CMPG-765/CMPT- 465 Neural Networks and Learning Systems Homework-2

- 1. Design a program, which, applies the Hebbian learning rule to the input/output mappings presented in slides 16 and 17 of the Lecture-3 class notes. Use the Hebb function designed in Project 1. Test for each of these two input/output mappings whether the weights obtained by the Hebbian rule implement it or not. (undergrads 90/100, graduates 60/100))
- 2. (Required for graduates and extra credit for undergrads). Apply the Hebb function to the following real to binary input/output mappings

Х1	X2	Х3	$f_1(x_1,x_2,x_3)$	$f_2(x_1,x_2,x_3)$
0.5	1	0.5	1	1
0.5	1	-0.3	1	-1
0.4	-0.5	0.4	1	-1
0.4	-0.5	-0.5	-1	-1
-0.3	0.7	0.5	1	1
-0.3	0.7	-0.4	1	-1
-0.7	-1	0.3	-1	1
-0.7	-1	-0.5	-1	-1

Test for each of these two input/output mappings whether the weights obtained by the Hebbian rule implement it or not. (undergrads -30 extra credit points, graduates -30/100))

- 3. Write a brief report with your conclusions (10/100)
- 4. Turn in your source code, a screen shot of its test run and your report.