

Topologically left invariant means on semigroup algebras

ALI GHAFFARI

Department of Mathematics, Semnan University, Semnan, Iran
 E-mail: ghaffari1380@yahoo.com

MS received 22 February 2005; revised 17 July 2005

Abstract. Let $M(S)$ be the Banach algebra of all bounded regular Borel measures on a locally compact Hausdorff semitopological semigroup S with variation norm and convolution as multiplication. We obtain necessary and sufficient conditions for $M(S)^*$ to have a topologically left invariant mean.

Keywords. Banach algebras; locally compact semigroup; topologically left invariant mean; fixed point.

1. Introduction

Let S be a locally compact Hausdorff semitopological semigroup with convolution measure algebra $M(S)$ and probability measures $M_0(S)$. We know that $M(S)$ is a Banach algebra with total variation norm and convolution. The first Arens multiplication on $M(S)^*$ is defined in three steps as follows.

For μ, ν in $M(S)$, f in $M(S)^*$ and F, G in $M(S)^{**}$, the elements $f\mu, Ff$ of $M(S)^*$ and GF of $M(S)^{**}$ are defined by

$$\langle f\mu, \nu \rangle = \langle f, \mu * \nu \rangle, \quad \langle Ff, \mu \rangle = \langle F, f\mu \rangle, \quad \langle GF, f \rangle = \langle G, Ff \rangle.$$

Denote by 1 the element in $M(S)^*$ such that $\langle 1, \mu \rangle = \mu(S), \mu \in M(S)$. A linear functional $M \in M(S)^{**}$ is called a *mean* if $\langle M, f \rangle \geq 0$ whenever $f \geq 0$ and $\langle M, 1 \rangle = 1$. Each probability measure $\mu \in M_0(S)$ is a mean. An application by the Hahn–Banach theorem shows that $M_0(S)$ is weak* dense in the set of means on $M(S)^*$. A mean M is *topological left invariant* if $\langle M, f\mu \rangle = \langle M, f \rangle$ for any $\mu \in M_0(S)$ and $f \in M(S)^*$. We shall follow Ghaffari [7] and Wong [14,15] for definitions and terminologies not explained here. We know that topologically left invariant mean on $M(S)^*$ have been studied by Riazi and Wong in [11] and by Wong in [14,15]. They also went further and for several subspaces X of $M(S)^*$, have obtained a number of interesting and nice results.

The existence of topologically left invariant means and left invariant means for groups was investigated widely by Paterson [9] and Pier [10]. Other important studies on amenable semigroups are those of Argabright [1], Day [4], Lau [6], and Mitchell [8]. For further studies and complementary historical comments see [3,9,10].

Let $M_0(S)$ have a measure ν such that the map $s \mapsto \delta_s * \nu$ from S into $M(S)$ is continuous. The author recently proved that the following conditions are equivalent:

- (a) $M(S)^*$ has a topologically left invariant mean;
- (b) there is a net (μ_α) in $M_0(S)$ such that for every compact subset K of S , $\|\mu * \mu_\alpha - \mu_\alpha\| \rightarrow 0$ uniformly over all μ in $M_0(S)$ which are supported in K .

In this paper, we obtain a necessary and sufficient condition for $M(S)^*$ to have a topologically left invariant mean.

2. Main results

Throughout the paper, S is a locally compact Hausdorff semitopological semigroup. We say that S is *semifoundation* if there is a measure $v \in M_0(S)$ such that the map $x \mapsto \delta_x * v$ from S into $M(S)$ is continuous. It is clear that every foundation semigroup is also a semifoundation semigroup (for more on foundation semigroups, the reader is referred to [2] and [5]). We recall that a mean M is *left invariant* if $\langle M, f\delta_x \rangle = \langle M, f \rangle$ for any $x \in S$ and $f \in M(S)^*$. Obviously, a topologically left invariant mean on $M(S)^*$ is also a left invariant mean on $M(S)^*$.

PROPOSITION 1.

*Let S be a semifoundation semigroup. Choose $v \in M_0(S)$ such that the map $x \mapsto \delta_x * v$ from S into $M(S)$ is continuous. If $M \in M(S)^{**}$ is a left invariant mean on $M(S)^*$ and $\langle M, fv \rangle = \langle M, f \rangle$ for each $f \in M(S)^*$, then M is a topologically left invariant mean on $M(S)^*$.*

Note that this is Proposition 22.2 of [10], which was proved for groups. However, our proof is completely different.

Proof. Suppose that $f \in M(S)^*$ and $\mu \in M_0(S)$. For every $x \in S$, we can write

$$\langle M, f\delta_x * v \rangle = \langle M, f\delta_x \rangle = \langle M, f \rangle.$$

It follows that

$$\int \langle Mf, \delta_x * v \rangle d\mu(x) = \langle M, f \rangle. \quad (1)$$

Since $x \mapsto \delta_x * v$ is continuous, by Theorem 3.27 in [12], it is easy to see that

$$\int \langle Mf, \delta_x * v \rangle d\mu(x) = \langle Mf, \mu * v \rangle = \langle M, f\mu * v \rangle. \quad (2)$$

Hence, using (1) and (2), $\langle M, f\mu * v \rangle = \langle M, f \rangle$. By hypothesis,

$$\langle M, f\mu * v \rangle = \langle M, (f\mu)v \rangle = \langle M, f\mu \rangle.$$

Consequently $\langle M, f \rangle = \langle M, f\mu \rangle$, i.e., M is a topologically left invariant mean on $M(S)^*$. \square

Our next result gives an important property that characterizes topologically left amenability of $M(S)^*$.

Theorem 1. *Let S be semifoundation semigroup with identity. Then the following statements are equivalent:*

- (1) $M(S)^*$ has a topologically left invariant mean;
(2) for all $n \in \mathbb{N}$ and $\mu_1, \dots, \mu_n \in M(S)$,

$$\inf\{\sup\{\|\mu_i * \mu\|; 1 \leq i \leq n\}; \mu \in M_0(S)\} \leq \sup\{|\mu_i(S)|; 1 \leq i \leq n\}.$$

Proof. Let $M(S)^*$ have a topologically left invariant mean. Let $\mu_1, \dots, \mu_n \in M(S)$, $\varepsilon > 0$ and put $\delta = \varepsilon(2 + \sup\{\|\mu_i\|; 1 \leq i \leq n\})^{-1}$. There exists a compact subset K in S such that $|\mu_i|(S \setminus K) < \delta$ whenever $i = 1, \dots, n$. By Theorem 2.2 in [7], there exists a measure μ in $M_0(S)$ such that the map $x \mapsto \delta_x * \mu$ from S into $M(S)$ is continuous and $\|\delta_x * \mu - \mu\| < \delta$ for any $x \in K$. Thus, for every $i = 1, \dots, n$ and $f \in M(S)^*$, by Theorem 3.27 in [12], we can write

$$\begin{aligned} |\langle f, \mu_i * \mu - \mu_i(S)\mu \rangle| &= \left| \int \langle f, \delta_x * \mu \rangle d\mu_i(x) - \mu_i(S) \langle f, \mu \rangle \right| \\ &= \left| \int (\langle f, \delta_x * \mu \rangle - \langle f, \mu \rangle) d\mu_i(x) \right| \\ &= \left| \int \langle f, \delta_x * \mu - \mu \rangle d\mu_i(x) \right| \\ &= \left| \int_{S \setminus K} \langle f, \delta_x * \mu - \mu \rangle d\mu_i(x) \right. \\ &\quad \left. + \int_K \langle f, \delta_x * \mu - \mu \rangle d\mu_i(x) \right| \\ &\leq 2|\mu_i|(S \setminus K)\|f\| + \delta\|f\||\mu_i|(K) \\ &\leq 2\delta\|f\| + \delta\|f\|\|\mu_i\| \\ &= \delta\|f\|(2 + \|\mu_i\|) \leq \varepsilon\|f\|. \end{aligned}$$

It follows that $\|\mu_i * \mu - \mu_i(S)\mu\| < \varepsilon$ whenever $i = 1, \dots, n$. Consequently

$$\sup\{\|\mu_i * \mu\|; 1 \leq i \leq n\} \leq \sup\{|\mu_i(S)|; 1 \leq i \leq n\} + \varepsilon.$$

Therefore

$$\inf\{\sup\{\|\mu_i * \mu\|; 1 \leq i \leq n\}; \mu \in M_0(S)\} \leq \sup\{|\mu_i(S)|; 1 \leq i \leq n\}.$$

Conversely let $\mu_1, \dots, \mu_n \in M_0(S)$ and $\varepsilon > 0$. For any $i = 1, \dots, n$, consider $v_i = \mu_i - \delta_\varepsilon$. We have $v_i(S) = 0$ whenever $i = 1, \dots, n$. By assumption,

$$\inf\{\sup\{\|v_i * \mu\|; 1 \leq i \leq n\}; \mu \in M_0(S)\} = 0.$$

Thus there exists $\mu \in M_0(S)$ such that

$$\sup\{\|v_i * \mu\|; 1 \leq i \leq n\} < \varepsilon,$$

i.e., for every $i = 1, \dots, n$, $\|\mu_i * \mu - \mu\| < \varepsilon$. By Theorem 2.2 in [7], $M(S)^*$ has a topologically left invariant mean. \square

Let V be a locally convex Hausdorff topological vector space and let Z be a compact convex subset of V . The pair $(M_0(S), Z)$ is called a *semiflow*, if;

- (1) There exists a map $\rho: M(S) \times V \rightarrow V$ such that for every $z \in Z$, the map $\rho(-, z): M(S) \rightarrow V$ is continuous and linear ($M(S)$ has the topology $\sigma(M(S), M(S)^*)$);
- (2) $\rho(M_0(S), Z) \subseteq Z$;
- (3) For any $\mu, v \in M(S)$ and $z \in Z$, $\rho(\mu, \rho(v, z)) = \rho(\mu * v, z)$.

We remind the reader of our notation conventions:

$$\mu z = \rho(\mu, z), \quad \mu \in M(S), z \in Z.$$

Theorem 2. *Let S be a semitopological semigroup. The following statements are equivalent:*

- (1) $M(S)^*$ has a topologically left invariant mean;
- (2) for every $f \in M(S)^*$, there exists a mean M such that $\langle M, f\mu \rangle = \langle M, fv \rangle$ for any μ, v in $M_0(S)$;
- (3) for any semiflow $(M_0(S), Z)$, there is some $z \in Z$ such that $\mu z = z$ for all $\mu \in M_0(S)$.

Proof. (1) implies (2) is easy.

Now, assume that (2) holds. We will show that $M(S)^*$ has a topologically left invariant mean. To each $f \in M(S)^*$, we associate the non-void subset

$$\Omega_f = \{M \in \Omega; \langle M, f\mu \rangle = \langle M, fv \rangle \text{ for all } \mu, v \in M_0(S)\},$$

(Ω is the convex set of all means on $M(S)^*$.) The sets Ω_f are obviously weak* compact. We shall show that the family $\{\Omega_f; f \in M(S)^*\}$ has the finite intersection property. Since Ω is weak* compact, it will follow that

$$\bigcap \{\Omega_f; f \in M(S)^*\} \neq \emptyset;$$

and if M is any member of this intersection, then M^2 is a topologically left invariant mean on $M(S)^*$.

We proceed by induction. By hypothesis, $\Omega_f \neq \emptyset$ for each $f \in M(S)^*$. Let $n \in \mathbb{N}$, $f_1, \dots, f_n \in M(S)^*$ and assume that $\bigcap_{i=1}^{n-1} \Omega_{f_i} \neq \emptyset$. If M_1 is a member of this intersection and if $M_2 \in \Omega_{M_1 f_n}$, then for every μ, v in $M_0(S)$ we have

$$\langle M_2 M_1, f_n \mu \rangle = \langle M_2, M_1 f_n \mu \rangle = \langle M_2, M_1 f_n v \rangle = \langle M_2 M_1, f_n v \rangle$$

and, for $i = 1, \dots, n-1$,

$$\begin{aligned} \langle M_2 M_1, f_i \mu \rangle &= \langle M_2, M_1 f_i \mu \rangle = \lim_{\alpha} \langle \mu_{\alpha}, M_1 f_i \mu \rangle \\ &= \lim_{\alpha} \langle M_1 f_i \mu, \mu_{\alpha} \rangle = \lim_{\alpha} \langle M_1, (f_i \mu) \mu_{\alpha} \rangle \\ &= \lim_{\alpha} \langle M_1, f_i \mu * \mu_{\alpha} \rangle = \lim_{\alpha} \langle M_1, f_i v * \mu_{\alpha} \rangle \\ &= \lim_{\alpha} \langle M_1, (f_i v) \mu_{\alpha} \rangle = \lim_{\alpha} \langle \mu_{\alpha}, M_1 f_i v \rangle \\ &= \langle M_2 M_1, f_i v \rangle. \end{aligned}$$

(Recall that $M_0(S)$ is weak* dense in Ω , and so there is a net $\{\mu_\alpha\}$ in $M_0(S)$ such that $\mu_\alpha \rightarrow M_2$ in the weak* topology.) Hence $M_2M_1 \in \cap_{i=1}^n \Omega_{f_i}$. Thus $\{\Omega_f; f \in M(S)^*\}$ has the finite intersection property, as required. So (1) is equivalent to (2).

To prove that (1) and (3) are equivalent, let $(M_0(S), Z)$ be a semiflow on a compact convex subset Z of a locally convex Hasudorff topological vector space V . If $f \in V^*$ and $z \in Z$, we consider the mapping $f^z: M(S) \rightarrow \mathbb{C}$ given by $\langle f^z, \mu \rangle = \langle f, \mu z \rangle$. It is easy to see that $f^z \in M(S)^*$. Let Ω be the convex set of all means on $M(S)^*$. For $M \in \Omega$, we can define $T(M): V^* \rightarrow \mathbb{C}$ given by $\langle T(M), g \rangle = \langle M, g^z \rangle$ ($g \in V^*$). One easily notes that $T(M)$ is linear. Now, we embed V into the algebraic dual V^{**} of V^* with the topology $\sigma(V^{**}, V^*)$. Since Z is compact in V , it is closed in V^{**} . On the other hand, for every $h \in V^*$ and $\mu \in M_0(S)$, we have

$$\langle T(\mu), h \rangle = \langle \mu, h^z \rangle = \langle h, \mu z \rangle = \langle \mu z, h \rangle.$$

It follows that the $M_0(S)$ -invariance of Z implies that $T(\mu) \in Z$. Since $M_0(S)$ is weak*-dense in Ω and Z is closed in V^{**} , we conclude that $T(M) \in Z$ for every $M \in \Omega$. If $\mu \in M_0(S)$, we consider $\lambda_\mu: Z \rightarrow Z$ by $\lambda_\mu(z) = \mu z$ ($z \in Z$). Now let M be a topologically left invariant mean on $M(S)^*$. For every $h \in V^*$ and $\mu \in M_0(S)$, we have

$$\begin{aligned} \langle \mu T(M), h \rangle &= \langle T(M), h \circ \lambda_\mu \rangle = \langle M, (h \circ \lambda_\mu)^z \rangle \\ &= \langle M, h^z \mu \rangle = \langle M, h^z \rangle \\ &= \langle T(M), h \rangle. \end{aligned}$$

So $\mu T(M) = T(M)$ for every $\mu \in M_0(S)$, i.e., $T(M)$ is a fixed point under the action of $M_0(S)$.

To prove the converse, we know that the set Ω is convex and weak*-compact in $M(S)^{**}$. We define the semiflow $(M_0(S), \Omega)$ by putting $\rho(\mu, F) = \mu F$ for $\mu \in M(S)$ and $F \in M(S)^{**}$. By hypothesis, there exists $M \in \Omega$ that is fixed under the action of $M_0(S)$, that is $\mu M = M$ for every $\mu \in M_0(S)$. It follows that M is a topologically left invariant mean on $M(S)^*$. This completes our proof. \square

A right action of $M(S)$ on $M(S)^*$ is a map $T: M(S) \times M(S)^* \rightarrow M(S)^*$ (denoted by $(\mu, f) \mapsto T_\mu(f)$, $\mu \in M(S)$ and $f \in M(S)^*$) such that

- (1) $(\mu, f) \mapsto T_\mu(f)$ is bilinear and $T_{\mu * v} = T_v \circ T_\mu$ for any $\mu, v \in M(S)$,
- (2) $T_\mu: M(S)^* \rightarrow M(S)^*$ is a positive linear operator and $T_\mu(1) = 1$ for any $\mu \in M_0(S)$.

Let X be a linear subspace of $M(S)^*$ with $1 \in X$. We say that $M \in X^*$ is a mean on X if $\langle M, f \rangle \geq 0$ if $f \geq 0$ and $\langle M, 1 \rangle = 1$. A mean M is $M_0(S)$ -invariant under the right action T if $\langle M, T_\mu(f) \rangle = \langle M, f \rangle$ for any $\mu \in M_0(S)$ and $f \in X$. We say that X is $M_0(S)$ -invariant under the right action T if $T_\mu(X) \subseteq X$ for any $\mu \in M_0(S)$.

Theorem 3. *Let S be a semitopological semigroup. The following statements are equivalent:*

- (1) $M(S)^*$ has a topologically left invariant mean;
- (2) for any separately continuous right action $T: M(S) \times M(S)^* \rightarrow M(S)^*$ of $M(S)$ on $M(S)^*$ ($M(S)$ has the topology $\sigma(M(S), M(S)^*)$ and $M(S)^*$ has the weak topology) and any $M_0(S)$ -invariant subspace X of $M(S)^*$ containing 1, any $M_0(S)$ -invariant mean M on X can be extended to a $M_0(S)$ -invariant mean \mathcal{M} on $M(S)^*$.

Proof. Let $M(S)^*$ have a topologically left invariant mean, and let

$$T: M(S) \times M(S)^* \rightarrow M(S)^*$$

be a separately continuous right action of $M(S)$ on $M(S)^*$ and M be a mean on $M_0(S)$ -invariant subspace X of $M(S)^*$. Let

$$Z = \{\mathcal{M} \in \mathcal{M}(S)^{**}; \mathcal{M} \text{ is a mean on } \mathcal{M}(S)^{**} \text{ and extends } M\}.$$

By the Hahn–Banach theorem, $Z \neq \emptyset$. It is easy to see that Z is a weak* closed convex subset of the unit ball in $M(S)^{**}$, and is therefore weak* compact. Define $\rho: M(S) \times M(S)^{**} \rightarrow M(S)^{**}$ by $\rho(\mu, F) = T_\mu^*(F)$, $\mu \in M(S)$, $F \in M(S)^{**}$. Notice that, since $T: M(S) \times M(S)^* \rightarrow M(S)^*$ is a separately continuous right action of $M(S)$ on $M(S)^*$, it is clear that

$$\rho(-, F): M(S) \rightarrow M(S)^{**}$$

is continuous for any $F \in M(S)^{**}$ ($M(S)$ has the topology $\sigma(M(S), M(S)^*)$ and $M(S)^{**}$ has the topology $\sigma(M(S)^{**}, M(S)^*)$). On the other hand, it is clear that each $\rho(-, F): M(S) \rightarrow M(S)^{**}$ is linear since $T: M(S) \times M(S)^* \rightarrow M(S)^*$ is bilinear. Let $\mathcal{M} \in \mathcal{L}$ and $\mu \in M_0(S)$. Since $T_\mu: M(S)^* \rightarrow M(S)^*$ is positive linear and $T_\mu(1) = 1$, so $T_\mu^*(\mathcal{M})$ is a mean on $M(S)^*$. Now, let $f \in X$ we have

$$\langle T_\mu^*(\mathcal{M}), \{ \} \rangle = \langle \mathcal{M}, \mathcal{T}_\mu(\{ \}) \rangle = \langle \mathcal{M}, \mathcal{T}_\mu(\{ \}) \rangle = \langle \mathcal{M}, \{ \} \rangle.$$

This shows that $\rho(\mu, \mathcal{M}) = \mathcal{T}_\mu^*(\mathcal{M}) \in \mathcal{L}$, i.e., $\rho(M_0(S), Z) \subseteq Z$. Let $\mu, \nu \in M(S)$ and $\mathcal{M} \in \mathcal{L}$. Since $T: M(S) \times M(S)^* \rightarrow M(S)^*$ is an anti-homomorphism of $M(S)$ into the algebra of linear operators in $M(S)^*$, therefore

$$\begin{aligned} \langle \rho(\mu, \rho(\nu, \mathcal{M})), \{ \} \rangle &= \langle T_\mu^*(\rho(\nu, \mathcal{M})), \{ \} \rangle = \langle \mathcal{T}_\mu^*(\mathcal{T}_\nu^*(\mathcal{M})), \{ \} \rangle \\ &= \langle T_\nu^*(\mathcal{M}), \mathcal{T}_\mu(\{ \}) \rangle = \langle \mathcal{M}, \mathcal{T}_\nu(\mathcal{T}_\mu(\{ \})) \rangle \\ &= \langle \mathcal{M}, \mathcal{T}_{\mu * \nu}(\{ \}) \rangle = \langle \mathcal{T}_{\mu * \nu}^*(\mathcal{M}), \{ \} \rangle \\ &= \langle \rho(\mu * \nu, \mathcal{M}), \{ \} \rangle \end{aligned}$$

for any $f \in M(S)^*$. This shows that $\rho(\mu, \rho(\nu, \mathcal{M})) = \rho(\mu * \nu, \mathcal{M})$ for any μ, ν in $M(S)$ and $\mathcal{M} \in \mathcal{L}$. As we saw above, the pair $(M_0(S), Z)$ is a semiflow. By Theorem 2, there is some $\mathcal{M} \in \mathcal{L}$ such that $T_\mu^*(\mathcal{M}) = \rho(\mu, \mathcal{M}) = \mathcal{M}$ for each $\mu \in M_0(S)$. \mathcal{M} is then the required extension of M .

Conversely, we define a right action $T: M(S) \times M(S)^* \rightarrow M(S)^*$ by putting $T_\mu(f) = f\mu$ for $\mu \in M(S)$ and $f \in M(S)^*$. We claim that it is separately continuous. If $\mu_\alpha \rightarrow \mu$ in the $\sigma(M(S), M(S)^*)$, then for any $F \in M(S)^{**}$, we have

$$\begin{aligned} \langle F, T_{\mu_\alpha}(f) \rangle &= \langle F, f\mu_\alpha \rangle = \langle Ff, \mu_\alpha \rangle \rightarrow \langle Ff, \mu \rangle \\ &= \langle F, f\mu \rangle = \langle F, T_\mu(f) \rangle. \end{aligned}$$

On the other hand, it is easy to see that every $T_\mu: M(S)^* \rightarrow M(S)^*$ is continuous ($M(S)^*$ has the weak topology). Now choose X to be the constants and define $\langle M, \alpha \cdot 1 \rangle = \alpha$, for any $\alpha \cdot 1 \in X$. Then M is a mean on X satisfying $\langle M, T_\mu(f) \rangle = \langle M, f \rangle$ for any $\mu \in M_0(S)$ and $f \in X$. Any invariant extension \mathcal{M} of M to $M(S)^*$ is necessarily a topologically left invariant mean on $M(S)^*$. This completes our proof. \square

The above characterization of topologically left invariant mean on $M(S)^*$ is an analogue of Silverman's invariant extension property in [13].

References

- [1] Argabright L N, Invariant means and fixed points. A sequel to Mitchells paper, *Trans. Am. Math. Soc.* **130** (1968) 127–130
- [2] Baker A C and Baker J W, Algebras of measures on locally compact semigroups III, *J. London Math. Soc.* **4** (1972) 685–695
- [3] Berglund J F, Junghenn H D and Milnes P, Analysis on semigroups, function spaces, compactifications, representations (1989) (New York)
- [4] Day M M, Left thick to left lumpy a guided tour, *Pacific J. Math.* **101** (1982) 71–91
- [5] Dzinotyiweyi H A M, The analogue of the group algebra for topological semigroups (1984) (Boston, London: Pitman)
- [6] Lau A T, Amenability of semigroups, in: the analytical and topological theory of semigroups (eds) K H Hofman, J D Lawson and J S Pym (1999) (Berlin and New York: Walter de Gruyter) pp. 331–334
- [7] Ghaffari A, Topologically left invariant mean on dual semigroup algebras, *Bull. Iranian Math. Soc.* **28** (2002) 69–75
- [8] Mitchell T, Function algebras, means and fixed points, *Trans. Am. Math. Soc.* **130** (1968) 117–126
- [9] Paterson A L T, Amenability, *Am. Math. Soc. Math. Survey and Monographs* 29 (1988) (Rhode Island: Providence)
- [10] Pier J P, Amenable locally compact groups (1984) (New York: John Wiley and Sons)
- [11] Riazi A and Wong J C S, Characterizations of amenable locally compact semigroups, *Pacific J. Math.* **108** (1983) 479–496
- [12] Rudin W, Functional analysis (1991) (New York: McGraw Hill)
- [13] Silverman R J, Means on semigroups and the Hahn–Banach extension property, *Trans. Am. Math. Soc.* **83** (1956) 222–237
- [14] Wong J C, A characterization of topological left thick subsets in locally compact left amenable semigroups, *Pacific J. Math.* **62** (1976) 295–303
- [15] Wong J C, Fixed point theorems for measurable semigroups of operations, *Canad. J. Math.* **44** (1992) 652–664