Finite Automata 204213 Theory of Computation

Jittat Fakcharoenphol

Kasetsart University

November 5, 2008

Outline

- Examples
- 2 Formal definitions
- Oesigning finite automata
- Regular operations

An automatic door

• Recall our automatic door example from last time?

An automatic door

- Recall our automatic door example from last time?
- Let's see a simulation.

• There are two states:

• There are two states: closed and open

- There are two states: closed and open
- There are 4 possible inputs, and the state of the machine changes (or remains) after each input.

- There are two states: closed and open
- There are 4 possible inputs, and the state of the machine changes (or remains) after each input.
- See that in table form:

	neither	front	rear	both
closed	closed	open	closed	closed
open	closed	open	open	open

• This is the **state diagram** of M_1 .

- This is the state diagram of M_1 .
- There are 3 states: q_1, q_2, q_3 .

- This is the state diagram of M_1 .
- There are 3 states: q_1, q_2, q_3 .
- q_1 is the **start state**. (see the arrow?)

- This is the state diagram of M_1 .
- There are 3 states: q_1, q_2, q_3 .
- q_1 is the **start state**. (see the arrow?)
- q_2 is the accept state. (see the double circle)

- This is the state diagram of M_1 .
- There are 3 states: q_1, q_2, q_3 .
- q₁ is the **start state**. (see the arrow?)
- q₂ is the accept state. (see the double circle)
- Arrows are transitions.

Formal definition: why?

Formal definition: why?

Formal definition gives

Precision

Formal definition: why?

Formal definition gives

- Precision
- Notation

• The rule for moving.

- The rule for moving.
- If you are in state q, after receiving 1 as an input, go to state p:

- The rule for moving.
- If you are in state q, after receiving 1 as an input, go to state p:

$$\delta(q,1)=p$$

- The rule for moving.
- If you are in state q, after receiving 1 as an input, go to state p:

$$\delta(q,1)=p$$

ullet δ is a function from

- The rule for moving.
- If you are in state q, after receiving 1 as an input, go to state p:

$$\delta(q,1)=p$$

 \bullet δ is a function from the set of states and

- The rule for moving.
- If you are in state q, after receiving 1 as an input, go to state
 p:

$$\delta(q,1)=p$$

 \bullet δ is a function from the set of states and the set of possible inputs to

- The rule for moving.
- If you are in state q, after receiving 1 as an input, go to state
 p:

$$\delta(q,1)=p$$

• δ is a function from the set of states and the set of possible inputs to the set of states.

Definition [finite automaton]

A **finite automaton** is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set called the *states*,
- $oldsymbol{2}$ Σ is a finite set called the *alphabet*,
- **3** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- $q_0 \in Q$ is the *start state*, and
- **5** $F \subseteq Q$ is the set of accept states.

Formal definition of M_1

Formal definition of M_1

$$M_1 = (Q, \Sigma, \delta, q_1, F)$$
, where

2
$$\Sigma = \{0, 1\},$$

 $oldsymbol{\circ}$ δ can be described as

	U	Τ
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q_2

 Q_1 is the start state, and

5
$$F = \{q_2\}.$$

Language of a machine

• A set *A* of strings is called the **language of machine** *M* if *A* is the set of all strings that *M* accepts.

Language of a machine

- A set A of strings is called the **language of machine** M if A is the set of all strings that M accepts.
- We write L(M) = A.
- We also say that *M* recognizes *A*.

Language of machine M_1

- Let $A = \{w | w \text{ contains at least one 1 and an even number of 0's follow the last 1}\}.$
- $L(M_1) = A$

Language of machine M_1

- Let $A = \{w | w \text{ contains at least one 1 and an even number of 0's follow the last 1}\}.$
- $L(M_1) = A$
- Or, we can say that M_1 recognizes A.

What is the language that M_2 recognizes?

What is the language that M_3 recognizes?

What is the language that M_4 recognizes?

What is the language that M_5 recognizes?

Formal definition of computation

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton and let $w = w_1 w_2 \cdots w_n$ be a string over alphabet Σ . M accepts w if

Formal definition of computation

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton and let $w = w_1 w_2 \cdots w_n$ be a string over alphabet Σ . M accepts w if there exists a sequence of states r_0, r_1, \ldots, r_n in Q such that

Formal definition of computation

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton and let $w = w_1 w_2 \cdots w_n$ be a string over alphabet Σ . M accepts w if there exists a sequence of states r_0, r_1, \ldots, r_n in Q such that

- **1** $r_0 = q_0$,
- $\delta(r_i, w_{i+1}) = r_{i+1}$ for i = 0, ..., n-1, and
- $r_n \in F$.

Definition [regular language]

• *M* recognizes language *A* if $A = \{w | M \text{ accepts } w\}$.

Definition [regular language]

- *M* recognizes language *A* if $A = \{w | M \text{ accepts } w\}$.
- A language is called a **regular language** if some finite automaton recongnizes it.

Designing finite automata

Tips:

• Pretending that you are the automaton.

Designing finite automata

Tips:

- Pretending that you are the automaton.
- You get one input at a time.

Designing finite automata

Tips:

- Pretending that you are the automaton.
- You get one input at a time.
- Think about what you have to remember to make decision correctly. (That would be a set of states.)

Practice

Language consisting of all strings with an odd number of 1's.

Building more complex finite automata

- Let $\Sigma = \{0, 1, 2\}.$
- Can you build a finite automaton M_3 that accepts all strings whose sums are divisible by 3?

Building more complex finite automata

- Let $\Sigma = \{0, 1, 2\}$.
- Can you build a finite automaton M_3 that accepts all strings whose sums are divisible by 3?
- Can you build a finite automaton M_5 that accepts all strings whose sums are divisible by 5?

Building more complex finite automata

- Let $\Sigma = \{0, 1, 2\}.$
- Can you build a finite automaton M_3 that accepts all strings whose sums are divisible by 3?
- Can you build a finite automaton M_5 that accepts all strings whose sums are divisible by 5?
- Can you build a finite automaton M_5 that accepts all strings whose sums are divisible by 3 or 5?

Construction from smaller building boxes

This is one of important ideas in computer science.

- Operations for "manipulating" languages.
- A toolbox for

- Operations for "manipulating" languages.
- A toolbox for
 - building more complex machines.

- Operations for "manipulating" languages.
- A toolbox for
 - building more complex machines.
 - reasoning about larger (?) classes of machines.

- Operations for "manipulating" languages.
- A toolbox for
 - building more complex machines.
 - reasoning about larger (?) classes of machines.
 - some fun (?).

A set and operations

 A collection of objects is closed under some operation if applying that operation to objects in that set only result in object in that set.

A set and operations

- A collection of objects is closed under some operation if applying that operation to objects in that set only result in object in that set.
- ullet E.g., a set of natural number ${\cal N}$ is closed under multiplication.

Definition [regular operations]

For a language A and B, the regular operations union, concatenation, and star can be defined as follows.

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\}$
- Star: $A^* = \{x_1x_2 \cdots x_k | k \ge 0 \text{ and each } x_i \in A\}$

Irregular languages?

- Irregular languages?
 - A language is irregular if there is no finite automaton recognizing it.

- Irregular languages?
 - A language is irregular if there is no finite automaton recognizing it.
- Look at each regular operation, starting with union.

- Irregular languages?
 - A language is irregular if there is no finite automaton recognizing it.
- Look at each regular operation, starting with union.
- If A_1 and A_2 are regular, is $A_1 \cup A_2$ regular?

- Irregular languages?
 - A language is irregular if there is no finite automaton recognizing it.
- Look at each regular operation, starting with union.
- If A_1 and A_2 are regular, is $A_1 \cup A_2$ regular?
- How can we answer that?

- Irregular languages?
 - A language is irregular if there is no finite automaton recognizing it.
- Look at each regular operation, starting with union.
- If A_1 and A_2 are regular, is $A_1 \cup A_2$ regular?
- How can we answer that?
- Go back to the definition of regular languages.
 - **Goal:** to show that there exists a finite automaton recognizing $A_1 \cup A_2$.

- Irregular languages?
 - A language is irregular if there is no finite automaton recognizing it.
- Look at each regular operation, starting with union.
- If A_1 and A_2 are regular, is $A_1 \cup A_2$ regular?
- How can we answer that?
- Go back to the definition of regular languages.
 - **Goal:** to show that there exists a finite automaton recognizing $A_1 \cup A_2$,
 - **Given that:** there are finite automata M_1 and M_2 such that M_1 recognizes A_1 and M_2 that recognizes A_2 .

Theorem

The class of regular languages is closed under the union operation

Theorem

The class of regular languages is closed under the union operation

Approach for proving it.

• Proof by construction.

Theorem

The class of regular languages is closed under the union operation

Approach for proving it.

- Proof by construction.
- We know that there are finite automata M_1 that recognizes A_1 and M_2 that recognizes A_2 .

Theorem

The class of regular languages is closed under the union operation

Approach for proving it.

- Proof by construction.
- We know that there are finite automata M_1 that recognizes A_1 and M_2 that recognizes A_2 .
- We shall construct M that recognizes $A_1 \cup A_2$.

• Again, pretend that you are a finite automaton trying to recognizes $A_1 \cup A_2$.

- Again, pretend that you are a finite automaton trying to recognizes $A_1 \cup A_2$.
 - Arrh.. doesn't seem to help.

- Again, pretend that you are a finite automaton trying to recognizes $A_1 \cup A_2$.
 - Arrh.. doesn't seem to help.
- Let's try again:

- Again, pretend that you are a finite automaton trying to recognizes $A_1 \cup A_2$.
 - Arrh.. doesn't seem to help.
- Let's try again: suppose that we want to recognize $A_1 \cup A_2$ and also have M_1 and M_2 standing in front of us.

- Again, pretend that you are a finite automaton trying to recognizes $A_1 \cup A_2$.
 - Arrh.. doesn't seem to help.
- Let's try again: suppose that we want to recognize $A_1 \cup A_2$ and also have M_1 and M_2 standing in front of us.
 - Can we use them to recognize $A_1 \cup A_2$?

Given

We have to be formal:

Given

We have to be formal:

- Machine $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizing A_1
- Machine $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizing A_2

Machine $M=(Q,\Sigma,\delta,q_0,F)$, such that $Q=Q_1 imes Q_2$,

Machine $M = (Q, \Sigma, \delta, q_0, F)$, such that

- $Q = Q_1 \times Q_2$,
- \bullet Σ remains the same,

Machine $M = (Q, \Sigma, \delta, q_0, F)$, such that

- $Q = Q_1 \times Q_2$,
- \bullet Σ remains the same,
- \bullet δ is defined as

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)),$$

Machine $M = (Q, \Sigma, \delta, q_0, F)$, such that

- $Q = Q_1 \times Q_2$,
- \bullet Σ remains the same,
- ullet δ is defined as

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)),$$

• $q_0 = (q_1, q_2),$

Machine $M = (Q, \Sigma, \delta, q_0, F)$, such that

- $Q = Q_1 \times Q_2$,
- \bullet Σ remains the same,
- ullet δ is defined as

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)),$$

- $q_0 = (q_1, q_2),$
- $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

Other regular operations

• Can we use the same technique to prove that $A_1 \circ A_2$ is regular?