Глава 1: Кинематика точки

§ 2 Косоугольные координаты

Здесь можно немного добавить строгости, а то ничерта не понятно. Пусть V — евклидово пространство (линейное со скалярным произведением). Как нам определяли, $g_{ik} = \mathbf{e_i} \cdot \mathbf{e_k}$,

$$\mathbf{a} \cdot \mathbf{b} = \sum_{ij} a^i b^j g_{ij}$$

Здесь a^k — коэффициенты разложения по $\mathbf{e_k}$ — называются контравариантными координатами.

Пусть V^* — сопряжённое к V, его базисом являются координатные функции $f_k :: f_k(\mathbf{x}) = x^k$. Поскольку задано скалярное произведение, задан канонический изоморфизм $V \to V^*$. Нам, правда, потребуется $V^* \to V$.

Введём ещё одну систему векторов в $V: \mathbf{e}^{\mathbf{k}} = \mathbf{f}_{\mathbf{k}}^*$, то есть $\mathbf{f}_{\mathbf{k}}(\mathbf{x}) = \mathbf{e}^{\mathbf{k}} \cdot \mathbf{x}$. Она и называется взаимным базисом, коэффициенты разложения по ней — ковариантные координаты. Из линейности скалярного произведения, ровно такие же координаты будут у соответствующей формы в V^* . Линейную независимость легко получить из ЛНЗ $\mathbf{f}_{\mathbf{k}}$, а раз их $\dim V$, то полученные векторы являются базисом.

Так что можно сформулировать правило:

- Контравариантные координаты коэффициенты разложения по базису линейного пространства.
- Ковариантные координаты коэффициенты разложения по базису пространства линейных форм.

Ещё можно определить $g^{ij} = \mathbf{e^i} \cdot \mathbf{e^j}$, и перенести это на соответствующие линейные формы. Обобщая дальше, можно вообще сказать, что $g_i^k = \delta_{ij}$. Тогда g будет задавать действие формы на вектор. Вроде физикам это зачем-то надо.

А после тирады выше уже развлекаться с индексами.

Утверждение 1. $e^{\mathbf{k}} \cdot e_{\mathbf{j}} = \delta_{kj}$

Следует из определения координатной функции, ведь $\mathbf{e}^{\mathbf{k}}\cdot\mathbf{x}=f_{\mathbf{k}}(\mathbf{x})$

Утверждение 2. а · b = $\sum_i a^i b_i$

Утверждение 3. Пусть $\mathbf{r} = \sum_k \xi^k \mathbf{e_k} \ u = \sum_k \xi_k \mathbf{e^k}$. Тогда $\xi_k = \mathbf{r} \cdot \mathbf{e_k} = \sum_j \xi^j g_{jk}$

$$ightharpoonup$$
 Hy, $\mathbf{r} \cdot \mathbf{e_k} = \sum_j \xi_j \, \mathbf{e^j} \cdot \mathbf{e_k} = \sum_j \xi_j \, \delta_{jk} = \xi_k$. Вроде всё.

Аналогичная ситуация с ξ^k .

Утверждение 4. $\xi^k = \mathbf{r} \cdot \mathbf{e^k} = \sum_j \xi_j g^{jk}$.

Утверждение 5.

$$\mathbf{e}^{\mathbf{k}} = \sum_{j} g^{jk} \mathbf{e}_{\mathbf{j}}, \quad \mathbf{e}_{\mathbf{k}} = \sum_{j} g_{jk} \mathbf{e}^{\mathbf{j}}$$

 Π ервое домножить на $\mathbf{e^i}$, второе на $\mathbf{e_i}$.

Утверждение 6. $\sum_i g^{i\ell} g_{ik} = \delta_{\ell k}$

▼

$$\sum_{i} g^{i\ell} g_{ik} = \sum_{i} g^{i\ell} \mathbf{e_i} \cdot \mathbf{e_k} = \mathbf{e}^{\ell} \cdot \mathbf{e_k} = \delta_{\ell k}$$

Как видно, когда определения безкоординатные, жызнъ прекрасна!. ¹

 $^{^{1}}$ тут не опечатка, а отсылка к известной картинке ;)

Глава А: Обозначения