

Assignment 5

Sung Soo Hwang

- Develop a program which performs various kinds of thresholding
 - Use 'finger_print.png', 'adaptive_1.jpg', 'adaptive.png'
 - Read all images as gray-scale images
 - For 'finger_print.png', set finger print region to 0 and background region to 255
 - For 'adatpve_1.jpg', and 'adaptive.png', set character region to 0 and background region to 255

- Your program should display three windows
 - 'finger_print', 'adaptive_1', 'adaptive'
 - Each window should display thresholding result

Exercise 6

Sung Soo Hwang

Calculate the thresholding result when the following function is executed

threshold(Input, Result, 195,200,THRESH_BINARY)

Input

10	30	170	180
30	50	210	220
230	240	160	180
250	250	170	180

Result

Calculate the thresholding result when the following function is executed

threshold(Input, Result, 127,255, THRESH_TOZERO)

Input

10	30	170	180
30	50	210	220
230	240	160	180
250	250	170	180

Result

Calculate the thresholding result for the pixel in red when the following function is executed

adaptiveThreshold(input,Result, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 3, 5); Input

10	30	170	180
30	50	210	220
230	240	160	180
250	250	170	180

Calculate the within-class variance when the threshold is set to 3. So, class 1 is consists of pixels with the value of 0~2 and class 2 consists of pixels with the value of 3~5

http://www.labbookpages.co.uk/software/imgProc/otsu Threshold.html