In [9]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

depression = pd.read_csv("adult-depression-lghc-indicator-2.csv")
```

Просмотр информации о датасете

In [11]:

depression.describe()

Out[11]:

	Year	Frequency	Weighted Frequency	Percent	Lower 95% CL	Upper 95% CL
count	161.00000	161.000000	1.610000e+02	161.000000	161.000000	161.000000
mean	2015.00000	429.776398	1.026922e+06	14.789627	11.955280	17.624224
std	2.00624	390.297867	9.038811e+05	4.589876	3.705456	5.890040
min	2012.00000	28.000000	9.230900e+04	3.970000	2.000000	5.340000
25%	2013.00000	186.000000	4.700770e+05	11.850000	9.650000	13.870000
50%	2015.00000	314.000000	7.496150e+05	14.520000	11.550000	16.930000
75%	2017.00000	511.000000	1.188297e+06	17.190000	14.600000	20.050000
max	2018.00000	1964.000000	5.302422e+06	33.090000	24.600000	44.950000

In [10]:

depression.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 161 entries, 0 to 160
Data columns (total 8 columns):

Year 161 non-null int64 Strata 161 non-null object Strata Name 161 non-null object Frequency 161 non-null int64 161 non-null int64 Weighted Frequency Percent 161 non-null float64 Lower 95% CL 161 non-null float64 Upper 95% CL 161 non-null float64 dtypes: float64(3), int64(3), object(2)

memory usage: 10.1+ KB

In [12]:

depression.head()

Out[12]:

	Year	Strata	Strata Name	Frequency	Weighted Frequency	Percent	Lower 95% CL	Upper 95% CL
0	2012	Total	Total	1920	3279772	11.74	11.11	12.37
1	2012	Sex	Male	561	1116664	8.12	7.32	8.92
2	2012	Sex	Female	1359	2163108	15.25	14.30	16.20
3	2012	Race-Ethnicity	White	1314	1806371	14.57	13.67	15.46
4	2012	Race-Ethnicity	Black	97	222022	13.54	10.44	16.65

In [13]:

depression.shape

Out[13]:

(161, 8)

Проверка датасета на наличие пустых ячеек

In [14]:

depression.isnull().head(10)

Out[14]:

	Year	Strata	Strata Name	Frequency	Weighted Frequency	Percent	Lower 95% CL	Upper 95% CL
0	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False
5	False	False	False	False	False	False	False	False
6	False	False	False	False	False	False	False	False
7	False	False	False	False	False	False	False	False
8	False	False	False	False	False	False	False	False
9	False	False	False	False	False	False	False	False

In [15]:

depression.isnull().sum()

Out[15]:

Year 0 Strata 0 Strata Name 0 Frequency 0 Weighted Frequency 0 Percent 0 Lower 95% CL 0 Upper 95% CL 0 dtype: int64

В датасете отсутствуют пропуски

Гипотеза 1 Предположим, что в 2012 году чаще диагностировали депрессию, нежели в других годах.

In [17]:

```
sns.scatterplot(x = depression.Year, y = depression.Frequency)
```

Out[17]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f5f26bd2510>

Гипотеза не верна, так как по построенной диаграмме видно, что больше всего диагностировали депрессию в 2018 году.

Гипотеза 2 Предположим, что в процентном соотношении от общего числа людей с депрессивным расстройством к людям с годовой заработной платой 35000-49999\$ в год депрессия встречается чаще нежели других групп.

In [29]:

```
sns.relplot(y = "Strata Name", x = "Percent", data = depression, height = 10)
```

Out[29]:

<seaborn.axisgrid.FacetGrid at 0x7f5ec1131390>

Гипотеза не верна, так как из графика видно, что депрессия чаще всего встречается среди людей с заработком ниже 20000\$ в год.

Гипотеза 3 Предположим, что мы можем сказать с 95% вероятностью, что доля людей в процентном соотношении в возрасте от 55 до 64 имеет наибольший показатель в депрессивных расстройствах.

In [33]:

```
sns.relplot(y = "Strata Name", x = "Upper 95% CL", data = depression, height = 10)
```

Out[33]:

<seaborn.axisgrid.FacetGrid at 0x7f5ef4838d50>

Анализируя построенный график можно прийти к выводу, что наша гипотеза верна.

Гипотеза 4 Предположим, что женжинам чаще диагностируют депрессию вне зависимости от года.

In [48]:

```
depression.loc[depression['Strata Name'] == 'Female'].var()
```

Out[48]:

Year 4.666667e+00
Frequency 2.713857e+04
Weighted Frequency 2.175876e+11
Percent 1.087313e+01
Lower 95% CL 6.846457e+00
Upper 95% CL 1.603016e+01

dtype: float64

```
In [49]:
```

```
depression.loc[depression['Strata Name'] == 'Female'].hist()
```

Out[49]:

In [50]:

```
depression.loc[depression['Strata Name'] == 'Male'].var()
```

Out[501:

Year 4.666667e+00
Frequency 9.031810e+03
Weighted Frequency 9.732687e+10
Percent 5.246581e+00
Lower 95% CL 2.592362e+00
Upper 95% CL 8.868390e+00
dtype: float64

In [51]:

```
depression.loc[depression['Strata Name'] == 'Male'].hist()
```

Out[51]:

In [58]:

```
female_depression = depression[depression['Strata Name'] == 'Female'].groupby(['Year']).sum().Frequency
male_depression = depression[depression['Strata Name'] == 'Male'].groupby(['Year']).sum().Frequency
data_sex = pd.DataFrame({
    'Year' : depression[depression['Strata Name'] == 'Female'].Year.unique(),
    'Female' : female_depression,
    'Male' : male_depression,
    })
sns.lineplot(x = 'Year', y = 'value', hue = 'variable', data = pd.melt(data_sex, ['Year']))
```

Out[58]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f5ebb667d90>

Действительно, женщинам в несколько раз чаще диагностируют депрессию нежели мужчинам.