Álgebra Linear e Aplicações - Lista 4

Entregar dia 18 de Maio

1. Calcula os determinantes das seguintes matrizes:

(a) (4 pts)
$$\begin{bmatrix} a & b & 0 & 1 \\ 0 & 1 & 1 & 2 \\ a & 0 & 0 & d \\ a & b & c & 1 \end{bmatrix}$$

(b) (4 pts)
$$\begin{bmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{bmatrix}$$

(c)
$$(4 \text{ pts})$$

$$\begin{bmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & e & f \\ 0 & 0 & g & h \end{bmatrix}$$

2. Calcula os autovalores e autovetores das seguintes matrizes:

(a)
$$(6 \text{ pts}) \begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix}$$

(b) (12 pts)
$$\begin{bmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{bmatrix}$$

3. (15 pts) Supõe $A=\begin{bmatrix}0&t\\-t&0\end{bmatrix}$. Usando, autovalores e autovetores, calcula:

- (a) A^n
- (b) $I + (A \frac{1}{2}I)^{-1}$
- (c) $\exp(A)$

4. (10 pts) Encontra uma fórmula fechada para a sequência (a_n) , definida pela recurrência:

$$a_0 = 1$$
, $a_1 = 1$, $a_{n+1} = 2a_n + 2a_{n-1}$

5. (10 pts) Mostra que para $A \in \mathbb{R}^{m \times n}$ e $B \in \mathbb{R}^{n \times m}$, se $\lambda \neq 0$ é autovalor de AB, então é também autovalor de BA.

1

6. Considera a matriz tridiagonal:

$$T_{n} = \begin{bmatrix} a_{n} & b_{n} \\ c_{n} & a_{n-1} & b_{n-1} \\ & c_{n-1} & a_{n-2} & \ddots \\ & & \ddots & \ddots & b_{1} \\ & & & c_{1} & a_{0} \end{bmatrix}$$

(a) (15 pts) Encontra escalares u_n e v_n (dependendo de $a_n,\,b_n$ e c_n) tais que, para $n\geq 2$:

$$\det(T_n) = v_n \det(T_{n-1}) + u_n \det(T_{n-2})$$

(b) (5 pts) Encontra uma fórmula de recurrência para o polinómio característico da matriz tridiagonal ${\cal A}_n.$

$$A_{n} = \begin{bmatrix} a_{n} & \sqrt{b_{n}} \\ \sqrt{b_{n}} & a_{n-1} & \sqrt{b_{n-1}} \\ & \sqrt{b_{n-1}} & a_{n-2} & \ddots \\ & & \ddots & \ddots & \sqrt{b_{1}} \\ & & & \sqrt{b_{1}} & a_{0} \end{bmatrix}$$

Para refletir, não precisa responder: Esta fórmula de recurrência faz lembrar alguma coisa?

7. (15 pts) Mostra que se λ é um autovalor de uma matriz unitária, então $|\lambda|=1$.