台式激光器串口协议

一. 串口格式

波特率: 9600 数据位: 8位 停止位: 1位 校验位: 无

二. 读数据协议格式

(1)读数据协议格式

(a)在协议中第一个为验证码(80),第二个数据为后面数据的长度(不包括本身),第三位为操作指令,中间位数据位为00,最后一位数据为前面数据的异或校验位(除去验证位)。

例: 80 03 01 00 02

80为验证码

03为数据长度(后面数据长度)

01操作指令读产品信息

02为前面除验证码外所有数据异或校验。

(b) 返回数据格式固定为8F LL AA BB CC DD EE 其中第一个为验证码(8F),第二个数据为后面数据的长度(不包括本身),AA BB CC DD为可用数剧,最后一位数据EE为前面数据的异或校验位(除去验证位)

(2) 读完数据后,返回数据格式长含义

读操作指令	数据	含义	返回数据长度(除		含义	指令类别
	长度		去验证码及长度			
			位本身)			
0X01	0X03	读产品信息	0X05	8F 05 AA BB CC DD EE		外部指令
				AA=SN_Y j		
				BB=SN_M j		
				CC=SN_N 产品编号中"序号"例 01		
				DD 为产。		
				0位	功率单位 0 mW 1 dBm	
				1位	波长单位 0 nm 1 THZ	
				2-3 位	为调节模式	
					10 功率可调	
					01 波长可调	
					11 波长功率可调	
				4-5 位	光源类型	
					00 DFB 光源	
					10 ASE 光源	
					01 SLED 光源	
					11 PUMP 光源	
				6位	波长步进单位	
					0 pm	

				1 GHZ	
				7为 缺省	
0X02	0X03	读波长上限	0X05	8F 05 AA BB CC DD EE 波长上限=AA×128+ BB (单位为 nm/THZ) 波长上限=CC×128+DD (单位为	外部指令
				pm/GZH)	
0X03	0X03	读波长下限	0X05	8F 05 AA BB CC DD EE 波长下限=AA×128+ BB (nm/THZ 部分) 波长下限=CC×128+DD (Pm/GHZ 部分)	外部指令
0X04	0X03	读工作波长	0X05	波长=AA×128+ BB (nm/THZ 部分) 波长=CC×128+DD (pm/GHZ 部分)	外部指令
0X05	0X03	读输出功率及泵浦状态	0X05	8F 05 AA BB CC DD EE 功率=AA×128+ BB,例 100 就为 10dBm/mW CC 为空 00。 DD 为泵浦状态 01 为关泵 00 为开 泵)。	外部指令
0X06	0X03	读功率最小步近量	0X05	8F 05 AA BB CC DD EE 最小步近量=AA×128+ BB,例:1 就为 0.1dB/mW 单位和功率单位一 致) CC 为空 DD 为空 00	外部指令
0X07	0X03	读波长最小步近量	0X05	8F 05 AA BB CC DD EE 最小步近量=AA×128+ BB(单位为 GHZ/pm,初始信息中可读出) CC 为空 00 DD 为空 00	
0X08	0X03	读初始工作波长	0X05	8F 05 AA BB CC DD EE 初始波长=AA×128+ BB (nm/THZ 部分) 初始波长=CC×128+DD (pm/GHZ 部分)	外部指令
0X09	0X03	读最大输出功率	0X05	8F 05 AA BB CC DD EE 最大输出功率=AA×128+ BB(单位 为 dBm/mW,例 100 就为 10dBm/mW。 CC 为空 00。 DD 为空 00	外部指令

三. 写数据协议格式

(1)写协议格式:

写指令共有三个指令 为开关泵指令及设定波长指令,设定功率指令,当设定完成后会 返回 FF 校验码.

(a)在开关泵协议指令中第一个为验证码(80),第二个数据为后面数据的长度(03)(不包括本身),第三位为操作指令,中间位数据位为00,最后一位数据为前面数据的异或校验位(71)(除去验证位)。

例: 80 03 72 00 71

80为验证码

03为数据长度(后面数据长度)

72操作指令为开关泵浦

72 为前面除验证码外所有数据异或校验。

(b)在设定波长的协议中第一个为验证码(80),第二个数据为后面数据的长度(06)(不包括本身),第三位为操作指令,4-7位为数据,最后一位数据为前面数据的异或校验位(除去验证位)。

例: 80 06 71 AA BB CC DD EE

80为验证码

06为数据长度(后面数据长度)

71操作指令为设定波长

AA BB CC DD 为数据。

EE 为前面除验证码外所有数据异或校验。

(C)在设定功率的协议中第一个为验证码(80),第二个数据为后面数据的长度(06)(不包括本身),第三位为操作指令,4-7位为数据,最后一位数据为前面数据的异或校验位(除去验证位)。

例: 80 06 70 AA BB CC DD EE

80为验证码

06为数据长度(后面数据长度)

70操作指令为设定功率

AA BB CC DD 为数据。

EE为前面除验证码外所有数据异或校验。

写操作指	数据	含义	设定成功	指令类别
\$	长度		返回数据	
0X70	0X06	设定功率	0XFF	内部指令
		数据80 06 71 AA BB CC DD EE		
		功率=AA×128+BB(单位为dBm/mW,例		
		10dBm/mW 数字量为 100,设定值为实际值		
		10倍)		
		CC DD 为 00		
0X71	0X06	设定波长	0XFF	内部指令
		数据80 06 71 AA BB CC DD EE		
		波长(nm/THZ 部分)=AA×128+BB		
		波长(pm/GHZ 部分)=CC×128+DD		
0X72	0X03	开关泵浦	0XFF	内部指令

四 协议交互注意事项:

- 1 泵浦开关指令: 为点动指令。泵浦此时工作状态可从其它指令读出。
- 2 波长写入指令: 下位机带有容错机制, 当写入的波长数据不是 ITU 标准时, 下位机 将强制将输出波长调整至离写入波长最近的 ITU 标准波长。
- 3 该光源不可作为快速可调谐波长使用,每个波长间硬件调谐时间为 2-158,当软件调谐时间小于此时间时,下位机硬件调谐可能不会快速响应。
- 4 下位机通讯协议采用握手指令,因此每发一条指令下位机都会响应并回发指令,因此交互通讯时请注意,当连续发送指令时两条指令必须有一定时间间隔。
- 5 该协议为本公司通用光源通讯协议,每款光源功能均有不同,光源调节功能可通过上位机从模块读取。