ECON 293/MGTECON 634: Machine Learning and Causal Inference

Stefan Wager Stanford University

Lecture 4: Heterogeneous Treatment Effects in Observational Studies

Today's focus is on general principles for estimating **heterogeneous treatment effects** in **observational studies**. Such problems come up in many contexts:

- ▶ **Personalized medicine:** Which form of cancer therapy is most appropriate for this specific patient?
- ► **Targeted advertising:** How should a search engine adapt its advertising based on browsing history?
- ► **Resource allocation:** Which restaurants should health inspectors focus on?

All these problems can be attacked without machine learning.

But machine learning may help if we want to make algorithmic treatment recommendations from a CT scan of your brain.

Outline

The previous week's lectures focused on specific methods for treatment heterogeneity in **randomized trials**, with a focus on **causal trees** and **forests**.

This week, we'll discuss robust methods for treatment heterogeneity in **observational studies**. In particular, we'll

- Review the key difficulties that arise in treatment effect estimation, regularization bias and confounding bias.
- Discuss confounding-robust methods for estimating constant treatment effects.
- Build on this discussion to develop confounding-robust causal forests.

Next week, I'll present a general approach to confounding-robust treatment effect estimation via generic machine learning methods.

Potential outcomes

For a set of **independent and identically distributed** units i = 1, ..., n, we observe

- ▶ A feature vector $X_i \in \mathcal{X}$,
- ▶ A **response** $Y_i \in \mathbb{R}$, and
- ▶ A treatment assignment $W_i \in \{0, 1\}$.

We posit **potential outcomes** $Y_i(0)$ and $Y_i(1)$ corresponding to treatment levels $W_i = 0$, 1 respectively (Neyman, 1923; Rubin, 1974), such that we observe $Y_i = Y_i(W_i)$ (SUTVA).

In our earlier discussions, we've focused on robust estimation of the average treatment effect $\tau = \mathbb{E}[Y_i(1) - Y_i(0)]$.

Treatment heterogeneity

Today, our goal is to move beyond a single average, and understand how treatment effects vary across people.

The **individual treatment effect** for the *i*-th unit is

$$\Delta_i = Y_i(1) - Y_i(0).$$

The ultimate analysis of treatment heterogeneity would seek to pinpoint Δ_i for every unit i on its own.

But this is **fundamentally impossible**.

Treatment heterogeneity

In practice, the best we can hope to do is to collect some covariates X_i , and see how the treatment effect varies with them.

Specifically, we seek to estimate the ${f conditional}$ average ${f treatment}$ effect (CATE)

$$\tau(x) = \mathbb{E}\left[Y_i(1) - Y_i(0) \mid X_i = x\right],\,$$

i.e., the average treatment effect among all units who share the same covariate values.

Our goal is to estimate $\tau(X)$ accurately in terms of **mean-squared error**, $\mathbb{E}\left[(\hat{\tau}(X) - \tau(X))^2\right]$.

Unconfoundedness

In order to identify causal effects, we assume **unconfoundedness** (Rosenbaum and Rubin, 1983)

$$\left[\{ Y_i(0), Y_i(1) \} \perp W_i \right] \mid X_i.$$

Informally, this means that the treatment is as good as **random** conditionally on observed features X_i .

Under unconfoundedness, methods based on **matching** are consistent (although not necessarily efficient) for the average treatment effect.

Similarly, the CATE is still a (localized) average, so it can be identified under unconfoundedness.

Why estimating treatment heterogeneity is hard

Identification of the CATE relies on essentially the same story as identification for the ATE. But there's a lot more to good **estimation** of the CATE.

Consider, e.g., a study on the effect of fibrinogen administration on mortality for victims of hemorrhagic shock. Features X_i is everything recorded by the first responders. Then:

Treatment effects are probably weak, in the sense that

$$\operatorname{Var}\left[au(X)\right] \ll \operatorname{Var}\left[\mathbb{E}\left[Y(0) \,\middle|\, X\right]\right].$$

- ▶ There may be selection on **measured features** X_i .
- There may be selection on unmeasured features (not today).
- ► There may be **interference** across units (not today).

Under unconfoundedness,

$$\left[\{ Y_i(0), Y_i(1) \} \perp W_i \right] \mid X_i,$$

we can write the CATE function as

$$\tau(x) = \mathbb{E} \left[Y_i(1) - Y_i(0) \, \middle| \, X_i = x \right]$$

$$= \mathbb{E} \left[Y_i(1) \, \middle| \, X_i = x, \, W_i = 1 \right] - \mathbb{E} \left[Y_i(0) \, \middle| \, X_i = x, \, W_i = 0 \right]$$

$$= \mathbb{E} \left[Y_i \, \middle| \, X_i = x, \, W_i = 1 \right] - \mathbb{E} \left[Y_i \, \middle| \, X_i = x, \, W_i = 0 \right]$$

$$= \mu_{(1)}(x) - \mu_{(0)}(x).$$

This representation is the starting point for several machine learning based HTE estimation strategies.

The simplest way to use machine learning for treatment effect estimation is via **black box prediction**. For example:

The T-Learner fits separate models on the treated and controls.

- 1. Learn $\hat{\mu}_{(0)}(x)$ by predicting Y_i from X_i on the subset of observations with $W_i = 0$.
- 2. Learn $\hat{\mu}_{(1)}(x)$ by predicting Y_i from X_i on the subset of observations with $W_i=1$.
- 3. Report $\hat{\tau}(x) = \hat{\mu}_{(1)}(x) \hat{\mu}_{(0)}(x)$.

The S-Learner fits a single model to all the data.

- 1. Learn $\hat{\mu}(z)$ by predicting Y_i from $Z_i := (X_i, W_i)$ on all the data.
- 2. Report $\hat{\tau}(x) = \hat{\mu}((x, 1)) \hat{\mu}((x, 0))$.

In order to use the S or T learner, one need to choose a **method** for predicting Y from X.

One could use the lasso, boosting, deep nets, etc. Today, we'll focus on random forests.

Over the next few slides, we'll briefly review random forests as a predictive method. Later today, we'll discuss how random forests can directly adapted to treatment heterogeneity (and not just used as a predictive black box).

Regression trees

k-NN neighborhood.

Tree-based neighborhood.

Decision trees are **adaptive nearest neighbor** predictors. Given pairs (X_i, Y_i) , a tree estimates $\mu(x) = \mathbb{E}[Y_i | X_i = x]$ as

$$\hat{\mu}_{TREE}(x) = \operatorname{avg} \{ Y_i : X_i \in \operatorname{leaf}(x) \}.$$

Random forests are like decision trees, except they smooth over all the sharp decision points.

Regression trees

Trees recursively apply a **greedy** splitting criterion.

In the **regression case**, the CART (Breiman et al., 1984) is standard.

- ► Compute \hat{y} by averaging data in left/right leaf.
- ▶ Split minimizes $\sum_i (y_i \hat{y}(X_i))^2$.
- ► Equivalently, pick a split to maximize the **weighted** difference $n_L n_R (\hat{y}_L \hat{y}_R)^2$.

Trees and random forests (Breiman, 2001)

Suppose we have a training set $\{(X_i, Y_i)\}_{i=1}^n$, a test point x, and a tree predictor

$$\hat{\mu}(x) = T(x; \{(X_i, Y_i)\}_{i=1}^n).$$

Random forest idea: build and average many different trees T^* :

$$\hat{\mu}(x) = \frac{1}{B} \sum_{b=1}^{B} T_b^*(x; \{(X_i, Y_i)\}_{i=1}^n).$$

This is a simple idea, but improves performance considerably.

Trees and random forests (Breiman, 2001)

Suppose we have a training set $\{(X_i, Y_i)\}_{i=1}^n$, a test point x, and a tree predictor

$$\hat{\mu}(x) = T(x; \{(X_i, Y_i)\}_{i=1}^n).$$

Random forest idea: build and average many different trees T^* :

$$\hat{\mu}(x) = \frac{1}{B} \sum_{b=1}^{B} T_b^*(x; \{(X_i, Y_i)\}_{i=1}^n).$$

This is a simple idea, but improves performance considerably.

We turn T into T^* by:

- ▶ Bagging / subsampling the training set (Breiman, 1996); this helps smooth over discontinuities (Bühlmann and Yu, 2002).
- Selecting the splitting variable at each step from m out of p randomly drawn features (Amit and Geman, 1997).

Back to treatment heterogeneity...

The simplest way to use machine learning for treatment effect estimation is via **black box prediction**. For example:

The T-Learner fits separate models on the treated and controls.

- 1. Learn $\hat{\mu}_{(0)}(x)$ by predicting Y_i from X_i on the subset of observations with $W_i = 0$.
- 2. Learn $\hat{\mu}_{(1)}(x)$ by predicting Y_i from X_i on the subset of observations with $W_i = 1$.
- 3. Report $\hat{\tau}(x) = \hat{\mu}_{(1)}(x) \hat{\mu}_{(0)}(x)$.

The S-Learner fits a single model to all the data.

- 1. Learn $\hat{\mu}(z)$ by predicting Y_i from $Z_i := (X_i, W_i)$ on all the data.
- 2. Report $\hat{\tau}(x) = \hat{\mu}((x, 1)) \hat{\mu}((x, 0))$.

How robust are these methods to regularization bias?

Implementing the T-learner

```
tf0 = regression_forest(X[W==0,], Y[W==0])
tf1 = regression_forest(X[W==1,], Y[W==1])

tf.preds.0 = predict(tf0, X)$predictions
tf.preds.1 = predict(tf1, X)$predictions
tf.preds.0[W==0] = predict(tf0)$predictions #00B
tf.preds.1[W==1] = predict(tf1)$predictions #00B
preds.tf = tf.preds.1 - tf.preds.0
```

Implement the *T*-learner via a **random forest**:

- 1. Learn $\hat{\mu}_{(0)}(x)$ by predicting Y_i from X_i on the subset of observations with $W_i = 0$.
- 2. Learn $\hat{\mu}_{(1)}(x)$ by predicting Y_i from X_i on the subset of observations with $W_i = 1$.
- 3. Report $\hat{\tau}(x) = \hat{\mu}_{(1)}(x) \hat{\mu}_{(0)}(x)$, with **out-of-bag** predictions when applicable.

Implementing the S-learner

```
sf = regression_forest(cbind(X, W), Y)
pred.sf.0 = predict(sf, cbind(X, 0))$predictions
pred.sf.1 = predict(sf, cbind(X, 1))$predictions
preds.sf.oob = predict(sf)$predictions
pred.sf.0[W==0] = preds.sf.oob[W==0]
pred.sf.1[W==1] = preds.sf.oob[W==1]
preds.sf = pred.sf.1 - pred.sf.0
```

Implement the *S*-learner via a **random forest**:

- 1. Learn $\hat{\mu}(z)$ by predicting Y_i from $Z_i := (X_i, W_i)$ on all the data, with **out-of-bag** predictions when applicable.
- 2. Report $\hat{\tau}(x) = \hat{\mu}((x, 1)) \hat{\mu}((x, 0))$ on the test set.

Simulation Example: RCT

```
n = 4000; p = 10; treat.prob = 0.3
X = matrix(rnorm(n * p), n, p)
W = rbinom(n, 1, treat.prob)
TAU = 1/(1 + exp(-X[,3]))
Y = pmax(X[,1] + X[,2], 0) + W * TAU + rnorm(n)
```

Note in particular:

- ▶ This is a **randomized trial** with treatment fraction 0.3 (because treatment propensities don't depend on X).
- ➤ The treatment effect function is simpler than the main effect (which has interactions).

Simulation Example: RCT

The T- and S-learners have a hard time even approximating the treatment effect function.

► The *T*- and *S*-learners are only designed to make accurate **predictions**, not to estimate **treatment effects**.

Regularization Bias and the T-learner

[Figure: Künzel & al., 2019]

As a first improvement, Künzel et al. (2019) recently proposed a two-step method that **explicitly fits** the CATE function in an effort to **avoid regularization bias**.

The X-Learner imputes unobserved outcomes, and uses them to learn the HTE.

- 1. Learn $\hat{\mu}_{(0)}(x)$ by predicting Y_i from X_i on the subset of observations with $W_i = 0$.
- 2. Define $\Delta_i(1) = Y_i \hat{\mu}_{(0)}(X_i)$, and learn $\hat{\tau}_{(1)}(x)$ by predicting $\Delta_i(1)$ from X_i on those observations with $W_i = 1$.
- 3. Learn $\hat{\tau}_{(0)}(x)$ by swapping the roles of treated/controls.
- 4. Learn $\hat{e}(x)$ by predicting W_i from X_i .
- 5. Report $\hat{\tau}(x) = \hat{e}(x)\hat{\tau}_{(0)}(x) + (1 \hat{e}(x))\hat{\tau}_{(1)}(x)$.

NB: The quantities Δ_i are used as noisy proxies for the individual treatment effect $Y_i(1) - Y_i(0)$.

Implementing the X-learner

```
tf0 = regression_forest(X[W==0,], Y[W==0])
yhat0 = predict(tf0, X[W==1,])$predictions
xf1 = regression_forest(X[W==1,], Y[W==1]-yhat0)
xf.preds.1 = predict(xf1, X)$predictions
xf.preds.1[W==1] = predict(xf1)$predictions
tf1 = regression_forest(X[W==1,], Y[W==1])
yhat1 = predict(tf1, X[W==0,])$predictions
xf0 = regression_forest(X[W==0,], yhat1-Y[W==0])
xf.preds.0 = predict(xf0, X)$predictions
xf.preds.0[W==0] = predict(xf0)$predictions
propf = regression_forest(X, W, tune.parameters = TRUE)
ehat = predict(propf)$predictions
preds.xf = (1 - ehat) * xf.preds.1 + ehat * xf.preds.0
```

Simulation Example: RCT

In **randomized trials**, the X-construction can get at treatment effects directly.

Intuition for the X-learner

Just like the T-learner, the X-learner starts by fitting **separate** regressions for $\hat{\mu}_{(0)}(x)$ and $\hat{\mu}_{(1)}(x)$.

However, due to **regularization bias**, the difference between these two functions may be a poor estimate of $\tau(x)$.

Intuition for the X-learner

In a second step, the X-learner forms differences between the **observed outcomes** and the predicted **counterfactual outcomes** with the other treatment, e.g., $\Delta_i(1) = Y_i - \hat{\mu}_{(0)}(X_i)$.

In this case, regressing $\Delta_i(1)$ on X_i for the treated samples gives a **good estimate** $\hat{\tau}_1(x)$ of the CATE.

The regression $\hat{\tau}_0(x)$ on $\Delta_i(0) = \hat{\mu}_{(1)}(X_i) - Y_i$ for the controls is less good, but is **down-weighted** by the X-learner.

Simulation Example: Not an RCT

```
n = 4000; p = 10
X = matrix(rnorm(n * p), n, p)
W = rbinom(n, 1, 1 / (1 + exp(-X[,3])))
TAU = 1
Y = 2 * pmax(X[,1] + X[,2] + X[,3], 0) +
    W * TAU + rnorm(n)
```

Note in particular:

- ► This is **not** a randomized trial (because treatment propensities depend on X).
- ▶ The propensity function is **correlated** with the main effect.
- ▶ The treatment effect is constant.

Simulation Example: Not an RCT

All three methods, including the *X*-learner, **hallucinate treatment effects** here.

▶ This is because the baseline effect is correlated with the **propensity score**, and the S/T/X-learners don't robustly adjust for this.

By directly fitting the individual pseudo-effects of the form $\Delta_i(1) = Y_i - \hat{\mu}_{(0)}(X_i)$, etc., the X-learner can avoid some of the

regularization bias that plagues the direct methods.

- ► In **randomized trials**, this is enough to make the *X*-learner perform very well.
- ► However, in observational studies, we also need to be robust to **confounding**.

Our focus for the rest of this lecture: How can we design **robust CATE estimators** in a setting where we need to **control for confounders**?

Simulation Example: Not an RCT

None of the T-, S-, or X-learners use **propensity scores** to guide treatment effect estimation.

- Makes methods vulnerable to confounding outside of RCTs.
- ► The X-learner does use the propensity score, but only in a minor role (for aggregation).

How can we **leverage good propensity score estimates** for accurate heterogeneous treatment effect estimation?

By directly fitting the individual pseudo-effects of the form $\Delta_i(1) = Y_i - \hat{\mu}_{(0)}(X_i)$, etc., the X-learner can avoid some of the

regularization bias that plagues the direct methods.

- ▶ In randomized trials, this is enough to make the X-learner perform very well.
- ► However, in observational studies, we also need to be robust to **confounding**.

Guiding question for the rest of this lecture: How can we use the **propensity score** for better heterogeneous treatment effect estimation?

Confounding-Robust Estimation of Constant Treatment Effects

Constant treatment effects

Suppose we assume a **constant treatment effect** τ , i.e.

$$Y_i(1) - Y_i(0) = \tau$$

for all units i = 1, ..., n. We want to estimate τ .

In terms of our earlier discussion, this implies

$$\tau = \tau(x) = \mathbb{E}\left[Y_i(1) - Y_i(0) \,\middle|\, X_i = x\right] \text{ for all } x \in \mathcal{X}.$$

This extra restriction means that this is not the same problem as estimating an **average treatment effect**, i.e., ATE = $\mathbb{E}\left[\tau(X)\right]$ for a potentially heterogeneous function $\tau(\cdot)$.

Constant treatment effects

Given unconfoundedness, i.e.,

$$\left[\left\{Y_i^{(0)}, Y_i^{(1)}\right\} \perp \!\!\! \perp W_i\right] \mid X_i,$$

constant treatment effects imply a partially linear model

$$\mathbb{E}[Y | X = x, W = w] = \mu_{(0)}(x) + w\tau.$$

Our goal now is to estimate τ .

NB: In this setting, the difference in means is still biased:

$$\begin{split} \mathbb{E}\left[Y_{i} \mid W_{i} = 1\right] - \mathbb{E}\left[Y_{i} \mid W_{i} = 0\right] \\ = \tau + \mathbb{E}\left[\mu_{(0)}(X_{i}) \mid W_{i} = 1\right] - \mathbb{E}\left[\mu_{(0)}(X_{i}) \mid W_{i} = 0\right]. \end{split}$$

Robinson's transformation

Constant treatment effects imply a partially linear model

$$\mathbb{E}\left[Y\,\middle|\,X=x,\;W=w\right]=\mu_{(0)}(x)+w\tau.$$

This is a **semiparametric** problem, in that we have a low-dimensional parameter of interest τ , but have a non-parametric nuisance component $\mu_{(0)}(x)$.

Robinson (1988) proposed a simple approach to **estimation** in this model, based on the following observation. Defining

$$\begin{split} & e(x) = \mathbb{E}\left[W_i \,\middle|\, X_i = x\right], \quad \text{and} \\ & m(x) = \mathbb{E}\left[Y_i \,\middle|\, X_i = x\right] = \mu_{(0)}(x) + \tau e(x), \end{split}$$

we can re-write the partially linear model as

$$Y_i - m(X_i) = \tau(W_i - e(X_i)) + \varepsilon_i, \quad \mathbb{E}\left[\varepsilon_i \mid X_i, W_i\right] = 0.$$

Robinson (1988) starts by re-writing the model in "centered" form:

$$\begin{split} e(x) &= \mathbb{E}\left[W_i \mid X_i = x\right], \\ m(x) &= \mathbb{E}\left[Y_i \mid X_i = x\right] = f(x) + \tau e(x), \\ Y_i - m(X_i) &= \tau(W_i - e(X_i)) + \varepsilon_i. \end{split}$$

This suggests the following **3-step approach** to estimation:

- 1. Get an estimate $\hat{e}(\cdot)$ by predicting W_i from X_i .
- 2. Get an estimate $\hat{m}(\cdot)$ by predicting Y_i from X_i .
- 3. Estimate τ by **residual-on-residual regression**:

$$\hat{\tau} = \sum_{i=1}^{n} (Y_i - \hat{m}(X_i)) (W_i - \hat{e}(X_i)) / \sum_{i=1}^{n} (W_i - \hat{e}(X_i))^2$$

This suggests the following **3-step approach** to estimation:

- 1. Get an estimate $\hat{e}(\cdot)$ by predicting W_i from X_i .
- 2. Get an estimate $\hat{m}(\cdot)$ by predicting Y_i from X_i .
- 3. Estimate τ by residual-on-residual regression:

$$\hat{\tau} = \sum_{i=1}^{n} (Y_i - \hat{m}(X_i)) (W_i - \hat{e}(X_i)) / \sum_{i=1}^{n} (W_i - \hat{e}(X_i))^2.$$

Theorem. Under modest regularity conditions, and assuming that

$$\mathbb{E}\left[\left(m(X_i) - \hat{m}(X_i)\right)^2\right]^{\frac{1}{2}} \ll \frac{1}{n^{1/4}}, \quad \mathbb{E}\left[\left(e(X_i) - \hat{e}(X_i)\right)^2\right]^{\frac{1}{2}} \ll \frac{1}{n^{1/4}},$$

we get a **central limit theorem** $\sqrt{n}(\hat{\tau} - \tau) \Rightarrow \mathcal{N}(0, V)$.

This suggests the following **3-step approach** to estimation:

- 1. Get an estimate $\hat{e}(\cdot)$ by predicting W_i from X_i .
- 2. Get an estimate $\hat{m}(\cdot)$ by predicting Y_i from X_i .
- 3. Estimate τ by residual-on-residual regression:

$$\hat{\tau} = \sum_{i=1}^{n} (Y_i - \hat{m}(X_i)) (W_i - \hat{e}(X_i)) / \sum_{i=1}^{n} (W_i - \hat{e}(X_i))^2.$$

The partially linear model offers a **practical approach** to \sqrt{n} -consistent estimation and **confidence intervals** for τ .

- ▶ All we need is an ability to estimate $m(\cdot)$ and $e(\cdot)$ at reasonable rates.
- Generic machine learning tools can be used for this task.
 Cross-fitting can be used to address any regularity concerns.

This suggests the following **3-step approach** to estimation:

- 1. Get an estimate $\hat{e}(\cdot)$ by predicting W_i from X_i .
- 2. Get an estimate $\hat{m}(\cdot)$ by predicting Y_i from X_i .
- 3. Estimate τ by residual-on-residual regression:

$$\hat{\tau} = \sum_{i=1}^{n} (Y_i - \hat{m}(X_i)) (W_i - \hat{e}(X_i)) / \sum_{i=1}^{n} (W_i - \hat{e}(X_i))^2.$$

Linear regression is actually a **special case** of this. The following is an equivalent characterization of OLS:

- 1. Fit a linear model $W_i \sim X_i \gamma_e$.
- 2. Fit a linear model $Y_i \sim X_i \gamma_m$.
- 3. $\hat{\tau} = \sum_{i=1}^{n} (Y_i X_i \hat{\gamma}_m) (W_i X_i \hat{\gamma}_e) / \sum_{i=1}^{n} (W_i X_i \hat{\gamma}_e)^2$.

We've now seen two "robust" estimators in this class:

- ▶ The **AIPW estimator** for the avg. treatment effect (week 2).
- ► The residual-on-residual regression estimator for a constant treatment effect (now).

Both estimators have the property that if "nuisance components" (i.e., non-focal parts of the problem) are estimated reasonably accurately, then we get $1/\sqrt{n}$ -rate central limit theorem for our target estimand.

These are two special cases of a **general recipe** for robust, semiparamtric causal inference. For more, see:

Chernozhukov, V., Escanciano, J. C., Ichimura, H., Newey, W. K., & Robins, J. M. Locally robust semiparametric estimation. *arXiv*, 2016.

What's the difference?

Estimating a **constant treatment effect** $\tau(X) = \tau$ is not the same problem as estimating an **average treatment effect**, i.e., ATE = $\mathbb{E}\left[\tau(X)\right]$ for a potentially heterogeneous function $\tau(\cdot)$.

- ▶ To estimate an **average effect** we need reasonably accurate estimates of $\tau(x)$ everywhere.
- ➤ To estimate a constant effect we can opportunistically focus on areas with the most signal.

```
n = 2000; p = 6; TAU = 0.3
X = matrix(rnorm(n * p), n, p)
pscore = 1 / (1 + exp(-4 * X[,3]))
W = rbinom(n, 1, pscore)
Y = log(1 + exp((X[,1] + X[,2]) / 3)) +
TAU * W + rnorm(n)
```



```
rf.y = regression_forest(X, Y, tune.parameters = TRUE)
m.hat = predict(rf.y)$predictions
tY = Y - m.hat
lr.w = glm(W ~ X, family = binomial)
e.hat = predict(lr.w, type = "response")
tW = W - e.hat
ols.fit = lm(tY \sim tW)
tau.hat = coef(ols.fit)["tW"]
tau.se = sqrt(vcovHC(ols.fit)["tW", "tW"])
paste("95% CI:", round(tau.hat, 3),
      "+/-", round(1.96 * tau.se, 3))
```

If we **know** that the treatment effect is constant, we can accurately estimate it, and get 95% CI for τ of **0.322** \pm **0.145**.

```
rf.y = regression_forest(X, Y, tune.parameters = TRUE)
m.hat = predict(rf.y)$predictions
lr.w = glm(W ~ X, family = binomial)
e.hat = predict(lr.w, type = "response")
cf = causal_forest(X, Y, W, Y.hat = m.hat, W.hat = e.hat,
                   tune.parameters = TRUE)
ate.hat = average_treatment_effect(cf,
                           target.sample = "all")
paste("95% CI:", round(ate.hat["estimate"], 3),
      "+/-", round(1.96 * ate.hat["std.err"], 3))
```

If we **don't know** that the treatment effect is constant, it's harder to estimate it, and we get 95% CI for τ of **0.56** \pm **0.346**.

► The average_treatment_effect function does augmented inverse-propensity weighted estimation (Lecture 2).

Here, we have 2 different choices:

- Assume a **constant effect** τ , in which case accurate estimation of τ is possible.
- ▶ Estimate an average effect $\mathbb{E}\left[\tau(X)\right]$ in a way that's robust to heterogeneity, at the cost of precision.

Here, we have 2 different choices:

- Assume a **constant effect** τ , in which case accurate estimation of τ is possible.
- ▶ Estimate an average effect $\mathbb{E}[\tau(X)]$ in a way that's robust to heterogeneity, at the cost of precision.

What about **Robinson's method** to get " $\hat{\tau}$ ", but **without** assuming a constant effect $\tau = \tau(x)$? In this case,

$$\sqrt{n}(\hat{\tau}-\tau_e)\Rightarrow \mathcal{N}(0, V), \quad \tau_e=\frac{\mathbb{E}\left[e(X)(1-e(X))\tau(X)\right]}{\mathbb{E}\left[e(X)(1-e(X))\right]}.$$

In other words, there are **two ways** to justify Robinson's method:

- Assume a constant effect.
- **Relax** the target of inference to τ_e .

In grf, the average_treatment_effect does Robinson's method
if we set target.sample = "overlap".

Causal forests

In the previous segment, we discussed how to optimally estimate a **constant treatment effect**.

Idea #1: Estimating $\tau(x)$ amounts to finding sub-regions where $\tau(x)$ is stable, and then estimating the CATE over them.

Idea #2: We can find regions that express the heterogeneity in $\tau(x)$ via trees & forests.

Neighborhood averaging

To get started, consit the **nearest neighbors** estimator for $\tau(x)$:

$$\hat{\tau}(x) = \frac{\sum_{\{i \in \mathcal{S}(x): W_i = 1\}} Y_i}{|\{i \in \mathcal{S}(x): W_i = 1\}|} - \frac{\sum_{\{i \in \mathcal{S}(x): W_i = 0\}} Y_i}{|\{i \in \mathcal{S}(x): W_i = 0\}|},$$

where $S(x) = \{i : |X_i - x| \le \delta_n\}.$

Problem #1: For this to be valid, we essentially need to assume that W_i is approximately randomized over S(x) (i.e., we can't have variation in the propensity score).

Problem #2: For this to work, we need δ_n to be small enough for treatment effects to be roughly constant over $\mathcal{S}(x)$, but also large enough to contain a non-negligible amount of data. This is difficult in even moderately high dimensions.

Neighborhood averaging

What if someone gives us a **neighborhood** S(x) and tells us that $\tau(\cdot)$ is constant over S(x), but that other quantities (e.g., the propensity score) may vary.

The resulting problem amounts to estimating a constant treatment effect over S(x), under unconfoundedness!

Why not use Robinson's method for it?

$$\hat{\tau}(x) \leftarrow \mathsf{OLS}\left(\widetilde{Y}_i \sim \widetilde{W}_i, \text{ subset: } X_i \in \mathcal{S}(x)\right),$$

where $\widetilde{W}_i = W_i - \hat{e}^{(-i)}(X_i)$, etc., rely on residualization.

Our goal is to use a localized Robinson's method as our guide to estimation. Now we just need to modify **forests** to do so.

Trees and forests

k-NN neighborhood.

Tree-based neighborhood.

Trees and random forests (Breiman, 2001)

Suppose we have a training set $\{(X_i, Y_i)\}_{i=1}^n$, a test point x, and a tree predictor

$$\hat{\mu}(x) = T(x; \{(X_i, Y_i)\}_{i=1}^n).$$

Random forest idea: build and average many different trees T^* :

$$\hat{\mu}(x) = \frac{1}{B} \sum_{b=1}^{B} T_b^*(x; \{(X_i, Y_i)\}_{i=1}^n).$$

Challenges:

- How should we adapt splitting?
- ▶ How should we adapt prediction?

Regression tree splitting: Review

Trees recursively apply a **greedy** splitting criterion.

In the **regression case**, the CART (Breiman et al., 1984) is standard.

- ► Compute \hat{y} by averaging data in left/right leaf.
- ▶ Split minimizes $\sum_i (y_i \hat{y}(X_i))^2$.
- ► Equivalently, pick a split to maximize the **weighted** difference $n_L n_R (\hat{y}_L \hat{y}_R)^2$.

Recursive partitioning for causal effects

How can we design a **splitting rule** that targets treatment heterogeneity?

As before, we seek to proceed **greedily**, and seek to maximize the amount of signal expressed in each split.

For each candidate "left-right" split (L, R), we do the following:

► Compute $\hat{\tau}_L$ and $\hat{\tau}_R$ assuming homogeneous leaf-effects:

$$\hat{\tau}_L \leftarrow \text{lm}\left(\left(Y_i - \hat{m}^{(-i)}(X_i)\right) \sim \left(W_i - \hat{e}^{(-i)}(X_i)\right) : X_i \in L\right).$$

- ▶ Split to maximize the **weighted difference** $n_L n_R (\hat{\tau}_L \hat{\tau}_R)^2$.
- ▶ In the regression case, this is equivalent to CART.

Last week, discussed similar idea, but focused on RCT.

Aggregating causal estimates

For regression, natural to write a forest as an average of trees:

$$\hat{\mu}(x) = \frac{1}{B} \sum_{b=1}^{B} T_b^*(x; \{(X_i, Y_i)\}_{i=1}^n).$$

However, in causal forests, some leaves may be **highly variable**, and so averaging is undesirable.

A helpful alternative perspective is to view forests as weighting:

$$\hat{\mu}(x) = \frac{1}{B} \sum_{b=1}^{B} \sum_{i=1}^{n} Y_{i} \frac{1(Y_{i} \in L_{b}(x))}{|L_{b}(x)|} = \sum_{i=1}^{n} Y_{i} \underbrace{\frac{1}{B} \sum_{b=1}^{B} \frac{1(Y_{i} \in L_{b}(x))}{|L_{b}(x)|}}_{\alpha_{i}(x)}.$$

In other words, we understand random forests as a **data-adaptive** "**kernel**" with weights $\alpha_i(x)$.

The random forest kernel

Forests induce a kernel via averaging tree-based neighborhoods.

Aggregating causal estimates

Regression forests can also be understood as weighted estimators with a **forest kernel**,

$$\hat{\mu}(x) = \frac{1}{B} \sum_{b=1}^{B} \sum_{i=1}^{n} Y_{i} \frac{1(Y_{i} \in L_{b}(x))}{|L_{b}(x)|} = \sum_{i=1}^{n} Y_{i} \underbrace{\frac{1}{B} \sum_{b=1}^{B} \frac{1(Y_{i} \in L_{b}(x))}{|L_{b}(x)|}}_{\alpha_{i}(x)}.$$

This kernel-based approach naturally **extends** to the causal case. For a given test point x, we propose estimating $\tau(x)$ as follows:

$$\hat{ au}(x) \leftarrow \operatorname{lm} \left(\left(Y_i - \hat{m}^{(-i)}(X_i) \right) \sim \left(W_i - \hat{e}^{(-i)}(X_i) \right),$$
 weights $= \alpha_i(x)$.

This is what's done in the (confounding robust) implementation of causal forests in GRF. The arguments W.hat and Y.hat in the API correspond to $\hat{e}^{(-i)}(X_i)$ and $\hat{m}^{(-i)}(X_i)$ in our notation.

Simulation Example: Not an RCT

Note in particular:

- ► This is **not** a randomized trial (because treatment propensities depend on *X*).
- ► The propensity function is **correlated** with the main effect.

Simulation example revisted: Not an RCT

The ability of a causal forest to rely on a propensity score fit helps accuracy outside of RCTs.

```
cf = causal_forest(X, Y, W, tune.parameters = TRUE)
preds.cf = predict(cf, X.test)$predictions
```

Simulation example revisted: RCT

In an RCT, both the X-forest and causal forest qualitatively fit the signal. Here, causal forest regularizes more aggressively, which helps slightly in RMSE $\sqrt{\mathbb{E}\left[(\hat{\tau}(X) - \tau(X))^2\right]}$.

	T-forest	S-forest	X-forest	causal forest
RMSE	0.173	0.246	0.087	0.074

Next week, we'll continue for here, and discuss:

- Confounding-robust loss functions for machine learning.
- Methods for evaluating CATE estimates.

Applications.

References

S/T/X learners & regularization bias

- Künzel, Sören R., Jasjeet S. Sekhon, Peter J. Bickel, and Bin Yu. Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the National Academy of Sciences, 116(10), 2019.
- Hahn, P. Richard, Jared S. Murray, and Carlos M. Carvalho. Bayesian regression tree models for causal inference: Regularization, confounding, and heterogeneous effects. *Bayesian Analysis*, 15(3), 2020.

Causal forests in observational studies

- Athey, Susan and Stefan Wager. Estimating treatment effects with causal forests: An application. Observational Studies, 5, 2019.
- Athey, Susan, Julie Tibshirani, and Stefan Wager. Generalized random forests. Annals of Statistics, 47(2), 2019.