## **Context-free Grammars: In-class Exercise**

(1) Consider the CFG G with S' as the start symbol:

$$S' \rightarrow S \mid \epsilon$$

$$S \rightarrow T \mid (N, C)$$

$$C \rightarrow C, S \mid S$$

$$T \rightarrow a \mid b \mid c$$

$$N \rightarrow x \mid y \mid z$$

- a. List the set of terminal symbols and the set of non-terminal symbols in G.
- b. For each of the following strings, write down true if the string is in the language L(G) generated by G, false otherwise.
  - 1. y
  - 2. c
  - 3. (x)
  - 4. (x,y)
  - 5. (z,a,b,a,b,c)
  - 6. (x,a,(y,b),c)
  - 7. (x,(y,a),(z,b))
  - 8. (x,(x,(x,(x,a)))
- (2) Consider the family of CFGs  $G_k$  with S as the start symbol and k is some arbitrary non-zero positive integer such that  $G_1, G_2, G_3, \ldots$  are individual CFGs with the rules:

$$S \rightarrow A B$$
  
 $B \rightarrow C A A$   
 $C \rightarrow c$   
 $A \rightarrow a_i$  defines *i* rules, where  $i \in [1, k]$ 

For example, in  $G_3$  the rules with A as left-hand side are:  $A \rightarrow a_1 \mid a_2 \mid a_3$  with three terminal symbols.

- a. Provide the number of terminal symbols in a grammar  $G_k$ .
- b. If the string  $a_4ca_3a_2$  is accepted by grammar  $G_3$  then provide a derivation for it.
- c. If the string  $a_4ca_3a_2$  is accepted by grammar  $G_4$  then provide a derivation for it.
- d. Provide the total number of strings that can be generated for a grammar  $G_k$ .
- (3) One of the rules in the CFG below is redundant: any sentence that can be generated using this rule can already be generated by a combination of other rules. Write down the redundant rule.

1

| S  | $\rightarrow$ | NP VP      | IV   | $\rightarrow$ | runs    | N | $\rightarrow$ | John     |
|----|---------------|------------|------|---------------|---------|---|---------------|----------|
|    |               | N          |      |               | sits    |   |               | he       |
|    |               | DN         |      |               | chases  |   |               | Mary     |
|    |               | VP PP      |      |               | eats    |   |               | dog      |
| VP | $\rightarrow$ | VP CONJ VP | TV   | $\rightarrow$ | catches |   |               | tree     |
| VP | $\rightarrow$ | IV         | TV   | $\rightarrow$ | tells   | N | $\rightarrow$ | squirrel |
| VP | $\rightarrow$ | IV PP      | TV   | $\rightarrow$ | sees    |   |               | the      |
| VP | $\rightarrow$ | TV NP      | CONJ | $\rightarrow$ | and     |   |               |          |
| VP | $\rightarrow$ | TV C S     | C    | $\rightarrow$ | that    |   |               |          |
| NP | $\rightarrow$ | NP CONJ NP | P    | $\rightarrow$ | in      |   |               |          |
| PP | $\rightarrow$ | P          | P    | $\rightarrow$ | away    |   |               |          |

 $PP \ \, \rightarrow \ \, P\,NP$