Classificazione: caso binario - 19/11

Esempio: classificazione binaria

```
Classifications binaria Y \in \{H_0, H_1\}

X \cap \{(x|y)\}
\{(x|H_0) = \frac{1}{\sqrt{2\pi G^2}} \exp \{-\frac{(x-H_0)^2}{2G^2}\}
\{(x|H_A) = \frac{1}{\sqrt{2\pi G^2}} \exp \{-\frac{(x-H_1)^2}{2G^2}\}

Le stickette possono

Vanare

Vanare

Varians dell' sticketta la media

resta immutata
```

Y è una variabile categorica, ha una importanza semantica, ad esempio se è sole o pioggia è ovvio che il significato di Y ha valore, ma non ha un valore che è matematicamente rilevante, differentemente da quanto avveniva in regressione.

Nell'esempio presentato anche se le Y hanno lo stesso nome delle medie delle Gaussiane le due cose non sono correlate e cambiando le etichette di Y assolutamente non varia il valore delle medie delle Gaussiane in quanto le etichette non hanno nessun valore al di là di quello semantico.

Ovviamente una volta acquisita dimestichezza se so che le medie hanno come simboli rappresentativi μ_0 e μ_1 allora invece di introdurre altri simboli uso quelli come etichette delle Y ma è solo una questione di comodo.

Abbiamo visto lo scenario del criterio Bayesiano ottimo: MAP, e il caso con parametro deterministico cioè il criterio N-P.

Ora calcoliamo i due detector per questi due casi.

Caso Bayesiano

Ci manca solo un'informazione, nel caso Bayesiano assumiamo:

Nell'altro caso invece non abbiamo bisogno di assumere niente

Vogliamo calcolare il detector ottimo, seguendo il criterio MAP.

Per massimizzare la posteriori dobbiamo sicuramente calcolarla.

Sappiamo che la posteriori è una PMF perché Y è discreta.

Usiamo Bayes per il calcolo della Posterior, a denominatore c'è l'evidenza, la distribuzione di X che è però uguale alla sommatoria (integrale in continuo) su tutte le Y del numeratore visto che il denominatore è solo una costante per normalizzare la frazione. Il denominatore tecnicamente non è una costante ma lo è se fissiamo X come si fa appunto nella posterior.

Svolgiamo la sommatoria a denominatore visto che è molto facile nel caso binario.

La prior vale 1/2 per tutti i valori quindi si semplifica a numeratore e denominatore.

Abbiamo fatto tutti questi conti, ma per calcolare il detector davvero era necessario?

Il criterio MAP dice che dobbiamo massimizzare la posterior ma il denominatore non serve perché la massimizzazione non cambia a meno di una costante.

Noi comunque abbiamo calcolato la posterior perché potrebbe essere un esercizio.

Calcoli sul MAP binario

Nel caso binario è molto semplice procedere dopo aver trovato la posterior con la regola di Bayes:

Ma a quanto equivale il Likelihood Ratio numericamente?

Sono due Gaussiane per le quale la varianza è la stessa quindi il loro rapporto è solo un grande esponenziale.

$$\frac{\ell(x|\mu_1)}{\ell(x|\mu_2)} = \exp\left\{-\frac{(x-\mu_1)^2}{2G^2} + \frac{(x-\mu_0)^2}{2G^2}\right\}$$

$$= \exp\left\{-\frac{2x(\mu_1 - \mu_0) + \mu_0^2 - \mu_1^2}{2G^2}\right\}$$

Quindi possiamo sostituire questo valore all'interno della disuguaglianza trovata in precedenza:

Visto che σ^2 è positivo e uguale da entrambi i lati possiamo toglierlo senza nessuna accortezza.

Per semplificare $\mu_1-\mu_0$ occorre sapere se è positivo o negativo quindi dobbiamo distinguere nei due casi.

Graficamente i due casi sono rappresentabili come segue:

Il fatto che concettualmente abbia così senso, scelgo sulla base di quanto è vicino al valore che scelto, viene dal fatto che sono distribuzioni Gaussiane e tendenzialmente le distribuzioni Gaussiane portano a risultati intuitivi.

Il fatto che il punto in cui cambia la decisione è al centro è perché sono equiprobabili, la prior sposta la soglia verso la scelta più probabile.

Cosa cambia se la probabilità a priori non è uniforme?

Dobbiamo modificare la
$$f(1)$$
 sostituendo 1 con $\tilde{\pi}(\mu_0)$ $WLOG$ assumiamo $(\mu, > \mu_0)$ Lo senza perdere generalita

Assumiamo che sia $\mu_1 > \mu_0$.

Dalla (1) otteniamo:

$$\frac{\times (\mu_{1} - \mu_{0})}{\sigma^{2}} \gtrsim \frac{\mu^{2} - \mu^{2}}{2\sigma^{2}} + \ln \frac{\pi(\mu_{0})}{\pi(\mu_{1})} = \pi(\mu_{0}) \text{ cosce}$$

$$\frac{\mu_{1}}{\chi^{2}} + \frac{\sigma^{2}}{\mu_{1} - \mu_{0}} \ln \frac{\pi(\mu_{0})}{1 - \pi(\mu_{0})} = \ln \frac{\pi(\mu_$$

Dalle considerazioni a destra capiamo che se $\pi(0)$ cresce allora la sua area di decisione cresce. Graficamente:

In altre parole usiamo l'informazione a priori per dare meno importanza al dato, anche se la X è al di sopra della metà e si potrebbe pensare di scegliere μ_1 la prior mi dice che fino alla soglia devo scegliere μ_0 .

Ora parliamo di varianza.

Notiamo che una volta fissati $\pi(0)$ e $\pi(1)$ al crescere della varianza i dati sono più rumorosi e sporchi, se i dati sono più sporchi assumiamo che sia più probabile che si siano spostati più del dovuto.

Quindi se ci hanno detto a priori che c'è un motivo per non essere simmetrico, cioè è molto più probabile μ_0 , diamo credito a questa informazione e allarghiamo la regione di decisione, ma se non ci è stato detto per simmetria ci mettiamo in mezzo.

Il fatto che se cresce la varianza ha più importanza la prior rispetto ai dati lo vediamo nel fatto che la varianza moltiplica il logaritmo del rapporto delle prior.

Se le due medie sono più vicine la differenza tra le due è più piccola e quindi il termine

$$\frac{\sigma^2}{\mu_1 - \mu_0}$$

è più grande e quindi, come per quando cresce la varianza, diamo meno peso ai dati e più peso alla prior, che ha senso perché se sono vicine le distribuzioni è più probabile che i punti abbiano superato la soglia.

Detector NP

NP mette a confronto il likelihood ratio con una soglia arbitraria γ che quindi è come se andasse a sostituire il rapporto delle prior nella (0).

Il detector ottimo prende il nome di Likelihood Ratio test.

Ripetendo i colcoli otteniamo
$$\exp\left\{\frac{x(\mu_1-\mu_0)}{\sigma^2} - \frac{\mu_1^2 - \mu_0^2}{2\sigma^2}\right\} \stackrel{\mu_1}{\sim} \chi$$

$$\frac{x(\mu_1-\mu_0)}{\sigma^2} \geq \ln \chi + \frac{\mu_1^2 - \mu_0^2}{2\sigma^2}$$

Ora assumiamo $\mu_1 > \mu_0$

Dobbiamo capire un fatto fondamentale.

La soglia con la quale confrontiamo il likelihood ratio che significato ha?

La soglia del criterio MAP era una cosa immutabile.

Con il criterio di NP la soglia si può spostare sulla base dell'errore di primo tipo che vogliamo fissare.

La soglia γ è un numero da 0 a ∞ , il logaritmo di un numero positivo va da $-\infty$ a $+\infty$, è un numero arbitrario, fissati tutti i parametri resta sempre possibile spostare tutto il lato destro della disequazione tra $-\infty$ a $+\infty$ e questo vuol dire che effettivamente dei parametri μ_0 , μ_1 e σ^2 non ci importa, di conseguenza possiamo prendere tutto il lato destro della disequazione e chiamarlo τ e fissare direttamente quello.

Vogliamo fissare au in modo da ottenere una specifica probabilità di falso allarme/falso positivo.

Per un problema di classificazione binario i numeri che caratterizzano la performance sono (un ragazzo dice "la ROC" e Matta dice di non considerare la AUC) le due probabilità d'errore (falso positivo e falso negativo), se è Bayesiano ne basta 1, la probabilità d'errore totale. Se si confrontano due sistemi per la probabilità di Falsi Positivi bisogna fissare i Falsi Negativi e viceversa, se ci sono più indici bisogna fissarli tutti tranne uno.

```
P[segl: μ, | è vera μο] = P[X > 2 | è vera μο] A PARITA' DI FP O DI FN
= P[ Gauss (μο, σ²) > 2] =
= P[ Gauss (μο, σ²) - μο ] = Q(2-μο)
σ
```

La funzione **Q** (o **qfunc** in MATLAB) è una funzione matematicamente definita che rappresenta la **funzione complementare della distribuzione cumulativa normale standard**. È largamente utilizzata in campi come le telecomunicazioni, la teoria dei segnali e il calcolo delle probabilità, specialmente per analizzare errori e rumore.

Per portarci all'utilizzo della Q function dobbiamo standardizzare.

imponiano
$$Q\left(\frac{2-\mu_0}{\sigma}\right) = \alpha$$
 e otteniano la soglia in funcione di d $\frac{\nu_0 - \mu_0}{\sigma} = Q^{-1}(d)$ VALORE DI SOGLIA inversamente proporcionali

```
Calcoliamo la ROC sull'asse della ordinate c'è P[scegli H1] è uscita \mu_1]=\mathbb{P}[X > 2 \mid \hat{e} \text{ vera } \mu_1]
\mathbb{P}[Goods (\mu_1, \sigma^2) > 2] = \Omega\left(\frac{Z - \mu_1}{\sigma}\right)
sochituendo \mathcal{E}
\Omega\left(\frac{\mu_0 - \mu_1}{\sigma} + \Omega^{-1}(\alpha)\right) \quad \text{Roc}
se \sigma \to \infty la ROC diventa la retta del caso peggiore
```

 Q^{-1} è la funzione inversa di Q(X). Q(X) è una funzione che restituisce la probabilità di eccedere X e quindi al crescere di X è sempre più improbabile eccedere X e la Q(X) tende a zero.

Se α è una probabilità e tende a 0, Q^{-1} che è il valore che dato alla Q permetterebbe di ottenere una probabilità piccola tende ad ∞ .

Ha senso perché se la probabilità di superare la soglia è bassa la soglia deve essere alta.

Quindi abbiamo chiarito che al crescere di α Q^{-1} decresce, la parte sommata a Q^{-1} è fatta da tutte quantità positive e non ci crea nessun disturbo nel come dobbiamo scrivere la ROC, quindi possiamo procedere.

Matlab

Proviamo a disegnare la ROC. Se lpha cresce la soglia si abbassa e la proabilità di superarla si alza.

Se cresce μ_1 la differenza tra μ_0 e μ_1 cresce (nel nostro schema $\mu_1>\mu_0$), decresce la soglia e diventa più facile superarla, ha senso perché se sono più vicine è più facile distinguerle e la ROC deve alzarsi.

```
x = linspace(-3,3)
plot(qfunc(x), 'LineWidth', 2)
```


x = linspace(-3,3)
plot(qfuncinv(x), 'LineWidth', 2)


```
a = linspace(0,1)
plot(qfuncinv(a), 'LineWidth', 2)
```



```
m1 = 1.1

m0 = 0.2

sig = 1

Pcorr = qfunc( -(m1-m0)/sig + qfuncinv(a) )

plot(a, Pcorr, 'LineWidth', 2)

xlabel('$\alpha$', 'Interpreter', 'latex', 'FontSize', 20)
```

