Hold time lower bound

H.J. Rivera Verduzco 0977393

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Email: H.J.Rivera.Verduzco@student.tue.nl

April 12, 2017

1 BCHT for FPTS

Given a task-set \mathcal{T} , Algorithm 1 shows a procedure to derive a less pessimistic lower bound for the *best-case hold time* of a task τ_i . Table **??** explain the terminology for the variables used in the algorithm. Furthermore, function $BI_i(y,PA_d)$ returns the the largest positive solution satisfying

$$x = y + \sum_{h:\pi_h > \theta_i} \left(\left\lceil \frac{x}{T_h} \right\rceil - 1 \right)^+ BC_h + \sum_{d:\theta_i \ge \pi_d \pi_i} \left(\left\lceil \frac{x - PA_d}{T_d} \right\rceil - 1 \right)^+ BC_d, \tag{1}$$

where the notion w^+ stands for $\max(w, 0)$.

Table 1: Terminology.

Name	Descriptions					
HLB_{i}^{init}	Initial lower bound. This is the best-case hold time of task					
	$ au_i$ when considering only preemptive tasks.					
BH_i^{lb}	Lower bound of the <i>best-case hold time</i> of τ_i ; $BH_i \ge BH_i^{lb}$.					
\overline{UB}_i	Upper bound in hold time when pushing the activation of					
	delaying tasks.					
PI_i	Push interval of delaying tasks relative to BH_i^{lb} .					
DI_i	Delay interval of task τ_i is the time interval in which delay-					
	ing tasks can affect the hold time.					

Algorithm 1 Algorithm to derive a tighter lower bound for the best-case hold time of task τ_i .

```
1: procedure bchtLowerBound(\mathcal{T},i)

2: HLB_i^{init} = BI_i(BC_i,\infty);

3: BH_i^{lb} = HLB_i^{init};

4: UB_i = BI_i(BC_i,BH_i^{lb});

5: while UB_i > HLB_i^{init} do

6: DI_i = UB_i - BH_i^{lb};

7: PI_i = \min_{d:\theta_i \ge \pi_d > \pi_i} (DI_i \mod T_d);

8: BH_i^{lb} = BH_i^{lb} + PI_i;

9: UB_i = BI_i(BC_i,BH_i^{lb});

end while

10: return BH_i^{lb};
```

In order to illustrate how the algorithm works, consider the task-set \mathcal{T}_2 described in Table 2. Figure 1 shows the notions after performing Algorithm 1 to calculate $BH_4^{lb}=55$. Note that in Figure 1, the second job of τ_3 activated at time t=30, namely $\iota_{3,2}$, does not start. This is to illustrate that the best-case hold time of τ_4 should be long enough in order to delay the start time of $\iota_{3,2}$, i.e. $BH_4 > BH_4^{lb}$. If this condition is not met, the job $\iota_{3,2}$ will start and delay the start time of τ_4 . As a consequence, the job of τ_4 will experience preemptions by the higher priority tasks activated at time t=85.

Table 2: Task set T_2 .

	T_i	$WC_i = BC_i$	π_i	θ_i	wl_i	BR_i	BH_i^{lb}	$\overline{HLB_{i}^{init}}$
$\overline{\tau_1}$	80	14	4	4	1	14	_	
$ au_2$	80	6	3	3	1	6		
$ au_3$	30	15	2	2		15		
$ au_4$	240	50	1	2		56	55	50

The *least common multiple* of the periods is 240 and $U^{T_2} \approx 0.96$.

Figure 1: Schedule of task-set \mathcal{T}_2 with the notions described in Table ??.

Note that the only way for the job of task τ_4 to have a hold time higher than $BH_4^{lb}=55$ is by experiencing preemption by either task τ_1 , τ_2 or both. Since τ_2 has a best-case execution time $BC_2=6$, we can choose this task to preempt τ_4 and the condition will be met because $HLB_4^{init}+BC_2=56$ which is higher than $BH_4^{lb}=55$. This is indeed the best-case hold time because if we would choose τ_1 to preempt τ_4 , the resulting hold time would be $HLB_4^{init}+BC_1=64$. Figure 2 shows the schedule where the best-case hold time of task τ_4 is assumed.

Figure 2: Schedule of task-set \mathcal{T}_2 where the best-case hold time of task τ_4 is assumed (BH₄ = 56).

References