1)	Number of Branches
	-> Since branches start at open loop poles and end at
	open loop zeros, the number of branches (N) is
	either the number of open loop poles or zeros,
	which ever is greater.
~ `	
2 :	Symmetry
	The root locus is symmetric about the real axis
21	Dalla da basada s
رد	Real axis branches
	Real axis branches This rule stems from applying the angle property
	count is an add multiple of 180° that point is
	=>15 the angle of the open loop transfer function at a point is an odd multiple of 180°, that point is on the root locus
	⇒The root locus exists to the left of an odd number
	of real axis finite poles or zeros
	⇒ Here's why:
	X
	- X X X
•	For a test point on the
	real axis, the angle contribution of complex conjugate pairs will
	of complex conjugate pairs will
	cancel, so only real axis poles and zeros contribute
	and zeros contribute
	The angle is a fee all makes and source in the laft of the
	The angle 15 0 for all poles and zeros to the left of the test point, and 180° to the right- on odd number to the
	right of the test point satisfies the criteria
	Tight of the test point sails the attack

Rules to sketch a Root Locus By Hand (9522)

Breakaway & Breakin points represent locations where a value of K exists that creates a double root in the closed loop characteristic equation

Segments of the root locus on the real axis (5=0) occur when

$$K = -1$$
 which we can write as $-D(\sigma)$

$$G(\sigma) + G(\sigma)$$

the breakaways occur when the real axis K is maximized, break ins when real axis K is minimized a so at critical points of K along the real axis

$$\frac{dK}{d\sigma} = 0 = -\frac{d}{d\sigma} \left(\frac{D(\sigma)}{N(\sigma)} \right)$$

which gives

Ex:
$$G(s)H(s) = \frac{s^2 + 10s + 24}{s^2 + 3s + 2}$$

Find breakaway & break-in

we find the roots of

$$(\sigma^{2}+10\sigma+24)(2\sigma+3)-(\sigma^{2}+3\sigma+2)(2\sigma+10)=0$$

$$7\sigma^{2}+44\sigma+5Z=0$$

Notice these are not nescisarily directly in the middle!

7) Behavior at infinity -> Lines go to infinity along asymptotes → If there are n poles and m zeros then: . The angle of the asymptotes is $G_A = (2k+1).180^{\circ}$ n-mwhere K = 0,1,2...(n-m-1)or # lines to $\infty -1$ •The asymptotes all come together at the centroid, or "CG of the poles" $O_A = \frac{\sum p_i - \sum i}{n - m}$ So the asymptotes that the infinity lines approach leave the real axis at σ_A and go to infinity at σ_A If 2 lines to ∞ If I line to a $\Phi_{A} = 2 \cdot 0 + 1.180^{\circ} = 180^{\circ}$ $\Phi_{A} = \frac{2 \cdot 0 + 1.180^{\circ} = 90^{\circ}$ $\Phi_{Az} = 2 \cdot 1 + 1.180^{\circ} = 270^{\circ} = -90^{\circ}$

and the breakaway will be at the midpoint

Let's look at a quick example with
$$3 \rightarrow \infty$$

-3 $A - 2 = -3 - 2 - 1 = -2$
 $0 = -3 - 2 - 1 = -2$
 $0 = -3 - 2 - 1 = -2$
 $0 = -3 - 2 - 1 = -2$
 $0 = -3 - 2 - 1 = -2$

There are some other rules that could help you further refine your hand sketch, for ex: -> find imaginary axi's crossing -> angles of departure and arrival
-> find imaginary axi's crossing
-) angles of departure and arrival
You can check these out in your book, but honestly,
You can check these out in your book, but honestly, if you need that level of detail in your plot, just use Matlab! (pg 552 in Ogata SD)
The value in being able to sketch by hand has to do with 1) understanding why they look as they do
do sintuitively, beauting to assess stability.
z) intuitively learning to assess stability changes in response to changing the transfer function - adding a controller
the transfer function - adding a controller