EVD 3

ADVANCED CNN

JEROEN VEEN

DL REPORT TEMPLATE

Questions?

AGENDA

- Object detection
- Object tracking
- Semantic segmentation
- Variational autoencoder

TYPICAL CNN ARCHITECTURE

- Perform classification
- Conv, pool, dense layers

Source: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

CNN SUMMARY

- Emulate the behavior of a visual cortex (e.g. receptive fields)
- Higher-level representations of image content
- No feature definition, but automated extraction
- Biologically inspired perceptrons
- Multilayer perceptrons usually mean fully connected networks, which makes them prone to overfitting
- CNNs can be considered as regularized versions of multilayer perceptrons

CONVOLUTIONAL LAYER SUMMARY

- Local connectivity
- Shared weights
- 3D volumes of neurons
- Output is a stack if feature maps

MORE TRANSFER LEARNING HINTS

https://keras.io/api/applications

CLASSIFICATION AND LOCALIZATION

Add second dense output layer to predict coordinates (regression)

JACCARD INDEX

- Performance metric: intersection over Union (IoU)
- measures similarity between finite sample sets

OBJECT DETECTION

SLIDING WINDOW

SLIDING WINDOWS

Source: https://www.pyimagesearch.com/2020/06/22/turning-any-cnn-image-classifier-into-an-object-detector-with-keras-tensorflow-and-opency/

REGION-BASED CNN

OBJECT TRACKING WITH CNN

Fully-convolutional network tracker (FCNT)

YOU ONLY LOOK ONCE (YOLO)

YOLO V5, JULY 2020

SEMANTIC SEGMENTATION

FULLY CONVOLUTIONAL NETWORKS

TRANSPOSED CONVOLUTION

- Upsampling layer to recover spatial information
 - 1. stretching
 - 2. filtering

SEGNET

RECALL DATA AUGMENTATION

AUTOENCODERS

Generating augmented data

CONDITIONAL VARIATIONAL AUTOENCODER

• Output determined by latent variables, chance and metadata.

