Audubon Core: New terms for sound recordings

Dan Stowell (Queen Mary University of London)

&

Ed Baker (University of York / Natural History Museum)

Audubon Core Annual Meeting, 2020-09-21

Context

- Audubon Core
 - The Audubon Core is a set of vocabularies designed to represent metadata for biodiversity multimedia resources and collections.
- Starting to work on terms for audio collections

Examples and prior work (1)

Examples and prior work (2)

Examples and prior work (3)

We're presenting:

- 1) New terms proposed for AC
- 2) Annotation model (for discussion)

Mapping of AC terms

Metadata from several sound collections compared to identify common use cases and missing terms in AC

- BioAcoustica
- Florida Museum of Natural History
- Fonoteca Neotropical Jacques Vieliard, UNICAMP
- Instituto Alexander von Humboldt Colección de Sonidos Ambientales
- Borror Laboratory of Bioacoustics
- Australian National Wildlife Collection, CSIRO
- Macaulay Library

Example mapping (BioAcoustica)

Field	-T Description	AudubonCore Map
Node ID		dcterms:identifier
Title	The name used to identify the recording (typically includes original CD/tape number and s	dcterms:title
Last revision date		dcterms:modified
Language		ac:metadataLanguageLiteral
Recording	The audio file	
Project		
Body	Comments on the recording	ac:comments
Original metadata image	A scan or photograph of the original metadata if it exists in printed or handwritten form	
Original trace images	Scan(s) or photograph(s) of paper oscillograms relating to the recording	
Original verbatim species	The species identification as recorded in the original metadata	
Original CD number	Used to associate digital record with physical collection	
Original CD track number	Used to associate digital record with physical collection	
Original tape number	Used to associate digital record with physical collection	
Copyright holder		xmpRights:owner
Licence		dcterms:rights
Species	Link to a taxon in the site's biological classification	dwc:scientificName
Requested additional species	Used to suggest a name that is not currently in the site's biological classification	
Specimen	Link the recording to a preserved or observed specimen	ac:associatedSpecimenReference or Observation
Location	Location the recording was made (may be different to where the specimen was collected)	Location content type maps directly to DarwinCore L

Priorities for sound in AC

- Dealing with essential data for audio (e.g. sample rate)
- Identifying existing use cases not currently covered

Sources consulted

- Heidelberg Bioacoustics Symposium 2019-12
 - Broad group covering many taxa
 (birds, insects, bats, cetaceans, terrestrial mammals)
- Baker & Chesmore (2020)
 - "Standardisation of bioacoustic terminology for insects"
- Similar data standards from other domains
 - w3c Annotation Model, IIIF Presentation API, dwc:event, Music Ontology, and more...

Term additions: (a) dwc:individualCount

"dwc" = Darwin Core https://dwc.tdwg.org/

Number of individuals represented

Why in AC?

- Users of audio often want single non-overlapping sounds
- Other users want group behaviour e.g. chorusing, duetting

Term additions: (a) dwc:individualCount

https://github.com/tdwg/ac/issues/176

Term additions: (b) mo:sample_rate

"mo" = Music Ontology http://musicontology.com/

- Started in 2007; used in music audio informatics

Associates a digital signal to its sample rate. Numeric value in hertz (Hz)

Why in AC? Can be used in queries, since:

- acts as a hard limit on represented sound frequency ranges
- often an indicator of the acceptability of a sound file for a particular purpose

Term additions: (b) mo:sample_rate

https://github.com/tdwg/ac/issues/177

Term additions: (c) freqLow & freqHigh

New terms.

The lowest/highest frequency of the phenomena reflected in the multimedia item.

Numeric value in hertz (Hz)

Why in AC?

- Commonly-annotated attribute
- Can be used to validate taxon identity
- These terms may be independently present/absent

Term additions: (c) freqLow & freqHigh

https://github.com/tdwg/ac/issues/178

Annotation model (for discussion)

How to represent metadata for each "sound event" (e.g. call) within an audio item?

(See also: video, machine observation...)

Example of audio annotations data

time_start \$	time_end \$	freq_low \$	freq_high \$	taxon \$	type \$
	12	2000	5000	Gryllotalpa gryllotalpa	Calling song
716.188	746			Gryllotalpa gryllotalpa	Call
0	24.157			Gryllotalpa gryllotalpa	Call
0	48.025			Gryllotalpa gryllotalpa	Call
0.602893	0.726025			Gryllotalpa gryllotalpa	Call
5	6			Gryllotalpa gryllotalpa	Call
4	34			Gryllotalpa vineae	Call
0	3				Voice Introduction

Possible models... (Stowell et al 2016)

Output paradigms for event detection of birds

Output format (a) Presence/ absence 1/0	Classifiers Occustati stati triev	d by applications Advantages cupancy-models in Evaluation is straightforward; cistical ecology; re-manual annotation can be efficient val / data mining cems generally		Cmplxty 1
(b) Onsets	Onset detectors e.g. energy slope, per-frame classifier	Overlapping events are OK	No offset/duration information	1
(c) Monophonic segmentation / VAD	Energy thresholding; VAI HMM decoding	D	Overlapping events merged	2
(d) Polyphonic segmentation (multi-monophonic)	NMF	Joint estimation can reduce confusion between similar sound types; overlaps between species are OK	Overlaps in <i>same</i> species merged	3
(e) Polyphonic segmentation (overlappable)	ume	Overlapping events are OK		3
(f) Time-frequency boxes	correlation gran	nmon where spectro- m cross-correlation d e.g. in Raven		4

Recommended approach

- Music Ontology (again) well-developed
 - Event model uses Timeline Ontology ("tl")
 - tl:start
 - tl:end
 - tl:duration
- Plus, adopt a set of item-level terms to be used for individual events (taxon, freqLow, freqHigh, ...)

Summary

- Term additions
 - a) dwc:individualCount https://github.com/tdwg/ac/issues/176
 - b) mo:sample_rate https://github.com/tdwg/ac/issues/177
 - c) ac:freqLow & ac:freqHigh https://github.com/tdwg/ac/issues/178
- Annotation model for events
 - Wider discussion needed (video, machine observations)
 - Please help to join up the discussion!