

RBE 501 – Robot Dynamics

Fall 2021 – Instructor: L. Fichera

Homework 1

INSTRUCTIONS

1. This homework assignment includes three sections:

Section 1: Frame transformations Section 2: Forward kinematics Section 3: MATLAB programming

- Submit your solutions for sections 1 and 2 as a single PDF file through Canvas. The PDF should include
 your calculations (step by step) and any supporting drawings or sketches. Use of computer software for
 calculations (e.g. MATLAB) is allowed.
- 3. Submit your solutions for section 3 online through Matlab grader: https://grader.mathworks.com/courses/51899-rbe-501-fall-2021
- 4. Due date: Tuesday 14-Sep-21 at 5:00pm (start of class)

Section 1: Frame transformations (30 points total) - 5 points for each correct answer

- 1. Given the reference frames F_0 and F_1 as shown in Fig. 1:
 - a. Without doing any calculations, write the rotation matrix \mathbf{R} required to align F_0 with F_1 .
 - b. Given the rotation matrix **R** previously calculated in step a, calculate a corresponding set of ZYX Euler angles $\phi = [\varphi, \vartheta, \psi]$.
 - c. Calculate the inverse rotation R⁻¹.
 - d. Calculate the homogeneous transformation matrix **T** between F_0 and F_1 . Assume that the translational component of the transformation is given by $\mathbf{p} = \begin{bmatrix} 0 & 10 & 0 \end{bmatrix}^T$.

Figure 1: Two cartesian reference frames.

2. Given the *skew-symmetric* matrix
$$\textbf{\textit{K}} = \begin{bmatrix} 0 & -0.0875 & 0.5670 \\ 0.0875 & 0 & -0.8190 \\ -0.5670 & 0.8190 & 0 \end{bmatrix}$$
 and angle value $\theta = 20^\circ$:

- a. Calculate the 3x3 matrix given by $\mathbf{R} = \mathbf{I} + \sin(\theta) \mathbf{K} + [1 \cos(\theta)] \mathbf{K}^2$.
- b. Prove that **R** is a valid rotation matrix.

Section 2: Robot kinematics and D-H frames (20 points total) – 5 points for each correct answer

- 3. Given the SCARA manipulator shown below:
 - a. Assign reference frames to each of the joint axes following the Denavit-Hartenberg convention¹. The frame at the first joint {1} and the end effector frame {5} were pre-assigned for your convenience (red ink).
 - b. Create the table of D-H parameters. Use link lengths as noted in the picture (blue ink).

Figure 2: 4 DoF SCARA Manipulator

θ	d	а	α

¹ Multiple variants of the Denavit-Hartenberg convention exist. For this homework, use the version described in Siciliano et al. (2010), *Robotics: modelling, planning and control* (§2.8.2). Link: https://www.springer.com/us/book/9781846286414.

- 4. Given the RPP (Revolute-Prismatic-Prismatic) robotic manipulator illustrated in Fig. 3:
 - a. Assign reference frames to each of the joint axes following the Denavit-Hartenberg convention. Frames at the first joint of the robot and at the end effector were pre-assigned for your convenience (red ink).
 - b. Create the table of D-H parameters. Use link lengths as noted in the picture (blue ink).

Figure 3: 3-DoF RPP (Revolute-Prismatic-Prismatic) robotic manipulator.

Section 3: MATLAB programming (50 points total)

This section must be completed online at:

https://grader.mathworks.com/courses/51899-rbe-501-fall-2021

- 5. Rotation matrices in Matlab (10 points)
- 6. DH Parameters in Matlab (10 points)
- 7. Forward kinematics of the SCARA robot (20 points)
- 8. Forward kinematics of the RPP robot (10 points)