Section 3.2 – Sum and Difference Formulas

$$P_1 P_3 = P_2 P_4$$

 $(P_1 P_3)^2 = (P_2 P_4)^2$

Distance between points

$$[\cos(A+B)-1]^2 + [\sin(A+B)-0]^2 = (\cos A - \cos B)^2 + (\sin A + \sin B)^2$$
$$\cos^2(A+B) - 2\cos(A+B) + 1 + \sin^2(A+B) = (\cos A - \cos B)^2 + (\sin A + \sin B)^2$$

$$1 - 2\cos(A+B) + 1 = \cos^2 A - 2\cos B\cos A + \cos^2 B + \sin^2 A + 2\sin B\sin A + \sin^2 B$$

$$2 - 2\cos(A + B) = \cos^2 A + \sin^2 A + \cos^2 B + \sin^2 B - 2\cos B\cos A + 2\sin B\sin A$$

$$2-2\cos(A+B) = 1+1-2\cos B\cos A + 2\sin B\sin A$$

$$2-2\cos(A+B) = 2-2\cos B\cos A + 2\sin B\sin A$$

$$-2\cos(A+B) = -2\cos B\cos A + 2\sin B\sin A$$

$$\cos(A+B) = \cos B \cos A - \sin B \sin A$$

Find the exact value for cos 75°

Solution

$$\cos 75^{\circ} = \cos(45^{\circ} + 30^{\circ})$$

$$= \cos 45^{\circ} \cos 30^{\circ} - \sin 45^{\circ} \sin 30^{\circ}$$

$$= \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \frac{1}{2}$$

$$= \frac{\sqrt{6} - \sqrt{2}}{4}$$

Example

Show that $cos(x + 2\pi) = cos x$

Solution

$$\cos(x+2\pi) = \cos x \cos 2\pi - \sin x \sin 2\pi$$
$$= \cos x \cdot (1) - \sin x \cdot (0)$$
$$= \cos x$$

Example

Simplify: $\cos 3x \cos 2x - \sin 3x \sin 2x$

Solution

$$\cos 3x \cos 2x - \sin 3x \sin 2x = \cos(3x + 2x)$$
$$= \cos 5x$$

Example

Show that $\cos(90^{\circ} - A) = \sin A$

Solution

$$\cos(90^{\circ} - A) = \cos 90^{\circ} \cos A + \sin 90^{\circ} \sin A$$
$$= 0 \cdot \cos A + 1 \cdot \sin A$$
$$= \sin A$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A-B) = \cos A \cos B + \sin A \sin B$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A-B) = \sin A \cos B - \cos A \sin B$$

Find the exact value of $\sin \frac{\pi}{12}$

Solution

$$\sin\frac{\pi}{12} = \sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right)$$

$$= \sin\frac{\pi}{3}\cos\frac{\pi}{4} - \cos\frac{\pi}{3}\sin\frac{\pi}{4}$$

$$= \frac{\sqrt{3}}{2}\frac{\sqrt{2}}{2} - \frac{1}{2}\frac{\sqrt{2}}{2}$$

$$= \frac{\sqrt{6} - \sqrt{2}}{4}$$

Example

Find the exact value of cos15°

Solution

$$\cos 15^{\circ} = \cos \left(45^{\circ} - 30^{\circ}\right)$$

$$= \cos \left(45^{\circ}\right) \cos \left(30^{\circ}\right) + \sin \left(45^{\circ}\right) \sin \left(30^{\circ}\right)$$

$$= \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \frac{1}{2}$$

$$= \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4}$$

$$= \frac{\sqrt{6} + \sqrt{2}}{4}$$

If $\sin A = \frac{3}{5}$ with A in QI, and $\cos B = -\frac{5}{13}$ with B in QIII, find $\sin(A+B)$, $\cos(A+B)$, and $\tan(A+B)$

Solution

$$\sin A = \frac{3}{5} \rightarrow A \in QI$$

$$\Rightarrow \cos A = \sqrt{1 - \sin^2 A}$$

$$= \sqrt{1 - \left(\frac{3}{5}\right)^2}$$

$$= \sqrt{1 - \frac{9}{25}}$$

$$= \sqrt{\frac{25 - 9}{25}}$$

$$= \sqrt{\frac{16}{25}}$$

$$= \frac{4}{5}$$

$$\cos B = -\frac{5}{13} \rightarrow B \in QIII$$

$$\Rightarrow \sin B = -\sqrt{1 - \cos^2 B}$$

$$= -\sqrt{1 - \left(\frac{5}{13}\right)^2}$$

$$= -\frac{12}{13}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$= \frac{3}{5} \left(-\frac{5}{13} \right) + \frac{4}{5} \left(-\frac{12}{13} \right)$$

$$= -\frac{15}{65} - \frac{48}{65}$$

$$= -\frac{63}{65}$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$= \frac{4}{5} \left(-\frac{5}{13} \right) - \frac{3}{5} \left(-\frac{12}{13} \right)$$

$$= -\frac{20}{65} + \frac{36}{65}$$

$$= \frac{16}{65}$$

 $\tan(A+B) = \frac{\sin(A+B)}{(A+B)^2}$

$$\tan(A+B) = \frac{\sin(A+B)}{\cos(A+B)}$$

$$= \frac{-\frac{63}{65}}{\frac{16}{65}}$$

$$= -\frac{63}{16}$$

$$\tan(A+B) = \frac{\sin(A+B)}{\cos(A+B)}$$

$$= \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$$

$$= \frac{\frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B}}{\frac{\cos A \cos B - \sin A \sin B}{\cos A \cos B}}$$

$$= \frac{\frac{\sin A \cos B}{\cos A \cos B} + \frac{\cos A \sin B}{\cos A \cos B}}{\frac{\cos A \cos B}{\cos A \cos B}}$$

$$= \frac{\frac{\sin A \cos B}{\cos A \cos B} - \frac{\sin A \sin B}{\cos A \cos B}}{\frac{\cos A \cos B}{\cos A \cos B}}$$

$$= \frac{\frac{\sin A}{\cos A} + \frac{\sin B}{\cos B}}{1 - \frac{\sin A}{\cos A} \frac{\sin B}{\cos B}}$$

$$= \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

If $\sin A = \frac{3}{5}$ with A in QI, and $\cos B = -\frac{5}{13}$ with B in QIII, find $\tan(A+B)$

Solution

$$\tan A = \frac{\sin A}{\cos A}$$

$$\tan B = \frac{\sin B}{\cos B}$$

$$= \frac{3/5}{4/5}$$

$$= \frac{3}{4}$$

$$= \frac{12}{5}$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$
$$= \frac{\frac{3}{4} + \frac{12}{5}}{1 - \frac{3}{4} \frac{12}{5}}$$
$$= \frac{\frac{15}{20} + \frac{48}{20}}{1 - \frac{36}{20}}$$

$$= \frac{\frac{63}{20}}{-\frac{16}{20}}$$
$$= -\frac{63}{16}$$

Common household current is called *alternating current* because the current alternates direction within the wires. The voltage V in a typical 115-volt outlet can be expressed by the function $V(t) = 163 \sin \omega t$ where ω is the angular speed (in radians per second) of the rotating generator at the electrical plant, and t is time measured in seconds.

- a) It is essential for electric generators to rotate at precisely 60 cycles per second so household appliances and computers will function properly. Determine ω for these electric generators.
- b) Determine a value of ϕ so that the graph of $V(t) = 163\cos(\omega t \phi)$ is the same as the graph of $V(t) = 163\sin\omega t$

Solution

a) Each cycle is 2π radians at 60 cycles per second, so the angular speed is $\omega = 60(2\pi) = 120\pi$ radians per second.

b)
$$\cos\left(x - \frac{\pi}{2}\right) = \cos x \cos \frac{\pi}{2} + \sin x \sin \frac{\pi}{2}$$

 $= \cos x(0) + \sin x(1)$
 $= \sin x$
If $\phi = \frac{\pi}{2} \rightarrow V(t) = 163\cos\left(\omega t - \frac{\pi}{2}\right) = 163\sin\left(\omega t\right)$

Exercises Section 3.2 – Sum and Difference Formulas

1. Prove the identity
$$cos(A+B) + cos(A-B) = 2cos A cos B$$

2. Prove the identity
$$\sin\left(\frac{\pi}{4} + x\right) + \sin\left(\frac{\pi}{4} - x\right) = \sqrt{2}\cos x$$

3. Prove the identity
$$\frac{\sin(A-B)}{\cos A \cos B} = \tan A - \tan B$$

4. Prove the identity
$$\sec(A+B) = \frac{\cos(A-B)}{\cos^2 A - \sin^2 B}$$

5. Prove the identity
$$\frac{\cos 4\alpha}{\sin \alpha} - \frac{\sin 4\alpha}{\cos \alpha} = \frac{\cos 5\alpha}{\sin \alpha \cos \alpha}$$

6. Write the expression as a single trigonometric function
$$\sin 8x \cos x - \cos 8x \sin x$$

7. Show that
$$\sin\left(x - \frac{\pi}{2}\right) = -\cos x$$

8. If
$$\sin A = \frac{4}{5}$$
 with A in QII, and $\cos B = -\frac{5}{13}$ with B in QIII, find $\sin(A+B)$, $\cos(A+B)$, and $\tan(A+B)$

9. If
$$\sin A = \frac{1}{\sqrt{5}}$$
 with A in QI, and $\tan B = \frac{3}{4}$ with B in QI, find $\sin(A+B)$, $\cos(A+B)$, and $\tan(A+B)$

10. If
$$\sec A = \sqrt{5}$$
 with A in QI, and $\sec B = \sqrt{10}$ with B in QI, find $\sec(A+B)$

11. Prove the following equation is an identity:
$$\sin(x-y) - \sin(y-x) = 2\sin x \cos y - 2\cos x \sin y$$

12. Prove the following equation is an identity:
$$\cos(x-y) + \cos(y-x) = 2\cos x \cos y + 2\sin x \sin y$$

13. Prove the following equation is an identity:
$$\tan(x+y)\tan(x-y) = \frac{\tan^2 x - \tan^2 y}{1 - \tan^2 x \tan^2 y}$$

14. Prove the following equation is an identity:
$$\frac{\cos(\alpha - \beta)}{\sin(\alpha + \beta)} = \frac{1 - \tan\alpha \tan\beta}{\tan\alpha - \tan\beta}$$

15. Prove the following equation is an identity:
$$\sec(x+y) = \frac{\cos x \cos y + \sin x \sin y}{\cos^2 x - \sin^2 y}$$

16. Prove the following equation is an identity:
$$\csc(x-y) = \frac{\sin x \cos y + \cos x \sin y}{\sin^2 x - \sin^2 y}$$

17. Prove the following equation is an identity:
$$\frac{\cos(x+y)}{\cos(x-y)} = \frac{\cot y - \tan x}{\cot y + \tan x}$$

18. Prove the following equation is an identity:
$$\frac{\sin(x+y)}{\sin(x-y)} = \frac{\cot y + \cot x}{\cot y - \cot x}$$

19. Prove the following equation is an identity:
$$\frac{\sin(x-y)}{\sin x \cos y} = 1 - \cot x \tan y$$

20. Prove the following equation is an identity:
$$\frac{\sin(x-y)}{\sin x \sin y} = \cot y - \cot x$$

21. Prove the following equation is an identity:
$$\frac{\cos(x+y)}{\cos x \sin y} = \cot y - \tan x$$

22. Prove the following equation is an identity:
$$\tan(x+y) + \tan(x-y) = \frac{2\tan x}{\cos^2 y \left(1 - \tan^2 x \tan^2 y\right)}$$

23. Prove the following equation is an identity:
$$\frac{\sin(x+y)}{\cos(x-y)} = \frac{1+\cot x \tan y}{\cot x + \tan y}$$

24. Prove the following equation is an identity:
$$\frac{\cos(x-y)}{\cos(x+y)} = \frac{1+\tan x \tan y}{1-\tan x \tan y}$$