Plan de cours Micro-organismes 53

- 1. Microbiologie générale
- 2. Nutrition bactéries
- 3. Croissance bactérienne
- 4. Métabolismes
- 5 Taxonomie

3 - Croissance bactérienne

- Courbe de croissance
 - Cinétiques de croissance en milieu non renouvelé
 - Paramètres mathématiques de la croissance
- Méthodes de mesure de la croissance
- Facteurs externes influant sur la croissance
- Composés antimicrobiens

Croissance

Croissance microbienne
= augmentation des
constituants cellulaires
(taille ou nombre)

Cinétiques de croissance en milieu liquide non renouvelé (culture batch = discontinue)

4 phases

Cinétiques de croissance en milieu non renouvelé

Courbe de croissance = étude en milieu liquide : 4 phases (milieu adapté non renouvelé)

- Phase de latence : Croissance 0

Accoutumance des bactéries à l'environnement

- Croissance exponentielle : Taux de croissance maximal

- Phase stationnaire: arrêt de la reproduction (facteur limitant) taux de croissance nul (division = autolyse)

- Phase de déclin : ressources épuisées, le nombre de bactéries

Croissance bactérienne

après 16 à 24 h de culture la croissance des bactéries

s'arrête sinon:

en 48 heures, 4000 fois le poids du globe terrestre

Paramètres mathématiques de la croissance

Temps de génération G = Temps pour une population doublée

Temps de génération

- Temps de division et délais de croissance dépendent :
 - de la bactérie
 - des conditions du milieu extérieur (favorables/défavorables)

Temps de génération de quelques espèces bactériennes

In vitro (min)	In vivo (h)
20-40	5
40	3-5
40	4
120-240	24-48
	20-40 40 40

Paramètres mathématiques de la croissance

Le taux de croissance, µ

C'est le nombre de générations par unité de temps

$$\mu = 1/G = n/t$$

Expression mathématique de la croissance :

$$N_n = 2^n N_0 = 2^{\mu \dagger} N_0$$

N₀: Nombre de bactéries au temps t₀

N_n: Nombre de bactéries à la énième génération

(Population après n générations)

Sous forme logarithmique:

$$Log N_n / N_0 = \mu t log 2$$

3 - Croissance bactérienne

- Courbe de croissance
 - Cinétiques de croissance en milieu non renouvelé
 - ◆ Paramètres mathématiques de la croissance
- Méthodes de mesure de la croissance
- Tacteurs externes influant sur le croissance
- Agents antimicrobiens

Méthodes de mesure de la croissance

Ces techniques sont fondées sur l'évolution <u>du nombre</u> de micro-organismes ou de <u>leur masse</u> par unité de volume ou de poids.

1. Nombre de cellules

- 1.1 Dénombrement au microscope
- 1.2 Dénombrement après la culture
- 2. Masse cellulaire
- 3. Activité cellulaire

1.1- Dénombrement au microscope

- a) Lecture au microscope
- rapide
- peu sensible
- pas de distinction cellules mortes et vivantes

1.1 - Dénombrement au microscope

- b) Epifluorescence
- coloration par fluorochrome (ex : acridine orange)
- fixation sur ADN
- peu sensible
- distinction cellules mortes et vivantes

Bactéries colorée par acridine orange

Bactéries colorée par Dapi

1.1 - Dénombrement au Microscope Epifluorescence

- 1-lampe à arc
- 2-filtre d'excitation
- 3-miroir dichroïque
- 4-objectif
- 5-préparation
- 6-filtre d'émission
- 7-oculaire

- coloration par fluorochrome
 (Dapi) fixation sur ADN
- peu sensible
- pas de distinction cellules mortes et vivantes

1.1 - Dénombrement au Microscope Epifluorescence

Microscope normal

Microscope Epifluorescence

mhchatain@isara.fr

1.1 - Dénombrement au Microscope Epifluorescence

1.2 - Dénombrement après culture

1. 2- Dénombrement après culture

1 bactérie viable = 1 colonie UFC = Unité Formatrice de Colonie

Dénombrement après filtration sur membrane et incubation sur gélose

2 - Mesure de la masse

a) Détermination du poids sec

- centrifugation ou filtration
- séchage à 100-110°C
- · inconvénients :
 - peu précis
 - pas de distinction cellules mortes et vivantes

2 - Mesure de la masse

b) Mesure du trouble

```
Log (Io/I) représente l'absorbance (A)
Log (IO/I) = k.C.L
L : trajet optique, épaisseur de la cuve,
```

C: concentration ou biomasse, k= constante ou coefficient d'absorption Pour une cuve de 1cm de trajet optique, Log (Io/I) = k.C

En tubes

Croissance bactérienne = trouble du bouillon

Méthodes de mesure de la croissance

- 3 Mesure de l'activité
- a) Mesure de la consommation de substrat
 Oxygène
- b) Mesure des produits d'excrétion 14CO2
- c) Mesure des constituants cellulaires
- ATP (adénosine 5' triphosphate)
- d) Mesure des variations physico-chimiques du milieu Mesure du pH
 - · acidification au cours de la croissance

Culture continue: Chémostat et Turbidostat

Chémostat

Culture continue

Turbidostat

Influence de l'environnement sur la croissance bactérienne

- Substrat
- Température
- pH
- Humidité (Aw)
- O2
- Pression
- Radiation

Le substrat

- > Prolonger la phase de croissance.
- > Renouveler le milieu.
- Éliminer produits du métabolisme

Température

Température

- bactéries mésophiles (20-45°C)
- bactéries psychrophiles (voisine 0°C)
- bactéries thermophiles (45-65°C)

Température

Temps (h)

le pH

-Neutrophiles: pH 5,5 - 8,5

- Alcalophiles: pH alcalin (pH 8,5-11,5)

- Acidophiles: pH acide (pH 1 - 5,5)

Facteurs influençant la croissance l'humidité (Aw) Minimum aw pour la croissance des micro-organismes

La pression osmotique

Les non-halophiles : NaCl < 0,2M

Les halophiles : 0,2 à 5,2 M NaCl

Les halophiles extrêmes <u>nécessitent</u> 6,2M

3 - Croissance bactérienne

- Courbe de croissance
 - Cinétiques de croissance en milieu non renouvelé
 - ◆ Paramètres mathématiques de la croissance
- Méthodes de mesure de la croissance
- teurs externes influant sur le croissance
- Agents antimicrobiens

Agents antimicrobiens

- Agents physiques
 - TO
 - Élimination mécanique
 - Rayonnements
- Agents chimiques
 - Désinfectants
 - Antiseptiques
 - Antibiotiques

Traitement thermiques

Stérilisation: 100-140 T°

Pasteurisation: 60 -100 T°

Zone critique: 10 -60 T°

destruction totale des germes et des spores

destruction des formes végétatives

Survie et prolifération possible

Stérilisation

Chaleur humide : autoclave

Chaleur sèche : four

Filtration sur membrane

MF = microfiltration

UF = ultrafiltration

NF = nanofiltration

OI = osmose inverse

Filtration sur membrane

Rayonnements UV

Rayonnements UV

Figure 1. Courbes de survie des bactéries *E. coli* et *D. radiodurans* et de l'Archaeon *P. abyssi* après exposition au rayonnement ionisant.

Autres

- AwpH

Agents antimicrobiens

Agents chimiques

- Désinfectants
- Antiseptiques
- Antibiotiques

Agents antimicrobiens

Antimicrobien est une famille de substances qui tuent (bactéricide) ou ralentissent (bactériostatique) la croissance des microbes tels :

les bactéries (activité antibactérienne),

- les mycètes (activité antimycosique),
- · les virus (activité antivirale),
- · ou les parasites (activité antiparasitaire).

Agents antimicrobiens

Mécanisme d'action : « site d'action »

Les 4 cibles principales sont :

- La paroi
- La membrane cytoplasmique
- Le chromosome
- Le ribosome

Mécanisme d'action des antimicrobiens

Activité antibactérienne

méthode des disques ou diffusion (pratique)

Spectre d'activité

- Le spectre d'activité
- dépend de la sensibilité des espèces bactériennes à différents antibiotiques

- □ Il existe 3 catégories :
 - Germe sensible (5)
 - Germe intermédiaire (I)
 - Germe résistant (R)

Résumé

- Courbe de croissance
- Temps de génération
- Méthodes pour mesurer la croissance
- Facteurs de l'environnement sur la croissance
- Comment empêcher ou réduire la croissance des micro-organismes