Deep Learning and Back Propagation

Classification vs. Regression

Regression

Classification as regression?

Logistic Regression

Logistic Regression

How about quadratic model?

Modularity: keep the basic module clean and functional

Regression

$$y = \sum_{j=1}^{3} w'_{j} \delta \left(\sum_{i=1}^{3} w_{ij} x_{i} + b \right) + b'$$

 $\overline{c^T}$

$$y = b' + c^T \sigma(b + W x)$$

 x_1

What is W?

$$\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$$

Class as one-hot vector

Class 1

Class 2

Class 3

$$\widehat{y} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 or $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ or $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

Regression

feature

$$\widehat{y} + \cdots + y = b + c^T \sigma(b + W x)$$

Classification

feature

$$y = b' + W' \sigma(b + W x)$$

label $\hat{y} \leftarrow y' = softmax(y)$

O or 1 Make all values Can have

between 0 and 1

any value

$$y_i' = \frac{exp(y_i)}{\sum_j exp(y_i)}$$

Soft-max

Loss of Classification

Regression: Mean Square
$$e = \sum_{i} (\widehat{y}_i - y_i')^2$$
Error (MSE)

$$e = -\sum_{i} \widehat{\mathbf{y}}_{i} ln \mathbf{y}'_{i}$$

Minimizing cross-entropy is equivalent to maximizing likelihood.

Cross Entropy v.s. Square Error

Basic unit in Neural Network

Different connection leads to different network structures

Network parameter θ : all the weights and biases in the "neurons"

Neuron is a linear function plus non-linear transformation. Is non-linear transformation necessary?

- A necessary
- Not necessary

Fully Connect Feedforward Network

全连接前馈网络

Fully Connect Feedforward Network

This is a function.

Input vector, output vector

$$f\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}0.62\\0.83\end{bmatrix} \quad f\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = \begin{bmatrix}0.51\\0.85\end{bmatrix}$$

Given network structure, define a function set

Fully Connect Feedforward Network

Matrix Operation

Neural Network

Neural Network

$$y = f(x)$$

Using parallel computing techniques to speed up matrix operation

Output Layer

Feature extractor replacing feature engineering

Given a 3-layer fully connect feedforward network, input layer 10 nodes, layer1(hidden layer) 20 neurons, layer2(hidden layer) 5 neuron, layer3(output layer) 3 neurons, how many parameters(weight and bias) in this network?

Answer: [填空1]

巨量AI模型

- GPT-3 英文语言模型, 1750亿参数
- 源1.0, 浪潮, 全球最大规模AI巨量模型, 2457亿参数 (2021.9.29)
 - 训练集,5年整个中文互联网全部数据,文本分类上5TB中文数据集,2000亿词

对话	Α	В
问题1	姐姐啥时候回来捏? 过年前几天吧。	姐姐啥时候回来捏? 不知道,你要是想姐姐,就给姐姐写信。
问题2	和喜欢的男生告白了他现在还没回我 和喜欢的女生表白了她说我们只适合做朋友	和喜欢的男生告白了他现在还没回我 我想知道结局
问题3	我买了那套章蜜糖的针织裙 哪套?有链接不?	我买了那套章蜜糖的针织裙 穿了吗?好看不好看?
问题4	不吃东西真的好难啊 觉得今天如果真的吃的话,明天铁定会变胖	不吃东西真的好难啊 我也觉得!我一定要瘦

巨量AI模型

- T5
 - Google, 2019.10
 - 110亿
- Megatron-Turing(威震天-图灵)
 - Microsoft and NVIDA, 2021.10.12
 - 5300亿
- M6
 - 阿里达摩研究院, 2021.3
 - 10万亿

Example Application

Input

No ink \rightarrow 0

Output

Each dimension represents the confidence of a digit.

Example Application

Handwriting Digit Recognition

Example Application

You need to decide the network structure to let a good function in your function set.

Three Steps for Deep Learning

Deep Learning is so simple

Loss for an Example

Total Loss

For all training data ...

Total Loss:

$$L = \sum_{n=1}^{N} C^n$$

Find *a function in function set* that
minimizes total loss L

Find <u>the network</u> <u>parameters</u> θ^* that minimize total loss L

Three Steps for Deep Learning

Deep Learning is so simple

Gradient Descent

Gradient Descent

Backpropagation

• Backpropagation: an efficient way to compute $\partial L/\partial w$ in neural network

Backpropagation 反向传播

Chain Rule

Case 1

$$y = g(x)$$
 $z = h(y)$

$$\Delta x \to \Delta y \to \Delta z$$

$$\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$$

Case 2

$$x = g(s)$$
 $y = h(s)$ $z = k(x, y)$

$$\Delta s = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

Backpropagation

$$L(\theta) = \sum_{n=1}^{N} C^{n}(\theta) \longrightarrow \frac{\partial L(\theta)}{\partial w} = \sum_{n=1}^{N} \frac{\partial C^{n}(\theta)}{\partial w}$$

Backpropagation

$\partial z \partial C$

(Chain rule)

Compute $\partial z/\partial w$ for all parameters

Backward pass:

Backpropagation – Forward pass

Compute $\partial z/\partial w$ for all parameters

$$\frac{\partial z}{\partial w_1} = ? x_1$$

$$\frac{\partial z}{\partial w_2} = ? x_2$$

The value of the input connected by the weight

Backpropagation – Forward pass

Compute $\partial z/\partial w$ for all parameters

$$\partial C \quad \partial y_1 \ \partial C$$

$$\frac{\partial z'}{\partial z'} = \frac{\partial^{-1}}{\partial z'} \frac{\partial y_1}{\partial y_1}$$

$$\frac{\partial C}{\partial z''} = \frac{\partial y_2}{\partial z''} \frac{\partial C}{\partial y_2}$$

Compute $\partial C/\partial z$ for all activation function inputs z

Case 2. Not Output Layer

Compute $\partial C/\partial z$ for all activation function inputs z

Case 2. Not Output Layer

Compute $\partial C/\partial z$ for all activation function inputs z

Compute $\partial C/\partial z$ from the output layer

Compute $\partial C/\partial z$ for all activation function inputs z

Compute $\partial C/\partial z$ from the output layer

Backpropagation – Summary

Forward Pass

Backward Pass

Backpropagation

- You don't do it by your own, just use
 - Tensorflow (google)
 - Keras (on Tensorflow, CNTK, Theano)
 - Pytorch (facebook)
 - Caffe2 (facebook)
 - Paddlepaddle (百度)
 - Mindspore (华为)
 - CNTK(Microsoft)
 - MXNet(Amazon)
 - Deeplearing4j

DNN实例(IRIS数据集)

- 经典数据集, 鸢尾花数据集, 分类问题, <u>http://archive.ics.uci.edu/ml/machine-learning-databases/iris/</u>
- 150个样本,每个样本4个特征,分为3类

	sepal_length	sepal_width	petal_length	petal_width	class
128	6.4	2.8	5.6	2.1	virginica
18	5.7	3.8	1.7	0.3	setosa
130	7.4	2.8	6.1	1.9	virginica
105	7.6	3.0	6.6	2.1	virginica
107	7.3	2.9	6.3	1.8	virginica
78	6.0	2.9	4.5	1.5	versicolor
83	6.0	2.7	5.1	1.6	versicolor
14	5.8	4.0	1.2	0.2	setosa
5	5.4	3.9	1.7	0.4	setosa
133	6.3	2.8	5.1	1.5	virginica

Keras搭建DNN


```
import keras as K

# 2. 定义恒型

init = K.initializers.glorot_uniform(seed=1)

simple_adam = K.optimizers.Adam()

model = K.models.Sequential()

model.add(K.layers.Dense(units=5, input_dim=4, kernel_initializer=init, activation='relu'))

model.add(K.layers.Dense(units=6, kernel_initializer=init, activation='relu'))

model.add(K.layers.Dense(units=3, kernel_initializer=init, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer=simple_adam, metrics=['accuracy'])
```

模型训练

```
1 # 3. 训练模型
2 b_size = 1
3 max_epochs = 100
4 print("Starting training ")
5 h = model.fit(train_x, train_y, batch_size=b_size, epochs=max_epochs, shuffle=True, verbose=1)
6 print("Training finished \n")
```

模型测试