

Module 07

Partha Pratim Das

Objectives of Outline

Relational Operators

Aggregation Operators

Module Summary

Database Management Systems

Module 07: Introduction to Relational Model/2

Partha Pratim Das

Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ac.in

Module Recap

Module 07

Partha Pratir Das

Objectives & Outline

Relational Operators

Aggregation Operators

Module Summar

• Basic notions of modeling introduced

- Attributes and their Types
- Schema and Instance
- Keys and their Categorization
- Languages for Relation Model introduced

Module Objectives

Module 07

Partha Pratir Das

Objectives & Outline

Relationa Operator

Aggregatio Operators

Module Summary

- To understand relational algebra
- To familiarize with the operators of relational algebra

Module Outline

Module 07

Partha Pratir Das

Objectives & Outline

Relationa Operator

Aggregation Operators

Module Summary

Operations

- Select
- o Project
- Union
- o Difference
- Intersection
- o Cartesian Product
- Natural Join
- Aggregate Operations

IIT Madras

Partha Pratio

Objectives Outline

Relational Operators

Module Summary

Relational Operators

Database Management Systems Partha Pratim Das 07.5

Basic Properties of Relations

Module 07

Partha Pratin Das

Objectives Outline

Relational Operators

Aggregation Operators

Module Summa

- A relation is set. Hence,
- Ordering of rows / tuples is inconsequential

Α	В		Α	В
a1	b1		a1	b1
a1	b2	is same as:	a2	b1
a2	b1		a2	b2
a2	b2		a1	b2

All rows / tuples must be distinct

_A	В
a1	b1
a1	b2
a1	b2
a1	b1

is not valid

	Α	В		
	a1	b1		is
	a1	b2		
_				

Select Operation – selection of rows (tuples)

Module 07

Partha Pratim Das

Objectives Outline

Relational Operators

Aggregation Operators

Module Summary

• Relation r

	\boldsymbol{A}	В	C	D	
6	α	α	1	7	
	α	β	5	7	
	β	β	12	3	
	β	β	23	10	

• $\sigma_{A=B\wedge D>5}(r)$

A	В	C	D
α	α	1	7
β	β	23	10

Project Operation – selection of columns (Attributes)

Module 07

Partha Pratim Das

Objectives Outline

Relational Operators

Aggregation Operators

Module Summary

ullet Relation r

Union of two relations

Module 07

Partha Pratim Das

Objectives Outline

Relational Operators

Aggregation Operators

Module Summar

• Relation r, s

 \bullet $r \cup s$

\boldsymbol{A}	В
α	1
α	2
β	1
β	3

Set difference of two relations

Module 07

Partha Pratim Das

Objectives Outline

Relational Operators

Aggregatio Operators

Module Summary

• Relation r, s

Set intersection of two relations

Module 07

Partha Pratim Das

Objectives Outline

Relational Operators

Aggregatio Operators

Module Summar

• Relation r, s

•
$$r \cap s$$

Note:
$$r \cap s = r - (r - s)$$

Joining two relations – Cartesian-product

Module 07

Partha Pratim Das

Objectives Outline

Relational Operators

Aggregation Operators

Module Summar

• Relation r, s

Cartesian-product – naming issue

Module 07

Partha Pratim Das

Objectives Outline

Relational Operators

Aggregatio Operators

Module Summa

• Relation r, s

5

 $\bullet r \times s$

A	r.B	s.B	D	Е
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

Renaming a Table

Module 07

Partha Pratim Das

Objectives Outline

Relational Operators

Aggregation Operators

Module Summar

• Allows us to refer to a relation, (say E) by more than one name.

$$\rho_X(E)$$

returns the expression E under the name X

• Relations r

$$\begin{bmatrix} A & B \\ \alpha & 1 \\ \beta & 2 \end{bmatrix}$$

• $r \times \rho_s(r)$

r.A	r.B	s.A	S.
α	1	α	1
α	1	β	2
β	2	α	1
β	2	β	2

Composition of Operations

Module 07

Partha Pratim Das

Objectives Outline

Relational Operators

Aggregatio Operators

Module Summar

• Can build expressions using multiple operations

• Example: $\sigma_{A=C}(r \times s)$

$$\bullet$$
 $r \times s$

Λ	В		\Box	E
=				E
α	1		10	
α	1	β	10	a
α	1	β	20	b
α	1	Y	10	Ъ
β	2	α	10	а
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

• $\sigma_{A=C}(r \times s)$

\boldsymbol{A}	В	C	D	Ε
α	1	α	10	a
β	2	β	10	a
β	2	β	10 20	b

Joining two relations - Natural Join

Module 07

Partha Pratim Das

Objectives Outline

Relational Operators

Aggregation Operators

Module Summa

- Let r and s be relations on schemas R and S respectively. Then, the "natural join" of relations R and S is a relation on schema $R \cup S$ obtained as follows:
 - Consider each pair of tuples t_r from r and t_s from s.
 - \circ If t_r and t_s have the same value on each of the attributes in $R \cap S$, add a tuple t to the result, where
 - \triangleright t has the same value as t_r on r
 - \triangleright t has the same value as t_s on s

Natural Join Example

Module 07

Partha Pratim Das

Objectives Outline

Relational Operators

Aggregatio Operators

Module Summar

• Relations r, s:

В	D	Е
1	a	α
3	a	β
1	a	Y
2	b	δ
3	b	3
	S	

• Natural Join

$$\circ r \bowtie s$$

$$\pi_{A,r.B,C,r.D,E}(\sigma_{r.B=s.B \land r.D=s.D}(r \times s))$$

Module 07

Partha Pratio

Objectives Outline

Operators
Aggregation
Operators

Module Summar

Aggregation Operators

Database Management Systems Partha Pratim Das 07.18

Aggregate Operators

Module 07

Partha Pratii Das

Objectives Outline

Relational Operators

Aggregation Operators

Module Summary

- Can we compute:
 - o SUM
 - AVG
 - o MAX
 - o MIN

Notes about Relational Languages

Module 07

Partha Pratim Das

Objectives Outline

Relational Operators

Aggregation Operators

Module Summar

- Each query input is a table (or set of tables)
- Each query output is a table
- All data in the output table appears in one of the input tables
- Relational Algebra is not Turing complete

Summary of Relational Algebra Operators

Module 07

Partha Pratin

Objectives Outline

Relationa Operators

Aggregation Operators

Module Summar

Symbol (Name)	Example of Use
σ (Selection)	∘ salary >= 85000 (instructor)
	Return rows of the input relation that satisfy the predicate.
П (Projection)	П ID, salary (instructor)
	Output specified attributes from all rows of the input relation. Remove duplicate tuples from the output.
X (Cartesian Product)	instructor × department
	Output pairs of rows from the two input relations that have the same value on all attributes that have the same name.
U (Union)	Π name (instructor) \cup Π name (student)
	Output the union of tuples from the two input relations.
- (Set Difference)	П name (instructor) — П name (student)
	Output the set difference of tuples from the two input relations.
⋈ (Natural Join)	instructor ⋈ department
	Output pairs of rows from the two input relations that have the same value on all attributes that have the same name.

Module 07

Partha Pratio

Objective: Outline

Operators

Module Summary

• Introduced relational algebra

Familiarized with the operators of relational algebra

Slides used in this presentation are borrowed from http://db-book.com/ with kind permission of the authors.

Edited and new slides are marked with "PPD".