SUR L'ESTIMATION DES CARACTÉRISTIQUES LOCALES D'UN PROCESSUS DE DIFFUSION AVEC SAUTS François Delebecque, Jean-Pierre Quadrat

Résumé:

On étudie le problème de l'estimation des caractéristiques locales (terme de dérive, terme de diffusion, loi des sauts) d'un processus de diffusion avec saut dans Rⁿ. On étudie d'abord le cas paramétrique, puis on montre la robustesse des estimateurs obtenus en paramétrisant les caractéristiques locales par des fonctions en escalier, ce qui conduit à une estimation non paramétrique.

Abstract :

The problem of estimation of local characteristics of a \mathbb{R}^n - valued jump diffusion process is studied. The parametric case is first studied, then one shows the robustness of estimators obtained with a parametrization of the local characteristics by step functions. This method leads to a non parametric estimation.

SUR L'ESTIMATION DES CARACTÉRISTIQUES LOCALES D'UN PROCESSUS DE DIFFUSION AVEC SAUTS

F. DELEBECQUE, J.P. QUADRAT

De nombreux phénomènes physiques, économiques, biologiques peuvent être modélisés par des processus de diffusion avec sauts. Le premier problème, qui se pose alors, est l'estimation des paramètres définissant la loi du processus. Nous nous posons ici ce problème pour la classe de processus de diffusions avec sauts. En effet, pour de tels processus, il existe des théorèmes A.V. Skorohod [20], P. Bremaud [2], J. Jacob; J. Memin [11] donnant la densité de la loi du processus par rapport à une mesure de référence fixe. Il est alors possible de calculer les estimateurs du maximum de vraisemblance de paramètres intervenant dans le terme de dérive et la loi des sauts. Le terme de diffusion est calculé en étudiant la variation quadratique de la partie continue du processus.

Nous nous plaçons ici dans le cadre markovien non linéaire, observation complête, domaine beaucoup moins étudié que le cas linéaire. Citons les travaux de A. Lebreton [13], P. Lipcer, A. Shiriaev [15], P.D. Feigin [9] sur l'identification de paramètres apparaissant dans des diffusions stochastiques, utilisant le même genre de technique. Nous généralisons ici au processus de diffusion avec sauts la méthode exposée dans F. Delebecque, J.P. Quadrat [5].

L'originalité de cet exposé étant peut être dans ces méthodes de démonstration utilisant au maximum la théorie des martingales, et surtout dans l'aspect identification de fonctions au lieu de l'identification de paramètre. Les fonctions à identifier sont approximées par des fonctions constantes par morceaux. Un estimateur de cette approximation est alors calculé. Les propriétés asymptotiques d'estimation et d'approximation de cet estimateur sont données. Au vu de cet exposé, il apparaît que les trois fonctions dérive, terme de diffusion, loi des sauts, peuvent être estimées en tout point dès que ces fonctions sont continues, possèdent une propriété de périodicité, et que les processus correspondant, admettent

une mesure invariante ou périodique. Ces résultats généralisent donc par des méthodes différentes les résultats obtenus dans Banon [1] pour des diffusions en dimension un.

Cette étude fait largement appel aux techniques utilisées dans les exposés sur les martingales discretes de J. Neveu [17], sur l'aspect martingale des processus ponctuels P. Bremaud [2], sur les diffusions stochastiques et les martingales continues P. Priouret [19].

Des applications à la gestion de réservoirs sont données dans F. Delebecque, J.P. Quadrat [6], [7], Colleter, F. Delebecque, F. Falgarone, J.P. Quadrat [3], F. Delebecque [5].

Signalons également un travail de F. BRODEAU et de A. LEBRETON [22] traitant du même sujet dont nous avons en connaissance après la rédaction de ce travail

Nous suivrons le plan suivant :

PLAN

Introduction

1. RAPPELS

- 1.1. Mouvement Brownien
- 1.2. Processus de Poisson
- 1.3. Semi martingale
- 1.4. Mesure aléatoire associée aux sauts d'un processus
- 1.5. Théorème de représentation des martingales
- 1.6. Une équation différentielle stochastique
- 1.7. Formule d'Ito, C. Doleans-Dade, P.A. Meyer
- 1.8. Formule Exponentielle
- 1.9. Equation différentielle stochastique (solution faible)
- 1.10 Problème de martingale

2. STATISTIQUE DE DIFFUSION AVEC SAUTS. QUELQUES RESULTATS GENERAUX

- 2.1. La structure statistique
- 2.2. Estimation du terme de diffusion
- 2.3. Identifiabilité du terme de dérive et de sauts
- 2.4. Estimateurs du maximum de vraisemblance
 - 2.4.1. Continuité p.s. de la densité
 - 2.4.2. Convergence p.s. des estimateurs

3. UNE ESTIMATION PARAMETRIQUE.

- 3.1. Les estimateurs
- 3.2. Propriétés des estimateurs
 - 3.2.1. Biais
 - 3.2.2. Optimalité
 - 3.2.3. Convergence

4. ESTIMATION NON PARAMETRIQUE

- 4.1. Estimation du terme de diffusion
- 4.2. Estimation du terme de dérive
- 4.3. Estimation du terme de saut
- 4.4. Robustesse des estimateurs
- 4.5. Estimation de la valeur en un point du terme de dérive et de la loi des sauts

Conclusion

1. RAPPELS

Dans ce paragraphe on rassemble les résultats sur les diffusions et les processus ponctuels sur lesquels on se propose de faire des statistiques dans les chapitres suivants. On renvoie à P. Priouret [19] pour les résultats sur les diffusion et à P.M. Bremaud [2] pour les processus ponctuels.

1. MOUVEMENT BROWNIEN

Sur (Ω, F_t, F, P) F_t famille croissante de sous tribus de F, on appelle mouvement brownien un processus adapté, à accroissements indépendants, partant de O, tel que W_{t+h} soit une loi gaussienne centrée de variance h.

1.2. PROCESSUS DE POISSON

Sur (Ω, F_t, F, P) , on appellera processus de Poisson un processus adapté, à accroissements indépendants, partant de 0, tel que $N_{t+h}-N_t$ suit une loi de poisson de paramètre h.

1.3. <u>SEMI-MARTINGALE</u>

Sur (Ω, F_t, F, P) un processus M_t sera appelé (P, F_t) martingale si $E^{F_S}M_t = M_s$

Sur $\Omega \times \mathbb{R}^+$ introduisons la tribu des prévisibles \mathfrak{T} (plus petite tribu rendant mesurables les processus limitus à gauche).

Si M_t est de carré intégrable, il existe un unique processus croissant prévisible A_t tel que $M_t^{\Theta 2}$ - A_t soit une martingale.

Un processus \mathbf{X}_{t} sera appelé semi-martingale si :

(1.1)
$$X_t = X_0 + M_t + V_t$$

où:

M_t est une martingale

V_t un processus à variation bornée

 $\mathbf{X}_{\mathbf{O}}$ une variable aléatoire $\mathbf{F}_{\mathbf{O}}$ mesurable.

1.4. MESURE ALEATOIRE ASSOCIEE AUX SAUTS D'UN PROCESSUS

Sur (Ω, F_t, F, P) considérons le processus X_t , c.a.d.1.a.g (continu à droite limitu à gauche), à valeurs dans R^n .

On introduit la mesure aléatoire associée aux sauts de X_t définie sur]0, ∞ [× U par :

$$\mu(\omega; dt \times du) = \sum_{s} \frac{1}{X_{s}} (\omega) \delta_{s, X_{s} - X_{s}}^{(dt \times du)},$$

avec $U = \mathbb{R}^n - \{0\}$.

La "projection duale prévisible" ν de μ sera l'unique mesure aléatoire prévisible (J. Jacod [11]):

$$E \int_{0}^{+\infty} \int_{\Pi} \psi(\omega, s, u) \mu(\omega; ds \times du) = E \int_{0}^{+\infty} \int_{\Pi} \psi(\omega, s, u) \nu(\omega; ds \times du)$$

 $\forall \psi(\omega,s,u)$ $f \times \mathcal{B}$ mesurable borné où f désigne la tribu des prévisibles sur $\Omega \times \mathbb{R}^+$ et \mathcal{B} les boréliens de U.

1.5. THEOREME DE REPRESENTATION DE MARTINGALE

Intégrale stochastique par rapport à une martingale

Sur (Ω, F_t, F, P) soit M_t une martingale de carré intégrable de processus croissant A_t et $f(s,\omega)$ un processus prévisible vérifiant

$$E \int_0^T f^2(s,\omega) dAs < +\infty$$

On définit l'intégrale stochastique $\int_0^T f(s,\omega) dMs$ en prolongeant l'isométrie

$$L^{2}(\Omega \times [0,T], \mathfrak{J}, PdA_{t}) \rightarrow L^{2}(\Omega,P)$$

$$f(\omega,s) = \sum_{i} f_{i} l_{B_{i}}(\omega,s) \rightarrow \sum_{i} f_{i}(M_{t_{i}} - M_{s_{i}})$$

$$B_i = A_i \times [s_i, t_i], A_i F_{s_i}$$
 mesurable.

Alors: $N_{t} = \int_{0}^{t} f(s, \omega) dM_{s} \text{ est une martingale de processus croissant } \int_{0}^{t} f^{2}(s, \omega) dA_{s}.$

Exemple 1

On prend $M_t = W_t$ mouvement brownien W_t est une martingale de processus croissant t alors

Exemple 2

Soit N_t un processus de Poisson, alors N_t-t est une martingale de processus croissant t, $\int_0^t f(s,\omega) (dN_s - ds)$ est une martingale de processus croissant

$$\int_0^t f^2(s,\omega) ds \ d\tilde{e}s \ que \ E \int_0^t f^2(s,\omega) ds < \infty \ \forall t.$$

Intégrale stochastique par rapport à une mesure aléatoire

Sur (Ω, F_t, F, P) soit un processus X_t c.a.d.l.a.g, $\mu(\omega; dt \times du)$ la mesure aléatoire associée aux sauts de X, de projection duale prévisible ν , $\psi(\omega, s, u)$ un processus $f \times f$ mesurable, alors dans J. Jacod [10] on définit l'intégrale stochastique par rapport à $\mu - \nu$:

$$\mathbf{M}_{\mathsf{t}} = \int_{0}^{\mathsf{t}} \int_{\mathsf{H}} \psi(\omega, s, \mathbf{u}) \left[\mu(\omega; \mathrm{d}s \times \mathrm{d}\mathbf{u}) - \nu(\omega; \mathrm{d}s \times \mathrm{d}\mathbf{u}) \right]$$

est une martingale de processus croissant

$$\int_{0}^{t} \int_{U} \psi^{2}(\omega, s, u) \nu(\omega; ds \times du) \ d\tilde{e}s \ que$$

$$E \int_{0}^{t} \int_{U} \psi^{2}(\omega, s, u) \nu(\omega; ds \times du) < +\infty \quad \forall t$$

Remarque

Lorsque $v(\omega; ds \times d\mu) = ds \times v(\omega, d\mu)$, $v(\omega, U) < +\infty$ p.s., cette intégrale stochastique est définie comme une intégrale de Stieljes ordinaire. Dans la suite nous nous placerons toujours dans ce cas là.

Théorème de représentation des martingales H. Kunita, S. Watanabe [12] Sur (Ω, F, P) soit le processus ponctuel

$$X_t = X_0 + \int_0^t \int_U u\mu(\omega; ds \times du)$$
 de projection duale prévisible

 $v(dt \times du)$; un brownien W_t , $F_t = \sigma(X_s; W_s \quad s \le t)$ (la tribu engendrée par $X_s \quad s \le t$ et $W_s \quad s \le t$); $M_t \quad une \quad (P, F_t)$ martingale de carré intégrable.

Il existe alors $\sigma(s,\omega)$ prévisible et $h(\omega,s,u)$ $\mathfrak{T}\times \mathfrak{B}$ mesurable tels que :

1.6. UNE EQUATION DIFFERENTIELLE STOCHASTIQUE

Sur (Ω, F_+, F, P) soit

zien,

un brownien W_t n dimensionnel,

v(du) une mesure de probabilité U vérifiant $\int |u|^2 v(du) < +\infty$, $\sigma(s,x)$ un champ de matrice (n×n) uniformément elliptique lipschit-

un processus ponctuel de poisson de mesure ponctuelle μ et de projection duale prévisible dt ν (du) (en fait déterministe)

Alors il existe un unique processus X_t sur (Ω, F_t, F, P) vérifiant l'équation différentielle stochastique A.V. Skorohod [20], J.P. Lepeltier, B. Marchal [14]

$$X_{t} = X_{0} + \int_{0}^{t} \sigma(s, X_{s}) dW_{s} + \int_{0}^{t} \int_{\Pi} u\mu(\omega; dt; ds \times du)$$

ce processus est c.a.d. l.a.g P.p.s

Désormais, on prendra pour (Ω, F_t, F, P) l'espace canonique de $X_t,$ c'est-à-dire

$$Ω = D(\mathbf{R}^+, \mathbf{R}^n) X_t(ω) = ω_t$$

$$F_t = σ(X_s, s \le t)$$

$$F_{\infty} = F, \text{ boreliens de } Ω$$

où D(R⁺,Rⁿ) désigne l'espace des fonctions c.a.d.l.a.g. muni de la topologie de SKOROHOD..

1.7. FORMULE D'ITO C. DOLEANS-DADE; P.A. MEYER [8]

Sur (Ω, F_t, F, P) soit X_t une semi-martingale à valeurs dans $I\!\!R^n$, et ϕ une fonction numérique sur $I\!\!R^n$ de classe C^2 .

X, se décompose de façon unique:

$$x_t = x_t^c + x_t^d$$

 ${\tt X}^{\tt C}$ désigne la partie continue de ${\tt X}$

 \mathbf{X}^{d} désigne la partie purement discontinue (constante entre ces discontinuités et partant de 0).

On a alors la formule suivante:

$$\phi(X_{t}) = \phi(X_{0}) + \int_{0}^{t} \sum_{i=1}^{n} D^{i} \phi(X_{s-}) dX_{3}^{ic} + \frac{1}{2} \int_{q}^{t} \sum_{i,j=1}^{n} D^{i} D^{j} (X_{s-}) d < M^{ic}, M^{jc} > s$$

$$+ \sum_{s \le t} \phi(X_{s}) - \phi(X_{s-})$$

οù

 ${\langle M^{ic},M^{jc}\rangle}_t$ désigne la composante (i,j) du processus croissant de la partie continue de la martingale dans la décomposition (1.1).

1.8. FORMULE EXPONENTIELLE

Sur
$$(\Omega, F_t, F, P)$$

avec

$$\Omega = D(0,T;\mathbb{R}^n)$$

$$F_t = \sigma(X_s) \quad s \leq t$$

$$F = F_m$$

P solution de l'équation différentielle stochastique

$$X_{t} = X_{0} + \int_{0}^{t} \sigma(s, X_{s}) dW_{s} + \int_{0}^{t} \int_{W} u \mu(\omega; ds \times du)$$

considérons le processus

$$\frac{Z_{t}}{z_{t}} = \frac{\exp \left\{ \int_{0}^{t} \left(\underline{a^{-1}(s,X_{s})b(s,X_{s}),\underline{dX}_{s}^{c}} \right) - \frac{1}{2} \int_{0}^{t} \left(\underline{a^{-1}(s,X_{s})b(s,X_{s}),b(s,X_{s})},\underline{b(s,X_{s})},\underline{b(s,X_{s})} \right) ds} \right. \\
+ \int_{0}^{t} \int_{U} \frac{\log \rho(X_{s-1},s,\underline{u})\mu(\omega)\underline{ds} \times \underline{du}}{z_{s-1}} - \int_{0}^{t} \int_{U} \frac{\rho(X_{s-1},s,\underline{u})-1}{z_{s-1}} ds \, \underline{v(\underline{du})}$$

où:

b(s,x) désigne une fonction borélienne bornée de $\mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^n$ $\rho(x,s,u)$ désigne une fonction borélienne bornée de $\mathbb{R}^n \times \mathbb{R}^+ \times \mathbb{U} \to \mathbb{R}$ ds $\nu(du)$ désigne la projection duale prévisible de μ pour P. $a = \sigma \sigma$

l'application de la formule d'Ito montre que :

$$(1.2.) \quad Z_{t} = 1 + \int_{0}^{t} Z_{s} \{ (a^{-1}b, dx^{c}) - \frac{1}{2} (a^{-1}b, b) ds + \frac{1}{2} (a^{-1}b, b) ds - \int_{U} (\rho(X_{s}^{-}, s, u)^{-1}) \nu(du) ds \} + \sum_{s \leq t} Z_{s}^{-} Z_{s}^{-}.$$

or

$$\sum_{s \leq t} Z_{s}^{-} Z_{s}^{-} = \sum_{s \leq t, X_{s} \neq X_{s}^{-}} Z_{s}^{-} \left(\rho(X_{s}^{-}, s, X_{s}^{-}, X_{s}^{-}) - 1\right)$$
$$= \int_{0}^{t} \int_{U} Z_{s}^{-} \left(\rho(X_{s}^{-}, s, u) - 1\right) \mu(\omega; dt \times du)$$

et donc (1.2) se réécrit :

(1.3)
$$Z_{t} = 1 + \int_{0}^{t} Z_{t}(a^{-1}b, \sigma(s, X_{s})dW_{s}) + \int_{0}^{t} Z_{t}(\rho(X_{s}, s, u)^{-1})(\mu - \nu)(ds \times du)$$

de (1.3) on déduit que :

$$EZ_{t}^{2} \leq k \left(1 + \int_{0}^{t} EZ_{s}^{2} ds + \int_{0}^{t} \int_{U} EZ_{s}^{2} ds \nu(du)\right)$$

et donc le lemme de GRONWALD montre que

$$EZ_t^2 \le A \exp^{2kt}$$

On en déduit que Z_t est une martingale et donc $E(Z_t) = 1$.

1.9. EQUATION DIFFERENTIELLE STOCHASTIQUE (SOLUTION FAIBLE)

Avec les données du paragraphe précédent on peut définir la mesure Q vérifiant :

$$\frac{dQ}{dP}\Big|_{F_t} = Z_t$$

Montrons que sous Q le processus canonique est solution de l'équation différentielle stochastique

où μ est la mesure ponctuelle associée aux sauts de X de projection duale prévisible

$$\rho$$
 (X_s^- ,s,u)d $\mathbf{s} \times v(du)$ et W_t un (Q, F_t) Brownien

pour montrer (1.4.) il suffit de vérifier que

$$M_{t}(\theta,\beta) = \exp \int_{0}^{t} (\theta, dX^{c} - bds) - \frac{1}{2} \int_{0}^{t} (a\theta, \theta) ds + \int_{0}^{t} \int_{U} Log\beta\mu(dt \times du)$$

$$- \int_{0}^{t} \int_{U} (\beta - 1)\rho(X_{s}, s, u) ds \nu(du)$$

est une (Q,F_t) martingale $\forall \theta$, $\beta > 0$.

En effet s'il en est ainsi, en dérivant $M_t(\theta,\beta)$ par rapport à θ une et deux fois au point (0,1) on obtient que

 $X_t^c - \int_0^t b \, ds$ est une (Q, F_t) martingale continue de processus croissant $\int_0^t a \, ds$.

En dérivant $M_t(\theta,\beta)$ par rapport à β une fois au point (0,1) on obtient que

 $\int_{0}^{t} \mu(ds \times du) - \rho(X_{s}, s, u) ds v(du) \text{ est une } (Q, F_{t}) \text{ martingale.}$

Le théorème de représentation de martingale donne alors le résultat.

Il reste donc à montrer que :

or

 $M_t^{(\theta,\beta)}$ est une (Q,F_t) martingale ce qui revient à montrer que $M_t^{(\theta,\beta)}Z_t$ est une (P,F_t) martingale,

$$M_{t}(\theta,\beta)Z_{t} = \exp\left|\int_{0}^{t} (dX_{s}^{c},\theta+a^{-1}b) - \frac{1}{2}\int_{0}^{t} (a^{-1}[\theta+a^{-1}b], \theta+a^{-1}b)ds\right|$$
$$+ \int_{0}^{t} \int_{U} Log\beta\rho \ \mu(ds \times du) - \int_{0}^{t} (\beta\rho-1)ds\nu(du)$$

en changeant a b parθ +a b et ρ par βρ dans \$1.8 on obtient le résultat.

1.10. PROBLEME DE MARTINGALE D.W. STROOK [21]

Soit $\Omega = D(\mathbb{R}^+,\mathbb{R}^n)$, $F_t = \sigma(X_s, s \leq t)$, $F_{\infty} = F$, sur (Ω, F_t, F) une mesure de probabilité P sera dite solution du problème de martingale (x,b,a,v) si $\forall \phi \in C^{1,2}(\mathbb{R}^+,\mathbb{R}^n)$

$$\phi(t,X_t) - \phi(0,x) - \int_0^t L_{b,a,v} \phi(s,X_s) ds$$
 est une (P,F_t) martingale

avec

$$L_{a,b,v} \phi(s,X) = \frac{\partial \phi}{\partial t}(s,X) + \sum_{i,j} a_{ij}(s,X) \frac{\partial^2 \phi}{\partial X_i j X_s}(s,X) + \sum_{i} b_i(s,X) \frac{\partial \phi}{\partial X_i}(s,X) + \int_{U} [\phi(s,X+u) - \phi(s,X)] v(s,X;du)$$

Si P est solution du problème de martingale (x,b,a,ν) alors X_t est solution de l'équation différentielle stochastique

$$X_{t} = x + \int_{0}^{t} b(s, X_{s}) ds + \int_{0}^{t} \sigma(s, X_{s}) dW_{s} + \int_{0}^{t} \int_{U} u\mu(ds \times du)$$

avec µ de projection duale prévisible

$$v(X_{s-}, du)ds$$

et réciproquement. L'unicité de la solution du problème de martingale entraîne l'unicité en loi de l'équation différentielle stochastique.

2. STATISTIQUE DE DIFFUSION AVEC SAUTS, QUELQUES RESULTATS GENERAUX

2.1. LA STRUCTURE STATISTIQUE

$$\Omega = D(0,T;\mathbb{R}^{n}) \qquad X_{s}(\omega) = \omega_{s}$$

$$F_{t} = \sigma(X_{s}, s \leq t)$$

$$F_{\infty} = F$$

 $\mathcal{G} = \{P_{b,a,\rho} \text{ solution du problème de martingale } (x,b,a,\nu) : b \in \mathfrak{B} \subset \text{ fonction borélienne bornée de } \mathbb{R}^{\frac{1}{n}} \mathbb{R}^{n} \to \mathbb{R}^{n}; a \in \mathcal{A} \subset \text{ champ de matrice } (n,n)$ symétrique uniformément elliptique sur $\mathbb{R}^{+} \times \mathbb{R}^{n}$ lipschitz;

 $\begin{array}{l} \stackrel{\sim}{\nu} = \stackrel{\sim}{\rho \nu} dt \ \text{avec} \ \rho \in \Re \ \text{bor\'elienne de} \ \mathbb{R}^n \times \mathbb{R}^+ \times \mathbb{U} \ \rightarrow \mathbb{R}^+ \\ \stackrel{\sim}{\nu} \ \text{mesure de probabilit\'e sur U v\'erifiant} \ \left\{ \stackrel{\sim}{\mathbb{U}} u^2 \widetilde{\nu} (du) < + \infty \right\} \end{array}$

La structure statistique sera alors :

$$(\Omega, F_t, F, P_{b,a,\rho})$$
 $b \in \mathcal{B}$, $a \in \mathcal{A}$, $\rho \in \mathcal{R}$)

On se propose alors d'estimer (b,a,ρ) sur cette structure statistique.

2.2. ESTIMATION DE a

Soit la structure statistique

$$(\Omega, F_t, F, P_{b,a,\rho}, b \in \mathcal{B}, a \in \mathcal{A}, \rho \in \mathcal{R})$$

On peut calculer a(t,x) en tout point (t,x) tel que $X_t(\omega) = x$ de la manière suivante :

Soit h > 0, notons $t_i = t + ih$

notons

$$v^{h}(\omega^{c}) = \sum_{t \leq t, \leq t+\epsilon} (x_{t+1} - x_{t})^{\Theta_2}$$

où ω_{c} désigne la partie continue de $\omega.$

Théorème 2.1.

$$V_{x,t,\epsilon}(\omega^{c}) = \lim_{h \to 0} V_{x,t,\epsilon}^{h}(\omega^{c}) = \int_{t}^{t+\epsilon} a(s,X_{s}) ds$$

$$P_{b,a,\rho} \text{ p.s. sur } \{\omega: X_{t}(\omega) = x\} \quad \forall b \in \mathcal{B} \quad \forall \rho \in \mathcal{R}$$

Démonstration :

cf. P. PRIOURET [19]

Foreme 2.2.
$$a(t,x) = \lim_{\varepsilon \to 0} \frac{\sqrt{x,t,\varepsilon}(\omega)}{\varepsilon} \qquad p_{a,b,\rho}^{p.s.} \text{sur } X_{t} = x$$

$$\forall b \in \mathcal{B} \quad \forall \rho \in \mathcal{R}$$

Démonstration

$$V_{x,t,\varepsilon}(\omega_c) = \int_t^{t+\varepsilon} a(s,X_s) ds$$

or

$$\sup_{t \leq s \leq t+\epsilon} |a(s,X_s)-a(t,x)| \leq k \left(\epsilon + \sup_{t \leq s \leq t+\epsilon} |X_s-x|\right)$$

donc

$$\left| \frac{\mathbf{v}_{\mathbf{x},\mathbf{t},\boldsymbol{\varepsilon}}(\boldsymbol{\omega}_{\mathbf{c}}) - \mathbf{a}(\mathbf{t},\mathbf{x})}{\mathbf{t}} \right| \leq \mathbf{k} \left[\boldsymbol{\varepsilon} + \sup_{\mathbf{t} \leq \mathbf{s} \leq \mathbf{t} + \boldsymbol{\varepsilon}} |\mathbf{x}_{\mathbf{s}} - \mathbf{x}| \right]$$

d'où le résultat en utilisant la continuité à droite des trajectoires.

Dans toute la suite on aura besoin de a(t,x) seulement le long de la trajectoire $X_{t}(\omega)$; le théorème 2 montre qu'il ne sera pas restrictif de supposer a connu le long de la trajectoire réalisée.

2.3. IDENTIFIABILITE DES TERMES DE DERIVE ET DE SAUT

Soit la structure statistique

$$(\Omega, F_t, F, P_{b,a,\rho}, b \in \mathcal{B}, \rho \in \mathcal{R})$$

Au paragraphe 1.9 on a vu que la famille $P_{b,a,\rho}$ $b\in\mathfrak{R}$, $\rho\in\mathfrak{R}$ est dominée par P o,a,1 et l'on a

$$\frac{dP_{b,a,\rho}}{dP_{0,a,1}} \bigg|_{F_{t}} = Z_{t}^{1}(b)Z_{t}^{2}(\rho)$$

avec

$$Z_{t}^{1}(b) = \exp \int_{0}^{t} (a^{-1}b, dX^{c}) - \frac{1}{2} \int_{0}^{t} (a^{-1}b, b) ds$$

$$Z_{t}^{2}(\rho) = \exp \int_{0}^{t} \int_{U} \log \rho \ \mu - \int_{0}^{t} \int_{U} (\rho - 1) ds \nu(du)$$

L'estimateur du maximum de vraisemblance de b [resp ρ] consistera à maximiser Z¹(b) [resp Z²_t(ρ)] par rapport à b \in \mathfrak{R} [resp ρ \in \mathfrak{R}].

Le lemme suivant indique les propriétés qui assureront la convergence des estimateurs du maximum de vraisemblance.

Lemme 2.1. J. NEVEU [7]

 $\frac{\text{Soit Z}_{t}(\theta) \text{ une }(P,F_{t}) \text{ martingale positive, alors il existe une }(P,F_{t})}{\text{martingale }M_{t}(\theta) \text{ et un processus croissant }A_{t}(\theta) \text{ tels que}}$

$$Z_{t}(\theta) = \exp \left(\frac{M_{t}(\theta) - A_{t}(\theta)}{M_{t}(\theta) - A_{t}(\theta)} \right)$$

Si

$$\theta \rightarrow M_t(\theta)$$
 est linéaire

alors

$$Z_{t}(\theta) \rightarrow 0 \text{ sur } \frac{1}{2} A_{\infty}(\theta) - A_{\infty}(\frac{\theta}{2}) = \infty \quad \text{p.p.s}$$

Démonstration

 $Z_{t}^{(\theta)}$ étant une martingale, Log $Z_{t}^{(\theta)}$ est une surmartingale et d'après la décomposition de DOOB-MEYER, on a

$$Log Z_{t}(\theta) = M_{t}(\theta) - A_{t}(\theta)$$

avec $M_t(\theta)$ une martingale et $A_t(\theta)$ un processus croissant et donc

$$Z_{t}(\theta) = \exp^{M_{t}(\theta) - A_{t}(\theta)}$$

$$Z_{t}(\theta) = \exp^{2M_{t}(\frac{\theta}{2}) - 2A_{t}(\frac{\theta}{2}) + 2A_{t}(\frac{\theta}{2}) - A_{t}(\theta)}$$

$$Z_{t}(\theta) = \exp^{M_{t}(\frac{\theta}{2}) - A_{t}(\frac{\theta}{2})} \left| \sum_{exp}^{2A_{t}(\frac{\theta}{2}) - A_{t}(\theta)} \right|^{2}$$

$$= \left| \exp^{M_{t}(\frac{\theta}{2}) - A_{t}(\theta)} \right|^{2} \exp^{2A_{t}(\frac{\theta}{2}) - A_{t}(\theta)}$$

$$\exp^{2A_{t}(\frac{\theta}{2}) - A_{t}(\theta)} \xrightarrow[t \to \infty]{} 0 \quad \text{sur } \frac{1}{2} A_{\infty}(\theta) - A(\frac{\theta}{2}) = \infty \quad P \text{ p.s}$$

Corollaire 2.1.

$$\frac{z_{t}^{1}(b)}{z_{t}^{1}(\widetilde{b})} \xrightarrow{t \to \infty} 0 \qquad P_{\widetilde{b},a,\rho} \text{ p.s. sur } \int_{0}^{+\infty} [a^{-1}(b-\widetilde{b}),b-\widetilde{b}] ds = \infty$$

Démonstration

$$b = \widetilde{b} + b - \widetilde{b}$$

$$\frac{Z_{t}^{1}\left[\widetilde{b}+\theta\left(b-\widetilde{b}\right)\right]}{Z_{t}^{1}\left(\widetilde{b}\right)} = \exp \int_{0}^{t} \left[a^{-1}\theta\left(b-\widetilde{b}\right),\sigma dW_{s}\right] - \frac{1}{2} \int_{0}^{t} \left(a^{-1}\theta\left(b-\widetilde{b}\right),\theta\left(b-\widetilde{b}\right)\right) ds$$

où

W_s est un $P_{\widetilde{b},a,\rho}$ brownien, $\sigma \sigma^* = a$.

$$M_{t}(\theta) = \int_{0}^{t} \theta \left(a^{-1}(b-\widetilde{b}), \sigma dW\right) dW$$

$$A_{t}(\theta) = \int_{0}^{t} \theta^{2} \left(a^{-1}(b-\widetilde{b}), b-\widetilde{b}\right) ds$$

Prenons $\theta = 1$

$$\frac{1}{2}A_{t}(1) - A_{t}(\frac{1}{2}) = \frac{1}{4}\int_{0}^{t} (a^{-1}(b-\widetilde{b}), b-\widetilde{b}) ds$$

le lemme donne alors le corollaire.

Corollaire 2.2.

Soit o et o tels que $\tilde{\rho} = 0 \Rightarrow \rho = 0$

$$\frac{Z_{t}^{2}(\rho)}{Z_{t}^{2}(\widetilde{\rho})} \xrightarrow[t \to \infty]{} 0 \qquad P_{b,a,\widetilde{\rho}} \quad \text{p.s. sur } \int_{0}^{\infty} \left[\left(\rho^{\frac{1}{2} - \widetilde{\rho}^{\frac{1}{2}}} \right)^{2} dt \nu(du) \right] = \infty$$

Démonstration

$$\widetilde{\rho} = \rho \left(\frac{\rho}{\widetilde{\rho}} \right)$$

$$\frac{Z_{t}^{2}\left[\rho\left(\frac{\rho}{\rho}\right)^{\theta}\right]}{Z_{t}^{2}\left(\widetilde{\rho}\right)} = \exp \int_{0}^{t} \int_{U}^{\theta \log \frac{\rho}{\widetilde{\rho}}\left[\mu-\widetilde{\rho}\nu\right]} - \int_{U}^{t} \int_{0}^{t} \left(\frac{\rho}{\widetilde{\rho}}\right)^{\theta} - \theta \log \frac{\rho}{\widetilde{\rho}} - 1\right] \widetilde{\rho}\nu(du) ds$$

$$M_{t}(\theta) = \int_{U} \int_{0}^{t} \theta \text{Log}_{\rho}^{\rho} [\mu - \rho \sqrt{d}s] \text{ est une } P_{b,a,\rho}^{\rho} \text{ martingale}$$

$$A_{t}(\theta) = \int_{U} \int_{0}^{t} \left(\frac{\rho}{\rho} \right)^{\theta} - \theta \log \frac{\rho}{\rho} - 1 \right) \widetilde{\rho} ds \nu(du) \text{ est un processus croissant}$$

en effet y-1 - Log y ≥ 0 $\forall y \geq 0$

prenons $\theta = 1$

$$A_{t}(\frac{1}{2}) - \frac{1}{2}A_{t}(1) = \int_{0}^{t} \int_{U} \left(\frac{1}{2} \frac{\rho}{\rho} + \frac{1}{2} - \sqrt{\frac{\rho}{\rho}}\right) \tilde{\rho} ds \nu(du) d'où le résultat en utilisant le lemme.$$

Remarque (Application aux tests d'Hypothèses)

Du corollaire l on déduit que sur l'évènement

$$\int_0^{+\infty} (a^{-1}(b-\widetilde{b}), b-\widetilde{b}) ds = \infty$$

La règle de décision suivante :

la dérive est :
$$\begin{cases} b \text{ si } \lim_{t \to \infty} \frac{Z_t^1(b)}{Z_t^1(\widetilde{b})} = \infty \\ \\ \widetilde{b} \text{ si } \lim_{t \to \infty} \frac{Z_t^1(b)}{Z_t^1(\widetilde{b})} = 0 \end{cases}$$

conduit à des erreurs de première et de seconde espèce nulles.

Du corollaire 2 on déduit que sur l'évènement

$$\int_0^{+\infty} \int_{II} (\rho^{\frac{1}{2} - \rho^{\frac{1}{2}}})^2 dt v(du) = \infty$$

La règle de décision suivante :

le terme de saut est
$$\begin{cases} \rho & \text{si } \lim_{t \to \infty} \frac{Z_t^2(\rho)}{Z_t^2(\widetilde{\rho})} = \infty \\ \\ \rho & \text{si } \lim_{t \to \infty} \frac{Z_t^2(\rho)}{Z_t^2(\widetilde{\rho})} = 0 \end{cases}$$

conduit a des erreurs de première et de seconde espèces nulles.

2.4. ESTIMATEURS DU MAXIMUM DE VRAISEMBLANCE

Sur la structure statistique

$$(\Omega, F_t, F, P_{b,a,\rho} \in \mathcal{B}, \rho \in \mathcal{B})$$
 on se propose d'estimer b et ρ

 \mathcal{B} compact de fonctions $(s,x) \rightarrow b(s,x)$

R compact de fonctions $(s,x,u) \rightarrow \rho(s,x,u)$

La topologie pour les fonctions b et p est supposée telle que l'application

$$(b,\rho) \to Z_t^1(b)Z_t^2(\rho)$$
 soit continue $P_{b,a,\rho}^{\sim}$ p.s.

$$Z_{t}^{1}(b) = \exp \int_{0}^{t} (a^{-1}b, dx^{c}) - \frac{1}{2} \int_{0}^{t} (a^{-1}b, b) ds$$

$$Z_{t}^{2}(\rho) = \exp \int_{0}^{t} \int_{U} \text{Log } \rho \mu - \int_{0}^{t} \int_{U} (\rho - 1) ds \nu(du)$$

L'estimateur du maximum de vraisemblance de b (res. dep) sera alors la multiapplication

(2.1)
$$t \to \operatorname{Arg\ max\ } Z_{t}^{1}(b) \text{ [resp. arg\ max\ } Z_{t}^{2}(\rho)\text{]}$$

et on a également

$$\operatorname{Arg\ max}_{b \in \mathcal{B}} Z_{t}^{1}(b) = \operatorname{Arg\ max}_{b \in \mathcal{B}} \frac{1}{t} \operatorname{Log} \frac{Z_{t}^{1}(b)}{Z_{t}^{1}(\widetilde{b})}$$

$$\left(\operatorname{resp\ Arg\ max}_{\rho \in \mathcal{R}} Z_{t}^{2}(\rho) = \operatorname{Arg\ max}_{\rho \in \mathcal{R}} \frac{Z_{t}^{2}(\rho)}{Z_{t}^{2}(\widetilde{\rho})}\right)$$

où $P_{b,a,\rho}^{\sim}$ est la loi de X_t .

$$\frac{1}{t} \operatorname{Log} \frac{Z_{t}^{1}(b)}{Z_{t}^{1}(\widetilde{b})} = \frac{1}{t} \int_{0}^{t} (a^{-1}(b-\widetilde{b}), \sigma dW_{s}) - \frac{1}{2t} \int_{0}^{t} (a^{-1}(b-\widetilde{b}), b-\widetilde{b}) ds$$

$$\left[\operatorname{resp} \frac{1}{t} \operatorname{Log} \frac{Z_{t}^{2}(\rho)}{Z_{t}^{2}(\widetilde{\rho})} = \frac{1}{t} \int_{0}^{\infty} \operatorname{Log} \frac{\rho}{\widetilde{\rho}} \mu - \frac{1}{t} \int_{0}^{t} \int_{U}^{\infty} \left(\frac{\rho}{\widetilde{\rho}} - 1\right) \widetilde{\rho} ds \quad (du)\right]$$

avec W un P $\sim p_b, a, \rho$ mouvement brownien [resp μ mesure ponctuelle de projection duale prévisible $p_b \nu dt$].

2.4.1 <u>Condition suffisante de continuité</u> p.s. <u>de</u> Z¹_t(b) <u>par rapport à</u> b Il est clair que l'application

$$Z \stackrel{\mathbf{1}}{t} L^{\infty} \to L^{2}(\Omega, P_{b,a,\rho}^{\infty})$$
 est continue $b \to Z_{t}^{1}(b)$

On obtient par contre la continuité p.s. dans des cas particuliers. Rappelons le cas particulier étudié dans LE BRETON [13] basé sur un lemme de J. NEVEU [18].

Proposition 2.1.

si W désigne un $(F_t, P_b^{\sim}, a, \rho^{\sim})$ brownien.

La démonstration utilise le

Lemme 2.2. (J. NEVEU [18]) <u>Critère de continuité d'un processus dépendant de plusieurs variables</u>.

Soit $Z_{\mathbf{y}}$ une collection de v.a. telle que

$$\begin{split} & \text{E} \left| \textbf{Z}_{\textbf{y}} - \textbf{Z}_{\textbf{y}}, \right|^p \leqslant \textbf{a} \left| \textbf{y} - \textbf{y}^* \right|^{m+\epsilon} \quad \textbf{y}, \textbf{y}^* \in \mathbb{R}^m \\ & \text{avec also} & p \geqslant 1 \quad \epsilon > 0 \text{ , alors il existe} \\ \textbf{Z}_{\textbf{y}}^{\bigstar} : \textbf{Z}_{\textbf{y}} = \textbf{Z}_{\textbf{y}}^{\bigstar} \text{ p.s.} \quad \textbf{y} \rightarrow \textbf{Z}_{\textbf{y}}^{\bigstar} \text{ continue p.s.} \end{split}$$

Démonstration de la proposition

Appliquons le lemme en prenant $y = t, \theta$. Supposons $t' \leq t$

$$(2.1) \quad E \left| \int_{0}^{t'} (a^{-1}b(\theta'), \sigma dW_{s}) - \int_{0}^{t} (a^{-1}b(\theta), \sigma dW_{s}) \right|^{p} \leq \\ \leq C \left\{ E \left| \int_{0}^{t'} (a^{-1}b(\theta'), \sigma dW_{s}) - \int_{0}^{t'} (a^{-1}b(\theta), \sigma dW_{s}) \right|^{p} + \\ + E \left| \int_{t'}^{t} (a^{-1}b(\theta), \sigma dW_{s}) \right|^{p} \right\}$$

En utilisant une majoration classique pour les martingales $E(\sup_{s \le t} |M_t|^p) \le C EA_t^{p/2}$ ou A_t désigne le processus croissant de la martingale M_t , on obtient :

$$(2.1) \leq E \left| \int_0^{t'} \left(a^{-1} \left(b(\theta') - b(\theta) \right), b(\theta') - b(\theta) \right) ds \right|^{p/2} + E \left| \int_t^{t'} \left(a^{-1} b(\theta), b(\theta) \right) ds \right|^{p/2}$$

d'où le résultat en prenant p suffisamment grand en utilisant le caractère de Lipschitz et borné de b.

Corollaire 2.3

L'application $\theta \to Z_{t0}^1 b(\theta)$ est continue sous les mêmes hypothèses que dans la proposition 2.1.

La démonstration résulte immédiatement de la proposition 2.1 et de la définition de $\ensuremath{\mathfrak{B}}$.

On a de même

Proposition 2.2

 $\frac{L'application \ \rho \to Z^2_t(\rho) \ \text{est continue P\widetilde{b},a,$\widetilde{\rho}$} \ \underline{p.s.,} \ \forall t \ \text{comme application}}{L^\infty(\mathbb{R}^+ x \mathbb{R}^n U \to \mathbb{R}^+, \ \text{cette proposition résulte du fait que le nombre de}}$

$$\frac{\text{sauts est } P_{b,a,\rho}^{\sim} \stackrel{\text{p.s. fini}}{=} \left(\int_{U}^{\sim} (s,X_{s},u) \nu(du) < +\infty \right)}$$

2.4.2. Convergence des estimateurs

Soit
$$(\Omega, F_t, F, P_{\widetilde{b}, a, \rho}^{X} = Q)$$

sur $L^{\infty}(\mathbb{R}^+ \times \mathbb{R}^n; \mathbb{R}^n)$ on définit des classes d'équivalences de fonctions :

$$b_1 \sim b_2 \iff \lim_{T \to \infty} \sup_{T \to \infty} \frac{1}{T} \int_0^T (a^{-1}(b_1 - b_2), (b_1 - b_2)) ds = 0$$
 Q p.s.

Remarque 2.1.

.si le processus canonique admet une mesure invariante μ $\mu = \mu Q_{t}$, $Q_{t}(x,dy)$ désignant le noyau transition associé à X_{t} .

$$\lim_{T\to\infty}\frac{1}{T}\int_{0}^{T}[a^{-1}(b_{1}^{-b_{2}}),(b_{1}^{-b_{2}})]\,\mathrm{d}s=\int_{\mathbb{R}^{n}}[a^{-1}(x)\left(b_{1}(x)-b_{2}(x)\right),b_{1}(x)-b_{2}(x)]\,\mu(\mathrm{d}x)$$

et donc

$$b_1 \sim b_2 \iff b_1 = b_2 \quad \mu.p.p.$$

.si le processus canonique admet une mesure périodique de période ${\mathfrak C}$

$$\begin{split} \mu_{s} &= \mu_{s} Q(s,x;s+\mathcal{T},dy) \\ \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \left[a^{-1} (b_{1}^{-b}b_{2}^{-b}), (b_{1}^{-b}b_{2}^{-b}) \right] ds &= \int_{\mathbb{R}^{n}} \int_{0}^{\mathcal{T}} \left[a^{-1} (x,s) \left(b_{1}(x,s) - b_{2}(x,s) \right), b_{1}(x,s) - b_{2}(x,s) \right] ds \, \mu_{s}(dx) \end{split}$$

et donc

$$b_1 \sim b_2 \iff b_1(s,x) = b_2(s,x) \mu_s \frac{ds}{ds} p.p.$$

On notera ${\rm C}\ell_0^{}({\rm b})$ la classe d'équivalence de b.

Supposons que ${\mathfrak B}$ soit la variété compacte de <u>dimension finie</u> définie dans la proposition 2.1.

Théorème 2.1. Soit b

t,ω une section mesurable de l'estimateur du maximum de vraisemblance de b.

L'ensemble B_{ω}^{\dagger} des points adhérents de $\hat{b}_{t,\omega}$ est non vide et $B_{\omega}^{\dagger} \subseteq Cl_{Q}(\hat{b}) \ P_{\hat{b},a,\rho} \sim p.s.$

 $\frac{\text{D\'emonstration}}{\forall \omega, \ \mathfrak{B} \text{ \'etant compacte il existe une suite} \Big\{ t_1, t_2, \ldots, t_n \Big\} \quad , t_n^{\uparrow_{\infty}}$ $\hat{b}_{t_{n} \xrightarrow{n \to \infty}} b_{\omega}^{\star} \text{ et donc } B^{\star} \neq \emptyset$

Montrons que $b_m^* \in Cl_{\Omega}(\widetilde{b})$ Q p.s. c.a.d

$$\lim_{T} \sup \frac{1}{T} \int_{0}^{T} \left(a^{-1} \left(b^{\star} - \widetilde{b} \right), b^{\star} - \widetilde{b} \right) ds = 0 \quad Q \quad p.s.$$

or

$$\frac{1}{t_{n}} \int_{0}^{t_{n}} \left(a^{-1} \left(b_{\omega}^{\star} - \widetilde{b} \right), b_{\omega}^{\star} - \widetilde{b} \right) ds \leq \frac{k}{t_{n}} \int_{0}^{t_{n}} \left(a^{-1} \left(b_{\omega}^{t_{n}} - \widetilde{b} \right), b_{\omega}^{t_{n}} - \widetilde{b} \right) ds \\
+ \int_{0}^{t_{n}} \left(a^{-1} \left(b_{\omega}^{\star} - b_{\omega}^{t_{n}} \right), b_{\omega}^{\star} - b_{\omega}^{t_{n}} \right) \right) ds$$

or

$$\lim_{\substack{t \to \infty \\ n}} \sup_{t} \frac{1}{t_n} \int_0^t \left(a^{-1} \left(b_{\omega}^{\star} - b_{\omega}^{t} \right), \left(b_{\omega}^{\star} - b_{\omega}^{t} \right) \right) ds = 0 \qquad \forall \omega$$

puisque
$$\sup_{s,x} |b_{\omega}^{\dagger}(s,x) - b_{\omega}^{\dagger}(s,x)| \xrightarrow[n\to\infty]{} 0 \quad \forall \omega$$

II suffit de démontrer

$$\lim_{\substack{t_n \to \infty}} \sup \frac{1}{t_n} \int_0^t \left(a^{-1} \left(b_{\omega}^{\uparrow t_n} - b \right), b_{\omega}^{\uparrow t_n} - b \right) ds = 0$$

or $b_{n}^{\Lambda^{t}} \in a$ l'estimateur du maximum de vraisemblance, on a

$$\frac{1}{t_n} \int_0^{t_n} \left(a^{-1} \left(b_{\omega}^{\wedge t_n} - \widetilde{b} \right), \, \sigma dW_s \right) - \frac{1}{2t_n} \int_0^{t_n} \left(a^{-1} \left(b_{\omega}^{\wedge t_n} - \widetilde{b} \right), \, \left(b_{\omega}^{\wedge t_n} - \widetilde{b} \right) \right) ds \ge 0$$

Il suffit donc de démontrer que

$$\frac{1}{t_n} \int_0^{t_n} \left(a^{-1} \left(\stackrel{\wedge}{b}_{\omega}^{t_n} - \widetilde{b} \right), \sigma dW_s \right) \xrightarrow[n \to \infty]{} 0 \quad Q \quad p.s.$$

La difficulté étant que $b_{\omega}^{\wedge r}$ est mesurable par rapport à $F_{t_{n}}$ et donc pour $s \le t_{n}$

At
$$b_{\omega}^{n}(s,X_{s}(\omega))$$
 n'est aussi mesurable que par rapport à $F_{t_{n}}$ et donc

$$\int_0^t \left(a^{-1} \stackrel{\wedge}{b}_{\omega}^t, \sigma dW_s\right) \text{ n'est pas une martingale.}$$

Il suffit de montrer que:

$$\frac{1}{t_n} \int_0^t (a^{-1} b_\omega^{\dagger} n, \sigma dW_s) \xrightarrow[t_n]{} 0 \quad Q \quad \text{p.s.}$$
en effet
$$\frac{1}{t_n} \int_0^t (a^{-1} \widetilde{b}, \sigma dW_s) \rightarrow 0 \quad n \rightarrow \infty .$$

D'autre part

$$E\left|\frac{1}{t}\int_{0}^{t}(a^{-1}b,\sigma dW_{s}) - \frac{1}{t}, \int_{0}^{t'}(a^{-1}b',\sigma dW_{s})\right|^{p} \leqslant k\left|E\left|\frac{1}{t}\int_{0}^{t}(a^{-1}b,\sigma dW_{s})\right|^{p} + E\left|\frac{1}{t}\int_{0}^{t'}(a^{-1}b',\sigma dW_{s})\right|^{p} \leqslant \frac{k'}{(t \wedge t')^{p/2}}$$

d'après le lemme de Neveu 2.2, il existe un représentant de

$$(t,b) \to \psi_{t,b} = \frac{1}{t} \int_0^t (a^{-1}b,\sigma dW_s) \text{ continu en } (t=\infty,b) \text{ en dehors d'un } Q$$
 négligeable et donc $\psi(t_n,b_\omega^{t_n},\omega) \to 0$ Q p.s.

Lemme 2.3. Soit la martingale

$$M_{t} = \int_{0}^{t} \int_{\mathbb{R}-\{0\}} f(\omega, s) [\mu - \nu ds]$$

notons

$$A_{t}^{(i)} = \int_{0}^{t} \int_{\mathbb{R}^{-\{0\}}} |f|^{i} v ds.$$

On a alors la majoration pour p entier pair

$$\mathbb{E}\left|\sup_{s \leq t} (\mathbf{M}_s)^p \right| \leq C \max\left\{ \sum_{i=2}^{p} \left\| \mathbf{A}_t^{(i)} \right\|_{p/i}, \left\| \sum_{i=2}^{p} \left\| \mathbf{A}_t^{(i)} \right\|_{p/i} \right\}^{p/2} \right\}$$

avec C constante ne dépendant que de p.

Démonstration

D'après un théorème de Doob (par exemple P.A. MEYER [16])

$$(2.2) \quad E \left| \sup_{s \le t} |M_s| \right|^p \le C \quad E |M_t|^p$$

Appliquons la formule d'Ito à $M_{\mathsf{t}}^{\mathsf{p}}$

$$E M_{t}^{p} = E \left\{ -p \right\}_{0}^{t} \prod_{\mathbf{R} - \{0\}} M^{p-1} \text{ fvds} + \int_{0}^{t} \prod_{\mathbf{R} - \{0\}} [M_{s} + f]^{p} - M_{s}^{p}] v ds$$

$$= E \int_{0}^{T} \prod_{\mathbf{R} - \{0\}} \sum_{i=2}^{p} C_{p}^{i} f^{i} M_{s}^{p-i} v ds$$

done

$$E M_t^p \leq C E \left\{ \sum_{i=2}^p \sup_{s \leq t} \left| M_s \right|^{p-i} \int_0^T \int_{\mathbb{R}^{-\{0\}}} \left| f \right|^i v ds \right\}$$

en appliquant Hölder on obtient

(2.3)
$$E(M_t)^p \le C \sum_{i=2}^p \left(E\left(\sup |M_s|^p\right) \right)^{1-\frac{1}{p}} \|A_t^{(i)}\|_{p/i}$$

(2.2) et (2.3) donne en posant

$$\alpha = \left[\mathbb{E} \left(\sup_{s \leq t} |M|_{s}^{p} \right) \right]^{1/p}$$

$$(2.4) \quad \alpha^{p} \leq C \sum_{i=2}^{p} \alpha^{p-i} \|A_{t}^{(i)}\|_{p/i}$$

$$(2.4) \Rightarrow \begin{cases} \alpha^{p} \leq C \sum_{i=2}^{p} \|A_{t}^{(i)}\|_{p/i} & \text{si } \alpha \leq 1 \\ \alpha^{p} \leq C \sum_{i=2}^{p} \alpha^{p-2} \|A_{t}^{(i)}\|_{p/i} & \text{si } \alpha \geq 1 \end{cases}$$

et donc

$$\alpha^{p} \leq C \max \left\{ \sum_{i=2}^{p} \|A_{t}^{(i)}\|_{p/i}, \left(\sum_{i=2}^{p} \|A_{t}^{(i)}\|_{p/i} \right)^{p/2} \right\}$$

ce qui est le résultat annoncé.

Soit
$$(\Omega, F_t, F, P_{b,a,\rho}^{\sim} = Q)$$

Notons
$$\text{Cl}_{\mathbb{Q}}(\widetilde{\rho}) = \{ \rho \in \mathbb{R} \subset L^{\infty}(\mathbb{R}^{+} \times \mathbb{R}^{n} \times U, \mathbb{R}^{+}), \beta \geq \rho \geq \alpha \}$$
 & compact de dimension finie
$$\lim_{T \to \infty} \sup \frac{1}{T} \int_{0}^{T} \int_{U} (\frac{\rho}{\widetilde{\rho}} - 1 - \log \frac{\rho}{\widetilde{\rho}}) \widetilde{\rho} v ds = 0 \text{ Q p.s.} \}$$

Remarque 2.2.

.si le processus canonique admet une mesure invariante

 $\mu = \mu Q_t$ $Q_t(x, dy)$ désignant le noyau de transition associé au processus de Markov correspondant

$$\lim_{T\to\infty} \frac{1}{T} \int_{0}^{T} \int_{U}^{\infty} \frac{(\rho}{\rho} - 1 - \log \frac{\rho}{\rho}) \tilde{\rho} v ds$$

$$= \int_{U}^{\infty} \mathbb{R}^{n} \left[\frac{\rho(x, u)}{\tilde{\rho}(x, u)} - 1 - \log \left(\frac{\rho(x, u)}{\tilde{\rho}(x, u)} \right) \right] \tilde{\rho}(x, u) v (du) \mu(dx)$$

ce qui entraîne

$$\rho(\mathbf{x},\mathbf{u}) = \stackrel{\sim}{\rho}(\mathbf{x},\mathbf{u}) \ \nu\mu \ p.s.$$

.si le processus canonique admet une mesure périodique de période 🥰

$$\begin{split} \mu_{\mathbf{s}} &= \mu_{\mathbf{s}} \ \mathbb{Q}(\mathbf{s},\mathbf{x},\mathbf{s} + \mathbf{G}, \mathrm{d}\mathbf{y}) \\ &\lim_{T \to \infty} \frac{1}{T} \!\! \int_{0}^{T} \!\! \int_{\mathbb{U}} \!\! \frac{(\underline{\rho} - 1 - \log \frac{\underline{\rho}}{\gamma}) \widetilde{\rho} \nu \mathrm{d}\mathbf{s}}{\widetilde{\rho}} = \\ &= \int_{\mathbb{R}^{n}} \!\! \int_{0}^{\infty} \!\! \frac{\mathrm{d}\mathbf{s} \underline{\mu}}{\widetilde{\sigma}} \mathbf{s}^{(\mathbf{d}\mathbf{x})} \!\! \int_{\mathbb{U}} \!\! \frac{\underline{\rho}(\mathbf{s},\mathbf{x},\mathbf{u})}{\widetilde{\rho}(\mathbf{s},\mathbf{x},\mathbf{u})} - 1 - \log \frac{\underline{\rho}(\mathbf{s},\mathbf{x},\mathbf{u})}{\widetilde{\rho}(\mathbf{s},\mathbf{x},\mathbf{u})} \, \Big| \widetilde{\rho}(\mathbf{s},\mathbf{x},\mathbf{u}) \nu (\mathrm{d}\mathbf{u}). \end{split}$$

et donc

$$\rho = \tilde{\rho} \frac{1}{2} ds \mu_{s}(dx) v (du) \quad p.s.$$

Théorème 2.2.

Soit $\hat{\rho}_{t,\omega}$ une section mesurable de l'estimateur du maximum de vraisemblance de ρ .

L'ensemble R^{\star}_{ω} des points adhérents de $\hat{\rho}_{t,\omega}$ t $\rightarrow \infty$ est non vide et

$$\text{R}^{\bigstar}_{\omega} \subseteq \text{Cl}_{Q}(\overset{\sim}{\rho}) \quad \text{Q p.s.}$$

Démonstration

 $\forall \omega$ of etant compacte il existe une suite t_1, t_2, \ldots, t_n

$$t_n \uparrow^{\infty} \quad \hat{\rho}_t \xrightarrow[n_{n \to \infty}]{} \rho_{\omega}^{*} \text{ et donc } R_{\omega}^{*} \neq \emptyset$$

Montrons que $\rho_{\omega}^{\bigstar} \in Cl_{Q}(\widetilde{\rho})$ Q p.s.

c.à.d

$$\lim_{T} \sup \frac{1}{T} \int_{0}^{T} \int_{U} \left(\frac{\rho_{\omega}^{*}}{\rho} - 1 - \log \frac{\rho_{\omega}^{*}}{\rho} \right) \widetilde{\rho} v ds = 0 \quad Q \quad p.s.$$

$$\frac{1}{t_{n}} \int_{0}^{t_{n}} \int_{U}^{\frac{\rho}{\omega}} \left(\frac{\rho_{\omega}}{\rho} - 1 - \log \frac{\rho_{\omega}}{\rho} \right) \widetilde{\rho} v ds$$

$$\leq \frac{1}{t_{n}} \int_{0}^{t_{n}} \int_{U}^{\frac{\rho}{\varepsilon}} \left(\frac{\widehat{\rho}_{t_{n}}}{\widehat{\rho}} - 1 - \log \frac{\widehat{\rho}_{t_{n}}}{\widehat{\rho}} \right) \widetilde{\rho} v ds + \frac{k}{t_{n}} \int_{0}^{t_{n}} \int_{U}^{\varepsilon} \left| \rho_{t_{n}} - \rho_{\omega}^{*} \right| v ds$$

il suffit donc de montrer que

$$\lim_{\substack{t \to \infty}} \sup \frac{1}{t_n} \int_0^t \int_U^{\widehat{\rho}} \frac{t_n}{\widehat{\rho}} - 1 - \log \frac{\widehat{\rho}}{\widehat{\rho}} \int_{\widehat{\rho}}^{\widehat{\rho}} v ds = 0$$

or $\hat{\rho}_{t_n}$ étant l'estimateur du maximum de vraisemblance, on a

$$\frac{1}{t_n} \int_0^t \int_{\mathbb{U}} \log \frac{\hat{\rho}_t}{\tilde{\rho}} [\mu - \tilde{\rho} \nu ds] - \frac{1}{t_n} \int_0^t \int_{\widetilde{\rho}}^t \frac{\hat{\rho}_t}{\tilde{\rho}} - 1 - \log \frac{\hat{\rho}_t}{\tilde{\rho}} \right] \tilde{\rho} \nu ds \ge 0$$

il suffit donc de montrer que

$$\frac{1}{t_n} \int_0^t \int_{U}^{n} Log \frac{\widehat{\rho}_t}{\widehat{\rho}} [\mu - \widehat{\rho} v ds] \rightarrow 0 \qquad Q. p.s.$$

or grâce au 1emme 2.3

$$E\left|\frac{1}{t_n}\int_0^t\int_U \log \frac{\rho}{\widetilde{\rho}}[\mu-\widetilde{\rho}\nu ds]\right|^p \leq k \frac{1}{t_n^{p/2}}$$

d'après le lemme 2.2. il existe un représentant de

$$\psi_{t,\rho} = \frac{1}{t} \int_{0}^{t} \left[\log \frac{\rho}{\rho} [\mu - \rho \tilde{\nu}] ds \right] \text{ continu en } \{t = \infty, \rho\} \text{ en dehors d'un } Q$$

négligeable et donc

$$\psi_{t,\hat{\rho}_{t_{n,\omega}}} \xrightarrow{n\to\infty} 0 \quad Q \quad p.s.$$

3. UNE ESTIMATION PARAMETRIQUE

Soit $b(s,x) \in L^{\infty}((0,T)) \times \mathbb{R}^n$, \mathbb{R} , \mathbb{N} , \mathbb{N} une mesure de probabilité sur U admettant un moment d'ordre 2.

$$\{\Omega, F_t, F, P_{\theta, \rho} \mid \theta \in \mathbb{R}^n, \rho \in \text{compact de } \mathbb{R}^+\}$$

avec $P_{\theta,\rho} = P_{\theta,a,\rho\nu ds}^{x}$ solution du problème de martingale (x,\theta,a,\rho\ds)

3.1. ESTIMATEUR DU MAXIMUM DE VRAISEMBLANCE

$$\hat{\theta}_{t} \in \text{Arg Max exp} \int_{0}^{t} b(a^{-1}\theta, dX_{s}^{c}) - \frac{1}{2} \int_{0}^{t} b^{2}(a^{-1}\theta, \theta) ds$$

donc

(3.1)
$$\hat{\theta}_{t} = \left(\int_{0}^{t} (b^{2}a^{-1}) ds \right)^{-1} \left(\int_{0}^{t} ba^{-1} dX_{s}^{c} \right)^{-1}$$

$$\widehat{\rho}_{t} \in \text{Arg max exp} \int_{0}^{t} \int_{U} \log \rho \, \mu - \int_{0}^{t} \int_{U} (\rho - 1) \, v ds$$

donc

(3.2)
$$\hat{\rho}_{t} = \frac{\mu[[0,t] \times U]}{\tilde{\nu}[[0,t] \times U]} \star$$

3.2. PROPRIETES DES ESTIMATEURS

3.2.1. Biais

 $\hat{\theta}_{_{t}}$ est biaisé en général car

$$(3.3) \qquad \hat{\theta}_{t} = \theta + \left(\int_{0}^{t} b^{2} a^{-1} ds \right)^{-1} \left(\int_{0}^{t} b a^{-1} \sigma dW_{s} \right)$$

Cas particuliers importants

3.2.1.1. a est constant alors (3.3) devient

(3.4)
$$\theta_{t} = \theta + [\sigma] \left| \frac{\int_{0}^{t} b \, dW_{s}}{\int_{0}^{t} b^{2} ds} \right|$$

^{້ື} ນີ້ désigne la mesure vdt

Introduisons le temps d'arrêt (suivant LIPCER-SHIRIAEV [15])

$$\mathcal{T}_{H} = \inf\{t : \int_{0}^{t} b^{2} ds \ge H\}$$

alors

(3.5)
$$\widehat{\theta}_{\mathcal{C}_{H}} = \left(\int_{0}^{\mathcal{C}_{H}} (b^{2}a^{-1}) ds \right)^{-1} \left(\int_{0}^{\mathcal{C}_{H}} ba^{-1} dX \right)$$

$$= \theta + [\sigma] \quad \frac{\int_{0}^{t} bdW_{s}}{H} \quad \text{sur } \mathcal{C}_{H} < \infty$$

et donc

(3.6)
$$E(\hat{\theta}_{H}) = \theta \text{ si } \mathcal{C}_{H} < +\infty \quad P_{\theta,\rho} \quad p.s.$$

et donc

$$\frac{\hat{\theta}}{\mathcal{C}_{\underline{H}}} \xrightarrow{\text{est un estimateur sans biais de } \theta \text{ si } \mathcal{C}_{\underline{H}} \xrightarrow{< \infty} P_{\underline{b}, \rho} \xrightarrow{p.s.}$$

Remarque

En utilisant la proposition 3.1.2. de J. NEVEU [17] si $\mathcal{T}_{H} < \infty$ $P_{\theta,\rho}$ p.s. $\forall \theta \in \mathbb{R}^{n}$

alors

$$\frac{dP_{\theta,\rho}}{dP_{1,\rho}}\bigg|_{E_{G_{H}}} = \exp^{\int_{0}^{C_{H}} b(a^{-1}\theta,dX_{s}^{c}) - \frac{1}{2} \int_{0}^{C_{H}} b^{2}(a^{-1}\theta,\theta)ds}$$

et donc (3.5) définit l'estimateur du maximum de vraisemblance de θ ayant l'information \mathcal{F}_{u} .

3.2.1.2) a est diagonale

$$\hat{\theta}_{t}^{i} = \theta^{i} + \frac{\int_{0}^{t} b \sigma_{ii}^{-1} dW_{s}^{i}}{\int_{0}^{t} b^{2} a_{ii}^{-1} ds}$$

introduisons les temps d'arrêt

$$\mathcal{T}_{H}^{i} = \inf\{t : \int_{0}^{t} b^{2} a_{ii}^{-1} ds \ge H\}$$

$$(3.5') \quad \hat{\theta}_{H}^{i} = \frac{\int_{0}^{G_{H}^{i}} b a_{ii}^{-1} dx_{s}^{i}}{\int_{0}^{G_{H}^{i}} b a_{ii}^{-1} ds} = \theta^{i} + \frac{\int_{0}^{G_{H}^{i}} b \sigma_{ii}^{-1} dW_{s}^{i}}{H} \quad \text{si } \mathcal{T}_{H}^{i} < +\infty \quad P_{o,\rho} \quad p.s.$$

 $\hat{\theta}_{H}^{i} \quad \text{est un estimateur sans biais de } \theta^{i} \text{ si } \mathcal{C}_{H}^{i} < +\infty \quad P_{\theta,\rho} \text{ p.s.}$

3.2.1.3. Estimation de p

(3.7)
$$\hat{\rho}_{t} = \rho + \frac{\mu([0,t] \times U) - \rho \widetilde{\nu}([0,t] \times U)}{\widetilde{\nu}([0,t] \times U)}$$

en général $\hat{\rho}_{t}$ sera biaisé . Introduisons le temps d'arrêt

$$\mathcal{T}_{H} = \inf\{t : \widetilde{v}((0,t) \times U) \geq H\}$$

alors définissons

(3.8)
$$\widehat{\mathcal{C}}_{H} = \frac{\mu \left[(0, \mathcal{C}_{H}) \times \mathbf{U} \right]}{\widehat{\mathcal{C}}_{H} \left[(0, \mathcal{C}_{H}) \times \mathbf{U} \right]}$$

$$\widehat{\mathcal{C}}_{H} = \rho + \frac{\mu \left((0, \mathcal{C}_{H}) \times \mathbf{U} \right) - \rho \widehat{\mathcal{V}} \left((0, \mathcal{C}_{H}) \times \mathbf{U} \right)}{H}$$

et donc

$$\hat{\sigma}_{H}$$
 est un estimateur sans biais de ρ si ${\bf r}_{H}$ est θ , ${\bf p}$.s.

Remarque

En utilisant la proposition 3.1.2 de Neveu [17]

$$\operatorname{si} \mathcal{L}^{H} < \infty$$
 $\operatorname{b}^{\theta, b}$ b.s. $\mathbf{A}^{b} \in \mathbb{L}_{u}$

$$\frac{dP_{\theta,\rho}}{dP_{\theta,1}}\Big|_{E_{G_{H}}} = \exp^{\int_{0}^{G_{H}} \int_{U} (\text{Log}\rho)\mu - \int_{0}^{G_{H}} \int_{U} (\rho-1)\tilde{\nu}}$$

et donc (3.8) est l'estimateur du maximum de vraisemblance de ρ

3.2.2. Optimalité

Formule de Cramer Rao

Sur $(\Omega, F, f_{\theta}\mu \quad \theta \in \Theta \subseteq \mathbb{R})$ on a la minoration

(3.9)
$$E_{\theta}(X-\theta)^{2} \ge \frac{\left(1+B'(\theta)\right)^{2}}{E_{\theta}\left(\frac{f_{\theta}'}{f_{\theta}}\right)^{2}} + B^{2}(\theta)$$

où $B(\theta)$ désigne le biais de X comme estimateur de θ , $B(\theta)$ = $E_{\theta}(X)$ - θ .

Si X est un estimateur sans biais de θ (3.9) devient

(3.10)
$$E(X-\theta)^{2} \ge \frac{1}{E_{\theta} \left| \frac{f_{\theta}'}{f_{\theta}} \right|^{2}}$$

dans le cas vectoriel, $\theta \in \mathbb{R}^n$,(3.10) devient

$$(3.11) \qquad \mathbb{E}(X-\theta)^{\otimes 2} \geq \left\{ \mathbb{E}_{\theta} [\operatorname{grad}_{\theta} \operatorname{Logf}_{\theta}]^{\otimes 2} \right\}^{-1}$$

Suivant LIPCER-SHIRIAEV [15] appliquons le résultat à notre problème.

Application

3.2.2.1. Estimation du terme de derive a constant

Soit $\widetilde{\mathfrak{C}}$ un temps d'arrêt, $\widetilde{\mathfrak{T}} < \infty$ P_{\theta,\rho} p.s. alors on a :

$$f_{\theta} = \frac{dP_{\theta,\rho}}{dP_{0,\rho}} \Big|_{F_{\widetilde{\mathbf{G}}}} = \exp^{\mathbf{a}^{-1} \left(\theta, \int_{0}^{\widetilde{\mathbf{G}}} b dX_{\mathbf{s}}^{c}\right) - \frac{1}{2} (\mathbf{a}^{-1}\theta, \theta) \int_{0}^{\widetilde{\mathbf{G}}} b^{2} d\mathbf{s}}$$

$$(\operatorname{grad}_{\theta} \operatorname{Log} f_{\theta})^{\otimes 2} = (a^{-1} \int_{0}^{\widetilde{\mathfrak{C}}} \operatorname{bdX}_{s}^{c} - a^{-1} \theta \int_{0}^{\widetilde{\mathfrak{C}}} \operatorname{b}^{2} \operatorname{ds})^{\otimes 2}$$

or $dX_s^c = \theta b ds + \sigma dW_s$ où W_s est $P_{\theta,\rho}$ brownien et donc

$$(\operatorname{grad}_{\theta} \operatorname{Log}_{\theta})^{\otimes 2} = (a^{-1} \sigma \int_{0}^{\widetilde{G}} \operatorname{bdW}_{s})^{\otimes 2}$$

et donc

$$E_{\theta} (\operatorname{grad}_{\theta} \operatorname{Log} f_{\theta})^{\otimes 2} = E_{\theta} (\int_{0}^{\widetilde{\mathfrak{C}}} b^{2} ds) a^{-1} \sigma \sigma^{t} (a^{-1})^{t}$$
$$= a^{-1} E_{\theta} (\int_{0}^{\widetilde{\mathfrak{C}}} b^{2} ds)$$

et donc si l'on note par $\widetilde{\theta}_{\widetilde{\mathbf{G}}}$ un estimateur sans biais de θ on a la minoration

$$E\left(\widetilde{\theta}_{\widetilde{G}} - \theta\right)^{\Theta 2} \geqslant \frac{a}{E \int_{0}^{\widetilde{G}_{b}^{2} ds}}$$

d'autre part, l'estimateur défini par (3.5) vérifie

$$E(\hat{\theta}_{\mathbf{H}} - \theta)^2 = \frac{a}{H}$$

On a donc

THEOREME 3.1.

L'estimateur $\hat{\theta}_{H}$ défini par (3.5) est l'estimateur de variance minimum parmi les estimateurs sans biais $F_{\overline{b}}$ mesurable où \widetilde{C} est un temps d'arrêt $\frac{1}{2}$

p.s. fini vérifiant

$$E_{P_{\theta,\rho}} \int_{0}^{\widetilde{C}} b^2 ds \leq H$$

3.2.2.2. a diagonal

Une démonstration analogue à (3.2.2.1.) montre le

THEOREME 3.2

Vi l'estimateur $\hat{\theta}^i$ défini par (3.5') est l'estimateur de variance

minimale parmi les estimateurs sans biais de θ i $\widetilde{\mathfrak{F}}^i$ mesurable où $\widetilde{\mathfrak{F}}^i$ est un

temps d'arrêt P_{θ,ρ} p.s. fini vérifiant

$$E_{P_{\theta,\rho}} \int_{0}^{\widehat{G}^{i}} a_{ii}^{-1} b^{2} ds \leq H$$

3.2.2.3. Estimation de la loi des sauts

Soit $\widetilde{\mathfrak{C}}$ un temps d'arrêt $\widetilde{\mathfrak{F}}$ < ∞ P_{θ , ρ} p.s. alors on a

$$f_{\rho} = \frac{dP_{\theta,\rho}}{dP_{0,1}} \Big|_{\widetilde{E}_{0}^{\infty}} = \exp^{-\text{Log}\rho \int_{0}^{\widetilde{C}} \mu - (\rho-1) \int_{0}^{\widetilde{C}} vds}$$

$$\left(\frac{\mathbf{f}'}{\frac{\rho}{\Gamma}}\right) = \frac{1}{\rho} \int_{0}^{\widetilde{\mathbf{G}}} \mu - \int_{0}^{\widetilde{\mathbf{G}}} vds = \frac{1}{\rho} \int_{0}^{\widetilde{\mathbf{G}}} (\mu - \rho vds)$$

et donc

$$E_{P_{\theta,\rho}} \left(\frac{f'_{\rho}}{f_{\rho}} \right)^{2} = \frac{1}{\rho} E \int_{0}^{\widetilde{\sigma}} v ds$$

et donc si l'on note $\widetilde{\rho}_{f c}^{f c}$ un estimateur sans biais de ho, Ff c mesurable on a

$$\widetilde{\mathfrak{C}} = \left(\widetilde{\rho}_{0} - \rho \right)^{2} \ge \frac{\rho}{E \int_{0}^{\widetilde{\rho}} v ds}$$

d'autre part l'estimateur défini par (3.8) vérifie

$$E(\widehat{\mathbf{G}}_{H}^{-\rho})^{2} = \frac{\rho}{H}$$

on a donc le

THEOREME 3.3.

 $\frac{\text{L'estimateur }\widehat{f}_{H}}{\text{male parmi les estimateurs sans biais }} \underbrace{\text{défini par (3.8) est l'estimateur de variance minimale parmi les estimateurs sans biais }}_{\text{mesurable où }} \widehat{f}_{\text{est un temps d'arrêt}}$

$$E_{p_{\theta,\rho}} \sim ([0,\widetilde{c}] \times U) \leq H$$

3.2.3. Propriétés de convergence des estimateurs

THEOREME 3.4

Notons $A_t = \int_0^t b^2 a^{-1} ds$ supposons $\exists k : ||A_t^{-1}|| ||A_t|| \le k$ $\forall t$ p.s.; alors

(3.12)
$$\hat{\theta}_t \rightarrow \theta$$
 $P_{\theta,\rho}$ p.s. $\sup \|A_{\infty}^{-1}\| = 0$

avec la vitesse de convergence

(3.13)
$$\lim_{t\to\infty} \sup \|\widehat{\theta}_t - \theta\| \sqrt{\frac{\|A_t\|}{2 \log_2 \|A_t\|}} \leq \frac{1}{k}.$$

S'il existe une unique mesure invariante q [resp. périodique de période \ddot{b} q $_{s}$]

 $\sqrt{t}(\hat{\theta}_t^{-\theta})$ est asymptotiquement gaussien de variance

(3.14)
$$\left(\int_{\mathbb{R}^n} b^2(x) a^{-1}(x) q(dx)\right)^{-1} \left(\text{resp.}\left(\int_0^{\infty} \int_{\mathbb{R}^n} b(s, x) a^{-1}(s, x) q_s(dx) \frac{ds}{cc}\right)^{-1}\right)$$

De même

Notons $B_t = v([0,t] \times U)$ on a

$$(3.15) \quad \widehat{\rho}_{t \to \infty} \rightarrow \rho \text{ sur } B_{\infty} = \infty$$

On a de plus

(3.16)
$$\lim_{t\to\infty} \sup |\widehat{\rho}_t - \rho| \sqrt{\frac{B_t}{2Log_2^B}_t} = 1$$

De plus s'il existe une unique mesure invariante q [resp. périodique q_s de période \mathcal{C}]

 $\sqrt{t(\hat{\rho}_t - \rho)}$ est asymptotiquement gaussien de variance

(3.17)
$$\rho \left(\int_{\mathbb{R}^{n}} \int_{\mathbb{H}} v(x, du) q(dx) \right)^{-1} \left(\operatorname{resp} \rho \left(\int_{\mathbb{R}^{n}} \int_{0}^{\mathfrak{C}} \int_{\mathbb{U}} v(s, x, du) q_{s}(dx) \frac{ds}{\mathfrak{C}} \right)^{-1} \right)$$

Démonstration

On commence par donner quelques lemmes.

Lemme 3.1

Soit M_t la martingale scalaire

(3.18)
$$M_{t} = M_{0} + \int_{0}^{t} \sigma(s,\omega) dW_{s} + \int_{0}^{t} \int_{U} h(\omega,s,u) [\mu(\omega;ds\times du) - \widetilde{\nu}(\omega,ds\times du)]$$

At son processus croissant

(3.19)
$$A_{t} = \int_{0}^{t} \sigma^{2}(s, \omega) ds + \int_{0}^{t} \int_{U} h^{2}(\omega, s, u) \widetilde{v}(\omega, ds \times du) \quad \text{avec}$$

(3.20)
$$|h| \le c$$

On a alors le théorème du logarithme itéré

(3.21)
$$\limsup_{-t \to \infty} \frac{|M_t|}{\sqrt{2A_t \log_2 A}} \le 1 \quad \text{sur } A_\infty = \infty$$

Démonstration

On a la formule exponentielle

$$Y_{t} = \exp^{\theta M_{t}} - \frac{1}{2} \int_{0}^{t} \theta^{2} \sigma^{2}(s, \omega) ds - \int_{0}^{t} (e^{\theta h} - \theta h - 1) \widetilde{v}(\omega; ds \times du)$$

est une martingale locale positive, donc une sur martingale positive.

D'autre part

$$e^{\theta h} - \theta h - 1 = \frac{\theta^2 h^2}{2} + o(\theta^2 h^2)$$

h étant borné on est dans le cadre du lemme 7.2.8, J. NEVEU [17] alors la proposition 7.2.7 donne le résultat.

Corollaire 3.1

 $\underline{\text{Soit}} \,\, \underline{\text{M}}_{\underline{t}} \,\, \underline{\text{une martingale à valeurs dans } \, \underline{\mathbb{R}}^{n}$

(3.22)
$$M_{t} = M_{o} + \int_{0}^{t} \sigma(s,\omega) dW_{s} + \int_{0}^{t} \int_{U} h(\omega,s,u) \left[\mu(\omega;ds \times du) - \tilde{v}(\omega;ds \times du) \right]$$

A son processus croissant

(3.23)
$$A_{t} = \int_{0}^{t} \sigma(s,\omega) \sigma^{t}(s,\omega) ds + \int_{0}^{t} \int_{U} h^{\otimes 2}(\omega,s,u) \tilde{\nu}(\omega;ds \times du)$$

Si (3.24) $|h| \le c$, on a alors le théorème du logarithme itéré

(3.25)
$$\limsup_{t \to \infty} \frac{\|M_t\|}{\sqrt{2\|A_t\| \log_2\|A_t\|}} \le 1 \quad \sup_{t \to \infty} \|A_{\infty}^{-1}\| = 0$$

*
$$\| x \| = (\sum x_i^2)^{1/2} \quad \| A_{\infty}^{-1} \| = \lim_{t \to \infty} \| A_{t}^{-1} \|$$

$$\|A\| = \sup_{X} \frac{\|AX\|}{\|X\|}$$

Démonstration

Appliquons le lemme précédent à la martingale (θ, M_t) on obtient

$$\lim \sup_{t \to \infty} \frac{(\theta, M_t)}{\sqrt{2 \|A_t\| \log_2 \|A_t\|}} \le 1 \quad \text{p.s. } \forall \theta \quad \|\theta\| \le 1 \text{ sur inf } (A_{\infty}\theta, \theta) = \infty$$

soit

$$\lim_{t\to\infty} \sup \frac{(\theta, M_t)}{\sqrt{2\|A_t\| \log_2\|A_t}} \le 1 \quad \text{p.s.} \quad \forall \theta \|\theta\| \le 1 \text{ sur } \|A_\infty^{-1}\| = 0$$

d'autre part sur $\|A_{\infty}^{-1}\|_{=0}$

$$\theta \rightarrow \lim \sup_{t} \frac{(\theta, M_t)}{\sqrt{2 \|A_t\| \log_2 \|A_t\|}}$$
 est convexe donc continue sur son domaine

donc

$$\sup_{ \begin{array}{c} \sup \\ \|\frac{\theta_1}{\theta}\|=1 \end{array}} \lim \sup_{t \to \infty} \frac{(\theta, M_t)}{\sqrt{2 ||A_t|| \log_2 ||A_t||}} = 1 \quad \text{p.s. d'où le résultat}$$

Lemme 3.2.

Soit M une martingale homogène en temps

$$\mathbf{M}_{\mathsf{t}} = \mathbf{M}_{\mathsf{o}} + \int_{0}^{\mathsf{t}} \sigma(\mathbf{X}_{\mathsf{s}}) \, \mathrm{d}\mathbf{W}_{\mathsf{s}} + \int_{0}^{\mathsf{t}} \int_{\mathsf{U}} h(\mathbf{X}_{\mathsf{s}^{-}}, \mathbf{u}) [\mu(\omega; \mathsf{d}\mathsf{s} \times \mathsf{d}\mathsf{u}) - \nu(\mathbf{X}_{\mathsf{s}^{-}}, \mathsf{d}\mathsf{u}) \, \mathrm{d}\mathsf{s}]$$

A son processus croissant

$$A_{t} = \int_{0}^{t} a(X_{s}) ds + \int_{0}^{t} \int_{U} h^{-82} (X_{s}, u) \nu(X_{s}, du) ds$$

$$|h| \leq c$$

On suppose de plus qu'il existe une unique mesure invariante q(dx) pour le processus de Markov X, alors

$$\frac{M_{t}}{\sqrt{t}} \xrightarrow{f} \frac{f'(0,\beta)}{\int_{U}} \xrightarrow{\text{loi normale centrée de variance}} \beta = \int_{\mathbb{R}^{n}} \int_{U} h^{\otimes 2}(x,u) \nu(x,du) q(dx) + \int_{\mathbb{R}^{n}} a(x) q(dx)$$

Démonstration

En utilisant la formule exponentielle (cf. §1.8) on a

$$i(\theta, M_t) + \frac{1}{2} \int_0^t (a(X_s)\theta, \theta) ds - \int_0^t (\rho^{i(\theta,h)} - i(\theta,h) - 1) \nu(X_{s-}, du) ds$$

$$= i \quad \forall \theta$$

prenons $\theta = \frac{\widetilde{\theta}}{\sqrt{t}}$

on obtient

$$E\left(\exp^{i\left(\widetilde{\theta},\frac{M_{t}}{\sqrt{t}}\right)} + \frac{1}{2t}\int_{0}^{t}(a(X_{s})\widetilde{\theta},\widetilde{\theta} ds) - \int_{U}^{t}\left(e^{\left(i\frac{\widetilde{\theta}}{\sqrt{t}},h\right)} - \left(i\frac{\widetilde{\theta}}{\sqrt{t}},h\right) - 1\right)v(X_{s},du)ds\right) = 1$$

or

$$\frac{1}{t} \int_{0}^{t} (a(X_{s})\widetilde{\theta}, \widetilde{\theta}) ds \rightarrow \left(\widetilde{\theta}, \int_{\mathbb{R}^{n}} a(x)q(dx)\widetilde{\theta}\right) \text{ p.s. et dans } L^{2}$$

d'autre part

$$e^{\left(i\frac{\widetilde{\theta}}{\sqrt{t}},h\right)} - \left(i\frac{\widetilde{\theta}}{\sqrt{t}},h\right) - 1 \xrightarrow[t\to\infty]{} - \frac{\left(\widetilde{\theta},h\right)^2}{2t} \text{ p.s. et dans } L^2$$

et donc

$$\int_{U} \int_{0}^{t} \left(e^{\left(i\frac{\theta}{\sqrt{t}},h\right)} - \left(i\frac{\widetilde{\theta}}{\sqrt{t}},h\right) - 1\right) v(X_{s}, du) ds \xrightarrow{t \to \infty}$$

$$-\left[\widetilde{\theta},\int_{\mathbb{U}}\int_{\mathbb{R}^n}h^{\Theta 2}(x,u)q(dx)\nu(x,du)\widetilde{\theta}\right]$$

p.s. et dans L²

et donc

$$\mathbb{E} \exp^{\left(i\widetilde{\theta}, \frac{M}{\sqrt{t}}\right)} \xrightarrow[t \to \infty]{} \exp^{\frac{1}{2}\left(\widetilde{\theta}, \int_{\mathbb{R}^n} \widetilde{\theta} a(x) q(dx) + \int_{\mathbb{U}} \int_{\mathbb{R}^n} h^{\Theta^2}(x, u) \nu(x, du) q(dx) \theta\right)}$$

d'où le résultat.

Démonstration du théorème

La formule (3.3), le corollaire 3.1 et $\|A_t^{-1}\| \|A_t\| \le k \ \forall t$ ps donne (3.12) (3.13).

La formule (3.7), le lemme 3.1 donne (3.15) et (3.16). D'autre part, grâce à (3.3) on a :

$$\begin{split} \sqrt{t} \left(\hat{\theta}_t - \theta \right) &= \left[\frac{1}{t} \int_0^t b^2 a^{-1} ds \right]^{-1} \left[\frac{1}{\sqrt{t}} \int_0^t b \ a_\sigma^{-1} \ dWs \right] \\ &= \frac{1}{t} \int_0^t b^2 a^{-1} ds \xrightarrow[t \to \infty]{} \int_{\mathbb{R}^n} b^2 (x) a^{-1} (x) q(dx) \quad \text{p.s. et dans } L^2 \end{split}$$

d'où le résultat (3.14) avec le 1emme 3.2.

De même (3.7) donne

$$\sqrt{t} \left(\hat{\rho}_{t-} \rho \right) = \frac{\frac{1}{\sqrt{t}} (\mu - \rho \tilde{v})}{\frac{1}{t} \tilde{v}}$$

$$\frac{1}{t} \tilde{v} \xrightarrow[t \to \infty]{} \int_{\mathbb{U}} \int_{\mathbb{R}^{n}} v(x, du) q(dx)$$

le lemme 3.2 donne alors le résultat.

De même dans le cas périodique on a un lemme analogue au lemme 3.2 d'où les résultats.

4. ESTIMATION NON PARAMETRIQUE

Soit $\mathcal{A} = \{A_i\}$ une partition borélienne de l'espace temps $\mathbb{R}^+ \times \mathbb{R}^n$ Soit $\mathcal{A} = \{R_i\}$ une partition borélienne de l'espace $\mathbb{R}^+ \times \mathbb{R}^n \times \mathbb{U}$. Soit la structure statistique

$$(\Omega, \mathbf{F}_{t}, \mathbf{F}, \mathbf{P}_{b,a,\rho}^{\mathbf{X}} \quad b = \sum_{i} \beta_{i} \mathbf{1}_{Ai} \quad a = \sum_{i} \alpha_{i} \mathbf{1}_{Ai}$$

$$\rho = \sum_{i} \rho_{i} \mathbf{1}_{\mathbb{R}i}, \beta i \in \mathbb{R}^{n}, \quad \alpha_{i} \in S(n), \quad \rho_{i} \in \mathbb{R}^{+})^{*}$$

$$|\beta| + |\alpha| + |\alpha^{-1}| + |\rho| + |\rho^{-1}| \leq M$$

où $P_{b,a,\varrho}^{X}$ désigne une solution du problème de martingale (x,b,a,ρ) dont l'existence est assurée par le théorème III J.P. LEPELTIER et B. MARCHAL [14]

4.1. Estimation de α

Notons X_t^c la partie continue de la trajectoire

$$Y_{t}^{i} = \int_{0}^{t} 1_{A}i(s,X_{s}) dX_{s}^{c}$$

alors

$$Y_{t}^{i} = \sigma_{i} \int_{0}^{t} 1_{A_{i}}(s, X_{s}) dW_{s} + \int_{0}^{t} 1_{A_{i}} \sigma(s, X_{s}) ds$$

et donc puisque $\int_0^t 1_{Ai}$ b(s, x_s) ds est à variation bornée

$$VQ(Y_t^i) = \alpha_i \int_0^t 1_{Ai}(s, X_s) ds$$

$$(4.1) \quad \alpha_{i} = \frac{VQ(Y_{t}^{i})}{\int_{0}^{t} 1_{Ai}(s, X_{s}) ds} \quad \text{des que } \int_{0}^{t} 1_{Ai}(s, X_{s}) ds > 0$$

Remarque: Le calcul de (4.1) ne demande la connaissance ni de b ni de ρ.

^{*} S(n) matrice (n,n) symétrique > 0

4.2. Estimation de β

L'estimateur du maximum de vraisemblance devient dans ce cas

$$\operatorname{Arg\ max\ } \sum_{i} \left\{ (\alpha_{i}^{-1} \beta_{i}, \int_{0}^{t} \mathbf{1}_{\operatorname{Ai}} dX_{s}^{c}) - \frac{1}{2} (\alpha_{i}^{-1} \beta_{i}, \beta_{i}) \int_{0}^{t} \mathbf{1}_{\operatorname{Ai}} ds \right\} \operatorname{soit} :$$

$$(4.2) \quad \hat{\beta}_{i}^{t} = \frac{\int_{0}^{t} 1_{Ai} dx_{s}^{c}}{\int_{0}^{t} 1_{Ai} ds}$$

Le théorème 3.2.3 s'énonce :

COROLLAIRE 4.1.

$$\hat{\beta}_{i \to \infty}^{t} \beta_{i}$$
 $P_{b,a,\rho}$ p.s. sur $\int_{0}^{\infty} 1_{Ai} ds = +\infty$

avec la vitesse de convergence

$$\lim_{t \to \infty} \sup_{i \to \infty} |\hat{\beta}_{i}^{t} - \beta_{i}| \sqrt{\frac{B_{t}^{i}}{2 \operatorname{Log}_{2} B_{t}^{i}}} \leq 1 \quad \text{sur } B_{\infty}^{i} = \infty$$

avec
$$B_t^i = \int_0^t 1_{A^i} ds$$

S'il existe une unique mesure invariante q [resp. périodique de période \mathfrak{F} q]

 $\frac{\sqrt{t} (\hat{\beta}_{i}^{t} - \beta_{i})}{i}$ est asymptotiquement gaussien de variance

$$\frac{\alpha_{i}}{q(Ai)} \left[\text{resp} \frac{\alpha_{i}}{\text{o}_{Ai}} \frac{**}{\text{g}_{S}} \right]$$

 $^{^\}star$ dans ce cas Ai est une partition de \mathbb{R}^n

^{**} Ai est périodique

$$\text{Si } \mathcal{C}_{H}^{i} = \text{inf (t : } \int_{0}^{t} 1_{\text{Ai}} \text{ ds > H) est p.s. fini, } \widehat{\beta}_{i}^{\mathcal{C}_{H}} \text{ est 1'estimateur de}$$

variance minimum parmi les estimateurs sans biais \mathbf{F}_{V} mesurable ou ν est un

temps d'arrêt p.s. fini vérifiant

$$E\left(\int_{0}^{\nu} \mathbf{1}_{Ai} ds\right) \leq H$$

4.3. Estimation de ρ

L'estimateur du maximum de vraisemblance devient dans ce cas

$$\begin{split} & \text{Arg max} \, \int_0^t \int_U \, \log \, \sum_i \, \rho_i \mathbf{1}_{Ri} \mu \, - \, \int_0^t \int \, (\Sigma \rho_i \mathbf{1}_{Ri} - 1) \, \text{vds} \\ & = \, \text{Arg max} \, \left(\sum_i \, \text{Log} \rho_i \, \int_0^t \int_U \mathbf{1}_{Ri} \mu \, - \, \sum_i \, \rho_i \int_0^t \int_U (\mathbf{1}_{Ri} - 1) \, \text{vds} \right), \text{soit} \end{split}$$

(4.3)
$$\hat{\rho}_{i}^{t} = \int_{0}^{t} \frac{1}{U^{R_{i}}} \mu$$

$$\int_{0}^{t} \frac{1}{U^{R_{i}}} v ds$$

Corollaire 4.2.

$$\hat{\rho}_{i}^{t} \xrightarrow[t \to \infty]{} \rho_{i} \quad P_{b,a,\rho} \text{ p.s. sur } \int_{0}^{+\infty} \int_{U} 1_{Ri} v ds = \infty$$

avec la vitesse de convergence

$$\frac{\lim\sup_{t\to\infty}|\hat{\rho}_{i}^{t}-\rho_{i}|\sqrt{\frac{B_{t}^{i}}{2^{I\log_{2}B_{t}^{i}}}} \leq 1 \quad \text{sur } B_{\infty}^{i} = \infty}{B_{t}^{i} = \int_{0}^{t} \int_{U} 1_{Ri} v ds}$$

De plus s'il existe une unique mesure invariante q [resp. périodique $\mathbf{q}_{\mathbf{s}}$]

$$\frac{\int t \ (\hat{\rho}_{i}^{t} - \rho_{i}) \ \text{est asymptotiquement gaussien de variance}}{\int_{\mathbb{R}^{n}} \int_{\mathbb{U}} l_{R_{l}} \nu(\text{du}) \, q(\text{dx})} \qquad \qquad \underbrace{\frac{\rho_{i}}{\int_{0}^{\infty}} \frac{\star \star}{\int_{\mathbb{R}^{n}}^{\infty}} \left(\text{resp.} \right)}_{\mathbb{R}^{n}} \frac{l_{R_{i}} \nu(\text{du}) \, \text{dsq}_{1}(\text{dx})}{\int_{\mathbb{R}^{n}}^{\infty}} \frac{1}{\int_{\mathbb{R}^{n}}^{\infty}} \left(\frac{1}{\int_{\mathbb{R}^{n}}^{\infty}} \left(\frac{1}{\int_{\mathbb{R}^{n}}^{\infty}} \frac{1}{\int_{\mathbb{R}^{n}}^{\infty$$

^{*}dans ce cas $\{Ri\}$ définit une partition de \mathbb{R}^n : U

4.4. Robustesse des estimateurs $\hat{\alpha}_i$, $\hat{\beta}_i$, $\hat{\rho}_i$ Sur la structure statistique

$$(\Omega, F_t, F, P_{b,a,r}^X |b| + |a| + |a^{-1}| + |r| + |r^{-1}| \le M)$$

soit les estimateurs

(4.1')
$$\hat{a}^t = \sum_{i} \hat{\alpha}_{i}^t \underline{1}_{Ai}$$
 $\hat{\alpha}_{i}^t$ défini par (4.1)

(4.2)
$$\hat{b}^t = \sum_{i} \hat{\beta}_{i}^t \mathbf{1}_{Ai}$$
 $\hat{\beta}_{i}^t$ défini par (4.2)

(4.3)
$$\hat{r}^t = \sum_{i} \hat{\rho}_{i}^t \mathbf{1}_{Ri}$$
 $\hat{\rho}_{i}^t$ défini par (4.3)

avec les notations du paragraphe précédent.

Etudions les propriétés asymptotiques de \hat{a}^t , \hat{b}^t , \hat{r}^t .

THEOREME 4.1.

(4.4)
$$\inf_{(s,x)\in Ai} a(s,x) \leq \hat{\alpha}_{i}^{t} \leq \sup_{(s,x)\in Ai} a(s,x) \sup_{0} \int_{Ai}^{t} ds > 0$$

de plus s'il existe une unique mesure invariante q [resp. périodique de

période 6 qs]

$$(4.5) \quad \hat{a}_{t} \xrightarrow[t\to\infty]{} E_{q(d,x)}\left(a(x) \middle| \mathcal{A}\right) \text{ [resp. } \hat{a}_{t} \xrightarrow{} E_{\frac{dsq}{7a}s}(dx)\left(a(s,x) \middle| \mathcal{A}\right)$$

où ${\cal A}$ est la tribu engendrée par les ${\bf A_i}$

^{* {}Ai} forme une partition de Rⁿ dénombrable

^{**} $\{Ai\}$ forme une partition dénombrable $[0,\mathcal{C}] \times \mathbb{R}^n$

Démonstration

$$\hat{\alpha}_{i}^{t} = \frac{vQ(y_{t}^{i})}{\int_{0}^{t} 1_{Ai} ds} = \frac{\int_{0}^{t} 1_{Ai} a(s, X_{s}) ds}{\int_{0}^{t} 1_{Ai} ds} \quad sur \int_{0}^{t} 1_{Ai} ds > 0$$

et donc

inf
$$a(s,x) \le \hat{\alpha}_i^t \le \sup_{s,x} a(s,x)$$
 d'où 4.4. $(s,x) \in Ai$

s'il existe une unique mesure invariante q

$$\hat{\alpha}_{i}^{t} = \frac{\frac{1}{t} \int_{0}^{t} 1_{Ai} (X) a(X_{s}) ds}{\frac{1}{t} \int_{0}^{t} 1_{Ai} (X) ds}$$

et donc

$$\lim_{t\to\infty} \hat{\alpha}_{i}^{t} = \frac{E_{q}[\frac{1}{A_{i}}a]}{q(A_{i})}$$
 d'où le résultat, et

de même dans le cas périodique.

THEOREME 4.2.

(4.5)
$$\limsup_{t\to\infty} \hat{\beta}_{i}^{t} \leq \sup_{(s,x)\in Ai} b(s,x)$$

(4.6)
$$\lim_{t\to\infty} \inf \hat{\beta}^{i} \ge \inf b(s,x) \qquad \int_{0}^{+\infty} 1_{Ai} ds = \infty$$

De plus s'il existe une unique mesure invariante q [resp. périodique de période & q s ds]

$$(4.7) \hat{b}^{t} \xrightarrow[t \to \infty]{E_{q(d_{x})}} (b(x) | A), q(A_{i}) > 0 \quad \forall i$$

$$[resp \hat{b}_{t} \to E_{\underline{dsq}_{s}}(d_{x}) (b(s,x) | A) \text{ si dsq}(Ai) > 0 \quad \forall i]$$

$$\widehat{\beta}_{i}^{t} = \frac{\int_{0}^{t} \mathbf{1}_{Ai} dx_{s}^{c}}{\int_{0}^{t} \mathbf{1}_{Ai} ds} = \frac{\int_{0}^{t} \mathbf{1}_{Ai} b(s, X) ds + \int_{0}^{t} \mathbf{1}_{Ai} \sigma dW_{s}}{\int_{0}^{t} \mathbf{1}_{Ai} ds}$$

$$\beta_{i}^{t} \leq \sup_{(s,x)\in Ai} b(s,x) + \frac{\left\| \int_{0}^{t} 1_{Ai} \sigma dw_{s} \right\|}{\left\| \int_{0}^{t} 1_{Ai} \sigma ds \right\|} \frac{\left\| \int_{0}^{t} 1_{Ai} \sigma ds \right\|}{\left\| \int_{0}^{t} 1_{Ai} ds}$$

or
$$\frac{\left\|\int_{0}^{t} \mathbf{1}^{\sigma}_{\mathrm{ds}}\right\|}{\int_{0}^{t} \mathbf{1}_{\mathrm{Ai}} ds} \leq M$$

(5.8) et
$$\frac{\left\|\int_{0}^{t} 1_{Ai} \sigma dw_{s}\right\|}{\left\|\int_{0}^{t} 1_{Ai} \sigma ds\right\|} \rightarrow 0 \text{ sur } \lim_{t \to \infty} \left\|\left(\int_{0}^{t} 1_{Ai} \sigma ds\right)^{-1}\right\| = 0$$

et donc comme $|\sigma^{-1}| \le M \, \mathrm{sur} \, \int_0^\infty \!\!\! 1_{\mathrm{Ai}} \mathrm{d}s = \infty$ on a (4.5), et (4.6) (par une démonstration analogue).

On a

$$\frac{\int_0^t \mathbf{1}_{Ai} b(\mathbf{X}_s) \, ds}{\int_0^t \mathbf{1}_{Ai} ds} = \frac{\frac{1}{t} \int_0^t \mathbf{1}_{Ai} b(\mathbf{X}_s)}{\frac{1}{t} \int_0^t \mathbf{1}_{Ai} ds}$$

et donc s'il existe une unique mesure invariante

$$\lim_{t \to \infty} \frac{\int_0^t \mathbf{1}_{Ai} b(\mathbf{X}_s) ds}{\int_0^t \mathbf{1}_{Ai} ds} = \frac{\mathbf{E}_q(\mathbf{1}_{Ai} b)}{q(\mathbf{A}i)}$$

d'autre part

$$\frac{1}{t} \int_0^t 1_{Ai} ds \xrightarrow[t \to \infty]{} q(Ai) \text{ et donc } \int_0^\infty 1_{Ai} ds = \infty$$

et donc en utilisant (4.8) on obtient (4.7) dans le cas stationnaire ; dans le cas périodique on a une démonstration analogue.

THEOREME 4.3.

(4.9)
$$\limsup_{t\to\infty} \hat{\rho}_{i}^{t} \leq \sup_{(s,x,u)\in\mathbb{R}_{i}} r(s,x,u) \sup_{t\to\infty} \int_{0}^{\infty} \int_{\mathbb{U}} 1_{Ri} v ds = \infty$$

(4.10)
$$\liminf_{t\to\infty} \hat{\rho}_i^t \ge \inf_{(s,x,u)\in Ri} r(s,x,u)$$

De plus s'il existe une unique mesure invariante q [resp. périodique de période 6 q ds]

$$(4.11) \quad \hat{r}^{t} \xrightarrow[t \to \infty]{} E_{q(dx)\nu(x,du)} (r(x,u) | R)^{*} \text{ p.s. si } q\nu[Ri] > 0 \quad \forall i$$

$$[\text{resp } \hat{r}^{t} \xrightarrow[t \to \infty]{} E_{dsq} (d\pi)\nu(s,x,du) (r(s,x,u) | R) \text{ p.s. si } dsq\nu[Ri] > 0 \quad \forall i]$$

$$\widehat{\rho}_{i}^{t} = \frac{\int_{0}^{t} \int_{U} \mathbf{1}_{Ri}^{\mu}}{\int_{0}^{t} \int_{U} \mathbf{1}_{Ri}^{\nu} ds} = \frac{\int_{0} \int_{U} \mathbf{1}_{Ri}^{\nu} [\mu - r \nu ds]}{\int_{0}^{t} \int_{U} \mathbf{1}_{Ri}^{\nu} ds} + \frac{\int_{0}^{t} \int_{U} \mathbf{1}_{Ri}^{\nu} r \nu ds}{\int_{0}^{t} \int_{U} \mathbf{1}_{Ri}^{\nu} ds}$$

 $[\]star$ \aleph désigne la σ -algèbre engendrée par $\{\Re i\}$ $\Re i$ partition de $\Re^n \times U$

 $[\]overset{**}{\mathbb{R}}$ désigne la σ -algèbre engendréepar {Ri} Ri partition de [0, \mathfrak{T}_{i} n $^{\times}$ U.

$$\hat{\rho}_{i}^{t} \leq \sup_{(s,x,u) \in R_{i}} r(s,x,u) + \frac{\int_{0}^{t} \int_{U} 1_{Ri} [\mu - rvds]}{\int_{0}^{t} \int_{U} 1_{Ri} vds}$$

$$\frac{\int_{0}^{t} \int_{U} \mathbf{1}_{Ri} (\mu - rvds)}{\int_{0}^{t} \int_{U} \mathbf{1}_{Ri} vds} = \frac{\int_{0}^{t} \int_{U} \mathbf{1}_{Ri} [\mu - rvds]}{\int_{0}^{t} \int_{U} \mathbf{1}_{Ri} rvds} = \frac{\int_{0}^{t} \int_{U} \mathbf{1}_{Ri} rvds}{\int_{0}^{t} \int_{U} vds}$$

$$\frac{\int_{0}^{t} \int_{U} \mathbf{1}_{Ri} r v ds}{\int_{0}^{t} \int_{vds} v ds} \leq \sup_{(s,x,u) \in Ri} r(s,x,u) \leq M$$

d'où (4.9). En utilisant la minoration r $(s,x,u) \ge \frac{1}{M}$, (4.10) s'obtient de façon analogue.

S'il existe une unique mesure invariante

$$\frac{\int_{0}^{t} \int_{U} \mathbf{1}_{Ri} r v ds}{\int_{0}^{t} \int_{U} \mathbf{1}_{Ri} v ds} = \frac{\frac{1}{t} \int_{0}^{t} \int_{U} \mathbf{1}_{Ri} r v ds}{\frac{1}{t} \int_{0}^{t} \int_{U} \mathbf{1}_{Ri} ds} \xrightarrow{t \to \infty} \gamma$$

$$\gamma = \frac{\int_{U} \int_{\mathbb{R}} n \mathbf{1}_{Ri} r(x,u) v(x,du) q(dx)}{\int_{U} \int_{\mathbb{R}} n \mathbf{1}_{Ri} v(x,du) q(dx)}$$
 d'où le

résultat (4.11) en remarquant $\frac{1}{t} \int_U \int_0^t \mathbf{1}_{R^{\mathcal{V}}} (X, du) ds \xrightarrow[t \to \infty]{} q\mathcal{V}$ [Ri] p.s. d'où le résultat si $q \mathcal{V}$ [Ri] > 0.

4.5.) Estimation de b et ρ en un point

Au vu des résultats précédents il est naturel de se demander s'il est possible d'estimer b et ρ en un point dans le cas homogène par exemple.

Des résultats de ce genre sont donnés dans BANON [1] pour des dffusions en dimension 1.

Sur la structure statistique

,b continue de
$$\mathbb{R}^n \to \mathbb{R}^n$$
a borélienne de $\mathbb{R}^+ \rtimes \mathbb{R}^n \to S(m)$

$$v(s,x,du) \text{ mesure de transition borné de } \mathbb{R}^+ \rtimes \mathbb{R}^n \to U$$

$$|b| + |a| + |a^{-1}| \leq M, P_{b,a,v}^x \text{ solution du problème de martingale } (x,b,a,v)$$

on a le

THEOREME 4.4.

Soit A une famille décroissante d'ensemble de \mathbb{R}^n contenant le point x, tels que, $\delta(A_t)$ \downarrow 0 lorsque t $\rightarrow \infty$ alors

$$Y_{t} = \frac{\int_{0}^{t} l_{As}(X_{s}) dX_{s}^{c}}{\int_{0}^{t} l_{As}(X_{s}) ds} \xrightarrow[t \to \infty]{} b(x) \quad P_{b,a,v} \quad p.s. \quad sur \int_{0}^{+\infty} l_{As}(X_{s}) ds = \infty$$

Démonstration

$$\frac{\int_{0}^{t} \mathbf{1}_{As}(\mathbf{X}_{s}) d\mathbf{X}_{s}^{c}}{\int_{0}^{t} \mathbf{1}_{As}(\mathbf{X}_{s}) ds} = \frac{\int_{0}^{t} \mathbf{1}_{As}(\mathbf{X}_{s}) b(\mathbf{X}_{s}) ds}{\int_{0}^{t} \mathbf{1}_{As}(\mathbf{X}_{s}) ds} + \frac{\int_{0}^{t} \mathbf{1}_{As}(\mathbf{X}_{s}) \sigma(\mathbf{X}_{s}) dW_{s}}{\int_{0}^{t} \mathbf{1}_{As}(\mathbf{X}_{s}) ds}$$

or
$$\left| \frac{\int_{0}^{t} 1_{As}(X_{s}) \sigma(X_{s}) dW_{s}}{\int_{0}^{t} 1_{As}(X_{s}) ds} \right| \leq \frac{\left| \int_{0}^{t} 1_{As}(X_{s}) \sigma(X_{s}) dW_{s} \right| \left| \int_{0}^{t} 1_{As}(X_{s}) a(X_{s}) ds}{\left| \int_{0}^{t} 1_{As}(X_{s}) dx_{s} ds} \right|}$$

$$\leq \frac{\left| \int_{0}^{t} 1_{As}(X_{s}) dX_{s} dX_{s} dx_{s} dx_{s} dx_{s} dx_{s}}{\left| \int_{0}^{t} 1_{As}(X_{s}) \sigma(X_{s}) dW_{s}} \right|}$$

$$\leq \frac{\left| \int_{0}^{t} 1_{As}(X_{s}) \sigma(X_{s}) dX_{s} dx_{s}}{\left| \int_{0}^{t} 1_{As}(X_{s}) \sigma(X_{s}) dX_{s}} dx_{s}} \right| M$$

et
$$\left| \frac{\int_{0}^{t} 1_{As}(X_{s}) \sigma(X_{s}) dW_{s}}{\int_{0}^{t} 1_{As}(X_{s}) a(X_{s}) ds} \right| \xrightarrow{t \to 0} 0 \quad \text{p.s. sur } \int_{0}^{\infty} 1_{As}(X_{s}) a(X_{s}) ds = \infty$$

donc sur $\int_0^{+\infty} 1_{A_S^*}(X_S^*) ds = \infty$ puisque $|\sigma^{-1}| \le M$ d'autre part

$$\frac{\int_{0}^{t} \mathbf{1}_{As}(\mathbf{X}_{s}) \mathbf{b}(\mathbf{X}_{s}) ds}{\int_{0}^{t} \mathbf{1}_{As}(\mathbf{X}_{s}) ds} = \frac{\int_{0}^{T_{0}} \mathbf{1}_{As}(\mathbf{X}_{s}) \mathbf{b}(\mathbf{X}_{s}) ds + \int_{T_{0}}^{t} \mathbf{1}_{As}(\mathbf{X}_{s}) \mathbf{b}(\mathbf{X}_{s}) ds}{\int_{0}^{t} \mathbf{1}_{As}(\mathbf{X}_{s}) ds}$$

$$\frac{\int_{0}^{T_{0}} \mathbf{1}_{As}(\mathbf{X}_{s}) \mathbf{b}(\mathbf{X}_{s})}{\int_{0}^{t} \mathbf{1}_{As}(\mathbf{X}_{s}) ds} \xrightarrow{t \to \infty} 0 \text{ sur } \int_{0}^{\infty} \mathbf{1}_{As}(\mathbf{X}_{s}) ds = \infty$$

$$\left| \frac{\int_{T_0}^{t} \mathbf{1}_{As}(X_s) |b(X_s) - b(x)| ds}{\int_{0}^{t} \mathbf{1}_{As}(X_s) ds} \right| \leq \pi(b, \delta_{T_0})$$

ou δ_{T_0} désigne le diamètre de \mathbf{A}_{T_0} et $\Pi(\mathbf{b},\delta)$ le module de continuité de be Enfin

$$\frac{\int_{T_0}^{t} l_{As}(X_s)b(x)ds}{\int_{0}^{t} l_{As}(X_s)ds} = b(x) \frac{\int_{T_0}^{t} l_{As}(X_s)ds}{\int_{0}^{t} l_{As}(X_s)ds} = b(x) \left[1 - \frac{M}{\int_{0}^{t} l_{As}(X_s)ds}\right]$$

on obtient donc

$$\lim_{t} \left| \frac{\int_{0}^{t} \mathbf{1}_{As}(\mathbf{X}_{s}) \mathbf{b}(\mathbf{X}_{s}) ds}{\int_{0}^{t} \mathbf{1}_{As}(\mathbf{X}_{s}) ds} - \mathbf{b}(\mathbf{x}) \right| \leq \pi(\mathbf{b}, \delta_{T_{0}}) \sup \left\{ \int_{0}^{+\infty} \mathbf{1}_{As}(\mathbf{X}_{s}) ds = \infty \right\}$$

en faisant tendre T_0 vers l'infini on obtient le résultat.

Sur la structure statistique

$$\begin{array}{lll} (\Omega,F_t,F,P_b,a,\rho & \qquad \text{b borelienne de $\mathbb{R}^+{\times}\mathbb{R}^n$} \to \mathbb{R}^n \\ & \text{a borelienne de $\mathbb{R}^+{\times}\mathbb{R}^n$} \to S(m) \\ & & \rho(x,u) \text{ continue de $\mathbb{R}^n{\times}$} \to \mathbb{R}^+ \\ & \text{v de transition bornée de \mathbb{R}^n} \to \mathcal{M}_+^b(U) \\ & & |b| + |\rho| + |\rho^{-1}| + |a| + |a^{-1}| \leqslant M \\ & & P_{b,a,\rho}^X \text{ solution du problème de martingale} \\ & & (x,b,a,\rho{\vee})) \end{array}$$

On a le

THEOREME 4.5.

Soit A une famille décroissante d'ensemble de $\mathbb{R}^n \times \mathbb{U}$ contenant le point (x,u), tels que $\delta(A_t) \downarrow 0$ lorsque $t \rightarrow \infty$ alors

$$Y_{t} = \frac{\int_{0}^{T} \int_{U} \mathbf{1}_{As} d\mu}{\int_{0}^{T} \int_{U} \mathbf{1}_{As} vds} \xrightarrow{t \to \infty} \rho(x, u) \quad P_{b,a,\rho} \quad \text{p.s. sur} \quad \int_{0}^{+\infty} \int_{U} \mathbf{1}_{As} vds = \infty$$

Démonstration

$$Y_{t} = \frac{\int_{0}^{t} \int_{U} \mathbf{1}_{As} \rho v ds}{\int_{0}^{t} \int_{U} \mathbf{1}_{As} v ds} + \frac{\int_{0}^{t} \int_{U} \mathbf{1}_{As} (\mu - \rho v ds)}{\int_{0}^{t} \int_{U} \mathbf{1}_{As} v ds}$$

$$\left| \frac{\int_{0}^{t} \int_{U} \mathbf{1}_{As} (\mu - \rho \nu ds)}{\int_{0}^{t} \int_{U} \mathbf{1}_{As} \rho \nu ds} \right| \leq \left| \frac{\int_{0}^{t} \int_{U} \mathbf{1}_{As} (\mu - \rho \nu ds)}{\int_{0}^{t} \int_{U} \mathbf{1}_{As} \rho \nu ds} \right| \left| \frac{\int_{0}^{t} \int_{U} \mathbf{1}_{As} \rho \nu ds}{\left| \int_{0}^{t} \int_{U} \mathbf{1}_{As} \nu ds} \right|$$

$$\leq \left| \frac{\int_{0}^{t} \int_{U} \mathbf{1}_{As} [\mu - \rho \nu ds]}{\int_{0}^{t} \int_{U} \mathbf{1}_{As} \nu ds} \right|$$

еt

$$\frac{\left|\int_{0}^{t}\int_{U}\mathbf{1}_{As}[\mu-\rho\nu ds]\right|}{\left|\int_{0}^{t}\int_{U}\mathbf{1}_{As}\rho\nu ds\right|} \longrightarrow \underset{t\to 0}{\text{op.s. sur }} \int_{0}^{+\infty}\int_{U}\mathbf{1}_{As}\rho\nu ds = \infty$$

et donc puisque
$$|\rho^{-1}| \le M \text{ sur } \int_0^{+\infty} \int_{\mathbb{U}} 1_{A_S} v ds = \infty$$

d'autre part

$$\frac{\int_0^t \int_U \mathbf{1}_{As} \rho \, v ds}{\int_0^t \int_U \mathbf{1}_{As} \nu \, ds} = \frac{\int_0^{T_0} \int_U \mathbf{1}_{As} \rho \, v ds}{\int_0^t \int_U \mathbf{1}_{As} \nu \, ds}$$

$$\frac{\int_{0}^{T_{0}} \int_{U} 1_{As}(X_{s}) \rho v ds}{\int_{0}^{t} \int_{U} 1_{As}(X_{s}) v ds} \xrightarrow{t \to \infty} 0 \text{ sur } \int_{0}^{+\infty} \int_{U} 1_{As} v ds = \infty$$

$$\frac{\int_{T_0}^t \int_U \mathbf{1}_{As} |\rho(\mathbf{X}_{s^-}, \mathbf{u}) - \rho(\mathbf{x}, \mathbf{u})| \nu(\mathbf{X}_{s^-}, d\mathbf{u}) ds}{\int_0^t \int_U \mathbf{1}_{As} \nu ds} \leq \pi(\rho, \delta t_o) \text{ avec}$$

II module de continuité de ρ

enfin

$$\frac{\int_{T_0}^t \int_U \mathbf{1}_{As} \rho(\mathbf{x}, \mathbf{u}) v \, ds}{\int_0^t \int_{U} \mathbf{1}_{As} (\mathbf{X}_s) \, ds} = \rho(\mathbf{x}, \mathbf{u}) \frac{\int_{T_0}^t \int_U \mathbf{1}_{As} v \, ds}{\int_0^t \int_U \mathbf{1}_{As} v \, ds}$$

$$= \rho(x, u) \left(1 - \frac{M}{\int_{0}^{t} 1_{As} v ds} \right)$$

on obtient donc

$$\left|\lim_{t\to\infty}\frac{\int_0^t\int_U\mathbf{1}_{\mathrm{As}}\rho\mathrm{vds}}{\int_0^t\int_U\mathbf{1}_{\mathrm{As}}\mathrm{vds}}-\rho(x,u)\right|\leqslant \pi(\rho,\delta_{\mathrm{T}_0})\ \mathrm{sur}\ \int_0^{+\infty}\int_U\mathbf{1}_{\mathrm{As}}(x_s)\mathrm{vds}=\infty$$

THEOREME 4.6.

S'il existe une unique mesure invariante q, si $x \in \text{supp } q$, alors il existe une suite $A_{t,\omega}$ d'ensembles de \mathbb{R}^n décroissante en t contenant x, tels que $\delta(A_{t,\omega})$ \downarrow op.s. et $t \to \infty$

$$\int_{0}^{+\infty} 1_{A_{t,\omega}}(X_{s}(\omega)) ds = \infty \quad p.s.$$

Démonstration

Soit $x \in supp q$

$$si q\{x\} > 0 on prendra A_{t,\omega} = \{x\}$$

$$si q\{x\} = 0$$
 $\forall v_x : q(v_x) > 0$ où v_x désigne un voisinage de x

alors soit

$$T_1 = \inf\{t \ge 1 : \frac{1}{t} \int_0^t 1_{V_x}(X_s) ds \ge \frac{q(V_x)}{2} \}$$

alors T_{i} est un temps d'arrêt presque surement fini car q est la mesure invariante.

Soit $\mathbf{e}_n = \inf \left\{ \rho, \ \mathbf{q}(\rho \mathbf{V}_{\mathbf{X}}) \geq \frac{\mathbf{q}(\mathbf{V}_{\mathbf{X}})}{2^n} \right\}$. En utilisant la continuité de $\rho \rightarrow \mathbf{q}(\rho \mathbf{V}_{\mathbf{X}})$ en 0, grâce à la propriété $(\mathbf{q}(\mathbf{An}) + \mathbf{q}(\mathbf{A}) \text{ si An } + \mathbf{A})$ on remarque que $\mathbf{e}_n \rightarrow 0$ $\mathbf{n} \rightarrow \infty$

Soit alors

$$T_{n} = \inf \left\{ t \geqslant 2T_{n-1}, \frac{1}{t-T_{n-1}} \int_{T_{n-1}}^{t} \frac{1}{T_{n-1}} ds \geqslant \frac{q(V_{x})}{2^{n}} \right\}$$

T, est un temps d'arrêt P.s. fini

etc

On a construit une suite $\boldsymbol{T}_n,\;\boldsymbol{\rho}_n$. Notons alors

$$\mathbf{A}_{\mathsf{t},\omega} = \left\{ \mathbf{x} \in \rho_{\mathsf{n}} \mathbf{V}_{\mathsf{n}} \quad \mathbf{T}_{\mathsf{n}-\mathsf{1}} \leqslant \mathsf{t} < \mathbf{T}_{\mathsf{n}} \right\}$$

On a alors la minoration

$$\int_{0}^{\infty} \mathbf{1}_{As,\omega} (X_{s}) ds \ge \frac{q(V_{x})}{2} T_{1}(\omega) + (T_{2} T_{1}) \frac{q(V_{x})}{4} + \dots + (T_{n+1} - T_{n}) \frac{q(V_{x})}{2^{n+1}} + \dots$$

$$\ge \frac{q(V_{x})}{2} \left\{ \frac{T_{1}(\omega)}{2} + \frac{T_{2}(\omega)}{4} + \dots + \frac{T_{n}(\omega)}{2^{n}} + \dots \right\}$$

$$\ge q(V_{x}) \left\{ \frac{T_{1}(\omega)}{2} + \frac{T_{1}(\omega)}{2} + \dots + \frac{T_{1}(\omega)}{2} \right\}$$

d'où le résultat puisque $T_{1}\left(\omega\right)$ est minoré par l.

THEOREME 4.7.

S'il existe une unique mesure invariante q, \forall (x,u) \in supp q \vee alors il existe une suite $R_{t,\omega}$ d'ensemble de $\mathbb{R}^n \times \mathbb{U}$ d'ensemble décroissants en t contenant (x,u), tels que $\delta(R_{t,\omega}) \to 0$ p.s. et $\int_{t+\infty}^{t+\infty} \int_{t}^{t+\infty} \int_{t}^{t} dt$

$$\int_{0}^{+\omega} \int_{\mathbf{U}} \mathbf{1}_{\mathbf{A}_{s,\omega}} v ds = \infty$$

Démonstration

Analogue au théorème précédent.

Remarque : Approximation linéaire par morceaux et vitesse "optimale" de convergence de la partition.

Considérons la fonction $\overline{b}(x)$ interpollé linéaire de l'ensemble de points :

$$E_{\mathbf{q}}(\mathbf{x}|\mathcal{H}) \longrightarrow E_{\mathbf{q}}(\mathbf{b}(\mathbf{x})|\mathcal{H})$$

on a:

$$|E(b(x) |\mathcal{A}| - b(E(x|\mathcal{A}))| \le \sup_{x} |b''(x)| \delta^{2}$$

ou δ est le diamètre du plus gros élément de la partition, $\mathcal A_t$ une partition de $\mathbb R^n$, q la mesure invariante de X .

On en déduit que

$$\sup_{\mathbf{x}} |\overline{b}(\mathbf{x}) - b(\mathbf{x})| \le k\delta^2 \sup_{\mathbf{x}} |b''(\mathbf{x})|$$

D'autre part $\overline{b}(x)$ peut être estimé par l'interpolée linéaire $\widehat{\overline{b}}_T(x)$ de :

$$\frac{\int_{0}^{T} \mathbf{1}_{A}(\mathbf{x}_{s}) \mathbf{X}_{s} ds}{\int_{0}^{T} \mathbf{1}_{A}(\mathbf{X}_{s}) d\mathbf{x}_{s}^{c}} \longrightarrow \frac{\int_{0}^{T} \mathbf{1}_{A}(\mathbf{X}_{s}) d\mathbf{x}_{s}^{c}}{\int_{0}^{T} \mathbf{1}_{A}(\mathbf{X}_{s}) ds}$$

Et on a 3k constante:

$$\sup_{\mathbf{x}} \left| \frac{\mathbf{\hat{\overline{b}}}}{\mathbf{b}_{T}}(\mathbf{x}) - \overline{\mathbf{b}}(\mathbf{x}) \right| \leq \frac{\mathbf{k}}{\inf_{\mathbf{i}} q(\mathbf{A}_{\mathbf{i}}) \sqrt{T}}$$

et donc

$$\xi = \sup_{\mathbf{x}} |b(\mathbf{x}) - \widehat{\overline{b}}_{\mathbf{T}}(\mathbf{x})| \leq \frac{k}{\inf_{\mathbf{i}} q(\mathbf{A}_{\mathbf{i}}) \sqrt{T}} \quad \text{k sup } \delta^{2}(\mathbf{A}_{\mathbf{i}}) \sup_{\mathbf{x}} |b''(\mathbf{x})|$$

Essayons alors d'évaluer la vitesse avec laquelle il faut faire tendre $\delta(A_i)$ vers 0 de façon à rendre l'erreur approximation + estimation la plus petite. Plaçons nous en dimension 1. Soit A_i la suite d'intervalle [x-h, x+h [

$$q(A_i) = 2h f(x) si f désigne la densité de q$$

$$\xi \le k \left[\frac{1}{h\sqrt{T}} + h^2 \right]$$

$$\inf_{h} \left(\frac{1}{h\sqrt{T}} + h^2 \right) = \frac{k_1}{T^{1/3}} \text{ est atteint pour } h = \frac{k_2}{6\sqrt{T}}$$

ce qui donne une idée de la vitesse laquelle il faut taire decroître le diametre de la partition.

avec

- [1] BANON.- Identification non paramétrique de processus de diffusion stochastique,
 Report BERKELEY 1977
- [2] BREMAUD, P.M Livre à paraître Dynamical point process systems in communications and Queuing"
- [3] COLLETER, F. FALGARONNE; F. DELEBECQUE; J.P. QUADRAT

 Résolution d'un modèle de gestion des moyens de production hydrauliques

 de la Nouvelle Calédonie, Rapport LABORIA, à paraître
- [4] DELEBECQUE, F.- Identification de processus de diffusion et application à la gestion de réservoirs- thèse 3ème Cycle, PARIS IX, 1977.
- [5] DELEBECQUE, F; J.P. QUADRAT.- Identification d'une diffusion stochastique.

 Rapport LABORIA N°121, 1975
- [6] DELEBECQUE, F; J.P. QUADRAT .- Application de l'identification du contrôle stochastique à la gestion de réservoirs. Colloque sur la théorie des systèmes et applications à la gestion des services publics 75 Presses Univ. de MONTREAL.
- [7] DELEBECQUE, F, J.P. QUADRAT .- Application of stochastic control methods in problems arizing in hydropower production ist Int. Cont. on Math. Modelling SAINT LOUIS MISSOURI, Sept. 1977.
- [8] DOLEANS-DADE, C., P.A.MEYER.- Intégrales stochastiques par rapport aux martingales locales. Séminaire de Probabilités IV.
- [9] FEIGIN, P.D.- Maximum Likely hood estimation for continuous time stochastic processes. Jour, Adv. Prob. 8,712-736 76
- [10] JACOD, J.- Un théorème de représentation pour les martingales discontinues. Z. Wahrscheinlichkeitstheorie verw. Gebiete 34, 225-244, 1976.
- [11] JACOD, J., J. MEMIN. Caractéristiques locales et conditions de continuité absolue pour les semi-martingales. Wallscheinlitstheorie Springer Verlag 35.1-37 1976
- [12] KUNITA, H., S. WATANABE.- On square integrable martingales. Nagoya Math. J.30 209-245 (1976)
- [13] LEBRETON, A.- Sur l'estimation de paramètre dans les modèles différentiels stochastiques. Thèse GRENOBLE 1976.
- [14] LEPELTIER, J.P., B. MARCHAL.- Problème des martingales et équations différentielles stochastiques associées à un opérateur intégro-différentiel. Annales de l'Institut Henri Poincaré vol. 12, N°1,pp.43-103 (1976).
- [15] LIPCER, P.- A. SHIRIAEV. Statistique des processus stochastique (en Russe)
 Presses Universitaires de MOSCOU.

- [16] MEYER, P.A.- Probabilité et Potentiel, Herman 1966.
- [17] NEVEU, J.- Martingales a temps discret, MASSON 72
- [18] NEVEU, J.- Cours de 3ème Cycle sur les processus de diffusion stochastique, PARIS VI, 74.
- [19] PRIOURET, P.- Lectures notes in Mathematics 390, Springer Verlag 1973.
- [20] SKOROHOD, A.V.- Studies in the théoric of random process, ADDISON WESLEY 1965.
- [21] STROOCK, D.W.- Z. Wallscheinlichteitstheorie werw. Gebiete 32, 209-244 1975: diffusion processes associated with LEVY Generators.
- [22] BRODEAU,F et Identification de paramètres pour un système excité par des LEBRETON,A bruits Gaussiens et Poissonnien à paraître An. de l'Institut H. POINCARE.