Ajuste de Curvas pelo Método dos Quadrados Mínimos

Marcone Jamilson Freitas Souza, Departamento de Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, MG, Brasil. Homepage: http://www.decom.ufop.br/prof/marcone, E-mail: marcone@iceb.ufop.br

1 Introdução

Em muitas situações, conhece-se uma tabela de pontos (x_i, y_i) , onde cada y_i é obtido experimentalmente, e deseja-se obter a expressão analítica de uma dada curva y = f(x) que melhor se ajusta a esse conjunto de pontos. Por exemplo, sabe-se que o número y de bactérias, por unidade de volume, existente em uma cultura após um determinado número x de horas, cresce exponencialmente com o aumento de x. Neste caso, o número de bactérias cresce com o decorrer das horas na forma $y = \alpha e^{\beta x}$. O problema consiste, então, em determinar os valores mais apropriados dos parâmetros α e β desta exponencial.

2 Ajuste a uma reta

Mostremos, inicialmente, como ajustar um conjunto de pontos a uma reta y = a + bx, onde a e b são parâmetros a serem determinados.

Neste caso, estamos interessados em minimizar a distância de cada ponto (x_i, y_i) da tabela à cada ponto $(x_i, a + bx_i)$ da reta, conforme ilustra a figura 1.

Figura 1: Distância de um ponto (x_i, y_i) à reta y = a + bx

A distância entre esses pontos é $|y_i-a-bx_i|$ e a soma dos quadrados dessas distâncias é:

$$q = \sum_{i=1}^{n} (y_i - a - bx_i)^2 \tag{2.1}$$

Os candidatos a ponto de mínimo da função 2.1 são aqueles para os quais são nulos as derivadas parciais de q em relação a cada um de seus parâmetros, isto é:

$$\frac{\partial q}{\partial a} = -2\sum_{i=1}^{n} (y_i - a - bx_i) = 0$$

$$(2.2)$$

$$\frac{\partial q}{\partial b} = -2\sum_{i=1}^{n} x_i(y_i - a - bx_i) = 0 \tag{2.3}$$

Tendo em vista que:

$$\sum_{i=1}^{n} (y_i - a - bx_i) = \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} a - \sum_{i=1}^{n} bx_i$$
$$= \sum_{i=1}^{n} y_i - na - \left(\sum_{i=1}^{n} x_i\right)b$$

e que:

$$\sum_{i=1}^{n} x_i (y_i - a - bx_i) = \sum_{i=1}^{n} x_i y_i - \left(\sum_{i=1}^{n} x_i\right) a - \left(\sum_{i=1}^{n} x_i^2\right) b$$

obtemos o seguinte sistema de equações, denominado "equações normais" do problema, cujas incógnitas são os parâmetros a e b da equação y = a + bx:

$$\begin{cases}
 na + \left(\sum_{i=1}^{n} x_{i}\right) b = \sum_{i=1}^{n} y_{i} \\
 \left(\sum_{i=1}^{n} x_{i}\right) a + \left(\sum_{i=1}^{n} x_{i}^{2}\right) b = \sum_{i=1}^{n} x_{i} y_{i}
\end{cases}$$
(2.4)

Exemplo 1:

Dada a tabela de pontos (x_i, y_i) a seguir, determine pelo Método dos Quadrados Mínimos a equação da reta que melhor se ajusta a esses pontos.

x_i	-1.0	-0.1	0.2	1.0	
y_i	1.000	1.099	0.808	1.000	

Solução:

Como são n=4 pontos, $\sum_{i=1}^{n} x_i = 0.1$, $\sum_{i=1}^{n} x_i^2 = 2.05$, $\sum_{i=1}^{n} y_i = 3.907$ e $\sum_{i=1}^{n} x_i y_i = 0.0517$, as equações normais do problema são, de acordo com 2.4:

$$\begin{cases} 4a + 0.10b = 3.9070 \\ 0.1a + 2.05b = 0.0517 \end{cases}$$

A solução deste sistema é a=0.9773 e b=-0.0224. Assim, a reta que melhor se ajusta à tabela de pontos dada é:

$$y = 0.9773 - 0.0224x$$

Quadrados Mínimos 3

3 Ajuste a uma exponencial

Mostremos, agora, como ajustar um conjunto de pontos (x_i, y_i) a uma exponencial do tipo $y = \alpha e^{bx}$.

Esta função exponencial pode ser ajustada através da seguinte transformação:

 $\ln y = \ln \left(\alpha e^{bx}\right) = \ln \alpha + bx.$

Fazendo $Y = \ln y$ e $a = \ln \alpha$, reduzimos o problema de ajustar a tabela de pontos (x_i, y_i) referente a uma exponencial ao problema de ajustar a tabela de pontos (x_i, Y_i) , onde $Y_i = \ln y_i$, à equação de uma reta Y = a + bx.

Exemplo 2:

Suponhamos que em um laboratório obtivemos experimentalmente os seguintes valores para $f(x_i)$ sobre os pontos x_i :

x_i	_	-0.7						_
y_i	36.547	17.264	8.155	3.852	1.820	0.860	0.406	0.246

Solução

Fazendo o diagrama de dispersão dos dados acima, verifica-se que um ajuste do tipo $y = \alpha e^{bx}$ é o mais indicado. Efetuando-se as transformações $Y = \ln y_i$, obtemos a tabela $(x_i, \ln y_i)$ a seguir:

							0.8	
$\ln y_i$	3.599	2.849	2.099	1.349	0.599	-0.151	-0.901	-1.402

Como n = 8 pontos, $\sum_{i=1}^{n} x_i = 0.3$, $\sum_{i=1}^{n} x_i^2 = 3.59$, $\sum_{i=1}^{n} y_i = 0.041$ e $\sum_{i=1}^{n} x_i y_i = -8.646$, as equações normais do problema são, de acordo com 2.4:

$$\begin{cases} 8a + 0.30b = 0.041 \\ 0.30a + 3.59b = -8.646 \end{cases}$$

A solução deste sistema é a=1.099 e b=-2.5. Como $a=\ln\alpha$ então $\alpha=e^a=e^{1.099}=3.001$. Assim, a exponencial que melhor se ajusta à tabela de pontos dada é:

$$y = 3.001e^{-2.5x}$$

4 Ajuste a uma hipérbole

Para ajustar uma tabela de pontos (x_i, y_i) , onde:

$$y = \frac{1}{\alpha_1 + \alpha_2 x} \tag{4.5}$$

basta fazer $z = \frac{1}{y} = \alpha_1 + \alpha_2 x$.

5 Ajuste a uma curva exponencial $y = \alpha_1 \alpha_2^x$

Para ajustar uma tabela de pontos (x_i, y_i) , onde:

$$y = \alpha_1 \alpha_2^x \tag{5.6}$$

basta fazer as seguintes transformações, considerando y > 0:

$$z = \ln y = \underbrace{\ln \alpha_1}_{a} + x \underbrace{\ln \alpha_2}_{b} = a + bx$$

6 Ajuste a uma curva geométrica $y = \alpha_1 x^{\alpha_2}$

Para ajustar uma tabela de pontos (x_i, y_i) , onde:

$$y = \alpha_1 x^{\alpha_2} \tag{6.7}$$

basta fazer as seguintes transformações, considerando y > 0 e x > 0:

$$z = \ln y = \underbrace{\ln \alpha_1}_{a} + \underbrace{\alpha_2}_{b} \underbrace{\ln x}_{t} = a + bt$$

Neste caso, estamos minimizando as somas dos quadrados dos desvios nos logaritmos de y, para os logaritmos dos desvios de x.

7 Ajuste a um polinômio

O objetivo, agora, é mostrar como ajustar os pontos de uma tabela com n pontos a uma função polinomial de grau m:

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m$$
(7.8)

onde $m \leq n-1$. Neste caso, a soma dos quadrados das distâncias de y_i à $P(x_i)$ é dada por:

$$q = \sum (y_i - P(x_i))^2 \tag{7.9}$$

e depende de m+1 parâmetros a_0,a_1,\cdots,a_m . Para minimizar essa função, temos que satisfazer às m+1 condições a seguir:

$$\frac{\partial q}{\partial a_i} = 0 \ \forall i = 0, 1, \cdots, m \tag{7.10}$$

a qual fornece um sistema de m+1 equações normais.

No caso de a função polinomial ser quadrática, isto é:

$$P(x) = a_0 + a_1 x + a_2 x^2 (7.11)$$

as equações normais são:

$$\begin{cases}
 na_0 + \left(\sum_{i=1}^n x_i\right) a_1 + \left(\sum_{i=1}^n x_i^2\right) a_2 = \sum_{i=1}^n y_i \\
 \left(\sum_{i=1}^n x_i\right) a_0 + \left(\sum_{i=1}^n x_i^2\right) a_1 + \left(\sum_{i=1}^n x_i^3\right) a_2 = \sum_{i=1}^n x_i y_i \\
 \left(\sum_{i=1}^n x_i^2\right) a_0 + \left(\sum_{i=1}^n x_i^3\right) a_1 + \left(\sum_{i=1}^n x_i^4\right) a_2 = \sum_{i=1}^n x_i^2 y_i
\end{cases} (7.12)$$

Observe que este sistema é simétrico. Para resolvê-lo, isto é, para encontrar as incógnitas a_0, a_1, \dots, a_m , podemos aplicar qualquer um dos métodos numéricos apresentados anteriormente.

Quadrados Mínimos 5

8 Qualidade do ajuste

A qualidade de um ajuste linear pode ser verificada em função do coeficiente de determinação r^2 , dado por:

$$r^{2} = \frac{\sum_{i=1}^{n} (a + bx_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$
(8.13)

sendo $\bar{y} = \frac{1}{n} \left(\sum_{i=1}^{n} y_i \right)$. Quanto mais próximo da unidade r^2 estiver, melhor é o ajuste.

Observe que o coeficiente de determinação é uma medida da proporção da variação total dos dados em torno da média. De fato, o numerador desta expressão representa a soma dos quadrados dos desvios de cada ponto da reta de ajuste ao ponto médio \bar{y} dos pontos dados. Já o denominador representa a soma dos quadrados dos desvios de cada ponto dado ao ponto médio \bar{y} .

Tendo em vista que:

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - a - bx_i)^2 + \sum_{i=1}^{n} (a + bx_i - \bar{y})^2$$

a expressão 8.13 pode ser reescrita como:

$$r^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2} - \sum_{i=1}^{n} (y_{i} - a - bx_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

Como:

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} y_i^2 - 2\bar{y} \sum_{i=1}^{n} y_i + n \sum_{i=1}^{n} \bar{y}^2$$

$$= \sum_{i=1}^{n} y_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} y_i\right)^2$$
a expressão para determinação do coeficiente.

a expressão para determinação do coeficiente de determinação r^2 pode ser simplificada

$$r^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - a - bx_{i})^{2}}{\sum_{i=1}^{n} y_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} y_{i}\right)^{2}}$$
(8.14)