Universiteit van Stellenbosch

Toegepaste Wiskunde 314

Tutoriaal 10: Oplossings

- (1) (a) 00000 10101 01110 11011
 - (b) n = 5; k = 2; M = 4; d = 3.
 - (c) een fout.
 - (d) nee.
 - (e) Die dekoderingstabel is:

00000	10101	01110	11011
10000	00101	11110	01011
01000	11101	00110	10011
00100	10001	01010	11111
00010	10111	01100	11001
00001	10100	01111	11010
11000	01101	10110	00011
10010	00111	11100	01001

(f)

$$H = \begin{bmatrix} 11100 \\ 01010 \\ 10001 \end{bmatrix}$$

(g)
$$r = 3$$

 $x_1 + x_2 + x_3 = 0$
 $x_2 + x_4 = 0$
 $x_1 + x_5 = 0$.

(h)

neweklas	sindroom
leier	
0000000	000
10000	101
01000	110
00100	100
00010	010
00001	001

- (i) i. $(01100)H^T = (010)$; fout is (00010), dus kodewoord is 01100 00010 = 01110.
 - ii. $(01101)H^T = (011)$; nie in sindroom opsoektabel nie—dus meer as een fout.
 - iii. $(01110)H^T = (000)$; fout is (00000), dus kodewoord is 01110 00000 = 01110.

(j)

$$GH^T = \left[\begin{array}{c} 000 \\ 000 \end{array} \right]$$

(2) (a) 0000 0112 0221 1011 1120 1202 2022 2101 2210

(b)

$$H = \left[\begin{array}{c} 2210 \\ 2101 \end{array} \right]$$

(c)
$$2x_1 + 2x_2 + x_3 = 0$$

 $2x_1 + x_2 + x_4 = 0$

(d)

neweklas	sindroom
leier	
0000	00
0001	01
0002	02
0010	10
0020	20
0100	21
0200	12
1000	22
2000	11

(e) i. $(2121)H^T = (20)$; fout is (0020), dus kodewoord is 2121 - 0020 = 2101.

ii. $(1201)H^T = (02)$; fout is (0002), dus kodewoord is 1201 - 0002 = 1202.

iii. $(2222)H^T = (12)$; fout is (0200), dus kodewoord is 2222 - 0200 = 2022.

(f)

$$GH^T = \begin{bmatrix} 00\\00 \end{bmatrix}$$

(3) Laat O en E die versamelings van onderskeidelik die onewe en ewe kodewoorde van 'n binêre lineêre kode C wees. Veronderstel $E \neq C$ en laat y 'n kodewoord met onewe gewig wees. Aangesien C 'n binêre lineêre kode is, is die som van 'n ewe en 'n onewe kodewoord weer 'n onewe kodewoord en dus is $E + y \subseteq O$; en dus $|E| = |E + y| \le |O|$. Verder is die som van twee onewe kodewoorde 'n ewe kodewoord en dus $O + y \subseteq E$; en dus $|O| = |O + y| \le |E|$. Dit volg dat $|E| = |O| = \frac{1}{2}|C|$.