Data Mining (EECS 6412)

Bayesian Classification

Aijun An
Department of Electrical Engineering and Computer Science
York University

Outline

- ▶ Introduction
- ▶ Bayes Theorem
- ▶ Naive Bayes Classifier
- ▶ Bayesian belief networks

Introduction

- ▶ Goal:
 - Determine the most probable hypothesis (class)
 - ▶ E.g, Given new instance x, what is its most probable classification?
- ▶ Probabilistic learning and prediction:
 - Estimate explicit probabilities for all hypotheses (classes)
 - ▶ Predict multiple hypotheses, weighted by their probabilities
 - ▶ Can combine prior knowledge (such as prior probabilities, probability distributions, causal relationships between variables in belief networks) with observed data

3

Introduction (Cont'd)

- ► Incremental learning:
 - ► Each training example can incrementally increase/decrease the probability that a hypothesis is correct.
- ▶ flexible in handling inconsistency
- ▶ Standard:
 - provides a standard of optimal decision making against which other methods can be measured

Bayes Theorem

$$P(h \mid x) = \frac{P(x \mid h)P(h)}{P(x)}$$

- ▶ P (h) = prior probability of hypothesis h
- P(x) = P(x) = P(x) = P(x)
- ▶ $P(h \mid x) = posterior probability of h given x$
- ▶ P(x | h) = conditional probability of x given h (often called the likelihood of h given x)

5

Finding Maximum a Posteriori Hypothesis

$$P(h \mid x) = \frac{P(x \mid h)P(h)}{P(x)}$$

- ► Goal: Find the most probable hypothesis *h* from a set *H* of candidate hypotheses given an example x.
- ► The most probable hypothesis is called *maximum a posteriori* (MAP) hypothesis h_{MAP} :

$$h_{MAP}(x) = \arg \max_{h \in H} P(h \mid x)$$

$$= \arg \max_{h \in H} \frac{P(x \mid h)P(h)}{P(x)} \qquad (P(x) \text{ is constant for all hypotheses})$$

$$= \arg \max_{h \in H} P(x \mid h)P(h)$$

► If assume P (h_i) = P (h_j) (classes are equally likely), then can further simplify, and choose the *Maximum likelihood* (ML) hypothesis $h_{ML}(x) = \arg \max_{h \in H} P(x | h)$

Example

- ▶ Does patient have cancer or not?
 - A patient takes a lab test and the result comes back positive.
 - ▶ The test returns a correct positive result in only 98% of the cases in which the disease is actually present,
 - ► The test returns a correct negative result in only 97% of the cases in which the disease is not present.
 - Furthermore, .008 of the entire population have this cancer.

$$P(cancer) = P(\neg cancer) =$$

 $P(+ | cancer) = P(- | cancer) =$
 $P(+ | \neg cancer) = P(- | \neg cancer) =$

Our goal is to find the maximum between:

$$P(cancer | +)$$
 and $P(\neg cancer | +)$

7

Learning Probabilities from Data

- ► Suppose we do not know the probabilities used in the example in the last slide.
- ▶ But we are given a set of data.
- In order to conduct the reasoning, i.e., to find the MAP hypothesis h_{MAP} , we can estimate the probabilities used in the reasoning from the data.
- ▶ Suppose there are *k* possible hypotheses (i.e., classes):

$$h_1, h_2, \ldots, h_k$$

- ▶ We need to estimate:
 - $P(h_1), P(h_2), ..., P(h_k),$
 - ▶ $P(x|h_1)$, $P(x|h_2)$, ..., $P(x|h_k)$ for each possible instance x,

in order to find:

$$h_{MAP}(x) = \arg\max_{h_i \in H} P(x \mid h_i) P(h_i)$$

Practical Problem with Finding MAP Hypothesis

Suppose instance x is described by attributes values $\langle x_1, x_2, ..., x_n \rangle$ and there is a set C of classes: $c_1, c_2, ...$ c_m .

$$c_{MAP}(x) = \arg \max_{c_j \in C} P(c_j | x_1, x_2, ..., x_n)$$

$$= \arg \max_{c_j \in C} \frac{P(x_1, x_2, ..., x_n | c_j) P(c_j)}{P(x_1, x_2, ..., x_n)}$$

$$= \arg \max_{c_j \in C} P(x_1, x_2, ..., x_n | c_j) P(c_j)$$

▶ Given data set with many attributes, it is infeasible to estimate $P(x_1, x_2, ..., x_n/c_j)$ for all possible x values unless we have a very, very large set of training data. It is also computationally expensive.

g

Naive Bayes Classifier

Naive assumption: values of attributes are conditionally independent given a class

$$P(x_1, x_2, ..., x_n \mid c_j) = \prod_i P(x_i \mid c_j)$$

which gives:

$$c_{NB}(x) = \arg \max_{c_j \in C} P(x_1, x_2, ..., x_n \mid c_j) P(c_j)$$
$$= \arg \max_{c_j \in C} P(c_j) \prod_i P(x_i \mid c_j)$$

▶ Probabilities can be estimated from the training data.

Estimating Probabilities

• Estimate $P(c_i)$:

$$P(c_j) = \frac{\text{# of training examples of class } c_j}{\text{# of training examples}}$$

- ► Estimate $P(x_i|c_j)$ for each attribute value x_i of attribute A_i and each class c_i
 - If attribute A_i is categorical,

$$P(x_i \mid c_j) = \frac{\text{# of training examples of class } c_j \text{ with } x_i \text{ for } A_i}{\text{# of training examples of class } c_j}$$

11

Estimating Probabilities

ightharpoonup If attribute A_i is continuous, can assume normal distribution,

$$P(x_i \mid c_j) = \frac{1}{\sqrt{2\pi}\sigma_{c_i}} e^{-\frac{(x_i - \mu_{c_j})^2}{2\sigma_{c_j}^2}}$$

where μ_{c_j} and σ_{c_j} are the mean and standard deviation of the values of A_i for training examples of class c_i

$$\sigma_{c_{j}} = \sqrt{\frac{1}{n-1} \sum_{x_{i} \in c_{j}} (x_{i} - \mu_{c_{j}})^{2}}$$

Naive Bayes Algorithm

- ▶ Naive Bayes Learning (from examples)
 - ► For each class c_i

$$\hat{P}(c_j) \leftarrow \text{estimate } P(c_j)$$

For each attribute for which x_i is a value

$$\hat{P}(x_i \mid c_i) \leftarrow \text{estimate } P(x_i \mid c_i)$$

ightharpoonup Classifying new instance (x)

$$c_{NB}(x) = \arg\max_{c_j \in C} \hat{P}(c_j) \prod_{x_i \in x} \hat{P}(x_i \mid c_j)$$

13

Example

Training dataset

Classes:

c1:buys_computer='yes'

c2:buys_computer='no'

Classify new example: X = (age < = 30, Income = medium, Student = yes Credit_rating = Fair)

				ı
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3040	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Example (cont'd)

- ▶ Learning:
 - ► Compute P(c_i)

```
P(buy_computer="yes")=9/14
P(buy_computer="no")=5/14
```

▶ Compute $P(x_i|c_i)$ for each class and each attribute value pair:

```
\begin{split} &P(age\leq 30 \mid buys\_computer="yes") = 2/9 = 0.222 \\ &P(age\leq 30 \mid buys\_computer="no") = 3/5 = 0.6 \\ &P(income="medium" \mid buys\_computer="yes") = 4/9 = 0.444 \\ &P(income="medium" \mid buys\_computer="no") = 2/5 = 0.4 \\ &P(student="yes" \mid buys\_computer="yes) = 6/9 = 0.667 \\ &P(student="yes" \mid buys\_computer="no") = 1/5 = 0.2 \\ &P(credit\_rating="fair" \mid buys\_computer="yes") = 6/9 = 0.667 \\ &P(credit\_rating="fair" \mid buys\_computer="yes") = 6/9 = 0.667 \\ &P(credit\_rating="fair" \mid buys\_computer="no") = 2/5 = 0.4 \\ &\dots \end{split}
```

15

Example (cont'd)

- ▶ Classification: to classify:
 - x=(age≤30 ,income =medium, student=yes,credit_rating=fair)

$P(x|c_i)$:

```
P(x|buys\_computer="yes")
```

- = P(age≤30|buys_computer=yes)×P(income=medium|buys_computer=yes)× P(student=yes|buys_computer=yes)×P(credit=fair|buys_computer=yes)
- $= 0.222 \times 0.444 \times 0.667 \times 0.0.667$
- =0.044

 $P(x|buys_computer="no")= 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019$

$P(c_i|x) \propto P(x|c_i) * P(c_i)$:

P(x|buys_computer="yes") * P(buys_computer="yes")=0.028 P(x|buys_computer="no") * P(buys_computer="no")=0.007

x belongs to class "buys computer=yes"

Naïve Bayesian Classifier: Comments

- ▶ Advantages :
 - Easy to implement
 - ▶ Good results obtained in most of the cases
- Disadvantage
 - ► Assumption: class conditional independence of attributes, therefore loss of accuracy
 - ▶ Practically, dependencies exist among attributes
 - ► For example, *headache* and *body temperature* are dependent attributes for *flu* dataset.
 - ▶ Dependencies among these cannot be modeled by Naïve Bayesian Classifier
- ▶ How to deal with these dependencies?
 - ▶ Bayesian Belief Networks

17

Bayesian Belief Networks

- ▶ Naive Bayes assumption of conditional independence is too restrictive.
- ▶ But it's intractable without such assumptions...
- ▶ Bayesian Belief networks provide an intermediate approach which
 - ▶ allows dependencies among attributes
 - but assumes conditional independence among subsets of attributes.

Bayesian Belief Networks

- A graphical model of causal relationships. Two components:
 - ▶ A directed acyclic graph (DAG): represents dependency among variables (attributes)
 - **Nodes**: variables (including class attribute)
 - Links: dependencies (e.g., A dependes on E)
 - Parents: immediate predecessors. E.g., A,B are the parents of C. B is the parent of D
 - Descendant: X is a descendant of Y if there is a direct path from Y to X.
 - Conditional Independency:
 - Assume: each variable is conditionally independent of its nondescendants given its parents.
 - Definition: X is conditionally independent of Y given Z iff P(X|Y,Z)=P(X|Z)
 - E.g.: C is conditional independent of D given A and B. Thus, P(C|A, B, D)=P(C|A, B)
 - Acyclic: has no loops or cycles
 - A conditional probability table (CPT) for each variable X: specifies the conditional probability distribution P(X|Parents(X)).

Example of CPT

Suppose each variable is binary (contain two values: X and $\neg X$)

CPT table for Campfire

 $\neg S$, $\neg B$ S,B $S, \neg B$ $\neg S,B$ C0.4 0.1 0.8 0.2 $\neg C$ 0.6 0.9 0.2 0.8 Campfire

There is a conditional probability table (CPT) for each variable

Inference Rule in Bayesian Networks

► The joint probability of any tuple $(x_1, ..., x_n)$ corresponding to the variables or attributes $(X_1, ..., X_n)$ is computed by

$$P(x_1,...,x_n) = \prod_{i=1}^n P(x_i \mid Parents(X_i))$$

• Example:

$$P(\neg S, B, \neg L, C, \neg T, F) = P(\neg S) \times P(B) \times P(\neg L \mid \neg S) \times P(C \mid \neg S, B) \times P(\neg T \mid \neg L) \times P(F \mid \neg L, \neg S, C)$$

21

Inference in Bayesian Networks

- A Bayesian network can be used to infer the (probabilities of) values of one or more network variables, given observed values of others.
- ► Example:
 - ► Given Storm= 0, BusTourGroup=1, Lightning=0, Campfire=1, Thunder=0, we want to know ForestFire=?

- ▶ Compute two probabilities:
 - (1) $P(F \mid \neg S, B, \neg L, C, \neg T) = P(F \mid \neg L, \neg S, C)$
 - (2) $P(\neg F \mid \neg S, B, \neg L, C, \neg T) = P(\neg F \mid \neg L, \neg S, C)$
- ForestFire = True if (1) > (2)

Inference in Bayesian Networks

- Another example:
 - ► Given Storm=1, Campfire=0, ForestFire=1, what is the probability distribution of Thunder?
 - Compute two probabilities:

```
(1) P(T \mid S, \neg C, F) = P(T, L \mid S, \neg C, F) + P(T, \neg L \mid S, \neg C, F)
= P(T \mid L, S, \neg C, F) P(L \mid S, \neg C, F) + P(T \mid \neg L, S, \neg C, F) P(\neg L \mid S, \neg C, F)
= P(T \mid L) P(L \mid S, \neg C, F) + P(T \mid \neg L) P(\neg L \mid S, \neg C, F)
where P(L \mid S, \neg C, F) = \frac{P(L, F \mid S, \neg C)}{P(F \mid S, \neg C)} = \frac{P(F \mid L, S, \neg C) P(L \mid S, \neg C)}{P(F, L \mid S, \neg C) + P(F, \neg L \mid S, \neg C)}
= \frac{P(F \mid L, S, \neg C) P(L \mid S)}{P(F, L \mid S, \neg C) + P(F, \neg L \mid S, \neg C)} = \frac{P(F \mid L, S, \neg C) P(L \mid S)}{P(F \mid L, S, \neg C) P(L \mid S)}
= \frac{P(F \mid L, S, \neg C) P(L \mid S)}{P(F \mid L, S, \neg C) P(L \mid S)}
and similarly P(\neg L \mid S, \neg C, F) = \frac{P(F \mid \neg L, S, \neg C) P(\neg L \mid S)}{P(F \mid L, S, \neg C) P(L \mid S) + P(F \mid \neg L, S, \neg C) P(\neg L \mid S)}
(2) P(\neg T \mid S, \neg C, F) \text{ can be calculated similarly.}
\blacktriangleright \text{ Thunder} = \text{True if } (1) > (2)
```

Learning of Bayesian Networks

- Several senarios of this learning task
 - ▶ Network structure might be *known* or *unknown*.
 - ► Training examples might provide values of all network variables, or just *some*.
- Senario 1: If structure known and observe all variables:
 - ▶ Then it's easy as training a Naive Bayes classifier.
 - ► Learn only CPTs (estimate the conditional probabilities from training data)

Learning of Bayesian Networks

- Senario 2: Suppose structure known, variables partially observable
 - ► For example, observe *ForestFire*, *Storm*, *BusTourGroup*, *Thunder*, *but not Lightning*, *Campfire*...
 - ► Similar to training neural network with hidden units. In fact, can learn network conditional probability tables using *gradient ascent* method!
- ▶ Senario 3: When structure unknown
 - ▶ Use heuristic search or constraint-based technique to search through potential structures.
 - ▶ K2 algorithm

25

Summary: Bayesian Belief Networks

- ▶ Combine prior knowledge with observed data
- ► Intermediate approach that allows both dependencies and conditional independencies
- Other issues
 - ▶ Extend from categorical to real-valued variables
 - ▶ Parameterized distributions instead of tables
 - ▶ More effective inference and learning methods
 - **...**

Next Class

- ▶ KNN
- ▶ Text classification