Mixture Models

He He (adapted from David Rosenberg's slides)

CDS, NYU

May 5, 2020

Contents

1 k-Means Clustering

Q Gaussian Mixture Models

He He (CDS, NYU) DS-GA 1003 May 5, 2020 2/33

Logistics

- Final exam
 - Released on May 14th, 6pm EST, available for 24 hours.
 - Duration: two hours.
 - Format: multiple choice and short answers on Gradescope.
- Review given by Joshua and Shubham during the usual section and tutorial hours.

He He (CDS, NYU) DS-GA 1003 May 5, 2020 3/33

Today's lecture

- A peek into unsupervised learning—clustering and mixture models.
- Final remarks and conclusion.

k-Means Clustering

Unsupervised learning

Goal Discover interesting structure in the data.

Formulation Density estimation: $p(x;\theta)$ (often with latent variables).

Examples

- Discover clusters: cluster data into groups.
- Discover factors: project high-dimensional data to a small number of "meaningful" dimensions, i.e. dimensionality reduction.
- Discover graph structures: learn joint distribution of correlated variables, i.e. graphical models.

Example: Old Faithful Geyser

- Looks like two clusters.
- How to find these clusters algorithmically?

k-Means: By Example

- Standardize the data.
- Choose two cluster centers.

From Bishop's Pattern recognition and machine learning, Figure 9.1(a).

8/33

• Assign each point to closest center.

From Bishop's Pattern recognition and machine learning, Figure 9.1(b).

9/33

• Compute new cluster centers.

• Assign points to closest center.

• Compute cluster centers.

• Iterate until convergence.

Suboptimal Local Minimum

• The clustering for k = 3 below is a local minimum, but suboptimal:

Would be better to have one cluster here

From Sontag's DS-GA 1003, 2014, Lecture 8.

He He (CDS, NYU) DS-GA 1003 May 5, 2020 14/33

Formalize k-Means

- Dataset $\mathcal{D} = \{x_1, \dots, x_n\} \subset \mathcal{X}$ where $\mathcal{X} = \mathsf{R}^d$.
- Goal: Partition data \mathcal{D} into k disjoint sets C_1, \ldots, C_k .
- Let $c_i \in \{1, ..., k\}$ be the cluster assignment of x_i .
- The **centroid** of C_i is defined to be

$$\mu_i = \underset{\mu \in \mathcal{X}}{\operatorname{arg\,min}} \sum_{x \in C_i} \|x - \mu\|^2.$$
 mean of C_i (1)

• The *k*-means objective is to minimize the distance between each example and its cluster centroid:

$$J(c, \mu) = \sum_{i=1}^{n} \|x_i - \mu_{c_i}\|^2.$$
 (2)

He He (CDS, NYU) DS-GA 1003 May 5, 2020 15 / 33

k-Means: Algorithm

- **1** Initialize: Randomly choose initial centroids $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$.
- **②** Repeat until convergence (i.e. c_i doesn't change anymore):
 - For all *i*, set

$$c_i \leftarrow \underset{j}{\operatorname{arg\,min}} \|x_i - \mu_j\|^2$$
. Minimize J w.r.t. c while fixing μ (3)

$$\mu_j \leftarrow \frac{1}{|C_j|} \sum_{\mathbf{x} \in C_i} \mathbf{x}.$$
 Minimze J w.r.t. μ while fixing c . (4)

- Recall the objective: $J(c, \mu) = \sum_{i=1}^{n} ||x_i \mu_{c_i}||^2$.
- k-means is coordinate descent on J.

He He (CDS, NYU) DS-GA 1003

Avoid bad local minima

k-means converges to a local minimum.

- k-means is coordinate descent on J, thus J will monotonically decrease.
- ullet But J is non-convex, thus no guarantee to converging to the global minimum.

Avoid getting stuck with bad local minima:

- Re-run with random initial centroids.
- *k*-means++: choose initial centroids that spread over all data points.
 - Randomly choose the first centroid from the data points \mathfrak{D} .
 - Sequentially choose subsequent centroids from points that are farther away from current centroids:
 - Compute distance between each x_i and the closest already chosen centroids.
 - Randomly choose next centroid with probability proportional to the computed distance squared.

Summary

We've seen

- Clustering—an unsupervised learning problem that aims to discover group assignments.
- k-means:
 - Algorithm: alternating between assigning points to clusters and computing cluster centroids.
 - Objective: minmizing some loss function by cooridinate descent.
 - Converge to a local minimum.

Next, probabilistic model of clustering.

- A generative model of x.
- Maximum likelihood estimation.

He He (CDS, NYU) DS-GA 1003 May 5, 2020 18 / 33

Gaussian Mixture Models

Probabilistic Model for Clustering

- Problem setup:
 - There are *k* clusters (or **mixture components**).
 - We have a probability distribution for each cluster.
- Generative story of a mixture distribution:
 - **1** Choose a random cluster $z \in \{1, 2, ..., k\}$.
 - Choose a point from the distribution for cluster z.

Example:

- Choose $z \in \{1, 2, 3\}$ with $p(1) = p(2) = p(3) = \frac{1}{3}$.
- **2** Choose $x \mid z \sim \mathcal{N}(X \mid \mu_z, \Sigma_z)$.

Gaussian mixture model (GMM)

Generative story of GMM with k mixture components:

- Choose cluster $z \sim \text{Categorical}(\pi_1, \dots, \pi_k)$.
- **2** Choose $x \mid z \sim \mathcal{N}(\mu_z, \Sigma_z)$.

Probability density of x:

• Sum over (marginalize) the latent variable z.

$$p(x) = \sum_{z} p(x, z) \tag{5}$$

$$=\sum_{z}p(x\mid z)p(z)\tag{6}$$

$$= \sum_{k} \pi_k \mathcal{N}(\mu_k, \Sigma_k) \tag{7}$$

Learning GMMs

How to learn the parameters π_k, μ_k, Σ_k ?

- MLE (also called maximize marginal likelihood).
- Log likelihood of data:

$$L(\theta) = \sum_{i=1}^{n} \log p(x_i; \theta)$$

$$= \sum_{i=1}^{n} \log \sum_{z} p(x, z; \theta)$$
(8)

$$= \sum_{i=1}^{n} \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta})$$
 (9)

- Cannot push log into the sum... z and x are coupled.
- No closed-form solution for GMM—try to compute the gradient yourself!

DS-GA 1003 22 / 33 He He (CDS, NYU) May 5, 2020

Learning latent-variable models with MLE

In general, we can show

$$\frac{d}{d\theta} \sum_{z} \log p(x, z; \theta) = \mathbb{E}_{p(z|x)} \left[\frac{d}{d\theta} \log p(x, z) \right] \quad \text{Exercise}$$
 (10)

- Expected gradient of joint log probability w.r.t. the posterior of z.
- Applies to general latent variable models.
- Hard to compute in general.
- For GMM, gradient ascent is doable but often slow.

Learning GMMs: observable case

Suppose we observe cluster assignments z. Then MLE is easy:

$$n_z = \sum_{i=1}^n 1(z_i = z)$$
 # examples in each cluster (11)

$$\hat{\pi}(z) = \frac{n_z}{n}$$
 fraction of examples in each cluster (12)

$$\hat{\mu}_z = \frac{1}{n_z} \sum_{i: z_i = z} x_i$$
 empirical cluster mean (13)

$$\hat{\Sigma}_{z} = \frac{1}{n_{z}} \sum_{i:z_{i}=z} (x_{i} - \hat{\mu}_{z}) (x_{i} - \hat{\mu}_{z})^{T}.$$
 empirical cluster covariance (14)

He He (CDS, NYU) DS-GA 1003 May 5, 2020 24/33

Learning GMMs: inference

The inference problem: observe x, want to know z.

$$p(z = j \mid x_i) = p(x, z = j)/p(x)$$
 (15)

$$= \frac{p(x \mid z = j)p(z = j)}{\sum_{k} p(x \mid z = k)p(z = k)}$$
(16)

$$= \frac{\pi_j \mathcal{N}(x_i \mid \mu_j, \Sigma_j)}{\sum_k \pi_k \mathcal{N}(x_i \mid \mu_k, \Sigma_k)}$$
(17)

- $p(z \mid x)$ is a soft assignment.
- If we know the parameters μ , Σ , π , this would be easy to compute.

Let's compute the cluster assignments and the parameters iteratively.

The expectation-minimization (EM) algorithm:

- **1** Initialize parameters μ , Σ , π randomly.
- Run until convergence:
 - E-step: fill in latent variables by inference.
 - compute soft assignments $p(z | x_i)$ for all i.
 - **9** M-step: standard MLE for μ , Σ , π given "observed" variables.
 - Equivalent to MLE in the observable case on data weighted by $p(z \mid x_i)$.

M-step for GMM

Recall the gradient is:

$$\frac{d}{d\theta} \sum_{z} \log p(x, z; \theta) = \mathbb{E}_{p(z|x)} \left[\frac{d}{d\theta} \log p(x, z) \right]$$
 (18)

• Let $p(z \mid x)$ be the soft assignments:

$$\gamma_i^j = \frac{\pi_j \mathcal{N}(x_i \mid \mu_j, \Sigma_j)}{\sum_{c=1}^k \pi_c \mathcal{N}(x_i \mid \mu_c, \Sigma_c)}.$$

Exercise: show that

$$\mu_c^{\text{new}} = \frac{1}{n_c} \sum_{i=1}^n \gamma_i^c x_i$$

$$\Sigma_c^{\text{new}} = \frac{1}{n_c} \sum_{i=1}^n \gamma_i^c (x_i - \mu_c^{\text{new}}) (x_i - \mu_c^{\text{new}})^T$$

$$\pi_c^{\text{new}} = \frac{n_c}{n}.$$

He He (CDS, NYU)

27 / 33

Initialization

• First soft assignment:

• First soft assignment:

• After 5 rounds of EM:

• After 20 rounds of EM:

EM for GMM: Summary

- EM is a general algorithm for learning latent variable models.
- Key idea: if data was fully observed, then MLE is easy.
 - E-step: fill in latent variables by computing $p(z \mid x, \theta)$.
 - M-step: standard MLE given fully observed data.
- Simpler and more efficient than gradient methods.
- Can prove that EM monotonically improves the likelihood and converges to a local minimum.
- k-means is a special case of EM for GMM with hard assignments, also called hard-EM.

He He (CDS, NYU) DS-GA 1003 May 5, 2020 33 / 33