1 A Proof in Propositional Logic

Theorem 1. If $p \implies q$ and $q \implies r$, then $p \implies r$.

Proof. We will prove this theorem using the following steps:

- 1. $p \implies q$ (Given)
- 2. $q \implies r$ (Given)
- 3. p (Assumption)
- 4. q (Modus Ponens, 1 and 3)
- 5. r (Modus Ponens, 2 and 4)

From steps 3-5, we have shown that assuming p leads to r. Therefore, by the definition of implication:

$$p \implies r$$

This completes the proof.

Lemma 2. $\neg(p \land q) \iff (\neg p \lor \neg q)$

Proof. We will prove this equivalence using a truth table:

p	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$
$\neg p \vee \neg q$					
T	Т	Т	F	F	F
F					
T	F	F	T	F	T
T					
F	Τ	\mathbf{F}	T	T	F
${ m T}$					
F	F	F	T	T	T
${ m T}$		1			

As we can see, the truth values for $\neg(p \land q)$ and $(\neg p \lor \neg q)$ are identical for all possible combinations of p and q. Therefore, these expressions are logically equivalent.

Theorem 3. If $p \implies (q \implies r)$, then $(p \land q) \implies r$.

Proof. We will prove this using natural deduction:

- 1. $p \implies (q \implies r)$ (Given)
- 2. $p \wedge q$ (Assumption)
- 3. p (Conjunction Elimination, 2)

- 4. $q \implies r \text{ (Modus Ponens, 1 and 3)}$
- 5. q (Conjunction Elimination, 2)
- 6. r (Modus Ponens, 4 and 5)

From steps 2-6, we have shown that assuming $p \wedge q$ leads to r. Therefore, by the definition of implication:

$$(p \wedge q) \implies r$$

This completes the proof.