Compiler Construction Problem Set 1

Magnus Brevik

January 2023

1 Regular languages, NFAs and DFAs

1.1

 $\mathcal{L}(a?a?(ba?a?)*)$

1.2

Not including a graph as this should be sufficient to replicate one. State 0 is the starting state. State 5 is the accepting state.

State	${\bf Letter}$	Result State
0:	a	1
	ϵ	1
1:	a	2
	ϵ	2
2:	b	3
	ϵ	5
3:	a	4
	ϵ	4
4:	a	5
	ϵ	5
5:	ϵ	2

1.3 DFA State 0 is the start state. Accepting DFA States are $\{0, 1, 2, 3, 4\}$ State 5 is a dead end.

DFA State	NFA States
0	$\{0, 1, 2, 5\}$
1	$\{1, 2, 5\}$
2	$\{2, 3, 4, 5\}$
3	$\{2, 4, 5\}$
4	$\{2, 5\}$
5	{}

Rules:

State	${\bf Letter}$	Result State
0:	a	1
	b	2
1:	a	4
	b	2
2:	a	3
	b	2
3:	a	4
	b	2
4:	a	5
	b	2
5:	a b	5

1.4

I forgot my crayons at home, so instead of colours I will use a letter with a subscript number for the intermediate states during minimisation.

Accepting States (a_0) : $\{0, 1, 2, 3, 4\}$

Non-accepting States (a_1) : $\{5\}$

2 Non-minimal State: 0 1 3 5 4 a: a_0 a_0 a_0 a_0 a_1 a_1 b: a_0 a_0 a_0 a_0 a_0 a_1

States $\{0, 1, 2, 3\}$ are identical within group a_0 , while 4 is different. Next step uses the groups

 $b_0: \{0,1,2,3\}$

 $b_1: \{4\}$ $b_2: \{5\}$

Non-minimal State: 0 3 5 a: b_0 b_1 b_0 b_1 b_2 b_2 b: b_0 b_0 b_0 b_0 b_0 b_1

States $\{0, 2\}$ and $\{1, 3\}$ are identical within group b_0 . Next step uses the groups

 $c_0: \{0,2\}$ $c_1: \{1,3\}$

 $c_2: \{4\}$

 $c_3: \{5\}$

2 3 Non-minimal State: 0 1 5 4 a: c_1 c_2 c_1 c_2 c_3 c_3 b: c_0 c_0 c_0 c_0 c_0 c_3

Now all groups consist of only identical NFA states, therefore we can rename them to just the number from the intermediate state names, and get

 $0: \{0,2\}$

 $1: \{1,3\}$

 $2: \{4\}$

 $3: \{5\}$

with the rules

State	Letter	Result State
0:	a	1
	b	0
1:	a	2
	b	0
2:	a	3
	b	0
3:	a b	3

where state 0 is the starting state, states $\{0, 1, 2\}$ are accepting states, and state 5 is a dead end.

1.5

To be honest I cannot find a good way to negate DFA without just going through the same steps of making a regular expression and following the same steps. I might just be missing something in the book or online about it, but did not find anything interesting when searching for "negate deterministic finite automaton". Instead I made the regular expression (a|b)*aaa(a|b)* and made an automaton through NFA and NFA to DFA algorithms.

State 0 is the starting state, state 3 is the accepting state, and state 4 is a dead end.

State	${\bf Letter}$	Result State
0:	a	1
	b	0
1:	a	2
	b	4
2:	a	3
	b	4
3:	a b	3
4:	$egin{aligned} a b \ a b \end{aligned}$	4

I found inverting the regular expression easier, but this was also a very simple expression to just create without the original, which is what I actually did. There is probably some algorithm to invert or negate a DFA which I did not find which makes it easier than negating a regular expression.

2 DFA for a small language

2.1

In modern regex one can usually use the identifier $\backslash d$ to denote a digit, i.e. [0-9]. $(d(x|y)=-?\backslash d+)|(go)\backslash n$

2.2

State 9 is the invalid state, so any invalid characters point there.

2.3

 ${\bf Code\ implementation}$