Test Problems fore UMC K1 - Second Semester

Nghia Doan

March 15, 2025

Problem 0.1 (Problem One). ABCD is a unit square. Points P, Q, M, and N are on sides AB, BC, CD, and DA, respectively, such that:

$$CM + AN + AP + CQ = 2.$$

Prove that $PM \perp QN$.

Proof. Consider the rotation $\mathcal{R}(A, 90^{\circ})$ around A anti-clockwise by 90° , shown as below:

$$\mathcal{R}(A,90^\circ)(B) = D, \ \mathcal{R}(A,90^\circ)(C) = C', \ \mathcal{R}(A,90^\circ)(D) = D', \ \mathcal{R}(A,90^\circ)(Q) = Q', \ \mathcal{R}(A,90^\circ)(N) = N'.$$

By the property of the rotation:

$$AN = AN', \ CQ = C'Q' \implies PN' = PA + AN' = PA + AN = 2 - (CM + CQ) = CC' - CM - C'Q' = MQ'.$$

Thus, PMQ'N' is a parallelogram, therefore $Q'N' \parallel MP$. By the property of the rotation, $QN \perp MP$. \square

Problem 0.2 (Problem Two). In $\triangle ABC$, AB > AC. An external angle bisector of $\angle BAC$ intersects the circumcircle of $\triangle ABC$ at E. Let F be the foot of the perpendicular from E to line AB. Prove that:

$$2AF = AB - AC.$$

Proof. Consider the rotation $\mathcal{R}(E, \angle CEB)$ around E clockwise by $\angle CEB$.

$$\angle EBC = \angle EAT = \angle EAB = \angle ECB \implies EC = EB \implies \mathcal{R}(E, \angle CEB)(C) = B.$$

Let $\mathcal{R}(E, \angle CEB)(A) = D$. Since $\angle CAB = \angle CEB$ and AB > AC, thus $D \in AB$. Therefore: $\mathcal{R}(E, \angle CEB)(\triangle AEC) = \triangle DEB$.

Furthermore

$$\angle DAE = \angle EAT = \angle EDA \implies \triangle AED$$
 is isosceles.

Now
$$EF \perp AD$$
, hence $2AF = AD = AB - BD = AB - AC$.

Problem 0.3 (Problem Three). Let ABC be a triangle such that AB > AC. Let M and N be the intersections of the median and the angle bisector, respectively, from A to BC. Let Q and P be the points where the perpendicular at N to NA meets MA and BA, respectively. Let O be the point where the perpendicular at P to BA meets AN. Prove that $QO \perp BC$.

Proof. Let AN intersect the circumcircle of $\triangle ABC$ at D. Then

$$\angle DBC = \angle DAC = \frac{1}{2} \angle BAC = \angle DAB = \angle DCB \implies DB = DC \implies MD \perp BC.$$

Consider the homothety with center A with factor $k = \frac{AO}{AD}$:

$$\mathcal{H}_{(\mathcal{A},\parallel)}(\triangle DBC) = \triangle OB'C' \implies OB' = OC', BC \parallel B'C'.$$

Let $B'C' \cap PN = K$, then:

$$\angle OB'K = \angle DBC = \angle DAB = 90^{\circ} - \angle AOP = \angle OPK \implies P, B', O, K$$
 are concyclic.

Thus:

$$\angle B'KO = \angle B'PO = 90^{\circ} \implies B'K = C'K \implies K \in MA \ (BC \parallel B'C') \implies K \equiv Q.$$

Now
$$\angle B'KO = 90^{\circ}$$
 implies that $QO \equiv KO \perp B'C'$, hence $QO \perp BC$.