Homework 1

Sam Kuhn

11/20/22

Table of contents

Homework 1: Baseball Analysis	2
Data Exploration:	2
Load data	2
Check for missing values	2
Summary statistics	5
Summary plots	6
Correlation Plot	10
Data Preparation	12
Build Models	12
Select Models	12
Appendix: R code	13
Summary statistics	13
Plots	13

Homework 1: Baseball Analysis

In this homework assignment, you will explore, analyze and model a data set containing approximately 2200 records. Each record represents a professional baseball team from the years 1871 to 2006 inclusive. Each record has the performance of the team for the given year, with all of the statistics adjusted to match the performance of a 162 game season.

Your objective is to build a multiple linear regression model on the training data to predict the number of wins for the team. You can only use the variables given to you (or variables that you derive from the variables provided). Below is a short description of the variables of interest in the data set

Data Exploration:

Load data

```
# library(tidyverse)
# library(here)
# library(tidymodels)
# library(corrplot)
# library(MASS)
# library(gt)

#Install pacman package and load libraries
# install.packages("pacman")
pacman::p_load(tidyverse, here, tidymodels, corrplot, MASS, gt)

#Makes sure dplyr::filter and dplyr::select will be used
conflicted::conflict_prefer("select", "dplyr")
conflicted::conflict_prefer("filter", "dplyr")

#Load training set from data folder and clean variable names
training_set <- readr::read_csv(here::here("data", "moneyball-training-data (1).csv")) |>
    janitor::clean_names()
```

Check for missing values

To check for NA values, we are going to take the sum of every value matching NA across the entire data-frame and print the results. Then, replace all the NA values with the median value of the corresponding variable. The variables with the most NA observations are: team_batting_hbp, team_baserun_cs, and team_fielding_dp.

```
#Sum NAs across columns
  training_set |>
    summarise(across(everything(), ~ sum(is.na(.)))) |>
    glimpse()
Rows: 1
Columns: 17
$ index
                  <int> 0
$ target_wins
                   <int> 0
$ team_batting_h <int> 0
$ team_batting_2b <int> 0
$ team_batting_3b <int> 0
$ team_batting_hr <int> 0
$ team_batting_bb <int> 0
$ team_batting_so <int> 102
$ team_baserun_sb <int> 131
$ team_baserun_cs <int> 772
$ team_batting_hbp <int> 2085
$ team_pitching_h <int> 0
$ team_pitching_hr <int> 0
$ team_pitching_bb <int> 0
$ team_pitching_so <int> 102
$ team_fielding_e <int> 0
$ team_fielding_dp <int> 286
```

```
#Replace missing values (NAs) with median values
training_set <- training_set |>
  mutate(across(everything(), ~tidyr::replace_na(., median(., na.rm = TRUE)))) |>
  glimpse()
```

Just as a check, we will print out the data frame again to ensure no NA values remain.

```
#Verify results
  #Sum NAs across columns
  training_set |>
    summarise(across(everything(), ~ sum(is.na(.)))) |>
    glimpse()
Rows: 1
Columns: 17
$ index
                  <int> 0
$ target_wins
                  <int> 0
$ team_batting_h <int> 0
$ team_batting_2b <int> 0
$ team_batting_3b <int> 0
$ team_batting_hr <int> 0
$ team_batting_bb <int> 0
$ team_batting_so <int> 0
$ team_baserun_sb <int> 0
$ team_baserun_cs <int> 0
$ team_batting_hbp <int> 0
$ team_pitching_h <int> 0
$ team_pitching_hr <int> 0
$ team_pitching_bb <int> 0
$ team_pitching_so <int> 0
```

\$ team_fielding_e <int> 0
\$ team_fielding_dp <int> 0

Summary statistics

Now that we do not have any missing values, we can perform some summary statistics to get a better sense of the data. Some key variables are interest are the regressand target_wins, where we can see the median value is slightly higher than the mean, suggesting that there is a possible left-tail distribution. Other key variables include: team_batting_h which can help predict total runs, and team_batting_hr which are homeruns.

Table 1: Summary Statistics

Variable	Median	Mean	Standard Deviation
target_wins:	82	80.79	15.75215
$team_batting_h$	1454	1469.27	144.5912
$team_batting_2b$	238	241.2469	46.80141
$team_batting_3b$	47	55.25	27.93856
$team_batting_hr$	102	99.61204	60.54687
$team_batting_bb$	512	501.5589	122.6709
$team_batting_so$	750	736.2504	242.9094
$team_batting_sb$	101	123.3941	85.40565
$team_baserun_cs$	49	51.51362	18.74587
$team_batting_hbp$	58	58.1138	3.766219
$team_pitching_h$	1518	1779.21	1406.843
$team_pitching_hr$	107	105.6986	61.29875
$team_pitching_bb$	536.5	553.0079	166.3574
$team_pitching_so$	813.5	817.5409	540.5447
$team_pitching_e$	159	246.4807	227.771
$team_fielding_dp$	149	146.7162	24.53781

Summary plots

Let's look at some plots to visually inspect the data:

This first plot is *base hits by batters vs. number of wins*. We can see that most of the observations are centered around 1500 hits, and ~80 wins, with a positive linear relationship.

Let's look at the relationship between *home runs and wins* as well. From this plot, it almost has a normal distribution, where the mean is centered around 80 wins, and with a slightly longer left-tail.

Lastly, let's look at a variable that has a negative impact on wins - *strikeouts by batters*. This plot looks fairly similar to the plot above, however its shows a pattern that teams win more than 100 games generally don't give up more than 1,000 strikeouts a season.

Correlation Plot

Now that we have a good idea about the distribution of our key variables, let's check the statistical correlation between all the variables and target_wins, to understand how each variable is impact it.

Correlation between variables and Target Wins Pearson correlation

Target Wins	Variable	Correlation
1	team_batting_h	0.38876752
1	$team_batting_2b$	0.28910365
1	$team_batting_bb$	0.23255986
1	$team_pitching_hr$	0.18901373
1	$team_batting_hr$	0.17615320
1	$team_batting_3b$	0.14260841
1	$team_pitching_bb$	0.12417454
1	$team_baserun_sb$	0.12361087
1	$team_batting_hbp$	0.01651641
1	$team_baserun_cs$	0.01595982
1	index	-0.02105643
1	$team_fielding_dp$	-0.03008630
1	$team_batting_so$	-0.03058135
1	team pitching so	-0.07579967

1 team_pitching_h -0.10993705 1 team_fielding_e -0.17648476 Data Preparation
Build Models
Select Models

Appendix: R code

Summary statistics

```
##Median
training_set |>
    dplyr::select(-index) |>
    summarise(across(everything(), ~ median(.))) |>
    glimpse()

##Mean
training_set |>
    dplyr::select(-index) |>
    summarise(across(everything(), ~ mean(.))) |>
    glimpse()

##Standard Deviation
training_set |>
    dplyr::select(-index) |>
    summarise(across(everything(), ~ sd(.))) |>
    glimpse()
```

Plots

```
#Create named character vector of variables
vars <- training_set |>
 #select(-index) |>
 names() |>
 set_names()
#Use map function to create a sequence of plots
plots <- map(vars, ~ggplot(data = training_set) +</pre>
              geom_point(aes(x = target_wins, y = .data[[.x]]) ) +
              theme_minimal() +
              labs(y = .x)
)
#Correlation matrix
cor_matrix <- training_set |>
 dplyr::select(-index) |>
 cor() |>
 as.matrix()
corrplot(cor_matrix)
```

```
#Get correlation values as a table, sorted highest to lowest
purrr::map_df(vars, ~cor(training_set$target_wins, training_set[[.x]])) |>
  pivot_longer(cols = !c("target_wins"), names_to = "correlation") |>
  arrange(desc(value)) |>
  gt::gt()
```