ED - Seminario 17/11/2016 Árboles B

Carlos Mencía Cascallana María del Rosario Suárez Fernández

Árboles B de orden n (B-n)

- Número de elementos (claves) por nodo (página)
 - La raíz almacena m elementos, con 1 ≤ m ≤ 2n
 - El resto de los nodos almacenan m elementos, con n ≤ m ≤ 2n
- Número de hijos
 - Nodos que no son hojas: m+1 hijos
 - Las hojas no tienen hijos

Árboles B de orden n (B-n)

• Ejemplo: B-2 (n = 2)

Hojas: Sin hijos, todas en el mismo nivel

Árboles B de orden n (B-n)

• Ejemplo: B-2 (n = 2)

Cada nodo almacena los elementos ordenados de forma ascendente

Operaciones

- Tres operaciones principales
 - Buscar una clave
 - Insertar una clave nueva
 - Borrar una clave

- Buscamos el nodo donde almacenar la nueva clave
- Dos casos:
 - El nodo no está lleno (m < 2n)
 - El nodo está lleno (m = 2n)

Ejemplo: Insertar 25

- <u>Caso 1</u>. Hay espacio para un nuevo elemento (m < 2n)</p>
 - Añadir el elemento al nodo

Ejemplo: Insertar 25

- <u>Caso 1</u>. Hay espacio para un nuevo elemento (m < 2n)</p>
 - Añadir el elemento al nodo

- Caso 2. El nodo está lleno (m = 2n)
 - Calcular cual es el elemento central de las claves de la página donde se va a insertar la nueva clave (si esta se hubiese insertado)
 - Dividir la página en dos
 - A la izquierda, almacenar las claves menores que el elemento central
 - A la derecha, almacenar las claves mayores que el elemento central
 - Almacenar el elemento central en la página padre, añadiendo enlaces a los nuevos hijos. Si el padre está lleno repetir hasta llegar a la raíz
 - Dividir la raíz: único caso en el que la altura del árbol B se incrementa

• Ejemplo: Insertar 95

Caso 2. No hay espacio para un nuevo elemento (m = 2n)

Ejemplo: Insertar 95

Caso 2. No hay espacio para un nuevo elemento (m = 2n)

El nodo está lleno Punto medio({91,95,121,170,190}) = 121

Ejemplo: Insertar 95

Caso 2. No hay espacio para un nuevo elemento (m = 2n)

El nodo está lleno Punto medio({91,95,121,170,190}) = 121

- Buscamos la clave a borrar
- Dos casos:
 - Caso 1: La clave está en un nodo que no es hoja
 - Caso 2: La clave está en un nodo hoja

- Caso 1: La clave está en un nodo que no es hoja
 - Intentar sustituir la clave por su sucesor
 - El sucesor es la clave más a la izquierda en el hijo derecho
 - Esto es factible si el hijo derecho es tal que m ≥ n
 - En caso de fallo: intentar sustituir la clave por su predecesor
 - El predecesor es la clave más a la derecha del hijo izquierdo
 - Esto es factible si el hijo izquierdo es tal que m ≥ n
 - En caso de fallo: sustituir la clave por su sucesor, y reestructurar (Unificar predecesores y sucesores)

• Ejemplo: Borrar 126

126 está en un nodo no hoja

Sucesor: 132

El hijo derecho no está en una situación crítica

• Ejemplo: Borrar 126

126 está en un nodo no hoja

Sucesor: 132

El hijo derecho no está en una situación crítica

• Ejemplo: Borrar 90

90 está en un nodo no hoja

Sucesor: 91 -> situación crítica

Predecesor: 89 -> no es situación crítica

• Ejemplo: Borrar 90

90 está en un nodo no hoja

Sucesor: 91 -> situación crítica

Predecesor: 89 -> no es situación crítica

• Ejemplo: Borrar 48

48 está en un nodo no hoja

Sucesor: 57 -> situación crítica

Predecessor: 35 -> situación crítica

• Ejemplo: Borrar 48

48 está en un nodo no hoja

Sucesor: 57 -> situación crítica

Predecessor: 35 -> situación crítica

Borrar 57 de la hoja

• Ejemplo: Borrar 48

48 está en un nodo no hoja

Sucesor: 57 -> situación crítica

Predecessor: 35 -> situación crítica

- Caso 2: La clave está en un nodo hoja
 - Si la hoja <u>no</u> esta en una <u>situación crítica</u> (m > n), borrar la clave
 - Si la hoja está en una <u>situación crítica</u>
 - Si la hoja hermana por la derecha no está en situación crítica
 - Coger el primer elemento de la hoja hermana derecha y subir al padre. Bajar la clave del padre al nodo donde se borra
 - Si la hoja hermana por la izquierda no está en situación crítica
 - Coger el último elemento de la hoja hermana izquierda y subir al padre. Bajar la clave del padre al nodo donde se borra
 - Si la hoja hermana por la derecha está en situación crítica
 - Coger el padre, bajarlo y unificar con la hoja hermana derecha
 - Si la hoja hermana por la izquierda está en situación crítica
 - Coger el padre, bajarlo y unificar con la hoja hermana izquierda

Árboles B – Inserción – Ejercicico

- Ejercicio. Insertar los siguientes elementos en un árbol B de orden 2:
 - 190, 57, 89, 90, 121, 170, 35, 48, 91, 22, 126, 132 y 80

Insertar 190

190

Insertar 57

190

Insertar 57

57 190

• Insertar 89

|--|

• Insertar 89

57	89	190	

57	89	190	
		100	

57	89	90	190

Insertar 121

El nodo está lleno Punto medio({57,89,90,121,190}) = 90

57	89	90	190

Insertar 121

El nodo está lleno Punto medio({57,89,90,121,190}) = 90

• Insertar 91

Insertar 22

El nodo está lleno Punto medio({22,35,48,57,89}) = 48

Insertar 22

El nodo está lleno Punto medio({22,35,48,57,89}) = 48

Insertar 126

El nodo está lleno Punto medio({91,121,126,170,190}) = 126

Insertar 126

El nodo está lleno Punto medio({91,121,126,170,190}) = 126

Árboles B – Borrado – Ejercicio

- Ejercicio. Borrar los siguientes elementos:
 - 80, 91, 57, 170, 48, 126, 22, 90 y 89

35	121	132	190

Ejercicio – Árboles B

- Ejercicio. Insertar los siguientes elementos en un árbol B de orden 2:
 - 60, 40, 80, 20, 55, 65, 63, 51, 75, 2, 4, 90, 95,
 100, 41, 42, 50, 22, 30, 25, 31, 32, 33, 36, 38, 39

Ejercicio – Árboles B

- Ejercicio. Del árbol generado en el ejercicio anterior borrar los siguientes elementos :
 - 100, 60, 65, 63