

Validación y evaluación del modelo

Validación y evaluación del modelo

Validar y evaluar un modelo es una etapa crítica en el análisis de series de tiempo. En esta fase, se utilizan diversas técnicas y métricas para determinar la calidad y precisión del modelo aplicado.

Validación cruzada

Esta técnica implica dividir el conjunto de datos en múltiples subconjuntos, generalmente denominados "folds". Luego, se entrena el modelo en varios de estos subconjuntos y se evalúa en el resto. La validación cruzada ayuda a estimar cómo se desempeñará el modelo en datos no vistos y a detectar problemas de sobreajuste o subajuste.

División de Entrenamiento-Prueba

En esta técnica, se divide el conjunto de datos en dos partes: un conjunto de entrenamiento, en el que se ajusta el modelo, y un conjunto de prueba, en el que se evalúa el rendimiento del modelo. Esta división es fundamental para simular cómo se comportará el modelo en situaciones reales.

Métricas de Evaluación

Las métricas de evaluación son medidas numéricas que se utilizan para cuantificar el rendimiento del modelo. Algunas métricas comunes en el análisis de series de tiempo son:

El error cuadrático medio (MSE)

Mide la diferencia entre los valores predichos y los valores reales al cuadrado.

El error absoluto medio (MAE)

Calcula la diferencia absoluta entre las predicciones y los valores reales.

Es importante tener en cuenta que la elección de la técnica de validación y las métricas de evaluación depende del problema específico y del tipo de modelo utilizado. Además, es recomendable realizar varias pruebas y ajustes en el proceso de validación y evaluación para obtener resultados más confiables y precisos.

Ejemplo

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error
from statsmodels.tsa.arima.model import ARIMA
# Generar datos de ejemplo
np.random.seed(0)
dates = pd.date_range(start='2022-01-01', end='2022-12-31')
values = np.arange(len(dates)) * 0.2 + np.random.rand(len(dates)) * 50
ts = pd.Series(values, index=dates)
# Dividir los datos en entrenamiento y prueba
train_data, test_data = train_test_split(ts, test_size=0.2, shuffle=False)
# Ajustar el modelo ARIMA
model = ARIMA(train_data, order=(10, 1, 10))
model_fit = model.fit()
# Realizar el pronóstico en los datos de prueba
forecast = model_fit.forecast(steps=len(test_data))
# Calcular el error absoluto medio (MAE)
mae = mean_absolute_error(test_data, forecast)
print('Error Absoluto Medio (MAE):', mae)
```


Ejercicio

Ejercicio de práctica

Objetivo: Los estudiantes deben buscar y descargar un dataset, aplicar un modelo de pronóstico de serie de tiempo y calcular las métricas de evaluación como el error cuadrático medio (MSE) y el error absoluto medio (MAE):

Pasos:

- Búsqueda de Dataset: Pide a los estudiantes que investiguen y encuentren un dataset de series de tiempo en línea. El dataset debe contener una serie temporal con fechas y valores asociados. Algunas fuentes para encontrar datasets son Kaggle, UCI Machine Learning Repository, Gobierno de España (INE), entre otros.
- Descarga y Preprocesamiento: Una vez que hayan encontrado el dataset adecuado, deben descargarlo y cargarlo en su entorno de trabajo de Python utilizando bibliotecas como Pandas. Asegúrate de que la serie de tiempo esté correctamente formateada con las fechas como índice y los valores numéricos como columnas.
- **División de Datos:** Divide la serie de tiempo en un conjunto de entrenamiento y un conjunto de prueba. Puedes usar la función train_test_split de scikit-learn para esto.
- Modelado y Pronóstico: Aplica un modelo de pronóstico de series de tiempo, como ARIMA, SARIMA, al conjunto de entrenamiento para obtener un pronóstico en el conjunto de prueba.

- Evaluación del Modelo: Calcula las métricas de evaluación, como el error cuadrático medio (MSE) y el error absoluto medio (MAE), entre los valores reales del conjunto de prueba y los valores pronosticados por el modelo.
- Análisis y Conclusiones: Analiza los resultados obtenidos, interpreta las métricas de evaluación y saca conclusiones sobre el rendimiento del modelo de pronóstico aplicado a la serie de tiempo.

Este ejercicio permite a los estudiantes adquirir habilidades prácticas en la aplicación de modelos de pronóstico de series de tiempo, así como en la evaluación y análisis de los resultados obtenidos.

También les ayuda a familiarizarse con la búsqueda y manipulación de datasets reales, lo que es fundamental en el campo de la ciencia de datos.

