Section 3.2

The Derivative as a Function

In this section we extend the concept of the derivative at a point to all points in the domain of a function f to create a new function called the derivative of f.

Definition. The Derivative Function

The **derivative** of f is the function

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

provided the limit exists and x is in the domain of f. If f'(x) exists, we say that f is **differentiable** at x. If f is differentiable at every point of an open interval I, we say that f is differentiable on I.

Problem

Find the derivative of $f(x) = x^2 + 2$.

Derivative Notation

We have several notations for the derivative. A standard notation for change is the symbol Δ (Greeek letter, delta). We can write change in x by Δx . We can write change in y as $\Delta y = f(x + \Delta x) - f(x)$. Thus, the slope of the secant line through the points (x, f(x)) and $(x + \Delta x, f(x + \Delta x))$ is given by

$$m_{sec} = \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{\Delta y}{\Delta x}.$$

By letting $\Delta x \to 0$, the slope of the tangent line at (x, f(x)) is

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx}.$$

Thus, we can write $\frac{dy}{dx}$ for f'(x).

Other notation for the derivative are

$$\frac{df}{dx}$$
, $\frac{d}{dx}f(x)$, $D_x(f(x))$, $y'(x)$.

Notation that represent the derivative of f at a are

$$f'(a), \qquad y'(a), \qquad \frac{df}{dx}\Big|_{x=a}, \qquad \frac{dy}{dx}\Big|_{x=a}.$$

- Problem Let $y=f(x)=\frac{1}{x^2}$. (A) Compute $\frac{dy}{dx}$. (B) Find the equation of the tangent line to the graph of f at (1,1).

Problem Let $g(t) = \frac{1}{\sqrt{t}}$. Compute g'(t).

Graphs of Derivatives

Problem

Sketch the graph of f' using the graph of f.

Problem

Sketch the graph of f' using the graph of f.

${\bf Problem}$

Sketch the graph of f' using the graph of f for

$$f(x) = \frac{x^2 - 4}{x^2 - 1}.$$

Theorem 0.1. If f is differentiable at a, then f is continuous at a.

Theorem 0.2. (Alternative version)

If f is not continuous at a, then f is not differentiable at a.

When is a Function not Differentiable at a Point

A function f is not differentiable at a if at least one of the following conditions hold:

- f is not continuous at a.
- f has a corner at a.
- f has a vertical tangent at a.

Problem (exercise 3.2.56)

Consider the logistic curve in the figure, where P(t) is the population at time $t \geq 0$.

- (A) At approximately what time is the rate of growth P' the greatest?
- (B) Is P' positive or negative for $t \geq 0$?
- (C) Is P' an increasing or decreasing function of time (or neither)?
- (D) Sketch the graph of P'.

References

[1] Briggs, W.; Cochran, L.; Gillett, B.; Schulz, E., Calculus, Early Transcendentals. Third edition, Pearson Education, Inc., 2019

00