2 Couples de variables aléatoires

Dans tout ce chapitre Ω désigne un univers **fini**. Ainsi les variables aléatoires réelles considérées ne prennent qu'un nombre **fini** de valeurs.

I – Lois de probabilités

1 - Loi d'un couple de variables aléatoires

Définition 2.1 – On appelle **couple de variables aléatoires**, tout couple (X, Y) où X et Y désignent deux variables aléatoires définies sur un même ensemble Ω (*l'univers*).

Exemple 2.2 – Tout au long de ce chapitre, on s'appuie sur les deux exemples suivants pour illustrer les différentes notions rencontrées :

- 1. On lance deux dés équilibrés à six faces, l'un rouge, l'autre noir. On appelle *X* (resp. *Y*) le numéro obtenu avec le dé rouge (resp. noir).
 - Comme X et Y sont des variables aléatoires, alors (X, Y) est un couple de variables aléatoires.
- 2. On lance les mêmes dés que dans l'exemple précédent. Cette fois, on appelle *X* le plus petit des deux numéros obtenus et *Y* le plus grand numéro obtenu (si les numéros sont égaux, *X* et *Y* prennent la valeur commune).
 - Comme *X* et *Y* sont des variables aléatoires, alors (*X*, *Y*) est un couple de variables aléatoires.

Définition 2.3 – Soit (X, Y) un couple de variables aléatoires. On appelle **loi conjointe** du couple (X, Y) la donnée de toutes les probabilités $P([X = x] \cap [Y = y])$ pour tout couple $(x, y) \in X(\Omega) \times Y(\Omega)$.

Méthode 2.4 - Déterminer la loi conjointe d'un couple de variables aléatoires

- 1. On détermine les supports $X(\Omega)$ et $Y(\Omega)$, ensembles des valeurs prises par X et Y.
- 2. On calcule les probabilités $P([X = x] \cap [Y = y])$ pour tout $(x, y) \in X(\Omega) \times Y(\Omega)$.

Comme pour une variable aléatoire unique, on résume souvent la loi sous la forme d'un tableau, cette fois à double entrée. La somme de toutes les probabilités est toujours égale à 1.

Exemple 2.5 – Donner la loi conjointe des couples (X, Y) dans les deux exemples précédents.

1.

2.

J'en déduis les deux tableaux suivants pour les deux lois conjointes :

1.

	Y = 1	Y = 2	Y = 3	Y=4	Y = 5	Y = 6
X = 1						
X = 2						
X = 3						
X = 4						
X = 5						
X = 6						

2.

	Y = 1	Y = 2	Y = 3	Y = 4	Y = 5	Y = 6
X = 1						
X = 2						
X = 3						
X = 4						
X = 5						
X = 6						

Remarque 2.6 -

- On abrège souvent "loi conjointe du couple" en "loi du couple".
- On note parfois P([X = x], [Y = y]) au lieu de $P([X = x] \cap [Y = y])$, même simplement P(X = x, Y = y).

2 - Lois marginales

Définition 2.7 – Soit (X, Y) un couple de variables aléatoires. La loi de X est appelée **première loi** marginale du couple et celle de Y est appelée **deuxième loi marginale** du couple.

Proposition 2.8

Soient X et Y deux variables aléatoires définies sur Ω .

• Pour tout réel $x \in X(\Omega)$,

$$P(X=x) = \sum_{y \in Y(\Omega)} P(X=x, Y=y).$$

• Pour tout réel $y \in Y(\Omega)$,

$$P(Y=y) = \sum_{x \in X(\Omega)} P(X=x, Y=y).$$

Méthode 2.9 - Déterminer les lois marginales avec la loi du couple

Une fois que l'on a déterminé la loi du couple, on peut déterminer les lois marginales. La loi de X s'écrit par exemple

$$\forall x \in X(\Omega), \quad P(X=x) = \sum_{y \in Y(\Omega)} P(X=x, Y=y).$$

Lorsque la loi d'un couple (X, Y) est donnée sous la forme d'un tableau à double entrée, on obtient les lois de X et de Y en sommant les éléments d'une même ligne ou d'une même colonne, selon les cas.

Exemple 2.10 – Déterminer les lois marginales de *X* et *Y* dans les deux exemples précédents.

1

2.

Remarque 2.11 – Si l'établissement des lois marginales découle directement de la donnée de la loi conjointe, il est en revanche impossible, en général, d'obtenir la loi conjointe à partir des deux lois marginales.

3 – Lois conditionnelles

Définition 2.12 – Soit (X, Y) un couple de variables aléatoires. Pour tout $y \in Y(\Omega)$ tel que $P(Y = y) \neq 0$, on appelle loi de X conditionnellement à l'événement [Y = y] la donnée, pour tout $x \in X(\Omega)$, de

$$P_{[Y=y]}(X=x) = \frac{P(X=x, Y=y)}{P(Y=y)}.$$

Remarque 2.13 -

- On dit aussi "loi conditionnelle de X sachant que [Y = y] est réalisé", ou plus simplement "loi de X sachant [Y = y]".
- On définit de manière similaire la loi conditionnelle de Y sachant [X = x].

Exemple 2.14 – Dans les deux exemples précédents, $P(Y = 1) \neq 0$. Déterminer alors la loi conditionnelle de X sachant [Y = 1] dans les deux cas.

1.

2.

Proposition 2.15 – Loi marginale et loi conditionnelle

Soit (X, Y) un couple de variables aléatoires. Si l'on connaît la loi marginale de Y, ainsi que toutes les lois conditionnelles de X sachant [Y = y] pour tous les $y \in Y(\Omega)$, alors la loi de X est déterminée par

$$\forall x \in X(\Omega), \quad P(X = x) = \sum_{y \in Y(\Omega)} P(Y = y) \times P_{[Y = y]}(X = x).$$

Exemple 2.16 – J'ai calculé la loi conditionnelle de X sachant [Y=1]. Si je calculais les lois conditionnelles de X sachant [Y=2], [Y=3], etc., dans les deux exemples précédents, alors je pourrais retrouver la loi marginale de X grâce à la proposition ci-dessus.

4 - Indépendance de deux variables aléatoires

Définition 2.17 – On dit que deux variables aléatoires finies *X* et *Y* sont **indépendantes** lorsque

$$\forall (x, y) \in X(\Omega) \times Y(\Omega), \quad P(X = x, Y = y) = P(X = x) \times P(Y = y).$$

Remarque 2.18 – Dans le cas de deux variables aléatoires indépendantes, on peut déterminer la loi du couple (X, Y) à partir des lois de X et de Y.

Exemple 2.19 – Tester l'indépendance des variables aléatoires X et Y dans les exemples précédents.

1.

2.

Proposition 2.20

Si l'une des deux variables aléatoires *X* ou *Y* est constante, alors *X* et *Y* sont indépendantes.

II - Espérance

1 – Espérance d'une somme

Proposition 2.21

Soient X et Y deux variables aléatoires définies sur Ω . Alors

$$E(X + Y) = E(X) + E(Y).$$

Exemple 2.22 – Soient X une variable aléatoire qui suit la loi uniforme sur [1,9] et Y une variable aléatoire qui suit la loi binomiale $\mathcal{B}\left(8,\frac{1}{4}\right)$. Calculer l'espérance de la variable aléatoire Z=X+Y.

Proposition 2.23 - Linéarité de l'espérance

Soient X et Y deux variables aléatoires définies sur Ω et a et b deux réels. Alors

$$E(aX + bY) = aE(X) + bE(Y).$$

Exemple 2.24 – Soient X une variable aléatoire qui suit la loi uniforme sur [1,12] et Y une variable aléatoire qui suit la loi binomiale $\mathcal{B}\left(7,\frac{1}{3}\right)$. Calculer l'espérance de la variable aléatoire Z=2X-Y.

2 - Espérance d'un produit

Proposition 2.25

Soient X et Y deux variables aléatoires définies sur Ω . Alors l'espérance du produit est définie grâce à la loi conjointe par

$$E(XY) \ = \sum_{(x,y) \in X(\Omega) \times Y(\Omega)} xy P(X=x,Y=y).$$

Exemple 2.26 –

1. Un sac contient quatre boules numérotées de 1 à 4. On effectue deux tirages successifs d'une boule, avec remise. On note X_1 le numéro de la première boule, X_2 le numéro de la deuxième boule et Y le plus grand des deux numéros obtenus.

Compléter les tableaux suivants, donnant les lois des couples (X_1, X_2) et (X_1, Y) .

	$X_2 = 1$	$X_2 = 2$	$X_2 = 3$	$X_2 = 4$		Y = 1	Y = 2	Y = 3	Y = 4
$X_1 = 1$					$X_1 = 1$				
$X_1 = 2$					$X_1 = 2$				
$X_1 = 3$					$X_1 = 3$				
$X_1 = 4$					$X_1 = 4$				

En déduire $E(X_1X_2)$ et $E(X_1Y)$.

2. Soit (X, Y) un couple de variables aléatoires finies tel que

$$\forall (i, j) \in [1, 2]^{2}, \quad P(X = i, Y = j) = \begin{cases} \frac{i}{4} & \text{si } i = j, \\ \frac{1}{4} & \text{si } i < j, \\ 0 & \text{si } i > j. \end{cases}$$

Calculer E(XY).

Proposition 2.27

Soient X et Y deux variables aléatoires **indépendantes** définies sur Ω . Alors

$$E(XY) = E(X) \times E(Y)$$
.

Exemple 2.28 – Même exemple que précédemment : un sac contient quatre boules numérotées. On effectue deux tirages successifs d'une boule, avec remise. On note X_1 le numéro de la première boule, X_2 le numéro de la deuxième boule et Y le plus grand des deux numéros obtenus.

1. Déterminer les lois marginales de X_1 , X_2 et Y.

2. En déduire les valeurs de $E(X_1)$, $E(X_2)$ et E(Y).

3. Les variables aléatoires X_1 et X_2 sont-elles indépendantes? Et les variables aléatoires X_1 et Y?

ATTENTION! L'égalité E(XY) = E(X)E(Y) peut être vérifiée sans que les variables aléatoires X et Y ne soient indépendantes.

III - Covariance, corrélation linéaire

1 - Covariance de deux variables aléatoires

Définition 2.29 – Soit (X, Y) un couple de variables aléatoires. On appelle **covariance de** X **et** Y, le réel, noté Cov(X, Y), défini par

$$Cov(XY) = E((X - E(X))(Y - E(Y))).$$

Théorème 2.30 - Formule de König-Huygens

Soit (X, Y) un couple de variables aléatoires. Alors

$$Cov(X, Y) = E(XY) - E(X)E(Y).$$

Démonstration.

Méthode 2.31 - Calculer directement une covariance

Pour calculer la covariance de deux variables aléatoires X et Y:

- 1. On calcule les trois espérances E(X), E(Y) et E(XY) si ce n'est pas déjà fait.
- 2. On applique la formule de König-Huygens : Cov(X, Y) = E(XY) E(X)E(Y).

Exemple 2.32 – On reprend les deux exemples précédents.

1. Calculer $Cov(X_1, X_2)$ et $Cov(X_1, Y)$.

2. Calculer Cov(X, Y).

Proposition 2.33 – Propriétés de la covariance

Soient X et Y deux variables aléatoires définies sur Ω .

• La covariance est symétrique :

$$Cov(X, Y) = Cov(Y, X)$$
.

• La covariance d'une variable aléatoire avec elle-même est égale à sa variance :

$$Cov(X, X) = V(X)$$
.

• Cas d'une variable aléatoire constante : si *a* est un réel, alors

$$Cov(X, a) = 0.$$

Proposition 2.34 – Linéarité à gauche et à droite de la covariance

Soient X, X_1 , X_2 , Y, Y_1 et Y_2 des variables aléatoires définies sur Ω . Pour tout couple $(a, b) \in \mathbb{R}^2$,

$$Cov(aX_1 + bX_2, Y) = aCov(X_1, Y) + bCov(X_2, Y),$$

$$Cov(X, aY_1 + bY_2) = aCov(X, Y_1) + bCov(X, Y_2).$$

Proposition 2.35

Soient X et Y deux variables aléatoires **indépendantes** définies sur Ω . Alors

$$Cov(X, Y) = 0.$$

Remarque 2.36 -

- C'est une conséquence directe de la Proposition 2.27.
- La réciproque est fausse : il se peut que Cov(*X*, *Y*) = 0 sans que les variables aléatoires *X* et *Y* ne soient indépendantes.

Méthode 2.37 – Montrer que deux variables aléatoires ne sont pas indépendantes

Ceci est un récapitulatif des résultats à disposition pour montrer que deux variables aléatoires **ne sont pas** indépendantes. Pour rappel, si elles sont indépendantes, il n'y a aucun autre moyen que de montrer par le calcul que chaque probabilité de la loi conjointe s'obtient comme le produit des probabilités des lois marginales.

Soient X et Y deux variables aléatoires définies sur Ω .

- Si la covariance Cov(*X*, *Y*) est non nulle, alors les variables aléatoires *X* et *Y* ne sont pas indépendantes.
- Si les espérances ne satisfont pas l'égalité E(XY) = E(X)E(Y), alors les variables aléatoires X et Y ne sont pas indépendantes.
- S'il existe un couple (x, y) ∈ X(Ω) × Y(Ω) pour qui l'égalité P(X = x, Y = y) = P(X = x) × P(Y = y) n'est pas vérifiée, alors les variables aléatoires X et Y ne sont pas indépendantes.
 Ce dernier point est souvent le plus facile à utiliser lorsqu'un couple présente une probabilité nulle dans le tableau de la loi conjointe.

2 – Variance d'une somme

Proposition 2.38

Soient X et Y deux variables aléatoires définies sur Ω . Alors

$$V(X+Y) = V(X) + V(Y) + 2\operatorname{Cov}(X,Y).$$

Méthode 2.39 - Calculer la variance d'une somme

Pour calculer la variance d'une somme de variables aléatoires, il y a deux possibilités :

• Si on connaît la loi de la somme X + Y, on utilise la **formule de König-Huygens** :

$$V(X + Y) = E((X + Y)^{2}) - E(X + Y)^{2}.$$

• Si on ne connaît pas la loi de la somme X + Y, on utilise plutôt la formule précédente :

$$V(X + Y) = V(X) + V(Y) + 2Cov(X, Y).$$

Exemple 2.40 –	On reprend les	deux exemple	nrécédents
Exemple 2.40 -	On reprend les	ueux exemple	s precedents.

1. Calculer $V(X_1 + X_2)$ et $V(X_1 + Y)$.

2. Calculer V(X + Y).

Remarque 2.41 – Cette formule permet également de calculer la covariance de X et Y à l'aide des trois variances V(X), V(Y) et V(X+Y) puisque

$$Cov(X,Y) = \frac{V(X+Y) - V(X) - V(Y)}{2}.$$

Proposition 2.42

Soit (X, Y) un couple de variables aléatoires **indépendantes**. Alors

$$V(X+Y) = V(X) + V(Y).$$

3 - Coefficient de corrélation linéaire

Définition 2.43 – On appelle **coefficient de corrélation linéaire** de X et Y, le réel, noté $\rho(X,Y)$, défini par

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{V(X)}\sqrt{V(Y)}}.$$

Exemple 2.44 - On reprend les deux exemples de l'exemple 2.26.

1. Calculer $\rho(X_1, X_2)$ et $\rho(X_1, Y)$.

2. Calculer $\rho(X, Y)$.

Proposition 2.45

Soient X et Y deux variables aléatoires définies sur Ω . Alors

$$|\rho(X,Y)| \leq 1.$$

Remarque 2.46 – Le coefficient de corrélation linéaire mesure la dépendance linéaire entre deux variables aléatoires :

- Si le coefficient de corrélation linéaire est égal à 1 ou −1, *X* et *Y* sont corrélées linéairement. Le signe indique si les variations vont dans le même sens ou dans le sens opposé.
- Si le coefficient de corrélation linéaire est égal à 0, *X* et *Y* sont dites "non corrélées linéairement". Cela ne dit rien en revanche quant à une autre forme de corrélation.