Информационен лист - Изкуствен интелект - Инструменти

Сортирайте елементи с помощта на изкуствен интелект и анализирайте модели на обучение

Цел: да се анализират и категоризират различни видове елементи (в нашия пример отпадъци), използвайки компютърно зрение

Продължете по-нататък:

- Разберете, че системите с изкуствен интелект използват статистика и алгоритми, за да обработват (анализират) данни и да генерират резултати (напр. предвиждат кое видео би искал да гледа потребителят).
- Имайте предвид, че днес изкуственият интелект обикновено се отнася до машинно обучение, което е само един пример. Това, което отличава машинното обучение от други видове изкуствен интелект (напр. изкуствен интелект, базиран на правила, и байесови мрежи), е, че то изисква огромни количества данни.

Необходими материали и инструменти

Vittascience – Al Images е онлайн платформа, която ви позволява лесно да обучавате модел на изкуствен интелект, използвайки снимки, заснети на живо чрез уеб камера. Принципът се основава на контролирано обучение: потребителят създава категории, предоставя визуални примери за всяка, след което обучава модел, способен да прави прогнози в реално време. Този инструмент е предназначен за образование и не изисква инсталация. Работи директно от уеб браузър.

Стъпки и кодиране

Създайте база данни със снимки

В този лист ще използваме примера за сортиране на отпадъци във връзка с протоколите на SteamCity. Можете обаче да адаптирате дейността към всеки елемент, който искате да категоризирате, като използвате шаблон.

Първата стъпка е да създадете фотобаза данни на отпадъците, които искате учениците да сортират. Имате две възможности:

- Намерете съответстващи изображения в банка с изображения без авторски права.
- Снимайте отпадъците, които ще бъдат рециклирани. Тази опция има повишена образователна стойност.

Така че трябва да създадете 3 папки: "Стъкло", "Опаковки" и "Хартия", в които да поставите изображенията, които ще заснемете.

Създаване на модел за разпознаване на отпадъци

<u>Обучение за разпознаване на отпадъци.</u> В интерфейса на Vittascience отидете на "Обучение за изкуствен интелект".

- 1. Създайте 3 категории в секцията "данни": "Стъкло", "Опаковки" и "Хартия".
- 2. Плъзнете и пуснете събраните изображения.
- 3. След като наборът от данни е създаден, щракнете върху "Обучение".
- 4. Тествайте модела с различни обекти (пластмасова бутилка, стъклена бутилка бира, стар вестник и др.). Можете да го тествате или като плъзнете и пуснете файл, или като включите уеб камерата. Фазата на тестване е важна в изкуствения интелект, така че отделете време, за да проверите дали моделът е добре обучен. Моделът трябва да бъде тестван с обекти, предоставени като вход, и други обекти, за които не е обучен.
- 5. Помислете за активиране на интерактивни зони, за да разберете какво използва вашият модел, за да предскаже резултат. Като кликнете върху "Интерактивни зони", можете да видите най-подходящите области от изображението, които са помогнали на машината да предостави своята прогноза. Активирането на тази зона може да ви помогне да обясните по-добре резултатите, предоставени от машината.
 - Тест с известно и неизвестно прозрачно стъкло
 - Тест с позната и непозната хартия
 - о Тест с известна и неизвестна РЕТ бутилка
- 6. Предизвикайте модела си: Разпозна ли изкуственият интелект всички обекти в 100% от случаите? Откъде идват грешките? Какво характеризира стъклото? Опаковката? Хартията? Дали пробата представлява поголямата част от отпадъците?

Important

Une fois que vous avez testé votre modèle, si les résultats ne sont pas satisfaisants, ajoutez plus d'images et entraînez-le à nouveau pour l'améliorer.

Създайте 3 класа: "Стъкло", "Опаковки" и "Хартия".

Тест с прозрачно стъкло

Тест с хартия

Тест с РЕТ бутилка

Свързване на изкуствен интелект с хардуер

Използвайте Adacraft, за да свържете изхода на нашия модел към входа на микроконтролер, като например Arduino или програмна платка micro:bit.

Картата ще може да извършва действия (да премества сервомотор, да включва/изключва светодиод) всеки път, когато се направи ново засичане.

За да направите това, щракнете върху иконата на Adacraft в горния десен ъгъл на интерфейса. Ще трябва да изберете дали да запазите модела локално или в браузъра. За да създадете програма, добавете блоковете за комуникация с платка. Щракнете върху "Разширения" в долния десен ъгъл на екрана, за да изберете платката, която искате да използвате:

Ще се появи изскачащ прозорец, който ще ви позволи да изтеглите програма, която можете да плъзнете и пуснете върху дъската си, което ще ѝ позволи да "разговаря" с Adacraft.

След като сте готови, натиснете "Свързване", за да създадете серийна връзка с платката.

Вече имате готов модел за разпознаване, който ви позволява да комуникирате с физическа дъска.

<u>Създайте интерактивна обратна връзка с изкуствен интелект.</u> Създайте програма в Adacraft, така че героят Vittabot да казва открития клас. Инициализирайте модела. Стартирайте откриването. Изберете да стартирате откриване на файл, достъпен в интернет чрез URL адрес или директно чрез уеб камерата. Полезни блокове са налични в "Al Image". След това покажете текст на LED матрицата на micro:bit въз основа на откриването.

Отговорът от откриването се записва в блока: "най-добър клас на откриване". Редът, в който наборите от данни са обозначени по време на обучението, е важен и ще бъде наличен в блока "Име на клас номер (1)". Бъдете внимателни и запомнете реда на имената на класовете, зададени по време на обучението с изкуствен интелект. Важно е да се отбележи, че сортирането на отпадъци варира в различните страни и дори локално. Например в Германия и Швейцария контейнерите за сортиране са с различни цветове (жълто, синьо и червено), като всеки цвят съответства на специфичен вид отпадъци. Поради това е препоръчително да проверите действащите насоки за сортиране във вашия регион, преди да продължите с предложената дейност.

Анализирайте данните и се учете от тях

Наблюдавайте различните взаимодействия между невроните в различните слоеве, когато тествате с изображение от файл или екранна снимка чрез камерата.

- 1. Кликнете върху следващия бутон "Покажи невронна мрежа".
- 2. Попитайте учениците: "Какво виждате?"
- 3. Въз основа на техните отговори, дайте допълнителни обяснения:
 - о "Опростеният изглед" показва невронната мрежа схематично, като всяка форма представлява слой, а размерът на тези слоеве се променя. В началото изображенията са големи и малко на брой, след това стават малки и многобройни.
 - Кликнете върху "Подробен изглед". Този изглед ви позволява да визуализирате всички неврони в мрежата има над един милион от тях! Първият слой включва прилагане на червен, син и зелен цветен филтър. Този филтър запазва само червените, зелените или сините стойности на пикселите в тестовото изображение.
 - Можете да навигирате в невронната мрежа, като увеличите мащаба с мишката или използвате бутоните в долния десен ъгъл. Щракването върху информационния бутон "i" показва размера и броя на невроните във всеки слой. Задържането на курсора на мишката върху невроните показва връзките с предишния слой, които се замразяват чрез щракване върху неврона. Бутонът "Отваряне на информация" показва броя на изображенията и техния размер в пиксели във всеки слой. Щракването върху пикселите предоставя обяснения на изчисленията, извършени от изкуствения интелект върху слоевете
 - В конволюционните слоеве, върху филтрираните изображения се сканира 9-пикселов квадрат (3х3). Няколко слоя следват един след друг, за да идентифицират "модели", т.е. характеристиките на обекта, който трябва да бъде идентифициран в изображението. Невроните се активират, ако бъдат идентифицирани определени характеристики (подравняване на пикселите, водещо до форми и др.) в съответствие с обучителните данни. След това информацията се разпространява към изходния слой, който предоставя прогноза.