FPGA and Cameras

ECE 1210: "Smartphone" course

ECE 2300: Digital Logic and Computer Organization

ECE 5760: Advanced Microcontroller Design

ECE 5470: Computer Vision

CS 4670 / 5670: Introduction to Computer Vision

CS 6670: Computer Vision

- Recap on FPGAs
- Lab 4
- Setting up the camera
- Reading from the camera
- Treasure detection

ECE 3400: Intelligent Physical Systems

- What does the name stand for?
 - Field Programmable Gate Array
- What does it contain?
 - Configurable Logic Blocks
 - Flip-Flops
- What is the difference between sequential logic and registered logic?
 - Sequential logic operates on clock transitions

Flip Flop

- What does the name stand for?
 - Field Programmable Gate Array
- What does it contain?
 - Configurable Logic Blocks
 - Flip-Flops
- Example of registered logic?

Flip Flop

Latch

State	S	R	Q		Description
Set	1	0	0	1	Set $\overline{\mathbb{Q}}$ » 1
	1	1	0	1	no change
Reset	0	1	1	0	Reset $\overline{\mathbb{Q}}$ » 0
	1	1	1	0	no change
Invalid	0	0	1	1	Invalid Condition

Problem with an inferred latch

ECE3400

Engineering

- What does the name stand for?
 - Field Programmable Gate Array
- What does it contain?
 - Configurable Logic Blocks
 - Flip-Flops
 - Lookup Tables (LUTs)
 - Multiplier units
 - Memory (M9K)
 - Programmable interconnects

Look Up Tables

Flip Flop

- Remember!
 - ¡3V supply!
 - Parallel processing
- Tips:
 - Check that you got the pin out right!
 - Use the green LEDs for debugging!
 - Always downshift to 3V

https://cei-lab.github.io/ece3400-2018/tutorials/ https://cei-lab.github.io/ece3400-2018/lectures/lectures.html

OV7670 3V supply!

Sensor size: 2.36 x 1.76mm

Setting up the camera

OV7670 3V supply!

- Sensor size: 2.36 x 1.76mm
- Max resolution: 640x480 pixels

- **Camera Communication**
 - I2C (Arduino or FPGA)...
 - Serial Camera Control Bus (SCCB) Interface
- What needs to be setup?
 - **Exposure control**
 - Gamma
 - White balance
 - Color saturation
 - Hue control
- Frame rate
 - Depends on image resolution, color resolution, and clock rate
- Fixed focal length
 - F1.8 / 6mm lens

OV7670 3V supply!

Sensor size: 2.36 x 1.76mm

Monitors

OV7670 3V supply!

Sensor size: 2.36 x 1.76mm

Monitors

- Resistive 8-bit DAC
- FPGA Digital to Analog [0-1]V


```
input CLOCK; //PIXEL CLOCK - DRIVE AT 25MHZ for 60 Hz 640 x 480 VGA
     input RESET;
     input [7:0] PIXEL_COLOR_IN; //COLOR GIVEN TO THE VGA DRIVER
28
29
     output [9:0] PIXEL_X; //HORIZONTAL POSITION OF THE NEXT PIXEL;
     output [9:0] PIXEL_Y; //VERTICLE POSITION OF THE NEXT PIXEL;
     output [7:0] PIXEL_COLOR_OUT; //COLOR TO BE DISPLAYED
    output
                 H_SYNC_NEG; //THE REVERSE POLARITY HORIZONTAL SYNC SIGNAL
    output
                 V_SYNC_NEG; //THE REVERSE POLARITY VERTICAL SYNC SIGNAL
```

0V7670

3V supply!

Sensor size: 2.36 x 1.76mm

0V7670 3V supply!

- 8 pins for data transfer
- 3-4 pins for clock signals
- Remember to do level shifting!

- Sample D0-7 on PCLK rising edge
- Sample D0-7 when HREF is high
- HREF 个edge is the start of a line $(\downarrow edge is the end)$
- VSYNC ↓edge is frame start (VSYNC ↑edge is the end)

0V7670 3V supply!

Sensor size: 2.36 x 1.76mm

Image and Color Formats

- Image structure
- Monochrome
 - 8 bits/pixel
- **RGB**
 - RGB888: 24 bits/pixel
 - RGB565: 16 bits/pixel
- YCbCr/YUB
 - Luminance
 - Chroma blue/red

Source:

http://embeddedprogrammer.blogspot.com/2012/07 /hacking-ov7670-camera-module-sccb-cheat.html

A 5x5 image

OV7670 3V supply!

- Sensor size: 2.36 x 1.76mm
- Max resolution: 640x480 pixels

- Full resolution (640x480 pixels)
- Full color resolution (3 bytes/pixel)
- Clock signal (10-48 MHz)
- What is the maximum frame rate at full resolution?
 - 1/48MHz*24*640*480 = 6.5 fps
 - (+ delays you introduce on the FPGA)
 - How fast does your robot need to see?
- How much memory would this consume?
 - 640*480*3 bytes = 921.6 kB
 - Embedded memory on the FPGA is 74.25 kB
 - You'll have to lower both resolution and color resolution!

Image and Color Formats

- Image structure
- Monochrome
 - 8 bits/pixel
- **RGB**
 - RGB888: 24 bits/pixel
 - RGB565: 16 bits/pixel
- YCbCr/YUB
 - Luminance
 - Chroma blue/red

Source:

http://embeddedprogrammer.blogspot.com/2012/07 /hacking-ov7670-camera-module-sccb-cheat.html

A 5x5 image

0V7670 3V supply!

- Sensor size: 2.36 x 1.76mm
- Max resolution: 640x480 pixels

- Full resolution (640x480 pixels)
- Full color resolution (3 bytes/pixel)
- What is the maximum frame rate at full resolution?
- How much memory would this consume?
- How to downsample RGB565 to RGB332?

0V7670

3V supply!

Sensor size: 2.36 x 1.76mm

Final Competition and Treasures

• **Round:** [0-20] points

• Coverage: [0-15] points

• Treasures:

Correctly located: 1 point

• Correctly located, and correct color: 1 point

• Correctly located, and correct shape: 1 point

• Faulty location: -1 point

- 4.5% of the population is color blind
- New treasure set consist of:
 - Red/Blue treasures
 - Triangles, Squares, Diamonds

0V7670 3V supply!

- Sensor size: 2.36 x 1.76mm
- Max resolution: 640x480 pixels

- Full resolution (640x480 pixels)
- Full color resolution (3 bytes/pixel)
- What is the maximum frame rate at full resolution?
- How much memory would this consume?
- How to downsample RGB565 to RGB332?

Image and Color Formats

- Image structure
- Monochrome
 - 8 bits/pixel
- **RGB**
 - RGB888: 24 bits/pixel
 - RGB565: 16 bits/pixel
- YCbCr/YUB
 - Luminance
 - Chroma blue/red

Source:

http://embeddedprogrammer.blogspot.com/2012/07 /hacking-ov7670-camera-module-sccb-cheat.html

A 5x5 image

Final Competition and Treasures

• **Round:** [0-20] points

• Coverage: [0-15] points

• Treasures:

Correctly located: 1 point

• Correctly located, and correct color: 1 point

• Correctly located, and correct shape: 1 point

• Faulty location: -1 point

- 4.5% of the population is color blind
- New treasure set consist of:
 - Red/Blue treasures
 - Triangles, Squares, Diamonds

Image Processing

- Your job is to figure out whether...
 - ...there is a treasure? what color? what shape?
- Do you have to check the camera all the time?
 - Just at junctions
 - Only next to walls
- Template matching, edge detection, filters, ML, etc...
- Do you have to check all pixels?
 - Just a few lines
- · How would you detect the color?
 - Thresholding
 - Relative thresholding
 - +averaging...

Next week:

• Fall break!

Go make Robots!

