M3/4/5P12 Solutions #4

Rebecca Bellovin

- 1. (a) $Z(G) = \{\pm 1\}$, so two conjugacy classes are $\{1\}$ and $\{-1\}$. In addition, $i^{-1} = -1$, $j^{-1} = -j$, and $k^{-1} = -k$. Thus, $(-j)i(-j)^{-1} = jij^{-1} = -ijj^{-1} = -i$ and $(-k)i(-k)^{-1} = kik^{-1} = -ikk^{-1} = -i$, so $\{\pm i\}$ is another conjugacy class. Similar reasoning shows that the other conjugacy classes are $\{\pm j\}$ and $\{\pm k\}$.
 - (b) There are many ways to see this. For example, Q_8 has only one element of order 2, namely -1, while D_8 has five, namely s^2 , t, s^2 , t, t.
 - (c) Let (V, ρ_V) be a 1-dimensional representation of Q_8 . A 1-dimensional representation must be constant on conjugacy classes of Q_8 , so $\rho_V(i) = \rho_V(-i)$, and $\rho_V(1) = \rho_V(i \cdot (-i)) = \rho_V(i)^2$, so $\rho_V(i) = \pm 1$. Similarly, $\rho_V(j) = \pm 1$ and since ij = k, $\rho_V(k) = \rho_V(i)\rho_V(j)$. Thus, there are four 1-dimensional representations of Q_8 .
 - (d) Q_8 has order 8 and we have found four 1-dimensional representations. Since $8 = \sum_i (\dim V_i)^2$, where the sum runs over the irreducible representations V_i of Q_8 , and Q_8 has five conjugacy classes, there is one more representation and it is 2-dimensional. The character table so far is

	{1}	$\{-1\}$	$\{\pm i\}$	$\{\pm j\}$	$\{\pm k\}$
conjugacy class size	1	1	2	2	2
χ_{++}	1	1	1	1	1
χ_{+-}	1	1	1	-1	-1
χ_{-+}	1	1	-1	1	-1
$\chi_{}$	1	1	-1	-1	1
χ_5	2	?	?	?	?

Column orthogonality implies that $\chi_{++}(1)\overline{\chi_{++}(-1)} + \chi_{+-}(1)\overline{\chi_{+-}(-1)} + \chi_{-+}(1)\overline{\chi_{--}(-1)} + \chi_{-+}(1)\overline{\chi_{--}(-1)} + \chi_{5}(1)\overline{\chi_{5}(-1)} = 0$, so $\chi_{5}(-1) = -2$. Column orthogonality further implies that

$$4 = \chi_{++}(i)^{2} + \chi_{+-}(i)^{2} + \chi_{-+}(i)^{2} + \chi_{--}(i)^{2} + \chi_{5}(i)\overline{\chi_{5}(-i)}$$

$$4 = \chi_{++}(j)^{2} + \chi_{+-}(j)^{2} + \chi_{-+}(j)^{2} + \chi_{--}(j)^{2} + \chi_{5}(j)\overline{\chi_{5}(-j)}$$

$$4 = \chi_{++}(k)^{2} + \chi_{+-}(k)^{2} + \chi_{-+}(k)^{2} + \chi_{--}(k)^{2} + \chi_{5}(k)\overline{\chi_{5}(-k)}$$

But this implies that $\chi_5(i) = \chi_5(j) = \chi_5(k) = 0$. Thus, our character table is

	{1}	$\{-1\}$	$\{\pm i\}$	$\{\pm j\}$	$\{\pm k\}$
conjugacy class size	1	1	2	2	2
	1	1	1	1	1
χ_{+-}	1	1	1	-1	-1
χ_{-+}	1	1	-1	1	-1
χ	1	1	-1	-1	1
χ_5	2	-2	0	0	0

2. Since $|G| = \sum_i (\dim V_i)^2 = \sum_i 1$, there are |G| irreducible representations of G. Therefore, $|G| = \dim C(G) \ge \dim C_{cl}(G) \ge |G|$ and so each element of G is its own conjugacy class. It follows that G = Z(G) and G is abelian.

1

3. (a) The conjugacy classes of S_3 are $\{e\}$, $\{(1\ 2), (1\ 3), (2\ 3)\}$, and $\{(1\ 2\ 3), (1\ 3\ 2)\}$. There are two 1-dimensional representations, namely the trivial representation and the sign representation, and one 2-dimensional representation. The character table is

- (b) $\chi_{V^*} = \overline{\chi_V}$ so $\chi_{V^*}(e) = 2$, $\chi_{V^*}(1\ 2) = 0$, and $\chi_{V^*}(1\ 2\ 3) = -1$. $\chi_{V\otimes V} = \chi_V \cdot \chi_V$, so $\chi_{V\otimes V}(e) = 4$, $\chi_{V\otimes V}(1\ 2) = 0$, and $\chi_{V\otimes V}(1\ 2\ 3) = 1$. $\chi_{\text{Hom}(V,V)} = \overline{\chi_V} \cdot \chi_V$, so $\chi_{\text{Hom}(V,V)}(e) = 4$, $\chi_{\text{Hom}(V,V)}(1\ 2) = 0$, and $\chi_{\text{Hom}(V,V)}(1\ 2\ 3) = 1$.
- (c) $V \otimes V$ and Hom(V, V) have the same character χ . Furthermore,

$$\langle \chi, \chi_{triv} \rangle = \frac{1}{6} (4 + 3 \cdot 0 + 2 \cdot 1) = 1$$
$$\langle \chi, \chi_{sign} \rangle = \frac{1}{6} (4 + 3 \cdot 0 + 2 \cdot 1) = 1$$
$$\langle \chi, \chi_V \rangle = \frac{1}{6} (8 + 3 \cdot 0 + 2 \cdot (-1)) = 1$$

so $\chi = \chi_{triv} + \chi_{sign} + \chi_V$.

(d) We compute

$$\langle \phi, \chi_{triv} \rangle = \frac{1}{6} (4 + 3 \cdot 0 + 2 \cdot (-5)) = -1$$
$$\langle \phi, \chi_{sign} \rangle = \frac{1}{6} (4 + 3 \cdot 0 + 2 \cdot (-5)) = -1$$
$$\langle \phi, \chi_V \rangle = \frac{1}{6} (8 + 3 \cdot 0 + 2 \cdot (-5)(-1)) = 3$$

so $\phi = -\chi_{triv} - \chi_{sign} + 3\chi_V$. But ϕ is not the character of a representation of S_3 because the trivial and sign representation can't appear with negative multiplicity.

4. (a) This function is the character of the restriction of either 3-dimensional irreducible representation of S_4 to A_4 . It is irreducible because

$$\langle \chi_U, \chi_U \rangle = \frac{1}{12} \left(9 + 4 \cdot 0^2 + 4 \cdot 0^2 + 3 \cdot (-1)^2 \right) = 1$$

Since $\chi_U(e) = 3$, the corresponding representation is 3-dimensional.

- (b) Since $|A_4| = 12 = 1^2 + 3^2 + \sum_i (\dim V_i)^2$, the squares of the remaining representations of A_4 add to 2. Therefore, there are two more 1-dimensional representations.
- (c) We need $\langle \chi_3, \chi_U \rangle = \langle \chi_4, \chi_U \rangle = 0$. But

$$0 = \langle \chi_3, \chi_U \rangle = \frac{1}{12} (3 + 4 \cdot 0 + 4 \cdot 0 + 3 \cdot \chi_3((1\ 2)(3\ 4))(-1)) = \frac{1}{12} (3 - 3\chi_3((1\ 2)(3\ 4)))$$
$$0 = \langle \chi_4, \chi_U \rangle = \frac{1}{12} (3 + 4 \cdot 0 + 4 \cdot 0 + 3 \cdot \chi_4((1\ 2)(3\ 4))(-1)) = \frac{1}{12} (3 - 3\chi_4((1\ 2)(3\ 4)))$$

It follows that $\chi_3((1\ 2)(3\ 4)) = \chi_4((1\ 2)(3\ 4)) = 1$.

(d) We also need $\langle \chi_3, \chi_{triv} \rangle = 0$, so

$$0 = \langle \chi_3, \chi_{triv} \rangle = \frac{1}{12} (1 + 4 \cdot \chi_3(1 \ 2 \ 3) + 4 \cdot \chi_3(1 \ 3 \ 2) + 3 \cdot 1) = \frac{1}{12} (4 + 4 \cdot \chi_3(1 \ 2 \ 3) + 4 \cdot \chi_3(1 \ 3 \ 2))$$

Since χ_3 and χ_4 correspond to 1-dimensional representations, their values are roots of unity. If $\chi_3(1\ 2\ 3) = a + bi$, then since $1 + \chi_3(1\ 2\ 3) + \chi_3(1\ 3\ 2) = 0$, we have $\chi_3(1\ 3\ 2) = -1 - a - bi$. It follows that

$$1 = |\chi_3(1\ 3\ 2)|^2 = (1+a)^2 + b^2 = 1 + 2a + a^2 + b^2 = 2 + 2a$$

so a = -1/2 and $b = \pm \sqrt{3}/2$.

It follows that up to switching χ_3 and χ_4 , $\chi_3(1\ 2\ 3) = \omega$, $\chi_3(1\ 3\ 2) = \omega^2$, $\chi_4(1\ 2\ 3) = \omega^2$, and $\chi_4(1\ 3\ 2) = \omega$.

- (e) The kernel of χ_3 and χ_4 is the subgroup $N := \{e, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$, so χ_3 and χ_4 arise from homomorphisms $\rho_3, \rho_4 : A_4 \to A_4/N \cong C_3 \to \mathrm{GL}_1(\mathbf{C})$.
- 5. We draw a table of the restrictions, where the notation for the representations of S_4 is as in the notes:

	$ \{e\}$	$\{s, s^{-1}\}$	$\{s^{2}\}$	$\{t, s^2t\}$	$\{st, s^3t\}$
conjugacy class size	1	2	1	2	2
$\chi_{triv} _{D_8}$	1	1	1	1	1
$\chi_{sign} _{D_8}$	1	-1	1	1	-1
$\chi_W _{D_8}$	3	-1	-1	-1	1
$\chi_{W'} _{D_8}$	3	1	-1	-1	-1
$\chi_U _{D_8}$	2	0	2	2	0

The character table for D_8 is

To summarize:

	$ \{e\}$	$\{s,s^{-1}\}$	$\{s^2\}$	$\{st,s^{-1}t\}$	$\{t,s^2t\}$
size of conjugacy class	1	2	1	2	2
$\chi_{ m triv}(g)$	1	1	1	1	1
$\chi_{+-}(g)$	1	1	1	-1	-1
$\chi_{-+}(g)$	1	-1	1	-1	1
$\chi_{}(g)$	1	-1	1	1	-1
$\chi_2(g)$	2	0	-2	0	0

We compute the inner products of the restricted characters with the irreducible characters of D_8 :

	χ_{triv}	χ_{+-}	χ_{-+}	$\chi_{}$	χ_2
$\chi_{triv} _{D_8}$	1	0	0	0	0
$\chi_{sign} _{D_8}$	0	0	0	1	0
$\chi_W _{D_8}$	0	0	1	0	1
$\chi_{W'} _{D_8}$	0	1	0	0	1
$\chi_U _{D_8}$	1	0	0	1	0

Note that since all of the class functions here are real, we don't have to keep track of order.

$$\chi_{triv}|_{D_8} = \chi_{triv}$$

$$\chi_{sign}|_{D_8} = \chi_{--}$$

$$\chi_{W}|_{D_8} = \chi_{-+} + \chi_2$$

$$\chi_{W'}|_{D_8} = \chi_{+-} + \chi_2$$

$$\chi_{U}|_{D_8} = \chi_{triv} + \chi_{--}$$

6. Write $C_3 := \langle g : g^3 = e \rangle$. Then $\mathbf{C}[C_3]$ has basis $[e], [g], [g^2]$, and by multiplicativity, it is enough to decide where to send [g]. We define a map

$$\mathbf{C}[C_3] \to \mathbf{C} \oplus \mathbf{C} \oplus \mathbf{C}$$

$$[e] \mapsto (1, 1, 1)$$

$$[g] \mapsto (1, \omega, \omega^2)$$

$$[g^2] \mapsto (1, \omega^2, \omega)$$

where $\omega = e^{2\pi i/3}$.

Similarly, if we set $\zeta := e^{2\pi i/n}$, we may define

$$\mathbf{C}[C_n] \to \mathbf{C}^{\oplus n}$$

 $[g] \mapsto (1, \zeta, \dots, \zeta^{n-1})$

7. We have $\pi(a,b) := a$, so

$$\pi((a,b)(a',b')) = \pi(aa',bb') = aa' = \pi(a,b)\pi(a',b')$$

On the other hand, $\sigma(a) := (a,0)$ so $\sigma(1) = (1,0) \neq 1_{A \oplus B}$.