Analysis Report

```
library(ggplot2)
# Read discharged_patients.txt into a dataframe

df <- read.table("discharged_patients.txt", header = TRUE, sep = ",", stringsAsFactors = FALE

total_rows <- nrow(df)
total_icu_admit <- sum(tolower(df$icuAdmit) == 'true')

total_ward_admit <- total_rows - total_icu_admit
df$los <- df$dischargeTime - df$admitTime</pre>
```

Total Patients: 1829

ICU admit %: 0.1509021

Icu-vs-Ward-Admits

```
# Pie chart of ICU vs Ward admits

admit_counts <- data.frame(
    type = c("ICU", "Ward"),
    count = c(total_icu_admit, total_ward_admit)
)

ggplot(admit_counts, aes(x = "", y = count, fill = type)) +
    geom_bar(stat = "identity", width = 1) +
    coord_polar(theta = "y") +
    labs(title = "ICU vs Ward Admits", x = NULL, y = NULL, fill = "Admit Type") +
    theme_void()</pre>
```

ICU vs Ward Admits

LOS

summary(icu_patients\$los)

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.3629 1.2131 2.1605 3.5607 4.3038 33.8704

summary(ward_patients\$los)

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.02787 0.93577 1.96473 4.55582 4.95492 92.46698

```
\label{total_ward_discharge} $$ - sum(tolower(df$dischargeLocation) == 'ward')$$ total_icu_discharge <- sum(tolower(df$dischargeLocation) == 'icu')$$ total_transfers_ward <- sum(df$transferTime != -1 & tolower(df$admitLocation) == 'icu')$$ total_transfers_icu <- sum(df$transferTime != -1 & tolower(df$admitLocation) == 'ward')$$
```

ADT Summary Stats

key	value
Total Admissions	1829
Total to Ward	1553
Total to ICU	276
% icu/total	0.1509021
total discharges from ward	1681
total dicharges from icu	148
total transfers to ward	128
total transfers to icu	0
fraction of admissions with transfer to WARD	0.0699836
fraction of admissions with transfer to ICU	0
Average LOS	4.4056553
average LOS for ICU-admits	3.56069
average length of stay on ICU (transfer or otherwise)	tbd

```
library(dplyr)
df2 <- read.table("visit_data.txt", header = TRUE, sep = ",", stringsAsFactors = FALSE)</pre>
df2$visitDay <- floor(df2$visitTime)</pre>
nvisits <- nrow(df2)</pre>
# Filter for nurse visits
df_nurse_visits <- df2[df2$hcwType == 'NURSE', ]</pre>
df_nurses <- distinct(df_nurse_visits, hcwType, hcwId)</pre>
nurse_count <- nrow(df_nurses)</pre>
# Filter for other HCW types
df_doctor_visits <- df2[df2$hcwType == 'DOCTOR', ]</pre>
df_doctors <- distinct(df_doctor_visits, hcwType, hcwId)</pre>
doctor_count <- nrow(df_doctors)</pre>
                  <- df2[df2$hcwType == 'PT', ]
df_pt_visits
df_pts <- distinct(df_pt_visits, hcwType, hcwId)</pre>
pt_count <- nrow(df_pts)</pre>
                  <- df2[df2$hcwType == 'OT', ]
df_ot_visits
df_ots <- distinct(df_ot_visits, hcwType, hcwId)</pre>
```

```
ot_count <- nrow(df_ots)

df_rt_visits <- df2[df2$hcwType == 'RT', ]

df_rts <- distinct(df_rt_visits, hcwType, hcwId)

rt_count <- nrow(df_rts)</pre>
```

Total patient visits by hcw type

HCW Type	Total visits (365d)	mean/day
NURSE (26)	357	0.0376185
DOCTOR (18)	312606	47.5808219
OT (9)	765	0.2328767
PT (9)	1019	0.3101979
RT (9)	978	0.2977169

Average daily visits per patient per hcw per shift

Important

Future Analysis to be completed:

- average daily visits per patient per hcw per shift
 - total and broken out by how type
- average distinct patients visited per shift
 - broken out by hcw type
- average time between visits per HCW by type
 - verify (intravisit time + duration of visit from Granular Model)
 - * doctors mean = gamma(0.52, 90.7) + gamma(5.5, 1.2)
 - * nurses mean = gamma(0.54, 55.7) + gamma(5.5, 1.2)
 - * therapists mean = $\operatorname{gamma}(0.52, 61.7) + \operatorname{gamma}(3.0, 1.8)$
- average number of HCW visits per day/patient (total/{type}) val
- average time between visist by HCW per patient
- · average distinct how visits per day by patient

Disease

• TBD

punchlist

- Fix the gamma() + gamma() how visit intra-event times
- Fix the HCW assignment procedure for nurse and doctor

•