Optymalizacja. Symulowane wyżarzanie

dr hab. inż. Maciej Komosiński

Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski

Wyżarzanie

- wzrost temperatury gorącej kąpieli do takiej wartości, w której ciało stałe topnieje
- powolne zmniejszanie temperatury do chwili, w której cząsteczki ułożą się wzajemnie i osiągną (ang. ground state) temperaturę zerową
- przeciwieństwo hartowania

Algorytm Metropolis

- Metropolis i in. (1953) algorytm statystycznego symulowania (Monte Carlo) zmian ciała stałego w gorącej kąpieli aż do stanu termicznej równowagi
- losowe generowanie sekwencji stanów ciała stałego:
 - stan i ciała stałego i jego energia E_i ,
 - perturbacja (małe zniekształcenie) ightarrow następny stan. Energia następnego stanu wynosi E_j .
 - jeśli $E_j E_i \leq 0$, stan j jest akceptowany jako stan bieżący
 - w przeciwnym wypadku, stan j jest akceptowany z pewnym prawdopodobieństwem:

$$\exp\left(\frac{E_i - E_j}{k_B T}\right)$$

T – temperatura kąpieli
 k_B – stała Boltzmanna

https://www.youtube.com/watch?v=h1NOS_wxgGg, https://www.youtube.com/watch?v=vTUwEu53uzs

Analogie do optymalizacji

System fizyczny	Problem optymalizacji
stan	rozwiązanie
energia	koszt
ground state	optimum
temperatura T	parametr kontrolny <i>c</i>
szybkie schładzanie	lokalna optymalizacja
powolne schładzanie	symulowanie wyżarzanie

Symulowane wyżarzanie

- zastosowanie algorytmu Metropolis do optymalizacji kombinatorycznej
- inne nazwy: simulated annealing, Monte Carlo annealing, probabilistic hill climbing, stochastic relaxation

Kryterium akceptacji

- i, j rozwiązania
- f(i), f(j) koszty
- kryterium akceptacji określa czy j uzyskane z i jest akceptowane

$$\mathbf{P}_{c}\{\text{accept } j\} = \begin{cases} 1 & \text{if } f(j) \leq f(i) \\ \exp\left(\frac{f(i) - f(j)}{c}\right) & \text{if } f(j) > f(i) \end{cases}$$

Zadanie domowe: narysuj $e^{-\Delta \over c}$ dla kilku różnych c.

```
procedure begin
SYMULOWANE_WYŻARZANIE
```

end

```
INICJALIZUJ(x_{start}, C_0, L)
k = 0
x := x_{start}
repeat
        for l := 1 to L_k do
        begin
               GENERUJ(x' z N(x))
               if f(x') \leq f(x) then
                 x := x'
               else
                 <u>if</u> \exp(-(f(x') - f(x))/C_k) > random[0, 1) <u>then</u>
                   x := x'
        end
        k := k + 1
        OBLICZ(C_k)
until WARUNEK_STOPU
```

Zbieżność algorytmu SW

- można uzyskać takie L_k i c_k , które zapewniają zbieżność SW do optimum
- dobre przybliżenie SW: generowanie homogenicznych łańcuchów Markowa skończonej długości dla skończonej sekwencji malejących wartości parametru kontrolnego

Łańcuch Markowa

- łańcuch Markowa jest sekwencją prób (rozwiązań), w której prawdopodobieństwo wyniku danej próby zależy (tylko) od wyniku poprzedniej próby
- łańcuch Markowa jest niehomogeniczny jeśli prawdopodobieństwo przejścia zależy od numeru próby k.
 Jeśli nie zależy, to łańcuch Markowa jest homogeniczny

Sposób (schemat) chłodzenia określa

- skończona sekwencja wartości parametru kontrolnego, tj.
 - początkowa wartość parametru kontrolnego c₀
 - funkcja dekrementacji parametru kontrolnego
 - końcowa wartość parametru kontrolnego
- skończona liczba przejść dla każdej wartości parametru kontrolnego, tj.
 - skończona długość każdego homogenicznego łańcucha Markowa

Wartość początkowa parametru kontrolnego

• wartość c_0 powinna być odpowiednio wysoka by zapewnić akceptację wszystkich przejść (początkowy współczynnik akceptacji jest bliski 1).

ullet zależy od problemu (patrz formuła z Δf i ${f P}_c$)

- np. $p \approx 0.98$ i średnie $\Delta f = 1000 \Rightarrow c_0 \approx 49500$
- albo symulujemy podgrzewanie. . .

Sposób chłodzenia Kirkpatricka, Gelatta i Vecchi'ego

Zmniejszanie wartości parametru kontrolnego:

$$c_{k+1} = \alpha c_k,$$
 $k = 1, 2, \dots$
 $c_{k+1} = \alpha^k c_0$

 α jest stałą mniejszą od 1 (np. 0.8 – 0.99)

Prosty sposób chłodzenia: np. $L_k = L$

Długość łańcucha Markowa

- powinna wystarczyć by algorytm mógł "odwiedzić" wszystkich sąsiadów przynajmniej raz (osiągnąć stan równowagi termodynamicznej na każdym poziomie temperatury)
- ponieważ prawdopodobieństwo akceptacji zmniejsza się w czasie, można by się spodziewać $L_k \to \infty$ dla $c_k \to 0$. Dlatego ogranicza się długość łańcucha Markowa dla małych c_k
- w praktyce proporcjonalna do średniego rozmiaru sąsiedztwa

Wartość końcowa parametru kontrolnego

Algorytm kończy działanie, gdy np. bieżące rozwiązanie nie zmieni się dla kilku kolejnych łańcuchów Markowa.

Inne schematy chłodzenia

