CS 362: Homework 6

Due on April 5, 2024 at 11:59pm

Professor Troy 11:00am

Ryan Magdaleno

rmagd 2@uic.edu

Problem 1

Ryan Magdaleno

Consider the following Finite State Machine. Start State: S0 Output value is under the line below the State number.

Solution

- 1. Is the above FSM a Moore machine or a Mealy Machine? Mealy Machine.
- 2. What is output by the above FSM for the:

Input:

 $1\ 0\ 1\ 1\ 0\ 0\ 0\ 1\ 0\ 0\ 1\ 1$

Output:

 $0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 1\; 0\; 1\; 1\; 0\\$

3. Create the truth table to the above FSM. Encode the states using 2 bit binary values:

 $S0 \rightarrow 0$ 0, $S1 \rightarrow 0$ 1, $S2 \rightarrow 1$ 0, $S3 \rightarrow 1$ 1

	, ,				
p1	p0	b	у	n1	n0
0	0	0	0	1	1
0	0	1	0	0	1
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	0	1	0
1	1	0	1	1	0
1	1	1	1	0	1

4. Write out the simplified expressions for the next state and output values. You can use K-maps or boolean algebra to determine simplified expression.

$$n0 = p1p0b + p1p0'b' + p1'p0'b + p1'p0'b'$$

$$n1 = p1'p0'b' + p1p0'b + p1'p0b + p1p0b'$$

$$n0 = p1'p0' + p1p0b + b'p0'$$

$$n1 = p1'p0'b' + p1p0b' + p1'p0b + p1p0'b$$

$$y = p0$$

5. Draw the circuit diagram for the Finite State Machine. Use the format as shown in class and in the zyBooks (and in Q3 below) that contain a state register and a combination logic block.

Problem 2

Consider the following Finite State Machine. Start State: S0. Inputs are listed before the slash on each transition. Outputs are listed after the slash on each transistion.

Solution

- 1. Is the above FSM a Moore machine or a Mealy machine? Mealy Machine
- 2. What is output by the above FSM for:

Input: 1 0 1 1 0 0 0 1 0 0 1 1 Output: 0 1 0 1 1 0 0 0 1 0 0 1

3. Create the truth table to the above FSM. Encode the states using 2 bit binary values:

 $S0 \rightarrow 0$ 0, $S1 \rightarrow 0$ 1, $S2 \rightarrow 1$ 0

20 100,82 1	0 = , 0 = 7 = 0				
p1	p0	b	у	n1	n0
0	0	0	0	1	0
0	0	1	0	0	1
0	1	0	1	1	0
0	1	1	1	0	1
1	0	0	0	1	0
1	0	1	0	0	1
1	1	0	x	x	x
1	1	1	x	x	x

4. Write out the simplified expressions for the next state and output values. You can use K-maps or boolean algebra to determine simplified expressions.

n1 = b'

$$y = b$$

5. Draw the circuit diagram for the Finite State Machine. Use the format as shown in class and in the zyBooks (and in Q3 below) that contain a state register and a combination logic block.

Problem 3

Consider the following circuit:

Solution

1. Write the equations for the for the next state and output values from the above controller.

2. Create the truth table for the above circuit:

p1	p0	A	Y	n1	n0
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	1	0	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	0	1	0
1	1	0	1	0	0
1	1	1	0	1	0

3. What information needed for drawing a Finite State Machine is not included in the Truth Table and will need to be assumed?

We need to assume some start state, I will divide the truth table into four states, S_0 will be the first two rows in the table, this will be our start state.

4. Draw the Finite State Machine that is represented by the circuit:

- 5. Is the Finite State Machine a Moore machine or a Mealy machine? Mealy machine.
- 6. What is output by the above FSM for:

Input: 1 0 1 1 0 0 0 1 0 0 1 1 Output: 0 1 0 0 1 0 0 0 1 0 0 0