

SRI MANAKULA VINAYAGAR ENGINEERING COLLEGE

(An Autonomous Institution)
(Approved by AICTE, New Delhi & Affiliated to Pondicherry University) (Accredited by NBA-AICTE, New Delhi, Accredited by NAAC with "A" Grade) Madagadipet, Puducherry - 605 107

M. TECH END SEMESTER EXAMINATIONS, FEBRUARY 2023 **I SEMESTER**

COMPUTER SCIENCE AND ENGINEERING MATHEMATICAL FOUNDATION OF FORMAL APPROACH (P20BST103)

Max. Marks- 60 Duration: 3 hrs.

Q. No		Marks	B.L	CO's
	PART A (12 Marks)			
	Answer all the Questions (6x2=12)			
Q.1	Find the Eigen values of $\begin{bmatrix} a & h & g \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$.	2	3	CO 1
Q.2	Find the rank of a matrix $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ -1 & -2 & -3 & -4 \end{bmatrix}$.	2	3	CO 1
Q.3	Define Binary relation with an example.	2	1	CO 2
Q.4	Construct the Truth table for $p \land \sim p$.	2	2	CO 3
Q.5	Define the Conditional statement $p \rightarrow q$.	2	1	CO 3
Q.6	Write the Chomsky classification of grammar in formal languages.	2	1	CO 4
	PART B (48 Marks)			
	Answer any four question (4x12=48)			
Q.7	Verify the Cayley-Hamilton theorem for	12	4	CO 1
	$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{pmatrix}.$			
0.0	Also find A^{-1} and A^4 .	12	2	CO 1
Q.8	Find the Eigen value and Eigen vector of $A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}.$	12	3	CO 1
Q.9	If A, B and C are non-empty sets. Show that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ using Venn diagram.	12	3	CO 2
Q.10	Prove that $(\exists x) (P(x) \land Q(x)) \Rightarrow (\exists x) P(x) \land (\exists x) Q(x)$.	12	5	CO 3
Q.11	Without constructing the Truth table, obtain the product of sums canonical form of the form $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$. Hence find the sums of Product canonical form.	12	3	CO 3
Q.12	Derive the Context free languages.	12	5	CO 4

SRI MANAKULA VINAYAGAR ENGINEERING COLLEGE (An Autonomous Institution)

M. TECH END SEMESTER EXAMINATIONS, FEBRUARY 2023 **I SEMESTER**

COMPUTER SCIENCE AND ENGINEERING ADVANCED DATA STRUCTURES AND ALGORITHMS (P20CST101)

Duration: 3 hrs. Max. Marks- 60

Q. No		Marks	B.L	CO's
	PART A (12 Marks)			
	Answer all the Questions (6x2=12)			
Q.1	Define the need for Balanced binary search trees	2	2	CO1
Q.2	List the nature of insertions in a two level Priority queue	2	2	CO2
Q.3	List methods of rotations done to achieve height balancing	2	2	CO2
Q.4	Define the need for prefix trees with a suitable example	2	2	CO3
Q.5	List characteristics of set data type and how is it implemented	2	2	CO3
Q.6	Define the term Spanning tree and its uses	2	2	CO4
-	PART B (48 Marks)			
	Answer any four question (4x12=48)	ě.		
Q.7	Discuss the storage of sparse matrices and its advantages	12	2	CO1
Q.8	Discuss the role of recurrence equations in present day computing with	12	2	CO1
	any two suitable examples			
Q.9	Discuss the Method of Heap sort and provide intermediate answers for	12	3	CO2
	sorting in descending order, the following integer values 15, 25, 20, 45,			
	06, 13, 35, 57, 32, 59, 71			
Q.10	Discuss the advantages and disadvantages of Greedy Method in a	12	3	CO3
	detailed manner with a suitable example.			
Q.11	Discuss the role of Huffman coding with the given probabilistic values.	12	4	CO3
	.001, .003, .009, .083, .040, .105, .249, .25, .26,			
Q.12	Explain the role of Dynamic Programming principles in Travelling	12	3	CO4
475	Salesperson Problem with a suitable numerical example			

SRI MANAKULA VINAYAGAR ENGINEERING COLLEGE (An Autonomous Institution) (Approved by AICTE, New Delhi & Affiliated to Pondicherry University)

(Accredited by NBA-AICTE, New Delhi, Accredited by NAAC with "A" Grade) Madagadipet, Puducherry - 605 107

M. TECH END SEMESTER EXAMINATIONS, FEBRUARY - 2023 **I SEMESTER**

COMPUTER SCIENCE AND ENGINEERING **CLOUD AND BIG DATA ANALYTICS (P20CST102)**

Duration: 3 hrs.

Max. Marks-75

Q. No		Marks	B.L	CO's
	PART A (12 Marks)			
	Answer all the Questions (6x2=12)			51
Q.1	Write the difference between cloud computing and grid computing	2	1	1
Q.2	What is meant by Business Process Execution Language?	2	2	2
Q.3	Define VL2.	2	1	3
Q.4	List the challenges in big data analytics	2	4	4
Q.5	Write the benefits of Blade Servers.	2	2	2
Q.6	What is active monitoring and passive monitoring in cloud service operation?	2	1	2
	PART B (48 Marks)			
	Answer any four question (4x12=48)			
Q.7	Explain in detail about Server Virtualization and also Discuss about	12	2	1
	the comparison of Parallel Processing and Vector Processing.			
Q.8	Write short notes on Network Virtualization in Multi-Tenant Data	12	2	2
	Centers VL2. Write the merits and demerits of VL2 with NVP			
Q.9	Define Software Defined Network (SDN). Write the comparison	12	1	3
	between Traditional Networking versus Software Defined			
	Networking. Describe the opportunities and challenges in SDN.			
Q.10	What are the various operational modes of hadoop cluster	12	1	4
	configuration and explain in detail about configuring/installing			
	hadoop in fully distributed mode.			
Q.11	How Hadoop streaming is suited with text processing? Explain in	12	4	4
	detail manner.			
Q.12	Discuss about data center challenges and solutions with real time	12	5	2
	examples.			

SRI MANAKULA VINAYAGAR ENGINEERING COLLEGE
(An Autonomous Institution)
(Approved by AICTE, New Delhi & Affiliated to Pondicherry University)
(Accredited by NBA-AICTE, New Delhi, Accredited by NAAC with "A" Grade) Madagadipet, Puducherry - 605 107

M. TECH END SEMESTER EXAMINATIONS, FEBRUARY 2023 I SEMESTER

COMMON TO ALL

RESEARCH METHODOLOGY AND IPR (P20CCT101)

Duration: 3 hrs.

Max. Marks- 60

Q. No		Marks	B. L	CO's
	PART A (12 Marks)			
	Answer all the Questions (6x2=12)			
Q.1	List out various types of research in detail with example.	2	1	CO1
Q.2	Identify the need for presentation and assessment by a review committee for research paper.	2	2	CO2
Q.3	Define literature review and identify its importance while starting a research work.	2	3	CO2
Q.4	Highlight the importance of research proposal for getting funds from organizations.	2	4	CO3
Q.5	Define Plagiarism and list any two software used by researchers for checking plagiarism.	2	2	CO4
Q.6	List out the need for h – Index in research profile for individual researcher.	2	1	CO4
	PART B (48 Marks)			
	Answer any four question (4x12=48)			
Q.7	List and elaborate various methods of collecting primary data for research project.	12	1	CO1
Q.8	Give a detailed account on various approaches adopted by researchers in solving problems stated by them.	12	1	CO1
Q.9	Discuss the significance of critical literature reviews and their applications in the planning of innovation research.	12	3	CO2
Q.10	Write short notes on the following: (a) Innovation (b) International cooperation on Intellectual Property	12	2	CO3
	(c) Trade and Copyright	10		000
Q.11	What is ethics? What are the various ethics to be followed in research work?	12	2	CO2
Q.12	Explain in detail about Intellectual Property Rights and identify the requirements or precautions to be taken for obtaining good trade mark.	12	4	CO5

SRI MANAKULA VINAYAGAR ENGINEERING COLLEGE
(An Autonomous Institution)
(Approved by AICTE, New Delhi & Affiliated to Pondicherry University)
(Accredited by NBA-AICTE, New Delhi, ISO 9001:2000 Certified Institution & Accredited by NAAC with "A" Grade) Madagadipet, Puducherry - 605 107

M. TECH END SEMESTER EXAMINATIONS, APRIL-MAY 2022 **I SEMESTER**

COMPUTER SCIENCE AND ENGINEERING

MATHEMATICAL FOUNDATION OF FORMAL APPROACH (P20BST103)

Duration: 3 hrs. Max. Marks- 60 Note: B.L – Bloom's Level CO- Course Outcome

		Marks	B.L	CO's
	PART A (12 Marks)			
	Answer all the Questions (6x2=12)			
Q.1	Find the sum and product of the eigen values of the matrix $\begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$.	2	2	C01
Q.2	Find the Characteristic Equation of $\begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$	2	2	CO1
Q.3	For the given sets $A = \{-10,0,1,9,2,4,5\}$ and $B = \{-1,-2,5,6,2,3,4\}$, find $A \cup B$ and $B \cup A$	2	2	CO2
Q.4	Define De Morgan's Laws for complementation.	2	2	CO ₂
Q.5	Construct the truth table for $(P \land Q) \land \neg (P \lor Q)$	2	2	CO3
Q.6	Write the Chomsky Classification of Grammar in formal languages.	2	2	CO4
	PART B (48 Marks)			
	Answer any four question (4x12=48)			
Q.7	Find the eigen values and eigen vectors of the matrix	12	4	CO1
Q.8	$A = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{pmatrix}.$ Verify Cayley-Hamilton theorem for the matrix	12	4	CO1
0.0	$A = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} \text{ and also find A}^4 \text{ and A}^{-1}.$			
Q.9	If A, B and C are nonempty sets, with the help of Venn diagram, show that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	12	3	CO2
Q.10	In a group of students, 65 play football, 45 play hockey, 42 play cricket, 20 play football and hockey, 25 play football and cricket, 15 play hockey and cricket and 8 play all the three games. Find the number of students in the group.	12	3	CO2
Q.11	Construct the truth table for (i) $\neg (P \lor Q) \land (P \lor R)$ (ii) $\neg (P \to Q) \to \neg Q$	12	4	CO3
Q.12	Derive the Pumping Lemma for Regular Languages.	12	4	CO4

SRI MANAKULA VINAYAGAR ENGINEERING COLLEGE
(An Autonomous Institution)
(Approved by AICTE, New Delhi & Affiliated to Pondicherry University)
(Accredited by NBA-AICTE, New Delhi, ISO 9001:2000 Certified Institution & Accredited by NAAC with "A" Grade)

Madagadipet, Puducherry - 605 107

M. TECH END SEMESTER EXAMINATIONS, APRIL-MAY 2022 **I SEMESTER**

COMPUTER SCIENCE AND ENGINEERING

MATHEMATICAL FOUNDATION OF FORMAL APPROACH (P20BST103)

Duration: 3 hrs.

Max. Marks- 60

		Marks	B.L	CO's
	PART A (12 Marks)			
<u> </u>	Answer all the Questions (6x2=12)			CO1
Q.1	Find the sum and product of the eigen values of the matrix $\begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \end{bmatrix}$.	2	2	CO1
	[0 0 5]	-100	555	
Q.2	Find the Characteristic Equation of $\begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$	2	2	CO1
Q.3	For the given sets $A = \{-10,0,1,9,2,4,5\}$ and $B = \{-1,-2,5,6,$	2	2	CO2
	$2,3,4$, find $A \cup B$ and $B \cup A$			
Q.4	Define De Morgan's Laws for complementation.	2	2	CO2
Q.5	Construct the truth table for $(P \land Q) \land \neg (P \lor Q)$	2	2	CO3
Q.6_	Write the Chomsky Classification of Grammar in formal languages.	2	2	CO4
	PART B (48 Marks)			
- 0.7	Answer any four question (4x12=48) Find the eigen values and eigen vectors of the matrix	12	4	CO1
Q.7	rind the eigen values and eigen vectors of the matrix	12	4	CO1
0.8	$A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{bmatrix}.$ We discontinuous for the continuous for t	12	4	CO1
Q.8	Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} \text{ and also find A}^4 \text{ and A}^{-1}.$	12	4	CO1
Q.9	If A, B and C are nonempty sets, with the help of Venn diagram,	12	3	CO2
	show that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$			
Q.10	In a group of students, 65 play football, 45 play hockey, 42 play cricket, 20 play football and hockey, 25 play football and cricket, 15 play hockey and cricket and 8 play all the three games. Find the number of students in the group.	12	3	CO2
Q.11	Construct the truth table for (i) $\neg (P \lor Q) \land (P \lor R)$	12	4	CO3
	(ii) $\neg (P \rightarrow Q) \rightarrow \neg Q$		•	- 33
Q.12	Derive the Pumping Lemma for Regular Languages.	12	4	CO4

SRI MANAKULA VINAYAGAR ENGINEERING COLLEGE
(An Autonomous Institution)
(Approved by AICTE, New Delhi & Affiliated to Pondicherry University)
(Accredited by NBA-AICTE, New Delhi, ISO 9001:2000 Certified Institution & Accredited by NAAC with "A" Grade)

Madagadipet, Puducherry - 605 107

M. TECH END SEMESTER EXAMINATIONS, APRIL-MAY 2022 1 SEMESTER

COMPUTER SCIENCE AND ENGINEERING ADVANCED DATA STRUCTURES AND ALGORITHMS (P20CST101)

Duration: 3 hrs. Max. Marks- 60

Note: B.L – Bloom's Level	CO- Course Outcome
	Ma

		Marks	B.L	CO's
	PART A (12 Marks)			
	Answer all the Questions			
Q.1	State Mathematical induction.	2	1	CO1
Q.2	Predict the result of inserting 3,1,4,6,9,2,5,7 into an initially empty binary search tree.	2	2	CO2
Q.3	Extend at what conditions AVL tree balancing is to be done.	2	2	CO2
Q.4	Label the pattern matching for Brute force.	2	1	CO3
Q.5	Define Minimum spanning tree.	2	1	CO4
Q.6	Outline the properties of Multithreaded algorithms.	2	1	CO4
	PART B (48 Marks)			1 1 1 1 1 1
	Answer any Four Questions		^	
Q.7	Illustrate with suitable examples of NP hard and NP Completeness.	12	3	CO1
Q.8	Analyze Red Black trees in detail with suitable examples.	12	4	CO2
Q.9	Categorize Binary search tree deletion and delete 8 in the below BST.			
	8	š		
	(a) (b) (10) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	12	4	CO2
Q.10	Interpret the Longest common subsequence problem with an example.	12	3	CO3
Q.11	Demonstrate Multithreaded algorithms in detail with an example.	12	3	CO4
Q.12	Prioritize the usages of Elementary graph algorithms with suitable examples.	12	4	CO4

Madagadipet, Puducherry - 605 107

M. TECH END SEMESTER EXAMINATIONS, APRIL-MAY 2022 1 SEMESTER

COMPUTER SCIENCE AND ENGINEERING CLOUD AND BIGDATA ANALYTICS (P20CST102)

Duration: 3 hrs.

Max. Marks- 60

·		Marks	B.L	CO's
	PART A (12 Marks)			
×	Answer all the Questions (6x2=12)			
Q.1	How would you solve to establish a Common Protocol for the	2	3	CO1
	Internet?			
Q.2	Define Hyperthreading	2	1	CO2
Q.3	Define Mininet and its applications	2	1	CO3
Q.4	What is Big Data and mention its applications	2	2	CO4
Q.5	Define Symmetric Multiprocessing Systems.	2	1	CO1
Q.6	What is WSDL and SOAP?	2	2	CO2
	PART B (48 Marks)			
	Answer any four Questions (4x12=48)			
Q.7	a) Explain characteristics, benefits of Software-as-a-Service, along with its maturity levels.	6	2	CO1
	b) How can you efficiently manage the data in cloud?	6	1	
Q.8	Discuss about Universal Description, Discovery, and Integration (UDDI) and Business Process Execution Language (BPEL).	12	6	CO2
Q.9	Explain Docker, and Linux containers methods of virtualization.	12	5	CO3
Q.10	Illustrate with a neat sketch Apache Hadoop and its eco system.	12	2	CO4
Q.11	Classify the different types of virtualizations.	12	4	CO2
Q.12	a) What are the contents of Big Insights?	6	4	CO4
	b) How would you apply processing scenarios in Big Sheets.	6	3	

SRI MANAKULA VINAYAGAR ENGINEERING COLLEGE (An Autonomous Institution)

(Approved by AICTE, New Delhi & Affiliated to Pondicherry University)
(Accredited by NBA-AICTE, New Delhi, ISO 9001:2000 Certified Institution & Accredited by NAAC with "A" Grade)

Max. Marks- 60

Madagadipet, Puducherry - 605 107

M. TECH END SEMESTER EXAMINATIONS, APRIL-MAY 2022 **I SEMESTER**

COMPUTER SCIENCE AND ENGINEERING **CRYPTOGRAPHY AND INFORMATION SECURITY (P20CSE105)**

Duration: 3 hrs. Note: B.L – Bloom's Level CO- Course Outcome

-		Marks	B.L	CO's
	PART A (12 Marks)	Mains	D.L	CO s
	Answer all the Questions (6x2=12)			
Q.1	What is the purpose of the S-boxes in DES?	2	3	CO1
Q.2		2	3	COI
Q.Z	Perform encryption and decryption using RSA Algorithm. for the	2	4	001
	following.	2	4	CO1
	P=7; q=11; e=17; M=8.			
Q.3	Define Pseudo Random Numbers.	2	2	CO2
Q.4	What are the functions of Digital Signatures?	2	2	CO3
Q.5	Differentiate between threats and attacks?	2	3	CO4
Q.6	Why the leading two octets of message digest are stored in PGP	•		004
	message along with encrypted message digest?	2	4	CO4
-	PART B (48 Marks)			
	Answer any four question $(4x12=48)$			
Q.7	User A and B exchange the key using Diffie-Hellman algorithm.	10	,	001
	Assume $\alpha=5$ q=11 XA=2 XB=3. Find the value of YA, YB and k.	12	4	CO1
Q.8	Explain in detail about DES and Triple DES.	12	2	CO1
Q.9	Compare stream cipher and block cipher with example.	12	3	CO2
Q.10	(i) Write and explain the digital signature algorithm. (8)	10	2	002
	(ii) Explain Hash Functions. (4)	12	2	CO3
Q.11	Describe the familiar types of firewall configurations.	12	2	CO4
Q.12	What is Kerberos? Explain how it provides authenticated service.	12	2	CO3