

Expectations and Covariances

Robot Localization and Mapping 16-833

Michael Kaess

February 3+8, 2021

Slides courtesy of Ryan Eustice

Probabilistic State Estimation

- Uncertain observations
 - Sensor noise & non-idealities
- Uncertain beliefs
 - Derived from sensor observations
 - Approximate algorithms
- Probabilistic State Estimation
 - Identify the quantities (state variables) we care about.
 - Determine probability for every possible simultaneous assignment

Representing State

- Represent everything we need to know in terms of a vector of quantities
 - "State vector"
 - Usually continuous-valued in this course
- The "meaning" of the variables is up to us
 - e.g., index 7 is the temperature in Seattle.
 - Bookkeeping work for us.

Representing Uncertainty

 In principle, distribution of unknown quantities can be arbitrary

Correlations

- Estimates of variables tend to become correlated over time
 - Observation: Study time is 4 hours
 - Belief about study time and exam grade are affected
- Distribution of exam grade depends on study time: two are correlated
 - We'll look at correlations closer later today
 - The data does not necessarily imply any causal relationship.

Probability Basics

Discrete Probability	Continuous Probability
P(x) = Probability of event occurring	p(x) = Probability <i>density</i> at x
Prob(x) = P(x)	Prob(x) = 0
$0 \le P(x) \le 1$	$0 \le p(x) < \infty$
$\sum_{-\infty}^{\infty} P(x) = 1$	$\int_{-\infty}^{\infty} p(x)dx = 1$

Probability Basics: Expectation

Weighted average according to probability

$$\mu_x = E[x] = \int_{-\infty}^{\infty} x p(x) dx$$

Basic properties of expectation

$$E[\alpha] = \alpha$$

$$E[\alpha x] = \alpha E[x]$$

$$E[\alpha + x] = \alpha + E[x]$$

$$E[x + y] = E[x] + E[y]$$

Joint Expectation

$$E[xy] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \, p(x,y) dx dy$$

- Uncorrelated: E[xy] = E[x]E[y]
 - Independence → Uncorrelated
 - Uncorrelated
 \mathbb{X} Independence
 - e.g.

$$p(x,y) = \frac{1}{4}\delta(x,y-1) + \frac{1}{4}\delta(x,y+1) + \frac{1}{4}\delta(x-1,y) + \frac{1}{4}\delta(x+1,y)$$

- Conditional Expectation: $E[x|y] = \int_{-\infty}^{\infty} x \, p(x|y) dx$
 - -E[x|y] = E[x] implies neither independence nor uncorrelatedness

• e.g.
$$p(x,y) = \frac{1}{3}\delta(x,y+1) + \frac{1}{3}\delta(x+1,y) + \frac{1}{3}\delta(x-1,y)$$

Variance & Covariance

- Average squared deviation from the mean.
- (Auto) covariance

– Scalar:
$$\sigma_x^2 = E[(x-E[x])^2]$$

– Vector:
$$\Sigma_{\mathbf{x}\mathbf{x}} = E[(\mathbf{x} - E[\mathbf{x}])(\mathbf{x} - E[\mathbf{x}])^{\top}]$$

(Cross) covariance

– Scalar:
$$\sigma_{xy}^2 = E[(x-E[x])(y-E[y])]$$

– Vector:
$$\Sigma_{\mathbf{x}\mathbf{y}} = E[(\mathbf{x} - E[\mathbf{x}])(\mathbf{y} - E[\mathbf{y}])^{\top}]$$

Expectation Exercise

• We know that:

$$\Sigma_{\mathbf{x}\mathbf{x}} = E[(\mathbf{x} - E[\mathbf{x}])(\mathbf{x} - E[\mathbf{x}])^{\top}]$$

 Suppose we measure a bunch of samples of x. We compute the first and second moments of x, i.e.,

$$M_{\mathbf{x}} = \sum \mathbf{x}$$
 $M_{\mathbf{x}\mathbf{x}} = \sum \mathbf{x}\mathbf{x}^{\top}$

• How do we compute \sum using only these moments and the number of samples?

Projecting Covariances

Suppose I know

$$\mathbf{x} \sim \mu_{\mathbf{x}}, \Sigma_{\mathbf{x}}$$

How do we handle

$$y = Ax + b$$
 ???

$$\Sigma_{\mathbf{y}\mathbf{y}} = E[(\mathbf{y} - E[\mathbf{y}])(\mathbf{y} - E[\mathbf{y}])^{\top}]$$

• (Algebra) →

$$\Sigma_{\mathbf{y}\mathbf{y}} = \mathbf{A}\Sigma_{\mathbf{x}\mathbf{x}}\mathbf{A}^{\top}$$

Properties of the Covariance Matrix

Symmetric

$$B = C^{\top}$$
 why?

Positive (semi) definite

$$\mathbf{a}^{\top} \Sigma \mathbf{a} > 0$$
 why?

- Inverse is also positive definite
 - Proof: see next slide
- Determinant > Volume of uncertainty (Product of the Eigenvalues)

 $\Sigma = \begin{vmatrix} A & B \\ C & D \end{vmatrix}$

Positive (Semi) Definite Properties

1. If $A \ge 0$ and $B \ge 0$ then $A + B \ge 0$

$$\mathbf{x}^{\top}(A+B)\mathbf{x} = \mathbf{x}^{\top}A\mathbf{x} + \mathbf{x}^{\top}B\mathbf{x}$$

- 2. If either $A \underline{\text{ or }} B$ is positive definite, then so is A+B; this follows from 1.
- 3. If A > 0, then $A^{-1} > 0$

$$\mathbf{x}^{\top} A \mathbf{x} = \mathbf{x}^{\top} A A^{-1} A \mathbf{x} = (A \mathbf{x})^{\top} A^{-1} (A \mathbf{x}) > 0 \quad \text{if} \quad \mathbf{x} \neq 0$$

4. If $A \ge 0$, then $F^T A F \ge 0$ for any (not necessarily square) matrix F for which $F^T A F$ is defined.

$$\mathbf{x}^{\top}(F^{\top}AF)\mathbf{x} = (F\mathbf{x})^{\top}A(F\mathbf{x}) \ge 0$$

5. If A>0 and F invertible, then $F^TAF>0$. This follows from 3 and 4.

Correlation Coefficient

The correlation coefficient is defined as:

$$\rho_{xy} = \frac{\text{cov}(x, y)}{\sigma_x \sigma_y} \qquad |\rho_{xy}| \le 1$$

Covariance matrix in terms of correlation coefficients

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 & \dots & \rho_{1n}\sigma_1\sigma_n \\ \rho_{21}\sigma_2\sigma_1 & \sigma_2^2 & \dots & \rho_{2n}\sigma_2\sigma_n \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{n1}\sigma_n\sigma_1 & \rho_{n2}\sigma_n\sigma_2 & \dots & \sigma_n^2 \end{bmatrix}$$