FURTHER MATHEMATICS HIGHER LEVEL

Wednesday 22 May 2019

Name in block letters

45 minutes

7 6 6 8 1 7 7 1 1 10 0

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Calculators are not permitted in this examination.
- There are 4 questions. Try to answer them all.

• Unless otherwise stated in the question, all numerical answers must be given exactly or correct

to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working or explanations. Where an answer is incorrect, some marks may be given for a correct method provided this is shown by written working. You are therefore advised to show all working. Working may be continued below the lines, if necessary.

1. The line ℓ is the tangent to the parabola $y^2 = 4ax$ at the point $P(at^2, 2at)$.	
(a) Use parametric differentiation to find the gradient of ℓ .	
(b) Show that the equation of ℓ is $x - yt + at^2 = 0$.	
(a) $\frac{dy}{dt} = 2a$, $\frac{dx}{dt} = 2at$ $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2a}{2at} = \frac{1}{t}$	
$\frac{1}{dx} = \frac{dx}{dt} = \frac{2d}{dt} = \frac{1}{t}$	
$(b) y-2at = \frac{1}{t}(\chi-at^2)$	
$yt-2\alpha t^2 = x-\alpha t^2$ $x-yt+\alpha t^2=0$	
	• • • •

**************************************	,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
20.00.00.00.00.00.00.00.00.00.00.00.00.0	

0	The line ℓ is the tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point $P(x_1, y_1)$.
2.	The line ℓ is the tangent to the ellipse $\frac{1}{a^2} + \frac{1}{b^2} = 1$ at the point $P(x_1, y_1)$.
	(a) Use implicit differentiation to find the gradient of ℓ .
	(b) Show that the equation of ℓ is $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$.
	(a) $b^2 \chi^2 + a^2 y^2 = a^2 b^2$
	implicit differentiation: $2b^2x + 2a^2y \cdot y' = 0$, $y' = -\frac{2b^2x}{2a^2y} = -\frac{b^2x}{a^2y}$
	$y' \text{ at } P \text{ is } -\frac{b^2 x_1}{a^2 y_1}$
	$(b) \qquad y - y_1 = -\frac{b^2 x_1}{a^2 y_1} (x - x_1)$
	$(3.4)^{2} - a^{2}y^{2} = -b^{2}x_{1}x + b^{2}x_{1}^{2}$
	$- (\alpha^2 y y_1 + b^2 x x_1 = \alpha^2 y_1^2 + b^2 x_1^2$
	= Pis on ellipse,
	$\frac{1}{x_1^2} + \frac{y_1^2}{h^2} = 1$
	$\therefore \chi_1^2 \cdot b^2 + y_1^2 \cdot \alpha^2 = \alpha^2 b^2$
	-: (: a²yyı+b²xxı=a²b²
	$\frac{1}{2} \left(\frac{1}{2} \frac{\alpha_2}{xx_1} + \frac{b_2}{yy_1} = 1 \right)$
	✓
	,
)
	101000000000000000000000000000000000000

- 3. The hyperbola \mathcal{H} has equation xy = 2.
 - (a) Show that if \mathcal{H} is rotated clockwise 45° about the origin its equation becomes $x^2 y^2 = 4$.
 - (b) Determine the coordinates of the foci of \mathcal{H} .
 - (c) Determine the equations of the directrices of \mathcal{H} .

(a) f	e si f	point o	n Xy	⊃l ~	ith coa	rdha	te (15t, 15t	·)	 	 	
		dito is										
		1, 1)			•						_	
		<u>_</u> +, +								 	 	
	(Ma) 2 =	1 + +	t2	- ₂								

 $-1 - x^2 - y^2 = 4$

(b) $\ln x^2 - y^2 = 4, \frac{x^2}{2^2} - \frac{y^2}{2^2} = 1$

-2 = 2, $b^2 = -a^2(1-e^2) = -4(1-e^2) = 4$

 $-1.1-e^{2}=-1$, $e^{2}=2$

 $c' = \sqrt{2}$

 $-1 \left(\frac{1}{2} x^2 - y^2 - 4 \right) = \left(\frac{1}{2} \left(\frac{1}{2} x \right) \right) \left(-\frac{1}{2} x \right) = \left(\frac{1}{2} x \right) =$

: before rotation, F(2,2), (-2,-2)

(c) $\ln x^{1} - y^{2} = 4$, $\alpha = 2$, $e = \sqrt{L}$ $X = \frac{1}{L^{2}} = \sqrt{L}$. $L = \frac{1}{L^{2}} = \sqrt{L}$

: before rotation, directrices: 1: y=-x+2, y=-x-2.

- 4. The parabola $y^2 = 4ax$ and the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ meet in the first quadrant at the point P. The tangents ℓ_1 and ℓ_2 to the parabola and ellipse respectively at P are perpendicular.
 - (a) Show that $b^2 = 2a^2$.
 - (b) If ℓ_1 and ℓ_2 have x-intercepts M and N respectively, show that $MN = 2\sqrt{2}a$.

A ST TO STATE OF THE STATE OF T	
(a) P(ati, zat)	
$\frac{a^2t^4}{a^2} + \frac{4a^2t^2}{b^2} = 1$	
-1-b2+4+4a2+2=b2 ()	
m parobola Tp = + Mparobola Np = -t	
Mellipse $Tp = -\frac{b^2}{a^2} \cdot \frac{\chi_p}{y_p} = -\frac{b^2}{a^2} \cdot \frac{at^2}{2at}$	
$-t = -\frac{b^2}{6^2} \cdot \frac{t}{2}$	
$2a^2=b^2$,
(b) (1: X-y++a+2=0	- t + t2 >0
$\left(z: \frac{\alpha_{s}}{x_{x}} + \frac{\rho_{s}}{2} = 1\right) = \frac{\alpha_{s}}{x_{x}} + \frac{\alpha_{s}}{2} = 1$	- + + + = 2 Tz
li: when y=0, lz: y=0,	Back to D
$\chi = -\alpha t^2$, $\chi = \frac{4}{t^2}$	$MN = \left \frac{a}{t^2} + at^2 \right $
$MN = \left \frac{\alpha}{t^2} - (-\alpha t^2) \right = \left \frac{\alpha}{t^2} + \alpha t^2 \right $	= (2/2 a)
x^2 y^2	24

$$MN = | \frac{1}{t^{2}} - (-\alpha t^{2})| = | \frac{1}{t^{2}} + \alpha t^{2} | \frac{1}{2}$$
insert $| \alpha t^{2}, 2\alpha t|$ into $\frac{x^{2}}{\alpha^{2}} + \frac{y^{2}}{2\alpha^{2}} = 1$, if $\alpha > 0$

$$2\alpha^{2}t^{4} + 4\alpha^{2}t^{2} - 2\alpha^{2} = 0$$

$$| t^{2} + 2 - \frac{1}{t^{2}} = 0$$

$$| t^{2} - \frac{1}{t^{2}} = -2$$