PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-265263

(43) Date of publication of application: 11.10.1996

(51)Int.CI.

H04B 10/105

H04B 10/10

H04B 10/22

H04B 10/24

(21)Application number : **07-090338**

(71)Applicant: CANON INC

(22)Date of filing:

22.03.1995

(72)Inventor: IDEKURA SEIZABUROU

(54) BIDIRECTIONAL OPTICAL SPATIAL TRANSMITTER

(57) Abstract:

13-12-13

PURPOSE: To prevent damage to a photodetector by background light and the malfunction of an angle correction function. CONSTITUTION: Transmission signals are synthesized with pilot signals in a synthesizer 3 and transmitted from an optical axis angle adjustment driving mechanism part 8 to an opposite side equipment. Reception light transmitted from the opposite side equipment is passed from the optical axis angle adjustment driving mechanism part 8 through a first beam splitter 6 and a second beam spliter 9 and main signals are received in a main signal reception part 10. In the meantime, the reception light on which the background light is superimposed is received by an angle deviation detection part 12, and when it is judged that the background light is at an excessive optical level, an optical axis angle adjustment driving control part 13 drives the

optical axis angle adjustment driving mechanism part 8, changes the direction of a mirror system 7, prevents excessive light from being made incident on the photodetector of the angle deviation detection part 12 and the main signal reception part 10 and recovers a normal communication state after the lapse of the prescribed period of time.

15.02.2000
04.12.2001
3311197
24.05.2002
2002-00002
04.01.2002

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-265263

(43)公開日 平成8年(1996)10月11日

(51) Int.Cl. ⁶ H 0 4 B	10/105 10/10 10/22 10/24	酸別記号	庁内整理番号	庁内整理番号 F I H O 4 B 9/00				技術表示箇所 R G		
		-		審査請求	未請求	請求項の数8	FD	(全 6	頁)	
		特願平7-90338		(71)出願人	000001007 キヤノン株式会社					
		平成7年(1995)3月22日		(72)発明者 (74)代理人	東京都が出議 対神奈川県	大田区下丸子3 ⁻⁷ 青三郎	丸子3丁目30番2号 中原区今井上町53番地 キ 小杉事業所内			

(54) 【発明の名称】 双方向光空間伝送装置

(57) 【要約】

【目的】 背景光による受光素子へのダメージ及び角度 補正機能の誤動作を防止する。

【構成】 送信信号はパイロット信号と合波器3で合成され、光軸角度調節駆動機構部8から相手側装置へ送信される。相手側装置から伝送された受信光は光軸角度調節駆動機構部8から第1のビームスプリッタ6、第2のビームスプリッタ9を介して主信号受光部10に主信号が受光される。一方、背景光が重畳した受信光は角度ずれ検出部12に受光され、背景光が過剰光レベルと判断された場合は、光軸角度調節駆動制御部13は光軸角度調節駆動機構部8を駆動してミラー系7の方向を変更し、主信号受光部10及び角度ずれ検出部12の受光素子に過剰光が入射することを阻止し、所定時間経過後に再び通常の通信状態に復帰させる。

【特許請求の範囲】

【請求項1】 送光部の光軸と受光部の光軸を一致させ、送光部の角度補正機能を備え、所定の距離を隔てて対向配置して光信号により双方向の情報伝送を行う双方向光空間伝送装置において、正弦波を発生する発信手段・送信信号に前記正弦波をパイロット信号として重畳する合波手段・合成された電気信号を光信号に変換する電気一光変換手段を有する送光部と、受信光学系の光軸と受信光の到来方向との角度ずれ検出のために対向する相手側装置から伝送された光信号を受光する複数個の光一電気変換素子と、前記角度ずれを補正する角度ずれ補正手段と、背景光等による過剰光の入力を検出する過剰光時段と、該過剰光が受光素子へ入射することを阻止する過剰光阻止手段とを有することを特徴とする双方向光空間伝送装置。

【請求項2】 前記過剰光阻止手段は所定時間経過後に阻止を解除する請求項1に記載の双方向光空間伝送装置。

【請求項3】 前記過剰光阻止手段は前記角度ずれ補正 手段と兼用とした請求項1又は2に記載の双方向光空間 20 伝送装置。

【請求項4】 前記過剰光阻止手段は機械的に光路を遮断する光路遮断素子とした請求項1又は2に記載の双方向光空間伝送装置。

【請求項5】 前記過剰光阻止手段は電気的に透過率を可変する透過率可変素子とした請求項1又は2に記載の双方向光空間伝送装置。

【請求項6】 前記角度ずれ補正手段は光学ミラーとした請求項1又は2又は3に記載の双方向光空間伝送装置。

【請求項7】 前記光路遮断素子は機械的シャッタとした請求項1又は2又は4に記載の双方向光空間伝送装置。

【請求項8】 前記透過率可変素子は液晶シャッタとした請求項1又は2又は5に記載の双方向光空間伝送装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、送・受信光の光軸を共通として、遠隔地に対して光信号で双方向の情報伝送を 40行う双方向光空間伝送装置に関するものである。

[0002]

【従来の技術】従来、光空間伝送装置においては、送信側で本信号にパイロット信号を重畳して送信を行い、受信側でこのパイロット信号を検波し、その際に受信光学系の光軸と受信光の到来方向との角度ずれを検出し、その情報により運転開始時の角度調整や運転中の角度補正を行っている。

【0003】このときの角度ずれ検出には、集光された 子へ入射することを受信光スポットを光検出器に照射し、そのスポット位置 50 ことを特徴とする。

を検出する方式が一般に採用されている。この光検出器としてはPSDやCCD等が使用されているが、パイロット信号の周波数が高い場合には応答速度に難点がある。そのため、応答速度の早いフォトダイオードから成る光検出器を複数個配列し、それらの出力差を検出する方式が一般に採用されており、4つの象限にそれぞれ同じ特性の光検出器を設け、受信光スポット位置を各光検出器の出力の和と差から求めている。

受信光の到来方向との角度ずれ検出のために対向する相 手側装置から伝送された光信号を受光する複数個の光-10 信号に比べて狭帯域で高感度の受信ができ、本信号が微 電気変換素子と、前記角度ずれを補正する角度ずれ補正 手段と、背景光等による過剰光の入力を検出する過剰光 検出手段と、該過剰光が受光素子へ入射することを阻止 する過剰光阻止手段とを有することを特徴とする双方向

【0005】このようなシステムにおいて背景光が増加した場合に、所望の光信号及び背景光の受光レベルをそれぞれ独立に検出し、これらの情報に基づいて送信光の角度補正を行うために、サーボ系の周波数特性やループゲインを可変することにより、実用に支障のない角度補正を行うことを先に本発明者が提案している。

[0006]

【発明が解決しようとする課題】しかしながら、著しく 背景光が増加した場合に、例えば直射日光が入射して主 信号や角度ずれ信号を検出するための受光素子に集光す ると、これらの受光素子は、最悪の場合には損傷してし まう虞れがある。更に、角度ずれ検出部において所望の 受信光との識別ができず、背景光の到来方向との角度補 正を誤って操作してしまい、背景光が減少した後でも所 望の受信光の到来方向が認識できず、正常な通信状態に 30 復帰できないという問題が生ずる。

【0007】本発明の目的は、上述の問題点を解消し、 背景光による受光素子への損傷及び角度補正機能の誤作 動を防止する双方向光空間伝送装置を提供することにあ ス

[0008]

【課題を解決するための手段】上記目的を達成するための本発明に係る双方向光空間伝送装置は、送光部の光軸と受光部の光軸を一致させ、送光部の角度補正機能を備え、所定の距離を隔てて対向配置して光信号により双方向の情報伝送を行う双方向光空間伝送装置において、正弦波を発生する発信手段・送信信号に前記正弦波をパイロット信号として重畳する合波手段・合成された電気信号を光信号に変換する電気一光変換手段を有する送光部と、受信光学系の光軸と受信光の到来方向との角度ずれ検出のために対向する相手側装置から伝送された光信号を受光する複数個の光一電気変換素子と、前記角度ずれを補正する角度ずれ補正手段と、背景光等による過剰光の入力を検出する過剰光検出手段と、該過剰光が受光素子へ入射することを阻止する過剰光阻止手段とを有することを特徴とする。

[0009]

【作用】上述の構成を有する双方向光空間伝送装置は、 発信手段からの正弦波のパイロット信号を合波手段にお いて送信信号に重畳し、電気-光変換器においてこの電 気信号を光信号に変換し、送光部から所定距離を隔てて 対向配置された相手側装置に光信号で送信する。相手側 装置からの受信光の到来方向と受信光学系の光軸との角 度ずれを複数個の光ー電気変換素子で受光し、角度ずれ 補正手段により角度ずれを補正し、同時に背景光検出手 段により背景光による過剰光の入力を検出し、過剰光が 10 受光素子へ入射することを阻止する。

[0010]

【実施例】本発明を図示の実施例に基づいて詳細に説明 する。図1は第1の実施例の構成図を示し、対向する相 手側装置へ伝送する送信信号を入力する送信信号入力部 1と、対向する相手側装置において受信光学系の光軸と 受信光の到来方向との角度ずれを検出のための正弦波の パイロット信号を発するパイロット信号発生器2との出 力は、送信信号とパイロット信号を重畳する合波器3に 接続され、合波器3の出力は電気信号を光信号に変換す 20 る電気-光変換器4に接続されている。電気-光変換器 4の前方の光路上には、レンズ系5、第1のビームスプ リッタ6、光軸角度のずれを補正するための光学ミラー 系7を有する光軸角度調節駆動機構部8が順次に配列さ れている。

【0011】第1のビームスプリッタ6の反射方向の光 路上には、第2のビームスプリッタ9、光-電気変換器 を内蔵する主信号受光部10が配置されており、主信号 受光部10の出力は受信信号出力部11に接続されてい る。第2のビームスプリッタ9の反射方向には、受信光 30 学系の光軸と受信光の到来方向との角度ずれを検出する 角度ずれ検出部12が配置され、角度ずれ検出部12の 出力は、角度ずれを補正するために光軸角度調節駆動機 構部8の光学ミラー系7を制御する光軸角度調節駆動制 御部13に接続されている。また、角度ずれ検出部12 の出力は、受信光に重畳されて角度ずれ検出部12に入 射した背景光レベルを検出する背景光検出部14にも接 続されており、背景光検出部14の出力は光軸角度調節 駆動制御部13にも接続されている。

【0012】図2は角度ずれ検出部12と背景光検出部 40 14の回路構成図を示し、角度ずれ検出部12には相手 側装置から伝送されてくる光信号を受光して電流信号に 変換するための4個に分割された光検出素子15a~1 5 dが設けられ、これらの光検出素子15a~15dは 角度ずれ検出素子と背景光検出素子とに兼用されてい る。光検出素子15a~15dの出力はそれぞれ電流-電圧変換器16a~16dを介して検波器17a~17 dに接続され、更に検波器17a~17dの出力は演算 回路18a~18fに接続されて角度ずれ検出部12が

なっている。

【0013】更に、光検出素子15a~15dの出力は 演算増幅器19、抵抗器から成る背景光検出部14に接 続され、背景光検出部14の出力はA/D変換器20a を内蔵するCPU20に接続されており、予め設定され た電圧値と比較して検出信号及び復帰信号を発生するよ うになっている。

【0014】送信信号入力部1からの送信信号は、パイ ロット信号発生器2からのパイロット信号と合波器3に おいて合成され、電気-光変換器4で光信号に変換され た後に、レンズ系5、第1のビームスプリッタ6を透過 して、光軸角度のずれを補正する光軸角度調節駆動機構 部8の光学ミラー系7を介して、対向する相手側装置に 向けて送光される。

【0015】相手側装置から伝送されてきた受信光は、 光軸角度調節駆動機構部8の光学ミラー系7、第1のビ ームスプリッタ6で反射されて第2のビームスプリッタ 9に導光され、主信号受光部10と角度ずれ検出部12 に分光される。第2のビームスプリッタ9を透過した主 信号は主信号受光部10に受光されて光電変換され、受 信信号出力部11から受信信号として出力される。

【0016】一方、第2のビームスプリッタ9を反射し たパイロット信号は、角度ずれ検出部12において4個 の光検出素子15a~15dに受光されて光電変換され て電流信号となり、それぞれ電流-電圧変換器16a~ 16 dにおいて電圧信号とされて検波器17a~17 d に検波され、演算回路18a~18fによって演算され てX、Y方向の誤差信号を発生する。これらの信号から 受信光学系の光軸と受信光の到来方向との角度ずれを測 定し、この情報に基づいて光軸角度調節駆動制御部13 は光軸角度調節駆動機構部8の光学ミラー系7を駆動し て角度ずれを補正する。

【0017】また、光検出素子15a~15dで受光さ れた信号は背景光検出部14において背景光の検出にも 兼用されており、これは光検出素子15a~15dの指 向角が一般的に主信号受光部10の検出素子に比べて広 く設定されているためで、背景光検出専用の受光素子を 用いる場合は、その指向角を光検出素子15a~15d と同じ程度以上とする必要がある。

【0018】角度ずれ検出部12の光検出素子15a~ 15 d で受光された受信光には背景光が重畳されてお り、背景光検出部14は背景光を検出し、CPU20に おいて予め設定された基準レベルと比較して、背景光が 過剰レベルと判断された場合にはCPU20は過剰光検 出信号を発生し、光軸角度調節駆動機構部8の光学ミラ 一系7の方向を変更して、過剰背景光が光検出素子15 a~15dに継続して入射することを阻止する。その後 に、CPU20は過剰光検出信号発生から所定時間経過 後に復帰信号を発生し、光軸角度調節駆動機構部8の光 形成され、X、Y方向の角度ずれ信号を発生するように 50 学ミラー系7の方向を元の状態に復帰して通常の通信状

態とする。

【0019】図3は光信号通信時における装置の配置説 明図であり、地上に1台の装置Aと高層ビルの屋上に他 の1台の装置Bが互いに対向して配置され、光信号によ り双方向の情報伝送が行われている。いま、或る時点に おいて装置Aと装置Bとを結ぶ光軸上に太陽が位置した 場合には、装置Aに直射光が入射して、主信号受光部1 0の受光素子や角度ずれ検出部12の光検出素子15a ~15 dに集光するという状態が生じ、この状態が継続 されるとこれらの素子が損傷を受け、最悪の場合には損 10 傷する虞れがある。

【0020】このような場合には、装置A内において背 景光を検出し、光軸角度調節駆動機構部8の光学ミラー 系7の方向を変更して、一旦、情報伝送を不能とするこ とにより、各素子へのダメージ及び角度補正機能の誤動 作を防止するようにする。そして、所定時間待機した後 に、光軸角度調節駆動機構部8の光学ミラー系7を元の 状態に復帰して、再び通常の通信状態とする。

【0021】図4はこれらの動作のフローチャート図を 示しており、待機時間は一定に設定してもよいが、点線 20 で囲って示したように過剰光レベルの記憶及び比較を行 って、それに応じて待機時間を変更するようにすれば、 より短い時間で効率的に通信状態の復帰を行うことがで きる。

【0022】また、図5はCPU20を使用せずに、比 較器21とタイマ22から成る指示信号発生部23を使 用することによって、より簡素な構成とした変形例を示 し、指示信号発生部23内の比較器21において、背景 光検出部14からの信号と基準信号Vrefとを比較し、過 剰光レベルである場合は過剰光検出信号を出力し、所定 30 3 合波器 時間経過後にタイマ22により復帰信号を発生するよう になっている。

【0023】図6は第2の実施例を示し、図1と同じ符 号は同じ部材を示している。第1、第2のビームスプリ 《ッタ6、9の間に、背景光検出部14の出力により作動 し、機械的に光路を遮断するメカニカルシャッタ等の機 械的素子又は電気的に透過率を可変する液晶等のシャッ タ24が配置されている。

【0024】図7は第3の実施例を示し、シャッタ24

は第1のビームスプリッタ6と光軸角度調節駆動機構部 8との間に配置されている。

【0025】これらの第2、第3の実施例においては、 背景光が過剰レベルであると判断された場合には、シャ ッタ24が作動して背景光が主信号受光部10の受光素 子及び角度ずれ検出部12の光検出素子15a~15d に入射することを阻止し、所定時間経過後の復帰信号に よりシャッタ24が開放され、通常の通信状態に復帰す る。

[0026]

【発明の効果】以上説明したように本発明に係る双方向 光空間伝送装置は、背景光等の過剰光を検出して、過剰 光が受光素子へ入射することを阻止することにより、過 剰光による受光素子への損傷及び角度補正機能の誤作動 を防止することができる。

【図面の簡単な説明】

【図1】第1の実施例の双方向光空間伝送装置の構成図 である。

【図2】角度ずれ検出部、背景光検出部の回路構成図で ある。

【図3】光信号通信時における装置の配置説明図であ

【図4】フローチャート図である。

【図5】他の角度ずれ検出部、背景光検出部の回路構成 図である。

【図6】第2の実施例の構成図である。

【図7】第3の実施例の構成図である。

【符号の説明】

- 2 パイロット信号発生器
- 6、9 ビームスプリッタ
- 8 光軸角度調節駆動機構部
- 10 主信号受光部
- 12 角度ずれ検出部
- 14 背景光検出部
- 15a~15d 光検出素子
- 20 CPU
- 23 指示信号発生部
- 24 シャッタ

