NLP Exercises

3 A company uses a raw material to produce two types of products. When processed, each unit of raw material yields 2 units of product 1 and 1 unit of product 2. If x_1 units of product 1 are produced, then each unit can be sold for $$49 - x_1$, if <math>x_2$ units of product 2 are produced, then each unit can be sold for $$30 - 2x_2$$. It costs \$5 to purchase and process each unit of raw material. Use the Kuhn-Tucker conditions to determine how the company can maximize profits.

Solution:

Let R = units of raw material purchased.

We wish to solve

$$max \quad z = (49 - x_1)x_1 + (30 - 2x_2)x_2 - 5R$$

$$s.t. \quad x_1 \le 2R$$

$$x_2 \le R$$

$$x_1, x_2 \ge 0$$

$$(1)$$

$$(2)$$

Since the objective function is concave and the constraints are linear, the K-T conditions will yield an optimal solution. The K-T conditions are

$$49 - 2x_1 - \lambda_1 = 0 \tag{3}$$

$$30 - 4x_2 - \lambda_2 = 0 \tag{4}$$

$$-5 + 2\lambda_1 - \lambda_2 = 0 \tag{5}$$

$$\lambda_1(x_1 - 2R) = 0 \tag{6}$$

$$\lambda_2(x_2 - R) = 0$$

$$x_1, x_2, \lambda_1, \lambda_2 \ge 0$$
(7)

Try $\lambda_1 > 0$ and $\lambda_2 = 0$. Then (6) yields $x_1 = 2R$. From (5), $\lambda_1 = 2.5$. Then (3) yields $x_1 = 23.25$ and (4) yields $x_2 = 7.5$.

Since $x_1 = 2R$, we find that R = 11.625. All K-T conditions and original constraints are satisfied so we have found an optimal solution. Optimal solution: R = 11.625, $x_1 = 23.25$, $x_2 = 7.5$.

5 Use Golden Section Search to locate, within 0.5, the optimal solution to

$$\begin{array}{ll}
max & 3x - x^2 \\
s.t. & 0 \le x \le 2R
\end{array}$$

Solution:

$$x_1 = 5 - .618(5) = 1.91, \ x_2 = 0 + .618(5) = 3.09$$

 $f(x_1) = 2.08 > f(x_2) = -.28$, so new interval of uncertainty is [0, 3.09].

$$x_3 = 3.09 - .619(3.09) = 1.18, x_4 = 1.91.$$

 $f(x_3) = 2.15 > f(x_4) = 2.08$, so new interval of uncertainty is [0, 1.91).

$$x_6 = 1.18, x_5 = 1.91 - .618(1.91) = .73$$

 $f(x_6) = 2.15 > f(x_5) = 1.66$, so new interval of uncertainty is (.73, 1.91].

$$x_7 = 1.18, \ x_8 = .73 + .618(1.18) = 1.46$$

 $f(x_8) = 2.25 > f(x_7) = 2.15$, so new interval of uncertainty is (1.18, 1.91].

Now $x_9 = 1.46$, $x_{10} = 1.18 + .618(.73) = 1.63$, and $f(x_9) = 2.25 > f(x_{10}) = 2.23$, so new interval of uncertainty is (1.18, 1.63]. This interval has width less than .50, so we are finished. (Actual maximum occurs for x = 1.5.)

6 Perform two iterations of the method of steepest ascent in an attempt to maximize

$$f(x_1, x_2) = (x_1 + x_2)e^{-(x_1 + x_2)} - x_1$$

Begin at the point (0,1).

Solution:

$$\nabla f(x_1, x_2) = [(1 - x_1 - x_2)e^{-(x_1 + x_2)} - 1, (1 - x_1 - x_2)e^{-(x_1 + x_2)}]$$

Iteration 1:

 $\nabla f(0,1) = [-1,0]$. Thus, new point is (-t,1), where $t \ge 0$.

Maximize $f(t) = (1-t)e^{t-1} + t$. $f'(t) = (1-t)e^{t-1} - e^{t-1} + 1 = 0$ for $te^{t-1} = 1$ or t = 1.

Thus, new point is (-1,1).

Iteration 2:

 $\nabla f(-1, 1) = [0, 1]$, so new point is [-1, 1 + t].

We choose $t \ge 0$ to maximize $h(t) = te^{-t} + 1$, $h'(t) = -te^{-t} + e^{-t} = 0$ for t = 1.

Thus, new point is (-1, 2).

8 Solve the following NLP:

$$max \quad xyz$$

$$s.t. \quad 2x + 3y + 4w = 36$$

Solution:

If we choose to maximize $\ln x + \ln y + \ln z$, then the Lagrangian is

$$L = \ln x + \ln y + \ln w + \lambda (36 - 2x - 3y - 4w)$$

$$\frac{\partial L}{\partial x} = \frac{1}{x} - 2\lambda = 0$$

$$\frac{\partial L}{\partial y} = \frac{1}{y} - 3\lambda = 0$$

$$\frac{\partial L}{\partial w} = \frac{1}{w} - 4\lambda = 0$$

$$\frac{\partial L}{\partial \lambda} = 36 - 2x - 3y - 4w = 0$$
(1)

Thus, $x = \frac{1}{2}\lambda$, $y = \frac{1}{3}\lambda$, $w = \frac{1}{4}\lambda$.

Then (1) yields $\frac{3}{\lambda} = 36$ or $\lambda = \frac{1}{12}$. Then we obtain x = 6, y = 4, w = 3, the optimal objective function value is 72.

9 Solve the following NLP:

$$max \quad z = \frac{50}{x} + \frac{20}{y} + xy$$
s.t. $x \ge 1, y \ge 1$

Solution:

KT-Conditions yield

$$-\frac{50}{x^2} + y - \lambda_1 = 0 ag{1}$$

$$-\frac{20}{y^2} + x - \lambda_2 = 0 (2)$$

$$\lambda_1(x-1) = 0 \tag{3}$$

$$\lambda_2(y-1) = 0$$

$$x \ge 1, y \ge 1, \lambda_1 \ge 0, \lambda_2 \ge 0$$
(4)

Case I: Trying λ_1 and $\lambda_2 > 0$ does not work.

Case II: Trying $\lambda_1 > 0$ and $\lambda_2 = 0$ violates (1).

Case III: Trying $\lambda_1 = 0$ and $\lambda_2 > 0$ violates (2).

Case IV: $\lambda_1 = \lambda_2 = 0$. Then (1) and (2) yield $x^2y = 50$ and $y^2x = 20$. Solving yields y = 2 and x = 5, which satisfies the KT- conditions and has z = 30. Since this is the only point satisfying KT-conditions, it must be the optimal solution.

10 If a company charges a price p for a product and spends a on advertising, it can sell a0,000 + a0 units of the product. If the product costs a10 per unit to produce, then how can the company maximize profits?

Solution:

We want to maximize
$$\pi = (10,000 + 5\sqrt{a} - 100p)(p - 10) - a$$

$$\frac{\partial \pi}{\partial p} = -100(p - 10) + 10000 + s\sqrt{a} - 100p = 0$$

$$\frac{\partial \pi}{\partial a} = \frac{5(p - 10)}{2\sqrt{a}} - 1 = 0$$

Solving these equations yields p = 58 and a = 14,400.