Computer Vision (CS 419/619) Linear Regression and Gradient Descent

Anup Kumar Gupta

Under supervision of Dr. Puneet Gupta

Linear Regression

Supervised Learning

• Given the "right answer" for each example in the data.

Regression Problem

• Predict real-valued output

Fig. 1: Housing prices vs Size

Training set

Notations

- m = number of training examples
- x = "input" variable / features
- *y* = "output" variable / "target" variable
- We will use (x, y) to denote one training example.
- We will use $(x^{(i)}, y^{(i)})$ to denote the i^{th} training example.
- For example: $x^{(1)} = 2104$ and $y^{(1)} = 460$

• Note: superscript denotes index, and not power.

Size in feet $^{2}(x)$	Price in 1000 dollars (y)
2104	460
1416	232
1534	315
852	178
• • •	• • •

Tab. 1: Training Samples

Training Procedure

h maps the input x to the output y

How do we represent h?

$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$

As a shorthand we often remove the θ notation:

$$h(x) = \theta_0 + \theta_1 \cdot x$$

y is a linear function of x. It resembles:

$$y = c + m \cdot x$$

Equation of straight line.

- Linear Regression with one variable (x).
- Univariate linear regression.

Training procedure – How to compute the θ s

•
$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$

- θ_1 and θ_2 or in general θ_i = parameters
- How to choose or find these θ_i s?

- If we have these θ_i s and a new data point x is given to us,
- then we can calculate y using these parameters.

Size in feet $^{2}(x)$	Price in 1000 dollars (y)
2104	460
1416	232
1534	315
852	178
•••	•••

Tab. 1: Training Samples

Variations of h_{θ} with variations in θ_i

$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$

Deciding and Choosing the parameters θ_i s

The idea is to choose θ_0 and θ_1 such that $h_{\theta}(x)$ is close to y for given training sample pairs (x, y)

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

 $J(\theta_0, \theta_1)$ is called as cost function. It is also called as squared error function.

Hypothesis function (Simplified)

Hypothesis

$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$

Parameters

$$\theta_0$$
, θ_1

• Cost function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

• Goal

$$\underset{\theta_0,\theta_1}{minimize} J(\theta_0,\theta_1)$$

• Simplified Hypothesis ($\theta_0 = 0$)

$$h_{\theta}(x) = \theta_1 \cdot x$$

Parameter

$$\theta_1$$

Cost function

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

• Goal

$$\min_{\theta_1} I(\theta_1)$$

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1)$$

(function of the parameter θ_1)

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 = \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 \cdot x^{(i)} - y^{(i)})^2$$
$$J(\theta_1 = 1) = \frac{1}{2 * 3} \{ (1 \times 1 - 1)^2 + (1 \times 2 - 2)^2 + (1 \times 3 - 3)^2 \}$$

$$J(\theta_1 = 1) = \frac{1}{2 + 2} \left\{ (1 \times 1 - 1)^2 + (1 \times 2 - 2)^2 + (1 \times 3 - 3)^2 \right\}$$

$$J(\theta_1 = 1) = 0$$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 = \frac{1}{2m} \sum_{i=1}^{m} \left(\theta_1 \middle| x^{(i)} - y^{(i)} \right)^2$$

$$J(\theta_1 = 0.5) = \frac{1}{2 * 3} \left\{ (0.5 \times 1 - 1)^2 + (0.5 \times 2 - 2)^2 + (0.5 \times 3 - 3)^2 \right\} \qquad J(\theta_1 = 0.5) = 3.5/6 = 0.58$$

$$J(\theta_1)$$

(function of the parameter θ_1)

$$J(\theta_1 = 0.5) = 3.5/6 = 0.58$$

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 = \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 \mid x^{(i)} - y^{(i)})^2$$

$$J(\theta_1 = 0) = \frac{1}{2 * 3} \{(0 - 1)^2 + (0 - 2)^2 + (0 - 3)^2\}$$

$$J(\theta_1 = 0) = \frac{1}{2 * 3} \left\{ (0 - 1)^2 + (0 - 2)^2 + (0 - 3)^2 \right\}$$

$$J(\theta_1)$$

(function of the parameter θ_1)

Which one to choose?

The value of θ_1 which gives minimum $J(\theta_1)$

Hypothesis function (Summary)

Hypothesis

$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$

Parameters

$$\theta_0$$
 , θ_1

Cost function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

• Goal

$$\underset{\theta_0,\theta_1}{minimize} \ J(\theta_0,\theta_1)$$

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0, θ_1)

- But now we have two parameters θ_0 , θ_1 .
- Hence, we need to add an extra axis to the plot.

Loss Function in 3-D (Example)

- This is a 3D surface plot
- The axes denotes:
 - both the parameters (θ_0, θ_1)
 - the loss function $J(\theta_0, \theta_1)$
- As we vary the values of θ_0 and θ_1 we get different values of the loss function $J(\theta_0, \theta_1)$
- [Informal] The height of the surface from the (θ_0, θ_1) denotes the value of loss at that point.

Contour Plots

- This is a contour plot of a 3D surface.
- The axes denotes the parameters θ_0 and θ_1 .
- An ellipse (or oval) is a set of points that takes on the same value.
- [Generally] A color towards the shade of blue (cold color) denotes a lower value, whereas a color towards the red shade (warm color) denotes a higher value.
- For example:

• These all points will have same value as they lie on the same ellipse

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0, θ_1)

 $\theta_0 \approx 800$ and $\theta_1 \approx -0.15$

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0, θ_1)

 $\theta_0 \approx 360$ and $\theta_1 \approx 0$

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0, θ_1)

 $\theta_0 \approx 510$ and $\theta_1 \approx -0.02$

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0, θ_1)

 $\theta_0 \approx 480$ and $\theta_1 \approx 0.14$

Not minimum, but close to minimum.

Gradient Descent Algorithm

Cost function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

• Goal

minimize
$$J(\theta_0, \theta_1)$$

Algorithm

- 1. Start with some θ_0 , θ_1 .
- 2. Keep changing θ_0 , θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum.

• Generalized Cost function $I(\theta_0, \theta_1, \theta_2 \dots \theta_n)$

Algorithm

- 1. Start with some θ_0 , θ_1 , θ_2 ... θ_n .
- 2. Keep changing $\theta_0, \theta_1, \theta_2 \dots \theta_n$ to reduce $J(\theta_0, \theta_1, \theta_2 \dots \theta_n)$ until we hopefully end up at a minimum.

Gradient Descent Algorithm – Intuitive Approach

- Assume we are in some grassy park, with two hill like structures.
- Assume that we are physically standing at that point on the hill, on this little red hill in the park.
- In gradient descent, we take a 360 degrees spin and ponder:

"If we were to take a little steps in some direction, so as we want to go downhill as quickly as possible, What direction should we choose"?

Gradient Descent Algorithm – Initial point matters

Gradient Descent Algorithm

```
repeat until convergence {
                               for j = 0 and j = 1 \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \theta_j := \alpha - 1 learning rate (positive constant)
```

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Incorrect:

$$\begin{aligned} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_1 := \operatorname{temp1} \end{aligned}$$

Gradient Descent Algorithm – 1-Dimensional

repeat until convergence {
$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_j} J(\theta_1)$$
 }

- $\frac{\partial}{\partial \theta_j}$ partial derivative $\frac{d}{d\theta_j}$ derivative

Few more pointers:

•
$$\tan x = \frac{\text{perpendicular}}{\text{base}}$$

- tan x is positive in 1st and 3rd quadrant.
- $\tan x$ is positive when $0^{\circ} < x < 90^{\circ}$ and $180^{\circ} < x < 270^{\circ}$.

•
$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_j} J(\theta_1)$$

- $\frac{d}{d\theta_j}J(\theta_1)$ is positive
- $\theta_1 := \theta_1 \alpha$ (positive)
- θ_1 decreases

•
$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_j} J(\theta_1)$$

- $\frac{d}{d\theta_j}J(\theta_1)$ is negative
- $\theta_1 := \theta_1 \alpha$ (negative)
- θ_1 increases

Effect of Learning Rate (α)

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_i} J(\theta_1)$$

- If α is too small, gradient descent can be slow.
- If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Effect of Learning Rate (α)

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_i} J(\theta_1)$$

- Gradient descent can converge to a local minimum, even with the learning rate α fixed.
- As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Behavior at Local Minima

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_j} J(\theta_1)$$

At local optima: $\frac{d}{d\theta_i}J(\theta_1) = 0$

No update will occur

 θ_1 at local optima

Linear Regression and Gradient Descent Algorithm

Gradient Descent Algorithm

Linear Regression

```
repeat until convergence {
	for j = 0 and j = 1{
	\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)
}
```

$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

We will use the Gradient Descent Algorithm to $\underset{\theta_0,\theta_1}{minimize} J(\theta_0,\theta_1)$

Calculating the Gradients

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \left(\frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2 \right)$$
$$= \frac{\partial}{\partial \theta_j} \left(\frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 \cdot x^{(i)} - y^{(i)})^2 \right)$$

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (\theta_0 + \theta_1 \cdot x^{(i)} - y^{(i)}) \cdot 1 = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(\theta_0 + \theta_1 \cdot x^{(i)} - y^{(i)} \right) \cdot x^{(i)} = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

Gradient descent algorithm on Linear Regression

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \left| \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \right| = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

repeat until convergence {

repeat until convergence {

$$\theta_{0} := \theta_{0} - \alpha \frac{\partial}{\partial \theta_{0}} J(\theta_{0}, \theta_{1})$$

$$\theta_{1} := \theta_{1} - \alpha \frac{\partial}{\partial \theta_{1}} J(\theta_{0}, \theta_{1})$$

$$\theta_{1} := \theta_{1} - \alpha \frac{\partial}{\partial \theta_{1}} J(\theta_{0}, \theta_{1})$$

$$\theta_{1} := \theta_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x^{(i)}$$

update θ_0 , θ_1 simultaneously

Gradient descent algorithm on Linear Regression

- Cost function for linear regression will always be a bowl shaped.
- Formally, these kind of functions are called as convex function.
- A convex function will always have only one local optima, which is also the global optima.

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $\, heta_0, heta_1$)

 $h_{ heta}(x)$ (for fixed $heta_0, heta_1$ this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $\, heta_0, heta_1$)

 $h_{ heta}(x)$ (for fixed $heta_0, heta_1$ this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $\, heta_0, heta_1$)

 $h_{ heta}(x)$ (for fixed $heta_0, heta_1$ this is a function of x)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $J(\theta_0,\theta_1)$ (function of the parameters θ_0, θ_1)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $\, heta_0, heta_1$)

 $h_{ heta}(x)$ (for fixed $heta_0, heta_1$ this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $\, heta_0, heta_1$)

 $h_{ heta}(x)$ (for fixed $heta_0, heta_1$ this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $\, heta_0, heta_1$)

Why "Linear Regression" and not "Affine Regression"?

Reference

- CS229: Machine Learning, https://cs229.stanford.edu/
- Machine Learning, https://www.coursera.org/learn/machine-learning