

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

ГОСУДАРСТВЕННЫЙ КОМИТЕТ
ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ
ПРИ ГХНТ СССР

С + S
(19) SU (11) 1731814 A1

(19) С 12 N 9/78, С 12 Р 13/02

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

1

(21) 4826513/13

(22) 17.05.90

(46) 07.05.92. Бюл. № 17

(71) Саратовский филиал Всесоюзного научно-исследовательского института генетики и селекции промышленных микроорганизмов и Всесоюзный научно-исследовательский институт генетики и селекции промышленных микроорганизмов

(72) А.С. Яненко, И.Н. Полякова, О.Б. Астаурова, В.Н. Пауков, С.В. Козулин, М.К. Синолицкий, Т.Н. Моисеева, С.П. Воронин и В.Г. Дебабов

(53) 663.15 (088.8)

(56) ЕР № 0204555.

кл. С 12 Р 13/02. опублик. 1986.

Agric. Biolog. Chem.. 1988. v. 52. № 7.
р. 1813-1816.

(54) ШТАММ БАКТЕРИЙ RHODOCOSCUS RHODOCHROUS-ПРОДУЦЕНТ НИТРИЛГИДРАТАЗЫ

(57) Использование: биотехнология. Сущность изобретения: получение нового штам-

2

ма бактерий - продуцента фермента нитрилгидратазы, выделенного из почвы производства акрилонитрила, с использованием в качестве селектирующего агента изобутиронитрила. Штамм Rhodococcus rhodochrous ВКПМС-926 обладает следующими признаками: грамположительный, неподвижный, спор не образует, некислотоустойчив, аэроб. Клетки в возрасте 18-20 ч образуют длинные слабоветвящиеся нити, которые через 48-72 ч распадаются на палочковидные и кохковидные элементы. Штамм Rhodococcus rhodochrous 926 обладает высокой активностью нитрилгидратазы, достигающей 140 мкмоль /мг/мин в отношении изобутиронитрила, 220 мкмоль/мг/мин в отношении ацетонитрила, 150 мкмоль/мг/мин в отношении акрилонитрила. Штамм Rhodococcus rhodochrous ВКПМС-926 может быть использован в биотехнологическом процессе получения акриламида и других амидов карбоновых кислот. 3 табл.

Изобретение относится к микробиологической промышленности и касается получения нового штамма, обладающего высокой нитрилгидратазной активностью.

Нитрилгидратаза - фермент, катализирующий процесс гидролиза нитрилов карбоновых кислот в амиды.

Известны микроорганизмы, производящие фермент нитрилгидратазу, относящиеся к родам *Corynebacterium*, *Nocardia*, *Brevibacterium*, *Bacillus*, *Bacteroides*, *Micrococcus*, *Pseudomonas*, *Rhodococcus*.

Одним из примеров использования этого фермента является получение акриламида из акрилонитрила.

Известны штаммы, способные к трансформации акрилонитрила в акриламид: *Corynebacterium N 771*, *Corynebacterium N 774*, *Nocardia N 775*, *Pseudomonas chlororaphis B23*, *Rhodococcus rhodochrous I-1*.

Недостатком данных штаммов является низкая ферментативная активность нитрилгидратазы. В случае штамма *Corynebacterium N 774* удельная активность нитрилгидратазы не превышала 78.5 ед.

Известен штамм *Pseudomonas chlorraphis* B23, который при выращивании на среде, содержащей аминокислоту L-цистин (2 г/л), проявлял ферментативную активность 105.7 ед.

Недостатком данного штамма является использование в культуральной среде дорогостоящей аминокислоты.

Наиболее близким к изобретению по технической сущности является штамм Ат-324, мутант *Pseudomonas chlorraphis* B23, который обладает удельной нитрилгидратазной активностью 141 ед.

Недостатками данного штамма являются использование в среде культивирования дорогостоящих аминокислот L-пролина и L-цистеина, дробное введение индуктора - метакриламида.

Целью изобретения является получение штамма с более высокой нитрилгидратазной активностью, не требующего использования аминокислот при выращивании, культивирование на простой синтетической среде.

Заявляемый штамм *Rhodococcus rhodochrous* M8 депонирован под номером S-226 и характеризуется следующими морфолого-культуральными и физиолого-биохимическими признаками.

Морфологические признаки: штамм грамположительный, неподвижный, спор и капсул не образует, некислотоустойчив, аэроб. Клетки в возрасте 18–20 ч образуют длинные по 20 мкм, слабо ветвящиеся нити, которые через 48–72 ч распадаются на палочковидные и кокковидные элементы.

Палочковидные клетки имеют размеры 0.9–1.2 x 2.0–20.0 мкм. Деление клеток происходит как по раскальвающемуся, так и по сгибающемуся типу. В протоплазме клеток видны внутриклеточные включения в виде зерен (гранулярность протоплазмы).

Культуральные свойства: при росте на мясопептонном агаре штамм образует круглые гладкие колонии диаметром 1 мм (48–72 ч), поверхность сухая, матовая, розового цвета. При росте на мясопептонном бульоне образует пленку и осадок. Лактусовое молоко не изменяет.

Физиологические свойства: штамм 50 редуцирует нитраты. Тест с метиловым красным, реакция Фогес-Проскауэра отрицательные. Образует сероводород. Штамм оксида за отрицательный, каталаза- и фосфатаза положительный. Растет при pH 6–9, оптимальное значение pH 7.0, при температуре 5–45°C, оптимальное значение температуры 30°C. В качестве источников азота использует соединения аммония и нитраты.

Штамм дает кислую реакцию при росте на глюкозе, фруктозе, сорбите, манните и глицерине. Газообразование ни из одном сахара не обнаружено. В качестве единственного источника углерода использует иносит, маннит, мальтозу, сорбит, глюкозу, глицерин, лактат, пираноз, не использует рамнозу, галактозу. Красная и циклическая не гидролизуют, таин 80 и таин 80 гидролизуют.

Аденин не утилизируют.

Химический состав клеток: в клеточной стенке содержится тезо-диглициериновая кислота, арабиноза и галактоза. Содержится липид А (LCN), характерный для родококков.

Чувствительность к антибактериальным препаратам: штамм чувствителен к канамицину, хлорамфениколу, ампициллину, пенициллину, мономицину, тетрациклину, рифамицину.

Патогенность: штамм непатогенный.

Ферментативную активность определяли с использованием в качестве субстратов нитрилов карбоновых кислот. За единицу удельной нитрилгидратазной активности принимали количество фермента, катализирующего образование 1 мкмоль амида в одну минуту, содержащегося в 1 мг сухого веса клеток.

Штамм *Rhodococcus rhodochrous* M8, ВКПМ S-926 обладает более высокой активностью нитрилгидратазы (150 ед.) по сравнению со штаммом прототипом Ат-324 (141 ед.) и не требует использования в культуральной среде дорогостоящих аминокислот.

Пример 1. Выделение штамма *Rhodococcus rhodochrous* M8, ВКПМ S-926.

Заявляемый штамм был выделен из почвы с производства акрилонитрила. Навеску почвы 1.0 г ресуспендировали в 10 мл физиологического раствора и отстаивали в течение 1 ч. Надосадочную жидкость в количестве 2 мл вносили в среду следующего состава, г:

K_2HPO_4	0.5
KH_2PO_4	0.5
$MgSO_4 \cdot 7H_2O$	0.5
$FeSO_4 \cdot 7H_2O$	0.01
Глюкоза	1.0
Изобутиро нитрил	1.0
Вода водопроводная, мл	1000
pH	7.2 ± 0.2

50 мл суспензии инкубировали в 300 мл колбе Эрленмейера при 28–30°C, при круговом перемешивании (число качаний 180–200 мин⁻¹). Через двое суток отбирали 1 мл культуральной жидкости, серийно разводили в физиологическом растворе и высевали на

вали на чашки Петри с агаризованной средой (1.5% агар-агара) вышеуказанного состава. Посевы инкубировали 48-72 ч при 28-30°C, после чего отбирали наиболее крупные колонии, которые использовали в дальнейших исследованиях. Колонии пересевали на чашки Петри с мясопаптонным агаром. Выделенные культуры изучали на способность к трансформации акрилонитрила в акриламид.

Микроорганизмы выращивали в течение двух суток на среде выделения, отбирали 5 мл клеточной суспензии, центрифугировали, клетки отмывали 0.01 М фосfatным буфером, pH 7.6, ресуспендировали в 2 мл буфера того же состава, содержащего акрилонитрил в концентрации 1 г/л. Реакцию останавливали добавлением 0.1 мл 1 н. HCl. Количество определение акриламида осуществляли методом газожидкостной хроматографии на хроматографе ЛХМ-80 с пламенно-ионизационным детектором. В качестве неподвижной фазы использовали Reoplex 400.

В результате была выделена культура *Rhodococcus rhodochrous* M8 с высокой нитрилгидратазной активностью.

Пример 2. Использование штамма *Rhodococcus rhodochrous* M8, ВКПМ S-926 для трансформации изобутиронитрила в изобутирамид.

Полученный штамм *Rhodococcus rhodochrous* M8, ВКПМ S-926 предкультивировали в колбах Эрленмейера, заполненных на 1/10 часть бульоном Хоттингера в течение суток, на качалке (число качаний 120 мин⁻¹) при 30°C. Культуральную жидкость в объеме 10 мл инокулировали в 1.5 л ферментер. Состав среды, г:

K ₂ HPO ₄	0.5
KH ₂ PO ₄	0.5
MgSO ₄ · 7H ₂ O	0.5
CaC ₁₂ · 7H ₂ O	0.02
Глюкоза	10.0
Изобутирамид	2.5
Дистиллированная вода, мл	1000
pH	7.2 ± 0.2

Условия культивирования:

Объем культуральной среды, мл	1000
Скорость перемешива- ния, об/мин	600
Аэрация, мин ⁻¹	1:2
Температура, °C	30
pH	7.2

Ферментацию вели при контролируемом значении pH. Подтитровку осуществляли 1 н. HCl и 1 н. KOH.

Из реакционной среды периодически отбирали пробы для определения концентрации клеток и их нитрилгидратазной активности. Концентрацию клеток определяли фотокалориметрически при длине волны 540 нм, толщине слоя 5.07 мм.

Активность нитрилгидратазы оценивали следующим образом.

- 1 мл культуральной жидкости центрифугировали, клетки отмывали 0.01 М фосфатным буфером, pH 7.6. Буферную емкость и значение pH подбирали экспериментально. Клетки ресуспендировали в буфере указанного состава до значения оптической плотности 0.2-0.5 (A 540 нм). К 2 мл клеточной взвеси в фосфатном буфере добавляли изобутиронитрил в количестве 25 мкл. Реакцию проводили при 20°C в течение 10 мин, а затем останавливали добавлением 0.1 мл 1 н. HCl. Бактериальные клетки отделяли центрифугированием. Концентрацию изобутирамида в надосадочной жидкости анализировали методом газожидкостной хроматографии.

Удельная активность нитрилгидратазы в отношении изобутиронитрила достигала 140 ед.

Пример 3. Использование штамма *Rhodococcus rhodochrous* M8, ВКПМ S-926 для трансформации ацетонитрила в ацетамид.

Штамм *Rhodococcus rhodochrous* M8, ВКПМ S-926 подготавливали к процессу трансформации по примеру 2. Активность нитрилгидратазы оценивали аналогично примеру 2. В качестве субстрата добавляли ацетонитрил в количестве 25 мкл.

Активность нитрилгидратазы в отношении ацетонитрила достигала 220 ед.

Пример 4. Использование штамма *Rhodococcus rhodochrous* M8, ВКПМ S-926 для трансформации акрилонитрила в акриламид.

Штамм *Rhodococcus rhodochrous* M8, ВКПМ S-926 подготавливали к процессу трансформации как в примере 2. Активность нитрилгидратазы оценивали аналогично примеру 2. В качестве субстрата добавляли акрилонитрил в количестве 25 мкл.

Изменение ферментативной активности в зависимости от стадии роста клеток представлена в табл. 1.

Активность нитрилгидратазы в отношении акрилонитрила достигала 150 ед.

Пример 5. Влияние температуры на активность нитрилгидратазы штамма *Rhodococcus rhodochrous* M8, ВКПМ S-926.

Бактерии *Rhodococcus rhodochrous* M8, ВКПМ S-926 выращивали в течение 70 ч и подготавливали к трансформации по приме-

ру 2. Образцы с реакционной смесью, содержащие 25 мкл акрилонитрила и 0,04 мг клеток по сухому весу в 2 мл 0,025 М фосфатного буфера, pH 7,6, инкубировали в течение 5 мин при различных температурах. Концентрацию образовавшегося в реакционной смеси акриламида определяли с помощью газожидкостной хроматографии. Изменение активности нитрилгидратазы в зависимости от температуры проведения реакции трансформации представлено в табл. 2.

Таким образом нитрилгидратаза из штамма *Rhodococcus rhodochrous* M8, ВКПМ S-926 обладает более высокой термостабильностью, чем аналогичный фермент из *Pseudomonas chlororaphis* B23 (температурный оптимум 20°C) и *Rhodococcus* sp. N 774 (температурный оптимум 35°C).

Пример 6. Индукция нитрилгидратазы при росте штамма *Rhodococcus rhodochrous* M8, ВКПМ S-926 на мочевине.

Штамм *Rhodococcus rhodochrous* M8, ВКПМ S-926 предкультивировали в колбах Эрленмейера, содержащих бульон Хоттингера в течение суток на качалке при 30°C. 10 мл культуральной жидкости инокулировали в колбы Эрленмейера, содержащие 200 мл синтетической среды с различным количеством мочевины. Состав синтетической среды, г:

K_2HPO_4	0.5
NaH_2PO_4	0.5
$MgSO_4 \cdot 7H_2O$	0.5
$CoCl_2 \cdot 6H_2O$	0.004
$FeSO_4 \cdot 7H_2O$	0.005
Глюкоза	10,0-20,0
Дистиллированная вода, мл	1000

Клетки растили в течение 72 ч при 30°C.

Активность нитрилгидратазы определяли по примеру 2. Изменение активности нитрилгидратазы в зависимости от концентрации мочевины в среде представлено в табл. 3.

Результаты табл. 3 показывают, что уровень индукции нитрилгидратазы возрастает с ростом концентрации мочевины в среде и удельная активность достигает максимального значения при концентрации мочевины 16 г/л.

- Заявляемый бактериальный штамм M8, ВКПМ S-926 на основании таксономического изучения отнесен к виду *Rhodococcus rhodochrous*. Штамм обладает индуцибелльной нитрилгидратазой, осуществляющей гидролиз алифатических нитрилов в амиды. Индукция нитрилгидратазы достигается при выращивании клеток *Rhodococcus rhodochrous* M8 на минеральной среде с ионами кобальта, содержащей в качестве источника азота и индуктора нитрилы и амиды органических кислот, например изобутиронитрил или изобутирамид, а в качестве источника углерода – глюкозу. Максимальная активность нитрилгидратазы (удельная активность 300 и общая активность 2400) наблюдается при использовании в качестве источника азота и индуктора мочевины комарчески доступного соединения, что особенно важно в случае промышленного использования штамма. Еще одним важным технологическим преимуществом использования штамма *Rhodococcus rhodochrous* M8 в качестве катализатора при гидролизе нитрилов является высокая термостабильность нитрилгидратазы. Максимальная активность фермента (1000 а.е.) наблюдается при 53°C.
- Штамм *Rhodococcus rhodochrous* M8, ВКПМ S-926 может быть рекомендован как продуцент фермента нитрилгидратазы и использован в биотехнологическом процессе получения акриламида и других аминов карбоновых кислот.

Формула изобретения

Штамм бактерия *Rhodococcus rhodochrous* ВКПМ S-926 – продуцент нитрилгидратазы.

45

Таблица 1

Показатели	Рост клеток, ч					
	0	28	40	54	70	75
Оптическая плотность	0.05	0.5	1.1°	3.4°	12.0°	1.0°
Удельная нитрилгидратазная активность	0	5	23	112	150	120

* Указанные величины оптической плотности промеряли после соответствующих разведений.

Таблица 2

Температура, °С	Удельная активность нитрилгидраты мкмоль акриламида/мг сухого веса клеток/мин
20	150
36	285
46	680
53	1000
56	980
60	680
65	277

Таблица 3

Глюкоза, г/л	Мочевина, г/л	Рост культуры, мг сухого веса клеток/мл	Удельная активность, мкмоль акриламида, мг сухого веса клеток/мин	Общая активность, мкмоль акриламида мл/мин
10	0.024	3.0	2.0	6.0
10	0.6	2.68	4.5	12.08
10	1.2	3.0	31.5	94.5
10	2.4	2.96	42.0	124.32
10	4.8	2.6	84.0	218.4
10	8.0	2.6	143.0	371.8
10	16.0	2.76	357.0	935.32
10	32.4	3.36	210.0	705.6
20	16.0	8.0	300.0	2400.0

5

10

15

20

Редактор Л.Гратилло

Составитель С.Козулин
Техред М.Моргентал

Корректор М.Пожо

Заказ 1557 Тираж Подписьное
ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул. Гагарина, 101