

A Comparison of Linear Mixed Model Packages in R for Analysis of Plant Breeding Experiments

Sam Rogers and Julian Taylor

Biometry Hub, University of Adelaide

Introduction

The problem

We wanted to compare ASReml-R to other linear mixed model software used for the purposes of Plant Breeding.

- Are there other mature packages with the capabilities of ASReml-R (or close enough)?
- Are there open-source alternatives to ASReml-R?
- How do they compare in terms of computational performance (speed) and features?

We compared three R packages with a focus on computational aspects of large scale genomic selection LMMs.

Motivating Data

- Phenotypic data from an Australia Grains Technologies (AGT) field trial in SA.
- Full trial was 10375 varieties unreplicated + 6 check varieties with 150+ reps (see Norman, et al. (2017)).
- Genotypic data consisting of 17171 genetic markers from a 20K Affymetrix array, reduced to 3000/6000 markers for this analysis.
- We looked at rectangular subsets of the field trial containing n_g varieties, equivalent to $n_g \approx (100, 200, 500, 1000, 2000, 3000, 4000, 5000)$, and analysed zadoks (plant maturity) score trait.

The Packages

lme4 (+ pedigreemm)

- Maturity: Mature (first released ~2003)
- Citations: ~25k, ~1.2k in plant breeding journals
- Availability: Open source (free)
- Latest version: CRAN: March 2019, Github: yesterday, pedigreemm: 2014
- Relationship matrices: pedigreemm package required (plus substantial hacks ♥)
- Residual correlation structures: None
- Variance structures for random effects: Limited

ASReml-R

- Maturity: Mature (first released ~1995)
- Citations: $\sim 4.5 k$, higher proportion in plant breeding journals than 1me 4
- Availability: Closed source (licence fee ♥)
- Latest version: August 2019
- Relationship matrices: Built in
- Residual correlation structures: Extensive
 Variance structures for random offects: Ex
- Variance structures for random effects: Extensive

sommer

- Maturity: New (Released 2016)
- Citations: ~90, mostly plant breeding journals
- Availability: Open source (free)
- Latest version: CRAN: November 2019, Github: October 2019
- Relationship matrices: Built in
- Residual correlation structures: Some
- Variance structures for random effects: Some

Genomic Selection LMM

For a trait response vector \boldsymbol{y} of length n, consider a genetic marker matrix \boldsymbol{M} (dimension $g \times r$) for varieties and the associated (mostly) additive relationship matrix $\boldsymbol{G}_a = \boldsymbol{M} \boldsymbol{M}^T$.

One specification of a LMM has the form

$$oldsymbol{y} = oldsymbol{X}oldsymbol{ au} + oldsymbol{Z}oldsymbol{u} + oldsymbol{Z}oldsymbol{a} + oldsymbol{Z}oldsymbol{q}oldsymbol{r} + oldsymbol{e}$$

where

- au are fixed effects
- $oldsymbol{u}$ are the random effects (None in this case)
- $m{a}$ is a set of additive variety effects with assumed distribution $m{a}\sim N(m{0},\sigma_a^2m{G}_a)$
- $m{r}$ are the polygenic non-additive genetic effects with assumed distribution $m{r} \sim N(\mathbf{0}, \sigma_r^2 m{I}_a)$.
- $m{e}$ are residuals with assumed distribution $m{e} \sim N(m{0}, \sigma^2 m{R})$

ASReml-R and sommer use this form with the vm() and vs() functions respectively.

Genomic Selection LMM V2

An alternative specification of the LMM uses Cholesky decomposition of the relationship matrix defined as $G_a = LL^T$.

The left Cholesky factor is incorporated into the LMM as

$$m{y} = m{X}m{ au} + m{Z}m{u} + m{Z}_gm{L}m{a}^* + m{Z}_gm{p} + m{e}$$

where

- $m{a^*}$ is a set of non-interpretable genetic effects with assumed distribution $m{a^*} \sim N(\mathbf{0}, \sigma_a^2 m{I}_g)$ which is the same additive genetic variance as in the previous model.
- $^{\circ}$ The additive genetic effects, $m{a}$, can be derived through back transformation.

Although they differ in their specification, the two models produce the same likelihood and estimate of σ_a^2 .

This form can be fitted in pedigreemm() and also in ASReml-R using the mbf() function.

Genomic Selection Models in R

To specify these models in R, we use the following code:

LME4/pedigreemm*

* Needed substantial hacking

ASReml-R

sommer

Results of timings

• Sommer is computationally superior for all population sizes

Median Sommer times (s)

 100
 200
 500
 1000
 2000
 3000
 4000
 5000

 0.03
 0.10
 0.74
 2.32
 18.56
 72.57
 170.06
 323.55

What's different about sommer?

It makes use of the Intel Math Kernel Libraries for parallel processing of matrix manipulations!

Summary and discoveries

sommer was the suprising winner by a huge margin

- At least 9x faster than ASReml-R and LME4, and up to 160x faster in some cases
- Performance increases with CPU cores available due to parallel processing
- Has much of the same capability as ASRem1-R, though is lacking in a few areas

It is *possible* to run genomic selection models in lme4, but less than ideal because:

- lme4/pedigreemm is substantially slower
- Major disadvantage of no residual correlation structures available
- Relationship matrix incorporation took substantial hacking
- pedigreemm not updated since 2014

References

Bates, D. et al. (2015). "Fitting Linear Mixed-Effects Models Using Ime4". In: Journal of Statistical Software 67.1, pp. 1–48. DOI: 10.18637/jss.v067.i01.

Bates, D. et al. (2007). "The Ime4 package". In: R package version 2.1, p. 74.

Butler, D. G. et al. (2018). ASReml-R reference manual (version 4). School of Mathematics and Applied Statistics, University of Wollongong.

Covarrubias-Pazaran, G. (2016). "Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer". Eng. In: PloS one 11 (6).

Covarrubias-Pazaran, G. (2018). "Software update: Moving the R package sommer to multivariate mixed models for genome-assisted prediction". In: bioRxiv. DOI: 10.1101/354639.

https://www.biorxiv.org/content/early/2018/06/25/354639.

Norman, A. et al. (2017). "Increased genomic prediction accuracy in wheat breeding using a large Australian panel". In: Theoretical and applied genetics 130.12, pp. 2543–2555.

Vazquez, A. et al. (2010). "an R package for fitting generalized linear mixed models in animal breeding". In: Journal of animal science 88.2, pp. 497–504.