3 一般の数ベクトル

今日は、ベクトルの線形独立・線形従属について (特に裏面では、定義に関して勘違いしやすいポイントについて) 演習を行っていきたいと思います. 以下で、ℝ は実数全体、ℂ は複素数全体を表すものとします. ここからは複素数はスカラー (定数) と考えるので、扱いが前回などとは異なることに注意してください (前回などは平面ベクトルと対応させる考え方を強調しましたが、ここからの扱いではベクトルではなくあくまでスカラーと考えます).

演習 3.1 次で与えられる 3 項実ベクトル (空間ベクトル) の組が (\mathbb{R} 上で) 線形独立 か線形従属かを調べよ.

$$(1) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \qquad (2) \begin{pmatrix} \pi \\ -\pi \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 6 \end{pmatrix}$$

$$(3) \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad (4) \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

演習 3.2 次で与えられる 3 項複素ベクトルの組が $(\mathbb{C}$ 上で) 線形独立か線形従属かを 調べよ.

$$(1) \begin{pmatrix} \sqrt{-1} \\ \sqrt{-1} \\ \sqrt{-1} \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 + \sqrt{-1} \end{pmatrix}$$

$$(2) \begin{pmatrix} \sqrt{-1} \\ -1 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 - \sqrt{-1} \\ 0 \\ 0 \end{pmatrix}$$

$$(3) \begin{pmatrix} 2+\sqrt{-1} \\ -\sqrt{-1} \\ 1 \end{pmatrix}, \begin{pmatrix} 1+3\sqrt{-1} \\ 1-\sqrt{-1} \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$

$$(4) \begin{pmatrix} 2+\sqrt{-1} \\ \sqrt{-1} \\ 1 \end{pmatrix}, \begin{pmatrix} 2-\sqrt{-1} \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

K を $\mathbb R$ または $\mathbb C$ とするとき, m 個の n 項数ベクトル $\mathbf a_1,\ldots,\mathbf a_m\in K^n$ について, 次の二つの条件を考えてみます:

- (a) $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_m$ が線形独立
- (a') a_1, \ldots, a_m のうちどの 2 つも線形独立

これらが異なる条件であることは、例えば前々回の演習 1.2 で分かると思います. しかし、今度はその否定命題として、次の(b) と(b') とを考えてみます:

- (b) $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_m$ が線形従属
- (b') a_1,\ldots,a_m のうち、ある a_i,a_j $(i\neq j)$ について $a_i=ca_j$ (c: 定数) と書けるこれらも異なる条件なのですが、(b) と (b') を混同する人が非常に多いので気を付けてください。

演習 3.3 (1) a_1 , a_2 が線形従属であっても a_1 が a_2 のスカラー倍にはならないことがある. そのような例を挙げよ.

- (2) しかし、次は成立する: a_1 a_2 が線形従属 \Leftrightarrow a_1 , a_2 のうちどちらかがどちらかのスカラー倍である. これを示せ.
- (3) 上記で, (b') が実際に (a') の否定命題であることを示せ (つまり, (a') が成立しない ⇔ (b') が成立する, を示せ).
- (4) 3 項ベクトルの組で、上記の (b) が成り立つが (b') は成り立たないような例を 挙げよ (演習 3.1, 3.2 に該当するものがあればそれを選んでもよい).

演習 3.4~K を $\mathbb R$ または $\mathbb C$ とする. K 上の数ベクトル a_1,\ldots,a_m が線形従属ならば、ある自然数 $i~(1\leq i\leq m)$ が存在して, a_i が a_i 以外の他のベクトルたちの線形結合で表せる (つまり, a_i が他の m-1 個のベクトルたちで張られる空間に平行である) こと, すなわち, ある定数 $c_1,\ldots,c_{i-1},c_{i+1},\ldots,c_m\in K$ が存在して,

$$a_i = c_1 a_1 + \dots + c_{i-1} a_{i-1} + c_{i+1} a_{i+1} + \dots + c_m a_m$$

と表せることを示せ.