课程 > Unit 2 Foundation of Inference > Models

> 11. Identifiability exercises

11. Identifiability exercises

Identifiability of Statistical Models 2

1/1 point (graded)

Let $X_i = Y_i^2$ where $Y_1, \ldots, Y_n \overset{iid}{\sim} \mathcal{U}([0,a])$ for some unknown parameter a. We observe the i.i.d. samples X_1, \ldots, X_n , but not the Y_i 's themselves.

Hint: Compute the cdf of X_i .

Is the parameter a identifiable from the common distribution the X_i 's?

No

Solution:

Write $X_i \sim X$ and note that X is supported on the interval $[0,a^2]$. Let us compute the CDF of X in terms of a.

$$\mathbf{P}\left(X \leq t
ight) = \mathbf{P}\left(Y \leq \sqrt{t}
ight) = \min\left(\int_{0}^{\sqrt{t}} rac{1}{a} \, dy, 1
ight) = \min\left(rac{\sqrt{t}}{a}, 1
ight).$$

For different values of a, the CDF of X are different; hence a is identifiable.

提交

你已经尝试了1次(总共可以尝试1次)

1 Answers are displayed within the problem

Identifiability of Statistical Models 3

1/1 point (graded)

Let $X_i = \mathcal{I}\left(Y_i \geq a/2\right)$ where $Y_1, \ldots, Y_n \overset{iid}{\sim} \mathcal{U}\left([0,a]\right)$ for some unknown parameter a. We observe the independent samples X_1, \ldots, X_n but not the Y_i 's themselves.

Is the parameter a identifiable from the common distribution of the X_i 's?

Yes

No

Solution:

Note that X is a Bernoulli random variable with parameter $p:=P\left(\mathcal{I}\left(Y_i\geq rac{a}{2}
ight)=1
ight)=P\left(Y_i\geq rac{a}{2}
ight)$.

For any choice of a, we have by the distribution of Y_i that $p = P(Y_i \ge a/2) = 1/2$. Hence, for any choice of a, the random variable X is distributed as Ber(1/2). The parameter a is not identifiable.

提交

Answers are displayed within the problem	
Review of terminology	
0/1 point (graded)	
You have access to samples $X_1,\dots,X_n\stackrel{iid}{\sim}P_{ heta^*}$ where $ heta^*\in\mathbb{R}$ is a true, unknown parameter specifying the distribution. You constrict statistical model $((-\infty,\infty),\{P_{ heta}\}_{ heta\in\mathbb{R}})$ for this statistical experiment. Your goal is to uncover the true parameter $ heta^*$.	ruct a
magine that somehow you are able to figure out the true distribution $P_{ heta^*}$. Which assumption below implies that it is possible to reconstruction $ heta^*$. Which assumption below implies that it is possible to reconstruction? Choose all that apply.)	over
\square There is another value $ heta'\in \mathbb{R}$ such that $ heta' eq heta^*$ but $P_{ heta^*}$ and $P_{ heta'}$ are the same distribution.	
$ extcolor{black}{oldsymbol{arepsilon}}$ The given statistical model $((-\infty,\infty),\{P_{ heta}\}_{ heta\in\mathbb{R}})$ is well-specified.	
$lacktriangledown$ The parameter $oldsymbol{ heta}$ is identifiable for the given statistical model. $lacktriangledown$	
×	
Solution:	
The third choice, "The parameter $ heta$ is identified for the given statistical model.", is correct. If $ heta$ is identified, then the map $ heta\mapsto P_ heta$ is njective. Hence, given the output $P_{ heta^*}$, which is the true distribution, we can uniquely recover the true parameter $ heta^*$.	
The first choice, "There is another value $ heta'\in\mathbb{R}$ such that $ heta' eq heta^*$ but $P_{ heta^*}$ and $P_{ heta'}$ are the same distribution.", is incorrect because to mplies that the parameter $ heta$ is not identified. This implies that by only knowing the distribution $P_{ heta^*}$, we have no way of saying if $ heta'$ of the true parameter.	
Recall that a statistical model $(E,\{P_ heta\}_{ heta\in\Theta})$ associated to a statistical experiment X_1,\dots,X_n is well-specified if there exists $ heta^*$ su	uch
that $X_1,\ldots,X_n\stackrel{iid}{\sim}P_{ heta^*}$. Note that the problem statement implies that our model is well-specified. However, this assumption is not enough to be able to recover the true parameter $ heta^*$ from the distribution $P_{ heta^*}$ because the parameter $ heta$ may not be identified.	
提交 你已经尝试了1次(总共可以尝试1次)	
• Answers are displayed within the problem	
讨论	
起記: Unit 2 Foundation of Inference:Lecture 3: Parametric Statistical Models / 11. Identifiability exercises	沙尼
认证证书是什么?	
	州有权