Filter Summary Report: CG,TIA,simple,Z1,Z3

Generated by MacAnalog-Symbolix

December 18, 2024

Contents

1 Examined H(z) for CG TIA simple Z1 Z3: $\frac{Z_1Z_3g_m}{Z_1g_m+1}$

$$H(z) = \frac{Z_1 Z_3 g_m}{Z_1 g_m + 1}$$

- 2 HP
- 3 BP
- **3.1** BP-1 $Z(s) = \left(R_1, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \infty\right)$

Parameters:

Q:
$$C_3R_3\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_3}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_1R_3g_m}{R_1g_m+1}$
Qz: 0
Wz: None

3.2 BP-2 $Z(s) = \left(L_1 s, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty\right)$

Parameters:

Q:
$$\frac{C_3L_1R_3g_m\sqrt{\frac{1}{C_3L_1R_3g_m}}}{C_3R_3+L_1g_m}$$
 wo:
$$\sqrt{\frac{1}{C_3L_1R_3g_m}}$$
 bandwidth:
$$\frac{C_3R_3+L_1g_m}{C_3L_1R_3g_m}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{L_1R_3g_m}{C_3R_3+L_1g_m}$$
 Qz: 0 Wz: None

3.3 BP-3 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, R_3, \infty, \infty, \infty\right)$

Parameters:

Q:
$$\frac{C_1\sqrt{\frac{1}{C_1L_1}}}{g_m}$$
 wo: $\sqrt{\frac{1}{C_1L_1}}$ bandwidth: $\frac{g_m}{C_1}$ K-LP: 0 K-HP: 0 K-BP: R_3 Qz: 0

 $H(s) = \frac{L_3 R_1 R_3 g_m s}{R_1 R_3 g_m + R_3 + s^2 \left(C_3 L_3 R_1 R_3 g_m + C_3 L_3 R_3 \right) + s \left(L_3 R_1 g_m + L_3 \right)}$

$$H(s) = \frac{L_1 R_3 g_m s}{C_3 L_1 R_3 g_m s^2 + s \left(C_3 R_3 + L_1 g_m\right) + 1}$$

$$H(s) = \frac{L_1 R_3 g_m s}{C_1 L_1 s^2 + L_1 g_m s + 1}$$

3.4 BP-4
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, R_3, \infty, \infty, \infty\right)$$

 $\begin{array}{l} \text{Q:} \ \frac{C_{1}R_{1}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}g_{m}+1} \\ \text{wo:} \ \sqrt{\frac{1}{C_{1}L_{1}}} \\ \text{bandwidth:} \ \frac{R_{1}g_{m}+1}{C_{1}R_{1}} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_{1}R_{3}g_{m}}{R_{1}g_{m}+1} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$

4 LP

4.1 LP-1
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty\right)$$

Parameters:

 $\begin{array}{l} \text{Q:} \ \frac{C_{1}C_{3}R_{3}\sqrt{\frac{g_{m}}{C_{1}C_{3}R_{3}}}}{C_{1}+C_{3}R_{3}g_{m}} \\ \text{wo:} \ \sqrt{\frac{g_{m}}{C_{1}C_{3}R_{3}}} \\ \text{bandwidth:} \ \frac{C_{1}+C_{3}R_{3}g_{m}}{C_{1}C_{3}R_{3}} \\ \text{K-LP:} \ R_{3} \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \text{None} \end{array}$

4.2 LP-2 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty\right)$

Parameters:

Q: $\frac{C_1C_3R_1R_3\sqrt{\frac{R_1g_m+1}{C_1C_3R_1R_3}}}{C_1R_1+C_3R_1R_3g_m+C_3R_3}$ wo: $\sqrt{\frac{R_1g_m+1}{C_1C_3R_1R_3}}$ bandwidth: $\frac{C_1R_1+C_3R_1R_3g_m+C_3R_3}{C_1C_3R_1R_3}$ K-LP: $\frac{R_1R_3g_m}{R_1g_m+1}$ K-HP: 0 K-BP: 0 Qz: None Wz: None

$$H(s) = \frac{L_1 R_1 R_3 g_m s}{C_1 L_1 R_1 s^2 + R_1 + s \left(L_1 R_1 g_m + L_1 \right)}$$

$$H(s) = \frac{R_3 g_m}{C_1 C_3 R_3 s^2 + q_m + s \left(C_1 + C_3 R_3 q_m\right)}$$

$$H(s) = \frac{R_1 R_3 g_m}{C_1 C_3 R_1 R_3 s^2 + R_1 g_m + s \left(C_1 R_1 + C_3 R_1 R_3 g_m + C_3 R_3\right) + 1}$$

4.3 LP-3
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

Q:
$$\frac{C_1\sqrt{\frac{1}{C_1L_1}}}{g_m}$$
 wo:
$$\sqrt{\frac{1}{C_1L_1}}$$
 bandwidth:
$$\frac{g_m}{C_1}$$
 K-LP:
$$\frac{L_1g_m}{C_3}$$
 K-HP: 0 K-BP: 0 Qz: None Wz: None

4.4 LP-4
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{C_1R_1\sqrt{\frac{1}{C_1L_1}}}{R_1g_m+1}$$
 wo: $\sqrt{\frac{1}{C_1L_1}}$ bandwidth: $\frac{R_1g_m+1}{C_1R_1}$ K-LP: $\frac{L_1g_m}{C_3}$ K-HP: 0 K-BP: 0 Qz: None Wz: None

5 BS

5.1 BS-1
$$Z(s) = \left(R_1, \infty, \frac{R_3(C_3L_3s^2+1)}{C_3L_3s^2+C_3R_3s+1}, \infty, \infty, \infty\right)$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3}{R_1} \\ \text{K-LP:} \ \frac{R_1R_3g_m}{R_1g_m+1} \\ \text{K-HP:} \ \frac{R_1R_3g_m}{R_1g_m+1} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

$$H(s) = \frac{L_1 g_m}{C_1 C_3 L_1 s^2 + C_3 L_1 g_m s + C_3}$$

$$H(s) = \frac{L_1 R_1 g_m}{C_1 C_3 L_1 R_1 s^2 + C_3 R_1 + s \left(C_3 L_1 R_1 g_m + C_3 L_1 \right)}$$

$$H(s) = \frac{C_3L_3R_1R_3g_ms^2 + R_1R_3g_m}{R_1g_m + s^2\left(C_3L_3R_1g_m + C_3L_3\right) + s\left(C_3R_1R_3g_m + C_3R_3\right) + 1}$$

5.2 BS-2
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \ \infty, \ R_3, \ \infty, \ \infty, \ \infty\right)$$

Q:
$$L_1g_m\sqrt{\frac{1}{C_1L_1}}$$

wo: $\sqrt{\frac{1}{C_1L_1}}$
bandwidth: $\frac{1}{L_1g_m}$
K-LP: R_3
K-HP: R_3
K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_1L_1}}$

5.3 BS-3
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, R_3, \infty, \infty, \infty\right)$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{L_1\sqrt{\frac{1}{C_1L_1}}(R_1g_m+1)}{R_1} \\ \text{wo:} \ \sqrt{\frac{1}{C_1L_1}} \\ \text{bandwidth:} \ \frac{R_1}{L_1(R_1g_m+1)} \\ \text{K-LP:} \ \frac{R_1R_3g_m}{R_1g_m+1} \\ \text{K-HP:} \ \frac{R_1R_3g_m}{R_1g_m+1} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_1L_1}} \end{array}$$

6 **GE**

6.1 GE-1
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, R_3, \infty, \infty, \infty\right)$$

Q:
$$\frac{L_{1}g_{m}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}g_{m}+1}$$
 wo: $\sqrt{\frac{1}{C_{1}L_{1}}}$ bandwidth: $\frac{R_{1}g_{m}+1}{L_{1}g_{m}}$ K-LP: R_{3} K-HP: R_{3} K-BP: $\frac{R_{1}R_{3}g_{m}}{R_{1}g_{m}+1}$ Qz: $\frac{L_{1}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}}$ Wz: $\sqrt{\frac{1}{C_{1}L_{1}}}$

$$H(s) = \frac{C_1 L_1 R_3 g_m s^2 + R_3 g_m}{C_1 L_1 g_m s^2 + C_1 s + g_m}$$

$$H(s) = \frac{C_1 L_1 R_1 R_3 g_m s^2 + R_1 R_3 g_m}{C_1 R_1 s + R_1 g_m + s^2 \left(C_1 L_1 R_1 g_m + C_1 L_1 \right) + 1}$$

$$H(s) = \frac{C_1 L_1 R_3 g_m s^2 + C_1 R_1 R_3 g_m s + R_3 g_m}{C_1 L_1 g_m s^2 + g_m + s \left(C_1 R_1 g_m + C_1 \right)}$$

6.2 GE-2
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, R_3, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1 L_1 R_1 R_3 g_m s^2 + L_1 R_3 g_m s + R_1 R_3 g_m}{L_1 g_m s + R_1 g_m + s^2 \left(C_1 L_1 R_1 g_m + C_1 L_1 \right) + 1}$$

$$\begin{aligned} & \text{Q:} \ \frac{C_1 \sqrt{\frac{1}{C_1 L_1}} (R_1 g_m + 1)}{g_m} \\ & \text{wo:} \ \sqrt{\frac{1}{C_1 L_1}} \\ & \text{bandwidth:} \ \frac{g_m}{C_1 (R_1 g_m + 1)} \\ & \text{K-LP:} \ \frac{R_1 R_3 g_m}{R_1 g_m + 1} \\ & \text{K-HP:} \ \frac{R_1 R_3 g_m}{R_1 g_m + 1} \\ & \text{K-BP:} \ R_3 \\ & \text{Qz:} \ C_1 R_1 \sqrt{\frac{1}{C_1 L_1}} \\ & \text{Wz:} \ \sqrt{\frac{1}{C_1 L_1}} \end{aligned}$$

7 AP

8 INVALID-NUMER

8.1 INVALID-NUMER-1 $Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_1 R_1 R_3 g_m s + R_3 g_m}{g_m + s^2 \left(C_1 C_3 R_1 R_3 g_m + C_1 C_3 R_3 \right) + s \left(C_1 R_1 g_m + C_1 + C_3 R_3 g_m \right)}$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_1C_3R_3\sqrt{\frac{g_m}{C_1C_3R_3(R_1g_m+1)}}(R_1g_m+1)}{C_1R_1g_m+C_1+C_3R_3g_m} \\ \text{wo:} \ \sqrt{\frac{g_m}{C_1C_3R_3(R_1g_m+1)}} \\ \text{bandwidth:} \ \frac{C_1R_1g_m+C_1+C_3R_3g_m}{C_1C_3R_3(R_1g_m+1)} \\ \text{K-LP:} \ R_3 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{C_1R_1R_3g_m}{C_1R_1g_m+C_1+C_3R_3g_m} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

8.2 INVALID-NUMER-2 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 L_1 R_3 g_m s + L_1 g_m}{C_1 C_3 L_1 s^2 + C_3 L_1 g_m s + C_3}$$

Q:
$$\frac{C_1\sqrt{\frac{1}{C_1L_1}}}{g_m}$$
 wo:
$$\sqrt{\frac{1}{C_1L_1}}$$
 bandwidth:
$$\frac{g_m}{C_1}$$
 K-LP:
$$\frac{L_1g_m}{C_3}$$
 K-HP: 0 K-BP: R_3 Qz: 0 Wz: None

8.3 INVALID-NUMER-3
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_1 R_1 R_3 g_m s + L_1 R_1 g_m}{C_1 C_3 L_1 R_1 s^2 + C_3 R_1 + s \left(C_3 L_1 R_1 g_m + C_3 L_1\right)}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_{1}R_{1}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}g_{m}+1} \\ \text{wo:} \ \sqrt{\frac{1}{C_{1}L_{1}}} \\ \text{bandwidth:} \ \frac{R_{1}g_{m}+1}{C_{1}R_{1}} \\ \text{K-LP:} \ \frac{L_{1}g_{m}}{C_{3}} \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_{1}R_{3}g_{m}}{R_{1}g_{m}+1} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

9 INVALID-WZ

9.1 INVALID-WZ-1
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_1 L_3 g_m s^2 + L_1 g_m}{C_1 C_3 L_1 s^2 + C_3 L_1 g_m s + C_3}$$

Parameters:

Q:
$$\frac{C_1\sqrt{\frac{1}{C_1L_1}}}{g_m}$$
 wo:
$$\sqrt{\frac{1}{C_1L_1}}$$
 bandwidth:
$$\frac{g_m}{C_1}$$
 K-LP:
$$\frac{L_1g_m}{C_3}$$
 K-HP:
$$\frac{L_3g_m}{C_1}$$
 K-BP: 0 Qz: None Wz:
$$\sqrt{\frac{1}{C_3L_3}}$$

9.2 INVALID-WZ-2
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_1 L_3 g_m s^2 + C_3 L_1 R_3 g_m s + L_1 g_m}{C_1 C_3 L_1 s^2 + C_3 L_1 g_m s + C_3}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_{1}\sqrt{\frac{1}{C_{1}L_{1}}}}{g_{m}} \\ \text{wo:} \ \sqrt{\frac{1}{C_{1}L_{1}}} \\ \text{bandwidth:} \ \frac{g_{m}}{C_{1}} \\ \text{K-LP:} \ \frac{L_{1}g_{m}}{C_{3}} \\ \text{K-HP:} \ \frac{L_{3}g_{m}}{C_{1}} \\ \text{K-BP:} \ R_{3} \\ \text{Qz:} \ \frac{L_{3}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{3}} \\ \text{Wz:} \ \sqrt{\frac{1}{C_{3}L_{3}}} \end{array}$$

9.3 INVALID-WZ-3 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty\right)$

$$H(s) = \frac{C_3 L_1 L_3 R_1 g_m s^2 + L_1 R_1 g_m}{C_1 C_3 L_1 R_1 s^2 + C_3 R_1 + s \left(C_3 L_1 R_1 g_m + C_3 L_1 \right)}$$

Parameters:

$$\begin{array}{l} \text{Q: } \frac{C_1R_1\sqrt{\frac{1}{C_1L_1}}}{R_1g_m+1} \\ \text{wo: } \sqrt{\frac{1}{C_1L_1}} \\ \text{bandwidth: } \frac{R_1g_m+1}{C_1R_1} \\ \text{K-LP: } \frac{L_1g_m}{C_3} \\ \text{K-HP: } \frac{L_3g_m}{C_1} \\ \text{K-BP: } 0 \\ \text{Qz: None} \\ \text{Wz: } \sqrt{\frac{1}{C_3L_3}} \end{array}$$

9.4 INVALID-WZ-4 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 L_1 L_3 R_1 g_m s^2 + C_3 L_1 R_1 R_3 g_m s + L_1 R_1 g_m}{C_1 C_3 L_1 R_1 s^2 + C_3 R_1 + s \left(C_3 L_1 R_1 g_m + C_3 L_1 \right)}$$

Parameters:

$$Q: \frac{C_{1}R_{1}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}g_{m}+1}$$
wo: $\sqrt{\frac{1}{C_{1}L_{1}}}$
bandwidth: $\frac{R_{1}g_{m}+1}{C_{1}R_{1}}$
K-LP: $\frac{L_{1}g_{m}}{C_{3}}$
K-HP: $\frac{L_{3}g_{m}}{R_{1}g_{m}+1}$
Qz: $\frac{L_{3}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{3}}$
Wz: $\sqrt{\frac{1}{C_{3}L_{3}}}$

10 INVALID-ORDER

10.1 INVALID-ORDER-1 $Z(s) = (R_1, \infty, R_3, \infty, \infty, \infty)$

$$H(s) = \frac{R_1 R_3 g_m}{R_1 g_m + 1}$$

10.2 INVALID-ORDER-2 $Z(s) = \left(R_1, \infty, \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{R_1 g_m}{s \left(C_3 R_1 g_m + C_3 \right)}$$

10.3 INVALID-ORDER-3 $Z(s) = \left(R_1, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty\right)$

$$H(s) = \frac{R_1 R_3 g_m}{R_1 g_m + s \left(C_3 R_1 R_3 g_m + C_3 R_3 \right) + 1}$$

8

10.4 INVALID-ORDER-4
$$Z(s) = \left(R_1, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3 R_1 R_3 g_m s + R_1 g_m}{s \left(C_3 R_1 g_m + C_3 \right)}$$

10.5 INVALID-ORDER-5
$$Z(s) = \left(R_1, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 R_1 g_m s^2 + R_1 g_m}{s \left(C_3 R_1 g_m + C_3 \right)}$$

10.6 INVALID-ORDER-6
$$Z(s) = \left(R_1, \infty, \frac{L_{3s}}{C_3L_3s^2+1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_1 g_m s}{R_1 g_m + s^2 \left(C_3 L_3 R_1 g_m + C_3 L_3 \right) + 1}$$

10.7 INVALID-ORDER-7
$$Z(s) = \left(R_1, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 R_1 g_m s^2 + C_3 R_1 R_3 g_m s + R_1 g_m}{s \left(C_3 R_1 g_m + C_3\right)}$$

10.8 INVALID-ORDER-8
$$Z(s) = \left(R_1, \infty, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 R_1 R_3 g_m s^2 + L_3 R_1 g_m s + R_1 R_3 g_m}{R_1 g_m + s^2 (C_3 L_3 R_1 g_m + C_3 L_3) + 1}$$

10.9 INVALID-ORDER-9 $Z(s) = (L_1 s, \infty, R_3, \infty, \infty, \infty)$

$$H(s) = \frac{L_1 R_3 g_m s}{L_1 q_m s + 1}$$

10.10 INVALID-ORDER-10 $Z(s) = \left(L_1 s, \infty, \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{L_1 g_m}{C_3 L_1 g_m s + C_3}$$

10.11 INVALID-ORDER-11 $Z(s) = \left(L_1 s, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 L_1 R_3 g_m s + L_1 g_m}{C_3 L_1 q_m s + C_3}$$

10.12 INVALID-ORDER-12 $Z(s) = \left(L_1 s, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 L_1 L_3 g_m s^2 + L_1 g_m}{C_3 L_1 g_m s + C_3}$$

10.13 INVALID-ORDER-13 $Z(s) = \left(L_1 s, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \infty\right)$

$$H(s) = \frac{L_1 L_3 g_m s^2}{C_3 L_1 L_3 g_m s^3 + C_3 L_3 s^2 + L_1 g_m s + 1}$$

10.14 INVALID-ORDER-14
$$Z(s) = \left(L_1 s, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_1 L_3 g_m s^2 + C_3 L_1 R_3 g_m s + L_1 g_m}{C_3 L_1 g_m s + C_3}$$

10.15 INVALID-ORDER-15
$$Z(s) = \left(L_1 s, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{L_1 L_3 R_3 g_m s^2}{C_3 L_1 L_3 R_3 g_m s^3 + R_3 + s^2 \left(C_3 L_3 R_3 + L_1 L_3 g_m \right) + s \left(L_1 R_3 g_m + L_3 \right)}$$

10.16 INVALID-ORDER-16
$$Z(s) = \left(L_1 s, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_1 L_3 R_3 g_m s^3 + L_1 L_3 g_m s^2 + L_1 R_3 g_m s}{C_3 L_1 L_3 g_m s^3 + C_3 L_3 s^2 + L_1 g_m s + 1}$$

10.17 INVALID-ORDER-17
$$Z(s) = \left(L_1 s, \infty, \frac{R_3(C_3 L_3 s^2 + 1)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_1 L_3 R_3 g_m s^3 + L_1 R_3 g_m s}{C_3 L_1 L_3 g_m s^3 + s^2 \left(C_3 L_1 R_3 g_m + C_3 L_3\right) + s \left(C_3 R_3 + L_1 g_m\right) + 1}$$

10.18 INVALID-ORDER-18
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, R_3, \infty, \infty, \infty\right)$$

$$H(s) = \frac{R_3 g_m}{C_1 s + q_m}$$

10.19 INVALID-ORDER-19
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{g_m}{C_1 C_3 s^2 + C_3 q_m s}$$

10.20 INVALID-ORDER-20
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3 R_3 g_m s + g_m}{C_1 C_3 s^2 + C_3 g_m s}$$

10.21 INVALID-ORDER-21
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 g_m s^2 + g_m}{C_1 C_3 s^2 + C_3 g_m s}$$

10.22 INVALID-ORDER-22
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{L_3 g_m s}{C_1 C_3 L_3 s^3 + C_1 s + C_3 L_3 q_m s^2 + q_m}$$

10.23 INVALID-ORDER-23
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 g_m s^2 + C_3 R_3 g_m s + g_m}{C_1 C_3 s^2 + C_3 q_m s}$$

10.24 INVALID-ORDER-24
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_3 g_m s}{C_1 C_3 L_3 R_3 s^3 + R_3 g_m + s^2 \left(C_1 L_3 + C_3 L_3 R_3 g_m \right) + s \left(C_1 R_3 + L_3 g_m \right)}$$

10.25 INVALID-ORDER-25
$$Z(s) = \left(\frac{1}{C_1 s}, \ \infty, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 R_3 g_m s^2 + L_3 g_m s + R_3 g_m}{C_1 C_3 L_3 s^3 + C_1 s + C_3 L_3 g_m s^2 + g_m}$$

10.26 INVALID-ORDER-26
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \frac{R_3(C_3 L_3 s^2 + 1)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 R_3 g_m s^2 + R_3 g_m}{C_1 C_3 L_3 s^3 + g_m + s^2 (C_1 C_3 R_3 + C_3 L_3 g_m) + s (C_1 + C_3 R_3 g_m)}$$

10.27 INVALID-ORDER-27
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, R_3, \infty, \infty, \infty\right)$$

$$H(s) = \frac{R_1 R_3 g_m}{C_1 R_1 s + R_1 g_m + 1}$$

10.28 INVALID-ORDER-28
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{R_1 g_m}{C_1 C_3 R_1 s^2 + s \left(C_3 R_1 g_m + C_3 \right)}$$

10.29 INVALID-ORDER-29
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \ \infty, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 R_1 R_3 g_m s + R_1 g_m}{C_1 C_3 R_1 s^2 + s \left(C_3 R_1 g_m + C_3 \right)}$$

10.30 INVALID-ORDER-30
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 R_1 g_m s^2 + R_1 g_m}{C_1 C_3 R_1 s^2 + s \left(C_3 R_1 g_m + C_3 \right)}$$

10.31 INVALID-ORDER-31
$$Z(s) = \left(\frac{R_1}{C_1R_1s+1}, \infty, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_1 g_m s}{C_1 C_3 L_3 R_1 s^3 + C_1 R_1 s + R_1 g_m + s^2 (C_3 L_3 R_1 g_m + C_3 L_3) + 1}$$

10.32 INVALID-ORDER-32
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 R_1 g_m s^2 + C_3 R_1 R_3 g_m s + R_1 g_m}{C_1 C_3 R_1 s^2 + s \left(C_3 R_1 g_m + C_3\right)}$$

10.33 INVALID-ORDER-33
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_1 R_3 g_m s}{C_1 C_3 L_3 R_1 R_3 s^3 + R_1 R_3 g_m + R_3 + s^2 \left(C_1 L_3 R_1 + C_3 L_3 R_1 R_3 g_m + C_3 L_3 R_3\right) + s \left(C_1 R_1 R_3 + L_3 R_1 g_m + L_3\right)}$$

10.34 INVALID-ORDER-34
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3L_3R_1R_3g_ms^2 + L_3R_1g_ms + R_1R_3g_m}{C_1C_3L_3R_1s^3 + C_1R_1s + R_1g_m + s^2\left(C_3L_3R_1g_m + C_3L_3\right) + 1}$$

10.35 INVALID-ORDER-35
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3L_3R_1R_3g_ms^2 + R_1R_3g_m}{C_1C_3L_3R_1s^3 + R_1g_m + s^2\left(C_1C_3R_1R_3 + C_3L_3R_1g_m + C_3L_3\right) + s\left(C_1R_1 + C_3R_1R_3g_m + C_3R_3\right) + 1}$$

10.36 INVALID-ORDER-36
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, R_3, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1 R_1 R_3 g_m s + R_3 g_m}{g_m + s \left(C_1 R_1 g_m + C_1\right)}$$

10.37 INVALID-ORDER-37
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1 R_1 g_m s + g_m}{C_3 q_m s + s^2 \left(C_1 C_3 R_1 q_m + C_1 C_3 \right)}$$

10.38 INVALID-ORDER-38
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1 C_3 R_1 R_3 g_m s^2 + g_m + s \left(C_1 R_1 g_m + C_3 R_3 g_m \right)}{C_3 q_m s + s^2 \left(C_1 C_3 R_1 q_m + C_1 C_3 \right)}$$

10.39 INVALID-ORDER-39
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1 C_3 L_3 R_1 g_m s^3 + C_1 R_1 g_m s + C_3 L_3 g_m s^2 + g_m}{C_3 g_m s + s^2 \left(C_1 C_3 R_1 g_m + C_1 C_3 \right)}$$

10.40 INVALID-ORDER-40
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1 L_3 R_1 g_m s^2 + L_3 g_m s}{C_3 L_3 g_m s^2 + g_m + s^3 \left(C_1 C_3 L_3 R_1 g_m + C_1 C_3 L_3 \right) + s \left(C_1 R_1 g_m + C_1 \right)}$$

10.41 INVALID-ORDER-41
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1 C_3 L_3 R_1 g_m s^3 + g_m + s^2 \left(C_1 C_3 R_1 R_3 g_m + C_3 L_3 g_m \right) + s \left(C_1 R_1 g_m + C_3 R_3 g_m \right)}{C_3 g_m s + s^2 \left(C_1 C_3 R_1 g_m + C_1 C_3 \right)}$$

10.42 INVALID-ORDER-42
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1L_3R_1R_3g_ms^2 + L_3R_3g_ms}{R_3g_m + s^3\left(C_1C_3L_3R_1R_3g_m + C_1C_3L_3R_3\right) + s^2\left(C_1L_3R_1g_m + C_1L_3 + C_3L_3R_3g_m\right) + s\left(C_1R_1R_3g_m + C_1R_3 + L_3g_m\right)}$$

10.43 INVALID-ORDER-43
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1 C_3 L_3 R_1 R_3 g_m s^3 + R_3 g_m + s^2 \left(C_1 L_3 R_1 g_m + C_3 L_3 R_3 g_m \right) + s \left(C_1 R_1 R_3 g_m + L_3 g_m \right)}{C_3 L_3 g_m s^2 + g_m + s^3 \left(C_1 C_3 L_3 R_1 g_m + C_1 C_3 L_3 \right) + s \left(C_1 R_1 g_m + C_1 \right)}$$

$$\textbf{10.44} \quad \textbf{INVALID-ORDER-44} \ Z(s) = \left(R_1 + \frac{1}{C_1 s}, \ \infty, \ \frac{R_3 \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ \infty, \ \infty, \ \infty \right)$$

$$H(s) = \frac{C_1 C_3 L_3 R_1 R_3 g_m s^3 + C_1 R_1 R_3 g_m s + C_3 L_3 R_3 g_m s^2 + R_3 g_m}{g_m + s^3 \left(C_1 C_3 L_3 R_1 g_m + C_1 C_3 L_3 \right) + s^2 \left(C_1 C_3 R_1 R_3 g_m + C_1 C_3 R_3 + C_3 L_3 g_m \right) + s \left(C_1 R_1 g_m + C_1 + C_3 R_3 g_m \right) }$$

10.45 INVALID-ORDER-45
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1 L_1 g_m s^2 + g_m}{C_1 C_3 L_1 g_m s^3 + C_1 C_3 s^2 + C_3 g_m s}$$

10.46 INVALID-ORDER-46
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1 L_1 R_3 g_m s^2 + R_3 g_m}{C_1 C_3 L_1 R_3 g_m s^3 + g_m + s^2 \left(C_1 C_3 R_3 + C_1 L_1 g_m \right) + s \left(C_1 + C_3 R_3 g_m \right)}$$

10.47 INVALID-ORDER-47
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1 C_3 L_1 R_3 g_m s^3 + C_1 L_1 g_m s^2 + C_3 R_3 g_m s + g_m}{C_1 C_3 L_1 g_m s^3 + C_1 C_3 s^2 + C_3 g_m s}$$

10.48 INVALID-ORDER-48
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1 C_3 L_1 L_3 g_m s^4 + g_m + s^2 \left(C_1 L_1 g_m + C_3 L_3 g_m \right)}{C_1 C_3 L_1 g_m s^3 + C_1 C_3 s^2 + C_3 g_m s}$$

10.49 INVALID-ORDER-49
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \ \infty, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_1 L_1 L_3 g_m s^3 + L_3 g_m s}{C_1 C_3 L_1 L_3 q_m s^4 + C_1 C_3 L_3 s^3 + C_1 s + q_m + s^2 \left(C_1 L_1 q_m + C_3 L_3 q_m \right)}$$

10.50 INVALID-ORDER-50
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1 C_3 L_1 L_3 g_m s^4 + C_1 C_3 L_1 R_3 g_m s^3 + C_3 R_3 g_m s + g_m + s^2 \left(C_1 L_1 g_m + C_3 L_3 g_m \right)}{C_1 C_3 L_1 g_m s^3 + C_1 C_3 s^2 + C_3 g_m s}$$

10.51 INVALID-ORDER-51
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1L_1L_3R_3g_ms^3 + L_3R_3g_ms}{C_1C_3L_1L_3R_3g_ms^4 + R_3g_m + s^3\left(C_1C_3L_3R_3 + C_1L_1L_3g_m\right) + s^2\left(C_1L_1R_3g_m + C_1L_3 + C_3L_3R_3g_m\right) + s\left(C_1R_3 + L_3g_m\right)}$$

10.52 INVALID-ORDER-52
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \ \infty, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_1 C_3 L_1 L_3 R_3 g_m s^4 + C_1 L_1 L_3 g_m s^3 + L_3 g_m s + R_3 g_m + s^2 \left(C_1 L_1 R_3 g_m + C_3 L_3 R_3 g_m \right)}{C_1 C_3 L_1 L_3 g_m s^4 + C_1 C_3 L_3 s^3 + C_1 s + g_m + s^2 \left(C_1 L_1 g_m + C_3 L_3 g_m \right)}$$

10.53 INVALID-ORDER-53
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1C_3L_1L_3R_3g_ms^4 + R_3g_m + s^2\left(C_1L_1R_3g_m + C_3L_3R_3g_m\right)}{C_1C_3L_1L_3g_ms^4 + g_m + s^3\left(C_1C_3L_1R_3g_m + C_1C_3L_3\right) + s^2\left(C_1C_3R_3 + C_1L_1g_m + C_3L_3g_m\right) + s\left(C_1 + C_3R_3g_m\right)}$$

10.54 INVALID-ORDER-54
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{L_1 R_3 g_m s}{C_1 C_3 L_1 R_3 s^3 + s^2 \left(C_1 L_1 + C_3 L_1 R_3 g_m \right) + s \left(C_3 R_3 + L_1 g_m \right) + 1}$$

10.55 INVALID-ORDER-55
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{L_1 L_3 g_m s^2}{C_1 C_3 L_1 L_3 s^4 + C_3 L_1 L_3 g_m s^3 + L_1 g_m s + s^2 (C_1 L_1 + C_3 L_3) + 1}$$

10.56 INVALID-ORDER-56
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{L_1 L_3 R_3 g_m s^2}{C_1 C_3 L_1 L_3 R_3 s^4 + R_3 + s^3 \left(C_1 L_1 L_3 + C_3 L_1 L_3 R_3 g_m \right) + s^2 \left(C_1 L_1 R_3 + C_3 L_3 R_3 + L_1 L_3 g_m \right) + s \left(L_1 R_3 g_m + L_3 \right)}$$

10.57 INVALID-ORDER-57
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_1 L_3 R_3 g_m s^3 + L_1 L_3 g_m s^2 + L_1 R_3 g_m s}{C_1 C_3 L_1 L_3 s^4 + C_3 L_1 L_3 g_m s^3 + L_1 g_m s + s^2 (C_1 L_1 + C_3 L_3) + 1}$$

10.58 INVALID-ORDER-58
$$Z(s) = \left(\frac{L_{1s}}{C_1 L_1 s^2 + 1}, \infty, \frac{R_3 (C_3 L_3 s^2 + 1)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_1 L_3 R_3 g_m s^3 + L_1 R_3 g_m s}{C_1 C_3 L_1 L_3 s^4 + s^3 \left(C_1 C_3 L_1 R_3 + C_3 L_1 L_3 g_m \right) + s^2 \left(C_1 L_1 + C_3 L_1 R_3 g_m + C_3 L_3 \right) + s \left(C_3 R_3 + L_1 g_m \right) + 1}$$

10.59 INVALID-ORDER-59
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1 L_1 g_m s^2 + C_1 R_1 g_m s + g_m}{C_1 C_3 L_1 g_m s^3 + C_3 g_m s + s^2 (C_1 C_3 R_1 g_m + C_1 C_3)}$$

10.60 INVALID-ORDER-60
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1L_1R_3g_ms^2 + C_1R_1R_3g_ms + R_3g_m}{C_1C_3L_1R_3g_ms^3 + g_m + s^2\left(C_1C_3R_1R_3g_m + C_1C_3R_3 + C_1L_1g_m\right) + s\left(C_1R_1g_m + C_1 + C_3R_3g_m\right)}$$

10.61 INVALID-ORDER-61
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1 C_3 L_1 R_3 g_m s^3 + g_m + s^2 \left(C_1 C_3 R_1 R_3 g_m + C_1 L_1 g_m \right) + s \left(C_1 R_1 g_m + C_3 R_3 g_m \right)}{C_1 C_3 L_1 g_m s^3 + C_3 g_m s + s^2 \left(C_1 C_3 R_1 g_m + C_1 C_3 \right)}$$

10.62 INVALID-ORDER-62
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1 C_3 L_1 L_3 g_m s^4 + C_1 C_3 L_3 R_1 g_m s^3 + C_1 R_1 g_m s + g_m + s^2 \left(C_1 L_1 g_m + C_3 L_3 g_m\right)}{C_1 C_3 L_1 g_m s^3 + C_3 g_m s + s^2 \left(C_1 C_3 R_1 g_m + C_1 C_3\right)}$$

10.63 INVALID-ORDER-63
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1L_1L_3g_ms^3 + C_1L_3R_1g_ms^2 + L_3g_ms}{C_1C_3L_1L_3g_ms^4 + g_m + s^3\left(C_1C_3L_3R_1g_m + C_1C_3L_3\right) + s^2\left(C_1L_1g_m + C_3L_3g_m\right) + s\left(C_1R_1g_m + C_1\right)}$$

10.64 INVALID-ORDER-64
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_{1}C_{3}L_{1}L_{3}g_{m}s^{4} + g_{m} + s^{3}\left(C_{1}C_{3}L_{1}R_{3}g_{m} + C_{1}C_{3}L_{3}R_{1}g_{m}\right) + s^{2}\left(C_{1}C_{3}R_{1}R_{3}g_{m} + C_{1}L_{1}g_{m} + C_{3}L_{3}g_{m}\right) + s\left(C_{1}R_{1}g_{m} + C_{3}R_{3}g_{m}\right)}{C_{1}C_{3}L_{1}g_{m}s^{3} + C_{3}g_{m}s + s^{2}\left(C_{1}C_{3}R_{1}g_{m} + C_{1}C_{3}\right)}$$

10.65 INVALID-ORDER-65
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \frac{L_3 R_{3s}}{C_3 L_3 R_{3s}^2 + L_3 s + R_3}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1L_1L_3R_3g_ms^3 + C_1L_3R_1R_3g_ms^2 + L_3R_3g_ms}{C_1C_3L_1L_3R_3g_ms^4 + R_3g_m + s^3\left(C_1C_3L_3R_1R_3g_m + C_1L_3L_3R_3g_m\right) + s^2\left(C_1L_1R_3g_m + C_1L_3R_1g_m + C_1L_3 + C_3L_3R_3g_m\right) + s\left(C_1R_1R_3g_m + C_1R_3 + L_3g_m\right)}$$

10.66 INVALID-ORDER-66
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1C_3L_1L_3R_3g_ms^4 + R_3g_m + s^3\left(C_1C_3L_3R_1R_3g_m + C_1L_1L_3g_m\right) + s^2\left(C_1L_1R_3g_m + C_1L_3R_1g_m + C_3L_3R_3g_m\right) + s\left(C_1R_1R_3g_m + L_3g_m\right)}{C_1C_3L_1L_3g_ms^4 + g_m + s^3\left(C_1C_3L_3R_1g_m + C_1C_3L_3\right) + s^2\left(C_1L_1g_m + C_3L_3g_m\right) + s\left(C_1R_1g_m + C_1\right)}$$

10.67 INVALID-ORDER-67
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1C_3L_1L_3R_3g_ms^4 + C_1C_3L_3R_1R_3g_ms^3 + C_1R_1R_3g_ms + R_3g_m + s^2\left(C_1L_1R_3g_m + C_3L_3R_3g_m\right)}{C_1C_3L_1L_3g_ms^4 + g_m + s^3\left(C_1C_3L_1R_3g_m + C_1C_3L_3R_1g_m + C_1C_3L_3\right) + s^2\left(C_1C_3R_1R_3g_m + C_1C_3R_3 + C_1L_1g_m + C_3L_3g_m\right) + s\left(C_1R_1g_m + C_1 + C_3R_3g_m\right)}$$

10.68 INVALID-ORDER-68
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{L_1 R_1 R_3 g_m s}{C_1 C_3 L_1 R_1 R_3 s^3 + R_1 + s^2 \left(C_1 L_1 R_1 + C_3 L_1 R_1 R_3 g_m + C_3 L_1 R_3 \right) + s \left(C_3 R_1 R_3 + L_1 R_1 g_m + L_1 \right)}$$

10.69 INVALID-ORDER-69
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_1 L_3 R_1 g_m s^2}{C_1 C_3 L_1 L_3 R_1 s^4 + R_1 + s^3 \left(C_3 L_1 L_3 R_1 q_m + C_3 L_1 L_3 \right) + s^2 \left(C_1 L_1 R_1 + C_3 L_3 R_1 \right) + s \left(L_1 R_1 q_m + L_1 \right)}$$

10.70 INVALID-ORDER-70
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{L_1 L_3 R_1 R_3 g_m s^2}{C_1 C_3 L_1 L_3 R_1 R_3 s^4 + R_1 R_3 + s^3 \left(C_1 L_1 L_3 R_1 + C_3 L_1 L_3 R_1 R_3 g_m + C_3 L_1 L_3 R_3\right) + s^2 \left(C_1 L_1 R_1 R_3 + C_3 L_3 R_1 R_3 + L_1 L_3 R_1 g_m + L_1 L_3\right) + s \left(L_1 R_1 R_3 g_m + L_1 R_3 + L_3 R_1\right)}$$

10.71 INVALID-ORDER-71
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_1 L_3 R_1 R_3 g_m s^3 + L_1 L_3 R_1 g_m s^2 + L_1 R_1 R_3 g_m s}{C_1 C_3 L_1 L_3 R_1 s^4 + R_1 + s^3 \left(C_3 L_1 L_3 R_1 g_m + C_3 L_1 L_3 \right) + s^2 \left(C_1 L_1 R_1 + C_3 L_3 R_1 \right) + s \left(L_1 R_1 g_m + L_1 \right)}$$

10.73 INVALID-ORDER-73 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_1 L_1 R_1 g_m s^2 + L_1 g_m s + R_1 g_m}{C_3 L_1 g_m s^2 + s^3 \left(C_1 C_3 L_1 R_1 g_m + C_1 C_3 L_1 \right) + s \left(C_3 R_1 g_m + C_3 \right)}$$

10.74 INVALID-ORDER-74 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_1L_1R_1R_3g_ms^2 + L_1R_3g_ms + R_1R_3g_m}{R_1g_m + s^3\left(C_1C_3L_1R_1R_3g_m + C_1C_3L_1R_3\right) + s^2\left(C_1L_1R_1g_m + C_1L_1 + C_3L_1R_3g_m\right) + s\left(C_3R_1R_3g_m + C_3R_3 + L_1g_m\right) + 1}$$

10.75 INVALID-ORDER-75 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_1 C_3 L_1 R_1 R_3 g_m s^3 + R_1 g_m + s^2 \left(C_1 L_1 R_1 g_m + C_3 L_1 R_3 g_m \right) + s \left(C_3 R_1 R_3 g_m + L_1 g_m \right)}{C_3 L_1 g_m s^2 + s^3 \left(C_1 C_3 L_1 R_1 g_m + C_1 C_3 L_1 \right) + s \left(C_3 R_1 g_m + C_3 \right)}$$

10.76 INVALID-ORDER-76 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_1 C_3 L_1 L_3 R_1 g_m s^4 + C_3 L_1 L_3 g_m s^3 + L_1 g_m s + R_1 g_m + s^2 \left(C_1 L_1 R_1 g_m + C_3 L_3 R_1 g_m \right)}{C_3 L_1 g_m s^2 + s^3 \left(C_1 C_3 L_1 R_1 g_m + C_1 C_3 L_1 \right) + s \left(C_3 R_1 g_m + C_3 \right)}$$

10.77 INVALID-ORDER-77 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_1L_1L_3R_1g_ms^3 + L_1L_3g_ms^2 + L_3R_1g_ms}{C_3L_1L_3g_ms^3 + L_1g_ms + R_1g_m + s^4\left(C_1C_3L_1L_3R_1g_m + C_1C_3L_1L_3\right) + s^2\left(C_1L_1R_1g_m + C_1L_1 + C_3L_3R_1g_m + C_3L_3\right) + 1}$$

10.78 INVALID-ORDER-78 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_{1}C_{3}L_{1}L_{3}R_{1}g_{m}s^{4} + R_{1}g_{m} + s^{3}\left(C_{1}C_{3}L_{1}R_{1}R_{3}g_{m} + C_{3}L_{1}L_{3}g_{m}\right) + s^{2}\left(C_{1}L_{1}R_{1}g_{m} + C_{3}L_{1}R_{3}g_{m} + C_{3}L_{3}R_{1}g_{m}\right) + s\left(C_{3}R_{1}R_{3}g_{m} + L_{1}g_{m}\right)}{C_{3}L_{1}g_{m}s^{2} + s^{3}\left(C_{1}C_{3}L_{1}R_{1}g_{m} + C_{1}C_{3}L_{1}\right) + s\left(C_{3}R_{1}g_{m} + C_{3}\right)}$$

10.79 INVALID-ORDER-79 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_1L_1L_3R_1R_3g_ms^3 + L_1L_3R_3g_ms^2 + L_3R_1R_3g_ms}{R_1R_3g_m + R_3 + s^4\left(C_1C_3L_1L_3R_1g_m + C_1C_3L_1L_3R_3\right) + s^3\left(C_1L_1L_3R_1g_m + C_1L_1L_3 + C_3L_1L_3R_3g_m\right) + s^2\left(C_1L_1R_1R_3g_m + C_1L_1R_3 + C_3L_3R_1R_3g_m + C_3L_3R_3 + L_1L_3g_m\right) + s\left(L_1R_3g_m + L_3R_1g_m + L_3R_3g_m\right) + s\left(L_1R_3g_m + L_3R_3g_m\right) +$$

10.80 INVALID-ORDER-80 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_1C_3L_1L_3R_1R_3g_ms^4 + R_1R_3g_m + s^3\left(C_1L_1L_3R_1g_m + C_3L_1L_3R_3g_m\right) + s^2\left(C_1L_1R_1R_3g_m + C_3L_3R_1R_3g_m + L_1L_3g_m\right) + s\left(L_1R_3g_m + L_3R_1g_m\right)}{C_3L_1L_3g_ms^3 + L_1g_ms + R_1g_m + s^4\left(C_1C_3L_1L_3R_1g_m + C_1C_3L_1L_3\right) + s^2\left(C_1L_1R_1g_m + C_1L_1 + C_3L_3R_1g_m + C_3L_3\right) + 1}$$

$$\begin{aligned} \textbf{10.81} \quad \textbf{INVALID-ORDER-81} \ \ Z(s) &= \left(\frac{L_1s}{C_1L_1s^2+1} + R_1, \ \ \infty, \ \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ \ \infty, \ \ \infty, \ \ \infty\right) \\ & H(s) &= \frac{C_1C_3L_1L_3R_1R_3g_ms^4 + C_3L_1L_3R_3g_ms^3 + L_1R_3g_ms + R_1R_3g_m + s^2\left(C_1L_1R_1R_3g_m + C_3L_3R_1R_3g_m\right)}{R_1g_m + s^4\left(C_1C_3L_1L_3R_1g_m + C_1C_3L_1L_3\right) + s^3\left(C_1C_3L_1R_1R_3g_m + C_1C_3L_1R_3g_m\right) + s^2\left(C_1L_1R_1g_m + C_1L_1 + C_3L_1R_3g_m + C_3L_3R_1g_m + C_3R_3 + L_1g_m\right) + 1} \end{aligned}$$

10.82 INVALID-ORDER-82
$$Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \frac{1}{C_3s}, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_1L_1R_1g_ms^2 + R_1g_m}{C_1C_3R_1s^2 + s^3\left(C_1C_3L_1R_1g_m + C_1C_3L_1\right) + s\left(C_3R_1g_m + C_3\right)}$$

$$\textbf{10.83} \quad \textbf{INVALID-ORDER-83} \ Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \frac{R_3}{C_3R_3s+1}, \ \infty, \ \infty, \ \infty\right)$$

$$\frac{C_1L_1R_1R_3g_ms^2 + R_1R_3g_m}{R_1g_m + s^3\left(C_1C_3L_1R_1R_3g_m + C_1C_3L_1R_3\right) + s^2\left(C_1C_3R_1R_3 + C_1L_1R_1g_m + C_1L_1\right) + s\left(C_1R_1 + C_3R_1R_3g_m + C_3R_3\right) + 1$$

10.84 INVALID-ORDER-84
$$Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \infty, R_3 + \frac{1}{C_3s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1C_3L_1R_1R_3g_ms^3 + C_1L_1R_1g_ms^2 + C_3R_1R_3g_ms + R_1g_m}{C_1C_3R_1s^2 + s^3\left(C_1C_3L_1R_1g_m + C_1C_3L_1\right) + s\left(C_3R_1g_m + C_3\right)}$$

10.85 INVALID-ORDER-85
$$Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \infty, L_3s+\frac{1}{C_3s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1C_3L_1L_3R_1g_ms^4+R_1g_m+s^2\left(C_1L_1R_1g_m+C_3L_3R_1g_m\right)}{C_1C_3R_1s^2+s^3\left(C_1C_3L_1R_1g_m+C_1C_3L_1\right)+s\left(C_3R_1g_m+C_3L_3R_1g_m+C_3L_3R_1g_m\right)}$$

$$\textbf{10.86} \quad \textbf{INVALID-ORDER-86} \ Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ \infty\right) \\ H(s) = \frac{C_1L_1L_3R_1g_ms^3 + L_3R_1g_ms}{C_1C_3L_3R_1s^3 + C_1R_1s + R_1g_m + s^4\left(C_1C_3L_1L_3R_1g_m + C_1C_3L_1L_3\right) + s^2\left(C_1L_1R_1g_m + C_1L_1 + C_3L_3R_1g_m + C_3L_3\right) + 1 }$$

10.87 INVALID-ORDER-87
$$Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ L_3s+R_3+\frac{1}{C_3s}, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_1C_3L_1L_3R_1g_ms^4+C_1C_3L_1R_1R_3g_ms^3+C_3R_1R_3g_ms+R_1g_m+s^2\left(C_1L_1R_1g_m+C_3L_3R_1g_m\right)}{C_1C_3R_1s^2+s^3\left(C_1C_3L_1R_1g_m+C_1C_3L_1\right)+s\left(C_3R_1g_m+C_3\right)}$$

10.89 INVALID-ORDER-89
$$Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_1C_3L_1L_3R_1R_3g_ms^4 + C_1L_1L_3R_1g_ms^3 + L_3R_1g_ms + R_1R_3g_m + s^2\left(C_1L_1R_1R_3g_m + C_3L_3R_1R_3g_m\right)}{C_1C_3L_3R_1s^3 + C_1R_1s + R_1g_m + s^4\left(C_1C_3L_1L_3R_1g_m + C_1C_3L_1L_3\right) + s^2\left(C_1L_1R_1g_m + C_1L_1 + C_3L_3R_1g_m + C_3L_3\right) + 1}$$

$$\textbf{10.90} \quad \textbf{INVALID-ORDER-90} \ Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ \infty, \ \infty, \ \infty\right) \\ H(s) = \frac{C_1C_3L_1L_3R_1R_3g_ms^4 + R_1R_3g_m + s^2\left(C_1L_1R_1R_3g_m + C_3L_3R_1R_3g_m\right)}{R_1g_m + s^4\left(C_1C_3L_1L_3R_1g_m + C_1C_3L_1R_3\right) + s^3\left(C_1C_3L_1R_1R_3g_m + C_1C_3L_1R_3 + C_1C_3L_3R_3\right) + s^2\left(C_1C_3R_1R_3 + C_1L_1R_1g_m + C_1L_1 + C_3L_3R_1g_m + C_3L_3\right) + s\left(C_1R_1 + C_3R_1R_3g_m + C_3R_3\right) + 1}$$

11 PolynomialError