- 3 N を 2 以上の自然数とする. $x_1 \le \cdots \le x_N$ をみたす実数 x_1, \cdots, x_N に対し,実数 k_n , p_n , q_n $(n=0,1,2,\cdots)$ を次の手続きで定める.
- (A) $k_0 = 1$, $p_0 = x_1$, $q_0 = x_N$
- (B) n が奇数のとき k_n は $x_i \leq rac{p_{n-1}+q_{n-1}}{2}$ をみたす x_i の個数 , $p_n=p_{n-1}$, $q_n=q_{n-1}$
- (C) n が偶数 $(n \ge 2)$ のとき $k_n = k_{n-1}$, $p_n = \frac{1}{k_n} \sum_{i=1}^{k_n} x_i$, $q_n = \frac{1}{N-k_n} \sum_{i=k_n+1}^N x_i$ ただし $k_n = 0$ または $k_n = N$ となったら , その時点で手続きを終了する . $x_1 < x_N$ であるとき , 次の問に答えよ .
- (1) すべての自然数 n について $1 \le k_n \le N-1$ かつ $x_1 \le p_n < q_n \le x_N$ が成り立つことを示せ.
- (2) 実数 J_n $(n=0,1,2,\cdots)$ を $J_n=\sum_{i=1}^{k_n}(x_i-p_n)^2+\sum_{i=k_n+1}^N(x_i-q_n)^2$ と定めると,すべての自然数 n に対して $J_n\leqq J_{n-1}$ が成り立つことを示せ.
- (3) n が十分大きいとき . $J_n=J_{n-1}$, $p_n=p_{n-1}$, $q_n=q_{n-1}$, $k_n=k_{n-1}$ が成り立つことを示せ .