HW1 Solution, CS430, Fall 2014

Instructor: Professor Edward M. Reingold TA: Jing Zhao & Taeho Jung

September 8, 2014

1 Problem 2.3-3 on page 39

Base Case Proof

 $T(2) = 2 = 2 \lg 2$. Therefore, when n = 2, $T(n) = n \lg n$.

Inductive Hypothesis

If $a = 2^b$ for b > 1, we assume $T(a) = T(2^b) = a \lg a = b2^b$.

Inductive Step

The next inductive step to be proved is: if the above hypothesis holds, the following is true

If
$$a = 2^{b+1}$$
 for $b > 1$, $T(a) = T(2^{b+1}) = a \lg a = (b+1)2^{b+1}$,

Proof

$$\begin{split} T(2^{b+1}) &= 2T(2^b) + 2^{b+1} \quad \text{recurrence relation} \\ &= 2 \cdot b2^b + 2^{b+1} \quad \text{inductive hypothesis} \\ &= (b+1) \cdot 2^{b+1} \quad \text{simple manipulation} \end{split}$$

Conclusion

Combining the base case, hypothesis and the inductive step, we are able to conclude $T(n) = n \lg n$ (where T(n) is recursively defined as above) when $n = 2^k$ for k > 1.

2 Problem 2.3-4 on page 39

Let T(n) be the running time needed to recursively sort $A[1 \cdots n]$ using insertion sort. Then, we have:

$$T(n) = \begin{cases} O(1) & n = 1\\ T(n-1) + O(n) & n > 1 \end{cases}$$

because we sort the first n-1 elements $(A[1 \cdots n-1])$ using insertion sort recursively (which accounts for T(n-1)), and then insert A[n] into the sorted array $A[1 \cdots n-1]$ (which accounts for O(n)).

3 Problem 2-3(a) on page 41

Since we don't know running time of each operation, let's assume the following.

Operation	Running time per operation
assignment ('=')	a
subtraction	b
addition	c
multiplication	d
comparison	e

Line 1

The running time is a.

Line 2

This is equivalent to 'for(i = n; i >= 0; i - -)'. Therefore, the running time is a + (n + 2)b + (n + 2)e. Note that the loop body will be executed n + 1 times, and both subtraction and comparison will be conducted one more time to hit the termination condition.

Line 3

Each of this loop body contains one multiplication, one addition and one assignment, and this loop body is executed for n + 1 times. Therefore, the running time is (n + 1)(a + c + d).

Θ notation

In total, the running time is (n+3)a + (n+2)b + (n+1)c + (n+1)d + (n+2)e. Since a, b, c, d, and e are all constants, the running time is $\Theta(n)$.

4 Problem 3-3(a), second row only, on pages 61-62; justify your answers!

The functions sorted according to their growth rates:

$$2^{2^n}$$
, $\left(\frac{3}{2}\right)^n$, n^3 , $\lg(n!)$, $\lg^2 n$, $n^{1/\lg n}$

- $2^{2^n} = \Omega(2^n), (3/2)^n = O(2^n).$
- $(3/2)^n$ grows exponentially and n^3 grows polynomially.
- $\lg(n!) = O(\lg(n^n)) = O(n \lg n) = O(n^3).$
- $\lg(n!) = \Omega(\lg(2^n)) = \Omega(n \lg 2) = \Omega(n), \lg^2 n = O(n).$
- $n^{1/\lg n} = n^{\log_n 2} = 2$.
- ** $2^{2^n} \neq 4^n$

5 Problem 4-3(c) on page 108; solve this problem two ways: first with the master theorem on page 94, and then using secondary recurrences (pages 15-16 in the August 27 notes)

Using Master Theorem

$$a = 4, b = 2, f(n) = n^2 \sqrt{n} \Rightarrow \frac{af(n/b)}{f(n)} = \frac{4(n/2)^2 \sqrt{n/2}}{n^2 \sqrt{n}} = \sqrt{\frac{1}{2}} < 1$$

Therefore, $T(n) = \Theta(f(n)) = \Theta(n^2 \sqrt{n})$.

Using secondary recurrence

Let $n_i = n$ and $n_{i-1} = n/2$. Further, we assume T(1) is the base case and $n_0 = 1$. This does not affect the final result since we are solving for the Θ notation of the function. Then,

$$n_i = 2n_{i-1} \Rightarrow n_i = \alpha 2^i$$
 (corresponds to $(E-2)$)

Since $n_0 = 1$, $\alpha = 1$ and $n_i = 2^i$. Further, define $F(i) = T(n_i)$. Then, the original recurrence:

$$T(n) = T(n_i) = 4T(n/2) + n^2 \sqrt{n} = 4T(n_{i-1}) + n^2 \sqrt{n}$$

becomes

$$F(i) = 4F(i-1) + n^2\sqrt{n}$$

We have supposed $n = n_i$, and we derived that $n_i = 2^i$. Therefore, the final recurrence to solve is:

$$F(i) = 4F(i-1) + (2^i)^2 \sqrt{2^i}$$

which is annihilated by $(E-4)(E-2^{2.5})$. The corresponding closed formula is $\alpha_1 4^i + \alpha_2 (2^{2.5})^i$, which is $\Theta(2^{2.5i})$. Recall that $n=2^i$. We can achieve the final Θ notation by undoing the substitution as follows:

$$T(n) = F(i) = \Theta(2^{2.5i}) = \Theta((2^i)^{2.5}) = \Theta(n^{2.5}) = \Theta(n^2\sqrt{n})$$