Course website: bio393.andersenlab.org

Problem set #1 is out.

Genetics terms are online.

Final will be on Friday March 16 1-3 PM

- Normal date and time: Friday March 23rd 12-2 PM
- During reading week: Friday March 16th 1-3 PM

Bio393: Genetic Analysis

Chromosome theory, recombination, and mapping

Walther Flemming stained cells

Walther Flemming, 1882

Cells divide their chromosomes with high fidelity

Theodor Boveri

Discovery of sex chromosomes

Nettie Stevens

Tenebrio melitor

Gametes have half the chromosomes of the soma

Theodor Boveri

Parascaris equorum

Discovery of a connection to Mendel's principles

Walter Sutton

- Gametes have half chromosome complement of somatic cells
- Homolog separation to gamete was random

Terms for mitosis and meiosis

Ploidy (N)
Diploid (2N)
Haploid (1N)
Polyploid (>2N)
Gamete

Chromosome

Pair of homologs (2N)

Sister chromatids

Meiosis: A reductional division in two acts

Homologs separate first Cytokinesis Telophase I Interphase Metaphase I Prophase I Metaphase II Anaphase II Prophese II Interkinesis Cytokinesis Sisters MEIOSIS II separate last

Keep track of centromere

Discovery of a connection to Mendel's principles

Walter Sutton

- Gametes have half chromosome complement of somatic cells
- Homolog separation to gamete was random

Correlation does not mean causation

xkcd.com

Thomas Hunt Morgan

Drosophila melanogaster: genetics superstar

Nettie Stevens

Thomas Hunt Morgan

Drosophila polytene chromosomes allow us to directly visualize genetic principles

The fly room at Columbia

W⁺

What is dominance relationship of white mutant allele?

The reciprocal cross

Equal ratios of each sex and eye color

1/2000 offspring

Female gametes

Male gametes

1999/2000 offspring

What is going on with the rare (1/2000) class?

Meiotic non-disjunction I

MEIOSIS II

Female gametes

XW

Meiosis I NDJ Female gametes

Male gametes

1999/2000 offspring

 $X^{w+}X^{w}$ $X^{w}Y$ 1/2000 offspring

 X^{w+0}

red male white female

Meiosis I NDJ Male Offspring Female gametes gametes XwXwXW+ Dead XwXwXw+ XwXwXwXwYX-Null XW+ X-Null Dead

Meiotic non-disjunction II

Female gametes XW

Meiosis II NDJ Female gametes

Male gametes

1999/2000 offspring

 $X^{w+}X^{w}$

1/2000 offspring

 X^{w+0}

red male white female

Meiosis II NDJ Male Female gametes gametes

Offspring

The connections between chromosome NDJ and a trait was made by Stevens and Bridges

Nettie Stevens

Calvin Bridges

Polytene chromosomes

Why did the first cross not indicate to them that something weird was going on?

XwY Xw+Xw+

How can you tell the difference between Meiosis I NDJ and Meiosis II NDJ?

Non-disjunction is a relatively common error not just the X chromosome aneuploidy

Non-disjunction is a relatively common error not just the X chromosome aneuploidy

Chromosomal abnormalities

Lecture 2

Chromosomal abnormalities

WT

Inversion BCD

XYZDEF

Fusion of two chromosomes

Translocation ABC-XYZ

The Philadelphia chromosome: translocation

Janet Rowley

Recombination and mapping

Reginald Punnett William Bateson

P= purple flower

p= red flower

L= long pollen

I= short pollen

Phenotype	Expected number	Expected ratio
Purple Long	215	9
Purple short	71	3
red Long	71	3
red short	24	1

P= purple flower

p= red flower

L= long pollen

I= short pollen

Phenotype	Expected number	Expected ratio	Observed number
Purple Long	215	9	284
Purple short	71	3	21
red Long	71	3	21
red short	24	1	55

P= purple flower

p= red flower

L= long pollen

I= short pollen

Parental = allelic combination found in parents (most abundant classes, always paired)

Recombinant = allelic combination NOT found in parents (least abundant classes, always paired)

Phenotype	Expected number	Expected ratio	Observed number
Purple Long	215	9	284
Purple short	71	3	21
red Long	71	3	21
red short	24	1	55

P= purple flower

p= red flower

L= long pollen

I= short pollen

Which are recombinant and parental offspring?

Meiosis: A reductional division in two acts

The fly room at Columbia

Expectation is equal proportion of each class

Total = 2839

Alfred Sturtevant

$$\frac{\text{Number of recombinants}}{\text{Total progeny}} \quad \times \quad 100 = \frac{\text{Recombination}}{\text{frequency}}$$

1% RF = 1 map unit = 1 centiMorgan

Total = 2839

Total = 2839

Recombination is the exchange of genetic material between homologous chromosomes

Independent assortment defines the limit of linkage at 50 cM

All four classes occur in equal ratios

Independent assortment defines the limit of linkage at 50 cM

All four classes occur in equal ratios

$$\frac{2^*x}{2^*x + 2^*x} \times 100 = 50\%$$

A three-factor cross

Eye Phenotype	Crossvein Phenotype	Cut Phenotype	Number of offspring
Red	No crossvein	Cut wing	580
Vermillion	Crossvein	Normal wing	592
Red	Crossvein	Cut wing	40
Vermillion	No crossvein	Normal wing	45
Red	Crossvein	Normal wing	94
Vermillion	No crossvein	Cut wing	89
Red	No crossvein	Normal wing	5
Vermillion	Crossvein	Cut wing	3

v = vermillion eyes

ct = cut wings

cv= crossveinless wings

Eye Phenotype	Crossvein Phenotype	Cut Phenotype	Number of offspring
Red	No crossvein	Cut wing	580
Vermillion	Crossvein	Normal wing	592
Red	Crossvein	Cut wing	40
Vermillion	No crossvein	Normal wing	45
Red	Crossvein	Normal wing	94
Vermillion	No crossvein	Cut wing	89
Red	No crossvein	Normal wing	5
Vermillion	Crossvein	Cut wing	3

1. Determine parental class, label

v = vermillion eyes

ct = cut wings

cv= crossveinless wings

Eye Phenotype	Crossvein Phenotype	Cut Phenotype	Number of offspring
Red	No crossvein	Cut wing	580
Vermillion	Crossvein	Normal wing	592
Red	Crossvein	Cut wing	40
Vermillion	No crossvein	Normal wing	45
Red	Crossvein	Normal wing	94
Vermillion	No crossvein	Cut wing	89
Red	No crossvein	Normal wing	5
Vermillion	Crossvein	Cut wing	3

+	CV	Ct
V	+	+

PRRRRR

- 1. Determine parental class, label
- 2. Are all classes present?

v = vermillion eyes

ct = cut wings

cv= crossveinless wings

Eye Phenotype	Crossvein Phenotype	Cut Phenotype	Number of offspring
Red	No crossvein	Cut wing	580
Vermillion	Crossvein	Normal wing	592
Red	Crossvein	Cut wing	40
Vermillion	No crossvein	Normal wing	45
Red	Crossvein	Normal wing	94
Vermillion	No crossvein	Cut wing	89
Red	No crossvein	Normal wing	5
Vermillion	Crossvein	Cut wing	3

CV +		FFF
CV +	_	F F F

- 1. Determine parental class, label
- 2. Are all classes present?
- 3. Least abundant class is double recombinant, tells gene in middle

v = vermillion eyes

ct = cut wings

cv= crossveinless wings

Eye Phenotype	Crossvein Phenotype	Cut Phenotype	Number of offspring
Red	No crossvein	Cut wing	580
Vermillion	Crossvein	Normal wing	592
Red	Crossvein	Cut wing	40
Vermillion	No crossvein	Normal wing	45
Red	Crossvein	Normal wing	94
Vermillion	No crossvein	Cut wing	89
Red	No crossvein	Normal wing	5
Vermillion	Crossvein	Cut wing	3

+	CV	ct	F
V	+	+	F
+	+	Ct	F
/	CV	+	F
+	+	+	F
/	CV	Ct	F
+	CV	+	F
V	+	ct	F

- 1. Determine parental class, label
- 2. Are all classes present?
- 3. Least abundant class is double recombinant, tells gene in middle
- 4. Write out the genotypes of the offspring

v = vermillion eyes

ct = cut wings

cv= crossveinless wings

Eye Phenotype	Crossvein Phenotype	Cut Phenotype	Number of offspring
Red	No crossvein	Cut wing	580
Vermillion	Crossvein	Normal wing	592
Red	Crossvein	Cut wing	40
Vermillion	No crossvein	Normal wing	45
Red	Crossvein	Normal wing	94
Vermillion	No crossvein	Cut wing	89
Red	No crossvein	Normal wing	5
Vermillion	Crossvein	Cut wing	3

+	CV	ct
V	+	+
+	+	Ct
V	CV	+
+	+	+
V	CV	Ct
+	CV	+
V	+	Ct

1448 total progeny

R

- 1. Determine parental class, label
- 2. Are all classes present?
- 3. Least abundant class is double recombinant, tells gene in middle
- 4. Write out the genotypes of the offspring
- 5. Calculate distance from one gene to middle gene **V to** *ct*

v = vermillion eyesct = cut wingscv= crossveinless wings+ = red eyes and normal wings

$$\frac{94+89+5+3}{1448} \times 100 = 13.2\%$$

Lecture 2

Eye Phenotype	Crossvein Phenotype	Cut Phenotype	Number of offspring
Red	No crossvein	Cut wing	580
Vermillion	Crossvein	Normal wing	592
Red	Crossvein	Cut wing	40
Vermillion	No crossvein	Normal wing	45
Red	Crossvein	Normal wing	94
Vermillion	No crossvein	Cut wing	89
Red	No crossvein	Normal wing	5
Vermillion	Crossvein	Cut wing	3

+	CV	ct
V	+	+
+	+	Ct
V	CV	+
+	+	+
V	CV	Ct
+	CV	+
V	+	Ct

1448 total progeny

- 1. Determine parental class, label
- 2. Are all classes present?
- 3. Least abundant class is double recombinant, tells gene in middle
- 4. Write out the genotypes of the offspring
- 5. Calculate distance from one gene to middle gene
- 6. Calculate distance from the other gene to middle gene CV to Ct

v = vermillion eyes

ct = cut wings

cv= crossveinless wings

+ = red eyes and normal wings

$$\frac{40+45+5+3}{1448} \times 100 = 6.4\%$$

Lecture 2

R

Our first genetic map

- 1. Order by least abundant class
- 2. Arbitrary which genes on ends
- 3. Class *v* to *cv* undercounts because double recombinants look like parentals

Our first genetic map

- 1. Order by least abundant class
- 2. Arbitrary which genes on ends
- 3. Class v to cv undercounts because double recombinants look like parentals

We have a better way!