Actividad modulo 31 - Series de tiempo II

```
In []: # Libreria de Base
    import warnings
    warnings.filterwarnings('ignore')
    import pandas as pd
    import numpy as np
    import seaborn as sns
    import matplotlib.pyplot as plt
    import statsmodels.api as sm
    import os
```

Importación de datos de stocks del ejercicio anterior

```
In [ ]: # Se importa el archivo con datos
         os.chdir('E:\WORK IN PROGRESS\Data Analytics course\parte 2 python\week 31')
         # Uso de la funcion read csv
         df ecopetrol = pd.read csv('ecopetrol.csv',index col='Date', parse dates=['Date'])
         #df terpel = pd.read csv('terpel.csv',index col='Date',parse dates=['Date'])
         df ecopetrol.sample(5)
Out[ ]:
                    Unnamed: 0 Open
                                       High
                                                    Close
                                                            Volume
              Date
         2022-05-03
                          1061 3313.0 3324.0 3233.0 3313.0 9994912.0
         2020-10-09
                           654 1938.0 1972.0 1925.0 1938.0 4220206.0
         2019-03-26
                           251 3470.0 3525.0 3450.0 3470.0 9346452.0
         2019-08-21
                           357 2740.0 2765.0 2725.0 2740.0 6668753.0
         2020-07-03
                           584 2100.0 2100.0 2075.0 2100.0 521127.0
```

```
In []: df_ecopetrol.drop(['Unnamed: 0'],axis=1,inplace=True)

In []: # Visualizacion Basica a traves de rangos
# Usando matplotlib
df_ecopetrol['2018':'2023'].plot(subplots=True, figsize=(10,12))
plt.title('Precios 2018-2023')
plt.show()
```



```
In []: # Librerias para uso estadistico y de series de tiempo
    import chart_studio.plotly as py
    from plotly.offline import init_notebook_mode, iplot
    init_notebook_mode(connected=True)
    import plotly.graph_objs as go
    import plotly.figure_factory as ff
    from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
    import math
    from sklearn.metrics import mean_squared_error
    from statsmodels.tsa.arima_model import ARMA
    from statsmodels.tsa.stattools import adfuller
    from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
    from statsmodels.tsa.arima_process import ArmaProcess
    from statsmodels.tsa.arima_model import ARIMA
```

ACF and **PACF**

```
In []: # Autocorrelation of Ecopetrol price Close
# Los lags van en el Eje x y las correlaciones en el Eje y
plot_acf(df_ecopetrol['Close'], lags=60,title='Ecopetrol difference Price Close')
plt.show()
```


Insights:

- Valores de precios pasados tienen una influencia sobre el precio actual.
- Especificamente para este caso valores más alla de la 59th posición no tienen poder significativo predictivo sobre el precio actual

```
In []: # Funcion Parcial de Autocorrelacion
    # https://www.statsmodels.org/dev/generated/statsmodels.graphics.tsaplots.plot_pacf.html
    # Esta funcion genera la correlacion parcial entre los valores de una serie de tiempo y sus lags anteriores
    # La correlacion parcial es un calculo de correlacion que toma en cuenta las observaciones de la serie de tiempo
    # separadas por sus lags, luego de ajustar por la presencia de otros terminos con lags mas pequenos (lo que la diferencia de ACF)
    # Tambien nos indica cual es la importancia de los lags en la prediccion

plot_pacf(df_ecopetrol['Close'], lags=60)
plt.show()
```



```
In []: from statsmodels.tsa.stattools import adfuller

def check_stationarity(series):
    # Copied from https://machinelearningmastery.com/time-series-data-stationary-python/

    result = adfuller(series.values)

    print('ADF Statistic: %f' % result[0])
    print('p-value: %f' % result[1])
    print('Critical Values:')
    for key, value in result[4].items():
        print('\t%s: %.3f' % (key, value))

    if (result[1] <= 0.05) & (result[4]['5%'] > result[0]):
        print("\u0001b[32mStationary\u0001b[0m"))
```

Insights:

• Dado que la serie no es estacionaria se procede a usar la diferencia (comando diff()) del precio


```
In [ ]: plot_acf(df_ecopetrol['Close_diff'], lags=20,title='Ecopetrol difference Price Close')
    plt.show()
```


In []: plot_pacf(df_ecopetrol['Close_diff'], lags=20,title='Ecopetrol difference Price Close')
 plt.show()


```
df_ecopetrol['Close_diff']['2022':].describe()
                  327.000000
Out[]:
                   -0.458716
         mean
                   97.195082
         std
                 -558.528594
         min
        25%
                  -37.000000
        50%
                    0.000000
        75%
                   40.000000
                  647.528594
         max
        Name: Close_diff, dtype: float64
```

Serie Geometric Brownian Motion

```
In [ ]: from scipy.stats import norm
        import pandas as pd
         #Parametros del proceso
         delta=-0.46
         dt = 97.2
         #Punto inicio
         x=0
         xini=24
        # Numero de trayectorias
         ntra = 10
         # NUmero de Iteraciones
         n=20
        # Se pueden quardar los caminos diferentes en un dataframe
         res=[]
        dfres=pd.DataFrame().assign(traj=0, nsample=0, sample=0)
In [ ]: # Genera Las trayectorias en un dataframe (dfres)
        for i in range(ntra+1):
            for k in range(1,n+1):
                 x= x+norm.rvs(scale=delta**2*dt)
                 res.append(x)
                 df2={'traj':i,'nsample':k,'sample':x}
                 dfres=dfres.append(df2,ignore index= True)
In [ ]: # Genera los puntos iniciales
        for i in range(ntra+1):
            df2 = {'traj':i,'nsample':0,'sample':xini}
            dfres= dfres.append(df2,ignore index=True)
In [ ]: # Plot de las muestras
         import seaborn as sns
        sns.lineplot(data=dfres, x='nsample',y='sample', legend=None,ci=None, hue='traj')
        <AxesSubplot: xlabel='nsample', ylabel='sample'>
Out[ ]:
```



```
In [ ]: # Se pueden obtener las trayectorias
pd.pivot_table(dfres, index=['traj'],columns=['nsample'])
```

Out[]:

nsample	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	•••	11.0	12.0
traj													
0.0	24.0	-25.334082	12.542647	19.413445	64.093366	48.809642	42.544265	14.528709	18.809297	18.772612		-12.757714	-15.995093
1.0	24.0	-11.035214	-50.178928	-73.382765	-79.532412	-118.717510	-115.780706	-100.376600	-66.144212	-85.599441		-42.017854	-60.989596
2.0	24.0	-92.331498	-80.955245	-72.277292	-55.531429	-19.366874	13.286752	13.586234	0.031888	4.064507		31.467709	62.005411
3.0	24.0	142.779549	118.208604	142.865925	155.420342	145.859563	164.335796	141.682947	133.656411	143.798039		106.668059	111.575727
4.0	24.0	15.550859	14.352393	52.513010	52.034998	68.724665	49.144244	64.428490	65.725928	61.156098		21.211684	16.712921
5.0	24.0	-84.661605	-69.282520	-69.148392	-56.550126	-47.540413	-25.444230	-7.330824	-13.729803	-2.256956		15.106348	13.857329
6.0	24.0	36.519594	24.224784	48.700628	23.196156	26.672336	71.546501	76.724443	95.231920	116.845268		118.614299	143.373800
7.0	24.0	108.601016	97.680361	101.475878	137.905434	124.761895	98.938891	133.458053	105.946166	76.576289		48.788408	23.608536
8.0	24.0	101.088415	123.806184	95.093867	65.796239	71.411993	114.298643	87.270151	117.104963	152.974198		151.452579	156.197290
9.0	24.0	105.918165	143.255055	140.982054	118.367229	122.972198	145.520697	144.126636	149.050222	136.143139		146.565328	163.828069
10.0	24.0	156.773578	124.617158	110.533937	105.448227	108.922656	138.056518	117.987835	120.685361	86.466239		126.953861	114.753577

11 rows × 21 columns

modelo de Reversión a la Media

```
df_ecopetrol['Close_diff'].describe()
In [ ]:
                 1302.000000
        count
Out[]:
                    -0.157450
         mean
                    88.018973
        std
        min
                 -1368.528594
        25%
                   -25.000000
                    0.000000
         50%
         75%
                    30.000000
                 1303.528594
         max
        Name: Close_diff, dtype: float64
```

•

```
In []: def mod vasicek(r0,K,theta,sigma,T=1.,N=10,seed=777):
            np.random.seed(seed)
            dt= T/float(N)
            rates=[r0]
            for i in range(N):
                dr = K*(theta-rates[-1])*dt + sigma*np.random.normal()
                rates.append(rates[-1]+dr)
            return range(N+1), rates
In [ ]: # Parametros para la serie de tiempo
        r0 = 24
                   # The starting price - 24 porque es el último valor de la serie de la diferencia de precios de ecopetrol
                  # speed of reversion parameter
        K = 10
        theta = -0.15 # long-term mean interest rate level correction - media de la serie de la diferencia de precios de ecopetrol
        sigma = 88 # instantaneous volatility - de la serie de la diferencia de precios de ecopetrol
        T = 10
                    # end modelling time
        N = 100
        seed = np.random.randint(100,900)
        # Llama a la funcion Vasicek
        x, y = mod vasicek(r0,K, theta,sigma,T,N,seed)
In [ ]: # Generacion de grafica del modelo de Reversion a la media
        plt.plot(x,y)
        plt.title('Grafico de Modelo de reversion a la media')
        plt.axhline(theta, color='red')
        plt.show()
```


Modelo autoregresivo y de moving average

Ejercicio de predicción de modelos

Visualización simple de Series de Tiempo

```
In []: # Prediccion de Precio de Ecopetrol
from statsmodels.graphics.tsaplots import plot_predict
from statsmodels.tsa.arima.model import ARIMA
```

Dado que la libreria statsmodels tuvo una actualización reciente cambiando el uso de los modelos ARMA, se usa el modelo ARIMA con d=0

```
In []: ecopetrol_price=ARIMA(df_ecopetrol['Close_diff'],order=(1,0,0))
    res=ecopetrol_price.fit()
    fig, ax = plt.subplots()
    ax = df_ecopetrol['Close_diff'].loc['2023':].plot(ax=ax)
    plot_predict(res, '2023-3', '2023-4-7',ax=ax)
    plt.show()

    c:\Users\oscah\anaconda3\envs\analyticscourse\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:
    A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.
    c:\Users\oscah\anaconda3\envs\analyticscourse\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:
    A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.
    c:\Users\oscah\anaconda3\envs\analyticscourse\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:
    A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.
```



```
In [ ]: print('μ={} θ={}'.format(res.params[0],res.params[1]))
    print(res.summary())
```

```
\mu = -0.15745007794760113 \theta = -0.015658942600525076
                                SARIMAX Results
       ______
                             Close diff
       Dep. Variable:
                                       No. Observations:
                                                                    1302
                         ARIMA(1, 0, 0)
       Model:
                                       Log Likelihood
                                                                -7676.571
       Date:
                        Tue, 18 Apr 2023
                                       AIC
                                                               15359,143
       Time:
                               01:52:26
                                       BIC
                                                               15374,657
                                    0
                                       HOIC
                                                               15364,963
       Sample:
                                - 1302
       Covariance Type:
                                   opg
       ______
                                               P>|z|
                     coef
                           std err
                                                        [0.025
                                                                  0.9751
                  -0.1575
                                     -0.063
                                               0.950
                                                        -5.048
                                                                   4.733
       const
                             2,495
       ar.L1
                  -0.0157
                             0.017
                                     -0.942
                                               0.346
                                                        -0.048
                                                                   0.017
       sigma2
                7745,4334
                            45.832
                                    168,996
                                               0.000
                                                      7655,604
                                                                 7835,262
       ______
       Ljung-Box (L1) (0):
                                      0.01
                                           Jarque-Bera (JB):
                                                                    406915.38
       Prob(0):
                                      0.91
                                           Prob(JB):
                                                                        0.00
       Heteroskedasticity (H):
                                                                       -0.60
                                      0.64
                                           Skew:
       Prob(H) (two-sided):
                                      0.00
                                           Kurtosis:
                                                                       89.60
       ______
       Warnings:
       [1] Covariance matrix calculated using the outer product of gradients (complex-step).
      rmse=math.sqrt(mean squared error(df ecopetrol['Close diff'].loc['2023-3':'2023-4-7'].values,res.predict(start='2023-3',end='2021-1001).
In [ ]:
       print('RMSE={}'.format(rmse))
       RMSE=100.12597823175223
In [ ]: ecopetrol price=ARIMA(df ecopetrol['Close diff'], order=(0,0,1))
       res=ecopetrol price.fit()
       fig, ax = plt.subplots()
       ax = df ecopetrol['Close diff'].loc['2023':].plot(ax=ax)
       plot predict(res, '2023-3', '2023-4-7', ax=ax)
       plt.show()
```

 $\verb|c:\Users\oscah\anaconda3\envs\analyticscourse\lib\site-packages\statsmodels\tsa\base\tsa_model.py: 471: ValueWarning: \\$

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\oscah\anaconda3\envs\analyticscourse\lib\site-packages\statsmodels\tsa\base\tsa model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\oscah\anaconda3\envs\analyticscourse\lib\site-packages\statsmodels\tsa\base\tsa model.py:471: ValueWarning:


```
In [ ]: print('μ={} θ={}'.format(res.params[0],res.params[1]))
    print(res.summary())
```

```
\mu = -0.15745009090647907 \theta = -0.026807072684995874
                                SARIMAX Results
       ______
       Dep. Variable:
                             Close diff
                                       No. Observations:
                                                                    1302
                         ARIMA(0, 0, 1)
       Model:
                                       Log Likelihood
                                                                -7676.457
       Date:
                        Tue, 18 Apr 2023
                                       AIC
                                                               15358.915
       Time:
                               01:54:22
                                       BIC
                                                               15374,430
                                    0
                                       HOIC
                                                                15364,735
       Sample:
                                - 1302
       Covariance Type:
                                   opg
       ______
                                               P>|z|
                     coef
                           std err
                                                        [0.025
                                                                  0.9751
                  -0.1575
                             2.529
                                     -0.062
                                                        -5.115
                                                                   4.800
       const
                                               0.950
       ma.L1
                  -0.0268
                             0.017
                                     -1.606
                                               0.108
                                                        -0.060
                                                                   0.006
       sigma2
                7733,0594
                            45,746
                                    169.045
                                               0.000
                                                      7643,399
                                                                 7822,719
       ______
       Ljung-Box (L1) (0):
                                      0.04
                                            Jarque-Bera (JB):
                                                                    406667.18
       Prob(0):
                                      0.84
                                           Prob(JB):
                                                                        0.00
       Heteroskedasticity (H):
                                      0.63
                                           Skew:
                                                                       -0.62
       Prob(H) (two-sided):
                                      0.00
                                           Kurtosis:
                                                                       89.57
       ______
       Warnings:
       [1] Covariance matrix calculated using the outer product of gradients (complex-step).
      rmse=math.sqrt(mean squared error(df ecopetrol['Close diff'].loc['2023-3':'2023-4-7'].values,res.predict(start='2023-3',end='2021-1001).
In [ ]:
       print('RMSE={}'.format(rmse))
       RMSE=99.83057802026822
In [ ]: ecopetrol price=ARIMA(df ecopetrol['Close diff'], order=(1,0,1))
       res=ecopetrol price.fit()
       fig, ax = plt.subplots()
       ax = df ecopetrol['Close diff'].loc['2023':].plot(ax=ax)
       plot predict(res, '2023-3', '2023-4-7', ax=ax)
       plt.show()
```

c:\Users\oscah\anaconda3\envs\analyticscourse\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\oscah\anaconda3\envs\analyticscourse\lib\site-packages\statsmodels\tsa\base\tsa model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\oscah\anaconda3\envs\analyticscourse\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:


```
In [ ]: print('\mu={} \theta={}'.format(res.params[0],res.params[1]))
    print(res.summary())
```

```
\mu = -0.17204115638053777 \theta = 0.5548174501481203
                                  SARTMAX Results
       ______
                              Close diff
       Dep. Variable:
                                          No. Observations:
                                                                        1302
       Model:
                           ARIMA(1, 0, 1)
                                          Log Likelihood
                                                                   -7669.425
       Date:
                         Tue, 18 Apr 2023
                                                                   15346.850
                                          AIC
       Time:
                                01:55:37
                                          BIC
                                                                   15367,537
                                      0
                                          HOIC
                                                                   15354,611
       Sample:
                                  - 1302
       Covariance Type:
                                     opg
       ______
                      coef
                             std err
                                                  P>|z|
                                                            [0.025
                                                                      0.9751
                                       -0.068
       const
                   -0.1720
                               2.519
                                                  0.946
                                                           -5.110
                                                                       4,766
       ar.L1
                    0.5548
                               0.115
                                        4.825
                                                  0.000
                                                            0.329
                                                                       0.780
       ma.L1
                   -0.6432
                              0.105
                                       -6.124
                                                  0.000
                                                           -0.849
                                                                      -0.437
                                                  0.000
                                                                    7790.946
       sigma2
                 7654,7803
                              69,473
                                      110.183
                                                         7518,615
       ______
       Ljung-Box (L1) (Q):
                                              Jarque-Bera (JB):
                                                                        348706.32
                                        4.26
                                        0.04
                                              Prob(JB):
                                                                            0.00
       Prob(0):
       Heteroskedasticity (H):
                                        0.65
                                              Skew:
                                                                           -1.15
       Prob(H) (two-sided):
                                        0.00
                                              Kurtosis:
                                                                           83.14
       Warnings:
       [1] Covariance matrix calculated using the outer product of gradients (complex-step).
       rmse=math.sqrt(mean squared error(df ecopetrol['Close diff'].loc['2023-3':'2023-4-7'].values,res.predict(start='2023-3',end='202
       print('RMSE={}'.format(rmse))
       RMSE=98.30667623563063
       ecopetrol price=ARIMA(df ecopetrol['Close diff'],order=(2,0,0))
In [ ]:
       res=ecopetrol price.fit()
       fig, ax = plt.subplots()
       ax = df ecopetrol['Close diff'].loc['2023':].plot(ax=ax)
       plot predict(res, '2023-3', '2023-4-7', ax=ax)
       plt.show()
```

 $\verb|c:\Users\oscah\anaconda3\envs\analyticscourse\lib\site-packages\statsmodels\tsa\base\tsa_model.py: 471: ValueWarning: \\$

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\oscah\anaconda3\envs\analyticscourse\lib\site-packages\statsmodels\tsa\base\tsa model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\oscah\anaconda3\envs\analyticscourse\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:


```
In [ ]: print('μ={} θ={}'.format(res.params[0],res.params[1]))
    print(res.summary())
```

```
\mu = -0.15745272483226536 \theta = -0.018937760797467073
                                  SARIMAX Results
       ______
                              Close diff
       Dep. Variable:
                                          No. Observations:
                                                                        1302
                           ARIMA(2, 0, 0)
       Model:
                                          Log Likelihood
                                                                   -7647.625
       Date:
                         Tue, 18 Apr 2023
                                                                   15303,250
                                          AIC
       Time:
                                02:01:29
                                          BIC
                                                                   15323,936
                                      0
                                          HOIC
                                                                   15311.011
       Sample:
                                  - 1302
       Covariance Type:
                                     opg
       ______
                                                  P>|z|
                      coef
                             std err
                                                           [0.025
                                                                      0.9751
                                       -0.065
                                                           -4.896
       const
                   -0.1575
                               2.418
                                                  0.948
                                                                       4.581
       ar.L1
                   -0.0189
                               0.016
                                       -1.154
                                                  0.248
                                                           -0.051
                                                                       0.013
       ar.L2
                   -0.2084
                              0.007
                                      -30.509
                                                  0.000
                                                           -0.222
                                                                      -0.195
                              63.803
                                      116.174
                                                  0.000
                                                         7287,212
                                                                    7537.315
       sigma2
                 7412,2637
       ______
       Ljung-Box (L1) (Q):
                                        0.00
                                              Jarque-Bera (JB):
                                                                        250936.02
                                        0.95
                                              Prob(JB):
                                                                            0.00
       Prob(0):
       Heteroskedasticity (H):
                                                                           -2.02
                                        0.74
                                              Skew:
       Prob(H) (two-sided):
                                        0.00
                                              Kurtosis:
                                                                           70.89
       Warnings:
       [1] Covariance matrix calculated using the outer product of gradients (complex-step).
       rmse=math.sqrt(mean squared error(df ecopetrol['Close diff'].loc['2023-3':'2023-4-7'].values,res.predict(start='2023-3',end='202
       print('RMSE={}'.format(rmse))
       RMSE=104.57478927097281
       ecopetrol price=ARIMA(df ecopetrol['Close diff'],order=(0,0,2))
In [ ]:
       res=ecopetrol price.fit()
       fig, ax = plt.subplots()
       ax = df ecopetrol['Close diff'].loc['2023':].plot(ax=ax)
       plot predict(res, '2023-3', '2023-4-7', ax=ax)
       plt.show()
```

 $\verb|c:\Users\oscah\anaconda3\envs\analyticscourse\lib\site-packages\statsmodels\tsa\base\tsa_model.py: 471: ValueWarning: \\$

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\oscah\anaconda3\envs\analyticscourse\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\oscah\anaconda3\envs\analyticscourse\lib\site-packages\statsmodels\tsa\base\tsa model.py:471: ValueWarning:


```
In [ ]: print('μ={} θ={}'.format(res.params[0],res.params[1]))
    print(res.summary())
```

```
\mu = -0.16716830443385736 \theta = -0.010788786416524594
                                  SARIMAX Results
       ______
                              Close diff
       Dep. Variable:
                                          No. Observations:
                                                                        1302
       Model:
                           ARIMA(0, 0, 2)
                                         Log Likelihood
                                                                   -7649.627
       Date:
                         Tue, 18 Apr 2023
                                                                   15307,254
                                          AIC
       Time:
                                02:02:45
                                          BIC
                                                                   15327,941
                                      0
                                          HOIC
                                                                   15315,015
       Sample:
                                  - 1302
       Covariance Type:
                                     opg
       ______
                                                  P>|z|
                      coef
                             std err
                                                           [0.025
                                                                      0.9751
                                       -0.070
                                                                      4.542
       const
                   -0.1672
                              2,403
                                                 0.945
                                                           -4.877
       ma.L1
                   -0.0108
                              0.017
                                       -0.641
                                                 0.521
                                                           -0.044
                                                                       0.022
       ma.L2
                   -0.1949
                              0.007
                                      -27,634
                                                 0.000
                                                           -0.209
                                                                      -0.181
                             64,903
                                                 0.000
                                                         7298,319
                                                                    7552,735
       sigma2
                 7425,5270
                                      114,410
       ______
       Ljung-Box (L1) (Q):
                                        0.03
                                              Jarque-Bera (JB):
                                                                        257035.20
                                        0.86
                                              Prob(JB):
                                                                            0.00
       Prob(0):
                                                                           -1.94
       Heteroskedasticity (H):
                                        0.74
                                              Skew:
       Prob(H) (two-sided):
                                        0.00
                                              Kurtosis:
                                                                           71.72
       Warnings:
       [1] Covariance matrix calculated using the outer product of gradients (complex-step).
       rmse=math.sqrt(mean squared error(df ecopetrol['Close diff'].loc['2023-3':'2023-4-7'].values,res.predict(start='2023-3',end='202
       print('RMSE={}'.format(rmse))
       RMSE=105.14053013295596
       ecopetrol price=ARIMA(df ecopetrol['Close diff'],order=(2,0,2))
In [ ]:
       res=ecopetrol price.fit()
       fig, ax = plt.subplots()
       ax = df ecopetrol['Close diff'].loc['2023':].plot(ax=ax)
       plot predict(res, '2023-3', '2023-4-7', ax=ax)
       plt.show()
```

c:\Users\oscah\anaconda3\envs\analyticscourse\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\oscah\anaconda3\envs\analyticscourse\lib\site-packages\statsmodels\tsa\base\tsa model.py:471: ValueWarning:

A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

c:\Users\oscah\anaconda3\envs\analyticscourse\lib\site-packages\statsmodels\tsa\base\tsa model.py:471: ValueWarning:


```
In [ ]: print('\mu=\{\} \theta=\{\}',format(res.params[0],res.params[1])) print(res.summary())
```

 $\mu = -0.15747144488505752$ $\theta = -0.044624490212892255$ SARIMAX Results ______ Close diff Dep. Variable: No. Observations: 1302 ARIMA(2, 0, 2)Model: Log Likelihood -7647.481 Tue, 18 Apr 2023 Date: AIC 15306,962 Time: 01:59:50 BIC 15337,992 0 HOIC Sample: 15318.604 - 1302 Covariance Type: opg ______ coef std err [0.025 0.9751 -0.064 const -0.1575 2.480 0.949 -5.018 4.703 ar.L1 -0.0446 0.116 -0.385 0.700 -0.272 0.182 ar.L2 -0.2679 0.116 -2.318 0.020 -0.494 -0.041 0.0269 0.119 0.227 0.820 -0.206 0.259 ma.L1 ma.L2 0.522 -0.170 0.294 0.0617 0.118 0.602 7375.1721 65,405 112.761 0.000 7246,980 7503,364 sigma2 ______ Ljung-Box (L1) (0): 0.00 Jarque-Bera (JB): 252278.43 Prob(0): 0.99 Prob(JB): 0.00 Heteroskedasticity (H): 0.74 Skew: -2.00 Kurtosis: Prob(H) (two-sided): 0.00 71.08 ______

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
In [ ]: rmse=math.sqrt(mean_squared_error(df_ecopetrol['Close_diff'].loc['2023-3':'2023-4-7'].values,res.predict(start='2023-3',end='2020
print('RMSE={}'.format(rmse))
```

RMSE=104.56294393695131

Insights:

• De todos los modelos analizados, el que tuvo un rmse más bajo fue el arma(1,1). Sin embargo, el valor de la constante no es estadísticamente significativo.