RET
In every standard aution, the expected payment of a bidder of valuation v
In every standard aution, the expected payment of a bidder of valuation v equals $t^*(v) = \int_{\underline{v}}^{v} x g(x) dx$
g(x) = G'(x)
$G(x) = F^{n-1}(x) > depend on number of bidder.$
x on format of auction
and so the seller's expected revenue is the same.
à important use: derive aprilibrium bid function in SI
Li First Price Auction:
b*(v) common equilbrium bid function.
experted payment of a bidder of type v.
t*(v)= G(v) b*(v) + (1- G(v)). 0
prob of winning $G(v) b^*(v) = \int_{v}^{v} \times g(x) dx.$
$\frac{\Delta}{\Delta} = \frac{\int_{V}^{V} \times g(x) dx}{G(v)}$
G(v)
(1) b*(V) is strictly increasing
(1) $b^*(v)$ is strictly increasing (2) $b^*(v) < v$ for all $v > v$
tid shading
50 shading 3) Fivi = V × 0, v=1
G(V) = V n-1
$q(v) = (n-1) v^{n-2}$
$g(x) = (n-1) v^{n-2}.$ $\int_{v}^{v} \chi g(x) dx = \int_{v}^{v} (n-1) \chi^{n-1} dx = (n-1) \frac{\chi^{n}}{n} \int_{0}^{v}$

case where VETO, 1], CETO, 1]
-> revolation principle
prob of trade experted payment. I that tetrns is DSE in deterministic direct weehanism. if it is a single price equilibrium (only one). when is an asymmetric bad enough > inefficiency.
Inthteurne is DSE in deterministic direct weehanism.
if it is a single price equilibrium (only one).
when is an asymmetric bad enough => inefficiency.
Aution
A SPA O trid truthfully => DSE kuly (bid not effect the price you pay).
(bid not effect the price you pay).
© reserve price
3 optimal RP not depend on number of bidders.
3 optimal RP not depend on number of bidders. (marginal price of winning bidder is 0)
only when RP is binding. $T(r) = (r-c)(1-F(r))$ 2 RP is binding
T((r) = (r-c)(1-f(r))
C KF 15 BINGUIG