Задачи к практическим занятиям на тему 2:

Сеть Хемминга. Реализация булевых функций на нейронных сетях

I. Сеть Хемминга.

Задача 1

Приборы, используемые для контроля состояния труб нефтепроводов, характеризуются семью базовыми техническими показателями и делятся на три класса по качеству. Все технические показатели приведены к возможным значениям +1 и -1. Например, если время контроля 10 м трубопровода больше 1 часа, то соответствующий показатель равен +1, иначе -(-1).

Анализ приборов каждого класса, производимых в настоящее время разными компаниями, позволил установить свойственные классам типовые показатели, приведенные в первых трех строках таблицы:

Классы	Показатели							
	1	2	3	4	5	6	7	
1	-1	-1	1	-1	1	1	-1	
2	-1	1	1	-1	-1	1	1	
3	1	-1	-1	1	-1	-1	1	
Новый прибор	-1	1	1	1	1	-1	1	

Одна из компаний разработала и выпустила на рынок новый прибор с показателями, указанными в нижней строке таблицы.

К какому классу следует отнести прибор?

Постройте сеть Хемминга, решающую поставленную задачу. К какому классу она относит новый прибор?

Задача 2

Психологи предложили рассматривать 5 показателей $x_1, x_2, ..., x_5$, которые в совокупности характеризуют склонность школьника к гуманитарным или техническим наукам. Все показатели могут принимать только значения +1 или -1.

Типовые показатели для гуманитарной и технической ориентаций школьника представлены в таблице:

Классы	Показатели						
	1	2	3	4	5		
1 – гуман.	-1	1	1	-1	1		
2 – техн.	1	-1	-1	1	-1		

- 1) Какая поверхность в пространстве пяти признаков разделяет рассматриваемые два класса? Напишите ее уравнение.
- 2) Пусть $x_1 = x_4 = x_5 = 1$. Постройте границу между классами в плоскости $X_1 X_2$ и укажите области, в которых лежат объекты (векторы признаков) первого и второго классов.
- 3) Постройте сеть Хемминга и проверьте правильность определения границы между классами путем сравнения с результатами обработки сетью Хемминга всех возможных вариантов значений x_1, x_2 при заданных значениях $x_3 = x_4 = x_5 = 1$.

Задача 3 (ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ДОМА)

Ответьте на вопросы 2) и 3) предыдущей задачи, если $x_3 = -1$, $x_4 = x_5 = 1$.

II. Реализация булевых функций на нейронных сетях

Задача 1

Реализуйте на бинарном нейроне логическую функцию $y = \overline{x}$, где x, y — логические переменные: x, $y \in \{0, 1\}$.

Задача 2

Решите задачу 1 в предположении, что возможными значениями логических переменных x, y являются +1 и -1, а активационная характеристика нейрона является биполярной.

Задача 3

Реализуйте на одном бинарном нейроне логическую функцию $y = x_1 \& x_2 \& ... \& x_M$, где $x_i \in \{0, 1\}, i = \overline{1, M}$.

Задача 4

Решите задачу 3 в предположении, что возможными значениями логических переменных x_i , $i = \overline{1, M}$, и y являются +1 и -1, а активационная характеристика нейрона — биполярная.

Задача 5

Реализуйте на бинарном нейроне логическую функцию $y=x_1 \cup x_2 \cup ... \cup x_M$, где $x_i \in \{0,1\}, \ i=\overline{1,M}$.

Дайте геометрическую интерпретацию решения при M = 2.

Задача 6

Решите задачу 5 в предположении, сформулированном в задаче 4. Дайте геометрическую интерпретацию решения при M=2.

Задача 7 (ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ДОМА)

Реализуйте на бинарном нейроне логическую функцию

$$y = x_1 \& x_2 \& ... \& x_K \& \overline{x_{K+1}} \& \overline{x_{K+2}} \& ... \& \overline{x_M}$$

где $x_i \in \{0, 1\}, i = \overline{1, M}$. Дайте геометрическую интерпретацию решения при M = 2, K = 1.

Задача 8

Постройте нейронную сеть, реализующую логическую функцию «исключающее ИЛИ» (XOR) на бинарных нейронах.

Задача 9

Задана таблица истинности для булевой функции $y = \varphi(x_1, x_2, ..., x_M)$. Один из возможных примеров приведен в таблице:

N₂	x_1	x_2	•••	x_{M-1}	$x_{ m M}$	y
1	0	0	•••	0	0	1
2	0	0	•••	0	1	0
3	0	0	•••	1	0	1
:	•	:	:	:	:	:
2 ^M	1	1	•••	1	1	1

Требуется построить общую схему реализации произвольной булевой функции $y = \varphi(x_1, x_2, ..., x_M)$ на сети, состоящей из бинарных нейронов.