Robo Jackets Electrical Training Week
 $\boldsymbol{0}$ Worksheet - Answer Key

Alex Xu

August 21, 2018

Contents

5	Prototyping	3
	Circuit Analysis 4.1 Parallel and Series	
3	Diodes and FETs	2
2	Capacitors and Inductors	2
1	Intro to Electricity	2

1 Intro to Electricity

- 1. Measured in Ohms (Ω)
- 2. -3.3V (-5V) = 1.7V
- 3. Series, Parallel. Ammeter needs to be in series otherwise it will be shorted. Voltmeters essentially have infinite resistance and if placed in series will make the circuit an open circuit.
- 4. $R = V/I = 5V/0.2A = 25\Omega$
- 5. $P = V\dot{I} = 5V \times 0.2A = 1W$
- 6. $470\Omega \pm 5\%$

2 Capacitors and Inductors

- 1. Measured in Faraday (F)
- 2. C = Q/V = 0.0025C/5V = 0.0005F
- 3. False. Electrolytic capacitors have electrolytes inside and have polarity.
- 4. False. Electrolytic capacitors are easier to achieve a higher capacitance than ceramics.
- 5. Mitigating fluctuation in power supply.
- 6. Henry (H)
- 7. True. For example in solenoids.
- 8. False. Inductors are wires wrapped around a coil and display no special characteristics with DC.

3 Diodes and FETs

- 1. $5V/20mA = 250\Omega$
- 2. True. Lots of motors run at 12V and 24V and draws a lot of current while usual logic circuits runs at 5V and below with minimal current involved. Using FETs enables a logic circuit to use minimal power to control the flow of larger power.
- 3. Q equals Vss. When A equals Vdd. The upper pFET opens and the lower nFET closes, connecting the output to ground.

4 Circuit Analysis

4.1 Parallel and Series

- 1. R = 1/(1/(1.2 + 1.2) + 1/3.6) = 1.44
- 2. $ECHO_OUT = 91/(91 + 47) \times ECHO_5V \approx 3.297$
- 3. $\Sigma C = (10 + 20 + 22 + 100) = 152$
- 4. $\Sigma C = 1/(1/10 + 1/20 + 1/22 + 1/100) \approx 4.8672$

4.2 Kirchoff's Law

1. Let i_1 be the current going clockwise in the left loop, i_2 be the current through, R_2 from top to down and i_3 be the current going anti-clockwise in the right loop, then:

$$\begin{split} &12V=4\Omega\times i_1+3\Omega\times i_2\\ &8V=2\Omega\times i_3+3\Omega\times i_2\\ &i_1+i_3=i_2\\ &\text{solve for }i_1,\,i_2\text{ and }i_3,\,\text{get }i_3\approx 2.15A \end{split}$$

Figure 1: Annotated Circuit

5 Prototyping

- 1. Not connected, Connected, Not connected
- 2. Single core wire, should not. Twisting the wire essentially made the wire into single-core and made metal crimps harder to grab onto the wire.
- 3. To eliminate high impedance.
- 4. False