



# CURSO DE TECNOLOGIA EM MANUTENÇÃO DE AERONAVES ELETRICIDADE, ELETROTÉCNICA E MÁQUINAS ELÉTRICAS PROFESSOR BRUNO PERUCHI TREVISAN

# ATIVIDADE 2: ASSOCIAÇÃO DE RESISTORES

#### 1) OBJETIVOS

- Determinar a resistência equivalente de circuitos em série e em paralelo;
- Calcular e medir as tensões e correntes dos circuitos;

# 2) PARTE PRÁTICA

#### 2.1. Cálculos

- 1) Faça os cálculos das resistências equivalentes, das correntes indicadas, das tensões e das potencias dos circuitos estudados;
- 2) Preencha os valores nas respectivas tabelas.

## 2.2. Associação de Resistores em Série

## 2.2.1. Materiais

- Multímetro;
- Fonte de alimentação DC;
- Ponta de prova e conector banana;
- Protoboard;
- Fios para conexões;
- Resistores:  $220 \Omega$ ,  $360 \Omega$  e  $470 \Omega$ ;

#### 2.2.2. Procedimento

1) Monte o circuito da Figura 1. Meça e anote na Tabela 1 a resistência equivalente entre os pontos A e B;







Figura 1 - Associação de resistores em série

Tabela 1 – Resistencia equivalente de uma associação em série

|           | Resistencia Equivalente $R_T(\Omega)$ |
|-----------|---------------------------------------|
| Calculado |                                       |
| Medido    |                                       |

2) Ajuste a fonte de tensão 12 V e alimente o circuito, conforme mostra a Figura 2;



Figura 2 - Circuito de associação de resistores em série

3) Meça as correntes em cada ponto do circuito, a tensão em cada resistor e anote os resultados na Tabela 2.





Tabela 2 – Associação de resistores em série

|           | V <sub>F</sub> (V)  | $V_1(V)$            | $V_2(V)$            | <b>V</b> <sub>3</sub> ( <b>V</b> ) | I <sub>A</sub> (mA) | I <sub>B</sub> (mA) |
|-----------|---------------------|---------------------|---------------------|------------------------------------|---------------------|---------------------|
| Calculado | 12,0                |                     |                     |                                    |                     |                     |
| Medido    |                     |                     |                     |                                    |                     |                     |
| Potências | P <sub>F</sub> (mW) | P <sub>1</sub> (mW) | P <sub>2</sub> (mW) | P <sub>3</sub> (mW)                |                     |                     |
| Calculado |                     |                     |                     |                                    |                     |                     |

## 2.3. Associação de Resistores em Paralelo

#### 2.3.1. Materiais

Prof. Jessen Vidal

- Multímetro;
- Fonte de alimentação DC;
- Ponta de prova e conector banana;
- Protoboard;
- Fios para conexões;
- Resistores:  $680 \Omega e 910 \Omega$ ;

## 2.3.2. Procedimento

1) Monte o circuito da Figura 3. Meça e anote na Tabela 3 a resistência equivalente entre os pontos A e B;



Figura 3 - Associação de resistores em paralelo





**Tabela 3 -** Resistencia equivalente de uma associação em paralelo

|           | Resistencia Equivalente $R_T(\Omega)$ |
|-----------|---------------------------------------|
| Calculado |                                       |
| Medido    |                                       |

2) Ajuste a fonte de tensão 9 V e alimente o circuito, conforme mostra a Figura 4;



Figura 4 - Circuito de associação de resistores em paralelo

3) Meça as correntes em cada ponto do circuito, a tensão em cada resistor e anote os resultados na Tabela 4.

Tabela 4 - Associação de resistores em série

|           | $V_F(V)$            | $V_1(V)$            | $V_2(V)$            | I <sub>A</sub> (mA) | I <sub>B</sub> (mA) |
|-----------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Calculado | 9,0                 |                     |                     |                     |                     |
| Medido    |                     |                     |                     |                     |                     |
| Potências | P <sub>F</sub> (mW) | P <sub>1</sub> (mW) | P <sub>2</sub> (mW) |                     |                     |
| Calculado |                     |                     |                     |                     |                     |

# 3) REFERENCIAS BIBLIOGRÁFICAS

 Adaptado do roteiro do Professor Leônidas Melo, elaborado para a disciplina Eletricidade do curso de Projetos de Estruturas Aeronáuticas na FATEC – São José dos Campos.