Προγραμματιστικές Εργασίες στην Αριθμητική Ανάλυση

Παππά Βασιλική Τσαμουρίδης Αναστάσιος Αθανάσιος

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών $4^{\rm o}$ εξάμηνο

Περιεχόμενα

1	Eρ	ασία 1	;
	1.1	Ερώτημα α	:
	1.2	Ερώτημα β	:
	1.3	Ερώτημα γ	(
2	Eρ	ασία 2	8
	$2.\dot{1}$	Ερώτημα α	
	2.2		
	2.3	Ερώτημα γ	
	2.4	Ερώτημα δ΄	10

1 Εργασία 1

1.1 Ερώτημα α

Η υλοποίηση των Κανόνων Αριθμητικής ολοκλήρωσης εμπεριέχονται στο αρχείο με ονομασία Numerical_Integration_Methods.py

1.2 Ερώτημα β

Στα Σχήμα 1, Σχήμα 2, Σχήμα 3 και Σχήμα 4 απεικονίζονται τα γραφήματα του απολύτου σφάλματος για κάθε μέθοδο. Σε κάθε γράφημα απεικονίζεται το απόλυτο σφάλμα, το οποίο υπολογίζεται λαμβάνοντας υπόψη το πραγματικό αποτέλεσμα της ολοκλήρωσης (όπως αυτό δόθηκε από την εκφώνηση) και την τιμή του ολοκληρώματος που προκύπτει με την χρήση των μεθόδων αριθμητικής ολοκλήρωσης που υλοποιήθηκαν στο αρχείο Numerical Integration Methods.py. Θα πρέπει να αναφέρουμε ότι το σφάλμα ενισχύεται από την ύπαρξη σφάλματος κατά την αποθήκευση των αριθμών κινητής υποδιαστολής στην μνήμη του υπολογιστή.

Σχήμα 1: Κανόνας Αριστερού Παραλληλογράμμου

 Σ χήμα 2: Κανόνας Δ εξιού Παραλληλογράμμου

Σχήμα 3: Κανόνας Τραπεζίου

Σχήμα 4: Κανόνας Simpson

1.3 Ερώτημα γ

Στα Σχήμα 5 και Σχήμα 6 φαίνονται τα γραφήματα από τον υπολογισμό του μέγιστου σφάλματος, όπως αυτό υπολογίζεται από τους τύπους που δίνονται στο βιβλίο του Λ.Πιτσούλη, "Εισαγωγή στην Αριθμητική Ανάλυση", 4η Έκδοση, Εκδόσεις Τζιόλα. Παρατηρείται ότι το απόλυτο σφάλμα που παρουσίαζεται στο ερώτημα β είναι σε κάποιες περιπτώσεις μεγαλύτερο του μεγίστου απόλυτου σφάλματος που αναφέρθηκε προηγουμένως. Αυτό οφείλεται σε σφάλματα κατά την αποθήκευση των αριθμών κινητής υποδιαστολής στην μνήμη του υπολογιστή.

Σχήμα 5: Μέγιστο απόλυτο σφάλμα ολοκλήρωσης (1)

Σχήμα 6: Μέγιστο απόλυτο σφάλμα ολοκλήρωσης (2)

2 Εργασία 2

2.1 Ερώτημα α

Η υλοποίηση της μεθόδου του Euler μπορεί να ευρεθεί στο αρχείο Differential_Equation_Method.py.

2.2 Ερώτημα β

Το πρόβλημα που αναφέρεται στην εκφώνηση μοντελοποιείται και επιλύεται στο αρχείο Differential_Equations_Problem_Solving.py. Όπως αναφέρουν οι οδηγίες της εκφώνησης χρησιμοποιούμε αρχικές συνθήκες $x_0(0)=20, x_1(0)=1, t_{max}=200$ και μικρό βήμα διακριτοποίησης dt=0.01.

2.3 Ερώτημα γ

Στο Σχήμα 7, εμφανίζονται τα αποτελέσματα της επίλυσης της δοθείσας διαφορικής εξίσωσης. Στα αριστερά σχεδιάζεται η πληθυσμιακή εξέλιξη των δύο ειδών σε σχέση με τον χρόνο. Στα δεξιά, απεικονίζεται η ανταλλαγή πληθυσμιακής κυριαρχίας.

Σχήμα 7: Βήμα Διακριτοποίησης 0.01

Όπως είναι εμφανές στο Σχήμα 7, η πληθυσμιαχή εξέλιξη των λαγών εξαρτάται άμεσα από αυτήν των αλεπούδων και αντίστροφα. Πιο συγκεκριμένα, αύξηση των λαγών συνεπάγεται την ραγδαία εκθετική αύξηση των αλεπούδων. Από την άλλη, μείωση των λαγών οδηγεί σε εκθετική μείωση (με μικρότερη κλίση συγκριτικά με αυτή της αύξησης) των αλεπούδων, ενώ αύξηση των αλεπούδων οδηγεί στην μείωση των λαγών. Το μοτίβο επαναλαμβάνεται περιοδικά. Επιπροσθέτως, ο μέγιστος αριθμός ατόμων κάθε είδους δείχνει να αυξάνεται με την πάροδο του χρόνου, όπως φαίνεται στο Σχήμα 8, στο οποίο το t_{max} είναι ίσο με 400.

Σχήμα 8: Μέγιστα πληθυσμών συναρτήσει του χρόνου

2.4 Ερώτημα δ

Μειώνουμε το βήμα διακριτοποίησης στο $\frac{1}{10}$ της προηγούμενης τιμής (dt=0.001) και επαναλαμβάνουμε την επίλυση της διαφορικής εξίσωσης. Τα αποτελέσματα για το νέο dt φαίνονται στα παρακάτω γραφήματα.

Σχήμα 9: Βήμα Διακριτοποίησης 0.001

Όσον αφορά το πρώτο γράφημα παρατηρούμε ότι η πληθησμιακή αύξηση που παρατηρείται για dt=0.01 δεν είναι πλέον τόσο έντονη. Παράλληλα, υπάρχει μια μικρή χρονική μετατόπιση όσον αφορά την περιοδικότητα του φαινομένου.

Το γράφημα στα αριστερά παρουσιάζει και αυτό διαφορές συγκριτικά με το Phase Plot (Σχήμα 7) του προηγούμενου ερωτήματος. Φαίνεται ότι η επανάληψη του φαινομένου δεν συνεπάγεται πλεόν την ραγδαία αύξηση πληθυσμών.