Méthode semi-paramétrique Cox

Table of Contents

Le modèle "semi-paramétrique de Cox"	1
La vraisemblance partielle et estimation des paramètres	1
Estimation des paramètres	3
Lecture des résultats	
L'hypothèse de constance des rapports de risque	5
Tests sur les résidus de Schoenfeld	6
Intéraction avec la durée	7

Le modèle "semi-paramétrique de Cox"

La vraisemblance partielle et estimation des paramètres

On se situe dans une situation où la durée est mesurée sur une échelle strictement continue. Il ne peut donc y avoir qu'un seul évènement observé en t_i (idem pour les censures). Pour une observation quelconque en t_i , la vraisemblance s'écrit: $L_i = f(t_i)^{\delta_i} S(t_i)^{1-\delta_i}$.

- f(t_i) est la valeur de la fonction de densité en t_i.
- $S(t_i)$ est la valeur de la fonction de survie en t_i .
- $\delta_i = 1$ si l'évènement est observé: $L_i = f(t_i)$.
- $\delta_i = 0$ si l'observation est censurée: $L_i = S(t_i)$.

Comme
$$f(t_i) = h(t_i)S(t_i)$$
, on obtient: $L_i = [h(t_i)S(t_i)]^{\delta_i}S(t_i)^{1-\delta_i} = h(t_i)^{\delta_i}S(t_i)$. Pour $i = 1, 2, \ldots, n$, la vraisemblance totale s'ecrit: $L_i = \prod_{i=1}^n h(t_i)^{\delta_i}S(t_i)$.

On peut réecrire cette vraisemblance en la multipliant et en la divisant par: $\sum_{j \in R_i} h(t_i)$, où $j \in R_i$ est l'ensemble des observation soumises au risque en t_i .

$$L = \prod_{i=1}^{n} \left[h(t_i) \frac{\sum_{j \in R} h(t_i)}{\sum_{j \in R} h(t_i)} \right]^{\delta_i} S(t_i) = \prod_{i=1}^{n} \left[\frac{h(t_i)}{\sum_{j \in R_i} h(t_i)} \right]^{\delta_i} \sum_{j \in R_i} h(t_i)^{\delta_i} S(t_i)$$

La vraisemblance partielle retient le premier terme de la vraisemblance, soit:

$$PL = \prod_{i=1}^{n} \left[\frac{h(t_i)}{\sum_{j \in R} h(t_i)} \right]^{\delta_i}$$

Une fois remplacée la valeur de $h(t_i)$ par son expression en tant que modèle à risque proportionnel, la vraisemblance partielle ne dépendra plus de la durée. Mais elle va dépendre de l'ordre d'arrivée des évènements. Remarque: pour les observations censurées $(\delta_i = 0)$, PL = 1. Toutefois, ces censures à droite entrent dans l'expression $\sum_{i \in R} h(t_i)$ tant qu'elles sont soumises au risque.

En remplaçant $h(t_i)$ par l'expression $h_0(t)e^{X_i'b}$:

$$PL = \prod_{i=1}^{n} \left[\frac{h_0(t)e^{X_i'b}}{\sum_{j \in R_i} h_0(t)e^{X_j'b}} \right]^{\delta_i} = \prod_{i=1}^{n} \left[\frac{e^{X_i'b}}{\sum_{j \in R_i} e^{X_i'b}} \right]^{\delta_i}$$

L'expression $\frac{e^{Xb}}{\sum_{j\in R}e^{Xb}}$ est une probabilité, la vraisemblance partielle est donc bien un produit de probabilités. Il s'agit de la probabilité qu'un individu observe l'évènement en t_i sachant qu'un évènement s'est produit.

Condition nécessaire: pas d'évènement simultané

Ici le temps est strictement continu, il ne doit pas y avoir d'évènement simultané. Dans les sciences sociales avec un recueil des données de type retrospectif, la collecte se fait généralement avec un temps discrétisé. On est donc souvent en présence d'évènements dont l'occurence s'observe de manière simultanée.

Correction de la vraisemblance avec des évènements simultanés

- La méthode dite exacte: Comme en réalité il n'y a jamais d'évènement simultané, on va intégrer à la vraisemblance toutes les permutations possibles des évènements observés simultanéments: si en t_i on observe simulatanément l'évènement pour A et B, une mesure plus présice de la durée nous permettrait de savair si A a eu lieu avant B ou B avant A.
 - Le nombre de permutation est donné par la factorielle. Si 3 évènement simultanés, il y a 6 permutations possibles $(3 \times 2 \times 1)$.
 - Problème: le nombre de permutations pour chaque t_i peut devenir très vite particulièrement élevé. Par exemple pour 10 évènements simultanés, le nombre de permutation est égal à 3.628.800 (! $10 = 10 \times 9 \times 8 \times 7 \times ... \times 2 \times 1$). Le temps de calcul devient particulièrement long.
- La méthode dite de **Breslow** : il s'agit d'une approximation de la méthode exacte permettant de ne pas avoir à intégrer chaque permutation. Cette approximation est utilisée par défaut par les logiciels Sas et Stata.
- La méthode dite d'**Efron**: elle cor+rige l'approximation de Breslow, et est jugée plus proche de la méthode exacte. Le temps de calcul avec les ordinateurs actuels est quasiment identique à celle de Breslow. C'est la méthode utilisée par défaut avec le logiciel R.

Estimation des paramètres

On utilise la méthode habituelle, à savoir la maximisation de la log-vraisemblance (ici partielle).

- Conditions de premier ordre: calcul des équations de score à partir des dérivées partielles. Solution: $\frac{\partial log(PL)}{\partial b_k} = 0$. On ne peut pas obtenir de solution numériue directe. Remarque: les équations de score sont utilisées pour tester la validiter de l'hypothèse de constance des rapports de risque (hazard ratio) pour calculer les **résidus de Schoenfeld** (voir plus bas).
- Conditions de second ordre: calcul des dérivées secondes qui permettent d'obtenir la matrice d'information de Fisher et la matrice des variances-covariances des paramètres.
- Comme il n'y a pas de solution numérique directe, on utilise un algorithme d'optimisation (ex: Newton-Raphson) à partir des équations de score et de la matrice d'information de Fisher.

Eléments de calcul

En logarithme, la vraisemblance partielle s'ecrit:

$$pl(b) = log(pl(b)) = log\left(\prod_{i=1}^{n} \left[\frac{e^{X_i'b}}{\sum_{j \in R_i} e^{X_jb}}\right]^{\delta_i}\right)$$

$$pl(b) = \sum_{i=1}^{n} \delta_{i} \log \left(\frac{e^{X'_{i}b}}{\sum_{j \in R_{i}} e^{X'_{j}b}} \right)$$

$$pl(b) = \sum_{i=1}^{n} \delta_{i} \left(\log(e^{X'_{i}b}) - \log \sum_{j \in R_{i}} e^{X'_{i}b} \right)$$

$$pl(b) = \sum_{i=1}^{n} \delta_{i} \left(X'_{i}b - \log \sum_{j \in R_{i}} e^{X'_{i}b} \right)$$

Calcul de l'équation de score pour une covariable X_k :

$$\frac{\partial lp(b)}{\partial b_k} = \sum_{i=1}^n \delta_i \left(X_{ik} - \sum_{j \in R_i} X_{ik} \frac{e^{X'_{ik}b_k}}{\sum_{j \in R_i} e^{X'_{jk}b_k}} \right)$$

 $\frac{e^{X_{ik}b}}{\sum_{j\in R}e^{X_{jk}b}}$ est une probabilité (p_i) et $\sum j\in RX_{ik}p_i$ est l'espérance (la moyenne) $\bar{X_k}$ d'avoir la caractéristique X_k lorsqu'un évènement a été observé. Au final:

$$\frac{\partial lp(b)}{\partial b_k} = \sum_{i=1}^n \delta_i (X_{ik} - \bar{X_k})$$

Lecture des résultats

Comme il s'agit d'un modèle à risque proportionnel, **les rapports de risque sont constants pendant toute la période d'observation**.

Covariable binaire X = (0,1):

$$\frac{h(t|X=1)}{h(t|X=0)} = e^b$$

A chaque moment de la durée t, le risque d'observer l'évènement est e^b fois plus important/plus faible pour X=1 que pour X=0.

Covariable continue (mais fixe dans le temps):

$$\frac{h(t|X=a+c)}{h(t|X=a)} = e^{c \times b}$$

On prendra l'âge au début de l'exposition au risque. Si c=1 (résultat de l'estimation): A un âge donnée en début d'exposition, le risque de connaître l'évènement est e^b fois inférieur/supérieur à celui d'une personne qui a un an de moins . Si on regarde des différences de 5 ans en age (c=5), le risque est $e^{5\times b}$ inférieur/supérieur à celui d'une personne qui a 5 ans de moins.

Exemple

cox regression	n Efron me	thod for tie	S			
No. of subject No. of failure Time at risk	PS =	75		Number o	of obs =	103
				LR chi2((3) =	17.63
Log likelihood	d = -289.3	0639		Prob > c	hi2 =	0.0005
	 Coef. +				[95% Conf.	
	-0.1196					
	0.0296					
surgery	-0.9873	0.4363	-2.26	0.024	-1.8424	-0.1323
No. of subject	ts = es =	103 75	s		of obs =	
Cox regression No. of subject No. of failure Time at risk Log likelihood	ts = es = = 3	103 75 1938	s	LR chi2(of obs = = = = = = = = = = = = = = = = = = =	17.63
No. of subject No. of failure Time at risk Log likelihood	ts = es = = 3 d = -289.3 	103 75 1938 0639 Std. Err.	z	LR chi2(Prob > c P> z	(3) = :hi2 = [95% Conf.	17.63 0.0005
No. of subject No. of failure Time at risk Log likelihoodtt	ts = es = d = -289.3 	103 75 1938 0639 	z 	LR chi2(Prob > c P> z 0.076	[3) = :hi2 = : [95% Conf	17.63 0.0005 Interval] 1.0124
No. of subject No. of failure Time at risk Log likelihoodtt	ts = es = d = -289.3 Haz. Ratio	103 75 1938 0639 	z 	LR chi2(Prob > c P> z 0.076	[3) = :hi2 = : [95% Conf	17.63 0.0005 Interval] 1.0124

On retrouve les résultats des tests non paramétriques, à savoir que le pontage réduit les risques de décès pendant la période d'observation (augmente la durée de vie), ici de -62% $(((0.37-1)\times 100))$.

Lorsque l'âge à l'entrée dans le registre d'attente augmente d'un an, le risque de décéder augmente/baisse de ???%.

L'hypothèse de constance des rapports de risque

- Les rapports de risque (RR) estimés par le modèle sont contraints à être constant pendant toute la période d'observation. C'est une hypothèse forte.
- Le respect de cette hypothèse doit être testé, en particulier pour un modèle de Cox où la baseline du risque est habituellement estimée à l'aide des RR (méthode dite de Breslow, non traitée).
- Tester cette hypothèse revient à tester une interaction entre les RR et la durée (ou plutôt une fonction de la durée).
- Plusieurs méthodes disponibles, celle sur les résidus de martingales, réservée aux covariables continues, et le "test" graphique ne seront pas traités.

Tests sur les résidus de Schoenfeld

- Les résidus "bruts" sont directement calculés à partir des équations de scores (voir section estimation).
- Le résidu n'est calculé que pour les observations qui ont connues l'évènement durant la période d'observation.
- Il est calculé au moment où l'évènement s'est produit.
- La somme des résidus pour chaque covariable est égale à 0 (propriété de l'équation de score à l'équilibre).
- On utilise généralement les résidus de Schoenfeld "standardisés" (par leur variance) pour tenir compte du fait que le risk set diminue au cours du temps.
- Pour une observation dont l'évènement s'est produit en t_i , le résidu brut de Schoenfeld pour la covariable X_k , après estimation du modèle, est égal à:

$$rs_{ik} = X_{ik} - \sum_{j \in R_i} X_{ik} \frac{e^{X'_{ik}b}}{\sum_{j \in R_i} e^{X'_{jk}b}} = X_{ik} - \bar{X}_k$$

- Ce résidu est formellement la contribution d'un individu au score. Il se lit comme la différence entre la valeur observée d'une covariable et sa valeur espérée au moment où un évènement se produit.
- Si l'hypothèse de constance des risques ratio est respectée, les résidus ne doivent pas suivre une tendance précise.
- Intuitivement (sans censure à droite): on a un RR strictement égal à 1, en début d'exposition $R_i=100$ avec 50 hommes et 50 femmes. Si l'hypothèse PH (strictement) respectée, lorsqu'il reste 90 personnes soumises au risque, on devrait avoit 45 hommes et 45 femmes. Avec $R_i=50$, 25 hommes et 25 femmes,.....avec $R_i=10$, 5 hommes et 5 femmes.
- On peut tester l'hypothèse sur les résidus par une régression entre ces résidus pour chaque covariable et la durée (ou fonction dérivée de la durée, par exemple log(t))). La solution la plus utilisée est le test paramétrique dit de **Grambsch-Therneau** implémenté dans tous les logiciels.
- On peut montrer que le test de Grambsch-Therneau consiste à introduire une interaction entre les covariables et une fonction de la durée dans le modèle.

tional-hazards a	ssumption		
rho	chi2	df	Prob>chi2
0.10162	0.80	1	0.3720
0.12937	1.61	1	0.2043
0.29664	5.54	1	0.0186
	8.76	3	0.0327
	rho 0.10162 0.12937	0.10162 0.80 0.12937 1.61 0.29664 5.54	rho chi2 df 0.10162 0.80 1 0.12937 1.61 1 0.29664 5.54 1

Ici l'hypothèse de proportionalité des risques peut être rejetée pour la variable *surgery*. Le risque ratio n'est pas constant dans le temps.

Intéraction avec la durée

Retour sur l'estimation du modèle

Pour estimer le modèle, les données sont splitées au temps d'évènement.

-	+				
	id	surgery	_d	_t	_t0
24	 2	0	0	1	
24.	!			_	0
25.	2	0	0	2	1
26.	2	0	0	3	2
27.	2	0	0	5	3
28.	2	0	1	6	5
29.	3	0	0	1	0
30.	3	0	0	2	1
31.	3	0	0	3	2
32.	3	0	0	5	3
33.	3	0	0	6	5
34.	3	0	0	8	6
35.	j 3	0	0	9	8
36.	ј з	0	0	12	9
37.	ј з	0	1	16	12
	+				

Les bornes des intervalles $[t_0; t]$ ont des valeurs seulement lorsqu'un évènement s'est produit (principe de la vraisemblance partielle). Il n'y a donc pas de valeurs pour t et t_0 en t=4 (id=2,3), t=7,10,11,13,14,15 (id=3).

• Les deux individus observent l'évènement en t = 6 pour id = 2, et en t = 16 pour id = 3. Avant ce moment la valeur de la variable prise par la variable d'évènement (ici d) prend toujours la valeur 0, et prend la valeur 1 au moment de l'évènement.

On vérifie que les paramètres estimés sont identiques

Cox regression	Breslow	method for t	ies				
No. of subjects		103		Number	of obs	=	3,573
No. of failures Time at risk		75 1938					
	_			LR chi2	(3)	=	17.56
Log likelihood	= -289.5	4474		Prob >	chi2	=	0.0005
_t	Coef.	Std. Err.	Z	P> z	[95% (Conf.	Interval]
year	1195075	.0673691	-1.77	0.076	2515	486	.0125336
age	.0295539	.0135341	2.18	0.029	.00302	275	.0560803
1.surgery	984869	.4362881	-2.26	0.024	-1.839	978	1297601

Introduction d'une intéraction avec une fonction de la durée. On a une variable de durée (on prendra t avec f(t) = t) qui sera croisée avec la variable surgery. Le modèle va s'écrire:

$$h(t|X,t) = h_0(t)e^{b_1age + b_2year + b_3surgery + b_4(surgery \times t)}$$

Estimation du modèle

On présentera le modèle avec le log des paramètres estimées (le terme d'intéraction n'étant pas un rapport de risque mais un rapport de rapport de risque).

Important: le modèle estimé n'est plus un modèle à risques proportionnels.

L'intéraction $surgery \times t$ est ici significative (p < 0; 05). On retrouve le résultat du test sur les résidus de Schoenfeld.

Intreprétation:

- Le paramètre (logHR) pour surgery donne le risque ratio au début de l'exposition au risque ($t = 0 + \epsilon$): le risque de décéder en début d'observation est ($e^{-1.27} 1$) × 100 = -82% plus faible pour les personnes qui ont eu un pontage avant leur inscription dans le registre.
- Le terme d'intéraction étant positif, le gain en survie pour les personnes qui ont eu un pontage va diminuer avec le temps. Le RR augmente donc avec le temps.

t	Calcul	Risk ratio
$0 + \epsilon$	$e^{-1.27+0.002\times0}$	0.28
1	$e^{-1.27+0.002\times1}$	0.281
2	$e^{-1.27+0.002\times2}$	0.282
10	$e^{-1.27+0.002\times10}$	0.286
100	$e^{-1.27+0.002\times100}$	0.34
365	$e^{-1.27+0.002\times365}$	0.58
730	$e^{-1.27+0.002\times365}$	1.20

Que faire si l'hypothèse n'est pas respectée?

• Ne rien faire, on interprète le risque ratio comme un ratio moyen pendant la durée d'observation (P.Allison). Difficement soutenable pour l'analyse des effets cliniques,

elle peut être envisagée dans d'autres domaines de recherche. Attention au nombre de variables qui ne respecte pas l'hypothèse, l'estimation de la baseline du risque pourrait être sensiblement affectée. Il convient tout de même lors de l'interprétation de préciser les variables qui seront analysées sous cette forme "moyenne".

- Utiliser la méthode dite de "Cox stratifiée" (non traitée). Utile si l'objectif est de présenter des fonctions de survie ajustées, et si une seule covariable (binaire) présente un problème. Les RR ne sont donc pas estimés pour la variable.
- Introduire une interaction avec la durée comme précédemment. Cela peut permettre d'enrichir le modèle au niveau de l'interprétation. Valable si peu de covariables présentent des problèmes de stabilité des RR. Attention tout de même à la forme de la fonction, dans l'exemple on a contraint l'effet d'intéraction à être linéaire (strictement proportionnelle), ce qui est une hypothèse plutôt forte.
- Utiliser un modèle alternatif: modèles paramétriques de type PH, en particulier le modèle "flexible" de **Parmar-Royston** (non traité) ou un **modèle à temps discret**.
- Utiliser un modèle non paramétrique additif dit d'*Aalen* ou une de ses variantes (non traité).

Remarque finale sur l'estimation du modèle de Cox

Le modèle a été estimé par la méthode de la vraisemblance partielle. On peut montrer que le modèle de Cox est estimable à partir d'un modèle de Poisson. Cette estimation est appelée "Constant Piecewise Exponential PH model".

Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Iteration 5: Iteration 6:	log likeliho log likeliho log likeliho log likeliho log likeliho	ood = -393.44 ood = -347.00 ood = -345.00 ood = -344.99 ood = -344.99 ood = -344.99	0068 6277 5446 5332 9532			
Poisson regres		3		LR chi2 Prob >	of obs = (90) = chi2 = R2 =	122.42
_d	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
year age surgery			2.18	0.029	.003025	.0560811
stime 2 3 5	.4223592 .0495983 828855		-0.68	0.966 0.499	-1.840826 -2.21358 -3.229383	1.571673
6 8	9922643 -1.940546	1.224779 1.414215	-0.81 -1.37	0.418 0.170	-3.392786 -4.712356	1.408258 .8312648

9	-2.03868	1.414233	-1.44	0.149	-4.810526	.7331649	
11	-12.59255	2179.957	-0.01	0.995	-4285.23	4260.045	
12	-2.30438	1.414226	-1.63	0.103	-5.076213	.4674526	
16	-1.481512	1.154713	-1.28	0.199	-3.744708	.7816839	
17	-2.591968	1.41426	-1.83	0.067	-5.363868	.1799312	
18	-2.642535	1.414254	-1.87	0.062	-5.414421	.1293516	
21	-2.095489	1.224819	-1.71	0.087	-4.496091	.3051133	
28	-3.055745	1.414246	-2.16	0.031	-5.827616	2838729	
30	-3.103495	1.41426	-2.19	0.028	-5.875395	3315961	
31	-13.89462	2179.957	-0.01	0.995	-4286.532	4258.743	
32	-3.144133	1.414253	-2.22	0.026	-5.916018	3722474	
35	-3.219157	1.414258	-2.28	0.023	-5.991053	447262	
36	-3.227893	1.414267	-2.28	0.022	-5.999806	4559796	
37	-3.246139	1.414263	-2.30	0.022	-6.018042	4742351	
39	-3.26923	1.414303	-2.31	0.021	-6.041213	4972472	
40	-2.581465	1.224839	-2.11	0.035	-4.982106	1808239	
43	-3.311454	1.414341	-2.34	0.019	-6.083512	5393966	
45	-3.327473	1.414407	-2.35	0.019	-6.099661	5552857	
50 j	-3.421206	1.414399	-2.42	0.016	-6.193377	6490357	
51	-3.425081	1.414444	-2.42	0.015	-6.197341	6528208	
53	-3.44536	1.414475	-2.44	0.015	-6.21768	673039	
58	-3.514664	1.414489	-2.48	0.013	-6.287011	7423175	
61	-3.543748	1.414557	-2.51	0.012	-6.316229	7712681	
66	-3.602062	1.414546	-2.55	0.011	-6.374522	8296028	
68	-2.90779	1.225106	-2.37	0.018	-5.308954	5066257	
69	-3.580111	1.414549	-2.53	0.011	-6.352577	8076461	
72	-2.914206	1.22505	-2.38	0.017	-5.31526	5131524	
77	-3.624716	1.414601	-2.56	0.010	-6.397284	8521489	
78	-3.593983	1.414779	-2.54	0.011	-6.366898	8210686	
80	-3.597845	1.414765	-2.54	0.011	-6.370734	8249558	
81	-3.589639	1.414745	-2.54	0.011	-6.362489	8167895	
85 j	-3.598044	1.414948	-2.54	0.011	-6.371291	824798	
90 İ	-3.62163	1.415099	-2.56	0.010	-6.395173	8480873	
96	-3.658159	1.415134	-2.59	0.010	-6.43177	884548	
100 j	-3.672641	1.415162	-2.60	0.009	-6.446308	8989739	
102	-3.662767	1.415232	-2.59	0.010	-6.436571	8889631	
109	-14.65089	2179.957	-0.01	0.995	-4287.288	4257.986	
110	-3.704316	1.415125	-2.62	0.009	-6.47791	9307209	
131	-14.68697	2179.957	-0.01	0.995	-4287.324	4257.95	
149	-3.976368	1.415012	-2.81	0.005	-6.749742	-1.202995	
153	-3.97938	1.414995	-2.81	0.005	-6.752718	-1.206041	
165	-4.013449	1.415156	-2.84	0.005	-6.787104	-1.239793	
180	-15.09339	2179.957	-0.01	0.994	-4287.731	4257.544	
186	-4.112806	1.414994	-2.91	0.004	-6.886144	-1.339468	
188	-4.11316	1.414915	-2.91	0.004	-6.886342	-1.339978	
207	-4.178467	1.414929	-2.95	0.003	-6.951678	-1.405256	
219	-4.206547	1.41493	-2.97	0.003	-6.97976	-1.433334	
263	-4.342286	1.415099	-3.07	0.002	-7.11583	-1.568742	
265	-16.10078	2179.957	-0.01	0.994	-4288.738	4256.536	
285	-3.688074	1.225534	-3.01	0.003	-6.090076	-1.286072	
308	-4.409256	1.414925	-3.12	0.002	-7.182459	-1.636054	
334	-4.432237	1.415143	-3.13	0.002	-7.205866	-1.658607	
340	-4.422918	1.415095	-3.13	0.002	-7.196453	-1.649383	
342	-4.365805	1.41511	-3.09	0.002	-7.13937	-1.592239	
370 j	-16.64142	2179.957	-0.01	0.994	-4289.279	4255.996	

397	-16.53454	2179.957	-0.01	0.994	-4289.172	4256.103	
427	-16.28492	2179.957	-0.01	0.994	-4288.922	4256.352	
445	-16.76689	2179.957	-0.01	0.994	-4289.404	4255.87	
482	-15.8041	2179.957	-0.01	0.994	-4288.441	4256.833	
515	-16.91429	2179.957	-0.01	0.994	-4289.552	4255.723	
545	-16.10426	2179.957	-0.01	0.994	-4288.742	4256.533	
583	-4.641434	1.415524	-3.28	0.001	-7.41581	-1.867057	
596	-16.41019	2179.957	-0.01	0.994	-4289.047	4256.227	
620	-17.07029	2179.957	-0.01	0.994	-4289.708	4255.567	
670	-17.14785	2179.957	-0.01	0.994	-4289.785	4255.489	
675	-4.631958	1.416377	-3.27	0.001	-7.408006	-1.855911	
733	-4.60698	1.416405	-3.25	0.001	-7.383082	-1.830878	
841	-17.05138	2179.957	-0.01	0.994	-4289.689	4255.586	
852	-4.566243	1.417712	-3.22	0.001	-7.344907	-1.787579	
915	-17.40169	2179.957	-0.01	0.994	-4290.039	4255.236	
941	-17.34105	2179.957	-0.01	0.994	-4289.978	4255.296	
979	-4.426862	1.419414	-3.12	0.002	-7.208862	-1.644862	
995	-4.401387	1.418922	-3.10	0.002	-7.182422	-1.620352	
1032	-4.390393	1.418666	-3.09	0.002	-7.170928	-1.609859	
1141	-16.4898	2179.957	-0.01	0.994	-4289.127	4256.148	
1321	-17.02179	2179.957	-0.01	0.994	-4289.659	4255.616	
1386	-4.427898	1.41857	-3.12	0.002	-7.208243	-1.647553	
1400	-17.74095	2179.957	-0.01	0.994	-4290.378	4254.896	
1407	-17.17352	2179.957	-0.01	0.994	-4289.811	4255.464	
1571	-18.15173	2179.957	-0.01	0.993	-4290.789	4254.486	
1586	-18.39765	2179.957	-0.01	0.993	-4291.035	4254.24	
1799	-18.08037	2179.957	-0.01	0.993	-4290.718	4254.557	
_cons	2.482922	4.946271	0.50	0.616	-7.211591	12.17744	
ln(stime)	1	(exposure)					