Resumo método novo RPS (à falta de melhor nome)

O método pretende estimar a densidade de estados conjunta g(E,M) de um sistema de spins Ising.

O método baseia-se na ideia que, considerando um sistema Ising a uma dada magnetização M_i e sabendo a densidade de estados g para essa magnetização $g(E,M_i)$, é possível estimar a densidade de estados num valor de magnetização vizinho M_{i+1} . De uma maneira sequencial, e começando de um ponto do espaço de fase (E,M) num dos extremos de M com E conhecido (por exemplo todos os spins para cima), é possível estimar todo o g(E,M).

Para isso, é necessário explorar o espaço de fase de Energia (E) em M_i , acumulando estatística dos valores possíveis de (E, M_{i+1}).

O passeio aleatório em M_i é feito de uma forma eficiente estabelecendo um fator de aceitação que é a razão entre as densidades dos valores de E do estado de partida e o estado de chegada.

Em cada passo do passeio aleatório, acumula-se estatística de $g(E, M_{i+1})$ calculando os valores de energia obtidos virando e desvirando sequencialmente todos os spins que levam a $M = M_{i+1}$

O parâmetro principal do método é o número máximo de estados pretendidos para cada ponto do espaço de fase (E,M) utilizados para acumular estatística em M_{i+1} .

ALGORITMO:

Em forma de algoritmo, começando de um valor arbitrário de M_i , em que $g(E,M_i)$ é conhecido:

- Gera-se uma configuração para M=M_i, sabendo-se o seu valor de E, E_{partida}
- começa-se um passeio aleatório em $M=M_i$, escolhendo um spin aleatório para virar para cima e outro para virar para baixo. Com updates locais da energia, sabe-se o novo valor de E, $E_{chegada}$. O fator de aceitação deste passeio aleatório é min(g($E_{partida}$)/g($E_{chegada}$), 1), estilo Wang-Landau.
- para cada passo (aceite ou rejeitado) deste passeio aleatório, verificam-se quais os spins que se podem virar para atingir M_{i+1}
- sequencialmente, viram-se estes spins, calculando o valor de Energia em M_{i+1} , acumula-se o histograma com os valores de $(E_{partida}, M_i)$ e $(E_{chegada}, M_{i+1})$, voltando a desvirar os spins.

- após acumulação do histograma com vários passos do passeio aleatório, o valor de $g(E, M_{i+1})$ é calculando usando o valor conhecido de $g(E, M_i)$:

 $g(E_{chegada},Mi+1) = g(E_{partida},Mi) * HIST(E_{partida},E_{chegada}) / SUM(HIST(E_{chegada}))$

Demonstração de validade do método:

$$h(E_p, E_c) = T(E_c; E_p)$$
.

 $g(E_p)$

Integrame (E_p, E_c) observado

histograma normalizado

Sendo T(Ec; Ep) ignal à paça de transivés que levan de (Ep,M) a (Ec; M+1)

$$h(E_{p},E_{c}) = h(E_{p},E_{c})$$

$$= \sum_{E_{c}} h(E_{p},E_{c})$$

Dado que & T(Ec; Ep) = 1 temos

$$h''(E_{p},E_{c}) = \frac{T(E_{c};E_{p})}{g(E_{p})} / \underbrace{\sum T(E_{c};E_{p})}_{E_{c}} = T(E_{c};E_{p})$$

Sabernos que:

 $g(E_p)T(E_c;E_p) = g(E_c)T(E_p;E_c)$ de que resulta $g(E_c) = \sum_{E_p}T(E_c;E_p)g(E_p)$

Entav

$$\gamma(E_c) = \sum_{E_p} h''(E_p, E_c) g(E_p) = \sum_{E_p} g(E_p) \frac{h(E_p, E_c)}{\sum_{E_c} h(E_p, E_c)}$$