Lecture 9: Heterogeneous Coefficients
Logistics: - HWZ due Thuisday
PI (8/17) P2 (6/17) P3 (6/17)
⇒ come to office houss if you have probl
- HW1 please complete PZ > until west Thus >
Lost time: - Layered media
- up scaling / effective proposties
→
- Flow along & across layers
$K_{11}^* = \sum_{i=1}^{N} \frac{U_i}{W} K_i$ arithmetic average anisotropy \longrightarrow high K
proposity depends $K_{\perp}^* = \frac{1}{\sum_{i=1}^{N} \Delta l_i / \Delta l_i}$ harmonie average $\sum_{i=1}^{N} \frac{\Delta l_i / \Delta l_i}{K_i}$ harmonie average
Today: - Heterogeneous coefficients - Radial coordinals

Variable Coefficients
Heterogeneity is defining characteristic of
natural porous medium.
→ treating heterogeneity is key
Continuous eqn.: - $\nabla \cdot [K(\underline{x}) \nabla h] = f_s$
Discrete equ: - D*[Kd*Gh] = fs
What is size of Kol matrix? D Kol G
<u>D</u> <u>Kd</u> <u>G</u>
$N_{\times} \cdot (N_{\times + 1}) \cdot (N_{\times + 1}) \cdot (N_{\times + 1}) \cdot (N_{\times + 1}) \cdot N_{\times}$
=> kd is a Nx+1 by Nx+1 matrix associated
will the faces.
Basic problem is k's ave associated with alls
=> average k's from cells to the faces

K;- } Kd matrix? Entries into ki-1 ki g=-K Th Darcy's law: hi-1 hi g = - Kd × G × h | • | • | 9; $q_i = -K_{i-\frac{1}{2}} \frac{h_i - h_{i-1}}{\Delta \times}$ Gh = dh where $k_{i-\frac{1}{2}}$ is average of k_{i-1} and k_i q = - Kween . * dh (element wise) Knean is Nx+1.1 vector containing averages we can also write that product between diagonal kd and the dh q=-Kdalh=-KdxGxh Kod = Karega Kol * illy = kueay. x oly 2) compute Kunean and place on diagonal of Kd

How to compute Kneau:
We already have \(\frac{\mathbb{H}}{2}\) mean operator:
Kmeau = M K
$\frac{\text{Kmeau} = \underbrace{M} K}{\text{T} Nx + 1} \text{vector of}$ $Nx + 1 \cdot 1$ $\text{cell couductivities}$
Nx41.1 cell couductivities
vector of means et faces
I kind is flow across layors P
is flew across layers.
⇒ harmonic average
The appropriate average will depend on problem: 1) Heterogeneous conductivity
=> hormonic mean because it is flow across byos
Note: Dou't need average over all cells, just
neighboring cells.
$\Delta l = \Delta x$ $\Delta l_i = \Delta l_{i-1} = \frac{2}{\Delta x}$
$K_{i-\frac{1}{2}} = \frac{2}{\frac{1}{K_{i+1}} + \frac{1}{K_{i}}}$

Power-law average

Arithmetic and harmonic means are special cases of powerlaw average $K_p = \left(\frac{1}{z} \left(K_{i-1}^p + K_i^p\right)\right)^{\frac{1}{p}}$ $K_p = \left(\frac{1}{z} \left(K_{i-1}^p + K_i^p\right)\right)^{\frac{1}{p}}$ $K_p = \left(\frac{1}{z} \left(K_{i-1}^p + K_i^p\right)\right)^{\frac{1}{p}}$ $K_p = \left(\frac{1}{z} \left(K_{i-1}^p + K_i^p\right)\right)^{\frac{1}{p}}$

```
Implementation of compment.m:
Utilize M operator from build_ops.m.
 K is Nx.1 vectos of cell conductivities
aribb metic mean (p=1): Kmean = H*K
harmonic mean (p=1): Knean = 1./([ * (1./K))
 or general power-law mean!
  Kmean - (<u>H</u> * K.^p).^(1/p)
```