דו"ח פרויקט למידת מכונה

מערך הנתונים:

עבור פרויקט זה, בחרנו את מערך הנתונים 100, CIFAR המורכב מ-000,600 תמונות RGB 32x32 הכולל 200,600 מתונים ו-000,100 מחלקות .מתוך 000,600 התמונות, מערך הנתונים מחולק ל-000,500 דגימות אימונים ו-000,100 בדיקות .עבור הפרויקט שלנו, נשמיט 10% מהמחלקות ונשתמש בהם כמחלקה אחת עבור בחינת ההתנהגות של שיטת OOD ונלמד איך האלגוריתמים מתמודדים עם המחלקה החדשה.

שאלות מחקריות שנבחן לאורך הפרויקט:

1.אנו משווים בין איכויות הלמידה עבור אלגוריתמים נבחרים מהקורס אשר מופיעים כדלקמן.
2.אנו בודקים אילו אלגוריתמים למדו בצורה איכותית ואילו לא ומדוע יש הבדלים בביצועי?
3.אנו בוחנים את שיטת OOD- שבה אנו לוקחים מחלקה חדשה שלא אומנה ובודקים את

ההתמודדויות של האלגוריתמים במצב החדש ובוחנים איך הם הגיבו.

תמצית הקוד:

ו-test. בנוסף, ישנה אפשרות. train-1. בנינו פונקציה אשר מחזירה את המאגר כאשר הוא מחולק ל-test. בנינו פונקציה אשר מחזירה train ו-test עם מחלקות test ו-test עם מחלקות מובנות כפי שתואר.

2.בנינו פונקציה אשר בודקת את כל השיטות עבור אותו מאגר:

- SVM
- RandomForest
- MIP
- KMeans
- Adaboost
- CNN
- CNN + RandomForest (OOD only)

3. יצרנו מספר פונקציות אשר מוציאות פיצ'רים מן המאגר אשר אותם נשווה:

- שיטה נאיבית: שיטוח התמונות ללא הוצאה של פיצ'רים מיוחדים ושימוש בכל פיקסל פי'צר.
- מציאת קצוות: אופרטור prewit מחשב את הגרדיאנט בכל נקודה ובכך מוצא שינוייםוקצוות.
- **היסטוגרמת גרדיאנטים**: אלגוריתם למציאת אובייקטים מחשב גרדיאנטים ואתההיסטוגרמה שלהם בצורה קצת שונה מהקצוות שמאפשר תוצאות טובות יותר.

-

<u>כלים:</u>

- tensorflow ספריית למידה עמוקה
 - sklearn ספריית למידת מכונה
- skimage, cv2 ספריית עיבוד תמונות
 - matplotlib ספריית ייצוג גרפי
- ספריית numpy לעבודה מהירה עם מטריצות

:Out-of-Distribution מציאת

Out of בכדי להשוות בין האלגוריתמים השונים בצורה עקבית, חיפשנו שיטה מקובלת למציאת - Rejection class אשר משותפת לכל האלגוריתמים. השיטה שבחרנו היא יצירת טוגדים אלגוריתמים. השיטה שבחרנו היא יצירת K+1 כאשר K או מחלקת 10 הוא מספר המחלקות שאנו לומדים לעשות עליהם שונים מהמאגר.

- אחד היישומים הוא שימוש ב- RandomForest על הפלט של ה-CNN שלנו Out-of-Distribution יוכל לשפר את הביצועים של רשת הנוירונים במציאת RandomForest

תוצאות:

תוצאות מודלים

	RandomForest	Adaboost	SVM MLP		KMeans	CNN	CNN+RF	
Flatten	22%	6%	6%	16%	1%	х	х	
HoG	19.32%	7.13%	12.33%	25%	0.7%	х	х	
Edge	12%	5% 2%		10%	1%	х	Х	
CNN	х	x x		х	х	26%	22.67%	

תוצאות מודלים + OOD

	RF		ADABOOST		SVM		MLP		KMeans		CNN		CNN + RF	
	ACC	OOD	ACC	OOD	ACC	OOD	ACC	OOD	ACC	OOD	ACC	OOD	ACC	OOD
Naive	22.29%	75.10%	9%	29.50%	7.50%	15.60%	18.92%	43.20%	1%	0.70%	Х		х	
HoG	18%	80.80%	10.80%	31.70%	11.76%	22.80%	24.84%	38.60%	1.00%	0.70%	х		х	
Edge	14.10%	90.06%	8.90%	62.30%	0.40%	30%	11%	31.60%	0.009	0	Х		х	
CNN	х	х	х	х	х	х	х	х	х	х	24%	34.8%	24.6%	42%

ניתוח התוצאות:

:Classification

ניתן לראות שיפור ניכר עבור Adaboost, SVM, MLP כאשר הוצאנו מן המידע היסטוגרמת גרדיאנטים. לעומת זאת, כאשר ניסינו להוציא קצוות הייתה ירידה בדיוק המודלים. ב-RandomForest לא נראה יתרון ואף הייתה ירידה ע"י היסטוגרמה. התוצאה הטובה ביותר הייתה של הלמידה עמוקה, אשר יכולה בעצמה ללמוד פיצ'רים.

, אימון של SVM עבור מספר רב של דוגמאות אינו יעיל, דיוק המודלים מוגבל מטעמים פרקטיים - אימון של SVM ולקח שעות רבות אפילו לאחר הגבלתו. את רשת הנוירונים הגבלנו לכמה שכבות בסיסיות שלקונבולוציה שכן רצינו מודל בסיסי ולא בהכרח לרדוף אחר התוצאות האופטימליות ביותר.

:Out-of-Distribution Detection

כפי שניתן לראות, למרות ש-10% מהמידע הועבר למחלקה לא ידועה - הצלחנו לשמר כמעט לחלוטין את דיוק המודל. יכולת תפיסת ה-Out-of-Distribution הייתה גבוהה אם נתייחס לקושי המאגר.

באופן מפתיע, דיוק המודל הכללי לא בהכרח תאם ליכולת OOD - דווקא המודל הגרוע מבניהם(קצוות) הצליח למצוא את המספר המקסימלי של המחלקות הלא ידועות.

אלגוריתם Kmeans נמצא לא מתאים בכלל בשיטה זו - זאת כיוון שהמחלקות הלא ידועות זרות אלגוריתם אלגוריתם אחת לשנייה, ולכן האשכול לא ניתן להפרדה.