Groupe IPESUP Année 2022-2023

TD 10 : Fonctions dérivables et convexité

Connaître son cours:

Démontrer les assertions suivantes :

- Soient $D \subset \mathbb{R}$, $f: D \to \mathbb{C}$ une fonction et $a \in D$. Si f est dérivable en a, alors f est continue en a.
- Soit $n \in \mathbb{N}$, la fonction $x \in \mathbb{R} \mapsto x^n$ est dérivable en tout point de \mathbb{R} et donner sa fonction dérivée associée.
- La fonction $x \mapsto \begin{cases} x \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{sinon} \end{cases}$ est continue en 0 mais non dérivable en 0.
- Une application dérivable de \mathbb{R} dans \mathbb{R} est lipschitzienne si et seulement si sa dérivée est bornée sur \mathbb{R} . En déduire qu'une fonction de classe \mathscr{C}^1 sur un segment I est lipschitzienne.
- La fonction $x \longmapsto \begin{cases} e^{-\frac{1}{x}} & \text{si } x > 0 \\ 0 & \text{sinon} \end{cases}$ est de classe \mathscr{C}^{∞} sur \mathbb{R} .
- Si f est dérivable sur I, f est convexe si et seulement si f' est croissante.
- Si f est deux fois dérivable sur I, f est convexe si et seulement si $f'' \ge 0$.

Fonctions régulières :

Exercice 1. (*)

Étudier la dérivabilité des fonctions suivantes sur \mathbb{R} :

$$\begin{split} f_1(x) &= x^2 \cos \frac{1}{x}, & \text{si } x \neq 0 & ; \quad f_1(0) = 0; \\ f_2(x) &= \sin x \cdot \sin \frac{1}{x}, & \text{si } x \neq 0 & ; \quad f_2(0) = 0; \\ f_3(x) &= \frac{|x|\sqrt{x^2 - 2x + 1}}{x - 1}, & \text{si } x \neq 1 & ; \quad f_3(1) = 1. \end{split}$$

Exercice 2. (*)

Soit $n \ge 2$ un entier fixé et $f : \mathbb{R}^+ = [0, +\infty[\longrightarrow \mathbb{R} \text{ la fonction définie par la formule suivante :}$

$$f(x) = \frac{1+x^n}{(1+x)^n}, \quad x \ge 0.$$

- 1. (a) Montrer que f est dérivable sur \mathbb{R}^+ et calculer f'(x) pour $x \ge 0$.
 - (b) En étudiant le signe de f'(x) sur \mathbb{R}^+ , montrer que f atteint un minimum sur \mathbb{R}^+ que l'on déterminera.
- 2. (a) En déduire l'inégalité suivante : $(1+x)^n \le 2^{n-1}(1+x^n), \quad \forall x \in \mathbb{R}^+.$
 - (b) Montrer que si $x \in \mathbb{R}^+$ et $y \in \mathbb{R}^+$ alors on a : $(x+y)^n \le 2^{n-1}(x^n+y^n)$.

Exercice 3. (*)

Etudier la dérivabilité en 0 des fonctions :

1.
$$f: x \mapsto \cos\sqrt{x}$$
, $x \ge 0$.

2.
$$g: x \mapsto x^2 \tan \frac{1}{x} \sin \frac{2}{x}$$
 si $x \neq 0$ et $g(0) = 0$.

Exercice 4. (*)

Soit f de classe C^1 sur \mathbb{R}_+^* telle que $\lim_{x \to +\infty} x f'(x) = 1$. Montrer que $\lim_{x \to +\infty} f(x) = +\infty$.

Exercice 5. (**)

Soit $f \in C^1([a,b],\mathbb{R})$ telle que

$$\frac{f(b) - f(a)}{b - a} = \sup\{f'(x), \ x \in [a, b]\}$$

Montrer que f est affine.

Exercice 6. (**)

Montrer que le polynôme $X^n + aX + b$, (a et b réels) admet au plus trois racines réelles.

Groupe IPESUP Année 2022-2023

Exercice 7. (*)

Démontrer que les courbes d'équation $y = x^2$ et y = 1/x admettent une unique tangente commune.

Exercice 8. (**)

Soit P un polynôme réel de degré supèrieur ou égal à 2.

- 1. Montrer que si P n'a que des racines simples et réelles, il en est de même de P'.
- 2. Montrer que si P est scindé sur \mathbb{R} , il en est de même de P'.

Exercice 9. (***) "Polynômes de LEGENDRE"

Pour n entier naturel non nul donné, on pose $L_n = ((X^2 - 1)^n)^{(n)}$.

- 1. Déterminer le degré et le coefficient dominant de L_n .
- 2. En étudiant le polynôme $A_n = (X^2 1)^n$, montrer que L_n admet n racines réelles simples et toutes dans]-1;1[.

Exercice 10. (**)

Soit f une fonction dérivable en un point x_0 . Montrer que

$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0-h)}{2h} = f'(x_0).$$

Réciproquement, si la limite précédente existe, peut-on dire que f est dérivable en x_0 ?

Exercice 11. (**) "ROLLE à l'infini"

Soit $f: [0, +\infty[\to \mathbb{R} \text{ une fonction continue, dérivable sur }]0, +\infty[$ et telle que $f(0) = \lim_{n \to \infty} f = 0$.

On souhaite démontrer qu'il existe $d \in]0, +\infty[$ tel que f'(d) = 0. Le résultat étant direct si f est identiquement nulle, on suppose que ce n'est pas le cas et qu'il existe $c \in]0, +\infty[$ tel que f(c) > 0 (le cas où f(c) < 0 étant similaire).

- 1. Démontrer qu'il existe $a \in]0, c[$ et $b \in]c, +\infty[$ tel que f(a) = f(b).
- 2. Conclure.

Fonctions de régularité supérieure :

Exercice 12. (*)

Soit $n \ge 1$ et $1 \le k \le n$.

- 1. Calculer la dérivée k-ème de $x \mapsto x^{n-1}$ et $x \mapsto \ln(1+x)$.
- 2. En déduire la dérivée n-ième de la fonction suivante : $x \mapsto x^{n-1} \ln(1+x)$.

Exercice 13. (**)

Soit $f:[a,b] \to \mathbb{R}$ n fois dérivable.

- 1. On suppose que f s'annule en (n+1) points distincts de [a,b]. Démontrer qu'il existe $c \in]a,b[$ tel que $f^{(n)}(c) = 0$.
- 2. On suppose que $f(a) = f'(a) = \dots = f^{(n-1)}(a) = f(b) = 0.$ Démontrer qu'il existe $c \in]a,b[$ tel que $f^{(n)}(c) = 0.$

Exercice 14. (**)

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(t) = \begin{cases} e^{1/t} & \text{si } t < 0 \\ 0 & \text{si } t \ge 0 \end{cases}$$

- 1. Démontrer que f est dérivable sur \mathbb{R} , en particulier en t = 0.
- 2. Etudier l'existence de f''(0).
- 3. On veut montrer que pour t < 0, la dérivée n-ième de f s'écrit

$$f^{(n)}(t) = \frac{P_n(t)}{t^{2n}}e^{1/t}$$

où P_n est un polynôme.

- (a) Trouver P_1 et P_2 .
- (b) Trouver une relation de récurrence entre $P_{n+1}, P_n \text{ et } P'_n \text{ pour } n \in \mathbb{N}^*.$
- 4. Montrer que f est de classe C^{∞} .

Exercice 15. (**)

Déterminer dans chacun des cas suivants la dérivée n-ème de la fonction proposée :

1.
$$x \mapsto x^{n-1} \ln(1+x)$$
 3. $x \mapsto \frac{x^2+1}{(x-1)^3}$

3.
$$x \mapsto \frac{x^2+1}{(x-1)^3}$$

2.
$$x \mapsto \cos^3 x \sin(2x)$$
 4. $x \mapsto (x^3 + 2x - 7)e^x$

4.
$$x \mapsto (x^3 + 2x - 7)e^x$$

Exercice 16. (**)

Montrer que la fonction définie sur R par $f(x) = e^{-1/x^2}$ si $x \neq 0$ et 0 si x = 0 est de classe C^{∞} sur \mathbb{R} .

Exercice 17. (***)

Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable telle que f(0) = 0. Montrer que $\sum_{k=1}^{n} f\left(\frac{k}{n^2}\right)$ admet une limite lorsque $n \to +\infty$ et la déterminer.

Propriété des accroissements finis :

Exercice 18. (*)

Démontrer les inégalités suivantes :

- 1. $\forall x, y \in \mathbb{R}$, $|\arctan(x) \arctan(y)| \le |x y|$.
- 2. $\forall x \ge 0, x \le e^x 1 \le xe^x$.

Exercice 19. (*)

Dans l'application du théorème des accroissements finis à la fonction

$$f(x) = \alpha x^2 + \beta x + \gamma$$

sur l'intervalle [a, b] préciser le nombre "c" de [a, b]. Donner une interprétation géométrique.

Exercice 20. (***)

"Formule de Taylor-Lagrange"

Soient a et b deux réels tels que a < b et n un entier naturel. Soit f une fonction élément de $C^n([a,b],\mathbb{R}) \cap D^{n+1}([a,b],\mathbb{R})$. Montrer qu'il existe $c \in]a,b[$ tel que

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + \frac{(b-a)^{n+1} f^{(n+1)}(c)}{(n+1)!}.$$

Indication. Appliquer le théorème de ROLLE à la fonction $g(x) = f(b) - \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} (b-x)^k - A \frac{(b-x)^{n+1}}{(n+1)!}$ où A est intelligemment choisi.

Groupe IPESUP Année 2022-2023

Exercice 21. (**) "Règle de l'Hospital"

Soient $f, g : [a, b] \longrightarrow \mathbb{R}$ deux fonctions continues sur [a, b] (a < b) et dérivables sur]a, b[. On suppose que $g'(x) \neq 0$ pour tout $x \in]a, b[$.

- 1. Montrer que $g(x) \neq g(a)$ pour tout $x \in]a, b[$.
- 2. Posons $p = \frac{f(b)-f(a)}{g(b)-g(a)}$ et considérons la fonction h(x) = f(x) pg(x) pour $x \in [a, b]$. Montrer que h vérifie les hypothèses du théorème de Rolle et en déduire qu'il existe un nombre réel $c \in]a, b[$ tel que

$$\frac{f(a) - f(b)}{g(a) - g(b)} = \frac{f'(c)}{g'(c)}.$$

3. On suppose que $\lim_{x\to b^-} \frac{f'(x)}{g'(x)} = \ell$, où ℓ est un nombre réel. Montrer que

$$\lim_{x\to b^-}\frac{f(x)-f(b)}{g(x)-g(b)}=\ell.$$

4. Application. Calculer la limite suivante :

$$\lim_{x \to 1^{-}} \frac{\arccos x}{\sqrt{1 - x^2}}.$$

Exercice 22. (**)

Soit $f:[0,1] \to \mathbb{R}$ une fonction de classe C^1 vérifiant f(0) = 0 et f(1) = 1. Démontrer que, pour tout $n \ge 1$, il existe $0 < x_1 < \dots < x_n < 1$ vérifiant $f'(x_1) + \dots + f'(x_n) = n$.

Exercice 23. (**)

On considère la suite récurrente définie par $u_0 \in \mathbb{R}^*$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$, où f la fonction définie par $f(x) = 1 + \frac{1}{4} \sin \frac{1}{x}$.

- 1. Déterminer $I = f(\mathbb{R}^*)$, et montrer que I est stable par f.
- 2. Démontrer qu'il existe $\gamma \in I$ tel que $f(\gamma) = \gamma$.
- 3. Démontrer que, pour tout $x \in I$,

$$|f'(x)| \le \frac{4}{9}.$$

4. Démontrer que (u_n) converge vers γ .

Exercice 24. (***) "Théorème de Darboux"

Soit I un intervalle ouvert de \mathbb{R} , et f une fonction dérivable sur I. On veut prouver que f' vérifie le théorème des valeurs intermédiaires.

- 1. Pourquoi n'est-ce pas un résultat direct?
- 2. Soit $(a,b) \in I^2$, tel que f'(a) < f'(b), et soit $z \in]f'(a), f'(b)[$. Montrer qu'il existe $\alpha > 0$ tel que, pour tout réel $h \in]0, \alpha]$, on ait :

$$\frac{1}{h}\left(f(a+h)-f(a)\right) < z < \frac{1}{h}\left(f(b+h)-f(b)\right).$$

3. En déduire l'existence d'un réel h > 0 et d'un point y de I tels que :

$$y + h \in I \text{ et } \frac{1}{h} (f(y + h) - f(y)) = z.$$

- 4. Montrer qu'il existe un point x de I tel que z = f'(x).
- 5. En déduire que f'(I) est un intervalle.
- 6. Soit $f(x) = x^2 \sin\left(\frac{1}{x^2}\right) \sin\left[0,1\right]$ et 0 en 0. Montrer que f est dérivable sur [0,1]. f' est-elle continue sur [0,1]? Déterminer f'([0,1]). Qu'en concluez-vous?

Exercice 25. (**) "Une approximation de e"

On note f la fonction définie sur [1,e] par $f(x) = \frac{2x}{\ln(x)+1}$ et g la fonction définie sur [0,1] par $g(y) = \frac{2y}{(1+y)^2}$.

- 1. Démontrer que, pour tout $y \in [0, 1]$, $0 \le g(y) \le \frac{1}{2}$.
- 2. Étudier f et démontrer que l'intervalle [1, e] est stable par f.
- 3. Démontrer que, pour tous $x, y \in [1, e]$, $|f(x) f(y)| \le \frac{1}{2}|x y| \text{ (on pourra utiliser le résultat de la première question)}.$
- 4. On définit une suite (u_n) par $u_0 = 1$ et $u_{n+1} = f(u_n)$. Démontrer que, pour tout $n \ge 0$, $|u_n e| \le \frac{e-1}{2^n}$. Que peut-on en déduire sur (u_n) ?
- 5. Déterminer un rang n pour lequel u_n est une approximation de e à 10^{-3} près.

Convexité:

Exercice 26. (*)

Soit $n \ge 2$.

- 1. Étudier la convexité de la fonction f définie sur $[-1; +\infty[$ par $f(x) = (1+x)^n$.
- 2. En déduire que, pour tout $x \ge -1$, $(1+x)^n \ge 1 + nx$.

Exercice 27. (*)

Soit $f,g:I\to\mathbb{R}$ deux fonctions convexes, avec $I\subset\mathbb{R}$ un intervalle.

- 1. Est-ce que $\max(f,g)$ est toujours convexe?
- 2. Est-ce que $\min(f, g)$ est toujours convexe?

Exercice 28. (**)

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction convexe dérivable possédant une limite finie en $+\infty$.

- 1. Démontrer que f est décroissante sur \mathbb{R} .
- 2. Démontrer que f' tend vers 0 en $+\infty$.
- 3. Le résultat de la question précédente reste-t-il vrai si on ne suppose pas que f est convexe?

Exercice 29. (**)

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction convexe.

- 1. On suppose que $\lim_{t\to\infty} f = 0$. Montrer que $f \ge 0$.
- 2. Montrer que la somme d'une fonction convexe et d'une fonction affine est convexe.
- 3. On suppose que la courbe représentative de f admet une asymptote. Montrer que la courbe est (toujours) au-dessus de l'asymptote.

Exercice 30. (**)

Soit f une fonction convexe sur un intervalle ouvert I de \mathbb{R} . Montrer que f est continue sur I et même dérivable à droite et à gauche en tout point de I.

Exercice 31. (***)

1. Soient $x_1, x_2,..., x_n, n$ réels positifs ou nuls et $\alpha_1,..., \alpha_n, n$ réels strictement positifs tels que $\alpha_1 + ... + \alpha_n = 1$.

Montrer que $x_1^{\alpha_1}...x_n^{\alpha_n} \leq \alpha_1 x_1 + ... + \alpha_n x_n$. En déduire que

(Inégalité ARITHMÉTICO-GÉOMÉTRIQUE).

$$\sqrt[n]{x_1...x_n} \le \frac{x_1 + ... + x_n}{n}$$

- 2. Soient p et q deux réels strictement positifs tels que $\frac{1}{p} + \frac{1}{q} = 1$.
 - (a) Montrer que, pour tous réels a et b positifs ou nuls, $ab \le \frac{a^p}{p} + \frac{b^q}{q}$ avec égalité si et seulement si $a^p = b^q$.
 - (b) Soient $a_1,..., a_n$ et $b_1,..., b_n$, 2n nombres complexes. Montrer que : (Inégalité de HÖLDER).

$$\left| \sum_{k=1}^{n} a_k b_k \right| \le \sum_{k=1}^{n} |a_k b_k| \le \left(\sum_{k=1}^{n} |a_k|^p \right)^{1/p} \left(\sum_{k=1}^{n} |b_k|^q \right)^{1/q}$$

- (c) Soit $p \ge 1$, montrer que la fonction $x \mapsto x^p$ est convexe sur \mathbb{R}^+ et retrouver ainsi l'inégalité de HÖLDER.
- (d) Trouver une démonstration dans le cas p = q = 2 à l'aide d'une fonction polynomiale du second degré (Inégalité de Cauchy-Schwarz).