α_s determination at LHeC from inclusive ep data and jets

Thomas Kluge, University of Liverpool

LHeC QCD and Electroweak Physics Workshop Hamburg, April 8 2010

as from DIS

- HERA inclusive: Eur.Phys.J.C21:33-61,2001
 - HI and BCDMS data
 - $\alpha_s(M_z)=0.1150\pm0.0017 (exp)^{+0.0009}-0.0005 (mod)\pm0.005 (NLO scale)$
 - 1.5% exp error (4.5% w/o BCDMS)
- HERA jets: DESY 09-032
 - HI data
 - $\alpha_s(M_z) = 0.1168 \pm 0.0007 (exp) + 0.0046 (th) \pm 0.0016 (PDF)$
 - 0.6% exp error

"Data"sets

Selection of data sets as provided by Max, from http://hep.ph.liv.ac.uk/~mklein/simdis09/

config.	E(e)	E(N)	N	JL(e ⁺)	JL(e ⁻)	Pol	L/10 ³² P/	MW	yea	rs type
A	20	7	p	1	1	-	1	10	1	SPL
В	50	7	p	50	50	0.4	25	30	2	RR hiQ ²
C	50	7	p	1	1	0.4	1	30	1	RR lo x
D	100	7	p	5	10	0.9	2.5	40	2	LR
Е	150	7	p	3	6	0.9	1.8	40	2	LR
F	50	3.5	D	1	1		0.5	30	1	eD
G	50	2.7	Pb	0.1	0.1	0.4	0.1	30	1	ePb
Н	50	1	p		1		25	30	1	lowEp

Fit Method

- Use HI fit program (QCDNUM based)
- Simultaneous PDF and α_s fit
- Parameterisation and χ^2 like H12000 PDF
- Move data points to central PDF and $\alpha_s(m_z)=0.118$ -> only errors enter
- Smear by statistical error, shift by correlated uncertainty, no cross correlation
- Luminosity 0.5%, half correlated btw datasets

B+C+H+F, NC+CC

Using all data, inclusive:

Uncertainty: 0.29%

Potential from inclusive Data

- LHeC has potential for O(1%) experimental precision on $\alpha_s(m_Z)$ with inclusive data alone
- challenge for theory to keep up
- angular acceptance of the detector crucial, low E_p run also helps

Next Studies

- study impact of individual datasets
- impact of Q²_{min} : 2;5;10 GeV²
- Θ cut: 5°; 10°
- systematic uncertainty from model, m_{charm}
- add jet cross sections, total fit, E_T bins for running

First look at DIS jets

- NLOJET++ 4.0.1 (fastNLO)
- inclusive jet cross section
- incl. k_T jet algorithm in Breit frame
- PDF used : CTEQ66
- s=4.7000.50, y=0.1...0.9, $170^{\circ} < \Theta_{lab} < 10^{\circ}$
- L=200fb⁻¹

Q² Regions

5-5000 Gev ²	5000-10000 Gev ²
10000-20000 Gev ²	20000-40000 Gev ²
40000-80000 Gev ²	80000-160000 Gev ²
16000-320000 Gev ²	320000-640000 Gev ²

p_T Binning
10Gev from 10GeV to 400GeV

What is the reach in jet transverse momentum? (this is LO)

blue < 1% stat. error green < 10% "
red > 10% "

"Challenging" to study slope of $\alpha_s(p_T)$ at m_{top} with $200 fb^{-1}$

Same with $179^{\circ} < \Theta_{lab} < 1^{\circ}$ (p_T scale only to 350GeV!)

check k-factors

- lower Q²: stronger effect
- intermediate Q^2 : quite low over whole p_T range
- looks like NLO could be trusted

check scale uncertainty

- •vary conventional $\cdot \frac{1}{2}$, $\cdot 2$
- •lower Q²: stronger effect
- •intermediate Q^2 : quite low over whole p_T range
- •might be fluke, need scan
- of µr
- •looks reasonable, but finally want NNLO!

check α_s sensitivity

- vary α_S by 1% at fixed PDF
- low Q²: stronger than linear dependence
- higher Q²: just linear
- does jet multiplicity play a role here?

Next Steps with Jets

- fake data: calculate incl. jets with PDF from LHeC fit
- add data set to inclusive fit
- assume O(I%) uncertainty on jet energy scale
- fit $\alpha_s(m_z)$ and running $\alpha_s(p_T)$