

Rob J Hyndman

Forecasting: Principles and Practice

11. Hierarchical forecasting

OTexts.com/fpp/9/4/

Outline

- 1 Hierarchical and grouped time series
- **2** Forecasting framework
- 3 Optimal forecasts
- 4 Approximately optimal forecasts
- **5** Application: Australian tourism
- 6 Application: Australian labour market
- 7 hts package for R

- Manufacturing product hierarchies
- Net labour turnover
- Pharmaceutical sales

- Manufacturing product hierarchies
- Net labour turnover
- Pharmaceutical sales
- Tourism demand by region and purpose

- Manufacturing product hierarchies
- Net labour turnover
- Pharmaceutical sales
- Tourism demand by region and purpose

- Manufacturing product hierarchies
- Net labour turnover
- Pharmaceutical sales
- Tourism demand by region and purpose

- Manufacturing product hierarchies
- Net labour turnover
- Pharmaceutical sales
- Tourism demand by region and purpose

Forecasting the PBS

ATC drug classification

- A Alimentary tract and metabolism
- B Blood and blood forming organs
- C Cardiovascular system
- D Dermatologicals
- G Genito-urinary system and sex hormones
- H Systemic hormonal preparations, excluding sex hormones and insulins
- J Anti-infectives for systemic use
- L Antineoplastic and immunomodulating agents
- M Musculo-skeletal system
- N Nervous system
- P Antiparasitic products, insecticides and repellents
- R Respiratory system
- S Sensory organs
- V Various

ATC drug classification

Australian tourism

Australian tourism

Also split by purpose of travel:

- Holiday
- Visits to friends and relatives
- Business
- Other

■ A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.

Example: Pharmaceutical products are organized in a hierarchy under the Anatomical Therapeutic Chemical (ATC) Classification System.

A grouped time series is a collection of time series that are aggregated in a number of non-hierarchical ways.

Example: Australian tourism demand is grouped by region and purpose of travel.

A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.

Example: Pharmaceutical products are organized in a hierarchy under the Anatomical Therapeutic Chemical (ATC) Classification System.

A grouped time series is a collection of time series that are aggregated in a number of non-hierarchical ways.

Example: Australian tourism demand is grouped by region and nurpose of travel

■ A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.

Example: Pharmaceutical products are organized in a hierarchy under the Anatomical Therapeutic Chemical (ATC) Classification System.

■ A **grouped time series** is a collection of time series that are aggregated in a number of non-hierarchical ways.

Example: Australian tourism demand is grouped by region and purpose of travel.

■ A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.

Example: Pharmaceutical products are organized in a hierarchy under the Anatomical Therapeutic Chemical (ATC) Classification System.

A grouped time series is a collection of time series that are aggregated in a number of non-hierarchical ways.

Example: Australian tourism demand is grouped by region and purpose of travel.

Y_t: observed aggregate of all series at time t.

 $Y_{X,t}$: observation on series X at time t.

 B_t : vector of all series at bottom level in time t.

 Y_t : observed aggregate of all series at time t.

 $Y_{X,t}$: observation on series X at time t.

Y_t: observed aggregate of all series at time t.

 $Y_{X,t}$: observation on series X at time t.

$$m{Y}_t = [Y_t, Y_{A,t}, Y_{B,t}, Y_{C,t}]' = egin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} egin{pmatrix} Y_{A,t} \\ Y_{B,t} \\ Y_{C,t} \end{pmatrix}$$

Y_t: observed aggregate of all series at time t.

 $Y_{X,t}$: observation on series X at time t.

$$\mathbf{Y}_{t} = [Y_{t}, Y_{A,t}, Y_{B,t}, Y_{C,t}]' = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{F}} \begin{pmatrix} Y_{A,t} \\ Y_{B,t} \\ Y_{C,t} \end{pmatrix}$$

Y_t: observed aggregate of all series at time t.

 $Y_{X,t}$: observation on series X at time t.

$$\mathbf{Y}_{t} = [Y_{t}, Y_{A,t}, Y_{B,t}, Y_{C,t}]' = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{B}_{t}} \underbrace{\begin{pmatrix} Y_{A,t} \\ Y_{B,t} \\ Y_{C,t} \end{pmatrix}}_{\mathbf{B}_{t}}$$

 Y_t : observed aggregate of all series at time t.

 $Y_{X,t}$: observation on series X at time t.

$$\mathbf{Y}_{t} = [Y_{t}, Y_{A,t}, Y_{B,t}, Y_{C,t}]' = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{S}} \underbrace{\begin{pmatrix} Y_{A,t} \\ Y_{B,t} \\ Y_{C,t} \end{pmatrix}}_{\mathbf{B}_{t}}$$

$$\underbrace{\begin{pmatrix}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}}_{\mathbf{g}_{t}}
\underbrace{\begin{pmatrix}
Y_{A,t} \\
Y_{B,t} \\
Y_{C,t}
\end{pmatrix}}_{\mathbf{g}_{t}}$$

 $Y_{AX,t}$ $Y_{AY,t}$ $Y_{AZ,t}$ $Y_{BX,t}$ $Y_{BY,t}$ $Y_{BZ,t}$ $Y_{CX,t}$ $Y_{CY,t}$ $(Y_{CZ,t})$

 $Y_t = SB_t$

Grouped data

Total

$$m{Y}_t = egin{pmatrix} Y_t \ Y_{A,t} \ Y_{B,t} \ Y_{X,t} \ Y_{Y,t} \ Y_{AX,t} \ Y_{AY,t} \ Y_{BX,t} \ Y_{BY,t} \end{pmatrix} = egin{pmatrix} 1 & 1 & 1 & 1 \ 1 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 \ 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & 0 & 1 & 0 \ \end{pmatrix}$$

 $\underbrace{\begin{pmatrix} Y_{AX,t} \\ Y_{AY,t} \\ Y_{BX,t} \\ Y_{BY,t} \end{pmatrix}}_{\boldsymbol{B}_{t}}$

Grouped data

$$\mathbf{Y}_{t} = \begin{pmatrix} Y_{t} \\ Y_{A,t} \\ Y_{B,t} \\ Y_{X,t} \\ Y_{Y,t} \\ Y_{AX,t} \\ Y_{AY,t} \\ Y_{BX,t} \\ Y_{BY,t} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \underbrace{\begin{pmatrix} Y_{AX,t} \\ Y_{AY,t} \\ Y_{BX,t} \\ Y_{BY,t} \end{pmatrix}}_{\mathbf{B}_{t}}$$

Grouped data

$$\mathbf{Y}_{t} = \begin{pmatrix} \mathbf{Y}_{t} \\ \mathbf{Y}_{A,t} \\ \mathbf{Y}_{B,t} \\ \mathbf{Y}_{X,t} \\ \mathbf{Y}_{Y,t} \\ \mathbf{Y}_{AX,t} \\ \mathbf{Y}_{AX,t} \\ \mathbf{Y}_{AY,t} \\ \mathbf{Y}_{BX,t} \\ \mathbf{Y}_{BY,t} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\mathbf{B}_{t}} \underbrace{\begin{pmatrix} \mathbf{Y}_{AX,t} \\ \mathbf{Y}_{AX,t} \\ \mathbf{Y}_{AY,t} \\ \mathbf{Y}_{BX,t} \\ \mathbf{Y}_{BY,t} \end{pmatrix}}_{\mathbf{B}_{t}}$$

 $\mathbf{Y}_t = \mathbf{SB}_t$

Outline

- 1 Hierarchical and grouped time series
- **2** Forecasting framework
- 3 Optimal forecasts
- 4 Approximately optimal forecasts
- 5 Application: Australian tourism
- 6 Application: Australian labour market
- 7 hts package for R

Let $\hat{\mathbf{Y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{Y}_t . (They may not add up.)

Hierarchical forecasting methods of the form:

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{SP}\hat{\mathbf{Y}}_n(h)$$

Let $\hat{\mathbf{Y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{Y}_t . (They may not add up.)

Hierarchical forecasting methods of the form:

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{SP}\hat{\mathbf{Y}}_n(h)$$

for some matrix P.

■ P extracts and combines base forecasts $Y_n(h)$ to get bottom-level forecasts

= 5 adds them up

Revised reconciled forecasts: $\tilde{V}_n(h)$.

Let $\hat{\mathbf{Y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{Y}_t . (They may not add up.)

Hierarchical forecasting methods of the form:

$$\hat{\mathbf{Y}}_n(h) = \mathbf{SP}\hat{\mathbf{Y}}_n(h)$$

- **P** extracts and combines base forecasts $\hat{Y}_n(h)$ to get bottom-level forecasts.
- S adds them up
- Revised reconciled forecasts: $\tilde{Y}_n(h)$.

Let $\hat{\mathbf{Y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{Y}_t . (They may not add up.)

Hierarchical forecasting methods of the form:

$$ilde{m{Y}}_n(h) = m{SP}\hat{m{Y}}_n(h)$$

- **P** extracts and combines base forecasts $\hat{\mathbf{Y}}_n(h)$ to get bottom-level forecasts.
- **S** adds them up
- Revised reconciled forecasts: $\tilde{\mathbf{Y}}_n(h)$.

Let $\hat{\mathbf{Y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{Y}_t . (They may not add up.)

Hierarchical forecasting methods of the form:

$$ilde{m{Y}}_n(h) = m{SP}\hat{m{Y}}_n(h)$$

- **P** extracts and combines base forecasts $\hat{\mathbf{Y}}_n(h)$ to get bottom-level forecasts.
- S adds them up
- Revised reconciled forecasts: $\tilde{\mathbf{Y}}_n(h)$.

Let $\hat{\mathbf{Y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{Y}_t . (They may not add up.)

Hierarchical forecasting methods of the form:

$$ilde{m{Y}}_n(h) = m{SP}\hat{m{Y}}_n(h)$$

- **P** extracts and combines base forecasts $\hat{\mathbf{Y}}_n(h)$ to get bottom-level forecasts.
- **S** adds them up
- Revised reconciled forecasts: $\tilde{\mathbf{Y}}_n(h)$.

Bottom-up forecasts

$$ilde{m{Y}}_n(h) = m{SP}\hat{m{Y}}_n(h)$$

Bottom-up forecasts are obtained using

$$P = [0 \mid I],$$

where **0** is null matrix and **I** is identity matrix.

- **P** matrix extracts only bottom-level forecasts from $\hat{Y}_n(h)$
- 5 adds them up to give the bottom-up forecasts.

Bottom-up forecasts

$$ilde{m{Y}}_n(h) = m{SP}\hat{m{Y}}_n(h)$$

Bottom-up forecasts are obtained using

$$P = [0 \mid I],$$

where **0** is null matrix and **I** is identity matrix.

- **P** matrix extracts only bottom-level forecasts from $\hat{\mathbf{Y}}_n(h)$
- 5 adds them up to give the bottom-up forecasts.

Bottom-up forecasts

$$ilde{m{Y}}_n(h) = m{SP}\hat{m{Y}}_n(h)$$

Bottom-up forecasts are obtained using

$$P = [0 \mid I],$$

where **0** is null matrix and **I** is identity matrix.

- **P** matrix extracts only bottom-level forecasts from $\hat{\mathbf{Y}}_n(h)$
- S adds them up to give the bottom-up forecasts.

Top-down forecasts

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{SP}\hat{\mathbf{Y}}_n(h)$$

Top-down forecasts are obtained using

$$P = [p \mid 0]$$

where $\mathbf{p} = [p_1, p_2, \dots, p_{m_K}]'$ is a vector of proportions that sum to one.

- P distributes forecasts of the aggregate to the lowest level series.
- Different methods of top-down forecasting lead to different proportionality vectors **p**.

Top-down forecasts

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{SP}\hat{\mathbf{Y}}_n(h)$$

Top-down forecasts are obtained using

$$\mathbf{\textit{P}} = [\mathbf{\textit{p}} \mid \mathbf{0}]$$

where $\mathbf{p} = [p_1, p_2, \dots, p_{m_K}]'$ is a vector of proportions that sum to one.

- **P** distributes forecasts of the aggregate to the lowest level series.
- Different methods of top-down forecasting lead to different proportionality vectors p.

Top-down forecasts

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{SP}\hat{\mathbf{Y}}_n(h)$$

Top-down forecasts are obtained using

$$\mathbf{\textit{P}} = [\mathbf{\textit{p}} \mid \mathbf{0}]$$

where $\mathbf{p} = [p_1, p_2, \dots, p_{m_K}]'$ is a vector of proportions that sum to one.

- **P** distributes forecasts of the aggregate to the lowest level series.
- Different methods of top-down forecasting lead to different proportionality vectors **p**.

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{SP}\hat{\mathbf{Y}}_n(h)$$

Assume: base forecasts $\hat{\mathbf{Y}}_n(h)$ are unbiased: $E[\hat{\mathbf{Y}}_n(h)|\mathbf{Y}_1,\ldots,\mathbf{Y}_n]=E[\mathbf{Y}_{n+h}|\mathbf{Y}_1,\ldots,\mathbf{Y}_n]$

- Let $\hat{\boldsymbol{B}}_n(h)$ be bottom level base forecasts with $\beta_n(h) = \mathrm{E}[\hat{\boldsymbol{B}}_n(h)|\boldsymbol{Y}_1,\ldots,\boldsymbol{Y}_n]$.
- Then $\mathbb{E}[Y_n(h)] = Seta_n(h)$
 - We want the revised forecasts to be unbiased as a contract of the contract of
 - $E[x_n(n)] = SPS[y_n(n)] = S[y_n(n)].$
- Result will hold provided SPS —
- True for bottom-up, but not for any top-down

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{SP}\hat{\mathbf{Y}}_n(h)$$

Assume: base forecasts $\hat{\mathbf{Y}}_n(h)$ are unbiased:

$$\mathsf{E}[\hat{\boldsymbol{Y}}_n(h)|\boldsymbol{Y}_1,\ldots,\boldsymbol{Y}_n] = \mathsf{E}[\boldsymbol{Y}_{n+h}|\boldsymbol{Y}_1,\ldots,\boldsymbol{Y}_n]$$

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{SP}\hat{\mathbf{Y}}_n(h)$$

Assume: base forecasts $\hat{\mathbf{Y}}_n(h)$ are unbiased: $E[\hat{\mathbf{Y}}_n(h)|\mathbf{Y}_1,\ldots,\mathbf{Y}_n]=E[\mathbf{Y}_{n+h}|\mathbf{Y}_1,\ldots,\mathbf{Y}_n]$

- Let $\hat{\boldsymbol{B}}_n(h)$ be bottom level base forecasts with $\beta_n(h) = \mathrm{E}[\hat{\boldsymbol{B}}_n(h)|\boldsymbol{Y}_1,\ldots,\boldsymbol{Y}_n]$.
- Then $E[\hat{\mathbf{Y}}_n(h)] = \mathbf{S}\beta_n(h)$.
- We want the revised forecasts to be unbiased: $E[\tilde{Y}_n(h)] = SPS\beta_n(h) = S\beta_n(h)$.

$$\mathbf{\tilde{Y}}_n(h) = \mathbf{SP\hat{Y}}_n(h)$$

Assume: base forecasts $\hat{\mathbf{Y}}_n(h)$ are unbiased: $E[\hat{\mathbf{Y}}_n(h)|\mathbf{Y}_1,\ldots,\mathbf{Y}_n]=E[\mathbf{Y}_{n+h}|\mathbf{Y}_1,\ldots,\mathbf{Y}_n]$

- Let $\hat{\boldsymbol{B}}_n(h)$ be bottom level base forecasts with $\beta_n(h) = E[\hat{\boldsymbol{B}}_n(h)|\boldsymbol{Y}_1,\ldots,\boldsymbol{Y}_n]$.
- Then $E[\hat{\mathbf{Y}}_n(h)] = \mathbf{S}\beta_n(h)$.
- We want the revised forecasts to be unbiased: $E[\tilde{Y}_n(h)] = SPS\beta_n(h) = S\beta_n(h)$.

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{SP}\hat{\mathbf{Y}}_n(h)$$

Assume: base forecasts $\hat{\mathbf{Y}}_n(h)$ are unbiased: $E[\hat{\mathbf{Y}}_n(h)|\mathbf{Y}_1,\ldots,\mathbf{Y}_n] = E[\mathbf{Y}_{n+h}|\mathbf{Y}_1,\ldots,\mathbf{Y}_n]$

- Let $\hat{\boldsymbol{B}}_n(h)$ be bottom level base forecasts with $\beta_n(h) = \mathrm{E}[\hat{\boldsymbol{B}}_n(h)|\boldsymbol{Y}_1,\ldots,\boldsymbol{Y}_n]$.
- Then $E[\hat{\mathbf{Y}}_n(h)] = \mathbf{S}\beta_n(h)$.
- We want the revised forecasts to be unbiased: $E[\tilde{Y}_n(h)] = SPS\beta_n(h) = S\beta_n(h)$.

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{SP}\hat{\mathbf{Y}}_n(h)$$

Assume: base forecasts $\hat{\mathbf{Y}}_n(h)$ are unbiased: $E[\hat{\mathbf{Y}}_n(h)|\mathbf{Y}_1,\ldots,\mathbf{Y}_n] = E[\mathbf{Y}_{n+h}|\mathbf{Y}_1,\ldots,\mathbf{Y}_n]$

- Let $\hat{\boldsymbol{B}}_n(h)$ be bottom level base forecasts with $\beta_n(h) = \mathrm{E}[\hat{\boldsymbol{B}}_n(h)|\boldsymbol{Y}_1,\ldots,\boldsymbol{Y}_n]$.
- Then $E[\hat{\mathbf{Y}}_n(h)] = \mathbf{S}\beta_n(h)$.
- We want the revised forecasts to be unbiased: $E[\tilde{Y}_n(h)] = SPS\beta_n(h) = S\beta_n(h)$.

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{SP}\hat{\mathbf{Y}}_n(h)$$

Assume: base forecasts $\hat{\mathbf{Y}}_n(h)$ are unbiased: $E[\hat{\mathbf{Y}}_n(h)|\mathbf{Y}_1,\ldots,\mathbf{Y}_n]=E[\mathbf{Y}_{n+h}|\mathbf{Y}_1,\ldots,\mathbf{Y}_n]$

- Let $\hat{\boldsymbol{B}}_n(h)$ be bottom level base forecasts with $\beta_n(h) = E[\hat{\boldsymbol{B}}_n(h)|\boldsymbol{Y}_1,\ldots,\boldsymbol{Y}_n]$.
- Then $E[\hat{\mathbf{Y}}_n(h)] = \mathbf{S}\beta_n(h)$.
- We want the revised forecasts to be unbiased: $E[\tilde{Y}_n(h)] = SPS\beta_n(h) = S\beta_n(h)$.
- Result will hold provided SPS = S.
- True for bottom-up, but not for *any* top-down method or middle-out method.

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{SP}\hat{\mathbf{Y}}_n(h)$$

Assume: base forecasts $\hat{\mathbf{Y}}_n(h)$ are unbiased: $E[\hat{\mathbf{Y}}_n(h)|\mathbf{Y}_1,\ldots,\mathbf{Y}_n]=E[\mathbf{Y}_{n+h}|\mathbf{Y}_1,\ldots,\mathbf{Y}_n]$

- Let $\hat{\boldsymbol{B}}_n(h)$ be bottom level base forecasts with $\beta_n(h) = E[\hat{\boldsymbol{B}}_n(h)|\boldsymbol{Y}_1,\ldots,\boldsymbol{Y}_n]$.
- Then $E[\hat{\mathbf{Y}}_n(h)] = \mathbf{S}\beta_n(h)$.
- We want the revised forecasts to be unbiased: $E[\tilde{\mathbf{Y}}_n(h)] = \mathbf{SPS}\beta_n(h) = \mathbf{S}\beta_n(h)$.
- Result will hold provided SPS = S.
- True for bottom-up, but not for *any* top-down method or middle-out method.

General properties: variance

$$ilde{\mathbf{Y}}_n(h) = \mathbf{SP}\hat{\mathbf{Y}}_n(h)$$

Let variance of base forecasts $\hat{\mathbf{Y}}_n(h)$ be given by $\Sigma_h = \operatorname{Var}[\hat{\mathbf{Y}}_n(h)|\mathbf{Y}_1,\ldots,\mathbf{Y}_n]$

Then the variance of the revised forecasts is given by

$$Var[\tilde{\mathbf{Y}}_n(h)|\mathbf{Y}_1,\ldots,\mathbf{Y}_n] = \mathbf{SP}\Sigma_h\mathbf{P}'\mathbf{S}'.$$

This is a general result for all existing methods.

General properties: variance

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{SP}\hat{\mathbf{Y}}_n(h)$$

Let variance of base forecasts $\hat{\mathbf{Y}}_n(h)$ be given by $\Sigma_h = \operatorname{Var}[\hat{\mathbf{Y}}_n(h)|\mathbf{Y}_1,\ldots,\mathbf{Y}_n]$

Then the variance of the revised forecasts is given by

$$Var[\tilde{\mathbf{Y}}_n(h)|\mathbf{Y}_1,\ldots,\mathbf{Y}_n] = \mathbf{SP}\Sigma_h\mathbf{P}'\mathbf{S}'.$$

This is a general result for all existing methods.

General properties: variance

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{SP}\hat{\mathbf{Y}}_n(h)$$

Let variance of base forecasts $\hat{\mathbf{Y}}_n(h)$ be given by $\Sigma_h = \operatorname{Var}[\hat{\mathbf{Y}}_n(h)|\mathbf{Y}_1,\ldots,\mathbf{Y}_n]$

Then the variance of the revised forecasts is given by

$$\mathsf{Var}[ilde{m{Y}}_n(h)|m{Y}_1,\ldots,m{Y}_n] = m{SP}\Sigma_hm{P}'m{S}'.$$

This is a general result for all existing methods.

Outline

- 1 Hierarchical and grouped time series
- **2** Forecasting framework
- **3** Optimal forecasts
- 4 Approximately optimal forecasts
- 5 Application: Australian tourism
- 6 Application: Australian labour market
- 7 hts package for R

Key idea: forecast reconciliation

- Ignore structural constraints and forecast every series of interest independently.
- → Adjust forecasts to impose constraints.

$$\mathbf{Y}_t = \mathbf{S}\mathbf{B}_t$$
. So $\hat{\mathbf{Y}}_n(h) = \mathbf{S}\boldsymbol{\beta}_n(h) + \boldsymbol{\varepsilon}_h$

Key idea: forecast reconciliation

- Ignore structural constraints and forecast every series of interest independently.
- → Adjust forecasts to impose constraints.

$$\mathbf{Y}_t = \mathbf{S}\mathbf{B}_t$$
. So $\hat{\mathbf{Y}}_n(h) = \mathbf{S}\boldsymbol{\beta}_n(h) + \boldsymbol{\varepsilon}_h$.

Key idea: forecast reconciliation

- Ignore structural constraints and forecast every series of interest independently.
- → Adjust forecasts to impose constraints.

$$\mathbf{Y}_t = \mathbf{S}\mathbf{B}_t$$
. So $\hat{\mathbf{Y}}_n(h) = \mathbf{S}\beta_n(h) + \varepsilon_h$.

Key idea: forecast reconciliation

- Ignore structural constraints and forecast every series of interest independently.
- Adjust forecasts to impose constraints.

$$oldsymbol{Y}_t = oldsymbol{S}oldsymbol{B}_t$$
 . So $oldsymbol{\hat{Y}}_n(h) = oldsymbol{S}eta_n(h) + arepsilon_h$.

Key idea: forecast reconciliation

- Ignore structural constraints and forecast every series of interest independently.
- Adjust forecasts to impose constraints.

$$oldsymbol{Y}_t = oldsymbol{S}oldsymbol{B}_t$$
 . So $oldsymbol{\hat{Y}}_n(h) = oldsymbol{S}eta_n(h) + arepsilon_h$.

- $\blacksquare \beta_n(h) = \mathsf{E}[\boldsymbol{B}_{n+h} \mid \boldsymbol{Y}_1, \dots, \boldsymbol{Y}_n].$
- \blacksquare ε_h has zero mean and covariance Σ_h .
- Estimate $\beta_n(h)$ using GLS?

Key idea: forecast reconciliation

- Ignore structural constraints and forecast every series of interest independently.
- Adjust forecasts to impose constraints.

$$oldsymbol{Y}_t = oldsymbol{S}oldsymbol{B}_t$$
 . So $oldsymbol{\hat{Y}}_n(h) = oldsymbol{S}eta_n(h) + arepsilon_h$.

- lacksquare $eta_n(h) = E[oldsymbol{B}_{n+h} \mid oldsymbol{Y}_1, \dots, oldsymbol{Y}_n].$
- lacksquare ε_h has zero mean and covariance Σ_h .
- Estimate $\beta_n(h)$ using GLS?

Key idea: forecast reconciliation

- Ignore structural constraints and forecast every series of interest independently.
- Adjust forecasts to impose constraints.

$$oldsymbol{Y}_t = oldsymbol{S}oldsymbol{B}_t$$
 . So $oldsymbol{\hat{Y}}_n(h) = oldsymbol{S}eta_n(h) + arepsilon_h$.

- lacksquare $eta_n(h) = E[oldsymbol{B}_{n+h} \mid oldsymbol{Y}_1, \dots, oldsymbol{Y}_n].$
- lacksquare ε_h has zero mean and covariance Σ_h .
- Estimate $\beta_n(h)$ using GLS?

$$\hat{\mathbf{Y}}_n(h) = \mathbf{S}\hat{oldsymbol{eta}}_n(h) = \mathbf{S}(\mathbf{S}'\Sigma_h^\dagger\mathbf{S})^{-1}\mathbf{S}'\Sigma_h^\dagger\hat{\mathbf{Y}}_n(h)$$

$$\hat{\mathbf{Y}}_n(h) = \mathbf{S}\hat{oldsymbol{eta}}_n(h) = \mathbf{S}(\mathbf{S}'\Sigma_h^\dagger\mathbf{S})^{-1}\mathbf{S}'\Sigma_h^\dagger\hat{\mathbf{Y}}_n(h)$$

$$\hat{\mathbf{Y}}_{n}(h) = \mathbf{S}\hat{eta}_{n}(h) = \mathbf{S}(\mathbf{S}'\Sigma_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{h}^{\dagger}\hat{\mathbf{Y}}_{n}(h)$$

Revised forecasts

- lacksquare Σ_h^\dagger is generalized inverse of Σ_h .
- $lacksquare [ilde{m{Y}}_n(h)|m{Y}_1,\ldots,m{Y}_n] = m{S}(m{S}'\Sigma_h^\daggerm{S})^{-1}m{S}'$
- **Problem:** Σ_h hard to estimate

$$\hat{\mathbf{Y}}_{n}(h) = \mathbf{S}\hat{eta}_{n}(h) = \mathbf{S}(\mathbf{S}'\Sigma_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{h}^{\dagger}\hat{\mathbf{Y}}_{n}(h)$$

Revised forecasts

- lacksquare Σ_h^\dagger is generalized inverse of Σ_h .
- $lacksquare ext{Var}[ilde{m{Y}}_n(h)|m{Y}_1,\ldots,m{Y}_n] = m{S}(m{S}'\Sigma_h^\daggerm{S})^{-1}m{S}'$
- **Problem:** Σ_h hard to estimate.

$$\hat{\mathbf{Y}}_{n}(h) = \mathbf{S}\hat{eta}_{n}(h) = \mathbf{S}(\mathbf{S}'\Sigma_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{h}^{\dagger}\hat{\mathbf{Y}}_{n}(h)$$

Revised forecasts

- lacksquare Σ_h^\dagger is generalized inverse of Σ_h .
- $lacksquare \operatorname{Var}[ilde{m{Y}}_n(h)|m{Y}_1,\ldots,m{Y}_n] = m{S}(m{S}'\Sigma_h^\daggerm{S})^{-1}m{S}'$
- **Problem:** Σ_h hard to estimate.

$$\hat{\mathbf{Y}}_{n}(h) = \mathbf{S}\hat{eta}_{n}(h) = \mathbf{S}(\mathbf{S}'\Sigma_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{h}^{\dagger}\hat{\mathbf{Y}}_{n}(h)$$

Revised forecasts

- lacksquare Σ_h^\dagger is generalized inverse of Σ_h .
- $lacksquare {\sf Var}[ilde{m Y}_n(h)|m Y_1,\ldots,m Y_n]=m S(m S'\Sigma_h^\daggerm S)^{-1}m S'$
- **Problem:** Σ_h hard to estimate.

$$\hat{\mathbf{Y}}_{n}(h) = \mathbf{S}\hat{eta}_{n}(h) = \mathbf{S}(\mathbf{S}'\Sigma_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{h}^{\dagger}\hat{\mathbf{Y}}_{n}(h)$$

Revised forecasts

- lacksquare Σ_h^\dagger is generalized inverse of Σ_h .
- lacksquare Var $[ilde{m{Y}}_n(h)|m{Y}_1,\ldots,m{Y}_n]=m{S}(m{S}'\Sigma_h^\daggerm{S})^{-1}m{S}'$
- **Problem:** Σ_h hard to estimate.

Outline

- 1 Hierarchical and grouped time series
- 2 Forecasting framework
- 3 Optimal forecasts
- 4 Approximately optimal forecasts
- 5 Application: Australian tourism
- 6 Application: Australian labour market
- 7 hts package for R

$$\hat{\mathbf{Y}}_{n}(h) = \mathbf{S}(\mathbf{S}'\Sigma_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{h}^{\dagger}\hat{\mathbf{Y}}_{n}(h)$$

Revised forecasts

Base forecasts

- \blacksquare Approximate Σ_1^{\downarrow} by $c\mathbb{I}$
- Or assume $\varepsilon_h \approx \mathbf{S}\varepsilon_{B,h}$ where $\varepsilon_{B,h}$ is the forecast error at bottom level.
- lacksquare Then $\Sigma_h pprox {\sf S}\Omega_h {\sf S}'$ where $\Omega_h = {\sf Var}(arepsilon_{{\cal B}|h})$

$$oxed{ ilde{\mathbf{Y}}_{n}(h)} = \mathbf{S}(\mathbf{S}'\Sigma_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{h}^{\dagger}\hat{\mathbf{Y}}_{n}(h)$$

Revised forecasts

Base forecasts

- Approximate Σ_1^{\dagger} by $c\mathbf{I}$.
- Or assume $\varepsilon_h \approx S \varepsilon_{B,h}$ where $\varepsilon_{B,h}$ is the forecast error at bottom level.
- lacksquare Then $\Sigma_hpprox {m S}\Omega_h{m S}'$ where $\Omega_h={\sf Var}(arepsilon_{B,h}).$
- If Moore-Penrose generalized inverse used then $(\mathbf{S}'\Sigma_h^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\Sigma_h^{\dagger}=(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'.$

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{S}(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'\hat{\mathbf{Y}}_n(h)$$

$$\hat{\mathbf{Y}}_{n}(h) = \mathbf{S}(\mathbf{S}'\Sigma_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{h}^{\dagger}\hat{\mathbf{Y}}_{n}(h)$$

Revised forecasts

Base forecasts

- lacksquare Approximate Σ_1^\dagger by $c{f I}$.
- Or assume $\varepsilon_h \approx S \varepsilon_{B,h}$ where $\varepsilon_{B,h}$ is the forecast error at bottom level.
- lacksquare Then $\Sigma_hpprox oldsymbol{s}\Omega_holdsymbol{S}'$ where $\Omega_h={\sf Var}(arepsilon_{B,h}).$
- If Moore-Penrose generalized inverse used, then $(\mathbf{S}'\Sigma_h^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\Sigma_h^{\dagger}=(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'.$

$$\hat{\mathbf{Y}}_{n}(h) = \mathbf{S}(\mathbf{S}'\Sigma_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{h}^{\dagger}\hat{\mathbf{Y}}_{n}(h)$$

Revised forecasts

Base forecasts

- lacksquare Approximate Σ_1^\dagger by $c\mathbf{I}$.
- Or assume $\varepsilon_h \approx \mathbf{S}\varepsilon_{B,h}$ where $\varepsilon_{B,h}$ is the forecast error at bottom level.
- lacksquare Then $\Sigma_hpprox \mathbf{S}\Omega_h\mathbf{S}'$ where $\Omega_h=\mathsf{Var}(arepsilon_{B,h}).$
- If Moore-Penrose generalized inverse used, then $(\mathbf{S}'\Sigma_h^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\Sigma_h^{\dagger}=(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'.$

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{S}(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'\hat{\mathbf{Y}}_n(h)$$

$$\hat{\mathbf{Y}}_{n}(h) = \mathbf{S}(\mathbf{S}'\Sigma_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{h}^{\dagger}\hat{\mathbf{Y}}_{n}(h)$$

Revised forecasts

Base forecasts

Solution 1: OLS

- lacksquare Approximate Σ_1^\dagger by $c\mathbf{I}$.
- Or assume $\varepsilon_h \approx \mathbf{S}\varepsilon_{B,h}$ where $\varepsilon_{B,h}$ is the forecast error at bottom level.
- lacksquare Then $\Sigma_hpprox \mathbf{S}\Omega_h\mathbf{S}'$ where $\Omega_h=\mathsf{Var}(arepsilon_{B,h}).$
- If Moore-Penrose generalized inverse used, then $(\mathbf{S}'\Sigma_h^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\Sigma_h^{\dagger}=(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'.$

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{S}(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'\hat{\mathbf{Y}}_n(h)$$

$$\hat{\mathbf{Y}}_{n}(h) = \mathbf{S}(\mathbf{S}'\Sigma_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{h}^{\dagger}\hat{\mathbf{Y}}_{n}(h)$$

Revised forecasts

Base forecasts

Solution 1: OLS

- lacksquare Approximate Σ_1^\dagger by $c\mathbf{I}$.
- Or assume $\varepsilon_h \approx \mathbf{S}\varepsilon_{B,h}$ where $\varepsilon_{B,h}$ is the forecast error at bottom level.
- lacksquare Then $\Sigma_hpprox \mathbf{S}\Omega_h\mathbf{S}'$ where $\Omega_h=\mathsf{Var}(arepsilon_{B,h}).$
- If Moore-Penrose generalized inverse used, then $(\mathbf{S}'\Sigma_h^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\Sigma_h^{\dagger}=(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'.$

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{S}(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'\hat{\mathbf{Y}}_n(h)$$

$$\hat{\mathbf{Y}}_{n}(h) = \mathbf{S}(\mathbf{S}'\Sigma_{h}^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{h}^{\dagger}\hat{\mathbf{Y}}_{n}(h)$$

Revised forecasts

Base forecasts

Solution 1: OLS

- Approximate Σ_1^{\dagger} by $c\mathbf{I}$.
- Or assume $\varepsilon_h \approx \mathbf{S}\varepsilon_{B,h}$ where $\varepsilon_{B,h}$ is the forecast error at bottom level.
- lacksquare Then $\Sigma_hpprox oldsymbol{S}\Omega_holdsymbol{S}'$ where $\Omega_h={\sf Var}(arepsilon_{{\sf B},h}).$
- If Moore-Penrose generalized inverse used, then $(\mathbf{S}'\Sigma_h^{\dagger}\mathbf{S})^{-1}\mathbf{S}'\Sigma_h^{\dagger}=(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'.$

$$\mathbf{\tilde{Y}}_n(h) = \mathbf{S}(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'\hat{\mathbf{Y}}_n(h)$$

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{S}(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'\hat{\mathbf{Y}}_n(h)$$

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{S}(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'\hat{\mathbf{Y}}_n(h)$$

Weights:

$$\mathbf{S}(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}' = \begin{bmatrix} 0.75 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.75 & -0.25 & -0.25 \\ 0.25 & -0.25 & 0.75 & -0.25 \\ 0.25 & -0.25 & -0.25 & 0.75 \end{bmatrix}$$


```
Weights: S(S'S)^{-1}S' =
```



```
Weights: S(S'S)^{-1}S' =
 0.69
        0.23
               0.23
                            80.0
                                   0.08
                                          80.0
                                                       0.08
                     0.23
                                                0.08
                                                              0.08
                                                                    80.0
                                                                           0.08
                                                                                  0.08 -
 0.23
        0.58 - 0.17 - 0.17
                            0.19
                                   0.19
                                          0.19 - 0.06 - 0.06 - 0.06 - 0.06 - 0.06
               0.58 - 0.17 - 0.06 - 0.06 - 0.06
                                                0.19
                                                       0.19
                                                              0.19 - 0.06 - 0.06 - 0.06
 0.23 - 0.17 - 0.17
                     0.58 - 0.06 - 0.06 - 0.06 - 0.06 - 0.06
                                                                    0.19
                                                                           0.19
                                                                                  0.19
 80.0
        0.19 - 0.06 - 0.06
                           0.73 - 0.27 - 0.27 - 0.02 - 0.02 - 0.02 - 0.02 - 0.02
 0.08
        0.19 \ -0.06 \ -0.06 \ -0.27 0.73 \ -0.27 \ -0.02 \ -0.02 \ -0.02 \ -0.02 \ -0.02 \ -0.02
 0.08
        0.19 - 0.06 - 0.06 - 0.27 - 0.27
                                         0.73 - 0.02 - 0.02 - 0.02 - 0.02 - 0.02
 0.08 - 0.06
               0.19 - 0.06 - 0.02 - 0.02 - 0.02
                                              0.73 - 0.27 - 0.27 - 0.02 - 0.02 - 0.02
 0.08 - 0.06 0.19 - 0.06 - 0.02 - 0.02 - 0.02 - 0.27 0.73 - 0.27 - 0.02 - 0.02 - 0.02
 0.08 - 0.06
               0.19 - 0.06 - 0.02 - 0.02 - 0.02 - 0.27 - 0.27 0.73 - 0.02 - 0.02 - 0.02
 0.08 - 0.06 - 0.06
                     0.19 - 0.02 - 0.02 - 0.02 - 0.02 - 0.02
                                                                    0.73 - 0.27 - 0.27
 0.08 - 0.06 - 0.06 0.19 - 0.02 - 0.02 - 0.02 - 0.02 - 0.02 - 0.02 - 0.27
                                                                           0.73 - 0.27
 0.08 - 0.06 - 0.06
                     0.19 - 0.02 - 0.02 - 0.02 - 0.02 - 0.02 - 0.02 - 0.27 - 0.27
                                                                                  0.73
```

- Covariates can be included in initial forecasts.
- Adjustments can be made to initial forecasts at any level.
- Very simple and flexible method. Can work with any hierarchical or grouped time series.
- SPS = S so reconciled forcasts are unbiased.
- Conceptually easy to implement: OLS on base forecasts.
- Weights are independent of the data and of the covariance structure of the hierarchy.

- Covariates can be included in initial forecasts.
- Adjustments can be made to initial forecasts at any level.
- Very simple and flexible method. Can work with any hierarchical or grouped time series.
- **SPS** = **S** so reconciled forcasts are unbiased.
- Conceptually easy to implement: OLS on base forecasts.
- Weights are independent of the data and of the covariance structure of the hierarchy.

- Covariates can be included in initial forecasts.
- Adjustments can be made to initial forecasts at any level.
- Very simple and flexible method. Can work with any hierarchical or grouped time series.
- **SPS** = **S** so reconciled forcasts are unbiased.
- Conceptually easy to implement: OLS on base forecasts.
- Weights are independent of the data and of the covariance structure of the hierarchy.

- Covariates can be included in initial forecasts.
- Adjustments can be made to initial forecasts at any level.
- Very simple and flexible method. Can work with any hierarchical or grouped time series.
- **SPS** = S so reconciled forcasts are unbiased.
- Conceptually easy to implement: OLS on base forecasts.
- Weights are independent of the data and of the covariance structure of the hierarchy.

- Covariates can be included in initial forecasts.
- Adjustments can be made to initial forecasts at any level.
- Very simple and flexible method. Can work with any hierarchical or grouped time series.
- **SPS** = \mathbf{S} so reconciled forcasts are unbiased.
- Conceptually easy to implement: OLS on base forecasts.
- Weights are independent of the data and of the covariance structure of the hierarchy.

- Covariates can be included in initial forecasts.
- Adjustments can be made to initial forecasts at any level.
- Very simple and flexible method. Can work with any hierarchical or grouped time series.
- **SPS** = \mathbf{S} so reconciled forcasts are unbiased.
- Conceptually easy to implement: OLS on base forecasts.
- Weights are independent of the data and of the covariance structure of the hierarchy.

Challenges

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{S}(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'\hat{\mathbf{Y}}_n(h)$$

- Computational difficulties in big hierarchies due to size of the \boldsymbol{S} matrix and singular behavior of $(\boldsymbol{S}'\boldsymbol{S})$.
- Need to estimate covariance matrix to produce prediction intervals.
- Ignores covariance matrix in computing point forecasts.

Challenges

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{S}(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'\hat{\mathbf{Y}}_n(h)$$

- Computational difficulties in big hierarchies due to size of the \boldsymbol{S} matrix and singular behavior of $(\boldsymbol{S}'\boldsymbol{S})$.
- Need to estimate covariance matrix to produce prediction intervals.
- Ignores covariance matrix in computing point forecasts.

Challenges

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{S}(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'\hat{\mathbf{Y}}_n(h)$$

- Computational difficulties in big hierarchies due to size of the \boldsymbol{S} matrix and singular behavior of $(\boldsymbol{S}'\boldsymbol{S})$.
- Need to estimate covariance matrix to produce prediction intervals.
- Ignores covariance matrix in computing point forecasts.

$$\hat{m{Y}}_n(h) = m{S}(m{S}'\Sigma_1^\daggerm{S})^{-1}m{S}'\Sigma_1^\dagger\hat{m{Y}}_n(h)$$

Solution 1: OLS

lacksquare Approximate Σ_1^\dagger by $c\mathbf{I}$.

- lacksquare Suppose we approximate Σ_1 by its diagonal
- Let $\Lambda = [\operatorname{diagonal}(\Sigma_1)]^{-1}$ contain inverse one-step forecast variances.

$$ilde{m{Y}}_n(h) = m{S}(m{S}'\Sigma_1^\daggerm{S})^{-1}m{S}'\Sigma_1^\dagger\hat{m{Y}}_n(h)$$

Solution 1: OLS

lacksquare Approximate Σ_1^\dagger by $c\mathbf{I}$.

- lacksquare Suppose we approximate Σ_1 by its diagonal.
- Let $\Lambda = \left[\operatorname{diagonal} \left(\Sigma_1 \right) \right]^{-1}$ contain inverse one-step forecast variances.

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{S}(\mathbf{S}'\Lambda\mathbf{S})^{-1}\mathbf{S}'\Lambda\hat{\mathbf{Y}}_n(h)$$

$$ilde{m{Y}}_n(h) = m{S}(m{S}'\Sigma_1^\daggerm{S})^{-1}m{S}'\Sigma_1^\dagger\hat{m{Y}}_n(h)$$

Solution 1: OLS

Approximate Σ_1^{\dagger} by $c\mathbf{I}$.

- Suppose we approximate Σ_1 by its diagonal.
- Let $\Lambda = \left[\mathsf{diagonal} \big(\Sigma_1 \big) \right]^{-1}$ contain inverse one-step forecast variances.

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{S}(\mathbf{S}'\Lambda\mathbf{S})^{-1}\mathbf{S}'\Lambda\hat{\mathbf{Y}}_n(h)$$

$$ilde{m{Y}}_{n}(h) = m{S}(m{S}'\Sigma_{1}^{\dagger}m{S})^{-1}m{S}'\Sigma_{1}^{\dagger}\hat{m{Y}}_{n}(h)$$

Solution 1: OLS

lacksquare Approximate Σ_1^\dagger by $c\mathbf{I}$.

- lacksquare Suppose we approximate Σ_1 by its diagonal.
- Let $\Lambda = \left[\mathsf{diagonal} \left(\Sigma_1 \right) \right]^{-1}$ contain inverse one-step forecast variances.

$$\tilde{\mathbf{Y}}_n(h) = \mathbf{S}(\mathbf{S}'\Lambda\mathbf{S})^{-1}\mathbf{S}'\Lambda\hat{\mathbf{Y}}_n(h)$$

$$ilde{m{Y}}_n(h) = m{S}(m{S}'\Sigma_1^\daggerm{S})^{-1}m{S}'\Sigma_1^\dagger\hat{m{Y}}_n(h)$$

Solution 1: OLS

lacksquare Approximate Σ_1^\dagger by $c\mathbf{I}$.

- Suppose we approximate Σ_1 by its diagonal.
- Let $\Lambda = \left[\mathsf{diagonal} \left(\Sigma_1 \right) \right]^{-1}$ contain inverse one-step forecast variances.

$$ilde{m{Y}}_n(h) = m{S}(m{S}'\!\Lambdam{S})^{-1}m{S}'\!\Lambda\hat{m{Y}}_n(h)$$

$$\hat{\mathbf{Y}}_n(h) = \mathbf{S}\hat{eta}_n(h) = \mathbf{S}(\mathbf{S}'\Lambda\mathbf{S})^{-1}\mathbf{S}'\Lambda\hat{\mathbf{Y}}_n(h)$$

$$\hat{m{Y}}_n(h) = m{S}\hat{eta}_n(h) = m{S}(m{S}'\Lambdam{S})^{-1}m{S}'\Lambda\hat{m{Y}}_n(h)$$
 Initial forecasts

- Easy to estimate, and places weight where we have best forecasts.
- Ignores covariances
- For large numbers of time series, we need to do calculation without explicitly forming S or (S'ΛS)⁻¹ or S'Λ.

$$\hat{\mathbf{Y}}_n(h) = \mathbf{S}\hat{\boldsymbol{\beta}}_n(h) = \mathbf{S}(\mathbf{S}'\Lambda\mathbf{S})^{-1}\mathbf{S}'\Lambda\hat{\mathbf{Y}}_n(h)$$

Revised forecasts

Initial forecasts

- Easy to estimate, and places weight where we have best forecasts.
- Ignores covariances.
- For large numbers of time series, we need to do calculation without explicitly forming \mathbf{S} or $(\mathbf{S}'\Lambda\mathbf{S})^{-1}$ or $\mathbf{S}'\Lambda$.

$$\hat{\mathbf{Y}}_n(h) = \mathbf{S}\hat{\boldsymbol{\beta}}_n(h) = \mathbf{S}(\mathbf{S}'\Lambda\mathbf{S})^{-1}\mathbf{S}'\Lambda\hat{\mathbf{Y}}_n(h)$$

Revised forecasts

Initial forecasts

- Easy to estimate, and places weight where we have best forecasts.
- Ignores covariances.
- For large numbers of time series, we need to do calculation without explicitly forming \mathbf{S} or $(\mathbf{S}'\Lambda\mathbf{S})^{-1}$ or $\mathbf{S}'\Lambda$.

$$\hat{\mathbf{Y}}_n(h) = \mathbf{S}\hat{\boldsymbol{\beta}}_n(h) = \mathbf{S}(\mathbf{S}'\Lambda\mathbf{S})^{-1}\mathbf{S}'\Lambda\hat{\mathbf{Y}}_n(h)$$

Revised forecasts

Initial forecasts

- Easy to estimate, and places weight where we have best forecasts.
- Ignores covariances.
- For large numbers of time series, we need to do calculation without explicitly forming \mathbf{S} or $(\mathbf{S}'\Lambda\mathbf{S})^{-1}$ or $\mathbf{S}'\Lambda$.

Outline

- 1 Hierarchical and grouped time series
- **2** Forecasting framework
- 3 Optimal forecasts
- 4 Approximately optimal forecasts
- **5** Application: Australian tourism
- 6 Application: Australian labour market
- 7 hts package for R

Domestic visitor nights

Quarterly data: 1998 - 2006.

From: *National Visitor Survey*, based on annual interviews of 120,000 Australians aged 15+, collected by Tourism Research Australia.

Reconciled forecasts

Reconciled forecasts

Reconciled forecasts

- Select models using all observations;
- Re-estimate models using first 12 observations and generate 1- to 8-step-ahead forecasts;
- Increase sample size one observation at a time, re-estimate models, generate forecasts until the end of the sample;
- In total 24 1-step-ahead, 23 2-steps-ahead, up to 17 8-steps-ahead for forecast evaluation.

- Select models using all observations;
- Re-estimate models using first 12 observations and generate 1- to 8-step-ahead forecasts;
- Increase sample size one observation at a time, re-estimate models, generate forecasts until the end of the sample;
- In total 24 1-step-ahead, 23 2-steps-ahead, up to 17 8-steps-ahead for forecast evaluation.

- Select models using all observations;
- Re-estimate models using first 12 observations and generate 1- to 8-step-ahead forecasts;
- Increase sample size one observation at a time, re-estimate models, generate forecasts until the end of the sample;
- In total 24 1-step-ahead, 23 2-steps-ahead, up to 17 8-steps-ahead for forecast evaluation.

- Select models using all observations;
- Re-estimate models using first 12 observations and generate 1- to 8-step-ahead forecasts;
- Increase sample size one observation at a time, re-estimate models, generate forecasts until the end of the sample;
- In total 24 1-step-ahead, 23 2-steps-ahead, up to 17 8-steps-ahead for forecast evaluation.

Hierarchy: states, zones, regions

<u> </u>						
MAPE	h = 1	h = 2	h = 4	h = 6	h = 8	Average
Top Level: Australia						
Bottom-up	3.79	3.58	4.01	4.55	4.24	4.06
OLS	3.83	3.66	3.88	4.19	4.25	3.94
Scaling (st. dev.)	3.68	3.56	3.97	4.57	4.25	4.04
Level: States						
Bottom-up	10.70	10.52	10.85	11.46	11.27	11.03
OLS	11.07	10.58	11.13	11.62	12.21	11.35
Scaling (st. dev.)	10.44	10.17	10.47	10.97	10.98	10.67
Level: Zones						
Bottom-up	14.99	14.97	14.98	15.69	15.65	15.32
OLS	15.16	15.06	15.27	15.74	16.15	15.48
Scaling (st. dev.)	14.63	14.62	14.68	15.17	15.25	14.94
Bottom Level: Regions						
Bottom-up	33.12	32.54	32.26	33.74	33.96	33.18
OLS	35.89	33.86	34.26	36.06	37.49	35.43
Scaling (st. dev.)	31.68	31.22	31.08	32.41	32.77	31.89

Outline

- 1 Hierarchical and grouped time series
- 2 Forecasting framework
- 3 Optimal forecasts
- 4 Approximately optimal forecasts
- 5 Application: Australian tourism
- 6 Application: Australian labour market
- 7 hts package for R

ANZSCO

Australia and New Zealand Standard Classification of Occupations

- 8 major groups
 - 43 sub-major groups
 - 97 minor groups
 - 359 unit groups
 - * 1023 occupations

Example: statistician

- 2 Professionals
 - 22 Business, Human Resource and Marketing Professionals
 - 224 Information and Organisation Professionals
 2241 Actuaries, Mathematicians and Statisticians
 224113 Statistician

ANZSCO

Australia and New Zealand Standard Classification of Occupations

- 8 major groups
 - 43 sub-major groups
 - 97 minor groups
 - 359 unit groups
 - * 1023 occupations

Example: statistician

- 2 Professionals
 - 22 Business, Human Resource and Marketing Professionals
 - 224 Information and Organisation Professionals2241 Actuaries, Mathematicians and Statisticians224113 Statistician

Lower three panels show largest sub-groups at each level.

Forecast evaluation (rolling origin)

RMSE	h = 1	h = 2	h = 3	h = 4	h = 5	h = 6	h = 7	h = 8	Average
Top level									
Bottom-up	74.71	102.02	121.70	131.17	147.08	157.12	169.60	178.93	135.29
OLS	52.20	77.77	101.50	119.03	138.27	150.75	160.04	166.38	120.74
WLS	61.77	86.32	107.26	119.33	137.01	146.88	156.71	162.38	122.21
Level 1									
Bottom-up	21.59	27.33	30.81	32.94	35.45	37.10	39.00	40.51	33.09
OLS	21.89	28.55	32.74	35.58	38.82	41.24	43.34	45.49	35.96
WLS	20.58	26.19	29.71	31.84	34.36	35.89	37.53	38.86	31.87
Level 2									
Bottom-up	8.78	10.72	11.79	12.42	13.13	13.61	14.14	14.65	12.40
OLS	9.02	11.19	12.34	13.04	13.92	14.56	15.17	15.77	13.13
WLS	8.58	10.48	11.54	12.15	12.88	13.36	13.87	14.36	12.15
Level 3									
Bottom-up	5.44	6.57	7.17	7.53	7.94	8.27	8.60	8.89	7.55
OLS	5.55	6.78	7.42	7.81	8.29	8.68	9.04	9.37	7.87
WLS	5.35	6.46	7.06	7.42	7.84	8.17	8.48	8.76	7.44
Bottom Lev	el								
Bottom-up	2.35	2.79	3.02	3.15	3.29	3.42	3.54	3.65	3.15
OLS	2.40	2.86	3.10	3.24	3.41	3.55	3.68	3.80	3.25
WLS	2.34	2.77	2.99	3.12	3.27	3.40	3.52	3.63	3.13

Outline

- 1 Hierarchical and grouped time series
- **2** Forecasting framework
- 3 Optimal forecasts
- 4 Approximately optimal forecasts
- **5** Application: Australian tourism
- 6 Application: Australian labour market
- 7 hts package for R

hts package for R

hts: Hierarchical and grouped time series

Methods for analysing and forecasting hierarchical and grouped time series

Version: 4.3

Depends: forecast (≥ 5.0)

Imports: SparseM, parallel, utils

Published: 2014-06-10

Author: Rob J Hyndman, Earo Wang and Alan Lee

Maintainer: Rob J Hyndman < Rob. Hyndman at monash.edu> BugReports: https://github.com/robjhyndman/hts/issues

License: GPL (> 2)

Example using R

library(hts)

```
# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))</pre>
```

Example using R

library(hts)

```
# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))</pre>
```


Example using R

library(hts)

```
# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))
# Forecast 10-step-ahead using WLS combination method
# ETS used for each series by default
fc <- forecast(y, h=10)</pre>
```

forecast.gts function

Usage

```
forecast(object, h,
 method = c("comb", "bu", "mo", "tdqsf", "tdqsa", "tdfp"),
  fmethod = c("ets", "rw", "arima"),
 weights = c("sd", "none", "nseries"),
  positive = FALSE.
  narallel = FALSE num cores = 2
```

num.cores

paracec	- TAESE, Hamiltones - 2, 111)
Arguments	
object	Hierarchical time series object of class gts.
h	Forecast horizon
method	Method for distributing forecasts within the hierarchy.
fmethod	Forecasting method to use
positive	If TRUE, forecasts are forced to be strictly positive
weights	Weights used for optimal combination method. When
	weights $=$ sd, it takes account of the standard deviation of
	forecasts.
parallel	If TRUE, allow parallel processing

If parallel = TRUE, specify how many cores are going to be

used