関数の局所的な様子を見る

簡単な関数のグラフは拡大していくと急に様子が 変わったりせず、むしろ、だんだん安定したもの になると考えられる

局所的な部分を拡大すると安定した姿になるとき、 その様子を数学的にとらえる概念が<mark>微分</mark>

ものによっては、拡大するとどんどん見え方が変 わるものもある

拡大を何度繰り返しても同じ複雑さを保つ数学的 構造(フラクタル)も自然界には現れる

拡大すれば何でも簡単になるわけではないが、微 分では、拡大したとき安定していく「素直」なもの を主な対象とする

つまり、微分は局所を分析するのに強力な手法だ が、万能ではない

微分の定義

関数は変化の法則性をとらえる数学的言語

数 x に対して数 f(x) が定まるとき、f(x) を変数 x の関数という

* * *

座標 (x, f(x)) を xy 平面でプロットした曲線を関数 f(x) のグラフという

これは、x 座標の点 x における高さが f(x) となる曲線

* * *

この曲線の局所的な様子を見るのに、変数 x を x+h に動かしてみる

そうすると、関数の値は f(x) から f(x+h) に変わる

「素直」な関数のグラフをどんどん拡大すると、拡 大部分はだんだん直線のように見えるだろう、と 考えられる

h が小さいとき、斜めの曲線がほぼ一定の傾き の直線に見えるというのは、関数の値の変化量 f(x+h)-f(x) が h にほぼ正比例するということ

式で表すと、x から x + h の区間のグラフを直線と みなしたときの勾配

$$\frac{f(x+h) - f(x)}{h}$$

は、hが0に近づくとある1つの数に近づく、すなわち、収束するはずである

* * *

■定義 h & 0 に近づけると、 $\frac{f(x+h)-f(x)}{h}$ がある数に収束するとき、f(x) は x において微分可能であるという

このとき、極限値を

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

と書き、f(x) の微分または微分係数(微係数)という

* * *

定数関数の微分 「収束する」ことを「限りなく近づく」と言うこともある

日常的な言葉だと「限りなく近づく」には「その値に達していない」というニュアンスを感じるが、数学では、最初からずっと同じ値のときも「収束する」場合に含める

f(x) が x の値によらないとき、f(x) を定数関数という

このときは h がどんな数でも f(x+h) - f(x) = 0 となるので、定数関数の微分は 0 である

* * *

微分係数が定まらない例

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

が収束しない状況の例として、y = |x| を考える f(x) = |x| の場合、x = 0 で

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

を計算しようとすると、

h > 0 のときは

$$\frac{f(h) - f(0)}{h} = \frac{h}{h} = 1$$

h < 0 のときは

$$\frac{f(h) - f(0)}{h} = \frac{-h}{h} = -1$$

となり、h を正から 0 に近づけるときと、負から 0 に近づけるときとで、 $\frac{f(h)-f(0)}{h}$ の極限の値が異なってしまうので、微分係数 f'(0) が定まらない

* * *

■定理 a < x < b で定義された、微分可能な関数 f(x) が x = c で最大値または最小値をとるならば、 f'(c) = 0 である

* * *

f'(c) が最大値となる場合の証明

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

において、f(c) が最大値であることから、

$$f(c) \ge f(c+h)$$
$$f(c+h) - f(c) \le 0$$

したがって、h>0のときは、

$$\frac{f(c+h) - f(c)}{h} \le 0$$

となり、h を正の側から 0 に近づけた極限値として $f'(c) \leq 0$ が成り立つ

一方、h < 0 のときは、

$$\frac{f(c+h) - f(c)}{h} \ge 0$$

となり、h を負の側から 0 に近づけた極限値として $f'(c) \ge 0$ が成り立つ

 $f'(c) \leq 0$ かつ $f'(c) \geq 0$ なので、f'(c) = 0 が導かれた \Box

* * *

f'(c) が最小値となる場合の証明 f'(c) が最大値となる場合と同様に示される \Box

導関数

xを止めて考えると、f(x)の微分は1つの数

$$\frac{df}{dx}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

また別の視点として、

- xに数を与えると、何か1個、数が出てくる
- また別のxに対しては、別の数が出る

そう思うと、x から $\frac{df}{dx}(x)$ への対応は1つの関数 を与えていると考えることができる

このように、 $\frac{df}{dx}(x)$ を x の関数と見たとき、それを f(x) の導関数という

* * *

「微分」と「導関数」は視点の違いで使い分けられる言葉

- x を止めて $\frac{df}{dx}(x)$ という 1 個の数 (微分係数) に注目するのか
- x を変数と思って $\frac{df}{dx}(x)$ を関数とみなす (導 関数として扱う) のか

後者の立場に立って、 $\frac{df}{dx}(x)$ を関数だと思うと、さらに微分を考えることができる

* * *

微分できないからといってそこで終わりではない

たとえば、関数概念を拡張した<mark>超関数</mark>の理論は、 極限

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

が存在しない場合にも、より広く「微分」という概 念をとらえる枠組みを与えるもの

単項式 xⁿ の微分

 $f(x+h) = (x+h)^n$ の二項展開

$$f(x+h) = x^n + nx^{n-1}h + {}_{n}C_2x^{n-2}h^2 + \cdots + h^n$$

を用いると、

$$f(x+h) - f(x) = (x+h)^n - x^n$$

$$= x^n + nx^{n-1}h + {}_nC_2x^{n-2}h^2$$

$$+ \dots + h^n - x^n$$

$$= nx^{n-1}h + {}_nC_2x^{n-2}h^2 + \dots + h^{n-1}$$

上の式変形で、最初の x^n は最後の $-x^n$ と相殺されている

両辺をhで割ると、

$$\frac{f(x+h) - f(x)}{h} = \frac{nx^{n-1}h + {}_{n}C_{2}x^{n-2}h^{2} + \dots + h^{n-1}}{h}$$
$$= nx^{n-1} + {}_{n}C_{2}x^{n-2}h + \dots + h^{n-1}$$

hが0に近づくと、

- h に無関係な最初の項 nx^{n-1} はそのまま残る
- 次のhの項は0に近づく
- その後の $h^2, h^3, \cdots, h^{n-1}$ の項はさらに速く 0 に近づく

というわけで、hを0に近づけると nx^{n-1} に収束し、

$$\frac{d}{dx}x^n = nx^{n-1}$$

が成り立つ

微分しても変わらない不思議な関数

この式をぼんやりと眺めていると、

$$\frac{d}{dx}x^n = nx^{n-1}$$

- 左辺における $\frac{d}{dx}$ という記号に呼応して、右辺ではn が飛び出すというふうにも見える
- 左辺ではxのn乗だったものが、右辺ではn-1乗になっている

* * *

 x^n を n の階乗で割った $\frac{x^n}{n!}$ という関数を考える

この関数を微分すると、 $\frac{1}{n!}$ は微分の外に出せる

$$\frac{d}{dx}\left(\frac{x^n}{n!}\right) = \frac{1}{n!}\left(\frac{d}{dx}x^n\right) = \frac{nx^{n-1}}{n!} = \frac{x^{n-1}}{(n-1)!}$$

この式では、左辺と右辺で似た形が現れている 文字は左辺のnから右辺のn-1に化けるが、形は 同じ

n に具体的な数を入れて確かめてみる

•
$$n = 0$$
 $\emptyset \geq 3$, $\frac{d}{dx} \left(\frac{x^0}{0!} \right) = 0$

•
$$n=1$$
 \emptyset \succeq \mathfrak{E} , $\frac{d}{dx}\left(\frac{x^1}{1!}\right)=\frac{x^0}{0!}$

•
$$n = 2$$
 のとき、 $\frac{d}{dx} \left(\frac{x^2}{2!}\right) = \frac{x^1}{1!}$
• $n = 3$ のとき、 $\frac{d}{dx} \left(\frac{x^3}{3!}\right) = \frac{x^2}{2!}$
• $n = 4$ のとき、 $\frac{d}{dx} \left(\frac{x^4}{4!}\right) = \frac{x^3}{3!}$
• $n = 5$ のとき、 $\frac{d}{dx} \left(\frac{x^5}{5!}\right) = \frac{x^4}{4!}$

微分すると斜め右下にまったく同じ形の式が現れ るというパターンが続く

上のリストではn=5で止めているが、たとえばn=100までいっても同じパターンが続く

そこで、 $\frac{x^n}{n!}$ を n=0 から順に全部足すことを考え、 それを f(x) とおく

$$f(x) = \frac{x^0}{0!} + \frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
$$\frac{d}{dx}f(x) = 0 + \frac{x^0}{0!} + \frac{x^1}{1!} + \frac{x^2}{2!} + \cdots$$

下の式は1個右にずれているので、途中で打ち切れば1個足りなくなるが、無限に足すと、上の式と 下の式はぴったり一致している

したがって、

$$\frac{d}{dx}f(x) = f(x)$$

が成り立つことがわかる

つまり、関数 f(x) は微分したものが自分自身になっている!

いま無限級数として定義した関数 f(x) を何通りかの記法で表しておく

$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$= \frac{x^0}{0!} + \frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$= 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots$$

後にこの関数は、指数関数として e^x と書くことになる

ネイピアの数

次の関数に x = 0 と x = 1 を代入してみる

$$f(x) = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \cdots$$

x=0 を代入すると 最初の1だけが残り、

$$f(0) = 1$$

* * *

x=1を代入すると 1を何乗しても1であるから、

$$f(1) = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots$$

この f(1) の数値はどのくらいになるだろうか?

- 1. 第1項は1
- 2. 第2項も1
- 3. 第3項は0.5
- 4. 次は前の項を3で割るわけだから0.166...
- 5. 次はさらに 4 で割るから 0.041...
- 6. 次はさらにそれを 5 で割って 0.008...

ここまでの6項の和で2.716...となる

加える項は急速に 0 に近づく

項が100個くらいまで進むと、次に加える 1/100! は 小数点以下に 0 が150個以上並ぶくらい小さな数 になる(10¹⁵² < 100! < 10¹⁶⁴ という不等式より)

このように、無限級数 f(1) は収束がとても速く、

$$f(1) = 2.71828...$$

という数になる

* * *

■定理

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \sum_{k=0}^{\infty} \frac{1}{k!}$$

証明のスケッチ 二項展開を用いて、

$$\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} \cdot \frac{1}{n^k}$$

ここで、k=2以降の各項は次のように展開する

$$\frac{n!}{2!(n-2)!} \cdot \frac{1}{n^2} = \frac{n(n-1)}{2!} \cdot \frac{1}{n^2}$$
$$= \frac{1}{2!} \cdot \frac{n-1}{n}$$
$$= \frac{1}{2!} \left(1 - \frac{1}{n}\right)$$

$$\frac{n!}{3!(n-3)!} \cdot \frac{1}{n^3} = \frac{n(n-1)(n-2)}{3!} \cdot \frac{1}{n^3}$$
$$= \frac{1}{3!} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n}$$
$$= \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right)$$

これらを用いると、

$$\left(1 + \frac{1}{n}\right)^n = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \cdots$$

n が大きくなると $\frac{1}{n}$ は 0 に近づくので、 $1 - \frac{1}{n}$ は 1 に近づき、

$$\left(1+\frac{1}{n}\right)^n = 1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots$$

となるロ