STRUCTURE BACTERIENNE

Dr H. AMMARI

Mars 2023

HISTORIQUE

Van Leuwenhook 1632-1723

Définition d'une bactérie

- Etre unicellulaire (procaryote) de petite taille, de morphologie variable qui présente des caractéristiques propres.
- Taille varie entre 1 à 10 μm/1μm de φ.
- Poids: environ 10⁻¹² g.
- Contient 70% d'eau.
- Constituée de protéines, de lipides, de lipopolysaccharides, de peptidoglycane, de ribosomes, d'ARN et d'ADN (3%).
- Absence de mitochondrie, réticulum endoplasmique, d'app. de Golgi et d'app.mitotique

Eucaryote

Procaryote

Moyens d'étude

- Microscope optique: X 1000
 - Morphologie: cocci, bacille (incurvée, hélicoïdale).
 - Etat frais: X40 (mobilité)
 - Examen –frottis-coloration: X100
 - Ex: Bleu de méthylène, C. de Gram, C. Ziehl Neelsen.
- Microscopie électronique: Structure Fine
- Fractionnement des bactéries (Moyens physiques ou chimiques) pour l'étude plus fine des différents composants

Morphologie:

Bactéries visibles au MO: la majorité

Bactéries invisibles au MO:

• ex: Mycoplasme, chlamydia

1. Les éléments constants et facultatifs

Une cellule bactérienne est composée d'éléments constants, présents chez quasiment toutes les bactéries, et d'éléments facultatifs, observés ou non en fonction des espèces

Les éléments constants	Les éléments facultatifs
Le chromosome bactérien (constitué d'ADN)	La spore (forme de résistance)
Le cytoplasme (le "liquide cellulaire")	La capsule (couche entourant la paroi)
Les ribosomes (présents dans le cytoplasme)	Les flagelles (permettant aux bactéries de se déplacer)
La membrane plasmique (délimitant la cellule)	Les pili sexuels (intervenant dans la conjugaison)
La paroi (enveloppe rigide protégeant la cellule)	Les fimbriae (rôle d'adhésion aux cellules de l'hôte)

Structure de la cellule bactérienne

Structure de la cellule bactérienne (1)

- Les enveloppes externes: (capsule, glycocalyx, paroi et membrane)
- La capsule: elt externe, facultatif, en général polysaccharidique, mee coloration encre de chine.
 Pouvoir pathogène +++ (virulence)
 Typage sérologique ex: pneumocoque
 - détection d'Ag soluble sang, LCR

Coloration à l'encre de chine pour la mise en évidence de la capsule

Structure de la cellule bactérienne(2)

- Glycocalyx: feutrage de fibres polysaccharidiques SLIME ex: Pseudomonas et Streptocoque.
 Rôle adhésion:
 - Des microorganismes entre eux
 - A la surface des supports solides
 - Dans l'environnement

Ex: plaque dentaire/streptocoques oraux

La paroi (1)

- Enveloppe rigide.
- Elément obligatoire.
- Assure protection et forme
 Absente chez les mycoplasmes
- Coloration de Gram:
 - Violet de gentiane
 - Décoloration à l'alcool
 - Contre coloration par la fuchsine

Coloration de Gram

- En 1884, Gram médecin Danois mis au point la méthode de coloration.
- Basée sur la perméabilité plus grande de la paroi des bactéries à Gram (-) à l'alcool.
- -coloration des cellules d'un frottis avec le violet de gentiane
- Fixation par le lugol (iodo-ioduré)
- Décoloration par l'alcool
- Recoloration par la fuchsine.
- Si la cellule ne se décolore pas: violet Gram (+)
- Si elle se décolore: rose Gram (-)
- Le cytoplasme se colore et le peptidoglycane est responsable de la rétention du colorant à cause de son épaisseur.

La paroi (2)

- Bactéries colorées violettes (ayant gardé le violet de gentiane) : bactéries à Gram Positif.
- Bactéries colorées en rose (bactéries ayant perdu le violet par la décoloration à l'alcool et recolorée par la fuchsine en rose): bactéries à Gram négatif.

La coloration de Gram

Coloration de Gram

Négatif Positif

NAG: N-acétyl glucosamine

ANAM : acide N acétyl muramique

Les tétrapeptides

Liaison β 1-4 NAG ANAM NAG ANAM NAG ANAM ANAM NAG ANAM ANAM Chaine peptidique Polymère composé de chaînes linéaires de Pont interpeptidique N-acétyl-glucosamine (G) et d'acide N Le peptidoglycane. acétyl-muramique(M).

R.Moreda Lycée Lacroix Narbonne

Paroi(3)

- Support de cette différence de Gram: le peptidoglycane
- Très épais pour les bactéries à Gram positif
- Fin chez les bactéries à Gram négatif

CARACTERES PARTICULIERS A LA PAROI DES BACTERIES A GRAM POSITIF:

Peptidoglycane représente 40 à 95% + acides teichoïques

CARACTERES PARTICULIERS A LA PAROI DES BACTERIES A GRAM NEGATIF:

- Peptidoglycane représente 20%
- Lipopolysaccharides
- Phospholipides et des protéines = Ag somatique
 - = Endotoxine
- Les mycobactéries très riches en lipides. Coloration Ziehl-Neelsen spécifique, Dc de la tuberculose

La paroi des bactéries à Gram positif et à Gram négatif

Rôle de la paroi

- Forme
- L'antigénicité (Ag Somatique)
- Cibles de plusieurs ATB
 - Fosfomycine
 - Béta lactamines
 - Vancomycine
- Point d'impact du lysozyme (PG)
- Siège des récepteurs de bactériophages

Membrane cyptoplasmique

- La M.C. bact. est mince délimitant le cytoplasme.
- ME : triple feuillets: deux feuillets denses délimitant une couche claire

Mésosome

BACTERIAL CELL

Membrane cytoplasmique (2)

Rôle de la membrane cytoplasmique (1)

- Semi perméable qui règle les échanges
- Concentre des substances jusqu'à 500 fois / à la concentration externe
- Régulation osmotique (ions)
- Régulation métabolique (perméases)
- Excrétion de diverses substances élaborées par la bactérie (exotoxines)

Rôle de la membrane cytoplasmique (2)

- Siège des enzymes respiratoires
- Site d'action de certains ATB (Colimycine)

Constituants internes

- Le cytoplasme:
 - C'est une masse amorphe, gel permanent, pas de mitochondries, pas de réticulum endoplasmique, pas d'app. de Golgi
 - Délimité par la membrane cytoplasmique
 - Il renferme:
 - Des ribosomes
 - Des inclusions

- Ribosomes:++++ très grand nombre
 - Siège de la synthèse des protéines
 - Constitué de 2 s/unités (30S et 50S)
 - Composés d'agrégat de molécules de RNA et de protéines.
 - Plusieurs ATB agissent sur les ribosomes:
 - Aminosides
 - Tétracyclines
 - Macrolides
 - chloramphénicol

Chromosome bactérien ou app. nucléaire ou « noyau »

- Pas de membrane nucléaire (échange)
- Relié à la membrane cytoplasmique par l'intermédiaire du mésosome (jouerait une rôle dans la division bactérienne)
- Composé d'ADN bicaténaire (double chaîne) circulaire,
- 1000 fois plus long que la bactérie (surenroulé)
- Support de l'information génétique.

Plasmides

- ADN extra chromosomique de réplication autonome.
- Ils peuvent être plusieurs dans une bactérie
- Les plasmides sont transférables d'une bactérie à une autre (conjugaison ou par transduction)
- Existe plusieurs types: plasmides F de fertilité et le plasmides R de résistance aux ATB

Les appendices externes (1)

- Les flagelles: éléments facultatifs
 - Organe locomoteur
 - Support de l'antigénicité H

Les appendices externes (1)

- Les pili: elts facultatifs, retrouvés en surface existe deux types
- Pili commun ou fimbriae: courts filaments, nombreux, constitués d'une protéine: piline
 - rôle non parfaitement connu, mieux connu le rôle d'adsorption bactérienne à la surface de certaines cellules (gono-c. épithéliale urètre)

Les appendices externes (2)

- Pili sexuels: sont plus longs, moins nombreux
 - codés par un plasmide (facteur F)
 - intervient dans le phénomène de conjugaison en réalisant l'amarrage des bactéries

 \mathbf{PILI}

La spore

 Forme de résistance de certaines bactéries aux conditions de vie défavorables.

 Quand les conditions deviennent favorables, les bactéries reprennent leurs formes végétatives (forme normale)

Intérêt de la sporulation

- La survie dans un milieu hostile
- La dissémination des maladies: tétanos, botulisme
- L' identification bactérienne

Différentes formes de la spore

spore sphérique

spore cylindrique

spore ovoïde

Différentes positions de la spore dans le bacille

spore centrale

spore subterminale

spore terminale

Différentes déformations du bacille par la spore

spore non déformante

spore déformante

Propriétés de la spore (1)

- Résiste à 100°C. (15-20 mn à 120°C en chal humide/sous pression : autoclavage)
- Résiste aux radiations X et UV
- Résiste aux solvants : éthanol, chloroforme
- Résiste aux antiseptiques et aux ATB
- Sensible au formol, oxyde d'éthylène et à la béta propriolactone
- Pathologie:
 - Tétanos, gangrène gazeuse (toxi-infections)
 - Botulisme (intoxications alimentaires)
- Cible de toutes les techniques de stérilisation (instruments, produits injectables, conserves alimentaires, etc.)

Applications au diagnostic

- Le diagnostic en bactériologie repose sur un certain nombre de renseignements que fournit la bactérie:
- Sa structure
- Sa physiologie
- Son antigénicité
- L'élaboration d'enzymes et de toxines

Applications au diagnostic

- Coloration au bleu de méthylène: forme des bactéries et leur disposition + renseigne sur les cellules retrouvées (PN, lymphocytes)
- Coloration de Gram ++++: technique largement utilisée dans le Dc bact. Renseigne sur la nature de la paroi(G+ ou G-): argument Dc important car guide l'attitude thérapeutique du praticien.
- Coloration spéciale : Ziehl-Neelsen
- Ex. micros de pus urétral : diplocoque à Gram (-) intracellulaire pose le Dc d'urétrite gonococcique.

R. Belouni A. Benslimani

Manuel de Microbiologie

à l'usage des étudiants en 3ème année de Médecine

Coordonné par F. Boulahbal

OFFICE DES PUBLICATIONS UNIVERSITAIRES

