物流出貨運送管理系統

國立中興大學資訊管理學系終身特聘教授兼計資中心主任

演講者: 詹永寬 教授

報告者: 陳泓仁 11363131

日期:2025.05.13

outlines

- 物流出貨運送管理系統
 - o 出貨排程子系統
 - o 車輛分派子系統
 - o 最短路徑排程子系統
 - o 商品覆點子系統
- 基於鱗塊形狀與空間特徵之狗鼻紋身分識別
- keywords
- 心得報告
- reference

物流出貨運送管理系統

出貨排程子系統

- 對經銷商送貨原則:
 - o 原則一: 對同一經銷商, 盡量避免避免連續天送貨, 盡可能分散開來。
 - o 原則二:每天送貨的經銷商家數,應盡量平均

原則一:對同一經銷商避免連續天數送貨

- 每一經銷商→6個二位元、全部串聯成一個二元長字串、稱之為 一解字串。
 - S_1 : 000111000110 $\Rightarrow f_{d1}=3^2+2^2=13$.
 - S_2 : 01010101010100 $\rightarrow f_{d2}$ =12+12+12+12+12=6 \circ
- S₁: 000111000110為兩個經銷商,共12bits
- 每6bits分開計算,得 f_{d1} = 3²+2² = 13

原則一

● 數值越小,越佳,例如S₂:010101010100,f_{d2}得6,明顯可見其配貨天數不連續

原則二

- 利用算數平均和距離平方和
- 描述一組資料的離散程度
- 類似於變異數計算
 - o 和變數差異: 缺少取平均
 - o 變異數,描述每一筆資料的分散程度

原則二:每天送貨經銷商家數,盡量平均

表 3.1: 對經銷商之送貨排程(a)

星期超銷商	-	=	111	123	五	六
A	1	0	0	1	0	1
В	0	1	0	1	1	1
C	1	0	0	0	1	1
D	1	0	1	0	1	1

表 3.2: 對經銷商之送貨排程(b)

星期經銷商	-	=	Ξ	109	五	六
A	1	0	0	1	0	1
В	0	1	0	1	1	1
C	1	0	1	0	0	1
D	1	1	1	0	1	0

- · 平均每天出貨的經銷商家數n。=2.33
- 排程(a)之fa=(3-2.33)2+(1-2.33)2+(1-2.33)2+(2-2.33)2+(3-2.33)2+(4-2.33)2=6
- 排程(b)之fa=(3-2.33)²+(2-2.33)²+(2-2.33)²+(2-2.33)²+(2-2.33)²+(2-2.33)²+(3-2.33)²=2.67

[1]

綜合評估指標

- 綜合前面兩個原則所計算出來的指標
- 數據顯示並非眾數就能代表數據性質,因此計算方式分為:
 - o 算術平均
 - 缺點: 容易受到離均值影響
 - o 幾何平均
 - 缺點: 不適用於資料中有0或負值 [2]

各種平均數

 $\bar{x} = \frac{x_1+x_2+x_3\cdots x_{n-1}+x_n}{n}$

- 算數平均數
- 幾何平均
- 調和平均數

$$G = \sqrt[n]{x_1 \cdot x_2 \cdot x_3 \cdot \cdots \cdot x_{n-1} \cdot x_n}$$

$$H = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \dots + \frac{1}{x_{n-1}} + \frac{1}{x_n}}$$

中位數、眾數、平均數

- 平均數:
 - o 測量數據的集中趨勢
 - o 用於估計真實的未知母體平均數,通常做為簡單的匯總統計量
- 中位數:
 - o 數據第50個百分位數
 - o 是樣本中資料集中趨勢的另一個估計值
- 眾數:
 - o 是另一個用於估計資料集中趨勢的統計資料
 - o 眾數是數據中最常出現的數值 [3

車輛分派子系統

- 先選擇兩個最遠的點
- 依照載重量,分配貨物給載重量較小的車

車輛分派子系統

經銷商	送貨量
A	4
В	3
C	2
D	3
E	4
F	3

- · R[1].經銷商={A}, R[1].载貨重=4
- · R[2].經銷商={F, E}, R[2].載貨重=7
- · R[1].經銷商={A, C}, R[1].裁貨重=6
- · R[2].經銷商={F, E}, R[2].裁貨重=7
- · R[1].經銷商={A, C, B}, R[1].载貨重=9
- · R[2].經銷商={F, E}, R[2].裁貨重=7

最短路徑排程子系統

● 利用基因演算法

如果用窮舉,則為 n! 不實際

- o 為什麼適合此算法:
 - 組合最佳化問題
 - 解空間可以非常大
 - 找到最佳的很難,但是找到可以接受的還可以
 - 傳統: 窮舉, 動態規劃, 計算耗時
- o 優點:
 - 可以在動態環境中適應變化,如交通流量波動或道路封閉
 - 實現即時路徑優化

突變

[4] [5]

11

交配

基因演算法

- initialize population
 - o 生成位置索引的隨機排列,索引的排列代表要訪問的順序
 - o 透過打亂位置索引來建立一個個體
- fitness calculation
 - o 距離計算: 使用歐幾里德距離計算每輛車輛行駛的距離
 - o 平衡懲罰: 測量各車輛間距離的標準差,確保路線的均衡性
- selection
 - o 隨機挑選3個個體子集,並從中挑選最佳者,維持多樣性
- crossover
 - o部分匹配交叉
- mutation
 - p 每個索引有小機率進行索引隨機重排

商品覆點子系統

- 擷取物品上條碼
 - **影像擷取**
 - o 轉正物件
 - o 使用YoLo辨識物品

YoLo detection

- 工地應用:
 - o 辨識工人是否穿戴安全帽、安全繩
 - o 挑戰:
 - 光線過暗、影像計算不夠即時
 - solution:
 - 使用edge computing, 一顆邊緣運算辨識不同物件,解決辨識即時性以及訓練效率
 - X光系統校正
 - o 邊緣運算:
 - 使用edge ai可保證數據不會被惡意使用或流傳到雲端上
 - 不需要回傳雲端並等待結果,完全在邊緣端進行資料處理、預測,有更高的即時性。

基於鱗塊形狀與空間特徵隻狗鼻紋身分識別

狗鼻紋基準定位

- 使用YoLo切割出兩鼻孔區域
- 利用狗鼻孔作為基準點
 - o 重心座標計算:
 - 將每個點的位置乘以全重,再除以總權重,取得整體的平衡點

$$P=\left(rac{nx_1+mx_2}{m+n},rac{ny_1+my_2}{m+n}
ight).$$

鱗片狀區塊比對

- fig1中,以特定夾角上的鱗片狀區 塊做比對
- fig2中,鱗狀區塊做比對,可以看 到有71區塊位置不同,但是大部 分正確,保有容錯空間

fig 1

fig 2

keywords

- 基因演算法
- 最佳組合問題
- 最短路徑排程
- 算術平均數、幾何平均、調和平均
- 平均數特性
- YoLo detection
- edge computing
- 幾何重心公式
- 鼻紋比對

心得

聽到這次的演講主題是"物流出貨運送管理系統"後,稍微思考了有什麼內容是符合資訊工程系可以探討的,沒想到有如次多大學部所學的演算法可以應用於此。例如:送貨的最佳路徑或最短路徑,如果使用枚舉方法,解的空間過大則造成計算成本高,因此可以用到基因演算法,可以在極大解空間快速搜尋。了解到需要深知問題的本質,就能快速找到相應的工具(演算法 e.g.)處理。

再來是創意,近年寵物是年輕一代常有的話題,飼養寵物後如何辨識自家寵物更是重要的議題。詹教授則利用 狗鼻紋相似於人類指紋的獨特性去做識別,但是如何對於狗鼻紋的識別則是使用廣為熟知的YoLo物件辨識去比對。於 此同時我思考了,這個這麼細緻的紋路要如何辨識?教授對此處理為先抓去定位點,再對特定的角度鱗片區塊比對, 或者可以更進一步的對鱗片比對。

這次的演講是相當有趣且啟發的主題,提醒著我們只要夠了解事件的問題核心,只要演算法或架構用對, 就可以解決**90%**的問題,受益良多。

Reference

[1]變異數公式

[2]平均數特性

[3]中位數、眾數、平均數

[4]運用基因演演算法最佳化車輛路徑規劃的創新解決方案

[5]車輛路徑問題

[6]GA算法流程

[7]YoLo detection

[8]推導重心座標公式