| Name: |            |
|-------|------------|
| J#:   | Dr. Clontz |
| Date: |            |

Math 237 – Linear Algebra Fall 2017

Version 1 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard S1.

Mark:

Determine if the set of matrices  $\left\{ \begin{bmatrix} 3 & -1 \\ 0 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}, \begin{bmatrix} 3 & -8 \\ 6 & 5 \end{bmatrix} \right\}$  is linearly dependent or linearly independent.

Standard S3.

Mark:

Let W be the subspace of  $\mathcal{P}_2$  given by  $W = \text{span}\left(\left\{-3x^2 - 8x, x^2 + 2x + 2, -x + 3\right\}\right)$ . Find a basis for W.

# Standard S4. Mark:

Let W be the subspace of  $\mathcal{P}_3$  given by  $W = \operatorname{span}\left(\left\{x^3 - x^2 + 3x - 3, 2x^3 + x + 1, 3x^3 - x^2 + 4x - 2, x^3 + x^2 + x - 7\right\}\right)$ . Compute the dimension of W.

# Standard A1. Mark:

Let  $T: \mathbb{R}^3 \to \mathbb{R}^4$  be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 2y + 3z \\ 0 \end{bmatrix}$$

| Standard A2. | Mark: |
|--------------|-------|
|              |       |

Determine if the map  $T: \mathcal{P}^3 \to \mathcal{P}^4$  given by T(f(x)) = xf(x) - f(x) is a linear transformation or not.

Additional Notes/Marks

| Name: |            |
|-------|------------|
| J#:   | Dr. Clontz |
| Date: |            |

independent.

Math 237 – Linear Algebra Fall 2017

Version 2 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard S1.

Determine if the set of matrices  $\left\{ \begin{bmatrix} 3 & -1 \\ 0 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}, \begin{bmatrix} 3 & -8 \\ 6 & 5 \end{bmatrix} \right\}$  is linearly dependent or linearly

Standard S3.  $\begin{bmatrix} & & & & \\ & & & & \\ & & & \\ & & & \end{bmatrix}$  Let  $W = \operatorname{span}\left(\left\{\begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}\right\}\right)$ . Find a basis for W.

# Standard S4. Mark:

Let W be the subspace of  $\mathcal{P}_3$  given by  $W = \operatorname{span}\left(\left\{x^3 - x^2 + 3x - 3, 2x^3 + x + 1, 3x^3 - x^2 + 4x - 2, x^3 + x^2 + x - 7\right\}\right)$ . Compute the dimension of W.

# Standard A1. Mark:

Let  $T: \mathbb{R}^3 \to \mathbb{R}^4$  be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 2y + 3z \\ 0 \end{bmatrix}$$

| Standard A2. | Mark: |
|--------------|-------|
|              |       |

Determine if the map  $T: \mathcal{P}^4 \to \mathcal{P}^3$  given by T(f) = f' - f'' is a linear transformation or not.

Additional Notes/Marks

| Name: |            |
|-------|------------|
| J#:   | Dr. Clontz |
| Date: |            |

Math 237 – Linear Algebra Fall 2017

Version 3 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard S1.

Determine if the set of vectors 
$$\left\{ \begin{bmatrix} -3 \\ 8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix} \right\}$$
 is linearly dependent or linearly independent

Standard S3. 
$$\begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}$$
 Eind a basis for  $W$ .

Standard S4. 
$$\begin{bmatrix} 1 \\ -1 \\ 3 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 4 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ -7 \end{bmatrix} \end{bmatrix}$$
. Compute the dimension of  $W$ .

Standard A1.

Mark:

Let  $T: \mathbb{R}^3 \to \mathbb{R}^4$  be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 2y + 3z \\ 0 \end{bmatrix}$$

Standard A2.

Mark:

Determine if  $D: M_{2,2} \to \mathbb{R}$  given by  $D\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ad - bc$  is a linear transformation or not.

 ${\bf Additional\ Notes/Marks}$ 

| Name: |            |
|-------|------------|
| J#:   | Dr. Clontz |
| Date: |            |

Math 237 – Linear Algebra Fall 2017

### Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

|              | Mark: |
|--------------|-------|
| Standard S1. |       |
|              |       |

Determine if the set of polynomials  $\{x^3 - 8x, x^3 + 2x^2 + 2, -x^2 + 3\}$  is linearly dependent or linearly independent

# Standard S3.

Let W be the subspace of  $\mathcal{P}_3$  given by  $W = \text{span}\left(\left\{x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3\right\}\right)$ . Find a basis for W.

Standard S4. 
$$\begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 6 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 3 \\ -2 \end{bmatrix}, \begin{bmatrix} 7 \\ -1 \\ 8 \\ -3 \end{bmatrix}$$
 Eind the dimension of  $W$ .

Standard A1.

Mark:

Let  $T: \mathbb{R}^3 \to \mathbb{R}^4$  be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 2y + 3z \\ 0 \end{bmatrix}$$

Standard A2.

Mark:

Determine if  $D: M_{2,2} \to \mathbb{R}$  given by  $D\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ad - bc$  is a linear transformation or not.

 ${\bf Additional\ Notes/Marks}$ 

| Name: |            |
|-------|------------|
| J#:   | Dr. Clontz |
| Date: |            |

Math 237 – Linear Algebra Fall 2017

Version 5 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard S1.

Determine if the set of vectors 
$$\left\{ \begin{bmatrix} -3 \\ 8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix} \right\}$$
 is linearly dependent or linearly independent

Standard S3.

Mark:

Let W be the subspace of  $\mathcal{P}_2$  given by  $W = \text{span}\left(\left\{-3x^2 - 8x, x^2 + 2x + 2, -x + 3\right\}\right)$ . Find a basis for W.

Standard S4. Mark:
$$\text{Let } W = \text{span} \left( \left\{ \begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix} \right\} \right). \text{ Compute the dimension of } W.$$

Standard A1.

Mark:

Let  $T: \mathbb{R}^3 \to \mathbb{R}^4$  be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 2y + 3z \\ 0 \end{bmatrix}$$

Standard A2.

Mark:

Determine if  $T: \mathbb{R}^2 \to \mathbb{R}^2$  given by  $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} e^x \\ e^y \end{bmatrix}$  is a linear transformation.

 ${\bf Additional\ Notes/Marks}$ 

| Name: |            |
|-------|------------|
| J#:   | Dr. Clontz |
| Date: |            |

Version 6

Math 237 – Linear Algebra Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard S1. 
$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$$
 is linearly dependent or linearly independent

Standard S3. 
$$\begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Standard S4.

Mark:

Let W be the subspace of  $M_{2,2}$  given by  $W = \operatorname{span}\left(\left\{\begin{bmatrix} 2 & 0 \\ -2 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 3 & 6 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}\right\}\right)$ . Compute the dimension of W.

Standard A1.

Mark:

Let  $T: \mathbb{R}^3 \to \mathbb{R}^4$  be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 2y + 3z \\ 0 \end{bmatrix}$$

| Standard A2. | Mark: |
|--------------|-------|
|              |       |

Determine if the map  $T: \mathcal{P}^4 \to \mathcal{P}^3$  given by T(f) = f' - f'' is a linear transformation or not.

Additional Notes/Marks