

Support Vector Machine

· Logithe Regression.

. Support Vector Machino

un
$$\frac{1}{\theta}$$
 $\frac{y}{m}$ \frac

=> Suppore Wester Machine

Hypothesis
$$h_{\theta}(x) = \int_{0}^{1} \int_{0}^{\infty} \int_$$

· Recall :

. If y=1, we want $0^T \cdot x \ge 1$ (not just ≥ 0) $y=0, \text{ we want } 0^T \cdot x \ge -1 \text{ and just } < 0$

for logistic regression

Here, we shift the threshold to be were conservative.

. SVM Deusin Bounday.

(1) sett mg (= 10,000

 $\lim_{\theta \to z=1} \left[y^{(i)} \cos t, (\theta^T x^{(i)}) + (1-y^{(i)}) \cos t, (\theta^T \cdot x^{(i)}) \right] + \frac{1}{z} \sum_{j=1}^{k} \theta_j^2$

Whenever y(i)=1, we need OTX (i) > 1

- 1 Review.
 - () Vector inner product.

$$\vec{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$
 $\vec{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$

inner product = uT.V.

|| || | = length of u = Ju, + n2 + 61R

so
$$\begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$
 $\uparrow \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = p \cdot ||u_1|| + ||u_1|| + ||u_2||$

P<0 if 0 > 90°.

2.	Keru	els	•																							
		Nou								lany	<u> </u>															
			ΧΤŢ	0	0 * * X	ν×, χ	X X X	0 00					ho(x)	= 1	0	,	if	the	00 rwi	⊹ €	nx	ı + "	. >	0		
				0 (00	ō 0	000						Can be													
											ζ,	-	fi=Xi, Is there									_	1 7.	5 =)	(3 -).	
													t"t"										ahe d	expe	nuve	2)
		Ken	1e\.	(1)																						
	γ.	1		•	· l	લ)	. ((1)					Given 2 phoxim	ity to	upute lar	e u du	ew arks	fe s	eat e	u re	e	lepei 12)	dir	9 () .	
							-						fi= sn	ulant y	Cx	., ((1))		7	7 (yuau)	e of dista	eu ue.		wan
													= 64	P (-	-	_11_:	2 0	(I) -2	_11 :		•)				
				1									:													
					em (X			')					. f; = s; = ex	P (-	U						\					
														► A sp						1						
		Cenu	els i	and	S	Simi	ilæn	ty														Ī		хи)	•	
					. la	o te	· į :	1	(×-	Q (ⁱ⁷ [[2	can be	unitei	n as	j	и 2 ~]	(χ	j-	l j	じ) =				
													then													
												=	=> f, a	exp(_ 	o T)_	=								
					رد)	1	}	χ,	far	. e	(1)		th en	_	- 6	(1)	// 2	/	are	ge						
													1 4 20	4												

· Each landmark defines a new feature. l''> <> f; Fx. $\ell'') = \begin{pmatrix} 3 \\ 5 \end{pmatrix} \qquad \int_{1}^{2} = \exp \left(-\frac{11}{2} \times - \ell'' / 11^{2} \right) \qquad \sigma^{2} = 1$ (vanzince). - as T2 mor, f talls slower. deer. faster Ex. Q (2) Predict "1" when 00+0,f,+02f2+02f3>0. (*) (13) Df1, f>, f3 -> x. 00= -0. - , 01= 1, 02= 1, 03=0. (x) => A(2) (x close to (")) leamed decision boundary. f220, f320 => 00+01.1+ 02.01 03-0= -0.5+1 =0.5 >0 => predat. "17 $(*) => f_1, f_2, f_3 = 0$ 60 + ... = -0. 5 (0 => | red at "0" => for points close to e", l') = predict 1. fær.

$$\chi^{(1)} \in \mathbb{R}^{n+1}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \\ \vdots \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \\ \vdots \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \\ \vdots \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \\ \vdots \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \\ \vdots \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \\ \vdots \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \\ \vdots \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)} = \begin{cases} f^{(1)} \\ f^{(1)} \end{cases}$$

$$\Rightarrow f^{(1)}$$

C. Other chores of kernel.

. not all similarity functions similarity (x, l) make valid kernels

[Need to classify technical condition called "Mercer's theorem"

to make sure SVM packages optimizations run correctly

and not diverge ?

Available options.

(1) polymunal kernel k(x, l) =(xTl),

(xTe+5)4

two parameters c.d

s.t. (xre+c,d.

(2) Estatene: stong kernels, chi-square kernel, histogram kernel,...

· Multiclass classification.

Logistic Regression Us. SVMs.

W: # features. W= # examples

