Bayesian Inference over the Stiefel Manifold via the Givens Representation

김성민

서울대학교 통계학과, 베이즈통계 연구실

2021. 08. 18

CONTENTS

- Motivation
- ② Givens Representation
- Sample distributions over Stiefel Manifold
- Experiments

CONTENTS

- Motivation
- 2 Givens Representation
- Sample distributions over Stiefel Manifold
- Experiments

Stiefel Manifold

- We denote it as $V_{p,n}$ which are known as p-frames.
- A p-frame is an orthogonal set of p n-dimensional unit-length vector, where $p \le n$
- p-frames naturally correspond to $p \times n$ orthogonal matrices.

$$V_{p,n} = \{ Y \in \mathbb{R}^{n \times p} Y^T Y = I \}$$

• A simple case is $V_{1,3}$, which consists of a single vector, u_1 , on the unit sphere.

Motivation

- Statistical models parameterized in terms of orthogonal matrices are ubiquitous.
- Posterior inference in Bayesian models with orthogonal matrix parameters remains a challenge.
 - Inference under constraint. (HMC-based methods rely on specialized HMC update rules)
 - Transforming the parameters to an unconstraint space. (pose challenges related to the change in measure, topology, and parameterization)

CONTENTS

- Motivation
- 2 Givens Representation
- Sample distributions over Stiefel Manifold
- 4 Experiments

Givens Rotations and Reductions

- Given any $n \times p$ matrix, A, the Givens reduction algorithm is a numerical algorithm for finding the QR-factorization of A (an $n \times p$ orthogonal matrix Q, $p \times p$ upper-triangular matrix R, such that A=QR)
- The algorithm works by successively applying a series of Givens rotation matrices so as to "zero-out" the elements $\{A_{ij}: i>j\}$ of A

Givens Rotations and Reductions

- The rotation matrix $R_{ij}(\theta_{ij})$ has the effect of rotating the vector counter-clockwise in the (i,j)-plane.
- $R_{ij}(\theta_{ij})$, form of an identity matrix except for the (i,i) and (j,j) positions which are replaced by $\cos(\theta_{ij})$, and the (i,j) and (j,i) positions which are replaced by $-\sin(\theta_{ij})$ and $\sin(\theta_{ij})$ repectively.

Givens Rotation

Givens Rotation

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ a_{31} & a_{32} & \cdots & a_{3p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix} \vdash \begin{pmatrix} * & * & \cdots & * \\ 0 & * & \cdots & * \\ a_{31} & a_{32} & \cdots & a_{3p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix} \vdash \downarrow \cdot \cdot \cdot \cdot \vdash \begin{pmatrix} * & * & \cdots & * \\ 0 & * & \cdots & * \\ 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & * & \cdots & * \end{pmatrix}$$

Figure 2: The Givens reduction eliminates lower diagonal elements of an $n \times p$ matrix one column at a time. Because each rotation, $R_{ij}(\theta_{ij})$, only affects rows i and j, previously zeroed out elements do not change.

$$R_* = R_{pn}^{-1}(\theta_{pn}) \cdots R_{p,p+1}^{-1}(\theta_{p,p+1}) \cdots R_{1n}^{-1}(\theta_{1n}) \cdots R_{12}^{-1}(\theta_{12}) A$$

$$\Rightarrow Q_* R_* = A$$

Givens representation

• When applied to an $n \times p$ orthogonal matrix Y, the Givens reduction yields

$$R_{pn}^{-1}(\theta_{pn})\cdots R_{p,p+1}^{-1}(\theta_{p,p+1})\cdots R_{1n}^{-1}(\theta_{1n})\cdots R_{12}^{-1}(\theta_{12})Y = I_{n,p}$$

$$Y = R_{12}(\theta_{12})\cdots R_{1n}(\theta_{1n})\cdots R_{p,p+1}(\theta_{p,p+1})R_{pn}(\theta_{pn})I_{n,p}$$

• $\Theta = (\theta_{12} \cdots \theta_{1n} \cdots \theta_{23} \cdots \theta_{2n} \cdots \theta_{p,p+1} \cdots \theta_{pn})$ effectively parameterizing the Stiefel manifold.

CONTENTS

- Motivation
- Quent Representation
- 3 Sample distributions over Stiefel Manifold
- 4 Experiments

Transformation of Measure

- $Y = R_{12}(\theta_{12}) \cdots R_{1n}(\theta_{1n}) \cdots R_{p,p+1}(\theta_{p,p+1}) R_{pn}(\theta_{pn}) I_{n,p}$
- $p_{\Theta}(\theta) = p_Y(y(\theta))|J_{Y(\Theta)}(\theta)|$
- Unfortunately, the Givens representation, $Y(\Theta)$, is a map from a space of dimension d = np p(p+1)/2 to a space of dimension np.
- Its Jacobian is non-square and the determinant of the Jacobian is undefined.

Transformation of Measure

- Muirhead (2009)
- Edelman (2005)
- James (1954)
- $J_{Y(\Theta)}(\theta) = \prod_{i=1}^p \prod_{j=i+1}^n \cos^{j-i-1} \theta_{ij}$

Issue(1)

- Let $\theta_{12}, \theta_{23}, \cdots \theta_{p,p+1}$ range from $-\pi$ to π (longitudinal coordinates)
- Let remaining coordinates range from $-\pi/2$ to $\pi/2$ (latitudinal coordinates)
- $\theta_{12} = \pi$ are disconnected

Issue(1)

 To address this issue, auxiliary parameters to the Givens representation is introduced.

Auxiliary Parameters for Addressing Connectedness

- Introduce for each angle parameter, θ_{ij} , an independent auxiliary parameter, r_{ij} .
- $x_{ij} = r_{ij} \cos \theta_{ij}$ and $y_{ij} = r_{ij} \sin \theta_{ij}$

$$p_{x,y}(x,y) = p_{\theta,r}(arctan(y/x), \sqrt{x^2 + y^2}) \frac{1}{r}$$

• In practice, we set $p_r(r)$ to a $N(1, 0.1^2)$

Von Mises distribution

• The Von Mises pdf for the angle x is given by:

$$f(x|\mu,\kappa) = \frac{\exp\{\kappa\cos(x-\mu)\}}{2\pi I_0(\kappa)}$$

- ullet μ : measure of location
- κ : measure of concentration
 - If κ is zero, the distribution is uniform.
 - If κ is large, the distribution becomes very concentrated about the angle μ

Auxiliary Parameters for Addressing Connectedness

- Upper : 1000 samples from Von Mises distribution ($\mu = -\pi$, $\kappa = 5$) sampled over the space $\theta \in [-\pi, \pi]$
- Lower: 1000 samples from the equivalent distribution sampled over the (x,y)-space.

Issue(2)

- $J_{Y(\Theta)}(\theta) = \prod_{i=1}^{p} \prod_{j=i+1}^{n} \cos^{j-i-1} \theta_{ij}$
- $J_{Y(\Theta)}(\theta)$ approaches zero near the "poles" (where the latitudinal coordinates equal $-\pi/2$ or $\pi/2$)
- In practice, this prevents algorithms such as HMC from obtaining samples in a small region near the "poles".

Transformation of Densities Near the Poles

• Limiting all latitudinal angles to the region $[-\pi/2 + \epsilon, \pi/2 - \epsilon]$ where ϵ is a small value.

Each of these individual probabilities is proportional to $\cos^{j-i-1}\theta_{ij}$, which for small ϵ can be bounded by ϵ^{j-i-1} over the interval $[\pi/2-\epsilon,\pi/2]$. Thus the probability of falling within the ϵ -region is bounded by a constant times the following quantity:

$$\sum_{i=1}^{p} \sum_{j=i+2}^{n} 2 \int_{\pi/2-\epsilon}^{\pi/2} \epsilon^{j-i-1} d\theta_{ij} = \sum_{i=1}^{p} \sum_{j=i+2}^{n} 2\epsilon^{j-i} = \sum_{i=1}^{p} \mathcal{O}(\epsilon^{2}) = \mathcal{O}(p\epsilon^{2}).$$
 (4.7)

Transformation of Densities Near the Poles

p	n	$\epsilon = 0.1$	$\epsilon = 0.05$	$\epsilon = 0.025$	$\epsilon = 0.0125$	$\epsilon = 1e - 5$
1	10	490	114	22	4	0
1	20	499	118	25	4	0
1	50	570	148	32	6	0
3	10	1,612	381	79	15	0
3	20	1,665	398	78	19	0
3	50	1,712	416	100	24	0
10	10	4,260	1,071	258	59	0
10	20	5,342	$1,\!336$	357	91	0
10	50	5,266	1,368	334	90	0

Table 1: The number of uniform samples out of 100,000 that fell within the ϵ region for various values of n,p, and ϵ . Samples are taken uniformly from the Stiefel manifold using the QR factorization method. As the theoretical bound suggests, the number of samples falling in this region increases modestly for fixed p and increasing n. It increases linearly with p, and it decreases quadratically with ϵ . In particular, whenever ϵ is halved, the number of samples falling within the region decreases by about a fourth. We also note that for $\epsilon = 1e - 5$, the value we used for most of our experiments, the number of samples falling within the ϵ region was zero for all settings.

Transformation of Densities Near the Poles

	Givens					Wood
κ	$\epsilon = 0.1$	$\epsilon = 0.05$	$\epsilon = 0.025$	$\epsilon = 0.0125$	$\epsilon = 1e - 5$	
1	1.2027	1.2042	1.2008	1.1995	1.1986	1.2012
10	0.4181	0.4065	0.4031	0.4012	0.4019	0.4015
100	0.1657	0.1377	0.1290	0.1258	0.1261	0.1255
1,000	0.1092	0.0657	0.0483	0.0422	0.0396	0.0398

Table 3: The empirical expectation of the principal angle, $\arccos(\mu^T Y)$, sampled under the von Mises Fisher distribution with $\mu = (0,0,1)$ and $\kappa = 1,10,100$ and 1000 using the Givens representation in Stan with various sizes of the ϵ area and using the method of Wood (1994). As ϵ decreases, the empirical expectation computed using the Givens representation becomes much closer to those taken via the method of Wood (1994). For small κ the expectations do not differ much even for large ϵ because much less mass concentrates near the ϵ regions.

CONTENTS

- Motivation
- Quent Representation
- Sample distributions over Stiefel Manifold
- 4 Experiments

Probabilistic Principal Component Analysis(PPCA)

• PPCA posits the following generative process for how a sequence of high-dimensional data vectors $x_i \in \mathbb{R}^n$, i = 1, N arise from some low-dimensional latent representations $z_i \in \mathbb{R}^p$ (p < n).

$$z_i \sim N_p(0, I)$$

 $x_i|z_i, W, \Lambda, \sigma^2 \sim N_n(W\Lambda z_i, \sigma^2 I).$

• To ensure identifiability, W is constrained to be an orthogonal $n \times p$ matrix while Λ is a diagonal matrix with positive, ordered elements.

$$x_i|W, \Lambda, \sigma^2 \sim N_n(0, C)$$

 $C = W\Lambda^2 W^T + \sigma^2 I$

Probabilistic Principal Component Analysis(PPCA)

$$p(x_1, \dots, x_N | W, \Lambda, \sigma^2) = -\frac{N}{2} \log |C| - \frac{1}{2} \sum_{i} x_i^T c^{-1} x_i$$
$$= -\frac{N}{2} \log |C| - \frac{N}{2} tr(c^{-1} \hat{\Sigma})$$

- Traditional PCA corresponds to the closed-form maximum likelihood estimator for W in the limit as $\sigma^2 \to 0$
- Sampling the posterior of a model both provides a measure of uncertainty for parameter estimates and is possible even for more elaborate models.

Probabilistic Principal Component Analysis(PPCA)

- Setting
 - n = 50, p = 3
 - sigma² : uniform prior
 - W; uniform prior over the Stiefel manifold
 - $\Lambda^2 = diag(5, 3, 1.5), \ \sigma^2 = 1$
- In the Gives representation

$$p(\Theta, \Lambda, \sigma^2 | x_1, \cdots, x_N) \propto p(x_1, x_N | W(\Theta), \Lambda, \sigma^2) |J_{Y(\Theta)}(\theta)|$$

Histogram of principal angle

- W_j : columns of posterior draws of W
- E_j : columns of the first three eigenvectors of

$$\phi = \arccos\left(E_j^T W_j\right), \ j = 1, 2, 3$$

Marginal posterior distributions of the elements of W

Figure 10: True values of W used in the simulation along with 90% credible intervals computed using draws of the posterior. Each facet corresponds to one of the three columns of W.

References I

- Edelman, A. (2005). 18.325: Finite random matrix theory: Jacobians of matrix transforms (with wedge products).
- James, A. T. (1954). Normal multivariate analysis and the orthogonal group, *The Annals of Mathematical Statistics* **25**(1): 40–75.
- Muirhead, R. J. (2009). Aspects of multivariate statistical theory, Vol. 197, John Wiley & Sons.
- Pourzanjani, A. A., Jiang, R. M., Mitchell, B., Atzberger, P. J. and Petzold, L. R. (2021). Bayesian inference over the stiefel manifold via the givens representation, *Bayesian Analysis* **16**(2): 639–666.