STATISTICAL INFERENCE (MA862)

Lecture Slides

Topic 6: Non-parametric Tests

Non-parametric Inference

- ➤ X has a CDF F with known functional form except perhaps some parameters. In this case, we need to find value of the unknown parameters based on a sample. This is known as parametric inference.
- ➤ X has a CDF F who's functional form is unknown. In this case, we need to estimate a parametric function or test a statistical hypothesis without known functional form of the CDF. This is known as non-parametric inference.
- In this course, we will mainly talk about non-parametric tests some practically meaningful statistical hypotheses.

Order Statistics

- Let $X_1, X_2, ..., X_n$ denote a random sample from a population with continuous CDF F.
- The probability of any two or more of these random variables have equal magnitude is zero.
- Let us define
 - $X_{(1)}$: smallest of X_1, X_2, \ldots, X_n .
 - $X_{(2)}$: second smallest of X_1, X_2, \ldots, X_n .
 - :
 - $X_{(n)}$: largest of X_1, X_2, \ldots, X_n .
- Then $X_{(1)} < X_{(2)} < \ldots < X_{(n)}$ denotes the original random sample after arrangement in increasing order of magnitude.
- These random variables are collectively termed the order statistics corresponding to the random sample X_1, X_2, \ldots, X_n .

Order Statistics

- For r = 1, 2, ..., n, the r-th smallest $X_{(r)}$ is called r-th order statistic.
- For odd n, the sample median is defined by $X_{\left(\frac{n+1}{2}\right)}$. For even n, it is any number between $X_{\left(\frac{n}{2}\right)}$ and $X_{\left(\frac{n}{2}+1\right)}$. The sample median is a measure of central tendency.
- The sample midrange is defined by $\frac{X_{(1)}+X_{(n)}}{2}$. It is also a measure of central tendency.
- The sample range is defined by $X_{(n)} X_{(1)}$. This is a measure of dispersion.

Joint Distribution of Order Statistics

Theorem 6.1: Let $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ be the order statistics corresponding to a random sample of size n from a population having PDF $f_X(\cdot)$. Then the joint PDF of the order statistics is

$$f_{X_{(1)}, X_{(2)}, \dots, X_{(n)}}(x_1, x_2, \dots, x_n) = n! \prod_{i=1}^n f_X(x_i) \text{ if } x_1 < x_2 < \dots < x_n.$$

Distribution of $X_{(r)}$

Theorem 6.2: Let $X_{(r)}$ be the *r*-th order statistic corresponding to a random sample of size *n* from a continuous CDF $F_X(\cdot)$. Then, the CDF of $X_{(r)}$ is

$$F_{X_{(r)}}(t)=\sum_{i=r}^n \binom{n}{i} \left[F_X(t)\right]^i \left[1-F_X(t)\right]^{n-i} ext{ for } t\in\mathbb{R}.$$

Theorem 6.3: Let $X_{(r)}$ be the r-th order statistic corresponding to a random sample of size n from a continuous CDF $F_X(\cdot)$ with corresponding PDF $f_X(\cdot)$. Then, the PDF of $X_{(r)}$ is

$$f_{X_{(r)}}(t) = \frac{n!}{(r-1)!(n-r)!} \left[F_X(t)\right]^{r-1} \left[1 - F_X(t)\right]^{n-r} f_X(t) \text{ for } t \in \mathbb{R}.$$

Distribution of $X_{(r)}$

Corollary 6.1: For a random sample of size n from U(0, 1) distribution, the CDF of the r-th order statistic is

$$F_{X_{(r)}}(x) = \sum_{i=r}^{n} {n \choose i} x^{i} (1-x)^{n-i} \text{ for } 0 < x < 1.$$

Corollary 6.2: For a random sample of size n from U(0, 1) distribution, the r-th order statistic follows a beta(r, n-r+1) distribution with PDF

$$f(x) = \frac{n!}{(r-1)!(n-r)!} x^{r-1} (1-x)^{n-r} \text{ for } 0 < x < 1.$$

Joint Distribution of Subset of Order Statistics

Theorem 6.4: Let $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ be the order statistics corresponding to a random sample of size n from a population having PDF $f_X(\cdot)$ and CDF $F_X(\cdot)$. Then, for $1 \le r_1 < r_2 < \ldots < r_k \le n$ and $1 \le k \le n$, the joint PDF of $X_{(r_1)}, X_{(r_2)}, \ldots, X_{(r_k)}$ is

$$f_{X_{(r_1)}, X_{(r_2)}, \dots, X_{(r_k)}}(x_1, x_2, \dots, x_k)$$

$$= \frac{n!}{(r_1 - 1)!(r_2 - r_1 - 1)! \dots (n - r_k)!} \times [F_X(x_1)]^{r_1 - 1} [F_X(x_2) - F_X(x_1)]^{r_2 - r_1 - 1} \dots [1 - F_X(x_k)]^{n - r_k} \times f_X(x_1) f_X(x_2) \dots f_X(x_k),$$

for $x_1 < x_2 < \ldots < x_k$.

Probability-Integral Transform

Theorem 6.5: Let X be a random variable with CDF $F_X(\cdot)$. If $F_X(\cdot)$ is continuous, then $F_X(X) \sim U(0, 1)$.

Corollary 6.3: If $X_1, X_2, ..., X_n$ be a random sample from a continuous CDF $F_X(\cdot)$, then $F_X(X_1), F_X(X_2), ..., F_X(X_n)$ is a random sample from U(0, 1) distribution.

Corollary 6.4: Let $X_{(1)} < X_{(2)} < \ldots < X_{(n)}$ be the order statistics corresponding to a random sample of size n from a population having continuous CDF $F_X(\cdot)$. Then, the distribution of

$$F_X(X_{(1)}) < F_X(X_{(2)}) < \ldots < F_X(X_{(n)})$$

is same as that of the order statistics corresponding to a random sample of size n from U(0, 1) distribution. a random sample of

Quantile Function

Definition 6.1: Let X be a random variable with CDF $F_X(\cdot)$. The function $Q_X:(0,1)\to\mathbb{R}$, defined by

$$Q_X(p) = F^{-1}(p) = \inf \left\{ x \in \mathbb{R} : F_X(x) \ge p \right\}$$

is known as quantile function (QF) of the random variable X. For $0 , <math>Q_X(p)$ is known as p-th quantile of X.

Remark 6.1:

- The 0.5-th quantile is known as population median.
- The first quartile is 0.25-th quantile, the second quartile is 0.50-th quantile, and the third quartile is 0.75-th quantile.
- The CDF and QF provide similar information regarding the distribution of the random variable.
- Different moments can be expressed in terms of QF.

Empirical Distribution Function

Definition 6.2: For a random sample of size n from the distribution with CDF $F_X(\cdot)$, the empirical distribution function (EDF) , $S_n: \mathbb{R} \to [0, 1]$, is defined by

$$S_n(x) = \frac{\text{number of sample values } \leq x}{n}.$$

Remark 6.2: The EDF is most conveniently defined in terms of the order statistics as

$$S_n(x) = \begin{cases} 0 & \text{if } x < X_{(1)} \\ \frac{i}{n} & \text{if } X_{(i)} \le x < X_{(i+1)}, \ i = 1, 2, \dots, \ n-1 \\ 1 & \text{if } x \ge X_{(n)}. \end{cases}$$

Some Properties of EDF

Theorem 6.6: For fixed $x \in \mathbb{R}$, $T_n(x) \sim Bin(n, F_X(x))$, where $T_n(x) = nS_n(x)$.

Corollary 6.5: For any fixed $x \in \mathbb{R}$, $E(S_n(x)) = F_X(x)$ and $Var(S_n(x)) = \frac{F_X(x)(1-F_X(x))}{n}$.

Corollary 6.6: For any fixed $x \in \mathbb{R}$, $S_n(x)$ is consistent estimator of $F_X(x)$.

Theorem 6.7: For any fixed $x \in \mathbb{R}$,

$$\frac{\sqrt{n}\left[S_n(x)-F_X(x)\right]}{\sqrt{F_X(x)\left[1-F_X(x)\right]}}\overset{\mathcal{D}}{\to}Z\sim \textit{N}(0,\,1).$$

Theorem 6.8: (Glivenko-Cantelli Theorem) $S_n(\cdot)$ converges uniformly to $F_X(\cdot)$ with probability 1, *i.e.*,

$$P\left[\lim_{n\to\infty}\sup_{x\in\mathbb{R}}|S_n(x)-F_X(x)|=0\right]=1.$$

Test for Randomness

- 10 persons (M-5, F-5) waiting in a queue for movie tickets.
- The arrangement is M, F, M, F, M, F, M, F, M, F.
- Would it be considered as a random arrangement of genders?

Test for Randomness

- 10 persons (M-5, F-5) waiting in a queue for movie tickets.
- The arrangement is M, F, M, F, M, F, M, F, M, F.
- Would it be considered as a random arrangement of genders?
- F, F, F, F, M, M, M, M, M.
- M, M, M, M, F, F, F, F, F.
- M, M, F, F, F, M, F, M, M, F.

Test for Randomness

- A ordered sequence of two types of symbols (or objects).
- Length of the sequence is *n*.
- n₁: number of Type-I symbol
- n₂: number of Type-II symbol
- $n = n_1 + n_2$
- We want to test

 H_0 : the arrangement of the n symbols is random

against

 H_1 : the arrangement of the n symbols is not random.

Run

Definition 6.3: Given an ordered sequence of two type of symbols, a run is defined to be a succession of one type of symbols that are followed or preceded by a different symbol or no symbol at all.

Example 6.1:

- M, F, M, F, M, F, M, F 10 runs (5 of M, 5 of F)
- F, F, F, F, M, M, M, M, M 2 runs (1 of M, 1 of F)
- M, M, M, M, M, F, F, F, F, F 2 runs (1 of M, 1 of F)
- M, M, F, F, F, M, F, F, M, M 5 runs (3 of M, 2 of F)

Test based on Total Number of Runs

- A ordered sequence of two types of symbols (or objects).
- Length of the sequence is *n*.
- n₁: number of Type-I symbol
- n₂: number of Type-II symbol
- $n = n_1 + n_2$
- R₁: Number of runs of Type-I symbol
- R₂: Number of runs of Type-II symbol
- $R = R_1 + R_2$: Number of total runs
- H_0 is rejected if and only if R is too small or too large
- Need the null distribution of R

Lemma 6.1: The number of distinguishable ways of distributing n-like objects into r distinguishable cells with no cell empty is $\binom{n-1}{r-1}$, n > r > 1.

Theorem 6.9: Under H_0 , the joint probability mass function of R_1 and R_2 is

$$f_{R_1, R_2}(r_1, r_2) = \frac{c\binom{n_1-1}{r_1-1}\binom{n_2-1}{r_2-1}}{\binom{n_1+n_2}{n_1}},$$

for $(r_1, r_2) \in \{(a, b) \in \mathbb{N} : a = b \text{ or } a = b \pm 1\}$, where $\mathbb{N} = \{1, 2, \ldots, n_1\} \times \{1, 2, \ldots, n_2\}$, c = 2 if $r_1 = r_2$ and c = 1 if $r_1 = r_2 \pm 1$.

Corollary 6.7: Under H_0 , the marginal probability mass function of R_1 is

$$f_{R_1}(r_1) = \frac{\binom{n_1-1}{r_1-1}\binom{n_2+1}{r_1}}{\binom{n_1+n_2}{n_1}} \text{ for } r_1 = 1, 2, \ldots, n_1.$$

Corollary 6.8: Under H_0 , the marginal probability mass function of R_2 is

$$f_{R_2}(r_2) = \frac{\binom{n_2-1}{r_2-1}\binom{n_1+1}{r_1}}{\binom{n_1+n_2}{n_2}} \text{ for } r_2 = 1, 2, \ldots, n_2.$$

Theorem 6.10: The probability mass function of R in a random sample is

$$f_R(r) = \begin{cases} \frac{2\binom{n_1 - 1}{\frac{r}{2} - 1}\binom{n_2 - 1}{\frac{r}{2} - 1}}{\binom{n_1 + n_2}{n_1}} & \text{if } r \text{ is even} \\ \frac{\binom{n_1 - 1}{\frac{r - 1}{2}}\binom{n_2 - 1}{\frac{r - 3}{2}} + \binom{n_1 - 1}{\frac{r - 3}{2}}\binom{n_2 - 1}{\frac{r - 1}{2}}}{\binom{n_1 + n_2}{n_1}} & \text{if } r \text{ is odd,} \end{cases}$$

for r = 2, 3, ..., n.

Example 6.2: If $n_1 = 5$ and $n_2 = 4$, then under H_0

$$f_R(9) = \frac{\binom{4}{4}\binom{3}{3}}{\binom{9}{4}} = \frac{1}{126} \approx 0.008,$$

$$f_R(8) = \frac{2\binom{4}{3}\binom{3}{3}}{\binom{9}{4}} = \frac{8}{126} \approx 0.063,$$

$$f_R(3) = \frac{\binom{4}{1}\binom{3}{0} + \binom{4}{0}\binom{3}{1}}{\binom{9}{4}} = \frac{7}{126} \approx 0.056,$$

$$f_R(2) = \frac{2\binom{4}{0}\binom{3}{0}}{\binom{9}{1}} = \frac{2}{126} \approx 0.016.$$

For a two-sided test that rejects the null hypothesis for $R \le 2$ or $R \ge 9$, the exact significance level α is $\frac{3}{126} \approx 0.024$.

Moments of R under H_0

Theorem 6.11: The first two central moment of R under H_0 is

$$E(R) = 1 + rac{2n_1n_2}{n},$$
 $Var(R) = rac{2n_1n_2\left(2n_1n_2 - n_1 - n_2
ight)}{n^2\left(n - 1
ight)}.$

Asymptotic Test

Theorem 6.12: Suppose that the total sample size n increases to ∞ such a way that $\frac{n_1}{n} \to \lambda$, where $0 < \lambda < 1$ is a fixed number. Then under H_0 ,

$$\frac{R-2n\lambda(1-\lambda)}{2\sqrt{n}\lambda(1-\lambda)} \stackrel{\mathcal{D}}{\to} N(0, 1).$$

• Using the normal approximation, the null hypothesis of randomness would be rejected at level α if and only if

$$\left|\frac{R-2n\lambda(1-\lambda)}{2\sqrt{n}\lambda(1-\lambda)}\right|>z_{\frac{\alpha}{2}}.$$

Tests of Goodness-of-Fit

- Want to know if the given sample compatible to a particular distribution or not.
- The null hypothesis is about the form the CDF of the parent distribution.
- Let X_1, \ldots, X_n be a random sample from unknown CDF $F(\cdot)$.
- $H_0: F(x) = F_0(x)$ for all $x \in \mathbb{R}$ against $H_1: F(x) \neq F_0(x)$ for some $x \in \mathbb{R}$.
- Ideally, null hypothesis completely specifies the distribution.
- We hope to accept the null hypothesis.
- Rejection of null hypothesis does not provide much specific information.
- Two types of tests will be discussed:
 - Graphical test Q-Q plot
 - Formal Statistical tests χ^2 Goodness-of-Fit, KS test

The Chi-square Goodness-of-Fit Test

- The sample data must be grouped according to some scheme in order to form a frequency distribution.
- k: Number of categories.
- f_i : Frequency of the i-th category.
- $e_i = n \times P_{H_0}$ (a random observation belongs to *i*-th category) : Expected frequency of the *i*-th category.
- The test statistic is

$$Q = \sum_{i=1}^k \frac{(f_i - e_i)^2}{e_i}.$$

- For large sample, the distribution of Q under H_0 can be approximated by χ^2 -distribution with d.f. k-1.
- Reject H_0 at level α if and only if $Q > \chi^2_{k-1,\alpha}$.

The Chi-square Goodness-of-Fit Test

- **Information:** In the context of LRT, $-2 \ln \Lambda$ converges to $\chi^2_{k_1-k_2}$ distribution as $n \to \infty$, where k_1 and k_2 are, respectively, the dimention of the spaces $\Theta_0 \cup \Theta_1$ and Θ_0 , $k_1 > k_2$.
- Using the above fact, the use of Chi-square test can be justified.
- If $F_0(\cdot)$ does not specify the distribution completely, one can use MLE of the unknown parameters (based on grouped data). In this case, H_0 is rejected at level α if and only if $Q > \chi^2_{k-1-s,\alpha}$, where s is the number of unknown parameters.