

Searching for similarities and anomalies in a pool of galaxy images

Matias Carrasco Kind Senior Research Scientist, National Center for Supercomputing Applications Assistant Research Professor, Astronomy University of Illinois at Urbana-Champaign

> Artificial Intelligence for Data Discovery and Reuse, May 13-15 2019 Carnegie Mellon University, Pittsburgh, PA

Motivation

Astronomy is just one example where image exploration needs to be automated.

Large catalogs, Large number of images, many unexpected objects/problems → Anomaly detection

- In operations 2021
 - Every night for 10 years
 - o 15 TB per night
- 18 billions objects (first year),~40 billions by the end of survey
- ~1500 images per night
- Stream and static data
- Target to capture new physics (moving and variable objects)

- More than 500 nights of observation over 5 years, 2TB per night
- 500 millions cataloged galaxies and 100 millions stars
- Many open problems: Systematics, new objects, new physics, etc.
- Almost completed

Current (personal) data discovery challenges

- Visualize large set of galaxy (or other) images
- Quickly classify images for AI using multiple experts
- Compress the important information in a efficient way
- Quickly search images by (dis)similarity (several science cases)
- Find anomalies in a image data set (new phenomena, errors, unrepresentative samples)

Not covered here

- Generate and sample realistic fake images based on a training for modeling and Monte-Carlo Sampling
- Generate and sample realistic fake images based on a training in a controlled manner (with a prior)

Galaxy Image Exploration and Classification

- Image Exploration
- Resize is done dynamically Quick Classification/Label
- Works fine with 10,000
- images Individual classifications are
- saved and aggregated
- Keyboard control

https://github.com/mgckind/c utouts-explorer

Autoencoders review

- Around since the 80's
- Data compression
- Anomaly detection
- Denoising
- Regular Machine Learning
- PCA

Many variants: Sparse AE, Contractive AE, Stacked AE, etc...

 $\mathcal{L}(x,x')+reg.$

Similarity ranking

Using standard ML in latent space to look for neighbors, outliers, etc.

Compress images from 220x220x3 pixels to 100-vector (2000x), for fast similarity search, anomaly detection, etc...

No need decoder (only for Loss)

Similarity ranking

Using standard ML in latent space to look for neighbors, outliers, etc.

Compress images from 220x220x3 pixels to 100-vector (2000x), for fast similarity search, anomaly detection, etc...

No need decoder (only for Loss)

Similarity ranking

Using standard ML in latent space to look for neighbors, outliers, etc.

Compress images from 220x220x3 pixels to 100-vector (2000x), for fast similarity search, anomaly detection, etc...

No need decoder (only for Loss)

Anomaly detection with Extended Isolation Forest

Isolation Forest:

Model free

Computationally efficient

Readily application to high dimensional data

Inconsistent scoring seen in score maps

Extended Isolation Forest:

Model free

Computationally efficient

Readily application to high dimensional data

Consistent scoring

Hariri, Carrasco-Kind, Brunner, 2019, arXiv: 1811.02141

https://github.com/sahandha/eif

Can we keep reducing dimensions?

- Apply clustering and unsupervised techniques to latent space to find patterns
- Self Organizing Maps and T-SNE are perfect candidates
- We have used
 Uniform Manifold Approximation and Projection
 (UMAP)

2d visualization

Conclusions

- We developed a visualization and classification tool for multiple images
- Using Autoencoders we can compress images to small (but high-n) latent space
- Look for similarities and anomalies in that space
- Represent even more in a 2d graph using t-SNE, SOM or UMAP
- Scientific driven cases
- State-of-the-art models allows a bayesian manipulation of the latent space

Thank you!

Questions?

Matias Carrasco Kind -- NCSA mcarras2@illinois.edu github.com/mgkind matias-ck.com

Autoencoders Applications: Reconstruction

Blurry images and structure is lost, but angular sizes, radial profiles and brightness are a match.

What if we can make the model learn properties at the same time as images.? What if can sample from the latent space?

Summarizing VAE basics, more complex models built on top

VAE Sampling example (no reconstruction)

We can generate samples from z, next step is can we constrain what's being sampled?

CMU

33

Multimodal VAE: Training modalities

Multimodal Generative Models for Scalable Weakly-Supervised Learning

Mike Wu

Department of Computer Science Stanford University Stanford, CA 94025 wumike@stanford.edu

Noah Goodman

Departments of Computer Science and Psychology Stanford University Stanford, CA 94025 ngoodman@stanford.edu

multimodal-generative-models-for-sc alable-weakly-supervised-learning

Learning joint representation of conditionally independent modalities using product of experts.

We can:

- Conditional sample with certain attributes
- Sample without any limitations
- Change the attribute of an existing input data
- Similarity search and anomaly detection
- Predict one modality from the others
- Sample and train with missing modalities

MVAE: Examples

Samples with changing brightness (increasing downwards)

MVAE: Examples

Samples with changing area (increasing downwards)

36

MVAE: Opens very interesting options

Can we sample z to generate fake data?

Exist θ for max the likelihood

$$p(x) = \int p(x|z, \theta) p(z) dz$$

$$p(z|x) = rac{p(x|z)p(z)}{p(x)}$$

Too expensive

We need an approximate posterior (prob. encoder)

$$q_{\lambda}(z|x)pprox p(z|x)$$

And we can use q to be Gaussian (there are other alternatives)

$$q_{\lambda}(z|x) = \mathcal{N}(z; \mu_{\lambda}(x), \sigma_{\lambda}(x))$$

$$p(z) = \mathcal{N}(0, I)$$

- Map x to a distribution
- Sample from distribution
- Generate fake data
- Probabilistic approach

$$p(x,z) = p(x|z)p(z)$$

Variational "Autoencoder"

p(z|x)

 $z_i \sim p(z)$

 $x_i' \sim p_ heta(x'|z)$

Generative Adversarial Networks (GAN)

Gan can be VERY good to specific image generation and create realistic images. Very powerful discriminator

But:

- Very hard to train (unstable)
- Not really sampling methods
- Hard to evaluate likelihood of data p(x)
- Tend to underfit data distribution
- Main goal is to fool the discriminator

