ENE 2XX: Renewable Energy Systems and Control

LEC 01: Convex Sets, Functions, & Minimizers

Professor Scott Moura University of California, Berkeley

Summer 2017

Mathematical Preliminaries

- Convex Sets
- Convex Functions
- Minimizers

Convex Sets

A set D is convex if the line segment connecting any two points in D completely lies in D. We formalize this concept into the following definition.

Definition (Convex Set)

Let D be a subset of \mathbb{R}^n . Also, consider scalar parameter $\lambda \in [0,1]$ and two points $a,b \in D$. The set D is <u>convex</u> if

$$\lambda a + (1 - \lambda)b \in D \tag{1}$$

for all points $a, b \in D$.

Test your knowledge

Test your knowledge

Figure: Some simple convex and nonconvex sets. [Left] The hexagon, which includes its boundary (shown darker), is convex. [Middle] The kidney shaped set is not convex, since the line segment between the two points in the set shown as dots is not contained in the set. [Right] The square contains some boundary points but not others, and is not convex.

Important Examples of Convex Sets - I

- The empty set, any single point (i.e. a singleton), $\{x_0\}$, and the whole space \mathbb{R}^n are convex.
- Any line in \mathbb{R}^n is convex.
- Any line segment in \mathbb{R}^n is convex.
- A <u>ray</u>, which has the form $\{x_0 + \theta v \mid \theta \ge 0, v \ne 0\}$ is convex.
- A <u>hyperplane</u>, which has the form $\{x \mid a^T x = b\}$, where $a \in \mathbb{R}^n$, $a \neq 0$, $b \in \mathbb{R}$.

Important Examples of Convex Sets - II

- A halfspace, which has the form $\{x \mid a^T x \leq b\}$, where $a \in \mathbb{R}^n$, $a \neq 0$, $b \in \mathbb{R}$. See Fig. 2.
- A <u>Euclidean ball</u> in \mathbb{R}^n , which is centered at x_c and has radius r. Think of the Euclidean ball as a sphere in n-dimensions (See Fig. 3.). Mathematically, the Euclidean ball is

$$B(x_c,r) = \{x \mid \|x - x_c\|_2 \le r\} = \{x \mid (x - x_c)^T (x - x_c) \le r^2\}$$
 (2)

Figure: The shaded set is the halfspace given by $\{x \mid a^T(x-x_0) \leq 0\}$ Vector a points in the outward normal direction of the halfspace.

Figure: The Euclidean Ball $B(x_c, r)$ is centered at x_c and has radius r. A two-dimensional example is shown.

Important Examples of Convex Sets - Ellipsoid

An ellipsoid in \mathbb{R}^n , which is centered at x_c . Think of an ellipsoid as an ellipse in n-dimensions. Mathematically,

$$\mathcal{E} = \left\{ x \mid (x - x_c)^T A^{-1} (x - x_c) \le 1 \right\}$$
 (3)

where $A = A^T \succ 0$, i.e. A is symmetric and positive definite. The matrix A encodes how the ellipse extends in each direction of \mathbb{R}^n . In particular, the length of the semi-axes for the ellipse are given by $\sqrt{\lambda_i(A)}$, where λ_i is the ith eigenvalue of A. See Fig. on next slide. Another common representation of an ellipsoid, which we use later in this chapter, is:

$$\mathcal{E} = \{ x_c + Pu \mid ||u||_2 \le 1 \} \tag{4}$$

where P is square and positive semi-definite. The semi-axis lengths are given by $\lambda_i(P)$ in this case. If we define $P = A^2$, then this representation is equivalent to (3).

Important Examples of Convex Sets - Ellipsoid

Figure: An ellipsoid $\mathcal{E} = \{x_c + Pu \mid ||u||_2 \le 1\}$ in two-dimensions with center x_c . The semi-axes have length given by λ_i where $\lambda_i = \text{eig}(P)$.

Important Examples of Convex Sets - Polyhedron

A <u>polyhedron</u> is defined by the values $x \in \mathbb{R}^n$ that satisfy a finite set of linear inequalities and linear equalities:

$$\mathcal{P} = \left\{ x \mid a_i^T x \le b_i, \ i = 1, \dots, m, \ a_{eq,j}^T x = b_{eq,j}, \ j = 1, \dots, l \right\}$$
 (3)

See Fig. on next slide. By definition, a polyhedra is the intersection of a finite number of hyperplanes and halfspaces. Thus, all halfspaces, hyperplanes, lines, rays, and line segments are polyhedra. It is convenient to use the compact vector notation

$$\mathcal{P} = \{ x \mid Ax \le b, \ A_{eq}x = b_{eq} \} \tag{4}$$

Important Examples of Convex Sets - Polyhedron

Figure: The polyhedron \mathcal{P} is the intersection of five halfspaces, each with outward pointing normal vector a_i .

Exercise - Square and Disk

Define the square and disk in \mathbb{R}^2 respectively as

$$S = \left\{ x \in \mathbb{R}^2 | \ 0 \le x_i \le 1, i = 1, 2 \right\}, \qquad D = \left\{ x \in \mathbb{R}^2 | \ \|x\|_2 \le 1 \right\}$$
 (3)

Are the following statements TRUE or FALSE:

- (a) $S \cup D$ is convex, i.e. the union of sets S and D is convex
- (b) $S \cap D$ is convex, i.e. the intersection of sets S and D is convex
- (c) S D is convex, i.e. set difference of D from S is convex

Convex Functions

Definition (Convex Function)

Let D be a convex set. Also, consider scalar parameter $\lambda \in [0, 1]$ and two points $a, b \in D$. Then the function f(x) is <u>convex</u> on D if

$$f(x) = f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$
 (4)

for all points $a, b \in D$.

Concave Functions

Definition (Concave Function)

Let D be a convex set. Also, consider scalar parameter $\lambda \in [0, 1]$ and two points $a, b \in D$. Then the function f(x) is <u>concave</u> on D if

$$f(x) = f(\lambda a + (1 - \lambda)b) \ge \lambda f(a) + (1 - \lambda)f(b)$$
 (5)

for all points $a, b \in D$.

Exercises

Which of the following functions are convex, concave, neither, or both, over the set D = [-10, 10]? You may use graphical arguments or the definitions to prove your claim.

(a)
$$f(x) = 0$$

(b)
$$f(x) = x$$

(c)
$$f(x) = x^2$$

(d)
$$f(x) = -x^2$$

(e)
$$f(x) = x^3$$

(f)
$$f(x) = \sin(x)$$

(g)
$$f(x) = e^{-x^2}$$

(h)
$$f(x) = |x|$$

Convex/Concave Function Properties

Consider a function $f(x) : \mathbb{R}^n \to \mathbb{R}$ and compact set D.

- 1. If f(x) is convex on D, then -f(x) is concave on D.
- 2. If f(x) is concave on D, then -f(x) is convex on D.
- 3. f(x) is a convex function on $D \iff \frac{d^2f}{dx^2}(x)$ is positive semi-definite $\forall x \in D$.
- 4. f(x) is a concave function on $D \iff \frac{d^2f}{dx^2}(x)$ is negative semi-definite $\forall x \in D$.

Examples: Scalar Convex/Concave Functions

Consider functions f(x) where $x \in \mathbb{R}$ is scalar.

- *Quadratic.* $\frac{1}{2}ax^2 + bx + c$ is convex on \mathbb{R} , for any $a \ge 0$. It is concave on \mathbb{R} for any $a \le 0$.
- Exponential. e^{ax} is convex on \mathbb{R} , for any $a \in \mathbb{R}$.
- *Powers.* x^a is convex on the set of all positive x, when $a \ge 1$ or $a \le 0$. It is concave for $0 \le a \le 1$.
- Powers of absolute value. $|x|^p$, for $p \ge 1$ is convex on \mathbb{R} .
- Logarithm. log x is concave on the set of all positive x.
- Negative entropy. $x \log x$ is convex on the set of all positive x.

Examples: Multivariable Convex/Concave Functions

Consider functions f(x) where $x \in \mathbb{R}^n$ is multivariable.

- *Norms.* Every norm in \mathbb{R}^n is convex.
- Max function. $f(x) = \max\{x_1, \dots, x_n\}$ is convex on \mathbb{R}^n .
- Quadratic-over-linear function. The function $f(x,y) = x^2/y$ is convex over all positive x, y.
- Log-sum-exp. The function $f(x) = \log(\exp^{x_1} + \cdots + \exp^{x_n})$ is convex on \mathbb{R}^n . This function can be interpreted as a differentiable (in fact, analytic) approximation of the max function. Consequently, it is extraordinarily useful for gradient-based algorithms.
- Geometric mean. The geometric mean $f(x) = (\prod_{i=1}^n x_i)^{1/n}$ is concave for all elements of x positive, i.e. $\{x \in \mathbb{R}^n \mid x_i > 0 \ \forall \ i = 1, \cdots, n\}$.
- Log determinant. The function $f(X) = \log \det(X)$ is concave w.r.t. X for all X positive definite. This property is useful in many applications, including optimal experiment design.

Operations that conserve convexity

• Linear combinations. Consider $\alpha_i \geq 0$ for all i. A non-negative weighted sum of convex functions is also convex

$$f(x) = \alpha_1 f_1(x) + \dots + \alpha_m f_m(x) \tag{6}$$

• Pointwise maximum. If $f_1(x)$ and $f_2(x)$ are convex functions on \mathcal{D} , then their point-wise maximum f defined below is convex on \mathcal{D} .

$$f(x) = \max\{f_1(x), f_2(x)\}$$
 (7)

• Composition with Affine Mapping. Consider $f(\cdot): \mathbb{R}^n \to \mathbb{R}$ with parameters $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$. Define function $g(\cdot): \mathbb{R}^m \to \mathbb{R}$ as

$$g(x) = f(Ax + b) \tag{8}$$

If f is convex, then g is convex. If f is concave, then g is concave.

Definition of Minimizers

Definition (Global Minimizer)

 $x^* \in D$ is a global minimizer of f(x) on D if

$$f(x^*) \le f(x), \quad \forall \ x \in D$$
 (9)

In words, this means x^* minimizes f(x) <u>everywhere</u> in D. In contrast, we have a local minimizer.

Definition (Local Minimizer)

 $x^* \in D$ is a <u>local minimizer</u> of f(x) on D if

$$\exists \ \epsilon > 0 \quad \text{s.t.} \quad f(x^*) \le f(x), \qquad \forall \ x \in D \cap \{x \in \mathbb{R} \mid ||x - x^*|| < \epsilon\}$$
 (10)

In words, this means x^* minimizes f(x) <u>locally</u> in D. That is, there exists some neighborhood whose size is characterized by ϵ where x^* minimizes f(x). Examples of global and local minimizers are provided in Fig. on next slide.

Definition of Minimizers

Figure: The LEFT figure contains two local minimizers, but only one global minimizer. The RIGHT figure contains a local minimizer, which is also the global minimizer.