C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Algoritmica Grafurilor - Cursul 13

Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru -

Cuprins

- Tree decomposition hms * C. Croitoru Graph Algorithms * C. Croitoru Graph Al Trithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru -

 - Small tree decompositions Algorithms * C. Croitoru Graph Algorithms * C.
 - Proprietăți ale tree descompunerilor ms * C. Croitoru Graph Algorithms *
 C. Croitoru Graph Algorithms *
 C. Croitoru Graph Algorithms *
 - Tree descompuneri cu rădăcină raph Algorithms * C. Croitoru Graph
 - Algorithms * C. Croitoru Graph Algorithms * C. Croitoru G. Croitoru G. Croitoru G. Croitoru G. Croitoru G. Croitoru G.

Tree decomposition - Definiţie

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Algorithms * C. Croiton, Crook Algorithms * C. Croiton, Crook Algorithms * C. Croiton

Definiție

O tree decomposition a unui graf G = (V, E) este o pereche $T = (T, \{V_t : t \in T\})$, unde T este un arbore iar $\{V_t : t \in V(T)\}$ este o familie de submulţimi de noduri ale lui $G, V_t \subseteq V, \forall t \in T$ astfel ca:

- (Acoperirea nodurilor) $V = \bigcup_{t \in V(T)} V_t$;
- (Acoperirea muchiilor) Pentru orice muchie $e \in E$, ambele capete ale lui e sunt conţinute într-o mulţime V_t , pentru un anumit $t \in V(T)$.
- (Coerenţa) Fie t_1 , t_2 , t_3 trei noduri din T astfel ca t_2 se află pe drumul dintre t_1 și t_3 in T. Atunci, dacă $v \in V$ se află în V_{t_1} și V_{t_3} , v se află și în V_{t_2} .

Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru

- Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Tree-width - Definiție

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Remarci

Proprietatea de coerență poate fi reformulată astfel:

- (Coerenţa') Fie $t_1,t_2,t_3\in V(T)$ aşa încât t_2 aparţine drumului dintre t_1 şi t_2 în T. Atunci $V_{t_1}\cap V_{t_3}\subseteq V_{t_2}$.
- (Coerența") Pentru orice $x\in V$, subgraful lui T indus de $\{t\in V(T):x\in V_t\}$ este (un subarbore al lui T) conex.

Mulţimile V_t ale descompunerii sunt numite $extbf{bags}$. $ext{Croitoru-Graph}$

Definitie

Fie $\mathcal{T} = (T, \{V_t : t \in T\})$ o tree-descompunere a lui G, lăţimea (width) lui \mathcal{T} este

$$width(\mathcal{T}) = \max_{t \in V(T)} (|V_t| - 1).$$

Tree-width - Definiție

Definiție

Tree-width a unui graf G, este cea mai mică lățime a unei tree-descompuneri a luiG:

 $tw(G) = \min \{ width(T) : T \text{ tree-descompunere a lui } G \}.$

Tree-width

Remarcă

tw(G) = 0 dacă și numai dacă $E(G) = \emptyset$.

Propoziție

Dacă G este o pădure cu $E(G) \neq \emptyset$, atunci tw(G) = 1.

Demonstrație. Din observația de mai sus $tw(G) \geqslant 1$. Dacă G este un arbore, atunci

- ullet fie T obţinut din G prin redenumirea fiecărui nod $v \in V(G)$ prin $t_v,$
- ullet inserează pe fiecare muchie $t_u t_v \ (uv \in E(G))$ un vârf nou t_{uv} ,
- setează $V_{t_u} = \{u\}$ pentru orice t_u asociat lui $u \in V(G)$ și $V_{t_{uv}} = \{u, v\}$ pentru orice $t_{uv} \in V(T)$ asociat lui $uv \in E(G)$.
- $(T, \{V_t : t \in V(T)\})$ este o tree-descompunere a lui G cu lățimea 1.

Demonstrație (continuare). O tree-descompunere a unei păduri cu p componente se poate obține adăugând arbitrar p-1 muchii la tree-descompunerile componentelor (fără a crea circuite).

Small tree decompositions

Definiție

O tree-descompunere, $\mathcal{T}=(T,\{V_t:t\in V(T)\})$, este mică (small) dacă nu există noduri distincte $t_1,t_2\in V(T)$ astfel ca $V_{t_1}\subseteq V_{t_2}$.

Cronoru - Graph Argonumis — C. Cronoru - Graph Argonumis — C. Cronoru - Graph Argonumis

Propoziție

Dată o tree-descompunere a lui G, o tree-descompunere small a lui G de aceeași lățime poate fi construitia în timp polinomial.

Demonstrație. Fie $\mathcal{T}=(T,\{V_t:t\in V(T)\})$ o tree-descompunere a lui G cu $V_{t_1}\subseteq V_{t_2}$ pentru $t_1,t_2\in V(T)$, $t_1\neq t_2$. Putem presupune că $t_1t_2\in E(T)$ (altfel, putem determina două noduri adiacente cu această proprietate considerând drumul de la t_1 la t_2).

Contractând t_1t_2 într-un nod nou t_{12} cu $V_{t_{12}}=V_{t_2}$, se obţine o tree-descompunere a lui G mai mică (conţine mai puţine perechi de noduri (t'_1, t'_2) cu $V_{t'_1} \subseteq V_{t'_2}$).

Small tree decompositions

Demonstrație (continuare). Repetăm această reducere până se obține o tree-descompunere small.

Propoziție

Dacă $\mathcal{T} = (T, \{V_t : t \in V(T)\})$ este o tree-descompunere small a lui G, atunci $|T| \leq |G|$.

Demonstrație. Prin inducție după n = |G|. Dacă n = 1, atunci |T| = 1.

În pasul inductiv, pentru $n\geqslant 2$, considerăm o frunză t_1 a lui T cu vecinul t_2 . $(T-t_1,\{V_t:t\in V(T-t_1)\})$ este o tree-descompunere small a lui $G'=G\setminus (V_{t_1}\setminus V_{t_2})$. Din ipoteza inductivă $|T-t_1|\leqslant |G'|$, astfel

$$|T| = |T - t_1| + 1 \leqslant |G'| + 1 \leqslant |G|.$$

Minori

Remarci

- dacă graful H se obține din G prin contractarea unei muchii uv în z, atunci $tw(H) \leqslant tw(G)$: într-o tree-descompunere a lui G, inserăm z în fiecare bag care conține pe u sau v și ștergem apoi pe u și v din orice bag pentru a obține o tree-descompunere a lui H.
- dacă H este un subgraf al lui G, atunci $tw(H) \leqslant tw(G)$.

Definiție

H este un minor al unui graf G dacă se poate obține din G prin ștergerea si contractarea succesivă a unor muchii din G.

Corolar

Dacă H este un minor al grafului G, atunci $tw(H) \leqslant tw(G)$.

Demonstrație. Folosind observațiile de mai sus.

Tree-width

C. Croitoru - Graph Algorithms * C. Croitoru - Graph

Fie $TW_k = \{G : tw(G) \leq k\}.$

Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

TW (Tree-Width - versiunea de decizie)

Instanță: G un graf și $k \in \mathbb{N}$.

Întrebare: $G \in TW_k$?

C. Continue Const. Alexaida & C. Contoru Graph Alexaida & C. Contoru Graph Tagoritamino

Teoremă

Problema Tree-Width (versiunea de decizie) este o problemă \mathbf{NP} -completă.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Demonstraţie. Omisă.

Graph Algorithms * C. Croitoru - Graph Algorithms *

Tree-width este FPT (fixed-parameter tractable)

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Lemă

Pentru orice $k \in \mathbb{N}^*$, TW_k este o familie închisă la minori.

Teoremä

(Bodlaender) Pentru orice k fixat, problema determinării dacă G este în TW_k sau nu poate fi rezolvată în timpul $\mathcal{O}(f(k) \cdot n)$.

Proofs. Omisă. (f(k)) este o funcție exponențială în k.)

Graph Argonumis - C. Cronoru - Graph Argonumis - C. Cronoru - Graph Argonumis

Notație: Fie $\mathcal{T}=(T,\{V_t:t\in V(T)\})$ o tree-descompunere of G. Dacă T' este un subgraf al lui T, $G_{T'}$ este subgraful lui G indus de mulțimea de noduri $\bigcup_{t\in V(T')}V_t$.

Proprietăți ale tree descompunerilor

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Teoremä

(Proprietatea separării nodurilor.) Presupunem că T-t are componentele conexe T_1, T_2, \ldots, T_p . Atunci subgrafurile $G_{T_1} - V_t, G_{T_2} - V_t, \ldots, G_{T_p} - V_t$ nu au noduri în comun şi nici muchii între ele.

Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru

Proprietăți ale tree descompunerilor

Teoremă

(Proprietatea separării muchiilor.) Fie X şi Y componentele conexe ale lui T după ştergerea unei muchii $xy \in E(T)$. Atunci, ştergerea nodurilor din $V_x \cap V_y$ deconectează G în două subgrafuri $H_X = G_X - V_x \cap V_y$ şi $H_Y = G_Y - V_x \cap V_y$. Cu alte cuvinte H_X şi H_Y nu au noduri în comun şi nici muchii între ele.

Proprietăți ale tree descompunerilor

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Alte proprietăți:

- Fie G un graf conex cu tw(G) = k, atunci sau |G| = k + 1 sau G are o mulţime separatoare de noduri de cardinal k.
- dacă tw(G) = 1, atunci G este o pădure.
- $tw(P_r \times P_s) = \min\{r, s\}.$
- $tw(K_n) = n 1$.

Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C.

Tree descompuneri cu rădăcină

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Definitie

O tree-descompunere cu rădăcină a lui G este o tree-descompunere $T = (T, \{V_t : t \in V(T)\})$ a lui G, în care un anumit nod r al lui T este declarat rădăcină.

Notații: Fie t un nod dintr-o tree-descompunere cu rădăcină $\mathcal{T}=$

Oraphi rugoriumus — C. Cronora - Oraphi rugoriumus — C. Cronora - Oraphi rugoriumus

 $(T, \{V_t : t \in V(T)\}).$

ullet T_t este subarborele lui T cu rădăcina în t.

ullet G[t] este subgraful lui G indus de nodurile din $igcup_{x\in V(T_t)}V_x$ (i. e.,

$$G[t]=G_{T_t}).$$

Graph Algorithms * C. Croitoru - Graph Algorithms *

Aplicații - Colorarea nodurilor

- Reamintim: o p-colorare a nodurilor unui graf G = (V, E) este o funcție $c: V \to \{1, 2, ..., p\}$ astfel ca $c(u) \neq c(v)$ pentru orice $uv \in E$.
- Fie H' şi H'' două subgrafuri ale lui G, cu p-colorările c' şi c'', respectiv. c'' este c'-compatibilă dacă pentru orice $v \in V(H') \cap V(H'')$ avem c'(v) = c''(v).
- Fie $\mathcal{T}=(T,\{V_t:t\in V(T)\})$ tree-descompunere cu rădăcină a lui G. Pentru orice $t\in T$ și orice p-colorare c a lui G_t , definim

$$Prev_t(c) = \left\{ egin{array}{ll} 1, & ext{dacă } G[t] ext{ are o } p ext{-colorare } \overline{c}, c ext{-compatibilă} \ 0, & ext{altfel}. \end{array}
ight.$$

Propoziție

 $Prev_u(c)=1$ dacă și numai dacă pentru orice copil v al lui u, există o colorare \overline{c} a lui G_v , c-compatibilă cu $Prev_v(\overline{c})=1$

Aplicații - Colorarea nodurilor

C. Croitoru - Graph Algorithms * C. Croitoru - Graph

Demonstrație. " \Longrightarrow " dacă γ este colorare a lui G[u], c-compatibilă, cum G_v este un a subgraf al lui G[u], atunci restricția lui γ la G_v ne oferă colorarea dorită, \overline{c} .

"
—" Presupunem că u are exact doi copii v şi w, şi că avem două colorări \overline{c}' şi \overline{c}'' , c-compatibile, respectiv (demonstrația este similară pentru mai mulți copii).

Deoarece $(T, \{V_t : t \in V(T)\})$ este o tree-descompunere, $V(G[v]) \cap V(G[w]) \subseteq V_u$, urmează că \overline{c}' este \overline{c}'' -compatibilă.

Combinând \overline{c}' și \overline{c}'' obținem $\overline{c}: V(G[u]) \to \{1,2,\ldots,p\}$. Cum $(T,\{V_t: t\in V(T)\})$ este o tree-descompunere, nu există muchii $xy\in E(G)$ cu $x\in V(G[v])-V_u$ și $y\in V(G[w])-V_u$, deci \overline{c} este o p-colorare a lui G[u].

Aplicații - Colorarea nodurilor

Teoremä

Dacă G, un graf de ordin n, are o tree-descompunere small $(T, \{V_t : t \in V(T)\})$ cu lățimea w, atunci putem decide dacă G este p-colorabil în timpul $\mathcal{O}(p^{w+1} \cdot n^{\mathcal{O}(1)})$.

Demonstrație. Transformăm $(T, \{V_t : t \in V(T)\})$ într-o a treedescompunere cu rădăcină (r). Pentru orice $v \in V(T)$ și orice pcolorare c a lui G_v , determinăm $Prev_v(c)$: plecând din frunzele lui T, și apoi folosind proprietatea de mai sus pentru celelalte noduri, într-o ordine corespunzătoare.

G = G[r] este p-colorabil dacă și numai dacă $Prev_v(c) = 1$ pentru o colorare c. Testarea dacă c este G_v colorare și determinarea lui $Prev_v(c)$ pot fi făcute în timpul $\mathcal{O}(n^{\mathcal{O}(1)})$, astfel complexitatea timp totală este dată în principal de numărul de candidați pentru c, adică $p^{|V_v|}$. Complexitate: $|V(T)| \cdot p^{w+1} \cdot n^{\mathcal{O}(1)} = \mathcal{O}(p^{w+1} \cdot n^{\mathcal{O}(1)})$.

Alte aplicații - Abordări similare (programare dinamică mai avansată)

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Teoremä

Dacă G, un graf de ordin n, are o tree-descompunere small $(T, \{V_t : t \in V(T)\})$ cu lăţimea w, cardinalul minim al unei acoperiri cu noduri a lui G poate fi determinată în timpul $\mathcal{O}(2^{w+1} \cdot n^{\mathcal{O}(1)})$.

- Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru

Teoremă

Dacă G, un grafde ordin n cu ponderi pe noduri, are o tree-descompunere small $(T, \{V_t : t \in V(T)\})$ cu lăţimea w, o mulţime stabila de pondere maximă a lui G poate fi determinată în timpul $\mathcal{O}(4^{w+1} \cdot w \cdot n)$.

⁻ Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Sfârșit

Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - G. Cro Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *