## Universidade Federal de São Carlos

Programa de Pós-Graduação em Ciência da Computação

CCO-129-7 Introdução à Computação de Alto Desempenho (2021/2)

# Exercício Programa - EP 2

OpenHPC UFSCar

Alcides Mignoso e Silva 760479

Submission Date: 24/02/2022

## 1 Atividade

O objetivo desta atividade é paralelizar a solução da equação de transferência de calor de Laplace pelo método de Jacobi utilizando **pthreads**. O código base utilizado foi o existente em https://github.com/HPCSys-Lab/HPC-101/tree/main/examples/laplace e este relatório visa discutir valores de tempo de execução, speedup e eficiência das execuções.

As execuções foram realizadas utilizando matrizes com número de linhas e colunas igual a 2\_000, e com 1, 2, 5, 10, 20 e 40 threads, em um computador com um processador Intel i7-10510U (8 threads) e 16gb de memória RAM.

## 2 Resultados

### 2.1 Tabelas

A tabela abaixo trás os tempos de execução do programa (em segundos) na versão sequencial e na paralelizada.

| N. Threads | Sequêncial | Pthread |
|------------|------------|---------|
| 1          | 86,7438    | 86,7438 |
| 2          | 86,7438    | 51,4140 |
| 5          | 86,7438    | 45,4615 |
| 10         | 86,7438    | 41,3857 |
| 20         | 86,7438    | 40,0317 |
| 40         | 86,7438    | 39,9538 |

### 2.2 Gráficos

Os gráficos abaixo ilustram valores de speedup e eficiência do programa (horizontal) em relação ao número de threads utilizadas na execução (vertical).





### 2.3 Discussão

Como pode-se perceber através do gráfico de speedup e da tabela de tempos de execução, a utilização de mais de 2 threads não impacta fortemente o tempo de execução do programa e consequentemente não altera bruscamente o speedup. Isso se dá por conta do overhead adicionado na criação de novas threads adicionado ao overhead de dividir e reduzir os resultados obtidos pelas novas threads.

Uma consequência desses overheads é a diminuição da eficiência quando novas threads são adicionadas, dado que os tempos de execução acabam não sendo reduzidos significantemente. Caso novas threads continuassem a serem adicionadas, é esperado que o tempo de execução comece a crescer por conta dos overheads já mencionados, ao invés de diminuir - paralelamente a isso a eficiência continuaria a cair.