Turbulence and Transport in Fusion Plasmas Part IV

M.J. Pueschel

Ruhr-Universität Bochum, February 27 – March 10, 2023

Wednesday Recap

Yesterday, we covered

- numerical treatment of the Horton-Holland dispersion relation
- different theory frameworks and their use
- Landau damping in kinetic theory
- what conditions have to be fulfilled so MHD and/or gyrokinetics can be used

Next: what coordinates and simulation domain should we use?

Group Work: Coordinates

45 minutes group work:

Find sources that explain

- toroidal coordinates
- $\mathbf{2}$ the safety factor q as a measure of field-line pitch and (roughly) familiarize yourself with those. Have a look at
 - 3 all of www-fusion.ciemat.es/wiki/Toroidal_coordinates
 - 4 as much as you feel like of www-fusion.ciemat.es/wiki/Flux_coordinates
 - bonus reading for those with a high pain threshold: pages 1–3 of P. Xanthopoulos et al., Phys. Plasmas 13, 092301 (2006)

Be prepared to present your findings.

Can you explain when/why/how field lines are (not) periodic?

Student Lecture

Who can tell the group ...

How are toroidal coordinates defined?

When are field lines periodic? Why would we care?

Is turbulence localized radially, toroidally, along the field?

What does all this mean for the stellarator?

Flux Tubes

Typical experiments/reactors: $k_{\perp}\rho_{\rm i}\sim 0.1-1 \leftrightarrow n\sim 30-300$ Strong radial/toroidal localization \Rightarrow **flux tube** (Beer PoP 1995)

With radial domain $L_x \gtrsim \rho_{\rm i,e} \ll R, a$, can do Taylor expansion of n, T, q, etc. profiles, e.g., $T(r \approx r_0) \approx T_0 + (r - r_0) {\rm d}T/{\rm d}r$ A little confusing: in flux tube, both T and ${\rm d}T/{\rm d}r$ are constant!

Advantages

- cheaper (lower N_x)
- cleaner (Fourier)
- flexible (no fixed ρ^*)

Toroidal coordinates r, θ, ϕ transform to local x, y, z:

$$r=r_0+x$$
 $\theta=z-\pi$ (circular flux surf.)
$$\phi=-\frac{q_0}{r_0}y+q_0\left(1+\frac{\hat{s}}{r_0}x\right)\theta$$
 $\hat{s}\equiv\frac{r_0}{q_0}\frac{\mathrm{d}q}{\mathrm{d}r}$

Flux Tube vs. Flux Surface

Tokamak: a single flux tube represents entire flux surface

 $\begin{array}{l} \rho^* = \rho_{\rm i}/R_0 \ll 1 \text{ free to pick,} \\ \mathcal{M} = 2\pi/L_\phi \in \mathbb{N} \text{ arbitrary} \\ \Rightarrow \text{ at } x = 0, \text{ always periodic,} \\ \text{but not at } x \neq 0 \text{ if } \hat{s} \neq 0 \end{array}$

Circular surface: parallel BC $f(x, y, \pi) = f(x, y - 2\pi \hat{s}x, -\pi)$ (also called *twist-and-shift*)

Full system: entire flux surface (but: n=1 means $k_y \sim k_{\parallel}!$) \Rightarrow need to test convergence only for $k_y^{\min} \propto L_y^{-1}$ in $-\pi \leq z < \pi$

Stellarator: flux tubes starting at different ϕ differ \Rightarrow for complete physics, need full-surface (or full-volume) code!

Ballooning Representation

Exercise: derive parallel BC in $k_{x,y}$ Fourier space

$$f(k_x, k_y, \pi) = (-1)^{\mathcal{N}} f(k_x + \mathcal{N}k_x^{\text{shift}}, k_y, -\pi)$$

$$\mathcal{N} = 2\pi \hat{s} k_y/k_x^{\mathrm{shift}} \stackrel{\mathrm{commonly}}{=\!=\!=\!=} \pm 1$$

- real space: y shift
- k-space: k_x shift
- can be used to stitch together k_x

"ballooned" mode

Ballooning space

Extended parallel coordinate: **ballooning angle** θ_p , usually = 0 at $k_x = 0$ (Candy PoP 2004)

"slab-like" mode

Group Work: Locality

20 minutes group work

1 Determine whether the flux tube is likely to be valid for the same machines/radii as in the Orderings group work: Is the Taylor expansion a good approximation throughout $L_x \sim 100\rho_i$?

Note: this is a simple estimate! For real applications, more thorough studies (e.g., comparing local, global) may be needed.

Questions & Discussion

Anything unclear so far?

Group Work: Equilibria

MHD: **magnetic equilibria** — no MHD instability, fluxes from neoclassical collisions or microturbulence

1.5 hours group work:

Download J.W. Haverkort's write-up on equilibria:

```
http://homepage.tudelft.nl/20x40/documents/Equilibria.pdf
```

- Work through
 - a Sec. 1.1
 - b Sec. 1.2
 - c Appendix A

for good understanding of the Grad-Shafranov equation

get R.L. Miller *et al.*, Phys. Plasmas **5**, 973 (1998), read Secs. 1–3, make notes about what is unclear, distill key findings

Then reconvene in the plenum to discuss everyone's findings

The Zoo of Instabilities

Microinstabilities: drift waves driven by pressure gradients *Note*: all of them have **critical gradients**

	ITG	ETG	TEM	KBM	MT
drive	$\nabla T_{\rm i}$	$\nabla T_{ m e}$	$\nabla T_{\rm e}, \nabla n$	$\nabla T_{\mathrm{i,e}} + \nabla n$	$\nabla T_{\rm e}$
$ ho_j$ scale	i	e	i	i	i
ω sign ¹	+	_	(-)	+	_
$\beta \nearrow$	$\gamma \searrow$	$\gamma \rightarrow$	$\gamma \rightarrow$	$\gamma \nearrow$	$\gamma \nearrow$
Φ vs. A_{\parallel}	>>	>>	>>	>>	\lesssim
parity ²	+(-)	+(-)	+(-)	+(-)	_
slab branch ³	✓	✓	×	×	√
zonal flows ⁴	✓	(√)	×, √	×	(√)

Cause of turbulence & transport in fusion experiments

Each of the above is relevant to all of tokamak, stellarator, RFP

 $^{^{1}+(-)}$ drifts in ion(electron)-direction; some use opposite nomenclature!

 $^{^2+(-)}$ means even (odd) $\Phi(z)$ and odd (even) A_{\parallel}

 $^{^3}$ slab mode: parallel motion important, $|\theta_p|\gg\pi$ 4 nonlinear saturation mechanism, discussed later

Plasma Drifts

To understand **drift-wave instabilities**, recall drifts: gradients cause perpendicular **drifts at constant** v

- electric field: "E cross B", $\mathbf{v}_E = c(\mathbf{E} \times \mathbf{B})/B^2$
- inhomogeneous guide field: "grad B" & curvature,

$$\mathbf{v}_{\nabla B} = v_{\perp}^{2} (\mathbf{b} \times \nabla B) / (2B\Omega_{j})$$

$$\mathbf{v}_{c} = v_{\parallel}^{2} (\nabla \times \mathbf{b})_{\perp} / \Omega_{j}$$

Key properties

 \mathbf{v}_E in same direction for i, e $\mathbf{v}_{\nabla B,c}$ opposite for i, e

(adapted from: Wikipedia)

ITG & ETG Modes

ITG: Coppi PoF 1967 (linear), Dimits PoP 2000 (nonlinear) ETG: Liu PRL 1971 (linear), Jenko PoP 2000 (nonlinear)

Toroidal ITG mode:

$$\delta\Phi \to \nu_E \to \delta T_{\rm i} \to \nu_{\nabla B} \to \delta\Phi$$

- slab: k_{\parallel} instead of ∇B_0
- ETG linearly isomorphic $\Rightarrow \gamma_{\text{ITG}}/v_{\text{ti}} = \gamma_{\text{ETG}}/v_{\text{te}}$
- also called η_i (η_e) mode: ∇n can stabilize
- nonlinear toroidal ITG: zonal flows (ETG, slab ITG: somewhat less)

Characteristic scales

$$k_y \rho_{\rm s,e} \sim 0.1 - 1$$
, $k_x \sim 0 - k_y$, $\gamma \sim 0.1 - 1 v_{\rm ti,te} / L_{\rm Ti,e}$, $\omega \sim \pm \gamma$

Trapped-Electron Modes

Linear: Coppi PRL 1974, nonlinear: Ernst PoP 2004

 ∇T vs. ∇n drive: Ernst PoP 2009

∇n -driven TEM:

$$\delta\Phi \to \nu_E \to \delta n \to \nu_{\nabla B}^{\rm e,i} \to \delta\Phi$$

- no slab equivalent
- $\mathbf{v}_{\rm ei} \gtrsim \gamma$: "dissipative" DTEM
- $\mathbf{v}_{ei} < \gamma$: "collisionless" CTEM
- "ion" iTEM: Plunk JPP 2017
- "ubiquitous" UTEM ($\omega > 0$): Coppi PoFB 1990

Electrons trapped on outboard $(\nabla B_0 \parallel \nabla n, T)$

 $abla T_{\mathrm{e}}$ -driven TEM works correspondingly

- ∇T TEM and ETG driven by $\nabla T_{\rm e}$, can be indistinguishable
- trapped-ion TIM of limited relevance

Characteristic scales

$$k_y \rho_s \sim 0.2 - 2$$
, $k_x \sim 0 - k_y$, $\gamma \sim 0.1 - 1c_s/L_{n,Te}$, $\omega \sim -\gamma$

Kinetic Ballooning Modes

Linear: Tsai PoFB 1993, Hirose PRL 1994

Nonlinear: Pueschel PoP 2008 & 2010, Ishizawa NF 2013

KBM (also: "Alfvénic" AITG):

kinetic version of MHD ideal ballooning at high n > 10

Destabilized at high β

Driven by total gradient $\nabla p \sim \nabla n + \nabla T_i + \nabla T_e$

$$eta_{
m crit}^{
m KBM}(k_y o 0) o eta_{
m crit}^{
m MHD}$$
 at $lpha_{
m MHD} = eta q_0^2 R_0 ({
m d} p/{
m d} r)/p pprox 0.6 \hat{s}$

McKinney JPP 2021: saturation requires $\beta < \beta_{\rm crit}^{\rm KBM}(k_{\rm y}^{\rm min})$

Note: β/β_{crit} common figure of merit for electromagnetic effects

Characteristic scales

$$k_{\rm y}\rho_{\rm s}\sim 0-0.5,\,k_{\rm x}\sim 0,\,\gamma\sim 0.1-1c_{\rm s}/L_p,\,\omega\gg\gamma$$
 near $\beta_{\rm crit}$

Microtearing Modes

Linear: Hazeltine PoF 1975, Drake PoF 1977

Nonlinear: Doerk PRL 2011, Guttenfelder PRL 2011

Global tearing: driven by ∇j , while **MT**: driven by β , ∇T_e

Energy access via ν_c or curvature (collisionless)

Nonlinearly, pure $Q_{\rm e}^{\rm em}$ (no $Q_{\rm e,i}^{\rm es}$ or particle flux)

Hatch PRL 2012 & PoP 2013: Subdominant MT responsible for $Q_{\rm e}^{\rm em}$ in ITG turbulence

⇒ first-ever example of important stable mode

Characteristic scales

 $k_{\rm v}\rho_{\rm s}\sim 0.01-0.5$ (slab), 0.1-1 (tor'l), $\gamma\sim 0.1-1c_{\rm s}/L_{Te},\,\omega<0$

Hybrid Modes

Already mentioned: ∇T TEM & ETG can join forces

Kammerer PoP 2008, Pueschel PoP 2008: **hybrid modes** combining properties of **two instabilities**

E.g., can continuously transform KBM into TEM

Mathematically, related to exceptional points
Riemann surface

Walking circle in parameter space can give different mode

Consequences:

- turbulence regime boundaries can have odd behavior
- **subcritical** linear excitation (e.g., KBM below β_{crit})

Group Work: Characteristic Scales

1 hour group work:

- 1 for same machines as earlier, calculate characteristic
 - a diamagnetic frequency
 - b parallel transit frequency
 - c wavelengths corresponding to $k_{\rm v}\rho_{\rm s}=0.3,\,k_{\rm v}\rho_{\rm e}=0.3$
 - d β and ballooning threshold $\beta_{\rm crit}^{\rm MHD}$

in SI or cgs units (can look up diamagnetic frequency in A.J. Brizard, Rev. Mod. Phys. **79**, 421 (2007))

Who can say what their physical relevance is?

where feasible, estimate importance of instabilities for the above machines/radii: ITG, ETG, TEM, KBM

Questions & Discussion

Anything unclear that we talked about?

Any feedback for the instructor?

Anyone still awake?