rfTextController64

© 2022-2024 Robert Finch

Description

This is a text or tile mode video display controller that supports color intended for use with a 64 or 32-bit bus. The controller uses several internal dual ported r/w memories to store text, text attributes and character bitmaps. The display memory is sixty-four bits wide. Up to 8192 different simultaneous characters may be displayed along with 16-bit background and foreground colors (RGB565 format). The use of internal dual ported memories means that the text controller does not consume any memory bandwidth from the processor. The text controller may also be used as a tile graphics controller via the programmable character set.

The controller is programmable using only seven registers. Default values are established that should provide a reasonable display for 800x600 VGA mode.

The core respects byte lane selects, and partial updates of registers are possible. This makes it possible for the core to have an optional 32-bit bus slave interface.

The core has a 4kB device discovery black box (DDBB). The DDBB is used to indicate device presence and configure the I/O address the controller responds to.

Address	Description			
\$00000 to \$3FFFF	text screen and attribute memory area, currently the controlle			
	supports a 256kB memory max, enough for eight 80x50 screens			
\$40000 to \$7FEFF	character bitmap memory, number of chars depends on char size			
\$80000 to \$800FF	Text controller register area			

Text and Attribute Memory Layout

_	63	58	57	48	47	32	31	16	15 13	12 0	
	Pla	ne ₆		~		Fore Color ₁₆		Back Color ₁₆	٨	Char code ₁₃	1

Clocks

The text video display controller uses two clocks, a bus timing clock (clk_i) and a video timing clock (dot_clk_i), which can be completely independent.

The core synchronizes the display relative to externally supplied horizontal and vertical synchronization signals.

Register Description

Device Discovery Black Box (DDBB)

A 256-byte config space is supported. Most of the config space is unused. The only configuration is for the I/O address of the register set.

Regno	Width	R/W	Moniker	Description	
000	32	RO	REG_ID	Vendor and device ID	
004	32	R/W			
008	32	32 RO			
00C	00C 32 R/W				
010	32	R/W	REG_BAR0	Base Address Register	
014	32	R/W	REG_BAR1	Base Address Register	
018	32	R/W	REG_BAR2	Base Address Register	
01C	32	R/W	REG_BAR3	Base Address Register	
020	32	R/W	REG_BAR4	Base Address Register	
024	32	R/W	REG_BAR5	Base Address Register	
028	32 R/W				
02C	32	RO	RO Subsystem ID		
030			Extended ROM address		
034	34 32 RO				
038	32	R/W		Reserved	
03C	32	R/W		Interrupt	
040 to	32	R/W		Capabilities area	
0FF					
100 to	64	R/W		Scratchpad RAM (256B)	
1FF					
0200 to FFF	64	R		Boot ROM	

REG_BAR0 defaults to \$FEC00001 which is used to specify the address of the controller's text video ram in the I/O address space. A 256kB region is reserved. REG_BAR1 defaults to \$FEC40001 which is used to specify the address of the controller's character bitmap memory in the I/O address space. A 256kB region is reserved.

REG_BAR2 defaults to \$FEC80001 which is used to specify the address of the controller's registers in the I/O address space. A 256B region is reserved.

The controller will respond with a memory size request of 0MB (0xFFFFFFF) when BAR0, BAR1, or BAR2 is written with all ones. The controller contains its own dedicated memory and does not require memory allocated from the system.

Parameters

CFG_BUS defaults to zero

CFG DEVICE defaults to one

CFG_FUNC defaults to zero

Config parameters must be set correctly. CFG device and vendors default to zero.

Control Register Description

Control	Register	Desci	1		
Reg No.	Bit	R/W		Default Value	
00	7 – 0	RW	Number of character columns	64	
	15 - 8	RW	Number of character row	32	
	19 - 16	RW	Character output delay	7	
	31 - 20	-	These bits are reserved		
	43 – 32	RW	Window left	3956 (-140)	
	47-44	-	These bits are reserved		
	59-48	RW	Window top	4058 (-38)	
	63 - 60	-	These bits are reserved		
08	4-0	RW	Character height in pixels -1 Height < 33	17	
	7 - 5	-	Reserved	-	
	11 – 8	RW	Pixel size width -1 (dot clocks)	0	
	15 – 12	RW	Pixel size height -1 (scan lines)	0	
	20-16	RW	Character width in pixels -1 Width must be	11	
			even < 33 and > 5 for proper operation.		
	23 - 21	-	Reserved	-	
	24	RW	Reset state (auto resets to zero)	0	
	32	RW	Controller enable	1	
	40	RW	Multi-color mode enable	0	
	52 - 48	RW	Y scroll	0	
	60 - 56	RW	X scroll	0	
	Other	-	reserved	-	
10	30 – 0	RW	Color for transparent color ZRGB 4-9-9-9	511	
	62 - 32	RW	Border color ZRGB 4-9-9-9	FFBF2020h	
18	30 – 0	RW	Tile color 1 (multi-color mode)	0	
	62 - 32	RW	Tile color 2 (multi-color mode)	0	
20	4-0	RW	Cursor end	31	
	7 – 5	RW	Blink Control	7	
			00 No blink		
			01 No display		
		10 1/16 field rate			
	11 1/32 fie		11 1/32 field rate		
	12 - 8	RW	Cursor start	0	
	15 - 14	RW	Cursor image type	0	
	47 - 32	RW	Cursor location in memory	3	
	Other	-	reserved		
28	15 – 0	RW	start address – index into display memory	0	
	Other	_	reserved		
30	15 – 0	RW	Font address in char bitmap memory	0	
	63 -32	RW	"LOCK" or "UNLK" font locking	"LOCK"	
	Other - reserved				

Graphics

The core may be used as a low-resolution graphics controller via the programmable character set. The characters can be programmed for block graphics. For instance, each character could be a two-by-two grid of pixels. Sixteen different characters would be required to represent all the different combinations. It is also possible to program characters to a three-by-three grid of pixels using 512 programmable characters to represent every possible combination of on/off pixels. The default resolution is 64x32 or (768x576 pixels).

Graphics and text may be intermixed by allocating part of the programmable character set for a graphic array. For instance, using 256 programmable characters a 128x128 bitmapped display can be created.

Fonts

Multiple fonts can be loaded into the character bitmap memory. The controller supports a 64kB font memory. Which font is selected is determined by the contents of the font address register. The font memory may be locked so that it is not inadvertently changed by an errant program. The number of character glyphs that may be stored depends on the size of characters. An 8x8 glyph will use eight bytes of memory, meaning 8192 different characters can be supported. The default pre-loaded font is 12x18 requiring 36 bytes of memory for each character, therefore only 1820 characters of this size can be supported. Fonts with character glyphs up to 64x64 pixels can be used. Horizontally, glyphs are blocked into a size of 8,16,32,or 64 bits. Vertically, glyphs are a multiple of the horizontal size. A 47x56 glyph must be mapped into a 64x56 array of bytes. The character width of a font must be an even number between six and thirty-two. Character bitmaps are stored contiguously in memory with no wasted space.

Multi-color Mode

If multi-color mode is enabled, pixels are combined into pairs to select one of four colors, the foreground color, background color, tile color 1 or tile color2. Each character or tile may then display pixels in one of the four colors.

Output Planes

A four-bit output plane number may be supplied as part of the character attributes. The plane number controls the display priority when multiple video display devices are present in the video pipeline. Higher numbered planes will appear in front of lower numbered ones.

Smooth Scrolling

Scrolling the screen in a smooth fashion is supported with the x and y scroll registers which allow the screen to be scrolled pixel by pixel.

Power On Screen Randomizer

The controller features an automatic screen randomizer that causes random characters to be displayed when the controller is reset. Video display memory is loaded with random values. This is a visual aid that the controller is working properly.

Display Input / Output Bus

The controller inputs 32-bit ZRGB data and outputs 32-bit ZRGB video data. ZRGB is RGB data with plane number indicator bits tacked on. Two bits are reserved for the plane number and 10 bits are reserved for each RGB color component.

Core Parameters

The amount of memory used for the controller depends on the number of text cells supported. The default is 8192 cells or 64kB of memory. A maximum of 32768 cells or 256kB of memory is supported. An 80x50 text screen would use 4,000 cells.

Name Default Description				
	Value	2 con		
COLS	64	default number of columns of text		
ROWS	32	default number of rows of text		
BUSWID	64	Slave bus width may be 64 or 32		
TEXT_CELL_COUNT	8192	Number of supported text cells. Power of 2		
CFG_BUS	8	config bus number (default 0)		
CFG_DEVICE	5	config device number (default 1)		
CFG_FUNC	3	config function number (default 0)		
CFG_VENDORID	16	Default 0		
CFG_DEVICEID	16	Default 0		
INTERNAL_SYNCGEN	1	Use internal sync generator		

Internal Sync Generator

The internal sync generator has its own set of parameters for generating sync signals. These are defined in the core with default generation of VGA 800x600 mode. To use a different display mode parameters must be modified appropriately. (phTotal, pvTotal, etc).

Module Interface Description

rfTextController

module rfTextController(rst_i, clk_i, rst_busy_o, config_cs_i, req_i, resp_o, dot_clk_i, hsync_i, vsync_i, blank_i, border_i, zrgb_i, zrgb_o, xonoff_i);

System	Description
rst_i	This signal is normally connected to the system reset signal. It resets the text controller interface forcing it to the reset state.
clk_i	This is usually connected to the system clock and is used as a base timing clock for I/O operations.
rst_busy_o	Indicates the controller is currently performing a reset operation. The reset last for 10 video frames during which the screen is randomized.

Slave Port	
cs_config_i	circuit select input – active for the DDBB config space (256MB)
req_i	This is the FTA request bus. Please see the FTA bus documentation for details.
resp_o	This is the FTA response bus. Please see the FTA bus documentation for details.
Video Ports	
dot_clk_i	This input is the video clock input. Pixel timing is derived from it.
hsync_i	Horizontal sync. This input signal signals the start/end of a video scanline (end-of-line). This input is ignored if internal sync generation is used.
vsync_i	Vertical sync. This input signal indicates the end of the video frame. This input is ignored if internal sync generation is used.
blank_i	This input signal indicates that the display should be blanked. It is active during the video blanking period. This input is ignored if internal sync generation is used.
border_i	This input signal indicates that a border area is active. This input is ignored if internal sync generation is used.
zrgb_i	This 40-bit input bus can be connected to an external RGB input. (The text controller may display on top of the external input).
zrgb_o	This output signal bus contains the 40-bit RGB display data.
hsync_o	Horizontal sync output. Will be the same as the input if internal sync generator is not used. Otherwise, will be generated by the core.
vsync_o	Vertical sync output. Will be the same as the input if internal sync generator is not used. Otherwise, will be generated by the core.
blank_o	Blank video output. Indicates to blank the video output. Will be the same as the input if internal sync generator is not used. Otherwise, will be generated by the core.
border_o	This output signal indicates that a border area is active. Will be the same as the input if internal sync generator is not used. Otherwise, will be generated by the core.