Factsheet: List of derivatives

Tom Coleman

Summary

A list of common (and some uncommon) derivatives of functions.

Throughout, a, k are real numbers.

Derivatives of polynomial, exponential and logarithmic functions

function	derivative w.r.t \boldsymbol{x}	notes
c	0	$c \in \mathbb{R}$
mx + c	m	$m,c\in\mathbb{R}$
x^{lpha}	$\alpha x^{\alpha-1}$	$\alpha\in\mathbb{R},\alpha\neq0$
ae^{kx}	ake^{kx}	
$a \ln(kx)$	$\frac{a}{x}$	
ac^{kx}	$akc^{kx}\ln(b)$	$c \in \mathbb{R}, c > 0$ constant
$a\log_c(kx)$	$\frac{a}{x\ln(c)}$	$c \in \mathbb{R}, c > 1 \text{ constant}$

Derivatives of trigonometric functions

function	derivative w.r.t \boldsymbol{x}
$a\sin(kx)$	$ak\cos(kx)$
$a\cos(kx)$	$-ak\sin(kx)$
$a \tan(kx)$	$ak\sec^2(kx)$
$a\cot(kx)$	$-ak\csc^2(kx)$

function	$\ \text{derivative w.r.t } x$
$a\sec(kx)$	$ak\sec(kx)\tan(kx)$
$a\csc(kx)$	$-ak\csc(kx)\cot(kx)$

Derivatives of inverse trigonometric functions

function	$\ \text{derivative w.r.t } x$	notes
$a\sin^{-1}(kx)$	$\frac{ak}{\sqrt{1-k^2x^2}}$	valid for $x \in \left(-\frac{1}{k}, \frac{1}{k}\right)$
$a\cos^{-1}(kx)$	$\frac{-ak}{\sqrt{1-k^2x^2}}$	valid for $x \in \left(-\frac{1}{k}, \frac{1}{k}\right)$
$a \tan^{-1}(kx)$	$\frac{ak}{1+k^2x^2}$	valid for $x \in \mathbb{R}$
$a \cot^{-1}(kx)$	$\frac{-ak}{1+k^2x^2}$	valid for $x \in \mathbb{R}$
$a \sec^{-1}(kx)$	$\frac{a}{ x \sqrt{k^2x^2-1}}$	valid for $x \in \mathbb{R} \smallsetminus \left(-\frac{1}{k}, \frac{1}{k}\right)$
$a\csc^{-1}(kx)$	$\frac{-a}{ x \sqrt{k^2x^2-1}}$	valid for $x \in \mathbb{R} \smallsetminus \left(-\frac{1}{k}, \frac{1}{k}\right)$

Derivatives of hyperbolic functions

function	derivative w.r.t \boldsymbol{x}	
$a \sinh(kx)$	$ak \cosh(kx)$	
$a\cosh(kx)$	$ak\sinh(kx)$	
$a \tanh(kx)$	$ak\operatorname{sech}^2(kx)$	
$a \coth(kx)$	$-ak \operatorname{csch}^2(kx)$	
$a \operatorname{sech}(kx)$	$-ak\operatorname{sech}(kx)\tanh(kx)$	
$a \operatorname{csch}(kx)$	$-ak\operatorname{csch}(kx)\operatorname{coth}(kx)$	

Derivatives of inverse hyperbolic functions

Throughout, a, k are real numbers.

function	derivative w.r.t \boldsymbol{x}	notes
$a \sinh^{-1}(kx)$	$\frac{ak}{\sqrt{1+k^2x^2}}$	
$a \cosh^{-1}(kx)$	$\frac{ak}{\sqrt{k^2x^2-1}}$	a,k,x positive
$a \tanh^{-1}(kx)$	$\frac{ak}{1 - k^2 x^2}$	
$a \coth^{-1}(kx)$	$\frac{ak}{1 - k^2 x^2}$	
$a \operatorname{sech}^{-1}(kx)$	$-\frac{ak}{x\sqrt{1-k^2x^2}}$	a,k,x positive
$a \operatorname{csch}^{-1}(kx)$	$-\frac{ak}{ x \sqrt{k^2x^2+1}}$	

Further reading

For more about where these came from, please see Guide: Introduction to differentiation and the derivative and [Proof sheet: Derivatives of other common functions].

Version history

v1.0: created in 08/25 by tdhc.

This work is licensed under CC BY-NC-SA 4.0.