Applying Models of User Activity for Dynamic Power Management in Wireless Devices

Caleb Phillips¹, Suresh Singh²,
Douglas Sicker¹, and Dirk Grunwald¹

Computer Science Department, University of Colorado, Boulder

Computer Science Department, Portland State University
caleb.phillips@colorado.edu, singh@cs.pdx.edu,
sicker@cs.colorado.edu, grunwald@cs.colorado.edu

Overview

- Predictive powersaving for wireless devices
- Insights into user behavior
- Existing Literature offers no clear winner
- Plenty of data
- What we did: Implement many algorithms, both new and old, running them against the data

Data

- 236 unique user traces from 7 trace sets:
 - PDX/Vwave [Phillips'07]
 - UW/SigComm2004 [Rodrig'05]
 - Microsoft/OSDI2006[Chandra'06]
- All traces are available on http://crawdad.org.

Problem Definition

- Assume that time is discretized into 1 second buckets
- Hardware can go to sleep and wake back up in 2 seconds
- One second is the minimum desirable sleep time
- At each time-slice, algorithm must decide to sleep or not, and for how long

Algorithms

 Implemented 9 Algorithms from the literature and 2 new algorithms based on our prior work

Results: Performance Gap

Results: Error Probability

Conclusions

Best Performing

ST, MLL, SWL/SWC, BAG, AT

Highest Fidelity

ST, BAG, MLL, AT

Simplicity

ST, BAG, MLL

- Occam's Razor (ST & BAG)
- Real user traces provide a necessary means of validation and comparison (MLL)
- Offline questions/comments:
 - caleb.phillips@colorado.edu