

Revised-NODDI with conventional dMRI data enabled by deep learning

Michele Guerreri^{1,2}, Hojjat Azadbakht², and Hui Zhang¹

- 1.Department of Computer Science & Centre for Medical Image Computing, University College London, London, United Kingdom.
- 2. AINOSTICS, Manchester, England.

Medical Research Council

Revised-NODDI a recent version of NODDI

Tissue Morphology

Why revised-NODDI?

Revised NODDI has been shown to **overcome** some of the **limitations of the original version**.

Moreover, the intra-neurite diffusivity (d_I) parameter can be robustly estimated.

What is the problem?

With conventional dMRI data alone and using traditional fitting methods we cannot robustly estimate all revised-NODDI parameters.

A non-optimal alternative

Fixing the d_I value as done in the original model version solves the degeneracy problem.

In the presence of **natural variation of the diffusivity**, it may **lead to a biased estimation of the other parameters**.

Can we exploit DL?

DL has a demonstrated capacity to reduce the imaging protocol requirements.

Neurolmage

Volume 244, 1 December 2021, 118601

Neural networks for parameter estimation in microstructural MRI: Application to a diffusionrelaxation model of white matter

João P. de Almeida Martins ^{a, b, 1} △ ☑, Markus Nilsson ^{a, 1}, Björn Lampinen ^c, Marco Palombo ^d, Peter T. While ^{b, e}, Carl-Fredrik Westin ^{f, g}, Filip Szczepankiewicz ^{a, f, g}

- DL can partially alleviate degeneracy problems.
- In the presence of parameter-specific modulations, the other parameter estimation via DL is marginally affected.

Aim of the work

1. Can we alleviate revised-NODDI degeneracy problems from conventional dMRI data alone, via DL?

2. Can DL reduce parameter estimation bias in the presence of d_I fluctuations, compared with a conventional fitting approach using fixed diffusivity?

The DL model

We design a multi-layer perceptron which takes single voxel conventional dMRI data as input and outputs revised-NODDI rotation-invariant parameter estimations.

We train the network on synthetic data.

Results 1: DL has lower RMSE

Conventional fit

Question 2: DL more robust to d_I fluctuations

Parameter estimation bias (%) linked to dI fluctuations

Thank you!!

