Spectral analysis

Fundamental elements

data sampling

Fourier analysis

errors in analysis

linear filters

time-frequency analysis

data sampling

Fourier analysis

errors in analysis

linear filters

time-frequency analysis

unevenly sampled data

unevenly sampled data

oscillations may be visible

unevenly sampled data - fewer data

unevenly sampled data - fewer data

oscillations not visible anymore

evenly sampled data

oscillations clearly visible

$$T_m = 1s$$

$$T_s = 1s$$

$$T_m = 1s$$

$$T_m = 1s$$

 $T_s = 1s$

 $T_s = 0.5s$

 $T_s = 0.25s$

$$T_s = 1s$$

$$T_s = 0.5s$$

 $T_s = 0.25s$

good sampling:

$$T_s \leq T_m/2$$

$$T_s = 1s$$

$$T_s = 0.5s$$

$$T_s = 0.25s$$

Sampling theorem

(Shannon/Nyquist/Whitaker/Kotelnikov)

given:

- continuous function s(t)
- s(t) has maximum frequency f_m
- s(t) is sampled with frequency f_s , i.e. $s(t) \to s(t_n) \, , \, t_n = n\Delta t = n/f_s$

hypothesis: information loss by sampling continuous function s(t)

objective: find sampling frequency f_s, for which no information loss occurs

solution: $f_s \ge 2f_m$

comment: in practice it is a good idea to choose $f_s \ge 4f_m$

data sampling

Fourier analysis

errors in analysis

linear filters

time-frequency analysis

all-time assumption: the signal under study is periodic

the signal under study is periodic

one period in interval

two periods in interval

three periods in interval

the signal under study is periodic

one period in interval

two periods in interval

three periods in interval

smallest frequency:

$$\Delta f = \frac{1}{T}$$

$$f_n = n\Delta f$$