REVIEW

- 1. FULL WAVE RECTIFICATION: Using centre tap transformer
 - one diode conducts at a time
 - V rating of diode = 2 V(peak)
- 2 Common Cathode Configuration :- Diode whose Anode potential is maximum will conduct
- 3 Common Anode Configuration :- Diode whose Cathode potential is least will conduct
- 4 Uncontrolled bridge

 2 diodes conduct at a time
 - V rating of diode = peak of input voltage

Single Phase Semiconverter

$$lpha \ to \ \pi \Rightarrow T_1 \ D_2$$
 Conduct $\pi \ to \ \pi + lpha \Rightarrow D_2 \ D_3$ Conduct $\pi + lpha \ to \ 2\pi \Rightarrow D_3 \ T_4$ Conduct $2\pi \ to \ 2\pi + lpha \Rightarrow D_2 \ D_3$ Conduct

$$\gamma \text{ for } T = \pi - \alpha$$

$$\gamma \text{ for } D = \pi + \alpha$$

Case II $\alpha \ to \ \pi \Rightarrow T_1 \ D_2 \quad \text{Conduct}$ $\pi \ to \ \pi + \alpha \Rightarrow T_1 \ D_4 \quad \text{Conduct}$ $\pi + \alpha \ to \ 2\pi \Rightarrow T_3 \ D_4 \quad \text{Conduct}$ $2\pi \ to \ 2\pi + \alpha \Rightarrow T_3 \ D_2 \quad \text{Conduct}$ $\gamma \ for \ T = \pi = \gamma \ for \ D$

$$Av V_0 = \frac{V_m}{\pi} (1 + Cos\alpha)$$
 is always +ve

Instantaneous value of o/p V is either +ve or 0

Displacement Factor =
$$Cos\left(-\frac{\alpha}{2}\right)$$

I/p Line voltage is used to turn off the thyristor
⇒LINE COMMUTATED CONVERTER

R-L-E Load:

Load current is continuous

$$\alpha_{\min} = 0$$

When $T_1 \& D_2$ are conducting

$$V_{i} = Ri + L\frac{di}{dt} + E$$

$$\frac{di}{dt} = \frac{V_{i} - E - Ri}{L}$$

$$= \frac{V_{i} - E}{L} \quad (If R \to 0)$$

$$\because till \ \omega t = \sin^{-1}\left(\frac{E}{V_i}\right), E > V_i$$

- \Rightarrow i is flowing through ckt=Due to $L\frac{di}{dt}$
- \Rightarrow Though $T_1 \& D_2$ are conducting in the +ve half

$$\Rightarrow \frac{di}{dt}$$
 is -ve

if becomes +ve when
$$\sin^{-1}\left(\frac{E}{V_i}\right) < \omega t < \left(\pi - \sin^{-1}\left(\frac{E}{V_i}\right)\right)$$

if
$$R \rightarrow 0$$

Load I is discontinuous (R-L-E)

- \rightarrow Assume that load I becomes zero after π
- → Also assume that SCR's are triggeredat

$$\alpha > Sin^{-1} \left[\frac{E}{V_m} \right]$$

Recall: If I is continious $\alpha = 0$ (independent of type of Load)

If it is discontinious $\alpha_{\min} = Sin^{-1} \left\lfloor \frac{E}{V_m} \right\rfloor$

- → Depends very much on load
- ightarrow SCR gets F.B at $\omega t = Sin^{-1} \left[\frac{E}{V_m} \right]$.

- : It is triggered at $\alpha > Sin^{-1} \left[\frac{E}{V_m} \right]$???????
- $\rightarrow T_1$ and D_2 start conducting
- $\rightarrow V_0 = V_{in} = V_m Sin \omega t$ fill $\omega t = \pi$

at $\omega t = \pi^+$, $D_3 D_2$ start conducting $V_0 = 0$

Till
$$i=0$$
 at β
$$\to \beta \text{ to } \pi + \alpha \to i_L = 0$$

$$V_0 = E \text{ (If load is } R-L, V_0 = 0)$$

at
$$\pi+lpha$$
, T_4 is triggered $\left(ext{is F.B. at } \pi+Sin^{-1}rac{E}{V_{in}}
ight)$

- DEVICE SHOULD TURN OFF BEFORE IT IS FORWARD BAISED
- OTHERWISE IT WILL NOT TURN OFF
 - COMMUTATION FAILURE

IN CASE I

AT $\omega T = \pi^+, T_1$ IS TURNED OFF BECAUSE DIODE STARTS CONDUCTING

- CASE II
- T_1 CONTINUES TO CONDUCT TILL T_3 IS TRIGGERED T_3 CAN BE TURNED OFF ONLY BY TURNING ON T_1
- \rightarrow IF $\alpha \rightarrow \pi$
- At $\omega t = \pi^+ \to T_3$ GETS FORWARD BAISED
- T_3 SHOULD ATTAIN ITS F.B. CAPABILITY BEFORE $\omega t = \pi^+$
- REQUIRES FINITE TIME
- IF AVAILABLE TIME < THE ABOVE TIME T_3 CONTINUOUS TO CONDUCT
- 1/2 WAVE EFFECT

- 1 If Lis large, find the value of α if the av. value of i=100A
 - \Rightarrow L is large
 - \Rightarrow i is continious
 - $\Rightarrow \alpha_{\min} canbe \underline{0}$

(independent of type of load)

When SCR is ON $V_0 = \overline{V_i}$

Let α be the triggering angle

 \therefore SCR conducts for α to π

At
$$\omega t = \pi^+$$

Freewheeling diode turns on when SCR is off D is ON

$$V_0 = 0$$

Av. value of
$$I = \frac{\text{Av. voltage across } R}{0.01}$$

$$\therefore V_{av} \text{ across } R = 1V$$

(No instantaneous -ve voltage across load)

$$V_{av}$$
 across $L=0$

$$\therefore V_{av} = i_{av}R + E$$

$$\therefore V_{av} = 21$$

$$\therefore V_{av} = \frac{1}{2\pi} \int_{\alpha}^{\pi} V_{m} Sin\omega t \, d\omega t$$

$$21 = \frac{230\sqrt{2}}{2\pi} \left[1 + Cos\alpha \right]$$

$$\therefore \alpha = 53^{\circ}$$

2. For the circuit shown in fig. determine average value of load current for $\alpha = 60^{\circ}$

What is the new value of average current flowing through load if a large 'L' is connected in series with the load

Neglect the device drop

a) R-E Load:

$$\alpha_{\min} = \sin^{-1} \left(\frac{100}{230 * \sqrt{2}} \right) = 18^{0} = 0.1\pi^{c}$$

Minimum value of α can be 18°

But it is triggered at 60°

It will turn off
$$=\pi - \alpha_{\min} = 162^{\circ}$$

$$\Rightarrow 0 \text{ to } 60^{\circ} :- V_{\circ} = E$$

$$60^{\circ} \ to \ 162^{\circ} : - V_0 = V_m \ Sin \ \omega t$$

$$162^{\circ} \ to \ 360 :- V_0 = E$$

∴ Av.line voltage

$$= \frac{1}{\pi} \left[\int_{0}^{\pi/3} E d\omega t + \int_{\pi/3}^{0.9\pi} V_{m} Sin \,\omega t \,d\omega t + \int_{0.9\pi}^{\pi} E \,d\omega t \right]$$

$$=193.45 V$$

$$\therefore \text{Av.value of load current } I_{av} = \frac{193.45 - 100}{10} = 9.345A$$

b With large inductance in series with the load current becomes continious.

$$\alpha = 60^{\circ}$$

Av. value of o/p Voltage =
$$\frac{230\sqrt{2}}{\pi}(1+Cos\alpha)$$
$$= 155 V$$

Av. value of
$$I = \frac{155-100}{10} = 5.5A$$

3.Av. value of $I_L = 1.8A$ Triggering angle is maintained at 110^{0} current seems zero at 50^{0} beyond the

zero crossing.

Sketch the load current and applied average voltage waveform.

$$\alpha_{\min} = Sin^{-1} \left[\frac{E}{V_m} \right]$$

From $\frac{11}{18}$ to π radian $T_1 \& D_2$ conduct

$$V_0 = V_i$$

From
$$\pi$$
 to $\left(\pi + \frac{5}{18}\pi\right)$

 $V_0 = 0 : D_2 \& D_3$ conducting

$$V_{av} = \frac{1}{\pi} \left[\int_{\frac{11\pi}{18}}^{\pi} V_m Sin\omega t \, d\omega t + \int_{\pi}^{\pi + \frac{5\pi}{18}} 0 \, d\omega t + \int_{\pi + \frac{5\pi}{18}}^{\pi + \frac{11\pi}{18}} E \, d\omega t \right]$$

$$=\frac{1}{\pi}\left[230\sqrt{2}\left(\cos\frac{11\pi}{18}+1\right)+\frac{\pi}{3}E\right]$$

$$\therefore V_{av} = 68.12 + \frac{E}{3}$$

$$\therefore I_{av} = \frac{V_{av} - E}{R}, I_{av} = 1.8A, R = 6\Omega$$

$$\therefore E = 85.9V$$

FULL CONTROLLED BRIDGE (Two Quadrant Conf.)

- LOAD CURRENT IS CONSTANT & RIPPLE FREE
- IN THE +VE HALF T_1T_2 ARE F.B. & -VE HALF T_3T_4 ARE F.B.

 T_1T_2 CONTINUE TO CONDUCT TILL T_3T_4 ARE TRIGGERED ($:I_0$ IS CONTINUOUS)

$$\alpha$$
 to $(\pi + \alpha)$

$$V_0 = V_i = V_m \sin \omega t$$

$$i_s = I_L$$

at $\omega t = \pi + \alpha$ $T_3 \& T_4$ ARE TRIGGERED

POT. OF A < POT. OF C

WHEN T_3 STARTS CONDUCTING

$$V_{K} = POT.C$$

- \Rightarrow -VE'V' APPEARS ACROSS T_1
- ⇒ TURNS OFF
- \Rightarrow SIMILARLY T_2 TURNS OFF IN THE LOWER ARM

$$i_s = i_L$$

 γ for each device is π rads

There are 2 pulses per cycle \rightarrow Two pulse converter

$$V_0 = \frac{2}{2\pi} \int_{\alpha}^{\pi+\alpha} V_m \sin \omega t \, d\omega t = \frac{2V_m}{\pi} \cos \alpha$$

- \Rightarrow V_0 +ve For $0<\alpha<\pi/2$ -ve For $\pi/2<\alpha<\pi$
- $\Rightarrow I_L$ is unidirectional
- ⇒2quardrant converter
- \Rightarrow 0< α < π /2:1st quardrant operation Input Power=+ve \rightarrow Converter
- $\Rightarrow \pi/2 < \alpha < \pi : 4^{th}$ quardrant operation

Input Power=-ve→Inversion

$$\theta_1 = \alpha$$

 $Cos\theta_1 = Cos(-\alpha)$ (lagging)

$$I_{rms} of I_{s1} = \frac{2\sqrt{2}}{\pi} I_0$$
 4/1.44pi.

 \overline{RMS} value of $I_s = I_0$

 \rightarrow lagging

