

Multiplikative Javerse z' fin alle $z \neq 0$ Vantelling: $\frac{z}{(z_1)^2} = \frac{1}{z} = z^{-1}$

$$\frac{1}{2} = \frac{1}{(2)^{2}} = \frac$$

Exponential form

$$\frac{1}{2} = V(\cos S + i \sin J) = V \cdot e$$

Exponential form

 $\frac{1}{3}i$
 $\frac{1}{3}i$

• Bestimmen Sie die Exponentialdarstellungen der komplexen Zahlen $z=1+\sqrt{3}i$ und $w=\frac{1}{e^{\frac{1}{2}i}}$ und zeichnen Sie diese in der Gauß'schen Zahlenebene. $z=1+\sqrt{3}i$

$$\frac{1}{2} = \frac{1}{4} + \sqrt{3} \frac{1}{3} \qquad \qquad V = \frac{1}{2} / = \sqrt{\frac{2}{4} + \frac{2}{3}} = \sqrt{\frac{1}{4} + (\sqrt{3})^{2}} = \sqrt{\frac{1}{4} + \frac{2}{3}} = \sqrt{\frac{2}{4} + \frac{2}{3}} = \sqrt{\frac{2}{4}} = \sqrt{\frac{2}{4} + \frac{2}{3}} = \sqrt{\frac{2}{4}} = \sqrt{\frac{2}{4}}$$

Berechnen oder bestimmen und zeichnen Sie für z = 2 - 1i das Bild unter der

Abbilding
a)
$$z \mapsto e^{\frac{\pi}{2}i} \cdot z$$
, = $i(2-i)$ = $2i - \frac{i}{2}$ = $1 + 2i$
b) $z \mapsto -i \cdot z$. = $i(2-i)$ = $-2i \cdot i^2$ = $-(-2i)$

a) $z \mapsto e^{\frac{\pi}{2}i} \cdot z$, = i(2-i) = $2i - \frac{1}{2}i$ = 1 + 2ib) $z \mapsto -i \cdot z$, = i(2-i) = $-2i \cdot i \cdot i^2$ = -1 - 2ia) 2,2 skizziera 6) 2,02 u 11 c) 2,2 in Kad. For d) 3 53 - 3 i in Polar for c) t, ± 3 (cos $\left(-\frac{\pi}{6}\right)$ + i cos $\left(-\frac{\pi}{6}\right)$) $= 3 \left(\frac{\sqrt{3}}{2} - \frac{1}{2} \right) = \frac{3\sqrt{3}}{2} - \frac{1}{2}$ Teilmenge der komplexen Zahlen, die die Gleichung z^N=1 erfüllen. Auf der Menge der komplexen Zahlen hat diese Gleichung genau N Lösungen. Eine von Ihnen ist die N-te Haupteinheitswurzel $\frac{V_N}{N} = \cos(\frac{2\pi}{N}) + i\sin(\frac{2\pi}{N}) = e^{i\frac{2\pi}{N}}$ Sie generiert alle N verschiedene Lösungen: Kamplexe Vettor vanne $\begin{pmatrix}
4+2i \\
-2+i \\
3-2i \\
i
\end{pmatrix}
+
\begin{pmatrix}
1+i \\
-1+i \\
-4-2i \\
-i
\end{pmatrix}
=
\begin{pmatrix}
5+3i \\
-1+2i \\
-1-4i
\end{pmatrix}$ $\langle x_1 y \rangle = x, \hat{y}, + x, \hat{y}, + - + x_n \hat{y}_n$ = -7 + 13(+2 +1 +4 = 13 | (5kalar = Komplexe Earl) $\langle X | X \rangle = \langle X_1 | \overline{X}_1 + X_2 | \overline{X}_2 + \dots + \langle X_N | \overline{X}_N \rangle$ $\begin{pmatrix}
4 - 1i \\
-2 - i \\
3 + 2i \\
-i
\end{pmatrix} = 34$ 2 / 6 + 4 + 4 + 4 + 1 + 3 + 4 + 1

Untho so nale Projektion

$S_0 = \begin{pmatrix} c & \frac{1}{2} & \frac{1}{2} & 0 \\ c & \frac{1}{2} & \frac{1}{2} & 0 \\ c & \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$	n = 0,	, N-1
$\begin{cases} 2 & 2 & 3 & 1 \\ 2 & 3 & 1 \\ 2 & 4 & 3 \\ 2 & 4 & 4 $	Si(n)	$ \begin{array}{cccc} & & & & & & \\ & & & & & & \\ & & & & $
$\begin{cases} \begin{pmatrix} c & \frac{1}{4} \\ \vdots & \frac{1}{2} & \frac{1}{4} \\ c & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \vdots & \frac{1}{4} & \frac{1}{4} & $		
$S_{0} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, S_{1} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$		
Sz = \begin{picture} 1 \\ 1 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \		

 $\begin{cases} S_{K} \mid S_{K} \rangle = C & c & c & 2\pi n k \\ N & c & 2\pi n k \\ N & c & N \end{cases} = C & c & c & c & n \\ \begin{cases} S_{K} \mid S_{K} \rangle = C & c & c \\ N & c & N \end{cases} = C & c & c & c \\ \begin{cases} S_{K} \mid S_{K} \rangle = C & c \\ N & c & N \end{cases} = C & c & c \\ \begin{cases} S_{K} \mid S_{K} \rangle = C & c \\ N & c & N \end{cases} = C & c & c \\ \begin{cases} S_{K} \mid S_{K} \rangle = C & c \\ N & c \\ N$ Matrix formulierung der STI: (N=4) Statt 4-mal SKP amsen fisheren Kommen wiv als Matrix-Velstor Multiplikation anfrohielen Inverse DTI Signal vokonstruktion als Summe der Projektioner

X(n) = \(\times \) \(\lambda(\kappa) \) Sk = \(\times \) \(\lambda(\kappa) \) $= \chi_{(0)} \cdot s_0 + \chi_{(1)} \cdot s_1 + \chi_{(2)} s_2 - \chi_{(N-1)} \cdot s_{N-1}$ Zirnok zom 3 sp. X = E1, 0, 0, 0) $X = 1 \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + 0 \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix} + 0 \cdot \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$