

Fig. 1 Structure of passively driven liquid crystal display



Fig. 2 Example waveform applied to the common and segment electrodes



Fig. 3 Coating of silicon dioxide applied for better electrical isolation between the two ITO surfaces



Fig. 4 Color filter material applied on/under the ITO layer



Fig. 5 reflective coating applied on/under the ITO layer of the rear substrate



Fig. 6 Arrangement for reflective single crystal CMOS microdisplay



Fig. 7 Signal waveform incorporating row inversion scheme for actively driven liquid crystal display



Fig. 8 Signal waveform incorporating column inversion scheme for actively driven liquid crystal display



Fig. 9 Signal waveform incorporating pixel inversion scheme for actively driven liquid crystal display



Fig. 10 Polarities of resulting fields applied to pixels for two consecutive frames adopting row inversion scheme



Fig. 11 Polarities of resulting fields applied to pixels for two consecutive frames adopting column inversion scheme



Fig. 12 Polarities of resulting fields applied to pixels for two consecutive frames adopting pixel inversion scheme



Fig. 13 Signal waveform incorporating row inversion scheme for passively driven liquid crystal display



Fig. 14 2D director configuration of two pixels driven in column inversion mode



Signal waveform incorporating 2-row inversion scheme for passively driven liquid crystal display



Fig. 16 Polarities of resulting fields applied to pixels for two consecutive frames adopting 2-row inversion scheme



Fig. 17 Polarities of resulting fields applied to pixels for two consecutive frames adopting 2-column inversion scheme

Fig. 18 Polarities of resulting fields applied to pixels for two consecutive frames adopting 2x2-pixel inversion scheme



Fig. 19 Signal waveform incorporating 2-row inversion scheme for actively driven liquid crystal display



Fig. 20 Signal waveform incorporating 2-column inversion scheme for actively driven liquid crystal display



Fig. 21 Signal waveform incorporating 2x2-pixel inversion scheme for actively driven liquid crystal display