(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 21. März 2002 (21.03.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/22568 A1

(51) Internationale Patentklassifikation⁷: C07C 323/58, 323/61, A61K 31/198, A61P 25/00

(21) Internationales Aktenzeichen:

PCT/EP01/10488

(22) Internationales Anmeldedatum:

11. September 2001 (11.09.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): GRÜNENTHAL GMBH [DE/DE]; Zieglerstr. 6, 52078 Aachen (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): CHIZH, Boris [RU/DE]; Melanieweg 23, 52072 Aachen (DE). GER-LACH, Matthias [DE/DE]; Pfarrgasse 1, 63636 Brachttal (DE). HAURAND, Michael [DE/DE]; Fuchspfad 18, 52078 Aachen (DE). PÜTZ, Claudia [DE/DE]; Holzstr. 15, 52349 Düren (DE). GAUBE, Gero [DE/DE]; Rochusstr. 5, 52062 Aachen (DE). ENDERS, D. [DE/DE]; Deiserhofstr. 27, 52078 Aachen (DE).

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: B-THIO-AMINO ACIDS

(54) Bezeichnung: β-THIO-AMINOSÄUREN

(57) Abstract: The invention relates to thio- α -amino acids of general formula (I), wherein R^1 , R^2 and R^3 have the meanings given in the description, to methods for producing them, to medicaments containing these compounds and to the use of thioamino acids for producing medicaments.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft β -Thio- α -Aminosäuren der allgemeinen Formel (I), worin R^1 , R^2 , R^3 die in der Beschreibung angegebenen Bedeutungen haben, Verfahren zu deren Herstellung, Arzneimittel enthaltend diese Verbindungen und die Verwendung von Thioaminosäuren zur Herstellung von Arzneimitteln.

WO 02/22568 PCT/EP01/10488

5

10

15

20

25

30

β-Thio-Aminosäuren

Die vorliegende Erfindung betrifft β -Thio- α -Aminosäuren, Verfahren zu deren Herstellung, Arzneimittel enthaltend diese Verbindungen und die Verwendung von Thioaminosäuren zur Herstellung von Arzneimitteln.

Das cyclische GABA Analoge Gabapentin ist ein klinisch erprobtes Antiepileptikum. Gabapentin zeigt zudem weitere interessante, medizinische relevante Eigenschaften, insbesondere als Analgetikum. Interessant sind deshalb neue Strukturklassen, die Affinität zur Gabapentin-Bindungsstelle aufweisen. Es besteht bei den genannten Indikationen weiterer Bedarf an Substanzen, die in ihren Eigenschaften Übereinstimmungen mit Gabapentin zeigen, beispielsweise in der analgetischen Wirkung.

Die Behandlung chronischer und nichtchronischer Schmerzzustände hat in der Medizin eine große Bedeutung. Es besteht ein weltweiter Bedarf an gut wirksamen Schmerztherapien. Der dringende Handlungsbedarf für eine patientengerechte und zielorientierte Behandlung chronischer und nicht chronischer Schmerzzustände, wobei hierunter die erfolgreiche und zufriedenstellende Schmerzbehandlung für den Patienten zu verstehen ist, dokumentiert sich in der großen Anzahl von wissenschaftlichen Arbeiten, die auf dem Gebiet der angewandten Analgetik bzw. der Grundlagenforschung zur Nociception in letzter Zeit erschienen sind.

Klassische Opioide wie Morphin sind bei der Therapie starker bis stärkster Schmerzen gut wirksam. Ihr Einsatz wird jedoch durch die bekannten Nebenwirkungen z.B. Atemdepression, Erbrechen, Sedierung, Obstipation und Toleranzentwicklung limitiert. Außerdem sind sie bei neuropathischen oder inzidentiellen Schmerzen, unter denen insbesondere Tumorpatienten leiden, weniger wirksam.

Aufgabe der Erfindung war es daher, Strukturen, vorzugsweise neue Strukturen, aufzufinden, die Affinität zur Gabapentin-Bindungsstelle und/oder entsprechende physiologische Wirksamkeiten, beispielsweise in Hinblick auf Analgesie, aber auch andere GBP-Indikationen, aufweisen, aufzufinden.

Gegenstand der Erfindung ist daher die Verwendung einer β -Thio- α -aminosäure der allgemeinen Formel I,

10

5

$$R^3$$
S NH_2
 R^2 R^1 COOH

, worin

15

 R^1 und R^2 jeweils unabhängig voneinander ausgewählt sind aus H; C_{1-10} -Alkyl, verzweigt oder unverzweigt, gesättigt oder ungesättigt, unsubstituiert oder ein- oder mehrfach substituiert; Benzyl, Aryl, C_{3-8} -Cycloalkyl oder Heteroaryl, jeweils unsubstituiert oder ein- oder mehrfach substituiert; oder

20

 R^1 und R^2 zusammen einen $(CH_2)_{3-6}$ -Ring bilden, gesättigt oder ungesättigt, substituiert oder unsubstituiert, in dem 0-2 C-Atome durch S, O oder NR^4 , ersetzt sein können,

25

mit R⁴ ausgewählt aus: H; C₁₋₁₀-Alkyl, gesättigt oder ungesättigt, verzweigt oder unverzweigt, einfach oder mehrfach substituiert oder unsubstituiert;

30

R³ ausgewählt ist aus H; C₁₋₁₀-Alkyl, gesättigt oder ungesättigt, verzweigt oder unverzweigt, einfach oder mehrfach substituiert oder unsubstituiert;

5

10

15

25

30

C₃₋₈-Cycloalkyl, gesättigt oder ungesättigt, unsubstituiert oder einfach oder mehrfach substituiert; Aryl-, oder Heteroaryl, jeweils unsubstituiert oder einfach oder mehrfach substituiert; oder über gesättigtes oder ungesättigtes C₁₋₃-Alkyl gebundenem Aryl, C₃₋₈-Cycloalkyl oder Heteroaryl, jeweils unsubstituiert oder einfach oder mehrfach substituiert;

in Form ihrer Razemate; Enantiomere, Diastereomere, insbesondere Mischungen ihrer Enantiomere oder Diastereomere oder eines einzelnen Enantiomers oder Diastereomers; in Form ihrer physiologisch verträglichen sauren und basischen Salze bzw. Salze mit Kationen bzw. Basen oder mit Anionen bzw. Säuren oder in Form der freien Säuren oder Basen;

mit Ausnahme von Verbindungen, bei denen R¹, R² und R³ gleichzeitig H sind oder R¹ und R² gleichzeitig CH₃ sind und R³ Wasserstoff entspricht,

zur Herstellung eines Arzneimittels zur Behandlung von Schmerz, insbesondere von neuropathischem, chronischem oder akutem Schmerz, von Epilepsie und/oder von Migräne

20 oder

zur Herstellung eines Arzneimittels zur Behandlung von Hyperalgesie und Allodynie, insbesondere thermischer Hyperalgesie, mechanischer Hyperalgesie und Allodynie und Kälte Allodynie, oder von inflammatorischem oder postoperativem Schmerz

oder

zur Herstellung eines Arzneimittels zur Behandlung von Hitzewallungen, Beschwerden in der Postmenopause, Amyotropischer Lateraler Sklerose (ALS), Reflex Sympasthetic Dystrophy (RSD), Spastischer Lähmung, Restless Leg Syndrom, erworbenem Nystagmus; psychatrischen bzw. neuropathologischen Störungen, wie bipolaren Störungen, Anxiety, Panikanfällen, Stimmungsschwankungen, manischem Verhalten,

Depressionen, manisch-depressivem Verhalten; schmerzvoller diabetischer Neuropathie, Symptomen und Schmerzen aufgrund von Multipler Sklerose oder der Parkinsonschen Krankheit, neurodegenerativen Erkrankungen, wie Morbus Alzheimer, Morbus Huntington, Morbus Parkinson und Epilepsie; gastrointestinaler Schädigung; von erythromelalgischem oder postpoliomyelitischem Schmerz, trigeminaler oder postherpetischer Neuralgie; oder als Antikonvulsivum, Analgetikum oder Anxiolytikum.

Diese Substanzen binden an die Gabapentin-Bindungsstelle und zeigen eine ausgeprägte analgetische Wirkung.

5

10

15

20

25

30

Im Sinne dieser Erfindung versteht man unter Alkyl- bzw. Cykloalkyl-Resten gesättigte und ungesättigte (aber nicht aromatische), verzweigte, unverzweigte und cyclische Kohlenwasserstoffe, die unsubstituiert oder ein- oder mehrfach substituiert sein können. Dabei steht C₁₋₂-Alkyl für C1- oder C2-Alkyl, C₁₋₃-Alkyl für C1-, C2- oder C3-Alkyl, C₁₋₄-Alkyl für C1-, C2-, C3- oder C4-Alkyl, C₁₋₅-Alkyl für C1-, C2-, C3-, C4oder C5-Alkyl, C₁₋₆-Alkyl für C1-, C2-, C3-, C4-, C5- oder C6-Alkyl, C₁₋₇-Alkyl für C1-, C2-, C3-, C4-, C5-, C6- oder C7-Alkyl, C₁₋₈-Alkyl für C1-, C2-, C3-, C4-, C5-, C6-, C7oder C8-Alkyl, C₁₋₁₀-Alkyl für C1-, C2-, C3-, C4-, C5-, C6-, C7-, C8,- C9- oder C10-Alkyl und C₁₋₁₈-Alkyl für C1-, C2-, C3-, C4-, C5-, C6-, C7-, C8,- C9-, C10-, C11-, C12-, C13-, C14-, C15-, C16-, C17- oder C18-Alkyl. Weiter steht C3-4-Cycloalkyl für C3oder C4-Cycloalkyl, C₃₋₅-Cycloalkyl für C3-, C4- oder C5-Cycloalkyl, C₃₋₆-Cycloalkyl für C3-, C4-, C5- oder C6-Cycloalkyl, C₃₋₇-Cycloalkyl für C3-, C4-, C5-, C6- oder C7-Cycloalkyl, C₃₋₈-Cycloalkyl für C3-, C4-, C5-, C6-, C7- oder C8-Cycloalkyl, C₄₋₅-Cycloalkyl für C4- oder C5-Cycloalkyl, C₄₋₆-Cycloalkyl für C4-, C5- oder C6-Cycloalkyl, C₄₋₇-Cycloalkyl für C4-, C5-, C6- oder C7-Cycloalkyl, C₅₋₆-Cycloalkyl für C5- oder C6-Cycloalkyl und C₅₋₇-Cycloalkyl für C5-, C6- oder C7-Cycloalkyl. In Bezug auf Cycloalkyl umfaßt der Begriff auch gesättigte Cycloalkyle, in denen ein oder 2 Kohlenstoffatome durch ein Heteroatom, S, N oder O ersetzt sind. Unter den Begriff Cycloalkyl fallen aber insbesondere auch ein- oder mehrfach, vorzugsweise einfach, ungesättigte Cycloalkyle ohne Heteroatom im Ring, solange das Cycloalkyl kein aromatisches System darstellt. Vorzugsweise sind die Alkyl- bzw. Cykloalkyl-Reste Methyl, Ethyl, Vinyl (Ethenyl), Propyl, Allyl (2-Propenyl), 1-Propinyl, Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1,1-Dimethylpropyl,

1,2-Dimethylpropyl, 2,2-Dimethylpropyl, Hexyl, 1-Methylpentyl, Cyclopropyl, 2-Methylcyclopropyl, Cyclopropylmethyl, Cyclobutyl, Cyclopentyl, Cyclopentylmethyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, aber auch Adamantyl, CHF₂, CF₃ oder CH₂OH sowie Pyrazolinon, Oxopyrazolinon, [1,4]Dioxan oder Dioxolan.

5

10

20

Dabei versteht man im Zusammenhang mit Alkyl und Cycloalkyl unter dem Begriff substituiert im Sinne dieser Erfindung die Substitution eines Wasserstoffrestes durch F, Cl, Br, I, NH₂, SH oder OH, wobei unter "mehrfach substituiert" Resten zu verstehen ist, daß die Substitution sowohl an verschiedenen als auch an gleichen Atomen mehrfach mit den gleichen oder verschiedenen Substituenten erfolgt, beispielsweise dreifach am gleichen C-Atom wie im Falle von CF₃ oder an verschiedenen Stellen wie im Falle von -CH(OH)-CH=CH-CHCl₂. Besonders bevorzugte Substituenten sind hier F, Cl und OH.

Unter einem Aryl-Rest werden Ringsysteme mit mindestens einem armomatischen Ring aber ohne Heteroatome in auch nur einem der Ringe verstanden. Beispiele sind Phenyl-, Naphthyl-, Fluoranthenyl-, Fluorenyl-, Tetralinyl- oder Indanyl, insbesondere 9H-Fluorenyl- oder Anthracenyl-Reste, die unsubstituiert oder einfach oder mehrfach substituiert sein können.

Unter einem Heteroaryl-Rest werden heterocyclische Ringsysteme mit mindestens einem ungesättigten Ring verstanden, die ein oder mehrere Heteroatome aus der Gruppe Stickstoff, Sauerstoff und/oder Schwefel enthalten und auch einfach oder mehrfach substituiert sein können. Beispielhaft seien aus der Gruppe der Heteroaryle Furan, Benzofuran, Thiophen, Benzothiophen, Pyrrol, Pyridin, Pyrimidin,
 Pyrazin, Chinolin, Isochinolin, Phthalazin, Benzo-1,2,5 thiadiazol, Benzothiazol, Indol, Benzotriazol, Benzodioxolan, Benzodioxan, Carbazol, Indol und Chinazolin aufgeführt.

Dabei versteht man im Zusammenhang mit Aryl und Heteroaryl unter substituiert die Substitution des Aryls oder Heteroaryls mit R^{23} , OR^{23} einem Halogen, vorzugsweise F und/oder Cl, einem CF_3 , einem CN, einem NO_2 , einem $NR^{24}R^{25}$, einem C_{1-6} -Alkyl (gesättigt), einem C_{1-6} -Alkoxy, einem C_{3-8} -Cycloalkoxy, einem C_{3-8} -Cycloalkyl oder einem C_{2-6} -Alkylen.

5

10

15

20

25

30

Dabei steht der Rest R^{23} für H, einen C_{1-10} -Alkyl-, vorzugsweise einen C_{1-6} -Alkyl-, einen Aryl- oder Heteroaryl- oder für einen über eine C_{1-3} -Alkylen-Gruppe gebundenen Aryl- oder Heteroaryl-Rest, wobei diese Aryl und Heteroarylreste nicht selbst mit Aryl- oder Heteroaryl-Resten substituiert sein dürfen,

die Reste R^{24} und R^{25} , gleich oder verschieden, für H, einen C_{1-10} -Alkyl-, vorzugsweise einen C_{1-6} -Alkyl-, einen Aryl-, einen Heteroaryl- oder einen über eine C_{1-3} -Alkylen-Gruppe gebundenen Aryl- oder Heteroaryl-Rest bedeuten, wobei diese Aryl und Heteroarylreste nicht selbst mit Aryl- oder Heteroaryl-Resten substituiert sein dürfen,

oder die Reste R 24 und R 25 bedeuten zusammen CH $_2$ CH $_2$ OCH $_2$ CH $_2$ CH $_2$ NR 26 CH $_2$ CH $_2$ oder (CH $_2$) $_{3-6}$, und

der Rest R^{26} für H, einen C_{1-10} -Alkyl-, vorzugsweise einen C_{1-6} -Alkyl-, einen Aryl-, oder Heteroaryl- Rest oder für einen über eine C_{1-3} -Alkylen-Gruppe gebundenen Aryl- oder Heteroaryl-Rest, wobei diese Aryl und Heteroaryl-Resten substituiert sein dürfen.

Unter dem Begriff Salz ist jegliche Form des erfindungsgemäßen Wirkstoffes zu verstehen, in dem dieser eine ionische Form annimmt bzw. geladen ist und mit einem Gegenion (einem Kation oder Anion) gekoppelt ist bzw. sich in Lösung befindet. Darunter sind auch Komplexe des Wirkstoffes mit anderen Molekülen und Ionen zu verstehen, insbesondere Komplexe, die über ionische Wechselwirkungen komplexiert sind.

Unter dem Begriff des physiologisch verträglichen Salzes mit Kationen oder Basen versteht man im Sinne dieser Erfindung Salze mindestens einer der

erfindungsgemäßen Verbindungen - meist einer (deprotonierten) Säure - als Anion mit mindestens einem, vorzugsweise anorganischen, Kation, die physiologisch – insbesondere bei Anwendung im Menschen und/oder Säugetier – verträglich sind. Besonders bevorzugt sind die Salze der Alkali- und Erdalkalimetalle aber auch mit NH₄⁺, insbesondere aber (Mono-) oder (Di-) Natrium-, (Mono-) oder (Di-) Kalium-, Magnesium- oder Calzium-Salze.

Unter dem Begriff des physiologisch verträglichen Salzes mit Anionen oder Säuren Sinne dieser Erfindung Salze im mindestens erfindungsgemäßen Verbindungen – meist, beispielsweise am Stickstoff, protoniert als Kation mit mindestens einem Anion, die physiologisch - insbesondere bei Anwendung im Menschen und/oder Säugetier - veträglich sind. Insbesondere versteht man darunter im Sinne dieser Erfindung das mit einer physiologisch verträglichen Säure gebildete Salz, nämlich Salze des jeweiligen Wirkstoffes mit anorganischen bzw. organischen Säuren, die physiologisch - insbesondere bei Anwendung im Menschen und/oder Säugetier - verträglich sind. Beispiele für physiologisch verträgliche Salze bestimmter Säuren sind Salze der: Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Methansulfonsäure. Ameisensäure. Essigsäure, Oxalsäure, Bernsteinsäure, Weinsäure, Mandelsäure, Fumarsäure, Milchsäure, Zitronensäure, Glutaminsäure, 1,1-Dioxo-1,2-dihydro1b6benzoldlisothiazol-3-on (Saccharinsaure), Monomethylsebacinsaure, 5-Oxo-prolin, Hexan-1-sulfonsäure, Nicotinsäure, 2-, 3- oder 4-Aminobenzoesäure, 2,4,6-Trimethyl-benzoesäure, a-Liponsäure, Acetylglycin, Acetylsalicylsäure, Hippursäure und/oder Asparaginsäure. Besonders bevorzugt ist das Hydrochlorid-Salz.

25

30

5

10

15

20

Alle hier vorangehend aufgeführten und für die Verwendung definierten Substanzen verdrängen Gabapentin von seiner – auch in der Wissenschaft bisher noch unbekannten – Bindungsstelle. Das impliziert aber, daß die erfindungsgemäßen Substanzen an der gleichen Bindungsstelle binden und über sie physiologisch wirken werden, vermutlich mit dem gleichen Wirkungsprofil wie Gabapentin. Daß diese Annahme der gleichen Wirkung bei gleicher Bindungsstelle auch zutrifft, wird durch die analgetische Wirkung bewiesen. So verdrängen die erfindungsgemäßen Verbindungen nicht nur Gabapentin von seiner Bindungsstelle sondern wirken auch – wie Gabapentin – deutlich analgetisch. Entsprechend ist der Gegenstand der

WO 02/22568 8 PCT/EP01/10488

Erfindung die Verwendung der genannten und definierten Thioaminosäuren in den vorangehend genannten Indikationen, in denen Gabapentin wirkt, also insbesondere in der Schmerztherapie, bei Epilepsie oder Migräne, aber speziell auch im neuropathischen Schmerz also Hyperalgesie und Allodynie und den anderen Gabapentin Indikationen.

5

10

15

20

25

30

Gabapentin ist ein bekanntes Antiepileptikum mit antikonvulsiver Wirkung. Neben dieser wird Gabapentin von auch in verschiedenen anderen Indikation eingesetzt, unter anderem von behandelnden Ärzten bei Migräne und bipolaren Störungen sowie Hitzewallungen (z.B. in der Postmenopause) verschrieben (M. Schrope, Modern Drug Discovery, September 2000, S. 11). Andere Indikationenen, in denen Gabapentin ein therapeutisches Potential zeigt, wurden während der Humanstudien und im klinischen Gebrauch identifiziert (J.S. Bryans, D.J. Wustrow; "3-Substituted GABA Analogs with Central Nervous System Activity: A Review in Med. Res. Rev. (1999), S. 149-177). In diesem Übersichtsartikel wird detailliert die Wirkung von Gabapentin aufgelistet. So ist Gabapentin wirksam in der Behandlung chronischer Schmerzen und Verhaltensstörungen. Insbesondere sind aufgeführt: Antikonvulsive und antiepileptische Wirkungen, der Einsatz gegen chronischen, neuropathischen Schmerz, insbesondere thermische Hyperalgesie, mechanische Allodynie, Kälte Allodynie. Weiter wirkt es gegen durch Nervenschädigungen ausgelöste Neuropathie, insbesondere eben neuropathischen Schmerz, wie auch inflammatorischen und postoperativen Schmerz erfolgreich. Gabapentin ist auch erfolgreich bei antipsychotischen Effekten insbesondere als Anxiolytikum. Weitere überprüfte Indikationen umfassen: Amyotropische Laterale Sklerose (ALS), Reflex Sympasthetic Dystrophy (RSD), Spastische Lähmung, Restless Leg Syndrom. Behandlung von Symptomen und Schmerz aufgrund von Multipler Sklerose, erworbener Nystagmus, Behandlung der Symptome der Parkinsonschen Krankheit, der schmerzvollen diabetischen Neuropathie und psychatrischer Störungen, z.B. bipolare Störungen, Stimmungsschwankungen, manisches Verhalten. Weiter erfolgreich war der Einsatz von Gabapentin bei erythromelalgischem Schmerz, postpoliomyelitisem Schmerz, trigeminaler Neuralgie und postherpetischer Neuralgie (Bryans und Wustrow (1999), a.a.O.). Allgemein bekannt und auch dem genannten Übersichtsartikel anhand der Beispiele zu entnehmen ist auch die allgemeine Wirksamkeit in neurodegenerativen Erkrankungen. Solche Neurodegenerativen

Erkrankungen sind z.B. Morbus Alzheimer, Morbus Huntington, Morbus Parkinson und Epilepsie. Bekannt ist auch die Wirksamkeit von Gabapentin bei gastrointestinalen Schädigungen.

In einer bevorzugten Ausführungsform wird in diesen Indikationen eine Thioaminosäure gemäß Formel I verwendet, worin

 R^1 und R^2 jeweils unabhängig voneinander ausgewählt sind aus C_{1-10} -Alkyl, verzweigt oder unverzweigt, gesättigt oder ungesättigt, unsubstituiert oder ein- oder mehrfach substituiert; Benzyl, Aryl, C_{3-8} -Cycloalkyl oder Heteroaryl, jeweils unsubstituiert oder ein- oder mehrfach substituiert;

oder

 R^1 und R^2 zusammen einen $(CH_2)_{3-6}$ -Ring bilden, gesättigt oder ungesättigt, substituiert oder unsubstituiert, in dem 0-2 C-Atome durch S, O oder NR^4 , ersetzt sein können.

In einer weiteren bevorzugten Ausführungsform wird in diesen Indikationen eine Thioaminosäure gemäß Formel I verwendet; worin

 R^1 und R^2 jeweils unabhängig voneinander ausgewählt sind aus H; C_{1-10} -Alkyl, verzweigt oder unverzweigt, gesättigt oder ungesättigt, unsubstituiert oder ein- oder mehrfach substituiert; Phenyl oder Thiophenyl, jeweils unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder I) substituiert; oder C_{3-8} -Cycloalkyl, unsubstituiert oder substituiert,

oder

30

10

15

20

25

 R^1 und R^2 zusammen einen $(CH_2)_{3-6}$ -Ring bilden, substituiert oder unsubstituiert, in dem 0-1 C-Atome durch S, O oder NR_4 , ersetzt sein können,

5

10

15

20

25

30

vorzugsweise

einer der Reste R^1 und R^2 C_{1-2} -Alkyl, insbesondere Methyl oder Ethyl, jeweils unsubstituiert oder ein- oder mehrfach substituiert; oder Phenyl, Thiophenyl, jeweils unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder I) substituiert; oder C_{3-8} -Cycloalkyl unsubstituiert oder einfach substituiert; bedeutet und der andere der Reste R^1 und R^2 C_{2-10} -Alkyl, insbesondere Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, tert.-Butyl, Pentyl, Hexyl, Heptyl oder Octyl, verzweigt oder unverzweigt, gesättigt oder ungesättigt, unsubstituiert oder ein- oder mehrfach substituiert; oder Phenyl bzw. Thiophenyl, jeweils unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder I) substituiert; oder C_{3-8} -Cycloalkyl, insbesondere Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl, jeweils unsubstituiert oder einfach substituiert; bedeutet,

oder

R¹ und R² zusammen Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl, insbesondere Cyclopropyl, Cyclobutyl oder Cyclopentyl, bilden, jeweils unsubstituiert oder einfach substituiert, wobei gegebenenfalls ein C-Atom im Ring durch S ersetzt ist.

In einer bevorzugten Ausführungsform wird in diesen Indikationen eine Thioaminosäure gemäß Formel I verwendet, worin

R₃ ausgewählt ist aus H; C₁₋₆-Alkyl, gesättigt oder ungesättigt, verzweigt oder unverzweigt, einfach oder mehrfach substituiert oder unsubstituiert; Phenyl oder Thiophenyl, unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder I) substituiert; oder über gesättigtes CH₃-gebundenem Phenyl, unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder I) substituiert;

vorzugsweise R³ ausgewählt ist aus H; C₁₋₆-Alkyl, gesättigt, unverzweigt und unsubstituiert, insbesondere Methyl, Ethyl, Propyl, n-Propyl, i-Propyl, Butyl, n-Butyl, i-Butyl, tert.-Butyl, Pentyl oder Hexyl; Phenyl oder Thiophenyl, unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder I) substituiert; oder über gesättigtes CH₃-gebundenem Phenyl, unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder I) substituiert.

Es ist weiter bevorzuzgt, wenn für die erfindungsgemäße Verwendung weiter gilt, daß für die verwendete Thioaminosäure gemäß Formel I gilt, daß,

5

15

20

25

30

- wenn einer von R¹ öder R² Wasserstoff ist und R³ Benzyl oder H ist, der andere von R¹ oder R² nicht Phenyl sein darf,
- wenn R¹ und R² zusammen Cyclopentyl bilden, R³ nicht H sein darf,
- wenn einer von R¹ oder R² Wasserstoff und der andere von R¹ oder R²
 Phenyl ist, R³ nicht substituiertes oder unsubstituiertes Benzyl sein darf oder
- wenn einer von R¹ oder R² Wasserstoff und der andere von R¹ oder R²
 Methyl ist, R³ nicht H sein darf.

In einer weiteren bevorzugten Ausführungsform der Erfindung wird eine Thioaminosäure ausgewählt aus der folgenden Gruppe verwendet:

- 2-Amino-3-mercapto-3-methyl-pentansäure
- 2-Amino-3-mercapto-3-methyl-hexansäure
- 2-Amino-3-mercapto-3-methyl-heptansäure
- 2-Amino-3-mercapto-3-methyl-octansäure
- 2-Amino-3-mercapto-3-methyl-nonansäure
- 2-Amino-3-mercapto-3-methyl-decansäure
- 2-Amino-3-ethyl-3-mercapto-pentansäure
- Amino-(1-mercapto-cyclopentyl)essigsäure
- Amino-3-ethyl-3-mercapto-hexansäure
- 2-Amino-3-mercapto-3-methyl-decansäure

- 2-Amino-3-mercapto-3-methyl-nonansäure
- 2-Amino-3-mercapto-3-methyl-octansäure
- 2-Amino-3-ethylsulfanyl-3-methyl-octansäure
- 2-Amino-3-benzylsulfanyl-3-methyl-octansäure
- 2-Amino-3-mercapto-3-propyl-3-hexansäure
- Amino-(1-mercapto-cycloheptyl)-essigsäure
- 2-Amino-3-mercapto-3-propyl-3-hexansäure
- Amino-(1-mercapto-cycloheptyl)-essigsäure
- 2-Amino-3-ethylsulfanyl-3-methyl-nonansäure
- 2-Amino-3-methyl-3-propylsulfanyl-nonansäure
- 2-Amino-3-hexylsulfanyl-3-methyl-nonansäure
- 2-Amino-3-benzylsulfanyl-3-methyl-nonansäure
- 2-Amino-3-benzylsulfanyl-3-methyl-decansäue
- 2-Amino-3-ethylsulfanyl-3-methyl-decansäure
- 2-Amino-3-cyclopropyl-3-(4-fluoro-phenyl)-3-mercapto-propansäure
- 2-Amino-3-cyclopropyl-3-mercapto-butansäure
- 2-Amino-3-cyclobutyl-3-mercapto-butansäure
- 2-Amino-3-cyclohexyl-3-mercapto-butansäure
- 2-Amino-3-mercapto-3-thiophen-2-yl-butansäure
- 2-Amino-3-ethyl-3-mercapto-heptansäure
 - Amino-(1-mercapto-cyclohexyl)- ethansäure
 - Amino-(1-mercapto-3-methyl-cyclohexyl)-ethansäure
 - Amino-(1-mercapto-2-methyl-cyclohexyl)-ethansäure
 - Amino-(1-mercapto-4-methyl-cyclohexyl)-ethansäure
 - Amino-(4-mercapto-tetrahydro-thiopyran-4-yl)-ethansäure
 - 2-Amino-3-mercapto-3,4-dimethyl-pentansäur
 - 2-Amino-3-mercapto-3,4-dimethyl-hexansäure

in Form ihrer Razemate; Enantiomere, Diastereomere, insbesondere Mischungen ihrer Enantiomere oder Diastereomere oder eines einzelnen Enantiomers oder Diastereomers; in Form ihrer physiologisch verträglichen sauren und basischen Salze bzw. Salze mit Kationen bzw. Basen oder mit

10

5

15

20

25

30

13

Anionen bzw. Säuren od r in Form der freien Säuren oder Basen, vorzugsweise des Hydrochlorids.

Es ist weiter bevorzugt, wenn bei der erfindungsgemäßen Verwendung mindestens eine verwendete Thioaminosäure als reines Diastereomer und/oder Enantiomer, als Razemat oder als nicht-äquimolare oder äquimolare Mischung der Diastereomere und/oder Enantiomere vorliegt.

Ein weiterer Gegenstand der Erfindung sind β -Thio- α -aminosäuren der allgemeinen Formel I,

$$R^3$$
S NH_2
 R^2 COOH

15

5

10

, worin

20

einer der Reste R^1 und R^2 C_{1-6} -Alkyl, gesättigt oder ungesättigt, verzweigt oder unverzweigt, einfach oder mehrfach substituiert oder unsubstituiert; bedeutet und der andere der Reste R^1 und R^2 C_{3-10} -Alkyl, gesättigt oder ungesättigt, verzweigt oder unverzweigt, einfach oder mehrfach substituiert oder unsubstituiert; oder Phenyl, Thiophenyl oder C_{3-8} -Cycloalkyl, jeweils unsubstituiert oder einfach oder mehrfach substituiert; bedeutet,

25

30

und

R³ ausgewählt ist aus H; C₁₋₁₀-Alkyl, gesättigt oder ungesättigt, verzweigt oder unverzweigt, einfach oder mehrfach substituiert oder unsubstituiert; C₃₋₈-Cycloalkyl, gesättigt oder ungesättigt, unsubstituiert oder einfach oder mehrfach substituiert; Aryl-, oder Heteroaryl, jeweils unsubstituiert oder einfach oder mehrfach substituiert; oder über gesättigtes oder

ungesättigtes C₁₋₃-Alkyl gebundenem Aryl, C₃₋₈-Cycloalkyl oder Heteroaryl, jeweils unsubstituiert oder einfach oder mehrfach substituiert;

in Form ihrer Razemate; Enantiomere, Diastereomere, insbesondere Mischungen ihrer Enantiomere oder Diastereomere oder eines einzelnen Enantiomers oder Diastereomers; in Form ihrer physiologisch verträglichen sauren und basischen Salze bzw. Salze mit Kationen bzw. Basen oder mit Anionen bzw. Säuren oder in Form der freien Säuren oder Basen.

Eine bevorzugte Ausführungsform der Erfindung ist eine erfindungsgemäße Thioaminosäure, worin

5

15

20

25

30

einer der Reste R¹ und R² C₁₋₂-Alkyl, einfach oder mehrfach substituiert oder unsubstituiert, insbesondere Methyl oder Ethyl; bedeutet und der andere der Reste R¹ und R² C₃₋₁₀-Alkyl, vorzugsweise C₃₋₈-Alkyl, gesättigt oder ungesättigt, verzweigt oder unverzweigt, einfach oder mehrfach substituiert oder unsubstituiert, insbesondere Propyl, n-Propyl, i-Propyl, Butyl, n-Butyl, i-Butyl, tert.-Butyl, Pentyl, Hexyl, Heptyl oder Octyl; oder Phenyl oder Thiophenyl, jeweils unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder l) substituiert; oder Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl; bedeutet.

Eine bevorzugte Ausführungsform der Erfindung ist eine erfindungsgemäße Thioaminosäure, worin

R₃ ausgewählt ist aus H; C₁₋₆-Alkyl, gesättigt oder ungesättigt, verzweigt oder unverzweigt, einfach oder mehrfach substituiert oder unsubstituiert; Phenyl oder Thiophenyl, unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder I) substituiert; oder über gesättigtes CH₃-gebundenem Phenyl, unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder I) substituiert;

vorzugsweise R³ ausgewählt ist aus H; C₁₋₆-Alkyl, gesättigt, unverzweigt und unsubstituiert, insbesondere Methyl, Ethyl, Propyl, n-Propyl, i-Propyl, Butyl, n-Butyl, i-Butyl, tert.-Butyl, Pentyl oder Hexyl; Phenyl oder Thiophenyl, unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder l) substituiert; oder über gesättigtes CH₃-gebundenem Phenyl, unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder l) substituiert.

Bei einer sehr bevorzugten Ausführungsform der der Erfindung ist die erfindungsgemäße Thioaminosäure ausgewählt aus der folgenden Gruppe:

5

15

20

25

30

- 2-Amino-3-mercapto-3-methyl-hexansaure
- 2-Amino-3-mercapto-3-methyl-heptansäure
- 2-Amino-3-mercapto-3-methyl-octansäure
- 2-Amino-3-mercapto-3-methyl-nonansäure
- 2-Amino-3-mercapto-3-methyl-decansäure
- Amino-3-ethyl-3-mercapto-hexansäure
- 2-Amino-3-mercapto-3-methyl-decansäure
- 2-Amino-3-mercapto-3-methyl-nonansäure
- 2-Amino-3-mercapto-3-methyl-octansäure
- 2-Amino-3-ethylsulfanyl-3-methyl-octansäure
- 2-Amino-3-benzylsulfanyl-3-methyl-octansäure
- 2-Amino-3-mercapto-3-propyl-3-hexansäure
- Amino-(1-mercapto-cycloheptyl)-essigsäure
- 2-Amino-3-mercapto-3-propyl-3-hexansäure
- 2-Amino-3-ethylsulfanyl-3-methyl-nonansäure
- 2-Amino-3-methyl-3-propylsulfanyl-nonansäure
- 2-Amino-3-hexylsulfanyl-3-methyl-nonansäure
- 2-Amino-3-benzylsulfanyl-3-methyl-nonansäure
- 2-Amino-3-benzylsulfanyl-3-methyl-decansäue
- 2-Amino-3-ethylsulfanyl-3-methyl-decansäure
- 2-Amino-3-cyclopropyl-3-mercapto-butansäure
- 2-Amino-3-cyclobutyl-3-mercapto-butansäure

- 2-Amino-3-cyclohexyl-3-mercapto-butansäure
- 2-Amino-3-mercapto-3-thiophen-2-yl-butansäure
- 2-Amino-3-ethyl-3-mercapto-heptansäure

5

10

15

20

25

30

- 2-Amino-3-mercapto-3,4-dimethyl-pentansäure
- 2-Amino-3-mercapto-3,4-dimethyl-hexansäure

in Form ihrer Razemate; Enantiomere, Diastereomere, insbesondere Mischungen ihrer Enantiomere oder Diastereomere oder eines einzelnen Enantiomers oder Diastereomers; in Form ihrer physiologisch verträglichen sauren und basischen Salze bzw. Salze mit Kationen bzw. Basen oder mit Anionen bzw. Säuren oder in Form der freien Säuren oder Basen, vorzugsweise des Hydrochlorids.

Die erfindungsgemäßen Substanzen sind toxikologisch unbedenklich, so daß sie sich als pharmazeutischer Wirkstoff in Arzneimitteln eignen. Ein weiterer Gegenstand der Erfindung sind daher Arzneimittel enthaltend wenigstens eine erfindungsgemäße Thioaminosäure, sowie gegebenenfalls geeignete Zusatzund/oder Hilfsstoffe und/oder gegebenenfalls weitere Wirkstoffe.

Die erfindungsgemäßen Arzneimittel enthalten neben mindestens einem erfindungsgemäßen substituierten Thioaminosäure gegebenenfalls geeignete Zusatz- und/oder Hilfsstoffe, so auch auch Trägermaterialien, Füllstoffe, Lösungsmittel, Verdünnungsmittel, Farbstoffe und/oder Bindemittel und können als flüssige Arzneiformen in Form von Injektionslösungen, Tropfen oder Säfte, als halbfeste Arzneiformen in Form von Granulaten, Tabletten, Pellets, Patches, Kapseln, Pflaster oder Aerosolen verabreicht werden. Die Auswahl der Hilfsstoffe etc. sowie die einzusetzenden Mengen derselben hängen davon ab, ob das Arzneimittel oral, peroral, parenteral, intravenös, intraperitoneal, intradermal, intramuskulär, intranasal, buccal, rektal oder örtlich, zum Beispiel auf die Haut, die Schleimhäute oder in die Augen, appliziert werden soll. Für die orale Applikation eignen sich Zubereitungen in Form von Tabletten, Dragees, Kapseln, Granulaten, Tropfen, Säften und Sirupen, für die parenterale, topische und inhalative Applikation Lösungen, Suspensionen, leicht rekonstituierbare Trockenzubereitungen sowie Sprays. Erfindungsgemäße Thioaminosäuren in einem Depot, in gelöster Form oder

in einem Pflaster, gegebenenfalls unter Zusatz von die Hautpenetration fördernden Mitteln, sind geeignete perkutane Applikationszubereitungen. Oral oder perkutan anwendbare Zubereitungsformen können die erfindungsgemäßen Thioaminosäuren verzögert freisetzen. Prinzipiell können den erfindungsgemäßen Arzneimitteln andere dem Fachmann bekannte weitere Wirkstoffe zugesetzt werden.

5

10

15

20

25

30

Die an den Patienten zu verabreichende Wirkstoffmenge variiert in Abhängigkeit vom Gewicht des Patienten, von der Applikationsart, der Indikation und dem Schweregrad der Erkrankung. Üblicherweise werden 0,005 bis 1000 mg/kg, bevorzugt 0,05 bis 5 mg/kg wenigstens einer erfindungsgemäßen Thioaminosäure appliziert.

In einer bevorzugten Form des Arzneimittel liegt eine enthaltene erfindungsgemäße Thioaminosäure als reines Diastereomer und/oder Enantiomer, als Razemat oder als nicht-äquimolare oder äquimolare Mischung der Diastereomere und/oder Enantiomere vor.

Dabei kann es bevorzugt sein, wenn eine verwendete erfindungsgemäße Thioaminosäure als reines Diastereomer und/oder Enantiomer, als Razemat oder als nicht-äquimolare oder äquimolare Mischung der Diastereomere und/oder Enantiomere vorliegt.

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Behandlung eines nichthumanen Säugetieres oder Menschen, das oder der eine Behandlung medizinisch relevanter Symptome benötigt, durch Verabreichung einer therapeutisch wiksamen Dosis einer oben genannten, vorzugsweise erfindungsgemäßen oder erfindungsgemäß verwendeten, Thioaminosäure oder eines erfindungsgemäßen Arzneimittels. Die Erfindung betrifft insbesondere entsprechende Verfahren zur Behandlung von Schmerz, insbesondere von neuropathischem, chronischem oder akutem Schmerz; Migräne, Hyperalgesie und Allodynie, insbesondere thermischer Hyperalgesie, mechanischer Hyperalgesie und Allodynie und Kälte Allodynie, oder von inflammatorischem oder postoperativem Schmerz; Epilepsie, Hitzewallungen, Beschwerden in der Postmenopause, Amyotropischer Lateraler Sklerose (ALS), Reflex Sympasthetic Dystrophy (RSD), Spastischer Lähmung, Restless Leg Syndrom, erworbenem Nystagmus; psychatrischen bzw. neuropathologischen

Störungen, wie bipolaren Störungen, Anxiety, Panikanfällen, Stimmungsschwankungen, manischem Verhalten, Depressionen, manischdepressivem Verhalten; schmerzvoller diabetischer Neuropathie, Symptomen und Schmerzen aufgrund von Multipler Sklerose oder der Parkinsonschen Krankheit. neurodegenerativen Erkrankungen, wie Alzheimer Disease, Huntington's Disease, Parkinson Disease und Epilepsie; erythromelalgischem von oder postpoliomyelitischem Schmerz, trigeminaler oder postherpetischer Neuralgie

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung einer erfindungsgemäßen Thioaminosäure in einer Form, wie nachfolgend beschrieben.

Allgemeines Verfahren zur Darstellung der substituierten β-Thio-α-Aminosäuren

Für die synthetischen Arbeiten sind in der Literatur beschriebene Reaktionen angewandt, sowie im Hause bekannte Erfahrungen eingebracht worden.

Schema1:

20

25

5

10

15

Die Deprotonierung des Isocyanessigsäurethylesters mit Basen wie Butyllithium, Natriumhydrid oder Kalium.-tert.butylat und anschließende Umsetzung mit Ketonen

der allgemeinen Formel 2 in Tetrahydrofuran führt zu (E,Z)-2-Formylaminoacrylsäureethylestern der allgemeinen Formel 3. Durch Umsetzung von (E,Z)-2-Formylaminoacrylsäureethylestern der allgemeinen Formel 3 mit P₄S₁₀ in Toluol oder mit Mercaptanen der allgemeinen Formel R₃SH in Gegenwart von Butyllithium in Toluol erhält man Formylamino-Ethylester der allgemeinen Formel 4. Reaktion der Formylamino-Ethylester der allgemeinen Formel 4 mit Salzäure führt zu den Thio-Aminosäuren der allgemeinen Formel 1. Die Diastereomerentrennung erfolgt auf geigneter Stufe mittels HPLC, Säulenchromatographie oder Kristallisation. Die Enantiomerentrennung erfolgt auf der Endstufe gleichfalls mittels HPLC. Säulenchromatographie oder Kristallisation. Man erhält nach diesem Verfahren die Aminosäuren der allgemeinen Formel 1 als Hydrochloride. Durch Basenfreisetzung oder Umfällung nach konventionellen Methoden erhält man weitere Salzformen.

5

10

15

20

25

Entsprechend ist Erfindungsgegenstand ein Verfahren zur Herstellung einer erfindungsgemäßen Thioaminsäure mit folgenden Schritten:

$$R_1 \longrightarrow R_2 + M \oplus + O \bigcirc C \longrightarrow R_2 \longrightarrow H$$

Deprotonierung des Isocyanessigsäurethylesters mit Basen, vorzugsweise Butyllithium, Natriumhydrid oder Kalium.-tert.butylat, und anschließende Umsetzung mit Ketonen der allgemeinen Formel 2 in Tetrahydrofuran führt zu (E,Z)-2-Formylaminoacrylsäureethylestern der allgemeinen Formel 3,

$$R_2$$
 R_1
 R_1
 R_2
 R_3
 R_3
 R_4
 R_4
 R_1
 R_3
 R_4
 R_4
 R_5
 R_6
 R_7
 R_8
 R_8

Umsetzung von (E,Z)-2-Formylaminoacrylsäureethylestern der allgemeinen Formel 3 mit P₄S₁₀ in Toluol oder mit Mercaptanen der allgemeinen Formel R₃SH in Gegenwart von Butyllithium in Toluol, was zu Formylamino-Ethylester der allgemeinen Formel 4 führt.

$$R_2$$
 NH
 SR_3
 CHO
 R_2
 R_1
 NH_2
 SR_3
 R_3
 R_3
 R_4
 R_1
 R_2
 R_3
 R_4
 R_4
 R_4
 R_4
 R_5
 R_4
 R_5
 R_5
 R_5

20

Reaktion der Formylamino-Ethylester der allgemeinen Formel 4 mit Säure, vorzugsweise Salzsäure, was zu den Thio-Aminosäuren der allgemeinen Formel1 bzw. I gemäß einem der Ansprüche 1 bis 4 führt, gegebenenfalls gefolgt oder unterbrochen von Diastereomerentrennung auf geigneter Stufe mittels HPLC, Säulenchromatographie oder Kristallisation bzw. gefolgt von Enantiomerentrennung mittels HPLC, Säulenchromatographie oder Kristallisation,

10

5

wobei R1 bis R3 die bereits oben genannte Bedeutung haben oder einem mit einer geigneten Schutzgruppe geschützten entsprechenden Rest entsprechen.

Salzbildung

15

Die Verbindungen der Formel I lassen sich mit physiologisch verträglichen Säuren. beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Methansulfonsäure, Ameisensäure, Essigsäure, Oxalsäure, Bernsteinsäure, Weinsäure, Mandelsäure, Fumarsäure, Milchsäure, Zitronensäure, Glutaminsäure, 1,1-Dioxo-1,2-dihydro1λ⁶-benzo[d]isothiazol-3-on (Saccharinsäure). 20 Monomethylsebacinsäure, 5-Oxo-prolin, Hexan-1-sulfonsäure, Nicotinsäure, 2-, 3oder 4-Aminobenzoesäure, 2,4,6-Trimethyl-benzoesäure, α-Liponsäure, Acetylglycin, Acetylsalicylsäure, Hippursäure und/oder Asparaginsäure, in der sich bekannter Weise in ihre Salze überführen. Vorzugsweise wird die Salzbildung in einem 25 Lösungsmittel, beispielsweise Diethylether, Diisopropylether, Essigsäurealkylester, Aceton und/oder 2-Butanon oder auch Wasser durchgeführt. Zur Herstellung der Hydrochloride eignet sich darüber hinaus Trimethylchlorsilan in wäßriger Lösung. Möglich ist auch die Überführung in basische Salze unter Verwendung von Metall-Ionen, z.B.: Alkali und Erdalkali-Ionen.

Im folgenden wird die Erfindung weit r durch Beispiele erläutert, ohne sie darauf zu beschränken.

Beispiele

Die folgenden Beispiele zeigen erfindungsgemäße Verbindungen sowie deren Darstellung und mit diesen durchgeführte Wirksamkeitsuntersuchungen.

10

15

5

Dabei gelten generell folgende Angaben:

Die eingesetzten Chemikalien und Lösungsmittel wurden kommerziell bei den herkömmlichen Anbietern erworben (Acros, Avocado, Aldrich, Fluka, Lancaster, Maybridge, Merck, Sigma, TCI etc. oder synthetisiert).

Die Analytik erfolgte über ESI-Massenspektrometrie oder HPLC.

Synthesen:

20

25

Beispiel 1)

Synthetisierte Verbindungen:

Repräsentative Beispiele erfindungsgemäßer Verbindungen sind folgende Verbindungen:

Verbindung 1)

30 rac-2-Amino-3-mercapto-3-methyl-pentansäure Hydrochlorid als threo/erythro-Gemisch von 7:3

V rbindung 2)

5 rac-2-Amino-3-mercapto-3-methyl-hexansäure Hydrochlorid als threo/erythro-Gemisch von 7:3

Verbindung 3)

10

20

rac-2-Amino-3mercapto-3-methyl-heptansäure Hydrochlorid als threo/erythro:-Gemisch von 6:4

15 Verbindung 4)

rac-2-Amino-3mercapto-3-methyl-octansaure Hydrochlorid als threo/erythro-Gemisch von 1:1

Verbindung 5)

rac-2-Amino-3mercapto-3-methyl-nonansäure Hydrochlorid als threo/erythro-Gemisch von 6:4

23

5 Verbindung 6)

rac-2-Amino-3mercapto-3-methyl-decansäure Hydrochlorid als threo/erythro-Gemisch von 6:4

Verbindung 7)

rac-2-Amino-3-ethyl-3-mercapto-pentansäure Hydrochlorid

Verbindung 8)

20

15

10

rac-Amino-(1-mercapto-cyclopentyl)essigsäure Hydrochlorid

Verbindung 9)

rac-Amino-3-ethyl-3-mercaptohexansäure Hydrochlorid als threo/erythro-Gemisch von 1:1

Verbindung 10)

5

10

15

rac-threo-2-Amino-3-mercapto-3-methyl-decansäure Hydrochlorid

Verbindung 11)

rac-erythro-2-Amino-3-mercapto-3-methyl-decansäure Hydrochlorid

Verbindung 12)

rac-threo-2-Amino-3-mercapto-3-methyl-nonansäure Hydrochlorid

Verbindung 13)

5

rac-erythro-2-Amino-3-mercapto-3-methyl-nonansäure Hydrochlorid

Verbindung 14)

10

15

rac-threo-2-Amino-3mercapto-3-methyl-octansäure Hydrochlorid

Verbindung 15)

rac-2-Amino-3-ethylsulfanyl-3-methyl-octansäure Hydrochlorid als threo/erythro-Gemisch von 1:1

Verbindung 16)

5

rac-threo-2-Amino-3-benzylsulfanyl-3-methyl-octansäure Hydrochlorid

Verbindung 17)

10

rac-2-Amino-3-mercapto-3-propyl-3-hexansaure Hydrochlorid

15

Verbindung 18)

rac-Amino-(1-mercapto-cycloheptyl)-essigsäure Hydrochlorid

20

Verbindung 19)

rac-2-Amino-3-ethylsulfanyl-3-methyl-nonansäure Hydrochlorid als threo/erythro-Gemisch von 6:4

Verbindung 20)

5

rac-2-Amino-3-methyl-3-propylsulfanyl-nonansäure Hydrochlorid als threo/erythro Gemisch von 6:4

Verbindung 21)

10

rac-2-Amino-3-hexylsulfanyl-3-methyl-nonansäure Hydrochlorid als threo/erythro-Gemisch von 6:4

10 Verbindung 22)

rac-2-Amino-3-benzylsulfanyl-3-methyl-nonansäure Hydrochlorid als threo/erythro-Gemisch von 6:4

Verbindung 23)

5

rac-2-Amino-3-benzylsulfanyl-3-methyl-decansaue Hydrochlorid als threo/erythro-Gemisch von 6:4

10

Verbindung 24)

rac-2-Amino-3-ethylsulfanyl-3-methyl-decansäure Hydrochlorid als threo/erythro-Gemisch von 6: 4

Verbindung 25)

rac-2-Amino-3-cyclopropyl-3-(4-fluoro-phenyl)-3-mercapto-propansäre Hydrochlorid als threo/erythro-Gemisch von 6:4

Verbindung 26)

rac-2-Amino-3-cyclopropyl-3-mercapto-butansäure Hydrochlorid als threo/erythro-Gemisch von 6:4

Verbindung 27)

15

10

5

rac-2-Amino-3-cyclobutyl-3-mercapto-butansäure Hydrochlorid als threo/erythro-Gemisch von 6:4

5 Verbindung 28)

rac-2-Amino-3-cyclohexyl-3-mercapto-butansäure Hydrochlorid als threo/erythro-Gemisch von 6:4

Verbindung 29)

10

15

rac-2-Amino-3-mercapto-3-thiophen-2-yl-butansäure Hydrochlorid als threo/erythro-Gemisch von 6:4

20 Verbindung 30)

rac-2-Amino-3-ethyl-3-mercapto-heptansäure Hydrochlorid als threo/erythro-Gemisch von 6:4

Verbindung 31)

5

10

rac-Amino-(1-mercapto-cyclohexyl)- ethansäure Hydrochlorid

Verbindung 32)

rac-Amino-(1-mercapto-3-methyl-cyclohexyl)-ethansäure Hydrochlorid

Verbindung 33)

rac-Amino-(1-mercapto-2-methyl-cyclohexyl)-ethansäure Hydrochlorid

Verbindung 34)

5

10

15

rac-Amino-(1-mercapto-4-methyl-cyclohexyl)-ethansäure Hydrochlorid

Verbindung 35)

rac-Amino-(4-mercapto-tetrahydro-thiopyran-4-yl)-ethansäure Hydrochlorid

5 Verbindung 36)

rac-2-Amino-3-mercapto-3,4-dimethyl-pentansäure Hydrochlorid als threo/erythro-Gemisch von 6:4

Verbindung 37)

10

15

20

25

Verbindung 37

rac-2-Amino-3-mercapto-3,4-dimethyl-hexansäure Hydrochlorid als threo/erythro-Gemisch von 6:4

Beispi 12)

Herstellungsverfahren

Die folgenden Beispiele dienen zur näheren Erläuterung des erfindungsgemäßen Verfahrens.

Die Ausbeuten der hergestellten Verbindungen sind nicht optimiert.

Alle Temperaturen sind unkorrigiert.

5

Als stationäre Phase für die Säulenchromatographie wurde Kieselgel 60 (0.040 - 0.063 mm) der Firma E. Merck, Darmstadt, eingesetzt.

Die dünnschichtchromatographischen Untersuchungen wurden mit HPTLC-Fertigplatten, Kieselgel 60 F 254, der Firma E. Merck, Darmstadt, durchgeführt.

Die Mischungsverhältnisse der Laufmittel für alle chromatographischen Untersuchungen sind stets in Volumen/Volumen angegeben.

15 Die Angabe Ether bedeutet Diethylether.

Soweit nicht anders angegeben, wurde Petrolether mit dem Siedebereich von 50°C-70°C benutzt.

20

Vorschrift 1

Darstellung von Verbindung 6

rac-2-Amino-3mercapto-3-methyl-decansäure Hydrochlorid als threo/erythro-25 Gemisch von 6:4; Verbindung 6 (Prod. 1)

1. Glycinethylester-Hydrochlorid (Prod. 2)

247.3 g Thionylchlorid und 130 g Glycin wurden bei –10 °C in 1000 ml Ethanol gegeben. Nach Entfernen des Eisbades wurde ein weiteres Äquivalent Glycin portionsweise hinzugegeben. Die Mischung wurde anschließend 2 h unter Rückfluß gerührt. Nach Abkühlen auf Raumtemperatur wurde am Rotationsverdampfer der überschüssige Alkohol und das Thionylchlorid entfernt. Der erhaltene weiße Feststoff wurde zweimal mit Ethanol versetzt und dieses wiederum am Rotationsverdampfer entfernt, um anhaftendes Thionylchlorid vollständig zu entfernen. Nach Umkristallisation aus Ethanol erhielt man 218.6 g (90.4% d.Th.) der Titelverbindung (Prod. 2).

2. Formylaminoessigsäureethylester (Prod. 3)

15

20

5

10

218 g Glycinethylester-Hydrochlorid (Prod. 2) wurden in 1340 ml Ethylformiat suspendiert. 223 mg Toluolsulfonsäure wurden zugeben und die Mischung wurde zum Rückfluß erhitzt. Nun wurden 178 g Triethylamin zu der siedenen Lösung zugetropft und die Reaktionslösung wurde über Nacht unter Rückfluß gerührt. Nach Abkühlen auf RT* wurde das ausgefallene Ammoniumchlorid-Salz abfiltriert, das Filtrat wurde auf ca. 20% des Ursprungvolumens eingeengt und auf –5 °C gekühlt. Das erneut ausgefallene Ammoniumchlorid-Salz wurde abfiltriert, das Filtrat erneut

5

10

15

20

25

eingeengt und bei 1 mbar destilliert. Man erhielt so 184 g (90.3% d. Th.) der Titelverbindung (Prod. 3).

3. Isocyanessigsäureethylester (Prod. 4)

50 g Formylaminoessigsäureethylester (Prod. 3) und 104 g Diisopropylamin wurden in 400 ml Dichlormethan gegeben und auf –3 °C gekühlt. Dann wurden 70.1 g Phosphorylchlorid in 400 ml Dichlormethan hinzugetropft und anschließend wurde eine weitere Stunde bei dieser Temperatur gerührt. Nachdem das Eisbad entfernt und Raumtemperatur erreicht wurde, wurde vorsichtig mit 400 ml 20%iger Natriumcarbonat-Lösung hydrolysiert. Nach 60 minütigem Rühren bei RT wurden 400 ml Wasser und dann 200 ml Dichlormethan hinzugegeben. Die Phasen wurden getrennt und die organische Phase wurde zweimal mit je 100 ml 5%iger Na₂CO₃-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wurde am Rotationsverdampfer evaporiert und das zurückbleibende braune Öl wurde destilliert. Man erhilet so 34.16 g (79.3% d. Th.) der Titelverbindung (Prod. 4).

4. (E)und (Z)-2-Formylamino-3-methyldec-2-ensäure-ethylester (Prod. 5)

Zu einer Suspension von 23 g Kalium-tert.-butylat in 148 ml THF wurden bei

-70°C bis -60°C unter Rühren eine Lösung von 22g Isocyanessigsäureethyl-ester (Prod. 4) in 49 ml THF eingetropft. Man ließ 20 min nachrühren; anschließend wurden bei dieser Temperatur 27.7 g 2-Nonanon in 24 ml THF zugetropft. Nach Erwärmen auf RT wurden 11.7 ml Eisessig hinzugefügt. 15 min nach Zugabe des Eisessigs (DC-Kontrolle: Ether :Hexan 4:1) wurde das Lösemittel evaporiert. Der Rückstand wurde mit 300 ml Diethylether und 200 ml Wasser versetzt. Die organische Phase wurde abgetrennt und die wäßrige Phase wurde zweimal mit je 120 ml Ether gewaschen. Die vereinigten organischen Phasen wurden mit 80 ml 2N NaHCO₃-Lösung gewaschen und über MgSO₄ gerocknet. Anschließend wurde das Lösemittel evaporiert. Das so erhaltene Rohprodukt wurde mit 200 n-Hexan digeriert. Der Feststoff wurde abfiltriert viermal mit je 80 ml Hexan gewaschen und im Ölpumpenvakuum getrocknet. Man erhielt so 34.8 g (69.9% d.Th.) (*E*)- und (*Z*)-2-Formylamino-3-methyldec-2-ensäure-ethylester (Prod. 5) (E/Z-Verhälnis: 1:1) als weißen Feststoff.

15

10

5

5. 2-Formylamino-3-mercapto-3-methyl-decansäureethylester als threo/erythro-Gemisch von 6:4 (Prod. 6)

20

25

30

34.8 g (*E*)- und (*Z*)-2-Formylamino-3-methyldec-2-ensäure-ethylester (Prod. 5) (E/Z-Verhälnis: 1:1) wurden in 273 ml Toluol bei RT gelöst und anschließend mit 6.06 g P₄S₁₀ versetzt. Das Gemisch wurde unter Feuchtigkeitsausschluß 2 h bei 80°C gerührt (DC-Kontrolle: Essigester : Hexan 1:1). Anschließend wurde die entstandene Lösung auf RT abgekühlt und die organische Phase vom Lösemittel befreit. Das erhaltene Rohprodukt wurde in 300 ml Diethylether aufgenommen und mit 5 ml Wasser versetzt. Es wurde über Nacht nachgerührt. Das Wasser wurde abgetrennt und die organische Phase wurde über MgSO₄ getrockner und anschließ nd wurde das Lösemittel im Vakuum evaporiert. Man erhielt so 43 g 2-Formylamino-3-mercapto-3-methyl-decánsäureethylester als threo/erythro-Gemisch von 6:4 (Prod.

6) als gelbes Öl. Dieses wurde an Kieselgel mit Diisopropylether, der 1% 25%igen Ammoniak enthielt, chromatographiert. Man erhielt so 30 g (76% d.Th.) 2-Formylamino-3-mercapto-3-methyl-decansäureethylester als threo/erythro-Gemisch von 6:4 (Prod. 6) in Form eines farblosen Öls.

5

6. rac-2-Amino-3mercapto-3-methyl-decansäure Hydrochlorid als threo/erythro-Gemisch von 6:4 (Prod. 1)

10

15

16.7 g 2-Formylamino-3-mercapto-3-methyl-decansäureethylester als threo/erythro-Gemisch von 6:4 (Prod. 6) wurden bei RT zu 606 ml 6N Salzsäure gegeben und anschließend 24 h unter Rückfluß gerührt (DC-Kontrolle: Dichlormethan: Methanol: Eisessig:35:5:3). Nach Abkühlen auf RT wurde unter Eiskühlung weitergerührt. Der ausgefallene weiße Feststoff wurde abgesaugt, mit Ether gewaschen und anschließend im Vakuum getrocknet. Man erhielt so 13.3 g (94.9% d.Th.)rac-2-Amino-3mercapto-3-methyl-decansäure Hydrochlorid als threo/erythro-Gemisch von 6:4 Verbindung 6 (Prod. 1).

20

Vorschrift 2:

Darstellung von Verbindung 10 und Darstellung von Verbindung 11

25

rac-threo-2-Amino-3-mercapto-3-methyl-decansäure Hydrochlorid Verbindung 10 (Prod. 7) und rac-erythro-2-Amino-3-mercapto-3-methyl-decansäure Hydrochlorid Verbindung 11 (Prod. 8).

5

10

15

20

25

Man erhielt *rac-threo-*2-Amino-3-mercapto-3-methyl-decansäure Hydrochlorid (Prod. 7) bzw. *erythro-*2-Amino-3-mercapto-3-methyl-decansäure Hydrochlorid (Prod. 8), indem man analog arbeitete wie in Vorschrift 1; Teil 1, 2, 3 und 4. Änderungen traten ab Teil 5 auf.

5. threo-2-Formylamino-3-mercapto-3-methyl-decansäureethylester (Prod. 9) und erythro-2-Formylamino-3-mercapto-3-methyl-decansäureethylester (Prod. 10)

34.8 g (E)- und (Z)-2-Formylamino-3-methyldec-2-ensäure-ethylester (Prod. 5) (E/Z-Verhälnis: 1:1) wurden in 273 ml Toluol bei RT gelöst und anschließend mit 6.06 g P₄S₁₀ versetzt. Das Gemisch wurde unter Feuchtigkeitsausschluß 2 h bei 80°C gerührt (DC-Kontrolle: Essigester: Hexan 1:1). Anschließend wurde die entstandene Lösung auf RT abgekühlt und die organische Phase vom Lösemittel befreit. Das erhaltene Rohprodukt wurde in 300 ml Diethylether aufgenommen und mit 5 ml Wasser versetzt. Es wurde über Nacht nachgerührt. Das Wasser wurde abgetrennt und die organische Phase wurde über MgSO4 getrockner und anschließend wurde das Lösemittel im Vakuum evaporiert. Man erhielt so 43 g 2-Formylamino-3mercapto-3-methyl-decansäureethylester als threo/erythro-Gemisch von 6:4 (6) als gelbes Öl. Dieses wurde an Kieselgel mit Diisopropylether, der 1% 25%igen Ammoniak enthielt, chromatographiert. Man erhielt so 30 g (76% d.Th.) 2-Formylamino-3-mercapto-3-methyl-decansaureethylester als threo/erythro-Gemisch von 6:4 (Prod. 6) in Form eines farblosen Öls. Diese Mischfraktion wurde erneut an Kieselgel mit Diisopropylether, der 1% 25%ige Ammoniaklösung enthielt, Man erhielt so 5 g (12.7% d.Th.) threo-2-Formylamino-3chromatographiert. mercapto-3-methyl-decansäureethylester (Prod. 9) und 3.6 g (9.2% d.Th.) erythro-2-Formylamino-3-mercapto-3-methyl-decansäureethylester (Prod. 10).

6. rac-threo-2-Amino-3-m rcapto-3-methyl-decansäure Hydrochlorid (Prod. 7) und rac-erythro-2-Amino-3-mercapto-3-methyl-decansäure Hydrochlorid (Prod. 8)

41

5 g threo-2-Formylamino-3-mercapto-3-methyl-decansäureethylester (**Prod.** 9) wurde bei RT zu 183 ml 6N Salzsäure gegeben bzw. 3.6 g erythro-2-Formylamino-3-mercapto-3-methyl-decansäureethylester (**Prod.** 10) wurde bei RT zu 132 ml 6N Salzsäure gegeben. Die weitere Vorgehensweise war identisch. Es wurde anschließend 24 h unter Rückfluß gerührt (DC-Kontrolle: Dichlormethan: Methanol: Eisessig:35:5:3). Nach Abkühlen auf RT wurde unter Eiskühlung weitergerührt. Der ausgefallene weiße Feststoff wurde abgesaugt, mit Ether gewaschen und anschließend im Vakuum getrocknet. Man erhielt so 4.2 g (94.9% d.Th.) rac-threo-2-Amino-3-mercapto-3-methyl-decansäure Hydrochlorid (**Prod.** 7) bzw. 3 g (94.9% d.Th.) rac-erythro-2-Amino-3-mercapto-3-methyl-decansäure Hydrochlorid (**Prod.** 8).

15

20

25

30

10

5

Vorschrift 3:

Darstellung von Verbindung 1

rac-2-Amino-3-mercapto-3-methyl-pentansäure Hydrochlorid als threo/erythro-Gemisch von 7:3; Verbindung 1 (Prod. 11)

Durch Einsatz von 2-Butanon anstelle von 2-Nonanon in Vorschrift 1 erhielt man *rac*-2-Amino-3-mercapto-3-methyl-pentansäure Hydrochlorid als threo/erythro-Gemisch von 7:3; Verbindung 1 (Prod. 11).

Vorschrift 4:

Darstellung von Verbindung 2:

rac-2-Amino-3-mercapto-3-methyl-hexansäure Hydrochlorid als threo/erythro-Gemisch von 7:3; Verbindung 2 (Prod. 12)

Durch Einsatz von 2-Pentanon anstelle von 2-Nonanon in Vorschrift 1 erhielt man rac-2-Amino-3-mercapto-3-methyl-hexansäure Hydrochlorid als threo/erythro-Gemisch von 7:3 (Prod. 12)

5

Vorschrift 5:

Darstellung von Verbindung 3:

rac-2-Amino-3mercapto-3-methyl-heptansäure Hydrochlorid als threo/erythro:-Gemisch von 6:4; Verbindung 3 (Prod. 13)

10

Durch Einsatz von 2-Hexanon anstelle von 2-Nonanon in Vorschrift 1 erhielt man *rac-*2-Amino-3-mercapto-3-methyl-heptansäure Hydrochlorid als threo/erythro:-Gemisch von 6:4; Verbindung 3 (Prod. 13)

15

Vorschrift 6:

Darstellung von Verbindung 4:

rac-2-Amino-3mercapto-3-methyl-octansäure Hydrochlorid als threo/erythro-Gemisch von 1:1; Verbindung 4 (Prod. 14)

20

Durch Einsatz von 2-Heptanon anstelle von 2-Nonanon in Vorschrift 1 erhielt man *rac-*2-Amino-3mercapto-3-methyl-octansäure Hydrochlorid als threo/erythro-Gemisch von 1:1; Verbindung 4 (Prod. 14)

Vorschrift 7:

Darstellung von Verbindung 14

rac-threo-2-Amino-3mercapto-3-methyl-octansäure Hydrochlorid; Verbindung (Prod. 15)

Durch Einsatz von 2-Heptanon anstelle von 2-Nonanon in Vorschrift 2 erhielt man rac-threo-2-Amino-3mercapto-3-methyl-octansäure Hydrochlorid; Verbindung (Prod.15)

15

Vorschrift 8:

Darstellung von Verbindung 5

rac-2-Amino-3mercapto-3-methyl-nonansäure Hydrochlorid als threo/erythro-Gemisch von 6:4; Verbindung 5 (Prod. 16)

20

Durch Einsatz von 2-Octanon anstelle von 2-Nonanon in Vorschrift 1 erhielt man rac-2-Amino-3mercapto-3-methyl-nonansäure Hydrochlorid als threo/erythro-Gemisch von 6:4; Verbindung 5 (Prod.16).

Vorschrift 9:

5 Darstellung von Verbindung 12 und Verbindung 13

*rac-threo-*2-Amino-3-mercapto-3-methyl-nonansäure Hydrochlorid; Verbindung 12 (Prod. 17) und *rac-erythro-*2-Amino-3-mercapto-3-methyl-nonansäure Hydrochlorid; Verbindung 13 (Prod. 18)

Durch Einsatz von 2-Octanon anstelle von 2-Nonanon in Vorschrift 2 erhielt man *rac-threo-*2-Amino-3-mercapto-3-methyl-nonansäure Hydrochlorid; Verbindung 12 (Prod. 17) und *rac-erythro-*2-Amino-3-mercapto-3-methyl-nonansäure Hydrochlorid; Verbindung 13 (Prod. 18).

20 Vorschrift 10:

Darstellung von Verbindung 7

rac-2-Amino-3-ethyl-3-mercapto-pentansäure Hydrochlorid; Verbindung 7 (Prod. 19)

Durch Einsatz von 3-Pentanon anstelle von 2-Nonanon in Vorschrift 1 erhielt man rac-2-Amino-3-ethyl-3-mercapto-pentansäure Hydrochlorid; Verbindung 7 (Prod. 19).

Vorschrift 11:

5

Darstellung von Verbindung 8

rac-Amino-(1-mercapto-cyclopentyl)essigsäure Hydrochlorid; Verbindung 8 (Prod. 20)

Durch Einsatz von Cyclopentanon von 2-Nonanon in Vorschrift 1 erhielt man *rac*
Amino-(1-mercapto-cyclopentyl)essigsäure Hydrochlorid; Verbindung 7 (Prod. 20).

Vorschrift 12:

Darstellung von Verbindung 9

rac-Amino-3-ethyl-3-mercaptohexansäure Hydrochlorid als threo/erythro-Gemisch von 1:1; Verbindung 9 (Prod. 21)

Durch Einsatz von 3-Hexanon anstelle von 2-Nonanon in Vorschrift 1 erhielt man rac-Amino-3-ethyl-3-mercaptohexansäure Hydrochlorid als threo/erythro-Gemisch von 1:1; Verbindung 7 (Prod. 21).

Vorschrift 13:

20

Darstellung von Beispiel 17

25 rac-2-Amino-3-mercapto-3-propyl-3-hexansäure Hydrochlorid (22)

Durch Einsatz von 4-Heptanon anstelle von 2-Nonanon in Vorschrift 1 erhielt man rac-2-Amino-3-mercapto-3-propyl-3-hexansäure Hydrochlorid (22).

5

Vorschrift 14:

Darstellung von Verbindung 18

rac-Amino-(1-mercapto-cycloheptyl)-essigsäure Hydrochlorid; Verbindung 18 (Prod. 23)

10

15

Durch Einsatz von Cycloheptanon anstelle von 2-Nonanon in Vorschrift 1 erhielt man *rac*-Amino-(1-mercapto-cycloheptyl)-essigsäure Hydrochlorid; Verbindung 7 (Prod. 23).

Vorschrift 15:

Darstellung von Verbindung 15

*rac-*2-Amino-3-ethylsulfanyl-3-methyl-octansäure Hydrochlorid als threo/erythro-Gemisch von 1:1; Verbindung 15 (Prod. 24)

Die Vorgehensweise ist identisch zu der in Vorschrift 1; Teil1; 2 und 3. Ab Teil 4 ergeben sich Unterschiede.

4. (E)und (Z)-2-Formylamino-3-methyl-oct-2-ensäure-ethylester (Prod. 25)

Zu einer S,uspension von 23 g Kalium-tert.-butylat in 148 ml THF wurden bei -70°C bis -60°C unter Rühren eine Lösung von 22g Isocyanessigsäureethyl-ester (Prod. 4) in 49 ml THF eingetropft. Man ließ 20 min nachrühren; anschließend wurden bei dieser Temperatur 27.7 g 2-Heptanon in 24 ml THF zugetropft. Nach Erwärmen auf RT wurden 11.7 ml Eisessig hinzugefügt. 15 min nach Zugabe des Eisessigs (DC-Kontrolle: Ether :Hexan 4:1) wurde das Lösemittel evaporiert. Der Rückstand wurde mit 300 ml Diethylether und 200 ml Wasser versetzt. Die organische Phase wurde abgetrennt und die wäßrige Phase wurde zweimal mit je 120 ml Ether gewaschen. Die vereinigten organischen Phasen wurden mit 80 ml 2N NaHCO₃-Lösung gewaschen und über MgSO₄ gerocknet. Anschließend wurde das Lösemittel evaporiert. Das so erhaltene Rohprodukt wurde mit 200 n-Hexan digeriert. Der Feststoff wurde abfiltriert viermal mit je 80 ml Hexan gewasche und im Ölpumpenvakuum getrocknet. Man erhielt so 34.8 g (69.9% d.Th.) (*E*)- und (*Z*)-2-Formylamino-3-methyldec-2-ensäure-ethylester (Prod. 5) (E/Z-Verhälnis: 1:1) als weißen Feststoff.

5

10

15

20

5

10

15

20

25

5. 3-Ethylsulfanyl-2-formylamino-3-methyl-octansäure-ethylester als threo/erythro-Gemisch von 1:1 (Prod. 26)

0.28 ml Butyllithium wurden in 40 ml absolutem THF gegeben und die Mischung wurde auf 0 °C gekühlt. Nun wurden 2.73 g Ethylmercaptan hinzugetropft. Nach 20 minütigem Rühren wurde die Lösung auf eine Temperatur zwischen -40 und 0 °C gekühlt und es wurde eine Lösung von 1 g (E)und(Z)-2-Formylamino-3-methyloct-2ensäure-ethylester (E/Z-Verhältnis: 1:1) (Prod. 5) langsam hinzugegeben. Es wurde 2 h bei der Temperatur gerührt und danach auf 0 °C erwärmt und anschließend wurde mit 100 ml einer 5%iger Natriumhydroxid-Lösung hydrolysiert. Die Phasen wurden getrennt und die wäßrige Phase wurde zweimal mit je 100 ml Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt. Das im Überschuß eingesetzte mittels Chromatographie an Kieselgel Mercaptan konnte mit Dichlormethan/Diethylether (6:1) als Eluent abgetrennt werden. Man erhielt so die Titelverbindung (Prod. 26) als farbloses Öl in einer Ausbeute von 1.05 g (82% d.Th.).

6. rac-2-Amino-3-ethylsulfanyl-3-methyl-octansäure Hydrochlorid als threo/erythro-Gemisch von 1:1 (Prod. 24)

1.05 g 3-Ethylsulfanyl-2-formylamino-3-methyl-octansäure-ethylester als threo/erythro-Gemisch von 1:1 (Prod. 26) wurden bei RT zu 40 ml 6N Salzsäure gegeben und anschließend 24 h unter Rückfluß gerührt (DC-Kontrolle:

Dichlormethan: Methanol: Eisessig:35:5:3). Nach Abkühlen auf RT wurde unter Eiskühlung weitergerührt. Der ausgefallene weiße Feststoff wurde abgesaugt, mit Ether gewaschen und anschließend im Vakuum getrocknet. Man erhielt so 0.8 g (94.9% d.Th.) *rac-*2-Amino-3-ethylsulfanyl-3-methyl-octansäure Hydrochlorid als threo/erythro-Gemisch von 1:1; Verbindung 15 (Prod. 24).

Vorschrift 16:

5

10

15

20

Darstellung von Verbindung 16

rac-threo-2-Amino-benzylsulfanyl-methyl-octansäure Hydrochlorid; Verbindung 16 (Prod. 27)

Die Vorgehensweise ist identisch mit der in Vorschrift 15; Teil 1, 2, 3 und 4. Unterschiede treten ab Teil 5 auf.

5. threo-3-Benzylsulfanyl-2-formylamino-3-methyl-octansäure-ethylester (Prod. 28)

0.28 ml n-Butyllithium wurden in 40 ml absolutem THF gegeben und die Mischung wurde auf 0 °C gekühlt. Nun wurden 5.5 g Benzylmercaptan hinzugetropft. Nach 20

minütigem Rühren wurde die Lösung auf eine Temperatur zwischen -40 und 0 °C gekühlt und es wurde eine Lösung von 1 g (E)und(Z)-2-Formylamino-3-methyloct-2ensäure-ethylester (E/Z-Verhältnis: 1:1) langsam hinzugegeben. Es wurde 2 h bei der Temperatur gerührt und danach auf 0 °C erwärmt und anschließend wurde mit 100 ml einer 5%iger Natriumhydroxid-Lösung hydrolysiert. Die Phasen wurden getrennt und die wäßrige Phase wurde zweimal mit je 100 ml Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden über MgSO4 getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt. Das im Überschuß eingesetzte Mercaptan konnte mittels Chromatographie Kieselgel mit an Dichlormethan/Diethylether (6:1) als Eluent abgetrennt werden. Durch Kristallisation aus Pentan/Ethanol (10:1) erhielt man die Titelverbindung (Prod. 28) als weißen Feststoff in einer Ausbeute von 1.51 g (98% d.Th.).

5

10

15

20

6. rac-threo-2-Amino-benzylsulfanyl-methyl-octansäure Hydrochlorid (Prod. 27)

1.51 g threo-3-Benzylsulfanyl-2-formylamino-3-methyl-octansäure-ethylester (Prod. 28) wurden bei RT zu 40 ml 6N Salzsäure gegeben und anschließend 24 h unter Rückfluß gerührt (DC-Kontrolle: Dichlormethan: Methanol: Eisessig:35:5:3). Nach Abkühlen auf RT wurde unter Eiskühlung weitergerührt. Der ausgefallene weiße Feststoff wurde abgesaugt, mit Ether gewaschen und anschließend im Vakuum getrocknet. Man erhielt so 0.9 g (94.9% d.Th.) *rac-threo-*2-Amino-benzylsulfanyl-methyl-octansäure Hydrochlorid; Verbindung 16 (Prod. 27).

Pharmakologische Untersuchungen

Beispiel 3:

5 Bindungsassay

10

15

20

Beim Bindungsassay wird Gabapentin benutzt, um die Bindung und Affinitäten der ausgewählten Verbindungen zu überprüfen. Die Affinität der erfindungsgemäßen Verbindungen wird über die Verdrängung von Gabapentin von seiner Bindungsstelle gemessen. Wenn die ausgewählten Verbindungen Gabapentin von seiner Bindungsstelle verdrängen können, so kann man erwarten, daß sie dem Gabapentin vergleichbare pharmakologische Eigenschaften entfalten z.B. als Agenz gegen Schmerz oder Epilepsie. Die erfindungsgemäßen Verbindungen zeigen eine gute Hemmung/Verdrängung von Gabapentin in diesem Assay. Die untersuchten Verbindungen weisen daher in diesem biochemischen Assay eine Affinität zur bislang unbekannten Gabapentin-Bindungsstelle auf. Die Affinitäten beziehungsweise die Prozent Hemmung der Verbindungen in Bezug auf die Gabapentinbindung sind der Tabelle 1 zu entnehmen:

Tabelle 1:

Verbindung Nr.	Affinität (IC₅₀) nM und/oder %-Hemmung (Konz.)
1	268
2	165
3	280 oder 99.7% (10 ⁻⁵ μM)
4	186
5	70
6	199
7	258
8	151
9	339 oder 97.5% (10-5 μM)
10	150

11	120
12 .	70
13	30
14	100
15	92% (10 ⁻⁵ μM)
16	1800 oder 93% (10 ⁻⁵ µM)
17	2350
18	15% (10 ⁻⁵ μM)
19 .	271
20	3050
21	12400
22	336
23	91% (10 ⁻⁵ μM)
24	90% (10 ⁻⁵ μM)
25	40% (10 ⁻⁵ μM)
26	703
27	589
28	1320
29	30% (10 ⁻⁵ μM)
30	314
31	187
32	223
33	528
34	1004
35	84% (10 ⁻⁵ μM)
36	88% (10 ⁻⁵ μM)
37	196

Beispiel 4:
Analgesieprüfung im Writhing-T st an der Maus

Die antinociceptive Wirksamkeit der erfindungsgemäßen Verbindungen wurde im Phenylchinon-induzierten Writhing-Test, modifiziert nach I.C. Hendershot. J. Forsaith, J.Pharmacol. Exp. Ther. 125, 237 - 240 (1959) an der Maus untersucht. Dazu wurden männliche NMRI-Mäuse mit einem Gewicht von 25 - 30 g eingesetzt. Gruppen von 10 Tieren pro Substanzdosis wurden 10 Minuten nach intravenöser Gabe einer erfindungsgemäßen Verbindung 0.3 ml/Maus einer 0,02 %igen wäßrigen Lösung von Phenylchinon (Phenylbenzochinon, Fa. Sigma, Deisenhofen; Herstellung der Lösung unter Zusatz von 5 % Ethanol und Aufbewahrung im Wasserbad bei 45 °C) intraperitoneal appliziert. Die Tiere wurden einzeln in Beobachtungskäfige gesetzt. Mittels eines Drucktastenzählers wurde die Anzahl der Schmerz-induzierten Streckbewegungen (sogenannte Writhingreaktionen = Durchdrücken des Körpers mit Abstrecken der Hinterextremitäten) 5 - 20 Minuten nach der Phenylchinon-Gabe physiologische ausgezählt. Als Kontrolle wurden Tiere mitaeführt. die Kochsalzlösung i.v. und Phenyylchinon i.v. erhielten.

15

10

5

Alle Substanzen wurden in der Standarddosis von 10 mg/kg getestet. Die prozentuale Hemmung (% Hemmung) der Writhingreaktionen durch eine Substanz wurde nach folgender Formel berechnet:

%Hemmung = 100 -[WR behandelte Tiere/WR Kontrolle X 100]

Alle untersuchten erfindungsgemäßen Verbindungen zeigten eine Wirkung im Writhing Test.

Die Ergebnisse ausgewählter Writhing-Untersuchungen sind in der Tabelle 2 zusammengefaßt. Gabapentin zeigt einen ED₅₀ von 38 mg/kg.

25

20

<u>Tabelle 2</u>: Analgesieprüfung im Writhing-Test an der Maus

Verbindung Nr.	Writhing Maus i.v. ED ₅₀
real transfer and a second control of the se	
4	12 mg/kg
6	35 mg/kg
8	70 mg/kg

Beispiel 5:

Formalin Test Maus

5

20

25

30

Die Untersuchungen zur Bestimmung der antinociceptiven Wirkung der erfindungsgemäßen Verbindungen wurden im Formalin-Test an männlichen Albino-Mäusen (NMRI, 25 - 35 g, Iffa Credo, Belgien) durchgeführt.

Im Formalin-Test werden die erste (frühe) Phase (0 - 15 min nach Formalin-Injektion) und die zweite (späte) Phase (15 - 60 min nach Formalin-Injektion) unterschieden (D. Dubuisson er al, Pain, Vol. 4, pp. 161 - 174 (1977)). Die frühe Phase stellt als direkte Reaktion auf die Formalin-Injektion ein Modell für Akutschmerz dar, während die späte Phase als Modell für persistierenden (chronischen) Schmerz angesehen wird (T.J. Coderre et al, Pain, Vol. 52, pp. 259 - 285 (1993)).

Die erfindungsgemäßen Verbindungen wurden in der zweiten Phase des Formalin-Tests untersucht, um Aussagen über Substanzwirkungen im chronisch/entzündlichen Schmerz zu erhalten.

Durch eine einmalige subkutane Formalin-Injektion (20 µl, 1 %ige wäßrige Lösung) in die dorsale Seite der rechten Hinterpfote wurde bei freibeweglichen Versuchstieren eine nociceptive Reaktion induziert, die sich in deutlichem Lecken und Beißen der betroffenen Pfote äußert.

Für den Untersuchungszeitraum in der zweiten (späten) Phase des Formalin-Tests wurde das nozizeptive Verhalten durch Beobachtung der Tiere kontinuierlich erfaßt. Die Quantifizierung des Schmerzverhaltens erfolgte durch Summation der Sekunden, in denen die Tiere im Untersuchungszeitraum Lecken und Beißen der betroffenen Pfote zeigten. Nach Injektion von Substanzen, die im Formalin-Test antinozizeptiv wirksam sind, sind die beschriebenen Verhaltensweisen der Tiere reduziert, evtl. sogar aufgehoben. Entsprechend den Substanzversuchen, bei denen die Tiere Testsubstanz vor Formalin injiziert bekommen hatten, wurde den Kontrolltieren Vehikel, d.h. Lösungmittel (z.B. 0,9%ige NaCl-Lösung), vor der Formalin-applikation gespritzt. Das Verhalten der Tiere nach Substanzgabe (n=10 pro Substanzdosierung) wurde mit einer Kontrollgruppe (n=10 verglichen).

Basierend des Quantifizierung Schmerzverhaltens wurde auf der Substanzwirkung im Formalin-Test als Änderung der Kontrolle in Prozent ermittelt. Die ED50-Berechnungen erfolgten mittels Regressionsanalyse. Abhängig von der erfindungsgemäßen Verbindungen **Applikationsart** der wurde der Applikationszeitpunkt vor der Formalin-Injektion gewählt (intraperitoneal: 15 min, intravenös: 5 min).

Die erfindungsgemäßen Verbindungen zeigten eine Hemmung der durch Formalin induzierten Nociception. Die entsprechenden Ergebnisse im Formalin-Test an der Maus sind in der nachfolgenden Tabelle 3 zusammengefaßt. Gabapentin zeigt einen ED50 von 79 mg/kg

Tabelle 3: Analgesieprüfung im Formalin Test Maus

Verbindung Nr.	Formalin Test Maus ED ₅₀
2	158 mg/kg (i.v.)
4	67 mg/kg (i.v.)
5	54 mg/kg (i.p.)
6	66 mg/kg (i.v.)
8	79 mg/kg (i.v.)
10	105 mg/kg i.p.
12	78 mg/kg i.p.

15

25

5

10

Beispiel 6

Bennett / Neuropathischer Schmerz an der Ratte

Die Untersuchung auf Wirksamkeit im neuropathischen Schmerz wurde im Bennett-Modell (chronic constriction injury; Bennett und Xie, 1988, Pain 33: 87-107) untersucht.

Sprague-Dawley Ratten mit einem Gewicht von 140-160g werden unter Nembutal-Narkose mit vier losen Ligaturen des rechten nervus ischiaticus versehen. Die Tiere

entwickeln der geschädigten Nerv innervierten Pfote an vom Überempfindlichkeit, die nach einer Erholungsphase von einer Woche über etwa vier Wochen mittels einer 4°C kalten Metallplatte quantifiziert wird (Kälte-Allodynie). Die Tiere werden für einen Zeitraum von 2 min, auf dieser Platte beobachtet und die Anzahl der Wegziehreaktionen der geschädigten Pfote wird gemessen. Bezogen auf den Vorwert vor Substanzapplikation wird die Substanzwirkung über einen Zeitraum von einer Stunde an vier Zeitpunkten (15, 30, 45, 60 min. nach Applikation) bestimmt und die resultierend Fläche unter der Kurve (AUD) sowie die Hemmung der Kälte-Allodynie zu den einzelnen Meßpunkten in Prozent Wirkung zur Vehikelkontrolle (AUD) bzw. zum Ausgangswert (Einzelmeßpunkte) ausgedrückt. Die Gruppengröße beträgt n=10, die Signifikanz einer anti-allodynischen Wirkung wird anhand der AUD-Werte über einen gepaarten T-Test (* $0.05 \ge p > 0.01$; ** $0.01 \ge p > 0.001$; *** $p \le p > 0.001$ 0.001; Armitage und Berry, 1987, Stat. Methods in Medical Research, London: Blackwell Scientific Publications) bestimmt.

15

10

5

Die untersuchte erfindungsgemäße Verbindungen zeigte eine anti-allodynische Wirkung. Die Ergebnisse sind im Vergleich zu Gabapentin in der nachfolgenden Tabelle 4 zusammengefaßt.

20 <u>Tabelle 4:</u> Prüfung der Hemmung im neuropathischen Schmerz an der Ratte

Verbindung	Dosis [mg/kg] i.p.	AUD	Änderung gegen Kontolle(%)
Gabapentin	100	1940.3 +/-139.7***	34.5
Gabapentin	464	2577.8 +/-147.4***	47.3
Verbindung 4	46.4	1893.1 +/- 284.6***	32.5
Verbindung 4	100	3603.1 +/- 228.1***	66.9

Beispi 17

25 Mechanische Hyp ralgesie nach Pfoteninzision an der Ratt (Paw incision-Modell):

1. EINLEITUNG

In diesem Modell wird der Wundschmerz in der Umgebung einer Inzision an der plantaren Seite einer Hinterpfote der Ratte als Modell für postoperativen Schmerz untersucht (Brennan, T.J., Vandermeulen, E.P., Gebhart, G.F., Pain (1996) 493-501). Für diese Zwecke wird die Wegziehlatenz nach punktförmiger mechanischer Stimulation mit einem elektronischen von Frey-Filament bestimmt. Nach der Pfoteninzision entwickelt sich eine mechanische Hyperalgesie, die über mehrere Tage stabil bliebt.

10

5

2. Material und Methoden

Pfoteninzision:

15

Es werden männliche Sprague Dawley Ratten (Körpergewicht 200-300 g) verwendet. Unter Halothannarkose wird eine 1 cm lange Inzision, beginnend 0.5 cm von dem proximalen Ende der Ferse, durch Haut, Faszie und M. plantaris gesetzt und mit zwei Nähten verschlossen.

20

25

3. Versuchsdurchführung:

Unter Verwendung eines elektronischen von Frey-Filamentes (Digital Transducer Indicator Model 1601C, IITC inc.) wird die Wegziehschwelle der Pfote, ausgedrückt in Gramm, nach punktförmiger mechanischer Stimulation bestimmt. Dazu wird die Wegziehschwelle pro Meßpunkt fünfmal im Abstand von 30 sec gemessen und der individuelle Median bestimmt, anhand derer wiederum der Mittelwert des Tierkollektivs berechnet wird. Pro Versuchstiergruppe werden 10 Ratten getestet.

30

Zur Untersuchung der *Primären Hyperalgesie* wird die Wegziehschwelle an der ipsilateralen Pfote in unmittelbarer Nähe zur Inzision sowie in derselben Position an der kontralateralen Pfote bestimmt. Die Messungen erfolgen zweimal vor dem operativen Eingriff zur Bestimmung des Vortestmittelwertes, postoperativ unmittelbar vor der Substanzgabe sowie zu verschiedenen Zeitpunkten nach Substanzgabe

(i.d.R. 15, 30, 60, 90, 120 min p.appl.). Die Untersuchungen können von Substanzen in einem Zeitraum von 2 Stunden bis zu 3 Tagen postoperativ erfolgen.

4. Auswertung:

5 DIE WIRKSAMKEIT EINER SUBSTANZ WIRD ANHAND DER BEEINFLUSSUNG DER WEGZIEH-SCHWELLE DER IPSILATERALEN PFOTE BESCHRIEBEN:

$$\%MPE = 100 - [(WTH_{SUB} - WTH_{PRÄ-OP}) / (WTH_{POST-OP} - WTH_{PRÄ-OP}) * 100]$$

10 MPE:

Maximal Possible Effect

WTH_{SUB}:

WEGZIEHSCHWELLE NACH SUBSTANZGABE

WTh_{prä-op}:

Wegziehschwelle vor der Operation (Vortestmittelwert)

WTh_{post-op}:

Wegziehschwelle nach der Operation und vor der Substanzgabe

Zur Signifikanzberechnung wird der Mann-Whitney-U- Test verwendet (p < 0.05). Bei dosisabhängigen Effekten wird der ED₅₀-Wert anhand einer Regressionsanalyse bestimmt.

5. Ergebnisse:

20

Die Ergebnisse sind in Tabelle 5 zusammengefaßt:

Tabelle 5: Analgesieprüfung im Paw Incision Ratte

Verbindung Nr.	Wert
6	27% MPE (464 mg/kg) i.p.

25

Gabapentin zeigt einen Wert von 66% MPE bei 100 mg/kg.

Beispiel 8: Parenterale Applikationsform.

30

38,5 g der Verbindung 4 werden in 1 l Wasser für Injektionszwecke bei Raumtemperatur gelöst und anschließend durch Zugabe von wasserfreier Glukosé für Injektionszwecke auf isotone Bedingungen eingestellt.

<u>Patentansprüche</u>

1. Verwendung einer β-Thio-α-aminosäure der allgemeinen Formel I,

5

, worin

10

 R^1 und R^2 jeweils unabhängig voneinander ausgewählt sind aus H; C_{1-10} -Alkyl, verzweigt oder unverzweigt, gesättigt oder ungesättigt, unsubstituiert oder ein- oder mehrfach substituiert; Benzyl, Aryl, C_{3-8} -Cycloalkyl oder Heteroaryl, jeweils unsubstituiert oder ein- oder mehrfach substituiert; oder

15

 R^1 und R^2 zusammen einen $(CH_2)_{3-6}$ -Ring bilden, gesättigt oder ungesättigt, substituiert oder unsubstituiert, in dem 0-2 C-Atome durch S, O oder NR^4 , ersetzt sein können,

20

mit R⁴ ausgewählt aus: H; C₁₋₁₀-Alkyl, gesättigt oder ungesättigt, verzweigt oder unverzweigt, einfach oder mehrfach substituiert oder unsubstituiert;

25.

R³ ausgewählt ist aus H; C₁₋₁₀-Alkyl, gesättigt oder ungesättigt, verzweigt oder unverzweigt, einfach oder mehrfach substituiert oder unsubstituiert; C₃₋₈-Cycloalkyl, gesättigt oder ungesättigt, unsubstituiert oder einfach oder mehrfach substituiert; Aryl-, oder Heteroaryl, jeweils unsubstituiert oder einfach oder mehrfach substituiert; oder über gesättigtes oder ungesättigtes C₁₋₃-Alkyl gebundenem Aryl, C₃₋₈-Cycloalkyl oder Heteroaryl, jeweils unsubstituiert oder einfach oder mehrfach substituiert;

30

in Form ihrer Razemate; Enantiomere, Diastereomere, insbesondere Mischungen ihrer Enantiomere oder Diastereomere oder eines einzelnen Enantiomers oder Diastereomers; in Form ihrer physiologisch verträglichen sauren und basischen Salze bzw. Salze mit Kationen bzw. Basen oder mit Anionen bzw. Säuren oder in Form der freien Säuren oder Basen;

60

mit Ausnahme von Verbindungen, bei denen R¹, R² und R³ gleichzeitig H sind oder R¹ und R² gleichzeitig CH₃ sind und R³ Wasserstoff entspricht,

zur Herstellung eines Arzneimittels zur Behandlung von Schmerz, insbesondere von neuropathischem, chronischem oder akutem Schmerz, von Epilepsie und/oder von Migräne

oder

zur Herstellung eines Arzneimittels zur Behandlung von Hyperalgesie und Allodynie, insbesondere thermischer Hyperalgesie, mechanischer Hyperalgesie und Allodynie und Kälte Allodynie, oder von inflammatorischem oder postoperativem Schmerz

oder

zur Herstellung eines Arzneimittels zur Behandlung von Hitzewallungen,
Beschwerden in der Postmenopause, Amyotropischer Lateraler Sklerose
(ALS), Reflex Sympasthetic Dystrophy (RSD), Spastischer Lähmung, Restless
Leg Syndrom, erworbenem Nystagmus; psychatrischen bzw.
neuropathologischen Störungen, wie bipolaren Störungen, Anxiety,
 Panikanfällen, Stimmungsschwankungen, manischem Verhalten,
Depressionen, manisch-depressivem Verhalten; schmerzvoller diabetischer
Neuropathie, Symptomen und Schmerzen aufgrund von Multipler Sklerose oder
der Parkinsonschen Krankheit, neurodegenerativen Erkrankungen, wie Morbus
Alzheimer, Morbus Huntington, Morbus Parkinson und Epilepsie;

15

10

5

20

WO 02/22568 61 PCT/EP01/10488

gastrointestinaler Schädigung; von erythromelalgischem oder postpoliomyelitischem Schmerz, trigeminaler oder postherpetischer Neuralgie; oder als Antikonvulsivum, Analgetikum oder Anxiolytikum.

 Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß eine Thioaminosäure gemäß Formel I verwendet wird, worin

 R^1 und R^2 jeweils unabhängig voneinander ausgewählt sind aus C_{1-10} -Alkyl, verzweigt oder unverzweigt, gesättigt oder ungesättigt, unsubstituiert oder ein- oder mehrfach substituiert; Benzyl, Aryl, C_{3-8} -Cycloalkyl oder Heteroaryl, jeweils unsubstituiert oder ein- oder mehrfach substituiert;

oder

 R^1 und R^2 zusammen einen $(CH_2)_{3-6}$ -Ring bilden, gesättigt oder ungesättigt, substituiert oder unsubstituiert, in dem 0-2 C-Atome durch S, O oder NR^4 , ersetzt sein können.

3. Verwendung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß eine Thioaminosäure gemäß Formel I verwendet wird, worin

 R^1 und R^2 jeweils unabhängig voneinander ausgewählt sind aus H; C_{1-10} -Alkyl, verzweigt oder unverzweigt, gesättigt oder ungesättigt, unsubstituiert oder ein- oder mehrfach substituiert; Phenyl oder Thiophenyl, jeweils unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder l) substituiert; oder C_{3-8} -Cycloalkyl, unsubstituiert oder substituiert,

oder

30

10

15

20

25

 R^1 und R^2 zusammen einen $(CH_2)_{3-6}$ -Ring bilden, substituiert oder unsubstituiert, in dem 0-1 C-Atome durch S, O oder NR_4 , ersetzt sein können,

5

10

15

20

25

30

vorzugsweise

einer der Reste R^1 und R^2 C_{1-2} -Alkyl, insbesondere Methyl oder Ethyl, jeweils unsubstituiert oder ein- oder mehrfach substituiert; oder Phenyl, Thiophenyl, jeweils unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder I) substituiert; oder C_{3-8} -Cycloalkyl unsubstituiert oder einfach substituiert; bedeutet und der andere der Reste R^1 und R^2 C_{2-10} -Alkyl, insbesondere Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, tert.-Butyl, Pentyl, Hexyl, Heptyl oder Octyl, verzweigt oder unverzweigt, gesättigt oder ungesättigt, unsubstituiert oder ein- oder mehrfach substituiert; oder Phenyl bzw. Thiophenyl, jeweils unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder I) substituiert; oder C_{3-8} -Cycloalkyl, insbesondere Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl, jeweils unsubstituiert oder einfach substituiert; bedeutet,

oder

R¹ und R² zusammen Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl, insbesondere Cyclopropyl, Cyclobutyl oder Cyclopentyl, bilden, jeweils unsubstituiert oder einfach substituiert, wobei gegebenenfalls ein C-Atom im Ring durch S ersetzt ist.

4. Verwendung gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß eine Thioaminosäure gemäß Formel I verwendet wird, worin

R₃ ausgewählt ist aus H; C₁₋₆-Alkyl, gesättigt oder ungesättigt, verzweigt oder unverzweigt, einfach oder mehrfach substituiert oder unsubstituiert; Phenyl oder Thiophenyl, unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder I) substituiert; oder über gesättigtes CH₃-gebundenem Phenyl, unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder I) substituiert;

5

15

20

25

30

vorzugsweise R³ ausgewählt ist aus H; C₁₋₆-Alkyl, gesättigt, unverzweigt und unsubstituiert, insbesondere Methyl, Ethyl, Propyl, n-Propyl, i-Propyl, Butyl, n-Butyl, i-Butyl, tert.-Butyl, Pentyl oder Hexyl; Phenyl oder Thiophenyl, unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder I) substituiert; oder über gesättigtes CH₃-gebundenem Phenyl, unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder I) substituiert.

- 5. Verwendung gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß für die verwendete Thioaminosäure gemäß Formel I gilt, daß,
 - wenn einer von R¹ oder R² Wasserstoff ist und R³ Benzyl oder H ist, der andere von R¹ oder R² nicht Phenyl sein darf,
 - wenn R¹ und R² zusammen Cyclopentyl bilden, R³ nicht H sein darf,
 - wenn einer von R¹ oder R² Wasserstoff und der andere von R¹ oder R²
 Phenyl ist, R³ nicht substituiertes oder unsubstituiertes Benzyl sein darf oder
 - wenn einer von R¹ oder R² Wasserstoff und der andere von R¹ oder R²
 Methyl ist, R³ nicht H sein darf.
 - 6. Verwendung gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß eine Thioaminosäure ausgewählt aus der folgenden Gruppe verwendet wird:
 - 2-Amino-3-mercapto-3-methyl-pentansäure
 - 2-Amino-3-mercapto-3-methyl-hexansäure
 - 2-Amino-3-mercapto-3-methyl-heptansäure
 - 2-Amino-3-mercapto-3-methyl-octansäure
 - 2-Amino-3-mercapto-3-methyl-nonansäure
 - 2-Amino-3-mercapto-3-methyl-decansaure
 - 2-Amino-3-ethyl-3-mercapto-pentansäure
 - Amino-(1-mercapto-cyclopentyl)essigsäure
 - Amino-3-ethyl-3-mercapto-hexansäure
 - 2-Amino-3-mercapto-3-methyl-decansäure

- 2-Amino-3-mercapto-3-methyl-nonansäure
- 2-Amino-3-mercapto-3-methyl-octansäure
- 2-Amino-3-ethylsulfanyl-3-methyl-octansäure
- 2-Amino-3-benzylsulfanyl-3-methyl-octansäure
- 2-Amino-3-mercapto-3-propyl-3-hexansäure
- Amino-(1-mercapto-cycloheptyl)-essigsäure
- 2-Amino-3-mercapto-3-propyl-3-hexansäure
- Amino-(1-mercapto-cycloheptyl)-essigsäure
- 2-Amino-3-ethylsulfanyl-3-methyl-nonansäure
- 2-Amino-3-methyl-3-propylsulfanyl-nonansäure
- 2-Amino-3-hexylsulfanyl-3-methyl-nonansäure
- 2-Amino-3-benzylsulfanyl-3-methyl-nonansäure
- 2-Amino-3-benzylsulfanyl-3-methyl-decansäue
- 2-Amino-3-ethylsulfanyl-3-methyl-decansäure
- 2-Amino-3-cyclopropyl-3-(4-fluoro-phenyl)-3-mercapto-propansäure
- 2-Amino-3-cyclopropyl-3-mercapto-butansäure
- 2-Amino-3-cyclobutyl-3-mercapto-butansäure
- 2-Amino-3-cyclohexyl-3-mercapto-butansäure
- 2-Amino-3-mercapto-3-thiophen-2-yl-butansäure
- 2-Amino-3-ethyl-3-mercapto-heptansäure
 - Amino-(1-mercapto-cyclohexyl)- ethansäure
 - Amino-(1-mercapto-3-methyl-cyclohexyl)-ethansäure
 - Amino-(1-mercapto-2-methyl-cyclohexyl)-ethansäure
 - Amino-(1-mercapto-4-methyl-cyclohexyl)-ethansäure
 - Amino-(4-mercapto-tetrahydro-thiopyran-4-yl)-ethansäure
 - 2-Amino-3-mercapto-3,4-dimethyl-pentansäur
 - 2-Amino-3-mercapto-3,4-dimethyl-hexansäure

in Form ihrer Razemate; Enantiomere, Diastereomere, insbesondere Mischungen ihrer Enantiomere oder Diastereomere oder eines einzelnen Enantiomers oder Diastereomers; in Form ihrer physiologisch verträglichen sauren und basischen Salze bzw. Salze mit Kationen bzw. Basen oder mit

10

5

15

20

25

30

WO 02/22568 65 PCT/EP01/10488

Anionen bzw. Säuren oder in Form der freien Säuren oder Basen, vorzugsweise des Hydrochlorids.

- 7. Verwendung gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß mindestens eine verwendete Thioaminosäure als reines Diastereomer und/oder Enantiomer, als Razemat oder als nicht-äquimolare oder äquimolare Mischung der Diastereomere und/oder Enantiomere vorliegt.
 - 8. β-Thio-α-aminosäure der allgemeinen Formel I,

R³S NH₂

, worin

5

10

15

20

30

einer der Reste R^1 und R^2 C_{1-6} -Alkyl, gesättigt oder ungesättigt, verzweigt oder unverzweigt, einfach oder mehrfach substituiert oder unsubstituiert; bedeutet und der andere der Reste R^1 und R^2 C_{3-10} -Alkyl, gesättigt oder ungesättigt, verzweigt oder unverzweigt, einfach oder mehrfach substituiert oder unsubstituiert; oder Phenyl, Thiophenyl oder C_{3-8} -Cycloalkyl, jeweils unsubstituiert oder einfach oder mehrfach substituiert; bedeutet,

25 und

R³ ausgewählt ist aus H; C₁₋₁₀-Alkyl, gesättigt oder ungesättigt, verzweigt oder unverzweigt, einfach oder mehrfach substituiert oder unsubstituiert; C₃₋₈-Cycloalkyl, gesättigt oder ungesättigt, unsubstituiert oder einfach oder mehrfach substituiert; Aryl-, oder Heteroaryl, jeweils unsubstituiert oder einfach oder mehrfach substituiert; oder über gesättigtes oder

ungesättigtes C₁₋₃-Alkyl gebundenem Aryl, C₃₋₈-Cycloalkyl oder Heteroaryl, jeweils unsubstituiert oder einfach oder mehrfach substituiert;

in Form ihrer Razemate; Enantiomere, Diastereomere, insbesondere Mischungen ihrer Enantiomere oder Diastereomere oder eines einzelnen Enantiomers oder Diastereomers; in Form ihrer physiologisch verträglichen sauren und basischen Salze bzw. Salze mit Kationen bzw. Basen oder mit Anionen bzw. Säuren oder in Form der freien Säuren oder Basen.

9. Thioaminosäure gemäß Anspruch 8, dadurch gekennzeichnet, daß

5

10

15

20

25

30

17

einer der Reste R^{1.} und R² C₁₋₂-Alkyl, einfach oder mehrfach substituiert oder unsubstituiert, insbesondere Methyl oder Ethyl; bedeutet und der andere der Reste R¹ und R² C₃₋₁₀-Alkyl, vorzugsweise C₃₋₈-Alkyl, gesättigt oder ungesättigt, verzweigt oder unverzweigt, einfach oder mehrfach substituiert oder unsubstituiert, insbesondere Propyl, n-Propyl, i-Propyl, Butyl, n-Butyl, i-Butyl, tert.-Butyl, Pentyl, Hexyl, Heptyl oder Octyl; oder Phenyl oder Thiophenyl, jeweils unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder I) substituiert; oder Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl; bedeutet.

10. Thioaminosäure gemäß einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, daß

R₃ ausgewählt ist aus H; C₁₋₆-Alkyl, gesättigt oder ungesättigt, verzweigt oder unverzweigt, einfach oder mehrfach substituiert oder unsubstituiert; Phenyl oder Thiophenyl, unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder I) substituiert; oder über gesättigtes CH₃-gebundenem Phenyl, unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder I) substituiert;

vorzugsweise R³ ausgewählt ist aus H; C₁₋₆-Alkyl, gesättigt, unverzweigt und unsubstituiert, insbesondere Methyl, Ethyl, Propyl, n-Propyl, i-Propyl, Butyl, n-Butyl, i-Butyl, tert.-Butyl, Pentyl oder Hexyl; Phenyl oder Thiophenyl, unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder l) substituiert; oder über gesättigtes CH₃-gebundenem Phenyl, unsubstituiert oder einfach (vorzugsweise mit OCH₃, CH₃, OH, SH, CF₃, F, Cl, Br oder l) substituiert.

11. Thioaminosäure gemäß einem der Ansprüche 8 bis 10, dadurch gekennzeichnet,
daß sie ausgewählt ist aus der folgenden Gruppe:

- 2-Amino-3-mercapto-3-methyl-hexansäure
- 2-Amino-3-mercapto-3-methyl-heptansäure
- 2-Amino-3-mercapto-3-methyl-octansäure
- 2-Amino-3-mercapto-3-methyl-nonansäure
- 2-Amino-3-mercapto-3-methyl-decansäure
- Amino-3-ethyl-3-mercapto-hexansäure
- 2-Amino-3-mercapto-3-methyl-decansäure
- 2-Amino-3-mercapto-3-methyl-nonansäure
- 2-Amino-3-mercapto-3-methyl-octansäure
- 2-Amino-3-ethylsulfanyl-3-methyl-octansäure
- 2-Amino-3-benzylsulfanyl-3-methyl-octansäure
- 2-Amino-3-mercapto-3-propyl-3-hexansäure
- Amino-(1-mercapto-cycloheptyl)-essigsäure
- 2-Amino-3-mercapto-3-propyl-3-hexansäure
- 2-Amino-3-ethylsulfanyl-3-methyl-nonansäure
- 2-Amino-3-methyl-3-propylsulfanyl-nonansäure
- 2-Amino-3-hexylsulfanyl-3-methyl-nonansäure
- 2-Amino-3-benzylsulfanyl-3-methyl-nonansäure
- 2-Amino-3-benzylsulfanyl-3-methyl-decansäue
- 2-Amino-3-ethylsulfanyl-3-methyl-decansäure
- 2-Amino-3-cyclopropyl-3-mercapto-butansäure
- 2-Amino-3-cyclobutyl-3-mercapto-butansäure

20

15

5

20

25

30

WO 02/22568 68 PCT/EP01/10488

- 2-Amino-3-cyclohexyl-3-mercapto-butansäure
- 2-Amino-3-mercapto-3-thiophen-2-yl-butansäure
- 2-Amino-3-ethyl-3-mercapto-heptansäure
- 2-Amino-3-mercapto-3,4-dimethyl-pentansäure
- 2-Amino-3-mercapto-3,4-dimethyl-hexansäure

in Form ihrer Razemate; Enantiomere, Diastereomere, insbesondere Mischungen ihrer Enantiomere oder Diastereomere oder eines einzelnen Enantiomers oder Diastereomers; in Form ihrer physiologisch verträglichen sauren und basischen Salze bzw. Salze mit Kationen bzw. Basen oder mit Anionen bzw. Säuren oder in Form der freien Säuren oder Basen, vorzugsweise des Hydrochlorids.

- 12. Arzneimittel enthaltend wenigstens eine Thioaminosäure gemäß einem der Ansprüche 8 bis 11, sowie gegebenenfalls geeignete Zusatz- und/oder Hilfsstoffe und/oder gegebenenfalls weitere Wirkstoffe.
- 13. Arzneimittel gemäß Anspruch 12, dadurch gekennzeichnet, daß eine enthaltene Thioaminosäure gemäß einem der Ansprüche 8 bis 11, als reines Diastereomer und/oder Enantiomer, als Razemat oder als nicht-äquimolare oder äquimolare Mischung der Diastereomere und/oder Enantiomere vorliegt.
- 14. Verwendung einer Thioaminosäure gemäß gemäß einem der Ansprüche 8 bis 11

25 zur Herstellung eines Arzneimittels zur Behandlung von Schmerz, insbesondere von neuropathischem, chronischem oder akutem Schmerz, von Epilepsie und/oder von Migräne

oder

30

5

10

15

20

zur Herstellung eines Arzneimittels zur Behandlung von Hyperalgesie und Allodynie, insbesondere thermischer Hyperalgesie, mechanischer Hyperalgesie und Allodynie und Kälte Allodynie, oder von inflammatorischem oder postoperativem Schmerz

oder

5

10

15

20

25

zur Herstellung eines Arzneimittels zur Behandlung von Hitzewallungen,
Beschwerden in der Postmenopause, Amyotropischer Lateraler Sklerose
(ALS), Reflex Sympasthetic Dystrophy (RSD), Spastischer Lähmung, Restless
Leg Syndrom, erworbenem Nystagmus; psychatrischen bzw.
neuropathologischen Störungen, wie bipolaren Störungen, Anxiety,
Panikanfällen, Stimmungsschwankungen, manischem Verhalten,
Depressionen, manisch-depressivem Verhalten; schmerzvoller diabetischer
Neuropathie, Symptomen und Schmerzen aufgrund von Multipler Sklerose oder
der Parkinsonschen Krankheit, neurodegenerativen Erkrankungen, wie Morbus
Alzheimer, Morbus Huntington, Morbus Parkinson und Epilepsie;
gastrointestinaler Schädigung; von erythromelalgischem oder
postpoliomyelitischem Schmerz, trigeminaler oder postherpetischer Neuralgie;
oder als Antikonvulsivum, Analgetikum oder Anxiolytikum.

15. Verfahren zur Herstellung einer Thioaminsäure gemäß einem der Ansprüch 8 bis11 mit folgenden Schritten:

Deprotonierung des Isocyanessigsäurethylesters mit Basen, vorzugsweise Butyllithium, Natriumhydrid oder Kalium.-tert.butylat, und anschließende Umsetzung mit Ketonen der allgemeinen Formel 2 in Tetrahydrofuran führt zu (E,Z)-2-Formylaminoacrylsäureethylestern der allgemeinen Formel 3,

5

10

15

70

Umsetzung von (E,Z)-2-Formylaminoacrylsäureethylestern der allgemeinen Formel 3 mit P_4S_{10} in Toluol oder mit Mercaptanen der allgemeinen Formel R_3SH in Gegenwart von Butyllithium in Toluol, was zu Formylamino-Ethylester der allgemeinen Formel 4 führt,

Reaktion der Formylamino-Ethylester der allgemeinen Formel 4 mit Säure, vorzugsweise Salzsäure, was zu den Thio-Aminosäuren der allgemeinen Formel1 bzw. I gemäß einem der Ansprüche 8 bis 11 führt, gegebenenfalls gefolgt oder unterbrochen von Diastereomerentrennung auf geigneter Stufe mittels HPLC, Säulenchromatographie oder Kristallisation bzw. gefolgt von Enantiomerentrennung mittels HPLC, Säulenchromatographie oder Kristallisation,

wobei R1 bis R3 die Bedeutung gemäß Anspruch 8 haben oder einem mit einer geigneten Schutzgruppe geschützten entsprechenden Rest entsprechen.

INTERNATIONAL SEARCH REPORT

In Jonal Application No PCT/EP 01/10488

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07C323/58 C07C323/61 A61K31/198 A61P25/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07C A61K

Documentation searched other than minimum documentation to the extent that such documents are included. In the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, CHEM ABS Data, WPI Data, PAJ

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE REGISTRY 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; RN = 115310-95-7, XP002189463 abstract	8-10
X	& JP 06 059399 A (KONISHIROKU PHOTO IND.) 4 March 1994 (1994-03-04)	8-10
Α	US 4 024 175 A (SATZINGER GERHARD ET AL) 17 May 1977 (1977-05-17) example 1	1-15
A	WO 00 15611 A (BRYANS JUSTIN STEPHEN ;HORWELL DAVID CHRISTOPHER (GB); RECEVEUR JE) 23 March 2000 (2000-03-23) claim 1	1~15

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: A* document defining the general state of the art which is not considered to be of particular relevance E* earlier document but published on or after the international filling date L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another clation or other special reason (as specified) O* document referring to an oral disclosure, use, exhibition or other means P* document published prior to the international filling date but later than the priority date claimed	*T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. *&* document member of the same patent family
Date of the actual completion of the international search 7 February 2002	Date of mailing of the international search report 25/02/2002
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo ni, Fax: (+31–70) 340–3016	Authorized officer Janus, S
form PCT/ISA/210 (speeped shoet) (light 1000)	

INTERNATIONAL SEARCH REPORT

In tional Application No
PCT/EP 01/10488

		PCI/EP 01/10488
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Α	GB 2 336 587 A (MERCK SHARP & DOHME) 27 October 1999 (1999-10-27) claim 1	1-15
P,X	WO 01 20336 A (BERTELLI FRANCOIS ;BROWN JASON PETER (GB); SUMAN CHAUHAN NIRMALA () 22 March 2001 (2001-03-22) claim 21; table 1	1-15
E	WO 00 74705 A (PREHM PETER) 14 December 2000 (2000-12-14) page 23, line 4 -page 25, line 1; claim 18	1-15
	·	
	*	
!		
·		

INTERNATIONAL SEARCH REPORT

Information on patent family members

In tional Application No
PCT/EP 01/10488

	itent document I in search report	į	Publication date		Patent family member(s)		Publication date
JP	06059399	A	04-03-1994	NONE			
US	4024175	Α	17 - 05-1977	DE	2460891	A1	01-07-1976
				AT	340892		10-01-1978
				AT	975075		15-05-1977
				AU	8774175		23-06-1977
				BE	836835		18-06-1976
				CA	1052811		17-04-1979
				CH	612665		15-08-1979
				CH	612666		15-08-1979
				CH	612664		15-08-1979
				DE	2543821		14-04-1977
				DK	581475		22-01-1976
				ES	443723		16-04-1977
				FI	753613		22-06-1976
				FR	2294697	Δ1	16-07-1976
•				GB	1465229		23-02-1977
				ĬĒ	42382		30-07-1980
				JP	941538		20-02-1979
				JP	51088940		04-08-1976
				JP	53024064		18-07-1978
				LÜ	74058		20-07-1976
				MX	4721		13-08-1982
				MX	4691		02-08-1982
				NL	7514900		23-06-1976
			·	SE	423385		03-05-1982
			•	SE	7514442		22-06-1976
				US	4087544		02-05-1978
						·	02-03-1976
MO	0015611	Α	23-03-2000	AU	5478799		03-04-2000
				BR	9913701		05-06-2001
				EP	1112253		04-07-2001
				MO	0015611		23-03-2000
<u>.</u>				US	6245801	B1	12-06-2001
GB	2336587	Α	27-10-1999	US	6156761	Α	05-12-2000
WO	0120336	Α	22-03-2001	AU	7904500	A	17-04-2001
				WO	0120336		22-03-2001
	0074705		14 10 0000		105000		
WU	0074705	Α	14-12-2000	EP	1059087		13-12-2000
				AU	5971300		28-12-2000
				WO	0074705	A1	14-12-2000

INTERNATIONALER RECHERCHENBERICHT

ir lonales Aktenzelchen PCT/EP 01/10488

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C07C323/58 C07C323/61 A61K31/198 A61P25/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $IPK\ 7\ C07C\ A61K$

Recherchlerte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Geblete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, CHEM ABS Data, WPI Data, PAJ

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	DATABASE REGISTRY 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; RN = 115310-95-7, XP002189463 Zusammenfassung	8-10
X	& JP 06 059399 A (KONISHIROKU PHOTO IND.) 4. März 1994 (1994–03–04)	8-10
Α .	US 4 024 175 A (SATZINGER GERHARD ET AL) 17. Mai 1977 (1977-05-17) Beispiel 1	1-15
A	WO 00 15611 A (BRYANS JUSTIN STEPHEN; HORWELL DAVID CHRISTOPHER (GB); RECEVEUR JE) 23. März 2000 (2000-03-23) Anspruch 1/	1-15

 Besondere Kategorien von angegebenen Veröffentlichungen : "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen Im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist 	 *T* Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist *&* Veröffentlichung, die Mitglied derseiben Patentfamilie Ist
Datum des Abschlusses der internationalen Recherche	Absendedatum des Internationalen Recherchenberichts
7. Februar 2002	25/02/2002
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Riiswiik	Bevollmächtigter Bediensteter
Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Janus, S

INTERNATIONALER RECHERCHENBERICHT

in tionales Aktenzeichen
PCT/EP 01/10488

	wig. Alb Weben I lich angebehene un ierlauen	zung) ALS WESENTLICH ANGESEHENE UNTERLAGEN			
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommend	ten Telle	Betr. Anspruch Nr.		
1	GB 2 336 587 A (MERCK SHARP & DOHME) 27. Oktober 1999 (1999-10-27) Anspruch 1	1-15			
, χ	WO 01 20336 A (BERTELLI FRANCOIS ;BROWN JASON PETER (GB); SUMAN CHAUHAN NIRMALA () 22. März 2001 (2001–03–22) Anspruch 21; Tabelle 1	1-15			
	WO 00 74705 A (PREHM PETER) 14. Dezember 2000 (2000-12-14) Seite 23, Zeile 4 -Seite 25, Zeile 1; Anspruch 18	1–15			
	•				
			ı		
!					
			-		
			·		
	•		v		
	The second of th				

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Ini ionales Aktenzeichen
PCT/EP 01/10488

		101/11	01/10400
Im Recherchenbericht ngeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
JP 06059399 A	04-03-1994	KEINE	
US 4024175 A		DE 2460891 A1 AT 340892 B AT 975075 A AU 8774175 A BE 836835 A1 CA 1052811 A1 CH 612665 A5 CH 612666 A5 CH 612664 A5 DE 2543821 A1 DK 581475 A ,B, ES 443723 A1 FI 753613 A ,B, FR 2294697 A1 GB 1465229 A IE 42382 B1 JP 941538 C JP 51088940 A JP 53024064 B LU 74058 A1 MX 4721 E MX 4691 E MX 7514900 A ,B, SE 423385 B SE 7514442 A US 4087544 A	01-07-1976 10-01-1978 15-05-1977 23-06-1977 18-06-1976 17-04-1979 15-08-1979 15-08-1979 14-04-1977 22-01-1976 16-04-1977 22-06-1976 16-07-1976 23-02-1977 30-07-1980 20-02-1979 04-08-1976 18-07-1978 20-07-1976 13-08-1982 23-06-1976 03-05-1982 22-06-1976 02-05-1978
WO 0015611 A	23-03-2000	AU 5478799 A BR 9913701 A EP 1112253 A1 WO 0015611 A1 US 6245801 B1	03-04-2000 05-06-2001 04-07-2001 23-03-2000 12-06-2001
GB 2336587 A	27-10-1999	US 6156761 A	05-12-2000
WO 0120336 A	22-03-2001	AU 7904500 A WO 0120336 A2	17-04-2001 22-03-2001
WO 0074705 A	14-12-2000	EP 1059087 A1 AU 5971300 A WO 0074705 A1	13-12-2000 28-12-2000 14-12-2000