批改日期

深圳大学实验报告

课程名称:_	课程名称:大学物理实验(二)										
实验名称:_	双光	<u>跚测微振动</u>		_							
学 院: <u>-</u>	数	(学与统计学	学院								
指导教师 <u>:</u>	1	兒燕翔									
报告人:	王曦	组号:	20	_							
学号 <u>202</u> 1	1 192010 5	实验地点	致原楼 204A	_							
实验时间:_	年	· <u>10</u> 月_	13 日								
提交时间:	2022年1	10月20日									

1

一、实验目的

- 1. 了解光的多普勒频移形成光拍的原理.
- 2. 精确测量微弱振动位移的方法.
- 3. 测量出外力驱动音叉时的谐振曲线.

二、实验原理

1. 光栅和光栅方程

光栅:平面光栅由一系列等宽、等距、平行的狭缝组成.

光程差满足波长的整数倍时,叠加为明条纹,即光栅方程 $d\sin\theta=k\lambda$,其中 d 为光栅常数, θ 为衍射角, λ 为波长.

2.位相光栅

当激光平面波垂直入射到争先型未向光栅,因位相光栅上不同的光密和光疏媒质部分对光波的位相延迟作用,使入射的平面波变成出射时的摺曲波阵面,如图所示.因衍射干涉作用,

在远场卡那里的光栅方程为 $d\sin\theta=k\lambda$,其中 d 为光栅常数, θ 为衍射角, λ 为波长.

3.位相光栅的多普勒频移

移动的位相光栅的 k 级衍射光波由一个多普勒频移 $\omega_d = 2\pi rac{v}{d}$

$$\sin heta = rac{k \lambda}{d}$$
,则 $\Delta arphi = rac{2\pi}{\lambda} \Delta s = rac{2\pi}{\lambda} v t \sin heta = k \left(2\pi rac{v}{d}
ight) t = k \omega_d t.$ $E = E_0 \cos \left(\omega_0 t + \Delta arphi
ight) = \cos \left(\omega_0 + k \omega_d \right) t.$

4.光拍的获得与检测

在检测器方向上,频率不同、频率差较小的光束叠加产生光拍.光频率很高,光电检测器对高频率不能反应,只能反应下式种第四项拍频讯号.

光東1:
$$E_1 = E_{10} \cos (\omega_0 t + \varphi_1)$$
.

光東2:
$$E_2 = E_{20} \cos [(\omega_0 + \omega_d)t + \varphi_2].$$

$$I = (E_1 + E_2)^2$$

$$=E_{10}^{2}\cos{(\omega_{0}t+arphi_{1})t}+E_{20}^{2}\cos^{2}[(\omega_{0}+\omega_{d})t+arphi_{2}]$$

$$+E_{10}E_{20}\cos\left[\left(\omega_0+\omega_0+\omega_d\right)t+\left(\varphi_1+\varphi_2\right)\right]+E_{10}E_{20}\cos\left[\left(\omega_0-\omega_0+\omega_d\right)t+\left(\varphi_2-\varphi_1\right)\right].$$

$$egin{aligned} f_{\dot{ ext{fi}}} &= rac{\omega_d}{2\pi} = rac{v_A}{d} = n v_A, \ A &= rac{1}{2} \int_0^{rac{T}{2}} v(t) \mathrm{d}t = rac{1}{2} \int_0^{rac{T}{2}} rac{f_{\dot{ ext{fi}}}}{n} \mathrm{d}t = rac{1}{2n} \int_0^{rac{T}{2}} f_{\dot{ ext{fi}}} \mathrm{d}t, \ &rac{1}{2} + \int_0^{rac{T}{2}} f_{\dot{ ext{fi}}} \mathrm{d}t + rac{1}{2n} \int_0^{rac{T}{2}} f_{\dot{ ext{fi}}} \mathrm{d}t, \end{aligned}$$

波形数的计算

三、实验仪器:

1—光电池升降调节手轮,2—光电池座,在顶部有光电池盒,盒前有一小孔光阑,3—电源开关,4—音叉座,5—音叉,6—动光栅(粘在音叉上的光栅),7—静光栅(固定在调节架上),8—静光栅调节架,9—半导体激光器,10—激光器升降调节手轮,11—调节架左右调节止紧螺钉,12—激光器输出功率调节,13—耳机插孔,14—音量调节,15—信号发生器输出功率调节,16—信号发生器频率调节,17—静光栅调节架升降调节手轮,18—驱动音叉用的蜂鸣器,19—蜂鸣器电源插孔,20—频率显示窗口,21—三个信号输出插口,Y1拍频信号,Y2音叉驱动信号,X为示波器提供"外触发"扫描信号,可使示波器上的波形稳定。

四、实验内容:

4.1 测量音叉的谐振曲线

- 4.1.1 几何光路调整:微调半导体激光器的左右、俯昂调节手轮,让光束从安装静止光栅架的孔中心通过.调节光电池架手轮,让某一级衍射光正好落入光电池前的一孔内,锁紧激光器.
- 4.1.2 双光栅调整:慢慢转动光栅架,仔细观察调节,使得两个光束尽可能重合.去掉观察屏,轻 敲音叉,在示波器上看到拍频波.
- 4.1.3 音叉谐振调节:先将"功率"旋钮置 6-7 点钟附近,调节"频率"旋钮至 500Hz 附近,使音叉谐振.若音叉谐振太强烈,将"功率"旋钮向小钟方向转动,使在示波器上看到的 T/2 内光拍的波数为 10-20 个左右较合适.
- 4.1.4 波形调节:光路粗调完成后,可见一些拍频波,但欲获得光滑细腻的波形,还需反复调节.稍松开固定静止光栅架的手轮,微微转动光栅架,改善动光栅衍射光斑与静光栅衍射光斑的重合度,在两光栅产生的衍射光斑重合区域钟,不是每一点都能产生拍频波,故光斑正中心对准光电池上的小孔,未必能产生好的波形,有时光斑的边缘也能产生好的波形,可微调光电池架或激光器的 X-Y 微调手轮,改变光斑在光电池上的位置,改善波形.
- 4.1.5 测出外力驱动音叉时的谐振曲线:固定"功率"旋钮位置,调节"频率"旋钮,作出音叉的频率——振幅曲线.

五、数据记录:

组号: 20 ; 姓名 王曦

光栅常数:0.01 m

音叉谐振频率:512.9 Hz

组数	1	2	3	4	5	6	7	8	9	10	11
频率 Hz	511.9	512.0	512.1	512.2	512.3	512.4	512.5	512.6	512.7	512.8	512.9
波数	1.00	1.50	2.00	3.00	3.50	4.50	5.50	7.50	8.50	10.00	13.00
组数	12	13	14	15	16	17	18	19	20	21	
频率 Hz	513.0	513.1	513.2	513.3	513.4	513.5	513.6	513.7	513.8	513.9	
波数	10.50	9.00	8.50	6.50	5.00	3.50	2.50	1.50	1.00	0.50	

六、数据处理

光栅常数:0.01 m

音叉谐振频率:512.9 Hz

组数	1	2	3	4	5	6	7	8	9	10	11
频率 Hz	511.9	512.0	512.1	512.2	512.3	512.4	512.5	512.6	512.7	512.8	512.9
波数	1.00	1.50	2.00	3.00	3.50	4.50	5.50	7.50	8.50	10.00	13.00
A (nm)	0.0100	0.0150	0.0200	0.0300	0.0350	0.0450	0.0550	0.0750	0.0850	0.1000	0.1300
组数	12	13	14	15	16	17	18	19	20	21	
频率 Hz	513.0	513.1	513.2	513.3	513.4	513.5	513.6	513.7	513.8	513.9	
波数	10.50	9.00	8.50	6.50	5.00	3.50	2.50	1.50	1.00	0.50	
A (nm)	0.1050	0.0900	0.0850	0.0650	0.0500	0.0350	0.0250	0.0150	0.0100	0.0050	

以计算谐振频率 512.9 Hz 时的振幅为例:

振幅
$$A = rac{Nd}{2} = rac{2N'd}{2} = rac{2 imes 13.00 imes 0.01 ext{ mm}}{2} = 0.1300 ext{ mm}$$

七、结果陈述:

小于音叉的谐振频率(512.9 Hz)时,音叉振幅随频率的增大而增大;达到音叉的谐振频率时振幅最大;超过音叉的谐振频率之后,音叉振幅随频率的增大而减小.

71	实验	台	结	与	黒	老	馳

- 8.1 如何判断动光栅与静光栅的刻痕已平行? 用平行光照射光栅, 在光栅后放一个屏幕, 看经过光栅后出来的衍射光是否均匀, 若均匀则
- 用平行光照射光栅, 在光栅后放一个屏幕, 看经过光栅后出来的衍射光是否均匀, 若均匀则平行.
- 8.2 作外力驱动音叉谐振曲线时,为什么要固定信号功率? 若改变功率,会影响音叉驱动力,无法判定外力对谐振曲线的影响.
- 8.3 本实验测量方法有何优点?测量微振动位移的灵敏度是多少?
 - ①优点:扩大微小变量,使微小变量通过信号和计算后更加直观.
- ②灵敏度:分辨波形的能力约 1/2 个波, 半导体激光器波长 635 nm, 则灵敏度=635 x 1/2 nm=317.5 nm.

-11		1.1	.1-	- 1	11	>	~~	-	
70		-1/1 /1	ΠН	7	HV.	144		111	
1H	7	41	וועי	17	Иι	ルル	意	'II'	:

成绩评定:

预习 (20分)	操作及记录 (40 分)	数据处理与结果陈述 30 分	思考题 10 分	报告整体 印 象	总分	