

CLAIMS

- 1 1. An optical filter comprising:
 - 2 at least one ring resonator that is apt to receive as input an optical signal having
 - 3 a plurality of channels from an input optical source; and
 - 4 at least one unbalanced Mach-Zehnder module nested in said at least one ring
 - 5 resonator, wherein said at least one unbalanced Mach-Zehnder module and said at least
 - 6 one ring resonator are apt to filter at least one selective channel from said optical
 - 7 signal.
- 1 2. The optical filter of claim 1, wherein said at least one unbalanced Mach-Zehnder
- 2 module comprises an absorber.
- 1 3. The optical filter of claim 1, wherein said at least one ring resonator comprises two
- 2 or more ring resonators.
- 1 4. The optical filter of claim 3, wherein said at least one unbalanced Mach-Zehnder
- 2 module comprises three unbalanced MZI structures.
- 1 5. The optical filter of claim 3, wherein said at least one unbalanced Mach-Zehnder
- 2 module comprises two unbalanced MZI structures.
- 1 6. The optical filter of claim 1, wherein said at least one ring resonator comprises a
- 2 SiO₂:Ge waveguide and SiO₂ cladding.
- 1 7. The optical filter of claim 1, wherein said at least one ring resonator comprises a
- 2 SiON waveguide and SiO₂ cladding.

- 1 8. The optical filter of claim 1, wherein said at least one ring resonator comprises a
- 2 Si_3N_4 waveguide and SiO_2 cladding.

- 1 9. The optical filter of claim 1 further comprising a tuning mechanism for tuning the
- 2 properties of said optical filter.

- 1 10. The optical filter of claim 9, wherein said tuning mechanism tunes the properties
- 2 of the optical filter thermally.

- 1 11. The optical filter of claim 9, wherein said tuning mechanism tunes the properties
- 2 of the optical filter using electro-optic effect.

- 1 12. The optical filter of claim 1, wherein said optical filter is implemented in a fiber
- 2 optical system.

- 1 13. The optical filter of claim 1, wherein said optical filter is implemented in a Planar
- 2 Lightwave Circuit.

- 1 14. The optical filter of claim 1, wherein said at least one unbalanced MZI module is
- 2 implemented along one arm of said least one ring resonator.

- 1 15. The optical filter of claim 1, wherein said at least one unbalanced MZI module is
- 2 implemented along two arms of said least one ring resonator.

- 1 16. An optical filter comprising:

2 a plurality of filter arrangements including at least one ring resonator that is apt
3 to receive as input an optical signal having a plurality of channels from an input optical
4 source; and

5 at least one unbalanced Mach-Zehnder module nested in said at least one ring
6 resonator, wherein said at least one unbalanced Mach-Zehnder module and said at least
7 one ring resonator are apt to filter at least one selective channel from said optical
8 signal.

1 17. The optical filter of claim 16, wherein said at one ring resonator comprises two or
2 more ring resonators.

1 18. The optical filter of claim 17, wherein said at least one unbalanced Mach-Zehnder
2 module comprises three unbalanced MZI structures.

1 19. The optical filter of claim 17, wherein said at least one unbalanced Mach-Zehnder
2 module comprises two unbalanced MZI structures.

1 20. The optical filter of claim 16, wherein said at least one ring resonator comprises a
2 SiO₂:Ge waveguide and SiO₂ cladding.

1 21. The optical filter of claim 16, wherein said at least one ring resonator comprises a
2 SiON waveguide and SiO₂ cladding.

1 22. The optical filter of claim 16, wherein said at least one ring resonator comprises a
2 Si₃N₄ waveguide and SiO₂ cladding.

- 1 23. The optical filter of claim 16 further comprising a tuning mechanism for tuning the
 - 2 properties of said optical filter.
- 1 24. The optical filter of claim 23, wherein said tuning mechanism tunes the properties
 - 2 of the optical filter thermally.
- 1 25. The optical filter of claim 23, wherein said tuning mechanism tunes the properties
 - 2 of the optical filter using electro-optic effect.
- 1 26. The optical filter of claim 16, wherein said optical filter is implemented in a fiber
 - 2 optical system.
- 1 27. The optical filter of claim 16, wherein said optical filter is implemented in a Planar
 - 2 Lightwave Circuit.
- 1 28. The optical filter of claim 16, wherein said at least one unbalanced MZI module is
 - 2 implemented along one arm of said least one ring resonator.
- 1 29. The optical filter of claim 16, wherein said at least one unbalanced MZI module is
 - 2 implemented along two arms of said least one ring resonator.
- 1 30. A method of optical filtering, said method comprising:
 - 2 providing at least one ring resonator that receives as input an optical signal
 - 3 having a plurality of channels from an input optical source; and
 - 4 providing at least one unbalanced Mach-Zehnder module nested in said at least
 - 5 one ring resonator, wherein said at least one unbalanced Mach-Zehnder module and

6 said at least one ring resonator filtering at least one selective channel from said optical
7 signal.

1 31. The method of claim 30, wherein said at least one unbalanced Mach-Zehnder
2 module comprises an absorber.

1 32. The method of claim 30, wherein said at least one ring resonator comprises two or more
2 ring resonators.

1 33. The method of claim 32, wherein said at least one unbalanced Mach-Zehnder
2 module comprises three unbalanced MZI structures.

1 34. The method of claim 32, wherein said at least one unbalanced Mach-Zehnder
2 module comprises two unbalanced MZI structures.

1 35. The method of claim 30, wherein said at least one ring resonator comprises a
2 SiO₂:Ge waveguide and SiO₂ cladding.

1 36. The method of claim 30, wherein said at least one ring resonator comprises a SiON
2 waveguide and SiO₂ cladding.

1 37. The method of claim 30, wherein said at least one ring resonator comprises a Si₃N₄
2 waveguide and SiO₂ cladding.

1 38. The method of claim 30 further comprising tuning the properties of said optical
2 filter.

1 39. The method of claim 38, wherein said tuning the properties of the optical filter is
2 done thermally.

1 40. The method of claim 38, wherein said tuning the properties of the optical filter is
2 done using electro-optic effect.

1 41. The method of claim 30, wherein said optical filter is implemented in a fiber
2 optical system.

1 42. The method of claim 30, wherein said optical filter is implemented in a Planar
2 Lightwave Circuit.

1 43. The method of claim 30, wherein said at least one unbalanced MZI module is
2 implemented along one arm of said least one ring resonator.

1 44. The method of claim 30, wherein said at least one unbalanced MZI module is
2 implemented along two arms of said least one ring resonator.

1 45. A method of optical filtering, said method comprising:

2 providing a plurality of filter arrangement including at least one ring resonator
3 that receives as input an optical signal having a plurality of channels from an input
4 optical source; and

5 providing at least one unbalanced Mach-Zehnder module nested in said at least
6 one ring resonator, wherein said at least one unbalanced Mach-Zehnder module and
7 said at least one ring resonator filtering at least one selective channel from said optical
8 signal.

1 46. The method of claim 45, wherein said at one ring resonator comprises two or more
2 ring resonators.

1 47. The method of claim 46, wherein said at least one unbalanced Mach-Zehnder
2 module comprises three unbalanced MZI structures.

1 48. The method of claim 46, wherein said at least one unbalanced Mach-Zehnder
2 module comprises two unbalanced MZI structures.

1 49. The method of claim 45, wherein said at least one ring resonator comprises a
2 SiO₂:Ge waveguide and SiO₂ cladding.

1 50. The method of claim 45, wherein said at least one ring resonator comprises a SiON
2 waveguide and SiO₂ cladding.

1 51. The method of claim 45, wherein said at least one ring resonator comprises a Si₃N₄
2 waveguide and SiO₂ cladding.

1 52. The method of claim 45 further comprising tuning the properties of said optical
2 filter.

1 53. The method of claim 52, wherein said tuning the properties of the optical filter is
2 done thermally.

1 54. The method of claim 52, wherein said tuning the properties of the optical filter is
2 done using electro-optic effect.

1 55. The method of claim 45, wherein said optical filter is implemented in a fiber
2 optical system.

1 56. The method of claim 45, wherein said optical filter is implemented in a Planar
2 Lightwave Circuit.

1 57. The method of claim 45, wherein said at least one unbalanced MZI module is
2 implemented along one arm of said least one ring resonator.

1 58. The method of claim 45, wherein said at least one unbalanced MZI module is
2 implemented along two arms of said least one ring resonator.