1.Introduzione

Contatti e informazioni generali

Dott. Simone Staccone simone.staccone@uniroma2.it

Dipartimento di Ingegneria civile e Ingegneria informatica (DICII)

DAMON Research Group

20 Ottobre 2025

Informazioni Generali

Contatti:

Microsoft Teams

Personal Website

Lezioni: (Da confermare)

• Giorno: Lunedì

• **Orario:** 16:00-18:00

• Luogo: Aula 3

Obiettivi del tutoraggio

- Saper stimare la complessità computazionale asintotica di algoritmi di base, avendo gli strumenti per formalizzare la stima di ricorrenze lineari.
- Comprendere i principi base della programmazione in C, avendo una visione sulla gestione della memoria e su come rappresentare le principali strutture dati.
- Sviluppare una capacità logica di base nella comprensione dei principali algoritmi e delle strutture dati di base.
- Svolgere esercitazioni e chiarire concetti in modo da poter superare l'esame nel migliore dei modi possibili!

Argomenti trattati

Analisi della complessità

- Introduzione all'analisi della complessità
- Metodologie per la soluzione di ricorrenze lineari
- Esercizi sulle ricorrenze lineari

Programmazione in C

- Processo di compilazione e comprensione del memory layout di un programma C.
- Gestione degli header file e dell'automazione della compilazione.
- Gestione della memoria statica e dinamica.
- Esercitazioni pratiche in C su problemi di logica di base.

Algoritmi di ordinamento

 BubbleSort, InsertionSort, MergeSort e QuickSort

Strutture dati di base

- Stack, Queue e Alberi
- Grafi e Hash Table

Algoritmi su grafi

- BFS e DFS
- Priority Queue e algoritmo di Dijkstra

Preparazione all'esame

- Esercizi vari
- Simulazioni d'esame
- Correzione di appelli d'esame svolti

Aspetti generali

Per analizzare la complessità di un algoritmo è necessario considerare due aspetti fondamentali:

- Complessità spaziale: quanta memoria occupa l'algoritmo.
- Complessità temporale: quanto tempo impiega a terminare.

Nel corso ci concentreremo principalmente sulla **complessità temporale**, ma i concetti trattati si applicano in modo analogo anche alla **complessità spaziale**.

Per poter studiare gli algoritmi in modo generale, abbiamo bisogno di un **modello astratto di calcolo**, che ci permetta di analizzarli:

- indipendentemente dal linguaggio di programmazione;
- senza legarci alla macchina fisica o virtuale su cui vengono eseguiti;
- in termini puramente teorici, ma con implicazioni pratiche.

Modello Computazionale

Come modello considereremo una Macchina di Turing di tipo RAM (Random Access Memory).

In altre parole, useremo come astrazione un calcolatore con:

- memoria infinita;
- accesso casuale a ogni cella (come in un computer moderno);
- capacità di muoversi in entrambi i sensi.

Questo modello ci consente di analizzare il **tempo** e lo **spazio** richiesti dagli algoritmi, portando alla teoria dell'analisi della complessità.

Random Access Memory Model

Approfondimento: Turing Machine on GeeksforGeeks

Linguaggio di programmazione

C

```
#include <stdio.h>
int main() {
    printf("Hello, World!\n");
    return 0;
}
```

C++

Java

Python

```
print("Hello, World!")
```

JavaScript

```
console.log("Hello, World!");
```

Motivazioni della scelta

- Per analizzare gli algoritmi, dobbiamo utilizzare un linguaggio astratto, che non tenga conto delle implementazioni pratiche e che abbia una corrispondenza univoca con qualsiasi altro linguaggio.
- Utilizzeremo quindi uno **pseudocodice**: un linguaggio comune per esprimere le operazioni di base di ogni linguaggio di programmazione (if, else, for, while, ecc.), considerando ogni operazione come avente un costo unitario in lettura e in scrittura.
- Non esiste uno standard universale per lo pseudocodice; l'importante è che ogni operazione rappresenti un'unità per poter effettuare stime quantitative ma qualitative del codice.
- Per provare online il pseudocodice, puoi usare il compilatore disponibile su: Pseudocode Online Compiler.

Pseudocodice

- Tipi di dati: integer, float, string, boolean
- Assegnamento: $x \leftarrow 5$
- Restituzione: return x

- Controlli di flusso: If, Else, For, While
- Commenti: %, // oppure ⊳

Algorithm Somma di due vettori

- 1: **function** VECTORADD(integer[] A, integer[] B) : integer[]
- 2: **if** length(A) \neq length(B) **then**
- 3: return
- 4: end if
- 5: $C \leftarrow \mathbf{new} \text{ integer[length(A)]}$
- 6: **for** i = 1 **to** length(A) **do**
- 7: $C[i] \leftarrow A[i] + B[i]$
- 8: end for
- 9: return C
- 10: end function

Pseudocodice (Somma di due numeri)

Calcolare quante righe di codice vengono eseguite dal seguente algoritmo

Algorithm Somma di due numeri

- 1: function SOMMA: integer
- 2: read(a)
- 3: read(b)
- 4: $sum \leftarrow a + b$
- 5: **return** sum
- 6: end function

Analisi delle operazioni (Somma di due numeri)

- Linee 1-2: read(a), read(b) ⇒ 2 operazioni (lettura)
- Linea 3: sum = a + b \Rightarrow 1 operazione (somma + assegnamento)
- Linea 4: return sum \Rightarrow 1 operazione (resto valore)

Totale operazioni eseguite

Totale = 2 (letture) + 1 (somma) + 1 (return) = 4 operazioni

Pseudocodice (Calcolo dei divisori di 100)

Calcolare quante righe di codice vengono eseguite dal seguente algoritmo

```
Algorithm Divisori di 100
```

```
1: function DIVISORI : integer
2:  i ← 0
3:  while i < 100 do
4:  if 100 mod i == 0 then
5:  print(i)
6:  end if
7:  i ← i + 1
8:  end while
9: end function
```

Analisi delle operazioni (Calcolo dei divisori di 100)

- Linea 1: $i \leftarrow 0 \Rightarrow 1$ operazione (assegnamento)
- Linea 2: while (i < 100) ⇒ la condizione viene verificata 101 volte (100 volte vere + 1 volta falsa)
- Linea 3: 100 mod i == $0 \Rightarrow 1$ operazione per ogni iterazione valida (100 volte)
- Linea 4: print(i) ⇒ eseguita solo quando la condizione è vera (i divisori di 100)
- Linea 5: $i \leftarrow i + 1 \Rightarrow 1$ operazione per ogni iterazione (100 volte)

Totale operazioni approssimative

- 1 (inizializzazione) + 101 (condizioni) + 100 (mod) + 100 (incrementi) + d (stampe) dove d è il numero dei divisori di 100 (d=9)
- \Rightarrow Totale $\approx 1 + 101 + 100 + 100 + 9 =$ **311**operazioni

Pseudocodice (Calcolo dei divisori di N)

Calcolare quante righe di codice vengono eseguite dal seguente algoritmo


```
    function DIVISORI(integer N)
    i ← 1
    while i ≤ N do
    if N mod i == 0 then
    print(i)
    end if
    i ← i + 1
    end while
    end function
```

Analisi delle operazioni (Calcolo dei divisori di N)

- Linea 1: $i \leftarrow 1 \Rightarrow 1$ operazione (assegnamento)
- Linea 2: while (i \leq N) \Rightarrow la condizione viene verificata N+1 volte (N volte vere + 1 volta falsa)
- Linea 3: N mod i == $0 \Rightarrow 1$ operazione per ogni iterazione (N volte)
- Linea 4: print(i) ⇒ eseguita solo quando la condizione è vera (dove d è il numero dei divisori di N)
- Linea 5: $i \leftarrow i + 1 \Rightarrow 1$ operazione per ogni iterazione (N volte)

Totale operazioni approssimative

- 1 (inizializzazione) + (N + 1) (condizioni) + N (mod) + N (incrementi) + d (stampe) dove d è il numero dei divisori di N
- \Rightarrow Totale $\approx 1 + (N+1) + N + N + d = 3N + 2 + d$ operazioni

Pseudocodice (Minimo comune multiplo tra due numeri)

Calcolare quante righe di codice vengono eseguite dal seguente algoritmo

Algorithm Massimo Comun Divisore

- 1: **function** GCD(integer a, integer b) : integer
- 2: while $b \neq 0$ do
- 3: $x \leftarrow b$
- 4: $b \leftarrow a \mod b$
- 5: $a \leftarrow x$
- 6: end while
- 7: **return** a
- 8: end function

Algorithm Minimo Comune Multiplo

- 1: function MCM(integer a, integer b)
- 2: $c \leftarrow (a \cdot b) / gcd(a, b)$
- 3: **output** c
- 4: end function

Analisi delle operazioni (Minimo comune multiplo tra due numeri)

Funzione gcd(a,b)

- Linea 1: while $(b \neq 0) \rightarrow$ eseguita k+1 volte
- Linee 2–4: 3 operazioni per iterazione
- Linea 5: return $a \rightarrow 1$ operazione

Funzione mcm(a,b)

- Linea 1: c ← (a*b)/gcd(a,b) → 1 moltiplicazione + 1 divisione + 1 chiamata a gcd
- Linea 2: output $c \rightarrow 1$ operazione

Totale operazioni (approssimativo)

```
gcd(a,b): 3k + 2 operazioni

mcm(a,b): 1 (moltiplicazione) + 1 (divisione) +

3k + 2 (gcd) + 1 (output)

\Rightarrow Totale \approx 3k + 5 operazioni
```

Osservazioni

- Il numero di iterazioni k dipende dal rapporto tra a e b.
- L'algoritmo di Euclide è molto efficiente: $k \approx \log \min(a, b)$.

Considerazioni Finali

- La velocità di un algoritmo dipende dalla dimensione dell'input.
- L'analisi deve sempre essere **contestualizzata** rispetto al tipo di input considerato.
- Alcuni algoritmi risultano molto efficienti per input piccoli, ma diventano disastrosi su input grandi.
- Altri, come il quicksort, possono avere comportamenti diversi con input di pari dimensione.

"Si considera di solito il caso pessimo per stimare la complessità."

Notazioni Asintotiche

• O(f(n)): limite superiore asintotico.

$$T(n) = O(f(n))$$
 se $\exists c > 0, n_0$ t.c. $T(n) \le cf(n), \forall n \ge n_0$

• $\Omega(f(n))$: limite inferiore asintotico.

$$T(n) = \Omega(f(n)) \quad \text{se } \exists c > 0, n_0 \text{ t.c. } T(n) \geq cf(n), \forall n \geq n_0$$

• $\Theta(f(n))$: limite stretto $(O + \Omega)$.

$$T(n) = \Theta(f(n))$$
 se $T(n) = O(f(n))$ e $T(n) = \Omega(f(n))$

Esempi visivi delle notazioni asintotiche

