

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»	

Лабораторная работа № 17

Дисциплина Функциональное и логическое программирование

Tema Работа программы на Prolog_
Студент Куприй А. А.
Группа _ИУ7-63Б_
Оценка (баллы)
Преподаватель _ Толпинская Н. Б., Строганов Ю. В

Цель работы — получить навыки построения модели предметной области, разработки и оформления программы на Prolog, изучить принципы, логику формирования программы и отдельные шаги выполнения программы на Prolog.

Задачи работы: приобрести навыки декларативного описания предметной области с использованием фактов и правил.

Изучить способы использования термов, переменных, фактов и правил в программе на Prolog, принципы и правила сопоставления и отождествления, порядок унификации.

Задание:

В одной программе написать правила, позволяющие найти

- 1. Максимум из двух чисел
 - без использования отсечения,
 - с использованием отсечения;
- 2. Максимум из трех чисел
 - без использования отсечения,
 - с использованием отсечения;

Убедиться в правильности результатов.

Для каждого случая пункта 2 обосновать необходимость всех условий тела. Для одного из вариантов ВОПРОСА и каждого варианта задания 2 составить таблицу, отражающую конкретный порядок работы системы:

Вопросы:

Какое первое состояние резольвенты?

Заданный вопрос (goal).

В каком случае система запускает алгоритм унификации?

Система запускает алгоритм унификации автоматически при необходимости что-то доказать

Каково назначение и результат использования алгоритма унификации?

Унификация – механизм логического вывода. Результат – подстановка.

В каких пределах программы переменные уникальны?

Именованная переменная уникальна в рамках предложения, в котором она используется. Анонимные переменные всегда уникальны.

Как применяется подстановка, полученная с помощью алгоритма унификации?

Подстановка применяется к целям в резольвенте путем замены текущей переменной на соответствующий терм.

Как изменяется резольвента?

Преобразования резольвенты выполняются с помощью редукции. Редукцией цели G с помощью программы P называется замена цели G телом того правила из P, заголовок которого унифицируется с целью. Новая резольвента образуется в два этапа:

- 1. в текущей резольвенте выбирается одна из подцелей и для неё выполняется редукция;
- 2. к полученной конъюнкции целей применяется подстановка, полученная как наибольший общий унификатор цели и заголовка сопоставленного с ней правила.

В каких случаях запускается механизм отката?

Механизм отката запустится в случае неудачи алгоритма унификации.

Текст программы

```
predicates
```

max2(integer, integer, integer).

 $max2With Cut (integer,\,integer,\,integer).\\$

max3(integer, integer, integer, integer).

max3WithCut(integer, integer, integer, integer).

clauses

 $\max 2(A, B, A) :- A >= B.$

 $\max 2(A, B, B) :- B > A.$

max2WithCut(A, B, A) :- A > B,!.

max2WithCut(_, B, B).

 $\max 3(A, B, C, A) := A = B, A = C.$

 $\max 3(A, B, C, B) :- B > A, B >= C.$

max3(A, B, C, C) :- C > A, C > B.

max3WithCut(A, B, C, A) :- A > B, A > C,!

 $max3WithCut(_, B, C, B) :- B > C,!.$

max3WithCut(_, _, C, C).

goal

max3WithCut(1, 5, 2, Max).

Результаты работы программы:

goal

max3(1, 5, 2, Max).

goal

max3WithCut(1, 5, 2, Max).

goal

max2(3, 2, Max).

goal

max2WithCut(3, 2, Max).

Таблицы

Цель: goal

max3 (1,5,2,Max).

№ шага	Состояние резольвенты	Сравниваемые термы; результат; подстановка, если есть	Дальнейшие действия: прямой ход или откат
1	max3(1, 5, 2, Max)	По max3(1, 5, 2, Max) ищется системой определение отношения (по имени предиката и списку (числу) аргументов)	Определение отношения найдено, заносится в стек max3(1, 5, 2, Max), прямой ход
2	1>=5, 1>=2	Начинает «раскрываться» правило, т. е. доказывается каждое целевое утверждение в теле правила последовательно слева направо A>=B, A>=C	Прямой ход
3	1>=5, 1>=2	1>=5	Значение утверждения false, переход к следующему определению
4	5>1, 5>=2	Начинает «раскрываться» правило, т. е. доказывается каждое целевое утверждение в теле правила последовательно слева направо В>A, В>=С	Прямой ход
5	5>1, 5>=2	5>1	Значение утверждения true, переход к следующему целевому утверждению
6	5>1, 5>=2	5>=2	Значение утверждения true, переход к следующему целевому утверждению
7			Резольента пуста, вывод результата, переход к следующему определению
8	2>1, 2>5	Начинает «раскрываться» правило, т. е. доказывается каждое целевое утверждение в теле правила последовательно слева направо C>A, C>B	Прямой ход

9	2>1,	2>1	Значение утверждения
	2>5		true, переход к
			следующему целевому
			утверждению
10	2>1,	2>5	Значение утверждения
	2>5		false, переход к
			следующему
			определению
11			В базе знаний больше ни
			одного утверждения с
			заданным именем,
			возврат, достаем из стека
			max3(1, 5, 2, Max)
12			Стек пуст, завершение
			программы

Цель: goal max3WithCut(1,5,2,Max).

№ шага	Состояние резольвенты	Сравниваемые термы; результат; подстановка, если есть	Дальнейшие действия: прямой ход или откат
1	max3WithCut(1, 5, 2, Max)	По max3WithCut(1, 5, 2, Max) ищется системой определение отношения (по имени предиката и списку (числу) аргументов)	Определение отношения найдено, заносится в стек max3WithCut(1, 5, 2, Max), прямой ход
2	1>5, 1>2	Начинает «раскрываться» правило, т. е. доказывается каждое целевое утверждение в теле правила последовательно слева направо A>B, A>C	Прямой ход
3	1>5, 1>2	1>5	Значение утверждения false, переход к следующему определению
4	5>2	Начинает «раскрываться» правило, т.е. доказывается каждое целевое утверждение в теле правила последовательно слева направо В>С	Прямой ход
5	5>2	5>2	Значение утверждения true, переход к следующему целевому утверждению

6		Резольента пуста, вывод результата, отсечение
7		Возврат, достаем из стека max3WithCut(1, 5, 2, Max)
8		Стек пуст, завершение программы