What is claimed is:

2

1

light remitted from the tissue.

	· · · · · · · · · · · · · · · · · · ·
1	1. A method of analyzing tissue, the method comprising:
2	illuminating a tissue with coherent light;
3	receiving light reflected from the tissue at a detector to form a series of speckle
4	patterns; and
5	analyzing changes in the speckle patterns at time intervals sufficient to measure
6	changes caused by Brownian motion of objects within the tissue.
1	2. The method of claim 1, further comprising compensating for extrinsic motion to
2	isolate the Brownian motion.
1	3. The method of claim 1, wherein the tissue is in vivo.
1	4. The method of claim 1, wherein the tissue is internal tissue.
1	5. The method of claim 4, wherein the illuminating step comprises providing an
2	invasive device coupled to a light source, passing the device into a patient, placing the device
3	in proximity to the tissue, and shining coherent light from the light source onto the tissue.
1	6. The method of claim 5, wherein the invasive device is selected from the group
2	consisting of a catheter, an endoscope, and a laparoscope.
1	7. The method of claim 5, wherein the placing step includes placing the device in
2	direct contact with the tissue.
1	8. The method of claim 5, wherein the invasive device comprises a catheter having a

9. The method of claim 1, wherein the coherent light comprises laser light.

first fiber that transmits light from the light source to the tissue, and a fiber array that receives

1	10. The method of claim 1, wherein the speckle pattern is a far field image formed at
2	the detector.
1	11. The mathed of alaim 1 advantages
	11. The method of claim 1, wherein the analyzing step comprises comparing each of
2	the series of speckle patterns to a reference speckle pattern, and quantifying the differences
3	between each pattern and the reference pattern.
1	12. The method of claim 11, wherein the analyzing step comprises digitizing each of
2	the speckle patterns, and the quantifying step comprises evaluating a maximum cross-
3	correlation between each pattern and the reference pattern.
1	13. The method of claim 12, wherein the analyzing step further comprises
2	determining a decorrelation rate for the speckle patterns.
-	
1	14. The method of claim 1, wherein the analyzing step further comprises analyzing
2	spatial characteristics of the speckle pattern to deduce structural characteristics of the tissue.
1	15. The method of claim 14, wherein the illuminating step comprises illuminating
2	multiple sections of the tissue in succession, the receiving step comprises forming a separate
3	series of speckle patterns for each respective section of the tissue, and the analyzing step
4	comprises analyzing each separate series of speckle patterns and comparing the separate
5	series to deduce structural differences between the respective sections of the tissue.
1	. 16. The method of claim 2, wherein compensating for extrinsic motion comprises
2	performing the receiving step during a diastole of a heartbeat.
1	17. The method of claim 2, wherein the receiving step comprises gathering reflected
2	light at a light receptor and transmitting the gathered light to the detector, and wherein
4	ngm at a right receptor and transmitting the gathered right to the detector, and wherein

compensating for extrinsic motion includes coupling the receptor to the tissue.

3

7	18. The method of claim 2, wherein compensating for extrinsic motion includes
2	excluding changes in the speckle patterns caused by non-random motion during the analysis
3	step.
1	19. The method of claim 2, wherein extrinsic motion results from blood flow
2	between the tissue and the reflector, and the compensating step comprises replacing the blood
3	with a transparent solution.
1	20. The method of claim 1, wherein the tissue comprises atherosclerotic plaque.
1	21. A method of determining the susceptibility to rupture of an atherosclerotic plaque
2	having a lipid pool and a fibrous cap, the method comprising:
3	illuminating the plaque with coherent light;
4	receiving light reflected from the plaque at a detector to form a series of speckle
5	patterns;
6	gathering speckle pattern data at time intervals sufficient to measure Brownian
7	motion within the lipid pool; and
В	assessing the plaque's vulnerability to rupture from the amount of Brownian motion.
1	22. The method of claim 21, further comprising analyzing spatial characteristics of
2	the speckle pattern data to determine structural characteristics of the plaque.
ı	23. The method of claim 22, wherein the analyzing step comprises assessing the
2	thickness of the fibrous cap.
ı	24. The method of claim 23, wherein a plaque is considered vulnerable to rupture if
?	the thickness of the fibrous cap is less than about 60 microns.
ļ	25. The method of claim 22, wherein the analyzing step comprises assessing the
,	viscosity of the lipid pool

1	26. The method of claim 25, wherein the plaque is considered vulnerable to rupture if
2	the viscosity of the lipid pool has a time constant of less than about 200 milliseconds.
1	27. The method of claim 25, wherein the plaque is considered likely to rupture if the
2	viscosity of the lipid pool has a time constant of less than about 100 milliseconds.
1	28. A method of detecting a vulnerable atherosclerotic plaque having a lipid pool and
2	a fibrous cap within a blood vessel, the method comprising:
3	illuminating a segment of the blood vessel in vivo with coherent light;
4	receiving light reflected from the interior vessel wall of the segment at a detector to
5	form a series of speckle patterns;
6	gathering speckle pattern data at time intervals sufficient to measure Brownian
7	motion within the interior vessel wall; and
8	comparing the speckle pattern data to a known speckle pattern for a normal blood
9	vessel and a known speckle pattern for an atherosclerotic plaque;
0	wherein speckle pattern data corresponding to a speckle pattern for an atherosclerotic
1	plaque indicates the segment of the blood vessel contains an atherosclerotic plaque.
1	29. The method of claim 28, further comprising analyzing spatial characteristics of
2	the speckle pattern data to determine structural characteristics of the plaque.
1	30. The method of claim 29, wherein the analyzing step comprises assessing the
2 .	thickness of the fibrous cap.
1	31. The method of claim 30, wherein a plaque is considered vulnerable to rupture if
2	the thickness of the fibrous cap is less than about 60 microns.
1	32. The method of claim 29, wherein the analyzing step comprises assessing the
2	viscosity of the lipid pool.

Assignee Docket No.: MGH 1542 Attorney Docket No.: 00786-443P01

1	33. The method of claim 32, wherein the plaque is considered vulnerable to rupture if
2	the viscosity of the lipid pool has a time constant of less than about 200 milliseconds.
1	34. The method of claim 32, wherein the plaque is considered likely to rupture if the
2	viscosity of the lipid pool has a time constant of less than about 100 milliseconds.
1	35. A fiber optic probe for detecting speckle patterns in a sample, the probe
2	comprising
3	a catheter including a rotatable inner shaft and a transparent outer sheath;
4	a fiber array housed within the shaft and comprising a central optical fiber for
5	transmitting incident light to the sample and multiple optical fibers for transmitting light
6	remitted from the sample; and
7	a mirror arranged near a distal end of the shaft to reflect light passing through the
8	fiber array onto a sample outside the transparent outer sheath and back from the sample
9	through the fiber array.
1	36. The fiber optic probe of claim 35, wherein the shaft can rotate 360 degrees within
2	the sheath.
1	37. The fiber optic probe of claim 35, further comprising an inflatable balloon
2	connected to the sheath.
1	38. An optical system for detecting speckle patterns in a sample, the system
2	comprising
3	a fiber optic probe of claim 35;
4	a coherent light source connected to the central optical fiber within the fiber array;
5	a detector to receive light remitted from the sample; and
3	a processor to process the remitted light and to analyze speckle patterns remitted from
7	the sample.

Assignee Docket No.: MGH 1542 Attorney Docket No.: 00786-443P01

- 1 39. The system of claim 38, wherein the processor comprises a reference speckle pattern.
- 40. The system of claim 38, wherein the processor comprises an analog-digital converter to convert the analog remitted light into a digital signal.