MS 221 — Homework Set (9)

(Multiple Integration & Change of Variables)

QUESTION 1

In the case of each of the following iterated integrals write the corresponding iterated integral with the order of integration reversed:

(i)
$$\int_{1/2}^{1} \int_{0}^{1-x} f(x,y) \, dy dx$$

(ii)
$$\int_0^1 \int_0^{\sqrt{1-x^2}} f(x,y) \, dy dx$$

(iii)
$$\int_0^1 \int_{y-1}^0 f(x,y) \, dx dy$$

(iv)
$$\int_0^1 \int_{1+x}^{1-x} f(x,y) \, dy dx$$

QUESTION 2

Evaluate the iterated integral $\int_0^1 \int_{x-1}^0 \int_0^{1-x+y} x \, dz \, dy \, dx$.

QUESTION 3

Calculate the volume integral $\iiint_{\mathbf{V}} (x^2 + y^2) dV$ where the volume \mathbf{V} in \mathbf{R}^3 is determined by the inequalities:

$$x^2 + y^2 \le z \le 8 - x^2 - y^2.$$

QUESTION 4

Let the volume $\boldsymbol{\mathcal{V}}$ in \boldsymbol{R}^3 be determined by the inequalities:

$$0 \le x$$
, $0 \le y$, $0 \le z$, and $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} \le 1$.

If the **charge density**, per unit volume, inside this region is given by $\rho(x, y, z) = x + y + z$ calculate the total charge in \mathbf{V} .

QUESTION 5

Find the volume of the region in \mathbb{R}^3 which is determined by the inequalities:

$$x^2 + y^2 < z < 2x.$$

QUESTION 6

If the rectangular Cartesian coordinates (x, y) and the curvilinear coordinates (u, v) are related by

$$x = u^2 + 2uv \quad \text{and} \quad y = 2uv + v^2$$

calculate the **Jacobian matrix**

$$\frac{\partial(x,\,y)}{\partial(u,\,v)}$$

and hence find the function $\varphi(u, v)$ such that the **area element** dA in terms of the (u, v) coordinates is given by $dA = \varphi(u, v) du dv$.

QUESTION 7

If the rectangular Cartesian coordinates (x, y) and the curvilinear coordinates (u, v) are related by

$$u = e^x \cos y$$
 and $v = e^x \sin y$

express the Jacobian

$$\det \frac{\partial(u, v)}{\partial(x, y)}$$

as a function of (u, v) and hence find the function $\varphi(u, v)$ such that the **area element** dA in terms of the (u, v) coordinates is given by $dA = \varphi(u, v) du dv$.

QUESTION 8

The rectangular Cartesian coordinates (x, y, z) and the cylinderical polar coordinates (r, θ, z) for \mathbb{R}^3 are related by

$$x = r \cos \theta$$
, $y = r \sin \theta$ and $z = z$.

Find the volume element dV in cylinderical polar coordinates for \mathbb{R}^3 .

QUESTION 9

Sketch the region Ω in the (x, y)-plane which is determined by the inequalities:

$$1 - x \le y \le x - 1$$
 and $1 \le x \le \sqrt{9 + y^2}$.

Define the transformation (i.e. **change of variables**) $(x, y) \mapsto (u, v)$ by

$$u = x + y, \quad v = x^2 - y^2$$

and sketch the image of Ω in the (u, v)-plane under this transformation.