

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			9701/34
Paper 3 Advan	ced Practical Skills 2		May/June 2015
			2 hours
Candidates ans	wer on the Question Paper.		
Additional Mate	rials: As listed in the Confidential Instructions		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Give details of the practical session and laboratory where appropriate, in the boxes provided.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 10 and 11.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Session
Laboratory
•
•

For Examiner's Use		
1		
2		
3		
Total		

This document consists of 11 printed pages and 1 blank page.

1 The concentration of aqueous ammonia used in qualitative analysis is 2 mol dm⁻³ but it is supplied in a much more concentrated form. This is referred to as '.880 ammonia'. You are to determine the concentration of '.880 ammonia' by titration of a solution of ammonia, **FB 1**, with hydrochloric acid of known concentration. The equation for the reaction is given below.

$$NH_3(aq) + HCl(aq) \rightarrow NH_4Cl(aq)$$

FB 1 is a dilute solution of ammonia, $NH_3(aq)$. It was prepared by measuring out 5.91 cm³ of the '.880 ammonia' and then adding distilled water until the solution had a volume of 1 dm³. **FB 2** is 0.100 mol dm⁻³ hydrochloric acid, HCl(aq). methyl orange indicator

(a) Method

- Fill the burette with **FB 2**.
- Use the pipette to transfer 25.0 cm³ of **FB 1** into a conical flask.
- Add a few drops of methyl orange indicator.
- Perform a **rough titration** and record your burette readings in the space below.

The	rough	titre is	 cm ³
1110	rougii	uu C 13	 OHI

- Carry out as many accurate titrations as you think necessary to achieve consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of **FB 2** added in each accurate titration.

I	
II	
III	
IV	
V	
VI	
VII	

[7]

(b) From your accurate titration results, obtain a suitable value to be used in your calculations. Show clearly how you obtained this value.

25.0 cm³ of **FB 1** required cm³ of **FB 2**. [1]

((C)	C	alc	ula	tio	ns
۱			aic	uia		1113

Show your working and appropriate significant figures in the final answer	to each step of you
calculations.	

(i) Calculate the number of moles of hydrochloric acid present in the volume of **FB 2** calculated in **(b)**.

moles of $HCl = \dots mol$

(ii) Use your answer to (i) to determine the number of moles of ammonia present in 25.0 cm³ of **FB 1**, pipetted into the conical flask.

moles of $NH_3 = \dots mol$

(iii) Use your answer to (ii) to calculate the concentration, in mol dm⁻³, of the diluted ammonia, **FB 1**.

concentration of NH_3 (diluted) in **FB 1** = mol dm⁻³

(iv) Use your answer to (iii) and the information on page 2 to calculate the concentration, in mol dm⁻³, of '.880 ammonia'.

concentration of '.880 ammonia' = mol dm⁻³ [3]

(d) A student analysed a different sample of concentrated ammonia and determined the concentration to be 15.0 mol dm⁻³. Calculate the percentage difference in concentration of the '.880 ammonia' you have determined compared with that of the student.

(If you have been unable to complete the calculation, assume the concentration of

(If you have been unable to complete the calculation, assume the concentration of '.880 ammonia' was 9.35 mol dm⁻³. This is not the correct value.)

percentage difference in concentration = % [1]

[Total: 12]

2 You are to determine the enthalpy change of solution, in kJ mol⁻¹, of ammonium chloride.

FB 3 is approximately 9 g of solid ammonium chloride, NH₄C*l.* distilled water

(a) Method

Read through the instructions carefully and prepare a table below for your results before starting any practical work.

- Weigh the plastic cup and record the balance reading.
- Add between 2.9 and 3.1g of ammonium chloride, FB 3, and record the new balance reading.
- Place the plastic cup in the 250 cm³ beaker.
- Pour 25 cm³ of distilled water into the measuring cylinder.
- Place the thermometer in the water and record the initial temperature in the table of results.
- Pour the 25 cm³ of distilled water into the plastic cup.
- Stir the contents of the cup and record the lowest temperature of the solution. Tilt the cup
 if necessary to ensure the thermometer bulb is fully immersed.
- Repeat the procedure using the other plastic cup. Use between 4.9 and 5.1 g of FB 3 for this experiment.
- Record the mass of **FB 3** used and the change in temperature for **each** experiment.

Results

I II III IV V

[5]

(b)	(i)	Calculate the mean mass of FB 3 used. Give your answer to two decimal places.
	(ii)	$\mbox{mean mass of $\textbf{FB 3} =} \ g$ Calculate the mean temperature change. Give your answer to \mbox{one} decimal place.
(5)	Cal	mean temperature change =°C [2]
(C)	Cai	culations
		ow your working and appropriate significant figures in the final answer to each step of your culations.
	(i)	Calculate the number of moles of NH_4Cl present in the mass of FB 3 calculated in (b)(i) . [A_r : H, 1.0; N, 14.0; C l , 35.5]
	(ii)	moles of NH_4Cl =
		enthalpy change = kJ mol ⁻¹ (sign) (value) [4]

(d)	(i)	Which of the two experiments in (a) , the first or the second, had the greater percentage error in the value calculated for the temperature change?
	(ii)	Given that the error in a single thermometer reading is $\pm 0.5^{\circ}$ C, calculate the percentage error in the temperature change for the experiment you gave in (d)(i) .
		percentage error = % [1]
(e)	(i)	A student suggested that it would have been better to calculate the enthalpy change for each experiment separately. What would be the advantage of this suggestion? Explain your answer fully.
((ii)	Another student suggested that the procedure would be improved by covering the plastic cup with a lid. Explain whether this would improve the procedure.
		[2]
		L e s

[Total: 14]

3 Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs. Marks are **not** given for chemical equations.

No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

(a) FB 4 and FB 5 are solutions of salts each containing one cation and one anion from those listed in the Qualitative Analysis Notes on pages 10 and 11. Carry out the following tests and record your observations in the table below.

		ohsen	vations
	test	FB 4	FB 5
(i)	To a 1 cm depth of solution in a test-tube, add aqueous ammonia.		
(ii)	To a 1 cm depth of solution in a test-tube, add a few drops of aqueous silver nitrate.		
(iii)	To a 1 cm depth of solution in a test-tube add a few drops of aqueous barium chloride or barium nitrate.		

(iv)	Identif	fy both ions in FB 4 .		
	cation		anion	
(v)	Sugge	est the ions which may be presen	t in FB 5 .	
	cation	s	anions	
(vi)		t a reagent which could be used nt. Carry out your test and record		identify the cation
		test	observations	
		To a 1cm depth of FB 5 in a test-tube, add		
	The c	ation in FB 5 is		[7]
(b) FB		pale purple salt containing two ca		6 ?

Carry out the following tests and complete the table below.

	test	observations
(ii)	Place a spatula measure of FB 6 in a hard-glass test-tube. Heat gently.	
(iii)	Dissolve a small spatula measure of FB 6 in a 2cm depth of distilled water in a test-tube. Use this solution for tests (iv) and (v).	
(iv)	Pour about half the solution prepared in (iii) into a boiling tube and add aqueous sodium hydroxide, then	
	gently warm the mixture.	
(v)	To the remainder of the solution prepared in (iii), add a few drops of aqueous potassium iodide, then	
	add a few drops of starch solution.	
Identi	fy the cations present in FB 6 .	
FB 6	contains	and
What	type of reaction occurred when p	ootassium iodide was added to FB 6 in (v) ?
		[7]

[Total: 14]

(vi)

(vii)

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

ion	reaction with		
	NaOH(aq)	NH ₃ (aq)	
aluminium, A <i>l</i> ³+(aq)	white ppt. soluble in excess	white ppt. insoluble in excess	
ammonium, NH ₄ +(aq)	no ppt. ammonia produced on heating	_	
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.	
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca2+(aq)]	no ppt.	
chromium(III), Cr³+(aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess	
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution	
iron(II), Fe ²⁺ (aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess	
iron(III), Fe³+(aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess	
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess	
manganese(II), Mn²+(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess	
zinc, Zn²+(aq)	white ppt. soluble in excess	white ppt. soluble in excess	

2 Reactions of anions

ion	reaction	
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids	
chloride, C <i>l</i> ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq))	
bromide, Br ⁻ (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq))	
iodide, I ⁻ (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq))	
nitrate, NO ₃ -(aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil	
nitrite, NO ₂ ⁻ (aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil; NO liberated by dilute acids (colourless $NO \rightarrow$ (pale) brown NO_2 in air)	
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)	
sulfite, SO ₃ ²⁻ (aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)	

3 Tests for gases

gas	test and test result	
ammonia, NH ₃	turns damp red litmus paper blue	
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)	
chlorine, Cl ₂	bleaches damp litmus paper	
hydrogen, H ₂	"pops" with a lighted splint	
oxygen, O ₂	relights a glowing splint	
sulfur dioxide, SO ₂	turns acidified aqueous potassium manganate(VII) from purple to colourless	

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.