,2], [1,3,4,5,1], [5,1,3,4,5], [0,1,2] }

The Test Paths for prime path coverage are

7 test paths are needed for Prime Path Coverage using the prefix graph algorithm

Test Paths	Test Requirements that are toured by test paths directly / side trips	Test Case Number
[0,1,2]	[0,1,2]	1
[0,1,3,4,5,1,2]	[3,4,5,1,2], [1,3,4,5,1]	2
[0,1,3,4,5,7,1,3,4,6,5,1,3,4,5,1,2]	[5,7,1,3,4,6,5], [3,4,5,7,1,3], [3,4,6,5,1,2], [0,1,3,4,5,7], [1,3,4,5,7,1], [1,3,4,6,5,1], [4,5,7,1,3,4], [3,4,5,1,2], [3,4,5,7,1,3], [5,7,1,3,4,6,5], [0,1,3,4,5,7], [1,3,4,5,7,1], [4,5,7,1,3,4],	3
[0,1,3,4,6,5,7,1,3,4,5,1,3,4,5,1,2]	[3,4,5,1,3], [4,5,1,3,4], [1,3,4,5,1], [5,1,3,4,5], [3,4,6,5,7,1,3], [1,3,4,6,5,7,1], [4,6,5,7,1,3,4],[5,7,1,3,4,5]	4
[0,1,3,4,6,5,7,1,3,4,6,5,7,1,3,4,5,1,3,4,5,1,3,4,5,1,3,4,5,1,2]	[7,1,3,4,6,5,7],[3,4,6,5,7,1,3], [1,3,4,6,5,7,1] [0,1,3,4,6,5,7],[4,6,5,7,1,3,4], [5,7,1,3,4,6,5], [6,5,7,1,3,4,6],[5,1,3,4,5]	5
[0,1,3,4,6,5,1,3,4,5,7,1,3,4,5,1,2]	[3,4,6,5,1,3],[1,3,4,5,7,1],[1,3,4,6,5,1], [4,5,7,1,3,4], [5,7,1,3,4,5], [4,6,5,1,3,4],	6
[0,1,3,4,6,5,1,3,4,6,5,1,3,4,6,5,1,3,4,5,7,1,3,4,6,5,1,3,4,5,7,1,3,4,5,7,1,2]	[7,1,3,4,5,7], [5,1,3,4,6,5], [6,5,1,3,4,6],	Not Feasible

The prime path coverage subsumes the Edge Coverage.

Post order

This is simplified into a simple graph as follows

We performed the Edge coverage and Prime coverage on this simplified graph.

Edge Coverage:

The Test requirements for Edge Coverage are **{** [0,1], [1,2], [1,3], [3,4], [4,5], [4,6], [5,7], [7,8], [7,9], [8,9], [9,4], [10,4], [9,10], [6,11], [6,12], [12,6] **}**

The Test Paths are

[0,1,3,4,6,12,6,12,6,11] [0,1,3,4,5,7,9,4,6,11] [0,1,3,4,5,7,8,9,10,4,6,11] [0,1,2]

Prime Path Coverage:

The Test requirements for Prime path Coverage are **{** [0,1,3,4,5,7,8,9,10], [0,1,3,4,5,7,9,10], [5,7,8,9,10,4,6,12], [5,7,8,9,4,6,11], [4,5,7,8,9,10,4], [5,7,8,9,4,6,12], [5,7,8,9,10,4,5],

[8,9,10,4,5,7,8], [10,4,5,7,8,9,10], [9,10,4,5,7,8,9], [5,7,9,10,4,6,11], [5,7,9,10,4,6,12], [7,8,9,10,4,5,7], [5,7,8,9,4,5], [4,5,7,9,10,4], [5,7,9,4,6,11], [5,7,9,10,4,5], [5,7,9,4,6,12], [0,1,3,4,6,12], [0,1,3,4,6,11], [4,5,7,8,9,4], [7,8,9,4,5,7], [9,4,5,7,8,9], [9,10,4,5,7,9], [10,4,5,7,9,10], [8,9,4,5,7,8], [7,9,10,4,5,7], [5,7,9,4,5], [4,5,7,9,4], [9,4,5,7,9], [7,9,4,5,7], [0,1,2], [6,12,6], [12,6,12], [12,6,11] }

The Test Paths for prime path coverage are

Primepath coverage

Test Paths	Test Requirements that are toured by test paths directly	Test case number
[0,1,2]	[0,1,2]	1
[0,1,3,4,5,7,9,4,6,12,6,11]	[5,7,9,4,6,12], [4,5,7,9,4]	2
[0,1,3,4,5,7,8,9,4,5,7,9,4,6,1 2,6,12,6,11]	[5,7,8,9,4,5],[4,5,7,9,10,4],[4,5,7,8,9,4], [7,8,9,4,5,7], [9,4,5,7,9],[6,12,6], [12,6,12], [12,6,11]	3
[0,1,3,4,5,7,9,10,4,5,7,9,4,6, 12,6,12,6,11]	[0,1,3,4,5,7,9,10], [5,7,9,10,4,5], [9,10,4,5,7,9], [7,9,10,4,5,7]	4
[0,1,3,4,5,7,8,9,10,4,5,7,8,9, 10,4,5,7,9,4,5,7,9,4,5,7,9,4,5,7,9,4,6,12,6,12,6,12,6,12,6,12,6,12,6,12,6,	[9,4,5,7,8,9], [10,4,5,7,9,10], [8,9,4,5,7,8], [4,5,7,8,9,10,4], [5,7,8,9,10,4,5], [8,9,10,4,5,7,8], [10,4,5,7,8,9,10], [9,10,4,5,7,8,9], [0,1,3,4,5,7,8,9,10], [7,8,9,10,4,5,7]	5
[0,1,3,4,5,7,9,4,5,7,9,10,4,5,7,9,4,6,11]	[4,5,7,9,10,4], [5,7,9,4,6,11], [5,7,9,10,4,5], [9,10,4,5,7,9], [7,9,10,4,5,7], [5,7,9,4,5], [4,5,7,9,4], [9,4,5,7,9], [7,9,4,5,7]	Not feasible
[0,1,3,4,5,7,8,9,4,5,7,8,9,4,5,7,8,9,10,4,5,7,8,9,10,4,6,11]	[5,7,8,9,10,4,6,11], [4,5,7,8,9,10,4], [5,7,8,9,10,4,5], [8,9,10,4,5,7,8], [10,4,5,7,8,9,10], [9,10,4,5,7,8,9], [7,8,9,10,4,5,7], [5,7,8,9,4,5], [4,5,7,8,9,4], [7,8,9,4,5,7], [9,4,5,7,8,9], [8,9,4,5,7,8]	Not feasible

[0,1,3,4,6,12,6,12,6,12,6,11]	[0,1,3,4,6,12], [6,12,6], [12,6,12], [12,6,11]	Not feasible
[0,1,3,4,6,12,6,11]	[0,1,3,4,6,12], [6,12,6], [12,6,11]	Not feasible
[0,1,3,4,5,7,9,4,5,7,9,4,6,12,6,11]	[5,7,9,4,6,12], [5,7,9,4,5], [4,5,7,9,4], [9,4,5,7,9], [7,9,4,5,7], [6,12,6], [12,6,11]	Not feasible
[0,1,3,4,6,11]	[0,1,3,4,6,11]	Not feasible
[0,1,3,4,5,7,9,10,4,5,7,9,10,4,6,11]	[0,1,3,4,5,7,9,10], [5,7,9,10,4,6,11], [4,5,7,9,10,4], [5,7,9,10,4,5], [9,10,4,5,7,9], [10,4,5,7,9,10], [7,9,10,4,5,7]	Not feasible
[0,1,3,4,5,7,8,9,10,4,6,12,6,1 1]	[0,1,3,4,5,7,8,9,10], [5,7,8,9,10,4,6,12], [4,5,7,8,9,10,4], [6,12,6], [12,6,11]	Not feasible
[0,1,3,4,5,7,8,9,4,6,11]	[5,7,8,9,4,6,11], [4,5,7,8,9,4]	Not feasible
[0,1,3,4,5,7,8,9,4,6,12,6,11]	[5,7,8,9,4,6,12], [4,5,7,8,9,4], [6,12,6], [12,6,11]	Not feasible
[0,1,3,4,5,7,9,10,4,6,11]	[0,1,3,4,5,7,9,10], [5,7,9,10,4,6,11], [4,5,7,9,10,4]	Not feasible
[0,1,3,4,5,7,9,10,4,6,12,6,11]	[4,5,7,9,10,4], [6,12,6], [12,6,11]	Not feasible

The prime path coverage subsumes the Edge Coverage.

PreOrder

This is simplified into a simple graph as follows

We performed the Edge coverage and Prime coverage on this simplified graph.

Edge Coverage:

The Test requirements for Edge Coverage are { [0,1], [1,2], [3,4], [1,3], [4,5], [4,6], [6,7], [6,8], [7,9], [9,10], [9,11], [11,10], [10,6], [8,12], [8,4], [12,4] }

The prime path coverage subsumes the Edge Coverage.

```
The Test Paths are
```

[0,1,3,4,6,7,9,11,10,6,8,4,5] [0,1,3,4,6,8,4,6,7,9,10,6,8,12,4,5] [0,1,3,4,5] [0,1,2]

Prime Path Coverage:

The Test requirements for Prime path Coverage are **{** [0,1,3,4,6,7,9,11,10], [7,9,11,10,6,8,12,4,5], [7,9,10,6,8,12,4,5], [0,1,3,4,6,7,9,10], [8,12,4,6,7,9,11,10], [7,9,11,10,6,8,4,5], [7,9,10,6,8,4,5], [0,1,3,4,6,8,12], [8,12,4,6,7,9,10], [8,4,6,7,9,11,10], [6,7,9,11,10,6], [7,9,11,10,6,7], [8,4,6,7,9,10], [10,6,7,9,11,10], [9,11,10,6,7,9], [11,10,6,7,9,11], [6,7,9,10,6], [4,6,8,12,4], [6,8,12,4,6], [7,9,10,6,7], [0,1,3,4,5], [9,10,6,7,9], [8,12,4,6,8], [12,4,6,8,12], [10,6,7,9,10], [4,6,8,4], [6,8,4,6], [8,4,6,8], [0,1,2] **}**

The Test Paths for prime path coverage are

Test Paths	Test Requirements that are toured by test paths directly	Test case number
[0,1,2]	[0,1,2]	1
[0,1,3,4,6,7,9,10,6,8,4,5]	[0,1,3,4,6,7,9,10], [7,9,10,6,8,4,5], [6,7,9,10,6]	2
[0,1,3,4,6,7,9,11,10,6,8,12 ,4,6,7,9,10,6,8,4,5]	[0,1,3,4,6,7,9,11,10], [6,7,9,11,10,6], [7,9,10,6,8,4,5], [8,12,4,6,7,9,10], [6,7,9,10,6], [6,8,12,4,6]	3
[0,1,3,4,6,7,9,10,6,7,9,10,6,8,4,5]	[0,1,3,4,6,7,9,10], [7,9,10,6,8,4,5], [6,7,9,10,6], [7,9,10,6,7], [9,10,6,7,9], [10,6,7,9,10]	4
[0,1,3,4,6,7,9,11,10,6,7,9, 11,10,6,7,9,10,6,8,12,4,6, 7,9,10,6,8,12,4,6,7,9,10,6 ,8,4,5]	[7,9,11,10,6,7], [0,1,3,4,6,7,9,11,10], [6,7,9,10,6], [0,1,3,4,6,7,9,11,10]	5
[0,1,3,4,6,7,9,10,6,8,12,4, 5]	[7,9,10,6,8,12,4,5], [0,1,3,4,6,7,9,10], [6,7,9,10,6]	Not feasible
-	[0,1,3,4,5], [0,1,3,4,6,8,12], [6,8,4,6], [4,6,8,4], [8,4,6,8], [8,4,6,7,9,10], [7,9,11,10,6,8,12,4,5], [8,4,6,7,9,11,10], [8,12,4,6,8], [12,4,6,8,12], [4,6,8,12,4],	Not feasible
[0,1,3,4,6,8,12,4,6,7,9,11, 10,6,8,4,5]	[8,12,4,6,7,9,11,10], [7,9,11,10,6,8,4,5], [0,1,3,4,6,8,12], [6,7,9,11,10,6], [4,6,8,12,4], [6,8,12,4,6]	Not feasible

InOrder

We performed the Edge coverage and Prime coverage on this simplified graph.

Edge Coverage:

```
The Test requirements for Edge Coverage are { [0,1], [1,2], [1,3], [3,4], [4,5], [4,6], [6,7], [6,8], [7,6], [8,4] }
```

The Test Paths are
[0,1,3,4,6,8,4,6,7,6,8,4,5]
[0,1,3,4,5]
[0,1,2]

Prime Path Coverage:

The Test requirements for Prime path Coverage are $\{ [0,1,3,4,6,7], [0,1,3,4,6,8], [0,1,3,4,5], [7,6,8,4,5], [4,6,8,4], [8,4,6,7], [8,4,6,8], [6,8,4,6], [0,1,2], [7,6,7], [6,7,6] <math>\}$

The Test Paths for prime path coverage are

Test Paths	Test Requirements that are toured by test paths directly	Test case number
[0,1,2]	[0,1,2]	1
[0,1,3,4,6,7,6,8,4,5]	[0,1,3,4,6,7], [7,6,8,4,5], [6,7,6]	2
[0,1,3,4,6,7,6,7,6,8,4,6, 8,4,5]	[8,4,6,8], [7,6,7], [6,8,4,6], [4,6,8,4]	3
[0,1,3,4,6,7,6,8,4,6,7,6, 8,4,5]	[8,4,6,7], [7,6,8,4,5], [6,7,6]	4
-	[0,1,3,4,5], [0,1,3,4,6,8]	Not feasible

The prime path coverage subsumes the Edge Coverage.

CheckChildrenSum

We performed the Edge coverage and Prime coverage on this simplified graph.

Edge Coverage:

The Test requirements for Edge Coverage are { [3,4], [4,5], [4,6], [5,7], [5,8], [6,9], [6,10], [9,11], [9,7], [8,11], [10,13], [13,12], [13,7], [0,1], [1,3], [1,2], [11,1], [10,1], [12,1] }

The Test Paths are

[0,1,3,4,6,10,13,12,1,2] [0,1,3,4,5,8,11,1,2] [0,1,3,4,6,9,11,1,2] [0,1,3,4,5,7] [0,1,3,4,6,9,7] [0,1,3,4,6,10,13,7] [0,1,3,4,6,10,1,2]

Prime Path Coverage:

The Test requirements for Prime path Coverage are { [5,8,11,1,3,4,6,10,13,12], [5,8,11,1,3,4,6,10,13,7], [6,10,13,12,1,3,4,5,8,11], [9,11,1,3,4,6,10,13,12], [6,10,13,12,1,3,4,5,7], [5,8,11,1,3,4,6,9,7], [9,11,1,3,4,6,10,13,7], [10,13,12,1,3,4,6,9,11], [10,13,12,1,3,4,6,9,7], [6,10,1,3,4,5,8,11], [6,10,13,12,1,3,4,6], [6,9,11,1,3,4,5,8], [4,6,10,13,12,1,3,4], [3,4,6,10,13,12,1,2], [3,4,6,10,13,12,1,3], [6,9,11,1,3,4,5,7], [1,3,4,6,10,13,12,1], [0,1,3,4,6,10,13,7], [12,1,3,4,6,10,13,12], [0,1,3,4,6,10,13,12], [10,13,12,1,3,4,6,10], [13,12,1,3,4,6,10,13], [6,10,1,3,4,5,7], [6,9,11,1,3,4,6], [9,11,1,3,4,6,9], [8,11,1,3,4,5,8], [8,11,1,3,4,5,7], [3,4,6,9,11,1,2], [3,4,6,9,11,1,3], [3,4,5,8,11,1,3], [3,4,5,8,11,1,2], [4,5,8,11,1,3,4], [5,8,11,1,3,4,5], [4,6,9,11,1,3,4], [11,1,3,4,6,9,11], [11,1,3,4,5,8,11], [10,1,3,4,6,9,11], [10,1,3,4,6,9,7], [0,1,3,4,5,8,11], [13,4,5,8,11,1], [13,4,6,9,11,1], [0,1,3,4,6,9,11], [0,1,3,4,6,9,7], [6,10,1,3,4,6], [4,6,10,1,3,4], [3,4,6,10,1,3], [3,4,6,10,1,2], [10,1,3,4,6,10], [0,1,3,4,5,7], [1,3,4,6,10,1], [0,1,2], [10,1,3,4,6,10], [0,1,3,4,5,7], [1,3,4,6,10,1], [0,1,2], [10,1,3,4,6,10], [0,1,3,4,5,7], [1,3,4,6,10,1], [0,1,2], [10,1,3,4,6,10], [0,1,3,4,5,7], [1,3,4,6,10,1], [0,1,2], [10,1,3,4,6,10], [0,1,3,4,5,7], [1,3,4,6,10,1], [0,1,2], [10,1,3,4,6,10], [0,1,3,4,5,7], [1,3,4,6,10,1], [0,1,2], [10,1,3,4,6,10], [0,1,3,4,5,7], [1,3,4,6,10,1], [0,1,2], [10,1,3,4,6,10], [0,1,3,4,5,7], [1,3,4,6,10,1], [0,1,2], [10,1,3,4,6,10], [0,1,3,4,5,7], [1,3,4,6,10,1], [0,1,2], [10,1,3,4,6,10], [0,1,3,4,5,7], [1,3,4,6,10,1], [0,1,2], [10,1,3,4,6,10], [0,1,3,4,5,7], [1,3,4,6,10,1], [0,1,2], [10,1,3,4,6,10], [0,1,3,4,5,7], [1,3,4,6,10,1], [0,1,2], [10,1,3,4,6,10], [0,1,3,4,5,7], [1,3,4,6,10,1], [0,1,2], [10,1,3,4,6,10], [0,1,3,4,5,7], [1,3,4,6,10,1], [0,1,2], [10,1,3,4,6,10], [10,1,3,4,6,10], [10,1,3,4,6,10], [10,1,3,4,6,10], [10,1,3,4,6,10], [10,1,3,4,6,10], [10,1,3,4,6,10], [10,1,3,4,6,10], [10,1,3,4,6,10], [10,1,3,4,6,10], [10,1,3,4,6,10], [10,1,3,4,6,10], [10,1,3,4,6,10], [10,1,3,4,6,10], [10,1,3,4

The Test Paths for prime path coverage are

Test Paths	Test Requirements that are toured by test paths directly	Test case number
[0,1,2]	[0,1,2]	1
[0,1,3,4,5,7]	[0,1,3,4,5,7]	2
[0,1,3,4,6,10,1,2]	[3,4,6,10,1,2], [1,3,4,6,10,1]	3
[0,1,3,4,6,9,11,1,3,4,6,9,7]	[6,9,11,1,3,4,6], [9,11,1,3,4,6,9], [3,4,6,9,11,1,3], [4,6,9,11,1,3,4], [1,3,4,6,9,11,1], [0,1,3,4,6,9,11]	4
[0,1,3,4,5,8,11,1,3,4, 5,7]	[8,11,1,3,4,5,7], [3,4,5,8,11,1,3], [4,5,8,11,1,3,4], [5,8,11,1,3,4,5], [0,1,3,4,5,8,11], [1,3,4,5,8,11,1]	5
[0,1,3,4,6,9,7]	[0,1,3,4,6,9,7]	6
[0,1,3,4,6,10,13,7]	[0,1,3,4,6,10,13,7]	7

[0,1,3,4,6,10,13,12,1, 3,4,6,10,13,7]	[6,10,13,12,1,3,4,6], [4,6,10,13,12,1,3,4], [3,4,6,10,13,12,1,3], [1,3,4,6,10,13,12,1], [12,1,3,4,6,10,13,7], [0,1,3,4,6,10,13,12], [10,13,12,1,3,4,6,10], [13,12,1,3,4,6,10,13]	8
[0,1,3,4,5,8,11,1,3,4, 6,9,7]	[5,8,11,1,3,4,6,9,7], [3,4,5,8,11,1,3], [4,5,8,11,1,3,4], [0,1,3,4,5,8,11], [1,3,4,5,8,11,1]	9
[0,1,3,4,6,9,11,1,3,4,6,10,13,7]	[9,11,1,3,4,6,10,13,7], [6,9,11,1,3,4,6], [3,4,6,9,11,1,3], [4,6,9,11,1,3,4], [1,3,4,6,9,11,1], [0,1,3,4,6,9,11]	10
-	[5,8,11,1,3,4,6,10,13,7], [6,10,1,3,4,5,8,11], [6,10,13,12,1,3,4,6], [4,6,10,13,12,1,3,4], [3,4,6,10,13,12,1,3], [1,3,4,6,10,13,12,1], [10,13,12,1,3,4,6,10], [3,4,5,8,11,1,3], [4,5,8,11,1,3,4], [1,3,4,5,8,11,1], [6,10,1,3,4,6], [4,6,10,1,3,4], [3,4,6,10,1,3], [10,1,3,4,6,10], [1,3,4,6,10,1]	Not feasible
[0,1,3,4,6,10,1,3,4,6, 9,11,1,3,4,5,7]	[6,9,11,1,3,4,5,7], [3,4,6,9,11,1,3], [4,6,9,11,1,3,4], [10,1,3,4,6,9,11], [1,3,4,6,9,11,1], [6,10,1,3,4,6], [4,6,10,1,3,4], [3,4,6,10,1,3], [1,3,4,6,10,1]	Not feasible
[0,1,3,4,6,9,11,1,3,4, 5,8,11,1,2]	[6,9,11,1,3,4,5,8], [3,4,6,9,11,1,3], [3,4,5,8,11,1,2], [4,6,9,11,1,3,4], [11,1,3,4,5,8,11], [1,3,4,5,8,11,1], [1,3,4,6,9,11,1], [0,1,3,4,6,9,11]	Not feasible
-	[10,13,12,1,3,4,6,9,7], [6,10,13,12,1,3,4,6], [4,6,10,13,12,1,3,4], [3,4,6,10,13,12,1,3], [1,3,4,6,10,13,12,1], [12,1,3,4,6,10,13,12], [0,1,3,4,6,10,13,12], [10,13,12,1,3,4,6,10], [13,12,1,3,4,6,10,13]	Not feasible
[0,1,3,4,5,8,11,1,3,4,6,9,11,1,2]	[3,4,6,9,11,1,2], [3,4,5,8,11,1,3], [4,5,8,11,1,3,4], [11,1,3,4,6,9,11], [0,1,3,4,5,8,11], [1,3,4,5,8,11,1], [1,3,4,6,9,11,1]	Not feasible
[0,1,3,4,6,10,13,12,1,3,4,6,9,11,1,3,4,6,10,13,12,1,3,4,5,7]	[9,11,1,3,4,6,10,13,12], [6,10,13,12,1,3,4,5,7], [10,13,12,1,3,4,6,9,11], [6,10,13,12,1,3,4,6], [4,6,10,13,12,1,3,4], [3,4,6,10,13,12,1,3], [1,3,4,6,10,13,12,1], [0,1,3,4,6,10,13,12], [6,9,11,1,3,4,6], [3,4,6,9,11,1,3],	Not feasible

	[4,6,9,11,1,3,4], [1,3,4,6,9,11,1]	
[0,1,3,4,6,10,1,3,4,5,7]	[6,10,1,3,4,5,7], [4,6,10,1,3,4], [3,4,6,10,1,3], [1,3,4,6,10,1]	Not feasible
[0,1,3,4,5,8,11,1,3,4, 5,8,11,1,2]	[8,11,1,3,4,5,8], [3,4,5,8,11,1,3], [3,4,5,8,11,1,2], [4,5,8,11,1,3,4], [5,8,11,1,3,4,5], [11,1,3,4,5,8,11], [0,1,3,4,5,8,11], [1,3,4,5,8,11,1]	Not feasible
[0,1,3,4,6,10,1,3,4,6, 9,7]	[10,1,3,4,6,9,7], [6,10,1,3,4,6], [4,6,10,1,3,4], [3,4,6,10,1,3], [1,3,4,6,10,1]	Not feasible
[0,1,3,4,6,9,11,1,2]	[3,4,6,9,11,1,2], [1,3,4,6,9,11,1], [0,1,3,4,6,9,11]	Not feasible
[0,1,3,4,6,10,13,12,1, 2]	[3,4,6,10,13,12,1,2], [1,3,4,6,10,13,12,1], [0,1,3,4,6,10,13,12]	Not feasible
[0,1,3,4,6,10,13,12,1,3,4,5,8,11,1,3,4,6,10,13,12,1,2]	[5,8,11,1,3,4,6,10,13,12], [6,10,13,12,1,3,4,5,8,11], [4,6,10,13,12,1,3,4], [3,4,6,10,13,12,1,2], [3,4,6,10,13,12,1,3], [1,3,4,6,10,13,12,1], [0,1,3,4,6,10,13,12], [3,4,5,8,11,1,3], [4,5,8,11,1,3,4], [1,3,4,5,8,11,1]	Not feasible

The prime path coverage subsumes the Edge Coverage.

isSymmetric

We performed the Edge coverage and Prime coverage on this simplified graph.

Edge Coverage:

The Test requirements for Edge Coverage are { [0,1], [1,2], [1,3], [2,4], [4,1], [4,5], [5,6], [5,7], [7,6], [7,8], [8,1] }

The Test Paths are

[0,1,2,4,5,7,8,1,3]

[0,1,2,4,5,7,6]

[0,1,2,4,5,6]

[0,1,2,4,1,3]

Prime Path Coverage:

The Test requirements for Prime path Coverage are **{** [2,4,5,7,8,1,2], [2,4,5,7,8,1,3], [1,2,4,5,7,8,1], [0,1,2,4,5,7,6], [0,1,2,4,5,7,8], [4,5,7,8,1,2,4], [8,1,2,4,5,7,6], [8,1,2,4,5,7,8], [7,8,1,2,4,5,7], [5,7,8,1,2,4,5], [7,8,1,2,4,5,6], [0,1,2,4,5,6], [2,4,1,3], [2,4,1,2], [1,2,4,1], [4,1,2,4], [0,1,3] **}**

The Test Paths for prime path coverage are

Test Paths	Test Requirements that are toured by test paths directly	Test case number
[0,1,3]	[0,1,3]	2
[0,1,2,4,5,6]	[0,1,2,4,5,6]	3
[0,1,2,4,5,7,6]	[0,1,2,4,5,7,6]	4
[0,1,2,4,5,7,8,1,2,4,5,6]	[2,4,5,7,8,1,2], [1,2,4,5,7,8,1], [0,1,2,4,5,7,8], [4,5,7,8,1,2,4], [5,7,8,1,2,4,5], [7,8,1,2,4,5,6]	5
[0,1,2,4,5,7,8,1,2,4,5,7,6]	[2,4,5,7,8,1,2], [1,2,4,5,7,8,1], [0,1,2,4,5,7,8], [4,5,7,8,1,2,4], [8,1,2,4,5,7,6], [7,8,1,2,4,5,7], [5,7,8,1,2,4,5]	6
[0,1,2,4,5,7,8,1,2,4,1,2,4,5,7,6]	[1,2,4,5,7,8,1], [0,1,2,4,5,7,8],	7
[0,1,2,4,5,7,8,1,2,4,1,2,4,5,7,8,1,3]	[2,4,5,7,8,1,3],	8
[0,1,2,4,5,7,8,1,2,4,1,2,4,5,6]	[2,4,1,2],[1,2,4,1], [4,1,2,4],[4,5,7,8,1,2,4],	9
[0,1,2,4,1,3]	[2,4,1,3],[8,1,2,4,5,7,8],	Not feasible

Bottom View

Edge Coverage:

The Test requirements for Edge Coverage are **{** [0,1], [1,2], [1,3], [3,4], [4,5], [4,6], [5,7], [7,8], [7,9], [9,8], [8,10], [10,4], [6,11], [11,12], [11,13], [13,11], [8,4] **}**

The Test Paths are

[0,1,3,4,6,11,13,11,13,11,12] [0,1,3,4,5,7,9,8,4,6,11,12] [0,1,3,4,5,7,8,10,4,6,11,12] [0,1,2]

The prime path coverage subsumes the Edge Coverage.

Prime Path Coverage:

The Test requirements for Prime path Coverage are { [0,1,3,4,5,7,9,8,10], [5,7,9,8,10,4,6,11,12], [5,7,9,8,10,4,6,11,13], [5,7,8,10,4,6,11,12], [5,7,8,10,4,6,11,13], [0,1,3,4,5,7,8,10], [5,7,9,8,4,6,11,12], [4,5,7,9,8,10,4], [5,7,8,4,6,11,12], [5,7,9,8,10,4,5], [5,7,8,4,6,11,13], [0,1,3,4,6,11,12], [0,1,3,4,6,11,13], [9,8,10,4,5,7,9], [10,4,5,7,9,8,10], [8,10,4,5,7,9,8], [7,9,8,10,4,5,7], [5,7,8,10,4,5], [4,5,7,9,8,4], [7,8,10,4,5,7], [5,7,9,8,4,5], [4,5,7,8,10], [9,8,4,5,7,9], [7,9,8,4,5,7], [5,7,8,4,5], [4,5,7,8,4], [7,8,4,5,7], [8,4,5,7,8], [0,1,2], [13,11,12], [11,13,11], [13,11,13]

}

The Test Paths for prime path coverage are

Test Paths	Test Requirements that are toured by test paths directly	Test case number
[0,1,2]	[0,1,2]	1
[0,1,3,4,5,7,8,4,6,11, 13,11,12]	[5,7,8,4,6,11,12], [4,5,7,8,4], [13,11,12], [11,13,11]	2
[0,1,3,4,5,7,9,8,10,4, 5,7,8,4,5,7,8,4,6,11,1 3,11,13,11,13,11,12]	[0,1,3,4,5,7,9,8,10], [5,7,9,8,10,4,6,11,12], [4,5,7,9,8,10,4]	3
[0,1,3,4,5,7,9,8,4,5,7, 8,4,6,11,13,11,13,11, 12]	[5,7,8,4,6,11,12], [4,5,7,9,8,4], [5,7,9,8,4,5], [7,9,8,4,5,7], [4,5,7,8,4], [8,4,5,7,8]	4
[0,1,3,4,5,7,8,10,4,5,7,8,10,4,5,7,8,10,4,5,7,8,4,6,11,13,11,13,11,12]	[0,1,3,4,5,7,8,10], [5,7,8,4,6,11,13], [5,7,8,10,4,5], [7,8,10,4,5,7], [4,5,7,8,10,4], [8,10,4,5,7,8], [10,4,5,7,8,10], [4,5,7,8,4], [13,11,12], [11,13,11]	5
[0,1,3,4,5,7,9,8,4,5,7, 9,8,4,6,11,13,11,13,1 1,13,11,12]	[5,7,9,8,4,6,11,12], [4,5,7,9,8,4], [5,7,9,8,4,5], [8,4,5,7,9,8], [9,8,4,5,7,9], [7,9,8,4,5,7]	6
[0,1,3,4,6,11 ,13,11,12]	[0,1,3,4,6,11,13],	Not feasible
[0,1,3,4,5,7,8,4,5,7,8, 4,6,11,12]	[5,7,8,4,6,11,12], [5,7,8,4,5], [4,5,7,8,4], [7,8,4,5,7], [8,4,5,7,8]	Not feasible

[0,1,3,4,5,7,8,10,4,6, 11,12]	[5,7,8,10,4,6,11,12], [0,1,3,4,5,7,8,10], [4,5,7,8,10,4]	Not feasible
[0,1,3,4,5,7,8,4,5,7,9,8,10,4,5,7,9,8,4,6,11,13,11,12]	[5,7,9,8,4,6,11,13], [4,5,7,9,8,10,4], [5,7,9,8,10,4,5], [9,8,10,4,5,7,9], [8,10,4,5,7,9,8], [7,9,8,10,4,5,7], [4,5,7,9,8,4], [8,4,5,7,9,8], [5,7,8,4,5], [4,5,7,8,4], [7,8,4,5,7], [13,11,12], [11,13,11], [13,11,13]	Not feasible
[0,1,3,4,6,11,12]	[0,1,3,4,6,11,12]	Not feasible
[0,1,3,4,5,7,8,10,4,5,7,9,8,10,4,6,11,12]	[5,7,9,8,10,4,6,11,12], [0,1,3,4,5,7,8,10], [4,5,7,9,8,10,4], [10,4,5,7,9,8,10], [8,10,4,5,7,9,8], [5,7,8,10,4,5], [7,8,10,4,5,7], [4,5,7,8,10,4]	Not feasible
[0,1,3,4,5,7,8,10,4,6, 11,13,11,12]	[5,7,8,10,4,6,11,13], [0,1,3,4,5,7,8,10], [4,5,7,8,10,4], [13,11,12], [11,13,11]	Not feasible
[0,1,3,4,5,7,9,8,4,6,1 1,12]	[5,7,9,8,4,6,11,12], [4,5,7,9,8,4]	Not feasible
[0,1,3,4,5,7,9,8,10,4, 6,11,13,11,12]	[0,1,3,4,5,7,9,8,10], [5,7,9,8,10,4,6,11,13], [4,5,7,9,8,10,4], [13,11,12], [11,13,11]	Not feasible

areMirrors

Edge Coverage:

The Test requirements for Edge Coverage are { [0,1], [1,2], [1,3], [3,4], [3,5], [4,6], [4,7], [5,7], [5,8], [8,3], [6,2], [6,9], [9,3] }

The Test Paths are

[0,1,3,4,6,9,3,5,8,3,5,7]

[0,1,3,4,6,2]

[0,1,2]

[0,1,3,4,7]

The prime path coverage subsumes the Edge Coverage.

Prime Path Coverage:

The Test requirements for Prime path Coverage are { [4,6,9,3,5,7], [0,1,3,4,6,9], [0,1,3,4,6,2], [4,6,9,3,5,8], [5,8,3,4,6,9], [5,8,3,4,6,2], [3,4,6,9,3], [4,6,9,3,4], [0,1,3,4,7], [0,1,3,5,7], [0,1,3,5,8], [9,3,4,6,2], [9,3,4,6,9], [6,9,3,4,7], [5,8,3,4,7], [6,9,3,4,6], [3,5,8,3], [5,8,3,5], [8,3,5,7], [8,3,5,8], [0,1,2] }

The Test Paths for prime path coverage are

Test Paths	Test Requirements that are toured by test paths directly	Test case number
[0,1,3,4,6,2]	[0,1,3,4,6,2]	1
[0,1,3,4,7]	[0,1,3,4,7]	2
[0,1,3,5,7]	[0,1,3,5,7]	3
[0,1,3,5,8,3,4,6,9,3,4,7]	[4,6,9,3,5,8], [5,8,3,4,6,9], [3,4,6,9,3], [0,1,3,5,8], [5,8,3,4,7], [3,5,8,3]	4
[0,1,3,5,8,3,4,6,2]	[0,1,3,5,8], [3,5,8,3]	5
[0,1,3,4,6,9,3,4,6,9,3,4,7]	[0,1,3,4,6,9], [3,4,6,9,3], [4,6,9,3,4], [9,3,4,6,9], [6,9,3,4,7], [6,9,3,4,6]	Not feasible
[0,1,3,5,8,3,5,8,3,5,8,3,4,7]	[0,1,3,5,8], [5,8,3,4,7], [3,5,8,3], [5,8,3,5], [8,3,5,8]	Not feasible
[0,1,2]	[0,1,2]	Not feasible
[0,1,3,5,8,3,5,7]	[0,1,3,5,8], [3,5,8,3], [5,8,3,5], [8,3,5,7]	Not feasible
[0,1,3,5,8,3,4,6,2]	[5,8,3,4,6,2], [0,1,3,5,8], [3,5,8,3]	Not feasible
[0,1,3,4,6,9,3,5,7]	[4,6,9,3,5,7], [0,1,3,4,6,9], [3,4,6,9,3]	Not feasible
[0,1,3,4,6,9,3,4,6,2]	[0,1,3,4,6,9], [3,4,6,9,3], [4,6,9,3,4], [9,3,4,6,2], [6,9,3,4,6]	Not feasible

Height

Edge Coverage:

The Test requirements for Edge Coverage are

{ [0,1], [1,2], [1,3], [3,4], [4,5], [5,6], [5,7], [7,8], [8,4], [8,9], [9,11], [9,10], [11,10], [10,13], [13,12], [10,12], [12,8] **}**

The Test Paths are

 $\begin{bmatrix} 0,1,3,4,5,7,8,9,10,13,12,8,9,11,10,12,8,4,5,6 \\ [0,1,3,4,5,7,8,4,5,6] \end{bmatrix}$

[0,1,3,4,5,6]

[0,1,2]

The prime path coverage subsumes the Edge Coverage.

Prime Path Coverage:

The Test requirements for Prime path Coverage are { [0,1,3,4,5,7,8,9,11,10,13,12], [0,1,3,4,5,7,8,9,11,10,13], [0,1,3,4,5,7,8,9,10,13], [0,1,3,4,5,7,8,9,10,12], [9,11,10,13,12,8,4,5,6], [9,11,10,13,12,8,4,5,7], [9,10,13,12,8,4,5,6], [9,11,10,12,8,4,5,7], [9,11,10,12,8,4,5,7], [9,11,10,13,12,8], [9,11,10,13,12,8,9], [10,13,12,8,9,11,10], [12,8,9,11,10,13,12], [13,12,8,9,11,10,13], [9,10,12,8,4,5,6], [9,10,12,8,4,5,7], [11,10,13,12,8,9,11], [8,9,11,10,12,8], [8,9,10,13,12,8], [9,11,10,12,8,9], [0,1,3,4,5,6], [9,10,13,12,8,9], [13,12,8,9,10,13], [12,8,9,11,10,12], [12,8,9,10,13,12], [10,12,8,9,11,10], [11,10,12,8,9,11], [10,13,12,8,9,10], [8,4,5,7,8], [7,8,4,5,7], [8,9,10,12,8], [7,8,4,5,6], [4,5,7,8,4], [5,7,8,4,5], [10,12,8,9,10], [12,8,9,10,12], [9,10,12,8,9], [0,1,2] }

The Test Paths for prime path coverage are

Test Paths	Test Requirements that are toured by test paths directly	Test case number
[0,1,2]	[0,1,2]	1
[0,1,3,4,5,7,8,9,10,12,8,4, 5,6]	[8,4,5,7,8], [7,8,4,5,7], [7,8,4,5,6], [4,5,7,8,4], [5,7,8,4,5]	2
[0,1,3,4,5,7,8,9,11,10,12,8 ,4,5,7,8,9,10,12,8,4,5,6]	[0,1,3,4,5,7,8,9,11,10,12], [9,11,10,12,8,4,5,7], [8,9,11,10,12,8], [8,4,5,7,8], [7,8,4,5,6], [4,5,7,8,4], [5,7,8,4,5]	3
[0,1,3,4,5,7,8,9,10,13,12,8,45,7,8,9,10,12,8,4,5,6]	[0,1,3,4,5,7,8,9,10,13,12], [9,11,10,13,12,8,4,5,6], [8,9,11,10,13,12,8], [10,13,12,8,9,11,10], [12,8,9,11,10,13,12], [13,12,8,9,11,10,13], [8,9,10,13,12,8], [9,10,13,12,8,9]	4
[0,1,3,4,5,7,8,9,11,10,13,1 2,8,4,5,7,8,9,10,12,8,9,10, 12,8,4,5,6]	[0,1,3,4,5,7,8,9,11,10,13,12], [9,11,10,13,12,8,4,5,7], [8,9,11,10,13,12,8], [8,4,5,7,8], [7,8,4,5,6], [4,5,7,8,4], [5,7,8,4,5]	5
[0,1,3,4,5,6]	[0,1,3,4,5,6]	Not feasible

[0,1,3,4,5,7,8,9,10,13,12], [9,10,12,8,4,5,7], [8,9,10,13,12,8], [9,10,13,12,8,9], [13,12,8,9,10,13], [12,8,9,10,13,12], [10,13,12,8,9,10], [8,4,5,7,8], [8,9,10,12,8], [7,8,4,5,6], [4,5,7,8,4], [5,7,8,4,5], [12,8,9,10,12]	Not feasible
[0,1,3,4,5,7,8,9,11,10,13,12], [9,11,10,13,12,8,4,5,6], [8,9,11,10,13,12,8]	Not feasible
[0,1,3,4,5,7,8,9,10,13,12], [9,10,13,12,8,4,5,7], [8,9,10,13,12,8], [8,4,5,7,8], [7,8,4,5,6], [4,5,7,8,4], [5,7,8,4,5]	Not feasible
[0,1,3,4,5,7,8,9,10,13,12], [9,10,13,12,8,4,5,6], [8,9,10,13,12,8]	Not feasible
[0,1,3,4,5,7,8,9,10,12], [9,11,10,12,8,4,5,6], [8,9,11,10,13,12,8], [9,11,10,13,12,8,9], [10,13,12,8,9,11,10], [12,8,9,11,10,13,12], [11,10,13,12,8,9,11], [8,9,11,10,12,8], [12,8,9,11,10,12], [10,12,8,9,11,10], [8,9,10,12,8], [10,12,8,9,10], [12,8,9,10,12], [9,10,12,8,9]	Not feasible
[0,1,3,4,5,7,8,9,10,12], [9,10,12,8,4,5,6], [8,9,10,12,8]	Not feasible
[0,1,3,4,5,7,8,9,11,10,12], [9,10,12,8,4,5,6], [8,9,11,10,12,8], [9,11,10,12,8,9], [12,8,9,11,10,12], [10,12,8,9,11,10], [11,10,12,8,9,11], [8,9,10,12,8], [10,12,8,9,10], [12,8,9,10,12]	Not feasible
	[8,9,10,13,12,8], [9,10,13,12,8,9], [13,12,8,9,10,13], [12,8,9,10,13,12], [10,13,12,8,9,10], [8,4,5,7,8], [8,9,10,12,8], [7,8,4,5,6], [4,5,7,8,4], [5,7,8,4,5], [12,8,9,10,12] [0,1,3,4,5,7,8,9,11,10,13,12], [9,11,10,13,12,8,4,5,6], [8,9,11,10,13,12,8] [0,1,3,4,5,7,8,9,10,13,12], [9,10,13,12,8,4,5,7], [8,9,10,13,12,8], [8,4,5,7,8], [7,8,4,5,6], [4,5,7,8,4], [5,7,8,4,5] [0,1,3,4,5,7,8,9,10,13,12], [9,10,13,12,8,4,5,6], [8,9,10,13,12,8] [0,1,3,4,5,7,8,9,10,13], [9,11,10,12,8,4,5,6], [8,9,11,10,13,12,8], [10,13,12,8,9,11], [10,12,8,9,11,10], [12,8,9,11,10], [12,8,9,11,10], [12,8,9,11,10], [12,8,9,11,10], [12,8,9,11,10], [10,12,8,9] [10,12,8,9] [10,13,4,5,7,8,9,10,12], [9,10,12,8,4,5,6], [8,9,10,12,8] [10,12,8,9,11], [10,12,8,9,11], [12,8,9,10,12,8] [10,12,8,9,11], [10,12,8,9], [12,8,9,11,10,12], [10,12,8,9], [12,8,9,11,10,12], [10,12,8,9,11,10], [11,10,12,8,9,11], [8,9,10,12,8], [10,12,8,9,10], [11,10,12,8,9], [11,10

NumNodes

Edge Coverage:

The Test requirements for Edge Coverage are { [0,1], [1,2], [1,3], [3,4], [4,5], [4,6], [5,7], [7,8], [7,9], [8,9], [9,4], [9,10], [10,4] }

The Test Paths are
[0,1,3,4,5,7,9,4,6]
[0,1,3,4,5,7,8,9,10,4,6]
[0,1,2]

The prime path coverage subsumes the Edge Coverage.

Prime Path Coverage:

The Test requirements for Prime path Coverage are **{** [0,1,3,4,5,7,8,9,10], [0,1,3,4,5,7,9,10], [4,5,7,8,9,10,4], [5,7,8,9,10,4,5], [9,10,4,5,7,8,9], [10,4,5,7,8,9,10], [8,9,10,4,5,7,8], [5,7,8,9,10,4,6], [7,8,9,10,4,5,7], [5,7,8,9,4,5], [4,5,7,9,10,4], [5,7,8,9,4,6], [5,7,9,10,4,5], [4,5,7,8,9,4], [5,7,9,10,4,6], [9,4,5,7,8,9], [9,10,4,5,7,9], [10,4,5,7,9,10], [7,8,9,4,5,7], [8,9,4,5,7,8], [7,9,10,4,5,7], [5,7,9,4,5], [5,7,9,4,6], [4,5,7,9,4], [0,1,3,4,6], [9,4,5,7,9], [7,9,4,5,7], [0,1,2] **}**

The Test Paths for prime path coverage are

Test Paths	Test Requirements that are toured by test paths directly	Test case number
[0,1,2]	[0,1,2]	1
[0,1,3,4,5,7,8,9,4,5,7,9,4,6]	[5,7,8,9,4,6], [4,5,7,8,9,4]	2
[0,1,3,4,5,7,9,10,4,5,7,9,4,6]	[0,1,3,4,5,7,9,10], [4,5,7,9,10,4], [5,7,9,10,4,6]	3
[0,1,3,4,5,7,8,9,4,5,7,8,9,4,5,7,9,4,6]	[5,7,8,9,4,5], [4,5,7,8,9,4], [9,4,5,7,8,9], [7,8,9,4,5,7], [8,9,4,5,7,8], [5,7,9,4,6], [4,5,7,9,4], [9,4,5,7,9]	Not feasible
[0,1,3,4,5,7,9,4,5,7,9,4,5,7,9,4,6]	[5,7,9,4,5], [5,7,9,4,6], [4,5,7,9,4], [9,4,5,7,9], [7,9,4,5,7]	Not feasible
[0,1,3,4,5,7,8,9,10,4,5,7,8, 9,10,4,6]	[0,1,3,4,5,7,8,9,10], [4,5,7,8,9,10,4], [5,7,8,9,10,4,5], [9,10,4,5,7,8,9], [10,4,5,7,8,9,10], [8,9,10,4,5,7,8], [5,7,8,9,10,4,6], [7,8,9,10,4,5,7]	Not feasible
[0,1,3,4,5,7,9,4,5,7,9,10,4, 5,7,9,10,4,5,7,9,10,4,6]	[4,5,7,9,10,4], [5,7,9,10,4,5], [5,7,9,10,4,6], [9,10,4,5,7,9], [10,4,5,7,9,10], [7,9,10,4,5,7], [5,7,9,4,5], [4,5,7,9,4], [9,4,5,7,9], [7,9,4,5,7]	Not feasible
[0,1,3,4,6]	[0,1,3,4,6]	Not feasible

The Output of the Junit after the tests are run. All 58/58 test cases have run successfully.


```
levelOrder_test5() (0.001 s)
levelOrder_test6() (0.000 s)
numNodes test1() (0.001 s)
numNodes test2() (0.001 s)
numNodes_test3() (0.001 s)
inOrder_test1() (0.000 s)
inOrder_test2() (0.001 s)
inOrder_test3() (0.001 s)
inOrder_test4() (0.000 s)
CheckChildrenSum_test10() (0.001 s)
isSymmetric test1() (0.001 s)
isSymmetric_test2() (0.001 s)

isSymmetric test3() (0.001 s)

isSymmetric_test4() (0.000 s)
isSymmetric_test5() (0.000 s)
isSymmetric_test6() (0.001 s)
isSymmetric_test7() (0.001 s)
isSymmetric_test8() (0.000 s)
isSymmetric_test9() (0.001 s)

    ← CheckChildrenSum test1() (0.000 s)

CheckChildrenSum_test2() (0.001 s)
CheckChildrenSum_test3() (0.000 s)
CheckChildrenSum_test4() (0.000 s)
CheckChildrenSum_test5() (0.000 s)

    ← CheckChildrenSum test6() (0.000 s)

CheckChildrenSum_test7() (0.001 s)

← CheckChildrenSum test8() (0.000 s)
```

CheckChildrenSum_test9() (0.006 s)

Contributions

We have a total of 10 functions to test. So, we have split them among ourselves as follows

Maheedhar

- 1.PreOrderIterative
- 2.LevelOrderIterative
- 3.NumNodes
- 4.CheckChildrenSum
- 5.areMirrors

Manohar

- 1.PostOrderIterative
- 2.InOrderIterative
- 3.Height
- 4.isSymmetric
- 5.BottomView

THANK YOU