Ćw.3: Czwórniki bierne, wzmacniacz operacyjny

Kacper Tatrocki

Prowadząca: dr Małgorzata Harańczyk

23.04.2023

Zad2.4:

Zbudować czwórnik pokazany na poniższym schemacie. Zmierzyć jego charakterystykę amplitudową dla sygnałów sinusoidalnych. Wyznaczyć wartość częstotliwości rezonansowej (rezonans napięć) i porównać z wartością teoretyczną.

Teoria:

Zajmę się najpierw impedancją poszczególnych elementów układu dla prądów sinusoidalnych:

$$Z_R = R$$

$$Z_C = \frac{1}{j\omega C}$$

$$Z_L = j\omega L$$

Z prawa Ohma mamy:

$$u_1(t) = (Z_C + Z_L + Z_R)i(t)$$

Czyli:

$$i(\omega) = \frac{u_1(t)}{(Z_C + Z_L + Z_R)}$$

A zatem funkcja odpowiedzi ma wartość:

$$u_{2}(\omega) = Z_{R}i(\omega) = \frac{u_{1}(t)Z_{R}(\omega)}{\left(ZC(\omega) + ZL(\omega) + ZR(\omega)\right)} = u_{1}(\omega)\frac{R}{\frac{1}{j\omega C} + j\omega L + R}$$

Oznaczając: $Z_Z(\omega) = \frac{R}{\frac{1}{\mathrm{j}\omega\mathrm{C}} + \mathrm{j}\omega\,\mathrm{L} + \mathrm{R}}$, mamy wzór postaci:

$$u_2(\omega) = u_1(\omega)Z_Z(\omega)$$

Wzór na częstotliwość rezonansową:

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

Obserwacje:

L = 13.8mH, C = 66hF, f_r = 5,2736kHz

Dokonano 11tu pomiarów przepuszczając przez układ sygnał wejściowy o różnych częstotliwościach:

f (częstotliwość) Hz	U_we	U_wy	U_wy/U_we
10	1,920	0,015	0,008
100	1,960	0,164	0,084
200	1,920	0,336	0,175
500	1,920	0,760	0,396
1000	1,920	1,280	0,667
6000	1,960	1,880	0,959
10000	1,920	1,800	0,938
30000	1,920	1,480	0,771
50000	1,920	1,040	0,542
100000	1,960	0,336	0,171
150000	1,920	0,144	0,075

Widzimy, że teoretyczna częstotliwość rezonansowa w miarę zgadza się z otrzymanymi wynikami.

Zad3.1:

Zapoznać się ze schematem ideowym układu wzmacniacza operacyjnego.

Teoria:

Czym jest wzmacniacz operacyjny? To układ wzmacniający napięcie, które jest przystosowane do współpracy z zewnętrznymi elementami realizującymi sprzężenie zwrotne, takimi jak rezystory i kondensatory. Owe elementy determinują funkcję, jakie będzie dany obwód wykonywał.

Typowy sumator operacyjny składa się z kilku wejść oraz jednego wyjścia. Wejścia te są połączone z rezystorami, które służą do określenia wagi sygnałów wejściowych. Sygnały te są następnie sumowane i przekazywane na wyjście sumatora operacyjnego.

Idealny wzmacniacz operacyjny to 'abstrakcyjny wzmacniacz', który spełnia warunki: nieskończenie duże wzmocnienie napięciowe, nieskończenie duża rezystancja wejściowa, nieskończenie szerokie pasko przenoszenia częstotliwości oraz napięcie wyjściowe równe zeru przy równych napięciach wejściowych

Rzeczywiste wzmacniacze operacyjne nie są idealne i ich możliwości są ograniczone.

Zad3.2:

Zmontować wzmacniacz odwracający fazę o wzmocnieniu 10. Zdjąć charakterystykę częstotliwościow ą i fazową.

Teoria:

Wiemy z prawa Ohma, że $U_{we}-U=R_1*I_1$ oraz $U-U_{wy}=R_1*I_1$. Z założenia o nieskończonej rezystancji wejściowej wynika, że cały prąd płynący przez rezystor R_1 płynie również przez rezystor R_2 , a więc $I_1=I_2$. Dlatego również, $\frac{U_{we}-U}{R_1}=\frac{U-U_{wy}}{R_2}$.

Założenie o nieskończenie dużym wzmocnieniu napięciowym K pozwala stwierdzić, że skończonej wartości napięcia na wyjściu odpowiada $U_+-U_-=0$. Możemy w ten sposób dojść do wzoru postaci. $U_{wy}=\frac{R_2}{R_1}U_{we}$. Widać teraz, że aby wzmocnienie wynosiło 10 musi zachodzić zależność $R_2=10R_1$

Pomiary:

Mierząc rezystancję oporników otrzymano poniższe wyniki:

$$R_1 = 6.69k\Omega$$
, $R_2 = 66.9k\Omega$, $K = \frac{R_2}{R_1} = 10$

Dokonano 11tu pomiarów przepuszczając przez układ sygnał wejściowy o różnych częstotliwościach:

f (częstotliwość) Hz	U_we	U_wy	U_wy/U_we	przesunięcie fazowa
10	1,24	13,60	10,97	178
20	1,28	14,00	10,94	178
100	1,24	14,00	11,29	179
200	1,24	14,00	11,29	178
500	1,30	14,00	10,77	178
1000	1,30	14,00	10,77	179
10000	1,30	13,80	10,62	169
15000	1,36	13,80	10,15	154
30000	1,60	11,40	7,13	124
50000	1,94	8,20	4,23	108
80000	1,80	5,60	3,11	99

Widać, że wzmocnienie było bliskie wartości *K* tylko dla niskich częstotliwości.

Zdjętą charakterystykę częstotliwościową i fazową przedstawiają poniższe wykresy.

Otrzymane wartości mogą odbiegać od rzeczywistych z powodu ograniczonej precyzji pomiarów przesunięcia fazowego i natężenia za pomocą oscyloskopu.

Zad3.3:

Zmontować sumator o dwóch wejściach. Zsumować drgania sinusoidalne z dwóch generatorów, obserwować zdudnienia przebiegów

Teoria:

Czym jest dudnienie? To okresowe zmiany amplitudy sygnału wypadkowego powstałego ze złożenia dwóch sygnałów o zbliżonych częstotliwościach.

Korzystając z informacji uzyskanych przy omówieniu teoretycznym zadania 3.2 oraz drugiego prawa Kirchoffa ($I_1+I_2+\cdots+I_n=I$), otrzymujemy: $\frac{U_1}{R_1}+\frac{U_2}{R_2}+\cdots+\frac{U_n}{R_n}=\frac{-U_{wy}}{R}$. A zatem

$$U_{wy} = -R(\frac{U_1}{R_1} + \frac{U_2}{R_2} + \dots + \frac{U_n}{R_n})'$$

Obserwacje:

MSO3012 - 14:56:45 04.04.2023

Zad3.4:

Dla zadanego napięcia histerezy równego I V zbudować przerzutnik Schmidta. Zaobserwować i odrysować przebiegi napięcia wyjściowego przy sinusoidalnym napięciu wejściowym. Zmierzyć histerezę i wykreślić statyczną charakterystykę układu.

Teoria:

Widać, że:
$$U_{wy} = K(U_+ - U_-)$$
. $U_- = U_{we} -> U_+ = U_p = \frac{R_2}{R_1 + R_2} U_{wy}$.

W omawianym przerzutniku dodatnie sprzężenie zwrotne realizowane jest przez oporowy dzielnik napięcia. Napięcie wyjściowe przyjmuje wartości maksymalne (+E) lub minimalne (-E), które określone są przez napięcia zasilania wzmacniacza operacyjnego +E, -E.

Jeżeli
$$U_- < U_+$$
 to $U_{wy} = +E$

Jeżeli
$$U_- > U_+$$
 to $U_{wy} = -E$

Gdy na wyjściu napięcie wynosi +E, to stan ten utrzymuje się jako stan stabilny, gdy $U_- < U_+$, czyli

$$U_{we} < U_{+} = U_{p} = \frac{R_{2}}{R_{1} + R_{2}} E$$

Wzrost napięcia wejściowego powyżej tej wartości U_p spowoduje przerzut napięcia na wyjściu z +E na -E. Jednocześnie z tą zmianą zmienia się U_p , które od tego momentu wynosi:

$$U_{+} = U_{p} = -\frac{R_{2}}{R_{1} + R_{2}} E$$

Stan z napięciem wyjściowym -E pozostanie stabilny tak długo, dopóki U_{we} będzie większe od aktualnej wartości napięcia U_p .

Obserwacje:

MSO3012 - 15:45:16 04.04.2023

Przerzutnik Schmidta, sygnał sinusoidalny

MSO3012 - 15:54:39 04.04.2023

R1 = 5.6, R2 = 14

MSO3012 - 15:50:44 04.04.2023

Funkcja 'xy', R1 = 0, R2 = 0

MSO3012 - 15:52:40 04.04.2023

R1 = 13, R2 = 449