APPENDIX A

THE KKT TRANSFORMATION AND THE LINEARIZATION PROCESS FOR POWER FLOW CONSTRAINT

The lagrangian function for the original lower-level problem (32)-(37) is:

$$\begin{split} L &= \sum_{n \in V_T} \Delta P d_n - \sum_{l \in L} \mu_l \left(\begin{array}{c} p_l - v_l \cdot \frac{1}{x_l} \cdot \sum_{n \in V_T} A_{nl} \cdot \delta_n \\ \\ &- \sum_{n \in V_T} \lambda_n \left(\sum_{g \in G_n} p_g - \sum_{l \in L} A_{nl} \cdot p_l + \Delta P d_n - P d_n \right) \\ &- \sum_{l \in L} \underline{\omega}_l \left(p_l + \overline{p}_l \right) - \sum_{l \in L} \overline{\omega}_l \left(\overline{p}_l - p_l \right) \\ &- \sum_{j \in G} \underline{\theta}_j \left(g_j - \underline{g}_j \right) - \sum_{j \in G} \overline{\theta}_j \left(\overline{g}_j - g_j \right) \\ &- \sum_{p \in V} \underline{\alpha}_n \left(\Delta p d_n \right) - \sum_{p \in V} \overline{\alpha}_n \left(P d_n - \Delta P d_n \right) \end{split}$$
 (A1)

Where μ_l , λ_n , $\underline{\omega}_l$, $\overline{\omega}_l$, $\underline{\theta}_j$, $\overline{\theta}_j$, $\underline{\alpha}_n$, $\overline{\alpha}_n$ are the Lagrangian multipliers associated with the DC power flow constraints (33)-(37), respectively, in addition to the original feasibility constraints (33)-(37), the optimality conditions for the original problem KKT are:

$$\frac{\partial L}{\partial \delta_n} = \sum_{l \in L} \frac{1}{x_l} A_{nl} \mu_l v_l = 0, \qquad n \in V_T$$
 (A2)

$$\frac{\partial L}{\partial g_j} = -\lambda_n - \underline{\theta}_j + \overline{\theta}_j = 0, \qquad j \in \mathbf{G}$$
 (A3)

$$\frac{\partial L}{\partial p_l} = \sum_{n \in V_T} A_{nl} \lambda_n - \mu_l - \underline{\omega}_l + \overline{\omega}_l = 0, \quad l \in \mathbf{L}$$
 (A4)

$$\frac{\partial L}{\partial \Delta P d_n} = 1 - \lambda_n - \underline{\alpha}_n + \overline{\alpha}_n = 0, \quad n \in V_T$$
 (A5)

$$\underline{\omega}_{l} \geq 0,$$
 $l \in L$ (A6)
 $-\omega_{l} \geq 0,$ $l \in L$ (A7)

$$\omega_l \ge 0, \qquad l \in L$$
 (A7)

$$\underline{\theta}_{i} \ge 0, \qquad j \in G \qquad (A8)$$

$$\bar{\theta}_i \ge 0, \qquad j \in G$$
 (A9)

$$\underline{\alpha}_n \ge 0, \qquad n \in V_T \quad (A10)$$

$$\alpha_n \ge 0, \qquad n \in V_T \quad (A11)$$

$$\underline{\omega}_l\left(p_l + \overline{p_l}\right) = 0, \qquad l \in L \quad (A12)$$

$$\overline{\omega}_l \left(\overline{p_l} - p_l \right) = 0, \qquad l \in \mathbf{L}$$
 (A13)

$$\underline{\theta}_{j}\left(g_{j} - \underline{g}_{j}\right) = 0, \qquad j \in G \qquad (A14)$$

$$\bar{\theta}_{j}\left(\bar{g}_{j}-g_{j}\right)=0,$$
 $j \in G$ (A15)
 $\underline{\alpha}_{n}\left(\Delta P d_{n}\right)=0,$ $n \in V_{T}$ (A16)

$$\alpha_n(\Delta Pd_n) = 0, \qquad n \in V_T \quad (A16)$$

$$\overline{\alpha}_n \left(P d_n - \Delta P d_n \right) = 0, \qquad n \in V_T \quad (A17)$$

where (A2)- (A11) denotes the original lower-level problem dual constraints and (A12)- (A17) denotes the complementary slackness constraints.

It can be seen that the original lower-level problem line formulation (33), dual constraints (A2) complementary slackness constraints (A12)- (A17) are all non-linear terms. The above constraints are linearized by the following method:

(1) For the linearization of formulation ((33)

In formulation (33), there are two non-linear terms-- v_l multiplied by the phase angle δ_i at the beginning of the line and v_l multiplied by the phase angle δ_l^l at the end of the line, so continuous variables s_i^t and s_i^t are introduced to represent $v_i \delta_i$ and $v_l \delta_l^r$ respectively. Further intermediate variables z_l^r and z_l^r are introduced to equate the non-linear term (33) with the following linear terms:

$$p_l = \frac{1}{x_l} \cdot \left(z_l^f - z_l^t \right), \qquad l \in L \quad (A18)$$

$$z_l^f = \delta_l^f - s_l^f, \qquad l \in \mathbf{L}$$
 (A19)

$$z_l^t = \delta_l^t - s_l^t, \qquad l \in \mathbf{L} \qquad (A20)$$

$$\delta \cdot v_l \le z_l^f \le \overline{\delta} \cdot v_l, \qquad l \in L \quad (A21)$$

$$\delta \cdot v_l \le z_l^t \le \overline{\delta} \cdot v_l, \qquad l \in L \quad (A22)$$

$$\underline{\delta} \cdot (1 - v_l) \le s_l^f \le \overline{\delta} \cdot (1 - v_l), \qquad l \in L$$
 (A23)

$$\underline{\delta} \cdot (1 - v_l) \le s_l^t \le \overline{\delta} \cdot (1 - v_l), \qquad l \in \mathbf{L}$$
 (A24)

The formulations(A18)-(A24) represents the linearized expression for the calculation of the line DC power flow, if line l is destroyed ($v_l = 0$), then according to the formulations (A21), (A22) can be obtained: $z_t^t = 0$, $z_t^t = 0$, so the line power flow $p_l=0$, $s_l^f=\delta_l^f$, $s_l^t=\delta_l^t$; if l is not destroyed $(v_l=1)$, then according to the formulations (A23), (A24) can be obtained: s_l^f =0, s_1^t =0, so z_1^t = δ_1^t , z_1^t = δ_1^t , and the line plow flow p_l is determined by the phase angle difference between the two ends of the line.

(2) Linearization for the dual constraint (A2)

Similarly, by introducing the continuous variables t_l and h_l , the nonlinear dual constraint (A2) is equivalently represented by the following set of linearization constraints:

$$\sum_{l \in L} \frac{1}{x_l} \cdot A_{nl} \cdot t_l = 0, \qquad n \in V_T \quad (A25)$$

$$t_l = u_l - h_l, \qquad l \in \mathbf{L} \qquad (A26)$$

$$\underline{u}_l \cdot v_l \le t_l \le v_l \cdot \overline{u}_l, \qquad l \in \mathbf{L}$$
 (A27)

$$\underline{u}_l \cdot (1 - v_l) \le h_l \le \overline{u}_l \cdot (1 - v_l), \ l \in L$$
 (A28)

(3) Linearization for the complementary slackness constraints (A12)- (A17)

The nonlinear complementary slackness constraints (A12)-(A17) are equivalently represented by the following set

of linearization constraints by introducing the 0-1 variables $\theta_l^{\underline{w}}$,

$$\omega_{l}^{\bar{\omega}},\;\omega_{\sigma}^{\underline{\theta}},\;\omega_{\sigma}^{\bar{\theta}}\;\;,\;\omega_{n}^{\underline{\alpha}}\;\;,\;\omega_{n}^{\bar{\alpha}}\;\;$$

$$\underline{\omega_l} \le M \cdot \omega_l^{\underline{\omega}}, \qquad l \in \mathbf{L} \qquad (A29)$$

$p_l + p_l \le M \cdot (1 - \omega_l^{\omega}),$	$l \in \boldsymbol{L}$	(A30)						
$\overline{\omega_l} \leq M \cdot \omega_l^{\overline{\omega}},$	$l \in L$	(A31)						
$\overline{p}_l - p_l \le M \cdot \left(1 - \omega_l^{\overline{\omega}}\right),$	$l \in \boldsymbol{L}$	(A32)						
$\underline{\theta}_{j} \leq M \cdot \omega_{\overline{j}}^{\theta},$	$j \in G$	(A33)						
$g_{j} - \underline{g}_{j} \leq M \cdot (1 - \omega_{j}^{\underline{\theta}}),$	$j \in G$	(A34)						
$\overline{\theta}_j \leq M \cdot \omega_j^{\overline{\theta}},$	$j \in G$	(A35)						
$\overline{g}_{j} - g_{j} \leq M \cdot \left(1 - \omega_{j}^{\overline{\theta}}\right),$	$j \in G$	(A36)						
$\underline{\alpha}_n \leq M \cdot \omega_n^{\underline{\alpha}},$	$n \in V_T$	(A37)						
$\Delta p_n^d \le M \cdot \left(1 - \omega_n^{\underline{\alpha}}\right),$	$n \in V_T$	(A38)						
$\overline{\alpha}_n \leq M \cdot \omega_n^{\overline{\alpha}},$	$n \in V_T$	(A39)						
$p_n^d - \Delta p_n^d \leq M \cdot \left(1 - \omega_n^{\overline{\alpha}}\right),$	$n \in V_T$	(A40)						
$\omega_l^{\underline{\omega}} + \omega_l^{\overline{\omega}} \le 1,$	$l \in L$	(A41)						
$\omega_{\bar{j}}^{\underline{\theta}} + \omega_{j}^{\bar{\theta}} \leq 1,$	$j \in G$	(A42)						
$\omega_n^{\underline{\alpha}} + \omega_n^{\overline{\alpha}} \le 1,$	$n \in V_T$	(A43)						
(A30), (A31)- (A32), (A33)- (A34), (A35)- 8) and (A39)-(A40) are linearised equivalent								

5-6

6-9

6-10

1.8

1.5

1.5

0

0

0

3

2

0

0

0

0

0.93

0.95

where (A29)- (A30), (A31)- (A32), (A33)- (A34), (A35)- (A36), (A37)-(A38) and (A39)-(A40) are linearised equivalent representations of the constraints (A12), (A13), (A14), (A15), (A16) and (A17) respectively. The intermediate variables introduced satisfies formulations (A41)-A43).

In summary, the original lower-level problem after transformation by KKT is expressed as formulations (A18)-(A24), formulations (33)- (37), (A25)- (A28), (A3)- (A11) and (A29)-(A43). Therefore, the transformed vulnerability identification problem is as follows:

$$\max_{a} \sum_{T \in \Omega_{T}} \pi_{T} \left(\sum_{i \in V} \Delta P d_{i*}^{T} \right)$$
 (A44)

s.t. (26)-(29), (33)-(37), (A18)-(A43).

APPENDIX B

Table VI contains information such as the road lengths, the number of cables on the roads, and E_{ij} for each road in the case of Figure B1.

TABLE VI
ROAD NETWORK CONNECTION RELATION AND PARAMETER

l_{ij}	$d_{ij}(km)$	mra_{ij}	mrb_{ij}	mrc_{ij}	E_{ij}
1-2	1.8	0	0	0	0
1-3	1.6	0	0	0	0
2-51	1.7	0	0	0	0
2-52	1.7	0	0	0	0
3-4	1.3	0	0	0	0
3-12	1.9	0	0	0	0
4-5	1.7	0	0	0	0
4-12	1.7	0	0	1	0.43

		_		-	****
6-13	1.5	2	0	0	0.78
7-8	1.3	2	0	0	0.87
7-11	1.3	4	0	0	0.95
8-10	1.32	3	0	0	0.97
8-30	1.2	3	0	0	0.92
9-13	1.5	3	0	0	0.83
9-16	1.5	2	0	0	0.84
9-49	1.6	2	0	0	0.86
10-16	1.6	3	0	0	0.97
11-17	1.3	0	0	0	0
11-30	1.1	3	0	0	0.96
12-13	1.3	0	1	0	0.6
12-52	1.8	0	0	0	0
13-15	1.5	2	0	0	0.75
14-32	1	0	0	0	0
14-50	1	0	0	0	0
15-49	1.3	3	0	0	0.97
15-54	1.27	3	0	0	0.98
16-31	1.2	2	0	0	0.9
16-50	1.12	1	0	0	0.97
17-18	0.9	4	0	0	0.36
18-19	1	0	2	0	0
18-21	1.28	3	0	0	0.55
18-30	1.22	2	0	0	0
19-20	1.12	3	0	0	0
19-22	1.15	1	0	0	0.57
20-23	1.3	4	0	0	0
20-24	1.35	3	0	0	0
21-22	1.4	0	0	1	0.63
21-31	1.39	0	0	0	0.92
21-33	1.29	0	2	0	0.92
22-29	1.23	0	0	0	0
23-25	2.1	0	0	0	0
24-25	1.4	0	0	2	0
24-26	1.6	0	0	0	0
25-27	1.5	0	0	0	0
26-27	1.57	0	0	2	0.76
26-29	1.05	4	0	0	0.75
26-37	4	3	0	0	0
27-28	1.9	0	0	0	0
28-37	3	0	0	0	0
28-38	3.5	0	0	0	0
29-35	2	0	0	0	0.93
30-31	2.3	3	0	0	0.95
31-32	1.8	3	0	0	0.93
32-33	2	5	0	0	0.93

32-45	2.2	0	0	0	0	63-64	1	0	0	0	0
33-34	1.7	3	0	0	0.89	64-65	0.9	0	0	0	0
34-35	1.82	4	0	0	0.89	64-82	1.2	2	0	0	0.9
34-44	2	2	0	0	0.68	64-87	1.3	0	0	0	0
35-36	1.5	2	0	0	0.89	65-84	1.7	0	0	0	0
36-37	1.4	3	0	0	0.9	66-67	1.02	0	0	0	0
36-41	2.7	0	0	0	0	66-69	1.02	0	1	0	0.7
36-44	1.7	2	0	0	0.87	67-68	1.9	0	0	0	0
37-40	3.7	0	0	0	0	68-76	1.79	0	0	0	0
38-39	1.9	0	0	0	0	69-70	1.76	0	0	2	0.67
39-40	1.7	1	0	0	0.56	69-71	1.69	0	0	0	0
39-85	2.1	0	0	0	0	69-75	1.95	4	0	0	0.89
40-41	1.82	1	0	0	0.6	70-72	1.05	0	1	0	0.78
40-65	1.95	0	0	0	0	71-73	2.3	0	0	0	0
41-42	1.67	3	0	0	0.96	72-73	1.21	0	2	0	0.74
41-43	1.32	2	0	0	0.87	73-74	1.25	0	0	1	0.32
42-61	1.65	4	0	0	0.95	74-75	2.52	0	0	0	0
42-65	0.89	0	0	0	0	74-77	2.1	0	0	2	0.56
43-44	1.32	3	0	0	0.93	74-80	2.9	0	0	3	0.67
44-46		2	0	0	0.89	75-77	1.92	4	0	0	0.97
45-46	1.4	0	0	0	0	76-77	1.68	0	0	0	0
45-47	1.6	3	0	0	0.79	77-78	2.6	4	0	0	0.96
46-61	1.62	4	0	0	0.95	78-81	2	2	0	0	0.92
47-48	1.45	3	0	0	0.9	79-80	1.97	0	2	0	0.59
47-50	1.7	0	0	0	0	80-81	2.01	4	0	0	0.95
47-60	1.89	0	0	0	0	81-82	2	4	0	0	0.94
48-49	1.43	4	0	0	0.97	81-83	2.32	4	0	0	0.96
48-58	1.05	3	0	0	0.89	82-83	1.87	3	0	0	0.89
49-50	0.89	2	0	0	0.88	83-87	1.62	0	0	0	0
51-55	1.97	0	0	0	0	84-85	1.82	0	0	0	0
52-53	1.9	2	0	0	0.89	84-86	1.3	0	0	0	0
52-54	1.9	2	0	0	0.93	86-87	2.05	0	0	0	0
53-55	1.82	0	0	0	0	TABLE VII					
53-56	1.89	4	0	0	0.94		Node PARAM		IETERS OF UT	N	
54-56	2.2	2	0	0	0.9	Node Num	Node Number Node Types		Load/MW	Active Output/MW	
54-57	0.93	4	0	0	0.92	1		pq	0		0
55-66	1.1	0	0	1	0.5	2		pq	0		0
56-66	1.25	0	0	0	0	3		pq	342		0
56-70	1.19	0	0	0	0	4	* *		385	0	
57-58	0.65	2	0	0	0.78	5		pq	0		0
57-70	1.8	0	0	0	0	6		pq	0		0
58-59	1.1	0	1	0	0.78	7		pq	233.8		0
58-72	1.4	0	2	0	0.57	8		pq	268.5		0
59-60	1.4	0	0	0	0	9		pq	0		0
59-79	1.62	0	0	3	0.78	10		pq	0		0
60.61	1.63	0	0	0	0	11		pq	0		0
60-61			0	0	0				287.5		0
60-61	1.4	0	0	U	o .	12					U
	1.4 1.3	0	0	0	0	12 13		pq pq	0		0

Fig. B1 The coupling network between incomplete UTN and the road network of the case $\,$