α_1 , α_2 , α_3 唯一线性表示,则 α 满足

复旦大学经济学院

2022~2023 学年第二学期期末考试试卷

A 卷 (央 6 贝)					
课程名称:	线性代数	课程	代码:N	1ATH120	044.01-05
	经济学院				
姓名:	学号:		专业:		
提示:请同学们	门秉持诚实守信宗	旨,谨守考试纪律	津,摒弃考 [·]	试作弊。	学生如有讳反学标
考试纪律的行为,					
题号					总分
得分					
一、单项选择题(共 1、已知 3 阶方阵A的 () (A) 2 2、若矩阵 $\begin{pmatrix} a & 0 & 3 \\ 4 & 1 & b \\ 2 & 0 & 1 \end{pmatrix}$ () (A) $a = 6$	的特征值为1, — 1 (B) 4) 奇异,则 <i>a,b</i> 满足	1/2, 2, <i>A</i> *为伴 (C)	随矩阵,贝 8	∬ 2 <i>A</i> ² − 2 ((D) -225
3、设A,B是3阶矩阵向量, A -6 B =3	$\exists A = (\alpha 2\gamma_2)$	$3\gamma_3$), $B = (\beta$	$\gamma_2 = \gamma_3$,	\pm 中 α , β ,	γ_2, γ_3 均为3维列
() (A) 1 4、下列是n阶矩阵A	(B) 3	(C)	2	()	D) 6
() (A) A的特征 (C) 特征值 (D) A的列	征矩阵秩为 n λ_i 的重数与其对 Δ_i	(B) 立的线性无关的特	征向量个	可程有 n 个数相同	互不相同的根
5、设 <i>m</i> × <i>n</i> 矩阵 <i>A</i> , <i>n</i> () (A) 可逆 6、 <i>A</i> 为 <i>m</i> × <i>n</i> 矩阵, <i>n</i>	(B) 不可	逆 (C)		(1))) 秩为加
(A) 当 $r = r$ (B) 当 $r = r$ (C) 当 $r < r$	n时,线性方程组 <i>n</i> 时,线性方程组 n时,线性方程组 n时,线性方程组 n时,线性方程组	Ax = 0有唯一解 Ax = 0有无穷多的 Ax = b有无穷多的 Ax = b有唯一解	解	$\beta = (1.3)$	3.0) ^T ,若 <i>R</i> 可由

- () (A) $a \neq 3$ $\exists a \neq -1$ (B) a = 3 (C) $a \neq -1$ (D) $a \neq 1$ 8、A,B为n阶实对称矩阵,下列不是A与B相似的必要条件是
- () (A) A,B有相同的特征矩阵
- (B) A, B的秩相同
- (C) A, B相似于同一对角阵 (D) A, B有相同的特征值
- 9、设齐次线性方程组Ax=0,其中A为 5×6 矩阵,r(A)=3, ξ_1 , ξ_2 , ξ_3 为方程组的三个线 性无关的解向量,则Ax = 0的一个基础解系为
- () (A) $\xi_1 + \xi_2 + \xi_3, \xi_3 \xi_2 \xi_1, \xi_3$
- (B) $\xi_1 + \xi_3, \xi_3 + \xi_2, \xi_3 \xi_2$
- (C) $\xi_1 \xi_2, \xi_2 \xi_3$
- (D) $\xi_3, \xi_1 + \xi_2, \xi_1 + \xi_2 + \xi_3$

所得矩阵为B,则下列关于A和B的关系不正确的是

- 10、设A为n阶矩阵,将A的第i行的k倍加至第j行,然后将A的第j列的-k倍加至A的第i列,
- () (A) 特征值相同
- (B) |A| = |B|
- (C) r(A) = r(B)
- (D) A、B的特征向量相同
- 二、计算题(54分,每小题9分):

1、求
$$n$$
 阶行列式
$$\begin{vmatrix} 1 & 2 & 3 & 4 & \cdots & n-1 & n \\ 2 & 1 & 2 & 3 & \cdots & n-2 & n-1 \\ 3 & 2 & 1 & 2 & \cdots & n-3 & n-2 \\ 4 & 3 & 2 & 1 & \cdots & n-4 & n-3 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ n-1 & n-2 & n-3 & n-4 & \cdots & 1 & 2 \\ n & n-1 & n-2 & n-3 & \cdots & 2 & 1 \end{vmatrix}$$

2、用克莱姆法则求下列线性方程组的解

$$\begin{cases} x_1 + x_2 + x_3 = -1 \\ x_1 + 2x_2 + 4x_3 = 1 \\ x_1 - x_2 + x_3 = 7 \end{cases}$$

3、设 A 是 3×4 矩阵,已知 $\mathbf{r}(A) = 2$,且 $\mathbf{x}_1 = (1,1,1,1)^{\mathrm{T}}$, $\mathbf{x}_2 = (1,-1,-1,1)^{\mathrm{T}}$, $\mathbf{x}_3 = (-1,1,1,-1)^{\mathrm{T}}$ 是方程组 $A\mathbf{x} = \mathbf{b}$ 的 3 个解,求 $A\mathbf{x} = \mathbf{b}$ 的全部解

4、求下列向量组的极大无关组,并将其余向量用极大无关组线性表示

$$\alpha_1 = (1, -1, 0, 0), \qquad \alpha_2 = (-1, 2, 1, -1), \qquad \alpha_3 = (0, 1, 1, -1),$$

$$\alpha_4 = (-1, 3, 2, 1), \qquad \alpha_5 = (-2, 6, 4, -1)$$

5、设
$$n$$
 阶矩阵 $\mathbf{R} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 \end{pmatrix}$, $\mathbf{A} = \mathbf{I} + \mathbf{R} + \mathbf{R}^2 + \cdots + \mathbf{R}^k$ (其中 k 为

大于n的正整数),求矩阵 A 的逆矩阵 A^{-1}

6、设 $\mathbf{A} = \begin{pmatrix} 0 & 0 & 4 & 1 \\ 0 & 0 & 1 & 4 \\ 4 & 1 & 0 & 0 \\ 1 & 4 & 0 & 0 \end{pmatrix}$,求正交矩阵 \mathbf{Q} ,使得 \mathbf{A} 正交相似于对角矩阵

三、证明题(16分,每小题8分):

1、设A为3 阶矩阵, 3 维列向量 \mathbf{x} , $\mathbf{A}\mathbf{x}$, $\mathbf{A}^2\mathbf{x}$ 线性无关,且满足 $\mathbf{A}^3\mathbf{x}=\mathbf{2}\mathbf{A}\mathbf{x}-\mathbf{A}^2\mathbf{x}$ 。证明: $\mathbf{A}+\mathbf{2}\mathbf{I}$ 是奇异矩阵。

2、设**A**为 3 阶矩阵, $|\mathbf{A}|=-2$,且**A**的第二列是 $(1,1,1)^T$, A_{ij} 是**A**的代数余子式,证明: $A_{11}A_{23}-A_{21}A_{13}=2$

复旦大学经济学院

2022~2023 学年第二学期期末考试试卷

A 卷答案

1, C 2, A 3, A 4, C 5, B

6, A 7, A 8, A 9, B 10, D

 \equiv , 1, $(-1)^{n+1}2^{n-2}(n+1)$

 $2, x_1 = 1, x_2 = -4, x_3 = 2$

3、可得出b = 0, $x = c_1x_1 + c_2x_2$ (c_1, c_2) 为任意常数)

4、 $\alpha_1, \alpha_2, \alpha_4$ 是极大无关组, $\alpha_3 = \alpha_1 + \alpha_2$, $\alpha_5 = \alpha_1 + 2\alpha_2 + \alpha_4$

$$5. A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ & 1 & \cdots & 1 \\ & & \ddots & \vdots \\ & & & 1 \end{pmatrix}, A^{-1} = \begin{pmatrix} 1 & -1 & & \\ & 1 & \ddots & \\ & & \ddots & -1 \\ & & & 1 \end{pmatrix}$$

 \equiv

1、要点:
$$A(x, Ax, A^2x) = (Ax, A^2x, 2Ax - A^2x) = (x, Ax, A^2x)\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & -1 \end{pmatrix}$$
, 则有

$$A \sim B = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & -1 \end{pmatrix}$$
, $\sigma = B$ 得出 -2 是 A 的 $-$ 个特征值, 或 $A + 2I \sim B + 2I$, 从而 $|A + 2I| = 1$

 $|\mathbf{B} + 2\mathbf{I}| = \mathbf{0}$

方法二:可以凑出 $A(Ax - A^2x) = -2(Ax - A^2x)$ 因而-2是A的一个特征值

2、要点: $(A^*)^* = |A|^{n-2}A = |A|A = -2A$,

而A*的第 2 行第 3 列的代数余子式是 $-(A_{11}A_{23}-A_{21}A_{13})$