Learnable Sparsity and Weak Supervision for Data-efficient, Transparent, and Compact Neural Models

Gonçalo M. Correia

• Subset of machine learning that uses **neural networks**

- Subset of machine learning that uses neural networks
- Powerful tool for learning representations of any data

- Subset of machine learning that uses neural networks
- Powerful tool for learning representations of any data
- Remarkable results

A robot wrote this entire article. Are you scared yet, human?

GPT-3

source alternative to GPT-3, the well-known

language program from OpenAI.

A robot wrote this entire article. Are you scared yet, human?

GPT-3

Convincing Text—a SCIENCE **Anvone Can Use It**

The makers of Eleuther hope it v source alternative to GPT-3, the language program from OpenAI

Danny's workmate is called GPT-3. You've probably read its work without realising it's an AI

ABC Science / By technology reporter James Purtill Posted Sat 28 May 2022 at 7:30pm

INNOVATION

Are AI Systems About To Outperform Humans?

rkmate is called e probably read its ut realising it's an Al

hnology reporter James Purtill

Posted Sat 28 May 2022 at 7:30pm

people raing successes

Artificial intelligence beats eight world champions at bridge

robot wrote this ntire article. Are you cared yet, human?

Victory marks milestone for AI as bridge requires more human skills than other strategy games

rkmate is called e probably read its ut realising it's an Al

Are AI Systems About To Outperform Humans?

hnology reporter James Purtill

Posted Sat 28 May 2022 at 7:30pm

g successes

Artificial intelligence beats eight world champions at bridge AI 'outperforms'

Victory marks milestone for AI than other strategy games

Are AI Systems About T Outperform Humans?

robot wrote this

doctors bridge requires more human sk diagnosing breast cancer

Fergus Walsh Medical correspondent @BBCFergusWalsh

• Requires a lot of data

- Requires a lot of data
- Hard to understand and interpret reasons behind decisions

- Requires a lot of data
- Hard to understand and interpret reasons behind decisions
- Requires a lot of computation

Forbes

ΔΙ

Overcoming AI's Transparency Paradox

■ WIRED

SUBSCRIBE

Al Can Do Great Things—if It Doesn't Burn the Planet

The computing power required for AI andmarks, such as recognizing images and defeating humans at Go, increased 300,000-fold from 2012 to 2018.

- A Simple and Effective Approach to APE with Transfer Learning
 - weak supervision
 - data-efficiency
 - Poster at ACL 2019

- A Simple and Effective Approach to APE with Transfer Learning
 - weak supervision
 - data-efficiency
 - Poster at ACL 2019
- Adaptively Sparse Transformers
 - adaptive sparsity
 - transparency
 - Oral talk at EMNLP 2019

- A Simple and Effective Approach to APE with Transfer Learning
 - weak supervision
 - data-efficiency
 - Poster at ACL 2019
- Adaptively Sparse Transformers
 - adaptive sparsity
 - transparency
 - Oral talk at EMNLP 2019
- Efficient Marginalization of Discrete Latent Variables with Sparsity
 - learnable sparsity
 - compactness
 - Spotlight paper at NeurIPS 2020

Table of Contents

A Simple and Effective Approach to APE with Transfer Learning

Adaptively Sparse Transformers

Efficient Marg. of Discrete Latent Variables via Sparsity

Future Work and Conclusions

What if... Attention is all you need?

What if... Attention is all you need?

Key idea: Let's mainly use attention mechanisms!

What if... Attention is all you need?

Key idea: Let's mainly use attention mechanisms!

• Do attention with multiple heads (i.e. attention mechanisms in parallel)

What if... Attention is all you need?

Key idea: Let's mainly use attention mechanisms!

- Do attention with multiple heads (i.e. attention mechanisms in parallel)
- ... and do it through several layers

What if... Attention is all you need?

Key idea: Let's mainly use attention mechanisms!

- Do attention with multiple heads (i.e. attention mechanisms in parallel)
- ... and do it through several layers
- Inspiration for big general-purpose models like BERT and GPT-3!

A bit of context on Transformers

What if... Attention is all you need?

Key idea: Let's mainly use attention mechanisms!

 Do attention with multiple heads (attention mechanisms in parallel)

... and do it through several layers

 Inspiration for big general-purpose models like BERT and GPT-3!

Embedding

Embedding

Challenge: APE data is very scarce! Need to create artificial data.

Key idea: Use BERT to do APE

Key idea: Use BERT to do APE

 Prior to this work, BERT was mainly used for simple classification tasks

Key idea: Use BERT to do APE

- Prior to this work, BERT was mainly used for simple classification tasks
- We introduced an effective method to use BERT in a generation task (APE)

Key idea: Use BERT to do APE

- Prior to this work, BERT was mainly used for simple classification tasks
- We introduced an effective method to use BERT in a generation task (APE)
- Smart parameter sharing between encoder and decoder

model (data size)	TER↓	BLEU↑
mt baseline	24.48	62.49

model (data size)	TER↓	BLEU†
mt baseline	24.48	62.49
dual-source transformer (8M)	18.10	71.72

model (data size)	TER↓	BLEU†
mt baseline	24.48	62.49
dual-source transformer (8M)	18.10	71.72
dual-source transformer (23K)	27.73	59.78

model (data size)	TER↓	BLEU†
mt baseline	24.48	62.49
dual-source transformer (8M)	18.10	71.72
dual-source transformer (23K)	27.73	59.78
ours (23K)	19.03	70.66

model (data size)	TER↓	BLEU†
mt baseline	24.48	62.49
dual-source transformer (8M)	18.10	71.72
dual-source transformer (23K)	27.73	59.78
ours (23K)	19.03	70.66
ours (8M)	17.26	73.42

 One of pioneers in using pre-trained Transformer encoders for a generation task

- One of pioneers in using pre-trained Transformer encoders for a generation task
- Massive improvement in low-resource scenario (data-efficiency)

- One of pioneers in using pre-trained Transformer encoders for a generation task
- Massive improvement in low-resource scenario (data-efficiency)
- Steered SOTA of APE towards using weak supervision through pre-trained models

Table of Contents

A Simple and Effective Approach to APE with Transfer Learning

Adaptively Sparse Transformers

Efficient Marg. of Discrete Latent Variables via Sparsity

Future Work and Conclusions

Getting to know attention heads better

Attention heads may aid visualization but they are completely dense.

Getting to know attention heads better

Attention heads may aid visualization but they are completely dense.

Our solution is to bet on sparsity:

- for interpretability
- for discovering linguistic structure
- for efficiency

Getting to know attention heads better

Attention heads may aid visualization but they are completely dense.

Our solution is to bet on sparsity:

- for interpretability
- for discovering linguistic structure
- for efficiency

In each attention head:

$$\bar{\mathbf{V}} = \mathbf{softmax} \left(\frac{\mathbf{Q} \mathbf{K}^{\mathsf{T}}}{\sqrt{d_k}} \right) \mathbf{V}.$$

(Vaswani et al., 2017)

Output

Probabilities

In each attention head:

$$\bar{\mathbf{V}} = \mathbf{softmax} \left(\frac{\mathbf{Q} \mathbf{K}^{\mathsf{T}}}{\sqrt{d_k}} \right) \mathbf{V}.$$

Attention in three places:

• Self-attention in the encoder

(Vaswani et al., 2017)

Output

Probabilities

N×

Positional

Encoding

Input

In each attention head:

$$\bar{\mathbf{V}} = \mathbf{softmax} \left(\frac{\mathbf{Q} \mathbf{K}^{\mathsf{T}}}{\sqrt{d_k}} \right) \mathbf{V}.$$

Attention in three places:

- Self-attention in the encoder
- Self-attention in the decoder

In each attention head:

$$\bar{\mathbf{V}} = \mathbf{softmax} \left(\frac{\mathbf{Q} \mathbf{K}^{\mathsf{T}}}{\sqrt{d_k}} \right) \mathbf{V}.$$

Attention in three places:

- Self-attention in the encoder
- Self-attention in the decoder
- Contextual attention

(Vaswani et al., 2017)

Sparse Transformers

Sparse Transformers

Key idea: replace softmax in attention heads by a sparse normalizing function!

Adaptively Sparse Transformers

Key idea: replace softmax in attention heads by a sparse normalizing function!

Another key idea: use a normalizing function that is adaptively sparse via a learnable α !

What is softmax?

Softmax exponentiates and normalizes:

$$[\mathbf{softmax}(z)]_i := \frac{\exp(z_i)}{\sum_j \exp(z_j)}$$

What is softmax?

Softmax exponentiates and normalizes:

$$[\mathbf{softmax}(z)]_i := \frac{\exp(z_i)}{\sum_j \exp(z_j)}$$

It's fully dense: softmax(z) > 0

Parametrized by $\alpha \geq 0$:

Parametrized by $\alpha \geq 0$:

• **Argmax** corresponds to $\alpha \rightarrow \infty$

Parametrized by $\alpha \geq 0$:

- **Argmax** corresponds to $\alpha \rightarrow \infty$
- **Softmax** amounts to $\alpha \rightarrow 1$

Parametrized by $\alpha \geq 0$:

- Argmax corresponds to $\alpha \rightarrow \infty$
- **Softmax** amounts to $\alpha \rightarrow 1$

Key result: can be sparse for $\alpha > 1$, propensity for sparsity increases with α .

Output Probabilities

Transformers

Output Probabilities ↑
Softmax

Transformers

Attention in three places:

• Self-attention in the encoder

6 layers \times 8 attention heads = 48

Output Probabilities

Transformers

Attention in three places:

- Self-attention in the encoder
- Self-attention in the decoder

6 layers \times 8 attention heads = 48

+ 48

Output Probabilities

Transformers

Attention in three places:

- Self-attention in the encoder
- Self-attention in the decoder
- Contextual attention

6 layers × 8 attention heads = 48

+ 48

+48 = 144

Learning α

Learning α

Key contribution:

a closed-form expression for $\frac{\partial \alpha - \text{entmax}(z)}{\partial \alpha}$

Learning α

Key contribution:

a closed-form expression for $\frac{\partial \alpha - \text{entmax}(z)}{\partial \alpha}$

Not trivial! Requires implicit differentiation

Trajectories of α during training

Trajectories of α during training

Some heads choose to start dense before becoming sparse.

Head Diversity per Layer

Head Diversity per Layer

Specialized heads are important as seen in Voita et al. (2019)!

Previous position head

This head role was also found in Voita et al. (2019)! Learned $\alpha = 1.91$.

Interrogation-detecting head

Introduce adaptive sparsity for Transformers via α -entmax with a gradient learnable α , improving transparency.

Introduce adaptive sparsity for Transformers via α -entmax with a gradient learnable α , improving transparency.

adaptive sparsity

Introduce adaptive sparsity for Transformers via α -entmax with a gradient learnable α , improving transparency.

adaptive sparsity

reduced head redundancy

Introduce adaptive sparsity for Transformers via α -entmax with a gradient learnable α , improving transparency.

adaptive sparsity

reduced head redundancy

clearer head roles

Table of Contents

A Simple and Effective Approach to APE with Transfer Learning

Adaptively Sparse Transformers

Efficient Marg. of Discrete Latent Variables via Sparsity

Future Work and Conclusions

We focus on latent variables z that are

We focus on latent variables z that are discrete

We focus on latent variables *z* that are discrete or structured

We focus on latent variables *z* that are discrete or structured

 $\pi(z|x,\theta)$: distribution over possible z

We focus on latent variables *z* that are discrete or structured

 $\pi(z|x,\theta)$: distribution over possible z

We focus on latent variables *z* that are discrete or structured

 $\pi(z|x,\theta)$: distribution over possible z

We focus on latent variables *z* that are discrete or structured

 $\pi(z|x,\theta)$: distribution over possible z

 $\ell(x, z; \theta)$: downstream loss: ELBO, Log-Likelihood, (...)

We focus on latent variables *z* that are discrete or structured

 $\pi(z|x,\theta)$: distribution over possible z

 $\ell(x, z; \theta)$: downstream loss: ELBO, Log-Likelihood, (...)

To train, we need to compute the following expectation:

We focus on latent variables *z* that are discrete or structured

 $\pi(z|x,\theta)$: distribution over possible z

 $\ell(x, z; \theta)$: downstream loss: ELBO, Log-Likelihood, (...)

ood, (...) [• • •] 0.4

0.2 0.6 0.1

To train, we need to compute the following expectation:

$$\mathcal{L}_{x}(\boldsymbol{\theta}) = \sum_{z \in \mathcal{T}} \pi(z|x, \boldsymbol{\theta}) \; \ell(x, z; \boldsymbol{\theta})$$

We focus on latent variables *z* that are discrete or structured

0.2 0.6 0.1

$$\pi(z|x,\theta)$$
: distribution over possible z

 $\ell(x, z; \theta)$: downstream loss: ELBO, Log-Likelihood, (...)

To train, we need to compute the following expectation:

$$\mathcal{L}_{x}(\boldsymbol{\theta}) = \sum_{z \in \mathcal{T}} \pi(z|x, \boldsymbol{\theta}) \, \ell(x, z; \boldsymbol{\theta})$$

If Z is large, this sum can get very expensive due to $\ell(x, z; \theta)$!

We focus on latent variables *z* that are discrete or structured

0.2 0.6 0.1

$$\pi(z|x, \theta)$$
: distribution over possible z

$$\ell(x, z; \theta)$$
: downstream loss: ELBO, Log-Likelihood, (...)

To train, we need to compute the following expectation:

$$\mathcal{L}_{x}(\boldsymbol{\theta}) = \sum_{z \in \mathcal{T}} \pi(z|x, \boldsymbol{\theta}) \, \ell(x, z; \boldsymbol{\theta})$$

If Z is combinatorial, this can be intractable to compute!

Current solutions

Using emergent communication as example

Method	success (%)	# messages
Monte Carlo		
 Marginalization		

Current solutions

Using emergent communication as example

Method	success (%)	# messages
Monte Carlo		
Marginalization		

	\subseteq
\square	

Method	success (%)	# messages
Monte Carlo		
Marginalization		

\square	\bigvee	

Method	success (%)	# messages
Monte Carlo		
<i>Marginalization</i> Dense	93.37 ±0.42	256

Method	success (%)	# messages
Monte Carlo SFE	33.05 ±2.84	1
<i>Marginalization</i> Dense	93.37 ±0.42	256

Method	success (%)	# messages
Monte Carlo SFE SFE+	33.05 ±2.84 44.32 ±2.72	1 2
<i>Marginalization</i> Dense	93.37 ±0.42	256

Method	success (%)	# messages
<i>Monte Carlo</i> SFE SFE+ Gumbel	33.05 ±2.84 44.32 ±2.72 23.51 ±16.19	1 2 1
Marginalization Dense	93.37 ±0.42	256

Method	success (%)	# messages
Monte Carlo SFE SFE+ Gumbel	33.05 ±2.84 44.32 ±2.72 23.51 ±16.19	1 2 1
<i>Marginalization</i> Dense Sparse	93.37 ±0.42	256

Method	success (%)	# messages
Monte Carlo SFE SFE+ Gumbel	33.05 ±2.84 44.32 ±2.72 23.51 ±16.19	1 2 1
Marginalization Dense Sparse	93.37 ±0.42	256

Method	success (%)	# messages
Monte Carlo SFE SFE+ Gumbel	33.05 ±2.84 44.32 ±2.72 23.51 ±16.19	1 2 1
Marginalization Dense Sparse	93.37 ±0.42 93.35 ±0.50	256

Method	success (%)	# messages
Monte Carlo SFE SFE+ Gumbel	33.05 ±2.84 44.32 ±2.72 23.51 ±16.19	1 2 1
Marginalization Dense Sparse	93.37 ±0.42 93.35 ±0.50	256 3.13±0.48

Using emergent communication as example

We use sparsemax, top-k sparsemax and SparseMAP to allow efficient marginalization

We test our methods for models with discrete latent variables,

We test our methods for models with discrete latent variables,

Semi-Supervised VAE

We test our methods for models with discrete latent variables,

- Semi-Supervised VAE
- Emergent communication

We test our methods for models with discrete latent variables,

- Semi-Supervised VAE
- Emergent communication

but also in models with an exponentially large set of Z,

We test our methods for models with discrete latent variables,

- Semi-Supervised VAE
- Emergent communication

but also in models with an exponentially large set of \mathcal{Z} ,

Bit-vector VAE

We test our methods for models with discrete latent variables,

- Semi-Supervised VAE
- Emergent communication

but also in models with an exponentially large set of \mathcal{Z} ,

Bit-vector VAE

Our methods are top-performers and efficient!

We introduce a new method to train compact latent variable models, using sparsity.

We introduce a new method to train compact latent variable models, using sparsity.

discrete and structured

We introduce a new method to train compact latent variable models, using sparsity.

We introduce a new method to train compact latent variable models, using sparsity.

Table of Contents

A Simple and Effective Approach to APE with Transfer Learning

Adaptively Sparse Transformers

Efficient Marg. of Discrete Latent Variables via Sparsity

Future Work and Conclusions

• Semi-supervised learning: data-efficiency and compactness

- Semi-supervised learning: data-efficiency and compactness
- Learning $\pi(z|x)$ without learning $\ell(x,z)$: compactness

- Semi-supervised learning: data-efficiency and compactness
- Learning $\pi(z|x)$ without learning $\ell(x,z)$: compactness
- Latent draft translations: transparency and compactness

Using learned sparsity and weak supervision we took steps to take neural models closer to version 2.0

Using learned sparsity and weak supervision we took steps to take neural models closer to version 2.0

data-efficiency

model (data size)	BLEU↑
dual-source transformer (8M)	71.72
dual-source transformer (23K)	59.78
ours (23K)	70.66

Using learned sparsity and weak supervision we took steps to take neural models closer to version 2.0

data-efficiency

u	ui.	וכו	Ju.	rei	icy

model (data size)	BLEU↑
dual-source transformer (8M)	71.72
dual-source transformer (23K)	59.78
ours (23K)	70.66

Using learned sparsity and weak supervision we took steps to take neural models closer to version 2.0

data-efficiency

model (data size)	BLEU↑
dual-source transformer (8M)	71.72
dual-source transformer (23K)	59.78
ours (23K)	70.66

transparency

better & efficient compactness

References I

- Child, Rewon, Scott Gray, Alec Radford, and Ilya Sutskever (2019). "Generating long sequences with sparse transformers". In: arXiv preprint arXiv:1904.10509.
- Correia, Gonçalo M., Vlad Niculae, Wilker Aziz, and André F. T. Martins (2020). "Efficient Marginalization of Discrete and Structured Latent Variables via Sparsity". In: *Proc. NeurIPS*. URL: https://arxiv.org/abs/2007.01919.
- Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2019). "BERT: Pre-training of deep bidirectional transformers for language understanding". In: *Proc. NAACL-HLT*.
 Junczys-Dowmunt, Marcin and Roman Grundkiewicz (2018). "MS-UEdin Submission to the WMT2018 APE Shared
- Kyrillidis, Anastasios, Stephen Becker, Volkan Cevher, and Christoph Koch (2013). "Sparse projections onto the simplex". In: *Proc. ICML*.

 Lazaridou, Angeliki, Alexander Peysakhovich, and Marco Baroni (2017). "Multi-agent cooperation and the

Task: Dual-Source Transformer for Automatic Post-Editing". In: Proceedings of WMT18.

- emergence of (natural) language". In: *Proc. ICLR*.

 Lee, Jihyung, WonKee Lee, Jaehun Shin, Baikjin Jung, Young-Kil Kim, and Jong-Hyeok Lee (2020). "POSTECH-ETRI's Submission to the WMT2020 APE Shared Task: Automatic Post-Editing with Cross-lingual Language Model". In: *Proceedings of WMT*.
- Martins, André FT and Ramón Fernandez Astudillo (2016). "From softmax to sparsemax: A sparse model of attention and multi-label classification". In: *Proc. of ICML*.

References II

Niculae, Vlad and Mathieu Blondel (2017). "A Regularized Framework for Sparse and Structured Neural Attention". In: arXiv preprint arXiv:1705.07704.

Niculae, Vlad, André FT Martins, Mathieu Blondel, and Claire Cardie (2018). "SparseMAP: Differentiable sparse

- structured inference". In: *Proc. of ICML*.

 Peters, Ben, Vlad Niculae, and André F. T. Martins (2019). "Sparse Sequence-to-Sequence Models". In: *Proceedings of*
- Peters, Ben, Vlad Niculae, and Andre F. T. Martins (2019). "Sparse Sequence-to-Sequence Models". In: Proceedings of the Annual Meeting of the Association for Computational Linguistics.
- Sukhbaatar, Sainbayar, Edouard Grave, Piotr Bojanowski, and Armand Joulin (2019). "Adaptive Attention Span in Transformers". In: arXiv preprint arXiv:1905.07799.
- Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin (2017). "Attention Is All You Need". In: *Proc. of NeurIPS*.
- Voita, Elena, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov (2019). "Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned". In: *Proc. ACL*.

Parameter sharing analysis

	TER↓	BLEU↑
MT Baseline	24.76	62.11
Transformer	27.80	60.76
Transformer decoder	20.33	69.31
Pre-trained BERT	20.83	69.11
with CA ← SA	18.91	71.81
and SA \longleftrightarrow Encoder SA	18.44	72.25
andCA ↔ SA	18.75	71.83
and FF ↔ Encoder FF	19.04	71.53

Related Work: Other Sparse Transformers

Our model allows non-contiguous attention for each head.

Ω-Regularized Argmax

For convex Ω , define the Ω -regularized argmax transformation:

$$\operatorname{argmax}_{\Omega}(\mathbf{z}) \coloneqq \arg \max_{\mathbf{p} \in \Delta} \mathbf{z}^{\mathsf{T}} \mathbf{p} - \Omega(\mathbf{p})$$

For convex Ω , define the Ω -regularized argmax transformation:

$$\operatorname{argmax}_{\Omega}(\mathbf{z}) \coloneqq \arg \max_{\mathbf{p} \in \Delta} \mathbf{z}^{\mathsf{T}} \mathbf{p} - \Omega(\mathbf{p})$$

• Argmax corresponds to **no regularization**, $\Omega \equiv 0$

For convex Ω , define the Ω -regularized argmax transformation:

$$\operatorname{argmax}_{\Omega}(\mathbf{z}) \coloneqq \arg \max_{\mathbf{p} \in \Delta} \mathbf{z}^{\mathsf{T}} \mathbf{p} - \Omega(\mathbf{p})$$

- Argmax corresponds to **no regularization**, $\Omega \equiv 0$
- Softmax amounts to entropic regularization, $\Omega(\mathbf{p}) = \sum_{i=1}^{K} p_i \log p_i$

For convex Ω , define the Ω -regularized argmax transformation:

$$\operatorname{argmax}_{\Omega}(\mathbf{z}) \coloneqq \arg \max_{\mathbf{p} \in \Delta} \mathbf{z}^{\mathsf{T}} \mathbf{p} - \Omega(\mathbf{p})$$

- Argmax corresponds to no regularization, $\Omega \equiv 0$
- Softmax amounts to entropic regularization, $\Omega(\mathbf{p}) = \sum_{i=1}^{K} p_i \log p_i$
- Sparsemax amounts to ℓ_2 -regularization, $\Omega(\mathbf{p}) = \frac{1}{2} ||\mathbf{p}||^2$.

For convex Ω , define the Ω -regularized argmax transformation:

$$\mathbf{argmax}_{\,\Omega}(\mathbf{z}) \coloneqq \arg\max_{\mathbf{p} \in \Delta} \mathbf{z}^{\mathsf{T}} \mathbf{p} - \Omega(\mathbf{p})$$

- Argmax corresponds to **no regularization**, $\Omega \equiv 0$
- Softmax amounts to entropic regularization, $\Omega(\mathbf{p}) = \sum_{i=1}^{K} p_i \log p_i$
- Sparsemax amounts to ℓ_2 -regularization, $\Omega(\boldsymbol{p}) = \frac{1}{2} ||\boldsymbol{p}||^2$.

Is there something in-between?

BLEU Scores

activation	de→en	ja→en	ro→en	en→de
softmax	29.79	21.57	32.70	26.02
1.5-entmax	29.83	22.13	33.10	25.89
α-entmax	29.90	21.74	32.89	26.93

BLEU Scores

activation	de→en	ja→en	ro→en	en→de
softmax	29.79	21.57	32.70	26.02
1.5-entmax	29.83	22.13	33.10	25.89
α-entmax	29.90	21.74	32.89	26.93

BLEU Scores

activation	de→en	ja→en	ro→en	en→de
softmax	29.79	21.57	32.70	26.02
1.5-entmax	29.83	22.13	33.10	25.89
α-entmax	29.90	21.74	32.89	26.93

For analysis for other language pairs, see Appendix A.

Learned α

Bimodal for the encoder, mostly unimodal for the decoder.

Subword-Merging Head

$$\mathcal{L}_{x}(\boldsymbol{\theta}) = \sum_{z \in \mathcal{Z}} \pi(z|x) \, \ell(x, z)$$
$$= \mathbb{E}_{z \sim \pi(z|x)} \, \ell(x, z)$$

Semi-Supervised VAE on MNIST: z is one of 10 categories

$$\mathcal{L}_{X}(\boldsymbol{\theta}) = \sum_{\boldsymbol{z} \in \mathcal{Z}} \pi(\boldsymbol{z}|\boldsymbol{x}) \; \boldsymbol{\ell}(\boldsymbol{x},\boldsymbol{z})$$
 classification network
$$= \mathbb{E}_{\boldsymbol{z} \sim \pi(\boldsymbol{z}|\boldsymbol{x})} \; \boldsymbol{\ell}(\boldsymbol{x},\boldsymbol{z})$$

Semi-Supervised VAE on MNIST: z is one of 10 categories

Semi-Supervised VAE on MNIST: z is one of 10 categories

- Semi-Supervised VAE on MNIST: z is one of 10 categories
- Train this with 10% labeled data

Method	Accuracy (%)	Dec. calls
Monte Ca	rlo	
SFE	$94.75 \pm .002$	1
SFE+	96.53±.001	2
NVIL	$96.01 \pm .002$	1
Gumbel	95.46±.001	1
Marginali	zation	
Dense	96.93±.001	10

Method	Accuracy (%)	Dec. calls
Monte Ca	rlo	
SFE	$94.75 \pm .002$	1
SFE+	96.53±.001	2
NVIL	$96.01 \scriptstyle{\pm .002}$	1
Gumbel	95.46±.001	1
Marginali	zation	
Dense	96.93±.001	10
Sparse	$96.87 \scriptstyle{\pm .001}$	$1.01 \scriptstyle{\pm 0.01}$

Method	Accuracy (%)	Dec. calls
Monte Ca	rlo	
SFE	$94.75 \pm .002$	1
SFE+	96.53±.001	2
NVIL	$96.01 \scriptstyle{\pm .002}$	1
Gumbel	95.46±.001	1
Marginali	zation	
Dense	96.93±.001	10
Sparse	$96.87 \scriptstyle{\pm .001}$	1.01 ±0.01

$$\mathcal{L}_{x}(\theta) = \sum_{z \in \mathcal{Z}} \pi(z|x) \, \ell(x, z)$$
$$= \mathbb{E}_{z \sim \pi(z|x)} \, \ell(x, z)$$

ullet receiver picks image from a set ${\mathcal V}$ based on message

- ullet receiver picks image from a set ${\mathcal V}$ based on message
- images come from ImageNet

... but make it harder: |Z| = 256, |V| = 16

Method	success (%)	Dec. calls
Monte Carlo		
SFE	33.05 ±2.84	1
SFE+	44.32 ±2.72	2
NVIL	37.04 ±1.61	1
Gumbel	23.51 ±16.19	1
ST Gumbel	27.42 ±13.36	1

Marginalization

... but make it harder: |Z| = 256, |V| = 16

Method	success (%)	Dec. calls
Monte Carlo SFE	33.05 ±2.84	1
SFE+	44.32 ±2.72	2
NVIL Gumbel	37.04 ±1.61 23.51 ±16.19	1 1
ST Gumbel	27.42 ±13.36	1
<i>Marginalization</i> Dense	93.37 ±0.42	256

... but make it harder: |Z| = 256, |V| = 16

Method	success (%)	Dec. calls
Monte Carlo SFE SFE+ NVIL Gumbel ST Gumbel	33.05 ±2.84 44.32 ±2.72 37.04 ±1.61 23.51 ±16.19 27.42 ±13.36	1 2 1 1
Marginalization Dense Sparse	93.37 ±0.42 93.35 ±0.50	256 3.13±0.48

... but make it harder: |Z| = 256, |V| = 16

Method	success (%)	Dec. calls
Monte Carlo SFE SFE+ NVIL Gumbel ST Gumbel	33.05 ±2.84 44.32 ±2.72 37.04 ±1.61 23.51 ±16.19 27.42 ±13.36	1 2 1 1
Marginalization Dense Sparse	93.37 ±0.42 93.35 ±0.50	256 3.13±0.48

Limitations

- Mostly (and eventually) very sparse. But fully dense worst case.
- For the same reason, sparsemax cannot handle structured z.

Limitations

- Mostly (and eventually) very sparse.
 But fully dense worst case.
- For the same reason, sparsemax cannot handle structured z.

One solution: top-k sparsemax

$$k\text{-sparsemax}(s) = \underset{\boldsymbol{p} \in \Delta, ||\boldsymbol{p}||_0 \le k}{\arg\min} ||\boldsymbol{p} - s||_2^2$$

Limitations

- Mostly (and eventually) very sparse.
 But fully dense worst case.
- For the same reason, sparsemax cannot handle structured z.

One solution: top-k sparsemax

$$k$$
-sparsemax $(s) = \underset{\boldsymbol{p} \in \Delta, ||\boldsymbol{p}||_0 \le k}{\arg \min} ||\boldsymbol{p} - s||_2^2$

- Non-convex but easy: sparsemax over the k highest scores (Kyrillidis et al., 2013).
- Top-k oracle available for some structured problems.
- Certificate: if at least one of the top-k z gets p(z) = 0, k-sparsemax = sparsemax! thus, biased early on, but it goes away.

$$\mathcal{M} := \operatorname{conv} \left\{ \boldsymbol{a}_{Z} : Z \in \mathcal{Z} \right\}$$
$$= \left\{ \boldsymbol{A} \boldsymbol{p} : \boldsymbol{p} \in \Delta \right\}$$
$$= \left\{ \mathbb{E}_{Z \sim \boldsymbol{p}} \; \boldsymbol{a}_{Z} : \boldsymbol{p} \in \Delta \right\}$$

• $\operatorname{\mathsf{argmax}} \operatorname{\mathsf{argmax}} \operatorname{\mathsf{p}}^\mathsf{T} s$

 $\operatorname{\mathsf{argmax}}_{oldsymbol{p} \in \Delta} \overline{oldsymbol{p}}^\mathsf{T} oldsymbol{s}$

 $\mathsf{MAP} \underset{\boldsymbol{\mu} \in \mathcal{M}}{\operatorname{arg \, max}} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{t}$

• argmax $\arg \max_{p \in \Delta} p^{\top} s$

$$\mathsf{MAP}\, \operatorname*{arg\, max} \boldsymbol{\mu}^\mathsf{T} \boldsymbol{t} \\ \boldsymbol{\mu} \boldsymbol{\in} \mathcal{M}$$

 $\iota^{ op} t$

softmax $\underset{\boldsymbol{p} \in \Delta}{\operatorname{arg max}} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{s} + \mathrm{H}(\boldsymbol{p})$

- \bullet argmax $\operatorname{arg\,max} p^{\mathsf{T}} s$
- softmax $\underset{\boldsymbol{p} \in \Delta}{\operatorname{rg} \max} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{s} + \mathrm{H}(\boldsymbol{p})$

$$\mathsf{MAP} \, \operatorname*{arg\, max} \boldsymbol{\mu}^\mathsf{T} \boldsymbol{t} \\ \boldsymbol{\mu} \in \mathcal{M}$$

marginals $\underset{\boldsymbol{\mu} \in \mathcal{M}}{\operatorname{max}} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{t} + \widetilde{\operatorname{H}}(\boldsymbol{\mu})$

- argmax $\arg \max p^T s$ $p \in \Delta$
- softmax $\underset{\boldsymbol{p} \in \Delta}{\operatorname{arg max}} \boldsymbol{p}^{\mathsf{T}} \mathbf{s} + \mathrm{H}(\boldsymbol{p})$
- sparsemax $\underset{\boldsymbol{p} \in \Delta}{\operatorname{arg max}} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{s} 1/2 ||\boldsymbol{p}||^2$

MAP
$$\underset{\boldsymbol{\mu} \in \mathcal{M}}{\operatorname{arg max}} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{t}$$

marginals $\underset{\boldsymbol{\mu} \in \mathcal{M}}{\operatorname{marginals}} \mathbf{T} + \widetilde{\mathbf{H}}(\boldsymbol{\mu})$

- argmax $arg max p^T s$ $b \in \Delta$
- softmax $\arg \max \boldsymbol{p}^{\mathsf{T}} \mathbf{s} + \mathbf{H}(\boldsymbol{p})$ $p \in \Delta$

• sparsemax $\arg \max p^{\top} s - 1/2 ||p||^2$ $p \in \Delta$

MAP
$$\arg \max_{\boldsymbol{\mu} \in \mathcal{M}} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{t}$$

$$\mu \in \mathcal{M}$$
marginals $\arg \max_{\boldsymbol{\mu} \in \mathcal{M}} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{t} + \widetilde{\mathbf{H}}(\boldsymbol{\mu})$

SparseMAP $\arg \max \mu^{\mathsf{T}} t - 1/2 \|\mu\|^2 \bullet$ $\mu \in \mathcal{M}$

$$\mathcal{L}_{X}(\boldsymbol{\theta}) = \sum_{z \in \mathcal{Z}} \pi(z|x) \, \ell(x, z)$$
$$= \mathbb{E}_{z \sim \pi(z|x)} \, \ell(x, z)$$

$$\mathcal{L}_{X}(\boldsymbol{\theta}) = \sum_{\boldsymbol{z} \in \mathcal{Z}} \pi(\boldsymbol{z}|\boldsymbol{x}) \, \ell(\boldsymbol{x}, \boldsymbol{z})$$

$$= \mathbb{E}_{\boldsymbol{z} \sim \pi(\boldsymbol{z}|\boldsymbol{x})} \, \ell(\boldsymbol{x}, \boldsymbol{z})$$
 inference network

• VAE where *z* is a collection of *D* bits

$$\mathcal{L}_{X}(\boldsymbol{\theta}) = \sum_{\boldsymbol{z} \in \mathcal{Z}} \pi(\boldsymbol{z}|\boldsymbol{x}) \, \ell(\boldsymbol{x}, \boldsymbol{z})$$

$$= \mathbb{E}_{\boldsymbol{z} \sim \pi(\boldsymbol{z}|\boldsymbol{x})} \, \ell(\boldsymbol{x}, \boldsymbol{z})$$
 inference network

- VAE where *z* is a collection of *D* bits
- Minimize the negative ELBO

- VAE where z is a collection of D bits
- Minimize the negative ELBO

Method	D = 32	<i>D</i> = 128
Monte Carlo		
SFE	3.74	3.77
SFE+	3.61	3.59
NVIL	3.65	3.60
Gumbel	3.57	3.49
Marginalization		
Top- <i>k</i> sparsemax	3.62	3.61
SparseMAP	3.72	3.67
SparseMAP (w/ budget)	3.64	3.66

Method	D = 32	D = 128
Monte Carlo		
SFE	3.74	3.77
SFE+	3.61	3.59
NVIL	3.65	3.60
Gumbel	3.57	3.49
Marginalization		
Top- <i>k</i> sparsemax	3.62	3.61
SparseMAP	3.72	3.67
SparseMAP (w/ budget)	3.64	3.66

Method	D = 32	D = 128
Monte Carlo		
SFE	3.74	3.77
SFE+	3.61	3.59
NVIL	3.65	3.60
Gumbel	3.57	3.49
Marginalization		
Top- <i>k</i> sparsemax	3.62	3.61
SparseMAP	3.72	3.67
SparseMAP (w/ budget)	3.64	3.66

Method	D = 32	D = 128
Monte Carlo		
SFE	3.74	3.77
SFE+	3.61	3.59
NVIL	3.65	3.60
Gumbel	3.57	3.49
Marginalization		
Top- <i>k</i> sparsemax	3.62	3.61
SparseMAP	3.72	3.67
SparseMAP (w/ budget)	3.64	3.66

