Locality sensitive hashing for approximate NN search

Motivating alternative approaches to approximate NN search

- KD-trees are cool, but...
 - Non-trivial to implement efficiently
 - Problems with high-dimensional data

KD-trees in high dimensions

 Unlikely to have any data points close to query point

 Once "nearby" point is found, the search radius is likely to intersect many hypercubes in at least one dim

Not many nodes can be pruned

 Can show under some conditions that you visit at least 2^d nodes

Moving away from exact NN search

- Approximate neighbor finding...
 - Don't find exact neighbor, but that's okay for many applications

Out of millions of articles, do we need the closest article or just one that's pretty similar?

Do we even fully trust our measure of similarity???

 Focus on methods that provide good probabilistic guarantees on approximation LSH as an alternative to KD-trees

Simple "binning" of data into 2 bins

 $Score(\mathbf{x}) = 1.0 \text{ #awesome} - 1.5 \text{ #awful}$

Simple "binning" of data into 2 bins

2D Data	Sign(Score)
$\mathbf{x}_1 = [0, 5]$	-1
$\mathbf{x}_2 = [1, 3]$	-1
$\mathbf{x}_3 = [3, 0]$	1

Using bins for NN search

Using score for NN search

2D Data	Sign(Score)	Bin index		
$\mathbf{x}_1 = [0, 5]$	-1	0	*	candidate
$\mathbf{x}_2 = [1, 3]$	-1	0	\leftarrow	neighbors if
$\mathbf{x}_3 = [3, 0]$	1	1		Score(x)<0

Bin	0	1	L
List containing indices of datapoints:	{1,2,4,7,}	{3,5,6,8,}	T

Provides approximate NN

A practical implementation

Three potential issues with simple approach

- 1. Challenging to find good line
- 2. Poor quality solution:
 - Points close together get split into separate bins
- 3. Large computational cost:
 - Bins might contain many points, so still searching over large set for each NN query

How to define the line?

Crazy idea:
Define line randomly!

Goal: If **x**,**y** are close (according to cosine similarity), want binned values to be the same.

Goal: If x,y are close (according to cosine similarity), want binned values to be the same.

Goal: If **x**,**y** are close (according to cosine similarity), want binned values to be the same.

Goal: If **x**,**y** are close (according to cosine similarity), want binned values to be the same.

Three potential issues with simple approach

- 1. Challenging to find good line
- 2. Poor quality solution:
 - Points close together get split into separate bins
- 3. Large computational cost:
 - Bins might contain many points, so still searching over large set for each NN query

Bin	0	1
List containing indices of datapoints:	{1,2,4,7,}	{3,5,6,8,}

Improving efficiency: Reducing # points examined per query

Reducing search cost through more bins

Using score for NN search

2D Data	Sign (Score ₁)	Bin 1 index	Sign (Score ₂)	Bin 2 index	Sign (Score ₃)	Bin 3 index
$\mathbf{x}_1 = [0, 5]$	-1	0	-1	0	-1	0
$\mathbf{x}_2 = [1, 3]$	-1	0	-1	0	-1	0
$\mathbf{x}_3 = [3, 0]$	1	1	1	1	1	1

Bin		[0 1 0] = 2		[1 1 0] = 6	[1 1 1] = 7
Data indices:	{1,2}	 {4,8,11}	 	 {7,9,10}	{3,5,6}

search for NN amongst this set

Bin	[0 0 0]	[0 1 0] = 2	[0 1 1] = 3	[1 0 0] = 4	[1 0 1] = 5	[1 1 0] = 6	[1 1 1] = 7
Data indices:	{1,2}	 {4,8,11}				{7,9,10}	{3,5,6}

Query point here, but is NN?

Not necessarily

Even worse than before...Each line can split pts. Sacrificing accuracy for speed

Next closest bins (flip 1 bit)

Bin	[0 0 0] = 0	[0 0 1] = 1	[0 1 0] = 2	[0 1 1] = 3	[1 0 0] = 4	[1 0 1] = 5	[1 1 0] = 6	[1 1 U] = 7
Data indices:	{1,2}		{4,8,11}				{7,9,10}	{3,5,6}

query

Further bin (flip 2 bits)

Bin	[0 0 0]	[0 0 1]	[0 1 0]	[0 1 1]	[1 0 0]	[1 0 1]	[1 1 0]	[1 1 1]
	= 0	= 1	= 2	= 3	= 4	= 5	= 6	= 7
Data indices:	{1,2}		{4,8,11}				{7,9,10}	{3,5,6}

Quality of retrieved NN can only improve with searching more bins

Algorithm:

Continue searching until computational budget is reached or quality of NN good enough

LSH recap

kd-tree competitor data structure

- Draw h random lines
- Compute "score" for each point under each line and translate to binary index
- Use h-bit binary vector per data point as bin index
- Create hash table
- For each query point x, search bin(x), then neighboring bins until time limit

Moving to higher dimensions d

Draw random planes

100

Cost of binning points in d-dim

```
Score(\mathbf{x}) = v_1^{**}#awesome

v_2^{**} + v_2^{**}#awful

v_3^{**} + v_3^{**}#great

Per data point, need d multiplies to determine bin index per plane
```

In high-dim, (and some applications)

In high-dim, (and some applications)

this is often a sparse mult.

One-time cost offset if many queries of fixed dataset

Using multiple tables for even greater efficiency in NN search

If I throw down 2 lines...

For simplicity, assume we **search bins 1 bit off** from query

Let δ be the probability of a line falling between points θ apart

Search 3 bins and do not find NN with probability δ^2

What if I repeat the 2-line binning?

Bin	[0 0] =	[0 1] =	[1 0] =	[1 1] =
	0	1	2	3
indices	LO	L1)	L2	L 3

Bin	[0 0] =	[0 1] = 1	[1 0] = 2	[1 1] = 3
indices	LO	L1	L2	L3

Bin	[0 0] =	[0 1] = 1	[1 0] = 2	[1 1] = 3
indices	LO	L1	L2	L3

What if I repeat the 2-line binning?

Bin	[0 0] =	[0 1] =	[1 0] =	[1 1] =
	0	1	2	3
indices	LO	L1	L2	L3

Bin	[0 0] =	[0 1] =	[1 0] =	[1 1] =
	0	1	2	3
indices	LO	L1	L2	L3

Bin	[0 0] =	[0 1] = 1	[1 0] = 2	[1 1] = 3
indices	LO	L1	L2	L3

Now, search only query bin per table

Still searching 3 bins, but what is chance of not finding NN?

112

What if I repeat the 2-line binning?

Bin	[0 0] =	[0 1] =	[1 0] =	[1 1] =
	0	1	2	3
indices	L0	L1	L2	L3

Bin	[0 0] =	[0 1] =	[1 0] =	[1 1] =
	0	1	2	3
indices	LO	L1	L2	L3

Bin	[0 0] =	[0 1] = 1	[1 0] = 2	[1 1] = 3
indices	LO	L1	L2	L3

0

Bin index:

 $[1\ 0]$

What is chance that query pt and NN are split in **all tables**?

111

Probability of splitting neighboring points many times

Bin	[0 0] =	[0 1] =	[1 0] =	[1 1] =
	0	1	2	3
indices	L0	L1	L2	L3

Bin	[0 0] =	[0 1] =	[1 0] =	[1 1] =
	0	1	2	3
indices	LO	L1	L2	L3

Bin	[0 0] =	[0 1] = 1	[1 0] = 2	[1 1] = 3
indices	LO	L1	L2	L3

Probability NN is in different bin:

Prob = 1-Pr(same bin)
=
$$1-(1-\delta)^2$$

= $2\delta - \delta^2$
= $2\delta - \delta^2$
|- δ = prob. that 1 line
does not split
query + NN

Probability of splitting neighboring points many times

Bin	[0 0] =	[0 1] =	[1 0] =	[1 1] =
	0	1	2	3
indices	L0	L1	L2	L3

Bin	[0 0] =	[0 1] =	[1 0] =	[1 1] =
	0	1	2	3
indices	LO	L1	L2	L3

Bin	[0 0] =	[0 1] = 1	[1 0] = 2	[1 1] = 3
indices	LO	L1	L2	L3

Comparing approaches for 2-bit tables

bins prob. of searched no NN

 δ^2

Bin
$$\begin{bmatrix} 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} =$$

3

$$(2\delta - \delta^2)^3$$

447

Comparing probabilities

If I throw down h lines...

Bin		[0 0 1] = 1					[1 1 0] = 6	[1 1 1] = 7
indices	LO	L1	L2	L3	L4	L5	L6	L7

Still assume we **search bins 1 bit off** from query

Prob. of being > 1 bit away = 1-Pr(same bin)-Pr(1 bin away) = 1-Pr(no split lines)-Pr(1 split line) $= 1-(1-\delta)^h-h\delta(1-\delta)^{h-1}$ Prob. of h-1 lines splitting

If I throw down h lines...

Bin	[0 0 0] = 0	[0 0 1] = 1	[0 1 0] = 2		[1 0 0] = 4	[1 0 1] = 5	[1 1 0] = 6	[1 1 1] = 7
indices	LO	L1	L2	L3	L4	L5	L6	L7

Still assume we **search bins 1 bit off** from query

Prob. of being > 1 bit away

- = 1-Pr(same bin)-Pr(1 bin away)
- = 1-Pr(no split lines)-Pr(1 split line)
- $= 1 (1 \delta)^h h\delta(1 \delta)^{h-1}$

Search h+1 bins and do not find NN with probability $1-(1-\delta)^h-h\delta(1-\delta)^{h-1}$

Probability of splitting neighboring points many times

Bin	[O O O]	[0 0 1]	[0 1 0]	[0 1 1]	[1 0 0]	[1 0 1]	[1 1 0]	[1 1 1]
	= 0	= 1	= 2	= 3	= 4	= 5	= 6	= 7
indices	LO	L1	L2	L3	L4	L5	L6	L7

Bin		[0 0 1] = 1					[1 1 0] = 6	[1 1 1] = 7
indices	LO	L1	L2	L3	L4	L5	L6	L7

Bin							[1 1 0] = 6	
indices	LO	L1	L2	L3	L4	L5	L6	L7

Bin		[0 0 1] = 1	[0 1 0] = 2	[0 1 1] = 3		[1 0 1] = 5	[1 1 0] = 6	[1 1 1] = 7
indices	LO	L1	L2	L3	L4	L5	L6	L7

Probability NN is in different bin in all h+1 tables

=
$$(1-Pr(same bin))^{h+1}$$

= $(1-Pr(no split line))^{h+1}$

$$= (1 - (1 - \delta)^h)^{h+1}$$

$$= (1 - (1 - \delta)^h$$

121

Comparing approaches for h-bit tables

throw hown

Bin	[0 0] =	[0 1] =	[1 0] =	[1 1] =
	0	1	2	3
indices	L0	L1	L2	L3

bins prob. of searched no NN

h+1

 $1-(1-\delta)^h-h\delta(1-\delta)^{h-1}$

Bin
$$\begin{bmatrix} 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} =$$

 $(1-(1-\delta)^h)^{h+1}$

Comparing probabilities

one hash table
$$1-(1-\delta)^h-h\delta(1-\delta)^{h-1}$$

$$(1-(1-\delta)^h)^{h+1}$$
 multiple hash table

Fix #bits and increase depth

Bin	[0 0 0]	[0 0 1] = 1	[0 1 0] = 2	[0 1 1] = 3	[1 0 0] = 4	[1 0 1] = 5	[1 1 0] = 6	[1 1 1] = 7
indices	L0	L1	L2	L3	L4	L5	L6	L7
Bin	[0 0 0] = 0	[0 0 1] = 1	[0 1 0] = 2	[0 1 1] = 3	[1 0 0] = 4	[1 0 1] = 5	[1 1 0] = 6	[1 1 1] = 7
indices	L0	L1	L2	L3	L4	L5	L6	L7
Bin	[0 0 0] = 0	[0 0 1] = 1	[0 1 0] = 2	[0 1 1] = 3	[1 0 0] = 4	[1 0 1] = 5	[1 1 0] = 6	[1 1 1] = 7
indices	L0	L1	L2	L3	L4	L5	L6	L7
Bin	[0 0 0] = 0	[0 0 1] = 1	[0 1 0] = 2	[0 1 1] = 3	[1 0 0] = 4	[1 0 1] = 5	[1 1 0] = 6	[1 1 1] = 7
indices	L0	L1	L2	L3	L4	L5	L6	L7
indices Bin	L0 [0 0 0] = 0	L1 [0 0 1] = 1	L2 [0 1 0] = 2	L3 [0 1 1] = 3	L4 [1 0 0] = 4	L5 [1 0 1] = 5	L6 [110] = 6	L7 [1 1 1] = 7

Probability NN is in different bin in all tables falls off exponentially fast

Prob

 $= (1-Pr(same bin))^{m}$

= (1-Pr(no split line))m

 $= (1-(1-\delta))^{m}$

th of lines (bits)

Fix #bits and increase depth

Bin	[0 0 0] = 0		[0 1 0] = 2			[1 0 1] = 5	[1 1 0] = 6	[1 1 1] = 7
indices	L0	L1	L2	L3	L4	L5	L6	L7

Typically higher probability of finding NN than searching m bins in 1 table

Summary of LSH approaches

Cost of binning points is **lower**, but likely need to search **more bins** per query

Cost of binning points is **higher**, but likely need to search **fewer bins** per query

Summary for retrieval using nearest neighbors, KD-trees, and locality sensitive hashing