Annotation

- Gene Finding
 - $\, \mathsf{Ab} \, \, \mathsf{initio} \, \,$

Prokaryotic gene finding

- ORF e.g. GLIMMER
- Standard promoter sequence
 - Pribnow box: TATAAT

Prokaryotic gene finding -10 0 -TATAAT ATG. TAA -25 0 GT...AG GT....AG TAA Promoter (Proximal) frame shift in intron -300 bp

GenScan

Simultaneous forward and reverse genes Nested genes missed/ no alternate splicing Probabilistic model: includes

first, internal, last exon sub-models O(Sequence Length x Model States) So ~ O (M) and very fast.

What is happening in real life?

SNAP - Semi-HMM-based Nucleic Acid Parser

 Each strand separately – allows nested genes <u>BUT</u> allows overlapping exons

 Bootstrap for parameter estimation

Integration of various evidence

- · manually
- using statistics and computational methods
 - simple counting
 - hidden Markov models
 - Bayesian statistics
 - neural networks
- Always best to use many different finders and combine. Some frameworks try to keep this process as user-friendly as possible, e.g. Maker

Maker genome annotation

gmod.org/wiki/MAKER

- Takes genome, EST and protein data
- Identifies repeats
- Aligns ESTs and proteins to a genome
- Makes gene predictions
- Integrates these data into protein-coding gene annotations.

Community annotation

- Share annotations between groups
- WebApollo / Apollo

- Jbrowse

Core Eukaryotic Genes (CEGs)

- CEGs required for eukaryotic life
- 458 proteins/models in CEGMA set
- CEGMA aligns using HMM and DP

References
GenScan • Burge, C. and Karlin, S Prediction of complete gene structures in human genomic DNA J. Mol. Biol. 1997
Doublescan
Meyer and Durbin - Comparative ab initio prediction of gene structures using pair HMMs – Bioinformatics 2002
SNAP • Korf, I Gene finding in novel genomes – BMC Bioinformatics 2004
2004
References
Lee et al Web Apollo: a web-based genomic annotation editing platform – Genome Biology 2013
Parra et al CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. – Bioinformatics 2007
Perl
http://perldoc.perl.org/perlintro.html
Practical 4 examples will be mostly in Perl (Python/Ruby/Java supported)
 Don't need to able to write it but will be

very useful to be able to read it

Groups for Assignment 2

- MPhil Computational Biology (18 students)
 - 6 groups of 3
- Other ...?
 - Let me know ASAP

Practical

- Get the transcripts FASTA for gene trh (trachealess) from FIVBase web site.
- Use the ORF finder
 (http://www.bioinformatics.org/sms2/orf_find.html) on each
 transcript. Use BLAT on the UCSC Genome Browser web site to
 map the longest ORFs to the genome. View the region.
- Do the FlyBase transcripts correspond with other cDNA/EST information available in the browser? Get cDNA sequence NM_001103991 from GenBank and repeat your analysis.
- A further analysis has identified chr3L:366538-366558 as potential target region of a miRNA. Use the 'add custom tracks' functionality to visually highlight the region in the browser. For help see

 $\underline{http://genome.ucsc.edu/goldenPath/help/customTrack.html}$

Practical

- Get exons FASTA for gene sim (single minded) from FlyBase web site
- The sequence ID will contain a substring like 'loc=3R:8898124..8898272'. Use this the genomic coordinate to order the exons ("from left to right").
- Using a simple longest-ORF search, piece together possible exon combinations (Start = ATG; Stop = TAA, TAG, TGA) and deduce all possible coding sequences.
- Modify your script's CDS output to be visualised in the UCSC Genome Browser. Have a look at http://genome.ucsc.edu/goldenPath/help/customTrack.html to help. Try it out using 'add custom tracks' in the browser view.

		-	
L	۲,		
l		,	