Particle spectrograph

Wave operator and propagator

$ au_1^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2} k(2k^2 r_1 + t_1)}{(t_1 + 2k^2 t_1)^2}$	0	$\frac{2k^2(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}lpha}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{2 k^2 r_1 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^{\text{-}}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_1^{\#1}_+ _{\alpha\beta}$	$-\frac{6i\sqrt{2}k}{(3+2k^2)^2t_1}$	$\frac{12ik}{(3+2k^2)^2t_1}$	$\frac{12k^2}{(3+2k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{6\sqrt{2}}{(3+2k^2)^2t_1}$	$\frac{12}{(3+2k^2)^2t_1}$	$-\frac{12ik}{(3+2k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+2k^2)^2t_1}$	$-\frac{6\sqrt{2}}{(3+2k^2)^2t_1}$	$\frac{6i\sqrt{2}k}{(3+2k^2)^2t_1}$	0	0	0	0
	$J_1^{#1} + \alpha \beta$	$r_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$

		$\sigma_{0}^{\#1}$		$\tau_{0}^{\#1}$		$\tau_0^{\#}$	2	$\sigma_0^{\#}$	1	
$\sigma_{0^{+}}^{\#1}$	- 	1 ·2 k ²) ² t	<u> </u>	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$				0		
$ au_{0}^{\#1}$ -		i √2 k ·2 k ²)² t	(1-	$-\frac{2k^2}{(1+2k^2)^2t_1}$				0		
$\tau_{0}^{\#2}$ -	t	0		0				0		
$\sigma_0^{\#1}$	†	0		0		0	0			
$f_{1^-}^{\#2}$	0	0	0	$i k t_1$	c	0	C	0	0	
$f_{1^-}^{\#1}$	0	0	0	0	c	0	C	O	0	
$\omega_{1}^{\#2}{}_{lpha}$)	0	0	0	$\frac{t_1}{\sqrt{2}}$	c	0	C	0	0	
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	<i>t</i> ₁	$\sqrt{2}$	O	0	$-\bar{l} k t_1$	
$f_{1}^{\#1}\alpha\beta$	$-\frac{ikt_1}{3\sqrt{2}}$	<u>i k t 1</u> 3	$\frac{k^2 t_1}{3}$	0	C	0	C	0	0	
$\omega_{1}^{\#1}{}_{lphaeta}$ $\omega_{1}^{\#2}{}_{lphaeta}$	$-\frac{t_1}{3\sqrt{2}}$	£ 3	$-\frac{1}{3}\bar{l}kt_1$	0	c	0	c	0	0	
$\omega_{1}^{\#1}{}_{\alpha\beta}$	6 6	$-\frac{t_1}{3\sqrt{2}}$	$\frac{i k t_1}{3 \sqrt{2}}$	0	C	0	c	0	0	

 $f_1^{\#1} \dagger^{\alpha\beta}$

 $\omega_1^{\#2} + \alpha \beta$

 $\omega_1^{\#_1} +^{\alpha}$

 $\omega_1^{\#2} +^{\alpha}$

 $f_{1}^{#1} +^{\alpha}$ $f_{1}^{#2} +^{\alpha}$

$\sigma_{2}^{\#1} \dagger^{\alpha\beta} \frac{2}{(1+2k^{2})^{2}t_{1}} - \frac{2i\sqrt{2}k}{(1+2k^{2})^{2}t_{1}} = 0$ $\tau_{2}^{\#1} \dagger^{\alpha\beta} \frac{2i\sqrt{2}k}{(1+2k^{2})^{2}t_{1}} \frac{4k^{2}}{(1+2k^{2})^{2}t_{1}} = 0$ $\sigma_{2}^{\#1} \dagger^{\alpha\beta\chi} = 0$ $0 = \frac{2}{2k^{2}r_{1}+t_{1}}$		$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{\alpha}^{\#1} + \alpha \beta \chi$ 0 0 $\frac{2}{3}$	$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$		0
$\sigma_{2}^{\#1} \dagger^{\alpha\beta\chi} = 0 \qquad 0 \qquad \frac{2}{2 k^2 r_1 + t_1}$	$ au_2^{\#1}\dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
	$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2 k^2 r_1 + t_1}$

·	βν. L#	$\omega_2^{*+} + \tau^{\alpha \beta}$	$f_2^{#1} + ^{\alpha \beta}$	$\omega_{2}^{*1} + ^{lphaeta\chi}$			
			$\omega_0^{\sharp 1}$	f_0^3	#1) ⁺	$f_{0+}^{#2}$	$\omega_0^{\#}$
$\omega_0^{\#1}$	†		-t ₁	<i>ī</i> √2	kt_1	0	0
$f_{0^{+}}^{#1}$		- 1	$\sqrt{2} kt_1$	-2 k	$t^2 t_1$	0	0
$f_{0+}^{#2}$	†		0	()	0	0

0

 $\frac{i\,k\,t_1}{\sqrt{2}}$

0

generators	Multiplicities									
ande	Mult	1	1	1	3	3	3	3	2	20
ource constraints/gauge generators	30(3) irreps		.#2 == 0	$_{0}^{\#1} - 2 i k \sigma_{0}^{\#1} == 0$	$t_1^{\#2}\alpha + 2ik \ \sigma_1^{\#2}\alpha = 0$	$t_1^{\#1}\alpha == 0$	$t_{1+}^{\#1}\alpha\beta - 2ik \ \sigma_{1+}^{\#1}\alpha\beta == 0$	$\Omega_{1+}^{\#1}\alpha\beta + \Omega_{1+}^{\#2}\alpha\beta = 0$	$t_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta = 0$	otal constraints:

Massive and massless spectra

(No massless particles)

Unitarity conditions