Definition: Let (11,V) be a reproof G. We say that it is irreducible (simple) if the only proper subrepr of V is [0].

Remark: By the definition, the zero vector space is not irreducible.

Lemma: Let (11, V) be a repr of G and dim V=1. Then (T,V) is irreducible.

Proof: Let W&V be a subspace.

Since $\dim_{\mathbb{C}} V = 1$, $\dim_{\mathbb{C}} W = 0$. Therefore, the only proper subrepose of (π, V) is $\{0\}$. π

The following theorem is saying that the irreducible repris are "building blocks" for repris

Theorem. Every repn is a direct sum of irreducible repris.

Proof: Let (TI,V) be a repr of G. Proof by induction.

If $\dim_{\mathbb{C}} V = 1$, this is irreducible and V = V.

Next, assume that dim V=n+1 and V is not irreducible. Then there exists a subrepn [0] \(\forall V \). By Maschke's theorem, we can find another Wo CV such that V= W + Wo and W, Wo are subrepres of (TT, V). Since fost W & V, dim W, dim Wo & n. Then by industion hypothesis, both W. Wo can be written as direct sums of irreducible repris, W= U, 1 U2 1 ... Ur $W_{o} = U_{1}' \oplus U_{2}' \oplus \cdots U_{S}'$

Then $V = W \oplus W_0 = U_1 \oplus \cdots U_r \oplus U_r' \oplus U_2' \oplus \cdots U_s'$.
Then by induction, we complete the proof.

```
Observation. (A creterion for an irreduide repr)
Let (\pi,V) be a repri for G. Then (\pi,V) is irreducible
       if and only if, for any 0 \neq v \in V,
                    V = Spon_{\mathcal{C}} \{ \pi 19 \} v : 9 \in G \}
     Let v \in V nonzero. Set
          W(v) = \text{span}_{G} \{ \pi(g) \ v : g \in G \}
     This is a subrepr of V, since it is stable under G.
(=>) If (\pi, V) is irreducible, then W(v) = V or W(v) = \{0\}
        Since V \neq 0, \pi(9) V \neq 0 (\pi(9) : V \rightarrow V is an isomorphism)
      Therefore, W(v) \neq [0] \Rightarrow W(v) = V.
(\Leftarrow) If (\pi,V) is not irreduible, then
           V= V, 1 V2 1 --- Vr with each Vi îrreducible.
     Take v \in V_1, then W(v) \subseteq V_1
      This contradicts that W(v) = V.
                                                                T
```

Example: let G=Sn and V=C". We defined the standard repri (std, C^n) for S_n . We want to write it as a direct sum of ineducible repns: Recall $C^n = \text{span}_{C} \left[e_1, \dots e_n \right] = e_i = \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix} \rightarrow i - th$ We have tuo subspaces of C": $W_1 = \left\{ \lambda e_1 + \lambda e_2 + \cdots \lambda e_n : \lambda \in \mathbb{C} \right\} = \operatorname{span}_{\mathbb{C}} \left[e_1 + \cdots e_n \right].$ W2 = { \(\lambda \rho_1 + \lambda \rho_2 + \cdots \lambda \ne \rho_1 \). Claim: the standard reprison can be written as the direct sums of irreducible reprison $\mathbb{C}^n = W_1 \oplus W_2$.

We need to show the following things:

(1) W, is stable under Sn.

Then dim W, = 1 => W, is irreducible

(2) W_1 is a vector space and

W_2 = span (\(\epsilon_1 - \epsilon_2 \), \(\epsilon_1 - \epsilon_1 \).

3) W2 is stable under G and W2 is irreduible. We only prove (3): take $w \in W_2$, $w = \lambda_1 e_1 + \cdots + \lambda_n e_n$ with $\lambda_1 + \dots + \lambda_n = 0$. Take $\sigma \in S_n$ $\pi(\sigma) \ w = \ \lambda_1 \ e_{\sigma(1)} + \lambda_2 \ e_{\sigma(2)} + \dots \ \lambda_n \ e_{\sigma(n)}$ $= \lambda_{\sigma_{1}(1)} e_{1} + \lambda_{\sigma_{1}(1)} e_{2} + \dots \lambda_{\sigma_{1}(n)} e_{n}$ $y_{Q_1(1)} + \cdots + y_{Q_n(N)} = y_1 + \cdots + y_N = 0$ $\Rightarrow u(Q) m \in M^{5}$ Next, we show that W2 is irreducible. We use the creterion to show the irreducibility: tale 0+ w ∈ W2, w= 2, e, + 2 e, + ... 2n en. Since $\lambda_1 + \cdots + \lambda_n = 0$ and $w \neq 0$, we can find $\lambda_1 + \lambda_1$. Take $\sigma=(ij)$ W = 1/e, + .. 1/e, + .. 1/e, + .. 1/e, + ... 1/e, π(σ) w= λ,e, + ... λ,e) + λ) e; + ... λnen $\Rightarrow W - \pi(\sigma)W = \left(\lambda_i - \lambda_j\right) \left(e_i - e_j\right) \in W_2.$ $\lambda_i + \lambda_j \Rightarrow e_i - e_j \in W_2$ Take $\sigma' = \begin{pmatrix} i & j & \cdots \\ 1 & 2 & \cdots \end{pmatrix}$

$$\pi(\sigma')$$
 (ei -ej) = $e_1 - e_2 \in W_2$.

Take $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ $\pi(\sigma)$ (e₁ -e₂) = $e_2 - e_3 \in W_2$.

We continute this process and we can

 $e_1 - e_2$, $e_2 - e_3$, $e_3 - e_4 - - - e_n \in W_2$.

This shows span $\{\pi 19\}$ w: $9 \in G\} = W_2$.

By the creterion, W2 is irreducible

· Д.

Operations of representations.

The dual repn

Definition: Let V be a vertor space. The dual space of V is:

 $V^* = \begin{cases} f: V \rightarrow C: f \text{ are linear funtions} \end{cases}$ $= \text{Hom}_{C}(V, C)$

This is a vector space.

Moreover, let $\{v_1, ..., v_n\}$ be a basis for V. Then we can define the linear functions v_1^{\star} , ... v_{2n}^{\star}

```
as follows: for v = a_1 v_1 + a_2 v_2 + \cdots + a_n v_n
         V_{i}^{\star}(a_{1}V_{1}+a_{2}V_{2}+\cdots a_{n}V_{n})=Q_{i}
   Then \{v_1^*, \dots v_n^*\} will be a basis for V^*.
     (This shows: dim V = dim V when dim V < 00.)
     Let (TI, V) be a reprior G.
Definition: The dual repy (TT*, V*) of G is defined
      as follows:
                 \pi^*: G \longrightarrow V^* = Hom_{\mathcal{C}}(V, \mathcal{C})
                       g \mapsto \pi^*(g)
    (\pi^*(g)f)(v) = f(\pi(g^+)v)
 Check: (\pi^*(9_19_1)f)(v) = f(\pi(9_1^+9_1^-)v)
                                    = f(\pi(g_{\lambda}^{-1})\pi(g_{\lambda}^{-1}) \vee)
          \left(\pi^{\star}(g_{1})\pi^{\star}(g_{2})\right)(v) = \pi^{\star}(g_{1})\left(\pi^{\star}(g_{2})\right)(v)
                        = (\pi^*(g_2)f)(\pi(g_1^{-1})\nu) = f(\pi(g_2^{-1})\pi(g_1^{-1})\nu)
     => \pi^*(9,9)f = \pi^*(9,1)\pi^*(9)f \Rightarrow \pi^*(9,9) = \pi^*(9,1)\pi^*(9)
```

The tensor product

Definition: Let V, W be two vector spaces. The tensor product, denoted by V&W, is the vector space of finite formal sums:

 $V \otimes W = \left\{ \sum_{i} \lambda_{i,j} V_{i} \otimes W_{j} : V_{i} \in V, W_{j} \in W \right\}$

Satisfying;

(1) \otimes is a bilinear map, that is: $v_1, v_2 \in V$, $w_1, w_2 \in W$.

 $(a_1V_1 + a_2V_2) \otimes W = a_1(V_1 \otimes W) + a_2(V_2 \otimes W)$

 $V \otimes (b_1 w_1 + b_2 w_2) = V \otimes (b_1 w_1) + V \otimes (b_2 w_2)$ $= b_1 (V \otimes w_1) + b_2 (V \otimes w_2).$

(2) suppose that V has a basis [V,... Vn]

W has a basis [W,... Wm]

then $V \otimes W$ has a basis $\begin{cases} V_i \otimes W_j : 1 \leq i \leq n, 1 \leq j \leq m \end{cases}$ (This shows: $\dim(V \otimes W) = \dim(V) \cdot \dim(W)$)

Definition: Let (TI, VI) and (TI, Vz) be two repris of G. Then the tensor product repn is defined as follows: $\pi_1 \otimes \pi_2 : G \longrightarrow GL(V_1 \otimes V_2)$ $g \mapsto (\pi_i \otimes \pi_i \chi g)$ $(\pi_i \otimes \pi_{\lambda})(g) \Big(\sum_{i} \lambda_{i,j} \ V_i \otimes V_j \Big) = \sum_{i} \lambda_{i,j} \ (\pi_i(g)V_i) \otimes (\pi_{\lambda}(g)V_j)$ Example: Let (π_r, V_1) ; (π_2, V_2) be two repris of G. Hom $(V_1, V_2) = \{ \text{all linear maps} : V_1 \rightarrow V_2 \}$ This is a naturally vector space by defining: $(T_1 + T_2)(v) = T_1(v) + T_2(v)$ $(\lambda T)(v) = \lambda \cdot T(v) = T(\lambda v)$ Then we can make it a G-repn: (TT, Home (4, 1/2) $\widehat{\Pi}: \widehat{\Lambda} \to \text{Hom}_{\widehat{\Gamma}}(V_{1}, V_{2})$ $g \mapsto (T \xrightarrow{\widetilde{\pi}(g)} \pi_{2}(g) \circ T \circ \pi_{1}(g^{-1}))$ Exercise: $(\Pi_1^* \otimes \Pi_2, V_1^* \otimes V_2)$ and $(\Pi_1, Hom_G(V_1, V_2))$ as G-repres.

Symmetric Square and Exterior Square. Let V be a vertor space and we consider VOV. Let (VI, ... Vn) be a basis for V. Then we have an isomorphism 9:V&V -> V&V by: $\theta(v_i \otimes v_j) = v_j \otimes v_i$ (and extend it linearly.) Notice that $\theta^2 = Id$. Then we define: $Sym^{2}(V) = \left\{ Z \in V \otimes V : \Theta(2) = 2 \right\}$ = spom \mathcal{L} $\left\{ V_{i} \otimes V_{j} + V_{j} \otimes V_{i} : i \leq j \right\}$ \Rightarrow dim Sym²(V) = $\frac{N(n+1)}{2}$ $V_{3}(\Lambda) = \left\{ S \in \Lambda \otimes \Lambda : \Theta(S) = -S \right\}$ $= spon_{\mathcal{C}} \left\{ V_{i} \otimes V_{j} - V_{j} \otimes V_{i} \quad i < j \right\}$ \Rightarrow dim $\Lambda^2(V) = \frac{n(n-1)}{2}$

By comparity dimension: $V \otimes V = Sym^2(V) \oplus \Lambda^2(V)$ $\dim = n^2$ $\dim = \frac{\Lambda(n+1)}{2}$ $\dim \frac{n(n-1)}{2}$ $Sym^2(V)$ and $\Lambda^2(V)$ are stable under G. $Sym^2(V)$: the symmetric square repr $\Lambda^2(V)$: the exterior square repr.