Propagation of uncertainties flow to records

This document describes how errors from the rating curve (parametric errors and structural/remnant errors) and those from the stage series (non-systematic and systematic stage measurement errors) are propagated to the flow series by BaRatin.

The estimation of a rating curve by BaRatin is actually based on 500 rating curves, each corresponding to a set of feasible parameters (parameters are those of the equation of the rating curve, θ , and that γ_1 et γ_2 used to define the standard deviation of the normal distribution used to sample the structural (remnant) error. The stage series is a time series of recorded water levels $\tilde{h}(t)$. Standard deviations σ_A^h and σ_B^h (which correspond to non-systematic and systematic errors affecting the stage series) can be used to generate 500 stage series. The method is described below for a rating curve i (i.e., a set of parameters) estimated by BaRatin:

- (1) At each time step t, an error $\varepsilon_i^h(t)$ is sampled according to the Gaussian distribution N(0, t) σ_A^h). The error is added to the measured stage $(\tilde{h}(t))$.
- (2) For each period in which the bias affecting the stage series is assumed to be constant, an error δ_i^h is sampled according to the Gaussian distribution $N(0, \sigma_B^h)$. The error is added to the measured stage already affected by non-systematic errors. We obtain the stage series i as: $h_i(t) = \tilde{h}(t) + \varepsilon_i^h(t) + \delta_i^h$
- (3) At each time step t, a discharge $\tilde{Q}_i(t)$ is computed from the stage series $h_i(t)$, the rating curve equation f and the set of parameters θ_i .
- (4) At each time step t, a remnant (structural) rating curve error $\varepsilon_i^f(t)$ is finally added to the computed discharge $\tilde{Q}_i(t)$. The error is sampled according to the Gaussian distribution $N\left(0, \gamma_{1,i} + \gamma_{2,i}\tilde{Q}_i(t)\right).$

The equation combining these various steps is given below

$$Q_i(t) = f\left(\underbrace{\widetilde{\widetilde{h}}(t) + \varepsilon_i^h(t) + \delta_i^h}_{\widetilde{Q}_i(t)} \mid \boldsymbol{\theta_i}\right) + \varepsilon_i^f(t) \qquad \text{Where}$$

- $\tilde{h}(t)$ = recorded stage $\varepsilon_i^h(t)$ = non-systematic stage measurement error δ_i^h = systematic stage measurement error
- $\varepsilon_i^f(t) \sim N\left(0, \gamma_{1,i} + \gamma_{2,i}\tilde{Q}_i(t)\right) = \text{remnant (structural) rating curve error.}$

Figure 1 shows and sums up the various computational steps.

To obtain the *MaxPost* (most probable) flow series, all the errors are ignored:

 $Q_{MP}(t) = f(\tilde{h}(t) \mid \theta_{MP})$ where θ_{MP} corresponds the set of parameters of MaxPost rating curve.

Figure 1: Principle of the sampling method considering two sets of parameters (θ_{i_1} in red and θ_{i_2} in blue): from the measured stage series up to the two flow series (each corresponding to a set of parameters, i.e. a possible rating curve and a possible stage series)