

VECTORES CON PYTHON PARTE 1

Introducción

En el curso de Programación se presentaron los arreglos y el uso del paquete numpy, para promover el uso Python se procederá a explicar como usar los vectores y sus operaciones. El paquete numpy permite realizar calculo numéricos, que solo permite números en los argumentos de las funciones y sus resultados son números.

Existe el cálculo simbólico que es principalmente el cálculo que debe realizarse manualmente con lápiz y papel en principio, la computadora se analiza y calcula usando las reglas del algebra. Una diferencia principal radica en que se pueden usar incógnitas, constantes y números, a diferencia del calculo numérico que solo utiliza números. Existen otros lenguajes y herramientas computaciones que permiten trabajar con vectores que podrán ser usados en el futuro, por ahora usaremos Python.

Operaciones con Vectores

Un vector se representa en forma analítica en las coordenadas rectangulares como $\vec{A} = (A_x; A_y, A_z)$ En Python escribir un vector es

from numpy import *
A=array([1,2,3],float)
print(A)

Suma de Vectores

from numpy import *
A=array([1,2,3],float)
B=array([-3,4,5],float)
print(A+B)

Multiplicar un vector por un escalar

from numpy import *
A=array([1,2,3],float)
C=3*A
print(4*A)
print(C)

Producto Punto

La función numpy.dot() aceptan dos listas como argumentos, calcula su producto punto y devuelven el resultado, también se puede usar el operador @ para calcular el producto punto

```
from numpy import *
A=array([1,2,3],float)
B=array([-3,4,5],float)
C=dot(A,B)
print(C)
D=A@B
print(D)
```

Producto Cruz

Para calcular el producto vectorial entre dos vectores en el lenguaje Python, use la función cross () del módulo numpy.

```
from numpy import *
A=array([1,2,3],float)
B=array([-3,4,5],float)
C=cross(A,B)
print(C)
```

Magnitud de un Vector

Para calcular la norma de un vector podemos usar la función linalg.norm(A), pero el largo de un vector se puede redefinir usando el producto punto, donde $\|\vec{A}\| = \sqrt{A_x^2 + A_y^2 + A_z^2} = \sqrt{\vec{A} \cdot \vec{A}}$

```
from numpy import *
A=array([1,2,3],float)
C=linalg.norm(A)
D=sqrt(dot(A,A))
print(C)
print(D)
```

Vector Unitario

El vector unitario se puede calcular usando $\hat{A} = \frac{\vec{A}}{\|\vec{A}\|}$

```
from numpy import *
A=array([1,2,3],float)
normaA=sqrt(dot(A,A))
unit_A=A/normaA
print(unit_A)
```

Departamento de Ciencias Físicas PCFI101

Ejemplo 1

Para la figura adjunta:
$$\|\vec{F}\| = 1300$$
; $\|\vec{G}\| = 2700$; $\|\vec{H}\| = 2400$; $\|\vec{I}\| = 3100$; $\alpha = 65^{\circ}$; $\beta = 45^{\circ}$; $\theta = 20^{\circ}$; $\mu = 55^{\circ}$.

- a) Escriba cada uno de los vectores usando la base canónica.
- b) Sume analíticamente todos los vectores.

Solución	Solución Python
$\vec{F} = 1300 \cdot (\text{sen}65; \cos 65)$ $\vec{G} = 2700 \cdot (-\cos 45; \sin 45)$ $\vec{H} = 2400 \cdot (-\sin 20; -\cos 20)$ $\vec{I} = 3100 \cdot (\cos 55; -\sin 55)$ $\vec{R} = \vec{F} + \vec{G} + \vec{H} + \vec{I}$ $\vec{R} = (226,3; -2336,0)$	from numpy import * gr=pi/180 F=1300*array([sin(65*gr),cos(65*gr)],float) G=2700*array([-cos(45*gr),sin(45*gr)],float) H=2400*array([-sin(20*gr),-cos(20*gr)],float) I=3100*array([cos(55*gr),-sin(55*gr)],float) R=F+G+H+I print(R)

Universidad Andrés Bello

Ejemplo 2

Determine la longitud del cable AB que soporta la placa abisagrada. Si la fuerza en la cuerda es F=500 N, escriba el vector F usando la base canónica.

Solución	Solución Python
$\vec{A} = (2,4;2,7;0)$ $\vec{B} = (0;0;3,7)$ $\vec{L} = \vec{B} - \vec{A} = (-2,4;-2,7;3,7)$ $\ \vec{L}\ = AB = \sqrt{2,4^2 + 2,7^2 + 3,7^2} = 5,17$ $\hat{L} = \frac{\vec{L}}{\ \vec{L}\ } = \frac{(-2,4;-2,7;3,7)}{5,17}$ $\hat{L} = (-0,464;-0,522;0,716)$ $\hat{L} = \hat{F}$ $\vec{F} = \ \vec{F}\ \cdot \hat{F}$ $\vec{F} = 500 \cdot (-0,464;-0,522;0,716)$ $\vec{F} = (-232;-261;358)$ $\vec{F} = -232\hat{i} - 261\hat{j} + 358\hat{k}$	from numpy import * gr=pi/180 A=array([2.4,2.7,0],float) B=array([0,0,3.7],float) L=B-A uni_L=L/sqrt(L@L) F=500*uni_L print(F)

Universidad Andrés Bello

Ejemplo 3

Determine el ángulo θ entre los bordes de la ménsula de lámina metálica.

Solución	Solución Python	
$\vec{A} = (400;0;250)$ $\vec{B} = (50;300;0)$ $\ \vec{A}\ = \sqrt{400^2 + 0^2 + 250^2} = 471,7$ $\ \vec{B}\ = \sqrt{50^2 + 300^2 + 0^2} = 304,1$ $\vec{A} \cdot \vec{B} = 20000 + 0 + 0 = 20000$ $\vec{A} \cdot \vec{B} = \ \vec{A}\ \ \vec{B}\ \cos \theta$ $20000 = 471,7 \cdot 304,1 \cdot \cos \theta$ $\theta = 81,99^\circ$	from numpy import * A=array([400,0,250],float) B=array([50,300,0],float) AB=A@B norm_A=sqrt(A@A) norm_B=sqrt(B@B) theta_rad=arccos(AB/norm_A/norm_B) theta=theta_rad/pi*180 print(theta)	
·		