Lecture Summary: Direction of Steepest Ascent and Descent

Source: Week 11-Lec 01.pdf

Key Points

• Motivation and Example:

- The problem of determining how water flows down a hill is modeled by studying the direction in which altitude decreases most rapidly.
- In one dimension, the direction of steepest descent is determined by the sign of the derivative of the altitude function h(x).
- Example: A cross-section of the Deccan Plateau illustrates water flowing towards regions of lower altitude based on the slope.

• From One Dimension to Two Dimensions:

- In two dimensions, altitude is modeled using h(x, y).
- The rate of change in any direction is described using the **directional derivative**.
- The direction of steepest descent corresponds to minimizing the directional derivative, while steepest ascent maximizes it.

• Directional Derivative and Gradient:

- The directional derivative of f at \vec{a} in the direction of a unit vector \vec{u} is:

$$D_{\vec{u}}f(\vec{a}) = \nabla f(\vec{a}) \cdot \vec{u} = ||\nabla f(\vec{a})|| \cos(\theta),$$

where θ is the angle between $\nabla f(\vec{a})$ and \vec{u} .

- Steepest Ascent: Occurs when $\cos(\theta) = 1$, i.e., \vec{u} is in the same direction as $\nabla f(\vec{a})$.
- Steepest Descent: Occurs when $\cos(\theta) = -1$, i.e., \vec{u} is in the opposite direction to $\nabla f(\vec{a})$.
- No Change: Occurs when $\cos(\theta) = 0$, i.e., \vec{u} is orthogonal to $\nabla f(\vec{a})$.

• Examples:

- Example 1: For $f(x,y) = \sin(xy)$ at $(\pi,1)$:
 - * Gradient: $\nabla f(\pi, 1) = (-1, -\pi)$.
 - * Steepest ascent: Direction is $-\nabla f/\|\nabla f\| = (1/\sqrt{1+\pi^2}, \pi/\sqrt{1+\pi^2}).$
 - * Steepest descent: Direction is $-\nabla f(\pi, 1) = (-1, -\pi)/\sqrt{1 + \pi^2}$.
 - * No change: Perpendicular directions such as $(\pi, -1)$ or $(-\pi, 1)$.
- Example 2: For $f(x, y, z) = x^2 + y^2 + z^2$ at (1, 1, 1):
 - * Gradient: $\nabla f(1,1,1) = (2,2,2)$.
 - * Steepest ascent: Direction is $\nabla f/\|\nabla f\| = (2/\sqrt{12}, 2/\sqrt{12}, 2/\sqrt{12}).$
 - * Steepest descent: Opposite to the gradient.
 - * No change: Perpendicular directions such as (1, -1, 0) or $(1/\sqrt{2}, -1/\sqrt{2}, 0)$.

• Continuity of Gradient:

- The gradient must be continuous in a neighborhood around the point of interest for these results to hold.
- If the gradient is not continuous, the directional derivatives may not exist in certain directions, and the results cannot be applied.

• Application in Machine Learning:

- Gradient Descent: An optimization technique that iteratively moves in the direction of steepest descent to minimize a function.
- This method is widely used in training machine learning models.

Simplified Explanation

Steepest Ascent/Descent: The gradient ∇f points in the direction of steepest ascent, while $-\nabla f$ points in the direction of steepest descent.

Example: For $f(x,y) = \sin(xy)$ at $(\pi,1)$: - Gradient: $(-1,-\pi)$. - Steepest ascent: $(1/\sqrt{1+\pi^2},\pi/\sqrt{1+\pi^2})$. - Steepest descent: Opposite direction to ascent.

Conclusion

In this lecture, we:

- Analyzed steepest ascent, descent, and directions of no change using the gradient.
- Applied these concepts to practical examples.
- Highlighted their significance in optimization and machine learning.

Understanding steepest ascent/descent and their relation to gradients is foundational for optimization in mathematics and applied sciences.