

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS

Fall 2009 Lab 4: Motor Control

October 5, 2009

Dr. Harrison H. Chin

Formal Labs

1. Microcontrollers

- Introduction to microcontrollers
- Arduino microcontroller kit

2. Sensors and Signals

- Analog / Digital sensors
- Data acquisition
- Data processing and visualization

3. GPS and Data Logging

- GPS receiver and shield
- Data logging
- Visualization of data

4. Motor Control

- Motors
- Encoders
- Position control

Fall 2009 Calendar

CEDTEMBED

	. 3	LP.	LIV	IBE	K	200	9	Formal labs: 4 weeks
	Su	Mo	Tu	We	Th	Fr	Sa	Term project: 8 weeks
			1	2	3	4	5	
W 1	6	7	8	9	10	11	12	9/9: First day of classes
W2	13	14	15	16	17	18	19	Lab 1: Lab Intro, Arduino microcontroller
W 3	20	21	22	23	24	25	26	Lab 2: Sensors & signals, A/D, D/A, PWM
W4	27	28	29	30				Lab 3: GPS & data logging
		(OC]	ГОВ	ER	20	009	Term project proposal (W4)
	Su	Мо	Tu	We	Th	Fr	Sa	
						_	_	

W5 W6 W7 W8

Lab 4: Motor control

10/12: Columbus Day—Holiday

Formal laber 1 wooks

10/13: Monday schedule

Term project starts (W6)

Fall 2009 Calendar (Cont.)

NOV	EMBER	2009
1101	EMIDER	2009

	Su	Мо	Tu	We	Th	Fr	Sa
W9	1	2	3	4	5	6	7
W10	8	9	10	11	12	13	14
W11	15	16	17	18	19	20	21
W12	22	23	24	25	26	27	28
	29	30					

Term project milestone presentation (11/5)

11/11: Veteran's Day—Holiday

11/26-27: Thanksgiving Vacation

DECEMBER 2009

	Su	Mo	Tu	We	Th	Fr	Sa	
W13			1	2	3	4	5	•
W14	6	7	8	9	10	11	12	•
	13	14	15	16	17	18	19	
	20	21	22	23	24	25	26	
	27	28	29	30	31			

Term project draft (12/1)

Term project presentation (12/8 & 12/10)

12/10: Last day of classes

Lab 4: Motor Control

- **DC motor experiments (1:30 − 3:30)**
 - Processing Encoder Signals
 - Implementing Closed-Loop Position Control
 - Higher Performance from the Control System
 - Velocity Control
- Controlling a Servo (3:30 4:30)
- Project discussion (4:30 − 5:00)

Hardware Setup

DC Motors

What is the time constant for our Maxon F2140.937 motor?

$$\frac{\Omega(s)}{V(s)} = \frac{K_t^{-1}}{\left(\frac{R_m \cdot J_m}{K_t^2}\right)s + 1}$$

Time constant

Optical Encoders

Courtesy of Harry Asada. Used with permission.

Quadrature Decoding

Courtesy of Harry Asada. Used with permission.

X (Ch A)	Y (Ch B)	F0	F1	F2	F3
0	0	1	0	0	0
1	0	0	1	0	0
1	1	0	0	1	0
0	1	0	0	0	1

Image by Deepak Kumar Tala, http://www.asic-world.com.

Decoder Circuit

- The PC6 decoder by US Digital decodes the quadrature outputs of an incremental shaft encoder. The circuit we use is the PC6-C-4, clock and direction version that provides 4x the encoder resolution.
- For the Maxon motor each encoder channel has 100 counts and through a 6:1 ratio gearhead we get 600 counts per channel (see Maxon motor specs).
- With the PC6-C-4 decoder circuit we get a total of 4x600 = 2,400 counts per shaft rotation.

Images removed due to copyright restrictions.

Please see any photo of the US Digital PC6 decoder,
such as http://usdigital.com/assets/images/galleries/take_2__0088.jpg,
and the pinout diagram for the LS7184 quadrature clock converter (datasheet).

Encoder Signals and Decoder Circuit Timing Diagram

Check the following signals with an Oscilloscope

Image removed due to copyright restrictions.

Please see p. 4 in US Digital, "PC6 Encoder to Counter Interface Board."

Arduino Motor Shield

- 2 connections for 5V 'hobby' servos
- Up to 4 bi-directional DC motors
- Up to 2 stepper motors (unipolar or bipolar) with single coil, double coil, interleaved or microstepping.
- 4 H-Bridges: L293D chipset provides 0.6A per bridge (1.2A peak) with thermal shutdown protection, 4.5V to 36V
- Pull down resistors keep motors disabled during power-up
- Arduino reset button brought up top
- 2-pin terminal block to connect external power, for separate logic/motor supplies

Photo by ladyada on Flickr.

L293D Quadruple Half-H Driver (H-Bridge)

- The L293D is a quadruple highcurrent half-H driver.
- The L293D is designed to provide bidirectional drive currents of up to 600-mA at voltages from 4.5 V to 36 V.
- It is designed to drive inductive loads such as relays, solenoids, dc and bipolar stepping motors, as well as other highcurrent/high-voltage loads in positive-supply applications.

Image removed due to copyright restrictions. Please see the pinout for L293D NE package (datasheet).

An H-bridge enables a voltage to be applied across a load in either direction.

Pulse Width Modulation (PWM)

- PWM frequency (Hz) = 1 / PWM period
- Duty cycle = Pulsewidth / PWM period
- PWM frequencies typically range from 100Hz into MHz
- Duty cycles can be used from 0 100%, although some systems use much smaller ranges, e.g. 5-10% for hobby remote servos.
- The waveform has two pieces of information: Period and Pulsewidth, although they are usually not changed simultaneously.

Use a scope to look at the PWM signal if you can V_{peak}

Pulse Width Modulation (PWM)

- Can be used as a substitute for analog output (high frequency switching is filtered out by the physical systems and what is left is the mean voltage).
- Applications include: lamp dimmers, motor speed control, power supplies,...
 Output voltage is averaged from on vs. off time

output_voltage = (on_time / off_time) * max_voltage

Courtesy of Tod E. Kurt. Used with permission.

Serial Data Capture

- Use "RealTerm" Serial Capture Program (http://realterm.sourceforge.net/) to monitor and capture serial data
- Import data to MATLAB for plotting

Controller Design

- Control action Types:
 - <u>Proportional</u> improve speed but with steady-state error
 - <u>Integral</u> improve steady state error but with less stability, overshoot, longer transient, integrator windup
 - <u>Derivative</u> improve stability but sensitive to noise
- Reduce overall gain can increase stability but with slower response
- Avoid saturation
- Set integrator limit to prevent windup

MATLAB SISOTOOL Controller Design Tool

Courtesy of The MathWorks, Inc. Used with permission.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc.

See www.mathworks.com/trademarks for a list of additional trademarks.

Other product or brand names may be trademarks or registered trademarks of their respective holders.

Simulink Simulation

P I D

$$K_p + \frac{K_i}{S} + K_d s$$

$$G_c(s) = K_p + \frac{K_i}{s} + K_d s = \frac{K_d s^2 + K_p s + K_i}{s}$$

Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Motor Control Template Code


```
void setup() {
 Serial.begin(9600); // set up Serial library at 9600 bps
 Kp = 0.0;
 Ki = 0.0;
                              Fill in your PID gains
 Kd = 0.0;
 pinMode(ClockPin, INPUT);
 pinMode(UpDownPin, INPUT);
// encoder pin on interrupt 0 (pin 2)
 attachInterrupt(0, doEncoder, CHANGE);
 void loop() {
 // Serial.println("Motor Control");
 //*** Remeber time is in milliseconds!!!
 // update state variables for use in PID controller
 vel = (float) (encoder0Pos - oldPos) / dt; // velocity estimate in ms
 // reassign state variables
 oldPos = encoder0Pos;
 //*********
 // Insert controller here
 // command = ????
                                         Fill in your controller equations
 // remember command should be an integer
 //*********
```

Step Response Comparison

$$K_p = 0.25$$
$$K_i = 1.0$$
$$K_d = 0.05$$

Servomotor Control

- Can be positioned from 0 to 180 degrees
- An internal DC motor connected to a potentiometer
- High torque gearing
- Internal feedback circuitry to control motor position
- Three wire connector: Ground, +5 V, and PWM (typically at 50 Hz)

Modify the code to use a potentiometer (or a photo resistor) to control the shaft angle

Stepper Motor

Hybrid Stepper Motor

- Permanent magnet in rotor
- Windings on stator poles
- Excitation of phase windings produces discrete steps
- 2 phase, 1.8°/step most common

Project Discussion

Project proposal feedback

Deliverables

- Answer all the questions in the Lab 4 handout
- Plots
- Show the teaching staff your lab notebook

2.017J Design of Electromechanical Robotic Systems Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.