PEOPLE VS. AQI Anthonette Dominguez Cecilia Aguayo Clayton Nagle

Ken Sikes

MOTIVATION:

Our group was interested in the idea that if people adhered to the stay at home orders during the COVID-19 quarantine, there would maybe be some kind of measurable positive impact in the air quality, as measured by Air Quality Index (AQI).

HYPOTHESIS:

IF THE PEOPLE IN SAN DIEGO FOLLOWED THE STAY-AT-HOME ORDERS DURING THE PANDEMIC, THEN WE WOULD SEE A DECREASE IN AQI IN THE TIME PERIOD IMMEDIATELY FOLLOWING SHELTER IN PLACE ORDERS.

WHAT IS AQI?

Air Quality Index

AQI is the measure of pollutants in the air. A higher AQI level represents greater health concerns and vice versa.

WHAT AFFECTS AQI?

FIVE MAJOR POLLUTANTS:

QUESTIONS & MEASUREMENTS

QUESTIONS:

- DO HUMANS HAVE A HUGE IMPACT ON AIR QUALITY?
 - O DID THE AQI SHOW ANY CHANGES WHEN GASSES INCREASED OR DECREASED?

MEASUREMENTS

- TIMEFRAME: 2018 2021
- MEASUREMENTS OF ATMOSPHERIC GASES THAT COMPRISE AQI
- AQI CHANGES OVER THE GIVEN TIME PERIOD

Data construction

```
In [1]: import pandas as pd
         import numpy as np
         import requests
         import ison
         from config import key dict
In [2]: data 2018 = pd.read csv('Resources/agidaily2018.csv')
         data_2019 = pd.read_csv('Resources/aqidaily2019.csv')
         data 2020 = pd.read csv('Resources/agidaily2020.csv')
         data 2021 = pd.read csv('Resources/agidaily2021.csv')
In [3]: agi data = data 2018.append(data 2019, ignore index = True)
         aqi data = aqi data.append(data 2020, ignore index = True)
         agi data = agi data.append(data 2021, ignore index = True)
         aqi data
Out[3]:
                                                               Site ID (of
                            Overall
                                                Site Name (of
                                                                            Source (of
                          AQI Value
                                                             Overall AQI)
                                                                           Overall AQI)
                                     Pollutant
                                                 Overall AQI)
             0 01/01/2018
                                       PM2.5
                                                             06-073-1014
                               139
                                                    Donovan
             1 01/02/2018
                                       PM2.5
                                                    Donovan
                                                             06-073-1014
            2 01/03/2018
                                       PM2.5
                                                  Chula Vista
                                                             06-073-0001
            3 01/04/2018
                                       PM2.5
                                                             06-073-1014
                                                    Donovan
             4 01/05/2018
                                       PM2.5
                                                             06-073-1014
          1171 03/20/2021
                                       Ozone
                                                  Chula Vista
                                                             06-073-0001
                                                                               AirNow NaN
          1172 03/21/2021
                                                             06-073-1006
                                                                                                                 44 NaN
                                       Ozone
                                                                               AirNow NaN
                                                                                               48 NaN NaN
          1173 03/22/2021
                                       Ozone
                                                             06-073-1006
                                                                               AirNow NaN
                                                                                               50 NaN NaN
                                                                                                                 48 NaN
          1174 03/23/2021
                                                              06-073-1006
                                                                               AirNow NaN
                                                                                              44 NaN NaN
                                                                                                                 42 NaN
          1175 03/24/2021
                                       PM2 5
                                                                               AirNow NaN
                                                                                               49 NaN
                                                                                                                52 NaN
         1176 rows x 12 columns
```

In [41]: aqi_data.to_csv('Resources/aqi_data.csv',index=False)

Source limitations and data exploration

- Original source (owm) lacking historical data
- Second source had data from far enough back for meaningful analysis, but lacked consistency in reporting
- Final source (EPA) had very good records, but data required cleaning and manipulation specific to different vars

```
test_final_df = pd.read_csv('Resources/aqi_data.csv')
test_final_df.Date = pd.to_datetime(test_final_df.Date)
test_final_df = test_final_df.set_index('Date')
test_final_df['Lat'] = 32.7157
test_final_df['Long'] = -117.1611
test_final_df.rename(columns = {"Overall AQI Value":"AQI"}, inplace = True)
test_final_df['AQI'] = test_final_df['AQI'].astype(float)
test_final_df = test_final_df.replace(".",None)
test_final_df.iloc[0,8] = None
test_final_df[['CO','Ozone','SO2','PM10','PM25', 'NO2']] = \
    test_final_df[['CO','Ozone','SO2','PM10','PM25', 'NO2']].astype(float)
#final_data_set_up_for_the_whole_data_gathered
```


AQI LEVELS OF CONCERN

Daily AQI Color	Levels of Concern	Values of Index	Description of Air Quality
Green	Good	0 to 50	Air quality is satisfactory, and air pollution poses little or no risk.
Yellow	Moderate	51 to 100	Air quality is acceptable. However, there may be a risk for some people, particularly those who are unusually sensitive to air pollution.
Orange	Unhealthy for Sensitive Groups	101 to 150	Members of sensitive groups may experience health effects. The general public is less likely to be affected.
Red	Unhealthy	151 to 200	Some members of the general public may experience health effects; members of sensitive groups may experience more serious health effects.
Purple	Very 201 to Health alert: The risk of health effects is increase Unhealthy 300		Health alert: The risk of health effects is increased for everyone.
Maroon	Hazardous	301	Health warning of emergency conditions: everyone is more likely to

AQI Over Time.

Nitrogen Dioxide Over Time.

PM2.5 Over Time.

Carbon Monoxide Over Time.

Ozone Over Time.

Particle Pollution (PM10) Over Time.

Sulfur Dioxide over time

DATA ANALYSIS

		AQI	CO	Ozone	SO2	PM10	PM25	NO2	Lat	Long
Date	Date									
2018	3	53.161	7.581	51.516	0.000	16.484	38.452	26.742	32.716	-117.161
	4	73.133	7.233	69.867	0.000	23.267	59.233	23.400	32.716	-117.161
	5	68.774	5.742	67.677	0.000	21.129	46.806	19.968	32.716	-117.161
	6	90.400	5.767	88.867	0.133	30.200	55.267	17.733	32.716	-117.161
2019	3	53.581	6.613	50.129	0.000	18.194	43.645	23.935	32.716	-117.161
	4	68.167	6.300	61.300	0.000	19.767	56.767	22.433	32.716	-117.161
	5	55.645	5.194	51.742	0.000	15.419	49.129	16.677	32.716	-117.161
	6	65.767	5.767	61.667	0.000	15.967	55.067	15.400	32.716	-117.161
2020	3	46.129	6.065	41.806	0.000	15.613	36.710	20.484	32.716	-117.161
	4	60.667	5.100	54.300	0.000	21.800	50.833	18.267	32.716	-117.161
	5	70.871	5.645	61.710	0.032	23.387	62.226	15.129	32.716	-117.161
	6	68.567	5.967	60.800	0.000	26.133	58.733	17.167	32.716	-117.161
2021	3	47.375	NaN	47.083	NaN	NaN	32.417	NaN	32.716	-117.161

DISCUSSION

 Although we lack a large enough sample size to make a strong statistical claim about the data, the preliminary exploration we conducted seems to indicate that the air quality did improve in the immediate weeks after shelter in place orders were initially sent out (in comparison to the same timeframe in past years)

POST MORTEM

- Beyond the source data problems, it likely would have been helpful to have a more robust understanding of the subject material which would have likely eased the data searching process.
- Each data source had limitations; more time could have allowed us to patch these holes.
 - Similarly, time was a factor in the depth of our analysis. More time could have allowed for more granular or broader exploration of data.
- Shaky grasp of statistical comparison tests means we did not implement any tests to
 mathematically check our hypothesis against the data; more experience with these tools
 could have allowed this to be done and generate a stronger conclusion
- As noted, the data was affected in some instances by natural events like wildfires;
 Although these are a part of the data in reality, a more complex analysis could have perhaps controlled for these outliers.

Questions?

DATA SOURCES

- Open Weather Map Historical Air Pollution API (limited)
- EPA.gov Air Quality Index Daily Value Report
- Airnow https://www.airnow.gov/aqi/aqi-basics/