SN54173, SN54LS173A, SN74173, SN74LS173A 4-BIT D-TYPE REGISTERS WITH 3-STATE OUTPUTS

SDI S067A - OCTOBER 1976 - REVISED ILINE 1999

- 3-State Outputs Interface Directly With System Bus
- Gated Output-Control Lines for Enabling or Disabling the Outputs
- Fully Independent Clock Virtually Eliminates Restrictions for Operating in One of Two Modes:
 - Parallel Load
 - Do Nothing (Hold)
- For Application as Bus Buffer Registers
- Package Options Include Plastic Small-Outline (D) Packages, Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) DIPs

TYPE	TYPICAL PROPAGATION DELAY TIME	MAXIMUM CLOCK FREQUENCY
'173	23 ns	35 MHz
'LS173A	18 ns	50 MHz

description

The '173 and 'LS173A 4-bit registers include D-type flip-flops featuring totem-pole 3-state outputs capable of driving highly capacitive or relatively low-impedance loads. The high-impedance third state and increased high-logic-level drive provide these flip-flops with the capability of being connected directly to and

SN54173, SN54LS173A . . . J OR W PACKAGE SN74173 . . . N PACKAGE SN74LS173A . . . D or N PACKAGE (TOP VIEW)

SN54LS173A . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

driving the bus lines in a bus-organized system without need for interface or pull-up components. Up to 128 of the SN74173 or SN74LS173A outputs can be connected to a common bus and still drive two Series 54/74 or 54LS/74LS TTL normalized loads, respectively. Similarly, up to 49 of the SN54173 or SN54LS173A outputs can be connected to a common bus and drive one additional Series 54/74 or 54LS/74LS TTL normalized load, respectively. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control circuitry is designed so that the average output disable times are shorter than the average output enable times.

Gated enable inputs are provided on these devices for controlling the entry of data into the flip-flops. When both data-enable $(\overline{G1}, \overline{G2})$ inputs are low, data at the D inputs are loaded into their respective flip-flops on the next positive transition of the buffered clock input. Gate output-control (M, N) inputs also are provided. When both are low, the normal logic states (high or low levels) of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a high logic level at either output-control input. The outputs then present a high impedance and neither load nor drive the bus line. Detailed operation is given in the function table.

The SN54173 and SN54LS173A are characterized for operation over the full military temperature range of –55°C to 125°C. The SN74173 and SN74LS173A are characterized for operation from 0°C to 70°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright ▼ 1999, Texas Instruments Incorporated On products compliant to MIL-PRF.38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

SDI SOR7A -	OCTOBER 1976 -	REVISED ILINE 1999	

EI	IN	CT	ION	J TA	BI	E

		INPUTS	ĺ		
CLD	CLK	DATA E	NABLE	DATA	OUTPUT
CLR	CLK	G1	G1 G2		~
Н	Х	Х	Х	X	L
L	L	X	X	X	Q ₀
L	1	Н	X	X	Q ₀
L	1	X	Н	X	Q ₀
L	1	L	L	L	L
L	1	L	L	Н	Н

When either M or N (or both) is (are) high, the output is disabled to the high-impedance state; however, sequential operation of the flip-flops is not affected.

logic symbol†

 $\ This$ symbol is in accordance with ANSI/IEEE Standard 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

logic diagram (positive logic)

Pin numbers shown are for D, J, N, and W packages.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)).5 V to 7 V
Input voltage: '173	5 V to 5.5 V
'LS173A –).5 V to 7 V
Off-state output voltage	V to 5.5 V
Package thermal impedance, θ _{JA} (see Note 2): D package	. 113°C/W
N package	78°C/W
Storage temperature range, T _{stq}	C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Voltage values are with respect to network ground terminal.
2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions (see Note 3)

			SN54173 SN74173			UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
Іон	High-level output current			-2			-5.2	mA
loL	Low-level output current			16			16	mA
ТА	Operating free-air temperature	-55		125	0		70	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	DARAMETER		+	1 :	SN54173			SN74173		UNIT
	PARAMETER	TEST CO	NDITIONST	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNII
VIH	High-level input voltage			2			2			V
VIL	Low-level input voltage					0.8			0.8	V
VIK	Input clamp voltage	V _{CC} = MIN,	I _I = -12 mA			-1.5			-1.5	V
V _{OH}	High-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = MAX	2.4			2.4			٧
V _{OL}	Low-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = 16 mA			0.4			0.4	٧
P200 800	Off-state (high-impedance state)	V _{CC} = MAX,	V _O = 2.4 V			150			40	xΑ
IO(off)	output current	V _{IH} = 2 V	V _O = 0.4 V			-150			-40	×Α
lį	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 5.5 V			1			1	mA
lн	High-level input current	V _{CC} = MAX,	V _I = 2.4 V			40			40	αA
ΙΙL	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V			-1.6			-1.6	mA
los	Short-circuit output current§	V _{CC} = MAX		-30		-70	-30		-70	mA
Icc	Supply current	V _{CC} = MAX,	See Note 4		50	72		50	72	mA

TFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

timing requirements over recommended operating conditions (unless otherwise noted)

			SN54	1173	SN74173		UNIT
			MIN	MAX	MIN	MAX	UNIT
f _{clock}	Input clock frequency			25		25	MHz
t _W	Pulse duration	CLK or CLR	20		20		ns
		Data enable (G1, G2)	17		17		
t _{su}	Setup time	Data	10		10		ns
		CLR (inactive state)	CLR (inactive state) 10 10	10			
	t _h Hold time	Data enable (G1, G2)	2		2		ns
чh		Data	10		10		ris

 [‡] All typical values are at V_{CC} = 5 V, T_A = 25°C.
 § Not more than one output should be shorted at a time.
 NOTE 4: I_{CC} is measured with all outputs open; CLR grounded, following momentary connection to 4.5 V, N, G1, G2, and all data inputs grounded; and CLK and M at 4.5 V.

switching characteristics, V_{CC} = 5 V, T_A = 25°C, R_L = 400 Ω (see Figure 1)

	DADAMETED	TEST CONDITIONS	SN54		SN54173		SN74173			
	PARAMETER	1EST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
f _{max}	Maximum clock frequency		25	35		25	35		MHz	
t _{PHL}	Propagation delay time, high-to-low-level output from clear input			18	27		18	27	ns	
t _{PLH}	Propagation delay time, low-to-high-level output from clock input	C _I = 50 pF		28	43		28	43	ns	
t _{PHL}	Propagation delay time, high-to-low-level output from clock input			19	31		19	31		
tpzh	Output enable time to high level		7	16	30	7	16	30		
tpzL	Output enable time to low level		7	21	30	7	21	30	ns	
tphz	Output disable time from high level	C 5 - 5	3	5	14	3	5	14		
tpLZ	Output disable time from low level	C _L = 5 pF	3	11	20	3	11	20	ns	

recommended operating conditions

		SN	54LS17	ВА	SN74LS173A		3A	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
Іон	High-level output current			-1			-2.6	mA
IOL	Low-level output current			12			24	mA
TA	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	DADAMETED			SN	54LS17	3A	SN	74LS173	BA	UNIT	
	PARAMETER	TEST COI	NDITIONS†	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT	
VIH	High-level input voltage			2			2			V	
VIL	Low-level input voltage					0.7			0.8	V	
VIK	Input clamp voltage	V _{CC} = MIN,	I _I = -18 mA			-1.5			-1.5	V	
VoH	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = MAX	2.4	3.4		2.4	3.1		V	
V.	I I I I I I	V _{CC} = MIN,	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	V	
VOL	Low-level output voltage	V _{IL} = 0.8 V,	I _{OL} = 24 mA					0.35	0.5	V	
i i i	Off-state (high-impedance state)	V _{CC} = MAX,	V _O = 2.7 V			20			20	V	
O(off)	output current	V _{IH} = 2 V	V _O = 0.4 V			-20			-20	V	
lį	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 ∨			0.1			0.1	mA	
lн	High-level input current	V _{CC} = MAX,	V _I = 2.7 V			20			20	αA	
IĮL	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V			-0.4			-0.4	mA	
los	Short-circuit output current§	V _{CC} = MAX	_	-30		-130	-30		-130	mΑ	
Icc	Supply current	V _{CC} = MAX,	See Note 4		19	30		19	24	mA	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

timing requirements over recommended operating conditions (unless otherwise noted)

			\$N54L\$173A MIN MAX 30 25	SN74LS173A		UNIT			
			MIN	MAX	MIN	MAX	UNIT		
fclock	Input clock frequency	2		30		25	MHz		
t _W	Pulse duration	CLK or CLR	25		25		ns		
		Data enable (G1, G2)	35		35				
t _{su}	Setup time	Data	17		17		ns		
		CLR (inactive state)	10		10				
	I lold time	Data enable (G1, G2)	0		0		no		
th	Hold time	Data	3		3		ns		

^{**}All typical values are at V_{CC} = 5 V, T_A = 25°C.

§ Not more than one output should be shorted at a time.

NOTE 4: I_{CC} is measured with all outputs open; CLR grounded, following momentary connection to 4.5 V, N, G1, G2, and all data inputs grounded; and CLK and M at 4.5 V.

switching characteristics, V_{CC} = 5 V, T_A = 25°C, R_L = 667 Ω (see Figure 2)

	DADAMETED	TEST CONDITIONS	SN54LS173A			SN74LS173A			LINUT
	PARAMETER	1EST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
f _{max}	Maximum clock frequency		30	50		30	50		MHz
t _{PHL}	Propagation delay time, high-to-low-level output from clear input	C _I = 45 pF		26	35		26	35	ns
t _{PLH}	Propagation delay time, low-to-high-level output from clock input			17	25		17	25	ns
t _{PHL}	Propagation delay time, high-to-low-level output from clock input			22	30		22	30	
t _{PZH}	Output enable time to high level			15	23		15	23	
tpzL	Output enable time to low level			18	27		18	27	ns
tpHZ	Output disable time from high level	C: - F 2F		11	20		11	20	
tpLZ	Output disable time from low level	C _L = 5 pF		11	17		11	17	ns

PARAMETER MEASUREMENT INFORMATION SERIES 54/74 AND 54S/74S DEVICES

- NOTES: A. C_I includes probe and jig capacitance.
 - All diodes are 1N3064 or equivalent.
 - All diodes are 113/064 of equivalent. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. S1 and S2 are closed for tp_H, tp_HL, tp_HZ, and tp_Z; S1 is open and S2 is closed for tp_ZH; S1 is closed and S2 is open for tp_ZL. All input pulses are supplied by generators having the following characteristics: $PRR \le 1 \text{ MHz}$, $ZO \approx 50 \Omega$, t_T and $t_T \le 7 \text{ ns}$ for Series

 - 54/74 devices and t_r and t_f ≤ 2.5 ns for Series 54S/74S devices
 - The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

SED JUNE 1999

PARAMETER MEASUREMENT INFORMATION SERIES 54LS/74LS DEVICES

- NOTES: A. C_L includes probe and jig capacitance.
 - All diodes are 1N3064 or equivalent.
 - Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - S1 and S2 are closed for tp_H, tp_H, tp_Hz, and tp_Lz, S1 is open and S2 is closed for tp_H, S1 is closed and S2 is open for tp_L. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.

 - All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O \approx 50~\Omega$, $t_r \leq$ 15 ns, $t_f \leq$ 6 ns.
 - The outputs are measured one at a time with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms

10

17-Dec-2015

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
JM38510/36101BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 36101BEA	Samples
JM38510/36101BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 36101BFA	Samples
M38510/36101BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 36101BEA	Samples
M38510/36101BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 36101BFA	Samples
SN54173J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54173J	Samples
SN54LS173AJ	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54LS173AJ	Sample
SN74173N	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74LS173AD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS173A	Sample
SN74LS173AN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS173AN	Samples
SN74LS173ANE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS173AN	Samples
SNJ54173J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54173J	Samples
SNJ54173W	OBSOLETE	E CFP	W	16		TBD	Call TI	Call TI	-55 to 125		
SNJ54LS173AFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	SNJ54LS 173AFK	Sample
SNJ54LS173AJ	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54LS173AJ	Sample

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBLY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device.

Addendum-Page 1

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

www.ti.com 17-Dec-2015

TBD: The Pb-Free/Green conversion plan has not been defined

Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, Tl Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54173, SN54LS173A, SN54LS173A-SP, SN74173, SN74LS173A:

- Catalog: SN74173, SN74LS173A, SN54LS173A
- Military: SN54173, SN54LS173A
- Space: SN54LS173A-SP

NOTE: Qualified Version Definitions:

- . Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

Addendum-Page 2

PACKAGE OPTION ADDENDUM

17-Dec-2015

• Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application

Addendum-Page 3

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.
 C. This package can be hermetically sealed with a ceramic lid using glass frit.
 D. Index point is provided on cap for terminal identification only.
 E. Falls within MIL STD 1835 GDFP2—F16

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

- All linear dimensions are in inches (millimeters). This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

 The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- All linear dimensions are in inches (millimeters). This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.

 Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.

 E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
 B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have **not** been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products Consumer Electronics www.dlp.com www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers Industrial www.ti.com/clocks www.ti.com/industrial Medical Interface interface.ti.com www.ti.com/medical Security Logic www.ti.com/security logic.ti.com

Power Mgmt Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated