

第八讲 统计回归模型(2)

周毓明 zhouyuming@nju.edu.cn

南京大学计算机科学与技术系

课程内容

- 1. 数学概念与模型
- 2. 实际案例与分析
- 3. 计算机典型应用

2. 实际案例与分析

- ① 牙膏的销售量
- ② 程序员的薪金
- ③ 投资额的问题

牙膏的销售量

建立牙膏销售量与价格、广告投入之间的模型预测在不同价格和广告费用下的牙膏销售量

收集了30个销售周期本公司牙膏销售量、价格、 广告费用,及同期其它厂家同类牙膏的平均售价

销售	本公司价	其它厂家	广告费用	价格差	销售量
周期	格(元)	价格(元)	(百万元)	(元)	(百万支)
1	3.85	3.80	5.50	-0.05	7.38
2	3.75	4.00	6.75	0.25	8.51
• • •	• • •	• • •	• • •	• • •	• • •
29	3.80	3.85	5.80	0.05	7.93
30	3.70	4.25	6.80	0.55	9.26

基本模型

y~公司牙膏销售量 x₁~其它厂家与本公司价格差 x₂~公司广告费用

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \varepsilon$$

y~被解释变量(因变量)

 x_1, x_2 ~解释变量(回归变量, 自变量)

 β_0 , β_1 , β_2 , β_3 ~回归系数

ε~随机误差(均值为零的正态 分布随机变量)

模型求解

MATLAB 统计工具箱

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \varepsilon$$
 由数据 y, x_1, x_2 估计 β

[b,bint,r,rint,stats]=regress(y,x,alpha)

输入 y~n维数据向量

输出

b~β的估计值

 $x = \begin{bmatrix} 1 & x_1 & x_2 & x_2^2 \end{bmatrix} \sim n \times 4$ 据矩阵,第1列为全1向量 bint~b的置信区间

r~残差向量y-xb

alpha(置信水平,0.05)

rint~r的置信区间

参数	参数估计值	置信区间			
eta_0	17.3244	[5.7282 28.9206]			
eta_1	1.3070	[0.6829 1.9311]			
eta_2	-3.6956	[-7.4989 0.1077]			
eta_3	0.3486	[0.0379 0.6594]			
R^2 =0.9054 F =82.9409 p =0.0000					

Stats~ 检验统计量 R^2 ,F,p

牙膏的销售量

结果分析

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \varepsilon$$

参数	参数估计值	置信区间
$oldsymbol{eta_0}$	17.3244	[5.7282 28.9206]
$oldsymbol{eta_1}$	1.3070	[0.6829 1.9311]
eta_2	-3.6956	[-7.4989 0.1077]
$oldsymbol{eta_3}$	0.3486	[0.0379 0.6594]
R	2 =0.9054 F =82.940	p=0.0000

y的90.54%可由模型确定

p远小于α=0.05

β₂的置信区间包含零点(右 端点距零点很近)

x,2项显著

F远超过F检验的临界值

模型从整体上看成立

 x_2 对因变量y的影响不太显著

可将x,保留在模型中

牙膏的销售量

销售量预测
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_2^2$$

价格差 x_1 =其它厂家价格 x_3 - 本公司价格 x_4

估计 x_3 调整 x_4 [控制 x_1] 通过 x_1, x_2 预测y

控制价格差 x_1 =0.2元,投入广告费 x_2 =650万元

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_2^2 = 8.2933$$
 (百万支)

销售量预测区间为 [7.8230, 8.7636] (置信度95%)

上限用作库存管理的目标值

下限用来把握公司的现金流

若估计 x_3 =3.9,设定 x_4 =3.7,则可以95%的把握知道销售 额在 7.8320×3.7≈ 29 (百万元)以上

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \varepsilon$$

模型改进

 x_1 和 x_2 对y的 影响独立

 x_1 和 x_2 对y的影响有 交互作用

参数	参数估计值	置信区间
$oldsymbol{eta}_0$	17.3244	[5.7282 28.9206]
$oldsymbol{eta_1}$	1.3070	[0.6829 1.9311]
eta_2	-3.6956	[-7.4989 0.1077]
$oldsymbol{eta_3}$	0.3486	[0.0379 0.6594]
R^2	F=0.9054 $F=82.940$	p=0.0000

$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \beta_4 x_1 x_2 + \varepsilon$

参数	参数估计值	置信区间
$oldsymbol{eta_0}$	29.1133	[13.7013 44.5252]
$oldsymbol{eta_1}$	11.1342	[1.9778 20.2906]
$oldsymbol{eta_2}$	-7.6080	[-12.6932 -2.5228]
$oldsymbol{eta_3}$	0.6712	[0.2538 1.0887]
$oldsymbol{eta_4}$	-1.4777	[-2.8518 -0.1037]
V I	$R^2 = 0.9209$ $F = 72.777$	p=0.0000 9

牙膏的销售量

两模型销售量预测比较

控制价格差 x_1 =0.2元,投入广告费 x_2 =6.5百万元

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_2^2$$

$$\hat{y} = 8.2933$$
 (百万支)

区间 [7.8230, 8.7636]

$$\hat{y} = \beta_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_2^2 + \hat{\beta}_4 x_1 x_2$$

$$\hat{y} = 8.3272$$
 (百万支)

区间 [7.8953, 8.7592]

 \hat{v} 略有增加

预测区间长度更短

两模型分与x1,x2关系的比较

$$\hat{y} = \hat{\beta}_{0} + \hat{\beta}_{1}x_{1} + \hat{\beta}_{2}x_{2} + \hat{\beta}_{3}x_{2}^{2} \qquad \hat{y} = \beta_{0} + \hat{\beta}_{1}x_{1} + \hat{\beta}_{2}x_{2} + \hat{\beta}_{3}x_{2}^{2} + \hat{\beta}_{4}x_{1}x_{2}$$

$$y = \hat{\beta}_{0} + \hat{\beta}_{1}x_{1} + \hat{\beta}_{2}x_{2} + \hat{\beta}_{3}x_{2}^{2} + \hat{\beta}_{4}x_{1}x_{2}$$

$$x_{2} = 6.5$$

$$x_{2} = 6.5$$

$$x_{3} = 6.5$$

$$x_{4} = 6.5$$

$$x_{1} = 6.5$$

$$x_{1} = 6.5$$

$$x_{2} = 6.5$$

$$x_{3} = 6.5$$

$$x_{4} = 6.5$$

$$x_{5} = 6.5$$

$$x_{1} = 6.5$$

$$x_{1} = 6.5$$

$$x_{2} = 6.5$$

$$x_{3} = 6.5$$

$$x_{4} = 6.5$$

$$x_{5} = 6.5$$

$$x_{5} = 6.5$$

$$x_{6} = 7.5$$

$$x_{1} = 6.5$$

$$x_{1} = 6.5$$

$$x_{2} = 6.5$$

交互作用影响的讨论
$$\hat{y} = \beta_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_2^2 + \hat{\beta}_4 x_1 x_2$$

价格差 $x_1=0.1$

$$\hat{y}\big|_{x_1=0.1} = 30.2267 - 7.7558x_2 + 0.6712x_2^2$$

价格差 $x_1 = 0.3$

$$\hat{y}\big|_{x_1=0.3} = 32.4535 - 8.0513 x_2 + 0.6712 x_2^2$$

$$x_2 < 7.5357 \ |\hat{y}|_{x_1=0.3} > \hat{y}|_{x_1=0.1}$$

价格优势会使销售量增加

加大广告投入使销售量增加 (x,大于6百万元)

> 价格差较小时增加 的速率更大

价格差较小时更需要靠广告 来吸引顾客的眼球

牙膏的销售量

完全二次多项式模型

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_4 x_1^2 + \beta_5 x_2^2 + \varepsilon$$

MATLAB中有命令rstool直接求解

从输出 Export 可得 $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3, \hat{\beta}_4, \hat{\beta}_5)$ 13

建立模型研究薪金与资历、管理责任、教育程度的关系

分析人事策略的合理性,作为新聘用人员薪金的参考

46名软件开发人员的档案资料

编号	薪金	资历	管理	教育	编号	薪金	资 历	管理	教育
01	13876	1	1	1	42	27837	16	1	2
02	11608	1	0	3	43	18838	16	0	2
03	18701	1	1	3	44	17483	16	0	1
04	11283	1	0	2	45	19207	17	0	2
• • •	• • •	• • •	• • •	• • •	46	19346	20	0	1

资历[~]从事专业工作的年数;管理[~]1=管理人员,0=非管理人员;教育[~]1=中学,2=大学,3=更高程度

程序员的薪金

分析与假设

y~ 薪金, *x*₁~资历(年)

 $x_1=1$ ~管理人员, $x_2=0$ ~非管理人员

教育1=中学
2=大学
3=更高
$$x_3 = \begin{cases} 1, & \text{中学} \\ 0, & \text{其它} \end{cases}$$
大学

$$x_4 = \begin{cases} 1, & 大学 \\ 0, & 其它 \end{cases}$$

 $x_3 = \begin{cases} 1, & \text{中学} \\ 0, & \text{其它} \end{cases}$ 中学: $x_3 = 1, x_4 = 0$; 大学: $x_4 = \begin{cases} 1, & \text{大学} \\ 0, & \text{其它} \end{cases}$ $x_3 = 1, x_4 = 0$; 大学 $x_3 = 0, x_4 = 1$; 更高: $x_3 = 0, x_4 = 0$

资历每加一年薪金的增长是常数:

管理、教育、资历之间无交互作用

线性回归模型

$$y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + \varepsilon$$

 $a_0, a_1, ..., a_4$ 是待估计的回归系数, ϵ 是随机误差

模型求解
$$y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + \varepsilon$$

参数	参数估计值	置信区间				
a_0	11032	[10258 11807]				
\boldsymbol{a}_1	546	[484 608]				
a_2	6883	[6248 7517]				
a_3	-2994	[-3826 -2162]				
a_4	148	[-636 931]				
R	$R^2=0.957$ $F=226$ $p=0.000$					

$R^2, F, p \rightarrow 模型整体上可用$

 $x_1 \sim$ 资历(年)

中学: $x_3=1, x_4=0$;

 $x_2 = 1 \sim$ 管理, x_2

大学: $x_3=0, x_4=1;$

=0~非管理

研究生: $x_3=0, x_4=0$.

资历增加1年薪 金增长546

管理人员薪金多 6883

中学程度薪金比研 究生的少2994

大学程度薪金比研 究生多148

 a_{4} 置信区间包含零点, 解释不可靠!

结果分析 残差分析方法

$$\hat{y} = \hat{a}_0 + \hat{a}_1 x_1 + \hat{a}_2 x_2 + \hat{a}_3 x_3 + \hat{a}_4 x_4$$

残差
$$e = y - \hat{y}$$

e与资历 x_1 的关系

残差大概分成3个水平, 6种管理—教育组合混在 一起, 未正确反映。

管理与教育的组合

组合	1	2	3	4	5	6
管理	0	1	0	1	0	1
教育	1	1	2	2	3	3

e与管理——教育组合的关系

理—教育组合处理不当

应在模型中增加管理x,与教育 x_3, x_4 的交互项

进一步的模型 增加管理x2与教育x3, x4的交互项

$$y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + a_5 x_2 x_3 + a_6 x_2 x_4 + \varepsilon$$

参数	参数估计值	置信区间
a_0	11204	[11044 11363]
a_1	497	[486 508]
a_2	7048	[6841 7255]
a_3	-1727	[-1939 -1514]
$a_{\scriptscriptstyle A}$	-348	[-545 -152]
a_5	-3071	[-3372 -2769]
a_6	1836	[1571 2101]
R^{2}	=0.999 $F=556$	4 $p=0.000$

 R^2 ,F有改进,所有回归系数置信区 间都不含零点,模型完全可用

消除了不正常现象

异常数据(33号)应去掉

去掉异常数据后的结果

参数	参数估计值	置信区间
a_0	11200	[11139 11261]
a_1	498	[494 503]
a_2	7041	[6962 7120]
a_3	-1737	[-1818 -1656]
a_4	-356	[-431 -281]
a_5	-3056	[-3171 –2942]
a_6	1997	[1894 2100]
$R^2 =$	0.9998 $F=367$	p=0.0000

 $R^2: 0.957 \rightarrow 0.999 \rightarrow 0.9998$

 $F: 226 \rightarrow 554 \rightarrow 36701$

置信区间长度更短

残差图十分正常

最终模型的结果可以应用

模型应用
$$\hat{y} = \hat{a}_0 + \hat{a}_1 x_1 + \hat{a}_2 x_2 + \hat{a}_3 x_3 + \hat{a}_4 x_4 + \hat{a}_5 x_2 x_3 + \hat{a}_6 x_2 x_4$$

制订6种管理—教育组合人员的"基础"薪金(资历为0)

 $x_1=0; x_2=1~$ 管理, $x_3=0~$ 非管理

中学: $x_3=1, x_4=0$; 大学: $x_3=0, x_4=1$; 更高: $x_3=0, x_4=0$

组合	管理	教育	系数	"基础"薪金
1	0	1	$a_0 + a_3$	9463
2	1	1	$a_0 + a_2 + a_3 + a_5$	13448
3	0	2	$a_0^+ a_4$	10844
4	1	2	$a_0 + a_2 + a_4 + a_6$	19882
5	0	3	a_0	11200
6	1	3	$a_0 + a_2$	18241

大学程度管理人员比更高程度管理人员的薪金高 大学程度非管理人员比更高程度非管理人员的薪金略低

程序员的薪金

软件开发人员的薪金

对定性因素(如管理、教育),可以引入0-1变量处理, 0-1变量的个数应比定性因素的水平少1

残差分析方法可以发现模型的缺陷,引入交互作用项常常能够改善模型

剔除异常数据,有助于得到更好的结果

注:可以直接对6种管理—教育组合引入5个0-1变量

问题

建立投资额模型,研究某地区实际投资额与国民生产总值(GNP)及物价指数(PI)的关系

根据对未来GNP及PI的估计,预测未来投资额

该地区连续20年的统计数据

年份	投资额	国民生产	物价	年份	投资额	国民生	物价
序号		总值	指数	序号		产总值	指数
1	90.9	596.7	0.7167	11	229.8	1326.4	1.0575
2	97.4	637.7	0.7277	12	228.7	1434.2	1.1508
3	113.5	691.1	0.7436	13	206.1	1549.2	1.2579
4	125.7	756.0	0.7676	14	257.9	1718.0	1.3234
5	122.8	799.0	0.7906	15	324.1	1918.3	1.4005
6	133.3	873.4	0.8254	16	386.6	2163.9	1.5042
7	149.3	944.0	0.8679	17	423.0	2417.8	1.6342
8	144.2	992.7	0.9145	18	401.9	2631.7	1.7842
9	166.4	1077.6	0.9601	19	474.9	2954.7	1.9514
10	195.0	1185.9	1.0000	20	424.5	3073.0	2,0688

投资额与国民生产总值和物价指数

分析

许多经济数据在时间上有一定的滞后性

以时间为序的数据, 称为时间序列

时间序列中同一变量的顺序观测值之间存在自相关

若采用普通回归模型直接处理,将会出现不良后果

需要诊断并消除数据的自相关性, 建立新的模型

年份	投资额	国民生产	物价	年份	投资额	国民生	物价
序号		总值	指数	序号		产总值	指数
1	90.9	596.7	0.7167	11	229.8	1326.4	1.0575
2	97.4	637.7	0.7277	12	228.7	1434.2	1.1508
3	113.5	691.1	0.7436	13	206.1	1549.2	1.2579
4	125.7	756.0	0.7676	14	257.9	1718.0	1.3234
•••	•••	• • •	• • •	• • •		• • •	23 •••

基本回归模型

 $t \sim$ 年份, $y_t \sim$ 投资额, $x_{1t} \sim$ GNP, $x_{2t} \sim$ 物价指数

投资额与GNP及物价指数间均有很强的线性关系

$$y_t = \beta_0 + \beta_1 x_{1t} + \beta_2 x_{2t} + \varepsilon_t \quad \beta_0, \beta_1, \beta_2 \sim 回归系数$$

 ϵ_t ~对t相互独立的零均值正态随机变量

基本回归模型的结果与分析

MATLAB 统计工具箱

参数	参数估计值	置信区间			
$oldsymbol{eta_0}$	322.7250	[224.3386 421.1114]			
eta_1	0.6185	[0.4773 0.7596]			
eta_2	-859.4790	[-1121.4757 -597.4823]			
$R^2 = 0.9908$ $F = 919.8529$ $p = 0.0000$					

 $\hat{y}_t = 322.725 + 0.6185x_{1t} - 859.479x_{2t}$

剩余标准差 *s*=12.7164

模型优点

 $R^2 = 0.9908$, 拟合度高

模型缺点

没有考虑时间序列数据的滞后性影响 可能忽视了随机误差存在自相关;如果存在自 相关性,用此模型会有不良后果

投

投资额的问题

自相关性的定性诊断

模型残差 $e_t = y_t - \hat{y}_t$

e,为随机误差 ϵ ,的估计值

在MATLAB工作区中输出

作残差 $e_t \sim e_{t-1}$ 散点图

大部分点落在第1,3象限

大部分点落在第2,4象限

残差诊断法

 ϵ , 存在正的自相关

 ϵ_{l} 存在负的自相关

自相关性直观判断

基本回归模型的随机误差项 ε ,存在正的自相关

D-W检验

自回归模型
$$y_t = \beta_0 + \beta_1 x_{1t} + \beta_2 x_{2t} + \varepsilon_t$$
, $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$

 β_0 , β_1 , β_2 ~回归系数

ρ~自相关系数

 $|\rho| \leq 1$

u,~对t相互独立的零均值正态随机变量

$$\rho = 0$$

无自相关性

 $\rho > 0$

存在正自相关性

 $\rho < 0$

存在负自相关性

如何估计 ρ

D-W统计量

如何消除自相关性

广义差分法

D-W统计量与D-W检验

$$DW = \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=2}^{n} e_t^2} \approx 2 \left[1 - \frac{\sum_{t=2}^{n} e_t e_{t-1}}{\sum_{t=2}^{n} e_t^2} \right] = 2(1 - \hat{\rho})$$

$$2\left[1 - \frac{\sum_{t=2}^{n} e_{t}e_{t-1}}{\sum_{t=2}^{n} e_{t}^{2}}\right]$$

$$\hat{\rho} = \sum_{t=2}^{n} e_{t} e_{t-1} / \sum_{t=2}^{n} e_{t}^{2}$$

$$= 2(1 - \hat{\rho})$$

$$-1 \le \hat{\rho} \le 1 \longrightarrow 0 \le DW \le 4$$

$$\hat{\rho} = 0 \rightarrow DW = 2$$

检验水平,样本容量, 回归变量数目

D-W分布表 J

检验临界值d,和d,

$$\hat{\rho} = 1 \rightarrow DW = 0$$
 $\hat{\rho} = -1 \rightarrow DW = 4$

$$\hat{\rho} = -1 \rightarrow DW = 4$$

由DW值的大小确定自相关性

广义差分变换
$$DW = 2(1-\hat{\rho})$$
 \uparrow $\hat{\rho} = 1 - \frac{DW}{2}$

原模型
$$y_t = \beta_0 + \beta_1 x_{1t} + \beta_2 x_{2t} + \varepsilon_t$$
, $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$

变换
$$y_t^* = y_t - \rho y_{t-1}, x_{it}^* = x_{it} - \rho x_{i,t-1}, i = 1,2$$

新模型
$$y_t^* = \beta_0^* + \beta_1 x_{1t}^* + \beta_2 x_{2t}^* + u_t$$
 $\beta_0^* = \beta_0 (1 - \rho)$

以月, 月, 月, 为回归系数的普通回归模型

步骤

无自相关

原模型

原模型 DW值

D-W 检验

→ 有自相关

广义

差分

新模型

继续此

不能确定

增加数据量; 选用其它方法

投资额新模型的建立

原模型 DW_{old} = 残差 e_{t} 0.8754

样本容量n=20, 回归 变量数目k=3, $\alpha=0.05$

临界值 d_I =1.10, d_{II} =1.54

作变换

$$y_t^* = y_t - 0.5623 y_{t-1}$$

$$x_{it}^* = x_{it} - 0.5623x_{i,t-1}, \quad i = 1,2$$

$$DW = \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=2}^{n} e_t^2}$$

 $DW_{old} < d_L$
 原模型有
正自相关

$$\hat{\rho} = 1 - DW / 2 = 0.5623$$

投资额新模型的建立

$$y_{t}^{*} = y_{t} - 0.5623 y_{t-1} \qquad x_{it}^{*} = x_{it} - 0.5623 x_{i,t-1}, \quad i = 1,2$$

$$y_{t}^{*} = \beta_{0}^{*} + \beta_{1} x_{1t}^{*} + \beta_{2} x_{2t}^{*} + u_{t}$$

由数据 $y_t^*, x_{1t}^*, x_{2t}^*$ 估计系数 $\beta_0^*, \beta_1, \beta_2$

参数	参数估计值	置信区间			
$oldsymbol{eta}^{\star}_{0}$	163.4905	[1265.4592 2005.2178]			
eta_1	0.6990	[0.5751 0.8247]			
eta_2	-1009.0333	[-1235.9392 -782.1274]			
$R^2 = 0.9772$ $F = 342.8988$ $p = 0.0000$					

总体效果良好

剩余标准差

 $s_{new} = 9.8277 < s_{old} = 12.7164$

新模型的自相关性检验

样本容量n=19,回归 变量数目k=3, $\alpha=0.05$

查表 □

临界值 $d_I=1.08, d_{I}=1.53$

$$d_U < DW_{new} < 4-d_U$$

新模型无自相关性

新模型 $\hat{y}_{t}^{*} = 163.4905 + 0.699 x_{1t}^{*} - 1009.033 x_{2t}^{*}$

原始变量

模型结果比较

基本回归模型 $\hat{y}_{t} = 322.725 + 0.6185x_{1t} - 859.479x_{2t}$

一阶自回归模型

 $\hat{y}_{t} = 163.4905 + 0.5623y_{t-1} + 0.699x_{1,t} - 0.3930x_{1,t-1}$ $-1009.0333x_{2,t} + 567.3794x_{2,t-1}$

残差图比较

拟合图比较

一阶自回归模型残差e,比基本回归模型要小

投资额预测

对未来投资额 y_i 作预测,需先估计出未来的国民生产总值 x_1 ,和物价指数 x_2 ,

年份	投资额	国民生产	物价	年份	投资额	国民生	物价
序号		总值	指数	序号		产总值	指数
1	90.9	596.7	0.7167	18	401.9	2631.7	1.7842
2	97.4	637.7	0.7277	19	474.9	2954.7	1.9514
3	113.5	691.1	0.7436	20	424.5	3073.0	2.0688

设已知 t=21时, $x_{1t}=3312$, $x_{2t}=2.1938$

基本回归模型 $\hat{y}_t = 485.6720$

一阶自回归模型 $\hat{y}_t = 469.7638$

 \hat{y}_{t} 较小是由于 $y_{t-1} = 424.5$ 过小所致

Thanks for your time and attention!

一元线性回归分析的应用: 预测问题

- 一、 $\hat{\mathbf{Y}}_0$ 是条件均值 $\mathbf{E}(\mathbf{Y}|\mathbf{X}=\mathbf{X}_0)$ 或个值 \mathbf{Y}_0 的 一个无偏估计
- 二、总体条件均值与个值预测值的置信区间

对于一元线性回归模型

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

给定样本以外的解释变量的观测值 X_0 ,可以得到被解释变量的预测值 \hat{Y}_0 ,可以此作为其条件均值 $E(Y|X=X_0)$ 或个别值 Y_0 的一个近似估计。

注意:

严格地说,这只是被解释变量的预测值的估计值,而不是预测值。

原因: (1) 参数估计量不确定;

(2) 随机项的影响

一、 $\hat{\mathbf{Y}}_0$ 是条件均值 $\mathbf{E}(\mathbf{Y}|\mathbf{X}=\mathbf{X}_0)$ 或个值 \mathbf{Y}_0 的一个无偏估计

对总体回归函数 $E(Y|X)=\beta_0+\beta_1X$, $X=X_0$ 时

$$E(Y|X=X_0)=\beta_0+\beta_1X_0$$

通过样本回归函数 $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$, 求得的拟合值为

$$\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 X_0$$

于是 $E(\hat{Y}_0) = E(\hat{\beta}_0 + \hat{\beta}_1 X_0) = E(\hat{\beta}_0) + X_0 E(\hat{\beta}_1) = \beta_0 + \beta_1 X_0$

可见, \hat{Y}_0 是条件均值 $E(Y|X=X_0)$ 的无偏估计。

对总体回归模型 $Y=\beta_0+\beta_1X+\mu$, 当 $X=X_0$ 时

$$Y_0 = \beta_0 + \beta_1 X_0 + \mu$$

于是

$$E(Y_0) = E(\beta_0 + \beta_1 X_0 + \mu) = \beta_0 + \beta_1 X_0 + E(\mu) = \beta_0 + \beta_1 X_0$$

而 通过样本回归函数 $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$,求得拟合值

$$\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 X_0$$

的期望为

$$E(\hat{Y}_0) = E(\hat{\beta}_0 + \hat{\beta}_1 X_0) = E(\hat{\beta}_0) + X_0 E(\hat{\beta}_1) = \beta_0 + \beta_1 X_0$$

 \hat{Y}_0 是个值 Y_0 的无偏估计。

二、总体条件均值与个值预测值的置信区间

1、总体均值预测值的置信区间

由于

$$\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 X_0$$

$$\hat{\beta}_1 \sim N(\beta_1, \frac{\sigma^2}{\sum x_i^2})$$
 $\hat{\beta}_0 \sim N(\beta_0, \frac{\sum X_i^2}{n\sum x_i^2}\sigma^2)$

于是

$$E(\hat{Y}_0) = E(\hat{\beta}_0) + X_0 E(\hat{\beta}_1) = \beta_0 + \beta_1 X_0$$

$$Var(\hat{Y}_0) = Var(\hat{\beta}_0) + 2X_0Cov(\hat{\beta}_0, \hat{\beta}_1) + X_0^2Var(\hat{\beta}_1)$$

可以证明

$$Cov(\hat{\beta}_0, \hat{\beta}_1) = -\sigma^2 \overline{X} / \sum x_i^2$$

$$Var(\hat{Y}_{0}) = \frac{\sigma^{2} \sum X_{i}^{2}}{n \sum x_{i}^{2}} - \frac{2X_{0} \overline{X} \sigma^{2}}{\sum x_{i}^{2}} + \frac{X_{0}^{2} \sigma^{2}}{\sum x_{i}^{2}}$$

$$= \frac{\sigma^{2}}{\sum x_{i}^{2}} \left(\frac{\sum X_{i}^{2} - n \overline{X}^{2}}{n} + \overline{X}^{2} - 2X_{0} \overline{X} + X_{0}^{2} \right)$$

$$= \frac{\sigma^{2}}{\sum x_{i}^{2}} \left(\frac{\sum x_{i}^{2}}{n} + (X_{0} - \overline{X})^{2} \right) = \sigma^{2} \left(\frac{1}{n} + \frac{(X_{0} - \overline{X})^{2}}{\sum x_{i}^{2}} \right)$$

$$\hat{Y}_{0} \sim N(\beta_{0} + \beta_{1} X_{0}, \sigma^{2} \left(\frac{1}{n} + \frac{(X_{0} - \overline{X})^{2}}{\sum x_{i}^{2}} \right))$$

故

将未知的 σ^2 代以它的无偏估计量 $\hat{\sigma}^2$,可构造t统计量

$$t = \frac{\hat{Y}_0 - (\beta_0 + \beta_1 X_0)}{S_{\hat{Y}_0}} \sim t(n-2) \qquad \qquad \sharp \Rightarrow \qquad S_{\hat{Y}_0} = \sqrt{\hat{\sigma}^2 (\frac{1}{n} + \frac{(X_0 - \overline{X})^2}{\sum X_i^2})}$$

于是,在1-α的置信度下,总体均值E(Y|X₀)的置信区间为

2、总体个值预测值的预测区间

由 $Y_0 = \beta_0 + \beta_1 X_0 + \mu$ 知:

$$Y_0 \sim N(\beta_0 + \beta_1 X_0, \sigma^2)$$

于是
$$\hat{Y}_0 - Y_0 \sim N(0, \sigma^2 (1 + \frac{1}{n} + \frac{(X_0 - \overline{X})^2}{\sum x_i^2}))$$

将未知的 σ^2 代以它的无偏估计量 $\hat{\sigma}^2$, 可构造t统计量

$$t = \frac{\hat{Y}_0 - Y_0}{S_{\hat{Y}_0 - Y_0}} \sim t(n - 2)$$

$$\vec{S}_{\hat{Y}_0 - Y_0} = \sqrt{\hat{\sigma}^2 \left(1 + \frac{1}{n} + \frac{(X_0 - \overline{X})^2}{\sum x_i^2}\right)}$$

从而在 $1-\alpha$ 的置信度下, Y_0 的置信区间为

$$\hat{Y}_0 - t_{\frac{\alpha}{2}} \times S_{\hat{Y}_0 - Y_0} < Y_0 < \hat{Y}_0 + t_{\frac{\alpha}{2}} \times S_{\hat{Y}_0 - Y_0}$$

在上述收入-消费支出例中,得到的样本回归函数为

$$\hat{Y}_i = -103.172 + 0.777X_i$$

则在 $X_0 = 1000$ 处, $\hat{Y}_0 = -103.172 + 0.777 \times 1000 = 673.84$

$$\overrightarrow{III} \qquad Var(\hat{Y}_0) = 13402 \left[\frac{1}{10} + \frac{(1000 - 2150)^2}{7425000} \right] = 3727.29$$

$$S(\hat{Y}_0) = 61.05$$

因此,总体均值E(Y|X=1000)的95%的置信区间为:

$$673.84-2.306\times61.05 < E(Y|X=1000) < 673.84+2.306\times61.05$$
(533.05, 814.62)

或

同样地,对于Y在X=1000的**个体值**,其95%的置信区间为: $673.84 - 2.306 \times 130.88 < Y_{x=1000} < 673.84 + 2.306 \times 130.88$ 或 (372.03, 975.65)

- 总体回归函数的置信带(域)(confidence band)
- 个体的置信带(域)

对于Y的总体均值E(Y|X)与个体值的预测区间(置信区间):

- (1) 样本容量n越大,预测精度越高,反之 预测精度越低;
- (2) 样本容量一定时,置信带的宽度当在X均值处最小,其附近进行预测(插值预测)精度越大; X越远离其均值,置信带越宽,预测可信度下降。

