Contents Based Filtering

- 사용자가 특정 아이템을 선호하는 경우, 그 아이템과 비슷한 컨텐츠를 가진 다른 아이템을 추천
 - 사용자가 특정 영화에 높은 평점을 부여
 - 그 영화의 장르, 출연배우, 감독, 키워드와 유사한 다른 영화를 추천

```
import warnings
warnings.filterwarnings('ignore')
```

I. TMDB 5000 Movie Dataset

• IMDB 영화 중 주요 5000개 영화에 대한 정보를 제공

https://www.kaggle.com/tmdb/tmdb-movie-metadata

→ 1) Load Dataset

```
import pandas as pd

url = 'https://raw.githubusercontent.com/rusita-ai/pyData/master/tmdb_5000_movies.csv'

DF = pd.read_csv(url)

DF.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4803 entries, 0 to 4802
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	budget	4803 non-null	int64
1	genres	4803 non-null	object
2	homepage	1712 non-null	object
3	id	4803 non-null	int64
4	keywords	4803 non-null	object
5	original_language	4803 non-null	object
6	original_title	4803 non-null	object
7	overview	4800 non-null	object
8	popularity	4803 non-null	float64
9	production_companies	4803 non-null	object
10	production_countries	4803 non-null	object
11	release_date	4802 non-null	object
12	revenue	4803 non-null	int64
13	runtime	4801 non-null	float64
14	spoken_languages	4803 non-null	object
15	status	4803 non-null	object
16	tagline	3959 non-null	object

```
17 title
                          4803 non-null
                                         object
18 vote_average
                         4803 non-null
                                          float64
19 vote_count
                         4803 non-null
                                          int64
```

dtypes: float64(3), int64(4), object(13)

memory usage: 750.6+ KB

• 데이터 구조 확인

DF.head(1)

	budget	genres	homepage	id	keywords	original_languag
0	237000000	[{"id": 28, "name": "Action"}, {"id": 12, "nam	http://www.avatarmovie.com/	19995	[{"id": 1463, "name": "culture clash"}, {"id":	е

▼ 2) 필요 정보 DataFrame 재구성

• 'id': 고유번호 • 'title' : 제목 • 'genres': 장르

• 'vote_average' : 평균 평점 • 'vote_count': 평점 투표 수

• 'popularity': 인기도

• 'keywords': 주요 키워드

• 'overview' : 개요

```
DF_MV = DF[['id','title', 'genres', 'vote_average',
            'vote_count', 'popularity', 'keywords', 'overview']]
DF_MV.head(1)
```

```
id title
          genres vote_average vote_count popularity keywords overview
                                                                [{"id":
                                                                          In th€
           [{"id": 28,
                                                                1463.
                                                                           22nc
```

→ 3) Preprcessing

• List 구조 내에 Dictionary 포함

```
pd.set_option('max_colwidth', 100)
DF_MV[['genres', 'keywords']][:1]
```

genres keywords

```
[{"id": 28, "name": "Action"}, {"id": 12, "name": [{"id": 1463, "name": "culture clash"}, {"id": 2964. "name": "future"}. {"id": 3386. "name": "culture"}. {"id": 3386. "name": "future"}. {"id": 3386. "name": "future"}.
```

- Python 'ast' Module
 - 。 문자열을 List 구조로 변환

```
from ast import literal_eval

DF_MV['genres'] = DF_MV['genres'].apply(literal_eval)

DF_MV['keywords'] = DF_MV['keywords'].apply(literal_eval)

DF_MV[['genres', 'keywords']][:1]
```

genres

[{'id': 28, 'name': 'Action'}, {'id': 12, 'name': [{'id': 1463, 'name': 'culture clash'}, {'id': 2964, 'name': 'future'}, {'id': 3386, 'name': 'sp...

List 구조 내 Dictionary 'name' Key 정보 추출

```
DF_MV['genres'] = DF_MV['genres'].apply(lambda x : [ y['name'] for y in x])
DF_MV['keywords'] = DF_MV['keywords'].apply(lambda x : [ y['name'] for y in x])
DF_MV[['genres', 'keywords']][:1]
```

genres keywords

• [Action, Adventure, Fantasy, Science Fiction]

[culture clash, future, space war, space colony, society, space travel, futuristic, romance, spa...

▼ II. 장르('genres') 컨텐츠 유사도

- 개별 영화 별 장르 리스트에 대한 유사도 측정
 - Count 기반 Vectorizer 변환
 - 코사인 유사도 값 객체 생성
 - 장르 유사도가 높고, 평점이 높은 순으로 추천

→ 1) CountVectorizer()

• 공백문자로 word 단위가 구분되는 문자열로 변환

```
from sklearn.feature_extraction.text import CountVectorizer

DF_MV['genres_literal'] = DF_MV['genres'].apply(lambda x : (' ').join(x))
```

keywords

```
DF_MV['genres_literal'][:1]
```

```
O Action Adventure Fantasy Science Fiction Name: genres_literal, dtype: object
```

• CountVectorizer() 적용

```
count_vect = CountVectorizer(min_df = 0, ngram_range = (1, 2))
genre_mat = count_vect.fit_transform(DF_MV['genres_literal'])
genre_mat.shape
(4803, 276)
```

2) cosine_similarity()

- 영화 장르 유사도 정보
 - 장르 유사도가 높은 순으로 컨텐츠 기반 필터링 수행
 - 'genre_sim' 행별로 유사도가 높은 인덱스 값 추출

→ 3) argsort()

• 장르 유사도가 높은 순으로 정리된 인덱스 값 획득

```
genre_sim_sorted_ind = genre_sim.argsort()[:, ::-1]
```

- '0'번 레코드
 - 자신을 제외하고 '3494', '813' 순서로 유사도가 높음
 - '2401'번 레코드의 유사도가 가장 낮음

```
array([[ 0, 3494, 813, ..., 3038, 3037, 2401]])
```

▼ III. 장르 컨텐츠 필터링 영화 추천

▼ 1) 장르 유사도 기반 영화추천 함수

- '영화 DataFram'e과 '장르 코사인 유사도 인덱스' 기반
 - 추천 기준 '영화제목' 및 '영화건수' 입력
 - 추천 영화 정보 반환

```
def find_sim_movie(df, sorted_ind, title_name, top_n = 10):

# 인자로 입력된 movies_df DataFrame에서 'title' 컬럼이 입력된 title_name 값인 DataFrame추출
title_movie = df[df['title'] == title_name]

# title_named을 가진 DataFrame의 index 객체를 ndarray로 반환하고
# sorted_ind 인자로 입력된 genre_sim_sorted_ind 객체에서 유사도 순으로 top_n 개의 index 추출
title_index = title_movie.index.values
similar_indexes = sorted_ind[title_index, :(top_n)]

# 추출된 top_n index들 출력. top_n index는 2차원 데이터 임.
#dataframe에서 index로 사용하기 위해서 1차원 array로 변경
print(similar_indexes)
similar_indexes = similar_indexes.reshape(-1)

return df.iloc[similar_indexes]
```

▼ 2) 'The Godfather' 입력

- 유사한 영화 10편 추천
 - 평점이 '0'이거나 관련없어 보이는 영화가 추천되는 문제 발생

```
similar_movies = find_sim_movie(DF_MV, genre_sim_sorted_ind, 'The Godfather',10)
similar_movies[['title', 'vote_average']]
```

[[2731 1243 3636 1946 2640 4065 1847 4217 883 3866]]

	title	vote_average
2731	The Godfather: Part II	8.3
1243	Mean Streets	7.2
3636	Light Sleeper	5.7
1946	The Bad Lieutenant: Port of Call - New Orleans	6.0
2640	Things to Do in Denver When You're Dead	67

▼ IV. 평점 기반 필터링 추가

▼ 1) 'vote_average' 기준 내림차순 정렬

• 평점은 높지만 'vote_count'가 낮은 문제 포함

DF_MV[['title','vote_average','vote_count']].sort_values('vote_average', ascending = False)[:10]

	title	vote_average	vote_count
3519	Stiff Upper Lips	10.0	1
4247	Me You and Five Bucks	10.0	2
4045	Dancer, Texas Pop. 81	10.0	1
4662	Little Big Top	10.0	1
3992	Sardaarji	9.5	2
2386	One Man's Hero	9.3	2
2970	There Goes My Baby	8.5	2
1881	The Shawshank Redemption	8.5	8205
2796	The Prisoner of Zenda	8.4	11
3337	The Godfather	8.4	5893

▼ 2) 가중 평점(Weighted Rating)

- 가중 평점 = (v / (v + m)) * R + (m / (v + m)) * C
 - v:개별 영화 평점 투표 횟수('vote_count')
 - ∘ m: 평점 부여를 위한 최소 투표 횟수(가중치 조절 역할)
 - ∘ R:개별 영화 평균 평점('vote_average')
 - 。 C: 전체 영화 평균 평점
- C:전체 영화 평균 평점
- m: 상위 60% 투표 횟수 적용

```
C = DF_MV['vote_average'].mean()
m = DF_MV['vote_count'].quantile(0.6)
print('C:',round(C,3), 'm:',round(m,3))
```

3) weighted_vote_average()

C: 6.092 m: 370.2

```
percentile = 0.6

m = DF_MV['vote_count'].quantile(percentile)
C = DF_MV['vote_average'].mean()

def weighted_vote_average(record):
    v = record['vote_count']
    R = record['vote_average']

return ((v/(v+m)) * R) + ((m/(m+v)) * C)
```

• 'DF_MV'에 'weighted_vote' 열 추가

```
DF_MV['weighted_vote'] = DF_MV.apply(weighted_vote_average, axis = 1)
```

• 'weighted_vote' 상위 10개 확인

DF_MV[['title', 'vote_average', 'weighted_vote', 'vote_count']].sort_values('weighted_vote', ascend

	title	vote_average	weighted_vote	vote_count
1881	The Shawshank Redemption	8.5	8.396052	8205
3337	The Godfather	8.4	8.263591	5893
662	Fight Club	8.3	8.216455	9413
3232	Pulp Fiction	8.3	8.207102	8428
65	The Dark Knight	8.2	8.136930	12002
1818	Schindler's List	8.3	8.126069	4329
3865	Whiplash	8.3	8.123248	4254
809	Forrest Gump	8.2	8.105954	7927
2294	Spirited Away	8.3	8.105867	3840
2731	The Godfather: Part II	8.3	8.079586	3338

V. find_sim_movie() Update

```
def find_sim_movie(df, sorted_ind, title_name, top_n = 10):

# 인자로 입력된 movies_df DataFrame에서 'title' 컬럼이 입력된 title_name 값인 DataFrame추출 title_movie = df[df['title'] == title_name]

# title_named을 가진 DataFrame의 index 객체를 ndarray로 반환 title_index = title_movie.index.values

# top_n의 2배에 해당하는 쟝르 유사성이 높은 index 추출 similar_indexes = sorted_ind[title_index, :(top_n * 2)] similar_indexes = similar_indexes.reshape(-1)

# 기준 영화 index는 제외 similar_indexes = similar_indexes[similar_indexes != title_index]

# top_n의 2배에 해당하는 후보군에서 'weighted_vote' 높은 순으로 top_n 만큼 추출 return df.iloc[similar_indexes].sort_values('weighted_vote', ascending = False)[:top_n]
```

• 추천 결과 확인

```
similar_movies = find_sim_movie(DF_MV, genre_sim_sorted_ind, 'The Godfather',10)
similar_movies[['title', 'vote_average', 'weighted_vote']]
```

₽		title	vote_average	weighted_vote
	2731	The Godfather: Part II	8.3	8.079586
	1847	GoodFellas	8.2	7.976937
	3866	City of God	8.1	7.759693
	1663	Once Upon a Time in America	8.2	7.657811
	883	Catch Me If You Can	7.7	7.557097
	281	American Gangster	7.4	7.141396
	4041	This Is England	7.4	6.739664
	1149	American Hustle	6.8	6.717525
	1243	Mean Streets	7.2	6.626569
	2839	Rounders	6.9	6.530427

#

#

#

The End

#

#

#

• ×