

08/25/98
J696

LAW OFFICES

SUGHRUE, MION, ZINN, MACPEAK & SEAS, PLLC

2100 PENNSYLVANIA AVENUE, N.W.
WASHINGTON, D.C. 20037-3202
TELEPHONE (202) 293-7060
FACSIMILE (202) 293-7860

CALIFORNIA OFFICE
1001 CAMINO REAL
SUITE 100
SAN JUAN CAYUCOS, CA 94025
TELEPHONE (650) 325-5800
FACSIMILE (650) 325-6606

BOX: PATENT APPLICATION
Assistant Commissioner for Patents
Washington, D.C. 20231

August 25, 1998

JC:618 U.S. PTO
09/139330
08/25/98

JAPAN OFFICE
TOEI NISHI SHIMBASHI BLDG. 4F
13-5 NISHI SHIMBASHI 1-CHOME
MINATO-KU, TOKYO 105, JAPAN
TELEPHONE (03) 3503-3760
FACSIMILE (03) 3503-3756

Re: Application of Koichi SAKAMOTO
**SYSTEM FOR AND METHOD OF PRINTING IMAGE ACCORDING TO CONTROLLED STATE OF
USER MONITOR**
Our Reference: Q50138

Dear Sir:

Attached hereto is the application identified above including the specification, claims, executed Declaration and Power of Attorney, eleven (11) sheets of drawings, one (1) priority document, Information Disclosure Statement, PTO Form 1449 with references, executed Assignment and PTO Form 1595.

The Government filing fee is calculated as follows:

Total Claims	19 - 20 =	0 x \$22 =	\$ 000.00
Independent Claims	2 - 3 =	0 x \$82 =	\$ 000.00
Base Filing Fee	(\$790.00)		\$ 790.00
Multiple Dep. Claim Fee	(\$270.00)		\$ 000.00
TOTAL FILING FEE			\$ 790.00
Recordation of Assignment Fee			\$ 40.00
TOTAL U.S. GOVERNMENT FEE			\$ 830.00

Checks for the statutory filing fee of \$ 790.00 and Assignment recordation fee of \$ 40.00 are attached. You are also directed and authorized to charge or credit any difference or overpayment to Deposit Account No. 19-4880. The Commissioner is hereby authorized to charge any fees under 37 C.F.R. 1.16 and 1.17 and any petitions for extension of time under 37 C.F.R. 1.136 which may be required during the entire pendency of the application to Deposit Account No. 19-4880. A duplicate copy of this transmittal letter is attached.

Priority is claimed from:

Japanese Patent Application

233415/1997

Filing Date

August 29, 1997

Respectfully submitted,
SUGHRUE, MION, ZINN, MACPEAK & SEAS
Attorneys for Applicant(s)

By *Darryl Mexic*
Darryl Mexic
Registration No. 23,063

DM:rtw

065280-D333160

TO ALL WHOM IT MAY CONCERN:

BE IT KNOWN THAT I, KOICHI SAKAMOTO, residing in Asaka-shi, Saitama, Japan, a citizen of Japan, have invented certain new and useful improvements in SYSTEM FOR AND METHOD OF PRINTING IMAGE ACCORDING TO CONTROLLED STATE OF USER MONITOR of which the following is a specification.

1 SYSTEM FOR AND METHOD OF PRINTING IMAGE
ACCORDING TO CONTROLLED STATE OF USER MONITOR

5 BACKGROUND OF THE INVENTION

5 Field of the Invention

The present invention relates to an image print system and an image print method, and more particularly to an image print system and an image print method which are preferably applied for printing at a server image data that are transmitted from any multiple users to the server through a telecommunications network such as the Internet.

10 Description of the Background Art

15 Recently, digital image pickup devices such as electronic still cameras have been spreading which can store and output picked-up images in the form of digital image data. The image data produced from such image pickup devices can be processed and edited by a processor like a personal computer. The image data provided in a processor can be edited to desired images as being viewed on a display device such as a CRT (cathode-ray tube), and the image data representing an edited image are supplied to a printer, e.g. a high resolution printer, to be printed, for example.

20 Since there are a lot of types of image pickup devices, printers and display devices with various characteristics, the processors must meet various demands of these device types so as to achieve image processings and reproduce images as desired by the users.

1 Conventional color processing systems or
methods for handling such digital images are proposed,
for example, in Japanese patent laid-open publication
Nos. 54176/1994 and 320770/1996. The '176 publication
5 discloses a technique that computes parameters for
mapping image data from an input device like a scanner
onto the color space of a computer and parameters for
mapping image data fed from the computer onto the color
space of an output device like a printer, and supplies
10 the resultant parameters to a device driver, which
in turn transforms the image data in its entirety.
This enables the image data to be processed with
reference to the standard color space independently of
an application.

15

The '770 publication proposes a system comprising image input devices and image output devices such as a printer, which are selectively connected to an image processor through a general purpose interface, wherein image input devices are set with image processing data which match the image output characteristics of the image output devices, and the image processor selects the image processing data which can be used by the image input devices and match the image output device in use. This makes it possible to connect various types of image input devices and image output devices, and to obtain images in a picture quality associated with the characteristics of those devices.

20

30

The foregoing conventional techniques, however, have a problem in that they cannot implement accurate color or gradation reproduction unless the

1 input and output devices are placed in a default state,
that is, in a standard condition. For example, the
'176 publication assumes, when printing a color image
processed by the computer, that its monitor and printer
5 are calibrated in advance in a predetermined method so
that the printed result will agree with the image as
viewed on the monitor. Thus, the monitor must process
the image data, and supplies the printer with the
processed data with its controlled state maintained.

10
15 More specifically, in a system that includes
a lot of client systems and a server, which are
interconnected through a telecommunications network
like the Internet, it depends on the controlled state
of the monitor of the client system whether or not an
image is edited as the user desires. For example, when
the monitor of the user is in its default state, the
server can readily reproduce and print an image as the
user desired only if the server is supplied with
20 information on the monitor used along with the image
data. However, if the user sets the intensity of the
monitor at its higher level, and requests the server to
print the image in its darker tone, then the actual
print becomes darker than the user expected during its
25 editing, resulting in an undesired printed picture.

SUMMARY OF THE INVENTION

30 It is therefore an object of the present
invention to solve the problem of the conventional
techniques, thereby providing an image print system and
a method capable of reproducing images accurately
according to the controlled state of a user's display
device, thereby producing printed pictures as the user

1 desires.

According to an aspect of the present invention, there is provided an image print system comprising: a first processor for receiving an original image data representing an original image of an object from an image pickup device picking up the original image, and processing the original image data, the first processor including a display device for displaying an image based on the original image data for the confirmation of the image; and a second processor connected with a printer for receiving the original image data from the first processor, performing a print processing on the original image data, and supplying the printer with image data obtained in the print processing. The first processor includes: a display processor for displaying a reproduced image, which represents an image to be printed, on the display device in accordance with the original image data, and for displaying on the display device a reference image for the detection of a controlled state of a screen of the display device; and a data transmitter for receiving, from the image pickup device, reference image data which are produced by the image pickup device capturing the reference image displayed on the display device, and for transmitting the reference image data and the original image data. The second processor receives the reference image data sent from the first processor, restores, using the reference image data received, a display state of the reproduced image displayed on the display device, generates print image data representing a print image from image data associated with the

1 restored display state, and supplies the printer with
the print image data.

5 The image print system may advantageously
comprise a client-server system interconnecting the
first processor and the second processor by a
communication line. The display processor may display
on the display device the reproduced image in a
gradation matching to a gradation of the printer
10 connected to the second processor.

15 The display processor may receive information
representing the gradation of the printer from the
second processor over the communication line, and may
display on the display device the reproduced image in
the gradation provided by the information received.

20 The display processor may be provided with
information on the gradation of the printer through a
storage medium, and may display on the display device
the reproduced image in the gradation obtained from the
information provided through the storage medium.

25 The data transmitter may transmit to the
second processor information on device types of the
display device and the image pickup device, besides the
original image data and the reference image data.

30 The second processor may comprise a data
transformer for sequentially executing a processing
which includes a first transformation of transforming
the original image data in accordance with
characteristics associated with the device type of the

1 image pickup device, a second transformation of
transforming the transformed data in the first
transformation in accordance with characteristics
associated with the device type of the display device,
5 a third transformation of transforming the transformed
data in the second transformation in accordance with
the display state provided by the reference image data,
and a fourth transformation of transforming the
transformed data in the third transformation in
10 accordance with characteristics of the printer.

The first processor may further comprise an
editor for editing the original image into a desired
image, and may transmit to the second data processor
15 information which the editor generates together with
the original image data.

According to another aspect of the present
invention, there is provided a method of printing an
image, comprising the steps of: capturing an original
image by an image pickup device; displaying the
original image captured by the image pickup device on a
display device as a reproduced image; displaying on a
screen of the display device a reference image for
25 detection of a controlled state of the display device;
capturing the reference image displayed on the screen
by the image pickup device to produce reference image
data; estimating a displayed state of the reproduced
image displayed on the display device from the
reference image data; restoring print image data
30 representing a print image associated with the
reproduced image on the basis of the estimated,
displayed state of the reproduced image to be displayed

1 on a server monitor; performing a printing processing
on the print image data; and printing an image
represented by the print image data performed with the
printing processing.

5

In the method, the reference image may
advantageously comprise a picture pattern representing
gradation levels.

10 The image print method may further comprise
the step of calculating a reflectivity of the screen of
the display device from information on a device type of
the image pickup device and the reference image data.

15 The image print method may further comprise
the step of calculating, from information on a device
type of the display device and the reflectivity,
transformation coefficients for modifying a gradation
of the original image into a gradation of the display
device.

20
25 The image print method may further comprise a
first transformation step of transforming, in
accordance with the information on the device type of
the image pickup device, the original image data
produced by the image pickup device into image data
representing luminance values of pixels.

30 The image print method may further comprise a
second transformation step of transforming, in
accordance with the information on the device type of
the display device, image data transformed in the first
transformation step into the reproduced image to be

1 displayed on the display device.

5 The image print method may further comprise a third transformation step of transforming, in accordance with gradation characteristics of the display device, image data transformed in the second transformation step into the reproduced image to be displayed on the display unit.

10 The image print method may further comprise a fourth transformation step of transforming, in accordance with the information on the device type of the image pickup device, the image data transformed in the third transformation step into image data representing luminance values of pixels.

15 The image print method may further comprise a fifth transformation step of transforming image data transformed in the fourth transformation step into image data which match reproduction gradation characteristics of the server monitor.

20 The image print method may further comprise a sixth transformation step of transforming image data transformed in the fifth transformation step into image data with a gradation matching a gradation of a printer.

25 The image print method may further comprise the step of editing the original image produced by the image pickup device into a desired image, wherein the print image data are edited using information obtained during the step of editing.

1 BRIEF DESCRIPTION OF THE DRAWINGS

The objects and features of the present invention will become more apparent from consideration of the following detailed description taken in conjunction with the accompanying drawings in which:

5 FIG. 1 schematically shows an embodiment of an electronic image print system in accordance with the present invention;

10 FIG. 2 is a schematic block diagram showing the major portion of a client system of the embodiment shown in FIG. 1;

15 FIG. 3 is a schematic block diagram, like FIG. 2, showing the major portion of a server of the embodiment shown in FIG. 1;

20 FIG. 4 schematically illustrates an example of a reference image applied to the illustrative embodiment;

25 FIG. 5 plots an example of the gamma characteristics of a display device in the embodiment;

30 FIG. 6 plots an example of the image pickup characteristics of an electronic still camera in the embodiment;

35 FIG. 7 is a graph, similar to FIG. 5, useful for understanding a gradation modification in the display device of the embodiment;

40 FIG. 8 is a schematic block diagram useful for understanding data transformations in a server of the embodiment; and

45 FIGS. 9-12 show a control flow implementing a print method applied to the embodiment.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to FIG. 1 showing an embodiment

1 of an image print system in accordance with the present
invention, the image print system functions as an image
editor system that is adapted to receive original image
data representing an image captured by a digital image
5 pickup device such as an electronic digital still
camera (DSC) 10, supply the original image data to a
client system 30 connected with a telecommunications
network such as the Internet 20, and transmit original
image data edited by the client system 30 to a server
10 50 to which a high resolution printer 40 is connected,
thereby printing out a picture represented by the
edited original image data. In the instant embodiment,
the server 50 may advantageously be installed in a
photofinishing laboratory, called a photo lab, and
15 functions as a photograph printer system which is
adapted to accept print requests from various
customers, and print their picked-up images into
printed pictures to hand them to the customers.

20 More specifically, the client system 30
consists of an information processor system such as a
personal computer (PC) including a communication device
accessible to the Internet 20, and functions as an
image editor that is adapted to display on a display
25 device 300 like a CRT (cathode-ray tube) or a liquid
crystal display an image picked up by the electronic
digital still camera 10, and edit the picked-up image
into a desired form of image. In particular, the
client system 30 in the present embodiment edits the
30 image by using image print application program
sequences downloaded from the server 50 over the
Internet 20, reproduces the edited image on the display
device 300, and transmits to the server 50 the edited

1 original image data representative of the edited image.
As shown in a block diagram of FIG. 2, the client
system 30 of the embodiment generally comprises an
image data input subsection 310, a display processor
5 320, an image editor 330 and a data transmitter 340,
for example.

Referring to FIG. 2, the image data input
subsection 310 functions as an input interface that is
10 connected to the digital output of the electronic still
camera 10 to receive the original image data of an
image of an object captured in advance by the camera
10. The image data input subsection 310 includes an
input interface compatible with an input system such as
15 a serial input, e.g. RS-232C, and a storage medium,
e.g. a PC card or the like. It is preferable that the
client system 30 acquires, besides the original image
data, information representing the device type of the
electronic still camera 10 in use. The original image
20 data are obtained from the electronic still camera 10,
for example, by quantizing on a pixel-by-pixel basis
the intensity of imagewise light sensed by an image
pickup device such as a CCD (charge-coupled device) and
performing on resultant pixel data image processings
25 such as gamma correction and white balance adjustment
in accordance with the characteristics of the pixel
data thus obtained. The original image data are in the
form of digital data consisting of a predetermined
number of bits, and represented by primary colors R, G
30 and B (red, green and blue, respectively), for example.

The display processor 320 performs
processings such as the gamma correction on the

1 original image data supplied from the image data input
2 subsection 310 and on the image data under editing in
3 accordance with the characteristics of the display
4 device 300. In the illustrative embodiment, the
5 display processor 320 receives from the server 50 a
6 reference image of a predetermined pattern, and
7 displays the reference image on the display device 300
8 to determine the operation state, or the controlled
9 condition, of the display device 300. It is preferable
10 that the reference image is composed of rectangular,
11 picture patterns P representing a gradation in a gray
12 scale as shown in FIG. 4. In the present embodiment,
13 the rectangular patterns P are enclosed by a reference
14 frame Q in the form of lattice for image pickup. The
15 reference image displayed on the display device 300 is
16 also taken by the electronic still camera 10 that is
17 used to photograph the image to be printed, and is
18 brought into the client system 30 in the same manner as
19 the original image data to be printed.

20 In this connection, the contrast, brightness
21 and the like characteristics of the display device 300
22 can be freely set up with its control pad, not shown,
23 so that a user can carry out desired adjustments in
24 accordance with luminous or environment and his or her
25 visual acuity. Thus, the controlled state may vary
26 from user to user. In the instant embodiment, the
27 reference image including the gradation patterns P is
28 displayed on the screen of the display device 300, and
29 taken by the camera 10 in order to determine the
30 controlled state of the display device 300 from the
reference image data thus obtained by taking the
gradation patterns P. This makes it possible to

1 determine the operation state of the display device 300
such as its output light intensity or brightness.

5 Returning to FIG. 2, the image editor 330 is
a processor circuit which is adapted to edit an image
displayed on the display device 300 into a desired form
of image in response to the operation of the user. The
editor 330 reproduces a print image by using the
application program sequences provided from the server
10 50, and supplies the data transmitter 340 with
resultant image data representing that reproduced
image. The application program in the embodiment
executes, after downloaded, processings which include
selection of the device types of the monitor 300 and
15 electronic still camera 10 in use, display of the
reference image by the display processor 320, selection
of the luminous conditions during the image pickup of
the reference image, reception of the reference image
data, and reproduction, display and editing of the
20 image to be printed, etc. The selection of the
luminous or lighting conditions includes information on
a light source for lighting during photographing, such
as daylight, a stroboscope, a fluorescent lamp, to
establish the reference white of the electronic still
25 camera. The display of the reproduced image to be
printed includes information on tonal levels which are
reproduced by the high resolution printer 40 of that
device type connected to the server 50, and in
accordance with which the image data supplied from the
30 electronic still camera 10 are visualized after having
transformed.

1 The data transmitter 340 is adapted to
2 transfer the edited original image data processed by
3 the image editor 330 to the server 50 over the
4 Internet 20. The transmitter 340 functions in the
5 present embodiment as a file transfer circuit for
6 sequentially forming into suitable files the original
7 image data fed from the electronic still camera 10
8 reference image data taken by the electronic still
9 camera 10 for determining the controlled state of the
10 display device, luminous conditions encountered at the
11 time when the reference image is shot, information on
12 the device types of the monitor and electronic still
13 camera, and editing information.

15 The server 50 in the instant embodiment is a
16 host processor that is adapted to receive accesses
17 from a variety of client systems 30 over the Internet
18 20, and execute appropriate processings for specific
19 clients in response to their requests. The server 50
20 functions as a print processor for printing, with the
21 high resolution printer 40 connected to it, pictures
22 based on the edited original image data received from
23 each of the client systems 30 on the Internet 20. In
24 particular, in the present embodiment, the server 50
25 also serves as a data processor which processes the
26 edited original image data, associated with the user's
27 edited image, in accordance with the reference image
28 data obtained by photographing the reference image
29 displayed on the display device 300 of a specific
30 client system 30, such that the resultant image will be
appropriately reproduced in accordance with the
displayed state of the original image data on the
display device 300, and then supplies the resultant

1 processed data to the high resolution printer 40 for
printing. As shown in the functional block diagram of
FIG. 3, the server 50 generally comprises a
communication processor 510, a data analyzer 520, a
5 data transformer 530 and a print data output subsection
540, for example.

The communication processor 510 includes a
communication controller for forwarding and receiving
10 information to and from the client systems 30 over the
Internet 20. The processor 510 serves as a transmitter
and receiver for transmitting the application program
sequences in response to the access from the client
systems 30, and receives data of files associated with
15 the print images processed by the client systems 30.
The files received are supplied to the data analyzer
520 and data transformer 530.

The data analyzer 520 is adapted to extract
20 from the files, which are received from the respective
client systems 30 via the communication processor 510,
the reference image data representing the reference
image which is displayed on the display device 300 and
taken by the electronic still camera 10 of a specific
25 client, and analyzes the display condition on the
display device 300. The data analyzer 520 functions
in the present embodiment as a coefficient calculator
that includes, for respective device types of the
electronic still cameras 10 and display devices 300, a
30 device type information table defining the
characteristics of those devices. The data analyzer
520 is adapted to estimate the controlled state of the
display device 300 of a specific user with reference to

1 the table and reference image data, and calculate the
transformation coefficients, in accordance with which
the edited original image data are transformed into the
data to be printed. It is preferable that the device
5 type information table includes, for a specific device
type, data representative of characteristics such as
the reference white, chromaticity coefficients of
specific colors, and the ICC (International Color
Consortium) profile including the gamma character-
10 istics, in the embodiment.

For example, as shown in FIG. 5, the output
light intensity of the display device 300 on the
vertical axis is determined by the gamma
15 characteristic of the display device 300 against the
normalized values of given R, G and B data, that is,
the gradation levels on the horizontal axis.
Generally, the relationships between the output light
intensity V and a voltage v applied to an indicator
20 device such as a CRT of the monitor in response to the
gradation level can be represented by the following
expression (1).

$$V = Av^\gamma \quad (1)$$

25 where A is a normalizing constant and γ is a gamma
coefficient, in which the logarithm of the output light
intensity V corresponds to the reflectivity of the
display device 300. In the instant embodiment, the
30 reflectivity on the screen of the display device 300 in
use is obtained from the luminous environment around
the display device 300 and the levels of the gradation
patterns P of the reference image which are obtained by

1 shooting the reference image displayed on the display
device 300 by the electronic still camera 10 of the
user. In FIG. 6, in which the gamma characteristics
of the electronic still camera 10 are exemplified, the
5 horizontal axis represents the light input
corresponding to the scene reflectivity of the monitor
screen, and the vertical axis represents the camera
output corresponding to the gradation levels of the
reference image data. Thus, as shown in FIG. 6, the
10 output light intensity of the monitor corresponding to
the scene reflectivity represented on the horizontal
axis can be obtained from the reference image data,
that is, the output of the electronic still camera 10
represented on the vertical axis. Afterward,
15 transformation coefficients between the default state
601 and the actual operation state 603 of the display
device 300 can be obtained as shown in FIG. 7, and the
transformation coefficients are supplied to the data
transformer 530 to form a look-up table (LUT).

20 The data transformer 530 is a printing
processor adapted to transform the edited original
image data to be printed which are received from the
client system 30 into image data with the gradation
levels corresponding to the display state of the user
25 display device 300, and carries out processings for
printing the transformed data accordingly. In the
illustrative embodiment, the transformer 530 transforms
the R, G and B image data representing the edited
original image data in accordance with the image
sensing characteristics of the electronic still camera
30 10 employed by the user, the default characteristics of
the display device 300, and the transformation

1 coefficients supplied from the data analyzer 520,
thereby reproducing the object image data to be printed.

5 More specifically, the original image data
output from the electronic still camera 10 are
sequentially subjected to the following, first to
fourth transformations 611-614, as schematically shown
in FIG. 8:

10 (1) First transformation 611:

10 The R, G and B data (original image data) 617
output from the electronic still camera 10 are
transformed into the tristimulus X, Y and Z values 619
through linear R, G and B data 621, using the reference
white given by the luminous environment and the gamma
15 characteristics provided by the ICC profile, for
example, in the device type information table of the
electronic still camera 10.

15 (2) Second transformation 612:

20 The tristimulus X, Y and Z values 619 are
transformed into the R, G and B data 623 of the display
device 300 in the default state, using the gamma
characteristics and reference white provided by the ICC
profile of the display device 300, for example.

25 (3) Third transformation 613:

25 The R, G and B data 623 of the display device
300 in the default state are transformed into the R, G
and B data 625 of the display device 300 in the current
controlled state using the transformation coefficients
supplied from the data analyzer 520.

30 (4) Fourth transformation 614:

30 The R, G and B data 625 of the display device
300 in the current controlled state are transformed
into the tristimulus X, Y and Z values 627 using the

1 gamma characteristics and reference white provided by
the ICC profile of the display device 300, for example,
and the tristimulus X, Y and Z values 627 are further
transformed into the R, G and B data 629 of a server
5 monitor 60, FIG. 1, corresponding to the
characteristics of the printer 40.

Thus, the transformation between the
tristimulus X, Y and Z values and the R, G and B data
10 are carried out using the reference white, primary
color chromaticity coefficients and gamma character-
istics of the input and output devices. If the device
types are not selected, or their characteristics are
not provided in the device type information table, the
15 transformations can be carried out using the Z
transform based on the CIE D65 reference white, the
ITU-R BT.709 primary color chromaticity coefficients,
and the ITU-R BT.709 gamma characteristics.

20 In the present embodiment, the R, G and B
data obtained at the fourth transformation are further
transformed into the tone levels of the printer 40,
followed by adding the user editing information, by
transforming into the data that can be handled by the
25 printer 40, and by supplying to the printer 40 through
the print data output subsection 540.

Here, the transformation of the tristimulus
values X, Y and Z to the primary colors R, G and B of
30 the display device 300 can be performed by a matrix
transformation given by the following expression (2).

1

$$(B) \begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \quad (2)$$

5 where B is a square matrix of order three, and its entries are obtained by the following procedure. First, assume that the tristimulus values X, Y and Z of the primary colors R, G and B are represented as follows.

10

Tristimulus values of R: XR, YR and ZR

Tristimulus values of G: XG, YG and ZG

Tristimulus values of B: XB, YB and ZB

15

When these primary colors become maximum, their tristimulus data (x_w , y_w , z_w) are each represented at mixed ratios given by the following expressions (3), (4) and (5).

20

$$a_r x_r + a_g x_g + a_b x_b = x_w \quad (3)$$

$$a_r y_r + a_g y_g + a_b y_b = y_w \quad (4)$$

$$a_r z_r + a_g z_g + a_b z_b = z_w \quad (5)$$

25

Normalizing those expressions by y_w gives the following expressions (6), (7) and (8).

$$a_r / y_w x_r + a_g / y_w x_g + a_b / y_w x_b = x_w / y_w \quad (6)$$

$$a_r / y_w y_r + a_g / y_w y_g + a_b / y_w y_b = 1 \quad (7)$$

$$a_r / y_w z_r + a_g / y_w z_g + a_b / y_w z_b = z_w / y_w \quad (8)$$

30

Replacing the normalized coefficients (a_r / y_w , a_g / y_w , a_b / y_w) with (a_r' , a_g' , a_b'), the following expression (9) is obtained.

$$1 \quad \begin{bmatrix} x_r & x_g & x_b \\ y_r & y_g & y_b \\ z_r & z_g & z_b \end{bmatrix} \begin{bmatrix} a_r' \\ a_g' \\ a_b' \end{bmatrix} = \begin{bmatrix} x_w / Y_w \\ 1 \\ z_w / Y_w \end{bmatrix} \quad (9)$$

5 Thus, the relationships between the R, G and B and X, Y
and Z of a given pixel are given by the following
expression (10).

$$10 \quad \begin{bmatrix} a_r' x_r & a_g' x_g & a_b' x_b \\ a_r' y_r & a_g' y_g & a_b' y_b \\ a_r' z_r & a_g' z_g & a_b' z_b \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \quad (10)$$

The values R, G and B obtained here are each
normalized to the white value at the maximum luminance.
15 These values undergo the gamma correction of the
display device, and the multiplication by a value
corresponding to the number of bits, such as 255 in the
case of eight bits, thereby obtaining the object R, G
and B data.

20 Returning to FIG. 1, the high resolution
printer 40 is adapted for printing a picture based on
the image data processed by the server 50. For
example, a thermal transfer type or thermal sublimative
25 type full-color printer may be preferably applied.

In operation, with reference to the
flowcharts of FIGS. 9 - 12, the user first operates the
client system 30, and makes an access to the Internet
30 20 by using its telecommunications function. Thus, the
client system 30 is connected to the server 50 through
the Internet 20 at step S10, and downloads from the

1 server 50 the application program sequences for the
image printing, which include the gradation information
for the reproduction involved in printing, at step S12.

5 Subsequently, at step S14, the client system
30 inputs the information on the device type of the
display device 300 in use in accordance with the
instructions of the application program. The system 30
also inputs at step S16 the information on the device
10 type of the electronic still camera (ESC) 10 for
providing the original image to be printed. It is
preferable with the instant embodiment that the client
system 30 is adapted to obtain the device type
information on the electronic still camera 10 at the
time when the electronic still camera 10 is connected
15 to the client system 30. The device type information
input at steps S14 and S16 is stored afterward by the
data transmitter 340 together with other information
into a file for the transformation information.

20 At the next step S18, the display processor
320 has the display device 300 display the reference
image including the pictorial patterns P shown in FIG.
4, in response to the instructions of the application
25 program provided through the image editor 330. Then,
the user photographs with the electronic still camera
10 the reference image displayed on the display device
300 at step S20, and inputs the reference image data
and the information representing the lighting
30 conditions at that time from the camera 10 into the
client system 30, at step S22. The reference image data
are once stored in a RAM or hard disk of the client
system 30 through the image data input subsection 310,

1 and afterward supplied to the data transmitter 340
together with the edited original image data to be
printed, so that they are formed into a file.

5 At the following step S24, the client system
30 receives the original image data from the electronic
still camera 10, transforms it, in response to the
instructions of the application program, into the image
data with the gradation of printing, and displays the
10 transformed image on the display device 300 at step
S26. In the course of this, the original image data of
the captured original image are supplied to the data
transmitter 340 to be formed into the file.

15 Watching the image displayed on the display
device 300, the user edits at step S28 the displayed
image by manipulating the client system 30 to carry out
processings such as color correction on the displayed
image. In turn, the image editor 330 sequentially
20 generates in response to the instructions of the
application program the editing information about the
image edited in accordance with the manipulations of
the user, and supplies the information to the data
transmitter 340.

25 Completing the image editing at step S30, the
user commands the file transfer at step S32. In
response, at step S34, the data transmitter 340
sequentially transfers to the server 50 over the
30 Internet 20 the files containing the edited original
image data generated from the original image data, the
reference image data and luminous information, the
information on the device types of the display device

1 300 and electronic still camera 10, and editing
information.

5 Subsequently, proceeding to step S50, FIG.
10, the server 50 extracts, from the files that are transferred from the client system 30 and received by the communication processor 510, the transformation information J including the device type information and editing information, the reference image data K obtained by photographing the reference image, and the edited original image data L associated with the original image, and supplies them to the data analyzer 520 and data transformer 530.

15 In response to this, the data analyzer 520 extracts from the transformation information J the device type information on the electronic still camera 10 at step S52, and prepares in accordance with the information a device type information table such as the
20 ICC profile including the imaging characteristics (gamma characteristics) of the electronic still camera 10 employed by the user. Then, at step S54, the data analyzer 520 extracts from the reference image data K the gradation values of the gray portions in the gray scale patterns P shown in FIG. 4. Retrieving the
25 gradation values, the data analyzer 520 sequentially calculates at step S56, from those values and the image sensor characteristics given by the ICC profile, the reflectivities on the monitor screen of the display device 300 in the very state in which the user is operating it, by the curve exemplarily shown in FIG. 6.

At the successive step S58, the data

1 analyzer 520 extracts from the transformation
information J the device type information on the user
display device 300, and prepares in accordance with the
information the ICC profile that will provide the
5 gradation characteristics (gamma characteristics) of
the display device 300 in the default state. Thus, the
data analyzer 520 sequentially obtains at step S60 the
transformation coefficients for transforming the image
data to be printed, by comparing the gradation
10 characteristics of the display device 300 in the
default with those of the display device 300 in the
actual operating state, which are obtained from the
reflectivities calculated at step S56. The
transformation coefficients obtained are supplied to
15 the data transformer 530 to be established in the form
of lookup table.

Receiving the image data of the edited
original image from the communication processor 510,
20 the data transformer 530 once transforms at step S62
the R, G and B data corresponding to the primary colors
of the original image into the tristimulus values X, Y
and Z using the ICC profile of the electronic still
camera 10, in the embodiment, prepared in the data
25 analyzer 520. Subsequently, the data transformer 530
transforms at step S64 the tristimulus values X, Y and
Z to the R, G and B data to be displayed on the display
device 300 using its gamma characteristics in the
default state which are given by the ICC profile.

30 At the next step S66, the data transformer
530, referencing the lookup table supplied from the
data analyzer 520, and using the transformation

1 coefficients, sequentially transforms the R, G and B
data of the display device 300 in the default state,
into the R, G and B data of the display device 300 in
the very state in which the user was operating it.
5 The server 50 in turn transforms the edited original
image data corresponding to the original image captured
by the electronic still camera 10 into the image data
that exactly correspond to the image data displayed on
the display device 300 in the user's operating state.

10 At the next step S68, the data transformer
530 transforms the R, G and B data supplied from the
step S66 into the X, Y and Z values in accordance with
the ICC profile of the display device 300. Subsequently,
15 the data transformer 530 further transforms at step
S70 the X, Y and Z values into the R, G and B data of
the server monitor 60 with transformation
characteristics reversal to those of the high
resolution printer 40. Then, the R, G and B data which
20 undergo the processing in accordance with the gradation
levels of the print reproduction, are edited in
accordance with the edit information.

25 The resultant image data are further
subjected to the transformation reversal to the print
reproduction gradation levels, and are printed by the
high resolution printer 40.

30 According to the illustrative embodiment of
the image print system, the original image captured by
the electronic still camera 10 in any of the client
systems 30 is displayed on the display device 300 which
is adjusted by the user's preference, undergoes editing

1 such as color correction on the screen of the display
device 300, and is sent on the Internet 20 to the
server 50 installed in the photofinishing laboratory or
the like. In this connection, the reference image,
5 which is displayed on the screen of the display device
300 in the specific patterns, is also taken by the
electronic still camera 10 that is used to capture the
original image to be printed, and the data representa-
10 tive of picked-up image data are transferred to the
server together with the edited original image data.
Thus, the server 50 can accurately recognize the
controlled state of the display device 300.

In addition, the information on the device
15 types of the electronic still camera 10 and display
device 300 in use is sent to the server 50 which has
the device type information table representing the
characteristics of the employed equipment, such as the
ICC profile. The server 50 can therefore obtain the
20 transformation coefficients by comparing the gradation
characteristics of the display device 300 in its
default state with those of the display device 300 in
its current operative state using the reference image
data and the device type information, so that the
server 50 can reproduce the original image from the
25 edited original image data sent from the client system
30 in the exact state in which the original image is
displayed on the display device 300 of the user. As a
result, the server 50 can effectively reproduce the
original image data which are individually edited on
the display device whose controlled state differs from
30 user to user, in a manner just as the user watches on
the display device.

1 Although the application program sequences
including the reference image data for printing picture
are distributed from the server 50 to each client
system 30 over the Internet 20, they may also be
5 distributed to the client's processors through other
storage or recording media such as a CD-ROM.

10 Besides, although the reference image to be
displayed on the display device 300 consists of the
gray scale patterns P ranging from black to white, the
present invention can employ other patterns which allow
the display device to definitely present how it
displays its gray scale. For example, any patterns
such as electronic color samples that the server
15 recognizes in advance can also be applied.

20 As described above, the image print system in
accordance with the present invention displays the
image, which is acquired by the digital image pickup
device, on a display device in a processor (client
system); displays, when printing the image, which is
confirmed on the display device, by the printer in
another processor (server), the reference image with
a specific picture pattern on the screen of the display
25 device in the client system; picks up the reference
image displayed on the screen of the display device
with the image pickup device that captures the image to
be printed; and transmits to the server the reference
image data together with the image data of the image to
30 be printed. This makes it possible for the server to
accurately recognize the controlled state of the
display device in accordance with the reference image

1 data, to accurately reproduce the image data to be
printed, which is displayed on the screen of the
display device, and to effectively print the desired
image based on the image data. As a result, the sever
5 can accurately reproduce and print the image, which is
sent from any of the multiple user's systems connected
to the Internet, for example, just as that image is
displayed on the display device, independently of the
controlled state of the specific display device.

10

The entire disclosure of Japanese patent
application No. 233415/1997 filed on August 29, 1997
including the specification, claims, accompanying
drawings and abstract of the disclosure is incorporated
15 herein by reference in its entirety.

While the present invention has been
described with reference to the particular
illustrative embodiments, it is not to be restricted by
20 those embodiments. It is to be appreciated that those
skilled in the art can change or modify the embodiments
without departing from the scope and spirit of the
present invention.

25

WHAT IS CLAIMED IS:

- 1 1. An image print system comprising:
 a first processor for receiving original
 image data representing an original image of an object
 and generated by an image pickup device picking up the
 original image, and for processing the original image
 data;
 said first processor comprising a display
 device for displaying an image based on the original
 image data for confirmation of the image; and
- 5 10 a second processor connected with a printer
 for receiving the original image data from said first
 processor, performing a print processing on the
 original image data, and supplying said printer with
 image data obtained in the print processing;
- 15 15 said first processor comprising:
 a display processor for displaying a
 reproduced image, which represents an image to be
 printed, on said display device in accordance with the
 original image data, and for displaying on said display
 device a reference image for detection of a controlled
 state of a screen of said display device; and
- 20 20 a data transmitter for receiving, from said
 image pickup device, reference image data generated
 from said image pickup device capturing the reference
 image displayed on said display device, and for
 transmitting the reference image data together with the
 original image data,
- 25 25 said second processor restoring, using the
 reference image data sent from said first processor, a
 display state of the reproduced image displayed on
 said display device, generating print image data
- 30 30 said second processor restoring, using the
 reference image data sent from said first processor, a
 display state of the reproduced image displayed on
 said display device, generating print image data

representing a print image from image data associated with the restored display state, and supplying said printer with the print image data.

1 2. The image print system in accordance with
claim 1, further comprising a client-server system
interconnecting said first processor to said second
processor by a communication line.

1 3. The image print system in accordance with
claim 2, wherein said display processor displays on
said display device the reproduced image in a first
gradation matching to a second gradation of said
5 printer connected to said second processor.

1 4. The image print system in accordance with
claim 3, wherein said display processor receives
information representing the second gradation from
said second processor over said communication line, and
5 displays on said display device the reproduced image
in the first gradation provided by said information
received.

1 5. The image print system in accordance with
claim 3, wherein said display processor is provided
with information on the second gradation of said
printer through a storage medium, and displays on said
5 display device the reproduced image in the first
gradation obtained from the information provided
through the storage medium.

1 6. The image print system in accordance with
claim 1, wherein said data transmitter transmits to

465280-0366560
said second processor information on device types of
said display device and said image pickup device,
5 besides the original image data and the reference image
data.

1 7. The image print system in accordance with
claim 6, wherein said second processor comprises:

5 a data transformer for executing a first
transformation of transforming the original image data
in accordance with characteristics associated with the
device type of said image pickup device;

10 a second transformer for transforming the data
transformed by said first transformer in accordance
with characteristics associated with the device type of
said display device;

15 a third transformer for transforming the data
transformed by said second transformer in accordance
with the display state provided by the reference image
data; and

15 a fourth transformer for transforming the
data transformed by said third transformer in
accordance with characteristics of said printer.

1 8. The image print system in accordance with
claim 1, wherein said first processor further comprises
an editor for editing the original image into a desired
image, said data transmitter transmitting information
5 generated by said editor to said second data processor
together with the original image data.

1 9. A method of printing an image, comprising
the steps of:

 capturing an original image by an image

pickup device;

5 displaying the original image captured by the
image pickup device on a display device as a
reproduced image;

 displaying on a screen of the display device
a reference image for detection of a controlled state

10 of the display device;

 capturing the reference image displayed on
the screen by the image pickup device to produce
reference image data;

 estimating a displayed state of the

15 reproduced image displayed on the display device from
the reference image data;

 restoring print image data representing a
print image associated with the reproduced image on the
basis of the estimated, displayed state of the

20 reproduced image to be displayed on a server monitor;

 performing a printing processing on the print
image data; and

 printing an image represented by the print
image data performed with the printing processing.

1 10. The method in accordance with claim 9,
wherein the reference image comprises a picture pattern
representing gradation levels.

1 11. The method in accordance with claim 9,
further comprising the step of calculating a
reflectivity of the screen of the display device from
information on a device type of the image pickup
5 device and the reference image data.

1 12. The method in accordance with claim 11,

00000000000000000000000000000000
further comprising the step of calculating, from information on a device type of the display device and the reflectivity, transformation coefficients for modifying a gradation of the original image into a gradation of the display device.

1 13. The method in accordance with claim 12, further comprising a first transformation step of transforming, in accordance with the information on the device type of the image pickup device, the original image data captured by the image pickup device into image data representing luminance values of pixels.

1 14. The method in accordance with claim 13, further comprising a second transformation step of transforming, in accordance with the information on the device type of the display device, image data transformed in the first transformation step into the reproduced image to be displayed on the display device.

1 15. The method in accordance with claim 14, further comprising a third transformation step of transforming, in accordance with gradation characteristics of the display device, image data transformed in the second transformation step into the reproduced image to be displayed on the display device.

1 16. The method in accordance with claim 15, further comprising a fourth transformation step of transforming, in accordance with the information on the device type of the image pickup device, the image data transformed in the third transformation step into image data representing luminance values of pixels.

1 17. The method in accordance with claim 16,
2 further comprising a fifth transformation step of
3 transforming image data that is transformed in said
4 fourth transformation step into image data that matches
5 reproduction gradation characteristics of the server
monitor.

1 18. The method in accordance with claim 17,
further comprising a sixth transformation step of
transforming image data that is transformed in said
fifth transformation step into image data with a
5 gradation matching a gradation of a printer.

1 19. The method in accordance with claim 9,
further comprising the step of editing the original
image captured by the image pickup device into a
desired image.

5 said step of performing the printing processing comprising the step of using information obtained during the step of editing to modify the print image data.

ABSTRACT OF THE DISCLOSURE

An image print system including a client system connected to a server through the Internet. The 5 client system makes an access to the server. In response to the access, the server delivers an application program including a reference image containing a picture pattern for detecting a controlled state of a display device in the client 10 system. The client system displays on the display device the reference image taken by an image pickup device photographing an original image to be printed. Receiving the reference image data and the original 15 image data from the image pickup device, the client system transfers them to the server. The server reproduces, in accordance with the reference image data, the original image data exactly as viewed on the display device, and supplies a printer with image data obtained by adding a print processing to the reproduced 20 image data to be printed out. This enables the original image to be reproduced just as displayed on the display device of any user.

8652810-000633460

Fig. 1

Fig. 2

Fig. 3

Fig. 4

0139336, 018598
365280

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Declaration and Power of Attorney for Patent Application

特許出願宣言書及び委任状

Japanese Language Declaration

日本語宣言書

下記の氏名の発明者として、私は以下の通り宣言します。

私の住所、私書箱、国籍は下記の私の氏名の後に記載され
た通りです。

下記の名称の発明に関して請求範囲に記載され、特許出
願している発明内容について、私が最初かつ唯一の発明者
(下記の氏名が一つの場合)もしくは最初かつ共同発明者であ
ると(下記の名称が複数の場合)信じています。

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as
stated next to my name,

I believe I am the original, first and sole inventor (if only one
name is listed below) or an original, first and joint inventor (if
plural names are listed below) of the subject matter which is
claimed and for which a patent is sought on the invention
entitled

SYSTEM FOR AND METHOD OF PRINTING

IMAGE ACCORDING TO CONTROLLED

STATE OF USER MONITOR

the specification of which is attached hereto unless the
following box is checked:

上記発明の明細書(下記の欄でX印がついていない場合
は、本書に添付)は、

月 日に提出され、米国出願番号または特許協定
条約

国際出願番号を とし、

(該当する場合) に訂正されました。

was filed on _____
as United States Application Number or
PCT International Application Number

and was amended on
(if applicable).

私は、特許請求範囲を含む上記訂正後の明細書を検討
し、内容を理解していることをここに表明します。

I hereby state that I have reviewed and understand the
contents of the above-identified specification, including the
claims, as amended by any amendment referred to above.

私は、連邦規則法典第37編第1条56項に定義されるとおり、
特許資格の有無について重要な情報を開示する義務があるこ
とを認めます。

I acknowledge the duty to disclose information which is
material to patentability as defined in Title 37, Code of
Federal Regulations, Section 1.56.

Japanese Language Declaration

(日本語宣言書)

委任状：私は、下記の発明者として、本出願に関する一切の手続きを米国特許商標局に対して遂行する弁理士又は代理人として、下記のものを指名致します。(弁護士、又は代理人の氏名及び登録番号を明記のこと)

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith (list name and registration number)

John H. Mion, Reg. No. 18,879; Thomas J. Macpeak, Reg. No. 19,292; Robert J. Seas, Jr., Reg. No. 21,092; Darryl Mexic, Reg. No. 23,063; Robert V. Sloan, Reg. No. 22,775; Peter D. Olexy, Reg. No. 24,513; J. Frank Osha, Reg. No. 24,625; Waddell A. Biggart, Reg. No. 24,861; Louis Gubinsky, Reg. No. 24,835; Neil B. Siegel, Reg. No. 25,200; David J. Cushing, Reg. No. 28,703; John R. Inge, Reg. No. 26,916; Joseph J. Ruch, Jr., Reg. No. 26,577; Sheldon I. Landsman, Reg. No. 25,430; Richard C. Turner, Reg. No. 29,710; Howard L. Bernstein, Reg. No. 25,665; Alan J. Kasper, Reg. No. 25,426; Kenneth J. Burchfiel, Reg. No. 31,333; Gordon Kit, Reg. No. 30,764; Susan J. Mack, Reg. No. 30,951; Frank L. Bernstein, Reg. No. 31,484; Mark Boland, Reg. No. 32,197; William H. Mandir, Reg. No. 32,156; Scott M. Daniels, Reg. No. 32,562; Brian W. Hannon, Reg. No. 32,778; Abraham J. Rosner, Reg. No. 33,276; Bruce E. Kramer, Reg. No. 33,725; Paul F. Neils, Reg. No. 33,102 and Brett S. Sylvester, Reg. No. 32,765

書類送付先：

Send Correspondence to:

SUGHRUE, MION, ZINN, MACPEAK & SEAS, PLLC
2100 Pennsylvania Avenue, N.W., Washington, D.C. 20037-3202

直通電話連絡先：(名称及び電話番号)

Direct Telephone Calls to: (name and telephone number)

(202)293-7060

唯一又は第一発明者名	Full name of sole or first inventor Koichi Sakamoto		
発明者の署名	日付	Inventor's signature <i>Koichi Sakamoto</i>	Date August 10, 1998
住所	Residence Asaka-shi, Saitama, Japan		
国籍	Citizenship Japanese		
郵便の宛先	Post office address c/o Fuji Photo Film Co., Ltd., 11-46, Senzui 3-chome, Asaka-shi, Saitama, Japan		
第二共同発明者名(該当する場合)	Full name of second joint inventor, if any		
第二発明者の署名	日付	Second inventor's signature	Date
住所	Residence		
国籍	Citizenship		
郵便の宛先	Post office address		

(第三以降の共同発明者についても同様に記載し、署名をすること (Supply similar information and signature for third and subsequent joint inventors.)