KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM

Matematyka Poziom podstawowy

Listopad 2013

W niniejszym schemacie oceniania zadań otwartych są prezentowane przykładowe poprawne odpowiedzi. W tego typu zadaniach należy również uznać odpowiedzi ucznia, jeśli są inaczej sformułowane, ale ich sens jest zgodny z podanym schematem, oraz inne poprawne odpowiedzi w nim nieprzewidziane.

Zadania zamknięte

Nr zad.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	24.
Odp.	Α	С	В	С	С	В	Α	Α	В	С	D	С	Α	В	Α	В	С	С	В	В	Α	С	В	D

Za każdą poprawną odpowiedź zdający otrzymuje 1 punkt.

Zadania otwarte

Numer zadania	Modelowe etapy rozwiązywania zadania	Liczba punktów
25.	Postęp: obliczenie $\Delta=-23$ i stwierdzenie, że $\Delta<0$ i $a<0$ lub obliczenie $\Delta=-23$ i naszkicowanie wykresu	1 pkt
	Rozwiązanie bezbłędne: sformułowanie odpowiedzi, że rozwiązaniem jest zbiór liczb rzeczywi- stych	2 pkt
26.	Postęp: podstawienie $x=-2$ i otrzymanie równania: $2(k+2)+22=0$	1 pkt
	Rozwiązanie bezbłędne: podanie rozwiązania równania: $k = -13$	2 pkt
27.	Postęp: skorzystanie z własności prostych równoległych przeciętych trzecią prostą oraz z warunków zadania (dwusieczne kątów ostrych): $ \triangleleft ACD = \triangleleft CAB = \triangleleft CAD $ $ \triangleleft BDC = \triangleleft DBA = \triangleleft DBC $	1 pkt
	A D C B	

Matematyka. Poziom podstawowy Próbna Matura z OPERONEM i "Gazetą Wyborczą"

Numer zadania	Modelowe etapy rozwiązywania zadania	Liczba punktów		
	Rozwiązanie bezbłędne: wyciągnięcie wniosków, że trójkąty ADC i BCD są równoramienne i $ AD = DC = BC $	2 pkt		
28.	Postęp: wykonanie poprawnego rysunku i obliczenie długości przeciwprostokątnej $d=\frac{h\sqrt{5}}{2}$ h $\frac{h\sqrt{5}}{2}$ $\frac{h\sqrt{5}}{2}$	1 pkt		
	Rozwiązanie bezbłędne: obliczenie: $\cos \alpha = \frac{\sqrt{5}}{5}$	2 pkt		
29.	Postęp: zapisanie warunków na styczność okręgów: $\begin{cases} r_1+r_2=8\\ r_1-r_2=2 \end{cases}$	1 pkt		
	Rozwiązanie bezbłędne: rozwiązanie układu równań: $r_1 = 5$ cm, $r_2 = 3$ cm	2 pkt		
30.	Postęp: wyznaczenie współrzędnych środka boku AC, $S=(-2,1)$ i współczynnika kierunkowego prostej AC, $a=3$	1 pkt		
	Rozwiązanie bezbłędne: wyznaczenie równania symetralnej boku AC: $\gamma = -\frac{1}{3}x + \frac{1}{3}$	2 pkt		
31.	Postęp: utworzenie modelu matematycznego: kolejne ilości zadań tworzą ciąg arytmetyczny, gdzie $a_1=5,r=2$	1 pkt		
	Istotny postęp: zastosowanie wzoru na sumę ciągu arytmetycznego $S_n = \frac{(a_1 + a_n)n}{2} = \frac{\left(5 + 5 + (n-1) \cdot 2\right)n}{2}$	2 pkt		
	Pokonanie zasadniczych trudności: zapisanie nierówności $n^2+4n>480$ i jej rozwiązanie	3 pkt		
	Rozwiązanie bezbłędne: uwzględnienie, że <i>n</i> jest liczbą naturalną i zapisanie poprawnej odpowiedzi: Liczba rozwiązanych przez ucznia zadań przekroczy 480 w 21. tygodniu.	4 pkt		

Numer zadania	Modelowe etapy rozwiązywania zadania	Liczba punktów		
32.	Postęp: oznaczenie długości przekątnej podstawy: H + 4, długości przekątnej graniastosłupa: H + 8, gdzie H to długość wysokości graniastosłupa H	1 pkt		
	Istotny postęp: zauważenie, że trójkąt utworzony przez krawędź boczną, przekątną podstawy i przekątną graniastosłupa jest trójkątem prostokątnym i zapisanie równania: $(H+4)^2+H^2=(H+8)^2$	2 pkt		
	Pokonanie zasadniczych trudności: przekształcenie równania do postaci: $H^2-8H-48=0$	3 pkt		
	Rozwiązanie prawie całkowite: rozwiązanie równania: $H=12$ (drugi pierwiastek odrzucamy)	4 pkt		
	Rozwiązanie bezbłędne: obliczenie wartości sinusa kąta pomiędzy przekątną graniastosłupa a płaszczyzną podstawy: $\frac{3}{5}$	5 pkt		
33.	Postęp: utworzenie modelu matematycznego i wprowadzenie oznaczeń: V – pojemność samochodu x – czas, po którym ojciec sam załaduje samochód $x+5$ – czas, po którym syn sam załaduje samochód	1 pkt		
	Istotny postęp: ułożenie równania: $\frac{V}{x} + \frac{V}{x+5} = \frac{V}{6}$	2 pkt		
	Pokonanie zasadniczych trudności: przekształcenie równania do postaci: $x^2 - 7x - 30 = 0$	3 pkt		
	Rozwiązanie prawie całkowite: rozwiązanie równania kwadratowego: $x=10$ lub $x=-3$ uwzględnienie warunku $x>0$ i wybranie właściwej odpowiedzi $x=10$	5 pkt (4 pkt, jeśl pojawią się błędy rachunkowe bąd nieuwzględniono		