Assembly and operating instructions

ProMinent®

DULCOMETER, Compact Controller Measured variable: conductive conductivity

ΕN

Please carefully read these operating instructions before use. • Do not discard. The operator shall be liable for any damage caused by installation or operating errors. The latest version of the operating instructions are available on our homepage.

Part no.: 985092 Version: BA DM 209 08/15 EN

Supplemental directives

General non-discriminatory approach

In order to make it easier to read, this document uses the male form in grammatical structures but with an implied neutral sense. It is aimed equally at both men and women. We kindly ask female readers for their understanding in this simplification of the text.

Supplementary information

Please read the supplementary information in its entirety.

Information

This provides important information relating to the correct operation of the unit or is intended to make your work easier.

Safety Information

The safety information includes detailed descriptions of the hazardous situation, see *Chapter 3.1 'Explanation of the safety information' on page 10*

The following symbols are used to highlight instructions, links, lists, results and other elements in this document:

Tab. 1: More symbols

Symbol	Description
1.	Action, step by step
⇔	Outcome of an action
፟	Links to elements or sections of these instructions or other applicable documents
-	List without set order
[Button]	Display element (e.g. indicators)
	Operating element (e.g. button, switch)
'Display /GUI'	Screen elements (e.g. buttons, assignment of function keys)
CODE	Presentation of software elements and/or texts

2 ProMinent*

Table of contents

1	Identity code	. 0
2	Introduction	. 8
	2.1 Measured variables	. 8
3	Safety and Responsibility	10
	3.1 Explanation of the safety information	10
	3.2 General Safety Information	11
	3.3 Intended Use	13
	3.4 Users' qualifications	14
4	Functional description	16
5	Assembly and installation	17
	5.1 Scope of delivery	18
	5.2 Mounting (mechanical)	18
	5.2.1 Wall mounting	18
	5.2.2 Pipe mounting	20
	5.2.3 Control panel mounting	21
	5.3 Installation (electrical)	
	5.3.1 Cable Cross-Sections and Cable End Sleeves	
	5.3.2 Electrical connection of the conductivity sensor	
	5.3.3 Terminal diagram / wiring	
	5.3.4 Installation (electrical)	
_	-	
6	Sensor connection	40
7	Commissioning	43
	7.1 Initial commissioning	43
	7.2 Setting the control during commissioning	
	7.3 Selecting the sensor type	
	7.4 Temperature compensation and reference temperature	
8	Operating diagram	49
	8.1 Overview of equipment/Operating elements	
	8.2 Entering values	
	8.3 Adjusting display contrast	
	8.5 Information display	53

Table of contents

	8.6 Password	54
9	Operating menus	55
	9.1 Calibrating [CAL] the conductivity sensor	55
	9.1.1 Calibration of the cell constant	57
	9.1.2 Calibration of the temperature coefficient	60
	9.2 Setting limit values [LIMITS]	63
	9.3 Setting the control [CONTROL]	66
	9.4 Setting inputs [INPUT]	69
	9.5 Setting outputs [OUTPUT]	73
	9.6 Setting the [DEVICE]	77
10	Control parameters and functions	78
	10.1 DULCOMETER® Compact Controller function states	78
	10.2 [STOP/START] key	80
	10.3 Priming [PRIME]	81
	10.4 Hysteresis limit value	82
	10.5 Temperature correction variable	83
	10.6 Checkout time for measured variable and correction variable	84
	10.7 Checkout time control	84
	10.8 Power relay "P-REL" as limit value relay	85
	10.9 Setting and functional description of "Relay Used as a Solenoid Valve"	86
	10.10 Alarm relay	88
	10.11 "Error logger" operating mode	88
11	Maintenance	89
	11.1 Error messages	89
	11.2 Changing the fuse, DULCOMETER® Compact Controller	93
12	Technical data on DULCOMETER® Compact Controller	94
	12.1 Permissible ambient conditions	94
	12.2 Dimensions and weights	94
	12.3 Material data	95
	12.4 Chemical Resistance	95
	12.5 Sound Pressure Level	95
13	Electrical data	96
14	Spare parts and accessories	100

Table of contents

15	Repla	cing spare part units	101
	15.1	Replacing the top part of the housing	101
	15.2	Replacing the lower part of the housing (wall/tube retaining bracket)	103
	15.3	Replacing the lower part of the housing (control panel installation)	105
16	Stand	lards complied with and Declaration of Conformity	109
17	Dispo	sal of Used Parts	110
18	Gloss	ary	111
19	Index		112

1 Identity code

DCCa	DUI	OULCOMETER® Compact,									
	Μοι	unting	type	9							
	Е	Spa	Spare part units								
	W	Wal	Wall/pipe mounting IP 67								
	S	With fitting kit for control panel mounting IP 54									
		Design									
	00 With ProMinent® logo										
		E1		ire pai emble		ntrol	ler hous	sing lower part	(proces	ssor/PCB), fully	
		E2		re pai emble		ntrol	ler hous	sing top part (pr	ocesso	or/PCB), fully	
			Оре	erating	y voltage						
			6	90	. 253 V, 4	48/63	3 Hz				
				Meas	sured var	iable)				
				C0	Free ch	lorine	е				
				NG	pH/ORF	o (sw	ritchable	e)			
				L3	Conduc	tive	conduct	ivity (designation	on: CO	ND_C)	
				L6	Inductiv	e co	nductivi	ty (designation	CONI	D_I)	
					Hardwa	re ex	ktension	1			
					0 None	е					
					Approvals						
					01 CE (Standard)						
					Certificates						
					0 None						
					Operating instructions language					ıage	
						EN German KR Korean					

DCCa	DULCOMETER® Compact,							
		EN	English	LT	Lithuanian			
		ES	Spanish	LV	Latvian			
		IT	Italian	NL	Dutch			
		FR	French	PL	Polish			
		FI	Finish	PT	Portuguese			
		BG	Bulgarian	RO	Romanian			
		ZH	Chinese	SV	Swedish			
		CZ	Czech	SK	Slovakian			
		EL	Greek	SL	Slovenian			
		HU	Hungarian	RU	Russian			
		YES	Japanese	TH	Thai			

Introduction

2 Introduction

Data and functions

These operating instructions describe the technical data and functions of the DULCOMETER® Compact Controller, measured variable: conductive conductivity.

2.1 Measured variables

The controller can process the following measured variables:

- Conductive conductivity [ConC]
- Resistance [RES]
- TDS value [TDS]
- Salinity /SAL1

Switching between measured variables

Use the see key to switch between the controller's measured variables [ConC], [RES], [TDS] and [SAL] in the continuous display.

Depending on the measured variable set, the settings of variables are changed or the variables are hidden completely in the [INPUT > TCOMP] menu and in the [LIMIT] menu.

Measured variable: conductive conductivity [ConC]

Symbol displayed in the controller's display: [ConC]

Units of measurement: $\mu S/cm$, mS/cm, S/cm. The measuring range is automatically detected and switched by the controller.

Physical variable: specific electrical conductivity (K). Only this measured variable is emitted at the mA output, independently of the measured variable set on the controller. The setting of the measured variable on the controller only affects the layout of the display and not the output at the mA output.

Measured variable: Resistance [RES]

Symbol displayed in the controller's display: [RES]

Units of measurement: $M\Omega$ cm, $k\Omega$ cm, Ω cm, measuring range is automatically detected and switched by the controller

Physical variable: specific electrical resistance.

Calculating the specific resistance: ρ (T_{ref}) = 1/K (T_{ref})

8 ProMinent*

Measured variable: TDS value

Symbol displayed in the controller's display: [TDS] (total dissolved solids)

Unit of measurement: ppm (mg/l)

Physical variable: Total of all inorganic and organic substances dissolved in a solvent

Display range: 0 2000 ppm Temperature range: 0 ... 35 °C

[TLIMIT ↑]: ≤ 40 °C

Setting the TDS value displayed: You can set a multiplicative factor [TDS] in the [INPUT] menu, with which the TDS value displayed can be changed.

Displayed TDS value [ppm] = K (25 °C) [uS/cm] * TDS factor

Setting range of TDS factor: 0.400 ... 1.000 (Default: 0.640)

Temperature compensation is always linear with the TDS display with a reference temperature of 25 °C .

Measured variable: Salinity (SAL)

Symbol displayed in the controller's display: /SAL/units: ‰ (g/kg)

Physical variable: Mass of salts in a kg of water given in PSU (**p**ractical **s**alinity **u**nits).

The salinity is derived from the conductivity measured, with a specified non-linear temperature compensation and a reference conductivity (KCL).

Display range: 0 70.0 ‰

Temperature range: 0 ... 35 °C

[TLIMIT↑]: ≤ 35 °C

The salinity [SAL] is calculated based on

[Practical Salinity Scale 1978 (PSS-78)]

3 Safety and Responsibility

3.1 Explanation of the safety information

Introduction

These operating instructions provide information on the technical data and functions of the product. These operating instructions provide detailed safety information and are provided as clear step-by-step instructions.

The safety information and notes are categorised according to the following scheme. A number of different symbols are used to denote different situations. The symbols shown here serve only as examples.

DANGER!

Nature and source of the danger

Consequence: Fatal or very serious injuries.

Measure to be taken to avoid this danger

Danger!

 Denotes an immediate threatening danger. If this is disregarded, it will result in fatal or very serious injuries.

WARNING!

Nature and source of the danger

Possible consequence: Fatal or very serious injuries.

Measure to be taken to avoid this danger

Warning!

 Denotes a possibly hazardous situation. If this is disregarded, it could result in fatal or very serious injuries.

CAUTION!

Nature and source of the danger

Possible consequence: Slight or minor injuries, material damage.

Measure to be taken to avoid this danger

Caution!

 Denotes a possibly hazardous situation. If this is disregarded, it could result in slight or minor injuries. May also be used as a warning about material damage.

10 ProMinent*

NOTICE!

Nature and source of the danger

Damage to the product or its surroundings

Measure to be taken to avoid this danger

Note!

 Denotes a possibly damaging situation. If this is disregarded, the product or an object in its vicinity could be damaged.

Type of information

Hints on use and additional information

Source of the information, additional measures

Information!

 Denotes hints on use and other useful information. It does not indicate a hazardous or damaging situation.

3.2 General Safety Information

WARNING!

Live parts!

Possible consequence: Fatal or very serious injuries

- Measure: Disconnect the mains power supply prior to opening the housing
- De-energise damaged, defective or manipulated units by disconnecting the mains plug

WARNING!

Unauthorised access!

Possible consequence: Fatal or very serious injuries

 Measure: Ensure that there can be no unauthorised access to the unit

WARNING!

Operating errors!

Possible consequence: Fatal or very serious injuries

- The unit should only be operated by adequately qualified and technically expert personnel
- Please also observe the operating instructions for controllers and fittings and any other component groups, such as sensors, measuring water pumps ...
- The operator is responsible for ensuring that personnel are qualified

CAUTION!

Electronic malfunctions

Possible consequence: Material damage to destruction of the unit

- The mains connection cable and data cable should not be laid together with cables that are prone to interference
- Measure: Take appropriate interference suppression measures

NOTICE!

Correct and proper use

Damage to the product or its surroundings

- The unit is not intended to measure or regulate gaseous or solid media
- The unit may only be used in accordance with the technical details and specifications provided in these operating instructions and in the operating instructions for the individual components

NOTICE!

Correct sensor operation / Run-in time

Damage to the product or its surroundings

- Correct measuring and dosing is only possible if the sensor is working perfectly
- It is imperative that the run-in times of the sensors are adhered to
- The run-in times should be allowed for when planning initial operation
- It may take a whole working day to run-in the sensor
- Please read the operating instructions for the sensor

ļ

NOTICE!

Correct sensor operation

Damage to the product or its surroundings

- Correct measuring and dosing is only possible if the sensor is working perfectly
- Check and calibrate the sensor regularly

ļ

NOTICE!

Compensation of control deviations

Damage to the product or its surroundings

 This controller cannot be used in control circuits which require rapid compensation (< 30 s)

3.3 Intended Use

NOTICE!

Intended Use

The device is designed to measure and regulate liquid media. The designated measured variable is detailed on the controller and is absolutely binding.

The unit should only be used in accordance with the technical data and specifications provided in these operating instructions and in the operating instructions for the individual components (such as sensors, fittings, calibration devices, metering pumps etc.).

Any other uses or modifications are prohibited.

NOTICE!

Compensation for control deviations

Damage to the product or its surroundings

 The controller can be used in processes, which require compensation of > 30 seconds

3.4 Users' qualifications

WARNING!

Danger of injury with inadequately qualified personnel!

The operator of the plant / device is responsible for ensuring that the qualifications are fulfilled.

If inadequately qualified personnel work on the unit or loiter in the hazard zone of the unit, this could result in dangers that could cause serious injuries and material damage.

- All work on the unit should therefore only be conducted by qualified personnel
- Unqualified personnel should be kept away from the hazard zone

Training	Definition
Instructed personnel	An instructed person is deemed to be a person who has been instructed and, if required, trained in the tasks assigned to him/her and possible dangers that could result from improper behaviour, as well as having been instructed in the required protective equipment and protective measures.
Trained user	A trained user is a person who fulfils the requirements made of an instructed person and who has also received additional training specific to the system from ProMinent or another authorised distribution partner.
Trained qualified personnel	A qualified employee is deemed to be a person who is able to assess the tasks assigned to him and recognize possible hazards based on his/her training, knowledge and experience, as well as knowledge of pertinent regulations. The assessment of a person's technical training can also be based on several years of work in the relevant field.

Training	Definition
Electrician	Electricians are deemed to be people, who are able to com- plete work on electrical systems and recognize and avoid pos- sible hazards independently based on his/her technical training and experience, as well as knowledge of pertinent standards and regulations.
	Electricians should be specifically trained for the working environment in which the are employed and know the relevant standards and regulations.
	Electricians must comply with the provisions of the applicable statutory directives on accident prevention.
Customer Service department	Customer Service department refers to service technicians, who have received proven training and have been authorised by ProMinent to work on the system.

Note for the system operator

The pertinent accident prevention regulations, as well as all other generally acknowledged safety regulations, must be adhered to!

4 Functional description

Brief functional description

The controller for the measured variable conductive conductivity provides the basic functions for water treatment applications. The controller has a fixed configuration with the following features:

- Language-independent operation. Use of abbreviations, such as:
 - [INPUT]
 - [OUTPUT]
 - [CONTROL]
 - [ERROR]
- Illuminated display
- 3 LEDs indicate the operating statuses:
 - [f-REL], active
 - [P-REL], active
 - Error
- Control characteristics:
 - P, or
 - PID
- Selectable control direction:
 - Raise measured value, or
 - Lower measured value
- Pulse frequency relay [f-REL] for control of the metering pump
- Output relay [P-REL], configurable as:
 - Alarm
 - Limit value
 - Pulse width-modulated (PWM) control output for metering pumps
- Analog output 0/4...20 mA, configurable:
 - Measured value (conductivity only), or
 - Correction variable
- Suction function for all actuators

- Digital input to switch off the controller or to process a sample water limit contact by remote control
- Temperature sensor input (Pt100 or Pt 1000) for temperature compensation
- Degree of protection
 - IP67 (wall / pipe mounting)
 - IP54 (control panel mounting)

Applications:

- Bleeding of for example air scrubbers and chillers
- General water treatment, for instance the monitoring of rinsing baths

16 **ProMinent***

- User qualification, mechanical installation: trained qualified personnel, see

 ⟨> Chapter 3.4 'Users' qualifications' on page 14
- User qualification, electrical installation: Electrical technician, see

 ⟨> Chapter 3.4 'Users' qualifications' on page 14

CAUTION!

Possible consequence: Material damage.

The hinge between the front and rear part of the housing cannot absorb high levels of mechanical loading. When working on the controller, hold the top part of the controller housing firmly.

NOTICE!

Mounting position and conditions

- Only carry out the (electrical) installation after the (mechanical) installation
- Ensure that there is unimpeded access for operation
- Ensure safe and low-vibration fixing
- Avoid direct sunlight
- Permissible ambient temperature of the controller at the installation site: 10 ... 60 °C at max. 95% relative air humidity (non-condensing)
- Take into consideration the permissible ambient temperature of the sensors connected and other components

Read-off and operating posi-

tion

 Install the device in a favourable position for reading and operating (preferably at eye level)

Mounting position

 Leave sufficient clearance for the cables

Packaging material

Dispose of packaging material in an environmentally responsible way. All packaging components carry the corresponding recycling code ...

5.1 Scope of delivery

The following parts belong to the standard scope of delivery of a DULCOMETER $^{\mbox{\scriptsize 8}}$ Compact Controller.

Description	Quantity
Assembled device	1
Cable connection set DMTa/DXMa (metr.)	1
Operating instructions	1

5.2 Mounting (mechanical)

The DULCOMETER® Compact Controller is suitable for mounting on a wall, pipe or control panel.

Tab. 2: Mounting materials (contained in the scope of supply):

Description	Quantity
Wall/tube retaining bracket	1
Round head screws 5x45 mm	2
Washer 5.3	2
Rawlplug Ø 8 mm, plastic	2

5.2.1 Wall mounting Mounting (mechanical)

18 **ProMinent***

Fig. 1: Removing the wall/pipe bracket

- 1. Remove the wall/pipe bracket. Pull the two snap-hooks (1) outwards and push upwards
- 2. Fold out the wall/pipe bracket (2) and pull out in a downwards direction
- 3. Mark two drill holes diagonal to each other by using the wall/pipe bracket as a drilling template
- 4. Drill holes: Ø 8 mm, d = 50 mm

Fig. 2: Screwing on the wall/pipe bracket using washers

- 5. Screw on the wall/pipe bracket using the washers
- 6. Suspend the DULCOMETER®
 Compact Controller at the top in the wall/pipe bracket and push using light pressure at the bottom against the wall/pipe bracket. Then press upwards until the DULCOMETER®
 Compact Controller audibly snaps into position.

5.2.2 Pipe mounting Mounting (mechanical)

Fig. 3: Removing the wall/pipe bracket

- 1. Remove the wall/pipe bracket. Pull the two snap-hooks (1) outwards and push upwards
- 2. Fold out the wall/pipe bracket (2) and pull out in a downwards direction
- Secure the wall/pipe bracket using cable ties (or pipe clips) to the pipe

Fig. 4: Suspend and secure the DULCOMETER® Compact Controller

4. Suspend the DULCOMETER®
Compact Controller at the top (1) in the wall/pipe bracket and push using light pressure at the bottom (2) against the wall/pipe bracket.
Then press upwards (3) until the DULCOMETER® Compact Controller audibly snaps into position

5.2.3 Control panel mounting

Tab. 3: Mounting kit for control panel installation of the DULCOMETER® Compact Controller: Order number 1037273

Description	Quantity
Drilling template sheet 3872-4	1
PT screw (3.5 x 22)	3
Profile seals	2
Strain relief strip DF3/DF4	1
PT screw (3.5 x 10)	2

Individual parts packed in transparent cover / Mounting kit is not contained in the standard scope of supply

CAUTION!

Material thickness of control panel

Possible consequence: material damage

 The thickness of the material of the control panel should be at least 2 mm to ensure secure fixing

In the mounted state, the DULCOMETER® Compact Controller extends approx. 30 mm from the control panel.

Preparing the control panel

Fig. 5: The drawing is not to scale and is intended for information purposes only.

I. Outline contour of the DULCOMETER® Compact Controller housing

1. Mark the exact position of the DULCOMETER® Compact Controller on the control panel using the drilling template

2.

Core hole

Adhere to the 3.5 mm \varnothing as the core hole diameter for screwing in the fixing bolts.

Drill four holes for the bolts for the top section of the controller housing using a 3.5 mm \varnothing drill bit

- 3. Drill three holes for the bolts for the bottom section of the controller housing using a 4.5 mm Ø drill bit
- 4. Drill four holes using an 8 mm Ø drill bit and use a jigsaw to cut the cut-out
 - ⇒ Deburr all the edges.

Fitting the DULCOMETER® Compact Controller into the cut-out in the control panel

NOTICE!

Ribbon cable base

The base for the ribbon cable is firmly soldered onto the PCB. The base cannot be removed. Open the base lock (3) to loosen the ribbon cable, see Fig. 6

Fig. 6: Loosening the ribbon cable

- 1. Undo four screws and open the DULCOMETER® Compact Controller
- 2. Open the right and left lock (3) (arrows) on the base and pull the ribbon cable (1) out of the socket
- 3. Use pliers to break off the catches (2 and 4). These are not needed for control panel installation

Fig. 7: Dismantle the hinge

4. Remove the screw (2), unclip the hinge (1) on the bottom section of the controller housing (arrows) and remove the hinge

Fig. 8: Fitting the profile seal on the bottom section of the controller housing

- **5.** Position the profile seal evenly around the upper edge of bottom section of the DULCOMETER® Compact Controller housing. Arrange the clips (1) as shown in the figure
 - ⇒ Ensure that the profile seal evenly surrounds the upper edge of the housing.
- 6. ▶ Insert the bottom section of the DULCOMETER® Compact Controller housing with the profile seal from behind into the cut-out and use three screws to secure it in place

Fig. 9: Fitting the profile seal onto the top section of the controller housing

- Position the profile seal (arrow) evenly into the groove in the top section of the DULCOMETER® Compact Controller housing. Arrange the clips (3) as shown in the figure
- 8. Secure the strain relief (2) using two screws (1)

ProMinent° 27

Fig. 10: Push and lock the ribbon cable in its base

- 9. Push and lock the ribbon cable (1) in its base
- 10. Screw the top section of the controller housing onto the bottom section of the DULCOMETER® Compact Controller housing
- 11. Once again check that the profile seals are fitted properly
 - ⇒ IP 54 degree of protection can only be provided if the control panel is mounted correctly

5.3 Installation (electrical)

WARNING!

Live parts!

Possible consequence: Fatal or very serious injuries

- Measure: Disconnect the electrical power supply to the unit before opening the housing and secure to prevent unintentional reconnection
- Disconnect damaged or defective devices or devices that have been tampered with and prevent unintended reconnection
- The plant operator is responsible for providing an appropriate isolating device, such as an emergency-off switch etc.

Do not route the controller's signal leads alongside interference-prone cabling. This could lead to controller malfunctions.

5.3.1 Cable Cross-Sections and Cable End Sleeves

	Minimum cross-section	Maximum cross- section	Stripped insulation length
Without cable end sleeve	0.25 mm ²	1.5 mm ²	
Cable end sleeve without insulation	0.20 mm ²	1.0 mm ²	8 - 9 mm
Cable end sleeve with insulation	0.20 mm ²	1.0 mm ²	10 - 11 mm

5.3.2 Electrical connection of the conductivity sensor

CAUTION!

Length of the sensor cable

The sensor is supplied with a fixed cable or a measuring line.

Possible consequence: Slight or minor injuries. Material damage.

Modification of the cable (lengthening, shortening, etc.) is prohibited.

All conductivity sensors connected to the controller should have a shielded sensor cable.

5.3.3 Terminal diagram / wiring

Fig. 11: Threaded connector number

Tab. 4: Recommended cable diameter

Cable designation	Diameter in mm
Mains cable	6.5
Temperature sensor cable	5.0
External control cable	4.5

Fig. 12: Terminal diagram label for the Compact Controller (the cable colours relate to the measuring lines) & Tab. 6 'If you use a sensor without fixed cable or wish to extend the fixed cable, use the pre-assembled sensor cables.' on page 40

Red Shielding.

Black Sensor probes, the polarity is arbitrary. Blue Sensor probes, the polarity is arbitrary.

Yellow/Green Temperature sensor probes, the polarity is arbitrary.
Temperature sensor probes, the polarity is arbitrary.

Tab. 5: Table for the terminal diagram, Fig. 13 and/or the terminal diagram label Fig. 12

No.	Terminal	Description	Function	Terminal type
	Pin			(Max. diameter/ current)
1	XE2.1			Terminal strip, 3-
	XE2.2	[UREF2]	Shield for sensor cable	pin (1.5 mm ² /10 A)
	XE2.3			(1.5 IIIII / 10 A)
2	XE3.1	[LFI]	Sensor, 2 probes, the polarity is arbitrary	Terminal strip, 2- pin
	XE3.2	[LFGEN]	Sensor, 2 probes, the polarity is arbitrary	(1.5 mm ² /10 A)

No.	Terminal Pin	Description	Function	Terminal type (Max. diameter/ current)
3	XE4.1	[Pt100x(+)]	Pt100/Pt1000 temperature sensor	currenty
	XE4.2	[Pt100x(-)]	Pt100/Pt1000 temperature sensor	

Drill hole no. Size	Descrip- tion	Ter- minal	Ter- minal no.	Pin	Function	Recom- mended cable Ø	Remark
1 / M20	Sensor	XE2	2	red	Measuring input Conductivity sensor with/ without tempera-	5.6 mm	•
		XE3	1	black			
			2	blue			
		XE4	1	yellow/ green		5 mm	
			2	brown	ture sensor		
①Pass the temperature		ough the M	20/2x5 mm	n multiple s	eal insert wh	en using ar	external
2 / M16	Standard signal output	XA1	1	+ 15V	e.g. recorder / actuator	4.5*	2
			2	-			
	Contact input	XK1	1	+	Pause		
			2	-			
	Relay output	XR2	1		f-relay		
			2				
②Pass 1	cable (4-wir	re) through	the M16 /	2x4.5 mm ı	multiple seal	insert	
3 / M16	Relay output	XR1	1	COM	Raise/ lower sol- enoid	5 mm ③	3
			2	NO			
					valve		
	Relay output	XR1	1	COM	Limit value relay	5 mm	
			2	NO			

Drill hole no. Size	Descrip- tion	Ter- minal	Ter- minal no.	Pin	Function	Recom- mended cable Ø	Remark
	Relay output	XR1	1	COM	Alarm relay	5 mm	
	σαιραι						
			3	NC			
③ Pass cable through M16 single seal insert							
4 / M16	Mains connection	XP1	1	N	85 253 V effec- tive	6.5 mm	4
			2	L			
Pass cable through M16 single seal insert							

Wiring diagram

Fig. 13: Wiring diagram

5.3.4 Installation (electrical)

The cable must be routed in a siteprovided cable duct to ensure strain relief

- 1. Undo the four housing screws
- 2. Slightly lift the controller housing top section forwards and fold it to the left

Fig. 14: Punch out threaded holes

3.

Large threaded connection (M 20 x 1.5)

Small threaded connection (M 16 x 1.5)

Punch out as many threaded connections on the bottom side of the controller housing bottom section as required

- **4.** Guide the cable into the respective reducing inserts.
- 5. Insert the reducing inserts into the threaded connectors
- 6. Guide the cable into the controller.
- Connect the cable as indicated in the terminal diagram
- 8. Screw the required threaded connections in and tighten
- 9. Tighten the clamping nuts of the threaded connections so that they are properly sealed
- 10. Click the controller housing top section on to the controller housing bottom section
- 11. Manually tighten the housing screws
- 12. Once again check the seating of the seal. Only if the mounting is correct, is protection class IP 67 (wall/pipe mounting) or IP 54 (control panel mounting) achieved

5.4 Switching of inductive loads

If you connect an inductive load, i.e. a consumer which uses a coil (e.g. an alpha motorised pump), then you must protect your controller with a protective circuit. If in doubt, consult an electrical technician for advice.

The RC member protective circuit is a simple, but nevertheless very effective, circuit. This circuit is also referred to as a snubber or Boucherot member. It is primarily used to protect switching contacts.

When switching off, the connection in series of a resistor and capacitor means that the current can be dissipated in a damped oscillation.

Also when switching on, the resistor acts as a current limiter for the capacitor charging process. The RC member protective circuit is highly suitable for AC voltage supplies.

The magnitude of the resistance R of the RC member is determined according to the following equation:

R=U/I

(Where U= Voltage across the load and I_L = current through the load)

The magnitude of the capacitor is determined using the following equation:

Units: R = Ohm; U = Volt; I_L = Ampere; $C = \mu F$

C=k * I₁

k=0,1...2 (dependent on the application).
Only use capacitors of class X2.

Units: R = Ohm; U = Volt; I_L = Ampere; $C = \mu F$

If consumers are connected which have a high starting current (e.g. plug-in, switched mains power supplies), then a means of limiting the starting current must be provided.

The switching-off process can be investigated and documented using an oscilloscope. The voltage peak at the switch contact depends on the selected RC combination.

Fig. 15: Switching-off process shown on the oscillogram.

Fig. 16: RC protective circuit for the relay contacts

38 ProMinent*

Typical AC current application with an inductive load:

- 1) Load (e.g. alpha motor-driven pump)
- 2) RC-protective circuit
 - Typical RC protective circuit at 230 V AC:
 - Capacitor [0.22μF/X2]
 - Resistance [100 Ohm / 1 W] (metal oxide (pulse resistant))
- 3) Relay contact (XR1, XR2, XR3)

6 Sensor connection

9

Shielded sensor cable

All conductivity sensors connected to the controller require a shielded sensor cable.

Connect the sensor according to the wiring diagram, see & 'Wiring diagram' on page 36.

Tab. 6: If you use a sensor without fixed cable or wish to extend the fixed cable, use the pre-assembled sensor cables.

Accessories	Part number
Measuring line LF 1 m:	1046024
Measuring line LF 3 m:	1046025
Measuring line LF 5 m:	1046026
Measuring line LF 10 m:	1046027

Selection of the sensor connected

All of the sensor-dependent settings are reset to the [DEFAULT] values of the controller when changing the sensor connected.

Sensor	Connector	Cell constant ZK (1/cm)	T-correction element	Max. temp. (°C)	Measuring range κ min (Unit)	Measuring range κ max (Unit)
LFTK1FE 3m	Fixed cable 0.25 mm ² , 3 m, shielded	1.00	Pt1000	80	0.01 mS/cm	20 mS/cm
LFTK1FE 5m	Fixed cable 0.25 mm², 5 m, shielded	1.00	Pt1000	80	0.01 mS/cm	20 mS/cm

40 ProMinent*

Sensor	Connector	Cell con- stant ZK (1/cm)	T-correction element	Max. temp. (°C)	Measuring range κ min	Measuring range κ max
				,	(Unit)	(Unit)
LFTK1-DE	DIN 4-pin	1.00	Pt1000	80	0.01 mS/cm	20 mS/cm
LFTK1-1/2	DIN 4-pin	1.00	Pt1000	80	0.01 mS/cm	20 mS/cm
LF1-DE	DIN 4-pin	1.00	-	80	0.01 mS/cm	20 mS/cm
LFT1-DE	DIN 4-pin	1.00	Pt100	80	0.01 mS/cm	20 mS/cm
LFT1-1/2	DIN 4-pin	1.00	Pt100	80	0.01 mS/cm	20 mS/cm
LMP01	DIN 4-pin	0.10	Pt100	70	0.1 uS/cm	500 uS/cm
LMP01- HT	DIN 4-pin	0.10	Pt100	120	0.1 uS/cm	500 uS/cm
LMP01-TA	Fixed cable 0.34mm², 5 m, shielded	0.10	Pt100	70	0.1 uS/cm	500 uS/cm
LMP001	DIN 4-pin	0.01	Pt100	70	0.01 uS/cm	50 uS/cm
LMP001- HT	DIN 4-pin	0.01	Pt100	120	0.01 uS/cm	50 uS/cm
LM1	DIN 4-pin	1.00	-	70	0.1 mS/cm	20 mS/cm
LM1-TA	Fixed cable 0.34 mm², 5 m, shielded	1.00	-	70	0.1 mS/cm	20 mS/cm
LMP1	DIN 4-pin	1.00	Pt100	70	0.1 mS/cm	20 mS/cm
LMP1-HT	DIN 4-pin	1.00	Pt100	120	0.1 mS/cm	20 mS/cm

Sensor	Connector	Cell constant ZK (1/cm)	T-correction element	Max. temp. (°C)	Measuring range κ min (Unit)	Measuring range κ max (Unit)
LMP1-TA	Fixed cable 0.34 mm², 5 m, shielded	1.00	Pt100	70	0.1 mS/cm	20 mS/cm
CK1	DIN 4-pin	1.00	-	150	0.01 mS/cm	20 mS/cm
CKPt1	DIN 4-pin	1.00	Pt100	150	0.01 mS/cm	20 mS/cm

Conductivity sensors from external companies

Sensor = [MANUAL]. This setting is selected with conductivity sensors from external companies.

You have to select one of 3 measuring range detection profiles:

- [mid Cc] (DEFAULT): is ideal for the majority of sensors
- [lowCC]. Profile with a higher measuring frequency in the lowest conductivity ranges (for small cell constants)
- [highCC]: Profile with a lower measuring frequency in the medium conductivity ranges (for higher cell constants)

Monitoring of the sensor / measuring range

- When no sensor is connected
- Or the sensor cable is not connected properly

- Or the sensor cable is broken
- Or the sensor is not immersed in the measuring fluid

the error message [Test?] appears

If the conductive conductivity sensor has short-circuited, the error [INPUT^] is displayed, see \$ Chapter 11.1 'Error messages' on page 89.

7 Commissioning

■ User qualification: trained user, see ♦ Chapter 3.4 'Users' qualifications' on page 14

WARNING!

Sensor run-in periods

This can result in hazardous incorrect metering

- Correct measuring and metering is only possible if the sensor is working perfectly
- Observe the sensor's operating instructions
- Calibrate the sensor after commissioning

Following mechanical and electrical installation, integrated the controller into the measuring point.

7.1 Initial commissioning

The controller is in STOP state when the controller is first switched on.

Setting the auto-ranging profile

- 1. Select the conductive conductivity sensor used.
- 2. Enter the actual sensor cable length.
 - Subsequently the control setting and the setting of the different parameters dependent on the process to be measured.
- 3. When connecting external sensors, [INPUT > SENSOR > MANUAL], adjust the auto-ranging profile, see
 'Using external sensors' on page 46

7.2 Setting the control during commissioning

NOTICE!

Reset to factory settings

When switching over the metering direction, all actuators in the controller are reset to the factory settings for the selected metering direction.

For safety reasons, all the actuators are deactivated. The basic load is reset to 0 %. All parameters relating to the actuator, are reset to the factory setting.

Reset all the parameters that relate to the actuator.

Commissioning

The controller only controls 'one-way'. Only one position or one negative control variable can be calculated. The direction of the control variable is set in the 'PUMP' menu. There is no dead zone. In this sense, the control cannot be 'deactivated' (except with 'STOP' or 'PAUSE').

The value of the P-proportion of the control (Xp) is specified for the controller in the unit of the corresponding measured variable.

With pure P-control and a difference between the set and actual values, which corresponds to the Xp value, the calculated control variable is +100% (at the 'raise' setting) and -100% (at the 'lower' setting).

Selecting the sensor type 7.3

Input of the cable length and the cross-sectional area

The precise entry of the cable length is important with longer cable lengths.

With a conductivity value of e.g. 10mS (corresponding to 100 ohms), the displayed value changes by 1% every 10 m of cable length.

The Pt100 measurement is corrected by the cable resistance that comes from the cable length entered. The correction for a cable with a cross-sectional area of 0.25 mm² is 3.5 °C every 10 m of cable length.

ProMinent sensor cable, see ♦ Table on page 100and the fixedcable sensors are 0.25 mm².

Adjustable parameters in the [INPUT] > [CABLE] menu

- 0.14 mm²
- 0.25mm² (default value)
- 0.34 mm²
- $0.50 \, \text{mm}^2$

Use of fixed-cable ProMinent sensors

- 1. Press and move the cursor with the vor keys at the [INPUT] menu item and confirm the selection with ok.
- 2. Move the cursor with the v or keys at the [SENSOR] menu item and confirm with key.
- 3. ▶ Select the sensor used using the ▼ or ▲ keys and confirm with ♠.

Enter the cable length used:

Adjusting the fixed cable length

If you are using a conductivity sensor with a fixed cable and have to shorten the length of the cable, adjust the actual cable length in the menu under [LEN].

- 4. Use the ▼ or ▲ keys to select the menu item *[LEN]* and confirm with ok.
- 5. Adjust the entry for the cable length using the , or keys and confirm withow.
- **6.** Press twice to return to the continuous display.

Using ProMinent sensors with 4-pin plug

- 1. Press and move the cursor with the vor keys at the [INPUT] menu item and confirm the selection with ok.
- 2. Move the cursor with the v or keys at the [SENSOR] menu item and confirm with M.
- 3. Select the sensor used using the vor keys and confirm with ok.

Enter the cable length used:

- 4. Use the ▼ or ▲ keys to select the menu item [LEN] and confirm with ok.
- 5. ► Adjust the entry for the cable length used using the , v or keys and confirm withon.
- Press twice to return to the continuous display.

ProMinent° 45

Commissioning

Using external sensors

- 1. Press and move the cursor with the vor keys at the [INPUT] menu item and confirm the selection with ok.
- 2. ► Move the cursor with the ▼ or ▲ keys at the [SENSOR] menu item and confirm with [M].
- 3. Move the cursor with the ▼ or A keys at the [MANUAL] menu item and confirm with M.
 - ⇒ The question[ARE YOU SURE] appears
- 4. If you wish to set the [SENSOR] entry to [MANUAL], select [YES] using the ▼ or ▲ keys and confirm with [ok].

Enter the cable length used:

5. ► Use the ▼ or ▲ keys to select the menu item [LEN] and confirm with

Selecting the auto-ranging profile

- 6. Use the ▼ or ▲ keys to select the menu item [PROFILE] and confirm with [ok].
- 7. ► Adjust the [PROFILE] entry using the ▼ or ▲ keys and confirm with ok.
 - If the cell constant is < 1, then use [lowCC]</p>
 - If the cell constant is > 1, then use [highCC]
 - If the cell constant = 1, then use [midCC]

If the selected [PROFILE] entry does not deliver the required result, then try another profile.

Press twice to return to the continuous display.

46 **ProMinent***

7.4 Temperature compensation and reference temperature

Adjust the temperature compensation and reference temperature for correct display of the conductive conductivity [ConC] and resistance[RES].

Non-adjustable values are specified by the controller for the display of [TDS] and [SAL].

Tab. 7: Temperature compensation

Variable	Description	Type of temperature compensation	Range	Reference temperature (°C)
Specific conductivity / Electrical resistance	off	none		
	lin	linear, 0 9.99 %/K	- 20 °C150 °C	15 °C 30 °C adjustable
	nLF	non-linear for nat- ural water (DIN EN 27888)	0 °C35 °C	20 °C or 25 °C selectable
		extended nLF function	35 °C 120 °C	20 °C or 25 °C selectable
TDS		linear	0°C40°C	25°C, fixed
SAL		non-linear according to PSS-78	0°C35°C	15°C, fixed according to PSS-78

Commissioning

The conductive conductivity measured at the fluid temperature is converted to the reference temperature [TREF].

î,

Changing the reference tem-

perature

If the reference temperature [TREF] is changed, the temperature coefficient [TCOEFF] has to be recalibrated, see \$\times\$ Chapter 9.1.2 'Calibration of the temperature coefficient' on page 60

Adjustable process for temperature compensation

- [off]
 - Temperature compensation is switched off. It is measured based on the set reference temperature.
- [lin]
 - Linear temperature compensation, see ♦ Chapter 10.5 'Temperature correction variable' on page 83, for the temperature range permitted for the sensors. The reference temperature [TREF] can be set between 15 °C and 30 °C.
- [nLF]
 - Non-linear temperature compensation according to DIN EN
 27888 for natural water, between 0 °C ... 35 °C. The reference temperature [TREF] can be switched, 20 °C / 25 °C.

48 ProMinent*

8 Operating diagram

8.1 Overview of equipment/Operating elements

■ User qualification: instructed user, see ♦ Chapter 3.4 'Users' qualifications' on page 14

Fig. 17: Overview of equipment/Operating elements

Function	Description
1st respective measured variable	Affix the measured variable label here
2. LCD display	
3. UP key	To increase a displayed numerical value and move up in the operating menu
4. INFO/RIGHT key	Opens the information menu or moves the cursor one place to the right
5. OK key	To apply, confirm or save a displayed value or status or To confirm an alarm

Operating diagram

Function	Description
6. DOWN key	To decrease a displayed numerical value and move down in the operating menu
7. MENU key	To access the controller's operating menu
8. STOP/START key	Starts and stops the control and metering function
9. ESC key	Moves one level back in the operating menu, without storing or changing entries or values
	Switches the measured variables in the continuous display.
10. CAL key	To access the calibration selection menu (cell constant and temperature coefficient) and navigate within the calibration menu.
11. f-REL LED	Shows the activated state of the f-relay
12. P-REL LED	Shows the activated state of the P-relay
13. ERROR LED	Indicates a controller error state. A text message is displayed simultaneously in the LCD display of the continuous display

8.2 Entering values

Described by the example of entering setpoints in the Control menu.

Fig. 18: Entering values

1. Use 1/2 to select each position of the value to be entered.

- 2. ▶ Enter the values using the ▲and ▼ keys
- **4.** So: Cancelling the input of values without saving the entered value. The original value is retained.

8.3 Adjusting display contrast

If the DULCOMETER® Compact Controller is set to 'continuous display', you can set the contrast of the LCD-display. By pressing the ▲ key you can adjust the LCD display contrast so it is darker. By pressing the ▼ key you can adjust the LCD display contrast so it is lighter. Here each key press represents a contrast level. I.e. the key must be pressed once for each contrast level.

Operating diagram

8.4 Continuous display

Fig. 19: Continuous display

- Measured variable (switch using ESC), the following are possible: [ConC], [RES], [TDS] and [SAL]
- 2 Reference temperature or temperature compensation
- 3 Control variable
- 4 Possible error text: for example "Limit↓" (direction of limit value transgression e.g. value below the limit in this case)
- 5 Temperature (correction variable)
- 6 Measured value (actual value)
- 7 Operating status

The bottom line displays the current measuring temperature and a temperature manually entered. The temperature display cannot be switched off.

The temperature (measuring temperature or reference temperature) is needed to calculate all measured variables, which is why the second line of the continuous display therefore displays information about temperature compensation and the reference temperature.

The setpoint is displayed in the Information menu.

Switching between measured variables

Use the key to switch between the controller's measured variables [ConC], [RES], [TDS] and [SAL] in the continuous display.

Depending on the measured variable set, the settings of variables are changed or the variables are hidden completely in the [INPUT > TCOMP] menu and in the [LIMIT] menu.

52 **ProMinent***

8.5 Information display

The most important parameters for each first-level menu item are displayed in the Information display.

Use \mathbb{N} to access the Information display from the continuous display. Pressing \mathbb{N} again calls up the next Information display. Pressing calls up the continuous display again.

Fig. 20: Information display

Use on to move from the information display currently shown to the selection menu for this information display.

Use [55] to move directly back to the information display.

8.6 Password

Access to the setting menu can be limited by a password. The controller is delivered with the password *'5000'*. The controller is set up with the pre-set password *'5000'* so that access is possible to all menus.

Fig. 21: Setting the password

Password		Possible values		
Factory setting	Increment	Lower value	Upper value	Remark
5000	1	0000	9999	5000 = [FREE]

■ User qualification: instructed user, see ♦ Chapter 3.4 'Users' qualifications' on page 14

Fig. 22: Overview of the first level menus

9.1 Calibrating [CAL] the conductivity sensor

The following calibration functions are available depending on the type of sensor:

- Calibration of the cell constant
- Calibration of the temperature coefficient

Correct sensor operation

- Correct measuring and metering is only possible if the sensor is working perfectly
- Observe the operating instructions for the sensor

Incorrect calibration

An error message 'ERR' appears if the result of the calibration lies outside the specified tolerance limits. In this case the current calibration is not applied.

Check the prerequisites for calibration and clear the error. Then repeat calibration

In the event of repeated calibration failure, observe the notes given in the sensor operating instructions.

During calibration, the controller sets the control outputs to 'O'. Exception: If a basic load or a manual control variable has been set. This remains active. The mA standard signal output is frozen.

When calibration has been completed successfully, all of the error checks relating to the measured value are restarted. The controller saves the data determined for the cell constant and temperature coefficient when the calibration is successful.

The conductivity sensors can be calibrated using 3 different methods. The cell constant is adjusted directly or indirectly in all methods:

- Calibration compared to a reference solution
- Calibration compared to a reference measurement (e.g. manual measuring device)
- Calibration by entering a precisely known or determined cell constant

9.1.1 Calibration of the cell constant

Fig. 23: Calibration of the cell constant

ProMinent° 57

Calibration compared to a calibration solution

- 1. ▶ Press ♠ and move the cursor using the ♠ or ▼ key to [CELLCONST] and confirm with ♠.
- **2.** Enter the temperature coefficient of the calibration solution.

The temperature coefficient of the calibration solution is specified on the storage tank for the calibration solution. ProMinent's calibration solution has a temperature coefficient of 2% /K.

Confirm with OK.

- **3.** Now dip the sensor into the calibration solution and gently move the sensor.
- **4.** Wait until the conductivity and temperature measured value has stabilised.

Press CAL

- ⇒ The conductivity value measured is displayed.
- 5. Now enter the conductivity value measured using the ⋈, ▲ or v keys, in accordance with the conductivity value specified on the calibration solution.
 - If calibration has been completed successfully, the controller stores the determined values for the cell constant and the error checks relating to the measured value are restarted. The numerical setting range of the cell constant is not limited.
- **6.** ▶ Press 📾 twice to return to the continuous display.

Calibration compared with a reference measurement (e.g. manual measuring device)

Temperature coefficient of the measuring solution

The temperature coefficient of the measuring solution has to be known.

- 1. Press , leaving the sensor in the application in which the sensor is fitted.
- Move the cursor using the ▲ or ▼ key to [CELLCONST] and confirm with ∞.
- **3.** Enter the temperature coefficient of the measuring solution.

Confirm with ox.

- 4. Press CAL
 - ⇒ The conductivity value measured is displayed.
- 5. Now enter the conductivity value displayed using the √, ▲ or ▼ keys, in accordance with the reference value measured.
 - ⇒ If calibration has been completed successfully, the controller stores the determined values for the cell constant and the error checks relating to the measured value are restarted. The numerical setting range of the cell constant is not limited.
- **6.** Press [□] twice to return to the continuous display.

Calibration by entering a precisely known cell constant

1. Press ■ and move the cursor using the ▲ or ▼ key to [INPUT]

Confirm with ok.

2. Move the cursor using the ▲ or ▼ key to [CELLC].

Confirm with ok.

3. Now adjust the precisely known or previously determined cell constant using the ເ♠, ♠ or keys.

Confirm with OK.

Press twice to return to the continuous display.

Tab. 8: Sensor status

Display	Meaning	Status
[OK]	In order	Cell constant = 0.005 / 15.0
[WRN]	Warning	none
[ERR]	Error	Cell constant < 0.005 or cell constant > 15

9.1.2 Calibration of the temperature coefficient

Conductivity sensors with temperature element

You can only calibrate the temperature coefficient with conductivity sensors with a temperature elements, because it is impossible to calculate the temperature coefficient without measuring the temperature.

Temperature change

It is recommended that the temperature is changed by no more than 0.5 °C per minute, or with a temperature change of e.g. 10 °C you will need to wait for a minimum of 20 minutes before calibration.

Fig. 24: Calibration of the temperature coefficient

- I. If the temperature change is greater than 2°C, the note changes to [WAIT]
- II. If the temperature is within the specified range, the note changes to [STABLE]
- III. When a stable final temperature has been reached, the note changes to [ACCEPT?] Calibration can now be terminated manually.

ProMinent° 61

- 1. Calibrate at the first calibration temperature calibration temperature; this calibration temperature should be close to the selected reference temperature.
- **2.** Press [CAL] to accept the first calibration point. At the same time the temperature ranges for the second temperature value are given.
- 3. Note: [CHANGE TEMP], now immerse the sensor in the same liquid with the second calibration temperature (minimum temperature difference ± 10°C)
- **4.** If the measured temperature has changed by more than 2°C, /WA/T/ displayed.
- 5. If the temperature has changed by more than 10°C, [STABLE?] is displayed, and you can now terminate calibration if the displayed temperature value no longer changes. To do so, press [CAL].
- **6.** When the Maximum/Minimum temperature has been reached, [ACCEPT?] is displayed
 - ⇒ You can now terminate calibration. To do so, press [CAL].

This process may take 10 ... 20 minutes depending on the type of sensor.

7. Use [CAL] to accept the temperature coefficient or [ESC] to discard it

Sensor status

Display	Meaning	Status
[OK]	In order	ΔTkal > 20 °C
[WRN]	Warning	ΔTkal = 10 °C20 °C
[ERR]	Error	ΔTkal < 10 °C

 Δ Tkal = Temperature difference of the calibration liquids

62 **ProMinent***

9.2 Setting limit values [LIMITS]

Fig. 25: Setting limit values (LIMITS)

Setting		Possible values			
Display	Starting value	Increment	Lower value	Upper value	Remark
[LIMIT ↑]	0.02 S/cm	0.001	0.000 uS/cm	2.000 S/cm	upper limit value
[LIMIT ↓]	0.01 mS/cm	0.001	0.000 uS/cm	2.000 S/cm	lower limit value
[HYST.]	5%	1%	1%	20%	hysteresis of limit values
<i>[TLIMIT ↑]</i> °C	30.0 °C	0.1 °C	0.0 °C	150.0 °C	upper limit cor- rection value °C
<i>[TLIMIT ↓]</i> °C	10.0 °C	0.1 °C	0.0 °C	150.0 °C	lower limit cor- rection value °C
<i>[TLIMIT ↑]</i> °F	86.0 °F	0.1 °F	32.0 °F	302.0 °F	upper limit cor- rection value °F
<i>[TLIMIT ↓]</i> °F	32.0 °F	0.1 °F	32.0 °F	302.0 °F	lower limit cor- rection value °F
[TIMELIM.]	0 min = OFF	1 min	0	999	Checktime after a limit value has been exceeded or undershot

If [TDS] or [SAL] is set in the continuous display, the setting values for [TLIMIT †] and [TLIMIT ‡] are hidden in the [LIMIT] menu:

- [TLIMIT↓] can be changed if the continuous display is showing [Cond_C] or [RES].
- [TLIMIT↑] is fixed at 40 °C (with TDS) and 35 °C (with SAL). If the value set at [Cond_C] for [TLIMIT↑] is less than this value, this setting is retained.

Hysteresis: the hysteresis is specified as a %, as an absolute indication is impossible due to the breadth of the measuring range. The indication refers to the values given under [LIMIT†] and [LIMIT†].

Hysteresis = [HYST.]

If the value has fallen below a limit value, then the limit value criteria are reset when the measured value has reached the value of the limit value plus hysteresis.

64 ProMinent*

If the value has fallen below a limit value, then the limit value criteria are reset when the measured value has reached the value of the limit value minus hysteresis.

If the limit value criteria no longer exist on expiry of [TIMELIM], then the control is automatically reactivated.

9.3 Setting the control [CONTROL]

Fig. 26: Setting the control [CONTROL]

Setting		Possible valu	ies		
	Starting value	Increment	Lower value	Upper value	Remark
[PUMP]	dosing ↑	dosing ↓ dosing ↑			Mono-directional control direction ²
[SET]	1.0 mS/cm	0.001	0.000 uS/cm	2.000 S/cm	
[TYPE]	P	P Manual PID			Controller type
[<i>\</i> -Xp]	0.5 mS/cm	0.001	0.000 uS/cm	2.000 S/cm	P-proportion of control variable
[<i>4Ti</i>]	0 s	1 s	0 s	9999 s	PID control inte- gral action time (0 seconds = no l- proportion)
[+Td]	0 s	1 s	0 s	2500 s	PID control derivative action time (0 seconds = no D-proportion)
[BASIC] ¹	0%	1%	- 100%	100%	Basic load
[& MANUAL]	0%	1%	- 100%	100%	Manual control value
[CHECK- TIME]	0 min	1 min	0 min	999 min	Control checktime 0 minutes = off

Setting		Possible values				
	Starting value	Increment	Lower value	Upper value	Remark	
[4LIMIT] ¹	0%	1%	- 100%	100%	Checktime limit. No basic load, only PID control value	
[BOOT DELAY]	0 s	1 s	0 s	9999 s	Control delay period after the start of the measuring point. After it is switched on, the unit only measures but does not control during this period.	

^{1 =} in an upwards direction with mono-directional control: 0 ...+ 100% (setting with PUMP: dosing \uparrow), in a downwards direction: - 100 ... 0% (setting with PUMP: dosing \downarrow).

^{2 =} When switching over the metering direction, all actuators in the controller are reset to the factory settings for the selected metering direction.

9.4 Setting inputs [INPUT]

Fig. 27: Setting inputs [INPUT]

Setting		Possible values				
Display	Starting value	Increment	Lower value	Upper value	Remark	
[SENSOR]	LFTK1-3m				Sensor type	
[4 TYPE]	Conductive				Sensor type	
[4 MIN]	0.0 S/cm	0.001	0.000 uS/cm	2.000 S/cm	Minimum measured value	
[\ MAX]	0.02 S/cm	0.001	0.000 uS/cm	2.000 S/cm	Maximum measured value	
[CELLC]	1 cm ⁻¹	0.001	0.006 cm ⁻¹	15 cm ⁻¹	Cell constant	
[4 TMAX]	120 °C	0.01	0.01 °C	150 °C	Maximum temperature that the sensor can withstand	
[4 PRO- FILE]	midCC	lowCC,			Automatic measuring range detection	
		midCC				
		highCC				
[CABLE]	0.25mm ²	0.14mm ²			Cable diameter	
		0.34mm ²				
		0.25mm ²				
		0.50mm ²				
[4 LEN]	3 m	0.01	0 m	50 m	Cable length	
[↓ R_CABLE]	0.4 Ω	0.01	0 Ω	100 Ω	Cable resistance	
[TCOMP]	off				Temperature compensation off	
	lin				Linear temperature compensation	
	nLF				Non-linear temperature compensation (according to DIN EN 27888)	

Setting		Possible values					
Display	Starting value	Increment	Lower value	Upper value	Remark		
[4TREF]	25 °C	1	15 °C	30 °C	Reference temperature		
[TCOEFF]	1.9 %/°C	0.1	0 %/°C	9.99 %/°C	Temperature coefficient		
[FILTER]	3 s	1	3 s	30 s	Measured value filtering in seconds ¹		
[TDS]	0.64	0.001	0.004	1.000	TDS conversion factor		
[TEMP]	auto	man			Correction value source (Pt100 (0), manual)		
		auto					
[4 UNIT]	°C	°C			Correction value unit		
		°F					
[+ VALU]	25.0 °C	0.1	0.0 °C	150.0 °C	Manual correction value °C		
[⁴ VALUE]	77.0 °F	0.1	32.0 °F	302.0 °F	Manual correction value °F		
[CON- TACT]	pause	pause			Configuration of digital contact input		
		hold					
[4 POL]	norm.open,	norm.open,			Polarity of the contact input		
		norm.closed					
[4 DELAY OFF]	0 s	1	0 s	3600 s	Switch-off delay of contact input		
[⁴ ALARM]	off	on			Alarm at [Hold] or [PAUSE] event		
		off					

^{1) [}FILTER]. The default value of 3 seconds is suitable in most cases. You should only increase the default value of 3 seconds with fluctuating readings, a factor that also increases the setting time of the display value.

ProMinent° 71

Sensor

Selection of the sensor con-

nected

If the connected sensor it changed, all the sensor-dependent settings are reset to their [DEFAULT] values.

Temperature sensor

- [auto]: with conductivity sensors with integral temperature sensor
- [Manual], 25°C: with conductivity sensors without integral temperature sensor

9.5 Setting outputs [OUTPUT]

Fig. 28: Setting outputs (OUTPUT)

ProMinent[®] 73

Operating menus

Setting		Possible valu	es		
	Starting value	Increment	Lower value	Upper value	Remark
[P-REL]	alarm	alarm			Alarm relay
(Power relay)		unused			off
relay)		dosing			PWM relay
					(<i>P</i> ulse <i>M</i> dth <i>M</i> o dulation)
		limit			Limit value relay
[4PERIOD]	60 s	1 s	30 s	6000 s	Cycle time of PWM control
					(P-REL = dosing)
[4MIN ON]	10 s	1 s	5 s	PERIOD/4 or 999	Minimum switch-on period with PWM control
					(P-REL = dosing)
[⊹DELAY ON]	0 s	1 s	0 s	9999 s	Switch-on delay limit value relay
					(P-REL = limit)
[4DELAY OFF]	0 s	1 s	0 s	9999 s	Switch-off delay limit value relay (P-REL = limit)
[f-REL]	dosing	dosing			Activation of
[I-NEL]	uosing	-			the low power
		unused			relay (fre- quency relay)

Setting		Possible valu	es		
	Starting value	Increment	Lower value	Upper value	Remark
[&PUMPMA X]	180 RPM	1	1 RPM	500 RPM	Maximum stroke rate of the low power relay (fre- quency relay)
[mA OUT]	meas val	off			off
(Issued variable of the mA standard signal	ble of the nA tandard	meas val			meas val = measured vari- able (conduc- tivity)
output)		corr val			corr val = cor- rection variable
		dosing			dosing = con- trol value
		manual			manual = Manual
[4RANGE]	4 - 20 mA	0 - 20 mA			Range of the mA standard
		4 - 20 mA			signal output
[40/4 mA]	0.01 mS/cm	0.001	0.000 uS/cm	2.000 S/cm	
[+20 mA]	0.02 S/cm	0.001	0.000 uS/cm	2.000 S/cm	
[+0/4 mA]	0.0 °C	0.1 °C	0.0 °C	150.0 °C	Temp value assigned 0/4 mA
[<i>420 mA</i>]	100.0 °C	0.1 °C	0.0 °C	150.0 °C	Temp. value assigned 20 mA
[+0/4 mA]	32.0 °F	0.1 °F	32.0 °F	302.0 °F	Temp. value assigned 0/4 mA

Operating menus

Setting		Possible values			
	Starting value	Increment	Lower value	Upper value	Remark
[<i>420 mA</i>]	212.0 °F	0.1 °F	32.0 °F	302.0 °F	Temp. value assigned 20 mA
[+20 mA] ²	100 %	1 %	10 % / - 10 %	100 % / - 100 %	Control value assigned 20 mA (0/4 mA is fixed as 0 %)
[4VALUE]	4.00 mA	0.01 mA	0.00 mA	25.00 mA	Manual output current value
[4ERROR] off	23 mA			Output current value in the even of error, 23 mA	
	0/3.6 mA			Output current value in the event of error, 0/3.6 mA	
		off			off = no error current is output

^{1 =} The parameter maximum occurs at PERIOD/4 or 999, whichever is smaller

^{2 =} depending on the metering direction, the limits are either -10% and -100% or +10% and +100%

9.6 Setting the [DEVICE]

Fig. 29: Setting the [DEVICE]

Setting		Possible values			
	Starting value	Increment	Lower value	Upper value	Remark
[PASS- WORD]	5000	1	0000	9999	5000 = no password protection
[RESTART DEVICE]					Controller is restarted
[FACTORY RESET]	no	yes no	yes = FAC- TORY RESET!	no = FAC- TORY RESET!	All the controller's parameters are reset to factory settings.

ProMinent[®] 77

10 Control parameters and functions

■ User qualification: trained user, see ∜ Chapter 3.4 'Users' qualifications' on page 14

10.1 DULCOMETER® Compact Controller function states

DULCOMETER® Compact Controller function states have the following priority:

- 1. 'STOP'
- 2. 'PAUSE/HOLD'
- 3. 'CAL' (calibration)
- 4. 'OPERATION' (normal mode)

"CAL" (calibration) peculiarities

- Control goes to basic load, mA measurement outputs are frozen
- New faults are detected, however they have no effect on the alarm relay or the mA output
- Detection of measurement variable relevant faults during 'CAL' (calibration process) are suppressed (e.g. LIMIT↑)

"PAUSE" peculiarities

- Control is switched to 0% control variable. The I-proportion is saved
- New faults are detected, however they have no effect on the alarm relay or the mA output
- Special case alarm relay in 'PAUSE':
 If activated the output relay switches to 'PAUSE' (error message CONTACTIN)

"HOLD" peculiarities

- Control and all other outputs are frozen
- New faults are detected, however they have no effect on the alarm relay or the mA output. However the effect of already existing faults (e.g. fault current) remains
- Special case alarm relay: Activation of the frozen alarm relay is permitted (= no alarm), if all faults have been acknowledged or have disappeared
- Special case alarm relay in 'HOLD': If activated the output relay switches to 'HOLD' (error message CON-TACTIN)

"STOP" peculiarities

- Control OFF
- New faults are detected, however they have no effect on the alarm relay or the mA output
- The alarm relay is switched off in 'STOP'

Peculiarities of the "START" event, i.e. switching from "STOP" to "OPERATION" (normal mode)

Fault detection starts afresh, all existing faults are deleted

Generally applicable information

- If the cause of a fault disappears, then the fault message in the LCD footer disappears.
- A previously existing 'PAUSE/HOLD' state is not influenced by starting a 'CAL' (calibration) process. If during 'CAL' (calibration) the functional state 'PAUSE/HOLD' is released, then all states will remain frozen until the end of the 'CAL' (calibration) process.

Control parameters and functions

- If 'CAL' (calibration) is started while functional state 'OPERATION' (normal mode) is active, then the functional state 'PAUSE/HOLD' is ignored until 'CAL' (calibration) completes. However STOP/START is possible at any time
- An alarm can be acknowledged or removed as follows: By clearing all faults by pressing the key and the key while the continuous display is visible

10.2 [STOP/START] key

0

Control is started / stopped by pressing . You can press megardless of the menu currently displayed. However the [STOP] state is only shown in the continuous display.

Fig. 30: 8 key

When the controller is first switched on, it is in [STOP] state.

In the event of defined error conditions, the controller switched to [STOP] state. The control is then off (= 0 % control variable).

To differentiate the operating status [STOP], caused by an error, from the operating status [STOP], caused by pressing [M], [ERROR STOP] is displayed instead of [STOP].

Pressing method therefore causes the operating status [ERROR STOP] to become [STOP]. Pressing once more causes the controller to start up again.

In [STOP] status, start the controller manually by pressing III.

Controller [STOP] means:

- Control is stopped
- The P-relay functioning as a limit value relay and as a PWM relay are switched to a de-energised state
- The P-relay acting as an alarm relay is activated (no alarm)

The controller restarting causes the following:

- If a [STOP] status existed, the you have to manually start the controller after switching on again.
- Error detection starts afresh, all existing errors are deleted

10.3 Priming [PRIME]

Fig. 31: Priming, e.g. to vent a pump

While the continuous display is visible, in the statuses [STOP] and [OPERATION], you can start the priming function [PRIME] by simultaneously pressing [and] v.

Depending on the configuration of the controller, the output relay [P-REL] is actuated at 100 %, the frequency relay [f-REL] is actuated at 80 % of "PUMPMAX" and 16 mA is output at the mA output. However this is only the case if these outputs are set as actuator [dosing].

The output relay [P-REL] starts after priming in an activated state.

You can use this function, for example, to transport the feed chemical up to the pump to vent the metering line.

10.4 Hysteresis limit value

Fig. 32: Hysteresis

Upper limit value = [LIMIT↑] Lower limit value = [LIMIT↓]

The range between $[LIMIT\uparrow]$ and $[LIMIT\downarrow]$ is the valid measuring range.

The controller has a [hysteresis], which is set as a % to the respective [LIMIT] value.

An error message is emitted if, for example, [HYST] = 5 % and $[LIMIT \uparrow]$ is exceeded. If the level falls below $0.95*[LIMIT \uparrow]$, the error message is retracted. If the level calls below $[LIMIT \downarrow]$, the error message is issued, which is retracted again after exceeding $1.05*[LIMIT \downarrow]$.

10.5 Temperature correction variable

Available temperature

A temperature reading for the conductivity always has to be available, either by a temperature measurement or a manual temperature setpoint.

The correction variable compensates for the effect of the temperature of the medium on the measured value. The correction variable is the temperature of the medium to be measured.

Operating modes

- [auto]: The controller analyses the temperature signal from the temperature sensor connected
 - For measurements using a temperature sensor (0 ... 150 °C)
- [manual]: The temperature of the medium to be measured has to be measured by the user. The determined value is then entered using the keys: ▼ and ▲ in the [VALUE] parameter into the controller and is saved using ⋈.
 - This setting is needed for measurements where the medium to be measured has a constant temperature. The temperature is taken into consideration in the control.

10.6 Checkout time for measured variable and correction variable

Error text	Description
LIMIT ERR	Checkout time of the measured variable
TLIMITERR	Checkout time of the correction variable

If upon the expiry of the checkout time, the valid measuring range is not reached, then the DULCOMETER® Compact Controller exhibits the following behaviour:

- **LIMIT ERR:** The control is switched off. An error current is emitted, provided the output is configured as a measured variable output
- TLIMITERR: The control is switched off. An error current is emitted, provided the output is configured as a correction variable output or a measured variable output

Initially the transgression of a limit is only a limit value transgression. This leads to a 'WARNING'. Switching on the control time 'TIMELIM' (> 0 minutes), creates an alarm from the limit value transgression. In the event of a [TLIMITERR] a, the control switches to [STOP].

10.7 Checkout time control

Monitoring of the control path

The checkout time monitors the control path. The checkout time mechanism permits detection of possible defective sensors.

Dead time determination

Each control path has a dead time. The dead time is the time, which the control path requires to detect a change or addition of metered chemicals using its own instrumentation.

You must select the checkout time so that it is greater than the dead time. You can determine the dead time, by operating the metering pump in manual mode and, for example, dosing acid.

NOTICE!

Dead time determination

You should only determine the dead time if the current process cannot be negatively influenced by the manual metering.

You must determine the time, which the control path (i.e. the entirety of controllers, sensors, measurement water, flow gauges, etc.) requires to detect a first change in the measured value starting from the beginning of dosing. This time is the 'dead time'. A safety margin, e.g. 25%, must be added to this dead time. You must allocate an appropriate safety margin for your own particular process.

The parameter 'LIMIT' can be used to set a limit for the control variable. If the control variable exceeds this limit value, the CHECKTIME fault is triggered (checkout time of the control has elapsed). The control is switched to basic load and a fault current output.

10.8 Power relay "P-REL" as limit value relay

The power relay 'P-REL' can be configured as a limit value relay. It always act only on the measurement variable, whereby the limits are set in 'LIMITS'. The relay is activated upon infringement of either the top or lower limit values.

Constant checking is carried out to determine whether a limit has been infringed and if this is interrupted with the power relay configured 'P-REL= limit' for at least 'DELAY ON' seconds, then the relay is activated. If the limit value transgression disappears for at least 'DELAY OFF' seconds, then the limit value relay is again deactivated.

The limit value relay is deactivated immediately upon: 'STOP', user calibration, 'PAUSE' and 'HOLD'.

10.9 Setting and functional description of "Relay Used as a Solenoid Valve"

Fig. 33: Solenoid valve (= P-REL: dosing)

min. time /MIN ON]

Cycle = [PERIOD] (in seconds)

î

Solenoid valve switching times

The switching times of the relay (solenoid valve) depend on the cycle time, the control variable and the 'min. time' (smallest permissible switch-on time for the connected device). The actuating variable determines the ratio t_{on} /cycle and thus also the switching times.

The 'min. time' affects the switching times in two situations:

1. Theoretical switching time < min. time

Fig. 34: Theoretical switching time < min. time

min. time [MIN ON]
Cycle = [PERIOD] (in seconds)

The DULCOMETER® Compact Controller does not switch on for a certain number of cycles until the sum of the theoretical switching times exceeds *'min. time'*. Then it switches for the duration of this total time.

2. Theoretical switching time > (cycle - min. time)

Fig. 35: Theoretical switching time > (cycle - min. time) and calculated switching time < cycle

min. time [MIN ON] Cycle = [PERIOD] (in seconds)

The DULCOMETER® Compact Controller does not switch off for a certain number of cycles until the differences between the cycle and the theoretical switching time exceed 'min. time'.

ProMinent[®] 87

Control parameters and functions

10.10 Alarm relay

The alarm relay triggers in 'OPERATION' (normal mode) if an error occurs which has been defined as 'ERROR' and not just as 'WARNING'.

The error message 'ALARM' in the continuous display is marked with a * (star) and can be acknowledged with the key. The alarm and the * will then disappear.

10.11 "Error logger" operating mode

The last three errors are displayed. Also displayed is how long ago (in minutes) they occurred. When a new fault occurs, the oldest fault is deleted.

Faults are only shown which occur in operating status 'OPERATION', i.e. not in operating status 'STOP', 'CAL' (user calibration), 'HOLD' or 'PAUSE'.

Only 'ERRORs' are shown, not 'WARNINGS', e.g. a 'LIMIT ERR' is shown, but not 'LIMIT '.

A fault, whose display has lasted for 999 minutes is automatically deleted from the *'Error Logger'*. The *'Error Logger'* is neither saved nor backed up in the event of power loss.

User qualification: trained user, see ♦ Chapter 3.4 'Users' qualifications' on page 14

The controller is maintenance- free.

11.1 Error messages

User qualification for diagnosis: trained user, see \$ Chapter 3.4 'Users' qualifications' on page 14. Further qualifications depend on the type and scope of possible troubleshooting measures to be carried out.

Measuring technology-specific errors: [INPUT 1]

The electrical sensor signal directly on the conductivity sensor input is too high. The conductivity calculated is less than that actual conductivity registered.

The error occurs from a value of:

- 200mS/cm with sensors with cell constant 1.0
- 20mS/cm with sensors with cell constant 0.1
- 2mS/cm with sensors with cell constant 0.01

The specified limit can also be higher depending on the sensor.

Measured variable-specific

errors: [TDS 1]

>2000: If the calculated TDS value is over 2000.

Measured variable-specific

errors: [SAL 1]

>70: If the calculated SAL value is over 70.

Error detection following device start

The majority of errors are only displayed with a 10-second delay following the start-up of the device.

Tab. 9: Error messages

Error mes- sage	[Error] [Warning]	Brief description of fault
[RANGE↓]	Е	The main measured variable falls below the measuring range
[RANGE 1]	E	The main measured variable exceeds the measuring range
[T RANGE↓]	E	Temperature value falls below the measuring range
[T RANGE↑]	E	Temperature value exceeds the measuring range
[CAL ERROR]	E	Calibration error during last calibration performed by the user
[CHECK- TIME]	Е	See chapter $\%$ Chapter 10.7 'Checkout time control' on page 84
[mA RANGE†]	E	The current emitted at the mA standard signal outputs is higher than 20 mA. This does not apply with the issue of the 23 mA error current
[mA RANGE↓]	E	The current emitted at the mA standard signal outputs is below 0/4 mA. This does not apply with the issue of the 0/3.6 mA error current
[LIMIT↑]	W	Main measured variable is higher than the limit set
[LIMIT↓]	W	Main measured variable is lower than the limit set
[T LIMIT↑]	W	Correction measured variable higher than the limit set
[T LIMIT]	W	Correction measured variable higher than the limit set
[LIMIT ERR]	Е	See chapter \$\&\times\$ Chapter 10.6 'Checkout time for measured variable and correction variable' on page 84
[TLIMI- TERR]	E	See chapter
[NO CAL]	W	No calibration has been performed by the user
[CON- TACTIN]	E	Alarm triggered by contact input ([INPUT] menu: [ALARM=on] selected)
[TDS↑]	W	The TDS value is too high Continuous display: >2000
[SAL †]	W	The SAL value is too high Continuous display: >70

Error mes- sage	[Error] [Warning]	Brief description of fault
[INPUT _↑]	Е	Conductivity signal exceeds the input measuring range
[TEST?]	E	Check the sensor's connection Cable breakage? No sample water

Tab. 10: Response of the device due to the error messages

Error message	Control mode	mA measure- ment output	mA correction output	Limit value relay	Suppressed during user calibration
[RANGE ↓]	Basic load	Error current	-	-	yes
[RANGE1]	Basic load	Error current	-	-	yes
[T RANGE]	Basic load	Error current	Error cur- rent	-	yes
[T RANGEt]	Basic load	Error current	Error cur- rent	-	yes
[CALERROR]	-	-	-	-	yes
[LOW ZERO]	-	-	-	-	yes
[CHECKTIME]	Basic load	Error current	-	-	no
[mA RANGE1]	-	-	-	-	no
[mA RANGE ↓]	-	-	-	-	no
[LIMIT1]	-	-	-	activation1	yes
[LIMIT↓]	-	-	-	activation1	yes
[TLIMIT1]	-	-	-	-	no
[T LIMIT ↓]	-	-	-	-	no
[LIMIT ERR]	Stop	Error current	-	-	yes
[TLIMITERR]	Stop	Error current	Error cur- rent	-	no
[NOCAL]	-	-	-	-	yes
[CONTACTIN]	-	-	-	-	no
[TDS1]	-	-	-	-	no
[SAL 1]	-	-	-	-	no
[INPUT1]	Basic load	Error current	-	-	no

¹⁾If the functionality of the limit value relay is activated and the switch-on delay is overcome.

11.2 Changing the fuse, DULCOMETER® Compact Controller

WARNING!

Danger from electrical voltage

Possible consequence: Fatal or very serious injuries.

- The DULCOMETER® Compact Controller does not have a mains switch
- When working inside the control unit, disconnect the control unit from the mains power via an external switch or by removing the external fuse

NOTICE!

Use only 5 x 20 mm micro-fuses

Possible consequence: Damage to the product or its surroundings

- 5x20 T 0.315 A
- Part number 732404

Fuse change

The mains fuse is located in a sealed fuse holder in the inside of the device.

- 1. Disconnect the controller from the mains power
- 2. Open the controller and fold the controller housing top section to the left
- 3. Remove the PCB cover
- 4. Remove the micro-fuse using a suitable tool
- 5. Fit the micro-fuse using a suitable tool
- 6. Refit the PCB cover
- 7. Replace controller housing top section and close the controller

12 Technical data on DULCOMETER® Compact Controller

12.1 Permissible ambient conditions

Degree of protection (IP)

The controller fulfils the IP 67 degree of protection requirements (wall/pipe mounting) or IP 54 (control panel mounting). This degree of protection is only achieved if all seals and threaded connectors are correctly fitted.

Tab. 11: Permissible ambient operating conditions

Temperature	-10 °C 60 °C
Air humidity	< 95 % relative air humidity (non-condensing)

Tab. 12: Permissible ambient storage conditions

Temperature	-20 °C 70 °C
Air humidity	< 95 % relative air humidity (non-condensing)

12.2 Dimensions and weights

Complete device:	128 x 137 x 76 mm (W x H x D)
Packaging:	220 x 180 x 100 mm (W x H x D)
Weight of device without packaging:	approx. 0.5 kg
Gross weight of device with packaging:	approx. 0.8 kg

12.3 Material data

Part	Material
Housing lower and upper section	PC-GF10
Bracket rear side housing bottom section	PPE-GF20
Operating film	Polyester PET membrane
Seal	Expanded PUR
Cover screws	Stainless steel A2
Profile seal (control panel mounting)	Silicone

12.4 Chemical Resistance

The device is resistant to normal atmospheres in plant rooms

12.5 Sound Pressure Level

No noise generation measurable

13 Electrical data

Mains connection	
Nominal voltage range	100 230 VAC ± 10 %
Frequency	50 60 Hz
Power consumption	50 100 mA

Main and auxiliary inputs, display and measuring ranges

Tab. 13: Main input:

Variable	Display range
Specific conductive conductivity	0.001 1.999 μS/cm
	2.00 19.99 μS/cm
	20.0 199.9 μS/cm
	200 1999 μS/cm
	2.00 19.99 mS/cm
	20.0 199.9 mS/cm
	200 1999 mS/cm
Specific resistance.	$0.001 \dots 1.999 \ \Omega cm$
	2.00 19,99 Ωcm
	20.0 199.9 Ωcm
	$0.200 \dots 1.999 \ \Omega cm$
	2.00 19.99 Ωcm
	20.0 199.9 Ωcm
	0.200 1.999 MΩcm
	2.00 19.99 MΩcm
	20.0 199.9 MΩcm
	200 999 MΩcm

Variable	Display range
TDS (<u>t</u> otal <u>d</u> issolved <u>s</u> olids)	0 2000 ppm (mg/l)
SAL (salinity)	0.0 70.0 % (g/kg)

Maximum cable length of the sensor cable (K = cell constant):

- 10 m: in the range 1µS * K ... 200 mS * K
 50 m: in the range 10µS * K ... 20 mS * K
- Example for a 10-metre cable:

K=1/cm: 1µS/cm ... 200 mS/cm
 K=0.1/cm: 0,1µS/cm ... 20 mS/cm
 K=0.01/cm: 0.01µS/cm ... 2 mS/cm

Tab. 14: Auxiliary input:

Variable	Display range
Temperature Pt100/Pt1000 (automatic detection)	Cable length 10 m: - 20 °C 150 °C
	Cable length 50 m: - 20 $^{\circ}\text{C}$ 120 $^{\circ}\text{C}$

ProMinent° 97

Electrical data

Measuring accuracy

Variable	Measuring range	Precision
Specific conductive conductivity	1 μS * K 100 mS * K	1 % of the measured value ± 1 digital increment
	100mS * K 200 mS * K	2 % of the measured value ± 1 digital increment
Specific electrical resistance.	10 Ω / Κ 1ΜΩ / Κ	1 % of the measured value ± 1 digital increment
	5 Ω / Κ 10 Ω / Κ	2 % of the measured value ± 1 digital increment
Temperature Pt100	- 20 °C 150 °C	< 0.8 % of the measuring range
Temperature Pt1000	- 20 °C 150 °C	< 0.5 °C
K = cell constant		

Cell constant

■ Setting range of the cell constant K(1/cm): 0.005 ... 15.000

The mains connection is isolated from other switching parts by reinforced insulation. The device has no mains switch; a fuse is fitted.

Output relay (P-relay)	
Load capacity of switching contacts	5 A; no inductive loads

Outputs galvanically isolated from other switching parts by reinforced insulation.

Digital input	
Open circuit voltage	22 V DC max.
Short circuit current	6.5 mA
Max.switching frequency	Static. For switching processes like 'PAUSE', 'HOLD', etc.

NOTICE!

Do not supply with voltage

To connect an external semiconductor or mechanical switch.

mA output	0 20 mA	4 20 mA	manual
current range	0 20.5 mA	3.8 20.5 mA	0 25 mA
In the event of a fault	0 or 23 mA	3.6 or 23 mA	
Max. load	480 Ω at 20.5 mA		
Max. output voltage	19 V DC		
Overvoltage- resistant up to:	± 30 V		
Output accuracy	0.2 mA		

The mA output is galvanically isolated from all other connections (500 V)

Pump control (f-relay)	
Max. switching voltage:	50 V (protective low voltage)
Max. switching current:	50 mA
Max. residual current (open):	10 μΑ
Max. resistance (closed):	60 Ω
Max. switching frequency (HW) at 50 % filling factor	100 Hz

Digital output galvanically isolated from all other connections via OptoMos relay.

14 Spare parts and accessories

Spare parts	Part number
Fine fuse 5x20 T 0.8 A	732408
Wall/tube retaining bracket	1002502
Guard terminal top part (nut)	733389
Measured variable labels	1002503
DMT fixing strap	1002498
Cable connection set DMTa/DXMa (metric)	1022312
Controller housing lower part (processor/PCB), fully assembled	Identity code DCCA_E_E1
Controller housing top part (display/operating part), fully assembled	Identity code DCCA_E_E2

Accessories	Part number
Mounting kit for control panel installation	1037273
Strain relief strap 130	1039762
Measuring line, conductivity, 1m:	1046024
Measuring line, conductivity, 3m:	1046025
Measuring line, conductivity, 5m:	1046026
Measuring line, conductivity, 10m:	1046027

15 Replacing spare part units

- User qualification, mechanical installation: trained qualified personnel, see

 ⟨> Chapter 3.4 'Users' qualifications' on page 14
- User qualification, electrical installation: Electrical technician, see

 § Chapter 3.4 'Users' qualifications' on page 14

CAUTION!

Check strap for strain relief

Possible consequence: Material damage.

The ribbon cable and its base cannot be mechanically stressed. Hence it is essential when mounting the controller in the control panel, that the check strap (part number 1035918) is fitted for strain relief and mechanical fixing. Without the check strap, the ribbon cable or its base could be damaged if they were to fall out of the top part of the controller housing.

15.1 Replacing the top part of the housing

NOTICE!

Ribbon cable base

The base of the ribbon cable is firmly soldered onto the PCB. The base cannot be removed. Open the base lock (3) to loosen the ribbon cable, see Fig. 36

Fig. 36: Loosening the ribbon cable

- Undo four screws and open the DULCOMETER® Compact Controller
- 2. Open the right and left lock (3) (arrows) on the base and pull the ribbon cable (1) out of the socket
- 3. The catches (2 and 4) are not needed with units for control panel installation.

Replacing spare part units

Fig. 37: Dismantling the hinge

- 4. Remove the screw (2), unclip the hinge (1) on the lower part of the controller housing (arrows) and remove the hinge
- 5. With control panel installation: Remove the two screws and remove the strain relief

Fig. 38: With control panel installation: Fit the profile seal onto the top part of the controller housing

- 6. With control panel installation: Position the profile seal (arrow) evenly into the groove in the top part of the DULCOMETER® Compact Controller housing. Arrange the flaps (3) as shown in the figure
- 7. With control panel installation: Secure the strain relief (2) using two screws (1)

Fig. 39: Pushing and locking the ribbon cable in its base

- Push and lock the ribbon cable (1) in its base
- 9. Fit the hinge
- 10. Screw the top part of the controller housing onto the lower part of the DULCOMETER® Compact Controller housing
- 11. With control panel installation: Recheck that the profile seals are fitted properly
 - ⇒ Re-check that the seal is seated properly. Only if the mounting is correct, can IP 67 (wall/pipe mounting) or IP 54 (control panel mounting) degree of protection be achieved

15.2 Replacing the lower part of the housing (wall/tube retaining bracket)

Complete commissioning of the controller

Once the lower part of the housing has been replaced, it is necessary to fully commission the measuring and control point, as the new lower part of the housing does not have specific settings, only factory settings.

Fig. 40: Removing the wall/tube retaining bracket

1. Remove the wall/tube retaining bracket. Pull the two snap-hooks (1) outwards and push upwards

İ

NOTICE!

Ribbon cable base

The base of the ribbon cable is firmly soldered onto the PCB. The base cannot be removed. Open the base lock (3) to loosen the ribbon cable, see Fig. 36

Fig. 41: Loosening the ribbon cable

- 2. Undo four screws and open the DULCOMETER® Compact Controller
- 3. Open the right and left lock (3) (arrows) on the base and pull the ribbon cable (1) out of the base. The catches (2 and 4) are used to aligned the two halves of the housing.

ProMinent[®] 103

Replacing spare part units

Fig. 42: Dismantling the hinge

- 4. Remove the screw (2), unclip the hinge (1) on the lower part of the controller housing (arrows) and remove the hinge
- 5. Label the cable connectors fitted to distinguish them and remove the cables from the lower part of the controller

Preparing the new lower part of the controller housing

Fig. 43: Punching out the threaded holes

<u>6.</u>

Punch out as many threaded holes on the bottom of the lower part of the controller housing as required

Fit the cable and threaded connectors

- **7.** Guide the cable into the respective reducing inserts
- 8. Insert the reducing inserts into the threaded connectors
- **9.** Guide the cable into the controller
- 10. Connect the cable as indicated in the terminal diagram
- 11. Screw in the required threaded connectors and tighten
- 12. Tighten the threaded connector clamping nuts so that they are properly sealed

Refit the controller

13. Fit the hinge

Fig. 44: Fix the ribbon cable

- Push and lock the ribbon cable (1) in its base. The catches (2 and 4) are used to aligned the two halves of the housing.
- 15. Screw the top part of the controller housing onto the lower part of the DULCOMETER® Compact Controller housing
- 16. Re-check that the seal is seated properly. IP 67 degree of protection (wall/pipe-mounting) can only be provided if the installation is correct

Fig. 45: Suspend and secure the DULCOMETER® Compact Controller

17. Suspend the DULCOMETER® Compact Controller at the top (1) in the wall/tube retaining bracket and push using light pressure at the bottom (2) against the wall/pipe retaining bracket. Then press upwards (3) until the DULCOMETER® Compact Controller audibly snaps into position

15.3 Replacing the lower part of the housing (control panel installation)

Complete commissioning of

the controller

Once the lower part of the housing has been replaced, it is necessary to fully commission the measuring and control point, as the new lower part of the housing does not have specific settings, only factory settings.

NOTICE!

Ribbon cable base

The base of the ribbon cable is firmly soldered onto the PCB. The base cannot be removed. Open the base lock (3) to loosen the ribbon cable, see Fig. 36

Fig. 46: Loosen the ribbon cable from the base

- 1. Undo four screws and open the DULCOMETER® Compact Controller
- 2. Open the right and left lock on the base and pull the ribbon cable (1) out of the base.

ProMinent[®] 105

Replacing spare part units

Fig. 47: Dismantling the hinge

3. Remove the screw (2), unclip the hinge (1) on the lower part of the controller housing (arrows) and remove the hinge

Fig. 48: Removing the strain relief

- Remove the strain relief (2). Remove the screws (1) to do so.
- Check the profile seal (arrow), then position the profile seal evenly into the groove in the top part of the DULCOMETER® Compact Controller housing. Arrange the flaps (3) as shown in the figure
- **6.** Remove the top part of the controller housing (3 fixing bolts)
- 7. Label the cable connectors fitted to distinguish them and remove the cables from the lower part of the controller

Preparing the new lower part of the controller housing

Fig. 49: Punching out the threaded holes

8.

Large threaded connection (M 20 x 1.5)
Small threaded connection (M 16 x 1.5)

Punch out as many threaded holes on the bottom of the lower part of the controller housing as required

Fit the cable and threaded connectors

- **9.** Guide the cable into the respective reducing inserts
- 10. Insert the reducing inserts into the threaded connectors
- 11. Guide the cable into the controller
- **12.** Connect the cable as indicated in the terminal diagram
- 13. Screw in the required threaded connectors and tighten
- 14. Tighten the threaded connector clamping nuts so that they are properly sealed

Refit the controller

Fig. 50: Fitting the profile seal on the lower part of the controller housing

15. Use pliers to break off the catches. They are not needed for control panel installation

Position the profile seal evenly around the top edge of the lower part of the DULCOMETER® Compact Controller housing. Arrange the flaps (1) as shown in the figure

- ⇒ Ensure that the profile seal evenly surrounds the top edge of the housing.
- 16. Insert the lower part of the DULCOMETER® Compact Controller housing with the profile seal from behind into the cut-out and use three screws to secure it in place

Fig. 51: Fit the profile seal onto the top part of the controller housing

- Position the profile seal (arrow) evenly into the groove in the top part of the DULCOMETER® Compact Controller housing. Arrange the flaps (3) as shown in the figure
- 18. Secure the strain relief (2) using two screws (1)
- 19. Fit the hinge

Replacing spare part units

Fig. 52: Pushing and locking the ribbon cable in its base

- 20. Push and lock the ribbon cable (1) in its base
- 21. Screw the top part of the controller housing onto the lower part of the DULCOMETER® Compact Controller housing
- **22.** Re-check that the profile seals are fitted properly
 - ⇒ IP 54 degree of protection can only be provided if the control panel is mounted correctly

16 Standards complied with and Declaration of Conformity

The EC Declaration of Conformity for the controller is available to download on our homepage.

EN 60529 Specification for degrees of protection provided by housings (IP code)

EN 61000 Electromagnetic Compatibility (EMC)

EN 61010 Safety requirements for electrical equipment for measurement, control and laboratory use - Part 1: General requirements

EN 61326 Electrical equipment for measuring, control and laboratory use - EMC requirements (for class A and B devices)

Disposal of Used Parts

17 Disposal of Used Parts

■ User qualification: instructed user, see

© Chapter 3.4 'Users' qualifications' on page 14

Regulations governing the disposal of used parts

 Note the current national regulations and legal standards which apply in your country

The manufacturer will take back decontaminated used units providing they are covered by adequate postage.

Decontaminate the unit before returning it for repair. To do so, remove all traces of hazardous substances. Refer to the Material Safety Data Sheet for your feed chemical.

A current Declaration of Decontamination is available to download on the ProMinent website.

18 Glossary

Cell constant

The cell constant of a conductive conductivity sensor is determined by the geometry (surface of the electrodes and their distance) of the sensor.

The cell constant can deviate by up to 10% from the nominal value specified on the sensor. The geometry can also change through wear and tear or rough attempts at cleaning it.

Calibrating the cell constant generally compensates for both effects. Films on the sensors, caused for example by dirt or lime can also change the cell constant. The cell constants are generally changed gradually over a long period of time. In the event of change, repeated monitoring or cleaning of the sensor is imperative.

Temperature coefficients

If an aqueous solution is heated, it increases its electrolytic conductivity, although the concentration of, for example, salts has not changed.

The temperature coefficient compensates mathematically for this temperature influence on the conductivity so that when the temperature of the solution is changed, the same display value always appears (Attention: the temperature has to be measured).

The temperature measurement of a conductivity sensor is sluggish, so that it needs a few minutes until the temperature of the liquid is displayed in a stable manner. Wait until the value is stable or slightly begins to change in opposite directions. In the event of rapid temperature changes, we would recommend an external temperature sensor with a fast response time.

The conductivity measurement is based on a reference temperature, which is usually 25°C. However the conductivity measurement can also be adapted to deviating reference temperatures. A comparison of electrolytic conductivity is also possible with temperature changes to to automatic temperature compensation. The temperature coefficient α is given in %/°C or %/K. With potable water, the temperature coefficient is approximately 2% /°C of the temperature change.

Index 19 F Α G Ambient conditions 94 General non-discriminatory approach . . 2 Assembled sensor cables 40 General water treatment 16 В н Bottom section of the control housing Identity code 6 C Incorrect metering 43 Interference-prone cables 29 Check strap for strain relief 101 Large threaded connection (M 20 x Contrast setting 51 37 Control panel cut-out 22, 24 Legend for "Wiring" table 32 Links to elements or sections of these D instructions or other applicable docu-Declaration of Conformity 109 М Degree of protection IP 54 24, 37 Material thickness of control panel . . . Degree of protection IP 67 Max. switching current: Max. switching voltage: 99 E

N Naisa managatian	05	Question: What applications is the controller intended for?
Noise generation		Question: What can be calibrated? 55
O	. 2	Question: What can the output relays do?
Operating elements		Question: What control direction is available?
Overview of equipment		Question: What do I have to consider in terms of recycling?
P		Question: What do the LEDs indicate? 16
Pipe bracket	19	Question: What happens in the event of incorrect calibration?
Pipe diameter		Question: What information is made available in the continuous display? 52
Preparing the control panel		Question: What information is made available in the info display? 53
Punch out threaded holes		Question: What is the load capacity of the hinge?
Q		Question: What needs to be considered in terms of accessibility? 17
Question: Does the control have to be adjusted during commissioning?	44	Question: When are the actuators reset to factory settings?
Question: Does the system have temperature compensation?	83	Question: Where can I find the Declaration of Conformity? 109
Question: How are the device and sensor calibrated?	55	Question: Which cable is connected to which threaded connector?
Question: How do I vent the pump, for example?		
Champie:	81	Question: Which measured variables
Question: How is initial commissioning done?	43	can be processed?
Question: How is initial commis-	43	can be processed?
Question: How is initial commissioning done?	43 17	can be processed?
Question: How is initial commissioning done?	43 17 30	can be processed?

Index

Replacing the lower part of the nousing (control panel installation) 105	Strain relief strap 100
Replacing the lower part of the nousing (wall/tube retaining bracket) 103	Top section of the control housing 24
Replacing the top part of the housing 101	U
5	Users' qualifications
Safety information 10	
Selection of the sensor connected 40	V
Sensor connection 40	Venting
Small threaded connection (M 16 x 1.5)	W
Snap-hooks	Wall/pipe bracket 19
Sound Pressure Level 95	Washer
Spare parts 100	Weights
Standard scope of delivery 18	Wiring
Standards complied with 109	Wiring diagram
Strain relief 24. 37	

ProMinent GmbH Im Schuhmachergewann 5 - 11 69123 Heidelberg, Germany Telephone: +49 6221 842-0 Fax: +49 6221 842-419

Email: info@prominent.com Internet: www.prominent.com

985092, 3, en GB