Combining Relation

There are many relations defined from A to B, so two relations from A to Bcan be combined in following ways.

R:
$$A \rightarrow B$$
 No of relations from Ato $B = 2^{mn}$
 $R: A \rightarrow B$ No of relations from Ato $B = 2^{mn}$
 $R_1 \cup R_2$, $R_1 \cap R_3$, $R_1 - R_2 = 0$ my $R_1 = R_1 - (R_1 \cap R_2)$
 $R_2 - R_3 = 0$ my $R_2 = R_2 - (R_1 \cap R_2)$
 $R_1 \oplus R_2 = (R_1 - R_2) + (R_2 - R_3) = (R_1 \cup R_2) - (R_1 \cap R_2)$
 $R_1 = \{(a_1 b) \notin R_1; a \in A, b \in B\}$
 $R_1^{-1} = \{(b_1 a); (a_1 b) \in R_1\}$
 $R_1^{-1} = \{(b_1 a); (a_1 b) \in R_1\}$
 $R_1^{-1} = \{(b_1 a); (a_1 b) \in R_1\}$

Q3.

Let $R_1 = \{(1, 2), (2, 3), (3, 4)\}$ and $R_2 = \{(1, 1), (1, 2), (1, 2), (1, 2), (1, 2), (2, 3), (3, 4)\}$ (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (3, 4) be relations from {1, 2, 3} to {1, 2, 3, 4}. Find

$$R_{1}UR_{2} = \left\{ (1,2), (2,3), (3,4), (1,1), (2,1), (2,2), (3,1), (3,2), (3,3) \right\} = R_{2}$$

$$R_{1}\cap R_{2} = \left\{ (1,2), (2,3), (3,4) \right\} = R_{1}$$

$$R_{1}-R_{2} = \Phi$$

$$R_{2}-R_{1} = \left\{ (1,1), (2,1), (2,2), (3,1), (3,2), (3,3) \right\}$$

$$R_{1}\oplus R_{2} = \left\{ (1,1), (2,1), (2,2), (3,1), (3,2), (3,2) \right\}$$

$$R_{1}\oplus R_{2} = \left\{ (1,1), (2,1), (2,2), (3,1), (3,2), (3,2) \right\}$$

Q4.

$$R_1 = \{(a, b) \in \mathbb{R}^2 \mid a > b\}$$
, the "greater than" relation,

$$R_2 = \{(a, b) \in \mathbb{R}^2 \mid a \ge b\}$$
, the "greater than or equal to" relation,

$$R_3 = \{(a, b) \in \mathbb{R}^2 \mid a < b\}$$
, the "less than" relation,

$$R_4 = \{(a, b) \in \mathbb{R}^2 \mid a \le b\}$$
, the "less than or equal to" relation,

$$R_5 = \{(a, b) \in \mathbb{R}^2 \mid a = b\}$$
, the "equal to" relation,

$$R_6 = \{(a, b) \in \mathbb{R}^2 \mid a \neq b\}$$
, the "unequal to" relation.

Find

a)
$$R_1 \cup R_3$$
.

c)
$$R_2 \cap R_4 = \begin{cases} 6 \\ R_1 - R_2 \end{cases}$$

e)
$$R_1 - R_2 = 0$$

b)
$$R_1 \cup R_5$$
.

d)
$$R_3 \cap R_5$$
.
f) $R_2 - R_1$.

f)
$$R_2 - R_1$$

h)
$$R_2 \oplus R_4$$
.

relation.

(a)
$$R_1UR_3 = R_6$$
 $\{(a,b)\in R^1, a\neq b\}$

(b) $R_1UR_5 = R_2$

Composition

Let R be a relation from A to B and S a relation from B to C. The composite of R and S is the relation consisting of ordered pairs (a,c) where $a \in A, c \in A$ C, and for which there exists an element $b \in B$ such that $(a,b) \in R$ and $(b,c) \in S$. We denote the composite of R and S by $S \circ R$.

Q5.

A=B=(= 1,2,3,4)

Let R be the relation $\{(1, 2), (1, 3), (2, 3), (2, 4), (3, 1)\},\$ and let S be the relation $\{(2, 1), (3, 1), (3, 2), (4, 2)\}.$

Let R be the relation $\{(1, 2), (1, 3), (2, 3), (2, 4), (3, 1)\},\$ and let S be the relation $\{(2,1), (3,1), (3,2), (4,2)\}.$

Find $S \circ I$	P.		1.0 /01/69/6
R	΄ ς	SoR = { (1,1)	رابعي رهان والمعا
(1,2)		(1,1)	
(1,3)	(<mark>3</mark> ,1) (3,2)	(1,1)	
(2,3)	(311), (3,2)	(211), (2,2)	_
(2,4)	(4, 2)	(2,2)	R.S
(311)	No	X	1
S	1 R	(2,2), (2,3)	
(211)	(1,2), (113)		
(3,1)	(1,2), (1,3)	(3,2), (3,3)	
(3,2)	(2,3), (2,4)	(3,3), (3,4)	
(3,2) (4,2)	(2,3), (2,4) (2,3), (2,4)	(3,3), (3,4) (4,4)	
Properties	of Relation	R is relation for	m A to B The set A

(a,a) ER for a EA Reflexive:

contR for a EA Irreflexive

Irreflexive

Symmetric:

Asymmetric

Antisymmetric

$$(a_1b)$$
, $(b_1a) \in R \Rightarrow a=b$

Transitive:

Q6.

For each of these relations on the set {1, 2, 3, 4}, decide whether it is reflexive, whether it is symmetric, whether it is antisymmetric, and whether it is transitive.

- a) $\{(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)\}$
- **b)** {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}
- c) {(2, 4), (4, 2)}
- d) {(1, 2), (2, 3), (3, 4)}
- e) {(1, 1), (2, 2), (3, 3), (4, 4)}
- **f**) {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)}

Asymmetric: (2,2) ER X
Antisymmetric: X (2,3), (3,2) ER, 2+3

Transitive: $\{(2,2), (2,3), (2,4), (2,2), (2,3), (2,4)\}$ Yes Transitive: $\{(2,2), (2,3), (2,4), (2,2), (2,4)\}$ Yes Transitive: $\{(2,2), (2,3), (2,4)\}$ $\{(2,2), (2,4)\}$ $\{(2,2), (2,$