LARSON—MATH 511—CLASSROOM WORKSHEET 11 Gilbert Strang Lecture 7.

More on Strang's Lectures

- 1. We showed that A^TA is symmetric. It is a **key fact** that if A has linearly independent columns then A^TA is positive definite (and thus had positive eigenvalues). Why?
- 2. We showed that A^TA is symmetric. It is a **key fact** that A^TA is positive semi-definite (and thus has non-negative eigenvalues). Why?

SVD Algorithm (general case, A has rank r)

Suppose A is any $m \times n$ matrix.

- Find $A^T A$ (its $n \times n$)
 This matrix has rank r, is symmetric and is positive semi-definite.
- Find the positive eigenvalues and corresponding (unit) eigenvectors λ , \hat{v} (So $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_r > 0$). The remaining eigenvalues $\lambda_{r+1}, \ldots, \lambda_n$ are 0. The remaining (unit) eigenvectors $\hat{v}_{r+1}, \ldots, \hat{v}_n$ are a basis for the nullspace of $A^T A$. Let Λ be the diagonal matrix with the λ s on the diagonal.

Vectors corresponding to different eigenvalues are orthogonal. For each eigenspace with dimension greater than 1, Gram-Schmidt can be used to find an orthogonal basis.

- Let $V = [\hat{v}_1 \dots \hat{v}_r \dots \hat{v}_n]$. V is orthogonal.
- Let $\sigma_i = \sqrt{\lambda_i}$ and let Σ be the $m \times n$ matrix with diagonal entries $\sigma_1, \ldots, \sigma_r$
- Find AA^T (its $m \times m$)
 This matrix has rank r, is symmetric and is positive semi-definite.
- Check that $A\hat{v}_i$ is an eigenvector for AA^T with corresponding eigenvalue λ_i . This means that these are all the non-zero eigenvalues for AA^T . Let $u_i = \frac{1}{\sigma_i}A\hat{v}_i$ for $i = 1 \dots r$. Check that these \hat{u}_i are unit.
- The remaining eigenvalues of AA^T , $\lambda_{r+1}, \ldots, \lambda_m$ are 0. The remaining (unit) eigenvectors $\hat{u}_{r+1}, \ldots, \hat{u}_m$ are a basis for the nullspace of AA^T .
- Let $U = [\hat{u}_1 \dots \hat{u}_r \dots \hat{u}_m]$. U is orthogonal.
- $AV = U\Sigma$ and $A = U\Sigma V^T$.

3. Low Rank Approximation. Why does $A = \sigma_1 \hat{u}_1 \hat{v}_1^T + \ldots + \sigma_r \hat{u}_r \hat{v}_r^T$?

Sage/CoCalc

- (a) Start the Chrome browser.
- (b) Go to http://cocalc.com
- (c) Login (likely using your VCU email address).
- (d) You should see an existing Project for our class. Click on that.
- (e) Click "New", then "Sage Worksheet", then call it c11.

We will find the singular values $\sigma_1 \geq \dots \sigma_r > 0$ of a matrix A with rank r in three ways: (1) via the eigenvalues of $A^T A$, (2) via the eigenvalues of AA^T , and (3) using Sage's built-in SVD method.

- 4. Input $A = \begin{bmatrix} 3 & 4 \\ 0 & 5 \end{bmatrix}$ (remember to inform Sage you mean for the entries to be interpreted as elements of a Real Double Field (RDF).
- 5. Find the rank of A.
- 6. Find $A^T A$, its eigenvalues, and the singular values of A.
- 7. Find AA^T , its eigenvalues, and the singular values of A.
- 8. Try: A.SVD(). See the help in order to interpret the output.
- 9. Check that $A = \sigma_1 \hat{u}_1 \hat{v}_1^T + \ldots + \sigma_r \hat{u}_r \hat{v}_r^T$.
- 10. Repeat for the matrix $A = \begin{bmatrix} 3 & 4 & 0 \\ 0 & 5 & 1 \end{bmatrix}$.

Getting your classwork recorded

When you are done, before you leave class...

- 1. Click the "Make pdf" (Adobe symbol) icon and make a pdf of this worksheet. (If CoCalc hangs, click the printer icon, then "Open", then print or make a pdf using your browser).
- 2. Send me an email with an informative header like "Math 511—c11 worksheet attached" (so that it will be properly recorded).
- 3. Remember to attach today's classroom worksheet!