

COE-C2004 - Materials Science and Engineering

Exercise 5

Prof. Junhe Lian Zinan Li

GRANTA overview

Overview: Materials and process selection tool

Basic Features:

- Look up information
- Create Charts
- Select materials or processes
- Assess design by Eco Audit

Features unique to Granta EduPack:

- Level Structure
- Science Notes
- Video Tutorials
- Online teaching resources

https://www.ansys.com/products/materials/granta-edupack/

Textbook and software

Textbook

Ashby, Michael F. Materials Selection in Mechanical Design (Chapter 3, 5 and 7).

Software

GRANTA EduPack (was Cambridge Engineering Selector, from Granta Design Software, now part of ANSYS)

Tasks

Example task

Material selection for Oars

A beam as light as possible and strong enough to carry, without breaking the bending moment exerted by the person, i.e., the stiffness must be met

- Derive the formula for the material performance index from the performance objective
- Draw the material selection maps with density and Young's modulus as axes

GRANTA operations

Access to the software

Local installation and VDI connection

Access to GRANTA EduPack Method 1 – Local Software Installation

Step 1. Check system requirements.

GRANTA EduPack is designed for computers running Windows. To install GRANTA EduPack, you will need the following:

- A compatible Microsoft® Windows® operating system;
 - Windows 8 32-bit or 64-bit,
 - Windows 10 32-bit or 64-bit.
- 4 GB of RAM, 4 GB of available hard disk space.
- Microsoft .NET Framework version 4.6.2, Microsoft Report Viewer 2010 SP1, and Microsoft VC 141 redistributable.
 - If any of these are not installed, they will be installed during the GRANTA EduPack installation. You may need to restart your computer and the installer. You may need to restart your computer. If you restart your computer, you will have to restart the installer, too.
 - For the French, German, and Spanish language installations, you will also require the appropriate language packs for these, which are usually installed with your OS.
- Administrator rights and Internet access.

For macOS or Linux users, the following two options should be considered (both require you to have a licensed version of Windows):

- Boot Camp—Boot Camp is software that comes installed with macOS (compatible with macOS 10.6 or later) that allows you to run compatible versions of Microsoft Windows on an Intel-based Mac. As Boot Camp runs the Windows operating system directly, the performance of Windows applications is not affected. The downsides of using Boot Camp are the risks involved with re-partitioning the hard drive and the need to boot into Windows each time you wish to use GRANTA EduPack.
- Install Windows on a virtual machine on your Mac. This allows you to run Windows software, including GRANTA EduPack, from inside macOS as if it were installed on your Mac.

Step 2. Download software copy from Aalto download service.

· visit Download.aalto.fi;

NOTE: Aalto user credentials log in is needed – YOU NEED TO LOGIN TO AALTO VPN FIRST

Access to GRANTA EduPack

Method 2 - Lauch Application via Remote Access

Alternatively, you can get access remotely to the Windows classroom computers from your own device, using the VDI system via VMware Horizon Client <u>vdi.aalto.fi</u> or <u>mfavdi.aalto.fi</u> (Aalto user credentials log in is required). Check <u>Remote access to Windows classroom computers</u> for more information.

 GRANTA EduPack 2021 R1 application is available on virtual computer "Windows 10" on vdi.aalto.fi:

GE GRANTA EduPack 2021 R1

GRANTA EduPack 2021R1

🔾 quick start 🛊 what's new 🕂 add database 🕹 extra databases

Level 1, general

- Schools, 1st year college
- **69** materials, **74** processes

Databases

Level 3, general

- 3rd-4th year, masters and research
- 4169 materials, 247 processes

Introductory

Advanced

Level 2, general

- 1st-3rd year students of Engineering, Materials Science and Design
- 100 materials, 116 processes

The Elements Database

- Schools-University students
- 149 records, periodic table

Changing database - different levels

Intuitive navigation

The Search function

- Not sensitive to CASE but to spelling
- Searches all data-tables
- Operators AND, OR, NOT, * ...
- Categorizes all results
- Highlights search term in datasheet

_ 8 ×

Help ▼

Settings

Changing the data settings (units etc.)

Accessing the science behind the properties

Acrylonitrile-bu

The material. ABS (Acrylonitrile-buta) tough, resilient, and easily molded. It is although some grades can now be trar be given vivid colors. ABS-PVC alloys standard ABS and, in self-extinguishing for the casings of power tools.

General properties

Density	(i)	1.01e3	-
Price	(i)	* 2.5	-
Date first used	(i)		
Mechanical properties	3		
Young's modulus	(i)	1.1	-
Yield strength	(i)	18.5	-
Tensile strength (elastic limit)	i	27.6	-
Elongation	(i)	1.5	-
Hardness - Vickers	(i)	5.6	-
Fatigue strength at 10^7 cycles	(i)	11	-
Fracture toughness	(i)	1.19	-

Young's modulus

Definitions and measurement.

Figure 1 shows a typical tensile stress-strain curve. The initial part is linear (Hooke's law), and it is elastic, meaning that the strain is recoverable - the material returns to its original shape when the stress is removed. Stresses above the elastic limit cause permanent deformation or fracture

The origins of moduli. Atoms together, some weakly, some strong bind strongly enough they form solid stronger the bond, the higher is the point of the solid. Think of the bond springs (Figure 3). The atoms have equilibrium spacing; a force pulls tl a little, to, but when it is released th back to their original spacing.

Author	
---------------	--

Callister

Budinski

Askeland

Shackelford

Ashby et al

Title

"Materials Science and Engineering: an Introduction"

"Engineering Materials: Properties and Selection"

"Introduction to Materials Science for Engineers"

"The Science and Engineering of Materials"

Chapter

2

6

6

HELP, Video tutorials, ...

Creating charts

Charts

- Exploring relationships: property charts
- Making charts
- Custom subsets, adding your own materials
- Report writing

Bar charts

Data sheets = numbers, words

We want meaning

Property charts

Bar-chart created with GRANTA EduPack

Bubble charts

Bubble chart created with CES EduPack

Table chart

Discrete data

Composites	Plastics	
Foams	Non-technical ceramics	
Metals	Technical ceramics	
Elastomers	Natural materials	

Creating charts for selection

Joining Shaping

Surface Treatment

Creating charts for selection

Property 2

Creating advanced charts for selection

The chart-management tool bar

The line, box and curve tools

Annotation tools in charts

Custom subsets

Aalto University Surfa School of Engineering

Surface Treatment

Changing the Chart settings (labels etc.)

Saving projects, report writing

Making your own records

Make selection

Selection procedure

- Translation: deriving material index
- Screening: applying attribute limits
- Ranking: indices on chart
- Documentation

The selection strategy: materials

Translation is important

Translation: "express design requirements as constraints and objectives"

Design requirements

Typical Constraints

What essential conditions must it meet?

- Be strong enough
- Conduct electricity
- Tolerate 250°C
- Be able to be cast

Typical Objectives

What measure of performance is to be maximized or minimized?

- Mass
- Volume
- Eco-impact
- Cost

Screening: "use constraints to eliminate materials that can't do the job"

What is a "material index"?

Component performance is limited by either:

• a single material property e.g. tensile strength,

σ_{ts} The material index

a material property group, e.g. modulus / density,

Ε/ρ

for the design

To maximize performance:

- First apply all **constraints**
- Then select materials with the biggest or smallest index

Simple one-property indices

Design requirement

Constraints

- Transparent of optical quality
- Able to be molded

Objective

As tough as possible –
 maximize fracture toughness K_{1c}

The material index: choose material with largest K_{1c}

Alternative objective

As cheap as possible –
 minimize material cost C_m

The material index: choose material with smallest C_m

Minimum weight design - indices Tensile ties

Main spar

E1/2

- beam

E = Young's modulus

P = Density

strut

E1/2

 σ_y = Yield strength

Undercarriage - bending and compression

$$\left(\frac{\sigma_y^{2/3}}{\rho}\right)$$

Index for a strong, light tie-rod

Strong tie of length L and minimum mass

Tie-rod **Function** F Area A Length L is specified Constraints Must not fail under load F m = massA = area**Equation for constraint on A:** L = length $F/A < \sigma_v$ ρ = density

Objective

Minimize mass m:

$$m = AL\rho$$

Performance metric

$$\mathbf{m} = \mathbf{F} \mathbf{L} \left(\frac{\mathbf{p}}{\mathbf{\sigma}_{\mathbf{v}}} \right)$$

Chose materials $M = \left(\frac{\sigma_y}{\rho}\right)$ with largest

 σ_{v} yield strength

Index for a stiff, light beam

Function

Stiff beam of length L and minimum mass

Constraints

- Length L is specified
- Must have bending stiffness > S*

Equation for constraint on A:

$$S = \frac{F}{\delta} = \frac{CEI}{L^3} = \frac{CEA^2}{12L^3}$$

Objective

Minimize mass m:

$$m = A L \rho$$

$$m = mass$$

$$A = area$$

$$L = length$$

$$\rho$$
 = density

$$S = stiffness (F/\delta)$$

This beam:
$$\delta = FL^3/CEI$$

$$(I = b^4/12 = A^2/12)$$

Performance metric

$$m = \left(\frac{12L^5 S^*}{C}\right)^{1/2} \left(\frac{\rho}{E^{1/2}}\right)$$

Chose materials
$$M = \left(\frac{E^{1/2}}{\rho}\right)$$

$$M = \left(\frac{\mathsf{E}^{1/2}}{\mathsf{P}}\right)$$

Material index

Component performance is limited by either:

• one single material property e.g. tensile strength,

a group of material properties. modulus / density,

material index for the design

To maximize performance:

- First apply all constraints
- Then select materials with the extreme index

Screening with a CHART STAGE

Screening with a LIMIT STAGE

Screening with a TREE STAGE

Example task: Materials for Oars

Handle Collar Sleeve Spoon
Loom

Step 1 – Determine Design Requirements

- - -

Step 2 – Determine Material performance index

... (explanations with formula, eq.s ...)

Step 3 – Plot the chart in order to determine the best possible choice

- - -

Example task: Materials for Oars

Minimize mass for given bending stiffness (and length)

$$m = AL\rho$$

$$S \propto \frac{EI}{L^3} \propto E \frac{A^2}{L^3}$$

$$m \propto \sqrt{\frac{SL^3}{E}} L\rho = \sqrt{S} \cdot L^{5/2} \cdot \frac{\rho}{\sqrt{E}}$$

Ranking, using charts

Light stiff beam:

Index
$$M = \frac{E^{1/2}}{\rho}$$

Rearrange:

$$E = \rho^2 M^2$$

Take logs:

$$Log E = 2 log \rho + 2 log M$$

Function	Index	Slope
Tie	Ε/ρ	1
Beam	E ^{1/2} /ρ	2
Panel	E ^{1/3} /ρ	3

Selection using index in a bubble chart

Selection using index directly on chart axis

Documentation

Documentation: "now the number of candidates is small, explore their character in depth"

Suppliers' data sheets

Videos for Excercise

Materials Selection with Granta EduPack

Lesson 1: Creating Charts

https://youtu.be/oVH2r8tJrp8?list=PLtt6-

ZgUFmMK4aApOUoA85CvaJ_udGDCe

Lesson 2: Formatting Charts

https://www.youtube.com/watch?v=hNA5DBNwm1I&list=PLtt6-

ZgUFmMK4aApOUoA85CvaJ_udGDCe&index=2

Summary

The selection strategy:

Translate - Screen - Rank - Documentation

- EduPack allows Screening using 'Limit Chart Tree stages' in any number and sequence
- The progression:

Questions?

Contact: MyCourses 'General discussion' channel