

References

- □ Deep Learning, Ian Goodfellow, Yoshua Bengio, Aaron Courville
- □ Neural Networks and Learning Machines, Simon Haykin
- Pattern Recognition and Machine Learning, Christopher M. Bishop
- □ Deep Learning with Python François Chollet
- ☐ Hands-On Machine Learning with Scikit-Learn and TensorFlow
- □ TensorFlow Deep Learning Cookbook
- Reinforcement Learning with TensorFlow: A Beginner's Guide to Designing Self-learning Systems with TensorFlow and OpenAl Gym Sayon Dutta
- Hands-On Reinforcement Learning with Python: Master Reinforcement and Deep Reinforcement Learning Using OpenAl Gym and TensorFlow Sudharsan Ravichandiran
- Deep Reinforcement Learning Hands-On: Apply Modern RL Methods, with Deep Q-networks, Value Iteration, Policy Gradients, TRPO, AlphaGo Zero and More Maxim Lapan

pra-sâmi

Theory exam- 40% weightage

Lab exam - 40% weightage

Internal exam - 20% weightage

Evaluation method

Agent In Uncertain Environment | Agents don't have complete knowledge about the world. | Agents need to make (informed) decisions given their uncertainty. | It isn't enough to assume what the world is like. | Example: wearing a seat belt. | An agent needs to reason about its uncertainty. | When an agent takes an action under uncertainty, it is gambling ⇒ probability | pra-sâmi

15

Artificial Intelligence vs. Machine Learning

Artificial Intelligence

- Create intelligent machines that can simulate Human thinking capability and behavior
- □ A man-made thinking power
- No pre-programing needed
- ☐ Algorithms which can work with their own "intelligence"
- Algorithms such as Reinforcement learning algorithm and deep learning neural networks being used in multiple places such as Siri, Google's AlphaGo, AI in Chess playing, etc
- □ Based on capabilities, AI can be classified into three types:
 - . Weak Δ
 - General AI
 - Strong Al
- Currently, we are working with weak AI and general AI. The future of AI is Strong AI for which it is said that it will be more intelligent than humans (???)

Machine Learning

- ☐ An application or subset of AI
- Allows machines to learn from data without being programmed explicitly
- Uses a massive amount of structured and semistructured data
- □ It can work only on data it has seen
- For unknown cases it becomes unresponsive or unreliable
- Being used for online recommender system, for Google search algorithms, Email spam filter, Facebook Auto friend tagging suggestion, etc.
- □ It can be divided into three types:
 - Supervised learning
 - Unsupervised learning
 - * Reinforcement learning

5/15/2024 pra-sâmi

Deep Learning

□ Large Neural Networks

"Using brain simulations, hope to: Make learning algorithms much better and easier to use, Make revolutionary advances in machine learning and AI, I believe this is our best shot at progress towards real AI."

- Andrew Ng

- □ Learning successive layers of increasingly meaningful representations
- Modern network contain hundreds of successive layers
- □ Successive layers are learned via "neurons" connected via neural network

Some concepts were inspired by how our brain works It is NOT a replica of human brain!!!

5/15/2024

L7

Deep Learning

- □ Why Deep Learning is more practical today?
 - Availability of large computing power
 - Availability of large datasets
- ☐ Most flavors of the old generations of learning algorithms, performance will plateau
- □ Deep learning that is scalable
 - Performance just keeps getting better as more and more data is fed
- ☐ Most value today is coming from supervised learning
- □ Eventually, we will see benefits of unsupervised learning

5/15/2024 pra-sâmi

18

Deep Learning

- □ Usually a neural network contains
 - Input Layer
 - ❖ Hidden layers [1 ... n]
 - Output layer
- ☐ We may call network with 1 to 2 hidden layer as shallow
- □ Network with 10 or more layers as deep
 - * No set demarcation!
- ☐ I guess, scientists just got excited when someone labeled them as deep network
- □ Intelligent software to automate routine tasks, understand speech or images, make diagnosis in medicine and support basic scientific research

5/15/2024

To play or not to play!

	Dry		Homework	Team			
id	Weather	Low Temp	Done	Members	Equipment	Ground	Played
1	1	1	1	1	0	1	1
2	1	1	1	1	1	1	1
3	1	1	1	1	1	1	1
4	0	1	0	1	1	1	0
5	0	0	1	1	1	0	0
6	0	0	0	0	0	1	0

23

Neurons

- □ Features:
 - ❖ Is it raining?
 - Is it too hot?
 - * Have I completed my homework?
 - * Are sufficient players ready?
 - Is cricket equipment ready?
 - ❖ Is ground available?
- □ Depending on the feature values, you may get to play or not
- □ Features like homework and availability of ground can be considered as 'inhibitory'.

	Dry		Homework	Team			
id	Weather	Low Temp	Done	Members	Equipment	Ground	Played
1	1	1	1	1	0	1	1
2	1	1	1	1	1	1	1
3	1	1	1	1	1	1	1
4	0	1	0	1	1	1	0
5	0	0	1	1	1	0	0
6	0	0	0	0	0	1	0

□ Notes:

- * Aggregator function is sum and threshold can be 3.
- * Assign 0 or 1 if a parameter is in favor or not

Given sufficient data point, we can train an algorithm to make such simple decisions for us.

5/15/2024

pra-sâmi

!4

MP Neuron

- □ In 1943 Warren S. McCulloch, a neuroscientist, and Walter Pitts, a logician, published "A logical calculus of the ideas immanent in nervous activity" in the Bulletin of Mathematical Biophysics
- □ In this paper McCulloch and Pitts tried to understand how the brain could produce highly complex patterns by using many basic cells that are connected together
- □ These basic brain cells are called neurons, and McCulloch and Pitts gave a highly simplified model of a neuron in their paper
- □ The McCulloch and Pitts model of a neuron, which we will call an MCP neuron for short, has made an important contribution to the development of artificial neural networks -- which model key features of biological neurons

5/15/2024

MP Neuron

- Neurons receive signals and produce a response
- ☐ In this model:
 - ❖ All inputs are binary i.e. [0,1]
 - Inputs are "inhibitory" or "excitatory".
 - Inhibitory have maximum influence on the model
 - $\boldsymbol{\diamondsuit}$ It has an aggregator 'g' and a function 'f'
 - * There is a threshold
 - If g is more than threshold, $\hat{y} = 1$ else 0

 $\hat{y} = 0$ if any x_i is inhibitory, else $g(x) = \sum x_i$

 $\hat{y} = 1$ if $g(x) \ge threshold$ else $\hat{y} = 0$

5/15/2024 **pra-sâmi**

MP Neuron

	Dry		Homework	Team				
id	Weather	Low Temp	Done	Members	Equipment	Ground	Sum	Played
1	1	1	1	1	0	1	5	1
2	1	1	1	1	1	1	6	1
3	1	1	1	1	1	1	6	1
4	0	1	0	1	1	1	4	0
5	0	0	1	1	1	0	3	0
6	0	0	0	0	0	1	1	0

	Dry		Homework	Team				
id	Weather	Low Temp	Done	Members	Equipment	Ground	Sum	Played
1	1	1	1	1	0	1	5	1
2	1	1	1	1	1	1	6	1
3	1	1	1	1	1	1	6	1
4	0	1	0	1	1	1	4	0
5	0	0	1	1	1	0	3	0
6	0	0	0	0	0	1	1	0

The logic is straight forward. Let's implement this model on a dataset.

5/15/2024

Biological Neural Nets

□ Pigeons as art experts (Watanabe et al. 1995)

- □ Experiment:
 - ❖ Pigeon in Skinner box
 - Present paintings of two different artists (e.g. Chagall / Van Gogh)
 - Reward for pecking when presented a particular artist (e.g. Van Gogh)

Biological Neural Nets

- □ Pigeons were able to discriminate between Van Gogh and Chagall
 - With 95% accuracy on train set (when presented with pictures they had been trained on)
 - Discrimination, still 85% successful for previously unseen paintings of the artists
- □ Pigeons do not simply memorise the pictures
- ☐ They can extract and recognise patterns (the 'style')
- ☐ They generalise from the already seen to make predictions
- □ This is what neural networks (biological and artificial) are good at (unlike conventional computer)

37

The biological inspiration

- □ Features of the Brain
 - * Ten billion (10^{10}) neurons
 - On average, several thousand connections
 - Hundreds of operations per second
 - Die off frequently (never replaced)
 - Compensates for problems by massive parallelism
- ☐ The brain has been extensively studied by scientists
- □ Vast complexity prevents all but rudimentary understanding
- □ Even the behavior of an individual neuron is extremely complex
- □ Single "percepts" distributed among many neurons
- □ Localized parts of the brain are responsible for certain well-defined functions (e.g. vision, motion).

