

Paper Talk Episode 4

Building Foundation Models using Transformers

Aditeya Baral

About Me

- Cisco Webex*
 - Big Data Analytics, Webex Media Quality
 - Webex Message Al
- Intel Research (VSG) Applied Research Scientist Intern
- Center for Cloud Computing & Big Data, PESU UG Researcher
- Publications
 - AAAI MAKE 2022
 - ICNLSP 2021
 - IEEE CONIT 2021
- Interests
 - · Representation Learning for language understanding
 - Foundation models and Multi-Modal learners
 - Low-resource or under-represented NLP

Overview of Topics

- 1. What is a Foundation Model and Introduction to Transfer Learning
- 2. Representation Learning What, Why and How?
- 3. Overview of some NLU algorithms
- 4. CalBERT and MWP-BERT
- 5. Hands-on Exercise
- 6. Conclusion

Foundation Models

- If you can drive a BMW, can you also drive Mercedes?
- Do you know the values of the constants speed of light, acceleration due to gravity?
- Do you know which biological component is called the powerhouse of the cell?

Foundation Models

- If you own and can drive a BMW, can you also drive Mercedes?
 - + Can you also drive an autorickshaw? A bus? A tractor?
 - + If you can drive a manual car, can you drive an automatic?
- Do you know the values of the constants speed of light, acceleration due to gravity?
 - + Do you also know the value of Plank's constant? Newton's Gravitation constant? 1 Mole?
- Do you know which biological component is called the powerhouse of the cell?
 - + Which component is called the kitchen of the cell?

Foundation Models

- Built on *foundational* learning just the way humans do!
 - + Learn concepts A, B and C and apply them to A, B, C, as well as D, E, F...
 - + Learn science → Physics, Chemistry and Biology → Quantum Physics
 - + Learn numbers → add/sub/mul/div → expressions → algebra → calculus
- Trained on gigabytes of different forms of data ranging different topics
 - + Ensures satisfactory performance on all tasks without fine-tuning
 - + Compromises great performance on any single task (achieved *with* <u>fine-tuning</u>)
 - + Models like GPT-4 are trained on academia, literature, science, legal etc
- Use foundation models as stepping-stones
 - + Use transfer learning to improve performance on singular tasks
 - + Go from a generic model to a specialised model
- Usually created on non-specific tasks
 - + Mostly unsupervised or self-supervised

Transfer Learning

- Application of foundation models to different downstream tasks
 - + Downstream task could be similar or dissimilar to upstream tasks
 - Study for an exam and then apply it on questions
 - + A model for summarization can be fine-tuned for paraphrasing or question-answering
- Two stages
 - + Pre-training
 - · Build foundation model
 - · Use large amounts of data
 - · Takes more time and compute
 - + Fine-tuning
 - · Build task-specific model
 - · Use small amounts of data
 - · Takes less time and compute

Transfer Learning

- Example: Summarization of legal articles
 - + Step 1: Pre-train on large amounts of text data
 - + Step 2: Fine-tune on medium amount of legal text data
 - + Step 3: Fine-tune for generating summaries
- Fine-tuning comprises 2 steps
 - + **Domain adaptation** fine-tune foundation model on the same domain as target domain
 - + **Task adaptation** fine-tune foundation model on specific tasks
 - + Sometimes, both steps can be accomplished in a *single* step!
- Sometimes the <u>same</u> model is used for pre-training and fine-tuning
 - + Freeze the embedding/initial layers

Transfer Learning

- Types/sub-fields
 - + Zero-Shot (or, no transfer learning)
 - + One-Shot
 - + Few-Shot
 - + Knowledge Distillation

Advantages

- + Requires less data to model your task, faster to adopt different tasks
 - Teaching someone who knows to drive a car to drive a bus is easier than teaching someone who cannot drive at all
- + Higher performance on targeted tasks
- + Less compute

Disadvantages

- + "Catastrophic Forgetting"
- + Domain suitability avoiding negative transfer

Transfer Learning and NLP

- NLP made transfer learning popular
 - + Almost all modern-day NLP is based on transfer learning ChatGPT/GPT-4, Bard, LLaMa
 - + Large amount of text data is available for generic uses, but specific uses have less data
 - + Build basic language understanding and then adapt to domain/task
- Main goal of transfer learning better language understanding
 - + Create models which understand better, and hence perform better
 - + Tougher than modelling language/linguistic form
 - + Learn representations for language word embeddings that capture relationships and properties

Representation Learning

- Represent characters, words, sentences in a numeric form
 - + Convert a word to an *n*-dimensional vector
 - Each dimension represents a hidden characteristic/feature of that word
 - + Vector lies in a semantic space of all words in the vocabulary
 - Similar vectors lie closer (angle between them is 0)
 - + Vectors have relationships with other vectors and can be operated on
 - King man + woman = Queen (Word2Vec, 2013)
- Primitive approaches
 - + Bow, Tf-Idf
- Preliminary Neural approaches
 - + Word2Vec, fastText, GloVe
- Modern LM approaches
 - + LSTM ELMo, ULMFiT
 - + Transformer BERT

Representation Learning Approaches

- Bidirectional contextual learning using Language Modelling
 - + AB DE Masked Language Modelling (MLM)
 - + _ _ C _ _ identify correct context
- Next Sentence Prediction (NSP)
 - + Learn if a sentence is followed by another
 - + Sentence 1 [SEP] Sentence?
- Word2Vec was based on MLM, but it used context windows, not sentences
 - + fastText did the same at the character level and then averaged embeddings for a word
- BERT uses 2 approaches for pre-training MLM + NSP
 - + BERT variants: RoBERTa (only MLM), DistilBERT (KD using pre-trained BERT), XLM-RoBERTa (multilingual)
- Current approaches for representation learning need MLM (and/or NSP) along with other specialised steps for domain adaptation

CalBERT

- Code-mixed languages are complex and are prevalent in multilingual communities
 - + Multiple forms of the same word
 - + Lack of abundant clean and usable data
 - + Normal Transformers do not perform well on code-mixed tasks
- Two proposed techniques to learn from code-mixed data
 - + Accounts for context as well as morphological mutations
 - + Knowledge Distillation: "Adapt" representations in English to Hinglish
 - + Pre-training: End-to-end pre-training using different tasks
 - MLM
 - NSP
 - Alignment with transliteration
 - · Semantic similarity with translation and transliteration

Applications

- + KD approach achieved SOTA on 2 code-mixed benchmarks, beating existing approaches by 9%
- + Models are task-agnostic, thus can be applied to any code-mixed task

MWPBERT

- A recent pre-training technique to learn representations of Math Word Problems (MWPs)
- MWPs are not like normal text
 - + Need to learn information about operands, operators and computations
 - + Representations need to also account for the validity of MWPs
- MWPBERT injects knowledge about numbers and solvability to existing BERT pre-training
 - + MLM
 - + Operand counting
 - + Operand data type prediction
 - + Answer data type prediction
 - + Operand and Answer data type compatibility
 - + Answer magnitude comparison
 - + Operation prediction
 - + Equation tree distance prediction
- Applications
 - + Significant improvement over ordinary BERT as well as other methods for MWP solving and generation

Hands-on Exercise

- Problem
 - + Ideate different tasks to learn from a structured conversation (like WhatsApp)
 - + You can use any data which WhatsApp provides
 - messages, contact info, group info
 - + Should learn accurate representations for entities, topics and develop basic language understanding

Conclusion

- Foundation models can be used to create models to tackle multiple tasks
- Using transfer learning, foundation models can be fine-tuned for different domains or tasks
 - + Domains/Tasks can be similar to pre-training stage
 - + Improves performance, requires lesser data and compute
 - + Primarily used in NLP for language understanding
- Representation learning is used to build NLU
 - + Modern methods use BERT-based architectures
 - + Leverage multiple pre-training tasks to adapt to specialised use-cases
 - + If tasks are chosen correctly, it is possible to model almost everything
 - Code-mixed languages
 - Math word problems
 - WhatsApp conversations
 - + Representations are then used for other predictive tasks

Thank You

