Assignment-5 (Queue)

Session: Monsoon 2021-22

Date: 28.09.2021

- 1. Queue is one of the well-known linear data structure which follows First-In-First-Out (FIFO) order to perform various operations over data values stored in a queue. Write a program which creates a queue using <u>array</u> and performs different operations over the created queue as following:
 - a) Write a function $Enqueue_arr(x)$ which takes integer x as input from the user and insert it into the queue.

Sample Input:

Enter the number of elements: 7 Elements to insert: 5 6 8 9 3 2 4

Sample Output:

Elements in queue: 5 6 8 9 3 2 4

b) Write a function **Dequeue_arr**() which removes the element from the queue and returns it.

Sample Output:

Removed element: 5

Elements in queue: 689324

c) Write a function **Front_arr**() which returns the front element of the queue.

Sample Output:

 $Front\ element = 6$

d) Write a function **boolean_empty_arr**() which returns true if the queue is empty; otherwise returns false.

Sample Output:

false

- 2. Queue is one of the well-known linear data structure which follows First-In-First-Out (FIFO) order to perform various operations over data values stored in a queue. Write a program which creates a queue using <u>linked list</u> and performs different operations over the created queue as following:
 - a) Write a function $Enqueue_ll(x)$ which takes integer x as input from the user and insert it into the queue.

Sample Input:

Elements to insert: 5 6 8 9 3 2 4

Sample Output:

Elements in queue: $5 \rightarrow 6 \rightarrow 8 \rightarrow 9 \rightarrow 3 \rightarrow 2 \rightarrow 4$

b) Write a function **Dequeue_ll()** which removes the element from the queue and returns it.

Sample Output:

Removed element: 5

Elements in queue: $6 \rightarrow 8 \rightarrow 9 \rightarrow 3 \rightarrow 2 \rightarrow 4$

3. Write a program which creates a circular queue of size k and performs different operations over the created circular queue as following:

Sample Input:

Enter the size of k: 5

a) Write a function $Insert_cir(x)$ which inserts an integer x into the circular queue.

Sample Input:

Elements to insert: 1 2 3 4 5

Sample Output:

Elements of queue: 1 2 3 4 5

b) Write a function *Delete_cir()* which deletes and returns an integer from the circular queue.

Sample Output:

Elements of queue: 2 3 4 5

c) Write a function **Get_front_cir**() which returns the front element from the circular queue.

Sample Output:

Front element of queue: 2

d) Write a function **Get_rear_cir**() which returns the rear element from the circular queue.

Sample Output:

Rear element of queue: 5

e) Write a function Size_cir() which returns the current size of the circular queue.

Sample Output:

Size of the circular queue: 4

4. Given an integer k and a queue of integers, reverse the order of the first k elements of the queue, leaving the other elements in the same relative order.

Sample Input:

Size of queue and k: 9 4

Elements in queue: 10 20 30 40 50 60 70 80 90

Sample Output:

Elements in queue: 40 30 20 10 50 60 70 80 90