Introduction to typed and polymorphic languages

L.Cardelli & P. Wegner (1985)

Soumya D. Sanyal and Chris Hathhorn

Why study foundations?

- Allows you to reason about the abstractions you're using.
- Know what's a mistake and what's not.
- Understand subtleties of programming practice.

- Mathematical foundations of computation and programs, due to Alonzo Church.
- Untyped lambda calculus
 - Example implementation in Haskell
- Typed lambda calculus
 - Another example implementation in Haskell
- Code on
 - https://github.com/soumyadsanyal/lambdaloungetalk

- Model of computation underlying functional programming languages
 - e.g.: Haskell is a simply typed lambda calculus with additional datatypes and constants
- Consists purely of applying functions
- Can be used to define arithmetic, boolean logic, pairs, tuples, projections maps, recursive functions, lists, trees,...

- Syntax:
 - Terms t of the (untyped) λ calculus consist of:
 - variables x
 - abstractions λx. t
 - applications t t
 - o and that's it.

Examples:

- \circ id = $\lambda x.x$
- \circ plusone = $\lambda x.(x+1)$
- twice = $\lambda f.\lambda x.(f(f(x)))$
- \circ plus = $\lambda x.\lambda y.(x+y)$
- \circ zero = $\lambda s. \lambda z. z$
- \circ one = $\lambda s. \lambda z. s. z$
- \circ two = $\lambda s. \lambda z. s (s z)$
- o three = $\lambda s. \lambda z. s (s (s z)) ...$

- How to compute with these things?
- By β reduction
- Essentially substitute:
 - $\circ (\lambda x.t) s = [x/s]t$
 - In plain English: (λx.t) is a function, s is the argument, apply the function to the argument by plugging in s for x in the body of the lambda expression t

- Examples:
 - Easy:
 - $(\lambda x.x)(1) = [x/1] x = 1$
 - $(\lambda x.x+1) 100 = [x/100] (x+1) = 101$

- Examples:
 - Higher order:

 - $= [f/(\lambda x.x+1)] \lambda x.(f(f(x))) (1)$
 - $= \lambda x.((\lambda x.x+1)((\lambda x.x+1)(x))) (1)$
 - $= \lambda x.((\lambda x.x+1)([x/x] x+1)) (1)$
 - $= \lambda x.((\lambda x.x+1)(x+1)) (1)$
 - $= \lambda x.([x/x+1] x+1) (1)$
 - $= \lambda x.((x+1)+1)) (1)$
 - = [x/1](x+1) + 1 = (1+1) + 1 = 3

Another example:

```
\circ (\lambda x.x) ((\lambda x.x) (\lambda z. (\lambda x.x) z))
```

$$\circ = (\lambda x.x) ((\lambda x.x) (\lambda z. [x/z] x))$$

$$\circ = (\lambda x.x) ((\lambda x.x) (\lambda z.z))$$

$$\circ = (\lambda x.x) ([x/(\lambda z. z)] x)$$

$$\circ = (\lambda x.x) (\lambda z. z)$$

$$\circ = [x/(\lambda z. z)] x$$

$$\circ = \lambda z. z$$

which is the identity function, who knew!

- A harder example:
 - O Define plus = λ m. λ n. λ s. λ z. m s (n s z)
 - Work out out that:
 - plus one two = three
 - purely by β reduction!
 - O Define times = λ m. λ n. m (plus n) zero
 - Ower out that:
 - times two three = six
 - purely by β reduction!

- Different evaluation strategies lead to different program behavior
 - Full beta reduction (anything can be reduced at any time)
 - Normal order strategy (left to right)
 - Call by name (no reductions inside the body of a lambda expression)
 - Call by value (only reduce when the argument is fully reduced to a value)

- Variables can be bound or free
 - o In the expression $\lambda x.(x+y)$, x is a bound variable and y is a free variable
- Expressions in which no variables are free are called combinators
 - \circ $\lambda x.x$
 - \circ omega = $(\lambda x. x x) (\lambda x. x x) (divergent combinator)$

- The free variables of a term can be computed using the formulas:
 - \circ FV(x) = {x}
 - \circ FV($\lambda x.t$) = FV(t) {x}
 - \circ FV(t s) = union of FV(t) and FV(s)
- Free and bound variables require different treatment under substitution

 Can substitute variables for terms or other variable names at will if the variables are free

```
    [x/s] x = s
    [x/s] y = y (if x!=y)
    [x/s] λy.t = λy. [x/s]t
    [x/s] (u v) = ([x/s] u) ([x/s] v)
    [x/(λz. z w)] (λy. x) = λy. λz. z w
```

- But not if the variable is bound
 - \circ [x/y] (λ x.x) = λ x.y
 - This changed the identity function into a constant function!
- What if we just don't allow ourselves to replace a bound variable?
 - \circ [x/z] (λ z.x) = λ z.z
 - This changed a constant function into an identity function!

- It turns out the correct method of substitution is to make sure that:
 - you don't substitute for a bound variable, and
 - the term you substitute in does not have any free variables that conflict with the bound variables of the destination term

- Untyped lambda calculus
 - is Turing complete it can compute any computable function
 - but this power is dangerous and allows pathological computations
 - $f = \lambda x.x$
 - What is f(f)?
 - \blacksquare omega = $\lambda x. x(x)$
 - What is omega(omega)?

- $f = \lambda x.x$
 - o $f(x) = \lambda x.x(x) = [x/x]x = x \text{ for any } x$
 - \circ f(f) = f
- omega = $\lambda x. x(x)$
 - o omega(omega)
 - $\circ = \lambda x. x (x) (\lambda x. x (x))$
 - $\circ = [x/(\lambda x. x (x))] x (x)$
 - $\circ = \lambda x. x (x) (\lambda x. x (x)) = \text{omega(omega)}$

- Simply typed lambda calculus
 - Always fully specify the type of every expression
 - No longer Turing complete
 - But all computations halt

Kinds of Types

- Basic types
- Structured types (using type constructors)
- Recursive types

Types

- Basic types
 - o Int, Char, Bool, ...
- Structured types (using type constructors)
 - Array, finite Cartesian product, ...
 - data Pair = Pair Int Int
- Recursion
 - Trees
 - data Tree' = Empty | Leaf Int | Node Int Tree'
 Tree'

What is a type system?

- Types provide constraints upon data and methods.
- Enforce contracts (anything illegal is a type error).

Static, strong typing

- Type systems can be static (all expressions can be typed upon static analysis at compile time), strong (all expressions are guaranteed to be type-consistent, even if not determined at compile time).
- Static => strong
- Type inference
 - Haskell supports type inference

Type Polymorphism

Allows more flexible behavior and programming than monomorphic type systems, where every value can have only ONE type.

Type Polymorphism

- Universal
 - Parametric
 - Inclusion
- Ad-hoc
 - Overloading
 - Coercion

Universal polymorphism

Parametric:

- Functions have implicit or explicit type parameters
- data List' a = Nil | Cons a (List' a)

Inclusion:

Methods can operate on various objects related by inclusion/inheritance

Ad-hoc polymorphism

- Overloading:
 - 0 2+3
 - "Soumya"+" Sanyal"
 - eval (Plus (Constant (VNat (Succ Zero))) (Constant (VNat (Succ (Succ Zero))))))
 - eval (Plus (Constant (VInt 0)) (Constant (VNat (Succ (Succ (Succ Zero))))))

Ad-hoc polymorphism

Coercion:

- 0 3+4
- 0 3.0+4=?
- 0 1+" Soumya"=?
- eval (Times (Constant (VNat (Succ (Succ (Succ Zero))))) (Constant (VInt 100)))

Ad-hoc polymorphism

- The essential difference between ad-hoc polymorphism and monomorphism is a bit blurred.
- One could argue in some cases that overloading is essentially syntactic flexibility within monomorphic type systems.

For another talk ...

- Quantification over types (universal, existential, bounded, mixed)
- Polymorphism via subtyping, inheritance
- Parametric types
- Type inference

Thanks!