Čech Cohomology and Sheaf Cohomology

Jing YE

June 24, 2020

Contents

1	Review of sheaf theory and homological algebra	1
2	Cohomology of sheaves 2.1 Injective sheaves and flasque sheaves 2.2 A vanishing theorem of Grothendieck	4 4 8
3	Čech cohomology 3.1 Motivation: the Mittag-Leffler problem	8 9 12 14
4	Comparison of Čech cohomology and sheaf cohomology	18
5	Cohomology of schemes 5.1 Cohomology of Noetherian affine schemes	21 21 24
1	Review of sheaf theory and homological algebra	

Definition 1.1. Let X be a topological space. A **presheaf** \mathscr{F} of abelian groups on X consists of the data

- (a) for every open subset $U \subseteq X$, an abelian group $\mathscr{F}(U)$, and
- (b) for every inclusion $V \subseteq U$ of open subsets of X, a homomorphism of abelian groups $\rho_{UV}: \mathscr{F}(U) \to \mathscr{F}(V)$,

subject to the conditions

- (0) $\mathscr{F}(\varnothing) = 0$, where \varnothing is the empty set,
- (1) ρ_{UU} is the identity map $\mathscr{F}(U) \to \mathscr{F}(U)$, and
- (2) if $W \subseteq V \subseteq U$ are three open subsets, then $\rho_{UW} = \rho_{VW} \circ \rho_{UV}$.

Remark. For any topological space X, we define a category $\mathfrak{Top}(X)$, whose objects are the open subsets of X, and where the only morphisms are the inclusion maps. Thus $\operatorname{Hom}(V,U)$ is empty

if $V \nsubseteq U$, and $\operatorname{Hom}(V,U)$ has just one element if $V \subseteq U$. Now a presheaf is just a contravariant functor from the category $\mathfrak{Top}(X)$ to the category \mathfrak{Ab} of abelian groups.

We define a presheaf of rings, a presheaf of sets, or a presheaf with values in any fixed category \mathfrak{C} , by replacing the words "abelian group" in the definition by "ring", "set", or "object of \mathfrak{C} " respectively.

Definition 1.2. If \mathscr{F} is a presheaf on X, we refer to $\mathscr{F}(U)$ as the **sections** of the presheaf \mathscr{F} over the open set U, and we sometimes use the notation $\Gamma(U,\mathscr{F})$ to denote the group $\mathscr{F}(U)$. We call the maps ρ_{UV} restriction maps, and we sometimes write $s|_V$ instead of $\rho_{UV}(s)$, if $s \in \mathscr{F}(U)$.

Definition 1.3. A presheaf \mathscr{F} on a topological space X is a **sheaf** if it satisfies the following supplementary conditions:

- (3) if U is an open set, if $\{V_i\}$ is an open covering of U, and if $s \in \mathcal{F}(U)$ is an element such that $s|_{V_i} = 0$ for all i, then s = 0;
- (4) if U is an open set, if $\{V_i\}$ is an open covering of U, and if we have elements $s_i \in \mathscr{F}(V_i)$ for each i, with the property that for each $i, j, s_i|_{V_i \cap V_j} = s_j|_{V_i \cap V_j}$ then there is an element $s \in \mathscr{F}(U)$ such that $s|_{V_i} = s_i$ for each i. (Note condition (3) implies that s is unique.)

Definition 1.4. If \mathscr{F} is a presheaf on X, and if P is a point of X, we define the **stalk** \mathscr{F}_P of \mathscr{F} at P to be the direct limit of the groups $\mathscr{F}(U)$ for all open sets U containing P, via the restriction maps ρ . Here $U \leq V \Leftrightarrow V \subseteq U$.

Remark. By the definition of direct limit, an element of \mathscr{F}_P is represented by a pair $\langle U, s \rangle$, where U is an open neighborhood of P, and s is an element of $\mathscr{F}(U)$. Two such pairs $\langle U, s \rangle$ and $\langle V, t \rangle$ define the same element of \mathscr{F}_P if and only if there is an open neighborhood W of P with $W \subseteq U \cap V$, such that $s|_W = t|_W$. Thus we may speak of elements of the stalk \mathscr{F}_P as germs of sections of \mathscr{F} at the point P.

Definition 1.5. If \mathscr{F} and \mathscr{G} are presheaves on X, a **morphism** $\varphi: \mathscr{F} \to \mathscr{G}$ consists of a morphism of abelian groups $\varphi(U): \mathscr{F}(U) \to \mathscr{G}(U)$ for each open set U, such that whenever $V \subseteq U$ is an inclusion, the diagram

$$\begin{array}{ccc} \mathscr{F}(U) & \xrightarrow{\varphi(U)} & \mathscr{G}(U) \\ \rho_{UV} & & & & \downarrow \rho'_{UV} \\ \mathscr{F}(V) & \xrightarrow{\varphi(V)} & \mathscr{G}(V) \end{array}$$

is commutative, where ρ and ρ' are the restriction maps in \mathscr{F} and \mathscr{G} . If \mathscr{F} and \mathscr{G} are sheaves on X, we use the same definition for a morphism of sheaves. An **isomorphism** is a morphism which has a two-sided inverse.

Remark. A morphism $\varphi : \mathscr{F} \to \mathscr{G}$ of presheaves on X induces a morphism $\varphi_P : \mathscr{F}_P \to \mathscr{G}_P$ on the stalks, for any point $P \in X$.

Proposition 1.6. Let $\varphi : \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves on a topological space X. Then φ is an isomorphism if and only if the induced map on the stalk $\varphi_P : \mathscr{F}_P \to \mathscr{G}_P$ is an isomorphism for every $P \in X$.

Definition 1.7. Given a presheaf \mathscr{F} , there is a sheaf \mathscr{F}^+ and a morphism $\theta: \mathscr{F} \to \mathscr{F}^+$, with the property that for any sheaf \mathscr{G} , and any morphism $\varphi: \mathscr{F} \to \mathscr{G}$, there is a unique morphism $\psi: \mathscr{F}^+ \to \mathscr{G}$ such that the following diagram commutes

 $\varphi = \psi \circ \theta$. Furthermore the pair (\mathscr{F}^+, θ) is unique up to unique isomorphism. \mathscr{F}^+ is called the sheaf associated to the presheaf \mathscr{F} .

Definition 1.8. Let $\varphi : \mathscr{F} \to \mathscr{G}$ be a morphism of presheaves. We define the **presheaf kernel** of φ , **presheaf cokernel** of φ , and **presheaf image** of φ to be the presheaves given by $U \mapsto \ker(\varphi(U))$, $U \mapsto \operatorname{coker}(\varphi(U))$, and $U \mapsto \operatorname{Im} \varphi(U)$ respectively.

Remark. If $\varphi : \mathscr{F} \to \mathscr{G}$ is a morphism of sheaves, then the presheaf kernel of φ is a sheaf, but the presheaf cokernel and presheaf image of φ are in general not sheaves.

Definition 1.9. If $\varphi : \mathscr{F} \to \mathscr{G}$ is a morphism of sheaves, we define the **kernel** of φ , denoted $\ker \varphi$, to be the presheaf kernel of φ , which is a sheaf. Thus $\ker \varphi$ is a subsheaf of \mathscr{F} .

We say that a morphism of sheaves $\varphi : \mathscr{F} \to \mathscr{G}$ is **injective** if $\ker \varphi = 0$. Thus φ is injective if and only if the induced map $\varphi(U) : \mathscr{F}(U) \to \mathscr{G}(U)$ is injective for every open set of X.

Definition 1.10. If $\varphi : \mathscr{F} \to \mathscr{G}$ is a morphism of sheaves, we define the **image** of φ , denoted im φ , to be the sheaf associated to the presheaf image of φ .

We say that a morphism $\varphi : \mathscr{F} \to \mathscr{G}$ of sheaves is **surjective** if im $\varphi = \mathscr{G}$.

Definition 1.11. We say that a sequence $\cdots \longrightarrow \mathscr{F}^{i-1} \xrightarrow{\varphi^{i-1}} \mathscr{F}^{i} \xrightarrow{\varphi^{i}} \mathscr{F}^{i+1} \longrightarrow \cdots$ of sheaves and morphisms is **exact** if at each stage $\ker \varphi^{i} = \operatorname{im} \varphi^{i-1}$.

Remark. $0 \longrightarrow \mathscr{F} \stackrel{\varphi}{\longrightarrow} \mathscr{G}$ is exact if and only if φ is injective, and $\mathscr{F} \stackrel{\varphi}{\longrightarrow} \mathscr{G} \longrightarrow 0$ is exact if and only if φ is surjective.

Proposition 1.12. Let $\{\mathcal{F}_i\}_{i\in I}$ be a family of a sheaf. Define a presheaf $\prod_{i\in I} \mathcal{F}_i$ by

$$U \mapsto \prod_{i \in I} \mathcal{F}_i(U).$$

Then the presheaf $\prod_{i \in I} \mathcal{F}_i$ is a sheaf.

Proof. Let $\{V_j\}_j$ be an open cover of U.

- (1) If $(s_i)_i \in \prod_{i \in I} \mathcal{F}_i(U)$ such that $(s_i)|_{V_j} = 0$ for all j. Then for any fixed $i \in I$, we have $s_i|_{V_i} = 0$ for all j. Thus, $s_i = 0 \in \mathcal{F}_i(U)$ as \mathcal{F}_i is a sheaf. So, $(s_i)_i = 0$.
- (2) Let $s_j = (s_{ij})_{i \in I} \prod_{i \in I} \mathcal{F}_i(V_j)$ such that $s_j|_{V_j \cap V_k} = s_k|_{V_j \cap V_k}$ for all j, k. That is, $(s_{ij})|_{V_j \cap V_k} = (s_{ik})|_{V_j \cap V_k}$. So, for any fixed $i \in I$, we have $s_{ij}|_{V_j \cap V_k} = s_{ik}|_{V_j \cap V_k}$. Since \mathcal{F}_i is a sheaf, there exists some $s_i \in \mathcal{F}_i(U)$ such that $s_i|_{V_j} = s_{ij}$ for all j. Take $s = (s_i)_i \in \prod_{i \in I} \mathcal{F}_i(U)$, we see that $s|_{V_i} = (s_i)|_{V_i} = (s_i|_{V_i}) = (s_{ij}) = s_j$ for each j.

2 Cohomology of sheaves

2.1 Injective sheaves and flasque sheaves

Definition 2.1. A sheaf \mathcal{I} is **injective** if for any injective sheaf map $h: \mathcal{F} \to \mathcal{G}$ and any sheaf map $f: \mathcal{F} \to \mathcal{I}$, there is some sheaf map $\hat{f}: \mathcal{G} \to \mathcal{I}$ extending $f: \mathcal{F} \to \mathcal{I}$ in the sense that $f = \hat{f} \circ h$, as in the following commutative diagram:

$$0 \longrightarrow \mathcal{F} \xrightarrow{h} \mathcal{G}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \hat{f}$$

$$\mathcal{I}$$

Equivalently, this means that the contravariant functor $\operatorname{Hom}_{\mathbf{Sh}(X)}(-,\mathcal{I})$ is exact.

We know that the category of R-modules has enough injectives. This will imply that the category of sheaves of R-modules also has enough injectives.

Proposition 2.2. For any sheaf \mathcal{F} of R-modules, there is an injective sheaf \mathcal{I} and an injective sheaf homomorphism $\varphi : \mathcal{F} \to \mathcal{I}$.

Proof. For every $x \in X$, pick some injection $\mathcal{F}_x \to I^x$ with I^x an injective R-module, which always exists. Define the "skyscraper sheaf" \mathcal{I}^x as the sheaf given by

$$\mathcal{I}^{x}(U) = \begin{cases} I^{x}, & \text{if } x \in U, \\ 0, & \text{if } x \notin U \end{cases}$$

for every open subset $U \subseteq X$. It is easy to check that there is an isomorphism

$$\operatorname{Hom}_{\mathbf{Sh}(X)}(\mathcal{F}, \mathcal{I}^x) \cong \operatorname{Hom}_R(\mathcal{F}_x, I^x)$$

for any sheaf \mathcal{F} , and this implies that \mathcal{I}^x is an injective sheaf. We also have a sheaf map from \mathcal{F} to \mathcal{I}^x . Consequently we obtain an injective sheaf map

$$\mathcal{F} \to \prod_{x \in X} \mathcal{I}^x$$
.

Since a product of injective sheaves is injective, \mathcal{F} is embedded into an injective sheave.

Remark. The category of sheaves does have enough projectives. This is the reason why projective resolutions of sheaves are of little interest.

Definition 2.3. Let X be a topological space, and let $\Gamma(X, -)$ be the global section functor from the abelian category $\mathbf{Sh}(X)$ of sheaves of R-modules to the category of abelian groups. The **cohomology groups** of the sheaf \mathcal{F} (or the **cohomology groups** of X with values in \mathcal{F}), denoted by $H^p(X, \mathcal{F})$, are the groups $R^p\Gamma(X, -)(\mathcal{F})$ induced by the right derived functor $R^p\Gamma(X, -)$ (with $p \ge 0$).

To compute the sheaf cohomology groups $H^p(X, \mathcal{F})$, pick any resolution of \mathcal{F}

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{I}^0 \xrightarrow{d^0} \mathcal{I}^1 \xrightarrow{d^1} \mathcal{I}^2 \xrightarrow{d^2} \cdots$$

by injective sheaves \mathcal{I}^n . Apply the global section functor $\Gamma(X,-)$ to obtain the complex of R-modules

$$0 \xrightarrow{\delta^{-1}} \mathcal{I}^0(X) \xrightarrow{\delta^0} \mathcal{I}^1(X) \xrightarrow{\delta^1} \mathcal{I}^2(X) \xrightarrow{\delta^2} \cdots$$

and then

$$H^p(X, \mathcal{F}) = \ker \delta^p / \operatorname{Im} \delta^{p-1}$$
.

We now turn to flasque sheaves.

Definition 2.4. Let X be a topological space. A sheaf \mathcal{F} on X is **flasque** if for every open subseteq $V \subseteq U$, the restriction map $\rho_{UV} : \mathcal{F}(U) \to \mathcal{F}(V)$ is surjective.

Proposition 2.5. A sheaf \mathcal{F} is flasque if and only if for every open subset U of X, the restriction map $\rho_{XU}: \mathcal{F}(X) \to \mathcal{F}(U)$ is surjective.

Proof. \Rightarrow : By definition.

 \Leftarrow : Let $V \subseteq U$ be open subsets of X. Then consider the following diagram

$$\mathcal{F}(X) \xrightarrow{\rho_{XU}} \mathcal{F}(U)$$

$$\downarrow^{\rho_{UV}}$$

$$\mathcal{F}(V).$$

We see that ρ_{UV} is surjective as ρ_{XU} and ρ_{XV} are.

Proposition 2.6. Let \mathcal{F} be an \mathcal{O}_X -module. If \mathcal{F} is flasque, so is $\mathcal{F}|_U$ for every open subset U of X. Conversely, if for every $x \in X$, there is a neighborhood U such that $\mathcal{F}|_U$ is flasque, then \mathcal{F} is flasque.

Proof. \Rightarrow : By definition.

 \Leftarrow : Given any open subset V of X, take $s \in \mathcal{F}(V)$. Let

 $T = \{(U, t) : U \text{ is open in } X \text{ such that } V \subseteq U \text{ and } t \in \mathcal{F}(U) \text{ such that } t|_{V} = s\}.$

We define a partial order \leq on T by

$$(U_1, t_1) \leq (U_2, t_2) \Leftrightarrow U_1 \subseteq U_2 \text{ and } t_2|_{U_1} = t_1.$$

Let (U_i, t_i) be a chain in T. Let $U = \bigcup_i U_i$, then there exists $t \in \mathcal{F}(U)$ such that $t|_{U_i} = t_i$ by the gluability of sheaves. We see that (U, t) is a upper bound of (U_i, t_i) . By Zorn's lemma, there exists a maximal element (U_0, t_0) in T. If $U_0 \neq X$, there exists a point $x \in X - U_0$. Then there exists a neighborhood W of x such that $\mathcal{F}|_W$ is flasque. We see that $W \nsubseteq U_0$. We now can extend the section $\rho_{U_0,U_0\cap W}(t_0)$ to $t' \in \mathcal{F}(W)$ as $\mathcal{F}(W) \to \mathcal{F}(U_0 \cap W)$ is surjective. Since t_0 and t' agree on $U_0 \cap W$, we can glue them to obtain a section t on $U_0 \cup W$. Then $(U_0, t_0) \leq (U_0 \cup W, t)$ and $(U_0 \cup W, t) \in T$. Contradiction. This imples that $U_0 = X$. So, we see that $\mathcal{F}(X) \to \mathcal{F}(V)$ is surjective. By Proposition 2.5, we see that \mathcal{F} is flasque.

Lemma 2.7. If (X, \mathcal{O}_X) is a ringed space, any injective \mathcal{O}_X -module is flasque.

Proof. For any open subset $U \subseteq X$, we define the sheaf \mathcal{O}_U by

$$\mathcal{O}_U(V) = \begin{cases} \mathcal{O}_X|_U(V), & \text{if } V \subseteq U, \\ 0, & \text{otherwise.} \end{cases}$$

We see that

$$\mathcal{O}_{U,p} = \begin{cases} \mathcal{O}_{X,p}, & \text{if } p \in U, \\ 0, & \text{otherwise.} \end{cases}$$

Suppose \mathcal{I} is an injective \mathcal{O}_X -module and $V \subseteq U$ are open subsets. Then, we have an injective inclusion

$$0 \to \mathcal{O}_V \to \mathcal{O}_U$$
.

Since \mathcal{I} is an injective sheaf, the functor $\operatorname{Hom}_{\operatorname{\mathbf{Sh}}(X)}(-,\mathcal{I})$ is exact. Thus,

$$\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{O}_U, \mathcal{I}) \to \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{O}_V, \mathcal{I}) \to 0$$

is exact.

Since $\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{O}_U, \mathcal{I}) \cong \operatorname{Hom}_{\mathcal{O}_X|_U}(\mathcal{O}_X|_U, \mathcal{I}|_U) \cong \mathcal{I}(U)$, we see that $\mathcal{I}(U) \to \mathcal{I}(V) \to 0$ is exact. Thus, \mathcal{I} is flasque.

So far, we see that every \mathcal{O}_X -module \mathcal{F} admits a flasque resolution. Further, there is a canonical way to construct a flasque resolution of \mathcal{F} , called **canonical flasque resolution** or **Godement resolution** of \mathcal{F} .

Define a presheaf $C^0(X, \mathcal{F})$ by

$$U \mapsto \prod_{x \in U} \mathcal{F}_x.$$

(To be continued...)

Given two sheaves of R-modules \mathcal{F}' and \mathcal{F}'' , we obtain a presheaf $\mathcal{F}' \oplus \mathcal{F}''$ by setting

$$\mathcal{F}(U) = (\mathcal{F}' \oplus \mathcal{F}'')(U) = \mathcal{F}'(U) \oplus \mathcal{F}''(U)$$

for every open subset U of X. Actually, $\mathcal{F}' \oplus \mathcal{F}''$ is a sheaf. We call \mathcal{F}' and \mathcal{F}'' direct summands of \mathcal{F} .

Proposition 2.8. Let $0 \longrightarrow \mathcal{F}' \xrightarrow{\varphi} \mathcal{F} \xrightarrow{\psi} \mathcal{F}'' \longrightarrow 0$ be an exact sequence of sheaves and \mathcal{F}' be flasque. Then for every open subset $U \subseteq X$, we have an exact sequence

$$0 \longrightarrow \mathcal{F}'(U) \stackrel{\varphi(U)}{\longrightarrow} \mathcal{F}(U) \stackrel{\psi(U)}{\longrightarrow} \mathcal{F}''(U) \longrightarrow 0.$$

Equivalently,

$$0 \longrightarrow \mathcal{F}' \xrightarrow{\varphi} \mathcal{F} \xrightarrow{\psi} \mathcal{F}'' \longrightarrow 0$$

is an exact sequence of presheaves.

Proof. It suffices to show that $\psi(U): \mathcal{F}(U) \to \mathcal{F}''(U)$ is surjective. Let $t \in \mathcal{F}''(U)$. Recall that for any $x \in U$, we have $\psi_x: \mathcal{F}_x \to \mathcal{F}''_x$ is surjective, i.e. there exists some $s_x \in \mathcal{F}_x$ such that $\psi_x(s_x) = t_x$. Thus, there exists a neighborhood U_x of x and $s_{U_x} \in \mathcal{F}(U_x)$ such that $\psi(U_x)(s_{U_x}) = t_x$.

 $t|_{U_x}$. Consider the set

$$S = \{(V, s) : V \subseteq U, s \in \mathcal{F}(V), \psi(V)(s) = t|_{V}\}.$$

Since $(U_x, s_{U_x}) \in S$, we see that S is nonempty. Define a partial order \leq on S by $(U, s) \leq (V, t) \Leftrightarrow U \leq V$ and $t|_U = s$.

By the gluability of sheaves, we see that every chain in S has an upper bound. Thus, there exists a maximal element, say (V, s), in S, by Zorn's lemma. We aim to show that V = U. If not, there exists (W, r) such that $V \nsubseteq W \subseteq U$, $r \in \mathcal{F}(W)$ and $\psi(W)(r) = t|_W$. We may assume that $W \cap V \neq \emptyset$, otherwise, we are done. Note that

$$\psi(W \cap V)(s|_{W \cap V} - r|_{W \cap V}) = \psi(V)(s)|_{W \cap V} - \psi(W)(r)|_{W \cap V} = (t|_{V})|_{W \cap V} - (t|_{W})|_{W \cap V} = 0.$$

So, $s|_{W\cap V} - r|_{W\cap V} \in \ker \psi(W\cap V) = \operatorname{im} \varphi(W\cap V)$. This means that $s|_{W\cap V} - r|_{W\cap V} = \varphi(W\cap V)(u)$ for some $u\in \mathcal{F}'(W\cap V)$. Note that \mathcal{F}' is flasque, the restriction map $\mathcal{F}'(W)\to \mathcal{F}'(W\cap V)$ is surjective. Thus, there exists $\tilde{u}\in \mathcal{F}'(W)$ such that $\tilde{u}|_{W\cap V}=u$. Consider the following commutative diagram

$$\mathcal{F}'(W) \xrightarrow{\varphi(W)} \mathcal{F}(W)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{F}'(W \cap V) \xrightarrow{\varphi(W \cap V)} \mathcal{F}(W \cap V)$$

We see that $\varphi(W)(\tilde{u})|_{W\cap V} = \varphi(W\cap V)(u) = s|_{W\cap V} - r|_{W\cap V}$. Thus, $s|_{W\cap V} = (\varphi(W)(\tilde{u}) + r)|_{W\cap V}$. Thus, by the gluability of sheaves, there exists a section $s' \in \mathcal{F}(W \cup V)$ such that $s'|_{V} = s$ and $s'|_{W} = \varphi(W)(\tilde{u}) + r$. Since $\psi(W \cup V)(s')|_{V} = t|_{V}$ and $\psi(W \cup V)(s')|_{W} = t|_{W}$, we see that $\psi(W \cup V)(s') = t|_{W\cup V}$. Thus, $(W \cup V, s') \in S$. This is a contradiction as $V \subsetneq W \cup V$. We conclude that (U, s) is the maximal element in S, i.e. $s \in \mathcal{F}(U)$ and $\psi(U)(s) = t|_{U} = t$. Thus, $\psi(U) : \mathcal{F}(U) \to \mathcal{F}''(U)$ is surjective.

Proposition 2.9. If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ is an exact sequence of sheaves and if \mathcal{F}' and \mathcal{F} are flasque, then \mathcal{F}'' is flasque.

Proof. To show that \mathcal{F}'' is flasque, it suffices to prove that for any open subset $U \subseteq X$, the restriction map $\rho''_{XU} : \mathcal{F}''(X) \to \mathcal{F}''(U)$ is surjective. Since \mathcal{F}' is flasque, we have a commutative diagram of short exact sequences

$$0 \longrightarrow \mathcal{F}'(X) \xrightarrow{\varphi(X)} \mathcal{F}(X) \xrightarrow{\psi(X)} \mathcal{F}''(X) \longrightarrow 0$$

$$\downarrow^{\rho'_{XU}} \qquad \downarrow^{\rho_{XU}} \qquad \downarrow^{\rho''_{XU}}$$

$$0 \longrightarrow \mathcal{F}'(U) \xrightarrow{\varphi(U)} \mathcal{F}(U) \xrightarrow{\psi(U)} \mathcal{F}''(U) \longrightarrow 0$$

Take any $a \in \mathcal{F}''(U)$, there exists $b \in \mathcal{F}(U)$ such that $\psi(U)(b) = a$. Since \mathcal{F} is flasque, we see that $\rho_{XU} : \mathcal{F}(X) \to \mathcal{F}(U)$ is surjective. So, there exists some $c \in \mathcal{F}(X)$ such that $\rho_{XU}(c) = b$. Thus, we see that $\rho''_{XU}(\psi(X)(c)) = \psi(U)(\rho_{XU}(c)) = \psi(U)(b) = a$. Thus, $\rho''_{XU} : \mathcal{F}''(X) \to \mathcal{F}''(U)$ is surjective as desired.

Theorem 2.10. If \mathcal{F} is a flasque sheaf on a topological space X, then $H^{i}(X,\mathcal{F}) = 0$ for all i > 0.

Proof. By Proposition 2.2, we may embed \mathcal{F} in an injective sheaf of abelian groups \mathcal{I} . Let \mathcal{G} be the quotient, then we have an exact sequence

$$0 \to \mathcal{F} \to \mathcal{I} \to \mathcal{G} \to 0.$$

This short exact sequence induced a long exact sequence of cohomology, i.e.

$$0 \to \Gamma(X, \mathcal{F}) \to \Gamma(X, \mathcal{I}) \to \Gamma(X, \mathcal{G}) \to$$

$$H^{1}(X, \mathcal{F}) \to H^{1}(X, \mathcal{I}) \to H^{1}(X, \mathcal{G}) \to$$

$$H^{2}(X, \mathcal{F}) \to H^{2}(X, \mathcal{I}) \to H^{2}(X, \mathcal{G}) \to \cdots$$

Now since \mathcal{F} is flasque, we have an exact sequence by Proposition 2.8,

$$0 \to \Gamma(X, \mathcal{F}) \to \Gamma(X, \mathcal{I}) \to \Gamma(X, \mathcal{G}) \to 0.$$

So we obtain a long exact sequence

$$0 \to \mathrm{H}^1(X,\mathcal{F}) \to \mathrm{H}^1(X,\mathcal{I}) \to \mathrm{H}^1(X,\mathcal{G}) \to \mathrm{H}^2(X,\mathcal{F}) \to \mathrm{H}^2(X,\mathcal{I}) \to \mathrm{H}^2(X,\mathcal{G}) \to \cdots$$

On the other hand, since \mathcal{I} is injective, we have $H^i(X,\mathcal{I}) = 0$ for i > 0. We see that $H^1(X,\mathcal{F}) = 0$, and $H^i(X,\mathcal{G}) = H^{i+1}(X,\mathcal{F})$ for all $i \ge 1$. Note that \mathcal{F} is flasque by hypothesis, \mathcal{I} is flasque by Proposition 2.7, so \mathcal{G} is flasque by Proposition 2.9. So by induction on i we get the result. \square

2.2 A vanishing theorem of Grothendieck

Theorem 2.11 (Grothendieck). Let X be a Noetherian topological space of dimension n. Then for all i > n and all sheaves of abelian groups \mathcal{F} on X, we have $H^i(X, \mathcal{F}) = 0$.

3 Čech cohomology

For a general space X, the sheaf cohomology groups may be quite difficult to compute – how does one produce a flasque or even injective resolution resolution in general? Fortunately, there is another construction of sheaf cohomology which, though cumbersome to define, is much more amenable to computation.

3.1 Motivation: the Mittag-Leffler problem

In this section, we motivate the definition of Čech cohomology with a classical problem originally studied by Mittag-Leffer. Let X be a Riemann surface, i.e. a one-dimensional complex manifold, which we may assume to be connected. Suppose E is a closed, discrete subset of X, i.e. E has no limit point in X. For each $a \in E$, we are given a function $z_a : U_a \to \mathbb{C}$ on some neighborhood $U_a \subseteq X$ of a such that $z_a(a) = 0$. Consider the function

$$p_a(z_a) = \sum_{j=1}^{m_a} \frac{\alpha_{aj}}{z_a^j}.$$

The Mittag-Leffler problem is to find a meromorphic function $f: X \to \mathbb{C}$ such that f is holomorphic on X - E and for all $a \in E$, the function $f - p_a(z_a)$ has a removable singularity at a. Then $p_a(z_a)$ will be the principal part of f on U_a . Equivalently, we are asked to extend some meromorphic functions defined on open subsets in X to a meromorphic function on the whole Riemann surface. We can restate the problem as:

Let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open cover of X and suppose that $\{f_i : U_i \to \mathbb{C}\}$ is a collection of meromorphic functions defined on U_i such that either f_i is holomorphic on U_i or has a single point $a_i \in U_i$ with $a_i \notin U_j$ if $j \neq i$. The Mittag-Leffler problem is then to find a meromorphic function $f: X \to \mathbb{C}$ such that for each $i \in I$, $f|_{U_i} - f_i$ is holomorphic.

Let \mathcal{M} be the sheaf of meromorphic functions on X. First notice that if f_i agree on all overlaps $U_i \cap U_j$, then the sheaf condition on \mathcal{M} guarantees that there is a global meromorphic function $f \in \mathcal{M}(X)$ such that $f|_{U_i} = f_i$ for all i. In this case, we have $f|_{U_i} - f_i = 0$, a much stronger conclusion than Mittag-Leffler problem asks for. In general, if we can find a family of holomorphic functions $\{h_i : U_i \to \mathbb{C}\}$ on each U_i such that $(f_i + h_i)|_{U_i \cap U_j} = (f_j + h_j)|_{U_i \cap U_j}$ for all i, j, we can glue $f_i + h_i$ together to find the desired f. This can be rewritten as

$$f_i|_{U_i \cap U_j} - f_j|_{U_i \cap U_j} = h_j|_{U_i \cap U_j} - h_i|_{U_i \cap U_j}.$$

Set $t_{ij} = f_i|_{U_i \cap U_j} - f_j|_{U_i \cap U_j}$. Then we have $t_{ij} \in \mathcal{O}(U_i \cap U_j)$, where \mathcal{O} is the sheaf of holomorphic functions on X, if the above equation is satisfied. Moreover, when restricting on $U_i \cap U_j \cap U_k$ for any i, j and k, we have

$$t_{jk} - t_{ik} + t_{ij} = 0.$$

Thus, we want to find holomorphic functions $h_i \in \mathcal{O}(U_i)$ such that

- (1) $t_{ij} = h_j h_i$ on $U_i \cap U_j$ for any i, j and
- (2) $t_{jk} t_{ik} + t_{ij} = 0$ on $U_i \cap U_j \cap U_k$ for any i, j and k.

Definition 3.1. Let X be a Riemann surface, \mathcal{U} an open cover of X and \mathcal{O} be the sheaf of holomorphic functions. A family of sections $(t_{ij}) \in \prod_{ij} \mathcal{O}(U_i \cap U_j)$ is called a Čech 1-cocycle if for all i, j, k, we have $t_{jk} - t_{ik} + t_{ij} = 0$ on $U_i \cap U_j \cap U_k$. Under component-wise addition, the set of 1-cocycle forms a group, denoted by $\check{Z}(\mathcal{U}, \mathcal{O})$.

Definition 3.2. A family of sections $(t_{ij}) \in \prod_{ij} \mathcal{O}(U_i \cap U_j)$ is called a Čech 1-coboundary if there exists a family $(h_i) \in \prod_i \mathcal{O}(U_i)$ such that $t_{ij} = h_j - h_i$ on each $U_i \cap U_j$. This forms a subgroup of $\check{Z}(\mathcal{U}, \mathcal{O})$, which is denoted by $\check{B}(\mathcal{U}, \mathcal{O})$.

Definition 3.3. The first Cech cohomology group of the cover \mathcal{U} with coefficients in \mathcal{O} is the quotient group

$$\check{\operatorname{H}}^1(\mathcal{U},\mathcal{O}) = \check{Z}(\mathcal{U},\mathcal{O})/\check{B}(\mathcal{U},\mathcal{O}).$$

Now, to solve the Mittag-Leffler problem, it suffices to investigate that whether we have $\check{H}^1(\mathcal{U}, \mathcal{O}) = 0$ for a Riemann surface X with cover \mathcal{U} .

3.2 Čech cohomology of an open cover

In previous section, we defined the first Čech cohomology for a Riemann surface X with an open cover \mathcal{U} . We can generalize this to any space X with an open cover $\mathcal{U} = (U_j)_{j \in J}$.

In this section, we fix a topological space X and a presheaf \mathcal{F} on X. Let $\mathcal{U} = (U_j)_{j \in J}$ be an open cover of X, where J is an index set. Before we step into our main result, we make some conventions first for convenience.

Notation. • *X*: a topological space.

- $\mathcal{U} = (U_j)_{j \in J}$: an open cover of X, where J is an index set.
- R: a fixed commutative unitary ring.
- \mathcal{F} : a presheaf of R-modules on X.
- $I = (i_0, \dots, i_p)$: a (p+1)-tuple of elements of J, where $p \ge 0$ and $i_k \in J$ are not necessarily distinct.

Definition 3.4. Let $I = (i_0, \dots, i_p)$ be a (p+1)-tuple of elements of J. We define an open subset U_I to be the intersection of open subsets in \mathcal{U} with subscripts in I, i.e.

$$U_I = U_{i_0, \cdots, i_p} = U_{i_0} \cap \cdots \cap U_{i_p}.$$

We define $U_{i_0,\cdots,\hat{i_i},\cdots,i_p}$ to be the intersection

$$U_{i_0,\cdots,\hat{i_j},\cdots,i_p} = U_{i_0} \cap \cdots \cap U_{i_{j-1}} \cap U_{i_{j+1}} \cap \cdots \cap U_{i_p}$$

of the p subsets with U_{i_j} excluded.

Remark. By definition, $U_{i_0,\cdots,i_p} \subseteq U_{i_0,\cdots,\hat{i_i},\cdots,i_p}$ induces an inclusion map

$$\delta_j^p: U_{i_0,\cdots,i_p} \hookrightarrow U_{i_0,\cdots,\hat{i_j},\cdots,i_p}$$

Example 3.5. As the following picture shows, we see that $U_{i_0i_1i_2i_3} \subseteq U_{i_0i_1\hat{i}_2i_3}$.

Figure 1: An illustration of $U_{i_0i_1i_2i_3}$ and $U_{i_0i_1\hat{i_2}i_3}$.

To introduce Čech cohomology, we first construct a cochain complex. The idea to construct the desired complex arises from the Mittag-Leffler problem. More precisely, let $U_{ij} = U_i \cap U_j$ and $U_{ijk} = U_i \cap U_j \cap U_k$. By the construction in the previous section, we have a sequence

$$0 \to \mathcal{F}(X) \xrightarrow{d_0} \prod_{j \in J} \mathcal{F}(U_j) \xrightarrow{d_1} \prod_{(i,j) \in J^2} \mathcal{F}(U_i \cap U_j) \xrightarrow{d_2} \prod_{(i,j,k) \in J^3} \mathcal{F}(U_i \cap U_j \cap U_k),$$

where $d_0: s \mapsto (s|_{U_j})_j$, $d_1: (s_j)_j \mapsto (s_i|_{U_{ij}} - s_j|_{U_{ij}})_{i,j}$ and $d_3: (s_{ij})_{i,j} \mapsto (s_{jk}|_{U_{ijk}} - s_{ik}|_{U_{ijk}} + s_{ij}|_{U_{ijk}})$. So, we can extend this sequence to obtain a cochain comlex.

Definition 3.6. Given a topological space X, an open cover $\mathcal{U} = (U_i)_{i \in J}$ of X, and a presheaf of abelian groups \mathcal{F} on X, the R-module of \check{C} ech p-cochains $C^p(\mathcal{U},\mathcal{F})$ is the set of all functions fwith domain J^{p+1} such that $f(i_0, \dots, i_p) \in \mathcal{F}(U_{i_0 \dots i_p})$; in other words,

$$C^{p}(\mathcal{U}, \mathcal{F}) = \prod_{(i_0, \dots, i_p) \in J^{p+1}} \mathcal{F}(U_{i_0, \dots, i_p}),$$

the set of all J^{p+1} -indexed families $(f_{i_0,\dots,i_p})_{(i_0,\dots,i_p)} \in J^{p+1}$ with $f_{i_0,\dots,i_p} \in \mathcal{F}(U_{i_0\dots i_p})$.

Example 3.7. If p = 0, we have

$$C^0(\mathcal{U}, \mathcal{F}) = \prod_{j \in J} \mathcal{F}(U_j),$$

i.e. a 0-cochain is a J-indexed family $f = (f_j)_{j \in J}$ with each $f_j \in \mathcal{F}(U_j)$. If p = 1, we have

$$C^1(\mathcal{U}, \mathcal{F}) = \prod_{(i,j)\in J^2} \mathcal{F}(U_i \cap U_j),$$

i.e. a 1-cochain is a J^2 -indexed family $f = (f_{i,j})_{(i,j)\in J^2}$ with $f_{i,j}\in \mathcal{F}(U_i\cap U_j)$.

Remark. Note that $\mathcal{F}(\emptyset) = 0$, we may assume that $U_{i_0,\dots,i_p} \neq \emptyset$. Indeed, if $U_{i_0,\dots,i_p} = \emptyset$, the component corresponding to the tuple (i_0, \dots, i_p) is trivial, which means that we could just omit the component with $U_{i_0,\dots,i_p} = \emptyset$.

Remark. Recall that a presheaf is just a contravariant functor, we see that the restriction map

$$\rho^{U_{i_0,\cdots,\widehat{i_j},\cdots,i_p}}_{U_{i_0,\cdots,i_p}}:\mathcal{F}(U_{i_0,\cdots,\widehat{i_j},\cdots,i_p})\to\mathcal{F}(U_{i_0,\cdots,i_p})$$

is induced by the inclusion map $\delta_j^p: U_{i_0,\cdots,i_p} \hookrightarrow U_{i_0,\cdots,\widehat{i_j},\cdots,i_p}$. For simplicity, we denote that restriction map $\rho_{U_{i_0,\cdots,i_p}}^{U_{i_0,\cdots,\widehat{i_j},\cdots,i_p}}$ by ρ_{i_0,\cdots,i_p}^j or just $\mathcal{F}(\delta_j^p)$.

Now, to obtain a cochain complex, it remains to construct the coboundary maps.

Definition 3.8. Given a topological space X, an open cover $\mathcal{U} = (U_j)_{j \in J}$ of X, and a presheaf of R-modules \mathcal{F} on X, the **coboundary maps** $\delta_{\mathcal{F}}^p: C^p(\mathcal{U}, \mathcal{F}) \to C^{p+1}(\mathcal{U}, \mathcal{F})$ are given by

$$\delta_{\mathcal{F}}^{p} = \sum_{j=0}^{p+1} (-1)^{j} \mathcal{F}(\delta_{j}^{p+1})$$

on each component $\mathcal{F}(U_{i_0,\cdots,\hat{i_j},\cdots,i_{p+1}})$. Explicitly, for each p-cochain $f\in C^p(\mathcal{U},\mathcal{F})$, and any sequence $I = (i_0, \dots, i_{p+1}) \in J^{p+2}$, we define

$$(\delta_{\mathcal{F}}^{p}f)_{i_{0},\cdots,i_{p+1}} = \sum_{j=0}^{p+1} (-1)^{j} \rho_{i_{0},\cdots,i_{p+1}}^{j} (f_{i_{0},\cdots,\hat{i_{j}},\cdots,i_{p+1}}).$$

By a direct computation, we have that following proposition.

Proposition 3.9. $\delta_{\mathcal{F}}^{p+1} \circ \delta_{\mathcal{F}}^{p} = 0$ for all $p \ge 0$.

So, we obtain a cochain complex $(C^{\bullet}(\mathcal{U},\mathcal{F}),\delta_{\mathcal{F}}^{\bullet})$. We now can define its cohomology.

Definition 3.10. Given a topological space X, an open cover $\mathcal{U} = (U_j)_{j \in J}$ of X, and a presheaf \mathcal{F} of R-modules on X, the R-module $B^p(\mathcal{U}, \mathcal{F})$ of $\check{\mathbf{C}}$ **ech** p-boundaries is given by

$$B^p(\mathcal{U}, \mathcal{F}) = \operatorname{Im} \, \delta_{\mathcal{F}}^{p-1}$$

for $p \ge 1$ with $B^0(\mathcal{U}, \mathcal{F}) = 0$, and the R-module $Z^p(\mathcal{U}, \mathcal{F})$ of $\check{\mathbb{C}}$ ech p-cocycles is given by

$$Z^p(\mathcal{U},\mathcal{F}) = \ker \delta^p_{\mathcal{F}}$$

, for $p \geqslant 0$.

Definition 3.11. Given a topological space X, an open cover $\mathcal{U} = (U_j)_{j \in J}$ of X, and a presheaf \mathcal{F} of R-modules on X, the Č**ech cohomology groups** $\check{H}^p(\mathcal{U}, \mathcal{F})$ of the cover \mathcal{U} with values in \mathcal{F} are defined by

$$\check{\mathrm{H}}^p(\mathcal{U},\mathcal{F}) = Z^p(\mathcal{U},\mathcal{F})/B^p(\mathcal{U},\mathcal{F})$$

for each $p \ge 0$.

Theorem 3.12. Given a topological space X, an open cover $\mathcal{U} = (U_j)_{j \in J}$ of X, and a presheaf of R-modules \mathcal{F} on X, if \mathcal{F} is a sheaf, then

$$\check{\operatorname{H}}^{0}(\mathcal{U},\mathcal{F}) = \mathcal{F}(X) = \Gamma(X,\mathcal{F})$$

the global section of \mathcal{F} .

Proof. Recall that we have a left exact sequence

$$0 \to \mathcal{F}(X) \xrightarrow{d_0} \prod_{j \in J} \mathcal{F}(U_j) \xrightarrow{d_1} \prod_{(i,j) \in J^2} \mathcal{F}(U_i \cap U_j),$$

where $d_0: s \mapsto (s|_{U_j})_j$ and $d_1: (s_j)_j \mapsto (s_i|_{U_{ij}} - s_j|_{U_{ij}})_{i,j}$. By definition, we see that $\delta^0_{\mathcal{F}} = d_1$ and $\ker \delta^0_{\mathcal{F}} = \ker d_1 = \operatorname{Im} d_0 = \mathcal{F}(X)$. Thus, $\check{\operatorname{H}}^0(\mathcal{U}, \mathcal{F}) = \mathcal{F}(X) = \Gamma(X, \mathcal{F})$ is the global section of \mathcal{F} .

3.3 Cech cohomology with values in a presheaf

We now want to give a partial order between two open covers

Definition 3.13. Given two open covers $\mathcal{U} = (U_i)_{i \in I}$ and $\mathcal{V} = (V_j)_{j \in J}$ of a space X, we say that \mathcal{V} is a **refinement** of \mathcal{U} , denoted $\mathcal{U} < \mathcal{V}$, if there is a function $\tau : J \to I$ such that

$$V_j \subseteq U_{\tau(j)}$$
 for all $j \in J$.

Two covers \mathcal{U} and \mathcal{V} are said to be **equivalent** if $\mathcal{V} < \mathcal{U}$ and $\mathcal{U} < \mathcal{V}$.

Example 3.14. Let $\mathcal{U} = \{U_1, U_2, U_3\}$. Let $\mathcal{V} = \{V_1, V_2, V_3, V_4, V_5, V_6\}$. Then $\mathcal{U} < \mathcal{V}$ with $\tau : \{1, 2, 3, 4, 5, 6\} \rightarrow \{1, 2, 3\}$ where $\tau(1) = 1$, $\tau(2) = 1$, $\tau(3) = 2$, $\tau(4) = 2$, $\tau(5) = 3$, $\tau(6) = 3$ since $V_1 \subseteq U_1, V_2 \subseteq U_1, V_3 \subseteq U_2, V_4 \subseteq U_2, V_5 \subseteq U_3, V_6 \subseteq U_3$.

Figure 2: An illustration of $\mathcal{U} < \mathcal{V}$.

Definition 3.15. Let $\tau: J \to I$ be a function such that

$$V_j \subseteq U_{\tau(j)}$$
 for all $j \in J$.

We can define a homomorphism $\tau^p: C^p(\mathcal{U}, \mathcal{F}) \to C^p(\mathcal{V}, \mathcal{F})$ as follows: for every p-cochain $f \in C^p(\mathcal{U}, \mathcal{F})$, let $\tau^p f \in C^p(\mathcal{V}, \mathcal{F})$ be the p-cochain given by

$$(\tau^p f)_{j_0 \cdots j_n} = \rho_V^U(f_{\tau(j_0) \cdots \tau(j_n)})$$

for all $(j_0, \dots, j_p) \in J^{p+1}$, where ρ_V^U denotes the restriction map associated with the inclusion of $V_{j_0 \dots j_p}$ into $U_{\tau(j_0) \dots \tau(j_p)}$.

By direct computation, we see that the map $\tau^p: C^p(\mathcal{U}, \mathcal{F}) \to C^p(\mathcal{V}, \mathcal{F})$ commutes with $\delta_{\mathcal{F}}$ so

$$\tau^*: C^{\bullet}(\mathcal{U}, \mathcal{F}) \to C^{\bullet}(\mathcal{V}, \mathcal{F})$$

is a chain map. Thus, we have a homomorphism $\tau^{*p}: \check{\operatorname{H}}^p(\mathcal{U},\mathcal{F}) \to \check{\operatorname{H}}^p(\mathcal{V},\mathcal{F})$

Proposition 3.16. Given any two open covers U and V of a space X, if $\mathcal{U} < \mathcal{V}$ and if $\tau_1 : J \to I$ and $\tau_2 : J \to I$ are functions such that

$$V_j \subseteq U_{\tau_1(j)}$$
 and $V_j \subseteq U_{\tau_2(j)}$ for all $j \in J$,

then $\tau_1^{*p} = \tau_2^{*p}$ for all $p \ge 0$.

Proof. The ideal is to construct a chain homotopy. Given any $f \in C^p(\mathcal{U}, \mathcal{F})$, let

$$(k^p f)_{j_0 \cdots j_{p-1}} = \sum_{h=0}^{p-1} (-1)^h \rho_h (f_{\tau_1(j_0) \cdots \tau_1(j_h) \tau_2(j_h) \cdots \tau_2(j_{p-1})})$$

for all $(j_0, \dots, j_{p-1}) \in J^p$, where ρ_h denotes the restriction map associated with the inclusion of $V_{j_0 \dots j_{p-1}}$ into $U_{\tau_1(j_0) \dots \tau_1(j_h) \tau_2(j_h) \dots \tau_2(j_{p-1})}$. Then, by a direct computation, we see that

$$d_{\mathcal{F}}^{p-1} \circ k^p(f) + k^{p+1} \circ \delta_{\mathcal{F}}^p(f) = \tau_2^p(f) - \tau_1^p(f),$$

where
$$d_{\mathcal{F}}^p: C^p(\mathcal{V}, \mathcal{F}) \to C^{p+1}(\mathcal{V}, \mathcal{F})$$
 and $\delta_{\mathcal{F}}^p: C^p(\mathcal{U}, \mathcal{F}) \to C^{p+1}(\mathcal{U}, \mathcal{F})$.
Thus, $\tau_1^{*p} = \tau_2^{*p}$ for all $p \geqslant 0$.

This proposition gives us a homomorphism $\rho_{\mathcal{V}}^{\mathcal{U}}: \check{\mathrm{H}}^p(\mathcal{U},\mathcal{F}) \to \check{\mathrm{H}}^p(\mathcal{V},\mathcal{F})$. Moreover, this partial order is directed. Indeed, we have given any two covers $\mathcal{U}=(U_i)_{i\in I}$ and $\mathcal{V}=(V_j)_{j\in J}$, the cover $\mathcal{W}=(U_i\cap V_j)_{(i,j)\in I\times J}$ is a common refinement of both \mathcal{U} and \mathcal{V} , so $\mathcal{U}<\mathcal{W}$ and $\mathcal{V}<\mathcal{W}$. Again, by this proposition, we see that if $\mathcal{U}<\mathcal{V}<\mathcal{W}$, then

$$\rho_{\mathcal{W}}^{\mathcal{U}} = \rho_{\mathcal{W}}^{\mathcal{V}} \circ \rho_{\mathcal{V}}^{\mathcal{U}}$$

and

$$\rho_{\mathcal{U}}^{\mathcal{U}} = \mathrm{id}$$
.

Now, if \mathcal{U} and \mathcal{V} are equivalent, we see that $\rho_{\mathcal{U}}^{\mathcal{V}} \circ \rho_{\mathcal{V}}^{\mathcal{U}} = \mathrm{id}$ and $\rho_{\mathcal{V}}^{\mathcal{U}} \circ \rho_{\mathcal{U}}^{\mathcal{V}} = \mathrm{id}$, i.e.

$$\rho_{\mathcal{V}}^{\mathcal{U}}: \check{\operatorname{H}}^{p}(\mathcal{U},\mathcal{F}) \to \check{\operatorname{H}}^{p}(\mathcal{V},\mathcal{F})$$

is an isomorphism.

Consequently, it appears that the family $(\check{\operatorname{H}}^p(\mathcal{U},\mathcal{F}))_{\mathcal{U}}$ is a direct system of R-modules indexed by the directed set of open covers of X.

Definition 3.17. Let X be a topological space and \mathcal{F} be a presheaf of R-modules. The p-th $\check{\mathbf{C}}$ cohomology group of X with values in \mathcal{F} is defined to be the direct limit

$$\check{\operatorname{H}}^p(X,\mathcal{F}) = \varinjlim_{\mathcal{U}} \check{\operatorname{H}}^p(\mathcal{U},\mathcal{F}).$$

3.4 Some properties of Čech cohomology

Proposition 3.18. For every space X and every open cover \mathcal{U} of X, the functor $C^p(\mathcal{U}, -)$ from presheaves to abelian groups is exact for all $p \ge 0$.

Proof. If

$$0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}'' \longrightarrow 0$$

is an exact sequence of presheaves, then every sequence

$$0 \longrightarrow \mathcal{F}'(U_{i_0\cdots i_p}) \longrightarrow \mathcal{F}(U_{i_0\cdots i_p}) \longrightarrow \mathcal{F}''(U_{i_0\cdots i_p}) \longrightarrow 0$$

is exact. Since exactness is preserved under direct products, we see that the sequence

$$0 \longrightarrow \prod_{(i_0,\cdots,i_p)} \mathcal{F}'(U_{i_0\cdots i_p}) \longrightarrow \prod_{(i_0,\cdots,i_p)} \mathcal{F}(U_{i_0\cdots i_p}) \longrightarrow \prod_{(i_0,\cdots,i_p)} \mathcal{F}''(U_{i_0\cdots i_p}) \longrightarrow 0,$$

i.e. the sequence

$$0 \longrightarrow C^p(\mathcal{U}, \mathcal{F}') \longrightarrow C^p(\mathcal{U}, \mathcal{F}) \longrightarrow C^p(\mathcal{U}, \mathcal{F}'') \longrightarrow 0$$

is exact. \Box

Corollary 3.19. If

$$0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}'' \longrightarrow 0$$

is an exact sequence of presheaves, we have a long exact sequence of cohomology:

$$\cdots \longrightarrow \check{\operatorname{H}}^{p}(\mathcal{U},\mathcal{F}) \longrightarrow \check{\operatorname{H}}^{p}(\mathcal{U},\mathcal{F}'') \stackrel{d}{\longrightarrow} \check{\operatorname{H}}^{p+1}(\mathcal{U},\mathcal{F}') \longrightarrow \check{\operatorname{H}}^{p+1}(\mathcal{U},\mathcal{F}) \longrightarrow \cdots,$$

where the coboundary operator d is defined as usual.

Proof. We have an exact sequence of complexes

$$0 \longrightarrow C^{\bullet}(\mathcal{U}, \mathcal{F}') \longrightarrow C^{\bullet}(\mathcal{U}, \mathcal{F}) \longrightarrow C^{\bullet}(\mathcal{U}, \mathcal{F}'') \longrightarrow 0$$

This gives us a long exact sequence

$$\cdots \longrightarrow \check{\operatorname{H}}^{p}(\mathcal{U},\mathcal{F}) \longrightarrow \check{\operatorname{H}}^{p}(\mathcal{U},\mathcal{F}'') \stackrel{d}{\longrightarrow} \check{\operatorname{H}}^{p+1}(\mathcal{U},\mathcal{F}') \longrightarrow \check{\operatorname{H}}^{p+1}(\mathcal{U},\mathcal{F}) \longrightarrow \cdots$$

Taking direct limit over all open covers, we obtain a long exact sequence

$$\cdots \longrightarrow \check{\operatorname{H}}^{p}(X,\mathcal{F}) \longrightarrow \check{\operatorname{H}}^{p}(X,\mathcal{F}'') \stackrel{d}{\longrightarrow} \check{\operatorname{H}}^{p+1}(X,\mathcal{F}') \longrightarrow \check{\operatorname{H}}^{p+1}(X,\mathcal{F}) \longrightarrow \cdots$$

as direct limit functor is exact.

This is a pretty good result for presheaves, but this may not be true for sheaves. For sheaves, clearly, we have

Proposition 3.20. For every space X and every open cover \mathcal{U} of X, the functor $C^p(\mathcal{U}, -)$ from sheaves to abelian groups is left exact for all $p \ge 0$.

Now, we obtain a sequence of complexes

$$0 \longrightarrow C^{\bullet}(\mathcal{U}, \mathcal{F}') \xrightarrow{\alpha} C^{\bullet}(\mathcal{U}, \mathcal{F}) \xrightarrow{\beta} C^{\bullet}(\mathcal{U}, \mathcal{F}'').$$

Consider the homomorphisms $\beta^p: C^p(\mathcal{U}, \mathcal{F}) \to C^p(\mathcal{U}, \mathcal{F}'')$, which need not be surjective. Denote by $C_0^p(\mathcal{U}, \mathcal{F}'')$ the image of this homomorphism. We now have a complex $C_0^{\bullet}(\mathcal{U}, \mathcal{F}'')$, which is a subcomplex of $C^{\bullet}(\mathcal{U}, \mathcal{F}'')$, whose p-th cohomology groups will be denoted by $\check{\mathrm{H}}_0^p(\mathcal{U}, \mathcal{F}'')$. We have an exact sequence of complexes:

$$0 \longrightarrow C^{\bullet}(\mathcal{U}, \mathcal{F}') \longrightarrow C^{\bullet}(\mathcal{U}, \mathcal{F}) \longrightarrow C^{\bullet}_{0}(\mathcal{U}, \mathcal{F}'') \longrightarrow 0$$

So, we have a long exact sequence of cohomology:

$$\cdots \longrightarrow \check{\operatorname{H}}^{p}(\mathcal{U}, \mathcal{F}) \longrightarrow \check{\operatorname{H}}^{p}_{0}(\mathcal{U}, \mathcal{F}'') \stackrel{d}{\longrightarrow} \check{\operatorname{H}}^{p+1}(\mathcal{U}, \mathcal{F}') \longrightarrow \check{\operatorname{H}}^{p+1}(\mathcal{U}, \mathcal{F}) \longrightarrow \cdots,$$

where the coboundary operator d is defined as usual.

Now, we consider two open covers $\mathcal{U} = (U_i)_{i \in I}$ and $\mathcal{V} = (V_j)_{j \in J}$ such that there exists a function $\tau: J \to I$ with $V_j \subseteq U_{\tau(j)}$ for all $j \in J$, i.e. $\mathcal{U} < \mathcal{V}$. Consider the commutative diagram

$$0 \longrightarrow C^{\bullet}(\mathcal{U}, \mathcal{F}') \xrightarrow{\alpha} C^{\bullet}(\mathcal{U}, \mathcal{F}) \xrightarrow{\beta} C^{\bullet}(\mathcal{U}, \mathcal{F}'')$$

$$\downarrow_{\tau^{*}} \qquad \qquad \downarrow_{\tau^{*}} \qquad \qquad \downarrow_{\tau^{*}}$$

$$0 \longrightarrow C^{\bullet}(\mathcal{V}, \mathcal{F}') \xrightarrow{\alpha} C^{\bullet}(\mathcal{V}, \mathcal{F}) \xrightarrow{\beta} C^{\bullet}(\mathcal{V}, \mathcal{F}'')$$

, we see that that τ^* maps $C_0^{\bullet}(\mathcal{U}, \mathcal{F}'')$ into $C_0^{\bullet}(\mathcal{V}, \mathcal{F}'')$ and we obtain a homomorphism

$$\tau^{*p}: \check{\mathrm{H}}_{0}^{p}(\mathcal{U},\mathcal{F}'') \to \check{\mathrm{H}}_{0}^{p}(\mathcal{V},\mathcal{F}'')$$

for each $p \ge 0$. Using a similar argument as in Proposition 3.16, the homomorphisms τ^* are independent of the choice of the mapping τ .

Now, recall that direct limit of an exact sequence of direct system is exact if the index set is directed, i.e. the set of all open coverings is directed. We have a long exact sequence

$$\cdots \longrightarrow \check{\operatorname{H}}^{p}(X,\mathcal{F}) \longrightarrow \check{\operatorname{H}}^{p}_{0}(X,\mathcal{F}'') \stackrel{d}{\longrightarrow} \check{\operatorname{H}}^{p+1}(X,\mathcal{F}') \longrightarrow \check{\operatorname{H}}^{p+1}(X,\mathcal{F}) \longrightarrow \cdots$$

We now need to know the relation between $\check{H}_0(X, \mathcal{F}'')$ and $\check{H}(X, \mathcal{F}'')$.

Lemma 3.21. Let $\mathcal{U} = (U_i)_{i \in I}$ be a covering and let $f = (f_i)$ be an element of $C^0(\mathcal{U}, \mathcal{F}'')$. There exists a covering $\mathcal{V} = (V_j)_{j \in J}$ and a mapping $\tau : J \to I$ such that $V_j \subseteq U_{\tau(j)}$ and $\tau f \in C_0^0(\mathcal{V}, \mathcal{F}'')$.

Proof. Let J=X. For any $x \in J=X$, take a $\tau x \in I$ such that $x \in U_{\tau x}$. Noticing that $f_{\tau x}$ is a section of \mathcal{F}'' over $U_{\tau x}$, there exists an open neighborhood V_x of x, contained in $U_{\tau x}$ and a section b_x of \mathcal{F} over V_x such that $\beta(V_x)(b_x) = f_{\tau x}|_{V_x}$ on V_x . Indeed, $\beta: \mathcal{F} \to \mathcal{F}''$ is surjective. Then β_x is surjective for all $x \in X$. Let $s = f_{\tau x}$ and s_x be the image of s in \mathcal{F}''_x . Since β_x is surjective, there exists $t_x \in \mathcal{F}_x$ s.t. $\beta_x(t_x) = s_x$. By the property of direct limit, we know that there exists a neighborhood of x, say V'_x , and $t \in \mathcal{F}(V'_x)$ s.t. t_x is the image of t in \mathcal{F}_x , i.e. $\rho(t) = t_x$.

Consider the following commutative diagram

$$\begin{array}{ccc}
\mathcal{F}(V_x') & \xrightarrow{\beta(V_x')} \mathcal{F}''(V_x') \\
\downarrow^{\rho} & & \downarrow^{\rho'} \\
\mathcal{F}_x & \xrightarrow{\beta_x} & \mathcal{F}_r''
\end{array}$$

we must have $\rho'(s|_{V_x'}) = s_x$. Also $\langle V_x', \beta(V_x')(t) \rangle$ and $\langle V_x', s|_{V_x'} \rangle$ have the same image in \mathcal{F}_x'' . So there exists a neighborhood V_x of x contained in V_x' such that $\beta(V_x)(t|_{V_x}) = \beta(V_x')(t)|_{V_x} = (s|_{V_x'})|_{V_x} = s|_{V_x}$. Hence, let $b_x = t|_{V_x}$, we have that $\beta(V_x)(b_x) = s|_{V_x}$.

The $\{V_x\}_{x\in X}$ form a covering \mathcal{V} of X, and the b_x form a 0-chain $b=(b_x)_x$ of \mathcal{V} with values in \mathcal{U} ; since $\tau f=\beta(b)$, we have that $\tau f\in C_0^0(\mathcal{V},\mathcal{F}'')$.

Now, consider the commutative diagram

$$0 \longrightarrow C_0^0(\mathcal{U}, \mathcal{F}'') \xrightarrow{d^0} C_0^1(\mathcal{U}, \mathcal{F}'') \xrightarrow{d^1} C_0^2(\mathcal{U}, \mathcal{F}'') \xrightarrow{d^2} \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow C^0(\mathcal{U}, \mathcal{F}'') \xrightarrow{\partial^0} C^1(\mathcal{U}, \mathcal{F}'') \xrightarrow{\partial^1} C^2(\mathcal{U}, \mathcal{F}'') \xrightarrow{\partial^2} \cdots$$

we have a morphism of complexes $C_0^{\bullet}(\mathcal{U}, \mathcal{F}'') \to C^{\bullet}(\mathcal{U}, \mathcal{F}'')$. This induces a homomorphism $\check{\operatorname{H}}_0^p(\mathcal{U}, \mathcal{F}'') \to \check{\operatorname{H}}^p(\mathcal{X}, \mathcal{F}'') \to \check{\operatorname{H}}^p(\mathcal{X}, \mathcal{F}'')$. By taking direct limit, we have a homomorphism $\check{\operatorname{H}}_0^p(\mathcal{X}, \mathcal{F}'') \to \check{\operatorname{H}}^p(\mathcal{X}, \mathcal{F}'')$.

Proposition 3.22. The canonical homomorphism $\check{H}_0^p(X, \mathcal{F}'') \to \check{H}^p(X, \mathcal{F}'')$ is bijective for p = 0 and injective for p = 1.

Proof. We first show that $\check{\mathrm{H}}_0^1(X,\mathcal{F}'') \to \check{\mathrm{H}}^1(X,\mathcal{F}'')$ is injective. An element of the kernel of this mapping may be represented by a 1-cocycle $z=(z_{j_0j_1})\in C_0^1(\mathcal{U},\mathcal{F}'')$, i.e. $z\in\mathrm{Im}\ \partial^0$. Thus, there exists an $f=(f_j)\in C^0(\mathcal{U},\mathcal{F}'')$ with $\partial^0 f=z$; applying Lemma 3.21 to f yields a covering \mathcal{V} such that $\tau f\in C_0^0(\mathcal{V},\mathcal{F}'')$. So, $d^0(\tau f)=\tau z$ via the map $d^0:C_0^0(\mathcal{V},\mathcal{F}'')\to C_0^0(\mathcal{V},\mathcal{F}'')$. This means that for finer enough \mathcal{U} , we have $z\in\mathrm{Im}\ d^0$. Thus its image in $H_0^1(X,\mathcal{F}'')$ is 0.

for finer enough \mathcal{U} , we have $z \in \operatorname{Im} d^0$. Thus its image in $H^1_0(X, \mathcal{F}'')$ is 0.

Using a similar argument, we see that $\check{\operatorname{H}}^0_0(X, \mathcal{F}'') \to \check{\operatorname{H}}^0(X, \mathcal{F}'')$ is injective. Again, Lemma 3.21 just means that $\check{\operatorname{H}}^0_0(X, \mathcal{F}'') \to \check{\operatorname{H}}^0(X, \mathcal{F}'')$ is surjective by the definition of direct limit. \square

Corollary 3.23. We have an exact sequence

$$0 \longrightarrow \check{\operatorname{H}}^{0}(X, \mathcal{F}') \longrightarrow \check{\operatorname{H}}^{0}(X, \mathcal{F}) \longrightarrow \check{\operatorname{H}}^{0}(X, \mathcal{F}'') \stackrel{d}{\longrightarrow} \check{\operatorname{H}}^{1}(X, \mathcal{F}') \longrightarrow \check{\operatorname{H}}^{1}(X, \mathcal{F}) \longrightarrow \check{\operatorname{H}}^{1}(X, \mathcal{F}'')$$

Corollary 3.24. If

$$0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}'' \longrightarrow 0$$

is an exact sequence of sheaves and $\check{\operatorname{H}}^1(X,\mathcal{F}')=0$, then $\Gamma(X,\mathcal{F})\to\Gamma(X,\mathcal{F}'')$ is surjective.

Proof. If $\check{H}^1(X, \mathcal{F}') = 0$, then we have

$$0 \longrightarrow \check{\operatorname{H}}^{0}(X, \mathcal{F}') \longrightarrow \check{\operatorname{H}}^{0}(X, \mathcal{F}) \longrightarrow \check{\operatorname{H}}^{0}(X, \mathcal{F}'') \longrightarrow 0$$

Now, by Theorem 3.12, if \mathcal{F} is a sheaf, then $\check{\mathrm{H}}^0(\mathcal{U},\mathcal{F}) = \Gamma(X,\mathcal{F})$ the global section of \mathcal{F} . Thus, we obtain a short exact sequence

$$0 \longrightarrow \Gamma(X, \mathcal{F}') \longrightarrow \Gamma(X, \mathcal{F}) \longrightarrow \Gamma(X, \mathcal{F}'') \longrightarrow 0$$

On paracompact spaces, we can extend Proposition 3.22 for all values of p. Recall that

Definition 3.25. An open cover $\mathcal{U} = (U_i)_{i \in I}$ of a space X is **locally finite** if for any $x \in X$, there exists some neighbourhood V_x of x such that the set $\{i \in I : U_i \cap V_x \neq \emptyset\}$ is finite.

Definition 3.26. A topological space X is **paracompact**, i.e. X is Hausdorff and if any covering of X admits a refinement that is locally finite.

Using a similar argument as in Lemma 3.21, we have the following result

Lemma 3.27. Let $\mathcal{U} = (U_i)_{i \in I}$ be a covering and let $f = (f_{i_0 \cdots i_p})$ be an element of $C^p(\mathcal{U}, \mathcal{F}'')$. There exists a covering $\mathcal{V} = (V_j)_{j \in J}$ and a mapping $\tau : J \to I$ such that $V_j \subseteq U_{\tau(j)}$ and $\tau f \in C_0^p(\mathcal{V}, \mathcal{F}'')$.

So, we have a analogous result

Proposition 3.28. If X is paracompact, the canonical homomorphism

$$\check{\mathrm{H}}_{0}^{p}(X,\mathcal{F}'') \to \check{\mathrm{H}}^{p}(X,\mathcal{F}'')$$

is bijective for all $p \ge 0$.

As a corollary, we have

Corollary 3.29. If X is paracompact, we have a long exact sequence:

$$\longrightarrow \check{\operatorname{H}}^{p}(X,\mathcal{F}) \longrightarrow \check{\operatorname{H}}^{p}(X,\mathcal{F}'') \stackrel{d}{\longrightarrow} \check{\operatorname{H}}^{p+1}(X,\mathcal{F}') \longrightarrow \check{\operatorname{H}}^{p+1}(X,\mathcal{F}) \longrightarrow \cdots,$$

4 Comparison of Čech cohomology and sheaf cohomology

We first define a sheafified version of Čech complex. For any open subset $U_{i_0,\dots,i_p} \subseteq X$, let $f^{i_0,\dots,i_p}:U_{i_0,\dots,i_p}\to X$ denote the inclusion map. Now given $X,\mathcal{U},\mathcal{F}$ as previous, we construct a complex $\mathscr{C}^p(\mathcal{U},\mathcal{F})$ of sheaves as follows. For each $p\geqslant 0$, let

$$\mathscr{C}^p(\mathcal{U},\mathcal{F}) = \prod_{(i_0,\cdots,i_p)\in J^{p+1}} f_*^{i_0,\cdots,i_p}(\mathcal{F}|_{U_{i_0,\cdots,i_p}}),$$

and define

$$d^p: \mathscr{C}^p \to \mathscr{C}^{p+1}$$

by the same formula as above.

For every open subset U of X, let $\mathcal{U}_{/U}$ denote the induced covering of U consisting of all open subsets of the form $U_i \cap U$ with $U_i \in \mathcal{U}$.

Proposition 4.1. Let \mathcal{F} be a sheaf of R-modules on X. For any open subset U of X, we have

$$\mathscr{C}^p(\mathcal{U},\mathcal{F})(U) = C^p(\mathcal{U}_{/U},\mathcal{F}).$$

Proof. For any subseteq U of X, we have

$$\mathscr{C}^{p}(\mathcal{U}, \mathcal{F})(U) = \prod_{(i_{0}, \dots, i_{p}) \in J^{p+1}} f_{*}^{i_{0}, \dots, i_{p}}(\mathcal{F}|_{U_{i_{0}, \dots, i_{p}}})(U)
= \prod_{(i_{0}, \dots, i_{p}) \in J^{p+1}} \mathcal{F}|_{U_{i_{0}, \dots, i_{p}}}((f^{i_{0}, \dots, i_{p}})^{-1}(U))
= \prod_{(i_{0}, \dots, i_{p}) \in J^{p+1}} \mathcal{F}|_{U_{i_{0}, \dots, i_{p}}}(U \cap U_{i_{0}, \dots, i_{p}})
= \prod_{(i_{0}, \dots, i_{p}) \in J^{p+1}} \mathcal{F}(U \cap U_{i_{0}, \dots, i_{p}})
= C^{p}(\mathcal{U}_{/U}, \mathcal{F}).$$

Lemma 4.2. If $\mathcal{U} = (U_i)_{i \in I}$ is an open cover of X and if $U_i = X$ for some index i, then for any presheaf \mathcal{F} of R-modules, we have $\check{\operatorname{H}}^p(\mathcal{U}, \mathcal{F}) = 0$ for all p > 0.

Proof. Take $\mathcal{V} = \{X\}$, then we see that $\mathcal{U} < \mathcal{V} < \mathcal{U}$, i.e. \mathcal{U} is equivalent to \mathcal{V} . Thus, the map

$$\rho_{\mathcal{V}}^{\mathcal{U}}: \check{\mathrm{H}}^{p}(\mathcal{U},\mathcal{F}) \to \check{\mathrm{H}}^{p}(\mathcal{V},\mathcal{F})$$

is an isomorphism. The Čech complex $C^{\bullet}(\mathcal{V}, \mathcal{F})$ is

$$0 \longrightarrow C^{0}(\mathcal{V}, \mathcal{F}) \xrightarrow{d^{0}} C^{1}(\mathcal{V}, \mathcal{F}) \xrightarrow{d^{1}} C^{2}(\mathcal{V}, \mathcal{F}) \xrightarrow{d^{2}} C^{3}(\mathcal{V}, \mathcal{F}) \longrightarrow \cdots$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$0 \longrightarrow \mathcal{F}(X) \xrightarrow{0} \mathcal{F}(X) \xrightarrow{1} \mathcal{F}(X) \xrightarrow{0} \mathcal{F}(X) \longrightarrow \cdots$$

So, we see that $\check{\mathbf{H}}^p(\mathcal{V}, \mathcal{F}) = 0$ for all p > 0. Thus, $\check{\mathbf{H}}^p(\mathcal{U}, \mathcal{F}) = 0$ for all p > 0.

Proposition 4.3. For every open cover \mathcal{U} of the space X, for every \mathcal{F} of R-modules on X, the complex

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathscr{C}^0(\mathcal{U}, \mathcal{F}) \xrightarrow{d^0} \mathscr{C}^1(\mathcal{U}, \mathcal{F}) \xrightarrow{d^1} \cdots \longrightarrow \mathscr{C}^p(\mathcal{U}, \mathcal{F}) \xrightarrow{d^p} \mathscr{C}^{p+1}(\mathcal{U}, \mathcal{F}) \xrightarrow{d^{p+1}} \cdots$$

is a resolution of the sheaf \mathcal{F} .

Proof. It suffices to show that for every $x \in X$, the stalk sequence

$$0 \longrightarrow \mathcal{F}_x \longrightarrow \mathscr{C}^0(\mathcal{U}, \mathcal{F})_x \xrightarrow{d^0} \mathscr{C}^1(\mathcal{U}, \mathcal{F})_x \xrightarrow{d^1} \cdots \longrightarrow \mathscr{C}^p(\mathcal{U}, \mathcal{F})_x \xrightarrow{d^p} \mathscr{C}^{p+1}(\mathcal{U}, \mathcal{F})_x \xrightarrow{d^{p+1}} \cdots$$

is exact. Since direct limits preserves exact sequences, it suffices to show that for every $x \in X$, there is a neighborhood V of x such that the sequence

$$0 \longrightarrow \mathcal{F}(W) \longrightarrow \mathscr{C}^{0}(\mathcal{U}_{/W}, \mathcal{F}) \xrightarrow{d^{0}} \mathscr{C}^{1}(\mathcal{U}_{/W}, \mathcal{F}) \xrightarrow{d^{1}} \cdots \longrightarrow \mathscr{C}^{p}(\mathcal{U}_{/W}, \mathcal{F}) \xrightarrow{d^{p}} \mathscr{C}^{p+1}(\mathcal{U}_{/W}, \mathcal{F}) \xrightarrow{d^{p+1}} \cdots$$

is exact for all open subsets $W \subseteq V$.

Pick $V = U_{i_0}$ for some open subset U_{i_0} containing x. Then for $W \subseteq V = U_{i_0}$, then open cover $\mathcal{U}_{/W} = \{U_i \cap W : U_i \in \mathcal{U}\}$ contains $W = W \cap U_{i_0}$. By the definition of sheaves,

$$0 \to \mathcal{F}(W) \xrightarrow{\varepsilon} \prod_{j \in J} \mathcal{F}(U_j \cap W) \xrightarrow{d^0} \prod_{(i,j) \in J^2} \mathcal{F}(U_i \cap U_j \cap W)$$

is exact. So, we see that the above sequence is exact at $\mathcal{F}(W)$ and $\mathscr{C}^0(\mathcal{U}_{/W})$. By Lemma 4.2, we see that $\check{\mathrm{H}}^p(\mathcal{U}_{/W},\mathcal{F})=0$ for all p>0. So, the above sequence is exact at $\mathscr{C}^p(\mathcal{U}_{/W})$ for all p>0.

Proposition 4.4. For every space X, every open cover \mathcal{U} of X, every sheaf \mathcal{F} of R-modules on X and every $p \ge 0$, there is a homomorphism

$$\check{\operatorname{H}}^p(\mathcal{U},\mathcal{F}) \to \operatorname{H}^p(X,\mathcal{F})$$

from Čech cohommology to sheaf cohomology. Consequently, there is a homomorphism

$$\check{\operatorname{H}}^p(X,\mathcal{F}) \to \operatorname{H}^p(X,\mathcal{F})$$

for every $p \ge 0$.

Proof. We have a resolution $0 \to \mathcal{F} \to \mathscr{C}^{\bullet}(\mathcal{U}, \mathcal{F})$ of the sheaf and an injective resolution $0 \to \mathcal{F} \to I^{\bullet}$ of \mathcal{F} . By comparison theorem of the injective case, there exists a chain map $f^{\bullet}: \mathscr{C}^{\bullet}(\mathcal{U}, \mathcal{F}) \to \mathbf{I}^{\bullet}$ lifting the identity id: $\mathcal{F} \to \mathcal{F}$, i.e. we have a commutative diagram

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathscr{C}^{0}(\mathcal{U}, \mathcal{F}) \longrightarrow \mathscr{C}^{1}(\mathcal{U}, \mathcal{F}) \longrightarrow \cdots \longrightarrow \mathscr{C}^{p}(\mathcal{U}, \mathcal{F}) \longrightarrow \cdots$$

$$\downarrow_{\text{id}} \qquad \qquad \downarrow_{f^{0}} \qquad \qquad \downarrow_{f^{1}} \qquad \qquad \downarrow_{f^{p}} \qquad \downarrow_{f^{p}} \qquad \qquad \downarrow_{f^{p}} \qquad$$

Moreover, f^{\bullet} is unique up to homotopy. Applying the global section functor $\Gamma(X, -)$ gives a chain map

$$\Gamma(X, f^{\bullet}) : \Gamma(X, \mathscr{C}^{\bullet}(\mathcal{U}, \mathcal{F})) \to \Gamma(X, \mathbf{I}^{\bullet})$$

of complexes of R-modules. This induces the homomorphisms on cohomology

$$\mathrm{H}^{\bullet}(\Gamma(X, f^{\bullet})) : \mathrm{H}^{\bullet}(\Gamma(X, \mathscr{C}^{\bullet}(\mathcal{U}, \mathcal{F}))) \to \mathrm{H}^{\bullet}(\Gamma(X, \mathbf{I}^{\bullet})) = \mathrm{H}^{\bullet}(X, \mathcal{F}).$$

Note that $\Gamma(X, \mathscr{C}^{\bullet}(\mathcal{U}, \mathcal{F})) = C^{\bullet}(\mathcal{U}, \mathcal{F})$, so $H^{\bullet}(\Gamma(X, \mathscr{C}^{\bullet}(\mathcal{U}, \mathcal{F}))) = H^{\bullet}(C^{\bullet}(\mathcal{U}, \mathcal{F})) = \check{H}^{\bullet}(\mathcal{U}, \mathcal{F})$. So,

$$H^{\bullet}(\Gamma(X, f^{\bullet})) : \check{H}^{\bullet}(\mathcal{U}, \mathcal{F}) \to H^{\bullet}(X, \mathcal{F})$$

are the desired homomorphisms.

Lemma 4.5. If $f: X \to Y$ is a continuous map, and if \mathcal{F} is a flasque sheaf on X, then $f_*\mathcal{F}$ is a flasque sheaf on Y.

Proof. If suffices to show that for any open subset U of Y, the restriction map $(f_*\mathcal{F})(Y) \to (f_*\mathcal{F})(U)$ is surjective. But this map is $\mathcal{F}(X) \to \mathcal{F}(f^{-1}(U))$, which is clearly surjective as \mathcal{F} is flasque.

Lemma 4.6. If $\{\mathcal{F}_i\}_{i\in I}$ is a family of flasque sheaves on X, then $\prod_{i\in I}\mathcal{F}_i$ is a flasque sheaf.

Proof. For any open subset U of X, the restriction map $\prod_{i \in I} \mathcal{F}_i(X) \to \prod_{i \in I} \mathcal{F}_i(U)$ is the product of the map $\mathcal{F}_i(X) \to \mathcal{F}_i(U)$, which is surjective. Hence, $\prod_{i \in I} \mathcal{F}_i(X) \to \prod_{i \in I} \mathcal{F}_i(U)$ is surjective.

Proposition 4.7. Let X be a topological space and \mathcal{F} is a sheaf of R-modules. For every open cover \mathcal{U} of X, if the sheaf \mathcal{F} is flasque, then

$$H^p(\mathcal{U},\mathcal{F})=0$$

for all p > 0. Consequently, the functor $\check{H}^p(\mathcal{U}, -)$ are effaceble for all p > 0.

Proof. We first prove that $\mathscr{C}^p(\mathcal{U}, \mathcal{F})$ is a flasque sheaf for each $p \ge 0$. Indeed, by definition $\mathscr{C}^p(\mathcal{U}, \mathcal{F}) = \prod_{(i_0, \dots, i_p) \in J^{p+1}} f_*^{i_0, \dots, i_p}(\mathcal{F}|_{U_{i_0, \dots, i_p}})$. Since \mathcal{F} is flasque, we see that $\mathcal{F}|_{U_{i_0, \dots, i_p}}$ is also flasque

on U_{i_0,\dots,i_p} . Recall that direct image preserves flasque sheaves, we see that each $f_*^{i_0,\dots,i_p}(\mathcal{F}|_{U_{i_0,\dots,i_p}})$ is flasque. Again, a product of flasque sheaves is flasque, so we see that $\mathscr{C}^p(\mathcal{U},\mathcal{F})$ is flasque.

Thus, $0 \longrightarrow \mathcal{F} \longrightarrow \mathscr{C}^{\bullet}(\mathcal{U}, \mathcal{F})$ is a resolution of \mathcal{F} by flasque sheaves. We can use this resolution to compute $H^{\bullet}(X, \mathcal{F})$. Thus, we see that

$$H^p(X, \mathcal{F}) = \check{H}^p(\mathcal{U}, \mathcal{F})$$

for all $p \ge 0$. But since \mathcal{F} is flasque, we have $H^p(X, \mathcal{F}) = 0$ for all p > 0 by Theorem 2.10. It follows that $\check{H}^p(\mathcal{U}, \mathcal{F}) = 0$ for all p > 0.

5 Cohomology of schemes

5.1 Cohomology of Noetherian affine schemes

Proposition 5.1 (Krull's Theorem). Let A be a Noetherian ring, \mathfrak{a} an ideal, M a finitely generated A-module and N a submodule of M. Then the \mathfrak{a} -adic topology on N is induced by the \mathfrak{a} -adic topology on N. In particular, for any n > 0, there exists $k \ge n$ such that $\mathfrak{a}^n N \supseteq N \cap \mathfrak{a}^k M$.

Definition 5.2. Let A be a ring, $\mathfrak{a} \subseteq A$ an ideal and M an A-module. Then we define the following submodule of M

$$\Gamma_{\mathfrak{a}}(M) = \{ m \in M \mid \mathfrak{a}^n m = 0 \text{ for some } n > 0 \}.$$

In other words, $m \in \Gamma_{\mathfrak{a}}(M)$ if and only if its annihilator is an open ideal in the \mathfrak{a} -adic topology on A.

Let X be a topological space, $Z \subseteq X$ a closed subset and \mathcal{F} a sheaf of abelian groups on X. Then recall that $\Gamma_Z(X,\mathcal{F}) = \{s \in \mathcal{F}(X) | \operatorname{Supp}(s) \subseteq Z\}$ is a subgroup of $\mathcal{F}(X)$, and we have a subsheaf $\mathscr{H}_Z^0(\mathcal{F})$ of \mathcal{F} defined by

$$\Gamma\left(V, \mathscr{H}_Z^0(\mathcal{F})\right) = \{s \in \mathcal{F}(V) \mid \operatorname{Supp}(s) \subseteq Z \cap V\}.$$

If (X, \mathcal{O}_X) is a ringed space and \mathcal{F} a sheaf of modules, then $\mathscr{H}^0_Z(\mathcal{F})$ is a submodule of \mathcal{F} .

Lemma 5.3. Let A be a Noetherian ring, $\mathfrak{a} \subseteq A$ an ideal and M an A-module. Set $X = \operatorname{Spec} A$ and let $\mathcal{F} = \widetilde{M}$. Then there is a canonical isomorphism of sheaves of modules $\Gamma_{\mathfrak{a}}(M) = \mathscr{H}_{Z}^{0}(\mathcal{F})$ where $Z = V(\mathfrak{a})$.

Definition 5.4. We first verify that

$$0 \to \mathcal{H}_Z^0$$

Lemma 5.5. Let A be a Noetherian ring, $\mathfrak{a} \subseteq A$ an ideal of A, and let I be an injective A-module. Then the submodule $J = \Gamma_{\mathfrak{a}}(I)$ is also an injective A-module.

Lemma 5.6. Let I be an injective module over a noetherian ring A. Then for any $f \in A$ the canonical morphism $I \to I_f$ is surjective.

Proposition 5.7. Let A be a Noetherian ring and set $X = \operatorname{Spec} A$. If I is an injective A-module then the sheaf of modules \widetilde{I} on X is flasque.

Corollary 5.8. Let X be a Noetherian scheme, \mathcal{F} a quasi-coherent sheaf of modules on X. Then there is a monomorphism $\mathcal{F} \to \mathcal{G}$, where \mathcal{G} is a flasque quasi-coherent sheaf of modules.

Theorem 5.9 (Serre). Let \mathcal{F} be a quasi-coherent sheaf on an affine scheme X. Then for any i > 0 we have $H^i(X, \mathcal{F}) = 0$.

Corollary 5.10. Let X be a scheme and $U \subseteq X$ an affine open subset. Then the additive functor $\Gamma(U, -) : \mathfrak{Qco}(X) \to \mathbf{Ab}$ is exact.

Theorem 5.11 (Serre). Let X be a Noetherian scheme. Then the following conditions are equivalent:

- (i) X is affine;
- (ii) $H^i(X, \mathcal{F}) = 0$ for all quasi-coherent sheaves of modules \mathcal{F} and i > 0;
- (iii) $H^1(X, \mathcal{I}) = 0$ for all coherent sheaves of ideals \mathcal{I} .

Theorem 5.12. Let X be a Noetherian separated scheme, let \mathcal{U} be an open affine cover of X, and let \mathcal{F} be a quasi-coherent sheaf on X. Then for all $p \ge 0$, the natural maps

$$H^p(\Gamma(X, f^{\bullet})) : \check{H}^p(\mathcal{U}, \mathcal{F}) \to H^p(X, \mathcal{F})$$

are an isomorphisms.

Proof. For p = 0, this is Theorem 3.12.

Now, we consider the case p > 0. By Corollary 5.8, we can embed \mathcal{F} in a flasque, quasi-coherent sheaf \mathcal{G} . Let \mathcal{H} be the quotient, i.e. we have a short exact sequence

$$0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0.$$

Recall that an intersection of affine open subsets of a saparated scheme is affine, we see that U_{i_0,\dots,i_p} is affine for any $(i_0,\dots,i_p) \in J^{p+1}$. Recall that the above short exact sequence induced a short exact sequence on global sections as $\mathcal{F}|_{U_{i_0,\dots,i_p}}$ is quasi-coherent, i.e.

$$0 \to \mathcal{F}(U_{i_0, \dots, i_p}) \to \mathcal{G}(U_{i_0, \dots, i_p}) \to \mathcal{H}(U_{i_0, \dots, i_p}) \to 0.$$

So, we see that the corresponding sequence of Čech complexes

$$0 \to C^{\bullet}(\mathcal{U}, \mathcal{F}) \to C^{\bullet}(\mathcal{U}, \mathcal{G}) \to C^{\bullet}(\mathcal{U}, \mathcal{H}) \to 0$$

is exact as taking products preserves exactness. Thus, we have a long exact sequence

$$0 \to \Gamma(X, \mathcal{F}) \to \Gamma(X, \mathcal{G}) \to \Gamma(X, \mathcal{H}) \to$$

$$\check{\operatorname{H}}^{1}(\mathcal{U}, \mathcal{F}) \to \check{\operatorname{H}}^{1}(\mathcal{U}, \mathcal{G}) \to \check{\operatorname{H}}^{1}(\mathcal{U}, \mathcal{H}) \to$$

$$\check{\operatorname{H}}^{2}(\mathcal{U}, \mathcal{F}) \to \check{\operatorname{H}}^{2}(\mathcal{U}, \mathcal{G}) \to \check{\operatorname{H}}^{2}(\mathcal{U}, \mathcal{G}) \to \cdots$$

Since \mathcal{G} is flasque, by Proposition 4.7, we see that $\check{H}^p(\mathcal{U},\mathcal{G}) = 0$ for all p > 0. So, we have an exact sequence

$$0 \longrightarrow \Gamma(X, \mathcal{F}) \longrightarrow \Gamma(X, \mathcal{G}) \longrightarrow \Gamma(X, \mathcal{H}) \longrightarrow \check{\operatorname{H}}^{1}(\mathcal{U}, \mathcal{F}) \longrightarrow 0$$

and isomorphisms

$$\check{\operatorname{H}}^p(\mathcal{U},\mathcal{H}) \xrightarrow{\sim} \check{\operatorname{H}}^{p+1}(\mathcal{U},\mathcal{F})$$

for all $p \ge 1$.

Agian, the above exact sequence

$$0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$$

induced a long exact sequence of cohomology, i.e.

$$0 \to \Gamma(X, \mathcal{F}) \to \Gamma(X, \mathcal{G}) \to \Gamma(X, \mathcal{H}) \to$$

$$H^{1}(X, \mathcal{F}) \to H^{1}(X, \mathcal{G}) \to H^{1}(X, \mathcal{H}) \to$$

$$H^{2}(X, \mathcal{F}) \to H^{2}(X, \mathcal{G}) \to H^{2}(X, \mathcal{H}) \to \cdots$$

Since \mathcal{G} is flasque, by Theorem 2.10, we see that $H^p(\mathcal{U},\mathcal{G}) = 0$ for all p > 0. So, we have an exact sequence

$$0 \longrightarrow \Gamma(X, \mathcal{F}) \longrightarrow \Gamma(X, \mathcal{G}) \longrightarrow \Gamma(X, \mathcal{H}) \longrightarrow \mathrm{H}^1(\mathcal{U}, \mathcal{F}) \longrightarrow 0$$

and isomorphisms

$$H^p(\mathcal{U},\mathcal{H}) \xrightarrow{\sim} H^{p+1}(\mathcal{U},\mathcal{F})$$

for all $p \ge 1$. Now, apply Five Lemma to the following commutative diagram,

$$0 \longrightarrow \Gamma(X, \mathcal{F}) \longrightarrow \Gamma(X, \mathcal{G}) \longrightarrow \Gamma(X, \mathcal{H}) \longrightarrow \check{\operatorname{H}}^{1}(\mathcal{U}, \mathcal{F}) \longrightarrow 0 \longrightarrow 0$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$0 \longrightarrow \Gamma(X, \mathcal{F}) \longrightarrow \Gamma(X, \mathcal{G}) \longrightarrow \Gamma(X, \mathcal{H}) \longrightarrow \operatorname{H}^{1}(\mathcal{U}, \mathcal{F}) \longrightarrow 0 \longrightarrow 0$$

we conclude that $\check{\mathrm{H}}^1(\mathcal{U},\mathcal{F}) \cong \mathrm{H}^1(\mathcal{U},\mathcal{F})$. Recall that $\mathcal{H} = \mathrm{Coker}(\mathcal{F} \to \mathcal{G})$ is also quasi-coherent. Now, by induction on $p \geqslant 1$, we see that $\check{\mathrm{H}}^{p+1}(\mathcal{U},\mathcal{F}) \cong \check{\mathrm{H}}^p(\mathcal{U},\mathcal{H}) \cong \mathrm{H}^p(\mathcal{U},\mathcal{H}) \cong \mathrm{H}^{p+1}(\mathcal{U},\mathcal{F})$. Thus,

5.2 Cohomology of projective space

Lemma 5.13. Let A be a ring and $n \ge 1$. Then $A[x_1, \dots, x_n]_{x_1 \dots x_n}$ is a free A-module on the basis $\{x_{i_1} \dots x_{i_n} | i_1, \dots, i_n \in \mathbb{Z}\}$.