Improved analysis of randomized SVD for top-eigenvector approximation

Ruo-Chun Tzeng¹ Po-An Wang¹ Florian Adriaens¹

Aristides Gionis¹ Chi-Jen Lu²

 1 KTH

²Academic Sinica

International Conference on ArtificialIntelligence and Statistics (AISTATS) 2022

Outline

Introduction

Motivation
Randomized SVE

Challenges

Our approach

Random projection

Positive semidefinite matrices

Indefinite matrices

Extension

Experimen

There are many problems of the form:

Given
$$\mathcal{T} \subseteq \mathbb{R}^n \setminus \{\mathbf{0}\}$$
 and a symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, find $\underset{\mathbf{x} \in \mathcal{T}}{\operatorname{argmax}} \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$.

- ▶ PCA: $\mathbf{A} = \mathbf{X}\mathbf{X}^T$ where $\mathbf{X} \in \mathbb{R}^{n \times m}$ and $\mathcal{T} = \mathbb{R}^n \setminus \{\mathbf{0}\}$
- ▶ *k*-conflicting group (CG) detection [1, 10]:
 - ▶ A: undirected signed adjacency matrix
 - $ightharpoonup \mathcal{T} = \{q,0,-1\}^n \setminus \{\mathbf{0}\} \text{ for } q \in [k-1]$
- 2-community detection:
 - ▶ A: modularity matrix [6] or Bethe-Hessian matrix [7, 8]

Given
$$\mathcal{T} \subseteq \mathbb{R}^n \setminus \{\mathbf{0}\}$$
 and a symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, find $\underset{\mathbf{x} \in \mathcal{T}}{\operatorname{argmax}} \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$.

A computational efficient way to solve these problem is

- 1 Find the top-eigenvector \mathbf{u}_1 of \mathbf{A}
- 2 Round u_1 into a vector in \mathcal{T} (if needed)

Given
$$\mathcal{T} \subseteq \mathbb{R}^n \setminus \{\mathbf{0}\}$$
 and a symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, find $\underset{\mathbf{x} \in \mathcal{T}}{\operatorname{argmax}} \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$.

A computational efficient way to solve these problem is

- 1 Find the approximated top-eigenvector $\hat{\mathbf{u}}$ of \mathbf{A} by numerical solvers
- 2 Round $\hat{\mathbf{u}}$ into a vector in \mathcal{T} (if needed)

Given
$$\mathcal{T} \subseteq \mathbb{R}^n \setminus \{\mathbf{0}\}$$
 and a symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, find $\underset{\mathbf{x} \in \mathcal{T}}{\operatorname{argmax}} \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$.

A computational efficient way to solve these problem is

- 1 Find the approximated top-eigenvector $\hat{\mathbf{u}}$ of \mathbf{A} by numerical solvers
- 2 Round $\hat{\mathbf{u}}$ into a vector in \mathcal{T} (if needed)

To characterize the gap, let $(\lambda_1, \mathbf{u}_1)$ of \mathbf{A} be the top-eigenpair of \mathbf{A} , $\lambda_1 > 0$ and define

$$R(\hat{\mathbf{u}}) = \lambda_1^{-1} \frac{\hat{\mathbf{u}}^T \mathbf{A} \hat{\mathbf{u}}}{\hat{\mathbf{u}}^T \hat{\mathbf{u}}}.$$
 (1)

To characterize the gap, let $(\lambda_1, \mathbf{u}_1)$ of **A** be the top-eigenpair of **A**, $\lambda_1 > 0$ and define

$$R(\hat{\mathbf{u}}) = \lambda_1^{-1} \frac{\hat{\mathbf{u}}^T \mathbf{A} \hat{\mathbf{u}}}{\hat{\mathbf{u}}^T \hat{\mathbf{u}}}.$$
 (1)

▶ For 2-CG [1], using $\hat{\mathbf{u}}$ (resp. \mathbf{u}_1) results in $\sqrt{n}/R(\hat{\mathbf{u}})$ -approx (resp. \sqrt{n} -approx) algorithm.

To characterize the gap, let $(\lambda_1, \mathbf{u}_1)$ of \mathbf{A} be the top-eigenpair of \mathbf{A} , $\lambda_1 > 0$ and define

$$R(\hat{\mathbf{u}}) = \lambda_1^{-1} \frac{\hat{\mathbf{u}}^T \mathbf{A} \hat{\mathbf{u}}}{\hat{\mathbf{u}}^T \hat{\mathbf{u}}}.$$
 (1)

In this paper, we aim to study the performance of numerical solvers, w.r.t. (1), under $\mathcal{O}(nd)$ -space and $\mathcal{O}(q)$ -pass setting.

To characterize the gap, let $(\lambda_1, \mathbf{u}_1)$ of **A** be the top-eigenpair of **A**, $\lambda_1 > 0$ and define

$$R(\hat{\mathbf{u}}) = \lambda_1^{-1} \frac{\hat{\mathbf{u}}^T \mathbf{A} \hat{\mathbf{u}}}{\hat{\mathbf{u}}^T \hat{\mathbf{u}}}.$$
 (1)

In this paper, we aim to study the performance of numerical solvers, w.r.t. (1), under $\mathcal{O}(nd)$ -space and $\mathcal{O}(q)$ -pass setting.

Prior works are all additive bounds and require $q = \Omega(\ln n)$ to be meaningful.

▶ Randomized SVD yielding $R(\hat{\mathbf{u}}) \ge 1 - \mathcal{O}(\ln n/q)$ for any $\mathbf{A} \ge 0$ w.h.p., shown by [5, 9], is the state-of-the-art.

To characterize the gap, let $(\lambda_1, \mathbf{u}_1)$ of **A** be the top-eigenpair of **A**, $\lambda_1 > 0$ and define

$$R(\hat{\mathbf{u}}) = \lambda_1^{-1} \frac{\hat{\mathbf{u}}^T \mathbf{A} \hat{\mathbf{u}}}{\hat{\mathbf{u}}^T \hat{\mathbf{u}}}.$$
 (1)

In this paper, we aim to study the performance of numerical solvers, w.r.t. (1), under $\mathcal{O}(nd)$ -space and $\mathcal{O}(q)$ -pass setting.

Prior works are all additive bounds and require $q = \Omega(\ln n)$ to be meaningful.

Question

Is $q = \Omega(\ln n)$ necessary or an artifact of the analysis?

Notation let $(\lambda_i(\cdot), \mathbf{u}_i(\cdot))$ be the *i*-th largest eigenpair of the given matrix Algorithm given a symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\lambda_1 > 0$ and $q, d \in \mathbb{N}$

```
Algorithm: RSVD(\mathbf{A}, q, d)

1 \mathbf{Y} \leftarrow \mathbf{A}^q \mathbf{S} where \mathbf{S} \sim \mathcal{N}(0, 1)^{n \times d};

2 \mathbf{Y} = \mathbf{Q} \mathbf{R};

3 \mathbf{B} \leftarrow \mathbf{Q}^T \mathbf{A} \mathbf{Q};

4 \hat{\mathbf{u}} = \mathbf{Q} \mathbf{u}_1(\mathbf{B});

5 return \hat{\mathbf{u}};
```

Notation let $(\lambda_i(\cdot), \mathbf{u}_i(\cdot))$ be the *i*-th largest eigenpair of the given matrix Algorithm given a symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\lambda_1 > 0$ and $q, d \in \mathbb{N}$

```
Algorithm: RSVD(A, q, d)

1 \mathbf{Y} \leftarrow \mathbf{A}^q \mathbf{S} where \mathbf{S} \sim \mathcal{N}(0, 1)^{n \times d};

2 \mathbf{Y} = \mathbf{Q}\mathbf{R};

3 \mathbf{B} \leftarrow \mathbf{Q}^T \mathbf{A} \mathbf{Q};

4 \hat{\mathbf{u}} = \mathbf{Q} \mathbf{u}_1(\mathbf{B});

5 return \hat{\mathbf{u}};
```

Step 1: random projection $\mathbf{Y} = \mathbf{A}^q \mathbf{S}$

- ▶ Effect of the powering: $\mathbf{Y}_{:,j} = \mathbf{A}^q \mathbf{S}_{:,j} = \sum_{i=1}^n \lambda_i^q (\mathbf{u}_i^T \mathbf{S}_{:,j}) \mathbf{u}_i$, $\forall j \in [d]$
- ▶ Find the best unit vector $\hat{\mathbf{u}} \in \text{range}(\mathbf{Y})$

Notation let $(\lambda_i(\cdot), \mathbf{u}_i(\cdot))$ be the *i*-th largest eigenpair of the given matrix Algorithm given a symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\lambda_1 > 0$ and $q, d \in \mathbb{N}$

```
Algorithm: RSVD(\mathbf{A},q,d)

1 \mathbf{Y} \leftarrow \mathbf{A}^q \mathbf{S} where \mathbf{S} \sim \mathcal{N}(0,1)^{n \times d};

2 \mathbf{Y} = \mathbf{Q}\mathbf{R};

3 \mathbf{B} \leftarrow \mathbf{Q}^T \mathbf{A} \mathbf{Q};

4 \hat{\mathbf{u}} = \mathbf{Q} \mathbf{u}_1(\mathbf{B});

5 return \hat{\mathbf{u}};
```

Step 1: random projection $\mathbf{Y} = \mathbf{A}^q \mathbf{S}$

- ▶ Effect of the powering: $\mathbf{Y}_{:,j} = \mathbf{A}^q \mathbf{S}_{:,j} = \sum_{i=1}^n \lambda_i^q (\mathbf{u}_i^T \mathbf{S}_{:,j}) \mathbf{u}_i$, $\forall j \in [d]$
- ► Find $\hat{\mathbf{u}} = \operatorname{argmax}\{\mathbf{v}^T \mathbf{A} \mathbf{v} : \mathbf{v} \in \operatorname{range}(\mathbf{Y}) \cap \mathbb{S}^{n-1}\}$

Notation let $(\lambda_i(\cdot), \mathbf{u}_i(\cdot))$ be the *i*-th largest eigenpair of the given matrix Algorithm given a symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\lambda_1 > 0$ and $q, d \in \mathbb{N}$

```
Algorithm: RSVD(\mathbf{A},q,d)

1 \mathbf{Y} \leftarrow \mathbf{A}^q \mathbf{S} where \mathbf{S} \sim \mathcal{N}(0,1)^{n \times d};

2 \mathbf{Y} = \mathbf{Q} \mathbf{R};

3 \mathbf{B} \leftarrow \mathbf{Q}^T \mathbf{A} \mathbf{Q};

4 \hat{\mathbf{u}} = \mathbf{Q} \mathbf{u}_1(\mathbf{B});

5 return \hat{\mathbf{u}};
```

Step 2: compute $\hat{\mathbf{u}} = \operatorname{argmax} \{ \mathbf{v}^T \mathbf{A} \mathbf{v} : \mathbf{v} \in \operatorname{range}(\mathbf{Y}) \cap \mathbb{S}^{n-1} \}$

As $\forall \mathbf{v} \in \text{range}(Y) \cap \mathbb{S}^{n-1}$ can be written as $\mathbf{v} = \mathbf{Q}\mathbf{a}$ for some $\mathbf{a} \in \mathbb{S}^{d-1}$, it follows that

$$\hat{\mathbf{u}}^T \mathbf{A} \hat{\mathbf{u}} = \max_{\mathbf{v} \in \text{range}(\mathbf{Y}) \cap \mathbb{S}^{n-1}} \mathbf{v}^T \mathbf{A} \mathbf{v} = \max_{\mathbf{a} \in \mathbb{S}^{d-1}} \mathbf{a}^T \mathbf{B} \mathbf{a} = \lambda_1(\mathbf{B})$$

▶ Goal: analyze the guarantee of RSVD w.r.t. (1)

Algorithm: RSVD(\mathbf{A}, q, d)

- 1 $\mathbf{Y} \leftarrow \mathbf{A}^q \mathbf{S}$ where $\mathbf{S} \sim \mathcal{N}(0,1)^{n \times d}$;
- $\mathbf{Y} = \mathbf{Q}\mathbf{R}$;
- $\mathbf{3} \; \mathbf{B} \leftarrow \mathbf{Q}^T \mathbf{A} \mathbf{Q};$
- 4 $\hat{\bf u} = {\bf Q} \, {\bf u}_1({\bf B});$
- 5 return û;

$$R(\hat{\mathbf{u}}) = \lambda_1^{-1} \frac{\hat{\mathbf{u}}^T \mathbf{A} \hat{\mathbf{u}}}{\hat{\mathbf{u}}^T \hat{\mathbf{u}}} \quad (1)$$

▶ Goal: analyze the guarantee of RSVD w.r.t. (1)

Algorithm: RSVD(\mathbf{A}, q, d) 1 $\mathbf{Y} \leftarrow \mathbf{A}^q \mathbf{S}$ where $\mathbf{S} \sim \mathcal{N}(0, 1)^{n \times d}$; 2 $\mathbf{Y} = \mathbf{Q} \mathbf{R}$; 3 $\mathbf{B} \leftarrow \mathbf{Q}^T \mathbf{A} \mathbf{Q}$; 4 $\hat{\mathbf{u}} = \mathbf{Q} \mathbf{u}_1(\mathbf{B})$; 5 return $\hat{\mathbf{u}}$;

$$R(\hat{\mathbf{u}}) = \lambda_1^{-1} \frac{\hat{\mathbf{u}}^T \mathbf{A} \hat{\mathbf{u}}}{\hat{\mathbf{u}}^T \hat{\mathbf{u}}} \quad (1)$$

▶ Prior works [3, 5] are based on sharp estimations of $\|\mathbf{A} - \mathbf{Q}\mathbf{Q}^T\mathbf{A}\|_2$ which unfortunately leads to additive bounds of (1), and limited to $\mathbf{A} \succeq 0$.

▶ Goal: analyze the guarantee of RSVD w.r.t. (1)

```
Algorithm: RSVD(A, q, d)

1 \mathbf{Y} \leftarrow \mathbf{A}^q \mathbf{S} where \mathbf{S} \sim \mathcal{N}(0, 1)^{n \times d};

2 \mathbf{Y} = \mathbf{Q}\mathbf{R};

3 \mathbf{B} \leftarrow \mathbf{Q}^T \mathbf{A} \mathbf{Q};

4 \hat{\mathbf{u}} = \mathbf{Q} \mathbf{u}_1(\mathbf{B});

5 return \hat{\mathbf{u}};
```

$$R(\hat{\mathbf{u}}) = \lambda_1^{-1} \frac{\hat{\mathbf{u}}^T \mathbf{A} \hat{\mathbf{u}}}{\hat{\mathbf{u}}^T \hat{\mathbf{u}}} \quad (1)$$

- ▶ Prior works [3, 5] are based on sharp estimations of $\|\mathbf{A} \mathbf{Q}\mathbf{Q}^T\mathbf{A}\|_2$ which unfortunately leads to additive bounds of (1), and limited to $\mathbf{A} \geq 0$.
- ► Converting classical metric to (1) by matrix perturbation theory yields not only additive but also eigengap-dependent bounds.

▶ Goal: analyze the guarantee of RSVD w.r.t. (1)

Algorithm: RSVD(A, q, d) 1 $\mathbf{Y} \leftarrow \mathbf{A}^q \mathbf{S}$ where $\mathbf{S} \sim \mathcal{N}(0, 1)^{n \times d}$; 2 $\mathbf{Y} = \mathbf{Q} \mathbf{R}$; 3 $\mathbf{B} \leftarrow \mathbf{Q}^T \mathbf{A} \mathbf{Q}$; 4 $\hat{\mathbf{u}} = \mathbf{Q} \mathbf{u}_1(\mathbf{B})$; 5 return $\hat{\mathbf{u}}$;

$$R(\hat{\mathbf{u}}) = \lambda_1^{-1} \frac{\hat{\mathbf{u}}^T \mathbf{A} \hat{\mathbf{u}}}{\hat{\mathbf{u}}^T \hat{\mathbf{u}}} \quad (1)$$

 \Rightarrow This probably suggests that to derive a tight analysis of (1) we should avoid matrix subtractions.

Outline

Introduction

Motivation

Randomized SVD

Challenges

Our approach

Random projection

Positive semidefinite matrices

Indefinite matrices

Extension

Experimen

Algorithm: RSVD($\mathbf{A}, \mathcal{D}, q, d$)

- 1 $\mathbf{Y} \leftarrow \mathbf{A}^q \mathbf{S}$ where $\mathbf{S} \sim \mathcal{N}(0,1)^{n \times d}$;
- $\mathbf{Y} = \mathbf{Q}\mathbf{R}$;
- 3 $\mathbf{B} \leftarrow \mathbf{Q}^T \mathbf{A} \mathbf{Q}$:
- 4 $\hat{\bf u} = {\bf Q} {\bf u}_1({\bf B});$
- 5 return û;

$$R(\hat{\mathbf{u}}) = \lambda_1^{-1} \frac{\hat{\mathbf{u}}^T \mathbf{A} \hat{\mathbf{u}}}{\hat{\mathbf{u}}^T \hat{\mathbf{u}}} \quad (1)$$

▶ Recall that $\hat{\mathbf{u}} = \operatorname{argmax}\{\mathbf{v}^T \mathbf{A} \mathbf{v} : \mathbf{v} \in \operatorname{range}(\mathbf{Y}) \cap \mathbb{S}^{n-1}\}$

Algorithm: RSVD($\mathbf{A}, \mathcal{D}, q, d$)

- $\mathbf{1} \ \mathbf{Y} \leftarrow \mathbf{A}^q \mathbf{S} \ ext{where } \mathbf{S} \sim \mathcal{N}(0,1)^{n imes d};$
- $\mathbf{Y} = \mathbf{Q}\mathbf{R}$;
- $\mathbf{3} \; \mathbf{B} \leftarrow \mathbf{Q}^T \mathbf{A} \mathbf{Q}$:
- 4 $\hat{\bf u} = {\bf Q} \, {\bf u}_1({\bf B});$
- 5 return û;

$$R(\hat{\mathbf{u}}) = \lambda_1^{-1} \frac{\hat{\mathbf{u}}^T \mathbf{A} \hat{\mathbf{u}}}{\hat{\mathbf{u}}^T \hat{\mathbf{u}}} \quad (1)$$

▶ Recall that $\hat{\mathbf{u}} = \operatorname{argmax}\{\mathbf{v}^T \mathbf{A} \mathbf{v} : \mathbf{v} = \mathbf{Y} \mathbf{a}, \forall \mathbf{a} \in \mathbb{S}^{d-1}\}$

Algorithm: RSVD($\mathbf{A}, \mathcal{D}, q, d$)

- $\mathbf{1} \ \mathbf{Y} \leftarrow \mathbf{A}^q \mathbf{S} \ \text{where } \mathbf{S} \sim \mathcal{N}(0,1)^{n \times d};$
- $\mathbf{Y} = \mathbf{Q}\mathbf{R}$;
- $\mathbf{3} \; \mathbf{B} \leftarrow \mathbf{Q}^T \mathbf{A} \mathbf{Q}$:
- 4 $\hat{\bf u} = {\bf Q} \, {\bf u}_1({\bf B});$
- 5 return û;

$$R(\hat{\mathbf{u}}) = \lambda_1^{-1} \frac{\hat{\mathbf{u}}^T \mathbf{A} \hat{\mathbf{u}}}{\hat{\mathbf{u}}^T \hat{\mathbf{u}}} \quad (1)$$

▶ Recall that $\hat{\mathbf{u}} = \operatorname{argmax}\{\mathbf{v}^T \mathbf{A} \mathbf{v} : \mathbf{v} = \mathbf{A}^q \mathbf{S} \mathbf{a}, \forall \mathbf{a} \in \mathbb{S}^{d-1}\}$

Algorithm: RSVD($\mathbf{A}, \mathcal{D}, q, d$)

- $\mathbf{1} \ \mathbf{Y} \leftarrow \mathbf{A}^q \mathbf{S} \ ext{where } \mathbf{S} \sim \mathcal{N}(0,1)^{n imes d};$
- $\mathbf{Y} = \mathbf{Q}\mathbf{R};$
- $\mathbf{3} \; \mathbf{B} \leftarrow \mathbf{Q}^T \mathbf{A} \mathbf{Q};$
- 4 $\hat{\bf u} = {\bf Q} \, {\bf u}_1({\bf B});$
- 5 return û;

$$R(\hat{\mathbf{u}}) = \lambda_1^{-1} \frac{\hat{\mathbf{u}}^T \mathbf{A} \hat{\mathbf{u}}}{\hat{\mathbf{u}}^T \hat{\mathbf{u}}} \quad (1)$$

▶ Recall that $\hat{\mathbf{u}} = \operatorname{argmax}\{\mathbf{v}^T \mathbf{A} \mathbf{v} : \mathbf{v} = \mathbf{A}^q \mathbf{S} \mathbf{a}, \forall \mathbf{a} \in \mathbb{S}^{d-1}\}$ and use it to rewrite

$$R(\hat{\mathbf{u}}) = \lambda_1^{-1} \max_{\mathbf{a} \in \mathbb{S}^{d-1}} \frac{(\mathbf{S}\mathbf{a})^T \mathbf{A}^{2q+1}(\mathbf{S}\mathbf{a})}{(\mathbf{S}\mathbf{a})^T \mathbf{A}^{2q}(\mathbf{S}\mathbf{a})}$$

Algorithm: $RSVD(\mathbf{A}, \mathcal{D}, q, d)$

- 1 $\mathbf{Y} \leftarrow \mathbf{A}^q \mathbf{S}$ where $\mathbf{S} \sim \mathcal{N}(0,1)^{n \times d}$;
- $\mathbf{Y} = \mathbf{QR}$
- $\mathbf{3} \; \mathbf{B} \leftarrow \mathbf{Q}^T \mathbf{A} \mathbf{Q};$
- 4 $\hat{\bf u} = {\bf Q} \, {\bf u}_1({\bf B});$
- 5 return û;

$$R(\hat{\mathbf{u}}) = \lambda_1^{-1} rac{\hat{\mathbf{u}}^T \mathbf{A} \hat{\mathbf{u}}}{\hat{\mathbf{u}}^T \hat{\mathbf{u}}} \quad (1)$$

▶ Recall that $\hat{\mathbf{u}} = \operatorname{argmax}\{\mathbf{v}^T \mathbf{A} \mathbf{v} : \mathbf{v} = \mathbf{A}^q \mathbf{S} \mathbf{a}, \forall \mathbf{a} \in \mathbb{S}^{d-1}\}$ and use it to rewrite

$$R(\hat{\mathbf{u}}) = \lambda_1^{-1} \max_{\mathbf{a} \in \mathbb{S}^{d-1}} \frac{(\mathbf{S}\mathbf{a})^T \mathbf{A}^{2q+1}(\mathbf{S}\mathbf{a})}{(\mathbf{S}\mathbf{a})^T \mathbf{A}^{2q}(\mathbf{S}\mathbf{a})} = \max_{\mathbf{a} \in \mathbb{S}^{d-1}} \frac{\sum_{i \in [n]} \alpha_i^{2q+1} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}{\sum_{i \in [n]} \alpha_i^{2q} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2},$$

where $\alpha_i = \lambda_i/\lambda_1$, $\forall i \in [n]$.

Algorithm: RSVD($\mathbf{A}, \mathcal{D}, q, d$)

1
$$\mathbf{Y} \leftarrow \mathbf{A}^q \mathbf{S}$$
 where $\mathbf{S} \sim \mathcal{N}(0,1)^{n \times d}$;

- $\mathbf{Y} = \mathbf{Q}\mathbf{R}$;
- $\mathbf{3} \; \mathbf{B} \leftarrow \mathbf{Q}^T \mathbf{A} \mathbf{Q};$
- 4 $\hat{\bf u} = {\bf Q} \, {\bf u}_1({\bf B});$
- 5 return û;

$$R(\hat{\mathbf{u}}) = \lambda_1^{-1} \frac{\hat{\mathbf{u}}^T \mathbf{A} \hat{\mathbf{u}}}{\hat{\mathbf{u}}^T \hat{\mathbf{u}}} \quad (1)$$

Question

How to analyze
$$R(\hat{\mathbf{u}}) = \max_{\mathbf{a} \in \mathbb{S}^{d-1}} \frac{\sum_{i \in [n]} \alpha_i^{2q+1} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}{\sum_{i \in [n]} \alpha_i^{2q} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}$$
?

Definition (projection length)

The projection length of $\mathbf{v} \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$ onto a non-empty $\mathcal{X} \subseteq \mathbb{R}^n$ is $\cos \theta(\mathbf{v}, \mathcal{X})$, where

$$heta(\mathbf{v}, \mathcal{X}) = \cos^{-1}\left(\max_{\mathbf{x} \in \mathcal{X}} rac{\langle \mathbf{v}, \mathbf{x}
angle}{\|\mathbf{v}\|_2 \|\mathbf{x}\|_2}
ight).$$

For a matrix **X**, we use $\theta(\mathbf{v}, \mathbf{X})$ to denote $\theta(\mathbf{v}, \text{range}(\mathbf{X}))$.

Definition (projection length)

The projection length of $\mathbf{v} \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$ onto a non-empty $\mathcal{X} \subseteq \mathbb{R}^n$ is $\cos \theta(\mathbf{v}, \mathcal{X})$, where

$$heta(\mathbf{v}, \mathcal{X}) = \cos^{-1}\left(\max_{\mathbf{x} \in \mathcal{X}} rac{\langle \mathbf{v}, \mathbf{x}
angle}{\|\mathbf{v}\|_2 \|\mathbf{x}\|_2}
ight).$$

For a matrix **X**, we use $\theta(\mathbf{v}, \mathbf{X})$ to denote $\theta(\mathbf{v}, \text{range}(\mathbf{X}))$.

Lemma (Gaussian random projection)

Let $\mathbf{v} \in \mathbb{R}^n \backslash \{\mathbf{0}_n\}$ and $\mathbf{S} \sim \mathcal{N}(0,1)^{n \times d}$, $d \ll n$. Then,

$$\cos^2 heta(\mathbf{v},\mathbf{S}) = \Theta\left(rac{d}{n}
ight) \ ext{with probability } 1 - e^{-\Omega(d)}.$$

Lemma (Gaussian random projection)

Let $\mathbf{v} \in \mathbb{R}^n \backslash \{\mathbf{0}_n\}$ and $\mathbf{S} \sim \mathcal{N}(0,1)^{n \times d}$, $d \ll n$. Then,

$$\cos^2 heta(\mathbf{v},\mathbf{S}) = \Theta\left(rac{d}{n}
ight) \, ext{ with probability } 1 - e^{-\Omega(d)}.$$

Intuition due to [2]

Let $\mathbf{z}_1, \dots, \mathbf{z}_d$ sampled uniformly from d-dimensional orthonormal basis.

Observe that $\cos^2 \theta(\mathbf{v}, \mathbf{S}) = \sum_{i \in [d]} \langle \mathbf{v}, \mathbf{z}_i \rangle^2$. Then,

- ▶ by $\mathbb{E}[\cos^2 \theta(\mathbf{v}, \mathbf{S})] = \sum_{i \in [d]} \mathbb{E}[\langle \mathbf{v}, \mathbf{z}_i \rangle^2]$, and $\mathbb{E}[\langle \mathbf{v}, \mathbf{z}_i \rangle^2] = \frac{1}{n}$, $\forall i \in [d]$,
- we know $\mathbb{E}[\cos^2 \theta(\mathbf{v}, \mathbf{S})] = \frac{d}{n}$.

It remains to show that $\cos^2 \theta(\mathbf{v}, \mathbf{S})$ concentrates tightly around the mean.

Lemma (Gaussian random projection)

Let $\mathbf{v} \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$ and $\mathbf{S} \sim \mathcal{N}(0,1)^{n \times d}$, $d \ll n$. Then,

$$\cos^2 heta(\mathbf{v},\mathbf{S}) = \Theta\left(rac{d}{n}
ight) \, ext{ with probability } 1 - e^{-\Omega(d)}.$$

Proof sketch (simplified from [4])

For simplicity, assume $\|\mathbf{v}\|_2 = 1$. It follows from $d \ll n$ that rank $(\mathbf{S}) = d$ a.s.

(i)
$$\sigma_1(\mathbf{S}) = \Theta(\sqrt{n})$$
 with prob. $\geq 1 - e^{-\Omega(n)}$,

(ii)
$$\sigma_d(\mathbf{S}) = \Omega(\sqrt{n} - \sqrt{d-1})$$
 with prob. $\geq 1 - e^{-\Omega(n-d)}$

Lemma (Gaussian random projection)

Let $\mathbf{v} \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$ and $\mathbf{S} \sim \mathcal{N}(0,1)^{n \times d}$, $d \ll n$. Then,

$$\cos^2 heta(\mathbf{v},\mathbf{S}) = \Theta\left(rac{d}{n}
ight)$$
 with probability $1-e^{-\Omega(d)}$.

Proof sketch (simplified from [4])

For simplicity, assume $\|\mathbf{v}\|_2 = 1$. It follows from $d \ll n$ that rank $(\mathbf{S}) = d$ a.s.

(i)
$$\sigma_1(\mathbf{S}) = \Theta(\sqrt{n})$$
 with prob. $\geq 1 - e^{-\Omega(n)}$,

(ii)
$$\sigma_d(\mathbf{S}) = \Omega(\sqrt{n} - \sqrt{d-1})$$
 with prob. $\geq 1 - e^{-\Omega(n-d)}$

$$\cos heta(\mathbf{v}, \mathbf{S}) = \max_{\mathbf{v} \in \mathbb{S}^{d-1}} rac{\langle \mathbf{v}, \mathbf{S} a
angle}{\|\mathbf{S} a\|_2}$$

Lemma (Gaussian random projection)

Let $\mathbf{v} \in \mathbb{R}^n \backslash \{\mathbf{0}_n\}$ and $\mathbf{S} \sim \mathcal{N}(0,1)^{n \times d}$, $d \ll n$. Then,

$$\cos^2 \theta(\mathbf{v}, \mathbf{S}) = \Theta\left(\frac{d}{n}\right)$$
 with probability $1 - e^{-\Omega(d)}$.

Proof sketch (simplified from [4])

For simplicity, assume $\|\mathbf{v}\|_2 = 1$. It follows from $d \ll n$ that rank(\mathbf{S}) = d a.s.

(i)
$$\sigma_1(\mathbf{S}) = \Theta(\sqrt{n})$$
 with prob. $\geq 1 - e^{-\Omega(n)}$,

(ii)
$$\sigma_d(\mathbf{S}) = \Omega(\sqrt{n} - \sqrt{d-1})$$
 with prob. $\geq 1 - e^{-\Omega(n-d)}$

$$rac{\sigma_1(\mathbf{S}^T\mathbf{v})}{\sigma_1(\mathbf{S})} \overset{(a)}{\leq} \cos heta(\mathbf{v},\mathbf{S}) = \max_{\mathbf{v} \in \mathbb{S}^{d-1}} rac{\langle \mathbf{v},\mathbf{S}a
angle}{\|\mathbf{S}a\|_2}$$

(a): setting $\mathbf{a} = \mathbf{S}^T \mathbf{v} / \|\mathbf{S}^T \mathbf{v}\|_2$ and that $\sigma_1(\mathbf{S}) > \|\mathbf{S}\mathbf{a}\|_2$ for all $\mathbf{a} \in \mathbb{S}^{d-1}$

Lemma (Gaussian random projection)

Let $\mathbf{v} \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$ and $\mathbf{S} \sim \mathcal{N}(0,1)^{n \times d}$, $d \ll n$. Then,

$$\cos^2 heta(\mathbf{v},\mathbf{S}) = \Theta\left(rac{d}{n}
ight) \ ext{with probability } 1 - e^{-\Omega(d)}.$$

Proof sketch (simplified from [4])

For simplicity, assume $\|\mathbf{v}\|_2 = 1$. It follows from $d \ll n$ that rank(\mathbf{S}) = d a.s.

(i)
$$\sigma_1(\mathbf{S}) = \Theta(\sqrt{n})$$
 with prob. $\geq 1 - e^{-\Omega(n)}$,

(ii)
$$\sigma_d(\mathbf{S}) = \Omega(\sqrt{n} - \sqrt{d-1})$$
 with prob. $\geq 1 - e^{-\Omega(n-d)}$

$$\frac{\sigma_1(\mathbf{S}^T\mathbf{v})}{\sigma_1(\mathbf{S})} \overset{(a)}{\leq} \cos \theta(\mathbf{v}, \mathbf{S}) = \max_{\mathbf{v} \in \mathbb{S}^{d-1}} \frac{\langle \mathbf{v}, \mathbf{S} \mathbf{a} \rangle}{\|\mathbf{S} \mathbf{a}\|_2} \overset{(b)}{\leq} \frac{\sigma_1(\mathbf{S}^T\mathbf{v})}{\sigma_d(\mathbf{S})}$$

(b): $\langle \mathbf{v}, \mathbf{S} \mathbf{a} \rangle \leq \|\mathbf{S}^T \mathbf{v}\|_2 \|\mathbf{a}\|_2$ and that $\sigma_d(\mathbf{S}) \leq \|\mathbf{S} \mathbf{a}\|_2$ for all $\mathbf{a} \in \mathbb{S}^{d-1}$

Lemma (Gaussian random projection)

Let $\mathbf{v} \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$ and $\mathbf{S} \sim \mathcal{N}(0,1)^{n \times d}$, $d \ll n$. Then,

$$\cos^2 heta(\mathbf{v},\mathbf{S}) = \Theta\left(rac{d}{n}
ight) \ ext{with probability } 1 - e^{-\Omega(d)}.$$

Proof sketch (simplified from [4])

For simplicity, assume $\|\mathbf{v}\|_2 = 1$. It follows from $d \ll n$ that rank(\mathbf{S}) = d a.s.

(i)
$$\sigma_1(\mathbf{S}) = \Theta(\sqrt{n})$$
 with prob. $\geq 1 - e^{-\Omega(n)}$,

(ii)
$$\sigma_d(\mathbf{S}) = \Omega(\sqrt{n} - \sqrt{d-1})$$
 with prob. $\geq 1 - e^{-\Omega(n-d)}$

$$\frac{\sigma_1(\mathbf{S}^T\mathbf{v})}{\sigma_1(\mathbf{S})} \stackrel{(a)}{\leq} \cos \theta(\mathbf{v}, \mathbf{S}) = \max_{\mathbf{v} \in \mathbb{S}^{d-1}} \frac{\langle \mathbf{v}, \mathbf{S} \mathbf{a} \rangle}{\|\mathbf{S} \mathbf{a}\|_2} \stackrel{(b)}{\leq} \frac{\sigma_1(\mathbf{S}^T\mathbf{v})}{\sigma_d(\mathbf{S})}$$

Invoking a union bound of (i)(ii) yields the desired.

Lemma (Gaussian random projection)

Let $\mathbf{v} \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$ and $\mathbf{S} \sim \mathcal{N}(0,1)^{n \times d}$, $d \ll n$. Then,

$$\cos^2 heta(\mathbf{v},\mathbf{S}) = \Theta\left(rac{d}{n}
ight) \; ext{with probability} \; 1 - e^{-\Omega(d)}.$$

Remark

Many interesting results are derived from (i)(ii).

(i)
$$\sigma_1(\mathbf{S}) = \Theta(\sqrt{n})$$
 w.h.p. (ii) $\sigma_d(\mathbf{S}) = \Omega(\sqrt{n} - \sqrt{d-1})$ w.h.p.

For example, let $\mathbf{T} = \sqrt{\frac{1}{d}}\mathbf{S}$

Lemma (Gaussian random projection)

Let $\mathbf{v} \in \mathbb{R}^n \backslash \{\mathbf{0}_n\}$ and $\mathbf{S} \sim \mathcal{N}(0,1)^{n \times d}$, $d \ll n$. Then,

$$\cos^2 heta(\mathbf{v},\mathbf{S}) = \Theta\left(rac{d}{n}
ight) \, ext{ with probability } 1 - e^{-\Omega(d)}.$$

Remark

Many interesting results are derived from (i)(ii).

(i)
$$\sigma_1(\mathbf{S}) = \Theta(\sqrt{n})$$
 w.h.p. (ii) $\sigma_d(\mathbf{S}) = \Omega(\sqrt{n} - \sqrt{d-1})$ w.h.p.

For example, let $\mathbf{T} = \sqrt{\frac{1}{d}}\mathbf{S}$ and \mathbf{T} satisfies

• restricted isometry property, i.e., $\|\mathbf{T}^T \mathbf{v}\|_2 = (1 \pm \epsilon) \|\mathbf{v}\|_2$ w.h.p.

Lemma (Gaussian random projection)

Let $\mathbf{v} \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$ and $\mathbf{S} \sim \mathcal{N}(0,1)^{n \times d}$, $d \ll n$. Then,

$$\cos^2 heta(\mathbf{v},\mathbf{S}) = \Theta\left(rac{d}{n}
ight) \, ext{ with probability } 1 - e^{-\Omega(d)}.$$

Remark

Many interesting results are derived from (i)(ii).

(i)
$$\sigma_1(\mathbf{S}) = \Theta(\sqrt{n})$$
 w.h.p. (ii) $\sigma_d(\mathbf{S}) = \Omega(\sqrt{n} - \sqrt{d-1})$ w.h.p.

For example, let $\mathbf{T} = \sqrt{\frac{1}{d}}\mathbf{S}$ and \mathbf{T} satisfies

- ▶ restricted isometry property, i.e., $\|\mathbf{T}^T\mathbf{v}\|_2 = (1 \pm \epsilon)\|\mathbf{v}\|_2$ w.h.p.
- ▶ Johnson-Lindenstrauss Lemma, i.e., $\|\mathbf{T}^T\mathbf{v}_i \mathbf{T}^T\mathbf{v}_j\|_2 = (1 \pm \epsilon)\|\mathbf{v}_i \mathbf{v}_j\|_2$ w.h.p. for any fixed set of N unit vectors $\{\mathbf{v}_i\}_{i \in [N]} \subseteq \mathbb{R}^n$ and $d = \Omega(\epsilon^{-2} \ln N)$

Assume $\mathbf{A} \succcurlyeq 0$, i.e., $\{\alpha_i\}_{i \in [n]}$ are nonnegative, and $d \ll n$.

Lemma (Gaussian random projection)

For any $\mathbf{v} \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$, $\cos^2 \theta(\mathbf{v}, \mathbf{S}) = \Theta\left(\frac{d}{n}\right)$ with prob. $1 - e^{-\Omega(d)}$.

Question

How can we use the lemma to analyze $R(\hat{\mathbf{u}}) = \max_{\mathbf{a} \in \mathbb{S}^{d-1}} \frac{\sum_{i \in [n]} \alpha_i^{2q+1} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}{\sum_{i \in [n]} \alpha_i^{2q} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}$?

Hint:
$$\cos^2 \theta(\mathbf{v}, \mathbf{S}) = \max_{\mathbf{a} \in \mathbb{S}^{d-1}} \frac{\langle \mathbf{S}^T \mathbf{v}, \mathbf{a} \rangle^2}{\sum_{i \in [n]} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}$$
 for any fixed $\mathbf{v} \in \mathbb{S}^{n-1}$.

Goal: analyze
$$R(\hat{\mathbf{u}}) = \max_{\mathbf{a} \in \mathbb{S}^{d-1}} \frac{\sum_{i \in [n]} \alpha_i^{2q+1} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}{\sum_{i \in [n]} \alpha_i^{2q} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}$$
 given p.s.d. \mathbf{A} and $d \ll n$

$$\text{Hint: } \cos^2\theta(\mathbf{v},\mathbf{S}) = \max_{\mathbf{a} \in \mathbb{S}^{d-1}} \tfrac{\langle \mathbf{S}^T \mathbf{v}, \mathbf{a} \rangle^2}{\sum_{i \in [n]} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2} \text{ for any fixed } \mathbf{v} \in \mathbb{S}^{n-1}$$

Fix any $\mathbf{a} \in \mathbb{S}^{d-1}$. Applying Cauchy inequality repeatedly yields:

$$R_{\mathbf{a}} := \frac{\sum_{i \in [n]} \alpha_i^{2q+1} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}{\sum_{i \in [n]} \alpha_i^{2q} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2} \ge \dots \ge \frac{\sum_{i \in [n]} \alpha_i \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}{\sum_{i \in [n]} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}.$$
 (2)

Goal: analyze
$$R(\hat{\mathbf{u}}) = \max_{\mathbf{a} \in \mathbb{S}^{d-1}} \frac{\sum_{i \in [n]} \alpha_i^{2q+1} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}{\sum_{i \in [n]} \alpha_i^{2q} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}$$
 given p.s.d. \mathbf{A} and $d \ll n$

Hint: $\cos^2 \theta(\mathbf{v}, \mathbf{S}) = \max_{\mathbf{a} \in \mathbb{S}^{d-1}} \frac{\langle \mathbf{S}^T \mathbf{v}, \mathbf{a} \rangle^2}{\sum_{i \in [n]} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}$ for any fixed $\mathbf{v} \in \mathbb{S}^{n-1}$

Fix any $\mathbf{a} \in \mathbb{S}^{d-1}$. Applying Cauchy inequality repeatedly yields:

$$R_{\mathbf{a}} := \frac{\sum_{i \in [n]} \alpha_i^{2q+1} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}{\sum_{i \in [n]} \alpha_i^{2q} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2} \ge \dots \ge \frac{\sum_{i \in [n]} \alpha_i \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}{\sum_{i \in [n]} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}.$$
 (2)

Rearranging (2) repeatedly leads to

$$\sum_{i \in [n]} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2 \ge R_{\mathbf{a}}^{-1} \sum_{i \in [n]} \alpha_i \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2 \ge \cdots \ge R_{\mathbf{a}}^{-(2q+1)} \sum_{i \in [n]} \alpha_i^{2q+1} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2$$

Goal: analyze
$$R(\hat{\mathbf{u}}) = \max_{\mathbf{a} \in \mathbb{S}^{d-1}} \frac{\sum_{i \in [n]} \alpha_i^{2q+1} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}{\sum_{i \in [n]} \alpha_i^{2q} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}$$
 given p.s.d. \mathbf{A} and $d \ll n$

Hint: $\cos^2 \theta(\mathbf{v}, \mathbf{S}) = \max_{\mathbf{a} \in \mathbb{S}^{d-1}} \frac{\langle \mathbf{S}^T \mathbf{v}, \mathbf{a} \rangle^2}{\sum_{i \in [n]} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}$ for any fixed $\mathbf{v} \in \mathbb{S}^{n-1}$

Fix any $\mathbf{a} \in \mathbb{S}^{d-1}$. Rearranging (2) repeatedly leads to

$$\sum_{i \in [n]} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2 \ge R_{\mathbf{a}}^{-1} \sum_{i \in [n]} \alpha_i \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2 \ge \cdots \ge R_{\mathbf{a}}^{-(2q+1)} \sum_{i \in [n]} \alpha_i^{2q+1} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2$$

which implies that

$$R_{\mathbf{a}}^{2q+1} \ge \frac{\sum_{i \in [n]} \alpha_i^{2q+1} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}{\sum_{i \in [n]} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2} \ge \frac{\langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}{\sum_{i \in [n]} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}$$

Goal: analyze
$$R(\hat{\mathbf{u}}) = \max_{\mathbf{a} \in \mathbb{S}^{d-1}} \frac{\sum_{i \in [n]} \alpha_i^{2q+1} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}{\sum_{i \in [n]} \alpha_i^{2q} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}$$
 given p.s.d. \mathbf{A} and $d \ll n$

 $\text{Hint: } \cos^2\theta(\mathbf{v},\mathbf{S}) = \max_{\mathbf{a} \in \mathbb{S}^{d-1}} \frac{\langle \mathbf{S}^T \mathbf{v}, \mathbf{a} \rangle^2}{\sum_{i \in [n]} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2} \text{ for any fixed } \mathbf{v} \in \mathbb{S}^{n-1}$

Fix any $\mathbf{a} \in \mathbb{S}^{d-1}$. Rearranging (2) repeatedly leads to

$$\sum_{i \in [n]} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2 \ge R_{\mathbf{a}}^{-1} \sum_{i \in [n]} \alpha_i \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2 \ge \cdots \ge R_{\mathbf{a}}^{-(2q+1)} \sum_{i \in [n]} \alpha_i^{2q+1} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2$$

which implies that

$$R(\hat{\mathbf{u}})^{2q+1} \ge \max_{\mathbf{a} \in \mathbb{S}^{d-1}} \frac{\sum_{i \in [n]} \alpha_i^{2q+1} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}{\sum_{i \in [n]} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2} \ge \max_{\mathbf{a} \in \mathbb{S}^{d-1}} \frac{\langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}{\sum_{i \in [n]} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2} = \cos^2 \theta(\mathbf{u}_1, \mathbf{S})$$

Our results: positive semidefinite matrices

(Theorem 1) For
$$\mathbf{A} \geq 0$$
, $R(\hat{\mathbf{u}}) = \left(\Omega\left(\frac{d}{n}\right)\right)^{\frac{1}{2q+1}}$ with prob. $\geq 1 - e^{-\Omega(d)}$.

Our results: positive semidefinite matrices

(Theorem 1) For
$$\mathbf{A}\succcurlyeq 0$$
, $R(\hat{\mathbf{u}})=\left(\Omega\left(\frac{d}{n}\right)\right)^{\frac{1}{2q+1}}$ with prob. $\geq 1-e^{-\Omega(d)}$.

(Theorem 2)
$$\exists \mathbf{A} \succcurlyeq 0$$
 such that $R(\hat{\mathbf{u}}) = \mathcal{O}\left(\left(\frac{d}{n}\right)^{\frac{1}{2q+1}}\right)$ with prob. $\geq 1 - e^{-\Omega(d)}$.

▶ Proof: consider $\alpha_i = \left(\frac{d}{n}\right)^{1/(2q+1)}$, $\forall i \geq 2$ and use Gaussian projection lemma

Our results: positive semidefinite matrices

(Theorem 1) For
$$\mathbf{A} \succcurlyeq 0$$
, $R(\hat{\mathbf{u}}) = \left(\Omega\left(\frac{d}{n}\right)\right)^{\frac{1}{2q+1}}$ with prob. $\geq 1 - e^{-\Omega(d)}$.

(Theorem 2)
$$\exists \mathbf{A} \succcurlyeq 0$$
 such that $R(\hat{\mathbf{u}}) = \mathcal{O}\left(\left(\frac{d}{n}\right)^{\frac{1}{2q+1}}\right)$ with prob. $\geq 1 - e^{-\Omega(d)}$.

(Theorem 3) For $\mathbf{A}\succcurlyeq 0$ with (i_0,γ) -power-law decay^a, $i_0\in[n]$ and $\gamma>1/2q$,

$$R(\hat{f u}) = \Omega\left(\left(rac{d}{d+i_0}
ight)^{rac{1}{2q+1}}
ight) \; ext{with prob.} \; \geq 1-e^{-\Omega(d)}.$$

 $[\]sigma^{i}(i_0,\gamma)$ -power-law decay implies there exists constant C>0 such that $\frac{\sigma_i}{\sigma_1}\leq C\cdot i^{-\gamma}$ for all $i\geq i_0$.

Our results: indefinite matrices

Assumption 1

There exists a constant $\kappa \in (0,1]$ such that $\sum_{i=2}^{n} \alpha_i^{2q+1} \ge \kappa \sum_{i=2}^{n} |\alpha_i|^{2q+1}$.

(Theorem 4) For **A** with (i_0, γ) -power-law decay, $i_0 \in [n]$ and $\gamma > 1/2q$, and satisfying Assumption 1, there exists a constant $c_{\kappa} > 0$ such that

$$R(\hat{\mathbf{u}}) = \Omega\left(\frac{c_{\kappa}}{d+i_0}\left(\frac{d}{d+i_0}\right)^{\frac{1}{2q+1}}\right) \text{ with prob. } \geq 1-e^{-\Omega(\sqrt{d}\kappa^2)}.$$

Extension: RandSum

Exploiting prior knowledge of large $\langle \mathbf{u}_1, \mathbf{1} \rangle^2$

If you know $\langle \mathbf{u}_1, \mathbf{1} \rangle^2 = \Theta(n)$, is there a better choice of **S**?

(Remind that
$$\mathbf{Y}_{:,j} = \mathbf{A}^q \mathbf{S}_{:,j} = \sum_{i=1}^n \lambda_i^q (\mathbf{u}_i^T \mathbf{S}_{:,j}) \mathbf{u}_i$$
, $\forall j \in [d]$)

Extension: RandSum

Algorithm: RandSum(\mathbf{A}, q, d, p)

- 1 $\mathbf{S}_1 \sim \mathcal{N}(0,1)^{n \times \lceil \frac{d}{2} \rceil}$, $\mathbf{S}_2 \sim \mathsf{Bernoulli}(p)^{n \times \lfloor \frac{d}{2} \rfloor}$;
- 2 $S \leftarrow [S_1 \quad S_2];$
- 3 return RSVD(\mathbf{A} , \mathbf{S} ,q,d);

(Theorem 5) For $A \geq 0$, RandSum(A,q,d,p) returns $\hat{\mathbf{u}}$ satisfying

$$R(\hat{\mathbf{u}}) = \left(\Omega\left(\frac{\max\left\{d, \langle \mathbf{u}_1, \mathbf{1}_n \rangle^2\right\}}{n}\right)\right)^{\frac{1}{2q+1}} \text{ with prob. } \geq 1 - e^{-\Omega(d)}.$$

Extension: RandSum

Assumption 2

There exists a constant $\kappa' \in (0,1]$ such that $\sum_{i=2}^{n} \alpha_i^{2q+1} \xi_i \ge \kappa' \sum_{i=2}^{n} |\alpha_i|^{2q+1} \xi_i$ and $\langle \mathbf{u}_1, \mathbf{1}_n \rangle^2 = \Omega(1)$, where $\xi_i = \mathbb{E}\left[\langle \mathbf{S}^T \mathbf{u}_i, \frac{\mathbf{1}_d}{\sqrt{d}} \rangle^2\right]$, $\forall i \in [n]$.

(Theorem 6) For **A** with (i_0, γ) -power-law decay, $i_0 \in [n]$ and $\gamma > 1/2q$, and satisfying Assumption 1, and 2, RandSum (\mathbf{A}, q, d, p) returns $\hat{\mathbf{u}}$ satisfying

$$R(\hat{\mathbf{u}}) = \Omega\left(\left(\max\left\{\frac{d}{d+i_0}, \frac{\langle \mathbf{u}_1, \mathbf{1}_n \rangle^2}{n}\right\}\right)^{\frac{1}{2q+1}}\right) \text{ with prob. } \geq 1 - e^{-\Omega(\sqrt{d})}.$$

(the dependency on κ, κ' are hidden here for simplicity).

Outline

Introduction

Motivation

Randomized SVD

Challenges

Our approach

Random projection

Positive semidefinite matrices

Indefinite matrices

Extension

Experiment

Experiment: 2-conflicting group detection [1, 10]

	WikiVot	Referendum	Slashdot	WikiCon
V	7 115	10 884	82 140	116 717
<i>E</i>	100 693	251 406	500 481	2 026 646
(γ, i_0)	(4.6, 15)	(4.5, 16)	(5.3, 17)	(2.8, 22)
κ	0.397	0.620	0.204	0.034
$\cos heta(\mathbf{u}_1, 1_n)$	0.378	0.399	0.194	0.193

- ► RSVD: solid line
- RandSum: dashed line

Summary

Contributions

- ▶ Improve the analysis of RSVD, especially in the regime of $o(\ln n)$ passes, and provides the first analysis of (1) for indefinite matrices.
- ▶ Study the property of Bernoulli random projection and demonstrate its usefulness to the task of conflicting group detection [1, 10].

Future works

- It is an open problem to characterize the fundamental limit of $R(\hat{\mathbf{u}})$ for any q-pass $\mathcal{O}(nd)$ -space algorithm.
- ▶ It would be useful to extend our results to (row/column)-stochastic matrices and to top-*k* eigenvectors approximations.

Reference I

[1] Francesco Bonchi, Edoardo Galimberti, Aristides Gionis, Bruno Ordozgoiti, and Giancarlo Ruffo.

Discovering polarized communities in signed networks.

In Proc. of CIKM, 2019.

- [2] Sanjoy Dasgupta and Anupam Gupta.
 An elementary proof of a theorem of johnson and lindenstrauss.
 Random Structures & Algorithms, 2003.
- [3] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions.

 SIAM review, 2011.
- [4] Moritz Hardt and Eric Price. The noisy power method: a meta algorithm with applications. In *Proc. of NeurIPS*, 2014.

Reference II

[5] Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger and faster approximate singular value decomposition.
In Proc. of NeurIPS, 2015.

[6] Mark EJ Newman. Modularity and community structure in networks. Proc. of NAS, 2006.

- [7] Alaa Saade, Florent Krzakala, and Lenka Zdeborová. Spectral clustering of graphs with the bethe hessian. In *Proc. of NeurIPS*, 2014.
- [8] Alaa Saade, Marc Lelarge, Florent Krzakala, and Lenka Zdeborová. Spectral detection in the censored block model. In Proc. of ISIT, 2015.

Reference III

[9] Max Simchowitz, Ahmed El Alaoui, and Benjamin Recht. Tight query complexity lower bounds for pca via finite sample deformed wigner law.

In Proc. of STOC, 2018.

[10] Ruo-Chun Tzeng, Bruno Ordozgoiti, and Aristides Gionis. Discovering conflicting groups in signed networks. In Proc. of NeurIPS, 2020.