Übungsblatt LA 2

Computational and Data Science FS2025

Mathematik 2

Lernziele:

- Sie kennen die Begriffe Gaußsche Zahlenebene, arithmetische und trigonometrische Form einer komplexen Zahl und Arg-Funktion und deren Eigenschaften.
- Sie können komplexe Zahlen in der Gaußschen Zahlenebene darstellen.
- Sie können komplexe Zahlen von der arithmetischen in die trigonometrische Form und umgekehrt umwandeln.
- Sie können einfache Brüche und Potenzen von komplexen Zahlen durch Anwenden der Rechenregeln vereinfachen.
- Sie können quadratische Gleichungen mit reellen Koeffizienten lösen.

1. Aussagen über die Gaußsche Zahlenebene

Welche der folgenden Aussagen sind wahr und welche falsch?

		wahr	falsch
a)	Die Gaußsche Zahlenebene wurde im 20. Jahrhundert		
	eingeführt.		
b)	Jede komplexe Zahl wird durch einen Punkt in der Gaußschen		
	Zahlenebene dargestellt.		
c)	Die x-Achse der Gaußschen Zahlenebene entspricht der Re-		
	Achse.		
d)	Die komplexe Zahl $z = 2 + 3i$ entspricht dem Punkt $(2; 3i)$ in der		
	Gaußschen Zahlenebene.		
e)	Die komplexen Zahlen z, für welche gilt $z^2 = -3$, liegen auf der		
	Im-Achse.		
f)	Die komplexen Zahlen $z \in \mathbb{C}$ mit $ z = 1$ bilden den Einheitskreis in		
	der Gaußschen Zahlenebene.		

2. Komplexe Zahlen in der Gaußschen Zahlenebene

Zeichnen Sie die gegebenen Zahlen in der Gaußschen Zahlenebene ein.

b)
$$3 + i$$

c)
$$-2$$

$$d) -1 + 2i$$

e)
$$-2 - 2i$$

f)
$$3-2i$$

3. Aussagen über die trigonometrische Form komplexer Zahlen

Welche der folgenden Aussagen sind wahr und welche falsch?

		wahr	falsch
a)	Jede komplexe Zahl lässt sich in trigonometrischer Form		
	darstellen.		
b)	Jede komplexe Zahl lässt sich eindeutig in trigonometrischer		
	Form darstellen.		
c)	Der Term $2cis(\pi/2)$ ist eine trigonometrische Form von $2i$.		
d)	Der Term $2cis(-3\pi/2)$ ist eine trigonometrische Form von $2i$.		
e)	Der Term $2cis(5\pi/2)$ ist eine trigonometrische Form von $2i$.		·
f)	Der Term $-2cis(\pi/2)$ ist eine trigonometrische Form von $2i$.		

4. Darstellung der Arg-Funktion

- a) Prüfen Sie nach, dass die Funktion $f(z) = \arctan \frac{Im(z)}{Re(z)}$ keine vollständige Darstellung der Arg-Funktion ist.
- b) Finden Sie den Funktionsterm der Arg-Funktion in der Variante $arg: \mathbb{C} \to]-\pi;\pi[$.
- c) Finden Sie den Funktionsterm der Arg-Funktion in der Variante $arg: \mathbb{C} \to [0; 2\pi[$.

5. Konversion in die arithmetische Form

Geben Sie die jeweilige komplexe Zahl in arithmetischer Form ar

a) $4cis(\pi/2)$

c) $cis(3\pi/4)$

d) $2cis(3\pi)$

b) $2cis(-\pi/3)$ e) $\frac{1}{2}cis(75^{\circ})$

f) $\sqrt{2}$ cis (-105°)

6. Konversion in die trigonometrische Form

Geben Sie die jeweilige komplexe Zahl in trigonometrischer Form an.

a) 3

b) -5

c) 2i

d) -3i

e) 3-4i

f) -12 + 5i

7. Trigonometrische Zahlen mit Python/Numpy

Berechnen Sie die Konversionen aus Aufgabe 5 und 6 mit Python/Numpy.

8. Aussagen über quadratische Gleichungen

Gegeben sei die allgemeine quadratische Gleichung

 $ax^2 + bx + c = 0$ mit $a, b, c \in \mathbb{R}$ und $a \neq 0$.

Welche der folgenden Aussagen sind wahr und welche falsch?

Wolene del religiona in raccagen ema warm and welche laleen:				
	wahr	falsch		
a) Die Koeffizienten a, b, c können so gewählt werden, dass es				
keine Lösung in ℝ gibt.				
b) Die Koeffizienten a, b, c können so gewählt werden, dass es				
keine Lösung in ℂ gibt.				
c) Für jede Wahl der Koeffizienten a, b, c liegen zwei verschiedene				
Lösungen in ℂ vor.				
d) Die Koeffizienten a, b, c können so gewählt werden, dass $x_1 = 1$				
und $x_2 = i$ die beiden Lösungen sind.				
e) Gibt es 2 Lösungen x_1 und x_2 , dann gilt entweder $x_2 = x_1^*$ oder				
$x_1, x_2 \in \mathbb{R}$.				
f) Die Anzahl der Lösungen kann anhand der Diskriminante				
beurteilt werden.				

9. Quadratische Gleichungen

Bestimmen Sie die Lösungen der quadratischen Gleichung in C mit Hilfe der Mitternachtsformel. a) $x^2 + 1 = 0$ d) $3t^2 = -30t - 507$

a)
$$x^2 + 1 = 0$$

d)
$$3t^2 = -30t - 507$$

b)
$$x^2 - 10x + 74 = 0$$

e) $w = 2 + w^2$
c) $2x^2 + 4 = x$
f) $s(s+1) = 2s^2 + 1$

c)
$$2x^2 + 4 = x$$

f)
$$s(s+1) = 2s^2 + 1$$