Solutions of the exercises on Grammars and Regular Expressions

April, 2007

Exercise 1 on slide 6

What is the language generated by $G_1 = (\{a, b, S, T, U\}, \{a, b\}, S, P)$ if P is altered to:

$$S \to T$$
 $S \to bSb$ $T \to aT$ $T \to \epsilon$

Solution

$$L(G_1) = \{b^m a^n b^m : n \ge 0, m \ge 0\}$$

Exercise 2 on slide 6

Make a grammar generating $\{a^nb^{2n}: n \geq 0\}$

Solution

 $G_1 = (\{a, b, S\}, \{a, b\}, S, P)$ with P defined by:

$$S \rightarrow aSbb \mid \epsilon$$

Exercise on slide 12

Given language $A = \{a, b, ab\}$ and $B = \{c, d, cd\}$. What is AB? What is A^* ? What is $\{a, b\}^*$?

Solution

 $AB = \{ac, ad, acd, bc, bd, bcd, abc, abd, abcd\}$ $A^* = \{\varepsilon\} \cup \{w_1...w_k | w_i \in A, 1 \le i \le k, k \ge 1\} = \{\varepsilon, a, b, ab, aa, ab, aab, ba, bb, bab, abaabb, abab, aaa...\}$ $\{a, b\}^* = \{\varepsilon\} \cup \{w_1...w_k | w_i \in \{a, b\}, 1 \le i \le k, k \ge 1\} = \{\varepsilon, a, b, aa, ab, ba, bb, bab, aaa...\}$ $\{a, b\}^* = A^*$

Exercise 1 on slide 14

For each of the following regular expressions give two strings that are members of the language it represents and give two that are not:

- 1) a^*b^*
- 2) $a(ba)^*a$.

- 1) aaabb and a are members, aba and ba are not members.
- 2) aa and abababaa are members, a and ababa are not members.

Exercise 2 on slide 14

Give a regular expression for the intersection, union, and concatenation respectively of the two languages: $A = \{w \in \{0,1\}^* : w \text{ begins with } 11\}$ and $B = \{w \in \{0,1\}^* : w \text{ ends with } 00\}$

Solution

- a) $A \cap B = 11(1 \cup 0)*00$
- b) $A \cup B = (11(1 \cup 0)^*) \cup ((1 \cup 0)^*00)$
- a) $AB = 11(1 \cup 0)*00$

Exercise 3 on slide 14

Give a regular expression for decimal digits.

Solution

$$(- \cup \epsilon)(D^*.DD^*)$$
 where $D = 0 \cup 1 \cup 2 ... \cup 9$.

Exercise 4 on slide 14

Let R be a regular expression over some set.

- a) Do $(R \cup \emptyset)$ and $(R\epsilon)$ denote the same set?
- b) What set does $(R \cup \epsilon)$ represent?
- c) What set does $(R\emptyset)$ represent?

Solution

- a) $(R \cup \emptyset)$ is R since \emptyset does not add anything to their union, and $(R\epsilon)$ means appending nothing to all strings in R which is also R, hence they are the same
- b) $(R \cup \epsilon)$ represents the set R and empty string.
- c) $(R\emptyset)$ represents R.

Exercise 1 on slide 22

Construct a NFA N_1 from the grammar G_1 slide 6: $G_1 = (\{a, b, S, T, U\}, \{a, b\}, S, P)$, where P is:

$$S \rightarrow a \mid b \mid aT \mid aU \mid bT \mid bU$$
 $T \rightarrow a$ $U \rightarrow b$

Figure 1. NFA N_1 for grammar G_1

- 1. Create a state for each non-terminal and add a single accepting state q_{acc} .
- 2. Add transitions $q_S \stackrel{a}{\to} q_T$ for $S \to aT$, $q_S \stackrel{a}{\to} q_U$ for $S \to aU$, $q_S \stackrel{b}{\to} q_T$ for $S \to bT$, $q_S \stackrel{b}{\to} q_U$ for $S \to bU$, $q_S \stackrel{a}{\to} q_{acc}$ for $S \to a$, $q_S \stackrel{b}{\to} q_{acc}$ for $S \to b$, $q_T \stackrel{a}{\to} q_{acc}$ for $T \to a$, $q_U \stackrel{b}{\to} q_{acc}$ for $U \to b$ (See Figure 1.)

Exercise 2 on slide 22

Argue why L(G) = L(N) for the NFA N constructed from G in the proof sketched above.

Solution

To prove that L(G) = L(N), let us define all strings that leads to a final state in N which is L(N), and all strings that can be generated in G which is L(G):

- (1) $L(N) = \{w : w \text{ is concatenated symbols from the transitions in a path from start state to a final state}\}$
- (2) $L(G) = \{w : w \text{ is concatenated symbols from the productions in a path from start symbol to a terminal}\}.$

Since each transition in N corresponds to a certain production from G, and transitions are connected by the states that correspond to certain non-terminals, which connect corresponding productions, L(G) = L(N).

Exercise 1 on slide 23

Construct a regular grammar from the FA M_1 (See Figure 2.) on slide 4 from the lecture about FA.

Solution

- 1. Select a non-terminal for each state in M_1 , selecting a start symbol for the initial state: S for q_1 , A for q_2 and B for q_3 .
- 2. Add productions corresponding to all transitions: $S \to 0S$ for $q_1 \stackrel{0}{\to} q_1$, $S \to 1A$ for $q_1 \stackrel{1}{\to} q_2$,

Figure 2. FA M1

 $A \to 0S$ for $q_2 \stackrel{0}{\to} q_1$, $A \to 1B$ and $A \to 1$ for $q_2 \stackrel{1}{\to} q_3$, $B \to 1B$ and $B \to 1$ for $q_3 \stackrel{1}{\to} q_3$, and $B \to 0B$ and $B \to 0$ for $q_3 \stackrel{0}{\to} q_3$, since q_3 is an accepting state.

 $G = (\{0, 1, S, A, B\}, \{0, 1\}, S, P)$, where P is:

$$S \rightarrow 1A \mid 0S$$
 $A \rightarrow 1B \mid 0S \mid 1$ $B \rightarrow 0B \mid 1B \mid 0 \mid 1$

Exercise 2 on slide 23

Argue why L(M) = L(G) for the regular grammar G constructed from M in the proof sketch above.

Solution

See solution to Exercise 2 on slide 22.

Exercise 3 on slide 23

Argue that any FA M is equivalent to a NFA where the initial state has no incoming transition.

Solution

Any FA M has an equivalent NFA M' where the initial state has no incoming transitions, if:

- (a) this M' was made from M by adding a new initial state q'_0 instead of the old one q_0 , where q_0 remains in the M'
- (b) and the same outgoing transitions as q_0 has, were added to q'_0 .

Exercises on pages 638-639 in *Discrete mathematics and Its Applications*

Exercise 4

Let $G = (\{S, A, B, a, b\}, \{a, b\}, S, P)$, where P consist of: a) $S \to AB$, $A \to ab$, $B \to bb$

b)
$$S \to AB$$
, $S \to aA$, $A \to a$, $B \to ba$

c)
$$S \rightarrow AB$$
, $S \rightarrow AA$, $A \rightarrow aB$, $A \rightarrow ab$, $B \rightarrow b$

d)
$$S \rightarrow AA$$
, $S \rightarrow B$, $A \rightarrow aaA$, $A \rightarrow aa$, $B \rightarrow bB$, $B \rightarrow b$

e)
$$S \to AB$$
, $A \to aAb$, $B \to bBa$, $A \to \lambda$, $B \to \lambda$.

Find the languages generated by G.

Solution

- a) $\{abbb\}$
- b) $\{aa, aba\}$
- c) $\{abab, abb\}$
- d) $\{a^{2m}, b^n\}$, where $m \ge 2, n \ge 1$
- e) $\{a^m b^m b^n a^n\}$, where $m, n \ge 0$

Exercise 7

Construct a derivation of 0^21^4 using the grammar G_1 (a) and G_2 (b) in Example 6.

Solution

a)
$$S \to 0S \to 00S \to 00S1 \to 00S11 \to 00S111 \to 00S1111 \to 001111$$
.

b)
$$S \rightarrow 0S \rightarrow 00S \rightarrow 001A \rightarrow 0011A \rightarrow 00111A \rightarrow 001111$$
.

Exercise 8

Show that the grammars G_1 (a) and G_2 (b) in Example 6 generate the set $\{0^m1^n|m,n=0,1,2,...\}$.

Solution

a)
$$m=0, n=0, S \rightarrow \lambda$$

 $m=0, n \geq 1, S \rightarrow S1 \rightarrow ... \rightarrow S1^n \rightarrow 1^n$
 $m \geq 1, n=0, S \rightarrow 0S \rightarrow ... \rightarrow 0^mS \rightarrow 0^m$
 $m \geq 1, n \geq 1, S \rightarrow 0S \rightarrow ... \rightarrow 0^mS \rightarrow 0^mS1 \rightarrow ... \rightarrow 0^mS1^n \rightarrow 0^m1^n$

b)
$$m = 0, n = 0, S \to \lambda$$

 $m = 0, n = 1, S \to 1$
 $m = 0, n \ge 2, S \to 1A \to \dots \to 1^{n-1}A \to 1^{n-1}1 \to 1^n$
 $m \ge 1, n = 0, S \to 0S \to \dots \to 0^mS \to 0^m$
 $m \ge 1, n = 1, S \to 0S \to \dots \to 0^mS \to 0^m1$
 $m \ge 1, n \ge 2, S \to 0S \to \dots \to 0^mS \to 0^m1A \to \dots \to 0^m1^{n-1}A \to 0^m1^{n-1}1 \to 0^m1^n$

Exercise 11

Find a phrase-structure grammar for each of the following languages.

a)
$$G = (\{0, 1, S\}, \{0, 1\}, S, P)$$
, where P consist of $S \to 00S, S \to \lambda$
b) $G = (\{0, 1, S, A, B\}, \{0, 1\}, S, P)$, where P consist of $S \to 1A, A \to 0B, B \to 00B, B \to \lambda$
d) $G = (\{0, 1, S, A\}, \{0, 1\}, S, P)$, where P consist of $S \to 0000000000A, A \to 0A|\lambda$

Exercise 14

Find a context-free grammar that generates the set of all palindromes over the alphabet $\{0,1\}$

Solution

$$G = (\{0, 1, S\}, \{0, 1\}, S, P)$$
, where P consist of $S \to 0S0, S \to 1S1, S \to 0, S \to 1, S \to \lambda$.

Exercise 15

Let G_1 and G_2 be context-free grammars. generating the language $L(G_1)$ and $L(G_2)$ respectively. Show that there is a context-free grammar generating each of the following sets:

- a) $L(G_1) \cup L(G_2)$
- b) $L(G_1)L(G_2)$
- c) $L(G_1)^*$

Solution

Let
$$G_1 = (\{w_1,...,w_k,S_1,A_1,...,A_m\},\{w_1,...,w_k\},S_1,P_1)$$
 and $G_2 = (\{q_1,...,q_k,S_2,B_1,...,B_m\},\{q_1,...,q_k\},S_2,P_2).$ a) Grammar G_3 , that generates the set $L(G_1) \cup L(G_2)$, is $G_3 = (\{q_1,...,q_k,w_1,...,w_k,S,S_1,S_2,A_1,...,A_m,B_1,...,B_m\},\{q_1,...,q_k,w_1,...,w_k\},S,P_1 \cup P_2 \cup (S \to S_1|S_2)).$

b) Grammar
$$G_3$$
, that generates the set $L(G_1)L(G_2)$, is $G_3=(\{q_1,...,q_k,w_1,...,w_k,S,S_1,S_2,A_1,...,A_m,B_1,...,B_m\},\{q_1,...,q_k,w_1,...,w_k\},S,P_1\cup P_2\cup (S\to S_1S_2)).$

c) Grammar
$$G_3$$
, that generates the set $L(G_1)^*$, is $G_3 = (\{w_1,...,w_k,S,S_1,A_1,...,A_m\},\{w_1,...,w_k\},S,P_1 \cup (S \to \lambda|S_1S)).$

Exercise 18

Let $G = (\{a, b, c, S\}, \{a, b, c\}, S, P)$, where P consists of $S \to abS|bcS|bbS|a|cb$. Construct derivation trees for a) bcbba, b) bbbcbba, c) bcabbbbbcb.

Exercise 22

a) Explain what the productions are in a grammar if Backus-Naur form for productions is as follows?

```
< expression > ::= (< expression >)| < expression > + < expression > | < expression > | < expression > < expression > ::= x|y
```

b) Find a derivation tree for (x * y) + x in this grammar.

a)
$$S \to (S)|S + S|S * S|A, A \to x|y.$$

