36 - 226 Introduction to Statistical Inference

Homework assignment 3

Due: Wednesday, February 6, 2013

- Write your full name, the course number, and the homework number at the top of each page.
- STAPLE your entire assignment together with a staple.
- Write clearly. Electronic submission of homework assignments is not accepted.
- 1. Wackerly 7.15. Suppose that $X_1, X_2, ..., X_m$ and $Y_1, Y_2, ..., Y_n$ are independent random samples, with the variables X_i normally distributed with mean μ_1 and variance σ_1^2 and the variables Y_i normally distributed with mean μ_2 and σ_2^2 . The difference between the sample means, $\bar{X} \bar{Y}$, is then a linear combination of m + n normally distributed random variables and, by Theorem 6.3, is itself normally distributed.
 - (a) Find $E(\bar{X} \bar{Y})$.
 - (b) Find $Var(\bar{X} \bar{Y})$.
 - (c) Suppose that $\sigma_1^2 = 2$, $\sigma_2^2 = 2.5$, and m = n. Find the sample sizes so that $(\bar{X} \bar{Y})$ will be within 1 unit of $(\mu_1 \mu_2)$ with probability 0.95. Hint: you are looking for the sample size such that $P(|\bar{X} \bar{Y} (\mu_1 \mu_2)| < 1) = 0.95$.
- 2. Wackerly 8.3. Suppose that $\hat{\theta}$ is an estimator for a parameter θ and $E(\hat{\theta}) = a\theta + b$ for some nonzero constants a and b.
 - (a) In terms of a, b, and θ , what is $B(\hat{\theta})$?
 - (b) Find a function of $\hat{\theta}$ say, $\hat{\theta}^*$ that is an unbiased estimator for θ .
- 3. Wackerly 8.4. Refer to Exercise 8.1. [Note: exercise 8.1 defines the $MSE(\hat{\theta})$.]
 - (a) If $\hat{\theta}$ is an unbiased estimator for θ , how does $MSE(\hat{\theta})$ compare to $V(\hat{\theta})$?
 - (b) If $\hat{\theta}$ is an biased estimator for θ , how does $MSE(\hat{\theta})$ compare to $V(\hat{\theta})$?
- 4. Wackerly 8.11. Let Y_1, Y_2, \ldots, Y_n denote a random sample of size n from a population with mean 3. Assume that $\hat{\theta}_2$ is an unbiased estimator of $E(Y^2)$ and that $\hat{\theta}_3$ is an unbiased estimator of $E(Y^3)$. Give an unbiased estimator for the third central moment of the underlying distribution. Hint: the third central moment is defined as $E[(Y \mu)^3]$.
- 5. Wackerly 8.12. The reading on a voltage meter connected to a test circuit is uniformly distributed over the interval $(\theta, \theta + 1)$, where θ is the true but unknown voltage of the circuit. Suppose that Y_1, Y_2, \ldots, Y_n denote a random sample of such readings.
 - (a) Show that \bar{Y} is a biased estimator of θ and compute the bias.
 - (b) Find a function of \bar{Y} that is an unbaised estimator of θ .
 - (c) Find the $MSE(\bar{Y})$ when \bar{Y} is used as an estimator of θ .

6. Wackerly 9.1. In Exercise 8.8, we considered a random sample of size 3 from an exponential distribution with density function given by

$$f(y) = \begin{cases} \begin{pmatrix} \left(\frac{1}{\theta}\right) e^{-y/\theta}, & y > 0, \\ 0, & \text{elsewhere,} \end{cases}$$

and determined that

$$\hat{\theta}_1 = Y_1, \quad \hat{\theta}_2 = \frac{Y_1 + Y_2}{2}, \quad \hat{\theta}_3 = \frac{Y_1 + 2Y_2}{3}, \text{ and, } \hat{\theta}_5 = \bar{Y}$$

are all unbiased estimators for θ . Find the efficiency of $\hat{\theta}_1$ relative to $\hat{\theta}_5$, of $\hat{\theta}_2$ relative to $\hat{\theta}_5$, and $\hat{\theta}_3$ relative to $\hat{\theta}_5$.

7. Wackerly 9.3. Let Y_1, Y_2, \ldots, Y_n denote a random sample from the uniform distribution on the interval $(\theta, \theta + 1)$. Let

$$\hat{\theta}_1 = \bar{Y} - \frac{1}{2}$$
, and $\hat{\theta}_2 = Y_{(n)} - \frac{n}{n+1}$.

- (a) Show that both $\hat{\theta}_1$ and $\hat{\theta}_2$ are unbiased estimators of θ .
- (b) Find the efficiency of $\hat{\theta}_1$ relative to $\hat{\theta}_2$. Hint: for $\hat{\theta}_2$, consider the Beta distribution.