MATCHING LY α ABSORPTION TO NEARBY GALAXY HALOS WITH A LIKELIHOOD-BASED METHOD

DAVID M. FRENCH, BART P. WAKKER Department of Astronomy, University of Wisconsin - Madison Draft version May 17, 2016

ABSTRACT

We present initial results from an ongoing large-scale study of the circumgalactic medium in the nearby Universe ($cz \le 10,000 \text{ km/s}$), using archival Cosmic Origins Spectrograph (COS) and Space Telescope Imaging Spectrograph (STIS) spectra of background QSOs. This initial sample contains 35 sight lines, yielding 175 Ly α systems, 41 of which we have paired with nearby galaxies. We introduce a likelihood parameter to quantitatively predict the galaxy responsible for measured absorption in a reproducible way. Results from this sample suggest an anti-correlation between Ly α equivalent width (EW) and impact parameter (ρ) when we normalize by galaxy virial radius (R_{vir}). Absorption is detected in excess near galaxies with inclination > 60°, and near $\rho = 1.2R_{vir}$. We also detect a dichotomy in the equivalent widths of absorption systems around $\Delta v = v_{galaxy} - v_{gas}$, with positive Δv absorption median $EW = 343 \pm 10 \text{ mÅ}$, and negative Δv absorption median $EW = 124 \pm 9 \text{ mÅ}$. Subject headings: IGM, CGM, galaxies

1. INTRODUCTION

It is well known that galaxies must continue to accrete gas throughout their lifetimes in order to sustain observed levels of star formation (e.g. Erb 2008, Putman et al. 2009b). This additional gas must come from the diffuse intergalactic medium (IGM), where the majority of the baryons in the universe reside (Penton et al. 2002, 2004; Lehner et al. 2007; Danforth & Shull 2008; Shull et al. 2012). How exactly this IGM gas eventually falls into the halos and disks of galaxies is still highly uncertain, as observational constraints are hard to come by. Because of the diffuse nature of IGM gas, it is most readily and sensitively detected as absorption in the spectra of background active galactic nuclei (AGN). The advent of the sensitive UV spectrographs STIS and COS on the Hubble Space Telescope (HST) has provided a wealth of information on the properties and distribution of both the ions of heavy elements as well as the Lyman series of neutral H_I gas around galaxies.

Individual concentrations of gas along a given sightline imprint absorption lines on the spectrum in the direction of the QSO. The metal lines trace the star formation history within the intervening gas, and neutral hydrogen lines (Ly α) indicate both the location and velocities of outflowing gas as well as the presence of fuel for future star formation. Numerous studies using these observations have shown that many Ly α absorbers trace individual galaxy halos (e.g. Wakker & Savage 2009, Danforth et al. 2014, Stocke et al. 2013 & 2014, Liang et al 2014, Lanzetta et al 1995, Chen et al. 1998, 2001a, Tripp et al. 1998, Steidel et al. 2010, Prochaska et al. 2011, Thom et al 2012, Tumlinson et al. 2011 & 2013).

Some recent studies find that about half of Ly α absorbers lie within galaxy haloes, at impact parameters $\rho < 350$ kpc (Côté et al. 2005, Prochaska et al. 2006). In addition, Wakker & Savage (2009) find that an absorber lies within 400 kpc and 400 km/s for $90\% of galaxies brighter than 0.1 L_*$, and all galaxies have a Ly α absorber within 1.5 Mpc. Higher redshift studies, such as Rudie et al. (2012) at 2 < z < 3, find evi-

dence for an elevated density of absorbers up to 2 Mpc from galaxies. Wakker & Savage (2009) also confirmed a previously suggested correlation between Ly α absorption linewidth and impact parameter ρ , observing that the broadest lines (FWHM >150 km/s) are only seen within 350 kpc of a galaxy, while at ρ > 1 Mpc, only lines with FWHM < 75 km/s occur.

In addition, studying the enrichment of galaxy halos is necessary for constraining outflow models and informing stellar feedback prescriptions. Directly measuring the velocity field and column densities of absorbers as a function of impact parameter and orientation around galaxies would provide the clearest evidence of inflow or outflow activity, but results are still uncertain. Kacprzak et al. (2011) claim to find that Mg II equivalent widths correlate with galaxy inclination, but Mathes et al. (2014) find no such correlation for Ly α and O VI absorbers. Furthermore, we should expect outflowing gas to be more highly enriched and trace the metallicity of the associated galaxy, with inflowing gas instead appearing only in HI. Both Stocke et al. (2013) and Liang & Chen (2014) find an "edge" to heavy ion absorption at $\sim 0.5R_{vir}$, but with Ly α covering fractions of $\sim 0.75-1$ continuing out to R_{vir} . However, Mathes et al. (2014) measures O VI absorption out to $\sim 3 D_{gal}/R_{vir}$, and Savage et al. (2014) find that more than half of O VI absorption occurs beyond 1 R_{vir} .

Recent results from Kacprzak et al. (2011 & 2012) suggest that absorbing systems have a preferred orientation with respect to the major and minor axes of the galaxies they are associated with. This could be evidence of inflows and outflows, or an effect of the global structure of galaxy halos, but the statistics are not yet good enough to provide consistent answers. A larger-scale study of inclination and azimuthal angles vs. absorber properties is needed in order to elucidate the distribution of absorbing systems around galaxies. This is most easily done for the largest galaxies in the nearby universe, where it is possible to obtain inclinations and unambiguous absorber associations.

Previous studies have suffered from small sample sizes

(e.g. Mathes et al. 2014 use 14 galaxies, Stocke et al. 2013 use 11, Werk et al. 2014 use 44), and incompleteness due to their higher mean redshifts (e.g. the Mathes et al. 2014 sample is 0.12 < z < 0.67, and Werk et al. 2014 are complete to $\sim L^*$ at $z \sim 0.2$). To address these shortcomings, we are conducting a large survey of the properties of intergalactic gas in the nearby universe, where we have good and relatively complete information on both faint and bright galaxies, in order to reveal how the IGM and galaxies affect each other. We are taking advantage of the over 500 archived QSO and Seyfert spectra taken by the Cosmic Origins Spectrograph (COS) and Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST), combined with the wealth of information available for the $\sim 100,000$ galaxies with cz < 10,000 km/s found in the NASA Extragalactic Database (NED) to probe the environment of absorbing gas systems in the nearby universe. This approach allows for an unbiased understanding of the distribution of the gas around galaxies, which requires looking for both detections and non-detections of gas, both near as well as far away from galaxies.

This paper presents initial results from our pilot study of 35 sight lines, chosen for their proximity to large galaxies and high S/N ratios. This paper is organized as follows: in Section 2 we present the data and analysis techniques, in Section 3 we present the results, and in Section 4 we discuss possible interpretations of our results.

2. DATA AND ANALYSIS

2.1. Galaxy Data

Each final, combined, and identified sightline is correlated with the galaxy environment in order to match absorption features with galaxies near the sightline. To facilitate this, we have constructed a dataset of all $z \leq 0.033$ ($v \leq 10,000$ skm/s) galaxies with published data available through the NASA Extragalactic Database (NED¹). This dataset contains over 108,000 entries, and includes data from SDSS, 2MASS, 2dF, 6dF, RC3, and many other, smaller surveys. Our criteria for including a galaxy in this dataset is only an accurate, spectroscopic redshift which places the galaxy in the 400 < v < 10,000 km/s velocity range. This restriction naturally leads to a completeness limit of $B \lesssim 18.7$ mag **CHECK THIS**, or $\sim 0.1L_*$ on average across the sky (see Figure 1). For any particular region of the sky, this limit will vary some depending upon which of the larger surveys cover the region.

In addition, we have homogenized the galaxy data beyond the steps taken by NED by normalizing all measurements of galaxy inclination, position angle, and diameter to 2MASS K-band values. Most galaxies in NED have measures of inclination, position angle and diameter available in several different bands, so in order to make meaningful comparisons, it is necessary to choose one band for all measurements. We chose 2MASS values for this because it was an all-sky survey, and represents the largest fraction of available galaxy data. Physical galaxy diameters are derived from 2MASS K_s "total" angular

Figure 1. Distribution of L/L_* values for all galaxies in the dataset. Black vertical lines highlight 1, 0.5, 0.1, 0.05 and 0.01 L_* . The turnoff around $0.1L_*$ shows that on average, the dataset is complete to $0.1L_*$.

diameter measurements and galaxy distances. 2MASS K_s "total" diameter estimates are surface brightness extrapolation measurements and are derived as

$$r_{tot} = r' + a(\ln(148)^b),$$
 (1)

where r_{tot} is defined as the point where the surface brightness extends to 5 disk scale lengths, r' is the starting point radius (> 5" - 10" beyond the nucleus, or core influence), and a and b are Sersic exponential function scale length parameters ($f = f_0 \exp{(-r/a)^{(1/b)}}$, see Jarret et al. 2003 for a full description). Approximately 50% of all the galaxies have this 2MASS K_s "total" diameter. Of the remainder, 20% have SDSS diameters, 27% have no published diameter, and 3% have diameters from other surveys. We convert values in these other bands to 2MASS K_s "total" diameters via a simple least squares linear fit when necessary. **NEEDS TO BE CHECKED FOR FULL SKY**

We used B-band magnitudes to estimate each galaxy's luminosity as a ratio of L_* as follows:

$$\frac{L}{L_*} = 10^{-0.4(M_B - M_{B_*})}. (2)$$

We adopt the CfA galaxy luminosity function by Marzke et al. (1994), which sets $B_* = -19.57$. Direct B band measurements are available for $\sim 30\%$ of galaxies, and most of the rest have SDSS g and r magnitudes, which can be converted to B via B = g + 0.39(g - r) + 0.21 (Jester et al. 2005). Finally, we also compute an estimate of the virial radius of each galaxy as $logR_{vir} = 0.69logD + 1.24$. This follows the parametrization of Stocke et al. (2013) relating a galaxy's luminosity to its virial radius, and the Wakker & Savage (2009) empirical relation between diameter and luminosity (see Wakker et al. 2015 and references therein for further details).

This homogeneous galaxy data table allows us to draw direct comparisons between the properties of the absorbers and the properties, separations, and environments of nearby galaxies, with unprecedented completeness. The full dataset will be publicly released and dis-

¹ This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

Target	R.A.	Dec.	z	Program	Grating	Obs ID	Obs Date	T_{exp} [ks]	S/N
MRK290	15 35 52.3	+57 54 09	0.0296	11524	G130M	LB4Q02	2009 10 28	3.9	38
MRK290	$15\ 35\ 52.3$	$+57\ 54\ 09$	0.0296	11524	G160M	LB4Q02	2009 10 28	4.8	18
SBS1537+577	$15\ 38\ 10.0$	$+57\ 36\ 13$	0.0734	12276	G130M	LBI606	2011 10 19	5.2	12
3C66A	$02\ 22\ 39.6$	$+43\ 02\ 08$	0.4440	12612	G130M	LBXC04	2012 11 1	12.6	24
3C66A	$02\ 22\ 39.6$	$+43\ 02\ 08$	0.4440	12863	G160M	LC0J01	2012 11 8	7.2	15
MRC2251-178	$22\ 54\ 05.9$	-17 34 55	0.0661	12029	G130M	LBGB03	2011 09 29	4.6	38
MRC2251-178	$22\ 54\ 05.9$	-17 34 55	0.0661	12029	G160M	LBGB03	2011 09 29	5.4	26
SBS1503+570	$15\ 04\ 55.6$	$+56\ 49\ 20$	0.3589	12276	G130M	LBI617	2011 10 19	5.2	11
SDSSJ080838.80 + 051440.0	$08\ 08\ 38.8$	$+05\ 14\ 40$	0.3610	12603	G130M	LBS330	$2012\ 03\ 17$	4.7	8
$2dFGRS_S393Z082$	$02\ 45\ 00.8$	-30 07 23	0.3400	12988	G130M	LC1045	2013 05 27,28	17.7	11
$2dFGRS_S393Z082$	$02\ 45\ 00.8$	-30 07 23	0.3400	12988	G130M	LC1040	2013 05 28,29	17.7	11
PG1211+143 (STIS)	$12\ 14\ 17.7$	$+14\ 03\ 13$	0.0804	8571	E140M	061Y0	2002 02 4,5,6,7,8	67.4	19
TON488	$10\ 10\ 00.7$	$+30\ 03\ 21$	0.2564	12025	G130M	LBG810	2011 05 19	10.8	17
TON488	$10\ 10\ 00.7$	$+30\ 03\ 21$	0.2564	12025	G160M	LBG811	2011 05 21	10.8	17
SDSSJ135341.03+361948.0	$13\ 53\ 41.0$	$+36\ 19\ 48$	0.1470	13444	G130M	LC8L04	$2014\ 06\ 14$	10.2	18
MRK1014	$01\ 59\ 50.2$	$+00\ 23\ 41$	0.1630	12569	G130M	LBP404	$2012\ 01\ 25$	1.8	17
RX_J1503.2+6810	$15\ 03\ 16.5$	$+68\ 10\ 06$	0.1140	12276	G130M	LBI609	2010 12 31	1.9	11
PG1302-102	$13\ 05\ 33.0$	-10 33 20	0.2784	12038	G130M	LBGL04	2011 08 16	6.0	28
PG1302-102	$13\ 05\ 33.0$	-10 33 20	0.2784	12038	G160M	LBGL04	2011 08 16	6.9	33
SBS1108+560	$11\ 11\ 32.1$	$+55\ 47\ 25$	0.7650	12025	G130M	LBG809	$2011\ 05\ 12$	8.4	4
SBS1108+560	$11\ 11\ 32.1$	$+55\ 47\ 25$	0.7650	12025	G160M	LBG809	2011 05 12	8.8	14
PG1216+069	$12\ 19\ 20.9$	$+06\ 38\ 38$	0.3313	12025	G130M	LBG881	$2012\ 02\ 4,5$	5.1	23
PG1216+069	$12\ 19\ 20.9$	$+06\ 38\ 38$	0.3313	12025	G160M	LBG881	2012 02 4,5	5.6	16
IRAS_Z06229-6434	$06\ 23\ 07.7$	-64 36 19	0.1289	11692	G130M	LB3J09	2009 12 19	8.7	25
IRAS_Z06229-6434	$06\ 23\ 07.7$	-64 36 19	0.1289	11692	G160M	LB3J58	2010 09 15	8.0	18
SDSSJ080908.13+461925.6	$08\ 09\ 08.1$	$+46\ 19\ 26$	0.6563	12248	G130M	LBHO77	2010 10 06	3.1	14
SDSSJ080908.13+461925.6	$08\ 09\ 08.1$	$+46\ 19\ 26$	0.6563	12248	G160M	LBHO77	2010 10 06	5.0	13
TON1009	$09\ 09\ 06.1$	$+32\ 36\ 31$	0.8090	12603	G130M	LBS328	2012 04 22	4.7	11
RX_J1330.8+3119	$13\ 30\ 53.2$	$+31\ 19\ 32$	0.2410	12248	G130M	LBHO85	2011 07 11	4.3	11
RX_J1330.8+3119	$13\ 30\ 53.2$	$+31\ 19\ 32$	0.2410	12248	G160M	LBHO85	2011 07 11	6.8	11
SDSSJ140428.30 + 335342.0	$14\ 04\ 28.3$	$+33\ 53\ 42$	0.5490	12603	G130M	LBS320	2013 03 03	7.7	8
RX_J0714.5+7408	$07\ 14\ 36.2$	+74~08~11	0.3710	12275	G130M	LBH402	2011 03 18	8.3	18
PG1121+423	$11\ 24\ 39.2$	$+42\ 01\ 45$	0.2340	12024	G130M	LBG703	$2011\ 04\ 25$	5.0	20
PG1121+423	$11\ 24\ 39.2$	$+42\ 01\ 45$	0.2340	12024	G160M	LBG703	$2011\ 04\ 25$	5.8	14
RBS2070	$23\ 59\ 07.8$	-30 37 39	0.1650	12864	G130M	LC0F01	2013 06 15,19	17.0	16
3C351.0 (STIS)	$17\ 04\ 41.4$	$+60\ 44\ 31$	0.3719	8015	E140M	O57901	$1999\ 06\ 27$	77.0	10
HE1228+0131	$12\ 30\ 50.0$	$+01\ 15\ 21$	0.1170	11686	G130M	LB4F09	$2011\ 07\ 7$	11.0	61
HE1228+0131	$12\ 30\ 50.0$	$+01\ 15\ 21$	0.1170	11686	G160M	LB4F10	2011 07 20,21	11.0	44
3C273.0	$12\ 29\ 06.7$	$+02\ 03\ 08$	0.1583	12038	G130M	LBGL31	2012 04 22	4.0	110
PG1626+554	$16\ 27\ 56.2$	$+55\ 22\ 32$	0.1330	12029	G130M	LBGB01	2011 06 15	3.3	26
PG1626+554	$16\ 27\ 56.2$	$+55\ 22\ 32$	0.1330	12029	G160M	LBGB01	2011 06 15	4.3	18
PG1307+085	$13\ 09\ 47.0$	$+08\ 19\ 47$	0.1550	12569	G130M	LBP411	2012 06 16	1.8	19
PKS2005-489	$20\ 09\ 25.4$	-48 49 53	0.0710	11520	G130M	LB4R03	2009 09 21	2.5	22
PKS2005-489	$20\ 09\ 25.4$	-48 49 53	0.0710	11520	G160M	LB4R03	2009 09 21	1.9	13
CSO395	$12\ 11\ 14.6$	$+36\ 57\ 39$	0.1690	12248	G130M	LBH062	2011 04 27	3.0	11
CSO395	$12\ 11\ 14.6$	$+36\ 57\ 39$	0.1690	12248	G160M	LBH062	2011 04 27	4.8	9
HS0624+6907 (STIS)	$06\ 30\ 02.6$	$+69\ 05\ 03$	0.3700	9184	E140M	06E11	$2002\ 01\ 2$	62.0	6
HS0624+6907 (STIS)	$06\ 30\ 02.6$	$+69\ 05\ 03$	0.3700	9184	E140M	06E11	$2002\ 02\ 23{,}24$	62.0	8
HE0238-1904	$02\ 40\ 32.6$	-18 51 51	0.6310	11541	G130M	LB6804	2009 12 31	14.4	36
HE0238-1904	$02\ 40\ 32.6$	-18 51 51	0.6310	11541	G160M	LB6804	2009 12 31	7.5	22
RBS1795	$21\ 54\ 51.0$	-44 14 05	0.3440	11541	G130M	LB6809	2010 06 23	8.2	26
RBS1795	$21\ 54\ 51.0$	-44 14 05	0.3440	11541	G160M	LB6809	$2010\ 06\ 23{,}24$	8.5	17
H1101-232	$11\ 03\ 37.7$	-23 29 31	0.1860	12025	G130M	LBG804	$2011\ 07\ 5,6$	13.3	16
H1101-232	$11\ 03\ 37.7$	-23 29 31	0.1860	12025	G160M	LBG804	$2011\ 07\ 5,6$	13.3	10
1H0717+714	$07\ 21\ 53.3$	$+71\ 20\ 36$	0.5003	12025	G130M	LBG812	$2011\ 12\ 27$	6.0	37
1H0717+714	$07\ 21\ 53.3$	$+71\ 20\ 36$	0.5003	12025	G160M	LBG812	$2011\ 12\ 27$	8.3	31
PG0003+158	$00\ 05\ 59.3$	$+16\ 09\ 49$	0.4509	12038	G130M	LBGL17	2011 10 22	10.4	24
PG0003+158	$00\ 05\ 59.3$	$+16\ 09\ 49$	0.4509	12038	G160M	LBGL17	2011 10 22	10.9	20
SBS1122+594	$11\ 25\ 53.7$	$+59\ 10\ 22$	0.8580	11520	G130M	LB4R11	$2009\ 11\ 07$	9.9	14
SBS1122+594	$11\ 25\ 53.7$	$+59\ 10\ 22$	0.8580	11520	G160M	LB4R11	2009 11 07	10.5	12

Table 1 Observations.

cussed in further detail in a forthcoming paper (French et al. 2016, in prep).

Figure 2. a) An example Ly α line found in a sightline towards target TON1009 at 4295 km/s. b) A map of all galaxies within a 500 kpc impact parameter target TON1009 sightline and with velocity (cz) within 400 km/s of absorption detected at 4295 km/s (central black star). The galaxy IC2439 (v=4494 km/s, inclination = 71°) can be unambiguously paired with the Ly α absorption feature at v=4295 km/s because it is the largest and closest galaxy in both physical and velocity space to the absorption feature.

2.2. Spectra

This initial pilot study contains 35 sightlines to bright QSOs observed with COS (32 of 35) and STIS (3 of 35). We chose sightlines by first sorting the galaxy data table described above by diameter. This sorted list is then correlated with the full list of publicly available sightlines, and only systems with impact parameter less than 500 Mpc are kept. Finally, we reject any messy, overly complicated sightlines, or low S/N sightlines and select the top 35 (again, sorted by galaxy diameter). Table 2 summarizes the properties of the QSO targets we selected.

All COS spectra for the target sightlines were obtained through the Barbara A. Mikulski Archive for Space Telescopes (MAST), and processed with CALCOS v3.0. We combined individual exposures by the method of Wakker et al. (2015), which corrects the COS wavelength scale by cross-correlating all ISM and IGM lines in each exposure. This method addresses the up to ± 40 km/s misalignments produced by CALCOS, and produces a corrected error array based on Poisson noise, which better matches the measured errors then the errors delivered in the x1d files. We then combine multiple exposure by aligning Galactic absorption lines with 21-cm spectra, and adding up the total counts in each pixel before converting to flux using the original, average flux-count ratio at each wavelength.

The STIS data was processed in the same manner as described in Wakker & Savage (2009), and thus we only give a short summary here. The STIS calibrated fits files were downloaded from MAST, and STIS-E140M echelle orders were combined into a single spectrum. The photon counts and errors were interpolated onto a common grid, counts were added and weighted by the rms at each pixel, and finally converted back to flux.

3. RESULTS

We have identified 175 Ly α absorption lines in the spectra of 35 background QSOs. Of these, 41 can be unambiguously associated with a single nearby galaxy, 46 are near more than one galaxy, and 88 reside greater than $\rho=500$ kpc and $\Delta v=400$ km/s from any galaxy. In order to be considered for a pairing, a galaxy and absorption feature must appear within 400 km/s in velocity and 500 kpc in physical impact parameter from each other. When multiple galaxies pass these criteria for a particular line, we are left with two options. 1) one galaxy is obviously far larger and closer in physical and velocity space to the line, and may have several satellite galaxies, or 2) no single galaxy if obviously dominant, and we do not include this line in further analysis.

To facilitate this decision, we compute the likelihood, \mathcal{L} , of every possible galaxy-absorber pairing as follows:

$$\mathcal{L} = Ae^{-(\frac{\rho}{R})^2} e^{-(\frac{\Delta v}{200})^2}.$$
 (3)

Here ρ is the physical impact parameter, Δv the velocity difference between the absorber and the galaxy ($\Delta v =$ $v_{galaxy} - v_{absorber}$), and A is a factor included to increase the likelihood in the case that $R \geq \rho$ (in which case A=2, otherwise A=1). We compute $\hat{\mathcal{L}}$ for two different values of R: R_{vir} , the virial radius of the galaxy, and $d^{1.5}$, the major diameter of the galaxy to the power of 1.5. \mathcal{L} computed with R_{vir} is liable to select satellite galaxies instead of the larger hosts, so including a version with $d^{1.5}$ serves as a two-tiered selection system. An absorbergalaxy system separated by 200 km/s in velocity and $1R_{vir}$ would have $\mathcal{L}=0.27$. In order for an absorber to be marked as "associated" with a particular galaxy, its \mathcal{L} must be a factor of 5 larger than the next best possible association, and $\mathcal{L} \geq 0.001$. We then visually inspect each system before it is included in the final sample, rejecting associations with galaxies residing in complex or group environments.

Figures 2.1 and 2(b) show a clean example of a Ly α absorption line with a map of its galaxy environment, showing an unambiguous pairing between the absorption feature at 4295 km/s toward TON1009 and galaxy IC2439 ($\mathcal{L} = 0.45$). Unless explicitly stated, all following analysis

Target	Galaxy	\mathcal{L}	R_{vir}	ρ (kpc)	v_{galaxy}	Δv	Inc.	Az.	$v_{Ly\alpha}$	$W_{Ly\alpha}$
(4)	(0)	(0)	[kpc]	[kpc]	[km/s]	[km/s]	[deg]	[deg]	[km/s]	[mÅ]
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
SBS1537+577	SDSSJ153802.75+573018.3	0.0076	87	91	3687	-389.7	80	15	4077	72 ± 25
SDSSJ080838.80+051440.0	2MASXJ08083956+0517256	0.0083	106	106	9371	-389	26	71	9760	58 ± 15
MRK1014	NGC0768	0.0087*	253	486	6752	-327.7	73	85	7080	117 ± 11
MRC2251-178	MCG-03-58-009	0.16*	319	320	8754	-297.2	59	39	9051	60 ± 4
RX_J1503.2+6810	CGCG318-012	0.25*	250	325	9912	-210.2	50	1	10122	44 ± 14
$2dFGRS_S393Z082$	NGC1097	0.62*	273	112	1030	-209.2	47	12	1239	570 ± 21
HE1228+0131	NGC4517	0.19	193	211	1420	-135.6	83	74	1556	20 ± 2
SBS1537+577	NGC5987	0.79*	322	454	3170	-109	65	33	3279	358 ± 30
HE1228+0131	NGC4517	0.27	193	211	1420	-67.6	83	74	1488	144 ± 3
PG1302-102	NGC4939	0.77*	235	265	3382	-66.2	46	61	3448	71 ± 5
MRC2251-178	HIPASSJ2254-18	0.00096	122	320	2991	-51.5	53	56	3042	67 ± 5
PG0003+158	NGC7814	0.25	171	197	789	-43.7	65	47	833	131 ± 15
MRK290	NGC5987	0.94*	322	486	3170	-37	65	12	3207	319 ± 4
SDSSJ080838.80 + 051440.0	UGC04239	0.85*	279	378	8893	-33.9	44	38	8927	130 ± 19
SBS1108+560	UGC06225	2.0	228	29	910	-18.6	77	82	929	284 ± 51
RX_J0714.5+7408	UGC03717	0.18*	202	271	4269	4.8	61	83	4264	410 ± 9
1H0717+714	UGC03804	0.24	173	207	2973	16.8	53	7	2956	39 ± 4
MRK290	NGC5987	0.87*	322	486	3170	65	65	12	3105	511 ± 5
1H0717+714	UGC03804	0.18	173	207	2973	102.8	53	7	2870	343 ± 6
SDSSJ080908.13+461925.6	SDSSJ080842.74+461828.9	0.14	103	133	7227	110.2	37	4	7117	176 ± 12
PG1307+085	CGCG072-007	0.0036	193	440	7413	134.2	50	43	7279	64 ± 7
SBS1537+577	SDSSJ153802.75+573018.3	0.21	87	91	3687	138.3	80	15	3549	447 ± 28
SDSSJ080838.80+051440.0	UGC04239	0.49*	279	378	8893	153.1	44	38	8740	883 ± 24
SBS1108+560	UGC06225	0.89	228	29	910	178.4	77	82	732	1082 ± 82
TON1009	NGC2770	0.083*	204	274	2143	182.1	78	43	1961	350 ± 21
3C273.0	SDSSJ122815.96+014944.1	0.0034	41	91	1198	185.4	59	3	1013	376 ± 3
SBS1122+594	IC0691	0.53	66	45	1399	185.4	42	56	1214	830 ± 13
RX_J0714.5+7408	UGC03717	0.069*	202	271	4269	194.8	61	83	4074	58 ± 7
TON1009	IC2439	0.4	153	109	4495	209.8	71	51	4285	343 ± 17
TON488	UGC05478	0.3	92	58	1620	245.3	12	x	1375	452 ± 12
RX_J1330.8+3119	UGC08496NED02	0.014	101	160	5104	265.2	59	46	4839	413 ± 16
H1101-232	MCG-04-26-019	0.058	173	179	3846	266.2	65	26	3580	573 ± 12
RX_J1330.8+3119	UGC08492	0.01*	204	335	7689	288.2	16	41	7401	330 ± 15
SDSSJ140428.30+335342.0	KUG1402+341	0.17	204	118	8178	293.5	69	63	7884	889±28
PG1211+143	NGC4189	0.0053	181	314	2415	298.5	55	84	2116	105 ± 8
CSO395	UGC07207	0.11	103	83	1324	299.4	61	x	1025	343 ± 15
PG1121+423	SDSSJ112418.74+420323.1	0.023	104	129	7628	300	65	20	7328	359 ± 7
PG1216+069	SDSSJ121903.72+063342.9	0.0072	71	110	4131	318	61	65	3813	360 ± 10
SDSSJ080908.13+461925.6	SDSSJ080842.74+461828.9	0.0012	103	133	7227	327.2	37	4	6900	151 ± 10
PG1121+423	SDSSJ112418.74+420323.1	0.015	104	129	7628	349	65	20	7279	46±6
TON488	UGC05478	0.044	92	58	1620	370.3	12	x	1250	68±9
HE1228+0131	2MASXJ12303439+0116243	0.0063	$\frac{32}{127}$	159	9613	373.8	28	60	9239	249 ± 3
		2.2300		_50		2.0.0				

Table 2

All associated systems. The largest \mathcal{L} value is given, where a (*) indicates $d^{1.5}$ was used, otherwise the quoted \mathcal{L} was computed with R_{vir} . For all entries, 'x' indicates unknown values.

concerns similarly unambiguous "associated" systems.

Additionally, we split the absorber-galaxy catalog based on the velocity difference of the two. We define the differential velocity between the absorption feature and an associated galaxy as follows:

$$\Delta v = v_{galaxy} - v_{absorber}. (4)$$

With this scheme, we refer to an absorber with a velocity *lower* than the associated galaxy as *blueshifted*, while an absorber with a velocity *higher* is referred to as *redshifted*. The rest of the results will be analyzed based upon this splitting.

3.1. $EW-\rho$ Anti-correlation

As mentioned earlier, numerous previous studies have found that $\text{Ly}\alpha$ equivalent width (EW) is anti-correlated with impact parameter (ρ) to the nearest galaxy. We find a weak correlation, as shown in Figure 3(a). However, we find a stronger anti-correlation when we normalize ρ by R_{vir} . Figure 3(b) shows this expected anti-correlation when plotting EW vs ρ/R_{vir} . The obvious explanation for this is that larger galaxies host larger, more physically extent CGM halos. We would thus expect EW to also correlate positively with R_{vir} . Figure 4 shows EW as a function of R_{vir} , with the blue-dashed and red-dotted lines show the average EW in bins of 50 kpc of R_{vir} . A slight positive correlation is evident between EW and R_{vir} for the blueshifted absorbers, but no matching correlation can be seen for the redshifted sample.

Figure 3. a) Equivalent width (W) of each absorber as a function of ρ (kpc), the physical impact parameter between the galaxy and the sightline toward the absorption feature. b) (W) as a function of ρ/R_{vir} , the ratio of the physical impact parameter and the galaxy diameter. The anti-correlation is strongest when scaling ρ by the galaxy virial radius.

3.2. Velocity Difference (Δv)

Additionally, we find evidence for an anti-correlation between EW and the velocity difference between the galaxy and the associated absorption, Δv . The mean and maximal EW of absorption increases with decreasing Δv .

$3.3. \ Inclination$

In this section we examine the inclinations of the associated galaxies compared to the red and blueshifted distributions of absorbers. We compute galaxy inclination, i, as follows:

$$\cos(i) = \sqrt{\frac{q^2 - q_0^2}{1 - q_0^2}},\tag{5}$$

Figure 4. Equivalent width (W) of each absorber as a function of the virial radius of the associated galaxy in the sample. The blue-dotted and red-dashed lines shows the average W in 50 kpc bins of R_{vir} for the blueshifted and redshifted absorbers, respectively.

Figure 5. Equivalent width of each absorber as a function of the inclination angle of the associated galaxy in the pilot study sample. The dashed black line is drawn to highlight the separation between red and blue shifted absorption systems (with respect to the systemic velocity of the galaxy).

where q=b/a, the ratio of the minor to major axis, and q_0 is the intrinsic axis ratio, set to $q_0=0.2$ for all galaxies.

Figure 6 shows red and blueshifted absorbers' EW plotted against the inclinations of their associated galaxies. We note that there is an apparent dichotomy between the distributions, where blue shifted absorbers appear around nearly all inclinations of galaxies, but redshifted absorbers appear preferentially near highly-inclined galaxies ($i \geq 50$ deg). In addition, redshifted absorbers appear with lower EW than those blueshifted across all inclinations. The mean EW of all redshifted absorbers is $\overline{EW} = 237 \pm 16$ mÅ, compared to $\overline{EW} = 100$

Figure 6. Top: Distribution of inclinations for all associated galaxies, split into red and blue shifted sets on. Bottom: Distribution of inclination angles for all galaxies in the $cz \le 10,000 \text{ km/s}$ redshift range.

Figure 7. Equivalent width as a function of the velocity separation between the galaxy and absorption line.

 353 ± 12 mÅ for blueshifted absorbers. To test if the distributions of red and blue-shifted absorbers are actually different we performed KS and AD statistical distribution tests, which both yielded p-values = 0.05. While p=0.05 is often quoted as a threshold for significance, we believe a larger sample size is needed before we can claim the presence of a true, physical dichotomy.

In total, 70% of blueshifted and 73% of redshifted absorbers are associated with high inclined galaxies ($i \geq 50$ deg). 56% of all galaxies in the survey volume are highly inclined, indicating a slight preference for detecting absorption around inclined galaxies. However, KS and AD tests do not assign high significance to this result (p-values ~ 0.06).

3.4. Azimuth

In this section we examine properties of absorbers as a function of their azimuthal angle with respect to their associated galaxy. Azimuth is defined as the angle between the major axis of a galaxy and the vector connecting the absorption feature and the midpoint of the galaxy

Figure 8. Azimuth is the angle, α , between the major axis of the galaxy, a, and a vector extending from the AGN target to the galaxy center.

Figure 9. The distributions of azimuth angles for redshifted systems (top, red), and blueshifted systems (bottom, blue).

plane. Figure 8 illustrates this. The mean azimuth angle for blueshifted absorbers is 40°, and 47° for redshifted absorbers. Figure 9 shows the distribution of azimuth angles for both red and blue-shifted absorbers. Contrary to the findings of Kacprzak et al. (2011, 2012), who claim to find a bimodal distribution of Mg II absorbers around galaxies, our distributions of Ly α absorbers are consistent with a flat, random distribution. There is a slight overabundance of absorbers around 0° and 45° azimuth in the blueshifted sample, but we cannot assign this observation much significance given the small sample size. We additionally find no significant correlation between azimuth angle and EW or Δv .

4. DISCUSSION

It is important to note here that the majority of our sample of absorbers are measured far from galaxies (mean $\rho=185$ kpc for blueshifted absorbers and $\rho=266$ kpc for redshifted absorbers, the difference here is not significant). Additionally, the differential velocity between galaxy and absorber (Δv) is on the order of the rotation velocity for spiral galaxies (average $\Delta v=210$ km/s for blueshifted, $\Delta v=-159$ km/s for redshifted absorbers). Without further knowledge of the rotation velocity and orientation of each galaxy, we can only speculate at the origins of the dichotomy between red and blue-shifted absorbers.

Why would there be a preference for gas blue-ward of galaxies, or equivalently, gas falling onto a galaxy from behind? If the gas is co-rotating, then this would mean that most absorbers we detect are on the side of the galaxy moving toward us, and that they tend to be higher equivalent width clouds. What about infall vs outflows? Would infalling gas be higher equivalent width?

WHAT'S THE MEAN $\hat{L_*}$ OF ASSOCIATED GALAXIES? AND ALL THE FIELDS IN GENERAL?

5. SUMMARY

We have measured 175 Ly α absorption lines in the spectra of 32 COS and 3 STIS targets. Using our likelihood parameter method, we matched 41 of these lines with nearby galaxies. The following summarizes our findings:

- EW anti-correlates most strongly with ρ when normalized by R_{vir} . It follows that EW weakly correlates and anti-correlates with R_{vir} and ρ , respectively.
- We find a dichotomy in the EW of absorption blueward vs red-ward of associated galaxies. Redshifted absorbers are far weaker, with $EW=163\pm15$ mÅ compared to $EW=380\pm14$ mÅ for blueshifted absorbers. KS and AD test show at greater than 99% (KS > 99%, AD > 99%) confidence level that these two sets of absorbers are drawn from different distributions.
- We find a positive correlation between the impact parameter (ρ) to the associated galaxy and R_{vir} of said galaxy.
- Ly α absorbers are most associated with inclined galaxies. 70% of blueshifted and 73% of redshifted absorbers are associated with galaxies with $i \geq 50$ deg, whereas 56% of all galaxies in the survey volume have similarly high inclinations.

REFERENCES

- Carswell, B., Schaye, J., & Kim, T.-S. 2002, ApJ, 578, 43
- Cen, R. 2013, ApJ, 770, 139
- —. 2014, ApJ, 789, L21
- Chen, H.-W., Lanzetta, K. M., Webb, J. K., & Barcons, X. 1998, ApJ, 498, 77
- —. 2001, ApJ, 559, 654
- Corwin, Jr., H. G., Buta, R. J., & de Vaucouleurs, G. 1994, AJ, 108, 2128
- Côté, S., Wyse, R. F. G., Carignan, C., Freeman, K. C., & Broadhurst, T. 2005, ApJ, 618, 178
- Danforth, C. W., & Shull, J. M. 2005, ApJ, 624, 555
- —. 2008, ApJ, 679, 194
- Danforth, C. W., Shull, J. M., Rosenberg, J. L., & Stocke, J. T. 2006, ApJ, 640, 716
- Danforth, C. W., Keeney, B. A., Tilton, E. M., et al. 2014, ArXiv e-prints
- Erb, D. K. 2008, ApJ, 674, 151
- Kacprzak, G. G., Churchill, C. W., Barton, E. J., & Cooke, J. 2011a, ApJ, 733, 105
- Kacprzak, G. G., Churchill, C. W., Evans, J. L., Murphy, M. T.,
 & Steidel, C. C. 2011b, MNRAS, 416, 3118
 Kacprzak, G. G., Churchill, C. W., & Nielsen, N. M. 2012, ApJ,
- Kacprzak, G. G., Churchill, C. W., & Nielsen, N. M. 2012, ApJ 760, L7
- Keeney, B. A., Stocke, J. T., Syphers, D., et al. 2013, in American Astronomical Society Meeting Abstracts, Vol. 222, American Astronomical Society Meeting Abstracts, 214.18

Kereš, D., & Hernquist, L. 2009, ApJ, 700, L1

Kim, T.-S., Bolton, J. S., Viel, M., Haehnelt, M. G., & Carswell, R. F. 2007, MNRAS, 382, 1657

- Lanzetta, K. M., Bowen, D. V., Tytler, D., & Webb, J. K. 1995, ApJ, 442, 538
- Lehner, N., Savage, B. D., Richter, P., et al. 2007, ApJ, 658, 680Liang, C. J., & Chen, H.-W. 2014, MNRAS, 445, 2061
- Lundgren, B. F., Brunner, R. J., York, D. G., et al. 2009, ApJ, 698, 819
- Mathes, N. L., Churchill, C. W., Kacprzak, G. G., et al. 2014, ApJ, 792, 128
- McLin, K. M., Stocke, J. T., Weymann, R. J., Penton, S. V., & Shull, J. M. 2002, ApJ, 574, L115
- Meiksin, A. A. 2009, Reviews of Modern Physics, 81, 1405
- Oppenheimer, B. D., & Davé, R. 2009, MNRAS, 395, 1875 Oppenheimer, B. D., Davé, R., Katz, N., Kollmeier, J. A., &
- Weinberg, D. H. 2012, MNRAS, 420, 829 Penton, S. V., Stocke, J. T., & Shull, J. M. 2002, ApJ, 565, 720 —. 2004, ApJS, 152, 29
- Prochaska, J. X., Weiner, B., Chen, H.-W., Mulchaey, J., & Cooksey, K. 2011, ApJ, 740, 91
- Prochaska, J. X., Weiner, B. J., Chen, H.-W., & Mulchaey, J. S. 2006, ApJ, 643, 680
- Putman, M. E., Peek, J. E. G., & Heitsch, F. 2009a, ArXiv e-prints
- Putman, M. E., Henning, P., Bolatto, A., et al. 2009b, in Astronomy, Vol. 2010, astro2010: The Astronomy and Astrophysics Decadal Survey, 241
- Rudie, G. C., Steidel, C. C., & Pettini, M. 2012a, ApJ, 757, L30
 Rudie, G. C., Steidel, C. C., Shapley, A. E., & Pettini, M. 2013,
 ApJ, 769, 146
- Rudie, G. C., Steidel, C. C., Trainor, R. F., et al. 2012b, ApJ, 750, 67
- Savage, B. D., Kim, T.-S., Wakker, B. P., et al. 2014, ApJS, 212, 8
 Shull, J. M., Smith, B. D., & Danforth, C. W. 2012, ApJ, 759, 23
 Smith, B. D., Hallman, E. J., Shull, J. M., & O'Shea, B. W. 2011, ApJ, 731, 6
- Steidel, C. C., Erb, D. K., Shapley, A. E., et al. 2010, ApJ, 717, 289
- Stewart, K. R., Kaufmann, T., Bullock, J. S., et al. 2011, ApJ, 738, 39
- Stocke, J. T., Keeney, B. A., Danforth, C. W., et al. 2013, ApJ, 763, 148
- Tejos, N., Morris, S. L., Crighton, N. H. M., et al. 2012, MNRAS, 425, 245
- Tejos, N., Morris, S. L., Finn, C. W., et al. 2014, MNRAS, 437, 2017
- Thom, C., Tumlinson, J., Werk, J. K., et al. 2012, ApJ, 758, L41Tripp, T. M., Aracil, B., Bowen, D. V., & Jenkins, E. B. 2006a, ApJ, 643, L77
- Tripp, T. M., Bowen, D. V., Sembach, K. R., et al. 2006b, in Astronomical Society of the Pacific Conference Series, Vol. 348, Astrophysics in the Far Ultraviolet: Five Years of Discovery with FUSE, ed. G. Sonneborn, H. W. Moos, & B.-G. Andersson, 341
- Tripp, T. M., Lu, L., & Savage, B. D. 1998, ApJ, 508, 200Tripp, T. M., Sembach, K. R., Bowen, D. V., et al. 2008, ApJS, 177, 39
- Tully, R. B., Courtois, H. M., Dolphin, A. E., et al. 2013, AJ, 146, 86
- Tumlinson, J., Werk, J. K., Thom, C., et al. 2011, ApJ, 733, 111 van de Voort, F., & Schaye, J. 2012, MNRAS, 423, 2991 van de Voort, F., Schaye, J., Booth, C. M., Haas, M. R., & Dalla
- van de Voort, F., Schaye, J., Booth, C. M., Haas, M. R., & Dalla Vecchia, C. 2011, MNRAS, 414, 2458
- Wakker, B. P., Hernandez, A. K., French, D. M., et al. 2015, ApJ, 814, 40
- Wakker, B. P., & Savage, B. D. 2009, ApJS, 182, 378
- Werk, J. K., Prochaska, J. X., Tumlinson, J., et al. 2014, ApJ, 792, 8
- York, D. G., vanden Berk, D., Richards, G. T., et al. 2005, in IAU Colloq. 199: Probing Galaxies through Quasar Absorption Lines, ed. P. Williams, C.-G. Shu, & B. Menard, 58–64