ETH zürich

Covariate adjustment II

Causality
Christina Heinze-Deml
Spring 2019

Announcements

- Series 2 is due today
- Series 3 will be uploaded later today

Last week

- Interventions
- Total causal effect definitions
- Path method
- Covariate adjustment part 1

Today

- Covariate adjustment part 2
- Frontdoor criterion

Example

Interested in the causal effect of X on Y

 Z_2

Example

- Interested in the causal effect of X on Y
- Can we compute p(y|do(x)) if (only) Z_1 is not measured?
 - I.e., is p(y|do(x)) identifiable if (only) Z_1 is not measured?

Shaded nodes are observed

Identifiability

- An aspect of a statistical model is identifiable when it cannot be changed without there also being some change in the distribution of the observable variables.
- If we can alter part of a model with no observable consequences, that part of the model is unidentifiable.
- Identification is about the true distribution, not about finite data.

Identifiability

- X and Y observable, U unobservable
 - p(y|x) is identifiable
 - p(y|do(x)) not identifiable: can have different p(y|do(x)) with same distribution of observables p(x,y) (compensating changes to other parts of the model)
 - Cannot estimate p(y|do(x)) from observational data
- X, Y and U observable
 - Can write p(y|do(x)) in terms of distribution of observables
 - Confounding can be removed by an identification strategy
 - p(y|do(x)) identifiable
 - Can estimate p(y|do(x)) from observational data

Shaded nodes are observed

Identification strategies

- Interventional distribution is identifiable if it can be computed from the observational distribution and the graph structure
 - If there is a valid adjustment set for (X,Y), p(y|do(x)) is identifiable
 - Other means (discussed later):
 - Frontdoor criterion
 - Instrumental variables

- Let G = (V, E) be a causal Bayesian network, $(i, k) \in V, i \neq k$
- Adjustment formula

$$p(x_k|do(x_i)) = \int_{x_Z} p(x_k|x_i, x_Z) p(x_Z) dx_Z$$
 (1)

- Sets Z satisfying Eq. (1) are called valid adjustment sets
- If no proper subset of Z satisfies (1), Z is called a minimal adjustment set

Adjustment sets and confounding

• There is no confounding of the effect of x_i on x_k given covariates x_z if

$$p(x_k|do(x_i), x_Z) = p(x_k|x_i, x_Z)$$
 (2)

Z is then sufficient to adjust for confounding

- Let G = (V, E) be a causal Bayesian network, $(i, k) \in V, i \neq k$
- Can we find a graphical criterion for sets $Z \subset V$ that satisfy

$$p(x_k|do(x_i)) = \int_{x_Z} p(x_k|x_i, x_Z) p(x_Z) dx_Z$$
 (1)

for all $p(\cdot)$ such that (G,p) is a causal Bayesian network?

Adjusting for direct causes

- Let (G, p) be a causal Bayesian network
- Rewriting the truncated factorization formula yields:

$$p(x_{V\setminus\{i\}}|do(x_i)) = \frac{p(x_V)}{p(x_i|x_{pa(i)})} = p(x_{V\setminus\{i,pa(i)\}}|x_i,x_{pa(i)})p(x_{pa(i)})$$

• Let $k \notin \{i, pa(i)\}$, then integrating out all variables other than X_i and X_k yields

$$p(x_k|do(x_i)) = \int_{x_{pa(i)}} p(x_k|x_i, x_{pa(i)}) p(x_{pa(i)}) dx_{pa(i)}$$

This is known as adjusting for X_{pa(i)}

Example

- Interested in the causal effect of X on Y
- Parent adjustment implies controlling for $\mathbf{Z} = \{Z_1, Z_3\}$
- Can we compute p(y|do(x)) if (only) Z_1 is not measured?
 - I.e., is p(y|do(x)) identifiable if (only) Z_1 is not measured?

Shaded nodes are observed

Backdoor criterion (Pearl)

- Let G = (V, E) be a DAG and $i, k \in V, i \neq k$. A set $Z \subset V$ (not containing i and k) satisfies the backdoor criterion relative to (i, k) in G if:
 - i. $\mathbf{Z} \cap \operatorname{desc}(i) = \emptyset$, and
 - ii. **Z** blocks all "backdoor paths" from i to k in G, i.e., all paths between i and k that start with an arrow into i ($i \leftarrow \cdots k$)
- If $Z \subset V$ satisfies the backdoor criterion relative to (i, k) in a DAG G = (V, E) then for all $p(\cdot)$ such that (G, p) is a causal Bayesian network, we have:

$$p(x_k|do(x_i)) = \int_{x_Z} p(x_k|x_i, x_Z) p(x_Z) dx_Z$$

Example

Interested in the causal effect of X on Y

Can we compute p(y|do(x)) if any of Z_1, Z_2, Z_3 is not measured? To 20 desc(x) = \$\int \text{ blocks all back-door paters}

Valid adjustment sets:

1st park: blocked by & L 2nd park: opened by &z

九元, 程引, 仁己, 行为, 九己, 元元, 元元,

-> need to measure 23

Backdoor criterion

- Intuition behind backdoor criterion:
 - Backdoor paths carry spurious associations from X to Y
 - Paths directed along the arrows from X to Y carry causal associations
 - Blocking backdoor paths ensures that the measured association between X and Y is purely causal
 - Don't want to include descendants of X that are also ancestors of Y because this would block off a causal path
 - Don't want to include descendants of X that are also descendants of Y because this would introduce collider bias

Backdoor criterion

Clicker question - Backdoor criterion

Interested in the causal effect of X₁ on X₅

Select all sets that satisfy the backdoor

criterion:

- **2** {2}
- {3} ×
- **■** {2,7} ✓
- **•** {7}
- **2**, 3, 4}
- **8**

we can add 7 to every set => 14 in total

Backdoor criterion

- The backdoor criterion is sufficient for adjustment
- Can show: If **Z** blocks all backdoor paths from *i* to *k*: $p(x_k|do(x_i), x_z) = p(x_k|x_i, x_z)$
- If G = (V, E) is a DAG, and $i, k \in V, i \neq k$, then the following hold:
 - If $k \notin pa(i)$, then pa(i) satisfies the backdoor criterion relative to (i, k) in G
 - If $k \in pa(i)$, then $p(x_k|do(x_i)) = p(x_k)$
 - [See Series 3.]

Positivity

- General requirement for identifiability:
 - Empirical basis for estimating the consequences of the contemplated interventions
 - Combinations of values under the interventional regime must also be possible under the observational regime
- Adjustment formula: $p(x_k|do(x_i)) = \int_{x_Z} p(x_k|x_i, x_Z) p(x_Z) dx_Z$
- In absence of further assumptions, positivity assumption requires:

$$p(x_i, x_Z) > 0 \ \forall x_i \in \mathcal{X}_i, x_Z \in \mathcal{X}_Z$$

 E.g. violation if we want to compare "treatment" with "no treatment" in a patient group where some patients are so ill that they are never left untreated in practice

Simplification for multivariate Gaussian distributions

Adjustment formula

$$p(x_k|do(x_i)) = \int_{x_Z} p(x_k|x_i, x_Z) p(x_Z) dx_Z$$

- May be hard to compute, especially in the case of continuous variables and high-dimensional Z
- Simplification if the joint distribution p is Gaussian

Simplification for multivariate Gaussian distributions

Let

$$p(x_k|do(x_i)) = \int_{x_Z} p(x_k|x_i, x_Z) p(x_Z) dx_Z$$

and let $p(x_V)$ be multivariate Gaussian. Then

$$E(X_k|do(x_i = x_i' + 1)) - E(X_k|do(x_i = x_i')) = \gamma$$

where γ is the coefficient of X_i in the linear regression of X_k on X_i and X_z , i.e.

$$E(X_k|X_i,X_Z) = \alpha + \gamma X_i + \beta^T X_Z$$

for some α , β .

Simplification for multivariate Gaussian distributions

• Hence, we can then estimate the total effect of X_i on X_k in R by

$$coef(lm(xk \sim xi + xz))[2]$$

See Jupyter notebook and R scripts

Adjustment criterion (Shpitser et al, Perkovic et al)

- Let G = (V, E) be a DAG and $i, k \in V, i \neq k$. A set $Z \subset V$ (not containing i and k) satisfies the adjustment criterion relative to (i, k) in G if:
 - Z does not contain any descendants of nodes $r \neq i$ on a directed path from i to k in G
 - Z blocks all paths between i and k in G that are not directed from i to k
- A set $Z \subset V$ satisfies the adjustment criterion relative to (i,k) in a DAG G = (V, E) if and only if for all p such that (G, p) is a causal Bayesian network, we have:

$$p(x_k|do(x_i)) = \int_{x_Z} p(x_k|x_i, x_Z) p(x_Z) dx_Z$$

Example

- There are 28 sets satisfying the adjustment criterion.
 - [Exercise: Verify this.]

Adjustment criterion

- The adjustment criterion is necessary and sufficient for identifying total causal effects via adjustment.
- It is only sufficient for the identification of total causal effects.
 - Some effects are identified by other means, e.g., via the frontdoor criterion.

Should we adjust for as many variables as possible?

- X: Smoking
- Y: Future miscarriages
- A: Physiological abnormality induced by smoking
- B: Previous miscarriages

Is it always safe to adjust for "pre-treatment" variables?

- X: Smoking
- Y: Adult asthma
- A: Parental smoking
- B: Childhood asthma
- C: Predisposition toward asthma

Control for: 23, LA, BB, CB, dB, CB, dA, B, CB

LA3, dCB, LACB

Only controlling for B would introduce bios - "Me-bios"
37

Is it always safe to adjust for "pre-treatment" variables?

- X: Smoking
- Y: Adult asthma
- A: Parental smoking
- B: Childhood asthma
- C: Predisposition toward asthma

Summary: Determining adjustment sets

- Should we adjust for as many variables as possible?
 - No. Adjusting for certain variables can create bias.
- Is it always safe to adjust for "pre-treatment" variables?
 - No. This can create so-called M-bias.
- If we want the total effect of X_i on X_k in G ($k \notin pa(i)$) then:
 - pa(i) is a valid adjustment set (this includes not adjusting for anything if $pa(i) = \emptyset$).
 - Any set Z satisfying the backdoor criterion relative to (i, k) in G is a valid adjustment set.
 - A set Z is a valid adjustment set if and only if it satisfies the adjustment criterion relative to (i,k) in G.

Statistical efficiency

- We focused so far on sets that provide asymptotically correct causal effects.
- We did not consider statistical efficiency.
- Rules of thumb for statistically efficient estimates in linear regression setting:
 - Try to avoid variables that are strongly correlated with X_i .
 - This blows up the standard error.
 - Try to use variables that help predict X_k .
 - This decreases the residual variance and hence decreases the standard error.
 - This may mean using optional variables that are not strictly needed.
- [See Series 3.]

Frontdoor criterion

- X, Y and M observable, U unobservable
- Cannot use the backdoor or the adjustment criterion since U is unobservable
- Idea:
 - Find set of variables M which mediate the causal influence of X on Y, i.e., all direct paths from X to Y pass through M
 - If we can identify the effects of M on Y and of X on M, then we can combine them to get the effect of X on Y
 - "study the mechanisms by which X influences Y"

Shaded nodes are observed

Frontdoor criterion

• Let G = (V, E) be a DAG and $i, k \in V, i \neq k$.

A set $M \subset V$ (not containing i and k) satisfies the frontdoor criterion relative to (i, k) in G if:

- i. M blocks all directed paths from i to k in G
- ii. There are no unblocked backdoor paths from i to M in G
- iii. i blocks all backdoor paths from M to k in G

Frontdoor criterion

• If $M \subset V$ satisfies the frontdoor criterion relative to (i,k) in a DAG G = (V,E) then for all $p(\cdot)$ such that (G,p) is a causal Bayesian network, we have:

$$p(x_k|do(x_i')) = \int_{x_M} p(x_M|x_i') \int_{x_i} p(x_k|x_i, x_M) p(x_i) dx_i dx_M$$

Example

- X: Smoking
- Y: Lung cancer
- U: Carcinogenic genotype
- M: Amount of tar in lungs
- Assume that
 - smoking cigarettes has no effect on the production of lung cancer except as mediated through tar deposits (i.) $\rightarrow \sim$ direct edge from $\times \leftarrow \nearrow$
 - genotype has no direct effect on the amount of tar in the lungs (ii. + iii.)
 - no other factor that affects tar deposit has any influence on smoking (ຜິດ)

Shaded nodes are observed

Recap

- Concepts to know:
 - Identifiability
 - Positivity
 - Backdoor criterion
 - Simplification in Gaussian setting
 - Adjustment criterion
 - Frontdoor criterion

References and acknowledgments

- Slides adapted from M. Maathuis
- Some examples from
 - Shalizi (2019). Chapter 22.
 - Pearl and Mackenzie (2018). The Book of Why.
 - Pearl (2009). Causality: Models, Reasoning and Inference.