CONJUNTOS NUMERABLES Y NO NUMERABLES

Proposición.

La unión de toda familia, a lo sumo numerable de conjuntos numerables, es numerable.

Dem:

Sea L={An | nelN} ina Samilia a la suma numerable de conjuntos numerables.

Si Les finito, entonces 3 KEN tul que L~JK. Podemos en este cuso, suponer sin pérdida de generalidau:

$$A = \{A_n \mid ne J_K\}$$

Probaremos que:

$$A^{*} = \bigvee_{n=1}^{k} A_{n}$$

Como cada An es numerable, podemos escribir:

De esta forma:

$$A^* = \{ u_{nm} \mid n \in \overline{J}_K \ y \ m \in \mathbb{N} \}$$

Sea J: IN -> A* descrita como:

$$f(1) = a_{11} \quad a_{12} \Rightarrow a_{13} \\ a_{21} \quad a_{22} \quad a_{23} \\ \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\bar{f}(K) = \alpha_{K_1} \rightarrow \alpha_{K_2} \quad \alpha_{K_3} \rightarrow 0$$

Descritu de esta forma, S es suprayectiva, por tanto:

Como A, CA* y A, ~IN, entonces:

Por (1) y (2), ANIN Portanto, A'es numerable.

· Este caso es análogo al anterior (Casi, con 1 numerable)

EJEMPLOS.

Q y INXIN son numerables. Como

 $Q = \bigcup_{n \in \mathbb{N}} Q_n \qquad y \qquad |N \times |N = \bigcup_{n \in \mathbb{N}} |N_n|$ $Donde \ Q_n = \left\{ \prod_{n \in \mathbb{N}} |m \in \mathbb{Z} \right\} \sim \mathbb{Z} \sim |N| \quad y \quad |N_n = \left\{ (m, n) \mid m \in \mathbb{N} \right\} \sim |N| \quad \text{tenemos}$ $que \ \left\{ Q_i \mid i \in \mathbb{Z} \right\} \quad y \quad \left\{ |N_n| \mid n \in \mathbb{N} \right\} \quad \text{son dos fumilias numerables. Lueyo, } \quad \text{su unión}$ $también \quad \text{es numerable. } \quad \text{As: } \quad Q \sim |N| \quad y \quad |N \times |N| \sim |N|$

Proposición:

Res un conjunto infinito no numerable.

Dem:

Suponya que IR es numerable. Como IAN (0,1), entonces (0,1) es numerable. Por un lema ant, podemos escribir (0,1) = {rn | ne IN}. Podemos escribir cada rn en su representación decimal, esto es:

 $\Upsilon_{n} = 0. \Upsilon_{n_{1}} \Upsilon_{n_{2}} \Upsilon_{n_{3}} ... \quad \forall \quad n \in \mathbb{N}$ $= \sum_{i=1}^{\infty} \frac{\Upsilon_{n_{i}}}{10^{i}}$

> 0. $\Upsilon_{11} \Upsilon_{12} \Upsilon_{13} ...$ 0. $\Upsilon_{21} \Upsilon_{21} \Upsilon_{23} ...$ 0. $\Upsilon_{31} \Upsilon_{32} \Upsilon_{33} ...$

Defina $r = 0.8, 5, 5, 5, 5, 3, \ldots$, donde $S_i \in \{1, 2, \ldots, 8\}$ y $S_i \neq n_i$; $\forall i \in \mathbb{N}$. Claramente $r \neq r_i$; $\forall i \in \mathbb{N}$, pues sus representaciones binarias no son iquales. *c.

Por lo anterior:

S= Card N < Card 12 = C

De ahora en abelante: Card IR = X1.

PROPIEDADES DE LOS CONJUNTOS INFINITOS.

Proposición:

Todo conjunto infinito tiene un subconjunto numerable.

Dem:

Sea \overline{X} un conjunto infinito. Al ser infinito, no es finito y tamporo vacio. Sea entonces $x_i \in \overline{X}$

Como $X \setminus \{x_i\} \neq \emptyset$ (de otra forma, $X = \{x_i\} \sim T_i$, asi $X = \{x_i\} \sim T_i$),

∃ x₂ ∈ X\{x₁} Es claro que x, ≠x₂ y x, x₂ ∈ X.

Suponga que $\exists x_1, x_2, ..., x_m \in X$, todos distintos entre si Como $X \setminus \{x_1, x_2, ..., x_m\}$

 $\neq \emptyset \exists \chi_{n+1} \in X \mid 1 \chi_1, \chi_2, \dots, \chi_n \}$, diferente a otro $\chi_i, i \in J_n$.

Aplicando inducción, \exists un conjunto $\exists x_1 | n \in \mathbb{N} \}$, donde $x_i \neq x_j \forall i, j \in \mathbb{N}$, $i \neq j$. Claramente este conjunto es numerable, $y \exists x_1 | n \in \mathbb{N} \} \subset \overline{X}$, como se quería demostrar

g.e.d.

Lema:

Si X es infinito y N es a lo sumo numerable, entonces XUN~X

Dem:

1) Si N es vacio, entonces claramente: $\overline{X}U\phi = \overline{X} \sim \overline{X}$. Si N es finito y $N \neq \emptyset$, Sea $N_1 = N \setminus \overline{X}$. Si $N_1 = \emptyset$, entonces $\overline{X}UN = \overline{X} \sim \overline{X}$. Si no es vacio, sea entonces $M \subset \overline{X}$, M numerable. Proburemos que $MUN_1 \sim M$.

Como $N_i \subseteq N_i$ entonces N_i es finito. As: $N_i \sim J_K$, $K \in N_i$ Por ser M_i numerable, podemos escribir $M = \{m_i \mid i \in N_i\}$ y $N_i = \{n_i \mid i = 1, 2, ..., K\}$. Sea $S: M \rightarrow MUN_i$ como Sigue:

 $J(m) := \begin{cases} n; & \text{Sim} = m_i \text{ para algón } i \in \{1, 2, ..., K\}. \\ m; & \text{Sim} = m_{i+K} \text{ para algón } i \in \mathbb{N}. \end{cases}$

Claramente f es biyección. Ast, MUN, ~ M. Veamos que:

$$\overline{X}UN = \overline{X}UN, = (\overline{X}M)UMUN,$$
 $\overline{X} = (\overline{X}M)UM$

Sea y: X -> XUN dudu como:

$$\forall_{x \in \overline{X}}, g(x) := \begin{cases} j_{X \setminus M}(x) & Si & x \in \overline{X} \setminus M \\ f(x) & Si & x \in M \end{cases}$$

g es biyección, por tanto, XUN-X

2) S. N es numerable, sea $N_2 = N \setminus X$. Si N_2 es finito, por 1) se tiene que $\overline{X} \cup N = \overline{X} \cup N_2 \sim \overline{X}$, con lo que se llega a la conclusión. Si N_2 es numerable. Sea $M \subset X$, M numerable. Por la proposición auxiliar, \overline{J} M, $M_2 \subset M$ numerables tales que M, $UM_2 = M$ y M, $\Omega M_2 = \emptyset$. Veamos que:

$$\overline{X}UN = \overline{X}UN = (\overline{X}M)UMUN,$$

 $\overline{X} = (\overline{X}M)UM = (\overline{X}M)UM,UM_2$

Como M, M, M2 y N son numerables, entonces M, ~ M y M2 ~ N, Así, 3 f:M, -> M y g: N2 -> N, funciones biyectivas. Sea h: M -> MUN, dada por:

$$\forall m \in M$$
, $h(m) := \begin{cases} f(m) & S; m \in M_1. \\ g(m) & S; m \in M_2. \end{cases}$

hes biyective. En efecto, suponga que \exists m, m' \in M teles que h(m) = h(m'). Si m \in M, entonces h(m) = f(m) = h(m'). Si m' \in M, entonces h(m') = f(m') lo que implice que m = m'. $m' \notin M_2$, pues de otra forma, f(m) = g(m'), lo cual implica que $M \cap N, \neq \emptyset$, lo cual no puede pasar, pues $N, \cap X = \emptyset$ y $M \subset X$, as: $N, \cap M \subset N, \cap X = \emptyset$, luego $M \cap N_1 = \emptyset$.

Si me Ma, el cuso es análogo. Por lo tanto, h es inyectiva. h es suprayectiva, pues f y a lo son. Ast, h es biyección.

Por lo anterior, M, UM2 N MUN.

Sea 1: X -> XUN dava como sigue:

$$\forall x \in \overline{X}, \ \lambda(x) := \begin{cases} i_{\overline{X} \setminus M}(x) & S; \ x \in \overline{X} \setminus M. \\ h(x) & S; \ x \in M. \end{cases}$$

Por motivos semejuntes a los de h, les biyectiva. Ast, XUN~X.

Proposición auxiliar

Sea M un conjunto numerable. Entonces, $\frac{1}{2}$ M, $\frac{1}{2}$ M numerables tales que $M = M_1 U M_2 y M_1 \Omega M_2 = \phi$.

Dem:

Como M es numerable, se puede escribir como: M={m; | i \in |N}. Sean M, M2 \in M dados por:

 $M_i = \{ m_i \in M \mid i = 2n \text{ para algin } n \in \mathbb{N} \}$ $M_2 := \{ m_i \in M \mid i = 2n - 1 \text{ para algin } n \in \mathbb{N} \}$

Claramente M, UM2 = M y M, NM2 = ϕ (de otra Jorma, $2j = 2K \cdot 1$ para algunos $K, j \in \mathbb{N}$, cosa que no puede suceder). Ambos son numerables, pues $\exists f : \mathbb{N}$ $\longrightarrow M$, $y \in \mathbb{N} \longrightarrow M_2$, $f(n) = m_{2n}$, $y \in \mathbb{N} \longrightarrow M_2$. $f(n) = m_{2n-1}$ $\forall n \in \mathbb{N}$, hiyectivas.

g.e.d.

Ejemplo:

I es infinito no numerable. Además:

Card I = Card IR = c = 81

Dem:

II es intinito. En efecto, si II suera sinito, entonces por la proposición anterior, QUI ~ Q~ IN. Lueyo:

IR = QUI ~ IN

Lo cual no puede suceder, pues IRMIN. Ast, I es infinito. Como Q es numerable, por el teorema anterior:

 $R = \overline{I} \cup Q \sim \overline{I}$

portanto, I es infinito no numerable.

Des SiX es un conjunto, se denota P(X) como el conjunto potencia de X, esto es: $P(X): \{U \mid U \in X\}$. También lo denotamos: $P(X) = 2^{X}$.

Proposición:

$$Card(2^{\mathbb{N}}) = Card(\mathcal{P}(\mathbb{N})) = Card[0,1]$$

Luego: 2 = c = 5,.

Dem:

mo siyve:

 $f(A) = \sum_{i=1}^{\infty} \frac{b_i}{2^i}$ donné $b_i = 1$ s; $i \in A$ y $b_i = 0$ s; $i \notin A$.

Sea $x \in [0,1]$ X tiene representación binaria, asi $x = \frac{7}{2}$ bi $\in \{0,1\}$ V i \in IN Entonces $\exists A$:

A={i \ N | b := 1}

tal que J(A) = x. Por tanto, f es suprayectiva, as; Card $P(IN) \leq C$ and [0,1]. Se probará ahora que C and $[0,1] \leq C$ and P(IN). Sea $g:[0,1] \setminus Z_2 \rightarrow P(IN)$. S; $x \in [0,1] \setminus Z_2$, entonces

 $\chi = \frac{2}{5} \frac{b}{2} b; \{0,1\} \forall i \in \mathbb{N}$

Definu g(x) como

$$g(x) = \{ i \in \mathbb{N} \mid b_i = 1 \}$$

Portanto, fes injectiva. Asi... ¿?

Proposición:

 $\forall X \neq \emptyset$, Cord $\widehat{X} \leq C$ and $\widehat{P}(\widehat{X})$.

Dem:

Sea X un conjunto no vacio. Claramente (ard $X \in Card P(X)$, pues $\exists S: X -> Y$, donde:

 $Y = \{\{\chi\} \mid \chi \in X\} \subset \mathcal{P}(X)$

Claramente f es biyectiva. Así Card X « Card P(X).

Procederemos por reducción al absurdo. Suponga que 3 f: X -> P(X) biyectiva. Sea A dado como sigue:

 $A = \{ \chi_{\epsilon} X \mid \chi_{\epsilon} f(\chi) \} \in \mathcal{P}(X)$

Por ser I suprayectiva. para esta A $\exists a \in \overline{X} \mid a \mid que f(a) = A$. Si $a \in f(a) \Rightarrow a \notin A \Rightarrow a \notin f(a) \not \ll C$.

 $a \in S(u) \Rightarrow a \in A \Rightarrow a \notin S(u) \underset{C}{*}C.$

Lo cual es un absurdo. Por tanto, Card X + Card P(X).

9.e.d.

Corolario:

Todo conjunto intinito es equipotente a un subconjunto propio.