WHAT IS CLAIMED IS:

1	1. A method of depositing a silica glass insulating film over a
2	substrate, the method comprising:
3	exposing the substrate to a silicon-containing reactant introduced into a
4	chamber in which the substrate is disposed such that one or more layers of the silicon-
5	containing reactant are adsorbed onto the substrate;
6	purging or evacuating the chamber of the silicon-containing reactant;
7	converting the silicon-containing reactant into a silica glass insulating
8	compound by exposing the substrate to oxygen radicals formed from a second reactant
9	while biasing the substrate to promote a sputtering effect; and
10	repeating the exposing, purging/evacuating and exposing sequence a
11	plurality of times.
	2 The sale of a faire 1 wherein an average etemic mass of all
1	2. The method of claim 1 wherein an average atomic mass of all
2	atomic constituents in the second reactant is less than or equal to an average atomic
3	mass of oxygen.
1	3. The method of claim 1 wherein the silicon-containing reactant is
2	a silane family member having a formula of Si _n H _{2n+2} .
	and the second process of
1	4. The method of claim 3 wherein the second reactant consists of
2	molecular oxygen (O ₂).
1	5. The method of claim 1 wherein the second reactant consists of
2	molecular oxygen (O2) and a sputtering agent.
1	6. The method of claim 5 wherein the sputtering agent consists of
2	molecular hydrogen (H ₂).
1	7. The method of claim 5 wherein the light weight sputtering agent
2	comprises molecular hydrogen (H ₂) and/or helium.
1	8. The method of claim 1 wherein the oxygen radicals are generated
2	by forming a plasma within the chamber.

1	9. The method of claim 1 wherein the oxygen radicals are generated
2	by forming a plasma in a remote plasma chamber.
1	10. The method of claim 1 wherein the chamber is evacuated of the
2	silicon-containing reactant prior to exposing the substrate to oxygen radicals.
1	11. The method of claim 1 wherein the chamber is purged of the
2	silicon-containing reactant by flowing a gas that is chemically inert to silica glass into
3	the chamber.
1	12. The method of claim 1 wherein the chamber is purged of the
2	silicon-containing reactant by flowing an oxygen source into the chamber.
1	13. The method of claim 8 wherein energy is applied to the chamber
2	to form a plasma from the second reactant while biasing the substrate and wherein no
3	plasma is formed while the substrate is exposed to the silicon-containing reactant.
1	14. The method of claim 1 further comprising doping the silica glass
2	film with a dopant.
1	15. A method of depositing a silica glass insulating film over a
2	substrate having a gap formed between two adjacent raised features, the gap having a
3	bottom surface and a sidewall surface, the method comprising:
4	exposing the substrate to a silicon-containing reactant introduced into a
5	chamber in which the substrate is disposed such that one or more layers of the
6	silicon-containing reactant are adsorbed onto the substrate;
7	purging or evacuating the chamber of the silicon-containing reactant;
8	converting the silicon-containing reactant into a silica glass insulating
9	compound by exposing the substrate to a plasma formed from a second reactant
10	comprising oxygen atoms while biasing the substrate to promote a sputtering effect,
11	wherein an average atomic mass of all atomic constituents in the second reactant is less
12	than or equal to an average atomic mass of oxygen; and
13	repeating the exposing, purging/evacuating and exposing sequence a
14	plurality of times;

wherein the substrate is maintained at a temperature between 300-800°C during growth of the silica glass film and wherein the silica glass film grows up from the bottom surface of the gap at a rate greater than it grows inward on the sidewall surface of the gap.