MA101 Mathematics I

Department of Mathematics Indian Institute of Technology Guwahati

Jul - Nov 2013

Slides originally created by: Dr. Anjan Kumar Chakrabarty

Instructors: RA, BKS, SB, KK

Outline of Syllabus

- Sequence
- Series
- Continuity
- Derivative
- Integral

Books

- Calculus and Analytic Geometry Thomas & Finney
- Introduction to Real Analysis Bartle & Sherbert
- A Course in Calculus and Real Analysis Ghorpade & Limaye

Tests

- Quiz 2 (10 marks / October 30, 2013)
- End-semester Exam. (Total 50 marks)
 40 marks from Single Variable Calculus & 10 marks from Linear Algebra.

Problem solving

Three types of problems

- Examples in lectures
- Tutorial problems
- Additional practice problems

$$\lim_{n \to \infty} \left[\frac{1}{1.n} + \frac{1}{2.(n-1)} + \dots + \frac{1}{n.1} \right]$$

$$= \lim_{n \to \infty} \frac{1}{1.n} + \lim_{n \to \infty} \frac{1}{2.(n-1)} + \dots = 0 + 0 + \dots = 0$$

Method is wrong but answer is correct.

$$\lim_{n \to \infty} \left[\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right]$$

$$= \lim_{n \to \infty} \frac{1}{n+1} + \lim_{n \to \infty} \frac{1}{n+2} + \dots = 0 + 0 + \dots = 0$$

Method is wrong and answer is also wrong.

$$\int_{-1}^{1} \frac{1}{\sqrt[3]{x}} dx = \left[\frac{3}{2} x^{\frac{2}{3}}\right]_{-1}^{1} = 0$$

Method is wrong but answer is correct.

$$\int_{-1}^{1} \frac{1}{x^2} dx = \left[-\frac{1}{x} \right]_{-1}^{1} = -2$$

Method is wrong and answer is also wrong.

Let
$$f(x) = \begin{cases} x^2 + x & \text{if } x \ge 0, \\ x^2 & \text{if } x < 0. \end{cases}$$

So
$$f''(x) = \begin{cases} 2 & \text{if } x \ge 0, \\ 2 & \text{if } x < 0. \end{cases}$$

i.e.
$$f''(x) = 2$$
 for all $x \in \mathbb{R}$

Method? Answer? Think!

Order properties of real numbers

 $\mathbb{N} = \{1, 2, \dots, n, \dots\} = \text{ set of natural numbers}$

 $\mathbb{Z} = \{0, \pm 1, \pm 2, \dots, \} = \text{ set of integers}$

 $\mathbb{Q} = \{p/q : p \in \mathbb{Z} \text{ and } q \in \mathbb{N}\} = \text{ set of rationals}$

 $\mathbb{R} = \mathsf{set}$ of real numbers $= \mathsf{the}$ real line

Fact: \mathbb{R} is an ordered field.

1. If $a, b \in \mathbb{R}$ then exactly one of the following is true:

$$a < b$$
; $a = b$; $b < a$.

- 2. a < b and $b < c \Longrightarrow a < c$.
- 3. a < b and $c \in \mathbb{R} \Longrightarrow a + c < b + c$.
- 4. a < b and $c > 0 \Longrightarrow ac < bc$; a < b and $c < 0 \Longrightarrow bc < ac$.

Absolute value

For $a, b \in \mathbb{R}$, define $a \leq b$ by a < b or a = b.

Then for $a, b \in \mathbb{R}$, either $a \leq b$ or $b \leq a$ (also written as $a \geq b$).

Absolute value: $|\cdot|: \mathbb{R} \longrightarrow \mathbb{R}$ defined by

$$|x| = \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}$$

Then the absolute value function satisfies the following:

- 1. $|x| \ge 0$ and $|x| = 0 \iff x = 0$.
- 2. |xy| = |x||y| for $x, y \in \mathbb{R}$.
- 3. $|x+y| \leq |x| + |y|$ for $x, y \in \mathbb{R}$.

Bounded sets

Let $S \subset \mathbb{R}$ be finite. Then there exists $x_{\min}, x_{\max} \in S$ such that

$$x_{\min} < x < x_{\max}$$
 for all $x \in S$.

What happens if $S \subset \mathbb{R}$ is infinite?

Examples:

- **1** Let $S_1 := \{1/n : n \in \mathbb{N}\}$. Then $x_{max} = 1$ and $x_{min} = ?$.
- ② Let $S_2 = \{1 1/n : n \in \mathbb{N}\}$. Then $x_{\min} = 0$ and $x_{\max} = ?$
- **3** Let $S_3 = \{x \in \mathbb{R} : 0 < x < 1\}$. Then $x_{\min} = ?$ and $x_{\max} = ?$.

Definition: Let $S(\neq \emptyset) \subset \mathbb{R}$ and $u, \ell \in \mathbb{R}$.

u is an upper bound of S in \mathbb{R} if $x \leq u$ for all $x \in S$.

S is called bounded above if there is an upper bound of S in \mathbb{R} .

 ℓ is a lower bounded of S in \mathbb{R} if $\ell \leq x$ for all $x \in S$.

S is called bounded below if there a lower bound of S in \mathbb{R} .

S is called bounded if it is bounded above and bounded below.

Supremum and infimum

Definition: Let $S(\neq \emptyset) \subset \mathbb{R}$ and $u \in \mathbb{R}$. Then u is called the supremum (least upper bound = lub) of S in \mathbb{R} if

- \bullet *u* is an upper bound of *S* in \mathbb{R} , and
- ② u is the least among all the upper bounds of S in \mathbb{R} , i.e. if u' is any upper bound of S in \mathbb{R} , then $u \leq u'$.

Notation: $\sup S$, lub S.

Definition: Let $S(\neq \emptyset) \subset \mathbb{R}$ and $\ell \in \mathbb{R}$. Then ℓ is called the infimum (greatest lower bound = glb) of S in \mathbb{R} if

- \bullet ℓ is a lower bound of S in \mathbb{R} , and
- ② ℓ is the greatest among all the lower bounds of S in \mathbb{R} , *i.e.* if ℓ' is any lower bound of S in \mathbb{R} , then $\ell' \leq \ell$.

Notation: inf S, glbS.

Examples: $\sup S_1 = 1 \in S_1$ and $\inf S_1 = 0 \notin S_1$. $\inf S_2 = 0 \in S_2$ and $\sup S_2 = 1 \notin S_2$. $\inf S_3 = 0 \notin S_3$ and $\sup S_3 = 1 \notin S_3$.

Completeness property of $\mathbb R$

If $S \subset \mathbb{R}$ is nonempty and bounded above then does S have a supremum?

Completeness property/lub property: Let $S \subset \mathbb{R}$ be nonempty. If S is bounded above then S has a supremum (sup S exits).

Ex. If $S \subset \mathbb{R}$ is nonempty and is bounded below then S has an infimum (inf S exits).

Archimedean property: Let $a \in \mathbb{R}$. Then there exits $n \in \mathbb{N}$ such that n > a.

Density of rationals: Let $a, b \in \mathbb{R}$ with a < b. Then exists $r \in \mathbb{Q}$ such that a < r < b.

Ex. Let $a, b \in \mathbb{R}$ with a < b. Then exists an irrational number s such that a < s < b.

*** end ***