МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СТАТИЧЕСКИЕ СЧЕТЧИКИ ВАТТ-ЧАСОВ АКТИВНОЙ ЭНЕРГИИ ПЕРЕМЕННОГО ТОКА (КЛАССЫ ТОЧНОСТИ 1 И 2)

Издание официальное

P3 2-36

к ГОСТ 30207—94 Статические счетчики ватт-часов активной энергии переменного тока (классы точности 1 и 2)

В каком месте	Напечатано	Должно быть
Пункт 4.2.4. Пятый абзац	Винтовые соединения, передающие контактные давления, и фиксирующие винты, которые могут отпускаться и закрепляться несколько раз за время службы счетчика, должны закрепляться металлическими гайками	Винтовые соединения, передающие контактные усилия, и фиксирующие винты, которые могут ослабляться и закрепляться несколько раз в течение срока службы счетчика, должны завинчиваться в металлическую гайку

Предисловие

1 PA3PAБОТАН МТК «Аппаратура для измерения электрической энергии и контроля нагрузки»

ВНЕСЕН Госстандартом Российской Федерации

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 6—94 от 21 октября 1994 г.) За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации	
Азербайджанская Республика	Азгосстандарт	
Республика Армения	Армгосстандарт	
Республика Беларусь	Белетандарт	
Республика Грузия	Грузстандарт	
Республика Казахстан	Госстандарт Республики Казахстан	
Киргизская Республика	Киргизстандарт	
Республика Молдова	Молдовастандарт	
Российская Федерация	Госстандарт России	
Республика Узбекистан	Уэгосстандарт	
Украина	Госстандарт Украины	

3 Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 12 марта 1996 г. № 158 межгосударственный стандарт ГОСТ 30207—94 (МЭК 1036—90) введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 1996 г., в части счетчиков, разработанных до 1 июля 1996 г., — с 1 июля 1997 г.

Настоящий стандарт содержит полный аутентичный текст международного стандарта МЭК 1036—90 «Статические счетчики ваттчасов активной энергии переменного тока (классы точности 1 и 2)» с дополнительными требованиями, отражающими потребности экономики страны

4 B3AMEH ГОСТ 26035—83 в части счетчиков активной энергии классов точности 1 и 2

© ИПК Издательство стандартов, 1996

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

Содержание

1	Область применения	1
2	Нормативные ссылки	2
3	Термины и определения	4
	3.1 Общие определения	4
	3.2 Определения, относящиеся к функциональным	
	элементам	5
	3.3 Определение механических элементов	6
	3.4 Определение типов изоляции	7
	3.5 Определения величин, характеризующих счетчик	8
	3.6 Определения влияющих величин	9
	3.7 Определение испытаний	10
4	Технические требования	10
	4.1 Стандартные значения электрических величин	10
	4.2 Механические требования	11
	4.3 Климатические условия	20
	4.4 Электрические требования	21
	4.5 Электромагнитная совместимость	25
	4.6 Требования к точности	25
5	Испытания и условия испытаний	32
	5.1 Общие методики испытаний	32
	5.2 Проверка механических требований	32
	5.3 Проверка климатических воздействий	34
	5.4 Проверка электрических требований	35
	5.5 Испытания на электромагнитную совместимость	41
	5.6 Проверка требований точности	42
П	риложение А Соотношение между температурой окружающего	
	воздуха и относительной влажностью	48
Π	риложение Б Схема испытательной цепи для испытаний	
	влияния постоянного тока	49
Π	риложение В Последовательность проведения испытаний	50
	риложение Г Форма импульса напряжения для испытаний	
	влияния провалов и кратковременных	
	прерываний напряжения	51
Π	риложение Д Электромагнит для испытания на влияние	-
	внешних магнитных полей	52

СТАТИЧЕСКИЕ СЧЕТЧИКИ ВАТТ-ЧАСОВ АКТИВНОЙ ЭНЕРГИИ ПЕРЕМЕННОГО ТОКА (КЛАССЫ ТОЧНОСТИ 1 И 2)

Alternating current static watt-hour meters for active energy (accuracy classes 1 and 2)

Дата введения 1996-07-01 1997-07-01

в части счетчиков, разработанных до 1 июля 1996 г.,

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт распространяется на статические (электронные) счетчики ватт-часов (далее — счетчики) классов точности 1 и 2 для измерения электрической активной энергии переменного тока частотой в диапазоне (45 — 65) Гц и устанавливает требования к изготовлению и типовым испытаниям* счетчиков.

Стандарт распространяется на счетчики, применяемые внутри помещения, и счетчики для наружной установки, содержащие измерительный элемент и счетный(ые) механизм(ы), заключенные вместе в корпус счетчика. Он также распространяется на индикатор(ы) работы и испытательный(е) выход(ы).

Стандарт не распространяется на:

- а) счетчики напряжением свыше 600 В (линейное напряжение для многофазных счетчиков):
 - б) переносные счетчики;
 - в) интерфейсы к счетному механизму счетчика.

^{*} Под типовыми испытаниями понимают контрольные испытания, кроме приемосдаточных.

Когда дисплей и (или) запоминающее(ие) устройство(а) являются внешними и (или) когда другие элементы заключены к корпус счетчика (такие как показатели максимума, телеметрические латчики, переключатели времени или дистанционного контроля и т.д.). настоящий стандарт распространяется только на измерительную часть.

Настоящий стандарт не устанавливает правила проведения приемочных испытаний и испытаний на соответствие техническим требованиям*. В отношении приемочных испытаний основное руководство приведено в ГОСТ 25990.

Требования надежности также не рассматриваются в настоящем стандарте, т.к. нет методик проведения кратковременных испытаний, которые согласовывались бы с документами по типовым испытаниям для проверки этого требования.

Обязательные требования к качеству счетчиков изложены в 4.1.1— -4.1.3; 4.2.1 - 4.2.13; 4.2.14.2; 4.4.1.1; 4.4.1.2; 4.4.2 - 4.4.6; 4.5 - 4.7; 4.10; 5.6.1.

Дополнительные и измененные требования к счетчикам, отражающие потребности народного хозяйства, выделены по тексту стандарта курсивом.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 2.601-95 ЕСКД. Эксплуатационные документы

ГОСТ 8.383—80 ГСИ. Государственные испытания средств измерений. Основные положения

ГОСТ 8.401-80 ГСИ. Классы точности средств измерений.

Общие требования

ГОСТ 9.048-89 ЕСЗКС. Изделия технические. Методы лабораторных испытаний на стойкость к воздействию плесневых грибов

ГОСТ 26.020-80 Шрифты для средств измерений и автоматизации. Начертания и основные размеры

ГОСТ 1983-89(МЭК 186-87) Трансформаторы напряжения. Общие технические условия

ГОСТ 7746-89 (МЭК 185-87) Трансформаторы тока. Общие технические условия

^{*} Под приемочными испытаниями понимают приемо-сдаточные испытания, под испытаниями на соответствие техническим требованиям — периодические испытания. Виды испытаний — по ГОСТ 22261.

ГОСТ 8865—93 Системы электрической изоляции. Оценка нагревостойкости и классификация

ГОСТ 14254—80 (МЭК 529—76) Изделия электротехнические. Оболочки. Степени защиты. Обозначения. Методы испытаний

ГОСТ 16504—81 Система государственных испытаний продукции. Испытания и контроль качества продукции. Основные термины и определения

ГОСТ 22261—94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 23217—78 Приборы электроизмерительные аналоговые с непосредственным отсчетом. Наносимые условные обозначения

ГОСТ 25372—82 Счетчики электрической энергии. Условные обозначения

ГОСТ 25990—83 Счетчики электрические активной энергии класса точности 2,0. Приемочный контроль

ГОСТ 26104—89 (МЭК 348—78) Средства измерений электронные. Технические требования в части безопасности. Методы испытаний

ГОСТ 27473—87 (МЭК 112—79) Материалы электроизоляционные твердые. Метод определения сравнительного и контрольного индексов трекингостойкости во влажной среде

ГОСТ 27483—87 (МЭК 695—2—1—80) Испытания на пожароопасность. Методы испытаний. Испытания нагретой проволокой

ГОСТ 27570.0—87 Безопасность бытовых и аналогичных электрических приборов. Общие требования и методы испытаний

ГОСТ 27918—88 (МЭК 255—4—76) Реле измерительные с одной входной воздействующей величиной с зависимой выдержкой времени

ГОСТ 28199—89 (МЭК 68—2—1—74) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание А: Холод

ГОСТ 28200—89 (МЭК 68—2—2—74) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание В: Сухое тепло

ГОСТ 28202—89 (МЭК 68—2—5—75) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание Sa: Имитированная солнечная радиация на уровне земной поверхности

ГОСТ 28203—89 (МЭК 68—2—6—82) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание Fc и руководство: Вибрация (синусоидальная)

ГОСТ 28207—89 (МЭК 68—2—11—81) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание Ка: Соляной туман

ГОСТ 28213—89 (МЭК 68—2—27—87) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испы-

тание Еа и руководство: Одиночный удар

ГОСТ 28216—89 (МЭК 68—2—30—87) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание Db и руководство: Влажное тепло, циклическое (12+12 часовой цикл)

ГОСТ 29156—91 (МЭК 801—4—88) Устойчивость технических средств электромагнитная. Устойчивость к наносекундным импульсным помехам. Технические требования и методы испытаний

ГОСТ 29191—91 (МЭК 801—2—84) Устойчивость технических средств электромагнитная. Устойчивость к электростатическим разрядам. Технические требования и методы испытаний

ГОСТ 29216—91 Совместимость технических средств электромагнитная. Радиопомехи индустриальные от оборудования информационной техники. Нормы и методы испытаний

ГОСТ 29322-92 (МЭК 38-83) Стандартные напряжения

ГОСТ 30012.1—93 (МЭК 51—1—84) Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 1. Определения и основные требования, общие для всех частей

ГОСТ 30032.1—93 (МЭК 60—1—89) Техника испытаний высоким напряжением. Часть 1. Общие определения и требования к испытаниям

3 ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

В настоящем стандарте использованы термины, приведенные ниже.

- 3.1 Общие определения
- 3.1.1 Счетчик ватт-часов прибор, предназначенный для измерения активной энергии путем интегрирования активной мощности по времени
- 3.1.2 Статический счетчик счетчик, в котором ток и напряжение воздействуют на твердотельные (электронные) элементы для создания на выходе импульсов, число которых пропорционально измеряемой активной энергии.
- 3.1.3 Многотарифный счетчик счетчик электрической энергии, снабженный набором счетных механизмов, каждый из которых

работает в установленные интервалы времени, соответствующие различным тарифам.

- 3.1.4 Тип счетчика термин, используемый для определения конкретной конструкции счетчика, изготавливаемого одним изготовителем, имеющего:
 - а) одинаковые метрологические характеристики;
- б) единое конструктивное исполнение частей, определяющих эти характеристики;
- в) одно и то же отношение максимального тока к номинальному. Тип может иметь несколько значений номинального тока и номинального напряжения.

Счетчики обозначаются одним или большим числом групп букв или цифр или комбинацией букв или цифр. Каждый тип имеет только одно обозначение.

Примсчание — Тип характеризуется образцами счетчиков, предназначенных для типовых испытаний, характеристики которых (номинальные токи и номинальные напряжения) выбраны из значений, приведенных в таблицах, предложенных изготовителем.

- 3.1.5 Трансформаторный счетчик счетчик, предназначенный для включения через измерительные трансформаторы с заранее заданными коэффициентами трансформации. Показания счетчика должны соответствовать значению энергии, прошедшей через первичную цепь.
- 3.1.6 Трансформаторный универсальный счетчик счетчик, предназначенный для включения через измерительные трансформаторы, имеющие любые коэффициенты трансформации. Для определения энергии, прошедшей через первичную цепь, необходимо показания счетчика умножить на произведение коэффициентов трансформации.
- 3.2 Определения, относящиеся к функциональным элементам
- 3.2.1 Измерительный элемент часть счетчика, создающая на выходе импульсы, число которых пропорционально измеряемой активной энергии.
 - 3.2.2 Выходные устройства
- 3.2.2.1 Испытательный выход устройство, которое может быть использовано для испытания счетчика.
- 3.2.2.2 Индикатор функционирования устройство, выдающее визуально наблюдаемый сигнал функционирования счетчика.
- 3.2.3 Запоминающее устройство элемент, предназначенный для хранения цифровой информации.
- 3.2.3.1 Энергонезависимое запоминающее устройство запоминающее устройство, которое может сохранять информацию при отключении источника питания.

- 3.2.4 Дисплей устройство, отображающее информацию запоминающего (их) устройства (в).
- 3.2.5 Счетный механизм электромеханическое или электронное устройство, содержащее как запоминающее устройство, так и дисплей.

Единичный дисплей может быть использован с многофункциональными электронными запоминающими устройствами для формирования многотарифных счетных механизмов.

- 3.2.6 Цепь тока внутренние соединения счетчика и часть измерительного элемента, по которым протекает ток цепи, в которой подключен счетчик.
- 3.2.7 Цепь напряжения внутренние соединения счетчика, часть измерительного элемента и источник питания для счетчика, питаемого напряжением цепи, к которой подключен счетчик.
- 3.2.8 Вспомогательная цепь элементы (лампы, контакты и т.д.) и соединения вспомогательного устройства внутри корпуса счетчика, предназначенные для присоединения внешнего устройства, например часов, реле, счетчика импульсов.
- 3.2.9 Постоянная счетчика значение, выражающее соотношение между энергией, учитываемой счетчиком, и числом импульсов на испытательном выходе.

Постоянная счетчика выражается либо в импульсах на киловаттчас $[имп/(кВт \cdot ч)]$, либо в ватт-часах на импульс $(Вт \cdot ч/имп)$.

- 3.3 Определение механических элементов
- 3.3.1 Счетчик, применяемый внутри помещения счетчик, который может быть использован только в местах, имеющих дополнительную защиту от влияния окружающей среды (помещения, стойки).
- 3.3.2 Счетчик для наружной установки счетчик, который может быть использован снаружи без дополнительной защиты от окружающей среды.
- 3.3.3 Цоколь задняя часть счетчика, обычно служащая для его крепления и крепления измерительного элемента, зажимов или зажимной платы и кожуха.

Для счетчиков, устанавливаемых заподлицо, цоколь может охватывать боковые стороны корпуса.

3.3.3.1 Разъем — цоколь с зажимными приспособлениями для размещения зажимов съемного счетчика ватт-часов, имеющий зажимы для присоединения к питающей сети. Это может быть однопозиционный разъем для одного счетчика или многопозиционный разъем для двух и более счетчиков.

- 3.3.4 Кожух крышка с передней стороны счетчика, изготовленная либо целиком из прозрачного материала, либо из непрозрачного материала с окном (окнами), через которое (ые) можно наблюдать за индикатором функционирования (если он установлен) и считывать показания дисплея.
 - 3.3.5 Корпус цоколь и кожух в комплекте.
- 3.3.6 Доступная для прикосновения проводящая часть проводящая часть, к которой можно прикоснуться стандартным испытательным пальцем, когда счетчик установлен и готов к эксплуатации.
- 3.3.7 Зажим защитного заземления зажим, соединенный с доступными для прикосновения проводящими частями счетчика для обеспечения безопасности.
- 3.3.8 Зажимная плата деталь из изоляционного материала, на которой сосредоточены все зажимы счетчика или часть из них.
- 3.3.9 Крышка зажимов крышка, закрывающая зажимы счетчика и концы внешних проводов или кабелей, присоединенных к зажимам.
- 3.3.10 Воздушный зазор кратчайшее расстояние, измеренное между двумя проводящими частями по воздуху.
- 3.3.11 Путь утечки кратчайшее расстояние, измеренное между двумя проводящими частями по поверхности изоляции.
 - 3.4 Определение типов изоляции
- 3.4.1 Основная изоляция изоляция, применяемая к находящимся под напряжением частям, для обеспечения основной защиты от поражения электрическим током.

от поражения электрическим током. Примечание — К основной изоляции не обязательно относят изоляцию, используемую исключительно для функциональных целей.

- 3.4.2 Дополнительная изоляция независимая изоляция, применяемая в дополнение к основной изоляции для обеспечения защиты от поражения электрическим током при повреждении основной изоляции.
- 3.4.3 Двойная изоляция изоляция, включающая как основную, так и дополнительную изоляции.
- 3.4.4 Усиленная изоляция единая система изоляции, применяемая к находящимся под напряжением частям, которая обеспечивает степень защиты от поражения электрическим током, эквивалентную двойной изоляции.

Примечание — Термин «система изоляции» не означает, что изоляция должна быть единой однородной частью. Она может содержать несколько слоев, которые не могут быть испытаны отдельно как дополнительная или основная изоляция.

- 3.4.5 Счетчик в изолирующем корпусе класса защиты II счетчик, помещенный в корпус из изолирующего материала, в котором защита от поражения электрическим током основана не только на основной изоляции, но предусмотрены дополнительные меры безопасности, такие как двойная или усиленная изоляция. Эти меры не содержат защитного заземления и не зависят от условий эксплуатании.
- 3.5 Определения величин, характеризующих счетчик
- 3.5.1 Номинальный ток* ($I_{\text{ном}}$) значение тока, являющееся исходным при установлении требований к счетчику.
- 3.5.2 Максимальный ток* ($I_{\text{макс}}$) наибольшее значение тока, при котором счетчик удовлетворяет требованиям точности, установленным в настоящем стандарте.
- 3.5.3 Номинальное напряжение* значение напряжения, являющееся исходным при установлении требований к счетчику.
- 3.5.4 Номинальная частота значение частоты, являющееся исходным при установлении требований к счетчику.
- 3.5.5 Обозначение класса точности число, равное пределу допускаемой погрешности, выраженной в процентах, для всех значений тока в диапазоне от 0,1 номинального до максимального тока при коэффициенте мощности, равном единице (в том числе в случае многофазных счетчиков при симметричных нагрузках), при испытании счетчика в нормальных условиях (включая допускаемые отклонения от номинальных значений), установленных в настоящем стандарте.

Примечание — В настоящем стандарте счетчики классифицируют в соответствии с их обозначениями классов точности, то есть 1 и 2

ствии с их обозначениями классов точности, то есть 1 и 2.

3.5.6 Погрешность, выраженная в процентах, — погрешность, определяемая по формуле

Погрешность в процентах =
$$\frac{\text{Энергия, учтенная счетчиком - Истинная энергия}}{\text{Истинная энергия}} \times 100.$$

 Π р и м е ч а н и е — Так как истинное значение не может быть определено, оно аппроксимируется значением с установленной точностью, которая может быть определена по нормам, согласованным между изготовителем и потребителем, или по национальным стандартам.

^{*} Термины «ток» и «напряжение» относятся к средним квадратическим значениям, если не оговорено иное.

- 3.6 Определения влияющих величин
- 3.6.1 Влияющая величина любая величина, обычно внешняя по отношению к счетчику, которая может оказать влияние на его рабочие характеристики.
- 3.6.2 Нормальные условия совокупность влияющих величин и технических характеристик, имеющих нормальные значения или находящихся в пределах нормальной области значений, при которых устанавливают основную погрешность.
- 3.6.3 Изменение погрешности, вызываемое влияющей величиной (дополнительная погрешность) разность между выраженными в процентах значениями погрешности счетчика, когда только одна влияющая величина принимает последовательно два установленных значения, одно из которых является нормальным значением.
- 3.6.4 Коэффициент искажения отношение среднего квадратического значения содержащихся гармоник (получаемого вычитанием из несинусоидальной переменной величины ее основной составляющей) к среднему квадратическому значению несинусоидальной величины. Коэффициент искажения обычно выражается в процентах.
- 3.6.5 Электромагнитные помехи наводимые или излучаемые электромагнитные воздействия, которые могут оказывать влияние на функциональные или метрологические характеристики счетчика.
- 3.6.6 Нормальная температура значение температуры окружающего воздуха, установленное для нормальных условий.
- 3.6.6.1 Средний температурный коэффициент отношение изменения погрешности, выраженной в процентах, к изменению температуры, вызывающему это изменение погрешности.
- 3.6.7 Установленные рабочие условия совокупность установленных диапазонов измерений для технических характеристик и установленных рабочих диапазонов для влияющих величин, в пределах которых установлены и определены изменения погрешности или погрешности счетчика в рабочих условиях применения.
- 3.6.8 Установленный диапазон измерений совокупность значений измеряемой величины, для которой погрешность счетчика должна находиться в установленных пределах.
- 3.6.9 Установленный рабочий диапазон диапазон значений одной влияющей величины, который составляет часть установленных рабочих условий.
- 3.6.10 Предельный рабочий диапазон предельные условия, которые работающий счетчик может выдержать без повреждения и ухудшения метрологических характеристик при последующей его эксплуатации в установленных рабочих условиях.

- 3.6.11 Условия хранения и транспортирования предельные условия, которые неработающий счетчик может выдержать без повреждения и ухудшения метрологических характеристик при последующей его эксплуатации в установленных рабочих условиях.
- 3.6.12 Нормальное рабочее положение положение счетчика, определенное изготовителем для нормальной эксплуатации.
- 3.6.13 Установившийся тепловой режим установившийся тепловой режим считают достигнутым, если изменение погрешности, вызываемое самонагревом в течение 20 мин, составляет менее 0,1 максимальной допускаемой погрешности.
 - 3.7 Определение испытаний*
- 3.7.1 Типовое испытание порядок, согласно которому для проведения серии испытаний выбирают один счетчик или небольшое число счетчиков одного и того же типа, имеющих идентичные характеристики, выбранные изготовителем для проверки соответствия определенного типа счетчика всем требованиям настоящего стандарта для соответствующего класса точности счетчиков.

4 ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 4.1 Стандартные значения электрических величин
- 4.1.1 Стандартные значения номинальных напряжений должны соответствовать установленным в таблице 1.

Таблица 1 — Стандартные значения номинальных напряжений

Включение счетчика	Стандартные значения, В	Допускаемые значения, В
Непосредственное включение	120; 230; 277; 400; 480 (по ГОСТ 29322)	100; (100/3)**; 127; 200; 220; 240; 380; (380 √3)**; 415
Включение через трансформатор (ы) напряжения	57,7; 63,5; 100; 110; 115; 120; 200 (no FOCT 1983)	173; 190; 220

^{*} Для потребностей экономики страны определение испытаний — по ГОСТ 16504.

4.1.2 Стандартные значения номинальных токов должны соответствовать установленным в таблице 2.

Включение счетчика	Стандартные значения, А	Допускаемые значения, А
Непосредственное включение	5; 10; 15; 20; 30; 40; 50	80
Включение через трансформатор (ы) тока	1; 2; 5 (по ГОСТ 7746)	2,5

4.1.2.1 Максимальный ток

Максимальный ток для счетчиков непосредственного включения — это предпочтительно целое кратное номинальному току (например, 4-кратному номинальному току).

Когда счетчик работает от трансформатора(ов) тока, внимание обращается на необходимость подбора диапазона тока счетчика соответствии с диапазоном тока вторичной обмотки трансформатора(ов) тока. Максимальный ток равен 1,2 $I_{\text{ном}}$; 1,5 $I_{\text{ном}}$ или 2 $I_{\text{ном}}$.

4.1.3 Стандартные значения номинальных частот

Стандартными значениями номинальных частот для счетчиков являются 50 и 60 Гп.

- 4.2 Механические требования
- 4.2.1 Общие механические требования

Счетчики должны быть рассчитаны и сконструированы таким образом, чтобы можно было избежать появления какой-либо опасности при нормальном их использовании и в нормальных условиях, а также чтобы можно было обеспечить безопасность персонала от поражения электрическим током, воздействия повышенной температуры, распространения огня, а также защиту счетчиков от проникновения твердых тел, пыли и воды.

Все части, подвергающиеся коррозии при нормальных условиях, должны быть надежно защищены. Любое защитное покрытие не должно подвергаться опасности повреждения при обычном обращении или повреждения вследствие атмосферных воздействий при нормальных условиях работы. Счетчики для наружной установки должны выдерживать воздействие солнечного излучения.

Примечание — Для счетчиков, предназначенных для использования в коррозионной атмосфере, в договоре на поставку должны быть установлены дополнительные требования (например, испытание соляным туманом по ГОСТ 28207).

Требования к механическим воздействиям на счетчики в рабочих условиях применения и предельных условиях транспортирования — устанавливают по ГОСТ 22261, по согласованию с заказчиком.

4.2.2 Корпус

Корпус счетчика должен быть опломбирован таким образом, чтобы его внутренние части стали доступны только после нарушения целостности пломб(ы).

Конструкция кожуха должна обеспечивать его снятие только с помощью инструмента.

Корпус должен быть сконструирован и установлен таким образом, чтобы любая непосредственная деформация не могла нарушить нормальное функционирование счетчика.

Если не оговорено иное, то счетчики, предназначенные для присоединения к сети, в которой напряжение в нормальных условиях превышает 250 В относительно земли, и корпус которых полностью или частично металлический, должны быть снабжены зажимом защитного заземления.

4.2.3 Окно

Если кожух непрозрачный, то для отсчета по дисплею и наблюдения за индикатором работы, при его наличии, должно быть предусмотрено одно или несколько окон. Эти окна должны быть из прозрачного материала и не могут быть удалены неповрежденными без нарушения целостности пломб(ы).

4.2.4 Зажимы, зажимная(ые) плата(ы), зажим защитного заземления

Зажимы могут быть расположены на зажимной(ых) плате(ах), имеющей(их) необходимые изоляционные свойства и механическую прочность. Для обеспечения соответствия этим требованиям изоляционные материалы для зажимных плат выбирают, принимая во внимание результаты соответствующих испытаний материалов.

Материал, из которого изготовлена зажимная плата, должен выдерживать испытания при температуре 135 °C и давлении 1,8 МПа.

Отверстия в изоляционном материале, предназначенные для подключения проводов к зажимам, должны быть достаточных размеров, то есть с учетом размещения проводов в изоляции.

Способ крепления проводов к зажимам должен обеспечивать надежный и долговечный контакт, чтобы не возникло опасности ослабления соединения или чрезмерного нагрева. Винтовые соединения, передающие контактные давления, и фиксирующие винты, которые могут отпускаться и закрепляться несколько раз за время службы счетчика, должны закрепляться металлическими гайками.

Все части каждого зажима должны быть такими, чтобы свести к минимуму опасность возникновения коррозии, происходящей в результате их контакта с другими металлическими частями.

Электрические соединения должны быть сконструированы таким образом, чтобы контактное давление не передавалось через изоляционный материал.

Для цепей тока значение напряжения принимают равным напря-

для цепей тока значение напряжения принимают равным напряжению соответствующей цепи напряжения.

Зажимы, расположенные близко друг к другу и находящиеся под разными потенциалами, должны быть защищены от случайных коротких замыканий. Защита может осуществляться с помощью изолирующих перегородок. Потенциалы зажимов, относящиеся к одной и той же цепи тока, считают одинаковыми.

Возможность соприкосновения зажимов, винтов крепления проводов, внешних и внутренних проводов с металлическими крышками зажимной платы должна быть предотвращена.

Зажим защитного заземления, если он установлен, должен соответствовать следующим требованиям:

- а) иметь электрическое соединение с доступными для прикосновения металлическими частями:
 - б) если возможно, составлять часть цоколя;
- в) должен располагаться предпочтительно вблизи зажимной платы:
- г) обеспечивать возможность присоединения провода с поперечным сечением, равным, по крайней мере, поперечному сечению главных проводов цепей тока от 6 до 16 мм² (эти размеры применяют только при использовании медных проводов);

 д) иметь четко обозначенный символ заземления по ГОСТ
- 30012.1 (символ F-43).

После установки ослабление присоединения зажима защитного заземления без применения инструмента не должно быть возможно.

Зажимы должны обеспечивать подключение до двух медных или алюминиевых проводов с суммарным сечением до 5 мм². Соединения зажимов параллельных и последовательных цепей должны быть разъемными и размещены в зажимной коробке. Отверстия для зажима проводов последовательной цепи должны быть диаметром не менее 4,2 мм для счетчиков с максимальным значением силы тока не более 25 А и диаметром 5 — 8 мм — для счетчиков с максимальным значением силы тока, равным 50 A и более. Все зажимы счетчиков, предназначенные для подключения к измерительным трансформаторам напряжения,

должны быть раздельными и иметь отверстия диаметром не менее 4,2 мм.

Зажимы трехфазных счетчиков, предназначенных для включения с трансформаторами тока, должны обеспечивать раздельное включение цепей напряжения и цепей тока. Диаметр отверстий зажимов для этих целей должен быть не менее 3,5 мм.

4.2.5 Крышка зажимов

Зажимы счетчика, если они расположены на зажимной плате и не защищены любыми другими средствами, должны закрываться отдельной крышкой, которая может быть опломбирована независимо от кожуха счетчика. Крышка зажимов должна закрывать все зажимы, винты крепления проводов и, если не оговорено иное, достаточную длину внешних проводов и их изоляцию.

В счетчике, установленном на щите, должен быть исключен доступ к зажимам без нарушения целостности пломб крышки(ек) зажимов.

4.2.6 Воздушный зазор и пути утечки

Воздушные зазоры и пути утечки зажимной платы, а также между зажимами и находящимися вблизи от них металлическими частями кожуха должны быть не менее значений, приведенных в таблице 3. Эти значения установлены для оборудования стационарного и в случае, когда к надежности и пригодности оборудования предъявляют особые требования, и следующих влияющих факторов:

степень загрязнения:

- нетокопроводящее загрязнение, но иногда, в случае конденсации токопроводящее для счетчиков, применяемых внутри помещения;
- токопроводящее и сухое нетокопроводящее загрязнение, которое становится токопроводящим вследствие конденсации, которая может иметь место, для счетчиков для наружной установки;

группа материала — материал со сравнительным индексом трекингостойкости (СИТ), равным 100 ≥ СИТ ≥ 175 (ГОСТ 27473);

условия неоднородного поля — состояние неоднородного поля на краях плоского электрода. Неоднородное поле — электрическое поле, в котором градиент напряжения между электродами, не является, в основном, постоянным;

высота до 2000 м над уровнем моря.

Воздушный зазор между крышкой зажимов, если она изготовлена из металла, и верхней поверхностью винтов, если они закрепляют проводники максимально допустимого диаметра, должен быть не менее значений, приведенных в таблице 3.

Напряжение между фазой и землей.	Минимальные	Минимальная длина	
фазон и землен, инпинальные производное от номи- воздушные нального напряжения системы, В	Счетчик, применяе- мый внутри помеще- ния	Счетчик для наружной установки	
50	0,8	1,2	1,9
100	0,8	1,4	2,2
150	1,5	1,6	2,5
300	3,0	3,2	5,0
600	5,5	6,3	10,0

Таблица 3 — Воздушные зазоры и пути утечки для зажимной платы

Должно быть проведено также испытание импульсным напряжением (5.4.6.2).

4.2.7 Счетчик класса защиты II в корпусе из изоляционного материала

Счетчик, имеющий прочный и практически сплошной кожух, изготовленный полностью из изоляционного материала, включая крышку зажимов, который закрывает все металлические части, за исключением небольших частей, например щитка, винтов, подвесок и заклепок. Если такие небольшие части являются доступными для прикосновения стандартным испытательным пальцем (как установлено в ГОСТ 14254) с наружной стороны корпуса, то они должны быть изолированы дополнительно от находящихся под напряжением частей дополнительной изоляцией на случай отказа основной изоляции или ослабления крепления частей, находящихся под напряжением.

Изоляционные свойства лака, лаковой эмали, обычной бумаги, хлопчатобумажной ткани, окисной пленки на металлических частях, клеевой пленки и компаунда или аналогичных изолирующих материалов не должны рассматриваться достаточными для получения дополнительной изоляции.

Для зажимной платы и крышки зажимов такого счетчика усиленная изоляция является достаточной.

4.2.8 Устойчивость к нагреву и огню

Зажимная плата, крышка зажимов и корпус счетчика должны обеспечивать безопасность от распространения огня. Они не должны воспламеняться при тепловой перегрузке находящихся под напряжением частей при контакте с ними.

Для проверки соответствия этим требованиям должны быть проведены испытания в соответствии с 5.2.4 настоящего стандарта.

4.2.9 Защита от проникновения пыли и воды

Счетчики должны удовлетворять степени защиты, установленной в ГОСТ 14254:

IP51, но без всасывания в счетчик — счетчик, применяемый внутри помещения;

IP54 — счетчик для наружной установки.

Для проверки соответствия этим требованиям должны быть проведены испытания в соответствии с 5.2.5 настоящего стандарта.

4.2.10 Защита от солнечной радиации

Счетчик для наружной установки должен выдерживать воздействие солнечной радиации. Его функционирование не должно нарущаться. Внешний вид аппаратуры и, в частности, четкость маркировки не должны изменяться.

Для проверки соответствия этому требованию должно быть проведено испытание в соответствии с 5.3.4 настоящего стандарта.

4.2.11 Дисплей измеряемых величин

Информация может отображаться на электромеханическом счетном механизме или на электронном дисплее. В случае электронного дисплея соответствующее энергонезависимое запоминающее устройство должно иметь время сохранения информации не менее четырех месяцев.

П р и м е ч а н и е — Более длительное время сохранения информации для энергонезависимого запоминающего устройства должно быть отражено в договоре на поставку.

В случае многократных значений, представляемых с помощью одного дисплея, должна быть предусмотрена возможность получения информации от всех соответствующих запоминающих устройств. При получении информации запоминающего устройства должна быть возможной идентификация каждого применяемого тарифа. Действующий тариф должен быть указан.

При отключенном счетчике экран электронного дисплея может быть невидим (погашен).

Основной единицей для измеряемых значений должен быть киловатт-час (кBт · ч) или мегаватт-час (МBт · ч).

Для электромеханических счетных механизмов непрерывно вращающиеся барабаны должны быть отградуированы и на них должны быть нанесены 10 делений, каждое из которых делится на 10 частей, или может быть осуществлена любая другая расстановка делений, обеспечивающая такую же точность считывания. Барабаны, показывающие десятичные доли единицы, должны быть отмаркированы по-иному, если они видимы.

Емкость учета счетного механизма при учете энергии, соответствующей максимальному току при номинальном напряжении и коэффициенте мощности, равном единице, должна быть не менее 1500 ч, начиная с нуля.

 Π р и м с ч а н и с — Значения, превышающие 1500 ч, должны быть оговорены в договоре на поставку.

4.2.12 Выходные устройства

Счетчик должен иметь испытательное выходное устройство, доступное с лицевой стороны счетчика, которое может управляться с помощью соответствующего испытательного оборудования.

Индикатор функционирования, если он имеется, должен быть видим с лицевой стороны счетчика.

4.2.13 Маркировка счетчика

4.2.13.1 Шитки

На каждом счетчике должна быть приведена следующая информация, при необходимости:

- а) название или фирменный знак изготовителя и, если требуется, место изготовления;
- б) обозначение типа (см. 3.1.4) и, если требуется, место для простановки знака приемочного испытания;
- в) число фаз и число проводов цепи, для которой счетчик предназначен (например, однофазная двухпроводная, трехфазная трехпроводная, трехфазная четырехпроводная). Эта маркировка может быть заменена графическими обозначениями, приведенными в ГОСТ 25372;
- г) заводской номер и год изготовления. Если заводской номер указан на щитке, прикрепленном к кожуху, то он должен быть указан также на цоколе счетчика;
 - д) номинальное напряжение по одной из следующих форм:

число элементов, если их больше одного, и напряжение на зажимах цепи(ей) напряжения счетчика;

номинальное напряжение сети или вторичное напряжение трансформатора напряжения, к которому счетчик присоединяется.

Примеры маркировки приведены в таблице 4.

Таблица 4 — Маркировка напряжения

Счетчик	Напряжение на зажимах цепи (цепей) напряжения, В	Номинальное напряжение сети, В
Для работы в однофазной двухпроводной цепи на 120 В	120	120
Для работы в однофазной трехпроводной цепи на 120 В (120 В по отношению к средней точке)	240	240

ГОСТ 30207-94

Окончание табл. 4

Счетчик	Напряжение на зажимах цепи (цепей) напряжения, В	Номинальное напряжение сети, В
Двухэлементный счетчик для работы в трехфазной трехпроводной цепи (230 В между фазами)	2 × 230	3 × 230
Трехэлементный счетчик для работы в трехфазной четырехпроводной цепи (230 В фаза-		
нейтраль)	3 × 230/400	3 × 230/400

е) для счетчиков непосредственного включения номинальный и максимальный токи, выраженные, например, таким образом: 10 — 40 А или 10 (40) А для счетчиков с номинальным током 10 А и максимальным 40 А;

для трансформаторных счетчиков номинальный вторичный ток трансформатора(ов), к которому(ым) счетчик может быть подключен, например: /5 А. Номинальный и максимальный токи счетчика могут быть включены в обозначение типа;

- ж) номинальная частота в герцах;
- 3) постоянная счетчика, например: x (Вт \cdot ч)/имп или x имп/(кВт \times ч);
 - и) обозначение класса точности счетчика;
 - к) нормальная температура, если она отличается от 23 °C;
- л) знак двойного квадрата для счетчиков класса защиты II в изолирующем корпусе.

Информация по подпунктам а, б и в может маркироваться на внешнем щитке, надежно прикрепленном к кожуху счетчика.

Информация по подпунктам $\Gamma - \pi$ должна быть нанесена на щитке, предпочтительно помещаемом внутри счетчика.

Маркировка должна быть несмываемой, отчетливой и хорошо видимой с наружной стороны счетчика.

Если счетчик специального типа (например, в случае многотарифного счетчика, если напряжение переключающего устройства отличается от номинального напряжения), то это должно быть указано на щитке или на отдельной табличке.

Если счетчик, учитывающий энергию, включен через измерительные трансформаторы, коэффициенты трансформации которых учтены постоянной счетчика, то коэффициенты трансформации должны быть также отмаркированы.

Допускается также использовать стандартные обозначения по ГОСТ 25372.

На каждом счетчике должны быть указаны:

- а) наименование и (или) условное обозначение типа;
- б) класс точности счетчика по ГОСТ 8.401;
- в) условное обозначение измеряемой энергии;
- г) номинальный и максимальный токи (максимальный ток, равный 125 % номинального, не указывают);
 - д) номинальное напряжение;
 - е) номинальная частота;
- ж) постоянная счетчика (передаточное число основного передающего устройства);
 - з) товарный знак предприятия-изготовителя;
- и) номер счетчика по системе нумерации предприятия-изготовителя;
 - к) год изготовления или шифр, его заменяющий;
 - л) изображение знака Государственного реестра по ГОСТ 8.383;
 - м) обозначение настоящего стандарта;
- н) условное обозначение счетчика в зависимости от вида сети, к которой он подключается;
- о) испытательное напряжение изоляции (символы C1 C3 по ГОСТ 23217).

Допускается указывать дополнительные обозначения, место нанесения и содержание которых следует устанавливать в технических условиях на счетчики конкретного типа.

Все надписи должны быть выполнены по ГОСТ 26.020.

Условные обозначения должны соответствовать требованиям ГОСТ 25372.

Надписи допускается наносить как на щиток суммирующих устройств, так и на отдельный щиток, прикрепленный к лицевой поверхности корпуса счетчика. Надписи, указанные в подпунктах а, б, в, должны быть нанесены на щиток суммирующих устройств.

На съемных щитках универсальных трансформаторных счетчиков должны быть нанесены надписи: «№ », «Тр-р тока», «Тр-р напряжения», «К...» (множитель трансформаторов, равный произведению коэффициентов трансформации).

4.2.13.2 Схемы подключений и маркировка зажимов

Каждый счетчик должен быть снабжен несмываемой схемой подключения. Для многофазных счетчиков эта схема также должна указывать порядок чередования фаз, для которого предназначен счетчик. Допускается обозначать схему подключений цифрой в соответствии с требованиями национальных стандартов.

Если зажимы счетчика маркированы, то эта маркировка должна

быть нанесена на схему.

На крышке зажимной коробки должна быть нанесена или к ней должна быть надежно прикреплена схема подключения счетчика.

4.2.14 Дополнительные требования к конструкции счетчиков

4.2.14.1 Детали и узлы счетчиков, предназначенных для эксплуатации в районах с тропическим климатом, в части стойкости к воздействию плесневых грибов должны соответствовать требованиям ГОСТ 9.048. Допустимый рост грибов — 3 балла по ГОСТ 9.048.

4.2.14.2 Конструкция счетчиков для предотвращения доступа к внутренним частям должна обеспечивать возможность опломбирования кожуха, крышки зажимной коробки и щитка, на котором указаны коэффициенты трансформации трансформаторов, предназначенных для работы совместно со счетчиком.

4.2.14.3 Габаритные размеры и установочные размеры и масса счетчиков должны быть установлены в технических условиях на счетчики

конкретного типа.

4.3 Климатические условия

4.3.1 Диапазоны температур

Диапазоны температур счетчика приведены в таблице 5.

Таблица 5 — Диапазоны температур

	Значение диапазона температур, *С	
Вид диапазона температур	счетчика, применяемого внутри помещения	счетчика для наружной установки
Установленный рабо- чий диапазон	От минус 10 до плюс 45	От минус 25 до плюс 55
Предельный рабочий диапазон	От минус 20 до плюс 55	От минус 25 до плюс 60
Предельный диапазон хранения и транспорти- рования	От минус 25 до плюс 70	От минус 25 до плюс 70

Примечания

1 Для особого применения в договоре на поставку допускается устанавливать другие значения температуры.

2 При крайних значениях диапазона температур хранение и транспортирование

счетчиков следует осуществлять в течение не более 6 ч.

Значения температур для рабочих условий применения, предельных условий транспортирования и условий хранения должны быть установлены в технических условиях на счетчики конкретного типа в соответствии с ГОСТ 22261.

4.3.2 Относительная влажность

Счетчик должен соответствовать требованиям относительной влажности, установленным в таблице 6. Испытание на влияние влажного тепла должно быть проведено в соответствии с 5.3.3 настоящего стандарта.

Таблица 6 — Относительная влажность

Относительная влажность	Значение относительной влажности, %
Среднегодовая	<75
За 30 дней, распределенных естественным образом в течение года	95
Изредка (случайно) в другие дни	85

Предельные значения относительной влажности в зависимости от температуры окружающего воздуха приведены в приложении А.

Значения относительной влажности для рабочих условий применения, предельных условий транспортирования и условий хранения должны быть установлены в технических условиях на счетчики конкретного типа в соответствии с ГОСТ 22261.

- 4.4 Электрические требования
- 4.4.1 Потребляемая мощность
- 4.4.1.1 Цепи напряжения

Активная и полная потребляемая мощность в каждой цепи напряжения счетчика при номинальном напряжении, нормальной температуре и номинальной частоте не должны превышать значений, приведенных в таблице 7.

Таблица 7— Потребляемая мощность в цепях напряжения, включая источник питания

Счетчики	Значение мощности для счетчика класса точности		
C IVI MIKI	1	2	
Однофазный и многофазный	2 Вт и 10 В · A	2 Вт и 10 В · А	

Примечание — Приведенные в таблице значения являются средними. Допускается подключение источников питания с амплитудными значениями, превышающими указанные, при этом необходимо обратить внимание на мощность трансформаторов напряжения, к которым подключается счетчик.

4.4.1.2. Цепи тока

Полная мощность, потребляемая каждой цепью тока счетчика непосредственного включения при номинальном токе, номинальной частоте и нормальной температуре, не должна превышать значений, приведенных в таблице 8.

Полная мощность, потребляемая каждой цепью тока счетчика, включенного через трансформатор тока, не должна превышать значений, приведенных в таблице 8, при токе, равном номинальному вторичному току соответствующего трансформатора, при нормальной температуре и номинальной частоте счетчика.

Таблица 8 — Потребляемая мощность в цепях тока

Счетчики	Значение мощности, В - А, для счетчика класса точности		
	1	2	
Однофазные и многофазные	4,0	2,5	

Примечание — Номинальный вторичный ток — это значение вторичного тока трансформатора тока, на котором основано качество функционирования трансформатора. Стандартные значения максимального вторичного тока равны 120, 150 и 200 % номинального вторичного тока.

4.4.2 Влияние напряжения питания

4.4.2.1 Диапазоны напряжения должны соответствовать установленным в таблице 9.

Таблица 9 — Диапазоны напряжения

Диапазон напряжения	Значение диапазона
Установленный рабочий	От 0,9 до 1,1 <i>U</i> _{ном}
Предельный рабочий	От 0,8 до 1,15 <i>U</i> _{ном}

Дополнительная погрешность, вызываемая изменениями напряжения питания, не должна превышать пределов, приведенных в таблице 14.

4.4.2.2 Провалы и кратковременные прерывания напряжения

Провалы и кратковременные прерывания напряжения не должны создавать изменения в счетном механизме более чем на 0,01 кВт·ч, а испытательный выход не должен формировать сигнал, эквивалентный более чем 0,01 кВт·ч (для трансформаторных счетчиков должны использоваться эквивалентные значения, учитывающие коэффициент трансформации). При восстановлении напряжения питания метрологические характеристики счетчика не должны ухудшаться.

Для проверки соответствия этим требованиям должны быть проведены испытания в соответствии с 5.4.2.1 настоящего стандарта.

4.4.3 Влияние кратковременных перегрузок током

Кратковременные перегрузки током не должны вызывать повреждения счетчика. Счетчик должен нормально функционировать при возвращении к своим начальным рабочим условиям, а изменение погрешности не должно превышать значений, приведенных в таблице 10.

Для проверки соответствия этому требованию должно быть проведено испытание в соответствии с 5.4.3 настоящего стандарта.

а) Счетчик непосредственного включения

Счетчик должен выдерживать кратковременные перегрузки током, превышающим в 30 раз $I_{\rm max}$, в течение одного полупериода при номинальной частоте.

Примечание — Перегрузка током 30 I_{max} в течение половины цикла — это среднее значение I^2t .

Счетчики непосредственного включения должны выдерживать в течение 0,5 с перегрузки силой входного тока, равной:

30-кратной номинальной, если она не превышает 10 А;

20-кратной номинальной, если она превышает 10 А.

б) Счетчик, предназначенный для включения через трансформатор тока

Счетчик должен выдерживать без повреждений в течение 0,5 с ток, превышающий в 20 раз максимальный ток.

Таблица 10 — Изменения погрешности, вызываемые кратковременными перегрузками током

Включение счетчика	Значение тока	Коэффициент мощности	Пределы в погрешности, в процентах, класса т	для счетчиков
Непосредственное	Іном	I	1,5	1,5
Через трансформаторы тока	Іном	1	0,5	1,0

Трансформаторные и трансформаторные универсальные счетчики должны выдерживать кратковременные перегрузки входным током в соответствии с таблицей 10а.

Таблица 10а — Кратковременные перегрузки

Кратность тока	Число перегрузок	Длительность каждой перегрузки, с	Интервал между перегрузками, с
7	2	15	60
12	5	3	2,5
20	2	0,5	0,5

4.4.4 Влияние самонагрева

Изменение погрешности, вызываемое самонагревом, не должно превышать значений, приведенных в таблице 11.

Таблица 11 — Изменение погрешности, вызываемое самонагревом

Значение тока	Пределы изменения погр Коэффициент выраженной в процентах, д класса точности		ентах, для счетчиков
		1	2
	1	0,7	1,0
$I_{ m max}$	0,5 (при индук- тивной нагрузке)	1,0	1,5

Допускаемое изменение основной погрешности, вызванное нагревом счетчиков собственным током, не должно быть более $0,4~\delta_{\rm II}$, при этом установившееся значение основной погрешности должно быть не более $\delta_{\rm II}$ (где $\delta_{\rm II}$ — допускаемое значение основной погрешности).

4.4.5 Влияние нагрева

При нормальных условиях эксплуатации счетчика электрические цепи и изоляция не должны нагреваться до температуры, которая может нарушить работу счетчика. Увеличение температуры в любой точке внешней поверхности счетчика не должно превышать 25 К при температуре окружающего воздуха 40 °C.

Изоляционные материалы должны соответствовать требованиям ГОСТ 8865

4.4.6 Изоляция

Счетчик и встроенные в него вспомогательные устройства, если они имеются, должны сохранять соответствующие диэлектрические свойства при нормальных условиях эксплуатации с учетом атмосферных влияний и различных напряжений, воздействию которых они подвергаются в нормальных условиях эксплуатации.

Счетчик должен выдерживать испытания импульсным напряжением и напряжением переменного тока в соответствии с 5.4.6 настоящего стандарта.

- 4.5 Электромагнитная совместимость
- 4.5.1 Защищенность от электромагнитных помех

Счетчик должен быть сконструирован таким образом, чтобы наводимые или излучаемые электромагнитные помехи, а также электростатический разряд не вызывали повреждения счетчика и не влияли на него в значительной степени.

Примечание — Рассматриваются следующие типы помех: гармоники, провалы и кратковременные прерывания напряжения, переходные явления проводимости, магнитные поля постоянного и переменного тока, электромагнитные поля, электростатические разряды.

Для проверки соответствия этим требованиям должны быть проведены испытания в соответствии с 5.5 настоящего стандарта.

4.5.2 Подавление радиопомех

Счетчик не должен генерировать проводимые или излучаемые помехи, которые могут воздействовать на работу другого оборудования.

Для проверки соответствия этим требованиям должны быть прозедены испытания в соответствии с 5.5.5 настоящего стандарта.

- 4.6 Требования к точности
- 4.6.1 Пределы погрешности, вызываемой изменением тока

Когда счетчик находится в нормальных условиях, приведенных в 5.6.1, погрешности, выраженные в процентах, не должны превышать пределов для соответствующего класса точности, установленных в таблицах 12 и 13.

Таблица 12— Пределы погрешности, выраженной в процентах (для однофазных и многофазных счетчиков с симметричными нагрузками)

Значение тока	Коэффициент мощности	Пределы погрешности, %, для счетчиков класса точности		
		1	2	
0,05 Іном	ı	± 1,5	± 2,5	
От 0,1 Іном до Ітах включ.	1	± 1,0	± 2,0	
0,1 Іном	0,5 (при индуктивной нагрузке)	± 1,5	± 2,5	
	0,8 (при емкостной нагрузке)	± 1,5	_	

Окончание таблицы 12

Значение тока	Коэффициент мошности	Пределы погрешности, %, для счетчиков класса точности		
		1	2	
От $0,2~I_{\text{ном}}$ до I_{max} включ.	0,5 (при индуктивной нагрузке)	± 1,0	± 2,0	
	0,8 (при емкостной нагрузке)	± 1,0	_	
По особому требованию потребителя: от $0,2$ $I_{\text{ном}}$ до $I_{\text{ном}}$ включ.	0,25 (при индуктивной нагрузке)	± 3,5		
	0,8 (при емкостной нагрузке)	± 2,5	_	

Таблица 13— Пределы погрешности, выраженной в процентах (для многофазных счетчиков с однофазной нагрузкой при симметрии многофазных напряжений, приложенных к цепям напряжения)

Значение тока	Коэффициент мощности	Пределы погрешности, %, для счетчиков класса точности	
		1	2
От 0,1 I _{ном} до I _{тах} включ.	1		
От 0,2 <i>I</i> _{ном} до <i>I</i> _{max} включ.	0,5 (при индуктивной нагрузке)	± 2,0	± 3,0

Разность между значением погрешности, выраженной в процентах, при однофазной нагрузке счетчика и значением погрешности, выраженной в процентах, при симметричной многофазной нагрузке при номинальном токе и коэффициенте мощности, равном единице, не должна превышать 1,5 и 2,5 % для счетчиков классов точности 1 и 2 соответственно.

 Π р и м е ч а н и е — При испытании на соответствие требованиям таблицы 13 испытательный ток должен подаваться в цепь тока каждого элемента поочередно.

4.6.2 Пределы погрешности, вызываемой другими влияющими величинами (изменение напряжения, изменение частоты, форма кривой, порядок следования фаз, постоянная составляющая в цепи переменного тока, несимметрия напряжения)

Дополнительная погрешность, выраженная в процентах, вызываемая изменением влияющих величин по отношению к нормальным условиям, приведенным в 5.6.1, не должна превышать пределов для соответствующего класса точности, установленных в таблице 14.

Таблица 14 — Влияющие величины

Влияющая величина	Значение тока (при симметричной нагрузке, если не установлено	Коэффициент мощности	Пределы изменения погрешности, %, для счетчиков класса точности	
	иное)		i	2
Изменение напряже-	I _{HOM}	l	0,7	1,0
ния в пределах ± 10 % ¹	Іном	0,5 (при ин- дуктивной нагрузке)	1,0	1,5
Изменение частоты	/ _{НОМ}	l	0,8	1,3
в пределах ± 5 %	I _{HOM}	0,5 (при индуктивной нагрузке)	1,0	1,5
Форма кривой: ток третьей гармо- ники равен 10 % об- шего тока ²	I _{HOM}	l	0,6	8,0
Обратная последо- вательность фаз	0,1 /ном	1	1,5	1,5
Несимметрия на- пряжения ³	Іном	1	2,0	4,0
Постоянная состав- ляющая в цепи пере- менного тока ⁴	0,5 I _{max}	1	3,0	6,0
Внешнее постоян- ное магнитное поле ⁵	Іном	1	3,0	6,0
Внешнее магнитное поле индукции 0,5 мТл ⁶	Іном	1	2,0	3,0
Высокочастотные электромагнитные поля ⁷	Іном	i.	2,0	3,0

Окончание таблицы 14

Влияющая величина	Значение тока (при симметричной нагрузке, если не установлено	Коэффициент мощности	Пределы і погрешною счетчиков кла	ти, %, для
	иное)		1	2
Работа вспомога- тельных частей ⁸	0,05 Іном	1	0,5	1,0

¹ Для диапазонов напряжения от минус 20 до минус 10 % и от плюс 10 до плюс 15 % пределы изменения выраженных в процентах погрешностей могут в три раза превышать значения, приведенные а таблице 14.

При напряжении ниже $0.8 U_{\text{ном}}$ погрешность счетчика может меняться в пределах

от плюс 10 до минус 100 %.

² Коэффициент искажения формы кривой напряжения должен быть менее 1 %. Изменение выраженной в процентах погрешности должно измеряться при наиболее неблагоприятном сдвиге фаз третьей гармоники тока по отношению к основной гармонике.

³ Многофазные счетчики должны измерять и регистрировать энергию с погрешностью, не превышающей установленную в таблице 14, если одна или две фазы

трехфазной сети прерываются.

⁴ Не распространяется на трансформаторные счетчики. Условия испытаний приведены в приложении Б.

5 Условия испытаний приведены в 5.6.2.

6 Индукция внешнего магнитного поля 0,5 мТл, создаваемого током частоты, одинаковой с частотой подаваемого на счетчик напряжения, и при наиболее неблагоприятных фазе и направлении, не должна вызывать изменения погрешности счетчика, превышающего установленные в таблице 14. Условия испытаний приведены в 5.6.2.

Условия испытаний приведены в 5.5.3.

8 Такая вспомогательная часть, помещенная внутри корпуса счетчика, включается под напряжение прерывисто, например, электромагнит многотарифного счетного механизма.

Желательно, чтобы присоединение к вспомогательной части маркировалось для обеспечения правильного его подключения. Если эти соединения выполнены с помощью штепсельных вилок и штепсельных розеток, то должна быть предусмотрена защита от возможности неправильного подключения счетчика.

Допускается устанавливать значения дополнительных погрешностей, вызываемых изменением напряжения питания, внешнего постоянного магнитного поля и внешнего магнитного поля индукции 0,5 мТл при значениях тока, установленных в таблице 14а. Требование к нормированию влияния постоянной составляющей в цепи переменного тока устанавливают по согласованию между изготовителем и потребителем (заказчиком) в технических условиях на счетчики конкретного типа.

Таблица 14а — Влияющие величины

Влияющая величина	Значение тока (при симметричной нагрузке, если не установлено иное)	Коэффициент мощности	Пределы изменения погрешности, %, лля счетчиков класса точности	
			1	2
Изменение напря- жения в пределах ± 10 %	0,1 Іном; Іном; Ішах	1	0,7	2,0
	0,2 Іном; Іном; Ітах	0,5 (при ин- дуктивной нагрузке)	0,1	1,5
Внешнее постоянное магнитное поле	От 0,1 І _{ном} до І _{тах}	ı	3,0	6,0
Внешнее магнитное поле индукции 0,5 мТл	От 0,1 I _{ном} до I _{max}	1	2,0	3,0

4.6.3 Пределы погрешности, вызываемой изменением температуры окружающего воздуха

Средний температурный коэффициент не должен превышать пределов, установленных в таблице 15.

Таблица 15 — Средний температурный коэффициент

Значение тока	Коэффициент мощности	Средний температурный коэффициент, %/К, для счетчиков класса точности		
		1	2	
От 0,1 І _{ном} до І _{тах} включ.	l	0,05	0,10	
От 0,2 <i>I</i> _{ном} до <i>I</i> _{нах} включ.	0,5 (при индуктив- ной нагрузке)	0,07	0,15	

Определение среднего температурного коэффициента для данной температуры должно быть проведено в диапазоне температур от температуры, на 10 К превышающей 20 К, до температуры на 10 К ниже 20 К, но ни в коем случае температура не должна выходить за пределы установленного диапазона рабочей температуры.

4.6.4 Чувствительность и самоход счетчика

Для этих испытаний условия испытаний и значения влияющих величин должны соответствовать установленным в 5.6.1 со следующими дополнениями:

4.6.4.1 Начальный запуск счетчика

Счетчик должен нормально функционировать не позднее чем через 5 с после того, как к зажимам счетчика будет приложено номинальное напряжение.

4.6.4.2 Самохол счетчика

После приложения напряжения при отсутствии тока в цепи тока испытательный выход счетчика не должен создавать более одного импульса.

Для проверки соответствия этому требованию должно быть проведено испытание в соответствии с 5.6.4 настоящего стандарта.

4.6.4.3 Чувствительность

Счетчик должен включаться и продолжать регистрировать показания при токе, установленном в таблице 16.

Таблица 16 — Токи запуска

Наименование параметра	Значение тока запуска для счетчиков класса точности		Коэффициент мошности
	1	2	
Ток в процентах от номинального тока	0,4	0,5	1

Для проверки соответствия этому требованию должно быть проведено испытание в соответствии с 5.6.5 настоящего стандарта.

Счетчик должен измерять энергию при подаваемой на него мощности P, не менее, рассчитываемой по формуле

$$P = 25 \cdot 10^{-4} \cdot K \cdot P_{\text{HOM}},\tag{1}$$

где K — класс точности счетчика;

 $P_{\rm HOM}$ — номинальное значение мощности, рассчитанное по номинальным значениям силы тока и напряжения, к Вт.

4.6.5 Постоянная счетчика

Связь между испытательным выходом и показанием на дисплее должна соответствовать маркировке на щитке.

Выходные устройства обычно не создают однородные последовательности импульсов, поэтому изготовитель должен установить необходимое число импульсов для обеспечения точности измерений, по крайней мере, не менее $^1/_{10}$ обозначения класса точности счетчика в различных точках испытания.

Число периодов изменения импеданса выходной цепи основного передающего устройства (N) должно быть связано с приращением измеренной энергии W, кВт ч, зависимостью

$$N = R \cdot W, \tag{2}$$

где R — постоянная счетчика (передаточное число основного передающего устройства), имп/(кВт-ч).

Значение постоянного счетчика должно быть ограничено неравенством

$$\frac{1111}{K \cdot P_{\text{max}}} \le R \le \frac{12600}{P_{\text{HOM}}},$$

- еде P_{\max} максимальная мощность, измеряемая счетчиком, кВт. 4.6.6 Испытательные выходы счетчика должны обеспечивать возможность проверки порога чувствительности за время, не превышающее 10 мин.
- 4.7 Время изменения показаний суммирующего устройства при максимальной нагрузке должно быть:

не менее 250 ч — на одну единицу старшего разряда;

не более 15 мин — на одну единицу младшего разряда.

4.8 Основное передающее устройство должно иметь два состояния, отличающиеся импедансом выходной цепи.

В состоянии «замкнут» сопротивление выходной цепи передающего устройства должно быть не более 200 Ом. В состоянии «разомкнуто» сопротивление выходной цепи должно быть не менее 50 кОм.

. Предельная сила тока, которую должна выдерживать выходная цепь передающего устройства в состоянии «замкнуто», должна быть не менее 30 мА.

Предельно допустимое напряжение на выходных контактах передающего устройства в состоянии «разомкнуто» должно быть не менее 24 B.

- 4.9 Условия транспортирования и хранения счетчиков по ГОСТ 22261.
 - 4.10 Требования безопасности счетчиков по ГОСТ 26104.
- 4.11 Требования к надежности счетчиков должны быть установлены в технических условиях на счетчики конкретного типа.
- 4.12 Комплектность счетчиков должна быть установлена в технических условиях на счетчики конкретного типа.
- 4.12.1 К счетчикам должна быть приложена эксплуатационная документация по ГОСТ 2.601.

В эксплуатационной документации устанавливают межповерочный интервал для счетчика конкретного типа.

4.13 Гарантии изготовителя — по ГОСТ 22261.

5 ИСПЫТАНИЯ И УСЛОВИЯ ИСПЫТАНИЙ

- 5.1 Общие методики испытаний
- 5.1.1 Условия испытаний

Все испытания выполняют в нормальных условиях, если нет иных указаний.

5.1.2 Типовые испытания

Типовое испытание, определенное в 3.7.1, должно быть выполнено на одном или нескольких образцах счетчика, выбранных изготовителем для установления его конкретных характеристик и подтверждения его соответствия требованиям настоящего стандарта.

Рекомендуемая последовательность проведения испытаний приведена в приложении В.

При внесении изменений в счетчик после типового испытания, оказывающих влияние на некоторые его части, достаточно провести ограниченные испытания по тем характеристикам, на которые внесенные изменения могут оказать воздействие.

Виды испытаний и правила приемки — по ГОСТ 22261.

- 5.2 Проверка механических требований
- 5.2.1 Испытание пружинным молотком

Механическая прочность корпуса счетчика должна быть проверена с помощью пружинного молотка по ГОСТ 27570.0.

Счетчик должен быть установлен в нормальном рабочем положении, а пружинный молоток должен воздействовать на наружные поверхности кожуха счетчика, включая окна, и на крышку зажимов моментом силы (0.22 ± 0.05) Н м.

Результаты испытаний считают удовлетворительными, если корпус счетчика и крышка зажимов не подверглись повреждению, которое может повлиять на работу счетчика и если отсутствует возможность соприкосновения с частями, находящимися под напряжением. Небольшое повреждение, не ухудшающее защиту от косвенного контакта или проникновения твердых тел, пыли и воды, считают допустимым.

5.2.2 Испытание на удар

Испытание должно быть проведено в соответствии с ГОСТ 28213 при следующих условиях:

счетчик в нерабочем состоянии без упаковки;

импульс полусинусоидальной волны;

максимальное ускорение $30g_n$ (300 м/c^2);

длительность импульса 18 мс.

После испытания счетчик не должен иметь каких-либо повреждений или изменять показания и должен нормально функционировать в соответствии с требованиями настоящего стандарта. 5.2.3 Испытание на вибрацию

Испытание должно быть проведено в соответствии с ГОСТ 28203 при следующих условиях:

счетчик в нерабочем состоянии без упаковки;

методика испытаний А;

диапазон частот от 10 до 150 Гц;

частота перехода f-60 Гц:

 $f < 60 \, \Gamma_{\rm H} - {
m постоянная} \, {
m амплитуда} \, {
m движения} \, 0,035 \, {
m мм};$

 $f > 60 \, \Gamma_{\rm H} - {\rm постоянное} \ {\rm ускорение} \ 9,8 \ {\rm m/c^2} \ ({\rm lg_n});$

однокнопочное управление;

число циклов качания на ось 10.

Примечание — 10 циклов качания равно 75 мин.

После испытания счетчик не должен иметь каких-либо повреждений или изменять показания и должен нормально функционировать в соответствии с требованиями настоящего стандарта.

5.2.4 Испытание на устойчивость к нагреву и огню

Испытание должно быть проведено в соответствии с ГОСТ 27483 при следующих условиях:

температура при испытании зажимной платы (960 ± 15) °C;

температура при испытании крышки зажимов и корпуса счетчика (650 ± 10) °C;

длительность испытания (30 ± 1) с.

Контакт с раскаленным проводом допускается осуществлять в любом случайном месте. Если зажимная плата составляет одно целое с цоколем счетчика, то достаточно провести испытание только на зажимной плате.

5.2.5 Испытание защиты от проникновения пыли и воды

Испытание должно быть проведено в соответствии с ГОСТ 14254 при следующих условиях:

а) защита от проникновения пыли

счетчик в нерабочем состоянии устанавливают на искусственной стене;

испытание следует проводить после укладки на место кабеля выбранной длины (открытые концы запаяны), тип которого устанавливает изготовитель;

для счетчиков, применяемых внутри помещения, внутри счетчика и снаружи поддерживают одно и то же атмосферное давление;

первая цифра: 5 (ІР5Х).

Проникновение пыли допускается только в количестве, не влияющем на функционирование счетчика и не ухудшающем его диэлектрические свойства (прочность изоляции);

б) защита от проникновения воды

счетчик в нерабочем состоянии;

вторая цифра: 1 (IPX1) для счетчиков, применяемых внутри помещения, и 4 (IPX4) — для счетчиков для наружной установки.

Проникновение воды допускается только в количестве, не влияющем на функционирование счетчика и не ухудшающем его диэлектрические свойства (прочность изоляции).

5.2.6 Испытания счетчиков на механические воздействия (4.2.1) — по ГОСТ 22261.

Контролируемые характеристики и время выдержки счетчиков в нормальных условиях должны быть установлены в технических условиях на счетчики конкретного типа.

5.3 Проверка климатических воздействий

После каждого из климатических испытаний счетчик должен нормально функционировать без изменения характеристик и какихлибо повреждений.

Испытания счетчиков на климатические воздействия (4.3; 4.9) — по ГОСТ 22261

Контролируемые характеристики и время выдержки счетчиков в нормальных условиях должны быть установлены в технических условиях на счетчики конкретного типа.

5.3.1 Испытание на сухое тепло

Испытание должно быть проведено в соответствии с ГОСТ 28200 при следующих условиях:

счетчик в нерабочем состоянии;

температура (70 ± 2) °C;

продолжительность испытания 72 ч.

5.3.2 Испытание на холод

Испытание должно быть проведено в соответствии с ГОСТ 28199 при следующих условиях:

счетчик в нерабочем состоянии;

температура (минус 25 ± 3) °C;

продолжительность испытания 72 ч.

5.3.3 Циклическое испытание на влажное тепло

Испытание должно быть проведено в соответствии с ГОСТ 28216 при следующих условиях:

цепи напряжения и вспомогательные цепи находятся под номинальным напряжением;

ток в цепях тока отсутствует;

вариант цикла 1;

верхнее значение температуры (40 ± 2) °C — для счетчиков, применяемых внутри помещения, (55 ± 2) °C — для счетчиков, предназначенных для наружной установки;

не принимают особых мер предосторожности для удаления влаги с поверхности счетчика;

продолжительность испытания 6 циклов.

Через 24 ч после окончания этого испытания счетчик должен быть подвергнут следующим испытаниям:

- а) испытание изоляционных свойств в соответствии с 5.4.6, за исключением того, что значение испытательного напряжения должно быть умножено на коэффициент 0,8;
- б) проверка функционирования. Счетчик должен нормально функционировать и не иметь каких-либо повреждений или изменения показаний.

Испытание влажным теплом можно также рассматривать, как испытание на коррозию. Результат испытания оценивают визуально. Не должно быть явных следов коррозии, влияющей на функциональные свойства счетчика.

5.3.4 Испытание на воздействие солнечной радиации

Испытание должно быть проведено в соответствии с ГОСТ 28202 при следующих условиях:

испытывают только счетчики, предназначенные для наружной установки;

счетчик в нерабочем состоянии;

методика испытания А (8-часовая фаза облучения и 16-часовая темная фаза);

температура 55 °C;

продолжительность испытания 3 цикла или 3 сут.

После испытания необходимо провести наружный осмотр. Внешний вид и особенно четкость маркировки не должны изменяться. Функционирование счетчика не должно ухудшаться.

- 5.4 Проверка электрических требований
- 5.4.1 Проверка потребляемой мощности

Потребляемая мощность в цепях напряжения и тока должна быть определена любым подходящим методом при нормальных значениях влияющих величин, приведенных в 5.6.1. При этом должна обеспечиваться точность не хуже 5 %.

- 5.4.1.1 Проверка потребляемой мощности в цепи напряжения Требования по 4.4.1.1.
- 5.4.1.2 Проверка потребляемой мощности в цепи тока Требования по 4.4.1.2.

- 5.4.2 Испытания на влияние напряжения питания
- 5.4.2.1 Испытание на влияние провалов и кратковременных прерываний напряжения

Испытания должны быть проведены при следующих условиях: цепи напряжения и вспомогательные цепи находятся под номинальным напряжением;

ток в цепях тока отсутствует.

а) прерывания напряжения $\Delta U = 100 \%$

продолжительность прерывания 1 с;

число прерываний 3;

время восстановления между прерываниями 50 мс.

Кроме того, см. приложение Г, рисунок 1.

б) прерывания напряжения $\Delta U = 100 \%$ продолжительность прерывания 20 мс; число прерываний 1.

Кроме того, см. приложение Г, рисунок 2.

в) провалы напряжения $\Delta U = 50 \%$ продолжительность провала 1 мин; число провалов 1.

Кроме того, см. приложение Г, рисунок 3.

Эти провалы и кратковременные прерывания напряжения не должны создавать изменения в счетном механизме более чем на 0,01 кВт ч, а испытательный выход не должен производить сигнала, эквивалентного более чем 0,01 кВт ч (для трансформаторных счетчиков должны быть использованы эквивалентные значения с учетом коэффициентов трансформации).

5.4.3 Испытание на влияние кратковременных перегрузок током Испытательная цепь должна быть практически безындукционной.

После воздействия кратковременных перегрузок током с поддерживаемым напряжением на зажимах счетчик, находящийся под напряжением, должен быть выдержан до достижения первоначальной температуры (около 1 ч).

- а) Счетчик непосредственного включения (см. требования 4.4.3а)
- б) Счетчик, предназначенный для включения через трансформатор тока (см. требования 4.4.36).
 - 5.4.4 Испытание на влияние самонагрева

Испытание должно быть проведено следующим образом: после включения цепей напряжения под напряжение, равное номинальному, на время не менее 2 ч для счетчиков класса точности 1 и 1 ч — для счетчиков класса точности 2, при отсутствии тока в цепях тока, цепи тока нагружают максимальным током.

Погрешность счетчика должна быть измерена при коэффициенте мощности, равном единице, сразу после приложения тока и затем через промежутки времени, достаточно короткие для точного построения кривой изменения погрешности в зависимости от времени. Испытание следует проводить в течение, по крайней мере, 1 ч и до тех пор, пока изменение погрешности в течение 20 мин не будет превышать 0,2 %.

Такое же испытание должно быть проведено затем при коэффициенте мощности, равном 0,5 (при индуктивной нагрузке).

Изменение погрешности, измеренное указанным выше способом, не должно превышать значений, приведенных в таблице 11 (кроме того, см. 4.4.4).

При испытании счетчиков на влияние нагрева собственным током цепи напряжения счетчиков следует выдерживать под номинальным напряжением в течение 30 мин. После этого все цепи тока должны быть нагружены максимальным током при $\cos \varphi = 1 (\sin \varphi = 1)$.

Основную погрешность следует определять непосредственно после включения цепей тока и через каждые 5 мин до тех пор, пока очередное изменение δ не станет меньше $0,25 \, \delta_n$.

5.4.5 Испытание на влияние нагрева

При максимальном токе в каждой цепи тока и при напряжении, равном 1,15 номинального напряжения, приложенного к каждой цепи напряжения (в том числе к вспомогательным цепям напряжения, которые находятся под напряжением более длительный период, чем их тепловые постоянные времени), повышение температуры внешней поверхности счетчика не должно превышать 25 K при температуре окружающего воздуха 40 °C.

Во время испытания, продолжительность которого должна быть 2 ч, счетчик не должен подвергаться воздействию воздушных потоков или прямой солнечной радиации.

После испытания счетчик не должен иметь повреждений и должен соответствовать требованиям к электрической прочности изоляции по 5.4.6.

- 5.4.6 Испытание изоляционных свойств
- 5.4.6.1 Общие условия испытаний

Испытаниям следует подвергать только собранный счетчик с установленным кожухом (за исключением случаев, приведенных ниже), с крышкой зажимов и винтами зажимов в положении, соответствующем закреплению проводов максимально допустимого для зажимов сечения.

Методика испытаний — по ГОСТ 30032.1.

Сначала должны быть проведены испытания импульсным напряжением, а затем испытания напряжением переменного тока.

Испытания электрической прочности изоляции при типовых испытаниях считают имеющими силу только для того размещения зажимов счетчика, при котором проводились испытания. Если расположение зажимов иное, то все испытания электрической прочности изоляции должны быть проведены для каждого вида размещения зажимов.

При данных испытаниях термин «земля» имеет следующий смысл:

- а) если корпус счетчика изготовлен из металла, то «землей» является сам корпус, установленный на плоской проводящей поверхности;
- б) если корпус счетчика или только его часть изготовлены из изоляционного материала, то «землей» является проводящая пленка из фольги, охватывающая счетчик и присоединенная к плоской проводящей поверхности, на которой установлен цоколь счетчика. В тех случаях, когда крышка зажимов позволяет, проводящая пленка должна находиться от зажимов и от отверстий для проводов на расстоянии не более 20 мм.

Во время испытаний импульсным напряжением и напряжением переменного тока цепи, не подвергаемые испытаниям, присоединяют к земле, как указано ниже. Не должно возникать искрения, пробивного разряда и пробоя.

После указанных испытаний погрешность счетчика, выраженная в процентах, при нормальных условиях не должна превышать установленной в настоящем стандарте.

В настоящем разделе выражение «все зажимы» обозначает весь комплект зажимов цепей тока, цепей напряжения и, если они имеются, вспомогательных цепей, имеющих номинальное напряжение свыше 40 В

Указанные испытания следует проводить в нормальных условиях. Во время испытания качество изоляции не должно ухудшаться из-за воздействия пыли или влажности, не соответствующей нормальным условиям.

При отсутствии специальных указаний нормальные условия при испытаниях изоляции следующие:

температура окружающего воздуха от 15 до 25 °C;

относительная влажность от 45 до 75 %;

атмосферное давление от 86 до 106 кПа.

5.4.6.2 Испытание импульсным напряжением

Форма кривой и характеристики генератора должны быть в соответствии с ГОСТ 27918 (см. 4.1 приложения 4), а амплитудное значение импульсного напряжения должно быть 6 кВ. Для каждого испытания импульсное напряжение прикладывают 10 раз одной

полярности, затем столько же другой полярности. Минимальное время между импульсами должно быть 3 с.

Примечание — Для районов, где преобладают воздушные сети питания,

может потребоваться испытательное напряжение более 6 кВ.

5.4.6.2.1 Испытания импульсным напряжением для цепей и между цепями

Испытание следует проводить раздельно для каждой цепи (или группы цепей), изолированных от других цепей счетчика при эксплуатации. Зажимы цепей, не подвергаемых испытанию импульсным напряжением, должны быть соединены с «землей».

Если при эксплуатации цепи напряжения и тока измерительного элемента соединены вместе, то их следует подвергать испытанию совместно. Другой конец цепи напряжения должен быть присоединен к «земле», а импульсное напряжение должно быть приложено между зажимом цепи тока и «землей». Если несколько цепей напряжения счетчика имеют общую точку, то эта точка должна быть присоединена к «земле», а импульсное напряжение должно быть приложено последовательно между каждым из свободных концов соединений (или цепью тока, присоединенной к ним) и «землей».

Если при эксплуатации цепи напряжения и тока одного и того же измерительного элемента разделены и имеют соответствующую изоляцию (например, каждая цепь присоединена к измерительному трансформатору), то испытание следует проводить отдельно для каждой цепи.

Во время испытания цепи тока зажимы других цепей должны быть соединены с «землей», а импульсное напряжение должно быть приложено между одним из зажимов цепи тока и «землей». Во время испытания цепи напряжения зажимы других цепей и один из зажимов испытуемой цепи напряжения должны быть присоединены к «земле», а импульсное напряжение должно быть приложено между другим зажимом цепи напряжения и «землей».

Вспомогательные цепи, предназначенные для непосредственного присоединения к сети или к тем же трансформаторам напряжения, что и цепи счетчика, при номинальном напряжении свыше 40 В следует подвергать испытанию импульсным напряжением при тех же условиях, которые установлены для цепей напряжения. Другие вспомогательные цепи этому испытанию не подвергают.

5.4.6.2.2 Испытание импульсным напряжением электрических цепей относительно «земли»

Все зажимы электрических цепей счетчика, включая зажимы вспомогательных цепей с номинальным напряжением свыше 40 В, должны быть соединены вместе.

Вспомогательные цепи с номинальным напряжением 40 В или ниже этого значения должны быть соединены с «землей».

Импульсное напряжение должно быть приложено между всеми электрическими цепями и «землей».

5.4.6.3 Испытание напряжением переменного тока

Испытание напряжением переменного тока следует проводить в соответствии с таблицей 17.

Испытательное напряжение должно быть практически синусоидальным с частотой в пределах (45 — 65) Гц. Оно должно быть приложено в течение 1 мин. Мощность источника питания должна быть не менее 500 В А.

Во время испытаний относительно «земли» вспомогательные цепи с номинальным напряжением 40 В или ниже этого значения должны быть соединены с «землей».

Таблица 17 — Испытания напряжением переменного тока

Среднее квадратичес- кое значение испыта- тельного напряжения	Точки приложения испытательного напряжения
2 κΒ	А. Испытание следует проводить при закрытом корпусе счетчика, с установленным кожухом и крышкой зажимов: а) между всеми цепями тока и напряжения, а также вспомогательными цепями с номинальным напряжением свыше 40 В, соединенными вместе, и «землей»; б) между цепями, которые не предполагается соединять вместе во время работы
4 кВ	Б. Дополнительные испытания для помещенного в изо- лирующий корпус счетчика класса защиты 11: а) между всеми цепями тока и напряжения, а также вспомогательными цепями с номинальным напряжением свыше 40 В, соединенными вместе, и «землей»*
_	6) визуальный контроль на соответствие требованиям 4.2.7
40 B	в) между всеми проводящими частями внутри счетчика, соединенными вместе, и всеми проводящими частями с наружной стороны корпуса счетчика, которые доступны для прикосновения испытательным пальцем, соединенным вместе**

^{*} Испытание по подпункту а раздела Б должно быть проведено при закрытом корпусе счетчика с установленным кожухом и крышкой зажимов

** Испытание по подпункту в раздела Б необязательно, если результаты испытаний по подпункту б не вызывают сомнений.

- 5.5 Испытания на электромагнитную совместимость
 - 5.5.1 Общие условия испытаний

Для этих испытаний счетчик должен быть в нормальном рабочем положении с установленным кожухом и крышкой зажимов. Все части, требующие заземления, должны быть заземлены.

После этих испытаний счетчик должен нормально функционировать и не иметь повреждений.

5.5.2 Испытание на невосприимчивость к электростатическим разрядам

Испытание должно быть проведено в соответствии с требованиями ГОСТ 19191 при следующих условиях: испытательное напряжение 15 кВ;

число разрядов 10;

цепи напряжения и вспомогательные цепи находятся под номинальным напряжением:

ток в цепях тока отсутствует, а токовые зажимы должны быть разомкнуты.

Воздействие электростатического разряда не должно создавать изменения в счетном механизме более чем на 0.01 кВт · ч. а испытательный выход не должен производить сигнал, эквивалентный более чем 0.01 кВт ч (для трансформаторных счетчиков эквивалентные значения должны быть выбраны с учетом коэффициентов трансформации).

После воздействия электростатического разряда счетчик в нерабочем состоянии не должен иметь повреждений или изменений показаний и должен соответствовать требованиям точности, установленным в настоящем стандарте.

5.5.3 Испытание на невосприимчивость к высокочастотным электромагнитным полям

Испытание должно быть проведено при следующих условиях:

цепи напряжения и вспомогательные цепи находятся под номинальным напряжением;

полоса частот от 27 до 500 МГи:

напряженность поля при испытаниях 10 В/м.

а) ток в цепях тока отсутствует, а токовые зажимы должны быть разомкнуты.

Воздействие поля высокой частоты не должно производить изменения показаний дисплея более чем на 0,01 кВт ч, а испытательный выход не должен производить сигнал, эквивалентный более чем 0,01 кВт ч (для трансформаторных счетчиков эквивалентные значения должны быть выбраны с учетом коэффициентов трансформации);

- б) при номинальном токе $I_{\text{ном}}$ и коэффициенте мощности, равном 1, при чувствительных частотах или при наиболее используемых частотах изменение погрешности должно быть в пределах, приведенных в таблице 14.
- 5.5.4 Испытание на воздействие быстрых переходных всплесков Испытание должно быть проведено в соответствии с ГОСТ 29156 при следующих условиях:

счетчик в рабочем состоянии;

цепи напряжения и вспомогательные цепи находятся под номинальным напряжением;

ток в цепях тока отсутствует, а токовые зажимы должны быть разомкнуты;

чиспытательное напряжение 2 кВ;

продолжительность испытания не менее 60 с.

Испытательными точками являются точки, расположенные:

- а) между зажимами каждой цепи, присоединенной обычным способом к сети;
- б) между любыми двумя независимыми цепями, имеющими номинальное напряжение свыше 40 В;
- в) между каждой независимой цепью, имеющей номинальное напряжение свыше 40 В, и землей.

Во время испытания счетчика не должно быть изменения показаний в счетном механизме более чем на 0,01 кВт · ч, а испытательный выход не должен производить сигнал, эквивалентный более чем 0,01 кВт · ч (для трансформаторных счетчиков эквивалентные значения должны быть выбраны с учетом коэффициентов трансформации).

5.5.5 Испытание на радиопомехи

Испытание на радиопомехи должно быть проведено в соответствии с ГОСТ 29216.

Полученные значения не должны превышать предельных значений, приведенных в ГОСТ 29216.

5.6 Проверка требований точности

Определение погрешностей счетчиков следует проводить одним из трех методов:

ваттметра и секундомера, при котором сравнивают изменение показаний счетчика с действительным значением энергии, определенным по показаниям образцовых приборов;

образцового счетчика, при котором сравнивают показания проверяемого счетчика с показаниями образцового счетчика (последний включают через измерительные трансформаторы тока и напряжения); длительных испытаний (контрольной станции), при котором сравнивают показания проверяемых счетчиков с показаниями образцового счетчика того же типа, что и проверяемые, который включают в цепь проверяемых счетчиков и погрешность которого известна, а поправки вводят при сравнении показаний.

В качестве показаний счетчика при испытаниях принимают один из следующих видов показаний:

приращение показаний суммирующего устройства;

число импульсов, полученных от одного из передающих устройств или испытательных выходов:

период или частоту следования импульсов от одного из передающих устройств или испытательных выходов.

Устройства и выходы, показания которых не были использованы при определении погрешностей, должны быть проверены на функционирование.

5.6.1 Общие условия испытаний

Проверку требований точности, установленных в 4.6, проводят при соблюдении следующих условий:

- а) счетчик должен быть испытан в корпусе с установленным кожухом. Все части, требующие заземления, должны быть заземлены;
- б) до проведения любых испытаний цепи должны быть под напряжением в течение времени, достаточного для достижения установившегося теплового режима;
 - в) дополнительно для многофазных счетчиков:

порядок следования фаз должен соответствовать порядку, указанному на схеме подключений счетчика;

напряжения и токи должны быть практически симметричными в соответствии с требованиями таблицы 18.

Таблица 18 — Требования к симметрии токов и напряжений

Параметры входного сигнала	Допускаемое отклонение
Отклонение каждого из фазных или линейных напряжений от их среднего значения не должно быть более	± 1 %
Отклонение каждого из токов в проводах от среднего значения не должно быть более	± 2 %
Значения сдвига фаз для каждого из этих токов от соответствующего фазного напряжения независимо от коэффициента мощности не должны отличаться друг от друга более	
чем на	2°

Требования к испытательному оборудованию должны соответствовать нормативной документации по стандартизации.

Перед определением погрешностей счетчик следует выдерживать при номинальной нагрузке не менее 20 мин.

Образцовые средства измерений, применяемые для определения погрешностей счетчиков, должны обеспечивать определение действительного значения энергии с погрешностью, не превышающей $^1/_3$ допускаемого значения основной погрешности δ_{π} .

5.6.2 Испытание на воздействие влияющих величин

Следует проверить, что требования 4.6.1 и 4.6.2 к влияющим величинам удовлетворены.

Испытание на воздействие влияющих величин проводят для каждой влияющей величины отдельно, при этом остальные влияющие величины должны находиться в нормальных условиях, установленных в таблице 19.

Таблица 19 — Нормальные условия

Влияющая величина	Нормальное значение	Допускаемое отклонение для счетчиков класса точности	
		1	2
Температура окружающего воздуха	Нормальная температура или, если она не установлена, 23 °С*	± 2 °C*	<u> </u>
Напряжение	Номинальное напряже- ние	± 1 %	
Частота	Номинальная частота	± 0,3	± 0,5
Форма кривой	Синусоидальные на- пряжения и токи	Коэффициент искажения менее	
		2 %	3 %
Индукция внешнего магнитного поля при номинальной частоте	Магнитная индукция, равная нулю	Значение индукции, которое создает изменение погрешности не более	
		0,2 %	0,3 %,
		но которое в любом случае должно быть не более 0,05 мТл**	

^{*} Если испытания проводят при температуре, отличающейся от нормальной температуры с учетом допускаемых отклонений, то результаты должны быть скорректированы введением соответствующего температурного коэффициента счетчика.

^{**} Испытание состоит:

а) для однофазного счетчика — из определения погрешностей сначала на счетчике, нормально присоединенном к сети, а затем при изменении на обратное присоединение цепей тока, а также цепей напряжения. Половина разности между двумя значениями погрешности представляет собой значение изменения погрешности. Так как фаза внешнего поля неизвестна, испытание следует проводить при токе, равном 0,1 $I_{\text{ном}}$, и коэффициенте мощности, равном единице, а также при токе, равном 0,2 $I_{\text{пом}}$, и коэффициенте мощности, равном 0,5;

б) для трехфазного счетчика — из проведения трех измерений при токе, равном 0,1 $I_{\text{ном}}$, и при коэффициенте мощности, равном единице, после каждого из которых присоединения к цепям тока и к цепям напряжения переключают, создавая сдвиг фаз на 120°, но без изменения порядка следования фаз. Наибольшая разность между значениями каждой из погрешностей, определенных таким образом, и их средним

значением принимают за значение изменения погрешности.

Постоянная магнитная индукция может быть создана с помощью электромагнита (согласно приложению Д), питаемого постоянным током. Это магнитное поле должно быть приложено ко всем доступным для прикосновения поверхностям счетчика, когда он установлен в нормальном рабочем положении. Значение приложенной магнитодвижущей силы должно быть 1000 ампер-витков.

Магнитная индукция может быть создана путем установления счетчика в центре круглой катушки диаметром D, равным 1 м, прямоугольного поперечного сечения, небольшой радиальной толщиной по сравнению с диаметром и имеющей 400 ампер-витков.

5.6.3 Испытание на влияние температуры окружающего воздуха Следует проверить, что требования к влиянию температуры окружающего воздуха, установленные в 4.6.3, удовлетворены.

Испытание счетчика на влияние температуры окружающего воздуха проводят по ГОСТ 22261.

5.6.4 Проверка отсутствия самохода

Для этого испытания цепь тока должна быть разомкнутой, а к цепям напряжения должно быть приложено напряжение, равной 115 % номинального значения напряжения.

Минимальная продолжительность испытаний в минутах должна составлять 60000/K, где K — число импульсов, создаваемых выходным устройством счетчика, на каждый киловатт-час.

Во время этого испытания испытательный выход счетчика не должен создавать более одного импульса.

5.6.5 Проверка чувствительности

Следует проверить, что требования запуска, установленные в 4.6.4.3, удовлетворены.

Чувствительность счетчика (4.6.4.3 и 4.6.6) проверяют по показа-

ниям испытательного выхода или по передающему устройству. Время испытания по испытательному выходу и минимальное число импульсов должны быть установлены в технических условиях на счетчики конкретного типа.

5.6.6 Проверка постоянной счетчика

Следует проверить, что связь между испытательным выходом и показанием на дисплее соответствует маркировке на щитке счетчика.

5.6.7 Интерпретация результатов испытаний

Из-за недостоверности измерений и других причин оказывающих влияние на результаты измерений, некоторые результаты испытаний могут оказаться вне допустимых пределов, приведенных в таблицах 12 и 13. Однако, если перемещением оси абсцисс параллельно самой себе на значение не более установленного в таблице 20 все результаты испытаний приходят в соответствие с пределами, установленными в таблицах 12 и 13, то счетчик считают годным.

Таблица 20 — Интерпретация результатов испытаний

Интерпретация результатов испытаний	Класс точности счетчика	
	1	2
Допускаемое перемещение оси абсцисс, %	0,5	1,0

Если в ходе испытаний некоторые значения основной погрешности вследствие изменения метода ее определения или замены образцовых средств измерений не укладываются в пределы δ_n , но есть возможность ввести эти значения в пределы $\delta_{\rm m}$ перемещением оси абсцисс параллельно самой себе на значение, не превышающее $^{1}/_{3}$ $\delta_{\rm m}$, то счетчик следует считать соответствующим требованиям настоящего стандарта.

5.7. Время изменения показаний суммирующего устройства (4.7) рассчитывают по формулам:

$$t_{\rm c} = \frac{10^{(J-1)}}{P_{\rm max}}, \, 4;$$
 (3)

$$t_{\rm M} = \frac{6 \cdot 10^{(1-11)}}{P_{\rm max}}, \, \text{MWH},$$
 (4)

где $t_{\rm c}$ и $t_{\rm m}$ — время изменения показаний на единицу старшего и младшего разряда, соответственно; P_{\max} — максимальная мощность, кВт; Π — число разрядов от запятой слева; Π — число разрядов от запятой справа.

5.8 Действительное значение сопротивления выходной цепи передающего устройства (4.8) следует определять соответственно как частное от деления остаточного падения напряжения на предельно допустимый ток и предельно допустимого напряжения на остаточный ток.

Методы измерения остаточного падения напряжения и остаточного тока должны быть установлены в технических условиях на счетчики

конкретного типа.

5.9 Испытания счетчиков на грибоустойчивость (4.2.14.1) следует проводить по ГОСТ 9.048.

- 5.10 Методика испытаний счетчиков на надежность (4.10) должна быть установлена в технических условиях на счетчики конкретного типа.
- 5.11 Проверку счетчиков на соответствие требованиям 4.2.13; 4.2.14.2; 4.2.14.3; 4.11.4; 4.12 проводят внешним осмотром сличения с чертежами, измерением измерительным инструментом, обеспечивающим необходимую точность.

ПРИЛОЖЕНИЕ А (рекомендуемое)

СООТНОШЕНИЕ МЕЖДУ ТЕМПЕРАТУРОЙ ОКРУЖАЮЩЕГО ВОЗДУХА И ОТНОСИТЕЛЬНОЙ ВЛАЖНОСТЬЮ

Пределы для каждых из 30 сут в течение года.

Пределы, достигнутые случайно в некоторые дни.

Среднегодовое значение.

ПРИЛОЖЕНИЕ Б (рекомендуемое)

СХЕМА ИСПЫТАТЕЛЬНОЙ ЦЕПИ ДЛЯ ИСПЫТАНИЙ ВЛИЯНИЯ ПОСТОЯННОГО ТОКА

Примечания:

- 1 Для обеспечения точности измерения компенсирующий импеданс должен быть равен импедансу испытуемого счетчика.
- 2 Компенсирующий импеданс может для удобства заменяться счетчиком того же типа, что и испытуемый счетчик.
 - 3 Выпрямительные диоды должны быть одного типа.
- 4 Для улучшения условий симметрии в оба участка цепи может быть введен дополнительный резистор R_B . Значение его сопротивления должно быть приблизительно в 10 раз больше сопротивления испытуемого счетчика.
- 5 В соответствии с таблицей 14 влияние постоянной составляющей в цепи переменного тока должно быть проверено при токе, равном 0,5 $I_{\rm max}$. Для выполнения этого условия испытаний переменный ток $I_{\rm hom}$, проходящий через образцовый счетчик, должен быть уменьшен в $\sqrt{2}$ раза по отношению к $I_{\rm max}$, указанному на щитке испытуемого счетчика.

ПРИЛОЖЕНИЕ В (рекомендуемое)

ПОСЛЕДОВАТЕЛЬНОСТЬ ПРОВЕДЕНИЯ ИСПЫТАНИЙ

Испытание		Номер пункта настоящего стандарта
1	Испытание изоляционных свойств	5.4.6
1.1	Испытание импульсным напряжением	5.4.6.2
1.2	Испытание напряжением переменного тока	5.4.6.3
2	Проверка требований точности	5.6
2.1	Проверка постоянной счетчика	5.6.6
2.2	Проверка чувствительности	5.6.5
2.3	Проверка отсутствия самохода	5.6.4
2.4	Испытание влияния температуры окружающего воздуха	5.6.3
2.5	Испытание на воздействие влияющих величин	5.6.2
3	Проверка электрических требований	5.4
3.1	Проверка потребляемой мощности	5.4.1
3.2	Испытание на влияние напряжения питания	5.4.2
3.3	Испытание на влияние кратковременных перегрузок током	5.4.3
3.4	Испытание на влияние самонагрева	5.4.4
3.5	Испытание на влияние нагрева	5.4.5
4	Испытания на электромагнитную совместимость	5.5
4.1	Испытание на радиопомехи	5.5.5
4.2	Испытание на воздействие быстрых переходных всплесков	5.5.4
4.3	Испытание на невосприимчивость к высокочастотным электромагнитным полям	5.5.3
4.4	Испытание на невосприимчивость к электростатическим разрядам	5.5.2
5	Проверка климатических воздействий	5.3
5.1	Испытание на сухое тепло	5.3.1
5.2	Испытание на холод	5.3.2
5.3	Циклическое испытание на влажное тепло	5.3.3
5.4	Испытание на воздействие солнечной радиации	5.3.4
6	Проверка механических требований	5.2
6.1	Испытание на вибрацию	5.2.3
6.2	Испытание на удар	5.2.2
6.3	Испытание пружинным молотком	5.2.1
6.4	Испытание защиты от проникновения пыли и воды	5.2.5
6.5	Испытание на устойчивость к нагреву и огню	5.2.4

ПРИЛОЖЕНИЕ Г (рекомендуемое)

ФОРМА ИМПУЛЬСА НАПРЯЖЕНИЯ ДЛЯ ИСПЫТАНИЙ ВЛИЯНИЯ ПРОВАЛОВ И КРАТКОВРЕМЕННЫХ ПРЕРЫВАНИЙ НАПРЯЖЕНИЯ

Рисунок 1 — Прерывания напряжения $\Delta U = 100 \%$, 1 с

Рисунок 2 — Прерывания напряжения $\Delta U = 100~\%,~20~{\rm Mc}$

Рисунок 3 — Провалы напряжения $\Delta U = 50 \%$

ПРИЛОЖЕНИЕ Д (рекомендуемое)

ЭЛЕКТРОМАГНИТ ДЛЯ ИСПЫТАНИЯ НА ВЛИЯНИЕ ВНЕШНИХ МАГНИТНЫХ ПОЛЕЙ

Примеры обмотки: 500 витков 0,6 *D*/0,28 мм²

или: 1000 витков 0,4 *D*/0,126 мм²

Удельные потери: 1,0 Вт/кг

УДК 621.317.785:006.354 ОКС 17.220 ПЗ2 ОКП 42 2820, 42 2830

Ключевые слова: статические счетчики, счетчики ватт-часов, активная энергия, переменный ток

Редактор В.П. Огурцов
Технический редактор О.Н. Власова
Корректор В.И. Варенцова
Компьютерная верстка В.И. Грищенко

Изд. лиц. № 021007 от 10.08.95. Сдано в набор 10.04.96. Подписано в печать 12.09.96. Усл.печ.л. 3,26. Уч.-изд.л. 3,18. Тираж 269 экз. С3734. Зак. 290.

ИПК Издательство стандартов
107076, Москва, Колодезный пер., 14.
Набрано в Издательстве на ПЭВМ
Филиал ИПК Издательство стандартов — тип. "Московский печатник"
Москва, Лялин пер., 6.