ChernyshovDS 11012025-105903

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 1314 М Γ ц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 13 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 293 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 1 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 2960 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 1608 МГц до 1642 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

Варианты ОТВЕТА:

1) -63 дБм 2) -66 дБм 3) -69 дБм 4) -72 дБм 5) -75 дБм 6) -78 дБм 7) -81 дБм 8) -84 дБм 9) -87 дБм

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 1. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 3? (Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 1 – Экран анализатора спектра

Варианты ОТВЕТА:

$$1) \ \{17; -69\} \quad 2) \ \{5; 8\} \quad 3) \ \{14; -6\} \quad 4) \ \{5; -6\} \quad 5) \ \{14; -34\} \quad 6) \ \{5; 29\} \quad 7) \ \{11; -27\}$$

8) $\{11; -41\}$ 9) $\{5; -27\}$

На рисунке 2 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1=r_4$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 2 – Двойной балансный смеситель

Частота гетеродина 123 МГц, частота ПЧ 48 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 1) 615 MΓ_{II}
- 2) 321 MΓ_Ц
- 3) 75 МГц
- 4) 219 MΓ_{II}.

Для выделения только **верхней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный Т-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная минус 31 градусов.

Чему равна индуктивность компонента фазовращателя, если частота $\Pi \Psi$ равна 176 $M\Gamma_{\rm H}$?

Варианты ОТВЕТА:

1) 79.9 нГн 2) 38.8 нГн 3) 52.7 нГн 4) 25.6 нГн

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = 0.29509 - 0.43236i, s_{31} = 0.43291 + 0.29546i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь нижняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

1) -64 дБн 2) -66 дБн 3) -68 дБн 4) -70 дБн 5) -72 дБн 6) -74 дБн 7) -76 дБн 8) -78 дБн 9) 0 дБн

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 1.5 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 33 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 13.4 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 3.)

Рисунок 3 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

1) 5.3 дБ 2) 5.9 дБ 3) 6.5 дБ 4) 7.1 дБ 5) 7.7 дБ 6) 8.3 дБ 7) 8.9 дБ 8) 9.5 дБ 9) 10.1 дБ