```
In [3]:
        %matplotlib inline
        # Dependencies and Setup
        import matplotlib.pyplot as plt
        import pandas as pd
        import numpy as np
        # File to Load (Remember to change these)
        city data to load = "data/city data.csv"
        ride_data_to_load = "data/ride_data.csv"
        # Read the City and Ride Data
        city = pd.read_csv(city_data_to_load)
        ride = pd.read_csv(ride_data_to_load)
        # Combine the data into a single dataset
        pyber = pd.merge(city, ride, how = "outer", on = "city")
        # Display the data table for preview
        pyber.head()
```

Out[3]:

	city	driver_count	type	date	fare	ride_id
0	Richardfort	38	Urban	2018-02-24 08:40:38	13.93	5628545007794
1	Richardfort	38	Urban	2018-02-13 12:46:07	14.00	910050116494
2	Richardfort	38	Urban	2018-02-16 13:52:19	17.92	820639054416
3	Richardfort	38	Urban	2018-02-01 20:18:28	10.26	9554935945413
4	Richardfort	38	Urban	2018-04-17 02:26:37	23.00	720020655850

In [1]:

Out[1]:

	city	date	fare	ride_id	driver_count	type
0	Lake Jonathanshire	2018-01-14 10:14:22	13.83	5739410935873	5	Urban
1	South Michelleport	2018-03-04 18:24:09	30.24	2343912425577	72	Urban
2	Port Samanthamouth	2018-02-24 04:29:00	33.44	2005065760003	57	Urban
3	Rodneyfort	2018-02-10 23:22:03	23.44	5149245426178	34	Urban
4	South Jack	2018-03-06 04:28:35	34.58	3908451377344	46	Urban

Bubble Plot of Ride Sharing Data

```
In [2]: # Obtain the x and y coordinates for each of the three city types

# Build the scatter plots for each city types

# Incorporate the other graph properties

# Create a Legend

# Incorporate a text label regarding circle size

# Save Figure
```

In [3]: # Show plot
plt.show()

Circle size correlates with driver count per city.

Total Fares by City Type

```
In [4]: # Show Figure
plt.show()
```


Total Rides by City Type

```
In [ ]: # Calculate Ride Percents
# Build Pie Chart
# Save Figure
```

In [5]: # Show Figure
plt.show()

Total Drivers by City Type

```
In [ ]: # Calculate Driver Percents

# Build Pie Charts

# Save Figure
```

```
In [6]: # Show Figure
plt.show()
```

% of Total Drivers by City Type


```
In [ ]:
```