

ANÁLISIS DE COMPONENTES PRINCIPALES (PCA)

Alan Reyes-Figueroa Introducción a la Ciencia de Datos

(AULA 07) 31.ENERO.2023

Objetivo: encontrar una estructura subyacente en los datos.

• Proyectar a un subespacio adecuado.

Objetivo: encontrar una estructura subyacente en los datos.

• Proyectar a un subespacio adecuado.

Ejemplo: Atletismo, pruebas de 100m y 200m.

Se observa cierta estructura.

Ejemplo: Atletismo, pruebas de 100m y 200m.

Se observa cierta estructura.

Karl Pearson (1901), describir con una recta.

Ejemplo: Atletismo, pruebas de 100m y 200m.

Se observa cierta estructura.

Karl Pearson (1901), describir con una recta.

Hotelling (1933), relación entre variables $g(X_1, X_2)$.

Ejemplo: Atletismo, pruebas de 100m y 200m.

Se observa cierta estructura.

Karl Pearson (1901), describir con una recta.

Hotelling (1933), relación entre variables $g(X_1, X_2)$.

No confundir con regresión, Incorporar incertidumbre.

Ejemplo: Atletismo, pruebas de 100m, 200m y salto de longitud.

100m vallas	200m planos	salto long
12.69	22.56	7.27
12.85	23.65	6.71
13.2	23.1	6.68
13.61	23.92	6.25
13.51	23.93	6.32
13.75	24.65	6.33
13.38	23.59	6.37
13.55	24.48	6.47
13.63	24.86	6.11
13.25	23.59	6.28
13.75	25.03	6.34
13.24	23.59	6.37
13.85	24.87	6.05
13.71	24.78	6.12
13.79	24.61	6.08
13.93	25	6.4
13.47	25.47	6.34
14.07	24.83	6.13
14.39	24.92	6.1
14.04	25.61	5.99
14.31	25.69	5.75
14.23	25.5	5.5
14.85	25.23	5.47
14.53	26.61	5.5
16.42	26,16	4.88

UNIVERSIDAD FRANCISCO

Ejemplo: Compresión de imágenes digitales.

 Buscamos direcciones informativas (estructura)

 Buscamos direcciones informativas (estructura) informativo = máxima variabilidad

- Buscamos direcciones informativas (estructura) informativo = máxima variabilidad
- Buscamos minimizar el error de reconstrucción.

- Buscamos direcciones informativas (estructura) informativo = máxima variabilidad
- Buscamos minimizar el error de reconstrucción.

Obs! Los dos enfoques anteriores son equivalentes.

Prueba:

Denotemos X la v.a. que corresponde a los datos ($X \in \mathbb{R}^2$ en el ejemplo). Por simplicidad, supongamos que los datos \mathbf{x}_i están centrados (i.e. $\mathbb{E}(X) = \mathbf{0}$).

Obs! Los dos enfoques anteriores son equivalentes.

Prueba:

Denotemos X la v.a. que corresponde a los datos ($X \in \mathbb{R}^2$ en el ejemplo). Por simplicidad, supongamos que los datos \mathbf{x}_i están centrados (i.e. $\mathbb{E}(X) = \mathbf{0}$).

MSS =
$$\frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_i||^2 =$$

Obs! Los dos enfoques anteriores son equivalentes.

Prueba:

Denotemos X la v.a. que corresponde a los datos ($X \in \mathbb{R}^2$ en el ejemplo). Por simplicidad, supongamos que los datos \mathbf{x}_i están centrados (i.e. $\mathbb{E}(X) = \mathbf{o}$).

MSS =
$$\frac{1}{n}\sum_{i=1}^{n}||\mathbf{x}_i||^2 = \frac{1}{n}\sum_{i=1}^{n}||(\mathbf{x}_i - \widehat{\mathbf{x}}_i) + \widehat{\mathbf{x}}_i||^2$$

Obs! Los dos enfogues anteriores son equivalentes.

Prueba:

Denotemos X la v.a. que corresponde a los datos ($X \in \mathbb{R}^2$ en el ejemplo). Por simplicidad, supongamos que los datos \mathbf{x}_i están centrados (i.e.

$$\mathbb{E}(X)=\mathbf{o}$$
).

MSS =
$$\frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} = \frac{1}{n} \sum_{i=1}^{n} ||(\mathbf{x}_{i} - \widehat{\mathbf{x}}_{i}) + \widehat{\mathbf{x}}_{i}||^{2}$$

= $\frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i} - \widehat{\mathbf{x}}_{i}||^{2} + \frac{1}{n} \sum_{i=1}^{n} ||\widehat{\mathbf{x}}_{i}||^{2}$

Obs! Los dos enfoques anteriores son equivalentes.

Prueba:

Denotemos X la v.a. que corresponde a los datos ($X \in \mathbb{R}^2$ en el ejemplo). Por simplicidad, supongamos que los datos \mathbf{x}_i están centrados (i.e. $\mathbb{E}(X) = \mathbf{0}$).

MSS =
$$\frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} = \frac{1}{n} \sum_{i=1}^{n} ||(\mathbf{x}_{i} - \widehat{\mathbf{x}}_{i}) + \widehat{\mathbf{x}}_{i}||^{2}$$

= $\frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i} - \widehat{\mathbf{x}}_{i}||^{2} + \frac{1}{n} \sum_{i=1}^{n} ||\widehat{\mathbf{x}}_{i}||^{2} = Reconstruction \ error + Var(X).$

Obs! Los dos enfoques anteriores son equivalentes.

Prueba:

Denotemos X la v.a. que corresponde a los datos ($X \in \mathbb{R}^2$ en el ejemplo). Por simplicidad, supongamos que los datos \mathbf{x}_i están centrados (i.e. $\mathbb{E}(X) = \mathbf{0}$).

MSS =
$$\frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_i||^2 = \frac{1}{n} \sum_{i=1}^{n} ||(\mathbf{x}_i - \widehat{\mathbf{x}}_i) + \widehat{\mathbf{x}}_i||^2$$

= $\frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_i - \widehat{\mathbf{x}}_i||^2 + \frac{1}{n} \sum_{i=1}^{n} ||\widehat{\mathbf{x}}_i||^2 = Reconstruction \ error + Var(X).$

MSS es fija, luego minimizar el error de reconstrucción equivale a maximizar la varianza de los datos.

Enfoque probabilístico:

$$\mathbb{X} = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1d} \\ X_{21} & X_{22} & \dots & X_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{nd} \end{pmatrix}.$$

Enfoque probabilístico:

Matriz de datos

$$\mathbb{X} = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1d} \\ X_{21} & X_{22} & \dots & X_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{nd} \end{pmatrix}.$$

• Consideramos $X = (X_1, \dots, X_d) \in \mathbb{R}^d$ como variable aleatoria, y los datos $\mathbf{x}_i = (x_{i_1}, \dots, x_{i_d}) \in \mathbb{R}^d$, para $i = 1, 2, \dots, n$ como muestra de X.

Enfoque probabilístico:

$$\mathbb{X} = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1d} \\ X_{21} & X_{22} & \dots & X_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{nd} \end{pmatrix}.$$

- Consideramos $X = (X_1, \dots, X_d) \in \mathbb{R}^d$ como variable aleatoria, y los datos $\mathbf{x}_i = (x_{i_1}, \dots, x_{i_d}) \in \mathbb{R}^d$, para $i = 1, 2, \dots, n$ como muestra de X.
- Supondremos que conocemos la ley \mathbb{P}_X .

Enfoque probabilístico:

$$\mathbb{X} = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1d} \\ X_{21} & X_{22} & \dots & X_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{nd} \end{pmatrix}.$$

- Consideramos $X = (X_1, \dots, X_d) \in \mathbb{R}^d$ como variable aleatoria, y los datos $\mathbf{x}_i = (x_{i_1}, \dots, x_{i_d}) \in \mathbb{R}^d$, para $i = 1, 2, \dots, n$ como muestra de X.
- Supondremos que conocemos la ley \mathbb{P}_X .
- Supondremos también que $\mathbb{E}(X) = \mathbf{o}$ (los datos están centrados).

Enfoque probabilístico:

$$\mathbb{X} = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1d} \\ X_{21} & X_{22} & \dots & X_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{nd} \end{pmatrix}.$$

- Consideramos $X = (X_1, \dots, X_d) \in \mathbb{R}^d$ como variable aleatoria, y los datos $\mathbf{x}_i = (x_{i_1}, \dots, x_{i_d}) \in \mathbb{R}^d$, para $i = 1, 2, \dots, n$ como muestra de X.
- Supondremos que conocemos la ley \mathbb{P}_X .
- Supondremos también que $\mathbb{E}(X) = \mathbf{o}$ (los datos están centrados). En consecuencia, $Var(X) = \mathbb{X}^T \mathbb{X}$.

Caso particular 1D: (proyectamos a un subespacio 1-dimensional).

Suponga que proyectamos a un subespacio $\langle \ell \rangle \Rightarrow \langle \ell, X \rangle = \ell^T X$.

Caso particular 1D: (proyectamos a un subespacio 1-dimensional).

Suponga que proyectamos a un subespacio $\langle \ell \rangle \Rightarrow \langle \ell, X \rangle = \ell^T X$. Buscamos maximizar

$$\max_{||\ell||=1} Var(\ell^{\mathsf{T}}X) = \max_{\ell \neq 0} \frac{Var(\ell^{\mathsf{T}}X)}{\ell^{\mathsf{T}}\ell} = \max_{\ell \neq 0} \frac{\ell^{\mathsf{T}}Var(X)\ell}{\ell^{\mathsf{T}}\ell} = \max_{\ell \neq 0} \frac{\ell^{\mathsf{T}}(\mathbb{X}^{\mathsf{T}}\mathbb{X})\ell}{\ell^{\mathsf{T}}\ell}.$$

(cociente de Rayleigh).

Caso particular 1D: (proyectamos a un subespacio 1-dimensional).

Suponga que proyectamos a un subespacio $\langle \ell \rangle \Rightarrow \langle \ell, X \rangle = \ell^T X$. Buscamos maximizar

$$\max_{||\ell||=1} Var(\ell^TX) = \max_{\ell \neq o} \frac{Var(\ell^TX)}{\ell^T\ell} = \max_{\ell \neq o} \frac{\ell^TVar(X)\ell}{\ell^T\ell} = \max_{\ell \neq o} \frac{\ell^T(\mathbb{X}^T\mathbb{X})\ell}{\ell^T\ell}.$$

(cociente de Rayleigh).

Teorema (Teorema espectral / Descomposición espectral)

Sea $A \in \mathbb{R}^{d \times d}$ una matriz simétrica (operador auto-adjunto). Entonces, A admite una descomposición de la forma

$$A = U \Lambda U^T$$

donde $\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_d)$ es la matriz diagonal formada por los autovalores $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_d$ de A, y

$$U = \left(\mathbf{q}_1 \quad \mathbf{q}_2 \quad \dots \quad \mathbf{q}_d \right) \in \mathbb{R}^{d \times d}$$

es una matriz ortogonal cuyas columnas son los autovalores de A, con \mathbf{q}_i el autovalor correspondiente a λ_i , $i=1,2,\ldots,d$.

Teorema (Teorema espectral / Descomposición espectral)

En otras palabras, A puede escribirse como una suma de matrices de rango 1

$$A = \begin{pmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \dots & \mathbf{q}_d \end{pmatrix} \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_d \end{pmatrix} \begin{pmatrix} & \mathbf{q}_1^T & \\ & \mathbf{q}_2^T & \\ & & \ddots & \\ & & \mathbf{q}_d^T & \end{pmatrix}$$
$$= \sum_{i=1}^d \lambda_i \, \mathbf{q}_i \mathbf{q}_i^T.$$

Comentario:

Para $1 \le k \le d$, la suma

$$\widehat{\mathbf{A}}_k = \sum_{i=1}^k \lambda_i \, \mathbf{q}_i \mathbf{q}_i^\mathsf{T},$$

es una matriz de rango k

Comentario:

Para $1 \le k \le d$, la suma

$$\widehat{A}_k = \sum_{i=1}^k \lambda_i \, \mathbf{q}_i \mathbf{q}_i^\mathsf{T},$$

es una matriz de rango k siempre que los $\lambda_i \neq 0$ (ya que los \mathbf{q}_i son independientes).

Veremos más adelante, que esta es la mejor aproximación de rango k de la matriz A.