Наибольшее и наименьшее значение функции

Теорема. Если z = f(x, y) непрерывна на компакте (ограниченной замкнутой области) D, то такая функция достигает на нем своего наибольшего и наименьшего значения.

Алгоритм нахождения наибольшего (наименьшего) значения функции на компакте.

- 1) Вычислить частные производные функции.
- 2) Найти критические точки функции: либо те, в которых обе частные производные равны нулю, либо те, в которых хотя бы одна из частных производных не существует конечная.
- 3) Выбрать из найденных критических точек те, которые попали в исследуемую область. Вычислить значения функции в отобранных критических точках.
- 4) Исследовать функцию на границе области. Это задача нахождения условного экстремума данной функции, в которой уравнением связи является уравнение границы. Находим точки возможного условного экстремума либо методом исключения неизвестных, либо методом множителей Лагранжа. Вычисляем значения функции в найденных точках.
- 5) Из вычисленных значений функции выбираем наибольшее и наименьшее.

Пример 1. Определить наибольшее и наименьшее значения функции $z = x^2 + y^2 - xy$ в области $D:|x|+|y| \le 1$.

Решение

Изобразите область D.

Находим стационарные точки в D. Их координаты удовлетворяют системе уравнений $\begin{cases} 2x - y = 0 \\ 2y - x = 0 \end{cases}$

Стационарной будет точка (0,0). Значение функции в стационарной точке: z(0,0) = 0.

Исследуем значения функции на границе области. Граница состоит из четырех отрезков.

- 1) $y=x+1, x\in[-1,0], z=x^2+x+1.$ Стационарная точка удовлетворяет условию $\frac{\partial z}{\partial x}=2x+1=0\,, \text{ отсюда } x=-\frac{1}{2}\in[-1,0] \text{ и } z\bigg(-\frac{1}{2}\bigg)=\frac{3}{4}\,.$ Значения функции на концах отрезка: $z(0)=z(-1)=1\,.$
- 2) y = x 1, $x \in [0,1]$, $z = x^2 x + 1$. Стационарная точка удовлетворяет условию z' = 2x 1 = 0, отсюда $x = \frac{1}{2} \in [0,1]$ и $z\left(\frac{1}{2}\right) = \frac{3}{4}$. Значения функции на концах отрезка: z(0) = z(1) = 1.
- 3) $y=-x+1, x\in[0,1], z=3x^2-3x+1.$ Стационарная точка удовлетворяет условию z'=6x-3=0, отсюда $x=\frac{1}{2}\in[0,1]$ и $z\bigg(\frac{1}{2}\bigg)=\frac{1}{4}$. Значения функции на концах отрезка: z(0)=z(1)=1.
- 4) $y=-x-1, x\in[-1,0], z=3x^2+3x+1.$ Стационарная точка удовлетворяет условию z'=6x+3=0, отсюда $x=-\frac{1}{2}\in[-1,0]$ и $z\left(-\frac{1}{2}\right)=\frac{1}{4}$. Значения функции на концах отрезка: z(0)=z(-1)=1.

Из полученных значений функции выбираем самое большое $z_{\text{наи}\delta}=1$ в угловых точках (0,1), (0,-1), (1,0), (-1,0) и самое маленькое $z_{\text{наи}M}=0$ в точке (0,0).

Пример 2. Найти наибольшее и наименьшее значения функции $z = x^2 + 2xy - 3y^2 + y$ в области $D: 0 \le x \le 1, 0 \le y \le 1, 0 \le x + y \le 1$.

Решение

Изобразите область D.

Найдем стационарные точки функции из системы

$$\begin{cases} 2x + 2y = 0 \\ 2x - 6y + 1 = 0 \end{cases}$$

Отсюда получаем единственную стационарную точку $\left(-\frac{1}{8},\frac{1}{8}\right)$, не лежащую в области D.

Исследуем значения функции на границе области. Граница состоит из трех отрезков.

- 1) y = 0, $x \in [0,1]$. Подставляя это в функцию, получаем $z = x^2$, $x \in [0,1]$. Для нее стационарная точка x = 0, она не попадает внутрь отрезка. Значения функции на концах отрезка z(0,0)=0 и z(1,0)=1.
- 2) x = 0, $y \in [0,1]$. Подставляя это в функцию, получаем $z = y 3y^2$, $y \in [0,1]$. Стационарная точка находится из уравнения z' = 1 6y = 0 Точка $y = \frac{1}{6}$ попадает в отрезок [0,1]. Значение функции в этой точке $z\left(0,\frac{1}{6}\right) = \frac{1}{12}$. Значение функции на одном из концов отрезка найдено в предыдущем пункте, а на втором конце z(0,1) = -2.
- 3) $y=1-x, x\in[0,1]$. Подставляя это в функцию, получаем $z=-4x^2+7x-2, x\in[0,1]$. . Ее стационарная точка находится из уравнения z'=7-8x=0. Точка $x=\frac{7}{8}$ попадает в отрезок [0,1]. Значение функции в этой точке $z\left(\frac{7}{8},\frac{1}{8}\right)=\frac{17}{16}$.

Из полученных значений функции выбираем самое большое $z\left(\frac{7}{8},\frac{1}{8}\right) = \frac{17}{16} = z_{hau6}$ и самое маленькое $z(0,1) = -2 = z_{haum}$.

Пример 3. Определить наибольшее и наименьшее значения функции z = 3 + 2xy в области $D: x^2 + y^2 \le 1$.

Решение

Находим стационарную точку функции из системы

 $\begin{cases} 2y = 0 \\ 2x = 0 \end{cases}$. Отсюда получаем единственную стационарную точку (0,0), лежащую в области D.

Значение функции в стационарной точке: z(0,0) = 3.

Исследуем функцию на границе области. Для этого составим функцию Лагранжа $L(x,y,\lambda)=3+2xy+\lambda \left(x^2+y^2-1\right)$. Найдем ее стационарные точки из системы

$$\begin{cases} \frac{\partial L}{\partial x} = 2y + 2\lambda x = 0\\ \frac{\partial L}{\partial y} = 2x + 2\lambda y = 0\\ \frac{\partial L}{\partial \lambda} = x^2 + y^2 - 1 = 0 \end{cases}$$

Решая эту систему, находим четыре точки возможного условного экстремума. При $\lambda=-1$ $M_1\bigg(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\bigg)$ и $M_3\bigg(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\bigg)$. При $\lambda=1$ $M_2\bigg(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\bigg)$ и $M_4\bigg(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\bigg)$. Вычисляем значения функции в найденных точках:

Д/з 3676, 3678, 3679.