Anwesenheitsübung 5 zur Vorlesung 'Numerische Methoden der Physik' SS 2014

Bastian Knippschild, Christian Jost und Mitarbeiter

Bearbeitung in den Übungen am 13. – 15. 05. 2014

Numerische Differentiation

In dieser Aufgabe soll ein Programm erstellt werden, dass sowohl nach der 2-Punkt Formel

$$f'(x) = \frac{f(x+h) - f(x)}{h} + O(h)$$
 (1)

als auch der 3-Punkt Formel

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$
 (2)

numerisch die Ableitung f'(x) zu einer Funktion f(x) an einer beliebigen Stelle x bestimmt und ausgibt. Dabei soll der Parameter h frei wählbar sein.

Verwenden sie als Funktionen $f_1(x) = \sin(x)$, $f_2(x) = \exp(-0.5 * x^2)$ und $f_3(x) = \log(x)$ und überprüfen Sie ihr Programm durch Vergleich mit folgenden, aus der analytischen Ableitung bestimmten Werten:

 $f'_1(0.5) = 0.8775825618903728$ $f'_1(1) = 0.5403023058681398$ $f'_1(5) = 0.28366218546322625$ $f'_2(0.5) = -0.4412484512922977$ $f'_2(1) = -0.6065306597126334$ $f'_2(5) = -0.000018633265860393355$ $f'_3(0.5) = 2$ $f'_3(1) = 1$ $f'_3(5) = 0.2$

Untersuchen Sie auch das Verhalten der Abweichungen vom "wahren" Wert für beide Formeln als Funktion von h. Wird die erwartete Abhängigkeit reproduziert?

Numerische Integration

Nun wollen wir uns analog zur ersten Aufgabe mit einem einfachen Verfahren zur numerischen Integration beschäftigen. Hierzu sollen die Kastenregel 1. Ordnung (Trapezregel)

$$\int_{a}^{b} f(x) dx = \frac{h}{2} (f_0 + 2f_1 + 2f_2 + \dots + 2f_{n-1} + f_n) + O(h^2)$$
 (3)

und die Kastenregel 2. Ordnung (Simpsonregel)

$$\int_{a}^{b} f(x) dx = \frac{h}{3} (f_0 + 4f_1 + 2f_2 + 4f_3 + \dots + 4f_{n-1} + f_n) + O(h^4)$$
 (4)

implementiert werden. Testen Sie ihre Implementation dann durch Integration von $f_1(x) = \sin(x)$ im Intervall $[0, \frac{3}{2}\pi]$. Untersuchen Sie auch hier für beide Algorithmen den resultierenden Fehler, also die Abweichung vom wahren Wert, als Funktion der Stützstellenzahl und als Funktion von h.