THIERDZENIE O REKURENCJI UNIWERSALNEJ

A zad 1

a)
$$T(n) = 4T\left(\frac{n}{a}\right) + n$$

- 1) hypisanie donych a=4 b=2 f(m)=m
- 2) xnotezienie logo a = log 24=2 gen)=n logo a = n 2
 - 3) porównonie fini i gin)
 gin)>fin), xetem od gini munimy od odisi aby
 otnymei fin), retem 1 prypadac.

(4) stosujemu TRV
$$T(n) = \Theta(n^{2}) = \Theta(n^{2})$$

- 2) $log_b a = log_2 b = \lambda$, $g(h) = n^2$
- 3) fin = gin)
- (h) $T(n) = \Theta(n^{\log_{\theta} a} \log_n) = \Theta(n^2 \log_n)$

c)
$$T(n) = 4T(\frac{m}{2}) + m^{3}$$

 $b = 2$
 $f(n) = n^{3}$
a) $loq_{b} \alpha = 2$, $g(n) = m^{2}$
3) $f(n) > g(n)$
 $g(n) = m^{3}$

A.
$$xad 2$$
a) $T(h) = 4T(\frac{n}{2}) + m^2$
1) $a = 4$
 $b = 2$
 $f(n) = m^2$
2) $log_b a = log_2 4 \approx 2.8044$

 $, g(h) = m \log_2 7$

6)
$$T(n) = 2T(\frac{m}{2}) + m^3$$

1) $\alpha = 2$
 $b = 2$

$$f(n)=n^3$$

2)
$$\log_{10} \alpha = \log_{20} 2 = 1$$
, $q_{in} = n$
3) $f_{in} > q_{in}$
4) $T_{in} = \Theta(m^{3})$
c) $T_{in} = T(\frac{g_{in}}{10}) + n$
1) $\alpha = 1$

1)
$$a = 1$$
 $b = \frac{10}{9}$
 $f(n) = n$

3)
$$f(n) > g(n)$$

 $u) T(n) = \Theta(n)$

a)
$$T(n) = 16T(\frac{m}{4}) + m^2$$
1) $a = 16$
 $6 = 4$
 $f(n) = n^2$

2)
$$\log_{10} a = 2$$
, $g(n) = m^{2}$
3) $f(n) = g(n)$

3)
$$f(n) = g(n)$$

 $g(n) = \theta(n^2 \log n)$

6)
$$T(n) = 4T(\frac{n}{3}) + m^{2}$$

 $n = 4$
 $b = 3$
 $f(n) = n^{2}$
2) $\log_{3} 4 \approx 1.74$, $g(n) = n \log_{3} 4$
3) $f(n) > g(n)$
 $u) T(n) = \Theta(m^{2})$
c) $T(n) = 3T(\frac{n}{2}) + n^{3}$

c)
$$T(n) = 3T(\frac{n}{2}) + m^3$$

1) $a = 3$
 $6 = 2$
 $f(n) = n^3$

$$f(n) = n$$

2) $\log_{2} 3 \approx 1.585$, $g(n) = n \log_{2} 3$

3)
$$f(n) \geq g(n)$$

 $G(n) = G(n^3)$