International Rectifier

IRLB8721PbF

HEXFET® Power MOSFET

Applications

- Optimized for UPS/Inverter Applications
- High Frequency Synchronous Buck Converters for Computer Processor Power
- High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use

Benefits

- Very Low RDS(on) at 4.5V V_{GS}
- Ultra-Low Gate Impedance
- Fully Characterized Avalanche Voltage and Current
- Lead-Free

V_{DSS}	R _{DS(on)} max	Qg (typ.)
30V	$8.7 \text{m}\Omega@V_{GS} = 10V$	7.6nC

G	D	S	
Gate	Drain	Source	

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	30	V
V_{GS}	Gate-to-Source Voltage	± 20	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	62	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	44	Α
I _{DM}	Pulsed Drain Current ①	250	
P _D @T _C = 25°C	Maximum Power Dissipation ©	65	w
P _D @T _C = 100°C	Maximum Power Dissipation ⑤	33] ^{vv} [
	Linear Derating Factor	0.43	W/°C
T_J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 screw	10lb in (1.1N m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ©		2.3	
$R_{\theta CS}$	Case-to-Sink, Flat Greased Surface	0.5		°C/W
$R_{\theta JA}$	Junction-to-Ambient ④		62	

Notes ① through ⑤ are on page 9 www.irf.com

1

4/22/09

International

TOR Rectifier

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	30			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		21		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		6.5	8.7	mΩ	$V_{GS} = 10V, I_D = 31A$ ③
			13.1	16		V _{GS} = 4.5V, I _D = 25A ③
$V_{GS(th)}$	Gate Threshold Voltage	1.35	1.80	2.35	٧	$V_{DS} = V_{GS}$, $I_D = 25\mu A$
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Coefficient		-7.0		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			1.0	μΑ	$V_{DS} = 24V, V_{GS} = 0V$
				150		$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
gfs	Forward Transconductance	35			S	$V_{DS} = 15V, I_D = 25A$
Q_g	Total Gate Charge		7.6	13		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		1.9			V _{DS} = 15V
Q _{gs2}	Post-Vth Gate-to-Source Charge		1.2		nC	$V_{GS} = 4.5V$
Q_{gd}	Gate-to-Drain Charge		3.4			I _D = 25A
Q_{godr}	Gate Charge Overdrive		2.0			See Fig. 16
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		4.6			
Q _{oss}	Output Charge		7.9		nC	$V_{DS} = 15V, V_{GS} = 0V$
R _G	Gate Resistance		2.3	3.8	Ω	
t _{d(on)}	Turn-On Delay Time		9.1			$V_{DD} = 15V, V_{GS} = 4.5V$
t _r	Rise Time		93			I _D = 25A
t _{d(off)}	Turn-Off Delay Time		9.0		ns	$R_G = 1.8\Omega$
t _f	Fall Time		17			See Fig. 14
C _{iss}	Input Capacitance		1077			V _{GS} = 0V
C _{oss}	Output Capacitance		360		рF	V _{DS} = 15V
C _{rss}	Reverse Transfer Capacitance		110			f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ^②		98	mJ
I _{AR}	Avalanche Current ①		25	Α

Diode Characteristics

21040 011414010110100						
	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			62		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			250		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	٧	$T_J = 25^{\circ}C$, $I_S = 25A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		16	24	ns	$T_J = 25^{\circ}C$, $I_F = 25A$, $V_{DD} = 15V$
Q _{rr}	Reverse Recovery Charge		14	21	nC	di/dt = 200A/µs ③

International TOR Rectifier

IRLB8721PbF

1000

(Y)

100

9.0V

7.0V

9.0V

7.0V

4.5V

4.5V

4.5V

4.5V

4.5V

4.5V

4.5V

4.5V

4.5V

7.0V

9.0V

9.0V

7.0V

9.0V

9.0V

7.0V

9.0V

9.0V

7.0V

9.0V

9.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

International

TOR Rectifier

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International **TOR** Rectifier

Fig 12. On-Resistance vs. Gate Voltage

Fig 13b. Unclamped Inductive Test Circuit

Fig 14a. Switching Time Test Circuit

Fig 13a. Maximum Avalanche Energy vs. Drain Current

Fig 13c. Unclamped Inductive Waveforms

Fig 14b. Switching Time Waveforms

International TOR Rectifier

IRLB8721PbF

Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 16a. Gate Charge Test Circuit

Fig 16b. Gate Charge Waveform

International IOR Rectifier

TO-220AB Package Outline (Dimensions are shown in millimeters (inches))

ÀH1	A	SEATING PLANE A ———————————————————————————————————	
c		A	

NOTES:

- SE

 DIMENSIONING AND TOLERANCING AS PER ASME Y14,5 M- 1994.

 DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS].

 LEAD DIMENSION AND FINISH UNCONTROLLED IN L1.

 DIMENSION D, D1 & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH

 SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE

 MEASURED AT THE OUTERWOST EXTREMES OF THE PLASTIC BODY,

 DIMENSION B, D3 & c1 APPLY TO BASE METAL ONLY.

 CONTROLLING DIMENSION: INCHES.

 THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS EH1,D2 & E1

 DIMENSION B, X H ID PERING A ZONE WHERE STAMPING.

- DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.
- OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE.

	DIMENSIONS					
SYMBOL	MILLIM	ETERS	INCI	HES		
	MIN.	MAX.	MIN.	MAX.	NOTES	
Α	3.56	4.83	.140	.190		
A1	0.51	1.40	.020	.055		
A2	2.03	2.92	.080	.115		
b	0.38	1,01	.015	.040		
b1	0.38	0.97	.015	.038	5	
b2	1,14	1,78	.045	.070		
b3	1,14	1.73	.045	.068	5	
С	0.36	0.61	.014	.024		
c1	0.36	0.56	.014	.022	5	
D	14.22	16.51	.560	.650	4	
D1	8.38	9.02	.330	.355		
D2	11.68	12.88	.460	.507	7	
Ε	9.65	10.67	.380	.420	4,7	
E1	6.86	8.89	.270	.350	7	
E2	-	0.76	-	.030	8	
e	2.54		.100	BSC		
e1	5.08	BSC	.200	.200 BSC		
H1	5.84	6.86	.230	.270	7,8	
L	12,70	14,73	.500	.580		
L1	3.56	4.06	.140	.160	3	
ØΡ	3,54	4,08	.139	.161		
Q	2.54	3.42	.100	.135		

LEAD ASSIGNMENTS HEXFET IGBTs, CoPACK

TO-220AB packages are not recommended for Surface Mount Application.

SECTION C-C & D-D

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

International

TOR Rectifier

IRLB8721PbF

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF 1010

LOT CODE 1789

ASSEMBLED ON WW 19, 2000 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead - Free"

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- $^{\circ}$ Starting T_J = 25°C, L = 0.32mH, R_G = 25Ω, I_{AS} = 25A.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

Data and specifications subject to change without notice.

This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.04/2009