Algebra II: Tutorial 8

April 6, 2022

Problem 1. Let K be field, and a_1, a_2, \dots, a_n be algebraic over K. Let $L = K(a_1, a_2, \dots, a_n)$, and suppose that $K \subset M \subset L$.

- 1. Show that $M(a_1, a_2, \dots, a_n) = L$. Deduce that if L is a splitting field of f over K, then L is a splitting field of f over M.
- 2. Give an example of polynomial f over K and a field extension M of K such that the splitting fields of f over K and M are not isomorphic.

Problem 2. Give an example of a normal algebraic extension of \mathbb{Q} which is not finite.

Problem 3. Show that an algebraic extension $K \subset L$ is normal if and only if for every $\alpha \in L$, the minimal polynomial of α over K splits completely over L.

Problem 4. Show that any quadratic extension is normal.

Problem 5. Let $K \subset L \subset M$ with $K \subset L$ normal and $L \subset M$ normal. Does this imply that $K \subset M$ is normal?