Semi-Supervised Learning for Speech Denoising

Sherief Helwa

Josiah Smith

Data Collection Scenarios

A. Signal Denoising in Babble Noise Environment

 Noise recorded in UTD's SU using a Shure mid-side microphone.

B. Signal Denoising in Machinery Noise Environment:

1. Fan Noise:

 Noise recorded in the lab using a Shure mid-side microphone and two stereo speakers on both sides of the mic.

2. Car Engine Noise:

Noise recorded from one side of my car while opening the hood.

- 1. Training Computational Efficiency:
 - Using Multiple GPUs (NVIDIA GeForce GTX 1050 and the integrated Intel GPU), we were able to achieve the following training times.

Network Training Scenario	Machinery Noise	Babble Noise
5 Convolutional Triples, 50 Epochs	140 min	198 min

2. Testing Computational Latency:

	1 Layer	3 Layers	5 Layers
Latency	2.5 ms	3.5 ms	5 ms

3. Subjective Evaluation:

	Machinery Noise	Babble Noise
Average Subjects Evaluation	1.85	2

4. SNR Enhancement Analysis (Babble Noise):

4. SNR Enhancement Analysis (Babble Noise):

4. SNR Enhancement Analysis (Machinery Noise):

4. SNR Enhancement Analysis (Machinery Noise):

Thank you