MA 205 Tutorial Batch 3 Recap-1

Siddhant Midha

Complex Functions

We will deal with functions of the form

$$f:\Omega\subset\mathbb{C}\to\mathbb{C}$$

Complex Functions

We will deal with functions of the form

$$f:\Omega\subset\mathbb{C}\to\mathbb{C}$$

If we have $z = x + \iota y$, then f(z) can be expressed as

$$f(z) = u(z) + \iota v(z)$$

Complex Functions

We will deal with functions of the form

$$f:\Omega\subset\mathbb{C}\to\mathbb{C}$$

If we have $z = x + \iota y$, then f(z) can be expressed as

$$f(z) = u(z) + \iota v(z)$$

Using the $z \leftrightarrow (x, y)$ association we can treat u and v as real valued functions

$$u, v: \Omega_R \to \mathbb{R}$$

where $\Omega_R \subset \mathbb{R}^2$ is the region corresponding to $\Omega \subset \mathbb{C}$.

Continuity

Definition

A function $f:\Omega\subset\mathbb{C}\to\mathbb{C}$ is said to be continuous at a point $z_0\in\Omega$ if

$$\lim_{z\to z_0}f(z)=f(z_0)$$

Equivalently^a, f is continuous at z_0 if for all sequences $(z_n)_n$ $(z_n \in \Omega)$ such that $z_n \to z_0$ we have $f(z_n) \to f(z_0)$.

 ${}^{\mathtt{a}}\mathsf{The}\ \epsilon-\delta$ continuity definition \Leftrightarrow the sequential definition

Continuity

Definition

A function $f:\Omega\subset\mathbb{C}\to\mathbb{C}$ is said to be continuous at a point $z_0\in\Omega$ if

$$\lim_{z\to z_0}f(z)=f(z_0)$$

Equivalently^a, f is continuous at z_0 if for all sequences $(z_n)_n$ $(z_n \in \Omega)$ such that $z_n \to z_0$ we have $f(z_n) \to f(z_0)$.

 ${}^{\mathtt{a}}\mathsf{The}\ \epsilon-\delta$ continuity definition \Leftrightarrow the sequential definition

• f is said to be continuous if it is continuous at all $z_0 \in \Omega$.

Continuity

Definition

A function $f:\Omega\subset\mathbb{C}\to\mathbb{C}$ is said to be continuous at a point $z_0\in\Omega$ if

$$\lim_{z\to z_0}f(z)=f(z_0)$$

Equivalently^a, f is continuous at z_0 if for all sequences $(z_n)_n$ $(z_n \in \Omega)$ such that $z_n \to z_0$ we have $f(z_n) \to f(z_0)$.

 a The $\epsilon-\delta$ continuity definition \Leftrightarrow the sequential definition

- f is said to be continuous if it is continuous at all $z_0 \in \Omega$.
- f is continuous iff u and v are continuous.

Examples

• f(z) = c, $c \in \mathbb{C}$ is continuous.

Examples

- f(z) = c, $c \in \mathbb{C}$ is continuous.
- f(z) = z is continuous.

Examples

- f(z) = c, $c \in \mathbb{C}$ is continuous.
- f(z) = z is continuous.
- By the sum and product rules, all polynomials are continuous.

Definition

Let $\Omega \subset \mathbb{C}$ be 'open'. A function $\Omega \to \mathbb{C}$ is said to be complex-differentiable at $z_0 \in \mathbb{C}$ if the limit

$$\lim_{h\to 0}\frac{f(z_0+h)-f(z_0)}{h}$$

Definition

Let $\Omega \subset \mathbb{C}$ be 'open'. A function $\Omega \to \mathbb{C}$ is said to be complex-differentiable at $z_0 \in \mathbb{C}$ if the limit

$$\lim_{h\to 0}\frac{f(z_0+h)-f(z_0)}{h}$$

exists. If it does, we denote it by $f'(z_0)$.

Note that h above is complex.

Definition

Let $\Omega \subset \mathbb{C}$ be 'open'. A function $\Omega \to \mathbb{C}$ is said to be complex-differentiable at $z_0 \in \mathbb{C}$ if the limit

$$\lim_{h\to 0}\frac{f(z_0+h)-f(z_0)}{h}$$

- Note that h above is complex.
- Clearly this is stronger than differentiability of functions on \mathbb{R} (Why?). So, do we expect that we might not get an iff condition as in the case of continuity?

Definition

Let $\Omega \subset \mathbb{C}$ be 'open'. A function $\Omega \to \mathbb{C}$ is said to be complex-differentiable at $z_0 \in \mathbb{C}$ if the limit

$$\lim_{h\to 0}\frac{f(z_0+h)-f(z_0)}{h}$$

- Note that h above is complex.
- Clearly this is stronger than differentiability of functions on \mathbb{R} (Why?). So, do we expect that we might not get an iff condition as in the case of continuity?
- f is said to be CD on Ω if it is CD on all $z \in \Omega$.

Definition

Let $\Omega\subset\mathbb{C}$ be 'open'. A function $\Omega\to\mathbb{C}$ is said to be complex-differentiable at $z_0\in\mathbb{C}$ if the limit

$$\lim_{h\to 0}\frac{f(z_0+h)-f(z_0)}{h}$$

- Note that h above is complex.
- Clearly this is stronger than differentiability of functions on \mathbb{R} (Why?). So, do we expect that we might not get an iff condition as in the case of continuity?
- f is said to be CD on Ω if it is CD on all $z \in \Omega$.
- ullet Differentiability \Longrightarrow Continuity.

Definition

Let $\Omega \subset \mathbb{C}$ be 'open'. A function $\Omega \to \mathbb{C}$ is said to be holomorphic on Ω if it is complex differentiable at each $z_0 \in \Omega$ and the derivative f' is continuous on Ω . We denote $f \in C^1(\Omega)$.

Definition

Let $\Omega \subset \mathbb{C}$ be 'open'. A function $\Omega \to \mathbb{C}$ is said to be holomorphic on Ω if it is complex differentiable at each $z_0 \in \Omega$ and the derivative f' is continuous on Ω . We denote $f \in C^1(\Omega)$.

• f is called holomorphic on a point if it is holomorphic on an open disk containing that point.

Definition

Let $\Omega \subset \mathbb{C}$ be 'open'. A function $\Omega \to \mathbb{C}$ is said to be holomorphic on Ω if it is complex differentiable at each $z_0 \in \Omega$ and the derivative f' is continuous on Ω . We denote $f \in C^1(\Omega)$.

- *f* is called holomorphic *on a point* if it is holomorphic on an open disk containing that point.
- A function holomorphic on $\mathbb C$ is said to be entire.

Definition

Let $\Omega \subset \mathbb{C}$ be 'open'. A function $\Omega \to \mathbb{C}$ is said to be holomorphic on Ω if it is complex differentiable at each $z_0 \in \Omega$ and the derivative f' is continuous on Ω . We denote $f \in C^1(\Omega)$.

- f is called holomorphic on a point if it is holomorphic on an open disk containing that point.
- A function holomorphic on $\mathbb C$ is said to be entire.
- Holomorphic on a point ⇒ CD on a point. Reverse?

Recall ...

For some $f:\Omega\to\mathbb{C}$ we will denote $F:\Omega_R\to\mathbb{R}^2$ the corresponding real function. Further, we let

$$F(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix}$$

Recall ...

For some $f:\Omega\to\mathbb{C}$ we will denote $F:\Omega_R\to\mathbb{R}^2$ the corresponding real function. Further, we let

$$F(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix}$$

Real Differentiability

 $F:\Omega_R\to\mathbb{R}^2$ is differentiable at $(x,y)\in\Omega$ if there exists a 2×2 matrix DF(x,y) such that

$$\lim_{h,k\to 0} \frac{|| \begin{pmatrix} u(x+h,y+k) \\ v(x+h,y+k) \end{pmatrix} - \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix} - DF(x,y) \begin{pmatrix} h \\ k \end{pmatrix} ||}{|| \begin{pmatrix} h \\ k \end{pmatrix} ||} = 0$$

If so, we have

$$DF(x,y) = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}$$

Necessary Condition (for ?)

Theorem - CR Equations

Let $f(z)=u(x,y)+\iota v(x,y)$ be defined on some open set Ω . Further suppose that $f'(z_0)$ exists for some $z_0=x_0+\iota y_0\in\Omega$. Then the first order partial derivatives of u and v exist at (x_0,y_0) and satisfy the CR equations

$$u_x = v_y$$
, $v_x = -u_y$

Necessary Condition (for ?)

Theorem - CR Equations

Let $f(z)=u(x,y)+\iota v(x,y)$ be defined on some open set Ω . Further suppose that $f'(z_0)$ exists for some $z_0=x_0+\iota y_0\in\Omega$. Then the first order partial derivatives of u and v exist at (x_0,y_0) and satisfy the CR equations

$$u_x = v_y$$
 , $v_x = -u_y$

i.e., $CD \implies CR$.

Sufficient Condition (for ?)

Theorem

Let $f(z) = u(x, y) + \iota v(x, y)$ be defined on some open set Ω . For some $z_0 = x_0 + \iota y_0 \in \Omega$, if

- the partial derivatives of u and v exist in some neighbourhood of (x_0, y_0) and are continuous at (x_0, y_0) , and
- 2 the CR equations are satisfied at (x_0, y_0)

Then, we have that $f'(z_0)$ exists.

Sufficient Condition (for ?)

Theorem

Let $f(z) = u(x, y) + \iota v(x, y)$ be defined on some open set Ω . For some $z_0 = x_0 + \iota y_0 \in \Omega$, if

- the partial derivatives of u and v exist in some neighbourhood of (x_0, y_0) and are continuous at (x_0, y_0) , and
- 2 the CR equations are satisfied at (x_0, y_0)

Then, we have that $f'(z_0)$ exists.

Necessary and Sufficient Condition (for ?)

If we have a F with the DF matrix as

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

Necessary and Sufficient Condition (for ?)

If we have a F with the DF matrix as

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

Then what can be say about the corresponding f? Some intuition?

Necessary and Sufficient Condition (for ?)

If we have a F with the DF matrix as

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

Then what can be say about the corresponding f? Some intuition?

Theorem

Let $f(z) = u(x,y) + \iota v(x,y)$ be defined on some open set Ω and let $F: \Omega_R \to \mathbb{R}^2$ be the corresponding real function. For some $z_0 = x_0 + \iota y_0 \in \Omega$, if

- F is differentiable at (x_0, y_0) .
- 2 The $DF(x_0, y_0)$ is of the following form

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

(equivalently, the CR equations are satisfied at (x_0, y_0))

Then, we have that $f'(z_0)$ exists and equals $a + \iota b$. Further, the converse holds.

Summarizing ...

Why were the last two conditions different? Remember the differentiation theorem?

Summarizing ...

Why were the last two conditions different? Remember the differentiation theorem?

- \bullet CD \Longrightarrow RD.
- \bullet CD \Longrightarrow CR.
- $CR \not \Longrightarrow CD$.
- $(CR + RD) \iff CD$