Question 2

(a) The first partial truth table looks like this:

۰	p	q	X
٥	Т	Т	Т
	Т	F	
	F	Т	
۰	F	F	Т

Select all options below that could represent the compound proposition X.

$\square \sim p \wedge q$	
$ ightharpoonup p \leftrightarrow q$	TOT (FOT
$ ightharpoonup p \lor \sim q$	TVF FVT
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	

اط

p	q	r	Y_1	Y_2
Т	T	T	l	2
T	Т	F	3	F
T	F	Т	4	Т
T	F	F	5	F
F	Т	Т	6	F
F	Т	F	Т	フ
F	F	Т	8	9
F	F	F	()	10

2" of mays
23 => Logically equivalent patterns for three compton
1005.

211 - 23.

F3F T3T Three different if-then stakene F3T

p	q	r	Z_1	Z_2
Т	Т	T		
T	T	F		
Т	F	T		
T	F	F	l	F
F	T	T	F	2
F	T	F	2	Т
F	F	Т	2	Т
F	F	F	2	Т

One nows where result is determined

Four rows where there are 2 value results: Question 3 Consider the sets $S=\{1,2,3,4,5\}$ and $A\subseteq S imes S$ given by $A = \{(1,3), (2,1), (2,2), (2,4), (3,2), (3,5), (4,3), (4,5), (5,2), (5,5)\}.$ (a) Calculate the number of sets $B\subseteq S imes S$ such that $A\subseteq B$ and B is a reflexive relation. 212 वे 🗗 (b) Calculate the number of sets $B\subseteq S imes S$ such that $A\subseteq B$ and B is a symmetric relation. ব 🗗 (c) Calculate the number of sets $B\subseteq S imes S$ such that $A\subseteq B$ and B is an antisymmetric relation. 23 ×3 र्व 🗗 (d) Suppose $B\subseteq S imes S$ is a transitive relation such that $A\subseteq B$. What is the smallest possible cardinality of B? ব 🗗 a) 25 sets in S (5×5) 10 mandatory elements EA. To make reflexive, need to include £1,13, £3,33, £4,43 : 13 mandatory elements EA Hence, these 13 mandatory elevents & B b) To be symmetric! $A = \{(1,3), (2,1), (2,2), (2,4), (3,2), (3,5), (4,3), (4,5), (5,2), (5,5)\}.$ (3,1), (1,2), (4,2), (2,3), (5,3), (3,4), (5,4), (2,5) $A = \{(1,3), (2,1), (2,2), (2,4), (3,2), (3,5), (4,3), (4,5), (5,2), (5,5)\}.$ undershol as "only or Anti-symmetry anti-symmetri included, Cor excluded)

elevent

Question 4

(For this question, recall that \oplus is the exclusive disjunction ("xor") logical operator.)

Suppose p and q are simple propositions, and consider the set

 $S = \{p, \ q, \ p \land q, \ p \lor q, \ p \land \sim q, \ \sim p \oplus q, \ \sim p, \ \sim p \leftrightarrow q \}.$

Let $R \subseteq S imes S$ be the relation given by

xRy if and only if $x \Rightarrow y$.

(a) Prove that R is a partial order on S.

Reflexivity:

 $x \in \mathbb{R}$ x implies $x \Rightarrow x$. This is trivially maintained, as any proposition can be a conclusion of it self (for examples, $p \Rightarrow p$ is true).

Anti-symmetric:

if xRy and yRx then x = x

Consider two arbitrary logical propositions x and y.

 $x \Rightarrow y$ and $y \Rightarrow x$ are both valid propositions.

Since we are given that no two statements are logically equivalent, it must then also be true that x = y. (Or the converse would not be true).

Transivity:

 $x \Rightarrow y$ and $y \Rightarrow z$ imply $x \Rightarrow z$ by virtue of transitive logic.

(b) Select all the ordered pairs below that are elements of R .	۰	•		٠	٠	
(Be sure to select all options that apply.)						
$igwedge (p \wedge q, \sim \!\! p \oplus q)$	۰	0		۰	0	
\neg	•	•			•	
		۰		۰	٠	
• • • • • • •	۰	٠		۰	۰	
$4 \Box (\sim p \oplus q, \ p \land \sim q)$		۰			٠	
(b) Select all the ordered pairs by (Be sure to select all options that			are e	eleme	ents	of R
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
· · · · · · · · · · · · · · · · · · ·						
$\boxed{2. \ \ \wedge \ p \vee q \wedge \rho \vee \gamma q \ \stackrel{=}{\Rightarrow} \ } \ p \vee q \ . \qquad $						
Case FoF: 1 Case FOT: X				۰		
Hera ~ Pug or pung is case ToT:x	۰	۰		0	۰	
false	٠	٠		٠	٠	
This must be EVE.						
Hence both canol be						
fulse at the same time	۰	۰		۰	۰	
3. p 1~q = pvq	٠	٠		٠	۰	
		0			۰	
p is to a is true = pyq ic true.	۰	٠		٠	۰	
b is take a 13 take = pry y 15 take.	٠	٠		٠	٠	• •
		۰				
(c) Select the statements below that are true.	•	٠		٠	٠	
(Be sure to select all options that apply.)	۰	۰	• •	۰	۰	
		•			•	
		۰				
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	٠	۰		۰	۰	
	۰	۰		۰	۰	
$p \wedge q$ is the greatest lower bound of p and q under R .		•			•	
		۰				
p/19 p 75 T and q 15 T:		•		•	•	
-: Is a lover bound, and is a align of the the most fundamental praty, a	~er i/5.	ے ب	· +	· · · · · · · · · · · · · · · · · · ·		0 0
		٠			0	

(d) The poset (S,R) does not have a least element. Select each option below that would be a least element of (S,R) if it were added to the set S.

(Be sure to select all options that apply.)

Anything fundamentally true or false usual fit here (As it can tren stem to everything).

Question 5

Bella owes Edward some money, but neither of them can remember how much! Let x be the amount of money owed, where x is some positive integer.

Bella remembers that if they wanted to buy some number of \$20 items, spending 12 times the amount of money owed would return \$8 in change. That is,

$$12x \equiv 8 \pmod{20}. \quad - \quad \bigcirc$$

Edward remembers that if they wanted to buy some number of \$77 items, spending 35 times the amount of money owed would return \$28 in change. That is,

$$35x \equiv 28 \pmod{77}$$
.

(a) Find a single value of x that solves both congruences.

solve for O

$$3\pi = 2 \pmod{5}$$

 $5=3+2 \mid 1=3-2 \quad x=4+5s, s \in 3=2+1 \quad |1=3-5+3|$
 $2=1\times2+0 \mid 1=2\times3-5$
 $2=4\times3-2\times5$

Solve for @:

$$5x = 4 \pmod{11}$$

 $11 = 5x2 + 1 \qquad 1 = 11 - 5x2 \qquad x = -8 + 11 + 4 = 4 \times 11 - 8x5 \qquad x = 3 + 11 + 4 = 4 \times 11 - 8x5 \qquad x = 3 + 11 + 4 = 4 \times 11 - 8x5 \qquad x = 3 + 11 + 4 = 4 \times 11 - 8x5 \qquad x = 3 + 11 + 4 = 4 \times 11 - 8x5 \qquad x = 3 + 11 + 4 = 4 \times 11 - 8x5 \qquad x = 3 + 11 + 4 = 4 \times 11 - 8x5 \qquad x = 3 + 11 + 4 = 4 \times 11 + 4 \times 11 + 4 = 4 \times 11 + 4 \times 11$

(b) Bella says, "I found a value of x that solves both congruences, but it took a worryingly long time using trial and error." Edward gloats, "I was able to find a value of x without using any trial and error!" Briefly describe how Edward might have found their answer to part (a).

Solve for the linear congruences, and equate them to eachother, to find values such that both modular congruences have equal value (basicall,y what I did above).

This works by finding the modular congruence (by either using moolve, or doing it manually)

Then, substitute the values into the original functions that found for s.

(c) Suppose x and y are both solutions to the pair of congruences. What is the smallest possible positive value of $x-y$?			٠	٠	۰
55	•		•	•	
			۰	٠	۰
Previously we found that if we solve t	م		٠	٠	٠
eaucition:					
We can find common solutions between the	٠		٠	٠	۰
the modular congruences.	_	• •	۰	۰	۰
We can find common solutions between the two modular congruences. We found that s=2 \$ +=1.					
. The solutions to 5 are	•		•		•
$s=2+lln, n\in \mathbb{Z}$. $x=4+5s$			•		0
$t = 1 + 5m, m \in \mathbb{Z}$ $sc = 3 + 11 + \dots$	•		•	•	•
So, the smallest gap between solutions is:	•		۰		•
Solution - Solution before, ergo,					
	٠			٠	٠
$(S=(S\to)c)-(S=2\to)c)$	٠		٠	٠	۰
Question.6	۰		٠		
Jordan and Sean write down their favourite finite nonempty subsets of $\mathbb N$ and label them S are T respectively. They also choose a set $A\subseteq S imes T$.	nd		•	•	•
Recall that we write $P(T)$ for the power set of T . Jordan defines a function $f:S o P(T)$	by		٠	٠	۰
$f(x)=\{t\in T\mid (x,t)\in A\}$ for all $x\in S$.	Ју			٠	۰
			٠	٠	٠
(a) Sean declares that the relation A is a function. What does this tell Jordan about $f(S)$?			٠	٠	٠
"TF" A "is" of Finaltian " then fow along indust your S" it must built in is in	·1°.	1		· · ·	
If A is a function, then for every input x in S, it must output a sing	۰		ue	у 1	. N
Hence for each input value x in S, the cardinality of f must = 1, as t must be only one output value in the ordered pairs of A.	her	e .	•	•	•
	٠		۰	۰	
(b) Jordan reveals that $\{y\} otin f(S)$ for some $y \in T.$ What does this tell Sean about the	٠		•	٠	٠
function A ?					
(Select all the correct statements below.)			٠	٠	۰
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	٠		۰	۰	
	۰	• •	۰	۰	۰
There is not enough information to determine whether A is onto.			۰	٠	
\square A must be one-to-one.	٠				
${}_{\circ}$ ${$	۰		٠	۰	
There is not enough information to determine whether A is one-to-one.	۰		۰	٠	۰
	٠		۰	٠	۰
Definitely can no longer be surjective, as they have removed a r	equ	ire	t	•	

output for surjectivity. We cannot determine injectivity based alone from the removal of a possible output, as the other values may still map to

unique outputs that aren't y.

	an equivalence relation. Jordan says, Is Jordan correct?	, "I hat means there's only one	possible choice for B ."		• • •
	Yes				
	Briefly explain.				
		• • • • • • • •			
If B is a equival	lence relation, then B	must be symmetric,	reflexive and	l transitive.	
	ction, it also must pro d, transitivity only wo			e input.	
Imagine if it we	re to be transitive, as	s we allowed non-re	eflexive relati	ons,	
then x R y and y	$R z \Rightarrow x R z$, which me	eans that both (x,	y) and (x, z).	This is not a	function
Hence, B is simpl	ly the set of reflexive	relations from S	\rightarrow s.		
	or self: Should be reme	embering the inject	ivity/surjecti	vity rules bas	ed
· · · · · · · · · · · · · · · · · · ·	dinality of the sets.				
Question 7:					
	Let S be the set $\{1,2,4,6,8,10,16,18,18,18,18,18,18,18,18,18,18,18,18,18,$	$20\}.$ The divisibility relation $ $ is a $ $	partial order on S .		
	Let H be the undirected graph defined by ${f t}$	the Hasse diagram for the poset (S, \mid).		
		16			
		10 4			
		.].2			
	(a) How many edges of	does H have?			
	9	⊘ ₫ ₽			
		e of the vertex labelled 2 in H ?			
	4				
K22.	· · · · · · · · · · · · · · · · · · ·	(c) Find some $A\subseteq \mathbb{Z}^+$ such	that the Hasse diagram f	or the poset (A, \bot) is ison	morphic to $K_{2,2}$
	20	• $A = \{1, 2, 3, 6\}$	o d	or the percet (11, 1) to loo.	110161110101112,2
		0			
	2	(d) Find some $B\subseteq \mathbb{Z}^+$ such		or the poset $(B,)$ is ison	morphic to C_5 .
		$B = [\{1, 2, 4, 5, 20\}]$			
6	(a) Evaloin why there	is no C C 7 to such that the l	Lloop diogram for the	accet (C) contains	
	a circuit of length 3.	is no $C\subseteq \mathbb{Z}^+$ such that the I	hasse diagram for the p	boset (C,) contains	
	Suppose for sa	ake of contradiction	on that there :	is indeed a pos	ssible
2	circuit length Consider the o	n of 3. circuit a → b → (c → a. Bv def:	inition of the	poset.
	this means tha				
	b = ak				
	a = ck				
	Building upwar	rds we get c = ak^2	2, and then a	= ak^3. However	t, this

(c) Sean chooses a set $B\subseteq S imes S$ and tells Jordan that the relation B is both a function and

Q	V	e.s	ħ١	0	٨	8	
							_

The *digit sum* of a natural number is the sum of its component digits. For example, the digit sum of 70 is 7+0=7, and the digit sum of 77 is 7+7=14.

A 4-digit number is any integer n such that $1000 \le n \le 9999$.

Syntax advice:

- To enter C(n,k), type either C(n,k) or comb (n,k).
- To enter P(n,k), type either P(n,k) or perm(n,k).
- To enter n^k , type n^k .
- Always use * for multiplication. For example, 2x should be entered as 2*x.
- (a) How many 4-digit numbers have a digit sum divisible by 3?

d

(b) How many 4-digit numbers have a digit sum equal to 35?

a

(c) How many 4-digit numbers have a digit sum equal to 21?

िति हि

a) A number is divisible by 3 iff It's digit sun is

ang (find number divisible 633)

1 wood (remove liver end)

b) a+b+c+d=35

9-0+9-6+9-6+9-8

 $a+b+c+d=1=\begin{pmatrix} 4\\ 3 \end{pmatrix}$

I This guaralees atteast ove of a,b,c,d ove 21, ... no adjustment needen

c) a+b+c+d=21

a - a + a - b + a - c + a - a = 2) a + b + c + a = 15. ≤ 9 not satisfied

- Consider 210

 $a+b+c+d=5. = \begin{pmatrix} 8\\3 \end{pmatrix}$

15,05,05,1=15,1+15,1+15,1+15,1-1. Werection)

But we haven't satisfied a21, : consider a=0

= 9-15+9-c+9-d=21 b+c+d=6 / 8

(d) How many 4-digit numbers have a digit sum divisible by 7?				
(Hint: Since this question is multiple-choice, you should not need to do any complicated calculations.)				
0 1082			• • •	
	• •	• •	• • •	
○ 1382				
		in .		
Hovestly not entirely sure how to a	4	7 41		
<u> </u>	• •	• •	• • •	
(e) How many 6-digit numbers have a digit sum divisible by 9 or 4?	anewor:	to nart (a) h to	
(Hint: For this question part, you may write a to represent the correct a represent the correct answer to part (b), and similarly for c and d. Not				
lowercase c represents the correct answer to part (c), while uppercase				
number of combinations function.)				
a+d-c				
			• • •	
rainly simple:	• •		• • •	• •
19041=1901+141-1911				
$ \mathcal{A} \cup \mathcal{A} = \mathcal{A} \cup \mathcal{A} - \mathcal{A} \cup \mathcal{A} $				
[9141=1361, E.C	• •		• • •	
atd-L.				
atbtctdtetf				
f) 4 pigeonholes.	• •			
You want one pigeonhole	+	ha	i e	. (7
In the wret case scenario, 16 pigeons, which distribute evenly across 4 pigeons.				
4x16.				0 0
The next pigeon will satisfy the	. :[-	·.		

(c) Hence find a recurrence relation that relates terms only in the sequence (a_n) .

We have
$$a_n=t\,a_{n-1}+u\,a_{n-2}\,$$
 for all $n\geq 2$,

where
$$t=$$
 17 \circ

$$bracket$$
 and $u=$

$$a_{N} = 170 a_{N-1} - 2401 a_{N-2}$$

Question 10

Poppy is studying the degree sequence a,b,3,3,3,1,1 for some integers a,b such that $a\geq b\geq 3$.

Give possible values for a and b such that:

(a) A multigraph with Poppy's degree sequence cannot exist.

Degree sum must be ever (Mandshatzing Lemme)

(b) A graph with Poppy's degree sequence exists.

$$a,b=4,4$$

Degree sum is even (Mardshikm lemma)

(c) A multigraph with Poppy's degree sequence exists, but no graph with this degree sequence exists.

$$a,b=7,7$$

How I find these:

Look at number of vertices/vertex degree sequence: a, b, 3, 3, 3, 1, 1

There are 8 vertices. A simple graph (or a graph) must only have 1 edge between two vertices. Hence, add (8-1) degree vertices to ensure and even spread.

When you try this, you will notice that the 1 vertex degree sequence, cannot stay at degree 1. Hence, multi-graph exists (since handshaking lemma), but simple graph does not.

Question

9

Sergei has been labelling weights on the graph G below. Currently they have labelled the edges AB and AC, but the remaining edges do not yet have weights given to them. Sergei refers to the weights of BC, CD, and BD as x, y, and z respectively.

- (a) Find positive integer values for x,y,z such that both
 - ullet the edge BC is not contained in any minimal spanning tree of G, and
 - ullet the edge BC is contained in a shortest path from C to D.

$$x, y, z = 8, 20, 1$$

The naire

solution is.

y=16 10=15 2=1

x = 8 2=1,2,3,4,5,6,7,8

>c= /4 2=1,2

 $x = 13 \qquad y = 1.2.7$

. . .

VOTE: For x=15,19,13, the shortest path does
VUT use BC, because of the path

n=12 2=1,2,3,4

-U 2=1,2,3,4,5

> = 10 2=1,2,3,4,5,6

1 = 1,2,3,4,5,6,7

Question 12

Let G(r,s) be the graph with vertex set

$$V = \{(a,b) \in \mathbb{Z} imes \mathbb{Z} \mid 1 \leq a \leq r, \, 1 \leq b \leq s\}$$

and edge set

$$E = igg\{ \{(a,b),(c,d)\} \mid (a,b),(c,d) \in V, \, |c-a| + |d-b| = 1 igg\}$$

for any integers $r,s\geq 2$.

For example, the graph G(3,4) looks like the following.

Hazel is interested in studying graphs of this type, and is especially keen to investigate certain properties they can have.

(a) Find all values of r,s for which G(r,s) has an Euler path or an Euler circuit. Explain your answer

An euler circuit will exist with every single vertex degree being even. This exists at G(2, 2), but cannot exist anywhere else, as every where will have 'intermediary nodes' inbetween sides, which guarantee a odd degree vertex.

An euler path exists when exactly two vertices are odd. This means that we require two 'intermediary' nodes. This could be $G(3,\ 2)$ or $G(2,\ 3)$

Thirs is

(b) For which values of r, s is G(r, s) bipartite? Explain your answer.

(This answer is probably completely wrong. Please let me know if someone has a good answer)

For all r and s, G is bipartite. By the nature of the graph's subdivisions into squares, every graph in G becomes a combination of K(2, 2). Hence, since G is essentially a chain of complete, bipartite graphs, then G must also be bipartite.

(c) Briefly explain why G(7,7) does not have a Hamilton circuit.

For the graph G to have a Hamiltonian circuit, a predictable pattern appears. The pattern is to leave a column or row untouched all the way until the end, and then pathing in a "sub-rectangle" that does not use that row/column. When r and s are both odd, the pathing pattern (which zig zags throughout the sub-rectangle, and then terminates on the reserved row, but with the only path to the starting node being to backtrack a path.

(d) Complete the following true statement:			
G(r,s) has a Hamilton circuit if and only if	at least one of	0	r and s is divisible by
2 .			

At least one of row or column must be even, to create an escape for the zig-zag.

1	e) What is the minimum numb nonplanar?	per of edges that can be added to $G(2,3)$ to ensure it is
	2	t

G(2, 3) is similar to a hexagon. One of the edges to create K(3, 3) exists within the graph, so you must add 2 more edges to create K(3, 3), which makes it non-planar.