CLAIM AMENDMENTS

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A method, comprising:

slicing a block of data into a plurality of data slices;

appending a slice header[[s]] to each of the plurality of data slices; and

scheduling the plurality of data slices for transmission onto an optical switching

network during fixed time slots, wherein the block of data comprises a data stream,

wherein the slice headers each include a fragment identifier ("ID") indicating an order of

each of the plurality of data slices and a data stream ID identifying the data stream from a

plurality of other data streams. defined on a per carrier wavelength basis.

2. (Currently Amended) The method of claim 1 wherein the block of data

comprises a data stream is received from another network and which is buffered at an

edge node of the optical switching network.

3. (Cancelled)

4. (Currently Amended) The method of claim [[3]] 2, further comprising:

transmitting the plurality of data slices onto the optical switching network as an

optical burst, the optical burst including fixed length cells containing the plurality of data

slices with the slice headers appended thereto.

Attorney Docket No.: 42P16846 Application No.: 10/743,213 Examiner: CURS, Nathan M.

Art Unit: 2613

5. (Original) The method of claim 4 wherein each of the fixed length cells

includes N data slices of the plurality of data slices, where N is a whole number greater

than one.

6. (Original) The method of claim 4, further comprising appending a burst

header to a first one of the plurality of data slices.

7. (Currently Amended) The method of claim [[3]] wherein scheduling each of

the plurality of data slices for transmission onto an optical switching network comprises

scheduling the plurality of data slices into multiple optical bursts, the plurality of data

slices to be reassembled via the slice headers.

8. (Original) The method of claim 7 wherein each of the plurality of optical

bursts are transmitted on different carrier wavelengths.

9. (Original) The method of claim 8 wherein the fixed time slots are of constant

length throughout the optical switching network for optical bursts transmitted on a single

one of the carrier wavelengths, but vary in length between the different carrier

wavelengths.

10. (Original) The method of claim 1, further comprising:

Examiner: CURS, Nathan M.
Art Unit: 2613

3

establishing optical paths through the optical network prior to scheduling the plurality of data slices for transmission, wherein establishing the optical paths and scheduling the plurality of data slices are independent of each other.

- 11. (Currently Amended) The method of claim 10, wherein establishing the optical paths comprises executing a Resource Reservation Protocol—Traffic Engineering ("RSVP-TE") signaling protocol, wherein the RSVP-TE signaling protocol includes a hybrid optical bursts switching ("OBS") network extension.
- 12. (Currently Amended) A machine-accessible machine-readable storage medium that provides containing instructions, which when that, if executed by a machine, will cause the machine to perform operations comprising:

slicing data blocks into data slices;

generating slice headers to append to each of the data slices, wherein each of the slice headers includes a fragment identifier ("ID") identifying an order of the appended data slice and a data stream ID identifying one of the data blocks from which the appended data slice was sliced; and

scheduling the data slices for transmission onto an optical switching network within optical bursts, the optical bursts formed of [[the]] fixed length optical cells.

13. (Currently Amended) The machine-accessible machine-readable storage medium of claim 12 wherein scheduling the data slices is independent of establishing a path across the optical switching network.

Attorney Docket No.: 42P16846 4 Examiner: CURS, Nathan M. Application No.: 10/743,213 Art Unit: 2613

14. (Currently Amended) The machine-accessible machine-readable storage medium of claim 13, further providing containing instructions, which when that, if executed by the machine, will cause the machine to perform further operations, comprising buffering data streams received from another network to generate the data blocks.

15. (Currently Amended) The machine accessible machine-readable storage medium of claim 14 wherein scheduling the data slices for transmission comprises scheduling the data slices from multiple ones of the data streams into one of the optical bursts based on a scheduling algorithm.

16. (Cancelled)

17. (Currently Amended) The machine accessible machine-readable storage medium of claim 12 wherein scheduling the data slices for transmission comprises scheduling a set number of the data slices into each of a first subset of the fixed length optical cells to be transmitted on a first carrier wavelength and scheduling a different number of the data slices into each of a second subset of the fixed length optical cells to be transmitted on a second carrier wavelength.

18. (Currently Amended) The machine-accessible machine-readable storage medium of claim 12, further providing containing instructions, which when that, if

Attorney Docket No.: 42P16846 5 Examin Application No.: 10/743,213

executed by the machine, will cause the machine to perform further operations,

comprising:

generating burst headers for each of the optical bursts; and

appending one of the burst headers to a first one of the data slices in each of the

optical bursts.

19. (Currently Amended) An edge node of an optical switching network,

comprising:

a stream slicer to slice a data block into data slices;

a header pre-append block communicatively coupled to receive the data slices

from the stream slicer and to append a slice header to each of the data slices;

a scheduler coupled to schedule the data slices into fixed length time slots; and

a burst transmit block coupled to generate [[on]] an optical burst for transmission

onto the optical switching network, the optical burst to include the data slices with the

appended slice headers, wherein the burst transmit block is further coupled to generate

the optical burst as a series of fixed length optical cells, each of the optical cells

containing a fixed number of the data slices and appended slice headers.

20. (Currently Amended) The edge node of claim 19 wherein the scheduler

schedules the data slices independently of a signaling protocol used to establish for

establishing paths across the optical switching network.

21. (Cancelled)

Attorney Docket No.: 42P16846

Examiner: CURS, Nathan M. 6 Application No.: 10/743,213 Art Unit: 2613

22. (Currently Amended) The edge node of claim [[21]] 19 wherein the scheduler is further coupled to schedule [[the]] additional data slices into multiple additional optical bursts according to a scheduling algorithm for transmission on different

carrier wavelengths through the optical switching network.

23. (Original) The edge node of claim 19, further comprising a buffer

communicatively coupled to the stream slicer, the buffer to receive data streams from

another network and buffer the data streams as the data blocks.

24. (Original) The edge node of claim 19, wherein the header pre-append block is

further coupled to generate a fragment identifier ("ID") and a data stream ID for each of

the data slices, the slice header comprising the fragment ID and the stream ID.

25. (Currently Amended) A system, comprising:

an edge node to receive data streams from a first network, the edge node

comprising:

a stream slicer to slice the data streams into data slices;

a header pre-append block to append a slice header to each of the data

slices;

a scheduler to schedule the data slices for transmission within fixed length

optical cells; and

a burst transmit block to generate optical bursts containing the fixed length

optical cells, the fixed length optical cells optical bursts to be transmitted

during regular fixed time slots; and

an egress node optically coupled to receive the optical bursts and to deliver the

data streams to a second network; and

a plurality of switching nodes optically coupled between the edge node and the

egress node to route the data streams from the edge node to the egress node,

wherein the scheduler schedules the data slices independently of a signaling

protocol used to establish a path across the plurality of switching nodes.

26. (Cancelled)

27. (Currently Amended) The system of claim [[26]] 25 wherein the scheduler is

further coupled to schedule the data slices from one of the data streams into multiple ones

of the optical bursts according to a scheduling algorithm for transmission to the egress

node, each of the optical bursts transmitted to be transmitted on a different carrier

wavelength.

28. (Currently Amended) The system of claim 25 wherein the header pre-append

block is further configured to generate a fragment identifier ("ID") and a data stream ID

for each of the data slices, and wherein the slice header comprises the fragment ID and

the stream ID.

Attorney Docket No.: 42P16846 Application No.: 10/743,213 Examiner: CURS, Nathan M.
Art Unit: 2613

8

29. (Currently Amended) The system of claim 28 wherein the egress node is further <u>configured</u> to reassemble the data slices of one of the data streams prior to delivering the one of the data streams to the second network, if the data slices arrive at the egress node out of order.

9

Attorney Docket No.: 42P16846 Application No.: 10/743,213 Examiner: CURS, Nathan M. Art Unit: 2613