AI504: Programming for Artificial Intelligence

Week 13: Graph Neural Networks

Edward Choi
Grad School of AI
edwardchoi@kaist.ac.kr

Index

- Graphs
- Graph Convolution
 - Relation with ConvNets
- Graph Neural Networks & Transformer
 - Self-attention VS graph convolution

Graphs

Graph

- Data consists of
 - Nodes (i.e. Vertices) V
 - Edges (i.e. reltaions) E

Graph

- Data consists of
 - Nodes (i.e. Vertices) V
 - Could have node-specific features
 - Edges (i.e. reltaions) E
 - Could be undirected or directed
 - There could be multiple relation types

Graph

- Data consists of
 - Nodes (i.e. Vertices) V
 - Edges (i.e. reltaions) E
- Many datasets are graphs
 - Facebook friends
 - Web documents
 - Road networks
 - Chemical compounds
 - Knowledge bases

Graph Data Examples

- Friends Network
 - Nodes are unspecific
 - Undirected edges
- Social Network Analysis
 - Hot topic since SNS
 - Can find influencers
 - Can recommend friends

Graph Data Example

- Web documents
- PageRank
 - Made Google Search possible
 - Unspecific node
 - Each webpage is just a node
 - Directed edges
 - Outgoing links are edges
 - Calculated based on random walk.
 - The more incoming links,
 the more valuable a webpage is!

Graph Data Example

- Chemical structures
- Unspecific duplicate nodes
 - Same C (carbon) is used multiple times
- Undirected multi-type edges
 - Single bond, double bond
- Hot topic these days
 - Drug development
 - Toxicity prediction

Graph Data Example

- Knowledge Base
- Multiple node types
 - Entity, value
- Directed, multi-type edges
 - is_a, parent_of, located_at
- Structured knowledge
 - Popular topic
 - Knowledge grounded reasoning

Generally Speaking...

- Everything is a graph
- Sequences are a special case of graphs (i.e. directed chains)

Generally Speaking...

- Everything is a graph
- Images are a special case of a graph (i.e. undirected grids)

Graph Convolution

Graph Representation

- How can we represent graphs?
- Images can be represented by ConvNets
 - 128x128 RGB image → ResNet → 2048-dimensional feature vector
- Text can be represented by RNN / BERT
 - 20 token text → RNN/BERT → 20 contextualized embedding
- Graph?
 - Graph → ? → ?

Graph Representation

- How can we represent graphs?
- Images can be represented by ConvNets
 - 128x128 RGB image → ResNet → 2048-dimensional feature vector
- Text can be represented by RNN / BERT
 - 20 token text → RNN/BERT → 20 contextualized embedding
- Graph?
 - Graph with |V| nodes and |E| edges → ? → ?

Graph Representation

- How can we represent graphs?
- Images can be represented by ConvNets
 - 128x128 RGB image → ResNet → 2048-dimensional feature vector
- Text can be represented by RNN / BERT
 - 20 token text → RNN/BERT → 20 contextualized embedding
- Graph?
 - |V| nodes and |E| edges → ? → |V| embeddings (and |E| embeddings)

Why not ConvNet?

- Convolution filters assume same number of neighbors
 - General graphs assume no such thing...

Why not ConvNet?

- Convolution filters assume same number of neighbors
 - General graphs assume no such thing...
- But we can use the core principle of ConvNet filters
 - Aggregate features from the local neighbors

Graph Convolution Principle

Given a graph G = (V, E),

- At each node v_i , aggregate all neighbors' features
 - $\mathbf{a}_i = \sum_{v_j \in \mathcal{A}_i} f(v_j)$, where \mathcal{A}_i : Set of nodes connected to v_i
- Combine v_i 's feature with neightbors' features
 - $\mathbf{h}_i = g(f(v_i), \mathbf{a}_i)$
- $h_i \rightarrow$ Representation of node v_i

A: Adjacency matrix

0	1	1	0	0	0
1	0	0	1	1	0
1	0	0	1	0	1
0	1	1	0	0	0
0	1	0	0	0	0
0	0	1	0	0	0

• A: Adjacency matrix

• X: Node index

W: Node embedding vector

0	1	1	0	0	0
1	0	0	1	1	0
1	0	0	1	0	1
0	1	1	0	0	0
0	1	0	0	0	0
0	0	1	0	0	0

f(v ₁)
f(v ₂)
$f(v_3)$
f(v ₄)
f(v ₅)
f(v ₆)

Δ

XW

AXW

0	1	1	0	0	0
1	0	0	1	1	0
1	0	0	1	0	1
0	1	1	0	0	0
0	1	0	0	0	0
0	0	1	0	0	0

$$\begin{array}{c}
f(v_2) \\
\hline
f(v_3) \\
\hline
f(v_4) \\
\hline
f(v_5) \\
\hline
f(v_6)
\end{array}$$

 $f(v_1)$

$f(v_2) + f(v_3)$
$f(v_1) + f(v_4) + f(v_5)$
$f(v_1) + f(v_4) + f(v_6)$
$f(v_2) + f(v_3)$
f(v ₂)
f(v ₃)

Α

XW

AXW

AXW → Is this the node representations H?

0	1	1	0	0	0
1	0	0	1	1	0
1	0	0	1	0	1
0	1	1	0	0	0
0	1	0	0	0	0
0	0	1	0	0	0

A

$f(v_2) + f(v_3)$
$f(v_1) + f(v_4) + f(v_5)$
$f(v_1) + f(v_4) + f(v_6)$
$f(v_2) + f(v_3)$
f(v ₂)
f(v ₃)

XW

AXW

- No, AXW is just neighbor aggregation.
- We need the combination step!

0	1	1	0	0	0
1	0	0	1	1	0
1	0	0	1	0	1
0	1	1	0	0	0
0	1	0	0	0	0
0	0	1	0	0	0

f(v ₂)	
f(v ₃)	
f(v ₄)	
f(v ₅)	
f(v ₆)	

$f(v_2) + f(v_3)$
$f(v_1) + f(v_4) + f(v_5)$
$f(v_1) + f(v_4) + f(v_6)$
$f(v_2) + f(v_3)$
f(v ₂)
f(v ₃)

XW

AXW

- New A' = A + I
 - I: Identity matrix

1	1	1	0	0	0
1	1	0	1	1	0
1	0	1	1	0	1
0	1	1	1	0	0
0	1	0	0	1	0
0	0	1	0	0	1

$$A' = A + I$$

$$f(v_1) + f(v_2) + f(v_3)$$

$$f(v_1) + f(v_2) + f(v_4) + f(v_5)$$

$$f(v_1) + f(v_3) + f(v_4) + f(v_6)$$

$$f(v_2) + f(v_3) + f(v_4)$$

$$f(v_2) + f(v_5)$$

$$f(v_3) + f(v_6)$$

A'XW

2 3 4 5 6

- A'XW performs neighbor aggregation and combination
 - Combination function *g* is just simple summation.
- A'XW can be node representations H!

1	1	1	0	0	0
1	1	0	1	1	0
1	0	1	1	0	1
0	1	1	1	0	0
0	1	0	0	1	0
0	0	1	0	0	1

$$A' = A + I$$

$$h_1 = f(v_1) + f(v_2) + f(v_3)$$

$$h_2 = f(v_1) + f(v_2) + f(v_4) + f(v_5)$$

$$h_3 = f(v_1) + f(v_3) + f(v_4) + f(v_6)$$

$$h_4 = f(v_2) + f(v_3) + f(v_4)$$

$$h_5 = f(v_2) + f(v_5)$$

$$h_6 = f(v_3) + f(v_6)$$

A'XW

2 3 6

- But there is another problem:
- Scales of node features differ by the number of neighbors!
 - h₂ can be twice as large as h₅!

1	1	1	0	0	0
1	1	0	1	1	0
1	0	1	1	0	1
0	1	1	1	0	0
0	1	0	0	1	0
0	0	1	0	0	1

$$A' = A + I$$

$$h_{1} = f(v_{1}) + f(v_{2}) + f(v_{3})$$

$$h_{2} = f(v_{1}) + f(v_{2}) + f(v_{4}) + f(v_{5})$$

$$h_{3} = f(v_{1}) + f(v_{3}) + f(v_{4}) + f(v_{6})$$

$$h_{4} = f(v_{2}) + f(v_{3}) + f(v_{4})$$

$$h_{5} = f(v_{2}) + f(v_{5})$$

$$h_{6} = f(v_{3}) + f(v_{6})$$

$$A'XW$$

- D: Degree matrix
 - Diagonal matrix where $d_{i,l}$ = number of edges
- D⁻¹A': Normalized adjacency matrix

.33	.33	.33	0	0	0
.25	.25	0	.25	.25	0
.25	0	.25	.25	0	.25
0	.33	.33	.33	0	0
0	.5	0	0	.5	0
0	0	.5	0	0	.5

D-1A'

XW
f(v ₆)
f(v ₅)
f(v ₄)
f(v ₃)
f(v ₂)
T(V ₁)

$h_1 = 0.33 * (f(v_1) + f(v_2) +)$
$h_2 = 0.25 * (f(v_1) + f(v_2) +)$
$h_3 = 0.25 * (f(v_1) + f(v_3) +)$
$h_4 = 0.33 * (f(v_2) + f(v_3) +)$
$h_5 = 0.5 * (f(v_2) + f(v_5))$
$h_6 = 0.5 * (f(v_3) + f(v_6))$
D-1Δ'XW

- One more thing:
 - D⁻¹A'XW → All linear operations
- Need non-linearity

	.33	.33	.33	0	0	0
	.25	.25	0	.25	.25	0
σ	.25	0	.25	.25	0	.25
	0	.33	.33	.33	0	0
	0	.5	0	0	.5	0
	0	0	.5	0	0	.5
			D-1	A'		

	XW
	f(v ₆)
	f(v ₅)
	f(v ₄)
,	f(v ₃)
	f(v ₂)
	$f(v_1)$

$$) = \sigma$$

$h_1 = 0.33 * (f(v_1) + f(v_2) +)$	
$h_2 = 0.25 * (f(v_1) + f(v_2) +)$	
$h_3 = 0.25 * (f(v_1) + f(v_3) +)$	
$h_4 = 0.33 * (f(v_2) + f(v_3) +)$	
$h_5 = 0.5 * (f(v_2) + f(v_5))$	
$h_6 = 0.5 * (f(v_3) + f(v_6))$	

D-1A'XW

- $\bullet H = \sigma(D^{-1}A'XW)$
 - A' = A + I
 - D = Degree matrix
 - σ = Non-linear activation
 - W = Learnable parameters

- $\bullet \ H^{(1)} = \sigma(D^{-1}A'XW)$
- This is aggregating neighbors just 1-hop away

- $\bullet \ H^{(1)} = \sigma(D^{-1}A'XW)$
- This is aggregating neighbors just 1-hop away
- How do we aggregate neighbors 2-hops away?

How do we aggregate neighbors 2-hops away?

$$\rightarrow H^{(2)} = \sigma \left(D^{-1} A' H^{(1)} W^{(2)} \right)$$

How do we aggregate neighbors k-hops away?

$$\rightarrow H^{(k)} = \sigma(D^{-1}A'H^{(k-1)}W^{(k)})$$

Graph Convolution Variations

- Different normalization
 - $H^{(k)} = \sigma(D^{-1/2}A'D^{-1/2}H^{(k-1)}W^{(k)})$
 - Motivated by spectral graph convolution
 - Whole theory regarding graph laplacian...
- Different Combination step
 - Instead of summation $g(f(v_i), \mathbf{a}_i) = f(v_i) + \mathbf{a}_i$,
 - Use linear layer $g(f(v_i), \mathbf{a}_i) = W \cdot [f(v_i); \mathbf{a}_i]$
- Nodes become RNNs
 - More sophisticated way to accumulate N-hop information
- Many more variations → Called Graph Neural Networks (GNN)

GNN & Transformer

Attention is All You Need

- Vaswani et al. 2017
- Let's use only attentions to handle sequences.

Self-Attention

• Attention($\mathbf{Q}, \mathbf{K}, \mathbf{V}$) = Softmax $\left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d}}\right)\mathbf{V}$

0.5	0.1	0.0	0.2	0.2	0.0
0.2	0.6	0.0	0.0	0.1	0.0

 $Softmax\left(\frac{QK^{T}}{\sqrt{d}}\right)$

V

Attention(Q, K, V)

Graph Convolution

•
$$H^{(k)} = \sigma(D^{-1}A'H^{(k-1)}W^{(k)})$$

.33	.33	.33	0	0	0
.25	.25	0	.25	.25	0
.25	0	.25	.25	0	.25
0	.33	.33	.33	0	0
0	.5	0	0	.5	0
0	0	.5	0	0	.5

 $D^{-1}A'$

$$f(v_2)$$

$$f(v_3)$$

$$f(v_4)$$

$$f(v_5)$$

$$f(v_6)$$

XW

 $f(v_1)$

$$h_1 = 0.33 * (f(v_1) + f(v_2) + ...)$$

$$h_2 = 0.25 * (f(v_1) + f(v_2) + ...)$$

$$h_3 = 0.25 * (f(v_1) + f(v_3) + ...)$$

$$h_4 = 0.33 * (f(v_2) + f(v_3) + ...)$$

$$h_5 = 0.5 * (f(v_2) + f(v_5))$$

$$h_6 = 0.5 * (f(v_3) + f(v_6))$$

D⁻¹A'XW

Self-Attention VS Graph Convolution

- Self-attention
 - Don't know graph structure
 - Assum (implicitly) fully-connected graph
 - Learn edge weights during training
 - Learn node embeddings in a data-driven fashion
- Graph convolution
 - Prior knowledge on graph structure
 - Learn node embeddings based on the fixed adjacency matrix

Transformer & Graph Networks

Graph Networks

•
$$\mathbf{C}^{(j)} = \mathbf{MLP}^{(j)}(\tilde{\mathbf{D}}^{-1}\tilde{\mathbf{A}}\mathbf{C}^{(j-1)}\mathbf{W}^{(j)})$$

Transformer

•
$$\mathbf{C}^{(j)} = \text{MLP}^{(j)}(\text{softmax}(\frac{\mathbf{Q}^{(j)}\mathbf{K}^{(j)\top}}{\sqrt{d}})\mathbf{V}^{(j)})$$

 $\mathbf{Q}^{(j)} = \mathbf{C}^{(j-1)}\mathbf{W}_Q^{(j)}, \quad \mathbf{K}^{(j)} = \mathbf{C}^{(j-1)}\mathbf{W}_K^{(j)}, \quad \mathbf{V}^{(j)} = \mathbf{C}^{(j-1)}\mathbf{W}_V^{(j)}$

Transformer & Graph Networks

Graph Networks

•
$$\mathbf{C}^{(j)} = \mathbf{MLP}^{(j)} (\tilde{\mathbf{D}}^{-1} \tilde{\mathbf{A}} \mathbf{C}^{(j-1)} \mathbf{W}^{(j)})$$

Adjacency Matrix 😂 Self-Attention

Transformer

•
$$\mathbf{C}^{(j)} = \mathrm{MLP}^{(j)} (\mathrm{softmax}(\frac{\mathbf{Q}^{(j)} \mathbf{K}^{(j)\top}}{\sqrt{d}}) \mathbf{V}^{(j)})$$

 $\mathbf{Q}^{(j)} = \mathbf{C}^{(j-1)} \mathbf{W}_Q^{(j)}, \quad \mathbf{K}^{(j)} = \mathbf{C}^{(j-1)} \mathbf{W}_K^{(j)}, \quad \mathbf{V}^{(j)} = \mathbf{C}^{(j-1)} \mathbf{W}_V^{(j)}$

Transformer & Graph Networks

Graph Networks

•
$$\mathbf{C}^{(j)} = \mathrm{MLP}^{(j)}(\tilde{\mathbf{D}}^{-1}\tilde{\mathbf{A}}\mathbf{C}^{(j-1)}\mathbf{W}^{(j)})$$

Transformer

•
$$\mathbf{C}^{(j)} = \mathrm{MLP}^{(j)}(\mathrm{softmax}(\frac{\mathbf{Q}^{(j)}\mathbf{K}^{(j)\top}}{\sqrt{d}})\mathbf{V}^{(j)})$$

$$\mathbf{Q}^{(j)} = \mathbf{C}^{(j-1)}\mathbf{W}_Q^{(j)}, \quad \mathbf{K}^{(j)} = \mathbf{C}^{(j-1)}\mathbf{W}_K^{(j)}, \quad \mathbf{V}^{(j)} = \mathbf{C}^{(j-1)}\mathbf{W}_V^{(j)}$$

Transformer instead of GNN?

- Learn the edge weights with attention
 - Zero-out the probability of non-connected edges
 - Mask QK/sqrt(d) with negative infinity matrix
 - Graph Attention Network (https://arxiv.org/pdf/1710.10903.pdf)
- Learning the structure of graphs with attention
 - Use self-attention to learn the underlying graph structure
 - Start with a prior knowledge driven adjacency matrix, then gradually evolve with self-attention
 - Prior knowledge: conditional probability between pairs of nodes
 - Graph Convolutional Transformer (https://arxiv.org/pdf/1906.04716.pdf)

AI504: Programming for Artificial Intelligence

Week 13: Graph Neural Networks

Edward Choi
Grad School of AI
edwardchoi@kaist.ac.kr