TRIGONOMÉTRIE

1. ANGLE DANS LE CERCLE TRIGONOMÉTRIQUE

Dans tout le chapitre, le plan P est muni d'un repère orthonormé (O; I, J)

DÉFINITION

On appelle **cercle trigonométrique** le cercle de centre *O* et de rayon 1 orienté dans le sens inverse des aiguilles d'une montre (aussi appelé « *sens direct* » ou « *sens trigonométrique*»).

MESURE D'UN ANGLE EN RADIANS

Dans le plan P muni d'un repère orthonormé (O; I, J), on trace le cercle trigonométrique et la droite d'équation x = 1 qui est tangente à ce cercle.

Soit N un point du cercle. Pour mesurer en radians l'angle \widehat{ION} on mesure la longueur de l'arc (IN).

Pour cela on « enroule » la tangente sur le cercle trigonométrique et on fait correspondre au point N un point M situé sur cette tangente.

L'ordonnée de M est une mesure en radians de l'angle \widehat{ION} (sur la figure ci-dessus cette mesure vaut environ 1,9 radians).

Cette mesure n'est pas unique. En effet, si l'on poursuit « l'enroulement » de la droite sur le cercle trigonométrique, on voit que plusieurs points de cette droite vont venir se positionner sur le point N.

Il en est de même si l'on « enroule » la droite dans l'autre sens; dans ce cas on obtiendra des mesures négatives de l'angle.

PROPRIÉTÉ

Chaque angle possède une infinité de mesures (en radians) qui diffèrent d'un multiple de 2π .

REMARQUES

- Cela signifie que si x est une mesure d'un angle, les autres mesures sont $x+2\pi, x+4\pi$, etc. et $x-2\pi, x-4\pi$, etc.
- Ces différentes mesures s'écrivent donc $x + 2k\pi$ avec $k \in \mathbb{Z}$

MESURES D'ANGLES À RETENIR

Mesures d'angles remarquables

2. SINUS ET COSINUS

DÉFINITION

Soit N un point du cercle trigonométrique. On note x une mesure de l'angle \widehat{ION} .

On appelle **cosinus** de x, noté $\cos x$ l'abscisse du point N.

On appelle **sinus** de x, noté $\sin x$ l'ordonnée du point N

REMARQUE

Ces notions généralisent celles vues au collège.

En effet si l'angle \widehat{ION} est aigu :

Le triangle OAN est rectangle en A et ON=1 car [ON] est un rayon du cercle; par conséquent :

$$\cos(\widehat{ION}) = \cos(\widehat{AON}) = \frac{OA}{ON} = \frac{OA}{1} = OA$$

$$\sin\left(\widehat{ION}\right) = \sin\left(\widehat{AON}\right) = \frac{AN}{ON} = \frac{AN}{1} = AN$$

VALEURS DE SINUS ET DE COSINUS À RETENIR

х	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

х	$-\frac{\pi}{6}$	$-\frac{\pi}{4}$	$-\frac{\pi}{3}$	$-\frac{\pi}{2}$	$-\frac{2\pi}{3}$	$-\frac{3\pi}{4}$	$-\frac{5\pi}{6}$
$\cos x$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$
sin x	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$

PROPRIÉTÉS

Pour tout réel x:

- $-1 \leqslant \cos x \leqslant 1$
- $-1 \leqslant \sin x \leqslant 1$
- $(\cos x)^2 + (\sin x)^2 = 1$

REMARQUE

On écrit souvent $\cos^2 x$ et $\sin^2 x$ à la place de $(\cos x)^2$ et $(\sin x)^2$ afin de simplifier les notations.

La dernière propriété s'écrit alors :

$$\cos^2 x + \sin^2 x = 1$$