実解析第2同演習・演習第7回

2022年12月9日

問 A-1

 (X, \mathcal{M}) を可測空間, μ を (X, \mathcal{M}) 上の有限測度とする.

- (1) $E \in \mathcal{M}$ を一つとり, $F \in \mathcal{M}$ に対し $\mu_E(F) := \mu(E \cap F)$ と定義する.このとき, μ_E は (X, \mathcal{M}) 上の有限測度であることを示せ.
- (2) $\mu_E \ll \mu$ を示せ.
- (3) μ_E の μ に関する Radon-Nikodym derivative を求めよ.

問 A-2

可測空間 (X, \mathcal{B}) 上の測度 μ, ν, λ に対し,以下を示せ.

- (1) 関数 $f: X \to [0, \infty)$ が μ について可積分であれば, $\Phi(E) := \int_E f d\mu$ により定まる加法的集合関数 Φ は μ に対し絶対連続.
- (2) $\mu \ll \mu$ が成り立つ. また, $\mu \ll \nu$ かつ $\nu \ll \lambda$ であれば $\mu \ll \lambda$. しかし, $\mu \ll \nu$ かつ $\nu \ll \mu$ であっても $\mu = \nu$ とは限らない.

問B-1

可測空間 (X,\mathcal{B}) 上の測度 μ と有限測度 ν に対し、以下は同値であることを示せ.

- 1. $\nu \ll \mu$
- 2. 任意の $\epsilon > 0$ に対し、 $\delta > 0$ が存在して $\mu(A) < \delta$ ならば $\nu(A) < \epsilon$ が成立.

(ヒント:1 から 2 を示すとき,Radon-Nikodym を用いる必要はない.対偶を示すことを試みるとよいが,このとき $\cap_{n=1}^\infty \cup_{m=n}^\infty A_m$ の形の集合を考えると便利である.)

問B-2

 $X = \{0, 1, 2\}, \ \mathcal{M} = \{\emptyset, \{0\}, \{1, 2\}, X\} \ \texttt{Eps}.$

- **(1)** $f: X \to \mathbb{R}$ を f(0) = 1, f(1) = 2, f(2) = 3 と定めたとき,f は $(X, \mathcal{P}(X))$ について可測であるが, (X, \mathcal{M}) については可測でないことを示せ.
- (2) p_0, p_1, p_2 を $p_0 + p_1 + p_2 = 1$ となる非負の実数とする. $(X, \mathcal{P}(X))$ 上の(確率)測度 μ を 各 $E \in \mathcal{P}(X)$ に対し

$$\mu(E) := \sum_{i \in E} p_i$$

で定める. このとき, $\mu_f(E) = \int_E f d\mu$ で定まる加法的集合関数はどのように表されるか.

- (3) μ , μ_f は \mathcal{M} に制限して考えることにより、 (X,\mathcal{M}) 上の測度とみることもできる。 (X,\mathcal{M}) 上の測度として, $\mu_f \ll \mu$ であることを確かめよ.
- (4) 前問の結果と Radon-Nikodym の定理により、 (X, \mathcal{M}) について可測な関数 $g: X \to \mathbb{R}$ が存在し、任意の $E \in \mathcal{M}$ について $\mu_f(E) = \mu_g(E)$ となる.このような関数 g を求め、一般には $g \neq f$ となることを確かめよ.(この問題で構成される g は \mathcal{M} の下での f の条件付期 待値と呼ばれる.)

問 B-3

 (X, \mathcal{M}) を可測空間, μ を (X, \mathcal{M}) 上の σ -有限測度とする. (X, \mathcal{M}) 上の σ -有限測度 λ , ν が $\lambda \ll \mu$, $\nu \ll \mu$ をみたすとき, $\lambda + \nu \ll \mu$ であり,

$$\frac{d(\lambda + \nu)}{d\mu} = \frac{d\lambda}{d\mu} + \frac{d\nu}{d\mu}$$

が μ -a.e. で成り立つことを示せ.