# Towards Autonomous Organizations [DRAFT]

Autonomous organization of virtual agents:

- FIPA (Multi-agent communication standards)
  - Generalization:
    - http://www.fipa.org/subgroups/ROFS-SG-docs/2007-TAAS-specifying-MAS.pdf
  - o By spec. status: <a href="http://www.fipa.org/repository/standardspecs.html">http://www.fipa.org/repository/standardspecs.html</a>
  - o By spec. subject: <a href="http://www.fipa.org/repository/bysubject.html">http://www.fipa.org/repository/bysubject.html</a>
- Web of Things (agents identify others and communicate API designs)
  - W3C standards: https://www.w3.org/standards/
  - Mozilla's adaptation API spec: https://iot.mozilla.org/wot/
- Categorizing the web (semantic representations (metadata) of objects and services for machine readability and understanding):
  - Google's schema.org: <a href="https://schema.org/">https://schema.org/</a>
  - o More: https://en.wikipedia.org/wiki/Metadata standard
- Trust, Identity, Transactions (blockchains)
  - Hyperledger for permissioned actions: <a href="https://www.hyperledger.org/">https://www.hyperledger.org/</a>
  - Etherium for smart contracts: https://www.ethereum.org/
- Decentralization, network latency and clustering
  - o Universal protocol stack for decentralized communication: https://ipfs.io/
- Modern engineering (how to engineer, refine above standards for modern web iteratively)
  - Query one API endpoint (very important): <a href="https://graphql.org/">https://graphql.org/</a>
  - Couch replication protocol eventual consistency: <a href="http://docs.couchdb.org/en/stable/replication/protocol.html">http://docs.couchdb.org/en/stable/replication/protocol.html</a>
  - Conflict resolution by design CRDTs:
     https://en.wikipedia.org/wiki/Conflict-free replicated data type
- User experience
  - A virtual assistant per person
  - No more knowledge aggregation in one place like Alexa, Google Assistant, Siri but a swappable assistants, like you can use any web browser to get the same experience
  - Any capability of Assistant is plug-in which includes AI (cognitive) services
- Privacy
  - Data stays on device
  - Assistants see data on device and behave dynamically (intelligence downloaded to device)
- Value and ecosystem

- o Addons generate value
- Search service, app store

# POINTS:

FIPA Agent communication specs

• Message structure spec

| Parameter       | Category of Parameters       |
|-----------------|------------------------------|
| performative    | Type of communicative acts   |
| sender          | Participant in communication |
| receiver        | Participant in communication |
| reply-to        | Participant in communication |
| content         | Content of message           |
| language        | Description of Content       |
| encoding        | Description of Content       |
| ontology        | Description of Content       |
| protocol        | Control of conversation      |
| conversation-id | Control of conversation      |
| reply-with      | Control of conversation      |
| in-reply-to     | Control of conversation      |
| reply-by        | Control of conversation      |

- Table 1: FIPA ACL Message Parameters
- Ontology service spec (refers to scheme.org or WoT description)
  - Agents that communicate together should be aware of the Ontology capabilities of each of them

Ontologies of agents can be related in multiple ways

| Extension             | When O1 extends the ontology O2                                                     |  |
|-----------------------|-------------------------------------------------------------------------------------|--|
| Identical             | When the two ontologies O1 and O2 are identical                                     |  |
| Equivalent            | When the two ontologies O1 and O2 are equivalent                                    |  |
| Weakly-Translatable   | When the source ontology O1 is weakly translatable to the target ontology O2        |  |
| Strongly-Translatable | When the source ontology O1 is strongly translatable to the target ontology O2      |  |
| Approx-Translatable   | When the source ontology O1 is approximately translatable to the target ontology O2 |  |

Table 1: Ontology Relationship Levels

- It is common and good engineering practice to build a new ontology by extending or combining existing ones.
- Translation between Ontologies is necessary in this case. More: http://www.fipa.org/specs/fipa00086/XC00086D.html

### FIPA agent management spec

- Covers: agent management services, agent management ontology and agent platform message transport
- It establishes the logical reference model for the creation, registration, location, communication, migration and retirement of agents.
- Directory Facilitator a directory listing for agents with UID and nickname
  - API: register, deregister, modify, search, get-description agents
  - Federated Directory Facilitators: network of DFs



agent lifecycle

### FIPA Architecture

0

http://www.fipa.org/specs/fipa00001/SC00001L.html

- Agents & services core components. A service can be an agent or an RPC function
- Agent & service directory service (indexing) Data structure: [name, type, locator]
- Agent message structure & encryption

## FIPA Applications & Examples

- http://www.fipa.org/repository/applicationspecs.php3
- Ontology is defined in action level. Do we need an Ontology defined this way? Or in a very basic form like Schema.org?

### W3C web thing description

- Property, Action, Event Interaction affordances
- Each Interaction affordance is located with a URI
- Description of a thing: https://www.w3.org/TR/wot-thing-description/#thing

# W3C web thing architecture

- A web thing identifies itself with thing description
- A thing can be standalone or linked with other things. The thing description will contain links to others if there's any. There can be terminating or intermediate things as well. (<a href="https://www.w3.org/TR/wot-architecture/#sec-architecture-overview">https://www.w3.org/TR/wot-architecture/#sec-architecture-overview</a>)



- The <u>Interaction Model</u> of W3C WoT introduces an intermediate abstraction that formalizes the mapping from application intent to concrete protocol operations and also narrows the possibilities how <u>Interaction Affordances</u> can be modeled.
- Each interaction model in detail: <a href="https://www.w3.org/TR/wot-architecture/#sec-interaction-model">https://www.w3.org/TR/wot-architecture/#sec-interaction-model</a>
- Communication patterns between things: <u>https://www.w3.org/TR/wot-architecture/#sec-wot-servient-architecture-high-level</u>

### Mozilla WoT

• Contexts: <a href="http://iotschema.org/">https://iot.mozilla.org/schemas</a>