

Discrete POWER & Signal **Technologies**

BC548 BC548A BC548B BC548C

NPN General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 300 mA. Sourced from Process 10. See PN100A for characteristics.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	30	V
V _{CES}	Collector-Base Voltage	30	V
V _{EBO}	Emitter-Base Voltage	5.0	V
I _C	Collector Current - Continuous	500	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

These ratings are based on a maximum junction temperature of 150 degrees C.
These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	Max	Units
		BC548 / A / B / C	
P_D	Total Device Dissipation	625	mW
	Derate above 25°C	5.0	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

NPN General Purpose Amplifier (continued)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ymbol	Parameter	Test Conditions	Min	Max	Units
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	O. I.A	DA OTERIOTION				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	·	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BR)CEO	Collector-Emitter Breakdown Voltage	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0$	30		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BR)CBO	Collector-Base Breakdown Voltage	$I_C = 10 \mu\text{A}, I_E = 0$	30		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BR)CES	Collector-Base Breakdown Voltage	$I_C = 10 \mu A, I_E = 0$	30		V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Emitter-Base Breakdown Voltage	$I_E = 10 \mu A, I_C = 0$	5.0		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	Collector Cutoff Current	· ·		15	nA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{CB} = 30 \text{ V}, I_{E} = 0, T_{A} = +150 ^{\circ}\text{C}$		5.0	μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NFE	Do current dam				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	h_{FE}	DC Current Gain				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				_	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			548C	420	800	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E(sat)	Collector-Emitter Saturation Voltage	· -			V
$V_{CE} = 5.0 \text{ V}, I_C = 10 \text{ mA} \qquad 0.77$						V
	BE(on)	Base-Emitter On Voltage		0.58		V
h_{fe} Small-Signal Current Gain $I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V},$ 125 900			$V_{CE} = 5.0 \text{ V}, I_{C} = 10 \text{ mA}$		0.77	V
h_{fe} Small-Signal Current Gain $I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V},$ 125 900						
	MALL S	IGNAL CHARACTERISTICS				
Ι = Ι.Ο ΚΠΖ			$I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V},$	125	900	
NF Noise Figure $V_{CE} = 5.0 \text{ V}, I_C = 200 \mu\text{A},$ 10		Small-Signal Current Gain	$I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V},$ f = 1.0 kHz	125	900	
$R_{S} = 2.0 \text{ k}\Omega, \text{ f} = 1.0 \text{ kHz}, \\ B_{W} = 200 \text{ Hz}$)	Small-Signal Current Gain	f = 1.0 kHz $V_{CE} = 5.0 \text{ V}, I_C = 200 \mu\text{A},$	125		dB