# More Word Vectors

Minsik Park (msp3887@korea.ac.kr) Data Science & Business Analytics Lab



CBOW

Skip-gram

$$\min J = -u_c^t \,\hat{v} + \log \sum_{j=1}^{|V|} \exp(u_j^t \hat{v}) \qquad \qquad \min J = -\sum_{j=0, j \neq m}^{2m} u_{c-m+j}^t \, v_c + 2m \log \sum_{j=1}^{|V|} \exp(u_k^t v_c)$$

Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." Advances in neural information processing systems. 2013.

 $V \rightarrow \ln(V)$ : complexity reduction

- 1. Hierarchical softmax
- 2. Negative Sampling
- 3. Subsampling Frequent words

#### 1. Hierarchical softmax

단어들을 leaves로 가지는 binary tree를 생성 후 해당하는 단어의 확률을 계산할 때 root 에서 부터 해당 leaf로 가는 path에 따라서 확률을 곱해나 가는 식으로 해당 단어가 나올 최종적인 확률을 계산



$$p(w|w_i) = \sum_{j=1}^{L(w)-1} \sigma([n(w,j+1) = ch(n(w,j))] \cdot V_{n(w,j)}^T v_{w_i})$$

Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." Advances in neural information processing systems. 2013.

#### 1. Hierarchical softmax

$$p(w|w_i) = \sum_{j=1}^{L(w)-1} \sigma([n(w,j+1) = ch(n(w,j))] \cdot V_{n(w,j)}^T v_{w_i})$$

- L(w)는 w라는 leaf에 도달하기 까지의 path의 길이
- n(w,i) 는 root에서부터 w라는 leaf에 도달하는 path에서 만나는 i번째 노드를 의미



- ch(node) 는 node의 고정된 임의의 한 자식을 의미하며, 여기서는 단 순하게 node의 왼쪽 자식의로 봐도 무방
- [[x]] 는 x가 true일 경우 1, false일 경우 -1을 반환하는 함수로 정의
- Hierarchial Softmax를 사용할 경우 기존 CBOW나 Skip-gram에 있던 W' matrix를 사용하지 않게 된다. 대신, V-1개의 internal node가 각각 길이 N짜리 weight vector를 가지게 된다. 이를  $v_i'$  라고 하고 학습에서 update 함
- root 에서 leaf까지의 거리의 평균은 O(lnV)가 되어 단어 벡터의 차원 수 감소

#### 1. Hierarchical softmax



$$p(w|w_i) = \sum_{j=1}^{L(w)-1} \sigma([n(w,j+1) = ch(n(w,j))] \cdot V_{n(w,j)}^T v_{w_i})$$

특정노드에서 왼쪽, 오른쪽 자식으로 갈 확률을 더하면 1  $\sigma(v_n^T v_{w_i}) + \sigma(-v_n^T v_{w_i}) = 1$ 

Hierarchical softmax를 사용하면 전체 확률에 대한 계산 없이 전체 합을 1로 만들어 줄 수 있음

### 2. Negative Sampling

Softmax에서 너무 많은 단어들에 대해 계산을 하니, 여기서 몇 개(5~20개)만 샘플링해서 계산

실제 사용하는 단어들은 반드시 계산해야 되니 positive sample 나머지들은 negative sample

$$J_t(\theta) = log\sigma(u_0^T v_c) + \sum_{i=1}^k E_{i\sim p(w)}[log\sigma(-u_i^T v_c)]$$
 Positive Sample Negative sample

### 2. Negative Sampling

단어가 추출될 확률은 Unigram Distribution의 3/4승

$$P(w_i) = \frac{f(w_i)^{3/4}}{\sum_{j=0}^{n} (f(w_i)^{3/4})}$$

3. Subsampling Frequent words

'the', 'a', 'in' 등 자주 등장하는 단어들을 확률적으로 제외하여 학습속도 & 성능 향상

단어 w의 등장 빈도를 f(w)라 할 때, 학습할 때 각 단어는

$$P(w_i) = 1 - \sqrt{\frac{t}{f(w_i)}}$$
 의 확률로 제외

t는 빈도가 일정값 이상일 때 제외한다는 threshold 값으로 논문에서는  $10^{-5}$ 를 사용

 $f(w_i)$ 는 Corpus 내의 Term Frequency

- Based on matrix factorization method
- GloVe consists of a weighted least squares model that trains on global word-word co-occurrence counts and thus makes efficient use of statistics.

#### \* Co-occurrence Matrix

- X : co-occurrence matrix( $V \cdot V$  dimension)
- $X_{ij}$ : frequency of word i co-occurring with word j
- $X_i = \sum_{k=1}^{V} X_{ik}$ : total number of occurrences of word *i* in corpus
- $P_{ij} = P(j|i) = \frac{X_{ij}}{X_i}$ : the probability of j appearing in the context of word i
- $w \in \mathbb{R}^d$ : a word embedding of dimension d
- $\widetilde{w} \in \mathbb{R}^d$ : a context word embedding of dimension d

| Probability and Ratio | k = solid            | k = gas                                      | k = water            | k = fashion          |
|-----------------------|----------------------|----------------------------------------------|----------------------|----------------------|
| P(k ice)              | $1.9 \times 10^{-4}$ | $6.6 \times 10^{-5}$<br>$7.8 \times 10^{-4}$ | $3.0 \times 10^{-3}$ | $1.7 \times 10^{-5}$ |
| P(k steam)            | $2.2 \times 10^{-5}$ | $7.8 \times 10^{-4}$                         | $2.2\times10^{-3}$   | $1.8 \times 10^{-5}$ |
| P(k ice)/P(k steam)   | 8.9                  | $8.5 \times 10^{-2}$                         | 1.36                 | 0.96                 |

Ratios of co-occurrence probabilities can encode meaning

$$(1) F(w_i, w_j, \widetilde{w_k}) = \frac{P_{ik}}{P_{jk}}$$

$$(2) F(w_i - w_j, \widetilde{w}_k) = \frac{P_{ik}}{P_{jk}}$$

(3) 
$$F\left((w_i - w_j)^T \widetilde{w_k}\right) = \frac{P_{ik}}{P_{jk}}$$

$$(4) F\left((w_i - w_j)^T \widetilde{w_k}\right) = \frac{F(w_i^T \widetilde{w_k})}{F(w_i^T \widetilde{w_k})}$$

$$F(w_i^T \widetilde{w_k} - w_j^T \widetilde{w_k}) = \frac{F(w_i^T \widetilde{w_k})}{F(w_j^T \widetilde{w_k})}$$

$$exp(w_i^T \widetilde{w_k} - w_j^T \widetilde{w_k}) = \frac{exp(w_i^T \widetilde{w_k})}{exp(w_j^T \widetilde{w_k})}$$

$$w_i^T \widetilde{w_k} = \log P_{ik} = \log X_{ik} - \log X_i$$

$$w_i^T \widetilde{w_k} = \log X_{ik} - b_i - \widetilde{b_k}$$

$$w_i^T \widetilde{w_k} + b_i + \widetilde{b_k} = \log X_{ik}$$

$$J = \sum_{i,j=1}^{V} f(X_{ij}) (w_i^T \widetilde{w_j} + b_i + \widetilde{b_j} - \log X_{ik})^2$$

Where 
$$f(x) = \begin{cases} (\frac{x}{x_{max}})^{\alpha}, & \text{if } x < x_{max} \end{cases}$$

$$1, & \text{otherwise} \end{cases}$$



Figure 1: Weighting function f with  $\alpha = 3/4$ .

- 1. f(0) = 0
- 2. f(x) should be non-decreasing so that rare co-occurrences are not overweighted.
- 3. f(x) should be relatively small for large values of x, so the frequent co-occurences are not overweighted.

Pennington, Jeffrey, Richard Socher, and Christopher D. Manning. "Glove: Global Vectors for Word Representation." EMNLP. Vol. 14. 2014.

## Glove visualization:Company-CEO



## Glove visualization:Superlatives



## Word Embedding Result(semantic)

| Input                             | Result Produced |
|-----------------------------------|-----------------|
| Chicago: Illinois: : Houston      | Texas           |
| Chicago: Illinois: : Philadelphia | Pennsylvania    |
| Chicago: Illinois: : Phoenix      | Arizona         |
| Chicago: Illinois: : Dallas       | Texas           |
| Chicago: Illinois:: Jacksonville  | Florida         |
| Chicago: Illinois: : Indianapolis | Indiana         |
| Chicago: Illinois: : Austin       | Texas           |
| Chicago: Illinois: : Detroit      | Michigan        |
| Chicago: Illinois: : Memphis      | Tennessee       |
| Chicago: Illinois:: Boston        | Massachusetts   |

| Input                         | Result Produced |
|-------------------------------|-----------------|
| Abuja : Nigeria : : Accra     | Ghana           |
| Abuja: Nigeria:: Algiers      | Algeria         |
| Abuja: Nigeria:: Amman        | Jordan          |
| Abuja : Nigeria : : Ankara    | Turkey          |
| Abuja: Nigeria:: Antananarivo | Madagascar      |
| Abuja : Nigeria : : Apia      | Samoa           |
| Abuja: Nigeria:: Ashgabat     | Turkmenistan    |
| Abuja: Nigeria:: Asmara       | Eritrea         |
| Abuja: Nigeria:: Astana       | Kazakhstan      |

## Word Embedding Result(syntactic)

| Input                 | Result Produced |
|-----------------------|-----------------|
| bad : worst : : big   | biggest         |
| bad: worst:: bright   | brightest       |
| bad: worst:: cold     | coldest         |
| bad: worst:: cool     | coolest         |
| bad: worst:: dark     | darkest         |
| bad: worst:: easy     | easiest         |
| bad : worst : : fast  | fastest         |
| bad: worst:: good     | best            |
| bad : worst : : great | greatest        |

| Input                           | Result Produced |
|---------------------------------|-----------------|
| dancing : danced : : decreasing | decreased       |
| dancing: danced:: describing    | described       |
| dancing: danced::enhancing      | enhanced        |
| dancing : danced : : falling    | fell            |
| dancing: danced:: feeding       | fed             |
| dancing: danced:: flying        | flew            |
| dancing: danced:: generating    | generated       |
| dancing: danced::going          | went            |
| dancing : danced : : hiding     | hid             |
| dancing: danced::hitting        | hit             |

## **Word Embedding Result**

| Model       | Dimension | Size | Semantics | Syntax | Total |
|-------------|-----------|------|-----------|--------|-------|
| ivLBL       | 100       | 1.5B | 55.9      | 50.1   | 53.2  |
| <b>HPCA</b> | 100       | 1.6B | 4.2       | 16.4   | 10.8  |
| GloVE       | 100       | 1.6B | 67.5      | 54.3   | 60.3  |
| SG          | 300       | 1B   | 61        | 61     | 61    |
| <b>CBOW</b> | 300       | 1.6B | 16.1      | 52.6   | 36.1  |
| vLBL        | 300       | 1.5B | 54.2      | 64.8   | 60.0  |
| ivLBL       | 300       | 1.5B | 65.2      | 63.0   | 64.0  |
| GloVe       | 300       | 1.6B | 80.8      | 61.5   | 70.3  |
| SVD         | 300       | 6B   | 6.3       | 8.1    | 7.3   |
| SVD-S       | 300       | 6B   | 36.7      | 46.6   | 42.1  |
| SVD-L       | 300       | 6B   | 56.6      | 63.0   | 60.1  |
| <b>CBOW</b> | 300       | 6B   | 63.6      | 67.4   | 65.7  |
| SG          | 300       | 6B   | 73.0      | 66.0   | 69.1  |
| GloVe       | 300       | 6B   | 77.4      | 67.0   | 71.7  |
| CBOW        | 1000      | 6B   | 57.3      | 68.9   | 63.7  |
| SG          | 1000      | 6B   | 66.1      | 65.1   | 65.6  |
| SVD-L       | 300       | 42B  | 38.4      | 58.2   | 49.2  |
| GloVe       | 300       | 42B  | 81.9      | 69.3   | 75.0  |

- Performance is heavily dependent on the model used for word embedding
- Performance increases with larger corpus sizes
- Performance is lower for extremely low as well as for extremely high dimensional word vectors http://web.stanford.edu/class/cs224n/lecture\_notes/cs224n-2017-notes2.pdf

## Comparison with Word2vec



- 논문 전반적으로 GLoVe가 word2vec에 대해 확실한 성능 우세 를 보인다고 주장
- 하지만 파라미터 세팅의 세밀함 등등 실험 평가에 대해서는 절 대적으로 판단하기 어려움
- 이 논문에서도 word2vec의 cbow보다 skip-gram 성능이 전반 적으로 높음을 확인할 수 있음

Pennington, Jeffrey, Richard Socher, and Christopher D. Manning. "Glove: Global Vectors for Word Representation." EMNLP. Vol. 14. 2014.

20

 NNLM, Word2Vec, Glove ignore the morphology or words by assigning a distinct vector to each word

 Difficult to apply to morphologically rich languages with large vocabularies and many rare words (Turkish or

Finnish)

|              | Singular       | Plural                                   |
|--------------|----------------|------------------------------------------|
| Nominative   | uniwersytet    | Plural uniwersytety                      |
| Genetive     | uniwersytetu   | uniwersytetów uniwersytetom uniwersytety |
| Dative       | uniwersytetowi | uniwersytetom                            |
| Accusative   | uniwersytet    | uniwersytety                             |
| Instrumental | uniwersytetem  | uniwersytetami                           |
| Locative     | uniwersytecie  | uniwersytetach                           |
| Vocative     | uniwersytecie  | uniwersytety                             |

FastText represent words as sum of its <u>character n-grams</u>

Objective function

$$J_t(\theta) = \log \sigma(u_o^T v_c) + \sum_{i=1}^k E_{i \sim p(w)} [\log \sigma(-u_i^T v_c)]$$

Subword model

Define the set of n-grams appearing in  $w : G_w \subset \{1,2,...G\}$ 

$$score(w,c) = \sum_{g \in G_W} z_g^T v_c$$

$$\max_{\substack{\text{mang erai ange man ang erai nge ger rai nger} \\ \text{Otheracter n-grams}}} z_g^T v_c$$

https://www.youtube.com/watch?v=CHcExDsDeHU Bojanowski, Piotr, et al. "Enriching word vectors with subword information." *arXiv preprint arXiv:1607.04606* (2016).

Word analogies

Paris -> France

Warsaw -> ?

|    |           | sg   | cbow | ours |
|----|-----------|------|------|------|
| Cs | Semantic  | 25.7 | 27.6 | 27.5 |
|    | Syntactic | 52.8 | 55.0 | 77.8 |
| DE | Semantic  | 66.5 | 66.8 | 62.3 |
|    | Syntactic | 44.5 | 45.0 | 56.4 |
| En | Semantic  | 78.5 | 78.2 | 77.8 |
|    | Syntactic | 70.1 | 69.9 | 74.9 |
| Iт | Semantic  | 52.3 | 54.7 | 52.3 |
|    | Syntactic | 51.5 | 51.8 | 62.7 |

Qualitative Results

| query    | tiling    | tech-rich        | english-born | micromanaging | eateries    | dendritic  |
|----------|-----------|------------------|--------------|---------------|-------------|------------|
| ours     | tile      | tech-dominated   | british-born | micromanage   | restaurants | dendrite   |
|          | flooring  | tech-heavy       | polish-born  | micromanaged  | eaterie     | dendrites  |
| skipgram | bookcases | technology-heavy | most-capped  | defang        | restaurants | epithelial |
|          | built-ins | .ixic            | ex-scotland  | internalise   | delis       | p53        |