Assignment 10

February 6, 2022

1 Q1.

Investigate the nature of critical points for the following functions

$$1.f(x,y) = x^3 - 3x^2 + y^2$$

9.1.1)
$f(x,y) = x^3 - 3x^2 + y^2$ $\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = \begin{bmatrix} 3x^2 - 6x \\ 2y \end{bmatrix}$
J- [>f/24] 24
For critical points, we know $\nabla f = 0 \Rightarrow 3n^2 - 6n = 0 + 2y = 0$
=) x=2,0 k y=0
Hessian = [\delta^2 f/\delta n^2 \delta^2 f/\delta x dy] \\ \delta^2 f/\delta y^2 \]
det/dyda det/dy2
Hessian = $\begin{bmatrix} \frac{\partial}{\partial x}(3x^2-6x) & \frac{\partial}{\partial x}(2y) \\ -\frac{\partial}{\partial y}(3x^2-6x) & \frac{\partial}{\partial y}(2y) \end{bmatrix}$
- 0/24 (3x2-6x) 0/24 (2y)
Hessian - [6x-6 0]
0 2
At $(2,0)$, Hessian = $\begin{bmatrix} 6 & 0 \\ 0 & 2 \end{bmatrix}$ eig vals = $m \pm \sqrt{m^2 - p}$ = $4 \pm \sqrt{16 - 12}$
0 2 = 4± 16-12
$= 4 \pm 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2$
Actually, no need to calc eig vale: We're still on x & y axes by
Actually, no need to calc eig vals: We're still on x & y axes by this transformation and hence naturally, they should've been
the leading diagonal elements, lot:
: At $(2,0)$, Herian eigrals $> 0 \Rightarrow (2,0)$ is the minima
At $(0,0)$, Herrian = $\begin{bmatrix} -6 & 0 \\ 0 & 2 \end{bmatrix}$ eig vals = $\begin{bmatrix} -6,2 \end{bmatrix}$
": Eig values of Hersian are positive of negative ⇒ (0,0) is saddle point.
And For $f = x^3 - 3x^2 + y^2$, $(20) \rightarrow \text{Critical point of minimum} = -4 (func. (0,0) \rightarrow \text{Critical saddle point} = 0 (func. val)$
(0,0) -> (vitical saddle point = O (fue val)

$$2.f(x,y) = x^2 + xy + y^2 + \frac{1}{x} + \frac{1}{y}, x \neq 0, y \neq 0$$

$$\begin{cases}
\frac{1\cdot 2}{1} \\
\frac{1}{1} + \frac{1}{1}$$

2 Q2

Using Lagrange Multipliers, show that

a. The maximum value of $x^2y^3z^4$ subject to the constraint 2x + 3y + 4z = a is $(a/9)^9$

(3.2.1) Continued
Hessian = /2/2xy3z4) 3/2x (3x2y2z4) 3/2x (4x2y3z3)
2/2 (2xy ³ 2 ⁴) 2/3 (3x ² y ² x ⁴) 2/3 (4x ² y ³ x ³)
$\left[\frac{\partial}{\partial z}\left(2\pi y^{3}z^{4}\right)\right]^{2}\left(3\pi^{2}y^{2}z^{4}\right)$ $\left[\frac{\partial}{\partial z}\left(4\pi^{2}y^{3}z^{3}\right)\right]$
$= \begin{bmatrix} 2y^{3}z^{4} & 6x^{2}y^{2}z^{4} & 8xy^{3}z^{3} \\ 6xy^{2}z^{4} & 6x^{2}yz^{4} & 12x^{2}y^{2}z^{3} \\ 8xyz^{3} & 12x^{2}y^{2}z^{3} & 12x^{2}y^{3}z^{2} \end{bmatrix}$
= 2 6 8 6 6 12 Gigvals = 25.6, -3.39, -2.20 8 12 12
(1,1,1) is a saddle point.

b. The minimum value of yz + zx + xy subject to the constraint $xyz = a^2(x + y + z)$ is $9a^2$

(Q.2.2) f = yz + Zx + xy $\Rightarrow g : I = a^{2}(x + y + Z)$ $\Rightarrow g : I = a^{2}(1 + 1 + 1)$ $\Rightarrow g : I - a^{2}(1 + 1 + 1)$ Let us transform the variables st. xy = p, yz = q; xz = xyThen our problem becomes f = p + q + y $\Rightarrow G : I - a^{2}(1 + 1 + 1)$ Now $\nabla f = \lambda \Delta g$ $\Rightarrow I = \lambda \Delta g$

Substituting critical point in function, we get optima = p+q+r=3aBut we know, the f^{α} g also satisfied by this point $\Rightarrow 1-a^2\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)=1=3a\sqrt{\lambda}$ $\Rightarrow 1=a^2\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)=1=3a\sqrt{\lambda}$ Substituting in optima sol, optimal value = $3a-3a(1)=3a\cdot 3a=9a^2$ Hessian = $\frac{3}{2}$ $\frac{3}{2$

3 Q3

Find the minimum of $f(x,y) = \alpha x^2 + \beta y^2$ for various values of α, β , by

a. computing the gradient of f, τ

$$\begin{array}{lll}
 & \varphi \cdot \hat{\beta} & \varphi$$

b. coding the iterations in Python with initial values $x_0 = 3, y_0 = 4$ and using the stopping criteria as $|f(j+1)-f(j)| < \epsilon = 1e^{-6}$

Estimate the order of convergence by plotting the error against number of iterations for a few cases.

```
[1]: from typing import Tuple
  import pandas as pd
  import matplotlib.pyplot as plt
  pd.options.display.float_format = "{:,.6f}".format

# Define the staring points as constants
START_X = 3.0
START_Y = 4.0
```

```
[2]: def compute_function_value(alpha:float, beta:float, x:float, y:float) -> float:
    """[Given the value of alpha, beta and the point, maps x,y in domain
    of f to another real number as per the definition of f]

Args:
    alpha (float): [The co-efficient of x^2]
    beta (float): [The co-efficient of y^2]
```

```
x (float): [x value]
y (float): [y value]

Returns:
    [float]: [Function value]
"""
return alpha * (x ** 2) + beta * (y ** 2)
```

```
[3]: def compute_tau(alpha: float, beta:float, x:float, y:float) → float:

"""[Compute tau value for the given function based on the following
psi(tau) = xi - tau * grad(f)
F(psi) = f(psi(tau))

dF/dtau = 0 → Solve for tau in terms of x and y

]

Args:

alpha (float): [The co-efficient of x^2]
beta (float): [The co-efficient of y^2]
x (float): [x value]
y (float): [y value]

Returns:

[float]: [Tau value at a point (x,y) for the given function]
"""
return 0.5 * ((alpha **2) * (x **2) + (beta **2) * (y ** 2)) / ((alpha **□
→3) * (x ** 2) + (beta ** 3) * (y ** 2))
```

```
[4]: def update_variables(alpha: float, beta: float, x: float, y:float) → Tuple:

"""[Perform update step in the opposite direction as gradient with the
update parameter tau]

Args:

alpha (float): [The co-efficient of x^2]
beta (float): [The co-efficient of y^2]
x (float): [x value]
y (float): [y value]

Returns:

Tuple: [Updated values of x, y after performing the step]
"""

tau = compute_tau(alpha, beta, x, y)
x_updated = x - 2 * alpha * tau * x
y_updated = y - 2 * beta * tau * y
return (x_updated, y_updated)
```

```
[5]: def optimize_function(alpha: float, beta: float, epsilon: float = 1e-6, plot:

→bool = True):
```

```
"""[Optimize the function alphast x pprox + betast y pprox until the optimal solution\sqcup
⇒converges with a threshold of 1e-6]
   Args:
       alpha (float): [The co-efficient of x^2]
       beta (float): [The co-efficient of y^2]
       epsilon (float, optional): [Threshold of convergence]. Defaults to 1e-6.
       plot (bool, optional): [Whether to plot the progress of optimization_{\sqcup}
\rightarrow process]. Defaults to True.
   11 11 11
   # Define the starting parameters
   error_margin = 1
   max_iterations = 100
   iteration_counter = 0
   x, y = START_X, START_Y
   f_current = compute_function_value(alpha, beta, x, y)
   entries = []
   # Optimize the solutions
   while error_margin > epsilon:
       # Put a hard break on iterations exceeding a set threshold number
       if iteration_counter > max_iterations:
           break
       # Compute the current value of the function
       entries append([x, y, f_current, error_margin])
       # Update the variables
       x, y = update_variables(alpha, beta, x, y)
       # Compute function value at the updated step and update the
       # stopping criterion
       f_new = compute_function_value(alpha, beta, x, y)
       error_margin = abs(f_new - f_current)
       # Make the new value to be the current value
       f_current = f_new
       # Increase the iteration counter
       iteration_counter += 1
   # Add the last entry
   entries.append([x, y, f_current, error_margin])
```

```
# Create a summary dataframe and plot the function value and relative error

→ at each point

# During the execution of the optimization

execution_summary = pd.DataFrame(entries, columns = ["x", "y",

→ "function_value", "delta_f"])

plt.plot(execution_summary.delta_f.iloc[1:], linestyle = "solid")

plt.title(f"Alpha: {alpha:.2f} Beta: {beta:.2f} Converged In:

→ {iteration_counter:02d} iterations")

plt.ylabel("Delta F")

plt.xlabel("Iteration Counter")

print(execution_summary)
```

Let $f = x^2 + 3y^2$

[6]: optimize_function(1, 3)

```
function_value
                                      delta_f
0 3.000000 4.000000
                           57.000000 1.000000
1 1.959184 -0.163265
                           3.918367 53.081633
2 0.206230 0.274973
                           0.269361 3.649006
3 0.134681 -0.011223
                           0.018517 0.250845
4 0.014177 0.018903
                           0.001273 0.017244
5 0.009258 -0.000772
                           0.000088 0.001185
6 0.000975 0.001299
                           0.000006 0.000081
7 0.000636 -0.000053
                           0.000000 0.000006
8 0.000067 0.000089
                           0.000000 0.000000
```



```
Let f = 3x^2 + 5y^2
```

[7]: optimize_function(3, 5)

	x	У	function_value	delta_f
(3.000000	4.000000	107.000000	1.000000
1	1.069996	-0.288899	3.851984	103.148016
2	0.108000	0.143999	0.138671	3.713313
3	0.038520	-0.010400	0.004992	0.133679
4	0.003888	0.005184	0.000180	0.004812
Ę	0.001387	-0.000374	0.000006	0.000173
6	0.000140	0.000187	0.000000	0.000006
7	0.000050	-0.000013	0.000000	0.000000

Let
$$f = 567^2 + 278y^2$$

[8]: optimize_function(567, 278)

	x	У	function_value	delta_f
0	3.000000	4.000000	9,551.000000	1.000000
1	-0.540278	1.685603	955.377146	8,595.622854
2	0.300087	0.400116	95.565437	859.811709

```
-0.054044 0.168609
                                         86.006120
                             9.559317
   0.030017 0.040023
                             0.956209
                                          8.603108
5
 -0.005406 0.016866
                             0.095649
                                          0.860560
6
  0.003003 0.004003
                             0.009568
                                          0.086081
  -0.000541 0.001687
                             0.000957
                                          0.008611
7
   0.000300 0.000400
                             0.000096
                                          0.000861
9 -0.000054 0.000169
                             0.000010
                                          0.000086
10 0.000030 0.000040
                             0.00001
                                          0.000009
11 -0.000005 0.000017
                             0.000000
                                          0.00001
```


Let $f = 1.618x^2 + 2.81828y^2$

[9]: optimize_function(1.618, 2.81828)

	x	У	function_value	delta_f
0	3.000000	4.000000	59.654480	1.000000
1	1.154760	-0.285458	2.387206	57.267274
2	0.120052	0.160069	0.095529	2.291677
3	0.046210	-0.011423	0.003823	0.091707
4	0.004804	0.006406	0.000153	0.003670
5	0.001849	-0.000457	0.000006	0.000147
6	0.000192	0.000256	0.000000	0.000006
7	0.000074	-0.000018	0.000000	0.000000

As we can see from the plots above, the order of convergence is around 10 iterations for a tolerance value of 1e-6 for a function of the form $f=\alpha x^2+\beta y^2$