Práctica dos - Movimiento de una partícula con aceleración constante y variable

Física Computacional

1 $\vec{a} = cte$

Las ecuaciones de movimiento son

$$\begin{split} \vec{r} &= x\vec{i} + y\vec{j} + z\vec{k} \\ \vec{v} &= \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k} \\ \vec{a} &= \frac{dv_x}{dt}\vec{i} + \frac{dv_y}{dt}\vec{j} + \frac{dv_z}{dt}\vec{k} \end{split}$$

1.1 Movimiento en una dimensión. Caída libre $g = -10 \text{ m/s}^2$

las ecuaciones de movimiento son

$$v_y = \frac{dy}{dt}$$
 , $g = \frac{dv_y}{dt} = -10 \text{ m/s}^2$

- 1. Sea una partícula, que tiene una posición inicial y_{\circ} y velocidad inicial $v_{y \circ}$ en un tiempo inicial $t_{\circ} = 0$. Determine la posición final de la partícula para t = 10 s con g = -10 m/s². Haga los diagramas a t, v t, x t y v x y por cada caso de un ejemplo real. Considere h = 0.1
 - (a) $y_0 < 0, v_{y_0} < 0$
 - (b) $y_0 = 0, v_{y0} = 0$
 - (c) $y_0 > 0, v_{y_0} > 0$
- 2. Una partícula se mueve, en el eje x con aceleración $a_x=10~{\rm m/s^2}$, hasta una posición final x_f y velocidad final v_{xf} que lo hace en un tiempo $t_f=20~{\rm s.}$ Encuentre la posición inicial x_\circ y la $v_{y\circ}$. Haga los diagramas $a-t,\ v-t,\ x-t$ y v-x y por cada caso de un ejemplo real. Considere h=0.05
 - (a) $x_f < 0, v_{xf} > 0$
 - (b) $x_f < 0, v_{xf} = 0$
 - (c) $x_f > 0, v_{xf} < 0$
- 3. Una partícula se mueve, en el eje x con aceleración $a_x = 10 \text{ m/s}^2$, desde una posición inicial x_i y velocidad inicial v_{xi} que lo hace en un tiempo $t_i = 14$ s. Encuentre la posición final x_f y la v_f . Haga el diagrama v x t. Considere h = 0.01
 - (a) $x_i = 0, v_{xi} > 0$
 - (b) $x_i > 0, v_{xi} = 0$
 - (c) $x_i = 0, v_{xi} < 0$

1.2 Movimiento en 2D y 3D con aceleración constante en la dirección y

las ecuaciones de movimiento son

$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$

$$\vec{v} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$$

$$\vec{a} = \frac{dv_y}{dt}\vec{j} = (-10\vec{j}) \text{ m/s}^2$$

1

- 1. Una partícula parte del reposo $\vec{r} = 0$ m con una velocidad inicial $\vec{v_i} = (2\vec{i} + 3\vec{j})$ m/s. grafique su trayectoria hasta que la partícula cruce el eje x. De un ejemplo real.
- 2. Una partícula parte del reposo $\vec{r} = (-3\vec{i} + 4\vec{k})$ m con una velocidad inicial $\vec{v} = (2\vec{i} + 3\vec{j} + 4\vec{k})$ m/s. Dibuje la trayectoria hasta que la partícula cruce el plano xz.
- 3. Una pelota se lanza desde el techo $\vec{r} = (3\vec{j})$ m con una velocidad inicial $\vec{v_i} = (2\vec{i} + 3\vec{j} + 5\vec{k})$ m/s.
 - (a) dibuje la trayectoria hasta que la partícula llegue al suelo.
 - (b) determine el tiempo en que la pelota llega a una altura máxima
 - (c) en ese tiempo ubique las coordenadas de la pelota.
 - (d) determine el alcance vectorialmente.

1.3 Movimiento en 2D y 3D con aceleración constante en dos direcciones

las ecuaciones de movimiento son

$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$

$$\vec{v} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$$

$$\vec{a} = \frac{dv_x}{dt}\vec{i} + \frac{dv_y}{dt}\vec{j}$$

- 1. Una pelota se ubica en el techo de un edificio cuyas ubicación es $\vec{r} = (10\vec{i} + 10\vec{j} + 10\vec{k})$ m. Luego un niño patea dicha pelota con la velocidad $\vec{v}_p = 2\vec{i}$ m/s. Pero se encuentra con la sorpresa que hay un viento cuya velocidad es $\vec{v}_w = (-2\vec{i} + 4\vec{k})$ m/s. Determine la trayectoria de la pelota hasta que llegue al suelo.
- 2. La ecuaciones de la cinemática de una partícula para una aceleración en el eje y es $y=v_{yi}t+gt^2/2$ y una aceleración para el eje x es $x=v_{xi}t+a_xt^2/2$ ($v_{xi}=4$ m/s, $v_{yi}=10$ m/s, g=-10 m/s² y $a_x=2$ m/s²). Utilice lapiz y papel y demuestre que la trayectoria es

$$y = \frac{v_y}{a_x} \left(-v_x + \sqrt{v_x^2 + 2a_x x} \right) + \frac{g}{a_x^2} \left(-v_x + \sqrt{v_x^2 + 2a_x x} \right)^2$$

Dibuje en cualquier aplicativo dicha trayectoria.

1.4 Problema desafío

Un jugador de Golf golpea una bola con el driver ubicado en $\vec{r}=0$. La bola sale con velocidad inicial $\vec{v}=(5\vec{i}+2\vec{j})$ m/s. Pero resulta que esta presente una ráfaga de viento con una aceleración \vec{a}_w . Dibuje la trayectoria de la bola hasta que llegue al suelo, cuando

2

1.
$$\vec{a}_w = +2\vec{i} \text{ m/s}^2$$

$$2. \ \vec{a}_w = -\vec{i} \ \text{m/s}^2$$

3.
$$\vec{a}_w = (+2\vec{i} - \vec{k}) \text{ m/s}^2$$

4.
$$\vec{a}_w = (t^2/5)\vec{i}$$