Question Number	Scheme		Marks	
1. (a) (b)	$5x^{2}$ $(25x^{4})^{-\frac{3}{2}} = \frac{1}{(25x^{4})^{\frac{3}{2}}} \text{ or } (25x^{4})^{\frac{3}{2}} = 125x^{6} \text{ or better}$ $\frac{1}{125x^{6}}$		B1 (1) M1	
	$\frac{1}{125 x^6}$			A1 (2) (3 marks)
2.	$(3-x)^6 = 3^6 + 3^5 \times 6 \times (-x)^6$, ,		M1
	= 729, -1458x	x , $+1215x^2$		B1, A1, A1 (4 marks)
3. (i)	$(5 - \sqrt{8})(1 + \sqrt{2})$ = 5 + 5\sqrt{2} - \sqrt{8} - 4 = 5 + 5\sqrt{2} - 2\sqrt{2} - 4	-	out brackets correctly.	M1
	$= 5 + 5\sqrt{2} - 2\sqrt{2} - 4$ $= 1 + 3\sqrt{2}$		seen or implied at any point. + $3\sqrt{2}$ or $a = 1$ and $b = 3$	B1 A1
(ii)	Method 1	Method 2	Method 3	(3)
			$\sqrt{80} + \frac{\sqrt{900}}{\sqrt{5}} = \sqrt{80} + \sqrt{180}$	M1
	$= 4\sqrt{5} +$	$= \left(\frac{20+}{}\right) {}$	$= 4\sqrt{5} +$	B1
	$= 4\sqrt{5} + 6\sqrt{5}$	$= \left(\frac{50\sqrt{5}}{5}\right)$	$= 4\sqrt{5} + 6\sqrt{5}$	
		$= 10\sqrt{5}$		A1 (3)
	As this is a "show that" que	estion – all working should	l be shown.	(6 marks)

PMT

WMA01/01: Core Mathematics C12

Question Number	Scheme	Marks	
4. (a)	$\frac{dy}{dx} = 10x^4 - 3x^{-4}$ or $10x^4 - \frac{3}{x^4}$	M1 A1 A1 (3)	
(b)	$\left(\int = \right) \frac{2x^6}{6} + 7x + \frac{x^{-2}}{-2} = \frac{x^6}{3} + 7x - \frac{x^{-2}}{2}$		M1 A1 A1
	+ C		B1 (4) (7 marks)
5.		Outside brackets $\frac{1}{2} \times 0.25$ or $\frac{1}{8}$	B1 aef
	$\frac{1}{2} \times 0.25 ; \times \left[0.5 + 0.2 + 2(0.379 + 0.299 + 0.242) \right]$	For structure of {};	M1
		Correct expression inside brackets which all must be multiplied by their "outside	<u>A1</u> √
	$\left\{ = \frac{1}{8}(2.540) \right\} = 0.3175 \text{ or } 0.318$	constant". awrt 0.32	A1 4 marks
6. (a)	$f(x) = x^4 + x^3 + 2x^2 + ax + b$		
	Attempting f(1) or f(-1). f(1) = 1 + 1 + 2 + $a + b = 7$ or 4 + $a + b = 7 \Rightarrow a + b = 3$ (as required) AG		M1 A1 * cso (2)
(b)	Attempting $f(-2)$ or $f(2)$. $f(-2) = 16 - 8 + 8 - 2a + b = -8 $ $\{ \Rightarrow -2a + b = -24 \}$		M1 A1
	Solving both equations simultaneously to get as far as $a =$ of Any one of $a = 9$ or $b = -6$	or $b = \dots$	dM1
	Any one of $a = 9$ or $b = -6$ Both $a = 9$ and $b = -6$		A1 A1 cso
			(5) (7 marks)

PMT

Question Number	Scheme	Marks
7. (a)	$(a_2 =) 6-c$	B1
		(1)
(b)	$a_3 = 3(\text{their } a_2) - c \qquad (= 18 - 4c)$	M1
	$a_1 + a_2 + a_3 = 2 + "(6 - c)" + "(18 - 4c)"$	M1
	26-5c''=0	A1ft
	So $c = 5.2$	A1 o.e (4)
		(5 marks)
8. (a)	Attempts $b^2 - 4ac$ for $a = (k + 3)$, $b = 6$ and their c . $c \neq k$	M1
	$b^2 - 4ac = 6^2 - 4(k+3)(k-5)$	A1
	$-4k^2 + 8k + 96$	B1
	As $b^2 - 4ac > 0$, then $-4k^2 + 8k + 96 > 0$ and so, $k^2 - 2k - 24 < 0$	A1 *
		(4)
(b)	Attempts to solve $k^2 - 2k - 24 = 0$ to give $k =$	M1
	(⇒ Critical values, $k = 6, -4$.)	
	$k^2 - 2k - 24 < 0$ gives $-4 < k < 6$	M1 A1
		(3) (7 marks)
9. (a)	$\log_3 3x^2 = \log_3 3 + \log_3 x^2$ or $\log y - \log x^2 = \log 3$ or $\log y - \log 3 = \log x^2$	B1
	$\log_3 x^2 = 2\log_3 x$	B1
	Using $\log_3 3 = 1$ and deduces answer.	B1
		(3)
(b)	$3x^2 = 28x - 9$	M1
	Solves $3x^2 - 28x + 9 = 0$ to give $x = \frac{1}{3}$ or $x = 9$	M1 A1
		(3)
		(6 marks)
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Question Number	Scheme	Marks
10. (a) (b) i	{Coordinates of A are} (4.5, 0)	B1
	Horizontal translation -3 and their ft 1.5 on positive x-axis Maximum at 27 marked on the	M1 A1 ft
(b) ii	$\frac{1.5}{x}$	(3)
	Correct shape, minimum at (0, 0) and a maximum within the first quadrant. 1.5 on x-axis	M1 A1 ft
	$ \begin{array}{c c} & 1.5 \\ \hline O & x \end{array} $ Maximum at (1, 27)	B1 (3)
(c)	$\{k=\}-17$	B1 (1) (8 marks)

Question Number	Scheme	Marks
11. (a)	Curve: $y = -x^2 + 2x + 24$, Line: $y = x + 4$	
	$\{\text{Curve} = \text{Line}\} \Rightarrow -x^2 + 2x + 24 = x + 4$ Eliminating y correctly.	B1
	Attempt to solve a $x^2 - x - 20 = 0$ $\Rightarrow (x - 5)(x + 4) = 0$ $\Rightarrow x =$ Attempt to solve a resulting quadratic to give $x =$ their values.	M1
	So, $x = 5, -4$ Both $x = 5$ and	A1
	x = -4	
	So corresponding y-values are $y = 9$ and $y = 0$	B1ft
		(4)
(b)	$\left\{ \int (-x^2 + 2x + 24) dx \right\} = -\frac{x^3}{3} + \frac{2x^2}{2} + 24x \left\{ + c \right\}$ M1: $x^n \to x^{n+1}$ for any one term. 1st A1 at least two out of three terms correct.	M1 A1 A1
	2 nd A1 for <u>correct answer</u> .	
	Substitutes 5 and -4 (or their	
	$\left[-\frac{x^3}{3} + \frac{2x^2}{2} + 24x \right]_{-4}^{5} = () - ()$ limits from part (a)) into an "integrated function" and subtracts, either way round.	dM1
	$\left\{ \left(-\frac{125}{3} + 25 + 120 \right) - \left(\frac{64}{3} + 16 - 96 \right) = \left(103 \frac{1}{3} \right) - \left(-58 \frac{2}{3} \right) = 162 \right\}$	
	Area of $\Delta = \frac{1}{2}(9)(9) = 40.5$ Uses correct method for finding area of triangle.	M1
	Area under curve – Area of triangle.	M1
	So area of R is $162 - 40.5 = 121.5$	Al oe cao
		(7) (11 marks)

Question Number	Scheme	Marks
12. (a)	$(10-2)^2 + (7-1)^2$ or $\sqrt{(10-2)^2 + (7-1)^2}$	M1 A1
	$(x \pm 2)^2 + (y \pm 1)^2 = k$ (k a positive value) $(x-2)^2 + (y-1)^2 = 100$ (Accept 10^2 for 100)	M1
	$(x-2)^2 + (y-1)^2 = 100$ (Accept 10^2 for 100)	A1
	(Answer only scores full marks)	(4)
(b)	(Gradient of radius =) $\frac{7-1}{10-2} = \frac{6}{8}$ (or equiv.) Must be seen in part (b)	B1
	Gradient of tangent = $\frac{-4}{3}$ (Using perpendicular gradient method)	M1
	y - 7 = m(x - 10)	M1
	$y-7=\frac{-4}{3}(x-10)$ or equivalent (ft gradient of <u>radius</u> , dep. on <u>both</u> M marks)	A1ft
	3	(4)
(c)	$\sqrt{r^2 - \left(\frac{r}{2}\right)^2}$ Condone sign slip if there is evidence of correct use of Pythag.	M1
	$=\sqrt{10^2-5^2}$ or numerically exact equivalent.	A1
	$PQ = 2\sqrt{75} = 10\sqrt{3}$ Simplest surd form $10\sqrt{3}$ required for final mark.	A1
		(3) (11 marks)

Question Number	Scheme	Marks
13. (a)	$kr^2 + cxy = 4$ or $kr^2 + c[(x+y)^2 - x^2 - y^2] = 4$	M1
	$\frac{1}{4}\pi x^2 + 2xy = 4$	A1
	$y = \frac{4 - \frac{1}{4}\pi x^2}{2x} = \frac{16 - \pi x^2}{8x}$	B1 cso
		(3)
(b)	$P = 2x + cy + k \pi r$ where $c = 2$ or 4 and $k = \frac{1}{4}$ or $\frac{1}{2}$	M1
	$P = \frac{\pi x}{2} + 2x + 4\left(\frac{4 - \frac{1}{4}\pi x^2}{2x}\right) \text{ or } P = \frac{\pi x}{2} + 2x + 4\left(\frac{16 - \pi x^2}{8x}\right) \text{ o.e.}$	A1
	$P = \frac{\pi x}{2} + 2x + \frac{8}{x} - \frac{\pi x}{2}$ so $P = \frac{8}{x} + 2x$ *	A1
		(3)
(c)	$\left(\frac{dP}{dx} = \right) - \frac{8}{x^2} + 2$ $-\frac{8}{x^2} + 2 = 0 \Rightarrow x^2 = \dots$	M1 A1
	$-\frac{8}{x^2} + 2 = 0 \Rightarrow x^2 = \dots$	M1
	and so $x = 2$ o.e. (ignore extra answer $x = -2$)	A1
	P = 4 + 4 = 8 (m)	B1
		(5)
		(11 marks)

Question Number	Scheme	Marks
14. (a)	$\sin(x + 45^{\circ}) = \frac{2}{3}$, so $(x + 45^{\circ}) = 41.8103$ $(\alpha = 41.8103)$ $\sin^{-1}(\frac{2}{3})$ or awrt 41.8 or	M1
	So, $x + 45^{\circ} = \{138.1897, 401.8103\}$ awrt 0.73° $x + 45^{\circ} = \text{either "}180 - \text{their } \alpha$ " or " $360^{\circ} + \text{their } \alpha$ "	M1
	and $x = \{93.1897, 356.8103\}$ Either awrt 93.2° or awrt 356.8° Both awrt 93.2° and awrt 356.8°	A1 A1
		(4)
(b)	$2(1 - \cos^2 x) + 2 = 7\cos x$ Applies $\sin^2 x = 1 - \cos^2 x$	M1
	$2\cos^2 x + 7\cos x - 4 = 0$ Correct 3 term, $2\cos^2 x + 7\cos x - 4 = 0$	A1 oe
	$(2\cos x - 1)(\cos x + 4) \{= 0\}$, $\cos x =$ Valid attempt at solving and $\cos x =$	M1
	$\cos x = \frac{1}{2}$, $\{\cos x = -4\}$ $\cos x = \frac{1}{2}$	A1 cso
	$\left(\beta = \frac{\pi}{3}\right)$	
	$x = \frac{\pi}{3}$ or 1.04719° Either $\frac{\pi}{3}$ or awrt 1.05°	B1
	$x = \frac{5\pi}{3}$ or 5.23598° Either $\frac{5\pi}{3}$ or awrt 5.24° or 2π – their β	B1 ft
		(6) (10 marks)

Question Number	Scheme	Marks	
15. (a)	$9^{2} = 4^{2} + 6^{2} - 2 \times 4 \times 6 \cos \alpha \Rightarrow \cos \alpha = \dots$ $4^{2} + 6^{2} - 9^{2} \left(29 - 3 \right)$	Correct use of cosine rule leading to a value for $\cos \alpha$	M1
	$\cos \alpha = \frac{4^2 + 6^2 - 9^2}{2 \times 4 \times 6} \left(= -\frac{29}{48} = -0.604 \right)$ $\alpha = 2.22 *$ (NB $\alpha = 2.219516005$)	cso (2.22 must be seen here)	A1 (2)
(b)	$2\pi - 2.22 (= 4.06366)$	$2\pi - 2.22$ or awrt 4.06	B1
	$\frac{1}{2} \times 4^2 \times "4.06"$	Correct method for major sector area. Allow $\pi - 2.22$ for the major sector angle.	M1
	32.5	awrt 32.5	A1 (3)
Or (b)	Alternative method: Circle – Minor sector		
	$\pi \times 4^2$	orrect expression for circle area.	B1
	$\pi \times 4^2 - \frac{1}{2} \times 4^2 \times 2.22 = 32.5$	Correct method for circle - minor sector area.	M1
	= 32.5	awrt 32.5	A1 (3)
(c)	Area of triangle = $\frac{1}{2} \times 4 \times 6 \times \sin 2.22 (= 9.56)$	Correct expression for the area of triangle <i>XYZ</i> Their Triangle <i>XYZ</i> (Not	B1
	So area required = "9.56" + "32.5"	triangle ZXW) + (part (b) answer or correct attempt at	M1
	$= 42.1 \text{ cm}^2 \text{ or } 42.0 \text{ cm}^2$	major sector) awrt 42.1 or 42.0 (Or <u>just</u> 42).	A1 (3)
(d)	Arc length = 4×4.06 (= 16.24) Or $8\pi - 4 \times 2.22$	M1: $4 \times \text{their} (2\pi - 2.22)$ Or circumference – minor arc A1: Correct ft expression	M1 A1ft
	Perimeter = $ZY + WY + Arc Length$	9 + 2 + Any Arc	M1
	Perimeter = 27.2 or 27.3	awrt 27.2 or awrt 27.3	A1 (4)
			(12 marks)

Question Number	Scheme	Marks
16. (a)	$17 \times 1.5 = 25.5 \text{(km)}$	B1 (1)
(b)	Use $l = a + (n-1)d$ with $a = 1.5$, $d = 0.25$ and $n = 17$ So $l = 5.5$	M1 A1 (2)
(c)	Use $S = \frac{a(1-r^n)}{1-r}$ with $a = 1.5$, and $n = 17$ And $r = 1.05$ So $S = 38.76$ (km)	M1 A1 A1 (3)
(d)	Total distance running is $S = \frac{n}{2} \{2a + (n-1)d\}$ = 59.5(km) So total in three sports is 123.76(km)	M1 A1 B1 (3)
(e)	Uses $ar^{n-1} > 40$ so $1.5 \times (1.05)^{n-1} > 40$ with their r $(1.05)^{n-1} > 26.7 \text{ so } (n-1)\log 1.05 > \log 26.7$ $n-1 > 67.297$ So 69th day of training.	M1 M1 M1 A1 (4)
		(13 marks)