4 如何训练模型

4.1 模型架构

- 1. A Single Layer of Neurons(Perceptron)
 - 。 输出单元的都是分离的(没有共享的权重);
 - 。 调整权重来改变位置、方向和陡峭程度;

2. Limitation of Perceptron: 例如下图中的第三种情况无法表示。

- 3. Neural Network Model(Multi-Layer Perceptron)
 - 。 符号定义:

$$W^{l} = \begin{bmatrix} w_{11}^{l} & w_{12}^{l} & \cdots \\ w_{21}^{l} & w_{22}^{l} & \cdots \\ \vdots & & \ddots \end{bmatrix}_{N_{l}}^{N_{l}}$$

weights between two layers

→ a matrix

 b_i^l : bias for neuron i at layer l

$$b^l = \begin{bmatrix} \vdots \\ b_i^l \\ \vdots \end{bmatrix}$$

bias of all neurons at each layer

→ a vector

 w_{ij}^l : a weight $oldsymbol{\mathcal{C}}_i^l$: output of a neuron

 a^l : output vector of a layer W^l : a weight matrix

 \boldsymbol{z}_{i}^{l} : input of activation function b_i^l : a bias

 \boldsymbol{Z}^{l} : input vector of activation function for a layer $oldsymbol{b}^l$: a bias vector

• 符号之间的关系

 $y = f(x) = \sigma(W^{L} \cdots \sigma(W^{2} \sigma(W^{1} x + b^{1}) + b^{2}) \dots + b^{L})$

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	<u> </u>
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer NN	

函数名	函数原理 (公式)	函数图像	常见应用
Sigmoid函数	$\sigma(x) = \frac{1}{1+e^{-x}}$	Sigmoid Activation Function 12 10 0.8 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Logistic回归、 简单的神经网络
Tanh函数	$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	$f(x) = \tanh x$ $-2 -1 1 2$	CNN、深度神经 网络
ReLU	$\operatorname{ReLU}(x) = \max(0,x)$	$f(y) \uparrow f(y) = y$ $f(y) = 0$ y	CNN、深度神经 网络
Leaky ReLU	$\text{Leaky ReLU}(x) = \begin{cases} x & \text{if } x \geq 0 \\ \alpha x & \text{if } x < 0 \end{cases}$	$f(y) \uparrow f(y) = y$ y	CNN、深度神经 网络
Parametric ReLU (PReLU)	$ ext{PReLU}(x) = egin{cases} x & ext{if } x \geq 0 \ lpha x & ext{if } x < 0 \end{cases}$	a = z $a = z$ $a = az$	CNN、深度神经 网

4.2 损失函数设计

- 1. Function = Model Parameters
 - 。 选择一个好的函数等同于选择一组模型参数;

2. Model Parameter Measurement

- loss/cost/error function C(θ)好的模型参数意味着取min (C(θ))
- objective/reward function O(θ)好的模型参数意味着取max (O(θ))

3. 常用的损失函数

Square loss
$$C(\theta) = (1 - \hat{y}f(x;\theta))^2$$

Hinge loss
$$C(heta) = \max(0, 1 - \hat{y}f(x; heta))$$

Logistic loss
$$C(\theta) = -\hat{y}\log(f(x;\theta))$$

Cross entropy loss
$$C(\theta) = -\sum \hat{y} \log(f(x;\theta))$$

Others: large margin, etc.

4.3 优化

- 1. Gradient Descent (梯度下降)
 - 在每次迭代中使用整个训练数据集来计算梯度,也即要看完所有的数据后再进行更新;
 - 。 当数据量很大时,如何有效的计算梯度下降:使用backpropagation;
 - **收敛速度与精度**:收敛速度**较慢**,但提供更准确的梯度估计,有助于找到全局最小值。
- 2. Stochastic Gradient Descent (SGD, 随机梯度下降)
 - 在每次迭代中随机选择单个训练样本或样本的子集来计算梯度,随机抽取一个样本来进行更新,并且保证每个样本抽取到的概率是同等的;
 - **收敛速度与精度**:收敛速度**较快**,但梯度估计可能不够准确,有时可能导致在局部最小值附近波动。
 - o epoch定义: 所有的数据都被随机抽取一次称为一个epoch, 类似于上述的梯度下降。
 - **(a)** When running SGD, the model starts θ^0

$$\begin{array}{ll} \operatorname{pick} x_{I} & \theta^{1} = \theta^{0} - \eta \triangledown C_{1}(\theta^{0}) \\ \operatorname{pick} x_{2} & \theta^{2} = \theta^{1} - \eta \triangledown C_{2}(\theta^{1}) \\ \vdots & \vdots & \vdots \\ \operatorname{pick} & \theta^{k} = \theta^{k-1} - \eta \triangledown C_{k}(\theta^{k-1}) \\ x_{k} \vdots & \vdots & \vdots \\ \operatorname{pick} x_{K} & \theta^{K} = \theta^{K-1} - \eta \triangledown C_{K}(\theta^{K-1}) \end{array} \quad \begin{array}{ll} \{(x_{1}, \hat{y}_{1}), (x_{2}, \hat{y}_{2}), \ldots\} \\ \operatorname{see all training samples once} \\ \operatorname{semples once} \\ \Rightarrow \operatorname{one epoch} \end{array}$$

Training Data

3. Mini-Batch SGD (小批量随机梯度下降)

	Batch Gradient Descent	Stochastic Gradient Descent	Mini-Batch SGD
参数量 (每次 迭代)	使用所有的样本	使用一个样本	使用b个样本(1 <b<样本 总量)</b<样本
推导公式	$\theta^{i+1} = \theta^i - \eta \frac{1}{K} \sum_k \nabla C_k(\theta^i)$	$\theta^{i+1} = \theta^i - \eta \nabla C_k(\theta^i)$	$\theta^{i+1} = \theta^i - \eta \frac{1}{B} \sum_{x_k \in b} \nabla C_k(\theta^i)$
训练速 度	3rd	2nd	1th

tip: 神经网络不能保证获得全局最小值。

4. Practical Tips

- 。 从不同的起始点开始, 再选择相对优秀的起始点;
- 。 学习率不能过大或过小;
- o for mini-batch training:
 - 在每次epoch开始前,要重新打乱训练样本;
 - 每次使用一个固定数量的训练样本;
 - 调整学习率;
- 预留一部分的训练集进行测试,因为训练集是已知结果的,可以很快反映出表现如何;
- 。 调整训练过程:
 - 函数选择不够好;
 - 避免过拟合,解决方法:增加训练集数据等。

5 效率地计算大量参数 (backpropagation)

5.1 Forward vs. Back Propagation

1. Forward Propagation

forward propagation

- from input x to output y information flows forward through the network
- during training, forward propagation can continue onward until it produces a scalar cost $C(\theta)$
- 1. Back Propagation

back-propagation

allows the information from the cost to then <u>flow backwards</u> through the network, in order to compute the **gradient**

5.2 Back Propagation 推导

1. 推导示意图:

$$\delta_i^l = \sigma'(z_i) \sum_k w_{ki}^{l+1} \delta_k^{l+1}$$

$$-\partial C(\theta)/\partial z_i^l = \delta_i^l$$

$$\delta_i^l = \sigma'(z_i) \sum_k w_{ki}^{l+1} \delta_k^{l+1}$$

$$\sigma'(z^l) = \begin{bmatrix} \sigma'(z_1^l) \\ \sigma'(z_2^l) \\ \vdots \\ \sigma'(z_i^l) \\ \vdots \end{bmatrix}$$

$$\delta^l = \sigma'(z^l) \odot (W^{l+1})^T \delta^{l+1}$$

 $\partial C(\theta)/\partial z_i^l = \delta_i^l \quad \frac{\partial C(\theta)}{\partial w_{ij}^l} = \frac{\partial C(\theta)}{\partial z_i^l} \frac{\partial z_i^l}{\partial w_{ij}^l}$

$$\frac{\partial C(\theta)}{\partial w_{ij}^l} = \frac{\frac{\partial C(\theta)}{\partial z_i^l}}{\frac{\partial z_i^l}{\partial w_{ij}^l}} \frac{\partial z_i^l}{\partial w_{ij}^l}$$

- Idea: from L to 1
 - \bigcirc Initialization: compute δ^L
 - ${\color{red} {f 2}}$ Compute δ^{l-1} based on δ^l

$$\delta^{L} = \sigma'(z^{L}) \odot \nabla C(y)$$

$$\delta^{l} = \sigma'(z^{l}) \odot (W^{l+1})^{T} \delta^{l+1}$$

2. BP算法最重要的两个步骤分别是Forward pass和Backward pass。 权重/偏置参数的导数。	BP算法的目的是求损失函数对
(X里/)	

$$\textbf{Backpropagation} \ \frac{\partial C(\theta)}{\partial w_{ij}^l} = \frac{\partial C(\theta)}{\partial z_i^l} \frac{\partial z_i^l}{\partial w_{ij}^l}$$

$$\frac{\partial z_i^l}{\partial w_{ij}^l} = \begin{cases} a_j^{l-1}, l > 1\\ x_j, l = 1 \end{cases}$$

Forward Pass

$$z^{1} = W^{1}x + b^{1} \qquad a^{1} = \sigma(z^{1})$$

$$z^{l} = W^{l}a^{l-1} + b^{l} \quad a^{l} = \sigma(z^{l})$$

Backpropagation
$$\frac{\partial C(\theta)}{\partial w_{ij}^l} = \frac{\frac{\partial C(\theta)}{\partial z_i^l}}{\frac{\partial z_i^l}{\partial w_{ij}^l}}$$

$$\frac{\partial C(\theta)}{\partial z_i^l} = \delta_i^l$$

Backward Pass

$$\delta^{L} = \sigma'(z^{L}) \odot \nabla C(y)$$

$$\delta^{L-1} = \sigma'(z^{L-1}) \odot (W^{L})^{T} \delta^{L}$$

$$\vdots$$

$$\delta^{l} = \sigma'(z^{l}) \odot (W^{l+1})^{T} \delta^{l+1}$$

$$\vdots$$

