Todd Garner DS6306 Week6 Part2

Todd Garner

2023-02-07

Part 2 - Question a. - For the full (multinomial) IRIS data (the iris dataset in R), do a 70-30 train/test cross validation with k=1 - 90 and use sepal length and width as predictors. Make a plot of k (xaxis) versus accuracy. Use this plot to tune the hyperparameter k. What do you feel is the best value of k?

This reminds me of the example in the Week 6 lectures. So, I will start from that example and modify to the desired result. I first need to divide the data set into 70/30 train/test sizes.

library(tidyverse)

```
## Warning: package 'tidyverse' was built under R version 4.2.2
## -- Attaching packages ------ tidyverse 1.3.2 --
## v ggplot2 3.4.0
                      v purrr
                              1.0.0
## v tibble 3.1.8
                      v dplyr
                              1.0.10
## v tidyr
          1.2.1
                      v stringr 1.5.0
## v readr
           2.1.3
                      v forcats 0.5.2
## Warning: package 'ggplot2' was built under R version 4.2.2
## Warning: package 'tibble' was built under R version 4.2.2
## Warning: package 'tidyr' was built under R version 4.2.2
## Warning: package 'readr' was built under R version 4.2.2
## Warning: package 'purrr' was built under R version 4.2.2
## Warning: package 'dplyr' was built under R version 4.2.2
## Warning: package 'stringr' was built under R version 4.2.2
## Warning: package 'forcats' was built under R version 4.2.2
## -- Conflicts ----- tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
```

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	1	5.1	3.5	1.4	0.2	setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	0.2	setosa
##	5	5.0	3.6	1.4	0.2	setosa
##	6	5.4	3.9	1.7	0.4	setosa
##	7	4.6	3.4	1.4	0.3	setosa
##	8	5.0	3.4	1.5	0.2	setosa
##	9	4.4	2.9	1.4	0.2	setosa
##	10	4.9	3.1	1.5	0.1	setosa
##	11	5.4	3.7	1.5	0.2	setosa
##	12	4.8	3.4	1.6	0.2	setosa
##	13	4.8	3.0	1.4	0.1	setosa
##	14	4.3	3.0	1.1	0.1	setosa
##	15	5.8	4.0	1.2	0.2	setosa
##	16	5.7	4.4	1.5	0.4	setosa
##	17	5.4	3.9	1.3	0.4	setosa
##	18	5.1	3.5	1.4	0.3	setosa
##	19	5.7	3.8	1.7	0.3	setosa
##	20	5.1	3.8	1.5	0.3	setosa
##	21	5.4	3.4	1.7	0.2	setosa
##	22	5.1	3.7	1.5	0.4	setosa
##	23	4.6	3.6	1.0	0.2	setosa
##	24	5.1	3.3	1.7	0.5	setosa
##	25	4.8	3.4	1.9	0.2	setosa
##	26	5.0	3.0	1.6	0.2	setosa
##	27	5.0	3.4	1.6	0.4	setosa
##	28	5.2	3.5	1.5	0.2	setosa
##	29	5.2	3.4	1.4	0.2	setosa
##	30	4.7	3.2	1.6	0.2	setosa
##	31	4.8	3.1	1.6	0.2	setosa
	32	5.4	3.4	1.5	0.4	setosa
	33	5.2	4.1	1.5	0.1	setosa
	34	5.5	4.2	1.4	0.2	setosa
	35	4.9	3.1	1.5	0.2	setosa
##	36	5.0	3.2	1.2	0.2	setosa
##		5.5	3.5	1.3	0.2	setosa
##		4.9	3.6	1.4	0.1	setosa
##		4.4	3.0	1.3	0.2	setosa
##		5.1	3.4	1.5	0.2	setosa
##		5.0	3.5	1.3	0.3	setosa
##		4.5	2.3	1.3	0.3	setosa
##		4.4	3.2	1.3	0.2	setosa
##		5.0	3.5	1.6	0.6	setosa
##		5.1	3.8	1.9	0.4	setosa
##		4.8	3.0	1.4	0.3	setosa
##		5.1	3.8	1.6	0.2	setosa
##		4.6	3.2	1.4	0.2	setosa
##		5.3	3.7	1.5	0.2	setosa
##		5.0	3.3	1.4	0.2	setosa
##	51	7.0	3.2	4.7	1.4	versicolor

## EO	6 1	2 0	4.5	1 E
## 52	6.4	3.2		1.5 versicolor
## 53	6.9	3.1	4.9	1.5 versicolor
## 54	5.5	2.3	4.0	1.3 versicolor
## 55	6.5	2.8	4.6	1.5 versicolor
## 56	5.7	2.8	4.5	1.3 versicolor
## 57	6.3	3.3	4.7	1.6 versicolor
## 58	4.9	2.4	3.3	1.0 versicolor
## 59	6.6	2.9	4.6	1.3 versicolor
## 60	5.2	2.7	3.9	1.4 versicolor
## 61	5.0	2.0	3.5	1.0 versicolor
## 62	5.9	3.0	4.2	1.5 versicolor
## 63	6.0	2.2	4.0	1.0 versicolor
## 64	6.1	2.9	4.7	1.4 versicolor
## 65	5.6	2.9	3.6	1.3 versicolor
## 66	6.7	3.1	4.4	1.4 versicolor
## 67	5.6	3.0	4.5	1.5 versicolor
## 68		2.7		1.0 versicolor
	5.8		4.1	
## 69	6.2	2.2	4.5	1.5 versicolor
## 70	5.6	2.5	3.9	1.1 versicolor
## 71	5.9	3.2	4.8	1.8 versicolor
## 72	6.1	2.8	4.0	1.3 versicolor
## 73	6.3	2.5	4.9	1.5 versicolor
## 74	6.1	2.8	4.7	1.2 versicolor
## 75	6.4	2.9	4.3	1.3 versicolor
## 76	6.6	3.0	4.4	1.4 versicolor
## 77	6.8	2.8	4.8	1.4 versicolor
## 78	6.7	3.0	5.0	1.7 versicolor
## 79	6.0	2.9	4.5	1.5 versicolor
## 80	5.7	2.6	3.5	1.0 versicolor
## 81	5.5	2.4	3.8	1.1 versicolor
## 82	5.5	2.4	3.7	1.0 versicolor
## 83	5.8	2.7	3.9	1.2 versicolor
## 84	6.0	2.7	5.1	1.6 versicolor
## 85	5.4	3.0	4.5	1.5 versicolor
## 86	6.0	3.4	4.5	1.6 versicolor
## 87	6.7	3.1	4.7	1.5 versicolor
## 88	6.3	2.3	4.4	1.3 versicolor
## 89	5.6 5.5	3.0	4.1	1.3 versicolor
## 90		2.5	4.0	1.3 versicolor
## 91	5.5	2.6	4.4	1.2 versicolor
## 92	6.1	3.0	4.6	1.4 versicolor
## 93	5.8	2.6	4.0	1.2 versicolor
## 94	5.0	2.3	3.3	1.0 versicolor
## 95	5.6	2.7	4.2	1.3 versicolor
## 96	5.7	3.0	4.2	1.2 versicolor
## 97	5.7	2.9	4.2	1.3 versicolor
## 98	6.2	2.9	4.3	1.3 versicolor
## 99	5.1	2.5	3.0	1.1 versicolor
## 100	5.7	2.8	4.1	1.3 versicolor
## 101	6.3	3.3	6.0	2.5 virginica
## 102	5.8	2.7	5.1	1.9 virginica
## 103	7.1	3.0	5.9	2.1 virginica
## 104	6.3	2.9	5.6	1.8 virginica
## 105	6.5	3.0	5.8	2.2 virginica
				9

```
## 106
                7.6
                             3.0
                                           6.6
                                                        2.1 virginica
## 107
                 4.9
                                           4.5
                                                            virginica
                             2.5
                                                        1.7
## 108
                7.3
                             2.9
                                           6.3
                                                        1.8
                                                             virginica
## 109
                6.7
                             2.5
                                           5.8
                                                             virginica
                                                        1.8
## 110
                7.2
                             3.6
                                           6.1
                                                        2.5
                                                             virginica
## 111
                                                             virginica
                6.5
                             3.2
                                           5.1
                                                        2.0
## 112
                                                             virginica
                6.4
                             2.7
                                           5.3
                                                        1.9
## 113
                6.8
                             3.0
                                           5.5
                                                        2.1
                                                             virginica
## 114
                5.7
                             2.5
                                           5.0
                                                        2.0
                                                             virginica
## 115
                5.8
                             2.8
                                           5.1
                                                        2.4
                                                             virginica
## 116
                6.4
                             3.2
                                           5.3
                                                        2.3
                                                             virginica
## 117
                             3.0
                                           5.5
                6.5
                                                        1.8
                                                             virginica
## 118
                7.7
                             3.8
                                           6.7
                                                        2.2
                                                             virginica
## 119
                7.7
                             2.6
                                           6.9
                                                        2.3
                                                             virginica
## 120
                6.0
                             2.2
                                           5.0
                                                             virginica
                                                        1.5
## 121
                6.9
                             3.2
                                           5.7
                                                        2.3
                                                             virginica
## 122
                5.6
                             2.8
                                           4.9
                                                        2.0
                                                             virginica
## 123
                7.7
                             2.8
                                           6.7
                                                        2.0
                                                             virginica
## 124
                6.3
                             2.7
                                                        1.8
                                           4.9
                                                            virginica
## 125
                6.7
                             3.3
                                           5.7
                                                        2.1
                                                             virginica
## 126
                7.2
                             3.2
                                           6.0
                                                        1.8
                                                             virginica
## 127
                6.2
                             2.8
                                           4.8
                                                             virginica
                                                        1.8
## 128
                6.1
                             3.0
                                                            virginica
                                           4.9
                                                        1.8
## 129
                6.4
                                                             virginica
                             2.8
                                           5.6
                                                        2.1
## 130
                7.2
                             3.0
                                           5.8
                                                        1.6
                                                            virginica
## 131
                7.4
                             2.8
                                           6.1
                                                        1.9
                                                             virginica
## 132
                7.9
                             3.8
                                           6.4
                                                        2.0
                                                             virginica
## 133
                6.4
                             2.8
                                           5.6
                                                        2.2
                                                             virginica
## 134
                6.3
                             2.8
                                           5.1
                                                        1.5
                                                             virginica
## 135
                6.1
                             2.6
                                           5.6
                                                             virginica
                                                        1.4
                                                        2.3
## 136
                7.7
                             3.0
                                           6.1
                                                             virginica
## 137
                6.3
                             3.4
                                           5.6
                                                        2.4
                                                             virginica
## 138
                6.4
                             3.1
                                           5.5
                                                        1.8
                                                             virginica
                             3.0
## 139
                6.0
                                           4.8
                                                        1.8
                                                             virginica
## 140
                 6.9
                             3.1
                                           5.4
                                                        2.1
                                                             virginica
## 141
                                                        2.4
                                                             virginica
                6.7
                             3.1
                                           5.6
## 142
                6.9
                             3.1
                                           5.1
                                                        2.3
                                                             virginica
## 143
                5.8
                             2.7
                                           5.1
                                                        1.9
                                                             virginica
## 144
                6.8
                             3.2
                                           5.9
                                                        2.3
                                                             virginica
## 145
                                                            virginica
                6.7
                             3.3
                                           5.7
                                                        2.5
## 146
                             3.0
                6.7
                                           5.2
                                                        2.3
                                                             virginica
## 147
                6.3
                             2.5
                                           5.0
                                                        1.9
                                                             virginica
## 148
                6.5
                             3.0
                                           5.2
                                                        2.0
                                                             virginica
## 149
                                                             virginica
                6.2
                             3.4
                                           5.4
                                                        2.3
## 150
                             3.0
                                           5.1
                                                        1.8 virginica
```

```
View(iris)
splitPerc = .70
#iris_all = iris %>% filter(Species == "versicolor" | Species == "virginica")
train_init = sample(1:dim(iris)[1],round(splitPerc * dim(iris)[1]))
train = iris[train_init,]
test = iris[-train_init,]
```

So far, so good. This next piece looks pretty complicated so I'm going to think it through before I launch

into it. Looking at the raw, unmodified example code, the variable "accs" doesn't appear to do anything. I see it now on the prior page of the example. This gives me pause to walk through the entirety of the code so I can make sure I know what I'm doing....and, what I'm driving to solve!

iris

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	1	5.1	3.5	1.4	0.2	setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	0.2	setosa
##	5	5.0	3.6	1.4	0.2	setosa
##	6	5.4	3.9	1.7	0.4	setosa
##	7	4.6	3.4	1.4	0.3	setosa
##	8	5.0	3.4	1.5	0.2	setosa
##	9	4.4	2.9	1.4	0.2	setosa
##	10	4.9	3.1	1.5	0.1	setosa
##	11	5.4	3.7	1.5	0.2	setosa
##	12	4.8	3.4	1.6	0.2	setosa
##	13	4.8	3.0	1.4	0.1	setosa
##	14	4.3	3.0	1.1	0.1	setosa
##	15	5.8	4.0	1.2	0.2	setosa
##	16	5.7	4.4	1.5	0.4	setosa
##	17	5.4	3.9	1.3	0.4	setosa
##	18	5.1	3.5	1.4	0.3	setosa
##	19	5.7	3.8	1.7	0.3	setosa
##	20	5.1	3.8	1.5	0.3	setosa
##	21	5.4	3.4	1.7	0.2	setosa
##	22	5.1	3.7	1.5	0.4	setosa
##	23	4.6	3.6	1.0	0.2	setosa
##	24	5.1	3.3	1.7	0.5	setosa
##	25	4.8	3.4	1.9	0.2	setosa
##	26	5.0	3.0	1.6	0.2	setosa
##	27	5.0	3.4	1.6	0.4	setosa
##	28	5.2	3.5	1.5	0.2	setosa
##	29	5.2	3.4	1.4	0.2	setosa
##	30	4.7	3.2	1.6	0.2	setosa
##	31	4.8	3.1	1.6	0.2	setosa
##	32	5.4	3.4	1.5	0.4	setosa
##	33	5.2	4.1	1.5	0.1	setosa
##	34	5.5	4.2	1.4	0.2	setosa
##	35	4.9	3.1	1.5	0.2	setosa
##		5.0	3.2	1.2	0.2	setosa
##		5.5	3.5	1.3	0.2	setosa
	38	4.9	3.6	1.4	0.1	setosa
	39	4.4	3.0	1.3	0.2	setosa
	40	5.1	3.4	1.5	0.2	setosa
##		5.0	3.5	1.3	0.3	setosa
	42	4.5	2.3	1.3	0.3	setosa
	43	4.4	3.2	1.3	0.2	setosa
	44	5.0	3.5	1.6	0.6	setosa
	45	5.1	3.8	1.9	0.4	setosa
	46	4.8	3.0	1.4	0.3	setosa
##	47	5.1	3.8	1.6	0.2	setosa

##	18	4.6	3.2	1.4	0.2	setosa
	49	5.3	3.7	1.5	0.2	setosa
	50	5.0	3.3	1.4	0.2	setosa
	51	7.0	3.2	4.7		versicolor
	52	6.4	3.2	4.5		versicolor
	53	6.9	3.1	4.9		versicolor
	54	5.5	2.3	4.0		versicolor
	55	6.5	2.8	4.6		versicolor
	56	5.7	2.8	4.5	1.3	versicolor
##	57	6.3	3.3	4.7	1.6	versicolor
##	58	4.9	2.4	3.3	1.0	versicolor
##	59	6.6	2.9	4.6	1.3	versicolor
##	60	5.2	2.7	3.9	1.4	versicolor
##	61	5.0	2.0	3.5	1.0	versicolor
##	62	5.9	3.0	4.2	1.5	versicolor
##	63	6.0	2.2	4.0	1.0	versicolor
##	64	6.1	2.9	4.7	1.4	versicolor
##	65	5.6	2.9	3.6	1.3	versicolor
	66	6.7	3.1	4.4	1.4	versicolor
	67	5.6	3.0	4.5	1.5	versicolor
	68	5.8	2.7	4.1		versicolor
	69	6.2	2.2	4.5		versicolor
	70	5.6	2.5	3.9		versicolor
	71	5.9	3.2	4.8		versicolor
	72	6.1	2.8	4.0		versicolor
	73	6.3	2.5	4.9		versicolor
	74	6.1	2.8	4.7		versicolor
	75	6.4	2.9	4.3		versicolor
	76	6.6	3.0	4.4		versicolor
	77	6.8	2.8	4.8		versicolor
	78	6.7	3.0	5.0		versicolor
	79	6.0	2.9	4.5		versicolor
	80	5.7	2.6	3.5		versicolor
	81		2.4	3.8		versicolor
		5.5				
	82	5.5	2.4	3.7		versicolor
	83	5.8	2.7	3.9		versicolor
##		6.0	2.7	5.1		versicolor
##		5.4	3.0	4.5		versicolor
	86	6.0	3.4	4.5		versicolor
	87	6.7	3.1	4.7		versicolor
	88	6.3	2.3	4.4		versicolor
	89	5.6	3.0	4.1		versicolor
	90	5.5	2.5	4.0		versicolor
	91	5.5	2.6	4.4		versicolor
	92	6.1	3.0	4.6		versicolor
	93	5.8	2.6	4.0		versicolor
	94	5.0	2.3	3.3		versicolor
	95	5.6	2.7	4.2		versicolor
	96	5.7	3.0	4.2	1.2	versicolor
##	97	5.7	2.9	4.2	1.3	versicolor
	98	6.2	2.9	4.3	1.3	versicolor
##	99	5.1	2.5	3.0	1.1	versicolor
##	100	5.7	2.8	4.1	1.3	versicolor
##	101	6.3	3.3	6.0	2.5	virginica

##	102	5.8	2.7	5.1	1.9	virginica
##	103	7.1	3.0	5.9	2.1	virginica
##	104	6.3	2.9	5.6	1.8	virginica
##	105	6.5	3.0	5.8	2.2	virginica
##	106	7.6	3.0	6.6	2.1	virginica
##	107	4.9	2.5	4.5	1.7	virginica
##	108	7.3	2.9	6.3	1.8	virginica
##	109	6.7	2.5	5.8	1.8	virginica
##	110	7.2	3.6	6.1	2.5	virginica
##	111	6.5	3.2	5.1	2.0	virginica
##	112	6.4	2.7	5.3	1.9	virginica
##	113	6.8	3.0	5.5	2.1	virginica
##	114	5.7	2.5	5.0	2.0	virginica
##	115	5.8	2.8	5.1	2.4	virginica
##	116	6.4	3.2	5.3	2.3	virginica
##	117	6.5	3.0	5.5	1.8	virginica
##	118	7.7	3.8	6.7	2.2	virginica
##	119	7.7	2.6	6.9	2.3	virginica
##	120	6.0	2.2	5.0	1.5	virginica
##	121	6.9	3.2	5.7	2.3	virginica
##	122	5.6	2.8	4.9	2.0	virginica
##	123	7.7	2.8	6.7	2.0	virginica
##	124	6.3	2.7	4.9	1.8	virginica
##	125	6.7	3.3	5.7	2.1	virginica
##	126	7.2	3.2	6.0	1.8	virginica
##	127	6.2	2.8	4.8	1.8	virginica
##	128	6.1	3.0	4.9	1.8	virginica
##	129	6.4	2.8	5.6	2.1	virginica
##	130	7.2	3.0	5.8	1.6	virginica
##	131	7.4	2.8	6.1	1.9	virginica
##	132	7.9	3.8	6.4	2.0	virginica
##	133	6.4	2.8	5.6	2.2	virginica
##	134	6.3	2.8	5.1	1.5	virginica
##	135	6.1	2.6	5.6	1.4	virginica
##	136	7.7	3.0	6.1	2.3	virginica
##	137	6.3	3.4	5.6	2.4	virginica
##	138	6.4	3.1	5.5	1.8	virginica
##	139	6.0	3.0	4.8	1.8	virginica
##	140	6.9	3.1	5.4	2.1	virginica
##	141	6.7	3.1	5.6	2.4	virginica
##	142	6.9	3.1	5.1	2.3	virginica
##	143	5.8	2.7	5.1	1.9	virginica
##	144	6.8	3.2	5.9	2.3	virginica
##	145	6.7	3.3	5.7	2.5	virginica
##	146	6.7	3.0	5.2	2.3	virginica
	147	6.3	2.5	5.0	1.9	virginica
##	148	6.5	3.0	5.2	2.0	virginica
##	149	6.2	3.4	5.4	2.3	virginica
##	150	5.9	3.0	5.1	1.8	virginica
						-

library(class)

^{##} Warning: package 'class' was built under R version 4.2.2

```
library(FNN)
## Warning: package 'FNN' was built under R version 4.2.2
##
## Attaching package: 'FNN'
## The following objects are masked from 'package:class':
##
##
       knn, knn.cv
library(caret)
## Warning: package 'caret' was built under R version 4.2.2
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
       lift
#library(InformationValue)
#install.packages("ISLR")
library(ISLR)
## Warning: package 'ISLR' was built under R version 4.2.2
#tinytex::install_tinytex()
#install.packages("pdflatex")
\#library(pdflatex)
set.seed(6)
splitPerc = .70
#irrisLenWid = irris %>% filter(Species == "versicolor" | Species == "virginica")
#summary(irisVersVirg)
#irisVersVirg = droplevels(irisVersVirg, exclude = "setosa")
#summary(irisVersVirg)
trainIndices = sample(1:dim(iris)[1],round(splitPerc * dim(iris)[1]))
train = iris[trainIndices,]
test = iris[-trainIndices,]
iris %>% ggplot(aes(x = Sepal.Length,Sepal.Width,color = Species)) + geom_point()
```



```
##
                classifications
##
                 setosa versicolor virginica
##
     setosa
                     13
                                  0
                                 12
                                            4
##
     versicolor
                      0
                      0
                                  5
                                            11
##
     virginica
```

confusionMatrix(table(test\$Species,classifications))

```
## Confusion Matrix and Statistics
##
               classifications
##
##
                setosa versicolor virginica
##
     setosa
                     13
                                 0
                      0
                                12
                                            4
##
     versicolor
                      0
                                           11
##
     virginica
                                 5
##
## Overall Statistics
##
```

```
##
                  Accuracy: 0.8
                    95% CI: (0.654, 0.9042)
##
       No Information Rate: 0.3778
##
##
       P-Value [Acc > NIR] : 8.735e-09
##
##
                     Kappa: 0.6987
##
   Mcnemar's Test P-Value : NA
##
##
## Statistics by Class:
##
##
                        Class: setosa Class: versicolor Class: virginica
## Sensitivity
                               1.0000
                                                  0.7059
                                                                   0.7333
## Specificity
                               1.0000
                                                  0.8571
                                                                   0.8333
## Pos Pred Value
                               1.0000
                                                  0.7500
                                                                   0.6875
## Neg Pred Value
                               1.0000
                                                  0.8276
                                                                   0.8621
## Prevalence
                                                  0.3778
                                                                   0.3333
                               0.2889
## Detection Rate
                               0.2889
                                                  0.2667
                                                                   0.2444
## Detection Prevalence
                               0.2889
                                                  0.3556
                                                                   0.3556
## Balanced Accuracy
                               1.0000
                                                  0.7815
                                                                   0.7833
accs = data.frame(accuracy = numeric(30), k = numeric(30))
trainIndices = sample(1:dim(iris)[1],round(splitPerc *
dim(iris)[1]))
train = iris[trainIndices,]
test = iris[-trainIndices,]
nrow(train)
## [1] 105
for(i in 1:30)
classifications = knn(train[,c(1,2)],test[,c(1,2)],train$Species, prob = TRUE, k = i)
table(test$Species,classifications)
CM = confusionMatrix(table(test$Species,classifications))
accs$accuracy[i] = CM$overall[1]
accs$k[i] = i
plot(accs$k,accs$accuracy, type = "1")
```


It would appear that k=15 is the correct k value. Looking back to the Part 1 example, the number of rows in the training set is 105. The square root of 105 is 10.24. Not exactly k=15. Perhaps the square root is useful when we have really large data sets. Comments are for the code above. I'll now change k to 15 and rerun the entire chunk. I can't help but think I'm missing something as the question says to use Sepal.Length and Sepal.Width as predictors. In the classifications definition above, I'm pulling those two columns out and comparing it against train\$Species. I'm going to revert back to k=5 and rerun the model above and copy and past the code and run k=15 below.

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	1	5.1	3.5	1.4	0.2	setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	0.2	setosa
##	5	5.0	3.6	1.4	0.2	setosa
##	6	5.4	3.9	1.7	0.4	setosa
##	7	4.6	3.4	1.4	0.3	setosa
##	8	5.0	3.4	1.5	0.2	setosa
##	9	4.4	2.9	1.4	0.2	setosa
##	10	4.9	3.1	1.5	0.1	setosa
##	11	5.4	3.7	1.5	0.2	setosa
##	12	4.8	3.4	1.6	0.2	setosa
##	13	4.8	3.0	1.4	0.1	setosa
##	14	4.3	3.0	1.1	0.1	setosa
##	15	5.8	4.0	1.2	0.2	setosa
##	16	5.7	4.4	1.5	0.4	setosa

шш .	17	E /	2 0	1 2	0 1	
	17	5.4	3.9	1.3	0.4	setosa
	18	5.1	3.5	1.4	0.3	setosa
	19	5.7	3.8	1.7	0.3	setosa
	20	5.1	3.8	1.5	0.3	setosa
	21	5.4	3.4	1.7	0.2	setosa
## 2	22	5.1	3.7	1.5	0.4	setosa
## 2	23	4.6	3.6	1.0	0.2	setosa
## 2	24	5.1	3.3	1.7	0.5	setosa
## 2	25	4.8	3.4	1.9	0.2	setosa
## 2	26	5.0	3.0	1.6	0.2	setosa
## 2	27	5.0	3.4	1.6	0.4	setosa
## 2	28	5.2	3.5	1.5	0.2	setosa
## 2	29	5.2	3.4	1.4	0.2	setosa
	30	4.7	3.2	1.6	0.2	setosa
	31	4.8	3.1	1.6	0.2	setosa
	32	5.4	3.4	1.5	0.4	setosa
	33	5.2	4.1	1.5	0.1	setosa
	34	5.5	4.2	1.4	0.2	setosa
	35	4.9	3.1	1.5	0.2	setosa
	36	5.0	3.2	1.2	0.2	setosa
	37		3.5			
		5.5		1.3	0.2	setosa
	38	4.9	3.6	1.4	0.1	setosa
	39	4.4	3.0	1.3	0.2	setosa
	40	5.1	3.4	1.5	0.2	setosa
	41	5.0	3.5	1.3	0.3	setosa
	42	4.5	2.3	1.3	0.3	setosa
	43	4.4	3.2	1.3	0.2	setosa
	44	5.0	3.5	1.6	0.6	setosa
	45	5.1	3.8	1.9	0.4	setosa
	46	4.8	3.0	1.4	0.3	setosa
	47	5.1	3.8	1.6	0.2	setosa
## 4	48	4.6	3.2	1.4	0.2	setosa
## 4	49	5.3	3.7	1.5	0.2	setosa
## !	50	5.0	3.3	1.4	0.2	setosa
## !	51	7.0	3.2	4.7	1.4 ver	sicolor
## !	52	6.4	3.2	4.5	1.5 ver	rsicolor
## !	53	6.9	3.1	4.9	1.5 ver	sicolor
## !	54	5.5	2.3	4.0	1.3 ver	sicolor
## !	55	6.5	2.8	4.6	1.5 ver	sicolor
## !	56	5.7	2.8	4.5	1.3 ver	sicolor
## !	57	6.3	3.3	4.7	1.6 ver	sicolor
## !		4.9	2.4	3.3		sicolor
	59	6.6	2.9	4.6		sicolor
	60	5.2	2.7	3.9		sicolor
	61	5.0	2.0	3.5		sicolor
	62	5.9	3.0	4.2		sicolor
	63	6.0	2.2	4.0		sicolor
	64	6.1	2.9	4.7		sicolor
	65	5.6	2.9	3.6		sicolor
	66	6.7	3.1	4.4		sicolor
	67	5.6	3.0	4.4		sicolor
	68	5.8	2.7	4.5		sicolor
## (6.2	2.2	4.5		sicolor
## '	10	5.6	2.5	3.9	ı.ı ver	rsicolor

## 71	5.9	3.2	4.8	1.8 versicolor
## 72	6.1	2.8	4.0	1.3 versicolor
## 73	6.3	2.5	4.9	1.5 versicolor
## 74	6.1	2.8	4.7	1.2 versicolor
## 75	6.4	2.9	4.3	1.3 versicolor
## 76	6.6	3.0	4.4	1.4 versicolor
## 77	6.8	2.8	4.8	1.4 versicolor
## 78	6.7	3.0	5.0	1.7 versicolor
## 79	6.0	2.9	4.5	1.5 versicolor
## 80	5.7	2.6	3.5	1.0 versicolor
## 81	5.5	2.4	3.8	1.1 versicolor
## 82	5.5	2.4	3.7	1.0 versicolor
## 83	5.8	2.7	3.9	1.2 versicolor
## 84	6.0	2.7	5.1	1.6 versicolor
## 85	5.4	3.0	4.5	1.5 versicolor
## 86	6.0	3.4	4.5	1.6 versicolor
## 87	6.7	3.1	4.7	1.5 versicolor
## 88	6.3	2.3	4.4	1.3 versicolor
## 89	5.6	3.0	4.1	1.3 versicolor
## 90	5.5	2.5	4.0	1.3 versicolor
## 91	5.5	2.6	4.4	1.2 versicolor
## 92	6.1	3.0	4.6	1.4 versicolor
## 93	5.8	2.6	4.0	1.2 versicolor
## 94	5.0	2.3	3.3	1.0 versicolor
## 95	5.6	2.7	4.2	1.3 versicolor
## 96	5.7	3.0	4.2	1.2 versicolor
## 97	5.7	2.9	4.2	1.3 versicolor
## 98	6.2	2.9	4.3	1.3 versicolor
## 99	5.1	2.5	3.0	1.1 versicolor
## 100	5.7	2.8	4.1	1.3 versicolor
## 101	6.3	3.3	6.0	2.5 virginica
## 102	5.8	2.7	5.1	1.9 virginica
## 103	7.1	3.0	5.9	2.1 virginica
## 104	6.3	2.9	5.6	1.8 virginica
## 105	6.5	3.0	5.8	2.2 virginica
## 106	7.6	3.0	6.6	2.1 virginica
## 107	4.9	2.5	4.5	1.7 virginica
## 108	7.3	2.9	6.3	1.8 virginica
## 109	6.7	2.5	5.8	1.8 virginica
## 110	7.2	3.6	6.1	2.5 virginica
## 111	6.5	3.2	5.1	2.0 virginica
## 112	6.4	2.7	5.3	1.9 virginica
## 113	6.8	3.0	5.5	2.1 virginica
## 114	5.7	2.5	5.0	2.0 virginica
## 115	5.8	2.8	5.1	2.4 virginica
## 116	6.4	3.2	5.3	2.3 virginica
## 117	6.5	3.0	5.5	1.8 virginica
## 118	7.7	3.8	6.7	2.2 virginica
## 119	7.7	2.6	6.9	2.3 virginica
## 120	6.0	2.2	5.0	1.5 virginica
## 121	6.9	3.2	5.7	2.3 virginica
## 121 ## 122	5.6	2.8	4.9	2.0 virginica
## 123	7.7	2.8	6.7	2.0 virginica
## 124	6.3	2.7	4.9	1.8 virginica
TT 147	0.0	4.1	Ŧ. J	1.0 ATTRITTE

```
## 125
               6.7
                           3.3
                                       5.7
                                                   2.1 virginica
## 126
               7.2
                           3.2
                                       6.0
                                                   1.8 virginica
## 127
               6.2
                           2.8
                                       4.8
                                                   1.8 virginica
## 128
               6.1
                           3.0
                                       4.9
                                                   1.8 virginica
## 129
               6.4
                           2.8
                                       5.6
                                                   2.1 virginica
## 130
               7.2
                           3.0
                                       5.8
                                                   1.6 virginica
## 131
               7.4
                           2.8
                                       6.1
                                                   1.9 virginica
## 132
               7.9
                                                   2.0 virginica
                           3.8
                                       6.4
## 133
               6.4
                           2.8
                                       5.6
                                                   2.2 virginica
## 134
               6.3
                           2.8
                                       5.1
                                                   1.5 virginica
## 135
               6.1
                           2.6
                                       5.6
                                                   1.4 virginica
## 136
               7.7
                           3.0
                                       6.1
                                                   2.3 virginica
## 137
               6.3
                           3.4
                                       5.6
                                                   2.4 virginica
## 138
               6.4
                           3.1
                                       5.5
                                                   1.8 virginica
## 139
               6.0
                           3.0
                                       4.8
                                                   1.8 virginica
## 140
               6.9
                           3.1
                                       5.4
                                                   2.1 virginica
## 141
               6.7
                           3.1
                                       5.6
                                                   2.4 virginica
## 142
               6.9
                           3.1
                                       5.1
                                                   2.3 virginica
## 143
               5.8
                           2.7
                                       5.1
                                                   1.9 virginica
## 144
                           3.2
                                       5.9
                                                   2.3 virginica
               6.8
## 145
               6.7
                           3.3
                                       5.7
                                                   2.5 virginica
## 146
               6.7
                           3.0
                                       5.2
                                                   2.3 virginica
## 147
               6.3
                           2.5
                                       5.0
                                                   1.9 virginica
## 148
               6.5
                           3.0
                                       5.2
                                                   2.0 virginica
## 149
               6.2
                           3.4
                                       5.4
                                                   2.3 virginica
## 150
               5.9
                           3.0
                                       5.1
                                                   1.8 virginica
```

```
set.seed(6)
splitPerc = .70
#irisLenWid = iris %>% filter(Species == "versicolor" | Species == "virginica")
#summary(irisVersVirg)
#irisVersVirg = droplevels(irisVersVirg, exclude = "setosa")
#summary(irisVersVirg)
trainIndices = sample(1:dim(iris)[1],round(splitPerc * dim(iris)[1]))
train = iris[trainIndices,]
test = iris[-trainIndices,]
iris %>% ggplot(aes(x = Sepal.Length,Sepal.Width,color = Species)) + geom_point()
```



```
##
                classifications
##
                 setosa versicolor virginica
##
     setosa
                     13
                                  0
                                 10
                                             5
##
     versicolor
                      1
                      0
                                            13
                                  3
##
     virginica
```

confusionMatrix(table(test\$Species,classifications))

```
## Confusion Matrix and Statistics
##
               classifications
##
##
                 setosa versicolor virginica
##
     setosa
                     13
                                 0
                      1
                                            5
##
     versicolor
                                10
                      0
                                           13
##
     virginica
                                 3
##
## Overall Statistics
##
```

```
##
                  Accuracy: 0.8
                    95% CI: (0.654, 0.9042)
##
##
       No Information Rate: 0.4
##
       P-Value [Acc > NIR] : 5.01e-08
##
##
                     Kappa: 0.6993
##
   Mcnemar's Test P-Value : NA
##
##
## Statistics by Class:
##
##
                        Class: setosa Class: versicolor Class: virginica
## Sensitivity
                                                  0.7692
                               0.9286
                                                                   0.7222
## Specificity
                               1.0000
                                                  0.8125
                                                                   0.8889
## Pos Pred Value
                               1.0000
                                                  0.6250
                                                                   0.8125
## Neg Pred Value
                               0.9688
                                                  0.8966
                                                                   0.8276
## Prevalence
                                                  0.2889
                                                                   0.4000
                               0.3111
## Detection Rate
                               0.2889
                                                  0.2222
                                                                   0.2889
## Detection Prevalence
                               0.2889
                                                  0.3556
                                                                   0.3556
## Balanced Accuracy
                               0.9643
                                                  0.7909
                                                                   0.8056
accs = data.frame(accuracy = numeric(30), k = numeric(30))
trainIndices = sample(1:dim(iris)[1],round(splitPerc *
dim(iris)[1]))
train = iris[trainIndices,]
test = iris[-trainIndices,]
nrow(train)
## [1] 105
for(i in 1:30)
classifications = knn(train[,c(1,2)],test[,c(1,2)],train$Species, prob = TRUE, k = i)
table(test$Species,classifications)
CM = confusionMatrix(table(test$Species,classifications))
accs$accuracy[i] = CM$overall[1]
accs$k[i] = i
plot(accs$k,accs$accuracy, type = "1")
```


Part 2 - Question a.1 - What do you feet is the best value of k?

When I ran the model at k=5, the graph showed a clear peak at k=15. When I run the same graph with k=15, there are multiple peaks. Candidly, I don't know what to make of that. It leaves questions unanswered.

BONUS QUESTION: Repeat the above analysis with a leave one out cross-validation

This would be utilizing the knn.cv() function. Let's see what we can make of this.

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	1	5.1	3.5	1.4	0.2	setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	0.2	setosa
##	5	5.0	3.6	1.4	0.2	setosa
##	6	5.4	3.9	1.7	0.4	setosa
##	7	4.6	3.4	1.4	0.3	setosa
##	8	5.0	3.4	1.5	0.2	setosa
##	9	4.4	2.9	1.4	0.2	setosa
##	10	4.9	3.1	1.5	0.1	setosa
##	11	5.4	3.7	1.5	0.2	setosa
##	12	4.8	3.4	1.6	0.2	setosa
##	13	4.8	3.0	1.4	0.1	setosa

##	14	4.3	3.0	1.1	0.1	setosa
##	15	5.8	4.0	1.2	0.2	setosa
##	16	5.7	4.4	1.5	0.4	setosa
##	17	5.4	3.9	1.3	0.4	setosa
##	18	5.1	3.5	1.4	0.3	setosa
##	19	5.7	3.8	1.7	0.3	setosa
##	20	5.1	3.8	1.5	0.3	setosa
##	21	5.4	3.4	1.7	0.2	setosa
##	22	5.1	3.7	1.5	0.4	setosa
##	23	4.6	3.6	1.0	0.2	setosa
##	24	5.1	3.3	1.7	0.5	setosa
##	25	4.8	3.4	1.9	0.2	setosa
##	26	5.0	3.0	1.6	0.2	setosa
##	27	5.0	3.4	1.6	0.4	setosa
##	28	5.2	3.5	1.5	0.2	setosa
##	29	5.2	3.4	1.4	0.2	setosa
##	30	4.7	3.2	1.6	0.2	setosa
##	31	4.8	3.1	1.6	0.2	setosa
##	32	5.4	3.4	1.5	0.4	setosa
##	33	5.2	4.1	1.5	0.1	setosa
##	34	5.5	4.2	1.4	0.2	setosa
##	35	4.9	3.1	1.5	0.2	setosa
##	36	5.0	3.2	1.2	0.2	setosa
##	37	5.5	3.5	1.3	0.2	setosa
##	38	4.9	3.6	1.4	0.1	setosa
##	39	4.4	3.0	1.3	0.2	setosa
##	40	5.1	3.4	1.5	0.2	setosa
##	41	5.0	3.5	1.3	0.3	setosa
##	42	4.5	2.3	1.3	0.3	setosa
##	43	4.4	3.2	1.3	0.2	setosa
##	44	5.0	3.5	1.6	0.6	setosa
##	45	5.1	3.8	1.9	0.4	setosa
##	46	4.8	3.0	1.4	0.3	setosa
##	47	5.1	3.8	1.6	0.2	setosa
##	48	4.6	3.2	1.4	0.2	setosa
##	49	5.3	3.7	1.5	0.2	setosa
##		5.0	3.3	1.4	0.2	setosa
##		7.0	3.2	4.7	1.4 vers	
##		6.4	3.2	4.5	1.5 vers	
##		6.9	3.1	4.9	1.5 vers	
	54	5.5	2.3	4.0	1.3 vers	
	55	6.5	2.8	4.6	1.5 vers	
	56	5.7	2.8	4.5	1.3 vers	
	57	6.3	3.3	4.7	1.6 vers	
	58	4.9	2.4	3.3	1.0 vers	
	59	6.6	2.9	4.6	1.3 vers	
##	60	5.2	2.7	3.9	1.4 vers	
##	61	5.0	2.0	3.5	1.4 vers	
	62	5.9	3.0	4.2	1.5 vers	
	63	6.0	2.2	4.2	1.0 vers	
	64		2.9	4.0	1.0 vers	
##		6.1 5.6	2.9	3.6	1.4 vers	
##		6.7			1.3 vers	
			3.1	4.4		
##	O1	5.6	3.0	4.5	1.5 vers	PICOTOL

## 68	5.8	2.7	4.1	1.0 versicolor
## 69	6.2	2.2	4.5	1.5 versicolor
## 70	5.6	2.5	3.9	1.1 versicolor
## 71	5.9	3.2	4.8	1.8 versicolor
## 72	6.1	2.8	4.0	1.3 versicolor
## 73	6.3	2.5	4.9	1.5 versicolor
## 74	6.1	2.8	4.7	1.2 versicolor
## 75	6.4	2.9	4.3	1.3 versicolor
## 76	6.6	3.0	4.4	1.4 versicolor
## 77	6.8	2.8	4.8	1.4 versicolor
## 78	6.7	3.0	5.0	1.7 versicolor
## 79	6.0	2.9		1.7 versicolor
			4.5	
## 80	5.7	2.6	3.5	1.0 versicolor
## 81	5.5	2.4	3.8	1.1 versicolor
## 82	5.5	2.4	3.7	1.0 versicolor
## 83	5.8	2.7	3.9	1.2 versicolor
## 84	6.0	2.7	5.1	1.6 versicolor
## 85	5.4	3.0	4.5	1.5 versicolor
## 86	6.0	3.4	4.5	1.6 versicolor
## 87	6.7	3.1	4.7	1.5 versicolor
## 88	6.3	2.3	4.4	1.3 versicolor
## 89	5.6	3.0	4.1	1.3 versicolor
## 90	5.5	2.5	4.0	1.3 versicolor
## 91	5.5	2.6	4.4	1.2 versicolor
## 92	6.1	3.0	4.6	1.4 versicolor
## 93	5.8	2.6	4.0	1.2 versicolor
## 94	5.0	2.3	3.3	1.0 versicolor
## 95	5.6	2.7	4.2	1.3 versicolor
## 96	5.7	3.0	4.2	1.2 versicolor
## 97	5.7	2.9	4.2	1.3 versicolor
## 98	6.2	2.9	4.3	1.3 versicolor
## 99	5.1	2.5	3.0	1.1 versicolor
## 100	5.7	2.8	4.1	1.3 versicolor
## 101	6.3	3.3	6.0	2.5 virginica
## 102	5.8	2.7	5.1	1.9 virginica
## 103	7.1	3.0	5.9	2.1 virginica
## 104	6.3	2.9	5.6	1.8 virginica
## 105	6.5	3.0	5.8	2.2 virginica
## 106	7.6	3.0	6.6	2.1 virginica
## 107	4.9	2.5	4.5	1.7 virginica
## 108	7.3	2.9	6.3	1.8 virginica
## 109	6.7	2.5	5.8	1.8 virginica
## 110	7.2	3.6	6.1	2.5 virginica
## 111	6.5	3.2	5.1	2.0 virginica
## 112	6.4	2.7	5.3	1.9 virginica
## 113	6.8	3.0	5.5	2.1 virginica
## 114	5.7	2.5	5.0	2.0 virginica
## 115	5.8	2.8	5.1	2.4 virginica
## 116	6.4	3.2	5.3	2.3 virginica
## 117	6.5	3.0	5.5	1.8 virginica
## 117 ## 118	7.7	3.8	6.7	2.2 virginica
## 119	7.7	2.6	6.9	•
				_
	6.0	2.2	5.0	1.5 virginica
## 121	6.9	3.2	5.7	2.3 virginica

```
## 122
               5.6
                           2.8
                                        4.9
                                                    2.0 virginica
## 123
               7.7
                           2.8
                                        6.7
                                                    2.0 virginica
## 124
                           2.7
                                                    1.8 virginica
               6.3
                                        4.9
## 125
               6.7
                           3.3
                                        5.7
                                                    2.1 virginica
## 126
               7.2
                           3.2
                                        6.0
                                                    1.8 virginica
## 127
               6.2
                           2.8
                                        4.8
                                                    1.8 virginica
## 128
               6.1
                           3.0
                                        4.9
                                                    1.8 virginica
## 129
                                                    2.1 virginica
               6.4
                           2.8
                                        5.6
## 130
               7.2
                           3.0
                                        5.8
                                                    1.6 virginica
## 131
               7.4
                           2.8
                                        6.1
                                                    1.9 virginica
## 132
               7.9
                           3.8
                                        6.4
                                                    2.0 virginica
## 133
               6.4
                           2.8
                                        5.6
                                                    2.2 virginica
## 134
               6.3
                           2.8
                                        5.1
                                                    1.5 virginica
## 135
               6.1
                           2.6
                                        5.6
                                                    1.4 virginica
## 136
               7.7
                           3.0
                                        6.1
                                                    2.3 virginica
## 137
               6.3
                           3.4
                                        5.6
                                                    2.4 virginica
## 138
               6.4
                           3.1
                                        5.5
                                                    1.8 virginica
## 139
               6.0
                           3.0
                                        4.8
                                                    1.8 virginica
## 140
               6.9
                           3.1
                                        5.4
                                                    2.1 virginica
## 141
               6.7
                           3.1
                                        5.6
                                                    2.4 virginica
## 142
               6.9
                           3.1
                                        5.1
                                                    2.3 virginica
## 143
               5.8
                           2.7
                                        5.1
                                                    1.9 virginica
## 144
                           3.2
                                                    2.3 virginica
               6.8
                                        5.9
## 145
               6.7
                           3.3
                                        5.7
                                                    2.5 virginica
## 146
               6.7
                           3.0
                                        5.2
                                                    2.3 virginica
## 147
               6.3
                           2.5
                                        5.0
                                                    1.9 virginica
## 148
               6.5
                           3.0
                                        5.2
                                                    2.0 virginica
## 149
               6.2
                           3.4
                                        5.4
                                                    2.3 virginica
## 150
               5.9
                           3.0
                                        5.1
                                                    1.8 virginica
```

```
set.seed(6)
splitPerc = .70
#irisLenWid = iris %>% filter(Species == "versicolor" | Species == "virginica")
#summary(irisVersVirg)
#irisVersVirg = droplevels(irisVersVirg, exclude = "setosa")
#summary(irisVersVirg)
trainIndices = sample(1:dim(iris)[1],round(splitPerc * dim(iris)[1]))
train = iris[trainIndices,]
test = iris[-trainIndices,]
iris %>% ggplot(aes(x = Sepal.Length,Sepal.Width,color = Species)) + geom_point()
```



```
#View(train$Species)
#View(train[,c(1,2,5)])
#nrow(train[,c(1,2,5)])
#View(train[c(1:2,5)])
\#nrow(train[c(1:2,5)])
#View(Species)
\# k = 5
classifications = knn.cv(iris[,c(1,2)],iris$Species, k = 15)
table(classifications, iris$Species)
##
##
  classifications setosa versicolor virginica
##
        setosa
                        50
                                    0
                                              0
##
        versicolor
                         0
                                   31
                                              12
##
        virginica
                         0
                                   19
                                              38
```

```
## Confusion Matrix and Statistics
##
##
## classifications setosa versicolor virginica
## setosa 50 0 0
## versicolor 0 31 12
```

 ${\tt confusionMatrix(table(classifications, iris\$Species))}$

```
##
        virginica
                           19
                                             38
##
## Overall Statistics
##
##
                  Accuracy : 0.7933
##
                    95% CI: (0.7197, 0.8551)
##
       No Information Rate: 0.3333
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa : 0.69
##
##
   Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
##
                        Class: setosa Class: versicolor Class: virginica
## Sensitivity
                                1.0000
                                                  0.6200
                                                                   0.7600
                                                  0.8800
                                                                   0.8100
## Specificity
                               1.0000
## Pos Pred Value
                               1.0000
                                                  0.7209
                                                                   0.6667
## Neg Pred Value
                               1.0000
                                                  0.8224
                                                                   0.8710
## Prevalence
                               0.3333
                                                  0.3333
                                                                   0.3333
## Detection Rate
                               0.3333
                                                  0.2067
                                                                   0.2533
## Detection Prevalence
                               0.3333
                                                  0.2867
                                                                   0.3800
## Balanced Accuracy
                               1.0000
                                                  0.7500
                                                                   0.7850
accs = data.frame(accuracy = numeric(30), k = numeric(30))
#trainIndices = sample(1:dim(iris)[1],round(splitPerc *
#dim(iris)[1]))
#train = iris[trainIndices,]
#test = iris[-trainIndices,]
nrow(train)
## [1] 105
for(i in 1:30)
classifications = knn.cv(iris[,c(1,2)],iris$Species, k = i)
table(classifications, iris$Species)
CM = confusionMatrix(table(classifications, iris$Species))
accs$accuracy[i] = CM$overall[1]
accs$k[i] = i
}
plot(accs$k,accs$accuracy, type = "1")
```


To utilize the "leave one out", there was a reasonable amount of the example code that was excluded. However, through experimentation, I was able to get it to work. It appears that k=10 is the correct numerical variable. But, is that really useful? In the leave one out methodology, one value is compared against all the rest. I'm not sure k is a valuable number in this method.