Module-04, Python for Machine Learning Classification Algorithms (Random Forest)

Dostdar Ali Instructor

Data science and Artificial Intelligence
3-Months Course
at
Karakaroum international University

February 11, 2024

Table of Contents

- Random Forest
- Mathematical Formulation
- Random Forest Example
- 4 Random Forest: Hand Calculations
- 5 Python Code: Random Forest

- **Definition:** Random Forest is an ensemble learning method that constructs a multitude of decision trees at training time and outputs the class that is the mode of the classes.
- **History:** Proposed by Leo Breiman in 2001. Improved upon the overfitting issues of individual decision trees.
- Working Principle: Constructs a collection of decision trees and combines their predictions to improve accuracy and control overfitting.
- Examples:
 Image classification.
 Predictive maintenance in manufacturing

- **Definition:** Random Forest is an ensemble learning method that constructs a multitude of decision trees at training time and outputs the class that is the mode of the classes.
- **History:** Proposed by Leo Breiman in 2001. Improved upon the overfitting issues of individual decision trees.
- Working Principle: Constructs a collection of decision trees and combines their predictions to improve accuracy and control overfitting.
- Examples:
 Image classification.
 Predictive maintenance in manufacturing

- **Definition:** Random Forest is an ensemble learning method that constructs a multitude of decision trees at training time and outputs the class that is the mode of the classes.
- **History:** Proposed by Leo Breiman in 2001. Improved upon the overfitting issues of individual decision trees.
- Working Principle: Constructs a collection of decision trees and combines their predictions to improve accuracy and control overfitting.
- Examples:
 Image classification.
 Predictive maintenance in manufacturing.

- Definition: Random Forest is an ensemble learning method that constructs a multitude of decision trees at training time and outputs the class that is the mode of the classes.
- **History:** Proposed by Leo Breiman in 2001. Improved upon the overfitting issues of individual decision trees.
- Working Principle: Constructs a collection of decision trees and combines their predictions to improve accuracy and control overfitting.
- Examples:

Image classification.

Predictive maintenance in manufacturing.

Random Forest: Mathematical Formulation

- **Problem:** Binary classification problem with features $X = \{X_1, X_2, \dots, X_n\}$.
- Prediction:

$$Prediction(X) = \frac{1}{N} \sum_{i=1}^{N} Prediction_{T_i}(X)$$

where T_1, T_2, \ldots, T_N are individual decision trees in the forest.

• **Training:** Bootstrap samples and use a random subset of features at each split for each tree.

Random Forest: Mathematical Formulation

- **Problem:** Binary classification problem with features $X = \{X_1, X_2, \dots, X_n\}$.
- Prediction:

$$Prediction(X) = \frac{1}{N} \sum_{i=1}^{N} Prediction_{T_i}(X)$$

where T_1, T_2, \ldots, T_N are individual decision trees in the forest.

• **Training:** Bootstrap samples and use a random subset of features at each split for each tree.

Random Forest: Mathematical Formulation

- **Problem:** Binary classification problem with features $X = \{X_1, X_2, \dots, X_n\}$.
- Prediction:

$$Prediction(X) = \frac{1}{N} \sum_{i=1}^{N} Prediction_{T_i}(X)$$

where T_1, T_2, \ldots, T_N are individual decision trees in the forest.

• **Training:** Bootstrap samples and use a random subset of features at each split for each tree.

- Problem: Predict whether a loan application will be approved based on various features.
- Working Principle: Ensemble method combining multiple decision trees.
- **Training:** Train several decision trees on different subsets of the data and features.
- Example:
 - Train Tree 1 on a random subset of data and features.
 - Train Tree 2 on another random subset.
 - o ...
- **Prediction:** Aggregate predictions from all trees (e.g., voting for classification).
- Advantages: Reduces overfitting, improves accuracy, handles missioned data well.

- Problem: Predict whether a loan application will be approved based on various features.
- Working Principle: Ensemble method combining multiple decision trees.
- **Training:** Train several decision trees on different subsets of the data and features.
- Example:
 - Train Tree 1 on a random subset of data and features.
 - Train Tree 2 on another random subset.
 - ...
- **Prediction:** Aggregate predictions from all trees (e.g., voting for classification).
- Advantages: Reduces overfitting, improves accuracy, handles mission data well.

- Problem: Predict whether a loan application will be approved based on various features.
- Working Principle: Ensemble method combining multiple decision trees.
- **Training:** Train several decision trees on different subsets of the data and features.
- Example:
 - Train Tree 1 on a random subset of data and features.
 - Train Tree 2 on another random subset.
 - · ...
- **Prediction:** Aggregate predictions from all trees (e.g., voting for classification).
- Advantages: Reduces overfitting, improves accuracy, handles mission data well.

- Problem: Predict whether a loan application will be approved based on various features.
- Working Principle: Ensemble method combining multiple decision trees.
- Training: Train several decision trees on different subsets of the data and features.
- Example:
 - Train Tree 1 on a random subset of data and features.
 - Train Tree 2 on another random subset.
 - ...
- **Prediction:** Aggregate predictions from all trees (e.g., voting for classification).
- Advantages: Reduces overfitting, improves accuracy, handles mission data well.

- Problem: Predict whether a loan application will be approved based on various features.
- Working Principle: Ensemble method combining multiple decision trees.
- Training: Train several decision trees on different subsets of the data and features.
- Example:
 - Train Tree 1 on a random subset of data and features.
 - Train Tree 2 on another random subset.
 - ...
- **Prediction:** Aggregate predictions from all trees (e.g., voting for classification).
- Advantages: Reduces overfitting, improves accuracy, handles mission data well.

- Problem: Predict whether a loan application will be approved based on various features.
- Working Principle: Ensemble method combining multiple decision trees.
- Training: Train several decision trees on different subsets of the data and features.
- Example:
 - Train Tree 1 on a random subset of data and features.
 - Train Tree 2 on another random subset.
 - ...
- **Prediction:** Aggregate predictions from all trees (e.g., voting for classification).
- Advantages: Reduces overfitting, improves accuracy, handles missing data well.

- **Problem:** Binary classification based on a single feature (X).
- Data:

Example	Feature X
1	3
2	4
3	2
4	5
5	1

Random Forest:

Decision Tree	Prediction
$T_1: X \leq 3$	
$T_2: X > 3$	1

• Final Prediction:

$$\mathsf{Prediction} = \frac{1}{2} \left(\mathsf{Prediction}_{\mathcal{T}_1} + \mathsf{Prediction}_{\mathcal{T}_2} \right)$$

- **Problem:** Binary classification based on a single feature (X).
- Data:

Example	Feature X
1	3
2	4
3	2
4	5
5	1

Random Forest:

Decision Tree	Prediction
$T_1: X \leq 3$	
$T_2: X > 3$	1

• Final Prediction:

$$\mathsf{Prediction} = \frac{1}{2} \left(\mathsf{Prediction}_{\mathcal{T}_1} + \mathsf{Prediction}_{\mathcal{T}_2} \right)$$

- **Problem:** Binary classification based on a single feature (X).
- Data:

Example	Feature X
1	3
2	4
3	2
4	5
5	1

Random Forest:

Decision Tree	Prediction
$T_1: X \leq 3$	0
T_2 : $X > 3$	1

Final Prediction:

$$Prediction = \frac{1}{2} \left(Prediction_{T_1} + Prediction_{T_2} \right)$$

- **Problem:** Binary classification based on a single feature (X).
- Data:

Example	Feature X
1	3
2	4
3	2
4	5
5	1

Random Forest:

Decision Tree	Prediction
$T_1: X \leq 3$	0
T_2 : $X > 3$	1

Final Prediction:

$$\mathsf{Prediction} = \frac{1}{2} \left(\mathsf{Prediction}_{\mathcal{T}_1} + \mathsf{Prediction}_{\mathcal{T}_2} \right)$$

Python Code: Random Forest

```
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# Assuming 'X' is feature matrix and 'y' is target variable
X_train, X_test, y_train, y_test = ...
...train_test_split(X, y, test_size=0.2)
# Creating and training the model
model = RandomForestClassifier()
model.fit(X_train, y_train)
# Making predictions
```

from sklearn.ensemble import RandomForestClassifier

Evaluating accuracy

accuracy = accuracy_score(y_test, predictions)

predictions = model.predict(X_test)

Great Job Thank yo

