

PROGRAMMING TECHNIQUES

Recursion & Dynamic Programming

Nguyễn Hải Minh - 04/2024

Outline

- Dynamic Programming Definition
- Walk through examples:
 - Example 1: Fibonacci number
 - Example 2: The Knapsack problem
- Properties of Dynamic Programming
- Application
- More Reading

Dynamic Programming

- Dynamic Programming is an algorithm design technique for optimization problems (minimize/maximize)
- DP can be used when the solution to a problem may be viewed as the result of a sequence of decisions
- DP reduces computation by
 - Solving subproblems in a bottom-up fashion.
 - Storing solution to a subproblem the first time it is solved.
 - Looking up the solution when subproblem is encountered again.
- Key: determine structure of optimal solutions

Dynamic Programming History

- Bellman. Pioneered the systematic study of dynamic programming in the 1950s.
- Etymology.
 - Dynamic programming = planning over time.
 - Secretary of Defense was hostile to mathematical research.
 - Bellman sought an impressive name to avoid confrontation.
 - "it's impossible to use dynamic in a pejorative sense"
 - "something not even a Congressman could object to"

Steps in Dynamic Programming

- 1. Define the problem and identify its optimal structure.
 - Optimal structure: the optimal solution to the problem can be obtained by combining the optimal solutions to its subproblems.
- Formulate a recursive solution (top-down).
- Compute the value of an optimal solution in a bottomup fashion.
 - Memorize the recursive solutions by storing the results of previous computation in a table.
 - Convert the recursive solution to an iterative one.
 - → We will study these steps through some examples

5

☐ Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, ...

$$F_i = i if i \le 1$$

$$F_i = F_{i-1} + F_{i-2} if i > 1$$

Solved by a recursive program:

```
int Fib(int n)
{
   if (n <= 1)
     return n;
   else
     return Fib(n - 1)
     + Fib(n - 2);
}</pre>
```


→ This is a **top-down** approach

- Why is the top-down so inefficient?
 - Recomputes many sub-problems.
 - □ How many times is F(n-5) computed?

We can enhance this problem by storing solution to the sub-problem.

8

9


```
#include <iostream>
int* memo = new int[n+1];
int Fib (int n)
{
  if (n <= 1)
                                     Each F_i is calculated
     return 1;
  if(memo[n] != 0)
                                          only once
     return memo[n];
  int result = Fib(n - 1) + Fib(n - 2);
  memo[n] = result;
  return result;
                                 But it is still inefficient because
                                    Resursive calls are called
                                     multiple times for an n
```

4/1/2024 NHMinh@FIT 10

- Using a bottom-up approach can solve this problem!
 - F(0) = 0
 - F(1) = 1
 - F(2) = 1+0 = 1
 - ...
 - F(n-2) =
 - F(n-1) =
 - F(n) = F(n-1) + F(n-2)

0	1	1		F(n-2)	F(n-1)	F(n)
_			•••	• • • •	• • •	

Fibonacci Numbers - DP

```
#include <iostream>
int Fib_DP(int n)
{
 /* Declare an array to store Fibonacci numbers. */
  int *f = new int[n+1];//1 extra to handle case, n
 int i;
 /* Oth and 1st number of the series are 0 and 1*/
 f[0] = 0;
 f[1] = 1;
 for (i = 2; i <= n; i++)
    f[i] = f[i-1] + f[i-2];
 return f[n];
```


Fibonacci Numbers - DP

```
#include <iostream>
int Fib_DP(int n)
{
  int a = 0, b = 1, c, i;
  if(n == 0)
    return 0;
 for (i = 2; i <= n; i++)
     c = a + b;
     a = b;
     b = c;
  return b;
```

Space Optimization

The Knapsack problem

Problem statement:

A thief is robbing a museum and he only has a single knapsack to carry all the items he steals.

The knapsack has a capacity for the amount of weight it can hold. Each item in the museum has a weight and a value

associated with it.

The Knapsack problem - Variation

- 0/1 Knapsack problem
 - Each item is chosen at most once.
 - Decision variable for each item is a binary value (0 or 1)
- Multiple-choice Knapsack problem
 - Each item can be put to the knapsack multiple times.
 - Decision variable for each item is an integer value.
- Bounded Knapsack problem
 - Same with multiple-choice but each item has the max number of times it can be chosen.
- Knapsack problem with fractional items
- Knapsack problem with multiple constraint
- ...

16

0/1 Knapsack problem – Example

- ☐ Knapsack's capacity: 10kg
- □ 5 items can be chosen:
- Item 1: \$6 (2 kg)
- Item 2: \$10 (2 kg)
- Item 3: \$12 (3 kg)
- Item 4: \$16 (4kg)
- Item 5: \$20 (5kg)

17

 \square Optimal function: f(n, W) (n = 5, W = 10)

0/1 Knapsack problem – Example

fit@hcmus

- \square Optimal structure: to find f(n, W):
 - 1. Case 1: including the nth item
 - \rightarrow find $f(n-1,W-w_n)+x_n$ with x_n is the value of item n^{th}
 - 2. Case 2: not include the nth item
 - \rightarrow find f(n-1,W)
- Hence, optimal f is calculated by:

$$f(n, W) = \max(f(n-1, W-w_n) + x_n, f(n-1, W))$$

→ This can be solved using recursion which is a top-down strategy.

The Knapsack problem – Recursive

```
//Returns the maximum value that can be put in a knapsack of
//capacity W
int KnapSack(int n, int wt[], int val[], int W) {
  if (n == 0 || W == 0) // Base Case
    return 0;
// If weight of the nth item is more than Knapsack capacity W,
 //then this item cannot be included in the optimal solution
  if (wt[n-1] > W)
    return KnapSack(n - 1, wt, val, W);
                                        f(n-1,W-w_n)+x_n
 // else: Return the maximum of two cases:
 // (1) nth item included // (2) not included
  return max(|val[n-1] + KnapSack(n-1, wt, val, W-wt[n-1])
                                  KnapSack(n-1, wt, val, W) );
                                        f(n-1,W)
```

4/1/2024 NHMinh@FIT 19

- □ We can also use a **bottom-up** approach and memorize the solutions to subproblems to a table → Dynamic Programming
 - Row: items
 - Column: remaining weight capacity of the knapsack
 - We fill the table using the following recurrence relation:

$$f(W, i) = \max(f(i-1, W-w_i) + x_i, f(i-1, W))$$

	0kg	1kg	2kg	3kg	4kg	5kg	6kg	7kg	8kg	9kg	10kg
1											
2											
3											
4											
5											

☐ Use only item 1:

$$\rightarrow f(1,1) = 0, f(1,2) = 6, f(1,3) = 6, ..., f(1,10) = 6$$

			0 1	2	3	4	5	6	7	8	9	10
1	2kg	\$6	0	6	6	6	6	6	6	6	6	6
2	2kg	\$10										
3	3kg	\$12										
4	4kg	\$16										
5	5kg	\$20										

$$\rightarrow f(2,2) = \max(f(1,0) + 10, f(1,2)) = 10, ...$$

			0 1	2	3-	4	5	6	7	8	9	10
1	2kg	\$6	0	6	6	6	6	6	6	6	6	6
2	2kg	\$10	0	10								
3	3kg	\$12										
4	4kg	\$16										
5	5kg	\$20										

$$\rightarrow f(2,3) = \max(f(1,1) + 10, f(1,3)) = 10, ...$$

			0 1	<u> 2</u>	3	A	5	6	7	8	9	10
1	2kg	\$6	0	6	6	6	6	6	6	6	6	6
2	2kg	\$10	0	10	10							
3	3kg	\$12										
4	4kg	\$16										
5	5kg	\$20										

$$\rightarrow f(2,4) = \max(f(1,2) + 10, f(1,4)) = 16, ...$$

			0 1	2/	3	4	5	6	7	8	9	10
1	2kg	\$6	0	6	6	6	6	6	6	6	6	6
2	2kg	\$10	0	10	10	16						
3	3kg	\$12										
4	4kg	\$16										
5	5kg	\$20										

$$\rightarrow f(2,i) = \max(f(1,W-2)+10,f(1,W))$$

			0 1	2	3	4	5	6	7	8	9	10
1	2kg	\$6	0	6	6	6	6	6	6	6	6	6
2	2kg	\$10	0	10	10	16	16	16	16	16	16	16
3	3kg	\$12										
4	4kg	\$16										
5	5kg	\$20										

$$\rightarrow f(3,3) = \max(f(2,0) + 12, f(2,3)) = 12$$

			0 1	2	3	4	5	6	7	8	9	10
1	2kg	\$6	0/	6	6	6	6	6	6	6	6	6
2	2kg	\$10	0	10	10	16	16	16	16	16	16	16
3	3kg	\$12	0	10	12							
4	4kg	\$16										
5	5kg	\$20										

$$\rightarrow f(3,4) = \max(f(2,1) + 12, f(2,4)) = 16$$

			0 1	2	3	4	/ 5	6	7	8	9	10
1	2kg	\$6	0//	6	6	6/	6	6	6	6	6	6
2	2kg	\$10	0	10	10	16	16	16	16	16	16	16
3	3kg	\$12	0	10	12	16						
4	4kg	\$16										
5	5kg	\$20										

$$\rightarrow f(3,5) = \max(f(2,2) + 12, f(2,5)) = 22$$

			0 1	2 /	3	4	5	6	7	8	9	10
1	2kg	\$6	0	6	6	6	6	6	6	6	6	6
2	2kg	\$10	0	10	10	16	16	16	16	16	16	16
3	3kg	\$12	0	10	12	16	22					
4	4kg	\$16										
5	5kg	\$20										

$$\rightarrow f(3,i) = \max(f(2,W-3)+12,f(2,W))$$

			0 1	2	3	4	5	6	7	8	9	10
1	2kg	\$6	0	6	6	6	6	6	6	6	6	6
2	2kg	\$10	0	10	10	16	16	16	16	16	16	16
3	3kg	\$ 12	0	10	12	16	22	22	28	28	28	28
4	4kg	\$16										
5	5kg	\$20										

$$\rightarrow f(4,i) = \max(f(3,W-4)+16,f(3,W))$$

			0 1	2	3	4	5	6	7	8	9	10
1	2kg	\$6	0	6	6	6	6	6	6	6	6	6
2	2kg	\$10	0	10	10	16	16	16	16	16	16	16
3	3kg	\$12	0	10	12	16	22	22	28	28	28	28
4	4kg	\$16	0	10	12	16	22	26	28	32	38	38
5	5kg	\$20										

- ☐ Use item 1, 2, 3, 4, 5:
- $\rightarrow f(5,10) = \max(f(4,5) + 20, f(4,10)) = 42$

		0 1	2	3	4	5	6	7	8	9	10	
1	2kg	\$6	0	6	6	6	6	6	6	6	6	6
2	2kg	\$10	0	10	10	16	16	16	16	16	16	16
3	3kg	\$12	0	10	12	16	22	22	28	28	28	28
4	4kg	\$16	0	10	12	16	22	26	28	32	38	38
5	5kg	\$20	0	10	12	16	22	26	30	32	38	42

■ Solution:

■ item 5 + item 3 + item 2 \rightarrow \$42 - 10kg

			0 1	2	3	4	5	6	7	8	9	10
1	2kg	\$6	0	6	6	6	6	6	6	6	6	6
2	2kg	\$10	0	_10	10	16	16	16	16	16	16	16
3	3kg	\$12	0	10	12	16	22	22	28	28	28	28
4	4kg	\$16	0	10	12	16	22	26	28	32	38	38
5	5kg	\$20	0	10	12	16	22	26	30	32	38	42

The Knapsack problem – DP

```
int KnapSack(int n, int wt[], int val[], int W)
 int i, w;
  //Create a table K to store solutions of subproblems
 int** K = new int*[n + 1];
 for(i = 0; i <= n; i++)</pre>
   K[i] = new int[W + 1];
 for (i = 0; i <= n; i++) //Build table K[][] in bottom up manner</pre>
    for (w = 0; w \le W; w++) {
      if (i==0 || w==0)
         K[i][w] = 0;
                                      f(i-1,W-w_i)+x_i
      else if (wt[i-1] <= w)</pre>
         K[i][w] = K[i-1][w];
      else
         K[i][w] = \max(K[i-1][w-wt[i-1]] + val[i-1], K[i-1][w]);
    }
 return K[n][W];
                                                        f(i-1,W)
} 4/1/2024
                              NHMinh@FIT
```


- Knapsack's capacity: 10kg
- ☐ 3 items can be chosen:
- Item 1: \$5 (3 kg)
- Item 2: \$7 (4 kg)
- Item 3: \$8 (5 kg)
- 1 item can be picked many times

 \square Optimal function: f(n, W) (n=3, w=10)

 \square Optimal f(i, w) is calculated by:

$$f(i,W) = \max(f(i-1,W-kw_i)+kx_i)f(i-1,W))$$

k item i + optimum combination of weight $w - kw_i$

NO Item i + optimum combination items 1 to i – 1

 \square k is the number of times item i appears in the knapsack. k = 1,2,... so that $kw_i \leq W$

35

- ☐ Use only item 1:
- $\rightarrow f(1,3) = 5, f(1,6) = 10, f(1,9) = 15$

		0	1	2	3	4	_	5	6	-	7	8	9	10	
1	3kg	\$ 5	0	0	0	5	5		5	10	1	0	10	15	15
2	4kg	\$7													
3	5kg	\$8													
$1 \times x_1$ $2 \times x_1$ $3 \times x_2$											$\langle x_1 \rangle$				

- ☐ Use only item 1 & 2:
- $\rightarrow f(2,W) = \max(f(1,W-4k)+7k,f(1,W))$

			0	1	2	3	4	5	6	7	8	9	10
1	3kg	\$5	0	0	0	5	5	5	10	10	10	15	15
2	4kg	\$7	0	0	0	5	7	7	10	12	14	15	17
3	5kg	\$8											

- ☐ Use item 1, 2, and 3:
- $\rightarrow f(3,W) = \max(f(2,W-5k)+8k,f(2,W))$

			0	1	2	3	4	5	6	7	8	9	10
1	3kg	\$5	0	0	0	5	5	5	10	10	10	15	15
2	4kg	\$7	0	0	0	5	7	7	10	12	14	15	17
3	5kg	\$8	0	0	0	5	7	8	10	12	14	15	17

■ Solution:

■ item $2 + 2 \times \text{item } 1 \rightarrow \$17 - 10 \text{kg}$

			0	1	2	3	4	5	6	7	8	9	10
	3kg	\$5	0	0	0	5	5	5	10	10	10	15	15
2	4kg	\$7	0	0	0	5	7	7	10	12	14	15	17
3	5kg	\$8	0	0	0		7						1 7

- As an exercise, rewrite the Knapsack function to solve multi-choice Knapsack problem:
 - Using Recursion (top-down)
 - Using Dynamic Programming (bottom-up)

40

Properties of Dynamic Programming

There are 2 main properties of a problem that suggest that the given problem can be solved using Dynamic programming:

1. Overlapping Subproblems

solutions of same subproblems are needed again and again

2. Optimal Structures

optimal solution of the given problem can be obtained by using optimal solutions of its subproblems.

41

Dynamic Programming Applications

- Area
 - Bioinformatics.
 - Control theory.
 - Information theory.
 - Operations research.
 - Computer science: theory, graphics, AI, systems,

- Some famous dynamic programming algorithms.
 - Viterbi for hidden Markov models.
 - Unix diff for comparing two files.
 - Smith-Waterman for sequence alignment.
 - Bellman-Ford for shortest path routing in networks.
 - Cocke-Kasami-Younger for parsing context free grammars.

More Reading

- The best way to get a feel for this is through some more examples.
 - 1. Longest Common Subsequence
 - 2. Longest Increasing Subsequence
 - 3. Matrix Chain Multiplication
 - 4. Partition problem
 - Rod Cutting
 - 6. Coin change problem
 - 7. Word Break Problem
 - 8. ...

