TERRELL C BIRCH RAYMOND C. STEWART MOSEPH A. KOLASCH JAMES M. SLATTERY BERNARD L SWEENEY* HICHAEL K MUTTER CHARLES GORENSTEIN

ហ

BIRCH, STEWART, KOLASCH & BIRCH, LLP

INTELLECTUAL PROPERTY LAW 8110 GATEHOUSE ROAD SUITE 500 EAST FALLS CHURCH, VA 22042-1210

USA

(703) 205-8000

FAX. (703) 205-8050 (703) 698-8590 (G IV)

e-mail. mailroom@bskb.com web: http://www.bskb.com

CALIFORNIA OFFICE 650 TOWN CENTER DRIVE, SUITE 1120 COSTA MESA, CA 92626-7125

GARY D YACURA
THOMAS S AUCHTERLONGE
MICHAEL R CAMMARATA
JAMES T ELLER, JR
SCOTT L LOWE
MARY ANN CAPRIA
MARK J NUELL, PH D
DARIN E BARTHOLOMEWO
D. RICHARD ANDERSON U
PAUL C LEWIS
W KARL RENNER
MARK W MILSTEAD*
JOHN CAMPA*

REG PATENT AGENTS. FREDERICK R HANDREN ANDREW J. TELESZ, JR. MARYANNE ARMSTRONG, PH D MARYANNE ARMSTRONG, PH MAKI HATSUMI MIKE S. RYU CRAIG A. McROBBIE GARTH M DAHLEN, PH D LAURA C. LUTZ ROBERT E. GOOZNER, PH.D HYUNG N SOHN MATTHEW J. LATTIG ALAN PEDERSEN-GILES JUSTIN D KARJALA

GHARLES GORENSTEIN

BERALD M. MURPHY, JR.

LEONARD R SVENSSON

TERRY L. CLARK

ANDREW D. MEIKLE

MARC S. WEINER

JOE McKINNEY MUNCY

ROBERT J KENNEY

DONALD J. DALEY

JOHN W BALLEY JOHN W. BAILEY JOHN A. CASTELLANO, III OF COUNSEL HERBERT M BIRCH (1905-1996) ELLIOT A. GOLDBERG* WILLIAM L. GATES* EDWARD H. VALANCE RUPERT J. BRADY (RET.)* *ADMITTED TO A BAR OTHER THAN VA

	Date: Docket No.:	<u>January 7,</u> 1163-0260P	
Assistant Commissioner for Pate Box PATENT APPLICATION Washington, D.C. 20231	nts		
Sir:			

Transmitted herewith for filing is the patent application of

TAKAHASHI, Mariko Inventor(s): SATO, Tsuneo

COLOR GAMUT COMPRESSION APPARATUS AND METHOD For:

Enclosed are:

¥	Δ	specification	consisting	of	82	pages
	H	Specificación	COMPTRETING	01	<u> </u>	Pager

- 10 sheet(s) of Formal drawings _X_
- An assignment of the invention _X__
- Certified copy of Priority Document(s) _X_
- ____ Photocopy <u>X</u> Original Executed Declaration X
- A verified statement to establish small entity status under 37 CFR 1.9 and 37 CFR 1.27
- Preliminary Amendment Χ...
- Information Disclosure Statement, PTO-1449 and reference(s) X

The filing fee has been calculated as shown below:

LARGE ENTITY

SMALL ENTITY

	FOR	NO.	FII	LED		NO. EXTRA	RAT	ľΕ	FEE		RATE	3	FEE
-	BASIC FEE	***************************		********* ******	**** ****		\$690.00	or	**** ****		\$345.00		
	TOTAL CLAIMS	36	_	20	=	16	x18	=\$	288.00	or	x 9	=	\$ 0.00
	INDEPENDENT	4	-	3	=	1	x78	=\$	78.00	or	x 39	=	\$ 0.00
	MULTIPLE DEPENDENT CLAIM PRESENTED <u>no</u>					+26	0 =	\$ 0.00	or	+130	=	\$ 0.00	
Control of the State							TOTA:	L \$:	1,056.00		TOT	AL	\$ 0.00

A check in the amount of \$1,096.00 to cover the filing fee and recording fee (if applicable) is enclosed.

Please charge Deposit Account No. 02-2448 in the amount of \$_____. A triplicate copy of this transmittal form is enclosed.

No fee is enclosed.

If necessary, the Commissioner is hereby authorized in this, concurrent, and future replies, to charge payment or credit any overpayment to Deposit Account No. 02-2448 for any additional fees required under 37 C.F.R. 1.16 or under 37 C.F.R. 1.17; particularly, extension of time fees.

Respectfully submitted,

BIRCH, STEWART, KOLASCH & BIRCH, LLP

JOHN CASTELLANO Reg. No. 35,094 P. O. Box 747

Falls Church, Virginia 22040-0747

3 ļ.

> (703) 205-8000 JAC/dll

IN THE U.S. PATENT AND TRADEMARK OFFICE

Applicant: TAKAHASHI, Mariko et al

Application No.:

Group:

Filed:

January 7, 2000

Examiner:

For:

COLOR GAMUT COMPRESSION APPARATUS AND METHOD

LETTER

Honorable Commissioner of Patents and Trademarks Washington, D.C. 20231 January 7, 2000 1163-0260P

Sir:

Under the provisions of MPEP Section 2001.06(b), the Examiner is hereby advised of the following co-pending U.S. Application(s):

Application No.	<u>Filing Date</u> October 20, 1999	<u>Art Unit</u>
09/403,304	October 20, 1999	

The subject matter contained in the above-listed co-pending U.S.

Application(s) may be deemed to relate to the present application,

and thus may be material to the prosecution of this instant application.

The above-listed co-pending application(s) is(are) not to be construed as prior art. By bringing the above-listed application(s) to the attention of the Examiner, Applicant(s) do(does) NOT waive any confidentiality concerning the above-listed co-pending application(s) or the application. See MPEP Section 724.

Furthermore, if said application(s) should not mature into patents, such application(s) should be preserved in secrecy under the provisions of 35 U.S.C. Section 122 and 37 CFR Section 1.14.

If necessary, the Commissioner is hereby authorized in this, concurrent, and future replies, to charge payment or credit any overpayment to Deposit Account No. 02-2448 for any additional fees required under 37 C.F.R. 1.16 or under 37 C.F.R. 1.17; particularly, extension of time fees.

Respectfully submitted,
BIRCH, STEWART, KOLASCH & BIRCH, LLP

Bv.

JOHN CASTELLANO Reg. No. 35,094

P. O. Box 747

Falls Church, Virginia 22040-0747

(703) 205-8000

/dll

PATENT 1163-260P

IN THE U.S. PATENT AND TRADEMARK OFFICE

Applicants: T

TAKAHASHI, Mariko et al

Serial No.:

New

Group:

Filed:

January 7, 2000

Examiner:

For:

COLOR GAMUT COMPRESSION APPARATUS AND METHOD

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents

January 7, 2000

Box Patent Application Washington, D.C. 20231

LSir:

U The following preliminary amendments and remarks are respectfully

submitted in connection with the above-identified application.

IN THE CLAIMS:

CLAIM 11: Line 8, delete "determined according to claim 1"

CLAIM 12: Lines 6 and 7, delete "determined according to claim 1"

Line 9, delete "determined according to claim 1"

CLAIM 13: Line 7, delete "determined according to claim 1"

Line 12, delete "determined according to claim 1"

Line 15, delete "determined according to claim 1"

- CLAIM 26: Line 8, delete "determined according to claim 21"
- CLAIM 27: Lines 6 and 7, delete "determined according to claim 21" Line 9, delete "determined according to claim 1"
- Line 7, delete "determined according to claim 1" CLAIM 28: Lines 12 and 13, delete "determined according to claim 1" Lines 15 and 16, delete "determined according to claim 1"

Line 8, delete "determined according to claim 29"

- CLAIM 35: Lines 6 and 7, delete "determined according to claim 29" Line 9, delete "determined according to claim 29"
 - Line 7, delete "determined according to claim 29" Lines 12 and 13, delete "determined according to claim 29" Lines 15 and 16, delete "determined according to claim 1"

*** R E M A R K S ***

The amendment to the claims is merely to delete the undesired multiple dependencies and places the application in better form prior to examination.

Favorable action on the above-identified application is respectfully requested.

If necessary, the Commissioner is hereby authorized in this, concurrent, and future replies, to charge payment or credit any overpayment to Deposit Account No. 02-2448 for any additional fees required under 37 C.F.R. §1.16 or under 37 C.F.R. §1.17; particularly, extension of time fees.

Respectfully submitted,

BIRCH, STEWART, KOLASCH & BIRCH, LLP

CASTELLANO JOHN A. Reg. No. 35,094

P.O. Box 747

22040-0747 Falls Church, VA

(703) 205-8000

15

20

TITLE OF THE INVENTION

COLOR GAMUT COMPRESSION APPARATUS AND METHOD

5 BACKGROUND OF THE INVENTION

The present invention generally relates to color gamut compression apparatuses and methods for converting a source color expressed by an information-input apparatus into a target color in a color gamut reproducible by an informationoutput apparatus and, more particularly, to a color gamut compression apparatus and method in which, when the information-input apparatus and the information-output apparatus differ with respect to the color gamut, a first color outside the color gamut of the information-output apparatus is converted into a second color inside the color gamut of the information-output apparatus such that an original image is reproduced with as high fidelity as possible and high-brightness color and low-brightness color are converted into colors of sufficiently high chroma while maintaining high color consistency in the direction of brightness.

25 Information apparatuses such as displays, printers and scanners which process color image data have a range of color which may be input or output which is characteristic to the information apparatus. That is to say, such apparatuses have 30 a color gamut. Color image signals may be

10

15

30

transferred between information apparatuses of different types of color gamut for processing such that a color in the information-input apparatus is reproducible in the information-output apparatus provided that the color gamut of the information-output apparatus such as displays and printers includes the color gamut of the information-input apparatus such as scanners. If the color gamut of the information-output apparatus does not include the color gamut of the information-input apparatus, however, those colors that are inside the color gamut of the information-input apparatus but outside the color gamut of the information-output apparatus are not reproduced without undergoing a change in the information-output apparatus.

Thus, a color which is outside the color gamut of the information-output apparatus is output after conversion into a color inside a color gamut of the information-output apparatus.

20 That is to say, when the color gamut of an information-output apparatus is not coextensive with the color gamut of an information-input apparatus, color gamut compression for converting a source color in the input-information apparatus 25 into a target color inside the color gamut of the information-output apparatus is required.

One approach to the conventional color gamut compression method is disclosed in the copending PCT/JP98/01785 application yet to be published at the time of filing of the present

axis.

5

invention. Fig. 8 illustrates a concept behind the related-art color gamut compression described in PCT/JP98/01785. More specifically, Fig. 8 shows color compression in a CIE/L*a*b* space, where L* indicates brightness and C indicates chroma. That is, a color along the L* axis is an achromatic color.

According to the related-art color gamut compression method of Fig. 8, a point of 10 convergence is provided on the achromatic L* axis. A source color outside the color gamut of the information-output apparatus is converted into a target color on a point of intersection between a boundary of the color gamut of the information-15 output apparatus and a half line passing through the source color and ending at the point of convergence. Such a color gamut compression method is known to provide superior color consistency and ease of computation due to the 20 fact that the point of convergence lies on the L*

It is to be noted that, with respect to hue, there is discrepancy between the color space and the characteristic of human visual system.

For example, areas of Cyan (hereinafter, indicated

25 For example, areas of Cyan (hereinafter, indicated by C), Blue (hereinafter, indicated by B), Magenta (hereinafter, indicated by M), Red (hereinafter, indicated by R), Yellow (hereinafter, indicated by Y) and Green (hereinafter, indicated by G) with transition into one another in the stated order in

10

15

20

25

the generally employed CLE/L*a*b* color space are characterized such that the hue areas of C and B are warped. For this reason, the related-art color gamut compression causes the area of B to intrude the area of C or M. The reproducible area of B is enlarged and those of C and M are reduced such that a color with a digital representation in the area of C or M is output as a color that contains a blue component, causing hue shift when the output color is observed.

space and the characteristic of human visual system, compression performed within the same hue may cause an image before compression to be visually different from an image after compression. Since the related-art color gamut compression using the CIE/L*a*b* color space compresses within the same hue, it is difficult to ensure satisfactorily high visual consistency with respect to hue.

Another disadvantage with the relatedart color gamut compression is that, since the
point of convergence lies on the achromatic L*
axis, high-brightness colors and low-brightness
colors tend to be compressed toward a color with
low chroma, producing a relatively low-chroma
image when observed.

SUMMARY OF THE INVENTION

Accordingly, a general object of the

20

25

30

present invention is to provide a color gamut compression apparatus and method in which the aforementioned disadvantages are eliminated.

Another and more specific object is to provide a color gamut compression apparatus and method capable of compression producing a target color which is visually matched with a source color with a high fidelity with respect to hue, and which undergoes no deterioration in color consistency.

Still another object is to provide a color gamut compression apparatus and method in which colors in the high-brightness zone and low-brightness zone are compressed to a color of a satisfactorily high chroma without deteriorating color gradation.

In order to achieve the aforementioned objects, the present invention provides a color gamut compression apparatus for converting a source color generated by an information-input apparatus into a target color inside a color gamut reproducible by an information-output apparatus, comprising: a point of convergence computation part for computing a point of convergence for a chromatic color such that the point of convergence has the same hue value as a hypothetical chromatic color that would be reproduced by the information-output apparatus based on a digital signal value for the information-input apparatus corresponding to a color determined by the source color, and

10

15

such that the point of convergence lies inside the color gamut of the information-output apparatus; a first point of compression computation part for computing a point of compression such that the point of compression lies on a substantially straight line connecting the point of convergence and the source color, and lies inside the color gamut of the information-output apparatus; and a compression part for converting the source color into the target color corresponding to the point of compression computed by the first point of compression computation part.

The first point of compression computation part may compute the point of compression such that the point of compression is at an intersection of the substantially straight line and a boundary of the color gamut of information-output apparatus.

may further comprise: a point of convergence computation execution determination part for determining whether the source is a chromatic color or an achromatic color; a second point of compression computation part for computing, when the point of convergence computation execution determination part determines that the source color is an achromatic color, the point of compression such that the point of compression lies inside the color gamut of the information-output apparatus and has zero chroma; and the

10

25

30

compression part may convert the source color into a color corresponding to the point of compression computed by the second point of compression computation part.

When a hue value of the source color matches that of any of a predetermined number of representative colors of the information-input apparatus, the point of convergence computation part may compute the point of convergence such that the point of convergence has the same hue value as a hypothetical color reproduced by the information-output apparatus based on a digital signal value corresponding to the matched representative color, and such that the point of 15 convergence lies inside the color gamut of the information-output apparatus and is achromatic; and, when the source color is intermediate adjacent representative colors with respect to hue, the point of convergence may be computed by linear 20 interpolation of points of convergence corresponding to the adjacent representative colors.

When the hue of the source color lies within a hue range including transitions from the representative color Green to the representative colors Cyan, Blue and Magenta, the point of convergence computation part may compute the point of convergence such that the point of convergence has the same hue value as a hypothetical color reproduced by the information-output apparatus

based on a digital signal value corresponding to the representative color Blue, and such that the point of convergence lies inside the color gamut of the information-output apparatus and is chromatic.

within a hue range including a transition from the representative color Red to the representative color Yellow, the point of convergence computation part may compute the point of convergence such that the point of convergence has the same hue value as a hypothetical color reproduced by the information-output apparatus based on a digital signal value corresponding to the representative color Cyan, lies inside the color gamut of the information-output apparatus and is chromatic.

When the hue of the source color lies within a hue range including a transition from the representative color Magenta to the representative color Red, the point of convergence computation part may compute a first point of convergence such that the first point of convergence has the same hue value as a hypothetical color reproduced by the information-output apparatus based on a digital signal value corresponding to the representative color Blue, and such that the first point of convergence lies inside the color gamut of the information-output apparatus and is chromatic, and the point of convergence computation part may compute a second point of

10

15

20

25

30

convergence such that the second point of convergence has the same hue value as a hypothetical color reproduced by the information-output apparatus based on a digital signal value corresponding to the representative color Cyan, lies inside the color gamut of the information-output apparatus and is chromatic. The point of convergence may be determined by linear interpolation on a hue scale on a line segment between the first point of convergence and the second point of convergence.

When the hue of the source color lies within a hue range including a transition from the representative color Yellow to the representative color Green, the point of convergence computation part may compute a first point of convergence such that the first point of convergence has the same hue value as a hypothetical color reproduced by the information-output apparatus based on a digital signal value corresponding to the representative color Blue, lies inside the color gamut of the information-output apparatus and is chromatic, and the point of convergence computation part may compute a second point of convergence such that the second point of convergence has the same hue value as a hypothetical color reproduced by the informationoutput apparatus based on a digital signal value corresponding to the representative color Cyan, lies inside the color gamut of the informationoutput apparatus and is chromatic; and the point of convergence may be determined by linear interpolation on a hue scale on a line segment between the first point of convergence and the second point of convergence.

The point of convergence computation part may compute the point of convergence such that the point of convergence has the same brightness level as one of four values for the hue value which is determined by the source color, the four values being maximum chroma, mean value of the color gamut, gravitational center value of the color gamut and median of the color gamut.

The point of convergence computation $15 \quad \text{part may compute the point of convergence such}$ that the point of convergence has a hue value C_n satisfying an equation (1) below

$$C_n = K_c \times C_{max}$$
 (1)

20

25

5

10

where C_{max} indicates one of maximum chroma reproducible by the information-output apparatus for the hue determined by the source color, maximum chroma at the mean value of the color gamut, maximum chroma at the gravitational center value of the color gamut, and maximum chroma at the median of the color gamut, and k_c (0<k_c<1) indicates an arbitrary parameter.

The point of convergence computation

30 part may compute an optional point of computation

such that the optional point of convergence lies between two intersections formed by a line having the same hue value and same chroma as the aforementioned point of convergence and parallel with a brightness axis and by a boundary of the color gamut of the information-output apparatus, and is determined in accordance with a chroma value of the source color.

The point of compression computation

10 part may compute an optional point of convergence such that the optional point of convergence lies between the aforementioned point of convergence and an achromatic point having the same hue value and same brightness level as the aforementioned

15 point of convergence, and is determined in accordance with a chroma value of the source color.

The point of convergence computation part may compare a chroma value of the source color with a predetermined chroma value a, and, if the chroma value is equal to or greater than a, the aforementioned point of convergence may be used, and, if the chroma value is smaller than a, the point of convergence computation part may compute an optional point of convergence such that the optional point of convergence lies between the aforementioned point of convergence and an achromatic point having the same hue value and same brightness level as the aforementioned point of convergence, and is determined by the chroma value of the source color.

The aforementioned objects can also be achieved by a color gamut compression method for converting a source color generated by an information-input apparatus into a target color 5 inside a color gamut reproducible by an information-output apparatus, comprising the steps of: computing a point of convergence for a chromatic color such that the point of convergence has the same hue value as a hypothetical chromatic 10 color that would be reproduced by the informationoutput apparatus based on a digital signal value for the information-input apparatus corresponding to a color determined by the source color, and lies inside the color gamut of the information-15 output apparatus; computing a point of compression such that the point of compression lies on a substantially straight line connecting the point of convergence and the source color, and lies inside the color gamut of the information-output 20 apparatus; and converting the source color into the target color corresponding to the point of compression computed according to the step of

The color gamut compression method may

25 further comprising the steps of: determining

whether the source is a chromatic color or an

achromatic color; computing, when the source color

is determined to be an achromatic color, the point

of compression such that the point of compression

30 lies inside the color gamut of the information-

computing the first point of compression.

30

output apparatus and has zero chroma; and the source color may be converted into a color corresponding to the point of compression thus computed.

5 When a hue value of the source color matches that of any of a predetermined number of representative colors of the information-input apparatus, the step of computing the point of convergence may compute the point of convergence 10 such that the point of convergence has the same hue value as a hypothetical color reproduced by the information-output apparatus based on a digital signal value corresponding to the matched representative color, lies inside the color gamut 15 of the information-output apparatus and is achromatic; and, when the source color is intermediate adjacent representative colors with respect to hue, the point of convergence may be computed by linear interpolation of points of 20 convergence corresponding to the adjacent representative colors.

within a hue range including transitions from the representative color Green to the representative colors Cyan, Blue and Magenta, the step of computing the point of convergence may compute the point of convergence such that the point of convergence has the same hue value as a hypothetical color reproduced by the information-output apparatus based on a digital signal value

25

30

corresponding to the representative color Blue, lies inside the color gamut of the information-output apparatus and is chromatic.

When the hue of the source color lies

within a hue range including a transition from the representative color Red to the representative color Yellow, the step of computing the point of convergence may compute the point of convergence such that the point of convergence has the same

the value as a hypothetical color reproduced by the information-output apparatus based on a digital signal value corresponding to the representative color Cyan, lies inside the color gamut of the information-output apparatus and is chromatic.

within a hue range including a transition from the representative color Magenta to the representative color Red, the step of computing the point of convergence may compute a first point of convergence such that the first point of convergence has the same hue value as a hypothetical color reproduced by the information-output apparatus based on a digital signal value corresponding to the representative color Blue, lies inside the color gamut of the information-output apparatus and is chromatic, and the step of computing the point of convergence may compute a second point of convergence such that the second point of convergence has the same hue value as a

10

15

20

25

30

hypothetical color reproduced by the informationoutput apparatus based on a digital signal value
corresponding to the representative color Cyan,
lies inside the color gamut of the informationoutput apparatus and is chromatic; and the point
of convergence may be determined by linear
interpolation on a hue scale on a line segment
between the first point of convergence and the
second point of convergence.

When the hue of the source color lies within a hue range including a transition from the representative color Yellow to the representative color Green, the step of computing the point of convergence may compute a first point of convergence such that the first point of convergence has the same hue value as a hypothetical color reproduced by the informationoutput apparatus based on a digital signal value corresponding to the representative color Blue, lies inside the color gamut of the informationoutput apparatus and is chromatic; the step of computing the point of convergence may compute a second point of convergence such that the second point of convergence has the same hue value as a hypothetical color reproduced by the informationoutput apparatus based on a digital signal value corresponding to the representative color Cyan, lies inside the color gamut of the informationoutput apparatus and is chromatic; and the point of convergence may be determined by linear

interpolation on a hue scale on a line segment between the first point of convergence and the second point of convergence.

The aforementioned objects can also be 5 achieved by a color gamut compression apparatus for converting a source color generated by an information-input apparatus into a target color inside a color gamut reproducible by an information-output apparatus, comprising: a point 10 of convergence computation part for computing a point of convergence for a chromatic color such that the point of convergence has the same hue value as the source color, has the same brightness as one of a maximum chroma color, a mean value of 15 the color gamut reproducible by the informationoutput apparatus, gravitational center value of the color gamut reproducible by the informationoutput apparatus, and median of the color gamut reproducible by the information-output apparatus, 20 and lies inside the color gamut of the information-output apparatus; a first point of compression computation part for computing a point of compression such that the point of compression lies on a substantially straight line connecting the point of convergence and the source color, and 25 lies inside the color gamut of the informationoutput apparatus; and a compression part for converting the source color into the target color corresponding to the point of compression computed by the first point of compression computation part. 30

10

15

20

25

30

The first point of compression computation part may compute the point of compression such that the point of compression is at an intersection of the substantially straight line and a boundary of the color gamut of information-output apparatus.

When a hue value of the source color matches that of any of a predetermined number of representative colors of the information-input apparatus, the point of convergence computation part may compute the point of convergence for a chromatic color such that the point of convergence has the same hue value as the source color, has the same brightness as one of a maximum chroma color, a mean value of the color gamut reproducible by the information-output apparatus, gravitational center value of the color gamut reproducible by the information-output apparatus, and median of the color gamut reproducible by the information-output apparatus, and lies inside the color gamut of the information-output apparatus; and wherein, when the source color is intermediate adjacent representative colors with respect to hue, the point of convergence may be computed by linear interpolation of points of convergence corresponding to the adjacent representative colors.

The color gamut compression apparatus may further comprise: a point of convergence computation execution determination part for

determining whether the source is a chromatic color or an achromatic color; a second point of compression computation part for computing, when the point of convergence computation execution determination part determines that the source color is an achromatic color, the point of compression such that the point of compression lies inside the color gamut of the information-output apparatus and has zero chroma; and the compression part may convert the source color into a color corresponding to the point of compression computed by the second point of compression computation part.

The point of convergence computation 15 part may compute the point of convergence such that the point of convergence has a hue value $^{\rm C}$ satisfying an equation (1) below

$$C_n = K_C \times C_{max}$$
 (1)

where C_{max} indicates one of maximum chroma reproducible by the information-output apparatus for the hue value of the source color, maximum chroma at the mean value of the color gamut for the hue value of the source color, maximum chroma at the gravitational center value of the color gamut for the hue value of the source color, and maximum chroma at the median of the color gamut for the hue value of the source color, and k_c (0 $\langle k_c \langle 1 \rangle$) indicates an arbitrary parameter.

10

15

part may compute an optional point of computation such that the optional point of convergence lies between two intersections formed by a line having the same hue value and same chroma as the aforementioned point of convergence and parallel with a brightness axis and by a boundary of the color gamut of the information-output apparatus, and is determined in accordance with a chroma value of the source color.

The point of compression computation part may compute an optional point of convergence such that the optional point of convergence lies between the aforementioned point of convergence and an achromatic point having the same hue value and same brightness level as the aforementioned point of convergence, and is determined in accordance with a chroma value of the source color.

The point of convergence computation

20 part may compare a chroma value of the source color with a predetermined chroma value a, and, if the chroma value is equal to or greater than a, the aforementioned point of convergence may be used, and, if the chroma value is smaller than a,

25 the point of convergence computation part may compute an optional point of convergence such that the optional point of convergence lies between the aforementioned point of convergence and an achromatic point having the same hue value and

30 same brightness level as the point of convergence

10

15

20

25

determined according to claim 1, and is determined by the chroma value of the source color.

The aforementioned objects can also be achieved by a color gamut compression method for converting a source color generated by an information-input apparatus into a target color inside a color gamut reproducible by an information-output apparatus, comprising the steps of: computing a point of convergence for a chromatic color such that the point of convergence has the same hue value as the source color, has the same brightness as one of a maximum chroma color, a mean value of the color gamut reproducible by the information-output apparatus, gravitational center value of the color gamut reproducible by the information-output apparatus, and median of the color gamut reproducible by the information-output apparatus, and lies inside the color gamut of the information-output apparatus; computing a point of compression such that the point of compression lies on a substantially straight line connecting the point of convergence and the source color, and lies inside the color gamut of the information-output apparatus; and converting the source color into the target color corresponding to the point of compression computed by the first point of compression computation part.

The step of computing the first point of compression may compute the point of compression

30 such that the point of compression is at an

10

15

20

intersection of the substantially straight line and a boundary of the color gamut of information-output apparatus.

When a hue value of the source color matches that of any of a predetermined number of representative colors of the information-input apparatus, the step of computing the point of convergence may compute the point of convergence for a chromatic color such that the point of convergence has the same hue value as the source color, has the same brightness as one of a maximum chroma color, a mean value of the color gamut reproducible by the information-output apparatus, gravitational center value of the color gamut reproducible by the information-output apparatus, and median of the color gamut reproducible by the information-output apparatus, and lies inside the color gamut of the information-output apparatus; and, when the source color is intermediate adjacent representative colors with respect to hue, the point of convergence may be computed by linear interpolation of points of convergence corresponding to the adjacent representative colors.

25 The color gamut compression method may further comprise the steps of: determining whether the source is a chromatic color or an achromatic color; computing, when the source color is determined to be an achromatic color, the point of compression such that the point of compression

lies inside the color gamut of the informationoutput apparatus and has zero chroma; and the
source color may be converted into a color
corresponding to the point of compression thus
computed.

The step of computing the point of convergence may compute the point of convergence such that the point of convergence has a hue value C_n satisfying an equation (1) below

$$C_n = K_c \times C_{max}$$
 (1)

where C_{max} indicates one of maximum chroma reproducible by the information-output apparatus for the hue value of the source color, maximum chroma at the mean value of the color gamut for the hue value of the source color, maximum chroma at the gravitational center value of the color gamut for the hue value of the source color, and maximum chroma at the median of the color gamut for the hue value of the source color, and k_c (0 $\langle k_c \langle 1 \rangle$) indicates an arbitrary parameter.

The step of computing the point of convergence may compute an optional point of computation such that the optional point of convergence lies between two intersections formed by a line having the same hue value and same chroma as the aforementioned point of convergence and parallel with a brightness axis and by a boundary of the color gamut of the information-

10

15

20

output apparatus, and is determined in accordance with a chroma value of the source color.

The point of compression computation part computes an optional point of convergence such that the optional point of convergence lies between the aforementioned point of convergence and an achromatic point having the same hue value and same brightness level as the aforementioned point of convergence, and is determined in accordance with a chroma value of the source color.

The point of convergence computation part may compare a chroma value of the source color with a predetermined chroma value a, and, if the chroma value is equal to or greater than a, the aforementioned point of convergence may be used, and, if the chroma value is smaller than a, the point of convergence computation part computes an optional point of convergence such that the optional point of convergence lies between the aforementioned point of convergence and an achromatic point having the same hue value and same brightness level as the aforementioned point of convergence, and is determined by the chroma value of the source color.

25

30

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects and further features of the present invention will be apparent from the following detailed description when read in conjunction with the accompanying drawings, in

30

which:

- Fig. 1 shows a color gamut compression apparatus according to a first embodiment of the present invention;
- Fig. 2 is a chart illustrating color gamut compression according to the first embodiment:
 - Fig. 3 is a chart illustrating color gamut compression according to the second embodiment;
 - Fig. 4 is a chart illustrating color gamut compression according to the third embodiment:
- Fig. 5 is a chart illustrating color gamut compression according to the fourth embodiment;
 - Fig. 6 is a chart illustrating color gamut compression according to a variation of the fourth embodiment;
- Fig. 7 is a chart illustrating color gamut compression according to the fifth embodiment;
 - Fig. 8 is a chart illustrating color gamut compression according to the related art;
- Fig. 9 is a chart illustrating color gamut compression according to the sixth embodiment; and
 - Fig. 10 is a chart illustrating color gamut compression according to the seventh embodiment.

25

30

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1

Fig. 1 shows a color gamut compression 5 apparatus according to the first embodiment. Referring to Fig. 1, the color gamut compression apparatus comprises a color gamut compression part 1 supplied with a color image signal from an information-input apparatus 21 such as a monitor 10 via a controller 23, converting a source color, provided by the color image signal, outside the color gamut of an information-output apparatus 22 such as a printer and display into a target color inside the color gamut of an information-output 15 apparatus 22, and outputting the target color to a converted color signal latching part 24. color image signal includes information related to brightness, chroma and hue subject to vector operation in the CIE/L*a*b* color space.

also comprises a color gamut compression execution determination part 101 for determining whether a color gamut compression process is to be performed for the color image signal from the controller 23, outputting the color image signal to a point of convergence computation execution determination part 102 when the color gamut compression process is to be performed, and outputting the color image signal to a color signal latching part 107 when the color gamut compress is not to be

10

15

20

25

30

made as to whether the source color provided by the color image signal from the controller 23 is located inside the color gamut of the information-output apparatus 22. When the source color is not inside the color gamut of the information-output apparatus 22, a determination is made that the color gamut compression process is to be performed. When the source color is inside the color gamut of the information-output apparatus 22, a determination is made that color gamut of the information-output apparatus 22, a determination is made that the color gamut compression process is not to be performed.

The color gamut compression apparatus

further comprises a point of convergence computation execution determination part 102 for determining whether a point of convergence computation process is to be performed for the color image signal from the color gamut compression execution determination part 101, outputting the color image signal to a point of convergence computation part 103 when the point of convergence computation process is to be performed, and outputting the color image signal to a second point of compression computation part 105 when the point of convergence computation process is not to be performed. More specifically, a determination is made as to whether the source color provided by the color image signal from the color gamut compression execution determination part 101 is a chromatic color or an achromatic color. When the

10

15

20

source color is a chromatic color, a determination is made that the point of convergence computation process is to be performed. When the source color is an achromatic color, a determination is made that the point of convergence computation process is not to be performed.

The color gamut compression apparatus further comprises a point of convergence computation part 103 for computing a chromatic point of convergence for a source color provided by the color image signal from the point of convergence computation execution determination part 102; that is, the source color provided by the information-input apparatus 21. The point of convergence is computed such that it has the same hue value as a hypothetical color that would be reproduced by the information-output apparatus based on an input(21) digital signal value for a color determined by the source color, and lies inside the color gamut of the information-output The point of convergence and the apparatus 22. color image signal are output from the point of convergence computation part 103 to a first point of compression computation part 104.

25 If a hue value of the source color provided by the color image signal from the point of convergence computation execution determination part 102 matches that of one of representative colors of the information-input apparatus 21, the 30 point of convergence is computed such that it has

10

15

the same hue value as a hypothetical color that would be reproduced by the information-output apparatus 22 based on an input(21) digital signal value of the source color, has the same brightness as a maximum chroma color reproducible by the information-output apparatus 22, lies inside the color gamut of the information-output apparatus 22, and is chromatic. If the hue value of the source color provided by the color image signal from the point of convergence computation execution determination part 102 does not match that of any of the representative colors of the informationinput apparatus 21, that is, if the source color provided by the color image signal is intermediate adjacent representative colors with respect to hue, the point of convergence is computed by linear interpolation of points of convergence corresponding to the adjacent representative colors.

20 A representative color is defined as a color of maximum chroma. For example, the RGB digital signals R(255, 0, 0), G(0, 255, 0), B(0, 0, 255), C(0, 255, 255), M(255, 0, 255) and Y(255, 255, 0) indicate representative colors. If the source color provided by the color image signal of the information-input apparatus 21 lies between representative colors such as R and G on the hue scale, the point of convergence is computed by linear interpolation of points of convergence 30 corresponding to representative colors adjacent to

5

the source color on the hue scale such that the points of convergence are contiguous with each other. Although a digital signal value is device-independent, a given digital signal may result in different target colors because different apparatuses have different characteristics with respect to basic colors that provide a basis for color reproduction.

The color gamut compression apparatus 10 further comprises a first point of compression computation part 104 for computing, based on the point of convergence and the color image signal from the point of convergence computation part 103, a coordinate of a point of compression such that 15 the point of compression lies on a substantially straight line connecting the point of convergence and the source color provided by the color image signal and lies inside the color gamut of the information-output apparatus 22. specifically, the first point of compression 20 computation part 104 computes the coordinate at a point of intersection between the substantially straight line and the boundary of the color gamut of the information-output apparatus 22. substantially straight line could be slightly 25 warped or could contain an error due to approximation.

The color gamut compression apparatus further comprises a second point of compression computation part 105 for computing, based on the

15

20

color image signal from the point of convergence computation execution determination part 102, a coordinate of a point of compression such that the point of compression lies inside the color gamut of the information-output apparatus 22 and has 0 chroma. More specifically, the second point of compression computation part 105 computes a point for an achromatic color inside the color gamut of the information-output apparatus 22 and closest to the source color provided by the color image signal.

The color gamut compression apparatus further comprises a compression part 106 for converting the coordinate of the point of compression computed by the first point of compression computation part 104 or the point of compression computed by the second point of compression computed by the second point of compression computation part 105 into a corresponding color image signal; and a signal latching part 107 for latching the color image signal from the compression execution determination part 101.

The color gamut compression part 1 may use a lookup table (LUT). A lookup table is a search table tabulating correspondence between the RGB space and the L*a*b* color space. By providing the relation between the RGB space and the L*a*b* color space in the form of a table instead of a relational expression, the processing rate can be increased. Use of a table lacks

20

25

30

accuracy since the values listed therein derive from approximation. However, in the present invention, it is considered that approximation suffices. For example, when a pair of colors have a substantially identical hue value, they are deemed to have an identical hue value; when they have a substantially identical brightness level, they are deemed to have an identical brightness level; and when they have a substantially identical chroma level, they are deemed to have an identical chroma level.

Referring again to Fig. 1, a converted color image signal retaining part 24 is coupled to the color gamut compression part 1 so as to retain the color image signal therefrom. An image processing part 25 is coupled to the converted color image signal retaining part 24 so as to subject the color image signal therefrom to a predetermined image process such as an edge process before outputting the processed color image signal to the controller 23. information-output apparatus 22 may be a printer or the like for visualizing the color image signal from the controller 23. The controller 23 is adapted for transferring of the color image signal between the information-input apparatus 21 and the information-output apparatus 22.

A description will now be given of the operation of the color gamut compression apparatus according to the first embodiment. It is assumed

15

20

25

30

that the color space in which the color gamut compression takes place is a CIE/L*a*b* color space.

When the color image signal is supplied from the information-input apparatus 21 to the controller 23, the controller 23 forwards the color image signal to the color gamut compression execution determination part 101 of the color gamut compression part 1.

The compression execution determination part 101 determines whether the color gamut compression is to be performed by determining whether the source color provided by the color image signal from the controller 23 is inside the color gamut of the information-output apparatus 22 for the hue. If the source color does not lie inside the color gamut of the information-output apparatus 22, it is determined that the color gamut compression is to be performed so that the color image signal is output to the point of convergence computation execution determination part 102. The point of convergence computation execution determination part 102 determines whether the point of convergence computation is to be performed based on whether the source color provided by the color image signal from the color gamut compression execution determination part 101 is a chromatic color or an achromatic color. the source color is a chromatic color, it is determined that the point of convergence

computation is to be performed so that the color image signal is output to the point of convergence computation part 103.

Fig. 2 is a chart illustrating color 5 gamut compression according to the first embodiment. The point of convergence computation part 103 determines whether the source color provided by the color image signal from the point of convergence computation execution determination 10 part 102 has the same hue value as one of the representative colors of the information-input apparatus 21. If the source color is determined to have the hue of one of the representative colors, the point of convergence Sc is determined such that it has the same hue value as a 15 hypothetical chromatic color that would be reproduced by the information-output apparatus 22 based on a digital signal value for a color corresponding to the source color, has the same 20 brightness as the maximum chroma color reproducible by the information-output apparatus 22, lies inside the color gamut of the information-output apparatus 22, and is chromatic. The point of convergence and the color image signal are output to the first point of 25

If the source color does not have the same hue value as any of the representative colors of the information-input apparatus 21, the coordinate of the point of convergence S_{c} is

compression computation part 104.

computed by linear interpolation of points of convergence corresponding to representative colors adjacent to the source color on the hue scale such that the points of convergence are contiguous to each another. For example, linear interpolation is exercised between a line segment connecting the representative color M and the representative color R of the information-input apparatus 21, and a line segment connecting points of convergence in 10 the information-output apparatus 22 for the representative colors M and R. The point of convergence Sc thus computed and the color image signal is output to the first point of compression computation part 104.

The first point of compression 15 computation part 104 computes the coordinate of a point of compression based on the point of convergence and the color image signal from the point of convergence computation part 103 such that the point of compression is a point of 20 intersection between a substantially straight line connecting the point of convergence and the point corresponding to the source color, and the boundary of the color gamut of the informationoutput apparatus 22. The first point of 25 compression computation part 104 outputs the coordinate thus computed to the compression part 106.

The compression part 106 converts the coordinate of the point of compression computed by 30

the first point of compression computation part 104 into a corresponding color image signal and outputs the signal to the converted color signal latching part 24.

If the source color provided by the 5 color image signal from the color gamut compression execution determination part 101 is an achromatic color, the point of convergence computation execution determination part 102 determines that the point of convergence is not to 10 be computed and outputs the color image signal to the second point of compression computation part The second point of compression computation part 105 computes the coordinate of an achromatic point of compression based on the color image 15 signal from the point of convergence computation execution determination part 102 such that the point of compression lies inside the color gamut of the information-output apparatus 22 and closest to the source color. The second point of 20 compression computation part 105 outputs the coordinate thus computed to the compression part 106.

The compression part 106 converts the

25 coordinate computed by the second point of
 compression computation part 106 into a
 corresponding color image signal and outputs the
 signal to the converted color signal latching part
24.

When it is determined that the source

color lies inside the color gamut of the information-output apparatus 22, the color gamut compression execution determination part 101 determines that the color gamut compression is not to be performed and forwards the color image signal to the color signal latching part 107. The color image signal latching part 107 latches the color image signal before outputting the same to the converted color image signal latching part 24.

The converted color image signal latching part 24 supplies the color image signal latched therein to the image processing part 25 wherein the color image signal is subject to an edge process or the like before being output to the controller 23. The controller 23 supplies the color image signal to the information-output apparatus 22 so that the information-output apparatus 22 visualizes the color image signal.

According to the first embodiment, by compressing the source color provided by the color image signal from the information-input apparatus to the target color corresponding to the point of compression determined as described above, precision of visual matching is prevented from being reduced due to hue shift after compression. Moreover, by configuring the point of convergence to be a chromatic color, colors at the high-brightness zone and low-brightness zone can be compressed to a color of high chroma, resulting in color gamut compression producing a target color

10

15

20

25

visually matched to a source color with high fidelity.

In further accordance with the first embodiment, by computing the point of convergence by linear interpolation of points of convergence corresponding to representative colors adjacent to the source color on the hue scale such that the points of convergence are contiguous to each other, color gamut compression with superior color consistency in the direction of hue is provided. Since only the color gamut for the representative colors may be stored in order to determine the point of convergence for each hue, the color gamut compression according to the first embodiment requires a relatively small storage capacity as compared with an implementation where the color gamut for each hue is stored.

Since an arrangement is provided in the first embodiment to ensure that an achromatic source color is not compressed to a chromatic color, color gradation is not lost and white and black are preserved in the reproduction.

While the description above assumes that the compression takes place in the CIE/L*a*b* color space in the first embodiment, compression may alternatively take place in other types of color space such as the RGB color space, the CIE/L*u*v* color space and the CIE/XYZ color space.

In an alternative configuration, the 30 point of convergence computation part of the first

10

15

20

25

embodiment may compute the point of convergence such that it has the same hue value as a hypothetical color that would be reproduced by the information-output apparatus based on an input digital signal value corresponding to the source color, has the same brightness as one of a mean value (described later), gravitational center value (described later) and median (described later) of the color gamut reproducible by the information-output apparatus, lies inside the color gamut of the information-output apparatus, and is chromatic.

A mean value of the color gamut is defined as a coordinate determined by providing a predetermined number of sample points in a color space reproducible by an information-output apparatus and dividing a sum of color components at the sample points by the number of sample points. A gravitation center value of the color gamut is defined as a coordinate determined by providing a predetermined number of sample points in a color space reproducible by an informationoutput apparatus and dividing a weighted sum of color components at the sample points by the number of sample points. A median of the color gamut is defined as a median of color components on each axis of a color space reproducible by an information-output apparatus.

In the first embodiment, it is assumed that the point of compression computation part

10

20

25

30

computes the coordinate of a point of compression such that the point of compression lies at an intersection between a substantially straight line connecting a point of convergence and a point corresponding to the source color, and a boundary of the color gamut of the information-output apparatus. When the point of compression is computed using approximate color space coordinates, the point of compression may be closest to the point of intersection. Alternatively, the point of compression may be computed by subjecting a plurality of points close to the point if intersection to weighted computation.

15 Embodiment 2

In the first embodiment, the point of convergence is computed such that it corresponds to a chromatic color which has the same hue value as a hypothetical color reproduced by an information-output apparatus based on a digital signal value corresponding to a source color provided by a color image signal, and which lies inside the color gamut of the information-output apparatus. In the second embodiment, however, the point of convergence is configured to lie on a line segment.

Fig. 3 is a chart illustrating color gamut compression according to the second embodiment. Referring to Fig. 3, S1 indicates a color having the same hue value as a color

5.

10

15

20

25

30

reproduced by the information-output apparatus 22 responsive to the representative color B. For example, the color S1 may have the same brightness level as the maximum chroma color at the hue value. S2 indicates a color having the same hue value as a color reproduced by the information-output apparatus 22 responsive to the representative color C. For example, the color S2 may have the same brightness level as the maximum chroma color at the hue value.

When the hue of the source color provided by the color image signal from the point of convergence computation execution determination part 102 lies within a hue range including transitions from the representative color G of the information-input apparatus 21 to the representative colors C, B and M, the point S1 is used as the point of convergence. When the hue of the source color lies within a hue range including transition from the representative color R to the representative color Y, the point S2 is used as the point of convergence. When the hue of the source color lies within a hue range including transition from the representative color M to the representative color R, the point Sc determined by linear interpolation on the line segment between S1 and S2 according to the equation (2) below is used as the point of convergence. When the hue of the source color lies within a hue range including transitions from the representative color Y to the representative color G, the point S_c determined by linear interpolation on the line segment between S1 and S2 according to the equation (3) below is used as the point of convergence.

$$S_{vc} = k * S_v 2 + (1 - k) * S_v 1$$
 (2)

$$k = \frac{|H_C - H_M|}{|H_R - H_M|}$$

$$S_{vc} = k * S_v 1 + (1 - k) * S_v 2$$
 (3)

$$k = \frac{|H_Y - H_C|}{|H_Y - H_G|}$$

In the equations (2) and (3), S_v1 and S_v2 denote position vectors at end points S1 and S2, respectively, comprising the line segment S1-S2. S_{vc} denotes a position vector at the point of convergence S_c . H_c denotes the hue of the source color C to be compressed; H_M denotes the hue of the representative color M of the information-input apparatus 21; H_R denotes the hue of the representative color R of the information-input apparatus 21; H_v denotes the hue of the representative color Y of the information-input apparatus 21; and H_c denotes the hue of the representative color G of the information-input apparatus 21.

As described above, according to the

25

30

5

color gamut compression of the second embodiment, when the hue of the source color provided by the color image signal lies within a hue range including transitions from the representative color G of the information-input apparatus to the representative colors C, B and M, the point S1 having the same hue as a color reproduced by the information-output apparatus responsive to the representative color B is used as the point of 10 convergence. Since compression occurs in the direction of the representative color B within the hue range including transitions from the representative color G to the representative colors C, B and M, color gamut compression 15 providing high-fidelity visual matching results.

When the hue of the source color lies within a hue range including transition from the representative color B to the representative color Y, the point S2 having the same hue as a color reproduced by the information-output apparatus responsive to the representative color C is used as the point of convergence. Since compression occurs in the direction of the representative color C in the hue range including transition from the representative color R to the representative color Y, color gamut compression providing highfidelity visual matching results.

When the hue of the source color lies within a hue range including transition from the representative color M to the representative color

15

20

R, the point S_c determined by linear interpolation with respect to hue on the line segment between S1 and S2 according to the equation (2) is used as the point of convergence. Since compression occurs in the direction of the representative color B or the representative color C within the hue range including transition from the representative color R, color gamut compression providing high-fidelity visual matching results.

When the hue of the source color lies within a hue range including transition from the representative color Y to the representative color G, the point S_c determined by linear interpolation with respect to hue on the line segment between S1 and S2 according to the equation (3) is used as the point of convergence. Since compression occurs in the direction of the representative color B or the representative color C in the hue range including transition from the representative color Y to the representative color G, color gamut compression providing high-fidelity visual matching results.

By eliminating the need for computation

of the point of convergence for every hue value

and fixing the point of convergence within each of

a small number of predetermined hue ranges, the

frequency of computation is limited to the number

of hue ranges. Accordingly, computation of the

point of convergence is facilitated and the

processing rate is increased.

Embodiment 3

5

In the foregoing embodiments, a point of convergence is computed for a chromatic color inside the color gamut of the information-output apparatus is given. A description will now be given of computation of the point of convergence using a parameter of chroma.

10 Fig. 4 is a chart illustrating color gamut compression according to the third embodiment. Referring to Fig. 4, S_c indicates a point of convergence computed using a parameter K_c (0<K $_c<$ 1), where 0 indicates an achromatic color and 1 indicates a maximum chroma color, such that the color at the point of convergence S_c has the same brightness level as the maximum chroma color at a given hue value.

In the third embodiment the point of

convergence computation part 103 computes a point
of convergence such that it corresponds to a
chromatic color which has the same brightness
level as the maximum chroma color reproducible by
the information-output apparatus 22 for the hue

value determined by the source color provided by
the color image signal from the point of
convergence computation determination part 102,
and lies inside the color gamut of the
information-output apparatus 22, and such that

chroma level of the color at the point of

5

convergence satisfies the equation (1). It is assumed here that the hue value determined by the source color provided by the color image signal is the same as the hue value of a reproduction color produced by the information-output apparatus 22 from the digital signal value generated by the information-input apparatus 21 for the source color.

 $10 C_n = K_c \times C_{max} (1)$

In the equation (1), C_n indicates chroma at the point of convergence and C_{max} indicates maximum chroma reproducible by the information-output apparatus 22 at the same hue value as a reproduction color produced by the information-output apparatus 22 from the digital signal value generated by the information-input apparatus 21 for source color provided by the color image signal.

For example, when high-chroma output is required, the parameter K_c may be set such that $0.5 < K_c < 1$. When low-chroma image is preferable, K_c may be set such that $0 < K_c < 0.5$, thus providing low-chroma image not only for high-brightness and low-brightness but also for halftone. Thus, merely by changing the parameter K_c , it is possible to control chroma of the output image easily.

An alternative to the point of 30 convergence computation according to the third

embodiment will now be described. For example, the point of convergence may have the same brightness level as the mean value of the color gamut of the information-output apparatus for the hue value of the source color provided by the 5 color image signal from the information-input apparatus. In this case, C_{max} is a maximum chroma value at the mean value of the color gamut of the information-output apparatus for the hue value of the source color provided by the color image 10 signal from the information-input apparatus. point of convergence may alternative have the same brightness level as the gravitational center value of the color gamut of the information-output apparatus for the hue value of the source color 15 provided by the color image signal from the information-input apparatus. In this case, C_{max} is a maximum chroma value at the gravitational center value of the color gamut of the information-output apparatus for the hue value of the source color 20 provided by the color image signal from the information-input apparatus. The point of convergence may alternatively have the same brightness level as the median of the color gamut of the information-output apparatus for the hue 25 value of the source color provided by the color image signal from the information-input apparatus. In this case, C_{max} is a maximum chroma value at the median of the color gamut of the information-

output apparatus for the hue value of the source

10

15

20

25

30

color provided by the color image signal from the information-input apparatus. In any of these alternative approaches, the same advantage is provided.

In the above description of the third embodiment, it is assumed that the hue value determined by the source color provided by the color image signal has the same hue value as the reproduction color produced by the informationoutput apparatus from the digital signal value corresponding to the source color. However, when the hue of the source color provided by the color image signal lies within a hue range including transitions from the representative color G of the information-input apparatus to the representative colors C, B and M, the point S1 having the same hue value as the reproduction color produced by the information-output apparatus responsive to the representative color B may be used as the point of convergence, as in the second embodiment. case, the hue value determined by the source color may be identical to that of the representative color B of the information-output apparatus. When the hue of the source color lies within a hue range including transition from the representative color R of the information-input apparatus to the representative color Y, the point S2 having the same hue value as the reproduction color produced by the information-output apparatus responsive to the representative color C may be used as the

20

25

30

point of convergence, as in the second embodiment. In this case, the hue value determined by the source color may be identical to that of the representative color C of the information-output apparatus.

Embodiment 4

5

In the foregoing embodiments, a single point of convergence is determined for each hue value. An alternative point of convergence determination based on the single point of convergence and providing a plurality of optional points of convergence in the direction of brightness will now be described.

gamut compression according to the fourth embodiment. Referring to Fig. 5, Sc indicates a reference point of convergence computed according to the second embodiment; S1 and S2 indicate points of intersection between a line connecting points of the same hue value and same chroma value as the reference point of convergence Sc and parallel with the brightness axis, and the boundary of the color gamut of the information-output apparatus, where S1 indicates a point of minimum brightness and S2 indicates a point of maximum brightness.

According to the fourth embodiment, the point of convergence computation part 103 computes additional points of convergence between S1 and S2

determined in accordance with chroma of the source color provided by the color image signal.

The point of convergence computation

part 103 first computes the coordinates of the point S3 and S4 based on the point of convergence The point of convergence computation part 103 then computes the maximum brightness L, and minimum brightness L, at the respective points of convergence according to the equations (4) below. When the source color provided by the color image 10 signal has a higher brightness than the reference point of convergence Sc (i.e., when the brightness is higher than L_c), the point of convergence is determined by shifting the point S2 toward S_c by a distance proportional to chroma of the source 15 color. When the source color provided by the color image signal has a lower brightness than the reference point of convergence $S_{\rm c}$ (i.e, when the brightness is lower than $L_{\rm c}$), the point of convergence is determined by shifting the point S_{c} 20 toward S1 by a distance proportional to chroma of the source color.

if higher than L_c , $L_u = (L_{max} - L_c) \times K1 + L_c$ 25 if lower than L_c , $L_b = (L_{min} - L_c) \times K1 + L_c$ (4)

In the equation (4), L_u indicates maximum brightness of the point of convergence; L_b indicates minimum brightness of the point of convergence; L_{max} and L_{min} indicate brightness of

two points S1 and S2, respectively; L_c indicates brightness of the reference point of convergence S_c ; and K1 indicates a parameter (0<K1<1).

As described above, according to the color gamut compression of the fourth embodiment, brightness of the point of convergence is varied in accordance with chroma of the source color provided by the color image signal. Therefore, precision in visual matching with respect to hue is increased. In the high-brightness area and low-brightness area, the fourth embodiment provides more precise image reproduction than the foregoing embodiments.

while the points S1 and S2 are defined as points of intersection between a line connecting points of the same hue value, same chroma as the reference point of convergence Sc and parallel with the brightness axis, and the boundary of the color gamut of the information-output apparatus, S1 and S2 could be points closest to the two points of intersection when an approximate color space is used. Alternatively, S3 and S4 could be points determined by weighted computation on a plurality of points close to the two points of intersection.

Fig. 6 shows a variation of the color gamut compression according to the fourth embodiment. As shown in Fig. 6, when the source color provided by the color image signal has a higher brightness than the reference point of

30

convergence S_c, the point of convergence may be determined by shifting the point S3 toward S_c by a distance proportional to chroma of the source color. When the source color provided by the 5 color image signal has a lower brightness than the point of convergence S_c, the point of convergence may be determined by shifting the point S_c toward S4 by a distance proportional to chroma of the source color. With this, high-chroma images are 10 provided not only in the high-brightness area and low-brightness area but also in the intermediate zone.

Embodiment 5

In the fourth embodiment, a plurality of optional points of convergence are provided in the direction of brightness for each hue value. A description will now be given of the fifth embodiment where a plurality of optional points of convergence are provided in the direction of chroma.

Fig. 7 is a chart illustrating color gamut compression according to the fifth embodiment. Referring to Fig. 7, S_c indicates a reference point of convergence computed according to the second embodiment; S5 indicates a point corresponding to an achromatic color which has the same brightness as the reference point of convergence S_c ; a indicates an arbitrary chroma value computed as a distance from the achromatic

15

axis according to the equation (5) below, where C_{c} indicates chroma at the reference point of convergence S_{c} .

$$5 \quad C_c * 1/4 < a < C_c * 1/2$$
 (5)

In the fifth embodiment, the point of convergence computation part 103 compares the chroma value of the source color provided by the color image signal from the information-input apparatus at a given hue, with \underline{a} . If the chroma value is equal to or greater than \underline{a} , the reference point of convergence S_c is determined to be the point of convergence. If the chroma value is smaller than \underline{a} , the point of convergence computation part 103 computes the point of convergence S_n as a point between S_n and S_c determined by the chroma value of the source color.

chroma value <u>b</u> which is smaller than <u>a</u>, the point of convergence computation part 103 computes the point of convergence S_n so that the equation (6) below is satisfied. That is, when the chroma is smaller than <u>a</u>, the chroma value of the target point of convergence is removed by a distance commensurate with the chroma value of the out-of-the-gamut chromatic source color, toward the achromatic axis, while maintaining the brightness of the reference point of convergence S_c.

20

 $C_{sn} = b/a * S_c S5 \tag{6}$

It is to be appreciated that, according to the color gamut compression of the fifth

5 embodiment, by computing the point of convergence S_n as a point between S5 and S_c determined by the chroma value of the source color, the chroma value of the point of convergence is varied in accordance with the chroma value of the source

10 color provided by the color image signal. Thus, color consistency of the image output by the information-output apparatus is ensured.

By providing the point of convergence at the reference point of convergence S_c when the chroma value is equal to or greater than the arbitrary chroma value \underline{a} , and by computing a target point of convergence as a point between S5 and S_c determined by the chroma value of the source color, color consistency in the neighborhood of white and black is properly

Embodiment 6

ensured.

In the first embodiment, the point of

convergence computation part 103 computes a point
of convergence such that it has the same hue value
as a hypothetical chromatic color that would be
reproduced by the information-output apparatus 22
based on a digital signal value for a color

determined by the source color and lies inside the

30

color gamut of the information-output apparatus 22. In the sixth embodiment, the point of convergence computation part 103 computes a point of convergence based on the color image signal from 5 the point of convergence computation execution part 102 such that the point of convergence has the same hue value as the source color in the CIE/L*a*b* color space, has the same brightness level as the maximum chroma color reproducible by the information-output apparatus 22 for the hue value, lies inside the color gamut of the information-output apparatus 22 and corresponds to a chromatic color. The point of convergence computation part 103 outputs the coordinate of the 15 point of convergence thus computed and the color image signal to the first point of compression

Fig. 9 is a chart illustrating color gamut compression according to the sixth 20 embodiment and showing a L*-C plane for the hue value that is the same as the source color provided by the color image signal. Referring to Fig. 9, S_c indicates a point of convergence computed by the point of convergence computation 25 part 103.

computation part 104.

As shown in Fig. 9, the first point of compression computation part 104 according to the sixth embodiment computes, based on the color image signal from the point of convergence computation part 103, a point of compression that

30

lies at a point of intersection between the substantially straight line connecting the point of convergence $S_{\rm c}$ and the point corresponding to the source color, and the boundary of the color 5 gamut of the information-output apparatus 22. first point of compression computation part 104 outputs the coordinate of the point of compression thus computed to the compression part 106. Accordingly, a source color out of the gamut of 10 the information-output apparatus and lying in the high-brightness area or low-brightness area can be compressed to a target color with high chroma. course, variations described with reference to the first embodiment are also possible in the sixth

Embodiment 7

embodiment.

In the sixth embodiment, the point of convergence is computed as that of a chromatic

20 color which has the same hue value a the source color provided by the color image signal generated by the information-input apparatus, has the same brightness as the maximum-chroma color reproducible by the information-output apparatus

25 for the hue value, and lies inside the color gamut of the information-output apparatus. A description will now be given of computation of the point of convergence using a parameter of chroma.

Fig. 10 is a chart illustrating color

gamut compression according to the seventh embodiment. Referring to Fig. 10, S_c indicates a point of convergence computed using a parameter K_c indicating a distance from the achromatic axis $(0 < K_c < 1)$, where 0 indicates an achromatic color and 1 indicates a maximum chroma color such that the color at the point of convergence S_c has the same brightness level as the maximum chroma color reproducible by the information-output apparatus at a given hue value.

In the seventh embodiment the point of convergence computation part 103 computes a point of convergence such that it corresponds to a chromatic color that has the same hue value as the source color provided by the color image signal, has the same brightness level as the maximum chroma color reproducible by the information-output apparatus 22 for the hue value, and lies inside the color gamut of the information-output apparatus 22, such that chroma of the color at the point of convergence satisfies the equation (1), and such that the points of convergence are contiguous to each other.

$$25 C_n = K_c \times C_{max} (1)$$

In the equation (1), C_n indicates chroma at the point of convergence and C_{max} indicates maximum chroma reproducible by the information-output apparatus 22 at the same hue value as the source

15

20

25

30

color provided by the color image signal.

For example, when high-chroma output is required, the parameter K_c may be set such that $0.5 < K_c < 1$. When low-chroma image is preferable, K_c may be set such that $0 < K_c < 0.5$, thus providing low-chroma image not only for high-brightness and low-brightness but also for halftone. Thus, merely by changing the parameter K_c , it is possible to control chroma of the output image easily.

An alternative to the point of convergence computation according to the seventh embodiment will now be described. For example, the point of convergence may have the same brightness level as the mean value of the color gamut of the information-output apparatus for the hue value of the source color. In this case, C_{max} is a maximum chroma value at the mean value of the color gamut of the information-output apparatus for the hue value of the source color. The point of convergence may alternative have the same brightness level as the gravitational center value of the color gamut of the information-output apparatus for the hue value of the source color. In this case, C_{max} is a maximum chroma value at the gravitational center value of the color gamut of the information-output apparatus for the hue value of the source color. The point of convergence may alternatively have the same brightness level as the median of the color gamut of the informationoutput apparatus for the hue value of the source

color. In this case, C_{max} is a maximum chroma value at the median of the color gamut of the information-output apparatus for the hue value of the source color. In any of these alternative approaches, the same advantage is provided.

Embodiment 8

5

In the sixth and seventh embodiments, a single point of convergence is determined for each hue value. In alternative approach, a point of convergence is determined based on the reference single point of convergence so as to provide a plurality of optional points of convergence in the direction of brightness. The detail of this approach has already been given with reference to the fourth embodiment, and the description thereof is omitted.

Embodiment 9

In the eighth embodiment, a plurality of optional points of convergence are provided in the direction of brightness for each hue value. In an alternative approach, a plurality of optional points of convergence may be provided in the direction of chroma. The detail of this approach has already been given with reference to the fifth embodiment, and the description thereof is omitted.

The present invention is not limited to the above-described embodiments, and variations and modifications may be made without departing

from the scope of the present invention.

10

15

20

WHAT IS CLAIMED IS:

1. A color gamut compression apparatus for converting a source color generated by an information-input apparatus into a target color inside a color gamut reproducible by an information-output apparatus, comprising:

a point of convergence computation part for computing a point of convergence for a chromatic color such that the point of convergence has the same hue value as a hypothetical chromatic color that would be reproduced by the information-output apparatus based on a digital signal value for the information-input apparatus corresponding to a color determined by the source color, and lies inside the color gamut of the information-output apparatus;

a first point of compression computation part for computing a point of compression such that the point of compression lies on a substantially straight line connecting the point of convergence and the source color, and lies inside the color gamut of the information-output apparatus; and

a compression part for converting the source color into the target color corresponding to the point of compression computed by said first point of compression computation part.

2. The color gamut compression apparatus

30

5

according to claim 1, wherein said first point of compression computation part computes the point of compression such that the point of compression is at an intersection of the substantially straight line and a boundary of the color gamut of information-output apparatus.

- 3. The color gamut compression apparatus according to claim 1, further comprising:
- a point of convergence computation execution determination part for determining whether the source is a chromatic color or an achromatic color;
- a second point of compression

 15 computation part for computing, when said point of convergence computation execution determination part determines that the source color is an achromatic color, the point of compression such that the point of compression lies inside the

 20 color gamut of the information-output apparatus and has zero chroma; wherein

said compression part converts the source color into a color corresponding to the point of compression computed by said second point of compression computation part.

4. The color gamut compression apparatus according to claim 1, wherein, when a hue value of the source color matches that of any of a predetermined number of representative colors of

the information-input apparatus, said point of convergence computation part computes the point of convergence such that the point of convergence has the same hue value as a hypothetical color reproduced by the information-output apparatus

- reproduced by the information-output apparatus based on a digital signal value corresponding to the matched representative color, lies inside the color gamut of the information-output apparatus and is achromatic; and wherein
- when the source color is intermediate adjacent representative colors with respect to hue, the point of convergence is computed by linear interpolation of points of convergence corresponding to the adjacent representative colors.
- according to claim 1, wherein, when the hue of the source color lies within a hue range including

 transitions from the representative color Green to the representative colors Cyan, Blue and Magenta, said point of convergence computation part computes the point of convergence such that the point of convergence has the same hue value as a hypothetical color reproduced by the information-output apparatus based on a digital signal value corresponding to the representative color Blue, lies inside the color gamut of the information-

output apparatus and is chromatic.

and is chromatic.

- 6. The color gamut compression apparatus according to claim 1, wherein, when the hue of the source color lies within a hue range including a transition from the representative color Red to

 5 the representative color Yellow, said point of convergence computation part computes the point of convergence such that the point of convergence has the same hue value as a hypothetical color reproduced by the information-output apparatus

 10 based on a digital signal value corresponding to the representative color Cyan, lies inside the color gamut of the information-output apparatus
- 15 7. The color gamut compression apparatus according to claim 1, wherein, when the hue of the source color lies within a hue range including a transition from the representative color Magenta to the representative color Red, said point of 20 convergence computation part computes a first point of convergence such that the first point of convergence has the same hue value as a hypothetical color reproduced by the informationoutput apparatus based on a digital signal value 25 corresponding to the representative color Blue, lies inside the color gamut of the informationoutput apparatus and is chromatic, and

said point of convergence computation part computes a second point of convergence such that the second point of convergence has the same

10

15

20

hue value as a hypothetical color reproduced by the information-output apparatus based on a digital signal value corresponding to the representative color Cyan, lies inside the color gamut of the information-output apparatus and is chromatic; and wherein

the point of convergence is determined by linear interpolation on a hue scale on a line segment between the first point of convergence and the second point of convergence.

- 8. The color gamut compression apparatus according to claim 1, wherein, when the hue of the source color lies within a hue range including a transition from the representative color Yellow to the representative color Green, said point of convergence computation part computes a first point of convergence such that the first point of convergence has the same hue value as a hypothetical color reproduced by the information-output apparatus based on a digital signal value corresponding to the representative color Blue, lies inside the color gamut of the information-
- said point of convergence computation part computes a second point of convergence such that the second point of convergence has the same hue value as a hypothetical color reproduced by the information-output apparatus based on a digital signal value corresponding to the

output apparatus and is chromatic, and

color gamut.

representative color Cyan, lies inside the color gamut of the information-output apparatus and is chromatic; and wherein

the point of convergence is determined by linear interpolation on a hue scale

on a line segment between the first point of convergence and the second point of convergence.

- 9. The color gamut compression apparatus
 10 according to claim 1, wherein said point of
 convergence computation part computes the point of
 convergence such that the point of convergence has
 the same brightness level as one of four values
 for the hue value which is determined by the
 15 source color, the four values being maximum chroma,
 mean value of the color gamut, gravitational
 center value of the color gamut and median of the
- 20 10. The color gamut compression apparatus according to 9, wherein said point of convergence computation part computes the point of convergence such that the point of convergence has a hue value C_n satisfying an equation (1) below

 $C_{n} = K_{C} \times C_{max}$ (1)

where C_{max} indicates one of maximum chroma reproducible by the information-output apparatus for the hue determined by the source color,

maximum chroma at the mean value of the color gamut, maximum chroma at the gravitational center value of the color gamut, and maximum chroma at the median of the color gamut, and k_c (0< k_c <1) indicates an arbitrary parameter.

- apparatus according to claim 1, wherein said point of convergence computation part computes an optional point of computation such that the optional point of convergence lies between two intersections formed by a line having the same hue value and same chroma as the point of convergence determined according to claim 1 and parallel with a brightness axis and by a boundary of the color gamut of the information-output apparatus, and is determined in accordance with a chroma value of the source color.
- apparatus according to claim 11, wherein said point of compression computation part computes an optional point of convergence such that the optional point of convergence lies between the point of convergence determined according to claim 1 and an achromatic point having the same hue value and same brightness level as the point of convergence determined according to claim 1, and is determined in accordance with a chroma value of the source color.

- 13. The color gamut compression apparatus according to claim 1, wherein said point of convergence computation part compares a chroma value of the source color with a predetermined chroma value a, and, if the chroma value is equal to or greater than a, the point of convergence determined according to claim 1 is used, and, if the chroma value is smaller than a, said point of 10 convergence computation part computes an optional point of convergence such that the optional point of convergence lies between the point of convergence determined according to claim 1 and an achromatic point having the same hue value and 15 same brightness level as the point of convergence determined according to claim 1, and is determined by the chroma value of the source color.
- 14. A color gamut compression method for 20 converting a source color generated by an information-input apparatus into a target color inside a color gamut reproducible by an information-output apparatus, comprising the steps of:
- computing a point of convergence for a chromatic color such that the point of convergence has the same hue value as a hypothetical chromatic color that would be reproduced by the information-output apparatus based on a digital signal value for the information-input apparatus corresponding

to a color determined by the source color, and lies inside the color gamut of the information-output apparatus;

computing a point of compression such

that the point of compression lies on a
substantially straight line connecting the point
of convergence and the source color, and lies
inside the color gamut of the information-output
apparatus; and

converting the source color into the target color corresponding to the point of compression computed according to the step of computing the first point of compression.

15. The color gamut compression method according to claim 14, further comprising the steps of:

determining whether the source is a chromatic color or an achromatic color;

computing, when the source color is determined to be an achromatic color, the point of compression such that the point of compression lies inside the color gamut of the information-output apparatus and has zero chroma; wherein

the source color is converted into a color corresponding to the point of compression thus computed.

16. The color gamut compression method according to claim 14, wherein, when a hue value

10

15

of the source color matches that of any of a predetermined number of representative colors of the information-input apparatus, the step of computing the point of convergence computes the point of convergence such that the point of convergence has the same hue value as a hypothetical color reproduced by the information-output apparatus based on a digital signal value corresponding to the matched representative color, lies inside the color gamut of the information-output apparatus and is achromatic; and wherein

output apparatus and is achromatic; and wherein when the source color is intermediate

adjacent representative colors with respect to hue, the point of convergence is computed by linear interpolation of points of convergence corresponding to the adjacent representative colors.

according to claim 14, wherein, when the hue of the source color lies within a hue range including transitions from the representative color Green to the representative colors Cyan, Blue and Magenta, the step of computing the point of convergence

25 computes the point of convergence such that the point of convergence has the same hue value as a hypothetical color reproduced by the information-output apparatus based on a digital signal value corresponding to the representative color Blue,

30 lies inside the color gamut of the information-

output apparatus and is chromatic.

according to claim 14, wherein, when the hue of the source color lies within a hue range including a transition from the representative color Red to the representative color Yellow, the step of computing the point of convergence computes the point of convergence such that the point of convergence has the same hue value as a

10 hypothetical color reproduced by the informationoutput apparatus based on a digital signal value
corresponding to the representative color Cyan,
lies inside the color gamut of the informationoutput apparatus and is chromatic.

15

20

25

30

5

according to claim 14, wherein, when the hue of the source color lies within a hue range including a transition from the representative color Magenta to the representative color Red, the step of computing the point of convergence computes a first point of convergence such that the first point of convergence has the same hue value as a hypothetical color reproduced by the information-output apparatus based on a digital signal value corresponding to the representative color Blue, lies inside the color gamut of the information-

the step of computing the point of convergence computes a second point of convergence

output apparatus and is chromatic, and

such that the second point of convergence has the same hue value as a hypothetical color reproduced by the information-output apparatus based on a digital signal value corresponding to the representative color Cyan, lies inside the color gamut of the information-output apparatus and is chromatic; and wherein

the point of convergence is

determined by linear interpolation on a hue scale

on a line segment between the first point of

convergence and the second point of convergence.

20. The color gamut compression method according to claim 14, wherein, when the hue of the source color lies within a hue range including a transition from the representative color Yellow to the representative color Green, the step of computing the point of convergence computes a first point of convergence such that the first point of convergence has the same hue value as a hypothetical color reproduced by the information-output apparatus based on a digital signal value corresponding to the representative color Blue, lies inside the color gamut of the information-output apparatus and is chromatic, and

the step of computing the point of convergence computes a second point of convergence such that the second point of convergence has the same hue value as a hypothetical color reproduced by the information-output apparatus based on a

digital signal value corresponding to the representative color Cyan, lies inside the color gamut of the information-output apparatus and is chromatic; and wherein

- the point of convergence is determined by linear interpolation on a hue scale on a line segment between the first point of convergence and the second point of convergence.
- 10 21. A color gamut compression apparatus for converting a source color generated by an information-input apparatus into a target color inside a color gamut reproducible by an information-output apparatus, comprising:
- a point of convergence computation part for computing a point of convergence for a chromatic color such that the point of convergence has the same hue value as the source color, has the same brightness as one of a maximum chroma
- color, a mean value of the color gamut reproducible by the information-output apparatus, gravitational center value of the color gamut reproducible by the information-output apparatus, and median of the color gamut reproducible by the information-output apparatus, and lies inside the
 - a first point of compression computation part for computing a point of compression such that the point of compression lies on a substantially straight line connecting the point

color gamut of the information-output apparatus;

of convergence and the source color, and lies inside the color gamut of the information-output apparatus; and

a compression part for converting the

5 source color into the target color corresponding
to the point of compression computed by said first
point of compression computation part.

- 22. The color gamut compression

 10 apparatus according to claim 21, wherein said
 first point of compression computation part
 computes the point of compression such that the
 point of compression is at an intersection of the
 substantially straight line and a boundary of the

 15 color gamut of information-output apparatus.
- 23. The color gamut compression apparatus according to claim 21, wherein, when a hue value of the source color matches that of any 20 of a predetermined number of representative colors of the information-input apparatus, said point of convergence computation part computes the point of convergence for a chromatic color such that the point of convergence has the same hue value as the 25 source color, has the same brightness as one of a maximum chroma color, a mean value of the color gamut reproducible by the information-output apparatus, gravitational center value of the color gamut reproducible by the information-output 30 apparatus, and median of the color gamut

reproducible by the information-output apparatus, and lies inside the color gamut of the information-output apparatus; and wherein

when the source color is intermediate

5 adjacent representative colors with respect to hue,
the point of convergence is computed by linear
interpolation of points of convergence
corresponding to the adjacent representative
colors.

10

15

20

25

24. The color gamut compression apparatus according to claim 21, further comprising:

a point of convergence computation execution determination part for determining whether the source is a chromatic color or an achromatic color;

a second point of compression computation part for computing, when said point of convergence computation execution determination part determines that the source color is an achromatic color, the point of compression such that the point of compression lies inside the color gamut of the information-output apparatus and has zero chroma; wherein

said compression part converts the source color into a color corresponding to the point of compression computed by said second point of compression computation part.

25. The color gamut compression apparatus according to 21, wherein said point of convergence computation part computes the point of convergence such that the point of convergence has a hue value $C_{\rm n}$ satisfying an equation (1) below

$$C_n = K_c \times C_{max} \tag{1}$$

where C_{max} indicates one of maximum chroma reproducible by the information-output apparatus for the hue value of the source color, maximum chroma at the mean value of the color gamut for the hue value of the source color, maximum chroma at the gravitational center value of the color gamut for the hue value of the source color, and maximum chroma at the median of the color gamut for the hue value of the source color, and k_c (0 $\langle k_c \langle 1 \rangle$) indicates an arbitrary parameter.

apparatus according to claim 21, wherein said point of convergence computation part computes an optional point of computation such that the optional point of convergence lies between two intersections formed by a line having the same hue value and same chroma as the point of convergence determined according to claim 21 and parallel with a brightness axis and by a boundary of the color gamut of the information-output apparatus, and is determined in accordance with a chroma value of

the source color.

apparatus according to claim 21, wherein said point of compression computation part computes an optional point of convergence such that the optional point of convergence lies between the point of convergence determined according to claim 21 and an achromatic point having the same hue value and same brightness level as the point of convergence determined according to claim 1, and is determined in accordance with a chroma value of the source color.

28. The color gamut compression 15 apparatus according to claim 21, wherein said point of convergence computation part compares a chroma value of the source color with a predetermined chroma value a, and, if the chroma value is equal to or greater than a, the point of 20 convergence determined according to claim 1 is used, and, if the chroma value is smaller than a, said point of convergence computation part computes an optional point of convergence such that the optional point of convergence lies 25 between the point of convergence determined according to claim 1 and an achromatic point having the same hue value and same brightness level as the point of convergence determined according to claim 1, and is determined by the

chroma value of the source color.

10

15

29. A color gamut compression method for converting a source color generated by an information-input apparatus into a target color inside a color gamut reproducible by an information-output apparatus, comprising the steps of:

computing a point of convergence for a chromatic color such that the point of convergence has the same hue value as the source color, has the same brightness as one of a maximum chroma color, a mean value of the color gamut reproducible by the information-output apparatus, gravitational center value of the color gamut reproducible by the information-output apparatus, and median of the color gamut reproducible by the information-output apparatus, and lies inside the color gamut of the information-output apparatus;

that the point of compression lies on a substantially straight line connecting the point of convergence and the source color, and lies inside the color gamut of the information-output apparatus; and

converting the source color into the target color corresponding to the point of compression computed by said first point of compression computation part.

computing a point of compression such

15

20

according to claim 29, wherein the step of computing the first point of compression computes the point of compression such that the point of compression is at an intersection of the substantially straight line and a boundary of the color gamut of information-output apparatus.

31. The color gamut compression apparatus according to claim 29, wherein, when a hue value of the source color matches that of any of a predetermined number of representative colors of the information-input apparatus, the step of computing the point of convergence computes the point of convergence for a chromatic color such that the point of convergence has the same hue value as the source color, has the same brightness as one of a maximum chroma color, a mean value of the color gamut reproducible by the informationoutput apparatus, gravitational center value of the color gamut reproducible by the informationoutput apparatus, and median of the color gamut reproducible by the information-output apparatus, and lies inside the color gamut of the information-output apparatus; and wherein

when the source color is intermediate adjacent representative colors with respect to hue, the point of convergence is computed by linear interpolation of points of convergence corresponding to the adjacent representative 30 colors.

- 32. The color gamut compression method according to claim 29, further comprising the steps of:
- determining whether the source is a chromatic color or an achromatic color;

computing, when the source color is determined to be an achromatic color, the point of compression such that the point of compression lies inside the color gamut of the information-output apparatus and has zero chroma; wherein

the source color is converted into a color corresponding to the point of compression thus computed.

15

20

10

33. The color gamut compression apparatus according to 29, wherein the step of computing the point of convergence computes the point of convergence such that the point of convergence has a hue value C_n satisfying an equation (1) below

$$C_{n} = K_{c} \times C_{max}$$
 (1)

where C_{max} indicates one of maximum chroma reproducible by the information-output apparatus for the hue value of the source color, maximum chroma at the mean value of the color gamut for the hue value of the source color, maximum chroma at the gravitational center value of the color

gamut for the hue value of the source color, and maximum chroma at the median of the color gamut for the hue value of the source color, and $k_{\rm c}$ (0< $k_{\rm c}$ <1) indicates an arbitrary parameter.

- apparatus according to claim 29, wherein the step of computing the point of convergence computes an optional point of computation such that the optional point of convergence lies between two intersections formed by a line having the same hue value and same chroma as the point of convergence determined according to claim 29 and parallel with a brightness axis and by a boundary of the color gamut of the information-output apparatus, and is determined in accordance with a chroma value of the source color.
- apparatus according to claim 29, wherein said point of compression computation part computes an optional point of convergence such that the optional point of convergence lies between the point of convergence determined according to claim 29 and an achromatic point having the same hue value and same brightness level as the point of convergence determined according to claim 29, and is determined in accordance with a chroma value of the source color.

- 36. The color gamut compression apparatus according to claim 29, wherein said point of convergence computation part compares a chroma value of the source color with a
- predetermined chroma value <u>a</u>, and, if the chroma value is equal to or greater than <u>a</u>, the point of convergence determined according to claim 29 is used, and, if the chroma value is smaller than <u>a</u>, said point of convergence computation part
- 10 computes an optional point of convergence such that the optional point of convergence lies between the point of convergence determined according to claim 29 and an achromatic point having the same hue value and same brightness

 15 level as the point of convergence determined
 - according to claim 1, and is determined by the chroma value of the source color.

ABSTRACT OF THE DISCLOSURE

A color gamut compression apparatus for converting a source color generated by an 5 information-input apparatus into a target color inside a color gamut reproducible by an information-output apparatus includes: a point of convergence computation part for computing a point of convergence for a chromatic color such that the 10 point of convergence has the same hue value as a hypothetical chromatic color that would be reproduced by the information-output apparatus based on a digital signal value for the information-input apparatus corresponding to a 15 color determined by the source color, and lies inside the color gamut of the information-output apparatus; a first point of compression computation part for computing a point of compression such that the point of compression 20 lies on a substantially straight line connecting the point of convergence and the source color, and lies inside the color gamut of the informationoutput apparatus; and a compression part for

converting the source color into the target color
corresponding to the point of compression computed
by said first point of compression computation
part.

- COLOR OUTSIDE COLOR GAMUT
- o POINT OF COMPRESSION
- POINT OF CONVERGENCE

- COLOR OUTSIDE COLOR GAMUT
- o POINT OF COMPRESSION
- POINT OF CONVERGENCE

- COLOR OUTSIDE COLOR GAMUT
- o POINT OF COMPRESSION
- POINT OF CONVERGENCE

- COLOR OUTSIDE COLOR GAMUT
- POINT OF COMPRESSION
- POINT OF CONVERGENCE

- COLOR OUTSIDE COLOR GAMUT
- POINT OF COMPRESSION
- POINT OF CONVERGENCE

- COLOR OUTSIDE COLOR GAMUT
- POINT OF COMPRESSION
- POINT OF CONVERGENCE

FIG.8

- COLOR OUTSIDE COLOR GAMUT
- O POINT OF COMPRESSION
- POINT OF CONVERGENCE

- COLOR OUTSIDE COLOR GAMUT
- POINT OF COMPRESSION
- POINT OF CONVERGENCE

- COLOR OUTSIDE COLOR GAMUT
- POINT OF COMPRESSION
- POINT OF CONVERGENCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Declaration and Power of Attorney For Patent Application

特許出願宣言書及び委任状

Japanese Language Declaration

日本語宣言書

下記の氏名の発明者として、私は以下の通り宣言します。	As a below named inventor, I hereby declare that:
私の住所、私書籍、国籍は下記の私の氏名の後に記載され た通りです。	My residence, post office address and citizenship are as stated next to my name.
下記の名称の発明に関して請求範囲に記載され、特許出願している発明内容について、私が最初かつ唯一の発明者(下記の氏名が一つの場合)もしくは最初かつ共同発明者であると(下記の名称が複数の場合)信じています。	I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled
	"COLOR GAMUT COMPRESSION APPARATUS
	AND METHOD"
上記発明の明細書(下記の欄でx印がついていない場合は、本書に添付)は、 「	the specification of which is attached hereto unless the following box is checked: was filed on as United States Application Number or PCT International Application Number and was amended on (if applicable).
私は、特許請求範囲を含む上記訂正後の明細書を検討し、 内容を理解していることをここに表明します。	I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.
私は、連邦規則法典第37編第1条56項に定義されるとおり、特許資格の有無について重要な情報を開示する義務があることを認めます。	I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Japanese Language Declaration

(日本語宣言書)

私は、米国法典第35編119条(a)-(d)項又は365条(b)項に基き下記の、米国以外の国の少なくとも一ヵ国を指定している特許協力条約365(a)項に基ずく国際出願、又は外国での特許出願もしくは発明者証の出願についての外国優先権をここに主張するとともに、優先権を主張している、本出願の前に出願された特許または発明者証の外国出願を以下に、枠内をマークすることで、示しています。

Prior Foreign Application(s)

L

 外国での先行出版
 Japan

 11-151021
 Japan

 (Number)
 (Country)

 (番号)
 (国名)

 11-166607
 Japan

 (Number)
 (Country)

 (番号)
 (国名)

私は、第35編米国法典119条(e)項に基いて下記の米 国特許出願規定に記載された権利をここに主張いたします。

(Application No.) (Filing Date) (出願番号) (出願日)

私は、下記の米国法典第35編120条に基いて下記の米国特許出頭に記載された権利、又は米国を指定している特許協力条約365条(c)に基ずく権利をここに主張します。また、本出願の各請求範囲の内容が米国法典第35編112条第1項又は特許協力条約で規定された方法で先行する米国特許出顧に開示されていない限り、その先行米国出願書提出日以降で本出願書の日本国内または特許協力条約国際提出日までの期間中に入手された、連邦規則法典第37編1条56項で定義された特許資格の有無に関する重要な情報について開示義務があることを認識しています。

(Application No.) (Filing Date) (出願番号) (出願日)

(Application No.) (Filing Date) (出願番号) (出願日)

私は、私自身の知識に基ずいて本宣言書中で私が行なう表明が真実であり、かつ私の入手した情報と私の信じるところに基ずく表明が全て真実であると信じていること、さらに故意になされた虚偽の表明及びそれと同等の行為は米国法典第18編第1001条に基ずき、罰金または拘禁、もしくはその両方により処罰されること、そしてそのような故意による虚偽の声明を行なえば、出願した、又は既に許可された特許の有効性が失われることを認識し、よってここに上記のごとく宣誓を致します。

I hereby claim foreign priority under Title 35, United States Code, Section 119 (a)-(d) or 365(b) of any foreign application(s) for patent or inventor's certificate, or 365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT International application having a filing date before that of the application on which priority is claimed.

Priority Not Claimed 優先権主張なし

31/May/1999
(Day/Month/Year Filed)
(出願年月日)
14/June/1999
(Day/Month/Year Filed)
(出願年月日)

I hereby claim the benefit under Title 35, United States Code, Section 119(e) of any United States provisional application(s) listed below.

(Application No.) (Filing Date) (出顧番号) (出顧日)

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s), or 365(c) of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56 which became available between the filing date of the prior application and the national or PCT International filing date of application.

(Status: Patented, Pending, Abandoned) (現況: 特許許可済、係属中、放棄済)

(Status: Patented, Pending, Abandoned) (現況: 特許許可済、係属中、放棄済)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Japanese Language Declaration

(日本語宣言書)

私は下記の発明者として、本出願に関する一切の 手続きを米特許商標局に対して遂行する弁理士または代理人 として、下記の者を指名いたします。(弁護士、または代理 人の氏名及び登録番号を明記のこと)

TERRELL C. BIRCH (Reg. No. 19,382) RAYMOND C. STEWART (Reg. No. 21,066) JOSEPH A. KOLASCH (Reg. No. 22,463) ANTHONY L. BIRCH (Reg. No. 26,122)

JAMES M. SLATTERY (Reg. No. 28,380) BERNARD L. SWEENEY (Reg. No. 24,448) MICHAEL K. MUTTER (Reg. No. 29,680) CHARLES GORENSTEIN (Reg. No. 29,271) POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith (list name and registration number)

GERALD M. MURPHY (Reg. No. 28,977) LEONARD R. SVENSSON (Reg. No. 30,330) TERRY L. CLARK (Reg. No. 32,644) ANDREW D. MEIKLE (Reg. No. 32,868)

MARC S. WEINER (Reg. No. 32,181) ANDREW F. REISH (Reg. No. 33,443) JOE M. MUNCY (Reg. No. 32,334) C. JOSEPH FARACI (Reg. No. 32,350)

耆類送付先

Send Correspondence to:

BIRCH, STEWART, KOLASCH & BIRCH, LLP P.O. BOX 747 FALLS CHURCH, VA 22040-0747 TEL: (703) 205-8000

直接電話連絡先: (名前及び電話番号)

Direct Telephone Calls to: (name and telephone number)

BIRCH, STEWART, KOLASCH & BIRCH, LLP TEL: (703) 205-8000

唯一または第一発明者	首名	Full name of sole or first inventor
発明者の署名	日付	Mariko TAKAHASHI Inventor's signature Mariko Takahashi December 24, 1999
住所	***************************************	Residence
国籍		Tokyo, Japan Citizenship Japanese
私書箱		Post Office Address c/o MITSUBISHI DENKI KABUSHIKI KAISHA,
		2-3, Marunouchi 2-chome, Chiyoda-ku, Tokyo 100-8310 Japan
第二共同発明者		Full name of second joint inventor, if any Tsuneo SATO
第二共同発明者	日付	Second inventor's signature Date Thuneo Sate December 24, 1999
住所		Residence Tokyo, Japan
国籍		Citizenship Japanese
私賽箱		Post Office Address C/O MITSUBISHI DENKI KABUSHIKI KAISHA,
		2-3, Marunouchi 2-chome, Chiyoda-ku, Tokyo 100-8310 Japan

(第三以降の共同発明者についても同様に記載し、署名をす ること)

(Supply similar information and signature for third and subsequent joint inventors.)