OBSERVATION:

Voltmeter reading when the LDR is closed = $\frac{2.5}{0.5}$ V Ammeter reading when the LDR is closed = $\frac{0.5}{1}$ A Dark resistance = $R = \frac{V}{I} = \frac{5}{1}$ ohm

To determine the resistances of LDR at different distances

S.No	Distance	Voltmeter reading (V.) volt	Ammeter reading (1) mA	RR KA
1 2 3 4	(Long distance)	0.4 0.9 1.4 1.9	0.6 1.6 2.5 3.4 4.4	0.66 0.56 0.56 0.55 0.55
5 1 2 3 4 5	B (Mid distance) 19	2.4 0.4 0.9 1.4 1.9 2.4	0. 9 2. 0 3. 2 4. 5 5. 7	0.44 0.45 0.43 0.42
1 2 3 4 5	C (Short distance) 12	0.4	1.5 3.5 5.5 7.7	0.25 0.25 0.25 0.24

in the most hours in the Barrier to have

