

Hierarchical models

Anita Wang

Constructing a parameterized prior distribution

- we consider the problem of estimating a parameter θ using data from a small experiment and a prior distribution constructed from similar previous (or historical) experiments.
- Mathematically, we will consider the current and historical experiments to be a random sample from a common population.

Example

- In the evaluation of drugs for possible clinical application, studies are routinely performed on rodents
- Suppose the immediate aim is to estimate θ , the probability of tumor in a population of female laboratory rats that receive a zero dose of the drug
- The data show that 4 out of 14 rats developed tumor
- It is natural to assume a binomial model for the number of tumors, given θ .
- For convenience, we select a prior distribution for θ from the conjugate family, $\theta \sim \text{Beta}(\alpha, \beta)$.

Analysis with a fixed prior distribution

- From historical data, suppose we knew that the tumor probabilities θ among groups of female lab rats follow an approximate beta distribution, with known mean and standard deviation.
- we could find values for α , β that correspond to the given values for the mean and standard deviation.
- assuming a Beta(α , β) prior distribution for θ yields a Beta(α + 4, β + 10) posterior distribution for θ .

Approximate estimate of the population distribution

- Typically, the mean and standard deviation of underlying tumor risks are not available.
- historical data are available on previous experiments on similar groups of rats.
- the historical data were in fact a set of observations of tumor incidence in 70 groups of rats. In the jth historical experiment, let the number of rats with tumors be y_i and the total number of rats be n_i .
- We model the y_i 's as independent binomial data, given sample sizes n_i and study-specific means θ_i . Assuming that the beta prior distribution with parameters (α, β) is a good description
- •••• the population distribution of the θ_i 's in the historical beriments

Table: tumor incidence

Previous experiments:									
0/20	0/20	0/20	0/20	0/20	0/20	0/20	0/19	0/19	0/19
0/19	0/18	0/18	0/17	1/20	1/20	1/20	1/20	1/19	1/19
1/18	1/18	2/25	2/24	2/23	2/20	2/20	2/20	2/20	2/20
2/20	1/10	5/49	2/19	5/46	3/27	2/17	7/49	7/47	3/20
3/20	2/13	9/48	10/50	4/20	4/20	4/20	4/20	4/20	4/20
4/20	10/48	4/19	4/19	4/19	5/22	11/46	12/49	5/20	5/20
6/23	5/19	6/22	6/20	6/20	6/20	16/52	15/47	15/46	9/24

Current experiment:

4/14

Structure of the hierarchical model

A starting point

- The observed sample mean and standard deviation of the 70 values $\frac{y_j}{n_j}$ are 0.136 and 0.103.
- If we set the mean and standard deviation of the population distribution to these values, we can solve for α and β . The resulting estimate for (α, β) is (1.4, 8.6).
- This is not a Bayesian calculation because it is not based on any specified full probability model. The estimate (1.4, 8.6) is simply a starting point from which we can explore the idea of estimating the parameters of the population distribution.

Exchangeability

- Generalizing from the example of the previous section, consider a set of experiments j = 1, ..., J, in which experiment j has data (vector) y_j and parameter (vector) θ_j , with likelihood $p(y_j | \theta_j)$.
- A useful assumption in building models, if no information, other than the data y is available to distinguish any of the μ_j 's from any of the others, and no ordering of grouping of the parameters can be made, one must assume symmetry among the parameters in the prior.

Exchangeability

- For example, in the rat tumor example, we have no prior reason to assume that $\mu_{70} < \mu_{71}$ is more likely than $\mu_{70} > \mu_{71}$. In fact, for the information given, the order that the groups are listed in is meaningless.
- So for this problem, it seems reasonable to have the distribution on the μ_j 's be exchangeable, i.e. the distribution $p(\mu_1, ..., \mu_J)$ should be invariant under permutations of the indices (1, ..., J). If J = 3, then the distributions

$$p(\theta_1, \theta_2, \theta_3), p(\theta_1, \theta_3, \theta_2), p(\theta_2, \theta_1, \theta_3), p(\theta_2, \theta_3, \theta_1),$$

 $p(\theta_3, \theta_1, \theta_2), p(\theta_3, \theta_2, \theta_1)$
are all of the same form.

Objections to exchangeable models

- it is natural to object to exchangeability on the grounds that the units actually differ.
- For example, the 71 rat tumor experiments were performed at different times, on different rats, and presumably in different laboratories. Such information does not, however, invalidate exchangeability
- Note that exchangeability does not imply independence.
- However all iid models are exchangeable.

Exchangeability

• One way of getting exchangeable distribution is to take a mixture of iid distributions.

$$p(\theta|\phi) = \prod_{j=1}^{J} p(\theta_j|\phi)$$

• As ϕ is usually unknown, the distribution on μ must average over the uncertainty in ϕ .

$$p(\theta) = \int \left[\prod_{j=1}^{J} p(\theta_j | \phi) \right] p(\phi) d\phi$$

• All models of this form are exchangeable. To think of the μ_j 's as draws from a superpopulation model that is determined by the hyperparameter ϕ .

Exchangeability

- One way of thinking of exchangeability is in terms noninformativeness or ignorance about the random variables.
- In the rat example, we have no preferences for different orderings of the theta's.
- In the rat problem, for example, the model like

$$\theta_i \sim Beta(\alpha, \beta)$$
 iid $\alpha \sim U(0, 20)$ $\beta \sim U(0, 20)$

Bayesian treatment of the hierarchical model

- the key 'hierarchical' part of these models is that φ is not known and thus has its own prior distribution, $p(\varphi)$.
- Suppose we have the following hierarchical model

$$y|\theta, \phi \sim p(y|\theta)$$
$$\theta|\phi \sim p(\theta|\phi)$$
$$\phi \sim p(\phi)$$

The joint prior distribution is

$$p(\varphi, \theta) = p(\varphi)p(\theta|\varphi),$$

and the joint posterior distribution is

$$p(\varphi, \theta|y) \propto p(\varphi, \theta)p(y|\varphi, \theta)$$
$$= p(\varphi, \theta)p(y|\theta),$$

The hyperprior distribution

- In order to create a joint probability distribution for (φ, θ) , we must assign a prior distribution to φ .
- If little is known about ϕ , we can assign a diffuse prior distribution, but we must be careful when using an improper prior density to check that the resulting posterior distribution is proper
- In most real problems, one should have enough substantive knowledge about the parameters in ϕ
- In the rat tumor example, the hyperparameters are (α, β) , which determine the beta distribution for θ .

Posterior predictive distributions

- There are two posterior predictive distributions that might be of interest to the data analyst:
 - the distribution of future observations \tilde{y} corresponding to an existing θ_i
 - the distribution of observations \tilde{y} corresponding to future θ_i 's $(\tilde{\theta})$ drawn from the same superpopulation.
- In the rat tumor example, future observations can be (1) additional rats from an existing experiment, or (2) results from a future experiment.

Bayesian analysis of conjugate hierarchical models

- we present an approach that combines analytical and numerical methods to obtain simulations from the joint posterior distribution, $p(\theta, \phi|y)$
- the population distribution, $p(\theta|\phi)$, is conjugate to the likelihood, $p(y|\theta)$.
- Three-step:
 - 1. $p(\varphi, \theta|y) \propto p(\varphi)p(\theta|\varphi)p(y|\theta, \varphi)$
 - 2. Conditional posterior $p(\theta|\phi,y) \propto p(\theta|\phi)p(y|\theta,\phi)$ This will be easy if a conjugate prior is used.
 - 3. Marginal posterior

$$p(\varphi|y) = \int p(\theta, \varphi|y) d\theta.$$

Bayesian analysis of conjugate hierarchical models

• For many standard models, the marginal posterior distribution of ϕ can be computed using the conditional probability,

$$p(\varphi|y) = \frac{p(\theta, \varphi|y)}{p(\theta|\varphi, y)}.$$

- The difficulty is that the denominator $p(\theta|\phi, y)$, a function of both θ and ϕ for fixed y, has a normalizing factor that depends on ϕ as well as y.
- One must be careful with the proportionality 'constant' in Bayes' theorem, especially when using hierarchical models, to make sure it is actually constant

Drawing simulations from the posterior distribution

- Simulating a draw from the joint posterior distribution, p(θ, φ|y):
 - 1. Sample ϕ_1, \dots, ϕ_m from $p(\phi|y)$
 - 2. Sample $\theta_1, \dots, \theta_m$ from $p(\theta|\phi_i, y)$, given the drawn value of φ .
 - 3. If necessary, sample \tilde{y} . The form of this draw depends on whether the θ of interest is one corresponding to the dataset or a new one. It might be necessary first to draw a new value $\tilde{\theta}$ given φ .

As usual, the above steps are performed L times in order to obtain a set of L draws.

Application to the model for rat tumors

• the data from experiments j = 1, ..., J, J = 71, are assumed to follow independent binomial distributions:

$$y_j \sim \text{Bin}(n_j, \theta_j),$$

• The parameters θ_j are assumed to be independent samples from a beta distribution:

$$\theta_j \sim \text{Beta}(\alpha, \beta),$$

• we shall assign a noninformative hyperprior distribution to reflect our ignorance about the unknown hyperparameters.

Joint, conditional, and marginal posterior distributions

• The joint posterior distribution of all parameters is $p(\theta, \alpha, \beta|y) \propto p(\alpha, \beta)p(\theta|\alpha, \beta)p(y|\theta, \alpha, \beta)$

$$\propto p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta_j^{\alpha-1} (1 - \theta_j)^{\beta-1} \prod_{j=1}^{J} \theta_j^{y_j} (1 - \theta_j)^{n_j - y_j}$$

• Given (α, β) , the components of θ have beta densities, and the joint density is

$$p(\theta|\alpha,\beta,y)$$

$$= \prod_{i=1}^{J} \frac{\Gamma(\alpha + \beta + n_j)}{\Gamma(\alpha + y_j)\Gamma(\beta + n_j - y_j)} \theta_j^{\alpha + y_j - 1} (1 - \theta_j)^{\beta + n_j - y_j - 1}$$

Joint, conditional, and marginal posterior distributions

Marginal posterior

$$p(\alpha, \beta | y) = \frac{p(\theta, \alpha, \beta | y)}{p(\theta | \alpha, \beta, y)}$$

$$\propto p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha + y_j)\Gamma(\beta + n_j - y_j)}{\Gamma(\alpha + \beta + n_j)}$$

'noninformative' hyperprior distribution

• One reasonable choice of diffuse hyperprior density is uniform on $(\alpha/\alpha+\beta, (\alpha+\beta)^{-1/2})$,

$$p(\alpha, \beta) \propto (\alpha + \beta)^{-5/2}$$

- Before assigning a hyperprior distribution, we reparameterize in terms of $logit(\alpha/\alpha+\beta) = log(\alpha/\beta)$ and $log(\alpha+\beta)$, which are the logit of the mean and the logarithm of the 'sample size' in the beta population distribution for θ .
- We use the logistic and logarithmic transformations to put each on a $(-\infty,\infty)$ scale.

the marginal posterior density of the hyperparameters

- the mode ((-1.75, 2.8) and $(\alpha, \beta) = (2.4, 14.0)$) is not far from the point estimate (as we would expect)
- important parts of the marginal posterior distribution lie outside the range of the graph.

posterior moments

• $E(\alpha|y)$ is estimated by

$$\sum_{\log\left(\frac{\alpha}{\beta}\right),\log(\alpha+\beta)} \alpha p(\log\left(\frac{\alpha}{\beta}\right),\log(\alpha+\beta)|y)$$

• we compute $E(\alpha|y) = 2.4$ and $E(\beta|y) = 14.3$.

Sampling from the joint posterior distribution

- We draw 1000 random samples from the joint posterior distribution of $(\alpha, \beta, \theta_1, \dots, \theta_I)$
 - 1. Simulate 1000 draws of $(\log(\alpha/\beta), \log(\alpha+\beta))$ from their posterior distribution displayed in Figure
 - 2. For $l = 1, \ldots, 1000$:
 - a) Transform the 1th draw of $(\log(\alpha/\beta), \log(\alpha+\beta))$ to the scale (α, β) to yield a draw of the hyperparameters from their marginal posterior distribution
 - b) For each j = 1, ..., J, sample θ_j from its conditional posterior distribution, $\theta_j | \alpha, \beta, y \sim \text{Beta}(\alpha + y_j, \beta + n_j y_j)$.

Displaying the results

Posterior medians and 95% intervals of rat tumor rates, θ_j , (plotted vs. observed tumor rates y_j/n_j), based on simulations from the joint posterior distribution. The 45° line corresponds to the unpooled estimates, $\hat{\theta} = y_i/n_i$.

