Team members :Sathiya Ramesh, Pradheep Krishna Muthukrishnan Padmanabhan, Naresh Kumar Gurulingan

Let's suppose we have a set of observations $x=(x_1,\ldots,x_N)^T$, that are drawn independent and identically distributed (i.i.d) from a Gaussian distribution with unknown mean μ and variance σ^2

For this example, we are going to assume that the unknown parameters are μ =2 and σ^2 =25 and the number of samples N=100.

Task1:

Plot this (unknown) distribution together with the samples in the range [-20, 20].

```
In [1]: import numpy as np
   import matplotlib.pyplot as plt
   import scipy.stats as stats
   from mpl_toolkits.mplot3d import Axes3D
   from scipy.stats import multivariate_normal
   import seaborn as sb
   from __future__ import division
```

```
In [2]: np.random.seed(0)
    mu = 2
    sigma = 5
    samples = 100
    distribution = np.random.normal(mu, sigma, samples)
    plt.hist(distribution, bins= 10)
    plt.show()
```


Task2:

- Implement the likelihood function in python (you can simply use the existing python implementations)
- Use a general optimization method to find the values for μ and σ^2 .

In [3]: estimated_mu, estimated_sigma = stats.norm.fit(distribution)
print('Estimated mean is {}(using MLE)'.format(estimated_mu))
print('Estimated variance is {}(using MLE)'.format(estimated_sigma))

Estimated mean is 2.2990400776724247(using MLE) Estimated variance is 5.039411223582898(using MLE)

The difference between the actual and estimated mean is 0.2990400776724247

The difference between the actual and estimated variance is 0.03941122358289828

Task3:

Given:

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix}$$

- 1. Visualise a Gaussian with the given parameters.
- 2. Visualise a marginal Gaussian.
- 3. Visualise a slice of Gaussian.

```
In [5]: | # https://stackoverflow.com/questions/40622203/how-to-plot-3d-gaussian-d
        istribution-with-matplotlib
        # https://stackoverflow.com/questions/28342968/how-to-plot-a-2d-gaussian
         -with-different-sigma
         mu = np.array([0., 0.])
         covariance = np.array([[0.5, 0], [0, 0.5]])
        x, y = np.mgrid[-1.0:1.0:30j, -1.0:1.0:30j]
xy = np.column_stack([x.flat, y.flat])
         z = multivariate normal.pdf(xy, mean=mu, cov=covariance)
         z = z.reshape(x.shape)
         sli = 5
         fig = plt.figure()
         fig.set figwidth(15)
         fig.set figheight(3)
         ax = fig.add subplot(131, projection='3d')
         ax.plot_surface(x,y,z)
         #ax.plot_wireframe(x,y,z)
         plt.title('Gaussian')
         fig.add_subplot(132)
         plt.plot([-1,1], y[0:2,sli], color= 'r')
         plt.title('2D projection')
         plt.contourf(x, y, z, cmap='Blues')
         plt.colorbar()
         fig.add_subplot(133)
         plt.title('Slice of Gaussian')
         plt.plot(x[:,0],z[0:,sli])
         plt.show()
         x=np.random.normal(loc=0,scale=5,size=1000)
         y=np.random.normal(loc=0,scale=5,size=1000)
         sb.jointplot(x, y, kind="hex",color="#4CB391")
```


Out[5]: <seaborn.axisgrid.JointGrid at 0x7f8999798ac8>

Task4:

Given:

Number of samples is 1000 from them 330 samples are labeled as class A and 670 samples are labeled as class B. There are 2 features X1 and X2. It is observed that p(A,X1)=248, p(A,X2)=82, p(B,X1)=168, p(B,X2)=502 Compute:

Prior p(A), p(B)

Likelihood p(X1|A), p(X1|B)

Posterior p(A|X1)

```
In [6]: S = 1000.0
        C_a = 330.0
        C_b = 670
        p_A_X1 = 248
        P A X2 = 82
        P_B X1 = 168
        P_B X2 = 502
        #Now finding the prior for the given problem
        P_A = C_a/S
        PB = Cb/S
        print ('Prior of A = ',P A,'Prior of B = ',P B)
        #Now finding the Likelihood
        P_x1A = p_A_x1/P_A
        P_x1B = P_B_x1/P_B
        print ('Likelihood p(X1|A)=',P_x1A,'Likelihood p(X1|B)',P_x1B)
        P_x2A = P_A_x2/P_A
        P \times 2B = P B \times 2/P B
        #Calculating the Posterior
        P_AX1 = P_X1A * P_A/((P_X1A*P_A)+(P_X1B*P_B)) #Likelihood x Prior
        print ('Posterior:p(A|X1)=',P_AX1)
        Prior of A = 0.33 Prior of B = 0.67
        Likelihood p(X1|A)= 751.515151515151515 Likelihood p(X1|B) 250.746268656716
        Posterior:p(A|X1) = 0.5961538461538461
```