- **0.1.** Lemmata. In §2.2, we introduced the linear simplex code $\mathcal{S}_{q,n}$. There it was shown that the code had constant weight q^{n-1} ; in particular, it follows that it is equidistant with constant Hamming distance q^{n-1} since the code is linear.
- In ?, and later reproduced in ? using the language of BGW matrices, generalized Hadamard matrices $\mathrm{GH}(q,q^{n-1})$ were used recursively in conjunction with the classical parameter $\mathrm{BGW}((q^n-1)/(q-1),q^{n-1},q^{n-1}-q^{n-2};\mathrm{GF}(q)^*)$ in order to construct certain designs. It turns out out that the $\mathrm{GH}(q,q^{n-1})$ used in the construction can be replaced by $\mathscr{S}_{q,n}$, and so simplify the construction.

In order to apply the linear code $\mathcal{S}_{q,n}$, we will require the following lemma.

0.1. Lemma. Let $GF(q) = \{a_0 = 0, a_1, \dots, a_{q-1}\}$, and let n > 1. Then there exist disjoint (0,1)-matrices $A_{a_1}, \dots, A_{a_{q-1}}$, and $A_{a_0} = J - \sum_i A_i$ of dimensions $a^n \times (a^n - 1)/(a_{q-1})$ such that

$$q^n\times (q^n-1)/(q-1)$$
 such that

- (0.1.a)
- (0.1.b)
 - 0.2. Construction. stuff here