MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 6 - MARCH 2017 SOLUTION KEY

Round 6

A) Solution #1:

There will be a total of 8 terms, and Pascal's triangle is the fastest ways to evaluate all the coefficients. We require the 7^{th} row (which has all odd numbers) $\Rightarrow \mathbf{0}$ (or none).

0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	10	5	1		
6	1	6	15	20	15	6	1	
7	1	7	21	35	35	21	7	1

Solution #2: (Annalisa Peterson - Mt. Alvernia)

To determine the number of \underline{odd} numbers in row k of Pascal's triangle:

- Count the number of 1s in the binary representation of row number k.
- Raise 2 to this power.

$$7 = 111_{(2)} \implies 3 - 1s$$
 $2^3 = 8 \implies 8$ coefficients are odd

Since row k always contains (k+1) terms, <u>none</u> of the coefficients are even.

B) The interval contains 999-10+1=990 integers, 495 even and 495 odd.

Multiples of 3 range from 12 = 3.4 to 999 = 3.333, 330 values.

Multiples of 6 range from $12 = 6 \cdot 2$ to $996 = 6 \cdot 166$, 165 values.

Thus,
$$P(\div 6 \mid \div 2 \text{ or } 3) = \frac{165}{495 + 330 - 165} = \frac{1}{3 + 2 - 1} = \frac{1}{4}$$
.

C) The expansion is $k^4 + 4k^2 + 6 + \frac{4}{k^2} + \frac{1}{k^4}$

Solution #1 (Direct Approach)

$$4k^2 + 6 + \frac{4}{k^2} = 23 \Rightarrow 4k^4 - 17k^2 + 4 = 0 \Leftrightarrow (4k^2 - 1)(k^2 - 4) = 0 \ k = \pm \frac{1}{2}, \pm 2$$
.

Solution #2: (Symmetry)

$$4k^2 + 6 + \frac{4}{k^2} = 23 \Leftrightarrow 4k^2 - 17 + \frac{4}{k^2} = 0 \Leftrightarrow \left(4k^2 - 1\right)\left(1 - \frac{4}{k^2}\right) = 0$$
 and the same result follows.

Solution #3 (Even Function: f(-x) = f(x) and symmetry)

Consider the function $f(k) = 4k^2 - 17 + \frac{4}{k^2}$ which is an even function.

We require that f(k) = 0, i.e. we are looking for the zeros of this function.

Suspecting that $\frac{4}{k^2}$ might be an integer, we try factors of 4. k = 2 works.

Since the given function is even, $k = \pm 2$. By the symmetry of the trinomial, $k = \pm \frac{1}{2}$.