

NPN Silicon Digital Transistor

- Switching circuit, inverter, interface circuit driver circuit
- Built in bias resistor (R_1 =10k Ω , R_2 =47k Ω)
- For 6-PIN packages: two (galvanic) internal isolated transistors with good matching in one package

BCR135/F/L3 BCR135S BCR135T/W

Туре	Marking	Pin Configuration					Package	
BCR135	WJs	1=B	2=E	3=C	-	_	_	SOT23
BCR135F	WJs	1=B	2=E	3=C	-	_	_	TSFP-3
BCR135L3	WJ	1=B	2=E	3=C	-	-	-	TSLP-3-4
BCR135S	WJs	1=E1	2=B1	3=C2	4=E2	5=B2	6=C1	SOT363
BCR135T	WJs	1=B	2=E	3=C	-	-	-	SC75
BCR135W	WJs	1=B	2=E	3=C	-	_	_	SOT323

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V_{CEO}	50	V
Collector-base voltage	V_{CBO}	50	
Emitter-base voltage	V_{EBO}	6	
Input on voltage	V _{i(on)}	20	
Collector current	I _C	100	mA
Total power dissipation-	P _{tot}		mW
BCR135, <i>T</i> _S ≤ 102°C		200	
BCR135F, <i>T</i> _S ≤ 128°C		250	
BCR135L3, <i>T</i> _S ≤ 135°C		250	
BCR135S, <i>T</i> _S ≤ 115°C		250	
BCR135T, <i>T</i> _S ≤ 109°C		250	
BCR135W, <i>T</i> _S ≤ 124°C		250	
Junction temperature	Tj	150	°C
Storage temperature	$T_{ m stg}$	-65 150	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R _{thJS}		K/W
BCR135		≤ 240	
BCR135F		≤ 90	
BCR135L3		≤ 60	
BCR135S		≤ 140	
BCR135T		≤ 165	
BCR135W		≤ 105	

 $^{^{1}\}mbox{For calculation of}\,{\it R}_{\mbox{thJA}}$ please refer to Application Note Thermal Resistance

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified **Values** Unit **Parameter Symbol** min. typ. max. **DC Characteristics** ٧ Collector-emitter breakdown voltage $V_{(BR)CEO}$ 50 $I_{\rm C}$ = 100 μ A, $I_{\rm B}$ = 0 Collector-base breakdown voltage $V_{(BR)CBO}$ 50 $I_{\rm C} = 10~\mu{\rm A},~I_{\rm E} = 0$ Collector-base cutoff current 100 nΑ I_{CBO} $V_{\rm CB} = 40 \text{ V}, I_{\rm E} = 0$ 167 μΑ Emitter-base cutoff current I_{EBO} $V_{\rm EB} = 6 \text{ V}, I_{\rm C} = 0$ DC current gain¹⁾ 70 h_{FE} _ $I_{\rm C}$ = 5 mA, $V_{\rm CE}$ = 5 V Collector-emitter saturation voltage¹⁾ V_{CEsat} V 0.3 $I_{\rm C}$ = 10 mA, $I_{\rm B}$ = 0.5 mA Input off voltage $V_{i(off)}$ 0.5 1 $I_{\rm C}$ = 100 μ A, $V_{\rm CE}$ = 5 V Input on voltage $V_{i(on)}$ 0.5 1.4 $I_{\rm C}$ = 2 mA, $V_{\rm CE}$ = 0.3 V R_1 7 13 Input resistor 10 $\mathsf{k}\Omega$ R_1/R_2 0.19 0.21 0.24 Resistor ratio **AC Characteristics** f_{T} MHz 150 Transition frequency $I_{\rm C}$ = 10 mA, $V_{\rm CE}$ = 5 V, f = 100 MHz рF C_{cb} 3 Collector-base capacitance $V_{CB} = 10 \text{ V}, f = 1 \text{ MHz}$

¹Pulse test: t < 300µs; D < 2%

DC current gain $h_{FE} = f(I_C)$

 V_{CE} = 5V (common emitter configuration)

Input on Voltage $Vi_{(on)} = f(I_C)$

 V_{CE} = 0.3V (common emitter configuration)

Collector-emitter saturation voltage

 $V_{\text{CEsat}} = f(I_{\text{C}}), h_{\text{FE}} = 20$

Input off voltage $V_{i(Off)} = f(I_C)$

 V_{CE} = 5V (common emitter configuration)

Total power dissipation $P_{tot} = f(T_S)$ BCR135

Total power dissipation $P_{tot} = f(T_S)$ BCR135L3

Total power dissipation $P_{tot} = f(T_S)$ BCR135F

Total power dissipation $P_{tot} = f(T_S)$ BCR135S

Total power dissipation $P_{tot} = f(T_S)$ BCR135T

Permissible Pulse Load $R_{thJS} = f(t_p)$ BCR135

Total power dissipation $P_{tot} = f(T_S)$ BCR135W

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$ BCR135

Permissible Puls Load $R_{thJS} = f(t_p)$ BCR135F

Permissible Puls Load $R_{thJS} = f(t_p)$ BCR135L3

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$ BCR135F

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$ BCR135L3

Permissible Puls Load $R_{thJS} = f(t_p)$ BCR135S

Permissible Puls Load $R_{thJS} = f(t_p)$ BCR135T

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$ BCR135S

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$ BCR135T

Permissible Puls Load $R_{thJS} = f(t_p)$ BCR135W

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_p)$ BCR135W

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.