

JCB/EE 06/19/01 DEPOSIT: June 19, 2001

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------|
| FORM PTO-1390<br><br>TRANSMITTAL LETTER TO THE UNITED STATES<br>DESIGNATED/ELECTED OFFICE (DO/EO/US)<br>CONCERNING A FILING UNDER 35 U.S.C. § 371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               | ATTORNEY'S DOCKET NUMBER<br>5585-59112                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               | U.S. APPLICATION NO. (If known, see 37 C.F.R. § 1.5)<br><b>09/868605</b> |
| INTERNATIONAL APPLICATION NO.<br>PCT/GB99/04200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INTERNATIONAL FILING DATE<br>17 December 1999 | PRIORITY DATE CLAIMED<br>19 December 1998                                |
| TITLE OF INVENTION<br><b>IMPROVEMENT OF TOLERANCE TO A XENOGRAFT</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                                                                          |
| APPLICANT(S) FOR DO/EO/US<br><b>Robert Ian Lechler, Nichola Jane Rogers, Anthony Dorling</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |                                                                          |
| <p>Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:</p> <ol style="list-style-type: none"> <li>1. <input checked="" type="checkbox"/> This is a <b>FIRST</b> submission of items concerning a filing under 35 U.S.C. § 371.</li> <li>2. <input type="checkbox"/> This is a <b>SECOND</b> or <b>SUBSEQUENT</b> submission of items concerning a filing under 35 U.S.C. § 371.</li> <li>3. <input type="checkbox"/> This is an express request to begin national examination procedures (35 U.S.C. § 371(f) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. § 371(b) and PCT Articles 22 and 39(1)).</li> <li>4. <input checked="" type="checkbox"/> A proper Demand for International Preliminary Examination was made by the 19<sup>th</sup> month from the earliest claimed priority date.</li> <li>5. <input checked="" type="checkbox"/> A copy of the International Application as filed (35 U.S.C. § 371(c)(2)) <ul style="list-style-type: none"> <li>a. <input type="checkbox"/> is transmitted herewith (required only if not transmitted by the International Bureau).</li> <li>b. <input checked="" type="checkbox"/> has been transmitted by the International Bureau.</li> <li>c. <input type="checkbox"/> is not required, as the application was filed in the United States Receiving Office (RO/US).</li> </ul> </li> <li>6. <input type="checkbox"/> A translation of the International Application into English (35 U.S.C. § 371(c)(2)).</li> <li>7. <input checked="" type="checkbox"/> Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. § 371(c)(3)) <ul style="list-style-type: none"> <li>a. <input type="checkbox"/> are transmitted herewith (required only if not transmitted by the International Bureau).</li> <li>b. <input type="checkbox"/> have been transmitted by the International Bureau.</li> <li>c. <input type="checkbox"/> have not been made; however, the time limit for making such amendments has NOT expired.</li> <li>d. <input checked="" type="checkbox"/> have not been made and will not be made.</li> </ul> </li> <li>8. <input type="checkbox"/> A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. § 371(c)(3)).</li> <li>9. <input checked="" type="checkbox"/> An oath or declaration of the inventor(s) (35 U.S.C. § 371(c)(4)). (UNSIGNED)</li> <li>10. <input type="checkbox"/> A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. § 371(c)(5)).</li> </ol> |                                               |                                                                          |
| <p><b>Items 11. to 16. below concern document(s) or information included:</b></p> <ol style="list-style-type: none"> <li>11. <input checked="" type="checkbox"/> An Information Disclosure Statement under 37 C.F.R. §§ 1.97 and 1.98.</li> <li>12. <input type="checkbox"/> An assignment document for recording. A separate cover sheet in compliance with 37 C.F.R. §§ 3.28 and 3.31 and the Recordal fee of \$40.00 is included.</li> <li>13. <input checked="" type="checkbox"/> A <b>FIRST</b> preliminary amendment. <ul style="list-style-type: none"> <li><input type="checkbox"/> A <b>SECOND</b> or <b>SUBSEQUENT</b> preliminary amendment.</li> </ul> </li> <li>14. <input type="checkbox"/> A substitute specification.</li> <li>15. <input type="checkbox"/> A change of power of attorney and/or address letter.</li> <li>16. <input checked="" type="checkbox"/> Other items or information: <ul style="list-style-type: none"> <li><input checked="" type="checkbox"/> Sequence Listing.</li> <li><input checked="" type="checkbox"/> Statement in Compliance.</li> <li><input checked="" type="checkbox"/> Computer readable form (diskette).</li> <li><input checked="" type="checkbox"/> Copy of International Search Report with cited references (see IDS).</li> </ul> </li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                                                                          |



24197

|                                                                                                                                                                                                                                  |                                                 |                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|
| U.S. APPLICATION NO. (If known, see 37 C.F.R. § 1.5)<br><b>09/868605</b>                                                                                                                                                         | INTERNATIONAL APPLICATION NO.<br>PCT/GB99/04200 | ATTORNEY'S DOCKET NUMBER<br><b>5585-59112</b> |
| 17. <input checked="" type="checkbox"/> The following fees are submitted:                                                                                                                                                        |                                                 | CALCULATIONS (PTO USE ONLY)                   |
| <b>BASIC NATIONAL FEE (37 C.F.R. §§ 1.492(a)(1)-(5)):</b>                                                                                                                                                                        |                                                 |                                               |
| Neither International Preliminary Examination fee (37 C.F.R. § 1.482) nor International Search fee (37 C.F.R. § 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO..... <b>\$1,000.00</b> |                                                 |                                               |
| International Preliminary Examination fee (37 C.F.R. § 1.482) not paid to USPTO but International Search Report prepared by the EPO or JPO..... <b>\$860.00</b>                                                                  |                                                 |                                               |
| International Preliminary Examination fee (37 C.F.R. § 1.482) not paid to USPTO but International Search fee (37 C.F.R. § 1.445(a)(2)) paid to USPTO..... <b>\$710.00</b>                                                        |                                                 |                                               |
| International Preliminary Examination fee paid to USPTO (37 C.F.R. § 1.482) but all claims did not satisfy provisions of PCT Article 33(1)-(4)..... <b>\$690.00</b>                                                              |                                                 |                                               |
| International Preliminary Examination fee paid to USPTO (37 C.F.R. § 1.482) and all claims satisfied provisions of PCT Article 33(1)-(4)..... <b>\$100.00</b>                                                                    |                                                 |                                               |
| <b>ENTER APPROPRIATE BASIC FEE AMOUNT = \$ 860.00</b>                                                                                                                                                                            |                                                 |                                               |
| Surcharge of <b>\$130.00</b> for furnishing the oath or declaration later than <input type="checkbox"/> 20 <input type="checkbox"/> 30 months from the earliest claimed priority date (37 C.F.R. § 1.492(e)).                    |                                                 |                                               |
| CLAIMS                                                                                                                                                                                                                           | NUMBER FILED                                    | NUMBER EXTRA                                  |
| Total claims                                                                                                                                                                                                                     | 26 - 20 =                                       | 6                                             |
| Independent Claims                                                                                                                                                                                                               | 2 - 3 =                                         | 0                                             |
| <b>MULTIPLE DEPENDENT CLAIM(S) (if applicable)</b>                                                                                                                                                                               |                                                 | <b>+ \$270.00</b>                             |
| <b>TOTAL OF ABOVE CALCULATIONS = \$ 968.00</b>                                                                                                                                                                                   |                                                 |                                               |
| <input checked="" type="checkbox"/> Reduction of 1/2 for filing by small entity. Small entity status is claimed for this application.                                                                                            |                                                 |                                               |
| <b>SUBTOTAL = \$ 484.00</b>                                                                                                                                                                                                      |                                                 |                                               |
| Processing fee of <b>\$130.00</b> for furnishing the English translation later than <input type="checkbox"/> 20 <input type="checkbox"/> 30 months from the earliest claimed priority date (37 C.F.R. §§ 1.492(f)).              |                                                 |                                               |
| <b>TOTAL NATIONAL FEE = \$ 484.00</b>                                                                                                                                                                                            |                                                 |                                               |
| Fee for recording the enclosed assignment (37 C.F.R. § 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 C.F.R. §§ 3.28, 3.31). <b>\$40.00</b> per property.                                        |                                                 |                                               |
| <b>TOTAL FEES ENCLOSED = \$ 484.00</b>                                                                                                                                                                                           |                                                 |                                               |
|                                                                                                                                                                                                                                  |                                                 | REFUND → \$                                   |
|                                                                                                                                                                                                                                  |                                                 | CHARGE → \$                                   |

a.  A check in the amount of \$ 484.00 to cover the above fees is enclosed.  
 b.  Please charge my Deposit Account No. \_\_\_\_\_ in the amount of \$ \_\_\_\_\_ to cover the above fees. A duplicate copy of this sheet is enclosed.  
 c.  The Director is hereby authorized to charge any additional fees that may be required, or credit any overpayment, to Deposit Account No. 02-4550. A duplicate copy of this sheet is enclosed.  
 d.  Please return the enclosed postcard to confirm that the items listed above have been received.

**NOTE:** Where an appropriate time limit under 37 C.F.R. § 1.494 or § 1.495 has not been met, a petition to revive (37 C.F.R. § 1.137(a) or (b)) must be filed and granted to restore the application to pending status.

SEND ALL CORRESPONDENCE TO:

KLARQUIST SPARKMAN CAMPBELL  
LEIGH & WHINSTON, LLP  
One World Trade Center, Suite 1600  
121 S.W. Salmon Street  
Portland, OR 97204-2988

William D. Noonan  
SIGNATURE

William D. Noonan, M.D.  
NAME

30,878  
REGISTRATION NUMBER

cc: Docketing

PATENT

JC18 Rec'd PCT/PTO 19 JUN 2001

## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of: Lechler

Art Unit:

Application No.

CERTIFICATE OF MAILING

Filed: Herewith

I hereby certify that this paper and the documents referred to as being attached or enclosed herewith are being deposited with the United States Postal Service on June 19, 2001 as Express Mail No. EL828141257US in an envelope addressed to: BOX PCT, COMMISSIONER FOR PATENTS, WASHINGTON, D.C. 20231.

For: IMPROVEMENT OF TOLERANCE TO A  
XENOGRAFT

Examiner:

Date: June 19, 2001


  
William D. Noonan, M.D., Attorney for Applicant

BOX PCT  
COMMISSIONER FOR PATENTS  
WASHINGTON, D.C. 20231

## PRELIMINARY AMENDMENT

Before calculating the filing fee for the present application, please amend the claims as follows:

1. (Amended) A method of improving tolerance to a xenograft comprising: immunising a mammal with an immunogen comprising at least one T-cell epitope and at least one porcine polypeptide B-cell epitope, wherein said B-cell epitope is capable of mediating rejection of said xenograft.
2. (Amended) A method according to Claim 1, wherein said B-cell epitope is a peptide derived from at least one porcine polypeptide selected from the group of CD40, CD80, CD86 and VCAM.
3. (Amended) A method according to Claim 1, wherein said peptide is selected from at least one peptide represented in Figure 22.
4. (Amended) A method according to Claim 1, wherein said peptide is selected from at least one peptide represented in Figure 24.

## PATENT

5. (Amended) A method according to Claim 1, wherein said peptide is selected from at least one peptide represented in Figure 26.
6. (Amended) A method according to Claim 1, wherein said T-cell epitope comprises a tetanus toxoid polypeptide.
7. (Amended) A composition comprising an immunogen characterised in that said immunogen comprises at least one B-cell epitope and at least one T-cell epitope wherein said B-cell epitope comprises a porcine epitope involved in mediating xenograft rejection.
8. (Amended) A composition according to Claim 7, wherein said porcine epitope comprises a porcine polypeptide expressed by vascular endothelial cells of said xenograft.
9. (Amended) A composition according to Claim 7, wherein said B-cell epitope is selected from the group of CD40, CD86, CD80 and VCAM.
10. (Amended) A composition according to Claim 9, wherein said B-cell comprises at least one peptide as represented in Figure 22.
11. (Amended) A composition according to Claim 9, wherein said B-cell epitope comprises at least one peptide as represented in Figure 24.
12. (Amended) A composition according to Claim 9, wherein said B-cell epitope comprises at least one peptide as represented in Figure 26.
13. (Amended) A composition according to Claim 9, wherein said B-cell epitope comprises an extracellular domain of CD86.

PATENT

14. (Amended) A composition according to Claim 7, wherein said T-cell epitope comprises a tetanus toxoid epitope.

15. (Amended) A composition according to Claim 7, wherein said composition further comprises a carrier capable of enhancing the immune response to said immunogen.

16. (Amended) An antibody, or the effective part thereof, wherein said antibody is capable of distinguishing between porcine polypeptides according to Claim 7, and the homologous polypeptides of the mammal receiving said xenograft.

17. (Amended) An antibody according to Claim 16, wherein said antibody is monoclonal.

18. (Amended) An antibody according to Claim 16, wherein said antibody is a modified antibody comprising at least one detectable label.

19. (Amended) A method to monitor an immune status of a mammalian recipient of a xenograft comprising:

- i) removing a sample from a xenograft recipient to be tested;
- ii) contacting said sample to the antibody according to Claim 16; and
- iii) monitoring expression of a porcine polypeptide shown in Figures 22, 24, or 26.

20. (Amended) A method of treating a mammal prior to receiving a xenograft, comprising:

- i) immunising a mammal with an immunogenic composition according to Claim 7;

## PATENT

- ii) assessing an immune status of said mammal to said immunogenic composition;
- iii) transplanting said xenograft tissue/organ into a recipient mammal; and
- iv) monitoring a rejection response to said xenograft.

21. (Amended) A method according to Claim 20, wherein said xenograft is of porcine origin and said mammal is human.

22. (Amended) A method according to Claim 20, wherein said xenograft comprises at least one vascularised graft and/or immunogenic porcine cell/tissue.

23. (Amended) A method according to Claim 20, wherein said xenograft comprises pancreatic islets.

24. (New) The method Claim 1, wherein said B-cell epitope has less than 75% sequence identity to a corresponding region of an equivalent human polypeptide.

25. (New) The method of Claim 7, wherein said B-cell epitope has less than 75% sequence identity to a corresponding region of an equivalent human polypeptide.

26. (New) The method of Claim 16, wherein said B-cell epitope has less than 75% sequence identity to a corresponding region of an equivalent human polypeptide.

PATENT

## REMARKS

The claims in this application have been amended, solely for the purpose of complying with U.S. claiming conventions.

Respectfully submitted,

KLARQUIST SPARKMAN CAMPBELL  
LEIGH & WHINSTON, LLP

By

William D Noonan

William D. Noonan, M.D.  
Registration No. 30,878

One World Trade Center, Suite 1600  
121 S.W. Salmon Street  
Portland, Oregon 97204  
Telephone: (503) 226-7391  
Facsimile: (503) 228-9446

PATENT  
Attorney Reference Number 5585-59112  
Express Mail No. EL828141257US  
Date of Deposit: June 19, 2001

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: Lechler et al.

Art Unit:

Application No.

CERTIFICATE OF MAILING

Filed: Herewith

I hereby certify that this paper and the documents referred to as being attached or enclosed herewith are being deposited with the United States Postal Service on June 19, 2001 as Express Mail No. EL828141257US in an envelope addressed to: BOX PCT, COMMISSIONER FOR PATENTS, WASHINGTON, D.C. 20231.

For: IMPROVEMENT OF TOLERANCE TO A  
XENOGRAFT

Examiner:

Date: June 19, 2001

  
William D. Noonan, M.D., Attorney for Applicant

**STATEMENT IN COMPLIANCE WITH 37 C.F.R. § 1.821(f)**

BOX PCT  
COMMISSIONER FOR PATENTS  
Washington, DC 20231

Sir:

In compliance with 37 C.F.R. § 1.821(f), the undersigned declares that the nucleotide and/or amino acid sequences presented in the paper copy of the "Sequence Listing" submitted herewith are the same as the sequences contained in the computer-readable form of said "Sequence Listing." No new matter has been added.

Respectfully submitted,

KLARQUIST SPARKMAN CAMPBELL  
LEIGH & WHINSTON, LLP

By   
William D. Noonan, M.D.  
Registration No. 30,878

One World Trade Center, Suite 1600  
121 S.W. Salmon Street  
Portland, Oregon 97204  
Telephone: (503) 226-7391  
Facsimile: (503) 228-9446

PATENT

**Marked-up Version of Amended Claims**  
**Pursuant to 37 C.F.R. §§ 1.121(b)-(c)**

**CLAIMS**

1. A method of improving tolerance to a xenograft comprising[;]  
immunising a mammal with an immunogen comprising at least one T-cell epitope and at  
least one porcine polypeptide B-cell epitope, [characterised in that] wherein said B-cell  
epitope is [derived from at least one porcine polypeptide involved in] capable of  
mediating [the] rejection of said xenograft.

2. A method according to Claim 1, [characterised in that] wherein said B-cell  
epitope is a peptide derived from at least one porcine polypeptide selected from[;]the  
group of CD40[;], CD80[;], CD86 [or] and VCAM.

3. A method according to Claim 1, [or 2 characterised in that] wherein said  
peptide is selected from at least one peptide represented in Figure 22.

4. A method according to Claim 1, [or 2 characterised in that] wherein said  
peptide is selected from at least one peptide represented in Figure 24.

5. A method according to Claim 1, [or 2 characterised in that] wherein said  
peptide is selected from at least one peptide represented in Figure 26.

6. A method according to [Claims 1 - 5 characterised in that] Claim 1,  
wherein said T-cell epitope [is derived from] comprises a tetanus toxoid polypeptide.

7. A composition comprising an immunogen characterised in that said  
immunogen [has] comprises at least one B-cell epitope and at least one T-cell epitope  
wherein said B-cell epitope [is derived from at least one] comprises a porcine  
[polypeptide] epitope involved in mediating xenograft rejection.

PATENT

8. A composition according to Claim 7, [characterised in that] wherein said porcine epitope comprises a porcine polypeptide [is] expressed by vascular endothelial cells of said xenograft.

9. A composition according to [Claims 7 or 8 characterised in that] Claim 7, wherein said B-cell epitope is [derived from at least one porcine polypeptide] selected from[;] the group of CD40[;], CD86[;], CD80[;] and VCAM.

10. A composition according to Claim 9, [characterised in that] wherein said B-cell epitope [is selected from] comprises at least one peptide as represented in Figure 22.

11. A composition according to Claim 9, [characterised in that] wherein said B-cell epitope [is selected from] comprises at least one peptide as represented in Figure 24.

12. A composition according to Claim 9, [characterised in that] wherein said B-cell epitope [is selected from] comprises at least one peptide as represented in Figure 26.

13. A composition according to [Claims 9 or 12 characterised in that] Claim 9, wherein said B-cell epitope [is derived from the] comprises an extracellular domain of CD86.

14. A composition according to [Claims 7 - 13 characterised in that] Claim 7, wherein said T-cell epitope [is derived from] comprises a tetanus toxoid epitope.

## PATENT

15. A composition according to [Claims 7 - 14 characterised in that] Claim 7, wherein said composition further comprises a carrier capable of enhancing the immune response to said immunogen.

16. An antibody, or the effective part thereof, [characterised in that] wherein said antibody is capable of distinguishing between porcine polypeptides according to [Claims 7 – 15] Claim 7, and the homologous polypeptides of the mammal receiving said xenograft.

17. An antibody according to Claim 16, [characterised in that] wherein said antibody is monoclonal.

18. An antibody according to [Claims 16 or 17 characterised in that] Claim 16, wherein said antibody is a modified [with] antibody comprising at least one detectable label.

19. A method to monitor [the] an immune status of a mammalian recipient of a xenograft comprising:

- iii) removing a sample from a xenograft recipient to be tested;
- iv) contacting said sample to the antibody according to [Claims 16 – 18] Claim 16; and
- iii) monitoring [the] expression of [the] a porcine polypeptide [according to Claims 4 – 8] shown in Figures 22, 24, or 26.

20. A method [to treat] of treating a mammal prior to receiving a xenograft, comprising:

- i) immunising a mammal with an immunogenic composition according to [Claims 7 – 15] Claim 7;
- ii) assessing [the] an immune status of said mammal to said immunogenic composition;

## PATENT

- iii) [transplantation of] transplanting said xenograft tissue/organ into a recipient mammal; and
- iv) monitoring [the] a rejection response to said xenograft.

21. A method according to Claim 20, [characterised in that] wherein said xenograft is of porcine origin and said mammal is human.

22. A method according to Claim 20, [or 21 characterised in that] wherein said xenograft [is] comprises at least one vascularised graft and/or immunogenic porcine cell/tissue.

23. A method according to Claim 20, [characterised in that] wherein said xenograft [is] comprises pancreatic islets.

24. (New) The method Claim 1, wherein said B-cell epitope has less than 75% sequence identity to a corresponding region of an equivalent human polypeptide.

25. (New) The method of Claim 7, wherein said B-cell epitope has less than 75% sequence identity to a corresponding region of an equivalent human polypeptide.

26. (New) The method of Claim 16, wherein said B-cell epitope has less than 75% sequence identity to a corresponding region of an equivalent human polypeptide.

Rec'd PCT/PTO 19 JUN 2001

## IMMUNOSUPPRESSION

## 1. FIELD OF THE INVENTION

5 This invention relates to immunosuppression and, more particularly, to immunosuppression in the context of xenotransplantation.

## 2. BACKGROUND TO THE INVENTION

10 Despite the established success of allogeneic organ transplantation, the increasing disparity between the supply and demand of organs must be overcome. Increasing the supply of allogeneic organs does not offer a satisfactory solution because even if all usable organs were transplanted this would still not meet the existing demand (1,2). This  
15 has led to a resurgence of interest in xenotransplantation (the transplantation of organs between animals of different species) as a viable and attractive alternative.

Xenotransplantation research has recently focused on the pig as a suitable animal donor in terms of size, physiological compatibility and breeding characteristics (3,4). Until  
20 recently however, discordant xenotransplantation has been limited by the inevitable occurrence of humorally-mediated hyperacute rejection (HAR) which rapidly triggers organ rejection upon revascularisation. HAR is the fate of most organs transplanted between discordant species. Recently, significant advances have been made in understanding the immunological basis of HAR, and many approaches have been  
25 employed to overcome it. Of significance, a variety of transgenic strategies are currently being employed including the expression of regulators of complement activity on porcine endothelial cells (5). It is foreseeable that short-term xenograft survival will soon be achieved (6). The recent advances in overcoming HAR have highlighted subsequent immunological barriers which must be surmounted to enable long-term xenograft  
30 survival. Both humoral and cellular arms of the immune response appear to play a role in the downstream events of immunological rejection. Clearly the most important of which is the existence of a formidable T cell mediated rejection response (7-11) previously obscured by the dominant role of HAR. *In vitro*, human T cells have been demonstrated

to play a central role in the recognition of xenogeneic cells (7,8,12) following sensitisation via the direct and indirect T cell activation pathways, which have been well documented for allorecognition and allograft rejection (13). Knowledge of the cellular mechanisms underlying allorejection has provided an important basis for the investigation 5 of the T cell mediated xenoresponse.

At present, the major therapies to prevent cell mediated rejection of organ transplants rely on systemic immunosuppressive drugs or monoclonal antibody (Mab) therapy directed against targets such as CD3, CD4, CD25, (14). Following reports that strong T cell 10 xenoresponses can be generated *in vitro* (7,8,12), control of xenograft rejection may require levels of immunosuppression much greater than the current standard doses. Such a strategy would not be desired in a xenograft context. Drugs must be taken for life, depress the entire immune system and result in an increased risk of infection and susceptibility to cancer (14). For the applicability of xenotransplantation to the clinic, 15 targeting graft-specific strategies for tolerance induction/immunosuppression would clearly be highly advantageous. Whilst this has been difficult to achieve in an allotransplant context, xenotransplantation offers greater potential - with differences between species providing the option for the generation of reagents that are truly graft specific. In addition, there is the opportunity for the manipulation of both the porcine 20 donor organ, and the human recipient's immune system, prior to transplantation (1).

### 3. DETAILED BACKGROUND

#### 3.1 T cell activation and proliferation

Optimal proliferation of T cells, although initiated via ligation of the antigen specific 25 CD3/TCR complex (Signal 1) requires additional costimulatory signals (Signal 2) (15,16,17) which are usually supplied by the antigen presenting cell (APC). Whilst antigenic stimulation of T cells in the presence of signal 2 induces T cell activation and proliferation (18), exposure of T cells to MHC-antigen complexes in their absence leads to aborted T cell proliferation and the development of clonal anergy (19,20). 30 Manipulation of APC by aldehyde fixation (20,21) or heat treatment (19) has been

demonstrated to abrogate the ability of such cells to activate alloreactive T cells, without altering levels of MHC-II surface expression. Thus T cell receptor occupancy alone is insufficient to fully activate the T cell (17). Anergic T cells are best characterised by their lack of IL-2 production and their continued inability to produce IL-2 on subsequent exposure to antigen (22). Thus, confirming the two signal model of activation as predicted by Lafferty *et al* (23). For T cells to respond to a given antigenic stimulus, multiple activation signals are required from the APC (23).

The *in vivo* induction of T cell anergy in the absence of a secondary signal was first demonstrated by Jenkins and Schwartz in 1986 (24) using chemically fixed APC to present specific peptide to CD4 T helper clones. A multitude of *in vitro* and *in vivo* data has since been produced supporting the hypothesis that signal 1 in isolation fails to activate T cells (22), and that costimulatory signalling results from contact with other cells rather than via soluble factors. Fibroblasts transfected with human Class II MHC molecules, but not expressing the appropriate CS signals (lacking signal 2) can efficiently present antigen to class II restricted CD4 T cell clones, but these fail to cause antigen specific T cell proliferation, rendering cells anergic. The context in which T cells first encounter antigen therefore has an important bearing on subsequent immune responsiveness.

Thus, costimulatory molecules are essential for T cell activation and multiplication and result from interactions between receptors on T cells and their ligands expressed on the APC. The costimulatory signal itself, however, is neither antigen specific nor MHC restricted (25). In recent years the molecular interactions involved in mediating costimulation have been well defined. The two key pathways involve (i) B7-1, B7-2 (members of the B7 family) and (ii) CD40, which are expressed on the APC, and their counter-receptors CD28 and CD40 ligand (CD40L) respectively expressed on T cells. A large body of evidence, both *in vivo* and *in vitro*, clearly defines the crucial roles played by B7-1, B7-2 and CD40 in providing T cell costimulation (26-36). Furthermore, the simultaneous blockade of signalling via CD28-B7 and CD40-CD40L in an allotransplant

context prevented the onset of allograft rejection (37,38). *In vivo*, targeting the B7/CD28 interaction has been shown to prevent T cell sensitisation to graft antigen, thereby prolonging graft survival (38,39).

5 T cells can be sensitised against xenoantigens via one of two pathways - the direct and indirect pathways, which are analogous to the well documented T cell activation pathways against alloantigens (Figure 1). Direct recognition requires that the recipient T cells recognise intact xeno MHC-molecules complexed with peptide on donor stimulator cells. In contrast, indirect recognition requires that recipient APC process the xenoantigen  
10 prior to presentation to recipient T cells in the context of recipient MHC II. Self MHC II restricted T cells with specificity for the xenoantigen will recognise the peptide and respond. Whilst the majority of data reported is of indirect xenorecognition responses, cell mediated rejection via the direct route has also been documented (7,8,9,11,12,40,41,42). Vigorous human T cell proliferative responses directed against  
15 porcine tissues *in vitro* have been documented from studies both in this laboratory and others.

### 3.2 Costimulatory molecules

The crucial role played by costimulatory molecules in determining the result of TCR-CD3 receptor engagement with MHC and peptides has been demonstrated extensively both *in vivo* and *in vitro*. Anti-costimulatory molecule strategies aimed at either the receptors or their ligands are being used as therapeutic strategies for altering the immune response. Such approaches have been tested in model transplant systems to alter cell mediated responses thereby preventing graft rejection (14,37,38,43-47).

25 B7-1 (B7/BB1, CD80) and B7-2 (CD86) both belong to the immunoglobulin superfamily and are heavily glycosylated transmembrane proteins (25). B7-1, a B cell activation molecule was first identified in 1989 (27), followed by B7-2 in 1993 (49). Both human B7-1 and B7-2, and the murine homologues have now been cloned and functionally  
30 characterised (25). B7-1 and B7-2 are constitutively expressed on splenic and blood

dendritic cells and are induced on B cells and monocytes upon activation (34,50.). B7-1 and 2 are highly homologous and are the natural ligands for the T cell antigen CD28 (50).

Cytotoxic T lymphocyte antigen-4 (CTLA-4), a cell surface glycoprotein has been

identified as a second receptor for the B7 family of molecules (51) and is homologous to

5 CD28 with 31% sequence identity. Both B7 isoforms bind to CTLA-4 with higher affinity than to CD28 (30,50,52). Whilst CD28-B7 receptor engagement results in an

APC-derived costimulatory signal involved in antigen specific IL-2 production both *in*

*vivo* and *in vitro* (53,54), CTLA4 appears to function as a negative regulator of T cell activation (55, 56, 57). Cross-linking by anti-CTLA4 antibodies has been demonstrated to

10 antagonise CD28 ligation (58) and, in addition, CTLA4 knock-out mice die due to uncontrolled lymphocyte proliferation within the first few weeks of life (59). Thus,

CTLA4 ligation is thought to be crucial for the maintenance and regulation of immune responses. The underlying mechanisms have not, however, been clearly defined.

15 Among costimulatory molecules, the B7 family appears to be unique, since ligation by CD28 of either B7-1 or B7-2 is both necessary and sufficient to prevent the induction of anergy (34). The CD28-B7 interaction is thought to deliver crucial signals to sustain proliferation of activated T cells. These observations are supported by *in vitro* data showing that whilst cells deficient in B7 fail to stimulate a primary MLR, transfectants

20 expressing high levels of B7 gained the capacity to stimulate the production of IL-2 by alloreactive T cells and to co-stimulate a polyclonal population of purified T cells cultured with immobilised anti-CD3 Mab (31). Artificial APC generated by stably transfecting NIH-3T3 cells with HLA-DR7, B7 or both, clearly demonstrated that following presentation of tetanus toxoid (TT) optimal T cell proliferation and IL-2 production

25 resulted only when both molecules were present. In the absence of B7, clonal anergy resulted (58).

30 Porcine B7-2 (PoB7-2) has been cloned from aortic endothelial cells (60). Following transient transfection of porcine B7-2, human umbilical vein endothelial cells strongly costimulated IL-2 production by human T cells. This costimulation of human T cells by

poB7-2 was shown to be as effective as costimulatory signals provided by human B7-1 or B7-2 and could be specifically blocked by huCTLA4Ig. Thus poB7-2 strongly contributes to the immunogenicity of porcine endothelium (60).

5 Although B7-1 and B7-2 mediated interactions appear to be central to the development of T cell specific immunity, additional costimulatory pathways of importance exist. The most crucial of which involves the CD40 and CD40 ligand (CD40L) interaction (34).

CD40 is a 50kDa surface glycoprotein belonging to the TNF-receptor superfamily. CD40 10 is expressed on various APC including among others, monocytes, dendritic cells and activated macrophages. Other cell types including endothelium also express CD40 (34). Its counter-receptor CD40L (CD154, gp39, TRAP) is a 33 kDa type II integral membrane protein (34,36) transiently expressed on activated CD4 T cells. The CD40-CD40L interaction has been demonstrated to play an important role in both the humoral and 15 cellular arms of the immune response with a dominant role in B cell activation. Whilst cross linking of CD40 on B cells is essential for B cell growth and isotype switching, it also results in the upregulation of B7 expression (50). Levels of B7 expression (and thus APC capacity) of monocytes and dendritic cells are clearly unregulated following CD40 signalling (34). Data from CD40 knock-out mice demonstrated that CD40L signalling 20 following ligation by CD40 plays an important role in T cell activation (61). Transfection of the murine P815 mastocytoma cells with CD40 (or B7-1) enabled previously non-stimulatory P815 cells to mediate the costimulation necessary for polyclonal T cell activation and the generation of cytokines (34). CD40-CD40L interactions have also been demonstrated to play a critical role in allograft rejection (62,63).

25 Resting B cells do not normally express B7-1/B7-2 at high levels until they are activated (50). Activation of B cells following simultaneous engagement of MHC-peptide/TCR and CD40-CD40L leads to the upregulation of B7 family members on B cells, thereby enhancing the stimulation and subsequent activation of T cells (34,36). Thus, the 30 CD40-CD40L interaction influences costimulatory activity by inducing expression of the

B7 family of molecules and perhaps other costimulatory molecules, thereby playing a key role in T cell activation. The clear synergistic effects of CD40 and B7 indicate the importance of both costimulatory pathways for the initiation and amplification of T cell dependent immune responses (38). CD40-CD40L interactions have also been shown to 5 play a crucial role in the generation of cytotoxic T lymphocyte (CTL) responses by modifying the functional status of a dendritic cell (64,65,66)

Extensive studies have demonstrated the importance of blocking B7-CD28 and/or CD40-CD40L interactions in the context of both allo and xenotransplantation. Data strongly 10 supporting this includes the use of CTLA4Ig to block signalling via CD28-B7 resulting in enhanced graft survival and the prevention of chronic rejection in a rat cardiac allograft model (44,45) and a murine aortic allograft model (43). In these models, administration of CTLA4Ig caused partial (44) or complete (46) tolerance to graft antigen by inducing T cell anergy. Treatment of allo pancreatic islet transplants with anti-B7-2 and B7-1 15 antibody has also been demonstrated to inhibit transplant rejection (14). Similar results were obtained in models inhibiting CD40 signalling in a mouse cardiac allotransplant models (37,47,62). Two studies detailing the simultaneous blockade of signalling via CD28-B7 and CD40-CD40L prevented the onset of allorejection. Concurrent prolonged inhibition of both pathways completely abrogated the onset of chronic rejection in a 20 mouse allo model (37) and in a skin and heart allo model (38).

In the realm of xenotransplantation, Lenschow and colleagues have, demonstrated long-term donor specific tolerance of human islets transplanted into mice with concomitant treatment with CTLA4Ig (46). Graft specific tolerance was demonstrated to be a direct 25 consequence of inhibiting recognition via B7 expressing APC. In addition, Tran *et al* (67) demonstrated short term suppression with CTLA4-Fc treatment. There is limited data available on the simultaneous blockade of both pathways in the xenotransplantation context, with the prolonged survival of rat and porcine skin transplanted into murine recipients (63).

*In vitro* and *in vivo* data have clearly demonstrated that targeting the interactions mediated by either the CD28-B7, CD40-CD40L, or both pathways has prevented the sensitisation of T cells to alloantigen and xenoantigen from engrafted tissue thereby prolonging graft survival () .

5

As noted above, T- cell mediated graft rejection is well documented. The immune system can mount alternate or additional cell mediated rejection mechanisms. These mechanisms are illustrated by the function of various molecules expressed by, *inter alia*, endothelial cells. VCAM is a cell adhesion molecule, expressed by endothelial cells, that is thought to have a role in leukocyte recruitment to sites of inflammation. VCAM is an inducible transmembrane glycoprotein which has a basal level expression in resting endothelial cells but is rapidly expressed upon exposure to pro-inflammatory cytokines (eg IL-1, TNF $\alpha$ ). The interaction of VCAM with leukocytes is via the very late antigen 4 ( VLA-4) expressed at the leukocyte cell surface. Therefore endothelial cell expression of VCAM functions to induce the infiltration of VLA-4 presenting leukocytes to sites of inflammation which augments rejection responses to allografts or xenografts.

10

It is believed that porcine VCAM plays an important role in allowing the migration of human leukocytes across porcine endothelial cell monolayers. There is a rationale for believing that blocking this interaction will have beneficial consequences on xenograft survival. Pig VCAM, cloned in 1994, has significant homology with human VCAM(1). As well as the data presented in (1), there is a wealth of evidence from other *in vitro* studies suggesting that pig VCAM interacts efficiently with human leukocyte- expression counter receptor, VLA-4. For instance, in static adhesion assays, antibodies to VCAM significantly inhibit the binding of human NK and T cells to pig endothelium. With NK cells, this disruption inhibits cell lysis which normally results after adhesion to porcine endothelial monolayers.

15

The effect of anti-VCAM antibodies on T cell mediated xenograft rejection mechanisms is more difficult to predict. In some rodent models of allotransplantation, antibodies

against VCAM have been used to prolong allograft survival. In some instances, long term survival and specific tolerance have been described (2,3), although the precise mechanism of action of these studies was not fully elucidated.

### 5 3.5 Peptide immunisation strategy

Previous *in vivo* studies using synthetic peptides conjugated to carrier molecules as immunogens have demonstrated the ability to generate the production of biologically active antibodies (68). There is now an extensive literature detailing peptide immunisation strategies which demonstrate enhancement of antibody production by carrier presentation(68-72). Thus, appropriate T cell epitopes can be used to prime T cells for subsequent help to B cells. Recent data has been published reporting the production of IgG by self-reactive B cells following immunisation with a self reacting antigen covalently coupled to a carrier molecule (70). Thereby demonstrating that B cell tolerance to self protein can be overcome.

15 As mentioned above, in order to be recognised by T cells, antigen (self or foreign) must  
be processed and presented by APC. B cells can act as highly potent APC following  
endocytosis of antigen via IgG receptors . In the presence of a full complement of  
activation signals (TCR engagement plus costimulation) T cell activation will occur  
20 resulting in the subsequent generation of antibody.

Peptides from self proteins are processed and presented to T cells in the same manner as foreign proteins, but because of T cell tolerance, presentation of self peptides does not normally result in T cell activation (70). The absence of T cell recognition may therefore explain, in part, why potentially reactive B cells fail to respond.

The ability to overcome B cell non-responsiveness to self peptides has recently been demonstrated by Dalum *et al* (69). An autoantibody response was generated by the provision of additional T cell help in the form of a strong foreign carrier T cell epitope. 30 Further studies have demonstrated that synthetic peptides conjugated to T cell carrier

molecules are capable of overcoming B cell non-responsiveness if significant numbers of self-reactive B cells are present in the host (69,70). Insertion of a single foreign T cell epitope into the sequence of Ubiquitin, elicited strong autoantibody production directed against the native molecule (69). In an elegant study by Sad, using GnRH as a self protein chemically linked to diphtheria toxoid (DT) as the synthetic T cell epitope, autoantibodies were produced with specificity for native GnRH (71,72). Following the initial vaccination, the continued presence of the native GnRH *in vivo* maintained the production of Ab. Continued antibody production caused sterility in the immunised mice due to the sustained anti-GnRH antibody response maintained by the continued presence of the native molecule against which the specific B cells were producing antibody. The DT carrier provoked a helper T cell response to assist GnRH specific B cells and break B cell tolerance.

#### 4. STATEMENTS OF INVENTION

In its broadest aspect the invention relates to the immunisation of a mammal, preferably a human, with an immunogen which results in the production of antibodies specific to porcine epitopes expressed, typically, but not exclusively, by porcine endothelial cells which are involved in mediating xenograft tissue/organ immune rejection.

Immunogen is herein construed as any epitope or combination of epitopes capable of invoking an immune response. The epitope may be T cell specific or B- cell specific. In this context, epitope is construed as any polypeptide, peptide, modified polypeptide, modified peptide ( eg typically modification may be by glycosylation or phosphorylation of the epitope).

Typically, the invention encompasses epitopes derived from porcine molecules which are selected from at least one of: CD40; B7.1; B7.2; VCAM.

It will be apparent to one skilled in the art that the invention provides means to immunise an individual, ideally prior to xenotransplantation, with an immunogen to a part of a

porcine molecule which contains a B-cell epitope not present in the homologous mammalian polypeptide to ensure the selective production of antibodies to the porcine polypeptide without the development of antibodies to the patients own functional equivalent and without the development of CD4 T cell responses thereby avoiding cell mediated rejection. In addition the immunogen provides blocking antibodies generated by the recipient which abrogate the activity of porcine polypeptides which mediate a rejection response.

It will be still further apparent to one skilled in the art that the invention has significant advantages over prior art attempts to immunosuppress a recipients immune system to porcine cells/tissues. For example, WO 97119971 discloses the use of B7.2 or VCAM polypeptides to produce diagnostic and therapeutic antibodies to monitor transplantation rejection and to block xenotransplant rejection.

This has significant disadvantages. The treatment of a transplant patient with an antibody to, for example VCAM or B7.2, requires periodic administration throughout the life of the patient to maintain the blocking properties of the antibody. Moreover, the immune system will ultimately raise antibodies to the therapeutic antibodies ( anti-idiotypic antibodies ) resulting in their removal from the patients circulation.

The present invention does not require periodic administration since it is the patients own immune system that is responsible for the production of blocking antibodies to porcine polypeptides. The immune system will not recognise these antibodies as foreign and will therefore not result in the production of anti-idiotypic antibodies.

The present invention involves the use of a foreign T cell epitope to exert significant influences on subsequent responses to molecules conjugated to the carrier. By such means autoantibody responses may be directed against porcine polypeptides in a xenotransplantation context.

30

According to the present invention there is provided a method of improving the tolerance of an animal, including a human being, to a xenograft, the animal having T cell mediated immunity, the method comprising causing the animal to raise an antibody against a xenomolecule involved in the generation of a rejection response in the animal, said antibody being raised by immunising the animal with a chimeric peptide comprising a T cell epitope against which the animal has immunity and a B cell epitope of said xenomolecule.

Accordingly, xenograft specific tolerance is induced in transplant recipients by targeting the direct T cell mediated response by the use of chimeric peptide constructs to stimulate the generation of specific anti-graft tolerance-promoting antibodies by the recipient prior to transplantation. By way of example, the chimeric peptides comprise a T cell epitope conjugated to sequences of porcine polypeptides, B7-1, B7-2, CD40, VCAM. The presence of the engrafted tissue will then serve to maintain and perpetuate the production of antibody by the recipient's B cells.

The present invention also provides a chimeric peptide comprising a T cell epitope and a B cell epitope, said T cell being that of an animal, including a human being of a first species and said B cell being of an animal of a second species, said first and second species such that xeno transplantations suitable from an animal of said second species to an animal of said first species.

In addition, the present invention provides the use of a chimeric peptide improving the tolerance of an animal, including a human being, to a xenograft, the chimeric peptide being as defined above.

According to a further aspect of the invention said immunogenic composition comprises at least one T- cell epitope and at least one B- cell epitope characterised in that said B - cell epitope is derived from at least one porcine polypeptide involved in mediating

xenograft rejection and said T cell epitope is derived from a molecule to which the recipient is already immune.

In yet a further preferred embodiment of the invention said immunogenic composition  
5 comprises at least one peptide antigen derived from at least one of porcine: CD40;  
VCAM; CD86; CD80.

Preferably said peptide antigen is derived from porcine CD40. Ideally said peptide is  
derived from the amino- terminal domain of porcine CD40, or at least that part of the  
10 amino terminal domain that is exposed at the cell surface of a porcine cell presenting  
CD40. More ideally still said peptide antigen is selected from the peptide sequences  
presented in Figure 22

Preferably said peptide antigen is derived from porcine VCAM. Ideally said peptide is  
derived from the amino- terminal domain of porcine VCAM, or at least that part of the  
15 amino terminal domain that is exposed at the cell surface of a porcine cell presenting  
VCAM. More ideally still said peptide antigen is selected from the peptide sequences  
presented in Figure 24

20 Preferably said peptide antigen is derived from porcine CD86. Ideally said peptide is  
derived from the amino- terminal domain of porcine CD86, or at least that part of the  
amino terminal domain that is exposed at the cell surface of a porcine cell presenting  
CD86. More ideally still said peptide antigen is selected from the peptide sequences  
presented in Figure 26.

25 Preferably, said peptide antigen comprises at least 9 amino acid residues. More ideally  
still said peptide comprises 10 – 30 amino acid residues.

According to a further aspect of the invention there is provided an immunogenic  
30 composition according to any previous aspect or embodiment of the invention wherein

said composition further comprises at least one agent capable of enhancing the immune response to said immunogenic composition.

In a preferred embodiment of the invention said agent is a carrier / adjuvant.

5

It is well known in the art that carriers/adjuvants are useful in promoting immune responses to selected antigens. These adjuvants are either crosslinked or coupled to the antigen or co-administered to the animal with the antigen. Adjuvants useful in promoting immune responses are detailed in Vaccine Design: The Subunit and Adjuvant Approach

10 Chapter 7, p141- 228, Plenum Press, New York, 1995. Various carriers, excipients or diluents are available in which said immunogenic composition can be stored and/or administered. For example, and not by way of limitation, the encapsulation of the immunogenic composition in liposomes is a conventional practice. Liposomes are phospholipid based vesicles which are useful as carrying agents for immunogenic compositions and the like.

15

According to yet a further aspect of the invention there is provided an antibody, or at least the effective part thereof, directed to at least one region of at least one porcine polypeptide according to the invention.

20

In a preferred embodiment of the invention said antibody is a monoclonal antibody, or at least the effective part thereof. Ideally said antibody is labelled.

25

It will be apparent to one skilled in the art that antibodies according to the invention will have utility with respect to monitoring the expression of porcine polypeptides presented by porcine tissues/organs.

30

According to a further aspect of the invention there is provided a method to monitor the immune status of a mammalian recipient of a xenograft. Preferably said monitoring method is *in vitro*.

According to yet a further aspect of the invention there is provided a method to improve the tolerance of an animal to a xenograft comprising:

- 5      i)     administering at least one immunogenic composition according to any previous aspect or embodiment of the invention to an animal; optionally
- ii)    monitoring the immune status of said animal to said immunogenic composition;
- iii)    transplantation of at least one porcine tissue/organ into said animal; and, optionally
- 10     iv)    monitoring the animal for a rejection response to said porcine tissue/organ.

In a preferred method of the invention said animal is human.

- 15     In a further preferred method of the invention said xenograft is any vascularised graft and/or immunogenic porcine cell/tissue.

In a further preferred method of the invention said xenograft is porcine pancreatic islets.

- 20     It will be apparent to one skilled in the art that (ii) above can be conducted either by monitoring for the presence of antibodies to co-stimulatory molecules in sera (for example by ELISA or by FACS analysis of cells expressing said co-stimulatory molecules), or alternatively, or in addition, monitoring the presence of cytolytic T- cells in the blood of the treated animal by conventional T- cells lysis assays.

- 25     The potential benefits of the use of a chimeric peptide of the invention are that it avoids the need for injection of blocking antibodies or fusion proteins. Furthermore, the induction of a recipient antibody response circumvents the problems most commonly associated with administration of xenogeneic antibodies or fusions proteins, namely the immune response against the administered reagent.

An embodiment of the invention will now be described, by example only and with reference to the following Tables and Figures;

Table 1 represents the regions of non-homology in human CD40 with respect to the homologous porcine CD40;

5 Table 2 represents the regions of non- homology in human VCAM with respect to the homologous porcine VCAM;

Table 3 represents the regions of non-homology in human CD86 with respect to the homologous porcine CD86;

10 Figure 1a is a diagrammatic representation of direct xenorecognition and Figure 1b is a diagrammatic representation of indirect xenorecognition;

15 Figure 2 represents the porcine CD86 nucleic acid sequence;

Figure 3 represents the porcine CD86 cDNA sequence obtained by reverse transcription of porcine mRNA followed by PCR amplification;

20 Figure 4 represents a comparison of the nucleotide sequence of the cDNA in Figure 2 with the published porcine CD86 sequence;

Figure 5 represents a comparison of the cDNA sequence in Figure 2 with the published murine and human CD86 sequences;

25 Figure 6 represents the translated amino acid sequence of the cDNA in Figure 2 compared with porcine, human and murine amino acid sequences;

Figure 7 represents the position of porcine B7.1 oligonucleotide primers with respect to the human and murine B7.1 nucleic acid sequences;

Figure 8a represents a comparison of the human, murine and bovine CD40 nucleic acid sequences; Figure 8b represents a comparison of the human, murine and bovine CD40 amino acid sequences;

5

Figure 9 represents FACS analysis of the expression of CD86 (B7.2) after transfection with a vector encoding porcine CD86 (B7.2);

10 Figure 10 represents FACS analysis of the expression of CD86 (B7.2) by transiently transfected cells with a vector encoding porcine CD86(B7.2);

Figure 11 represents flow cytometric analysis of cells transfected with porcine CD86(B7.2);

15 Figure 12 represents the position of nine CD86( B7.2) derived peptides in the porcine CD86(B7.2) sequence;

Figure 13 represents a comparison of T cell proliferation response to whole ovalbumen or the ovalbumen peptide Ova<sub>323-339</sub>;

20

Figure 14a represents the differential binding of B7.2 specific peptide sera or ovalbumen control sera by peptide ELISA;

25 Figure 14b represents the in vitro recognition of B7.2 derived peptides 4 and 6 by mouse sera immunised with peptides 4 or 6;

Figure 15a represents the in vitro recognition of the B7.2 peptide sera and control ova peptide sera by peptide ELISA;

Figure 15b represents the inhibition of direct mouse anti porcine T cell responses by peptide 4 and 6 sera which also shows no inhibition of of costimulation by murine CD86;

5 Figure 16 represents the differential binding of the B7.2 derived peptide 4 sera or ova control peptide sera by peptide ELISA;

Figure 17a represents flow cytometric analysis of P815 cells transfected with porcine CD86 following staining with sera from peptide 4 or control ova peptide sera;

10 Figure 17b represents FACS analysis of P815 cells transfected with porcine CD86 or CHO cells transfected with murine CD86 following staining with sera from mice sera derived from peptide 4 or peptide 6;

15 Figure 18 represents a preparation of porcine pancreatic islets isolated from a large white pig;

Figure 19 is a schematic representation of the chimeric peptide immunisation and transplantation protocol;

20 Figure 20 shows that anti-porcine CD86 antisera prolongs the survival of transplanted porcine pancreatic islets;

Figure 21 is a comparison of the amino acid sequence of porcine and human CD40 (underlined sequences are peptides identified in table 1);

25 Figure 22 is the translated amino acid sequence of porcine CD40 (underlined sequences are peptides identified in table 1);

Figure 23 is a comparison of the amino acid sequence of porcine and human VCAM (underlined sequences are peptides identified in table 2);

Figure 24 is the translated amino acid sequence of porcine VCAM ( underlined sequences are peptides identified in table 2);

5 Figure 25 is a comparison of the amino acid sequence of porcine and human CD86 (underlined sequences are peptides identified in table 3); and

Figure 26 is the translated amino acid sequence of human CD86 ( underlined sequences are peptides identified in table 3)

10 **5. SPECIFIC EMBODIMENTS**

**5.1 Cloning porcine costimulatory molecules**

**5.1.1 Cloning porcine B7-2**

RNA was extracted from primary and transformed porcine cells using a standard protocol. mRNA was then reverse transcribed and porcine B7-2 (poB7-2) amplified from

15 the cDNA by 35 cycles of PCR at 56<sup>0</sup> C with 1.5mM magnesium. The 5' and 3' primers GCATGGATCCATGGGACTGAGTAACATTCTCTTG and GCATGTCGACTTAAAAATCTGTAGTACTGTTGTC respectively were designed on the basis of the published poB7-2 sequence (60) to overlay the start and stop codons (Figure 2). A 956 base pair fragment was generated and subcloned into the BamH1 &

20 Sall restriction sites of pbluescript. The nucleotide sequence was determined using standard m13 forward and reverse primers. The sequence of a single clone, CD86(i) is illustrated in Figure 3, with comparison to the published sequences from porcine (Figure 4), human and murine B7-2 (Figure 5). One base pair difference is detected between our clone, CD86(i), and the published sequence at the 3' prime end. This, however, is 25 unlikely to be an important difference with respect to either poB7-2 expression or binding to its ligand. The predicted amino acid sequence of CD86(i) , compared to that of porcine, human and mouse B7-2 is shown in Figure 6.

**5.1.2 Cloning porcine B7-1 and CD40**

RNA extracted from phytohaemagglutinin (PHA) or poke-weed mitogen (PMW) stimulated porcine PBMC and transformed porcine endothelial cells is being used to amplify cDNA encoding the costimulatory molecules B7-1 and CD40. B7-1 Primers were designed on the basis of conserved areas following comparison of murine and human

5 (29,49) sequences. External (lying outside the coding region) AGACCGTCTCCTTTAG(3'i), TTGGATCCTCCATGTTATCCC (3'ii) and AGCATCTGAAGC (5') and internal (within the coding region) ATGGATCCTCCATTCCAACC (3') and TTGTCGACATCTACTGGC (5') primers have been designed as depicted in Figure 7. The generation of two 3' primers is due to

10 significant differences between the human and murine sequences in the terminal coding regions. Resulting PCR fragments will be subcloned as described above using the restriction sites BamHI and Sall contained within the promoter sequence. Constructs will then be sent for sequence confirmation.

15 CD40 primers were designed in a similar manner following sequence alignment of published CD40 sequences from human, mice and cattle (73,74,75) as illustrated in Figures 8A & B. The 5' and 3' primer sequences are GGATCCTCACTGTCTCCTGCAGATGCGACTCTCCTTTGCCGTCCG TCCTCC and GAATTCATGGTTCTGTTGCCTCTGCAGTG respectively containing

20 the BamHI and EcoRI restriction sites.

### 5.2 Generation of porcine costimulatory molecule expressing cell transfectants

The poB7-2 molecule (CD869(i)) has been subcloned into the eukaryotic expression vector pci.neo carrying the neomycin drug-selectable marker. This is being used to transfect M1 and M1.DR1 transformed murine cell lines using a standard calcium phosphate precipitation method. G418 resistant pci.neo expressing cells will be selected using dynabead purification and highly expressing clones is selected by limiting dilution.

Stable poB7-2 M1 and P815 transfectants have been generated by this approach using the poB7-2 DNA construct supplied to us by Maher *et al* (Figure 9). transient transfections of M1 and P815 cells have been generated using our CD86(i) construct (Figure 10).

3 particular assays are undertaken using the CD86(i) transfected cells.

5 (I) comparative costimulatory function of poB7-2 with human B7-1 in the context of MHC restriction;

(II) flow cytometric analysis of specific anti-poB7-2 antibodies in the sera of immunised mice; and

(III) generation of specific anti-poB7-2 monoclonal antibodies.

10

(I) Comparative *in vitro* analysis is performed to determine the costimulatory function of poB7-2 or poB7-1 in the context of the human MHC class II molecule HLA-DR1, with that of human B7-1 or B7-2 in the context of DR1, in proliferation assays with human or porcine responders.

15

(II) Transfected P815 cells are crucial reagents for the detection of porcine anti-B7-2 antibody in the sera of immunised mice which have undergone the chimeric peptide immunisation regimen. Flow cytometric analysis with control or poB7-2 -transfected P815 cells, reflects the specificity of sera for B7-2. Preliminary studies with C57BL-6 mice immunised with a pool of all nine B7-2 peptides have demonstrated the preferential binding of B7-2 peptide sera to porcine B7-2 transfected P815 cells (Figure 11a and 11b).

20

(III) Mab with specificity for poB7-2 are generated by immunisation of Balb/c mice with poB7-2 expressing P815 cells . The spleens from immunised mice are fused with the NS0 fusion partner and successful fusion's selected by virtue of HAT selection. Flow cytometric staining of poB7-2 P815 transfectants with culture supernatants enable the identification of MAb secreting cells. Cells are grown in culture and the medium harvested for antibody purification by passage over Protein G following ammonium sulphate precipitation. Techniques for the preparation on monoclonal antibodies are well

known in the art and with reference to publications such as Harlow and Lane Antibodies; A Laboratory Manual; Cold Spring Harbour Laboratories.

MAb with specificity for B7-1 and CD40 are generated using the same protocol. These

5 MAb will provide valuable reagents for further characterising the expression of CS molecules on relevant porcine tissues.

### 5.3 Design and synthesis of poB7-2/OVA chimeric peptide constructs

Nine different peptides derived from the sequence of poB7-2 were initially selected for

10 synthesis. Porcine B7-2 peptides, 6-22mer in size, were selected as determined by the predicted size of a B cell epitope. Peptides were selected for synthesis in combination with a T cell epitope OVA 323-339. B7-2 peptides were selected on the basis of 3D computer modelling (in collaboration with Paul Travers) and on the basis of predicted antigenicity and hydrophilicity using the SeqAid II computer software package. All of the

15 nine peptides reflect linear epitopes. The positions of the nine peptides in the cloned poB7-2 sequence are indicated (Figure 12). Synthetic peptide sequences are detailed in Table 1

**Table 1**

| Peptide Name | Peptide Sequence                 | Position |
|--------------|----------------------------------|----------|
| Peptide 1    | ISQAVHAAHAEINEAGRSFDQATWTLR      | 81-90    |
| Peptide 2    | ISQAVHAAHAEINEAGR LPCHFTNSQ      | 32-40    |
| Peptide 3    | ISQAVHAAHAEINEAGR KGPH GLVPIHQMS | 109-121  |
| Peptide 4    | ISQAVHAAHAEINEAGR GLVPIHQMS      | 113-121  |
| Peptide 5    | ISQAVHAAHAEINEAGR VQIKDKGSYQC    | 94-104   |
| Peptide 6    | ISQAVHAAHAEINEAGR CSSTQGYPEPQR   | 151-162  |
| Peptide 8    | ISQAVHAAHAEINEAGR KSQAYFNETGEL   | 21-32    |
| Peptide 9    | ISQAVHAAHAEINEAGR ASLKSQAYFNET   | 17-29    |
| Peptide 10   | ISQAVHAAHAEINEAGR YMGR TSFDQATWT | 76-88    |
| Ova Peptide  | ISQAVHAAHAEINEAGR                | 323-339  |

5 The peptide sequences and amino acid positions for peptides 1-10 relate to the position of the B7-2 peptide sequence within porcine B7-2. The amino acid position for the ova sequence is only indicated for the Ova peptide. A 17 amino acid peptide from chicken egg albumin (ovalbumin) was selected as the T cell epitope, OVA323-339 (ISQAVHAAHAEINEAGR). This epitope was selected on the basis of published reports  
10 for the generation of a H-2<sup>b</sup> restricted T cell response (76,77). We have demonstrated the ability of C57BL-6 mice (H-2<sup>b</sup> haplotype) to mount a proliferative response to both the native molecule and to the OVA 323-339 peptide following immunisation with whole ovalbumin (Figure 13). Peptides were generated on a peptide synthesiser (Genosys) and crude peptides were purified by HPLC to greater than 70% purity. Sera from OVA  
15 control immunised mice should ideally not recognise the 323-339 sequence, indicating that the T cell epitope is devoid of B cell determinants.

#### 5.4 Tolerance induction

##### 5.4.1 *In vivo* tolerance induction strategy

20 C57BL-6 mice are immunised with whole ovalbumin in CFA, followed by either control peptide (OVA peptide) or CS peptides (OVA-B7-2 constructs) for three weekly immunisations. Blood is collected following sacrifice and sera prepared using a standard

technique. Presence of specific mouse anti-porcine B7-2 IgG and/or IgM Ab is detected by one of two strategies.

Peptide ELISAs are used to screen for the presence of anti-peptide antibody in the sera.

5 Peptides are coated to plates by virtue of aldehyde linkages to allow free access of Ab to the peptide (78). Plates are coated with individual peptides or the ova control peptide to enable the identification of specific peptides of interest. To detect reactivity of sera with the native B7-2 molecule expressed on the surface of PoB7-2 transfected P815 cells, flow cytometry is performed following surface staining. Having identified CS peptide of 10 interest (peptide ELISA positive and recognising native B7-2) the sera is used to inhibit *in vitro* T cell proliferative responses. This determines whether the antibody is a blocking antibody.

*In vivo* studies are performed using the islet transplant system. Antibodies which

15 recognise the native molecule but fail to block a proliferative response are useful polyclonal antibody reagents.

Immunisations involved two groups of mice, one received a pool of all nine B7-2 peptides, and one receiving ova control peptide. The harvested sera were screened by

20 peptide ELISA (Figure 14a or 14b) which enabled the identification of peptides of interest. Antisera to peptides 2, 4 and 6 clearly demonstrate preferential binding to B7 peptide than to ova control. The sera has also demonstrated enhanced binding to poB7-2 transfected cells (Figure 11). Peptide 4 and 6 were selected as candidate peptides and used in subsequent immunisation protocol. Immunisation with peptide 4 or 6 clearly 25 produced a significant level of IgG with specificity for peptides 4 and 6 in the sera of immunised mice (Figure 15a and 15b). The specificity of the sera for peptide 4 and not to ova control is demonstrated in Figure 16. The ability of sera from peptide 4 and 6 immunised mice to specifically recognise the native porcine B7-2 molecule expressed on the surface of porcine B7-2 transfected P815 cells is illustrated in Figure 17a and 17b. 30 Untransfected control P815 cells do not stain with the Peptide 4 or 6 sera, neither do

control or transfected cells incubated with ova peptide sera. Similar protocols will be followed with peptide 2. These data clearly demonstrate the ability of this technique to generate anti-peptide antibody directed against an amino acid sequence, by virtue of a carrier T cell epitope.

5

An identical strategy will be followed with peptides designed on the basis of porcine CD40 and porcine B7-1 once the DNA sequence encoding these molecules has been elucidated.

10 **5.4.2 Functional assessment; prolongation of pancreatic islet xenograft survival**

Islet xenografts being non-vascular are rejected solely by T cell mediated mechanisms (79,80), thereby providing an ideal system to study modulation of T cell mediated reactions, please see Figure 18. A very clear role for cell mediated rejection of islets has been demonstrated and is reported to be greater than the comparable alloresponse (80).

15 Transplantation of porcine pancreatic islets to mice is an established procedure, which is well documented in the literature (80-83). Studies within this laboratory have demonstrated a decrease in hyperglycaemia (Figure 18) following transplantation of pancreatic islets from large white pigs under the kidney capsule of C57BL-6 mice rendered diabetic by intraperitoneal administration of streptozotocin, please see Figure 19  
20 and 20. Further optimisation of the isolation procedure (84,85) is required to enable purification of fully functional islets. Transplanted islets usually survive between 6-10 days in the absence of any immunosuppression. Successful modulation of direct T cell mediated xenorejection will be monitored by prolongation of islet survival beyond day 10, with comparison to the appropriate controls.

25

30 The results obtained with B7-2 to date, demonstrate the ability of synthetic B7-2 peptides conjugated to a known T cell helper epitope to generate the production of anti-porcine B7-2 antibody *in vivo*. These antibodies if directed towards the binding site between B7 isoforms and CD28, in association with antibodies directed against CD40-CD40L will

block the costimulation of human T cells with direct anti-pig xenoreactivity thereby prolonging islet survival in a xenotransplantation context.

Having established the suitability of such an approach in a pig islet to mouse *in vivo*

5 model, studies would progress to pig to primate transplantation systems prior to clinical trials.

### **5.5 Adaptations for clinical use of these strategies**

For clinical applicability the following requirements are necessary:

10 (I) selection of a suitable T cell epitope to replace OVA. One candidate molecule is tetanus toxiod (TT) which is a widely used antigen for use in human immunisation strategies (68,86). The prior immunisations of most adults with TT is an additional benefit to this strategy as memory T cells are already present in the circulation.

15 (ii) An efficient and rapid screening method is used to detect the presence of anti-donor (pig) B7-2 antibodies in the absence of a specific B7-2 directed T cell response generated by the recipient which would accelerate graft rejection.

### **6. SUMMARY OF SPECIFIC EMBODIMENTS**

20 The above examples relate to a novel strategy to inhibit costimulation by porcine cells of human T cells with direct anti-pig xenoreactivity. This is of particular importance in the context of xenotransplantation of porcine organs due to the expression of costimulatory molecules on porcine endothelial, as well as bone marrow-derived antigen presenting cells.

25 Recipients are immunised with hybrid synthetic peptides comprising a T cell epitope conjugated to sequences of the porcine costimulatory molecules, CD80, CD86 and CD40. Peptides that induce antibodies specific for regions of the costimulatory molecules involved in binding to their counter-receptors on human cells (CD28 and CD154) are 30 therefore capable of blocking the delivery of costimulation. Once the antibody response has been induced, the transplanted organ will recall this response due to the expression of

the costimulatory molecules, thereby sustaining this response, and providing an endogenous mechanism of costimulatory blockade.

**7. Bibliography**

1. Dorling, A. *et al.* Clinical Xenotransplantation. *Lancet.* (1997). 349:867-71.
- 5 2. Cooper, D.K.C. Xenografting: how great is the clinical need. *Xeno.* (1995). 1: 25-26
3. Advisory Group on the Ethics of Xenotransplantation. *Animal Tissue into Humans.* London: Stationery Office, 1997.
- 10 4. Nuffield Council on Bioethics. *Animal-to-human transplants.* London: Nuffield Foundation, 1996.
5. van Denderen, B.J. *et al.* Combination of decay-accelerating factor expression and alpha 1,3-galactosyltransferase knockout affords added protection from human complement-mediated injury. *Transplantation.* (1997). 64. 882-888.
- 15 6. Thompson, C. Humanised pigs hearts boost xenotransplantation. *Lancet* (1995): 346: 766.
- 20 7. Dorling, A. *et al.* Detection of primary direct and indirect human anti-porcine T cell responses using a porcine dendritic cell population. *European Journal of Immunology* (1996): 26: 1378.
- 25 8. Dorling, A. *et al.* Cellular xenoresponses: Observation of significant primary indirect human T cell anti-pig xenoresponses using co-stimulator-deficient or SLA class II-negative porcine stimulators. *Xenotransplantation* (1996): 3: 112.
9. Kirk, AD. *et al.* In-vitro analysis of the human anti-porcine T-cell repertoire. *Transplantation Proceedings.* (1992): 24: 602.
- 30 10. Murray, AG. *et al.*. Porcine aortic endothelial cells activate human T cells: Direct presentation of MHC antigens and costimulation by ligands for human CD2 and CD28. *Immunity* (1994): 1: 57.

11. Yamada, K. *et al*. Human anti-porcine xenogeneic T cell response. *The Journal of Immunology*. (1995). 155: 5249-5256.

12. Kumagai-Braesch, M. *et al*. Characteristics of direct and indirect activation of human T cells against allogeneic and porcine xenogeneic cells/peptides. *Xenotransplantation*. (1997). 4 : 85-94.

13. Dorling, A. and Lechler, R.I. The passenger leukocyte, dendritic cell and antigen-presenting cells (APC), In *Transplantation Biology; Cellular and Molecular Aspects*. Eds N. L. Tilney, T. B. Strom and L. C. Paul. Philadelphia: Lippincott-Raven, 1996.

14. Lenschow, D.J. *et al*. Inhibition of transplant rejection following treatment with anti-B7.1 antibodies. *Transplantation*. (1995). 60 : 1171-1178.

15. 15. Bretscher, P. and Cohen, M. A theory of self-nonself discrimination. *Science* (1970): 169: 1042.

16. Bretscher, P. The two signal theory of lymphocyte activation twenty one years later. *Immunology Today*. (1992). 13 : 74-76.

17. Mueller, D.L. *et al*. Clonal expansion versus functional clonal inactivation : A costimulatory pathway determines the outcome of T cell receptor occupancy. *Annual Reviews of Immunology*. (1989). 7 : 445-480.

18. Mueller, D.L. *et al*. An accessory cell-derived costimulatory signal acts independently of protein kinase C activation to allow T cell proliferation and prevent the induction of unresponsiveness. *The Journal of Immunology*. 142: 2617-2628.

19. Baird, M.A. Evidence that heat-treated antigen-presenting cells induce hyporesponsiveness in allogeneic T cells. *Transplantation*. (1994): 57: 763.

20. Jenkins, M.K. *et al*. Molecular Events in the induction of a non-responsive state in interleukin 2 producing helper T- Lymphocyte clones. *Proceedings of the National Academy of Science USA* (1987): 84: 5409.

21. Inaba, K. and Steinman, RM. Resting and sensitized T lymphocytes exhibit distinct stimulatory (antigen-presenting cell) requirements for growth and lymphokine release. *Journal of Experimental Medicine* (1984): 160: 1717.

5

22. Schwartz, R.H. A cell culture model for T lymphocyte clonal anergy. *Science*. (1990). 248: 1349-1355.

10 23. Lafferty, K.J. *et al.* Immunobiology of tissue transplantation: A return to the passenger leukocyte concept. *Annual Reviews of Immunology*. (1983): 1: 143.

15 24. Jenkins, M.K. and Schwartz, R.H. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness *in vivo* and *in vitro*. *The Journal of Experimental Medicine*. (1986). 165: 302-319.

15

25 25. Schultze, J. *et al.* B7-mediated costimulation and the immune response. *Blood Reviews*. (1996). 10 : 111-127.

20 26. June, C.H. *et al.* The B7 and CD28 receptor families. *Immunology Today* (1994): 15: 321.

25 27. Freeman, G.J. *et al.* B7, A new member of the Ig Superfamily with unique expression on activation and neoplastic B cells. *Journal of Immunology*. (1989): 143: 2714.

25

28. Freeman, G.J. *et al.* Cloning of B7-2: A CTLA-4 counter receptor that co-stimulates human T cell proliferation. *Science* (1993): 262: 909.

30 29. Azuma, M. *et al.* B70 antigen is a second ligand for CTLA-4 and CD28. *Nature* (1993): 366: 76.

35 30. Linsley, P.S. T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB1. *Proceedings of the National Academy of Science USA* (1990): 87: 5031.

35

31. Norton, S.D. *et al.* The CD28 Ligand B7, Enhances IL-2 Production by Providing a Costimulatory Signal to T Cells. *Journal of Immunology* (1992): 149: 1556.

32. Galvin, F. *et al.* Murine B7 antigen provides a sufficient costimulatory signal for antigen-specific and MHC-restricted T cell activation. *Journal of Immunology* (1992): 149: 3802.

5

33. Boussiotis, VA. *et al.* Activated human B lymphocytes express three CTLA-4 counterreceptors that costimulate T-cell activation. *Proceedings of the National Academy of Science. U S A* (1993): 90: 11059.

10 34. vanGool, S.W. CD80, CD86 and CD40 provide accessory signals in a multiple step T cell activation model. (1996). 153: 47-83.

35. Tang, A. *et al.* Blockade of CD40-CD40 ligand pathway induces tolerance in murine contact hypersensitivity. *European Journal of Immunology*. (1997). 27: 3143-3150.

15

36. Grewal, I.S. and Flavell, R.A. The role of CD40 ligand in costimulation and T cell activation. *Immunological Reviews*. (1996).153: 86-106.

37. Sun, H. *et al.* Prevention of chronic rejection in mouse aortic allografts by combined treatment with CTLA4Ig and anti-CD40 ligand monoclonal antibody. *Transplantation*. (1997). 64: 1838-1856.

20

38. Larsen, C.P. *et al.* Longterm acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. *Nature*. (1996). 381: 434-441.

25

39. Wecker, H. and Auchincloss, H. Cellular mechanisms of rejection. *Current Opinion in Immunology*. (1992). 4: 561-566.

40. Satake ,M. *et al.* Direct activation of human responder T cells by porcine stimulator cells

30

leads to T cell proliferation and cytotoxic T cell development. *Xenotransplantation*. (1996). 3: 198-206.

41. Kirk, A.D. *et al.* The human anti-porcine T cell repertoire. In vitro studies of acquired and innate cellular responsiveness. *Transplantation*. (1993). 55 : 924-931.

5 42. Alter, B. and Bach, F.H. Cellular basis of the proliferative response of human T cells to mouse xenoantigens. *Journal of Experimental Medicine*. (1990). 171: 333-338.

43. Baliga, P. *et al.* CTLA4Ig prolongs allograft survival while suppressing cell mediated immunity. *Transplantation* (1994): 58: 1082.

10 44. Turka, LA. T cell activation by the CD28 ligand B7 is required for cardiac allograft rejection *in vivo*. *Proceedings of the National Academy of Science. USA* (1992): 89: 11102.

15 45. Lin, H. *et al.* Long term acceptance of major histocompatibility complex mismatched cardiac allograft induced by CTLA4-Ig plus donor specific transfusion. *Journal of Experimental Medicine* (1993). 178: 1801.

46. Lenschow, DJ. *et al.* Long term survival of xenogeneic pancreatic islet grafts induced 20 by CTLA4-Ig. *Science*. (1992): 257: 789.

47. Lu,L. *et al.* Blockade of the CD40-CD40 ligand pathway potentiates the capacity of donor derived dendritic cell progenitors to induce long-term cardiac allograft survival. *Transplantation*. (1997). 64: 1808-1815

25 48. Fallarino, F. *et al.* B7-1 engagement of cytotoxic T lymphocyte antigen 4 inhibits T cell activation in the absence of CD28. *Journal of Experimental Medicine*. (1988). 188 : 205-210.

30 49. Freeman, G.J. *et al.* Murine B7-2, an alternative CTLA4 counter-receptor that costimulates T cell proliferation and IL-2 production. *Journal of Experimental Medicine*. (1993). 178: 2185-2192.

50. Jenkins, K.M. and Johnson, J.G. Molecules involved in T-cell costimulation. *Current Opinion in Immunology*. (1993) 5 : 361-367.

51. Brunet, J.F. *et al.* A new member of the immunoglobulin superfamily-CTLA-4. 5 *Nature* (1987). 328: 267.

52. Lenschow, D.J. *et al.* B7 system of T cell costimulation. *Annual Reviews of Immunology*. (1996). 14 : 233-258.

10 53. Norton, S.D. The CD28 ligand, B7, enhances IL-2 production by providing a costimulatory signal to T cells. *The Journal of Immunology*. (1992). 149 : 1556-1561.

54. Linsley, P.S. *et al.* T cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB1. *Proceedings of the National Academy of Science*. 15 (1990). 87 : 5031-5035.

55. Krummel, M.F. *et al.* CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. *Journal of Experimental Medicine* (1995): 182: 459.

20 56. Krummel, M.F. and Allison, J.P. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. *Journal of Experimental Medicine* (1996): 183: 2533.

57. Walunas, T.L. *et al.* CTLA-4 ligation blocks CD28-dependent T cell activation. 25 *Journal of Experimental Medicine* (1996). 183: 2541.

58. Gimmi, C.D. *et al.* Human T-cell clonal anergy is induced by antigen presentation in the absence of B7 costimulation. *Proceedings of the National Academy Science. U S A* (1993): 90: 6586.

30 59. Waterhouse, P. *et al.* Lymphoproliferative disorders with early lethality in mice deficient in CTLA4. *Science* (1995): 270: 985.

60. Maher, S.E. *et al.* Porcine endothelial CD86 is a major costimulator of xenogeneic human T cells. *The Journal of Immunology.* (1996). 157: 3838-3844.

5 61. vanEssen, D. *et al.* CD40 ligand-transduced co-stimulation of T cells in the development of helper function. *Nature.* (1995) 378: 620-623.

62. Larsen, C.P. *et al.* CD40-gp39 interactions play a critical role during allograft rejection. *Transplantation.* (1996). 61: 4-9.

10 63. Larsen, C.P. and Pearson, T.C. The CD40 pathway in allograft rejection, acceptance and tolerance. *Current Opinion in Immunology.* (1997). 9: 641-647.

15 64. Bennet, S.R.M. *et al.* Help for cytotoxic T-cell responses is mediated by CD40 signalling. *Nature.* (1998). 393: 478-480.

65. Schoenberger, S.P. *et al.* T cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. *Nature.* (1998) 393: 480-483.

20 66. Ridge, J. P. *et al.* A conditioned dendritic cell can be a temporal bridge between a CD4 T helper and a T-killer cell. *Nature.* (1998) 393: 474-478.

67. Tran, H.M. *et al.* Short-term xeno-suppression of the xeno-immune response with mCTLA4-Fc treatment. *Transplantation.* (1997). 4: 222-227

25 68. Lise, L.D. *et al.* Enhanced epitopic responses to a synthetic human malarial peptide by preimmunisation with tetanus toxoid carrier. *Infection and Immunity.* (1987). 55: 2658-2661.

69. Dalum, I. *et al.* Breaking of B cell tolerance toward a highly conserved self protein. The Journal of Immunology. (1996). 157: 4796-4804.

70. Dalum, I. *et al.* Induction of cross-reactive antibodies against a self-protein by immunisation with a modified self protein containing a foreign T helper epitope. Molecular Immunology. (1997). 34: 1113-1120.

71. Sad, S. *et al.* Bypass of carrier induced epitope-specific suppression using a T helper epitope. Immunology. (1992). 76: 599-603.

10

72. Sad, S. *et al.* Carrier induced suppression of the antibody response to a "self"-hapten. Immunology. (1991). 74: 223-227.

15

73. Grimaldi, J.C. *et al.* Genomic structure and chromosomal mapping of the murine CD40 gene. The Journal of Immunology. (1992). 149: 3921-3926.

74. Stamenkovic, I. *et al.* A B lymphocyte activation molecule related to the nerve growth receptor and induced by cytokines in carcinomas. The EMBO Journal. (1989).8: 1403-1410.

20

75. Ramesh, N. *et al.* Chromosomal localisation of the gene for human B-cell antigen CD40. Somatic Cell and Molecular Genetics. (1993). 19: 295-298.

25

76. Shimonkevitz, R. *et al.* Antigen recognition by H-2-restricted T cells. The Journal of Immunology. (1984). 133: 2067-2074.

77. Robinson, J. H. *et al.* Palmitic acid conjugation of a protein antigen enhances major histocompatibility complex class II restricted presentation to T cells. Immunology. (1992) 76 : 593-598.

30

78. Elma, E.M.G. *et al.* Direct coating of poly(lys) or acetyl-thio-acetyl peptides to polystyrene: The effects in an enzyme-linked immunosorbent assay. *Analytical Biochemistry.* (1997). 248: 117-129.

5 79. Wennberg, L. *et al.* Allogeneic and xenogeneic islets are rejected by different and specific mechanisms: A study in rodents using a mixed allogeneic-xenogeneic islet transplantation model. *Xenotransplantation.* (1997). 4 : 228-234.

10 80. Mandel, T.E. *et al.* Cellular rejection of fetal pancreas grafts: differences between allo and xenograft rejection. *Xenotransplantation.* (1997) 4: 2-10.

15 81. Mandel, T. E. *et al.* Transplantation of organ cultured fetal pig pancreas in non-obese diabetic (NOD) mice and primates (*Macaca fascicularis*). *Xenotransplantation.* (1995) 2: 128-132.

82. Lu, X. *et al.* Long-term survival of hamster islet xenografts in mice under short course treatment with non depleting versus depleting anti-CD4 monoclonal antibodies. *Xenotransplantation.* (1998). 5 : 154-163.

20 83. Marchetti, P. *et al.* Automated large-scale isolation, *in vitro* function and xenotransplantation of porcine islets of langerhans. *Transplantation.* (1991). 52: 209-213.

84. Ricordi, C. *et al.* A method for the mass isolation of islets from the adult pig pancreas. *Diabetes.* (1986) 35: 649-653.

25 85. Ricordi, C. *et al.* Isolation of the elusive pig islet. *Surgery.* (1990). 107: 688-694.

86. Tsang *et al* . Cloning and expression kinetics of porcine vascular cell adhesion molecule. *BBRC* (1994): 201: 805.

30

87. Orosz *et al* Treatment with anti vascular cell adhesion molecule -1 monoclonal antibody induces long-term murine cardiac allograft acceptance. *Transplantation* (1993): 53: 453.

5 88. Isobe *et al*. Immunosuppression to cardiac allografts and soluble antigens by anti-vascular cellular adhesion molecule -1 and anti-very late antigen -monoclonal antibodies. *J. Immunology* (1994) 153: 5810.

86. Etlinger, H.M. *et al*. Use of prior vaccinations for the development of new vaccines.

10 Science. (1990). 249: 423-425.

## CD86 (B7-2)

Human and porcine CD86 protein sequences were aligned and regions of non-homology identified. We predict that the peptide sequences will be derived from those regions listed below or from any overlap regions between any of these peptides.

The sequences of predicted interest for containing potential antibody epitopes have been selected on the basis of less than 75% sequence identity.

| Region | Position | % sequence identity |
|--------|----------|---------------------|
| i      | 18-42    | 72%                 |
| ii     | 55-73    | 55%                 |
| iii    | 101-127  | 63%                 |
| iv     | 136-165  | 56%                 |

Regions (iii) and (iv) encompass those containing the peptide 4 and 6 sequences identified in mice.

## CD40

Human and porcine CD40 protein sequences were aligned and regions of non-homology identified. We predict that the peptide sequences will be derived from those regions listed below or from any overlap regions between any of these peptides.

The sequences of predicted interest for containing potential antibody epitopes have been selected on the basis of less than 75% sequence identity.

| Region | Position | % sequence identity |
|--------|----------|---------------------|
| i      | 25-48    | 63%                 |
| ii     | 49-75    | 74%                 |
| iii    | 93-114   | 59%                 |
| iv     | 123-139  | 63%                 |
| v      | 158-176  | 68%                 |
| vi     | 208-227  | 45%                 |
| vii    | 231-248  | 21%                 |

## VCAM-1

Human and porcine VCAM-1 protein sequences were aligned and regions of non-homology identified. We predict that the peptide sequences will be derived from those regions listed below or from any overlap regions between any of these peptides. The sequences of predicted interest for containing potential antibody epitopes have been selected on the basis of less than 75% sequence identity.

| Region | Position | % sequence identity |
|--------|----------|---------------------|
| i      | 1-15     | 44%                 |
| ii     | 16-33    | 63%                 |
| iii    | 49-65    | 58%                 |
| iv     | 74-85    | 42%                 |
| v      | 100-117  | 50%                 |
| vi     | 122-140  | 56%                 |
| vii    | 144-157  | 64%                 |
| viii   | 162-191  | 47%                 |
| ix     | 209-221  | 62%                 |
| x      | 290-301  | 67%                 |
| xi     | 322-342  | 62%                 |
| xii    | 362-379  | 67%                 |
| xiii   | 448-465  | 67%                 |

CLAIMS

1. A method of improving tolerance to a porcine xenograft comprising immunising a mammal with an immunogen comprising:

- i) a T-cell epitope; and
- ii) a B-cell epitope characterised in that the B-cell epitope is a porcine polypeptide involved in mediating xenograft rejection and derived from a region of a porcine polypeptide which has less than 75% sequence identity to the corresponding region of the equivalent human polypeptide.

2. A method according to Claim 1 wherein the B-cell epitope is a peptide derived from at least one porcine polypeptide selected from; CD40; CD80; CD86 or VCAM.

3. A method according to Claim 1 or 2 wherein the peptide is selected from at least one peptide represented in Figure 22.

4. A method according to Claim 1 or 2 wherein the peptide is selected from at least one peptide represented in Figure 24.

5. A method according to Claim 1 or 2 wherein the peptide is selected from at least one peptide represented in Figure 26.

6. A method according to any of Claims 1-5 wherein the T – cell epitope is derived from tetanus toxoid polypeptide.

7. A composition comprising an immunogen characterised in that the immunogen has a T – cell epitope and a B- cell epitope wherein the B – cell epitope is derived from a region of a porcine polypeptide which has less than 75% sequence identity to the corresponding region of the equivalent human polypeptide.

8. A composition according to Claim 7 wherein the porcine polypeptide is expressed by vascular endothelial cells of said xenograft.
9. A composition according to Claims 7 or 8 wherein the B-cell epitope is derived from at least one porcine polypeptide selected from; CD40; CD86; CD80; VCAM.
10. A composition according to Claim 9 wherein the B- cell epitope is selected from at least one peptide as represented in Figure 22 .
11. A composition according to Claim 9 wherein the B- cell epitope is selected from at least one peptide as represented in Figure 24 .
12. A composition according to Claim 9 wherein the B- cell epitope is selected from at least one peptide as represented in Figure 26.
13. A composition according to Claims 9 or 12 wherein the B- cell epitope is derived from the extracellular domain of CD86.
14. A composition according to any of Claims 7 - 13 wherein the T- cell epitope is derived from tetanus toxoid.
15. A composition according to any of Claims 7 - 14 wherein the composition further comprises a carrier capable of enhancing the immune response to said immunogen.
16. An antibody, or the effective part thereof, characterised in that said antibody is capable of binding to a region of a porcine polypeptide which has less than 75% sequence identity to the corresponding region of the equivalent human polypeptide.
17. An antibody according to Claim 16 wherein the antibody is a monoclonal antibody.

18. An antibody according to Claims 16 or 17 wherein the antibody is modified with at least one detectable label.

19. A method to monitor the immune status of a mammalian recipient of a xenograft comprising:

- i) removing a sample from a xenograft recipient to be tested;
- ii) contacting said sample with the antibody according to Claims 16 -18; and
- iii) monitoring the expression of a porcine polypeptide involved in mediating xenograft rejection.

20. A method to treat a mammal prior to receiving a xenograft comprising:

- i) immunising a mammal with a composition according to Claims 7-15;
- ii) assessing the immune status of said mammal to said immunogenic composition;
- iii) transplantation of said xenograft tissue/organ into a recipient mammal; and
- iv) monitoring the rejection response to said xenograft.

21. A method according to Claim 19 or 20 wherein the xenograft is of porcine origin and said mammal is human.

22. A method according to any of Claims 19 -21 wherein the xenograft is at least one vascularised graft and/or immunogenic porcine cell/tissue.

23. A method according to any of Claims 19 – 22 wherein the xenograft is pancreatic islets.



## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

|                                                                                                                                                                                                                                                                                                                                                                                                                         |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|
| (51) International Patent Classification <sup>7</sup> :<br><b>A61K 39/00, 39/385, C07K 16/28, G01N 33/577, 33/68, A61P 37/06 // C07K 14/705</b>                                                                                                                                                                                                                                                                         |  | A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (11) International Publication Number: <b>WO 00/37102</b> |  |  |
| (21) International Application Number: <b>PCT/GB99/04200</b>                                                                                                                                                                                                                                                                                                                                                            |  | (11) International Publication Number: <b>WO 00/37102</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |  |  |
| (22) International Filing Date: <b>17 December 1999 (17.12.99)</b>                                                                                                                                                                                                                                                                                                                                                      |  | (43) International Publication Date: <b>29 June 2000 (29.06.00)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           |  |  |
| (30) Priority Data:<br>9827921.9 19 December 1998 (19.12.98) GB<br>9925015.1 23 October 1999 (23.10.99) GB                                                                                                                                                                                                                                                                                                              |  | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). |                                                           |  |  |
| (71) Applicant (for all designated States except US): <b>ML LABORATORIES PLC [GB/GB]; 17 Hanover Square, London W1R 9AJ (GB).</b>                                                                                                                                                                                                                                                                                       |  | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). |                                                           |  |  |
| (72) Inventors; and                                                                                                                                                                                                                                                                                                                                                                                                     |  | <b>Published</b><br><i>With international search report.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                           |  |  |
| (75) Inventors/Applicants (for US only): <b>LECHLER, Robert, Ian [GB/GB]; 78 Woodstock Road, Chiswick, London W1A 1EQ (GB). ROGERS, Nichola, Jane [GB/GB]; Flat F, 9 Cumberland Park, London W3 6SY (GB). DORLING, Anthony [GB/GB]; 28 Coldfall Avenue, Muswell Hill, London N10 1HS (GB).</b>                                                                                                                          |  | (88) Date of publication of the international search report: <b>14 September 2000 (14.09.00)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           |  |  |
| (74) Agent: <b>HARRISON GODDARD FOOTE; Belmont House, 20 Wood Lane, Leeds LS6 2AE (GB).</b>                                                                                                                                                                                                                                                                                                                             |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           |  |  |
| <b>(54) Title: IMPROVEMENT OF TOLERANCE TO A XENOGRAFT</b>                                                                                                                                                                                                                                                                                                                                                              |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           |  |  |
| <b>(57) Abstract</b>                                                                                                                                                                                                                                                                                                                                                                                                    |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           |  |  |
| The invention hereindescribed relates to a method to improve the tolerance of a mammal, preferably a human, to a xenograft through immunisation of the recipient mammal with an immunogen comprising both a B cell epitope derived from porcine polypeptides and T cell epitope. The invention also encompasses immunogenic compositions comprising said immunogens and methods to monitor the status of the xenograft. |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           |  |  |

Figure 1



## Figure 2

GCATGGATCCATGGGACTGAGTAACATTCTCTTG  
1                   ATGGGACTGAGTAACATTCTCTTGATGGCCTCCT  
39                GCTCTCTGGTGCTGCCTCCTGAAAAGTCAGGCATATTCAATGAGA  
86                CTGGAGAACTGCCGTGCCATTACAAACTCGCAGAACCTAACGCTG  
133              GATGAGCTGGTCATAATTGGCAGGACCAGGATAACCTGGTCTCA  
181              CGAGCTATACCGAGGCCAAGAGAACGCCTCATAATGTTAATTCCAAG  
227              TATATGGTCGCACAAGCTTGACCAGGCCACCTGGACCCCTGAGACT  
274              CCACAAACGTTCAAATCAAGGACAAGGGCTCATATCAATGTTCATC  
321              CATCATAAAAGGGCCGCATGGACTTGTCTATCCACCAAGATGAGTT  
368              TGACCTATCATTGCTTGCTAACTTCAGTCACCTGAAATAAACCTAC  
415              TTACTAATCACACAGAAAATTCTGTCATAAAATTGACCTGCTCATCT  
462              ACACAAAGGCTACCCAGAACCCCAGAGGATGTATATGTTGCTAAATA  
509              CGAAGAATTCAACCACTGAGCATGATGCTGACATGAAGAAATCTCA  
556              AAATAACATCACGGAACTCTACAATGTATCAATCAGGGTGTCTT  
602              CCCATCCCTCCCGAGACAAATGTGAGCATCGTCTGTGCTGCAACTT  
649              GAGCCAAGCAAGACACTGCTTTCTCCCTACCTGTAATATAGATGC  
696              AAAGCCACCTGTGCAACCCCCCTGTCCCAGACCACATCCTCTGGATTGC  
743              AGCTCTACTTGTAAACAGTGGTCGTTGTGTGGATGGTGTCTTGT  
790              AACACTAAGGAAAAGGAAGAAGAAGAACGCAGCCTGGCCCTCTAATGA  
837              ATGTGGTGAACCATCAAAATGAACAGGAAGGGAGTGAACAAAC  
884              TAAGAACAGAGCAGAAGTCATGAACGATCTGATGATGCCAGTGT  
931              GATGTTAATATTTAAAGACAGCCTCAGATGACAACAGTACTACAG  
                  GACAACAGTACTACAG  
978              ATTTTAATTAAAGAGTAAACTCC  
                  ATTTTAAGTCGACATGC

## Figure 3

1 CACCGCGGTG CGGCCGCTCT AGAACTAGTG GATCCATGGG ACTGAGTAAC  
51 ATTCTCTTG GGATGGTCCT CCTGCTCTCT GGTGCTGCCT CCTTGAAAAG  
101 TCAGGCATAT TTCAATGAGA CTGGAGAACT GCGGTGCCAT TTTACAAACT  
151 CGCAGAACCT AAGCCTGGAT GAGCTGGTCA TATTTGGCA GGACCAAGGAT  
201 AACCTGGTC TCTACGAGCT ATACCGAGGC CAAGAGAAC CTCATAATGT  
251 TAATTCCAAG TATATGGTC GCACAAGCTT TGACCAGGCC ACCTGGACCC  
301 TGAGACTCCA CAACGTTCAA ATCAAGGACA AGGGCTCATA TCAATGTTTC  
351 ATCCATCATA AAGGGCCGCA TGGACTTGGT CCTATCCACC AGATGAGTTTC  
401 TGACCTATCA GTGCTTGCTA ACTTCAGTCA ACCTGAAATA AACCTACTTA  
451 CTAATCACAC AGAAAATTCT GTCATAAATT TGACCTGCTC ATCTACACAA  
501 GGCTACCCAG AACCCCAGAG GATGTATATG TTGCTAAATA CGAAGAATTG  
551 AACCACTGAG CATGATGCTG ACATGAAGAA ATCTAAAAT AACATCACGG  
601 AACTCTACAA TGTATCAATC AGGGTGTCTC TTCCCATCCC TCCCGAGACA  
651 AATGTGAGCA TCGTCTGTGT CCTGCAACTT GAGCCAAGCA AGACACTGCT  
701 TTTCTCCCTA CCTTGTAAATA TAGATGAAA GCCACCTGTG CAACCCCTG  
751 TCCCAGACCA CATCCTCTGG ATTGCAGCTC TACTTGTAAAC AGTGGTCGTT  
801 GTGTGTGGGA TGGTGTCCCT TGTAACACTA AGGAAAAGGA AGAAGAAGCA  
851 GCCTGGCCCC TCTAATGAAT GTGGTGAAAC CATAAAATG AACAGGAAGG  
901 CGAGTGAACA AACTAAGAAC AGAGCAGAAC TCCATGAACG ATCTGATGAT  
951 GCCCAGTGTG ATGTTAATAT TTTAAAGACA GCCTCAGATG ACAACAGTAC  
1001 TACAGATTT TAAGTCGACC TCGAGGGGGG GCCCGGTACC AGCTTTGTT

**Figure 4:** Comparison of the nucleotide sequence of CD86(i) with the published sequence for porcine CD86.

10 20 30 40

ATGGGACTGAGTAACTTCCTTCTGGATGGCTCTGCTCTGCTCTGG  
.....  
CACCGCGGTGCGGCCGCTCTAGAACTAGTGGATCCATGGGACTGAGTAACTTCCTTCTGGATGGCTCTGCTCTGG  
10 20 30 40 50 60 70 80 90 100 110 120  
.....  
TGCTGCTCTTGTAAAAGTCAGGCATATTCAATGAGACTGGAGAACTGGCGTCCCATTACAAACTGGCAGAACCTAAC  
.....  
TGCTGCTCTTGTAAAAGTCAGGCATATTCAATGAGACTGGAGAACTGGCGTCCCATTACAAACTGGCAGAACCTAAC  
50 60 70 80 90 100 110 120 130 140 150 160  
.....  
CTGGATGAGCTGGTCATATTTGGCAGGACCAGGATAACCTGGTTCTCTACGAGCTATACTGGAGGCCAAGAGAACCTCATA  
.....  
CTGGATGAGCTGGTCATATTTGGCAGGACCAGGATAACCTGGTTCTCTACGAGCTATACTGGAGGCCAAGAGAACCTCATA  
90 100 110 120 130 140 150 160 170 180 190 200  
.....  
CTGGTAATTCCAAGTATATGGGTGGCACAAAGCTTGGACCCAGGAACTGGACCTGAGACTTCCACAACTGGTCAAATCAAGGA  
.....  
CTGGTAATTCCAAGTATATGGGTGGCACAAAGCTTGGACCCAGGAACTGGACCTGAGACTTCCACAACTGGTCAAATCAAGGA  
220 230 240 250 260 270 280 290 300 310 320  
.....  
TACGGCTCATATCAATGTTTCATCCATCATAAAGGGCCCATGGACTTGTCTTATCCACCAAGATGAGCTCTGACCTATCA  
.....  
TACGGCTCATATCAATGTTTCATCCATCATAAAGGGCCCATGGACTTGTCTTATCCACCAAGATGAGCTCTGACCTATCA  
300 310 320 330 340 350 360 370  
.....  
GCTTGGCTAACTTCAGTCAACCTGAAATAAACCTRACTTACTAATCACACAGAAATTCTGTCATAAAATTGACCTGCTCAT  
.....  
GCTTGGCTAACTTCAGTCAACCTGAAATAAACCTRACTTACTAATCACACAGAAATTCTGTCATAAAATTGACCTGCTCAT  
380 390 400 410 420 430 440 450  
.....  
ACACAAGGCTACCCAGAACCCCTGAGGAAGTATATGTTGCTAAATACGAAGAATTCAACCACTGAGCATGATGCTGACAT  
.....  
ACACAAGGCTACCCAGAACCCCTGAGGAAGTATATGTTGCTAAATACGAAGAATTCAACCACTGAGCATGATGCTGACAT  
460 470 480 490 500 510 520 530

540 550 560 570 580 590 600 610 620  
 GAAGAAATCTCAAAATAACATCACCGAACCTCTACATGTATCAAGGTGTCCTCCATCCCTCCGAGACAAATGIG  
 GAAGAAATCTCAAAATAACATCACCGAACCTCTACATGTATCAAGGTGTCCTCCATCCCTCCGAGACAAATGIG  
 580 590 600 610 620 630 640 650  
  
 630 640 650 660 670 680 690 700  
 AGCATCGTCCTGTCCTGCAACTTGAGCCAAGCAAGACACTGCTTTCTCCCTACCTTGTAAATAGATGCAAAGCCACCTG  
 AGCATCGTCCTGTCCTGCAACTTGAGCCAAGCAAGACACTGCTTTCTCCCTACCTTGTAAATAGATGCAAAGCCACCTG  
 660 670 680 690 700 710 720 730  
  
 710 720 730 740 750 760 770 780  
 TCGAACCCCCCTGTCCCAGACCACATCCTCTGGATTGCAAGCTACTTGTAAACAGTGGTGTGTTGGGATGGTGTCCCT  
 TCGAACCCCCCTGTCCCAGACCACATCCTCTGGATTGCAAGCTACTTGTAAACAGTGGTGTGTTGGGATGGTGTCCCT  
 740 750 760 770 780 790 800 810 820  
  
 790 800 810 820 830 840 850 860  
 TGTAAACACTAAGGAAAAGGAAGAAGAACGGCTGGCCCCCTCTAATGAATGTGGTGAACCATCAAAATGAACAGGAAGCG  
 TGTAAACACTAAGGAAAAGGAAGAAGAACGGCTGGCCCCCTCTAATGAATGTGGTGAACCATCAAAATGAACAGGAAGCG  
 830 840 850 860 870 880 890 900  
  
 970 880 890 900 910 920 930 940  
 GTGAACACTAAGAACAGAGCAGAACAGTCCATGAACGATCTGATGATGCCAGTGTGATGTTAATTTTAAAGACAGCCT  
 GTGAACACTAAGAACAGAGCAGAACAGTCCATGAACGATCTGATGATGCCAGTGTGATGTTAATTTTAAAGACAGCCT  
 910 920 930 940 950 960 970 980  
  
 50 960 970 980 990  
 AGTGTCAACAGTACTACAGATTTTAATTAAAGAGTAAACTCC  
 AGTGTCAACAGTACTACAGATTTTAAGTGCACCTCGAGGGGGCCGTACCAAGCTTTGTT  
 990 1000 1010 1020 1030 1040 1050

FIGURE 5

Contig | ACCATGGGACTGAGTAACATTCTCTTGTGATGGCTTCCCTGCTCT  
 Murine B7-2 | CCATGGGACTGAGTAACATTCTCTTGTGATGGCTTCCCTGCTCT  
 Porcine CD68(i) | ACCATGGGCTTGGCAATCCCTATCTTGTGACAGACTTGCTGATCTCA  
 Human B7.2 | ACTATGGGACTGAGTAACATTCTCTTGTGATGGCTTCCCTGCTCT

GGTGCTGCTTCCBTGAAGAATCAGCTTATTTCAATGAGACTGCAGAHTGCCGTGCCAATTAA  
 GGTGCTGCCCTCCCTGAGAAAGTCAGGCATATTCAATGAGACTGGAGAACTGCCGTGCCAATTAA  
 GATGCTGTTCCGTGGAGACGGCAAGCTTATTTCAATGGGACTGCATATCTGCCGTGCCAATTAA  
 GGTGCTGCCCTCTGAAGATTCAAGCTTATTTCAATGAGACTGCAGACCTGCCATGCCAATTAA

CAAACCTCTAAACCTAAGCTGAGTGGCTGGTAGTATTTGGCAGGACCAAGGAAACTTGGT  
 CAAACCTGCAGAACCTAAGCTGGATGAGCTGGTCATAATTGGCAGGACCAAGGAAACTTGGT  
 CAAAGGCTCTAAACATAAGCCTGAGTGGCTGGTAGTATTTGGCAGGACCAAGGAAACTTGGT  
 CAAACCTCTAAACCAAAAGCCTGAGTGGCTTAGTAGTATTTGGCAGGACCAAGGAAACTTGGT

TCTGTACGAGCTATACTTAGGCAAAGAGAACTTGATAGTGGTAAATTCCAAGTATAATGGCCGC  
 TCTCTACGAGCTATAACCGAGGCCAGAGAACGCTCATAATGTTAAATTCCAAGTATAATGGGTGGC  
 TCTGTACGAGCCTATTGGCACAGAGAAACTTGATAGTGGTAAATTCCAAGTACCTGGCCCGC  
 TCTGAATGAGGTATACTTAGGCAAAGAGAAATTGACAGTGGTAAATTCCAAGTATAATGGCCGC

ACAAGCTTGTGACHVGGACAVCTGGACCCCTGAGACTTCACAACTTCAGATCAAGGACAAGGGCT  
 ACAAGCTTGTGACCAGGCCACCTGGACCCCTGAGACTCCACAACTTCAGATCAAGGACAAGGGCT  
 ACGAGCTTGTGACAGGAACAACCTGGACTCTACGACTTCACAAATGTTCAAGATCAAGGACATGGGCT  
 ACAAGTTGTGATTGGACAGTGGACCCCTGAGACTTCACAAATCTCAGATCAAGGACAAGGGCT

CGTATCAATGTTTCATCCATCAAAAVVGGCCACAGGAHTDATTBCATCCACCCAGATGADTT  
 CATATCAATGTTTCATCCATCATAAAGGGCCCATGGACTTGTGCTTATCCACCCAGATGAGTT  
 CGTATGATGTTTATCAAAAAAGCCACCCACAGGATCAATTATCTCCACAGACATTAAC  
 TGTATCAATGTTATCATCCATCACAAAAGCCACAGGAATGATTGCGATCCACCCAGATGAAATT

TGAACCTGTCAGTGCTTGTAACTTCAGTCAACCTGAAATAAAACTAVTTCTAATVTAACAGAA  
 TGACCTATCAGTGCTTGTAACTTCAGTCAACCTGAAATAAAACTACTTACTAATCACACAGAA  
 AGAACTTGTCAGTGATGCCAACCTCAGTGAACCTGAAATAAAACTGGCTCAGAATGTAACAGGA  
 TGAACCTGTCAGTGCTTGTAACTTCAGTCAACCTGAAATAAGTACCAATTCTAATATAACAGAA

## FIGURE 7

10 20 30 40 50 60 70 80  
 CCAAAGAAAAAGT GATT TGT CATT GCT TTA TAGACT GTAA AGA AGAGA ACAT CTC AGA AGT GGG AGT CTT ACC CTGA AAT CAA  
 GAG TTT TAT ACC TCA ATAGACT  
 10 20  
  
 90 100 110 120 130 140 150 160  
 GGAT TTA AAG AAA AGT GGA ATT TTT CTT CACCA AGCT GTG AA ACT AA ATCC ACAC CCT TGG AG ACC CAG GA AC ACC CTC  
 CTT ACT AGT TTT CTT CTT CAG GTG AA ACT CAAC CTCA AA AGAC ACT CTG GTT CCAT TCT GTG GACT AA TAGG ATC ATC  
 30 40 50 60 70 80 90 100  
  
 170 180 190 200 210 220 230 240  
 AAT CTG TGT GGT GTAA AAC ATCA CTGG AGGG CTT CAC GTG AGCA AT TGG GTG CAT CAG CCT GCT GTT TGCAC  
 TTT AGC ATCT GCG GGG GTGG ATGCC ATCC AGGC TTCT TCT ACAT CTCT GTTT CTG GAT TTT GTG AGC CTAGG AGGT GGC  
 110 120 130 140 150 160 170 180  
  
 250 260 270 280 290 300 310 320  
 CTGG AA GTGCC TGG CTT TACT TGGG TCC AA ATG TGG CTT TCA CT TGG GCT TGG CCA AGC ATCT GAA GGC ATGGG CAC AC  
 TAAG CTCC AT TGG CTT CAG ATTC CTT GGT TCC CCA AGC ATCT GAA AGC ATCT GAA GCT ATGG CTT GCA AT TGT CAG TT  
 190 200 210 220 230 240 250 260  
  
 330 340 350 360 370 380 390 400 410  
 ACGG AGGG CAGGG AAC ATCACCA CCTT CAAGT GTCC ATACCT CA ATT TCTT CAG CT TGG GCT GGG CTT GGT CTT CTC ACTTC  
 GAT GCAGG ATAC ACC ACT CCT CTA AGT TCC AT GTCC AAGG CTC ATT CCTT CT TTT GGT GCT GGT GAT TCC GTT CTT CACA AGTG  
 270 280 290 300 310 320 330 340 350  
  
 420 430 440 450 460 470 480 490  
 TGTT CAGG TGT ATCC ACCT GACCA AGGA AGT GAA AGA AGT GGG CAAC GCT GTCC TGT GGT CACA ATG TGT CAG GTG AAG AGC  
 TCTT CAGA ATG TGT GAT GAA ACA ACT GTCC AAGT CAGT GAA AGA GATA AGGT ATT GCT GGC TT GCG GTT ACA ACCT CCT CAT GAAG  
 360 370 380 390 400 410 420 430  
  
 500 510 520 530 540 550 560 570  
 TGGC ACMA ACT CGC ATCT ACT TGG CAA AAGG AGA AGAA ATGGT GCT GACT ATGAT GTC TGGG GAC ATG AA AT ATAT TGG CCGA  
 ATGAGT CTGA AGAC CGGA ATCT ACT TGG CAA AAGC ATGAC AAAGT GGT GCT GTG CTT GCT TGG GAA ACT AAA AGT GTGGCC  
 440 450 460 470 480 490 500 510

## FIGURE 5-1

|                 |                                                                    |
|-----------------|--------------------------------------------------------------------|
| Contig          | AATTCTGDCATAAAATTGACCTGCTCATCTAACAAGGTTACCCAGAACCTAACAGAAGATGTATD  |
| Murine B7-2     | AATTCTGTCATAAAATTGACCTGCTCATCTACACAAGGCTACCCAGAACCCCAGAGGAAGTATA   |
| Porcine CD68(i) | AATTCTGGCATAAAATTGACCTGCACTGCTAACGCAAGGTACCCGAAACCTAACAGAAGATGTATT |
| Human B7.2      | AATGTGTACATAAAATTGACCTGCTCATCTATACACGGTTACCCAGAACCTAACAGAAGATGAGTG |

  

TTTGCTAAVTCNAAGAATTCAACTAHTGAGTATGATGVTAACTGAGAAATCTCAAGATAA  
 TGTGCTAAATACGAAGAATTCAACCACTGAGCATGATGCTGACATGAGAAATCTCAAATAA  
 TTCTGATAACT-----AATTCAACTAATGAGTATGGTATAACATGAGATATCACAGATAA  
 TTTGCTAAAGAACCAAGAATTCAACTATCGAGTATGGTATTATGAGAAATCTCAAGATAA

  

TGTACACAGAACIGTACAATGTHTCATCAGCBTGTCTCTTCAATTCCCTGATGDTACGAGNNAT  
 CATCACGGAACCTACAATGTTATCAATCAGGGTGTCTCTCCATCCCTCCCGAGACAA---AT  
 TGTACACAGAACIGTTCAGTATCTCCAACAGCCTCTCTCTTCAATTCCCGGATGGTGTGGCAT  
 TGTACACAGAACIGTACGACGTTCCATCAGCTGTCGTTCAATTCCCTGATGTTACGAGCAAT

  

ATGACCACATCGTCIGTGTTCIGGAAACTGAGNCANCAAGACNCNGCTTTCTCCHACCTTCA  
 GTGAGCATCGTCIGTGTCTGCAACTTGAGCCAAGAACACTGCTTTCTCCCTACCTTGT  
 ATGACCGTTGTTGTTCTGGAAACGGAGTCATGAAGA-----TTCTCCAAACCTCTCA  
 ATGACCACATCTCTGTATTCTGGAAACTGA-----CAAGACGGGCTTTATCTCACCTTCT

  

ATATAGATCAGAGBHHCCCTNNCAACCTCTINNNCCAGACCACATBCNNNTGGATTACAGCTBT  
 ATATAGATGCAAAGCCACCTGTGCAACCCCTCTGTCCTCAGACCACATCCTCTGGATTGGCAGCTCT  
 ATTCACACTCAAGAGTTCC-----ATCTCCTCAACAGTATTGGAAG-----GAGATTACAGCTTC  
 CTATAGAGCTTGAGGACCC-----CAGCTCC---CCCAGACCACATTCTGGATTACAGCTGT

  

ACTTNAACAGTGGTCVTTVTGIGTGATGGTGTCTCTVTAATTCTATGGAAANNAAGAAG  
 ACTTGTAAACAGTGGTCGTGTTGTTGGATGGTGTCTTGTAAACACTAAGGAAA---AGGAAG  
 AGTT---ACTGTGGCCCTCTCTCTGATGCTGTC---ATCATTTGATG---TCACAAGAAG  
 ACTTCCAACAG---TTATTATATGATGGTTCTGTCIAATTCTATGGAAATGGAAGAAG

  

AAGAAGCAGCTVGCACVCTCTAATAATGTCGGNNNAACCAHAAAATGGAGAGGGANGNGAGTG  
 AAGAAGCAGCTGGCCCCCTCTAATGAATGTGGTGAACCATCAAATGAACAGGAAGGGAGTG  
 CCGAATCAGCCTAGCAGGCCAGCAA-----CACAGCCTCTAAGTTAGAGCGGGA---TAGT-  
 AAGAAGCGGCCTCGCAACTCTTATAATGTGG---AACCAACACAATGGAGAGGGAAAGAGAGTG

  

AACANACTAAGAACAGAGAAAAANTCCATNNACCTGAAVGATCTGATGAAAGCCCAGNGTGNINT  
 AACAAACTAAGAACAGAGCAGAACAGTCCAT-----GAACGATCTGATGATGCCCAGTGTGATGT  
 AACG---CTG---ACAGAGAGA-----CTATCAACCTGAAGGAACCT-----TGAACCCCA-----  
 AACAGACCAAGAAAAGAGAAAAATCCATATACCTGAAAGATCTGATGAAAGCCCAGCGTGT

  

TAANADTTNAAGACAGCTTCANNNAGACAAAAGTNNACANNTTTTAADTNNAAGAGTNAAGNN  
 TAATATTTTAAGACAGCCTCAGATGACAACAGTACTACAGATTTTAAGT-----  
 -----AATT-----GCTTCA-----GCAAAA-----CCAAATGCAAGAGTGAAG-----  
 TAAAAGTTGCAAGACATCTCATGCGACAAAAGTGTACATGTTTAATAAAGAGTAAAGCC

FIGURE 6

## FIGURE 7-1

580            590            600            610            620            630            640            650  
 GTACAAGAACCGGACCATCTTGATATCACTAATAACCTCTCCATTGTGATCTGGCTCTGGCCCCATCTGACCGAGGGCACA  
 CGAGTATAAGAACCGGACCTTATATGACAACACTACCTACTCTTATCATCTGGCCCTGGTCTTTAGACACCGGGGACA  
 520            530            540            550            560            570            580            590  
  
 660            670            680            690            700            710            720            730  
 TACGAGTGTGTTGCTGAAGTATGAAAAAGACGCTTCAAGCGGGAACACCTGGCTGAAGTGACGTTATCAGTCAGCTG  
 ...            ...            ...            ...            ...            ...            ...            ...  
 TACAGCTGTCGTTCAAAAGAAGGAAAGAGGAACGTATGAAGTTAACACTTGGCTTAGTAAAGTTGTCCATCAGCTG  
 600            610            620            630            640            650            660            670  
  
 740            750            760            770            780            790            800            810            820  
 ACTTCCCTACACCTAGTATATCTGACTTTGAAATTCCAACCTCTAAATTAGAAGGATAATTGCTAACCTCTGGAGGTTT  
 ...            ...            ...            ...            ...            ...            ...            ...  
 ACTTCTCTACCCCCAACATAACTGAGCTGGAAACCCATCTGAGACACTAAAGGATTACCTGCTTGGCTTCCGGGGTTT  
 680            690            700            710            720            730            740            750            760  
  
 830            840            850            860            870            880            890            900  
 TCCAGAGCCCTACCTCTCCCTGGTGGAAAATGGAGAAGATTAAATGCCATCAACACAACAGTTCCCAAGATCTGAAACT  
 ...            ...            ...            ...            ...            ...            ...            ...  
 CCCAAAGCCCTCGCTCTCTGGTGGAAAATGGAAGAGAATTACCTGGCATCAATACGACAATTCCCAGGATCTGAATCT  
 770            780            790            800            810            820            830            840  
  
 910            920            930            940            950            960            970            980  
 GAGCCTATGCTGTTAGCAGCAAACCTGGATTCAATATGACAACCAACACAGCTTCACTGCTCATCAAGTATGGACATT  
 ...            ...            ...            ...            ...            ...            ...            ...  
 GAATTGTACACCAATTAGTAGCCAACTAGATTCAATACGACTCGCAACCAACACCAATTAGTGCTCATTAATATGGAGATG  
 850            860            870            880            890            900            910            920  
  
 990            1000            1010            1020            1030            1040            1050            1060  
 TAAGAGTGAATCAGACCTCAACTGGAATACACCAAGCAAGAGCATTTCCTGATAACCTCTCCATCTGGCCATTAC  
 ...            ...            ...            ...            ...            ...            ...            ...  
 CTCACGTGTCAGAGGACTTCACCTGGGAAAAACCCCCAGAAGAGACCCCTCTGATAGCAAGAACACACTTGCTCTTGGGGC  
 930            940            950            960            970            980            990            1000  
  
 1070            1080            1090            1100            1110            1120            1130            1140  
 CTTAACCTCAGTAATGGAATTGGATATGCTGCTGACCTACTGCTTGGCCCAAGATGCAAGAGAGAGAGAGGAGGAAT  
 ...            ...            ...            ...            ...            ...            ...            ...  
 AGGATTGGCGCAGTAATAACAGTCGTCGTATCGTTGTCACTCATCAAATGCTCTGTAAGCACAGAACAGCTGTTCAAGAAGA  
 1010            1020            1030            1040            1050            1060            1070            1080

## FIGURE 7-2

1150      1160      1170      1180      1190      1200      1210      1220      1230  
 GAGAGATTTGAGAAGGGAAAGTGTACGCCCTGTATAACAGTGTCCGCAGAACAGCAAGGGCTGAAAAGATCTGAAGGTAGCCTC  
 •      •      •      •      •      •      •      •      •  
 AATGAGGCAAGCAGAGAAAACAAACAGCCTTACCTTCGGGCTGAGAACGATTAGCTGAACAGACCGTCTTCCTTTAGT  
 1090      1100      1110      1120      1130      1140      1150      1160      1170

1240      1250      1260      1270      1280      1290      1300      1310  
 CGTCATCTCTCTGGGATACATGGATCGTGGGATCATGAGGCATTCTTCCCTTAACAAATTAAAGCTGTTTACCCACTAC  
 •      •      •      •      •      •      •      •  
 TCTTCTCTGTCATGTGGGATACATGGTATTATGTCATGAGGTACAATCTTCTTCAGCACCGTGCTAGCTGATCTT  
 1180      1190      1200      1210      1220      1230      1240      1250

1320      1330      1340      1350      1360      1370      1380      1390  
 CTCACCTTCTTAAACCTTTCAGATTAAAGCTGAACAGTTACAAGATGGCTGGCATCCCTCTCCCTCTCCCCATATGCA  
 •      •      •      •      •      •      •      •  
 TCGGACAACTTGACACAAGATAGAGTTAACCTGGGAAGAGAAACCTTGAATGAGGATTCTTCATCAGGAAGCTACGGGC  
 1260      1270      1280      1290      1300      1310      1320      1330

1400      1410      1420      1430      1440      1450      1460      1470  
 ATTTGCCTTAATGTAACCTCTTCTGGCATGTTCCATTCTGCCATCTGAATTGCTTGTAGCCAAATTCAATTATCTTATT  
 •      •      •      •      •      •      •      •  
 AAGTTTGCTGGGCCCTTGATTGCTTGATGACTGAAGTGGAAAGGCTGAGGCCACTGTGGGTGGTGCTAGCCCTGGGCAGGGG  
 1340      1350      1360      1370      1380      1390      1400      1410

1480      1490  
 AAAACACTAATTTGAG  
 •      •  
 CAGGTGACCCCTGGGTGGTATAAGAAAAAGACCTGTCACAAAAGGAGAGGTGCCTAGTCTTACTGCAACTTGTATATGTCATG  
 1420      1430      1440      1450      1460      1470      1480      1490

1500      1510      1520      1530      1540      1550      1560      1570      1580  
 TTTGGTTGGTGTCTGGGAGGCCCTGCCCTTTCTGAAGAGAACTGGTGGGAGAGTGGATGGGTGGGAGAGGGAAAGT  
 1590      1600      1610      1620      1630      1640      1650      1660

GGGGGAGAGGGCCTGGGAGGAGAGGAGGGAGGGGACGGGTGGGGTGGGAAAATATGGTGGGATGTAAAAACGGATA

FIGURE 8a

FIGURE 8a-1

|             |                                     |                |                  |        |           |            |            |
|-------------|-------------------------------------|----------------|------------------|--------|-----------|------------|------------|
| Contig      | AGDVTGGATGAGAGCCCTGGTGGTGATCCCCGTCA | TCATGATGGVATCC | TG               | CCATCC | CTCTGG    | GTG        |            |
| Human CD40  | AGGATCGGCTGAGAGCCCTGGTGGTGATCCCCATC | A              | TCATGATGGVATCC   | TG     | CCATCC    | CTCTGG     |            |
| Bovine CD40 | AGAGTCGGATGAGGACCCCTGGTGGTGATCCCCGT | CA             | TCACGATGGGAGTCTG | TG     | CCATCC    | CTCTGG     |            |
| Mouse CD40  | AGTCCCGGATGCGAGCCCTGGTGGTGATCCCCGT  | CA             | TCACGATGGGAGTGGG | CA     | TCCATCACC | ATTTGGGGTG |            |
|             | 690                                 | 700            | 710              | 720    | 730       | 740        |            |
| Contig      | TITGTC                              | TD             | TCA              | AAA    | AGG       | TGGCC      | AAGA       |
| Human CD40  | CTGGTCTT                            | TAT            | CA               | AAA    | AGG       | TGGCC      | AAGA       |
| Bovine CD40 | TCTGCC                              | TG             | TAT              | CA     | GGAA      | ACAT       | AAAGA      |
| Mouse CD40  | TTTC                                | CT             | TAT              | CA     | AAA       | AGG        | TGGTCAAGAA |
|             | 750                                 | 760            | 770              | 780    | 790       | 800        | 810        |
| Contig      | GCAGGAT                             | CCCC           | CAGGAGAT         | GAN    | INN       | CCNGAV     | GAT        |
| Human CD40  | GCAGGA                              | ACCC           | CAGGAGAT         | CA     | TTT       | CCC        | GGCC       |
| Bovine CD40 | GCAGGAT                             | CCC            | GTGGAGAC         | GATTG  | AT        | CCC        | GGCC       |
| Mouse CD40  | GCAGGAT                             | CCC            | CAGGAGATG        | -----  | GAAGATT   | ATCCC      | GGTCA      |
|             | 820                                 | 830            | 840              | 850    | 860       | 870        | 880        |
| Contig      | AGAC                                | TTT            | ACAC             | GGGT   | TG        | CAC        | CC         |
| Human CD40  | AGAC                                | TTT            | ACAT             | GGG    | ATG       | CC         | AG         |
| Bovine CD40 | AGAC                                | CTT            | ATG              | CTGG   | TG        | CC         | AG         |
| Mouse CD40  | AGAC                                | ACT            | TG               | AC     | GGG       | TG         | AG         |
|             | 890                                 | 900            | 910              | 920    | 930       | 940        | 950        |
| Contig      | CGGCAGGT                            | GACAGA         | CAGAC            | GCTAGC | CTTGAGG   | CCCTGG     | TG         |
| Human CD40  | -----                               | AGACAG         | -----            | TGAGGC | -----     | TGCA       | CCC        |
| Mouse CD40  | CGGCAGGT                            | GACAGA         | CACCA            | TAGC   | CTTGAGG   | CCCTGG     | TG         |
|             | 960                                 | 970            | 980              | 990    | 1000      | 1010       | 1020       |
| Contig# 1   | GCYRC                               | TTG            | CTG              | ACCT   | TTG       | AAAGT      | TTG        |
| Human CD40  | GCCAC                               | -----          | -----            | GTGGGC | -----     | AAACAG     | -----      |
| Mouse CD40  | GCTG                                | CTG            | CTG              | ACCT   | TTG       | AAAGT      | TGAGG      |

## Figure 8b

| Contig              | 10  | 20 | 30    | 40 | 50 | 60 |
|---------------------|-----|----|-------|----|----|----|
| bovine CD40 protein | ... | .. | ..... | .. | .. | .. |
| human CD40 protein  | M   | V  | R     | L  | P  | L  |
| murine CD40 protein | I   | L  | Q     | C  | I  | F  |

  

| Contig              | 70 | 80 | 90   | 100 | 110 | 120 |
|---------------------|----|----|------|-----|-----|-----|
| bovine CD40 protein | .. | .. | .... | ..  | ..  | ..  |
| human CD40 protein  | S  | C  | G    | K   | G   | F   |
| murine CD40 protein | E  | F  | L    | T   | N   | R   |

  

| Contig              | 130 | 140 | 150 | 160 | 170 | 180 |
|---------------------|-----|-----|-----|-----|-----|-----|
| bovine CD40 protein | ..  | ..  | ..  | ..  | ..  | ..  |
| human CD40 protein  | P   | H   | S   | L   | C   | R   |
| murine CD40 protein | H   | S   | C   | P   | R   | E   |

  

| Contig              | 190 | 200 | 210 | 220 | 230 | 240 |
|---------------------|-----|-----|-----|-----|-----|-----|
| bovine CD40 protein | ..  | ..  | ..  | ..  | ..  | ..  |
| human CD40 protein  | K   | T   | D   | V   | V   | C   |
| murine CD40 protein | T   | D   | V   | V   | C   | T   |

  

| Contig              | 250 | 260 | 270 | 280 |       |  |
|---------------------|-----|-----|-----|-----|-------|--|
| bovine CD40 protein | W   | L   | K   | G   | ..... |  |
| human CD40 protein  | L   | R   | I   | R   |       |  |
| murine CD40 protein | I   | R   | I   | R   |       |  |

FIGURE 9

A

Non-transfected control cells



Transfected cells



B

Non-transfected control cells



Transfected cells



FIGURE 10

Non-transfected control cells



Transfected cells



Non-transfected control cells



Transfected cells



FIGURE 11

A



B



## FIGURE 12

1 MGLSNILFVM VLLL<sup>9</sup>SGAASL KSQAYFNETG ELPCHFTNSQ  
8  
2

41 NLSLDELVIF WQDQDNLVLY ELYRGQE<sup>10</sup>KPH NVNSKYMGR<sup>11</sup>T

81 SFDQATW<sup>1</sup>T<sup>2</sup>LR LHN<sup>3</sup>VQIKDKG SYQCF<sup>4</sup>IHHKG PHGLVPIHQM  
5  
3  
4

121 SSDILSLLANF SQPEINLLTN HTENSVINLT CSSTQGY<sup>6</sup>PEP  
7  
6

161 QRM<sup>1</sup>YMLLNTK NSTTEHDADM KKSQNNITEL YNVSIRVSLP  
2

201 IPPETNV<sup>1</sup>SIV CVLQLEPSKT LLFSLPCNID AKPPVQPPVP

241 DHILWIAALL VTVVVVCGMV SFVTLRKRKK KQPGPSNECG

281 ETIKMNRKAS EQTKNRAEVH ERSDDAQCDV NILKTASDDN

321 STTDF•LKS<sup>1</sup>K L

FIGURE 13





Figure 14a

FIGURE 14b



FIGURE 15a



FIGURE 15b

A



C



B



D



Porcine B7-2

Murine B7-2

Figure 16



FIGURE 17a

A



B



C



D



FIGURE 17b



Porcine CD86

Murine CD86

Figure 18



FIGURE 19

Day 1: Immunisation of C57BL-6 mice with whole ovalbumin (50 micrograms) in Complete freunds adjuvant (CFA)



Day 14: First immunisation with chimeric peptide (100 micrograms) i.v.

Day 21: Second immunisation with chimeric peptide (100 micrograms) i.v.

Day 28: Third immunisation with chimeric peptide (100 micrograms) i.v.



Day 32: Mice rendered diabetic by injection of streptozotocin i.p.



Day 36 : Transplantation of 1000 porcine pancreatic islets under the kidney capsule of diabetic mice



Day 37 onwards : Survival of islets assessed by measuring blood glucose levels

Figure 20



30 / 36  
Figure 21poCD40protein (top), human CD40 protein (bottom)

|                                                                                      |       |       |       |       |       |       |       |
|--------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| 10                                                                                   | 20    | 30    | 40    | 50    | 60    | 70    | 80    |
| MVRPLPLQCLLWGCFLTAVHPEPPTSCKENQYPTNSRCNLCPGQKLVNHCTEVTETECLPCSSSEFLATWNREKHCHQHKY    | ..... | ..... | ..... | ..... | ..... | ..... | ..... |
| MVRPLPLQCVLWGCLLTAVHPEPPTACREKQYLINSQCCSLCOPGQKLVSDCTEFTETECLPCGESEFELDTWNRETHCHQHKY | ..... | ..... | ..... | ..... | ..... | ..... | ..... |
| 10                                                                                   | 20    | 30    | 40    | 50    | 60    | 70    | 80    |

  

|                                                                                      |       |       |       |       |       |       |       |
|--------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| 90                                                                                   | 100   | 110   | 120   | 130   | 140   | 150   | 160   |
| CDPNLGLQVQREGTSKIDTTTCVCSEGHHCTNSACESCTLHSLCFPGLGVVKQIMATEVSDTICEPCPVGFFSNVSSASEKCPW | ..... | ..... | ..... | ..... | ..... | ..... | ..... |
| CDPNLGLRVQQKGTSETDTTICCEEGWHCTSEACESCVLHRSCSPGFGVVKQIATGVSDTICEPCPVGFFSNVSSAFEKCPW   | ..... | ..... | ..... | ..... | ..... | ..... | ..... |
| 90                                                                                   | 100   | 110   | 120   | 130   | 140   | 150   | 160   |

  

|                                                                                      |       |       |       |       |       |       |       |
|--------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| 170                                                                                  | 180   | 190   | 200   | 210   | 220   | 230   | 240   |
| TSCESKGLVEQRAGTNKTDVVCGFQSRMRALVVIPITLGILFAVLVLVFLCIRKVTKQEETKALHPKTERQDPVETIDLEDFP  | ..... | ..... | ..... | ..... | ..... | ..... | ..    |
| TSCETKDLVVQQAGTNKTDVVCGPQDRRLRALVVIPIFIIGILFAILLVLVFIKKVAKKPTINKAHPKQHPOEINFPDLLPGSN | ..... | ..... | ..... | ..... | ..... | ..... | ..... |
| 170                                                                                  | 180   | 190   | 200   | 210   | 220   | 230   | 240   |

  

|                                 |       |       |
|---------------------------------|-------|-------|
| 250                             | 260   | 270   |
| DSTAPVQETLHWCPVTQEDGKESRISVQERO | ..... | ..... |
| TA-APVQETLHGCPVTQEDGKESRISVQERO | ..... | ..... |
| 250                             | 260   | 270   |

## Figure 22

1 MVRLPLQCLL WGCFLTAVHP EPPTSCKENQ YPTNSRCCNL  
41 CPPGQKLVNH CTEVTETECL PCSSSEFLAT WNREKHCHQH  
81 KYCDPNLGLQ VQREGTSKTD TTCVCSEGHH CTNSACESCT  
121 LHSILCFPGLG VKQMATEVSD TICEPCPVGF FSNVSSASEK  
161 CQPWTSCCESK GLVEQRAGTN KTDVVCFGQS RMRALVVIPI  
201 TLGILFAVLL VFLCIRKVTK EQETKALHPK TERQDPVETI  
241 DLEDFPDSTA PVQETLHWQ PVTQEDGKES RISVQERQ

## Figure 23

pig VCAM peptide copy (top), human VCAM peptide copy (bottom)

-20            -10            10            20            30            40            50            60  
 |            |            |            |            |            |            |            |  
 IIVIFGASNLWMVFAVSQNVKVEIFPEDKMTAQIGDSASLTCSAPDCESSLFSWRTQIDSPLNGKVKGTRSTLVMNPV  
 .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... ....  
 MVVILGASNLWIMFAASQAFKIEITPESRYLAQIGDSVSLTCSTTIGCESP-FFSWRTQIDSPLNGKVINEGTTSTLMNPV  
 |            |            |            |            |            |            |            |  
 10            20            30            40            50            60            70            80  
  
 70            80            90            100            110            120            130            140  
 |            |            |            |            |            |            |            |  
 SFNEHHSYLCITVSCGNLKGGERGIVQEVLYSFPKDPEIHWSSLPEVGKPVTVRCLVPDVYFVEKLEIELLLKDNHSMVSQNFEL  
 .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... ....  
 SFGNEHHSYLCITATCESRKLEKGIVQEVLYSFPKDPEIHLSGPLEAGKPIITVCSVADVYFDFRLEIDLLKGDHLMKSQEEFED  
 |            |            |            |            |            |            |            |  
 90            100            110            120            130            140            150            160  
  
 150            160            170            180            190            200            210            220  
 |            |            |            |            |            |            |            |  
 IDIISKETKSLEFTFTPTTEIDIGKAIVCQATLIIIDGQPSVKTTPEKM---QVYISPKDPVISVNPSTSLOQEGDSMMMTCTSE  
 .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... ....  
 ADRKSLETKSLEVTFITPVIEDIGKVLVCRAKLHIDEMDSVPTVRQAVKELQVYISPKNTVISVNPSTKLQEGGSVIMTCSE  
 |            |            |            |            |            |            |            |  
 170            180            190            200            210            220            230            240  
  
 230            240            250            260            270            280  
 |            |            |            |            |            |  
 GLPAPQISWSKKLNGDQQQLLSGNATLTLIAMRMEDSGIYVCEGVNPVGTNRKEVELTVO-----  
 .... .... .... .... .... .... .... .... .... .... .... .... .... .... ....  
 GLPAPEIFWSKKLNGNQLQHLSGNATLTLIAMRMEDSGIYVCEGVNLIGKRNKEVELIVQEKPFITVIELSPGPRIAQIGDSV  
 |            |            |            |            |            |            |            |  
 250            260            270            280            290            300            310            320  
  
 330            340            350            360            370            380            390            400  
  
 410            420            430            440            450            460            470            480            490  
  
 290            300            310            320            330            340            350  
 |            |            |            |            |            |            |  
 -----VAPRDTTISVNPSSTLEEGSSVNMTCCSSDGFPAPKILWSKKLRDGNIPLSENTTLLTSTKMEDSGIY-----  
 .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... ....

## FIGURE 23-1

360            370            380            390            400            410            420            430  
 VCEGINQAGINRKEVELLIQAAPKDLQLTAFPSESVKEGDTVIISCTCGNVPPTLILKKKAETGDTVLKSTDGAYTIRAR  
 .....  
 LCEGINQAGRSRKEVELLIQVTPKDIKLTAFPSSESVKEGDTVIISCTCGNVPETWILKKKAETGDTVLKSTDGAYTIRKAO  
 580            590            600            610            620            630            640            650

440            450            460            470            480            490            500            510  
 LADAGVYECESKNEIGLQLRSITLDVKGRESNKDYFSSELLVLYCASSLIIPAIGVIIYFARKANMRGSYSLVDAQSKV  
 .....  
 LKDAGVYECESKNKVGSQRLSLTLDVQGRENNDYFSPELLVLYFASSLIIPAIGMIIYFARKANMKGSYSLVEAQSKV  
 660            670            680            690            700            710            720            730

## FIGURE 24

↓ (signal sequence)

IVVIFGASNI LWMVFAVSQN VKVEIFPEDK MIAQIGDSAS  
LTCSAPDCES SLSFSWRTQI DSPLNGKVKT NGTRSTLVMN  
PVSFENEHSY LCTVSCGNLK GERGIQVEIY SFPKDPEIHW  
SSLPEVGKPV TVRCLVPDVY PVEKLEIELL KDNHSMVSQN  
FLELIDIJKSK ETKSLEFTFT PTEEDIGKAI VCQATLIIDG  
QPSVKTTPEK MQVYISPKDP VISVNPSTSL QEGDSMMTC  
TSEGLPAPQI SWSKKLDNGD QQLLSGNATL TLIAMRMEDS  
GIYVCEGVNP VGTNRKEVEL TVQVAPRDTT ISVNPSSTLE  
EGSSVNMTCS SDGFPAPKIL WSKKLRDGNL EPLSENTTLT  
LTSTKMEDSG IYVCEGINQA GINRKEVELI IQAAPKDLQL  
TAFPSESVKE GDTVIISCTC GNPPTLIL KKKAETGDTV  
LKSTDGAYTI HRARLADAGV YECESKNEIG LQLRSITLDV  
KGRESNKDYF SSELLVLYCA SSSLIIPAIGV IIYFARKANM  
RGSYSLVDAQ KSKV.

## FIGURE 25

translated po B7-2 Maher (top), human B7-2 translated (bottom)

|    |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|
| 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
| M  | G  | L  | S  | N  | I  | L  | F  |
| M  | G  | L  | S  | N  | I  | L  | F  |
| 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |

|    |     |     |     |     |     |     |     |
|----|-----|-----|-----|-----|-----|-----|-----|
| 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 |
| D  | Q   | A   | I   | W   | I   | W   | L   |
| D  | S   | D   | S   | T   | I   | C   | S   |
| 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 |

|     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|
| 170 | 180 | 190 | 200 | 210 | 220 | 230 | 240 |
| M   | L   | L   | N   | T   | K   | N   | S   |
| V   | I   | R   | T   | K   | T   | R   | I   |
| 170 | 180 | 190 | 200 | 210 | 220 | 230 | 240 |

|     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|
| 250 | 260 | 270 | 280 | 290 | 300 | 310 | 320 |
| A   | A   | L   | L   | V   | V   | V   | V   |
| L   | P   | T   | V   | V   | V   | V   | V   |
| 250 | 260 | 270 | 280 | 290 | 300 | 310 | 320 |

## FIGURE 26

1 MGLSNILFVM VLLL~~SGAASL~~ KSQAYFNETG ELPCHFTNSQ

41 NLSLDELVIF WQDQDNLVLY ELYRGQEKPH NVNSKYMGR~~T~~

81 SFDQATWT~~LR~~ LHN~~VQIKDKG~~ SYQCFIHHKG PHGLVPIHQ~~M~~

121 SSDLSLLANF SQPEINLLTN HTENSVINLT CSSTQGYPEP

161 QRMYMLLNTK NSTTEHDADM KKSQNNITEL YNVSIRVSLP

201 IPPETNVSIV CVLQLEPSKT LLFSLPCNID AKPPVQPPVP

241 DHILWIAALL VTVVVVCGMV SFVTLRK~~R~~KK KQPGPSNECG

281 ETIKMNRKAS EQTKNRAEVH ERSDDAQCDV NILKTASDDN

321 STTDF

## SEQUENCE LISTING

<110> ML Laboratories PLC

<120> Immunosuppression

<130> P15700WO

<140> PCT/GB99/04200

<141> 1999-12-17

<150> 9827921.9

<151> 1998-12-19

<150> 9925015.1

<151> 1999-10-23

<160> 39

<170> PatentIn Ver. 2.1

<210> 1

<211> 288

<212> PRT

<213> Homo sapiens

<400> 1

Met Gly His Thr Arg Arg Gln Gly Thr Ser Pro Ser Lys Cys Pro Tyr  
1 5 10 15

Leu Asn Phe Phe Gln Leu Leu Val Leu Ala Gly Leu Ser His Phe Cys  
20 25 30

Ser Gly Val Ile His Val Thr Lys Glu Val Lys Glu Val Ala Thr Leu  
35 40 45

Ser Cys Gly His Asn Val Ser Val Glu Glu Leu Ala Gln Thr Arg Ile  
50 55 60

Tyr Trp Gln Lys Glu Lys Lys Met Val Leu Thr Met Met Ser Gly Asp  
65 70 75 80

Met Asn Ile Trp Pro Glu Tyr Lys Asn Arg Thr Ile Phe Asp Ile Thr  
85 90 95

Asn Asn Leu Ser Ile Val Ile Leu Ala Leu Arg Pro Ser Asp Glu Gly  
100 105 110

Thr Tyr Glu Cys Val Val Leu Lys Tyr Glu Lys Asp Ala Phe Lys Arg  
115 120 125

Glu His Leu Ala Glu Val Thr Leu Ser Val Lys Ala Asp Phe Pro Thr  
130 135 140

Pro Ser Ile Ser Asp Phe Glu Ile Pro Thr Ser Asn Ile Arg Arg Ile  
145 150 155 160

Ile Cys Ser Thr Ser Gly Gly Phe Pro Glu Pro His Leu Ser Trp Leu  
165 170 175

Glu Asn Gly Glu Glu Leu Asn Ala Ile Asn Thr Thr Val Ser Gln Asp

## **COMBINED DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION**

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled **IMPROVEMENT OF TOLERANCE TO A XENOGRAFT**, the specification of which

is attached hereto.

was filed on \_\_\_\_\_ as United States Application No. \_\_\_\_\_.

was filed on 17 December 1999 as International Application No. PCT/GB99/04200.

and was amended on \_\_\_\_\_ (if applicable).

with amendments through \_\_\_\_\_ (if applicable).

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, § 1.56. If this is a continuation-in-part application filed under the conditions specified in 35 U.S.C. § 120 which discloses and claims subject matter in addition to that disclosed in the prior copending application, I further acknowledge the duty to disclose material information as defined in 37 C.F.R. § 1.56 which occurred between the filing date of the prior application and the national or PCT international filing date of the continuation-in-part application.

I hereby claim foreign priority benefits under Title 35, United States Code, § 119(a)-(d) of any foreign application(s) for patent or inventor's certificate or of any PCT International application(s) designating at least one country other than the United States of America listed below and have also identified below any foreign application(s) for patent or inventor's certificate or any PCT International application(s) designating at least one country other than the United States of America filed by me on the same subject matter having a filing date before that of the application(s) on which priority is claimed:

| Prior Foreign Application(s) |                |                  | Priority<br>Claimed                                          |
|------------------------------|----------------|------------------|--------------------------------------------------------------|
| 9827921.9                    | United Kingdom | 19 December 1998 | <input checked="" type="checkbox"/> <input type="checkbox"/> |
| 9925015.1                    | United Kingdom | 23 October 1999  | <input checked="" type="checkbox"/> <input type="checkbox"/> |

(Number) (Country) (Day/Month/Year Filed) Yes No

I hereby claim the benefit under Title 35, United States Code, § 119(e) of any United States provisional application(s) listed below:

---

Application Number

---

Filing Date

I hereby claim the benefit under Title 35, United States Code, § 120 of any United States application(s) or § 365(c) of any PCT International application(s) designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of Title 35, United States Code, § 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, § 1.56(a) which occurred between the filing date of the prior application and the national or PCT International filing date of this application:

|                                     |                                   |                                                      |
|-------------------------------------|-----------------------------------|------------------------------------------------------|
| PCT/GB99/04200<br>(Application No.) | 17 December 1999<br>(Filing Date) | Pending<br>(Status: patented,<br>Pending, abandoned) |
|-------------------------------------|-----------------------------------|------------------------------------------------------|

The undersigned hereby authorizes the U.S. attorney or agent named herein to accept and follow instructions from \_\_\_\_\_ as to any action to be taken in the Patent and Trademark Office regarding this application without direct communication between the U.S. attorney or agent and the undersigned. In the event of a change in the persons from whom instructions may be taken, the U.S. attorney or agent named herein will be so notified by the undersigned.

I hereby appoint the practitioners associated with the customer number provided below to prosecute this application, to file a corresponding international application, and to transact all business in the Patent and Trademark Office connected therewith:

Customer Number

24197  
KSCLW

| Name                  | Reg. No.      | Name                    | Reg. No.      |
|-----------------------|---------------|-------------------------|---------------|
| BLYVEIS, Deborah B.   | <u>47,337</u> | PETERSEN, David P.      | <u>28,106</u> |
| CALDWELL, Lisa M.     | <u>41,653</u> | POLLEY, Richard J.      | <u>28,107</u> |
| GIRARD, Michael P.    | <u>38,467</u> | RINEHART, Kyle B.       | <u>47,027</u> |
| HAENDLER, Jeffrey B.  | <u>43,652</u> | RUPERT, Wayne W.        | <u>34,420</u> |
| HARDING, Tanya M.     | <u>42,630</u> | RYBAK, Sheree L.        | <u>47,913</u> |
| JAKUBEK, Joseph T.    | <u>34,190</u> | SCOTTI, Robert F.       | <u>39,830</u> |
| JONCUS, Stephen J.    | <u>44,809</u> | SIEGEL, Susan Alpert    | <u>43,121</u> |
| JONES, Michael D.     | <u>41,879</u> | SLATER, Stacey C.       | <u>36,011</u> |
| KLARQUIST, Kenneth S. | <u>16,445</u> | STEPHENS Jr., Donald L. | <u>34,022</u> |
| KLITZKE II, Ramon A.  | <u>30,188</u> | STUART, John W.         | <u>24,540</u> |
| LEIGH, James S.       | <u>20,434</u> | VANDENBERG, John D.     | <u>31,312</u> |
| MAURER, Gregory L.    | <u>43,781</u> | WHINSTON, Arthur L.     | <u>19,155</u> |
| NOONAN, William D.    | <u>30,878</u> | WIGHT, Stephen A.       | <u>37,759</u> |
| ORR, David E.         | <u>44,988</u> | WINN, Garth A.          | <u>33,220</u> |

Address all telephone calls to Tanya M. Harding, Ph.D. at telephone number (503) 226-7391.

Address all correspondence to:

Customer Number

24197  
KSCLW

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under § 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Full Name of Sole or First Inventor 1-00 Robert Ian Lechler

Inventor's Signature Robert

26.7.01  
Date

Residence: London, United Kingdom

Citizenship: United Kingdom GBN

Post Office Address: 78 Woodstock Road, Chiswick, London W1A 1EQ, United Kingdom

Full Name of Second Inventor: 2-00 Nichola Jane Rogers

Inventor's Signature Nicola J. Rogers

26/7/01  
Date

Residence: London, United Kingdom

Citizenship: United Kingdom GBN

Post Office Address: Flat F, 9 Cumberland Park, London W3 6SY, United Kingdom

Full Name of Third Inventor: 3-00 Anthony Dorling

Inventor's Signature A. Dorling

26/7/01  
Date

Residence: London, United Kingdom

Citizenship: United Kingdom GBN

Post Office Address: 28 Coldfall Avenue, Muswell Hill, London N10 1HS, United Kingdom

180

185

190

Pro Glu Thr Glu Leu Tyr Ala Val Ser Ser Lys Leu Asp Phe Asn Met  
195 200 205

Thr Thr Asn His Ser Phe Met Cys Leu Ile Lys Tyr Gly His Leu Arg  
210 215 220

Val Asn Gln Thr Phe Asn Trp Asn Thr Thr Lys Gln Glu His Phe Pro  
225 230 235 240

Asp Asn Leu Leu Pro Ser Trp Ala Ile Thr Leu Ile Ser Val Asn Gly  
245 250 255

Ile Phe Val Ile Cys Cys Leu Thr Tyr Cys Phe Ala Pro Arg Cys Arg  
260 265 270

Glu Arg Arg Arg Asn Glu Arg Leu Arg Arg Glu Ser Val Arg Pro Val  
275 280 285

<210> 2  
<211> 972  
<212> DNA  
<213> Homo sapiens

<400> 2  
atgggactga gtaacattct ctttgtatg gccttcctgc tctctggtgc tgctccctcg 60  
aaggattcaag cttatttcaa tgagactgca gacctgccat gccaatttgc aaactctcaa 120  
aaccaaagcc tgagttagct agtagtattt tggcaggacc agaaaaactt ggttctgaat 180  
gaggtaact taggcaaaga gaaatttgac agtggttcatt ccaagtatata gggccgcaca 240  
agtttgatt cggacagggtt gaccctgaga cttcacaatac ttcatgatcaa ggacaagggc 300  
ttgtatcaat gtatcatcca tcacaaaaag cccacaggaa tgattcgcat ccaccagatg 360  
aatttctgaac tgcgtatgtc tgctaacttc agtcaacctg aaatagtacc aatttctaat 420  
ataacagaaa atgtgtacat aaatttgacc tgctcatcta tacacggta cccagaacct 480  
aagaagatga gtgttttgc aagaaccaag aattcaacta tcgagatgatgatgatg 540  
cagaaatctc aagataatgt cacagaaactg tacgacgttt ccatcagctt gtctgtttca 600  
ttccctgtatg ttacgagcaa tatgaccatc ttctgtattc tgaaaactga caagacgcgg 660  
cttttatctt cacctttctc tatagagctt gaggaccctc agcctcccc agaccacatt 720  
ccttggatta cagctgtact tccaaacagtt attatatgtg tgatggttt ctgtctaatt 780  
ctatggaaat ggaagaagaa gaagcggcct cgcaactctt ataaatgtgg aaccaacaca 840  
atggagaggg aagagatgta acagaccaag aaaagagaaa aaatccatatacctgaaaga 900  
tctgatgaag cccagcgtgt ttttaaaagt tcgaagacat cttcatgcga caaaagtatgatg 960  
acatgtttt aa 972

<210> 3  
<211> 323  
<212> PRT  
<213> Homo sapiens

<400> 3  
Met Gly Leu Ser Asn Ile Leu Phe Val Met Ala Phe Leu Leu Ser Gly  
1 5 10 15

Ala Ala Pro Leu Lys Ile Gln Ala Tyr Phe Asn Glu Thr Ala Asp Leu  
20 25 30

Pro Cys Gln Phe Ala Asn Ser Gln Asn Gln Ser Leu Ser Glu Leu Val  
 35 40 45

Val Phe Trp Gln Asp Gln Glu Asn Leu Val Leu Asn Glu Val Tyr Leu  
 50 55 60

Gly Lys Glu Lys Phe Asp Ser Val His Ser Lys Tyr Met Gly Arg Thr  
 65 70 75 80

Ser Phe Asp Ser Asp Ser Trp Thr Leu Arg Leu His Asn Leu Gln Ile  
 85 90 95

Lys Asp Lys Gly Leu Tyr Gln Cys Ile Ile His His Lys Lys Pro Thr  
 100 105 110

Gly Met Ile Arg Ile His Gln Met Asn Ser Glu Leu Ser Val Leu Ala  
 115 120 125

Asn Phe Ser Gln Pro Glu Ile Val Pro Ile Ser Asn Ile Thr Glu Asn  
 130 135 140

Val Tyr Ile Asn Leu Thr Cys Ser Ser Ile His Gly Tyr Pro Glu Pro  
 145 150 155 160

Lys Lys Met Ser Val Leu Leu Arg Thr Lys Asn Ser Thr Ile Glu Tyr  
 165 170 175

Asp Gly Ile Met Gln Lys Ser Gln Asp Asn Val Thr Glu Leu Tyr Asp  
 180 185 190

Val Ser Ile Ser Leu Ser Val Ser Phe Pro Asp Val Thr Ser Asn Met  
 195 200 205

Thr Ile Phe Cys Ile Leu Glu Thr Asp Lys Thr Arg Leu Leu Ser Ser  
 210 215 220

Pro Phe Ser Ile Glu Leu Glu Asp Pro Gln Pro Pro Pro Asp His Ile  
 225 230 235 240

Pro Trp Ile Thr Ala Val Leu Pro Thr Val Ile Ile Cys Val Met Val  
 245 250 255

Phe Cys Leu Ile Leu Trp Lys Trp Lys Lys Lys Arg Pro Arg Asn  
 260 265 270

Ser Tyr Lys Cys Gly Thr Asn Thr Met Glu Arg Glu Ser Glu Gln  
 275 280 285

Thr Lys Lys Arg Glu Lys Ile His Ile Pro Glu Arg Ser Asp Glu Ala  
 290 295 300

Gln Arg Val Phe Lys Ser Ser Lys Thr Ser Ser Cys Asp Lys Ser Asp  
 305 310 315 320

Thr Cys Phe

<210> 4  
 <211> 834  
 <212> DNA

<213> Homo sapiens

<400> 4

atggttcgtc tgccctcgca gtgcgtcctc tggggctgct tgctgaccgc tgtccatcca 60  
gaaccaccca ctgcgtcgag agaaaaacag tacctaataa acagtcaagt ctgttcttg 120  
tgccagccag gacagaaact ggtgagtgac tgcacagagt tcactgaaac ggaatgcctt 180  
ccttcgggt aaagcgaatt cctagacacc tggaaacagag agacacactg ccaccagcac 240  
aaatactgcg accccaacct aggcttcgg gtccagcaga agggcacctc agaaacagac 300  
accatctgca cctgtgaaga aggctggcac tgcgtcgtga gagctgtgtc 360  
ctgcaccgcg catgctcgcc cggcttggg gtcaagcaga ttgttacagg gtttctgtat 420  
accatctgcg agccctgccc agtccggcttc ttctccaatg tgcgtatctgc tttcgaaaaa 480  
tgtcaccctt ggacaagctg tgagaccaaa gacctggtt tgcaacaggc aggcacaaac 540  
aagactgtat ttgtctgtgg tcccccaggat cggctgagag ccctgggtgt gatccccatc 600  
atcttcggga tcctgttgc catcctcttgc tgcgtggctt ttatcaaaaa ggtggccaag 660  
aagccaaacca ataaggcccc ccaccccaag caggaacccc aggagatcaa tttcccgac 720  
gatttccctg gctccaacac tgctgctcca gtgcaggaga ctttacatgg atgccaaccg 780  
gtcaccagg aggatggcaa agagagtgc atctcagtgc aggagagaca gtga 834

<210> 5

<211> 277

<212> PRT

<213> Homo sapiens

<400> 5

Met Val Arg Leu Pro Leu Gln Cys Val Leu Trp Gly Cys Leu Leu Thr  
1 5 10 15

Ala Val His Pro Glu Pro Pro Thr Ala Cys Arg Glu Lys Gln Tyr Leu  
20 25 30

Ile Asn Ser Gln Cys Cys Ser Leu Cys Gln Pro Gly Gln Lys Leu Val  
35 40 45

Ser Asp Cys Thr Glu Phe Thr Glu Thr Glu Cys Leu Pro Cys Gly Glu  
50 55 60

Ser Glu Phe Leu Asp Thr Trp Asn Arg Glu Thr His Cys His Gln His  
65 70 75 80

Lys Tyr Cys Asp Pro Asn Leu Gly Leu Arg Val Gln Gln Lys Gly Thr  
85 90 95

Ser Glu Thr Asp Thr Ile Cys Thr Cys Glu Glu Gly Trp His Cys Thr  
100 105 110

Ser Glu Ala Cys Glu Ser Cys Val Leu His Arg Ser Cys Ser Pro Gly  
115 120 125

Phe Gly Val Lys Gln Ile Ala Thr Gly Val Ser Asp Thr Ile Cys Glu  
130 135 140

Pro Cys Pro Val Gly Phe Phe Ser Asn Val Ser Ser Ala Phe Glu Lys  
145 150 155 160

Cys His Pro Trp Thr Ser Cys Glu Thr Lys Asp Leu Val Val Gln Gln  
165 170 175

Ala Gly Thr Asn Lys Thr Asp Val Val Cys Gly Pro Gln Asp Arg Leu  
180 185 190

Arg Ala Leu Val Val Ile Pro Ile Ile Phe Gly Ile Leu Phe Ala Ile  
195 200 205  
Leu Leu Val Leu Val Phe Ile Lys Lys Val Ala Lys Lys Pro Thr Asn  
210 215 220  
Lys Ala Pro His Pro Lys Gln Glu Pro Gln Glu Ile Asn Phe Pro Asp  
225 230 235 240  
Asp Leu Pro Gly Ser Asn Thr Ala Ala Pro Val Gln Glu Thr Leu His  
245 250 255  
Gly Cys Gln Pro Val Thr Gln Glu Asp Gly Lys Glu Ser Arg Ile Ser  
260 265 270  
Val Gln Glu Arg Gln  
275

<210> 6  
<211> 735  
<212> PRT  
<213> Homo sapiens

<400> 6  
Met Val Val Ile Leu Gly Ala Ser Asn Ile Leu Trp Ile Met Phe Ala  
1 5 10 15  
Ala Ser Gln Ala Phe Lys Ile Glu Thr Thr Pro Glu Ser Arg Tyr Leu  
20 25 30  
Ala Gln Ile Gly Asp Ser Val Ser Leu Thr Cys Ser Thr Thr Gly Cys  
35 40 45  
Glu Ser Pro Phe Phe Ser Trp Arg Thr Gln Ile Asp Ser Pro Leu Asn  
50 55 60  
Gly Lys Val Thr Asn Glu Gly Thr Thr Ser Thr Leu Thr Met Asn Pro  
65 70 75 80  
Val Ser Phe Gly Asn Glu His Ser Tyr Leu Cys Thr Ala Thr Cys Glu  
85 90 95  
Ser Arg Lys Leu Glu Lys Gly Ile Gln Val Glu Ile Tyr Ser Phe Pro  
100 105 110  
Lys Asp Pro Glu Ile His Leu Ser Gly Pro Leu Glu Ala Gly Lys Pro  
115 120 125  
Ile Thr Val Lys Cys Ser Val Ala Asp Val Tyr Pro Phe Asp Arg Leu  
130 135 140  
Glu Ile Asp Leu Leu Lys Gly Asp His Leu Met Lys Ser Gln Glu Phe  
145 150 155 160  
Leu Glu Asp Ala Asp Arg Lys Ser Leu Glu Thr Lys Ser Leu Glu Val  
165 170 175  
Thr Phe Thr Pro Val Ile Glu Asp Ile Gly Lys Val Leu Val Cys Arg  
180 185 190

Ala Lys Leu His Ile Asp Glu Met Asp Ser Val Pro Thr Val Arg Gln  
195 200 205

Ala Val Lys Glu Leu Gln Val Tyr Ile Ser Pro Lys Asn Thr Val Ile  
210 215 220

Ser Val Asn Pro Ser Thr Lys Leu Gln Glu Gly Gly Ser Val Thr Met  
225 230 235 240

Thr Cys Ser Ser Glu Gly Leu Pro Ala Pro Glu Ile Phe Trp Ser Lys  
245 250 255

Lys Leu Asp Asn Gly Asn Leu Gln His Leu Ser Gly Asn Ala Thr Leu  
260 265 270

Thr Leu Ile Ala Met Arg Met Glu Asp Ser Gly Ile Tyr Val Cys Glu  
275 280 285

Gly Val Asn Leu Ile Gly Lys Asn Arg Lys Glu Val Glu Leu Ile Val  
290 295 300

Gln Glu Lys Pro Phe Thr Val Glu Ile Ser Pro Gly Pro Arg Ile Ala  
305 310 315 320

Ala Gln Ile Gly Asp Ser Val Met Leu Thr Cys Ser Val Met Gly Cys  
325 330 335

Glu Ser Pro Ser Phe Ser Trp Arg Thr Gln Ile Asp Ser Pro Leu Ser  
340 345 350

Gly Lys Val Arg Ser Glu Gly Thr Asn Ser Thr Leu Thr Leu Ser Pro  
355 360 365

Val Ser Phe Glu Asn Glu His Ser Tyr Leu Cys Thr Val Thr Cys Gly  
370 375 380

His Lys Lys Leu Glu Lys Gly Ile Gln Gly Glu Leu Tyr Ser Phe Pro  
385 390 395 400

Arg Asp Pro Glu Ile Glu Met Ser Gly Gly Leu Val Asn Gly Ser Ser  
405 410 415

Cys Thr Val Ser Cys Lys Val Pro Ser Val Tyr Pro Leu Asp Arg Leu  
420 425 430

Glu Ile Glu Leu Leu Lys Gly Glu Thr Ile Leu Glu Asn Ile Glu Phe  
435 440 445

Leu Glu Asp Thr Asp Met Lys Ser Leu Glu Asn Lys Ser Leu Glu Met  
450 455 460

Thr Phe Ile Pro Thr Ile Glu Asp Thr Gly Lys Ala Leu Val Cys Gln  
465 470 475 480

Ala Lys Leu His Ile Asp Asp Met Glu Phe Glu Pro Lys Gln Arg Gln  
485 490 495

Ser Thr Gln Thr Leu Tyr Val Asn Val Ala Pro Arg Asp Thr Thr Val  
500 505 510

Leu Val Ser Pro Ser Ser Ile Leu Glu Glu Gly Ser Ser Val Asn Met

515

520

525

Thr Cys Leu Ser Gln Gly Phe Pro Ala Pro Lys Ile Leu Trp Ser Arg  
 530 535 540

Gln Leu Pro Asn Gly Glu Leu Gln Pro Leu Ser Glu Asn Ala Thr Leu  
 545 550 555 560

Thr Leu Ile Ser Thr Lys Met Glu Asp Ser Gly Val Tyr Leu Cys Glu  
 565 570 575

Gly Ile Asn Gln Ala Gly Arg Ser Arg Lys Glu Val Glu Leu Ile Ile  
 580 585 590

Gln Val Thr Pro Lys Asp Ile Lys Leu Thr Ala Phe Pro Ser Glu Ser  
 595 600 605

Val Lys Glu Gly Asp Thr Val Ile Ile Ser Cys Thr Cys Gly Asn Val  
 610 615 620

Pro Glu Thr Trp Ile Ile Leu Lys Lys Ala Glu Thr Gly Asp Thr  
 625 630 635 640

Val Leu Lys Ser Ile Asp Gly Ala Tyr Thr Ile Arg Lys Ala Gln Leu  
 645 650 655

Lys Asp Ala Gly Val Tyr Glu Cys Glu Ser Lys Asn Lys Val Gly Ser  
 660 665 670

Gln Leu Arg Ser Leu Thr Leu Asp Val Gln Gly Arg Glu Asn Asn Lys  
 675 680 685

Asp Tyr Phe Ser Pro Glu Leu Leu Val Leu Tyr Phe Ala Ser Ser Leu  
 690 695 700

Ile Ile Pro Ala Ile Gly Met Ile Ile Tyr Phe Ala Arg Lys Ala Asn  
 705 710 715 720

Met Lys Gly Ser Tyr Ser Leu Val Glu Ala Gln Lys Ser Lys Val  
 725 730 735

&lt;210&gt; 7

&lt;211&gt; 945

&lt;212&gt; DNA

&lt;213&gt; Mus musculus

&lt;400&gt; 7

atgttctcca aagcatctga agctatggct tgcaattgtc agttgatgca ggatacacca 60  
 ctccatcaagt ttccatgtcc aaggctcatt cttcttttgc tgctgctgtat tcgtctttca 120  
 caagtgtctt cagatgttga tgaacaactg tccaagtcag tgaaagataa ggtattgctg 180  
 ccttgcgcgtt acaactctcc tcatgaagat gagtctgaag accgaatcta ctggcaaaaa 240  
 catgacaagat tggtgctgtc tgcattgtctt gggaaactaa aagtgtggcc cgagtataag 300  
 aaccggactt tatatgacaa cactacatc tctcttataca tcctggccct ggtcctttca 360  
 gaccggggca catacagctg tgcgttcaa aagaaggaaa gaggaacgta tgaagttaaa 420  
 cacttggctt tagtaaagt gtccatcaaa gctgacttct ctaccccccataactgag 480  
 tctggaaacc catctgcaga cactaaaagg attacatgtt ttgcttccgg gggttccca 540  
 aagcctcgct tctcttgggtt gggaaatggaa agagaattac ctggcatcaa tacgacaatt 600  
 tcccaggatc ctgaatctga attgtacacc attagtagcc aactagattt caatacgact 660  
 cgcaaccaca ccattaagtg tctcattaaa tatggagatg ctcacgtgtc agaggacttc 720  
 acctggaaa aaccccccaga agaccctcct gatagcaaga acacacttgt gctctttggg 780

gcaggattcg ggcgactaat aacagtcgtc gtcatcggtt tcatcatcaa atgctctgt 840  
aaggcacagaa gctgttcag aagaaatgag gcaaggcagag aaacaaacaa cagccttacc 900  
ttcgggcctg aagaagcatt agctgaacag accgtttcc tttag 945

<210> 8  
<211> 314  
<212> PRT  
<213> Mus musculus

<400> 8  
Met Phe Ser Lys Ala Ser Glu Ala Met Ala Cys Asn Cys Gln Leu Met  
1 5 10 15  
  
Gln Asp Thr Pro Leu Leu Lys Phe Pro Cys Pro Arg Leu Ile Leu Leu  
20 25 30  
  
Phe Val Leu Leu Ile Arg Leu Ser Gln Val Ser Ser Asp Val Asp Glu  
35 40 45  
  
Gln Leu Ser Lys Ser Val Lys Asp Lys Val Leu Leu Pro Cys Arg Tyr  
50 55 60  
  
Asn Ser Pro His Glu Asp Glu Ser Glu Asp Arg Ile Tyr Trp Gln Lys  
65 70 75 80  
  
His Asp Lys Val Val Leu Ser Val Ile Ala Gly Lys Leu Lys Val Trp  
85 90 95  
  
Pro Glu Tyr Lys Asn Arg Thr Leu Tyr Asp Asn Thr Thr Tyr Ser Leu  
100 105 110  
  
Ile Ile Leu Gly Leu Val Leu Ser Asp Arg Gly Thr Tyr Ser Cys Val  
115 120 125  
  
Val Gln Lys Lys Glu Arg Gly Thr Tyr Glu Val Lys His Leu Ala Leu  
130 135 140  
  
Val Lys Leu Ser Ile Lys Ala Asp Phe Ser Thr Pro Asn Ile Thr Glu  
145 150 155 160  
  
Ser Gly Asn Pro Ser Ala Asp Thr Lys Arg Ile Thr Cys Phe Ala Ser  
165 170 175  
  
Gly Gly Phe Pro Lys Pro Arg Phe Ser Trp Leu Glu Asn Gly Arg Glu  
180 185 190  
  
Leu Pro Gly Ile Asn Thr Thr Ile Ser Gln Asp Pro Glu Ser Glu Leu  
195 200 205  
  
Tyr Thr Ile Ser Ser Gln Leu Asp Phe Asn Thr Thr Arg Asn His Thr  
210 215 220  
  
Ile Lys Cys Leu Ile Lys Tyr Gly Asp Ala His Val Ser Glu Asp Phe  
225 230 235 240  
  
Thr Trp Glu Lys Pro Pro Glu Asp Pro Pro Asp Ser Lys Asn Thr Leu  
245 250 255  
  
Val Leu Phe Gly Ala Gly Phe Gly Ala Val Ile Thr Val Val Val Ile  
260 265 270

Val Val Ile Ile Lys Cys Phe Cys Lys His Arg Ser Cys Phe Arg Arg  
275 280 285

Asn Glu Ala Ser Arg Glu Thr Asn Asn Ser Leu Thr Phe Gly Pro Glu  
290 295 300

Glu Ala Leu Ala Glu Gln Thr Val Phe Leu  
305 310

<210> 9

<211> 930

<212> DNA

<213> Mus musculus

<400> 9

atggacccca gatgcaccat gggcttggca atccttatct ttgtgacagt cttgctgatc 60  
tcagatgctg tttccgtgga gacgcagaatct tatttcaatg ggactgcata tctgcctgtc 120  
ccatttacaa aggctcaaaa cataaggcctg agtgagctgg tagtatttttgcaggaccag 180  
caaaaatggg ttctgtacga gcactatttg ggcacagaga aacttgcata tgtgaatgcc 240  
aagtacctgg gccgcacgg ctttgacagg aacaactgga ctctacgact tcacaatgtt 300  
cagatcaagg acatgggctc gtatgattgt ttttacaaa aaaagccacc cacaggatca 360  
attatcctcc aacagacatt aacagaactg tcagtgcattc ccaacttcag tgaacctgaa 420  
ataaaaactgg ctcagaatgt aacaggaaat tctggcataaa atttgacctg cacgtctaag 480  
caaggtcacc cgaaacctaa gaagatgtat tttctgataaa ctaattcaac taatgagtt 540  
ggtgataaca tgcagatatac acaagataat gtcacagaac tggcgttat ctccaaacagc 600  
ctctctctt cattcccgga tgggtgtgg catatgaccg ttgtgtgtgt tctggaaacg 660  
gagtcaatga agatttcctc caaacctctc aatttcactc aagagtttc atctcctcaa 720  
acgtatttggg aggagattac agtttcgtt actgtggccc tcctccttgc gatgctgctc 780  
atcattgtat gtcacaagaa gccgaatcag cctagcaggc ccagcaacac agcctctaag 840  
tttagagcggg atagtaacgc tgacagagag actataacc tgaaggaact tgaaccccaa 900  
attgcttcag caaaaacccaaa tgccatgtga 930

<210> 10

<211> 309

<212> PRT

<213> Mus musculus

<400> 10

Met Asp Pro Arg Cys Thr Met Gly Leu Ala Ile Leu Ile Phe Val Thr  
1 5 10 15

Val Leu Leu Ile Ser Asp Ala Val Ser Val Glu Thr Gln Ala Tyr Phe  
20 25 30

Asn Gly Thr Ala Tyr Leu Pro Cys Pro Phe Thr Lys Ala Gln Asn Ile  
35 40 45

Ser Leu Ser Glu Leu Val Val Phe Trp Gln Asp Gln Gln Lys Leu Val  
50 55 60

Leu Tyr Glu His Tyr Leu Gly Thr Glu Lys Leu Asp Ser Val Asn Ala  
65 70 75 80

Lys Tyr Leu Gly Arg Thr Ser Phe Asp Arg Asn Asn Trp Thr Leu Arg  
85 90 95

Leu His Asn Val Gln Ile Lys Asp Met Gly Ser Tyr Asp Cys Phe Ile  
100 105 110

DISSEMINATED  
COLONITIS

Gln Lys Lys Pro Pro Thr Gly Ser Ile Ile Leu Gln Gln Thr Leu Thr  
115 120 125  
  
Glu Leu Ser Val Ile Ala Asn Phe Ser Glu Pro Glu Ile Lys Leu Ala  
130 135 140  
  
Gln Asn Val Thr Gly Asn Ser Gly Ile Asn Leu Thr Cys Thr Ser Lys  
145 150 155 160  
  
Gln Gly His Pro Lys Pro Lys Lys Met Tyr Phe Leu Ile Thr Asn Ser  
165 170 175  
  
Thr Asn Glu Tyr Gly Asp Asn Met Gln Ile Ser Gln Asp Asn Val Thr  
180 185 190  
  
Glu Leu Phe Ser Ile Ser Asn Ser Leu Ser Leu Ser Phe Pro Asp Gly  
195 200 205  
  
Val Trp His Met Thr Val Val Cys Val Leu Glu Thr Glu Ser Met Lys  
210 215 220  
  
Ile Ser Ser Lys Pro Leu Asn Phe Thr Gln Glu Phe Pro Ser Pro Gln  
225 230 235 240  
  
Thr Tyr Trp Lys Glu Ile Thr Ala Ser Val Thr Val Ala Leu Leu Leu  
245 250 255  
  
Val Met Leu Leu Ile Ile Val Cys His Lys Lys Pro Asn Gln Pro Ser  
260 265 270  
  
Arg Pro Ser Asn Thr Ala Ser Lys Leu Glu Arg Asp Ser Asn Ala Asp  
275 280 285  
  
Arg Glu Thr Ile Asn Leu Lys Glu Leu Glu Pro Gln Ile Ala Ser Ala  
290 295 300  
  
Lys Pro Asn Ala Glu  
305

<210> 11  
<211> 870  
<212> DNA  
<213> Mus musculus

<400> 11  
atggtgtctt tgcctcggtc tggggctgtc tgggtacagc ggtccatcta 60  
ggccagtgtg ttacgtgcag tgacaaacag tacctccacg atggccagtg ctgtgatttg 120  
tgccagccag gaagccgact gacaagccac tgcacagctc ttgagaagac ccaatgccac 180  
ccatgtgact caggcgaatt ctcagcccag tggAACAGGG agattcgctg tcaccagcac 240  
agacactgtg aacccaatca agggcttcgg gttAAGAAGG agggcaccgc agaATCAGAC 300  
actgtctgt a cctgttaagga aggacaacac tgcaccagca aggattgcga ggcATGTGCT 360  
cagcacacgc cctgtatccc tggCTTGGAGA gttatggaga tggccactga gaccactgat 420  
accgtctgtc atccctgccc agtcggcttc ttctccaaatc agtcatcaact tttcgaaaag 480  
tgttatccct ggacaAGCTG tgaggataag aacttggagg tcctacagaa aggaACGAGT 540  
cagactaatg tcatctgtgg tttAAAGTCC cggatgcgag ccctgctgg tattcctgtc 600  
gtgatggca tcctcatcac cattttcggg gtgtttctct atatcaaaaa ggtggtaag 660  
aaacccaaagg ataatgagat gttACCCCT gcggtcgac ggcAAGATCC ccaggAGATG 720  
gaagattatc ccggtcataa caccgctgct ccagtgcagg agacactgca cgggtgtcag 780  
cctgtcacac aggaggatgg taaagagagt cgcatctcag tgcaggagcg gcaggtgaca 840

gacagcatag ccttgaggcc cctggctctga

870

<210> 12  
<211> 289  
<212> PRT  
<213> Mus musculus

<400> 12  
Met Val Ser Leu Pro Arg Leu Cys Ala Leu Trp Gly Cys Leu Leu Thr  
1 5 10 15  
Ala Val His Leu Gly Gln Cys Val Thr Cys Ser Asp Lys Gln Tyr Leu  
20 25 30  
His Asp Gly Gln Cys Cys Asp Leu Cys Gln Pro Gly Ser Arg Leu Thr  
35 40 45  
Ser His Cys Thr Ala Leu Glu Lys Thr Gln Cys His Pro Cys Asp Ser  
50 55 60  
Gly Glu Phe Ser Ala Gln Trp Asn Arg Glu Ile Arg Cys His Gln His  
65 70 75 80  
Arg His Cys Glu Pro Asn Gln Gly Leu Arg Val Lys Lys Glu Gly Thr  
85 90 95  
Ala Glu Ser Asp Thr Val Cys Thr Cys Lys Glu Gly Gln His Cys Thr  
100 105 110  
Ser Lys Asp Cys Glu Ala Cys Ala Gln His Thr Pro Cys Ile Pro Gly  
115 120 125  
Phe Gly Val Met Glu Met Ala Thr Glu Thr Thr Asp Thr Val Cys His  
130 135 140  
Pro Cys Pro Val Gly Phe Phe Ser Asn Gln Ser Ser Leu Phe Glu Lys  
145 150 155 160  
Cys Tyr Pro Trp Thr Ser Cys Glu Asp Lys Asn Leu Glu Val Leu Gln  
165 170 175  
Lys Gly Thr Ser Gln Thr Asn Val Ile Cys Gly Leu Lys Ser Arg Met  
180 185 190  
Arg Ala Leu Leu Val Ile Pro Val Val Met Gly Ile Leu Ile Thr Ile  
195 200 205  
Phe Gly Val Phe Leu Tyr Ile Lys Lys Val Val Lys Lys Pro Lys Asp  
210 215 220  
Asn Glu Met Leu Pro Pro Ala Ala Arg Arg Gln Asp Pro Gln Glu Met  
225 230 235 240  
Glu Asp Tyr Pro Gly His Asn Thr Ala Ala Pro Val Gln Glu Thr Leu  
245 250 255  
His Gly Cys Gln Pro Val Thr Gln Glu Asp Gly Lys Glu Ser Arg Ile  
260 265 270  
Ser Val Gln Glu Arg Gln Val Thr Asp Ser Ile Ala Leu Arg Pro Leu

275

280

285

Val

<210> 13  
<211> 994  
<212> DNA  
<213> Porcus spp

<400> 13  
atgggactga gtaacattct ctttgtatg gtcctcctgc tctctggtgc tgcctccttg 60  
aaaagtcaagg catatttcaa ttagactgga gaactgccgt gccatttac aaactcgac 120  
aacctaagcc tggatgagct ggtcatatggcaggacc agataaccc ggttctctac 180  
gagctatacc gaggccaaga gaagcctcat aatgttaatt ccaagtataat gggtcgcaca 240  
agcttgacc aggccacccg gaccctgaga ctccacaacg ttcaaatcaa ggacaaggc 300  
tcatataat gtttcatcca tcataaaggc ccgcattggac ttgttccttat ccaccagatg 360  
agttctgacc tattcattgtc tgctacttc agtcaacccg aataaaaccc acttactaat 420  
cacacagaaa attctgtcat aaatttgacc tgctcatcta cacaaggctc cccagaaccc 480  
cagaggatgt atatgttgct aaatacgaag aattcaacca ctgagcatga tgctgacatg 540  
aagaatctc aaaataacat cacggaaactc tacaatgtat caatcagggt gtctttccc 600  
atccctcccg agacaaaatgt gagcatcgtc tttgtcctgc aacttgagcc aagcaagaca 660  
ctgctttctt ccctacccatg taatatacat gcaaagccac ctgtgcaacc ccctgtccca 720  
gaccacatcc tctggattgc agctctactt gtaacagtgg tcgttggatggatggatgg 780  
tcctttgtaa cactaaggaa aaggaagaag aagcagccgt gcccctctaa tgaatgtgg 840  
gaaaccatca aaatgaacacag gaaggcgagt gaacaaacta agaacagagc agaagtccat 900  
gaacgatctg atgatgcccgtt gttgtatgtt aatattttaa agacagccctc agatgacaac 960  
agtactacag atttttaattt aaagagtaaa ctcc 994

<210> 14  
<211> 330  
<212> PRT  
<213> Porcus spp

<400> 14  
Met Gly Leu Ser Asn Ile Leu Phe Val Met Val Leu Leu Leu Ser Gly  
1 5 10 15  
  
Ala Ala Ser Leu Lys Ser Gln Ala Tyr Phe Asn Glu Thr Gly Glu Leu  
20 25 30  
  
Pro Cys His Phe Thr Asn Ser Gln Asn Leu Ser Leu Asp Glu Leu Val  
35 40 45  
  
Ile Phe Trp Gln Asp Gln Asp Asn Leu Val Leu Tyr Glu Leu Tyr Arg  
50 55 60  
  
Gly Gln Glu Lys Pro His Asn Val Asn Ser Lys Tyr Met Gly Arg Thr  
65 70 75 80  
  
Ser Phe Asp Gln Ala Thr Trp Thr Leu Arg Leu His Asn Val Gln Ile  
85 90 95  
  
Lys Asp Lys Gly Ser Tyr Gln Cys Phe Ile His His Lys Gly Pro His  
100 105 110  
  
Gly Leu Val Pro Ile His Gln Met Ser Ser Asp Leu Ser Leu Leu Ala  
115 120 125

Asn Phe Ser Gln Pro Glu Ile Asn Leu Leu Thr Asn His Thr Glu Asn  
 130 135 140  
 Ser Val Ile Asn Leu Thr Cys Ser Ser Thr Gln Gly Tyr Pro Glu Pro  
 145 150 155 160  
 Gln Arg Met Tyr Met Leu Leu Asn Thr Lys Asn Ser Thr Thr Glu His  
 165 170 175  
 Asp Ala Asp Met Lys Lys Ser Gln Asn Asn Ile Thr Glu Leu Tyr Asn  
 180 185 190  
 Val Ser Ile Arg Val Ser Leu Pro Ile Pro Pro Glu Thr Asn Val Ser  
 195 200 205  
 Ile Val Cys Val Leu Gln Leu Glu Pro Ser Lys Thr Leu Leu Phe Ser  
 210 215 220  
 Leu Pro Cys Asn Ile Asp Ala Lys Pro Pro Val Gln Pro Pro Val Pro  
 225 230 235 240  
 Asp His Ile Leu Trp Ile Ala Ala Leu Leu Val Thr Val Val Val Val  
 245 250 255  
 Cys Gly Met Val Ser Phe Val Thr Leu Arg Lys Arg Lys Lys Gln  
 260 265 270  
 Pro Gly Pro Ser Asn Glu Cys Gly Glu Thr Ile Lys Met Asn Arg Lys  
 275 280 285  
 Ala Ser Glu Gln Thr Lys Asn Arg Ala Glu Val His Glu Arg Ser Asp  
 290 295 300  
 Asp Ala Gln Cys Asp Val Asn Ile Leu Lys Thr Ala Ser Asp Asp Asn  
 305 310 315 320  
 Ser Thr Thr Asp Phe Leu Lys Ser Lys Leu  
 325 330

<210> 15  
 <211> 837  
 <212> DNA  
 <213> Porcus

<400> 15  
 atggttcggt tgcctctgca gtgtctcctc tggggctgtct ttttgcggc cgtccaccca 60  
 gaaccaccca cttcatgcaa agaaaaaccaa tacccaacaa acagccggtg ctgtatgg 120  
 tgcccgccag gacagaaact ggtgaaccac tgcacagagg tcactgaaac agaatgcctt 180  
 ccttcgtcgtt ccagcgaatt cctagccacc tggaatagag agaaacactg tcatcagcac 240  
 aaatactgctg accccacccct aggtctccag gtccagaggg agggcacctc gaaaacagac 300  
 accacttgtt tgcgtcgttga aggccatcact tgtaaccacaa ggcgcctgtga aagttgcacc 360  
 ttgcacagct tgcgttcccc tggcctcggtt gtcaagcaga tggcgacaga ggtttctgac 420  
 actatctgtt aaccctgccc agttggcttc ttctccaatg tatcatctgc ttcagaaaaag 480  
 tgcgtcgtt ggacaagctg cgagagcaaa ggcctgggtt aacaacgtgc ggggactaac 540  
 aagaccgtt tgcgtcgttgg ttcccgagt cggatgagag coctgggtt tatccccatc 600  
 acgtggggta tcctgtttgc cgtcctgttg gtatcttct gtatcagaaa ggtgaccaag 660  
 gagcaggaga ctaaggccctt gcaaccctaag actgaaaggc aggtatccgtt ggagacgatt 720  
 gatctggagg atttccccgtt ctccaccgtt ccgggtgcagg agaccttaca ttgggtccag 780  
 cccgtcaccgg aggaggacgg caaagagagt cgcacatctc tagtgcaggagag acagtga 837

<210> 16  
<211> 278  
<212> PRT  
<213> Porcuss

<400> 16  
Met Val Arg Leu Pro Leu Gln Cys Leu Leu Trp Gly Cys Phe Leu Thr  
1 5 10 15  
Ala Val His Pro Glu Pro Pro Thr Ser Cys Lys Glu Asn Gln Tyr Pro  
20 25 30  
Thr Asn Ser Arg Cys Cys Asn Leu Cys Pro Pro Gly Gln Lys Leu Val  
35 40 45  
Asn His Cys Thr Glu Val Thr Glu Thr Glu Cys Leu Pro Cys Ser Ser  
50 55 60  
Ser Glu Phe Leu Ala Thr Trp Asn Arg Glu Lys His Cys His Gln His  
65 70 75 80  
Lys Tyr Cys Asp Pro Asn Leu Gly Leu Gln Val Gln Arg Glu Gly Thr  
85 90 95  
Ser Lys Thr Asp Thr Thr Cys Val Cys Ser Glu Gly His His Cys Thr  
100 105 110  
Asn Ser Ala Cys Glu Ser Cys Thr Leu His Ser Leu Cys Phe Pro Gly  
115 120 125  
Leu Gly Val Lys Gln Met Ala Thr Glu Val Ser Asp Thr Ile Cys Glu  
130 135 140  
Pro Cys Pro Val Gly Phe Phe Ser Asn Val Ser Ser Ala Ser Glu Lys  
145 150 155 160  
Cys Gln Pro Trp Thr Ser Cys Glu Ser Lys Gly Leu Val Glu Gln Arg  
165 170 175  
Ala Gly Thr Asn Lys Thr Asp Val Val Cys Gly Phe Gln Ser Arg Met  
180 185 190  
Arg Ala Leu Val Val Ile Pro Ile Thr Leu Gly Ile Leu Phe Ala Val  
195 200 205  
Leu Leu Val Phe Leu Cys Ile Arg Lys Val Thr Lys Glu Gln Glu Thr  
210 215 220  
Lys Ala Leu His Pro Lys Thr Glu Arg Gln Asp Pro Val Glu Thr Ile  
225 230 235 240  
Asp Leu Glu Asp Phe Pro Asp Ser Thr Ala Pro Val Gln Glu Thr Leu  
245 250 255  
His Trp Cys Gln Pro Val Thr Gln Glu Asp Gly Lys Glu Ser Arg Ile  
260 265 270  
Ser Val Gln Glu Arg Gln  
275

<210> 17  
<211> 534  
<212> PRT  
<213> Porcuss

<400> 17  
Ile Val Val Ile Phe Gly Ala Ser Asn Ile Leu Trp Met Val Phe Ala  
1 5 10 15  
Val Ser Gln Asn Val Lys Val Glu Ile Phe Pro Glu Asp Lys Met Ile  
20 25 30  
Ala Gln Ile Gly Asp Ser Ala Ser Leu Thr Cys Ser Ala Pro Asp Cys  
35 40 45  
Glu Ser Ser Leu Ser Phe Ser Trp Arg Thr Gln Ile Asp Ser Pro Leu  
50 55 60  
Asn Gly Lys Val Lys Thr Asn Gly Thr Arg Ser Thr Leu Val Met Asn  
65 70 75 80  
Pro Val Ser Phe Glu Asn Glu His Ser Tyr Leu Cys Thr Val Ser Cys  
85 90 95  
Gly Asn Leu Lys Gly Glu Arg Gly Ile Gln Val Glu Ile Tyr Ser Phe  
100 105 110  
Pro Lys Asp Pro Glu Ile His Trp Ser Ser Leu Pro Glu Val Gly Lys  
115 120 125  
Pro Val Thr Val Arg Cys Leu Val Pro Asp Val Tyr Pro Val Glu Lys  
130 135 140  
Leu Glu Ile Glu Leu Leu Lys Asp Asn His Ser Met Val Ser Gln Asn  
145 150 155 160  
Phe Leu Glu Leu Ile Asp Ile Lys Ser Lys Glu Thr Lys Ser Leu Glu  
165 170 175  
Phe Thr Phe Thr Pro Thr Glu Glu Asp Ile Gly Lys Ala Ile Val Cys  
180 185 190  
Gln Ala Thr Leu Ile Ile Asp Gly Gln Pro Ser Val Lys Thr Thr Pro  
195 200 205  
Glu Lys Met Gln Val Tyr Ile Ser Pro Lys Asp Pro Val Ile Ser Val  
210 215 220  
Asn Pro Ser Thr Ser Leu Gln Glu Gly Asp Ser Met Met Met Thr Cys  
225 230 235 240  
Thr Ser Glu Gly Leu Pro Ala Pro Gln Ile Ser Trp Ser Lys Lys Leu  
245 250 255  
Asp Asn Gly Asp Gln Gln Leu Leu Ser Gly Asn Ala Thr Leu Thr Leu  
260 265 270  
Ile Ala Met Arg Met Glu Asp Ser Gly Ile Tyr Val Cys Glu Gly Val  
275 280 285

Asn Pro Val Gly Thr Asn Arg Lys Glu Val Glu Leu Thr Val Gln Val  
 290 295 300  
 Ala Pro Arg Asp Thr Thr Ile Ser Val Asn Pro Ser Ser Thr Leu Glu  
 305 310 315 320  
 Glu Gly Ser Ser Val Asn Met Thr Cys Ser Ser Asp Gly Phe Pro Ala  
 325 330 335  
 Pro Lys Ile Leu Trp Ser Lys Lys Leu Arg Asp Gly Asn Leu Glu Pro  
 340 345 350  
 Leu Ser Glu Asn Thr Thr Leu Thr Leu Thr Ser Thr Lys Met Glu Asp  
 355 360 365  
 Ser Gly Ile Tyr Val Cys Glu Gly Ile Asn Gln Ala Gly Ile Asn Arg  
 370 375 380  
 Lys Glu Val Glu Leu Ile Ile Gln Ala Ala Pro Lys Asp Leu Gln Leu  
 385 390 395 400  
 Thr Ala Phe Pro Ser Glu Ser Val Lys Glu Gly Asp Thr Val Ile Ile  
 405 410 415  
 Ser Cys Thr Cys Gly Asn Val Pro Pro Thr Leu Ile Ile Leu Lys Lys  
 420 425 430  
 Lys Ala Glu Thr Gly Asp Thr Val Leu Lys Ser Thr Asp Gly Ala Tyr  
 435 440 445  
 Thr Ile His Arg Ala Arg Leu Ala Asp Ala Gly Val Tyr Glu Cys Glu  
 450 455 460  
 Ser Lys Asn Glu Ile Gly Leu Gln Leu Arg Ser Ile Thr Leu Asp Val  
 465 470 475 480  
 Lys Gly Arg Glu Ser Asn Lys Asp Tyr Phe Ser Ser Glu Leu Leu Val  
 485 490 495  
 Leu Tyr Cys Ala Ser Ser Leu Ile Ile Pro Ala Ile Gly Val Ile Ile  
 500 505 510  
 Tyr Phe Ala Arg Lys Ala Asn Met Arg Gly Ser Tyr Ser Leu Val Asp  
 515 520 525  
 Ala Gln Lys Ser Lys Val  
 530

<210> 18  
 <211> 807  
 <212> DNA  
 <213> Vacca spp

<400> 18  
 atgttcgtt tgccactgca gtgtctttc tggggcttct ttctgaccgc cgtccactca 60  
 gaaccagcca ctgcttgtgg agagaagcaa tacccagtga acagtcttig ctgtgatttg 120  
 tgcccggcgg gacagaaact ggtgaacgac tgcacagagg tcaagaaaaac agaatgccag 180  
 tcctgcggta aaggcgaatt cttgtccacc tggAACAGAG agaaataactg tcacgagcac 240  
 agatactgca accccaaacctt agggctccgg atccagagcg aggttacctt gaatacagac 300  
 accatttgcgtt tatgtgtcga agggcaacac tgtaccagtc acacctgcga aagttgcacg 360

cccccacagct tgggtctccc tggcttcggg gtcaaggcaga tcgctacagg gcttttggat 420  
accgtctgtg aaccctgccc gctcggttc ttctccaacg tgcgtatctgc ttttggaaag 480  
tgcgtaccgtt ggacaagctg cgagagaaaa ggcctgggtgg aacaacacgt ggggacgaa 540  
aagacagatg ttgtctgcgg tttccagagt cgatgagga ccctgggtgg gatccccgtc 600  
acgatgggag tcttgggttc tgcgtatggt gtatctgcct gtatcaggaa cataaccaag 660  
aagcggcagc taaggccctg caccctatgg ctgaaaggca ggatcccgtg gagacgattg 720  
atccggagga ttttccggc ccccacccgc ctctccggtg caagagacct tatgctgggt 780  
tcagccggtc gcccaggagg acggcaa 807

<210> 19  
<211> 269  
<212> PRT  
<213> Vacca spp

<400> 19  
Met Val Arg Leu Pro Leu Gln Cys Leu Phe Trp Gly Phe Phe Leu Thr  
1 5 10 15  
  
Ala Val His Ser Glu Pro Ala Thr Ala Cys Gly Glu Lys Gln Tyr Pro  
20 25 30  
  
Val Asn Ser Leu Cys Cys Asp Leu Cys Pro Pro Gly Gln Lys Leu Val  
35 40 45  
  
Asn Asp Cys Thr Glu Val Ser Lys Thr Glu Cys Gln Ser Cys Gly Lys  
50 55 60  
  
Gly Glu Phe Leu Ser Thr Trp Asn Arg Glu Lys Tyr Cys His Glu His  
65 70 75 80  
  
Arg Tyr Cys Asn Pro Asn Leu Gly Leu Arg Ile Gln Ser Glu Gly Thr  
85 90 95  
  
Leu Asn Thr Asp Thr Ile Cys Val Cys Val Glu Gly Gln His Cys Thr  
100 105 110  
  
Ser His Thr Cys Glu Ser Cys Thr Pro His Ser Leu Cys Leu Pro Gly  
115 120 125  
  
Phe Gly Val Lys Gln Ile Ala Thr Gly Leu Leu Asp Thr Val Cys Glu  
130 135 140  
  
Pro Cys Pro Leu Gly Phe Phe Ser Asn Val Ser Ser Ala Phe Glu Lys  
145 150 155 160  
  
Cys His Arg Trp Thr Ser Cys Glu Arg Lys Gly Leu Val Glu Gln His  
165 170 175  
  
Val Gly Thr Asn Lys Thr Asp Val Val Cys Gly Phe Gln Ser Arg Met  
180 185 190  
  
Arg Thr Leu Val Val Ile Pro Val Thr Met Gly Val Leu Phe Ala Val  
195 200 205  
  
Leu Leu Val Ser Ala Cys Ile Arg Asn Ile Thr Lys Lys Arg Gln Leu  
210 215 220  
  
Arg Pro Cys Thr Leu Trp Leu Lys Gly Arg Ile Pro Trp Arg Arg Leu  
225 230 235 240

Ile Arg Arg Ile Phe Pro Ala Pro Thr Arg Leu Ser Gly Ala Arg Asp  
245 250 255

Leu Met Leu Val Ser Ala Gly Arg Pro Gly Gly Arg Gln  
260 265

<210> 20  
<211> 867  
<212> DNA  
<213> Vacca spp

<400> 20  
atggccaca cacggaggca gggAACATCA ccatccaAGT gtcCATAcCT caatttCTTT 60  
cagCTCTTGG tgctggctgg tctttctcac ttctgttcAG gtttatcca cgtgaccaAG 120  
gaagtGAAAG aagtggcaAC gctgtccTGT ggtcacAAATGTTGA agagctggca 180  
caaactcgca tctactggca aaaggagaAG aaaatggTGC tgactatgat gtctgggac 240  
atgaatataat ggcccggAGTA caagaACCGG accatCTTG atatcactaa taacctCTCC 300  
atttgatcc tggctctgCG cccatctgac gaggGCACAT acgagtgtgt tggctgaaG 360  
tatgaaaaAG acgcttcaa gcggAACAC ctggctgaaG tgacgttATC agtcaaAGCT 420  
gacttcccta cacctAGTAT atctgacttt gaaattccaa ctTCTAATAT tagaaggata 480  
atttgctcaa cctctggagg tttccAGAG cctcacCTC cctggTTGGA aaatggagaa 540  
gaatttaatg ccatcaACAC aacAGTTCC caagatCCTG aaactgagCT ctatgtgtt 600  
agcagcaaAC tggatttcaa tatgacaACC aaccACAGCT tcattgtgtCT catcaAGTAT 660  
ggacatttaa gagtgaatca gacCTTCAAC tggaaatACAA ccaAGCAAGA gcattttCCT 720  
gataacCTGC tcccataCCTG ggcattacc ttaatctcaG taaatggaaT ttttgata 780  
tgctgcctGA cctactgCTT tgccccAGA tgcaGAGAGA gaaggaggaa tgagagattG 840  
agaagggaaa gtgtacgccc tgtataa 867

<210> 21  
<211> 35  
<212> DNA  
<213> Porcus spp

<400> 21  
gcatggatcc atgggactga gtaacattct ctttg 35

<210> 22  
<211> 34  
<212> DNA  
<213> Porcus

<400> 22  
gcatgtcgac ttaaaaatct gtagtactgt tgtc 34

<210> 23  
<211> 17  
<212> DNA  
<213> Porcus

<400> 23  
agaccgtctt ctttag 17

<210> 24  
<211> 21  
<212> DNA  
<213> Porcus

<400> 24  
ttggatcctc catgttatcc c 21

<210> 25  
<211> 12  
<212> DNA  
<213> Porcus

<400> 25  
agcatctgaa gc 12

<210> 26  
<211> 22  
<212> DNA  
<213> Porcus spp

<400> 26  
atggatcctc cattttccaa cc 22

<210> 27  
<211> 18  
<212> DNA  
<213> Porcus spp

<400> 27  
ttgtcgacat ctactggc 18

<210> 28  
<211> 58  
<212> DNA  
<213> Porcus spp

<400> 28  
ggatcctcac tgtctctcct gatgagatgc gactctcctc tttgccccgtc cgtctcc 58

<210> 29  
<211> 29  
<212> DNA  
<213> Porcus spp

<400> 29  
gaattcatgg ttctgttgcc tctgcagtg 29

<210> 30  
<211> 27  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence: Porcus spp/ovalbumen  
chimeric peptide

<400> 30  
Ile Ser Gln Ala Val His Ala Ala His Ala Glu Ile Asn Glu Ala Gly

1

5

10

15

Arg Ser Phe Asp Gln Ala Thr Trp Thr Leu Arg  
20 25

<210> 31  
<211> 26  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence: Porcus spp/ovalbumen  
chimeric peptide

<400> 31  
Ile Ser Gln Ala Val His Ala Ala His Ala Glu Ile Asn Glu Ala Gly  
1 5 10 15

Arg Leu Pro Cys His Phe Thr Asn Ser Gln  
20 25

<210> 32  
<211> 30  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence: Porcus spp/ovalbumen  
chimeric peptide

<400> 32  
Ile Ser Gln Ala Val His Ala Ala His Ala Glu Ile Asn Glu Ala Gly  
1 5 10 15

Arg Lys Gly Pro His Gly Leu Val Pro Ile His Gln Met Ser  
20 25 30

<210> 33  
<211> 26  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence: Porcus spp/ovalbumen  
chimeric peptide

<400> 33  
Ile Ser Gln Ala Val His Ala Ala His Ala Glu Ile Asn Glu Ala Gly  
1 5 10 15

Arg Gly Leu Val Pro Ile His Gln Met Ser  
20 25

<210> 34  
<211> 28  
<212> PRT  
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Porcusspp/ovalbumen  
chimeric peptide

<400> 34

Ile Ser Gln Ala Val His Ala Ala His Ala Glu Ile Asn Glu Ala Gly  
1 5 10 15

Arg Val Gln Ile Lys Asp Lys Gly Ser Tyr Gln Cys  
20 25

<210> 35

<211> 29

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Porcusspp/ovalbumen  
chimeric peptide

<400> 35

Ile Ser Gln Ala Val His Ala Ala His Ala Glu Ile Asn Glu Ala Gly  
1 5 10 15

Arg Cys Ser Ser Thr Gln Gly Tyr Pro Glu Pro Gln Arg  
20 25

<210> 36

<211> 29

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Porcusspp/ovalbumen  
chimeric peptide

<400> 36

Ile Ser Gln Ala Val His Ala Ala His Ala Glu Ile Asn Glu Ala Gly  
1 5 10 15

Arg Lys Ser Gln Ala Tyr Phe Asn Glu Thr Gly Glu Leu  
20 25

<210> 37

<211> 29

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Porcusspp/ovalbumen  
chimeric peptide

<400> 37

Ile Ser Gln Ala Val His Ala Ala His Ala Glu Ile Asn Glu Ala Gly  
1 5 10 15

Arg Ala Ser Leu Lys Ser Gln Ala Tyr Phe Asn Glu Thr

<210> 38  
<211> 30  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence: Porcuss spp/ovalbumen  
chimeric peptide

<400> 38  
Ile Ser Gln Ala Val His Ala Ala His Ala Glu Ile Asn Glu Ala Gly  
1 5 10 15  
Arg Tyr Met Gly Arg Thr Ser Phe Asp Gln Ala Thr Trp Thr  
20 25 30

<210> 39  
<211> 17  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence: Porcuss spp/ovalbumen  
chimeric peptide

<400> 39  
Ile Ser Gln Ala Val His Ala Ala His Ala Glu Ile Asn Glu Ala Gly  
1 5 10 15  
Arg