UNIVERSIDADE FEDERAL DE OURO PRETO CAMPUS DE JOÃO MONLEVADE DEPARTAMENTO DE ENGENHARIA ELÉTRICA

CEA 582 – FUNDAMENTOS DE COMUNICAÇÕES

TRANSMISSÃO DE ONDAS DE RÁDIO

Prof.^a Sarah

Parte Teórica

1. INTRODUÇÃO

Nos experimentos anteriores vimos as formas como os sinais analógicos podem ser modulados. Estudamos as particularidades das modulações AM, FM e PM. Atentamo-nos para o comportamento espectral dos sinais modulados.

Uma vez que o sinal foi modulado ele está pronto para ser transmitido pelo canal escolhido.

O canal que utilizamos para transmitir ondas de rádio frequência é o meio eletromagnético.

Embora se empregue a palavra *rádio*, as transmissões de televisão, rádio e telefonia móvel estão incluídas nesta classe de emissões de radiofrequência. Outros usos são áudio, vídeo, rádio navegação, comunicação wireless e transmissão de dados por rádio digital, tanto no âmbito civil como militar.

Os sinais de radio frequência oscilam em torno da faixa de 3 kHz a 300 GHz.

A tabela abaixo mostra a nomenclatura de cada faixa de frequência e as aplicações que as utilizam:

Banda	Descrição	Frequência	Comprimento de onda	Aplicação
TLF	Tremendously low frequency	< 3 Hz	> 100 000 km	Ruído eletromagnético natural e artificial
ELF	Extremely low frequency	3 – 30 Hz	100 000 km – 10 000 km	Comunicação com submarinos
SLF	Super low frequency	30 – 300 Hz	10 000 km – 1000 km	Comunicação com submarinos
ULF	Ultra low frequency	300 – 3000 Hz	1000 km – 100 km	Comunicação com submarinos. Comunicação com minas.
VLF	Very low frequency	3 – 30 kHz	100 km – 10 km	Radio navegação de grande raio. Atividade nuclear. Taxa de monitores cardíacos wireless.
LF	Low frequency	30 – 300 kHz	10 km – 1 km	Radio localização marítima e aeronáutica. RFID.
MF	Medium frequency	300 – 3000 kHz	1 km – 100 m	Comunicação áerea e marítima. Radio navegação. Broadcast AM
HF	High frequency	3 – 30 MHz	100 m – 10 m	Telefonia wireless de grandes distâncias fixas e móveis. Radio amadarores. RFID.
VHF	Very high frequency	30 – 300 MHz	10 m – 1 m	Broadcast FM e TV. Rádios móveis civis e militares

UHF	Ultra high frequency	300 – 3000 MHz	1 m – 10 cm	Pontes de rádio e rádios móveis terrestres. Broadcast TV. Satélites meteorológicos e TV.
SHF	Super high frequency	3 – 30 GHz	10 cm – 1 cm	Pontes de rádio terrestres. Satélites. Radar.
EHF	Extremely high frequency	30 – 300 GHz	1 cm – 1 mm	Rádios de astronomia, sensoriamento remoto de micro- ondas, energia direcionada a armas.
THF	Tremendously high frequency	300 GHz - 3000 GHz	1 mm – 1 μm	

(fonte: Wikipedia)

Acima de 300 GHz, a absorção de radiação eletromagnética da atmosfera terrestre é muito grande e portanto estas frequências não são utilizadas para transmissão de rádio frequência.

Para evitar interferência e permitir o uso eficiente do espectro de radio frequências, aplicações semelhantes são alocadas em bandas, em faixas de frequências que não se sobrepõe. Uma banda é a quantidade de espectro de radio frequência empregada por uma aplicação para transmitir dados por um canal.

Estudo Preliminar

1) Encontre a faixa de frequências utilizadas pelas rádios AM e FM de Minas Gerais.

Material

- Gerador de Função
- Osciloscópio Digital de Fósforo
- Cabos de conexão
- Fone de ouvido
- Rádio FM/AM
- Antena
- Capacitor: 100 nF
- Potenciômetro 50k
- Resistências: 3 de 10k, 150 k
- AmpOp: KF351

Parte Prática

- 1. Nesta prática veremos como funciona um sistema de comunicação capaz de transmitir informações através de ondas eletromagnéticas no espectro de rádio frequência (RF), usando as técnicas de modulação analógicas AM e FM.
 - O equipamento utilizado para modular o sinal é o Gerador de Sinais AM/FM. Inicialmente, a fonte de informação será o gerador de funções. Para isto, ajuste o gerador de funções para que tenha uma saída de alta impedância. Configure uma onda modulante senoidal, de 3kHz com tensão 3Vpp. Ligue a saída do gerador de funções na entrada AF/L do gerador de sinais AM/FM (cuidado para não queimar o Gerador de Sinais AM/FM ele suporta até 3Vpp). Configure o Gerador de Sinais AM/FM para realizar a modulação AM, com fonte externa e a frequência da portadora para 700kHz. Visualize o sinal no osciloscópio. Comente.
- Agora ajuste a frequência do gerador de funções para 2Hz. Escolha a modulação FM e fonte externa no Gerador de Sinais AM/FM. Visualize a onda modulada no osciloscópio. Comente o que ocorre com o sinal modulado conforme se altera o percentual de modulação.
- 3. Conecte uma antena na saída do gerador de sinais AM/FM. Desta forma, o sinal de RF modulado será transmitido pelo meio eletromagnético. Configure a porcentagem de modulação em 60%, escolha a frequência da portadora para a faixa de atuação das rádios FM (em torno de100 MHz). No gerador de funções varie a frequência do sinal modulante na faixa do audível (entre 20 Hz e 20 kHz) ajuste o ganho do gerador de sinais AM/FM convenientemente, e escute o sinal gerado usando o demodulador de um aparelho de rádio (pode ser usado o rádio do seu celular). Comente o que ocorre quando se varia a frequência do sinal modulante. Explique o processo que está ocorrendo.
 - Se você tiver disponível um rádio capaz de demodular ondas AM, tente realizar a modulação AM e escutar o sinal por ele também.
- 4. Vamos agora variar a fonte de informação. Ao invés de usar o gerador de funções você pode utilizar um microfone, ou a saída de áudio de um computador, por exemplo.

Para utilizar o microfone como fonte de informação no seu sistema de comunicação, você deve construir o circuito esquematizado na Figura 1:

Figura 1 – Circuito para o microfone

A saída deste circuito deve ser amplificada antes de sofre a modulação. A Figura 2 mostra o esquema de um circuito que dará o ganho adequado ao sinal. A saída do circuito do amplificador deve ser conectado na entrada AF/L do Gerador de Sinais AM/FM.

Figura 2 - Amplificador

Alternativamente, você pode usar a saída de áudio do computador, que deve ser conectada da mesma forma ao circuito amplificador e sucessivamente ao modulador.