TEST A – Tempo massimo 7 min VALUTAZIONE: 1 Risposta esatta; 0 Risposta errata o non data

in diametro di un capetto diffatto è circa 100	0 μm. Lo spessore in notazione scientifica è:			
	$1.00 \times 10^{-2} \text{ m}$			
	$1.00 \times 10^{-3} \mathrm{m}$			
	$1.00 \times 10^{-4} \mathrm{m}$			
	$1.00 \times 10^{-5} \mathrm{m}$			
	$1.00 \times 10^{-6} \mathrm{m}$			
→ → → →	<u>→</u>	· -		
Se la forza costante $F = 8\hat{x} - 7\hat{y}$ (N) provale	duce lo spostamento $\overrightarrow{\Delta r} = -5\hat{x} + 3\hat{y}$ (m), il lav	oro (in J)		
	61			
	59			
	-1			
	-59			
	-61			
Se è $x(t) = A \sin(\omega t + \varphi)$, quale è la massima velocità v?				
γ,, γ, π,	ω			
	ωt			
	$\omega^2 A$			
	Αφ			
	ωΑ			
Un oggetto di massa m è sollevato da una donna dal pavimento ad un tavolo di altezza y. Di quanto è variata l'energia potenziale dell'oggetto?				
	mgy			
	-mgy			
	$\frac{^{1}/_{2}mv^{2}}{}$			
	$-\frac{1}{2}mv^2$			
	zero			
Un corpo si muove su una traiettoria circol Quanto vale il lavoro fatto sul corpo dalla	lare di raggio r di moto circolare uniforme con			
1	lare di raggio r di moto circolare uniforme con			
1	lare di raggio r di moto circolare uniforme con forza centripeta F in un giro completo?	uelocità v.		
1	lare di raggio r di moto circolare uniforme con forza centripeta F in un giro completo?	velocità v.		
1	lare di raggio r di moto circolare uniforme con reforza centripeta F in un giro completo? $ \begin{array}{c c} & zero \\ & F 2 \pi r \\ & 2 \pi mv^2 \\ & v^2 / r \end{array} $	velocità v.		
1	lare di raggio r di moto circolare uniforme con reforza centripeta F in un giro completo? $ \frac{\text{zero}}{\text{F 2 } \pi \text{ r}} $ $ 2 \pi \text{ mv}^2 $	velocità v.		
Quanto vale il lavoro fatto sul corpo dalla	lare di raggio r di moto circolare uniforme con reforza centripeta F in un giro completo? $ \begin{array}{c c} & zero \\ & F 2 \pi r \\ & 2 \pi mv^2 \\ & v^2 / r \end{array} $	velocità v.		
Quanto vale il lavoro fatto sul corpo dalla : Un carrello di 2 kg urta con un carrello di 3	lare di raggio r di moto circolare uniforme con viforza centripeta F in un giro completo? $ \begin{array}{c c} & zero \\ \hline & F 2 \pi r \\ \hline & 2 \pi mv^2 \\ \hline & v^2/r \\ \hline & mv^2/r \end{array} $	velocità v.		
Quanto vale il lavoro fatto sul corpo dalla : Un carrello di 2 kg urta con un carrello di 3	lare di raggio r di moto circolare uniforme con vi forza centripeta F in un giro completo?	velocità v.		
Quanto vale il lavoro fatto sul corpo dalla : Un carrello di 2 kg urta con un carrello di 3	lare di raggio r di moto circolare uniforme con reforza centripeta F in un giro completo?	velocità v.		
Quanto vale il lavoro fatto sul corpo dalla : Un carrello di 2 kg urta con un carrello di 3	lare di raggio r di moto circolare uniforme con reforza centripeta F in un giro completo?	velocità v.		

TEST B – Tempo massimo 10 min

AVVERTENZA: Riportare nello spazio vuoto di ogni quesito la formula usata.

VALUTAZIONE: Verrà valutata l'indicazione corretta della risposta esatta (1 punto) e la correttezza della formula usata (1 punto). Risposta non data o errata: 0 punti.

Una massa di 370 kg è soggetta ad un'accelerazione di 1.1 m/s². Se la stessa fo una massa di 1100 kg, quale sarebbe l'accelerazione di quest'ultima?	orza fosse aj	oplicata ad
	0.27 m/s^2	
	0.37 m/s^2	
	1.1 m/s ²	
	2.2 m/s^2	
	3.3 m/s^2	
Un blocco di massa 7.0 kg si muove su una superficie orizzontale priva di attri all'estremità di una molla ideale di costante elastica k=1.1 10 ³ N/m. Se l'ampi oscillazione è di 10 cm, quanto vale il modulo della velocità del blocco quando posizione di equilibrio?	ezza massin	na della
	0.0 m/s	
	0.1 m/s	
	1.2 m/s	
	10 m/s	
	12 m/s	
Una palla di massa 3 kg con una velocità iniziale di $(4\hat{x} + 3\hat{y})$ m/s urta contro una parete e rimbalza con una velocità di $(-4\hat{x} + 3\hat{y})$ m/s. Quale è l'impulso (in N·s) esercitato sulla palla dalla parete?		
	+24x̂	
	-24x̂	
	+18ŷ	
	-18ŷ	
	+8\$	

TEST C – Tempo massimo 15 min

VALUTAZIONE: Verrà valutato sia la correttezza del risultato numerico (fino a 2 punti) che lo svolgimento dell'esercizio (fino a 3 punti). Risposta non data o errata: 0 punti.

	accelerazione di gravità $g = 9.80 \text{ m/s}^2$
	= 1 kg viene lanciato con una velocità $v_0 = 4$ m/s lungo un piano orizzontale scabro e ercorso un tratto $s = 136$ cm. Determinare il coefficiente di attrito tra il piano e il
RISULTATI	$\mu_k =$

TEST D - Tempo massimo 20 min

VALUTAZIONE: Verrà valutato sia la correttezza delle affermazioni fatte e delle formule riportate (fino a 2 punti), sia l'uso di un linguaggio appropriato e rigoroso (fino a 3 punti). Risposta non data o errata: 0 punti.

Descrivere il moto di un corpo che scende lungo un piano inclinato di un angolo α rispetto all'orizzontale, nell'ipotesi che il piano sia scabro con coefficiente di attrito dinamico μ_k . Determinare l'espressione dell'accelerazione del moto. Determinare l'espressione della velocità raggiunta alla fine del piano inclinato in funzione della quota h di partenza del corpo.