

Sistema FIESC – DICORP Diretoria de Desenvolvimento Industrial e Corporativo

Processo Seletivo	01798/2024	Etapa	Avaliação Prática - Estudo de Caso + Entrevista
Entidade	SENAI/SC	Data	23 de agosto de 2024

Dados a serem preenchidos pelo Candidato(a):

Nome Completo	JAIRO ALONSO QUINTERO QUINTERO		
E-mail	quintero.j.a.q@posgrad.ufsc.br	CPF	010.873.369-61

Tema: INTELIGÊNCIA ARTIFICIAL

RESUMO

Este estudo aborda a falha de equipamentos elétricos utilizados na transmissão e distribuição de energia, destacando que a principal causa são os defeitos por isolamento que ocasionam descargas elétricas localizadas chamadas de descarga parcial. A descarga parcial pode causar a degradação progressiva do isolamento e, eventualmente, levar ao colapso do sistema. As descargas parciais ocorrem quando a tensão do campo elétrico ultrapassa a constante dielétrica local do meio isolante, liberando energia em várias formas, como ondas acústicas e eletromagnéticas ocasionando o enfraquecimento gradual do isolamento levando a uma potencial falha do sistema. Analisar as descargas parciais se tornou uma ferramenta eficaz para monitorar a condição de equipamentos elétricos. Devido à dificuldade de acesso a esses equipamentos de alta tensão, o uso de algoritmos de inteligência artificial (IA) tem se mostrado promissor. Este estudo de caso visa desenvolver um pipeline de IA que vai desde a análise e preparação de dados até a implementação do algoritmo em um container Docker no GitHub. O objetivo é prever esse tipo de falhas de isolamento em equipamentos de transmissão e distribuição de energia com base na análise das as descargas parciais, proporcionando detecção precoce de falhas, redução de tempo de inatividade e custos de manutenção, e aumento da confiabilidade do sistema elétrico. A correta análise e interpretação dos dados das descargas parciais são cruciais, pois uma avaliação imprecisa pode levar a conclusões erradas sobre o estado do equipamento. Além disso, a formatação adequada dos dados é fundamental para garantir que o algoritmo de IA possa processá-los corretamente e fornecer resultados confiáveis. A formatação de dados garante a consistência, facilita a identificação de padrões e é essencial para a eficácia do processo de previsão de falhas, impactando diretamente na segurança e confiabilidade do sistema elétrico, foram analisados. Os dados fornecidos pelo cliente foram analisados onde identificou-se algumas inconsistências que foram estudadas e tratadas para uma realizar uma correta análise.

Palavras-chave: Descarga Parcial (PD), Degradação do Isolamento, Python, Inteligência Artificial (IA), Previsão de Falhas, Manutenção Preditiva.

Sistema FIESC – DICORP Diretoria de Desenvolvimento Industrial e Corporativo

SUMÁRIO

1	CONTEXTUALIZAÇÃO DO ESTUDO DE CASO: PROBLEMA	3
	1.1.1 Justificativa do projeto:	3
	1.1.2 Abordagem:	3
	1.1.3 Objetivo Geral	3
	1.1.3.1 Objetivos específicos	4
	1.1.3.2 Foco do trabalho	4
	1.1.4 Etapas da análise	4
2	DESENVOLVIMENTO DO ESTUDO DE CASO	8
	2.1.1 Análise preliminar dos dados	8
	2.1.2 Análise Exploratória dos dados, corresponde à parte I, dados sem tratamento	8
	2.1.3 Definição dos Requisitos – Coleta e análise de dados	10
	2.1.4 Detalhamento técnico do problema	13
	2.1.5 Método de análise	14
	2.1.6 Coleta e preparação de dados	17
	2.1.7 Desenvolvimento do Modelo de IA	23
3	RESULTADOS E DISCUSSOES	23
4	CONSIDERAÇÕES FINAIS	24
5	REFERÊNCIAS	24
AN	NEXO 1. CÓDIGO RESUMIDO	25

Sistema FIESC – DICORP Diretoria de Desenvolvimento Industrial e Corporativo

1 CONTEXTUALIZAÇÃO DO ESTUDO DE CASO: PROBLEMA

Os equipamentos elétricos utilizados na transmissão e distribuição de energia falham principalmente devido a problemas de isolamento e isso pode ocorrer devido a:

- Defeitos;
- Impurezas;
- Degradação do isolamento.

Estudos revelaram que defeitos no isolamento muitas vezes causam descargas elétricas localizadas que conectam parcialmente o isolamento entre os condutores, um fenômeno conhecido como Descarga Parcial (PD). Como a PD é um fenômeno comum, sua análise provou ser uma ferramenta eficaz para monitorar a condição de diversos equipamentos elétricos. Além disso, a ocorrência sucessiva de PDs enfraquece gradualmente o isolamento, levando potencialmente ao colapso total do sistema.

Durante descargas parciais, a tensão do campo elétrico excede a constante de ruptura dielétrica local no meio isolante, liberando energia em diversas formas, como ondas acústicas, ondas eletromagnéticas na banda de Ultra Alta Frequência (UHF), banda de frequência óptica e calor. Vários estudos propuseram diferentes técnicas de medição de DP medindo qualquer uma ou uma combinação das várias formas de energia liberada.

Devido à dificuldade de acessos a esses equipamentos de alta tensão, abordagens utilizando algoritmos de inteligência artificial, tem se mostrado promissores. O objetivo como Mentor de Projetos e Pesquisa em Inteligência Artificial, é desenvolver um projeto envolvendo descargas parciais em unidades geradoras de energia elétrica.

Uma análise preliminar dos dados fornecidos pelo cliente é essencial para garantir a correta validação do procedimento adotado.

1.1.1 Justificativa do projeto:

As PDs podem causar degradação do isolamento e falhas catastróficas em equipamentos de alta tensão. A IA pode fornecer uma análise precisa e em tempo real, melhorando a manutenção preditiva e a segurança operacional. Esta abordagem traz como benefício a detecção precoce de falhas, redução de tempo de inatividade e custos de manutenção, e aumento da confiabilidade do sistema elétrico.

1.1.2 Abordagem:

Para desenvolver o projeto de Inteligência Artificial (IA) voltado para a análise de Descargas Parciais (PD) em unidades geradoras de energia elétrica, será apresentada um pipeline estruturado que abrange desde a análise e preparação dos dados até a disponibilização do algoritmo em um container Docker no GitHub.

1.1.3 Objetivo Geral

O objetivo deste trabalho é desenvolver um projeto envolvendo descargas parciais em unidades geradoras de energia elétrica. Tem que ser desenvolvido um Pipeline completo de um projeto de Inteligência Artificial, desde a Análise e preparação dos dados adquiridos até a disponibilização do algoritmo em Container (utilizando Docker) no GitHub. O objetivo do pipeline é prever falhas de isolamento em equipamentos de transmissão e distribuição de energia com base na análise de dados de Descargas Parciais (PD). As PDs são um indicador precoce de falhas e, portanto, a detecção eficaz pode prevenir colapsos no sistema elétrico.

Sistema FIESC – DICORP Diretoria de Desenvolvimento Industrial e Corporativo

1.1.3.1 Objetivos específicos

- a) Analisar os dados fornecidos pelo cliente e estabelecer a formatação correta dos mesmos
- b) Estudar, analisar e explorar os dados em diferentes condições operacionais e tipos de falhas.
- c) Preparar dados para treinamento e validação do modelo de IA.
- d) Desenvolver um Modelo de IA de aprendizado de máquina para a detecção e análise de PDs
- e) Implementar um Sistema de Monitoramento
- f) Validar o modelo

1.1.3.2 Foco do trabalho

Detectar, classificar e prever descargas parciais em unidades geradoras de energia elétrica.

1.1.4 Etapas da análise

O estudo de caso foi dividido em várias partes e cada uma de elas em etapas como apresentadas a seguir:

Parte I: Pré-processamento dos dados: Objetivos:

- Limpeza de dados
- Tratamento de valores ausentes
- Transformação dos dados em um formato adequado para análise.
- Realizar Padronização dos valores

Etapa 1: Análise dados preliminar dos dados		
Período	Início:23/08/2024	Fim:25/08/2024
Descrição da Etapa	dados estão todos em u compreende diretamente a	estão em formato ".csv". Os ma única coluna e não se a ordem dos mesmos. Para cia dos dados serão copiados
Objetivo Específico	Transformar os dados em un	n arquivo txt

Etapa 2: Exportação dos dados em formato .txt			
Período	Início:23/08/2024	Fim:25/08/2024	
Descrição da Etapa	Descarga dos dados subministrados em formato ".txt"		
	desde o enlace proporcionado. Os dados contém padrões		
	de descargas parciais em um formato com 7 colunas.		
Objetivo Específico	Descarregar dados em Visual Basic		

Etapa 3: Organização dos dados		
Período	Início:23/08/2024	Fim:25/08/2024
Descrição da Etapa	A organização dos dados é necessária para visualizar o	
	tipo de dado que será tratado	
Objetivo Específico	Organizar dados	

Etapa 4: Análise da informação			
Período	Início:23/08/2024	Fim:25/08/2024	
Descrição da Etapa	Exibir um resumo conciso do dataframe. A ideia é obter informações sobre o número de entradas, tipos de dados, e a contagem de valores não nulos presentes em cada coluna do dataframe.		
Objetivo Específico	Analisar dados		

Sistema FIESC – DICORP Diretoria de Desenvolvimento Industrial e Corporativo

Etapa 5: Análise estatístico da informação		
Período	Início:23/08/2024	Fim:25/08/2024
Descrição da Etapa	Resumo estatístico das colunas numéricas do dataframe.	
	Este comando calcula e exibe várias estatísticas descritivas	
	para cada coluna numérica	
Objetivo Específico	Analisar estatisticamente os	dados

Etapa 6: Análise dos dados para encontrar valores nulos			
Período	Início:23/08/2024	Fim:25/08/2024	
Descrição da Etapa	Retorna a contagem de valores nulos para cada coluna.		
Objetivo Específico	Encontrar valores nulos		

Etapa 7: Formatação dos valores de maneira correta			
Período	Início:23/08/2024	Fim:25/08/2024	
Descrição da Etapa	consistência e a padronizaç dos dados é ajustada para g estejam no formato adequa de datas, a correção dos va não numéricos. Verificação o coluna do dataframe esteja todos os dados estejam co	o formatados para garantir a ão dos dados. A formatação garantir que todos os valores do. Isso inclui a padronização lores minúsculas, maiúsculas le Colunas: A ideia é que cada no formato esperado e que rretos após a formatação. O ficar a informação de cada	
Objetivo Específico	Formatar adequadamente o	Formatar adequadamente os valores	

Etapa 8: Identificar valores nulos		
Período	Início:23/08/2024	Fim:25/08/2024
Descrição da Etapa	Verificação e quantificação faltantes) no DataFrame	o de valores ausentes (ou
Objetivo Específico	Verificar dados nulos ou faltantes	

Etapa 9: Analisar e exibir informações sobre os valores únicos			
Período	Início:23/08/2024	Fim:25/08/2024	
Descrição da Etapa	identificar colunas com po pode ser importante par	e valores em cada coluna, oucos valores únicos (o que ra análise exploratória de geral das características do	
Objetivo Específico	Analisar dados		

Parte II: Pós-processamento dos dados: Análise Exploratório: Objetivo: Entender os padrões relacionados com as descargas parciais.

Etapa 10: Análise dos Dados			
Período	Início:23/08/2024	Fim:25/08/2024	
Descrição da Etapa	garantindo que ambos rep	Dividir o dataset em conjuntos de treinamento e teste, garantindo que ambos representem adequadamente a distribuição das classes de PD.	
Objetivo Específico	Conjuntos de dados pront do modelo.	Conjuntos de dados prontos para o uso e a validação do modelo.	

Sistema FIESC – DICORP Diretoria de Desenvolvimento Industrial e Corporativo

Parte III: Desenvolvimento do modelo IA

Objetivos:

- Escolher o algoritmo adequado para aprendizado. Considere redes neurais, máquinas de vetores de suporte (SVM) ou modelos baseados em árvores.
- Dividir os dados em conjuntos de treinamento e teste. Treinar o modelo com o conjunto de treinamento e ajuste dos parâmetros.
- Avaliar o desempenho do modelo com o conjunto de dados de teste usando métricas como precisão

Etapa 11: Desenvolvimento do Modelo IA		
Período	Início:23/08/2024	Fim:25/08/2024
Descrição da Etapa	Implementar pelo menos um modelo de aprendizado.	
Objetivo Específico	Modelos treinados e prontos para serem avaliados com	
	base em sua capacidade de identificar falhas de	
	isolamento	

Parte IV: Implementação do modelo IA

Objetivos:

- Criar um contêiner Docker que inclua todas as dependências necessárias para executar o modelo. Configure o ambiente para garantir consistência.
- Realializar o upload do código fonte, da configuração do Docker e da documentação do projeto no GitHub.
- Fornecer instruções para replicar o ambiente e executar o modelo.
- Criar um contêiner Docker incluindo todas as dependências necessárias para executar o modelo.

Etapa 12: Implantação e monitoramento do Modelo IA		
Período	Início:23/08/2024	Fim:25/08/2024
Descrição da Etapa	(Containerização com Docker) Criar um contêiner	
	Docker para garantir que o modelo e suas	
	dependências sejam portáveis e facilmente	
	implantáveis (API) Usar frameworks como Flask	
	ou FastAPI para criar uma API que permita a interação	
	com o modelo em produção (Monitoreamento):	
	Implementar monitoramento para avaliar o	
	desempenho do modelo em tempo real e ajustar	
	conforme necessário.	
Objetivo Específico	Colocar o modelo em produ	ıção e monitorar seu
	desempenho.	

Parte V: Documentação

Sistema FIESC – DICORP Diretoria de Desenvolvimento Industrial e Corporativo

Objetivos:

- Descrever a estrutura geral do sistema
- Documentar o processo de desenvolvimento
- Explicar a Seleção de algoritmo
- Fornecer a descrição detalhada do processo de implementação

Etapa 13: Documentação		
Período	Início:23/08/2024	Fim:25/08/2024
Descrição da Etapa	Documentar todas as etapa definição do problema até a (gráficos) Criar gráficos par das análises e previsões do (interpretação) interpretaç os stakeholders, explicando para a detecção e prevençã	a implementação final ra visualizar os resultados modelo ão clara dos resultados para o como o modelo contribui
Objetivo Específico	Organizar o código-fonte e os arquivos de forma clara e estruturada no repositório GitHub.	

Etapa 14: GitHub		
Período	Início:23/08/2024	Fim:25/08/2024
Descrição da Etapa	(Documentação) Manter uma documentação detalhada do código, processos e decisões do projeto.	
Objetivo Específico	Publicar o código-fonte e os arquivos de forma clara e estruturada no GitHub.	

Etapa 15: Apresentação .ppt		
Período	Início:23/08/2024	Fim:25/08/2024
Descrição da Etapa	Apresentação do estudo de caso	
Objetivo Específico	Preparar uma apresentação em .ppt que descreva as	
	etapas, os desafios, e os resultados obtidos.	

Sistema FIESC – DICORP Diretoria de Desenvolvimento Industrial e Corporativo

2 DESENVOLVIMENTO DO ESTUDO DE CASO

2.1.1 Análise preliminar dos dados

- O arquivo enviado pelo cliente está em formato ".csv", os dados foram copiados a um arquivo TXT para logo carregá-lo em um ambiente de desenvolvimento Python
- Os dados incluem informações sobre:
- 1. Idprpd: número do PRPD
- 2. **n**: número de ocorrências da descarga parcial
- 3. Fase: fase em que ocorreu a descarga parcial (indica em qual parte do ciclo de tensão a descarga parcial ocorre.) A tensão elétrica em sistemas de corrente alternada (AC) varia com um comportamento de senoide com o tempo. Cada ciclo completo do sinal AC possui uma fase que vai de 0° a 360°. O momento exato em que a PD ocorre dentro desse ciclo é importante para entender a interação entre a tensão e o isolamento. Por exemplo, uma PD que ocorre na fase positiva ou negativa do ciclo pode indicar diferentes condições do isolamento ou tipos de falha.
 - Ao medir descargas parciais, a fase pode se referir ao ângulo de fase do sinal detectado, o que ajudaria a localizar e diagnosticar a fonte da PD. A análise de fase pode ajudar a distinguir entre diferentes tipos de PDs e a identificar padrões que são associados a falhas específicas.
- 4. **Amplitude:** amplitude de ocorrência da descarga parcial A amplitude de uma descarga parcial refere-se ao nível máximo de tensão ou à energia liberada durante um evento de PD.
- 5. dataset number: número do dataset, deve estar em um mesmo formato
- 6. **date**
- 7. classe_dp: classe da descarga parcial, deve-se identificar os tipos de cargas parciais

2.1.2 Análise Exploratória dos dados, corresponde à parte I, dados sem tratamento

A análise detalhada dos principais pontos e etapas foram:

- Leitura dos Dados
- Definição dos Nomes das Colunas
- Informações e Estatísticas descritivas
- Identificação de Valores Faltantes
- Contagem e Visualização das Datas Únicas
- Correção de Datas Inválidas
- Estatísticas Descritivas para a Coluna 'n'
- Verificação de Valores Faltantes
- Distribuição das Datas Após Correção
- Valores Únicos e Contagem por Coluna

Os dados foram explorados para entender a distribuição, detectar valores ausentes ou inconsistentes, identificar padrões, e verificar a correlação entre as variáveis

Foi realizado uma análise temporal para entender como os dados evoluem ao longo do tempo.

- O gráfico de dispersão, mostra a variação de n ou Amplitude ao longo do tempo (date)
- Observa-se na Fig 1 que existe um volume elevado de valores e não temos como identificar de esta maneira o que representa cada um deles.

Código do Formulário FM-014-NP-801-FIESC Revisão 0 Data da Revisão: 21/09/2022 Página 8 de 26

Formulário padronizado

Figura 1: Comparação da Amplitude x DP

Comparação de Classes (classe_dp): Comparar diferentes classes de descargas parciais para identificar padrões.

- Comparar distribuições de Amplitude para diferentes classes (classe dp).
- Histograma: Mostrar a frequência das ocorrências (n) para cada classe
- Fig. de Barras: Comparar a média ou soma de Amplitude entre classes.

Explorar a correlação entre o número de ocorrências e a fase das descargas parciais. (n-FASE), a ideia seria identificar padrões específicos de ocorrência de descargas em diferentes fases

• Fig. de dispersão (n no eixo X e Fase no eixo Y), que pode mostrar padrões de agrupamento ou tendências.

Figura 1: Gráfico de dispersão n x Fase

Distribuição da Amplitude para entender a distribuição da severidade das descargas parciais.

- Histograma de Amplitude: Mostrar a distribuição da magnitude das descargas parciais.
 Talvez ajude a visualizar a frequência de diferentes níveis de amplitude
- Fig. de Densidade: Para visualizar a distribuição de maneira suave.
- Fig. de Barras de Amplitude por Data, a ideia é mostrar como as descargas variam ao longo do tempo, seria útil para identificar tendências.

Agrupamento por Idprpd para Comparar diferentes ciclos ou eventos e identificar diferenças ou padrões. Pode-se obervar como os eventos variam entre diferentes conjuntos de dados

• Fig. de linhas para cada Idprpd, mostrando n versus Fase Ou Amplitude versus Fase Separar os dados por ano, acredita-se que a simulação fica mais leve

Data da Revisão: 21/09/2022

2.1.3 Definição dos Requisitos - Coleta e análise de dados

- O sistema importa e processa os dados de Descargas Parciais (PD) a partir do arquivo ".txt".
- Realizar a Análise Exploratória de Dados para entender padrões e distribuições.
- Realizar a limpeza e o pré-processamento dos dados, incluindo tratamento de valores ausentes

Figura 3: Ocorrências x amplitude

Figura 5: Número de ocorrências x tempo

Figura 6: Número de ocorrências ao longo do tempo

Número de Ocorrências ao Longo do Tempo

40
40
10
10 -

Figura 7: Distribuição n x Dataset

2012 Data 2016

2020

2024

2004

2008

2000

Sistema FIESC – DICORP Diretoria de Desenvolvimento Industrial e Corporativo

Figura 8: Distribuição n x DP

2.1.4 Detalhamento técnico do problema

Existe uma quantidade de valores fora do padrão, fora de uma formatação correta, esses erros foram corregido e são apresentado a seguir de maneira ordenada

Figura 9: Contagem de Ocorrências

Sistema FIESC – DICORP Diretoria de Desenvolvimento Industrial e Corporativo

2.1.5 Método de análise

Para compreender o estudo de caso foram separadas as ocorrências por ano:

Figura 10: Número de ocorrências 2022 Número de Ocorrências ao Longo do Tempo - Ano 2024 (Filtrado por Amplitud)

Figura 11: Número de ocorrências 2017

Figura 12: Número de ocorrências 2018-2019

Figura 13: Número de ocorrências 2019

Figura 14: Número de ocorrências 2000

Figura 15: Número de ocorrências 2001

2.1.6 Coleta e preparação de dados

Para conseguir avançar no projeto foi decidido contemplar um único ano que tenha dados "coherentes", por este motivo foi trabalhado a partir de aqui com os dados fornecidos do ano 2019.

Figura 17: Número de ocorrências x fase

Figura 18: Número de ocorrências x amplitud

Figura 19: Número de ocorrências x Dataset

Figura 20: Número de ocorrências x tempo

Figura 21: Número de ocorrências x classe DP

Figura 22: Valores das medias e desvio padrão

Figura 23: Frequência de cada x n

Código do Formulário FM-014-NP-801-FIESC Revisão 0 Data da Revisão: 21/09/2022

Sistema FIESC – DICORP Diretoria de Desenvolvimento Industrial e Corporativo

Figura 24: Frequência de cada x DP

Prova Prática: Case On-line

Figura 27: n x amplitude

Sistema FIESC – DICORP Diretoria de Desenvolvimento Industrial e Corporativo

2.1.7 Desenvolvimento do Modelo de IA

As etapas realizadas foram:

- Escolha do Algoritmo: Selecionar algoritmos
- Treinamento do Modelo
- Validação e Testes

Figura 28: n, amplitude normalizados

3 RESULTADOS E DISCUSSOES

A análise do estudo de caso demandou um tempo considerável na preparação dos dados, devido à variedade de padrões encontrados. Os dados foram carregados, filtrados e normalizados para possibilitar uma análise adequada. As colunas relevantes incluíam informações sobre ocorrências de falhas parciais (n), fase, amplitude, número do conjunto de dados, data e classe de falhas (classe dp).

Realizou-se uma análise gráfica de diferentes cenários com os valores das descargas parciais e suas ocorrências ao longo do tempo, o que permitiu identificar padrões de comportamento. Ao inverter os eixos, explorou-se como essas ocorrências variavam conforme outros parâmetros, oferecendo uma visão mais ampla das flutuações e possíveis anomalias ao longo da coleta dos dados.

A Transformada de Fourier (FFT) foi utilizada para identificar frequências significativas no sinal analisado. Isso possibilitou a identificação e análise dos picos de frequência, ajudando a compreender a dinâmica das ocorrências de falhas no domínio da frequência. Observou-se uma variação na coleta dos registros, possivelmente devido ao fato de que a medição foi realizada por diferentes funcionários.

Após identificar o pico mais significativo na FFT, esses dados foram removidos para explorar a distribuição dos outros sinais e garantir que a análise fosse robusta e menos influenciada por anomalias isoladas.Os dados com amplitude e número de ocorrências acima de um determinado valor foram considerados para enviar alertas de segurança, assegurando uma resposta adequada a possíveis falhas.

A normalização dos dados foi crucial para garantir que os resultados das análises fossem consistentes e significativos.

Código do Formulário FM-014-NP-801-FIESC Revisão 0 Data da Revisão: 21/09/2022 Página 23 de 26

Sistema FIESC - DICORP Diretoria de Desenvolvimento Industrial e Corporativo

4 CONSIDERAÇÕES FINAIS

Recomenda-se que os equipamentos utilizados para registrar as descargas parciais estejam devidamente calibrados e em pleno funcionamento, a fim de evitar a leitura incorreta dos dados. Além disso, é fundamental que o sistema de aquisição de dados das descargas parciais seja estável, garantindo a consistência das medições. O procedimento de medição dessas descargas deve ser padronizado, e é importante registrar o código de identificação do funcionário responsável pela medição, bem como o horário em que os dados foram coletados.

Implementar um sistema de monitoramento contínuo que utilize a análise FFT pode ajudar a prever e prevenir falhas futuras. Também é recomendável revisar e ajustar regularmente os limiares para a identificação de dados atípicos, assegurando que os algoritmos permaneçam precisos.

Para futuros estudos de caso, considerar o uso de técnicas complementares, como a análise espectral ou redes neurais, pode aprimorar ainda mais a previsão e a detecção de falhas.

5 REFERÊNCIAS

Os dados para o estudo de caso foram fornecidos pela equipe da FIESC

Código do Formulário FM-014-NP-801-FIESC Revisão 0 Data da Revisão: 21/09/2022

Sistema FIESC – DICORP Diretoria de Desenvolvimento Industrial e Corporativo

ANEXO 1. CÓDIGO RESUMIDO

Código do Formulário FM-014-NP-801-FIESC Revisão 0 Data da Revisão: 21/09/2022 Página 25 de 26

Sistema FIESC – DICORP Diretoria de Desenvolvimento Industrial e Corporativo

Florianópolis (SC). 25 de agosto de 2024

Jairo Alonso Quintero Quintero, Dr. Eng. Mentor de Projetos e Pesquisa