Natürliche Oberflächen

Optik, Strahlung, Fernerkundung Sommersemester 2017

Stefan Bühler Meteorologisches Institut Universität Hamburg

Übersicht – alle Kapitel

Einleitung

- 1. Elektromagnetische Wellen
- 2. Grundaesetze der Optik
- 3. Natürliche Oberflächen
- 4. Thermische Strahlung
- 5. Strahlungstransfergleichung
- 6. Streuung
- 7. Inversion
- 8. Sensoren

Prüfungsvorbereitung

Prüfung

Quellen

- Petty (A first Course in Atmospheric Radiation)
- ► Rees (Physical Principles of Remote Sensing)

Zunächst eine Umfrage / Vorgriff auf das nächste Kapitel

- ► Es gibt eine klassische Aufgabe, die Temperatur der Erde (ohne Atmosphäre) aus der Strahlungsbalance zu berechnen (mit Planck-Funktion der Sonne und der Erde).
- Wer hat das schon mal gemacht (z.B. in Klimaphysik)?

Übersicht

- Natürliche Oberflächen
- ► Absorptivität und Reflektivität
- Winkelabhängigkeit der Reflektion
- Anwendungsbeispiele und Zusammenfassung

NATÜRLICHE OBERFLÄCHEN

Natürliche Oberflächen

- ▶ Die meisten natürlichen Oberflächen sind nicht so einfach, dass sie sich als glatte Grenze zwischen zwei homogenen Medien beschreiben ließen.
 - ► Erde
 - Sand
 - Vegetation
 - ▶ Stein
 - Schnee
 - Wasserflächen (was unterscheidet sie von den anderen Oberflächen?)
- ?

Rauigkeit Abhängig vom Wind

Idealisierte natürliche Oberflächen

- ▶ Die Gesetze der spekularen Reflektion (inklusive Fresnel Formelen, etc.) gelten allenfalls noch auf der Mikroskala (z.B. für Wasser), aber nicht wenn man über eine endliche Oberfläche mittelt.
- Wir brauchen
 eine mehr empirische
 Beschreibung der
 Streueigenschaften
- ► Für raue Oberflächen betrachten wir eine gedachte Ebene, und ignorieren die Details darunter

Fig. 5.1: Example of how one treats an irregular surface as an equivalent plane surface.

Quelle: Petty

Wolken

- In diesem vereinfachten Bild kann ich sogar Wolken als (Pseudo-)Oberfläche betrachten.
- Macht Sinn für reflektierte Sonnenstrahlung.

ABSORPTIVITÄT UND REFLEKTIVITÄT

Absorptivität und Reflektivität

- Absorptivität a = Bruchteil der absorbierten Strahlungsintensität
- Reflektivität r = Bruchteil der reflektierten Strahlungsintensität

- ► Hängen von Wellenlänge (oder Frequenz) ab
 - ▶ Beispiel: Gras sieht grün aus, weil es grün, gelb und blau stärker reflektiert als rot und orange.
- Hängen von der Richtung (der einfallenden Strahlung) ab
 - ▶ Das war ja auch bei glatten Oberflächen so → Fresnel Gleichungen
- Können wir etwas über die Summe von a und r sagen?

Verhältnis zwischen Absorptivität und Reflektivität

$$a_{\lambda}(\vartheta,\varphi) + r_{\lambda}(\vartheta,\varphi) = 1$$

(Das heißt, wir nehmen an, dass es keine Transmission gibt.)

Oft azimutal isotrop:

$$a_{\lambda}(\vartheta,\varphi) + r_{\lambda}(\vartheta,\varphi) = 1$$

Für hinreichend raue Oberflächen ist auch die Theta-Abhängigkeit klein.

Beispiele für Reflektivitätsspektren

- Besonders hohe Reflektivität: Frischer Schnee
- Besonders niedrige Reflektivität: Wasser, Erde, frische Vegetation
- Im Nah-Infrarot sind die Reflektivitäten allgemein niedriger, im Infrarotbereich noch niedriger (dort typisch <5%)</p>
- Warum die Minima bei Gras und Alfalfa (Luzerne, eine Art Klee)?
- ?
- Absorption des Chlorophylls

Beispiele für Reflektivitätsspektren

Anwendung: Klassifizierung

Wenn mehrere Frequenzen zur Verfügung stehen, kann man das zur Klassifizierung nutzen.

Näherung grauer Körper

- Was ist ein schwarzer Körper?
- ? Reflektivität = 0 bei allen Wellenlängen / Frequenzen
 - Was ist ein grauer Körper?
- ? Reflektivität konstant (aber nicht null)
 - ➤ Typischerweise über ein bestimmtes Wellenlängenintervall, zum Beispiel
 - Kurzwellig, z.B. Wellenlänge kleiner als 4 Mikrometer
 - Langwellig, z.B. Wellenlänge größer als 4 Mikrometer
 - Reale Oberfläche lässt sich (stark vereinfacht) als grauer Körper beschreiben (mit effektiver Reflektivität)
- Das macht man, obwohl die Reflektivität von der Wellenlänge abhängt
 - Die N\u00e4herung mach Sinn, wenn das Spektrum der einfallenden Strahlung ziemlich konstant ist
 - ► Kurzwellige effektive Reflektivität heißt auch kurzwellige Albedo

Real Surfaces: Visible Radiation

Rees 3.23: Typical values of albedo integrated over the visible waveband for normally incident radiation. (Mostly after Schanda, 1986.)

Real Surfaces: Thermal Infrared Radiation

Emissivität = Absorptivität (Kirchhoff's Gesetz, kommt später)

Absorptivität = 1-Reflektivität

Rees 3.25:

Typical emissivities of various materials at normal incidence in the range 8-12 µm.

Note change of scale at $\varepsilon = 0.90$.

Viel geringere Variabilität als im Sichtbaren!

WINKELABHÄNGIGKEIT DER REFLEKTION

Verschiedene Oberflächenmodelle

Petty 5.3: Various types of surface reflection. Polar plots, distance from origin represents relative intensity of radiation reflected in that direction.

(Grant W. Petty, A First Course in Atmospheric Radiation, Sundog Publishing, 2004)

Bidirectional Reflection Function (BDRF oder BRDF)

Spekulare-Reflektion (Spiegel) und Lambert-Reflektion (isotrop) sind zwei wichtige Grenzfälle.

Allgemein hängt die Reflektivität von der Richtung

der Einfallenden Strahlung und der Reflektionsrichtung ab. \hat{n}_i

Nomenklatur

- ► Eine Richtung bezeichne ich mit dem Richtungsvektor n
 .
 Dach wegen Einheitsvektor. Kann ich durch zwei Winkel angeben.
 Subskript i, r, A für Incident (einfallend), Reflected und
 Flächennormale zu dA.
- Der Raumwinkel Ω kann definiert werden als Teilfläche A einer Kugel, dividiert durch das Quadrat des Radius r der Kugel:

$$\Omega = A/r^2$$

Bei Betrachtung der Einheitskugel (r = 1) ist A also gleich dem zugehörigen Raumwinkel. So ist der volle Raumwinkel gleich der Oberfläche der Einheitskugel, nämlich 4π.

Stefan Bühler

Exkurs: Irradianz, Radianz, spektrale Radianz

- Irradianz (hier F) = Strahlungsfluss [W/m²] (Strahlung durch eine Fläche aus allen Richtungen und bei allen Frequenzen)
- ► Radianz (hier *L*) [W/m²/sr]

Raumwinkel

Fig. 2.3: The relationship between Cartesian and spherical coordinates

Fig. 2.4: The relationship between solid angle and polar coordinates.

Mathematisch

$$(d\Omega = \sin\vartheta \ d\vartheta \ d\varphi)$$

Die schräge Fläche erhält mehr W/m², obwohl die Radianz gleich ist.

Rezept:

 $2\pi \pi/2$

- Beitrag der Strahlung aus einer bestimmten Richtung zum Fluss wird mit cos θ gewichtet (Beipiel: Flach stehende Sonne wärm nicht, oder vergleiche Nordhang-Südhang)
- Der sin θ Term kommt aus der Definition des Raumwinkelelements
- ► Integriere über eine Hemisphäre

Bedeutung des cos 3 Terms

Projektion der Intensität Iv

and die Flächennormale:

Iv = Iv cost

=> Intensitat bei großen Winkelad

tragt wanig zum Energiepungs bei.

Beispiel isotrope Strahlung

Für L konstant (unabhängig von der Richtung) gilt:
 F = πL
 (Lässt sich einfach durch Berechnung des Integrals zeigen.)

Anmerkung: Die Projektion von L auf die Fläche, durch die der Fluss geht, ist wichtig (der $\cos \theta \ Term$)! Sonst wäre die Lösung ja L mal die Oberfläche einer Halbkugel, also $2\pi L$.

Die Strahlungsgröße ohne die $\cos \theta$ Wichtung gibt es auch: Actinic Flux. Wofür könnte der interessant sein?

Photochemie, es ist die Energie, die für Photodissoziation zur Verfügung steht

Spektrale Radianz (Intensität)

- Spektrale Radianz (hier I) = Intensität I_{λ} [W/m2/sr/m] I_{ν} [W/m2/sr/Hz]
- Muss auch noch über Wellenlänge (oder Frequenz) integriert werden, um Flüsse zu berechnen
- \triangleright Achtung I_{λ} und I_{ν} sind verschieden!
- Analog kann man auch eine spektrale Irradianz definieren

Generell: Namen im Bereich Strahlung sind sehr uneinheitlich.

(Vor allem Intensität kann eigentlich alles heißen.)

Verlässlicher: Die Einheiten.

(Petty zum Beispiel nennt Radianz Intensität und nimmt Buchstaben *I*, Rees benutzt meine Nomenklatur.)

Warum?

Diese Definitionen sind sehr wichtig, I_{λ} und I_{ν} sind zentrale Größen in der Theorie des Strahlungstransfers.

Ende des Exkurses, zurück zu den Oberflächen...

Bidirectional Reflection Function (BDRF oder BRDF)

- Bezieht sich auf die Richtung der Strahlung, gilt also für Radianz (oder spektrale Radianz)
- Reflektierte Radianz in einer Richtung ist Integral der einfallenden Radianz aus allen Richtungen:

BDRF
$$L_r(\hat{n}_r) = \int_{2\pi}^{8} \rho(\hat{n}_i, \hat{n}_r) L_i(\hat{n}_i) \hat{n}_A \cdot \hat{n}_i d\Omega_i$$

$$L_{r}(\vartheta_{r},\varphi_{r}) = \int_{0}^{2\pi} \int_{0}^{\pi/2} \rho(\vartheta_{i},\varphi_{i},\vartheta_{r},\varphi_{r}) L(\vartheta_{i},\varphi_{i}) \cos \vartheta_{i} \sin \vartheta_{i} d\vartheta_{i} d\varphi_{i}$$

$$(d\Omega = \sin\vartheta \ d\vartheta \ d\varphi)$$

Einheit der BDRF?

▶ Die Einheit von $\rho(\hat{n}_i, \hat{n}_r)$ ist 1/sr.

Lambertsche Oberfläche

Was war das nochmal?

$$\rho(\vartheta_i, \varphi_i, \vartheta_r, \varphi_r) = \text{Konst.} = \rho_L$$

► Konsequenz?

Integral wird:

$$L_r(\vartheta_r, \varphi_r) = L_L = \rho_L \int_0^{2\pi} \int_0^{\pi/2} L(\vartheta_i, \varphi_i) \cos \vartheta_i \sin \vartheta_i \, d\vartheta_i \, d\varphi_i$$

- Verschiedene Einfallswinkel tragen unterschiedlich stark zur reflektierten Radianz bei.
- Die reflektierte Radianz ist in allen Richtungen gleich.

Mehr zur BDRF

- Im völlig allgemeinen Fall nicht skalar, sondern 4x4 Matrix (Müller Matrix), und *L* ist dann ein 4-Element Vektor (Stokes Vektor).
- Warum ist die BRDF wichtig?
 - Wichtig für quantitativen Strahlungstransfer.
 - ➤ Grundidee (ausgehende Strahlung als Integral über alle einfallenden Richtungen) taucht beim Kapitel Streuung wieder auf.

ANWENDUNGSBEISPIELE UND ZUSAMMENFASSUNG

Anwendungsbeispiele

- ▶ Unterschiede in kurzwelliger Albedo führen zu unterschiedlicher Erwärmung (schwarzes Auto wird heißer als weißes). Aber Achtung: Wärmekapazität ist auch wichtig! Land-See Wind entsteht, weil sich Land, trotz höherer Albedo, stärker aufheizt als See.
- ▶ Schneeschmelze durch solare Einstrahlung → Hausaufgabe

- Fernerkundung im Sichtbaren
 - Unterschiedliche Reflektivitäten verschiedener Oberflächen für sichtbares Licht (inkl. Wolken als Pseudo-Oberfläche) können zur Klassifizierung ausgenutzt werden (so wie es auch unser Auge macht)

Zusammenfassung 1/2

- Diesmal ein sehr kurzes Kapitel
- Ganz grob:
 - Sichtbar: Reflektivität sehr variabel, groß für manche Oberflächen
 - ► Infrarot: Reflektivität klein für alle natürlichen Oberflächen
 - Mikrowelle: Reflektivität klein für Land, größer für Wasser, dort Windabhängig (Streuung an Kapilarwellen, habe ich nicht in der Vorlesung gezeigt)

Zusammenfassung 2/2

- Nebenbei wurden sehr wichtige Strahlungsgrößen eingeführt:
 - ► Irradianz F [W/m²]
 - ► Radianz

 L [W/m²/sr]
 - Intensität = spektrale Radianz I_{λ} [W/m²/sr/m] I_{ν} [W/m²/sr/Hz]

Die sollten Sie im Schlaf können! ©

Leseempfehlung

Petty, Kapitel 5.