Q.3) c) Let $a_n \geq 0$, then show that both the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ converge and diverge together (3 marks)

Ans: We are done if we can show that $\sum_{n=1}^{\infty} a_n$ converges iff $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ converges $(a_n \ge 0, \text{ both must either converge or diverge, i.e. cannot be oscillating}) +0.5 marks$

Claim 1: If
$$\sum_{n=1}^{\infty} a_n$$
 converges, $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ converges

Since
$$0 \le \frac{a_n}{1+a_n} \le a_n$$
, so $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ converges by Comparison Test +1 mark

Alternate Proof of Claim 1:

Since
$$\left| \frac{a_n}{\frac{a_n}{1+a_n}} \right| = |1+a_n|$$
 and $\lim_{n\to\infty} |1+a_n| = \lim_{n\to\infty} 1+a_n = 1 > 0$, so $\sum_{n=1}^{\infty} \frac{|a_n|}{|1+a_n|} = \sum_{n=1}^{\infty} a_n = 1$

$$\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$$
 converges by Limit Comparision Test +1 mark

Claim 2: If
$$\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$$
 converges, $\sum_{n=1}^{\infty} a_n$ converges

Since
$$\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$$
 converges, $\lim_{n\to\infty} \frac{a_n}{1+a_n} = 0$

$$\implies \exists N_1 \in \mathbb{N} \text{ such that } \frac{a_n}{1+a_n} < \frac{1}{2} \ \forall n \geq N_1$$

$$\implies \frac{a_n}{1+a_n} < \frac{1}{2} \ \forall n \ge N_1$$

$$\implies 0 \le a_n < 1 \ \forall n \ge N_1$$

$$\Rightarrow \frac{a_n}{1+a_n} < \frac{1}{2} \ \forall n \ge N_1$$

$$\Rightarrow 0 \le a_n < 1 \ \forall n \ge N_1$$

$$\Rightarrow \frac{1}{1+1} \le \frac{1}{1+a_n} < \frac{1}{1+0} \ \forall n \ge N_1$$

$$\Rightarrow \frac{a_n}{2} \le \frac{a_n}{1+a_n} \ \forall n \ge N_1$$

$$\implies \frac{a_n}{2} \le \frac{a_n}{1+a_n} \ \forall n \ge N_1$$

Thus,
$$\sum_{n=1}^{\infty} a_n$$
 converges by Comparison Test

+1.5 marks

Alternate Proof of Claim 2:

Since
$$\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$$
 converges, $\lim_{n\to\infty} \frac{a_n}{1+a_n} = 0$

$$\implies \lim_{n \to \infty} 1 - \frac{1}{1 + a_n} = 0$$

$$\implies \lim_{n \to \infty} \frac{1}{1 + a_n} = 1$$

$$\implies \lim_{n \to \infty} \frac{1}{1 + a_n} = 1$$

$$\implies \lim_{n \to \infty} 1 + a_n = 1$$
$$\implies \lim_{n \to \infty} a_n = 0$$

Hence
$$\{a_n\}$$
 is bounded above by $M \ge 0 \in \mathbb{R}$ but: $a_n = \frac{a_n}{1+a_n}(1+a_n) = \frac{a_n}{1+a_n} + \frac{a_n^2}{1+a_n} \le \frac{(1+M)a_n}{1+a_n}$

Hence $\sum_{n=0}^{\infty} a_n$ converges by Comparison Test

+1.5 marks

Alternate Proof of Claim 2:

Since
$$\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$$
 converges, $\lim_{n\to\infty} \frac{a_n}{1+a_n} = 0$

$$\implies \lim_{n\to\infty} 1 - \frac{1}{1+a_n} = 0$$

$$\implies \lim_{n\to\infty} \frac{1}{1+a_n} = 1$$

$$\implies \lim_{n\to\infty} 1 + a_n = 1$$

$$\implies \lim_{n\to\infty} a_n = 0$$

Since
$$\left| \frac{a_n}{\frac{a_n}{1+a_n}} \right| = |1+a_n|$$
 and $\lim_{n\to\infty} |1+a_n| = \lim_{n\to\infty} 1+a_n = 1 > 0$, so $\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} a_n$ converges by Limit Comparision Test $+1.5$ marks

 $\mathbf{Q.4}$) a) What is the completeness axiom of \mathbb{R} ?

(1 mark)

Ans: Every nonempty subset A of \mathbb{R} that is bounded above has a least upper bound in \mathbb{R} , i.e. $\sup A$ exists and $\sup A \in \mathbb{R}$.

Similarly, every nonempty subset A of \mathbb{R} that is bounded below has a greatest lower bound in \mathbb{R} , i.e. inf A exists and inf $A \in \mathbb{R}$.

- +0.5 marks Exact same or re-worded definition of first statement
- +0.5 marks Exact same or re-worded definition of second statement
- +0.5 marks Only considers sets that are bounded both above and below **0** marks Otherwise

Q.4) b) What is the infimum of a set? Let A be a nonempty bounded subset of strictly positive numbers. Let $\frac{1}{A} = \{\frac{1}{x} \mid x \in A\}$. Let $\inf A > 0$. What is $\sup \frac{1}{A}$? (1.5 + 2.5 marks)

Ans: Definition: A lower bound y_0 of a non-empty set $A \subseteq \mathbb{R}$ is said to be infimum of A, i.e. inf A if whenever v is a lower bound of A, $v \leq y_0$.

Alternate Definition: For a non empty set $A \subseteq \mathbb{R}$ which is bounded from below by y_0, y_0 is said to be the infimum of A iff $\forall \varepsilon > 0, \exists x_{\varepsilon} \in A$ (depending on ε) such that $y_0 \le x_{\varepsilon} < y_0 + \varepsilon$.

+1.5 marks Exact same or re-worded definition

0 marks Otherwise

Proof: Given non-empty bounded subset A of strictly positive numbers with $\inf A > 0$, we have to show that for $\frac{1}{A} = \{\frac{1}{x} \mid x \in A\}$, $\sup \frac{1}{A} = \frac{1}{\inf A}$ +0.5 marks

Claim 1: $\frac{1}{A}$ is bounded above by $\frac{1}{\inf A}$

 $\forall x \in A, 0 < \inf A \le x \text{ (inf } A \text{ is a lower bound)}$

$$\implies \forall x \in A, \frac{1}{x} \le \frac{1}{\inf A}$$

$$\implies \forall y \in \frac{1}{A}, y \le \frac{1}{\inf A}$$

$$\implies \forall y \in \frac{1}{A}, y \leq \frac{1}{\inf A}$$

$$\implies \frac{1}{A}$$
 is bounded above by $\frac{1}{\inf A}$

+0.25 marks

By completeness axiom of \mathbb{R} , sup $\frac{1}{4}$ exists and belongs in \mathbb{R}

+0.25 marks

$$\implies \sup \frac{1}{A} \le \frac{1}{\inf A}$$

Claim 2: $\sup \frac{1}{4} = \frac{1}{\inf A}$

 $\forall x \in \frac{1}{A}, 0 < x \le \sup \frac{1}{A} (\sup \frac{1}{A} \text{ is an upper bound})$

$$\implies \forall x \in \frac{1}{A}, \frac{1}{\sup \frac{1}{A}} \le \frac{1}{x}$$

$$\implies \forall x \in A, \frac{1}{\sup \frac{1}{4}} \le x$$

$$\implies \frac{1}{\sup \frac{1}{A}} \le \inf A \left(\frac{1}{\sup \frac{1}{A}} \text{ is a lower bound} \right)$$

$$\implies \frac{1}{\inf A} \le \sup \frac{1}{A}$$

Since
$$\frac{1}{\inf A} \le \sup \frac{1}{A}$$
 and $\frac{1}{\inf A} \ge \sup \frac{1}{A}$, $\sup \frac{1}{A} = \frac{1}{\inf A}$

+1.5 marks

Alternate Proof of Claim 2:

By definition of $\inf A$, $\forall \varepsilon > 0$, $\exists x_{\varepsilon} \in A$ such that $0 < \inf A \le x_{\varepsilon} < \inf A + \varepsilon$ $\implies \frac{1}{\inf A + \varepsilon} < \frac{1}{x_{\varepsilon}} \le \sup \frac{1}{A}$

$$\implies \frac{1}{\inf A + \varepsilon} < \frac{1}{x_{\varepsilon}} \le \sup \frac{1}{A}$$

Taking
$$\varepsilon = \frac{1}{n} \ \forall \ n \in \mathbb{N},$$

We construct three sequences
$$a_n = \frac{1}{\inf A + \frac{1}{n}}$$
, $b_n = \frac{1}{x_{\frac{1}{n}}}$ and $c_n = \sup \frac{1}{A} \, \forall \, n \in \mathbb{N}$

$$\{\inf A + \frac{1}{n}\}\$$
 converges to $\inf A > 0$ (by addition of convergent sequences)

$$\{a_n\} = \{\frac{1}{\inf A + \frac{1}{n}}\}$$
 converges to $\frac{1}{\inf A}$ (by division of convergent sequences)

Since
$$a_n < b_n \le c_n \implies a_n \le c_n \ \forall \ n \in \mathbb{N}$$

Since
$$a_n < b_n \le c_n \implies a_n \le c_n \ \forall \ n \in \mathbb{N}$$

 $\implies \frac{1}{\inf A} = \lim_{n \to \infty} a_n \le \lim_{n \to \infty} c_n = \sup \frac{1}{A}$

Since
$$\frac{1}{\inf A} \le \sup \frac{1}{A}$$
 and $\frac{1}{\inf A} \ge \sup \frac{1}{A}$, $\sup \frac{1}{A} = \frac{1}{\inf A}$ +1.5 marks

Alternate Proof of Claim 2:

By definition of
$$\inf A$$
, $\forall \varepsilon > 0$, $\exists y_{\varepsilon} \in A$ such that $0 < \inf A \le y_{\varepsilon} < \inf A + \varepsilon$ $\Longrightarrow \frac{1}{\inf A + \varepsilon} < \frac{1}{y_{\varepsilon}} \le \frac{1}{\inf A}$

$$\implies \frac{1}{\inf A + \varepsilon} < \frac{1}{y_{\varepsilon}} \le \frac{1}{\inf A}$$

By definition of
$$\sup \frac{1}{A}$$
, $\forall \varepsilon > 0$, $\exists x_{\varepsilon} \in \frac{1}{A}$ such that $\sup \frac{1}{A} - \varepsilon < x_{\varepsilon} \le \sup \frac{1}{A}$

If we show that $\frac{1}{\inf A}$ satisfies the above property, we are done as supremum is unique

Since all elements of $\frac{1}{A}$ are strictly positive, we can assume WLOG that $\frac{1}{\inf A} - \varepsilon > 0$

(otherwise x_{ε} can be any element in A since we have already shown that $\frac{1}{\inf A}$ is an upper bound of A)

And since
$$\frac{1}{\inf A} - \varepsilon > 0 \implies \frac{1}{\inf A} > \varepsilon > 0$$
, we take our $x_{\varepsilon} = \frac{1}{y_{\delta}}$

(where
$$y_{\delta} \in A$$
 and $\delta = \frac{\inf A}{1 - \inf A \varepsilon} - \inf A > 0$)

Since
$$\frac{1}{\inf A + \delta} < \frac{1}{y_{\delta}} \le \frac{1}{\inf A}$$
 (by definition of $\inf A$)
$$\implies \frac{1}{\inf A - \inf A + \frac{\inf A}{1 - \inf A \varepsilon}} < \frac{1}{y_{\delta}} \le \frac{1}{\inf A}$$

$$\implies \frac{1 - \inf A \varepsilon}{\inf A} < \frac{1}{y_{\delta}} \le \frac{1}{\inf A}$$

$$\implies \frac{1 - \inf A \varepsilon}{\inf A} < \frac{1}{y_{\delta}} \le \frac{1}{\inf A}$$

$$\implies \frac{1}{\inf A} - \varepsilon < \frac{1}{y_{\delta}} \le \frac{1}{\inf A}$$

$$\implies \frac{1}{\inf A - \inf A + \frac{\inf A}{1 - \inf A + \epsilon}} < \frac{1}{y_{\delta}} \le \frac{1}{\inf A}$$

$$\implies \frac{1 - \inf A\varepsilon}{\inf A} < \frac{1}{y_{\delta}} \le \frac{1}{\inf A}$$

$$\implies \frac{1}{\inf A} - \varepsilon < \frac{1}{u_{\delta}} \le \frac{1}{\inf A}$$

Thus
$$\forall \ \varepsilon > 0, \ \exists \ x_{\varepsilon} \in \frac{1}{A} \text{ such that } \frac{1}{\inf A} - \varepsilon < x_{\varepsilon} \leq \frac{1}{\inf A}$$

+1.5 marks

Q.5) a) What is the rational zeros theorem?

(1.5 marks)

Ans: Suppose $c_0, c_1, \ldots, c_n \in \mathbb{Z}$ and $r \in \mathbb{Q}$ such that r is a solution of the polynomial equation

$$c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0 = 0$$

where $n \ge 1$, $c_n \ne 0$ and $c_0 \ne 0$. If $r = \frac{c}{d}$ where c, d are integers such that $\gcd(c, d) = 1$ and $d \ne 0$, then $c \mid c_0$ and $d \mid c_n$.

+1.5 marks Exact same or re-worded definition 0 marks Otherwise