Ι Espace vectoriel normé

Norme

Exercice 1 (Normes sur \mathbb{K}^n)

Pour $\vec{x} = (x_1, \dots, x_n) \in \mathbb{K}^n$, on pose

1.
$$\|\vec{x}\|_1 = \sum_{k=1}^n |x_k|$$

2.
$$\|\vec{x}\|_2 = \sqrt{\sum_{k=1}^n |x_k|^2}$$

3.
$$\|\vec{x}\|_{\infty} = \max(|x_1|, \dots, |x_n|)$$

Démontrer que $\| \|_{\infty}$, $\| \|_1$ et $\| \|_2$ sont trois normes de \mathbb{K}^n .

Exercice 2 (Normes sur des espaces de fonctions)

1. Soit $\mathcal{B}(I,\mathbb{K})$ l'espace des fonctions bornées sur l'intervalle I de \mathbb{R} à valeurs dans \mathbb{K} . Pour $f \in \mathcal{B}(I,\mathbb{K})$, on

$$||f||_{\infty} = \sup_{x \in I} |f(x)|.$$

Démontrer que $\| \|_{\infty}$ est une norme sur $\mathcal{B}(I, \mathbb{K})$.

2. Soit $L_1(I,\mathbb{K})$ l'espace des fonctions continues et intégrables sur l'intervalle I de \mathbb{R} à valeurs dans \mathbb{K} . Pour $f \in L_1(I, \mathbb{K})$, on pose:

$$||f||_1 = \int_I |f(x)| \, \mathrm{dx}.$$

Démontrer que $\| \|_1$ est une norme sur $L_1(I, \mathbb{K})$.

3. Soit $L_2(I,\mathbb{K})$ l'espace des fonctions continues de carré intégrables sur l'intervalle I de \mathbb{R} à valeurs dans \mathbb{K} . Pour $f \in L_2(I, \mathbb{K})$, on pose:

$$||f||_1 = \int_I |f(x)| \, \mathrm{dx}.$$

Démontrer que $\| \|_2$ est une norme sur $L_2(I, \mathbb{K})$.

Exercice 3 (Normes sur des espaces de suites)

1. Soit $\mathcal{B}(I,\mathbb{K})$ l'espace des fonctions bornées sur l'intervalle I de \mathbb{R} à valeurs dans \mathbb{K} . Pour $f \in \mathcal{B}(I,\mathbb{K})$, on pose:

$$||f||_{\infty} = \sup_{x \in I} |f(x)|.$$

Démontrer que $\| \|_{\infty}$ est une norme sur $\mathcal{B}(I, \mathbb{K})$.

2. Soit $L_1(I,\mathbb{K})$ l'espace des fonctions continues et intégrables sur l'intervalle I de \mathbb{R} à valeurs dans \mathbb{K} . Pour $f \in L_1(I, \mathbb{K})$, on pose:

$$||f||_1 = \int_I |f(x)| \, \mathrm{dx}.$$

Démontrer que $\| \|_1$ est une norme sur $L_1(I, \mathbb{K})$.

3. Soit $L_2(I, \mathbb{K})$ l'espace des fonctions continues de carré intégrables sur l'intervalle I de \mathbb{R} à valeurs dans \mathbb{K} . Pour $f \in L_2(I, \mathbb{K})$, on pose:

$$||f||_1 = \int_I |f(x)| \, \mathrm{dx}.$$

Démontrer que $\| \|_2$ est une norme sur $L_2(I, \mathbb{K})$.

Exercice 4 (normes sur les matrices)

Pour $A \in \mathcal{M}_n(\mathbb{K})$, $A = \left(a_{i,j}\right)_{1 \leqslant i,j \leqslant n}$, on pose : $- \|A\|_1 = \sum_{i=1}^n \sum_{j=1}^n |a_{i,j}|;$ $- \|A\|_2 = \sqrt{\operatorname{tr}(\bar{A}^{\mathsf{T}}A)};$ $- \|A\|_{\infty} = \max_{1 \leqslant i,j \leqslant n} |a_{i,j}|;$

$$-- \|A\|_1 = \sum_{i=1}^n \sum_{j=1}^n |a_{i,j}|;$$

$$- \|A\|_2 = \sqrt{\operatorname{tr}(\bar{A}^\mathsf{T} A)}$$

- $-N(A) = \max_{1 \leqslant i \leqslant n} \sum_{j=1}^{n} |a_{i,j}|.$
- 1. Montrer qu'il s'agit de normes sur $\mathcal{M}_n(\mathbb{K})$.
- 2. Montrer que la norme $\mathcal{M}_n(\mathbb{K})$ est une norme d'algèbre, c.-à-d. que

$$\forall A, B \in E, \quad N(AB) \leqslant N(A)N(B).$$

Exercice 5 (Normes de polynômes)

Pour
$$P = \sum_{k=0}^{d} a_k X^k \in \mathbb{K}[X]$$
, on pose :
$$-N_1(P) = \sum_{k=0}^{d} |a_k|;$$

$$-N_2(P) = \sqrt{\sum_{k=0}^{d} |a_k|^2};$$

$$-N_{\infty}(P) = \max_{0 \leqslant k \leqslant d} |a_k|;$$

$$-N(P) = \sup_{x \in [0,1]} |a_k|.$$
Démontrer qu'il s'agit de normes sur E .

Exercice 6 (Normes d'applications linéaires)

Soient E,F deux \mathbb{K} -espaces vectoriels normés et $\mathcal{L}_c(E,F)$ l'espace des applications linéaires continues de E dans F.

Démontrer

$$||u|| = \sup_{x \neq 0} \frac{||u(x)||_F}{||x||_E}$$

est une norme sur $\mathcal{L}_c(E,F)$

Exercice 7 (Intérieur)

Soit (E, N) un espace vectoriel normé. Soit F un sous-espace vectoriel strict de E. Montrer que l'intérieur de F est l'ensemble vide.

Exercice 8 (Intérieur)

Démontrer que $\mathcal{GL}_n(\mathbb{K})$ est dense dans $\mathcal{M}_n(\mathbb{K})$

B Suite

Exercice 9 (Unicité de la limite)

Démontrer que si une suite converge, alors sa limite est unique.

Exercice 10 (Bornée)

Démontrer que si une suite converge, alors elle est bornée.

Exercice 11 (Suite extraite)

Si une suite converge, alors toute suite extraite converge.

C Fonctions lipschitziennes

Exercice 12 (Application norme)

Soit (E, N) un espace vectoriel normé. Démontrer que l'application norme est 1-lipschitzienne.

Exercice 13 (Application norme)

Soit (E, N) un espace vectoriel normé. Démontrer que dans un espace vectoriel normé de dimension finie, tout sous-espace vectoriel est un fermé.