Probabilidad Tarea II

Rubén Pérez Palacios Profesor: Dr. Ehyter Matías Martín González

20 de Septiembre 2020

Problemas

- 1. Convergencía en media r-ésima
 - a) Diferencias con convergencía en L_p . Esta permite convergencía con respecto de 0 .
 - b) ¿Porqué no se puede definir convergencúa en L_p para $p \in (0,1)$? O ¿sí se puede? Primero veamos que $||\cdot||_p$ ya no es métrica cuando $0 . Considermos el espacio <math>([0,2],B[0,2],\lambda)$ (donde λ es la medida de Lebesgue normalizada en [0,2]) y L_p con repecto a este espacio medible, y las siguientes indicadoras

$$\mathbb{1}_{[0,1)}, \mathbb{1}_{[1,2]}.$$

Recordemos que

$$E[|\mathbb{1}_A|^p]^{1/p} = E[\mathbb{1}_A^p]^{1/p} = E[\mathbb{1}_A]^{1/p} = P[A]^{1/p} < \infty,$$

por lo que $\mathbbm{1}_{[0,1)}$, $\mathbbm{1}_{[1,2]} \in L_p$. También es claro que la variable aleatoria $0 \in L_p$. Ahora si veamos lo siguiente

$$d(\mathbb{1}_{[0,1)}, -\mathbb{1}_{[1,2]}) = ||\mathbb{1}_{[0,1)} + \mathbb{1}_{[1,2]}||_p = ||\mathbb{1}_{[0,2]}||_p = E[|\mathbb{1}_{[0,2]}|^p]^{1/p} = P([0,2])^{1/p} = 1,$$

y también

$$d(\mathbb{1}_{[0,1)},0) = ||\mathbb{1}_{[0,1)}||_p = E[|\mathbb{1}_{[0,1)}|^p]^{1/p} = P([0,1))^{1/p} = \left(\frac{1}{2}\right)^{1/p},$$

$$d(0, -\mathbb{1}_{[1,2]}) = ||\mathbb{1}_{[1,2]}||_p = E[|\mathbb{1}_{[1,2]}|^p]^{1/p} = P([1,2])^{1/p} = \left(\frac{1}{2}\right)^{1/p}$$

Al ser 0 tenemos que

$$2\left(\frac{1}{2}\right)^{1/p} = \left(\frac{1}{2}\right)^{1/p-1} < 1,$$

por lo tanto

$$d(\mathbb{1}_{[0,1)}, -\mathbb{1}_{[1,2]}) > d(\mathbb{1}_{[0,1)}, 0) + d(0, -\mathbb{1}_{[1,2]}),$$

con lo que concluimos que $||\cdot||_p$ ya no es métrica cuando $0 . Esto genera que no podamos hablar convergencia con esta métrica en <math>L_p$ pero podria haber otra métrica que permita p>0. Al menos es lo que supongo quiseron decir cuaando nos dijeron que demostramos esto, pero estuve leyendo un poco e invesitgando y creo el problema en general es que si $1 entonces se cumple que para toda suceción <math>\{X_n\} \in L_p$ convergente se cumple que

$$\lim_{n\to\infty} X_n \in L_p,$$

pero esto no necesariamente es cierto si $0 , bajo la definición de que <math>X \in L_p$ ssi

$$E[|X|^p] < \infty.$$

Ya no tuve tiempo de desarrollar esta idea por hacer la otra demostración. Intentare seguirla.

c) Conjunto denso en \mathcal{L}_p

Un conjunto $S \in \mathcal{L}_p$ es denso si $\forall w \in S$ se cumple que para toda bola abierta de s interseca a L_p en un punto diferente a el, usando la métrica

$$d(x,y) = ||X - Y||_p$$

 $\forall s \in S$

- d) Ejemplo conjunto denso No lo encontre.
- 2. Pendiente
- 3. Sea X_1, \dots, X_n una colección de v.a. iid con distribución $\mathcal{U}[0,\theta]$ con $\theta > 0$ y desconocido.
 - a) Estimador de máxima verosimilitud de θ .

Primero veamos cual es la verosimilitud de nuestra muestra

$$L(\theta, x_1, \dots, x_n) = \prod_{i=1}^n f_{X_i}(x_i) = \prod_{i=1}^n f_{\mathcal{U}[0,\theta]}(x_i) = \frac{\prod_{i=1}^n \mathbb{1}_{[0,\theta](x_i)}}{\theta^n},$$

luego esta función es decreciente para $\theta \ge \max(x_1, \dots, x_n)$, y es 0 para $0 < theta < \max(x_1, \dots, x_n)$ por lo que su maximo es en $\theta = \max(x_1, \dots, x_n)$. Por lo tanto

$$\hat{\theta}_n = \max(x_1, \cdots, x_n).$$

- b) Ahora vemos las convergencias
 - Convergencia casi segura: Por lo visto en el Tarea 1 problema 4 tenemos que $\hat{\theta}_n$ converge al extremo derecho w_f , que en este caso es θ .

- Convergencia en Probabilidad:
 Esta se cumple puesto que convergen casis seguramente.
- Convergencia en L_p Aún no me sale
- c) Gráfica

4. Componentes

■ Convergencia casi segura

Si $X_n \to X$ casi seguramente entonces existe un N nulo tal que $\forall w \in N^c$ se cumple que $X_n(w) \to X(w)$, ahora como una función converge si y sólo si sus componentes convergen tenemos que $X_{n,i}(w) \to X_i(w), i=1,2$. Por lo que el mismo nulo de la convergencia casi segura original funciona para la convergencia casi segura de las componentes.

Si $X_{n,i}(w) \to X_i(w)$, i=1,2 casi seguramente entonces tenemos que existe un N_i nulo tal que $\forall w_i \in N_i^c$ se cumple que $X_{n,i}(w) \to X_i(w)$, entonces sea $N=N_1 \cup N_2$ tenemos que $\forall w \in N^c$ se cumple que $X_{n,i}(w) \to X_i(w)$, y como una función converge si y sólo si sus componentes convergen tenemos que $X_n(w) \to X(w)$. Por lo que la union de los nulos de la convergencia casi segura de las componentes funciona para la convergencia casi segura de la bivariada.

• Convergencia en Probabilidad

La ida se sigue del teorema del mape continuo.

Si $X_{n,i}(w) \to X_i(w), i = 1, 2$ en probabilidad entonces $P[|X_{n,i} - X_i| > \epsilon] \to 0$. Ahora veamos que por desigualdad del triangulo tenemos que

$$\{|X_{n,1}-X_1|<\epsilon/2\}\cap\{|X_{n,2}-X_2|<\epsilon/2\}\subset\{|X_n-X|<\epsilon\},$$

por complementos obtenemos

$$\{|X_n - X| > \epsilon\} \subset \{|X_{n,1} - X_1| > \epsilon/2\} \cup \{|X_{n,2} - X_2| > \epsilon/2\},$$

por subaditividad obtenemos que

$$P(|X_n - X| > \epsilon) \le P(|X_{n,1} - X_1| > \epsilon/2) \cup P(|X_{n,2} - X_2| > \epsilon/2),$$

por lo tanto concluimos que

$$X_n \xrightarrow{P} X$$