Aeronautics Formula Sheet

compiled by Lucas Alava Peña

AIRCRAFT GEOMETRY

Wing taper ratio
$$\lambda = \frac{c_t}{c_r}$$

Standard mean chord (SMC)
$$\bar{c} = \frac{S}{b}$$

Aspect ratio (AR)
$$AR = \frac{b}{\bar{c}} = \frac{b^2}{S}$$

Aspect ratio (AR)
$$AR = \frac{b}{\bar{c}} = \frac{b^2}{S}$$
 Mean aerodynamic chord (MAC)
$$\bar{\bar{c}} = \frac{1}{S} \int_{-\frac{b}{2}}^{\frac{b}{2}} c^2(y) dy$$

2 LIFT & AIRFOILS

Lift
$$L = \frac{1}{2} \rho_{\infty} V_{\infty}^{\ 2} S C_L$$

Reynolds number (Re)
$$Re = \frac{\rho V_{\infty} q}{r}$$

Reynolds number (Re)
$$Re = \frac{\rho V_{\infty} c}{\mu}$$
 Coefficient of Lift
$$C_L = \frac{L}{\frac{1}{2}\rho_{\infty}V_{\infty}{}^2S}$$

Coefficient of Drag
$$C_D = \frac{D}{\frac{1}{2}\rho_\infty {V_\infty}^2 S}$$

Pitching Moment Coefficient
$$C_M = \frac{M}{\frac{1}{2}\rho_{\infty}V_{\infty}^2Sc}$$

Coefficient of Lift
$$C_L = a(\alpha - a_0)$$

3 DRAG

Coefficient of Drag (3D)
$$C_D = C_{D_0} + KC_L^2$$

Coefficient of induced Drag (3D)
$$C_{Di} = \frac{C_L^2}{\pi e AR}$$

Coefficient of induced Drag (3D)
$$C_{Di} = \frac{C_L^2}{\pi eAR}$$

Coefficient of Drag (3D) $C_D = C_{D_0} + \frac{C_L^2}{\pi eAR}$

4 WAVE DRAG & PITCHING MOMENT

$$C_{M_ac} = C_{M_0}$$

aerodynamic center
$$\frac{x_{ac}}{c} = 0.25$$

5 STANDARD ATMOSPHERE

Equation of state
$$p = \rho RT$$

Temperature
$$T = 288.15 - 6.5H$$

Density Ratio in relation to sea level
$$\sigma = \frac{20-H}{20+H}$$

Speed of sound
$$a = \sqrt{\gamma RT}$$

6 AIRCRAFT PERFORMANCE IN STRAIGHT & LEVEL FLIGHT

Equivalent air speed
$$V_E = V \sqrt{\frac{\rho}{\rho_0}} = V \sqrt{\sigma}$$

Pitot-static tube
$$p_{pitot} - p_{static} = \frac{1}{2} \rho V^2$$

Minimum Drag
$$C_{D_min} = 2C_{D0} = 2KC_L^2$$

Minimum Drag Velocity
$$V_{MD} = \left(\frac{2W}{aS}\right)^{\frac{1}{2}} \left(\frac{K}{C_{P0}}\right)^{\frac{1}{4}}$$

VARIATION OF POWER WITH SPEED & ALTITUDE

Power
$$P = TV = DV$$

Minimum Power Coefficient of Drag
$$C_{D_{MP}} = C_{D0} + 3C_{D0} = 4C_{D0}$$

Minimum Power Coefficient of Lift
$$C_{L_{MP}} = \sqrt{3C_{D0}/K}$$

Minimum Power Velocity
$$V_{MD} = \Big(\frac{2W}{\rho S}\Big)^{\frac{1}{2}} \Big(\frac{K}{3C_{D0}}\Big)^{\frac{1}{4}}$$

8 CLIMB & GLIDE

Gliding Lift
$$L = W \cos \theta$$

Gliding Drag
$$D = W \sin \theta$$

Climbing Lift
$$L = W \cos \theta$$

Climbing
$$T - D = W \sin \theta$$

9 CRUISE

Thrust
$$T = kT_0\sigma^x$$
 $x = 1$ for all altitudes except for $H > 11km$

10 RANGE & ENDURANCE JET

Endurance
$$E = \frac{1}{fq} \frac{C_L}{C_D} \ln \left(\frac{W_1}{W_2} \right)$$

Range
$$R = \frac{V}{fg} \frac{C_L}{C_D} \ln \left(\frac{W_1}{W_2} \right)$$

11 RANGE & ENDURANCE PROPELLER DRIVEN AC

Endurance
$$E_{prop} = \frac{\eta}{fa} \frac{1}{V} \frac{C_L}{C_D} \ln \left(\frac{W_1}{W_2} \right)$$

Range
$$R_{prop} = \frac{\eta}{f_{q}} \frac{C_{L}}{C_{D}} \ln \left(\frac{W_{1}}{W_{2}} \right)$$

12 PAYLOAD - RANGE

Initial Weight $W_{intial} = W_{final} + Trip fuel weight$

 $W_{final} = OEW + Payload + Reverse Fuel$ Final Weight

 $R = \frac{a}{fg} \left(M \frac{L}{D} \right) \ln \left(\frac{W_{intial}}{W_{final}} \right)$ Range

13 MANOEUVRING FLIGHT

Load Factor

 $n = \frac{L}{W}$ $V* = \sqrt{\frac{2n_{max}W}{\rho SC_{L\ max}}}$ $n = \frac{\rho a_1 v}{2W/S}V + 1$ Corner Velocity

Load Factor (wind gusts)

14 BANKED TURNS

 $\begin{array}{ll} \text{Angle} & \cos\phi = \frac{1}{n} \\ \text{Turn Radius} & R = \frac{V^2}{g\sqrt{n^2-1}} \\ \text{Turn Rate} & \omega_t = \frac{g\sqrt{n^2-1}}{V} \end{array}$

15 MAGIC TABLE

C_L/C_D relation	Maximized when	C_L	C_D	Relates to
$C_L^{\frac{3}{2}}/C_D$	$C_{D0} = \frac{1}{3}C_L^2$	$\sqrt{\frac{3C_{D0}}{K}}$	$4C_{D0}$	Min Power, Min Sink Rate, Max Prop Endurance
C_L/C_D	$C_{D0} = KC_L^2$	$\sqrt{\frac{C_{D0}}{K}}$	$2C_{D0}$	Min drag, Min glide angle Max prop range, Max jet endurance
$C_L^{\frac{1}{2}}/C_D$	$C_{D0} = 3KC_L^2$	$\sqrt{\frac{C_{D0}}{3K}}$	$\frac{4}{3}C_{D0}$	Max Jet Range