Análise de Carteiras usando o R - Parte 4 Bibliografia - BKM, cap. 7

Claudio Lucinda

FEA-RP/USP

Risco Não Diversificável

- A seguir, temos uma figura calculada com os retornos das 37 ações que tem bastante negócios (negociadas em 2/3 dos dias nos 14 anos entre 2004 e 2018).
- Basicamente temos os desvios-padrão dos retornos para portfólios com 1, 2,...,37 ações, igualmente ponderados e rebalanceados mensalmente.
- Só temos nas duas pontas porque existem limites computacionais para isso.

Risco Não Diversificável

Figura 1: Carteira e Risco

Fronteira Eficiente e o Pacote PortfolioAnalytics

PortfolioAnalytics

- Nas aulas anteriores, nós utilizamos algumas funções do PortfolioAnalytics para alguns cálculos de carteira.
- Hoje iremos usar a funcionalidade mais legal do pacote, que é a capacidade de especificar e otimizar as carteiras de uma forma muito flexível.
- Inicialmente vamos fazer isso de uma forma mais geral para depois aplicarmos pro nosso caso.

PorfolioAnalytics

- O processo de otimização de carteiras no PortfolioAnalytics tem quatro etapas:
 - Especificar a carteira Quais são os ativos componentes
 - Adicionar restrições e objetivos
 - Otimizar
 - Analisar os resultados da otimização
- O código que vai ser usado aqui é o eff_frontier.R

Otimizadores

- Existem quatro métodos de otimização suportados pelo PortfolioAnalytics
 - Solvers LP e QP:
 - ROI: Um pacote que centraliza solvers de LP e QP
 - Outros Métodos:
 - DEOptim: Differential Evolution Optimization
 - random: Otimização por Portfólios Aleatórios
 - GenSA: Generalized Simulated Annealing
 - pso: Particle Swarm Optimization

Inicializando o PortfolioAnalytics

 O primeiro passo é especificar a lista de ativos que fazem parte da sua carteira:

```
port_spec<-portfolio.spec(colnames(IBOV_Returns_Final))</pre>
```

O passo seguinte é implementar as restrições:

Tipos de Restrições:

- Restrições sobre o peso:
 - weight_sum Restrições sobre o peso total. Você precisa especificar as sub-opções min_sum e max_sum.
 - full_investment Equivalente ao anterior, já fazendo min_sum e max_sum iguais a 1.
 - dollar_neutral ou active igual ao anterior, só que min_sum e max_sum iguais a zero.
- box Restrições sobre os limites mínimos e máximos sobre os pesos dos ativos:
 - Sub-opções: min e max
 - long_only: caso especial em que min é igual a zero e max é igual a um – ou seja, não há vendas a descoberto.
- group Restrições que a soma dos pesos dos ativos em um grupo devem estar em uma faixa de valores (sub-opções: group min, group max)

Tipos de Restrições (II):

- Restrições sobre limites de posição position_limit
 - max_pos: Número máximo de ativos com pesos maiores que zero.
 - max_pos_long: Número máximo de ativos com pesos maiores que zero.
 - max_pos_short: Número máximo de ativos com pesos menores que zero (vendas a descoberto)
- Restrições sobre a diversificação diversification
 - Diversificação entendida como a soma dos quadrados dos pesos.
- Restrição sobre o giro da carteira turnover
 - Giro da carteira entendida como o volume dos negócios dividido pelo valor da carteira

Tipos de Restrições (III):

- Restrições sobre o retorno médio return
 - Sub-opção: return_target
- Exposição a fatores factor_exposure
- Custos de transação expressos como uma proporção do valor das negociação – transaction_cost, com sub-opção ptc.

Objetivos

- O passo seguinte é especificar os objetivos do problema de otimização.
- Para isso, vamos usar a função add.objective.
- Os dois principais são objetivos de risco e retorno:
 - Os objetivos de risco são implementados como uma restrição no Lagrangiano
 - Os objetivos de retornos são implementados como a função objetivo do Lagrangiano

Objetivos de Risco e Retorno

- O interessante deste objetivo de risco é que podemos usar todas aquelas medidas de risco para distribuição não normal que vimos anteriormente:
 - StdDev O básico, o desvio-padrão dos retornos
 - ES Expected Shortfall
 - VaR Value at Risk
- O objetivo de retorno é uma função que vc especifica.
 Usualmente é o comando mean.

Otimizando a carteira

- Você otimiza a carteira com o comando optimize.portfolio.
- Os exemplos a seguir mostram dois tipos de otimização:
 - Usando Portfólios Aleatórios
 - Usando um otimizador formal

Mostrando os tais dos portifólios aleatórios

Figura 2: 20.000 Portifólios Aleatórios

Combinando dois tipos de Fronteira Eficiente

Combinando duas Fronteiras Eficientes

- Suponhamos que você queira combinar duas fronteiras eficientes – construídas sobre diferentes definições – em uma mesma figura para comparar como o conjunto de oportunidade de investimentos se altera.
- Podemos fazer isso facilmente com o comando chart.EfficientFrontierOverlay.
- Vou usar um exemplo combinando as fronteiras eficientes para dois tipos de estratégias de investimento:
 - Permitindo vendas a Descoberto (Long+Short)
 - Não permitindo vendas a Descoberto (Long Only)

Inicializando a carteira long+short

Fazendo o Gráfico – Código

```
portf.list<-combine.portfolios(list(port_spec, port_spec2))</pre>
legend.labels <- c("Long Only", "Long+Short")</pre>
chart.EfficientFrontierOverlay(R=IBOV_Returns_Final,
                                 portfolio list=portf.list,
                                 type="mean-StdDev",
                                 match.col="StdDev",
                                 legend.loc="topleft",
                                 legend.labels=legend.labels
                                 cex.legend=0.6,
                                 labels.assets=FALSE.
                                 pch.assets=18)
```

O Gráfico

Efficient Frontiers

