Comparison of SVC, Logistic Regression, Random Forest and ANN Result on Portuguese Bank Direct Marketing Campaign Report

By Ghazali Akmal Rabbani
Student of CDS 4 Jan Datamites
April 1st - 20th, 2021.

1. INTRODUCTION

a. Background

There are two main approaches for enterprises to promote products and/or services: through mass campaigns, targeting general indiscriminate public or directed marketing, targeting a specific set of contacts (Ling and Li 1998). Nowadays, in a global competitive world, positive responses to mass campaigns are typically very low, less than 1%, according to the same study. Alternatively, directed marketing focus on targets that assumable will be keener to that specific product/service, making this kind of campaigns more attractive due to its efficiency (Ou et al. 2003).

b. Problem

Nevertheless, directed marketing has some drawbacks, for instance it may trigger a negative attitude towards banks due to the intrusion of privacy (Page and Luding 2003). It should be stressed that due to internal competition and current financial crisis, there are huge pressures for European banks to increase a financial asset. To solve this issue, one adopted strategy is offer attractive long-term deposit applications with good interest rates, in particular by using directed marketing campaigns. Also, the same drivers are pressing for a reduction in costs and time. Thus, there is a need for an improvement in efficiency: lesser contacts should be done, but an approximately number of successes (clients subscribing the deposit) should be kept.

c. Interest

The business goal is to find a model that can explain success of a contact, i.e. if the client subscribes the deposit. Such model can increase campaign efficiency by identifying the main characteristics that affect success, helping in a better management of the available resources (e.g. human effort, phone calls, time) and selection of a high quality and affordable set of potential buying customers.

2. DATA ACQUISITION AND EXPLANATION

Real-world data were collected from a Portuguese marketing campaign related with bank deposit subscription. We collected data from a Portuguese bank that used its own contact-center to do directed marketing campaigns (Moro et al. 2011). The dataset contains the following columns:

Bank client data

- Age : age of person (numeric)
- Job: type of job (categorical: "admin", "unknown", "unemployed", "management", "housemaid", "entrepreneur", "student", "blue-collar", "self-employed", "retired", "technician", "services")
- Marital: marital status (categorical: "married", "divorced", "single")

- Education : education of person (categorical : "unknown", "secondary", "primary", "tertiary")
- Default: has credit in default? (binary: "yes", "no")
- Balance : average yearly balance, in euros (numeric)
- Housing: has housing loan? (binary: "yes", "no")
- Loan: has personal loan? (binary: "yes", "no")

Related with the last contact of the current campaign

- Contact: contact communication type (categorical: "unknown", "telephone", "cellular")
- Day: last contact day of the month (numeric)
- Month: last contact month of year (categorical: "Jan", "Feb", "Mar",...,"Nov", "Dec")
- Duration: last contact duration, in seconds (numeric)

Other attributes

- Campaign: number of contacts performed during this campaign and for this client (numeric, includes last contact)
- Pdays: number of days that passed by after the client was last contacted from a previous campaign (numeric, -1 means client was not previously contacted)
- Previous: number of contacts performed before this campaign and for this client (numeric)
- Poutcome: outcome of the previous marketing campaign (categorical: "unknown", "other", "failure", "success")

Output Variables

• Y: has the client subscribed a term deposit? (binary: "yes", "no")

3. METHODOLOGY

- a. Exploratory Data Analysis
 - i. Summary Statistical Analysis
 - 1. Information Analysis

Check for Missing Value

```
df.notnull().all().all()
True
```

There are no missing value in this dataset

Summary information of each column in dataframe

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 45211 entries, 0 to 45210
Data columns (total 17 columns):
# Column Non-Null Count Dtype
---
              -----
0 age 45211 non-null int64
1 job 45211 non-null object
2 marital 45211 non-null object
3 education 45211 non-null object
4 default 45211 non-null object
5 balance 45211 non-null int64
6 housing 45211 non-null object
             45211 non-null object
    loan
8 contact 45211 non-null object
9 day 45211 non-null int64
10 month 45211 non-null object
11 duration 45211 non-null int64
12 campaign 45211 non-null int64
13 pdays
             45211 non-null int64
14 previous 45211 non-null int64
15 poutcome 45211 non-null object
16 y 45211 non-null object
dtypes: int64(7), object(10)
```

Based on the summary information in the above, there are 7 columns with integer type (int64) which denotes Numerical Column and 10 columns with object type which denotes Categorical Column. And also there are 45211 data.

2. Statistical Numerical Analysis

	age	balance	day	duration	campaign	pdays	previous
count	45211.000000	45211.000000	45211.000000	45211.000000	45211.000000	45211.000000	45211.000000
mean	40.936210	1362.272058	15.806419	258.163080	2.763841	40.197828	0.580323
std	10.618762	3044.765829	8.322476	257.527812	3.098021	100.128746	2.303441
min	18.000000	-8019.000000	1.000000	0.000000	1.000000	-1.000000	0.000000
25%	33.000000	72.000000	8.000000	103.000000	1.000000	-1.000000	0.000000
50%	39.000000	448.000000	16.000000	180.000000	2.000000	-1.000000	0.000000
75%	48.000000	1428.000000	21.000000	319.000000	3.000000	-1.000000	0.000000
max	95.000000	102127.000000	31.000000	4918.000000	63.000000	871.000000	275.000000

- Count is a total data of each column
- **Mean** is an average of all the numbers
- std or Standard Deviation is measurement to tell how a set of values spread out from their mean. A low Standard Deviation whows that the values are close to the mean and a high Standard Deviation shows a high diversion from the mean

3. Statistical Categorical Analysis

	job	marital	education	default	housing	loan	contact	month	poutcome	у
count	45211	45211	45211	45211	45211	45211	45211	45211	45211	45211
unique	12	3	4	2	2	2	3	12	4	2
top	blue-collar	married	secondary	no	yes	no	cellular	may	unknown	no
freq	9732	27214	23202	44396	25130	37967	29285	13766	36959	39922

- count is total data of each column
- **unique** is total of unique data in each column. For example, in Job column there are 12 difference kind of data
- top is the most frequency or mode data in each column
- **freq** is total of top data or mode data in each column. For example, in Job column, the mode data is *blue-collar* and total of data with value of *blue-collar* is 9732 data in Job column

ii. Univariate Analysis

1. Boxplot

a. Age Boxplot

Measurement		Value
Median	:	39.0
1 st Quartile	:	33.0
3 rd Quartile	:	48.0
Interquartile	:	15.0
Outlier	:	Yes

b. Balance Boxplot

Measurement		Value
Median	:	448.0
1 st Quartile	:	72.0
3 rd Quartile	:	1428.0
Interquartile	:	1356.0
Outlier	:	Yes

c. Day Boxplot

Measurement		Value
Median	:	16.0

1 st Quartile	:	8.0
3 rd Quartile	:	21.0
Interquartile	:	13.0
Outlier	:	Yes

d. Duration Boxplot

Measurement		Value
Median	:	180.0
1 st Quartile	:	103.0
3 rd Quartile	:	319.0
Interquartile	:	216.0
Outlier	:	Yes

e. Campaign Boxplot

Measurement		Value
Median	:	2.0
1 st Quartile	:	1.0
3 rd Quartile	:	3.0
Interquartile	:	2.0
Outlier	:	Yes

f. Pdays Boxplot

Measurement		Value
Median	:	-1.0

1 st Quartile	:	-1.0
3 rd Quartile	:	-1.0
Interquartile	:	0.0
Outlier	:	Yes

g. Previous Boxplot

Measurement		Value
Median	:	0.0
1 st Quartile	:	0.0
3 rd Quartile	:	0.0
Interquartile	:	0.0
Outlier	:	Yes

2. Target Analysis

From visualization in above, there are a lot of "No" data with ratio comparison to "Yes" data is 15:2 of No:Yes data.

3. Visualization Numerical Analysis

a. Age Analysis

b. Balance Analysis

	unique_values	counts
0	0	3514
1	1	195
2	2	156
3	4	139
4	3	134
7163	4305	1
7164	6352	1
7165	18881	1
7166	14889	1
7167	7218	1

Table of Visualization of Top 5 and Least 5 Total Data Balance

7168 rows × 2 columns

c. Day Analysis

d. Duration Analysis

	unique_values	counts
0	124	188
1	90	184
2	89	177
3	122	175
4	104	175
-	104	175

Table of Visualization of Top 5 and Least 5 Total Data Duration

e. Campaign Analysis

f. Previous Analysis

g. Pdays Analysis

4. Visualization Categorical Analysis

a. Job Analysis

b. Marital Status Analysis

c. Education Analysis

d. Default Analysis

e. Housing Analysis

f. Loan Analysis

g. Contact Analysis

h. Month Analysis

i. Poutcome Analysis

iii. Bivariate Analysis

campaign No > campaign Yes. balance No > balance Yes. pdays Yes > pdays No

iv. Multivariate Analysis

- Duration has the strongest Linear Correlation between Feature and Target with 39% positive linear correlation
- No features seems to be redundant

b. Modelling

Label Encoding

Label Encoding are used to transform non-numerical labels (as long as they are hash able and comparable) to numerical labels. Label that are being transform to numerical are categorical data column which is job, marital, education, default, housing, loan, contact, month and poutcome.

45211 rows × 16 columns

Split Data

Split data are used to split the original data into 2 different parts which is training data and testing data. Training data will also be divided into 2 parts training data and validation training data. This process to ensure when the model being trained

and we have a data to validate the predicted output of a model. In this step, we used train_test_split method with ratio 70% for training data and 30% for testing data.

Amount of X_train Data	:	no 27916 yes 3731 dtype: int64
Amount of X_test Data	:	no 12006 yes 1558 Name: y, dtype: int64

Scale Data

Here we transform the data to fit within a specific scale using these algorithms a change of "1" in any numeric feature will give the same importance to each data. We used StandardScaler() method for SVC, RandomForest, and Logistic Regression algorithm and used MinMaxScaler() method for ANN algorithm from Sklearn library. Define the transformation for train and test data:

• X_train will be scale using fit_transform()

X_train	_scaled															
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	-1.026305	1.423354	-0.280363	-1.640840	-0.13531	-0.410155	0.893093	-0.436666	-0.710219	-0.094313	0.827351	-0.148404	-0.250493	2.575874	0.232301	-2.600080
1	-0.367918	-1.325856	1.364851	-0.298415	-0.13531	-0.440750	-1.119705	-0.436666	1.521344	1.470066	0.827351	-0.938292	3.303510	-0.411514	-0.304903	0.443520
2	0.102359	-1.325856	-0.280363	-0.298415	-0.13531	-0.440750	0.893093	-0.436666	-0.710219	-0.936671	-0.169407	2.929436	-0.573585	-0.411514	-0.304903	0.443520
3	-0.838194	-1.020388	-0.280363	-0.298415	-0.13531	-0.434309	0.893093	2.290082	1.521344	-0.936671	0.827351	-0.549185	0.072598	-0.411514	-0.304903	0.443520
4	1.513190	0.201483	-0.280363	-0.298415	-0.13531	-0.483583	-1.119705	-0.436666	-0.710219	0.387035	-1.498418	-0.237899	-0.250493	-0.411514	-0.304903	0.443520
31642	-0.744139	-0.103985	1.364851	1.044009	-0.13531	-0.277792	-1.119705	-0.436666	-0.710219	-1.418018	0.162846	-0.319611	-0.573585	0.507682	0.769506	-0.571014
31643	0.102359	0.812419	-1.925577	-0.298415	-0.13531	-0.290675	-1.119705	-0.436666	-0.710219	1.470066	-0.501660	-0.817669	-0.573585	-0.411514	-0.304903	0.443520
31644	-0.932250	1.423354	1.364851	1.044009	-0.13531	0.082582	-1.119705	-0.436666	-0.710219	-1.658692	-0.833913	-0.389651	-0.573585	-0.411514	-0.304903	0.443520
31645	-1.308471	0.812419	1.364851	-0.298415	-0.13531	-0.331575	-1.119705	-0.436666	-0.710219	-1.418018	0.162846	-0.296265	-0.573585	-0.411514	-0.304903	0.443520
31646	0.760747	-0.103985	-0.280363	-0.298415	-0.13531	0.074853	-1.119705	-0.436666	-0.710219	1.590403	-0.169407	-0.821560	0.718780	-0.411514	-0.304903	0.443520
31647 ro	ws × 16 colu	mns														

X_test will be scale using transform()

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	1.325079	1.423354	-1.925577	-0.298415	-0.13531	-0.440750	0.893093	-0.436666	1.521344	0.507372	0.827351	0.415802	0.395689	-0.411514	-0.304903	0.44352
1	-0.932250	0.506951	1.364851	1.044009	-0.13531	0.145382	0.893093	-0.436666	1.521344	0.507372	0.827351	-0.739847	-0.573585	-0.411514	-0.304903	0.44352
2	-1.214416	-0.103985	1.364851	1.044009	-0.13531	0.284829	0.893093	-0.436666	1.521344	0.266698	0.162846	2.520873	-0.250493	-0.411514	-0.304903	0.44352
3	-1.214416	1.423354	-0.280363	-0.298415	-0.13531	1.958202	0.893093	-0.436666	-0.710219	-1.057007	0.827351	-0.253463	-0.573585	-0.411514	-0.304903	0.44352
4	0.196415	-0.714920	-0.280363	-0.298415	-0.13531	-0.421749	-1.119705	-0.436666	1.521344	-0.334986	0.827351	0.695959	-0.250493	-0.411514	-0.304903	0.44352

13559	-1.684693	0.812419	-0.280363	-0.298415	-0.13531	-0.436241	0.893093	2.290082	0.405563	-0.334986	0.827351	-0.930510	1.688054	3.175350	0.232301	-2.60008
13560	-0.932250	1.423354	-0.280363	-0.298415	-0.13531	-0.278759	-1.119705	-0.436666	-0.710219	0.507372	1.159604	-0.311829	-0.573585	-0.411514	-0.304903	0.44352
13561	-0.650084	1.423354	1.364851	-0.298415	-0.13531	1.404920	0.893093	-0.436666	-0.710219	0.627708	-0.169407	-0.611442	0.072598	-0.411514	-0.304903	0.44352
13562	-0.179807	0.812419	-0.280363	-0.298415	-0.13531	-0.424003	-1.119705	-0.436666	0.405563	-1.658692	-0.833913	4.520886	0.072598	-0.411514	-0.304903	0.44352
13563	1.231023	1.423354	-0.280363	-0.298415	-0.13531	-0.427224	-1.119705	2.290082	1.521344	-1.538355	-0.169407	0.509188	-0.250493	-0.411514	-0.304903	0.44352
13564 ro	ws × 16 colu	mns														

Mix Sampling

Here we distributed the data using SMOTE and RandomUnderSampler to make the classification output data balance. We used SMOTE() to duplicates and variance the 'yes' data for the model to learn more variance of yes data. We used RandomUnderSampler() to delete random sample of the 'no' data to make the model not to have low bias towards 'yes' data.

Total Amount of Data after Mix Sampled:

no 8374 yes 4187 dtype: int64

Create Default Model

In this step we create model with default parameters of each algorithm itself. These are default parameters and each algorithm :

SVC	SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False)
Logistic Regression	LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='auto', n_jobs=None, penalty='l2', random_state=None, solver='lbfgs', tol=0.0001, verbose=0, warm_start=False)
Random Forest	RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None, criterion='gini', max_depth=None, max_features='auto', max_leaf_nodes=None, max_samples=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=None, oob_score=False, random_state=None, verbose=0, warm_start=False)
ANN	MLPClassifier(activation='relu', alpha=0.0001, batch_size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100,), learning_rate='constant', learning_rate_init=0.001, max_fun=15000, max_iter=200, momentum=0.9, n_iter_no_change=10, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='adam', tol=0.0001, validation_fraction=0.1, verbose=False, warm_start=False)

Find Best Parameter Using RandomizedSearch CV

After we train the data with default parameter model in above. In this step, we try to find best parameter for each algorithm with focus scoring on Recall because we would like to know if the result of the predicted output made by the model already predict most of the correct data inside the predicted output. To process this step, we should define parameters for each algorithm and run process the RandomizedSeach CV.

```
DEFINED PARAMETERS
SVC
                        from sklearn.model_selection import RandomizedSearchCV
                        parameters = {
                            'kernel': ['rbf','linear','poly','sigmoid'],
                            'C': [1,10,20,50,100],
                            'gamma': ['scale','auto'],
                            'degree' : [3,5,7]
Logistic Regression
                        parameters = {
                            'tol': [0.00001, 0.0001, 0.001],
                            'C': [0.001,0.01,0.1,1,10,100,1000],
                            'class_weight': ['balanced', None],
                            'random_state' : [None,10,20,30,42],
                            'solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'],
                            'max_iter' : [100],
                            'verbose':[0,1,2],
Random Forest
                        parameters = {
                                 'criterion':['gini', 'entropy'],
                                'bootstrap':[True,False],
                                 'oob_score':[True,False],
                                'warm_start':[True,False],
                                 'class_weight' : ['balanced', 'balanced_subsample']
                        }
                        parameters = {
ANN
                            'hidden_layer_sizes': [(50,50,50), (50,100,50), (100,)],
                            'activation': ['tanh', 'relu', 'logistic'],
                            'solver': ['sgd', 'adam'],
                            'alpha': [0.0001, 0.05],
                            'learning_rate': ['constant', 'adaptive', 'invscaling'],
                        }
```

BEST PARAMETERS							
SVC	{'C': 20, 'degree': 7, 'gamma': 'auto', 'kernel': 'rbf'}						
Logistic Regression	{'C': 0.01, 'class_weight': 'balanced', 'max_iter': 100, 'random_state': 20, 'solver': 'liblinear', 'tol': 0.001, 'verbose': 1}						

Random Forest	{'bootstrap': True, 'class_weight': 'balanced_subsample', 'criterion': 'entropy', 'oob_score': True, 'warm_start': True}
ANN	{'activation': 'tanh', 'alpha': 0.0001, 'hidden_layer_sizes': (50, 50, 50), 'learning_rate': 'adaptive', 'solver': 'adam'}

• Create Hyper Parameterized Model

	HYPER PARAMETERIZED MODEL							
SVC	model = SVC(kernel = 'rbf', C=20, gamma='auto',degree=7)							
Logistic Regression	<pre>model = LogisticRegression(C= 0.01, class_weight= 'balanced', max_iter= 100, random_state= 20, solver= 'liblinear', tol= 0.001, verbose= 1)</pre>							
Random Forest	<pre>model = RandomForestClassifier(class_weight='balanced_subsample',</pre>							
ANN	<pre>model = MLPClassifier(hidden_layer_sizes=(50,50,50),activation='tanh',</pre>							

4. RESULT

a. CONFUSION MATRIX

Here we used confusion matrix which is crosstab() method from pandas There are 4 terms as a representation of the result of the classification process confusion matrix. The four terms:

True Positive (TP) : Represents positive data that is predicted to be correct
 True Negative : Represent negative data that is predicted to be correct

(TN)

• False Negative : Type I Error - Represent negative data but predicted as

(FN) positive data

• False Positive : Type II Error - Represents positive data but predicted as

(FP) negative data

	SVC							
	TP	TN	FN	FP				
Default Parameter	1129	10689	429	1317				
Hyper Parameterized	1082	10603	476	1403				
	T							
		Logistic R						
	TP	TN	FN	FP				
Default Parameter	952	10843	606	1163				
Hyper Parameterized	1256	9646	302	2360				
		Randon	n Forest					
	TP	TN	FN	FP				
Default Parameter	1199	10732	359	1274				
Hyper Parameterized	1200	10767	358	1239				
		AN						
	TP	TN	FN	FP				
Default Parameter	1178	10480	380	1526				
Hyper Parameterized	1194	10470	364	1536				

b. CLASSIFICATION REPORT

Here we used the classification report from sklearn library in the classification report function we have precision, recall, f1-score and support for the evaluation metrics.

		SVC								
		Precision	Recall	F1 Score	Support	Accuracy				
Default	No	0.96	0.89	0.92	12006	0.87				
Parameter	Yes	0.46	0.72	0.56	1558	0.67				
Hyper	No	0.96	0.88	0.92	12006	0.86				
Parameterized	Yes	0.44	0.69	0.54	1558	0.60				
			Lo	gistic Regres	sion	•				
		Precision	Recall	F1 Score	Support	Accuracy				
Default	No	0.95	0.90	0.92	12006	0.87				
Parameter	Yes	0.45	0.61	0.52	1558					
Hyper	No	0.97	0.80	0.88	12006	0.80				
Parameterized	Yes	0.35	0.81	0.49	1558	0.80				
		Random Forest								
		Precision	Recall	F1 Score	Support	Accuracy				
Default	No	0.97	0.89	0.93	12006	0.88				
Parameter	Yes	0.48	0.77	0.59	1558	0.00				
Hyper	No	0.97	0.90	0.93	12006	0.88				
Parameterized	Yes	0.49	0.77	0.60	1558	0.00				
		ANN								
		Precision	Recall	F1 Score	Support	Accuracy				
Default	No	0.97	0.87	0.92	12006	0.86				
Parameter	Yes	0.44	0.76	0.55	1558	0.86				
Hyper	No	0.97	0.87	0.92	12006	0.86				
Parameterized	Yes	0.44	0.77	0.56	1558	0.80				

5. DISCUSSION

In this project dataset there are a lot of outliers that affect to the model result. The original dataset also imbalanced between "No" data and "Yes" data, but however we already fix the imbalanced data with Mix Sampled.

For this project, we use SVC, Logistic Regression, Random Forest and ANN for the machine learning algorithm the data that we want to predict in the future. For the result of the model, since we are focusing on the Recall score of the model, the best model for Portugese Bank Project is Logistic Regression in Hyper Parameterized Model. Because based on the classification report in above, Logistic Regression in Hyper Parameterized Model has a good result in Recall Score with 80% for "No" data and 81% for "Yes" data

6. CONCLUSION

In this project, if Portugese Bank User or Director of Data want to use a Machine Learning for predicting data in the future. He can use :

- Random Forest: If he want to have good model in Precision, F1 Score and Accuracy
- Logistic Regression : If he want to have good model in Recall Score