MU5IN075 Network Analysis and Mining 3. Advanced concepts

Esteban Bautista-Ruiz, Lionel Tabourier

LIP6 - CNRS and Sorbonne Université

first_name.last_name@lip6.fr

September 28, 2021

Different types of graphs

Outline

- Different types of graphs
- Centrality notions

Different types of graphs
Centrality notions

Need for more elaborate representations

Consider cases such as the web, OSN like Twitter, emails, ... asymetric interactions

Need for an adapted representation → **directed graphs**

fr: graphes orientés

Different types of graphs Centrality notions

Basic definitions on directed graphs

directed graph (or digraph)

- V set of vertices (or nodes)
- $A \subseteq (V \times V)$ set of arcs fr: arcs and $(a, b) \neq (b, a)$

degree

In-degree (degré entrant): $d^+(v)$ or $d_I(v)$ Out-degree (degré sortant): $d^-(v)$ or $d_O(v)$

directed path

(chemin orienté)

from u to v: sequence of arcs $(u, v_1), (v_1, v_2), \dots, (v_{k-1}, v)$

Connectedness of directed graphs

Directed path *(chemin orienté)* from u to v: sequence of arcs $(u, v_1), (v_1, v_2), \dots, (v_{k-1}, v)$

Strongly connected component (composante fortement connexe): maximal set of nodes such that \exists a directed path from any node to any other of the set.

Weakly connected component (composante faiblement connexe): maximal set of nodes such that \exists a path between any pair of nodes in the graph where directed links are replaced by undirected links.

Different types of graphs
Centrality notions

Connectedness of directed graphs

Supposing there is a giant weakly connected component how can we subdivide it?

- subset of nodes which are all connected by directed paths:
 a core, largest SCC
- can lead to the core but cannot be reached from the core: **upstream**, in-component
- can be reached from the core but cannot lead to it: downstream, out-component
- other subsets: tendrils, tubes, . . .

5/21

Different types of graphs
Centrality notions

Connectedness of directed graphs

Supposing there is a giant weakly connected component how can we subdivide it?

- subset of nodes which are all connected by directed paths:
 a core, largest SCC
- can lead to the core but cannot be reached from the core:
 upstream, in-component
- can be reached from the core but cannot lead to it: downstream, out-component
- other subsets: tendrils, tubes, ...

Different types of graphs
Centrality notions

Connectedness of directed graphs

Supposing there is a giant weakly connected component how can we subdivide it?

- subset of nodes which are all connected by directed paths:
 a core, largest SCC
- can lead to the core but cannot be reached from the core:
 upstream, in-component
- can be reached from the core but cannot lead to it:
 downstream, out-component
- other subsets: tendrils, tubes, . . .

-161

Connectedness of directed graphs

Supposing there is a giant weakly connected component how can we subdivide it?

- subset of nodes which are all connected by directed paths:
 a core, largest SCC
- can lead to the core but cannot be reached from the core:
 upstream, in-component
- can be reached from the core but cannot lead to it: downstream, out-component
- other subsets: tendrils, tubes, ...

Different types of graphs
Centrality notions

Connectedness of directed graphs

- subset of nodes which are all connected by directed paths:
 a core, largest SCC
- can lead to the core but cannot be reached from the core: **upstream**, in-component
- can be reached from the core but cannot lead to it: downstream, out-component
- other subsets: tendrils, tubes, ...

Different types of graphs

Practicing with directed graphs

Consider the following graph G_d

Graph representation

Represent G_d in the following formats:

- list of arcs
- adjacency matrix
- adjacency lists

Different types of graphs
Centrality notions

Practicing with directed graphs

Consider the following graph G_d

Degree

Find its in- and out-degree distributions.

A GE

Practicing with directed graphs

Consider the following graph G_d

Connectedness

Find its largest strongly connected component.

Different types of graphs
Centrality notions

Multigraphs, weighted graphs

Multigraphs

Can have several edges between nodes and possibly loops

- $\bullet \ \ \text{collaboration networks} \to \text{undirected, multi}$
- email exchange networks → directed, multi

6/21

Different types of graphs

Centrality notions

Multigraphs, weighted graphs

Weighted graphs

Generalization to weights which are real numbers (not integers)

- ullet trade networks o directed, weighted
- $\bullet \ \ \text{phonecall networks} \to \text{(un)} \\ \text{directed, weighted}$

Different types of graphs Centrality notions

Bipartite networks

Bipartite graph

Two distinct types of nodes U and V, links between U and V

- users watching videos, clients purchasing items, ...
- in general, user/item selection networks

-//61

Bipartite networks

Projection of a bipartite graph

If bipartite data not available, if metrics not adapted...

→ projection of bipartite data

Projection on U: if u_1 and u_2 connected to v in bipartite $\Rightarrow u_1$ and u_2 are connected in the projection A projection can be unweighted or weighted

Centrality

Different types of graphs

Bipartite networks

Projection of a bipartite graph

If bipartite data not available, if metrics not adapted...

→ projection of bipartite data

Projection on U: if u_1 and u_2 connected to v in bipartite $\Rightarrow u_1$ and u_2 are connected in the projection A projection can be unweighted or weighted

8/2

Different types of graphs
Centrality notions

Underlying bipartite nature of data

Data often have an underlying bipartite nature

→ only the projection data is available

Example of contact networks:

- interaction occur during events or inside groups ex: disease spreading networks
- but we only get the projection information
 ex: data collection = potential contamination link
- importance of recovering the information ex: contact tracing, modeling

Jnderstanding the structure of a network may involve going back to the structure of the underlying bipartite network (→ course on models)

Different types of graphs Centrality notions

Underlying bipartite nature of data

Data often have an underlying bipartite nature

→ only the projection data is available

Example of contact networks:

- interaction occur during events or inside groups ex: disease spreading networks
- but we only get the projection information
 ex: data collection = potential contamination link
- importance of recovering the information ex: contact tracing, modeling

Understanding the structure of a network may involve going back to the structure of the underlying bipartite network (→ course on models)

0/0

Underlying bipartite nature of data

Data often have an underlying bipartite nature

 \rightarrow only the projection data is available

Example of contact networks:

- interaction occur during events or inside groups ex: disease spreading networks
- but we only get the projection information
 ex: data collection = potential contamination link
- importance of recovering the information ex: contact tracing, modeling

Understanding the structure of a network may involve going back to the structure of the underlying bipartite network (→ course on models)

Different types of graphs

Centrality notions

Outline

- 1 Different types of graphs
- Centrality notions

9/2

Different types of graphs

Centrality notions

What is a centrality?

context 1: spreading phenomena

- goal: spread an information in a network fast (ex: ads)
- constraint: you can only select a few source nodes
- which selection strategy?

 \rightarrow select the best "spreaders" firs

Different types of graphs Centrality notions

What is a centrality?

context 1: spreading phenomena

- goal: spread an information in a network fast (ex: ads)
- constraint: you can only select a few source nodes
- which selection strategy?

→ select the best "spreaders" first

What is a centrality?

context 2: in human interaction networks, centrality relates to organization of a group, influence and leadership

ex: rise of the Medici in 1400-1434 Padgett and Ansell - 1993

credits image: V.Gauthier

→ analyzed through centrality measures Borgatti - 2005

https://graal.hypotheses.org/758 in french

Different types of graph
Centrality notion

What is a centrality?

Centrality measures the **relative importance** of nodes in *G*

As there is no universal meaning for importance, there are many ways to measure centrality.

11/2

Some ideas for an importance measure?

Centrality notions

Degree

- simple to measure (in $\mathcal{O}(M)$)
- but not necessarily meaningful

Other idea

An important node should be close to every other nodes \rightarrow closeness centrality Bayelas - 1950

$$C_C(x) = \frac{1}{\sum_{y \neq x} d(x, y)}$$

centralité de proximité

Different types of graphs Centrality notions

Some ideas for an importance measure?

Degree

- simple to measure (in $\mathcal{O}(M)$)
- but not necessarily meaningful

Other idea

An important node should be close to every other nodes

→ closeness centrality Bavelas - 1950

$$C_C(x) = \frac{1}{\sum_{y \neq x} d(x, y)}$$

centralité de proximité

12/2

Some ideas for an importance measure?

Degree

- simple to measure (in $\mathcal{O}(M)$)
- but not necessarily meaningful

Other idea

An important node should be close to every other nodes

→ closeness centrality Bavelas - 1950

$$C_C(x) = \frac{1}{\sum_{y \neq x} d(x, y)}$$

centralité de proximité

Different types of graphs

Centrality notions

Measuring closeness centrality

For any node x, compute its distance to any other node in the connected component, deduce $C_C(x)$

12/2

Different types of graphs
Centrality notions

Measuring closeness centrality

For any node x, compute its distance to any other node in the connected component, deduce $C_C(x)$

Different types of graphs Centrality notions

Measuring closeness centrality

For any node x, compute its distance to any other node in the connected component, deduce $C_C(x)$

Complexity

- for one node $\mathcal{O}(M)$
- \Rightarrow for all nodes $\mathcal{O}(NM)$

10101

Exercise

Compute the closeness centrality of J, of F

Different types of graphs

Centrality notions

Limitations

Closeness is only one way to define importance though . . .

Some limitations:

- if several connected components
- do not give specific importance to bridge nodes

Different types of graphs

Centrality notions

Betweenness centrality

Introduced by Freeman (circa 1977) for social networks

 \rightarrow evaluate the capacity to control information flows

Betweenness centrality definition

centralité d'intermédiarité

$$C_B(x) = \sum_{i \neq x \neq j} \frac{\sigma_{ij}(x)}{\sigma_{ij}}$$

where

- σ_{ij} : number of shortest paths from *i* to *j*
- $\sigma_{ij}(x)$: number of shortest paths from i to j going through x

Different types of grap Centrality notio

Quiz

Find a node which have:

- high betweenness but low degree
- high degree but low betweenness

credits image: V.Gauthier

EFAIGE

Algorithm to measure betweenness centrality

Listing shortest path expensive in memory ⇒ how not to list explicitly shortest paths?

Example:

Algorithm to measure betweenness centrality

Centrality notions

Different types of graph

To compute the contribution of pair (s,t) to $C_B(x)$, i.e. $\frac{\sigma_{st}(x)}{\sigma_{st}}$

- 1. Modify BFS to detect all shortest paths from s to any other node \Rightarrow graph G_s
- 2. Enumerate number of paths $nb_{G_s}(s, v)$ going through any v = sum number of paths going through predecessors of v
- 3. By definition $\sigma_{st} = nb_{G_s}(s, t)$, what about $\sigma_{st}(x)$? in G_s , the number of shortest paths from t to v is $nb_{G_s}(t, v)$ then $\sigma_{st}(x) = nb_{G_s}(s, x) \times nb_{G_s}(t, x)$

18/2

Different types of graphs

Centrality notions

Algorithm to measure betweenness centrality

To compute the contribution of pair (s,t) to $C_B(x)$, i.e. $\frac{\sigma_{st}(x)}{\sigma_{st}}$

- 1. Modify BFS to detect all shortest paths from s to any other node \Rightarrow graph G_s
- 2. Enumerate number of paths $nb_{G_s}(s, v)$ going through any v = sum number of paths going through predecessors of v
- 3. By definition $\sigma_{st} = nb_{G_s}(s,t)$, what about $\sigma_{st}(x)$? in G_s , the number of shortest paths from t to v is $nb_{G_s}(t,v)$ then $\sigma_{st}(x) = nb_{G_s}(s,x) \times nb_{G_s}(t,x)$

Different types of graphs Centrality notions

Algorithm to measure betweenness centrality

To compute the contribution of pair (s,t) to $C_B(x)$, i.e. $\frac{\sigma_{st}(x)}{\sigma_{st}}$

- 1. Modify BFS to detect all shortest paths from s to any other node \Rightarrow graph G_s
- 2. Enumerate number of paths $nb_{G_s}(s, v)$ going through any v = sum number of paths going through predecessors of v
- B. By definition $\sigma_{st} = nb_{G_s}(s,t)$, what about $\sigma_{st}(x)$? in G_s , the number of shortest paths from t to v is $nb_{G_s}(t,v)$ then $\sigma_{st}(x) = nb_{G_s}(s,x) \times nb_{G_s}(t,x)$

E (0)/6

Algorithm to measure betweenness centrality

To compute the contribution of pair (s,t) to $C_B(x)$, i.e. $\frac{\sigma_{st}(x)}{\sigma_{st}}$

- Modify BFS to detect all shortest paths from s to any other node ⇒ graph G_s
- 2. Enumerate number of paths $nb_{G_s}(s, v)$ going through any v = sum number of paths going through predecessors of v
- 3. By definition $\sigma_{st} = nb_{G_s}(s, t)$, what about $\sigma_{st}(x)$? in G_s , the number of shortest paths from t to v is $nb_{G_s}(t, v)$ then $\sigma_{st}(x) = nb_{G_s}(s, x) \times nb_{G_s}(t, x)$

18/21

Centrality notions

Algorithm to measure betweenness centrality

Different types of graph

To compute the contribution of pair (s,t) to $C_B(x)$, i.e. $\frac{\sigma_{st}(x)}{\sigma_{st}}$

- 1. Modify BFS to detect all shortest paths from s to any other node \Rightarrow graph G_s
- 2. Enumerate number of paths $nb_{G_s}(s, v)$ going through any v = sum number of paths going through predecessors of v
- 3. By definition $\sigma_{st} = nb_{G_s}(s,t)$, what about $\sigma_{st}(x)$? in G_s , the number of shortest paths from t to v is $nb_{G_s}(t,v)$ then $\sigma_{st}(x) = nb_{G_s}(s,x) \times nb_{G_s}(t,x)$
- \rightarrow do this for all $s \neq x$ and, when s is fixed: all $t \neq x$ and $t \neq s$ complexity in $\mathcal{O}(N.(M+NM)) = \mathcal{O}(N^2M)$

18/2

Centrality notion

Algorithm to measure betweenness centrality

To compute the contribution of pair (s,t) to $C_B(x)$, i.e. $\frac{\sigma_{st}(x)}{\sigma_{st}}$

- 1. Modify BFS to detect all shortest paths from s to any other node \Rightarrow graph G_s
- 2. Enumerate number of paths $nb_{G_s}(s, v)$ going through any v = sum number of paths going through predecessors of v
- 3. By definition $\sigma_{st} = nb_{G_s}(s,t)$, what about $\sigma_{st}(x)$? in G_s , the number of shortest paths from t to v is $nb_{G_s}(t,v)$ then $\sigma_{st}(x) = nb_{G_s}(s,x) \times nb_{G_s}(t,x)$
- \rightarrow do this for all $s \neq x$ and, when s is fixed: all $t \neq x$ and $t \neq s$ complexity in $\mathcal{O}(N.(M+NM)) = \mathcal{O}(N^2M)$

Different types of graphs Centrality notions

Another example of centrality measures uses

Hypothesis of the strength of weak tie Granovetter - 1973

A "weak tie" is a link in a social network which represents a relation which is not frequently maintained

It is argued that weak ties play an essential role as they ensure connections between groups

18/21

Another example of centrality measures uses

Experimental validation on phonecall network Onnela et al. - 2007

- strength of a relationship = cumulative duration of calls
- how to measure the fact that a link is between groups?

weight (color) = cumulative duration of calls:

Different types of graphs
Centrality notions

Another example of centrality measures uses

Experimental validation on phonecall network Onnela et al. - 2007 Link betweenness definition similar to node betweenness

weight (color) = link betweenness:

19/21

Different types of graphs

Centrality notions

Another example of centrality measures uses

Experimental validation on phonecall network Onnela et al. - 2007

Quiz: what would you plot to check the correlation?

Different types of grap Centrality notic

Centrality measurements

- Degree
 - often not very relevant
 - low computational cost
- Closeness centrality
 - take into account distance from the node to others
 - quadratic computational cost
- Betweenness centrality
 - take into account relaying position of the node
 - computationally expensive (but can be improved...)
- Harmonic centrality
 - an alternative to closeness centrality (highly correlated)
 - same computational cost as closeness
- Katz centrality
 - take into account number of paths from the node to others
 - computationally expensive
- and others... Boldi and Vigna 2013

101/01

What about directed networks?

WWW: billion of web pages \rightarrow which are the most relevant?

- need for fast computation
- direction is important
- ⇒ in-degree? no

→ see course on search engines

21/21

Different types of graphs
Centrality notions

What about directed networks?

WWW: billion of web pages \rightarrow which are the most relevant?

- need for fast computation
- direction is important
- \Rightarrow in-degree? no

→ see course on search engines

Different types of graphs

Centrality notions

What about directed networks?

WWW: billion of web pages \rightarrow which are the most relevant?

- need for fast computation
- direction is important
- ⇒ in-degree? no

→ see course on search engines