

BEST AVAILABLE COPY

(11) Publication number:

11196110 A

Generated Document.

PATENT ABSTRACTS OF JAPAN

(21) Application number:

10000078

(51) Intl.

H04L 12/28 G06F 13/00 G06F 13/14

CI.:

G06F 15/173

(22) Application date: 05.01.98

(30) Priority:

(43) Date of application

publication:

21.07.99

YOKOGAWA ELECTRIC CORP

(72) Inventor: FURUKAWA YASUSHI

(74)

(71)

Applicant:

Representative:

(84) Designated contracting states:

(54) TOPOLOGY RECOGNITION DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a topology recognition device capable of making correspondence between a physical ID and respective nodes at a high speed.

SOLUTION: This is an improvement of a topology recognition device for recognizing an equipment connected to a bus. The device is provided with a gathering means 11 for gathering its own ID packet, a connection information preparation means 12 for preparing connection information by its own ID packet gathered by the gathering means 11 and a change information preparation means 14 for preparing the change information of the physical ID from the connection information before and after bus reset.

COPYRIGHT: (C)1999,JPO

トポロジー認識装置

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-196110

(43)公開日 平成11年(1999)7月21日

(51) Int.Cl. ⁶		識別記号	FI
H04L	12/28		H 0 4 L 11/00 3 1 0 Z
G06F	13/00	357	G 0 6 F 13/00 3 5 7 A
	13/14	330	13/14 3 3 0 Z
	15/173		15/16 4 0 0 N
			審査請求 未請求 請求項の数8 〇L (全 16 頁)
(21)出願番り		特願平10-78	(71) 出願人 000006507 横河電機株式会社
(22)出願日		平成10年(1998) 1 月 5 日	東京都武蔵野市中町2丁目9番32号
			(72)発明者 古川 靖
			東京都武蔵野市中町2丁目9番32号 横河
			電機株式会社内
			(74)代理人 弁理士 東野 博文

(54) 【発明の名称】 トポロジー認識装置

(57)【要約】

【課題】 物理 I Dと各ノードの対応が高速に行うこと ができるトポロジー認識装置を実現することを目的にす る。

【解決手段】 本発明は、バスに接続された機器を認識 するトポロジー認識装置に改良を加えたものである。本 装置は、自己IDパケットを収集する収集手段と、この 収集手段により収集された自己 I Dパケットにより、接 続情報を作成する接続情報作成手段と、バスリセット前 後の接続情報から物理IDの変化情報を作成する変化情 報作成手段とを有することを特徴とする装置である。

トポロジー認識装置

【特許請求の範囲】

【請求項1】 バスに接続された機器を認識するトポロ ジー認識装置において、

自己IDパケットを収集する収集手段と、

この収集手段により収集された自己IDパケットによ り、接続情報を作成する接続情報作成手段と、

バスリセット前後の前記接続情報から物理IDの変化情 報を作成する変化情報作成手段とを有することを特徴と するトポロジー認識装置。

【請求項2】 接続情報は、少なくとも所望の物理 [D] のポートとこのポートに接続する物理IDとの関係を示 すことを特徴とする請求項1記載のトポロジー認識装 置。

【請求項3】 変化情報は、少なくともバスリセット前 の物理IDとリセット後の物理IDとの関係を示すこと を特徴とする請求項1,2記載のトポロジー認識装置。

【請求項4】 変化情報作成手段が作成する変化情報に 機器の関係を示したことを特徴とする請求項1~3記載 のトポロジー認識装置。

【請求項5】 変化情報に新規に加わった機器からのみ 20 機器情報を取得する取得手段を設けたことを特徴とする 請求項1~4記載のトポロジー認識装置。

【請求項6】 変化情報を表示する表示手段を設けたこ とを特徴とする請求項1~5記載のトポロジー認識装 置。

【請求項7】 変化情報から離脱した機器情報を取得 し、離脱機器との通信処理を中止する中止処理手段を設 けたことを特徴とする請求項1~6記載のトポロジー認 識装置。

【請求項8】 変化情報から離脱した機器情報を取得 し、離脱機器をアラーム通知するアラーム処理手段を設 けたことを特徴とする請求項1~7記載のトポロジー認 識装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、IEEE1394 シリアルバスに用いられるトポロジー認識装置に関し、 特に、バスリセット前後の自己IDパケットによりトポ ロジー変化を認識するトポロジー認識装置に関するもの である。

[0002]

【従来の技術】IEEE1394シリアルバスでは、ネ ットワークに接続された各ノード(装置)に物理IDと 呼ばれる番号が割り当てられ、各ノードを識別してい る。そして、通信の際は、この物理 I Dを用いて送信 元、送信先を指定し、アシンクロナス・パケット通信を 行っている。

【0003】このような装置を図15に示す。図におい て、コンピュータA、B、プリンタC、コンピュータ

続されている。コンピュータAは、始め物理IDが" 4"で、コンピュータB、DとプリンタCとに接続して いる。コンピュータBは始め物理 [Dが" O"、プリン タCは始め物理 I Dが" 1"である。コンピュータD は、始め物理 [Dが" 2"で、始め物理 [Dが" 3"で あるビデオカメラEに接続している。

2

【0004】このような装置の動作を以下に説明する。 コンピュータDが、コンピュータAを介してプリンタC に書類をプリントアウトのため、データの送信(送信方 10 法は、アシンクロナス・パケット送信またはアイソクロ ナス・パケット送信)を行っていた場合に、図16に示 されるように、コンピュータBがコンピュータAから接 続がはずれるとバスリセットが発生し、プリントアウト が中断される。そして、物理IDは割り当て直される。 この結果、例えば、コンピュータAは物理IDが"3" となり、プリンタCは物理 I Dが"O"となり、コンピ ュータDは物理 I Dが"1"となり、ビデオカメラEは 物理 I Dが"2"となる。

【0005】再び、コンピュータBは、プリントアウト を再開するに当たり、プリンタCの状態を知らなければ ならない。具体的には、プリンタCがネットワークに接 続されているか、バスリセットによって物理 I Dが変化 していないか、バスリセット前にデータをどこまで受信 したか等の情報を得た上で、送信を再開しなければなら ない。

【0006】このような情報を得るに当たりアシンクロ ナス・パケット送信を行う必要があるが、自分の物理 I Dが"2"から"1"になったことはわかっても、プリ ンタCの物理IDが何番に変更されたのかがわからない 30 ため、送信先物理IDがわからない。

【0007】そこで、図17に示されるように、コンピ ュータDは、バスに接続されているすべての他のノード に対して、IEEE1212で定義されているCSR (Control and Status Register) 空間に書き込まれた ノード情報を読み出すことによって、どの物理 I Dがプ リンタCに相当するかを調べている。

【0008】ノード情報の読み出しを時間軸上で見ると 図18のようになる。 コンピュータDからコンピュータ AへRequestが送信される。実際には、物理IDを指定 40 して通信を行っているので、コンピュータAということ は認識されていない。そして、コンピュータAからは、 その要求を受け取ったという返事として、Ack Pending パケットが返信される。その後、コンピュータAは、ノ ード情報をのせたResponseパケットをコンピュータDへ 送信する。コンピュータDは情報を受信したことを知ら せるAck CompleteパケットをコンピュータAに返信す る。

【0009】しかし、このときでも、すぐにノード情報 を送信できる場合と、ノード情報の準備等のため、時間 D, ビデオカメラEがシリアルバスのネットワークに接 50 を多少おいてから、ノード情報を送信する場合がある。

【0010】最大63ノードに対してアシンクロナス・ パケットで、CSR空間を読み出しに行った場合、アシ ンクロナス・パケットに使用できる時間は限られている ため、CSR空間の読み出しはバスリセット後数サイク ルの時間に及ぶ場合がある。

[0011]

【発明が解決しようとする課題】このように、IEEE 1394では最大63ノードが接続されるので、ひとつ ひとつのノードから情報を読み出しに行っていると、全 部のノードの情報を得るまでに非常に時間を要してしま うという問題点があった。

【0012】そこで、本発明の目的は、物理IDと各ノ ードの対応が高速に行うことができるトポロジー認識装 置を実現することにある。

[0013]

【課題を解決するための手段】本発明は、バスに接続さ れた機器を認識するトポロジー認識装置において、自己 I Dパケットを収集する収集手段と、この収集手段によ り収集された自己IDパケットにより、接続情報を作成 情報から物理IDの変化情報を作成する変化情報作成手 段とを有することを特徴とするものである。

【0014】このような本発明では、収集手段がバスか ら自己IDパケットを収集する。この収集手段により収 集された自己IDパケットにより、接続情報作成手段 は、接続情報を作成し、バスリセット前後における接続 情報を記憶手段に記憶する。そして、変化情報作成手段 は、この記憶手段が記憶するバスリセット前後の接続情 報から変化情報を作成する。

[0015]

【発明の実施の形態】以下図面を用いて本発明を説明す る。図1は本発明の一実施例を示した構成図である。図 において、トポロジー認識装置1は、バス2に接続して いる。そして、トポロジー認識装置1は、収集手段11 と接続情報作成手段12と記憶手段13と変化情報作成 手段14と取得手段15とからなる。

【0016】収集手段11は、バス2から自己IDパケ ットを収集する。この収集手段11は一般に物理層IC に含まれ、物理層ICによってバスリセット後に自動的 に自己 I Dパケットは収集される。接続情報作成手段 1 2は、収集手段11により収集された自己 I Dパケット によりバスに接続されたノード(機器)の接続情報を作 成する。記憶手段13は、バスリセット前後における接 続情報を記憶する。変化情報作成手段14は、記憶手段 13が記憶するバスリセット前後の接続情報から変化情 報を作成し、記憶手段13に記憶させる。取得手段15 は、記憶手段13に記憶されている変化情報により、新 規に加わったノード(機器)からのみノード(機器)情 報を取得する。

ト後に各ノードがブロードキャストで送信するパケット であり、 [EEE1394-1995 規格により、図2 のように規定されるパケットである。 つまり、自己 ID パケットは、物理 I D100、ポート状態200等から 構成される。ポート状態200は、ポート番号ごとに、 子ノードに接続"11"、親ノードに接続"10"、ノ ードに不接続"01"、ポートがない"00"が示され

4

【0018】このような装置の動作を以下で説明する。 収集手段11は、バスリセット後に各装置 (ノード) が 10 発生する自己 I Dパケットを、バス2から収集する。こ の自己IDパケットから、接続情報作成手段12は接続 情報を作成し、記憶手段13に記憶する。

【0019】再び、バスリセットにより、収集手段11 は、バス2から自己 I Dパケットを収集する。そして、 接続情報作成手段12は接続情報を作成し、記憶部13 に記憶する。

【0020】そして、変化情報作成手段14は、記憶部 13のバスリセット前後の接続情報から変化情報を作成 する接続情報作成手段と、バスリセット前後の前記接続 20 し、記憶手段13に記憶させる。この記憶手段13の変 化情報から、取得手段15は、新規に加わったノード (機器) からのみ、ノード (機器) 情報を取得する。

> 【0021】このように、収集手段11により収集した 自己 I Dパケットを用いて、接続情報作成手段12がバ スリセット後の接続情報を作成する。このバスリセット 前後の接続情報から変化情報作成手段14が変化情報を 作成する。これにより、すぐに、バス上のノード接続状 態情報、すなわち、トポロジー情報を認識することがで きる。すなわち、バスリセット後にすぐに自分の通信相 30 手を認識することができる。

【0022】また、取得手段15が変化情報を用いて、 新規に加わった機器のみ、機器情報を取得するので、バ スリセット後にバス上の全機器のCSR空間を調べる必 要がない。つまり、バスリセット後のバスへの負荷及び 他機器への負荷を軽減することができる。

【0023】さらに、詳細に具体例を用いて以下で説明 する。図3はバス接続状態の具体例を示した図で、

(a) はバスリセット前の状態、(b) はノードN6を 加えた状態、つまり、バスリセット後の状態である。図 40 において、ノードN1のポートp0はノードN3のポー トp0に接続し、ノードN2のポートp0はノードN3 のポートp1に接続する。ノードN3のポートp2はノ ードN4のポートp0に接続する。ノードN4のポート p1はノードN5のポートp0に接続する。そして、ノ ードN6のポートp0は、ノードN5のポートp1に接 続する。ここで、トポロジー認識装置は、ノードN5に 設けられている。図4~図10は図1の装置のバスリセ ット後の動作を示したフローチャートである。

【0024】まず始めに接続情報作成手段12の動作に 【0017】ここで、自己IDパケットは、バスリセッ 50 ついて説明する。バスリセット後、収集手段11により 収集した自己 I Dパケットを用いて、ルートノードを開始点として接続を確認していく。つまり、ポート数やポートの接続状態は自己 I Dパケットから抽出できる。ルートノードは物理 I Dが最大のものになることが、I E E E 1 3 9 4 規格で決まっている。すなわち、自己 I Dパケットからルートノードは、物理 I Dが"5"であることがわかり、解析開始の物理 I Dを"5"とする(S 1)。

【0025】物理ID"5"を設定し、次の移動先ノードを番号が1つ若い物理ID"4"に設定する(S2~S4)。物理IDが"5"である自己IDパケットから最大のポート番号"1"を取得し、設定する(S5)。そして、自己IDパケットのポートp1の状態により、子ノードが接続されているので、現在の位置ノードの物理ID"5"とポート番号p1をスタックに一時保持する(S6~S13)。このポートp1の接続先として、子ノードの物理ID"4"を記録する(S14)。接続先子ノードの物理ID"4"の親ノードが物理ID"5"であることを一時保持する(S15)。

【0026】そして、1つ下の物理IDのノードに関して、処理を行う(S16)。つまり、現在位置をルートノードから物理IDが"4"のノードへ移動する。そして、現在の物理ID"4"を設定し、次の移動先ノードを番号が1つ若い物理ID"3"に設定する(S3~S4)。物理IDが"4"である自己IDパケットから最大のポート番号"1"を取得し、設定する(S5)。そして、自己IDパケットのポートp1の状態により、子ノードが接続されているので、現在の位置ノードの物理ID"4"とポート番号p1をスタックに一時保持する(S6~S13)。このポートp1の接続先として、子ノードの物理ID"3"を記録する(S14)。接続先子ノードの物理ID"3"の親ノードが物理ID"4"であることを一時保持する(S15)。

【0027】そして、1つ下の物理IDのノードに関して、処理を行う(S16)。つまり、現在位置を物理ID"4"から物理ID"3"のノードへ移動する。そして、現在の物理ID"3"を設定し、次の移動先ノードを番号が1つ若い物理IDに設定する(S3~S4)。物理IDが"3"である自己IDパケットから最大のポート番号"0"を取得し、設定する(S5)。そして、自己IDパケットのポートp0の状態により、親ノードが接続されているので、このポートp0の接続先として親ノードの物理ID"4"を記録する(S6~S11、S17)。物理ID"3"が有するポートに対してすべて処理を行ったので、再び、物理ID"4"に関する処理に戻る(S18、S7、S8、S16、S20)。

【0028】次のポートp0に進む(S18)。そして、物理ID"4"の自己IDパケットのボートp0の状態により、親ノードが接続されているので、このポートp0の接続先として親ノードの物理ID"3"を記録

する($S6\sim S11$, S17)。ポートに対してすべて 処理を行ったの再び、物理 ID" 5" に関する処理に戻る(S18, S7, S8, S16, S20)。次のポートP0に進む(S18)。

6

【0029】このように順次トポロジーの下方へと移動し、末端の物理IDが"3"のノードまできたとき、ポートが1つしかないので、すべてのポート接続が確認されたものとして、上方へと移動する。物理IDが"4"まで戻ったときも同様に上方へ移動する。

【0030】ルートノードまで戻ってくると、まだ、接続確認がしていないポートがあるかどうかを調べる。ルートノードはまだポートp1しか接続確認をしていないので、次にポートp0へ移動する。この時、すでに物理IDは"3"まで認識されているので、次に移動する先が物理IDが"2"であることがわかる。同様に、下方へと移動していき、再び、ルートノードまで戻ってくる。最後にルートノードの全ポートの接続が確認された時点で、トポロジーの認識の前処理が終了する。これにより、図11に示されるようなデータ、つまり、物理IDのポート番号と接続先物理IDの関係を示す接続情報が作成される。同様な処理でバスリセット前も図12に示されるような接続情報が既に作成されている。

【0031】次に、変化情報作成手段14の動作を説明 する。図13は、変化情報作成手段14の動作を説明す る図で、(a)はバスリセット後、(b)はバスリセッ ト前を示す。変化情報作成手段14は、解析開始ノード を自ノードに設定する。つまり、ノードN5のバスリセ ット前の物理 I D"3"、バスリセット後の物理 I D" 4"に設定する(S21)。新構成と旧構成について現 在位置の物理IDを設定し、次の移動先ノードを番号が 若い物理 I D"2", "3"に設定する(S25)。記 憶手段13から接続情報を読み出して、新構成の物理 [D"4"が持つ最大のポート数"1"と、旧構成の物理 ID"3"が持つ最大のポート数"1"とを比較し、ポ ートが多い方、つまり、"1"を最大ポート数として設 定する(S26)。接続情報により、新構成のポートは 接続されているが、旧構成のポートは接続されていない ので、新規に接続されたものとして処理を行う(S27 \sim S33).

40 【0032】新規接続認識処理に移行し、現在位置のノードの新旧物理IDとポート番号とをスタックに一時保存する(S34)。バスリセット後の接続状態情報から、物理ID"4"のポートp1の物理ID"3"を新規接続ノードとして保持する(S35)。バスリセット後の物理ID"3"について処理を行うために、物理ID"3"を次の移動先ノードとする(S36)。通過済みノードを識別させるためのデータを一時保存する(S37)。

状態により、親ノードが接続されているので、このポー 【0033】現在の位置の物理ID"3"を設定し、次トp0の接続先として親ノードの物理ID"3"を記録 *50* の移動先ノードを番号が一つ若い物理ID"2"に設定

する(S38, S39)。現在ノードが持つ最大ポート数"0"の設定を行う(S40)。接続されたポート番号の方向に接続枝を探索処理をする(S41)。記憶手段13の接続情報により、物理 ID"3"のポートp0は物理 ID"4"が接続されていることがわかり、既に通ってきたパス上のノードであるので、次のポートの処理に進む($S42\sim S46$)。しかし、すべてのポートに対して終了しているので、再び処理が戻る(S42, S43, S47, S38)。

【0034】そして、スタックに一時保存していたポート番号"1"と新旧物理ID"4", "3"とを取り出す(S48)。次のポート、つまり、p0へ進む(S49)。

【0035】記憶手段13からバスリセット前とバスリセット後の接続状態情報により、新構成と旧構成におけるポートp0の接続情報を調べ、現在位置ノードの新旧物理IDとポート番号とをスタックに一時保存する。

(\$28~\$32,\$50~\$52)。接続先の新旧物理ID"5","4"の対応を保持する(\$53)。これを次の移動先ノードとして設定する(\$54)。次の移動先ノードにとってすでに通過済みのノードを識別させるためのデータを一時保存する(\$55)。次の処理、つまり、新物理ID"5"、旧物理ID"4"で処理を進める(\$56,\$24)。

3)。これを次の移動先ノードとして設定する(S54)。次の移動先ノードにとってすでに通過済みのノードを識別させるためのデータを一時保存する(S5

5)。次の処理、つまり、新物理 I D"2"、旧物理 I D"2"で処理を進める(S 5 6, S 2 4)。

【0037】以上のように順次比較を行い、記憶手段13に比較結果を格納し(S58)、図14に示されるようなデータ、つまり、バスリセット前からバスリセット後の物理IDの変化情報を作成する。この図では、同時にノードの対応も示されている。ここでは、接続離脱処理を示した図8,10に関して具体的な説明を加えなかったが、結局は、比較検討を行う具体的な処理を示しているだけである。

【0038】このように、トポロジー認識の第二段階である後処理では、バスリセット前に構築された接続情報 50

とバスリセット後に構築された接続情報との比較を行う。前処理では、ルートノートを開始点としたのに対して、後処理ではノードN5を開始点として解析を行う。これはそもそも、ノードN5が、自分以外のノードの変化を認識するためのアルゴリズムだからである。前処理のときと同様に、ポート番号の大きい方から比較を行うが、番号の小さい方からでも同様のことができる。

8

【0039】但し、前処理のときと異なり、気を付けなければならないのは、下方移動したあとで上方へ移動したのとで見ってくると、物理IDが必ずしもカウントダウンされないという点である。一例として、ノードN5まで戻ってきて、まだ処理されていないポートp0へ枝別れしていくと、物理ID"4"のノードN5から物理ID"5"のノードへと移ることになる。これはノードN5を開始点としているためである。もう一つ注意しなければならないのは、上方に位置しているから親ノード、下方に位置しているから子ノードという法則は成り立たない。よって、前処理ように親ノードへ戻るという方法での上方移動はできないので、下方移動する際に移動前ノードを記憶することでツリー構造を溯ることができるように配慮している。

【0040】バスリセット前後でのポート接続状態変化から、新規接続ノードと接続離脱ノードがわかる。旧構成では接続されていなかったポートに、新規構成では接続があるとすれば、そこから先のノードはすべて新規接続ノードということになる。逆に旧構成で接続されていたポートが、新規構成では接続されていなければ、そこから先のノードはすべての接続離脱したものと認識できる。前処理の時と同様にツリー構造を順に辿っていくことですべての新規接続、接続離脱ノードの物理IDを取得できる。

【0041】また、バスリセット前後で接続されたままであったならば、ノードは存在しているが物理IDが変化している可能性がある。前処理の段階で各ポートの接続先物理IDは記憶されているので、バスリセット前の記憶されている物理IDを比較することによって、そのノードの物理IDの変化が認識できる。

【0042】なお、本発明はこれに限定されるものでは 40 なく、以下のような構成でもよい。表示手段を新たに加 えて、変化情報を表示する。これにより、バスアナライ ザとして利用することができる。この場合、取得手段1 5を設けなくとも、物理IDの変化情報だけ表示する構 成でもよい。このように構成することにより、すぐにト ポロジーを認識でき、バスへの負荷及び各機器への負荷 を軽減できるバスアナライザを提供することができる。 【0043】また、記憶手段13を設けた構成を示した が、それぞれの手段に記憶手段を含む構成であれば、特

50 【0044】そして、トポロジー認識装置1に中止処理

別に記憶手段13は必要ない。

9

手段を設ける構成にしてもよい。中止手段は、変化情報 から離脱した機器情報を取得し、離脱機器との通信処理 を中止する。これにより、離脱した機器との通信処理を 中止することができる。この構成で、取得手段15を含 む構成、含まない構成、また、表示手段がある構成、な い構成のどのような組み合わせでもよい。

【0045】さらに、トポロジー認識装置1にアラーム 処理手段を設け、変化情報から離脱した機器情報を取得 し、離脱機器をアラーム通知する構成にしてもよい。こ れにより、離脱した機器を知らせることができる。この ようにすれば、バスアナライザーに用いた場合に有効に 利用することができる。例えば、測定対象の故障診断に 有効である。この構成で、取得手段15を含む構成、含 まない構成、また、表示手段がある構成、ない構成、あ るいは、中止処理手段がある構成、ない構成、どのよう な組み合わせでもよい。

[0046]

【発明の効果】本発明によれば、以下のような効果があ る。請求項1~4によれば、収集手段により収集した自 己 I Dパケットを用いて、接続情報作成手段がバスリセ 20 フローチャートである。 ット後の接続情報を作成する。このバスリセット前後の 接続情報から変化情報作成手段が変化情報を作成する。 これにより、すぐに、バス上のノード接続状態情報、す なわち、トポロジー情報を認識することができる。すな わち、バスリセット後にすぐに自分の通信相手を認識す ることができる。

【0047】請求項5によれば、取得手段が変化情報を 用いて、新規に加わった機器のみ、機器情報を取得する ので、バスリセット後にバス上の全機器のCSR空間を 調べる必要がない。つまり、バスリセット後のバスへの 30 負荷及び他機器への負荷を軽減することができる。

【0048】請求項6によれば、表示手段により変化情 報を表示したので、すぐにトポロジーを認識でき、バス への負荷及び各機器への負荷を軽減できるバスアナライ ザを提供することができる。

【0049】請求項7によれば、中止処理手段を設けた ので、離脱した機器との通信処理を中止することができ

【0050】請求項8によれば、アラーム処理手段を設 けたので、離脱した機器を知らせることができる。この 40 15 取得手段 ようにすれば、バスアナライザーに用いた場合、有効に

利用することができる。例えば、測定対象の故障診断に 有効である。

10

【図面の簡単な説明】

- 【図1】本発明の一実施例を示した構成図である。
- 【図2】自己IDパケットを示した構成図である。
- 【図3】バス接続状態の具体例を示した図である。
- 【図4】図1の装置のバスリセット後の動作を示したフ ローチャートである。
- 【図5】図1の装置のバスリセット後の動作を示したフ 10 ローチャートである。
 - 【図6】図1の装置のバスリセット後の動作を示したフ ローチャートである。
 - 【図7】図1の装置のバスリセット後の動作を示したフ ローチャートである。
 - 【図8】図1の装置のバスリセット後の動作を示したフ ローチャートである。
 - 【図9】図1の装置のバスリセット後の動作を示したフ ローチャートである。
- 【図10】図1の装置のバスリセット後の動作を示した
 - 【図11】バスリセット後の接続情報を示した図であ
 - 【図12】バスリセット前の接続情報を示した図であ
 - 【図13】変化情報作成手段14の動作を説明する図で ある。
 - 【図14】変化情報を示した図である。
 - 【図15】バスの接続例を示した図である。
 - 【図16】バスの接続例を示した図である。
 - 【図17】バスの接続例を示した図である。
 - 【図18】ノード情報の呼び出しのタイミングチャート である。

【符号の説明】

- 1 トポロジー認識装置
- 2 バス
- 11 収集手段
- 12 接続情報作成手段
- 13 記憶手段
- 14 変化情報作成手段

【図2】

transmitted first 190: 4039 ID sp del c pwr phy_ID gap cot logical inverser of first quelet transmitted last self-ID packet #0

【図14】

ノード	パスリセット前	パスリセット後
N-1	0	0
N 2	1	1
N 3	2	2
N 4	4	5
N 5	3	4
NIC	2.4.5	

【図12】

物理ID	ポート	接稅先物理ID
4	рO	2
	p l	3
3	рO	4
	рl	×
2	рO	0
	p 1	1
	р2	4
1	ρO	2
0	ρ0	2

【図18】

【図4】

【図5】

[図6]

[図7]

【図8】

[図9]

【図10】

【図13】

Physical ID = 3

【図15】 Physical ID = 4 Send Data from Computer D to printer C Physical ID = 0Physical ID = 1 Physical ID = 2

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.