Machine Learning Lecture 3 - Bayesian Inference

Dr. Ioannis Patras EECS, QMUL 2015

Slides acknowledgments: Dr. Tim Hospedales

Bayesian Inference

What is Bayesian inference about?

- Using Bayes' theorem to combine observations and prior belief in a rational way for inference and decision making
- Dealing rationally with unknown quantities, by summing/integrating over their values (law of total probability)

Probabilistic Machine Learning

Canonical Problems:

• Inference: $p(y \mid x) = p(x \mid y)p(y) / p(x)$

• Marginalization: $p(x) = \int p(x, y) dy$

• ML/MAP Learning $\hat{\theta} = \operatorname{argmax} p(X \mid \theta)$

– Density Estimation:

• EM Learning: $\hat{\theta} = \operatorname{argmax} \int p(X, Y \mid \theta) dY$

• Model Selection: $M = \operatorname{argmax} \int p(X, Y, \theta \mid M) p(M) dY d\theta$

Bayesian Inference

- Agent infers the process that generated some data, d
- *h* is the hypothesis about this process
- P(h) is the probability that the agent would have ascribed to the hypothesis BEFORE seeing the data d. This is the prior probability
- How should the agent go about changing his beliefs in the light of the evidence provided by d?
- To answer this we wish to compute the posterior probability P(h|d).

Bayes' theorem

Such a procedure is given by Bayes' theorem

$$P(h \mid d) = \frac{P(d \mid h)P(h)}{P(d)}$$

The denominator is given by summing over hypotheses (marginalization as we saw before) H is the set of all hypotheses considered by the agent, the hypothesis space.

$$P(d) = \sum_{h' \in H} P(d \mid h') P(h')$$

Bayesian Probabilities

- Probabilities are now thought of as degrees of belief, and not frequencies...
 - Shakespeare's plays are written by Francis Bacon
 - Signature on a cheque is genuine
- Bayesian reasoning is influenced by priors, but does not require them to do interesting things.
 - E.g., Bayesian Occam's razor (later)

Outline

- Hypothesis comparison and likelihood ratios
- Estimation and Inference of model parameters
- Posterior predictive and model averaging
- Complexity control and Bayesian Occam's razor
- Bayesian decision theory and pattern recognition
- Some Bayesian classifiers
- Conclusions

Compare two simple hypotheses

- A box contains two coins
- One produces heads 50% of the time
- One produces heads 90 % of the time
- You choose a coin and flip it 10 times producing
 HHHHHHHHHH
- Which coin did you pick?
- How would you change your belief if you'd thrown HHTHTHTTHT instead?

Compare two simple hypotheses

- To translate into a Bayesian inference problem, must specify
 - The hypothesis space H
 - The prior distribution P(h)
 - The likelihood P(d|h)
- Two coins => two natural hypotheses.
- Let θ denote probability that coin produces heads.
 - $-h_0$ is the hypothesis that $\theta = 0.5$
 - $-h_1$ is the hypothesis that $\theta = 0.9$
- Assuming we randomly pick a coin:, $P(h_0)=P(h_1)=0.5$

Compare two simple hypotheses

- Observed Data: d=HHHHHHHHHHH
- Now we must specify the likelihood $P(d|\theta)$
- What is the probability of producing a sequence of coin flips containing N_h heads and N_t tails by a coin with heads probability θ?

Bernoulli distribution

Bernoulli distribution gives the probability of one trial
 F: {0,1}

$$P(Flip \mid \theta) = \theta^{F} (1 - \theta)^{(1 - F)}$$

- Coin flips are independent events:
 - Therefore probability of a sequence is product of individual event probabilities.
- Given: Heads probability θ .
 - Probability of sequence d=HHTH... with N_h heads and N_t tails:

$$P(d \mid \theta) = \theta^{N_H} (1 - \theta)^{N_T}$$

Likelihoods associated with h_o and h₁

• Substitute 0.5 and 0.9 into θ to get the likelihoods of the two hypotheses.

$$P(d \mid \theta) = \theta^{N_H} (1 - \theta)^{N_T}$$

• Then the priors and likelihoods can be placed into the Bayes' equation to compute the posterior probabilities of each hypothesis.

Finding the best hypothesis to explain the data....

$$h^* = \operatorname{argmax}_{h \in H} p(h \mid d)$$

$$h^* = \operatorname{argmax}_{h \in H} \frac{P(d \mid h)P(h)}{P(d)}$$

In the coin example there are two possible hypotheses....

$$P(h_1 \mid d) = \frac{P(d \mid h_1)P(h_1)}{P(d)} \qquad P(h_1 \mid d) = \frac{0.9^{N_H} (1 - 0.9)^{N_T} 0.5}{P(d)}$$

$$P(h_0 \mid d) = \frac{P(d \mid h_0)P(h_0)}{P(d)} \qquad P(h_0 \mid d) = \frac{0.5^{N_H} (1 - 0.5)^{N_T} 0.5}{P(d)}$$

With two hypotheses its easier to just consider the ratio of the posterior probabilities because p(d) is the same in both equations. This gives the form.

$$\frac{P(h_1 \mid d)}{P(h_o \mid d)} = \frac{P(d \mid h_1)}{P(d \mid h_o)} \frac{P(h_1)}{P(h_o)} \qquad \frac{P(h_1 \mid d)}{P(h_o \mid d)} = \frac{0.9^{N_H} (1 - 0.9)^{N_T}}{0.5^{N_H} (1 - 0.5)^{N_T}} \frac{0.5}{0.5}$$

For $N_h = 10$, and $H_t = 0$, we get posterior odds of 357:1 in favour of h_1 (biased coin) For $N_h = 5$ and $H_t = 5$, we get posterior odds of 165:1 in favour of h_0 (fair coin)

Summary

- Any time we want to evaluate or choose between two or more hypotheses explaining some data, use Bayes theorem:
 - Choose your prior
 - Fill in your likelihood
 - Divide by the total probability
 - (May be avoidable)

$$P(h \mid d) = \frac{P(d \mid h)P(h)}{P(d)}$$

Outline

- Hypothesis comparison and likelihood ratios
- Estimation and Inference of model parameters
- · Posterior predictive and model averaging
- Complexity control and Bayesian Occam's razor
- Bayesian decision theory and pattern recognition
- Some Bayesian classifiers
- Conclusions

Inferring Model Parameters

- So far we chose among alternative hypotheses $H=\{h_0, h_1\}$. h_0 : $\theta=0.5$, h_1 : $\theta=0.9$.
- We often want to infer the continuous value of a model parameter. E.g., θ between 0 and 1.
- Two ways:
 - ML/MAP: Estimate a value for θ . E.g., θ =0.7.
 - Bayesian: Infer a distribution for θ .
 - This computes a probability for every value of θ .

ML Estimator

- ML (Maximum Likelihood): choose the value of θ that maximizes the likelihood $\hat{\theta} = \underset{\alpha}{\operatorname{argmax}} P(d \mid \theta)$
- Differentiate

$$P(d \mid \theta) = \theta^{N_H} (1 - \theta)^{N_T}$$

- With respect to θ
- Set to 0, and solve for θ :
- Answer for coins:
 - $\theta = N_H/(N_H + N_T)$
- A particular N_T : N_H ratio will give the same θ ignoring the total number of trials.

Being Bayesian with Many Hypotheses

- We used Bayes theorem to choose alternative hypotheses $H=\{h_0, h_1\}$. $h_0: \theta=0.5, h_1: \theta=0.9$.
 - Now want to infer the continuous value of a model parameter. E.g., θ between 0 and 1.
- θ is now a **random variable** and the posterior distribution is now a probability density.

$$P(h \mid d) = \frac{P(d \mid h)P(h)}{P(d)} \qquad p(\theta \mid d) = \frac{P(d \mid \theta)p(\theta)}{P(d)}$$

From Discrete to Continuous Bayes

$$P(h | d) = \frac{P(d | h)P(h)}{P(d)}$$

$$P(d) = \sum_{h' \in H} P(d | h')P(h')$$

$$p(h | d) = \frac{p(d | h)p(h)}{p(d)}$$

$$p(d) = \int P(d | h')P(h')dh'$$

$$p(h \mid d) = \frac{p(a \mid h)p(h)}{p(d)}$$

$$p(d) = \int P(d \mid h')P(h')dh'$$

Posterior distribution is now a posterior density (lower case p is used for pdf)

From Discrete to Continuous Bayes

$$p(\theta \mid d) = \frac{p(d \mid \theta)p(\theta)}{p(d)}$$

$$p(d) = \int P(d \mid \theta')P(\theta')d\theta'$$

- Posterior over θ contains more information than a single point estimate.
- Probability of every value or range of values of θ .
- Alternative is three possible point estimates:

ML (Maximum Likelihood): choose the value of θ that maximizes the likelihood

$$\hat{\theta} = \operatorname{argmax} P(d \mid \theta)$$

 θ

MAP (Maximum a posteriori): chooses the value of θ that maximizes the posterior probability

$$\hat{\theta} = \operatorname{argmax} P(\theta \mid d)$$

-

MAP Estimation: Include prior $p(\theta)$

- Different choices of prior $p(\theta)$ will result in different guesses of the value of θ .
- $p(\theta)$ options:
 - Uniform θ
 - Non-uniform based on prior experience of coins

Convenient to represent by a beta distribution.

MAP Estimator

- MAP (Maximum a posteriori): chooses the value of θ that maximizes the posterior
- Differentiate

 $\hat{\theta} = \underset{\theta}{\operatorname{argmax}} P(\theta \mid d)$

- With respect to θ
- Set to 0, and solve for θ :
- How?
 - ... We'll come back to it....

Likelihood and prior

• Likelihood: Bernoulli(θ) distribution

$$P(D \mid \theta) = \theta^{NH} (1-\theta)^{NT}$$

- NH: number of heads observed
- NT: number of tails observed
- Prior: Beta(FH,FT) distribution

$$P(\theta) \propto \theta^{FH-1} (1-\theta)^{FT-1}$$

- − FH: fictional observations of heads
- $-F_{T}$: fictional observations of tails
- (FH=FT=1 makes Beta behave uniform/uninformative)

Beta Distribution

Beta distribution has support [0,1]: The same range as Bernoulli/coin parameter. Different Beta distributions encode different priorsfor the coin parameter.

Bayesian Solution to coin's heta

$$\begin{split} p(\theta \,|\, d) &= \frac{p(d \,|\, \theta)p(\theta)}{p(d)} & \qquad \qquad \stackrel{P(D \,|\, \theta) \,=\, \theta^{\,\text{NH}}\,(1 - \theta)^{\,\text{NT}}}{p(\theta) \,\propto\, \theta^{\,\text{FH} - 1}\,(1 - \theta)^{\,\text{FT} - 1}} \\ p(\theta \,|\, d) &\propto \theta^{\,N_H}\,(1 - \theta)^{\,N_T} \,\times\, \theta^{\,F_H - 1}\,(1 - \theta)^{\,F_T - 1} \\ p(\theta \,|\, d) &\propto \theta^{\,(N_H + F_H - 1)}\,(1 - \theta)^{\,(N_T + F_T - 1)} \\ &= Beta(N_H + F_H, N_T + F_T) \end{split}$$

Answer: Another (different) beta distribution over θ ! This is a "conjugate prior" trick.

• Beta distribution is conjugate to Bernoulli.

Now we know the probability of any given value of θ (evaluate the beta distribution) ...and how confident we should be about a particular estimate.

$$p(\theta \mid d) \propto p(d \mid \theta) p(\theta) = \theta^{NH+FH-1} (1-\theta)^{NT+FT-1}$$

Conjugate Prior Discussion

- This conjugate prior trick is used a lot in Bayesian inference to make it easy and fast.
 - There are tables of which distributions are conjugate
 - So you can find the right form of parameter prior for the likelihood of your task
- E.g., Beta-Binomial, Dirichlet-Multinomial, Gussian-Gaussian, etc.

https://en.wikipedia.org/wiki/Conjugate_prior

Completing the MAP Estimator

- MAP (Maximum a posteriori): chooses the value of θ that maximizes the posterior
- Differentiate

$$\hat{\theta} = \operatorname{argmax} P(\theta \mid d)$$

• With respect to θ

$$p(\theta \mid d) = Beta(N_H + F_H, N_T + F_T)$$

$$\theta^{(N_H + F_H - 1)} (1 - \theta)^{(N_T + F_T - 1)}$$

• Set to 0, and solve for θ :

$$\theta = N_H / (N_H + N_T)$$
 $\theta = N_H + F_H - 1/(N_H + N_T + F_H + F_T - 2)$

Estimate θ	ML	MAP FH=FT=1	MAP FH=FT=10	MAP FT=10,FH=1
d=H				
d=HT				
d=HHH				

Completing the MAP Estimator

- MAP (Maximum a posteriori): chooses the value of θ that maximizes the posterior
- Differentiate

$$\hat{\theta} = \operatorname{argmax} P(\theta \mid d)$$

• With respect to θ

$$p(\theta \mid d) = Beta(N_H + F_H, N_T + F_T)$$

• Set to 0, and solve for θ :

 $\theta^{(N_H+F_H-1)}(1-\theta)^{(N_T+F_T-1)}$

- ML (from before) versus MAP solution:

$$\theta = N_H / (N_H + N_T)$$

$$\theta = N_H / (N_H + N_T)$$
 $\theta = N_H + F_H - 1/(N_H + N_T + F_H + F_T - 2)$

Estimate θ	ML	MAP FH=FT=1	MAP FH=FT=10	MAP FT=10,FH=1
d=H	1	1	0.53	0.1
d=HT	0.5	0.5	0.5	0.09
d=HHH	1	1	0.57	0.25

Bayes versus ML/MAP discussion

- Q: Why do we want to infer the distribution of a quantity rather than pick it's best value?
 - A1. Because we want to know our confidence of the answer
 - And thus decide if to: take action / go out and collect more data / etc
 - A2. Because downstream decisions can be improved by considering every possible value.

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} P(\theta \mid d) \qquad \qquad \text{versus} \qquad \qquad p(\theta \mid d) = \frac{P(d \mid \theta) P(\theta)}{P(d)}$$

Summary

- Bayes theorem can be used to evaluate the probability of continuous quantities
 - ... Such as model parameters like coin bias
- This requires some care of choice of distributions in order to be exact and efficient
 - (Otherwise it can also be approximated numerically)
- Conventional ML/MAP estimates pick the maximum of the likelihood or the posterior

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} P(\theta \mid d) \qquad p(\theta \mid d) = \frac{P(d \mid \theta)P(\theta)}{P(d)}$$

Outline

- Hypothesis comparison and likelihood ratios
- Estimation and Inference of model parameters
- Posterior predictive and model averaging
- Complexity control and Bayesian Occam's razor
- Bayesian decision theory and pattern recognition
- Some Bayesian classifiers
- Conclusions

Posterior Predictive Distribution aka Marginal Likelihood

- A common question to ask is of the form:
 - What's the probability of some new data d given old data D.
 - E.g., what is the probability of d=H, given that so far we observed D=HTHH
- We want to know: $p(d = H \mid D)$
 - Simple solution:
 - Pick the best hypothesis about the model..
 - E.g., Estimate θ_{est} given D using ML/MAP.
 - Then compute likelihood $p(d|\theta_{est})$

Posterior Predictive Distribution

- What is the prob. of d=H, given observed D=HTHH and prior encoded by "fake observations" $F=\{F_H,F_T\}$
 - Depends on θ which we don't know
- Bayesian solution: Integrate out the parameter:

$$p(d= H \mid D, F) = \int_0^1 P(d=H \mid q) P(q \mid D, F) dq$$
Aka "hypothésis averaging"
$$P(d=H \mid \theta) = \theta^{H=1} (1-\theta)^{H=0}$$

$$p(\theta \mid D) \propto p(D \mid \theta) p(\theta) = \theta^{NH+FH-1} (1-\theta)^{NT+FT-1}$$

$$P(d = H \mid D, FH, FT) = \frac{(NH+FH)}{(NH+FH+NT+FT)}$$

Posterior Predictive Distribution

- What is the prob. of d=H, given that we observed D=HTHH
 - Depends on θ which we don't know
- Bayesian solution: Integrate out the parameter.
 - For bernoulli (coin) distributions

$$p(d=H \mid D, F) = \int_0^1 P(d=H \mid \theta) P(\theta \mid D, F) d\theta$$
$$= \frac{(NH+FH)}{(NH+FH+NT+FT)}$$

- Takes into account the infinite set of possible θ , and the posterior probability of each
 - Unlike ML/MAP

Example: coin fresh from bank

- e.g., F ={1000 heads, 1000 tails} ~ strong
 expectation that any new coin will be fair
 - After seeing 4 heads, 6 tails, P(H) on next flip = 1004 / (1004+1006) = 49.95%
- Compare: *F* ={3 heads, 3 tails} ~ weak expectation that any new coin will be fair
 - After seeing 4 heads, 6 tails, P(H) on next flip = 7 / (7+9) = 43.75%
- Either large F or D make prediction more confident

Other Distributions

- There procedure is analogous for other distributions....
 - Bernoulli (coin): Integrate out one coin parameter.
 - Multinomial (dice): Integrate out the 6d dice bias.
 - Gaussian: Integrate out the mean and variance.

Summary: Posterior Predictive / Marginal Likelihood

- To predict the next observation in a sequence of (IID) data
- ML/MAP approximation: Estimate the model parameters and then make the prediction
- Bayesian solution: Integrate out the model parameters.

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} P(\theta \mid D)$$

$$p(d \mid D) \approx p(d \mid \hat{\theta})$$

$$p(\theta \mid D) = \frac{P(D \mid \theta)P(\theta)}{P(D)}$$
$$p(d \mid D) = \int p(d \mid \theta)p(\theta \mid D)d\theta$$

Outline

- Hypothesis comparison and likelihood ratios
- Estimation and Inference of model parameters
- · Posterior predictive and model averaging
- Complexity control and Bayesian Occam's razor
- Bayesian decision theory and pattern recognition
- Some Bayesian classifiers
- Conclusions

Back to Model Comparison

- Sometimes we want to compare two models/hypotheses of different "complexities"
 - Here Bayesian and non-Bayesian approaches can give very different answers!
- Non-Bayesian must resort to "Occam's Razor" heuristics.
- Bayesian approach gives the right answer automatically!
 - "Bayesian Occam's Razor"

Comparing Simple and Complex Hypothesis (Model Selection)

VS.

Fair coin, P(H) = 0.5

- Which provides a better account of the data:
 - H0: A fair coin P(H)=0.5
 - $H1: P(H) = \theta$?

Comparing simple and complex hypotheses: the need for Occam's razor

- $P(H) = \theta$ is more complex than P(H) = 0.5:
 - -P(H) = 0.5 is a special case of $P(H) = \theta$
 - for any observed sequence D, we can choose θ such that D is more probable than if $P(\mathbb{H}) = 0.5$
 - H0 has zero free parameters.
 - H1 has a free parameter θ .

ML/MAP gets model comparison wrong

- ML/MAP strategy for comparing p(H=1) p(H=0)
 - Estimate $\theta_{\rm est}$ from data using ML/MAP
 - Likelihood ratio p(d|H=1, $\theta_{\rm est}$)/p(d|H=0) to decide
- H=1 will always win!
- How to fix?
 - Set prior p(H=0)>p(H=1)?
 - Unnecessary....

 d_1 d_2

 $\widehat{d_3}$ $\widehat{d_4}$

VS.

 d_1 d_2 d_3 d_4

Fair coin, P(H) = 0.5

 $P(H) = \theta$

Bayesian Model Comparison

$$\frac{P(h_1/D)}{P(h_0/D)} = \frac{P(D/h_1)}{P(D/h_0)} \times \frac{P(h_1)}{P(h_0)}$$

$$P(D \mid h_0) = (1/2)^n (1-1/2)^{N-n} = 1/2^N$$

$$P(D \mid h_1) = \int_0^1 P(D \mid \theta, h_1) p(\theta \mid h_1) d\theta$$

- Don't select the unknown parameter, integrate it.
- This is "marginal likelihood": Learned in previous section!
 - "The probability that randomly selected parameters would generate the data"

Bayesian Model Comparison

$$\frac{P(h_1/D)}{P(h_0/D)} = \frac{P(D/h_1)}{P(D/h_0)} \times \frac{P(h_1)}{P(h_0)}$$

$$P(D \mid h_0) = (1/2)^n (1-1/2)^{N-n} = 1/2^N$$

$$P(D \mid h_1) = \int_0^1 P(D \mid \theta, h_1) p(\theta \mid h_1) d\theta \quad \text{Averaging over all possible values of θ penalizes "overfitted" hypotheses because only a small range fits data well$$

- Don't select the unknown parameter, integrate it.
- This is "marginal likelihood": Learned in previous section!
 - "The probability that randomly selected parameters would generate the data"

All possible data sets d

For any model
$$M$$
, $\sum_{\text{all } d \in D} p(D = d \mid M) = 1$

Law of "conservation of belief": A model that can predict many possible data sets must assign each of them low probability.

Summary

- Comparing hypothesis of differing complexity:
- ML/MAP:
 - Likelihood ratio, after estimating the parameters of each model to compare
 - => Wrong answer.
 - You may see heuristics to ameliorate this
- Bayes:
 - Likelihood ratio, integrating out the parameters of each model to compare
 - => Optimal answer.
 - One of the most powerful capabilities of Bayesian over non-Bayesian models

Outline

- Hypothesis comparison and likelihood ratios
- Estimation and Inference of model parameters
- Posterior predictive and model averaging
- Complexity control and Bayesian Occam's razor
- Bayesian decision theory and pattern recognition
- Some Bayesian classifiers
- Conclusions

Bayesian Decision Theory: Inference applied to pattern recognition

- Use what we've learned about Bayesian inference to do some pattern recognition machine learning.
 - Consider classifying fish: Sea bass and Salmon
- True fish type is a random variable.
- Define w as the type of fish we observe:
 - $W = w_1$ for seabass,
 - $w = w_2$ for salmon.
 - $P(w_1)$ is the a priori probability of bass.
 - $-P(w_2)$ is the a priori probability of salmon.

Bayesian Decision Theory: Inference applied to pattern recognition

- Prior probabilities reflect our knowledge of how likely each type of fish will appear before we actually see it.
 - How to choose P (w₁) and P (w₂)?
 - Set P (w_1) = P (w_2) if equiprobable (uniform priors).
 - May use different values depending on the fishing area, time of the year, etc.
- · Assume there are no other types of fish
 - $-P(w_1) + P(w_2) = 1$ (exclusivity and exhaustivity).

Making a Decision

• If only prior information....?

• We can compute the probability of error of this decision:

$$P(error) = \min\{P(w_1), P(w_2)\}\$$

Exploiting Measurements

- Suppose we also have a lightness measurement x.
 - x is a continuous random variable.
 - Likelihood p(x|w) is probability of measurement x given fish type w
 - P(x|w1) and p(x|w2) describe the difference in lightness between bass and salmo p(x|ω)

Posterior Probabilities for Decisions

 Now we can use Bayes formula to build a fish recognizer by combining prior and posterior probabilities

$$P(w_j|x) = \frac{p(x|w_j)P(w_j)}{p(x)}$$

$$p(x) = \sum_{j=1}^{2} p(x|w_j) P(w_j).$$

Posterior Probabilities for Decisions

 $\begin{array}{c} \bullet \ \ \text{Prior-only decision was} \\ \quad \ \ \, \text{Decide} \quad \begin{cases} w_1 & \text{if } P(w_1) > P(w_2) \\ w_2 & \text{otherwise} \end{cases}$

• Now with observation:
$$\begin{cases} w_1 & \text{if } P(w_1|x) > P(w_2|x) \\ w_2 & \text{otherwise} \end{cases} \begin{cases} w_1 & \text{if } \frac{p(x|w_1)}{p(x|w_2)} > \frac{P(w_2)}{P(w_1)} \\ w_2 & \text{otherwise} \end{cases}$$

• Error probability: $P(error|x) = \min\{P(w_1|x), P(w_2|x)\}.$

Generalizing to more Realistic Cases

- More than one feature: scalar x -> vector x
 - E.g.,
 - Gaussian likelihoods => multivariate Gaussian
 - Bernoulli likelihoods => Multinomial likelihoods
- Multiple states/categories: straightforward
 - Pick the most probable of many hypothesis, rather than of only two hypotheses.

Discriminant Functions

- A useful way of representing classifiers:
 - Discriminant functions: $g_i(\mathbf{x})$ where the classifier assigns \mathbf{x} to class \mathbf{w}_i if: $g_i(\mathbf{x}) > g_j(\mathbf{x}) \quad \forall j \neq i.$
- Discriminant functions divide the space x into decision regions separated by decision boundaries

Discriminant Functions and Bayes

- Discriminant functions can arise from Bayes rule:
 - Most probable hypothesis:

Aside: Taking logs is a common trick in ML.

Log(x) is a monotonic function of x.

So for "pick the largest" it doesn't matter if log(x) or x.

Discriminant Functions and Bayes

• Discriminant functions can arise from Bayes rule:

$$P(w_j|x) = \frac{p(x|w_j)P(w_j)}{p(x)} \qquad \Longrightarrow \qquad w_i \text{ if } \quad g_i(\mathbf{x}) > g_j(\mathbf{x}) \quad \forall j \neq i.$$
$$g_i(\mathbf{x}) = \ln p(\mathbf{x}|w_i) + \ln P(w_i).$$

- Let's look at the specific discriminant functions that arise for common likelihoods p(x|w)
 - Gaussian for continuous data
 - Binomial/multinomial for discrete data

Gaussian Densities

For $x \in \mathbb{R}$:

$$p(x) = N(\mu, \sigma^2)$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$

For $\mathbf{x} \in \mathbb{R}^d$:

$$p(\mathbf{x}) = N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$= \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

Discriminant Functions for Gaussians

$$P(w_j|x) = \frac{p(x|w_j)P(w_j)}{p(x)}$$
 $w_i \text{ if } g_i(\mathbf{x}) > g_j(\mathbf{x}) \quad \forall j \neq i.$

$$w_i \text{ if } g_i(\mathbf{x}) > g_j(\mathbf{x}) \quad \forall j \neq i.$$

- General Bayes classifier: $g_i(\mathbf{x}) = \ln p(\mathbf{x}|w_i) + \ln P(w_i)$.
- Gaussian classifier:

For $p(\mathbf{x}|w_i) = N(\boldsymbol{\mu_i}, \boldsymbol{\Sigma_i})$

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu_i})^T \boldsymbol{\Sigma_i}^{-1}(\mathbf{x} - \boldsymbol{\mu_i}) - \frac{d}{2}\ln 2\pi - \frac{1}{2}\ln |\boldsymbol{\Sigma_i}| + \ln P(w_i).$$

Discriminant Functions for Gaussians

$$g_i(\mathbf{x}) = \ln p(\mathbf{x}|w_i) + \ln P(w_i).$$
 For $p(\mathbf{x}|w_i) = N(\boldsymbol{\mu_i}, \boldsymbol{\Sigma_i})$

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu_i})^T \boldsymbol{\Sigma_i^{-1}}(\mathbf{x} - \boldsymbol{\mu_i}) - \frac{d}{2}\ln 2\pi - \frac{1}{2}\ln |\boldsymbol{\Sigma_i}| + \ln P(w_i).$$

- A classifier's decision boundary is the line it believes separates the classes.
 - The line where $p(w_1|x)=p(w_2|x)$
 - or equivalently where $g_1(x)=g_2(x)$
- How does it look for this Gaussian classifier?

Discriminant Functions for Gaussians

$$g_i(\mathbf{x}) = \ln p(\mathbf{x}|w_i) + \ln P(w_i).$$
 For $p(\mathbf{x}|w_i) = N(\boldsymbol{\mu_i}, \boldsymbol{\Sigma_i})$

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu_i})^T \boldsymbol{\Sigma_i^{-1}}(\mathbf{x} - \boldsymbol{\mu_i}) - \frac{d}{2}\ln 2\pi - \frac{1}{2}\ln |\boldsymbol{\Sigma_i}| + \ln P(w_i).$$

Decision boundary depends on the Gaussian covariance.

• Same covariance $\Sigma_i = \Sigma$. Classifer is linear

Discriminant Functions for Gaussians

$$g_i(\mathbf{x}) = \ln p(\mathbf{x}|w_i) + \ln P(w_i).$$
 For $p(\mathbf{x}|w_i) = N(\boldsymbol{\mu_i}, \boldsymbol{\Sigma_i})$

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu_i})^T \boldsymbol{\Sigma_i}^{-1}(\mathbf{x} - \boldsymbol{\mu_i}) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{\Sigma_i}| + \ln P(w_i).$$

Decision boundary depends on the Gaussian covariance.

• General covariance: Classifier is hyperquadratic

Summary

- We can build classifiers for pattern recognition using Bayes theorem.
 - If we know the different likelihood for different categories of data => Bayes gives us a classifier.
- The contour where the two classes' posteriors are equal is the decision boundary.
- Next: How to get the likelihoods.

Outline

- Hypothesis comparison and likelihood ratios
- Estimation and Inference of model parameters
- Posterior predictive and model averaging
- Complexity control and Bayesian Occam's razor
- Bayesian decision theory and pattern recognition
- Some Bayesian classifiers
- Conclusions

Probabilistic Machine Learning

Classic Problems:

• Inference
$$p(y|x) = p(x|y)p(y)/p(x)$$

• Marginal Likelihood
$$p(x) = \int p(x, y) dy$$

EM Learning

$$\hat{\theta} = \operatorname{argmax} p(X \mid \theta)$$

Density Estimation

$$\hat{\theta} = \operatorname{argmax} \int p(X, Y \mid \theta) dY$$

• Model Selection
$$M = \operatorname{argmax} \int p(X, Y, \theta \mid M) p(M) dY d\theta$$

Conclusions

- So far we looked at exact methods for Bayesian inference
 - Analytical posteriors (E.g., Bernoulli-Beta)
 - Integration to find marginal likelihoods
- For many practical problems this is intractable and we resort to approximate methods:
- Deterministic approximations
 - Variational methods
- Stochastic approximations
 - Markov chain monte carlo (MCMC)

Conclusions

- We saw the key Bayesian computations: Bayes theorem, conjugate priors for parameter inference, and marginalization.
 - Bayes theorem: Leads to hypothesis comparison, and classifiers
 - With conjugate priors, allows model parameter inference (and not just estimation or selection)
 - With marginalization, allows predictive distributions, and model comparison across complexities (Bayesian Occam's razor)

Learning Outcomes

- You should:
 - Be able to use Bayes theorem
 - Appreciate the limitations of ML versus MAP for parameter estimation
 - Appreciate the benefits of Bayesian parameter inference over estimation
 - Understand the significance of marginal likelihood/posterior predictive distributions in Bayesian inference
 - Understand how Bayesian Occam's allows hypothesis comparison across complexities
 - Know how to build a simple classifier from Gaussian/Bernoulli likelihoods and Bayes theorem