Lecture Notes

Day 1:

- Fibonacci number improvement
 - Use array to store every value
 - Achieve O(n)

Day 2: Max Bandwidth / DFS

- Graph reachability
 - X: explored vertices
 - F: reached vertices
 - U: unexplored vertices
- Runtime:
 - O(|V| + |E|)

Day 3:

- Max Bandwidth
 - Add edges from the highest weigh to the lowest. Stop when there is a path s to v
 - Let $n = |V|, m = |E|, m \le n^2$
 - Run either BFS / DFS on E_R:
 - Then worst time, needs to run DFS on $E_{\scriptscriptstyle B}$ m times
 - Worst case: every edge has different weight. Not find until reach the smallest edge
 - Total runtime: O(m(m + n))
 - Improvement: binary pick edge weight
 - Start with the median weight
 - Runtime: $O(logm (m + n)) \rightarrow O(logn (m + n))$
 - Since $m \le n^2$, $log m \rightarrow log n^2 \rightarrow 2log n \rightarrow O(log n)$
- Back edge:
 - In G but not in the DFS tree
 - If b.e then cycles
 - How to check?
 - If (u, v) is an edge, $pre(u) \neq v \&\& pre(v) \neq u$
 - Removing a b.e will not **disconnect** the graph
- In undirected G:
 - Explore only reaches one connected component
- In directed G: for edge (u, v)

-	Tree edge / forward edge: in DFS tree		$L_u L_v J_v J_u$
-	Back edge:	leads to ancestor	$\left[\begin{smallmatrix} v & \left[\begin{smallmatrix} u & \right]_u \end{smallmatrix}\right]_v$
-	Cross edge:	leads to neither	$\begin{bmatrix} v \end{bmatrix}_v \begin{bmatrix} u \end{bmatrix}_u$

Day 4

- Back edge is different between in directed and undirected G
- Cycles in D.G: start and end at the same vertex

- D.G has a cycle **iff** its DFS output tree has a back edge
- How to test → check the post number
- Linearization of DAG
 - No cycles
 - Every edge in DAG goes from highest post number to the lowest
- Source and sink
 - Source
 - Vertex without incoming edges → highest post number
 - Sink
 - Vertex without outgoing edges ightarrow
- → highest post number
 - All DAGs have at least one source and one sink
- Strongly connected
 - Two vertices u and v are strongly connected if there is a path from u to v and a path from v to u
 - SC graph
 - Every pair is strongly connected
 - Every directed G is a DAG of its SCCs
 - Some SCCs are sources, some are sinks
 - SCC
 - How to look for SCCs
 - Find the sink SCC and remove it; repeat
 - How to find sink SCC
 - Source SCC has the highest post number
 - But the lowest post number is not necessarily the sink
 - Use G^R and find its source \rightarrow sink of G

Decomposition

- Run DFS on G^R and keep track of the post number
- Run DFS on G and order the vertices in decreasing order of post number
- DFS not good for
 - Finding the shortest distance

Day 5

- Graph reachability
 - Differences in F:
 - Stack → DFS
 - Queue → BFS
 - Priority queue → Dijkstra
- BFS:
 - Computes layer by layer
 - Works on find the shortest path on G whose edges have equal weight
 - For difference weight → add edges
- Dijstrak
 - Priority queue: O(|V| + |E|)

- Use array as PQ: $O(|V|^2)$

Hw1

- Time analysis: induction. Formula. N! Omega 2ⁿ; sum of i^k power series
- Recursive relation: Fibonacci
- Check triangular: for every edge, check all other vertices
- Correctness prove and time.

<u>Day 6</u>

- Structure in DJ
 - Graph: adjacency list
 - X: insert, check membership, array of booleans
 - F: find and delete key
- Use PQ:
 - Array as PQ:
 - Insert: O(1)
 - Deletemin: O(n)
 - decreaseKey: O(1)
 - DJ takes O(|V|²)
 - Binary heap as PQ:
 - makeHeap: O(n)
 - deleteMin: O(log|v|)
 - decreaseKey: O(log|v|)
 - DJ takes O(log|v| * (|V| + |E|))
 - Fibonacci takes O(|v|log|v| + |E|)
- MST
 - Delete the max edge that does not disconnect the graph → Prim's
 - Keep adding the lightest edge that does not create a cycle → Kruskal's
 - Sort edges
 - How to check create a cycle → hw2.q2 → O(|v| + |E|)
 - Remove e and check if the graph is still connected
 - If yes, then e is a part of cycle; otherwise, e is not

<u>Day 7</u>

- DSDS
 - Tree
 - Undirected G with no cycles
 - A undirected G with n vertices is a tree **iff** it has n 1 edges
 - Runtime of Kruskal's
 - Version 1:
 - makeset : O(1)
 - find(u): O(1)
 - Union: O(|V|)
 - Total: O(|V|²)
 - Version 2: Trees

```
- Total: O( V + E log V + V log V + E log E )
```

- Version 3:
 - Total: O(|V| + |E| + |E|log|E|)

<u>Day 8</u>

- Optimization Problem:
 - Instance: input
 - Solution: output
 - Constraints: what property must a solution have
 - Objective function: quantity we are maxing or minimizing.
- Greedy algorithm
 - Immediate benefit Vs Opportunity cost
 - Optimal if IB > OC.
 - MIN: cost(OS) ≥ cost(GS)
 - MAX: value(OS) ≤ value(GS)
 - Event Scheduling
 - List of event $E_1 E_2 \dots E_i = (s_i, f_i)$.
 - Non overlap, maximize size of subset
 - Greedy: earliest end time.
 - Implementation:

```
Initialize queue S

Sort the intervals by finish time

Put E_1 in S

Set F = f_1;

For i = 2 \dots n:

If S_i \ge F: enqueue (E_i, S)

F = f_i

Return S.
```

Day 9:

- General Proof template:
- Modify the solution:
 - Let g be the first greedy choice
 - Let OS be a solution achieved by not choosing g.
 - Show how to transform OS into some solution OS' that chooses
 - Must show that OS' is a valid solution and OS' is better than OS
 - Use 1 3 as an inductive argument:
 - Base case: show greedy strategy works for instance of size 1
 - Assume greedy works for any instance I, |I| < n

- Let OS be any solution for instance I, |I| = n. Then there is another solution OS', such that |OS| ≤ |OS'| and OS' includes the 1st greedy choice g.
 - $|OS| \le |OS'| = |\{g\} \cup OS(I')| \le |\{g\} \cup GS(I')| = GS(I)$
- Inductive template:
 - 1. Let g be first greedy decision. Let I' be "rest of problem given g"
 - 2. GS = g + GS(I')
 - 3. OS is any legal solution.
 - 4. OS' is defined from OS by the MtS argument (if OS does not include g)
 - 5. OS' = g + some solution on I'.
 - 6. Induction: GS(I') at least as good as some solution on I'
 - 7. GS is at least as good as OS', which is at least as good as OS.
- Greedy stays ahead
- Achieves the bound
- Greedy Approximation

Day 10

- Greedy stays ahead
 - Define progress measure
 - Order the decisions in OS to line up with GS
 - Prove by induction that the progress after the i'th decision in GS is at least as big as that in OS
 - Assume that OS is strictly better than GS
 - Use progress argument to arrive at contradiction.
- Achieves the bound

Day 11 Divide and conquer

- Observation: (KS mult)
 - (a + b x) (b + c y) can be done with three multiplication, since bc + ad = (a + b) (c + d) ac bd.

$$x = \begin{bmatrix} x_L \\ x_R \end{bmatrix} = 2^{n/2}x_L + x_R$$

$$y = \begin{bmatrix} y_L \\ y_R \end{bmatrix} = 2^{n/2}y_L + y_R.$$

$$xy = (2^{n/2}x_L + x_R)(2^{n/2}y_L + y_R) = 2^n x_L y_L + 2^{n/2} (x_L y_R + x_R y_L) + x_R y_R.$$

- Multiplication strategy:
 - General: $T(n) = 4 * T(n/2) + O(n) \rightarrow O(n^2)$
 - Reduced: $T(n) = 3 * T(n/2) + O(n) \rightarrow O(n^{1.59})$
 - Proof idea:

- changes in the branching factor of recursion tree
- Geometric increase from O(n) (k = 0) to O ($n^{log2 \ 3}$) (k = $log_2 n$).
- DPK p. 52 53
- Cook-Toom algorithm
 - Split the problem into 2k 1 subproblems of size n/k
 - T(n) = (2k 1)T(n / k) + O(n)
 - Runtime:
 - $O(n^{\log(2k-1)/\log k})$
 - Can achieve near-linear time

Day 12

- Machine frequency range problem
- Call the day

Day 13

- Polynomial representation

Day 14

- $T(n) = aT(n/b) + O(n^d)$
- Shortest height \rightarrow height: takes $\Omega(logn)$
- D/C search
 - Start with a sorted list and a target. Output the index of the target
 - Break into sublist
 - Half size
 - Solve each one recursively
 - Combine O(1)
 - Runtime: $T(n) = T(n/2) + O(1) \rightarrow O(logn)$

O(1)

O(n / 2)

- Sorting
 - Expected time O(n²)
 - Bubble sort
 - Insertion sort
 - Selection sort
 - Expected time O(nlogn)
 - MergeSort
 - Quick Sort
 - Lower bound
 - $\Omega(\log(n!)) = \Omega(n\log n)$
 - mergeSort
 - If n > 1
 - ML = MS(a[1, ..., n/2])
 - MR = MS(a[n/2 + 1, ..., n])
 - return merge(ML, MR)
 - Else

- Return a
- Runtime
 - T(n) = 2T(n/2) + O(n)
 - O(nlogn)
- Median
 - If sort, O(nlogn)
 - Better way?
 - All selection $\Omega(n)$
 - Selection kth element
 - Pick a random pivot v
 - Divide into 3 groups S_L , S_V , $S_R \rightarrow$ takes O(n)
 - Runtime
 - Expected: T(n) = T(n/2) + O(n)
 - Worst: T(n) = T(n 1) + O(n)
- Quick sort
 - Pretty much like selection, takes O(nlogn)

Day 15

- D/C examples
 - Max overlap
 - Divide by starting value
 - 3 possibilities
 - Either left, right or overlap
 - Runtime:
 - T(n) = 2T(n / 2) + O(nlogn)
 - O(nlogn)

Day 16

-