

Curso: Gestión en la toma de decisiones

Alumno: Limaylla Carhuallanqui Sebastian

Ciclo: III

Sección: A1

HYO 2023

Práctica Calificada

Solución con software libre :

47. Se pretende cultivar en un terreno dos tipos de olivos: A y B. No se puede cultivar más de 8 hectáreas con olivos de tipo A, ni más de 10 hectáreas con olivos del tipo B. Cada hectárea de olivos de tipo A necesita 4 m3de agua anual y cada una de tipo B, 3 m3. Se dispone anualmente de 44 m3 de agua. Cada hectárea de tipo A requiere una inversión de 500 € y cada una de tipo B, 225 €. Se dispone de 4500 € para realizar dicha inversión. Si cada hectárea de olivos de tipo A y B, son 500 y 300 litros anuales de aceite. Obtener razonadamente las hectáreas de cada tipo de olivo que se deben plantar para maximizar la producción de aceite.

Pasamos el problema a la forma estándar, añadiendo variables de exceso, holgura, y artificiales según corresponda (mostrar/ocultar detalles)

- Como la restricción 1 es del tipo '≤' se agrega la variable de holgura Xi.
 Como la restricción 2 es del tipo '≤' se agrega la variable de holgura Xi.
 Como la restricción 3 es del tipo '≤' se agrega la variable de holgura Xi.
 Como la restricción 4 es del tipo '≤' se agrega la variable de holgura Xi.

MAXIMIZAR: $Z = 500 X_1 + 300 X_2$

sujeto a

 $\begin{array}{l} 4\;X_1+3\;X_2\leq 44\\ 500\;X_1+225\;X_2\leq 4500\\ 1\;X_1+0\;X_2\leq 8\\ 0\;X_1+1\;X_2\leq 10 \end{array}$ $X_1, X_2 \ge 0$

MAXIMIZAR: $Z = 500 X_1 + 300 X_2 + 0 X_3 + 0 X_4 + 0 X_5 + 0 X_6$ sujeto a

 $\begin{array}{l} 4\;X_1+3\;X_2+1\;X_3=44\\ 500\;X_1+225\;X_2+1\;X_4=4500\\ 1\;X_1+1\;X_5=8\\ 0\;X_1+1\;X_2+1\;X_6=10 \end{array}$ $X_1, X_2, X_3, X_4, X_5, X_6 \ge 0$

Pasamos a construir la primera tabla del método Simplex.

Tabla 1			500	300	0	0	0	0
Base	Сь	\mathbf{P}_0	P 1	P2	P 3	P 4	P5	P 6
P ₃	0	44	4	3	1	0	0	0
P4	0	4500	500	225	0	1	0	0
P 5	0	8	1	0	0	0	1	0
P6	0	10	0	1	0	0	0	1
Z		0	-500	-300	0	0	0	0

Tabla 2			500	300	0	0	0	0
Base	Сь	\mathbf{P}_0	P1	P2	P 3	P 4	P5	P6
P 3	0	12	0	3	1	0	-4	0
P4	0	500	0	225	0	1	-500	0
P 1	500	8	1	0	0	0	1	0
P6	0	10	0	1	0	0	0	1
Z		4000	0	-300	0	0	500	0

Punto	Coordenada X (X1)	Coordenada Y (X2)	Valor de la función objetivo (Z)		
0	0	0	0		
A	0	14.66666666667	4400		
В	11	0	5500		
C	6	6.666666666667	5000		
D	8	4	5200		
E	3.5	10	4750		
F	0	20	6000		
G	9	0	4500		
Н	8	2.22222222222	4666.666666667		
I	4.5	10	5250		
J	8	0	4000		
K	8	10	7000		
L	0	10	3000		

Solución con software POM QM v.5:

(untitled)								
	X1	X2		RHS				
Maximize	500	300			Max 500X1 + 300X2			
Constraint 1	4	3	<=	44	4X1 + 3X2 <= 44			
Constraint 2	500	225	<=	4500	500X1 + 225X2 <= 4500			
Constraint 3	1	0	<=	8	X1 <= 8			
Constraint 4	0	1	<=	10	X2 <= 10			
Variable type (click to set)	Integer	Integer						
71 \								

48. Una fábrica elabora tres tipos de tornillos grandes, medianos y pequeños de los cuales se debe producir no más de 800.000 tornillos grandes y entre medianos y pequeños no más de 100.000 para satisfacer las demandas de las siguientes 4 semanas. Estos tornillos se pueden producir en una máquina que está disponible 80 horas a la semana. Los requerimientos de costo y tiempo son: