Canadian Junior Math Olympiad 2025 — P1/5

Jonathan Kasongo

July 29, 2025

Canadian Junior Math Olympiad 2025 — P1/5

Suppose an infinite non-constant arithmetic progression of integers contains 1 in it. Prove that there are an infinite number of perfect cubes in this progression. (A *perfect cube* is an integer of the form k^3 , where k is an integer. For example, -8, 0 and 1 are perfect cubes.)

Solution

Suppose the arithmetic progression has a fixed difference $d \in \mathbb{Z}_{\neq 0}$. Notice that if we can prove that any perfect cube $k^3 \in \mathbb{Z} \setminus \{-1,0,1\}$ exists in the sequence we automatically get that there are an infinite number of perfect cubes in the progression since there must exist some non-zero integer λ such that $1 + \lambda d = k^3$. Then this implies that $k^3 + (k^3\lambda)d = k^6$ is also part of the progression, but since $k^3 \neq k^{3n}$ for any integer $n \geq 2$ repeating this process will demonstrate that there are an infinite number of perfect cubes in the sequence.

Hence it suffices to show that there exists $\mu \in \mathbb{Z}_{\neq 0}$ and $m^3 \in \mathbb{Z} \setminus \{-1,0,1\}$ such that $1 + \mu d = m^3$ and so $\mu d = (m-1)(m^2+m+1)$. Now notice that we can let m-1=d and $\mu=m^2+m+1$, since the discriminant of that quadratic $\Delta=1-4=-3<0$ shows us that $\mu\neq 0$. So this construction works for any d except $m=d+1\neq -1,0,1\iff d\neq -2,-1,0$. We can rule out the possibility of d=0 since the progression is non-constant, d=-1 will make the progression simply run through all of the perfect cubes that are less than the initial value, and for d=-2 the number $(-3)^3=-27=1-2(14)$ will occur in the sequence so it will contain an infinite number of perfect cubes by our argument in the first paragraph.