STA3020 Assignment 3.

¹ School of Data Science, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen)

1. UMVUE & Cramér-Rao Lower Bound

- Exercise 1.1. If δ_1 and δ_2 are UMVUE of $g_1(\theta)$ and $g_2(\theta)$, respectively, then please proof that $a_1\delta_1 + a_2\delta_2$ also has finite variance and is the UMVUE of $a_1g_1(\theta) + a_2g_2(\theta)$, for any real and fixed a_1 and a_2 . Further, if $\delta_1\delta_2$ has finite variance, then $a_3\delta_1\delta_2$ is the UMVUE of $a_3\mathbb{E}\delta_1\delta_2$ for any real and fixed constant a_3 .
- Exercise 1.2. Let X_1, \ldots, X_n be i.i.d random variables, where we have each $X_i \sim \text{Binomial}(k, p)$ with k being known, n sufficiently large and p is the parameter of interests.
 - 1. Please find the UMVUE for p^r , where $r \in \mathbb{N}^+$.
 - 2. Please find the UMVUE for $\mathbb{P}(X_1 = x)$, where $x \in \mathbb{N}, 0 \le x \le k$.
 - 3. Please find the UMVUE for e^{-p} .
 - 4. Please find the UMVUE of $\mathbb{P}(X_1 + \cdots + X_m = X_{m+1} + \cdots + X_{2m})$ for some positive integer m such that $2m \leq n$.
- Exercise 1.3. Let $X_1, \ldots, X_n \overset{i.i.d.}{\sim} U(\theta_1 \theta_2, \theta_1 + \theta_2)$ with $\theta_1 \in \mathbb{R}, \theta_2 > 0$ and n being sufficiently large, please find the UMVUE of θ_1, θ_2 and θ_1/θ_2 .
- Exercise 1.4. Let $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$ with unknown μ and a known σ^2 . Please prove that, for an arbitrary polynomial of μ , i.e.,

$$f(\mu) = \sum_{r=0}^{k} a_r \mu^{k-r}$$
 (1.1)

with known and fixed integer k and constants a_0, a_1, \dots, a_k , the UMVUE of $f(\mu)$ is a polynomial of \bar{X} and σ , i.e., please prove that the UMVUE of $f(\mu)$

can be represented as

$$\tilde{f}(\bar{X}, \sigma) = \sum_{i=0}^{k} \sum_{j=0}^{k} b_{ij} \cdot (\bar{X})^{i} \cdot (\sigma)^{j},$$

/

for some coefficients $\{b_{ij}, 0 \le i, j \le k\}$, where the coefficients $\{b_{ij}, 0 \le i, j \le k\}$ depends on $\{a_0, a_1, \dots, a_k\}$ but not \bar{X} and σ .

- 1. First look at the UMVUE of μ^k for some fixed k, to see whether it can be represented as a polynomial of \bar{X} and σ , denote it as $g_k(\bar{X}, \sigma) = \sum_{i=0}^k \sum_{j=0}^k c_{ij} \cdot (\bar{X})^i \cdot (\sigma)^j$. 2. Use mathematical induction on the order k and use the conclusion of
 - Exercise.1.1.
 - 3. Use the fact that, when define $Y = \bar{X} \mu$, we have $Y \sim N(0, \sigma^2/n)$, and

$$\mathbb{E}\left(\bar{X}^k\right) = \sum_{r=0}^k \binom{k}{r} \mu^{k-r} \mathbb{E}(Y^r),$$
 where
$$\mathbb{E}(Y^r) = \begin{cases} (r-1)!! \cdot \left(\frac{\sigma^2}{n}\right)^{r/2}, & \text{when } r \text{ is even.} \\ 0, & \text{when } r \text{ is odd.} \end{cases}$$

• Exercise 1.5. Suppose that X has the Poisson distribution truncated on the right at a, so that it has the conditional distribution of Y given $Y \leq a$, where

• Exercise 1.6. Let \mathcal{F} be the class of all univariate distribution functions F that have a probability density function f and finite mth moment.

Y is distributed as $P(\lambda)$. Show that λ does not have an unbiased estimator.

- (a) Let X_1, \ldots, X_n be independently distributed with common distribution $F \in$ \mathcal{F} . For $n \geq m$, find the UMVUE of ξ^m , where $\xi = \xi(F) = EX_i$.
- (b) Show that for the case that $P(X_i = 1) = p$, $P(X_i = 0) = q$, p + q = 1, the estimator of (a) reduced to $\delta(T) = \frac{T(T-1)\cdots(T-m+1)}{n(n-1)(n-m+1)}$, where $T = \sum X_i$.

K XXXXXXXXXX XXXX 13XX — X*x*** *****