Recitation 2: Solutions for the exercise problems

Shunkei Kakimoto

Prove that if $X \perp \!\!\!\perp e$, then E[e|X] = 0

Answer: Simply, E[e|X] = E[e] = 0 if $X \perp \!\!\! \perp e$.

or

$$E[e|X = x] = \int_{-\infty}^{\infty} e f(e|X = x) de$$

$$= \int_{-\infty}^{\infty} e \frac{f(e, x)}{f_X(x)} de$$

$$= \int_{-\infty}^{\infty} e \frac{f_e(e)f_X(x)}{f_X(x)} de \qquad \text{(becuase if } X \perp \!\!\!\perp e, f(e, x) = f_X(x)f_e(e))$$

$$= \int_{-\infty}^{\infty} e f_e(e) de$$

$$= E[e] \qquad = 0$$

This holds for any x. So, E[e|X]=0

Review:

- + Conditional density function (PSE 4.8 P83-84)
- + Independence (PSE 4.11, P87)
- + Conditional expectation (PSE 4.14, P93)

Prove that if E[e|X] = 0, then E[Xe] = 0

Answer:

$$E[Xe] = E[E[Xe|X]]$$
 (LIE)
 $= E[XE[e|X]]$ (Conditioning theorem)
 $= E[X \cdot 0]$ (because $E[e|X] = 0$)
 $= 0$

Review:

- + Conditioning theorem: Theorem 2.3 (E P23)
- + Law of iterated expectations (PSE P95)