Homework #1 of「類比積體電路導論」

作業繳交截止日期: Oct. 3, 2024 12:00 (上傳 E3 數位平台繳交)

本次作業共三大題, 1.1~1.3

請將作業轉成一個 PDF 檔案(file size 小於 10MB),檔名請使用「AIC_HW1_自己的學號」(例如: AIC_HW1_109700018),於作業繳交截止日期/時間前,上傳到指定的 E3 數位平台繳交。

Unless otherwise stated, in the following problems, use the device data shown in Table 1 and assume that $V_{DD}=3V$. The Dielectric constant of gate oxide is 3.9 and $E_0=8.854\times 10^{-12} F/m$.

Table 1. Level 1 SPICE models for NMOS and PMOS devices.

NMOS Model			
$\begin{aligned} \text{LEVEL} &= 1\\ \text{NSUB} &= 9\text{e}{+}14\\ \text{TOX} &= 9\text{e}{-}9\\ \text{MJ} &= 0.45 \end{aligned}$	VTO = 0.7 LD = 0.08e - 6 PB = 0.9 MJSW = 0.2	$\begin{aligned} & \text{GAMMA} = 0.45 \\ & \text{UO} = 350 \\ & \text{CJ} = 0.56\text{e}{-3} \\ & \text{CGDO} = 0.4\text{e}{-9} \end{aligned}$	$\begin{aligned} & \text{PHI} = 0.9 \\ & \text{LAMBDA} = 0.1 \\ & \text{CJSW} = 0.35\text{e}{-11} \\ & \text{JS} = 1.0\text{e}{-8} \end{aligned}$
PMOS Model			
$\begin{aligned} \text{LEVEL} &= 1\\ \text{NSUB} &= 5\text{e}{+}14\\ \text{TOX} &= 9\text{e}{-}9\\ \text{MJ} &= 0.5 \end{aligned}$	VTO = -0.8 LD = 0.09e-6 PB = 0.9 MJSW = 0.3	$\begin{aligned} & \text{GAMMA} = 0.4 \\ & \text{UO} = 100 \\ & \text{CJ} = 0.94 \\ & \text{CGDO} = 0.3 \\ & \text{e} - 9 \end{aligned}$	$\begin{aligned} & \text{PHI} = 0.8 \\ & \text{LAMBDA} = 0.2 \\ & \text{CJSW} = 0.32\text{e}{-11} \\ & \text{JS} = 0.5\text{e}{-8} \end{aligned}$

VTO: threshold voltage with zero V_{SB} (unit: V)

GAMMA: body-effect coefficient (unit: V^{1/2})

PHI: $2\Phi_F$ (unit: V)

TOX: gate-oxide thickness (unit: m)

NSUB: substrate doping (unit: cm⁻³)

LD: source/drain side diffusion (unit: m)

UO: channel mobility (unit: cm²/V/s)

LAMBDA: channel-length modulation coefficient (unit: V-1)

CJ: source/drain bottom-plate junction capacitance per unit area (unit: F/m²)

CJSW: source/drain sidewall junction capacitance per unit length (unit: F/m)

PB: source/drain junction built-in potential (unit: V)

MJ: exponent in CJ equation (unitless)

MJSW: exponent in CJSW equation (unitless)

CGDO: gate-drain overlap capacitance per unit width (unit: F/m)

CGSO: gate-source overlap capacitance per unit width (unit: F/m)

JS: source/drain leakage current per unit area (unit: A/m²)

1.1 Assuming all MOSFETs are in saturation with λ≠ 0 and γ=0, calculate the small-signal voltage gain of each circuit in Fig. 1. 本題限定使用 R_x, gm_x, r_{ox} 電晶體 參數符號進行推導 (40 pts)

- 1.2 A source follower can operate as a level shifter. Suppose the circuit of Fig. 2 is designed to shift the voltage level by 1 V, i.e., $V_{in} V_{out} = 1V$. The body of M₁ and M₂ is connected to GND. (30 pts)
 - (a) Calculate the dimensions of M_1 and M_2 if $I_{D1}=I_{D2}=0.5$ mA, $V_{GS2}-V_{GS1}=0.5$ V, and $\lambda=\gamma=0$.
 - (b) Repeat part (a) if λ =0, γ = 0.45 V^{-1} and V_{in} = 2.5 V.
 - (c) If $I_{D1}=I_{D2}=0.5$ mA, $V_{GS2}-V_{GS1}=0.5$ V and $\lambda=0$, $\gamma=0.45$ V $^{-1}$, what is the minimum input voltage for which M_2 remains saturated? Assume dimensions of M1 and M2 remain part(b).

Figure 2

- 1.3 Suppose the common-source stage of Fig. 3 is to provide an output swing from 1 V to 2 V. Assume that W/L = 60/0.5, $R_D = 2 \text{ k}\Omega$. Also, use $\lambda = \gamma = 0$ for bias purpose and $\lambda \neq 0$, $\gamma = 0$ for small signal analysis. (30 pts)
 - (a) Calculate the input voltages that yield $V_{out} = 1 \text{ V}$ and $V_{out} = 2 \text{ V}$.
 - (b) Calculate the drain current and the transconductance of $\,\mathrm{M}_{1}\,$ for both cases.
 - (c) How much does the small-signal gain for the output voltage equal 1 V and 2 V? (Variation of small-signal gain can be viewed as nonlinearity.)

Figure 3