Niech B będzie zbiorem z działaniami binarnymi \land , \lor , działaniem unarnym \neg i niech $0,1\in B,\ 0\neq 1.$ Szóstkę $(B,\land,\lor,\lnot,0,1)$ nazywamy **algebrą Boole'a** wtedy i tylko wtedy, gdy dla dowolnych $x,y,z\in B$ mamy

- $\bullet \ x \land y = y \land x, \ x \lor y = y \lor x,$
- $(x \wedge y) \wedge z = x \wedge (y \wedge z), (x \vee y) \vee z = x \vee (y \vee z),$
- $x \lor (y \land z) = (x \lor y) \land (x \lor z), \quad x \land (y \lor z) = (x \land y) \lor (x \land z),$
- \bullet $1 \land x = x, \quad 0 \lor x = x,$
- $\bullet \neg x \land x = 0, \neg x \lor x = 1$
- Działania można interpretować następująco: ∧ to mnożenie, ∨ to dodawanie,
 a ¬ to dopełnienie.
- Jeżeli operacje są z góry określone, to $(B, \wedge, \vee, \neg, 0, 1)$ oznaczamy w skrócie przez B.

Generowanie funkcji boolowskich przez wielomiany

Twierdzenie

Każdy atom Bool(n) jest generowany przez dokładnie jeden minterm.

Wniosek

Każda funkcja boolowska jest generowana przez sumę mintermów.

Reprezentacja wielomianu boolowskiego w postaci sumy mintermów jest nazywana jego dysjunkcyjną (alternatywną) postacią normalną (DNF).

Stwierdzenie

Dla każdej liczby naturalnej n zachodzi $|Bool(n)| = 2^{2^n}$.

Dowód.

Funkcja boolowska f każdemu argumentowi przypisuję jedną z dwóch wartości (0 lub 1). Zatem liczba różnych n-argumentowych funkcji boolowskich wynosi

 $2^{|D_f|}$, gdzie $|D_f|$ to liczba elementów dziedziny funkcji f .

Dziedzina składa się z n-elementowych ciągów binarnych, których jest 2^n . Zatem ostatecznie $|\mathsf{Bool}(n)| = 2^{2^n}$.

Niech B będzie nietrywialną algebrą Boole'a.

- Niezerowy element $a \in B$ nazywamy **atomem** B wtedy i tylko wtedy, gdy dla każdych $b, c \in B$ z równania $a = b \lor c$ wynika, że a = b lub a = c.
- Niejedynkowy element $a \in B$ nazywamy **co-atomem** B wtedy i tylko wtedy, gdy dla każdych $b, c \in B$ z równania $a = b \wedge c$ wynika, że a = b lub a = c.

Zauważmy, że co-atom to dopełnienie atomu.

Wniosek

- Niezerowy element $a \in B$ jest atomem algebry B wtedy i tylko wtedy, gdy nie istnieje $x \in B$ taki, że 0 < x < a.
- Niejedynkowy $a \in B$ jest co-atomem algebry B wtedy i tylko wtedy, gdy nie istnieje $x \in B$ taki, że a < x < 1.

Zastosowanie do układów elektrycznych

- Switch (łącznik) to urządzenie dwustanowe. Może być ustawiony albo w pozycji otwartej (wartość 0, prąd nie płynie) lub zamkniętej (wartość 1, prąd płynie).
- (Prosty) system przełączający (obwód elektryczny) składa się ze źródła energii, wyjścia oraz switchów.
- Dwa podstawowe sposoby łączenia switchów to równoległy (∨)
 i szeregowy (∧). Czasami konieczne jest użycie switcha, który zawsze jest
 w pozycji odwrotnej do ustalonego (¬).
- Prosty system przełączający nie zawiera pętli, więc wyjście zależy tylko od sposobu połączenia switchy (nie od czasu).

Zatem wszystkie połączenia switchów w systemie przełączającym można opisać wielomianem boolowskim, a wyjście — funkcją boolowską generowaną przez ten wielomian.

Twierdzenie

Dwie <u>skończone</u> algebry Boole'a są izomorficzne, gdy mają taką samą liczbę atomów.

Wniosek

Każda skończona algebra Boole'a jest izomorficzna z \mathbb{B}^n dla pewnej liczby naturalnej n.

Pamiętamy, że \mathbb{B}^n ma dokładnie n atomów.

Algebry Boole'a i funkcje boolowskie

dr inż. Bartłomiej Pawlik

19 czerwca 2024

Analogicznie:

Twierdzenie

Każdy co-atom Bool(n) jest generowany przez dokładnie jeden maxterm.

Wniosek

Każda funkcja boolowska jest generowana przez iloczyn maxtermów.

Reprezentacja wielomianu boolowskiego w postaci iloczynu maxtermów jest nazywana jego koniunkcyjną postacią normalną (CNF).

Uwaga!

Każda funkcja boolowska może być generowana przez nieskończenie wiele wielomianów boolowskich

Metody reprezentacji funkcji boolowskich

- Za pomocą wielomianów boolowskich.
- 2 Za pomocą wartości zazwyczaj w tabelce.
- ② Za pomocą indeksów atomów: **indeksem atomu** a nazywamy ten argument, dla którego funkcja przyjmuje wartość 1. Indeks atomu zwykle zapisywany jest nie w postaci ciągu zer i jedynek, ale jako liczba w systemie dziesiętnym, która ten ciąg reprezentuje. Takie przedstawienie funkcji zaczyna się od symbolu \sum , po którym wypisuje się indeksy odpowiednich atomów (w dowolnej kolejności).
- Za pomocą indeksów co-atomów: indeksem co-atomu c nazywamy ten argument, dla którego funkcja przyjmuje wartość 0. Takie przedstawienie f zaczyna się od symbolu \prod .

W algebrze Boole'a B definiujemy relację \leq następująco:

$$\forall_{x,y \in B} \ x \leqslant y \iff x \lor y = y.$$

Twierdzenie

Niech B będzie algebrą Boole'a i niech $x,y\in B$. Wtedy

- $x \leqslant y \iff x \land y = x$
- $2 x \land y \leqslant x \leqslant x \lor y$
- **3** $0 \le x \le 1$

Ponadto (B,\leqslant) jest kratą (tzn. zbiorem częściowo uporządkowanym, w którym każdy dwuelementowy podzbiór ma supremum i infimum).

Digrafem (grafem skierowanym) D nazywamy parę zbiorów $\big(V(D), E(D)\big)$, gdzie V(D) to zbiór wierzchołków, a $E(D) \subset \big(V(D)\big)^2$ to zbiór łuków.

Wiele definicji dotyczących grafów (np. rząd, rozmiar, podgraf indukowany, izomorfizm) przenosi się również na digrafy.

Zauważmy, że z powyższej definicji wynika, że każdy łuk to uporządkowana para wierzchołków (zbiór łuków to <u>podzbiór</u> kwadratu kartezjańskiego zbioru wierzchołków).

Definicja

Niech $(x,y) \in E(D)$.

- Pare (x, y) nazywamy łukiem (krawędzią skierowaną) od x do y.
- Wierzchołek y nazywamy **sąsiednim** do x.
- ullet Wierzchołek x nazywamy **początkiem łuku**, a y **końcem łuku**.
- Krawędź (x,x) nazywamy **pętlą**.

B. Pawlik Digrafy

Definicia

- ullet Jeżeli w digrafie D istnieje cykl niewłaściwy d przechodzący przez każdą krawędź digrafu D dokładnie jeden raz, to d nazywamy **cyklem Eulera**, a digraf D — digrafem eulerowskim.
- ullet Jeżeli digraf D nie jest digrafem eulerowskim i istnieje ścieżka d przechodząca przez każdą krawędź digrafu D dokładnie jeden raz, to d nazywamy ścieżką Eulera, a digraf D — digrafem jednobieżnym (półeulerowskim).

Przykład 11

Rozważmy turnieje rzędu 3 (przykład 7). D_2 jest eulerowski, natomiast D_1 nie jest ani eulerowski ani jednobieżny.

18 / 25

B Pawlik Digrafy

Przykład 1

Rysunek przedstawia reprezentację graficzną digrafu ${\cal D}$ takiego, że

$$V(D) = \{1, 2, 3, 4, 5, 6\}$$

$$E(D) = \{(1, 4), (3, 5), (4, 2), (4, 5)\}$$

Rząd D wynosi 6, natomiast rozmiar to 4.

Przykład 13

 D_1 - digraf hamiltonowski

 D_2 - digraf trasowalny

 D_3 - digraf nie hamiltonowski i nie trasowalny

Przykład 14

Które turnieje rzędu 4 (przykład 9) są hamiltonowskie, a które są trasowalne?

 $T_{4.1}$ — turniej hamiltonowski

 $T_{4,2}, T_{4,3}, T_{4,4}$ — turnieje trasowalne

Macierzą sąsiedztwa (multi)digrafu D to macierz $A_D = [s_{ij}]$, w której a_{ij} określa liczbę łuków od i-tego do j-tego wierzchołka.

Przykład 3

Macierzą sąsiedztwa digrafu przedstawionego w przykładzie 1 jest

6 / 25

Grafem pierwotnym digrafu D nazywamy graf otrzymany przez zastąpienie każdego łuku (u,v) lub symetrycznej pary łuków (u,v) i (v,u) przez krawędź $\{u,v\}$.

Przykład 6

Poniższe digrafy D_1 i D_2 mają taki sam graf pierwotny (G).

10 / 25

- Dowolną orientację grafu pełnego nazywamy turniejem.
- Digraf D jest r-regularny, jeżeli równania

outdeg
$$v = indeg v = r$$

zachodzą dla każdego $v \in V(D)$.

Przykład 9

Grafy D_1 i D_2 z przykładu 7 są jedynymi turniejami rzędu 3 (a zarazem jedynymi orientacjami grafu K_3). Ponadto graf D_2 jest grafem 1-regularnym.

Ile jest turniejów rzędu 4? Są cztery takie turnieje:

 $T_{4,4}$

(□) (□) (필) (필) (필)

Macierz incydencji digrafu D to macierz $B_D = [b_{ij}]$, w której

$$B_{ij} = \left\{ \begin{array}{ll} 1, & \text{gdy wierzchołek } v_i \text{ jest początkiem łuku } e_j \\ -1, & \text{gdy wierzchołek } v_i \text{ jest końcem łuku } e_j \\ 0, & \text{gdy wierzchołek } v_i \text{ nie jest incydentny z łukiem } e_j \end{array} \right..$$

Wniosek

- Suma elementów w i-tym wierszu macierzy incydencji digrafu D wynosi out $\deg v_i + \mathrm{indeg}\,v_i$.
- ullet Suma elementów w j-tej kolumnie macierzy incydencji digrafu D wynosi 0.

B. Pawlik Digrafy 14 sierpnia 2024 7

Dowód. (2/2)

 (\Rightarrow)

Niech T będzie przechodnim turniejem. Załóżmy niewprost, że w turnieju T istnieje cykl (v_1,v_2,\ldots,v_k,v_1) , gdzie $k\geqslant 3$. Przechodniość T pozwala nam skonstruować ciąg krawędzi:

- ullet Z $(v_1,v_2),(v_2,v_3)\in E(T)$ wynika, że $(v_1,v_3)\in E(T)$.
- ullet Z $(v_1,v_3),\,(v_3,v_4)\in E(T)$ wynika, że $(v_1,v_4)\in E(T)$.
- ...
- Z $(v_1,v_{k-1}),(v_{k-1},v_k)\in E(T)$ wynika, że $(v_1,v_k)\in E(T)$ daje to sprzeczność z faktem, że $(v_k,v_1)\in E(T)$.

Zatem T jest acykliczny.

Twierdzenie

Dla każdej liczby całkowitej $n\geqslant 3$ istnieje dokładnie jeden przechodni (acykliczny) turniej rzędu n.

Przykład 12

 D_1 - digraf eulerowski

 D_2 - digraf jednobieżny

 D_3 - digraf nie eulerowski i nie jednobieżny

20 / 25