Minimisation des pertes par effet Joule

Enseignement scientifique Terminale

Durée 1h - 10 points - Thème « Le futur des énergies »

Dans le sud de la France, un immeuble et une maison sont alimentés la journée par des éoliennes et des panneaux solaires distribuant respectivement des courants d'intensité I_1 et I_2 . On veut minimiser les pertes par effet Joule dans ce réseau de distribution électrique.

Partie 1 : Dissipation de l'énergie

Document 1 : transport de l'énergie électrique

L'électricité lors de son transport entre les lieux de production et les lieux de consommation subit des pertes en ligne dont le volume dépend de la distance de transport des caractéristiques du réseau. 80 % de ses pertes le sont par effet Joule dans les câbles électriques, soit pour la France, l'équivalent de deux unités de production nucléaires électriques.

Pertes sur le réseau de transport de l'électricité en France en 2019 :

Energie électrique transportée en France en 2019 : 495 × 10⁹ kWh 2,22 % : taux de perte d'énergie en France en 2019 pendant le transport de l'électricité

Source: https://www.actu-environnement.com

1- Calculer les pertes d'énergie en kWh en France en 2019 dues au transport de l'énergie électrique.

Calculons les pertes d'énergie en kWh en France en 2019 dues au transport de l'énergie électrique.

D'après le Document 1 : Energie électrique transportée en France en 2019 : 495 × 10⁹ kWh

2,22 % : taux de perte d'énergie en France en 2019 pendant le transport de l'électricité

Eperdue=2,22% Eélectrique

E_{perdue}=2,22/100×495×10⁹

E_{perdue}=1,10×10¹⁰ kWh

En France en 2019, un énergie de 1,10×10¹⁰ kWh est perdue lors du transport de l'énergie électrique.

2- Calculer en 2019 en France, l'énergie électrique en kWh à disposition des consommateurs.

L'énergie électrique en kWh à disposition des consommateurs :

 $E_{\text{\'electrique}}$ à disposition des consommateurs = $E_{\text{\'electrique}}$ - E_{perdue}

Eélectrique à disposition des consommateurs = 495×10⁹ -1,10×10¹⁰

 $E_{\acute{e}lectrique\ \grave{a}\ disposition\ des\ consommateurs}$ = 4,84×10¹¹ kWh

En 2019 en France, l'énergie électrique à disposition des consommateurs à pour valeur 4,84×10¹¹ kWh.

Partie 2 : modélisation du réseau électrique

3- Identifier les cibles destinatrices et les sources distributrices du réseau du document 2.

Les sources distributrices du réseau du document 2 sont :

- Panneaux solaires
- Eoliennes

Les cibles destinatrices du réseau du document 2 sont :

· Les maisons

Les appartements

4- La tension du réseau de distribution étant fixée, expliquer pourquoi les intensités I_3 et I_4 sont fixées.

D'apres la loi d'ohm : U=R×I

R×I=U

I=U/R

 $I_3=U/R_3$

 $I_4=U/R_4$

La tension U étant fixée, R_3 et R_4 ont des valeurs fixe également. Ainsi, les intensités I_3 et I_4 sont fixées.

5- Modéliser le réseau électrique du document 2 par un graphe orienté.

6- Justifier que I_3 est environ égale à 36 A et I_4 à 94 A en sachant que les puissances par effet Joule correspondent à 5 % des puissances utiles.

On admet que les intensités vérifient la relation $I_1 + I_2 = I_3 + I_4$

Les puissances par effet Joule correspondent à 5 % des puissances utiles.

P_J=5% P

 $P_{J3} = 5/100 \times P_3$

P_{J3}=5/100× 13×10³

P_{J3}=650 W

 $P_{J4}=5/100 \times P_4$

 $P_{J4} = 5/100 \times 35 \times 10^3$

P_{J4}=1750 W

Puissance par effet Joule:

$$P_{J} = R \times I^{2}$$

$$R \times I^{2} = P_{J}$$

$$I^{2} = \frac{P_{J}}{R}$$

$$I = \sqrt{\frac{P_{J}}{R}}$$

$$I_{3} = \sqrt{\frac{P_{J3}}{R_{3}}}$$

$$I_{3} = \sqrt{\frac{650}{0.5}} = 35A$$

$$I_{4} = \sqrt{\frac{P_{J4}}{R_{4}}}$$

$$I_{4} = \sqrt{\frac{1750}{0.2}} = 93, 5A$$

Ainsi, I₃ est environ égale à 36 A et I₄ à 94 A

 $I_2 = 36 + 94 - I_1$

7- Donner l'expression de la puissance dissipée par effet Joule P_J à minimiser en fonction de I_1 , I_2 , I_3 et I_4 . Exprimer la valeur de I_2 en ampères en fonction de I_1 .

$$P_{\rm J} = {\rm R} \times {\rm I}^2$$

$$P_{\rm J} = R_1 \times I_1^2 + R_2 \times I_2^2 + R_3 \times I_3^2 + R_4 \times I_4^2$$

$$I_1 + I_2 = I_3 + I_4$$

$$I_2 = I_3 + I_4 - I_1$$

$$I_2 = 130 - I_1$$

Les intensités I_3 et I_4 étant connues et I_2 pouvant s'exprimer en fonction de I_1 , la puissance P_J peut s'exprimer en fonction de I_1 seulement. La représentation graphique de la fonction $P_J(I_1)$ est donnée dans le document 3.

8- La contrainte sur les intensités délivrées par les sources impose que peut prendre une valeur comprise dans l'intervalle

0; 70] en ampères.

Déterminer les valeurs de I_1 et de I_2 pour lesquelles les pertes par effet Joule sont minimales.

Les pertes par effet Joule sont minimales lorsque P_J est minimal. Graphiquement, au minimum P_J =95 000 W pour I_1 =50 A

$$I_2 = 130 - I_1$$

$$I_2 = 130 - 50$$

I₂=80 A