Gov 62 Section 7

Chris Chaky

April 2, 2019

What is process tracing?

▶ Bennett and Checkel (2015): "the analysis of evidence on processes, sequences, and conjectures of events within a single case for the purposes of either developing or testing hypotheses about causal mechanisms that might causally explain the case" (7)

What is process tracing useful for?

- ▶ Analyzing processes, sequences, and conjectures of events.
- Theories and hypotheses put forward claims about a set of processes.
- ▶ You can therefore use process tracing to test hypotheses.

When is process tracing an appropriate research tool?

- When your research goal is to test a mechanism.
- When your research goal is to examine whether X path was taken from the IV to the DV (over other paths – we call these competing hypotheses).

Process tracing can be deductive:

 Examine observable implications of hypothesized causal mechanisms within a case to test whether theory on these mechanisms explains the case

Process tracing can be inductive:

- Use evidence from within a case to develop hypotheses that might explain the case
- ► Latter hypotheses may in turn generate additional testable implications in the case or other cases

How do we do process tracing?

- Determine possible observable implications of competing hypotheses
- Collect causal-process observations that provide evidence for or against these claims
- Assess relative usefulness of data and tests

Table 1
Process Tracing Tests for Causal Inference

		SUFFICIENT FOR AFFIRMING CAUSAL INFERENCE	
		No	Yes
NECESSARY FOR AFFIRMING CAUSAL INFERENCE	No	1. Straw-in-the-Wind	3. Smoking-Gun
		a. Passing: Affirms relevance of hypothesis, but does not confirm it.	a. Passing: Confirms hypothesis.
		b. Failing: Hypothesis is not eliminated, but is slightly weakened.	 Failing: Hypothesis is not eliminated, but is somewhat weakened.
		c. Implications for rival hypotheses: Passing slightly weakens them. Failing slightly strengthens them.	c. Implications for rival hypotheses: Passing substantially weakens them. Failing somewhat strengthens them.
		2. Hoop	4. Doubly Decisive
	Yes	a. Passing: Affirms relevance of hypothesis, but does not confirm it.	Passing: Confirms hypothesis and eliminates others.
		b. Failing: Eliminates hypothesis.	b. Failing: Eliminates hypothesis.
		c. Implications for rival hypotheses: Passing somewhat weakens them. Failing somewhat strengthens them.	c. Implications for rival hypotheses: Passing eliminates them. Failing substantially strengthens.

Source: Adapted from Bennett (2010, 210), who builds on categories formulated by Van Evera (1997, 31-32).