MATHEMATIK FÜR DIE INFORMATIK C HAUSAUFGABENSERIE 9

HENRI HEYDEN, NIKE PULOW

stu240825, stu239549

A1

Voraussetzung

Sei $\xi, \eta, a, b, c \in \mathbb{R}$ mit $\xi \cdot \eta > 0$ und $f : \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto \xi(x - a)^2 + \eta(y - b)^2 + c$.

Behauptung

 $LMAX(f) = \{(a, b)\}, \text{ wenn } \xi < 0 \text{ und } LMIN(f) = \{(a, b)\}, \text{ wenn } \xi > 0$

Beweis

Nach dem Kombsatz. ist f eine C^2 -Funktion.

Zunächst forme f um. Es gilt:

$$f(x, y) = \xi(x - a)^{2} + \eta(y - b)^{2} + c$$
 | Binom. Formeln

$$= \xi(x^{2} - 2xa + a^{2}) + \eta(y^{2} - 2yb + b^{2}) + c$$
 | Klammern auflösen

$$= \xi x^{2} - \xi 2xa + \xi a^{2} + \eta y^{2} - \eta 2yb + \eta b^{2} + c$$

Dann gilt:

$$\partial_1 f(x) = 2\xi x - 2\xi a = 2\xi(x - a)$$

$$\partial_2 f(y) = 2\eta y - 2\eta b = 2\eta (y - b)$$

Des Weiteren gilt:

$$\partial_1\partial_1 f(x) = 2\xi$$

$$\partial_2\partial_1 f(y)=0$$

$$\partial_1\partial_2 f(x)=0$$

$$\partial_2 \partial_2 f(y) = 2\eta$$

Somit gilt:
$$\mathbf{H}_f = \begin{bmatrix} 2\xi & 0 \\ 0 & 2\eta \end{bmatrix}$$
 Außerdem gilt:

$$\partial_1 f(x) = 0 \iff x = a$$

$$\partial_2 f(y) = 0 \iff y = b$$

Dann gilt also $\partial_1 f(a) = \partial_2 f(b) = 0$ somit ist (a, b) kritische Stelle.

Es gilt:

$$\mathbf{H}_f(a,b) = \begin{bmatrix} 2\xi & 0\\ 0 & 2\eta \end{bmatrix}$$

und somit $det(H_f(a, b)) = 2\xi \cdot 2\eta - 0$

Da $\xi \cdot \eta > 0$ gilt $\det(H_f(a, b)) > 0$, also ist $H_f(a, b)$ definit.

Somit gilt $(a, b) \in LMAX(f)$, wenn $\xi < 0$

und $(a, b) \in LMIN$, wenn $\xi > 0$.

Die Behauptung folgt.