

Running EFDC example with Data Assimilation

Data Assimilation scheme

A 2D Optimal Interpolation Scheme, Best Unbiased Linear Estimator (BLUE):

$$y^{a} = \hat{y} + PH^{T} \left[HPH^{T} + R \right] \left[y^{o} - H \hat{y} \right]$$

- R = covariance observation matrix
- P = the covariance forecast matrix
- H = the projection operator, from the model's space to the observations space
- The scheme makes optimal use of the forecast and observations errors
- The scheme is applied in EFDC by supplementary forcing to the surface boundaries of the model

Data Assimilation scheme

- BLUE uses only spatial information of the domain
- Regression analysis that makes use of an inferred covariance structure of the model error, based on Euclidean distance
- The covariance structure for the model error is stationary and it is not computed from the dynamical equations but predetermined in advance

$$P = \begin{bmatrix} cov(u_m^f, u_n^f) & 0 \\ 0 & cov(v_m^f, v_n^f) \end{bmatrix}$$

$$cov(x, y) = ae^{-\left[\left(\frac{i_m - i_n}{R_1}\right)^2 + \left(\frac{j_m - j_n}{R_2}\right)^2\right]}$$

 The covariance structure for the observations error is computed at each assimilation cycle using the quality measurements of the sensor

Data Assimilation scheme 3D

- BLUE 2D on the surface
- Depth Projection using Ekman Theory
 - An additional stress will produce Ekman transport
 - Corrections to subsurface velocities are estimated using

$$\delta u(z) = e^{(-z/D_e)} \left[\delta u_s \cos(-z/D_e) - \delta v_s \sin(-z/D_e) \right]$$
$$\delta v(z) = e^{(-z/D_e)} \left[\delta v_s \sin(-z/D_e) + \delta v_s \cos(-z/D_e) \right]$$

• where $D_{s} = \sqrt{2A_{s}/f}$ is the Ekman depth

EFDC – Example Data assimilation scheme

- Data assimilation requires Blas and Lapack linear algebra libraries (included in Vagrantfile)
- Data assimilation demonstration implemented for a simple harbour example
 - \$ cd /vagrant/SampleModels/Simple_DA_example
 - \$ cp /vagrant/Src/EFDC .
 - \$./EFDC
- Configured to assimilate pseudo-generated surface velocities every hour
 - Pseudo-data generated by running model with wind stress activated
 - Assimilated into model with no wind forcing (objective is to use DA to "correct" wind stress term)

DA example performance scheme

Assimilating surface velocities hourly nudges the modeltowards the "correct" (black line) solution

EFDC - Example Data assimilation scheme

Input file DA.INP defines configurations to activate data assimilation

```
## Data assimilation input file
## Created by Fearghal O'Donncha (3rd August 2017)
## feardonn@ie.ibm.com
## File contains configuration information for
## assimilation of HFR data into EFDC
## Configured for case study application to Chesapeake Bay
## File describes an optional flag to switch on/off DA (IDA FLAG)
## The spatial extents or domain to which DA applied
## The frequency of data assimilation (in hours)
## Data assimilation parameters (PMatrix R1, PMatrix R2, PMatrix R3)
IDA FLAG: 1  ! Set to 1 to activate DA, otherwise 0
# Create the extents of the data assimilation grid for DA
# (i.e. for HFR the corners of the rectangular grid
               # Data assimilation applied within
IBEG DA. 3
IEND DA, 13
              # this rectangular domain
              # and all HFR observations
JBEG DA, 4
JEND DA, 53
              # within this domain integrated
NDAPOINTS: 550 # NUMBER OF POINTS TO ASSIMILATE
DA FREQ(HOURS): 1 # How frequent to check for observation data
## DATA Assimilation Tunable parameters
PMatrix R1: 3.0
                 # Extent influence east-west of covariance matrix
PMatrix R2: 3.0
                    # Extent influence north-south of covariance matrix
PMatrix A: 3.0
                    # Magnitude of impact of covariance matrix computation
EKPROJ: 1
                    # 0/1 flag which dictates if velocities projected into
                    # using empirical relationships (Ekman)
```

- IDA_FLAG 0/1 defines whether data assimilation scheme implemented (or if DA.INP file not present)
- Defines rectangular extents of the data assimilation scheme – points outside this region not ingested
- Defines number of points to assimilate
- Defines data assimilation scheme tuning coefficients: R1, R2 and A
- Flag to dictate whether Ekman Projection applied

Extending DA to other examples

- Assimilation scheme is configured to make compatible with external schemes (e.g. libraries in Python, R, etc.)
- Hence, assimilation acts on input and output files
- At user defined intervals:
 - EFDC state is written to file EFDC_state.csv
 - Observations in files: Observations/bservations_YYYY-MM-DD-HHMM.csv
 - Updated state read back into EFDC model from file BLUE.csv

Extending DA to other examples - Considerations

- DA.INP defines data assimilation configurations mapped to EFDC grid coordinates
- Observation data needs to be mapped to the same grid
 - For Codar HFR data a sample Python script that does mapping online is included (CoordRecon.py)
 - This script also does reconciliation from multiple domains to a single file
 - Data assimilation implemented in serial on a single domain with shared memory optimisations of linear algebra processes