CSE 564 VISUALIZATION & VISUAL ANALYTICS

ILLUSTRATIVE RENDERING

KLAUS MUELLER

COMPUTER SCIENCE DEPARTMENT STONY BROOK UNIVERSITY

Lecture	Торіс	Projects
1	Intro, schedule, and logistics	
2	Applications of visual analytics, basic tasks, data types	
3	Data sources and introduction to D3	Project #1 out
4	Data wrangling and preparation	
5	Bias in visualization	
6	Data reduction and dimension reduction	
7	Visual perception and cognition	
8	Visual design and aesthetics	Project #1 due, Project #2 out
9	Python/Flask hands-on	
10	Cluster analysis: numerical data	
11	Cluster analysis: categorical data	
12	Foundations of scientific and medical visualization	
13	Computer graphics and volume rendering	Project #3 out
14	Scientific and medical visualization	
15	(extended Spring break)	
16	(extended Spring break)	
17	Illustrative rendering	
18	High-dimensional data, dimensionality reduction	Final project proposal call out
19	Principles of interaction	Project #2 due
20	How to design effective infographics	Project #3 due
21	Visual analytics and the visual sense making process	
22	Memorable visualizations, visual embellishments	Final project proposal due
23	Visualization of time-varying and time-series data	
24	Visualization of graph data	
25	Visualization of maps and data with a spatial reference	
26	Narrative visualization, storytelling, data journalism, XAI	
27	Evaluation and user studies	
28	Midterm #2	

Introduction

Illustrative rendering is also often called non-photorealistic rendering (NPR)

we shall use these terms here interchangeably

NPR offers many opportunities for visualization that conventional *photo-realistic rendering* does not offer

• for this course, we may call our present lighting models (ambient, diffuse, specular) photo-realistic models

Illustration in Medical Textbooks...

Frank Netter (1906 – 1991)

- often referred to as "Medicine's Michelangelo"
- illustrative rendering was key to understanding

NPR: Added Capabilities

A photorealistic depiction captures the exact appearance of the object as we actually see it

 this can be a limiting paradigm when seeking to convey and communicate information via visuals

A non-photorealistic depiction allows more freedom in this respect:

- allows a greater differentiation in the salience (immediate importance) of the visual representation
- can emphasize critical features
- can minimize the visual salience of secondary details
- allows to hierarchically guide the attentive focus

NPR techniques also:

- allow the expression of multiple style, potentially increasing the 'dynamic range' of information that can be communicated
- can establish a 'mood' that can influence the subjective context within which the information is perceived and interpreted

A Good Argument for NPR: Tufte's Visualization Rules

"Make all visual distinctions as subtle as possible, but still clear and effective."

"Maximize data-ink; Minimize non-data ink"

"Hide that data which does not make a difference in what you are trying to depict"

"Minimize clutter"

"Separate figure and background"

Basic Techniques: Contours and Outlines

depth-map
(edges are due
to C₀
discontinuities)

normal-map (edges are due to C₁ discontinuities)

combined

Basic Techniques: Contours and Outlines

normal-map

depth-map

combined

Basic Techniques: Contours and Outlines

uses *depth-peeling* to render layers one by one

rendering interior structures as contours

Fischer et al., 2005

Basic Techniques: Silhouettes

Not an image-space method

- uses dot product V⋅N=0 criterion
- V: view vector
- N: surface normal

Finds curves and creases at higher quality

Allows further processing of these (for example hatching)

Must disambiguate occlusions

Curves where the surface bends away from the viewer (as opposed bending towards them)

Those locations at which the surface is *almost* in contour, from the original viewpoint

- where the radial curvature (1/curve radius) is zero (inflection point)
- the curve switches from being convex like a mountain to concave (like a valley)
- where V·N is a positive local minimum rather than zero
- the second derivative is zero
- correspond to true contours in relatively nearby viewpoints.
- p is such a suggestive contour point
- q is a contour point

contours

suggestive contours (image space vs. object space method)

Require the computation of the second derivative at high accuracy

 use high-quality 2nd derivative (curvature-estimation) filters for volume datasets

Curvature Stroke Lines

Semitransparent iso-intensity surface for radiation treatment planning and a tumor inside.

Right: Strokes along the principal curvature are added to convey shape

Hatching

Applies this illustration style as a function of illumination and others

portion of the tonal art map

Stippling

Stippling is yet another illustration technique

vary the density of points with illumination and/or other attribute

Highlighted Edges

Color interior edges white

• simulates anisotropic reflections at edges

Typical photo-realistic image: diffuse shading removes detail in dark and white areas

Now with highlights and edges, but without diffuse shading:
shape information is lost

with highlights and edges

With edge lines and highlights: better, but still detail is lost in dark areas

Mix luminance shift and tonal shift with a weighted sum

Different settings for weighted luminance/hue tone rendering.

Combines two effects with edges and highlights

Specifically for volume visualization

Specifically for volume visualization

Metal Shading

Milling creates what is known as "anisotropic reflection."

Lines are streaked in the direction of the axis of minimum curvature, parallel to the milling axis.

To simulate a milled object, Gooch et al. map a set of 20 stripes of varying intensity (random) along the parametric

axis of maximum curvature.

left: no metal right: metal rendering

Metal Shading

with edge lines (left) and cool-to-warm tonal shading (right)

Metal Shading

Mixing Rendering Techniques

Assign most appropriate rendering technique for different features:

- skin: silhouette rendering
- eyes: shaded direct volume rendering
- skull: X-ray
- trachea: Maximum Intensity Projection

hand dataset

Mixing Rendering Styles

First, classify the scene:

- Focus Objects (FO): objects in the center of interest are emphasized in a particular way
- Near Focus Objects (NFO): important objects for the understanding of the functional interrelation or spatial location.
- Context Objects (CO): all other objects (rendered e.g., as silhouettes)
- Container Objects (CAO): one object that contains all other objects.

Render these in a certain order to ensure visual consistency

Tietjen et al., 2005

Definitions

Hidden Structures

Show with different rendering style

dotted lines, faint lines

MRI DTI lines inside a tumor

Halos

Can enhance depth perception

Bruckner et al., 2006

Wenger et al., 2006

Illustrative Lighting Effects

Inconsistent shading to show depth:

Rusinkiewicz et al., 2006

Lee et al., 2006

inconsistent

Illustrative Lighting Effects

Bryce Canyon early morning

Inconsistent shading

Acquisition

Dome of light sources

turned on one at a time

Camera on top

taking a picture for each light source's reflections

Combine lighting information for optimal feature enhancement

Example: 4,000-Year Old Sumarian Tablet

Two Levels Of Abstraction

Low-level abstraction:

- concerned with how objects are represented
- stylized depiction: silhouettes, contours, pen+ink, stippling, hatching, etc.

High-level abstraction

- deal with what should be visible and recognizable and at what level of detail
- this should be importance-driven, that is, the current visualization goal controls feature rendering style and visibility
- we will discuss these next
- smart visibility: cutaways, breakaways, ghosting, exploded views

Cut-Aways

Viola et al., 2005

Cut-Aways

Ghosting

Focus + Context

Fans

Labeling And Other Abstractions

Bruckner et al., 2005

Displacement With Context

dynamic multi-volumes

volume splitting

Islam et al., 2004

Grimm et al., 2004

Distortion Techniques

Ray deflectors:

2 (a) A linear ray passing through the deflector field of gravity is pulled to the left. (b) The visual result. (c) An example of the 3D visual result after deflecting rays by a single translate deflector: Starting with a box, we add a bump. (d) Starting with an MRI head scan, we pull out the nose.

Kurzion et al., 1997

Explaining Differences Via Exaggerations

Caricature visualization

reference model

specimen

caricature

ref model

emphasize differences of the specimen with the reference model by exaggerating these differences

Fig. 10. A caricaturistic volume deformation. In (a) and (c) iso-surface renderings of the two datasets are shown. In (b) a caricature by volume deformation is shown using (c) as reference model. In (d) a caricature of (c) is shown using the features of (a) as reference model.

View Composition

Rendering Mode Composition

Importance-Driven Visualization

Viola et al., 2005 (colorOpacity)

Importance-Driven Visualization

Viola et al., 2005 (conicalMImP)

Importance-Driven Visualization

Viola et al., 2005 (animMonsterAbdomenMImP)

Time-Varying Data

The goal is to depict the time-varying behavior of the data in a single frame via illustrative techniques

Time-Varying Data

Use ideas from flash photography to illustrate motion hints:

