

Yiming MA

Contents

1	Introduction	2
	1.1 Motivation	2
	1.1.1 A Deterministic Model	2
	1.1.2 A Stochastic Model	
	1.1.3 A Network Model	
	1.1.4 A Random Network Model	
2	Probability and Random Variables	4
	2.1 Probability Theory	4
	2.2 Random Variables	
n	Discourts Wisses Manhoos Chair	0
3	Discrete-Time Markov Chain	9
	3.1 Discrete-Time Markov Chains	
		S
	3.1.2 Transition Matrices and Transition Functions	10
	3.1.3 Chapman-Kolmogorov Equations	10
	3.1.4 Stationary Distributions	11
4	Continuous-Time Markov Chain	12
5	Continuous State Space Markov Processes	13
6	Stochastic Particle Systems	14
7	Networks	15
8	Random Networks	16

Introduction

1.1 Motivation

Suppose we are modelling COVID. Let

- S be he number of the susceptible;
- *I* be the number of the infected;
- R be the number of the removed (those who have either recovered or died).

1.1.1 A Deterministic Model

A deterministic model might be

$$\begin{split} \dot{S} &= - \, \beta I S, \\ \dot{I} &= \! \beta I S - \gamma I, \\ \dot{R} &= \! \gamma I. \end{split}$$

But there are some problems in this model:

- S, I and R are integers, so it does not make sense to talk about \dot{S} , \dot{I} and \dot{R} .
- There is variability in when contacts are made and lead to infection.

1.1.2 A Stochastic Model

A better model might be stochastic

$$\mathbb{P}S \to S - 1 \& I \to I - 1 \text{ in } \Delta t = \beta I S \Delta t + o(\Delta t)$$

$$\mathbb{P}I \to I - 1 \& R \to R + 1 \text{ in } \Delta t = \gamma I \Delta t + o(\Delta t).$$

The problem of this model is that contacts are usually not made uniformally in the whole population.

1.1.3 A Network Model

We can use a network model, in which nodes represent individuals and edge weights represent contact rates, to avoid uniform contacts. But tis is unrealistic: the network is too big to represent 60 million people in the UK.

1.1.4 A Random Network Model

Based on the network model, we can make probability distributions on networks and derive probabilistic conclusions over the combination of stochastic dynamics and randomness of networks.

Probability and Random Variables

2.1 Probability Theory

Suppose we are doing an experiment which have different random outcomes.

Definition 2.1.1 (Sample Spaces). The **sample space** of the experiment is the set of all possible outcomes, denoted as Ω .

Definition 2.1.2 (Sigma Algebra). The σ -algebra of subsets of Ω , denoted as \mathcal{F} , is a set of subsets of Ω which satisfies:

- $\Omega \in \mathcal{F}$;
- $A \in \mathcal{F} \implies A^c \in \mathcal{F}$;
- $\{A_i|i\in\mathcal{I}\}\subset\mathcal{F}$ with \mathcal{I} being countable $\implies \bigcup_{i\in\mathcal{I}}A_i\in\mathcal{F}$.

Remark. We say \mathcal{I} is countable if there exists a one-to-one map from \mathcal{I} into \mathbb{Z} , so "countable" includes "finite".

Example 2.1.1. If Ω is countable, we usually take $\mathcal{F} = 2^{\Omega}$, which is the power set of Ω .

Example 2.1.2. When Ω is not countable, e.g. [0,1], if you allow Axiom of Choice ¹, then there exist unmeasurable subsets, and we exclude them from \mathcal{F} , i.e. \mathcal{F} is the set of all Lebesgue-measurable subsets on [0,1].

Definition 2.1.3 (Events). The members of \mathcal{F} are called **events**.

Definition 2.1.4 (Probability). $\mathbb{P}[\cdot]: \mathcal{F} \mapsto \mathbb{R}$ is called a probability if

- $\mathbb{P}[A] \in [0,1], \forall A \in \mathcal{F};$
- $\mathbb{P}[\Omega] = 1$;
- $\mathbb{P}[\cdot]$ satisfies the **countable additivity**: $\forall \{A_i | i \in \mathcal{I}\} \subset \mathcal{F}$, where \mathcal{I} is a countable set, if A_i 's are disjoint, then

$$\mathbb{P}\left[\bigcup_{i\in\mathcal{I}}A_i\right] = \sum_{i\in\mathcal{I}}\mathbb{P}\left[A_i\right].$$

¹A Cartesian product of a collection of nonempty sets is nonempty.

Definition 2.1.5 (Independence). Say $A, B \in \mathcal{F}$ are independent if

$$\mathbb{P}\left[A \cap B\right] = \mathbb{P}[A]\mathbb{P}[B].$$

Definition 2.1.6 (Conditional Probabilities). If $\mathbb{P}[B] > 0$, then the **conditional probability** $\mathbb{P}[A|B]$ is defined by

$$\mathbb{P}\left[A|B\right] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}, \quad \forall A \in \mathcal{F}.$$

Definition 2.1.7 (Partitions). $\{B_i|i\in\mathcal{I}\}$ is called a **partition** of the sample space Ω if:

- B_i 's are **pairwise disjoint**: $B_i \cap B_j = \emptyset$, $\forall i, j \in \mathcal{I}$, $i \neq j$;
- $B_i \neq \emptyset, \forall i \in \mathcal{I};$
- $\{B_i | i \in \mathcal{I}\}$ covers Ω : $\bigcup_{i \in \mathcal{I}} B_i = \Omega$.

Theorem 2.1.1 (The Law of Total Probability). Let $\{B_i|i\in\mathcal{I}\}$ be a countable partition of Ω , with $B_i\in\mathcal{F}$ and $\mathbb{P}[B_i]>0$, $\forall i\in\mathcal{I}$. Then $\forall A\subset\mathcal{F}$, we have

$$\mathbb{P}\left[A\right] = \sum_{i \in \mathcal{T}} \mathbb{P}\left[A|B_i\right] \mathbb{P}\left[B_i\right].$$

Theorem 2.1.2 (Bayes' Rule). For any events A and B, if $\mathbb{P}[A] > 0$ and $\mathbb{P}[B] > 0$, then

$$\mathbb{P}\left[B|A\right] = \frac{\mathbb{P}\left[A|B\right]\mathbb{P}[B]}{\mathbb{P}[A]}.$$

Furthermore, if $\{B_i|i\in\mathcal{I}\}\$ is a countable partition of Ω , with $B_i\in\mathcal{F}$ and $\mathbb{P}[B_i]>0$, $\forall i\in\mathcal{I}$, then

$$\mathbb{P}\left[B_i|A\right] = \frac{\mathbb{P}\left[A|B_i\right]\mathbb{P}[B_i]}{\sum_{i\in\mathcal{I}}\mathbb{P}\left[A|B_i\right]\mathbb{P}\left[B_i\right]}.$$

Example 2.1.3. Suppose the true positive rate \mathbb{P} (tests positive|has COVID) is 0.99 and the false positive rate \mathbb{P} (tests positive|does not have COVID) is 0.01. Suppose in the population, the probability of getting contracted with COVID is 0.001, i.e. \mathbb{P} (has COVID) = 0.001, what is the probability that a person has COVID given his/her test is positive?

Sol.

 \mathbb{P} (has COVID|tests positive)

$$= \frac{\mathbb{P}\left(\text{tests positive}|\text{has COVID}\right)\mathbb{P}\left(\text{has COVID}\right)}{\mathbb{P}(\text{tests positive})}$$

- $= \hspace{0.1in} \mathbb{P} \left(\text{tests positive} | \text{has COVID} \right) \mathbb{P} \left(\text{has COVID} \right)$
 - $\div \left[\mathbb{P} \left(\text{tests positive} | \text{has COVID} \right) \mathbb{P} \left(\text{has COVID} \right) \right.$

 $+\mathbb{P}\left(\text{tests positive}|\text{does not have COVID}\right)\mathbb{P}\left(\text{does not have COVID}\right)$

$$= \frac{0.99 \times 0.001}{0.99 \times 0.001 + 0.01 \times (1 - 0.001)}$$

 $\approx 0.090.$

2.2 Random Variables

Definition 2.2.1 (Measurable Functions). Let $(\Omega, \mathcal{F}), \mathbb{P}$) and $(\mathbb{R}, \Sigma, \mathcal{L})$ be two measurable spaces, where \mathcal{L} is the Lebesgue measure. For any function $f : \Omega \to \mathbb{R}$, if it satisfies $\forall A \in \Sigma, f^{-1}(A) \in \mathcal{F}$, then f is said to be **measurable**.

Remark. $(\Omega, \mathcal{F}, \mathbb{P})$ and $(\mathbb{R}, \Sigma, \mathcal{L})$ can be generalized:

Let (X, Σ) and (Y, T) be measurable spaces, meaning that X and Y are sets equipped with respective σ -algebras Σ and T. A function $f: X \mapsto Y$ is said to be **measurable** if for every $E \in T$ the pre-image of E under f is in Σ ; i.e. $\forall E \in T$,

$$f^{-1}(E) := \{x \in X | f(x) \in E\} \in \Sigma.$$

Definition 2.2.2 (Random Variables). A random variable is a measurable function $X : \Omega \to \mathbb{R}$.

Definition 2.2.3 (Cumulative Distribution Functions). The **cumulative distribution function** of a random variable X is defined as

$$F(x) = \mathbb{P}\left[X \le x\right]$$

Definition 2.2.4 (Discrete Random Variables). If $X(\Omega)$ is countable, then X is called **discrete**.

Definition 2.2.5 (Probability Mass Functions). The **probability mass function** of a discrete random variable X is defined as

$$\pi(x) = \mathbb{P}[X = x], \quad \forall x \in X(\Omega).$$

Definition 2.2.6 (Continuous Random Variables & Probability Density Functions). For a random variable X, if its cumulative distribution function satisfies

$$F(x) = \int_{-\infty}^{x} f(y) \, \mathrm{d}y$$

for some $f \in \mathcal{L}^1(\mathbb{R})$, then X is said to be **continuous**, and f is its **probability density function**.

Remark. It is possible to have mixtures. For example, X can have a positive probability on a particular point and continuous parts on other points.

Definition 2.2.7 (Expectation). The **expectation** of a random variable X is

$$\mathbb{E}[X] := \int_{\Omega} X \, d\mathbb{P} = \begin{cases} \sum_{x \in X(\Omega)} x \pi(x) & X \text{ is discrete} \\ \int_{X(\Omega)} x f(x) \, dx & X \text{ is continuous} \end{cases}$$

Remark. The expectation may be infinite or even undefined.

Definition 2.2.8 (Variance). The variance of a random variable X is

$$\operatorname{Var}[X] := \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \mathbb{E}\left[X^2 \right] - \mathbb{E}[X]^2.$$

Definition 2.2.9 (Covariance). The **covariance** of two random variables X and Y is

$$\operatorname{Cov}[X,Y] = \mathbb{E}\left[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])\right] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

Definition 2.2.10 (Uncorrelated Random Variables). If Cov[X, Y] = 0, then X and Y are called uncorrelated.

Proposition 2.2.1. If X and Y are two independent random variables, then they are also uncorrelated. But the opposite is generally not true, except for Gaussians.

We can extend to random viarbles taking values in \mathbb{R}^n .

- For cumulative distribution functions, use the component-wise \leq instead.
- For Var[X], use $\mathbb{E}[(X \mathbb{E}[X])(X \mathbb{E}[X])^T]$ which is a $n \times n$ matrix.
- For Cov[X, Y], use $\mathbb{E}[(X \mathbb{E}[X])(Y \mathbb{E}[Y])^T]$.
- X and Y are independent if events $\{X \leq x\}$, $\{Y \leq y\}$ are independent, $\forall x, y$.
 - For X, Y being discrete, this is equivalent to $\pi(x,y) = \pi^X(x)\pi^Y(y)$.
 - For X, Y being continuous, this is equivalent to $f(x,y) = f^X(x)f^Y(y)$.

Theorem 2.2.1 (The Weak Law of Large Numbers). Let X_k , $k = 1, 2, \dots, X_n, \dots$ be independent and identically distributed random variables with $\mu = \mathbb{E}[X_k] < \infty$, then

$$\bar{X}_n := \frac{1}{n} \sum_{k=1}^n X_k \xrightarrow{d} \mu, \text{ as } n \to \infty,$$

where $\stackrel{d}{\rightarrow}$ means convergence in distribution ². This means the CDF of \bar{X}_n converges to the CDF of μ .

Equivalently,

$$\mathbb{E}\left[g\left(\bar{X}_n\right)\right] \to g(\mu), \ as \ n \to \infty,$$

for any bounded and continuous function g. This type of convergence is called the **weak onvergence**. Or \bar{X}_n converges to μ **in probability** $(\bar{X}_n \stackrel{\mathbb{P}}{\to} \mu)$:

$$\mathbb{P}\left[\left|\bar{X}_n - \mu\right| > \epsilon\right] \to 0, \ as \ n \to \infty, \ \forall \epsilon > 0.$$

Theorem 2.2.2 (The Strong Law of Large Numbers). Let X_k , $k = 1, 2, \dots, X_n, \dots$ be independent and identically distributed random variables with $\mu = \mathbb{E}[X_k] < \infty$, then

$$\bar{X}_n \xrightarrow{a.s.} \mu,$$

where the almost surely convergence means

$$\mathbb{P}\left[\lim_{n\to\infty}\bar{X}_n=\mu\right]=1.$$

Theorem 2.2.3 (Central Limit Theorem). Let X_k , $k = 1, 2, \dots, X_n, \dots$ be independent and identically distributed random variables with $\mu = \mathbb{E}[X_k] < \infty$ and $0 < \sigma^2 := \operatorname{Var}[X_k] < \infty$, then

$$\frac{\sqrt{n}}{\sigma} \left(\bar{X}_n - \mu \right) \xrightarrow{d} \mathcal{N}(0, 1).$$

²Also called **convergence in law**.

Theorem 2.2.4 (Large Deviation Principle). Let X_k , $k = 1, 2, \dots, X_n, \dots$ be independent and identically distributed random variables. For any interval $J \subset \mathbb{R}$,

$$\mathbb{P}\left[\bar{X}_n \in J\right] \approx \exp\left(-n \min_{x \in J} I(x)\right),$$

meaning

$$\frac{1}{n}\log \mathbb{P}\left[\bar{X}_n \in J\right] \to -\min_{x \in J} I(x).$$

If we know the probability distribution of X_k , an explicit expression for the rate function can be obtained. This is given by a Legendre-Fenchel transformation,

$$I(x) = \sup_{\theta > 0} \theta x - \lambda(\theta),$$

where $\lambda(\theta) = \log \mathbb{E}\left[e^{\theta X_k}\right]$ is called the cumulant generating function (CGF).

Definition 2.2.11 (Stochastic Processes). A **stochastic process** $\{X(t)|t \in T\}$ is a collection of random variables. That is, for each $t \in T$, X(t) is a random variable.

- The index t is often interpreted as time and, as a result, we refer to X(t) as the **state** of the process at time t.
- The set T is called the **index set** of the process.
 - When T is a countable set, the process is said to be a **discrete-time** process.
 - If T is an inverval of the real line, the stochastic process is said to be a continuous-time process.
- The state space of a stochastic process is defined as the set of all possible values that the random variables X(t) can assume.

Discrete-Time Markov Chain

3.1 Discrete-Time Markov Chains

Definition 3.1.1 (Discrete-Time Stocastic Processes). A discrete-time stochastic process with state space S is a sequence $\{Y_n|n\in\mathbb{N}\}$ of random variables taking values in S.

Definition 3.1.2 (Discrete-Time Markov Chains). Let $\{X_n|n\in\mathbb{N}\}$ be a discrete-time stochastic process with a discrete state space S. The process is called a **Markov chain**, if for all $A\subset S$, $n\in\mathbb{N}$ and $s_0,\dots,s_n\in S$,

$$\mathbb{P}\left[X_{n+1} \in A | X_n = s_n, \dots X_0 = s_0\right] = \mathbb{P}\left[X_{n+1} \in A | X_n = s_n\right].$$

Proposition 3.1.1. For any Markov chain $\{X_n|n \in \mathbb{N}\}$, conditional on the present, the past and the future are independent, i.e. $\forall n \in \mathbb{N}_+, \ \forall s_n \in S, \ X_{n+1}|X_n = s \ and \ X_{n-1}|X_n = s \ are independent.$

Proof.

$$\begin{split} & \mathbb{P}\left[X_{n+1} = s_{n+1}, X_{n-1} = s_{n-1} | X_n = s_n\right] \\ & = \frac{\mathbb{P}\left[X_{n-1} = s_{n-1}, X_n = s_n, X_{n+1} = s_{n+1}\right]}{\mathbb{P}\left[X_n = s_n\right]} \\ & = \mathbb{P}\left[X_{n-1} = s_{n-1}\right] \cdot \mathbb{P}\left[X_n = s_n | X_{n-1} = s_{n-1}\right] \cdot \mathbb{P}\left[X_{n+1} = s_{n+1} | X_n = s_n, X_{n-1} = s_{n-1}\right] \cdot \frac{1}{\mathbb{P}\left[X_n = s_n\right]} \\ & = \mathbb{P}\left[X_{n-1} = s_{n-1}\right] \cdot \mathbb{P}\left[X_n = s_n | X_{n-1} = s_{n-1}\right] \cdot \mathbb{P}\left[X_{n+1} = s_{n+1} | X_n = s_n\right] \cdot \frac{1}{\mathbb{P}\left[X_n = s_n\right]} \\ & = \mathbb{P}\left[X_{n-1} = s_{n-1}\right] \cdot \frac{\mathbb{P}\left[X_{n-1} = s_{n-1} | X_n = s_n\right] \cdot \mathbb{P}\left[X_n = s_n\right]}{\mathbb{P}\left[X_{n-1} = s_{n-1}\right]} \cdot \mathbb{P}\left[X_{n+1} = s_{n+1} | X_n = s_n\right] \cdot \frac{1}{\mathbb{P}\left[X_n = s_n\right]} \\ & = \mathbb{P}\left[X_{n-1} = s_{n-1} | X_n = s_n\right] \cdot \mathbb{P}\left[X_{n+1} = s_{n+1} | X_n = s_n\right] \end{split}$$

3.1.1 Homogeneity

Definition 3.1.3 (Homogeneity). A Markov chain $\{X_n|n\in\mathbb{N}\}$ is **homogeneous** if for all $A\subset S$, $n\in\mathbb{N}$ and $s\in S$,

$$\mathbb{P}\left[X_{n+1} \in A | X_n = s\right] = \mathbb{P}\left[X_1 \in A | X_0 = s\right].$$

Example 3.1.1 (Random Walk with Boundaries). Let $\{X_n|x\in\mathbb{N}\}$ be a **simple random walk** on $S=\{1,\cdots L\}$ with $p(x,y)=p\delta_{y,x+1}+q\delta_{y,x-1}$. The boundary conditions are

- **periodic** if p(L, 1) = p, p(1, L) = q,
- **absorbing** if p(L, L) = 1, p(1, 1) = 1,
- **closed** if p(L, L) = p, p(1, 1) = q,
- reflecting if p(L, L-1) = 1, p(1, 2) = 1.

3.1.2 Transition Matrices and Transition Functions

Definition 3.1.4 (One-Step Transition Matrices). For a homogeneous discrete-time Markov chain $\{X_n|n\in\mathbb{N}\}$ taking values in $\{s_1,s_2,s_3,\cdots,s_n,\cdots\}$, its **one-step transition matrix** P is defined

$$P_{i,j} = \mathbb{P}\left[X_{n+1} = s_j | X_n = s_i\right].$$

Remark. The sum of each row of a one-step transition matrix is 1, i.e.

$$P|1\rangle = |1\rangle$$
.

Proposition 3.1.2. Let $\pi_0(\cdot)$ be the probability mass function of X_0 , then

$$\mathbb{P}[X_0 = s_0, X_1 = s_1, \cdots, X_n = s_n] = \pi_0(s_0) P_{s_0, s_1} \cdots P_{s_{n-1}, s_n}.$$

If we use a row vector $\langle \boldsymbol{\pi}_0 |$ to represent the probability distribution of X_0 , such that $\langle \boldsymbol{\pi}_0 |_i = \mathbb{P}\left[X_0 = s_i\right]$, then the probability distribution of X_n can be represented as

$$\langle \boldsymbol{\pi}_n | = \langle \boldsymbol{\pi}_0 | P^n.$$

Definition 3.1.5 (Transition Functions). The transition matrix of $\{X_n|n\in\mathbb{N}\}$ can be written into the **transition function** $p_n(x,y)$ instead:

$$p_n(x,y) := \mathbb{P}\left[X_n = y | X_0 = x\right].$$

3.1.3 Chapman-Kolmogorov Equations

Theorem 3.1.1 (Chapman-Kolmogorov Equations). For a homegeneous discrete-time Markov chain $\{X_n|n\in\mathbb{N}\}$, its transition function fulfills the **Chapman-Kolmogorov equations**

$$p_{k+n}(x,y) = \sum_{z \in S} p_k(x,z) p_n(z,y)$$
 for all $k, n \ge 0, x, y \in S$.

Remark. In matrix form, the Chapman-Kolmogorov equations read

$$P_{n+k} = P_n P_k$$
 and in particular $P_{n+1} = P_n P_1$.

Corollary 3.1.1. Let P_n be the n-step transition matrix of a homogeneous discrete-time Markov chain $\{X_n|n\in\mathbb{N}\}$, then

$$P_n = P^n$$
 & $P_0 = I$.

3.1.4 Stationary Distributions

Definition 3.1.6 (Stationarity). Let $\{X_n|n\in\mathbb{N}\}$ be a homogeneous discrete-time Markoc chain with state space S. The distribution $\pi(x)$, $x\in S$, is called **stationary** if for all $y\in S$

$$\sum_{x \in S} \pi(x)p(x,y) = \pi(y),$$

or

$$\langle \boldsymbol{\pi} | P = \langle \boldsymbol{\pi} | .$$

Remark. If π is a stationary distribution, then it is a left eigenvector with eigenvalue 1.

Remark. To solve the stationary distributions, we can solve

$$\begin{cases} \langle \boldsymbol{\pi} | P &= \langle \boldsymbol{\pi} | \\ \langle \boldsymbol{\pi} | \mathbf{1} \rangle &= 1 \end{cases}$$

Theorem 3.1.2. Every homogeneous finite discrete-time Markov chain has a stationary distribution.

Proof. $P|\mathbf{1}\rangle = |\mathbf{1}\rangle \implies P$ has an eigenvalue 1, so P also has a left eigenvector with eigenvalue 1, i.e. $\langle \boldsymbol{\pi}| \neq \langle \mathbf{0}|$. Then normalize it to make $\langle \boldsymbol{\pi}|\mathbf{1}\rangle = 1$.

Remark. There can be more than one stationary distributions, and a convex combination of two stationary distributions is also a stationary distribution.

Continuous-Time Markov Chain

Continuous State Space Markov Processes

Chapter 6 Stochastic Particle Systems

Networks

Chapter 8 Random Networks