Das Sekretärsproblem Vortrag zur Bachelorarbeit

Ramtin Azimi

Institut für Informatik Rheinische Friedrich-Wilhelms-Universität Bonn

29.10.2015

Value-Problem

Inhaltsverzeichnis

Einführung

Best-Choice-Problem

Value-Problem

Fazit und Ausblick

Inhaltsverzeichnis

Einführung

Best-Choice-Problem

Value-Problem

Fazit und Ausblick

A

Einführung

Value-Problem

Value-Problem

Problemvarianten

Einführung

Definition.

Algo
$$A$$
 r -kompetitiv $:\Leftrightarrow \begin{cases} \mathsf{BC}. \forall \sigma: \frac{1}{r} \leq \mathbf{Pr}[w_A(\sigma) = w_1] \\ \mathsf{VP}. \forall \sigma: \frac{w_1}{r} \leq \mathbf{E}\left[w_A(\sigma)\right] \end{cases}$

Abbildung: Variationen des Sekretärsproblems

Problemvarianten

Einführung

Definition.

Algo
$$A$$
 r -kompetitiv $:\Leftrightarrow \begin{cases} \mathsf{BC}. \forall \sigma: \frac{1}{r} \leq \mathbf{Pr}[w_A(\sigma) = w_1] \\ \mathsf{VP}. \forall \sigma: \frac{w_1}{r} \leq \mathbf{E}\left[w_A(\sigma)\right] \end{cases}$

Abbildung: Variationen des Sekretärsproblems.

Ramtin Azimi

Rheinische Friedrich-Wilhelms-Universität Bonn

Algorithmus SECRETARY $_k(S_k)$

$$S_k$$

Einführung

Algorithmus SECRETARY $_k(S_k)$

Algorithmus SECRETARY_k (S_k)

Einführung

Algorithmus SECRETARY_k (S_k)

Einführung

Algorithmus SECRETARY $_k(S_k)$

Value-Problem

Algorithmus SECRETARY $_k(S_k)$

Inhaltsverzeichnis

Einführung

Best-Choice-Problem

Value-Problem

Fazit und Ausblick

Kompetitve Analyse von SECRETARY_k für BC

Theorem. (Gilbert & Mosteller) Für $n \to \infty$ ist SECRETARY $\lfloor n/e \rfloor$ für BC e-kompetitiv.

Value-Problem

$$|\sigma_1| \cdots |\sigma_i| \cdots |\sigma_n|$$

$$w_1 \rightsquigarrow \mathbf{Pr}[\sigma_i = w_1] = \frac{1}{n}$$

$$|\sigma_1| \cdots |\sigma_n|$$

$$w_{1} \rightsquigarrow \mathbf{Pr}[\sigma_{i} = w_{1}] = \frac{1}{n}$$

$$\boxed{\sigma_{1} \cdots |\sigma_{i}| \cdots |\sigma_{n}|}$$

$$\uparrow$$

$$w_{S_{k}}(\sigma) \rightsquigarrow p := \mathbf{Pr}[w_{S_{k}}(\sigma) = \sigma_{i}]$$

Value-Problem

Theorem. (Buchbinder)

Es gibt keinen Online-Algorithmus für BC mit Partial-Informa $tion f \ddot{u} r > 2$, der besser als e-kompetitiv ist.

Beweisidee.

Einführung

 $p_i := \mathbf{Pr}[A \text{ akzeptiert } \sigma_i]$. Man erhält ein LP.

$$\max \sum_{i=1}^n \frac{i}{n} \cdot p_i \text{ mit}$$

$$1 \le i \le n : \sum_{j=1}^{i-1} p_j + i p_i \le 1$$

$$1 \le i \le n : p_i \ge 0$$

Beweisidee.

 $p_i := \mathbf{Pr}[A \text{ akzeptiert } \sigma_i].$ Man erhält ein LP.

$$\max \sum_{i=1}^{n} \frac{i}{n} \cdot p_i$$
 mit

$$1 \le i \le n : \sum_{j=1}^{i-1} p_j + i p_i \le 1$$

$$1 < i < n : p_i > 0.$$

Beweisidee.

Einführung

 $p_i := \mathbf{Pr}[A \text{ akzeptiert } \sigma_i]$. Man erhält ein LP.

$$\max \sum_{i=1}^{n} \frac{i}{n} \cdot p_i$$
 mit

$$1 \leq i \leq n: \sum_{j=1}^{i-1} p_j + ip_i \leq 1$$

$$1 \le i \le n : p_i \ge 0.$$

Untere Schranke: BC mit Full-Information

Theorem. (Gnedin)

Es gibt keinen Online-Algorithmus für das BC mit Full-Information für n>2, der besser als e-kompetitiv ist.

Einführung

Inhaltsverzeichnis

Einführung

Best-Choice-Problem

Value-Problem

Fazit und Ausblick

Kompetitve Analyse von SECRETARY_k für VP

Korollar. Für $n \to \infty$ ist SECRETARY $_{\lfloor n/e \rfloor}$ für VP e-kompetitiv.

Einführung

$$\mathbf{E}[w_{S_{\lfloor n/e \rfloor}}(\sigma)] \ge \mathbf{Pr}[w_{S_{\lfloor n/e \rfloor}}(\sigma) = w_1] \cdot w_1$$
$$\ge \frac{1}{e} \cdot w_1.$$

Kompetitve Analyse von SECRETARY_k für VP

Korollar. Für $n \to \infty$ ist SECRETARY $_{\lfloor n/e \rfloor}$ für VP e-kompetitiv.

$$\mathbf{E}[w_{S_{\lfloor n/e \rfloor}}(\sigma)] \ge \mathbf{Pr}[w_{S_{\lfloor n/e \rfloor}}(\sigma) = w_1] \cdot w_1$$

$$\ge \frac{1}{e} \cdot w_1.$$

Kompetitve Analyse von SECRETARY_k für VP

Korollar. Für $n \to \infty$ ist SECRETARY $\lfloor n/e \rfloor$ für VP e-kompetitiv.

$$\mathbf{E}[w_{S_{\lfloor n/e \rfloor}}(\sigma)] \ge \mathbf{Pr}[w_{S_{\lfloor n/e \rfloor}}(\sigma) = w_1] \cdot w_1$$

$$\ge \frac{1}{e} \cdot w_1.$$

Kompetitve Analyse von SECRETARY, für VP

Korollar. Für $n \to \infty$ ist SECRETARY $\lfloor n/e \rfloor$ für VP e-kompetitiv.

Value-Problem

$$\mathbf{E}[w_{S_{\lfloor n/e \rfloor}}(\sigma)] \ge \mathbf{Pr}[w_{S_{\lfloor n/e \rfloor}}(\sigma) = w_1] \cdot w_1$$
$$\ge \frac{1}{e} \cdot w_1.$$

Theorem.

Es gibt keinen Online-Algorithmus für das VP für n>2, der besser als e-kompetitiv ist.

Beweisidee. Annahme: $\forall \sigma : \mathbf{E}[w_A(\sigma)] \geq \frac{w_1}{e-\epsilon}$.

Wähle
$$\sigma'$$
 mit $\{1,\epsilon',\frac{\epsilon'}{2},\dots,\frac{\epsilon'}{n-1}\}$ mit $\epsilon'<\frac{1}{e-\epsilon}$

Beweisidee. Annahme: $\forall \sigma : \mathbf{E}[w_A(\sigma)] \geq \frac{w_1}{e-\epsilon}$.

Wähle σ' mit $\{1, \epsilon', \frac{\epsilon'}{2}, \dots, \frac{\epsilon'}{n-1}\}$ mit $\epsilon' < \frac{1}{\epsilon-\epsilon}$.

2. Schritt. \mathbb{Z} . $\forall \sigma : \mathbf{Pr}[A \text{ akzeptiert } w_1] > \frac{1}{2}$

Beweisidee. Annahme: $\forall \sigma : \mathbf{E}[w_A(\sigma)] \geq \frac{w_1}{e-\epsilon}$.

Wähle σ' mit $\{1, \epsilon', \frac{\epsilon'}{2}, \dots, \frac{\epsilon'}{n-1}\}$ mit $\epsilon' < \frac{1}{\epsilon - \epsilon}$.

1. Schritt. Zp. $\mathbf{Pr}[A \text{ akzeptiert } w_1 \text{ auf } \sigma'] > \frac{1}{e}$.

Beweisidee. Annahme: $\forall \sigma : \mathbf{E}[w_A(\sigma)] \geq \frac{w_1}{e-\epsilon}$.

Wähle σ' mit $\{1, \epsilon', \frac{\epsilon'}{2}, \dots, \frac{\epsilon'}{n-1}\}$ mit $\epsilon' < \frac{1}{n-\epsilon}$.

1. Schritt. \mathbb{Z} . $\mathbf{Pr}[A \text{ akzeptiert } w_1 \text{ auf } \sigma'] > \frac{1}{e}$.

Ramtin Azimi

Beweisidee. Annahme: $\forall \sigma: \mathbf{E}[w_A(\sigma)] \geq \frac{w_1}{e-\epsilon}$.

Wähle σ' mit $\{1,\epsilon',\frac{\epsilon'}{2},\dots,\frac{\epsilon'}{n-1}\}$ mit $\epsilon'<\frac{1}{e-\epsilon}.$

1. Schritt. \mathbb{Z} . $\mathbf{Pr}[A \text{ akzeptiert } w_1 \text{ auf } \sigma'] > \frac{1}{e}$.

2. Schritt. \mathbb{Z} . $\forall \sigma : \mathbf{Pr}[A \text{ akzeptiert } w_1] > \frac{1}{e}$

Eignungen ändern; Rangfolge beibehalten! $\implies \sigma' = \sigma$

⇒ Widerspruch £.

Untere Schranke für $\sigma_i \in \mathbb{N}_0$.

Theorem.

Es existiert kein Online-Algorithmus für VP für n>2, der besser als e-kompetitiv ist.

Beweisidee. Annahme: $\forall \sigma : \mathbf{E}[w_A(\sigma)] \geq \frac{w_1}{e-\epsilon}$.

Wähle
$$f(x) = D^x = \left\lceil \frac{(e-\epsilon)(e-\epsilon/2)}{\epsilon/2} \right\rceil^x$$
.
$$\sigma_i \xrightarrow{\qquad \qquad } f(\sigma_i) \xrightarrow{\qquad \qquad } 1 \xrightarrow{\qquad \qquad } 1$$

$$\implies \mathbf{Pr}[A' \text{ akzeptiert } w_1] = \mathbf{Pr}[A \text{ akzeptiert } f(w_1)]$$

Ramtin Azimi

Rheinische Friedrich-Wilhelms-Universität Bonn

Beweisidee. Annahme: $\forall \sigma : \mathbf{E}[w_A(\sigma)] \geq \frac{w_1}{e-\epsilon}$.

1. Schritt. Konstruktion von A'.

Wähle
$$f(x) = D^x = \left\lceil \frac{(e - \epsilon)(e - \epsilon/2)}{\epsilon/2} \right\rceil^x$$
.
$$\sigma_i \xrightarrow{\qquad \qquad } f(\sigma_i) \xrightarrow{\qquad \qquad } 1 \xrightarrow{\qquad } 1$$

$$\implies \mathbf{Pr}[A' \text{ akzeptiert } w_1] = \mathbf{Pr}[A \text{ akzeptiert } f(w_1)]$$

Ramtin Azimi Rheinische Friedrich-Wilhelms-Universität Bonn

Beweisidee. Annahme: $\forall \sigma : \mathbf{E}[w_A(\sigma)] \geq \frac{w_1}{e-\epsilon}$.

1. Schritt. Konstruktion von A'.

Wähle
$$f(x) = D^x = \left\lceil \frac{(e-\epsilon)(e-\epsilon/2)}{\epsilon/2} \right\rceil^x$$
.

 $\implies \mathbf{Pr}[A' \text{ akzeptiert } w_1] = \mathbf{Pr}[A \text{ akzeptiert } f(w_1)]$

Value-Problem

Untere Schranke: VP mit Full-Information

Beweisidee. Annahme: $\forall \sigma : \mathbf{E}[w_A(\sigma)] \geq \frac{w_1}{\varepsilon - \epsilon}$.

1. Schritt. Konstruktion von A'.

Wähle
$$f(x) = D^x = \left\lceil \frac{(e-\epsilon)(e-\epsilon/2)}{\epsilon/2} \right\rceil^x$$
.

Beweisidee. Annahme: $\forall \sigma : \mathbf{E}[w_A(\sigma)] \geq \frac{w_1}{\varepsilon - \epsilon}$.

1. Schritt. Konstruktion von A'.

Wähle
$$f(x) = D^x = \left\lceil \frac{(e - \epsilon)(e - \epsilon/2)}{\epsilon/2} \right\rceil^x$$
.

$$\implies \mathbf{Pr}[A' \text{ akzeptiert } w_1] = \mathbf{Pr}[A \text{ akzeptiert } f(w_1)]$$

Ramtin Azimi

Rheinische Friedrich-Wilhelms-Universität Bonn

2.Schritt. \mathbb{Z} . $\mathbf{Pr}[A \text{ akzeptiert } f(w_1)] > \frac{1}{e}$.

Value-Problem

2.Schritt. \mathbb{Z} . $\mathbf{Pr}[A \text{ akzeptiert } f(w_1)] > \frac{1}{e}$.

2.Schritt. \mathbb{Z} . $\mathbf{Pr}[A \text{ akzeptiert } f(w_1)] > \frac{1}{a}$.

Value-Problem

2.Schritt. \mathbb{Z} . $\mathbf{Pr}[A \text{ akzeptiert } f(w_1)] > \frac{1}{e}$.

2.Schritt. \mathbb{Z} . $\mathbf{Pr}[A \text{ akzeptiert } f(w_1)] > \frac{1}{e}$.

2.Schritt. \mathbb{Z} . $\mathbf{Pr}[A \text{ akzeptiert } f(w_1)] > \frac{1}{e}$.

Inhaltsverzeichnis

Einführung

Best-Choice-Problem

Value-Problem

Abbildung: Variationen des Sekretärsproblems.

Abbildung: Variationen des Sekretärsproblems.

Abbildung: Variationen des Sekretärsproblems.

Abbildung: Variationen des Sekretärsproblems.

Abbildung: Variationen des Sekretärsproblems.

Fazit und Ausblick

Das Sekretärsproblem

21 / 23

Abbildung: Variationen des Sekretärsproblems.

Vielen Dank für die Aufmerksamkeit!

Literaturverzeichnis I

- Buchbinder, Niv, Jain, Kamal und Singh, Mohit: Secretary Problems via Linear Programming. In Integer Programming and Combinatorial Optimization, Seiten 163-176. Springer Berlin Heidelberg. 2010.
- [2] Ferguson, Thomas S.: Who solved the secretary problem?. In Statistical science, Seiten 282-289, 1989.
- [3] Gilbert, John P. und Frederick Mosteller: Recognizing the maximum of a sequence.. In Selected Papers of Frederick Mosteller, Seiten 355-398. Springer New York, 2006.
- [4] Gnedin, Alexander V.: A solution to the game of googol.. In The Annals of Probability 22, no. 3, 1994
- [5] Lindley, Denis V.: Dynamic programming and decision theory. In Applied Statistics, Seiten 39-51, 1961.
- [6] Röglin, Heiko: Online-Algorithmen. Vorlesungsskript, Universität Bonn, Sommersemester 2015.