Formulas	
(Bor) (ducay constant, 5-1)	
DA = KN	
Acitivity of nucless when N number of	
nucleons ore present	
-At	
$2 A = A_0 e^{-\lambda t}$	
initial octivity	
Activity of ter time to	
3 N= Noent	
in itial nucleans.	
top nuclean of ter	
a) t'z = 1n2	Moi = Noe-At's
	2

Birding energy
T - I A T H I +
The omergy required to separate the nucleans to infinity
E= Im C speed of light
E = 1m c speed of light Binding energy moss defect
I finding moss defect of a nucleus. moss of neutron
Dm = Total mass - (Mp Np + Mn Nn)
DM = Total mass - (Mp Np + Mn Nn) mose of number of nutrons proton proton
produj pro sti
* All the values of is used from a given table.
* Brinding energy of a neutron/proton is O because it is not sinded with any other porticle
it is not beinded with any other porticle

2) finding energy released from a reaction.
Reactants - Products
DM reaction = Mproducts - DM reactants
$E = DM reaction \times C^2$
* Fission: A heavier nucleus will becay
* fission: A heavier hucleus will decay into lighter nuclei's

Curre question

Decay Constant	
Probability for a Lecoy per unit time	nucleus to undergo a
Deco	wy (sup &, B, Y)
Spantameone	Pandom
The process is not triggered by any environmental factor for eg. temp, pressure.	There is no way to tell which nucleus will decay and annot predict when it will decay
Radioactivity, it is a decay of a by emmiss	spontaneous and rounders n motable nucleus, accompanied ion of onergetic particles or photo
U	

The time of which the nucleans becomes half of initial value.

when $N = \frac{N_0}{2}$

then t = t/2

: when $N = \frac{N_0}{2}$

N= Noe-1tz

No = Noe-1tz

In No = In No - It Ine

In No = InNo - Ltz

Atz = In No

1ty = 1n2

the In2