Лекція 15

Незалежність випадкових величин

Випадкові величини $\xi_1,...,\xi_n$ будемо називати незалежними, якщо для довільних борелівських множин $B_1,B_2,...,B_n \in \mathbf{B}_R$

$$P\{\xi_{1} \in B_{1},...,\xi_{n} \in B_{n}\} = \prod_{i=1}^{n} P\{\xi_{i} \in B_{i}\}.$$
(1)

Припустимо, що $B_i = \{x: -\infty < x \le x_i\}$. Тоді як наслідок отримаємо, що для незалежних випадкових величин

$$F_{\xi_1,...,\xi_m}(x_1,...,x_n) = F_{\xi_1}(x_1) \cdot ... \cdot F_{\xi_n}(x_n). \tag{2}$$

Неважко показати, що з (2) випливає (1). Для цього слід використати той факт, що множини виду $\{x: -\infty < x \le x_i\}$ для різних x_i породжують σ - алгебру борелівських множин B_R .

Таким чином можна дати еквівалентне визначення незалежності: випадкові величини $\xi_1,...,\xi_n$ — незалежні, якщо для багатовимірної функції розподілу виконується рівність (2).

Розглянемо властивості незалежних випадкових величин.

Лема 1. Якщо сумісний розподіл випадкових величин $\xi_1,...,\xi_n$ має щільність $p_{\xi_1,...,\xi_n}(x_1,...,x_n)$ і величини незалежні, то

$$p_{\xi_1,...,\xi_n}(x_1,...,x_n) = p_{\xi_1}(x_1) \cdot ... \cdot p_{\xi_n}(x_n)$$
.

Ця властивість ϵ безпосереднім наслідком визначення щільності і рівності (2).

Лема 2. Якщо випадкові величини $\xi_1,...,\xi_n$ — незалежні і $g_i(x),i=1,2,...,n$ — борелівські функції, то випадкові величини $g_1(\xi_1),...,g_n(\xi_n)$ — також незалежні.

Доведення. Нехай $B_1, B_2, ..., B_n \in \mathbf{B}_R$ - довільні борелівські множини. Тоді $P_n = P\{g_1(\xi_1) \in B_1, ..., g_n(\xi_n) \in B_n\} = P\{\xi_1 \in g_1^{-1}(B_1), ..., \xi_n \in g_n^{-1}(B_n)\} = P\{\xi_1 \in B_1', ..., \xi_n \in B_n'\},$ де згідно визначення борелівської функції

$$B'_i = g^{-1}(B_i) \in B_R, i = 1, 2, ..., n.$$

Використовуючи визначення (4.5), отримаємо

$$P_n = \prod_{i=1}^n P\{\xi_i \in B_i'\} = \prod_{i=1}^n P\{\xi_i \in g_i^{-1}(B_i)\} = \prod_{i=1}^n P\{g_i(\xi_i) \in B_i\}.$$

Лему доведено.

Наступний результат представляє собою один з варіантів формули згортки для незалежних випадкових величин.

Теорема 2. Нехай ξ і η - незалежні випадкові величини, а $p_{\xi}(x)$ і $p_{\eta}(y)$ - їх щільності. Тоді випадкова величина $\xi + \eta$ має щільність, що визначається рівністю

$$p_{\xi+\eta}(z) = \int_{-\infty}^{+\infty} p_{\xi}(x) p_{\eta}(z-x) dx = \int_{-\infty}^{+\infty} p_{\eta}(x) p_{\xi}(z-x) dx.$$
 (3)

Доведення. Використовуючи незалежність випадкових величин ξ і η , маємо

$$F_{\xi+\eta}(z) = \iint_{x+y \le z} p_{\xi,\eta}(x,y) dx dy = \iint_{x+y \le z} p_{\xi}(x) p_{\eta}(y) dx dy = \int_{-\infty}^{+\infty} p_{\xi}(x) dx \int_{-\infty}^{z-x} p_{\eta}(y) dy.$$
Замінюючи $y = u - x$ У

другому інтегралі, знаходимо

$$F_{\xi+\eta}(z) = \int_{-\infty}^{+\infty} p_{\xi}(x) dx \int_{-\infty}^{z} p_{\eta}(u-x) du = \int_{-\infty}^{z} \left(\int_{-\infty}^{+\infty} p_{\eta}(u-x) p_{\xi}(x) dx \right) du.$$

Таким чином формула (3) доведена.

Математичне сподівання

Нехай (Ω, U, P) ймовірносний простір. Випадкову величину $\xi(\omega)$ будемо називати простою, якщо вона приймає скінченне число значень $x_1, x_2, ..., x_n$, $x_i \neq x_j, i \neq j$. Якщо $A_i = \{\omega : \xi(\omega) = x_i\}, i = 1, 2, ..., n$, то $\xi(\omega) = \sum_{i=1}^n x_i \chi_{A_i}(\omega)$.

Позначимо через L_0^+ — клас невід'ємних простих випадкових величин. Для довільної $\xi \in L_0^+$ покладемо

$$M\xi = \sum_{i=1}^{def} x_i P(A_i).$$

Відзначимо елементарні властивості математичного сподівання:

- 1) $M\xi \ge 0$;
- 2) $Mc\xi = cM\xi$;
- 3) $M(\xi_1 + \xi_2) = M\xi_1 + M\xi_2$.

Властивість 3) доводиться так само, як властивість адитивності для математичного сподівання дискретних випадкових величин (теорема 3.1, пункт 3). Властивості 1), 2) очевидні.

- 3 1), 3) маємо наступний наслідок.
- 4) Якщо $\xi \ge \eta$, то $M\xi \ge M\eta$.

Нехай L_{1}^{+} - множина невід'ємних випадкових величин.

Лема 3. Для будь-якої $\xi \in L_1^+$ завжди існує послідовність $\{\xi_n\}_{n=1}^\infty \in L_0^+$ така, що $\xi_n(\omega) \uparrow \xi(\omega)$ для довільного $\omega \in \Omega$.

$$\mathcal{L}$$
оведення. Покладемо $\xi_n(\omega) = \sum_{j=1}^n \chi_{\frac{k-1}{2^n} < \xi \le \frac{k}{2^n}} (\omega) \cdot \frac{k-1}{2^n}$.

Очевидно, що $0 \le \xi_n(\omega) \le \xi_{n+1}(\omega) \le \xi(\omega)$ і при $\xi(\omega) \le n$ $\xi(\omega) \le \xi_n(\omega) + \frac{1}{2^n}$.

Таким чином для $\omega \in \Omega$ $\xi_n(\omega) \uparrow \xi(\omega)$. Лему доведено.

Для довільного $\xi \in L_1^+$ покладемо $M \xi = \lim_{n \to \infty} M \xi_n$, де $\{\xi_n\}_{n=1}^{\infty}$ деяка монотонна послідовність з L_0^+ .

Відмітимо, що послідовність $M\xi_n$ монотонна, а значить її границя існує (можливо дорівнює $+\infty$).

Щоб довести коректність визначення математичного сподівання в класі L_1^+ , треба показати, що для будь-якої іншої послідовності $\{\eta_n\}_{n=1}^\infty \in L_0^+$ такої, що $\eta_n(\omega) \uparrow \xi$ для $\omega \in \Omega$,

$$\lim_{n\to\infty} M\eta_n = \lim_{n\to\infty} M\xi_n.$$

Лема 4. Нехай
$$\left\{\xi_{n}\right\}_{n=1}^{\infty},\ \eta\in L_{0}^{+}$$
 і $\xi_{n}\left(\omega\right)\uparrow\xi\left(\omega\right),\xi\left(\omega\right)\geq\eta$. Тоді
$$\lim_{n\to\infty}M\xi_{n}\geq M\eta\;.$$

Доведення. Нехай $\varepsilon > 0$ і $A_n = \{\omega : \xi_n(\omega) > \eta(\omega) - \varepsilon\}$. Тоді $\overline{A}_n \downarrow \varnothing$ при $n \to \infty$, а значить $P(\overline{A}_n) \downarrow 0$.

Справедлива низка нерівностей

$$\xi_{n} \geq \xi_{n} \chi_{A_{n}}(\omega) \geq (\eta - \varepsilon) \chi_{A_{n}}(\omega) = \eta - \varepsilon \chi_{A_{n}}(\omega) - \eta \chi_{\overline{A}_{n}}(\omega),$$

$$M \xi_{n} \geq M \eta - \varepsilon P(A_{n}) - c P(\overline{A}_{n}),$$

де число c обрано так, що $\eta(\omega) \le c$ для довільного $\omega \in \Omega$.

Маємо $M\xi_n \ge M\eta - \varepsilon - cP(\overline{A}_n)$ і $\lim_{n\to\infty} M\xi_n \ge M\eta - \varepsilon$ при будь-якому $\varepsilon > 0$. Оскільки ε - довільне, то твердження леми доведено.

Лема 5. Нехай
$$\left\{ \xi_{n} \right\}_{n=1}^{\infty}, \ \left\{ \eta_{n} \right\}_{n=1}^{\infty} \in L_{0}^{+}$$
 і $\xi_{n} \uparrow \xi, \quad \eta_{n} \uparrow \xi$ при $\omega \in \Omega$. Тоді
$$\lim_{n \to \infty} M \xi_{n} = \lim_{n \to \infty} M \eta_{n} \, .$$

Доведення. Зафіксуємо m і застосуємо лему 4.7. Тоді $\xi_n \uparrow \xi \ge \eta_m$ і згідно леми 4 $\lim M \xi_n \ge M \eta_m$, а значить

$$\lim_{n\to\infty} M\xi_n \geq \lim_{m\to\infty} M\eta_m.$$

Міняючи місцями послідовності $\{\xi_n\}$ і $\{\eta_n\}$, отримаємо

$$\lim_{m\to\infty} M\eta_m \geq \lim_{n\to\infty} M\xi_n.$$

Отримані нерівності доводять твердження леми.

Таким чином коректність математичного сподівання для $\xi \in L_1^+$ доведено. Граничним переходом властивості 1)-4) переносяться на математичне сподівання для випадкових величин з більш широкого класу L_1^+ .

Нехай тепер ξ - довільна випадкова величина. Вона єдиним чином може бути подана у вигляді $\xi = \xi^+ - \xi^-$, де $\xi^+ = \xi \chi_{\{\xi \ge 0\}}(\omega)$, $\xi^- = |\xi| \chi_{\{\xi < 0\}}(\omega)$. Очевидно, що $\xi^\pm \in L_1^+$. Покладемо за визначенням

$$M\xi = M\xi^{+} - M\xi^{-},$$

якщо $M\xi^+$ і $M\xi^-$ не рівні одночасно $+\infty$.

При $M\xi^+ = +\infty, M\xi^- < \infty$ $M\xi = +\infty$. При $M\xi^+ < \infty, M\xi^- = +\infty$ $M\xi = -\infty$. Властивості 1)-4) легко перевіряються і в цьому випадку.

Доведемо мультиплікативну властивість математичного сподівання.

Теорема 3. Якщо ξ_1 і ξ_2 - незалежні і мають скінченні математичні сподівання $M\xi_1$ і $M\xi_2$, то

$$M\xi_1 \cdot \xi_2 = M\xi_1 \cdot M\xi_2. \tag{4}$$

Доведення. Властивість (4.8) в класі L_0^+ доводиться так само, як доводилась мультиплікативна властивість для дискретних випадкових величин (теорема 3.4).

Нехай тепер $\xi_1, \xi_2 \in L_1^+$ і є незалежними, а $g_n(x) = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \chi_{\left\{y, \frac{k-1}{n} < y \le \frac{k}{n}\right\}}(x)$.

Тоді прості функції ξ_1^n і ξ_2^n : $\xi_1^n = g_n(\xi_1)$, $\xi_2^n = g_n(\xi_2)$ теж незалежні. Тому

$$M \xi_1^n \cdot \xi_2^n = M \xi_1^n \cdot M \xi_2^n.$$

Так як $\xi_1^n \uparrow \xi_1$, $\xi_2^n \uparrow \xi_2$, то $\xi_1^n \xi_2^n \uparrow \xi_1 \xi_2$ і $M \xi_1^n \xi_2^n \uparrow M \xi_1 \xi_2$. Таким чином (4.8) доведено для невід'ємних ξ_1 і ξ_2 .

У загальному випадку $\xi_1=\xi_1^+-\xi_1^-$, $\xi_2=\xi_2^+-\xi_2^-$. Так як ξ_1^\pm і ξ_2^\pm є функціями від ξ_1 і ξ_2 , то вони теж незалежні. Тому

$$M\left(\xi_{1}^{+}-\xi_{1}^{-}\right)\left(\xi_{2}^{+}-\xi_{2}^{-}\right)=M\,\xi_{1}^{+}\,\xi_{2}^{+}-M\,\xi_{1}^{-}\,\xi_{2}^{+}-M\,\xi_{1}^{+}\,\xi_{2}^{-}+M\,\xi_{1}^{-}\,\xi_{2}^{-}=$$

$$= M \xi_1^+ M \xi_2^+ - M \xi_1^- M \xi_2^+ - M \xi_1^+ M \xi_2^- + M \xi_1^- M \xi_2^- =$$

$$= (M \xi_1^+ - M \xi_1^-) (M \xi_2^+ - M \xi_2^-) = M \xi_1 \cdot M \xi_2 \cdot$$

Теорему доведено.

Теорема Лебега. Формули для обчислення математичного сподівання

Наведене нами у попередньому підрозділі визначення математичного сподівання ϵ інтеграл Лебега від функції $\xi(\omega)$ за ймовірносною мірою P. Для такого інтегралу будемо використовувати позначення

$$\int_{\Omega} \xi(\omega) dP(\omega).$$

Якщо $A \in U$, то інтеграл Лебега по множині A визначається як інтеграл від функції $\chi_A(\omega)\xi(\omega)$

$$\int_{A} \xi \, dP = \int_{\Omega} \xi \, \chi_{A} dP.$$

В теорії міри доводиться теорема Лебега про мажоровну збіжність. Перед тим, як сформулювати аналогічну теорему для математичних сподівань, ми введемо поняття збіжності майже всюди.

На одному ймовірносному просторі (Ω, U, P) розглянемо послідовність випадкових величин $\{\xi_n\}_1^{\infty}$ і випадкову величину ξ . Множина

 $\bigcap_{k=1}^{\infty} \bigcap_{n=1}^{\infty} \left\{ \omega : \left| \xi_{n+m} \left(\omega \right) - \xi \left(\omega \right) \right| < \frac{1}{k} \right\} \in U \quad \text{ i містить ті } \omega \text{ , для яких границя } \lim_{n \to \infty} \xi_n \text{ існує і дорівнює } \xi \text{ .}$

Будемо говорити, що послідовність ξ_1, ξ_2, \dots збігається майже всюди (м.в.) до випадкової величини ξ і писати $\xi_n \xrightarrow[n \to \infty]{\text{м.в.}} \xi$, якщо $P\left\{\lim_{n \to \infty} \xi_n = \xi\right\} = 1$.

Теорема 4 (Лебега). Якщо
$$\xi_n \xrightarrow{M.6.}_{n\to\infty} \xi$$
 і $|\xi_n| \le \eta$, де $M\eta < \infty$, то $\lim_{n\to\infty} M\xi_n = M\lim_{n\to\infty} \xi_n = M\xi$.

Випадковій величині $\xi(\omega)$, яка задана на ймовірносному просторі (Ω,U,P) , $\Omega \xrightarrow{\xi(\omega)} R$, відповідає випадкова величина $\tilde{\xi}(x) = x$, яка задана на вибірковому ймовірносному просторі (R, B_R, P_ξ) , $R \xrightarrow{\tilde{\xi}(x) = x} R$, і має таку ж функцію розподілу $F_{\xi}(x)$.

Лема 6. Для $M\xi$ справедлива формула

$$M\xi = \int_{\Omega} \xi(\omega) dP(\omega) = \int_{R} x dP_{\xi}(x).$$
 (5)

Доведення. Дійсно, нехай ξ – невід'ємна випадкова величина і

$$\xi_n(\omega) = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \chi_{\left\{\omega: \frac{k-1}{2^n} < \xi \le \frac{k}{2^n}\right\}}(\omega)$$

Тоді $\xi_n \uparrow \xi$ і $M\xi = \lim_{n \to \infty} M\xi_n$

$$M\xi_{n} = \int_{\Omega} \xi_{n}(\omega) dP(\omega) = \sum_{k=1}^{n2^{n}} \frac{k-1}{2^{n}} P\left\{\omega : \frac{k-1}{2^{n}} < \xi(\omega) \le \frac{k}{2^{n}}\right\} =$$

$$= \sum_{k=1}^{n2^{n}} \frac{k-1}{2^{n}} P_{\xi} \left\{\left(\frac{k-1}{2^{n}}, \frac{k}{2^{n}}\right)\right\} = \int_{R} \tilde{\xi}_{n}(x) dP_{\xi}(x),$$

Де
$$\tilde{\xi}_n(x) = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \chi_{\left\{y: \frac{k-1}{2^n} < y \le \frac{k}{2^n}\right\}}(x)$$
 і $\tilde{\xi}_n(x) \uparrow \xi(x) = x$.

Якщо в обох частинах останньої рівності перейти до границі, отримаємо (5).

Аналогічно рівність (5) доводиться для довільних інтегровних випадкових величин. Лему доведено.

Імовірнісна міра $P_{\xi}(\cdot)$ на σ - алгебрі борелівських множин B_{R} , як ми знаємо, однозначно визначається функцією розподілу випадкової величини $F_{\xi}(\cdot)$. Таким чином з рівності (5) можна зробити висновок: математичне сподівання випадкової величини однозначно визначається її функцією розподілу $F_{\xi}(\cdot)$ і не залежить від конкретного способу подання випадкової

величини. Інтеграл Лебега $\int_{-\infty}^{\infty} x \, dP_{\xi}(x)$ називається інтегралом Лебега-Стільтьєса і позначається $(L-S) \int_{-\infty}^{\infty} x \, dF_{\xi}(x)$.

Якщо g(x) — борелівська функція, то $g(\xi)$ — випадкова величина і аналогічно рівності (6) маємо

$$\int_{\Omega} g(\xi(\omega)) dP(\omega) = (L - S) \int_{R} g(x) dF_{\xi}(x).$$
(6)

У випадку, коли g(x) - неперервна функція, інтеграл Лебега-Стільтьєса співпадає з інтегралом Рімана - Стільтьєса, що дорівнює

$$(R-S)\int_{R} g(x) dF_{\xi}(x) = \lim_{\substack{b\to\infty\\a\to\infty\\a\to\infty}} \lim_{\substack{N\to\infty\\a\to\infty}} \sum_{k=0}^{N-1} g(\tilde{x}_{k}) \Big[F_{\xi}(x_{k+1}) - F_{\xi}(x_{k}) \Big],$$

де границя в правій частині не залежить від розбиття $x_0, x_1, ..., x_N$ півінтервалу (a,b] і вибору точок $\tilde{x}_k \in \Delta_k = (x_k, x_{k+1}]$. Розбиття $x_0, x_1, ..., x_N$ (своє для кожного N) таке, що $\max_k (x_{k+1} - x_k) \to 0$ при $N \to \infty$.

Частковим випадком (4.10) ϵ наступна формула для математичного сподівання

$$M\xi = (L-S)\int_{R} x dF_{\xi}(x) = (R-S)\int_{R} x dF_{\xi}(x).$$

Якщо випадкова величина ξ має щільність $p_{\xi}(x)$ і функції g(x), $p_{\xi}(x)$ інтегровні за Ріманом, то

$$Mg(\xi) = (R-S)\int_{R} g(x)dF_{\xi}(x) = (R)\int_{R} g(x)p_{\xi}(x)dx$$
.