SPI (SW/HW)

Hvordan virker SPI bussen?

- Serial Peripheral Interface
- SPI bus er et serielt data link, der opererer i full duplex mode (sende/modtage samtidig).
- Kører efter en Master-slave princip:
 - Master ønsker data fra slave
- 2 linjer at læse på:
 - MOSI (MasterOutSlaveIn): Master sender et bit på linjen, som slave læser fra
 - MISO (MasterInSlaveOut): Slave sender et bit på linjen, som master læser fra
- Overførsler mellem master og slave involvere to **shift registers**:
 - Master's og slave's registre er forbundet i en ring:
 - Master overfører mest betydende bit til slavens mindst betydende
 - Bitsene bliver skubbet fremad derefter
- En master kan have forskellige slaves.
- Der er 2 måder hvorpå masteren kan vælge en slave til overførsel:
 - Independant slave SPI configuration:
 - Masteren har en linje for hver slave
 - Slave select SS bit bliver brugt til at afgør hvilken slave
 - Daisy Chain SPI configuration:
 - Alle slaves er forbundet til hinanden og derefter masteren
 - Den tætteste slave har højest prioritet

Hvilke parametre skal man være opmærksom på når man skal konfigurer interfacet til et SPI device?

- Clockfrekvens hos master skal være =< slavens max clockfrekvens. -> findes i datablad
- Clock modes angiver, hvordan data er klar til at blive aflæst:
 - CPOL = 0 aktiv høj:
 - CPHA = 0: data er modtaget på rising edge, data bliver sendt på falling edge
 - CPHA = 1: data er modtaget på falling edge, data bliver sendt på rising edge
 - CPOL = 1 aktiv lav:
 - CPHA = 0: data er modtaget på falling edge, data bliver sendt på rising edge
 - CPHA = 1: data er modtaget på rising edge, data bliver sendt på falling edge
- Master og slave skal have samme word-størrelse

Hvilke metoder skal implementeres i en device driver som benytter SPI?

- Probe: Kaldt af SPI master når en SPI protokol driver er registreret.
- Remove: Når SPI driver afregistreres.
- Shutdown: Shutdown callback, brugt ved system state overførsler
- Resume: Resume callback, brugt ved system state overførsler
- Suspend: Suspend callback, brugt ved system state overførsler

Hvordan kan man implem. et device driver modul med SPI? (init/exit)

- Når man skal implementere et device driver modul med SPI -> bruge funktionerne init/exit:
 - Init:
- En reference til SPI host på angivet busnummer:
 - struct spi_master* spi_busnum_to_master(u16)
- Allokere SPI device med SPI host:
 - struct spi_device*spi_new_device(struct spi_master*, struct spi_board_info*)
- Registrere den nye SPI driver:
 - int spi_register_driver(struct spi_driver*)
- Exit:
- Afregistrer
- Deallokere
- Frigiv busnummer

Hvad er design processen for at implementere en SPI device driver?

- Designprocessen:
 - Find skema for CPU device SPI forbindelse
 - Find hvilken bus & Find hvilken chip select
 - Find device datasheet for SPI information
 - Find SPI maxspeed & hvad CPOL og CPHA skal være & word størrelsen
 - Find device datasheet for device initiering
 - Find registreværdier & antallet af bytes der skal skrives/læses

SPI (SW/HW)

