2. Задача о приобретении оборудования

Постановка задачи

Часть прибыли, получаемой от работы 1-го и 2-го цехов в течение одного года, планируется использовать для приобретения оборудования для нового третьего цеха. Доля средств, отчисляемая ежеквартально из прибыли от работы 1-го и 2-го цехов на приобретение оборудования для 3-го цеха, составляет 80%. Оборудование нового цеха предполагается разместить на площади 290 кв. м. Возможно приобретение пяти видов однородного оборудования, характеристики которого представлены в таблице 1.

Таблица 1. Характеристики оборудования

Вид оборудования	Стоимость (млн. руб)	Требуемая площадь (кв. м)	Производительность (шт.)	
Тип 1	34	26	1000	
Тип 2	57	19	2100	
Тип 3	32	28	900	
Тип 4	59	22	1800	
Тип 5	53	24	2000	

Необходимо обеспечить максимальную производительность цеха и провести исследование полученного решения.

- 1. Имея в виду необходимость получения ЦЕЛОЧИСЛЕННОГО решения, найти оптимальный план приобретения оборудования для третьего цеха.
- 2. Исследовать полученное решение на чувствительность к изменению стоимостного ограничения, связанного с возможным изменением соотношения цен и средств:
 - выяснить влияние изменения (увеличения, уменьшения) количества средств на переход роли активного ограничения (либо по площади, либо по стоимости), и вследствие этого на выбор оптимального типа оборудования;
 - выяснить границы изменения количества средств, в пределах которых оптимальным является выбор 2-х и более типов оборудования.

Формализация задачи

Переменные

 x_{j} — количество приобретаемого оборудования j-го типа; j = 1,2,...,5 . $Pecypc \omega$

Денежные средства: $R = 0.8 \cdot 1299.97 = 983 \, \text{млн. руб}$; площадь: $S = 290 \, \text{кв. м}$. Математическая модель

$$1000 \, x_1 + 2100 \, x_2 + 900 \, x_3 + 1800 \, x_4 + 2000 \, x_5$$
 \rightarrow max $34 \, x_1 + 57 \, x_2 + 32 \, x_3 + 59 \, x_4 + 53 \, x_5 \le 983$, (1) $26 \, x_1 + 19 \, x_2 + 28 \, x_3 + 22 \, x_4 + 24 \, x_5 \le 290$, (2) $x_i \ge 0$; $x_j - y$ елое ; $j = 1, 2, ..., 5$.

Решение методом ветвей и границ

Этот метод получения оптимального целочисленного решения задач ЛП требует сначала решения исходной задачи с ослабленными ограничениями (без требования целочисленности), затем решения порожденных ею задач с дополнительными ограничениями на переменные.

Процесс поиска решения может быть представлен в виде дерева (см. рис. 3 и 4). Каких-либо рекомендаций по наилучшему направлению поиска, к сожалению, не существует.

Подготовка матриц

Подготовим математическую модель исходной задачи с ослабленными ограничениями для решения с помощью пакета CVXOPT (таблица 1).

,	x1	x2	х3	x4	x 5	Нер-во	Пр. часть
С	1000	2100	900	1800	2000	-	max (-1)
y1	34	57	32	59	53	<=	983
y2	26	19	28	22	24	<=	290
у3	1	0	0	0	0	>= (-1)	0
y4	0	1	0	0	0	>= (-1)	0
y5	0	0	1	0	0	>= (-1)	0
y6	0	0	0	1	0	>= (-1)	0
y7	0	0	0	0	1	>= (-1)	0

Заполнение матриц и решение задачи

Заполним матрицы исходной задачи (рис. 1).

```
1 from cvxopt import matrix, solvers
   c = matrix([-1000, -2100, -900, -1800, -2000], tc='d')
5 G = matrix([[34, 57, 32, 59, 53],
               [26, 19, 28, 22, 24],
7
               [-1, 0, 0, 0, 0],
8
               [0, -1,
                       0, 0, 0],
9
               [0, 0, -1, 0, 0],
               [0, 0, 0, -1,
                              0],
10
               [ 0, 0, 0, 0, -1]], tc='d')
11
12
13 h = matrix([983, 290, 0, 0, 0, 0, 0], tc='d')
```

Рис. 1. Матрицы задачи

Получим решение исходной задачи (рис. 2).

```
print('Status', solution['status'])
print('x = \n', solution['x'])
print('Objective: ', -solution['primal objective'])

Status optimal
x =
[ 0.00e+00]
[ 1.53e+01]
[ 0.00e+00]
[ 0.00e+00]
[ 0.00e+00]
[ 0.00e+00]
[ 0.00e+00]
```

Рис. 2. Решение задачи

Видим, что полученное решение является оптимальным, но не является целочисленным (x_2^* =15.3), поэтому нужно вводить дополнительные ограничения и решать подзадачи. Процесс поиска наилучшего целочисленного решения методом ветвей и границ представлен на рис. 3 и 4.

Рис. 3. Поиск наилучшего целочисленного решения

Рис. 4. Поиск наилучшего целочисленного решения (продолжение)

Итак, поиск по задачам **1-2-...-11** приводит нас к наилучшему целочисленному решению x=[0,15,0,0,0], обеспечивающему производительность $z=31500.0\, um$. . Это решение является довольно очевидным, однако, чтобы его получить, нам пришлось наложить ограничения равенства нулю на все переменные, кроме x_2 .

Отметим несколько важных моментов.

- Для подзадачи 2 мы не смогли получить никакого решения из-за нарушения ограничения по площади ($16ed.\cdot 19\kappa s. \, m > 290\kappa s. \, m$).
- Решив подзадачу 4, мы получили нижнюю границу целочисленного решения ($z=31400\,um$.).
- Рассмотрение подзадач ветви 6 мы прекратили, так как разница между значением функции цели z и нижней границей ($\Delta z = 21.1$) была слишком мала (коэффициенты целевой функции не могут обеспечить целочисленного решения с ненулевым числом десятков и/или единиц).
- Подзадачи ветвей 8 и 10 мы не стали рассматривать, потому что нижняя целочисленная граница превышает значения их целевых функций z.

Проверка решения

Проверим, что полученное нами решение является верным. Для этого решим задачу, используя функцию ilp для решения задач целочисленного и смешанного программирования из солвера glpk, и сравним результаты (рис. 5).

```
from cvxopt import matrix, glpk
 3
   c = matrix([-1000, -2100, -900, -1800, -2000], tc='d')
 5
   G = matrix([[34, 57, 32, 59, 53],
               [26, 19, 28, 22, 24],
 7
               [-1, 0, 0, 0, 0],
 8
               [0, -1, 0, 0,
                                01.
9
               [0, 0, -1,
                           0, 0],
10
               [0, 0, 0, -1, 0],
               [ 0, 0, 0, 0, -1]], tc='d')
11
12
13 h = matrix([983, 290, 0, 0, 0, 0, 0], tc='d')
14 (status, x) = glpk.ilp(c, G.T, h, I=set(range(5)))
15
16 print('Status: ', status)
17 print('x = \n', x)
```

```
Status: optimal
x =
  [ 0.00e+00]
[ 1.50e+01]
[ 0.00e+00]
[ 0.00e+00]
[ 0.00e+00]
```

Рис. 5. Решение с помощью функции ilp

Получаем то же решение, что и методом ветвей и границ.

Анализ чувствительности

Проведем анализ чувствительности полученного целочисленного решения к определенным изменениям исходной модели.

Анализ правых частей

Определим, какие ресурсы являются дефицитными, а какие — нет (рис. 6).

```
13 R = 983
14 S = 290
15
16 h = matrix([R, S, 0, 0, 0, 0, 0], tc='d')
17 (status, x) = glpk.ilp(c, G.T, h, I=set(range(5)))
19 # print('Status: ', status)
20 print('x = \n', x)
22 print('Free money: ', R - x[0]*34 - x[1]*57 - x[2]*32 - x[3]*59 - x[4]*53)
23 print('Free space: ', S - x[0]*26 - x[1]*19 - x[2]*28 - x[3]*22 - x[4]*24)
x =
[ 0.00e+00]
[ 1.50e+01]
[ 0.00e+00]
[ 0.00e+00]
[ 0.00e+00]
Free money: 128.0
Free space: 5.0
```

Рис. 6. Определение дефицитности ресурсов

Мы видим, что денежные средства R — $hedu \phi u \mu u m h h h u m h h h e cypc, а площадь <math>S$ — $hedu \phi u \mu u m h h u m h h h e cypc.$

Это, во-первых, означает, что решение не изменится, если 128 млн. денежных средств будут потрачены на что-то другое (рис. 7).

```
13 R = 983 - 128
14 S = 290
15
16 h = matrix([R, S, 0, 0, 0, 0, 0], tc='d')
17 (status, x) = glpk.ilp(c, G.T, h, I=set(range(5)))
19 # print('Status: ', status)
20 print('x = \n', x)
22 print('Free money: ', R - x[0]*34 - x[1]*57 - x[2]*32 - x[3]*59 - x[4]*53)
23 print('Free space: ', S - x[0]*26 - x[1]*19 - x[2]*28 - x[3]*22 - x[4]*24)
[ 0.00e+00]
[ 1.50e+01]
[ 0.00e+00]
[ 0.00e+00]
[ 0.00e+00]
Free money: 0.0
Free space:
```

Рис. 8. Альтернативное применение денежных средств

Во-вторых, что, увеличив площадь на $2 \cdot 19 - 5 = 33 \, \kappa B \cdot M$, мы сможем приобрести еще две единицы оборудования второго типа, увеличив производительность цеха на $2 \cdot 2100 = 4200 \, um$. (рис. 9).

```
13 R = 983
14 S = 290 + 33
15
16 h = matrix([R, S, 0, 0, 0, 0, 0], tc='d')
17 (status, x) = glpk.ilp(c, G.T, h, I=set(range(5)))
18
19 # print('Status: ', status)
20 print('x = \n', x)
21
22 print('Free money: ', R - x[0]*34 - x[1]*57 - x[2]*32 - x[3]*59 - x[4]*53)
23 print('Free space: ', S - x[0]*26 - x[1]*19 - x[2]*28 - x[3]*22 - x[4]*24)
x =
[ 0.00e+00]
[ 1.70e+01]
[ 0.00e+00]
[ 0.00e+00]
[ 0.00e+00]
Free money: 14.0
Free space: 0.0
```

Рис. 9. Эффект от дополнительной площади

Отметим, что в этом случае денежные средства также становятся *дефицитным* ресурсом.

Вопрос о выборе двух и более типов оборудования

При фиксированной площади $S=290\,\kappa B$. M нас интересует диапазон денежных средств, в пределах которого оптимальным является выбор двух и более типов оборудования.

Покажем, что такой диапазон не является единственным (рис. 10).

```
13 R = 100
14 S = 290
15
16 while R <= 1000:
        h = matrix([R, S, 0, 0, 0, 0, 0], tc='d')
17
18
        (status, xs) = glpk.ilp(c, G.T, h, I=set(range(5)))
19
        n types = len([x for x in xs if x > 0])
        print(f"R = {R}, num of types = {n types}")
20
21
        R += 25
22
r - 525, Hulli OI Lypes - 2
R = 350, num of types = 2
R = 375, num of types = 2
R = 400, num of types = 1
R = 425, num of types = 1
R = 450, num of types = 2
R = 475, num of types = 3
R = 500, num of types = 2
R = 525, num of types = 3
R = 550, num of types = 2
R = 575, num of types = 3
R = 600, num of types = 2
R = 625, num of types = 3
R = 650, num of types = 2
R = 675, num of types = 2
R = 700, num of types = 3
R = 725, num of types = 2
R = 750, num of types = 1
R = 775, num of types = 2
R = 800, num of types = 1
```

Рис. 10. Диапазон денежных средств (шаг - 25 млн. руб)

Видим, что переход от решения о приобретении двух и более видов оборудования к решению о приобретении одного вида оборудования при $R_{min} = 100 \ \text{млн. руб}$, $R_{max} = 1000 \ \text{млн. руб}$, $\Delta R = 50 \ \text{млн. руб}$ происходит по крайней мере дважды.

Уменьшим величину шага до 1 млн. руб и найдем границы ближайшего к $R=983 \, \text{млн. руб}$ диапазона денежных средств, в пределах которого оптимальна закупка двух и более типов оборудования (рис. 11).

```
13 R = 800
14 S = 290
15
16 while R <= 983:
        h = matrix([R, S, 0, 0, 0, 0, 0], tc='d')
17
        (status, xs) = glpk.ilp(c, G.T, h, I=set(range(5)))
18
19
        n types = len([x for x in xs if x > 0])
        print(f"R = {R}, num of types = {n types}")
20
21
        R += 1
22
IN - 040, Hum OT Lypes -
R = 846, num of types = 1
R = 847, num of types = 1
R = 848, num of types = 1
R = 849, num of types = 1
R = 850, num of types = 1
 = 851, num of types = 2
R = 852, num of types = 2
R = 853, num of types = 2
R = 854, num of types = 2
R = 855, num of types = 1
R = 856, num of types = 1
```

Рис. 11. Ближайший к R = 290 млн. руб диапазон

Таким образом, границы искомого диапазона

```
R_{\mathit{min}} = 851 млн . руб , R_{\mathit{max}} = 854 млн . руб .
```

Пусть $R=853 \, \text{млн. руб}$. Посмотрим на оптимальное решение, чтобы увидеть, в пользу каких двух видов оборудования делается выбор (рис. 12).

```
13 R = 853
14 S = 290
15
16 h = matrix([R, S, 0, 0, 0, 0, 0], tc='d')
17 (status, x) = glpk.ilp(c, G.T, h, I=set(range(5)))
18
19 print('Status: ', status)
20 print('x = \n', x)

Status: optimal
x =
  [ 0.00e+00]
[ 1.40e+01]
[ 0.00e+00]
[ 0.00e+00]
[ 1.00e+00]
```

Рис. 12. Целочисленный результат для R = 853 млн. руб.

На этом мы завершаем анализ чувствительности.

Приложение — блокноты программы

Блокноты программы, решающей задачу о приобретении оборудования, доступны по ссылке:

https://github.com/valery42/Decision-Theory/tree/main/src/course/equipment