Food and sustainability

Exercise 1 : The 5 dimensions of environmental sustainability

We hear a lot about greenhouse gas emissions and climate change, but in the meta-analysis by Poore and Nemecek (2018), four other dimensions are taken into account for environmental sustainability.

1.1 Fill the following table.

Dimension	Unit	What does it measure? What is it?	Causes	Effects
ghg Emissions	1 kg N2O = 298 kgCO2 kg CO2 eq 1kg methan = 84kgCO2	Emission of CO2	Antropic reject (like use of fuel)	acidification of ocean impact on equilibrium contribute to global warming
land use	m² year	the aero of land used by year for the type of food	need place for retail or plantation	exhaustion of soil, kill biodiversty and wild life

Acidiyfing emission	g SO2 eq	Emission of SO2 (use of fuel for example)	Industrial process or consumption of C	Hazardous for people, or life in general acid raind: acidfying the soil
Eutrophying	gPO4-2 eq	Reject of phosphate causing eutrophication	Reject by industruall process, or even firtilizer	Cause a big bloom of algua, can destroy the equilibrium of a lake or river for exemple
water use		atio of freshwater consum bout freshwater ressource use of water on platation		A miss of freshwater in the world, and in groundwater table

(FU = retail weight functional unit, typically kg or L)

1.2 From the above table, what is the other major concern, beyond climate change?

biodiversity collapse

Exercise 2: Food as a lever for action

2.1 Why should we care about food? If we can lower the environmental impact of food production, would it help or not, compared to other human activities? To answer these questions, read Poore and Nemeeck's paper and fill the following sentences.

Food production currently requires 9:37% of the world's ice- and desert-free land.

Food production is currently responsible for 26. % of total anthropogenic greenhouse gas emissions.

Food production is currently responsible for .32 % of total terrestrial acidification.

Food production is currently responsible for 7.8. % of total eutrophication.

Food production is currently responsible for 66% of total freshwater withdrawals and % of total scarcity-weighted water use.

2.2 According to DataS2 in the meta-analysis by Poore and Nemecek (2018), what is the protein source that has the largest (median) impact, for each dimension, per retail unit? per 100g of protein?

Per what?	Land use (m ²)	GHG emissions (kgCO ₂ eq)	Acidifying emissions (gSO ₂ eq)	Eutrophying emissions (gPO ₄ ³⁻)	Stress-weighted water use (L)
Retail unit (kg or L)	neef	beef	beef	beef	nut
100g of protein	beef	beef	beef	beef	lamb

- 2.3 Use your program to calibrate the following two meals for 803 kcal (note that they only differ by the source of protein):
 - a) Bovine Meat (beef herd), Rice, Rapeseed Oil, Brassicas, Apples, Beet Sugar
 b) Peas, Rice, Rapeseed Oil, Brassicas, Apples, Beet Sugar

Meal	Land use (m ²)	GHG emissions (kgCO ₂ eq)	Acidifying emissions (gSO ₂ eq)	Eutrophying emissions (gPO ₄ ³⁻)	Stress-weighted water use (L)
a), with bovine meat	9;41	3.8	18.5	19.1	1019
b), with peas	0.89	0.58	4.36	2.25	817