3주차(2/3)

파이썬으로배우는기계학습

한동대학교 김영섭교수

- 학습 목표
 - 미분 계수를 이해한다.
 - 여러가지 미분법을 이해한다.
 - 미분을 통한 최대, 최소 구하는 법을 이해한다.
- 학습 내용
 - 미분계수
 - 여러 가지 함수의 미분법
 - 최대/최소

- 기울기 = 변화율
- 직선의 기울기

기울기(
$$d$$
) = $\frac{5-0}{0-\frac{5}{2}}$ = -2

■ 평균 변화율

평균 변화율 =
$$\frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

• 순간 변화율

■ 미분계수

$$\lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(x_1)$$

■ 미분 가능성

$$\lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(x_1)$$

- 기본적인 미분법
 - 1. f(x) = c 이면, f'(x) = 0
 - 2. f(x) = cg(x) 이면, f'(x) = cg'(x)
 - 3. $f(x) = g(x) \pm t(x)$ 이면, $f'(x) = g'(x) \pm t'(x)$
 - 4. f(x) = g(x)t(x) 이면, f'(x) = g'(x)t(x) + g(x)t'(x)
 - 5. $f(x) = \frac{t(x)}{g(x)}$ 이면, $f'(x) = \frac{t'(x)g(x) t(x)g'(x)}{g^2(x)}$
 - 6. $f(x) = x^n \mid \exists f'(x) = nx^{n-1}$
 - 7. $f(x) = f(g(x))^n$ 이면, $f'(x) = n(g(x))^{n-1} g'(x)$

■ 기본적인 미분법

•
$$f(x) = \frac{t(x)}{g(x)}$$
 이면,
$$f'(x) = \frac{t'(x)g(x) - t(x)g'(x)}{g^2(x)}$$

• 예제

1.
$$t(x) = 1$$
, $g(x) = x$

2.
$$t'(x) = 0$$
, $g'(x) = 1$

3.
$$t'(x)g(x) - t(x)g'(x) = -1$$

4.
$$f'(x) = \frac{t'(x)g(x) - t(x)g'(x)}{g^2(x)} = \frac{-1}{x^2}$$

- 삼각함수의 미분법
 - $f(x) = \sin x$ 이면, $f'(x) = \cos x$
 - $f(x) = \cos x$ 이면, $f'(x) = -\sin x$
 - $f(x) = \tan x$ 이면, $f'(x) = \left(\frac{1}{\cos(x)}\right)^2 = \sec^2 x$
- 지수함수의 미분법
 - a > 0, $a \neq 1$ $column{1}{column{1}{c}} a^x$
 - $f(x) = a^x$ 이면, $f'(x) = a^x \ln a$
 - $f(x) = e^x$ 이면, $f'(x) = e^x$
- 합성함수의 미분법
 - t = f(x), u = g(x)일때, f(x), g(x)가 모두 미분 가능하다면
 - $f(g(x))' = f'(g(x)) \times g'(x)$

- 합성함수의 미분법
- 예제
- $f(g(x))' = f'(g(x)) \times g'(x)$ $f(g(x)) = \frac{1}{1+e^{-x}}$, $\supseteq \mathbb{H}$, f(g(x))' = ?
 - 1. $f(x) = \frac{1}{x}$, $g(x) = 1 + e^{-x}$
 - 2. $f'(x) = \frac{-1}{x^2}$
 - 3. $g'(x) = -e^{-x}$
 - 4. $f'(g(x)) = \frac{1}{(1+e^{-x})^2}$
 - 5. $f(g(x))' = f'(g(x)) \times g'(x)$ $=\frac{1}{(1+e^{-x})^2}e^{-x}$

- 함수가 여러개의 변수를 갖는다면?
 - $f(x) \rightarrow f(x,y)$
- 부분적으로 미분!
 - 미분하고 싶은 변수만 미분하고 나머지는 상수 취급
- Ex. $f(x,y) = x^2 + xy + y^2$
 - x에 대해 편미분 $f_x(x,y) = 2x + y$
 - y에 대해 편미분 $f_y(x,y) = 2y + x$

미분을 이용한 최대/최소

- 이차함수
 - $f(x) = x^2 2x$

$$f'(x) = 2x - 2$$

미분을 이용한 최대/최소

f'(x) 부호의 의미

- 학습 정리
 - 기울기와 변화율의 관계 확인
 - 함수의 미분 방법 학습
 - 미분을 통해 최대와 최소값 구하기 실습