Devoir #5.5: Boni 3%

1. Matrice de changements de base

Sachant que la matrice de changement de base par rotation $\mathbf{R}_z(\theta)$ de θ autour de \hat{z} dans le sens antihoraire (ou trigonométrique) du référentiel est la suivante (comme vue en classe):

$$\mathbf{R}_{z}(\theta) = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix},\tag{1}$$

on peut rapidement écrire les deux matrices pour des rotations autour de \hat{x} et \hat{y} , comme:

$$\mathbf{R}_{x}(\theta) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\theta & \sin\theta\\ 0 & -\sin\theta & \cos\theta \end{pmatrix},\tag{2}$$

$$\mathbf{R}_{y}(\theta) = \begin{pmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{pmatrix}. \tag{3}$$

Obtenez la matrice $\mathbf{R}(\theta, \phi)$ qui permet de faire un changement de base dans un nouveau référentiel qui est tourné de \hat{x} autour de \hat{z} et ensuite de ϕ autour **de l'ancien axe** \hat{y} et de finalement faire une réflexion par rapport à **l'axe des** \hat{z} **original** (\hat{z} devient $-\hat{z}$, en référence à l'axe original, qui en passant, n'est plus l'axe des z).

2. Diagonalisation de matrice

Vous aimeriez calculer la 5e puissance de cette matrice sans utiliser Python, MATLAB ou tout autre outil informatique:

$$\mathbf{M} = \begin{bmatrix} 2 & 0 & \frac{\sqrt{2}}{2} \\ 0 & 2 & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 2 \end{bmatrix},\tag{4}$$

Comme on le sait, il est particulièrement laborieux de calculer \mathbf{M}^5 . Clairement, on devrait trouver une meilleure solution. Si vous étiez capable de trouver une matrice telle que $\mathbf{PP}^{-1} = \mathbf{P}^{-1}\mathbf{P} = \mathbb{I}$, vous pourriez faire une transformation de type $\mathbf{M}' = \mathbf{P}^{-1}\mathbf{MP}$ (ou inversement $\mathbf{M} = \mathbf{PM}'\mathbf{P}^{-1}$) et ainsi obtenir la version beaucoup plus simple suivante:

$$\mathbf{M}^5 = \left(\mathbf{P}\mathbf{M}'\mathbf{P}^{-1}\right)^5 \tag{5}$$

$$\mathbf{M}^{5} = \mathbf{P}\mathbf{M}'\mathbf{P}^{-1}\mathbf{P}\mathbf{M}'\mathbf{P}^{-1}\mathbf{P}\mathbf{M}'\mathbf{P}^{-1}\mathbf{P}\mathbf{M}'\mathbf{P}^{-1}\mathbf{P}\mathbf{M}'\mathbf{P}^{-1}$$
(6)

$$\mathbf{M}^5 = \mathbf{P}(\mathbf{M}')^5 \mathbf{P}^{-1} \tag{7}$$

Trouvez une matrice ${\bf P}$ qui vous aidera à obtenir la matrice ${\bf M}^5$, et donnez la valeur de ${\bf M}^5$.

3. Rapports de masses et fréquence naturelle

Vous avez deux masses différentes m_1 et m_2 attachées par des élastiques de qualité étalonnés par les techniciens de Dollarama Inc. Voir photo ci-bas, ou Greenberg Section 11.3 exemple 2 ou encore mon bureau POP-2141.

- 1. Obtenez les **vecteurs propres** (ou *modes*) et les **valeurs propres** (ou *fréquences naturelles*) de façon générale (en fonction de k, m_1 et m_2) en modélisant des élastiques identiques de constante k et des masses différentes m_1 et m_2 (avec $m_2 > m_1$)
- 2. À quoi correspondent ces vecteurs propres 1 et 2? Faites un dessin des oscillations de chaque masse (oscillent-elles ensemble?) et montrez que les <u>vidéos</u> sur le site de cours (Activité, Section Algèbre linéaire) sont cohérents avec votre explication.
- 3. La question la plus importante: en utilisant les mesures sur le système faites par Prof. Côté, ou en venant à ma porte de bureau prendre vos propres mesures, donnez-moi le rapport des masses $\frac{m_1}{m_2}$.

