Binary Adders

SoC & CPU

- A system-on-a-chip (SoC) contains a CPU (Central Processing Unit), GPU (Graphics Processing Unit), memory, USB controller, power management circuits, wireless radios (WiFi, 3G, 4G LTE, 5G ...), ...
- A CPU contains: ALU (Arithmetic Logic Unit), CU (Control Unit), ...

Binary Adder

- The binary Adder is the main component of the Arithmetic Logic Unit (ALU)
- Adders are also used to calculate addresses, table indices, increment and decrement operators...

Problem: 1-bit binary Adder

➤ Design a binary logic circuit to ADD 2-binary digits: (a, b) ... (This is 1-bit Adder).

1-bit Adder: Truth table

- How many inputs = ?
- How many outputs = ?

1-bit Adder: Truth table

- How many inputs = 2
- How many outputs = 2

a	Ь	С	S
0	0		
0	1		
1	0		
1	1		

1-bit Adder: Truth table

a	Ь	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

1-bit Adder: Carry logic equation

a	Ь	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Therefore,

$$C = ab$$

1-bit Adder: Sum logic equation

a	Ь	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Therefore,

$$C = ab$$

$$S = \overline{a}b + a\overline{b}$$

$$= a \oplus b$$

1-bit Adder: Logic circuit

$$C = ab$$

$$S = \overline{a}b + a\overline{b}$$

$$= a \oplus b$$

1-bit Adder: Graphical Symbol

$$C = ab$$

$$S = \overline{a}b + a\overline{b}$$

$$= a \oplus b$$

Example-1

Example-1

0 is the carry and 1 is the sum

Example-2

Example-2: Addition

```
1
11
+ 01
100
```

What about the logic circuit?

Example-2: Logic circuit

Example-2: Logic circuit

HA-2 should have 3 inputs in order to add the carry 1 (of the HA-1) + 1 + 0

Example-2: Logic circuit

Full-Adder?

Therefore we need logic adders with three inputs = *Full Adders*

Result

Therefore we need logic adders with three inputs = Full Adders

Design a Full Adder

3 inputs and 2 outputs

Full-Adder

Full-Adder: Truth table

Ci	X i	y i	C _{i+1}	Si
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Full-Adder: Truth table

Ci	X i	y i	C _{i+1}	Si
0	0	0	0	0
0	0	1	0	1
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Full-Adder: Truth table

Ci	X i	y i	C _{i+1}	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full-Adder: Logic equations

Ci	X i	y i	C _{i+1}	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Si =
$$\overline{C}_i \times_i y_i + \overline{C}_i \times_i y_i + C_i \times_i y_i + C_i \times_i y_i$$

Full-Adder: Simplification: Ci+1

Carry

Full-Adder: Simplification ... C_{i+1}

Full-Adder: Simplification ... C_{i+1}

$$C_{i+1} = C_i \times_i y_i + C_i \times_i y_i + C_i \times_i y_i + C_i \times_i y_i$$

= $C_i(\overline{x_i} y_i + x_i \overline{y_i}) + x_i y_i (\overline{C_i} + C_i)$

Full-Adder: Simplification ... C_{i+1}

$$Ci+1 = Ci xi yi + Ci xi yi + Ci xi yi + Ci xi yi$$

$$= Ci(\overline{xi} yi + xi \overline{yi}) + xi yi (\overline{Ci} + Ci)$$

$$Ci+1 = Ci(xi \oplus yi) + xi yi$$

Full-Adder: Simplification: Si

Sum

Simplify: 5

Si =
$$\overline{C}i \times i \cdot yi + \overline{C}i \times i \cdot \overline{y}i + Ci \times i \cdot \overline{y}i + Ci \times i \cdot yi$$

Simplify: 5

Si =
$$\overline{C}i \overline{x}i yi + \overline{C}i xi \overline{y}i + Ci \overline{x}i \overline{y}i + Ci xi yi$$

Simplify: Si

Si =
$$\overline{C}i \overline{x}i yi + \overline{C}i xi \overline{y}i + Ci \overline{x}i \overline{y}i + Ci xi yi$$

Si = $\overline{C}i(xi \oplus yi)$ + $Ci(\overline{x}i \overline{y}i + xi yi)$

Simplify: Si

Si =
$$\overline{C}i \overline{x}i yi + \overline{C}i xi \overline{y}i + Ci \overline{x}i \overline{y}i + Ci xi yi$$

Si = $\overline{C}i(xi \oplus yi)$ + $Ci(\overline{x}i \overline{y}i + xi yi)$
Si = $\overline{C}i(xi \oplus yi)$ + $Ci(\overline{x}i \oplus yi)$

Done...

$$Si = \overline{Ci} \times i yi + \overline{Ci} \times i \overline{yi} + Ci \times i \overline{yi} + Ci \times i yi = Ci \oplus xi \oplus yi$$

$$Si = \overline{Ci} (xi \oplus yi) + Ci (\overline{xi} \overline{yi} + xi yi)$$

$$Si = \overline{Ci} (xi \oplus yi) + Ci (\overline{xi} \oplus yi)$$

K-maps and XOR gates ...

Si =
$$\overline{C}i \overline{x}i yi + \overline{C}i xi \overline{y}i + Ci \overline{x}i \overline{y}i + Ci xi yi$$

What is the K-map of the above logical expression?

All equivalent ... "diagonal" looping ...

Finally ... Full-adder equations

$$C_{i+1} = C_i(x_i \oplus y_i) + x_i y_i$$

 $S_i = C_i \oplus x_i \oplus y_i$

$$S_i = C_i \oplus x_i \oplus y$$

Full-adder ... circuit

40

1-bit Full-Adder (3-inputs, 2-outputs)

4-Bit Adder

4-bit Adder

4-Bit Adder Example

Add: A+B

- 0111 = A
- 1010 = B

4-bit Adder example

4-bit Adder example

4-bit Adder example

4-bit Carry Ripple Adder (CRA)

The carry "ripples" through the full adders

4-bit CRA: Compact form

Overflow ...the result is 5-bits and the input is 4-bits

Overflow ...

- When the addition result has an extra bit (5-bits) than the inputs (4-bits), this is called overflow
- Overflow occurs in case where the carry-out is one (unsigned numbers addition)
- Overflow is a hardware related "problem"...

4-bit CRA ...

4-bit CRA ... circuit

CMOS Carry Ripple Adder, with transistors

Sum = A & B & Cin

 $Cout = A.B + Cin.(A \oplus B)$

High Speed CMOS logic 4-bit Binary Full Adder

CD74HC283