Algoritmos y Estructuras de Datos III

Segundo cuatrimestre 2022

Técnicas de diseño de algoritmos

Heurísticas

- Una heurística es un procedimiento computacional que intenta obtener soluciones de buena calidad para un problema, intentando que su comportamiento sea lo más preciso posible.
- Por ejemplo, una heurística para un problema de optimización obtiene una solución con un valor que se espera sea cercano (idealmente igual) al valor óptimo.
- ▶ Decimos que A es un algoritmo ϵ -aproximado (ϵ > 0) para un problema si

$$\left|\frac{x_A - x_{OPT}}{x_{OPT}}\right| \leq \epsilon.$$

Algoritmos golosos

Idea: Construir una solución seleccionando en cada paso la mejor alternativa, sin considerar (o haciéndolo débilmente) las implicancias de esta selección.

- Habitualmente, proporcionan heurísticas sencillas para problemas de optimización.
- ► En general permiten construir soluciones razonables (pero sub-óptimas) en tiempos eficientes.
- Sin embargo, en ocasiones nos pueden dar interesantes sorpresas!

El problema de la mochila

Datos de entrada:

- ▶ Capacidad $C \in \mathbb{Z}_+$ de la mochila (peso máximo).
- ▶ Cantidad $n \in \mathbb{N}$ de objetos.
- ▶ Peso $p_i \in \mathbb{Z}_{>0}$ del objeto i, para i = 1, ..., n.
- ▶ Beneficio $b_i \in \mathbb{Z}_{>0}$ del objeto i, para i = 1, ..., n.

Problema: Determinar qué objetos debemos incluir en la mochila sin excedernos del peso máximo C, de modo tal de maximizar el beneficio total entre los objetos seleccionados.

El problema de la mochila

- Algoritmo(s) goloso(s): Mientras no se haya excedido el peso de la mochila, agregar a la mochila el objeto i que ...
 - ... tenga mayor beneficio b_i.
 - ightharpoonup ... tenga menor peso p_i .
 - ightharpoonup ... maximice b_i/p_i .
- ¿Qué podemos decir en cuanto a la calidad de las soluciones obtenidas por estos algoritmos?
- ¿Qué podemos decir en cuanto a su complejidad?
- ¿Qué sucede si se puede poner una fracción de cada elemento en la mochila?

El problema de la mochila

Supongamos que los objetos están ordenados de mayor a menor cociente b_i/p_i.

```
L \leftarrow C;

i \leftarrow 0;

while L > 0 do

x \leftarrow \min\{1, L/p_i\};

Agregar una fracción de x del objeto i a la solución;

L \leftarrow L - x p_i;

i \leftarrow i + 1;

end while
```

► **Teorema.** El algoritmo goloso por cocientes encuentra una solución óptima del problema de la mochila fraccionario.

- ▶ **Problema:** Supongamos que queremos dar el vuelto a un cliente usando el mínimo número de monedas posibles, utilizando monedas de 1, 5, 10 y 25 centavos. Por ejemplo, si el monto es \$0,69, deberemos entregar 8 monedas: 2 monedas de 25 centavos, una de 10 centavos, una de 5 centavos y cuatro de un centavo.
- ► Algoritmo goloso: Seleccionar la moneda de mayor valor que no exceda la cantidad restante por devolver, agregar esta moneda a la lista de la solución, y sustraer la cantidad correspondiente a la cantidad que resta por devolver (hasta que sea 0).

Sean $a_1, \ldots, a_k \in \mathbb{Z}_+$ las denominaciones de las monedas $(a_i > a_{i+1} \text{ para } i = 1, \ldots, k-1)$, y sea t la cantidad objetivo.

```
s \leftarrow 0;

i \leftarrow 1;

while s < t \land i \le k do

c \leftarrow \lfloor (t-s)/a_i \rfloor;

Agregar c monedas de tipo i a la solución;

s \leftarrow s + c \ a_i;

i \leftarrow i + 1;

end while
```

- Este algoritmo siempre produce la mejor solución para estos valores de monedas, es decir, retorna la menor cantidad de monedas necesarias para obtener el valor cambio.
- ▶ Sin embargo, si también hay monedas de 12 centavos, puede ocurrir que el algoritmo no encuentre una solución óptima: si queremos devolver 21 centavos, el algoritmo retornará una solución con 6 monedas, una de 12 centavos, 1 de 5 centavos y cuatro de 1 centavos, mientras que la solución óptima es retornar dos monedas de 10 centavos y una de 1 centavo.
- El algoritmo es goloso porque en cada paso selecciona la moneda de mayor valor posible, sin preocuparse que esto puede llevar a una mala solución, y nunca modifica una decisión tomada.

- Sean $a_1, \ldots, a_k \in \mathbb{Z}_+$ las denominaciones de las monedas $(a_i > a_{i+1} \text{ para } i = 1, \ldots, k-1)$, y sea t la cantidad objetivo.
- ▶ **Teorema.** Si existen $m_2, \ldots, m_k \in \mathbb{Z}_{\geq 2}$ tales que $a_i = m_{i+1}a_{i+1}$ para $i = 1, \ldots, k-1$, entonces toda solución óptima usa $\lfloor t/a_1 \rfloor$ monedas de tipo a_1 .
- **Corolario.** Si existen $m_2, ..., m_k \in \mathbb{Z}_{\geq 2}$ tales que $a_i = m_{i+1}a_{i+1}$ para i = 1, ..., k-1, entonces el algoritmo goloso proporciona una solución óptima del problema del cambio.

Tiempo de espera total en un sistema

- ▶ **Problema:** Un servidor tiene n clientes para atender, y los puede atender en cualquier orden. Para $i=1,\ldots,n$, el tiempo necesario para atender al cliente i es $t_i \in \mathbb{R}_+$. El objetivo es determinar en qué orden se deben atender los clientes para minimizar la suma de los tiempos de espera de los clientes.
- Si $I = (i_1, i_2, \dots, i_n)$ es una permutación de los clientes que representa el orden de atención, entonces la suma de los tiempos de espera es

$$T = t_{i_1} + (t_{i_1} + t_{i_2}) + (t_{i_1} + t_{i_2} + t_{i_3}) + \dots$$
$$= \sum_{k=1}^{n} (n-k)t_{i_k}.$$

Tiempo de espera total en un sistema

- ▶ **Algoritmo goloso:** En cada paso, atender al cliente pendiente que tenga menor tiempo de atención.
 - 1. Este algoritmo retorna una permutación $I_{\text{GOL}} = (i_1, \dots, i_n)$ tal que $t_{i_i} \leq t_{i_{i+1}}$ para $j = 1, \dots, n-1$.
 - 2. ¿Cuál es la complejidad de este algoritmo?
- ▶ **Teorema.** El algoritmo goloso por menor tiempo de atención proporciona una solución óptima del problema de minimizar el tiempo total de espera en un sistema.