Autómatas de Pila III (pushdown automata)

Alan Reyes-Figueroa Teoría de la Computación

(Aula 19) 09.octubre.2024

Equivalencia de PDAs y CFGs Conversion de CFG a PDA Conversion de PDA a CFG

Autómatas y Lenguajes

- Cuando hablamos de propiedades de cerradura de lenguajes regulares, fue muy útil saltar entre las representaciones *regexp* y los DFA.
- Similarlmente, para las CFGs y los PDAs, ambos son útiles para mostrar propiedades relacionadas con los lenguajes libres del contexto.

Autómatas y Lenguajes

- Además, los PDAs, siendo "algorítmicos," son más fáciles de usar cuando argumentamos que un lenguajes debe ser CFL.
- ☐ Ejemplo: Es más fácil ver cómo un PDA puede reconocer paréntesis balanceados; (no tan fácil en CFG).
- □ Debemos mostrar que, en realidad, CFG's y PDA's son equivalentes.

Convirtiendo una CFG a PDA

- \square Sea L = L(G).
- □ Construimos un autómata de pila P tal que L(P) = L.
- P tiene:
 - \square Q = {q, p, f} (q=start, p=parsing, f=end)
 - \square Σ = Símbolos input = terminales de G.
 - \square Γ = Símbolos stack = todos los símbolos de G.
 - \square Z_0 = Símbolo stack inicial.
 - \square F = {f} un solo estado de aceptación.
 - □ q = estado inicial

Intuición acerca de P

- Dado el input w, P pasará por una derivación *leftmost* de w desde el símbolo inicial S.
- Dado que P no puede saber cuál es esta derivación, ni siquiera cuál es el final de w, utiliza el no determinismo para "adivinar" la producción a utilizar en cada paso.

Intuición acerca de P

- En cada paso, P representa una forma sentencial izquierda LSF (left-sentential form) (paso de una derivación leftmost).
- \square Si el stack de P es α , y P ha consumido una parte x de su input, entonces P representa la forma left-sentential $x\alpha$.
- □ Cuando el stack sea vacío, el input consumido es una cadena en L(G).

Función de Transición de P

- 1. $\delta(q, \epsilon, Z_0) = (p, SZ_0)$. (Regla de inicio)
- 2. $\delta(p, a, a) = (p, \epsilon)$. (Reglas *Tipo 1*)
 - Este paso no cambia el LSF representado, sino que "mueve" la responsabilidad de a de la pila a la entrada consumida.
- 3. Si A $\rightarrow \alpha$ es una producción de G, luego $\delta(p, \epsilon, A)$ contiene (p, α) . (Reglas *Tipo 2*)
 - Adivinar una producción para A y representar el siguiente LSF en la derivación.
- 4. $\delta(p, \epsilon, Z_0) = (f, Z_0)$. (Regla de fin)

Prueba L(P) = L(G)

- □ Debemos mostrar que $(q, wx, S) \vdash^* (q, x, \alpha)$ para cualquier x, si y solo si, $S \Rightarrow^*_{lm} w\alpha$.
- □ Parte 1: "solo si" es una inducción sobre el número de pasos realizados por P.
- Base: 0 pasos.
 - □ Entonces $\alpha = S$, $w = \epsilon$, $y S \Rightarrow^*_{lm} S$ es una producción válida.

Inducción (parte ←)

- Considere n movimientos de P:
 (q, wx, S) ⊦* (q, x, α)
 y asuma que la hipótesis de inducción para secuencias de n-1 movimientos.
- □ Hay dos casos, dependiendo de si el ultimo movimiento usó una regla de del Tipo 1 o Tipo 2.

Uso de una regla Tipo 1

La secuencia de movimientos debe ser de la forma

$$(q, yax, S) + * (q, ax, a\alpha) + (q, x, \alpha),$$

donde ya = w.

- □ Usando la hipótesis de inducción, aplicada a los primeros n-1 pasos, se tiene $S \Rightarrow^*_{lm} ya\alpha$.
- □ Como ya = w, tenemos entonces $S \Rightarrow^*_{lm} w\alpha$.

Uso de una regla Tipo 2

La secuencia de movimientos debe ser de la forma

$$(q, wx, S) + * (q, x, A\beta) + (q, x, \gamma\beta),$$

donde $A \rightarrow \gamma$ es una producción y $\alpha = \gamma\beta$.

- Usando la hipótesis de inducción aplicada a los primeros n-1 pasos, tenemos
 S ⇒*_{Im} wAβ.
- □ Luego, $S \Rightarrow^*_{lm} w_{\gamma}\beta = w_{\alpha}$.

Prueba (parte \Rightarrow)

□ También debemos mostrar que si $S \Rightarrow^*_{lm} w\alpha$, entonces $(q, wx, S) \vdash^* (q, x, \alpha)$.

- Hacemos una inducción sobre el número de pasos en la derivación leftmost.
- □ Las ideas son similares a la parte ←.

Prueba - Final

- □ Ahora que tenemos (q, wx, S) \vdash^* (q, x, α), para cualqueir x, si y solo si, S \Rightarrow^*_{lm} w α .
- \square En particular, hagamos $x = \alpha = \epsilon$.
- □ Entonces, $(q, w, S) \vdash^* (q, \epsilon, \epsilon)$, si y solo si, $S \Rightarrow^*_{lm} w$.
- □ Esto quiere decir que, w \in L(P), si y solo si, w \in L(G).

Convertir de PDA a CFG

- \square Ahora, supongamos que L = L(P).
- □ Construirmos una CFG G tal que L = L(G).
- Intuición: G tendrá variables que generan exactamente las entradas que hacen que P tenga el efecto de quitar un símbolo de pila X mientras pasa del estado p al q.
 - □ P nunca cae por debajo de esta X mientras hace este movimiento.

Variables de G

- Las variables de G son de la forma [pXq].
- Esta variable genera todas y sólo aquellas cadenas w, tales que (p, w, X) ⊦* (q, ∈, ∈).
- Además, añadimos un símbolo inicial S, del cual hablaremos luego.

- Cada producción para [pXq] viene de un movimiento del autómata P en el estado p con símbolo de stack X.
- \square Caso simple: $\delta(p, a, X)$ contiene (q, ϵ) .
- \square Entonces la producción es [pXq] \rightarrow a.
 - \square Observe que *a* puede ser símbolo input ó ϵ .
- □ Aquí, [pXq] genera *a*, ya que leer *a* es una manera de extraer X del stack e ir de p a q.

- Segundo caso: δ(p, a, X) contiene (r, Y) para algún estado r y símbolo Y.
- \square G tiene una producción [pXq] \rightarrow a[rYq].
 - □ Podemos borrar X del stack e ir de p hacia q al leer a (entrando en el estado r y reemplazando la X por Y) y luego leer alguna w que extrae P del stack y va de r a q borrando del stack la Y.
- □ Nota: $[pXq] \Rightarrow^* aw$, siempre que $[rYq] \Rightarrow^* w$.

- Tercer caso: δ(p, a, X) contiene (r, YZ), para algún estado r y símbolos Y y Z.
- □ G tiene una producción $[pXq] \rightarrow a[rYs][sZq]$.
- □ Ahora, P reemplaza X por YZ en el stack.
- □ Para lograr el efecto de borrar la X en el stack, P debe borrar Y, yendo del estado r a otro estado s, y luego borrar la Z, yendo de s al estado q.

Ejemplo de la acción de P

- □ Concluimos la prueba del tercer caso :
- □ Ya que no conocemos es estado s, debemos generar una colección de producciones:

$$[pXq] \rightarrow a[rYs][sZq]$$

- para todos los estados s.
- □ [pXq] \Rightarrow * awx, siempre que [rYs] \Rightarrow * w and [sZq] \Rightarrow * x.

- Caso general:
- □ Suponga que $\delta(p, a, X)$ contiene a $(r, Y_1...Y_k)$, para algún estado r y símbolos $Y_{1_i} Y_{2_i} ... Y_k$, con k ≥ 3 .
- ☐ Generamos la colección de producciones $[pXq] \rightarrow a[rY_1s_1][s_1Y_2s_2]...[s_{k-2}Y_{k-1}s_{k-1}][s_{k-1}Y_kq]$

Fin de la prueba

- □ Podemos mostrar que (q_0, w, Z_0) \vdash * (p, ϵ, ϵ) si y sólo si, $[q_0Z_0p] \Rightarrow$ * w. □ (La prueba se resume a dos inducciones.)
- □ El estado p puede ser cualquiera.
- □ Así, agregamos a G otra variable nueva S, el símbolo inicial, y añadimos producciones $S \rightarrow [q_0Z_0p]$, para cada estado p.