Priyadarshini College of Engineering, Nagpur Sessional Examination (2023-24) Odd Semester

B. Tech. Third Semester (Computer Technology /Information Technology) (C. B. C. S.) Mathematics-III

Pages: 2
Time: Three Hours

PCE/KW/23/BECT/IT301T Max. Marks: 70

Notes:

- 1) All questions carry marks as indicated.
- 2) Solve Question 1 or Question 2
- 3) Solve Question 3 or Question 4
- 4) Solve Question 5 or Question 6
- 5) Solve Question 7 or Question 8
- 6) Solve Question 9 or Question 10

Q. No.	6) Solve Question 9 or Question 10 Questions	со	BL	Marks
1	a) Find L. T. of $L\left[\frac{\cos at - \cos bt}{t}\right]$, hence evaluate $\int_{0}^{\infty} \left[\frac{\cos at - \cos bt}{t}\right] dt$	COI	3	5
	b) Find Fourier Transform of $f(x) = 1$, $ x <1$ 0, $ x >1$.	COI	3	4
	c) Find $L^{-1}\left\{\frac{s}{((s^2+a^2)^2)}\right\}$ by convolution theorem.	COI	3	5
	OR			
2	a) Solve the D.E. by L.T. method	CO1	3	7
	$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = e^{-t}\sin t \cdot y(0) = 0, y'(0) = 1.$	7 = 16,7		1
	b) Solve the integral equation $\int_{0}^{\infty} f(x) \cos ax dx = e^{-a}, a > 0$	CO1	3	7
3	a) Prove that $Z\{n^p\} = -z \frac{d}{dz}(n^{p-1})$, where p is any positive integer and	CO2	3	7
	hence deduce that $Z\{n\} = \left\{\frac{z}{(z-1)^2}\right\}$ and $Z\{n^2\} = \left\{\frac{z(z+1)}{(z-1)^3}\right\}$.1
	b) Find inverse Z-transform of F (z) = $\frac{z^2+1}{(z-1)(z^2+1)}$ by partial fraction method.	CO2	3	7
	OR			
4	a) Solve the following difference equation by Z- Transform $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$, given $y_0 = y_1 = 0$	CO2	3	7
	b) Using power series method, find inverse Z-transform of , $\frac{1}{z^2-3z+2}$ for	CO2	3	7
5	the region $ z <1$	CO3	3	7
5	a) Investigate the linear Dependence of the vectors $X_1 = [1, 2, 4], X_2 = [2, -1, 3]$ $X_3 = [0, 1, 2]$ and $X_4 = [-3, 7, 2]$ and if possible find relation between them			′
	b) Find the matrix B which reduce $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ to a diagonal form by transformation B ⁻¹ A B.	CO3	3	7
	OR			
	OR .	1		

								ú	٠			,			
6	a) Fi	a) Find largest eigen value and corresponding eigen vector for the matrix $\begin{bmatrix} -4 & -5 \\ 1 & 2 \end{bmatrix}$										CO3	3	7	
	b) Fii	nd the s	singular va	lues de	ecompos	ition of t	he mat	rix A =	$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	0]	•		CO3	3	7
7	f(x)	a) A density function of random variable X is $f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & \text{otherwise, } \text{Find (i) E(X)} & \text{(ii) Var(X)} & \text{(iv) } \sigma_X \end{cases}$										CO4	3	7	
	proce	b) Suppose that the customers arriving at ticket counter according to poisson process with a mean rate of 2 per minutes. Then in arrival of 5 minutes find the probability that the number of customers is (i) exactly 5 (ii) less than 4 (iii) greater than 3.										CO4	3	7	
	 					OR						·	-		
8	a) Find moment generating function and first four moments about origin for random variable X given by 1/2, prob. 1/2 X = 1/2, prob. 1/2										CO4	3	7		
T.	rando	b)A machine produces bolts which are 10% defective. Find the probability that in random sample of 400 bolts produced by this machine (i) between 30 and 50, (ii) at the most 30, (iii) 55 or more of the bolts will be defective										aCO4	3	7	
9		a) Find the multiple linear regression equation of X_1 on X_2 and X_3 from the data relating to three variables given below:										CO5	3	7	
	7	X ₁ 4 6 7 9 13 15							15		- >	· ·			
	х	X2 15 12 8 6 4 3		3											
	X ₃ 30 24 20 14 10 4 b) For the following frequency distribution calculate median, quartile, 4 th decile and 27 th percentile														
										CO5	3	7			
	f	0	9	26	3 59	72	52	6 29	7	1	\dashv				
	OR														
10	a) Cal	a) Calculate Karl Pearson's coefficient of skewness of the following distribution								CO5	3	7			
	x	0	1	2	3	4	5	6	7	8					
	f	7	12	32	56	70	56	28	8	1	\neg				
	b) Find the measures of skewness on the basis of moments									COS	3	7			
	x	2	3	4	5	6									
	f	1	3	7	3	1									