ALEJANDRO DE LA VEGA

DIFFERENTIATING COGNITIVE CONTROL NETWORKS IN THE BRAIN

CONTROL SYSTEMS IN THE BRAIN

- Humans have ability to learn new tasks, flexibly adapt to ever changing environmental demands
- If rules of task change, healthy humans adapt quickly
- Control systems in the brain flexibly adapt connections to subservient regions to adapt to changing demands
- Which brain systems are responsible?

LATERAL PREFRONTAL CORTEX

- Frontoparietal Control Network
 - LPFC, Posterior parietal cortex
 - Thought to be useful for learning new tasks
 - Flexibly adapts connectivity to subservient brain regions
- Top-down LPFC signals of task goals bias down-scale information flow (e.g. response mappings)

CHARACTERISTICS OF CONTROL SYSTEMS (PETERSEN) - INSULA/MPFC

"The cingulo-opercular system contains regions that display start-cue, error-related, and sustained activity, whereas the fronto-parietal system contains regions that displayed start-cue and error-related activity but not sustained activity during task set maintenance"

RESTING STATE NETWORKS

- Resting state correlations thought to reflect "real" task dynamics
 - Regions that have similar patterns, fire together during task
 - Can be used to reveal network organization of the brain
- Results less dependent on specific tasks selected

- The two systems separate
 - In addition, salience (arousal) vs cingulo-opercular network
 - Other arguments that insula (therefore mpfc) is involved in focal attention (Nelson)
- Fronto-parietal is near middle of graph

\WHICH SYSTEM IS THE CONTROLLER?

- How do insula/mpfc and dlpfc differ in how they implement control?
- What other characteristics would a control region have?
 - High connectivity with the rest of the brain
 - Flexible connectivity across tasks (with different subservient processors)

GLOBAL CONNECTIVITY AT REST

- Which regions have the highest mean connectivity at rest?
 - Conjunction of two connectivity measures from Cole (2010)

GLOBAL CONNECTIVITY ACROSS TASKS (COLE 2014)

Idea: Perform many (64)
 tasks and compute
 global connectivity

All 12 rules included for each participant

All 12 rules included for each participant

RESULTS

CRITICISMS

- 64 'tasks' are surprisingly similar
 - All involve changing rule to response mapping
 - Probably not representative of space of possible cognitive processes
 - Bias towards LPFC having highest global connectivity

EXISTING DIVERSITY

PRESENT STUDY

- Existing large-scale neuroimaging databases span a wide range tasks and cognitive processes (over 10k studies)
- However, these data are low resolution (can't compute connectivity)

RESTING STATE → META-ANALYTIC

r = .7, functional connectivity compared to coactivation

RESTING STATE → M-A FUNCTION

r = .6, functional connectivity compared to meta-analytic functional distance

META-ANALYTIC GLOBAL CONNECTIVITY

- Goal: Calculate exact measure of meta-analytic global connectivity from Cole
- If FPN is truly the most flexible network, should show highest global connectivity, across diverse set of tasks

NEW DIVERSITY MEASURES

- Moreover, if FPN is a "flexible hub", one would expect
 it to be involve in the greatest amount of cognitive
 processes, as it is modulating them
- However, existing diversity measures are only based on the correlational weights between cognitive functions and region. Purely a measure of "randomness" of the functional descriptors of a region
 - But, they do not tell us how many functions are needed to characterize a region activity

DIVERSITY EXAMPLE

- Entropy high diversity example
 - [Memory, EF, Audition, Vision, Motor, Pain]
 - [1, 0.5, 0.1, 1.5, 1.2, 1]
- Low diversity example
 - [1, 1, 0, 0, 0]
- However, this does not tell us how constant this pattern is across studies, and how diverse of a model is necessary to explain a regions' activity

PREDICTIVE DIVERSITY

- One region's associations w/ functions across studies
- Low diversity: Motor cortex
 - All you need to know is that the study involved motor processes
- Higher diversity: vmpfc
 - Could be activated by: memory, emotion, social processes... AND these will vary across studies (not just within)

PREDICTIVE DIVERSITY

- Predictive diversity is defined by how complex of a semantic model is necessary to successfully predict if a study activated a region
 - That is, do you need to know about many features or few?

VMPFC DIVERSITY

VMPFC DIVERSITY

VMPFC DIVERSITY

DIVERSITY MAPS TO GRAPH THEORY MEASURES

 Diversity measure correlates with participation graph theoretic measures in resting state, with the additional benefit of spanning many tasks

DIVERSITY AND CONNECTIVITY ACROSS DOMAINS

- Leverage diversity of Neurosynth's database to get better estimates of how diversity and connectivity changes depending on the cognitive domain
- Threshold database using terms that corresponds to a type of study (e.g. memory, or stroop)
- Calculate change in connectivity and diversity measures
- Do FPN findings only hold for cognitive control tasks?