The following table of hydrogen transition data is from "Atomic Transition Probabilities," 1966.

Transition	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	$A_{ki}(\mathrm{sec^{-1}})$
$ \begin{array}{r} 1s - 2p \\ 1s - 3p \\ 1s - 4p \\ 1s - 5p \\ 1s - 6p \\ \end{array} $ $ \begin{array}{r} 2p - 3s \\ 2p - 4s \\ \end{array} $ $ \begin{array}{r} 2p - 6s \\ \end{array} $	1215.67 1025.72 972.537 949.743 937.804 6562.86 4861.35 4340.48 4101.75	0 0 0 0 0 0 82259 82259 82259 82259	82259 97492 102824 105292 106632 97492 102824 105292 106632	2 2 2 2 2 2 6 6 6 6	6 6 6 6 2 2 2 2 2	6.265×10^{8} 1.672×10^{8} 6.818×10^{7} 3.437×10^{7} 1.973×10^{7} 6.313×10^{6} 2.578×10^{6} 1.289×10^{6}
2p-6s $2s-3p$ $2s-4p$ $2s-5p$ $2s-6p$ $2p-3d$ $2p-4d$ $2p-5d$ $2p-6d$	6562.74 4861.29 4340.44 4101.71 6562.81 4861.33 4340.47 4101.74	82259 82259 82259 82259 82259 82259 82259 82259	97492 102824 105292 106632 97492 102824 105292 106632	2 2 2 2 2 6 6 6 6	6 6 6 6 10 10 10	7.350×10^{5} 2.245×10^{7} 9.668×10^{6} 4.948×10^{6} 2.858×10^{6} 6.465×10^{7} 2.062×10^{7} 9.425×10^{6} 5.145×10^{6}

The 2-3 transitions emit the bright red H- α line.

Transition	λ(Å)	$A_{ki} (\operatorname{second}^{-1})$
2p-3s	6562.86	6.313×10^6
2s-3p	6562.74	2.245×10^{7}
2p-3d	6562.81	6.465×10^7

Let us compute the spontaneous emission coefficients A_{ki} for H- α and see if the results match the table.

The orbital names correspond to the following angular momenta.

Letter	Angular momentum ℓ
s	0
p	1
d	2

Because of the magnetic quantum number m_{ℓ} there are multiple processes for each transition.

There are three processes for the transition $3s \to 2p$.

$$\psi_{3,0,0} \to \psi_{2,1,1}$$

 $\psi_{3,0,0} \to \psi_{2,1,0}$
 $\psi_{3,0,0} \to \psi_{2,1,-1}$

There are three processes for the transition $3p \rightarrow 2s$.

$$\psi_{3,1,1} \to \psi_{2,0,0} \\ \psi_{3,1,0} \to \psi_{2,0,0} \\ \psi_{3,1,-1} \to \psi_{2,0,0}$$

Finally, there are fifteen processes for the transition $3d \rightarrow 2p$.

For each process, A_{ki} can be computed using the following Heisenberg formula.

$$A_{ki} = \frac{e^2}{3\pi\varepsilon_0\hbar c^3} \,\omega_{ki}^3 \,|r_{ki}|^2$$

The transition frequency ω_{ki} is given by Bohr's frequency condition.

$$\omega_{ki} = \frac{1}{\hbar} (E_k - E_i)$$

The transition probability (multiplied by a physical constant) is

$$|r_{ki}|^2 = |x_{ki}|^2 + |y_{ki}|^2 + |z_{ki}|^2$$

For wave functions ψ in spherical coordinates we have the following transition amplitudes.

$$x_{ki} = \int \psi_k^* (r \sin \theta \cos \phi) \, \psi_i \, dV$$
$$y_{ki} = \int \psi_k^* (r \sin \theta \sin \phi) \, \psi_i \, dV$$
$$z_{ki} = \int \psi_k^* (r \cos \theta) \, \psi_i \, dV$$

The average A_{ki} is obtained by summing over m_{ℓ} states and dividing by the number of distinct initial states.

Using Eigenmath we obtain

$$A_{3s2p} = 6.31358 \times 10^6 \text{ second}^{-1}$$

 $A_{3p2s} = 2.24483 \times 10^7 \text{ second}^{-1}$
 $A_{3d2p} = 6.4651 \times 10^7 \text{ second}^{-1}$

which is very close to the values shown in the table.

These are the $|r_{ki}|^2$ for $3s \to 2p$ (multiply all by a_0^2).

$$\psi_{2,1,1}$$
 $\psi_{2,1,0}$ $\psi_{2,1,-1}$ $\psi_{3,0,0}$ 0.293534 0.293534 0.293534

These are the $|r_{ki}|^2$ for $3p \to 2s$.

	$\psi_{2,0,0}$
$\psi_{3,1,1}$	3.13103
$\psi_{3,1,0}$	3.13103
$\psi_{3,1,-1}$	3.13103

These are the $|r_{ki}|^2$ for $3d \to 2p$.

	$\psi_{2,1,1}$	$\psi_{2,1,0}$	$\psi_{2,1,-1}$
$\psi_{3,2,2}$	9.01737	0	0
$\psi_{3,2,1}$	4.50868	4.50868	0
$\psi_{3,2,0}$	1.50289	6.01158	1.50289
$\psi_{3,2,-1}$	0	4.50868	4.50868
ψ_{32-2}	0	0	9.01737