

# **APPLICATIONS OF BIG DATA**

**PROJECT REPORT** 

Caroline Azeufack

## <u>Sommaire</u>

| 0                                                       |
|---------------------------------------------------------|
| Goal of the project2                                    |
| About the dataset2                                      |
| Tools                                                   |
| PART I: Building Classical ML project2                  |
| o Manage missing values2                                |
| o Data preparation & exploration3                       |
| o Models5                                               |
| - XGBoost5                                              |
| - Random Forest5                                        |
| - GradientBoosting5                                     |
| PART II: Integrate MLFlow to your project6              |
| - XGBoost6                                              |
| - RandomForest6                                         |
| - GradientBoosting7                                     |
| PART III: Integrate ML interpretability to your project |

## Goal of the project

The goal is of the project I to focus on integration of coding best practice, MLFlow and XAI library. The project is organized into 3 parts.

### About the dataset

Link: https://www.kaggle.com/c/home-credit-default-risk/data

The dataset used to this project is: **Home Credit Risk.** There are organized in many datasets, but we will use application\_train.csv and application\_test.csv. Each row represents loan application and is identified by the feature SK ID CURR.

In the application\_train has one more column than application\_test (TARGET) composed by two values  $[0 \Rightarrow loan was repaid, 1 \Rightarrow loan was not repaid]$ 

## **Tools**

In this project, I used common tools:



## PART I: Building Classical ML project

To start, I import some libraries like: numpy, pandas, matplotlib... and the two datasets in the notebook.

## o Manage missing values

#### - Application train:

I compute the function and the result shows that the dataset has 67 columns missing values. After dropping the first columns with the percent > 50, the dataset has now 81 instead of 122 columns in the beginning.

The CODE\_GENDER column has 3 values: (F, M, XNA). XNA value is a null value, so I will replace it by F because it is occurring several times.

#### - Application test:

I compute the function and the result shows that the dataset has 64 columns missing values. After dropping the first columns with the percent > 50, the dataset has now 92 instead of 121 columns in the beginning.

Shape before align the data

-> Train Shape : (307511, 80)

-> Test Shape : (48744, 92)

Shape after align the data

-> Train Shape : (307511, 81)

-> Test Shape : (48744, 80)

- Align the datasets: After the previous operation, there are not the same columns, so I decided to use the pandas align to synchronize both.

We can see just beside the difference.

 Row drop missing values: There are still missing values in the dataset, so I decided to drop all rows where missing values appears.

We can see just beside the

Shape before removing missing values on row

-> Train Shape : (307511, 81)
-> Test Shape : (48744, 80)

Shape after removing missing values

-> Train Shape : (84575, 81)
-> Test Shape : (13858, 80)

## o Data preparation & exploration

First, I will look at the TARGET column on application\_train set. We see that there are more 0 values than 1, so that more loan was repaid.



Here, I will look at the column's types of the dataset, because ML models does not accept categorical variables. As we can see the left plot, there are 16% of objects columns.



Most Machine Learning cannot deal with object type, so I will transform it in numeric variables. I defined two functions: LE (data), OHE (data).

LE(data) to transform categorical variables with 2 unique values(represent by red color in right graph above) and OHE(data) to transform categorical variables with more than 2 unique values(represent by yellow color in right graph above).

Shape before the labelization -> Train shape : (84575, 81) -> Test shape : (13858, 80)

\_\_\_\_\_

Shape after the labelization

-> Shape : (84575, 183) -> Shape : (13858, 179)

\_\_\_\_\_

Shape after align the datasets to have the same columns

-> Train shape : (84575, 180) -> Test shape : (13858, 179)

## o <u>Models</u>

## - XGBoost

Model XGboost Report

|                                       | precision    | recall       | f1-score             | support                 |
|---------------------------------------|--------------|--------------|----------------------|-------------------------|
| 0<br>1                                | 0.93<br>0.62 | 1.00<br>0.00 | 0.96<br>0.01         | 15660<br>1255           |
| accuracy<br>macro avg<br>weighted avg | 0.78<br>0.90 | 0.50<br>0.93 | 0.93<br>0.48<br>0.89 | 16915<br>16915<br>16915 |

\_\_\_\_\_

Accuracy for model : 92.59 %

## - Random Forest

Model Random Forest Report

|                           | precision    | recall       | f1-score     | support        |
|---------------------------|--------------|--------------|--------------|----------------|
| 0                         | 0.93         | 1.00         | 0.96         | 15660          |
| 1                         | 0.00         | 0.00         | 0.00         | 1255           |
| accuracy                  |              |              | 0.93         | 16915          |
| macro avg<br>weighted avg | 0.46<br>0.86 | 0.50<br>0.93 | 0.48<br>0.89 | 16915<br>16915 |

\_\_\_\_\_

Accuracy for Random Forest Model: 92.58 %

## - GradientBoosting

Model Gradient Boosting Report

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.93      | 1.00   | 0.96     | 15660   |
| 1            | 0.54      | 0.01   | 0.02     | 1255    |
| accuracy     |           |        | 0.93     | 16915   |
| macro avg    | 0.73      | 0.51   | 0.49     | 16915   |
| weighted avg | 0.90      | 0.93   | 0.89     | 16915   |

Accuracy for Random Forest Model: 92.59 %

## PART II: Integrate MLFlow to your project

- XGBoost

Metrics for XGBoost:

| Ī | RMSE | Ī | 27.2% | ١ |
|---|------|---|-------|---|
| Ī | MAE  | Ī | 7.4%  |   |
| Ī | R2   | T | -7.8% |   |
| Ī | ACC  | Τ | 92.6% |   |

Model saved in run cfb3cbd82c264b069dd43c02c5ab07aa

- RandomForest

#### Metrics for Random Forest:

| Ī | RMSE | Ī | 27.2% |   |
|---|------|---|-------|---|
| Ī | MAE  | Ī | 7.4%  | - |
| Ī | R2   | Ī | -8.0% | - |
| Ī | ACC  | Τ | 92.6% |   |

Model saved in run 189fa4243eb947f7a7da2ae550e771cf - GradientBoosting

Metrics for Gradient Boosting:

| Ī | RMSE | Ī | 27.2% |
|---|------|---|-------|
| Ī | MAE  | Ī | 7.4%  |
| Ī | R2   | Ī | -8.0% |
| Ī | ACC  | Τ | 92.6% |

Model saved in run d52c814744f64363b676dc93667d5677

PART III: Integrate ML interpretability to your project