Deciphering the role of endoribonuclease RNase III in regulating Methicillin-resistant Staphylococcus aureus (MRSA) gene expression using Nanopore sequencing

Linqing Hu
2023 BSc (Hons) Biological Science (Biotechnology)
Sander Granneman's Lab

Background 1: Why studying MRSA gene expression

Diseases caused by S. aureus on human body

https://www.frontiersin.org/articles/10.3389/fimmu.2020.621733/full

Staphylococcus aureus

Opportunistic pathogen Serious infections!

Methicillin-resistant

Staphylococcus aureus

(MRSA)

Global prevalent
Lack of treatment
New drug targets!
New treatment strategies!

MRSA USA300

Many virulence factors
A good repository to decipher
gene expression mechanisms!

S. aureus EM scan

https://fineartamerica.com/featured/5-staphylococcusaureus-bacteria-sem-science-source.html

Background 2: Why studying RNase III

RNase III homodimer protein structure

https://www.ecosia.org/images?q=RNase%20III%20protein%20structure#id=0873E3D3743233F1BACAFA786C20FFEBB27F349C

Features:

- Mg²⁺ dependent endoribonuclease
- Cleaves RNA double strands

Functions:

- RNA processing---cleave sRNA-mRNA duplex, release mature mRNA
- RNA maturation---cleave rRNA and tRNA precursor release mature rRNA and tRNA
- RNA degradation---degraded unwanted transcript
 ---Transcriptional level control
 ---nucleotide recycling

Achieving functions in help with:

- small RNAs (sRNAs)
- RNA binding proteins (RDBs)

Functions and targets are underestimated!

Aim: discover more RNase III targets!

Background 3: Why using Nanopore sequencing

Oxford Nanopore sequencing machine PromethION

https://nanoporetech.com/products/promethion

Many sequencing happen together

https://www.genome.gov/genetics-glossary/Nanopore-DNA-Sequencing?fbclid=lwAR31BY-R_LVsBCL4VsBLwihRt3Xm47uVK7dy9QcRHYTkZJbsMeGxcylw20Q Illumina sequencing---Short reads, lack 3' UTR information Oxford Nanopore sequencing---Long reads

Hope: Read transcripts in full length

---get complete information of:

transcripts boundaries and RNase III cleavage sites

Experiment 1: Discover **Differential Gene Expression (DGE)** in Integrated Genome Brower (IGV)

DGE

(1) Variation in coverage

mRNA aur SAUSA300_2572

Experiment 1: Discover **Differential Gene Expression (DGE)** in Integrated Genome Brower (IGV)

DGE

(2) New cleavage site

sRNA

srn_1580_sbrC

Experiment 2: Performing DEseq2 to filter DEGs

Step 1: Remove genes has ≤ 10 counts

Method 1: 'Single sample'--- ≤ 10 counts in any single replicate

Method 2: 'All samples' --- ≤ 10 counts in the sum of 4 replicates

Step 2: Prepare two input tables

(1) Counts table

gene	ssrA	PSMa1	PSMa2	PSMa3	PSMa4
WT1	694607.0	779.0	1365.0	4612.0	6294.0
WT2	191721.0	393.0	618.0	1361.0	1788.0
drnc1	193327.0	344.0	637.0	2234.0	3411.0
drnc2	36197.0	157.0	285.0	777.0	1118.0

(2) Clinical table

gene	Condition
WT1	Wild Type
WT2	Wild Type
drnc1	RNase III Knock Out
drnc2	RNase III Knock Out

0 285.0 777.0 1118.0 **drnc2** RNase III

. . .

Step 3: Run Deseq2 analysis, using adjusted P-value

gene	baseMean	log2FoldChange	IfcSE	stat	pvalue	padj
ssrA	175653.769888	0.328625	0.463209	0.709452	0.478044	0.954306
PSMa1	408.012614	-0.634902	0.826624	-0.768066	0.442448	0.954306
PSMa2	713.146031	-0.801779	0.816327	-0.982178	0.326012	0.871300
PSMa3	2000.145241	-0.975179	0.675426	-1.443799	0.148796	0.653505
PSMa4	2844.013245	-1.109305	0.651677	-1.702231	0.088712	0.531057

Datasets too small!

Step 4: Run Deseq2 analysis, using P-value

P-value \leq 0.05, log2FC \leq |1|

114 genes

significant differential expression

Experiment 2: Visualising DGE result in volcano plot

Experiment 3: GO term and KEGG enrichment analysis in STRING

Gene Ontology (GO)

KEGG (Kuydo)

De novo Uridine monophosphate (UMP) biosynthetic process

Analysis result 1: Nir and Nar families are up regulated in \(\Delta rnc \)

Analysis result 2: genes *aur*/sspABC/scpA are up regulated in *\Delta rnc*

aur

log2FC: 5.24 --- 38 fold up regulated

p-value: 3.70E-13 --- significant

	WT1	WT2	∆rnc1	∆rnc2
aur raw counts	14	8	285	37

Analysis result 2: genes *aur*/sspABC/scpA are up regulated in *∆rnc*

aur

zinc dependent metalloproteinase

509 aa, secretary enzyme

Туре	Protein	Gene	Regulation	Significance
Cystine protease	Stapthopin A	scpA	Little up	No
	Stapthopin B	sspB	Very up	Yes
		sspC	Very up	Yes
Serine protease	V8	sspA	Very up	No
Metallo- proteinase	Aur	aur	Very up	Yes

Human complement immune pathway

https://www.ecosia.org/images?q=human%20complement%20system#id=E77D DA1C45D1FB2874E194DC0CD72AE4AAD320FD

Aur function

- 1. Cleave host complement protein C3 to C3B
 - --- C3b rapidly degraded in serum by other proteases
 - ---Host cell has poor C3b opsonising
 - ---attenuates neutrophils phagocytosis and killing
- 2. Cleave host LL-37, a cathelicidin
 - --- prevent host cell membranes puncturing in reacting with pathogens
- 3. Activates host prothrombin
 - --- increase pathogenicity in causing septic infection

Other evidence

Δaur strain---more efficiently killed in human blood

Conclusion

- 1. Gene *aur* can help *S.aureus* to **escape host cell** immune system
- 2. This is linked with RNase III activity

RNase III function---suppress Aur/SspAB/ScpA---biofilm formation

Discussion: Problem with this experiment...

1. Inaccurate mapping

DGE

(1) Variation in coverage

mRNA aur SAUSA300_2572

Discussion: Problem with this experiment...

2. Large variation between replicates

Discussion: Problem with this experiment...

3. The variation is larger within treatments than between

Acknowledgement

I would like to thank my supervisor Dr. Sander Granneman for his generous guidance and enthusiastic support in providing knowledge and working flow throughout my project.

I would like to thank my fellow honours student Saulė Zubytė for her generous helps, encouragements and inspiration while working on parallel projects at the same lab.

I would like to thank the other members in Sander's group for their instructions and accompany. Although I didn't get chance to talk with many people, but I appreciate all the helps in the past.

Finally, I would like to thank for the generous financial support from my family and enormous emotional support from my friends to make me complete my study at this University of Edinburgh possible and to make my career pathway this far.

1-	_
	7
	4
	ł

Functional enrichments in your network

expl	oin	nal	11	m	no
CAUI	alll	001	Ul		113

				<u>explain columnia</u>
>	Biological Process (Gene Ontology)			
GO-term	* description	count in network	strength	false discovery rate
GO:0006525	Arginine metabolic process	<u>3</u> of <u>18</u>	1.45	0.0112
GO:0044271	Cellular nitrogen compound biosynthetic process	<u>8</u> of <u>327</u>	0.62	0.0138
GO:0006207	De novo pyrimidine nucleobase biosynthetic process	<u>2</u> of <u>5</u>	1.83	0.0303
GO:0044205	De novo UMP biosynthetic process	5 of 7	2.08	3.67e-06
GO:0018130	Heterocycle biosynthetic process	<u>7</u> of <u>229</u>	0.72	0.0112
				(more)
	Local network cluster (STRING)			
cluster	* description	count in network	strength	false discovery rate
CL:331	De novo UMP biosynthetic process	<u>4</u> of <u>5</u>	2.13	5.87e-05
CL:291	Ribonucleoside monophosphate biosynthetic process	<u>5</u> of <u>27</u>	1.5	0.00019
	KEGG Pathways			
pathway	* description	count in network	strength	false discovery rate
sao00240	Pyrimidine metabolism	<u>5</u> of <u>45</u>	1.28	0.00071
	Annotated Keywords (UniProt)			
keyword	* description	count in network	strength	false discovery rate
KW-0464	Manganese	<u>3</u> of <u>25</u>	1.31	0.0366
KW-0665	Pyrimidine biosynthesis	<u>5</u> of <u>9</u>	1.98	1.53e-06
KW-0686	Riboflavin biosynthesis	<u>2</u> of <u>3</u>	2.05	0.0352
KW-0843	Virulence	<u>4</u> of <u>67</u>	1.01	0.0366