TOPICS IN PATTERN RECOGNITION ASSIGNMENT 3

MANASVI AGGARWAL SR NO. 16223

1 PART 1 FASHION-MNIST DATASET:

1.1 TASK 1:

DIFFERENT NUMBER OF LAYERS

F1-MACRO-SCORE

F1-MICRO-SCORE

1.2 TASK 2:

VARYING NUMBER OF NEURONS

ACCURACY

F1-MACRO-SCORE

F1-MICRO-SCORE

1.3 TASK 3:

VARYING ACTIVATION FUNCTIONS

ACCURACY

F1-MACRO-SCORE

F1-MICRO-SCORE

1.4 TASK 4: TESTING DIFFERENT INITIALIZATION

ACCURACY

F1-MACRO-SCORE

F1-MICRO-SCORE

1.5 TASK 5:

I have saved all the embedding and corresponding accuracies in the text files separately for every percent of train/test data as mentioned in question.

ACCURACY FOR 10% TRAIN-DATA: 88.7865 ACCURACY FOR 20% TRAIN-DATA: 87.8854 ACCURACY FOR 30% TRAIN-DATA: 88.4190 ACCURACY FOR 40% TRAIN-DATA: 88.2333 ACCURACY FOR 50% TRAIN-DATA: 83.9081

1.6 TASK 6:

FOR DIFFERENT PERCENT

TSNE Projection of 54000 Documents

PERCENT: 10

TSNE Projection of 48000 Documents

PERCENT: 20

TSNE Projection of 42000 Documents

PERCENT: 30

TSNE Projection of 36000 Documents

PERCENT: 40

PERCENT: 50

For FASHION-MNIST dataset the data points are clustered in different clusters as expected and as we train our model on more and more data we see that clusters are more separated.

1.7 TASK 7:

COMPARE OUR MLP AND OUR CNN

1) MLP GRAPHS:

ACCURACY

F1-MACRO-SCORE

F1-MICRO-SCORE

2) CNN GRAPHS:

ACCURACY

F1-MACRO-SCORE

F1-MICRO-SCORE

2 PART 2 CIFAR-10 DATASET:

2.1 TASK 1:

DIFFERENT NUMBER OF LAYERS

ACCURACY

F1-MACRO-SCORE

F1-MICRO-SCORE

2.2 TASK 2:

VARYING NUMBER OF NEURONS

ACCURACY

F1-MACRO-SCORE

F1-MICRO-SCORE

2.3 TASK 3:VARYING ACTIVATION FUNCTIONS

ACCURACY

F1-MACRO-SCORE

F1-MICRO-SCORE

2.4 TASK 4: TESTING DIFFERENT INITIALIZATION

ACCURACY

F1-MACRO-SCORE

F1-MICRO-SCORE

2.5 TASK 5:

I have saved all the embedding and corresponding accuracies in the text files separately for every percent of train/test data as mentioned in question.

ACCURACY FOR 10% TRAIN-DATA: 38.3417 ACCURACY FOR 20% TRAIN-DATA: 38.950 ACCURACY FOR 30% TRAIN-DATA: 40.280 ACCURACY FOR 40% TRAIN-DATA: 43.9133 ACCURACY FOR 50% TRAIN-DATA: 43.724

2.6 TASK 6:

FOR DIFFERENT PERCENT

PERCENT: 10

TSNE Projection of 40000 Documents

PERCENT: 20

PERCENT: 30

TSNE Projection of 30000 Documents

PERCENT: 40

PERCENT: 50

For CIFAR-10 dataset the data points are clustered in different clusters but not well separated and also clusters formed for FASHION-MNIST dataset are well separated and as we train our model on more and more data we see that clusters are more separated.

2.7 TASK 7:

COMPARE OUR MLP AND OUR CNN

1) MLP GRAPHS:

ACCURACY

F1-MACRO-SCORE

F1-MICRO-SCORE

2) CNN GRAPHS:

F1-MACRO-SCORE

F1-MICRO-SCORE