Erasmus School of Economics

MOOC Econometrics

Lecture S.2 on Building Blocks: Testing

Erik Kole

Erasmus University Rotterdam

Statistical Hypothesis

- Assertion about a parameter of a distribution.
- Examples: $\mu = 0$, $\mu \ge 0$, $\mu > 5$, $5 \le \sigma \le 15$.
- Test: one hypothesis (null) against another one (alternative)

$$\begin{cases} H_0: & \mu = 0 \\ H_1: & \mu \neq 0 \end{cases}$$

(Zafus

Sample mean and variance: example

x-axis: return (in %); y-axis: frequency

- stock return $y_i \sim NID(\mu, \sigma^2)$
- Sample mean: m = 9.6%, sample standard deviation: $\sqrt{s^2} = 17.9\%$.

A friend claims: "The true mean μ equals zero".

Lecture S.2, Slide 2 of 13, Erasmus School of Economics

Statistical Test

- Statistical test: use observations to find support for H_0 against H_1 .
- Two elements: test statistic: $t(y_1, y_2, \dots, y_n)$, and critical region C.
- If t falls inside the critical region, we reject H₀ in favor of H₁; otherwise we do not reject H₀.
 "do not reject" ≠ accept.

Example

- $y_i \sim N(\mu, \sigma^2)$, σ^2 is known.
- $H_0: \mu = 0$ versus $H_1: \mu \neq 0$
- Test statistic: sample mean m.
- Critical region $C = \{(-\infty, -c] \text{ and } [c, \infty)\}$, with c constant.
- Reject H_0 when m < -c or m > c.

Test Result

	H_0 true	H_0 false
t in C , so reject H_0	Type I Error, False Positive	Correct Decision True Positive
t not in C , so do not reject H_0	Correct Decision True Negative	Type II Error False Negative

- $P(t \text{ in } C|H_0 \text{ true})$: size of the test.
- $P(t \text{ in } C|H_0 \text{ false})$: power of the test.
- Preference for small size and large power.
- Smaller C means lower size, but also lower power.

Ezafus

Lecture S.2, Slide 5 of 13, Erasmus School of Economics

Some remarks

- Common to use test statistics that follow a standard distribution. So, $\frac{m-\mu}{\sigma/\sqrt{n}}$ instead of m.
- $H_0: \mu = 0$ versus $H_1: \mu \neq 0$: two-sided test: reject H_0 if m < -c or m > c.

 $H_0: \mu = 0$ versus $H_1: \mu > 0$ or $H_0: \mu \leq 0$ versus $H_1: \mu > 0$: one-sided test: reject H_0 if m > c.

 Commonly we fix the size of the test and determine c, for example, 1, 5 or 10%.

Ezafus

Example: size

Test

You observe a set of n observations $y_i \sim NID(\mu, \sigma^2)$, with σ^2 known. You test $H_0: \mu = 0$ versus $H_1: \mu \neq 0$ based on the sample mean m with critical region $C = \{(-\infty, -c] \text{ and } [c, \infty)\}$, and c constant. What is the size of the test?

Answer

- $m \sim N(\mu, \sigma^2/n)$, so $\frac{m-\mu}{\sigma/\sqrt{n}} \sim N(0, 1)$ with cdf Φ .
- size, so H_0 is true, and $\mu = 0$.
- $P(m \text{ in } C|\mu = 0) = P(m \le -c|\mu = 0) + P(m \ge c|\mu = 0) = P\left(\frac{m}{\sigma/\sqrt{n}} \le \frac{-c}{\sigma/\sqrt{n}}\right) + P\left(\frac{m}{\sigma/\sqrt{n}} \ge \frac{c}{\sigma/\sqrt{n}}\right) = 2\Phi\left(\frac{-c}{\sigma/\sqrt{n}}\right)$

Lecture S.2, Slide 6 of 13, Erasmus School of Economics

p-value

p-value: minimum size that leads to rejection of H_0 .

Test

Suppose you test H_0 : $\mu=0$ versus H_1 : $\mu\neq 0$ and find $m/(\sigma/\sqrt{n})=2.1$. If $c/(\sigma/\sqrt{n})=2.1$, size for a two-sided test equals $2\Phi(-2.1)=0.036$. For which sizes do you reject?

Answer

Rejection for all sizes larger than 3.6%, so for 5% and 10%, but not for sizes smaller than 3.6%, so not for 1%.

t-statistic

In reality: σ^2 unknown

- Standardized mean $\frac{m-\mu}{\sigma/\sqrt{n}}$ cannot be calculated.
- Use estimator s^2 : t-statistic $t = \frac{m \mu}{s/\sqrt{n}}$.

$$\bullet \ \ t = \frac{\sqrt{n}(m-\mu)}{s} = \frac{\sqrt{n}(m-\mu)/\sigma}{\sqrt{\frac{(n-1)s^2}{\sigma^2}/(n-1)}} \sim t(n-1)$$

because $\sqrt{n}(m-\mu)/\sigma \sim N(0,1)$, $(n-1)s^2/\sigma^2 \sim \chi^2(n-1)$, and independent.

(zapus

Lecture S.2, Slide 9 of 13, Erasmus School of Economics

Tests for variances

 $H_0: \sigma^2 = \sigma_0^2 \text{ versus } H_1: \sigma^2 > \sigma_0^2.$

- Test statistic: $(n-1)s^2/\sigma_0^2 \sim \chi^2(n-1)$ (does not depend on $\mu!$)
- Reject if test statistic exceeds critical value c.

Two independent samples i=1,2 with n_i observations $y_{ij} \sim \textit{NID}(\mu_i, \sigma_i^2)$ $H_0: \sigma_1^2 = \sigma_2^2$ versus $H_0: \sigma_1^2 \neq \sigma_2^2$

- Estimators: $(n_i 1)s_i^2/\sigma_i^2 \sim \chi^2(n_i 1)$, independent.
- $\frac{s_2^2/\sigma_2^2}{s_1^2/\sigma_2^1} \sim F(n_2-1, n_1-1).$
- Under H_0 , $\sigma_1^2 = \sigma_2^2$ so test-statistic s_2^2/s_2^1 .

- Zafus

Unknown versus known variance

Setting

You observe a set of n=15 observations $y_i \sim \textit{NID}(\mu, \sigma^2)$, with σ^2 unknown. You test $H_0: \mu=0$ versus $H_1: \mu\neq 0$. The t-statistic equals 2.1.

- t-statistic $\sim t(14)$.
- Use Ψ_{ν} as cdf of $t(\nu)$, p-value equals $2\Psi_{14}(-2.1)=0.054$. Reject H_0 at 10% level, not at 5% level.
- Compare $2\Phi(-2.1) = 0.036$ for σ^2 known.
- Unknown variance leads to additional uncertainty, so higher p-values. For fixed size, we need larger critical values to reject H_0 .

Lecture S.2, Slide 10 of 13, Erasmus School of Economics

zafuno

The stock market example

26 observations, m = 9.6%, s = 17.9%

- $H_0: \mu = 0$ versus $H_1: \mu > 0$.
- $t = \sqrt{26} \cdot 9.6/17.9 = 2.75.$
- one-sided *p*-value $1 \Psi_{25}(2.75) = 0.0054$.
- We reject H_0 in favor of H_1 .

Test

Test H_0 : $\sigma = 0.25$ versus H_1 : $\sigma < 0.25$. The 5% critical value equals 14.61. What do you decide?

- Test statistic: $(n-1)s^2/\sigma^2 = 25 \cdot 0.179^2/0.25^2 = 12.74$.
- Critical region: C = (0, 14.61], so reject H_0 .
- *p*-value based on $\chi^2(25)$ is 0.021.

Training Exercise S.2

• Train yourself by making the training exercise (see the website).

• After making this exercise, check your answers by studying the webcast solution (also available on the website).

Lecture S.2, Slide 13 of 13, Erasmus School of Economics