Privacy-Preserving Contribution in Federated Learning

- Supervisor: Andrea Vitaletti
- Student: Gabriele Lerani
- MSc Engineering in Computer Science

Outline

- 1. ML vs FML
- 2. Research questions
- 3. Zero-Knowledge proofs
- 4. Proposed framework
- 5. Experiments and results
- 6. Possible improvements

Centralized Machine Learning

Federated Learning

Outline

- 1. ML vs FML
- 2. Research questions
- 3. Zero-Knowledge proofs
- 4. Proposed framework
- 5. Experiments and results
- 6. Possible improvements

Research Questions

- How to quantify a client contribution?
- How is training affected by malicious contributions?
- How can the server verify that a client's declared contribution is trustworthy?

The IID problem

- High client drift: local models diverge from global objective
- Slower convergence and potential model bias.

Solutions to non-IID data

How to quantify a client contribution?

Dataset score

$$v = \phi(D)$$

- Quantify the IIDness
- Clients with "similar" dataset have near identical score.

Score-based selection

Malicious actors

What if?

Trustworthy contribution

Can a client provide evidence of its contribution without revealing private information?

Zero-Knowledge proofs

Outline

- 1. ML vs FML
- 2. Research questions
- 3. Zero-Knowledge proofs
- 4. Proposed framework
- 5. Experiments and results
- 6. Possible improvements

Zero-Knowledge Proofs

"A cryptographic tool allowing a **Prover** to convince a **Verifier** about the validity of a statement without revealing any sensitive information".

- **Completeness:** if the prover is telling the truth, it will eventually convince the verifier.
- Soundness: if the prover is not telling the truth, the verifier rejects the proof.
- **Zero-Knowledge:** the verifier learns **nothing** beyond the statement's validity.

zkSNARKs

- A tool to efficiently generate ZKPs for arbitrary <u>functions</u>.
- Mainly used in Ethereum Blockchain.
- Properties:
 - o **zk**: hides input
 - Succint: short proofs, quickly verifiable.
 - Non-interactive: just the proof is exchanged
 - ARgument-of-knowledge: proves you know the input

Outline

- 1. ML vs FML
- 2. Research questions
- 3. Zero-Knowledge proofs
- 4. Proposed framework
- 5. Experiments and results
- 6. Possible improvements

Proof of score

Enhancing training speed

We want an algorithm able to:

- bias client selection
- provide guarantee of contribution validity
- enhancing the training convergence

Power of Choice

Score based selection

ZK

PoCZk

Outline

- 1. ML vs FML
- 2. Research questions
- 3. Zero-Knowledge proofs
- 4. Proposed framework
- 5. Experiments and results
- 6. Possible improvements

Experiment

- **Testbed**: Fedora 41, 8 GB RAM, I5-8250U 3.4 GHz
- Framework: Flower for FL and ZoKrates for zkSNARK
- **Dataset**: MNIST, FMNIST, CIFAR10
- Metrics: Centralized accuracy and communication rounds.
- Baselines: FedAvg, FedAvgM, FedAdam, FedProx, ContAvg, ZkAvg

Data partitioning

Training rounds (honest)

Training rounds (dishonest)

Convergence speed

	MNIST (98%)			FMNIST (89%)			CIFAR10 (45%)		
Algorithm	0.3	0.5	0.7	0.3	0.5	0.7	0.3	0.5	0.7
FedAvg	28	16	12	60	20	16	∞	36	28
FedAvgM	82	44	36	∞	56	30	74	42	56
FedAdam	28	14	10	30	14	10	∞	70	48
FedProx	22	14	8	22	4	4	34	28	14
PoCZk	6	8	8	8	6	8	16	12	8
ZkAvg	18	10	8	16	12	8	34	16	14
ContAvg	∞	∞	∞	∞	∞	∞	∞	∞	∞

Outline

- 1. ML vs FML
- 2. Research questions
- 3. Zero-Knowledge proofs
- 4. Proposed framework
- 5. Experiments and results
- 6. Possible improvements

Possible improvements

- Enhanced ZKP: Develop Zero-Knowledge Proofs (ZKP) to support floating-point and complex computations for richer client metrics
- Scalability testing: Experiment with larger client numbers and real-world scenarios (e.g., IoT devices) to assess practical performance.
- Reward-based strategy: Develop reward strategies through evidence-based incentives by means of Smart Contract.

References

- 1. McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and statistics. PMLR, 2017.
- 2. Cho, Yae Jee, Jianyu Wang, and Gauri Joshi. "Client selection in federated learning: Convergence analysis and power-of-choice selection strategies." arXiv preprint arXiv:2010.01243 (2020).
- 3. Zhu, Hangyu, et al. "Federated learning on non-IID data: A survey." Neurocomputing 465 (2021): 371-390.
- 4. Reddi, Sashank, et al. "Adaptive federated optimization." arXiv preprint arXiv:2003.00295 (2020).
- 5. Zhao, Yue, et al. "Federated learning with non-iid data." arXiv preprint arXiv:1806.00582 (2018).
- 6. Itahara, Sohei, et al. "*Distillation-based semi-supervised federated learning for communication-efficient collaborative training with non-iid private data.*" IEEE Transactions on Mobile Computing 22.1 (2021): 191-205.
- 7. Mothukuri, Viraaji, et al. "*A survey on security and privacy of federated learning.*" Future Generation Computer Systems 115 (2021): 619-640.
- 8. Ye, Rui, et al. "Feddisco: Federated learning with discrepancy-aware collaboration." International Conference on Machine Learning. PMLR, 2023.

Thank you for the attention :)

Appendix

- 1. Zero-Knowledge
- 2. Dataset score
- 3. Merkle Tree commitment
- 4. Power Of Choice with ZK
- 5. Additional results

zkSNARKs: need of a trusted setup

Appendix

- 1. Zero-Knowledge
- Dataset score
- 3. Merkle Tree commitment
- 4. Power Of Choice with ZK
- 5. Additional results

Dataset score

Appendix

- 1. Zero-Knowledge
- 2. Dataset score
- 3. Merkle Tree commitment
- 4. Power Of Choice with ZK
- 5. Additional results

Ensuring Data authenticity

Merkle proof of dataset with ZK

Appendix

- 1. Zero-Knowledge
- 2. Dataset score
- 3. Merkle Tree commitment
- 4. Power Of Choice with ZK
- 5. Additional results

Power of Choice with ZK (PoCZk)

- 1. **Sample clients**: Select d clients based on p_k .
- 2. **Estimate losses**: Clients compute and send local losses $F_{\nu}(w)$.
- 3. **Select Top m**: Choose m client with highest $F_k(w)$ for training.

Appendix

- 1. Zero-Knowledge
- Dataset score
- 3. Merkle Tree commitment
- 4. Power Of Choice with ZK
- 5. Additional results

Accuracy gain

	Accuracy				
Algorithm	Honest	Dishonest			
PoCZk	90.04%	90.02 %			
ZkAvg	86.98% (\psi 3.06%)	89.94% (\psi 0.08 %)			
ContAvg	$90.00\% \ (\downarrow 0.04\%)$	$68.62\% \ (\downarrow 21.40\%)$			
FedAvg	$87.77\% \ (\downarrow \mathbf{2.27\%})$	$89.45\% \ (\downarrow \mathbf{0.57\%})$			
FedAdam	$88.84\% \ (\downarrow 1.20\%)$	$89.11\% (\downarrow \mathbf{0.91\%})$			
FedAvgM	$89.57\% \ (\downarrow \mathbf{0.47\%})$	$83.39\% \ (\downarrow 6.63\%)$			
FedProx	$89.12\% \ (\downarrow \mathbf{0.92\%})$	$89.78\% \ (\downarrow \mathbf{0.24\%})$			

Smart Contract cost

Analysis

- Low iid_ratio + dishonest nodes: PoCZk and ZkAvg outperform others; PoCZk reduces rounds by 7.5x vs FedAvg.
- Honest nodes: ContAvg is the best, reducing rounds by 8.5x vs. FedAvg.
- Random-based selection algorithms show moderate performance but suffer from instability because of poor client selection.