QCM 3

lundi 12 février

Question 11

Soient A et B deux événements d'un espace probabilisé $(\Omega, \mathscr{P}(\Omega), P)$. On a

- a. Si A et B sont disjoints, alors $P(A \cup B) = P(A) \times P(B)$.
- \ \ b. Si A et B sont disjoints, alors $P(A \cup B) = P(A) + P(B)$.

+ 1

c.
$$P(A+B) = P(A) \cup P(B)$$

- $A \wedge d$. $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - e. Aucune des autres réponses

Question 12

Soit A un événement d'un espace probabilisé $(\Omega, \mathscr{P}(\Omega), P)$. On a

a.
$$0 < P(A) < 1$$

$$\backslash \backslash b$$
. $P(\Omega) = 1$

+1

d. Aucune des autres réponses

Question 13

On lance deux dés équilibrés à 6 faces numérotées de 1 à 6. La probabilité d'obtenir exactement un 6 est égale à

$$^{\text{a.}} \frac{5}{36}$$

$$\sqrt{b}$$
. $\frac{5}{18}$

c.
$$\frac{11}{36}$$

Question 14

On lance deux dés équilibrés à 6 faces numérotées de 1 à 6. La probabilité d'obtenir au moins un 6 est égale à

a.
$$\frac{5}{36}$$

b.
$$\frac{5}{18}$$

, c.
$$\frac{11}{36}$$

d. Aucune des autres réponses

Question 15

Soient A et B deux événements de probabilités non nulles d'un espace probabilisé fini $(\Omega, \mathscr{P}(\Omega), P)$. On a

a.
$$P(A \mid B) = \frac{P(A \cup B)}{P(B)}$$

\ b.
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

c.
$$P(A | B) = \frac{P(A \cup B)}{P(A)}$$

d.
$$P(A \mid B) = \frac{P(A \cap B)}{P(A)}$$

e. Aucune des autres réponses

Question 16

Soient A et B deux événements indépendants d'un espace probabilisé fini $(\Omega, \mathscr{P}(\Omega), P)$. On suppose que $P(A) = \frac{1}{6}$ et $P(B) = \frac{2}{3}$. On a

a.
$$P(A \cap B) = \frac{5}{6}$$

$$b. P(A \cap B) = \frac{1}{9}$$

c. On ne peut pas savoir la valeur de $P(A \cap B)$.

d. Aucune des autres réponses

Question 17

Soient A et B deux événements de probabilités non nulles d'un espace probabilisé fini $(\Omega, \mathscr{P}(\Omega), P)$. On a

$$A > a$$
. $P(A \mid B) \times P(B) = P(B \mid A) \times P(A)$

b.
$$P(A \mid B) \times P(A) = P(B \mid A) \times P(B)$$

c.
$$P(A | B) = P(B)$$

$$\times$$
 d. $P(A \mid B) = P(A)$

e. Aucune des autres réponses

Question 18

Une urne contient 7 boules numérotées de 1 à 7, indiscernables au toucher. À quoi peut correspondre la réponse « 7⁴ »?

- \ a. Au nombre de façons de tirer 4 boules de l'urne avec remise après chaque tirage.
 - b. Au nombre de façons de tirer 4 boules de l'urne sans remise après chaque tirage.

+1

- c. Au nombre de façons de tirer simultanément 4 boules de l'urne.
- d. Rien de ce qui précède

Question 19

Soient $n \in \mathbb{N}^*$ et x et y deux réels non nuls. On a $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^k$.

a. Vrai

b. Faux

41

Question 20

Cochez la(les) bonne(s) réponse(s)

- a. Le nombre d'anagrammes du mot « TRAVAIL » est égal à 7!.
- b. Le nombre d'anagrammes du mot « TRAVAIL » est égal à 6!.
- c. Le nombre d'anagrammes du mot « ASSEZ » est égal à 5.
- \\ d. Le nombre d'anagrammes du mot « ASSEZ » est égal à $\frac{5!}{2}$.
 - e. Aucune des autres réponses