

WM8731/L Audio CODEC Supported Sampling Rates

INTRODUCTION

To generate the required DAC and ADC sampling rates, the WM8731/L provides for two modes of operation Normal and USB Modes. These two modes are programmed under software control in the Sampling Control Register R8, according to Table 1.

In Normal mode, the user controls the sample rate by using an appropriate MCLK or crystal oscillator frequency and the sample rate control register setting. The WM8731/L can support sample rates from 8kHz up to 96kHz.

In USB mode, the user must use a fixed MLCK or crystal oscillator frequency of 12MHz to generate sample rates from 8kHz up to 96kHz. It is called USB mode since the common USB (Universal Serial Bus) clock runs at 12MHz and the WM8731/L Codec can be used directly in USB linked systems. The WM8731/L can generate the normal audio sample rates from this one 12MHz Master clock frequency, removing the need for different master clocks or PLL circuits.

Uniquely, the WM8731/L offers the user the ability to sample the ADC and DAC at different rates. Selecting these rates is by software control in both Normal and USB modes and reduces the burden on any controlling DSP. However, the signal processing in the ADC and DAC over-sampling filters are tightly coupled in order to minimize power consumption. To this end, only the combinations of sample rates listed in the following sections are supported. The rates supported are anticipated to be the likely combinations used in typical audio systems.

Note: The WM8731/L is not limited to the listed sample rates but using any other sample rate will negate the possibility of using mixed ADC and DAC sample rate combinations.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESC	RIPTION
R8 (0001000)	0	USB/ NORMAL	0	Mode Select	
Sampling		NORIVIAL		1 = USB mode (25	<i>'</i>
Control				0 = Normal mode ((256/384fs)
	1	BOSR	0	Base Over-Sampli	ng Rate
				USB Mode	Normal Mode
				0 = 250fs	96/88.2kHz
				1 = 272fs	0 = 256fs
					0 = 128fs
					1 = 384fs
					1 = 192fs
	5:2	SR[3:0]	0000	ADC and DAC san	nple rate control;
				See USB Mode an	d Normal Mode
				Sample Rate sections for operation	
	6	CLKIDIV2	0	Core Clock divider select	
				1 = Core Clock is	MCLK divided by 2
				0 = Core Clock is	MCLK

Table 1 Sample Rate Control Register

NORMAL MODE SAMPLE RATES

The Normal Mode sample rates are those usually expected when using standard 256fs and 384fs MCLK rates. However, the WM8731/L is also capable of being clocked from a 128fs or 192fs source but with limitations on the sample rates available. The device is also capable of being clocked by a 512fs or 768fs source, which requires an extra software setting on bit 6 of Register 8.

In Normal Mode, MCLK or the crystal oscillator is set up according to the desired sample rates of the ADC and DAC.

In Normal mode for ADC or DAC sampling rates of 8, 32, 48 or 96kHz, MCLK frequencies of either 12.288MHz (256fs/128fs) or 18.432MHz (384fs/192fs) can be used, Table 2.

In Normal mode for ADC or DAC sampling rates of 8, 44.1 or 88.2kHz, MCLK frequencies of either 11.2896MHz (256fs/128fs) or 16.9344MHz (384fs/192fs) can be used, Table 2.

Table 2 below should be used to set up the device to operate correctly with the various sample rate combinations. In normal mode, for ADC and DAC sample rates of 48kHz and 48kHz respectively, a 12.288MHz MCLK should be used and the device programmed with BOSR = 0, SR3 = 0, SR2 = 0, SR1 = 0 and SR0 = 0. For an 18.432MHz MCLK the device should be programmed with BOSR = 1, SR3 = 0, SR2 = 0, SR1 = 0 and SR0 = 0.

Dependent upon sample rate chosen, the ADC and DAC will operate with a Digital Filter of either, type 1 or type 2. Explanation of the digital filters available can be found Digital Filter Characteristics section in the datasheet.

SAMPLING RATE		MCLK FREQUENCY	SAMPLE RATE					DIGITAL FILTER TYPE
ADC	DAC			REGISTER SETTINGS				
kHz	kHz	MHz	BOSR	SR3	SR2	SR1	SR0	
48	48	12.288	0 (256fs)	0	0	0	0	1
		18.432	1 (384fs)	0	0	0	0	
48	8	12.288	0 (256fs)	0	0	0	1	1
		18.432	1 (384fs)	0	0	0	1	
8	48	12.288	0 (256fs)	0	0	1	0	1
		18.432	1 (384fs)	0	0	1	0	
8	8	12.288	0 (256fs)	0	0	1	1	1
		18.432	1 (384fs)	0	0	1	1	
32	32	12.288	0 (256fs)	0	1	1	0	1
		18.432	1 (384fs)	0	1	1	0	
96	96	12.288	0 (128fs)	0	1	1	1	2
		18.432	1 (192fs)	0	1	1	1	
44.1	44.1	11.2896	0 (256fs)	1	0	0	0	1
		16.9344	1 (384fs)	1	0	0	0	
44.1	8	11.2896	0 (256fs)	1	0	0	1	1
	(Note 1)	16.9344	1 (384fs)	1	0	0	1	
8	44.1	11.2896	0 (256fs)	1	0	1	0	1
(Note 1)		16.9344	1 (384fs)	1	0	1	0	
8	8	11.2896	0 (256fs)	1	0	1	1	1
(Note 1)	(Note 1)	16.9344	1 (384fs)	1	0	1	1	
88.2	88.2	11.2896	0 (128fs)	1	1	1	1	2
		16.9344	1 (192fs)	1	1	1	1	

Table 2 Normal Mode Sample Rate Look-up Table

Notes:

- 1. 8k not exact, actual = 8.018kHz
- 2. All other combinations of BOSR and SR[3:0] that are not in the truth table are invalid

The BOSR bit represents the base over-sampling rate. The WM8731/L digital signal processing is carried out at this rate. In Normal mode, with BOSR = 0, the base over-sampling rate is at 256fs or 128fs, with BOSR = 1, the base over-sampling rate is at 384fs or 192fs. This can be used to determine the actual audio data rate produced by the ADC and required by the DAC.

128/192FS NORMAL MODE

For MCLK rates of 128fs or 192fs, only sampling rates of 44.1kHz and 48kHz can be generated, Table 3. These lower MCLK rates are the same as the 256fs or 384fs Normal mode settings for 96kHz and 88.2kHz, but run at half speed.

SAMPLING RATE		MCLK FREQUENCY		DIGITAL FILTER				
ADC	DC DAC			REGISTER SETTINGS				
kHz	kHz	MHz	BOSR	SR3	SR2	SR1	SR0	
48	48	6.144	0	0	1	1	1	2
		9.216	1	0	1	1	1	
44.1	44.1	5.6448	0	1	1	1	1	2
		8.4672	1	1	1	1	1	

Table 3 Normal Mode 128fs/192fs Sample Rate Look-up Table

512/768FS NORMAL MODE

MCLK rates of 512fs and 768fs can also be accommodated by using the CLKIDIV2 bit (Register 8, bit 6). The core clock to the DSP will be divided by 2 so external 512fs or 768fs MCLK will scale to 256fs or 384fs internally. The device otherwise operates as in Table 2 but with MCLK at twice the specified rate. See Table 1 for software control.

NORMAL MODE SETTINGS EXAMPLES

Example scenarios are:

- With a requirement that the ADC data rate is 8kHz and DAC data rate is 48kHz and choosing MCLK = 12.288MHz, the device is programmed with BOSR = 0 (256fs), SR3 = 0, SR2 = 0, SR1 = 1, SR0 = 0.The ADC output data rate will then be exactly 8kHz (derived from 12.288MHz/256 x1/6) and the DAC expects data at exactly 48kHz (derived from 12.288MHz/256)
- 2. With a requirement that ADC data rate is 8kHz and DAC data rate is 44.1kHz, and choosing MCLK = 16.9344MHz, the device is programmed with BOSR = 1 (384fs), SR3 = 1, SR2 = 0, SR1 = 1, SR0 = 0. The ADC will not output data at exactly 8.000kHz, instead it will be 8.018kHz (derived from 16.9344MHz/384 x 2/11), the DAC is still at exactly 44.1kHz (derived from 16.9344MHz/384). A slight (sub 0.5%) pitch shift will therefore result in the 8kHz audio data. The user **must** therefore ensure that the data across the digital interface is correctly synchronized at the 8.018kHz rate.

SAMPLE RATE VARIATIONS

As demonstrated in the scenarios above, the exact sample rates desired cannot always be achieved. Comparison of the target sample rates and those actually produced are defined in Table 4 below.

	ACTUAL SAMPLING RATE						
TARGET	ВО	SR=0	BOSR=1				
SAMPLING RATE	(2	56fs)	(33	84fs)			
	MCLK=12.288	MCLK=11.2896	MCLK=18.432	MCLK=16.9344			
kHz	kHz	kHz	kHz	kHz			
8	8	8.018	8	8.018			
0	(12.288MHz/256) x 1/6	(11.2896MHz/256) x 2/11	(18.432MHz/384) x 1/6	(16.9344MHz/384) x 2/11			
32	32	not ovoiloble	32	not available			
32	(12.288MHz/256) x 2/3	not available	(18.432MHz/384)x 2/3	not available			
44.1	not available	44.1		44.1			
44.1	not available	11.2896MHz/256	not available	16.9344MHz /384			
48	48			not overileble			
40	12.288MHz/256	not available	18.432MHz/384	not available			
00.0		88.2	and an allah la	88.2			
88.2	not available	(11.2896MHz/256) x 2	not available	(16.9344MHz /384) x 2			
06	96	nat available	96	not overileble			
96	(12.288MHz/256) x 2	not available	(18.432MHz/384) x 2	not available			

Table 4 Normal Mode Actual Sample Rates

USB MODE SAMPLE RATES

In USB mode, the MCLK/crystal oscillator input is 12MHz only.

SAMPLING RATE		MCLK FREQUENCY	REQUENCY RATE					
ADC	DAC			REGISTER SETTINGS			TYPE	
kHz	kHz	MHz	BOSR	SR3	SR2	SR1	SR0	
48	48	12.000	0	0	0	0	0	0
44.1 (Note 2)	44.1 (Note 2)	12.000	1	1	0	0	0	1
48	8	12.000	0	0	0	0	1	0
44.1 (Note 2)	8 (Note 1)	12.000	1	1	0	0	1	1
8	48	12.000	0	0	0	1	0	0
8 (Note 1)	44.1 (Note 2)	12.000	1	1	0	1	0	1
8	8	12.000	0	0	0	1	1	0
8 (Note 1)	8 (Note 1)	12.000	1	1	0	1	1	1
32	32	12.000	0	0	1	1	0	0
96	96	12.000	0	0	1	1	1	3
88.2 (Note 3)	88.2 (Note 3)	12.000	1	1	1	1	1	2

Table 5 USB Mode Sample Rate Look-up Table

Notes:

- 1. 8k not exact, actual = 8.021kHz
- 2. 44.1k not exact, actual = 44.118kHz
- 3. 88.2k not exact, actual = 88.235kHz
- 4. All other combinations of BOSR and SR[3:0] that are not in the truth table are invalid

Table 5 above can be used to set up the device to work with various sample rate combinations. For example, in USB mode with the ADC and DAC sample rates at 48kHz and 48kHz respectively, then the device should be programmed with BOSR = 0, SR3 = 0, SR2 = 0, SR1 = 0 and SR0 = 0.

Dependent upon sample rate chosen, the ADC and DAC will operate with a digital filter of types 0-3. Explanation of the digital filters available can be found in Digital Filter Characteristics section in the datasheet.

The BOSR bit represents the base over-sampling rate. The WM8731/L digital signal processing is carried out at this rate and the sampling rate will always be a sub-multiple of this at this rate. In USB mode, with BOSR = 0, the base over-sampling rate is defined at 250fs, with BOSR = 1, the base over-sampling rate is defined at 272fs. This can be used to determine the actual audio sampling rate produced by the ADC and required by the DAC.

USB MODE SETTINGS EXAMPLES

Example scenarios are:

- 1. With a requirement that the ADC data sampling rate is 8kHz and DAC data sampling rate is 48kHz the device is programmed with BOSR = 0 (250fs), SR3 = 0, SR2 = 0, SR1 = 1, SR0 = 0. The ADC will then be exactly 8kHz (derived from 12MHz/250 x 1/6) and the DAC expects data at exactly 48kHz (derived from 12MHz/250).
- 2. With a requirement that ADC data rate is 8kHz and DAC data rate is 44.1kHz the device is programmed with BOSR = 1 (272fs), SR3 = 1, SR2 = 0, SR1 = 1, SR0 = 0. The ADC will not output data at exactly 8kHz, instead it will be 8.021kHz (derived from 12MHz/272 x 2/11) and the DAC at 44.118kHz (derived from 12MHz/272). A slight (sub 0.5%) pitch shift will therefore result in the 8kHz and 44.1kHz audio data. The user **must** ensure that the data across the digital interface is correctly synchronized at the 8.021kHz and 44.118kHz rates.

SAMPLE RATE VARIATIONS

As demonstrated in the scenarios above, the exact sample rates desired cannot always be achieved. Comparison of the target sample rates and those actually produced are defined in Table 6 below.

TARGET	ACTUAL SAM	PLING RATE
SAMPLING	BOSR=0	BOSR=1
RATE	(250fs)	(272fs)
kHz	kHz	kHz
8	8	8.021
0	12MHz/(250 x 48/8)	12MHz/(272 x 11/2)
32	32	not available
32	12MHz/(250 x 48/32)	riot avallable
44 1	not available	44.118
44.1	1101 avallable	12MHz/272
48	48	not available
40	12MHz/250	riot avallable
88.2	not available	88.235
00.2	not avallable	12MHz/136
06	96	not available
96	12MHz/125	riot avallable

Table 6 USB Mode Actual Sample Rates

ADVANCED SAMPLE RATE SELECTION

It is also possible to support other sample rate selections using the WM8731 that have not been previously described above. This flexibility is possible by some inventive application of MCLK frequencies, the CLKIDIV2 bit and the BOSR bits.

CLKDIV2

This bit allows the halving of the MCLK frequency internally by setting Bit 6 in Register 8, examples 1 and 3 below.

EXTERNAL MCLK DIVISION

It is also permissible to divide the external MCLK source by an integer multiple to scale the digital interface clocking rates. By dividing down the external MCLK it is possible to reduce the BCLK and LRCLK by the same multiple, example 2 below.

EXAMPLES

The selection of more unusual sampling frequencies is best demonstrated by example. Examples 1 and 2 describe how to select 22.050kHz by two different methods. Examples 3 and 4 describe how to select 11.025kHz by two different methods

1. 22.050kHz - Using table 2 it can be seen that halving the MCLK rate will half the sample frequency when set to the 44.1kHz settings. Use an 11.2896MHz MCLK and set the CLKIDIV2 bit (R8; B6) to '1'. The BOSR bit (R8; B1) should be set to '0' and the SR[3:0] bits (R8; B5-2) should be set to 1000 (44.1kHz settings in Table 2).

SAMPLING RATE	MCLK	BOSR	SR	CLKDIV2
kHz	MHz	Bit	Bit	Bit
22.050	11.2896	0	1000	1

Table 7 Advanced Settings Example 1

2. 22.050kHz - Using an MCLK of 22.5792MHz divide this externally by 4 and set the BOSR; SR[3:0] bits to 01000 (44.1kHz settings in Table 2).

SAMPLING RATE	MCLK	BOSR	SR	CLKDIV2
kHz	MHz	Bit	Bit	Bit
22.050	22.5792 / 4	0	1000	0

Table 8 Advanced Settings Example 2

3. 11.025kHz - Using table 2 it can be seen that dividing the MCLK rate by 4 will divide the sample frequency by 4 when set to the 44.1kHz settings. Using a 5.6448MHz MCLK set the CLKIDIV2 bit (R8; B6) to '1'. The BOSR bit (R8; B1) should be set to '0' and the SR[3:0] bits (R8; B5-2) should be set to 1000 (44.1kHz settings in Table 2).

SAMPLING RATE	MCLK	BOSR	SR	CLKDIV2
kHz	MHz	Bit	Bit	Bit
11.025	5.6448	0	1000	1

Table 7 Advanced Settings Example 3

4. 11.025kHz - Using an MCLK of 2.8224MHz set the CLKIDIV2 bit to '0' and the BOSR; SR[3:0] bits to 01000 (44.1kHz settings in Table 2). This example of simply choosing a lower frequency oscillator as the source of the MCLK is the easiest solution to selecting alternative sample rates, but this is often not a suitable solution as it is usually preferable to employ clocks already available.

SAMPLING RATE	MCLK	BOSR	SR	CLKDIV2
kHz	MHz	Bit	Bit	Bit
11.025	2.8224	0	1000	0

Table 7 Advanced Settings Example 4

The above suggestions are based on an MCLK:Sample Rate (fs) ratio of 256. The MCLK rate will scale depending on the sample rate required and ratio used. Other sample rate solutions are also possible and can be derived with a little thought from the device user.

APPLICATION SUPPORT

If you require further information or require technical support, please contact Wolfson Microelectronics Applications group through the following channels:

Email: apps@wolfsonmicro.com
Telephone: +44 (0)131 272 7000
Fax: +44 (0)131 272 7001

Mail: Applications at the address on last page.

or contact your local Wolfson representative.

Additional information may be made available from time to time on our web site at $\underline{\text{http://www.wolfsonmicro.com}}$

IMPORTANT NOTICE

Wolfson Microelectronics plc ("Wolfson") products and services are sold subject to Wolfson's terms and conditions of sale, delivery and payment supplied at the time of order acknowledgement.

Wolfson warrants performance of its products to the specifications in effect at the date of shipment. Wolfson reserves the right to make changes to its products and specifications or to discontinue any product or service without notice. Customers should therefore obtain the latest version of relevant information from Wolfson to verify that the information is current.

Testing and other quality control techniques are utilised to the extent Wolfson deems necessary to support its warranty. Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.

In order to minimise risks associated with customer applications, the customer must use adequate design and operating safeguards to minimise inherent or procedural hazards. Wolfson is not liable for applications assistance or customer product design. The customer is solely responsible for its selection and use of Wolfson products. Wolfson is not liable for such selection or use nor for use of any circuitry other than circuitry entirely embodied in a Wolfson product.

Wolfson's products are not intended for use in life support systems, appliances, nuclear systems or systems where malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage. Any use of products by the customer for such purposes is at the customer's own risk.

Wolfson does not grant any licence (express or implied) under any patent right, copyright, mask work right or other intellectual property right of Wolfson covering or relating to any combination, machine, or process in which its products or services might be or are used. Any provision or publication of any third party's products or services does not constitute Wolfson's approval, licence, warranty or endorsement thereof. Any third party trade marks contained in this document belong to the respective third party owner.

Reproduction of information from Wolfson datasheets is permissible only if reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Wolfson is not liable for any unauthorised alteration of such information or for any reliance placed thereon.

Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in this datasheet or in Wolfson's standard terms and conditions of sale, delivery and payment are made, given and/or accepted at that person's own risk. Wolfson is not liable for any such representations, warranties or liabilities or for any reliance placed thereon by any person.

ADDRESS:

Wolfson Microelectronics plc 26 Westfield Road Edinburgh EH11 2QB United Kingdom

Tel :: +44 (0)131 272 7000

Fax :: +44 (0)131 272 7001

Email :: apps@wolfsonmicro.com

