Low-complexity optimal control of networked coupled subsystems

Aditya Mahajan McGill University

Joint work with Shuang Gao (Polytechnique Montreal)

RTE Chair Meeting 31 Jan 2024

Overview of my research

Decentralized stochastic control

- Multi-stage decision problems with multiple decision makers
- ► Each DM has different partial information about the global state
- ▶ Identify information structures for which a dynamic programming solution is possible.

Overview of my research

Decentralized stochastic control

- Multi-stage decision problems with multiple decision makers
- ► Each DM has different partial information about the global state
- ▶ Identify information structures for which a dynamic programming solution is possible.

RL for POMDPs

- ▶ POMDPs: Partially observed Markov decision processes
- Developed a principled framework to understand RL algorithms for POMDPs, and used theoretical insights to improve existing algorithms.

Overview of my research

Decentralized stochastic control

- Multi-stage decision problems with multiple decision makers
- ► Each DM has different partial information about the global state
- ▶ Identify information structures for which a dynamic programming solution is possible.

RL for POMDPs

- ► POMDPs: Partially observed Markov decision processes
- Developed a principled framework to understand RL algorithms for POMDPs, and used theoretical insights to improve existing algorithms.

"Structure-aware" planning and learning

- Leverage underlying structure of the model to develop efficient planning and learning algos.
- ► Application domains: Networked control systems, telecommunication systems, scheduling and resource allocation

Network-coupled subsystems—(Aditya Mahajan)

This talk: "Structure-aware" planning in networked control systems

Problem setting

- Temperature control of large number of units

 [a multi-story building, a city block, . . .]
- \triangleright N = {1, ..., n} is the set of users.
- ▶ Each user has a desired set point x_0^i , $i \in N$.
- \triangleright Control objective: The average temperature should track a reference signal r_t .

Problem setting

- ► Temperature control of large number of units [a multi-story building, a city block, . . .]
- \triangleright N = {1, ..., n} is the set of users.
- ▶ Each user has a desired set point x_0^i , $i \in N$.
- \triangleright Control objective: The average temperature should track a reference signal r_t .

System Dyanmics

ightharpoonup Model each user as a subsystem with state $x_t^i \in \mathbb{R}^{d_x}$ and control $u_t^i \in \mathbb{R}^{d_y}$.

$$x_{t+1}^i = Ax_t^i + Bu_t^i + D\sum_{j \in N} m^{ij}x_t^j + E\sum_{j \in N} m^{ij}u_t^j + w_t^i$$

Mean-field of states and control

- $ightharpoonup \bar{x}_t := \frac{1}{n} \sum_{i \in N} x_t^i$ (emperical average of states)
- $\mathbf{\bar{u}}_t := \frac{1}{n} \sum_{i \in \mathbb{N}} u_t^i$ (emperical average of controls)

Mean-field of states and control

- $ightharpoonup \bar{x}_t := \frac{1}{n} \sum_{i \in \mathbb{N}} x_t^i$ (emperical average of states)
- $\mathbf{\bar{u}}_t := \frac{1}{n} \sum_{i \in \mathbb{N}} u_t^i \text{ (emperical average of controls)}$

Per-step cost

$$\begin{split} c(\mathbf{x}_t, \mathbf{u}_t) &= \kappa \big[(\bar{\mathbf{x}}_t - \mathbf{r}_t)^\intercal \, Q(\bar{\mathbf{x}}_t - \mathbf{r}_t) \big] \\ &+ \frac{1}{n} \sum_{i \in \mathbb{N}} \big[(\mathbf{x}_t^i - \mathbf{x}_0^i)^\intercal \, Q(\mathbf{x}_t^i - \mathbf{x}_0^i) + (\mathbf{u}_t^i)^\intercal \, Q\mathbf{u}_t^i \big]. \end{split}$$

Computing the optimal solution

System-model

- ightharpoonup Define $x_t = (x_t^1, \dots, x_t^n)$ and $u_t = (u_t^1, \dots, u_t^n)$.
- ightharpoonup Dynamics: $x_{t+1} = Ax_t + Bu_t + w_t$
- ▶ Per-step cost

$$c(\mathbf{x}_t, \mathbf{u}_t) = (\mathbf{C}\mathbf{x}_t - \bar{\mathbf{C}}\mathbf{r}_t)^{\mathsf{T}} \mathbf{Q} (\mathbf{C}\mathbf{x}_t - \bar{\mathbf{C}}\mathbf{r}_t) + \mathbf{u}_t^{\mathsf{T}} \mathbf{R} \mathbf{u}_t.$$

Computing the optimal solution

System-model

- ightharpoonup Define $x_t = (x_t^1, \ldots, x_t^n)$ and $u_t = (u_t^1, \ldots, u_t^n)$.
- ightharpoonup Dynamics: $x_{t+1} = Ax_t + Bu_t + w_t$
- ▶ Per-step cost

$$c(x_t, u_t) = (Cx_t - \bar{C}r_t)^{\mathsf{T}} Q(Cx_t - \bar{C}r_t) + u_t^{\mathsf{T}} Ru_t.$$

Standard solution approach

- ▶ This is a standard centralized reference tracking problem.
- Doptimal solution is a state feedback of the form:

$$u_t = G_t x_t$$

where the gains $G_{1:T}$ are computed by solving a Riccati equation.

Computing the optimal solution

System-model

- ightharpoonup Define $x_t = (x_t^1, \dots, x_t^n)$ and $u_t = (u_t^1, \dots, u_t^n)$.
- ightharpoonup Dynamics: $x_{t+1} = Ax_t + Bu_t + w_t$
- ▶ Per-step cost

$$\mathbf{c}(\mathbf{x}_t, \mathbf{u}_t) = (\mathbf{C}\mathbf{x}_t - \bar{\mathbf{C}}\mathbf{r}_t)^\intercal \, \mathbf{Q} (\mathbf{C}\mathbf{x}_t - \bar{\mathbf{C}}\mathbf{r}_t) + \mathbf{u}_t^\intercal \mathbf{R}\mathbf{u}_t.$$

Complexity of Riccati equation

- ightharpoonup Dimension of system: nd_x .
- Complexity of solving Riccati equation $O(n^3 d_v^3)$.
- Does not scale to large networks!

Standard solution approach

- ▶ This is a standard centralized reference tracking problem.
- Doptimal solution is a state feedback of the form:

$$u_t = G_t x_t$$

where the gains $G_{1:T}$ are computed by solving a Riccati equation.

Network-coupled subsystems—(Aditya Mahajan)

Our result: Develop a decomposition which computes the optimal policy by solving at most $\mathfrak n$ Riccati eqns of dimension $d_x \times d_x$.

co-author: Shuang Gao

paper: TCNS 2022

Assumption

Structure of Per-step cost

$$c(\mathbf{x}_t, \mathbf{u}_t) = \sum_{i,j \in N} \left[\mathbf{h}_{\mathbf{q}}^{ij} (\mathbf{x}_t^i)^{\mathsf{T}} Q(\mathbf{x}_t^j) + \mathbf{h}_{\mathbf{r}}^{ij} (\mathbf{u}_t^i)^{\mathsf{T}} Q(\mathbf{u}_t^j) \right]$$

where $H_q = [h_q^{ij}]$ and $H_r = [h_r^{ij}]$ are symmetric matrices which have the same eigenvectors as M.

Assumption

Structure of Per-step cost

$$c(\mathbf{x}_t, \mathbf{u}_t) = \sum_{i,j \in N} \left[\mathbf{h}_{\mathbf{q}}^{\mathbf{i}\mathbf{j}}(\mathbf{x}_t^i)^{\mathsf{T}} Q(\mathbf{x}_t^j) + \mathbf{h}_{\mathbf{r}}^{\mathbf{i}\mathbf{j}}(\mathbf{u}_t^i)^{\mathsf{T}} Q(\mathbf{u}_t^j) \right]$$

where $H_q=[h_q^{ij}]$ and $H_r=[h_r^{ij}]$ are symmetric matrices which have the same eigenvectors as M.

Remark

For two symmetric $n \times n$ matrices M_1 and M_2 , the following statements are equivalent:

- $ightharpoonup M_1$ and M_2 share the same eigenvectors.
- $ightharpoonup M_1$ and M_2 communte (i.e., $M_1M_2=M_2M_1$)
- $ightharpoonup M_1$ and M_2 are simultaneously diagonalizable.

Assumption

Structure of Per-step cost

$$c(x_t, u_t) = \sum_{i,j \in N} \left[\mathbf{h}_{\mathbf{q}}^{\mathbf{i}\mathbf{j}}(x_t^i)^{\mathsf{T}} Q(x_t^j) + \mathbf{h}_{\mathbf{r}}^{\mathbf{i}\mathbf{j}}(u_t^i)^{\mathsf{T}} Q(u_t^j) \right]$$

where $H_q=[h_q^{ij}]$ and $H_r=[h_r^{ij}]$ are symmetric matrices which have the same eigenvectors as \pmb{M} .

Important special case

- ▶ Captures the intuition that the per-step cost respects the graph structure.
- Example: $H_q = q_0 I + q_1 M + q_2 M^2$ means that there is a cost coupling between the one-and two-hop neighbors.

Dynamical coupling

▶ Nodes are not exchageable

$$x_t^{9,1} = 2x_t^2 + 1x_t^4,$$
 $x_t^{9,2} = 2x_t^1 + 2x_t^3,$ $x_t^{9,3} = 2x_t^2 + 1x_t^4,$ $x_t^{9,4} = 1x_t^1 + 1x_t^3.$

Dynamical coupling

▶ Nodes are not exchageable

$$x_t^{9,1} = 2x_t^2 + 1x_t^4,$$
 $x_t^{9,2} = 2x_t^1 + 2x_t^3,$ $x_t^{9,3} = 2x_t^2 + 1x_t^4,$ $x_t^{9,4} = 1x_t^1 + 1x_t^3.$

Cost coupling

Nodes are not exchageable

Suppose $H_a = q_0 I + q_1 M + q_2 M^2$.

Dynamical coupling

▶ Nodes are not exchageable

$$x_t^{9,1} = 2x_t^2 + 1x_t^4,$$
 $x_t^{9,2} = 2x_t^1 + 2x_t^3,$ $x_t^{9,3} = 2x_t^2 + 1x_t^4,$ $x_t^{9,4} = 1x_t^1 + 1x_t^3.$

Cost coupling

Nodes are not exchageable

Suppose $H_q = q_0I + q_1M + q_2M^2$.

Two-hop neighborhood

Dynamical coupling

▶ Nodes are not exchageable

$$x_{t}^{g,1} = 2x_{t}^{2} + 1x_{t}^{4}, \qquad x_{t}^{g,2} = 2x_{t}^{1} + 2x_{t}^{3},$$

 $x_{t}^{g,3} = 2x_{t}^{2} + 1x_{t}^{4}, \qquad x_{t}^{g,4} = 1x_{t}^{1} + 1x_{t}^{3}.$

Cost coupling

▶ Nodes are not exchageable

Suppose $H_q = q_0I + q_1M + q_2M^2$. Then

$$H_{q} = \begin{bmatrix} q_{0} + 5q_{2} & 2q_{1} & 5q_{2} & q_{1} \\ 2q_{1} & q_{0} + 8q_{2} & 2q_{1} & 4q_{2} \\ 5q_{2} & 2q_{1} & q_{0} + 5q_{2} & q_{1} \\ q_{1} & 4q_{2} & q_{1} & q_{0} + 2q_{2} \end{bmatrix}$$

Network-coupled subsystems—(Aditya Mahajan)

Spectral decomposition of coupling matrices

$$M = \sum_{\ell=1}^{L} \lambda^{\ell} \mathbf{v}^{\ell} (\mathbf{v}^{\ell})^{\mathsf{T}},$$

Spectral decomposition of coupling matrices

$$M = \sum_{\ell=1}^{L} \lambda^{\ell} \mathbf{v}^{\ell} (\mathbf{v}^{\ell})^{\mathsf{T}}, \quad H_{q} = q_{0}I + q_{1} \sum_{\ell=1}^{L} \lambda^{\ell}_{q} \mathbf{v}^{\ell} (\mathbf{v}^{\ell})^{\mathsf{T}}, \quad H_{r} = r_{0}I + r_{1} \sum_{\ell=1}^{L} \lambda^{\ell}_{r} \mathbf{v}^{\ell} (\mathbf{v}^{\ell})^{\mathsf{T}}$$

Spectral decomposition of coupling matrices

$$M = \sum_{\ell=1}^{L} \lambda^{\ell} \mathbf{v}^{\ell} (\mathbf{v}^{\ell})^{\mathsf{T}}, \quad H_{q} = q_{0} I + q_{1} \sum_{\ell=1}^{L} \lambda_{q}^{\ell} \mathbf{v}^{\ell} (\mathbf{v}^{\ell})^{\mathsf{T}}, \quad H_{r} = r_{0} I + r_{1} \sum_{\ell=1}^{L} \lambda_{r}^{\ell} \mathbf{v}^{\ell} (\mathbf{v}^{\ell})^{\mathsf{T}}$$

Spectral decomposition of dynamics

At each node $i \in [n]$:

ightharpoonup For each $\ell \in [L]$, define eigenstates, eigencontrols, and eigennoise as

$$x_t^{\ell,\,i} = x_t^i v^\ell(v^\ell)^\intercal, \quad u_t^{\ell,\,i} = u_t^i v^\ell(v^\ell)^\intercal, \quad \text{and} \quad w_t^{\ell,\,i} = w_t^i v^\ell(v^\ell)^\intercal.$$

Spectral decomposition of coupling matrices

$$M = \sum_{\ell=1}^{L} \lambda^{\ell} \boldsymbol{v}^{\ell} (\boldsymbol{v}^{\ell})^{\mathsf{T}}, \quad H_{q} = q_{0} \mathbf{I} + q_{1} \sum_{\ell=1}^{L} \lambda^{\ell}_{q} \boldsymbol{v}^{\ell} (\boldsymbol{v}^{\ell})^{\mathsf{T}}, \quad H_{r} = r_{0} \mathbf{I} + r_{1} \sum_{\ell=1}^{L} \lambda^{\ell}_{r} \boldsymbol{v}^{\ell} (\boldsymbol{v}^{\ell})^{\mathsf{T}}$$

Spectral decomposition of dynamics

At each node $i \in [n]$:

ightharpoonup For each $\ell \in [L]$, define **eigenstates**, **eigencontrols**, and **eigennoise** as

$$\mathbf{x}_{\mathsf{t}}^{\ell,\,\mathsf{i}} = \mathbf{x}_{\mathsf{t}}^{\mathsf{i}} \mathbf{v}^{\ell}(\mathbf{v}^{\ell})^{\mathsf{T}}, \quad \mathbf{u}_{\mathsf{t}}^{\ell,\,\mathsf{i}} = \mathbf{u}_{\mathsf{t}}^{\mathsf{i}} \mathbf{v}^{\ell}(\mathbf{v}^{\ell})^{\mathsf{T}}, \quad \mathsf{and} \quad \mathbf{w}_{\mathsf{t}}^{\ell,\,\mathsf{i}} = \mathbf{w}_{\mathsf{t}}^{\mathsf{i}} \mathbf{v}^{\ell}(\mathbf{v}^{\ell})^{\mathsf{T}}.$$

Define auxiliary state, auxiliary control, auxiliary noise as

$$\breve{x}_t^i = x_t^i - \sum_{\ell=1}^L x_t^{\ell,i}, \quad \breve{u}_t^i = u_t^i - \sum_{\ell=1}^L u_t^{\ell,i}, \quad \text{and} \quad \breve{w}_t^i = w_t^i - \sum_{\ell=1}^L w_t^{\ell,i}.$$

Network-coupled subsystems—(Aditya Mahajan)

Noise-coupled dynamics

$$\begin{split} x_{t+1}^{\ell,\,i} &= (A + \lambda^\ell D)\,x_t^{\ell,\,i} + (B + \lambda^\ell E)\,u_t^{\ell,\,i} + \boldsymbol{w}_t^{\ell,\,i} \\ \text{and} \quad \breve{x}_{t+1}^{\,i} &= A\breve{x}_t^{\,i} + B\breve{u}_t^{\,i} + \breve{\boldsymbol{w}}_t^{\,i} \end{split}$$

Noise-coupled dynamics

$$\begin{split} x_{t+1}^{\ell,i} &= (A + \lambda^{\ell}D)\,x_t^{\ell,i} + (B + \lambda^{\ell}E)\,u_t^{\ell,i} + \boldsymbol{w_t^{\ell,i}} \\ \text{and} \quad \check{x}_{t+1}^i &= A\check{x}_t^i + B\check{u}_t^i + \boldsymbol{\check{w}_t^i} \end{split}$$

Decoupled cost

$$\begin{split} c(x_t,u_t) &= \sum_{i \in N} \left[\frac{\textbf{q}_0 \breve{c}(\breve{x}_t^i,\breve{u}_t^i) + \sum_{\ell=1}^L \textbf{q}^\ell c^\ell(x_t^{\ell,i},u_t^{\ell,i})}{\textbf{q}^\ell c^\ell(x_t^{\ell,i},\breve{u}_t^{\ell,i})} \right] \\ \text{where } \mathbf{q}^\ell &= \mathbf{q}_0 + \mathbf{q}_1 \lambda_{\mathbf{q}}^\ell, \quad r^\ell = r_0 + r_1 \lambda_r^\ell, \text{ and} \\ & \breve{c}(\breve{x}_t^i,\breve{u}_t^i) = (\breve{x}_t^i)^\intercal \, Q\breve{x}_t^i + \frac{r_0}{q_0} (\breve{u}_t^i)^\intercal \, R\breve{u}_t^i \\ & c^\ell(x_t^{\ell,i},u_t^{\ell,i}) = (x_t^{\ell,i})^\intercal \, Qx_t^{\ell,i} + \frac{r^\ell}{q^\ell} (u_t^{\ell,i})^\intercal \, Ru_t^{\ell,i}. \end{split}$$

Eigen-system (ℓ, i) with $\ell \in [L]$, $i \in [n]$

- State $x_t^{\ell,i}$. Control $u_t^{\ell,i}$.
- **>** Dynamics: $x_{t+1}^{\ell,i} = (A + \lambda^{\ell}D)x_{t}^{\ell,i} + (B + \lambda^{\ell}E)u_{t}^{\ell,i} + w_{t}^{\ell,i}$
- ▶ Per-step cost: $c^{\ell}(x_t^{\ell,i}, u_t^{\ell,i})$.

Auxiliary system i with $i \in [n]$

- \triangleright State \breve{x}_t^i . Control \breve{u}_t^i .
- ightharpoonup Dynamics: $\ddot{x}_{t+1}^i = A \ddot{x}_t^i + B \ddot{u}_t^i + \ddot{w}_t^i$
- $\blacktriangleright \text{ Per-step cost: } c^\ell(\breve{x}_t^i,\breve{u}_t^i).$

Eigen-system (ℓ,i) with $\ell \in [L]$, $i \in [n]$

- State $x_t^{\ell,i}$. Control $u_t^{\ell,i}$.
- ▶ Dynamics: $\chi_{t+1}^{\ell,i} = (A + \lambda^{\ell}D)\chi_{t}^{\ell,i} + (B + \lambda^{\ell}E)u_{t}^{\ell,i} + w_{t}^{\ell,i}$
- ▶ Per-step cost: $c^{\ell}(x_t^{\ell,i}, u_t^{\ell,i})$.

Auxiliary system i with $i \in [n]$

- \triangleright State \breve{x}_t^i . Control \breve{u}_t^i .
- ightharpoonup Dynamics: $\breve{\mathbf{x}}_{t+1}^i = \mathbf{A}\breve{\mathbf{x}}_t^i + \mathbf{B}\breve{\mathbf{u}}_t^i + \breve{\mathbf{w}}_t^i$
- ▶ Per-step cost: $c^{\ell}(\breve{\mathbf{x}}_t^i, \breve{\mathbf{u}}_t^i)$.

Only coupled through the noise in the dynamics

Eigen-system (ℓ,i) with $\ell \in [L]$, $i \in [n]$

- State $x_t^{\ell,i}$. Control $u_t^{\ell,i}$.
- ▶ Per-step cost: $c^{\ell}(x_t^{\ell,i}, u_t^{\ell,i})$.

Auxiliary system i with $i \in [n]$

- \triangleright State \check{x}_t^i . Control \check{u}_t^i .
- **D**ynamics: $\breve{\mathbf{x}}_{t+1}^i = \mathbf{A}\breve{\mathbf{x}}_t^i + \mathbf{B}\breve{\mathbf{u}}_t^i + \breve{\mathbf{w}}_t^i$
- ▶ Per-step cost: $c^{\ell}(\breve{x}_t^i, \breve{u}_t^i)$.

Certainty equivalence: Optimal policy of stochastic LQ system is same as that of deterministic LQ system.

The deterministic system has decoupled dynamics and cost!

Only coupled through the noise in the dynamics

Main result

Under standard assumptions, the optimal control action is given by

$$u_t^i = \breve{u}_t^i + \sum_{\ell=1}^L u_t^{\ell,i} = \breve{G}\breve{x}_t^i + \sum_{\ell=1}^L G^{\ell}x_t^{\ell,i}$$

where

$$\check{\mathsf{G}} = \mathsf{Gain}\Big(\mathsf{A},\mathsf{B},\mathsf{Q},\frac{\mathsf{r_0}}{\mathsf{q_0}}\mathsf{R}\Big)$$

$$\mathsf{G}^\ell = \mathsf{Gain}\Big(A + \lambda^\ell \mathsf{D}, \mathsf{B} + \lambda^\ell \mathsf{E}, \mathsf{Q}, \frac{\mathsf{r}^\ell}{\mathsf{q}^\ell} \mathsf{R}\Big), \quad \ell \in [\mathsf{L}]$$

Main result

Under standard assumptions, the optimal control action is given by

$$u_t^i = \breve{u}_t^i + \sum_{\ell=1}^L u_t^{\ell,i} = \breve{G}\breve{x}_t^i + \sum_{\ell=1}^L G^{\ell}x_t^{\ell,i}$$

where

$$\check{\mathsf{G}} = \mathsf{Gain}\bigg(\mathsf{A},\mathsf{B},\mathsf{Q},\frac{\mathsf{r}_0}{\mathsf{q}_0}\mathsf{R}\bigg)$$

$$G^{\ell} = \mathsf{Gain}\bigg(A + \lambda^{\ell}D, B + \lambda^{\ell}E, Q, \frac{r^{\ell}}{q^{\ell}}R\bigg), \quad \ell \in [L]$$

- ▶ The gains \check{G} , $\{G^{\ell}\}_{\ell=1}^{L}$ are the same at all subsystems!
- ▶ Requires solving (L+1) Riccati Eqn of dimension $d_x \times d_x$.
- ▶ Complexity scales $O(Ld_x^3)$ (cf. $O(n^3d_x^3)$ for naive solution).

Numerical Example

- > 20 harmonic oscillators coupled via the adjacency matrix of a graph
- \triangleright Solution obtained by solving three 2×2 Riccati equations

Conclusion

Develop a spectral factorization method for network-coupled subysstems which leads to scalable planning and learning

Conclusion

Develop a spectral factorization method for network-coupled subysstems which leads to scalable planning and learning

Planning solution

▶ Solve (L+1) Riccati eqns of dims $d_x \times d_x$.

Learning solution

▶ Regret per agent $\tilde{O}((1+\frac{1}{n})\sqrt{T})$

Conclusion

Develop a spectral factorization method for network-coupled subysstems which leads to scalable planning and learning

Planning solution

▶ Solve (L+1) Riccati eqns of dims $d_x \times d_x$.

Learning solution

▶ Regret per agent $\tilde{O}((1+\frac{1}{n})\sqrt{T})$

Poissible generalizations/points of interest

- ▶ Multiple types of agents, approximate symmetry, . . .
- > Specific models for power management in microgrids with storage devices . . .
- ▶ Adding constraints: Scalable MPC . . .

- email: aditya.mahajan@mcgill.ca
- web: http://cim.mcgill.ca/~adityam

Thank you

Funding

- NSERC Discovery
- DND IDEaS Network

References

- > planning: TCNS 2022
- learning: TCNS 2023