Exercici 33. Demostreu que $2^{p-1}(2^p-1)$ és un nombre perfecte quan $M_p=2^p-1$ és un nombre primer de Mersenne. (*Teorema d'Euclides*)

Solució 33. Veiem que si $n = (2^n - 1)(2^{n-1})$ és un nombre perfecte, $\sigma_1(n) = 2n$.

$$\sigma_{1}[(2^{2n-1})(2^{n}-1)] =$$

$$[(1+2+2^{2}+...+2^{n-1})] + [(2^{n}-1)+2(2^{n}-1)+...+2^{n-1}(2^{n}-1)] =$$

$$[(1+2+2^{2}+...+2^{n-1})] + (2^{n}-1)[(1+2+2^{2}+...+2^{n-1})] =$$

$$2^{n}(1+2+2^{2}+...+2^{n-1}) =$$

$$2^{n}(2^{n}-1) \Rightarrow$$

$$2^{n}(2^{n}-1) = 2(2^{n-1})(2^{n}-1) = 2(n)$$