МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Московский физико-технический институт (государственный университет)

Использование $YAG:Nd^{3+}$ -лазера для гравировки материалов

Лабораторная работа по курсу фотоника

Выполнили: студенты 654 и 653 групп.

Нехаев А.С.

Суманова Е.Д.

Тихонов С.С.

Хисматулина Е.А.

Карпова Т.К.

Содержание

1.	Цели и задачи исследования	2
2.	Схема установки	3
3.	Теоретичесое введение	3
4.	Результаты эксперимента	4
5 .	Гравировка изображения	7
6.	Вывол	7

1. Цели и задачи исследования

- 1) Изучить физические основы работы лазера в непрерывном режиме и режиме модуляции добротности;
- 2) Исследовать зависимость мощности излучения от мощности накачки в режимах свободной генерации и модуляции добротности, т.е. найти КПД лазера в разных режимах работы;
- 3) Исследовать зависимость ширины импульса от мощности накачки;
- 4) Выгравировать изображение на пластиковой поверхности.

2. Схема установки

Рис. 1: Принципиальная схема установки

Рис. 2: Схема оптической части

3. Теоретичесое введение

В основе гравировки лазером лежит его тепловое воздействие на материал. При этом может происходить нагревание, плавление и испарение материала. Распределение тепла по материалу описывается уравнением теплопроводности, соответственно, к веществам с малым коэффициентом теплопроводности (например, металлам) необходимо применять короткоимпульсные лазеры, чтобы не взаимодействовать только с той областью материала, на которую попадает излучение. Отверстие наилучшей формы образуется в случае, если фокус лазера находится на поверхности материала. В этом случае определяющим процессом является испарение (рост отверстия вглубь), а ролью плавления (роста отверстия в ширину) можно пренебречь.

Описывать работу лазера принято скоростными уравнениями:

$$\frac{dN}{dt} = R_p - B\phi N - \frac{N}{\tau}, \quad \frac{d\phi}{dt} = \left[BV_a N - \frac{1}{\tau_c}\right]\phi. \tag{1}$$

Первое уравнение описывает изменение инверсии населённости, которое происходит из-за накачки, вынужденного и спонтанного излучений соответственно. Второе уравнение описывает изменение числа фотонов в резонаторе, обусловленное спонтанным излучением и временем жизни фотона в резонаторе.

В случае режима свободной генерации оба этих параметра принимают стационарные значения. При модуляции добротности в лазере используется акустооптический модулятор, препятствующий генерации излучения путём увеличения потерь. Закрытый модулятор позволяет увеличивать рост инверсии заселённостей, а после открытия модулятора происходит генерация и резкое увеличесние числа фотонов в резонаторе. Таким образом, лазер может генерировать излучение в виде импульсов с большой пиковой мощностью, а из-за малой длительности импульса можно получить большую плотность мощности, что используется в обработке тугоплавких материалов.

4. Результаты эксперимента

Таблица 1: Результаты измерений для режима свободной генерации.

Ток, А	Напряжение, В	Мощность накачки, мВт	Входная мощность, Вт
14.6	167.	2.	2438.2
14.7	167.	11.	2454.9
14.8	167.	23.	2471.6
14.9	168.	38.	2503.2
15.	168.	54.	2520.
15.1	168.	72.	2536.8
15.2	169.	95.	2568.8
15.3	169.	116.	2585.7
15.4	169.	131.	2602.6
15.5	170.	152.	2635.
15.6	170.	170.	2652.
15.7	170.	194.	2669.
15.8	171.	218.	2701.8
15.9	171.	254.	2718.9
16.	171.	284.	2736.
16.1	172.	320.	2769.2
16.2	172.	354.	2786.4
16.3	172.	386.	2803.6
16.4	173.	425.	2837.2
16.5	173.	464.	2854.5
16.6	173.	490.	2871.8
16.7	174.	538.	2905.8
16.8	174.	599.	2923.2
16.9	175.	642.	2957.5
17.	175.	690.	2975.
17.1	176.	736.	3009.6
17.2	176.	790.	3027.2
17.3	176.	835.	3044.8
17.4	177.	884.	3079.8

Таблица 2: Результаты измерений для режима модуляции добротности.

Ток, А	Напряжение, В	Мощность накачки, мВт	Входная мощность, Вт
14.4	167.	2.	2404.8
14.5	167.	14.	2421.5
14.6	168.	35.	2452.8
14.7	168.	51.	2469.6
14.8	168.	69.	2486.4
14.9	169.	85.	2518.1
15.	169.	102.	2535.
15.1	169.	121.	2551.9
15.2	170.	140.	2584.
15.3	170.	161.	2601.
15.4	170.	182.	2618.
15.5	171.	203.	2650.5
15.6	171.	232.	2667.6
15.7	171.	257.	2684.7
15.8	172.	284.	2717.6
15.9	172.	297.	2734.8
16.	172.	325.	2752.
16.1	172.	357.	2769.2
16.2	173.	397.	2802.6
16.3	173.	432.	2819.9
16.4	174.	470.	2853.6
16.5	174.	511.	2871.
16.6	174.	531.	2888.4
16.7	174.	562.	2905.8
16.8	175.	602.	2940.
16.9	175.	641.	2957.5
17.	175.	686.	2975.
17.1	176.	727.	3009.6
17.2	176.	772.	3027.2
17.3	176.	810.	3044.8
17.4	177.	854.	3079.8

Рис. 3: Зависимость мощности излучения от мощности накачки в режиме свободной генерации

Рис. 4: Зависимость мощности излучения от мощности накачки в режиме модуляции добротности

По графикам определим КПД лазера в разных режимах работы, как угловой коэффициент наклона аппроксимирующей прямой: $\eta_{CW} \approx (0, 14 \pm 0, 02)\%$ и $\eta_{QW} \approx (0, 13 \pm 0, 02)\%$. Также определим пороговую мощность $W_{CW} \approx (2505 \pm 125)$ Вт и $W_{CW} \approx (2457 \pm 95)$ Вт соответственно.

Таблица 3: Результаты измерения зависимости длительности импульса от мощности накачки лазера в режиме модуляции добротности.

I, A	U, B	t, MKC	W, B _T
17.4	177.	0.38	3079.8
17.2	176.	0.33	3027.2
17.	176.	0.34	2992.
16.8	175.	0.34	2940.
16.6	175.	0.38	2905.
16.4	174.	0.42	2853.6
16.2	173.	0.34	2802.6
16.	173.	0.37	2768.
15.8	172.	0.42	2717.6
15.6	171.	0.45	2667.6
15.4	170.	0.54	2618.
15.2	170.	0.52	2584.
15.	169.	0.56	2535.
14.8	169.	0.7	2501.2
14.6	168.	0.84	2452.8

Рис. 5: График зависимости длительности импульса от мощности накачки

5. Гравировка изображения

Для демонстрации технических возможностей лазера была произведена гравировка изображения.

Рис. 6: Выгравированное изображение

6. Вывод

Были изучены физические основы работы различных режимов лазера и определены КПД и пороговая мощность:

Режим	Свободной генерации	Модуляции добротности	
$\eta,\%$	0,14	0,13	
P_{nop} , BT	2505	2457	

В режиме модуляции добротности КПД лазера меньше, чем в непрерывном режиме. Это связано с тем, что в режиме модуляции добротности инверсная населённость в среднем больше (потому что в данном случае отсутствует вынужденное излучение при закрытом модуляторе), чем в непрерывном режиме, а значит, больше потери на спонтанное излучение.

При достижении пороговой мощности усиление в активной среде становится равным потерям в резонаторе, поэтому пороговая мощность не должна зависеть от режима работы. Это и было получено в работе, так как мощности оказались равны в пределах погрешности.