

Setting up your goal

Single number evaluation metric

Using a single number evaluation metric

Andrew Ng

Another example

	2	V	V	V	\int
Algorithm	US	China	India	Other	Average
A	3%	7%	5%	9%	Average 6%
В	5%	6%	5%	10%	6.5%
C	2%	3%	4%	5%	3,5%
D	5%	8%	7%	2%	5.21%
E	4%	5%	2%	4%	1.75%
\mathbf{F}	7%	11%	8%	12%	9.5%

Single number evaluation metric

To choose a classifier, a well-defined development set and an evaluation metric speed up the iteration process.

Example : Cat vs Non- cat y = 1, cat image detected

S		Actual class y			
class		1	0		
redict	1	True positive	False positive		
Prec	0	False negative	True negative		

Precision

Of all the images we predicted y=1, what fraction of it have cats?

Precision (%) =
$$\frac{True\ positive}{Number\ of\ predicted\ positive} x\ 100 = \frac{True\ positive}{(True\ positive + False\ positive)} x\ 100$$

Recall

Of all the images that actually have cats, what fraction of it did we correctly identifying have cats?

Recall (%) =
$$\frac{True\ positive}{Number\ of\ predicted\ actually\ positive} x\ 100 = \frac{True\ positive}{(True\ positive + True\ negative)} \ x\ 100$$

Let's compare 2 classifiers A and B used to evaluate if there are cat images:

Classifier	Precision (p)	Recall (r)	
Α	95%	90%	
В	98%	85%	

In this case the evaluation metrics are precision and recall.

For classifier A, there is a 95% chance that there is a cat in the image and a 90% chance that it has correctly detected a cat. Whereas for classifier B there is a 98% chance that there is a cat in the image and a 85% chance that it has correctly detected a cat.

The problem with using precision/recall as the evaluation metric is that you are not sure which one is better since in this case, both of them have a good precision et recall. F1-score, a harmonic mean, combine both precision and recall.

F1-Score=
$$\frac{2}{\frac{1}{n} + \frac{1}{r}}$$

Classifier	Precision (p)	Recall (r)	F1-Score
Α	95%	90%	92.4 %
В	98%	85%	91.0%

Classifier A is a better choice. F1-Score is not the only evaluation metric that can be use, the average, for example, could also be an indicator of which classifier to use.