Analyse I – Corrigé de la Série 12

Echauffement.

$$i) \sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \quad x \in \mathbb{R}$$

$$ii) \cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}, \quad x \in \mathbb{R}$$

iii)
$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$
, $x \in \mathbb{R}$ iv) $e^{-x} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n$, $x \in \mathbb{R}$

$$v) \ \operatorname{sh}(x) = \frac{1}{2} \left(e^x - e^{-x} \right) = \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\underbrace{1 - (-1)^n}_{= \begin{cases} 0, n \text{ pair} \\ 2, n \text{ impair} \end{cases}} \right) x^n = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1}, \quad x \in \mathbb{R}$$

$$vi)$$
 $\operatorname{ch}(x) = \frac{1}{2} \left(e^x + e^{-x} \right) = \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\underbrace{1 + (-1)^n}_{=\begin{cases} 0, n \text{ impair} \\ 2, n \text{ pair} \end{cases}} \right) x^n = \sum_{n=0}^{\infty} \frac{1}{(2n)!} x^{2n}, \quad x \in \mathbb{R}$

vii)
$$Log(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1}, \quad x \in]-1,1]$$

$$viii) \ \operatorname{Log}(1-x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} (-x)^{n+1} = \sum_{n=0}^{\infty} \frac{(-1)^{2n+1}}{n+1} x^{n+1} = \sum_{n=1}^{\infty} \frac{-1}{n} x^n, \quad x \in [-1, 1]$$

Exercice 1.

Notez que dans les exemples ci-dessous on peut, contrairement au cas général, échanger la dérivation et la somme infinie parce qu'il s'agit de séries entières qui convergent. Pour la série

de Mac-Laurin
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 on a donc

$$f'(x) = \frac{d}{dx} \left(\sum_{n=0}^{\infty} a_n x^n \right) = \sum_{n=0}^{\infty} a_n \frac{d}{dx} (x^n).$$

i)
$$\frac{d}{dx}e^x = \frac{d}{dx}\left(\sum_{n=0}^{\infty} \frac{1}{n!}x^n\right) = \sum_{n=1}^{\infty} \frac{1}{(n-1)!}x^{n-1} = \sum_{n=0}^{\infty} \frac{1}{n!}x^n = e^x$$

ii)
$$\frac{d}{dx}\sin(x) = \frac{d}{dx}\left(\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}\right) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = \cos(x)$$

$$iii) \ \frac{d}{dx}\cos(x) = \frac{d}{dx}\left(\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}\right) = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)!} x^{2n-1} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2n+1)!} x^{2n+1} = -\sin(x)$$

$$iv) \frac{d}{dx} \text{Log}(1+x) = \frac{d}{dx} \left(\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1} \right) = \sum_{n=0}^{\infty} (-1)^n x^n = \frac{1}{1+x}, \quad |x| < 1 \text{ (série géométrique)}$$

Exercice 2.

On utilise que le développement de $f(z) = \frac{1}{1-z}$ en série entière est $f(z) = \sum_{k=0}^{\infty} z^k$ pour tout $z \in]-1,1[$.

i) On peut récrire

$$f(x) = \frac{2}{3+4x} = \frac{2}{3} \cdot \frac{1}{1+\frac{4}{3}x}$$
.

Ainsi, en posant $z:=-\frac{4}{3}x,$ on obtient que son développement en série entière est

$$f(x) = \frac{2}{3} \cdot \sum_{n=0}^{\infty} \left(-\frac{4}{3} \right)^n x^n$$
 pour $x \in \left] -\frac{3}{4}, \frac{3}{4} \right[$.

ii) De façon similaire, on peut récrire

$$f(x) = \frac{2}{3+4x} = \frac{2}{11+4(x-2)} = \frac{2}{11} \cdot \frac{1}{1+\frac{4}{11}(x-2)}$$

de telle sorte qu'en posant $z:=-\frac{4}{11}(x-2)$, on obtient que son développement en série entière est

$$f(x) = \frac{2}{11} \cdot \sum_{n=0}^{\infty} \left(-\frac{4}{11} \right)^n (x-2)^n,$$

avec intervalle de convergence $\left]-\frac{3}{4},\frac{19}{4}\right[$ (obtenue à partir de $z=-\frac{4}{11}(x-2)\in]-1,1[$).

Remarque générale: On peut aussi calculer le rayon de convergence de ces séries en utilisant les formules du cours

$$r = 1 / \lim_{n \to \infty} \sqrt[n]{|a_n|}$$
 ou $r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$. (1)

si ces limites existent.

Exercice 3.

Si $f \in C^{\infty}(I)$ et si $r_n(x) \xrightarrow{n \to \infty} 0$ dans le développement limité de f en $a \in I$, la série de Taylor de f en a est donnée par $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$ pour $x \in I$.

i) On a $f^{(n)}(x)=2^n\cdot e^{2x+1}$ et $f^{(n)}(0)=2^n\cdot e$. Ainsi le développement limité d'ordre n de f autour de a=0 est

$$f(x) = \sum_{k=0}^{n} \frac{2^k e}{k!} x^k + r_n(x)$$
 avec $r_n(x) = \frac{2^{n+1} \cdot e^{2u+1}}{(n+1)!} x^{n+1}$ pour un certain u entre 0 et x .

En outre, étant donné que pour x fixé

$$0 \le |r_n(x)| \le \frac{2^{n+1} \cdot e \cdot \max\{e^{2x}, 1\}}{(n+1)!} |x|^{n+1}$$

et

$$\lim_{n \to \infty} \frac{(2|x|)^{n+1}}{(n+1)!} = 0 \qquad \text{(argument similaire à l'Ex. 7} iii \text{ de la Série 5)},$$

il suit que $\lim_{n\to\infty} r_n(x) = 0$ pour tout $x \in \mathbb{R}$.

Comme en plus $f \in C^{\infty}(\mathbb{R})$, la série de Taylor de f autour de a=0 est donnée par

$$f(x) = e^{2x+1} = e \cdot \sum_{n=0}^{\infty} \frac{2^n}{n!} x^n$$
 pour tout $x \in \mathbb{R}$

et son rayon de convergence est $r = \infty$.

ii) Méthode 1: On utilise directement la formule de Taylor. On calcule que

$$f^{(n)}(x) = \frac{(-1)^n \cdot n!}{(x+1)^{n+1}}$$
 et $f^{(n)}(2) = \frac{(-1)^n \cdot n!}{3^{n+1}}$.

D'où le développement limité d'ordre n de f(x) autour de 2:

$$f(x) = \frac{1}{x+1} = \underbrace{\sum_{k=0}^{n} \frac{(-1)^k}{3^{k+1}} (x-2)^k}_{=f_n(x)} + r_n(x)$$

où $r_n(x) = \frac{(-1)^{n+1}}{u+1} \left(\frac{x-2}{u+1}\right)^{n+1}$ pour un certain u entre 2 et x.

On calcule le rayon de convergence par la formule générale (1) (en fait, on ne peut pas facilement démontrer la convergence du reste r_n vers 0 dans ce cas):

$$r = \left(\lim_{n \to \infty} \sqrt[n]{|a_n|}\right)^{-1} = \left(\lim_{n \to \infty} \sqrt[n]{|3^{-(n+1)}|}\right)^{-1} = \left(\lim_{n \to \infty} 3^{-(1+\frac{1}{n})}\right)^{-1} = 3.$$

Donc f_n converge sur]-1,5[, et il faut encore examiner la convergence aux bornes. Comme f n'est pas définie en x=-1, f_n ne peut converger en ce point (notez pourtant que $f_n(-1)$ existe). Pour x=5, on a $f_n(5)=\sum_{i=1}^n\frac{(-1)^k}{3}$ qui n'admet pas de limite lorsque $n\to\infty$.

Ainsi

$$f(x) = \frac{1}{x+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} (x-2)^n$$
 pour $-1 < x < 5$.

<u>Méthode 2</u>: Considérer f(x) comme somme d'une série géométrique. On obtient

$$f(x) = \frac{1}{x+1} = \frac{1}{3+(x-2)} = \frac{1}{3} \cdot \frac{1}{1+\frac{1}{3}(x-2)} = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} (x-2)^n$$

qui converge si et seulement si $-1 < -\frac{1}{3}(x-2) < 1 \iff -1 < x < 5$.

Exercice 4.

i) Observons que $\operatorname{Log}\left(\frac{1-x}{1+x}\right) = \operatorname{Log}(1-x) - \operatorname{Log}(1+x)$. Ainsi on peut calculer la série complète de Mac-Laurin en additionnant terme par terme les séries trouvées à l'Echauffement vii) et viii) (ceci est permis puisque les deux séries convergent pour $x \in]-1,1[$). On obtient alors

$$\sum_{n=1}^{\infty} \frac{-1}{n} \, x^n - \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \, x^n = \sum_{n=1}^{\infty} \left(\underbrace{-\frac{1}{n} - \frac{(-1)^{n-1}}{n}}_{=\left\{ \substack{-2, \ n \ \text{impair} \\ 0, \ n \ \text{pair}} \right\}} \right) x^n = \sum_{n=0}^{\infty} \frac{-2}{2n+1} \, x^{2n+1} \, .$$

Remarque: Pour obtenir seulement les trois premiers termes de la série, on pourrait aussi utiliser les développements limités adéquats de Log(1-x) et Log(1+x).

ii) <u>Méthode 1</u>: Utiliser l'égalité $tg(x) = \frac{\sin(x)}{\cos(x)}$ et les développements limités d'ordre 5 de

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + x^5 \varepsilon(x)$$
 et $\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + x^5 \varepsilon(x)$.

ainsi que celui d'ordre 2 de

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^2 + x^2 \varepsilon(x)$$
.

Comme $cos(x) - 1 = -\frac{x^2}{2} + \frac{x^4}{24} + x^5 \varepsilon(x)$, on obtient

$$\frac{1}{\cos(x)} = 1 - \left(-\frac{x^2}{2} + \frac{x^4}{24} + x^5\varepsilon(x)\right) + \left(-\frac{x^2}{2} + \frac{x^4}{24} + x^5\varepsilon(x)\right)^2 + x^4\varepsilon(x) = 1 + \frac{x^2}{2} + \frac{5x^4}{24} + x^4\varepsilon(x)$$

et ainsi

$$tg(x) = \left(x - \frac{x^3}{6} + \frac{x^5}{120} + x^5 \varepsilon(x)\right) \cdot \left(1 + \frac{x^2}{2} + \frac{5x^4}{24} + x^5 \varepsilon(x)\right) = x + \frac{x^3}{3} + \frac{2x^5}{15} + x^5 \varepsilon(x),$$

c'est-à-dire

$$tg(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + x^5 \varepsilon(x)$$
.

<u>Méthode</u> 2: Utiliser la définition de la série Taylor et donc calculer les dérivées de f(x) = tg(x) qui sont :

$$f'(x) = \frac{1}{\cos(x)^2}, \qquad f''(x) = \frac{2\sin(x)}{\cos(x)^3}, \qquad f'''(x) = \frac{2 + 4\sin(x)^2}{\cos(x)^4},$$

$$f^{(4)}(x) = \frac{8\sin(x)(2 + \sin(x)^2)}{\cos(x)^5}, \qquad f^{(5)}(x) = \frac{8(2 + 11\sin(x)^2 + 2\sin(x)^4)}{\cos(x)^6},$$

$$f(0) = 0, \qquad f'(0) = 1, \qquad f''(0) = 0, \qquad f'''(0) = 2, \qquad f^{(4)}(0) = 0, \qquad f^{(5)}(0) = 16.$$

Ainsi

$$tg(x) = \frac{1}{1!}x + \frac{2}{3!}x^3 + \frac{16}{5!}x^5 + x^5\varepsilon(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + x^5\varepsilon(x).$$

iii) On calcule

$$f'(x) = \frac{1}{1+x^2}, \qquad f''(x) = \frac{-2x}{(1+x^2)^2}, \qquad f'''(x) = \frac{8x^2}{(1+x^2)^3} - \frac{2}{(1+x^2)^2},$$

$$f^{(4)}(x) = \frac{-48x^3}{(1+x^2)^4} + \frac{24x}{(1+x^2)^3}, \qquad f^{(5)}(x) = \frac{384x^4}{(1+x^2)^5} - \frac{288x^2}{(1+x^2)^4} + \frac{24}{(1+x^2)^3},$$

$$f(0) = 0, \qquad f'(0) = 1, \qquad f''(0) = 0, \qquad f'''(0) = -2, \qquad f^{(4)}(0) = 0, \qquad f^{(5)}(0) = 24.$$
Aincide

Ainsi

$$Arctg(x) = \frac{1}{1!}x - \frac{2}{3!}x^3 + \frac{24}{5!}x^5 + x^5\varepsilon(x) = x - \frac{x^3}{3} + \frac{x^5}{5} + x^5\varepsilon(x).$$

iv) On utilise que pour |x| < 1 on a $(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{6}x^3 + \frac{\alpha(\alpha-1)(\alpha$ $x^3 \varepsilon(x)$ avec $\alpha = \frac{1}{2}$ et $tg(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + x^5 \varepsilon(x)$. Ainsi $(1 + \operatorname{tg}(x))^{1/2} = 1 + \frac{1}{2}\operatorname{tg}(x) - \frac{1}{8}\operatorname{tg}(x)^{2} + \frac{1}{16}\operatorname{tg}(x)^{3} + \underbrace{\operatorname{tg}(x)^{3}\varepsilon(\operatorname{tg}(x))}_{-x^{3}\varepsilon(x)},$

où $\operatorname{tg}(x)^3 \varepsilon(\operatorname{tg}(x)) = x^3 \varepsilon(x)$ par un argument comme à l'Ex. 5iii) de la Série 11 parce que $\frac{\operatorname{tg}(x)}{x}$ est aussi borné autour de x=0. Comme

$$tg(x)^{2} = \left(x + \frac{x^{3}}{3} + \frac{2x^{5}}{15} + x^{5}\varepsilon(x)\right)^{2} = x^{2} + x^{3}\varepsilon(x)$$

et

$$tg(x)^3 = (x^2 + x^3 \varepsilon(x)) \left(x + \frac{x^3}{3} + \frac{2x^5}{15} + x^5 \varepsilon(x) \right) = x^3 + x^3 \varepsilon(x)$$

on a finalement

$$\sqrt{1+\operatorname{tg}(x)} = 1 + \frac{1}{2}\left(x + \frac{x^3}{3}\right) - \frac{1}{8}x^2 + \frac{1}{16}x^3 + x^3\varepsilon(x) = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{11x^3}{48} + x^3\varepsilon(x) \ .$$

Exercice 5.

Q1: FAUX.

Comme 7 est impair, f admet un point d'inflexion en a (cf. remarque à la fin du § 5.10.2

Q2: VRAI.

Comme $f \in C^{n+1}(I)$, son développement limité d'ordre n autour de 0 est

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + x^n \varepsilon(x)$$

si bien que

$$f(-x) = a_0 - a_1 x + \dots + (-1)^n a_n x^n + x^n \varepsilon(x).$$

Or, comme f est impaire et $a_k = \frac{f^{(k)}(a)}{k!}$ pour $k = 0, \dots, n$ par la formule de Taylor (s'il existe un développement limité, il est unique), il suit que

$$a_0 - a_1 x + \dots + (-1)^n a_n x^n + x^n \varepsilon(x) = -a_0 - a_1 x - \dots - a_n x^n + x^n \varepsilon(x)$$

$$\Leftrightarrow a_0 + a_2 x^2 + \dots + a_{2k} x^{2k} + x^n \varepsilon(x) = -a_0 - a_2 x^2 - \dots - a_{2k} x^{2k} + x^n \varepsilon(x)$$

pour tout $x \in I$, d'où le résultat.

Q3: VRAI.

Les développements limités d'ordre n de f et g autour de a sont

$$f(x) = \frac{f^{(n)}(a)}{n!}(x-a)^n + (x-a)^n \varepsilon(x) \quad \text{et} \quad g(x) = \frac{g^{(n)}(a)}{n!}(x-a)^n + (x-a)^n \varepsilon(x)$$

avec $\lim_{x\to a} \varepsilon(x) = 0$. Ainsi

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{\frac{f^{(n)}(a)}{n!} (x - a)^n + (x - a)^n \varepsilon(x)}{\frac{g^{(n)}(a)}{n!} (x - a)^n + (x - a)^n \varepsilon(x)} = \lim_{x \to a} \frac{\frac{f^{(n)}(a)}{n!} + \varepsilon(x)}{\frac{g^{(n)}(a)}{n!} + \varepsilon(x)} = \frac{f^{(n)}(a)}{g^{(n)}(a)}$$

grâce à la propriété de $\varepsilon(x)$.

Exercice 6.

Q1: VRAI.

Clairement f(0) = 0. Et comme $\lim_{x \to 0} \varepsilon(x) = 0$ (donc fini), on a $\lim_{x \to 0} f(x) = 0$ si bien que f est continue en 0.

Q2: VRAI.

Par un calcul direct on a $\frac{f(x)}{x} = b + cx + x^3 \varepsilon(x)$. Comme $\lim_{x\to 0} \varepsilon(x) = 0$, le résultat en suit.

Q3: VRAI.

On a
$$\lim_{n\to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{n\to 0} \frac{f(x)}{x} = b.$$

Q4: FAUX.

Soit $f(x) = x^5 \sin\left(e^{\frac{1}{x^2}}\right) = x^4 \varepsilon(x)$. Alors $f'(x) = 5x^4 \sin\left(e^{\frac{1}{x^2}}\right) - 2x^2 e^{\frac{1}{x^2}} \sin\left(e^{\frac{1}{x^2}}\right)$ et donc la limite $\lim_{x\to 0} f'(x)$ n'existe pas, mais f'(0) = 0. f' n'est donc pas continue en x = 0 et donc $f \notin C^1(]-1,1[)$.

Q5: FAUX.

Si f est de classe $C^2(]-1,1[)$, le coefficient a_2 du développement limité de f autour de 0 est $a_2 = \frac{f''(0)}{2!}$ par la formule de Taylor. Comme $a_2 = c$ ici, il suit que f''(0) = 2c.

Q6: FAUX.

On calcule

$$f(x)^{2} = \left(bx + cx^{2} + x^{4}\varepsilon(x)\right)^{2} = b^{2}x^{2} + 2bcx^{3} + c^{2}x^{4} + 2bx^{5}\varepsilon(x) + 2cx^{6}\varepsilon(x)$$
$$= b^{2}x^{2} + 2bcx^{3} + c^{2}x^{4} + x^{5}\varepsilon(x)$$

parce que $\lim_{x\to 0} 2(b+cx)\varepsilon(x) = 0$. On voit que cette expression de $f(x)^2$ ne correspond pas à celle de l'énoncé rien qu'à cause du terme en x^3 . Noter qu'on pourrait aussi choisir un contre-exemple explicite, par exemple $f(x) = bx + cx^2 + x^5$.

6

Exercice 7.

Les primitives F sont définies à une constante $C \in \mathbb{R}$ près.

i)
$$F(x) = -\cos(x) + C$$
 (cf. cours)

$$ii)$$
 $F(x) = \sin(x) + C$ (cf. cours)

$$iii)$$
 $F(x) = -\operatorname{Log}(|\cos(x)|) + C$ (cf. cours)

$$iv) F(x) = e^x + C$$
 (cf. cours)

v)
$$F(x) = \int \frac{e^x - e^{-x}}{2} dx = \frac{e^x + e^{-x}}{2} + C = \operatorname{ch}(x) + C$$

$$vi) F(x) = \int \frac{e^x + e^{-x}}{2} dx = \frac{e^x - e^{-x}}{2} + C = \operatorname{sh}(x) + C$$

$$vii)$$
 $F(x) = x (Log(x) - 1) + C$ (cf. cours)

$$viii)$$
 $F(x) = Log(|x|) + C$ (cf. cours)

$$ix) \ F(x) = \int (ax+b)^s \, dx = \frac{1}{a} \int a(ax+b)^s \, dx = \frac{1}{a(s+1)} (ax+b)^{s+1} + C \quad \text{car } (ax+b)' = a$$
 et donc $F(x) = \frac{1}{a} \int f(\varphi(x)) \varphi'(x) \, dx = \frac{1}{a} \int f(t) \, dt$ avec $f(t) = t^s$ et $t = \varphi(x) = ax + b$.

$$x) F(x) = \int \frac{1}{1+x} dx - \int \frac{-1}{1-x} dx = \text{Log}(|1+x|) - \text{Log}(|1-x|) + C = \text{Log}\left(\left|\frac{1+x}{1-x}\right|\right) + C$$

$$xi) \ F(x) = \int \frac{1}{(1+x)(1-x)} dx = \frac{1}{2} \int \frac{1-x+1+x}{(1+x)(1-x)} dx = \frac{1}{2} \int \left(\frac{1}{1+x} + \frac{1}{1-x}\right) dx$$
$$= \frac{1}{2} \operatorname{Log}\left(\left|\frac{1+x}{1-x}\right|\right) + C$$

$$xii) F(x) = -\int \frac{-2x}{1-x^2} dx = -\text{Log}(|1-x^2|) + C \quad \text{car } (1-x^2)' = -2x \quad \text{(même idée qu'au } ix)$$

xiii)
$$F(x) = \int \frac{1}{\lg(x)} dx = \int \frac{\cos(x)}{\sin(x)} dx = \text{Log}(|\sin(x)|) + C \quad \text{car } (\sin(x))' = \cos(x) \text{ (même idée qu'au } ix)$$

$$xiv$$
) $F(x) = \frac{1}{2} \int 2x \exp(x^2) dx = \frac{1}{2} \exp(x^2) + C$ (même idée qu'au ix)

$$xv) \ F(x) = \int (ax^p + b)^s x^{p-1} dx = \frac{1}{ap} \int ap \, x^{p-1} (ax^p + b)^s dx = \frac{1}{ap(s+1)} (ax^p + b)^{s+1} + C$$

$$\operatorname{car} \ (ax^p + b)' = ap \, x^{p-1} \ (\text{même idée qu'au } ix)$$

Exercice 8.

Dans cette série, on va calculer ces intégrales en les ramenant à des intégrales standards. Avec l'avancement du cours vous verrez qu'on pourrait aussi utiliser d'autres méthodes d'intégration.

i) On sépare la somme en deux termes

$$\int \frac{3x+4}{1+x^2} dx = \int \left(\frac{3x}{1+x^2} + \frac{4}{1+x^2}\right) dx = \frac{3}{2} \int \frac{2x}{1+x^2} dx + 4 \int \frac{1}{1+x^2} dx$$
$$= \frac{3}{2} \operatorname{Log}(1+x^2) + 4 \operatorname{Arctg}(x) + C.$$

ii) On utilise que la fonction à intégrer est une dérivée en chaîne

$$\frac{\sin(x)}{\cos(x)^3} = -f(\varphi(x)) \cdot \varphi'(x) = -(F(\varphi(x)))',$$

avec $\varphi(x) = \cos(x)$, $f(x) = \frac{1}{x^3}$ et $F(x) = -\frac{1}{2x^2} - C$ une primitive de F. Ainsi

$$\int \frac{\sin(x)}{\cos(x)^3} dx = -\left(-\frac{1}{2\cos(x)^2} - C\right) = \frac{1}{2\cos(x)^2} + C.$$

iii) On remarque qu'il faut intégrer une composition avec une fonction affine, c.-à-d.

$$\frac{1}{\sqrt{4-3x^2}} = \frac{1}{2} \frac{1}{\sqrt{1-\frac{3}{4}x^2}} = \frac{1}{2} \cdot \frac{2\sqrt{3}}{3} \cdot \frac{\frac{\sqrt{3}}{2}}{\sqrt{1-\left(\frac{\sqrt{3}}{2}x\right)^2}} .$$

Comme $\left(\operatorname{Arcsin}(x)\right)' = \frac{1}{\sqrt{1-x^2}}$, la fonction $\operatorname{Arcsin}(x) + C$ est une primitive de $\frac{1}{\sqrt{1-x^2}}$ et on obtient

$$\frac{1}{2} \int \frac{dx}{\sqrt{1 - \frac{3}{4}x^2}} = \frac{\sqrt{3}}{3} \operatorname{Arcsin}\left(\frac{\sqrt{3}}{2}x\right) + C.$$

iv) En utilisant la définition du sinus hyperbolique et une identité remarquable, on a

$$\int \frac{\sinh(x)}{e^x + 1} dx = \frac{1}{2} \int \frac{e^x - e^{-x}}{e^x + 1} dx = \frac{1}{2} \int \frac{1 - (e^{-x})^2}{1 + e^{-x}} dx$$
$$= \frac{1}{2} \int (1 - e^{-x}) dx = \frac{1}{2} \left(x + e^{-x} \right) + C.$$

8