Exercise 8.3

- 1. Read in the *.mat file and extract Fs and signal out of the struct The signal is 20 seconds long and has 160000 points $F_S=8000$
- 2. Sample over the signal
 We take one sample each second so we have 21 samples

3. Calculate for each sample the sinc function t = [0.20],

Time_sample := second where the sample was taken (shift the sinc function), amplitude_sample := amplitude of signal at Time_sample (weighted the sinc function)

y = amplitude_sample * sinc(t-Time_sample)

Signal [red] and sinc fuctions of sampels [green]

4. Sum up all sinc functions to reconstruct the original signal

5. Calculate the error of the reconstruction error = $0.5 * abs(signal - reconstruction)^2$

20

If we double the sample size, the reconstruction of the signal is significant better

