INCOMPLETE LABEL UNCERTAINTY ESTIMATION FOR PETITION VICTORY PREDICTION WITH DYNAMIC FEATURES

Junxiang Wang, Yuyang Gao, Andreas Züfle, Jingyuan Yang and Liang Zhao

International Conference on Data Mining (ICDM) 2018

Content

- Introduction
- Problem Formulation
- Challenges
- Our Method
- Optimization
- Experimental Results

Introduction: Background

- The rise of Online Petition Platform (OPP) spurred with the internet and social networking.
- ➤ Change.org, which was founded in 2007, has owned over 190 million users and hundreds of daily petitions covering various social aspects by July 2017.
- These petition websites can fill the gap between the increasing public concerns and the decision-makers' attention.
- > By making the decision-makers of Whole Foods Market agree on stopping discarding "ugly looking fruits", online petitions which aimed at reducing serious food waste were achieved.

Introduction: An example of Online Petitions

Introduction: Pros and Cons of Online Petitions

 An online petition is easily created by using web-based hosts to gain enough signatures in order to gain the attention of responsible decision-makers.

Pros	Cons
Low financial cost	poorly organized due to 1: massive nearly-duplicated and
Easy accessibility	correlated petitions 2: sophisticated problems of spatio- temporal and semantic dissemination from various similar petitions.

 Motivation to this work: prioritize petitions with higher victory probability more efficiently and proactively

Problem Formulation

A petition will be labeled as victorious if

- > (1). The required number of signatures is satisfied or
- > (2). The appeals of the petition launcher have been addressed by the decision-makers within a limited time interval.
- The petition victory prediction problem is formulated as
- \triangleright Given the petition vector $X_{i,t}$, the goal of this problem is to predict whether the i-th petition will succeed at time $t+\tau$ by learning the mapping $f:X_{i,t}\to Y_{i,t+\tau}$, where τ is the lead time.

Challenges: 1. Missing values in dynamic features

Challenges: 2. Strong uncertainty in petition prediction

Challenges: 3. Unknown labels for ongoing petitions

Our Method: Multi-task Learning model with Uncertainty Estimation(MLUE)

- Increasing Feature Block(IFB)
- > Completeness. The time intervals partitioned by IFBs are complete.
- > Coherence. Petition sets in the same IFB share the same missing patterns.
- ➤ Orderliness. The available features in the j-th IFB is contained in the (j+1)-th IFB.
- We consider each block as an independent task.

Our Method: Multi-task Learning model with Uncertainty Estimation(MLUE)

Uncertainty Estimation

➤ If the predicted label in j-th IFB is correct while that in (j-1)-th IFB is wrong, we earn more certainty.

> If the predicted label in j-th IFB is wrong while that in (j-1)-th IFB is correct, we lose

more certainty.

the classifier

the accuracy losing of the classifier

the accuracy earning of $earn(Y_{i,q}, Y_{i,p}, Y_{i,d_i}) = I(Y_{i,q} \neq Y_{i,d_i})I(Y_{i,p} = Y_{i,d_i})$ $= (1 - Y_{i,q}Y_{i,d_i})(1 + Y_{i,p}Y_{i,d_i})/4$

$$lose(Y_{i,q}, Y_{i,p}, Y_{i,d_i}) = I(Y_{i,q} = Y_{i,d_i})I(Y_{i,p} \neq Y_{i,d_i})$$
$$= (1 + Y_{i,q}Y_{i,d_i})(1 - Y_{i,p}Y_{i,d_i})/4$$

$$R(Y_{i,q}, Y_{i,p}, Y_{i,d_i}) = lose(Y_{i,q}, Y_{i,p}, Y_{i,d_i}) - earn(Y_{i,q}, Y_{i,p}, Y_{i,p}, Y_{i,p}, Y_{i,p}, Y_{i,p}) - earn(Y_{i,q}, Y_{i,p}, Y_{i,p}, Y_{i,p}, Y_{i,p}, Y_{i,p}) - earn(Y_{i,q}, Y_{i,p}, Y_{i,p}, Y_{i,p}, Y_{i,p}, Y_{i,p}) - earn(Y_{i,q}, Y_{i,p}, Y_{i,p}, Y_{i,p}, Y_{i,p}, Y_{i,p}, Y_{i,p}) - earn(Y_{i,q}, Y_{i,p}, Y_{i,p}$$

label in IFB(i). $Y_{i,q} (q \in T_{i-1})$: the predict label in IFB(j-1). Y_{i,d_i} : the label of the i-th petition at time d_i .

i: the i-th petition.

 d_i : the labeled time.

 $Y_{i,p}(p \in T_i)$: the predict

uncertainty function

Our Method: Multi-task Learning model with Uncertainty Estimation(MLUE)

Overall model Empirical loss Regularization term Uncertainty function

$$(Y, \beta^*, b^*) = \underset{s.t.}{\operatorname{arg\,min}} \underset{Y, \beta, b}{\operatorname{min}} Loss(Y; \beta, b) + \lambda_1 \Omega(\beta) + \lambda_2 R(Y)$$

$$s.t. \forall q \leq p, Y_{i,q} \leq Y_{i,p}$$

$$(1)$$

Non-decreasing order

 β : the set of coefficients of all tasks.

b: the set of intercepts of all tasks.

Y: the set of all petition labels at time intervals (It contains known labels and unknown labels).

Optimization: Expectation-Maximization(EM)-like algorithm

- This objective is nonconvex because *Y* is discrete. Therefore, we propose an EM-like algorithm to solve it.
- \triangleright E-step: update *Y* when fixing β and *b*.
- \triangleright M-step: update β and b when fixing Y.
- Updating *Y*: dynamic programming.
- Updating β and b: Alternating Direction Method of Multipliers (ADMM).

Experimental Results: Dataset

- Petition data: Two-stage data collection.
- ➤ The first stage: we queried the Change.org API to obtain information from 54,039 petitions during Jan 1, 2009 and Dec 17, 2017.

➤ The second stage: all corresponding comments were retrieved by Change.org API again.

Petition Field	Number of Fields	
basic properties	10	
petition topic	21	
petition tag	128	
petition title	288	
petition description	711	
petition body	210	
victory description	79	
petition comments	74	
all	1521	

Victorious #Petitions	Failed #Petitions	Ongoing #Petitions
60	202	750
237	2,527	3,110
776	2,691	5,594
479	1,374	2,525
398	1,475	1,951
4,081	7,405	18,404
	#Petitions 60 237 776 479 398	#Petitions #Petitions 60 202 237 2,527 776 2,691 479 1,374 398 1,475

Experimental Results: Metrics and comparison methods

Metrics:

- \triangleright Accuracy(ACC)=(TN+TP)/(TN+FP+FN+TP)
- ➤ Precision(PR)=TP/(FP+TP)
- ightharpoonup Recall(RE)=TP/(FN+TP)
- \triangleright F-score(FS)=2RE*PR/(PR+RE)
- ➤ Area Under ROC curve(AUC): compute the Area under Receiver Operating Characteristic (ROC) curve.

Actual failure

Actual victory

Predicted victory

FP

TP

Predicted

failure

TN

FN

Comparison methods:

- ➤ Multi-task learning: Constrained Multi-Task Feature Learning I (cMTFL-I), convex relaxed Clustered Multi-Task Learning(CMTL), multi-task learning with Joint Feature Selection (JFS).
- ➤ Semi-supervised learning: WEakly LabeLed Support Vector Machines (WELLSVM), Stochastic optimization for Cluster Kernel (SoCK), Nystrom Cluster Kernel (NysCK).

Experimental Results: Petition victory prediction on US dataset

	Methods	ACC	PR	RE	FS	AUC
	cMTFL-I	0.5435	0.5588	0.9377	0.7003	0.4869
	CMTL	0.5674	0.5695	0.9799	0.7203	0.5842
Multi-task learning	JFS	0.5735	0.5738	0.9773	0.7228	0.5996
Comi ouponicod	WELLSVM	0.5359	0.7648	0.4915	0.4451	0.7250
Semi-supervised learning	SoCK	0.8202	0.8644	0.8112	0.8369	0.8719
	NysCK	0.8347	0.8882	0.8117	0.8482	0.8880
	MLUE	0.8602	0.9247	0.8212	0.8698	0.9140

- MLUE ranked the first in four metrics out of five.
- Semi-supervised learning methods outperformed multi-task learning methods.

Experimental Results: ROC curve on US dataset and Canada dataset

- MLUE performed the best in general.
- Semi-supervised learning methods outperformed multi-task learning methods.

Experimental Results: Scalability analysis

 Nearly all methods increase linearly with number of features and petitions.

Experimental Results: Feature analysis on US dataset

	Petition Field	Feature	Weight Value
	victory description	department	3.3964
Education -related features	petition tag	k -12	3.0348
	petition tag	healthcare	2.9356
	petition tag	gay rights	2.7908
	petition tag	disability rights	2.7803
Right - related features	petition tag	students	2.7134
	petition tag	clemency	2.6915
	petition tag	education	2.6883
	victory description	continue	2.6612
	petition tag	cats	2.5314

Our Dataset

The link of our dataset and code

http://mason.gmu.edu/~lzhao9/materials/data/petition/index.html

Feel free to contact me (<u>jwang40@gmu.edu</u>) if you have any questions.

Thank you. Any questions?