Summary of Chapter 4

1 Concepts

- **Probability density function**: For a continuous random variable X, a probability density function is a function such that
 - (1) $f(x) \ge 0$
 - (2) $\int_{-\infty}^{\infty} f(x)dx = 1$
 - (3) $P(a \le X \le b) = \int_a^b f(x) dx$ = area under f(x) from a to b for any a, b
- Cumulative distribution function: The cumulative distribution function of a continuous random variable X is

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du$$
 for $-\infty < x < \infty$

• Summary measures

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

$$\sigma^2 = Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$$

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f(x) dx$$

Concepts

Examples

Home Page

Title Page

Page 1 of 14

Go Back

Full Screen

Close

• **Normal Distribution**: The formula for the normal probability density function is

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

Mean: $E(X) = \mu$

Variance: $Var(X) = \sigma^2$

• Standardized Normal Distribution: The formula for the standardized normal probability density function is

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}, \quad -\infty < z < \infty$$

Mean: $\mu = 0$

Variance: $\sigma^2 = 1$

If $X \sim N[\mu, \sigma^2]$, $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$, then

$$P(a \le X \le b) = P(\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma}) = \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})$$

R function :
$$P(a \le X \le b) = \operatorname{pnorm}(\frac{b-\mu}{\sigma}) - \operatorname{pnorm}(\frac{a-\mu}{\sigma})$$

= $\operatorname{pnorm}(b, \mu, \sigma) - \operatorname{pnorm}(a, \mu, \sigma)$.

Concepts

Examples

Home Page

Title Page

Page 2 of 14

Go Back

Full Screen

Close

• Assessing Normality:

- 1. Construct graphs
 - (1) stem-and-leaf display
 - (2) box-and-whisker plot
 - (3) histogram or polygon
- 2. Compute descriptive summary measures
 - (1) mean, median, and mode (have similar values)
 - (2) interquartile range (1.33σ)
 - (3) range (6σ)
- 3. Use empirical distribution

$$P(\mu - \sigma < X < \mu + \sigma) = P(-1 < Z < 1) = 0.68$$

$$P(\mu - 1.28\sigma < X < \mu + 1.28\sigma) = P(-1.28 < Z < 1.28) = 0.80$$

$$P(\mu - 2\sigma < X < \mu + 2\sigma) = P(-2 < Z < 2) = 0.95$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) = P(-3 < Z < 3) = 0.997$$

4. Normal probability plot: evaluate the normality according to the linearity of the probability plot.

R function: qqnorm(D), where D is a dataset.

Concepts

Examples

Home Page

Title Page

Page 3 of 14

Go Back

Full Screen

Close

• Uniform Distribution: The formula for the uniform probability density function is

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le X \le b \\ 0 & \text{otherwise} \end{cases}$$

Mean: $\mu = \frac{a+b}{2}$

Variance: $\sigma^2 = \frac{(b-a)^2}{12}$

If $X \sim \text{Uniform}(a, b)$, then

$$P(x_1 \le X \le x_2) = \int_{x_1}^{x_2} \frac{1}{b-a} dx$$

R functions: $P(x_1 \le X \le x_2) = \text{punif}(x_2, a, b) - \text{punif}(x_1, a, b)$.

Concepts

Examples

Home Page

Title Page

Page 4 of 14

Go Back

Full Screen

Close

• Exponential distribution:

The formula for the exponential probability density function is

$$f(x) = \lambda e^{-\lambda x}, \quad x > 0$$

The cumulative distribution of exponential random variable is

$$F(x) = \int_0^x \lambda e^{-\lambda u} du = 1 - e^{-\lambda x}, \qquad F'(x) = f(x)$$

Mean: $\mu = \frac{1}{\lambda}$

Variance: $\sigma^2 = \frac{1}{\lambda^2}$

If $X \sim \exp(\lambda)$, then

$$P(a \le X \le b) = \int_{a}^{b} \lambda e^{-\lambda u} du = e^{-\lambda a} - e^{-\lambda b}$$

R functions: $P(a \le X \le b) = \text{pexp}(b, \lambda) - \text{pexp}(a, \lambda)$.

Concepts

Examples

Home Page

Title Page

Page 5 of 14

Go Back

Full Screen

Close

• Gamma Distribution: The formula for the gamma probability density function is

$$f(x) = \frac{\lambda}{\Gamma(r)} (\lambda x)^{r-1} e^{-\lambda x}, \quad x \ge 0$$

with shape parameter r > 0 and scale parameter $\lambda > 0$.

Mean:
$$\mu = \frac{r}{\lambda}$$
 Variance: $\sigma^2 = \frac{r}{\lambda^2}$

The gamma distribution can assume many different shapes, depending on the values chosen for r and λ .

- 1. If r=1, the gamma distribution reduces to the exponential distribution with parameter λ .
- 2. If r is an integer, x_1, x_2, \dots, x_r are exponential with parameter λ and independent, then $y = x_1 + x_2 + \dots + x_r$ is distributed as gamma with parameter r and λ .

R functions: If $X \sim \text{Gamma}(r, \lambda)$, then

$$P(a \le X \le b) = \operatorname{pgamma}(b, r, \lambda) - \operatorname{pgamma}(a, r, \lambda).$$

Concepts

Examples

Home Page

Title Page

Page 6 of 14

Go Back

Full Screen

Close

• **Weibull Distribution**: The formula for the Weibull probability density function is

$$f(x) = \frac{\beta}{\theta} (\frac{x}{\theta})^{\beta - 1} \exp\left[-\left(\frac{x}{\theta}\right)^{\beta}\right], \quad x \ge 0$$

where $\beta > 0$ is the shape parameter, and $\theta > 0$ is the scale parameter.

Mean:
$$\mu = \theta \Gamma \left(1 + \frac{1}{\beta} \right)$$

Variance:
$$\sigma^2 = \theta^2 \left[\Gamma \left(1 + \frac{2}{\beta} \right) - \Gamma \left(1 + \frac{1}{\beta} \right)^2 \right]$$

The Weibull distribution is very flexible, and by appropriate selection of the parameter θ and β , the distribution can assume a wide variety of shapes.

If $\beta=1$, the Weibull distribution can reduces to the exponential distribution with mean $1/\theta$.

R functions: If $X \sim \text{Weibull}(\theta, \beta)$, then

$$P(a \le X \le b) = \text{pweibull}(b, \beta, \theta) - \text{pweibull}(a, \beta, \theta).$$

Concepts

Examples

Home Page

Title Page

Page 7 of 14

Go Back

Full Screen

Close

2 Examples

Example 1. Given a normal distribution with $\mu = 50$ and $\sigma = 4$, what is the probability that

b.
$$X < 42$$
?

c.
$$42 < X < 48$$
?

d.
$$X < 40 \text{ or } X > 55$$

a.

$$P(X > 43) = P(Z > \frac{43 - 50}{4}) = P(Z > -1.75)$$
$$= 1 - \Phi(-1.75) = 1 - 0.0401 = 0.9599$$

R command: 1-pnorm(43,50,4) or 1-pnorm(-1.75)

b.

$$P(X < 42) = P(Z < \frac{42 - 50}{4}) = P(Z < -2)$$
$$= \Phi(-2) = 0.0228$$

R command: pnorm(42,50,4) or 1-pnorm(-2)

Concepts

Examples

Home Page

Title Page

Page 8 of 14

Go Back

Full Screen

Close

c.

$$P(42 < X < 48) == P(\frac{42 - 50}{4} < Z < \frac{48 - 50}{4})$$
$$= P(-2 < Z < -0.5) = \Phi(-0.5) - \Phi(-2)$$
$$= 0.3085 - 0.0028 = 0.2857$$

R command: pnorm(48,50,4)-pnorm(42,50,4) or pnorm(-0.5)-pnorm(-2)

d.

$$P(X < 40 \text{ or } X > 55) = P(X < 40) + P(X > 55)$$

$$= P(Z < \frac{40 - 50}{4}) + P(Z > \frac{55 - 50}{4})$$

$$= P(Z < -2.5) + P(Z > 1.25)$$

$$= \Phi(-2.5) + 1 - \Phi(1.25)$$

$$= 0.0062 + 1 - 0.8944 = 0.1119$$

R command: pnorm(40,50,4)+1-pnorm(55,50,4) or pnorm(-2.5)+1-pnorm(1.25)

Concepts

Examples

Home Page

Title Page

Page 9 of 14

Go Back

Full Screen

Close

Example 2. Suppose you sample from a uniform distribution with a=0 and b=10. What is the probability of obtaining a value:

- b. between 2 and 3?
- c. What is the expected value?
- d. What is the standard deviation?

a.
$$P(5 < X < 7) = \frac{7-5}{10-0} = 0.2$$

R command: punif(7,0,10)-punif(5,0,10)

b.
$$P(2 < X < 3) = \frac{3-2}{10-0} = 0.1$$

R command: punif(3,0,10)-punif(2,0,10)

c.
$$\mu = \frac{a+b}{2} = \frac{0+10}{2} = 5$$

d.
$$\sigma = \sqrt{\frac{(b-a)^2}{12}} = \sqrt{\frac{(10-0)^2}{12}} = 2.8868$$

Concepts

Examples

Home Page

Title Page

Page 10 of 14

Go Back

Full Screen

Close

Example 3. In a large corporate computer network, user log-ons to the system can be modeled as a Poisson process with a mean of 25 log-ons per hour.

- a. What is the probability that there are no log-on in an interval of 6 minutes?
- b. What is the probability that the time until the next log-on is between 2 and 3 minutes?
- c. Determine the interval of time such that the probability that no log-on occurs in the interval is 0.90.
- **a.** Let X denote the time in hours from the start of the interval until the first log-on. Then, X has an exponential distribution with $\lambda=25$ log-ons per hour.

$$P(X > 6 \text{ minutes}) = P(X > 0.1 \text{ hours}) = 1 - [1 - e^{-25(0.1)}] = 0.082$$

R command: 1-pexp(0.1,25)

b.
$$P(0.033 < X < 0.05) = e^{-25(0.033)} - e^{-25(0.05)} = 0.152.$$

R command: pexp(0.05,25) - pexp(0.033,25)

c. From
$$P(X > x) = e^{-25x} = 0.90$$
, we have $-25x = \ln(0.90) = -0.1054$ So, $x = 0.00421$ hour $= 0.25$ minute.

Concepts

Examples

Home Page

Title Page

Page 11 of 14

Go Back

Full Screen

Close

Example 4. The time to failure for an electronic subassembly used in RISC workstation is satisfactorily modeled by a Weibull distribution with $\beta = 1/2$ and $\theta = 1000$.

- a. What is the mean time to failure?
- b. What is the probability of subassemblies expected to survive 4000 hours?
- **a.** The mean time to failure is

$$\mu = \theta \Gamma \left(1 + \frac{1}{\beta} \right) = 1000 \Gamma \left(1 + \frac{1}{1/2} \right)$$

$$= 1000 \Gamma(3) = 1000 \times 2 = 2000 \text{ hours.}$$

b. The cumulative Weibull distribution is

$$F(x) = \int_0^x \frac{\beta}{\theta} (\frac{u}{\theta})^{\beta - 1} \exp\left[-\left(\frac{u}{\theta}\right)^{\beta}\right] du = 1 - \exp\left[-\left(\frac{x}{\theta}\right)^{\beta}\right]$$
$$P(X > 4000) = 1 - P(X < 4000) = \exp\left[-\left(\frac{4000}{1000}\right)^{1/2}\right] = e^{-2} = 0.1353.$$

R command: 1-pweibull(4000,1/2,1000).

Concepts

Examples

Home Page

Title Page

Page 12 of 14

Go Back

Full Screen

Close