Problem?

A Potential investor wants de purchase Shares of stocks in one of two companies A and B which show greater variability in Prices. Following à the some prices (in Taka) Of the share of the company:

J			,	+	10.0	355	230	372	378	410	390	
Share price 315	320	350	340	1200	365		• . •]				1538	
A Onice A C / O	1522	1534	1532	1545	1530	1536	1530	1535	1530	1377		t
of company 1542	1522		·			• •			·			

	•		Compan	3 B		-
Comb	pany A		, ,	Javi-A	d ²	1
2)	d= x-A	1 d2.	A Chrice)	d=y-A		
2 (Price)	-50	2500	1542	6 -14	36 196	
315	-45	2025 225	1522 1534	-2	4	
350	-15	625	1632	-4	16	
340	-25	25	1545	9	81	
360	- 5	0	1530	-6	36	
(365) A	0 - 10 -	1 00	(1530) A	0	0	
355	5	25	1530	-6	36	
370	7	49	1535	- 1	2	
372	13	169	1550	14	196	
378	and an artifact comment and a first contribution of the	2025	1549	8	64	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
410 390	2 <i>5</i>	625	1538	2	4	
-		∑d = 8393	,	I9 = 6	20,=670	

Scanned with CamScanner

First we have to find old the co-efficient of Variances of the two Co's prices of Share

Company A

We know,

$$C.v = \frac{6}{2} \times 100$$

$$6 = \sqrt{\frac{\Sigma d}{N}} - (\frac{\Sigma d}{N}) - \frac{8393}{12} - (\frac{-55}{12}) - \frac{8393}{12} - (\frac{-4.58}{12}) - \frac{699.42 - (-4.58)}{12} - \frac{678.49}{12} = 26.05$$

$$\overline{2} = A + \frac{\sum d}{N}$$

$$= 365 + \frac{-55}{12}$$

$$= 365 - 4.58$$

$$= 360.42$$

$$CV_{\chi} = \frac{26.05}{360.42} \times 100$$
$$= 7.23\%$$

$$C.V = \frac{6}{9} \times 100$$

$$6 = \sqrt{\frac{20}{N} - (\frac{10}{N})} \times \frac{670 - (\frac{6}{12})}{12} \times \frac{670 - (\frac{6}{12})}{12} \times \frac{65.83 - 0.25}{12} = \sqrt{55.58} = 7.46$$

$$\bar{y} = A + \frac{2d}{N}$$
= 1536+ \frac{6}{12}

= 1536+ 0.5

= 1536.5

$$CVy = \frac{7.46}{1536.5} \times 100$$

= 0.49%

Commends: From own calculation we find that the Prices of Shares of Company A Shows the greater variability.

CVx = 7.23407 CVy = 0.49%

So the investor should purchagese the shores of company B.

Students in 10 tests of 100 marks each?

			•		•		· ·		Q	9	00	
1	Jeol D1	1	2	3	9	5	6	7	0			-
	3000						7.0	68	56	60	54	1
	Morres oblaine	44	80	76	48	52	72	80			,	
	by A:	.,							11	57	66	1
	Marks	48	75	54	60	63	69	72	61	, پ		1
.	Ob-lained by	10				,						!

Soln: Let the marks obtained by A and B denoted by X and Y respectively.

Computation of Coefficient of variation

	obtained 1		Morks Obt	ained by (
2	d=x-A	d~	Y	d=Y-A	92
44	8	. 64	98	- 21	441
80	28	784	75	6	36
76	24	576	54	- 15	225
48	-4	16	60	-9	81
62 A	0	0	63	-6	36
72	20	400	(69)A	0	0:
68	16	256	72	3	9
56	4	16	51	-18	324
. 60	8	64	5.7	-12	144
54	2	, , , , , , , , , , , , , , , , , , ,	J, J		17
,		9	66	-3	
			· · · · · · · · · · · · · · · · · · ·		
$\Sigma x = 670$	Zd=90	Id=2180	IY=613	Id=-75	I Zd = 130

Scanned with CamScanner

$$C.V = \frac{6}{7} \times 100$$

$$G_{X} = \sqrt{\frac{1}{N}} - (\frac{1}{N})^{\nu}$$

$$=\sqrt{\frac{2180}{10}-(\frac{90}{10})^{L}}$$

and,
$$\overline{\chi} = \frac{\Sigma \chi}{N}$$

$$= \frac{610}{10}$$

$$C \cdot V_{\chi} = \frac{11.70}{61} \times 100$$

= 19.18%.

Again, for Student 13:

$$6y = \sqrt{\frac{20}{N}} - (\frac{20}{N})^{2}$$

$$= \sqrt{\frac{1305}{10}} - (-\frac{75}{10})^{2}$$

$$= \sqrt{130 \cdot 3} - (-7 \cdot 5)^{2}$$

$$= \sqrt{130 \cdot 5} - 56 \cdot 25$$

$$= \sqrt{74 \cdot 25}$$

$$= 8 \cdot 62$$

$$\sqrt{4} = \frac{\Sigma y}{10} = \frac{615}{10}$$

and
$$y = \frac{\Sigma y}{N} = \frac{615}{10}$$

$$CVy = \frac{8.62}{61.5} \times 100$$

Since CVy L CVx, it means Student 'B' is onone consistent than Student 'A', therefore 'B' should get the Prize.

Far 2 2 4809

Gricketer	101	40	0	13	67	78	6	90	0	3
Crickeler	20	25	44	35	43	65	55	39	47	27
<u> </u>					,					

Som: Let, Cricketer-A=X
Cricketer-B=Y

				2	
Cri	cketer – A		Gric	Keler-B	
2	d=2-A	d~ .	- y :	d = 9-A	d ^L
101	23	529	20	-45	2025
40	-38	1444	25	-40	1600
Ö	- 78	6084	44	- 21	441
		4225	35	-30	900
13	- 65	121	43	-22	484
G7	-11	*.	65 = A	0.	0
(78)	0	0	765-74		
6	- 72	5184	55	-10	100
90	12.	144	39	-26	676
0	- 78	6084	47	-18	324
3	- 75	5625	27	- 38	1444
= 398	Zd=-382	Zd=29440	Zy=400	Id=-250	Zd= 7999
		•.		canned with	Tomboon

$$CV_{\chi} = \frac{6\chi}{\chi} \times 100$$

$$O_{\chi} = \sqrt{\frac{20}{N} - (\frac{20}{N})^{2}}$$

$$= \sqrt{\frac{20440 - (-382)^{2}}{10}}$$

Mean =
$$\frac{\Sigma \chi}{N}$$
 = $\frac{398}{10.}$ = 39.8

$$CV_{\chi} = \frac{38.53}{3.939.8} \times 100$$
= 96.81%

$$6y = \sqrt{\frac{2d^{2}}{N}} - (\frac{2d}{N})^{2}$$

$$= \sqrt{\frac{7994}{40}} - (-\frac{250}{100})^{2}$$

$$= 2846 \quad 13.20$$

$$\bar{y} = \frac{\Sigma y}{N} = \frac{400}{10} = 40$$

$$CVy = \frac{28.16}{40} \times 100$$

$$= 70.41\%$$

comment: Here CVz = 96.81% and CVy = 70.41%.

CVy < CVz. therefore Cricketer B is more
efficient than Cricketer A.

HW The demand of a commodity in two different towns are given below:

4						(2	
Town-A	36	92	18	35	48	62	-
100,	-			.(.0	37	40	í
Town-B	38	28	25	92	J /	<u>,</u>	
<i>j</i> .		ł					

In which lower the condition is more Stable and why?

Ans:
$$CV_{\chi} = 33.36\%$$
 $CV_{\chi} = 17.91\%$
 $CV_{\chi} = 17.91\%$
 $CV_{\chi} = 17.91\%$

Brop rem:

A Jacony Produces two types of Lamps. In an experiment on the working life of these tamps in the toleowing

Length of life	No: 03 C	omparies	
(hows)	Type A	Type B	
	5	4	
300-700	11	30	
700-900	26	12	
900-1100		8	
1 1 00 - 130 0	10		
1300-1500	હ	6	
1300			
C			

Cohich lamp à more consistent?

) .									
lengthod	Mid- Value	d=2-A	Fame)-A		Lami	D-B.	397	
plise (4)	21		}	79	392	7			
500-700	600	- 2	5	-10	20	4	-8 -30	30	
		-1	11	- 11	11	30	0	0	
700-900	800		26	0	0	8	8	8	
900-1100			10	10	10	0			
1100-130	1200	1	8	16	32	6	12	24	
1300-1500	1400	2		I3d=5	Z (4 = 3	N=60	Σfd=-1	25d=	
			N=60	230-5	250 73		,	78	
	- ,						·.		
-							Ĭ.		

computation of CV of A;

Here
$$6 = \sqrt{\frac{\Sigma J d^{2}}{N}} - (\frac{\Sigma J d}{N})^{2} \times 200$$

$$= \sqrt{\frac{72}{60}} - (\frac{5}{60})^{2} \times 200$$

$$= \sqrt{1.22 - 0.01} \times 200$$

$$= 220$$

$$= 220$$

$$= 100 + \frac{5}{60} \times 200$$

$$= 1016.67$$

$$CV_A = \frac{220}{1016.67} \times 100$$

$$= 21.64\%$$

Computation of CV.01 B

Here
$$G = \sqrt{\Sigma t d} - (\Sigma t d) \sim XC$$

$$= \sqrt{\frac{78}{60} - (\frac{-18}{60})^{2}} \times 200.$$

and
$$\bar{x} = A + \frac{\sum fd}{N} \times C$$

= 1000 + $\frac{-18}{60} \times 200$

$$CNB = \frac{220}{940} \times 100$$
= 23.40%

Comments: C. VA = 21.64% and CVB = 23.40%.

Here CYAZCVB.

The lamp of company A is more Consistent.