鲁东大学 2022—2023 学年第一学期

2020 级 电子信息工程、信息工程、通信工程 专业 本科 卷 A 课程名称 数字信号处理

课程号(2220180157)考试形式(考试/闭卷) 时间(120分钟)

题目	 	111	四	五.	六	七	总分	统分人	复核人
得 分									

得分 评卷人

一、 本题满分 15 分

已知序列 x(n) 如图所示, 试求: (1) x(n) * x(n)

- (2) x(n) ⑤ x(n) (3) 求x(n) 对应的 DTFT $X(e^{j\omega})$
- (4) 求x(n)8点 DFT 变换X(k)(k=0,1,...,7)

二、本题满分10分

得分 评卷人

已知一连续信号的最高频率 $f_h=10 \mathrm{kHz}$,现用 DFT 对其

进行频谱分析。如果要求(1)抽样频谱无混叠;(2)频率

的分辨率 $F_0 \leq 20$ Hz,求(1)最大的抽样周期T;(2)最小记录时间长度 t_p 。

得分	评卷人		

三、本题满分15分

(1)绘制 16 点时间抽取(DIT)基 2,倒位序输入、自然序输出的 FFT 流图,并计算对应的复数乘法与加法的个数;

(2)绘制 16 点按频率抽取(DIF)的基 2,自然序列输入、倒序输出的 FFT 流图。

得分	评卷人		

四、本题满分15分

已知一因果的线性移不变系统,输入、输出信号分别以x(n)和

$$y(n)$$
表示,对应的系统函数为: $H(z) = \frac{1 + 0.5z^{-1}}{1 - 3z^{-1}}$, 试求:

- (1) 求系统对应的差分方程;
- (2) 求H(z)的零极点,并画出其零极点图;
- (3) 确定系统的幅频响应,并说明滤波器的滤波特性;
- (4) 讨论系统的稳定性,如果系统不稳定,则在不改变系统滤波特性的基础上,使之成为稳定系统。

得分	评卷人		

五、本题满分15分

一数字滤波器对应的差分方程为:

$$y(n) = 2.5y(n-1) - y(n-2) + x(n) - 1.5x(n-1)$$

- (1) 求该滤波器对应的系统函数H(z);
- (2) 计算该滤波器对应的频率响应 $H(e^{j\omega})$;
- (3) 试画出该滤波器的直接 II 型和级联型结构流图。

六、本题满分 15 分

已知模拟滤波器传递函数 $H_a(s) = \frac{5}{s^2 + 3s + 2}$,设采样时间间隔

T = 0.5s \circ

- (1) 利用冲激响应不变法,将 $H_a(s)$ 映射成数字滤波器 $H_1(z)$
- (2) 利用双线性变换法,将 $H_a(s)$ 映射成数字滤波器 $H_2(z)$

得分	评卷人		

七、本题满分15分。

利用窗函数法设计第一类线性设计 FIR 滤波器,给定性能指标为: 当频率 f < 2kHz 为滤波器阻带,阻带的衰减不小于

43dB, 当频率 f > 3kHz 为滤波器通带, 其中抽样频率为 $f_s = 10kHz$,窗函数表达式和特性图表 1、2 所示, 试求:

- (1) 该 FIR 滤波器为何种类型滤波器;
- (2) 根据要求选择合适的窗函数,并计算对应的窗宽度N;
- (3) 计算滤波器所对应的单位抽样响应h(n);
- (4) 若所设计的 FIR 滤波器阻带衰减达不到设计要求,应该如何改进才能达到要求。

窗函数	表达式(N 为窗宽)
矩形窗	$R_N(n)$
巴特列特窗	$\begin{cases} \frac{2n}{N-1}, 0 \leqslant n \leqslant \frac{N-1}{2} \\ 2 - \frac{2n}{N-1}, \frac{N-1}{2} < n \leqslant N-1 \end{cases}$
汉宁窗	$\frac{1}{2} \left[1 - \cos \left(\frac{2\pi n}{N-1} \right) \right] R_N(n)$
海明窗	$\left[0.54 - 0.46\cos\left(\frac{2\pi n}{N-1}\right)\right]R_N(n)$
布拉克曼窗	$\left[0.42 - 0.5\cos\left(\frac{2\pi n}{N-1}\right) + 0.08\cos\left(\frac{4\pi n}{N-1}\right)\right]R_N(n)$

表 1 常用窗函数表达式

表 2 常用窗函数特性

	窗谱性	能指标	加窗后滤波器性能指标		
窗函数	旁瓣峰值	主瓣宽度	过渡带宽度	阻带最小衰减	
	/dB	$/ \times 2\pi/N$	$/\times 2\pi/N$	/dB	
矩形窗	— 13	2	0.9	- 21	
巴特列特窗	- 2 5	4	2.1	— 25	
汉宁窗	- 31	4	3.1	44	
海明窗	- 41	4	3.3	— 53	
布拉克曼窗	— 57	6	5.5	— 74	

第7页 共8页 第8页 共8页