Домашнее задание 2

Турков Матвей, группа 777

Условие:

Докажите, что

- 1. Класс \mathcal{P} замкнут относительно конкатенации.
- 2. Класс ${\cal P}$ замкнут относительно итерации.
- 3. Класс \mathcal{P} замкнут относительно четной итерации.

Решение:

1. Пусть $L_1 \in \mathcal{P}, L_2 \in \mathcal{P}$ и они принимаются MT_1, MT_2 соответственно. Причем MT_1 за $O(n^{k_1})$ и MT_2 за $O(n^{k_2})$, где n - длина входа , а k_1, k_2 некоторые константы. Опишем MT_3 принимающюю язык $L_1 \cdot L_2$

Пусть MT_3 проходит по всем возможным разбиениям слова на входе (w на $w_1, w_2)$ и проверяет, принимает ли MT_1w_1 и MT_2w_2 , так что $w_1w_2 \in L_1 \cdot L_2$ Эта стадия занимает $O(n^{k_1}) + O(n^{k_2}) = O^{max(k_1,k_2)}$, что полиномиально по времени. Поскольку процесс данной проверки на разбиениях (w на $w_1, w_2)$ может произойти максимум n+1 раз , то и соответсвенно время работы MT_3 займет максимум $O(n+1)O^{max(k_1,k_2)} = O^{1+max(k_1,k_2)}$, что есть полином. Отсюда и следует замкнутость относительно конкатенации.

Условие:

Приведите пример языка L, не лежащего в классе $\mathcal P$ такого, что язык L^* в классе $\mathcal P$ лежит.

Решение:

Возьмем язык a^{k^n} , $n \geq 0, k > 1$. Для того чтобы МТ принила данный язык необходимо, чтобы она посчитала экспоненциальное число букв a, что, очевидно, невыполнимо за полиномиальное время, а значит язык L не принадлежит классу $\mathcal P$.

В тоже время в языке L содержится слово $a^{k^0}=a$, отсюда следует , что $L^*=\{a^*\}$ - регулярный язык, а значит найдется такой ДКА , а в следствие и МТ , которые будут принимать данный язык за полинамиальное время , а значит $L^*\in\mathcal{P}$

Условие:

Существует ли язык $L \notin \mathcal{P}$, такой, что язык множества его подслов $A(L) \in \mathcal{P}$?

Решение:

Да, существует , примером может служить язык из предыдущей задачи. У языка a^{k^n} , $n \geq 0, k > 1$ множество подслов $\{a^*\} \in \mathcal{P}$

Условие:

Регулярный язык L задан регулярным выражнием. Постройте полиномиальный алгоритм проверки непринадлежности $w \notin L$.

Решение:

Из курса тряп известно, что можно провести такой порядок действий PB - HKA , который за время равное длине слова построит HKA. По HKA можно построить обратный автомат и дополнить до полного за несколько итераций по длине входа. Отсюда, сможем проверить непринадлежность слова $w \notin L$ за полиномиальное время

Условие:

Условие: Вычислите 2566-9601 с помощью алгоритма Карацубы.

Решение:

$$2566 \cdot 9601 = 66 \cdot (1) + ((25+66)(96+(1)) - 25 \cdot 96 - 66 \cdot (1)) \cdot 100 + 25 \cdot 96 \cdot 10000$$

$$66 \cdot (1) = 6 \cdot 1 + (12 \cdot 1 - 0 - 6) \cdot 10 + 0 = 66$$

$$91 \cdot 97 = 7 \cdot 1 + (10 \cdot 16 - 81 - 7) \cdot 10 + 81 \cdot 100 = 8827$$

$$25 \cdot 96 = 5 \cdot 6 + (7 \cdot 15 - 18 - 30) \cdot 10 + 1800 = 2400$$

$$2566 \cdot 9601 = 66 + (8827 - 2400 - 66) \cdot 100 + 24000000 = 24636166$$