Управление транзакциями

Андрей Гордиенков

Solution Architect ABAX

В прошлом и в этом уроке

В прошлом уроке:

• распределённые транзакции и шаблон «Сага»

В этом уроке:

- уровни согласованности данных и почему они важны
- зависимость между согласованностью данных и скоростью приложения в деталях

Модели согласованности данных

Андрей Гордиенков

Solution Architect ABAX

Is it better to be alive and wrong or right and dead?

Jay Kreps, A Few Notes on Kafka and Jepsen (2013)

Определения

Модели согласованности — набор исторических событий. Используются, чтобы можно было определить, является такой набор «хорошим» или «легальным» для конкретной системы.

Набор исторических операций — список операции и то, когда каждая операция началась и закончилась.

Строгая модель согласованности накладывает больше ограничений на то, как исторические события должны быть записаны относительно друг друга.

Зачем?

Независимо от того, какой архитектурный стиль выбран, вам надо решить, какая модель согласованности у вас будет.

Реализация атрибутов качества

Независимо от того, какой архитектурный стиль выбран, вам надо решить, какая модель согласованности у вас будет.

Строже модель согласованности

Слабее модель согласованности

Выше доступность, ниже задержки, выше пропускная способность

Strict serializable

Sequential

Eventual

Writes follow reads

Не все модели согласованности можно подвергнуть прямому сравнению.

Пример

Какой подход использовать для синхронизации данных между двумя базами данных?

— It depends...

Пример

В этом случае нужна одна из моделей строгой согласованности плюс:

- распределённые транзакции (2PL, Saga)
- пессимистичные блокировки

Пример

В таком случае выбор шире и зависит от того, насколько быстро вам надо отвечать на изменения и какие гарантии доступности есть у баз данных.

Модели согласованности

- Данные недоступны во время некоторых сбоев сети. Все или несколько серверов БД должны приостановить свою работу для обеспечения надёжности данных.
- Данные доступны на всех рабочих серверах, пока клиент общается с тем же самым сервером. При переключении данные недоступны.
- Данные доступны на всех рабочих серверах, даже если сеть между ними полностью недоступна.

Другой взгляд

Linearizability. Пример

Linearizability

Гарантия того, что чтение и запись для одного объекта будут упорядочены.

Это свойство важно для систем полагающихся на репликацию данных с помощью одного лидера, то есть для внешних систем создаётся видимость с одной базой.

Для достижения этого уровня согласованности все реплики должны поддерживать централизованную систему блокировки записи.

Linearizability

Serializability

Строгая согласованность и свойство I (изоляции) из ACID.

Все транзакции выполняются так, как если бы не было конкурентного доступа. При этом порядок выполнения может не соответствовать тому, как клиенты делали запросы.

Особенности

Все строгие модели согласованности опираются на двухфазную блокировку.

Вывод: это серьёзный штраф к скорости выполнения, высокие гарантии согласованности данных.

Eventual Consistency

Aka Pipelined Random Access Memory (PRAM)

- Monotonic reads
- Monotonic writes
- Read your own writes

Monotonic Reads

При чтении данных всегда возвращается последний замеченный ответ.

Monotonic Reads

При чтении данных всегда возвращается последний замеченный ответ

Monotonic Reads

При чтении данных всегда возвращается последний замеченный ответ

Monotonic Writes

Для наблюдателя чтение событий всегда идёт в той последовательности, в которой они произошли. Нет логических нарушений последовательности сообщений.

Reading Your Own Writes

Клиент всегда может прочитать данные, которые он записал.

Реплицирование

Производительность

Строгие модели согласованности данных требуют времени на распространение данных для реплик, а значит общая скорость падает.

Skillbox

Выводы

- Модель согласованности данных должна быть определена исходя из бизнес-требований и ограничений.
- Каждая база данных имеет поддержку определённого набора моделей согласованности.
- Строгие модели согласованности упрощают работу, но делают медленнее.
- Модели данных для строгих и слабых моделей согласованности различаются.

Что дальше?

Возможные аномалии данных при работе с базами данных.

Спасибо за внимание!