Project Development Phase Model Performance Test

Date	19 November 2022
Team ID	PNT2022TMID00056
Project Name	Early Detection of Chronic Kidney Disease using
	Machine Learning
Maximum Marks	10 Marks

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No	Parameter	Values	Screenshot
1.	Metrics	Regression Model: MAE - 0.075 MSE - 0.075 RMSE - 0.27386 R2 score - 0.65811	<pre>import sklearn.metrics as metrics mae = metrics.mean_absolute_error(y_test, y_pred) mse = metrics.mean_squared_error(y_test, y_pred) rmse = np.sqrt(mse) r2 = metrics.r2_score(y_test,y_pred) print("Results of sklearn.metrics:") print("MAE:",mae) print("MSE:", mse) print("RMSE:", rmse) print("RMSE:", rmse) print("R-Squared:", r2)</pre> Results of sklearn.metrics: MAE: 0.075 MSE: 0.075
		Classification Model: Confusion Matrix	<pre>RMSE: 0.27386127875258304 R-Squared: 0.6581196581196581 confusion_mat = confusion_matrix(y_test,y_pred) confusion_mat array([[48, 6],</pre>

		Accuracy Score Classification Report	<pre>accuracy_score(y_test,y_pred) 0.925 from sklearn.metrics import classification_report print(classification_report(y_test, y_pred))</pre>					
				precision	recall	f1-score	support	
			0	1.00	0.89	0.94	54	
			1	0.81	1.00	0.90	26	
			accuracy			0.93	80	
			macro avg	0.91	0.94	0.92	80	
			weighted avg	0.94	0.93	0.93	80	
2.	Tune the Model	Hyperparameter Tuning - GridSearch CV with best score 0.9175	<pre>from sklearn.model_selection import GridSearchCV c_space = np.logspace(-5, 8, 15) param_grid = {'C': c_space} logreg = LogisticRegression() logreg_cv = GridSearchCV(logreg, param_grid, cv = 5) logreg_cv.fit(x, y) print("Tuned Logistic Regression Parameters: {}".format(logreg_cv.best_print("Best score is {}".format(logreg_cv.best_score_))</pre> Tuned Logistic Regression Parameters: {'C': 268.2695795279727}					
			<pre>logreg_cv = GridSearchCV(logreg, param_grid, cv = 5) logreg_cv.fit(x, y) print("Tuned Logistic Regression Parameters: {}".format(logreg_cv.best_param print("Best score is {}".format(logreg_cv.best_score_))</pre>					