A számításelmélet alapjai II.

1. előadás

előadó: Tichler Krisztián ktichler@inf.elte.hu

Ítéletkalkulus (nulladrendű logika)

A modell formális kereteket biztosít olyan következtetések helyességének eldöntésére, melyek elemi állításokból (ítéletekből) épülnek fel. Az ítéletek fontos jellemzője, hogy igazságértékük (igaz/hamis) egyértelműen eldönthető. Ítéletek például a "Süt a nap" vagy a "Lemegyek a térre" de nem tekinthető ítéletnek például a "Laci magas" (mihez képest?), "Lejössz a térre?" (kérdő mondat) vagy "Bárcsak itt lennél" (óhajtó mondat). Az elemi állításokból logikai műveleteknek megfeleltethető nyelvi összekötők segítségével összetett állítások építhetők. Például "Süt a nap, de mégis otthon maradok." (logikai és kapcsolat, konjunkció) vagy "Ha süt a nap, lemegyek a térre." (ha ... akkor, implikáció).

Beláthatók olyan következtetések, mint:

- (1) ,Ha süt a nap, lemegyek a térre."
- (2) "Süt a nap."

Tehát (3) "Lemegyek a térre."

Vázlatos tematika

- nulladrendű logika
- elsőrendű logika
- függvények aszimptotikus viselkedése
- ► Turing gépek (TG), alapfogalmak
- ► TG változatok (többszalagos, nemdet., számító, ...)
- számosság
- ▶ eldönthetetlenség, R és RE
- eldönthetetlen problémák
- bonyultságelmélet, idő- és tárbonyolultság
- NP-teljesség, NP-teljes problémák
- további bonyolultsági osztályok
- kitekintés, összefoglaló

Formulák

Definíció

Adott **ítéletváltozók** egy előre rögzített megszámlálhatóan végtelen Var = $\{x_1, x_2, \ldots\}$ halmaza. Az **ítéletlogikai formulák** Form halmaza a legszűkebb halmaz melyre

- ▶ Minden $x \in Var$ esetén $x \in Form$,
- ▶ Ha φ ∈ Form, akkor $\neg \varphi$ ∈ Form,
- ▶ Ha φ , ψ ∈ Form, akkor $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$ ∈ Form.

A műveleti jelek elnevezése: $negáció (\neg)$, $konjukció (\land)$, $diszjunkció (\lor)$, $implikáció (\rightarrow)$.

Jelölés: Jelölje $Var(\varphi)$ a φ -ben előforduló ítéletváltozók halmazát. Ha $\mathcal F$ egy formulahalmaz, akkor $Var(\mathcal F):=\bigcup_{\varphi\in\mathcal F}Var(\varphi).$

Szerkezeti fa, részformula, fő logikai összekötő

A szerkezeti fa egy csúcscímkézett bináris fa. Egy csúcs gyerekei a csúcshoz tartozó formula közvetlen részformuláival címkézettek. ($\neg \varphi$ esetén φ -vel címkézett az egyetlen gyerek. ($\varphi \circ \psi$) esetén két gyerek van, melyek φ -vel és ψ -vel címkézettek $\circ \in \{\land, \lor, \rightarrow\}$.)

Az előforduló címkék a formula **részformulái**. (A példában a sárgával megjelölt formulák.)

A **fő logikai összekötő** az az összekötő, amelyik csak a gyökérben szerepel. (A példában az → ez az összekötő.)

Zárójelelhagyás

1. Példa:

$$(\neg((x \to y) \land z) \lor (\neg x \land z))$$
$$\neg((x \to y) \land z) \lor \neg x \land z$$

2. Példa:

$$x \to y \vee \neg z \to y \wedge x.$$

Melyik a fő logikai összekötő?

Visszazárójelezve:

$$(x \to ((y \lor \neg z) \to (y \land x))).$$

Az első \to .

Zárójelelhagyás

A zárójelelhagyás célja a formulából a lehető legtöbb zárójel elhagyása a formula szerkezetének visszaállíthatósága mellett.

 $\neg,\ \land,\ \lor,\
ightarrow$ csökkenő precedenciasorrend

- a formula külső zárójel párja elhagyható (ha van ilyen)
- egy binér fő logikai összekötővel rendelkező részformula zárójelei elhagyhatók, ha ennek a fő logikai összekötőnek a precedenciája nagyobb, mint a szerkezeti fában szülő formula fő logikai összekötőjének precedenciája

Láncformulák zárójelelhagyása:

- Konjunkció illetve diszjunkciólánc esetén minden belső zárójelpár elhagyható. (Ennek a magyarázata a konjunkció és a diszjunkció műveletek asszociativitása, lásd mindjárt)
- ▶ Implikációlánc: $(X_1 \rightarrow (X_2 \rightarrow (X_3 \rightarrow \dots X_n)))$ az alapértelmezett zárójelezés. Csakis akkor hagyhatók el a zárójelek, ha a formula zárójelezése alapértelmezett. (Ennek az a magyarázata, hogy \rightarrow nem asszociatív.)

Interpretáció

Definíció

Egy $I: Var(\varphi) \rightarrow \{i, h\}$ függvényt φ egy **interpretációjának** (változókiértékelésének) nevezünk.

Ha \mathcal{F} egy formulahalmaz, akkor egy $I: Var(\mathcal{F}) \to \{i, h\}$ függvényt \mathcal{F} egy **interpretációjának** (változókiértékelésének) nevezünk.

Példa: $\varphi=x\to \neg y$. Ekkor például I(x)=i, I(y)=h φ egy interpretációja.

Ha $\mathcal{F} = \{x \to y, y \to z\}$, akkor I(x) = i, I(y) = h, I(z) = h \mathcal{F} egy interpretációja.

A formulák igazságértéke

Egy I interpretációban egy $\varphi \in$ Form formula $\mathcal{B}_I(\varphi)$ igazságértékét (helyettesítési értékét, Boole értékét) a következő rekurzóval definiáljuk:

Definíció

- ▶ ha $x \in \text{Var akkor } \mathcal{B}_I(x) := I(x)$,
- ▶ ha $\varphi \in \text{Form formula, akkor } \mathcal{B}_I(\neg \varphi) := \neg \mathcal{B}_I(\varphi),$
- ▶ ha $\varphi, \psi \in \text{Form formulák, akkor } \mathcal{B}_I(\varphi \circ \psi) := \mathcal{B}_I(\varphi) \circ \mathcal{B}_I(\psi),$ ahol $\circ \in \{\land, \lor, \rightarrow\},$

ahol a műveletek eredményét az alábbi táblázat definiálja.

$\mathcal{B}_{I}(\varphi)$	$\mathcal{B}_I(\psi)$	$\mathcal{B}_I(\neg \varphi)$	$\mathcal{B}_I(\varphi \wedge \psi)$	$\mathcal{B}_{I}(\varphi \vee \psi)$	$\mathcal{B}_I(\varphi \to \psi)$
i	i	h	i	i	i
i	h	h	h	i	h
h	i	i	h	i	i
h	h	i	h	h	i

Formulák szemantikus tulajdonságai

Definíció

- ► Egy I interpretáció **kielégít** egy φ formulát ($I \models_0 \varphi$) ha a formula helyettesítési értéke i az I interpretációban.
- Egy φ formula kielégíthető, ha legalább egy interpretáció kielégíti.
- Egy φ formula **kielégíthetetlen**, ha egyetlen interpretáció sem elégíti ki.
- ▶ Egy φ formula **tautologia** (ítéletlogikai törvény) ($\models_0 \varphi$), ha minden interpretáció kielégíti.
- ▶ Egy φ formulának a ψ formula **tautologikus következménye**($\varphi \models_0 \psi$), ha minden φ -t kielégítő interpretáció kielégíti ψ -t is.
- φ és ψ tautologikusan ekvivalensek $(\varphi \sim_0 \psi)$, ha $\varphi \models_0 \psi$ és $\psi \models_0 \varphi$ is teljesül.

Az ítélettábla

 $|\operatorname{Var}(\varphi)| = n$ esetén φ -nek 2^n lehetséges interpretációja van.

Definíció

Egy φ ítéletlogikai formula **ítélettáblája** egy $2^n \times (n+1)$ -es táblázat, ahol $n=|\operatorname{Var}(\varphi)|$. A sorok megfelelnek a lehetséges interpretációknak. Az I interpretációnak megfelelő sor az első n oszlopban tartalmazza az ítéletváltozók I szerinti kiértékelését, míg utolsó, n+1. oszlopa $\mathcal{B}_I(\varphi)$ -t.

Példa:

X	у	$\neg x \lor y$
i	i	i
i	h	h
h	i	i
h	h	i

Formulák szemantikus tulajdonságai

- Egy / interpretáció kielégít egy φ formulát ha φ ítélettáblájában / sorában az utolsó oszlopban i áll.
- Egy φ formula kielégíthető, ha ítélettáblájának van i sora.
- Egy φ formula kielégíthetetlen, ha ítélettáblájának csak h sora van.
- Egy φ formula tautologia, ha ítélettáblájának csak i sora van.
- Egy φ formulának a ψ formula tautologikus következménye, ha minden olyan I-re, amelyre φ igazságtáblájában i áll ott ψ is igaz.
- φ és ψ tautologikusan ekvivalensek, ha sorról sorra megegyezik az ítélettáblájuk.

Fontosabb logikai törvények

 \top : tautológia, \bot : kielégíthetetlen formula.

- (a) $\neg \neg \varphi \sim_0 \varphi$,
- (b) $\varphi \vee \varphi \sim_0 \varphi$ valamint $\varphi \wedge \varphi \sim_0 \varphi$,
- (c) $\varphi \vee \psi \sim_0 \psi \vee \varphi$ valamint $\varphi \wedge \psi \sim_0 \psi \wedge \varphi$,
- (d) $(\varphi \lor \psi) \lor \xi \sim_0 \varphi \lor (\psi \lor \xi)$ valamint $(\varphi \land \psi) \land \xi \sim_0 \varphi \land (\psi \land \xi)$,
- (e) $(\varphi \lor \psi) \land \xi \sim_0 (\varphi \land \xi) \lor (\psi \land \xi)$ valamint $(\varphi \land \psi) \lor \xi \sim_0 (\varphi \lor \xi) \land (\psi \lor \xi)$,
- (f) $(\varphi \lor \psi) \land \psi \sim_0 \psi$ valamint $(\varphi \land \psi) \lor \psi \sim_0 \psi$,
- (g) $\varphi \to \psi \sim_0 \neg \varphi \lor \psi$,
- (h) $\neg(\varphi \land \psi) \sim_0 \neg \varphi \lor \neg \psi$ valamint $\neg(\varphi \lor \psi) \sim_0 \neg \varphi \land \neg \psi$,
- (i) $\varphi \vee \neg \varphi \sim_0 \top$ valamint $\varphi \wedge \neg \varphi \sim_0 \bot$,
- (j) $\varphi \vee \top \sim_0 \top$ valamint $\varphi \wedge \bot \sim_0 \bot$,
- (k) $\varphi \lor \bot \sim_0 \varphi$ valamint $\varphi \land \top \sim_0 \varphi$.

Formulahalmazok szemantikus tulajdonságai

Definíció

- ▶ Egy I interpretáció **kielégít** egy \mathcal{F} formulahalmazt $(I \models_0 \mathcal{F})$, ha a formulahalmaz minden formuláját kielégíti.
- ► Egy F formulahalmaz kielégíthető, ha legalább egy interpretáció kielégíti.
- ► Egy F formulahalmaz kielégíthetetlen, ha nincs olyan interpretáció, ami egyszerre minden F-beli formulát kielégít.
- ▶ Egy $\mathcal F$ formulahalmaznak a φ formula **tautologikus következménye**($\mathcal F \models_0 \varphi$), ha minden $\mathcal F$ -t kielégítő interpretáció kielégíti φ -t is.

Példa: $\{x \rightarrow y, x\} \models_0 y$

X	У	$x \rightarrow y$	X	У
i	i	i	i	i
i	h	h	i	h
h	i	i	h	i
h	h	i	h	h

Formulák szemantikus tulajdonságai

Állítás

Legyen φ egy formula és φ_0 egy részformulája. Tegyük fel, hogy $\varphi_0 \sim_0 \psi_0$ valamely ψ_0 formulára és legyen ψ az a formula, amit φ -ból úgy kapunk, hogy a φ_0 részformulát ψ_0 -val helyettesítjük. (Például φ szerkezeti fájában az φ_0 -nak megfelelő részfát ψ_0 szerkezeti fájával helyettesítjük.) Ekkor $\varphi \sim_0 \psi$.

Ötlet: A részformulákban szereplő műveletek számára vonatkozó teljes indukcióval belátható, hogy φ és ψ részformulái megfeleltethetők egymásnak úgy, hogy minden részformulának vele ekvivalens formula feleljen meg.

Példa: Lássuk be hogy $\models_0 x \rightarrow (y \rightarrow x)!$

$$x \to (y \to x) \sim_0 \neg x \vee (\neg y \vee x) \sim_0 \neg x \vee (x \vee \neg y) \sim_0 (\neg x \vee x) \vee \neg y \sim_0 (x \vee \neg x) \vee \neg y \sim_0 \top \vee \neg y \sim_0 \top.$$

A szemantikus fogalmak egymással való kapcsolata

Tétel

Legyen ${\mathcal F}$ egy formulahalmaz és φ egy formula. Akkor a következők teljesülnek.

- ightharpoonup arphi akkor és csak akkor kielégíthetetlen, ha $\neg arphi$ tautológia.
- $\mathcal{F} \models_0 \varphi$ akkor és csak akkor, ha $\mathcal{F} \cup \{\neg \varphi\}$ kielégíthetetlen.

Bizonyítás:

- ▶ ha $I \models_0 \varphi$ akkor és csak akkor $I \not\models_0 \neg \varphi$.
- $\mathcal{F} \models_0 \varphi$ akkor és csak akkor, ha minden olyan I interpretációra, amelyre $I \models_0 \mathcal{F}$ teljesül $I \models_0 \varphi$ is fennáll, azaz $I \models_0 \neg \varphi$. Tehát $\mathcal{F} \models_0 \varphi$ esetén nincs olyan interpretáció, amely \mathcal{F} -et és $\neg \varphi$ -t egyszerre kielégítené. Fordítva, ha nincs olyan interpretáció, amely \mathcal{F} -et és $\neg \varphi$ -t egyszerre kielégítené, akkor minden \mathcal{F} -et kielégítő interpretáció $\neg \varphi$ -t hamisra, így φ -t igazra értékeli, azaz $\mathcal{F} \models_0 \varphi$.

A konjunktív normálforma

Definíció

- Literálnak nevezünk egy x vagy ¬x alakú formulát, ahol x ∈ Var. x és ¬x komplemens literálpár. Egy literál alapja az az ítéletváltozó, amelyik a literálban szerepel.
- ▶ Elemi diszjunkciónak (vagy röviden klóznak) hívunk egy $\ell_1 \vee \cdots \vee \ell_n$ alakú formulát ($n \in \mathbb{N}$), ahol $\ell_1, \ldots \ell_n$ páronként különböző alapú literálok.
- **Konjunktív normálformának** (röviden KNF-nek) nevezünk egy $C_1 \wedge C_2 \wedge \ldots \wedge C_m$ $(m \ge 1)$ alakú formulát, ahol minden $1 \le i \le m$ -re C_i egy klóz (a KNF egy **tagja**).
- Az elemi konjunkciót és a diszjunktív normálformát (DNF) ezzel analóg módon definiáljuk ∧ és ∨ szerepének felcserélésével.

Példa:

 $x \lor \neg y \lor z$ egy klóz (és egy 1-tagú KNF egy 3 tagú DNF is egyben) $(x \lor \neg y \lor z) \land (\neg x \lor z) \land \neg y$ egy 3-tagú KNF.

A konjunktív normálforma

Tétel

Minden φ ítéletkalkulusbeli formulához megadható egy vele tautológikusan ekvivalens KNF.

Bizonyítás: Legyen $Var(\varphi) = \{x_1, \dots, x_n\}$ a φ változói és $\varphi^h = \{I \mid \mathcal{B}_I(\varphi) = h\}$ a φ formula hamis halmaza.

Ekkor minden $I \in \varphi^h$ esetén

$$\psi_I := \bigvee_{x:I(x)=i} \neg x \lor \bigvee_{x:I(x)=h} x$$

egy elemi diszjunkció és $\psi_I^h = \{I\}.$

Tehát a $\psi = \bigwedge_{I \in \varphi^h} \psi_I$ formulára

$$\psi^h = \bigcup_{I \in \varphi^h} \psi_I^h = \bigcup_{I \in \varphi^h} \{I\} = \varphi^h.$$

Tehát $\psi \sim_0 \varphi$ és ψ konjunktív normálformájú.

A diszjunktív normálforma

Tétel

Minden φ ítéletkalkulusbeli formulához megadható egy vele tautológikusan ekvivalens DNF.

Bizonyítás: Legyen $Var(\varphi) = \{x_1, \dots, x_n\}$ a φ változói és $\varphi^i = \{I \mid \mathcal{B}_I(\varphi) = i\}$ a φ formula igaz halmaza.

Ekkor minden $I \in \varphi^i$ esetén

$$\psi_I := \bigwedge_{x:I(x)=i} x \land \bigwedge_{x:I(x)=h} \neg x$$

egy elemi konjunkció és $\psi_I^i = \{I\}.$

Tehát a $\psi = \bigvee_{I \in \varphi^i} \psi_I$ formulára

$$\psi^{i} = \bigcup_{I \in \varphi^{i}} \psi^{i}_{I} = \bigcup_{I \in \varphi^{i}} \{I\} = \varphi^{i}.$$

Tehát $\psi \sim_0 \varphi$ és ψ diszjunktív normálformájú.

A konjunktív normálforma

Példa: Legyen $\varphi = (x \rightarrow y) \rightarrow z$. φ ítélettáblája:

X	У	Z	φ
i	i	i	i
i	i	h	h
i	h	i	i
i	h	h	i
h	i	i	i
h	i	h	h
h	h	i	i
h	h	h	h

Tehát DNF:

$$(x \land y \land z) \lor (x \land \neg y \land z) \lor (x \land \neg y \land \neg z) \lor (\neg x \land y \land z) \lor (\neg x \land \neg y \land z).$$

$$\mathsf{KNF} \colon (\neg x \vee \neg y \vee z) \wedge (x \vee \neg y \vee z) \wedge (x \vee y \vee z).$$

A konjunktív normálforma

A bizonyítás konstrukciója a gyakorlatban nem nagyon használható, mivel szükséges az igaz/hamis halmaz meghatározására és mert az eredmény az input méretében akár exponenciális is lehet.

Sokszor praktikusabb az eredeti formulát átalakítani a kívánt alakra az alábbiak szerint

- 1. az \rightarrow operátorok eliminálása $(\varphi \rightarrow \psi \sim_0 \neg \varphi \lor \psi)$
- 2. operátorok csak közvetlenül ítéletváltozók előtt forduljanak elő (De Morgan azonosságok és kettős tagadás törvénye)
- 3. a formula 2 szintűvé lapítása (disztributív szabályok)

Példa:

$$\begin{array}{l} (\neg x \rightarrow y) \rightarrow (x \wedge \neg (\neg y \wedge z)) \sim_0 \neg (x \vee y) \vee (x \wedge (y \vee \neg z)) \sim_0 \\ (\neg x \wedge \neg y) \vee (x \wedge (y \vee \neg z)) \sim_0 (\neg x \vee x) \wedge (\neg x \vee y \vee \neg z) \wedge \\ (\neg y \vee x) \wedge (\neg y \vee y \vee \neg z) \sim_0 (\neg x \vee y \vee \neg z) \wedge (\neg y \vee x). \end{array}$$

Ez KNF. A DNF ebből egy disztributív szabályalkalmazással adódik: $(\neg x \land \neg y) \lor (\neg x \land x) \lor (y \land \neg y) \lor (y \land x) \lor (\neg z \land \neg y) \lor (\neg z \land x) \sim_0 (\neg x \land \neg y) \lor (y \land x) \lor (\neg z \land \neg y) \lor (\neg z \land x).$

Rezolvens

Rezolvens

Legyenek C_1 és C_2 pontosan 1 komplemens literálpárt tartalmazó klózok. Tehát $C_1=C_1'\vee\ell_1$, $C_2=C_2'\vee\ell_2$, ahol ℓ_1 és ℓ_2 komplemens literálpár, C_1' és C_2' viszont nem tartalmaz ilyet. A $\operatorname{res}(C_1,C_2):=C_1'\vee C_2'$ klózt (esetleges egyszerűsítés után) a (C_1,C_2) klózpár rezolvensének nevezzük. (Ha $C_1=\ell_1$, $C_2=\ell_2$, akkor $\operatorname{res}(C_1,C_2)=\square$.)

Példa: Mi a rezolvensük?

klózpárrezolvens $(x \vee y, \neg y \vee z)$ $x \vee z$ $(x \vee y \vee z, \neg y \vee z)$ $x \vee z$ $(x \vee \neg y, \neg y \vee z)$ nincs: mindkét azonos alapú literál negált $(x \vee \neg y, z \vee \neg v)$ nincs: nincs két azonos alapú literál $(x \vee y \vee z, \neg y \vee \neg z)$ nincs: két komplemens literálpár van $(x, \neg x)$ \Box

KNF szerepe következmények bizonyításában

Láttuk, hogy $\mathcal{F} \models_0 \varphi$ akkor és csak akkor, ha $\mathcal{F} \cup \{\neg \varphi\}$ kielégíthetetlen.

Ha $\mathcal{F} = \{F_1, \dots, F_n\}$ véges formulahalmaz, akkor $\mathcal{F} \cup \{\neg \varphi\}$ kielégíthetetlensége ekvivalens $F_1 \wedge \dots \wedge F_n \wedge \neg \varphi$ kielégíthetetlenségével.

Mivel a KNF külső operátora is ∧, ezért ha a formulák KNF alakúak, akkor a feladat valójában egy klózhalmaz kielégíthetetlenségének eldöntése.

Rezolúció

Rezolúciós levezetés

Egy $\mathcal S$ klózhalmazból a C klóz rezolúciós levezetése egy olyan véges K_1,K_2,\ldots,K_m $(m\geqslant 1)$ klózsorozat, ahol minden $j=1,2,\ldots,m$ -re:

- vagy $K_j \in \mathcal{S}$,
- vagy van olyan $1 \leqslant s, t < j$, hogy $K_j = \operatorname{res}(K_s, K_t)$,

és $K_m = C$.

Tétel

 \mathcal{S} klózhalmaz kielégíthetetlen $\iff \mathcal{S}$ -ből levezethető \square .

A bizonyítást nem részletezzük. Az egyik fontos lemma:

Lemma

Minden C_1 , C_2 klózra és I interpretációjukra igaz, hogy ha $I \models_0 \{C_1, C_2\}$, akkor $I \models_0 \operatorname{res}(C_1, C_2)$.

Rezolúció

Példa: Rezolúciós levezetéssel igazoljuk, hogy az alábbi klózhalmaz kielégíthetetlen!

$$\{y \lor z, \neg x \lor w \lor \neg z, \neg y, y \lor \neg z \lor \neg w, x \lor y\}$$

Megoldás:

$$S = \{ y \lor z, \neg x \lor w \lor \neg z, \neg y, y \lor \neg z \lor \neg w, x \lor y \}$$

- 1. *¬y*
- $(\in \mathcal{S})$

- 2. $y \lor z$ $(\in S)$ 3. z (= res(1, 2))
- 4. $\neg x \lor w \lor \neg z$ $(\in S)$
- 5. $y \vee \neg z \vee \neg w$ $(\in S)$
- 6. $\neg x \lor y \lor \neg z$ (= res(4,5))
- 7. $\neg x \lor y$
- (= res(3,6))
- 8. $x \lor y$ $(\in S)$ 9. *y*
 - (= res(7, 8))

10. □

(= res(1, 9))