

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی بهار ۱۴۰۲

پردازشهای مورفولوژی

Morphological Image Processing

اسكلت يك ناحيه

• اسکلت ناحیه A با نماد S(A) نشان داده می شود و به معنای باریک کردن الگو به نحوی است که شکل کلی الگو از بین نرود

اسكلت يک ناحيه

اسكلت يك ناحيه

تبديل فاصله

• در تبدیل فاصله (Distance Transform)، فاصله هر پیکسل روشن تا نزدیکترین پیکسل تیره محاسبه می شود

0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
0	1	1	1	1	1	1	0		0	1	1	1	1	1	1
0	1	1	1	1	1	1	0		0	1	2	2	2	2	1
0	1	1	1	1	1	1	0		0	1	2	3	3	2	1
0	1	1	1	1	1	1	0		0	1	2	2	2	2	1
0	1	1	1	1	1	1	0		0	1	1	1	1	1	1
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0

• می توان تعداد تکرار لازم برای حذف هر پیکسل توسط عملگر فرسایش را شمرد

تبديل فاصله

تصاویر رنگی

- در تصاویر رنگ می توان عملگرهای مورفولوژی را در هر کانال به طور مجزا انجام داد
- در یک تصویر سطح خاکستری، عملگر مورفولوژی گسترش به صورت زیر تعریف میشود

$$dst(x,y) = \max_{(x',y') \in SE} src(x + x', y + y')$$

• عملگر سایش برای تصاویر سطح خاکستری

$$dst(x,y) = \min_{(x',y') \in SE} src(x + x', y + y')$$

گسترش سطح خاکستری

$$dst(x,y) = \max_{(x',y') \in SE} src(x + x', y + y')$$

گسترش و سایش رنگی

گسترش و سایش رنگی

دستهبندی تصویر

Image Classification

دستهبندی تصویر

دستهبندی تصویر

- دستهبندی تصویر یا شناسایی شیئ به طور کلی از دو گام اصلی تشکیل میشود:
- استخراج ویژگی: تبدیل تصویر به یک بردار ویژگی تفکیککننده میان کلاسهای مختلف
 - دستهبندی: آموزش یک نگاشت برای تبدیل بردار ویژگی به برچسب

• از یک تصویر ویژگیهای مختلفی در سطوح مختلف قابل استخراج هستند که موارد زیر بررسی خواهند شد

- توصیفگرهای شکل (ناحیه یا مرز)

• از یک تصویر ویژگیهای مختلفی در سطوح مختلف قابل استخراج هستند که موارد زیر بررسی خواهند شد

- توصیفگرهای شکل (ناحیه یا مرز)
 - توصیفگرهای طیف (رنگ)

• از یک تصویر ویژگیهای مختلفی در سطوح مختلف قابل استخراج هستند که موارد زیر بررسی خواهند شد

- توصیفگرهای شکل (ناحیه یا مرز)
 - توصیفگرهای طیف (رنگ)
 - توصیفگرهای بافت

• از یک تصویر ویژگیهای مختلفی در سطوح مختلف قابل استخراج هستند که موارد زیر بررسی خواهند شد

- توصیفگرهای شکل (ناحیه یا مرز)
 - توصیفگرهای طیف (رنگ)
 - توصیفگرهای بافت
 - یادگیری ویژگی

چالشها

- شرایط نورپردازی
 - تغییرات اندازه
 - تغيير شكل
 - پس زمینه
 - انسداد
- تفاوتهای درون کلاسی

Illumination conditions

Deformation

Background clutter

Occlusion

Intra-class variation

توصیفگرهای شکل

Shape Descriptors

توصیفگرهای شکل

• به طور کلی، توصیفگرهای شکل یا ویژگیهای شکل مجموعهای از اعداد هستند که برای توصیف یک شکل مشخص تولید میشوند

توصیفگرهای شکل

• به طور کلی، توصیفگرهای شکل یا ویژگیهای شکل مجموعهای از اعداد هستند که برای توصیف یک شکل مشخص تولید میشوند

• یک شکل به طور کلی از توصیفگرها قابل بازسازی نیست، اما توصیفگرها برای اشیاء متفاوت باید به اندازه

کافی متفاوت باشند تا بتوانند آنها را مجزا کنند

مساحت

- مساحت یک شکل برابر با تعداد پیکسلهای درون آن است
- مساحت محدب برابر با مساحت کوچکترین شکل محدبی است که دربرگیرنده ناحیه مورد نظر باشد

محيط

• محیط یک شکل برابر با مجموع فاصله پیکسلهای موجود بر روی مرز آن است

$$Perimeter = \sum_{i=1}^{N} d_i$$

$$City - block: d = |x_1 - x_2| + |y_1 - y_2|$$

Chessboard: $d = max(|x_1 - x_2|, |y_1 - y_2|)$

5.41

محيط

• محیط یک شکل برابر با مجموع فاصله پیکسلهای موجود بر روی مرز آن است

$$Perimeter = \sum_{i=1}^{N} d_i$$

 $City - block: d = |x_1 - x_2| + |y_1 - y_2|$

Chessboard: $d = max(|x_1 - x_2|, |y_1 - y_2|)$

محور اصلی و فرعی

- محور اصلی یک شکل شامل دو نقطهای از مرز شکل است که بیشترین فاصله را دارا هستند
 - اندازه و زاویه محور اصلی دو مشخصه مهم هستند
 - محور فرعی شامل دو نقطه عمود بر محور فرعی است که بیشترین طول را داشته باشد
 - اندازه محور فرعی

فشردگی

• دایره یک شکل کاملا فشرده است و فشردگی یک شکل میتواند از مقایسه با آن بدست بیاید

$$Compactness = \frac{4\pi \ Area}{Perimeter^2}$$

صلب بودن

• میزان چگال بودن یک شکل را ارزیابی میکند

$$Solidity = \frac{Area}{ConvexArea}$$

کشیدگی (گریز از مرکز)

• میزان کشیده بودن یک شکل را می توان با استفاده از اندازه محورهای اصلی و فرعی آن مشخص شود

$$Eccentricity = \frac{MinorAxisLength}{MajorAxisLength}$$

کشیدگی (گریز از مرکز)

• میزان کشیده بودن یک شکل را می توان با استفاده از اندازه محورهای اصلی و فرعی آن مشخص شود

$$Eccentricity = \sqrt{1 - \left(\frac{MinorAxisLength}{MajorAxisLength}\right)^2}$$

