MAC 1103: PROPOSITIONAL CALCULUS

- 1. Prove that $S \vee R$ follows from the premises $P \vee Q$, $P \rightarrow R$, and $Q \rightarrow S$.
- 2. Show that $(P \vee Q) \wedge (Q \to R) \wedge (P \to M) \wedge (\neg M) \implies R \wedge (P \vee Q)$.
- 3. Show that the premises $P \to (Q \to S)$, $\neg R \lor P$, and Q tautologically imply $R \to S$.
- 4. Show that the following sets of premises are (each) inconsistent:
 - (a) $P \rightarrow Q$, $Q \rightarrow R$, $R \rightarrow \neg P$.
 - (b) $A \vee B$, $A \rightarrow \neg C$, $C \rightarrow \neg B$, C.
 - (c) $P \rightarrow Q, Q \rightarrow R, Q \rightarrow \neg R, P$.
 - (d) $A \rightarrow (B \rightarrow C)$, $D \rightarrow (B \land \neg C)$, $A \land D$.
- 5. Show that the following premises are inconsistent:
 - (a) If Jack misses many classes due to illness, then he fails school.
 - (b) If Jack fails school, then he is uneducated.
 - (c) If Jack reads a lot of books, then he is not uneducated.
 - (d) Jack misses many classes due to illness and reads a lot of books.
- 6. Let the propositions P, Q, and R be defined as follows:
 - P: $\sqrt{2}$ is irrational.
 - $Q: \left(\sqrt{2}\right)^{\sqrt{2}}$ is rational.

$$R: \left(\left(\sqrt{2} \right)^{\sqrt{2}} \right)^{\sqrt{2}} = 2$$
 is rational.

S: There exist two irrational numbers x and y such that x^y is rational.

Prove that S follows from the premises P, R, $P \land Q \to S$, and $P \land (\neg Q) \land R \to S$. That is, show that there exist two irrational numbers x and y such that x^y is rational.

1