1. Цель работы

Определение постоянной Ридберга для спектра излучения атомарного водорода.

1.1 Теоретическая часть

Исследования английского физика Э. Резерфорда (1911г.) установили так называемую планетарную модель строения атома. Согласно этой модели, весь положительный заряд и почти вся масса атома (> 99.94%) сосредоточены в атомном ядре, размер которого ничтожно мал (10^{-15} м) по сравнению с размером атома (10^{-10} м). Вокруг ядра по замкнутым круговым орбитам движутся электроны, образуя электронную оболочку атома.

Заряд ядра равен по абсолютному значению суммарному заряду электронов и может быть найден по следующей формуле:

$$q = Ze, (1)$$

где, $e=1.6\cdot 10^{-19}\ {\rm K}$ л — элементарный заряд, Z — порядковый номер элемента в периодической системе Менделеева.

Однако эта модель не укладывалась в рамки закона классической физики, согласно которым, электрон, двигаясь равноускоренно, должен непрерывно излучать (терять) энергию и, в конце концов, упасть на ядро. Атом должен давать сплошной спектр излучения, так как частота вращения электрона по мере приближения к ядру непрерывно изменяется (соответственно, так же меняется и частота излучения).

В действительности атом весьма устойчив и излучает линейчатый спектр, что говорит о том, что частота вращения электрона может принимать лишь определенные значения.

В нашей работе мы будем рассматривать спектр излучения атома водорода, как самого простого вещества. Кроме того, только к атому водорода применима теория Резерфорда. Более сложные атомы описываются только

законами квантовой механики.

В нашей работе мы будем рассматривать спектр излучения атома водорода, как самого простого вещества. Кроме того, только к атому водорода применима теория Резерфорда. Более сложные атомы описываются только законами квантовой механики.

В видимой части этого спектра атома водорода обнаружены четыре линии со следующими длинами волн:

 $\lambda_{\rm K} = 0.656$ мкм — красная линия;

 $\lambda_{\scriptscriptstyle \Gamma}=0.486$ мкм — голубая линия;

 $\lambda_c = 0.434$ мкм — синяя линия;

 $\lambda_{\varphi} = 0.410$ мкм — фиолетовая линия.

Швейцарский физик И. Бальмер и шведский физики И. Ридберг установили эмпирическую формулу для определения длин волн этих линий (серия Бальмера):

$$\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{n^2}\right),\tag{2}$$

где $n=3,\ 4,\ 5,\ 6,\ ...,\ R=1.0974\times 10^7\,\mathrm{m}^{-1}$ — постоянная Ридберга, вычисляемая теоретически по формуле:

$$R = \frac{me^4}{8h^2\varepsilon_0^2},\tag{3}$$

где m, e — масса и заряд электрона, $h = 6.625 \times 10^{-34}$ Дж·с— постоянная Планка, ε_0 — электрическая постоянная.

Существуют и другие серии излучений (Лаймана, Пашена и др.), которые к нашему опыту не имеют прямого отношения.

Датский физик Н. Бор (1913г.) усовершенствовал атомную модель Резерфорда и создал другую модель строения атома, в основу которой положил три постулата (постулаты Бора): Электроны могут двигаться в атоме только по орбитам определенного радиуса, на которых момент импульса электрона кратен постоянной Планка $\hbar = h/2\pi$. Это условие квантования радиуса орбиты выражается формулой:

$$mvr = n\hbar$$
, (4)

где m — масса электрона, v — скорость электрона, r — радиус орбиты, $n=1,2,3,\ldots$ — главное квантовое число.

Движение электрона по таким стационарным орбитам не сопровождается излучением (поглощением) энергии.

Переход электрона с одной орбиты на другую сопровождается излучением или поглощением кванта энергии:

$$h\nu = W_1 - W_2, \tag{5}$$

где W_1 и W_2 — энергии стационарного состояния атома.

Таким образом, частота излучения определяется разностью энергий, а не частотой вращения электрона в атоме.

В атоме изотопа водорода ${}^{1}_{1}H$ один электрон вращается вокруг одного протона. Заряды электрона и протона равны по модулю величине элементарного заряда e.

Пусть электрон вращается по круговой орбите радиуса r, тогда на него будет действовать кулоновская сила, направленная в центр орбиты:

$$\frac{e^2}{4\pi\varepsilon_0 r^2} = \frac{m\mathbf{v}^2}{r} \,, \tag{6}$$

Откуда:

$$m\mathbf{v}^2 = \frac{e^2}{4\pi\varepsilon_0 r}\,,\tag{7}$$

где $m=9.11\times10^{-31}$ кг — масса электрона, $\epsilon_0=8.85\times10^{-12}$ Ф/м — электрическая постоянная.

Решим совместно уравнения (4) и (7), исключая скорость. Из (4) имеем:

$$v = \frac{n\hbar}{mr} \tag{8}$$

Подставив скорость в формулу (7), получим

$$m\frac{n^2\hbar^2}{m^2r^2} = \frac{e^2}{4\pi\varepsilon_0 r} \tag{9}$$

откуда радиус орбиты электрона равен

$$r = n^2 \frac{\varepsilon_0 \hbar^2 4\pi}{me^2} = n^2 \frac{\varepsilon_0 h^2}{\pi me^2}$$
 (8)

Полная энергия электрона в атоме есть сумма кинетической энергии и потенциальной энергии притяжения электрона к ядру:

$$W = W_{\kappa} + W_n = \frac{mv^2}{2} + \left(-\frac{e^2}{4\pi\varepsilon_0 r}\right) \tag{9}$$

Из (7) следует, что

$$\frac{m\mathbf{v}^2}{2} = \frac{e^2}{8\pi\varepsilon_0 r} \tag{10}$$

тогда полная энергия

$$W = \frac{e^2}{8\pi\varepsilon_0 r} - \frac{e^2}{4\pi\varepsilon_0 r} = -\frac{e^2}{8\pi\varepsilon_0 r}$$
 (11)

Таким образом, полная энергия электрона отрицательна и равна по модулю его кинетической энергии. Подставляя (10) в (8), получаем

$$W = -\frac{1}{n^2} \frac{me^4}{8\varepsilon_0^2 h^2} \tag{12}$$

Для ближайшей к ядру орбите (n = 1) полная энергия электрона, находящегося на этой орбите, равна:

$$W_{1} = -\frac{1}{1^{2}} \frac{9.11 \cdot 10^{-31} \times (1.6 \cdot 10^{-19})^{4}}{8 \times (8.85 \cdot 10^{-12})^{2} \times (6.625 \cdot 10^{-34})^{2}} = -21.68 \cdot 10^{-18} \, \text{Дж} = -13.559B$$
(13)

$$[19B = 1.6 \times 10^{-19} \, \text{Дж}].$$

Полная энергия электронов в атоме называется энергетическим уровнем атома. На рис. 1 схематически изображены уровни энергии атома водорода.

$$n = 1$$
 ______ $W_1 = -13.55$ 9B

Рисунок 1 - схема уровней энергии атома водорода

Атом может излучать и поглощать электромагнитные волны только вполне определенных частот (длин волн), чем и обусловлен линейчатый характер водородного спектра.

Серия Бальмера соответствует переходу атома на второй уровень энергии с более высокого. А именно, красная линия соответствует переходу с третьего уровня на второй ($n=3 \rightarrow n=2$). При этом частота излучения, согласно (5), равна:

$$v_{KP} = \frac{W_3 - W_2}{h} = \frac{-1.59B + 3.389B}{h} = \frac{1.889B}{h} [\Gamma II]$$
 (14)

а соответствующая длина волны

$$\lambda_{\kappa p} = \frac{c}{v} = \frac{hc}{1.88 \cdot 1.6 \times 10^{-19}} [M]$$
 (15)

Подставляя константы, получим

$$\lambda_{\kappa p} = \frac{6.625 \cdot 10^{-34} \times 3 \cdot 10^8}{1.88 \times 1.6 \cdot 10^{-19}} = 6.607 \times 10^{-7} \,\text{M} = 0.661 \,\text{MKM} = 661 \,\text{HM}$$
 (16)

Для переходов с четвертого, пятого и шестого энергетических уровней на второй мы будем иметь в спектре излучения атома водорода длины волн, соответствующие голубому ($\lambda_{\text{гол}} = 489 \mu \text{м}$), синему ($\lambda_{\text{син}} = 437 \mu \text{m}$) и фиолетовому ($\lambda_{\text{фио}} = 414 \mu \text{m}$) цветам, соответственно. При этом расхождения этих длин волн со значениями, полученными в результате эксперимента, не превышают 0.8%.

1.2 Экспериментальная часть

Согласно эмпирической формуле (2), постоянную Ридберга можно определить, зная длину волны излучения для соответствующего

энергетического уровня.

Например, в видимом спектре излучения (серия Бальмера) атом водорода испускает свет с длиной волны $\lambda_{\kappa p}$, соответствующей красному цвету. Эта первая видимая линия отвечает переходу атома с третьего на второй энергетический уровень. Таким образом, постоянная Ридберга может быть определена, как

$$R_{\kappa p} = \frac{1}{\lambda_{\kappa p} \left(\frac{1}{2^2} - \frac{1}{3^2}\right)} \tag{17}$$

Вторая линия видимого спектра с длиной волны λ_{eon} , соответствующей голубому цвету, возникает при переходе атома с четвертого на второй энергетический уровень, и постоянная Ридберга определяется так:

$$R_{zon} = \frac{1}{\lambda_{zon} \left(\frac{1}{2^2} - \frac{1}{4^2}\right)} \tag{18}$$

Переход со следующего (с пятого) энергетического уровня на второй сопровождается излучением с длиной волны λ_{cun} , соответствующей синему цвету, и постоянную Ридберга находим, как:

$$R_{cuh} = \frac{1}{\lambda_{cuh} \left(\frac{1}{2^2} - \frac{1}{5^2}\right)}$$
 (19)

При достаточно точном определении соответствующих длин волн все три значения постоянной Ридберга должны быть одинаковыми.

1.3 Методика проведения эксперимента

1. Подготавливаем Таблицу №1 для экспериментальных данных и

результатов их обработки.

Таблица 1 - Экспериментальные данные и результаты их обработки

Длина волны λ,	№ уровня, с которого	Постоянная Ридберга
M	происходит переход	R, м ⁻¹
	3	
	4	
	5	

- 2. Глядя в окуляр монохроматора и вращая регулятор длины волны, находим красную полосу, отчетливо выделяющуюся на общем фоне спектра и добиваемся, чтобы она находилась по середине области обзора. Соответствующая длина волны (в нм) будет отображаться на счетчике монохроматора. Ее мы записываем в первую строку Таблицы №1 столбца «Длина волны», переведя значение в метры.
- Аналогичным образом пытаемся отыскать в спектре голубую и синюю линии и записываем в Таблицу №1 значения длин их волн в метрах.
- 4. По формулам (12), (13) и (14) рассчитываем значения постойной Ридберга и записываем их в соответствующие ячейки Таблицы №1 (в м⁻¹).
- 5. Вычисляем среднее арифметическое значение постоянной Ридберга

$$\langle R \rangle = \frac{R_{\kappa p} + R_{\epsilon on} + R_{cuh}}{3} \tag{20}$$

6. Находим среднеквадратическую абсолютную погрешность определения постойной Ридберга:

$$\Delta R = \frac{\left| \langle R \rangle - R_{\kappa p} \right| + \left| \langle R \rangle - R_{con} \right| + \left| \langle R \rangle - R_{cun} \right|}{3} \tag{21}$$

7. Записываем окончательный результат:

$$R = \langle R \rangle \pm \Delta R \ \text{M}^{-1} \tag{22}$$

1.3.1 Проверка результатов

Относительная разность теоретического значения постоянной Ридберга, вычисленного по формуле (501.3), и среднего экспериментального ее значения не должна превышать 1%:

$$\delta = \frac{R_{meop} - \langle R \rangle}{R_{meop}} < 1\% \tag{23}$$

Если это так, что эксперимент выполнен успешно.

2. Расчеты

2.1 Входные данные

Экспериментальным путем были найдены следующие длины волн:

- 1. Излучение при переходе (3 \rightarrow 2) с длиной волны: 632 \cdot 10⁻⁹ м;
- 2. Излучение при переходе $(4 \rightarrow 2)$ с длиной волны: $481 \cdot 10^{-9}$ м;
- 3. Излучение при переходе (5 \rightarrow 2) с длиной волны: 463 \cdot 10⁻⁹ м;

2.2 Расчеты постоянной Ридберга

При помощи среды разработки Русharm, фреймворка Numpy, фреймворка Loguru и языка программирования Руthon произведены расчеты среднего значения постоянной Ридберга, найдена среднеквадратическая

абсолютная погрешность при определении постоянной, также найдена относительная разность между теоретическим значением постоянной и экспериментальным. Основные результаты представлены ниже, результаты работы программы показаны на рисунке 2, код программы представлен в приложении 1.

```
Connected to pydev debugger (build 221.6008.17)
C:\Users\kupriashinnr\AppData\Local\Programs\Python\Python310\python.exe "D:\Py
2023-04-19 13:30:31.127 | INFO
Длина волны при переходе с 3 на 2 уровень: 6.32е-07
Длина волны при переходе с 4 на 2 уровень: 4.81е-07
Длина волны при переходе с 5 на 2 уровень: 4.63е-07
2023-04-19 13:30:31.127 | INFO | __main__:rascheti:44 -
Постоянная ритберга для длины волны 6.32e-07 составляет 1.1392405063291138e+07
Постоянная ритберга для длины волны 4.81e-07 составляет 1.1088011088011087e+07
Постоянная ритберга для длины волны 4.63е-07 составляет 1.0284891494394734е+07
2023-04-19 13:30:31.143 | INFO
Среднее значение постоянной Ритберга составляет: 1.092176921523232e+07
2023-04-19 13:30:31.143 | INFO | __main__:rascheti:58 -
Среднеквадратическая абсолютная погрешность: 0.04245851472250569e+07
2023-04-19 13:30:31.143 | INFO
Теоретическое значение постоянной Ритберга: 1.0974е+07
Вычесленное занчение: 1.092176921523232e+07
Относительная разность составляет: 0.475950289481315 %
Process finished with exit code 0
```

Рисунок 2 - результаты работы программы по нахождению постоянной Ридберга и погрешностей

Полученные данные занесены в таблицу 2.

Таблица 2 – Полученные расчетные данные

Длина во	лны λ,	№ уровня, с которого	Постоянная Ридберга
M		происходит переход	R , м ⁻¹

632 · 10 ⁻⁹ м	3	$1.13924 \cdot 10^7 \mathrm{m}^{-1}$
481 · 10 ⁻⁹ м	4	$1.10880 \cdot 10^7 \mathrm{m}^{-1}$
463 · 10 ⁻⁹ м	5	$1.02849 \cdot 10^7 \mathrm{m}^{-1}$
Среднее значение		$1.09218 \cdot 10^7 \mathrm{m}^{-1}$

Согласно рисунку 2, среднеквадратическая абсолютная погрешность составляет $0.04246 \cdot 10^7 \, \text{м}^{-1}$, откуда окончательный результат постоянной Ридберга, найденной экспериментальным путем:

$$(1.09 \pm 0.04) \cdot 10^7 \,\mathrm{m}^{-1}$$
 (24)

При этом, согласно рисунку 2, относительная разность теоретического значения постоянной Ридберга, вычисленной по формуле 3, и среднего экспериментального ее значения не превышает 1% и составляет 0.48%.

3. Вывод

В данной лабораторной работе экспериментальным путем была найдена постоянная Ридберга для линий излучения атома водорода на длинах волн: 632 нм, 481 нм и 463 нм, которая составляет $(1.09 \pm 0.04) \cdot 10^7$ м⁻¹. При этом относительная разность, вычисленного теоретически значения постоянной, и полученной в данном эксперименте составляет 0.48%.

Для расчетов был применен комплекс информационных продуктов, таких как: среда разработки на языке Python – Pycharm, фреймворк математического моделирования – Numpy, фреймворк логирования – Loguru. Расчеты проводились с помощью языка программирования – Python.

приложение 1

```
import sys
sys.path.insert(1,
        r'F:\2 семестр Магистратура\Технологии обработки и контроля
оптики\Лабораторные работы\Лабораторные
работы выполнение\Лабораторная работа №2\L2\venv\Lib\site-packages')
import numpy
from loguru import logger
# ФУНКЦИЯ ДЛЯ РАСЧЕТА ПОСТОЯННОЙ РИТБЕРГА, КОТОРАЯ
ПРИНИМАЕТ ДЛИНУ ВОЛНЫ И НОМЕР УРОВНЯ
def const_Ritberg(wavelength: numpy.float64, number_level: int) ->
numpy.float64:
  ritberg_const = numpy.divide(
    1,
    numpy.dot(
      wavelength,
      numpy.divide(
        1,
        2 ** 2
      ) - numpy.divide(
        1,
        number_level ** 2
      )
```

)

```
def rascheti():
  # ВХОДНЫЕ ПАРАМЕТРЫ
  wavelength_3_2 = numpy.dot(632, 10 ** (-9))
  wavelength_4_2 = numpy.dot(481, 10 ** (-9))
  wavelength_5_2 = numpy.dot(463, 10 ** (-9))
  logger.info(f"\nДлина волны при переходе с 3 на 2 уровень:
\{wavelength_3_2\}\n''
        f"Длина волны при переходе с 4 на 2 уровень: {wavelength 4 2}\n"
        f''Длина волны при переходе с 5 на 2 уровень: {wavelength 5 2}\n'')
  # РАСЧЕТ ПОСТОЯННЫХ РИТБЕРГА ДЛЯ ДЛИН ВОЛН
  ritberg_wavelength_3_2 =
numpy.dot(const_Ritberg(wavelength=wavelength_3_2, number_level=3), 10 **
(-7)
  ritberg_wavelength_4_2 =
numpy.dot(const_Ritberg(wavelength=wavelength_4_2, number_level=4), 10 **
(-7)
  ritberg_wavelength_5_2 =
numpy.dot(const_Ritberg(wavelength=wavelength_5_2, number_level=5), 10 **
(-7)
  logger.info(f"\nПостоянная ритберга для длины волны {wavelength 3 2}
cоставляет {ritberg wavelength 3 2}e+07\n"
        f"Постоянная ритберга для длины волны {wavelength 4 2}
составляет {ritberg wavelength 4 2}e+07\n"
```

```
f"Постоянная ритберга для длины волны {wavelength 5 2}
составляет {ritberg wavelength 5 2}e+07\n")
  # СРЕДНЕЕ ЗНАЧЕНИЕ ПОСТОЯННОЙ РИТБЕРГА
  sred_ritberg_const = numpy.mean([ritberg_wavelength_3_2,
ritberg_wavelength_4_2, ritberg_wavelength_5_2])
  logger.info(f"\nСреднее значение постоянной Ритберга составляет:
{sred_ritberg_const}e+07")
  # СРЕДНЕКВАДРАТИЧЕСКАЯ ОБСОЛЮТНАЯ ПОГРЕШНОСТЬ
  abs_3_2 = numpy.abs(sred_ritberg_const - ritberg_wavelength_3_2)
  abs_4_2 = numpy.abs(sred_ritberg_const - ritberg_wavelength_4_2)
  abs 5 2 = numpy.abs(sred_ritberg_const - ritberg_wavelength_5_2)
  sred_abs_error = numpy.mean([abs_3_2, abs_4_2, abs_5_2])
  logger.info(f"\nСреднеквадратическая абсолютная погрешность:
{sred_abs_error}e+07")
  # ПРОВЕРКА РЕЗУЛЬТАТА
  ritberg\_teor = numpy.dot(1.0974, 1)
  otnos_raznost = numpy.dot(
    numpy.divide(
      ritberg_teor - sred_ritberg_const,
      ritberg_teor
    ),
    100
  )
```

logger.info(f"\nТеоретическое значение постоянной Ритберга:

```
{ritberg_teor}e+07\n"
    f"Вычесленное занчение: {sred_ritberg_const}e+07\n"
    f"Относительная разность составляет: {otnos_raznost} %")

if __name__ == '__main__':
    rascheti()
```