Midterm exam

Num. CSE, D-INFK/D-MATH HS 2015

Prof. R. Hiptmair

Name		Grade
Surname		
Department		
Legi Nr.		
Date	23.10.2015	

1	2	3	4	5	6	Total
8	8	8	8	10	12	54

- Only writing material and Legi on the table
- Keep mobile phones, tablets, smartwatches, etc. turned off in your bag
- Fill in this cover sheet first
- Turn the cover sheet only when instructed to do so
- Then, put your name and Legi Nr. on each page
- Carefully read the rules for the multiple-choice problems
- Do not write with red/green colour or with pencil
- Write your solution in the predefined tick boxes
- Before handing-in the sheets, make sure you wrote the name on each sheet
- Duration: 30 min
- Additional material: none

Good luck!

Midterm exam

Num. CSE

D-INFK/D-MATH

HS 2015

Prof. R. Hiptmair

Rules of multiple-choice (MC):

- (Clearly) put a cross in the circle with the answer you deem correct.
- Motivation for the choices is **not** necessary. Remarks and computations have **no** influence on the total number of points.
- Wrong answers give negative points.
- Mutually exclusive answers are weighted such that the expectation of a random choice is zero.
- The total points for a single MC-problem is the maximum between the points achieved and zero.
- Mutually exclusive answers are highlighted in the same box.
- Any unclear marking will be considered an error.

1.	Cancellation	errors	[8 P.]	I
----	--------------	--------	--------	---

Which expressions are likely to be affected by cancellation errors for some of the *x*s in the indicated ranges?

(a)
$$y = (\sin(x) + x)/x$$
 for x in $[-0.1, 0.1]$

○ Affected by cancellation.

✓ Not affected by cancellation.

(b)
$$z = \exp(x)$$
, $y = z - 1/z$ for x in $[-1,1]$

✓ Affected by cancellation. O Not affected by cancellation.

-2

(c)
$$y = sqrt(x + 1) - sqrt(x)$$
 for x in [0.9, 1.1]

○ Affected by cancellation.

Not affected by cancellation.

(d)
$$y = \log(x) - \log(x - 1)$$
 for x in $[2, +\infty)$

Ø Affected by cancellation. ○ Not affected by cancellation.

-2

117000		 71500	
Scratch space (not eval	uated):		
_			
·			

2. The Newton iteration [8 P.]

Take $a \in \mathbb{R}$. Let $F: \mathbb{R} \to \mathbb{R}$ be defined by $F(x) = xe^x - a$ for $x \in \mathbb{R}$. Establish which of the following iterations of the Newton method are correct for solving F(x) = 0.

(a)
$$x^{(k+1)} = \frac{x^{(k)}}{x^{(k)}+1} (x^{(k)} + \frac{ae^{-x^{(k)}}}{x^{(k)}}).$$

(b)
$$x^{(k+1)} = x^{(k)} - e^{x^{(k)}} (a - x^{(k)} e^{x^{(k)}}) (x^{(k)} + 1).$$

○ Correct iteration.

✓ Incorrect iteration.

←2

←2

(c)
$$x^{(k+1)} = x^{(k)} + \frac{a - x^{(k)} e^{x^{(k)}}}{x^{(k)} e^{x^{(k)}} + e^{x^{(k)}}}$$
.

(d)
$$x^{(k+1)} = x^{(k)} - \frac{x^{(k)}e^{x^{(k)}} + e^{x^{(k)}}}{x^{(k)}e^{x^{(k)}} - a}$$
.

Scratch space (not evaluated):		
	Scratch space (not evaluated):	
	•	
,		
	,	

3. Numerical stability [8 P.]

Let $\tilde{F}: X \to Y$ be an algorithm for the problem $F: X \to Y$. Let w(x) denote the computational effort required for evaluating \tilde{F} with input x. Establish which of the following is the correct definition of numerical stability. Here eps represents the machine precision.

We say that \tilde{F} is *numerically stable* if there exists $C \approx 1$ such that

(a)
$$\forall x \in X$$
. $||F(x) - \tilde{F}(x)||_Y \le Cw(x) \text{eps} ||\tilde{F}(x)||_Y$.

(b)
$$\forall x \in X$$
. $\exists \tilde{x} \in X$. $||\tilde{x} - x||_X \le Cw(x) \text{eps} ||x||_X \land \tilde{F}(\tilde{x}) = F(x)$.

(c)
$$\forall x \in X$$
. $\exists \tilde{x} \in X$. $||F(x) - \tilde{F}(\tilde{x})||_Y \le Cw(x) \exp ||F(x)||_Y$.

(d)
$$\forall x \in X$$
. $\exists \tilde{x} \in X$. $||x - \tilde{x}||_X \le Cw(x) \text{eps} ||x||_X \land \tilde{F}(x) = F(\tilde{x})$.

Which one is the correct definition?

\bigcirc (a)	(b)	○ (c)	X (a)
0 (-)	(I-)	O (-)	XX (1)

Scratch space (not evaluated):

4.	Fixed	point	iteration	[8	P.]
----	-------	-------	-----------	----	-----

A fixed point iteration for solving F(x) = 0, $F = [F_1, F_2]^T : D \subset \mathbb{R}^2 \to \mathbb{R}^2$ is known to be affine invariant. Which of the following conclusions are true?

(a) The iterates for F and $\tilde{F} = [F_2, F_1]^T$ agree if the initial guesses are the same.

(b) When applied to $\tilde{F} = [F_1 + F_2, 0]^T$, the method produces the same iterates.

(c) The method produces the same iterates for F and for \tilde{F} defined by $\tilde{F}(x_1, x_2) = F(x_2, x_1).$

(d) Let $x^{(k)}$ and $\tilde{x}^{(k)}$ be two different sequences generated by the fixed point method applied to F. If $\tilde{x}^{(0)} = Ax^{(0)}$ for some regular matrix $A \in \mathbb{R}^{2,2}$, then $\tilde{x}^{(k)} = Ax^{(k)}$ for every k.

Scratch space (not evaluated):			
	•		
1 × 1			
7 8			

5. *C*++ *code* [10 P.]

Consider the C++ and Eigen code:

```
|#include <Eigen/Dense>
   using Eigen;
   void fn(const Matrix<double, Dynamic, Dynamic, RowMajor> &A,
 3
            const VectorXd &v, VectorXd &w) {
 5
      const double *a = A.data(); // ptr. to linear data of A
     const std::size_t n = A.rows();
 7
      assert((n == v.size()) && (n == w.size()));
      for(std::size_t i = 0; i < n; ++i) {</pre>
 9
       a += i;
       w(i) = 0.;
11
       for(std::size_t j = i; j < n; ++j) {
         w(i) += (*a)*v(j);
13
          a++;
       }
15
     }
```

For each of the following lines of Matlab code, decide whether it is algebraically equivalent to the function fn or not.

Hint: The functions triu(A) and tril(A) return the upper and lower triangular parts of A, respectively.

HINT: Have a look at the figure in the next page for an picture hint.

Algebraically equivalent?

```
(a) w = (A+A')*v;
                                                           \bigcirc yes.
                                                                     🛭 no.
                                                           -5/3
                                                                   + 5/3
(b) w = triu(A)*v;
                                                           ₩ ves.
                                                                     O no.
                                                          +5/3
                                                                    -5/3
(c) w = triu(A')*v;
                                                           O yes.
                                                                     🛭 no.
                                                          -5/3
                                                                   + 5/3
(d) w = tril(A)*v;
                                                           O yes.
                                                                     ⊗ no.
                                                          -5/3
                                                                    +5/3
(e) w = tril(A')*v;
                                                           ○ yes. ¬ ⊗ no.
                                                                    +5/3
                                                          -5/3
(f) w = A*v;
                                                           O yes.
                                                                     🔯 no.
                                                         -513
                                                                    +5/3
```


Scratch space (not evaluated):	
ou.	to some or west
;	
	,
•	

6. QR-decomposition [12 P.]

Consider the MATLAB code:

```
function [x,r] = solveandmore(A,b)

[n,m] = size(A);
    if(n ~= m), error('A_must_be_square'); end

[Q,R] = qr(A)
    r = min(diag(R));

x = A\b;
end
```

For each of the following lines of code, decide whether it is algebraically equivalent to line 6 above or not. Provide the asymptotic complexity of the substitute line, if A is a generic dense square matrix.

HINT: Matlab's \ can detect triangular system matrices.

(a) $x = R \setminus ($	Q\b);	-1	
	algebraically equivalent.	O not algebraic	cally equivalent.
	$\bigcirc O(n)$.	$\bigcirc O(n^2).$	$\bigotimes O(n^3)$.
(1)	-1/2	-1/2	+1
(b) $x = R \setminus ($	Q´*b); _ 1 1	-1	
	₹1 algebraically equivalent.	O not algebraic	
	$\bigcirc O(n)$.	$\bigotimes O(n^2)$.	$\bigcirc O(n^3).$
()		+1	-1/2
(c) $x = (Q^*)$	K)\b; +1	- 1	
	★1	O not algebraic	cally equivalent.
	\bigcirc $O(n)$.	$\bigcirc O(n^2).$	$\bigotimes O(n^3)$.
(1)	-1/2	-1/2	+1
$(d) x = Q \setminus C$	R\b); -1	+1	
	O algebraically equivalent.	+1 ∞ not algebraic	cally equivalent.
	$\bigcirc O(n)$.		$\bigotimes O(n^3)$.
()	-1/2	-1/2	+1
(e) $x = (Q)$	R)\b; -1	+1	
	R)\b; $\bigcirc \text{ algebraically equivalent.}$ $\bigcirc O(n).$	⋈ not algebraid	cally equivalent.
	$\bigcirc O(n).$	$O(n^2)$.	$\bigotimes O(n^3)$.
(0)	-1/2	-1/2	+1
(f) x = Q'*	(R\b); -1	+1	
	(R\b); $\bigcirc \text{ algebraically equivalent.}$	⋈ not algebraid	cally equivalent.
-	100(11).	$\bigotimes O(n^2)$.	$\bigcirc O(n^3).$
	-1/2	+1	-1/2

Scratch space (not evaluated)):	
		•