CSCE 411: Design and Analysis of Algorithms

Lecture 2: Divide and Conquer, Part II

Date: Lecturer: Nate Veldt

Course Logistics

- Read section 4.6 if you are interested in the proof of the Master Theorem.
- Continue skimming chapters 1-3
- Begin reading Chapter 15 for our next unit on Dynamic Programming
- $\bullet\,$ Syllabus quiz is due Sat, Aug 24. HW 1 and intro video due Fri, Aug 30

1 Continued Analysis of Merge Sort

Merge Sort. Given n numbers to sort

- Divide the sequence of length n into arrays of length $\lceil n/2 \rceil$ and $\lceil n/2 \rceil$
- Recursively sort the two halves
- (Merge Procedure) Combine the two halves by sorting them.

Question 1. What is the runtime of the merge procedure in Merge Sort?

- $\Theta(1)$
- $\Theta(n \lg n)$

 $oldsymbol{\mathsf{D}} oldsymbol{\Theta}(n^2)$

Proof: At each step me compane two numbers and write one of them to a master array, this takes $\Theta(1)$ time. There are n steps since the master array has length n, so $\Theta(n)$ time total.

2 Recurrence Analysis for Divide and Conquer

Runtimes for divide and conquer algorithms can be described in terms of a **recurrence**

relation, which <u>lists the runbine for a problem in terms of</u> the runbine for a smaller instance of the problem. Let T(n) denote the runtime for a problem of instance n.

Example: merge-sort Assume for this analysis that $n = 2^p$ where $p \in \mathbb{N}$.

$$T(n) = \begin{cases} \theta(1) & \text{if } n=1\\ 2T(n/2) + \theta(n) & \text{if } n>1 \end{cases}$$

=
$$2^{p} T(n/2^{p}) + p \theta(n)$$

= $n T(1) + lg n \theta(n)$

Three methods for solving recurrences

Given a recurrence relation, there are three approaches to finding the overall runtime.

- \bullet Recursion tree:

n 2 2 / 2.000001 n2 not polynomially

The Master Theorem for Recurrence Relations Smaller than n2 Log n

Theorem 4.1. Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n)be defined on the nonnegative integers by the relation:

f(n) $= O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = O(n^{\log_b a}) = O(n^{\log_b a - \epsilon})$

$$f(n) = 0$$
 ($f(n) = \Theta(n^{\log_b a})$, then $f(n) = 0$ ($f(n) = 0$)

$$f(n) = \Omega(n^{\log_b a + \epsilon}) \text{ for some constant } \epsilon > 0, \text{ and if } af(n/b) \le cf(n) \text{ for some constant } c < 1 \text{ and all sufficiently large } n, \text{ then } \underline{\hspace{2cm}}$$

4.1 **Example: Merge-Sort**

$$T(n) = \Theta(f(n))$$

Recall that Merge-Sort satisfies the following recurrence:

$$T(n) = \begin{cases} \theta(1) & \text{if } n = 1\\ 2T(n/2) + \theta(n) & \text{if } n > 1 \end{cases}$$
 (1)

We can apply the master theorem with:

$$a=2$$
 $b=2$ $g(n)=n^{\log_2 2}$ $= n$

$$f(n) = \Theta(n) = g(n)$$

What to know about the master method?

Follows by applying the recursion tree method on a general recursion relationship.

A full proof can be found in Section 4.6 of the textbook.

Knowing how to apply it. What's more important:

$$T(n) = a T(n/b) + f(n)$$

4.3 Examples

Apply the master theorem to the following recurrences:

$$\frac{a}{q}$$
 $\frac{b}{3}$ $\frac{g(n)}{n^{\log_3 n}} = n^{\log_3 n} =$

3
$$-1 - n \log n$$
 $-1 - n \log n$ $-1 - n \log n$ (3)

7 2
$$n^{\log_2 7}$$
 ">>" $\Theta(n^2)$ $T(n) = 7T(n/2) + \Theta(n^2)$ (4)

(a)
$$n^{\log_3 9} = n^2 > 7$$
 V

$$g(n) \qquad f(n)$$

$$T(n) = \Theta(g(n)) = \Theta(n^c)$$

5 Strassen's Algorithm for Matrix Multiplication

Let A and B be $n \times n$ matrices, and C = AB. The (i, j) entry of C is defined by

$$C_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}$$

$$A$$

$$B$$

$$A_{ii} \quad a_{12} \quad a_{i3} \quad a_{14}$$

$$A_{22} \quad a_{23} \quad a_{24}$$

$$A_{31} \quad A_{32} \quad A_{33} \quad a_{34}$$

$$A_{41} \quad A_{42} \quad A_{45} \quad A_{44}$$

$$C_{11} = A_{11} \quad b_{11} + A_{12} \quad b_{21} + A_{13} \quad b_{31} + A_{12} \quad b_{41}$$

$$C_{11} = A_{11} \quad b_{11} + A_{12} \quad b_{21} + A_{13} \quad b_{31} + A_{12} \quad b_{41}$$

Algorithm 1 Simple Square Matrix Multiply

```
Input: A, B \in \mathbb{R}^{n \times n}
Output: C = AB \in \mathbb{R}^{n \times n}
Let C = zeros(n, n)
for i = 1 to n do
for j = 1 to n do
c_{ij} = 0
for i = 1 to n do
c_{ij} = c_{ij} + a_{ik}b_{kj}
end for
end for
Return C
```

An attempt at divide-and conquer

Assume that $n = 2^p$ for some positive integer p > 1.

Algorithm 2 Simple Recursive Square Matrix Multiply (SSMM)

Input:
$$A, B \in \mathbb{R}^{n \times n}$$

Output: $C = AB \in \mathbb{R}^{n \times n}$
if $n == 1$ then $c_{11} = a_{11}b_{11}$
else $C_{12} = SSMM(A_{11}, B_{11}) + SSMM(A_{12}, B_{21})$
 $C_{12} = SSMM(A_{11}, B_{12}) + SSMM(A_{12}, B_{22})$
 $C_{21} = SSMM(A_{21}, B_{11}) + SSMM(A_{22}, B_{21})$
 $C_{22} = SSMM(A_{21}, B_{12}) + SSMM(A_{22}, B_{22})$
end if $C_{22} = SSMM(A_{21}, B_{22})$

Question 2. What recursion applies to the above algorithm when n > 1?

A
$$T(n) = XT(n/2) + O(n^2)$$

B $T(n) = 8T(n/2) + O(n^2)$

C $T(n) = 8T(n/2) + O(n^2)$

D $T(n) = 8T(n/2) + O(n^2)$

 $C_{11} = A_{11}B_{11} + A_{12}B_{21}$ $Master \cdot Thm, T(n) = \tilde{\Theta}(g(n)) = \Theta(n^3)$

5.2 Strassen's Algorithm

Strassen's algorithm introduces a new way to combine matrix multiplications and additions to obtain the matrix C.

Step 1: Partition A and B as before.

Step 2: Compute S matrices

$$S_1 = B_{12} - B_{22}$$
 $S_2 = A_{11} + A_{12}$
 $S_3 = A_{21} + A_{22}$ $S_4 = B_{21} - B_{11}$
 $S_5 = A_{11} + A_{22}$ $S_6 = B_{11} + B_{22}$
 $S_7 = A_{12} - A_{22}$ $S_8 = B_{21} + B_{22}$
 $S_9 = A_{11} - A_{21}$ $S_{10} = B_{11} + B_{12}$

Runtime: we add (or subtract) 2 matrices of size $n/2 \times n/2$, 10 times.

Step 3: Compute P matrices

$$P_1 = A_{11} \cdot S_1 = A_{11} \cdot B_{12} - A_{11} \cdot B_{22}$$

$$P_2 = S_2 B_{22}$$

$$P_3 = S_3 B_{11}$$

$$P_4 = A_{22} S_4$$

$$P_5 = S_5 S_6$$

$$P_6 = S_7 S_8$$

$$P_7 = S_9 S_{10}$$

Runtime: we recursively call the matrix-matrix multiplication function for 7 matrices of size $n/2 \times n/2$.

Step 4: Combine Using the P matrices, we can show that

$$C_{11} = P_5 + P_4 - P_2 + P_6$$

$$C_{12} = P_1 + P_2$$

$$C_{21} = P_3 + P_4$$

$$C_{22} = P_5 + P_1 - P_3 - P_7$$

5.3 Analysis of Strassen's Method

Question 3. Strassen's algorithm satisfies which recurrence relation for n > 1?

A
$$T(n) = 8T(n/2) + O(n^2)$$

B
$$T(n) = 23T(n/2)$$

$$T(n) = 7T(n/2) + O(n^2)$$

$$T(n) = 10T(n/2) + O(n^2)$$

$$T(n) = 17T(n/2) + O(1)$$