# GITAM (Deemed to be University) [CSEN2041] GST/GSS/GSB/GSHS Degree Examination

# V Semester

# FORMAL LANGUAGES AND AUTOMATA THEORY

(Effective for the admitted batch 2021-2022)

Time: 2 Hours Max. Marks: 30

**Instructions:** All parts of the unit must be answered in one place only.

# Section-A

# 1. Answer all Questions:

 $(5 \times 1 = 5)$ 

- a) Draw a finite automata for 0\*1\*2\*.
- b) Define regular expression and write its applications.
- c) Why to eliminate useless symbols and how to identify them?
- d) Write the rules to obtain Push Down Automata from a given grammar.
- e) Define the formal description of Linear Bounded Automata.

#### **Section-B**

# **Answer the following:**

 $(5 \times 5 = 25)$ 

#### UNIT-I

2. Define Moore and Mealy machines.

Find an equivalent Mealy machine for the following Moore machine:

| States         |                | Input          | Output |
|----------------|----------------|----------------|--------|
|                | 0              | 1              |        |
| q <sub>0</sub> | $\mathbf{q}_0$ | $\mathbf{q}_1$ | 0      |
| $q_1$          | $q_0$          | $q_2$          | 0      |
| $q_2$          | $q_0$          | $q_2$          | 1      |

#### OR

3. A language contains strings over  $\Sigma = \{0, 1\}$  that do not end with 001. Design an NFA to accept the language and show that the machine accepts the string w=101010.

#### UNIT-II

4. State pumping Lemma and explain its importance with a suitable example.

5. Using the Arden's theorem, obtain an equivalent regular expression for the following finite automata.



# **UNIT-III**

6. Convert the following grammar in to its equivalent Chomsky Normal Form and show that both grammars are equivalent.

$$G=\{S\rightarrow Ab \mid bA, A\rightarrow a \mid aS \mid bAA,, B\rightarrow b \mid bS \mid aBB\}$$

# OR

7. What is ambiguity in context-free grammars. Check the grammar  $G=\{S \rightarrow S+S \mid SS \mid (S) \mid S^* \mid a \}$  is ambiguous or not with the string "(a+a)\*a".

#### **UNIT-IV**

8. Design a Pushdown automaton by null store to recognize the following language:  $L=\{a^n\ b^{2n}|n\geq 0\}$ . Write instantaneous description of PDA for the string "aabbbbb".

# OR

9. Obtain an equivalent non-deterministic PDA from the given CFG  $G(\{S, X\}, \{a, b\}, P, S)$  where  $P = \{S \rightarrow XS | \epsilon, A \rightarrow aXb | Xb | ab\}$ .

# **UNIT-V**

10. Design a Turing Machine for finding 2's complement of a given binary number and trace the machine with an example.

### OR

11. Construct a Turing Machine that will accept the Language consists of all palindromes of 0's and 1's?