Automated Exam Timetable Scheduler

CS 609 Assignment 1

Cebajel Tanan (210010055)

Parameter	Meaning
$\mathcal{P} = \{p\}$	denote the number of slots
$\mathcal{D} = \{d\}$	denote the number of days
$\mathcal{S} = \{s\}$	denote the set of students
$\mathcal{C} = \{c\}$	denote the set of courses
$\mathcal{V} = \{v\}$	denote the set of venues
$\mathcal{A} = \{c\}$	denote the set of campuses
SC(s,c) = 1	if student $s \in \mathcal{S}$ is enrolled in course $c \in \mathcal{C}$; 0 otherwise
CC(c, ca) = 1	if course $c \in \mathcal{C}$ exam to be scheduled in campus $ca \in \mathcal{A}$; 0 otherwise
VC(v, ca) = 1	if venues $v \in \mathcal{V}$ is in campus $ca \in \mathcal{A}$; 0 otherwise
s1(v)	gives number of 1 seaters for venue $v \in \mathcal{V}$
s2(v)	gives number of 2 seaters for venue $v \in \mathcal{V}$
s3(v)	gives number of 3 seaters for venue $v \in \mathcal{V}$
str(c)	gives strength for course $c \in \mathcal{C}$
Variable	Meaning
$x\{d, p, v, c\} = 1 \text{ if course } c \in \mathcal{C}$ x is a binary variable	is assigned venue $v \in \mathcal{V}$ and slot $p \in \mathcal{P}$, d is day in week ; 0 otherwise.

I. CONSTRAINTS

Each student has atmost one exam per slot.

$$\forall p \in \mathcal{P} \quad \forall d \in \mathcal{D} : \sum_{s \in \mathcal{S}} \left(\sum_{c \in \mathcal{C}} SC(s, c) \cdot \sum_{v \in \mathcal{V}} x(d, p, v, c) \right) \le 1 \tag{1}$$

Each course exam is scheduled in specified campus.

$$\forall c \in \mathcal{C}, \forall v \in \mathcal{V}, \forall ca \in \mathcal{A}: if \quad CC(c, ca) \neq VC(v, ca), \quad then \sum_{\forall d \in \mathcal{D}, \forall p \in \mathcal{P}} x(d, p, v, c) = 0$$
 (2)

Each course exam is scheduled exactly once in timetable.

$$\forall c \in \mathcal{C}: \sum_{\forall d \in \mathcal{D}, \forall p \in \mathcal{P}, \forall v \in \mathcal{V}} x(d, p, v, c) = 1$$
(3)

The number of students giving a exam assigned to a venue should not exceed its capacity

$$\forall d \in \mathcal{D}, \forall p \in \mathcal{P}, \forall v \in \mathcal{V}: \quad s1(v) + s2(v) + 2*s3(v) \ge \sum_{\forall c \in \mathcal{C}} x(d, p, v, c) * str(c)$$
(4)

$$\forall d \in \mathcal{D}, \forall p \in \mathcal{P}, \forall v \in \mathcal{V}, \forall c \in \mathcal{C}: if \quad x(d, p, v, c) = 1, \quad then \quad \lfloor s1(v)/2 \rfloor + s2(v) + s3(v) \ge str(c) \tag{5}$$

II. OBJECTIVE

Minimize unique venues used.

Let
$$\forall v \in \mathcal{V} : z(v) = \begin{cases} 1 & \text{if } \sum_{\forall d \in \mathcal{D}, \forall p \in \mathcal{P}, \forall c \in \mathcal{C}} x(d, p, v, c) = 0, \\ 0 & \text{otherwise} \end{cases}$$

$$\max \sum_{v \in \mathcal{V}} z(v) \tag{6}$$