#### Foundations for type-driven probabilistic modelling

Ohad Kammar University of Edinburgh

**TutorialFest** ACM-SIGPLAN 51st Symposium on Principles of Programming Languages (POPL'24) 15 January, 2024 City of Westminister, England







#### Plan:

- 1) type-driven probability: discrete case V
- 2) Borel sets & measurable spaces
- 3) Quisi Borel spaces
- 4) Type structure & standard Barel spaces

  5) Integration & random variables



Full model

type: Qbs 
$$W := [0,\infty]$$
  $\mathcal{B} x := Dx := D$ 

Ret: Quosi-Bool spore 
$$X = (X_1, R_X)$$

set

"carrier"

Like

Det: Quesi-Booel spore 
$$X = (iX_s, R_x)$$

set of

[set of the continuous cont



Examples

recombination of

- 
$$R = (R_1, Meas(R_1R))$$
  $X_r$ .

9bs underlying  $R$ 

-  $X \in Set$ ,  $X_r := (X_r \circ -Simple(R_rX))$ 

discrute que on X

$$- (X) = (X) \times (X)$$
Qbs  $= (X) \times (X)$ 
all funtions

Indiscrete qbs on x

· Constats:

$$E: B_{W}, n:W+$$

$$(\lambda_{Y}:R.x)^{-1}[E] = \begin{cases} x \in E: & R \\ \lambda \notin E: & \emptyset \end{cases}$$

· Pre composition:

$$R \xrightarrow{\varphi} R \xrightarrow{\alpha} W \in Meas(R, W)$$

S

Meas is a cat.

· Te Combination

I cth, 
$$\alpha$$
: News (IR, W),  $E:B_{R}$ ,  $R=OE_{i\in I}$ ,  $F:B_{W}$ 

ß:=

In led:

VELHS ( ) BrEF ( ) JIET. VEE; A Q; VEF ( ) TE RHS

#### J-Simple function

$$X: \mathbb{R} \rightarrow X$$
 S.t.  $Im X := X[\mathbb{R}]$  is ofth  $A$ 
 $\forall x \in Im X . x^{-1}[x] \in \mathbb{B}_{\mathbb{R}}$ 
 $X = [x] = X[x_1] \cdot X^{-1}[x_2] \cdot X^{-1}[x_3] \cdot X^{-1}[x_4] \cdot X^{$ 

· Constats

$$Im(\lambda r.n) = \{n\} \ db$$

$$y:X \vdash (\lambda r.n)[y] = \begin{cases} x=y: R \\ x\neq y: \emptyset \end{cases} \in \mathcal{B}_{R}$$

· Precomposition:

x:X+

$$(\alpha_0 \varphi)'[n] = \varphi'[\alpha'(n)] \in \mathcal{B}_R$$

· recombination:

Prop: X:Set, A: Qbs +

• 
$$\forall f: A \longrightarrow X$$
.  $f: A \longrightarrow_{LQss} X$ 

Prop: X: Set, A: Qbs +

$$\forall g: X \rightarrow LA_{J} . g: r^{gls}_{X} \rightarrow A$$

PH:  $\alpha: R_{rx}^{ous}, \vdash \alpha \sigma - s: ple \Rightarrow$ 
 $\alpha = [\alpha[n]. Ar. x]$ 
 $\chi \in Im \alpha \in R_{A}$ 

Recombination

 $(f \circ \alpha) = [\alpha[n]. Ar. fx]$ 
 $\chi \in Im \alpha \in R_{A}$ 

Borel

Constat  $\in B_{A}$ 
 $Constat \in B_{A}$ 

Prop: X:Set, A: Qbs +

• 
$$\forall f: A \longrightarrow X$$
.  $f: A \longrightarrow L_{ass}$ 

PH: 
$$\alpha: \mathcal{R} + (fod: \mathcal{R} \to X) \in \mathcal{R}_{qbs}^{x}$$
 always.



Useful adjustions:

Slogan: even measuareste
space is corrior by a
q65

Exaple

rest et strutue as in Set.

corvelatez rawcom elents

elents ERV BED

### Function Spaces

eval (p, n) := fx

By generalities: on Mess(R,R)
These
These -Messari RXIR -X - R = IR 

### Simple Type Structure

Simple be case:

- · Simply-typed 2-colonlus
- · types are simple: A,B:Type + B: Type
   no polymorphism
  - no term depending
  - · Contents for terms:  $\Gamma + t : A$ une simple:  $\Gamma = x_i : A_1, ..., x_n : A_n$ i.e. List  $(T_T pe)$

### Simple Type Structure

Simplé be case:

· interpretation is simple:

$$\llbracket x_i:A_1,\ldots,x_n:A_n \rbrack := \prod_{i=1}^n A_i$$

## Simple Type Struture Curry-Howard-Landek

$$\frac{\Gamma + t : A \qquad \Gamma + s : B}{\Gamma + \langle t, s \rangle : A \times B} \sim \prod \frac{\lambda r. \langle tr, sr \rangle}{|\Gamma|} \xrightarrow{\lambda r. \langle tr, sr \rangle} A \times B$$
is measurable

$$[\Gamma] \xrightarrow{\lambda_{r}.\langle t_{r},s_{r}\rangle} A_{r}$$

is measurable

$$\Gamma$$
 + let  $(n,y)$  = t in S:C

measurability

is meusurable. etc.

### Random elent Spore

$$R_{X} := X^{R} \quad \text{since} \quad [X^{R}] = R_{X} \quad \text{as sets.}$$

$$Why?$$

$$(\subseteq) \quad \propto \in [X] \implies \quad \propto : R \rightarrow X \text{ in ass.}$$

$$i \cdot \delta_{R} : R \rightarrow R \quad \text{measurable} \implies i \cdot \delta \in R_{R}$$

$$= \Rightarrow \alpha = \alpha \circ i \cdot \delta \in R_{X} \qquad \text{Pre co-position.}$$

$$(\supseteq) \quad \alpha \in R_{X} \implies \forall ( \in R_{R} = \text{Meas}(R, R), \quad \alpha \circ ( \in R_{X} = ) \quad \alpha : R \rightarrow X = ) \quad \alpha \in L_{X}^{S}$$

Ohad Kammar <ohad.kammar@ed.ac.uk>

## Subspaces

For 
$$X \in \mathbb{Q}$$
 bs,  $A \subseteq X$ , Set:

 $R_A := \{ x : R \to A \mid x \in R_X \}$ 

Then  $A = (A, R_A)$  is the subspace 965

We write  $A \longrightarrow X$ 

## Borel subspaces ensemble

The  $\sigma$ -algebra  $B:=\{A \leq X_3 \mid \forall \alpha \in \mathbb{R}_X : \alpha^{T}[A] \in \mathbb{R}_{\mathbb{R}}^{T}\}$  internalises as  $B_X=2^X$ , the qbs of Borel subsets.

(BR) J cerette Borel-on-Borel Sets from descriptine set theory.

(F. [Sabou et al. 21]

# Standard Borel Spaces

A 965 5 is standard Borel when S = A for some A ∈ Bp

Slogan: (265 Conservative extension of Sbs

Example Co:= \f: R > R f continuous \ C > R"K Co is sbs. (Well-known!) Proof: Co EBRO Co:=  $\begin{cases} g \in \mathbb{R}^{q} & \forall a, b \in \mathbb{Q}, \xi \in \mathbb{Q}^{+} \\ \exists \delta \in \mathbb{Q}^{+} & \forall \rho, q \in \mathbb{Q}^{+} \\ |\rho-q| < \delta \Rightarrow |g\rho-q| < \xi \end{cases} \xrightarrow{\text{Bosel}} \begin{cases} by \\ +y\rho \in \mathbb{Q} \\ \text{cleans} \end{cases}$ then CorcieBRa: 4 -> 41@ 4 H) dr. lim g (approx ~)n

# Enouple (c+1)

Co is sbs, and eval: coxIR -> IR
Is measurable.

Avoids;

- Construting complete separable metrics
- proving that evalution is measurable
writ, metriz 5-algebra.

Non-enables ~ [Sabok et al. 21]

$$-\left\{(A_1,A_2)\in\mathcal{B}_{\mathcal{R}}^{\mathcal{Z}}\right\}A\subseteq\mathcal{B}\left\}\hookrightarrow\mathcal{B}_{\mathcal{R}}^{\mathcal{Z}}$$

#### Plan:

- 1) type-driven probability: discrete case V
- 2) Borel sets & measurable spaces
- 3) Quisi Borel Spaces
- 4) Type structure & standard Barel spaces

  5) Integration & random variables



# Dependit Type Structure

# Dependit Type Structure

Content formation:

Dependit Type Structure

Types denote spaces-in-Content

[[T]]

denote spaces-in-Content 1 dep [E:BA+{xEA | XEE] £.4. { (E, a) & BXA | a & E } Leader simple types

# Action of Substitution on types

$$\frac{\int \Gamma + A[\sigma]}{\int (\Gamma, \alpha) \in [\Gamma] \times [A]} \frac{\partial \Gamma}{\partial \rho} = \frac{\pi_z}{\int \Delta \rho} = \frac{\pi_z}{\int \Delta \rho}$$

$$\frac{\partial \Gamma}{\partial \rho} = \frac{\pi_z}{\int \Gamma} = \frac{1}{\int \Delta \rho}$$



Depulat Pairs

T, a:A+B T+ IIB aeA



### Dependent Parants

Exercise: find the random elements.



Full model

type: Qbs 
$$W := [0,\infty]$$
  $Sx \subseteq IB$ 
 $DX := (Fri)$ 
 $PX := \{p \in OX \mid Ce[X] = 1\}$ 
 $Ce[E] := (Fri)$ 
 $S_n := (Fri)$ 
 $Px := \{Fri\}$ 

#### Plan:

- 1) type-driven probability: discrete case V
- 2) Borel sets & measurable spaces
- 3) Quisi Borel Spaces
- 4) Type structure & standard Barel spaces of Integration & random variables

Please as n guestions!



Ohad Kammar <ohad.kammar@ed.ac.uk>