TD : PRODUIT SCALAIRE PROF : ATMANI NAJIB

2BAC série science expérimental filière : svt+pc

PRODUIT SCALAIRE de l'espace

Exercice1 : Soit ABCDEFGH un cube de côté a Calculer les produits scalaires suivants :

 $\overrightarrow{AF}.\overrightarrow{GC}$; $\overrightarrow{AF}.\overrightarrow{CD}$ et $\overrightarrow{DH}.\overrightarrow{DC}$ et $\overrightarrow{EH}.\overrightarrow{GC}$ et $\overrightarrow{AE}.\overrightarrow{DB}$

Exercice2: 1)Soit A , B et C des points de l'espace tel que $AB = \sqrt{5}$ et $\overrightarrow{AB}.\overrightarrow{AC} = 3$ Calculer $\left(-2\overrightarrow{AB}\right).\overrightarrow{BC}$:

2) sachant que $\|\vec{u}\| = 2$ et $\|\vec{v}\| = 3$ et $\|\vec{u} + \vec{v}\| = 5$

Calculer : $\vec{u}.\vec{v}$

Exercice3: Déterminer les coordonnées d'un vecteur \vec{n} normal à un plan dirigé par $\vec{u}(2,-1,3)$ et $\vec{v}(4,0,2)$

Exercice4: Deux cubes d'arête 1, sont disposés comme indiqué sur la figure.

M est le milieu du segment [GK].

La droite (DL) est-elle perpendiculaire au plan (FMI)?

Exercice5: ABCDEFGH un cube tel que : AB = 1 avec I le milieu du segment $\begin{bmatrix} EH \end{bmatrix}$ et J le milieu de $\begin{bmatrix} EF \end{bmatrix}$

- 1)Montrer que $\overline{AG} \cdot \overline{EB} = 0$ et que $\overline{AG} \cdot \overline{ED} = 0$
- 2) En déduire que le vecteur \overrightarrow{EG} est normal au plan (BDE)
- 3) Montrer que les vecteurs \overrightarrow{FI} et \overrightarrow{CJ} sont orthogonaux
- 4) l'espace étant rapporté au repère $(A; \overrightarrow{AB}; \overrightarrow{AD}; \overrightarrow{AE})$
- a) déterminer les coordonnées des points F; C; I et J
- B)Montrer que $FI \cdot CJ = 0$ et en déduire que \overrightarrow{FI} et \overrightarrow{CJ} sont orthogonaux

Exercice6: Déterminer une équation du plan \mathscr{P} passant par A(4;2;-3) dont un vecteur normal est $\vec{n}(1;-2;-1)$

Exercice7: ABCDEFGH un cube tel que : AB = 1 avec I le milieu du segment AE

On se place dans le repère $\left(A; \overrightarrow{AB}; \overrightarrow{AD}; \overrightarrow{AE}\right)$

- 1) déterminer un vecteur normal au plan (CHI)
- 2) En déduire une équation cartésienne du plan (CHI)

Exercice8 : On considère les plans d'équations :

$$(P) 2x-4y+z+1=0$$
 et $(P') x+y+2z-3=0$

- 1)Monter que : $(P) \perp (P')$
- 2)Déterminer l'équation cartésienne du plan (Q) parallèle au plan (P) passant par le point A(1;-1;1)

Exercice9 :L'espace est muni d'un repère orthonormé $(\vec{i}; \vec{j}; \vec{k})$. On considère le plan (P)

d'équation x + 2y - z - 1 = 0

- 1)Les points A(1;1;2) et B(2;1;1) appartiennent-ils au plan (P)?
- 2)Calculer la distance AB puis les distances de ces deux points A et B au plan (P).
- 3)Le point A est-il le projeté orthogonal de B sur le plan (P)?

Exercice10:1)Déterminer l'équation cartésienne de la sphère de centre $\Omega(1, -1,2)$ et de rayon R=3

2)Déterminer l'équation cartésienne de la sphère de centre $\Omega(0, -3,0)$ et qui passe par A(2,1, -1).

Exercice11: Déterminer une représentation paramétrique de la sphère de centre $\Omega(-1, 0,2)$ et de rayon R=3

Exercice12 :Déterminer (S) L'ensemble des points M(x; y; z) tels que

$$\begin{cases} x = \frac{1}{2} + 2\sin\varphi\cos\theta \\ y = -1 + 2\sin\varphi\sin\theta \quad (\varphi;\theta) \in \mathbb{R}^2 \\ z = 1 + 2\cos\varphi \end{cases}$$

Exercice13: Déterminer (S) L'ensemble des points M(x; y; z) dans les cas suivants :

1)
$$(S_1)$$
: $x^2 + y^2 + z^2 - 2x - 6y - 4z = 0$

2)
$$(S_2)$$
: $x^2 + y^2 + z^2 - 6x + 4y + 6z + 22 = 0$

3)
$$(S_3)$$
: $x^2 + y^2 + z^2 - 2x + 3y + z + 7 = 0$

Exercice14:Soit : A(-1;2;1) et B(1;-1;0) deux points de l'espace

Déterminer l'ensemble (S) des points M(x; y; z)

de l'espace tel que : $\overrightarrow{MA}.\overrightarrow{MB} = 0$

Exercice15: Soient(S) une sphère:

$$(S):(x-1)^2+(y-1)^2+(z-2)^2=9$$

et
$$(D)$$
 une droite :
$$\begin{cases} x = 1 - t \\ y = 1 + t \\ z = 1 + t \end{cases}$$

Étudier la position relative de la sphère et la droite

Exercice16: Soient(S) une sphère :

$$x^2 + y^2 + z^2 - 2x - 4y + 2z = 0$$

et
$$(D)$$
 une droite :
$$\begin{cases} x = 2 + 3t \\ y = 4 + t \\ z = -2 + 5t \end{cases} (t \in \mathbb{R})$$

Étudier la position relative de la sphère et la droite

Exercice17: Soient (S) une sphère:

$$x^2 + y^2 + z^2 + 2x - 2y - 1 = 0$$

et
$$(D)$$
 une droite :
$$\begin{cases} x = -1 + t \\ y = 1 + 2t & (t \in \mathbb{R}) \\ z = 2 \end{cases}$$

Étudier la position relative de la sphère et la droite

Exercice18 : Soient(S) une sphère :

$$x^2 + y^2 + z^2 - 2x - 2y - 14 = 0$$

Et le plan d'équation (P): 2x-y-z+5=0

Étudier la position relative de la sphère (S) et le plan(P)

Exercice19: Soient(S) une sphère:

$$x^2 + y^2 + z^2 - 2x + 2z + 1 = 0$$

Et le plan d'équation (P): x-y+z-3=0

Étudier la position relative de la sphère (S) et le plan(P)

Exercice20 : Soient(S) une sphère :

$$(S):(x-2)^2+(y-1)^2+(z+3)^2=9$$

Et le plan d'équation (P): 2x - y + 3z - 2 = 0

Étudier la position relative de la sphère (S) et le plan(P)

Exercice21:Soie(S) une sphère :

$$(S): x^2 + y^2 + (z+2)^2 = 3$$

Et soit le point A(1;-1;-1)

Vérifier que $A \in (S)$ et Déterminer l'équations cartésienne du plan (P) tangent a la sphère (S) en A

Exercice22: on considère les plans d'équations respectives (P) x-y+z=0 et (Q)

$$2x + 3y + z - 6 = 0$$

et la sphère (S) de centre $\Omega(1;2;4)$ et tangente au plan (P) et soit la droite (Δ) qui passant par Ω et perpendiculaire au plan (Q)

- 1) monter que les plans (P) et (Q) sont orthogonaux
- 2)a) déterminer l'équation cartésienne de la sphère (S)
- b) déterminer le point de tangence de (P) et (S)
- 3)a) déterminer le point d'intersection de (Δ) et (Q)
- b) Montrer que le plan (Q) coupe la sphère (S) suivant une cercle dont on déterminera le centre et le rayon

Exercice23: on considère l'ensemble (S_m) des points M(x;y;z) de l'espace qui vérifient l'équations :

$$(S_m)$$
: $mx^2 + my^2 + mz^2 - 2(m-1)x + 2y + 2z = 0$

Avec m un paramètre non nul

- 1) monter que (S_m) est une sphère pour tout $m \in \mathbb{R}^*$
- 2) monter que tous les sphères se coupent suivant un seul cercle dont on déterminera le centre et le rayon

Exercice24: dans l'espace (\mathcal{E}) est muni d'un repère $\left(0;\vec{i};\vec{j};\vec{k}\right)$ orthonormé On considère les plan (P_m) d'équations x+y-z-m=0 avec m paramètre réel Et la sphère (S) de centre $\Omega(1;2;1)$ et le rayon $R=\sqrt{3}$

1) Etudier et discuter suivant le paramètre m la position relative de la sphère (S) et les plan (P_m) 2) soit (E) l'ensemble des réels m tels que : (P_m) coupe la sphère (S) suivant un cercle (C_m)

Déterminer l'ensemble des centres des cercles (C_m) lorsque m varie dans (E)

Exercice25 : dans l'espace (\mathcal{E}) est muni d'un repère $\left(0;\vec{i};\vec{j};\vec{k}\right)$ orthonormé on considère

l'ensemble (S_m) des points M(x; y; z) tq : (S_m) :

$$x^{2} + y^{2} + z^{2} + mx + 2(m-1)y + (m+4)z + 1 = 0$$

avec m paramètre réel

- 1)Montrer que (S_m) est une sphère $\forall m \in \mathbb{R}$
- 2)Déterminer l'ensemble des centres $\operatorname{des}(S_m)$ lorsque m varie dans $\mathbb R$
- 3)Montrer qu'il existe un cercle (C) incluse dans tous les sphères (S_m) $\forall m \in \mathbb{R}$ et Déterminer le plan (P) qui contient ce cercle (C)
- 4)Soit un point $M_0(x_0; y_0; z_0)$ dans l'espace tq $M_0 \notin (P)$

Montrer qu'il existe une sphère unique qui passe par \boldsymbol{M}_0

5)Montrer qu'il existe deux sphères (S_m) tangentes au plan(O; x; y)

« C'est en forgeant que l'on devient forgeron »

Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et

exercices

Que l'on devient un mathématicien

Prof: Atmani najib

Prof/ATMANI NAJIB