Задачи за контролно 1 по висша алгебра

Задача 1. За кои цели числа b частното $\frac{11b+5}{5b+7}$ също e цяло?

Задача 2. Докажете, че за всяко $n \in \mathbb{N}$ числото $2^{3^n} + 1$ се дели на 3^{n+1} , но не се дели на 3^{n+2} .

Задача 3. Решете уравнението 198x + 164y = 10 в цели числа.

Задача 4. Четирима рибари уловили по-малко от 500 риби. Без да ги разделят, легнали да спят.

През нощта се събудил първият рибар, разделил ги на четири равни купчини, като останала една риба в повече. Той хвърлил едната риба в морето, прибрал на скрито място една от купчините за себе си, а останалите три купчини събрал и оставил да се делят на сутринта.

След него се събудил вторият рибар, разделил (останалите) риби на четири равни купчини, като останала една риба в повече. Хвърлил едната риба в морето, прибрал една от купчините за себе си, а останалите три купчини събрал и оставил да се делят сутринта.

Абсолютно същото след него направил и третият рибар.

Накрая същото направил и четвъртият рибар.

Колко риби са останали на сутринта за разделяне?

Задача 5. Решете ребуса HOC*HOC=AБАНОС, където на еднаквите букви отговарят еднакви цифри, а на различните букви - различни цифри.

Задача 6. Нека p и q са различни прости числа. Докажете, че $p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$.

Задача 7. Намерете всички нечетни прости числа p, такива че $15^{\frac{p-1}{2}} \equiv 12 \pmod{p}$.

Задача 8. *Решете уравнението* $\varphi(n) = 12$.

Задача 9. Нека $A = \{(a,b,c) \in \mathbb{R}^3 \mid ac \neq 0\}$. Въвеждаме операция $\circ: A \times A \to A$, оперделена от

 $(a_1,b_1,c_1)\circ(a_2,b_2,c_2)=(a_1a_2,a_1b_2+b_1c_2,c_1c_2).$

Докажете, че A е група относно \circ и $H = \{(a,b,c) \in A \mid a=c\}$ е подгрупа на A.

Задача 10. Нека $G = \mathbb{Q} \setminus \{\frac{1}{7}\}$. Въвеждаме операцията $*: G \times G \to G$, с равенството a*b = a+b-7ab. Докажете, че (G,*) е група.

Hамерете a*a*a*...*a, където има n onepaции *.

Задача 11. B множеството \mathbb{R}^2 въвеждаме операция \oplus по правилото:

$$(a,b) \oplus (c,d) = (a+c,be^{-c}+de^{-a})$$

Докажете, че (\mathbb{R}^2, \oplus) е група.

Задача 12. *Нека* $H = \{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} | a, b \in \mathbb{Z}_3, \ (a, b) \neq (0, 0) \}.$

Докажете, че Н е циклична група относно умножението на матрици.

Задача 13. *Нека* $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ $u B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Означаваме с $G = \langle A, B \rangle$ подгрупата на $GL_2(\mathbb{R})$, породена от матриците A и B. Намерете реда на G, както и редовете на всичките ѝ елементи.

Колко различни подгрупи има G?

Задача 14. Докажете, че групите $\mathbb{Z}_{143} \times \mathbb{Z}_7$ и $\mathbb{Z}_{13} \times \mathbb{Z}_{77}$ са изоморфни.

Задача 15. Намерете всички възможни стойности на реда на елемент от симетричната група S_7 .

Задача 16. Нека G е група и H е подгрупа. Въвеждаме бинарна \sim релация над G:

$$a \sim b \Leftrightarrow a^{-1}b \in H$$

Докажете, че $\sim e$ релация на еквивалентност. Намерете класовете на еквивалентност по тази релация.

Задача 17. Намерете центъра Z на групата на кватернионите Q_8 . Кои са съседните класове на Q_8 по Z? Напишете таблицата за умножение на съседни класове. На коя група е изоморфна факторгрупата Q_8/Z ?

Задача 18. Нека $G = \{(a, b, c) \in \mathbb{R}^3 \mid ab \neq 0\}$. Въвеждаме операция в G по правилото

$$(a_1, b_1, c_1) \cdot (a_2, b_2, c_2) = (a_1 a_2, b_1 b_2, a_1 c_2 + c_1 b_2)$$

Нека $H = \{(a, b, c) \in G \mid a = 1\}$ и $K = \{(a, b, c) \in G \mid a = b\}$. Докажете, че G е неабелева група, $H \triangleleft G$, $K \triangleleft G$ и $G/H \cong \mathbb{R}^* \cong G/K$.