Predictive Sets

Nishant Chandgotia Benjamin Weiss

Hebrew University of Jerusalem

December, Hebrew University of Jerusalem

Predictive sets

By a process we mean a stationary process with a finite state space unless stated otherwise.

Given a subset $P \subset \mathbb{N}$, a sequence of random variables X_i ; $i \in P$ will be denoted by X_P .

A set $P \subset \mathbb{Z}$ is called a predictive set if for all zero-entropy processes $X_{\mathbb{Z}}$, X_0 is measurable with respect to X_P .

Predictive sets

A set $P \subset \mathbb{Z}$ is called a predictive set if for all zero-entropy processes $X_{\mathbb{Z}}$, X_0 is measurable with respect to X_P .

Equivalently, P is a predictive set if for all zero-entropy processes $X_{\mathbb{Z}}$,

$$H(X_0 \mid X_P) = 0.$$

 \mathbb{N} is a predictive set.

$k\mathbb{N}$ is predictive

The process $X_{\mathbb{Z}}$ has zero entropy if and only if $X_{k\mathbb{Z}}$ has zero-entropy.

Thus P is a predictive set if and only if kP is also a predictive set.

But
$$P = k\mathbb{N} + r$$
 is not predictive (when $r \geq 0 \pmod{k}$): $k = 2, r = 1$

Let us see why this is true for k = 2 and r = 1.

Take two independent random variables Y_1 taking values -1 or 1 and Y_2 taking values 2 or -2 with equal probability.

Now consider a process $X_{\mathbb{Z}}$ for which (independent of Y_1 and Y_2)

with probability
$$1/2$$
, $X_{2\mathbb{Z}}:=Y_1$; $X_{2\mathbb{Z}+1}:=Y_2$ and with probability $1/2$, $X_{2\mathbb{Z}}:=Y_2$; $X_{2\mathbb{Z}+1}:=Y_1$.

Clearly $X_{\mathbb{Z}}$ has zero entropy but

$$\mathbb{P}(X_0 > 0 \mid X_{2\mathbb{N}+1}) = 1/2.$$

$$P = k\mathbb{N} + r$$
 is not predictive (when $r \geq 0 \pmod{k}$): $k = 2, r = 1$

Here, in fact, X_0 is independent of $X_{2\mathbb{N}+1}$. This process is not weak mixing but we can construct one which is weak mixing and has zero entropy.

Some sufficient conditions.

Let (X, μ, T) be a probability preserving transformation (ppt). Given a set $U \subset X$ of positive measure, we denote by

$$N(U, U) := \{ n \in \mathbb{N} : \mu(T^n(U) \cap U) > 0 \}.$$

A set $A \subset \mathbb{N}$ is called a return-time set if A = N(U, U) for some ppt.

Theorem (Chandgotia, Weiss)

Return-time sets are predictive sets.

Theorem (Chandgotia, Weiss)

Return-time sets are predictive sets.

Note that $k\mathbb{N}$ is a return-time set for the transformation $T: \mathbb{Z}/k\mathbb{Z} \to \mathbb{Z}/k\mathbb{Z}$ given by T(i) = i + 1.

Thus we have generalised our former observation that $k\mathbb{I}N$ is predictive.

Theorem (Chandgotia, Weiss)

Return-time sets are predictive sets.

This theorem can be formally strengthened for return-time sets coming from zero-entropy ppt. If (X, μ, T) is a zero entropy ppt, $U \subset X$ with $\mu(U) > 0$ and P is a predictive set then $P \cap N(U, U)$ is also a predictive set.

Question

Does every return-time set contain a return-time set of a zero-entropy process?

The intersection of a return-time set of a zero entropy process and a predictive set is predictive

If (X, μ, T) is a zero entropy ppt, $U \subset X$ with $\mu(U) > 0$ and P is a predictive set then $P \cap N(U, U)$ is also a predictive set.

It is easy to see that if $\alpha \in \mathbb{R}/\mathbb{Z}$ and $\epsilon > 0$ then the set

$$\{n : n\alpha \mod 1 \in (-\epsilon, \epsilon)\}$$

contains a return-time set for $U = (-\epsilon/2, \epsilon/2)$.

Thus if P is predictive then

$$P \cap \{n : n\alpha \mod 1 \in (-\epsilon, \epsilon)\}$$

is also predictive.

Some necessary conditions

SIP* sets

Given a sequence of natural numbers $S = \{s_i\}_{i \in \mathbb{N}} \subset \mathbb{N}$, we write

$$SIP(S) := \left\{ \sum_{i=1}^{\infty} \epsilon_i s_i : \epsilon_i \in \{-1, 0, 1\} \right\} \cap \mathbb{N}.$$

A set $P \subset \mathbb{N}$ is called SIP^* if it intersects every SIP set.

SIP* sets

$$SIP(S) := \left\{ \sum_{i=1}^{\infty} \epsilon_i s_i : \epsilon_i \in \{-1, 0, 1\} \right\} \cap \mathbb{N}.$$

① $k\mathbb{N}$ is SIP^* : Given a sequence $S=\{s_i\}_{i\in\mathbb{N}}\subset\mathbb{N}$ there exists a subsequence $s_{i_1},s_{i_2},\ldots,s_{i_k}$ (which are equal modulo k) such that

$$\sum_{t=1}^k s_{i_t} \in k\mathbb{N}.$$

Thus $SIP(S) \cap k\mathbb{N} \neq \emptyset$.

- ② if $r \not\equiv 0 \pmod{k}$ then $k\mathbb{N} + r$ is not SIP^* : If a sequence $S \subset k\mathbb{N}$ then $SIP(S) \subset k\mathbb{N}$ and $SIP(S) \cap (k\mathbb{N} + r) = \emptyset$.
- \bigcirc SIP* sets have bounded gaps.

SIP^* sets have bounded gaps.

Suppose P is a set such that it does not have bounded gaps. Then we can fit an SIP set in its complement.

Predictive sets are SIP*

Theorem (Chandgotia, Weiss)

Predictive sets are SIP*.

- ① If $r \not\equiv 0 \pmod{k}$ then $k\mathbb{N} + r$ is not SIP^* : Thus we have generalised the fact that $k\mathbb{N} + r$ is not predictive.
- \bigcirc SIP^* sets have bounded gaps. Thus predictive sets also have bounded gaps.

Sufficient conditions for a set to be predictive:

Theorem (Chandgotia, Weiss)

Return-time sets are predictive sets.

Necessary conditions for a set to be predictive:

Theorem (Chandgotia, Weiss)

Predictive sets are SIP*.

The following question arises naturally.

Question

Are sufficient conditions necessary and necessary conditions sufficient?

Let us give some partial answers.

Are all SIP^* sets predictive?

If P is a predictive set, $\epsilon > 0$ and $\alpha \in \mathbb{R}/\mathbb{Z}$ then

$$\{n \in \mathbb{N} : n\alpha \in (-\epsilon, \epsilon)\} \cap P$$

is predictive.

Question

Is the intersection of two predictive sets also predictive? Is the intersection non-empty?

Question

Let $\alpha \in \mathbb{R}/\mathbb{Z}$ be irrational and $\epsilon < 1/2$. Is the set

$$\{n \in \mathbb{N} : n\alpha \in (0, \epsilon)\}$$

predictive?

An uncertain theorem

Question

Let $\alpha \in \mathbb{R}/\mathbb{Z}$ be irrational and $\epsilon < 1/2$. Is the set

$$\{n \in \mathbb{N} : n\alpha \in (0, \epsilon)\}$$

predictive?

If the answer is yes then we have two predictive sets

$$\{n \in \mathbb{N} : n\alpha \in (0, \epsilon)\}$$
 and $\{n \in \mathbb{N} : -n\alpha \in (0, \epsilon)\}$

which do not intersect.

Theorem (Akin and Glasner, 2016)

The set $\{n \in \mathbb{N} : n\alpha \in (0, \epsilon)\}$ is SIP^* .

Thus if the answer is no then we have a SIP^* set which is not predictive.

There are predictive sets which do not contain return-time sets.

Consider the set

$$Q=\{n^2: n\in\mathbb{N}\}.$$

For all $i, k \in \mathbb{N}$ we have that if

$$n^2 = -i + 3i^2k = i(-1 + 3ik)$$

then since i and -1+3ik are prime to each other, they are perfect squares.

But this is impossible because $-1+3ik\equiv -1\pmod 3$. Thus $\mathbb{N}\setminus Q$ contains $-i+3i^2k$; $k\in\mathbb{N}$.

There are predictive sets which do not contain return-time sets.

Hence we have that

$$H(X_{-i} \mid X_{\mathbb{N} \setminus O}) = 0$$

for all $i \in \mathbb{N}$.

But then for all $i \in \mathbb{Z}$

$$H(X_i \mid X_{\mathbb{N}\setminus Q}) = H(X_i \mid X_{(-\mathbb{N})\cup(\mathbb{N}\setminus Q)}) = 0.$$

But all return-time sets must intersect the set $\{n^2:n\in\mathbb{N}\}$ (Sarkozy, Furstenberg). Thus there are predictive sets which are not return-time sets.

Predictive sets

Question

Let $\{n_k\}_{k\in\mathbb{N}}$ be an increasing sequence such that $n_{k+1}-n_k$ is also an increasing sequence. Prove that

$$H(X_0 \mid X_{\mathbb{N} \setminus \{n_k \mid k \in \mathbb{N}\}}) = 0.$$

We do not know this even in the case $n_k = k^3$. We will come back to this later if time permits.

Proofs.

Let (X, μ, T) be a ppt and $U \subset X$ have positive measure. We will prove that

$$\{n \in \mathbb{N} : \mu(T^n(U) \cap U) > 0\}$$

is predictive.

We can assume that $X\subset\{0,1\}^{\mathbb{Z}}$ is a closed invariant set, $supp(\mu)=X$ and

$$U = \{ x \in X : x_0 = 1 \}.$$

For all $x \in X$ we have that for the set Q_x ,

$$Q_x := \{ n \in \mathbb{N} : T^n(x) \in U \}$$

satisfies $(Q_x - Q_x) \cap \mathbb{N} \subset \mathcal{N}(U, U)$. By the ergodic theorem we can choose x such that $Q_x \subset \mathbb{N}$ has positive density.

Thus return-time sets contain the difference set of a positive density set.

It is sufficient to prove that the difference set of a positive density set is predictive.

Let
$$Q=\{q_1< q_2< q_3< \ldots\}$$
 have density
$$\alpha=\lim_{n\to\infty}\frac{n}{q_n}>0$$
 and $h(X_{\mathbb Z})=0.$

Let
$$Q=\{q_1< q_2< q_3< \ldots\}$$
 have density
$$\alpha=\lim_{n\to\infty}\frac{n}{q_n}>0$$
 and $h(X_{\mathbb Z})=0.$ Then
$$\frac{1}{n}H(X_{q_1},X_{q_2},\ldots,X_{q_n})\leq \frac{q_n}{n}\frac{1}{q_n}H(X_1,X_2,\ldots,X_{q_n})\to \frac{1}{n}h(X_{\mathbb Z})=0.$$

Let
$$Q = \{q_1 < q_2 < q_3 < \ldots\}$$
 have density $lpha = \lim rac{n}{-} > 0$

and $h(X_{\mathbb{Z}}) = 0$. Then

$$\frac{1}{n}H(X_{q_1}, X_{q_2}, \dots, X_{q_n}) \leq \frac{q_n}{n} \frac{1}{q_n} H(X_1, X_2, \dots, X_{q_n}) \to \frac{1}{\alpha} h(X_{\mathbb{Z}}) = 0.$$

$$\frac{1}{n}H(X_{q_1},X_{q_2},\ldots,X_{q_n}) = \frac{1}{n}H(X_0 \mid X_{q_2-q_1},X_{q_3-q_1},\ldots,X_{q_n-q_1})$$

Let
$$Q=\{q_1 < q_2 < q_3 < \ldots\}$$
 have density
$$\alpha = \lim_{n o \infty} \frac{n}{q_n} > 0$$

and $h(X_{\mathbb{Z}}) = 0$. Then

$$\frac{1}{n}H(X_{q_1}, X_{q_2}, \dots, X_{q_n}) \leq \frac{q_n}{n} \frac{1}{q_n}H(X_1, X_2, \dots, X_{q_n}) \to \frac{1}{\alpha}h(X_{\mathbb{Z}}) = 0.$$

$$\frac{1}{n}H(X_{q_1}, X_{q_2}, \dots, X_{q_n}) = \frac{1}{n}H(X_0 \mid X_{q_2-q_1}, X_{q_3-q_1}, \dots, X_{q_n-q_1}) + \frac{1}{n}H(X_0 \mid X_{q_3-q_2}, X_{q_4-q_2}, \dots, X_{q_n-q_2}) + \dots$$

Let
$$Q=\{q_1 < q_2 < q_3 < \ldots\}$$
 have density
$$\alpha = \lim_{n o \infty} \frac{n}{q_n} > 0$$

and $h(X_{\mathbb{Z}}) = 0$. Then

$$\frac{1}{n}H(X_{q_1}, X_{q_2}, \dots, X_{q_n}) \leq \frac{q_n}{n} \frac{1}{q_n}H(X_1, X_2, \dots, X_{q_n}) \to \frac{1}{\alpha}h(X_{\mathbb{Z}}) = 0.$$

$$\frac{1}{n}H(X_{q_1}, X_{q_2}, \dots, X_{q_n}) = \frac{1}{n}H(X_0 \mid X_{q_2-q_1}, X_{q_3-q_1}, \dots, X_{q_n-q_1})
+ \frac{1}{n}H(X_0 \mid X_{q_3-q_2}, X_{q_4-q_2}, \dots, X_{q_n-q_2}) + \dots
+ \frac{1}{n}H(X_0 \mid X_{q_n-q_{n-1}})$$

Let
$$\mathcal{Q} = \{ \mathit{q}_1 < \mathit{q}_2 < \mathit{q}_3 < \ldots \}$$
 have density

$$\alpha = \lim_{n \to \infty} \frac{n}{a_n} > 0$$

and $h(X_{\mathbb{Z}}) = 0$. Then

$$\frac{1}{n}H(X_{q_1}, X_{q_2}, \dots, X_{q_n}) \leq \frac{q_n}{n} \frac{1}{q_n}H(X_1, X_2, \dots, X_{q_n}) \to \frac{1}{\alpha}h(X_{\mathbb{Z}}) = 0.$$

$$\frac{1}{n}H(X_{q_{1}}, X_{q_{2}}, \dots, X_{q_{n}}) = \frac{1}{n}H(X_{0} \mid X_{q_{2}-q_{1}}, X_{q_{3}-q_{1}}, \dots, X_{q_{n}-q_{1}})
+ \frac{1}{n}H(X_{0} \mid X_{q_{3}-q_{2}}, X_{q_{4}-q_{2}}, \dots, X_{q_{n}-q_{2}}) + \dots
+ \frac{1}{n}H(X_{0} \mid X_{q_{n}-q_{n-1}})
\geq H(X_{0} \mid X_{(Q-Q)\cap \mathbb{N}})$$

Thus if Q has positive density then

$$H(X_0\mid X_{(Q-Q)\cap \mathbb{I}\!N})=0$$

and $(Q - Q) \cap \mathbb{N}$ is a predictive set. We showed earlier that every return-time set contains such a set.

Thus return-time sets are predictive.

Predictive sets are SIP*

In course of the proof we show that for all SIP(S) there exists a weak mixing zero entropy Gaussian process $X_{\mathbb{Z}}$ such that

 X_0 is independent of X_i for $i \in \mathbb{N} \setminus SIP(S)$.

This shows that $\mathbb{N} \setminus SIP(S)$ is not predictive.

Thus there exists a weak-mixing process in which X_0 can be predicted by $X_{\mathbb{N}}$ but is independent of $X_{2\mathbb{N}+1}$.

Predictive sets are SIP*: Processes and Spectral measures

From here on we will assume that X_0 is complex-valued, has zero mean and finite variance.

Given any process $X_{\mathbb{Z}}$, the sequence $\mathbb{E}(X_0\overline{X_n})$; $n\in\mathbb{N}$ is a positive definite sequence.

By Herglotz's theorem, there exists a probability measure μ on \mathbb{R}/\mathbb{Z} such that the Fourier coefficients

$$\hat{\mu}(n) = \mathbb{E}(X_0 \overline{X_n}).$$

On the other hand, given any probability measure μ on \mathbb{R}/\mathbb{Z} there exists a Gaussian process $X_{\mathbb{Z}}$ such that

$$\hat{\mu}(n) = \mathbb{E}(X_0 \overline{X_n}).$$

Predictive sets are SIP*: Processes and Spectral measures

 $X_{\mathbb{Z}}$

Predictive sets are SIP^* : Processes and Spectral measures

$$X_{\mathbb{Z}} \longrightarrow \mathbb{E}(X_0\overline{X_n}); n \in \mathbb{N}$$

Predictive sets are SIP*: Processes and Spectral measures

$$X_{\mathbb{Z}} \longrightarrow \mathbb{E}(X_0\overline{X_n}); n \in \mathbb{N} \longrightarrow \mu \text{ on } \mathbb{R}/\mathbb{Z} \text{ such that } \hat{\mu}(n) = \mathbb{E}(X_0\overline{X_n}).$$

Predictive sets are SIP^* : Processes and Spectral measures

$$X_{\mathbb{Z}} \longrightarrow \mathbb{E}(X_0\overline{X_n}); n \in \mathbb{N} \longrightarrow \mu \text{ on } \mathbb{R}/\mathbb{Z} \text{ such that } \hat{\mu}(n) = \mathbb{E}(X_0\overline{X_n}).$$

 μ on \mathbb{R}/\mathbb{Z}

Predictive sets are SIP*: Processes and Spectral measures

$$X_{\mathbb{Z}} \longrightarrow \mathbb{E}(X_0\overline{X_n})$$
; $n \in \mathbb{N} \longrightarrow \mu$ on \mathbb{R}/\mathbb{Z} such that $\hat{\mu}(n) = \mathbb{E}(X_0\overline{X_n})$.

 μ on \mathbb{R}/\mathbb{Z} \longrightarrow Gaussian process $X_{\mathbb{Z}}$ for which $\hat{\mu}(n) = \mathbb{E}(X_0\overline{X_n})$.

Predictive sets are SIP*: Processes and Spectral measures

$$X_{\mathbb{Z}} \longrightarrow \mathbb{E}(X_0\overline{X_n}); n \in \mathbb{N} \longrightarrow \mu \text{ on } \mathbb{R}/\mathbb{Z} \text{ such that } \hat{\mu}(n) = \mathbb{E}(X_0\overline{X_n}).$$

 μ on \mathbb{R}/\mathbb{Z} \longrightarrow Gaussian process $X_{\mathbb{Z}}$ for which $\hat{\mu}(n) = \mathbb{E}(X_0\overline{X_n})$.

If μ is singular then $X_{\mathbb{Z}}$ has zero entropy (Newton and Parry).

For Gaussian processes X_0 and X_n are independent if and only if $\hat{\mu}(n) = 0$.

A Gaussian process $X_{\mathbb{Z}}$ is weak-mixing if and only if μ is continuous.

Predictive sets are SIP*: Gaussian Processes

 μ is singular then $X_{\mathbb{Z}}$ has zero entropy.

For Gaussian processes X_0 and X_n are independent if and only if $\hat{\mu}(n) = 0$.

A Gaussian process $X_{\mathbb{Z}}$ is weak-mixing if and only if μ is continuous.

Predictive sets are SIP*: Riesz products

Fix a sequence $s_1, s_2, \ldots \subset \mathbb{N}$ such that $s_{i+1} > 3s_i$.

Predictive sets are SIP*: Riesz products

Fix a sequence $s_1, s_2, \ldots \subset \mathbb{N}$ such that $s_{i+1} > 3s_i$.

The Riesz product is the function $f_r: \mathbb{R}/\mathbb{Z} \to \mathbb{C}$ given by

$$\begin{array}{lcl} f_r(x) & := & \displaystyle \prod_{k \leq r} (1 + \cos(2\pi s_k x)) \\ \\ & = & \displaystyle \prod_{k \leq r} \left(1 + \frac{\exp(2\pi i s_k x) + \exp(-2\pi i s_k x)}{2}\right). \end{array}$$

Predictive sets are SIP*: Riesz products

Fix a sequence $s_1, s_2, \ldots \subset \mathbb{N}$ such that $s_{i+1} > 3s_i$.

The Riesz product is the function $f_r: \mathbb{R}/\mathbb{Z} \to \mathbb{C}$ given by

$$egin{array}{lll} f_r(x) &:=& \displaystyle\prod_{k\leq r} (1+\cos(2\pi s_k x)) \ &=& \displaystyle\prod_{k\leq r} \left(1+rac{\exp(2\pi i s_k x)+\exp(-2\pi i s_k x)}{2}
ight). \end{array}$$

As r tends to infinity the limit of $f_r\mu_{Leb}$ is a singular continuous measure μ such that $\hat{\mu}(n)=0$ for all

$$n \notin SIP(s_1, s_2, \ldots) := \left\{ \sum_{t \in \mathbb{N}} \varepsilon_i s_i : \epsilon_i \in \{-1, 0, 1\} \right\}.$$

Thus $X_{\mathbb{Z}}$ has zero entropy, is weak mixing and $\mathbb{E}(X_0\overline{X_n})=0$ for all

$$n \notin SIP(s_1, s_2, \ldots)$$
.

Predictive sets are SIP*

Thus $X_{\mathbb{Z}}$ has zero entropy, is weak mixing and $\mathbb{E}(X_0\overline{X_n})=0$ for all

$$n \notin SIP(s_1, s_2, \ldots)$$
.

If *P* is predictive then

$$P \cap SIP(s_1, s_2, \ldots) \neq \emptyset$$
.

One can use this to prove that predictive sets are SIP^* .

Linear Predictivity

In fact if μ is singular by a theorem of Verblunsky we get the following result:

Theorem

If $X_{\mathbb{Z}}$ is a complex-valued L^2 process for which the spectral measure μ is singular and P is predictive then X_0 is in the closed linear span of X_i ; $i \in P$.

I wasn't aware of this even for processes arising from circle rotations and $P = \mathbb{N}$.

On the other hand if the spectral measure has a Lebesgue component but $X_{\mathbb{Z}}$ has zero entropy then we can predict but not linearly predict the process.

Riesz Sets

Using this machinery we can conclude the following result.

Theorem (Chandgotia, Weiss)

If $P \subset \mathbb{N}$ is a set such that P + i is predictive for all $i \in \mathbb{N}$ then for all singular measures μ on \mathbb{R}/\mathbb{Z} there exists $p \in P$ such that the Fourier coefficient

$$\hat{\mu}(p) \neq 0$$
.

In other words any measure μ on \mathbb{R}/\mathbb{Z} whose Fourier coefficients are supported on $\mathbb{Z}\setminus P$ must have an absolutely continuous component.

Riesz Sets

Using this machinery we can conclude the following result.

Theorem (Chandgotia, Weiss)

If $P \subset \mathbb{N}$ is a set such that P + i is predictive for all $i \in \mathbb{N}$ then for all singular measures μ on \mathbb{R}/\mathbb{Z} there exists $p \in P$ such that the Fourier coefficient

$$\hat{\mu}(p) \neq 0.$$

In other words any measure μ on \mathbb{R}/\mathbb{Z} whose Fourier coefficients are supported on $\mathbb{Z}\setminus P$ must have an absolutely continuous component.

This is very close to Riesz sets as defined by Yves Meyer in 1968: A set $Q \subset \mathbb{Z}$ is called a Riesz set if all measures on \mathbb{R}/\mathbb{Z} whose Fourier coefficients are supported on Q are absolutely continuous.

Riesz Sets

A set $P \subset \mathbb{N}$ is called totally predictive if P + i is predictive for all $i \in \mathbb{N}$.

Theorem (Chandgotia, Weiss)

If $P \subset \mathbb{N}$ is a totally predictive set which is open in the Bohr topology, then $\mathbb{Z} \setminus P$ is a Riesz set.

Question

If $P \subset \mathbb{N}$ is totally predictive then is $\mathbb{Z} \setminus P$ a Riesz set? If $Q \subset \mathbb{N}$ is a set such that $Q \cup (-\mathbb{N})$ is Riesz then is $\mathbb{N} \setminus Q$ a totally predictive set?

A titillating question

Let $n_{\mathbb{N}}$ be an increasing sequence of natural numbers such that $n_{i+1}-n_i$ is also an increasing sequence. We had asked whether $\mathbb{N}\setminus n_{\mathbb{N}}$ is totally predictive.

It is unknown even for $n_i=i^3$ whether $(-\mathbb{N})\cup n_\mathbb{N}$ is a Riesz set. Wallen (1970) proved that if μ is a measure whose Fourier coefficients are supported on $(-\mathbb{N})\cup n_\mathbb{N}$ then $\mu\star\mu$ is absolutely continuous.

Following an idea by Lindenstrauss, a simple application of Fermat's last theorem and Cauchy Schwarz gives us the following partial result.

Theorem (Chandgotia, Weiss)

If μ is a probability measure whose Fourier coefficients are supported on $\{\pm i^K: i \in \mathbb{N}\} \cup \{0\}$ for some $k \geq 2$ then μ is not singular.

Summary

Return-time sets are predictive.

The converse is not true.

Predictive sets are SIP*.

Predictive sets have bounded gaps.

If you were bored...

- Is the intersection of two predictive sets also a predictive set?
- 2 Are all SIP* sets predictive?
- 3 Is $\{n : n\alpha \in (0, \epsilon)\}$ a predictive set for irrational α ?
- 4 Let $\{n_k\}_{k\in\mathbb{N}}$ be an increasing sequence such that $n_{k+1}-n_k$ is also an increasing sequence. Prove that

$$H(X_0 \mid X_{\mathbb{N} \setminus \{n_k \mid k \in \mathbb{N}\}}) = 0.$$

- What is the relationship between Riesz sets and totally predictive sets?
- 6 Explore linear prediction.