Analysis Report

This report is structured as follows.

Contents

	Data Processing	2
	Reliability Analysis and Descriptive Statistics	2
	Correlation Analysis	<u> </u>
	Sociodemographics	9
	Cross-Tabulations	10
	References	14
SA	ANPLE REPORT. Ratael Data.	

Data Processing

The first step of the project was to integrate all data sources on a single table and filter the cases according to the inclusion criteria established by the researcher. The final sample size was 337 (N=337).

Reliability Analysis and Descriptive Statistics

Reliability is an assessment of the degree of consistency between multiple measurements of a variable. One form of reliability is test–retest, by which consistency is measured between the responses for an individual at two points in time. The objective is to ensure that responses are not too varied across time periods so that a measurement taken at any point in time is reliable. A second and more commonly used measure of reliability is internal consistency, which applies to the consistency among the variables in a summated or averaged scale. The rationale for internal consistency is that the individual items or indicators of the scale should all be measuring the same construct and thus be highly intercorrelated (Hair et al., 2014). The analysis in this study was done using Cronbach's Alpha. The table below shows the descriptive statistics of the items that composed each final scale and the associated Alpha coefficients.

Descriptive Statistics and Reliability

Construct	Item	N	Mean	Std. Deviation	λ
24	Section1 - I'm an admirer of experiences that showcase a particular craft.	337	4.190	0.760	
	Section1 - Brands must communicate without the need to talk.	337	3.849	0.993	
W.	Section1 - An excellent service stands out by the requirement to deeply understand it.	337	3.593	1.096	
Exclusivity	Section1 - Excellent services are expensive.	337	3.463	1.149	0.643
	Section1 - Superior tier services must be restrained to the higher social stratum.	337	2.205	1.176	
	Section1 - I welcome the presence of other clients when I'm enjoying a service.	337	3.264	1.060	
	Section1 - I look for experiences that are a 'one of a kind'.	337	3.626	1.073	

	Section1 - I appreciate the tailoring of the service to my specific desires.	337	4.234	0.821	
	Section1 - I like to notice the services' adaptation to my insights throughout their delivery.	337	3.982	0.852	
	Section1 - I appreciate the beauty displayed in the service environment.	337	4.202	0.813	
	Section1 - Service providers must be qualified professionals.	337	4.169	0.960	
	Section1 - Service stages must be fluid.	337	3.947	0.927	
Quality	Section1 - When I consume a service I expect it to have all the usual extras for that type of service. Section1 - Services' benefits must overcome		3.866	0.937	0.673
	their cost.	337	4.056	0.862	
	Section1 - I tolerate service flaws.*	337	3.134	1.076	
	Section1 - Services should not copy other services.	337	3.145	1.142	
	Section2 - I prefer services that trigger feelings of satisfaction.	337	4.442	0.701	
	Section2 - I like to be provided with more features than I have demanded.	337	3.926	0.944	
Extraordinariness	Section2 - It is essential that services have by default a set of possible personalizations.	337	3.570	0.971	0.702
	Section2 - I value services that are performed with orchestrated rituals.	337	3.252	0.981	
	Section2 - Services must be performed as a form of art.	337	3.344	1.165	
	Section2 - If I'm able to afford it, others must be able to notice.	337	2.614	1.329	
	Section2 - My decisions reflect my personality.	337	3.970	0.916	
	Section2 - I don't need to prove anything to anyone.*	337	4.172	0.979	
	Section2 - It is important to highlight our virtues and minimize the exposure of our shortcomings.	337	3.243	1.052	
Self-Concept Theories	Section 2 - It is important to be the best version of ourselves.	337	4.300	0.784	0.734
	Section2 - My actions and choices are directed toward the search for my human existence purpose.	337	3.617	1.104	
	Section2 - I look for experiences that can expand my existence in both space and time.	337	3.546	1.202	
	Section3 - Services must be fast, convenient, and seamless across environments.	337	3.938	0.876	
Ubiquity	Section3 - I expect and appreciate an increase in synchrony between the online and offline world.	337	3.964	0.912	0.604

	BlockChain	Section3 - It's important to not be dependent on one single entity to store and provide my service-related features. Section3 - It's important to reduce the intermediaries between service purchasers and service providers. Section3 - Records of interactions or	337	3.944	0.919	0.551
-		transactions that are immutable and therefore non-modifiable are more advantageous.	337	3.344	0.942	—· O
		Section3 - I appreciate the intelligent and intuitive linking between data.	337	4.033	0.832	(0)10
	Ai & ML	Section3 - Data collection provides personalized experiences. Section3 - I welcome procedures that		3.899	0.911	0.544
	decrease time delays. Section3 - Interactions with websites' chat bots are useful.		4.389 3.160	0.7321.217		
-		Section4 - A service is only as valuable as the degree of participation of the consumers in it.	336	3.708	1.015	
Social Commerce		Section4 - I appreciate the digital colecionism phenomenon. (eg. NFTs)	336	2.845	1.253	
	Section4 - The feedback I give on the services I consume must be considered.	336	4.220	0.849	0.653	
_		Section4 - I appreciate being part of a community related to the services and experiences I consume.	336	3.783	1.000	
		Section4 - I don't mind that the services I consume collect my personal data.	336	2.696	1.206	
	Data Privacy and Security	Section4 - I don't mind that the services I consume collect my behavioral data.	336	2.708	1.322	0.765
		Section4 - I welcome the creation of a single and untransmittable digital identity.	336	3.042	1.238	
-		Section4 - Augmented Reality is useful to predict the look and fit of future purchases of goods and services (eg. preview of pool installation).	336	3.866	0.963	
AR & VR	Section4 - Augmented Reality is useful to learn about purchased services (eg. learning about the ingredients of my gourmet dinner).	336	3.717	1.028	0.863	
SY		Section4 - I enjoy interacting with computer- generated landscapes and environments through Virtual Reality.	336	3.339	1.233	
-		Section4 - I welcome the possibility of playing my favorite games through Virtual Reality.	336	3.515	1.336	

any physical space in	the possibility to attend the world through at the need to be there 336 3.	208 1.394
Section4 - I like to int digital.	eract with humans via 336 3.	414 1.201
Section4 - I like to inta avatars via digital.	eract with humanized 336 2.	616 1.276

^{*} Items deleted due to poor reliability.

A construct can be considered minimally reliable if Alpha is higher than 0.65. When this value was not reached by a given construct, items were individually examined to check for low Item-to-Total correlations, particularly by looking at the 'Cronbach's Alpha if Item Deleted' column in the SPSS output. When Alpha would increase after the deletion of a particular item, the respective item was deleted and Alpha was calculated again. When excluding items did not increase Alpha, then all items were kept. When the first calculated alpha for each construct was above 0.65, all the original items were kept. The constructs Exclusivity, Ubiquity, BlockChain and Ai & ML did not reach an acceptable Alpha and there were no items which could be deleted to increase Alpha. Exclusivity was just under the acceptable value (0.643). The only survey items that were excluded due to resulting on a better reliability were 'Section1 - I tolerate service flaws' and 'Section2 - I don't need to prove anything to anyone'.

Total scores were computed for all constructs, even for those that did not reach a minimum level of reliability. The scales were calculated using the mean score of the items that were kept for each scale. The table below shows descriptive statistics for all constructs.

Skewness and Kurtosis are two statistics that indicate if the scales' scores follow a normal distribution. One of the methods to examine normality is to look at values of skewness and kurtosis. Both values should remain between -1 and 1 to indicate normality (Hair et al., 2014), which is the case for all scales.

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation	Skewness	Kurtosis
Exclusivity	337	2.13	5.00	3.553	0.544	0.107	-0.110
Quality	337	2.43	5.00	3.910	0.540	-0.074	-0.274
Extraordinariness	337	1.67	5.00	3.525	0.657	0.081	-0.026
Self-Concept Theories	337	1.60	5.00	3.829	0.666	-0.406	0.049
Ubiquity	337	1.50	5.00	3.951	0.757	-0.424	-0.390
BlockChain	337	1.33	5.00	3.724	0.684	-0.186	0.150
AI & ML	337	1.50	5.00	3.870	0.598	-0.323	0.240
Social Commerce	336	1.75	5.00	3.639	0.722	-0.114	-0.394
Data Privacy Security	336	1.00	5.00	2.815	1.037	0.124	-0.637
AR & VR	336	1.00	5.00	3.382	0.902	-0.304	-0.299

Correlation Analysis

Correlation coefficients are indicators of associations between variables (Pallant, 2010). Values between 0.10 and 0.29 indicate a small degree of association, while values between 0.30 and 0.49 are considered medium and values higher than 0.50 represent a high degree of association (Cohen, 1988). This test was used to measure the association between all pairs of constructs studied in this research.

There are several different statistics available, depending on the level of measurement and the nature of your data. Pearson' coefficient 'r' is designed for interval level (continuous) variables, whereas Spearman's 'rho' is designed for use with ordinal level or ranked data and is particularly useful when the data does not meet the criteria for Pearson correlation (Pallant, 2010). Since the scales of this study represent mean scores of several items, they can be considered continuous so Pearson's test was used. The table below shows the correlation matrix (coefficients and p-values).

Correlations

		Exclusivity	Quality	Extraordinariness	Self- Concept Theories	Ubiquity	BlockChain	AI & ML	Social Commerce	Data Privacy Security	AR & VR
Exclusivity	Pearson	1	0.531**	0.613**	0.510**	0.375**	0.259**	0.370**	0.531**	0.317**	0.343**
	Correlation Sig. (2- tailed)	02	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	N	337	337	337	337	337	337	337	336	336	336
Quality	Pearson Correlation	0.531**	1	0.659**	0.577**	0.429**	0.399**	0.384**	0.495**	0.269**	0.169**
	Sig. (2-tailed)	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
	N	337	337	337	337	337	337	337	336	336	336
Extraordinariness	Pearson Correlation	0.613**	0.659**	1	0.605**	0.394**	0.308**	0.399**	0.544**	0.395**	0.272**
	Sig. (2-tailed)	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000
	N	337	337	337	337	337	337	337	336	336	336
Self-Concept Theories	Pearson Correlation	0.510**	0.577**	0.605**	1	0.362**	0.317**	0.439**	0.544**	0.325**	0.263**
	Sig. (2-tailed)	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000
) ·	N	337	337	337	337	337	337	337	336	336	336
Ubiquity	Pearson Correlation	0.375**	0.429**	0.394**	0.362**	1	0.417**	0.425**	0.419**	0.179**	0.230**
	Sig. (2-tailed)	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.001	0.000
	N	337	337	337	337	337	337	337	336	336	336

Correlations

		Exclusivity	Quality	Extraordinariness	Self- Concept Theories	Ubiquity	BlockChain	AI & ML	Social Commerce	Data Privacy Security	AR & VR
BlockChain	Pearson	0.259**	0.399**	0.308**	0.317**	0.417**	1	0.334**	0.356**	0.083	0.119*
	Correlation Sig. (2- tailed)	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.128	0.029
	N	337	337	337	337	337	337	337	336	336	336
AI & ML	Pearson Correlation	0.370**	0.384**	0.399**	0.439**	0.425**	0.334**	1	0.404**	0.355**	0.377**
	Sig. (2-tailed)	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.000
	N	337	337	337	337	337	337	337	336	336	336
Social Commerce	Pearson Correlation	0.531**	0.495**	0.544**	0.544**	0.419**	0.356**	0.404**	1	0.387**	0.299**
	Sig. (2-tailed)	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000
	N	336	336	336	336	336	336	336	336	336	336
Data Privacy Security	Pearson Correlation	0.317**	0.269**	0.395**	0.325**	0.179**	0.083	0.355**	0.387**	1	0.372**
	Sig. (2-tailed)	0.000	0.000	0.000	0.000	0.001	0.128	0.000	0.000		0.000
) `	N	336	336	336	336	336	336	336	336	336	336
AR & VR	Pearson Correlation	0.343**	0.169**	0.272**	0.263**	0.230**	0.119*	0.377**	0.299**	0.372**	1
	Sig. (2-tailed)	0.000	0.002	0.000	0.000	0.000	0.029	0.000	0.000	0.000	
	N	336	336	336	336	336	336	336	336	336	336

Correlations with significant p-values (p < 0.05) indicate that there is a statistically significant association between the pair of constructs. Negative correlation coefficients indicate an inverse relationship between the constructs. That is, when the score of one increase, the score of the second is expected to decrease. The only non-significant correlation was between Blockchain and Data Privacy (r = 0.083, p = 0.128). The strongest level of association was observed between 'Quality' and 'Extraordinariness' (r = 0.659, p < 0.001).

Sociodemographics

The table below shows frequencies of each sociodemographic attribute studied.

		Count	%
Gender	Masculine	131	38.87%
	Feminine	202	59.94%
	Other	4	1.19%
	Total	337	100.00%
Cultural Background	North American	99	29.38%
	South American	22	6.53%
	European	176	52.23%
	African	1	0.30%
OF	Slavic	2	0.59%
	Arabian	3	0.89%
	Asian	32	9.50%
2	Oceania	2	0.59%
	Total	337	100.00%
Generation	1946 - 1964	21	6.27%
	1965 - 1980	78	23.28%
	1981 - 1996	143	42.69%
	1997 - 2012	93	27.76%
	Total	335	100.00%
My annual spending on luxury	0 - 2k	186	55.36%
goods/services is:	2k - 5k	74	22.02%
	5k - 10k	41	12.20%
	10k - 20k	17	5.06%

30k - 50k	12	3.57%
+ 50k	6	1.79%
Total	336	100.00%

Cross-Tabulations

This section presents cross-tabulations of the sub-constructs' means across different sociodemographic categories. The different mean scores were also compared using SPSS's 'Mean Comparison test'. The result of the mean comparison test is shown as a subscript letter next to the mean column. If the letter diverges within a unique line, that means that the corresponding categories of that particular question present significantly different mean scores of that particular sub-construct.

The table is also supplemented with an F-test (One-way ANOVA) and its corresponding significance (p-value). One-way ANOVAs are appropriate tests when scores are compared among between-subjects factors with three or more levels (e.g. three or more groups). Analysis of variance is so called because it compares the variance (variability in scores) between the different groups (believed to be due to the independent variable) with the variability within each of the groups (believed to be due to chance). An F ratio is calculated, which represents the variance between the groups divided by the variance within the groups. A large F ratio indicates that there is more variability between the groups (caused by the independent variable) than there is within each group (referred to as the error term). A significant F test indicates that we can reject the null hypothesis, which states that the population means are equal. It does not, however, tell us which of the groups differ (Pallant, 2010). So if p is less than 0.05, one can conclude that the mean scores across the different levels of a sociodemographic category are statistically different.

As an example, the table below shows the mean scores across genders. The p-value of 0.006 indicates that the mean scores across different genders are different for Exclusivity (p < .05). IF we examine the subscript letters, we can see that there also is a significant pairwise difference between the 'Other' gender and the 'Feminine' gender, as well as between the 'Other' gender and the 'Masculine' gender, since these pairs of groups do not share a similar subscript letter. In other words, the exclusivity score is statistically related to gender. The other tables follow the same logic.

	_					
	Masculine	Feminine	Other	Total	F	p
	Mean	Mean	Mean	Mean		
Exclusivity	3.531 _a	3.584 _a	2.719 _b	3.553	5.252	0.006
Quality	3.811a	3.986_{b}	3.286a	3.910	7.105	0.001
Extraordinariness	3.469_{a}	3.569 _a	3.083_{a}	3.525	1.843	0.160
Self-Concept	3.632 _a	3.816a	3.050_a	3.735	4.641	0.010
Ubiquity	3.935_{a}	3.970_{a}	3.500_a	3.951	0.804	0.448
BlockChain	3.664_a	3.759 _a	3.917 _a	3.724	0.926	0.397
AI & ML	3.805_{a}	3.929 _a	3.000_{b}	3.870	6.183	0.002
Social Commerce	3.558_a	3.705_{a}	2.938a	3.639	3.625	0.028
Data Privacy and Security	2.718_a	2.906 _a	1.417_{b}	2.815	5.107	0.007
AR & VR	3.489_{a}	3.312 _a	3.464 _a	3.382	1.545	0.215

Note: Values in the same row and subtable not sharing the same subscript are significantly different at p< 0.05 in the two-sided test of equality for column means. Cells with no subscript are not included in the test. Tests assume equal variances.²

- 1. This category is not used in comparisons because the sum of case weights is less than two.
- 2. Tests are adjusted for all pairwise comparisons within a row of each innermost subtable using the Bonferroni correction.

			Generation				
	1946 - 1964	1965 - 1980	1981 - 1996	1997 - 2012	Total	F	p
	Mean	Mean	Mean	Mean	Mean		
Exclusivity	3.482 _a	3.583 _a	3.560_{a}	3.538 _a	3.554	0.229	0.876
Quality	4.095_{a}	4.002_{a}	3.878_{a}	3.840_{a}	3.910	2.273	0.080
Extraordinariness	3.587 _a	3.630_{a}	3.547 _a	3.391 _a	3.525	2.090	0.101
Self-Concept	3.667 _a	3.815 _a	3.743 _a	3.675 _a	3.736	0.617	0.604
Ubiquity	3.881 _a	3.827 _a	3.958 _a	4.065_{a}	3.952	1.459	0.226
BlockChain	3.794 _a	3.709 _a	3.748_{a}	3.685 _a	3.724	0.244	0.865
AI & ML	3.845_{a}	3.990_{a}	3.851 _a	3.806_{a}	3.871	1.460	0.225
Social Commerce	3.488_a	3.701 _a	3.699 _a	3.538 _a	3.641	1.440	0.231
Data Privacy and Security	2.254 _a	$2.887_{a.b}$	2.977 _b	$2.631_{a.b}$	2.814	4.420	0.005
AR & VR	3.156 _a	3.362 _a	3.520_{a}	3.238_a	3.382	2.376	0.070

Note: Values in the same row and subtable not sharing the same subscript are significantly different at p< 0.05 in the two-sided test of equality for column means. Cells with no subscript are not included in the test. Tests assume equal variances.²

- 1. This category is not used in comparisons because the sum of case weights is less than two.
- 2. Tests are adjusted for all pairwise comparisons within a row of each innermost subtable using the Bonferroni correction.

	My annual spending on luxury goods/services is:								
	10k - 0 - 2k 2k - 5k 5k - 10k 20k 30k - 50k + 50k Total							F	p
	Mean	Mean	Mean	Mean	Mean	Mean	Mean		
Exclusivity	3.413 _a	3.635 _b	3.720_{b}	3.926 _b	3.896 _b	3.813 _{a.b}	3.550	7.016	0.000
Quality	3.878_{a}	3.942 _a	3.902_{a}	4.084_{a}	4.048_{a}	3.690_a	3.908	0.891	0.487
Extraordinariness	3.422 _a	3.532 _{a.b}	$3.691_{a.b}$	3.961 _b	$3.833_{a.b}$	3.472 _{a.b}	3.522	3.623	0.003
Self-Concept	3.680_a	3.714 _a	3.766_{a}	4.047_a	4.067_{a}	3.833 _a	3.733	1.469	0.199
Ubiquity	3.970_{a}	3.912 _a	3.829_a	4.147 _a	3.833_{a}	4.250 _a	3.949	0.745	0.590
BlockChain	3.790_{a}	3.658 _a	3.585 _a	3.608a	3.583 _a	3.944 _a	3.722	1.152	0.333
AI & ML	3.859_a	3.882_{a}	3.854_a	4.015 _a	3.750_{a}	3.958_a	3.869	0.343	0.887
Social Commerce	3.552a	3.666 _a	3.695 _a	3.971 _a	4.021 _a	3.917 _a	3.639	2.210	0.053
Data Privacy and Security	2.701 _a	2.878 _a	3.000_{a}	3.255 _a	3.083 _a	2.556 _a	2.815	1.632	0.151
AR & VR	3.246_{a}	$3.469_{a.b}$	$3.624_{a.b}$	$4.000_{\rm b}$	$3.262_{a.b}$	3.381 _{a.b}	3.382	3.322	0.006

Note: Values in the same row and subtable not sharing the same subscript are significantly different at p< 0.05 in the two-sided test of equality for column means. Cells with no subscript are not included in the test. Tests assume equal variances.²

^{1.} This category is not used in comparisons because the sum of case weights is less than two.

^{2.} Tests are adjusted for all pairwise comparisons within a row of each innermost subtable using the Bonferroni correction.

Cultural Background

									F	p	
	North American	South American	European	African	Slavic	Arabian	Asian	Oceania	Total	_	
	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean		
Exclusivity	3.491 _a	$3.818_{\rm a}$	3.526_a	3.875^{1}	3.375_{a}	3.292_{a}	3.723_a	3.813 _a	3.553	1.707	0.106
Quality	3.840a	3.974 _a	3.954_a	2.857^{1}	3.643_{a}	3.952_{a}	3.835_a	4.714_{a}	3.910	1.817	0.083
Extraordinariness	3.438 _a	3.735 _a	3.530_{a}	2.833^{1}	3.500_a	3.722_a	3.573 _a	4.333 _a	3.525	1.234	0.284
Self-Concept	3.568a	$3.818_{a.b}$	3.843_{b}	2.600^{1}	$3.300_{a.b}$	$4.067_{a.b}$	$3.594_{a.b}$	$4.400_{a.b}$	3.735	2.481	0.017
Ubiquity	3.788_{a}	4.159 _a	3.986_{a}	2.500^{1}	3.750_{a}	4.333_{a}	4.125_{a}	4.250_{a}	3.951	1.925	0.065
BlockChain	3.606_{a}	3.682_{a}	3.777 _a	3.667^{1}	3.500_a	4.556_a	3.750_{a}	4.000_{a}	3.724	1.308	0.246
AI & ML	3.886_{a}	3.773 _a	3.878_a	3.750^{1}	3.625_a	3.667_a	3.852_{a}	4.375_{a}	3.870	0.404	0.899
Social Commerce	3.467_a	3.807_a	3.685_a	4.250^{1}	3.125_a	3.500_a	3.766_a	4.625_{a}	3.639	2.048	0.049
Data Privacy and Security	2.772_{a}	2.848_a	2.822_{a}	3.667^{1}	3.000_a	3.000_a	2.812_{a}	3.167_a	2.815	0.177	0.990
AR & VR	3.570_{a}	3.468_{a}	3.250_{a}	4.000^{1}	3.214_a	3.524_a	3.469_a	3.143_{a}	3.382	1.333	0.234

Note: Values in the same row and subtable not sharing the same subscript are significantly different at p< 0.05 in the two-sided test of equality for column means. Cells with no subscript are not included in the test. Tests assume equal variances.²

^{1.} This category is not used in comparisons because the sum of case weights is less than two.

^{2.} Tests are adjusted for all pairwise comparisons within a row of each innermost subtable using the Bonferroni correction.

References

- Cohen, J., 1988. Statistical power analysis for the behavioral sciences, 2nd ed. Erlbaum, Hillsdale, NJ.
- ed. Pearson Education, Inc., Edinburgh.

 Pallant, J., 2010. SPSS Survival Manual, 4th ed. McGraw-Hill, Berkshire, England. Hair, J.F., Black, W., Babin, B., Anderson, R., 2014. Multivariate data analysis, Seventh.