Transformation de domaine

1 move.c, scroll.c et flip.c

Écrire les programmes suivants :

- 1. move $\langle dx \rangle \langle dy \rangle \langle ims \rangle \langle imd \rangle$ où $\langle dx \rangle$ et $\langle dy \rangle$ sont des entiers correspondant aux translations dans les directions x et y.
- 2. scroll < dx > < dy > < ims > < imd > où < dx > et < dy > sont des entiers correspondant aux translations dans les directions <math>x et y.
- 3. flip <dir> <ims> <imd> où <dir>∈{h, v, t} est un caractère permettant de déterminer l'orientation de la transformation (i.e., h pour un flip horizontal, v pour un flip vertical et t pour une transposition). Votre programme devra pouvoir accepter différentes combinaisons de paramètre, par exemple : vht, hhh, etc

2 shear.c avec interpolation bilinéaire

Écrire le programme shear <dir>{h, v} <angle> <ims> <imd>, permettant de réaliser une transformation de type cisaillement dans le direction <dir> avec un angle <angle>. Votre programme devra utiliser l'interpolation bilinéaire.

3 rotate.c avec interpolation bilinéaire

Écrire le programme rotate <x> <y> <angle> <ims> <imd> qui utilise la méthode d'interpolation bilinéaire. Les paramètres <x> <y> correspondent à la position du centre de rotation et <angle> est un nombre flottant représentant l'angle de rotation exprimé en degrés.

La figure 2 montre également comment obtenir une rotation à partir de cisaillement. Tester que vos programmes peuvent également réaliser cette transformation.

4 Bonus : sphere.c avec interpolation bilinéaire et génération d'animation

Écrire un programme sphere.c qui permet de faire une projection d'une image sur une sphère. Si vous utilisez l'image de test (earth.ppm), la figure 1 montre un exemple de cette transfomation géométrique.

FIGURE 1 – Exemple de projection sur une sphère.

La figure 1 montre également le principe de cette transformation. L'idée générale est la suivante :

- se placer au centre de l'image
- pour tout les pixels vu comme un vecteur (y,x)
- déterminer l'angle de projection
- déterminer la projection du vecteur au point P
- calculer les coordonées (θ, δ) dans la projection

Si vous générez une série d'images (par exemple à l'aide de scroll), une animation gif peut être créée en utilisant la commande convert avec les options -delay et -loop. Le fichier globe.gif est un exemple produit à partir de l'image de test.

 ${\tt Figure}\ 2-{\tt Exemple}\ {\tt de}\ {\tt rotation}\ {\tt d'angle}\ {\tt de}\ 30\ {\tt degr\'es}\ {\tt par}\ {\tt sucesssion}\ {\tt de}\ {\tt cisaillement}\ {\tt et}\ {\tt de}\ {\tt transposition}.$

FIGURE 3 – Exemples d'exécution des programmes move, flip, scroll, rotate, et shear avec leurs paramètres d'exécution.