Počítačové a komunikačné siete

Internet Protocol (IP), ICMP, ARP UDP, TCP

Prednáška 4

Opakovanie minulej prednášky

- » Ethernet (formát, Ethernet II/802.3)
- » Wireshark protokolov
 - Ethernet
 - IP
- » Aké sú vrstvy v RM OSI?
- » Aké sú dátové jednotky?
- » Aké sú adresy?

Opakovanie

																V <u>.</u> 4	
			F	TP:	-DA	ATA			ΤÇ	CP			Eth	2,IP			
(0000	00	14	38	06	e0	93	00	02	ct	ab	a2	4c	08	00	45	00
6	0010	00	6a	ab,	45	40	00	38	06	d2	2 c1	93	af	6f	0e	с0	a8
6	0020	01	21	00	15	0f	82	f3	15	98	4d	c2	ae	2e	45	50	18
6	080	40	b0	ба	b6	00	00	20	20	26	20	20	20	20	20	20	20
6	0040	20	20	20	20	2a	2a	2a	2a	28	2a	20	20	2a	2a	2a	2a
(0050	2a	2a	20	20	2a	2a	2a	20	26	20	20	20	20	2a	2a	2a
(0060	2a	2a	2a	20	20	20	20	2a	28	2a	2a	2a	2a	20	20	20
(0070	20	2a	2a	2a	2a	2a	0d	0a								

» Aký protokol je použitý na Aplikačnej vrstve?

M

Čo nás čaká na prednáške

- » IP protokol (Internet protokol)
 - -V4
 - -V6
- » ARP
- » ICMP

Sieťová vrstva

Aplikačná vrstva Prezentačná Aplikačná vrstva vrstva Relačná vrstva Transportná vrstva Transportná vrstva Sieťová vrstva Sieťová vrstva Vrstva Fyzického Linková vrstva rozhrania

"Pohľad vrstiev" na topológiu siete sieťová vrstva

Internet a TCP/IP siete

- » TCP/IP siete, IP siete
- » siet' Internet
 - -1968 požiadavka na grantovú agentúru ARPA (Advanced Research Project Agency) MO USA na vybudovanie experimentálnej počítačovej siete
 - −1969 začiatok prevádzky experimentálnej počítačovej siete ARPANET (4 uzly s prepínaním paketov)
 - -(1972) -ARPA → DARPA (Defense Advanced Research Project Agency), d'alší vývoj, vývoj protokolov (Unix)
 - -1983 TCP/IP protokolový zásobník štandard ARPANETu (predtým NCP protocol)
 - rozdelenie ARPANETu ARPANET + MILNET
 - DARPA Internet -> Internet
 - -1985 pokračuje vývoj pod organizáciou NSF (National Science Foundation)
 - –NSFNET nahradzuje ARPANET, ukončenie ARPANETu v r. 1990
- » 13. 2. 1992 pripojenie ČSFR do Internetu

Internet a TCP/IP siete

Vint (Vinton Gray) Cerf ,otec Internetu"

Robert Elliot Kahn "otec Internetu"

Formát IPv4 paketu

IP protokol, PDU - datagram

RFC 5735: Special Use IPv4 Addresses

Address Block	Present Use Reference	
0.0.0.0/8	"This" Network	RFC 1122
10.0.0.0/8	Private-Use Networks	RFC 1918
127.0.0.0/8	Loopback	RFC 1122
169.254.0.0/16	Link Local	RFC 3927
172.16.0.0/12	Private-Use Networks	RFC 1918
192.0.0.0/24	IETF Protocol Assignments	RFC 5736
192.0.2.0/24	TEST-NET-1	RFC 5737
192.88.99.0/24	6to4 Relay Anycast	RFC 3068
192.168.0.0/16	Private-Use Networks	RFC 1918
198.18.0.0/15	Network Interconnect Device	
	Benchmark Testing	RFC 2544
198.51.100.0/24	TEST-NET-2	RFC 5737
203.0.113.0/24	TEST-NET-3	RFC 5737
224.0.0.0/4	Multicast	RFC 3171
240.0.0.0/4	Reserved for Future Use	RFC 1112
255.255.255.255	/32 Limited Broadcast	RFC 919, RFC 922

10

Vzťah medzi adresou hosta a siete

IP adresa (logická adresa) - 4 bajty

Veľkosť masky, veľkosť siete

192.168.1.100/16

1. Prevediem adresu do binárnej sústavy

192.168.1.100/16
1100 0000. 1010 1000. 0000 0001. 0110 0100

192.168.1.100/16

- 1. Prevediem adresu do binárnej sústavy
- Určím masku podsiete a prevediem ju do binárnej sústavy


```
192.168.1.100/16 !Koľko bitov nastavím na 1! 1100 0000. 1010 1000. 0000 0001. 0110 0100 1111 1111. 1111 1111. 0000 0000. 0000 0000
```


192.168.1.100/16

- 1. Prevediem adresu do binárnej sústavy
- Určím masku podsiete a prevediem ju do binárnej sústavy
- 3. Aplikujem bitový "AND" a prevediem adresu do desiatkovej sústavy

ADRESA SIETE:

192.168.0.0

192.168.1.100/16

- 1. Prevediem adresu do binárnej sústavy
- Určím masku podsiete a prevediem ju do binárnej sústavy
- 3. Aplikujem bitový "AND" a prevediem adresu do desiatkovej sústavy
- 4. Mám adresu siete
 - Viem určiť Broadcast adresu

Adresa hosta: 192.168.1.100

Adresa siete: 192.168.0.0

Maska podsiete: /16 == 255.255.0.0

Broadcast - posledná adresa v danej sieti - 192.168.255.255

Vzťah medzi adresou hosta a siete

Adresa počítača: 192.168.1.100/16

Adresa siete: 192.168.0.0

Broadcast: 192.168.255.255

Router: zvyčajne: 192.168.0.1

Príklad

172.16.32.15/18

Adresa siete: 172.16.0.0

Broadcast: 172.16.63.255

Príklad adresy počítača:

» 172.16.32.15/18

1010 1100.0001 0000.0010 0000.0000 1111 1111 1111.1111 1111.1100 0000.0000 0000 1010 1100.0001 0000.000000000000000000

172.16.0.0

172.16.63.255 - broadcast

172.16.0.1/18 - 172.16.63.254/18

IP protokol - ECN

ECN pole:

ECT - ECN Capable Transpor

DSCP - Differentiated Services CodePoint - Explicit Congestion Notification

 $CE-Congestion\ Experienced$

Transformácia adries

symbolické meno (doménové meno)

- jednorozmerné mená
- hierarchické, doménové mená

logická sieťová adresa (IP adresa)

- transformačné funkcie

- tabuľky
 - statické
 - dynamické

fyzická adresa (MAC adresa)

Transformácia adries

symbolické meno (doménové meno)

stuba.sk

fiit.stuba.sk

logická sieťová adresa (IP adresa)

147.175.1.60

147.175.154.48

fyzická adresa (MAC adresa)

IP adresa <=> MAC adresa

- » ARP Adress Resolution Protocol
 - Chcem zistit' MAC adresu
 - Poznám IP, nepoznám MAC

- » RARP Reverse Address Resolution Protocol
 - Chcem zistit' IP adresu
 - Poznám MAC, nepoznám IP

IP adresa <=> MAC adresa

formát ARP/RARP paketu

Typ FA pre Ethernet
$$= 0001$$

Typ LA pre IP protokol =
$$0800$$

$$D1 FA = 6$$

D1 LA
$$= 4$$

Obslužné správy

ICMP (Internet Control Message Protocol)

Všeobecný formát ICMP správy

1 B 1 B 2 B

Type	Code	Checksum
1 - 3 P -		0 110 0 110 0 1111

Klasifikácia s	práv:	Niektoré :	ty	py	<u>/:</u>

- hlásenie o chybách 0 Echo reply
- test dosiahnutel'nosti 3 Destination Unreachable
- riadenie toku 4 Source Quench
- presmerovanie 5 Redirect
- meranie výkonnosti 8 Echo
 - 11 Time Exceeded

ICMP

Echo – Echo Reply

Type (8 b)	Code (8 b)	Checksum (16 b)				
Identifier (16	b)	Sequence Number (16 b)				
Data						

Niektoré typy:

0 Echo reply

8 Echo

Ping (Packet Internet Groper)

ICMP

Time Exceeded Message

Type (8 b)	Code (8 b)	Checksum (16 b)						
unused								
IP Header + 64 bits of Original Data Datagram								

Type: 11

Code: 0 – time to live exceeded in transit (TTL)

1 - fragment reassembly time exceeded

Zhrnutie

- » IP protokol (Internet protokol)
 - -V4
 - Výpočet adresy siete
- » ARP
- » ICMP

BONUS – TCP otvorenie a ukončenie spojenia

- » Three way handshake otvorenie
- » Four way handshake ukončenie

- » Ako ich rozlíšiť?
 - IP adresy && TCP porty && SeqN && AckN

Otvorenie

Ukončenie

Closed

BONUS – TCP otvorenie a ukončenie spojenia

- » Three way handshake otvorenie
- » Four way handshake ukončenie

- » Otvorenie aj ukončenie môže byť aj iné
 - Linky sú v zadaní !!!

Transportná vrstva

Aplikačná vrstva Prezentačná Aplikačná vrstva vrstva Relačná vrstva Transportná vrstva Transportná vrstva Sieťová vrstva Sieťová vrstva Linková vrstva Linková vrstva

Pohľad vrstiev na topoloógiu siete Transportná vrstva

Transportná vrstva RM OSI

- » poskytovateľ (relačnej vrstve) a žiadateľ služby (od sieťovej vrstvy)
- » služby so spojením a bez spojenia, s potvrdením a bez potvrdenia
- » multiplexovanie spojov

Protokolový zásobník TCP/IP

Ukážka iba niektorých protokolov

aplikačná vrstva SNMP BOOTP Ping Telnet **SMTP** Traceroute DNS DHCP FTP transportná **TCP UDP** vrstva sieťová **ICMP IGMP** vrstva **ARP RARP** vrstva lokálne ovládače, sieť ového sieťové karty rozhrania prenosové médium

Transportná vrstva TCP/IP

TCP (Transmission Control Protocol)

- služby so spojením, s potvrdením
- TCP ~ protokol triedy TP4
- prenos dát = prenos prúdu bajtov segmenty
- multiplexovanie a demultiplexovanie

UDP (User Datagram Protocol)

- služby bez spojenia, bez potvrdenia
- blokový prenos dát datagramy
- multiplexovanie a demultiplexovanie

DCCP (Datagram Congestion Control Protocol)

Protokol UDP

- protokol bez spojenia, bez potvrdenia, nespoľahlivý
- klient server aplikácie
- Balí aplikačné dáta do "datagramov"
- multiplexovanie a demultiplexovanie datagramov
- podporuje broadcast, multicast

Protokol UDP

Čo nevie:

- nezriad'uje spojenie pred prenosom dát
- nepotvrdzuje prijaté dáta
- nedeteguje straty
- nie je možnosť požadovať opakovanie prenosu dát
- negarantuje doručenie dát
- nezaručuje, že dáta sú prijímané v rovnakom poradí ako boli vyslané
- nemá mechanizmus na riadenie toku dát medzi koncovými uzlami resp. na riadenie zahltenia

UDP datagram

Čo je checksum?

Detekčné kódy

paritný kód

kontrolná suma (Internet suma) (checksum)

CRC (Cyclic Redundancy Check Code) kód (FCS (Frame Check Sequence))

Ethernet: G (x)=x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x26 +x1

Separovateľné kódy

	$\emptyset \leftarrow A$
	+

generujúci polynóm (štandardizovaný)

Cyclic Redundancy Code

- » (r+1) dlhý generátor G, ktorý je známy ako vysielajúcej tak prijímajúcej strane
- » Dátové bity D
- » Cieľ je nájsť také R, že (D, R) sú delitelné G
- » Inými slovami:

$$R = zvyšok (D \times 2^r / G)$$

CRC príklad (1)

```
D = 1101 \ 0110 \ 11
G = 100 11 (r=4)
(D*2^r):G = 1101 0110 11 1110: 10011
           1001 1
           0100 11
            100 11
            000 0010 11 1110
                  10 01 1
                  00 10 0110
                      10 011
                      00 0000
1101 0110 11 1110
```

CRC príklad (1)

```
D = 1101 0110 11

G = 100 11 (r=4)

(D*2<sup>r</sup>):G = 1101 0110 11 0000 : 100 11

1001 1

------

0100 1
```


CRC príklad (1)

```
D = 1101 0110 11
G = 100 \ 11 \ (r=4)
(D*2^r):G = 1101 0110 11 0000: 10011
                 1001 1
                 0100 11
                  100 11
                                      Používa
                       010 11 0
                        10 01 1
                                      sa XOR
                         00 10 1000
                                      operácia
                            00 11
                      R= 0 01 110
```


CRC príklad (2)

```
D = 1101 \ 0110 \ 11

G = 100 \ 11 \ (r=4)
```

Vysielač vyšle / prijímač príjme sekvenciu: 1101 0110 11 **1110**

Kontrola prebieha ako v predchádzajucom kroku:

1101 0110 11 **1110:** 10011

CRC príklad 2

$$D = 10110011101000100101$$

$$G = 101111101$$

$$R = 0111001$$

UDP datagram

Koľko dát vložím do datagramu?

- » Obmedzenie UDP length
- » Udáva dĺžku vrátane UDP hlavičky
 - Minimálne 8 bajtov
 - Maximálne 65535 bajtov (z toho 8 bajtov hlavička)
 - Segmentácia/znovu poskladanie dát

Protokol UDP

Zhrnutie prednášky

- » Sieťová vrstva:
 - -IP
 - ARP, ICMP
- » Transportná vrstva prenos cez sieť
 - UDP využíva sa na zadaní

Čo nás čaká na budúcej prednáške

» TCP

- Riadenie toku (pomalé / rýchle linmky)
- Potvrdzovanie dát (ACK, NACK)
- Ukončenie spojenia
- Znovuodoslanie dát

DCCP (Datagram Congestion Control Protocol)

- nespoľahlivý tok datagramov
- spoľahlivé nadväzovanie a ukončenie spojenia
- spoľahlivé dohadovanie volieb, zahŕňa aj voľbu riadiaceho mechanizmu zahltenia
- spôsob prenosu potvrdení ACK závisí od mechanizmu riadenia zahltenia
- výber modulárneho mechanizmu riadenia zahltenia
 - CCID2, TCP-like congestion control (RFC 4341)
 - CCID3, TCP-Friendly Rate Control, TFRC (RFC 4342)
 - CCID4, TCP-Friendly Rate Control for Small Packets, TFRC-SP (RFC 4828)
- explicitné riadenia zahltenia (ECN)
- vhodné napr. pre streaming video

• multiplexovanie a demultiplexovanie segmentov

- MSS (Maximum Segment Size)
- číslovanie bajtov
- potvrdzovanie príjmu, kontinuálna ARQ metóda s návratom, selektívna
- riadenie toku a zahltenia
- pohyblivé okno (def. 4096, rozšírenie okna na 32 b)
- časovače

Stručný úvod do TCP

- » protokol so spojením, s potvrdením, spoľahlivý prenos
- » prenos dát prúd bajtov, počet vyslaných bajtov aplikáciou a TCP entitou môže byť rôzny
- » vyrovnávacie pamäte segmentácia prúdu bajtov
- » interaktívny a neinteraktívny prenos dát (typ aplikácie)
- » TCP spojenie plný duplex, dvojbodové
- » urgentné dáta
- » príjem dát aplikáciou príznak PUSH

