Grade 12 Chemistry

Structure and Properties of Matter Class 7

Formal Charge

- Draw the Lewis structure of HCN, you will realize that you can draw two structures
- Formal charges tells you the "best" way the atoms share their electrons, when charges = 0 or as small as possible

Formal Charge =
$$V - \frac{1}{2}B - L$$
 $V = \# \text{ of valence electrons } B = \# \text{ of bonding electrons } L = \# \text{ of LP electrons}$

- Rules for Formal Charges:
 - For molecules, the sum of the charges must add up to zero
 - For cations, the sum of formal charges must equal the positive charge. For anions, the sum of formal charges must equal the negative charge
- Sometimes there is more than one acceptable Lewis structure
 - No formal charges are preferable
 - Small formal charges are better than large formal charges
 - The negative formal charge should be on the more electronegative atom

Checkpoint

Calculate the formal charge for SO₂

 From Class 5, check ClON again using Formal Charges

Molecular Geometry

- Allows chemists to visualize the molecule in a 3D representation
- 1857, Gillespie and Nyholm developed a model for predicting the shape of molecules using the VSEPR theory

The VSEPR Model

- Valence Shell Electron-Pair Repulsion Model
- Used to predict shapes of simple molecules
- Rule: Electron pairs, whether bonding or nonbonding, attempt to move as far apart as possible
- Lone Pair (LP) will spread out more than a Bonding Pair (BP); repulsion is greatest in a LP

Decreasing Repulsion:

Table 4.2 Common Molecular Shapes and Their Electron Group Arrangements

Number of electron groups	Geometric arrangement of electron groups	Type of electron pairs	VSEPR notation	Name of Molecular shape	Example
2	linear	2 BP	AX ₂	X—A—X linear	BeF ₂
3	trigonal planar	3 BP	AX ₃	X X X trigonal planar	BF ₃
3	trigonal planar	2 BP, 1 LP	AX ₂ E	x—A x	SnCl ₂
4	tetrahedral	4 BP	AX4	X X x tetrahedral	CF ₄
4	tetrahedral	3 BP, 1LP	AX ₃ E	X X X X trigonal pyramidal	PCl ₃
4	tetrahedral	2 BP, 2LP	AX ₂ E ₂	₩ x angular	H ₂ S
5	trigonal bipyramidal	5 BP	AX ₃	X X X X X X Trigonal bipyramidal	SbCl ₅
5	trigonal bipyramidal	4 BP, 1LP	AX ₄ E	SIOSEW X	TeCl ₄

5	trigonal bipyramidal	3 BP, 2LP	AX ₃ E ₂	X—A X T-shaped	BrF₃
5	trigonal bipyramidal	2 BP, 3LP	AX ₂ E ₃	X A A Inear	XeF ₂
6	octahedral	6 BP	AX_6	X X X X X octahedral	SF ₆
6	octahedral	5 BP, 1LP	AX ₅ E	X X X X X X X Square pyramidal	BrF ₅
6	octahedral	4 BP, 2LP	AX ₄ E ₂	X X X X x square planar	XeF ₄

Predicting Molecular Shape

- 1. Draw a preliminary Lewis structure of the molecule
- 2. Count the number of bonding pairs attached to the central atom all BP (single, double, triple) are counted as one group
- 3. Count the number of lone pairs on the central atom
- 4. Use the VSEPR chart to determine the shape

Checkpoint

Predict the molecular shape of:

- a) H_3O^+
- b) SF₆
- c) BrF₅

Bond Order

 Bond Order – Number of bonding pairs of electrons between two atoms

$$Bond Order = \frac{Number of Bonds}{Number of Bonding Groups}$$

- If bond order = 0, molecule cannot form
- Higher bond order indicates more attraction and more stability
- Bond order does not need to be an integer (resonance)

Checkpoint

Determine the Bond Order for:

- a) HCN
- b) NO₃-
- c) O₂

Valence Bond Theory

 Lewis theory does not clearly explain why chemical bonds exist; does not explain differences in bond length

$$H-H = 74pm$$
 $F-F = 142pm$

 Valence Bond Theory assumes that the electrons in a molecule occupy atomic orbitals of the individual atoms

Hybridization of Atomic Orbitals

sp³ Hybridization

• Consider the CH₄ molecule:

 This carbon can only form two bonds with hydrogen since there are only 2 electrons

- To account for the four C-H bonds, we must excite an electron from the 2s orbital to the 2p orbital
 - However this will result in 3 bonds with hydrogen that are the same lengths and 1 bond with hydrogen that is different
- All bonds are 109.5° so hybridization must have occurred between the *s* and *p*-orbitals

sp² Hybridization

• Consider BF₃: hybridized 1s and 2p orbitals

 The sp² orbitals lie in the same plane and the angle between them is 120°

sp Hybridization

Consider BeCl₂: hybridization of 1s and 1p

Beryllium

- The two hybrid orbitals lie on the same plane so the angle is 180°
- The bonds within Be-Cl are formed between Be sp hybrid orbital and Cl 3p orbital

How to tell if an atom is sp³, sp² or sp

- Draw the Lewis dot structure of the molecule
- Count the number of bonding sites
 - Single bond = 1 site
 - Double bonds = 1 site
 - Triple bonds = 1 site
- Count the number of lone pairs
- 2 bonding sites = sp
- 3 bonding sites = sp²
- 4 bonding sites = sp³

Checkpoint

Determine the hybridization state of the central (underlined) atom in the following molecules:

- a) <u>Be</u>H₂
- b) <u>Al</u>I₃
- c) <u>P</u>F₃

Sigma (σ) Bonds

 Sigma Bonds = single bonds; covalent bonds formed by orbitals overlapping end to end with the electron density concentrated between the nuclei of the bonding atoms

Pi (π) Bonds

- Pi bonds = double or triple bonds; covalent bond formed by sideways overlapping orbitals with electron density concentrated above and below the plane of the nuclei
- Consider ethene: Formed from the side-byside overlap of the two unhybridized 2p_z orbitals from each carbon

H 1s

 Consider ethyne where the carbons are sphybridized

Checkpoint

- Draw the picture of the following molecules using valence bond theory and state the number of sigma bonds and pi bonds.
 - a) Magnesium hydride
 - b) Aluminum trihydride
 - c) Methanal (Formaldehyde)
 - d) Benzene

Structure and Properties of Solids

- Ionic Crystals the interaction of a metal and a non-metal with the alternating packing of positive and negative ions
- Properties:
 - Hard, brittle solid
 - Does not conduct electricity as a solid
 - High melting points due to strong ionic bonds

- Metallic Crystals a solid with closely packed metal atoms held together by electrostatic interaction and free-moving electrons
- Based on "Electron Sea Theory" valence electrons are free to move while the nucleus remains fixed
- Properties:
 - Low ionization energies
 - Malleable
 - Conducts electricity
 - Hard

(a)

- Molecular Crystals –
 held together by
 dispersion forces, dipole dipole forces and
 hydrogen bonds
- Ex: H_2O , I_2 , P_4 and S_8
- Properties:
 - Do not conduct electricity
 - Lower melting points
 - Less hard than ionic crystals

- Covalent Network Crystals
 - held together by covalent bonds in an interwoven network
- Ex: Diamond, Quartz (SiO₂)
- Properties:
 - High melting points
 - Extreme hardness
 - Do not conduct electricity

- Semiconductors covalent crystals such as Si or Ge that conduct small amounts of electricity in standard conditions
- Doping process of adding arsenic or boron to the covalent crystals to increase conductivity
- Two Types:
 - N-type semiconductors
 - P-type semiconductors

n-type semiconductor

High temperatures cause additional electrons in **arsenic** (5 valence electrons) to excite to another level

p-type semiconductor

Boron (3 valence electrons) has 1 less valence electron than silicon which allows electrons to move in and fill the hole