Àlgebra Lineal (grup tarda) Primer parcial. 4 d'abril de 2011

 $\mathbf{1.}(5/10)$ Sea $E = \mathbb{R}[X]_{\leq 3}$ el espacio vectorial de los polinomios de grado menor o igual que 3 en la indeterminada X con coeficientes en \mathbb{R} . Sea $F = \mathbb{R}(2,2)$ el espacio vectoril de matrices de tipo 2×2 con coeficientes en \mathbb{R} .

(a) Sean

$$E_1 = \{a + bX - bX^2 + cX^3 \in E; \ a, b, c \in \mathbb{R}\}\$$

y F_1 el subconjunto de F de las matrices de traza nula. Prueba que E_1 es un subespacio vectorial de E y que F_1 es un subespacio vectorial de F. Halla las dimensiones de E_1 y de F_1 , y también una base de cada uno de ellos.

(b) Sean $\lambda \in \mathbb{R}$, y $f: E \longrightarrow F$ la aplicación definida por

$$f(p) = \begin{pmatrix} p(0) & p'(0) \\ p(1) - \frac{\lambda}{6}p''(0) & p'(1) \end{pmatrix}.$$

Prueba que f es una aplicación lineal. Halla la matriz de f en las bases

$$\mathbf{u} = (1, X, X^2, X^3), \quad \mathbf{v} = (\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix})$$

de E y F respectivamente.

- (c) ¿Para qué valores de λ es f un isomorfismo? Halla el rango de f, las ecuaciones de la imagen de f y una base del núcleo de f, en función del parámetro λ .
- (d) Supongamos que $\lambda = 1$. Prueba que $E = E_1 \oplus \operatorname{Ker} f$. Prueba que $F = \operatorname{Im} f + F_1$.
- (e) Supongamos que $\lambda = 1$. Halla la dimensión y una base del espacio cociente $F_1/(\operatorname{Im} f \cap F_1)$. ¿Para qué valores de a se cumple $\left[\begin{pmatrix} 1 & a \\ 0 & -1 \end{pmatrix}\right] = 0$ en $F_1/(\operatorname{Im} f \cap F_1)$?

Solución. En E tomamos la base $\mathbf{u} = (1, X, X^2, X^3)$, por tanto las coordenadas del polinomio $p(X) = c_0 + c_1 X + c_2 X^2 + c_3 X^3$ son (c_0, c_1, c_2, c_3) . En F tomamos la base $\mathbf{v} = (\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix})$, y las coordenadas de $A = \begin{pmatrix} a_1^1 & a_2^1 \\ a_1^2 & a_2^2 \end{pmatrix}$ son $(a_1^1, a_2^1, a_1^2, a_2^2)$.

(a) La aplicacón $L_1: \mathbb{R}^3 \longrightarrow E$ definida por $L_1(a, b, c) = a + bX - bX^2 + cX^3$ es lineal, pues en coordenadas adecuadas está definida por la matriz

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Por tanto, su imagen E_1 es un subespacio vectorial de E. Además, puesto que el rango de la matriz anterior es 3, la dimensión de E_1 es 3, y una base está formada por los polinomios $p_1 = 1$, $p_2 = X - X^2$, $p_3 = X^3$.

La aplicación $L_2: E \longrightarrow \mathbb{R}$ definida por la traza, $L_2(A) = \operatorname{tr} A$, es lineal, y su núcleo F_1 es un subespacio vectorial de F. La matriz de la aplicación L_2 en bases adecuadas es

$$\begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix}$$

por tanto el rango de L_2 es 1 y la dimensión de su núcleo F_1 es 4-1=3. Para obtener una base observamos que las soluciones se expresan en la forma $a_1^1=-a_2^2$, con a_2^1,a_1^2,a_2^2 como variables libres. Una base está formada por la matrices

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

(b) La aplicación de evaluación $ev_a: p \mapsto p(a)$, es lineal para todo $a \in \mathbb{R}$. La derivada $D: p \mapsto p'$ es lineal. La evaluación de la derivada es la composición de la derivada y de la evaluación,

 $ev_a \circ D: p \mapsto p'(a)$, y por tanto es lineal. La derivada segunda $D^2: p \mapsto p''$ es la composición $D \circ D$, por tanto es lineal. La evaluación de la derivada segunda $ev_a \circ D^2: p \mapsto p''(a)$ es lineal. Cada una de las coordenadas de f es una combinación lineal de estas aplicaciones lineales, por tanto es lineal.

La matriz de f se obtiene a partir de las imágenes:

$$f(u_1) = f(1) = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \ f(u_2) = f(X) = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \ f(u_3) = f(X^2) = \begin{pmatrix} 0 & 0 \\ 1 - \frac{\lambda}{3} & 2 \end{pmatrix}, \ f(u_4) = f(X^3) = \begin{pmatrix} 0 & 0 \\ 1 & 3 \end{pmatrix}$$

por tanto la matriz de f es

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 - \frac{\lambda}{3} & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix}$$

(c) El determinante de A es $3(1-\frac{\lambda}{3})-2=1-\lambda$. Por tanto, si $\lambda \neq 1$, el rango de A es 4, f es un isomorfismo y el núcleo de f es cero. Si $\lambda=1$, el rango de A es 3. El núcleo tiene dimensión 1 y está definido, en coordenadas, por

Ker
$$f = \left\{ c_0 + c_1 X + c_2 X^2 + c_3 X^3; \ c_0 = 0, \ c_1 = 0, \ c_2 = -\frac{3}{2} c_3 \right\}$$

Una base de Ker f tiene coordenadas (0,0,-3,2), es decir, es el polinomio $p_0(X) = -3X^2 + 2X^3$. Una base de la imagen de f está formada por tres vectores de F cuyas coordenadas sean 3 columnas linealmente independientes de la matriz A. Por ejemplo, la primera, segunda y cuarta columnas. Para un elemento A de F de coordenadas $(a_1^1, a_2^1, a_1^2, a_1^2, a_2^2)$ la condición $A \in \text{Im } f$ se expresa en la forma

$$\operatorname{rg}\begin{pmatrix} 1 & 0 & 0 & a_1^1 \\ 0 & 1 & 0 & a_2^1 \\ 1 & 1 & 1 & a_1^2 \\ 0 & 1 & 3 & a_2^2 \end{pmatrix} = 3.$$

Podemos expresar esta condición, por ejemplo, igualando el determinante de la matriz a 0, con lo que se obtiene

$$3a_1^1 + 2a_2^1 - 3a_1^2 + a_2^2 = 0,$$

que es la ecuación de Im f.

(d) Puesto que el polinomio $p_0(X) = -3X^2 + 2X^3$ de la base de Ker f hallada anteriormente no es de E_1 , se tiene que

$$4 \ge \dim(E_1 + \operatorname{Ker} f) > \dim E_1 = 3$$
,

es decir.

$$\dim(E_1 + \operatorname{Ker} f) = 4 = \dim E_1 + \dim \operatorname{Ker} f,$$

por tanto $E_1 \oplus \operatorname{Ker} f = E$.

La matriz $f(1) = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \in \text{Im } f$ tiene traza 1, por tanto $f(1) \in \text{Im } f$, $f(1) \notin F_1$. En consecuencia

$$4 \ge \dim(\operatorname{Im} f + F_1) > \dim F_1 = 3,$$

es decir dim Im $f + F_1 = 4$, y por tanto Im $f + F_1 = F$.

(e) Por la fórmula de Grassmann, dim $(\operatorname{Im} f \cap F_1) = 3 + 3 - 4 = 2$. Por otra parte, la dimensión del cociente es dim $F_1/(\operatorname{Im} f \cap F_1) = 3 - 2 = 1$. Por tanto, para hallar una base de este cociente basta hallar un elemento de F_1 que no sea de $\operatorname{Im} f \cap F_1$. Usando la base de F_1 hallada en el apartado (a), las coordenadas de un elemento de F_1 son de la forma $\lambda_1(1,0,0,-1) + \lambda_2(0,1,0,0) + \lambda_3(0,0,1,0) = (\lambda_1,\lambda_2,\lambda_3,-\lambda_1)$, con $\lambda_1,\lambda_2\lambda_3 \in \mathbb{R}$ arbitrarios. Sustituyendo en la ecuación de $\operatorname{Im} f$ se obtiene

$$2\lambda_1 + 2\lambda_2 - 3\lambda_3 = 0.$$

Tomando por ejemplo $\lambda_1 = 1$, $\lambda_2 = \lambda_3 = 0$ obtenemos la matriz $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in F_1$, $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \notin \text{Im } f$, por tanto $\begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{bmatrix}$ es una base de $F_1/(F_1 \cap \text{Im } f)$.

La condición $\left[\begin{pmatrix} 1 & a \\ 0 & -1 \end{pmatrix}\right] = 0$ en $F_1/(\operatorname{Im} f \cap F_1)$ es equivalente a $\begin{pmatrix} 1 & a \\ 0 & -1 \end{pmatrix} \in \operatorname{Im} f \cap F_1$, es decir, las coordenadas (1, a, 0, -1) de la matriz $\begin{pmatrix} 1 & a \\ 0 & -1 \end{pmatrix}$ han de satisfacer la ecuación de $\operatorname{Im} f$,

$$3 \cdot 1 + 2 \cdot a - 3 \cdot 0 + (-1) = 0$$

que se cumple si y solo si a = -1.

2.(2/10) Sean E y F espacios vectoriales de dimensión 3 y 4 respectivamente. Sean

$$\mathbf{u} = (\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}), \quad \mathbf{v} = (\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}, \overrightarrow{v_4})$$

bases de E y F respectivamente. Sea $f:E\longrightarrow F$ la aplicación lineal tal que

$$f(\overrightarrow{u_1}) = 2\overrightarrow{v_1} - \overrightarrow{v_2}, \ f(\overrightarrow{u_2}) = \overrightarrow{v_2} + \overrightarrow{v_3}, \ \overrightarrow{u_3} \in \operatorname{Ker} f.$$

Sea $\mathbf{v}' = (\overrightarrow{v_1}', \overrightarrow{v_2}', \overrightarrow{v_3}', \overrightarrow{v_4}')$ la base de F tal que la matriz P cuyas columnas son las coordenadas de los vectores \overrightarrow{v}'_i en la base \mathbf{v} es

$$P = \begin{pmatrix} 2 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

- (a) Sea \overrightarrow{y} un vector de F tal que su vector de coordenadas en la base \mathbf{v}' es $Y' = (y'_1, y'_2, y'_3, y'_4)$. Halla el vector $Y \in \mathbb{R}^4$ formado por las coordenadas de \overrightarrow{y} en la base \mathbf{v} . Aplica la fórmula anterior al caso en que $\overrightarrow{y} = \overrightarrow{v_1}' + \overrightarrow{v_2}' + \overrightarrow{v_3}'$, y expresa \overrightarrow{y} como combinación lineal de los vectores de la base \mathbf{v} .
- (b) Sean A la matriz A de f en las bases (\mathbf{u}, \mathbf{v}) y B la matriz B de f en las bases $(\mathbf{u}, \mathbf{v}')$. ¿Qué relación existe entre A y B? Halla la matriz B.

Solución. (a) La relación entre coordenadas es

$$Y = M_{\mathbf{v}}(y) = M_{\mathbf{v}}(\mathbf{v}') \cdot M_{\mathbf{v}'}(y) = M_{\mathbf{v}}(\mathbf{v}') \cdot Y' = \begin{pmatrix} 2 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot Y'.$$

Para $\overrightarrow{y} = \overrightarrow{v_1}' + \overrightarrow{v_2}' + \overrightarrow{v_3}'$ se obtiene

$$Y = \begin{pmatrix} 2 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 2 \\ 0 \end{pmatrix},$$

por tanto

$$\overrightarrow{y} = 2\overrightarrow{v_1} + 2\overrightarrow{v_3}$$

(b) De la definición de f se sigue que la matriz de f en las bases \mathbf{u} , \mathbf{v} es

$$A = \begin{pmatrix} 2 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Por la fórmula del cambio de base,

$$M_{\mathbf{v}'}(f; \mathbf{u}) = M_{\mathbf{v}'}(\mathbf{v}) \cdot M_{\mathbf{v}}(f; \mathbf{u}) = M_{\mathbf{v}}(\mathbf{v}')^{-1} \cdot M_{\mathbf{v}}(f; \mathbf{u})$$

$$= \begin{pmatrix} 2 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Alternativamente, podemos observar que $\overrightarrow{v_1}' = 2\overrightarrow{v_1} - \overrightarrow{v_2} = f(\overrightarrow{u_1}), \ \overrightarrow{v_2}' = \overrightarrow{u_2} + \overrightarrow{u_3} = f(\overrightarrow{u_2}), \ f(\overrightarrow{u_3}) = 0$, de donde se sigue inmediatamente que

$$B = M_{\mathbf{v}'}(f; \mathbf{u}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

- **3.** (Teoría) (3/10)
- (a) (0.5/10) Define base (finita) de un espacio vectorial. Da una caracterización del concepto de base finita en términos de combinaciones lineales. Prueba el resultado.
- (b) (1/10) Enuncia con precisión el teorema de Steitnitz. Pruébalo para un solo vector.
- (c) (0.5/10) Prueba que si un espacio vectorial tiene una base finita, todas las bases tienen el mismo cardinal. Define dimensión
- (d) (1/10) Enuncia y demuestra las propiedades de la dimensión

Solución.

(a) (Define base (finita) de un espacio vectorial.) Un subconjunto B de E se llama una base de E si B genera E y B es linealmente independiente.

(Da una caracterización del concepto de base finita en términos de combinaciones lineales.) Sea $B = \{e_1, e_2, \cdots, e_n\}$ un subconjunto de E con n elementos. Entonces B es una base si, y solo si, para todo vector $x \in E$ existe una única familia de n escalares $(\lambda_1, \lambda_2, \cdots, \lambda_n)$ tal que

$$x = \lambda_1 \cdot e_1 + \lambda_2 \cdot e_2 + \dots + \lambda_n \cdot e_n.$$

(Prueba.) Supongamos que B es una base. Entonces B genera E, por tanto existe una familia de n escalares $(\lambda_1, \lambda_2, \dots, \lambda_n)$ tal que

$$x = \lambda_1 \cdot e_1 + \lambda_2 \cdot e_2 + \dots + \lambda_n \cdot e_n.$$

Veamos que esta familia es única. Si

$$x = \mu_1 \cdot e_1 + \mu_2 \cdot e_2 + \dots + \mu_n \cdot e_n,$$

restando ambas expresiones resulta

$$0 = (\lambda_1 - \mu_1) \cdot e_1 + (\lambda_2 - \mu_2) \cdot e_2 + \dots + (\lambda_n - \mu_n) \cdot e_n.$$

Puesto que B es linealmente independiente, obtenemos $\lambda_i - \mu_i = 0$, para todo i, lo que prueba la unicidad.

Recíprocamente, si se cumple la propiedad es obvio que B genera E. Además, si $(\lambda_1, \ldots, \lambda_n)$ son escalares tales que

$$0 = \lambda_1 \cdot e_1 + \lambda_2 \cdot e_2 + \cdots + \lambda_n \cdot e_n$$

entonces de

$$0 = 0 \cdot e_1 + 0 \cdot e_2 + \dots + 0 \cdot e_n$$

y de la unicidad, deducimos que $\lambda_i = 0$ para todo i.

- (b) (Enuncia con precisión el teorema de Steitnitz. Pruébalo para un solo vector.) Sea E un espacio vectorial $E \neq \{0\}$. Si $B = \{e_1, e_2, \dots, e_n\}$ es una base finita de E, de cardinal $n \geq 1$, para todo conjunto linealmente independiente S de E se cumple
 - 1. S es finito, $y \# S \leq n$.
 - 2. Existe un subconjunto $T \subset B$, de cardinal n-r, tal que $S \cup T$ es una base de E de cardinal n.

(Prueba para S de cardinal 1.) Supongamos que S contiene un solo vector $v \in E$, que, al ser S linealmente independiente, será un vector no nulo. Sea

$$v = \lambda_1 e_1 + \lambda_2 e_2 + \cdots + \lambda_n e_n$$
.

Veamos que si $\lambda_1 \neq 0$, entonces $B' = \{v, e_2, \dots, e_n\}$ es una base de E. Hemos de ver que B' genera E y que B' linealmente independiente.

Veamos que B' genera E. Puesto que $\lambda_1 \neq 0$, podemos despejar e_1 como combinación lineal de B',

$$e_1 = \frac{\lambda_2}{-\lambda_1}e_2 + \cdots + \frac{\lambda_n}{-\lambda_1}e_n + \frac{1}{\lambda_1}v.$$

Sea $x \in E$. Veamos que x es combinación lineal de $\{v, e_2, \dots, e_n\}$. Puesto que B es un conjunto de generadores, existen escalares μ_1, \dots, μ_n tales que

$$x = \mu_1 e_1 + \mu_2 e_2 + \dots + \mu_n e_n.$$

Sustituyendo e_1 por su expresión como combinación lineal de $\{v,e_2,\ldots,e_n\}$ obtenemos

$$x = \mu_1 \left(\frac{\lambda_2}{-\lambda_1} e_2 + \dots + \frac{\lambda_n}{-\lambda_1} e_n + \frac{1}{\lambda_1} v \right) + \mu_2 e_2 + \dots + \mu_n e_n$$
$$= \left(\mu_1 \frac{\lambda_2}{-\lambda_1} + \mu_2 \right) e_2 + \dots + \left(\mu_1 \frac{\lambda_n}{-\lambda_1} + \mu_n \right) e_n + \frac{\mu_1}{\lambda_1} v,$$

lo que prueba que x es combinación lineal de $\{v, u_2, \ldots, u_n\}$. De aquí concluimos que $\{v, e_2, \ldots, e_n\}$ es un conjunto de generadores de E.

Veamos que B' es linealmente independiente. Supongamos que

$$0 = \mu_1 v + \mu_2 e_2 + \cdots + \mu_n e_n$$
.

Sustituyendo v por su expresión como combinación lineal de $\{e_1, e_2, \dots, e_n\}$, obtenemos

$$0 = \mu_1(\lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n) + \mu_2 e_2 + \dots + \mu_n e_n$$

= $(\mu_1 \lambda_1) e_1 + (\mu_1 \lambda_2 + \mu_2) e_2 + \dots + (\mu_1 \lambda_n + \mu_n) e_n$.

y puesto que $\{e_1, \dots, e_n\}$ es linealmente independiente, todos los coeficientes han de ser nulos:

$$\mu_1 \lambda_1 = 0, \ \mu_1 \lambda_2 + \mu_2 = 0, \ \cdots, \mu_1 \lambda_n + \mu_n = 0.$$

Puesto que $\lambda_1 \neq 0$, resulta $\mu_1 = 0$, y por tanto $\mu_i = 0$, para todo i. Esto prueba que B' es linealmente independiente.

(c) (Prueba que si un espacio vectorial tiene una base finita, todas las bases tienen el mismo cardinal.)

Demostración. Sean E un espacio vectorial y B_1 una base finita de E. Si B_2 es otra base de E, entonces B_2 es linealmente independiente. Aplicando el teorema de Steitnitz con la base $B = B_1$ y $S = B_2$, resulta que B_2 es finito y $\#B_2 \le \#B_1$. Aplicando de nuevo el teorema de Steitnitz, con $B = B_2$ y $S = B_1$, resulta $\#B_1 \le \#B_2$, por tanto $\#B_1 = \#B_2$.

(Define dimensión.) Si E tiene una base finita, se define su dimensión como el cardinal de una base cualquiera de E. El espacio vectorial $\{0\}$ se dice que tiene dimensión 0.

(d) (Enuncia (y demuestra) las propiedades de la dimensión.)

(Propiedad 1) Supongamos que E es un espacio vectorial de dimensión finita.

- (I) Si F es un subespacio vectorial de E, entonces F tiene una base finita y dim $F \leq \dim E$.
- (II) Toda base de F se puede completar a una base de E.
- (III) Si dim $F = \dim E$, entonces F = E.

Demostración. Sea $n = \dim E$. Supondremos $n \ge 1$.

Veamos (I). Si $F = \{0\}$, entonces dim F = 0. Si $F \neq \{0\}$, existe $v_1 \in F$, con $v_1 \neq 0$. Por tanto $S_1 = \{v_1\}$ es linealmente independiente. Si $\langle S_1 \rangle = F$, entonces S_1 es una base de F y dim $F = 1 \leq n$. Si $\langle S_1 \rangle \neq F$, existe $v_2 \in F$ tal que $v_2 \notin \langle S_1 \rangle$. Por el lema $\ref{eq:space}$, $S_2 = S_1 \cup \{v_2\}$ es linealmente independiente. Si $\langle S_2 \rangle = F$, entonces S_2 es una base de F. Repitiendo este proceso obtenemos una sucesión de subconjuntos S_i de F tales que

$$S_1 \subset S_2 \subset \cdots \subset S_r \subset S_{r+1} \subset \cdots$$

Cada S_i tiene i elementos, y es linealmente independiente. Por el teorema de Steitnitz, $i \leq n$, por tanto esta sucesión no se puede prolongar más allá de S_n . Supongamos que la sucesión se termina en S_r . Entonces $\langle S_r \rangle = F$, pues de lo contrario se podría construir S_{r+1} . Por tanto S_r genera F y es linealmente independiente, es decir S_r es una base de F. Además $r \leq n$.

(II) Sea B una base de E. Si S es una base de F, S es un conjunto linealmente independiente y por el teorema de Steitnitz podemos completar S con elementos de B hasta obtener una base B' de E tal que $S \subset B'$.

(III) Si $n = \dim F = \dim E$, y S es una base de F, S tiene n elementos. Completemos S a una base B' de E, tal que $S \subset B'$. Puesto que #B' = n, se tiene #S = #B' y por tanto S = B'. De aquí se deduce que S genera E. Como S genera F, resulta E = F.

(Propiedad 2) Si E tiene dimensión n, y S es un subconjunto de E con n elementos, las siguientes afirmaciones son equivalentes

- (I) S genera E.
- (II) S es linealmente independiente.
- (III) S es una base de E.

Demostración. Si S genera E, existe un subconjunto de S que es una base. Como toda base tiene n elementos, la única posibilidad es que S sea una base.

Si S es linealmente independiente y tiene n elementos, entonces S genera un subespacio F de E de dimensión n del cual es una base. Como dim $F = \dim E$, resulta F = E y S es una base de E.

Recíprocamente, si S es una base entonces, por definición de base, S genera E y es linealmente independiente.

Otras propiedades de la dimensión: Fórmula de Grassmann, dimensión de un cociente, fórmula de las dimensiones para una aplicación lineal, invariancia de la dimensión por isomorfismos.