More Large-Scale Machine Learning

Perceptrons
Support-Vector Machines

Jeffrey D. Ullman Stanford University

The Perceptron

- Given a set of training points (x, y), where:
 - 1. x is a real-valued vector of d dimensions, and
- 2. y is a binary decision +1 or -1, a perceptron tries to find a linear separator between the positive and negative inputs.

Linear Separators

- A *linear separator* is a d-dimensional vector \mathbf{w} and a *threshold* θ such that the *hyperplane* defined by \mathbf{w} and θ separates the positive and negative examples.
- More precisely: given input \mathbf{x} , this linear separator returns +1 if $\mathbf{x}.\mathbf{w} > \theta$ and returns -1 if not.
- Think of the i-th component of w as the weight given to the i-th dimension of the input vectors.

Example: Linear Separator

Black points = -1 Gold points = +1 $\mathbf{w} = (1,1)$ $\theta = 7$

Hyperplane $\mathbf{x}.\mathbf{w} = \theta$ If $\mathbf{x} = (a,b)$, then a+b=7

Goal: Finding w and θ

Possibly **w** and θ do not exist, since there is no guarantee that the points are linearly separable.

Example:

• •

Kernel Functions Can Linearize

- Sometimes, we can transform points that are not linearly separable into a space where they are linearly separable.
- Example: Remember the clustering problem of concentric circles?
- Mapping points to their radii gives us a 1dimensional space where they are separable.

Making the Threshold Zero

- A simplification: we can arrange that θ = 0.
- Add a d+1-st dimension, whose value is -1 for all training points.
- If x is a d-dimensional input, let (x,-1) represent the extended (d+1)-dimensional vector.
- If **w** is the (unknown) normal to the separating hyperplane, and θ is the (unknown) threshold, let (**w**, θ) be **w** with an additional dimension with θ as the (unknown) d+1-st component.
- Then $\mathbf{x}.\mathbf{w} > \theta$ if and only if $(\mathbf{x},-1).(\mathbf{w},\theta) > 0$.

Previous Example, Continued

- The positive training points (3,6) and (5,3) become (3,6,-1) and (5,3,-1).
- The negative training points (1,4), (3,3), and (3,1) become (1,4,-1), (3,3,-1), and (3,1,-1).
- Since we know $\mathbf{w} = (1,1)$ and $\theta = 7$ separated the original points, then $\mathbf{w'} = (1,1,7)$ and $\theta = 0$ will separate the new points.
- **Example**: (3,6,-1).(1,1,7) > 0 and $(1,4,-1).(1,1,7) \le 0$.

Training a Perceptron

- Assume threshold = 0.
- Pick a learning rate η, typically a small fraction.
- Start with $\mathbf{w} = (0, 0, ..., 0)$.
- Consider each training example (x,y) in turn, until there are no misclassified points.
 - Use y = +1 for positive examples, y = -1 for negative.
- If x.w has a sign different from y, then this is a misclassified point.
 - Special case: also misclassified if x.w = 0.

Training – (2)

- If (x,y) is misclassified, adjust w to accommodate x slightly.
- Replace w by $w' = w + \eta yx$.
- Note $x.w' = x.w + \eta y |x|^2$.
- That is, if y = +1, then the dot product of x with w', which was negative, has been increased by η times the square of the length of x.
 - Similarly, if y = -1, the dot product has decreased.
 - May still have the wrong sign, but we're headed in the right direction.

Example: Training

Name	Х	У
А	(1,4,-1)	-1
В	(3,3,-1)	-1
С	(3,1,-1)	-1
D	(3,6,-1)	+1
Е	(5,3,-1)	+1

Let
$$\eta = 1/3$$
.

$$w = (0, 0, 0)$$

Use A: misclassified. New
$$\mathbf{w} = (0, 0, 0) + (1/3)(-1)(1,4,-1) = (-1/3, -4/3, 1/3).$$

Use B: OK; Use C: OK.

Use D: misclassified. New $\mathbf{w} = (-1/3, -4/3, 1/3) + (1/3)(+1)(3,6,-1) = (2/3, 2/3, 0).$

Use E: OK.

Use A: misclassified. New $\mathbf{w} = (2/3, 2/3, 0) + (1/3)(-1)(1,4,-1) = (1/3, -2/3, -1/3).$

. . .

Parallelization

- Convergence is an inherently sequential process.
- We change w at each step, which can change:
 - 1. Which training points are misclassified.
 - 2. What the next vector w' is.
- However, if the learning rate is small, these changes are not great at each step.
- It is generally safe to process many training points at once, obtain the increments to w for each, and add them all at once.

Picking the Training Rate

- A very small training rate causes convergence to be slow.
- Too large a training rate can cause oscillation and may make convergence impossible, even if the training points are linearly separable.

The Problem With High Training Rate

But if you travel too far in the right direction, you actually can make things worse.

If you travel a short distance, you improve things.

The Winnow Algorithm

- Perceptron learning for binary training examples.
- Assume components of input vector x are 0 or
 1; outputs y are -1 or +1.
- Uses a threshold θ , usually the number of dimensions of the input vector.
- Select a training rate η < 1.
- Initial weight vector w is (1, 1,..., 1).

Winnow Algorithm — (2)

- Visit each training example (x,y) in turn, until convergence.
- If $\mathbf{x}.\mathbf{w} > \theta$ and $\mathbf{y} = +1$, or $\mathbf{x}.\mathbf{w} < \theta$ and $\mathbf{y} = -1$, we're OK, so make no change to \mathbf{w} .
- If $\mathbf{x}.\mathbf{w} \ge \theta$ and $\mathbf{y} = -1$, lower each component of \mathbf{w} where \mathbf{x} has value 1.
 - More precisely: IF $x_i = 1$ THEN replace w_i by ηw_i .
- If $\mathbf{x}.\mathbf{w} \le \theta$ and $\mathbf{y} = +1$, raise each component of \mathbf{w} where \mathbf{x} has value 1.
 - More precisely: IF $x_i = 1$ THEN replace w_i by w_i/η .

Example: Winnow Algorithm

Viewer	Star Wars	Martian	Aveng- ers	Titanic	Lake House	You've Got Mail	У
А	0	1	1	1	1	0	+1
В	1	1	1	0	0	0	+1
С	0	1	0	1	1	0	-1
D	0	0	0	1	0	1	-1
E	1	0	1	0	0	1	+1

Goal is to classify "Scifi" viewers (+1) versus "Romance" (-1).

Initial w = (1, 1, 1, 1, 1, 1).

Threshold: $\theta = 6$.

Use $\eta = 1/2$.

Example: Winnow – (2)

	S	М	Α	Т	L	Υ	у
Α	0	1	1	1	1	0	+1
В	1	1	1	0	0	0	+1
C	0	1	0	1	1	0	-1
D	0	0	0	1	0	1	-1
Е	1	0	1	0	0	1	+1

$$W = (1, 1, 1, 1, 1, 1).$$

Use A: misclassified. $\mathbf{x}.\mathbf{w} = 4 \le 6$.

New $\mathbf{w} = (1, 2, 2, 2, 2, 1)$.

Use B: misclassified. $\mathbf{x}.\mathbf{w} = 5 \le 6$.

New $\mathbf{w} = (2, 4, 4, 2, 2, 1).$

Use C: misclassified. $\mathbf{x}.\mathbf{w} = 8 > 6$.

New $\mathbf{w} = (2, 2, 4, 1, 1, 1)$.

Now, D, E, A, B, C are all OK, so done.

Support-Vector Machines

Problem with Perceptrons
Linearly Separable Data
Dealing with Nonseparable Data

Problems With Perceptrons

- 1. Not every dataset is linearly separable.
 - More common: a dataset is "almost" separable, but with a small fraction of the points on the wrong side of the boundary.
- 2. Perceptron design stops as soon as a linear separator is found.
 - May not be the best boundary for separating the data to which the perceptron is applied, even if the training data is a random sample from the full dataset.

Example: Problem

Either red or blue line separates training points. Can give different answers for many points.

Intuition Behind SVM

- By designing a better cost function, we can force the separating hyperplane to be as far as possible from the points in either class.
 - Reduces the likelihood that points in the test set will be misclassified.
- Later, we'll also consider picking a hyperplane for nonseparable data, in a way that minimizes the "damage."

Example: One Candidate

Margin γ

Separating hyperplane.

(1,4), (3,3), and (5,3) are the *support vectors*, limiting the margin for this choice of hyperplane.

Call these the "upper" and "lower" hyperplanes.

Example: Hyperplane With Larger γ

Maximizing γ

- Let weight vector w be the (unknown) normal to the best hyperplane, and b an (unknown) constant.
- We would like to find **w** and b that maximizes γ subject to the constraint that for each training example (**x**,y), we have $y(\mathbf{w}.\mathbf{x} + \mathbf{b}) \ge \gamma$.
 - That is, if y = +1, then point **x** is at least γ above the separating hyperplane, and if y = -1, then **x** is at least γ below.
- Problem: scale of w and b.
 - Double **w** and b and we can double γ .

Maximizing γ – (2)

- **Solution**: require $|\mathbf{w}|$ to be the unit of length for γ .
- Equivalent formulation: require that the constant terms in the upper and lower hyperplanes (those that are parallel to the separating hyperplanes, but just touch the support vectors) be b+1 and b-1.
- The problem of maximizing γ, computed in units of |w|, turns out to be equivalent to minimizing |w| subject to the constraint that all points are outside the upper and lower hyperplanes.

Example: Unit Separation

Example: Constraints

- Consider the running example, with positive points (3,6) and (5,3), and with negative points (1,4), (3,3), and (3,1).
- Let w = (u,v).
- Then we must minimize |w| subject to:
 - $3u + 6v + b \ge 1$.
 - $5u + 3v + b \ge 1$.
 - $u + 4v + b \le -1$.
 - 3u + 3v + b < -1.
 - $3u + v + b \le -1$.

Solving the Constraints

- This is almost a linear program.
- Difference: the objective function sqrt(u²+v²) is not linear.
- Cheat: if we believe the blue hyperplane with support vectors (3,6), (5,3), and (3,3) is the best we can do, then we know that the normal to this hyperplane has v = 2u/3, and we only have to minimize u.

Solving the Constraints if v = 2u/3

Point	Constraint	If v = 20/3
(3,6)	3u + 6v + b ≥ 1	7U + b ≥ 1 K
(5,3)	5u + 3v + b ≥ 1	7U + b ≥ 1 ←
(1,4)	u + 4v + b ≤ -1	11U/3 + b ≤ -1
(3,3)	3u + 3v + b ≤ -1	5u + b ≤ -1
(3,1)	3u + v + b ≤ -1	11∪/3 + b ≤ -1

Constraints of support vectors are hardest to satisfy.

Smallest u is when u = 1, v = 2/3, b = -6.

$$|\mathbf{w}| = \operatorname{sqrt}(1^2 + (2/3)^2) = 1.202.$$

Remember This Hyperplane With a Smaller Margin?

Margin γ

Separating hyperplane.

The normal to the hyperplane, **w**, has slope 2, so v = 2u.

Here's What Happens if v = 2U

Point	Constraint	If v = 2U
(3,6)	3u + 6v + b ≥ 1	150 + b ≥ 1
(5,3)	5u + 3v + b ≥ 1	11U + b ≥ 1 ←
(1,4)	u + 4v + b ≤ -1	9u + b ≤ -1
(3,3)	3u + 3v + b ≤ -1	9u + b <u><</u> -1 ✓
(3,1)	3u + v + b ≤ -1	5u + b ≤ -1

Constraints of support vectors are hardest to satisfy.

Smallest u is when

u = 1, v = 2, b = -10.

$$|\mathbf{w}| = \text{sqrt}(1^2 + 2^2) = 2.236.$$

Since we want the minimum $|\mathbf{w}|$, we prefer the previous hyperplane.

Did That Look Too Easy?

- 2 dimensions is not that hard.
- In general there are d+1 support vectors for ddimensional data.
- Support vectors must lie on the convex hulls of the sets of positive and negative points.
- Once you find a candidate separating hyperplane and its parallel upper and lower hyperplanes, you can calculate |w| for that candidate.
- But there is a more general approach, next.

Nonseparable Data

New Goal

- We'll still assume that we want a "separating" hyperplane w.x + b = 0 defined by normal vector w and constant b.
- And to establish the length of w, we take the upper and lower hyperplanes to be w.x + b = +1 and w.x + b = -1.
- Allow points to be inside the upper and lower hyperplanes, or even entirely on the wrong side of the separator.

New Goal – (2)

- Minimize a cost function that includes:
 - The square of the length of w (to encourage a small |w|), and
 - 2. A term that penalizes points that are either:
 - a. On the right side of the separator, but on the wrong side of the upper or lower hyperplanes.
 - b. On the wrong side of the separator.
- The term (2) is hinge loss =
 - 0 if point is on the right side of the upper or lower hyperplane.
 - Otherwise linear in the amount of "wrong."

Hinge Loss Function

- Let w.x + b = 0 be the separating hyperplane, and let (x, y) be a training example.
- The hinge loss for this point is max(0, 1 – y(w.x + b)).

- -2 -1 0 +1 +2 +3
- Example: If y = +1 and w.x + b = 2, loss = 0.
 - Point x is properly classified and beyond the upper hyperplane.
- **Example:** If y = +1 and w.x + b = 1/3, loss = 2/3.
 - Point x is properly classified but not beyond the upper hyperplane.
- Example: If y = -1 and w.x + b = 2, loss = 3.
 - Point x is completely misclassified.

Expression to Be Minimized

- Let there be n training examples $(\mathbf{x}_i, \mathbf{y}_i)$.
- The cost expression:

$$f(\mathbf{w}, b) = |\mathbf{w}|^2/2 + C \sum_{j=1,...,n} max(0, 1 - y_j(\mathbf{w}.\mathbf{x}_j + b))$$

- C is a constant to be chosen.
- Solve by gradient descent.
- Remember, $\mathbf{w} = (w_1, w_2, ..., w_d)$ and each $\mathbf{x}_j = (x_{i1}, x_{i2}, ..., x_{id})$.
- Take partial derivatives with respect to each w_i.
- First term has derivative w_i.
 - Which, BTW, is why we divided by 2 for convenience.

Gradient Descent — (2)

- The second term C $\Sigma_{j=1,...,n}$ max(0, 1 $y_j(\mathbf{w}.\mathbf{x}_j + \mathbf{b})$) is trickier.
- There is one term in the partial derivative with respect to w_i for each j.
- If $y_i(\mathbf{w}.\mathbf{x}_i + \mathbf{b}) \ge 1$, then this term is 0.
- But if not, then this term is -Cy_ix_{ii}.
- So given the current \mathbf{w} , you need first to sort out which \mathbf{x}_{j} 's give 0 and which give $-Cy_{j}x_{ji}$ before you can compute the partial derivatives.