Bài 2. TẬP HỢP VÀ CÁC PHÉP TOÁN TRÊN TẬP HỢP

A. TÓM TẮT LÝ THUYẾT

1. Các khái niệm cơ bản về tập hợp

- 🗘 Tập hợp
 - 🐼 Khi muốn mô tả các đối tượng (phần tử) có chung một tính chất gì đó thì ta xây dựng khái niệm tập hợp.
 - 🗷 Cách xác định tập hợp:
 - 1 Liệt kê các phần tử: viết các phần tử của tập hợp trong hai dấu móc $\{...\}$.
 - 2 Chỉ ra tính chất đặc trưng cho các phần tử của tập hợp.
 - ☑ Tập rỗng: là tập hợp không chứa phần tử nào, kí hiệu Ø.
- 🗘 Tập hợp con Tập hợp bằng nhau
 - 🗷 Tập hợp con:
 - \bigcirc $A \subset B \Leftrightarrow (\forall x \colon x \in A \Rightarrow x \in B).$
 - ❷ Các tính chất:
 - ① $A \subset A, \forall A$.

 - 3 $A \subset B$, và $B \subset C$ suy ra $A \subset C$.

Biểu đồ Ven minh họa $A\subset B$

🗹 Tập hợp bằng nhau:

 $A = B \Leftrightarrow A \subset B \text{ và } B \subset A \Leftrightarrow (\forall x \colon x \in A \Leftrightarrow x \in B).$

2. Các tập hợp số

- Các tập hợp số và mối quan hệ giữa các tập hợp số:
 - 1 Tập số tự nhiên \mathbb{N} .
- 2 Tập số nguyên \mathbb{Z} .
- 3 Tập số hữu tỉ \mathbb{Q} .

- ④ Tập số vô tỉ I.
- \mathfrak{S} Tập số thực \mathbb{R} .
- **©** Tập \mathbb{N}^* ta bỏ số 0.

Mối quan hệ:

① $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.

- ② $\mathbb{Q} \cup \mathbb{I} = \mathbb{R}$.
- **☼** Các tập con thường dùng của tập ℝ
 - ① Khoảng $(a; b) = \{x \in \mathbb{R} | a < x < b\}.$

- $(3) Khoảng <math>(a; +\infty) = \{x \in \mathbb{R} | x > a\}.$
- $\ \, \text{$ @ $ N$\'\it u$a khoảng } [a;+\infty) = \{x\in \mathbb{R} |\, x\geq a\}.$

- $\text{ (5) Khoảng } (-\infty; b) = \{ x \in \mathbb{R} | x < b \}.$

ĐIỂM:

"Only in the darkness can you see the stars."

-Martin Luther King Jr.-

QUICK NOTE

		•													•		

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

0																	

3. Các phép toán trên tập hợp

Giao của hai tập hợp:

- \bigcirc $A \cap B = \{x | x \in A \text{ và } x \in B\}.$
- ❷ Ghi nhớ: Lấy phần chung của 2 tập hợp.

Hợp của hai tập hợp:

- \bigcirc $A \cup B = \{x | x \in A \text{ hoặc } x \in B\}.$
- ❷ Ghi nhớ: Gom hết phần tử của cả hai tập, các phần tử trùng nhau thì ta ghi 1 lần.

Hiệu của hai tập hợp:

- \bigcirc $A \setminus B = \{x | x \in A \text{ và } x \notin B\}.$
- ❷ Ghi nhớ: Lấy phần riêng (thuộc A mà không thuộc B)
- \odot Đặc biệt: Nếu $B \subset A$ thì $A \setminus B$ được kí hiệu là $C_A B \mid (goi$ là phần bù của B trong A).

B. RÈN LUYỆN KĨ NĂNG GIẢI TOÁN

Xác định tập hợp

VÍ DỤ 1. Cho $D = \{n \in \mathbb{N} \mid n \text{ là số nguyên tố, } 5 < n < 20\}.$

- a) Viết tập hợp D bằng cách liệt kê các phần tử. Tập hợp D có bao nhiêu phần tử?
- b) Dùng kí hiệu \in , \notin để viết câu trả lời cho câu hỏi sau: Trong các số 5; 12; 17; 18, số nào thuộc tập D, số nào không thuộc tập D?

VÍ DU 2. Viết mỗi tập hợp sau bằng cách liệt kê các phần tử.

- a) $A = \{x \in \mathbb{R} | (2x x^2)(3x 2) = 0\}.$ b) $B = \{x \in \mathbb{Z} | 2x^3 3x^2 5x = 0\}.$

- c) $C = \{ x \in \mathbb{Z} | 2x^2 75x 77 = 0 \}.$ d) $D = \{ x \in \mathbb{R} | (x^2 x 2)(x^2 9) = 0 \}.$

VÍ DU 3. Viết mỗi tập hợp sau bằng cách liệt kê các phần tử.

- a) $A = \{ n \in \mathbb{N}^* | 3 < n^2 < 30 \}.$
- b) $B = \{ n \in \mathbb{Z} | |n| < 3 \}.$
- c) $C = \{ x | x = 3k \text{ v\'oi } k \in \mathbb{Z} \text{ v\'a } -4 < x < 12 \}.$
- d) $A = \{ n^2 + 3 | n \in \mathbb{N} \text{ và } n < 5 \}.$

VÍ DU 4. Viết mỗi tập hợp sau bằng cách nêu tính chất đặc trung.

a) $A = \{2, 3, 5, 7\}.$

b) $B = \{-3, -2, -1, 0, 1, 2, 3\}.$

c) $C = \{-5, 0, 5, 10\}.$

d) $D = \{1; 2; 3; 4; 6; 9; 12; 18; 36\}.$

VÍ DU 5. Trong các tập hợp sau, tập hợp nào rỗng?

- a) $A = \{ x \in \mathbb{R} | x^2 x + 1 = 0 \}.$
- b) $B = \{ x \in \mathbb{Q} | x^2 4x + 2 = 0 \}.$
- c) $C = \{ x \in \mathbb{Z} | 6x^2 7x + 1 = 0 \}.$
- d) $D = \{ x \in \mathbb{Z} | |x| < 1 \}.$

QUICK NOTE

2

Xác định tập hợp con. Hai tập hợp bằng nhau

Cho tập hợp A gồm n phần tử.

- ① Khi liệt kê tất cả các tập con của A, ta liệt kê đầy đủ theo thứ tự: \varnothing ; tập 1 phần tử; tập 2 phần tử; tập 3 phần tử;...; A.
- ② Số tập con của A là 2^n .
- ③ Số tập con gồm k phần tử của A là C_n^k .

VÍ DỤ 1. Cho tập hợp $A = \{2, 3, 4\}$ và $B = \{2, 3, 4, 5, 6\}$.

- a) Xác định tất cả tập con có hai phần tử của A.
- b) Xác định tất cả tập con có ít hơn hai phần tử của A.
- c) Tập A có tất cả bao nhiêu tập con.
- d) Xác định tất cả các tập X thỏa $A \subset X \subset B$.

VÍ DỤ 2. Cho $A = \{2; 5\}, B = \{5; x\}, C = \{x; y; 5\}$. Tìm các cặp số $\{x; y\}$ để A = B = C.

(3)

Các phép toán trên tập hợp

VÍ DỤ 1. Cho A là tập hợp các học sinh lớp 10 đang học ở trường em, B là tập hợp học sinh đang học tiếng Anh ở trường em. Hãy diễn đạt bằng lời các tập hợp sau.

- a) $A \cap B$.
- b) $A \backslash B$.
- c) $A \cup B$.
- d) $B \setminus A$

VÍ DỤ 2. Cho hai tập hợp $A = \{0; 1; 2; 3; 4\}$ và $B = \{2; 3; 4; 5; 6\}$. Tìm các tập hợp $A \cup B, A \cap B, A \setminus B, B \setminus A$.

VÍ DỤ 3. Cho $A=\{x\in\mathbb{N}|\ x\leq 5\},\ B=\{x\in\mathbb{N}|\ x=3k-1,k\in\mathbb{N},k\leq 3\}.$ Xác định tập $A,B,A\cap B,A\cup B,A\setminus B,B\setminus A.$

VÍ DỤ 4. Cho tập hợp $E = \{1; 2; 3; 4; 5; 6; 7; 8; 9\}$ và các tập hợp con $A = \{1; 2; 3; 4\}$, $B = \{2; 4; 6; 8\}$. Xác định $C_E A$, $C_E B$, $C_E (A \cup B)$, $C_E A \cap C_E B$.

VÍ DỤ 5. Xác định hai tập A, B biết rằng $A \setminus B = \{1; 5; 7; 8\}$, $B \setminus A = \{2; 10\}$, $A \cap B = \{3; 6; 9\}$.

VÍ DỤ 6. Cho hai tập hợp $A = \{1; 2\}$ và $B = \{1; 2; 3; 4\}$. Tìm tất cả các tập hợp X sao cho $A \cup X = B$.

Các phép toán trên tập hợp con của tập số thực

VÍ DỤ 1. Xác định các tập hợp sau đây và biểu diễn chúng trên trục số.

- a) $(0;3) \cap (2;4)$.
- b) $[-1;4] \cap (2;5)$.
- c) $\mathbb{R} \cap (-1;1)$.

VÍ DỤ 2. Cho hai tập hợp $A = \{x \in \mathbb{R} | -1 \le x \le 3\}, B = \{x \in \mathbb{R} | -2 < x < 2\}.$ Tìm $A \cap B$.

VÍ DỤ 3. Cho A = [-2; 4], $B = (2; +\infty)$, $C = (-\infty; 3)$. Xác định các tập hợp sau đây và biểu diễn chúng trên trục số.

- a) $A \cap B$;
- b) $B \cap C$;
- c) $A \cap C$;

d) $\mathbb{R} \cap A$;

- e) $\mathbb{R} \cap B$;
- f) $A \cap B \cap C$.

VÍ DỤ 4. Cho các tập hợp $A = \{x \in \mathbb{R} | |x+2| < 2\}, B = \{x \in \mathbb{R} | |x+4| \ge 3\}, C = [-5; 3).$ Tìm các tập hợp

- a) $A \cup B$.
- b) $A \cap B \cup C$.
- c) $(A \cup B) \cap (B \cup C)$.

VÍ DU 5. Xác định các tập hợp sau đây và biểu diễn chúng trên trục số.

♥ VNPmath - 0962940819 ♥
QUICK NOTE

a.)	$(0;3) \$	(2:4)	

b)
$$(-4;2] \setminus [2;4)$$
.

c) $\mathbb{R} \setminus (-1;1)$.

VÍ DỤ 6. Cho hai tập hợp $A=\{x\in\mathbb{R}|-1\leq x\leq 3\},\ B=\{x\in\mathbb{R}|-2< x< 2\}.$ Tìm $A\setminus B, B\setminus A.$

VÍ DỤ 7. Cho hai tập hợp $A = \{x \in \mathbb{R} | 1 < x \le 4\}, B = \{x \in \mathbb{R} | -3 < x\}.$ Tìm $C_B A$.

VÍ DỤ 8. Cho hai nửa khoảng A = (-1; 0], B = [0; 1). Tìm $A \setminus B$ và $C_{\mathbb{R}}A$.

C. VẬN DỤNG, THỰC TIỄN

Các bài toán biện luận theo tham số

VÍ DỤ 1. Cho hai tập hợp A = [-4; 1], B = [-3; m]. Tìm m để

a)
$$A \cap B = [-3; 1]$$
.

b)
$$A \cup B = A$$

VÍ DU 2. Cho hai tập hợp A = (m-1;5) và $B = (3;+\infty)$. Tìm m để $A \setminus B = \emptyset$.

VÍ DỤ 3. Cho hai tập hợp A=(-4;3) và B=(m-7;m). Tìm m để $B\subset A$.

VÍ DỤ 4. Cho số thực a<0 và hai tập hợp $A=(-\infty;9a),\ B=\left(\frac{4}{a};+\infty\right)$. Tìm a để $A\cap B\neq\varnothing$.

VÍ DỤ 5. Cho hai tập hợp A=[-2;m+1] và $B=\left[\frac{1}{2};+\infty\right)$. Tìm m để $A\cap B$ chỉ có đúng 1 phần tử.

Ứng dụng thực tế các phép toán tập hợp

VÍ DỤ 1. Trong kì thi học sinh giỏi cấp trường, lớp 10C1 có 45 học sinh trong đó có 17 bạn đạt học sinh giỏi Văn, 25 bạn đạt học sinh giỏi Toán và 13 bạn học sinh không đạt học sinh giỏi. Tìm số học sinh giỏi cả Văn và Toán của lớp 10C1.

VÍ DỤ 2. Một lớp học có 50 học sinh trong đó có 30 em biết chơi bóng chuyền, 25 em biết chơi bóng đá, 10 em biết chơi cả bóng đá và bóng chuyền. Hỏi có bao nhiêu em không biết chơi môn nào trong hai môn ở trên?

VÍ DỤ 3. Lớp 10A có 15 bạn thích môn Văn, 20 bạn thích môn Toán. Trong số các bạn thích văn hoặc toán có 8 bạn thích cả 2 môn. Trong lớp vẫn còn 10 bạn không thích môn nào trong 2 môn Văn và Toán. Hỏi lớp 10A có bao nhiêu học sinh?

VÍ DỤ 4. Kết quả thi học kì một của một trường THPT có 48 thí sinh giỏi môn Toán, 37 thí sinh giỏi môn Vật Lí,42 thí sinh giỏi môn Văn. Biết rằng có 75 thí sinh giỏi môn Toán hoặc môn Vật lí, 76 thí sinh giỏi môn Toán hoặc môn Văn, 66 thí sinh giỏi môn Vật lí hoặc môn Văn và có 4 thí sinh giỏi cả ba môn. Hỏi

- a) có bao nhiêu học sinh chỉ giỏi 1 môn.
- b) có bao nhiều học sinh chỉ giỏi 2 môn.
- c) có bao nhiều học sinh giỏi ít nhất 1 môn.

D. BÀI TẬP TỰ LUYỆN

BÀI 1. Liệt kê các phần tử của các tập hợp sau:

- a) $A = \{ n \in \mathbb{N} \mid n < 5 \}.$
- b) B là tập hợp các số tự nhiên lớn hơn 0 và nhỏ hơn 5.
- c) $C = \{x \in \mathbb{R} \mid (x-1)(x+2) = 0\}.$

BÀI 2. Viết các tập hợp sau bằng phương pháp liệt kê

- a) $A = \{x \in \mathbb{Q} \mid (x^2 2x + 1)(x^2 5)\} = b$ $B = \{x \in \mathbb{N} \mid 5 < x^2 < 40\}.$ 0.
- c) $C = \{x \in \mathbb{Z} \mid x^2 < 9\}.$
- d) $D = \{x \in \mathbb{R} \mid |2x+1| = 5\}.$

QUICK NOTE

BÀI 3. Cho các tập hợp sau

$$A = \{ x \in \mathbb{Z} | -1 \le x < 6 \};$$

$$B = \{ x \in \mathbb{Q} | (1 - 3x) (x^4 - 3x^2 + 2) = 0 \};$$

$$C = \{0; 1; 2; 3; 4; 5; 6\}.$$

- a) Viết các tập hợp A, B dưới dạng liệt kê các phần tử.
- b) Tîm $A \cap B$, $A \cup B$, $A \setminus B$, $C_{B \cup A}$ $(A \cap B)$.
- c) Chứng minh rằng $A \cap (B \cup C) = A$.

BÀI 4. Cho hai tập A, B khác \varnothing , $A \cup B$ có 6 phần tử, số phần tử của $A \cap B$ bằng nửa số phần tử của B. Hỏi A, B có thể có bao nhiêu phần tử?

BÀI 5. Cho các tập hợp

$$A = \{ x \in \mathbb{R} | (x^2 + 7x + 6) (x^2 - 4) = 0 \}$$

$$B = \{ x \in \mathbb{N} | 2x \le 8 \}$$

$$C = \{ 2x + 1 | x \in \mathbb{Z} \text{ và } -2 \le x \le 4 \}.$$

- a) Hãy viết lại các tập hợp A, B, C dưới dạng liệt kê các phần tử.
- b) Tîm $A \cup B$, $A \cap B$, $B \setminus C$, $C_{A \cup B}$ $(B \setminus C)$.
- c) Tìm $(A \cup C) \setminus B$.

BÀI 6. Cho đoạn A = [-5; 1] và khoảng B = (-3; 2). Xác định $A \cup B$, $A \cap B$, $A \setminus B$, $C_{\mathbb{R}}B$.

BÀI 7. Cho các tập hợp $A = \{x \in \mathbb{R} | x^2 \leq 4\}$, $B = \{x \in \mathbb{R} | x < 1\}$. Viết các tập hợp sau đây $A \cup B$, $A \cap B$, $A \setminus B$, $C_{\mathbb{R}}B$ dưới dạng các khoảng, nửa khoảng, đoạn.

BÀI 8. Viết các tập hợp sau bằng phương pháp nêu ra tính đặc trung.

- a) $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$
- b) $D = \{1, 2, 4, 8, 16, 32, 64, 128, 256, 512\}.$

c) Tập hợp các số chẵn.

d) Tập hợp các số lẻ.

BAI 9. Viết mỗi tập hợp sau đây theo cách nêu tính chất đặc trung.

- a) Tập hợp các điểm M trên mặt phẳng (P), thuộc đường tròn tâm O và đường kính 2R.
- b) Tập hợp các điểm M trên mặt phẳng (P), thuộc hình tròn tâm O.

BÀI 10. Cho các tập hợp $A = \{1; 2; 3; 4; 5\}$ và $B = \{1; 3; 5; 7; 9\}$. Hãy tìm tập hợp M có nhiều phần tử nhất thoả mãn $M \subset A$ và $M \subset B$.

BÀI 11. Hãy xét quan hệ bao hàm các tập hợp sau:

A là tập hợp các tam giác.

B là tập hợp các tam giác đều.

C là tập hợp các tam giác cân.

BÀI 12. Cho tập $X = \{1, 2, 3, 4, 5, 6, 7\}.$

- a) Hãy tìm tất cả các tập con của X có chứa các phần tử 1, 3, 5, 7.
- b) Có bao nhiều tập con của X chứa đúng 2 phần tử?

BÀI 13. Cho hai tập hợp $A = \{2k+1 \mid k \in \mathbb{Z}\}$ và $B = \{6l+3 \mid l \in \mathbb{Z}\}$. Chứng minh rằng $B \subset A$.

BÀI 14. Cho hai tập hợp $A = \{1; 2; a\}$ và $B = \{1; a^2\}$. Tìm tất cả các giá trị của a sao cho $B \subset A$.

BÀI 15. Cho hai tập hợp A = [0, 3] và B = [a, a + 2]. Tìm $a \stackrel{?}{\text{de}} B \subset A$.

BÀI 16. Cho các tập hợp $A = \{x \in \mathbb{R} \mid -3 \le x \le 5\}; B = [m-1; 6)$. Tìm m để $A \cap B \ne \emptyset$.

BÀI 17. Cho $A=(-\infty;m+1); B=[3;+\infty)$, với m là tham số thực. Tìm m để

a) $A \cup B = \mathbb{R}$

QUICK NOTE	b) $A \cap B$ chứa đúng 5 số ngu	ıyên.	
	BÀI 18. Cho $A = [m; m+2]$ và của các số m và n để tập hợp A		tham số thực. Tìm điều kiện
	BÀI 19. Cho $U = \{3; 5; a^2\}; A$ sao cho $C_U A = \{1\}.$	= $\{3; a+4\}$, với a là tham số	thực. Tìm các giá trị của \boldsymbol{a}
	BÀI 20. Cho các tập hợp $A =$ nhiêu giá trị của tham số m để		$\{0; m^2 + 1; m^2 + 2\}$. Có bao
	BÀI 21. Cho tập $A = \{x \in \mathbb{Z} \mid x \in \mathbb{R} \mid x^2 - (2m+1)x + 2m = của chúng bằng 9.$	$(x+2)(5x^2-6x+1)=0$. Ve	ới m là số thực, xét tập $B =$ phần tử và tổng bình phương
	BÀI 22. Xác định số phần tử củ	ủa các tập hợp được cho dưới đ	ây:
	a) Cho A là tập hợp các số c	hẵn có hai chữ số. Hỏi A có ba	o nhiệu phần tử?
	,	ể có 3 chữ số. Hỏi B có bao nhi	
	,	guyên dương bé hơn 500 và là b	_
	phần tử?	5, ·	
	BÀI 23. Một lớp có 40 học sinh	n mỗi học sinh đều đặng ký cho	ợi ít nhất 1 trong 2 môn thể
	thao là bóng đá hoặc cầu lông. đăng ký môn cầu lông. Hỏi có b	Có 30 học sinh có đăng ký m	nôn bóng đá, 25 học sinh có
	BÀI 24. Mỗi học sinh của lớp 10 chơi bóng đá, 20 bạn chơi bóng bao nhiêu học sinh.		
	BÀI 25. Lớp 10A có 45 học sin	nh, có 15 học sinh giỏi và 20 h	noc sinh xếp hanh kiểm tốt.
	trong đó có 10 bạn vừa học giỏ hoặc hạnh kiểm tốt đều được kh	oi vừa xếp hạnh kiểm tốt. Các	học sinh được học sinh giỏi
	bao nhiêu?	9 22 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	O man of
	BÀI 26. Trong số 42 học sinh cử xếp loại hạnh kiểm tốt, trong đố có bao nhiêu bạn được khen thu học lực giỏi hoặc có hạnh kiểm	ố 7 bạn vừa học lực giỏi, vừa có ưởng? Biết rằng muốn được khe	hạnh kiểm tốt. Hỏi lớp 10A
	BÀI 27. Một nhóm học sinh giới 3 Anh, 12 em giỏi Toán, 3 en	ỏi các bộ môn: Anh, Toán, Văn	
	và Anh, 2 em giỏi cả ba môn. H	-	
	BÀI 28. Để thành lập đội tuyển Toán, Văn, Anh trên tổng số 11		9
	giỏi Văn, 62 học sinh giỏi Anh.	_	
	học sinh giỏi cả hai môn Toán v số học sinh giỏi cả ba môn Văn,		
	ba môn.		0
	E. BÀI TẬP TRẮC NO	GHIÊM	
		ĐỀ SỐ 1	
		2200	
	CÂU 1. Kí hiệu nào sau đây dù	ng để viết đúng mệnh đề "7 là	số tự nhiên"?
		\mathbb{N} . \bigcirc $7 < \mathbb{N}$.	\bigcirc $7 \leq \mathbb{N}$.
	CÂU 2. Kí hiệu nào sau đây dù \bigcirc A $\sqrt{2} \neq \bigcirc$.		không phải là số hữu tỉ"? \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
	CÂU 3. Cho A là một tập hợp,	_	
	CÂU 4. Cho tập hợp $A=\{n\in$	$\mathbb{N} \mid 3 \le n \le 10$ }. Dạng liệt kê c	ủa tập hợp A là
	$ A = \{3; 4; 5; 6; 7; 8; 9\}. $	B $A = \{4; 5; 6; 7\}$	7; 8; 9; 10}.
	\mathbf{C} $A = \{4; 5; 6; 7; 8; 9\}.$	$lacktriangledown A = \{3; 4; 5; 6\}$	6; 7; 8; 9; 10}.

QUICK NOTE

CÂU 5. Cho tập hợp $A = \{n \in \mathbb{Z} \mid -2 < n \le 5\}$. Tập hợp A bằng tập hợp nào sau đây?

- $(A) M = \{-1, 0, 1, 2, 3, 4\}.$
- **B**) $N = \{-1, 1, 2, 3, 4, 5\}.$
- (\mathbf{C}) $P = \{-1, 0, 1, 2, 3, 4, 5\}.$
- $Q = \{-2, -1, 0, 1, 2, 3, 4\}.$

CÂU 6. Tập hợp $A = \{x \in \mathbb{R} \mid x^2 + 3x - 7 = 0\}$ có bao nhiều phần tử?

- \bigcirc 0.
- **(B)** 1.
- **(D)** 3.

CÂU 7. Cho tập hợp $B = \{x \in \mathbb{R} | x^2 - 3x - 4 = 0\}$. Dùng phương pháp liệt kê phần tử, xác định tập hợp B.

- (A) $B = \{-1\}.$
- **(B)** $B = \{4\}.$
- $(\mathbf{C}) B = (-1; 4).$
- **(D)** $B = \{-1, 4\}.$

CÂU 8. Cho tập hợp $A = \{x \in \mathbb{N} | x^2 + 8x + 15 = 0\}$. Khẳng định nào sau đây đúng?

- **(A)** $A = \{-3, -5\}.$ **(B)** $A = \emptyset.$
- $(\mathbf{C}) A = \{\emptyset\}.$
- $(\mathbf{D}) A = \{0\}.$

CÂU 9. Tập hợp $Y = \{a\}$ có bao nhiều tập hợp con?

- (A) 2.
- **B**) 4.
- \bigcirc 0.

CÂU 10. Tập hợp $A = \{1, 2, 3\}$ có bao nhiêu tập con gồm hai phần tử?

- (A) 1.
- **B**) 2.
- **(C)** 3.

CÂU 11. Tập hợp $\{a; b; c\}$ có bao nhiều tập con?

- **B**) 6.
- (**D**) 8.

CÂU 12. Cho tập hợp $A \neq \emptyset$. Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng?

- (A) $A \cup \emptyset = A$.
- (B) $A \cup \emptyset = \emptyset$.
- $(\mathbf{C}) A \cup A = \emptyset.$
- $(\mathbf{D}) \varnothing \cup A = \varnothing.$

CÂU 13. Cho các tập hợp A, B được minh họa bằng biểu đồ Ven như hình bên. Phần tô màu xám trong hình là biểu diễn của tập hợp nào sau đây?

(A) $A \cup B$.

(B) $A \cap B$.

(c) $A \backslash B$.

 \triangleright $B \setminus A$.

CÂU 14. Cho các tập hợp A, B được minh họa bằng biểu đồ Ven như hình bên. Phần tô màu xám trong hình là biểu diễn của tập hợp nào sau đây?

(A) $A \cup B$.

 (\mathbf{B}) $A \cap B$.

 $(\mathbf{C}) A \backslash B.$

 \triangleright $B \setminus A$.

CÂU 15. Trong các tập hợp sau, tập hợp nào bằng tập \emptyset ?

- $A = \{ n \in \mathbb{N} \mid n^2 1 < 0 \}.$
- **B**) $B = \{x \in \mathbb{R} \mid 2x + 1 = 0\}.$
- (c) $C = \{ n \in \mathbb{Z} \mid -2 < n < 5 \}.$

CÂU 16. Trong các tập hợp sau, tập hợp nào khác tập \emptyset ?

- (A) $A = \{ n \in \mathbb{N} \mid n+1=0 \}.$
- **B** $B = \{(x; y) \mid x, y \in \mathbb{R} \text{ và } x^2 + y^2 = 0\}.$
- $C = \{ n \in \mathbb{Z} \mid n^2 = 2 \}.$
- $D = \{x \in \mathbb{R} \mid -x^2 + x 1 = 0\}.$

CÂU 17. Cho tập hợp $B = \{(x; y) \mid x, y \in \mathbb{N} \text{ và } x + y = 2\}$. Tập hợp B có bao nhiêu phần tử?

- (A) 4.

CÂU 18. Cho tập hợp $A = \{x \in \mathbb{Z} \mid (x^2 - 4)(2x + 3)(3x^2 + x - 4) = 0\}$. Dạng liệt kê của tập hợp A là

 $A = \{-2, 2\}.$

- **B** $A = \left\{-2; -\frac{3}{2}; -\frac{4}{3}; 1; 2\right\}.$
- $(\mathbf{C}) A = \{ x \in \mathbb{N} \mid -2 \le x \le 2 \}.$
- $(\mathbf{D}) A = \{-2; 1; 2\}.$

CÂU 19. Cho hai tập hợp $X = \{7, 2, 8, 4, 9, 12\}$ và $Y = \{1, 3, 7, 4\}$. Tìm tập hợp $X \cap Y$.

- **(A)** {1, 2, 3, 4, 8, 9, 7, 12}.
- **(B)** {2, 8, 9, 12}.

(c) $\{4,7\}.$

D {1, 3}.

CÂU 20. Cho hai tập hợp $X = \{2, 4, 6, 9\}$ và $Y = \{1, 2, 3, 4\}$. Tìm tập hợp $X \cup Y$.

- **(B)** {6, 9}.
- **(c)** {1, 2, 3, 4, 6, 9}.
- (\mathbf{D}) {2, 4}.

QUICK NOTE	CÂU 21. Cho hai tập	hợp $X = \{0, 1, 2, 3, 4\}$	và $Y = \{2, 3, 4, 5, 6\}.$	Tìm tập hợp $X \setminus Y$.
	A {0}.	B {0, 1}.	c {1, 2}.	\bigcirc {1,5}.
	CÂU 22. Cho hai tập khẳng định sau.	hợp $X = \{1, 5\}$ và Y	$T = \{1, 3, 5\}$. Chọn kh	ẳng định đúng trong các
	· .	B $C_Y X = \{1\}.$	\mathbf{C} $C_Y X = \{1, 3, 5\}$. $\bigcirc C_Y X = \{1, 3, 5\}.$
	CÂU 23. Cho hai tập	_	_	
	(A) $\{1,2,3\}.$	_	c {6,8}.	_
	CÂU 24. Cho hai tập		_	_
	(A) {2,4,6}.		(2, 2, 3, 4, 5, 6).	
				$\} \text{ và } B = \{x \in \mathbb{Z} x \le 2\}.$
	Tìm tập hợp $A \cup B$.	[-) ()	(** = - ** = -)
	\bigcirc {-2, -1, 0, 1, 2, 4	1}.		-4 }.
	\bigcirc $\{-1,1\}.$		\bigcirc $\{-2,0,2\}.$	
	CÂU 26. Cho tập hợp lớn hơn 8. Tìm tập hợ		và tập hợp A gồm nh	nững số tự nhiên lẻ không
	(A) {1,3}.	-	(c) {0, 1, 3, 5}.	
	CÂU 27. Có bao nhiê		_	_
	A 2.	B 4.	© 8.	D 10.
	CÂU 28. Cho hai tập $(A \cap B)$ là	$A = \{1, 2, 3\}$ và $B =$	$\{0,1,3,5\}$. Tất cả c	ác tập X thỏa mãn $X\subset$
	(A) Ø; {1}; {1,3}; {3	3}; {1, 3, 5}.	B {1}; {3}; {1,3}.	
	$\bigcirc \varnothing; \{1\}; \{3\}.$		\bigcirc \varnothing ; $\{1\}$; $\{3\}$; $\{1,$	3}.
	_	tập hợp các hình bình	0	tất cả các hình vuông, N
		nình chữ nhật và T là		nh tứ giác. Hãy tìm mệnh
			$\bigcirc V \subset H.$	\bigcirc $N \subset V$.
	· -			là tập hợp các số nguyên
	dương chia hết cho 2, sau, mệnh đề nào đún		guyên dương chia hết	cho 3. Trong các mệnh đề
	$\stackrel{\cdot}{\mathbf{A}} A \cap B = \varnothing.$		\bigcirc $A \cap C = B$.	
	CÂU 31. Trong kì thi	học sinh giỏi cấp trườ	ơng, lớp 10A có 45 họ	c sinh trong đó có 17 bạn
				3 bạn học sinh không đạt
	học sinh giỏi. Tìm số l	nọc sinn giới ca van và (B) 32.	a 10an cua 10p 10A.	(D) 10.
	•			
	Toán Văn và 2 học sin			5 học sinh giỏi cả 2 môn nhiêu học sinh?
	A 20 .	B 22.	© 25.	D 28.
	CÂU 33. Lớp $10B_1$ cớ	o 7 học sinh giỏi Toán,	, 5 học sinh giỏi Lý, 6	học sinh giỏi Hóa, 3 học
				n giỏi cả Lý và Hóa, 1 học
	sinn gioi ca 3 mon Toa $10B_1$ là	ın, Ly, Hoa. So nọc sin	n gioi it nnat mọt mơ	n (Toán, Lý, Hóa) của lớp
	A 9.	B 10.	© 18.	D 28.
	•	thức $f(x)$ và $g(x)$. X	Xét các tập hợp $A=$	$\{x \in \mathbb{R} f(x) = 0\}, B =$
	$\{x \in \mathbb{R} g(x) = 0\}, C =$			
		= * *		
			_	
	CAU 35. Cho hai đa $\{x \in \mathbb{R} g(x) = 0\}$ $C = \mathbb{R}$	thức $f(x)$ và $g(x)$. X	ét các tập hợp $A = 0$). Trong các má	$\{x \in \mathbb{R} f(x) = 0\}, \ B =$ ệnh đề sau, mệnh đề nào
	$\{x \in \mathbb{N} g(x) = 0\}, C = \text{d\'ung?}$	$-$ [$\omega \subset \mathbb{I}^{ J }(\omega) + g(x)$, - oj. Hong cac me	çını de sau, mçim de nao
	$\bigcirc A C = A \cup B.$		$\bigcirc C = A \backslash B.$	$\bigcirc C = B \backslash A.$

ĐỀ SỐ 2

- **CÂU 1.** Cho tập hợp $A = \{x \in \mathbb{R} | -1 < x \le 4\}$. Khẳng định nào sau đây đúng?
 - A = (-1; 4].
- **B** $A = \{-1, 4\}.$
- $(\mathbf{C}) A = (-1; 4).$
- $(\mathbf{D}) A = [-1; 4].$
- **CÂU 2.** Cho tập hợp $X = \{x \in \mathbb{R} | -2 \le x \le 5\}$. Khẳng định nào sau đây đúng?
 - (A) X = (-2; 5).
- **(B)** $X = \{-2, 5\}.$
- (c) X = [-2; 5).
- **(D)** X = [-2; 5]
- **CÂU 3.** Tập hợp X = [-1; 4] có bao nhiều phần tử?
- **B**) 1.
- D Vô số.
- **CÂU 4.** Cho tập hợp $A=\left\{x\in\mathbb{R}\big||x-1|\leq1\right\}$. Tập A bằng tập nào trong các tập hợp sau?
 - (A) (0; 1).
- **(B)** [0; 1].
- $(\mathbf{C})[0;2].$
- $(\mathbf{D})[-1;2].$
- **CÂU 5.** Cho $a, b \in \mathbb{R}$ sao cho a < b. Nửa khoảng (a; b] được biểu diễn bởi trục số nào sau

(C)

 (\mathbf{D})

- **CÂU 6.** Tập hợp $A = \{x \in \mathbb{R} | 2 > x > 0\}$ bằng tập hợp nào dưới đây?
- **B**) (0; 2).
- $(\mathbf{C})[0;2].$
- (\mathbf{D}) $\{0; 2\}.$
- **CÂU 7.** Tập hợp A = (1, 5) có bao nhiều phần tử?
 - (A) 2.
- (B) vô số.

- **CÂU 8.** Cho tập hợp A = [-2; 1). Tập hợp A là tập con của tập hợp nào sau đây?
 - (A) B = [-1; 2).

- **B**) $C = \{x \in \mathbb{R} \mid -2 \le x < 1\}.$
- $\bigcirc D = \{ x \in \mathbb{Z} \mid -2 \le x < 1 \}.$
- $(\mathbf{D}) E = \{ x \in \mathbb{N} \mid -2 \le x < 1 \}.$
- **CÂU 9.** Cho tập hợp $X=\{x\in\mathbb{R}\mid x>-1\}$. Tập hợp nào trong các tập hợp sau đây **không** chứa tập hợp X?
 - (A) A = [-3; 7).
- **C** $B = [-3; +\infty)$. **D** $C = [-1; +\infty)$.
- **CÂU 10.** Cho tập hợp X = [-3; 5]. Biểu diễn tập hợp X trên trục số ta được hình biểu diễn nào trong các hình sau (phần không bị gạch chéo)?

CÂU 11. Cho tập hợp A được biểu diễn trên trục số như sau (phần không bị gạch chéo).

•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•				•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
ı	i	ı	i	i	ľ	ı	ı	ı	ı	١	i	i	i	i	i	i	i	i	i	i	i	i	ľ	ı	ľ	i	i	i	i	i	i	ı

♥ VNPmath - 0962940819 ♥		☑ TẬP HỢP - CAC PHEP TOAN TẬP HỢP
QUICK NOTE	Khẳng định nào sau đây đúng?	
QUICK NOIL		\bigcirc $A = [3; 5].$ \bigcirc $A = (3; 5].$
), $B=(-\infty;4)$ và $C=[-1;3]$. Khẳng định nào sau
	đây đúng?	y, D (30, 1) va e [1, 0]. Hinting dimir had bad
		$\bigcirc C \subset B. \qquad \bigcirc D \subset A.$
	CÂU 13. Cho các số thực a, b, c, d tho	ả mãn $a < b < c < d$. Hãy chọn mệnh đề sai trong
	các mệnh đề sau:	
		d). \bigcirc
		a < b < c < d.Trong các mệnh đề sau, mệnh đề nào
	đúng? $(a; c) \cap (b; d) = (b; c).$	
	$ (\mathbf{c})(a;c) \cap [b;d) = [b;c]. $	
	CAU 15. Trên trục sô, phân không bị	gạch biểu diễn tập hợp nào trong các tập hợp sau?
		/////////////////////////////////////
	- 2	2 2
	$(-\infty; -2] \cup [2; +\infty).$	$ (-\infty; -2] \cup (2; +\infty). $
	$ (\infty, -2] \cup [2, +\infty). $ $ (-\infty, -2) \cup [2, +\infty). $	
	CÂU 16. Cho hai tập hợp $X = [-2; 3]$	
		\bullet [-2;1].
	CAU 17. Cho hai tập hợp $A = \{x \in \mathbb{R} A \cap B.$	$\big x+2\geq 0\big\}$ và $B=\big\{x\in\mathbb{R}\big 5-x\geq 0\big\}.$ Tìm tập hợp
		© $[-5;2]$.
	CÂU 18. Cho hai tâp hợp $A = [-5; 3)$	
	(A) $(-\infty; 0) \cup [2; +\infty)$.	(B) $[0;2)$.
	$ (-\infty,0) \cup [2,+\infty). $ $ (c) [2;+\infty). $	$(0,2)$. $(0,\infty)$.
	CÂU 19. Cho tập hợp $A = (2; +\infty)$. T	
		\bigcirc $(-\infty; 2].$ \bigcirc $(-\infty; -2].$
	CÂU 20. Cho các tập hợp sau $A = (-1)^n$	
	(A) $(-1;2]$. (B) $(2;5]$.	(-1;7). $(-1;2).$
		$\left x+2\geq0\right\}$ và $B=\left\{x\in\mathbb{R}\middle 5-x\geq0\right\}$. Tìm tập hợp
	$A \setminus B$.	
	(A) [-2; 5]. (B) [-2; 6].	
	CÂU 22. Biểu diễn trên trục số của tậ	
	\(\text{\frac{\partial}{\partial}{\partial}}}\)	9
	<u>-2</u> 1	lacksquare -3 4
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	uise.
	c −3 1	\bigcirc -2 4
	CÂU 23. Biểu diễn trên trục số của tậ	p hợp $(0;2)\cup[-1;1)$ là hình nào?
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	-1 $\frac{1}{2}$	B -1 2
	$\begin{array}{c c} \hline & & & \\ \hline & & -1 & 2 \\ \hline \end{array}$	-1 2

CÂU 24. Cho hai tập hợp A = [-1; 4], B = [m+1; m+3] với m là tham số. Tìm tất cả các giá trị của m để $B \backslash A = \emptyset$.

 \bigcirc M < 0 hoặc M > 3.

- \blacksquare m < -5 hoặc m > 3.
- **c** m < -4 hoặc m > 3.
- \bigcirc m < -2 hoặc m > 5.

CÂU 25. Tìm tất cả các giá trị nguyên của tham số m để tập hợp (1;m) chứa đúng 1 số nguyên dương.

$$\bigcirc$$
 $m>2.$

$$(c) m = 3.$$

$$\bigcirc$$
 $m=4.$

CÂU 26. Tìm tất cả các giá trị nguyên của tham số m để tập hợp (1;m) chứa đúng 2 số nguyên dương.

$$\bigcirc$$
 $m > 2$.

$$(c) m = 3.$$

$$\bigcirc$$
 $m=4.$

CÂU 27. Cho hai tập hợp A=[1;3] và B=[m;m+1]. Tìm tất cả các giá trị của tham số m để $B\subset A$.

$$\bigcirc$$
 $M = 1.$

$$(\mathbf{B}) m = 2.$$

$$(c)$$
 1 < m < 2.

$$\bigcirc 1 \leqslant m \leqslant 2.$$

CÂU 28. Cho hai tập hợp A=[m;m+2]; B=[-1;2]. Tìm tất cả các giá trị thực của tham số m để $A\subset B$.

©
$$1 \le m \le 2$$
.

CÂU 29. Cho hai tập hợp $A=(-\infty;m-1]$, $B=[1;+\infty)$. Tìm tất cả các giá trị thực của tham số m để $A\cap B=\varnothing$.

$$(A) m > -1.$$

$$\bigcirc$$
 $m \geq -1$.

$$(c)$$
 $m \leq 2$.

$$\bigcirc$$
 $m < 2$.

CÂU 30. Cho các tập $B = \{x \in \mathbb{R} \mid -5 \le x \le 5\}; C = \{x \in \mathbb{R} \mid x \le a\}$, và $D = \{x \in \mathbb{R} \mid x \ge b\}$ Xác định a, b biết $C \cap B$ và $D \cap B$ là các đoạn có độ dài lần lượt bằng 5 và 9.

$$(A)$$
 $a = 0; b = -4.$

B)
$$a = 5; b = 9.$$

$$a = -4; b = 0.$$

$$\bigcirc$$
 $a = -5; b = 5.$

QUICK NOTE

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

}.																		

٠			•		•						•	•	•	•	•			

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

LỜI GIẢI CHI TIẾT

Bài 2. TẬP HỢP VÀ CÁC PHÉP TOÁN TRÊN TẬP HỢP

A. TÓM TẮT LÝ THUYẾT

1. Các khái niêm cơ bản về tập hợp

- 🗘 Tập hợp
 - 🗹 Khi muốn mô tả các đối tượng (phần tử) có chung một tính chất gì đó thì ta xây dựng khái niệm tập hợp.
 - 🗷 Cách xác định tập hợp:
 - ① Liệt kê các phần tử: viết các phần tử của tập hợp trong hai dấu móc {...}.
 - ② Chỉ ra tính chất đặc trung cho các phần tử của tập hợp.
 - Tâp rỗng: là tâp hợp không chứa phần tử nào, kí hiệu Ø.
- 🗘 Tập hợp con Tập hợp bằng nhau
 - $\ensuremath{ \ \, \ \, }$ Tập hợp con:
 - \odot $A \subset B \Leftrightarrow (\forall x : x \in A \Rightarrow x \in B).$
 - - ① $A \subset A, \forall A$
 - $\emptyset \varnothing \subset A, \forall A.$
 - 3 $A \subset B$, và $B \subset C$ suy ra $A \subset C$.

Biểu đồ Ven minh họa $A \subset B$

🗹 Tập hợp bằng nhau:

 $A = B \Leftrightarrow A \subset B \text{ và } B \subset A \Leftrightarrow (\forall x \colon x \in A \Leftrightarrow x \in B).$

2. Các tập hợp số

- Các tập hợp số và mối quan hệ giữa các tập hợp số:
 - ① Tập số tự nhiên \mathbb{N} .
- 2 Tập số nguyên \mathbb{Z} .
- 3 Tập số hữu tỉ ℚ.

 $\ \, \mbox{\bf 4} \ \, \mbox{\bf Tập số vô tỉ} \ \mathbb{I}.$

- **⑤** Tập số thực \mathbb{R} .
- **⑥** Tập \mathbb{N}^* ta bỏ số 0.

Mối quan hệ:

① $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{O} \subset \mathbb{R}$.

- **☼** Các tập con thường dùng của tập ℝ
 - ① Khoảng $(a;b) = \{x \in \mathbb{R} | a < x < b\}.$ a
- ② Doan $[a; b] = \{ x \in \mathbb{R} | a \le x \le b \}.$

- $\text{ Shoảng } (-\infty; b) = \{ x \in \mathbb{R} | x < b \}.$ $\frac{}{\infty}$

 ${\mathfrak T}$ Nửa khoảng $[a;b)=\{x\in{\mathbb R}|\,a\leq x< b\}.$

® Nửa khoảng $(a;b] = \{x \in \mathbb{R} | a < x \le b\}.$ $a \qquad b$

3. Các phép toán trên tập hợp

☼ Giao của hai tập hợp:

- \bigcirc $A \cap B = \{x | x \in A \text{ và } x \in B\}.$

Hợp của hai tập hợp:

- \bigcirc $A \cup B = \{x | x \in A \text{ hoặc } x \in B\}.$
- ❷ Ghi nhớ: Gom hết phần tử của cả hai tập, các phần tử trùng nhau thì ta ghi 1 lần.

Hiệu của hai tập hợp:

- \odot $A \backslash B = \{x | x \in A \text{ và } x \notin B\}.$
- ❷ Ghi nhớ: Lấy phần riêng (thuộc A mà không thuộc B)
- $oldsymbol{\Theta}$ Đặc biệt: Nếu $B\subset A$ thì $A\backslash B$ được kí hiệu là $\boxed{C_AB}$ (gọi là phần bù của B trong A).

B. RÈN LUYỆN KĨ NĂNG GIẢI TOÁN

Xác định tập hợp

VÍ DỤ 1. Cho $D = \{n \in \mathbb{N} \mid n \text{ là số nguyên tố, } 5 < n < 20\}.$

- a) Viết tập hợp D bằng cách liệt kê các phần tử. Tập hợp D có bao nhiêu phần tử?
- b) Dùng kí hiệu \in , \notin để viết câu trả lời cho câu hỏi sau: Trong các số 5; 12; 17; 18, số nào thuộc tập D, số nào không thuộc tập D?

🗭 Lời giải.

- a) $D = \{7; 11; 13; 17; 19\}$. Tập hợp D có 5 phần tử.
- b) $5 \notin D$; $12 \notin D$; $17 \in D$; $18 \notin D$.

VÍ DỤ 2. Viết mỗi tập hợp sau bằng cách liệt kê các phần tử.

a) $A = \{ x \in \mathbb{R} | (2x - x^2) (3x - 2) = 0 \}.$

b) $B = \{ x \in \mathbb{Z} | 2x^3 - 3x^2 - 5x = 0 \}.$

c) $C = \{ x \in \mathbb{Z} | 2x^2 - 75x - 77 = 0 \}.$

d) $D = \{x \in \mathbb{R} | (x^2 - x - 2)(x^2 - 9) = 0\}.$

🗭 Lời giải.

a) Ta giải phương trình $(2x-x^2)(2x^2-3x-2)=0 \Leftrightarrow \begin{bmatrix} 2x-x^2=0\\ 2x^2-3x-2=0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x=0 \lor x=2\\ x=-\frac{1}{2} \lor x=2 \end{bmatrix}$. Do $x \in \mathbb{R}$ nên $A = \left\{-\frac{1}{2}; 0; 2\right\}$.

- b) Ta giải phương trình $2x^3 3x^2 5x = 0 \Leftrightarrow x(2x^2 3x 5) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = -1 \\ x = \frac{5}{3} \end{bmatrix}$
 - Do $x \in \mathbb{Z}$ nên $B = \{0; -1\}.$
- c) Ta giải phương trình $2x^2-75x-77=0\Leftrightarrow \begin{bmatrix} x=-1\\ x=\frac{77}{2} \end{bmatrix}$. Do $x\in\mathbb{Z}$ nên $C=\{-1\}$.
- VÍ DỤ 3. Viết mỗi tập hợp sau bằng cách liệt kê các phần tử.
 - a) $A = \{ n \in \mathbb{N}^* | 3 < n^2 < 30 \}.$
 - b) $B = \{ n \in \mathbb{Z} | |n| < 3 \}.$
 - c) $C = \{ x | x = 3k \text{ v\'oi } k \in \mathbb{Z} \text{ v\'a } -4 < x < 12 \}.$
 - d) $A = \{ n^2 + 3 | n \in \mathbb{N} \text{ và } n < 5 \}.$

- a) Với $3 < n^2 < 30$ và $n \in \mathbb{N}^*$ nên chọn $n = 2; 3; 4; 5. Vậy <math>A = \{2; 3; 4; 5\}.$
- b) Vì $x < |3| \Leftrightarrow -3 < x < 3$. Do $x \in \mathbb{Z}$ nên $B = \{-2; -1; 0; 1; 2\}$.
- c) Ta có $-4 < x < 12 \Leftrightarrow -4 < 3k < 12 \Leftrightarrow -\frac{4}{3} < k < 4$. Do $k \in \mathbb{Z}$ nên ta chọn $k = \{-10; 1; 2; 3\}$ suy ra $x = 3k = \{-3; 0; 3; 6; 9\}$. Vậy $C = \{-3; 0; 3; 6; 9\}$.
- VÍ DU 4. Viết mỗi tập hợp sau bằng cách nêu tính chất đặc trung.
 - a) $A = \{2; 3; 5; 7\}.$

b) $B = \{-3, -2, -1, 0, 1, 2, 3\}.$

c) $C = \{-5, 0, 5, 10\}.$

d) $D = \{1; 2; 3; 4; 6; 9; 12; 18; 36\}.$

🗭 Lời giải.

- a) $A = \{x \in \mathbb{R} | x \text{ nguyên tố và } x < 10\}.$
- b) $B = \{ x \in \mathbb{Z} | |x| \le 3 \}.$
- c) $C = \left\{ x \in \mathbb{Z} | x : 5, -5 \leqslant x \leqslant 10 \right\}.$
- d) $D = \{ n \in \mathbb{N} | x \text{ là ước của } 36 \}.$
- VÍ DỤ 5. Trong các tập hợp sau, tập hợp nào rỗng?
 - a) $A = \{ x \in \mathbb{R} | x^2 x + 1 = 0 \}.$

b) $B = \{ x \in \mathbb{Q} | x^2 - 4x + 2 = 0 \}.$

c) $C = \{ x \in \mathbb{Z} | 6x^2 - 7x + 1 = 0 \}.$

d) $D = \{ x \in \mathbb{Z} | |x| < 1 \}.$

D Lời giải.

- a) Phương trình $x^2 x + 1 = 0$ có $\Delta < 0$ nên vô nghiệm. Do đó $A = \emptyset$.
- b) Phương trình $x^2 4x + 2 = 0$ có hai nghiệm $x = 2 \pm \sqrt{2} \notin \mathbb{Q}$. Do đó $B = \emptyset$.
- c) Phương trình $6x^2 7x + 1 = 0$ có nghiệm $x = 1 \in \mathbb{Z}$. Do đó $C \neq \emptyset$.
- d) Chọn $x = 0 \in \mathbb{Z}, |0| < 1$. Do đó $D \neq \emptyset$.

Xác định tập hợp con. Hai tập hợp bằng nhau

Cho tập hợp A gồm n phần tử.

① Khi liệt kê tất cả các tập con của A, ta liệt kê đầy đủ theo thứ tự:

 \emptyset ; tập 1 phần tử; tập 2 phần tử; tập 3 phần tử;...; A.

- ② Số tập con của A là 2^n .
- 3 Số tập con gồm k phần tử của A là C_n^k .

VÍ DU 1. Cho tập hợp $A = \{2, 3, 4\}$ và $B = \{2, 3, 4, 5, 6\}$.

- a) Xác định tất cả tập con có hai phần tử của A.
- b) Xác định tất cả tập con có ít hơn hai phần tử của A.
- c) Tập A có tất cả bao nhiều tập con.
- d) Xác định tất cả các tập X thỏa $A \subset X \subset B$.

VÍ DỤ 2. Cho $A = \{2, 5\}, B = \{5, x\}, C = \{x, y, 5\}$. Tìm các cặp số $\{x, y\}$ để A = B = C. Lời giải.

Vì A = B = C nên cả 3 tập hợp A, B, C chỉ chứa 2 phần tử là 2 và 5.

Các phép toán trên tâp hợp

VÍ DU 1. Cho A là tập hợp các học sinh lớp 10 đang học ở trường em, B là tập hợp học sinh đang học tiếng Anh ở trường em. Hãy diễn đạt bằng lời các tập hợp sau.

a) $A \cap B$.

b) $A \setminus B$.

c) $A \cup B$.

d) $B \setminus A$

🗭 Lời giải.

- a) $A \cap B$ là tập hợp các học sinh lớp 10 học môn Tiếng Anh của trường em.
- b) $A \setminus B$ là tập hợp các học sinh lớp 10 nhưng không học môn Tiếng Anh của trường em.
- c) $A \cup B$ là tập hợp các học sinh hoặc học lớp 10 hoặc học môn Tiếng Anh của trường em.
- d) $B \setminus A$ là tập hợp các học sinh học môn Tiếng Anh nhưng không học lớp 10 của trường em.

VÍ DU 2. Cho hai tập hợp $A = \{0; 1; 2; 3; 4\}$ và $B = \{2; 3; 4; 5; 6\}$. Tìm các tập hợp $A \cup B$, $A \cap B$, $A \setminus B$, $B \setminus A$.

Ta có $A \setminus B = \{0, 1\}, B \setminus A = \{5, 6\}, A \cup B = \{0, 1, 2, 3, 4, 5, 6\}, A \cap B = \{2, 3, 4\}.$

VÍ DỤ 3. Cho $A=\{x\in\mathbb{N}|\ x\leq 5\},\ B=\{x\in\mathbb{N}|\ x=3k-1,k\in\mathbb{N},k\leq 3\}.$ Xác định tập $A,B,A\cap B,A\cup B,A\setminus B,B\setminus A$. Lời giải.

Ta có $A=\{0;1;2;3;4;5\}$ và $B=\{2;5;8\}$ nên

- a) $A \cap B = \{2, 5\},\$
- b) $A \cup B = \{0, 1, 2, 3, 4, 5, 8\},\$
- c) $A \setminus B = \{0, 1, 3, 4\},\$
- d) $B \setminus A = \{-1, 8\}.$

VÍ DỤ 4. Cho tập hợp $E = \{1; 2; 3; 4; 5; 6; 7; 8; 9\}$ và các tập hợp con $A = \{1; 2; 3; 4\}, B = \{2; 4; 6; 8\}$. Xác định $C_E A$, $C_E B$, $C_E(A \cup B), C_EA \cap C_EB.$

Lời giải.

Ta có $C_E A = E \setminus A = \{5, 6, 7, 8, 9\}, C_E B = E \setminus B = \{1, 3, 5, 7, 9\}$ suy ra $C_E A \cap C_E B = \{5, 7, 9\}$. $A \cup B = \{1, 2, 3, 4, 6, 8\}$ suy ra $C_E(A \cup B) = E \setminus A \cup B = \{5, 7, 9\}$.

VÍ DU 5. Xác định hai tập A, B biết rằng $A \setminus B = \{1, 5, 7, 8\}, B \setminus A = \{2, 10\}, A \cap B = \{3, 6, 9\}.$ Lời giải.

 $A = (A \setminus B) \cup (A \cap B) = \{1, 5, 7, 8, 3, 6, 9\}, B = (B \setminus A) \cup (A \cap B) = \{2, 10, 3, 6, 9\}.$

VÍ DỤ 6. Cho hai tập hợp $A = \{1; 2\}$ và $B = \{1; 2; 3; 4\}$. Tìm tất cả các tập hợp X sao cho $A \cup X = B$. $\textcircled{\textbf{p}}$ Lời giải.

Ta có $A \cup X = B \Leftrightarrow X = \{3; 4\} \cup X'$ với $X' \subset \{1; 2\}$.

Suy ra các tập X cần tìm thỏa mãn yêu cầu bài toán là $\{3;4\}$, $\{1;3;4\}$, $\{2;3;4\}$, $\{1;2;3;4\}$.

4

Các phép toán trên tập hợp con của tập số thực

VÍ DỤ 1. Xác định các tập hợp sau đây và biểu diễn chúng trên trục số.

a) $(0;3) \cap (2;4)$.

b) $[-1;4] \cap (2;5)$.

c) $\mathbb{R} \cap (-1;1)$.

🗩 Lời giải.

 \odot $(0;3) \cap (2;4) = (2;3).$

 \bigcirc $[-1;4] \cap (2;5) = (2;4].$

VÍ DỤ 2. Cho hai tập hợp $A = \{x \in \mathbb{R} | -1 \le x \le 3\}$, $B = \{x \in \mathbb{R} | -2 < x < 2\}$. Tìm $A \cap B$. p Lời giải.

 $\Rightarrow A \cap B = [-1; 2).$

VÍ DỤ 3. Cho $A = [-2; 4], B = (2; +\infty), C = (-\infty; 3)$. Xác định các tập hợp sau đây và biểu diễn chúng trên trục số.

a) $A \cap B$;

b) $B \cap C$;

c) $A \cap C$;

d) $\mathbb{R} \cap A$;

e) $\mathbb{R} \cap B$;

f) $A \cap B \cap C$.

🗭 Lời giải.

a) $A \cap B = [-2, 4] \cap (2, +\infty) = (2, 4].$

b) $B \cap C = (2; +\infty) \cap (-\infty; 3) = (2; 3)$.

c) $A \cap C = [-2; 4] \cap (-\infty; 3) = [-2; 3)$.

d) $\mathbb{R} \cap A = [-2; 4]$.

e) $\mathbb{R} \cap B = (2; +\infty)$.

f) $A \cap B \cap C = (2; 4] \cap (-\infty; 3) = (2; 3)$.

VÍ DỤ 4. Cho các tập hợp $A = \{x \in \mathbb{R} | |x+2| < 2\}, B = \{x \in \mathbb{R} | |x+4| \ge 3\}, C = [-5; 3)$. Tìm các tập hợp

a) $A \cup B$.

b) $A \cap B \cup C$.

c) $(A \cup B) \cap (B \cup C)$.

🗩 Lời giải.

- $|x+2| < 2 \Leftrightarrow -2 < x+2 < 2 \Leftrightarrow -4 < x < 0$, nên A = (-4, 0).
- $|x+4| \ge 3 \Leftrightarrow x+4 \le -3$ hoặc $x+4 \ge 3 \Leftrightarrow x \le -7$ hoặc $x \ge -1$, nên $B = (-\infty; -7] \cup [-1; +\infty)$.
- C = [-5; 3).
 - a) $A \cup B = (-\infty; -7] \cup (-4; 0) \cup [-1; +\infty).$
 - b) $A \cap B \cup C = (-4, 0) \cup [-5, 3) = [-5, 3).$
 - c) Vì $A \subset C$ và $B \subset B$ nên $(A \cup B) \subset (B \cup C)$. Suy ra

$$(A \cup B) \cap (B \cup C) = (A \cup B) = (-\infty; -7] \cup (-4; 0) \cup [-1; +\infty).$$

VÍ DU 5. Xác định các tập hợp sau đây và biểu diễn chúng trên trục số.

a) $(0;3) \setminus (2;4)$.

b) $(-4; 2] \setminus [2; 4)$.

c) $\mathbb{R} \setminus (-1;1)$.

p Lời giải.

a) $(0;3) \setminus (2;4) = (0;2].$

b) $(-4; 2] \setminus [2; 4) = (-4; 2)$.

c) $\mathbb{R} \setminus (-1;1) = (-\infty;-1] \cup [1;+\infty)$.

VÍ DỤ 6. Cho hai tập hợp $A = \{x \in \mathbb{R} | -1 \le x \le 3\}$, $B = \{x \in \mathbb{R} | -2 < x < 2\}$. Tìm $A \setminus B, B \setminus A$. p Lời giải.

 $\Rightarrow A \setminus B = [2; 3], B \setminus A = (-2; -1).$

VÍ DỤ 7. Cho hai tập hợp $A = \{x \in \mathbb{R} | 1 < x \le 4\}, B = \{x \in \mathbb{R} | -3 < x\}.$ Tìm C_BA .

🗭 Lời giải.

 $\Rightarrow C_B A = (-3; 1] \cup (4; +\infty).$

VÍ DỤ 8. Cho hai nửa khoảng A = (-1, 0], B = [0, 1). Tìm $A \setminus B$ và $C_{\mathbb{R}}A$.

🗭 Lời giải.

 $\Rightarrow A \setminus B = (-1, 0) \text{ và } C_{\mathbb{R}}A = (-\infty, -1] \cup (0, +\infty).$

C. VÂN DỤNG, THỰC TIỄN

5

Các bài toán biện luận theo tham số

VÍ DỤ 1. Cho hai tập hợp A = [-4; 1], B = [-3; m]. Tìm m để

a)
$$A \cap B = [-3; 1]$$
.

b)
$$A \cup B = A$$

🗭 Lời giải.

Điều kiện: m > -3.

- 1. Để $A\cap B=[-3;1]$ khi và chỉ khi $m\geq 1$: thỏa mãn điều kiện. Vậy $m\geq 1$ là giá trị cần tìm.
- 2. Để $A \cup B = A$ khi và chỉ khi $B \subset A$, tức là $m \le 1$. Đối chiếu điều kiện, ta được $-3 < m \le 1$ là giá trị cần tìm thỏa mãn yêu cầu bài toán.

VÍ DỤ 2. Cho hai tập hợp A=(m-1;5) và $B=(3;+\infty)$. Tìm m để $A\backslash B=\varnothing$.

🗩 Lời giải.

Điều kiện: $m-1 < 5 \Leftrightarrow m < 6$.

Để $A \setminus B = \emptyset$ khi và chỉ khi $A \subset B$, tức là $3 \le m - 1 \Leftrightarrow m \ge 4$.

Đối chiếu điều kiện, ta được $4 \le m < 6$.

Vậy $4 \le m < 6$ thỏa mãn yêu cầu bài toán.

VÍ DỤ 3. Cho hai tập hợp A=(-4;3) và B=(m-7;m). Tìm m để $B\subset A$. $\textcircled{\textbf{p}}$ Lời giải.

Điều kiện: $m \in \mathbb{R}$.

Để
$$B\subset A$$
 khi và chỉ khi
$$\begin{cases} m-7\geq -4\\ m\leq 3 \end{cases} \Leftrightarrow \begin{cases} m\geq 3\\ m\leq 3 \end{cases} \Leftrightarrow m=3.$$

Vậy m=3 thỏa mãn yêu cầu bài toán.

VÍ DỤ 4. Cho số thực a<0 và hai tập hợp $A=(-\infty;9a),\ B=\left(\frac{4}{a};+\infty\right)$. Tìm a để $A\cap B\neq\varnothing$.

🗭 Lời giải.

Để hai tập hợp A và B giao nhau khác rỗng khi và chỉ khi $9a > \frac{4}{a} \Leftrightarrow 9a^2 < 4 \text{ (do } a < 0) \Leftrightarrow a^2 < \frac{4}{9} \Leftrightarrow -\frac{2}{3} < a < 0$. Vậy $-\frac{2}{3} < a < 0$ thỏa mãn yêu cầu bài toán.

VÍ DỤ 5. Cho hai tập hợp A=[-2;m+1] và $B=\left[\frac{1}{2};+\infty\right)$. Tìm m để $A\cap B$ chỉ có đúng 1 phần tử.

🗩 Lời giải.

Điều kiên: $m+1 > -2 \Leftrightarrow m > -3$.

Để $A\cap B$ chỉ có đúng 1 phần tử khi và chỉ khi $m+1=\frac{1}{2}\Leftrightarrow m=-\frac{1}{2}$ (thỏa mãn điều kiện).

 $V_{\text{ay}} m = -\frac{1}{2}.$

Ứng dụng thực tế các phép toán tập hợp

VÍ DỤ 1. Trong kì thi học sinh giỏi cấp trường, lớp 10C1 có 45 học sinh trong đó có 17 bạn đạt học sinh giỏi Văn, 25 bạn đạt học sinh giỏi Toán và 13 bạn học sinh không đạt học sinh giỏi. Tìm số học sinh giỏi cả Văn và Toán của lớp 10C1.

🗩 Lời giải.

Cách 1:

Số học sinh giỏi ít nhất một trong hai môn Văn hoặc Toán là 45 - 13 = 32.

Số học sinh giỏi Văn nhưng không giỏi Toán là 32 - 25 = 7 (bạn).

Số học sinh giỏi cả Văn và Toán là 17 - 7 = 10 (ban).

Số học sinh giỏi cả Văn và Toán là

Cách 2: (Sử dụng công thức tính nhanh - Trắc nghiệm)

- $m{\Theta}$ Gọi $A,\,B$ theo thứ tự là tập hợp các học sinh giỏi Văn và giỏi Toán của lớp. Theo đề ta có $n(A)=17,\,n(B)=25,\,n(A\cup B)=45-13=32.$
 - $n(A \cap B) = n(A) + n(B) n(A \cup B) = 25 + 17 32 = 10.$

VÍ DỤ 2. Một lớp học có 50 học sinh trong đó có 30 em biết chơi bóng chuyền, 25 em biết chơi bóng đá, 10 em biết chơi cả bóng đá và bóng chuyền. Hỏi có bao nhiều em không biết chơi môn nào trong hai môn ở trên?

🗭 Lời giải.

Cách 1:

Số học sinh chỉ biết chơi bóng chuyền là 30 - 10 = 20 (hs).

Số học sinh biết chơi bóng đá hoặc bóng chuyền là 20 + 25 = 45 (hs).

Số học sinh không biết chơi môn nào là 50 - 45 = 5 (hs).

Cách 2: (Sử dụng công thức tính nhanh - Trắc nghiệm)

Gọi tập A là tập hợp các học sinh biết chơi bóng chuyền, B là tập hợp các học sinh biết chơi bóng đá.

Khi đó số học sinh biết chơi ít nhất một trong hai môn bóng chuyền hoặc bóng đá là

$$n(A \cup B) = n(A) + n(B) - n(A \cap B) = 30 + 25 - 10 = 45.$$

Vây số học sinh không biết chơi môn nào là 50 - 45 = 5.

Vị Dụ 3. Lớp 10A có 15 bạn thích môn Văn, 20 bạn thích môn Toán. Trong số các bạn thích văn hoặc toán có 8 bạn thích cả 2 môn. Trong lớp vẫn còn 10 bạn không thích môn nào trong 2 môn Văn và Toán. Hỏi lớp 10A có bao nhiêu học sinh?

Lời giải.

Ta sử dụng sơ đồ Ven.

- ❷ Hình tròn lớn ngoài cùng thể hiện số học sinh cả lớp. Như vây, ta có:
- \odot Số bạn chỉ thích Văn là 15 8 = 7(ban).
- \odot Số bạn chỉ thích Toán là 20 8 = 12(bạn).
- \odot Số học sinh cả lớp là tổng các phần không giao nhau: 7+8+12+10=37.

VÍ DỤ 4. Kết quả thi học kì một của một trường THPT có 48 thí sinh giỏi môn Toán, 37 thí sinh giỏi môn Vật Lí,42 thí sinh giỏi môn Văn. Biết rằng có 75 thí sinh giỏi môn Toán hoặc môn Vật lí, 76 thí sinh giỏi môn Toán hoặc môn Văn, 66 thí sinh giỏi môn Vật lí hoặc môn Văn và có 4 thí sinh giỏi cả ba môn. Hỏi

- a) có bao nhiêu học sinh chỉ giỏi 1 môn.
- b) có bao nhiêu học sinh chỉ giỏi 2 môn.
- c) có bao nhiều học sinh giỏi ít nhất 1 môn.

Dùi giải.

Cách 1: Sử dụng sơ đồ Ven.

Gọi A, B, C theo thứ tự là tập hợp các học sinh giỏi Toán, giỏi Lí và giỏi Văn. Theo đề ta có

- \odot Số học sinh giỏi Toán và Lí là $n(A \cap B) = n(A) + n(B) n(A \cup B) = 48 + 37 75 = 10.$
- \odot Số học sinh giỏi Toán và Văn là $n(A \cap C) = n(A) + n(C) n(A \cup C) = 48 + 42 76 = 14$.
- **3** Số học sinh giỏi Lí và Văn là $n(B \cap C) = n(B) + n(C) n(B \cup C) = 42 + 37 66 = 13$.
- \odot Số học sinh chỉ giỏi Toán và Lí là 10-4=6.
- \odot Số học sinh chỉ giỏi Toán và Văn là 14-4=10.
- \odot Số học sinh chỉ giỏi Lí và Văn là 13-4=9.
- \odot Số học sinh chỉ giỏi môn Toán 48 10 6 4 = 28.

- \odot Số học sinh chỉ giỏi môn Lí 37 6 4 9 = 18.
- \odot Số học sinh chỉ giỏi môn Văn 42 10 9 4 = 19.
- a) Số học sinh chỉ giỏi đúng 1 môn là 28 + 18 + 19 = 65.
- b) Số học sinh chỉ giỏi đúng 2 môn là 10 + 6 + 9 = 25.
- c) Số học sinh giỏi ít nhất một môn là 65 + 25 + 4 = 94.

Cách 2: Đặt x, y, z lần lượt là số học sinh chỉ giỏi Toán, chỉ giỏi Lí, chỉ giỏi Văn; a, b, c là số học sinh chỉ giỏi Toán và Lí, chỉ giỏi Toán và Văn, chỉ giỏi Lí và Văn.

Khi đó ta có hệ phương trình

$$\begin{cases} x+a+b+4=48 \\ y+a+c+4=37 \\ z+b+c+4=42 \\ x+y+a+b+c+4=75 \\ x+z+a+b+c+4=76 \\ y+z+a+b+c+4=66 \end{cases} \Rightarrow \begin{cases} x+y+z+2(a+b+c)+12=127 \\ 2(x+y+z)+3(a+b+c)+12=217 \\ 2(x+y+z)+3(a+b+c)+12=217 \end{cases} \Rightarrow \begin{cases} x+y+z=65 \\ a+b+c=25 \end{cases}.$$

Từ đó ta có

- \odot Số học sinh chỉ giỏi đúng một môn là x + y + z = 65.
- \odot Số học sinh chỉ giỏi đúng hai môn là a+b+c=25.
- \odot Số học sinh giỏi ít nhất một môn là 65 + 25 + 4 = 94.

D. BÀI TÂP TỬ LUYÊN

BÀI 1. Liệt kê các phần tử của các tập hợp sau:

- a) $A = \{ n \in \mathbb{N} \mid n < 5 \}.$
- b) B là tập hợp các số tư nhiên lớn hơn 0 và nhỏ hơn 5.
- c) $C = \{x \in \mathbb{R} \mid (x-1)(x+2) = 0\}.$

Lời giải.

- a) $A = \{0, 1, 2, 3, 4\}.$
- b) $B = \{1, 2, 3, 4\}.$
- c) Ta có $(x-1)(x+2) = 0 \Leftrightarrow \begin{bmatrix} x=1 \\ x=-2. \end{bmatrix}$

BÀI 2. Viết các tập hợp sau bằng phương pháp liệt kê

- a) $A = \{x \in \mathbb{Q} \mid (x^2 2x + 1)(x^2 5)\} = 0.$
- c) $C = \{x \in \mathbb{Z} \mid x^2 < 9\}.$

- b) $B = \{x \in \mathbb{N} \mid 5 < x^2 < 40\}.$
- d) $D = \{x \in \mathbb{R} \mid |2x+1| = 5\}.$

Lời giải.

a) Ta có
$$x \in A \Leftrightarrow \begin{bmatrix} x^2 - 2x + 1 = 0 \\ x^2 - 5 = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 1 \in \mathbb{Q} \\ x = \pm \sqrt{5} \notin \mathbb{Q}. \end{bmatrix}$$

Vây $A = \{1\}.$

- b) $B = \{3; 4; 5; 6\}.$
- c) $C = \{-2; -1; 0; 1; 2\}.$
- d) Ta có $|2x+1| = 5 \Leftrightarrow \begin{bmatrix} x=2\\ x=-3. \end{bmatrix}$ Vâv $C = \{2; -3\}.$

BÀI 3. Cho các tập hợp sau

$$A = \{ x \in \mathbb{Z} | -1 \le x < 6 \};$$

$$B = \{ x \in \mathbb{Q} | (1 - 3x) (x^4 - 3x^2 + 2) = 0 \};$$

$$C = \{0; 1; 2; 3; 4; 5; 6\}.$$

- a) Viết các tập hợp A, B dưới dạng liệt kê các phần tử.
- b) Tim $A \cap B$, $A \cup B$, $A \setminus B$, $C_{B \cup A}$ $(A \cap B)$.
- c) Chứng minh rằng $A \cap (B \cup C) = A$.

a) Ta có
$$A = \{-1; 0; 1; 2; 3; 4; 5\}, B = \left\{-1; \frac{1}{3}; 1\right\}.$$

b) Suy ra
$$A \cap B = \{-1; 1\}, A \cup B = \{-1; 0; \frac{1}{3}; 1; 2; 3; 4; 5\}, A \setminus B = \{0; 2; 3; 4; 5\}$$
 và $C_{B \cup A}(A \cap B) = \{0; \frac{1}{3}; 2; 3; 4; 5\}$.

c) Ta có
$$B \cup C = \{-1, 0, 1/3, 1, 2, 3, 4, 5, 6\}$$
 suy ra $A \cap (B \cup C) = \{-1, 0, 1, 2, 3, 4, 5\} = A$.

BÀI 4. Cho hai tập A, B khác \emptyset , $A \cup B$ có 6 phần tử, số phần tử của $A \cap B$ bằng nửa số phần tử của B. Hỏi A, B có thể có bao nhiêu phần tử?

Lời giải.

Gọi x là số phần tử của A và y là số phần tử của B với $x,y\in\mathbb{Z}^+.$ Ta có:

$$\mbox{\Large \ensuremath{ \odot}} \ n(A\cap B) = \frac{1}{2} y \Rightarrow y$$
là số chẵn.

$$igotimes$$
 Mặt khác $n(A) \geq n(A \cap B)$, suy ra $x \geq \frac{1}{2}y$.

Xét

$$x+\frac{1}{2}y\geq \frac{1}{2}y+\frac{1}{2}y \Leftrightarrow 6\geq y; \text{ mà } y \text{ chẵn nên } y\in\{2;4;6\}.$$

Từ đây ta có ba khả năng sau:

- Nếu y=2 thì x=5 hay tập A có 5 phần tử, tập B có 2 phần tử và số phần tử chung là 1 phần tử.
- Nếu y=4 thì x=4 hay tập A có 4 phần tử, tập B có 4 phần tử và số phần tử chung là 2 phần tử.
- Nếu y=6 thì x=3 hay tập A có 3 phần tử, tập B có 6 phần tử và số phần tử chung là 3 phần tử.

BAI 5. Cho các tập hợp

$$A = \left\{ x \in \mathbb{R} | \left(x^2 + 7x + 6 \right) \left(x^2 - 4 \right) = 0 \right\}$$

$$B = \{ x \in \mathbb{N} | 2x \le 8 \}$$

$$C = \{ 2x + 1 | x \in \mathbb{Z} \text{ và } -2 \le x \le 4 \}.$$

- a) Hãy viết lại các tập hợp A, B, C dưới dạng liệt kê các phần tử.
- b) Tim $A \cup B$, $A \cap B$, $B \setminus C$, $C_{A \cup B}$ $(B \setminus C)$.
- c) Tìm $(A \cup C) \setminus B$.

Lời giải.

a) Phương trình
$$(x^2 + 7x + 6)(x^2 - 4) = 0 \Leftrightarrow \begin{bmatrix} x^2 + 7x + 6 = 0 \\ x^2 - 4 = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -1 \lor x = -6 \\ x = -2 \lor x = 2 \end{bmatrix}$$
.

$$\begin{array}{l} \text{Vậy } A = \{-6; -2; -1; 2\}. \\ \text{Ta có } \begin{cases} x \in \mathbb{N} \\ 2x \leq 8 \end{cases} \Leftrightarrow \begin{cases} x \in \mathbb{N} \\ x \leq 4 \end{cases} \Leftrightarrow x \in \{0, 1, 2, 3, 4\}. \text{ Vậy } B = \{0; 1; 2; 3; 4\}. \\ \text{Ta có } \begin{cases} x \in \mathbb{Z} \\ -2 \leq x \leq 4 \end{cases} \Leftrightarrow x \in \{-2, -1, 0, 1, 2, 3, 4\}. \text{ Vậy } C = \{-3; -1; 1; 3; 5; 7; 9\}. \\ \end{array}$$

Ta có
$$\begin{cases} x \in \mathbb{Z} \\ -2 < x < 4 \end{cases} \Leftrightarrow x \in \{-2, -1, 0, 1, 2, 3, 4\}. \text{ Vậy } C = \{-3; -1; 1; 3; 5; 7; 9\}.$$

b) Suy ra
$$A \cup B = \{-6; -2; -1; 0; 1; 2; 3; 4\}, A \cap B = \{2\}, B \setminus C = \{0; 2; 4\}, C_{A \cup B}(B \setminus C) = (A \cup B) \setminus (B \setminus C) = \{-6; -2; -1; 1; 3\}.$$

- c) Ta có $A \cup C = \{-6, -3, -2, -1, 1, 2, 3, 5, 7, 9\}$. Suy ra $(A \cup C) \setminus B = \{-6, -3, -2, -1, 5, 7, 9\}$.
- **BÀI 6.** Cho đoạn A = [-5; 1] và khoảng B = (-3; 2). Xác định $A \cup B$, $A \cap B$, $A \setminus B$, $C_{\mathbb{R}}B$.

- Ta có
 - \bullet $A \cup B = [-5; 2).$
 - **②** $A \cap B = (-3; 1].$
 - **②** $A \setminus B = [-5; -3].$
 - $\bigcirc C_{\mathbb{R}}B = \mathbb{R} \setminus B = (-\infty; -3] \cup [2; +\infty).$
- **BÀI 7.** Cho các tập hợp $A = \{x \in \mathbb{R} | x^2 \leq 4\}$, $B = \{x \in \mathbb{R} | x < 1\}$. Viết các tập hợp sau đây $A \cup B$, $A \cap B$, $A \setminus B$, $C_{\mathbb{R}}B$ dưới dạng các khoảng, nửa khoảng, đoạn.

Lời giải.

Ta có A = [-2; 2] và $B = (-\infty; 1)$, suy ra

- $A \cap B = [-2; 2] \cap (-\infty; 1) = [-2; 1).$
- \bigcirc $A \setminus B = [-2; 2] \setminus (-\infty; 1) = [1; 2].$
- $\bigcirc C_{\mathbb{R}}B = [1; +\infty).$

BÀI 8. Viết các tập hợp sau bằng phương pháp nêu ra tính đặc trung.

a) $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$

b) $D = \{1, 2, 4, 8, 16, 32, 64, 128, 256, 512\}.$

c) Tập hợp các số chẵn.

d) Tập hợp các số lẻ.

Lời giải.

a) $A = \{x \in \mathbb{N}^* | x < 10 \}.$

b) $D = \{2^n | n \in \mathbb{N}, n \le 9\}.$

c) $E = \{2n | n \in \mathbb{Z}\}.$

d) $F = \{2n + 1 | n \in \mathbb{Z}\}.$

BÀI 9. Viết mỗi tập hợp sau đây theo cách nêu tính chất đặc trung.

- a) Tập hợp các điểm M trên mặt phẳng (P), thuộc đường tròn tâm O và đường kính 2R.
- b) Tập hợp các điểm M trên mặt phẳng (P), thuộc hình tròn tâm O.

Lời giải.

- a) $A = \{ M \in (P) | OM = R \text{ v\'oi } O \text{ c\'o dịnh cho trước} \}.$
- b) $B = \{ M \in (P) | OM \leq R \text{ với } O \text{ cố định cho trước} \}.$

BÀI 10. Cho các tập hợp $A = \{1, 2, 3, 4, 5\}$ và $B = \{1, 3, 5, 7, 9\}$. Hãy tìm tập hợp M có nhiều phần tử nhất thoả mãn $M \subset A \text{ và } M \subset B.$

🗩 Lời giải.

Vì $M \subset A$ và $M \subset B$ nên $M \subset A \cap B$.

Do đó $M = \{1, 3, 5\}$ là tập hợp có nhiều phần tử nhất.

BÀI 11. Hãy xét quan hệ bao hàm các tập hợp sau:

A là tập hợp các tam giác.

B là tập hợp các tam giác đều.

C là tập hợp các tam giác cân.

🗭 Lời giải.

Dễ dàng nhận thấy $B \subset C \subset A$

BÀI 12. Cho tập $X = \{1, 2, 3, 4, 5, 6, 7\}$.

- a) Hãy tìm tất cả các tập con của X có chứa các phần tử 1, 3, 5, 7.
- b) Có bao nhiều tập con của X chứa đúng 2 phần tử?

- a) Các tập con của X chứa có các phần tử 1, 3, 5, 7 được thành lập bằng cách thêm vào tập $\{1; 3; 5; 7\}$ các phần tử còn lại của tập X. Do đó tất cả các tập con của X có chứa các phần tử 1, 3, 5, 7 là: $\{1; 3; 5; 7\}$, $\{1; 3; 5; 7; 2\}$, $\{1; 3; 5; 7$
- b) Giả sử tập cần tìm là $\{a;b\}$ với $a,b \in X$ $a \neq b$.
 - \odot Vì X có 7 phần tử nên có 7 cách chọn phần tử a.
 - $oldsymbol{\odot}$ Sau khi chọn a thì X còn 6 phần tử, do đó với mỗi cách chọn a, ta có 6 cách chọn phần tử b như vậy có 7.6 = 42 cặp (a;b) theo cách chọn này.

Nhưng với cách chọn trên thì với hai phần tử bất kì a,b ta đã chọn lặp lại hai lần đó là hai cặp (a;b) và (b;a).

Do đó, có $\frac{42}{2} = 21$ tập con của X chứa đúng hai phần tử.

BÀI 13. Cho hai tập hợp $A = \{2k+1 \mid k \in \mathbb{Z}\}$ và $B = \{6l+3 \mid l \in \mathbb{Z}\}$. Chứng minh rằng $B \subset A$.

🗭 Lời giải.

Lấy phần tử x tuỳ ý của B, ta có $x = 6l + 3, l \in \mathbb{Z}$.

Ta viết $x=2\cdot 3l+2+1=2(3l+1)+1=2k+1$ với $k=3l+1\in\mathbb{Z}.$ Suy ra $x\in A.$

Vậy, với mọi $x \in B$ ta đều có $x \in A$. Do đó, $B \subset A$.

BÀI 14. Cho hai tập hợp $A = \{1; 2; a\}$ và $B = \{1; a^2\}$. Tìm tất cả các giá trị của a sao cho $B \subset A$.

🗭 Lời giải.

Ta có $B\subset A$ nếu $a^2=1$ hoặc $a^2=2$ hoặc $a^2=a.$

Từ đó tìm được các giá trị của a là: $-\sqrt{2}$; -1; 0; 1; $\sqrt{2}$.

BÀI 15. Cho hai tập hợp A = [0; 3] và B = [a; a+2]. Tìm a để $B \subset A$.

🗭 Lời giải.

Điều kiện: $a \in \mathbb{R}$.

Điều Kiến.
$$a \in \mathbb{R}$$
.

Để $B \subset A$ khi và chỉ khi
$$\begin{cases} a \geqslant 0 \\ a+2 \leqslant 3 \end{cases} \Leftrightarrow \begin{cases} a \geqslant 0 \\ a \leqslant 1 \end{cases} \Leftrightarrow 0 \leqslant a \leqslant 1.$$

Vậy $0 \le a \le 1$ thỏa mãn yêu cầu bài toán.

BÀI 16. Cho các tập hợp $A = \{x \in \mathbb{R} \mid -3 \le x \le 5\}; B = [m-1; 6)$. Tìm m để $A \cap B \ne \emptyset$.

🗭 Lời giải.

Ta có A = [-3; 5] và B = [m - 1; 6).

 $A \cap B \neq \emptyset$ khi và chỉ khi $m-1 \leq 5 \Leftrightarrow m \leq 6$.

BÀI 17. Cho $A=(-\infty;m+1);B=[3;+\infty)$, với m là tham số thực. Tìm m để

- a) $A \cup B = \mathbb{R}$
- b) $A \cap B$ chứa đúng 5 số nguyên.

🗭 Lời giải.

- a) $A \cup B = \mathbb{R}$ khi và chỉ khi $m+1 \geq 3 \Leftrightarrow m \geq 2$.
- b) Ta có $A\cap B\neq\varnothing$ khi và chỉ khi $m+1>3\Leftrightarrow m>2.$

Khi đó $A \cap B = (-\infty; m+1) \cap [3; +\infty) = [3; m+1)$. $A \cap B$ chứa đúng 5 số nguyên khi và chỉ khi $3, 4, 5, 6, 7 \in [3; m+1)$ và $n \notin [3; m+1)$, $\forall n \geq 8 \Leftrightarrow 7 < m+1 \leq 8 \Leftrightarrow 6 < m \leq 7$. Vậy m = 5 là giá trị duy nhất th

BÀI 18. Cho A = [m; m+2] và B = [n; n+1] với m, n là các tham số thực. Tìm điều kiện của các số m và n để tập hợp $A \cap B$ chứa đúng một phần tử.

🗭 Lời giải.

Để $A \cap B$ chứa đúng một phần tử thì ta cần có m = n + 1 hoặc n = m + 2.

BÀI 19. Cho $U = \{3; 5; a^2\}$; $A = \{3; a+4\}$, với a là tham số thực. Tìm các giá trị của a sao cho $C_U A = \{1\}$.

Ta có $C_U A = \{1\} \Leftrightarrow \{5; a^2\} \setminus \{a+4\} = \{1\}.$

Do đó a + 4 = 5 và $a^2 = 1$. Do vậy a = 1.

BÀI 20. Cho các tập hợp $A = \{x \in \mathbb{Z} \mid -2 \le x < 3\}, B = \{0; m^2 + 1; m^2 + 2\}$. Có bao nhiều giá trị của tham số m để $B \subset A$.

🗩 Lời giải.

Ta có $A = \{-2; -1; 0; 1; 2\}.$

 $\overrightarrow{De} B \subset A \text{ thì } 0 \in A \text{ và } m^2 + 1, m^2 + 2 \in A.$

Từ đó suy ra $m^2 + 1 = 1$ và $m^2 + 2 = 2$ (vì $m^2 \ge 0$).

Do đó m=0 là giá trị cần tìm.

BÀI 21. Cho tập $A = \{x \in \mathbb{Z} \mid (x+2) \left(5x^2 - 6x + 1\right) = 0\}$. Với m là số thực, xét tập $B = \{x \in \mathbb{R} \mid x^2 - (2m+1)x + 2m = 0\}$. Tìm m để $A \cup B$ có đúng 3 phần tử và tổng bình phương của chúng bằng 9.

🗭 Lời giải.

Ta có
$$(x+2)(5x^2-6x+1)=0 \Leftrightarrow \begin{bmatrix} x=-2\\ 5x^2-6x+1=0 \end{bmatrix}$$
. Từ đó suy ra $A=\{-2;1\}$.

BÀI 22. Xác định số phần tử của các tập hợp được cho dưới đây:

- a) Cho A là tập hợp các số chẵn có hai chữ số. Hỏi A có bao nhiều phần tử?
- b) Cho B là tập hợp các số lẻ có 3 chữ số. Hỏi B có bao nhiều phần tử?
- c) Cho C là tập hợp các số nguyên dương bé hơn 500 và là bội của 3. Hỏi C có bao nhiều phần tử?

🗭 Lời giải.

- a) Mỗi số tự nhiên chẵn có dạng 2k $(k \in \mathbb{N})$. Theo giả thiết ta có $10 \le 2k < 100$. Suy ra $A = \{2k | 5 \le k < 50, k \in \mathbb{N}\}$. Vậy A có 45 phần tử.
- b) Ta có $B=\{101;103;\cdots;999\}$, các phần tử của B hơn kém 2 đơn vị nên số phần tử là $\frac{999-101}{2}+1=500$ số.
- c) Mỗi số nguyên dương là bội của 3 có dạng 3k $(k \in \mathbb{N}^*)$. Theo giả thiết ta có 0 < 3k < 500. Suy ra $A = \{3k | 0 < k < 167, k \in \mathbb{N}\}$. Vậy C có 166 phần tử.

BÀI 23. Một lớp có 40 học sinh, mỗi học sinh đều đăng ký chơi ít nhất 1 trong 2 môn thể thao là bóng đá hoặc cầu lông. Có 30 học sinh có đăng ký môn bóng đá, 25 học sinh có đăng ký môn cầu lông. Hỏi có bao nhiêu em đăng ký cả 2 môn.

🗩 Lời giải.

Gọi A là tập hợp các học sinh đăng kí chơi bóng đá, B là tập học sinh đăng kí chơi cầu lông thì $A \cap B$ là tập hợp các học sinh đăng kí chơi cả hai môn.

Vậy số học sinh đăng kí chơi cả hai môn là $n(A \cap B) = n(A) + n(B) - n(A \cup B) = 30 + 25 - 40 = 15$.

BÀI 24. Mỗi học sinh của lớp 10A đều chơi bóng đá hoặc bóng chuyền. Biết rằng có 25 bạn chơi bóng đá, 20 bạn chơi bóng chuyền và 10 bạn chơi cả 2 môn thể thao. Hỏi lớp 10A có bao nhiêu học sinh.

🗩 Lời giải.

Gọi A là tập hợp các học sinh chơi bóng đá, B là tập các học sinh chơi bóng chuyền. Do đó $A \cap B$ là tập các học sinh chơi cả hai môn.

Theo đề n(A) = 25, n(B) = 20, $n(A \cap B) = 10$.

Vậy số học sinh cả lớp là $n(A \cup B) = n(A) + n(B) - n(A \cap B) = 25 + 20 - 10 = 35$.

BÀI 25. Lớp 10A có 45 học sinh, có 15 học sinh giỏi và 20 học sinh xếp hạnh kiểm tốt, trong đó có 10 bạn vừa học giỏi vừa xếp hạnh kiểm tốt. Các học sinh được học sinh giỏi hoặc hạnh kiểm tốt đều được khen thưởng. Số học sinh được khen thưởng của lớp 10A là là bao nhiêu?

🗭 Lời giải.

Gọi A là tập hợp các học sinh giỏi, B là tập hợp các học sinh xếp hạnh kiểm tốt.

Khi đó số học sinh được khen thưởng là $n(A \cup B)$.

Vậy số học sinh được khen thưởng là $n(A \cup B) = n(A) + n(B) - n(A \cap B) = 15 + 20 - 10 = 25$.

BÀI 26. Trong số 42 học sinh của lớp 10A có 13 bạn được xếp loại học lực giỏi, 22 bạn được xếp loại hạnh kiểm tốt, trong đó 7 bạn vừa học lực giỏi, vừa có hạnh kiểm tốt. Hỏi lớp 10A có bao nhiều bạn được khen thưởng? Biết rằng muốn được khen thưởng thì bạn đó phải có học lực giỏi hoặc có hạnh kiểm tốt.

C Lời giải.

Gọi tập hợp các học sinh học lực giỏi là G, tập hợp các bạn học sinh hạnh kiểm tốt là T. Khi đó tập hợp các bạn học sinh vừa có học lực giỏi là, vừa có hạnh kiểm tốt là $G \cap T$, tập hợp các bạn học sinh đạt học lực giỏi hoặc hạnh kiểm tốt là $G \cap T$. Ta có

$$n(G) = 13, n(T) = 22, n(G \cap T) = 7.$$

 $n(G \cup T) = n(G) + n(T) - n(G \cap T) = 13 + 22 - 7 = 28.$

BÀI 27. Một nhóm học sinh giỏi các bộ môn: Anh, Toán, Văn. Có 18 em giỏi Văn, 10 em giỏi Anh, 12 em giỏi Toán, 3 em giỏi Văn và Toán, 4 em giỏi Toán và Anh, 5 em giỏi Văn và Anh, 2 em giỏi cả ba môn. Hỏi nhóm đó có bao nhiêu em?

🗭 Lời giải.

Ký hiệu A là tập hợp những học sinh giỏi Anh,

T là tập hợp những học sinh giỏi Toán,

V là tập hợp những học sinh giỏi Văn.

- n(V) = 18, n(A) = 10, n(T) = 12,
- $n(T \cap V) = 3$, $n(T \cap A) = 4$, $n(V \cap A) = 5$, $n(T \cap V \cap A) = 2$.

Số học sinh của nhóm là

$$|V \cup A \cup T| = n(V) + n(A) + n(T) - n(V \cap A) - n(T \cap A) - n(T \cap V) + n(T \cap V \cap A)$$

= 18 + 10 + 12 - (3 + 4 + 5) + 2 = 30.

Vây nhóm đó có 30 em.

BÁI 28. Để thành lập đội tuyển học sinh giỏi khối 10, nhà trường tổ chức thi chọn các môn Toán, Văn, Anh trên tổng số 111 học sinh. Kết quả có: 70 học sinh giỏi Toán, 65 học sinh giỏi Văn, 62 học sinh giỏi Anh. Trong đó có 49 học sinh giỏi cả hai môn Văn và Toán, 32 học sinh giỏi cả hai môn Toán và Anh, 34 học sinh giỏi cả hai môn Văn và Anh. Xác định số học sinh giỏi cả ba môn Văn, Toán, Anh. Biết rằng có 6 học sinh không đạt yêu cầu cả ba môn.

🗭 Lời giải.

Có 111 - 6 = 105 học sinh thi đạt ít nhất 1 môn.

Gọi A là số học sinh giỏi môn Toán và Tiếng Anh nhưng không giỏi Văn.

Gọi B là số học sinh giỏi môn Toán và Văn nhưng không giỏi Tiếng Anh.

Gọi C là số học sinh giỏi môn Văn và Tiếng Anh nhưng không giỏi Toán.

Gọi D là số học sinh giỏi cả ba môn. Ta có hệ:

$$\begin{cases} B+D=49\\ A+D=32\\ C+D=34\\ 70+65+62-(A+B+C+2D)=105\\ \Rightarrow 92=32-D+49-D+34-D+2D\\ \Rightarrow D=23. \end{cases}$$

Vây có 23 học sinh giỏi cả ba môn.

E. BÀI TẬP TRẮC NGHIỆM

ĐỀ SỐ 1

CÂU 1. Kí hiệu nào sau đây dùng để viết đúng mệnh đề "7 là số tự nhiên"?

- \bigcirc 7 \subset N.
- (\mathbf{B}) $7 \in \mathbb{N}$.

- (\mathbf{D}) 7 < \mathbb{N} .

Lời giải.

Chọn đáp án (B).....

CÂU 2. Kí hiệu nào sau đây dùng để viết đúng mênh đề " $\sqrt{2}$ không phải là số hữu tỉ"?

- \mathbf{A} $\sqrt{2} \neq \mathbb{Q}$.
- \bigcirc \mathbf{B} $\sqrt{2} \not\subset \mathbb{O}$.
- \bigcirc $\sqrt{2} \in \mathbb{Q}$.

🗭 Lời giải.

Chọn đáp án \bigcirc

CÂU 3. Cho A là một tập hợp, hãy tìm mệnh đề **sai** trong các mệnh đề sau.

- $(\mathbf{A}) A \in A.$
- $(\mathbf{B}) \varnothing \subset A.$
- $(\mathbf{D}) A \in \{A\}.$

🗭 Lời giải.

Chọn đáp án (A)......□

CÂU 4. Cho tập hợp $A = \{n \in \mathbb{N} \mid 3 \le n \le 10\}$. Dạng liệt kê của tập hợp A là

- (A) $A = \{3, 4, 5, 6, 7, 8, 9\}$. (B) $A = \{4, 5, 6, 7, 8, 9, 10\}$. (C) $A = \{4, 5, 6, 7, 8, 9\}$. (D) $A = \{3, 4, 5, 6, 7, 8, 9, 10\}$.

🗭 Lời giải.

Với $n \in \mathbb{N}$ và $3 \le n \le 10$ thì $n \in \{3, 4, 5, 6, 7, 8, 9, 10\}$

Chọn đáp án \bigcirc

CÂU 5. Cho tập hợp $A = \{n \in \mathbb{Z} \mid -2 < n \le 5\}$. Tập hợp A bằng tập hợp nào sau đây?

- (A) $M = \{-1; 0; 1; 2; 3; 4\}$. (B) $N = \{-1; 1; 2; 3; 4; 5\}$. (C) $P = \{-1; 0; 1; 2; 3; 4; 5\}$. (D) $Q = \{-2; -1; 0; 1; 2; 3; 4\}$.

Lời giải.

Với $n \in \mathbb{Z}$ và $-2 < n \le 5$ thì $n \in \{-1, 0, 1, 2, 3, 4, 5\}$

Chọn đáp án C

CÂU 6. Tập hợp $A = \{x \in \mathbb{R} \mid x^2 + 3x - 7 = 0\}$ có bao nhiều phần tử?

 \bigcirc 0

B) 1.

c) 2.

D 3.

🗭 Lời giải.

Xét phương trình $x^2 + 3x - 7 = 0 \Leftrightarrow x_1 = \frac{-3 + \sqrt{37}}{2}; \quad x_2 = \frac{-3 - \sqrt{37}}{2}.$

Cả hai giá trị trên đều là số thực nên tập A có $\overline{2}$ phần tử.

Chọn đáp án \bigcirc

CÂU 7. Cho tập hợp $B = \{x \in \mathbb{R} | x^2 - 3x - 4 = 0\}$. Dùng phương pháp liệt kê phần tử, xác định tập hợp B.

 $\bigcirc B = \{-1\}.$

B $B = \{4\}.$

 $\bigcirc B = (-1;4).$

 $\bigcirc B = \{-1, 4\}.$

🗭 Lời giải.

Xét phương trình $x^2 - 3x - 4 = 0 \Leftrightarrow x_1 = -1; \quad x_2 = 4.$

Cả hai giá trị trên đều là số thực nên tập B có 2 phần tử hay $B = \{-1, 4\}$.

Chọn đáp án \bigcirc

CÂU 8. Cho tập hợp $A = \{x \in \mathbb{N} | x^2 + 8x + 15 = 0\}$. Khẳng định nào sau đây đúng?

 \mathbf{A} $A = \{-3, -5\}.$

 \mathbf{B} $A=\varnothing$.

 $(\mathbf{C}) A = \{\emptyset\}.$

 $(\mathbf{D}) A = \{0\}.$

🗭 Lời giải.

Xét phương trình $x^2 + 8x + 15 = 0$ vô nghiệm. Suy ra $A = \emptyset$.

Chọn đáp án B.......

CÂU 9. Tập hợp $Y = \{a\}$ có bao nhiều tập hợp con?

A 2.

B 4.

(c) 1.

 \bigcirc 0.

Lời giải.

Các tập con của tập Y là \emptyset , $\{a\}$. Suy ra Y có hai tập con.

CÂU 10. Tập hợp $A = \{1; 2; 3\}$ có bao nhiêu tập con gồm hai phần tử?

(A) 1.

B 2.

(c) 3.

D 4.

🗭 Lời giải.

Các tập con có hai phần tử của A là $\{1; 2\}$; $\{1; 3\}$; $\{2; 3\}$.

Vây có tất cả 3 tập con thỏa yêu cầu.

Chọn đáp án C

CÂU 11. Tập hợp $\{a; b; c\}$ có bao nhiều tập con?

(A) 3.

(B) 6.

(C) 7.

D 8.

🗭 Lời giải.

• Cách 1: Liệt kê hết tất cả các tập con và đếm số lượng. Tất cả các tập con là

 \emptyset , $\{a\}$, $\{b\}$, $\{c\}$, $\{a;b\}$, $\{a;c\}$, $\{b;c\}$, $\{a;b;c\}$.

Có tất cả 8 tập con.

• Cách 2: Áp dụng công thức (dùng cho trắc nghiệm). Số tập con của tập A gồm n phần tử là 2^n . Suy ra tập A có tất cả $2^3 = 8$ tập con.

Chọn đáp án $\boxed{\mathbb{D}}$ \square

CÂU 12. Cho tập hợp $A \neq \emptyset$. Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng?

 $(\mathbf{A}) \ A \cup \varnothing = A.$

 $(\mathbf{C}) A \cup A = \emptyset.$

🗭 Lời giải.

Chọn đáp án $\overline{\mathbb{A}}$

CÂU 13. Cho các tập hợp A, B được minh họa bằng biểu đồ Ven như hình bên. Phần tô màu xám trong hình là biểu diễn của tập hợp nào sau đây?

 \bigcirc $A \cup B$.

 $(\mathbf{B}) A \cap B.$

 $(\mathbf{C}) A \backslash B.$

 $\triangleright B \setminus A$.

Chọn đáp án (B)...

CÂU 14. Cho các tập hợp A, B được minh họa bằng biểu đồ Ven như hình bên. Phần tô màu xám trong hình là biểu diễn của tập hợp nào sau đây?

(B) $A \cap B$.

$$\bigcirc$$
 $A \backslash B$.

$$\triangleright$$
 $B \setminus A$.

D Lời giải.

Chọn đáp án (A).....

CÂU 15. Trong các tập hợp sau, tập hợp nào bằng tập \emptyset ?

$$\mathbf{A}$$
 $A = \{ n \in \mathbb{N} \mid n^2 - 1 < 0 \}.$

(A)
$$A = \{ n \in \mathbb{N} \mid n^2 - 1 < 0 \}.$$

$$C = \{ n \in \mathbb{Z} \mid -2 < n < 5 \}.$$

B
$$B = \{x \in \mathbb{R} \mid 2x + 1 = 0\}.$$

Lời giải.

Xét tập $D = \{x \in \mathbb{R} \mid x^2 + 2x + 2 = 0\}.$

- Giải phương trình $x^2 + 2x + 2 = 0$ (vô nghiệm);
- Suy ra tập D không có phân tử.

Suv ra $D = \emptyset$.

Chon đáp án (D)...

CÂU 16. Trong các tập hợp sau, tập hợp nào khác tập \emptyset ?

$$\mathbf{A}$$
 $A = \{ n \in \mathbb{N} \mid n+1 = 0 \}.$

B
$$B = \{(x; y) \mid x, y \in \mathbb{R} \text{ và } x^2 + y^2 = 0\}.$$

$$(\mathbf{C}) C = \{ n \in \mathbb{Z} \mid n^2 = 2 \}.$$

Lời giải.

Xét tập $B = \{(x; y) \mid x, y \in \mathbb{R} \text{ và } x^2 + y^2 = 0\}$:

Với $x^2 + y^2 = 0$, ta tìm được x = 0 và y = 0 thỏa mãn. Suy ra tập B khác rỗng.

Chon đáp án B....

CÂU 17. Cho tập hợp $B = \{(x; y) \mid x, y \in \mathbb{N} \text{ và } x + y = 2\}$. Tập hợp B có bao nhiều phần tử?

Lời giải.

Xét x + y = 2 suy ra $(x, y) \in \{(0, 2), (1, 1), (2, 0)\}$. Vậy tập B có 3 phần tử.

Chọn đáp án \bigcirc

CÂU 18. Cho tập hợp $A = \{x \in \mathbb{Z} \mid (x^2 - 4)(2x + 3)(3x^2 + x - 4) = 0\}$. Dạng liệt kê của tập hợp A là

$$A = \{-2; 2\}.$$

B
$$A = \left\{-2; -\frac{3}{2}; -\frac{4}{3}; 1; 2\right\}.$$

$$A = \{x \in \mathbb{N} \mid -2 \le x \le 2\}.$$

$$lackbox{D} A = \{-2; 1; 2\}.$$

Lời giải.

Xet
$$(x^2 - 4)(2x + 3)(3x^2 + x - 4) = 0 \Leftrightarrow \begin{bmatrix} x^2 - 4 = 0 \\ 2x + 3 = 0 \\ 3x^2 + x - 4 = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \pm 2 \\ x = -\frac{3}{2} \\ x = 1, \quad x = -\frac{4}{3}. \end{bmatrix}$$

Với điều kiện $x \in \mathbb{Z}$ thì $x \in \{\pm 2, 1\}$. Vậy $A = \{-2, 1, 2\}$.

Chon đáp án (D).....

CÂU 19. Cho hai tập hợp $X = \{7, 2, 8, 4, 9, 12\}$ và $Y = \{1, 3, 7, 4\}$. Tìm tập hợp $X \cap Y$.

(D)
$$\{1,3\}.$$

Lời giải.

Giao của hai tập hợp thì ta lấy các phần tử chung của hai tập hợp đó. Suy ra

$$X \cap Y = \{4, 7\}.$$

CÂU 20. Cho hai tập hợp $X = \{2, 4, 6, 9\}$ và $Y = \{1, 2, 3, 4\}$. Tìm tập hợp $X \cup Y$.

(A) $\{1,3\}$.

B {6, 9}.

(c) {1, 2, 3, 4, 6, 9}.

(D) $\{2,4\}.$

🗭 Lời giải.

Hợp của hai tập hợp thì ta lấy hết các phần tử của hai tập hợp đó. Suy ra

$$X \cup Y = \{1, 2, 3, 4, 6, 9\}.$$

Chọn đáp án (C).....

CÂU 21. Cho hai tập hợp $X = \{0, 1, 2, 3, 4\}$ và $Y = \{2, 3, 4, 5, 6\}$. Tìm tập hợp $X \setminus Y$.

(A) $\{0\}$.

B) {0, 1}.

 (\mathbf{C}) {1, 2}.

(D) $\{1,5\}.$

🗭 Lời giải.

Với $X \setminus Y$ thì ta lấy những phần tử thuộc X mà không thuộc Y. Suy ra

$$X \setminus Y = \{0, 1\}.$$

Chọn đáp án \bigcirc{B} \Box

CÂU 22. Cho hai tập hợp $X = \{1,5\}$ và $Y = \{1,3,5\}$. Chọn khẳng định đúng trong các khẳng định sau.

(A) $C_Y X = \{3\}.$

(B) $C_Y X = \{1\}.$

 $(\mathbf{C}) C_Y X = \{1, 3, 5\}.$

 $(\mathbf{D}) C_Y X = \{1, 3, 5\}.$

🗭 Lời giải.

Ta có $C_Y X = Y \setminus X = \{3\}.$

Chọn đáp án (A)......

CÂU 23. Cho hai tập hợp $A = \{1, 2, 3, 4\}$ và $B = \{2, 4, 6, 8\}$. Tìm tập hợp $A \setminus B$.

(A) {1, 2, 3}.

(B) {1, 3}.

 (\mathbf{D}) {2, 4, 6}.

🗭 Lời giải.

Ta có $A \setminus B = \{1, 3\}.$

CÂU 24. Cho hai tập hợp $A = \{1, 2, 3, 4, 5, 6, 7\}$ và $B = \{2, 4, 6\}$. Tìm tập hợp $C_A B$.

(A) {2, 4, 6}.

(B) $\{1, 2, 3, 4, 5, 6, 7\}$. **(C)** $\{1, 2, 3, 4, 5, 6\}$.

 \bigcirc $\{1, 3, 5, 7\}.$

🗭 Lời giải.

Ta có $C_A B = A \setminus B = \{1, 3, 5, 7\}.$

Chọn đáp án \bigcirc D..... \square

CÂU 25. Cho hai tập hợp $A = \{x \in \mathbb{R} | (x^2 - 1) (x^2 - 3x - 4) = 0 \}$ và $B = \{x \in \mathbb{Z} | |x| \le 2 \}$. Tìm tập hợp $A \cup B$.

(A) $\{-2, -1, 0, 1, 2, 4\}$. (B) $\{-2, -1, 0, 1, 2, -4\}$. (C) $\{-1, 1\}$.

 (\mathbf{D}) $\{-2,0,2\}.$

🗭 Lời giải.

Xét

•
$$(x^2 - 1)(x^2 - 3x - 4) = 0 \Leftrightarrow \begin{bmatrix} x^2 - 1 = 0 \\ x^2 - 3x - 4 = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \pm 1 \\ x = -1, \ x = 4 \end{bmatrix}$$
. Suy ra $A = \{-1; 1; 4\}$.

• $x \in \mathbb{Z}$ và $|x| \le 2$ thì $x \in \{\pm 2; \pm 1; 0\}$. Suy ra $B = \{-2; -1; 0; 1; 2\}$.

Khi đó $A \cup B = \{-2, -1, 0, 1, 2, 4\}.$

CÂU 26. Cho tập hợp $B = \{x \in \mathbb{N}^* | x \leq 4\}$ và tập hợp A gồm những số tự nhiên lẻ không lớn hơn 8. Tìm tập hợp $A \cap B$.

(A) {1,3}.

B {1, 2, 3, 4}.

(c) $\{0,1,3,5\}.$

 (\mathbf{D}) $\{0, 1, 2, 3, 4, 5, 7\}.$

🗭 Lời giải.

Ta có $A = \{1, 3, 5, 7\}$ và $B = \{1, 2, 3, 4\}$ nên $A \cap B = \{1, 3\}$

Chọn đáp án $\stackrel{\frown}{A}$

CÂU 27. Có bao nhiều tập hợp X thoả mãn điều kiện $\{a;b\} \subset X \subset \{a;b;c;d;e\}$?

A 2.

B) 4.

(c) 8.

D 10.

🗭 Lời giải.

Từ điều kiện $\{a;b\} \subset X \subset \{a;b;c;d;e\}$ ta suy ra X tối thiểu phải chứa các phần tử a,b và chỉ có thể thêm các phần tử c,d,e nên chọn X là một trong các tập hợp sau:

$$\{a;b\}, \{a;b;c\}, \{a;b;d\}, \{a;b;e\}, \{a;b;c;d\}, \{a;b;d;e\}, \{a;b;e;c\}, \{a;b;c;d;e\}.$$

Vậy có 8 tâp hợp X thoả mãn yêu cầu bài toán.

Chọn đáp án \bigcirc

CÂU 28. Cho hai tập $A = \{1, 2, 3\}$ và $B = \{0, 1, 3, 5\}$. Tất cả các tập X thỏa mãn $X \subset (A \cap B)$ là

 \triangle \varnothing ; $\{1\}$; $\{1,3\}$; $\{3\}$; $\{1,3,5\}$.

B) {1}; {3}; {1,3}.

 $\bigcirc \varnothing; \{1\}; \{3\}.$

 \bigcirc \varnothing ; $\{1\}$; $\{3\}$; $\{1,3\}$.

🗭 Lời giải.

Do $A \cap B = \{1,3\}$ nên các tập con X gồm \emptyset ; $\{1\}$; $\{3\}$; $\{1,3\}$.

Chọn đáp án $\boxed{\mathbb{D}}$ \square

CÂU 29. Ta gọi H là tập hợp các hình bình hành, V là tập hợp tất cả các hình vuông, N là tập hợp tất cả các hình chữ nhật và T là tập hợp tất cả các hình tứ giác. Hãy tìm mệnh đề **sai** trong các mệnh đề sau:

- \bigcirc A $H \subset T$.
- \bigcirc $V \subset N$.
- (c) $V \subset H$.
- \bigcirc $N \subset V$.

🗭 Lời giải.

Trong trường hợp tổng quát, sẽ có những hình chữ nhật không là hình vuông nên khẳng định $N\subset V$ là khẳng định sai.

Chọn đáp án \fbox{D}

CÂU 30. Cho A là tập các số nguyên dương và chia hết cho 6, B là tập hợp các số nguyên dương chia hết cho 2, C là tập hợp các số nguyên dương chia hết cho 3. Trong các mệnh đề sau, mệnh đề nào đúng?

- $\mathbf{A} \cap A \cap B = \emptyset.$
- \bigcirc $A \cup B = C$.
- \bigcirc $A \cap C = B$.

🗭 Lời giải.

- Tất cả các số nguyên dương chia hết cho 6 thì sẽ chia hết cho 2 nên $A \subset B$, suy ra $A \cap B = A$. Vậy khẳng định $A \cap B = \emptyset$ là khẳng định sai.
- Ta có $A \subset B$ nên $A \cup B = B$. Nhận xét rằng $B \neq C$ nên khẳng định $A \cup B = C$ là khẳng định sai.
- Tất cả các số nguyên dương chia hết cho 6 thì sẽ chia hết cho 3 nên $A \subset C$, suy ra $A \cap C = A$. Nhận xét rằng $A \neq B$ nên khẳng định $A \cap C = B$ là khẳng định sai.
- Số nguyên dương chia hết cho 6 thì phải đồng thời chia hết cho cả 2 và 3 nên $B \cap C = A$ là khẳng định đúng.

Chọn đáp án \bigcirc

CÂU 31. Trong kì thi học sinh giỏi cấp trường, lớp 10A có 45 học sinh trong đó có 17 bạn được công nhận học sinh giỏi Văn, 25 bạn học sinh giỏi Toán và 13 bạn học sinh không đạt học sinh giỏi. Tìm số học sinh giỏi cả Văn và Toán của lớp 10A.

A 42.

B) 32.

C) 17.

D 10.

🗭 Lời giải.

Gọi A là tập hợp học sinh giỏi Văn; B là tập hợp học sinh giỏi Toán; C là tập hợp học sinh không đạt học sinh giỏi; $A \cap B$ là tập hợp học sinh giỏi cả Văn và Toán.

Ta có kết quả sau:

$$n(A) + n(B) + n(C) - n(A \cap B) = 45 \Rightarrow n(A \cap B) = 17 + 25 + 13 - 45 = 10$$
 học sinh.

Chọn đáp án $\boxed{\mathbb{D}}$

CÂU 32. Lớp 10A có 10 học sinh giỏi Toán, 15 học sinh giỏi Văn, 5 học sinh giỏi cả 2 môn Toán Văn và 2 học sinh không giỏi môn nào. Hỏi lớp 10A có bao nhiều học sinh?

A 20 .

B) 22.

(c) 25.

D 28.

🗭 Lời giải.

Gọi A là tập hợp học sinh giỏi Toán; B là tập hợp học sinh giỏi Văn; C là tập hợp học sinh không đạt học sinh giỏi; $A \cap B$ là tập hợp học sinh giỏi cả Văn và Toán.

Khi đó số học sinh của lớp 10A bằng

$$n(A) + n(B) + n(C) - n(A \cap B) = 10 + 15 + 2 - 5 = 22$$
 hoc sinh.

Chon đáp án \bigcirc{B} \Box

CÂU 33. Lớp $10B_1$ có 7 học sinh giỏi Toán, 5 học sinh giỏi Lý, 6 học sinh giỏi Hóa, 3 học sinh giỏi cả Toán và Lý, 4 học sinh giỏi cả Toán và Hóa, 2 học sinh giỏi cả Lý và Hóa, 1 học sinh giỏi cả 3 môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) của lớp $10B_1$ là

A 9.

B 10.

(c) 18.

D 28.

🗭 Lời giải.

Chọn đáp án B....

 $\textbf{C\^{AU 34.}} \text{ Cho hai đa thức } f(x) \text{ và } g(x). \text{ X\'et các tập hợp } A = \{x \in \mathbb{R} | f(x) = 0\}, B = \{x \in \mathbb{R} | g(x) = 0\}, C = \left\{x \in \mathbb{R} | \frac{f(x)}{g(x)} = 0\right\}.$

Trong các mệnh đề sau, mệnh đề nào đúng?

 $\mathbf{B}) C = A \cap B.$

 (\mathbf{C}) $C = A \backslash B$.

 \bigcirc $C = B \setminus A$.

🗭 Lời giải.

Xét
$$\frac{f(x)}{g(x)} = 0 \Leftrightarrow \begin{cases} f(x) = 0 \\ g(x) \neq 0 \end{cases}$$
 nên $C = A \backslash B$.

Chọn đáp án $\overline{\mathbb{C}}$

CÂU 35. Cho hai đa thức f(x) và g(x). Xét các tập hợp $A = \{x \in \mathbb{R} | f(x) = 0\}, B = \{x \in \mathbb{R} | g(x) = 0\}, C = \{x \in \mathbb{R} | f^2(x) + g^2(x) = 0\}$. Trong các mệnh đề sau, mệnh đề nào đúng?

 (\mathbf{B}) $C = A \cap B$.

 $(\mathbf{C}) C = A \backslash B.$

 \bigcirc $C = B \setminus A$.

🗭 Lời giải.

Xét
$$f^2(x) + g^2(x) = 0 \Leftrightarrow \begin{cases} f(x) = 0 \\ g(x) = 0 \end{cases}$$
 nên $C = A \cap B$.

Chon đáp án B.

ĐỀ SỐ 2

CÂU 1. Cho tập hợp $A = \{x \in \mathbb{R} | -1 < x \le 4\}$. Khẳng định nào sau đây đúng?

A = (-1; 4].

B $A = \{-1, 4\}.$

A = (-1; 4).

 $(\mathbf{D}) A = [-1; 4].$

🗭 Lời giải.

Chọn đáp án \fbox{A}

CÂU 2. Cho tập hợp $X = \{x \in \mathbb{R} | -2 \le x \le 5\}$. Khẳng định nào sau đây đúng?

(A) X = (-2; 5).

B $X = \{-2, 5\}.$

 $(\mathbf{C}) X = [-2; 5).$

 $(\mathbf{D}) X = [-2; 5].$

🗭 Lời giải.

Chọn đáp án $\overline{\mathbb{D}}$

CÂU 3. Tập hợp X = [-1; 4] có bao nhiều phần tử?

(A) 2.

B) 1.

(C) 5.

D Vô số.

🗭 Lời giải.

Chọn đáp án \bigcirc

CÂU 4. Cho tập hợp $A = \{x \in \mathbb{R} | |x-1| \le 1\}$. Tập A bằng tập nào trong các tập hợp sau?

(0;1).

B [0; 1].

(c) [0; 2].

 $(\mathbf{D})[-1;2].$

Lời giải.

 $Xét |x-1| \le 1 \Leftrightarrow -1 \le x-1 \le 1 \Leftrightarrow 0 \le x \le 2.$

Với $x \in \mathbb{R}$ và $0 \le x \le 2$, suy ra A = [0, 2].

CÂU 5. Cho $a, b \in \mathbb{R}$ sao cho a < b. Nửa khoảng (a; b] được biểu diễn bởi trục số nào sau đây?

D

a

🗭 Lời giải.

Chon đán án 🕟			
	$\in \mathbb{R} ig 2 > x > 0 ig\}$ bằng tập hợp		
(A) $(0; 2]$.		© [0; 2].	D {0; 2}.
₽ Lời giải.	(v, =).	([v, -].	(v,-)·
Chọn đáp án B			
	5) có bao nhiêu phần tử?		
A 2.	B vô số.	© 3.	D 5.
🗩 Lời giải.			
Chọn đáp án B			
CÂU 8. Cho tập hợp $A =$	= $[-2;1)$. Tập hợp A là tập co	on của tập hợp nào sau đây?	
A B = [-1; 2).			x < 1.
	x < 1.		x < 1.
🗭 Lời giải.			
		nào trong các tập hợp sau đây	
(A) $A = [-3; 7)$.	$oldsymbol{(B)} \mathbb{R}.$	$(\mathbf{C}) B = [-3; +\infty).$	$\bigcirc C = [-1; +\infty).$
🗭 Lời giải.			
			2 12 \ (1) 1 (1)
	= [-3; 5]. Biểu diễn tập hợp	X trên trục số ta được hình bi	ểu diễn nào trong các hình sau (
không bị gạch chèo)?			
không bị gạch chéo)?	\////// /	<i>''''''\\</i>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
<i></i>	}///////. 5	<i>'</i> ///////////∕ (B) −3	\//////. → 5
<i></i>	•	###### \ -3	
""""""""""""""""""""""""""""""""""""""	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	·/////////////////////////////////////	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		'uuuuuk	}///////
""""	· }//////:> 5	-3	· }//////> 5
#####################################	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	**************************************	
#####################################	y///// 5	- 3 - 3 - whư sau (phần không bị gạch ch	
#####################################		*************************************	
######################################	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- 3 - 3 - whư sau (phần không bị gạch ch	
####### A - 3 ####### C - 3 D Lời giải. Chọn đáp án A CÂU 11. Cho tập hợp A Khẳng định nào sau đây e	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	######################################	· }////// 5 éo).
#####################################	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	*************************************	· }////// 5 éo).
#####################################	$\begin{array}{c} \cdot \\ \cdot $	thư sau (phần không bị gạch ch	A=(3;5].
######################################	γ ///////> 5 . được biểu diễn trên trục số n γ /////////////// 3 đúng?	#####################################	$\frac{1}{3}$ $\frac{1}$
#####################################	được biểu diễn trên trục số n $\begin{array}{c} & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	thư sau (phần không bị gạch ch	
#####################################	được biểu diễn trên trục số n $\begin{array}{c} & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	#####################################	
A = 3 $C = 3$ $A = (3; 5)$ $C = 3$ $C = 3$ $A = (3; 5)$ $C = 3$ C	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	thư sau (phần không bị gạch ch	
#####################################	$\begin{array}{c} & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	thư sau (phần không bị gạch ch	
#####################################	A A A A A A A A A A	thư sau (phần không bị gạch ch	

CÂU 14. Cho các số thực a, b, c, d và a < b < c < d. Trong các mệnh đề sau, mệnh đề nào đúng?

 $(a;c) \cap [b;d) = [b;c].$

B $(a; c) \cap [b; d) = [b; c].$

 $(a;c) \cap (b;d) = (b;c).$

🗭 Lời giải.

Chọn đáp án (A)..... **CÂU 15.** Trên truc số, phần không bị gach biểu diễn tập hợp nào trong các tập hợp sau? **(B)** $(-\infty; -2] \cup (2; +\infty)$. **(C)** $(-\infty; -2) \cup [2; +\infty)$. **(D)** $(-\infty; -2) \cup (2; +\infty)$. $(-\infty;-2] \cup [2;+\infty).$ 🗭 Lời giải. Chon đáp án (B). **CÂU 16.** Cho hai tập hợp X = [-2, 3] và Y = (1, 5]. Tìm tập hợp $X \setminus Y$. (A) [-2;1]. **(B)** (3; 5]. $(\mathbf{D})(-2;1].$ Lời giải. Chọn đáp án (A)..... **CÂU 17.** Cho hai tập hợp $A = \{x \in \mathbb{R} | x + 2 \ge 0\}$ và $B = \{x \in \mathbb{R} | 5 - x \ge 0\}$. Tìm tập hợp $A \cap B$. **B** [-2; 6]. $(\mathbf{C})[-5;2].$ (\mathbf{D}) $(-2; +\infty)$. (A) [-2; 5]. 🗭 Lời giải. Ta có • $x + 2 \ge 0 \Leftrightarrow x \ge -2 \text{ và } x \in \mathbb{R} \text{ nên } A = [-2; +\infty).$ • $5-x \ge 0 \Leftrightarrow x \le 5$ và $x \in \mathbb{R}$ nên $B = (-\infty; 5]$. Suy ra $A \cap B = [-2; 5]$. Chon đấp án (A)..... **CÂU 18.** Cho hai tập hợp A = [-5, 3); B = [0, 2). Tìm tập hợp $\mathbb{R} \setminus (B \cap A)$. (B) [0; 2). (A) $(-\infty;0) \cup [2;+\infty)$. $(\mathbf{D})(-\infty;0).$ 🗭 Lời giải. Do $A \cap B = [0, 2)$ nên $\mathbb{R} \setminus (A \cap B) = (-\infty, 0) \cup [2, +\infty)$ Chọn đáp án (A)..... **CÂU 19.** Cho tập hợp $A = (2; +\infty)$. Tìm tập hợp $C_{\mathbb{R}}A$. (\mathbf{c}) $(-\infty; 2].$ $(\mathbf{D})(-\infty;-2].$ **B**) $(2; +\infty)$. (A) $[2; +\infty)$. 🗭 Lời giải. Chọn đáp án $\stackrel{\hbox{\scriptsize (C)}}{}$ **CÂU 20.** Cho các tập hợp sau A = (-1, 5], B = (2, 7). Tìm tập hợp $A \setminus B$. (-1;2].**B** (2; 5]. (c) (-1;7). (-1;2).🗭 Lời giải. Chọn đáp án (A)...... **CÂU 21.** Cho hai tập hợp $A = \{x \in \mathbb{R} | x + 2 \ge 0\}$ và $B = \{x \in \mathbb{R} | 5 - x \ge 0\}$. Tìm tập hợp $A \setminus B$. (B) [-2; 6]. (\mathbf{c}) $(5; +\infty)$. (A) [-2; 5]. (\mathbf{D}) $(2; +\infty)$. D Lời giải. Ta có • $x+2 \ge 0 \Leftrightarrow x \ge -2 \text{ và } x \in \mathbb{R} \text{ nên } A = [-2; +\infty).$ • $5-x > 0 \Leftrightarrow x < 5$ và $x \in \mathbb{R}$ nên $B = (-\infty; 5]$. Suy ra $A \setminus B = (5; +\infty)$. Chọn đáp án \bigcirc **CÂU 22.** Biểu diễn trên trục số của tập hợp $[-3;1) \cap (-2;4]$ là hình nào? HHHH -34 A B

 (\mathbf{D})

D Lời giải.

Ta có $[-3;1) \cap (-2;4] = (-2;1)$.

Chọn đáp án (A).....

CÂU 23. Biểu diễn trên trục số của tập hợp $(0;2) \cup [-1;1)$ là hình nào?

🗭 Lời giải.

Ta có $(0; 2) \cup [-1; 1) = [-1; 2)$.

CÂU 24. Cho hai tập hợp A = [-1; 4], B = [m+1; m+3] với m là tham số. Tìm tất cả các giá trị của m để $B \setminus A = \emptyset$.

B
$$m < -5$$
 hoặc $m > 3$.

$$\bigcirc$$
 $m < -2$ hoặc $m > 5$.

🗭 Lời giải.

$$B \backslash A = \varnothing \Leftrightarrow \begin{bmatrix} m+3 < -1 \\ m+1 > 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} m < -4 \\ m > 3 \end{bmatrix}$$

Chọn đáp án (C).....

CÂU 25. Tìm tất cả các giá trị nguyên của tham số m để tập hợp (1;m) chứa đúng 1 số nguyên dương.

$$(\mathbf{B}) m > 2.$$

$$(c) m = 3.$$

$$(\mathbf{D}) m = 4$$

D Lời giải.

Các số nguyên dương lớn hơn 1 sẽ là 2; 3; 4,... Suy ra, để (1;m) chỉ chứa 1 số nguyên dương thì giá trị nguyên cần tìm của m là m=3.

CÂU 26. Tìm tất cả các giá trị nguyên của tham số m để tập hợp (1;m) chứa đúng 2 số nguyên dương.

$$\blacksquare$$
 $m>2.$

$$\bigcirc m = 3.$$

$$\bigcirc m = 4$$

🗭 Lời giải.

Các số nguyên dương lớn hơn 1 sẽ là 2; 3; 4,... Suy ra, để (1;m) chỉ chứa 1 số nguyên dương thì giá tri nguyên cần tìm của m là m=4.

Chọn đáp án (D).....

CÂU 27. Cho hai tập hợp A = [1; 3] và B = [m; m+1]. Tìm tất cả các giá trị của tham số m để $B \subset A$.

$$\bigcirc$$
 $m=2.$

$$\bigcirc$$
 1 < m < 2.

$$\bigcirc$$
 $1 \leqslant m \leqslant 2$

D Lời giải.

Ta có $B \subset A$ khi và chỉ khi $\begin{cases} m \geq 1 \\ m+1 < 3 \end{cases} \Leftrightarrow 1 \leq m \leq 2.$

Chon đáp án (D)....

CÂU 28. Cho hai tập hợp A = [m; m+2]; B = [-1; 2]. Tìm tất cả các giá trị thực của tham số m để $A \subset B$.

B
$$-1 \le m \le 0$$
. **C** $1 \le m \le 2$.

c
$$1 \le m \le 2$$
.

D Lời giải.

Để
$$A\subset B$$
 thì
$$\begin{cases} m\geq -1\\ m+2\leq 2 \end{cases} \Leftrightarrow \begin{cases} m\geq -1\\ m\leq 0 \end{cases}.$$

......

CÂU 29. Cho hai tập hợp $A = (-\infty; m-1], B = [1; +\infty)$. Tìm tất cả các giá trị thực của tham số m để $A \cap B = \emptyset$.

(A)
$$m > -1$$
.

(B)
$$m \ge -1$$
. **(C)** $m \le 2$.

$$\bigcirc$$
 $m < 2$.

Để $A \cap B = \emptyset$ thì $m-1 < 1 \Rightarrow m < 2$.

Chọn đáp án $\overline{\mathbb{D}}$ \square

CÂU 30. Cho các tập $B=\{x\in\mathbb{R}\mid -5\leq x\leq 5\}; C=\{x\in\mathbb{R}\mid x\leq a\}$, và $D=\{x\in\mathbb{R}\mid x\geq b\}$. Xác định a,b biết $C\cap B$ và $D \cap B$ là các đoạn có độ dài lần lượt bằng 5 và 9.

$$(A)$$
 $a = 0; b = -4.$

B)
$$a = 5; b = 9.$$

$$a = -4; b = 0$$

©
$$a = -4; b = 0.$$
 D $a = -5; b = 5.$

🗭 Lời giải.

Ta có $B = [-5, 5]; C = (-\infty, a]; D = [b, +\infty).$

Theo giả thiết thì $C \cap B$ và $D \cap B$ khác \emptyset nên $C \cap B = [-5; a]$ và $D \cap B = [b; 5]$

Theo gia thiết thi
$$C + D$$
 và $D + D$ khác \varnothing hel.

Theo yêu cầu đề bài:
$$\begin{cases}
a + 5 = 5 \\
5 - b = 9
\end{cases} \Leftrightarrow \begin{cases}
a = 0 \\
b = -4
\end{cases}$$

Bài 2.	TẬP HỢP VÀ CÁC PHÉP TOÁN TRÊN TẬP HỢP	1
A	TÓM TẮT LÝ THUYẾT	1
B	RÈN LUYỆN KĨ NĂNG GIẢI TOÁN	
	Dạng 1. Xác định tập hợp	
	🗁 Dạng 2. Xác định tập hợp con. Hai tập hợp bằng nhau	3
	Dạng 3. Các phép toán trên tập hợp	
	Dạng 4. Các phép toán trên tập hợp con của tập số thực	
	VẬN DỤNG, THỰC TIỀN	4
	🗁 Dạng 5. Các bài toán biện luận theo tham số	4
	🗁 Dạng 6. Ứng dụng thực tế các phép toán tập hợp	4
D	BÀI TẬP TỰ LUYỆN	4
E	BÀI TẬP TRẮC NGHIỆM	6
LỜI GIẢI CHI TIẾT		12
Bài 2.	TẬP HỢP VÀ CÁC PHÉP TOÁN TRÊN TẬP HỢP	12
A	TÓM TẮT LÝ THUYẾT	12
lacksquare	RÈN LUYỆN KĨ NĂNG GIẢI TOÁN	13
	🗁 Dạng 1. Xác định tập hợp	13
	🗁 Dạng 2. Xác định tập hợp con. Hai tập hợp bằng nhau	14
	Dạng 3. Các phép toán trên tập hợp	
	Dạng 4. Các phép toán trên tập hợp con của tập số thực	
	VẬN DỤNG, THỰC TIÊN	18
	🗁 Dạng 5. Các bài toán biện luận theo tham số	18
	Dạng 6. Ứng dụng thực tế các phép toán tập hợp	19
	BÀI TẬP TỰ LUYỆN	21
	BÀI TẬP TRẮC NGHIỆM	26

