江苏大学 硕士研究生入学考试样题

科目代码: 854

科目名称: 概率论与数理统计

满分: <u>150</u> 分

注意:①认真阅读答题纸上的注意事项;②所有答案必须写在答题纸上,写在本试题纸或草稿纸上均无效;③本试题纸须随答题纸一起装入试题袋中交回!

- 一、填空题(每空5分,共40分)
- 2. 一个袋内有 5 个红球, 3 个白球, 2 个黑球, 任取 3 个球恰为一红、一白、一黑的概率为_____。
- 3. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 3x^2 & 0 < x < 1 \\ 0 & \text{其它} \end{cases}$,且 $P\{X > a\} = 0.784$,则 a =_______。
- 5. 设 $X \sim N(1,4)$, $Y \sim E(\frac{1}{2})$, 且 X 与 Y 独立,则 $D(2X-Y+3) = ______$
- 6. 设总体 $X \sim N(0,4)$, X_1, X_2, X_3, X_4, X_5 是 X 的样本, 统计量
- 7. 设总体 $X \sim N(0, \sigma^2)$, $(X_1, X_2, \cdots X_{15})$ 是来自总体的样本,则统计量 $Y = \frac{2(X_1^2 + \cdots + X_{15}^2)}{X_6^2 + \cdots + X_{15}^2}$ 服从的分布是_____。
- 二、(15 分)甲、乙、丙三人对同一目标进行射击,三人击中的概率分别为 0.3, 0.4, 0.5。目标被一人击中而被摧毁的概率为 0.2, 被两人击中而被摧毁的概率为 0.5, 被三人击中而被摧毁的概率为 0.8, (1) 求目标被摧毁的概率; (2) 已知目标被摧毁,求目标被两人击中的概率。

三、(15分)设随机变量 X, Y相互独立, 其概率密度函数分别为

$$f_X(x) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & \text{ i.t.} \end{cases} \qquad f_Y(y) = \begin{cases} e^{-y}, & y > 0 \\ 0, & y \le 0 \end{cases}$$

求随机变量Z = 2X + Y的概率密度函数。

四、(15 分) 一电子仪器由两个部件构成,以 X 和 Y 分别表示两个部件的寿命(单位:千小时),已知 X 和 Y 的联合分布函数为:

$$F(x,y) = \begin{cases} 1 - e^{0.5x} - e^{-0.5y} + e^{-0.5(x+y)} & 若x \ge, y \ge 0 \\ 0, & 其他 \end{cases}$$

- (1) 问 X和 Y 是否独立?
- (2) 求两个部件的寿命都超过 100 小时的概率。

五、(15分)设总体 X 的分布函数为

$$F(x,\beta) = \begin{cases} 1 - \frac{1}{x^{\beta}}, x > 1, \\ 0, & x \le 1, \end{cases}$$

其中未知参数 $\beta > 1, X_1, X_2, \dots, X_n$ 为来自总体 X 的简单随机样本,求:

- (1) β 的矩估计量;
- (2) β 的最大似然估计量。
- 六、 $(15 \, \mathcal{H})$ 一民航机场的送客车载有 20 位旅客机场开出,沿途旅客有 10 个车站可以下车,如到达一个车站没有旅客下车就不停车。假设每位旅客在各个车站下车是等可能的,并设各旅客是否下车相互独立。以X表示停车的次数,求E(X)。
- 七、(15 分)为了考察中学 A、B 的物理课教学效果,现从 A、B 学校分别抽取同年级的 10 个班级的全部学生参加测试,测试后得到的班级平均分数据如下表:

A 校	75.5	77.3	76.2	78.1	76.3	78.4	77.4	78.4	76.7	78.0
B校	77.3	79.1	79.1	81.0	80.2	79.1	82.1	80.0	77.3	79.1

假设每个学校的班级平均分都服从正态分布,问 B 校的物理课教学效果是否比 A 校的物理课教学效果好(α =0.05)?(已知 $F_{0.95}(9,9)$ = 3.18 , $F_{0.975}(9,9)$ = 4.03 , $u_{0.05}$ = -1.96)。

八、 $(20 \, \mathcal{G})$ 合成纤维的强度 Y (kg/mm^2) 与其拉伸倍数 X 有关,测试得到数据如下:

x_{i}	2.0	2.5	2.7	3.5	4.0	4.5	5.2	6.3	7.1	8.0	9.0	10	
y_i	1.3	2.5	2.5	2.7	3.5	4.2	5.0	6.4	6.3	7.0	8.0	8.1	

- (1) 试求Y对X的回归直线方程;
- (2) 检验回归模型的显著性(α =0.05);
- (3) 求回归系数 b 的置信区间 ($\alpha = 0.05$);
- (4) 若 $x_0 = 6$, 求 y_0 的预测区间 ($\alpha = 0.05$)。
- (已知 $F_{0.95}(1,10) = 4.96$, $t_{0.975}(10) = 2.228$)。