

Neural Network Hyperparameter Optimization with Sparse Grids

Maximilian Michallik
Technichal University Munich
Chair of Scientific Computing
Department Computer Science
TUM School of Computation, Information
and Technology
Garching, 02. August 2023

Outline

- Introduction
 - Def. Hyperparameters
 - Overview over techniques from literature
 - Overview over new techniques
- Sparse Grid Search
 - Implementation
 - Analysis
 - Numerical results (and comparison with other techniques)
- Iterative adaptive random search
 - Implementation
 - Analysis
 - Numerical results
- Discussion & Conclusion
- Outlook

Hyperparameter Optimization

 Hyperparameters: Paramaters of a ML model that are fixed before training

Number of layers/ neurons, epochs, learning rate, ...

Optimization: finding the optimum of a function

Rosenbrock: Optimum at (1, 1)

Hyperparameter Optimization

Regression of 2-layer neural network:

Hyperparameter Optimization

Grid search:

Random search:

Bayesian optimization:

Sparse grid search:

Sparse Grid Hyperparameter Optimization

With Novak-Ritter refinement criterion: $(r_{l,i}+1)^{1-\gamma} \cdot (||l_1||+d_{l,i}+1)^{\gamma}$

Adaptivity Parameter y

$\gamma = 0.5$ $\frac{1}{(2000)}$ $\frac{1}{(2000)}$ $\frac{1}{(2000)}$ $\frac{1}{(2000)}$

Budget = 50

Sparse Grid Hyperparameter Optimization

Gradient-free optimizers:
 Nelder Mead, differential evolution, CMA-ES

Gradient-based optimizers:
 Gradient descent, NLCG,
 Newton, Rprop

Numerical Results

2D Optimization: Epochs, Learning rate

Numerical Results

3D Optimization: Epochs, Learning rate, Batch size

Numerical Results

5D Optimization: Epochs, Learning rate, Batch size, Number of layers & neurons per layer

Application: MNIST

9D Optimization:

- Epochs
- Batch size
- Learning rate
- Number of convolutional Layers
- Number of fully connected layers
- Kernel size
- Pool size
- Neurons per fully connected
- Dropout probability

Algorithm	Configuration	Accuracy	Cost	
GS	$(5,600,10^{-6},2,2,2,2,4,0.5)$	10.1%	1	
RS	(9,975,0.0173,2,1,3,1,6,0.619)	97.4%	80	
ВО	$(6,584,10^{-2.17},2,1,3,1,5,0.281)$	97.5%	80	
SG	$(7,400,10^{-2},2,2,2,2,5,0.5)$	97.5%	93	

Improvement of Random Search

Idea: Combine advantages of random search and iterative optimization algorithm

Algorithm:

Refinement Strategies

Refinement criterion: $(rank_i + 1)^{1-\gamma} \cdot (level_i + refinements_i + 1)^{\gamma}$

Adaptivity parameter $\gamma = 1.0$

Refinement criterion: $(rank_i + 1)^{1-\gamma} \cdot (level_i + refinements_i + 1)^{\gamma}$

Adaptivity parameter $\gamma = 0.0$

Refinement criterion: $(rank_i + 1)^{1-\gamma} \cdot (level_i + refinements_i + 1)^{\gamma}$