Project Polyphony Zedboard Implementation

Kenji Ishimaru < kenji.ishimaru@ipviseds.com>

Revision History

Rev.	Date	Author	Description
0.9	2020/06/30	Kenji Ishimaru	First Release

Contents

Pr	Project Polyphony		
Ze	dboard Implementation	. 1	
Re	vision History	. 2	
Со	ontents	. 3	
1	Introduction	. 4	
2	Architecture	. 5	
3	Operation	. 6	
4	Register and Memory Mapping.	. 6	

1 Introduction

The 3D system consists of hardware Rasterizer (polyphony IP Core) and Cortex-A9 CPU. The Cortex-A9 processes application program, 3D graphics API middleware, and Geometry Engine. The system occupies only one CPU out of 2 CPUs.

Figure 1 System Architecture

Table 1 System Overview

System	Development	ZedBoard	
	System		
	FPGA	Zynq-7020	
	Feature	3D Video System	
	Memory	DDR3 512MB	
	Video Out	Analog VGA(DSUB)	
	OS	None(Bear-metal)	
Processor	Function	Application	
(Software process)		3D Geometry Engine	
		(One Cortex-A9 of 2 is used)	
	Cortex-A9	666MHz	
	Frequency		
	DDR3	533MHz(Data Rate: 1066MHz)	
	Frequency		
Programmable Logic	Function	3D Rasterizer	
(Hardware Process)		LCD Controller (VGA Size)	
	Logic Frequency	66MHz/25MHz(VGA)	
	Interface	AXI4 Slave: 32-bit x 1 (M_AXI_GP0)	
		AXI4 Master: 64-bit x 1 (S_AXI_ACP)	

2 Architecture

The software Geometry Engine reads 3D model data from DDR3 memory, then transform them to 2D vertices. The transformed vertices are stored in DDR3 memory. The rasterizer reads transformed 2D vertices from DDR3 memory and generates pixels. The generated pixels are stores in frame buffers in DDR3 memory.

DDK3 312IVID

Figure 2 Memory Accesses

3 Operation

3D rendering consists of 3 main processes, Geometry Processing, Pixel Processing, and LCD Display. Each process runs in parallel. If the elapsed time of a process exceeds one frame interval (16ms), double buffer swapping is extended to the next frame interval.

Figure 3 Frame Processing

4 Register and Memory Mapping

DDR3 main memory is mapped from 0000_0000h to 1FFF_FFFFh. Polyphony registers are mapped from 4000_0000h to 4000_03FFh(1kB) in M_AXI_GP0 area.

Figure 4 Memory Map

Polyphony Zedboard Implementation

Table 2 Memory Map

Address Range	CPU/S_AXI_ACP	Notes
0000_0000h to 0003_FFFFh	DDR/OCM	DDR3 512MB is mapped at
0004_0000h to 3FFF_FFFFh	DDR	
4000_0000 h to 7FF_FFFFh	Polyphony Registers	M_AXI_GP0 area is mapped at
		4000_0000h to 4000_03FFh
8000_0000h to BFFF_FFFFh	(Reserved)	Reserved area
C000_0000h to DFFF_FFFFh	(Reserved)	Reserved area
E000_0000 to FFFF_FFFF	Zynq System Register/	Zynq system registers
	Peripheral/On-Chip	
	Memory	