

Tech Rendezvous with Alumnae

Join us for an evening with alumnae, brought to you through the wonders of technology!

Grab a dinner on us and enjoy 5 short talks from a **panel of alumnae and friends** sharing a diverse set of career perspectives. Then check out the **student project showcase** as you mosey on over to our very own coffeehouse, specially created for this event! At the **virtual coffeehouse**, enjoy light refreshments and chat with alumnae about careers, life after graduation or ask for some advice on your own career path.

Program schedule

Dinner available starting at 5:30pm in Cleveland L2

 6:00 - 7:00
 Virtual panel
 Cleveland L2

 7:00 - 7:20
 Project showcase
 Kendade 307

 7:20 - 8:20
 Virtual coffeehouse
 Kendade 307

Dynamic Programming Formula

- Divide a problem into a polynomial number of smaller subproblems
- Solve subproblem, recording its answer
- Build up answer to bigger problem by using stored answers of smaller problems

3

Weighted Interval Scheduling

- \odot Job j starts at s_j , finishes at f_j , and has weight or value
 - V_j .
- Two jobs compatible if they don't overlap.
- © Goal: find maximum weight subset of mutually compatible jobs.

Wednesday, March 31, 2010

Dynamic Programming Approach to Segmented Least Squares

What are the subproblems?

Best solution considering the jobs from 1 to j

- What is the recurrence we should use?
- Which subproblems do we refer to in our recurrence?
 Best solution from job 1 to j-1 AND best solution from job 1
 to the last preceding job that does not conflict with job j
 - How do we choose the best solution of the current problem based on subproblem solutions?

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max \left\{ \frac{v_j + OPT(p(j))}{OPT(j-1)} \right\} & \text{otherwise} \end{cases}$$

5

Least Squares

- Foundational problem in statistic and numerical analysis.
 - The Given n points in the plane: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.
 - Find a line y = ax + b that minimizes the sum of the squared error:

$$SSE = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

6

Least Squares Solution

Result from calculus, least squares achieved when:

$$a = \frac{n \sum_{i} x_{i} y_{i} - (\sum_{i} x_{i}) (\sum_{i} y_{i})}{n \sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}}, \quad b = \frac{\sum_{i} y_{i} - a \sum_{i} x_{i}}{n}$$

7

Sometimes a single line does not work very well.

Wednesday, March 31, 2010

Segmented Least Squares

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ with $x_1 < x_2 < \ldots < x_n$, find a sequence of lines that fits well.

9

Dynamic Programming Approach to Segmented Least Squares

What are the subproblems?

Best solution for a subset of the points from 1 to j

- What is the recurrence we should use?
 - Which subproblems do we refer to in our recurrence?

All possible line segments that end at the preceding point

How do we choose the best solution of the current problem based on subproblem solutions?

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \min_{1 \le i \le j} \left\{ e(i, j) + c + OPT(i - 1) \right\} & \text{otherwise} \end{cases}$$

The Price is Right!

(or shopping with somebody else's money)

Spend as much money as possible without going over \$100. You can buy at most 1 of each.

 CD
 \$18
 Jeans
 \$40

 DVD
 \$35
 Dinner
 \$15

 Book
 \$8
 Ice cream
 \$5

Shoes \$61 Pizza \$7

12

Dynamic Programming Approach

- What are the subproblems?
- What is the recurrence we should use?
 - Which subproblems do we refer to in our recurrence?
 - How do we choose the best solution of the current problem based on subproblem solutions?

13