How do we tryncate a real number to fit our storage mechanism?
Rounding or Chopping
$\int a_{ppere} \times = .a. a a. a a.$
We round to n decimal places by looking at ann.
If any = 0, 1, 2, 3 or 4
then $x = a_1 a_2 \dots a_n$ $(after rounding)$
If $a_{n+1} = 5, 6, 7, f, 9$ $+4en x = .a, a_{2} \cdots (a_{n} + 1)$
(after rounding)
last digit increased by 1
OR: We could chop and simply divend and any any am
$\int 0 \times = . \alpha_1 \alpha_2 \dots \alpha_n$

10 quantify error we have
10 quantify error we have Absolute error p-p*
Relative error $\frac{ p-p* }{ p }$ P=0
to measure the error in an approximation pt to p.
Significant Digits
Significant Digits p* approximates p to t Significant digits of the reliative error is less than
\$ × / Ø
ie t is the largest integer so that
$\frac{ p-p* }{ p } < 5x/0^{-\epsilon}$
Floating Point Arithmetic
Let fl(x) denote the machine representation of x,
If we want to compute X + y on a computer returns
#l (fl(x) + fl(y))
Even there small" errors lead to problems.

Cancellation error
(subtracting nearly equal numbers) Consider
12(x) = 0. d. d2 dpxp1, xp12xx x10"
fl(y) = 0. d, d2 ·· dp βp+1 βp+2 ··· βn ×10". and × >y
We have Il (Il (x) - Il (y)) = 0. op, op, or ×10 n-p
Where O. Opti Opis Ok ×10.
Where 0. opti opizok = 0. dpii dpizdk-0.Bpii BpizBk
=) Only K-p digits of Significance.
We have lost pdy,45.

Example
p = 0.59617
9 = 0.54601
_ *
Exact value r = p-q = 0.00016
But now with 4 digit rounding
p* = 0.5962, q* = 0.5960
7
$f^* = p^* - q^* = 0.002$
and r-r* - 025
$\frac{\alpha - \alpha}{ r } = 0.25$
=) 1 sign: ficant digit
Even though p* and q* are accurate to 4 and 5 Significant figures respectively.
Coen trong h p and g
are accurate to 4 and 5
Significant, figures
respectively.

_					
Ano	then w loff of numb topen	99 to	redra	the	
round	loff	etror,	's to r	educe	
the	<u>, num6</u>	er of	- 110a	ting	
poin	t oper	atims.			
• _					
<u>EX</u>	Polyn	omial Eu	al uation	u Siag	
		or s te a	multiple	Cation.	
-√-`) = 1.01 =	9-462	3-7/1=	2 4/2) =	
118	1.012	7,02	<i>2 7.11 Z</i>	-1.99	_
				•	
	= (1.0/	≥3-4.62	2²-3.//z	+/2.2) = -1	1.99
	_= <u>[[. 0]</u>	22-4.62	z-3./1)z	. +/2. 2/ 2	<u>L-1.99</u>
	- {[// a)	(1)	=-3.11]=	12 2	1 60
	- 	z - 4.64)z	?- <i>S.II</i>) Z :	f12. L] Z	-1.79
			J		

Example.	
Solve for $x: ax^2 + bx + c = 0$	
$X_1 = -b + \sqrt{b^2 - 4ac}, X_2 = -b - \sqrt{b^2 - 4ac}$	_
24 24	
C 1 (00)	
Say b=600, a=c=1 • What could go wrong?	
• What could an whom?	
- What Could go wing!	
· How could we reformulate the problem?	
the problem ?	
<u> </u>	
• What should we do it b was -600?	
0 Wuj - 600 !	
	_