Exploring Plain Vision Transformer Backbones for Object Detection

ECCV 2022

Yanghao Li, Hanzi Mao, Ross Girshick[†], Kaiming He[†]
Facebook Al Research

Presenter: Jaeju An

2022-10-04

Exploring Plain Vision Transformer Backbones for Object Detection

→ Plain Vision Transformer를 Object Detection에 적용하기 (Re-designing X)

- There are bunch of detection design . . .
- Ex) Fast RCNN, Faster RCNN, Mask RCNN, ...
- Components: Backbone, Neck, Head

Illustration of Mask RCNN structure

- There are bunch of detection design . . .

Ex) Fast RCNN, Faster RCNN, Mask RCNN, ...

- Components: Backbone, Neck, Head

Backbone. Extracting Features Ex) ResNet, EfficientNet, etc.,

Illustration of Mask RCNN structure

- There are bunch of detection design . . .

Ex) Fast RCNN, Faster RCNN, Mask RCNN, ...

- Components: Backbone, Neck, Head

Backbone. Extracting Features Ex) ResNet. EfficientNet. etc..

Neck. Aggregating Features with Rol Ex) Rol-Align, Rol-Pooling, etc.,

Illustration of Mask RCNN structure

- There are bunch of detection design . . .
- Ex) Fast RCNN, Faster RCNN, Mask RCNN, ...
- Components: Backbone, Neck, Head

Backbone. Extracting Features Ex) ResNet. EfficientNet. etc..

Neck. Aggregating Features with Rol Ex) Rol-Align, Rol-Pooling, etc.,

Head. Predict with Aggregated Features
Ex) Bbox head, Class head, mask head, etc.,

- 보통 1 linear layer

Illustration of Mask RCNN structure

Agnostic to the detection task

Backbone
Feature Extractor

Detection-specific prior knowledge

Necks

- Region Proposal Networks (RPN)
- Rol operation (ROI-align/pooling)
- Feature Pyramid Network (FPN)

Heads

Detection-Agnostic Backbone

- Practical Usage: ResNet 101
- 아니면 다른 CNN-based 모델을 차용

Detection-Specific Functions

- detection-specific functions은 backbone과는 무관하게 발전되어온 것들임
 - → Backbone과 무관하게 발전할 수 있던 이유: Backbone이 모두 (ConvNet의 CI자인의 영향으로) multi-scale과 hierarchical한 구조를 갖고있다.
 - → 모든 detection designOl (Fast RCNN, Mask RCNN, Cacaded RCNN) 상 기의 구조를 갖고있음

Modern Object Detectors. Feature Pyramid Network

- Object Detection이 무조건 Hierarchical 구조를 갖게 하는 원인: Feature Pyramid Network

Feature Pyramid Networks for Object Detection, CVPR 2017, Facebook AI Research

Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie

- Powerful Backbone Introduced ViT (Vision Transformer)
- ViT is a plain, non-hierarchical architecture maintains a single-scale feature map throughout
- ViT를 backbone으로 Detection task에 적용할 때 문제가 발생!

- ViT를 backbone으로 Detection task에 적용할 때 문제가 발생!

Solution 1. Re-introduce hierarchical aspects into the plain ViT backbone.

-) Swin Transformers and others

Swin Transformer

DETR Detection Framework

- ViT를 backbone으로 Detection task에 적용할 때 문제가 발생!

Solution 2. Use plain, non-hierarchical backbones with precise adaptation

- -) plain: non-hierarchical, single-scale property
- -) backbone: pre-training available architecture

RQ. Downstream task로 object detection을 할 때, Plain backbone을 수정없이 어떻게 이용?

```
해당 연구가 성공적이면 . . .
```

- 1. Enable the use of original ViT backbones for object detection
- → This will decouple the pre-training design from the fine-tuning demands, maintaining the independence of upstream vs. downstream tasks, as has been the case for ConvNet-based research.
- 2. Achieve less inductive biased detection framework than other Transformer-based models
- → As the non-local self-attention computation can learn translation-equivariant features (find-tuning), they may also learn scale-equivariant features from certain forms of supervised or self-supervised learning (pre-training).

Methodology

Goal: Removing the hierarchical constraint on the backbone

- → Apply Minimal modifications to adapt a plain backbone to the object detection task only fine-tuning time
- > It should be available on any detection mechanism, such as, Fast RCNN, Mask RCNN, or Cascaded families

Simple Feature Pyramid & Backbone adaptation

Methodology

Simple Feature Pyramid & Backbone adaptation

Minimal Adaptation:

- → Abandon Feature Pyramid Design, instead, use only the last feature map of plain ViT backbone
- → It does not require hierarchical backbone

추가적인 문제 발생

- + Object Detection uses 'High Resolution Image' → ViT의 경우 Quadratic Complexity 발생
 - → 해결하기위해 non-overlapping window attention 사용 (without 'shifting', Swin이랑 다르다는 얘기)

위 adaptation은 fine-tuning에서만 동작함! 따라서 pre-training을 어떻게 가져가던 상관없음

Methodology 1) Simple Feature Pyramid. FPN vs. SPF

Feature Pyramid Network (FPN): combine the higher-resolution features from earlier stages And the stronger features from later stages

Simple Feature Pyramid (SFP): use only the last feature map from the backbone, which should have the strongest features

Methodology 1) Simple Feature Pyramid. Details & Implementation

res = conv2d(tensor).flatten(2).transpose(1, 2)

torch.Size([1, 256, 768])

1/32

B x 768 x 8 x 8

(c) simple feature pyramid

we produce feature maps of scales { 32 , 16 , 8 , 4 } using convolutions of strides {2, 1, $\frac{1}{2}$, $\frac{1}{4}$ }. where a fractional stride indicates a deconvolution.

-) Deconvolution can be implemented many ways

Methodology 1) Simple Feature Pyramid. Details & Implementation

```
kernel = 2
   embed dim = 768
   conv level1 = torch.nn.Conv2d(embed dim, embed dim, kernel, stride=2)
   conv level2 = torch.nn.Conv2d(embed dim, embed dim, kernel, stride=1, padding='same')
   # Deconv. 1
   conv level3 = torch.nn.Sequential(torch.nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),)
   conv_level4 = torch.nn.Sequential(
       torch.nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
       # Norm2d(embed dim),
       torch.nn.ConvTranspose2d(embed dim, embed dim, kernel size=2, stride=2),
   tensor = torch.randn(32, 256, 768)
   tensor = tensor.reshape(32, 768, 16, 16)
   feat1 = conv level1(tensor)
   feat2 = conv level2(tensor)
   feat3 = conv_level3(tensor)
   feat4 = conv level4(tensor)
   feat1.shape, feat2.shape, feat3.shape, feat4.shape,

√ 1.5s

(torch.Size([32, 768, 8, 8]),
torch.Size([32, 768, 16, 16]),
torch.Size([32, 768, 32, 32]),
torch.Size([32, 768, 64, 64]))
```

Methodology 1) Simple Feature Pyramid. Details & Implementation

```
kernel = 2
   embed dim = 768
   conv level1 = torch.nn.Conv2d(embed dim, embed dim, kernel, stride=2)
   conv level2 = torch.nn.Conv2d(embed dim, embed dim, kernel, stride=1, padding='same')
   # Deconv. 2
   conv level3 = torch.nn.Sequential(torch.nn.Upsample(scale factor=2), torch.nn.Conv2d(embed dim, embed dim, kernel, stride=1, padding='same'))
   conv level4 = torch.nn.Sequential(torch.nn.Upsample(scale factor=4), torch.nn.Conv2d(embed dim, embed dim, kernel, stride=1, padding='same'))
   tensor = torch.randn(32, 256, 768)
   tensor = tensor.reshape(32, 768, 16, 16)
   feat1 = conv level1(tensor)
   feat2 = conv level2(tensor)
   feat3 = conv level3(tensor)
   feat4 = conv_level4(tensor)
   feat1.shape, feat2.shape, feat3.shape, feat4.shape,

√ 1.5s

(torch.Size([32, 768, 8, 8]),
torch.Size([32, 768, 16, 16]),
torch.Size([32, 768, 32, 32]),
torch.Size([32, 768, 64, 64]))
```

Methodology 1) Simple Feature Pyramid. Variants

	ViT-B		ViT-L	
pyramid design	APbox	AP ^{mask}	AP ^{box}	AP ^{mask}
no feature pyramid	47.8	42.5	51.2	45.4
(a) FPN, 4-stage	50.3 (+2.5)	44.9 (+2.4)	54.4 (+3.2)	48.4 (+3.0)
(b) FPN, last-map	50.9 (+3.1)	45.3 (+2.8)	54.6 (+3.4)	48.5 (+3.1)
(c) simple feature pyramid	51.2 (+3.4)	45.5 (+3.0)	54.6 (+3.4)	48.6 (+3.2)

Plain ViT 기반 FPN design에 따른 성능 변화 결과

Methodology 2) Backbone Adaptation

- Pre-trained backbone performs global self-attention
- Object Detection uses Higher-resolution inputs during fine-tuning
- Need Global Attention!
 - → However, performing Global Attention with all pixels would be memory-exhasutive
- Use Window Attention

Default: Self-attention

Minimal Adaptation: Global Self-attention with window

- → ViT Backbone의 구조를 <mark>4등분하여 subset</mark>으로 나누고 각 subset의 마지막에서 attention
- 1) Global propagation: Window Attention (hybrid window attention)
- 2) Convolutional propagation: conv block (with residual connection)

Methodology 2) Backbone Adaptation . Variants

Global Propagation

Global Self-Attention

Subset 4. Blocks 21 ~ 26

Global Self-Attention

Subset 3, Blocks 14 ~ 20

Global Self-Attention

Subset 2, **Blocks 7** ~ **13**

Global Self-Attention

Subset 1. Blocks 1 ~ 6
Self-Attention

ViT Backbone

Global Propagation (Global Self-attention, Window Attention without shift)

Methodology 2) Backbone Adaptation . Variants

Convolution Propagation

.Global Self-Attention as Conv.

Subset 4. Blocks 21 ~ 26

Global Self-Attention as Conv

Subset 3. Blocks 14 ~ 20

Global Self-Attention as Conv

Subset 2, Blocks 7 ~ 13

Global Self-Attention as Conv

1 ~ 2 Conv + Residual Connection

Subset 1. Blocks 1 ~ 6

Global Self-Attention as Conv

Naïve: 3x3

Basic: $3x3 \rightarrow 3x3$

Botleneck: $1x1 \rightarrow 3x3 \rightarrow 1x1$

prop. conv	APbox	AP^{mask}
none	52.9	47.2
naïve	54.3 (+1.4)	48.3 (+1.1)
basic	54.8 (+1.9)	48.8 (+1.6)
bottleneck	54.6 (+1.7)	48.6 (+1.4)

(b) Convolutional propagation with different residual block types (4 blocks).

Methodology 2) Backbone Adaptation . Global vs. Convolution Propagation

prop. strategy	APbox	# params	train mem	test time
none	52.9	1.00× (331M)	1.00× (14.6G)	1.00× (88ms)
4 conv (bottleneck)	54.6 (+1.7)	1.04×	1.05×	1.04×
4 global	54.6 (+1.7)	1.00×	1.39×	1.16×
24 global	55.1 (+2.2)	1.00×	3.34× [†]	1.86×

OH blockOtol global propagation

Plain ViT 기반 Backbone Adaptation에 따른 성능 변화 결과

Train Mem: Batch size 1 기준 Single GPU 소요 메모리

Test Time: A100 GPU 기준 Forward에 소요되는 시간

1. FPN design is not necessary in the case of a plain ViT backbone (Decoupling)

pyramid design	ViT-B AP ^{hox} AP ^{msk}		ViT-L Apmisk	
no feature pyramid	47.8	42.5	51.2	45.4
(a) FPN, 4-stage	50.3 (+2.5)	44.9 (+2.4)	54.4 (+3.2)	48.4 (+3.0)
(b) FPN, last-map	50.9 (+3.1)	45.3 (+2.8)	54.6 (±3.4)	48.5 (+3.1)
(c) simple feature pyramid	51.2 (+3.4)	45.5 (+3.0)	54.6 (+3.4)	48.6 (+3.2)

Table 1: Ablation on feature pyramid design with plain ViT backbones, using Mask R-CNN evaluated on COCO. The backbone is ViT-B (left) and ViT-L (right). The entries (a-c) correspond to Figure 2 (a-c), compared to a baseline without any pyramid. Both FPN and our simple pyramid are substantially better than the baseline, while our simple pyramid is sufficient.

2. Window attention is sufficient as long as information is well propagated across windows in a small number of layers (Large-Scale Training Enable)

prop. strategy	APbox	AP ^{mask}
none	52.9	47.2
4 global blocks	54.6 (+1.7)	48.6 (+1.4)
4 conv blocks	54.8 (+1.9)	48.8 (+1.6)
shifted win.	54.0 (+1.1)	47.9 (+0.7)

prop. conv	APbox	AP ^{mask}
none	52.9	47.2
naïve	54.3 (+1.4)	48.3 (+1.1)
basic	54.8 (+1.9)	48.8 (+1.6)
bottleneck	54.6 (+1.7)	48.6 (+1.4)

(a) Window attention with various crosswindow propagation strategies.

(b) Convolutional propagation with different residual block types (4 blocks).

prop. locations	APbox	AP ^{mask}
none	52.9	47.2
first 4 blocks	52.9 (+0.0)	47.1 (-0.1)
last 4 blocks	54.3 (+1.4)	48.3 (+1.1)
evenly 4 blocks	54.6 (+1.7)	48.6 (+1.4)

prop. blks	APbox	APmask
none	52.9	47.2
2	54.4 (+1.5)	48.5 (+1.3)
4	54.6 (+1.7)	48.6 (+1.4)
24 [†]	55.1 (+2.2)	48.9 (+1.7)

(c) Locations of cross-window global propagation blocks.

(d) Number of global propagation blocks.
 †: Memory optimization required.

3. Well-pretrained, fine-tuned plain ViT can outperform the hierarchical-backbone (Swin, Mvit)

4. The trend can be seen in different object detection frameworks, including Mask R-CNN, Cascade Mask R-CNN, and others.

		Mask	Mask R-CNN		Cascade Mask R-CNN	
backbone	pre-train	APbox	APmask	APbox	AP^{mask}	
hierarchical-l	backbone detec	tors:				
Swin-B	21K, sup	51.4	45.4	54.0	46.5	
Swin-L	21K, sup	52.4	46.2	54.8	47.3	
MViTv2-B	21K, sup	53.1	47.4	55.6	48.1	
MViTv2-L	21K, sup	53.6	47.5	55.7	48.3	
MViTv2-H	21K, sup	54.1	47.7	55.8	48.3	
our plain-bac	kbone detector	s:				
ViT-B	1K, MAE	51.6	45.9	54.0	46.7	
ViT-L	1K, MAE	55.6	49.2	57.6	49.8	
ViT-H	1K, MAE	56.7	50.1	58.7	50.9	

COCO 데이터셋 기준 Detection Performance Hierarchical vs. Plain Backbone

			single-	scale test	multi-scale test	
method	framework	pre-train	AP ^{box}	AP ^{mask}	AP^{box}	AP^{mask}
hierarchical-back	bone detectors	:	XI			
Swin-L [42]	HTC++	21K, sup	57.1	49.5	58.0	50.4
MViTv2-L [34]	Cascade	21K, sup	56.9	48.6	58.7	50.5
MViTv2-H [34]	Cascade	21K, sup	57.1	48.8	58.4	50.1
CBNetV2 [36] [†]	HTC	21K, sup	59.1	51.0	59.6	51.8
SwinV2-L [41]	HTC++	21K, sup	58.9	51.2	60.2	52.1
plain-backbone de	etectors:					
UViT-S [9]	Cascade	1K, sup	51.9	44.5	120	- "
UViT-B [9]	Cascade	1K, sup	52.5	44.8	-	
ViTDet, ViT-B	Cascade	1K, MAE	56.0	48.0	57.3	49,4
ViTDet, ViT-L	Cascade	1K, MAE	59.6	51.1	60.4	52.2
ViTDet, ViT-H	Cascade	1K, MAE	60.4	52.0	61.3	53.1

COCO 데이터셋 기준 Detection Performance State-of-The-Art Models

+ The trend can be seen in the other dataset

A Dataset for Large Vocabulary Instance Segmentation (LVIS)

LVIS is a dataset for long tail instance segmentation. It has annotations for over 1000 object categories in 164k images.

method	pre-train	APmask	AP _{rare}	APbox
hierarchical-backbone detectors:	***************************************			
Copy-Paste [19], Eff-B7 FPN	none (random init)	36.0	29.7	39.2
Detic [58], Swin-B	21K, sup; CLIP	41.7	41.7	-
competition winner 2021 [18] baseline, †	21K, sup	43.1	34.3	-
competition winner 2021 [18] full, †	21K, sup	49.2	45.4	-
plain-backbone detectors:				
ViTDet, ViT-L	1K, MAE	46.0	34.3	51.2
ViTDet, ViT-H	IK, MAE	48.1	36.9	53.4

Table 7: System-level comparisons with the leading results on LVIS (v1 val) reported by the original papers. All results are without test-time augmentation. Detic [58] uses pre-trained CLIP [44] text embeddings. †: these entries use CBNetV2 [36] that combines two Swin-L backbones.

Summary of Findings

- 1. FPN design is not necessary in the case of a plain ViT backbone (Decoupling)
- 2. Window attention is sufficient as long as information is well propagated across windows in a small number of layers (Large-Scale Training Enable)
- 3. Well-pretrained, fine-tuned plain ViT can outperform the hierarchical-backbone (Swin, Mvit)
- 4. The trend can be seen in different object detection frameworks, including Mask R-CNN, Cascade Mask R-CNN, and others.
- + The trend can be seen in the other dataset

Discussion & Conclusion

- Using Plain ViT as Object Detection's Backbone has benefit from
 - 1) The detector less has 'inductive bias', as it does not use hierarchical features
 - 2) The model is Translation equivariance by using plain, non-hierarchical ViT
 - 3) The model is **Scale equivariance** by using plain ViT with single-scale feature pyramid
- (Subjective) The detection framework is easy-to-implement, simple, and promising, as it can be combined with various powerful pre-training & fine-tuning design

Background of Paper

다음 논문 주제 예측: 비디오 MAE 기반의 Fine-tuning for 비디오

	TITLE	CITED BY	YEAR
[방법론] SSL for ViT: MAE, 비디오	Masked Autoencoders As Spatiotemporal Learners C Feichtenhofer, H Fan, Y Li, K He arXiv preprint arXiv:2205.09113	14	2022
[방법론] Fine-tuning ViT: 이미지 MAE 기반의 Fine-tuning	Exploring Plain Vision Transformer Backbones for Object Detection Y Li, H Mao, R Girshick, K He European Conference on Computer Vision (ECCV), 2022	29	2022
[방법론] SSL for ViT: MAE, 이미지	Masked Autoencoders Are Scalable Vision Learners K He, X Chen, S Xie, Y Li, P Dollár, R Girshick Computer Vision and Pattern Recognition (CVPR), 2022	529	2022
	Benchmarking Detection Transfer Learning with Vision Transformers Y Li, S Xie, X Chen, P Dollar, K He, R Girshick arXiv preprint arXiv:2111.11429	29	2021
[비교논문] SSL for ViT: 비디오	A Large-Scale Study on Unsupervised Spatiotemporal Representation Learning C Feichtenhofer, H Fan, B Xiong, R Girshick, K He Computer Vision and Pattern Recognition (CVPR), 2021 C(x) CODE C(x) CODE	92	2021
[비교논문] SSL for ViT: 이미지	An Empirical Study of Training Self-Supervised Vision Transformers X Chen, S Xie, K He	354	2021
	International Conference on Computer Vision (ICCV), 2021		30/30