Feedback — In-Video Quizzes Week 7

Help Center

You submitted this quiz on Sun 3 Mar 2013 12:02 AM PST. You got a score of 2.00 out of 2.00.

Question 1

7-4 Analyzing Bayesian Games

In the following two-player Bayesian game, the payoffs to player 2 depend on whether 2 is a friendly player (with probability p) or a foe (with probability 1-p). See the following payoff matrices for details.

Friend	Left	Right
Left	3,1	0,0
Right	2,1	1,0

Foe	Left	Right
Left	3,0	0,1
Right	2,0	1,1

with probability p.

with probability 1 - p.

Player 2 knows if he/she is a friend or a foe, but player 1 doesn't know. If player 2 uses a strategy of Left when a friend and Right when a foe, what is true about player 1's expected utility?

Your Answer		Score	Explanation
\bigcirc a) It is 3 when 1 chooses Left;			
ullet b) It is $3p$ when 1 chooses Left;	~	1.00	
\odot c) It is $2p$ when 1 chooses Right;			
od) It is 1 when 1 chooses Right;			

Total 1.00 / 1.00

Question Explanation

(b) is true.

• If 1 chooses Left, with probability p player 2 is a friend and chooses Left and then 1 earns 3, and with probability (1-p) player 2 is a foe and chooses Right and then 1 earns 0. Thus, the expected payoff is 3p + 0(1-p) = 3p.

Question 2

7-5 Analyzing Bayesian Games: Another Example

Consider the conflict game:

Strong	Fight	Not
Fight	1,-2	2,-1
Not	-1,2	0,0

Weak	Fight	Not
Fight	-2,1	2,-1
Not	-1,2	0,0

with probability p

with probability 1-p

Assume that player 1 plays fight when strong and not when weak. Given this strategy of player 1, there is a certain p^* such that player 2 will prefer 'fight' when Misplaced & , and 'not' when $p > p^*$. For instance, in the lecture p^* was 1/3.

What is p^* in this modified game? (Hint: Write down the payoff of 2 when choosing Fight and Not Fight. Equalize these two payoffs to get p^*):

Your Answer		Score	Explanation
○ a) 3/4			
○ b) 1/3			
● c) 2/3	~	1.00	

(d) 1/2

Total 1.00 / 1.00

Question Explanation

(c) is true.

- Conditional on 1 fighting when strong and not fighting when weak, the payoff of 2 when choosing Not is -1p + 0(1-p) and the payoff of 2 when choosing Fight is (-2)p + 2(1-p).
- Comparing these two payoffs, 2 is just indifferent when -1p + 0(1-p) = (-2)p + 2(1-p), thus $p^* = 2/3$, above which 2 prefers Not and below which 2 prefers to Fight.