LINEAR PROGRAMMING PROJECT

GROUP 2 REPORT FOR OPTIMIZATION F24 COURSE

Dmitry Beresnev

MS-DS1, Innopolis University d.beresnev@innopolis.university

Vsevolod Klyushev

MS-DS1, Innopolis University v.klyushev@innopolis.university

1 Introduction

Initial problem is formulated as following:

$$\min_{x' \in \mathbb{R}^p} \|Ax' - y'\|_1$$
 s.t. $0 \le x' \le 1$

where $A \in \mathbb{R}^{m \times p}$ with $m \geq p$ — message encoding matrix, y' — received encoded (noisy) message, x' — encoded initial message to be find.

2 Q1: Linear problem formulation

Initial problem eq. (1) is not linear as cost function $\|Ax'-y'\|_1=\sum_{i=1}^m|(Ax')_i-y_i'|$, where $(\cdot)_i$ — i-th component of vector, is not linear. However, this objective function is piecewise linear convex function. Therefore