NPLS-DA

El modelo NPLS-DA, basado en el algoritmo NPLS fue generado utilizando un tensor de tercer orden construido a partir de los cubos hiperespectrales y fue transformado mediante un método de matrización. Para ello, siguiendo el procedimiento propuesto por Folch-Fortuny et al. (2016), se calcularon 5 características (media, desviación típica, simetría, curtosis, quinto momento) en cada longitud de onda obteniéndose una matriz reducida de 5 X 520 por cada cubo HS que inicialmente tenían 205 filas, 198 columnas y 520 longitudes de onda.

Número de pixeles en una imagen

$$n_p = filas \ x \ columnas = 205 \ x \ 198 = 40 \ 590$$

Media

$$\hat{x}_k = \frac{\sum x_{ik}}{n_p} \tag{1}$$

Donde

 x_{ik} son los valores de reflectancia normalizada en el pixel i para una longitud de onda k.

 n_p es número de pixeles en la imagen.

Desviación estándar

$$s_k = \sqrt{\frac{\sum (x_{ik} - \hat{x}_k)^2}{n_p - 1}} \tag{2}$$

Donde

 $x_{ik}\$ son los valores de reflectancia normalizada en el pixel i para una longitud de onda k.

 \hat{x}_k es la media de la reflectancia en la longitud de onda k.

 n_p es número de pixeles en la imagen.

Simetría (tercer momento)

$$\mu_{3k} = \frac{\sum (x_{ik} - \hat{x}_k)^3}{n_p} \tag{3}$$

Donde

 x_{ik} son los valores de reflectancia normalizada en el pixel i para una longitud de onda k.

 \hat{x}_k es la media de la reflectancia en la longitud de onda k.

 n_p es número de pixeles en la imagen.

Curtosis (cuarto momento)

$$\mu_{4k} = \frac{\sum (x_{ik} - \hat{x}_k)^4}{n_p} \tag{4}$$

 x_{ik} son los valores de reflectancia normalizada en el pixel i para una longitud de onda k.

 \hat{x}_k es la media de la reflectancia en la longitud de onda k.

 n_p es número de pixeles en la imagen.

Quinto momento

$$\mu_{5k} = \frac{\sum (x_{ik} - \hat{x}_k)^5}{n_p} \tag{5}$$

 x_{ik} son los valores de reflectancia normalizada en el pixel i para una longitud de onda k.

 \hat{x}_k es la media de la reflectancia en la longitud de onda k.

 n_p es número de pixeles en la imagen.

Figura 1 Estructura de tensor de tercer orden en NPLS-DA (Folch-Fortuny et al., 2016).

Una vez realizada la transformación de los cubos HS, un tensor de tercer orden con dimensiones 104 x 5 x 520 se formó con las 104 matrices generadas (figura 3.7). Este nuevo cubo de datos fue desplegado en el primer modo y se obtuvo la matriz final de dimensiones 104 filas x 2600 columnas (I x JK) (figura 3.8).

Figura 2 Tensor desplegado primer modo.

Durante la calibración del modelo se buscó el número mínimo de componentes para lograr la mejor predicción y luego, se realizó la prueba de validación externa utilizando la misma muestra utilizada en validación externa del modelo PLS-PLR.

El método NPLS-DA fue desarrollada en el lenguaje R.

Algoritmo NPLS

Utilizando Descomposición en valores singulares SVD, se obtiene las componentes principales a partir del producto vectorial, obteniendo los espacios latentes W^k y W^j que optimizan la varianza entre X y y. De la siguiente manera (Bro, 1996; Bro, 1998):

1.- Cálculo de Z

$$Z = X^T y$$

Donde,

X es la matriz desplegada en el primer modo $(I \times JK)$

I es el número de muestras

J es el número de características calculadas

K es el número de bandas espectrales capturadas por la cámara

y: Vector respuesta de I filas.

Z: matriz de covarianza

2.- Cálculo de los vectores singulares izquierdos y derechos. SVD de matriz \mathbf{Z} . Se obtiene el primer vector singular izquierdo y el primer vector singular derecho $(\mathbf{W}^k, \mathbf{W}^j)$.

$$Z = U \sum V'$$

3.- Calculo del vector t de la matriz T (Scores) modelo de mínimos cuadrados

$$t = X(W^k \otimes W^j)$$

4.- Calcula la b de regresión. T incluye todos los scores calculados hasta el momento.

$$\boldsymbol{b} = (\boldsymbol{T}'\boldsymbol{T})^{-1}\boldsymbol{T}'\boldsymbol{y}$$

5.- Cálculo de Residuos

$$y = y_0 - Tb$$

$$X = X - Tw^{j}(w^{k})^{T}$$

6.- Reemplaza y continua hasta el apropiado y_{θ} .

Entrenamiento del modelo NPLS-DA

NPLS Y Prediction comp 7

Figura.1 Predicción del modelo NPLS_DA con datos de entrenamiento.

Tabla 1 Matriz de confusión del modelo NPLS-DA con datos de entrenamiento

	Hojas Infectadas	Hojas no-infectadas	
	TP	FP	Precisión
Resultado	78	0	1
Test	FN	TN	Valor Pred. negativo
	10	16	0.62
	Sensibilidad	Especificidad	Exactitud
	0.89	1	0.90

Validación del modelo NPLS-DA

NPLS Ext. Validation

Figura 4 Predicción del modelo NPLS_DA en prueba de validación.

Tabla 2 Matriz de confusión para evaluación del modelo NPLS-DA

	Hojas Infectadas	Hojas no-infectadas	
Resultado Test	TP	FP	Precisión
	15	2	0.88
	FN	TN	Valor Pred. negativo
	1	14	0.93
	Sensibilidad	Especificidad	Exactitud
	0.94	0.88	0.91

Área bajo la curva ROC (AUC). El valor AUC se obtuvo mediante la función *auc()* del lenguaje R, el resultado fue 0.91.