

TABLE OF CONTENTS

O1INTRODUCTION

02EXISTING
SYSTEM

O3
PROPOSED
SYSTEM

04IMPLEMENTATION

O5 CONCLUSION

INTRODUCTION

- This project introduces a Phishing Detection System utilizing advanced ML and AI techniques.
- It involves the implementation of tailored deep learning models for websites and URLs, integrating NLP, behavioral analysis, and anomaly detection.
- Mainly aims for increased detection accuracy, adaptability to emerging threats, and a refined user experience.

EXISTING SYSTEM

Static Rule-Based Approach

Static rules and signature-based methods for phishing detection.

Less Emphasis on User Experience

Lack of real-time notifications and interactive features for users.

Limited ML Integration

Basic ML for feature extraction but lack advanced techniques.

Absence of Client-Side Security Measures

Server-side detection without incorporating client-side security measures.

PROPOSED SYSTEM

Advanced ML and Al Techniques

Implement NLP, behavioral analysis, anomaly detection, and ensemble learning for improved accuracy

Client-Side Security Measures

Integrate client-side security measures through a browser extension, providing real-time alerts and page analysis

Static Analysis and Behavioral Detection

Conducted static analysis to identify common vulnerabilities such as buffer overflows and SQL injection flaws

TWO MODULES

USER

- ✓ The extension fetches the current tab URL and sends it to API and predicts the result
- ✓ Can input the URL/IP to get the detailed results.
- ✓ Can report the phishing or suspicious URLs.

ADMIN

- Can manage URL/IP report details.
- ✓ Can respond to feedbacks and queries of users.

PROCESS FLOW

IMPLEMENTATION

This project implements BERT (Bidirectional Encoder Representations from Transformers) framework for extracting the features from URL and predict using ensemble model to get the result.

Ó

Predicted

1

Predicted

FEATURE EXTRACTION

```
│ ♥ Click here to ask Blackbox to help you code faster
from transformers import BertModel, BertTokenizer
import torch
model = BertModel.from pretrained('bert-base-uncased', output hidden states=True)
tokenizer = BertTokenizer.from pretrained('bert-base-uncased')
def extract features(text):
    input ids = torch.tensor([tokenizer.encode(text, max length=512, truncation=True, add special tokens=True)])
    with torch no grad():
        token vecs.append(hidden states[layer][0])
        features.append(torch.mean(token, dim=0))
    return torch.stack(features)
```


SYSTEM REQUIREMENTS

01	Front-End	Framework: Vanilla JavaScript Languages: HTML5, CSS, JavaScript
02	Back-End	Framework: Flask Languages: Python Database: MongoDB
03	Libraries	Flask, Numpy, PyMongo, LabelEncoder, SMOTE, BertModel, BertTokenizer

P FindPhish. Analyse **PayPal** Now you're browsing: https://pypl-get.com/ Claim your cash now! PayPal **Phishing** hosting a money giveaway, wit This website is not safe to use. total of \$1000000 up for gra Report/Blacklist Visit our Website for more services Claim Your Cash Now! Join PayPal's \$1 000 000 Money Giveaway Claim

etection **Real-Time**

Feature

SCREENSHOTS

_
┺-
U
(n
<u>''</u>
_
>
U
1
•
$oldsymbol{\Box}$
4
O
Ĺ
<u>ā</u>
Ã.
ullet
'
യ
\sim
~
(T)
U

Google	bert X U 🕏
	➤ arXiv
	https://arxiv.org > cs
	BERT: Pre-training of Deep Bidirectional Transformers for ♥
	by J Devlin \cdot 2018 \cdot Cited by 98073 — BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks,
	Towards Data Science https://towardsdatascience.com > bert-explained-state-of
	BERT Explained: State of the art language model for NLP ♥
	10 Nov 2018 — BERT (Bidirectional Encoder Representations from Transformers) is a recent paper published by researchers at Google Al Language.
	H2O.ai https://h2o.ai > wiki > bert :
	What is BERT and how is it Used in Al? ♥
	BERT , short for Bidirectional Encoder Representations from Transformers , is a machine learning (ML) framework for natural language processing.
	Google Blog https://blog.google.ysearch-language-understanding-bert
	Understanding searches better than ever before ♥

BERT: Pre-training of Deep Bidirectional Transformers for ...

by J Devlin · 2019 · Cited by 98073 — Abstract. We introduce a new language representation

model called BERT, which stands for Bidirectional Encoder Representations from.

25 Oct 2019 — Here are some of the examples that showed up our evaluation process that

demonstrate BERT's ability to understand the intent behind your search.

ACL Anthology
https://aclanthology.org > ...

*

Protect yourself from **phishing attacks** with the help of **FindPhish**.

Paste yout URL here, and hit the button.

http://axiomdigital.co.za/Web/index.html

CHECK URL

Trust Score: 45 / 100

URL: http://axiomdigital.co.za/Web/index.html

Preview URL within FindPhish.

Show Source Code of URL

(External scripts are disabled for your safety.)

More Information about this URL

Property	Value
Global Rank	10,00,000+
HTTP Status Code	200
Domain Age	7.1 year(s)
Use of URL Shortener	NO.
HSTS Support	NO
IP instead of Domain	NO
URL Redirects	NO
IP of Domain	154.0.161.154

Protect yourself from phishing attacks with the help of FindPhish .							
Paste yout IP address here, and hit the button.							
192.42.116.203							
CHECK IP							
Risk Score: 1.11% (1/89)							
Security vendors analysis							
Engine Name	Category	Result					
0xSI_f33d	undetected	unrated					
ADMINUSLabs	harmless	clean					
Allabs (MONITORAPP)	harmless	clean					
Abusix	malicious	malicious					
Acronis	harmless	clean					
AlienVault	harmless	clean					
AlphaSOC	suspicious	suspicious					
Antiy-AVL	malicious	malicious					
ArcSight Threat Intelligence	suspicious	suspicious					
AutoShun	undetected	unrated					

Feature 4: Check URL & IP

CONCLUSION

- This project aims to revolutionize phishing detection by seamlessly integrating advanced ML and AI techniques, providing a proactive and user-centric defense against evolving cyber threats.
- User experience is a central focus, with a userfriendly web application dashboard, real-time alerts, and educational resources to empower users in recognizing and reporting potential threats.

REFERENCES

- "A systematic literature review on phishing website detection techniques", Asadullah Safi, 2023.
- "BERT Against Social Engineering Attack: Phishing Text Detection", Nafiz Rifat, 2022.
- "https://www.kaggle.com/code/sujithmandala/phishing-domaindetection-bert-log-reg-96-ac

