

Amendments to the Claims

The listing of claims below will replace all prior versions and listings of claims in the present application.

Claim Listing

- 1 1. (Original) A method of verifying correct operation of a forward error
2 correction decoder, comprising the steps of:
 - 3 programmably selecting a desired number of errors for insertion into a plurality of
4 data signals;
 - 5 defining a plurality of code words of the data signals;
 - 6 inserting into one of the data signals the desired number of errors using an error
7 insertion circuit;
 - 8 repeating said inserting step in an iterative fashion to insert into different data
9 signals the desired number of errors wherein the errors are placed within
10 the code words of the data signals at different location permutations for
11 each data signal;
 - 12 transmitting the data signals with the inserted errors to a receiver; and
13 determining that the data signals received at the receiver contain the inserted
14 errors.
- 1 2. (Original) The method of Claim 1 wherein said repeating step cycles through
2 all possible permutations of all the code word locations.
- 1 3. (Original) The method of Claim 1 wherein the error insertion circuit operates
2 in one of a plurality of modes, including a short frame mode for shorter permutation
3 cycles, and further comprising the steps of:
 - 4 selecting the short frame mode for operation; and
5 in response to said selecting step, limiting said repeating step to cycle through less
6 than all possible permutations of all the code word locations.

1 4. (Original) The method of Claim 1 wherein:
2 the data signal is a SONET data signal having nine rows; and
3 said repeating step results in the insertion of errors in 32 code words defined
4 within each of the nine SONET rows.

1 5. (Original) The method of Claim 1 wherein said repeating step stops after one
2 permutation cycle in response to the further step of programming the error insertion
3 circuit for single cycle operation.

1 6. (Original) The method of Claim 1 wherein said determining step includes the
2 step of examining an error accumulator count in the receiver to match a number of
3 accumulated errors with the number of inserted errors.

1 7. (Original) The method of Claim 6 wherein said examining step matches the
2 number of accumulated errors with the number of inserted errors using a modulo
3 function.

1 8. (Original) The method of Claim 1 wherein:
2 the error insertion circuit includes an error mask for selectively preventing
3 insertion of one or more of the errors; and
4 said repeating step is limited to inserting errors in selected code words based on
5 the error mask.

1 9. (Original) The method of Claim 1 wherein said repeating step includes the step
2 of tracking the location of a current code word in which an error is being inserted.

1 10. (Original) The method of Claim 9 wherein said tracking step includes the step
2 of incrementing one or more registers in a location counter having at least first, second,
3 and third registers, the first register corresponding to a column location, the second
4 register corresponding to an index location, and the third register corresponding to a byte
5 location.

1 11. (Original) A method of injecting a plurality of errors into a SONET data
2 stream, comprising the steps of:
3 programming an error insertion circuit to select a desired number of errors for
4 insertion into a plurality of successive SONET data signals each having a
5 plurality of rows;
6 defining a plurality of forward error correction (FEC) code words within each of
7 the rows of the SONET data signals;
8 inserting the desired number of errors into a first one of the SONET data signals
9 at a first code word permutation location, using the error insertion circuit;
10 tracking the first code word permutation location in response to said step of
11 inserting the desired number of errors into the first SONET data signal;
12 and
13 inserting the desired number of errors into a second one of the SONET data
14 signals at a second code word permutation location, using the error
15 insertion circuit, and in response to said tracking step.

1 12. (Original) The method of Claim 11 further comprising the step of
2 programming the error insertion circuit for single cycle operation.

1 13. (Original) The method of Claim 11 further comprising the step of
2 programming the error insertion circuit for short frame mode operation.

1 14. (Original) The method of Claim 11 wherein said tracking step includes the
2 step of incrementing one or more registers in a location counter having at least first,
3 second, and third registers, the first register corresponding to a SONET column location,
4 the second register corresponding to an index location, and the third register
5 corresponding to a byte location, the index and byte locations together representing a
6 SONET byte location.

1 15. (Original) The method of Claim 11 wherein said inserting steps occur after
2 the further step of scrambling the SONET data signals.

1 16. (Original) An error injection circuit comprising:
2 means for selectively programming a desired number of errors for insertion into a
3 plurality of data signals;
4 means for defining a plurality of code words of the data signals; and
5 means for repeatedly inserting the desired number of errors into different ones of
6 the data signals at different code word permutation locations.

1 17. (Original) The error injection circuit of Claim 16 wherein said inserting
2 means cycles through all possible permutations of all the code word locations.

1 18. (Original) The error injection circuit of Claim 16 further comprising means
2 for selecting a short frame mode of operation, wherein said inserting means limits
3 insertion of the errors to cycle through less than all possible permutations of all the code
4 word locations when the short frame mode of operation is selected.

1 19. (Original) The error injection circuit of Claim 16 wherein:
2 the data signal is a SONET data signal having nine rows; and
3 said inserting means inserts errors in 32 code words defined within each of the
4 nine SONET rows.

1 20. (Original) The error injection circuit of Claim 16 further comprising means
2 for selecting single cycle operation, wherein said inserting means stops inserting errors
3 after one permutation cycle when the single cycle operation is selected.

1 21. (Original) The error injection circuit of Claim 16 further comprising error
2 mask means for selectively preventing insertion of one or more of the errors, wherein
3 said inserting means inserts errors in selected code words based on said error mask
4 means.

1 22. (Original) The error injection circuit of Claim 16 wherein said insertion
2 means includes means for tracking the location of a current code word in which an error
3 is being inserted.

1 23. (Original) The error injection circuit of Claim 16 wherein said tracking means
2 increments one or more registers in a location counter having at least first, second, and
3 third registers, the first register corresponding to a column location, the second register
4 corresponding to an index location, and the third register corresponding to a byte
5 location.

1 24. (Cancelled)

1 25. (Currently Amended) ~~The OC-192 input/output card of Claim 24 wherein~~
2 ~~said verifying means includes:~~ An OC-192 input/output card comprising:
3 four OC-48 processors; and
4 an OC-192 front-end application-specific integrated circuit (ASIC) connected to
5 said four OC-48 processors, said OC-192 front-end ASIC including
6 a transmitter having means for interleaving four OC-48 signals to create
7 an OC-192 signal, and means for encoding forward error
8 correction (FEC) codes in each of the four OC-48 signals,
9 a receiver having means for de-interleaving an OC-192 signal to create
10 four OC-48 signals, and means for decoding FEC codes in the OC-
11 192 signal, and
12 means for verifying correct operation of said encoding means and said
13 decoding means, wherein said verifying means includes:
14 means for selectively programming a desired number of errors for
15 insertion into a plurality of successive SONET data signals;
16 means for defining a plurality of FEC code words of the SONET
17 data signals;

18 means for repeatedly inserting the desired number of errors into
19 different ones of the SONET data signals at different code
20 word permutation locations;
21 means for routing the SONET data signals with the inserted errors
22 from said transmitter to said receiver; and
23 means for determining that the SONET data signals received at
24 said receiver contain the inserted errors.

1 26. (Original) The OC-192 input/output card of Claim 25 wherein said inserting
2 means cycles through all possible permutations of all the FEC code word locations.

1 27. (Original) The OC-192 input/output card of Claim 25 further comprising
2 means for selecting a short frame mode of operation, wherein said inserting means limits
3 insertion of the errors to cycle through less than all possible permutations of all the code
4 word locations when the short frame mode of operation is selected.

1 28. (Original) The OC-192 input/output card of Claim 25 further comprising
2 means for selecting single cycle operation, wherein said inserting means stops inserting
3 errors after one permutation cycle when the single cycle operation is selected.

1 29. (Original) The OC-192 input/output card of Claim 25 further comprising
2 error mask means for selectively preventing insertion of one or more of the errors,
3 wherein said inserting means inserts errors in selected code words based on said error
4 mask means.

1 30. (Original) The OC-192 input/output card of Claim 25 wherein said insertion
2 means includes means for tracking the location of a current code word in which an error
3 is being inserted.

1 31. (Currently Amended) The OC-192 input/output card of Claim 24 25 wherein
2 said programming means allows from one to four errors to be inserted in a given SONET
3 data signal.

1 32. (Currently Amended) An OC-192 input/output card comprising:
2 four OC-48 processors; and
3 an OC-192 front-end application-specific integrated circuit (ASIC) connected to
4 said four OC-48 processors, said OC-192 front-end ASIC including
5 a transmitter having means for interleaving four OC-48 signals to create
6 an OC-192 signal, and means for encoding forward error
7 correction (FEC) codes in each of the four OC-48 signals,
8 a receiver having means for de-interleaving an OC-192 signal to create
9 four OC-48 signals, and means for decoding FEC codes in the OC-
10 192 signal, and
11 means for verifying correct operation of said encoding means and said
12 decoding means, The OC-192 input/output card of Claim 24
13 wherein said encoding means and said decoding means use a
14 triple-error correcting Bose-Chaudhuri-Hocquenghem (BCH)
15 code.

1 33. (Original) The OC-192 input/output card of Claim 25 wherein said
2 determining means includes an error accumulator located in said receiver, and means for
3 examining an error accumulator count of the error accumulator to match a number of
4 accumulated errors with the number of inserted errors.

1 34. (Original) The OC-192 input/output card of Claim 30 wherein said tracking
2 means increments one or more registers in a location counter having at least first, second,
3 and third registers, the first register corresponding to a SONET column location, the
4 second register corresponding to an index location, and the third register corresponding to
5 a byte location, the index and byte locations together representing a SONET byte
6 location.

1 35. (Original) The OC-192 input/output card of Claim 34 wherein said tracking
2 means contains 10 location counters, including:
3 a first location counter for tracking a location of a first error bit;

4 second and third location counters nested together for tracking a location of a
5 second error bit;
6 fourth, fifth and sixth location counters nested together for tracking a location of a
7 third error bit; and
8 seventh, eighth and ninth location counters nested together for tracking a location
9 of a fourth error bit.

1 36. (Original) The OC-192 input/output card of Claim 33 wherein said error
2 accumulator accumulates both corrected errors and uncorrectable errors.

1 37. (Original) An error injection circuit comprising:
2 an error selection interface which programs a desired number of errors for
3 insertion into a plurality of data signals;
4 an encoding circuit which defines a plurality of code words of the data signals;
5 and
6 a location counter which increments through a plurality of locations in each of
7 the code words and inserts the desired number of errors into different ones
8 of the data signals at different code word permutation locations.

1 38. (Original) The error injection circuit of Claim 37 wherein said location
2 counter means cycles through all possible permutations of all the code word locations.

1 39. (Original) The error injection circuit of Claim 37 wherein:
2 the data signal is a SONET data signal having nine rows; and
3 said inserting means inserts errors in 32 code words defined within each of the
4 nine SONET rows.

1 40. (Original) The error injection circuit of Claim 37 further comprising an error
2 mask which selectively prevents insertion of one or more of the errors in selected code
3 words