Семинар 12.

Семинары: Погорелова П.В.

Ошибки спецификации модели. Дельта-метод.

1. (Исключение существенных переменных) Дана стандартная модель парной регрессии

$$y_i = \beta_1 + \beta_2 x_i + \varepsilon_i, i = 1, ..., n.$$

- (a) Чему равна МНК-оценка коэффициента β_2 при ограничении $\beta_1 = 0$.
- (б) Чему равна дисперсия оценки в пункте (а)? Покажите, что она меньше, чем $\sigma^2/\sum_{i=1}^n (x_i \bar{x})^2$ дисперсия МНК-оценки β_2 в регрессии без ограничения. Противоречит ли это теореме Гаусса-Маркова?
- 2. (Включение лишних переменных) Пусть процесс, порождающий данные, имеет вид:

$$y = X\beta + \varepsilon$$
. (1)

Модель, которую мы оцениваем:

$$y = X\beta + Z\gamma + \varepsilon$$
. (2)

Здесь $X-n\times k$ матрица, $Z-n\times l$ матрица, $y-n\times 1$ вектор, $\beta-k\times 1$ вектор, $\gamma-l\times 1$ вектор, $\varepsilon-n\times 1$ вектор.

- (a) Будет ли МНК-оценка вектора параметров β несмещённой?
- (б) Что произойдёт с оценкой ковариационной матрицы $\widehat{\operatorname{Var}}(\hat{\beta})$?
- (в) Будет ли несмещённой МНК-оценка дисперсии случайной ошибки σ^2 ?
- 3. Пусть X цена мороженого, а Y дневная выручка от продаж мороженого. Рассматривается регрессия вида

$$Y_i = \beta_1 + \beta_2 X_i + \beta_3 X_i^2 + \varepsilon_i.$$

Ниже представлены результаты оценивания регрессии с помощью метода наименьших квадратов.

Постройте 95%—ый доверительный интервал для значения цены $X=X_0$, при котором выручка максимальна.

Dependent Variable: Y Method: Least Squares Sample: 1 50

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	100.2079	1.967171	50.94010	0.0000
X	10.03677	0.903745	11.10576	0.0000
X2	-0.817382	0.084591	-9.662803	0.0000
R-squared	0.765563	Mean dependent var		123.4150
Adjusted R-squared	0.755587	S.D. dependent var		8.089480
S.E. of regression	3.999287	Akaike info criterion		5.668234
Sum squared resid	751.7320	Schwarz criterion		5.782955
Log likelihood	-138.7058	Hannan-Quinn criter.		5.711920
F-statistic	76.74024	Durbin-Watson stat		1.738403
Prob(F-statistic)	0.000000			

C CC		
Coefficients	covariance	matrix

	Cocincients covariance matrix					
	C	X	X2			
С	3.869764	-1.598561	0.134292			
X	-1.598561	0.816755	-0.074654			
X2	0.134292	-0.074654	0.007156			