仿真实验: 三相全控桥式整流电路

仪器科学与工程学院 招梓枫 22017327

一、 三相桥式整流电路-实验背景

三相桥式全控整流电流由6个晶闸管(Thyristor)组成整流桥路,从而实现交流到直流的整流,如下是一个三相电Y型接法的三相桥式全控整流电路:

基于以上电路, 做简单的电路分析:

阴极连接在一起的 3 个晶闸管 VT1、VT3、VT5 称为共阴组;阳极连接在一起的 3 个晶闸管 VT4、VT6、VT2 称为共阳组。晶闸管的导通顺序为 1-2-3-4-5-6。晶闸管工作情况可参见下表($\alpha=0$)。

时段	I	II	III	IV	V	VI
共阴极组中导通的晶闸管	VT ₁	VT ₁	VT ₃	VT ₃	VT ₅	VT ₅
共阳极组中导通的晶闸管	VT ₆	VT ₂	VT ₂	VT ₄	VT ₄	VT ₆
整流输出电压 u_d	u_a - u_b = u_{ab}	u_a - u_c = u_{ac}	u_b - u_c = u_{bc}	u_b - u_a = u_{ba}	u_c - u_a = u_{ca}	u_c - u_b = u_{cb}

相关电量变化规律应如下图所示 $(\alpha = 0)$:

- 二、 三相桥式全控整流电路-仿真实验
- 2.1 基本电路

如下图所示在 Matlab Simulink 中建立三相桥式全控整流电路的仿真框图, 并对相关电量进行监听。

示波器(scope)输出如下,输出结果与分析实验背景中的分析一致。可以看到,整流后的 $\mathbf{u}_d(\mathbf{i}_d)$ 是直流电量。

2.2 改变触发角α

 $\alpha=30^\circ$,晶闸管其实导通时刻推迟了 30° ,组成 \mathbf{u}_a 的每一段线电压因此推迟 30° , \mathbf{u}_a 平均值降低。理论分析和仿真结果分别如下图所示:

 $\alpha=60^\circ$, u_d 波形中每段线电压的波形继续向后移, u_d 平均值继续降低。出现了 u_d 为 0 的点。理论分析和仿真结果分别如下图所示:

 $\alpha=90^\circ$, \mathbf{u}_a 一旦降为 0, \mathbf{i}_a 也降为 0,晶闸管关断,输出整流电压 \mathbf{u}_a 为 0, \mathbf{u}_a 波形不能出现负值。理论分析和仿真结果分别如下图所示:

2.3 阻感负载

α在 60°以内时,u_d波形连续,电路的工作情况与带电阻负载时十分相似,各晶闸管的通断情况、输出整流电压 u_d 波形、晶闸管承受电压波形都一样。区别在于电流,当电感足够大时,电流的波形在到通断可以近似为一条水平线。当 α 大于 60°时, u_d 波形会出现负的部分。

$$\alpha=~0^{\circ}~L=0.\,1$$

 $\alpha = \ 0^{\circ} \quad L = 1$

 $\alpha=~30\,^{\circ}~L=0.\,1$

 $\alpha = \; 30\,^{\circ} \ L = 1$

 $\alpha=~60^{\circ}~L=0.1$

 $\alpha = \, 60^{\,\circ} \ L = 1$

 $\alpha=~90\,^{\circ}~L=0.\,1$

 $\alpha=~90^{\circ}~L=1$

三、 参考文献 《电力电子技术》王兆安,电子工业出版社