

BITS Pilani

Dr. Manik Gupta Assistant Professor Department of CSIS

Data Mining (CS F415) Lecture 16 – Clustering

Tuesday, 25th February 2020

Research Project Mid-Semester Demos

Please fill in your preferences for the Demo next week:

https://doodle.com/poll/i6ebv5nfxasg3emf

Few important things (PLEASE FOLLOW THEM!):

- Please be on time else your assessment will not be carried out.
 All the team members need to be present.
- Please do not contact us regarding slot swaps. Coordinate amongst yourself and inform us via email.
- Please carry your own laptops and make sure the demo runs as well as report/slides are present and working.
- Create 5 slides (time limit 5 min!!)
 - Team work division
 - Project and data overview
 - Reasons for choosing the techniques used
 - Shortcomings
 - Next steps

Today's Agenda

Introduction to Clustering

innovate achieve lead

What is a cluster?

- Cluster: A collection of data objects
 - Similar (or related) to one another within the same group
 - Dissimilar (or unrelated) to the objects in other groups

What is Cluster Analysis?

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

What are clustering applications?

- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

innovate achieve lead

Clustering for Data Understanding and Applications

- Biology: taxonomy of living things: kingdom, phylum, class, order, family, genus and species
- Information retrieval: document clustering
- Land use: Identification of areas of similar land use in an earth observation database
- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- City-planning: Identifying groups of houses according to their house type, value, and geographical location
- Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults
- Climate: understanding earth climate, find patterns of atmospheric and ocean
- Economic Science: market research

Clustering as a Preprocessing Tool (Utility)

- Summarization
 - Preprocessing for regression, PCA, classification, and association analysis
 - Apply to reduced set consisting of cluster prototypes
- Compression
 - Image processing: vector quantization
 - Each object represented by index of prototype associated with a cluster
- Finding Nearest Neighbors
 - Localizing search to one or a small number of clusters
 - Use prototypes to reduce number of distance computations that are necessary to find NN of an object.
- Outlier detection
 - Outliers are often viewed as those "far away" from any cluster

What is not Cluster Analysis?

- Simple segmentation
 - Dividing students into different registration groups alphabetically, by last name
- Results of a query
 - Groupings are a result of an external specification
 - Clustering is a grouping of objects based on the data
- Supervised classification
 - Have class label information.

Few Announcements

Team Demonstrations 27th Feb (12 pm - 2pm)

```
TeamID_33
TeamID_27
TeamID_12
TeamID_09
```

Team Demonstrations 28th Feb (1pm onwards)

```
TeamID_25
TeamID_37
TeamID_23
Team 11
TeamID_02
TeamID_29
Team_07
TeamID_06
```

- Rest of the demonstrations after mid semester on 11th and 13th March
- No Lecture on Feb 29th
- Mid semester exam on March 6th, 9am to 10:30 am

Notion of a Cluster can be Ambiguous

Definition of a cluster is imprecise and best definition depends on the nature of data and desired results.

Types of Clustering

- Important distinction between hierarchical and partitional sets of clusters
 - Partitional Clustering
 - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
 - Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

innovate achieve lead

Partitional Clustering

Original Points

Partitional Clustering

Hierarchical Clustering

Hierarchical Clustering

Dendrogram

Other Distinctions Between Sets of Clusters

- Exclusive versus non-exclusive
 - In non-exclusive clustering, points may belong to multiple clusters.
 - Can represent multiple classes or 'border' points
- Fuzzy versus non-fuzzy
 - In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
 - Weights for each object must sum to 1
 - Probabilistic clustering has similar characteristics
- Partial versus complete
 - In some cases, we only want to cluster some of the data
- Heterogeneous versus homogeneous
 - Cluster of widely different sizes, shapes, and densities

Types of Clusters

- Well-separated clusters
- Center-based clusters
- Contiguous clusters
- Density-based clusters
- Property or Conceptual

Types of Clusters: Well-Separated

- Well-Separated Clusters
 - A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.

Types of Clusters: Center-Based

- Center-based or Prototype based
 - A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
 - The center of a cluster is often a centroid, the average of all the points in the cluster, or a medoid, the most "representative" point of a cluster

4 center-based clusters

Types of Clusters: Contiguity-Based

- Contiguous Cluster
 - A cluster is a set of points such that each point is closer (or more similar) to some other point in the cluster than to any point in another cluster.
 - Group of objects that are connected to one another, but have no connection to objects outside the group

8 contiguous clusters

Types of Clusters: Density-Based

- Density-based
 - A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
 - Used when the clusters are irregular or intertwined, and when noise and outliers are present.

6 density-based clusters

Types of Clusters: Conceptual Clusters

- Shared Property or Conceptual Clusters
 - Finds clusters that share some common property or represent a particular concept.
 - Specific concept of a cluster is needed to detect these clusters

2 Overlapping Circles

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters
 - high intra-class similarity: cohesive within clusters
 - low inter-class similarity: distinctive between clusters
- The <u>quality</u> of a clustering method depends on
 - the similarity measure used by the method
 - its implementation, and
 - Its ability to discover some or all of the <u>hidden</u> patterns

K-Means Clustering

- K-Means algorithm belongs to the category of prototypebased clustering.
- Prototype-based clustering means that each cluster is represented by a prototype
 - Centroid (average) of similar points with continuous features
 - Medoid (the most representative or most frequently occurring point) in the case of categorical features.

K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple
- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

Example

In **K-means** clustering, the observations are partitioned into a pre-specified number of clusters.

Steps for K-Means Algorithm

- Randomly pick k centroids from the sample points as initial cluster centers.
- Assign each sample to the nearest centroid µ(j), j∈{1,...,k}.
- Move the centroids to the center of the samples that were assigned to it.
- Repeat the steps 2 and 3 until the cluster assignment do not change or a user defined tolerance or a maximum number of iterations is reached.

K-means demo with K=2

Choosing Initial Centroids

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.

Good Initialization

lead

Good Result

Bad Initialization

Bad Result

How to measure clustering result?

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - To get SSE, we square these errors and sum them.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- x is a data point in cluster C_i and m_i is the representative point for cluster C_i

Advantages of K-Means

- Easy to understand and implement
- Most popular clustering algorithm

Drawbacks of K-Means

- Need to specify the number of clusters K a priori
- K-means is sensitive to outliers
 - Outliers are data points that are very far away from other data points.
 - Outliers could be errors in the data recording or some special data points with very different values.

Drawbacks of K-Means

Sensitivity to initial seeds

Random selection of seeds (centroids)

Random selection of seeds (centroids)

Iteration 1

Iteration 2

Iteration 1

Iteration 2

Drawbacks of K-Means Differing Sizes

3 - 2 - 1 0 1 2 3 4 X

Original Points

K-means (3 Clusters)

Drawbacks of K-means: Differing Density

Original Points

K-means (3 Clusters)

Drawbacks of K-means: Nonglobular Shapes

Original Points

K-means (2 Clusters)

Thanks!

Next Lecture:

- Variants of K-Means Clustering
- Hierarchical Clustering
- DBSCAN

Readings:

– Chapter 8 - Tan & Kumar