HOMEWORK 4 WRITTEN ASSIGNMENT

1. Overview:

All the Components outlined in this pdf were used in the assembly of the CPU I have submitted on Gradescope. Furthermore, my device was able to pass all the available tests on the autograder. Please refer to the following section to see how each component was made and what function it performs vis-à-vis the rest of the system.

2. Subcircuits:

The CPU provided as part of this submission has the following sub-circuits –

- a. Instruction_map: Converts the 16-bit instruction into smaller components to execute the R, I and J type instructions and further decodes it to create suitable control signals.
 - i. Abstraction –

ii. Signal description -

Signal	Description
Rwe	Enables writing to the Register File
Shamt	Specifies the shift amount for the
	ALU
Rd	Destination register
Rt	Register Val1
Rs	Register Val2
Immediate	Gives immediate value of the I-type
	instruction
Address	Gives the final address value for all
	J-type instructions, with the PC
	value appended
ALUop	Specifies the operation performed
	by the ALU
	000 - ADD
	001 - SUB
	010 - XOR
	011 – NOT A
	100 – LEFT SHIFT A
	101 – RIGHT SHIFT A
Rdst	Replaces Rd with Rt in the register
	file if it is 1

ALLED	Doods size systems and value of
ALUinB	Reads sign extended value of
	Immediate in the ALU if it is 1
Rwd	Reads from the data memory if it is
	1
Dmwe	Enables writing to data memory if it
	is 1
Dmre	Enables reading from data memory
	if it is 1
Bne	Executes the Bne instruction if it is
	1
Output	Executes the Output instruction if it
	is 1
Blt	Executes the Blt instruction if it is 1
Input	Executes the Input instruction if it is
	1
JP	Executes the various jump
	instructions as follows –
	00 – No jump
	01 – J instruction
	10 – JR instruction
	11 – JAL instruction
JAL	Executes the JAL instruction if it is 1

- b. RegisterFile: A 16-bit register file which has 2 read ports and 1 write port.
 - i. Abstraction -

ii. Signal Description –

Signal	Description
RESET	Resets all the registers in the File
DATA	Provides 16-bit input to the file
CLK	Provides clock
WE	Enables writing to the File
RS	Describes register to write to
RT	Describes register to write to
W1	First Write port
READ1	First Read port
READ2	Second Read port

- c. 1-bit Adder: Adds 1-bit inputs if the Cin is 0. Subtracts 1-bit inputs if the Cin is 1.
 - i. Abstraction -

ii. Signal Description -

Signal	Description
Α	First Input (Chronologically)
В	Second Input (Chronologically)
Cin	Control Unit
	0 – performs A + B
	1 – performs A – B
Cout	Indicates overflow if equal to 1
OUT	Gives the result of the operation

- d. ALU: Performs the following 16-bit operations ADD, SUB, XOR, NOT, Shift Left and Shift Right.
 - i. Abstraction -

ii. Signal Description –

Signal	Description
INP1	The first input of the ALU
INP2	The second input of the ALU
OPNUM	Specifies operation performed by
	the ALU (codes provided above)
SHAMT	Specifies the shift amount
OUT	Gives output
OVF	Signals overflow if equal to 1

- e. LeftShift: Shifts the given input left (logically) by upto a maximum of seven places.
 - i. Abstraction -

ii. Signal Description –

Signal	Description
Data	Provides 16-bit input
SHAMT	Provides the shift amount
OUT	Provides the output

- f. RightShift: Shifts the given input right (logically) by upto a maximum of seven places.
 - i. Abstraction -

ii. Signal Description -

Signal	Description
Data	Provides 16-bit input
SHAMT	Provides the shift amount
OUT	Provides the output

- g. ZeroChecker: Checks if the input is 0 if the Control signal is 0. Checks if the input is negative or positive if the control signal is 1.
 - i. Abstraction -

ii. Signal Description -

Signal	Description
1	Provides 16-bit input
С	Checks if input is
	Zero if C = 0
	Negative/Positive if C = 1
0	Based on value of C, returns
	1 if input is zero
	Or 1 I input is negative

- h. ASCII_inp: If the data is available in the keyboard, takes the 7-bit buffer and extends it to a 16-bit output.
 - i. Abstraction –

ii. Signal Description –

Signal	Description
D	Provides 7-bit input from the
	keyboard
Α	Indicates if data is available or not
	1 – Data is available
	0 – Data is unavailable
0	Returns the 16-bit output

- i. ASCII_out: Reads the first 6 bits of the input data
 - i. Abstraction -

ii. Signal Description -

Signal	Description
D	Provides 16-bit input
0	Returns the 7-bit data to be written
	to TTY

- j. 16-bit Register: Standard 16-bit register implemented using D flip-flops
 - i. Abstraction -

ii. Signal Description –

Signal	Description
RESET	Resets all the registers in the
	register

DATA	Provides 16-bit input to the register
CLK	Provides clock
WE	Enables writing to the register
OUT	Provides output (stored data in the
	register)

- k. 16-bit Adder: Standard 16-bit adder, made using 1-bit adder as sub-circuit
 - i. Abstraction –

ii. Signal Description – Similar to 1-bit adder, but operates at a data width of 16 bits.