Survival Analysis

Survival analysis

- So far, have seen:
 - response variable counted or measured (regression)
 - response variable categorized (logistic regression)

and have predicted response from explanatory variables.

- But what if response is time until event (eg. time of survival after surgery)?
- Additional complication: event might not have happened at end of study (eg. patient still alive). But knowing that patient has "not died yet" presumably informative. Such data called *censored*.
- Enter *survival analysis*, in particular the "Cox proportional hazards model".
- Explanatory variables in this context often called covariates.

Example: still dancing?

- 12 women who have just started taking dancing lessons are followed for up to a year, to see whether they are still taking dancing lessons, or have quit. The "event" here is "quit".
- This might depend on:
 - a treatment (visit to a dance competition)
 - woman's age (at start of study).

Data

Months	Quit	Treatment	Age
1	1	0	16
2	1	0	24
2	1	0	18
3	0	0	27
4	1	0	25
7	1	1	26
8	1	1	36
10	1	1	38
10	0	1	45
12	1	1	47

About the data

- months and quit are kind of combined response:
 - Months is number of months a woman was actually observed dancing
 - quit is 1 if woman quit, 0 if still dancing at end of study.
- Treatment is 1 if woman went to dance competition, 0 otherwise.
- Fit model and see whether Age or Treatment have effect on survival.
- Want to do predictions for probabilities of still dancing as they depend on whatever is significant, and draw plot.

Packages (for this section)

- Install packages survival and survminer if not done.
- Load survival, survminer, broom and tidyverse:

```
library(tidyverse)
library(survival)
library(survminer)
library(broom)
```

Read data

Column-aligned:

```
url <- "http://ritsokiguess.site/datafiles/dancing.txt"</pre>
dance <- read_table(url)</pre>
##
## -- Column specification
## cols(
##
     Months = col double(),
     Quit = col_double(),
##
##
     Treatment = col double(),
     Age = col double()
##
## )
```

The data

dance

Months	Quit	Treatment	Age
1	1	0	16
2	1	0	24
2	1	0	18
3	0	0	27
4	1	0	25
5	1	0	21
11	1	0	55
7	1	1	26
8	1	1	36
10	1	1	38
10	0	1	45
12	1	1	47

Survival Analysis

Examine response and fit model

Response variable:

dance %>% mutate(mth = Surv(Months, Quit)) -> dance
dance

Months	Quit	Treatment	Age	mth
1	1	0	16	1
2	1	0	24	2
2	1	0	18	2
3	0	0	27	3+
4	1	0	25	4
5	1	0	21	5
11	1	0	55	11
7	1	1	26	7
8	1	1	36	8
10	1	1	38	10
10	0	1	45	10+
12	1	1	47	12

Output looks a lot like regression

```
summary(dance.1)
## Call:
## coxph(formula = mth ~ Treatment + Age, data = dance)
##
##
    n= 12. number of events= 10
##
##
               coef exp(coef) se(coef) z
## Treatment -4.44915 0.01169 2.60929 -1.705
## Age -0.36619 0.69337 0.15381 -2.381
##
         Pr(>|z|)
## Treatment 0.0882 .
## Age 0.0173 *
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
           exp(coef) exp(-coef) lower .95 upper .95
## Treatment 0.01169 85.554 7.026e-05 1.9444
         0.69337 1.442 5.129e-01 0.9373
## Age
##
## Concordance= 0.964 (se = 0.039)
## Likelihood ratio test= 21.68 on 2 df, p=2e-05
```

Survival Analysis

Conclusions

- Use $\alpha = 0.10$ here since not much data.
- Three tests at bottom like global F-test. Consensus that something predicts survival time (whether or not dancer quit and how long it took).
- Age (definitely), Treatment (marginally) both predict survival time.

Model checking

- With regression, usually plot residuals against fitted values.
- Not quite same here (nonlinear model), but "martingale residuals' should have no pattern vs. "linear predictor".
- ggcoxdiagnostics from package survminer makes plot, to which we add smooth. If smooth trend more or less straight across, model OK.
- Martingale residuals can go very negative, so won't always look normal.

Martingale residual plot for dance data

This looks good (with only 12 points):

```
ggcoxdiagnostics(dance.1) + geom_smooth(se = F)
```

```
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula
## = 'y ~ x'
```


Predicted survival probs

- The function we use is called survfit, though actually works rather like predict.
- First create a data frame of values to predict from. We'll do all combos of ages 20 and 40, treatment and not, using crossing to get all the combos:

```
treatments <- c(0, 1)
ages <- c(20, 40)
dance.new <- crossing(Treatment = treatments, Age = ages)
dance.new</pre>
```

Age
20
40
20
40

The predictions

##

One prediction *for each time* for each combo of age and treatment in dance.new:

```
##
## -- Column specification -----
## cols(
## Months = col_double(),
## Quit = col_double(),
## Treatment = col_double(),
## Age = col_double()
## )
s <- survfit(dance.1, newdata = dance.new, data = dance)
summary(s)</pre>
```

time n.risk n.event survival1 survival2 survival3 survival4 ## 1 12 1 8 76e-01 1 00e+00 9 98e-01 1 000 Survival Analysis

Call: survfit(formula = dance.1, newdata = dance.new, data = dance)

Conclusions from predicted probs

- Older women more likely to be still dancing than younger women (compare "profiles" for same treatment group).
- Effect of treatment seems to be to increase prob of still dancing (compare "profiles" for same age for treatment group vs. not)
- Would be nice to see this on a graph. This is ggsurvplot from package survminer:

```
g <- ggsurvplot(s, conf.int = F)</pre>
```

"Strata" (groups)

• uses "strata" thus (dance.new):

Treatment	Age
0	20
0	40
1	20
1	40

Plotting survival probabilities

Discussion

- Survivor curve farther to the right is better (better chance of surviving longer).
- Best is age 40 with treatment, worst age 20 without.
- Appears to be:
 - age effect (40 better than 20)
 - treatment effect (treatment better than not)
 - In analysis, treatment effect only marginally significant.

A more realistic example: lung cancer

- When you load in an R package, get data sets to illustrate functions in the package.
- One such is lung. Data set measuring survival in patients with advanced lung cancer.
- Along with survival time, number of "performance scores" included, measuring how well patients can perform daily activities.
- Sometimes high good, but sometimes bad!
- Variables below, from the data set help file (?lung).

The variables

Format

inst: Institution code

time: Survival time in days

status: censoring status 1=censored, 2=dead

age: Age in years

sex: Male=1 Female=2

ph.ecog: ECOG performance score (0=good 5=dead)

ph.karno: Karnofsky performance score (bad=0-good=100) rated by physician

pat.karno: Karnofsky performance score as rated by patient

meal.cal: Calories consumed at meals wt.loss: Weight loss in last six months

Uh oh, missing values

lung %>% slice(1:16)

inst	time	status	age	sex	ph.ecog	ph.karno	pat.karno	meal.cal	wt.loss
3	306	2	74	1	1	90	100	1175	NA
3	455	2	68	1	0	90	90	1225	15
3	1010	1	56	1	0	90	90	NA	15
5	210	2	57	1	1	90	60	1150	11
1	883	2	60	1	0	100	90	NA	0
12	1022	1	74	1	1	50	80	513	0
7	310	2	68	2	2	70	60	384	10
11	361	2	71	2	2	60	80	538	1
1	218	2	53	1	1	70	80	825	16
7	166	2	61	1	2	70	70	271	34
6	170	2	57	1	1	80	80	1025	27
16	654	2	68	2	2	70	70	NA	23
11	728	2	68	2	1	90	90	NA	5
21	71	2	60	1	NA	60	70	1225	32
12	567	2	57	1	1	80	70	2600	60
1	144	2	67	1	1	80	90	NA	15

Survival Analysis

A closer look

summary(lung)

```
##
        inst
                      time
                                     status
                                                     age
                                                                    sex
   Min. : 1.00
                  Min. :
                            5.0
                                        :1.000
                                                       :39.00
                                                               Min. :1.000
                                  Min.
                                                Min.
   1st Qu.: 3.00
                 1st Qu.: 166.8
                                  1st Qu.:1.000
                                                1st Qu.:56.00
                                                               1st Qu.:1.000
   Median :11.00
                  Median: 255.5
                                 Median :2.000
                                                Median :63.00
                                                               Median :1.000
                        : 305.2
                                                       :62.45
                                                               Mean
   Mean
        :11.09
                Mean
                                  Mean
                                        :1.724
                                                Mean
                                                                     :1.395
   3rd Qu.:16.00
                  3rd Qu.: 396.5
                                  3rd Qu.:2.000
                                                3rd Qu.:69.00
                                                               3rd Qu.:2.000
   Max.
        :33.00
                  Max.
                        :1022.0
                                  Max
                                        :2.000
                                                Max.
                                                       .82.00
                                                               Max.
                                                                      :2.000
   NA's
        :1
##
                                                     meal.cal
                                                                     wt.loss
      ph.ecog
                      ph.karno
                                    pat.karno
   Min
          :0.0000
                   Min. : 50.00
                                 Min. : 30.00
                                                  Min. : 96.0
                                                                  Min.
                                                                      :-24.000
   1st Qu.:0.0000
                   1st Qu.: 75.00
                                 1st Qu.: 70.00
                                                  1st Qu.: 635.0
                                                                  1st Qu.: 0.000
   Median :1.0000
                   Median : 80.00
                                 Median : 80.00
                                                  Median : 975.0
                                                                  Median: 7.000
   Mean
          :0.9515
                        : 81.94 Mean : 79.96
                                                       : 928.8
                                                                       : 9.832
                   Mean
                                                  Mean
                                                                  Mean
   3rd Qu.:1.0000
                   3rd Qu.: 90.00
                                  3rd Qu.: 90.00
                                                  3rd Qu.:1150.0
                                                                  3rd Qu.: 15.750
   Max. :3.0000
                         :100.00
                                  Max. :100.00
                                                  Max. :2600.0
                                                                        : 68.000
                   Max.
                                                                  Max.
   NA's
        :1
                   NA's :1
                                  NA's :3
                                                  NA's :47
                                                                  NA's :14
```

Remove obs with any missing values

```
lung %>% drop_na() -> lung.complete
lung.complete %>%
  select(meal.cal:wt.loss) %>%
  slice(1:10)
```

	meal.cal	wt.loss
2	1225	15
4	1150	11
6	513	0
7	384	10
8	538	1
9	825	16
10	271	34
11	1025	27
15	2600	60
17	1150	-5

Check!

summary(lung.complete)

```
inst
                         time
                                          status
                                                           age
                                                                            sex
    Min.
           : 1.00
                               5.0
                                             :1.000
                                                             :39.00
                                                                              :1.000
                    Min.
                                      Min.
                                                      Min.
                                                                       Min.
    1st Qu.: 3.00
                                                      1st Qu.:57.00
                    1st Qu.: 174.5
                                     1st Qu.:1.000
                                                                      1st Qu.:1.000
   Median :11.00
                    Median : 268.0
                                     Median :2.000
                                                      Median :64.00
                                                                      Median :1.000
    Mean
           :10.71
                    Mean
                           : 309.9
                                      Mean
                                             :1.719
                                                      Mean
                                                             :62.57
                                                                       Mean
                                                                              :1.383
   3rd Qu.:15.00
                    3rd Qu.: 419.5
                                      3rd Qu.:2.000
                                                      3rd Qu.:70.00
                                                                      3rd Qu.:2.000
   Max.
           :32.00
                           :1022.0
                                             :2.000
                                                                              :2.000
                    Max.
                                      Max.
                                                      Max.
                                                             :82.00
                                                                      Max.
##
       ph.ecog
                        ph.karno
                                        pat.karno
                                                           meal.cal
                                                                            wt.loss
   Min.
           :0.0000
                     Min.
                            : 50.00
                                      Min.
                                              : 30.00
                                                        Min.
                                                                         Min.
                                                              : 96.0
                                                                                 :-24.000
   1st Qu.:0.0000
                     1st Qu.: 70.00
                                      1st Qu.: 70.00
                                                        1st Qu.: 619.0
                                                                         1st Qu.: 0.000
   Median :1.0000
                     Median : 80.00
                                      Median: 80.00
                                                        Median: 975.0
                                                                         Median: 7.000
   Mean
           :0.9581
                     Mean
                            : 82.04
                                      Mean
                                              : 79.58
                                                        Mean
                                                              : 929.1
                                                                         Mean
                                                                               : 9.719
   3rd Qu.:1.0000
                     3rd Qu.: 90.00
                                      3rd Qu.: 90.00
                                                        3rd Qu.:1162.5
                                                                         3rd Qu.: 15.000
   Max. :3.0000
                     Max.
                            :100.00
                                      Max.
                                              :100.00
                                                        Max.
                                                               :2600.0
                                                                         Max.
                                                                                : 68.000
```

No missing values left.

Model 1: use everything except inst

```
names(lung.complete)
## [1] "inst" "time" "status" "age"
                                                   "sex"
                                                              "ph.ecc
   [8] "pat.karno" "meal.cal" "wt.loss"
##

    Event was death, goes with status of 2:

lung.complete %>%
   mutate(resp = Surv(time, status == 2)) ->
   lung.complete
lung.1 <- coxph(resp ~ . - inst - time - status,</pre>
  data = lung.complete
```

"Dot" means "all the other variables".

summary of model 1: too tiny to see!

```
summary(lung.1)
## Call:
## coxph(formula = resp ~ . - inst - time - status, data = lung.complete)
##
##
   n= 167, number of events= 120
##
##
                coef exp(coef) se(coef)
                                             z Pr(>|z|)
## age
          1.080e-02 1.011e+00 1.160e-02 0.931 0.35168
         -5.536e-01 5.749e-01 2.016e-01 -2.746 0.00603 **
## sex
## ph.ecog 7.395e-01 2.095e+00 2.250e-01 3.287 0.00101 **
## ph.karno 2.244e-02 1.023e+00 1.123e-02 1.998 0.04575 *
## pat.karno -1.207e-02 9.880e-01 8.116e-03 -1.488 0.13685
## meal.cal 2.835e-05 1.000e+00 2.594e-04 0.109 0.91298
## wt.loss -1.420e-02 9.859e-01 7.766e-03 -1.828 0.06748 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
           exp(coef) exp(-coef) lower .95 upper .95
           1.0109
## age
                       0.9893
                                0.9881 1.0341
## sex
            0.5749
                      1.7395 0.3872 0.8534
## ph.ecog
            2.0950 0.4773 1.3479 3.2560
## ph.karno 1.0227 0.9778 1.0004 1.0455
## pat.karno 0.9880 1.0121 0.9724 1.0038
## meal.cal 1.0000 1.0000 0.9995
                                        1.0005
## wt.loss 0.9859
                    1.0143 0.9710
                                        1.0010
##
## Concordance= 0.653 (se = 0.029 )
## Likelihood ratio test= 28.16 on 7 df. p=2e-04
                     = 27.5 on 7 df, p=3e-04
## Wald test
## Score (logrank) test = 28.31 on 7 df, p=2e-04
```

Overall significance

The three tests of overall significance:

p.value.log	p.value.sc	p.value.wald	p.value.robust
0.0002053	0.0001929	0.0002711	NA

All strongly significant. Something predicts survival.

Coefficients for model 1

tidy(lung.1) %>% select(term, p.value) %>% arrange(p.value)

term	p.value
ph.ecog	0.0010126
sex	0.0060268
ph.karno	0.0457479
wt.loss	0.0674829
pat.karno	0.1368514
age	0.3516810
meal.cal	0.9129766

- sex and ph.ecog definitely significant here
- age, pat.karno and meal.cal definitely not
- Take out definitely non-sig variables, and try again.

Survival Analysis

29 / 45

Model 2

```
lung.2 <- update(lung.1, . ~ . - age - pat.karno - meal.cal)
tidy(lung.2) %>% select(term, p.value)
```

term	p.value
sex	0.0040915
ph.ecog	0.0001119
ph.karno	0.1005838
wt.loss	0.1079748

Survival Analysis

Compare with first model:

anova(lung.2, lung.1)

loglik	Chisq	Df	Pr(> Chi)
-495.6689	NA	NA	NA
-494.0344	3.268999	3	0.3519808

No harm in taking out those variables.

Model 3

Take out ph.karno and wt.loss as well.

```
lung.3 <- update(lung.2, . ~ . - ph.karno - wt.loss)</pre>
```

tidy(lung.3) %>% select(term, estimate, p.value)

term	estimate	p.value
sex	-0.5100991	0.0095794
ph.ecog	0.4825185	0.0002656

Check whether that was OK

anova(lung.3, lung.2)

loglik	Chisq	Df	Pr(> Chi)
-498.3757	NA	NA	NA
-495.6689	5.413508	2	0.0667531

Just OK.

Commentary

- OK (just) to take out those two covariates.
- Both remaining variables strongly significant.
- Nature of effect on survival time? Consider later.
- Picture?

Plotting survival probabilities

• Create new data frame of values to predict for, then predict:

```
sexes <- c(1, 2)
ph.ecogs <- 0:3
lung.new <- crossing(sex = sexes, ph.ecog = ph.ecogs)
lung.new</pre>
```

sex	ph.ecog
1	0
1	1
1	2
1	3
2	0
2	1
2	2
2	3

Making the plot

```
s <- survfit(lung.3, newdata = lung.new, data = lung)
g <- ggsurvplot(s, conf.int = F)</pre>
```

The plot

Discussion of survival curves

- Best survival is teal-blue curve, stratum 5, females with ph.ecog score
 0.
- Next best: blue, stratum 6, females with score 1, and red, stratum 1, males score 0.
- Worst: green, stratum 4, males score 3.
- For any given ph.ecog score, females have better predicted survival than males.
- For both genders, a lower score associated with better survival.

The coefficients in model 3

tidy(lung.3) %>% select(term, estimate, p.value)

term	estimate	p.value
sex	-0.5100991	0.0095794
ph.ecog	0.4825185	0.0002656

- sex coeff negative, so being higher sex value (female) goes with *less* hazard of dying.
- ph.ecog coeff positive, so higher ph.ecog score goes with more hazard of dying
- Two coeffs about same size, so being male rather than female corresponds to 1-point increase in ph.ecog score. Note how survival curves come in 3 pairs plus 2 odd.

Martingale residuals for this model

No problems here:

```
ggcoxdiagnostics(lung.3) + geom_smooth(se = F)

## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula = 'y ~

residuals
```


When the Cox model fails

 Invent some data where survival is best at middling age, and worse at high and low age:

```
age <- seq(20, 60, 5)
survtime <- c(10, 12, 11, 21, 15, 20, 8, 9, 11)
stat <- c(1, 1, 1, 1, 0, 1, 1, 1, 1)
d <- tibble(age, survtime, stat)
d %>% mutate(y = Surv(survtime, stat)) -> d
```

• Small survival time 15 in middle was actually censored, so would have been longer if observed.

Fit Cox model

```
y.1 \leftarrow coxph(y \sim age, data = d)
summary(y.1)
## Call:
## coxph(formula = y ~ age, data = d)
##
## n= 9, number of events= 8
##
       coef exp(coef) se(coef) z Pr(>|z|)
##
## age 0.01984 1.02003 0.03446 0.576 0.565
##
      exp(coef) exp(-coef) lower .95 upper .95
##
## age 1.02 0.9804 0.9534 1.091
##
## Concordance= 0.545 (se = 0.105)
## Likelihood ratio test= 0.33 on 1 df, p=0.6
## Wald test = 0.33 on 1 df, p=0.6
## Score (logrank) test = 0.33 on 1 df, p=0.6
```

Martingale residuals

Down-and-up indicates incorrect relationship between age and survival:

ggcoxdiagnostics(y.1) + geom_smooth(se = F)

Attempt 2

Add squared term in age:

```
y.2 <- coxph(y ~ age + I(age^2), data = d)
tidy(y.2) %>% select(term, estimate, p.value)
```

term	estimate	p.value
age I(age^2)	-0.3801838 0.0048324	0.1156031 0.0976903

(Marginally) helpful.

Martingale residuals this time

Not great, but less problematic than before:

