11. The following are the MO's for fulvene. Using the same MO's calculate the C1-C2 bond order for the first *electronically excited state* of fulvene.

(8 marks)

,						
energy	C1	C2	C3	C4	C5	C6
1.861	-0.439	0.153	0.153	-0.439	0.664	-0.356
-0.618	0.601	0.372	-0.372	-0.601	0	0
-2.115	0.429	0.385	0.385	0.429	0.523	0.247
0.254	-0.350	0.279	0.279	-0.350	-0.190	0.749
-1.000	0	0.5	0.5	0	-0.5	-0.5
1.618	-0.372	0.601	-0.601	0.372	0	0

12. Has the electronic excitation in the previous question strengthened or weakened the C1-C2 bond in fulvene? Explain your reasoning briefly.

(5 marks)

13. Set up the Hückel determinant for the 2-allylmethyl radical.

(5 marks)

14. In an atomic (or molecular system) there are two electrons, 1 and 2, in two orbitals, and . Write out expressions for the Coulomb and Exchange integrals, and give a physical explanation for each of them.

(5 marks)

15. Explain clearly what the terms *conrotatory* and *disrotatory* mean in the context of the Woodward-Hoffman rules of electrocylic reactions.

(5 marks)

16. State the quantum-mechanical virial theorem, which relates the kinetic and potential energies in an atomic or molecular system.

(3 marks)

17. A box has a small symmetric "bump" in the middle (height), as shown.

Calculate the first-order perturbed energy of the ground state. Also calculate the mixing coefficient (i.e., the contribution) of the first excited unperturbed state to the first-order perturbed wavefunction.

(12 marks)

18. Sketch a Walsh diagram for the bending of the water molecule. If an electron is promoted from the 1b₁ orbital (the out-of-plane lone pair) to the next highest orbital, 4a₁ (note the numbering starts with O 1s being 1a₁), will the molecule be more or less bent? Justify your answer using the Walsh diagram.

(14 marks) (100 MARKS TOTAL)

THE END

CHEMISTRY 3BB3 1998/99 FINAL EXAMINATION

MCMASTER UNIVERSITY DURATION: 2 HOURS

APRIL 1999

INSTRUCTOR: DR. A.D. BAIN

THIS EXAMINATION PAPER INCLUDES 2 PAGES AND 18 QUESTIONS. YOU ARE RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE. BRING ANY DISCREPANCY TO THE ATTENTION OF YOUR INVIGILATOR.

SPECIAL INSTRUCTIONS: Any electronic calculator may be used, but no other aids are permitted. USEFUL NUMBERS:

Planck constant (h) = $6.626 \times 10^{-34} \text{ J sec}$ Bohr radius (a₀) = $5.292 \times 10^{-11} \text{ m}$ 1 eV = $8065.5 \text{ cm}^{-1} = 96.48 \text{ kJ mol}^{-1} = 1.602 \times 10^{-19} \text{ J molecule}^{-1}$

__1. State Schrödinger's *time-dependent* equation.

(3 marks)

2. Give the commutation relation among the three angular momentum operators, L_x , L_y and L_z . (4 marks)

- 3. To what point group does *cis*-butadiene belong?
- (3 marks)
- 4. Sketch the LUMO of *cis*-butadiene.

(4 marks)

- 5. State the most general formulation of the Pauli exclusion principle.
- (3 marks)
- 6. How many radial nodes does the 3p orbital of the hydrogen atom have?

(3 marks)

7. For a particle-in-a-box, length L, the (unnormalized) wavefunction with the lowest energy is sin (x/L). However, the function sin (x/2L) has an expectation value of the Hamiltonian which is lower than the eigenvalue of sin (x/L). Is this a violation of the Variation Principle? Justify your answer.

(5 marks)

- 8. Do the operators $x^2 d^2/dx^2$ and x d/dx commute? Show your calculations. (6 marks)
- 9. For the lithium atom, the separation of the ${}^2S_{1/2}$ state and the ${}^2P_{1/2}$ state is 14,904 cm⁻¹, whereas the same two states are separated by only 2.4 cm⁻¹ in the Li²⁺ ion. Explain.

(6 marks)

10. For the ${}^2S_{1/2}$ state of the Li atom, give all the spin and orbital angular momentum quantum numbers of all three electrons.

(6 marks)

CONTINUED ON PAGE 2.