Reeb graphs, Mapper graphs, and Metrics

Elizabeth Munch

Michigan State University

::

Department of Computational Mathematics, Science and Engineering (CMSE)

Department of Mathematics

May 21, 2018

Reeb graphs and Mapper

Reeb graphs and Mapper

The point

- Useful for applications.
- Applications have noise.
- How do we understand distances and convergence?

Persistent Homology

\mathbb{Z} -parameterized

Given topological space $K = K_n$ and filtration

$$K_0 \subseteq K_1 \subseteq K_2 \subseteq \cdots \subseteq K_n$$

gives a sequence of maps on homology

$$H_k(K_0) \rightarrow H_k(K_1) \rightarrow \cdots \rightarrow H_k(K_n)$$

\mathbb{R} -parameterized

Given topological space K and filtration

$$\{K_a\}_{a\in\mathbb{R}}$$
 where $K_a\subseteq K_b orall a\leq b$

gives a collection of maps on homology

$$\varphi_a^b : H_k(K_a) \to H_k(K_b) \qquad \forall a \le b$$

$$\varphi_b^c \circ \varphi_a^b = \varphi_a^c$$

Persistence Module

Definition

A persistence module $V = (V_a, \varphi_a^b)$ is a collection of

- ullet vector spaces V_a and
- linear maps $\varphi_a^b: V_a \to V_b$,
- such that $\varphi_a^a = \mathbb{1}_{V_a}$, and $\varphi_a^c \varphi_a^b = \varphi_a^c$.

Definition

A persistence module is a functor $V: (\mathbf{R}, \leq) \to \mathbf{Vect}_k$.

Functorial Version

Equivalent definition

Persistence Modules

Functors

 $F: \mathbb{R} \rightarrow \mathbf{Vect}$ $t \mapsto V_t$

 $G: \mathbb{R} \rightarrow \mathbf{Vect}$ $t \mapsto W_t$

Functorial Version

Equivalent definition

Persistence Modules

Functors

$$F: \mathbb{R} \rightarrow \mathbf{Vect}$$
 $t \mapsto V_t$

$$G: \mathbb{R} \rightarrow \mathbf{Vect}$$
 $t \mapsto W_t$

Morphisms

Natural transformations: φ : $F \Rightarrow G$

$$V_1 \longrightarrow V_2 \longrightarrow V_3 \longrightarrow \cdots \longrightarrow V_k$$

$$\downarrow^{\varphi_1} \qquad \downarrow^{\varphi_2} \qquad \downarrow^{\varphi_3} \qquad \downarrow^{\varphi_k}$$
 $W_1 \longrightarrow W_2 \longrightarrow W_3 \longrightarrow \cdots \longrightarrow W_k$

Persistence Module Isomorphism

F and G are isomorphic if there exists a pair of natural transformations

$$\varphi$$
: $F \Rightarrow G$; ψ : $G \Rightarrow F$

such that each pair φ_a , ψ_a form an isomorphism of vector spaces.

$$V_{1} \longrightarrow V_{2} \longrightarrow V_{3} \longrightarrow \cdots \longrightarrow V_{k}$$

$$\downarrow \uparrow \downarrow \uparrow \psi_{1} \qquad \downarrow \uparrow \psi_{2} \qquad \downarrow \uparrow \psi_{3} \qquad \qquad \downarrow \uparrow \psi_{k}$$

$$W_{1} \longrightarrow W_{2} \longrightarrow W_{3} \longrightarrow \cdots \longrightarrow W_{k}$$

When are F and G almost the same?

$$S_{\varepsilon}: \mathbb{R} \rightarrow \mathbb{R}$$
 $a \mapsto a + \varepsilon$

$$\begin{array}{cccc} \mathcal{S}_{\varepsilon}: & \textbf{Vect}^{\mathbb{R}} & \rightarrow & \textbf{Vect}^{\mathbb{R}} \\ & \mathsf{F} & \mapsto & \mathsf{F}\mathcal{S}_{\varepsilon} \end{array}$$

Persistence Module ε -interleaving

F and G are arepsilon-interleaved if there exists a pair of natural transformations

$$\varphi$$
: $\mathsf{F} \Rightarrow \mathcal{S}_{\varepsilon}(\mathsf{G})$; ψ : $\mathsf{G} \Rightarrow \mathcal{S}_{\varepsilon}(\mathsf{F})$

such that the diagram below commutes.

$$V_{1} \xrightarrow{\varphi_{1}} V_{2} \xrightarrow{\varphi_{2}} \cdots \xrightarrow{V_{1+\varepsilon}} V_{1+\varepsilon} \xrightarrow{\varphi_{1+\varepsilon}} V_{2+\varepsilon} \xrightarrow{\varphi_{2+\varepsilon}} \cdots \xrightarrow{V_{1+2\varepsilon}} V_{2+2\varepsilon}$$

$$W_{1} = \xrightarrow{\psi_{1}} W_{2} = \xrightarrow{\psi_{2}} \cdots \xrightarrow{W_{1+\varepsilon}} W_{1+\varepsilon} \xrightarrow{\psi_{1+\varepsilon}} W_{2+\varepsilon} = \xrightarrow{\psi_{2+\varepsilon}} \cdots \xrightarrow{W_{1+2\varepsilon}} W_{2+2\varepsilon}$$

Definition (**Vect**^ℝ interleaving)

Let $F, G : \mathbb{R} \to \textbf{Vect}$ be given.

An ε -interleaving consists of two natural transformations

$$\varphi$$
: $\mathsf{F} \Rightarrow \mathcal{S}_{\varepsilon}(\mathsf{G})$; ψ : $\mathsf{G} \Rightarrow \mathcal{S}_{\varepsilon}(\mathsf{F})$

such that

commutes.

Definition (**Vect**^ℝ interleaving)

Let $F, G : \mathbb{R} \to \mathbf{Vect}$ be given.

An ε -interleaving consists of two natural transformations

$$\varphi$$
: $\mathsf{F} \Rightarrow \mathcal{S}_{\varepsilon}(\mathsf{G})$; ψ : $\mathsf{G} \Rightarrow \mathcal{S}_{\varepsilon}(\mathsf{F})$

such that

commutes. The interleaving distance is defined to be

$$d_I(F, G) = \inf\{\varepsilon \mid F \text{ and } G \text{ are } \varepsilon\text{-interleaved}\}.$$

Properties of the Interleaving Distance for Pers

Theorem (Chazal et al. 2009, Lesnick 2015)

For pfd persistence modules,

$$d_B(Dgm(V), Dgm(W)) = d_I(V, W).$$

Corollary (Cohen-Steiner et al. 2007)

For nice enough functions $f,g:\mathbb{X} \to \mathbb{R}$,

$$d_I(\operatorname{Subl}(f),\operatorname{Subl}(g)) \leq \|f-g\|_{\infty}.$$

Section 1

Reeb graph Interleaving Distance

Reeb graph

Reeb Graph

- Given $f: \mathbb{X} \to \mathbb{R}$
- $x \sim y$ iff x and y in same (path) connected component of $f^{-1}(a)$.
- \bullet The Reeb graph of the function is the space \mathbb{X}/\sim with the quotient topology.
- Denoted $\mathcal{R}(\mathbb{X}, f)$

Reeb graph

Reeb Graph

- Given $f: \mathbb{X} \to \mathbb{R}$
- $x \sim y$ iff x and y in same (path) connected component of $f^{-1}(a)$.
- \bullet The Reeb graph of the function is the space \mathbb{X}/\sim with the quotient topology.
- Denoted $\mathcal{R}(\mathbb{X}, f)$
 - The Reeb graph of a constructible R-space is an R-graph.
 - A Reeb graph is itself an ℝ-space, so comes with a space and a function

Reeb graph

Reeb Graph

- Given $f: \mathbb{X} \to \mathbb{R}$
- $x \sim y$ iff x and y in same (path) connected component of $f^{-1}(a)$.
- The Reeb graph of the function is the space \mathbb{X}/\sim with the quotient topology.
- Denoted $\mathcal{R}(\mathbb{X}, f)$
 - The Reeb graph of a constructible R-space is an R-graph.
 - A Reeb graph is itself an ℝ-space, so comes with a space and a function

Definition

An \mathbb{R} -space is a pair consisting of

- ullet a topological space \mathbb{X} , and
- an \mathbb{R} valued function $f: \mathbb{X} \to \mathbb{R}$.

This is denoted (X, f) or f.

Definition

An \mathbb{R} -space is a pair consisting of

- a topological space X, and
- an \mathbb{R} valued function $f: \mathbb{X} \to \mathbb{R}$.

This is denoted (X, f) or f.

Definition

A **constructible** \mathbb{R} -space is an \mathbb{R} -space isomorphic to one constructed as follows:

- $S = \{a_0, \dots, a_n\}$ the set of critical points
- 0 < i < n: $\mathbb{V}_i \times \{a_i\}$
- 0 < i < n-1: $\mathbb{E}_i \times [a_i, a_{i+1}]$
- Attaching maps

Definition

An \mathbb{R} -graph is a constructible \mathbb{R} -space where all \mathbb{V}_i and \mathbb{E}_i are 0-dimensional.

Function preserving maps

Definition

A function preserving map between two \mathbb{R} -spaces (\mathbb{X},f) and (\mathbb{Y},g) is a continuous map $\varphi:\mathbb{X}\to\mathbb{Y}$ such that

commutes.

Generalized Reeb Graphs

Definition

The set of

- Objects: \mathbb{R} -graphs (\mathbb{X}, f)
- ullet Morphisms: Function preserving maps $\alpha: \mathbb{X} \to \mathbb{Y}$ such that

commutes.

is a category which we will call Reeb.

Want:

Categorify Reeb graphs

Cosheaves

Definition

A **pre-cosheaf** is a functor

 $F: \mathbf{Int} \to \mathbf{Set}$.

Definition

A pre-cosheaf $F: \mathbf{Int} \to \mathbf{Set}$ is a **cosheaf** if for all open $U \subset \mathbb{R}$ and covering $\{U_i\}$ of U, F(U) is the colimit of the diagram

$$\coprod F(U_i \cap U_j) \rightrightarrows \coprod F(U_i)$$

IMA - May 21, 2018

Cosheaves

Constructible Cosheaves

Definition

A cosheaf is S-constructible if it is compactly supported and

$$I \cap S = J \cap S$$
 implies $F[I \subset J] : F(I) \to F(J)$ is an isomorphism.

Constructible Cosheaves

Definition

A cosheaf is S-constructible if it is compactly supported and

$$I \cap S = J \cap S$$
 implies $F[I \subset J] : F(I) \to F(J)$ is an isomorphism.

Liz Munch (MSU) Mapper Convergence IMA - May 21, 2018 17 / 48

Categorical Reeb Graph

Definition

Csh^c consists of

- Objects: Constructible cosheaves $F : Int \rightarrow Set$
- Morphisms: Natural transformations

The Reeb functor and construction

Equivalence of Categories

Theorem (Woolf; MacPherson; etc.)

The functor

Reeb
$$\stackrel{\mathcal{C}}{\longrightarrow}$$
 Csh

gives an equivalence of categories.

$\varepsilon\text{-Smoothing}$

Definition

$$egin{array}{cccc} \Omega_arepsilon : & egin{array}{cccc} oldsymbol{\mathsf{Int}} & \longrightarrow & oldsymbol{\mathsf{Int}} \ J & \longmapsto & J^arepsilon \ (a,b) & & (a-arepsilon,b+arepsilon) \end{array}$$

Definition

 $\mathcal{S}_{arepsilon}: egin{array}{cccc} \mathsf{Csh}^{\mathrm{c}} & \longrightarrow & \mathsf{Csh}^{\mathrm{c}} \ & \mathsf{F} & \longmapsto & \mathsf{F}\Omega_{arepsilon} \end{array}$

z Munch (MSU) Mapper Convergence IMA - May 21, 2018 21 / 48

Csh^c-interleaving

Definition

Let $F, G : Int \rightarrow Set$ be given.

An ε -interleaving consists of two natural transformations

$$\varphi$$
: $\mathsf{F} \Rightarrow \mathcal{S}_{\varepsilon}(\mathsf{G})$; ψ : $\mathsf{G} \Rightarrow \mathcal{S}_{\varepsilon}(\mathsf{F})$

such that

commutes. The interleaving distance is defined to be

$$d_I(F, G) = \inf\{\varepsilon \mid F \text{ and } G \text{ are } \varepsilon\text{-interleaved}\}.$$

Liz Munch (MSU) Mapper Convergence IMA - May 21, 2018

Reeb graph interleaving

Definition (Reeb interleaving)

Let $f : \mathbb{X} \to \mathbb{R}$ and $g : \mathbb{Y} \to \mathbb{R}$ in **Reeb** be given.

Then (\mathbb{X},f) and (\mathbb{Y},g) are ε -interleaved iff $\mathcal{C}(\mathbb{X},f)$ and $\mathcal{C}(\mathbb{Y},g)$ are ε -interleaved.

The interleaving distance is defined to be

$$d_I(f,g) = \inf\{\varepsilon \geq 0 \mid C(f) \text{ and } C(g) \text{ are } \varepsilon\text{-interleaved}\}.$$

$$\textbf{Reeb} \stackrel{\mathcal{C}}{\longrightarrow} \textbf{Csh}^c$$

Properties

Theorem (de Silva, EM, Patel 2016)

The interleaving distance is an extended metric.

$$d_{I}((\mathbb{X}, f), (\mathbb{Y}, g)) < \infty$$

$$\Leftrightarrow$$

$$\beta_{0}(\mathbb{X}) = \beta_{0}(\mathbb{Y})$$

Properties

Theorem (de Silva, EM, Patel 2016)

The interleaving distance is an extended metric.

$$d_{I}((\mathbb{X}, f), (\mathbb{Y}, g)) < \infty$$

$$\Leftrightarrow$$

$$\beta_{0}(\mathbb{X}) = \beta_{0}(\mathbb{Y})$$

Theorem (dS, EM, P 2016)

Given $f, g: \mathbb{X} \to \mathbb{R} \in \mathbb{R}$ -Top $^{\mathrm{c}}$,

$$d_I(\mathcal{R}(f),\mathcal{R}(g)) \leq ||f-g||_{\infty}.$$

Section 2

Mapper

Bigger example

Bigger example

Bigger example

Ingredients

Data

+

Function

Point cloud approximation Original topological space

 \mathbb{R} -valued \mathbb{R}^d -valued

Data + Function

Point cloud approximation Original topological space \mathbb{R} -valued \mathbb{R}^d -valued

+ Cover Choice + Clustering Choice

Data + Function

Point cloud approximation Original topological space

 \mathbb{R} -valued \mathbb{R}^d -valued

+ Cover Choice + Clustering Choice

Data + Function

Point cloud approximation Original topological space

 \mathbb{R} -valued \mathbb{R}^d -valued

+ Cover Choice + Clustering Choice

Mapper definition

Definition (Singh et al. 2007)

- Given $f: \mathbb{X} \to \mathbb{R}$.
- Fix a cover $\mathcal{U} = \{U_{\alpha}\}$ of \mathbb{R} .
- The collection $f^{-1}(\mathcal{U}) = \{f^{-1}(U_{\alpha})\}\$ is a cover of \mathbb{X} .
- Let $f^{-1}(\mathcal{U})^*$ be the cover which splits the sets into connected components.
- Then Mapper is the nerve of this cover.

 \mathbb{RS}_f

Mapper definition

Definition (Singh et al. 2007)

- Given $f: \mathbb{X} \to \mathbb{R}$.
- Fix a cover $\mathcal{U} = \{U_{\alpha}\}$ of \mathbb{R} .
- The collection $f^{-1}(\mathcal{U}) = \{f^{-1}(U_{\alpha})\}$ is a cover of \mathbb{X} .
- Let $f^{-1}(\mathcal{U})^*$ be the cover which splits the sets into connected components.
- Then Mapper is the nerve of this cover.

Mapper can be stored as data over nerve of cover

Liz Munch (MSU)

Mapper can be stored as data over nerve of cover

Liz Munch (MSU

Mapper can be stored as data over nerve of cover

Munch (MSU) Mapper Convergence IMA - May 21, 2018 30 / 48

Big Picture

Big Picture

Mapper is an approximation of the Reeb graph.

Mapper is an approximation of the Reeb graph.

Question

How do we formalize this?

Mapper is an approximation of the Reeb graph.

Question

How do we formalize this?

Goal:

- Convergence
 - ► Turn Mapper into something that can be compared to the Reeb graph
 - Give bound on error for Mapper based on cover choice

Mapper is an approximation of the Reeb graph.

Question

How do we formalize this?

Goal:

- Convergence
 - ► Turn Mapper into something that can be compared to the Reeb graph
 - ► Give bound on error for Mapper based on cover choice

Question

How to do that?????

Answer:

Kan Extensions

Comparison requires continuous Mapper

Comparison requires continuous Mapper

Comparison requires continuous Mapper

- $F: N(\mathcal{U})^{\mathrm{op}} \to \mathbf{Set}$
- $N(\mathcal{U}) \cap A$ $= \left\{ \sigma \in A \mid \bigcap_{\alpha \in \sigma} U_{\alpha} \cap A \neq \emptyset \right\}$

- $F: N(\mathcal{U})^{\mathrm{op}} \to \mathbf{Set}$
- $N(\mathcal{U}) \cap A$ $= \left\{ \sigma \in A \mid \bigcap_{\alpha \in \sigma} U_{\alpha} \cap A \neq \emptyset \right\}$
- $S(F)(A) = \operatorname{colim}_{\sigma \in N(\mathcal{U}) \cap A} F(A)$

Theorem (EM, B. Wang 2016)

Given a (nice enough) \mathbb{R} -space $f: \mathbb{X} \to \mathbb{R}$, let $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in A}$ be a good cover of $f(\mathbb{X}) \subseteq \mathbb{R}$, res $(\mathcal{U}) = \max\{\operatorname{diam}(U_{\alpha})\}$ Then $d_{I}(\mathcal{C}(f), \mathcal{SC}_{\mathcal{U}}(f)) \leq \operatorname{res}(\mathcal{U})$

IMA - May 21, 2018

36 / 48

Section 3

Poset Interleavings

37 / 48

Big Picture

Reeb Graph Interleaving Distance

Definition (Reeb graph interleaving - de Silva, Patel, EM; Curry)

Let $F, G : \mathbf{Int} \to \mathbf{Set}$.

Let S_{ε} : Int \rightarrow Int, $U \mapsto U^{\varepsilon} := \{x \mid d(x, U) < \varepsilon\}$.

An arepsilon-interleaving consists of natural transformations arphi and ψ such that

commutes. The interleaving distance is defined to be

$$d_I(F, G) = \inf\{\varepsilon \mid F \text{ and } G \text{ are } \varepsilon\text{-interleaved}\}.$$

New vantage point

New vantage point

Definition (Mapper interleaving???)

Let $F, G : \mathcal{N}(\mathcal{U})^{\mathrm{op}} \to \mathbf{Set}$ be given.

Let $T_{\varepsilon}: \mathcal{N}(\mathcal{U})^{\mathrm{op}} \to \mathcal{N}(\mathcal{U})^{\mathrm{op}}$ defined by $^{\} \subseteq (^{\lor})_{-}/^{-}$

An arepsilon-interleaving consists of natural transformations arphi and ψ such that

Extending poset using Alexandrov topology

$$\mathcal{D}: \ \, \textbf{Poset} \ \, \rightarrow \ \, \textbf{Poset} \\ \mathcal{P} \quad \mapsto \quad D(\mathcal{P}) \ \, := \left\{ X \subseteq \mathcal{P} \left| \begin{array}{c} x \in X, y \leq x \\ \Rightarrow y \in X \end{array} \right. \right\}$$

41 / 48

Extending poset using Alexandrov topology

$$\mathcal{D}: \quad \textbf{Poset} \quad \rightarrow \quad \textbf{Poset}$$

$$\mathcal{P} \quad \mapsto \quad D(\mathcal{P}) \quad := \left\{ X \subseteq \mathcal{P} \middle| \begin{array}{c} x \in X, y \leq x \\ \Rightarrow y \in X \end{array} \right\}$$

Extending poset using Alexandrov topology

$$\mathcal{D}: \quad \textbf{Poset} \quad \rightarrow \quad \textbf{Poset}$$

$$\mathcal{P} \quad \mapsto \quad D(\mathcal{P}) \quad := \left\{ X \subseteq \mathcal{P} \middle| \begin{array}{c} x \in X, y \leq x \\ \Rightarrow y \in X \end{array} \right\}$$

Definition of spreading function :: $Open(\mathbb{R})$

$$T_{arepsilon}\colon D(\operatorname{\mathsf{Open}}(\mathbb{R})) \longrightarrow D(U^{arepsilon}) = D(\{x \in \mathbb{R} \mid \|x - U\| < arepsilon\})$$

42 / 48

Definition of spreading function :: $Open(\mathbb{R})$

$$T_{arepsilon}\colon D(\operatorname{\mathsf{Open}}(\mathbb{R})) \longrightarrow D(U^{arepsilon}) = D(\{x \in \mathbb{R} \mid \|x - U\| < arepsilon\})$$

A nice cover

Definition of the interleaving distance

Definition (Mapper interleaving)

Let $F, G: N \to \mathbf{Set}$ be given. $\hat{F}, \hat{G}: D(N) \to \mathbf{Set}$

An ε -interleaving consists of natural transformations $\varphi:\hat{F}\to\hat{F}\,T_{\varepsilon}$ and $\psi:\hat{G}\to\hat{G}\,T_{\varepsilon}$ such that

commutes. The interleaving distance is defined to be

$$d_I(F, G) = \inf\{\varepsilon \mid F \text{ and } G \text{ are } \varepsilon\text{-interleaved}\}.$$

Liz Munch (MSU) Mapper Convergence IMA - May 21, 2018 45 / 48

Mapper approximates Reeb: Answer #2

Theorem (Botnan, Curry, EM, 2018)

If $f: \mathcal{Q} \to \mathcal{P}$ is a δ -approximation that respects cosheaves and M and N are \mathcal{P} -modules, then

$$\left|d_I^T(M,N)-d_I^{\hat{T}}(f^*M,f^*N)\right|\leq \delta.$$

Mapper approximates Reeb: Answer #2

Theorem (Botnan, Curry, EM, 2018)

If $f: \mathcal{Q} \to \mathcal{P}$ is a δ -approximation that respects cosheaves and M and N are \mathcal{P} -modules, then

$$\left|d_I^T(M,N)-d_I^{\hat{T}}(f^*M,f^*N)\right|\leq \delta.$$

Corollary (Botnan, Curry, EM, 2018)

Let \mathcal{U} be a cover of \mathbb{R} with $\delta = \sup\{\operatorname{diam}(\mathcal{U}) \mid \mathcal{U} \in \mathcal{U}\}.$

and $f: \mathbf{GridO} \to \mathbf{Open}(R)$.

Given F, G: Int \rightarrow Set

and $F \circ f$, $G \circ f$: **GridO** \rightarrow **Set**.

(Reeb graph)

46 / 48

(Mapper approximation)

$$|d_I(F,G)-d_I(F\circ f,G\circ f)|\leq \delta.$$

Questions

- What can we figure out about convergence?
- ullet Topological properties of the metric space $\mathcal{C}^\mathcal{Q}$ vs $\mathcal{C}^\mathcal{P}$ for $\mathcal{Q}\subseteq\mathcal{P}$
- Algorithms and computation
- What happens for incomparable covers
- Other cases where this framework is applicable
- Relationship with other stability ideas (Gromov-Hausdorff, Bottleneck distance)

Thank you!

Relevant papers

- VdS, AP, EM. Categorified Reeb Graphs, DCG 2016.
- EM, BW. Convergence between Convergence between Categorical Representations of Reeb Space and Mapper, SoCG 2016.
- EM, AS. The ℓ[∞]-Cophenetic Metric for Phylogenetic Trees as an Interleaving Distance, arXiv:1803.07609, 2018.
- VdS, EM, AS. Theory of interleavings on [0, ∞)-actegories, arXiv:1706.04095, 2017.

elizabethmunch.com muncheli@egr.msu.edu

