Building blocks of Bayesian models – Likelhoods, Priors and Posteriors

Sensor fusion & nonlinear filtering

Lars Hammarstrand

General problem formulation

- We are interested in an unknown parameter $\theta \in \Theta$ using some related observed data y.
- Common problem types are estimation (e.g., Θ = ℝⁿ) and detection problems (e.g., Θ = {-1,1}).

Assumption

• The observed data, y, is distributed as

$$y \sim p(y|\theta),$$

where p is a known distribution.

Likelihood

• Since y is observed, we often view $p(y|\theta)$ as a function of θ ,

$$I(\theta|y) = p(y|\theta),$$

where $I(\theta|y)$ is called the likelihood function.

• Note: the likelihood function is *not* a density w.r.t. θ .

Prior

- In Bayesian statistics we have a prior distribution on θ , $p(\theta)$.
- Prior means *earlier*, or before, and $p(\theta)$ describes what we know *before* observing y.

Posterior

 One objective in Bayesian statistics is to compute the posterior

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} \propto l(\theta|y)p(\theta)$$

• Posterior means after and $p(\theta|y)$ describes what we know after observing y.

· We summarize this as

posterior \propto likelihood \times prior.

- Given the posterior, $p(\theta|y)$ we can answer, e.g.,
 - What is the most probable θ ?
 - What is the probability that $\theta \in \mathcal{A}$?
 - What is the posterior mean of θ ?
- We can also minimize expected costs in a decision theoretic manner.

EXAMPLE: SCALAR IN GAUSSIAN NOISE

Estimation of scalar in Gaussian noise

• Suppose we observe

$$y= heta+v, \qquad v\sim \mathcal{N}(0,\sigma^2)$$
 such that $p(y| heta)=\mathcal{N}(y; heta,\sigma^2)\propto \exp\{-(y- heta)^2/(2\sigma^2)\}.$

- A common non-informative prior on θ is $p(\theta) \propto 1$.
- What is the posterior?

BAYESIAN APPROACH TO SENSOR FUSION

 Suppose we collect measurements from two types of sensors, y₁ and y₂,

Bayesian fusion of independent observations

• We seek the posterior distribution:

$$p(\theta|y_1,y_2) \propto p(\theta)p(y_1,y_2|\theta).$$

· It is often reasonable to assume that

$$p(y_1, y_2|\theta) \approx p(y_1|\theta)p(y_2|\theta),$$

i.e., that measurements are conditionally independent.

SELF-ASSESSMENT

The posterior distribution is $p(\theta|y) \propto p(y|\theta)p(\theta)$. It is also true that:

- The normalization factor is not always unique?
- The posterior $p(\theta|y)$ can always be uniquely determined from the fact that $\int p(\theta|y) d\theta = 1$?
- The posterior distribution can only be uniquely determined if it is proportional to a well known distribution, e.g., a Gaussian.

Only one statement is correct.