A Tutorial on Machine Learning for Spatiotemporal Data Modeling

Revision: Matrix and Tensor Factorization

Xinyu Chen

February 3, 2022

2.1 (Low-Rank Matrix Factorization). For any partially observed data matrix $\boldsymbol{Y} \in \mathbb{R}^{N \times T}$ with the observed index set Ω , a matrix factorization algorithm can decompose \boldsymbol{Y} into lower dimensional factor matrices $\boldsymbol{W} \in \mathbb{R}^{R \times N}, \boldsymbol{X} \in \mathbb{R}^{R \times T}$, and its loss function can be written as

$$f = \frac{1}{2} \sum_{(i,t) \in \Omega} (y_{i,t} - \boldsymbol{w}_i^{\top} \boldsymbol{x}_t)^2 + \frac{\rho}{2} \left(\sum_{i=1}^{N} \|\boldsymbol{w}_i\|_2^2 + \sum_{t=1}^{T} \|\boldsymbol{x}_t\|_2^2 \right), \quad (1)$$

where $\boldsymbol{w}_i \in \mathbb{R}^R$ is the *i*th column of \boldsymbol{W} , and $\boldsymbol{x}_t \in \mathbb{R}^R$ is the *t*th column of \boldsymbol{X} . The symbol $\|\cdot\|_2$ denotes the ℓ_2 -norm.

1. Obtain the partial derivative with respect to \boldsymbol{w}_i , i.e., $\frac{\partial f}{\partial \boldsymbol{w}_i}$. Let $\frac{\partial f}{\partial \boldsymbol{w}_i} = \mathbf{0}$, what is the solution to \boldsymbol{w}_i ?

In this case, with respect to w_i , the partial derivative is given by

$$\frac{\partial f}{\partial \boldsymbol{w}_i} = -\sum_{t:(i,t)\in\Omega} \boldsymbol{x}_t \left(y_{i,t} - \boldsymbol{w}_i^{\top} \boldsymbol{x}_t \right) + \rho \boldsymbol{w}_i.$$
 (2)

If $\frac{\partial f}{\partial \boldsymbol{w}_i} = \mathbf{0}$, then we have

$$-\sum_{t:(i,t)\in\Omega} \boldsymbol{x}_{t} \left(y_{i,t} - \boldsymbol{w}_{i}^{\top} \boldsymbol{x}_{t} \right) + \rho \boldsymbol{w}_{i} = \boldsymbol{0}$$

$$\Longrightarrow -\sum_{t:(i,t)\in\Omega} \boldsymbol{x}_{t} y_{i,t} + \left(\sum_{t:(i,t)\in\Omega} \boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\top} + \rho \boldsymbol{I}_{R} \right) \boldsymbol{w}_{i} = \boldsymbol{0}.$$
(3)

Thus,

$$\boldsymbol{w}_{i} = \left(\sum_{t:(i,t)\in\Omega} \boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\top} + \rho \boldsymbol{I}_{R}\right)^{-1} \sum_{t:(i,t)\in\Omega} \boldsymbol{x}_{t} y_{i,t}.$$
 (4)

2. Obtain the partial derivative with respect to \boldsymbol{x}_t , i.e., $\frac{\partial f}{\partial \boldsymbol{x}_t}$. Let $\frac{\partial f}{\partial \boldsymbol{x}_t} = \boldsymbol{0}$, what is the solution to \boldsymbol{x}_t ?

In this case, with respect to x_t , the partial derivative is given by

$$\frac{\partial f}{\partial \boldsymbol{x}_t} = -\sum_{i:(i,t)\in\Omega} \boldsymbol{w}_i \left(y_{i,t} - \boldsymbol{w}_i^{\top} \boldsymbol{x}_t \right) + \rho \boldsymbol{x}_t.$$
 (5)

If $\frac{\partial f}{\partial x_t} = \mathbf{0}$, then we have

$$-\sum_{i:(i,t)\in\Omega} \boldsymbol{w}_{i} \left(y_{i,t} - \boldsymbol{w}_{i}^{\top} \boldsymbol{x}_{t} \right) + \rho \boldsymbol{x}_{t} = \mathbf{0}$$

$$\Longrightarrow -\sum_{i:(i,t)\in\Omega} \boldsymbol{w}_{i} y_{i,t} + \left(\sum_{i:(i,t)\in\Omega} \boldsymbol{w}_{i} \boldsymbol{w}_{i}^{\top} + \rho \boldsymbol{I}_{R} \right) \boldsymbol{x}_{t} = \mathbf{0}.$$
(6)

Thus,

$$\boldsymbol{x}_{t} = \left(\sum_{i:(i,t)\in\Omega} \boldsymbol{w}_{i} \boldsymbol{w}_{i}^{\top} + \rho \boldsymbol{I}_{R}\right)^{-1} \sum_{i:(i,t)\in\Omega} \boldsymbol{w}_{i} y_{i,t}.$$
(7)

3. How to use Alternating Least Squares (ALS) method to solve the following optimization problem:

$$\min_{\boldsymbol{W}, \boldsymbol{X}} \frac{1}{2} \sum_{(i,t) \in \Omega} (y_{i,t} - \boldsymbol{w}_i^{\top} \boldsymbol{x}_t)^2 + \frac{\rho}{2} \left(\sum_{i=1}^{N} \|\boldsymbol{w}_i\|_2^2 + \sum_{t=1}^{T} \|\boldsymbol{x}_t\|_2^2 \right).$$
(8)

- Initialize \boldsymbol{W} and \boldsymbol{X} .
- Repeat
 - For i = 1 to N:
 - Update \mathbf{w}_i by Eq. (4).
 - For t = 1 to T:
 - Update x_t by Eq. (7).
- ullet Return $oldsymbol{W}$ and $oldsymbol{X}$.

2.2