Informacje ogólne

Uniwersalny miernik elektryczny przeznaczony jest do pomiarów natężenia i napięcia prądu stałego, napięcia prądu zmiennego, rezystancji (oporności) oraz do testów: diod, tranzystorów oraz ciągłości obwodu. Urządzenie wyposażone jest w wyświetlacz LCD o rozmiarze 3,5 cyfry. Posiada pełną ochronę przed przeciążeniem oraz wskaźnik przeciążenia napięcia baterii. Idealny do użycia w terenie, laboratoriach, warsztatach oraz w warunkach domowych. Miernik posiada 3 gniazda pomiarowe, w tym 2 zabezpieczone przed przekroczeniem zakresów pomiarowych. Podczas pomiaru czarny przewód należy podłączyć do gniazda COM, a czerwony przewód do gniazda VΩmA lub mA (zabezpieczone) lub 20A (niezabezpieczone). Wielkość mierzona czerwonym przewodem zależy od wartości wybranej przełącznikiem funkcji.

NALEŻY DOKŁADNIE ZAPOZNAĆ SIĘ Z INSTRUKCJĄ OBSŁUGI PRZED ROZPOCZĘCIEM UŻYTKOWANIA URZĄDZENIA

Niestosowanie się do zaleceń zawartych w instrukcji obsługi może spowodować uszkodzenie urządzenia oraz doprowadzić do zagrożenia zdrowia i życia użytkownika.

Wskazówki dotyczące bezpieczeństwa

- Przed rozpoczęciem użytkowania urządzenia należy dokładnie zapoznać się z instrukcją obsługi oraz warunkami bezpiecznego użytkowania.
 Pozwoli to uniknąć możliwego porażenia prądem elektrycznym, utraty zdrowia lub życia, a także zapobiegnie uszkodzeniu urządzenia.
- Przed rozpoczęciem pomiarów należy zwrócić uwagę, czy obudowa urządzenia lub przewody pomiarowe nie są uszkodzone. W przypadku
 jakichkolwiek uszkodzeń urządzenia lub przewodów nie należy ich używać, gdyż może to grozić porażeniem prądem.
- Nie wolno używać urządzenia gdy izolacja wokół sond i przewodów jest uszkodzona.
- Do pomiarów należy używać dostarczonych w komplecie przewodów pomiarowych. W przypadku uszkodzenia przewodów pomiarowych należy wymienić je na przewody o takich samych parametrach technicznych.
- Urządzenie może być używane tylko do pomiarów zgodnych z instrukcją obsługi i specyfikacją techniczną urządzenia. W przeciwnym wypadku zabezpieczenia urządzenia mogą nie być wystarczające do bezpiecznego użytkowania.
- Nie wolno dotykać metalowych końcówek i gniazd pomiarowych podczas pomiaru. Palce należy trzymać powyżej oston izolacyjnych.
- Nie wolno wykonywać pomiarów mokrymi rękami lub w miejscach o dużej wilgotności powietrza.
- Nie należy przekraczać wartości granicznych wielkości elektrycznych podanych dla każdego zakresu pomiarowego. Gdy nie jest znana skala mierzonej wielkości elektrycznej należy do pomiaru wybrać najwyższy zakres.
- Nie należy umieszczać elementów elektronicznych w gniazdach pomiarowych urządzenia podczas pomiaru napięcia przy pomocy sond pomiarowych.
- Przed testem tranzystora należy upewnić się, że sondy pomiarowe zostały odłączone od innego mierzonego obwodu.
- Przed pomiarem rezystancji, ciągłości obwodu, pojemności kondesatorów należy roztadować pojemności i odłączyć wszystkie źródła zasilania.
- Należy zachować szczególną ostrożność przy pomiarach powyżej DC 60 V Tub AC 30 V rms.
- Przełącznik zakresów funkcji powinien zostać ustawiony w odpowiedniej pozycji przed przystąpieniem do pomiarów. Zmiana pozycji przełącznika w trakcie pomiaru może spowodować uszkodzenie urządzenia.
- Sondy pomiarowe należy wyjmować z gniazd pomiarowych przy każdej zmianie mierzonych parametrów.
- Nie używać ani nie przechowywać urządzenia w warunkach wysokiej wilgotności i temperatury powietrza, w silnym polu elektromagnetycznym
 oraz w otoczeniu wybuchowym lub łatwopalnym. Takie warunki mogą wpływać na niewłaściwe wyniki pomiarów i grozić porażeniem prądem
 elektrycznym.
- Nie należy używać urządzenia gdy na wyświetlaczu pojawia się symbol wyczerpanej baterii. Niski poziom baterii może powodować błędne wskazania pomiarów.
- Przed wymianą baterii w urządzeniu należy upewnić się, że jest ono wyłączone.
- W sytuacji nie używania urządzenia przez dłuższy czas należy wyjąć z niego baterię, aby uniknąć rozlania elektrolitu.
- Urządzenie należy użytkować i przechowywać w miejscu niedostępnym dla dzieci.
- Urządzenie przeznaczone jest do użytkowania wewnątrz pomieszczeń, w temperaturze pokojowej.
- Nie należy używać urządzenia bezpośrednio po przeniesieniu go z pomieszczenia o wysokiej wilgotności powietrza, niskiej lub wysokiej temperaturze.
- Miernika nie wolno używać do prowadzenia pomiarów określonych przez CAT III i CAT IV.

Należy zapoznać się z lokalnymi zasadami zbiórki i segregacji sprzętu elektrycznego i elektronicznego. Należy przestrzegać przepisów i nie wyrzucać zużytych produktów elektronicznych wraz z normalnymi odpadami gospodarstwa domowego. Prawidlowe składowanie zużytych produktów pomaga ograniczyć ich szkodliwy wpływ na środowisko naturalne i zdrowie ludzi.

DT9502A str. 1

Międzynarodowe symbole elektryczne

Prąd przemienny (AC)
Prad stały (DC)

Uziemienie

Podwójna/wzmocniona izolacja

Bezpiecznik

Ryzyko porażenia prądem

Ostrzeżenie

Specyfikacja techniczna

Dokładność pomiarów dla poszczególnych wartości pomiarowych podana jest dla okresu 1 roku po kalibracji oraz dla temperatury pracy 23° C \pm 5° C i dla wilgotności powietrza 75%.

Dokładność: \pm % wartości wskazania \pm liczba cyfr najmniej znaczących.

Wyświetlacz LCD 3,5 cyfry Ilość odczytów: 2 odczyty/sekundę

Warunki pracy: od 0° do 40° C, wilgotność powietrza < 80%

mm

Warunki przechowywania: od -10° C do $+50^{\circ}$ C, wilgotność powietrza <85%

Zasilanie: Bezpiecznik: Wymiary: bateria DC 9 V== F 500 mA / 250 V

190 x 90 x 33

Waga: ok. 310 g

Opis

- PRZEŁĄCZNIK ZAKRESÓW FUNKCJI: przełącznik używany jest do wybierania funkcji oraz zakresów pomiarów.
- 2. WYŚWIETLACZ LCD: 3.5 cyfry
- BLOKADA WYŚWIETLACZA
- 4. Wskaźnik wyczerpanej baterii
- WŁĄCZNIK ON/OFF
- 6. HOLD funkcja zapamiętywania ostatniego pomiaru
- 7. GNIAZDO NPN / PNP: gniazdo pomiarowe tranzystorów
- GNIAZDO 20A: gniazdo pomiarowe dla zakresu 20A (niezabezpieczone), do podłączania czerwonego przewodu "+"
- GNIAZDO VΩmA: gniazdo pomiarowe (zabezpieczone): pomiar napięcia, oporu elektrycznego i natężenia (oprócz 20A), do podłączania czerwonego przewodu"+".
- 10. GNIAZDO COM: gniazdo pomiarowe, do podłączenia czarnego przewodu "-".
- Gniazdo mA: gniazdo pomiarowe (zabezpieczone) do podłączania czerwonego przewodu "+": pomiar natężenia prądu poniżej 200 mA

Kategoria bezpieczeństwa

CAT I - kategoria pomiarowa CAT I określa wymagania bezpieczeństwa dla pomiarów w urządzeniach nie podłączonych bezpośrednio do instalacji niskiego napięcia, takich jak baterie, akumulatory, latarki.

CAT II - kategoria pomiarowa CAT II określa wymagania bezpieczeństwa dla pomiarów przeprowadzanych w urządzeniach bezpośrednio podłączonych do instalacji niskiego napięcia, takich jak urządzenia domowe, biurowe lub stanowiące wyposażenie warsztatów.

Miernika nie wolno używać do prowadzenia pomiarów określonych przez CAT III i CAT IV.

DT9502A str. I

Pomiar napięcia AC / DC

- 1. Ustawić przełącznik zakresów na pozycję V== lub V ~. Jeżeli nie jest znane napięcie w urządzeniu, które ma być mierzone, należy ustawić pokrętło na najwyższy zakres V== lub V ~, a następnie zmniejszać go dopóki nie zostanie uzyskana odpowiednia rozdzielczość.
- 2. Podłączyć czerwony przewód testowy do gniazda $V\Omega$ mA, a czarny przewód do gniazda COM.
- 3. Przyłożyć przewody pomiarowe do mierzonego obwodu lub urządzenia.
- 4. Odczytać wartość napięcia na wyświetlaczu.
- 5. Jeżeli na wyświetlaczu pojawia się "1", należy wybrać większy zakres pomiaru.

Nigdy nie należy wykonywać pomiaru prądu, jeżeli napięcie otwartego obwodu do ziemi przekracza DC 1000V lub AC 750V.

	Zakres DC	Rozdzielczość	Dokładność	Zabezpieczenie przeciążeniowe
ſ	200mV	0.1mV	±0.5%±3cyfry	
	2V	1mV		
	20V	10mV	±0.8%±5cyfry	1000V DC / 750V AC
ſ	200V	100mV		
	1000V	1V	±1.0%±5cyfry	

Zakres AC	Rozdzielczość	Dokładność	Zabezpieczenie przeciążeniowe	
200mV	0.1mV	±1.2%±5cyfr	1000V DC	
2V	1mV	±1.0%±5cyfr	750V AC	
20V	10mV			
200V	100mV		Częstotliwość:	
750V	1mV	±1.2%±5cyfr	40-400 Hz	

Pomiar natężenia AC / DC

- 1. Ustawić przełącznik zakresów na wybraną pozycję A≕lub A~.
- Podłączyć czerwony przewód testowy do gniazda mA (przy pomiarze mniejszym niż 200mA, przy pomiarze pomiędzy 200mA a 20A czerwony
 przewód testowy podłączyć do gniazda 20A)), a czarny przewód do gniazda COM. Jeżeli nie jest znane natężenie prądu w urządzeniu, które ma być
 mierzone, należy ustawić pokrętło na najwyższy zakres A= lub A~, a następnie zmniejszać go dopóki nie zostanie uzyskana odpowiednia
 rozdzielczość.
- 3. Otworzyć obwód, w którym ma być zmierzone nateżenie prądu i przyłożyć przewody pomiarowe do mierzonego obwodu.
- 4. Odczytać wartość natężenia prądu na wyświetlaczu.
- 5. Jeżeli na wyświetlaczu pojawia się "1", należy wybrać wiekszy zakres pomiaru.

Zakres DC	Rozdzielczość	Dokładność	Zabezpieczenie przeciążeniowe	
2mA	1μΑ	±1.8%±2cyfry	bezpiecznik	
20mA	10μΑ	1.0 %±26yiiy	F 500mA / 250V	
200mA	100μΑ	±2.0%±2cyfry	spadek napięcia	
20A	10mA	±2.0%±10cyfr	200 mV	

Zabezpieczenie Zakres AC Rozdzielczość Dokładność przeciążeniowe 2mA 1μΑ bezpiecznik ±2.0%±3cyfry 20mA 10μA F 500mA / 250V spadek napięcia 200mA 100μΑ $\pm 2.0\% \pm 5 \text{cyfr}$ 200 mV 20A 10mA ±2.5%±10cvfr

 Λ

Pomiar ciągły prądu w zakresie 20A nie może trwać więcej niż 10 s. Przerwa pomiędzy kolejnymi pomiarami powinna wynosić Częstotliwość: 40-400 Hz

Test tranzystorów hFE

- 1. Ustawić przełacznik zakresów na pozycje hFE.
- 2. Włożyć końcówki tranzystora do gniazda pomiarowego odpowiednio NPN lub PNP.
- 3. Odczytać przybliżoną wartość hFE (lb = 10μ A/Vce = 2.8V).

Test diody

- Ustawić przełącznik zakresów na pozycję →.
- 2. Podłączyć czerwony przewód testowy do gniazda $V\Omega$ mA, a czarny przewód do gniazda COM.
- 3. Przyłożyć czerwony przewód pomiarowy do anody, a czarny przewód przyłożyć do katody mierzonej diody.
- 4. Odczytać napięcie przewodzenia diody na wyświetlaczu. Przy odwróconych przewodach wyświetlone zostanie "1".

DT9502A str. 1

Pomiar rezystancji

- Ustawić przełacznik zakresów na wybrana pozycie Ω.
- 2. Podłączyć czerwony przewód testowy do gniazda VΩmA, a czarny przewód do gniazda COM.
- 3. Przyłożyć przewody pomiarowe do rezystora, który ma zostać zmierzony.
- 4. Odczytać wartość natężenia prądu na wyświetlaczu.

Zakres Ω	Rozdzielczość	Dokładność	Zabezpieczenie przeciążeniowe
200Ω	0.1Ω	±1.0%±10cyfr	250V DC/AC
2kΩ	1Ω		(max. 15 s)
20kΩ	10Ω	±1.0%±4cyfry	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
200kΩ	100Ω		maksymalne napięcie
$2 m \Omega$	1kΩ		obwodu otwartego:
$20 \text{m}\Omega$	10kΩ	±1.0%±10cyfr	0.5V (3 V dla zakresu
200mΩ	100kΩ	±[5%*(rdg-10) ±10cyfr]	$200 \mathrm{m}\Omega$)

Przed dokonaniem pomiaru oporności należy wyłączyć zasilanie obwodu oraz upewnić się, że wszystkie kondensatory zostały rozładowane.

Przy spadku oporu poniżej 30Ω zostanie włączony sygnał dźwiękowy.

Pomiar pojemności kondesatorów

- 1. Ustawić przełącznik zakresów na wybraną pozycję F.
- 2. Podłączyć czerwony przewód testowy do gniazda mA, a czarny przewód do gniazda COM.
- 3. Przyłożyć przewody pomiarowe do kondensatora, zwracając uwagę na polaryzację.
- 4. Odczytać wartość pojemności kondensatora na wyświetlaczu.

<u> </u>	Przed dokon
<u>: \</u>	należy upew

naniem pomiaru pojemności vnić się, że wszystkie kondensatory zostały rozładowane.

Przed zdjęciem tylnej pokrywy należy odłaczyć

wszystkie przewody pomiarowe od miernika

i mierzonego obwodu. Należy używać wyłącznie baterii

i bezpieczników zgodnych ze specyfikacją urządzenia.

Zakres F	Rozdzielczość	Dokładność	Zabezpieczenie przeciążeniowe	Zakres F	Rozdzielczość	Dokładność	Zabezpieczenie przeciążeniowe
20nF	10pF			20μF	10nF	±4%±5cvfr	bezpiecznik
200nF	100pF	±4%±5cyfr	bezpiecznik F 500mA / 250 V	200μF	100nF	_4/6_JUJII	F 500mA / 250 V
2μF	1nF		F 300IIIA / 230 V				

Test ciągłości obwodu

- Ustawić przełącznik zakresów na pozycję ●))).
- 2. Podłączyć czerwony przewód testowy do gniazda VΩmA, a czarny przewód do gniazda COM.
- 3. Przyłożyć przewody pomiarowe do mierzonego obwodu.
- 4. Ciagłość obwodu zostanie zasygnalizowana sygnałem dźwiekowym przy oporności $< 30 \,\Omega$.

Wymiana baterii i bezpiecznika

Baterie należy wymienić na nowa gdy na wyświetlaczu LCD pojawi się symbol wyczerpanej baterii. Niski poziom baterii może powodować błędne wskazania pomiarów.

- 1. Zdjać tylna pokrywe miernika.
- 2. Umieścić nowa baterię DC 9 V= zwracając uwagę na prawidłowa polaryzację.
- 3. Wymienić bezpiecznik (500 mA/250V).
- 4. Założyć i przykręcić tylną pokrywę miernika.

Wyprodukowano w ChRL dla DPMSolid Ltd ul. Harcerska 34, 64-600 Kowanówko tel./fax: +4861 29 65 470 www.dpm.eu = info@dpm.eu

