

2017. 3. 30.

- 이번 학기 강의내용

주	주제	강의내용
1	지난학기 review	지난학기에 배운 마이크로컨트롤러의 기본 기능에 대한한 review
2	모터 1	모터 구동 이론, DC 모터
3	모터 2	STEP 모터
4	LCD 1	Character Liquid Crystal Display 기본 실습
5	LCD 2	Character Liquid Crystal Display 응용 + 4x4 키패드
6	무선통신 1	적외선(Infrared) 통신 기본
7	무선통신 2	적외선(Infrared) 통신 remote controller제작
8	중간고사	중간고사
9	데이터변환1	SPI 통신 (Digital-to-Analog Converter)
10	데이터변환 2	데이터 변환 응용(DAC 출력-음악 만들기)
11	데이터변환 3	타이머 카운터 응용(음악 만들기)
12	데이터변환 4	아날로그-디지털 변환기 (ADC) 아날로그 컴퍼레이터
13	센서 인터페이스 1	온도센서 압력센서 기울기센서
14	센서 인터페이스 2	광센서(cds) 포토인터럽터 텀 프로젝트 기안(1인 1 프로젝트, 졸업 작품과 연계 금지)
15	텀 프로젝트	텀 프로젝트 중간 점검
16	기말고사	텀 프로젝트 발표 및 시연

LCD Instruction

· : Don't care.

인스트럭션	364			A COLUMN	CC	DE	etaliji Holom	실행						
	RS	RS R/W D7		D6 D5 D4		D4	D3 D2 D		D1	DO	시간	기 능		
표시 클리어	0	0	0	0	0	0	0	0	0	1	1.64ms	화면 클리어 및 DD RAM 번 를 00H로 세트		
커서 흠	0	0	0	0	0	0	0	0	1		1,64ms	DD RAM 번지를 00H로 세트 시프트 전 화면으로 복귀		
보트리 모드	0	0	0	0	0	0	0	1	I/D	S	40μs	l/D : 커서 이동 방향 D : 화면 시프트 모양		
표시 온/오프	0	0	0	0	0	0	1	D	С	В	40µs	D: 화면 ON/OFF C: 커서 ON/OFF B: 커서 깜박임		
커서/표시 니프트	0	0	0	0	0	1	S/C	R/L	*		40µs	화면 시프트 또는 커서 이동		
병선 세트	0	0	0	0	1	DL	Ν	F		*	40µs	DL : 인터페이스 데이터 길이 N : UNE 개수 F : 문자 폰트 정의		
G RAM 서드레스 세트	0	0	0	1			AC)G			40µs	CG RAM 어드레스 세트, 이: 전송되는 데이터는 CG RAM (이터로 취급된다.		
OD RAM 서드레스 세트	0	0	1				ADD				40µs	DD RAM 어드레스 세트, 이후 전송되는 데이터는 DD RAM 데 이터로 취급된다.		
N지 플래그/ 서드레스 리드	0	1	BF				AC				Ous	비지 플래그 체크, 어드레스: 리드한다. CG/DD RAM에서 (사용할 수 있다.		
SG/DD RAM 베이터 라이트	1	0			.W	넣을	데이티	=			40µs	CG/DD RAM에 데이터를 기록 한다.		
	1	1			2	드한	데이E	H			40µs	CG/DD RAM에서 데이터를 는다.		
CG/DD RAM											OG RAM AOG : OC ADD : DD AC : DD	: 화면 데이터 RAM I: 문자 생성 RAM G RAM 번지) RAM 번지와 커서 위치 RAM과 OG RAM의 주소에 사용 Iress Counter		

- Architecture of typical LCD module (= Display + Driver)

: Consist of display and driver parts.

: 8 by 2 line, 16 by 2 line, 16 by 4 line, 20 by 2 line, 40 by 2 line, etc.,

Architecture of typical LCD module

1. Register

- : Two 8bit register Instruction Register (IR), Data Register (DR)
- : Switched by RS(Register Select) signal pin.
- : Instruction Register
 - Clear display, Cursor shift, etc.,
 - Display Data RAM(DDRAM), Character Generator RAM (CGRAM)

: Data Register

- Temporary data storage for Data and Address.

2. Busy Flag (BF)

- : Indicates the system is now internally operating by a previously received instruction.
- : "1" means an instruction is being executed.
- : Check to make sure it is on "1" before sending an instruction from the MPU.

3. Address Counter (AC)

: Used for both DD and CG RAM address.

RS	R/W	동작 기능
0	0	IR을 선택하여 제어 명령 쓰기(디스플레이 클리어 등)
0	1	D7로부터 비지 플래그를 읽기/어드레스 카운터를 D0~D6으로부터 읽기
1	0	DR 선택하여 데이터 값을 쓰기(DR에서 DD RAM 혹은 CG RAM로)
1	1	DR 선택하여 데이터 값을 읽어 오기(DD RAM 혹은 CG RAM에서 DR로

4. Display Data RAM (DDRAM)

: Memory capacity of 80x8 bits > 80 characters

① DD RA	① DD RAM의 어드레스와 디스플레이 부분의 매칭 관계																
열 번호	1	2	3	4	5	6	7	8	9	10	11	12	13,	14	15	16	LCD 표시열 수
LCD1행	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	← DD RAM address
LCD2행	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	← DD RAM address

(DDRAM : Data Display RAM)

5. Character Generator ROM (CG ROM)

: Stores 192 characters and display 5x7 dot matrix patterns.

															•	
Lower Bits 484s		0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
хххххх	CG RAM (1)			Ø	g	Р	`	P				_	9	Ę	00	þ
ххххх0001	(2)		!	1	А	Q	а	9				7	チ	4	ä	q
xxxx0010	(3)		П	2	В	R	Ь	r			Г	1	ij	×	β	8
xxxx0011	(4)		#	3	C	5	Ç.	s			L	ゥ	Ť	ŧ	ε	00
xxxx0100	(5)		\$	4	D	T	d	t			٠,	I	ŀ	Þ	μ	Ω
xxxxx0101	(6)		Z,	5	E	U	e	u			=	7	Ŧ	ı	G	ü
xxxxx0110	(7)		8.	6	F	Ų	f	V			7	ħ	_	3	ρ	Σ
xxxx01111	(8)		7	7	G	W	g	W			7	丰	$\overline{\times}$	Ž	q	π
xxxx 1000	(1)		(8	H	X	h	×			4	2	ネ	ij	Ţ	X
xxxx1001	(2))	9	Ι	Υ	i	У			÷	ፓ	J	Ιb	-1	Ч
xxxx1010	(3)		*		J	Ζ	j	Z			I	\Box	ń	V	j	Ŧ
xxxx1011	(4)		+	;	K		k	{			#	Ħ	Е		×	万
xxxxx1100	(5)		2	<	L	¥	1				tz	Ð	7	7	ф	Ħ
xxxx1101	(6)		_	=	M]	m	}			ュ	Z	ጎ	2	Ł	÷
xxxx1110	(7)			>	И	-7%	n	÷			3	t	市	45	ñ	
xxxx1111	(8)		1	?	0	_	0	÷			ij	У	7		ö	
	(0)		-	-	_	_		-			- 20		*		~	

Display Table

6. Character Generator RAM (CG RAM)

: User display patterns.

Display Example

```
int main (void)
LCD 응용
                                                                                                                                                                            char qq;
                                                                                                                                                                            unsigned char font[16] =
                                                                                                                                                                                                                                             \{0x0A, 0x1E, 0x0A, 0x17, 0x16, 0x0A, 0x10, 0x1E, 0x0A, 0x1E, 0x1E, 0x0A, 0x1E, 0x1
                                                                                                                                                                                                                                                       0x1E, 0x02, 0x02, 0x1F, 0x04, 0x1E, 0x02, 0x02};
                                                                                                                                                                            DDRC = 0xFF:
                                                                                                                                                                            DDRD = 0xFF;
                                                                                                                                                                           PORTC = 0x00;
                                                                                                                                                                           PORTD = 0x00;
                                                                                                                                                                           init_LCD();
                                                                                                                                                                            string_LCD(0, 0, "Hello!!");
                                                                                                                                                                          for(qq=0; qq<16; qq++) {
                                                                                                                                                                                                                                              cmd(0x40+qq);
                                                                                                                                                                                                                                              data(font[qq]);
                                                                                                                                                                            char_xy(8,0);
                                                                                                                                                                            data(0x00);
                                                                                                                                                                            data(0x01);
                                                                                                                                                                            string_LCD(0, 1, "2nd Line");
                                                                                                                                                                          return 0;
```

7	6	5	4	3	2	1	0	HEX
\boxtimes	\times	\times						0x0A
\times	\times	\times						0x1E
\times	\times	\times						0x0A
\times	\times	\times						0x17
\times	X	\times						0x16
X	\times	\times						0x0A
X	X	\times						0x10
\times	X	\times						0x1E

7	6	5	4	3	2	1	0	HEX
\times	\times	\times						0x0A
\times	\times	\times						0x1E
\times	\times	\times						0x0A
X	\times	\times						0x17
\times	\times	\times						0x16
\times	\times	\times						0x0A
\times	\times	\times						0x10
\times	\times	\times						0x1E

GPIO Control – 4x4 key matrix

KEY-PAD

실험 실습

- 1. CG RAM에 자신의 이름을 문자로 정의하고 좌/우로 이동(shift)하도록 코드를 작 성하시오.
 - (이름이 좌측 끝에 도달하면 우측으로 이동, 우측 끝에 도달하면 다시 좌측으로 이동)
- 2. 교재의 예제를 참고하여 5자리의 정수형 변수의 값(16비트)을 출력하는 함수를 만들고 이를 바탕으로 "43000-12470="을 출력하고 이의 결과값을 출력하시오.
- 3. 3번 구현 소스코드를 기반으로, 눌려진 스위치의 번호를 LCD 에 표시할 것 화면은 항상 현재 눌려진 스위치의 번호만 표시 되도록 할 것
- 4. Character LCD와 STEP 모터 응용 첫 번째 줄에 "STEP 모터제어 앱" 을 출력하고, 두 번째 줄에 "정방향/역방향 현재속도: 저속/중속/고속"을 표시 하시오

Report

- 1. 적외선 이란?
- 2. 적외선을 활용한 예를 5가지 이상 조사