浙江大学 20 12 - 20 13 学年 春夏 学期

《 信号与系统(甲)》课程期末考试试卷

	课程号:	111C	0061		,开课	学院:	信电系				
	考试试卷	ģ: √A	卷、B卷	(请在货	 走定项上	:打√)					
	考试形式	戊: √沒	引、开卷	(请在选	定项上	打√),	允许带_	计算器入	场		
	考试日期	月 : 2	<u>013</u> 年_	07_月	03 目,	考试时	间: <u>120</u>)_ 分钟			
				诚信考试	代,沉着	应考,	灶绝违纪。				
考生姓名:学号:			所属院系:								
	题序	_		=	四	五	六	总 分			
	得分										
	评卷人										
<u> </u>	、选择题	(四选-	-) (10)	×2分)							
1.	下列信号	中哪个	是能量信	号						,	
A. $\delta(t)$ B. $Sa(t)$ C. $u(t)$ D. $\delta'(t)$ 2. 下列哪个系统是因果 LTI 系统)
	y(t) = x(t)		* *		x[n-1]					`	
C. $y(t) = e^{-t}x(t)$ D. $y[n] = x[n-1] - x[-n]$										(`
3. <i>x</i> [<i>n</i>] = sin(4 <i>πn</i> / 11) 的周期是 A. 11 B. 2 C. 非周期 D. 11/2)
4. 一个因果低通连续时间 LTI 系统对阶跃信号 $u(t)$ 的响应 $s(t)$ 满足										()
A .	$\lim_{t\to +\infty} s(t) = 0$	ρ B.	$\lim_{t\to +\infty} s(t) =$	=常数 C	· $\lim_{t\to +\infty} s($	$(t)\neq 0$	$D. \lim_{t\to +\infty} s(t)$)=0			
5. 试计算信号 $x(t) = \cos 100\pi t \cdot \frac{\sin 200\pi t}{2}$) 的奈奎斯特频率.									()
	200π			$\pi \iota$							
<i>c</i> .	:	그 ~(4)	₄ ² Γ(4 1)	(4. 2	\1 651 <i>6</i> 5	外击				()
	试确定信号 整个S平面				/J] [[] (X)	以 以				(,
	右半S平面			人外的整/	个S平面	Ī				,	
	下列哪句隊 连续时间周			十级数存	在收敛:	条件和き	· 布斯现象	:	(`)
В	连续时间非	周期信	号的傅 3	江叶变换	存在收益	敛条件,	但不存在	吉布斯现象;			
C ī	离散时间居	制期信号	b的傅立 [□]	十级数存	在收敛	条件,但	一个存在吉	布斯现象;			

D 离散时间非周期信号的傅立叶变换不存在收敛条件和吉布斯现象;

8.
$$x(2t-1)\delta(t-2)$$
 的正确结果是 ()

- A. $x(-3)\delta(t-2)$ B. $x(3)\delta(t-2)$
- C. $x(2t-3)\delta(t-2)$ D. x(2t-3)

9. 单边拉氏变换象函数
$$F(s) = \frac{e^{-2s}}{s+2}$$
 的原函数 $f(t)$ 是 ()

- A. $e^{-2t}u(t-2)$ B. $e^{-(t-2)}u(t-2)$
- C. $e^{-t}u(t+2)$ D. u(t-2)

10 已知某一阶连续系统的极点和零点分别是 s=-1 和 s=-2, $H(\infty)=1$,则系统的系统函数 H(s)为 ()

- A. $\frac{s+2}{s+1}$ B. $\frac{s+1}{s+2}$ C. (s+1)(s+2) D. $\frac{s-2}{s-1}$

二.每小题5分

1. 已知某连续时间 LTI 系统,当输入为 x(t)时,输出为 y(t),如下图所示,求该系统的单位 冲激响应。

2. 已知离散时间信号的傅里叶变换 $X(e^{j\omega})=X_1(e^{j\omega})\cdot e^{-j\omega}$, $X_1(e^{j\omega})$ 如图所示,求原信号 x[n]

3. 已知 $x(t) \stackrel{F}{\longleftrightarrow} X(j\omega)$,若 $y(t) = \int_{-\infty}^{t} x(4-2\tau)d\tau$,求 y(t) 的傅立叶变换 $Y(j\omega)$ 。

4. 用采样周期 T 对连续时间信号 $x(t) = \cos(4000\pi t)$ 采样, 得到一离散时间信号 $x[n] = \cos(\frac{\pi n}{4})$ 。问该采样是否一定满足采样定理,请举一个具体的例子支持你的观点。

5.求
$$F(s) = \frac{e^{-2s} + e^{-s}}{1 - e^{-3s}}$$
, $\text{Re}\{s\} > 0$ 的原函数 $f(t)$

三. $(10\, \mathcal{G})$ 已知一个理想高通滤波器,其频率响应为 $H(j\omega) = \begin{cases} e^{-j\omega t_0}, & |\omega| > \omega_c \\ 0, & |\omega| < \omega_c \end{cases}$,其中 ω_c 为截止角频率。(a)求系统的单位冲激响应;(b)当输入激励为 $x(t) = \frac{\sin 10\pi t}{\pi t}$ 时,若要求输出信号 y(t) 的能量为输入信号 x(t)能量的 50%,试确定 ω_c 应具有的值。

四. (15分)某3个LIT系统对单位阶跃信号的响应分别为如下图A、B、C所示。

- 1. 试确定那些所对应的 LIT 系统为低通特性?
- 2. 试画出所对应的 LIT 系统可能的频率响应和单位冲激响应?

五.(10分) 考虑某一LTI系统:

假设以下条件:

- 1. 输入信号 x(t) 的直流量为零;
- 2. 该输入信号 *x*(*t*) 对应的输出信号的微分如下图所示。 试求该输入信号,并画出该输入信号。

六. (15分) 某因果离散时间 LTI 系统, 其输入和输出有下列差分方程描述: y[n-1]+2y[n]=x[n]

- 1. 写出该系统的系统函数,并判断其稳定性;
- 2. 若 y[-1]=1, $x[n]=3(1/4)^n$ u[n], 求 $n \ge 0$ 时系统的输出 y[n], 并指出零输入响应与零状态响应;

2013年信号与系统(甲) 试卷答案

一选择题

$$\chi_1(n) = \frac{\sin \frac{\pi}{6}n}{\pi n}$$

$$\chi[n] = \chi_{1}[n-1] = \frac{\sin \frac{\pi}{6}(n-1)}{\pi(n-1)}$$

波
$$Q(t) = p(t-2) = \chi(-2(t-2)) = \chi(4-2t)$$
,则

$$Q(jw) = P(jw)e^{-jwz} = \frac{1}{z}X(-j\frac{w}{2})e^{-jzw}$$

$$y(t) = \int_{-\infty}^{t} \chi(4-2\tau) d\tau = \int_{-\infty}^{t} q(\tau) d\tau$$

$$= 9(t) * u(t)$$

所以
$$Y(jw) = Q(jw) \cdot F[utt)$$

$$= \left[\frac{1}{jw} + \pi f(w)\right] \cdot \frac{1}{z} \times \left(-j\frac{w}{z}\right) e^{-j2w}$$

$$=\frac{X(-j!)e^{-j2w}}{2jw}+\frac{\pi}{2}X(jo)\delta(w)$$

何
$$Ws = 8000\pi$$
,所以满足采样定理的最大采样周期 $Ts = \frac{2\pi}{Ws} = \frac{2\pi}{8000\pi} = \frac{1}{4000}$

又有:
$$X[n] = Cos[(4000\pi T)n] = Cos((4n))$$
则 $4000\pi T = 4 + 2k\pi$ $(k \in \mathbb{Z})$

化简有:

$$T = \frac{1}{16000} + \frac{1}{2000} k$$

由于人可取任意整数,则下可能大于 4000 ,不满足采样定理。

$$\frac{15\sqrt{20}}{2000} = \frac{1}{16000} = \frac{1}{16000}$$

$$= \frac{9}{16000} > \frac{1}{4000}$$

此时不满足采样定理。

$$\int f(t) = \int_{k=0}^{+\infty} \left(\int (t-1-3k) + \int (t-2-3k) \right)$$

$$\int f(t) = \int_{k=0}^{+\infty} \left(\int (t-1-3k) + \int (t-2-3k) \right)$$

$$\int f(t) = \int_{k=0}^{+\infty} \left(\int (t-1-3k) + \int (t-2-3k) \right)$$

$$\int f(t) = \int_{k=0}^{+\infty} \left(\int (t-1-3k) + \int (t-2-3k) \right)$$

$$\int f(t) = \int_{k=0}^{+\infty} \left(\int (t-1-3k) + \int (t-2-3k) \right)$$

$$\int f(t) = \int_{k=0}^{+\infty} \left(\int (t-1-3k) + \int (t-2-3k) \right)$$

$$\int f(t) = \int_{k=0}^{+\infty} \left(\int (t-1-3k) + \int (t-2-3k) \right)$$

$$\int f(t) = \int_{k=0}^{+\infty} \left(\int (t-1-3k) + \int (t-2-3k) \right)$$

$$\int f(t) = \int_{k=0}^{+\infty} \left(\int (t-1-3k) + \int (t-2-3k) \right)$$

$$\int f(t) = \int_{k=0}^{+\infty} \left(\int (t-1-3k) + \int (t-2-3k) \right)$$

$$\int f(t) = \int_{k=0}^{+\infty} \left(\int (t-1-3k) + \int (t-2-3k) \right)$$

$$\int f(t) = \int_{k=0}^{+\infty} \left(\int (t-1-3k) + \int (t-2-3k) \right)$$

$$\int f(t) = \int_{k=0}^{+\infty} \left(\int (t-1-3k) + \int (t-2-3k) \right)$$

$$\int f(t) = \int_{k=0}^{+\infty} \left(\int (t-1-3k) + \int (t-2-3k) \right)$$

$$\int f(t) = \int_{k=0}^{+\infty} \left(\int (t-1-3k) + \int (t-2-3k) \right)$$

$$\int f(t) = \int_{k=0}^{+\infty} \left(\int (t-1-3k) + \int (t-2-3k) \right)$$

$$\int f(t) = \int_{k=0}^{+\infty} \left(\int (t-1-3k) + \int (t-2-3k) \right)$$

$$\int f(t) = \int_{k=0}^{+\infty} \left(\int (t-1-3k) + \int (t-2-3k) + \int (t-2-3k) \right)$$

$$\int f(t) = \int_{k=0}^{+\infty} \left(\int (t-1-3k) + \int (t-2-3k) + \int (t-2-$$

$$= F^{-1} \left[1 - \frac{1}{-wc} \right]$$

$$= F^{-1} \left[1 - \frac{1}{-wc} \right]$$

$$= \int_{-wc}^{-1} \left[1 - \frac{1}{-wc} \right]$$

$$= \int_{-c}^{-1} \left[1 - \frac{1}{-$$

$$|Y(jw)| = |X(jw)H(jw)| = \frac{1}{-lon}$$

對 w_c 为 $5\pi w_f$, $|Y(jw)| = \frac{1}{-lon}$ $\frac{1}{-lon}$, $|Y(jw)| = \frac{1}{-lon}$ $\frac{1}{-lon}$, $|Y(jw)| = \frac{1}{-lon}$, $|Y(jw)| = \frac{1}{-lon}$

输入信号能量的 5%

四、①A、B对应的LTI系统为低强特性。

C.
$$h(t) = \frac{E \sin(wit)}{\pi t} \cos w_{0}t + \frac{E}{2}$$

$$\frac{E}{\pi t} \cos$$

五、先画出y(t), y(t)是如下倍号加上某常数项:

所以X(t)是以下信号加上基常数项

再由X(t)直流量为0,得到X(t)倍多处下:

根点 区=之,再加上因果得到在边序列,推出收敛域(区)之之,收敛城包含单位圆,所以稳定。

2
$$Z^{-1}Y(Z) + y[-1] + 2Y(Z) = X(Z) = \frac{3}{1-4Z^{-1}}$$

$$Z^{+}Y(Z) + |+2Y(Z)| = \frac{3}{1-4Z^{-1}}$$

 $(2+Z^{-1})Y(Z) = \frac{3}{1-4Z^{-1}}$

$$\frac{3}{x[n]} = -1 + 2u[n]$$

因为: $a^n \stackrel{LTL}{\longrightarrow} H(a) a^n$ 则 $1=1^n \stackrel{LTL}{\longrightarrow} H(1)=\frac{1}{3}$

下面求 2 ៕ 对应的响应:

$$Y(z) = \frac{2}{1-z^{-1}} H(z) = \frac{2}{1-z^{-1}} \cdot \frac{\frac{1}{z}}{1+\frac{1}{z}z^{-1}} = \frac{\frac{1}{1-z^{-1}} \cdot \frac{\frac{1}{z}}{1+\frac{1}{z}z^{-1}}}{\frac{2}{1-z^{-1}} + \frac{\frac{1}{z}}{1+\frac{1}{z}z^{-1}}}$$

则 $y[n] = \frac{2}{3}u[n] + \frac{1}{3}(-\frac{1}{2})^n u[n]$ 总的响应 $y[n] = \frac{2}{3}u[n] + \frac{1}{3}(-\frac{1}{2})^n u[n] - \frac{1}{3}$