e.g.
$$1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}$$
 are in H.P

since

1, 3, 5, 7 are in A.P.

nth term or general term of H.P is given by

$$\frac{1}{a_1 + (n-1) d}$$

Harmonic Mean

A number H is said to be the harmonic mean (H.M) between two numbers a and b if a, H, b are in H.P

Also H =
$$\frac{2ab}{a+b}$$

EXERCISE 6.10

Q.1 Find the 9th term of the harmonic sequence

(i)
$$\frac{1}{3}, \frac{1}{5}, \frac{1}{7}$$
......

(ii)
$$\frac{-1}{5}$$
, $\frac{-1}{3}$, -1

Solution:

(i)
$$\frac{1}{3}, \frac{1}{5}, \frac{1}{7}$$
.....

Given sequence

$$\frac{1}{3}, \frac{1}{5}, \frac{1}{7}$$
 which is H.P

$$a_1 = 3$$
, $d = 5 - 3 = 2$,

As

$$a_n = a + (n-1) d$$

$$a_9 = a_1 + 8d$$

$$= 3 + 8(2) = 3 + 16 = 19$$

$$\Rightarrow$$
 9th term of A.P = 19

$$\Rightarrow$$
 9th term of H.P = $\frac{1}{19}$

(ii)
$$\frac{-1}{5}, \frac{-1}{3}, -1 \dots$$

Given sequence

$$\frac{-1}{5}$$
, $\frac{-1}{3}$, -1 which is H.P

$$-5, -3, -1, \dots$$
is A.P

$$a_1 = -5$$
, $d = -3(-5) = 2$, $n = 9$, $a_9 = ?$

As

$$a_n = a_1 + (n-1) d$$

$$a_9 = a_1 + 8d$$

$$= -5 + 8(2) = -5 + 16 = 11$$

 \Rightarrow

$$9^{th}$$
 term of H.P = $\frac{1}{11}$

- Q.2 Find the 12th term of the following Harmonic sequence.
 - (i) $\frac{1}{2}, \frac{1}{5}, \frac{1}{8}$

(ii) $\frac{1}{3}, \frac{2}{9}, \frac{1}{6}$

Solution:

(i)
$$\frac{1}{2}, \frac{1}{5}, \frac{1}{8}$$
.....

Given sequence

$$\frac{1}{2}, \frac{1}{5}, \frac{1}{8}$$
 which is H.P

$$a_1 = 2$$
, $d = 5 - 2 = 3$, $n = 12$, $a_{12} = ?$

As

$$a_n = a + (n-1) d$$

$$a_{12} = a_1 + 11d$$

$$= 2 + (12 - 1)$$

$$= 2 + 11(3) = 2 + 33 = 35$$

- $\Rightarrow 12 \text{th term of H.P} = \frac{1}{35}$
- (ii) $\frac{1}{3}, \frac{2}{9}, \frac{1}{6}$

Given sequence

$$\frac{1}{3}, \frac{2}{9}, \frac{1}{6}$$
 which is H.P

$$3, \frac{9}{2}, 6 \dots A.P$$

$$a_1 = 3$$
, $d = \frac{9}{2} - 3 = \frac{3}{2}$, $n = 12$, $a_{12} = ?$

As

$$a_n = a + (n - 1) d$$

$$a_{12} = a_1 + 11d$$

$$= 3 + 11 \left(\frac{3}{2}\right) = 3 + \frac{33}{2} = \frac{39}{2}$$

SO

the 12th term of H.P = $\frac{2}{39}$

Q.3 Insert five harmonic means between the following given numbers.

(i)
$$-\frac{2}{5}$$
 and $\frac{2}{13}$

(ii)
$$\frac{1}{4}$$
 and $\frac{1}{24}$

Solution:

(i)
$$-\frac{2}{5}$$
 and $\frac{2}{13}$

Let A₁, A₂, A₃, A₄, A₅ are arithmetic means between $-\frac{2}{5}$ and $\frac{2}{13}$

$$\Rightarrow$$
 $-\frac{5}{2}$, A₁, A₂, A₃, A₄, A₅, $\frac{13}{2}$ are in A.P

$$\Rightarrow \qquad a_1 = -\frac{5}{2}, \quad a_7 = \frac{13}{2}$$

$$\Rightarrow a_1 + 6d = \frac{13}{2}$$

$$-\frac{5}{2} + 6d = \frac{13}{2}$$

$$\pi a_1 = -\frac{5}{2}$$

$$\Rightarrow 6d = \frac{13}{2} + \frac{5}{2}$$

$$6d = \frac{18}{2} = 9 \implies d = \frac{3}{2}$$

$$\Rightarrow$$
 A₁ = a₂ = a₁+ d = $\frac{-5}{2}$ + $\frac{3}{2}$ = $\frac{-2}{2}$ = -1 \Rightarrow H₁ = -1

$$A_2 = a_3 = a_1 + 2d = \frac{-5}{2} + 2\left(\frac{3}{2}\right) = \frac{-5}{2} + 3 = -\frac{1}{2} \implies H_2 = -2$$

$$A_3 = a_4 = a_1 + 3d = \frac{-5}{2} + 3\left(\frac{3}{2}\right) = \frac{-5}{2} + \frac{9}{2} = 2 \implies H_3 = \frac{1}{2}$$

$$A_4 = a_5 = a_1 + 4d = \frac{-5}{2} + 4\left(\frac{3}{2}\right) = \frac{-5}{2} + 6 = -\frac{7}{2} \implies H_4 = \frac{2}{7}$$

$$A_5 = a_6 = a_1 + 5d = \frac{-5}{2} + 5\left(\frac{3}{2}\right) = \frac{-5}{2} + \frac{15}{2} = 5 \implies H_5 = \frac{1}{5}$$

$$\Rightarrow$$
 Required H.Ms are $-1, -2, \frac{1}{2}, \frac{2}{7}$ and $\frac{1}{5}$

(ii)
$$\frac{1}{4}$$
 and $\frac{1}{24}$

Let A_1 , A_2 , A_3 , A_4 , A_5 are A.Ms between 4 and 24

$$\Rightarrow$$
 4, A₁, A₂, A₃, A₄, A₅, 24 are in A.P

$$a_1 = 4$$
, $a_7 = 24$,

$$a_1 + 6d = 24$$

$$4 + 6d = 24$$

$$6d = 24 - 4$$

$$\Rightarrow$$
 6d = 20 \Rightarrow d = $\frac{20}{6}$ = $\frac{10}{3}$

$$A_1 = a_2 = a_1 + d = 4 + \frac{10}{3} = \frac{22}{3} \implies H_1 = \frac{3}{22}$$

$$A_2 = a_3 = a_1 + 2d = 4 + 2\left(\frac{10}{3}\right) = 4 + \frac{20}{3} = \frac{32}{3} \implies H_2 = \frac{3}{32}$$

$$A_3 = a_4 = a_1 + 3d = 4 + 3\left(\frac{10}{3}\right) = 14 \implies H_3 = \frac{1}{14}$$

$$A_4 = a_5 = a_1 + 4d = 4 + 4\left(\frac{10}{3}\right) = 4 + \frac{40}{3} = \frac{52}{3} \implies H_4 = \frac{3}{52}$$

$$A_5 = a_6 = a_1 + 5d = 4 + 5\left(\frac{10}{3}\right) = 4 + \frac{50}{3} = \frac{62}{3} \implies H_5 = \frac{3}{62}$$

so the required five H.Ms are

$$\frac{3}{22}$$
, $\frac{3}{32}$, $\frac{1}{14}$, $\frac{3}{52}$, and $\frac{3}{62}$

Q.4 Insert four H.Ms between the given numbers:

(i) $\frac{1}{3}$ and $\frac{1}{23}$

(ii) $\frac{7}{3}$ and $\frac{7}{11}$

(iii) 4 and 20

Solution:

(i)
$$\frac{1}{3}$$
 and $\frac{1}{23}$

Let A_1 , A_2 , A_3 , A_4 are four A.M's between 3 and 23.

$$\Rightarrow$$
 3, A₁, A₂, A₃, A₄, 23 are A.P.

$$a_1 = 3$$
, $a_6 = 23$

$$a_1 + 5d = 23$$

$$3 + 5d = 23$$

$$5d = 20$$

$$d = 4$$

$$A_1 = a_2 = a_1 + d = 3 + 4 = 7 \implies H_1 = \frac{1}{7}$$

$$A_2 = a_3 = a_1 + 2d = 3 + 2(4) = 11 \implies H_2 = \frac{1}{11}$$

$$A_3 = a_4 = a_1 + 3d = 3 + 3 (4) = 15 \implies H_3 = \frac{1}{15}$$

$$A_4 = a_5 = a_1 + 4d = 3 + 4(4) = 19 \implies H_4 = \frac{1}{19}$$

so required 4 H.Ms are $\frac{1}{7}$, $\frac{1}{11}$, $\frac{1}{15}$, $\frac{1}{19}$

(ii) $\frac{7}{3}$ and $\frac{7}{11}$

Let A_1, A_2, A_3, A_4 are four A.Ms between $\frac{7}{3}$ and $\frac{11}{7}$

$$\Rightarrow$$
 $\frac{3}{7}$, A₁, A₂, A₃, A₄, $\frac{11}{7}$ are in A.P

$$a_1 = \frac{3}{7}$$
 and $a_6 = \frac{11}{7}$

$$a_1 + 5d = \frac{11}{7}$$

$$\frac{3}{7} + 5d = \frac{11}{7}$$

$$5d = \frac{11}{7} - \frac{3}{7} = \frac{8}{7}$$

$$d = \frac{8}{35}$$

$$A_1 = a_2 = a_1 + d = \frac{3}{7} + \frac{8}{35} = \frac{23}{35} \implies H_1 = \frac{35}{23}$$

$$A_2 = a_3 = a_1 + 2d = \frac{3}{7} + 2\left(\frac{8}{35}\right) = \frac{3}{7} + \frac{16}{35} = \frac{31}{35} \implies H_2 = \frac{35}{31}$$

$$A_3 = a_4 = a_1 + 3d = \frac{3}{7} + 3\left(\frac{8}{35}\right) = \frac{3}{7} + \frac{24}{35} = \frac{39}{35} \implies H_3 = \frac{35}{39}$$

$$A_4 = a_5 = a_1 + 4d = \frac{3}{7} + 4\left(\frac{8}{35}\right) = \frac{3}{7} + \frac{32}{35} = \frac{47}{35} \implies H_4 = \frac{35}{47}$$

so the required 4 H.Ms are

$$\frac{35}{23}$$
, $\frac{35}{31}$, $\frac{35}{39}$, $\frac{35}{47}$

(iii) 4 and 20

Let A_1, A_2, A_3, A_4 are four A.Ms between $\frac{1}{4}$ and $\frac{1}{2}$

$$\Rightarrow \qquad \frac{1}{4}\,,\ A_1,A_2,A_3,A_4,\frac{1}{20} \ \text{ are in A.P}$$

$$a_1 = \frac{1}{4}$$
 and $a_6 = \frac{1}{20}$

$$a_1 + 5d = \frac{1}{20}$$

$$\frac{1}{4} + 5d = \frac{1}{20}$$

$$5d = \frac{1}{20} - \frac{1}{4} = -\frac{4}{20} = -\frac{2}{10}$$

$$d = -\frac{2}{50}$$

$$\Rightarrow$$
 A₁ = a₂ = a₁ + d = $\frac{1}{4} - \frac{2}{50} = \frac{21}{100} \Rightarrow$ H₁ = $\frac{100}{21}$

$$A_2 = a_3 = a_1 + 2d = \frac{1}{4} + 2\left(-\frac{2}{50}\right) = \frac{1}{4} - \frac{4}{50} = \frac{17}{100} = \implies H_2 = \frac{100}{17}$$

$$A_3 = a_4 = a_1 + 3d = \frac{1}{4} + 3\left(-\frac{2}{50}\right) = \frac{1}{4} - \frac{6}{50} = \frac{13}{100} \implies H_3 = \frac{100}{3}$$

$$A_4 = a_5 = a_1 + 4d = \frac{1}{4} + 4\left(-\frac{2}{50}\right) = \frac{1}{4} - \frac{8}{50} = \frac{9}{100} \implies H_4 = \frac{100}{9}$$

so the required four H.Ms are

$$\frac{100}{21}$$
, $\frac{100}{17}$, $\frac{100}{13}$, $\frac{100}{9}$

Q.5 If the 7th and 10th terms of an H.P are $\frac{1}{3}$ and $\frac{5}{21}$ respectively, find its 14th term.

Solution:

7th term of H.P =
$$\frac{1}{3}$$

7th term of A.P =
$$3 = a_7$$

10th term of H.P =
$$\frac{5}{21}$$

10th term of A.P =
$$\frac{21}{5}$$
 = a_{10}

$$\Rightarrow$$
 $a_1 + 6d = 3$

$$a_1 + 9d = \frac{21}{5}$$

subtracting (1) from (2), we get

$$3d = \frac{21}{5} - 3 = \frac{6}{5}$$

$$d = \frac{2}{5}$$

Put
$$d = \frac{2}{5}$$
 in (1), we get

$$a_1 + 6 \cdot \frac{2}{5} = 3$$

$$a_1 + \frac{12}{5} = 3$$

$$a_1 = 3 - \frac{12}{5} = \frac{15 - 12}{5}$$

$$a_1 = \frac{3}{5}$$

As in A.P

$$a_{14} = a_1 + 13d$$

$$= \frac{3}{5} + 13\left(\frac{2}{5}\right)$$

$$= \frac{3}{5} + \frac{26}{5} = \frac{29}{5}$$

$$\Rightarrow$$
 14th term of the given H.P = $\frac{5}{29}$

Q.6 If first term of an H.P. is $-\frac{1}{3}$ and fifth term is $\frac{1}{5}$. Find its 9th term.

Solution:

$$1^{\text{st}}$$
 term of H.P = $-\frac{1}{3}$

$$1^{st}$$
 term of A.P = -3 = a_1

$$5^{th}$$
 term of H.P = $\frac{1}{5}$

$$5^{th}$$
 term of A.P = $5 = a_5$

$$As a_5 = a_1 + 4d$$

$$5 = -3 + 4d$$

$$5+3=4d \implies 8=4d=8 \implies \boxed{d=2}$$

so 9th term of A.P

$$a_9 = a_1 + 8d$$

$$= -3 + 8(2)$$

and 9th term of H.P = $\frac{1}{13}$

Q.7 If 5 is the HM between 2 and b. Find b. (Lahore Board 2007, 2010)

Solution:

If H is H.M between a and b

then

$$H.M. = \frac{2ab}{a+b}$$

but here 5 is the H.M between 2 and b.

$$\Rightarrow 5 = \frac{2(2)b}{2+b}$$

$$\Rightarrow 5 = \frac{4b}{2+b}$$

$$\Rightarrow$$
 5 (2 + b) = 4b

$$\Rightarrow 10 + 5b - 4b = 0$$

$$\Rightarrow$$
 10 + b = 0 \Rightarrow $b = -10$

If the numbers $\frac{1}{k}$, $\frac{1}{2k+1}$, $\frac{1}{4k-1}$ are in harmonic sequence. Find k. **Q.8**

(Lahore Board 2003, Gujranwala Board 2007)

Solution:

As
$$\frac{1}{k}$$
, $\frac{1}{2k+1}$, $\frac{1}{4k-1}$ are in H.P

$$\Rightarrow$$
 k, $2k + 1$, $4k - 1$ are in A.P

$$\Rightarrow$$
 2k + 1 - k = 4k - 1 - (2k + 1) common difference should same

$$\Rightarrow$$
 $k+1 = 4k-1-2k-1$

$$\Rightarrow k+1 = 2k-2 \tag{B}$$

$$\Rightarrow$$
 $2k-2-k-1=0$

$$\Rightarrow$$
 $k-3=0$

$$\Rightarrow$$
 $k = 3$

Find n so that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be HM between a and b. **Q.9**

(Lahore Board 2003)

Solution:

As harmonic mean between a and b is given by

$$H = \frac{2ab}{a+b}$$

therefore

$$\frac{a^{n+1} + b^{n+1}}{a^n + b^n} = \frac{2ab}{a+b}$$

$$\Rightarrow$$
 $(a + b) (a^{n+1} + b^{n+1}) = 2ab (a^n + b^n)$

$$\Rightarrow (a+b) (a^{n+1} + b^{n+1}) = 2ab (a^n + b^n)$$

\Rightarrow $a^{n+2} + ab^{n+1} + b a^{n+1} + b^{n+2} = 2a^{n+1} b + 2ab^{n+1}$

$$\Rightarrow$$
 $a^{n+2} + b^{n+2} = a^{n+1} b + a b^{n+1}$

$$\Rightarrow$$
 $a^{n+2} - a^{n+1} b = a b^{n+1} - b^{n+2}$

$$\Rightarrow \qquad a^{n+1}(a-b) = b^{n+1}(a-b)$$

$$\Rightarrow$$
 $a^{n+1} = b^{n+1}$

$$\Rightarrow \frac{a^{n+1}}{b^{n+1}} = 1$$

$$\Rightarrow \qquad \left(\frac{a}{b}\right)^{n+1} = \left(\frac{a}{b}\right)^0$$

$$\Rightarrow$$
 $n+1=0$

$$\Rightarrow$$
 $n = -1$

Q.10 a^2 , b^2 , c^2 are in A.P. Show that b + c, c + a, a + b are in H.P.

(Gujranwala Board 2004)

Solution:

Given that a^2 , b^2 , c^2 in A.P.

$$\Rightarrow$$
 $b^2 - a^2 = c^2 - b^2$ (1)

To show that b + c, c + a, are in H.P we have to show that

$$\frac{1}{b+c}$$
, $\frac{1}{c+a}$, $\frac{1}{a+b}$ are in A.P

For this we will show that

$$\frac{1}{c+a} - \frac{1}{b+c} = \frac{1}{a+b} - \frac{1}{c+a}$$

or
$$\frac{b+c-c-a}{(c+a)(b+c)} = \frac{c+a-a-b}{(a+b)(c+a)}$$

$$\frac{b-a}{b+c} = \frac{c-b}{a+b}$$

$$(b-a)(b+a) = (c-b)(c+b)$$

$$b^2 - a^2 = c^2 - b^2$$

which is true from (1)

$$\Rightarrow \frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b} \text{ are in A.P}$$

$$\Rightarrow$$
 b+c, c+a, a+b are in H.P

Q.11 The sum of the first and fifth terms of the harmonic sequence is $\frac{4}{7}$, if the first term is $\frac{1}{2}$, find the sequence.

Solution:

Given that

$$\frac{1}{a_1} + \frac{1}{a_5} = \frac{4}{7}$$

or
$$\frac{1}{a_1} + \frac{1}{a_1 + 4d} = \frac{4}{7}$$
(1)

also
$$\frac{1}{a_1} + \frac{1}{2+4d} = \frac{4}{7}$$

Put this value of a1 in equation (1), we get

$$\frac{1}{2} + \frac{1}{2+4d} = \frac{4}{7}$$

$$\Rightarrow \frac{1}{2+4d} = \frac{4}{7} - \frac{1}{2} = \frac{8-7}{14}$$

$$\Rightarrow \frac{1}{2+4d} = \frac{1}{14} \Rightarrow 2+4d = 14$$

$$4d = 12$$

$$d = 3$$

so required H.P is

$$\frac{1}{a_1}$$
, $\frac{1}{a_1+d}$, $\frac{1}{a_1+2d}$,

$$\Rightarrow \frac{1}{2}, \frac{1}{2+3}, \frac{1}{2+2(3)}, \dots$$

$$\Rightarrow \frac{1}{2}, \frac{1}{5}, \frac{1}{8}, \dots$$

Q.12 If, A, G and H are arithmetic geometric and harmonic means between a and b respectively. Show that $G^2 = A H$.

Solution:

As A, G, H are arithmetic, geometric and harmonic means between a and b.

$$\Rightarrow$$
 A = $\frac{a+b}{2}$, G = $\pm \sqrt{ab}$, H = $\frac{2ab}{a+b}$

and
$$AH = \frac{a+b}{2} \cdot \frac{2ab}{a+b} = ab = G^2$$

$$\Rightarrow$$
 AH = G² or G² = AH.

Hence proved.

Q.13 Find A, G and H and show that $G^2 = A.H.$ if

(i)
$$a = -2$$
, $b = -6$ (ii) $a = 2i$, $b = 4i$

(ii)
$$a = 2i, b = 4$$

(iii)
$$a = 9, b = 4$$

Solution:

(i)
$$a = -2$$
, $b = -6$

A.M. =
$$\frac{a+b}{2} = \frac{-2+-6}{2} = -\frac{8}{2} = -4$$

$$G = \sqrt{ab} = \pm \sqrt{(-2)(-6)} = \pm \sqrt{12}$$

H.M.
$$=\frac{2ab}{a+b}=\frac{2(-2)(-6)}{-2+(-6)}=\frac{24}{-8}=-3$$

Now AH =
$$(-4)(-3) = 12 = G^2$$

$$\Rightarrow$$
 $G^2 = A H$

(ii)
$$a = 2i, b = 4i$$

$$A = \frac{a+b}{2} = \frac{2i+4i}{2} = \frac{6i}{2} = 3i$$

$$G = \pm \sqrt{ab} = \pm \sqrt{(2i)(4i)} = \pm \sqrt{8i^2} = \pm \sqrt{-8}$$

$$H = \frac{2ab}{a+b} = \frac{2(2i)(4i)}{2i+4i} = \frac{16i^2}{61} = \frac{8}{3}i$$

Now A.H =
$$3i \times \frac{8}{3}i = 8i^2 = -8 = G^2$$

$$\Rightarrow$$
 $G^2 = AH$

(iii)
$$a = 9$$
, $b = 4$

$$A = \frac{a+b}{2} = \frac{9+4}{2} = \frac{13}{2}$$

$$G = \pm \sqrt{ab} = \pm \sqrt{(9)(4)} = \pm \sqrt{36} = \pm 6$$

$$H = \frac{2ab}{a+b} = \frac{2(9)(4)}{9+4} = \frac{72}{13}$$

Now A H =
$$\frac{13}{2} \cdot \frac{72}{13} = 36 = G^2$$

$$\Rightarrow$$
 $G^2 = A H.$

Q.14 Find A. G, H and verify that A < G < H (G > 0) if

(i)
$$a = 2$$
, $b = 8$ (ii) $a = -\frac{2}{5}$, $b = -\frac{8}{5}$

(Lahore Board 2008)

Solution:

(i)
$$a = 2, b = 8$$

As
$$A = \frac{a+b}{2} = \frac{2+8}{2} = \frac{10}{2} = 5$$

$$G = \pm \sqrt{ab} = \pm \sqrt{(2)(8)} = \pm \sqrt{16} = \pm 4$$

$$\Rightarrow$$
 G = 4 π G > 0

$$H = \frac{2ab}{a+b} = \frac{2(2)(8)}{2+8} = \frac{32}{10} = \frac{16}{5}$$

Here
$$5 > 4 < \frac{16}{5} \Rightarrow A > G > H$$

(ii)
$$a = \frac{-2}{5}, \frac{-8}{5}$$

As
$$A = \frac{a+b}{2} = \frac{\frac{2}{5} + \frac{8}{5}}{2} = \frac{\frac{2+8}{5}}{2} = \frac{\frac{10}{5}}{2} = \frac{2}{2} = 1$$

$$G = \sqrt{ab} = \sqrt{\left(\frac{2}{5}\right)\left(\frac{8}{5}\right)} = \sqrt{\frac{16}{25}} = \frac{4}{5} \quad \text{if } G > 0$$

$$G = \frac{4}{5}$$

$$H = \frac{2ab}{a+b} = \frac{2\left(\frac{2}{5}\right)\left(\frac{8}{5}\right)}{\frac{2}{5} + \frac{8}{5}} = \frac{\frac{32}{25}}{\frac{10}{5}} = \frac{32}{25} \cdot \frac{5}{10} = \frac{16}{25}$$

Here
$$+1 > \frac{4}{5} > \frac{16}{25} \implies A > G > H$$
.

Q.15 Find A, G, H and verify that A < G < H (G < 0) if

(i)
$$a = -2$$
, $b = -8$

(Lahore Board 2009)

(ii)
$$a = \frac{-2}{5}$$
, $b = \frac{-8}{5}$

Solution:

(i)
$$a = -2$$
, $b = -8$

As
$$A = \frac{a+b}{2} = \frac{-2-8}{2} = \frac{-10}{2} = -5$$

$$G = -\sqrt{ab} = -\sqrt{(-2)(-8)} = -\sqrt{16} = -4 \quad \text{if } G < 0$$

$$H = \frac{2ab}{a+b} = \frac{2(-2)(-8)}{-2-8} = \frac{32}{-10} = -\frac{16}{5}$$

Here
$$-5 < -4 < -\frac{16}{5}$$

$$\Rightarrow$$
 A \leq G \leq H.

(ii)
$$a = \frac{-2}{5}$$
, $b = \frac{-8}{5}$

As
$$A = \frac{a+b}{2} = \frac{-\frac{2}{5} - \frac{8}{5}}{2} = \frac{\frac{-2-8}{5}}{2} = \frac{\frac{-10}{5}}{2} = \frac{-2}{2} = 1$$

$$G = \sqrt{ab} = \sqrt{\left(\frac{-2}{5}\right)\left(\frac{-8}{5}\right)} = -\sqrt{\frac{16}{25}} = -\frac{4}{5} \quad \text{if } G > 0$$

$$H = \frac{2ab}{a+b} = \frac{2\left(-\frac{2}{5}\right)\left(-\frac{8}{5}\right)}{-\frac{2}{5} - \frac{8}{5}} = \frac{\frac{32}{25}}{\frac{-10}{5}} = -\frac{32}{25} \times \frac{5}{10} = \frac{-16}{25}$$

Here $-1 < -\frac{4}{5} < -\frac{16}{25} \Rightarrow A < G < H$.

Q.16 If the H.M. and A. M. between two numbers are 4 and $\frac{9}{2}$ respectively. Find the numbers. (Lahore Board 2003, 2007)

Solution:

Let a and b are required numbers

then by given conditions

$$\frac{a+b}{2} = \frac{9}{2} \implies a+b = 9 \qquad \dots (1)$$

and $\frac{2ab}{a+b} = 4$

2ab = 4(a+b)

$$2ab = 4a + 4b$$
(2

from (1)
$$a = 9 - b$$
(3)

Put a = 9 - b in (2), we get

$$\Rightarrow$$
 2 (9 - b) b = 4 (9 - b) + 4b

$$\Rightarrow 18b - 2b^2 = 36 - 4b + 4b$$

$$\Rightarrow 18b - 2b^2 = 36$$

$$\Rightarrow$$
 9b - b² = 18

$$\Rightarrow b^2 - 9b + 18 = 0$$

$$\Rightarrow b^2 - 6b - 3b + 18 = 0$$

$$\Rightarrow b(b-6)-3(b-6) = 0$$

$$\Rightarrow (b-6)(b-3) = 0$$

$$\Rightarrow$$
 b = 6 or b = 3

Put b = 6 in equation (3), we get

$$a = 9 - 6 = 3$$

Put b = 3 in equation (3), we get

$$a = 9 - 3 = 6$$

so the required numbers are 3, 6, or 6, 3

Q.17 If the (positive) G.M. and H.M. between two numbers 4 and $\frac{16}{5}$. Find numbers.

Solution:

Let a and b are required numbers

then by given conditions

and $\frac{2ab}{a+b} = \frac{16}{5}$

$$10ab = 16 (a + b)$$
(2)

From equation (1)

$$a = \frac{16}{h}$$
(3)

Put (3) in (2), we get

$$10\frac{16}{b}b = 16\left(\frac{16}{b} + b\right)$$

$$10 = \frac{16}{b} + b$$

Multiplying by b, we get

$$\Rightarrow$$
 10b = 16 + b²

$$\Rightarrow b^2 - 10b + 16 = 0$$

$$\Rightarrow b^2 - 8b - 2b + 16 = 0$$

$$\Rightarrow b (b-8) - 2 (b-8) = 0$$

$$\Rightarrow (b-2)(b-8) = 0$$

$$\Rightarrow$$
 b = 2 or b = 8

Put b = 2 in equation (3), we get

$$a = \frac{16}{2} = 8$$

Put b = 8 in equation (3), we get

$$a = \frac{16}{8} = 2$$

So the required numbers are 2, 8 or 8, 2.

Q.18 If the numbers $\frac{1}{2}$, $\frac{4}{21}$ and $\frac{1}{36}$ are subtracting from three consecutive terms of a G.P., the resulting numbers are in H.P. Find the numbers if their product is $\frac{1}{27}$.

Solution:

Let $\frac{a}{r}$, a, ar are required term of G.P. then by given condition

$$\frac{a}{r}a \cdot ar = \frac{1}{27} \implies a^3 = \frac{1}{27} \implies a = \frac{1}{3}$$

and
$$\frac{a}{r} - \frac{1}{2}$$
, $a - \frac{4}{21}$, $ar - \frac{1}{36}$ are in H.P.

Put
$$a = \frac{1}{3}$$

$$\frac{1}{3r} - \frac{1}{2}, \frac{1}{3} - \frac{4}{21}, \frac{r}{3} - \frac{1}{36}$$
 are in H.P.

$$\frac{2-3r}{6r}$$
, $\frac{3}{21}$, $\frac{12r-1}{36}$ are in H.P.

$$\frac{6r}{2-3r}$$
, 7, $\frac{36}{12r-1}$ are in A.P.

$$\Rightarrow 7 = \frac{\frac{6r}{2-3r} + \frac{36}{12r-1}}{2}$$

$$\Rightarrow 14 = \frac{6r}{2-3r} + \frac{36}{12r-1}$$

$$\Rightarrow \qquad 7 = \frac{3r}{2 - 3r} + \frac{18}{12r - 1}$$

$$\Rightarrow 7 = \frac{36r^2 - 3r + 36 - 54r}{(2 - 3r)(12r - 1)}$$

$$\Rightarrow 7 = \frac{36r^2 - 57r + 36}{(2 - 3r)(12r - 1)}$$

$$\Rightarrow$$
 7 (2-3r) (12r-1) = 36r² - 57r + 36

$$\Rightarrow$$
 7 (-36r² + 27r - 2) = 36r² - 57r + 36

$$\Rightarrow$$
 $-252r^2 + 189r - 14 = 36r^2 - 57r + 36$

$$\Rightarrow 288r^2 - 246r + 50 = 0$$

$$\Rightarrow 2(144r^2 - 123r + 25) = 0$$

$$\Rightarrow 144r^2 - 123r + 25 = 0$$

$$\Rightarrow 144r^2 - 48r - 75r + 25 = 0$$

$$\Rightarrow$$
 48r (3r - 1) - 25 (3r - 1) = 0

$$\Rightarrow (3r-1)(48r-25) = 0$$

$$\Rightarrow$$
 $r = \frac{1}{3}$ or $r = \frac{25}{48}$

When
$$a = \frac{1}{3}$$
, $r = \frac{1}{3}$ then

$$\frac{a}{r} = \frac{\frac{1}{3}}{\frac{1}{3}} = 1$$
, $a = \frac{1}{3}$, $ar = \frac{1}{3} \frac{1}{3} = \frac{1}{9}$

When
$$a = \frac{1}{3}$$
, $r = \frac{25}{48}$

$$\frac{a}{r} = \frac{\frac{1}{3}}{\frac{25}{48}} = \frac{16}{25}, \quad a = \frac{1}{3}, \quad ar = \frac{1}{3} \frac{25}{48} = \frac{25}{144}$$

So the required numbers are

1,
$$\frac{1}{3}$$
, $\frac{1}{9}$ or $\frac{16}{25}$, $\frac{1}{3}$, $\frac{25}{144}$

FORMULAE FOR THE SUMS

$$\sum_{k=1}^{n} 1 = n$$

$$1+2+3+\ldots+n = \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \sum_{k=1}^{n} k^{3} = \left[\frac{n(n+1)}{2}\right]^{2}$$

EXERCISE 6.11

Sum the following series upto n terms.

Q.1
$$1 \times 1 + 2 \times 4 + 3 \times 7 + \dots$$

Solution:

$$a_n \text{ of } 1, 2, 3, \dots$$
 is $n = a_1 + (n-1) d$

and
$$a_n$$
 of $1, 4, 7, \ldots$ is $1 + (n-1)(+3) = 3n-2$ so nth term of the given series is

$$T_n = n(3n-2) = 3n^2 - 2n \implies T_k = 3k^2 - 2k$$