Chapter 6

SERIES AND APPLICATIONS

Facts and Formulas

EXERCISE 1

Circle the correct answer:

1. The n^{th} term of an arithmetic sequence is given by:

$$(A) \quad T_n = a + (n-1)d$$

(B)
$$T_n = \frac{n}{2} [2a + (n-1)d]$$

(C)
$$T_n = a + nd$$

(D)
$$T_n = a(n-1)d$$

2. The sum of n terms of an arithmetic series, given a and d.

(A)
$$S_n = \frac{n}{2}[a+l]$$

(B)
$$S_n = \frac{n}{2} [a + (n-1)d]$$

(C)
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

(D)
$$S_n = 2n[2a + (n-1)d]$$

3. The sum of n terms of an arithmetic series, given a and l.

$$(A) S_n = \frac{n}{2} [a+2l]$$

(B)
$$S_n = \frac{n}{2} [a+l]$$

(C)
$$S_n = n[a+l]$$

(D)
$$S_n = \frac{n}{2} [2a+l]$$

4. The n^{th} term of a geometric progression is given by:

(A)
$$T_n = ar^n$$

(B)
$$T_n = a + r^n$$

$$(C) T_n = ar^{n-1}$$

(D)
$$T_n = a + r^{n-1}$$

5. The sum of n terms of a geometric series is given by:

(A)
$$S_n = \frac{a(r^n - 1)}{(r - 1)}$$

(B)
$$S_n = \frac{a(r-1)^n}{(r+1)}$$

(C)
$$S_n = \frac{a^n(r-1)}{(r-1)}$$

(D)
$$S_n = \frac{a(r^n - 1)}{(1 - r)}$$

6. The limiting sum of a geometric series is given by:

$$(A) S_{\infty} = \frac{a}{r-1}$$

(B)
$$S_{\infty} = \frac{a}{r+1}$$

$$(C) S_{\infty} = \frac{a}{1-r}$$

(D)
$$S_{\infty} = \frac{a-1}{r}$$

7. The condition for an infinite geometric series to have a limiting sum is:

 $(A) \qquad r > 1$

(B) r < 1

(C) r > -1

(D) -1 < r < 1

8. Formula for Compound Interest

(A)
$$A = P(1 - \frac{r}{100})^n$$

(B)
$$A = P(1 + \frac{r}{100})^n$$

EXERCISE 2

1. Which of the following are sequences and which are series?:

- (b) 2+4+8+16+....
- (c) -7-5-3-1....
- **2.** Find the next two terms in each sequence:
 - (a) 4, 7, 10, 13,
 - (b) 2, 6, 18, 54,
 - (c) 1, 8, 27, 64,
 - (d) 0, 3, 8, 15, 24, . . .
 - (e) 1, 1, 2, 3, 5, 8, ...

Arithmetic Progressions

EXERCISE 3

- 1. For each of the following, state the common difference:
 - (a) 6, 9.4, 12.8,
 - (b) $8, -1, -10, -19, \dots$
- 2. The n^{th} term of an arithmetic sequence

is given by

$$T_n = \frac{5n+4}{2}$$

Evaluate the common difference d,

10	

- 3. Find the value of x which makes the sequence 19, x, 81 arithmetic.
- **4.** For an A.P. a = 4 and d = 9.

- 5.* For the A.P.: $\sqrt{5}$, $\sqrt{45}$, $\sqrt{125}$, $\sqrt{245}$,...... Find d and T_{10}
- 6. Given the sequence 4, 7, 10, 13,

 (a) Find T₂₀

	(b) Find S ₂₀	10.	x - 8, $3x + 4$, $6x - 10$ are three consecutive terms of an A.P. (a) Evaluate x .
7.	Find S ₁₅ for the A.P. 8, 12, 16, 20,		(b) State the three terms.
8.	Given the sequence 20, 14, 8, 2,	11.	(c) State the common difference. $y + 3, 2y + 7, 3y + 11, 4y + 15$ are four consecutive terms of an A.P.
	(a) Find T_{18}		(a) If $y = 5$ evaluate the terms and state the common difference.
	(b) Find S ₁₈		(b) If $y = -10$ evaluate the terms and state the common difference.
		12.	Which term of 2, 9, 16, 23, has a value of 254?
9.	x + 3, $2x - 5$, $4x + 6$ are three consecutive terms of an A.P. (a) Evaluate x .		
	(b) State the three terms.	13.	How many terms of 2, 9, 16, 23, are needed to give a sum of 16082?
	(c) State the common difference.		

Which term of -3, 1, 5, 9, 13, 14.* is the first term to have a value greater

How many terms of 8, 5, 2, -1, -4, ...15. are needed to give a sum of -4495?

Which term of 546, 543, 540, ... 16. is the first term to be negative?

Evaluate $\sum_{n=0}^{18} (23 - 8n)$. 18.

17.

	n=			
1				
1				
ť.				
(
(
l.				
2				
1				
î				
i				

Evaluate $\sum_{n=1}^{12} (1-4n).$ 19.

Evaluate $\sum_{n=0}^{30} (6n-10)$. 20.

	n=5			
y		 	 	
1				
3				
8				
3				
i .				
1				
1				
12				
3				
1				
1				
1				
No.				
1				
387				
13			 	

Evaluate *k* if $\sum_{k=0}^{k} (5n+7) = 1800$. 21.

22.*	Find the sum of all integers from 1 to 70 that are not divisible by 9.		(d) S ₂₃
		24.*	A hell rings at 6.22 are and all
		24.	A bell rings at 6:32 am and then every 3 minutes until it last rings at 10:14 am. Using arithmetic sequences calculate the number of times the bell rings.
23.	The 50 th term of an A.P. is 337. The 72 nd term of this A.P. is 491. Find:		
	(a) d		
		25.	An A.P. with $a = 13$ has $S_{30} = 3435$. Find the value of d .
	(b) a		
	(c) Too		
	(c) T ₂₃		

26.	An A.P. with $a = 24$ has $S_{30} = -3195$. Find the value of d .	29.	Michael wants to improve his fitness. He runs 1.5 km the first day, then increases the distance by 400 m every day. On which day does he run 7.5 km? How far has he run altogether from day one?
27.	Which term of an A.P. with $a = 2$ and $d = 3$ is the first term greater than 500?		
		30.	Michelle starts a new job and the first week she deposits \$45 into her savings account. She then increases the deposit by \$5 each week. How much does she deposit in the 17 th week? How much has she saved altogether?
28.	For an A.P., $T_{20} = -61$ and $T_{48} = -173$. Evaluate a , d and S_{48} .		

Find the sum of the first 200 positive 31. integers. Hence, or otherwise, find the

sum of:	inia the
1, 2, 4, 5, 7, 8, 10, 11, 13,	200
1, 2, 7, 3, 7, 6, 10, 11, 13,	. 200.
l .	
İ	
1	
Î	
I	
}	
1	
*	
	i
1	
1 1	
	į
1	1

The sum of n terms of a series is given 32.

by
$$S_n = \frac{n^2 + 5n}{2}$$
.

Find S₁₂ (a)

!	- 5
	- 2
'	20
	- 6
	- 61
	- 1
	1.0
	- 10
	46
i	
	- 1
	100
	- 2
	1.0
	0.00

How many terms are required to (b)

Evaluate $\sum_{n=0}^{30} (19-7n)$. 33.

Find the sum of all consecutive even 34. numbers between 56 and 193.

35. How many terms of the series $-18 - 15 - 12 \dots \dots$ must be

36.	The sum of the first 30 terms of an A.P. whose first term is 5, is 1890. Find the common difference.	(b) What total distance does the ball travel in the air after the 15 throws?
37.	Tim opens a savings account with a small	39.* The horizontal cylindrical bars shown in the diagram are equally spaced and there is a common difference in the length of consecutive bars.
	deposit. He increases his deposit weekly by a constant amount. After 8 weeks he has saved \$280, and after 40 weeks he has saved \$5240. What was his initial deposit and by how much did he increase his deposit each week?	12 cm 4-62 m 4-96 m
		(a) How many bars are there altogether?
38.*	Peter throws a ball 12 m vertically into the air. Each successive throw is 14 cm less in height than the previous throw. (a) How high does the ball reach on his 15 th throw?	(b) What is the total length of all the horizontal bars?

(c)	Each bar has a diameter of 5 cm, and the bars are spaced 12 cm apart. Calculate the height h .

Geometric Progressions

EXERCISE 4

- **1.** For each of the following state the common ratio *r*:
 - (a) 2, 8, 32,
 - (b) 27, 9, 3,
 - (c) 4, -12, 36, ...
 - (d) 12, -30, 75, . . .
 - (e) b^2, b^6, b^{10}, \dots
- 2. The n^{th} term of a G.P. is given by :

$$T_n = 5(2^{n-1})$$

- (a) Evaluate a.
- (b) Evaluate r,
- (c) Find T₁₀.
- A positive integer x is inserted so that $48, x, 27, \ldots$ is a G.P. Find the value of x.

(a)	T_7	
		1

For a G.P. a = 6 and r = 4, find:

4.

8.

5.	Find T_{12} for $x^3 x^5, x^7, \ldots$
	i i
	1
	1
	i i
	1
	!
	i i
	1
	1
	[

If a = 4 and $r = \frac{1}{2}$ find:

(a) T₉.

(b) S₉.

9.	Find T_{11} and S_{11} for $6, -18, 54,$	13.	How many terms of $\frac{1}{2}$, 1, 2, 4,
			are needed to give a sum of 4095.5?
		14.	For the sequence $2, \sqrt{8}, 4, \sqrt{32}, 8, \dots$
			find:
10.	For the sequence $20, 5, 1\frac{1}{4}, \ldots$ find:		(a) T_{10} (as a surd)
10.	(a) T ₈ (as a basic fraction)		
	1		
			1
	(1) C (40 1 dog ml)		
	(b) S ₈ (to 1 dec. pl.)		
			(1) (1 (4 2 - 1 - 5 - 1)
			(b) S_{10} (to 2 sig. fig.)
	10.000		
11.	Solve for <i>n</i> : $3^{n-1} = 19683$		
		1	7771 1 4 6.4
		15.	Which term of the sequence $\frac{1}{2}$, $\frac{1}{2}$, $\frac{4}{2}$, is the first
			to exceed 5000?
12.	What term of the sequence		
	3, 6, 12, is 12288?		
			<i>P</i>
		J	1 1
112	NEW CENTURY MATHS HSC WORKBOOK		working continues next page

	[]		(c)	T_7
			i	
			1	
	İ		(d)	S_{12}
16.*	Which term of the sequence			
	800, 700, 612·5, is the			
	first term to be less than 80? (to 3 sig. fig.)			
		18.	For a	series $S_n = 2(3)^n - 2$, evaluate:
			(a)	S_6
			(b)	C.
			(0)	0]
			1	
			(c)	S ₂
			(d)	S ₃
			(e)	а
			[
			L	***********
			(f)	<i>r</i>
17.	For the geometric sequence with $T_4 = 80$ and $T_9 = 2560$ find:			
	(a) r			
			(g)	T ₇
			l	
	(b) <i>a</i>			

19.	(a)	Evaluate	$\sum_{n=1}^{9} 3(4)^{n-1}$	Į	

	n=1	U	
r			
1			- 3
1			
Ř			
			9
ĵ.			3
1			1
i			1
1			1
i .			1
1			j
Ŷ			1

(c) Evaluate
$$\sum_{n=1}^{8} \frac{1}{4} (2)^{n-1}$$

20. Evaluate $\sum_{n=1}^{10} 2^{2n-1}$

21. Evaluate
$$\sum_{n=5}^{12} (3)(-2)^n$$

Evaluate
$$1 + (\frac{1}{3}) + (\frac{1}{3})^2 + (\frac{1}{3})^3 + \dots + (\frac{1}{3})^7$$
 (as an improper fraction)

22.

23.* The sum of the 3^{rd} and 6^{th} terms of a G.P. is 18. The sum of the 6^{th} and 9^{th} terms of the same G.P. is 144. Evaluate a and r.

24. John receives a salary of \$39 600 in the first year of his employment. His salary increases by 6% each year.

(a)	year? (nearest \$)
i	
i	
1	No.
ì	
1	
i	14
<u> </u>	

(b) How much will he have earned altogether at the end of 7 years? (nearest \$)

25.* Find an expression for the n^{th} term (T_n) of the sequence: 5, 10, 17, 28, 47, 82,

Hint: $T_1 = 2 + 3 = 5$

$$T_2 = 4 + 6 = 10$$

$$T_3 = 8 + 9 = 17$$
 etc

Hence evaluate T ₁₅ .			
kaaaaaaaaaaaaaaaaaaaaaaa			

Limiting Sum of an Infinite Geometric Series EXERCISE 5

Determine which of the following G.P.'s have limiting sums and, if they exist, find their value:

(a) $-10, 5, -2.5, \dots$

(b) 12, -18, 27, · · · · · · · ·	
ř	i i
	3
i	3
f).	3
	- 1

- (d) 9, 6, 4,
- (f) $\frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$

6 5 4

(g) $e^6, e^5, e^4, \dots (e \approx 2.7)$

2. Determine the range of values of x for which the G.P. x, $\frac{3x^2}{2}$, $\frac{9x^3}{4}$, will

have a limiting sum.

3. Evaluate S_{∞} for a G.P. given:

(b) a = 14 and $r = -\frac{3}{4}$

4. A G.P. has a limiting sum of 40 and a common ratio of 0.4. Calculate:

(a)

(b) T_5

6. Use the infinite geometric series formula to express each of the following as a basic fraction.

(a) 0·413

(b) 0·38

	(c) 2.516
7.*	A ball is dropped from a height of 32 m
	It rebounds to a height of 19.2 m and on each successive bounce it reaches 0.6 of its previous height. In theory, what is the total distance the ball will travel?
8.	Evaluate $\sum_{n=1}^{\infty} (2) \left(\frac{1}{5}\right)^{n-1}$
9.	Evaluate $\sum_{n=1}^{\infty} (6)(-3)^{n-1}$.

2.516

Compound Interes	t, Superannuation and
------------------	-----------------------

Time Payment

EXERCISE 6

Martin invests \$7 000 at 5.25% p.a., 1. compounded annually.

> What is the value of his investment after 10 years?

(b) How much interest did he receive?

Find the equivalent simple (c) interest rate (2 dec. pl.)

2. Janis invests \$8 000 at 6% p.a., compounded quarterly. What is the value of her investment after 5 years?

What amount of money needs to be 3. invested at 5% p.a. (compounded annually) to grow to \$15 000 in 6 years?

4.	The purchase price of a car is \$36 000. It depreciates at a rate of 11% p.a. What is its value after 7 years?		
5.	Jasmine deposits \$600 into an account on the 1 st December each year starting in 1995. She receives an interest rate of 6% p.a. compounded annually.		(b) How much interest has been earned?
	(a) How much will her total investment be worth by December 2008?		
		7.*	Cathy borrows \$18 000 to buy a new car. She is charged interest at 12% p.a. compounded monthly, on the balance owing. The loan is to be repaid in equal monthly instalments over 5 years. Let A _n be the amount owing after the n th monthly repayment (M) has been made. (a) Find expressions for A ₁ , A ₂ , A ₃ and A _n .
	(b) How much interest has she received? (whole dollars)		
6.*	Suzanne invests \$2000 at the beginning of each year for 20 years. Interest is compounded 6 monthly at 5.6% p.a. (a) Calculate the value of the investment at the end of this period.		

(b)	Calculate her monthly instalments.	8.	Marena deposits \$20 000 into an investment account. Interest paid is 7% p.a. compounded annually. She withdraws \$P exactly 12 months after this deposit is made. She continues to withdraw \$P at the same time each year. After making 6 withdrawals her account balance is zero. Calculate the value of P.
(c)	Calculate the equivalent simple interest rate.		

9.	pay th quarte at 4% quarte Let A	n borrows \$70,000 and agrees to e loan plus interest in 40 equal orly instalments. Interest is charged per quarter and is calculated orly on the balance owing. n = amount owing after n quarters i = quarterly instalments
	(a)	Find an expression for A ₁ .
	(b)	Find an expression for A_2 .
	(c)	Find an expression for A ₃ .
	(d)	Find an expression for A _n .
	(e)	Find the amount of each quarterly instalment.
	(f)	Find the amount owing after 3 years.

FORMULAS

For questions 1, 2, 3 and 4 complete each formula for Arithmetic Progressions:

1.
$$T_n =$$

- 2. (using a and d)
- 3. $S_n =$ (using a and l)
- $T_n =$ (using S_n and S_{n-1})

For questions 5, 6 and 7 complete each formula for Geometric Progressions:

- 5. $T_n =$
- 6. $S_n =$
- 7. $S_{\infty} =$
- Compound Interest Formula A = 8.
- In an arithmetic sequence there is a 9. between successive terms.
- In a geometric sequence there is a 10. between successive terms.
- 11. The condition for the limiting sum of a G.P. to exist is
- The symbol used for the summation of a series is 12.

Exercise 3 (page 95)

- 1. 279, 297, 729, 792, 927, 972
- 2. 11, 14, 16, 41, 44, 46, 61, 64, 66

3. *

4.(a)

- (b) $\frac{7}{34}$ (c) $\frac{9}{17}$ 5.(a) $\frac{1}{16}$ (b) $\frac{1}{6}$ (c) $\frac{1}{24}$ (d) 12
- (e) $\frac{7}{48}$ 6. * 7.(a) $\frac{1}{320}$ (b) $\frac{1}{64}$ (c) $\frac{1}{40}$
- 8.(a) $\frac{1}{81}$ (b) $\frac{16}{81}$ (c) $\frac{65}{81}$ (d) $\frac{8}{81}$ 9. $\frac{1}{138}$
- **10.(a)** 16.25% **(b)** 48.75% **(c)** 7%
- 11.(a) 24 (b) $\frac{1}{2}$ 12.(a) $\frac{9}{100}$ (b) $\frac{26}{225}$

Exercise 4 (page 97)

- 1. * 2. * 3.(a) $\frac{245}{1199}$ (b) $\frac{119}{801}$ (c) $\frac{101}{198}$
- **4.(a)** $\frac{1}{2}$ **(b)** $\frac{3}{10}$ **(c)** $\frac{13}{40}$

Exercise 5 (page 99)

- **1.** P(A) + P(B) P(A and B) **2.** $\frac{31}{40}$ **3.** 8

4.(a)

(b) 15 **(c)** $\frac{7}{90}$ **(d)** $\frac{13}{18}$ **(e)** $\frac{5}{6}$

5.(a)

(b) $\frac{1}{10}$ **(c)** $\frac{7}{15}$ **(d)** $\frac{9}{10}$ **(e)** $\frac{19}{60}$ **6.** *

Summary (page 101)

- 1. outcomes, outcomes 2. sample space 3. 1
- **4.** 0, 1 **5.** 0 **6.** 1 **7.** mutually exclusive
- **8.** P(A) + P(B) **9.** P(A) + P(B) P(A and B)
- 10. dependent 11. independent 12. not
- 13. complementary, 1 14. tree
- **15.** probability tree **16.** $c \times d$
- 17. product, $P(A) \times P(B)$ 18. added

Series and Applications

Exercise 1 (page 103)

- 1. A 2. C 3. B 4. C 5. A 6. C
- 7. D 8. B

Exercise 2 (page 104)

- 1.(a) sequence (b) series (c) series (d) sequence
- **2.(a)** 16, 19 **(b)** 162, 486 **(c)** 125, 216
- (d) 35, 48
 - **(e)** 13, 21

Exercise 3 (page 104)

- **1.(a)** 3.4 **(b)** -9 **2.** 2.5 **3.** 50

- **4.(a)** 211
- **(b)** 2580
- 5. *
- **6.(a)** 61
- **(b)** 650
- **7.** 540

- **8.(a)** -82 **(b)** -558 **9.(a)** -19
- (b) -16, -43, -70 (c) -27 **10.(a)** 26
- **(b)** 18, 82, 146 **(c)** 64 **11.(a)** 8, 17, 26, 35, *d* = 9
- **(b)** -7, -13, -19, -25, d = -6 **12.** 37
- **13.** 68 **14.** * **15.** 58 **16.** T₁₈₄ **17.** 1810
- **18.** -954
- **19.** −300 **20.** 2470

- **21.** 25
- 22. *
- **23.(a)** 7 **(b)** -6 **(c)** 148 **(d)** 1633
- **24.** * **25.** 7 **26.** -9 **27.** $T_{168} = 503$

- **28.** 15, -4, -3792 **29.** Day 16, 72 km
- **30.** \$125, \$1445 **31.** 13 467

- **32.(a)** 102 **(b)** 30 **33.** -2691

- **34.** 8500 **35.** 39 **36.** 4 **37.** \$14. \$6
- 38. * 39. *

Exercise 4 (page 111)

- 1.(a) 4 (b) $\frac{1}{3}$ (c) -3 (d) -2.5 (e) b^4

- **2.(a)** 5 **(b)** 2 **(c)** 2560 **3.** 36 **4.(a)** 24576

- **(b)** 2046 **5.** x^{25} **6.** e^{-8} **7.** ± 5

- **8.(a)** $\frac{1}{64}$ **(b)** $7\frac{63}{64}$ **9.** 354 294, 265 722
- **10.(a)** $\frac{5}{4096}$ **(b)** 26.7 **11.** 10 **12.** T_{13}

- **13.** 13 **14.(a)** $32\sqrt{2}$ **(b)** 150 **15.** $T_{10} = 9841.5$
- **16.** * **17.(a)** 2 **(b)** 10 **(c)** 640 **(d)** 40 950
- **18.(a)** 1456 **(b)** 4 **(c)** 16 **(d)** 52

- **(e)** 4 **(f)** 3 **(g)** 2916
- **19.(a)** 262 143 **(b)** $14\frac{2}{5}$ **(c)** $63\frac{3}{4}$
- **20.** 699 050 **21.** 8160 **22.** $\frac{3280}{2187}$

- 23. * 24.(a) \$56173 (b) \$332396 25. *

Exercise 5 (page 115)

- 1.(a) $-6\frac{2}{3}$ (b) no (c) 10000 (d) 27
- (e) no (f) 0.5 (g) $\frac{e^7}{e^{-1}}$ 2. $-\frac{2}{3} < x < \frac{2}{3}$

- **3.(a)** 12.5 **(b)** 8 **4.(a)** 24 **(b)** 0.6144
- **5.(a)** \$305.08 **(b)** \$400 **6.(a)** $\frac{413}{999}$

- **(b)** $\frac{7}{18}$ **(c)** $2\frac{511}{990}$ **7.** * **8.** 2.5 **9.** 1.5

Exercise 6 (page 117)

- **1.(a)** \$11676.67 **(b)** \$4676.67 **(c)** 6.68% p.a.

- **2.** \$10 774.84 **3.** \$11 193 **4.** \$15 923.28
- **5.(a)** \$12 009 **(b)** \$4209 **6.** * **7.** *

- 8. \$4195.92 9(a) 70000(1.04) M
- **(b)** $70\,000(1.04)^2 M(1+1.04)$
- (c) $70\,000(1.04)^3 M(1 + 1.04 + 1.04^2)$

(d) $70\,000(1.04)^n - 25M(1.04^n - 1)$

- **(e)** \$3536.64 **(f)** \$58.931.39

Formulas (page 121)

- **1.** a + (n-1)d **2.** $\frac{n}{2} [2a + (n-1)d]$ **3.** $\frac{n}{2} [a+l]$

- **4.** $S_n S_{n-1}$ **5.** ar^{n-1} **6.** $\frac{a(r^n 1)}{r}$
- 7. $\frac{a}{1-r}$ 8. $P(1+r\%)^n$
- 9. common difference 10. common ratio
- 11. -1 < r < 1 12. $\sum_{i=1}^{n}$

Applications of Calculus to the Physical World Exercise 1 (page 122)

- 1. B 2. C 3. B 4. A 5. C 6. B
- 7. A 8. C 9. C 10. A 11. C 12. B

Exercise 2 (page 123)

- **1.(a)** 450 **(b)** 7 **2.** 351.8 **3.** *
- **4.(a)** $\frac{2}{3}\pi h$ **(b)** 36π **5.** *

Exercise 3 (page 124)

- **1.(a)** 0 **(b)** 72 m **(c)** 3 s **(d)** 75 m
- (e) 72 m (f) changed direction (g) 10 s
- **2.(a)** 4, -2 **(b)** 9 s
- 3.(a) 1 m to the right (b) 16 m (c) 3 s
- (d) 6 m to the left (e) 25 m
- **4.(a)** after 7 s **(b)** 98 m **(c)** 130 m
- - **6.(a)** 0 **(b)** after 4.5 s **(c)** 54, left
- **5.** 5 7. *
- 8.(a)

- (f) $\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$ s
 - **9.** 18.96 m
- 10. *

(e) 12 m

Exercise 4 (page 128)

- 1. v = 7, a constant
- **3.(a)** v > 0 for all values of t
- **(b)** 225 m/s **4.(a)** 104

(b) 3 m **(c)** 1.5 m **(d)** π , 2π s

Exercise 3

5
$$A.P. \sqrt{5}, \sqrt{45}, \sqrt{125}, \sqrt{245}, ...$$

i.e. $\sqrt{5}, \sqrt{9}\sqrt{5}, \sqrt{25}\sqrt{5}, \sqrt{49}\sqrt{5}, ...$
 $\sqrt{5}, 3\sqrt{5}, 5\sqrt{5}, 7\sqrt{5}, ...$
 $d = T_2 - T_1$
 $= 3\sqrt{5} - \sqrt{5}$
 $= 2\sqrt{5}$
 $T_n = a + (n-1)d$
 $T_{10} = \sqrt{5} + (10-1)2\sqrt{5}$
 $= \sqrt{5} + (9)2\sqrt{5}$
 $= \sqrt{5} + 18\sqrt{5}$

14
$$A.P. -3, 1, 5, 9, 13...$$

 $a = -3$ $d = T_2 - T_1 = 1 - -3 = 4$
 $T_n = a + (n-1)d$
 $T_n = (-3) + (n-1)(4)$
 $= -3 + 4n - 4$
 $= 4n - 7$
 $Tn > 200$
 $4n - 7 > 200$
 $4n > 200 + 7$
 $4n > 207$
 $n > \frac{207}{4}$
 $n > 51\frac{3}{4}$
 $\therefore n = 52$

 $=19\sqrt{5}$

i.e. T_{52} is the first term > 200

22 Numbers divisible by 9

9, 18, 27, 63

A.P.
$$a = 9 : d = 18 - 9 = 9$$
 $n = 7$
 $S_n = \frac{n}{2} (2a + (n-1)d)$
 $S_7 = \frac{7}{2} (2(9) + (7-1)(9))$
 $= \frac{7}{2} (18 + (6)(9))$
 $= \frac{7}{2} (18 + 54)$
 $= \frac{7}{2} (72)$

 $= 7 \times 36$

= 252

SERIES AND APPLICATIONS

Sum of all integers from 1 to 70 A.P. a = 1: d = 1: n = 70 $S_n = \frac{n}{2}(2a + (n-1)d)$ $S_{70} = \frac{70}{2}(2(1) + (70 - 1)(1))$ $= \frac{70}{2}(2 + (69))$ = 35(71)= 2485

Sum of integers from 1 to 70, NOT divisible by 9 = 2485 - 252= 2233

24 From 6: 32 am to 10: 14 am = 222 minutesWorking from 32 minutes past 6 to 254 minutes past 6 we get the sequence 32, 35, 38, 254
A.P. a = 32: d = 3 $T_n = a + (n-1)d$ 254 = 32 + (n-1)(3) 254 = 32 + 3n - 3 254 = 29 + 3n

38 12, 11·86, 11·72
A.P.
$$a = 12$$
: $d = -0·14$
 $T_n = a + (n-1)d$
 $T_{15} = 12 + (15-1)(-0·14)$
 $= 12 + (14)(-0·14)$
 $= 12 - 1·96$
 $= 10·04 \text{ m}$

225 = 3n

3n = 225

n = 75

Distance travelled is both up and down = $2 \times \text{distance up}$

$$S_{n} = \frac{n}{2} (a+l)$$

$$S_{15} = \frac{15}{2} (12+10\cdot04)$$

$$= \frac{15}{2} (22\cdot04)$$

$$= 165\cdot3$$

Distance travelled = $2 \times 165 \cdot 3$ = $330 \cdot 6 \text{ m}$

(a) $A.P. \ 4 \cdot 96, \ 4 \cdot 62, \dots 0 \cdot 54$ $a = 4 \cdot 96 : d = 4 \cdot 62 - 4 \cdot 96$ $= -0 \cdot 34$ $T_n = a + (n-1)d$ $0 \cdot 54 = 4 \cdot 96 + (n-1)(-0 \cdot 34)$ $0 \cdot 54 = 4 \cdot 96 + (-0 \cdot 34n + 0 \cdot 34)$ $0 \cdot 54 = 4 \cdot 96 - 0 \cdot 34n + 0 \cdot 34$ $0 \cdot 34n = 5 \cdot 3 - 0 \cdot 54$ $0 \cdot 34n = 4 \cdot 76$ $n = \frac{4 \cdot 76}{0 \cdot 34}$ n = 14

(b)
$$4 \cdot 96 + 4 \cdot 62$$
, . . . $+ 0 \cdot 54$
 $S_n = \frac{n}{2}(a+l)$
 $S_{14} = \frac{14}{2}(4 \cdot 96 + 0 \cdot 54)$
 $= 7(5 \cdot 5)$
 $= 38 \cdot 5 \text{ m}$

(c) 14 bars 13 spaces spaces = 13×12 cm = 13×0.12 m = 1.56 m bars = 14×5 cm = 1×0.05 m = 0.7 m height = 1.56 m + 0.7 m = 2.26 m

Exercise 4

23

$$ar^{2} + ar^{5} = 18$$

$$\Rightarrow ar^{2}(1+r^{3}) = 18. \quad 10$$

$$ar^{5} + ar^{8} = 144$$

$$\Rightarrow ar^{5}(1+r^{3}) = 144. \quad 20$$

$$2 \div 10 : r^{3} = 8$$

$$r = 2$$
When $r = 2$

$$a(2)^{2} + a(2)^{5} = 18$$

$$4a + 32a = 18$$

$$36a = 18$$

$$a = \frac{18}{36}$$

$$a = 0.5$$

$$\therefore a = 0.5, r = 2$$

25 5,10,17,28,47,82,.....

Hint:
$$T_1 = 2 + 3 = 5$$
 $T_2 = 4 + 6 = 10$
 $T_3 = 8 + 9 = 17$

First part of each term:

2, 4, 8, ... $G.P.: a = 2, r = 2$

$$T_n = ar^{n-1}$$
 $T_n = (2)(2)^{n-1}$
 $T_n = 2^n$

Second part of each term:

3, 6, 9, ... $A.P.: a = 3, d = 3$

$$T_n = a + (n-1)d$$

$$T_n = (3) + (n-1)(3)$$

$$T_n = 3 + 3n - 3$$

$$T_n = 3n$$
 \therefore For given sequence:

$$T_n = 2^n + 3n$$

$$T_{15} = 2^{15} + 3(15)$$

$$= 32768 + 45$$

$$= 32813$$

Exercise 5

7

Distance =
$$32 + 2\underbrace{\left(19 \cdot 2 + 0 \cdot 6(19 \cdot 2) + 0 \cdot 6\{0 \cdot 6(19 \cdot 2)\} + \dots\right)}_{G.P.\ a = 19 \cdot 2;\ r = 0 \cdot 6}$$

$$S_{\infty} = \frac{a}{1 - r}$$

$$= \frac{19 \cdot 2}{1 - 0 \cdot 6}$$

$$= \frac{19 \cdot 2}{0 \cdot 4}$$

$$= 48$$
Distance = $32 + 2(48)$

$$= 32 + 96$$

 $=128 \, \text{m}$

Exercise 6

6(a)
$$5 \cdot 6\%$$
 p.a. = $0 \cdot 056$ p.a.

$$= 0.028 \, \text{per half year}$$

A =
$$2000(1 \cdot 028)^{40} + 2000(1 \cdot 028)^{38} + 2000(1 \cdot 028)^{36} + \dots + 2000(1 \cdot 028)^{4} + 2000(1 \cdot 028)^{2}$$

= $2000[1 \cdot 028^{40} + 1 \cdot 028^{38} + 1 \cdot 028^{36} + \dots + 1 \cdot 028^{4} + (1 \cdot 028)^{2}]$
= $2000[1 \cdot 028^{2} + (1 \cdot 028)^{4} + \dots + (1 \cdot 028)^{40}]$
G.P. $a = 1 \cdot 028^{2}$; $r = 1 \cdot 028^{2}$; $n = 20$

$$S_{n} = \frac{a(r^{n} - 1)}{r - 1}$$

$$S_{20} = \frac{1 \cdot 028^{2}[(1 \cdot 028^{2})^{20} - 1]}{1 \cdot 028^{2} - 1}$$

$$= \frac{1 \cdot 028^{2}(1 \cdot 028^{40} - 1)}{1 \cdot 028^{2} - 1}$$

$$= 37 \cdot 5568718$$

$$A = 2000 \times 37 \cdot 5568718$$

$$= \$75113 \cdot 74$$

i.e. Amount is \$75113 · 74

(b) Interest earned =
$$\$75113 \cdot 74 - (\$2000 \times 20)$$

= $\$75113 \cdot 74 - \40000
= $\$35113 \cdot 74$

7 Loan = \$18000; Int =12% p.a.=1% per month; 5 years = 60 months

An = Amount owing after n^{th} payment; M = monthly payment

(a)
$$A_1 = 18000 + (0.01 \times 18000) - M$$

=
$$18000(1+0.01)-M$$
 (18000 is a common factor of the 1st two terms)

$$=18000(1 \cdot 01) - M$$

$$A_2 = A_1(1 \cdot 01) - M$$

$$A_2 = (18000(1 \cdot 01) - M)(1 \cdot 01) - M$$

$$A_2 = 18000(1 \cdot 01)^2 - M(1 \cdot 01) - M$$
 (-M is a common factor of the last two terms)

$$A_2 = 18000(1 \cdot 01)^2 - M\{(1 \cdot 01) + 1\}$$

$$A_2 = 18000(1 \cdot 01)^2 - M\{1 + (1 \cdot 01)\}$$

$$A_3 = A_2(1 \cdot 01) - M$$

$$A_3 = \left[18000(1 \cdot 01)^2 - M\{(1 \cdot 01) + 1\}\right](1 \cdot 01) - M$$

$$A_3 = 18000(1 \cdot 01)^3 - M(1 \cdot 01)^2 - M(1 \cdot 01) - M$$
 (-M is a common factor of the last three terms)

$$A_3 = 18000(1 \cdot 01)^3 - M\{(1 \cdot 01)^2 + (1 \cdot 01) + 1\}$$

$$A_3 = 18000(1 \cdot 01)^3 - M\{1 + (1 \cdot 01) + (1 \cdot 01)^2\}$$

$$A_n = 18000(1 \cdot 01)^n - M\{1 + (1 \cdot 01) + (1 \cdot 01)^2 + (1 \cdot 01)^3 + \dots + (1 \cdot 01)^{n-1}\}$$

$$=18000(1\cdot01)^{n}-M\frac{(1\cdot01^{n}-1)}{(1\cdot01-1)}$$

$$=18000(1\cdot01)^{n}-100M((1\cdot01^{n}-1)$$

(b) When
$$n = 60$$
: $A_{60} = 0$ i.e. After 60^{th} payment there is zero owing

$$0 = 18000(1 \cdot 01)^{60} - M(1 + (1 \cdot 01) + (1 \cdot 01)^{2} + (1 \cdot 01)^{3} + \dots + (1 \cdot 01)^{59})$$

$$G.P. \ a = 1; \ r = 1 \cdot 01; \ n = 60$$

$$S_{n} = \frac{a(r^{n} - 1)}{r - 1}$$

$$S_{60} = \frac{1((1 \cdot 01)^{60} - 1)}{1 \cdot 01 - 1}$$

$$= \frac{(1 \cdot 01)^{60} - 1}{0 \cdot 01}$$

$$= 81 \cdot 66966985$$

$$0 = 18000(1 \cdot 01)^{60} - M(81 \cdot 66966985)$$

$$M(81 \cdot 66966985) = 18000(1 \cdot 01)^{60}$$

$$M = \frac{18000(1 \cdot 01)^{60}}{81 \cdot 66966985}$$

$$M = 400 \cdot 40$$

:. Monthly instalment is \$400 · 40

(c) Total repayments =
$$$400.40 \times 60$$

Using Simple Interest formula $I = \frac{PRT}{100}$

$$\therefore R = \frac{100I}{PT}$$
$$= \frac{100 \times 6024}{18000 \times 5}$$

$$R = 6.69\%$$