

## **ENGINEERING MECHANICS**

(E MECH-02)

**QUESTION-2** 

## **Project Submitted to-**

Dr. Bharat Chandra Routra

(Professor & Dean, School of Mechanical Engineering, KIIT)

### **Given Problem Statement:**

Q. Analyse the truss subjected to load shown with the specified magnitude of F as 1000 N and direction. Open a table in Excel for SI No, designation, Force  $F_{13}$ ,  $F_{12}$ ,  $F_{23}$ ,  $\theta$  in degrees, and  $\theta$  in radian. Find the forces in various members of the truss by varying  $\theta$  from 0° to 90° with a step increment of 5°. With the help of the chart draw the graph between  $\theta$ :  $F_{13}$ ,  $\theta$ :  $F_{12}$ , and  $\theta$ :  $F_{23}$ .



#### Given Data -

The truss in the above diagram is given with the above-shown dimensions. Also, F=1000 N is given which is inclined to the vertical with an angle  $\theta$ . The angle varies from  $0^{\circ}$  to  $90^{\circ}$ .

#### What is to be found-

We need to find the forces in each member of the truss given as  $F_{12}$ ,  $F_{13}$ , and  $F_{23}$ , with variations in the angle  $\theta$  from  $0^{\circ}$  to  $90^{\circ}$  with a step increment of  $5^{\circ}$ .

### **Assumptions -**

Angles  $\alpha$  and  $\beta$  are assumed by us as the angles shown in the figure.

 $\mathsf{F}_{13}$  and  $\mathsf{F}_{23}$  are assumed to be tensile and  $\mathsf{F}_{12}$  is assumed to be compressive

## **Introduction and Theory**

The truss problems are solved by considering different joints in equilibrium. (Method of joint)

#### FBD at joint 1:



Considering joint 1 at equilibrium:

 $Fsin\theta + F_{12}cos\beta = F_{13}cos\alpha$ 

 $F\cos\theta + F_{13}\sin\alpha = F_{12}\sin\beta$ 

Solving this we get the  $\rightarrow$ 

 $F_{12} = F(\sin\alpha\sin\theta + \cos\alpha\cos\theta)/(\sin\beta\cos\alpha - \cos\beta\sin\alpha)$ 

 $F_{13} = F(\sin\beta\sin\theta + \cos\beta\cos\theta)/(\sin\beta\cos\alpha - \cos\beta\sin\alpha)$ 

#### FBD at joint 2:



Considering joint 2 at equilibrium:

 $F_{12}cos\beta = R_2$  and  $F_{23} = F_{12}sin\beta$ 

// We have got the expressions for  $F_{12}$ ,  $F_{13}$ , and  $F_{23}$ . Now we vary  $\theta$  from  $0^{\circ}$  to  $90^{\circ}$  with a step increment of  $5^{\circ}$  and check out changes in  $F_{12}$ ,  $F_{13}$ , and  $F_{23}$  from the Python program that we have made.

## Truss Analysis using Python

Interpreter Version - Python 3.10
Libraries Used - math, prettytable, matplotlib.pyplot.

#### Code -

```
import math
from prettytable import PrettyTable
import matplotlib.pyplot as plt
#finding angle alpha
a = round(math.atan(2 / 4), 5)
adeg = round(math.degrees(a), 5)
#finding angle beta
b = round(math.atan(5 / 4), 5)
bdeg = round(math.degrees(b), 5)
print("Angle α is: ",a," radians OR ",adeg," degrees")
print("Angle β is: ",b," radians OR ",bdeg," degrees")
#defining function for F12, F13 and F23 by change in \theta
def column(th1):
    # finding F12, F13 and F23 by the given formulas
    f = 1000
    th = round(math.radians(th1),3)
    f12 = round(f * ((math.sin(a) * math.sin(th) +
    math.cos(a) * math.cos(th)) / (math.sin(b) *
    math.cos(a) - math.cos(b) * math.sin(a))), 3)
```

```
f13 = round(f * ((math.sin(b) * math.sin(th) +
    math.cos(b) * math.cos(th)) / (math.sin(b) *
    math.cos(a) - math.cos(b) * math.sin(a))), 3)
    f23 = round(f12 * math.sin(b), 3)
    table.add row([th1,th,f12,f13,f23])
    y12.append(f12)
    y13.append(f13)
    y23.append(f23)
#running loop for variation in the value of \theta and
printing table
table = PrettyTable(["\theta (in deg)","\theta (in rad)","F12
(compressive)","F13 (tensile)","F23 (tensile)"])
x = []
y12 = []
y13 = []
y23 = []
for th1 in range(0, 95, 5):
    x.append(th1)
    column (th1)
print(table)
#graphing the graphs of \theta with F12, F13, and F23
print('''Enter 1 for all plots separately
Enter 2 for all plots separately in the same window
Enter 3 for all plots in the same graph''')
ch = int(input("Enter your choice: "))
if (ch == 1):
    plt.plot(x, y12, color = 'springgreen')
    plt.xlabel('θ (in degrees)')
    plt.ylabel('F12 (in Newtons)')
    plt.title("Variation of F12 with \theta")
    plt.show()
```

```
plt.plot(x, y13, color = 'red')
    plt.xlabel('θ (in degrees)')
    plt.ylabel('F13 (in Newtons)')
    plt.title("Variation of F13 with \theta")
    plt.show()
    plt.plot(x, y23, color = 'blue')
    plt.xlabel('θ (in degrees)')
    plt.ylabel('F23 (in Newtons)')
    plt.title("Variation of F23 with \theta")
    plt.show()
elif (ch == 2):
    figure, axis = plt.subplots(1, 3)
    axis[0].plot(x, y12, color = 'springgreen')
    axis[0].set title("Variation of F12 with <math>\theta")
    axis[1].plot(x, y13, color = 'red')
    axis[1].set title("Variation of F13 with <math>\theta")
    axis[2].plot(x, y23, color = 'blue')
    axis[2].set title("Variation of F23 with \theta")
    plt.show()
elif (ch == 3):
    plt.plot(x, y12, color = 'springgreen')
    plt.plot(x, y13, color = 'red')
    plt.plot(x, y23, color = 'blue')
    plt.xlabel('θ (in degrees)')
    plt.ylabel('Forces (in Newtons)')
    plt.legend(["F12","F13","F23"], loc="lower left")
    plt.show()
```

### Output -

| Run 🚜 main ×                                    |            |                   |                    |                      |                 |  |  |  |
|-------------------------------------------------|------------|-------------------|--------------------|----------------------|-----------------|--|--|--|
|                                                 | :          |                   |                    |                      |                 |  |  |  |
| Angle α is: 0.46365 radians OR 26.56519 degrees |            |                   |                    |                      |                 |  |  |  |
| Δ                                               | Angleβis:  | 0.89606 radi      | ans OR 51.34046 de | grees                |                 |  |  |  |
|                                                 | θ (in deg) | +<br>  θ (in rad) | F12 (compressive)  | +<br>  F13 (tensile) |                 |  |  |  |
| +                                               | 0          | +<br>  0.0        | +<br>  2134.362    | +<br>  1490.696      | +<br>  1666.663 |  |  |  |
| i                                               | 5          | 0.087             | 2219.018           | 1646.969             | 1732.768        |  |  |  |
| i                                               | 10         | 0.175             | 2287.569           | 1792.359             | 1786.298        |  |  |  |
| j                                               | 15         | 0.262             | 2337.94            | 1922.466             | 1825.631        |  |  |  |
| ĺ                                               | 20         | 0.349             | 2370.626           | 2038.031             | 1851.155        |  |  |  |
| ĺ                                               | 25         | 0.436             | 2385.38            | 2138.179             | 1862.676        |  |  |  |
| ĺ                                               | 30         | 0.524             | 2381.948           | 2223.023             | 1859.996        |  |  |  |
|                                                 | 35         | 0.611             | 2360.433           | 2289.993             | 1843.195        |  |  |  |
|                                                 | 40         | 0.698             | 2321.064           | 2339.64              | 1812.453        |  |  |  |
|                                                 | 45         | 0.785             | 2264.137           | 2371.59              | 1768.0          |  |  |  |
|                                                 | 50         | 0.873             | 2189.136           | 2385.658             | 1709.434        |  |  |  |
|                                                 | 55         | 0.96              | 2098.33            | 2381.416             | 1638.526        |  |  |  |
|                                                 | 60         | 1.047             | 1991.652           | 2359.16              | 1555.225        |  |  |  |
|                                                 | 65         | 1.134             | 1869.909           | 2319.06              | 1460.159        |  |  |  |
|                                                 | 70         | 1.222             | 1732.381           | 2260.654             | 1352.767        |  |  |  |
|                                                 | 75         | 1.309             | 1583.232           | 2185.712             | 1236.301        |  |  |  |
|                                                 | 80         | 1.396             | 1422.107           | 2094.237             | 1110.483        |  |  |  |
|                                                 | 85         | 1.484             | 1248.192           | 1985.598             | 974.678         |  |  |  |
| - 1                                             | 90         | 1.571             | 1066.753           | 1863.084             | l 832.997 l     |  |  |  |

Enter 1 for all plots seprately

Enter 2 for all plots seprately in same window

Enter 3 for all plots in same graph

Enter your choice: 3



**Results and Discussion -** From the graph it can clearly be observed that all the forces, when carying with the angle  $\theta$ , first reach a maximum and then decrease.

**Conclusion -** The analysis of the particular given truss has been done successfully and the relation between the angle  $\theta$  and the forces have been found.

#### Bibliography -

Making table in Python-

https://www.geeksforgeeks.org/how-to-make-a-table-in-python/

Plotting graph in Python-

https://www.tutorialspoint.com/how-to-plot-a-graph-in-python

Plotting multiple graphs-

https://www.geeksforgeeks.org/plot-multiple-plots-in-matplotlib/

Using colors in graphs-

https://matplotlib.org/stable/gallery/color/named colors.html

#### GitHub Link -

https://github.com/KumarShresth/Truss\_Analysis\_with\_Python

# **Submitted by**

| SI<br>no. | Name                      | Roll number | Section |
|-----------|---------------------------|-------------|---------|
| 1         | Sancharika Behera         | 22051611    | B4      |
| 2         | Satwick Sinha             | 22051614    | B4      |
| 3         | Shibangi Subhalakshmi Das | 22051618    | B4      |
| 4         | Shresth Kumar             | 22051625    | B4      |
| 5         | Shresth Soni              | 22051626    | B4      |