15.085 Midterm Cheat Sheet
by Shreyas V. Srinivasan, page 1 of 1

1 Prob. Models & Measures

Prob. Experiments

Probability space: $(\Omega, \mathcal{F}, \mathbb{P})$ $-\Omega$ sample space

 $-\mathcal{F} \sigma$ -field -ℙ prob. measure

Disc. Prob. Space

 Ω finite or countable, \mathcal{F} set of all subsets of Ω $\mathbb{P}:\Omega\to[0,1]$ sums to 1

σ -fields

(a) $\emptyset \in \mathcal{F}$ (b) $A \in \mathcal{F} \implies A^c \in \mathcal{F}$

(c) $\{A_i\} \subseteq \mathcal{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$ Set $A \in \mathcal{F}$ "event"/"measurable," (Ω, \mathcal{F}) measurable space

Prob. Measures

Measure: $\mu: \mathcal{F} \to [0, \infty]$

 $\mathcal{F} = \bigcap_{s \in S} \mathcal{F}_s$ also σ -field

(a) $\mu(\emptyset) = 0$;

(b) Countable additivity: $\{A_i\} \subseteq \mathcal{F}$ disjoint

 $\implies \mu(\cup_i A_i) = \sum_{i=1}^{\infty} \mu(A_i)$

Prob. measure also has $\mathbb{P}(\Omega) = 1$ *Field*: like σ -field but finite

Continuity

Sequence of sets converge to union/intersection

2 Fundamental Models

Carathéodory's extension thm.

 \mathcal{F}_0 field, \mathcal{F} σ -field $\mathbb{P}_0: \mathcal{F}_0 \to [0,1], \mathbb{P}_0(\Omega) = 1$ \mathbb{P}_0 yields \mathbb{P} on (Ω, \mathcal{F})

Lebesgue measure

Uniform measure on [0,1]

Borel σ -field

 \mathcal{B} : smallest σ -field including every interval $[a, b] \subset [0, 1]$

 $A \subset [0,1], A \in \mathcal{B}$ Borel set

3 Conditioning & Independence **Conditional probability**

$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$

$$\mathbb{P}_B(A) = \mathbb{P}(A \mid B)$$

Bayes' rule:
$$\mathbb{P}_A(B_i) = \frac{\mathbb{P}(B_i)\mathbb{P}_{B_i}(A)}{\mathbb{P}(A)}$$

$$\mathbb{P}\left(\bigcap_{i=1}^{\infty} A_i\right) = \mathbb{P}(A_1) \prod_{i=2}^{\infty} \mathbb{P}\left(A_i \mid \bigcap_{j=1}^{i-1} A_j\right) \text{ Sinomial:} \quad \mathbb{E}[X] = np, \text{Var}(X) =$$

Independence

Defn.: $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$ \mathcal{F}_1 , \mathcal{F}_2 σ -fields indep. iff any $A_1 \in \mathcal{F}_1$ and $A_2 \in \mathcal{F}_2$ indep.

Borel-Cantelli lemma

Sequence of events $\{A_n\}$, $A = \{A_n \text{ i.o.}\} = \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} A_i$ (a) $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty \Longrightarrow \mathbb{P}(A) = 0$ (b) $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty \implies \mathbb{P}(A) = 1 \text{ if } (\mathbb{E}[XY])^2 \le \mathbb{E}[X^2]\mathbb{E}[Y^2]$ events A_n , $n \in \mathbb{N}$ indep.

Summation lemma

If $0 \le p_i \le 1$, $\forall i \in \mathbb{N}$, and $\sum_{i=1}^{\infty} p_i =$ ∞ , then $\prod_{i=1}^{\infty} (1 - p_i) = 0$

4 Combinatorial prob.

е

 $\lim_{n\to\infty} \left(1 + \frac{r}{n}\right)^n = e^r$

Stirling's approx.

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

5 Random Variables

Definition

(a) $X : \Omega \to \mathbb{R}$ s.t. $\{\omega \mid X(\omega) \le c\}$ \mathcal{F} measurable $\forall c \in \mathbb{R}$ (b) Extended-valued r.v. if $\forall c \in \overline{\mathbb{R}} =$

 $\mathbb{R} \cup \{\pm \infty\}$

 $X^{-1}(B) = \{X \in B\} = \{\omega \mid X(\omega) \in B\}$ Prob. law: $\mathbb{P}_X : \mathcal{B} \to [0,1], B \mapsto$

 $\mathbb{P}(X \in B)$ (measure on $(\mathbb{R}, \mathcal{B})$) $(\mathcal{F}_1, \mathcal{F}_2)$ -measurable func.: $f: \Omega_1 \to \mathbb{F}_2$

 Ω_2 s.t. $f^{-1}(B) \in \mathcal{F}_1, \forall B \in \mathcal{F}_2$ For $A \in \mathcal{F}$, I_A is $(\mathcal{F}, \mathcal{B})$ -measurable

CDFs

Defn.: $F_X : \mathbb{R} \to [0,1], x \mapsto \mathbb{P}(X \le x)$

(a) Monotonicity

(b) $\lim_{x\to-\infty} F_X(x)$ $\lim_{x\to\infty} F_X(x) = 1$ (c) Right-continuity

Discrete RV's

Range $X(\Omega)$ finite/countable $p_X : \mathbb{R} \to [0,1], x \mapsto \mathbb{P}(X=x)$ PMF

Continuous RV's

 $F_X(x) = \int_{-\infty}^{x} f(t) dt$, f PDF

6 Discrete RV's

Examples

Uniform: $p_X(k) = \frac{1}{b-a+1}$ Bernoulli: $p_X(1) = p$, $p_X(0) = 1 - p$

Binomial: $p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$

Geometric: $p_X(k) = (1 - p)^{k-1} p$

Poisson: $p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}$

Power law: $p_X(k) = \frac{1}{k^{\alpha}} - \frac{1}{(k+1)^{\alpha}}$

7 More Discrete RV's

Expected Values

Bernoulli: $\mathbb{E}[X] = p, \text{Var}(X) =$ p(1-p)

Geometric: $\mathbb{E}[X] = \frac{1}{p}$, $Var(X) = \frac{1-p}{p^2}$

Poisson: $\mathbb{E}[X] = \lambda$, $Var(X) = \lambda$ Power law: $\mathbb{E}[X] = \sum_{k=0}^{\infty} \frac{1}{(k+1)^{\alpha}}$

$$\mathbb{E}[XY])^2 \le \mathbb{E}[X^2] \mathbb{E}[Y^2]$$

Conditional Expectations

 $\mathbb{E}\left[\mathbb{E}\left[X\mid Y\right]g(Y)\right] = \mathbb{E}\left[Xg(Y)\right]$

8 Continuous RV's

Examples

Uniform: $F_X(x) = \frac{x-a}{b-a}$

Exponential: $F_X(x) = 1 - e^{-\lambda x}$

Normal: $f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$

Cauchy: $f_X(x) = \frac{1}{\pi(1+x^2)^2}$

Power law: $f_X(t) = \frac{\alpha c^{\alpha}}{t^{\alpha+1}}$

Exp. Value

 $\mathbb{E}[X] = \int_0^\infty (1 - F_X(t)) dt$ for X non-

Joint Dist.'s

 $F_{X|Y} = \mathbb{P}(X \le x, Y \le y)$

 $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$

Independence

 $F_{X,Y} = F_X(x)F_Y(y)$

9 More Cont. RV's **Conditional PDFs**

 $f_{X\mid Y}\left(x\mid y\right)=\frac{f_{X,Y}\left(x,y\right)}{f\left(x\mid y\right)}$

Bivariate Normal Dist.

 f_X , f_Y Normal PDF's

Mixed Bayes' Rule

Sums for discrete RV, prods for cont. RV

10 Derived Dist.'s

Func. of Single RV

If Y = g(X), calculate $F_Y(y) =$ $\mathbb{P}(g(X) \le y) = \int_{\{x \mid g(x) \le y\}} f_X(x) \, \mathrm{d}x$ Then $f_Y(y) = \frac{dF_Y}{dv}(y)$

Multivariate

$$f_Y(y) = f_X(M^{-1}y) \cdot |M^{-1}|$$

Max & Min of RV's

 $\mathbb{P}\left(\max_{i} X_{i} \leq x\right) = F_{X_{1}}\left(x\right) \cdots F_{X_{n}}\left(x\right)$

= 1 - $\mathbb{P}(\min_i X_i \leq x)$ $(1-F_{X_1}(x))\cdots(1-F_{X_n}(x))$

Convolution

 $p_{X+Y}(z) = \sum_{x} p_X(x) p_Y(z-x)$ $f_{X+Y}(z) = \int_{-\infty}^{\infty} f_{X,Y}(x, z - x) dx$

11 Abstract Integration I

12 Abstract Integration II

Fatou's Lemma

Y s.t. $\mathbb{E}[|Y|] < \infty$: (a) If $Y \leq X_n \forall n$, then $\mathbb{E}[\liminf_{n \to \infty} X_n] \leq$ $Y \forall n$ then \geq