Examenul de bacalaureat national 2020 Proba E. c) Matematică M_mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Test 12

Test 12

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$N = 5 + 2 \cdot \sqrt{5} \cdot \sqrt{13} + 13 + 5 - 2 \cdot \sqrt{5} \cdot \sqrt{13} + 13 =$	3 p
	$=36=6^2$	2 p
2.	$f(f(1)) + f(1) = 1 \Leftrightarrow f(1) + a + 1 + a = 1 \Leftrightarrow 3a + 2 = 1$	3 p
	$a = -\frac{1}{3}$	2p
3.	$4^{x} + \frac{4}{4^{x}} = 4 \Leftrightarrow 4^{2x} - 4 \cdot 4^{x} + 4 = 0 \Leftrightarrow (4^{x} - 2)^{2} = 0$	3p
	$2^{2x} = 2$, deci $x = \frac{1}{2}$	2p
4.	Cifra sutelor se poate alege în 2 moduri și pentru fiecare alegere a cifrei sutelor, cifra zecilor se poate alege în 2 moduri	2p
	Pentru fiecare alegere a cifrei sutelor și a cifrei zecilor, cifra unităților se poate alege într-un singur mod, deci se pot forma $2 \cdot 2 \cdot 1 = 4$ numere cu proprietatea cerută	3 p
5.	$\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AD}$, unde <i>D</i> este mijlocul segmentului <i>BC</i>	2p
	G este centrul de greutate al triunghiului ABC , deci $\overrightarrow{AG} = \frac{2}{3}\overrightarrow{AD}$ și, cum $\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AG}$, obținem $6\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC}$	3 p
6.	$\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC \cdot \sin A}{2}, \text{ deci } \sin A = \frac{1}{2}$	3 p
	Cum $\triangle ABC$ este ascuţitunghic, obţinem $m(\angle A) = 30^{\circ}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 3 & 2 & -1 \\ 2 & -2 & 1 \\ 4 & 3 & 0 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 3 & 2 & -1 \\ 2 & -2 & 1 \\ 4 & 3 & 0 \end{vmatrix} = $ $= 0 + (-6) + 8 - 8 - 9 - 0 = -15$	2p 3p
b)	$\det(A(a)) = \begin{vmatrix} 3 & 2 & -1 \\ 2 & -2 & 1 \\ a+4 & a+3 & a \end{vmatrix} = -15(a+1), \text{ pentru orice număr real } a$	2p
	Rangul matricei $A(a)$ nu este egal cu $3 \Leftrightarrow \det(A(a)) = 0$, deci $a = -1$	3 p
c)	$A(-1)A(-1) = \begin{pmatrix} 3 & 2 & -1 \\ 2 & -2 & 1 \\ 3 & 2 & -1 \end{pmatrix} \begin{pmatrix} 3 & 2 & -1 \\ 2 & -2 & 1 \\ 3 & 2 & -1 \end{pmatrix} = \begin{pmatrix} 10 & 0 & 0 \\ 5 & 10 & -5 \\ 10 & 0 & 0 \end{pmatrix} = 5B, \text{ unde } B = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & -1 \\ 2 & 0 & 0 \end{pmatrix}$	3p
	$M = 5^2 B \cdot B$ și, cum matricea $B \cdot B$ are toate elementele numere întregi, obținem că matricea M are toate elementele numere întregi, divizibile cu 25	2p

Probă scrisă la matematică M mate-info

Barem de evaluare și de notare

Ministerul Educației și Cercetării Centrul Național de Politici și Evaluare în Educație

	, , ,	
2.a)	$x*(-x) = \sqrt[3]{x^3 + (-x)^3 + 2020} =$	3 p
	$=\sqrt[3]{x^3-x^3+2020} = \sqrt[3]{2020}$, pentru orice număr real x	2 p
b)	$(x+1)*(-x) = \sqrt[3]{(x+1)^3 - x^3 + 2020} = \sqrt[3]{3x^2 + 3x + 2021}$, deci $3x^2 + 3x + 2021 = 2021$	3 p
	3x(x+1) = 0, deci $x = -1$ sau $x = 0$	2 p
c)	$\sqrt[3]{3x^3 + 4040} = a \Leftrightarrow 3x^3 + 4040 = a^3 \Leftrightarrow x^3 = \frac{a^3 - 4040}{3}$	3 p
	Pentru orice număr real a , ecuația $x^3 = \frac{a^3 - 4040}{3}$ are o singură soluție reală $x = \sqrt[3]{\frac{a^3 - 4040}{3}}$,	2 p
	deci există un unic număr real x pentru care $x*x*x=a$	

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 3x^2 - 12x + 9 =$	3р
	$=3(x^2-4x+3)=3(x-1)(x-3), x \in \mathbb{R}$	2p
b)	$f'(x) = 0 \Leftrightarrow x = 1 \text{ sau } x = 3$	2p
	$f'(x) \ge 0$, pentru orice $x \in (-\infty, 1] \Rightarrow f$ este crescătoare pe $(-\infty, 1]$, $f'(x) \le 0$, pentru orice $x \in [1, 3] \Rightarrow f$ este descrescătoare pe $[1, 3]$ și $f'(x) \ge 0$, pentru orice $x \in [3, +\infty) \Rightarrow f$ este crescătoare pe $[3, +\infty)$	3 p
c)	$f''(x) = 6x - 12, \ x \in \mathbb{R}$	3 p
	Cum $f''(x) \le 0$, pentru orice $x \in (-\infty, 2]$, obținem că funcția f este concavă pe $(-\infty, 2]$	2 p
2.a)	$\int_{0}^{1} f(x) \cdot \sqrt{x^2 + 3x + 5} dx = \int_{0}^{1} (2x + 3) dx = \left(x^2 + 3x\right) \Big _{0}^{1} = $ $= 1 + 3 - 0 = 4$	3p 2p
b)	$\int_{-4}^{1} f(x)dx = \int_{-4}^{1} \frac{2x+3}{\sqrt{x^2+3x+5}} dx = \int_{-4}^{1} \frac{\left(x^2+3x+5\right)'}{\sqrt{x^2+3x+5}} dx = 2\sqrt{x^2+3x+5} \begin{vmatrix} 1\\ -4 \end{vmatrix} = 2\sqrt{9} - 2\sqrt{9} = 0$	3p 2p
c)	Vi Vi Vi	
	pentru orice număr real x	3 p
	$\int_{0}^{\frac{\pi}{2}} \cos x f(\sin x) dx = \int_{0}^{\frac{\pi}{2}} (F(\sin x))' dx = F(\sin x) \Big _{0}^{\frac{\pi}{2}} = F(1) - F(0) = 2\sqrt{1^2 + 3 \cdot 1 + 5} - 2\sqrt{5} = 6 - 2\sqrt{5}$	2p