The Libor Market Model with Jumps

El Hadj Aly DIA*

Premia 14

Abstract

The aim of this note is to use a Lévy-driven model to describes the joint arbitrage-free dynamics of a set of forward Libor rates. Such model is called a Libor market model. This note is based on the paper of Tankov and Kohatsu-Higa (so for more details see [4]).

1 Preliminaries

We consider a d-dimensional Lévy process Z without diffusion componet. Thus $(\gamma, \sigma) \in \mathbb{R} \times \mathbb{R}^+$, and ν is a Radon measure on $\mathbb{R} \setminus \{0\}$ satisfying

$$\int_{\mathbb{R}} \left(1 \wedge x^2 \right) \nu(dx) < \infty.$$

By the Lévy-Itô decomposition, X can be written in the form

$$Z_t = \gamma t + \int_{|x|>1, s\in[0,t]} xJ(dx \times ds) + \lim_{\delta\downarrow 0} \int_{\delta\leq |x|\leq 1, s\in[0,t]} x\widetilde{J}(dx \times ds)$$
 (1.1)

Here $\gamma \in \mathbb{R}^d$, J is a Poisson measure on $\mathbb{R} \times [0, \infty)$ with intensity $\nu(dx)dt$, $\tilde{J}(dx \times ds) = J(dx \times ds) - \nu(dx)ds$ and ν is a Radon measure on $\mathbb{R} \setminus \{0\}$ satisfying $\int_{\mathbb{R}} (1 \wedge x^2) \nu(dx) < \infty$. Given $\epsilon > 0$, we define the process R^{ϵ} by

$$R_t^{\epsilon} = \int_{0 \le |x| \le \epsilon, s \in [0, t]} x \widetilde{J}(dx \times ds), \ t \ge 0.$$
 (1.2)

Note that we have

$$\mathbb{E}R_t^{\epsilon}=0.$$

^{*}INRIA Paris-Rocquencourt, domaine de Voluceau, BP 105, 78153 Le Chesnay Cedex France (dia.eha@gmail.com).

On the other hand we denote by Σ^{ϵ} the covariance matrix of R_1^{ϵ} , and thus for any $i, j \in \{1, \ldots, d\}$

$$\Sigma_{i,j}^{\epsilon} = \int_{|x| \le \epsilon} x_i x_j \nu(dx).$$

Define the process Z^{ϵ} by

$$Z_t^{\epsilon} = \int_{|x| > \epsilon, s \in [0, t]} x J(dx \times ds), \ t \ge 0.$$

Then we have

$$Z_t = \gamma_{\epsilon} t + Z_t^{\epsilon} + R_t^{\epsilon}, \ t \ge 0, \tag{1.3}$$

where

$$\gamma_{\epsilon} = \gamma - \int_{\epsilon < |x| \le 1} x \nu(dx). \tag{1.4}$$

We will call $(T_i^{\epsilon})_{i\geq 1}$ the jump times of the process Z^{ϵ} .

2 Approximation of multidimensional SDE

Let X be a n-dimensional stochastic process, and the unique solution of the stochastic differential equation

$$dX_t = h(X_{t^-}) dZ_t, \quad t \in [0, 1],$$
 (2.5)

where h is a $n \times d$ matrix. A suitable approximation of X is \bar{X} defined by

$$d\bar{X}_t = h\left(\bar{X}_{t^-}\right) \left(\gamma_{\epsilon} dt + dW_t^{\epsilon} + dZ_t^{\epsilon}\right), \tag{2.6}$$

where W^{ϵ} is a d-dimensional Brownian motion with covariance matrix Σ^{ϵ} . The choice of this approximation is explain in [4]. The process \bar{X} can be also written in this form

$$\bar{X}_{t} = \bar{X}_{\eta_{t}} + \int_{\eta_{t}}^{t} h\left(\bar{X}_{s}\right) dW_{s}^{\epsilon} + \int_{\eta_{t}}^{t} h\left(\bar{X}_{s}\right) \gamma_{\epsilon} ds$$

$$\bar{X}_{T_{i}^{\epsilon}} = \bar{X}_{T_{i}^{\epsilon-}} + h\left(\bar{X}_{T_{i}^{\epsilon-}}\right) \Delta Z_{T_{i}^{\epsilon}},$$

where $\eta_t = \sup T_i^{\epsilon}$, $T_i^{\epsilon} \leq t$. The idea of [4] is to approximate \bar{X} by

$$Y^0 + \left. \frac{\partial}{\partial \alpha} Y^{\alpha} \right|_{\alpha = 0},$$

where the family of processes $(Y^{\alpha})_{0 \le \alpha \le 1}$ is defined by

$$Y_{t}^{\alpha} = \bar{X}_{\eta_{t}} + \int_{\eta_{t}}^{t} h(Y_{s}^{\alpha}) dW_{s}^{\epsilon} + \int_{\eta_{t}}^{t} h(Y_{s}^{\alpha}) \gamma_{\epsilon} ds$$

4 pages 3

Hence a new approximation of X, called \tilde{X} , is defined by

$$\begin{split} \tilde{X}_t &= Y_{0,t} + Y_{t,1}, \quad t > \eta_t \\ \tilde{X}_{T_i^{\epsilon}} &= \tilde{X}_{T_i^{\epsilon-}} + h\left(\tilde{X}_{T_i^{\epsilon-}}\right) \Delta Z_{T_i^{\epsilon}} \\ Y_{0,t} &= \tilde{X}_{\eta_t} + \int_{\eta_t}^t h\left(Y_{0,s}\right) \gamma_{\epsilon} ds \\ Y_{1,t} &= \int_{\eta_t}^t h\left(Y_{0,s}\right) dW_s^{\epsilon} + \sum_{i=1}^n \int_{\eta_t}^t \frac{\partial h}{\partial x_i} \left(Y_{0,s}\right) Y_{1,s}^i \gamma_{\epsilon} ds. \end{split}$$

The random vector $Y_{1,t}$ is Gaussian with mean zero and covariance matrix Ω_t satisfying

$$\Omega_t = \int_{n_t}^t \left(\Omega_s M_s + M_s^{\perp} \Omega_s^{\perp} + N_s \right) ds,$$

where M^{\perp} is the transpose of the matrix M and

$$M_t^{ij} = \frac{\partial h^{ij}(Y_{0,t})}{\partial x_i} \gamma_{\epsilon}^j, \quad N_t = h(Y_{0,t}) \Sigma^{\epsilon} h^{\perp}(Y_{0,t}).$$

3 Libor market model

Let $T_i = T_1 + (i-1)\delta$, i = 1, ..., n+1 be a set dates, called tenor dates. The Libor rate L_t^i is the forward interest rate, defined at date t for the period $[T_i, T_{i+1}]$. The Libor rate can be expressed with respect to prices of zero-coupon bonds.

$$L_t^i = \frac{1}{\delta} \left(\frac{B_t(T_i)}{B_t(T_{i+1})} - 1 \right),$$

where $B_t(T)$ is the price at time t of a zero-coupon bond with maturity T. A arbitrage-free dynamics of L_t^1, \ldots, L_t^n (see [3]) is

$$\frac{dL_t^i}{dL_{t^-}^i} = \sigma_{i,t} dZ_t - \int_{\mathbb{R}^d} \sigma_{i,t} z \left[\prod_{j=i+1}^{n+1} \left(1 + \frac{\delta L_t^j \sigma_t^j z}{1 + \delta L_t^j} \right) - 1 \right] \nu(dz) dt, \tag{3.7}$$

where Z is a d-dimensional martingale pure jump Lévy process, with Lévy measure ν , and $\sigma_{i,t}$ are d-dimensional deterministic volatility functions. The dynamics are given under the so-called terminal measure. This means the last zero-coupon bond, $B_t(T_{n+1})$, is used as the numéraire. So the price at time t of an option with payoff $H = f\left(L_{T_1}^1, \ldots, L_{T_1}^n\right)$ at time T_1 is given by

$$\pi_t(H) = \frac{B_t(T_1)}{\prod_{i=1}^n (1 + \delta L_t^i)} \mathbb{E}\left[f\left(L_{T_1}^1, \dots, L_{T_1}^n\right) \prod_{i=1}^n \left(1 + \delta L_{T_1}^i\right) / \mathcal{F}_t \right].$$

We introduce the process (n+1)-dimensional X with $X_t^0 = t$ and $X_t^i = L_t^i$ (for $i = 1, \ldots, n$), a (d+1)-dimensional process $\tilde{Z} = (t, Z_t)^{\perp}$, and a $(n+1) \times (d+1)$ -dimensional function h with $h^{11} = 1$, $h^{1j} = 0$ for $2 \leq j \leq d+1$, $h^{i1} = f^i(x)$ and $h^{ij} = \sigma_{i,x_0}^{j-1}$ (for $2 \leq j \leq d+1$) with

$$f^{i}(x) = -\int_{\mathbb{R}^{d}} \sigma_{i,x_{0}} z \left[\prod_{j=i+1}^{n+1} \left(1 + \frac{\delta x_{j} \sigma_{t}^{j} z}{1 + \delta x_{j}} \right) - 1 \right] \nu(dz) dt,$$

so that the equation (3.7) takes the form

$$dX_t = h\left(X_{t^-}\right) d\tilde{Z}_t.$$

For details about this model, see [4].

References

- [1] EBERLEIN, E., OZKAN F.: The Lévy Libor model, Finance and Stochastics, 9, pp. 327-348 (2005).
- [2] GLASSERMAN, P., KOU S.: The term structure of forward rates with jump risk, Math. Finance, 13, pp. 383-410 (2003).
- [3] Jamshidian, F.: LIBOR market models with semimartingales, Tech. Report, Net-Analytics Ltd. (1999). 3
- [4] Kohatsu-Higa, A., Tankov P.: Jump-adapted discretization schemes for Lévy-driven SDEs, to appear in Stochastic Processes and their Applications.

1, 2, 4

References