Start filling in and adding! Github location is: here at my account.

1 Definitions

Intervals

An interval is a set I where if $a, b \in I$ then $\forall c$ such that a < b < c, $c \in I$.

Compact

A set is compact if it is closed and bounded.

Closed

There are a number of definitions for $A \subseteq \mathbb{R}$ being closed:

- A set is closed if it contains all of its limit points.
- $\forall \{a_n\}$ such that $a_n \in A$, if $\lim_{n \to \infty} a_n = a$, then $a \in A$.
- A contains all of its accumulation points.
- The complement of A is open (int \mathcal{U} .)

Bounded

- The set A is bounded if $\exists M \in \mathbb{R}$ such that $\forall a \in A, |a| < M$.
- The function $f: A \to \mathbb{R}$ is bounded if $\exists M \in \mathbb{R}$ such that $\forall a \in A, |f(a)| < M$.

Bounded Function Set

If $A \subseteq \mathbb{R}$, b(A) is the set of all bounded functions from $A \to \mathbb{R}$.

Continuous Function Set

If $A \subseteq \mathbb{R}$, c(A) is the set of all continuous functions from $A \to \mathbb{R}$.

Partition

$$\mathcal{P} = (x_0, x_1, \dots, x_n)$$
 is said to be a partition of $[a, b]$ if $a = x_0, x_1, \dots, x_n = b$.

Tagged Partition

 $\dot{\mathcal{P}} = (x_0, x_1, \dots, x_n)$ is said to be a tagged partition of [a, b] if it is a partition and $t_i \in [x_{i-1}, x_i]$.

Riemann Sum

If $f \in b[a, b]$ and \dot{P} is a tagged partition, then

$$s(f, \dot{P}) = \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1})$$

is called a Riemann sum of f for tagged partition $\dot{\mathcal{P}}$.

Riemann Integrable

Let $f \in b[a, b]$, we say f is Riemann Integrable, written $f \in \mathcal{R}[a, b]$ if $\exists L \in \mathbb{R}$ such that $\forall \epsilon > 0, \ \exists \delta_{\epsilon} > 0$ such that

$$|s(f, \dot{P}) - L| < \epsilon \text{ whenever } ||\dot{P}|| < \delta_{\epsilon}.$$

Thus we can say that

$$\int_{a}^{b} f = L.$$

Norm of a Partition

If \mathcal{P} is a partition of [a, b] then

$$||\mathcal{P}|| = \max_{1 \le i \le n} \{x_1 - x_0, x_2 - x_1, \dots, x_i - x_{i-1}, \dots, x_n - x_{n-1}\}$$

is called the "norm" of \mathcal{P} .

Indicator Function

Lipschitz Continuous

Pointwise Convergence of Functions

Uniform Convergence of Functions

Uniform Norm

Cauchy wrt Uniform Norm

Let $\{f_n\}$ be a sequence with $f_n \in b(A) \forall n$.

We say $\{f_n\}$ is Cauchy wrt the uniform norm if $\forall \epsilon > 0 \exists N \in \mathbb{N}$ such that if $n, m \geq N$, then

$$||f_n - f_m||_u < \epsilon.$$

2 Theorems

- 1. Intermediate Value Theorem
- 2. Bolzano-Weirstrauss Theorem
- 3. Riemann Integrable Function Uniqueness
- 4. Squeeze Theorem
- 5. Cauchy Criterion for Integration
- 6. All continuous functions are Riemann Integrable

- 7. Monotonic functions with the reals as an image are Riemann Integrable
- $8. \,$ Integral of an interval equals the sum of the integrals between two "connected" intervals

Suppose $f:[a,b]\to\mathbb{R}$ and $c\in(a,b)$, then $f\in\mathcal{R}[a,b]$ iff $f\in\mathcal{R}[a,c]$ and $f\in\mathcal{R}[c,b]$.

- 9. Fundamental Theorem of Calculus, part I
- 10. Fundamental Theorem of Calculus, part II
- 11. Lipschitz Continuity Criteria
- 12. Change of Variables (substitution)
- 13. Integration by Parts
- 14. Sequences that imply continuity If $\{f_n\}$ is a sequence of functions $f_n \in c(A)$ and $f_n \stackrel{u}{\to} f$ on A, then $f \in c(A)$.
- 15. More with sequences, I guess these don't all need names... or labels. Suppose for all n $f_n \in \mathcal{R}[a,b]$ and $f_n \stackrel{u}{\to} f$ on [a,b]. Then $f \in \mathcal{R}[a,b]$ and $\lim_{x \to \infty} \int_a^b f_n = \int_a^b f$..
- 16. Every Cauchy sequence in b(A) converges in b(A) with respect to $||\cdot||_u$. That is, b(A) is complete wrt $||\cdot||_u$.

3 Examples

Add examples in class or other examples you may think of here

4 Homework

Add homework problems here. Not necessarily every one, but the ones in particular that would make great examples. The homework problems that give a theorem, or lemma, or other super-cool results, feel free to put in the Theorems section.