

BINARY SEARCH TREES Strana 2

Introduction

- Binary search tree (BST) is a subtype of binary tree with the following properties:
 - o All data in the left subtree is smaller than the data in the root of the subtree
 - All data in the right subtree is greater than or equal to the data in the root of the subtree
 - o Each subtree is also a binary search tree
- The main advantage of BST is the ability to efficiently search the tree to find some value

Searching BST

- BST search processes one node at each level, which allows us to achieve logarithmic complexity (depends on the shape of the tree)
 - o Let's say we're looking for value 7
 - We start from the root and according to its value (8) we know that the value 7 is certainly in the left subtree (because 7 < 8)
 - We look at the root of the left subtree (3) and know that the value of 7 is certainly in the right subtree (because 7 > 3)
 - We look at the root of the right subtree (6) and know that the value 7 is certainly in the right subtree (because 7 > 6)
 - o We look at the root of the right subtree and we've found 7

Strana = 5

Inserting into BST

- Insertion can also be very efficient:
 - o Let's say we want to insert a value of 4
 - \circ We start from the root and according to its value (8) we know that the value 4 should be placed in the left subtree (because 4 < 8)
 - We look at the root of the left subtree (3) and we know that the value 4 should be put in the right subtree (because 4 > 3)
 - We look at the root of the right subtree (6) and we know that the value 4 should be put in the left subtree (because 4 < 6)
 - We look at the root of the left subtree (4) and we know that the value 4 should be put in the right subtree (because 4 = 4)
- The right subtree does not exist, so we create a new node of value

 Strana 4 and place it as the right child of the existing node of value 4

3

AVL TREES

Strana • 7

Introduction

- The BST can deviate significantly from the complete tree
- Lets go to www.cs.usfca.edu/~galles/visualization/BST.html
 - o Add values: 5, 4, 6, 3, 4, 5, 10
 - Perfect tree, optimal search
 - Reset the tree and add same values, just in different order: 3,
 4, 4, 5, 5, 6, 10
 - We get a diagonal tree whose performance is equal to the performance of the list

Strana = 1

AVL trees

- •AVL trees are a subtype of the binary search tree with the following properties:
 - Both subtrees of the node are either of equal depth or the difference in depth is equal to 1
 - This means that each leaf node is approximately equally away from the root
 - When inserting (or deleting) a node, you may need to balance the tree with one or more rotations to keep the tree balanced
- The AVL tree is named after its creators: G. M. Adelson-Velskii and E. M. Landis
 - o It was the first balancing tree

Strana 9

Searches and insertion in AVL trees

- ■The search method is the same as that of BST
 - Since the tree is balanced, the search time is <u>always</u> O(logn), which makes it great for searching
 - o Insert / delete performance suffers because of rotations
- The insertion of the node is done in two phases:
 - o The insertion is done in the same way as with BST
 - For all ancestors of the inserted node, a balance factor is calculated that is equal to: depth of the left subtree minus depth of the right subtree
 - If the factor is -1, o or +1 the tree is balanced
 - If the balancing factor is -2 or +2, rotation balancing is performed

DEMO

- •www.cs.usfca.edu/~galles/visualization/AVLtree.html
- Create AVL tree with values 1 to 15

Strana • 11

RED BLACK TREES

Introduction

- Red-black trees (RB trees) are also a subtype of BST with the following properties:
 - o They are balancing
 - Each node contains an additional bit of information containing the color (red / black) used when inserting / deleting to keep the tree <u>roughly</u> balanced
 - The root is always black
 - If a node is red, both children must be black
 - Each path from a node to a leaf must contain an equal number of black nodes
 - It follows from the above that there must never be two consecutive red nodes on a path (but there may be many black ones)

Strana • 13

Inserting a node

- Insertion begins as with BST, with:
 - o The new node is always red
 - When we place it in position, there is a chance that the RB tree property is lost
 - o Rotation and painting restore the property of the RB tree

Strana ■ 14

DEMO

- www.cs.usfca.edu/~galles/visualization/RedBlack.html
- Create a RB tree with values 1 to 15

AVL tree vs RB tree

- These are the two most famous self-balancing trees
 - Both trees use rotations to keep the tree (roughly) balanced after inserting / changing nodes
- Search is generally faster in AVL trees because all nodes are either of equal depth or the difference is in one level
 - RB tree deviates a bit more, but it also has a search in O(log n)
- Both trees guarantee O(logn) for insertion / deletion
 - AVL guarantees additional rotations in O(log n)
 - o RB additional rotations are guaranteed in O(1)
 - o => Insertion / deletion is generally faster in RB trees
- C++, Java, C# ... use RB trees

DICTIONARIES

Strana • 17

Introduction

- Dictionary (associative array, map, symbol table) is a container that contains a collection of pairs (key, value) and which provides operations:
 - o Adding a new pair
 - o Removing a pair by the key
 - Modifying the existing value (but not the key)
 - o Retrieving value by the key (emphasis is on this!)
- Built-in types in some programming languages (Python)
- Two main options for dictionary implementation are:
 - o Hash tables (LO6)
- o BST subtypes (LO4, this one)

Comparison of dictionary implementation options

Underlying data structure	Lookup		Insertion		Deletion		Ordered
	average	worst case	average	worst case	average	worst case	Ordered
Hash table	O(1)	O(n)	O(1)	O(n)	O(1)	O(n)	No
Self-balancing binary search tree	O(log n)	O(log n)	O(log n)	O(log n)	O(log n)	O(log n)	Yes
unbalanced binary search tree	O(log n)	O(n)	O(log n)	O(n)	O(log n)	O(n)	Yes
Sequential container of key-value pairs (e.g. association list)	O(n)	O(n)	O(1)	O(1)	O(n)	O(n)	No

Strana • 19

Takan from: an wikinadia or

Dictionaries using BST

- STL contains four types of dictionaries implemented using BSTs: set, multiset, map and multimap
 - RB trees are used in the implementation (implementer's decision)
- map keeps values stored under unique keys
- multimap allows values with duplicate keys
- set keeps only unique keys (i.e. value = key)
- multiset allows duplicate keys
- In all structures the elements are sorted
 - o When we traverse the RB tree with the INORDER algorithm

Dictionary examples

- List of all products offered by the store stored under a unique product code
 - o map<string, Product>
- List of all invoices issued to an OIB
 - o multimap<string, Invoice>
- List of lottery numbers from last night's draw
 - o set<int>
- List of all license plates that have parked in the garage since the opening of a new campus
 - o multiset<string>

Strana • 21

SET AND MULTISET

Creating and destroying sets/multisets (1/2)

- There are four basic ways to create a set/multiset:
 - o set<int> one;
 - Creates an empty set
 - o set<int> two(one.begin(), one.end());
 - Creates a set of all elements within a range [begin, end)
 - o set<int> three(dva);
 - Creates a set by copying all elements from another set
 - o set<int> four({ 11, 22, 33, 22, 44 });
 - Creates a set based on the initialization list (by copying each of the values)
 - If we give a set two equal values, the set will simply ignore the other

strap-For multiset, just add "multi" prefix

Creating and destroying sets/multisets (2/2)

- The set / multiset is automatically destroyed when the function ends
 - o If it stores objects, a destructor is called on each
- operator= copies the contents of one set/multiset to another
 - o The previous content of the second set/multiset is destroyed
- The values put in set/multiset cannot be changed

set/multiset iterators

- The most important iterators are:
 - o set<T>::iterator is a class whose ++ moves towards the end
 - set<T>::reverse_iterator is a class whose ++ moves towards the beginning
- Since the sets are sorted:
 - o By using the iterator in one direction, we go from smaller to larger values
 - By using the iterator in the other direction, we go from higher to lower values
- If we store objects in a set, overloading the operator
 defines which object is smaller and which is larger

Strana = 25

Structure pair<T1,T2>

- Structure pair<T1,T2> represents a pair of values
 - o First one is named first and has a type T1
 - Second one is named second and has a type T2
- Example:

```
pair<int, string> p(17, "Miro Miric");
cout << p.first << " " << p.second << endl;
p.first++;
cout << p.first << " " << p.second << endl;</pre>
```

Strana = 26

Adding to a set

- •We can insert values into a set in three main ways:
 - o s.insert(x) copies x and places it in its position in the set
 - Returns an object of type pair<iterator, bool>
 - first points to either a freshly inserted element or an element that already exists in the set
 - second contains true (if the insertion was successful) or false (if the value already existed in the set)
 - o s.insert(begin, end) copies elements [begin, end) and places them in their position in the set
 - Returns void
 - o s.insert({ 11, 22, 33 }) copies the numbers and places them in their positions in the set

Strana • Returns void

Removing from a set

- We can delete values from a set in four main ways:
 - o s.erase(val) deletes an element equal to the val
 - Returns the number of deleted items (o or 1)
 - s.erase(position) deletes whichever element is in the said position
 - Returns the iterator to the element behind the deleted element
 - s.erase(begin, end) deletes elements in the specified range [begin, end)
 - Returns the iterator to the element immediately behind the last deleted element
 - o s.clear() removes and destroys all elements of the set

Example

```
set<int> s({ 55, 11, 55, 33, 22, 44 });
cout << s.size() << endl;

auto ir = s.insert(11);
cout << "Inserted: " << ir.second << endl;
ir = s.insert(66);
cout << "Inserted: " << ir.second << endl;

s.erase(s.begin());
s.erase(66);

for (auto it = s.begin(); it != s.end(); ++it) {
    cout << *it << endl;
}</pre>
Strana*29
```

Multiset differences in insert and delete

- The multiset behaves the same as the set, with differences:
 - s.insert(x) copies x and places it in his position in the multiset
 - Always succeeds
 - Returns the iterator to the inserted element
 - s.erase(val) returns the number of deleted items (0, 1, 2, ...)

Other important methods of the set

- •s.find(x) searches for element x in the set and returns its position
 - If not found, it returns s.end()
- •s.count(x) returns the number of occurrences of element x in the set
 - o It can return o or 1 because the values are unique
- s.size() returns the number of elements in the set
- s.empty() returns if the set is empty

Strana = 31

Multiset differences

- ms.count(x) returns the number of occurrences of element x in the multiset
 - o There may be o or more
- ms.find(x) searches for the first element x in the multiset and returns the iterator to its position
 - o If not found, it returns s.end()
- If we want to retrieve all occurrences of x in the multiset:
 - o ms.equal range(x)
 - Returns pair<iterator, iterator>
 - first is an iterator to a first position
 - second is an iterator to a last + 1 position

Example

Strana ■ 33

```
multiset<int> ms({ 22, 11, 55, 22, 33, 22, 44 });
auto it = ms.find(22);
cout << *it << endl;

auto range = ms.equal_range(22);
for (auto it = range.first; it != range.second; ++it) {
    cout << *it << endl;
}</pre>
```

MAP AND MULTIMAP

Introduction

- Folder and multimap can be understood as a set where key and value are different
 - o The keys must be unique in the map, but not in the multimap
 - o Pairs are sorted by keys
 - o Keys are immutable, values can change

Strana • 35

Map and multimap specifics (1/2)

- The interface is very similar, with a few differences:
 - o Set/multiset holds keys, while map/multimap holds pairs
 - first contains a key, second contains a value
 - o Iterator points to a pair
 - o Parameter for insert is a pair
 - For example:

```
map<char, string> m;
m.insert({ 'c', "Canada" });
m.insert(pair<char, string>('a', "America"));
m.insert(pair<char, string>('j', "Japan"));

for (auto it = m.begin(); it != m.end(); ++it) {
      cout << it->first << " " << it->second << endl;
ALGEBRA</pre>
```

Map and multimap specifics (2/2)

- s[key] retrieves the value stored under the key or inserts a new empty value if the key does not exist
 - Exists only on the map
- s.at(key) does the same thing, but throws an exception if the key does not exist
 - Exists only on the map

```
map<char, string> m;
m.insert(pair<char, string>('c', "Canada"));
m.insert(pair<char, string>('a', "America"));

cout << m['c'] << endl;
cout << m['a'] << endl;
cout << m['r'] << endl;
cout << m.size() << endl;
cout << m.at('c') << endl;
strana'@out << m.at('f') << endl;</pre>
```


Problem

- Insert numbers from 1 to 100,000 into the vector and into the set. Display how long it takes to search for the number 100,000 in a vector and how long in a set.
 - o The search in the vector lasts: 172567 microseconds
 - Must perform 100.000 operations
 - o The search in the set lasts: 426 microseconds
 - Must perform log(100.000) = 17 operations

Strana ■ 38

Solution (1/2)

```
// Preparing.
int n = 100000;
vector<int> v(n);

for (int i = 1; i <= n; i++) {
    v.push_back(i);
}

set<int> s(v.begin(), v.end());

// Executing.
auto begin = chrono::high_resolution_clock::now();
for (auto it = v.begin(); it != v.end(); ++it) {
    if (*it == n) {
        cout << "Found in vector" << endl;
        break;
    }
}

$trana*_39</pre>
```

Solution (2/2)