Universidade Federal de Mato Grosso do Sul Campus Ponta Porã Teoria da Computação

Trabalho Prático I

Uma Heurística Gulosa e uma Heurística GRASP para o Problema da Mochila

Aluno: Daniel de Leon Bailo da Silva Professor: Eduardo Theodoro Bogue

Sumário

Resumo		1
1	Introdução	2
2	PROBLEMA	3
3	Análise dos Resultados	4

Resumo

Este trabalho consiste em mostrar os resultados obtidos a partir da execução do algoritmo da $Mochilha\ Boolena$ ou $Knapsack\ 0/1$, em suas versões dinâmicas.

Feito isso, dada as instâncias contento os dados necessários para aplicar os algoritmos, foi comparado o tempo de execução para cada instância nas suas versões dinâmicas, *Top-Down* e *Bottom-Up*.

Considerar o seguinte ambiente para a obtenção dos resultados:

- Processador: Intel CoreTM i5-8250U
 - Número de núcleos 4
 - Número de threads 8
 - Frequência baseada em processador 1.60 GHz
 - Frequência turbo max 3.40 GHz
- Memória: 8GB RAM

Este trabalho foi armazenado num repositório GitHub para melhor controle do versionamento do programa.

https://github.com/danbailo/T2-Analise-Algoritmos-I

1 Introdução

2 PROBLEMA

Instâncias	Valores
input1.in	12840
input2.in	19687
input3.in	39665
input4.in	39578
input5.in	21019
input6.in	64727
input7.in	2129
input8.in	1017
input9.in	19976
input10.in	39897
input11.in	59836
input12.in	49988
input13.in	59990
input14.in	20820
input15.in	20676
input16.in	3995

3 Análise dos Resultados

Tabela 1: My caption

Item	Peso em kg (Tamanho)	Valor
1	50	100
2	20	60
3	10	40
4	40	40
5	8	4