Table A.1	Continuous	distributions

Distribution	Notation	Parameters
Uniform	$\theta \sim \mathrm{U}(\alpha, \beta)$ $p(\theta) = \mathrm{U}(\theta \alpha, \beta)$	boundaries α, β with $\beta > \alpha$
Normal	$\theta \sim N(\mu, \sigma^2)$ $p(\theta) = N(\theta \mu, \sigma^2)$	location μ scale $\sigma > 0$
Lognormal	$\theta \sim \text{lognormal}(\mu, \sigma^2)$ $p(\theta) = \text{lognormal}(\theta \mu, \sigma^2)$	location μ log-scale $\sigma > 0$
Multivariate normal	$eta \sim \mathcal{N}(\mu, \Sigma)$ $p(\theta) = \mathcal{N}(\theta \mu, \Sigma)$ (implicit dimension d)	symmetric, pos. definite, $d \times d$ variance matrix Σ
Gamma	$\theta \sim \text{Gamma}(\alpha, \beta)$ $p(\theta) = \text{Gamma}(\theta \alpha, \beta)$	shape $\alpha > 0$ inverse scale $\beta > 0$
Inverse-gamma	$\theta \sim \text{Inv-gamma}(\alpha, \beta)$ $p(\theta) = \text{Inv-gamma}(\theta \alpha, \beta)$	shape $\alpha > 0$ scale $\beta > 0$
Chi-square	$\theta \sim \chi_{\nu}^2 \\ p(\theta) = \chi_{\nu}^2(\theta)$	degrees of freedom $\nu > 0$
Inverse-chi-square	$\theta \sim \text{Inv-}\chi_{\nu}^2$ $p(\theta) = \text{Inv-}\chi_{\nu}^2(\theta)$	degrees of freedom $\nu > 0$
Scaled inverse-chi-square	$\theta \sim \text{Inv-}\chi^2(\nu, s^2)$ $p(\theta) = \text{Inv-}\chi^2(\theta \nu, s^2)$	degrees of freedom $\nu > 0$ scale $s > 0$
Exponential	$\theta \sim \text{Expon}(\beta)$ $p(\theta) = \text{Expon}(\theta \beta)$	inverse scale $\beta > 0$
Laplace (double-exponential)	$\theta \sim \text{Laplace}(\mu, \sigma)$ $p(\theta) = \text{Laplace}(\theta \mu, \sigma)$	location μ scale $\sigma > 0$
Weibull	$\theta \sim \text{Weibull}(\alpha, \beta)$ $p(\theta) = \text{Weibull}(\theta \alpha, \beta)$	shape $\alpha > 0$ scale $\beta > 0$
Wishart	$W \sim \text{Wishart}_{\nu}(S)$ $p(W) = \text{Wishart}_{\nu}(W S)$ (implicit dimension $k \times k$)	degrees of freedom ν symmetric, pos. definite $k \times k$ scale matrix S
Inverse-Wishart	$W \sim \text{Inv-Wishart}_{\nu}(S^{-1})$ $p(W) = \text{Inv-Wishart}_{\nu}(W S^{-1})$ (implicit dimension $k \times k$)	degrees of freedom ν symmetric, pos. definite $k \times k$ scale matrix S
LKJ correlation	$\begin{split} \Sigma &\sim \text{LkjCorr}(\eta) \\ p(\Sigma) &= \text{LkjCorr}(\Sigma \eta) \\ \text{(implicit dimension } k \times k) \end{split}$	shape $\eta > 0$

Density function	Mean, variance, and mode
	$E(\theta) = \frac{\alpha + \beta}{2}$
$p(\theta) = \frac{1}{\beta - \alpha}, \ \theta \in [\alpha, \beta]$	$\operatorname{var}(\theta) = \frac{(\beta - \alpha)^2}{12}$
	no mode
	$E(\theta) = \mu$
$p(\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(\theta - \mu)^2\right)$	$var(\theta) = \sigma^2$
	$\operatorname{mode}(\theta) = \mu$
(0) $(\sqrt{2}, 0)=1$ $(-1, (1, 0, 1)^2)$	$E(\theta) = \exp(\mu + \frac{1}{2}\sigma^2),$
$p(\theta) = (\sqrt{2\pi}\sigma\theta)^{-1} \exp(-\frac{1}{2\sigma^2}(\log\theta - \mu)^2)$	$var(\theta) = \exp(2\mu + \sigma^2)(\exp(\sigma^2) - 1)$ $mode(\theta) = \exp(\mu - \sigma^2)$
	$E(\theta) = \mu$
$p(\theta) = (2\pi)^{-d/2} \Sigma ^{-1/2}$	$var(\theta) = \mu$ $var(\theta) = \Sigma$
$\times \exp\left(-\frac{1}{2}(\theta-\mu)^T \Sigma^{-1}(\theta-\mu)\right)$	
$p(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha - 1} e^{-\beta \theta}, \ \theta > 0$	$\operatorname{var}(\theta) = \frac{\alpha}{\beta^2}$
$\Gamma(\gamma) = \Gamma(\alpha)$	$\operatorname{mode}(\theta) = \frac{\alpha - 1}{\beta}, \text{ for } \alpha \ge 1$
	$E(\theta) = \frac{\beta}{\alpha - 1}$, for $\alpha > 1$
$p(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{-(\alpha+1)} e^{-\beta/\theta}, \ \theta > 0$	$\operatorname{var}(\theta) = \frac{\beta^2}{(\alpha - 1)^2(\alpha - 2)}, \alpha > 2$
$\Gamma(\alpha)$ $\Gamma(\alpha)$	$\operatorname{mode}(\theta) = \frac{\beta}{\alpha + 1}$
(9)	$E(\theta) = \nu$
$p(\theta) = \frac{2^{-\nu/2}}{\Gamma(\nu/2)} \theta^{\nu/2 - 1} e^{-\theta/2}, \ \theta > 0$	$var(\theta) = 2\nu$
same as $Gamma(\alpha = \frac{\nu}{2}, \beta = \frac{1}{2})$	$\operatorname{mode}(\theta) = \nu - 2$, for $\nu \ge 2$
27/2 (/2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2	$E(\theta) = \frac{1}{\nu-2}, \text{ for } \nu > 2$
$p(\theta) = \frac{2^{-\nu/2}}{\Gamma(\nu/2)} \theta^{-(\nu/2+1)} e^{-1/(2\theta)}, \ \theta > 0$	$\operatorname{var}(\theta) = \frac{2}{(\nu-2)^2(\nu-4)}, \nu > 4$
same as Inv-gamma $(\alpha = \frac{\nu}{2}, \beta = \frac{1}{2})$	$\operatorname{mode}(\theta) = \frac{1}{1 + 12}$
$(1/2)^{\nu/2}$ (10.4) 2.1(0.1)	$\frac{\operatorname{mode}(\theta) = \frac{1}{\nu + 2}}{\operatorname{E}(\theta) = \frac{\nu}{\nu - 2} s^2}$
$p(\theta) = \frac{(\nu/2)^{\nu/2}}{\Gamma(\nu/2)} s^{\nu} \theta^{-(\nu/2+1)} e^{-\nu s^2/(2\theta)}, \theta > 0$	$var(\theta) = \frac{2\nu^2}{(\nu-2)^2(\nu-4)}s^4$
same as Inv-gamma($\alpha = \frac{\nu}{2}, \beta = \frac{\nu}{2}s^2$)	$\operatorname{mode}(\theta) = \frac{\nu - 2}{\nu + 2} s^2$
(0) (0) (0) (0)	$\frac{\operatorname{mode}(\theta) = \frac{1}{\nu + 2}s^{2}}{\operatorname{E}(\theta) = \frac{1}{\beta}}$
$p(\theta) = \beta e^{-\beta \theta}, \ \theta > 0$	$\operatorname{var}(\theta) = \frac{1}{\beta^2}$
same as $Gamma(\alpha = 1, \beta)$	$mode(\theta) = 0$
	$E(\theta) = \mu$
$p(\theta) = \frac{1}{2\sigma} \exp\left(-\frac{ x-\mu }{\sigma}\right)$	$var(\theta) = 2\sigma^2$
	$mode(\theta) = \mu$
(0) 0 00-1 ((0/0)0) 0 0	$E(\theta) = \beta \Gamma(1 + \frac{1}{\alpha})$
$p(\theta) = \frac{\alpha}{\beta^{\alpha}} \theta^{\alpha - 1} \exp(-(\theta/\beta)^{\alpha}), \ \theta > 0$	$\operatorname{var}(\theta) = \beta^{2} \left[\Gamma(1 + \frac{2}{\alpha}) - (\Gamma(1 + \frac{1}{\alpha}))^{2} \right]$ $\operatorname{mode}(\theta) = \beta(1 - \frac{1}{\alpha})^{1/\alpha}$
$\frac{1}{(1-a)^2} \int_{\mathbb{R}^2} \frac{1}{h(h-1)} \frac{1}$	$mode(v) = \beta(1 - \frac{\pi}{\alpha})$
$p(W) = \left(2^{\nu k/2} \pi^{k(k-1)/4} \prod_{i=1}^{k} \Gamma\left(\frac{\nu+1-i}{2}\right)\right)^{-1}$	
$\times S ^{-\nu/2} W ^{(\nu-\kappa-1)/2}$	$E(W) = \nu S$
$\times \exp\left(-\frac{1}{2}\operatorname{tr}(S^{-1}W)\right), W \text{ pos. definite}$	
$p(W) = \left(2^{\nu k/2} \pi^{k(k-1)/4} \prod_{i=1}^{k} \Gamma\left(\frac{\nu+1-i}{2}\right)\right)^{-1}$	
$\times S ^{\nu/2} W ^{-(\nu+k+1)/2}$	$E(W) = (\nu - k - 1)^{-1}S$
$\times \exp\left(-\frac{1}{2}\operatorname{tr}(SW^{-1})\right)$, W pos. definite	
$\frac{\times \exp\left(-\frac{1}{2}\mathrm{tr}(SW^{-1})\right), W \text{ pos. definite}}{p(\Sigma) = \det(\Sigma)^{\eta-1}}$	
$\times 2^{\sum_{i=1}^{k} (2\eta - 2 + k - i)(k - i)}$	$\mathrm{E}(\Sigma)=\mathrm{I}_k,$
$\times \prod_{i=1}^{k} \left(\mathbf{B} \left(\frac{i+1}{2}, \frac{i+1}{2} \right) \right)^{k}$. ,

Table A.1	Continuous distributions continued	
Distribution	Notation	Parameters
$\frac{t}{}$ Multivariate t	$\theta \sim t_{\nu}(\mu, \sigma^{2})$ $p(\theta) = t_{\nu}(\theta \mu, \sigma^{2})$ $t_{\nu} \text{ is short for } t_{\nu}(0, 1)$ $\theta \sim t_{\nu}(\mu, \Sigma)$ $p(\theta) = t_{\nu}(\theta \mu, \Sigma)$ (implicit dimension d)	degrees of freedom $\nu > 0$ location μ scale $\sigma > 0$ degrees of freedom $\nu > 0$ location $\mu = (\mu_1, \dots, \mu_d)$ symmetric, pos. definite $d \times d$ scale matrix Σ
Beta	$\theta \sim \text{Beta}(\alpha, \beta)$ $p(\theta) = \text{Beta}(\theta \alpha, \beta)$	'prior sample sizes' $\alpha>0,\beta>0$
Dirichlet	$\theta \sim \text{Dirichlet}(\alpha_1, \dots, \alpha_k)$ $p(\theta) = \text{Dirichlet}(\theta \alpha_1, \dots, \alpha_k)$	'prior sample sizes' $\alpha_j > 0; \ \alpha_0 \equiv \sum_{j=1}^k \alpha_j$
Logistic	$\theta \sim \text{Logistic}(\mu, \sigma)$ $p(\theta) = \text{Logistic}(\theta \mu, \sigma)$	location μ scale $\sigma > 0$
Log-logistic	$\theta \sim \text{Log-logistic}(\alpha, \beta)$ $p(\theta) = \text{Log-logistic}(\theta \alpha, \beta)$	scale $\alpha > 0$ shape $\beta > 0$
Table A.2	Discrete distributions	
Distribution	Notation	Parameters
Poisson	$\theta \sim \text{Poisson}(\lambda)$ $p(\theta) = \text{Poisson}(\theta \lambda)$	'rate' $\lambda > 0$
Binomial	$\theta \sim \text{Bin}(n, p)$ $p(\theta) = \text{Bin}(\theta n, p)$	'sample size' n (positive integer) 'probability' $p \in [0, 1]$
Multinomial	$\theta \sim \text{Multin}(n; p_1, \dots, p_k)$ $p(\theta) = \text{Multin}(\theta n; p_1, \dots, p_k)$	'sample size' $n \text{ (positive integer)}$ 'probabilities' $p_j \in [0, 1]$; $\sum_{j=1}^k p_j = 1$
Negative binomial	$eta \sim ext{Neg-bin}(lpha, eta) \ p(heta) = ext{Neg-bin}(heta lpha, eta)$	shape $\alpha > 0$ inverse scale $\beta > 0$
Beta- binomial	$\theta \sim \text{Beta-bin}(n, \alpha, \beta)$ $p(\theta) = \text{Beta-bin}(\theta n, \alpha, \beta)$	'sample size' $n \text{ (positive integer)}$ 'prior sample sizes' $\alpha > 0, \beta > 0$

Density function	Mean, variance, and mode
$p(\theta) = \frac{\Gamma((\nu+1)/2)}{\Gamma(\nu/2)\sqrt{\nu\pi}\sigma} (1 + \frac{1}{\nu} (\frac{\theta-\mu}{\sigma})^2)^{-(\nu+1)/2}$	$E(\theta) = \mu, \text{ for } \nu > 1$ $\text{var}(\theta) = \frac{\nu}{\nu - 2} \sigma^2, \text{ for } \nu > 2$ $\text{mode}(\theta) = \mu$
$p(\theta) = \frac{\Gamma((\nu+d)/2)}{\Gamma(\nu/2)\nu^{d/2}\pi^{d/2}} \Sigma ^{-1/2} \times (1 + \frac{1}{\nu}(\theta - \mu)^T \Sigma^{-1}(\theta - \mu))^{-(\nu+d)/2}$	$E(\theta) = \mu, \text{ for } \nu > 1$ $var(\theta) = \frac{\nu}{\nu - 2} \Sigma, \text{ for } \nu > 2$ $mode(\theta) = \mu$
$p(\theta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}$ $\theta \in [0,1]$	$E(\theta) = \frac{\alpha}{\alpha + \beta}$ $var(\theta) = \frac{\alpha\beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$ $mode(\theta) = \frac{\alpha - 1}{\alpha + \beta - 2}$
$p(\theta) = \frac{\Gamma(\alpha_1 + \dots + \alpha_k)}{\Gamma(\alpha_1) \dots \Gamma(\alpha_k)} \theta_1^{\alpha_1 - 1} \dots \theta_k^{\alpha_k - 1}$ $\theta_1, \dots, \theta_k \ge 0; \sum_{j=1}^k \theta_j = 1$	$E(\theta_j) = \frac{\alpha_j}{\alpha_0}$ $var(\theta_j) = \frac{\alpha_j(\alpha_0 - \alpha_j)}{\alpha_0^2(\alpha_0 + 1)}$ $cov(\theta_i, \theta_j) = -\frac{\alpha_j \alpha_j}{\alpha_0^2(\alpha_0 + 1)}$ $mode(\theta_j) = \frac{\alpha_j - 1}{\alpha_0 - k}$
$p(\theta) = \frac{\exp\left(-\frac{x-\mu}{\sigma}\right)}{\sigma\left(1 + \exp\left(-\frac{x-\mu}{\sigma}\right)\right)}$	$E(\theta) = \mu$ $var(\theta) = \frac{1}{3}\sigma^2\pi^2$ $mode(\theta) = \mu$
$p(\theta) = \frac{\frac{\beta}{\alpha} \left(\frac{x}{\alpha}\right)^{\beta - 1}}{\left[1 + \left(\frac{x}{\alpha}\right)^{\beta}\right]^{2}}, \ \theta > 0$	$E(\theta) = \frac{1}{1 + \left(\frac{x}{\alpha}\right)^{-\beta}}$ $var(\theta) = \alpha^2 \frac{2\pi/\beta}{\sin(2\pi/\beta)}, \beta > 2$ $mode(\theta) = \alpha \left(\frac{\beta - 1}{\beta + 1}\right)^{\frac{1}{\beta}}, \beta > 1$

Density function	Mean, variance, and mode
$p(\theta) = \frac{1}{\theta!} \lambda^{\theta} \exp\left(-\lambda\right)$	$E(\theta) = \lambda, var(\theta) = \lambda$
$\theta = 0, 1, 2, \dots$	$mode(\theta) = \lfloor \lambda \rfloor$
$p(\theta) = \binom{n}{\theta} p^{\theta} (1-p)^{n-\theta}$	$E(\theta) = np$
$\theta = 0, 1, 2, \dots, n$	$var(\theta) = np(1-p)$
	$mode(\theta) = \lfloor (n+1)p \rfloor$
$p(\theta) = \binom{n}{\theta_1 \ \theta_2 \dots \theta_k} p_1^{\theta_1} \dots p_k^{\theta_k}$ $\theta_j = 0, 1, 2, \dots, n; \sum_{j=1}^k \theta_j = n$	$E(\theta_j) = np_j$ $var(\theta_j) = np_j(1 - p_j)$ $cov(\theta_i, \theta_j) = -np_i p_j$
$p(\theta) = {\binom{\theta + \alpha - 1}{\alpha - 1}} {\binom{\beta}{\beta + 1}}^{\alpha} {\binom{1}{\beta + 1}}^{\theta}$	$E(\theta) = \frac{\alpha}{\beta}$
$ \begin{array}{c} \rho(0) = \begin{pmatrix} \alpha - 1 \end{pmatrix} \begin{pmatrix} \beta + 1 \end{pmatrix} \begin{pmatrix} \beta + 1 \end{pmatrix} \\ \theta = 0, 1, 2, \dots \end{array} $	$var(\theta) = \frac{\alpha}{\beta^2} (\beta + 1)$
$p(\theta) = \frac{\Gamma(n+1)}{\Gamma(\theta+1)\Gamma(n-\theta+1)} \frac{\Gamma(\alpha+\theta)\Gamma(n+\beta-\theta)}{\Gamma(\alpha+\beta+n)} \times \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}, \theta = 0, 1, 2, \dots, n$	$E(\theta) = n \frac{\alpha}{\alpha + \beta}$ $var(\theta) = n \frac{\alpha\beta(\alpha + \beta + n)}{(\alpha + \beta)^2(\alpha + \beta + 1)}$