Neural Vector Representations beyond Words: Sentence and Document Embeddings

Gerard de Melo

http://gerard.demelo.org

Rutgers University

Outline

- Word Representations
- Phrase Representations
- Sentence Representations
- Document Representations
- Applications and Outlook

Cross-Lingual Retrieval

Plagiarism Detection (incl. Cross-Lingual)

Image: Rafael Banchs

News Tracking (incl. Cross-Lingual)

		FR-EN	EN-FR	DE-EN	EN-DE
	1. Baseline (emb. nearest neighbor)	9.98	6.25	7.07	4.39
Timena	2. Proposed (denoising)	7.28	5.33	3.64	2.40
Unsupervised	3. Proposed (+ backtranslation)	15.56	15.13	10.21	6.55
	4. Proposed (+ BPE)	15.56	14.36	10.16	6.89
Semi-supervised	5. Proposed (full) + 100k parallel	21.81	21.74	15.24	10.95
C	6. Comparable NMT	20.48	19.89	15.04	11.05
Supervised	7. GNMT (Wu et al., 2016)	.	38.95		24.61

BLEU scores on newstest2014

Source	Reference	Proposed system (full)			
Une fusillade a eu lieu à l'aéroport international de Los Angeles.	There was a shooting in Los Angeles International Airport.	A shooting occurred at Los Angeles International Airport.			
Cette controverse croissante au- tour de l'agence a provoqué beaucoup de spéculations selon lesquelles l'incident de ce soir était le résultat d'une cyber- opération ciblée.	Such growing controversy sur- rounding the agency prompted early speculation that tonight's incident was the result of a tar- geted cyber operation.	This growing scandal around the agency has caused much spec- ulation about how this incident was the outcome of a targeted cyber operation.			
Le nombre total de morts en oc- tobre est le plus élevé depuis avril 2008, quand 1 073 person- nes avaient été tuées.	The total number of deaths in October is the highest since April 2008, when 1,073 people were killed.	The total number of deaths in May is the highest since April 2008, when 1 064 people had been killed.			
À l'exception de l'opéra, la province reste le parent pauvre de la culture en France.	With the exception of opera, the provinces remain the poor relative of culture in France.	At an exception, opera remains of the state remains the poorest parent culture.			

Sentiment Embeddings

Sentiment Analysis

Word Representations for Deep Sentiment Analysis

ConvNet image by Yoon Kim (2014). Convolutional Neural Networks for Sentence Classification

Word Representations for Deep Sentiment Analysis

Results by Yoon Kim (2014). Convolutional Neural Networks for Sentence Classification

Word Representations for Deep Sentiment Analysis

Results by Yoon Kim (2014). Convolutional Neural Networks for Sentence Classification

Why Sentiment Embeddings?

Option 1: Sentiment Lexicons

Option 1:

Sentiment Lexicons as 1-dimensional embeddings in [-1,1]

Image: Hassan Saif, Miriam Fernandez, Yulan He, Harith Alani

Option 2: Multiple Sentiment Lexicons

Option 2:

250 sentiment Lexicons as 250-dimensional embeddings

Mined 250 Reddit topics

SocialSent: Domain-Specific Sentiment Lexicons for Computational Social Science

William L. Hamilton, Kevin Clark, Jure Leskovec, Dan Jurafsky

Option 2: Multiple Sentiment Lexicons

"big men are very soft"

"freakin raging animal"

"went from the ladies tees"

"two dogs fighting"

"being able to hit"

"insanely difficult saves"

"amazing shot"

"he is still crazy good"

"his stats are insane"

Ex. contexts in r/sports

"some soft pajamas"

"stuffed animal"

"lovely ladies"

"hiking with the dogs"

"it didn't really hit me"

"a difficult time"

"totally shot me down"

"overreacting crazy woman"

"people are just insane"

Ex. contexts in r/TwoX

more positive in r/sports, more negative in r/TwoX

more positive in r/TwoX, more negative in r/sports

Mined 250 Reddit topics

SocialSent: Domain-Specific Sentiment Lexicons for Computational Social Science

William L. Hamilton, Kevin Clark, Jure Leskovec, Dan Jurafsky

Option 3:

Transfer Learning using Supervised Linear Models

Train n linear models

$$f_i(\mathbf{x}) = \mathbf{w_i^T x} + \mathbf{b_i}$$

Train n linear models

$$f_i(\mathbf{x}) = \mathbf{w_i}^\mathsf{T} \mathbf{x} + \mathbf{b_i}$$

Used 25 different domains from Amazon

Books, Electronics, Movies, Kitchen, etc.

Train n linear models

$$f_i(\mathbf{x}) = \mathbf{w_i^T x} + \mathbf{b_i}$$

For a given word, turn its linear coefficients across different models into a single vector

$$[w_{1,j}, \cdots, w_{n,j}]$$

Xin Dong, Gerard de Melo. Cross-Lingual Propagation for Deep Sentiment Analysis. AAAI 2018

Sentiment Embeddings

Image: http://www.thewilliamnyc.com/william-gallery/

0.0 0.8 hot 0.2 ... -0.8 0.1

25+1 dimensions

Xin Dong, Gerard de Melo. Cross-Lingual Propagation for Deep Sentiment Analysis. AAAI 2018

Multilingual World

Multilingual World

Sentiment Analysis in Local Markets

Cross-Lingual Extension

Cross-Lingual Extension

ConvNet image by Yoon Kim (2014). Convolutional Neural Networks for Sentence Classification

Language	Source	Domain	train	test
en	Stanford Sentiment Treebank	movie	6,920	1,821
	Amazon food reviews	food	5,945	1,189
es	SemEval-2016 Task 5	restaurant	2,070	881
nl	SemEval-2016 Task 5	restaurant	1,317	575
de	TripAdvisor	restaurant	1,687	481
ru	TripAdvisor	hotel	2,387	682
it	TripAdvisor	hotel	3,437	982
ja	TripAdvisor	restaurant	1,435	411
cs	TripAdvisor	restaurant	1722	491
fr	Allocine	Television series	2,737	782

Sentiment Embeddings

	Embedding	d	en		es	nl	ru	de	cs	it	fr	ja
			MR	FR	RR	RR	HR	RR	RR	HR	TR	RR
Baselines	R	300	80.78	86.54	81.50	75.30	90.18	88.09	90.00	93.18	87.21	78.59
	G/F	300	85.99	88.73	85.13	77.57	93.84	92.10	92.46	95.92	91.82	76.89

Across languages, results tend to improve when using regular word vectors.

	Dashaddina	,	en		es	nl	ru	de	cs	it	fr	ja
	Embedding	a	MR	FR	RR	RR	HR	RR	RR	HR	TR	RR
Baselines	R	300	80.78	86.54	81.50	75.30	90.18	88.09	90.00	93.18	87.21	78.59
	G/F	300	85.99	88.73	85.13	77.57	93.84	92.10	92.46	95.92	91.82	76.89
	G/F + PG	301	86.11	88.90	85.02	77.91	93.84	92.10	93.28	95.36	91.43	75.18

Chen & Skiena. Building Sentiment Lexicons for All Major Languages. ACL 2014

	Embedding	,	e	en		nl	ru	de	cs	it	fr	ja
		d	MR	FR	RR	RR	HR	RR	RR	HR	TR	RR
Baselines	R	300	80.78	86.54	81.50	75.30	90.18	88.09	90.00	93.18	87.21	78.59
	G/F	300	85.99	88.73	85.13	77.57	93.84	92.10	92.46	95.92	91.82	76.89
	G/F + PG	301	86.11	88.90	85.02	77.91	93.84	92.10	93.28	95.36	91.43	75.18
Concatenation (Our Embeddings)	G/F + V	301	86.33	88.81	84.45	78.26	94.28	92.93	92.87	96.91	91.56	75.18
	G/F + SS	550	85.45	88.14	83.31	76.87	91.50	91.48	91.85	94.80	90.41	75.67
	G/F + A	326	86.55	89.23	84.56	78.96	93.40	93.56	93.28	96.34	92.33	75.91

Concatenating our cross-lingual Amazon embedings seems to work reasonably well, but improvements are not that consistent.

Xin Dong, Gerard de Melo. Cross-Lingual Propagation for Deep Sentiment Analysis. AAAI 2018

	Embedding	a	en		es	nl	ru	de	cs	it	fr	ja
		a	MR	FR	RR	RR	HR	RR	RR	HR	TR	RR
Baselines	R	300	80.78	86.54	81.50	75.30	90.18	88.09	90.00	93.18	87.21	78.59
	G/F	300	85.99	88.73	85.13	77.57	93.84	92.10	92.46	95.92	91.82	76.89
	G/F + PG	301	86.11	88.90	85.02	77.91	93.84	92.10	93.28	95.36	91.43	75.18
Concatenation (Our Embeddings)	G/F + V	301	86.33	88.81	84.45	78.26	94.28	92.93	92.87	96.91	91.56	75.18
	G/F + SS	550	85.45	88.14	83.31	76.87	91.50	91.48	91.85	94.80	90.41	75.67
	G/F + A	326	86.55	89.23	84.56	78.96	93.40	93.56	93.28	96.34	92.33	75.91

Our Full Approach

G/F || A | 300/26 | 86.60 | 89.49 | 85.93 | 79.30 | 93.26 | 92.31 | 93.69 | 96.48 | 92.97 | 88.08

Sentiment Embeddings in Deep Neural Networks

	Embedding		d	en		es	nl	ru	de	cs	it	fr	ja
				MR	FR	RR	RR	HR	RR	RR	HR	TR	RR
Baselines	R G/F		300	80.78	86.54	81.50	75.30	90.18	88.09	90.00	93.18	87.21	78.59
			300	85.99	88.73	85.13	77.57	93.84	92.10	92.46	95.92	91.82	76.89
	G/F -	+ PG	301	86.11	88.90	85.02	77.91	93.84	92.10	93.28	95.36	91.43	75.18
Concatenation (Our Embeddings)	G/F -	+ V	301	86.33	88.81	84.45	78.26	94.28	92.93	92.87	96.91	91.56	75.18
	G/F + SS		550	85.45	88.14	83.31	76.87	91.50	91.48	91.85	94.80	90.41	75.67
	G/F	+ A	326	86.55	89.23	84.56	78.96	93.40	93.56	93.28	96.34	92.33	75.91
Dual Channel Baselines	G/F	R	300/26	85.78	89.07	84.79	78.09	93.40	92.31	93.08	95.78	91.82	76.64
	G/F	PG	300/1	85.72	88.73	85.13	77.39	93.11	91.68	93.08	95.78	91.30	76.64
Our Full Approach	G/F	V	300/1	85.78	88.98	84.45	77.39	93.11	92.31	93.28	95.64	91.82	77.13
	G/F	SS	300/250	86.11	88.73	84.56	77.91	94.28	92.10	93.69	96.77	91.94	85.40
	G/F	A	300/26	86.60	89.49	85.93	79.30	93.26	92.31	93.69	96.48	92.97	88.08
Analysis	G/F	SA	300/26	86.82	88.81	84.45	78.43	93.84	91.89	93.08	95.92	92.07	77.62

Available for download:

http://gerard.demelo.org/sentiment/

Sentiment Embeddings in Deep Neural Networks

Sentiment Embeddings in Deep Neural Networks

Blue: original weights (VADER) Red: weights after fine-tuning

Font Perception Embeddings

exciting	positive	negative	playful	serious	disturbing	
EXCITING	positive	negative	playful	serious	DISTURBING	
exciting	positive	negative	playful	serious	disturbing	
exciting	positive	NEGATIVE	playful	serious	disturbing	
exciting	positive	negative	playful	serious	DISTURBING	

Different fonts should be chosen depending on the sentiment, emotion, and values one wishes to convey.

Rompay and Pruyn, 2011

Fonts affect perceived brand credibility, price expectations, aesthetics

Fonts affect perceived professionalism, trustworthiness, intent to act

Shaikh, 2007

Product Sans

Gmail Search

Corporate fonts such as Google's Product Sans, Intel Clear, IBM Plex, etc.

Google Ooglo

Based on geometric shapes in Google logo

Search Calendar Drive

Weighted 4-NN Using CNN Embeddings

Infer Attribute-Based Representations

font	clumsy	formal	happy	strong
Margarine	0.75	0.27	0.55	0.42
Cormorant Medium	0.05	0.94	0.51	0.48
Oleo Script Swash Caps	0.54	0.52	0.84	0.38
HOLTWOOD ONE SC	0.41	0.56	0.32	0.90

pretentious complex disorderly angular attractive formal dramatic wide happy modern artistic boring sloppy gentle thin **STRONG** soft sharp BTTERTOR Clumsy legible warm delicate fresh BAD calm technical graceful playful friendly charming

FontLex

FEAR joy negative positive sadness surprise trust fear joy negative positive sadness surprise trust sadness surprise trust

Infer additional attributes, especially sentiment/emotions

FontLex

daughter elegance guilty lifeless loyalty massacre peaceful daughter elegance guilty lifeless LOYALTY massacre peaceful

FontLex

FEA

For any desired sentiment/emotion/association, we can automatically choose suitable fonts.

trust

daughter elegance guilty lifeless logalty massacre peaceful daughter elegance guilty lifeless LOYALTY massacre peaceful daughter elegance guilty lifeless LOYALTY massacre peaceful

Color + Fonts

The Smurfs: The Lost Village (2017)

Scream (1996)

Color + Fonts

Yelp reviews

Graphs

Word Vector Representations: word2vec

word2vec Skip-Gram Model

Graph Node Representations: DeepWalk

word2vec Skip-Gram Model

Step 2:

Create a new graph G' with edges between subgraphs

Edges:

a) same node,depth ± 1b) same depth,neighbour node

Step 2:

Create a new graph G' with edges between subgraphs

Edges:

a) same node,depth ± 1b) same depth,neighbour node

Step 3:

Learn subgraph embeddings using G'

$$A_{ij} = \begin{cases} 0 & (v_i, v_j) \notin E' \\ 1/d_{v_i} & (v_i, v_j) \in E' \end{cases}$$

$$M = (A + A^2)/2$$

Step 3:

Learn subgraph embeddings using G'

$$A_{ij} = \begin{cases} 0 & (v_i, v_j) \notin E' \\ 1/d_{v_i} & (v_i, v_j) \in E' \end{cases}$$

$$M = (A + A^2)/2$$

Nuclear Norm Minimization

Find W that minimizes
$$\frac{1}{2}||P_{\Omega}(M) - P_{\Omega}(W)||_F^2 + \lambda ||W||_*$$

Nuclear Norm

$$||W||_* = \sum_{i=1}^{\min\{m, n\}} \sigma_i(W)$$

Step 3:

Learn subgraph embeddings using G'

$$A_{ij} = \begin{cases} 0 & (v_i, v_j) \notin E' \\ 1/d_{v_i} & (v_i, v_j) \in E' \end{cases}$$

$$M = (A + A^2)/2$$

Nuclear Norm Minimization

Find W that minimizes
$$\frac{1}{2}||P_{\Omega}(M) - P_{\Omega}(W)||_F^2 + \lambda ||W||_*$$

Compare only non-zero (observed) entries (unlike SVD) Frobenius Norm

Nuclear Norm $\min\{m,n\}$ $||W||_* = \sum_{}$

Graph Node Representations: SEMAC

Future Perspectives

What is missing

Is a coke capable of ordering?

Missing World Knowledge

Missing World Knowledge

Do finches have feathers?

Are mugs used for drinking?

Prototype Theory

Features for the concept of bird:

- having feathers (strong),
- being able to fly (quite strong),
- having a liver (very weak, although all birds have a liver)

- ...

Difference between prototypical members and less prototypical ones (Eleanore Rosch)

Lots of psychological evidence

<u>Simplified</u> version of prototype theory: #features

Mining from Text

Mining from Text

Neural Representations of Concepts

Neural Representations of Concepts and Commonsense Relations

Neural Representations of Concepts and Commonsense Relations

Do finches have feathers?

Can chipmunks fly?

Yes

No

Approach

word2vec CBOW Model

Approach

sparrows hasPart feather concept definedAs theory grass hasProperty green predator desires food

Approach

Chen et al. WebBrain: Joint Neural Learning of Large-Scale Commonsense Knowledge. ISWC 2016

WebBrain

Is a coke capable of ordering?

No.

Common-Sense Knowledge

- Espresso? But I ordered a cappuccino!
- Don't worry, the cosine distance between them is so small that they are almost the same thing.

Summary

Word Representations

- Projection Approach
- ▶ Parallel Corpora Approaches
- External Supervision

Sentence Representations

- Word Vector-Inspired
- External Supervision

Document Representations

- Word Vector-Based
- Semantic Relevance-Based

Get in Touch!

http://gerard.demelo.org gdm@demelo.org