Boîtes Non-Locales & Complexité de Communication

PIERRE BOTTERON*, ANNE BROADBENT, ION NECHITA, CLÉMENT PELLEGRINI. (Toulouse, Vendredi 26 Mai, 2023.)

Sommaire

■ Boîtes non-locales

2 Complexité de communication

3 Lien entre ces deux notions

— *Part* 1—

Boîtes non-locales

Alice

Bob

Alice Bob

• Stratégies déterministes.

• Stratégies déterministes. → max P(gagner) = 75%.

- Stratégies déterministes. → max P(gagner) = 75%.
- Stratégies classiques \mathcal{L} .

- Stratégies déterministes.

 → max ℙ(gagner) = 75%.
- Stratégies classiques \mathcal{L} . \rightsquigarrow max $\mathbb{P}(\text{gagner}) = 75\%$.

- Stratégies déterministes.
 → max P(gagner) = 75%.
- Stratégies classiques \mathcal{L} . \rightsquigarrow max $\mathbb{P}(\text{gagner}) = 75\%$.
- Stratégies quantiques \mathcal{Q} .

O-///O

- Stratégies déterministes.
 - $\rightsquigarrow \max \mathbb{P}(\text{gagner}) = 75\%.$
- Stratégies classiques L.

 → max P(gagner) = 75%.
- Stratégies quantiques \mathcal{Q} . $\rightsquigarrow \max \mathbb{P}(\text{gagner}) = \cos^2\left(\frac{\pi}{8}\right) \approx 85\%.$

Gagner au jeu CHSH. $a \oplus b = x y$.

- Stratégies déterministes.
 → max P(gagner) = 75%.
- Stratégies classiques £.

 → max P(gagner) = 75%.
- Stratégies quantiques Q. $\rightsquigarrow \max \mathbb{P}(\text{gagner}) = \cos^2(\frac{\pi}{8}) \approx 85\%.$
- Stratégies non-signallantes \mathcal{NS} .

Gagner au jeu CHSH. $a \oplus b = x y$.

- Stratégies déterministes. → max P(gagner) = 75%.
- Stratégies classiques L.

 → max P(gagner) = 75%.
- Stratégies quantiques Q. $\rightarrow \max \mathbb{P}(\text{gagner}) = \cos^2(\frac{\pi}{8}) \approx 85\%.$
- Stratégies non-signallantes \mathcal{NS} . \rightsquigarrow max $\mathbb{P}(\text{gagner}) = 100\%$.

Gagner au jeu CHSH. $a \oplus b = x y$.

- Stratégies déterministes. → max P(gagner) = 75%.
- Stratégies classiques £.

 → max P(gagner) = 75%.
- Stratégies quantiques Q. $\rightarrow \max \mathbb{P}(\text{gagner}) = \cos^2(\frac{\pi}{8}) \approx 85\%.$
- Stratégies non-signallantes NS.
 → max P(gagner) = 100%.

Gagner au jeu CHSH. $a \oplus b = x y$. Gagner au jeu CHSH'. $a \oplus b = (x \oplus 1) (y \oplus 1)$.

- Stratégies déterministes. → max P(gagner) = 75%.
- Stratégies classiques £.

 → max P(gagner) = 75%.
- Stratégies quantiques Q. \rightarrow max $\mathbb{P}(\text{gagner}) = \cos^2(\frac{\pi}{8}) \approx 85\%$.
- Stratégies non-signallantes NS.
 → max P(gagner) = 100%.

— *Part* 2—

Alice

Bob

 $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$

Arbitre

Alice

Bob

$$\mathsf{Gagner} \Longleftrightarrow \mathit{a} = \mathit{f}(X,Y).$$

 $\mathsf{Gagner} \Longleftrightarrow \mathit{a} = \mathit{f}(X,Y).$

Gagner
$$\iff a = f(X, Y)$$
.

Ex. Pour
$$n = 2$$
, $X = (x_1, x_2)$, $Y = (y_1, y_2)$:

$$\mathsf{Gagner} \Longleftrightarrow a = f(X,Y).$$

Ex. Pour
$$n = 2$$
, $X = (x_1, x_2)$, $Y = (y_1, y_2)$: $f := x_1 \oplus y_1 \oplus x_2 \oplus y_2 \oplus 1$ est triviale.

$$\mathsf{Gagner} \Longleftrightarrow a = f(X,Y).$$

Ex. Pour
$$n = 2$$
, $X = (x_1, x_2)$, $Y = (y_1, y_2)$:

$$ullet$$
 $f:=x_1\oplus y_1\oplus x_2\oplus y_2\oplus 1$ est triviale.

•
$$g := (x_1 x_2) \oplus (y_1 y_2)$$
 est triviale.

Ex. Pour
$$n = 2$$
, $X = (x_1, x_2)$, $Y = (y_1, y_2)$:

- ullet $f:=x_1\oplus y_1\oplus x_2\oplus y_2\oplus 1$ est triviale.
- $g := (x_1 x_2) \oplus (y_1 y_2)$ est triviale.
- $h := (x_1 y_1) \oplus (x_2 y_2)$ n'est PAS triviale.

$$\mathsf{Gagner} \Longleftrightarrow a = f(X,Y).$$

Complexité de communication

$$\mathsf{Gagner} \Longleftrightarrow a = f(X,Y).$$

Déf. Une fonction f est dite **triviale** (au sens de la complexité de communication) si Alice connaît n'importe quelle valeur f(X, Y) avec seulement un bit de communication entre Alice et Bob.

Ex. Pour n = 2, $X = (x_1, x_2)$, $Y = (y_1, y_2)$:

ullet $f:=x_1\oplus y_1\oplus x_2\oplus y_2\oplus 1$ est triviale.

• $g := (x_1 x_2) \oplus (y_1 y_2)$ est triviale.

• $h := (x_1 y_1) \oplus (x_2 y_2)$ n'est PAS triviale.

Déf. Une boîte P est dite **effondrante** (ou triviale) si en utilisant autant de copies de P que souhaité, n'importe quelle fonction Booléenne f est triviale avec probabilité $\geq q > \frac{1}{2}$ (où q est indep de f).

— *Part* 3 —

Lien entre ces deux notions

```
₽(gagner à CHSH')
```

 $\uparrow \mathbb{P}(\text{gagner à CHSH})$

Bibliographie

- R. Cleve, W. van Dam, M. Nielsen, and A. Tapp, Quantum Entanglement and the Communication Complexity of the Inner Product Function.
 Berlin, Heidelberg: Springer Berlin Heidelberg, 1999.
- W. van Dam, Nonlocality & Communication Complexity.
 Ph.d. thesis., University of Oxford, Departement of Physics, 1999.
- [3] G. Brassard, H. Buhrman, N. Linden, A. A. Méthot, A. Tapp, and F. Unger, "Limit on nonlocality in any world in which communication complexity is not trivial," *Phys. Rev. Lett.*, vol. 96, p. 250401, Jun 2006.
- [4] N. Brunner and P. Skrzypczyk, "Nonlocality distillation and postquantum theories with trivial communication complexity," *Physical Review Letters*, vol. 102, Apr 2009.
- [5] M. Navascués, Y. Guryanova, M. J. Hoban, and A. Acín, "Almost quantum correlations," *Nature Communications*, vol. 6, no. 1, p. 6288, 2015.
- [6] P. Botteron, A. Broadbent, and M.-O. Proulx, "Extending the known region of nonlocal boxes that collapse communication complexity," 2023.