Beispiel (A): Lanczos-Verfahren für das Heisenberg-Modell

Schreiben Sie einen Programm zur Bestimmung der Grundzustandsenergie und des Grundzustandes einer eindimensionalen $S=\frac{1}{2}$ Heisenberg-Kette der Länge L. Der Hamiltonian ist durch

$$H = J^{z} \sum_{i=0}^{L-1} S_{i}^{z} S_{i+1}^{z} + J^{\perp} \sum_{i=0}^{L-1} (S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y})$$

$$\tag{1}$$

gegeben. Das Programm soll eine Berechnung für einen beliebigen Wert der z-Komponente des Gesamtspins $S_{tot}^z = \sum_i S_i^z$ und für beliebige J^z und J^{\perp} mit periodischen Randbedingungen $(\mathbf{S}_L = \mathbf{S}_0)$, erlauben.

Wählen Sie $J^{\perp}=1$, und plotten Sie die folgenden Größen für die drei Werte von $J^z=0,1,2$:

- a) Die Energiedichte E/L (mit E der Grundzustandsenergie) als Funktion von L für verschiedene L.
- b) Der Operator der antiferromagnetischen Magnetisierung lautet

$$\hat{M}_z = \frac{1}{L} \sum_{i=0}^{L-1} (-1)^i S_i^z \tag{2}$$

Berechnen Sie den Erwartungswert $\langle 0|\hat{M}_z|0\rangle$, und plotten Sie das Ergebnis als Funktion von L. Was erwarten Sie?

- c) Plotten Sie $\langle 0|\hat{M}_z^2|0\rangle$ für verschiedene L.
- d) Plotten Sie die statische Korrelationsfunktion $\langle 0|S_0^zS_i^z|0\rangle$ als Funktion von $i=0\ldots L-1$.

Hinweise:

- ullet Nutzen Sie die Tatsache, dass S^z mit dem Hamiltonian vertauscht und benutzen Sie die entsprechend reduzierte Basis.
- Schreiben Sie die Komponenten S^x und S^y mit Hilfe der Leiteroperatoren S^+ und S^- .
- Um größere Systeme berechnen zu können, ist es von Vorteil, wenn Sie mit dem Speicher sparsam umgehen. Behalten Sie deshalb nur drei Lanczos-Vektoren im Speicher.
- $|0\rangle$ ist der Grundzustand. Das Lieb-Mattis-Theorem besagt, dass der Grundzustand des antiferromagnetischen Heisenberg Modells $(J^z > 0)$ immer im Sektor mit minimalen S_{tot}^z liegt (d.h. im Sektor $S_{tot}^z = 0$ für gerade L und $S_{tot}^z = \frac{1}{2}$ für ungerade L). Bestimmen Sie den Grundzustandssektor für $J^z = 0$ numerisch (scan durch alle S_{tot}^z -Sektoren).