Network Security

Outline

- 1. Networking Fundamentals Quick Review
- Network Security Treats
- 3. Network Security Controls

Networking Fundamentals Quick Review

Computer networks

- Support communication among computers
 - Hosts (computers), routers, network links, protocols
- Each machine has multiple addresses
 - MAC address, IP address
- Each message from the sender to receiver may stop at many intermediate hops till it reaches its destination (routing)

Terminology

- Packet
 - A chunk of data (usually < 1500 bytes) sent across a network
- Media Access Control (MAC) address
 - 48-bit number uniquely identifying a networked device
 - Assigned when the device is built and never changes
 - Only used on the local network
- IP address
 - A unique, 32-bit number identifying a computer on the network
- Port
 - 16-bit number identifying which application on a computer a packet is meant for
 - Some ports are assigned to specific protocols
 - 80 is http, 443 is https, 22 is SSH, etc.
- Protocols control sending, receiving of messages + define data format
 - e.g., TCP, IP, HTTP, 802.11

Internet protocol stack

- Formally there are 7-layers (OSI model) but can be simplified to 5 main layers
- Each layer has a specific function and faces unique security threats
- Each layer wraps the data using headers and footers

Application (HTTP, FTP, SSH)

• Interface for applications to communicate over a network

Define an application level protocol such as HTTP

Transport (TCP, UDP)

- Process data transfer between two hosts
- Adds a header to tell where the packet goes on a computer (includes source and destination port)

Network (IP)

Routing of datagrams from source to destination

 Adds a header to tell the packet where to go on a larger network (includes source and destination IP)

Data Link

(Ethernet, 802.11n)

- Data transfer between neighboring network elements
- Adds a header to tell the packet where to go on the local network (includes source and destination MAC address)

Physical

Bits "on the wire"

Summing Up

- There are 5 main networking layers
 - Application
 - Transport
 - Network
 - Link
 - Physical

 Each layer has a specific function and faces security unique threats

Network Threats

Network Security

Network Security has two sides:

- Protecting the network from attack:
 - The network as the target of an attack
- Protecting devices connected to the network from being attacked
 - The network as the channel of attack
- Attacks could be:
 - Outbound
 - Inbound attacks (insider attack)

Key Network Attacks

Masquerading attacks e.g., fake (spoof) source address in packet

Man-in-the-middle attacks (Insert/update messages into connection)

Hijacking: "take over" ongoing connection (removing sender or receiver, inserting himself in place)

Eavesdropping example

screen dump of capture window after an FTP connection

o. 🗸	Time	Source	Destination	Protocol	Into
1	0.0000000	192.168.1.46	192.168.1.1	DNS	Standard query A ftp.debian.org
2	0.156872	192.168.1.1	192.168.1.46	DNS	Standard query response A 128.101.240.212
- 6	0.203708	192.168.1.46	128.101.240.212	TCP (58408 > ftp [SYN] Seq=0 Ack=0 Win=65535 Len=0 MSS=1
4	0.311009	128.101.240.212	192.168.1.46	TCP	ftp > 58408 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0 M
5	0.311128	192.168.1.46	128.101.240.212	TOP (58408 > ftp [ACK] Seq=1 Ack=1 Win=65535 Len=0 TSV=79
6	0.427572	128.101.240.212	192.168.1.46	TP	Response: 220 saens.debian.org FTP server (vsftpd)
7	0.457218	192.168.1.46	128.101.240.212	TCP	58408 > ftp [ACK] Seq=1 Ack=43 Win=65535 Len=0 TSV=
8	3.908879	192.168.1.46	128.101.240.212	FTP (Request: USER anonymous
9	3.995051	128.101.240.212	192.168.1.46	TCP	ftp > 58408 [ACK] Seq 43 Ack=17 Win=6144 Len=0 TSV=
10	3.995621	128.101.240.212	192.168.1.46	FTP	Response: 331 Please specify the password.
11	4.058261	192.168.1.46	128.101.240 212	TCP	58408 > ftp [ACK] Seq=17 Ack=77 Win=65535 Len=0 TSV
12	8.388059	192.168.1.46	128.101.240.212	FTP (Request PASS ak@ak.org
13	8.473188	128.101.240.212	192.168.1.46	FTP	Response: 230-
14	8.473824	128.101.240.212	192 68.1.46	FTP	Response: 230-This site is just another one in a worldwid
15	8.659296	192.168.1.46	128.101.240.212	TCP	58408 > ftp [ACK] Seq=33 Ack=158 Win=65535 Len=0 TS\
16	8.751453	128.101.240.212	192.168.1.46	FTP	Response: 230-It is not the "primary Debian FTP site" - it
17	8.758911	192.168.1.46	128.101.240.212	FTP	Request: SYST
	the t	hree-way ha	ndshake		Observe the passw and username

Main Treats Per Layer

- Threats at the Application Layer
 - Viruses, Spam, Malware, Ransomware
- Threats at the Network Layer
 - Ping of death
 - Traceroute misuse
- Threats at the Transport Layer
 - Denial of service
 - Port scanning
- Threats at the Data Link Layer
 - MAC Spoofing
 - ARP (Address Resolution Protocol) Poisoning
 - Man-in the-Middle (MITM) attacks

Wireless Communication Threats

Interference (jamming)

Flooding

Integrity

Authentication

Host Threats

- Remote unauthorized access
- Viruses
- Botnets
 - Robotically Controlled Networks
 - Command and Control
- Zombies
 - Can be used for DDoS

Attacks of Key Servers

- DNS Attacks
 - More details will be added
- Web Server Attacks
 - More details will be added

Countermeasures

Security goals of computer networks

- Counter various attacks
 - Confidentiality, Integrity, Availability
- Network security at different layers
 - Security measures at different layers
 - Many approaches rely heavily on crypto
 - See examples of what to do and what not to do...
 - It is not easy...

Controls

- Firewall
- IDS & IPS
- VPN
- Encryption (TLS)
- DDoS mitigation solutions
- Better administration
 - Backups
 - Change control
 - Patching

The Best Control Against Attacks

Education

Social Engineering awareness

Knowledge of secure practices

Secure Network Communication

- Several means can be used to create secure connections
- Secure implementations require the use of valid protocols implemented correctly
- Secure implementations can provide trusted connections through less trusted environments

TLS

 Transport Layer Security is essential for ecommerce and trusted communications

1) Client Hello

2) Server Hello with Certificate

- 3) Client verifies certificate expiry, CRL, URL, CA signature
 - 4) Client chooses a symmetric key
 - 5)Client encrypts symmetric key with the bank's public key
 - 6) Client transmits to bank
- 7) Bank opens encrypted message with bank's private key
 - 8) Bank extracts session (symmetric) key
 - 9) Bank and Client use Session key to encrypt data

SSL vs IPSec

- SSL (and IEEE standard known as TLS)
 - Lives at socket layer (part of the app layer)
 - SSL: Apps must be aware, but not OS
 - Encryption, integrity, authentication, etc.
 - Relatively simple and elegant specification

IPSec

- Lives at the network layer (part of the OS)
- IPSec often used in VPNs (secure tunnel)
- Encryption, integrity, authentication, etc.
- Is overly complex, has some security "issues", hence not widely used

IPSec and SSL

- IPSec lives at the network layer
- IPSec is transparent to applications

Virtual Private Network (VPN)

- VPN extends a private network through (across) a public network
- Created by virtual point-to-point connection
- SSL/TLS
- IPSec: DataLink Layer Secure Communication

Key Points

- Attacker may:
 - Attack the network
 - Attack the devices connected to the network

- Networks must be protected at every layer
 - Do not expect a network layer control to effectively mitigate an application layer attack