In []:

#import libraries

In [28]:

```
import pandas as pd #for dataset
import numpy as np #for numerical operations
import seaborn as sbn #for visualization --> built on matplotlib
import matplotlib.pyplot as plt
```

In [73]:

df=sbn.load_dataset('penguins') #to Load one of the dataset present in seaborn

In [4]:

df

Out[4]:

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	٤
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	М
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	Fem
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	Fem
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	Ν
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	Fem
	•••	•••	•••			•••	
339	Gentoo	Biscoe	NaN	NaN	NaN	NaN	Ν
340	Gentoo	Biscoe	46.8	14.3	215.0	4850.0	Fem
341	Gentoo	Biscoe	50.4	15.7	222.0	5750.0	М
342	Gentoo	Biscoe	45.2	14.8	212.0	5200.0	Fem
343	Gentoo	Biscoe	49.9	16.1	213.0	5400.0	М

344 rows × 7 columns

In [9]:

df.shape #represents total no. of records and columns in daatframe

Out[9]:

(344, 7)

In [10]:

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 344 entries, 0 to 343
Data columns (total 7 columns):
                       Non-Null Count Dtype
#
    Column
     _____
                       -----
                                       ____
 0
    species
                       344 non-null
                                       object
 1
    island
                       344 non-null
                                       object
    bill_length_mm
                                       float64
 2
                       342 non-null
    bill_depth_mm
 3
                       342 non-null
                                       float64
 4
    flipper_length_mm 342 non-null
                                       float64
 5
    body_mass_g
                       342 non-null
                                       float64
 6
                       333 non-null
                                       object
     sex
dtypes: float64(4), object(3)
```

In [5]:

```
df.isnull().sum()
```

Out[5]:

memory usage: 14.8+ KB

In [68]:

df.dropna()# null values are droped temporarily

Out[68]:

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	8
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	М
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	Fem
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	Fem
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	Fem
5	Adelie	Torgersen	39.3	20.6	190.0	3650.0	М
•••	***						
338	Gentoo	Biscoe	47.2	13.7	214.0	4925.0	Fem
340	Gentoo	Biscoe	46.8	14.3	215.0	4850.0	Fem
341	Gentoo	Biscoe	50.4	15.7	222.0	5750.0	М
342	Gentoo	Biscoe	45.2	14.8	212.0	5200.0	Fem
343	Gentoo	Biscoe	49.9	16.1	213.0	5400.0	М

333 rows × 7 columns

In [21]:

df.shape

Out[21]:

(344, 7)

In [74]:

df.dropna(inplace=True) #to drop the records with null values and inplace to make this chan

In [16]:

df.shape

Out[16]:

(333, 7)

In [27]:

```
sbn.histplot(data=df,x=df['species'],hue='species')
```

Out[27]:

<AxesSubplot:xlabel='species', ylabel='Count'>

In [37]:

```
#histogram using matplotlib
plt.hist(df['species'])
plt.ylabel('count')
```

Out[37]:

Text(0, 0.5, 'count')

In [42]:

```
#kernal density estimation plot in seaborn
sbn.kdeplot(data=df,x=df['flipper_length_mm'],hue=df['species'],fill=True)
```

Out[42]:

<AxesSubplot:xlabel='flipper_length_mm', ylabel='Density'>

In [43]:

```
df['sex'].unique()
```

Out[43]:

array(['Male', 'Female'], dtype=object)

In [55]:

x=len(df)

In [75]:

```
for i in range(len(df)):
    if df.iloc[i,6]=='Male':
        df.iloc[i,6]=0
    else:
        df.iloc[i,6]=1
df
```

Out[75]:

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	0
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	1
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	1
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	1
5	Adelie	Torgersen	39.3	20.6	190.0	3650.0	0
		•••	•••			•••	•••
338	Gentoo	Biscoe	47.2	13.7	214.0	4925.0	1
340	Gentoo	Biscoe	46.8	14.3	215.0	4850.0	1
341	Gentoo	Biscoe	50.4	15.7	222.0	5750.0	0
342	Gentoo	Biscoe	45.2	14.8	212.0	5200.0	1
343	Gentoo	Biscoe	49.9	16.1	213.0	5400.0	0
200 may v 7 nahyman							
333 rows × 7 columns							
◆							•

In [93]:

```
sbn.scatterplot(data=df,x='flipper_length_mm',y='bill_length_mm',hue='species')
```

Out[93]:

<AxesSubplot:xlabel='flipper_length_mm', ylabel='bill_length_mm'>

In [92]:

```
sbn.lineplot(data=df,x='flipper_length_mm',y='bill_length_mm',hue='species')
```

Out[92]:

<AxesSubplot:xlabel='flipper_length_mm', ylabel='bill_length_mm'>

In [94]:

```
sbn.ecdfplot(data=df,x='flipper_length_mm',hue='species')
```

Out[94]:

<AxesSubplot:xlabel='flipper_length_mm', ylabel='Proportion'>

In [101]:

```
sbn.relplot(data=df,x='flipper_length_mm',y='bill_length_mm',col='sex',hue='sex')
```

Out[101]:

<seaborn.axisgrid.FacetGrid at 0xc585310>

In [111]:

```
x,y=plt.subplots()
x,y=plt.subplots(1,2,sharey=True)
```


In [124]:

```
plt.plot(df['flipper_length_mm'])
plt.grid(axis='x')
```


In [142]:

```
sbn.scatterplot(data=df,x='flipper_length_mm',y='bill_length_mm',hue='species')
sbn.jointplot(data=df,x='flipper_length_mm',y='bill_length_mm',hue='species')
```

Out[142]:

<seaborn.axisgrid.JointGrid at 0x10696a48>

In [122]:

```
plt.plot(df['flipper_length_mm'])
plt.grid(axis='y')
```


In [123]:

```
plt.plot(df['flipper_length_mm'])
plt.grid()
```


In [146]:

df

Out[146]:

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	0
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	1
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	1
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	1
5	Adelie	Torgersen	39.3	20.6	190.0	3650.0	0
•••	•••						
338	Gentoo	Biscoe	47.2	13.7	214.0	4925.0	1
340	Gentoo	Biscoe	46.8	14.3	215.0	4850.0	1
341	Gentoo	Biscoe	50.4	15.7	222.0	5750.0	0
342	Gentoo	Biscoe	45.2	14.8	212.0	5200.0	1
343	Gentoo	Biscoe	49.9	16.1	213.0	5400.0	0

333 rows × 7 columns

4

•

In [148]:

```
sbn.barplot(df['species'],df['bill_length_mm'])
```

C:\Users\Pratiksha\anaconda3\lib\site-packages\seaborn_decorators.py:36: Fu tureWarning: Pass the following variables as keyword args: x, y. From versio n 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpre tation.

warnings.warn(

Out[148]:

<AxesSubplot:xlabel='species', ylabel='bill_length_mm'>

In [150]:

```
sbn.stripplot(df['species'],df['bill_length_mm'],hue=df['species'])
```

Out[150]:

<AxesSubplot:xlabel='species', ylabel='bill_length_mm'>


```
In [153]:
```

```
plt.boxplot(df['bill_length_mm'])
```

Out[153]:

In [160]:

```
sbn.boxplot(df['bill_length_mm'])
```

C:\Users\Pratiksha\anaconda3\lib\site-packages\seaborn_decorators.py:36: Fu tureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other a rguments without an explicit keyword will result in an error or misinterpret ation.

warnings.warn(

Out[160]:

<AxesSubplot:xlabel='bill_length_mm'>

In [162]:

sbn.pairplot(df,)

Out[162]:

<seaborn.axisgrid.PairGrid at 0xf29e5c8>

In [163]:

```
sbn.jointplot(df['species'],df['bill_length_mm'],hue=df['species'],kind='hist')
```

C:\Users\Pratiksha\anaconda3\lib\site-packages\seaborn_decorators.py:36: Fu tureWarning: Pass the following variables as keyword args: x, y. From versio n 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpre tation.

warnings.warn(

Out[163]:

<seaborn.axisgrid.JointGrid at 0x11910628>

In [164]:

```
sbn.swarmplot(df['bill_length_mm'])
```

C:\Users\Pratiksha\anaconda3\lib\site-packages\seaborn_decorators.py:36: Fu tureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other a rguments without an explicit keyword will result in an error or misinterpret ation.

warnings.warn(

Out[164]:

<AxesSubplot:xlabel='bill_length_mm'>

