ml

March 7, 2023

Rescaling with z-core standardisation

• Get the data and transform the dataframe for classification:

```
## get the Wisconsin breast cancer data as data frame:
wbcd <- read.csv(file="http://bit.ly/3khqmkp")
## drop the first (ID) column:
wbcd <- wbcd[-1]
## recode target class as labeled 2-level factor
wbcd$diagnosis |> factor(c("B","M"),c("Benign","Malignant")) -> wbcd$diagnosis
# wbcd$diagnosis |> str()

str(wbcd$diagnosis)
Factor w/ 2 levels "Benign","Malignant": 1 1 1 1 1 1 1 2 1 1 ...
```

- Problem: Use the z-score standardization to transform the data, check and interpret the predictions.
- This normalization method is well suited to a cancer dataset:
 - z-score standardized values have no predefined minimum or maximum
 - extreme values are not compressed towards the center
 - a malignant, fast-growing tumor might lead to extreme outliers
 - outliers weigh more heavily in the distance calculation
- To standardize a vector, use base::scale, which centers and scales the columns of a numeric matrix:

wbcd_test_labels	wbcd_test_p Benign		Row Total
Benign	61	0	61
	1.000	0.000	0.610
	0.924	0.000	
	0.610	0.000	ĺ
Malignant	5	34	39
	0.128	0.872	0.390
	0.076	1.000	l Í
	0.050	0.340	
Column Total	66	34	100
	0.660	0.340	

Figure 1: Sample results after z-score standardization

```
args(scale)
function (x, center = TRUE, scale = TRUE)
NULL
```

• scale can be directly applied to a data frame so there is no need to use lapply:

```
wbcd_z <- as.data.frame(scale(x=wbcd[-1])) # exclude factor</pre>
```

• Check the transformation with summary on area_mean, which showed a huge spread in values:

```
summary(wbcd$area_mean)
                          # original feature
summary(wbcd_z$area_mean) # after z-score standardization
  Min. 1st Qu.
               Median
                          Mean 3rd Qu.
                                          Max.
 143.5
          420.3
                 551.1
                          654.9
                                 782.7
                                         2501.0
  Min. 1st Qu. Median
                          Mean 3rd Qu.
                                          Max.
-1.4532 -0.6666 -0.2949 0.0000 0.3632 5.2459
```

• The mean of a z-score standardized variable should always be (close to) 0, and the range should be compact (use diff):

```
mean(wbcd$area_mean)
diff(range(wbcd$area_mean))
mean(wbcd_z$area_mean)
diff(range(wbcd_z$area_mean))

[1] 654.8891
[1] 2357.5
[1] 1.219424e-16
[1] 6.699077
```

- To see the effect of this transformation:
 - 1. split the standardized data in training and test data
 - 2. define training and test labels (classes)
 - 3. run knn with k=21 on the data

4. evaluate the performance with the confidence matrix

Cell Contents

```
|------|
| N |
| N / Row Total |
| N / Col Total |
| N / Table Total |
```

Total Observations in Table: 100

```
| wbcd_test_pred
wbcd_test_labels | Benign | Malignant | Row Total |
------|
Benign | 61 | 0 | 61 |
| 1.000 | 0.000 | 0.610 |
| 0.924 | 0.000 | |
| 0.610 | 0.000 | |
------|
Malignant | 5 | 34 | 39 |
| 0.128 | 0.872 | 0.390 |
```

	0.076 0.050	1.000 0.340	 	
	·	 66	34	 100
I		0.340		

Total Observations in Table: 100

I	wbcd_test_pred		
wbcd_test_labels	Benign	Malignant	Row Total
Benign	61	0	61
	1.000	0.000	0.610
	0.924	0.000	1
	0.610	0.000	1
Malignant	5	34	39
	0.128	0.872	0.390
	0.076	1.000	1
	0.050	0.340	1 1
Column Total	66	34	100
ĺ	0.660	0.340	l i

• Unfortunately, these values are worse than after the min-max normalization: the number of false negatives has increased from 2 to 5.