> ### All solutions of paper's congruences (2.5) and (2.6) to 10^6.mws

In this worksheet we exhibit (purely for demonstration purposes) all solutions to 10^6 of:

•
$$\left(\frac{1}{3} \{n-1\}\right)_n! = 1 \pmod{n}$$
 for $n = p^{\alpha} q_1^{\beta} 1 \dots q_s^{\beta}$, prime $p = 1 \pmod{3}$ and distinct primes $q_1, \dots, q_s = -1, \dots, -1 \pmod{3}$

•
$$\left(\frac{1}{6} \{n-1\}\right)_n! = 1 \pmod{n}$$
 for $n = p^{\alpha} q_1^{\beta_1} \dots q_s^{\beta_s}$, prime $p = 1 \pmod{6}$ and distinct primes $q_1, \dots, q_s = -1, \dots, -1 \pmod{6}$

These are the (2.5) and (2.6) of our paper.

In both cases (consistent with the notation of our paper A role for generalised Fermat numbers) we set $w = q_1^{\beta_1} \dots q_s^{\beta_s}$.

Note. It should be observed that for those cases where $n = -1 \pmod{3}$ or $n = -1 \pmod{6}$ then $\left(\frac{1}{3} \left\{n - 1\right\}\right)_n!$ and $\left(\frac{1}{6} \left\{n - 1\right\}\right)_n!$ are floor $\left(\frac{1}{3} \left\{n - 1\right\}\right)_n!$ and floor $\left(\frac{1}{6} \left\{n - 1\right\}\right)_n!$ respectively.

Some comments concerning the upcoming Procedures section.

1. The first one - PI (which we use with M = 3 or 6 and i = 1) - provide brute force computations of the Gauss factorials

$$\left(\frac{1}{3}\left\{n-1\right\}\right)_{n}! \text{ and } \left(\frac{1}{6}\left\{n-1\right\}\right)_{n}!$$

2. PHI3 and PHI6 are the computations of the D. H. Lehmer $\phi(3,1,w)$ and $\phi(6,1,w)$ of our paper

Those $\phi(3,1,w)$ and $\phi(6,1,w)$ are the number of residues in the intervals $\left[1, \operatorname{floor}\left(\frac{1}{3} \{w-1\}\right)\right]$ and $\left[1, \operatorname{floor}\left(\frac{1}{6} \{w-1\}\right)\right]$. that are relatively prime to w. The D. H. Lehmer formulae for those are:

$$\phi(3,1,w) = \frac{1}{3} \{ \phi(w) + 2^{s-1} \} \text{ for } w = 1 \pmod{3}$$

and

and

$$\phi(3,1,w) = \frac{1}{6} \{ \phi(w) - 2^{s-1} \} \text{ for } w = -1 \text{ (mod 3)}$$

$$\phi(6, 1, w) = \frac{1}{3} \{\phi(w) + 2^{s+1}\} \text{ for } w = 1 \pmod{3}$$

```
\phi(6, 1, w) = \frac{1}{6} \left\{ \phi(w) - 2^{s+1} \right\} \text{ for } w = -1 \text{ (mod 3)}
```

3. PI3(n) and PI6(n) are the much faster computations of the (brute-force) objects PI(n, 3, 1) and PI(n, 6, 1).
It will be observed they put into effect the M = 3 and 6 cases of the closed forms Theory set out in our paper.
Another worksheet exhibits the (absolutely fundamental) closed forms for those cases. "Fundamental", not just from a theory point of view, but for computation purposes besides.

Procedures (with some illustrative computational examples)

```
with (numtheory):
### 01:
PI := proc(n, M, i) local k, r; r := 1:
      for k from floor(((i-1)*(n-1)/M + 1)) to i*(n-1)/M do
        if igcd(n, k) = 1 then r := mods(r*k, n); fi; od; r; end:
### 02:
PRFAC := proc(le, la, p, alpha) local r, k, MOD; r := le; MOD := p^alpha;
         for k from (le+1) to la do r := mods(r*k, MOD) od; r; end:
### 03:
residues := proc(n, M)
  [seq(mods(op(i, factorset(n)), M), i = 1..nops(factorset(n)))] end:
### 04:
the ones := proc(n, M) local L, p; L := []: for p in factorset(n) do
    if p \mod M = 1 then L := [op(L), p] fi od; L; end:
the minus ones := proc(n, M) local L, p; L := []: for p in factorset(n) do
    if mods(p, M) = -1 then L := [op(L), p] fi od; L; end:
### 05:
Pow := proc(n, p) local t, a; t := n: a := 0: while t mod p = 0 do
            t := t/p: a := a+1: od: a; end:
### 06:
PHI3 := proc(w) local r; r := nops(factorset(w)):
      if w mod 3 = 1 then (phi(w) + 2^{(r-1)})/3
    elif mods(w, 3) = -1 then (phi(w) - 2^{(r-1)})/3 fi; end:
### 07:
PI3 := proc(n) local p, a, Gf, w, s, signs, PHIw3, Sw, Q, EF, Rpa, Rw, R;
                                     ### This gives 'p'
        p := op(the_ones(n, 3)):
                                      ### This gives 'a', i.e. 'alpha'
        a := Pow(n, p):
```

```
if a = 1 then Gf := PRFAC(1, (p-1)/3, p, 1)
  elif a > 1 then Gf := PI(p^a, 3, 1) fi:
     ### This is ((p^a - 1)/3)_p! mod p^a
      w := n/(p^a):
                                 ### This is 'w'
      s := nops(factorset(w)): ### This is 's'
   signs := (-1)^(s-1): ### This is '1' at ODD 's', and '-1' at EVEN 's'
  PHIw3 := PHI3(w):
     EF := mods(Q&^(phi(p^a)/3), p^a): ### the Euler-Fermat element.
    Rpa := mods(EF^signs * Gf&^(2^s), p^a):
           ### Note the SIGN element in the EF term
     Rw := mods(1/p&^PHIw3, w):
            ### There is NO SIGN element here at Gauss 3
  if w = 2 then
       R := mods(chrem([-1/Rpa, Rw], [p^a, w]), n): ### Note the '-'
elif w \iff 2 and mods(w, 3) = -1 then
       R := mods(chrem([1/Rpa, Rw], [p^a, w]), n): ### Note the 1/Rpa
elif mods(w, 3) = 1 then
       R := mods(chrem([Rpa, Rw], [p^a, w]), n):
  fi; R; end:
### 08:
PHI6 := proc(w) local r; r := nops(factorset(w)):
     if w mod 6 = 1 then (phi(w) + 2^{(r+1)})/6
   elif mods(w, 6) = -1 then (phi(w) - 2^{(r+1)})/6 fi; end:
### 09:
PI6 := proc(n) local p, a, Gf, w, s, signs, PHIw6,
      Sw, Q, PARI, EF1, q1, sign1, EF, Rpa, Rw, R;
    p := op(the\_ones(n, 6)): ### This gives 'p'
                              ### This gives 'a', i.e. 'alpha'
    a := Pow(n, p):
   if a = 1 then Gf := PRFAC(1, (p-1)/6, p, 1)
  elif a > 1 then Gf := PI(p^a, 6, 1) fi:
    ### This is ((p^a - 1)/6)_p! mod p^a
    w := n/(p^a):
                                               ### This is 'w'
 PARI := proc(w)
                   if mods(w, 6) = 1 then 1
                 elif mods(w, 6) = -1 then -1 fi end:
    s := nops(factorset(w)):
                              ### This is 's'
                     ### This is '-1' at ODD 's', and '1' at EVEN 's'
 signs := (-1)^s:
PHIw6 := PHI6(w):
   Sw := factorset(w): ### This is the set of all ('s' of) the 'q'
    Q := mul(q, q = Sw): ### This is the product of all ('s' of) the 'q'
   ### We need TWO EULER-FERMATS (EF1 and EF)
   ### to distinguish between s = 1 and s > 1:
  if s = 1 then
q1 := op(1, factorset(w)): ### This is 'q[1]' sign1 := (-1)^((p+q1)/6): ### the sign element in the closed form
 EF1 := mods(q1&^(phi(p^a)/6), p^a): ### the Euler-Fermat element for q[1].
                                       ### NOTE the 6th-root
```

```
Rpa := mods(sign1 * EF1 * Gf^2, p^a):
   Rw := mods((-1)^{(p-1)/6})/p&^{PHIw6}, w):
         ### Note the EXTRA SIGN element here at Gauss 6
    R := mods(chrem([Rpa^PARI(w), Rw], [p^a, w]), n):
       ### Note the 1/Rpa, as with Gauss 4 closed forms
  elif s > 1 then
  EF := mods(Q&^(phi(p^a)/3), p^a): ### Euler-Fermat element for s > 1.
                                      ### Note the 3rd-root
 Rpa := mods(EF^signs*Gf^(2^s), p^a): ### Note the SIGN element in the EF term
  Rw := mods(1/p&^PHIw6, w):
                              ### There is NO SIGN element here at s > 1
   R := mods(chrem([Rpa^PARI(w), Rw], [p^a, w]), n):
   fi; R; end:
     p := 31:
 alpha := 2:
    q1 := 5:
 beta1 := 2:
    q2 := 11:
 beta2 := 2:
     n := p^alpha * q1^beta1 * q2^beta2:
   [n mod 3, n mod 6]; ifactor(n);
M := 3; [PI(n, M, 1), PI3(n)];
M := 6; [PI(n, M, 1), PI6(n)];
                                     [1,1]
                                (5)^2 (11)^2 (31)^2
                                    M := 3
                              [-1377994, -1377994]
                                     M := 6
                                                                                   (1.1)
                              [-1265964, -1265964]
     p := 31:
 alpha := 2:
    q1 := 5:
 beta1 := 1: ### Note the changed value
    q2 := 11:
 beta2 := 2:
     n := p^alpha * q1^beta1 * q2^beta2:
   [mods(n, 3), mods(n, 6)]; ifactor(n);
M := 3; [PI(n, M, 1), PI3(n)];
M := 6; [PI(n, M, 1), PI6(n)];
                                    [-1,-1]
                                 (5) (11)^2 (31)^2
                                    M := 3
                               [ -194134, -194134 ]
                                     M := 6
                                [175046, 175046]
                                                                                   (1.2)
```

```
Table #1 showing the 26 solutions of \left(\frac{1}{3} \left\{n-1\right\}\right)_n! = 1 \pmod{n} with n = -1 \pmod{3} (i.e. w = -1 \pmod{3})
```

n	n_mods_3	p^{α}	w	$\left(\frac{1}{3} \left\{ n-1 \right\} \right)_{n}!$
26	[-1]	(13)	(2)	1
305	[-1]	(61)	(5)	1
338	[-1]	$(13)^{2}$	(2)	1
9755	[-1]	(1951)	(5)	1
60707	[-1]	(3571)	(17)	1
70673	[-1]	(2437)	(29)	1
95990	[-1]	(331)	(2) (5) (29)	1
101651	[-1]	(9241)	(11)	1
165380	[-1]	(8269)	$(2)^{2}(5)$	1
167690	[-1]	(409)	(2) (5) (41)	1
184820	[-1]	(9241)	$(2)^{2}(5)$	1
211178	[-1]	(331)	(2) (11) (29)	1
224204	[-1]	(2437)	$(2)^2(23)$	1
232373	[-1]	(13669)	(17)	1
274730	[-1]	(331)	(2) (5) (83)	1
297743	[-1]	(10267)	(29)	1
383960	[-1]	(331)	$(2)^3 (5) (29)$	1
516644	[-1]	(2437)	$(2)^2 (53)$	1
604406	[-1]	(331)	(2) (11) (83)	1
605753	[-1]	(10267)	(59)	1
633455	[-1]	(126691)	(5)	1
670760	[-1]	(409)	$(2)^3$ (5) (41)	1
739280	[-1]	(9241)	$(2)^{4}(5)$	1
749390	[-1]	(547)	(2) (5) (137)	1
844712	[-1]	(331)	$(2)^3 (11) (29)$	1
950249		(55897)		1

```
`Observe the final column is re-computed with CLOSED FORMS PI3 procedure.`
```

(2.1)

Table #2 showing the 22 solutions of $\left(\frac{1}{3} \{n-1\}\right)_n! = 1 \pmod{n}$ with $n = 1 \pmod{3}$ (i.e. $w = 1 \pmod{3}$)

n	n_mods_3	p^{α}	w	$\left(\frac{1}{3} \left\{ n-1 \right\} \right)_{n}!$
244	[1]	(61)	$\left(2\right)^{2}$	1
18205	[1]	(331)	(5) (11)	1
33076	[1]	(8269)	$(2)^2$	1
48775	[1]	(1951)	(5) ²	1
82690	[1]	(8269)	(2) (5)	1
92410	[1]	(9241)	(2) (5)	1
112102	[1]	(2437)	(2) (23)	1
191980	[1]	(331)	$(2)^2 (5) (29)$	1
258322	[1]	(2437)	(2) (53)	1
330760	[1]	(8269)	$(2)^{3}(5)$	1
335380	[1]	(409)	$(2)^2 (5) (41)$	1
369640	[1]	(9241)	$(2)^{3}(5)$	1
422356	[1]	(331)	(2) ² (11) (29)	1
448408	[1]	(2437)	$(2)^3(23)$	1
516934	[1]	(23497)	(2) (11)	1
549460	[1]	(331)	$(2)^2 (5) (83)$	1
583444	[1]	(145861)	(2)	1
609190	[1]	(60919)	(2) (5)	1
767920	[1]	(331)	$(2)^4(5)(29)$	1
808084	[1]	(202021)	$(2)^2$	1
876514	[1]	(8269)	(2) (53)	1
924010	[1]	(92401)	(2) (5)	1

[`]Observe the final column is re-computed with CLOSED FORMS PI3 procedure.`

Table #3 showing the 5 solutions of $\left(\frac{1}{6} \{n-1\}\right)_n! = 1 \pmod{n}$ with $n = -1 \pmod{6}$ (i.e. $w = -1 \pmod{6}$)

n	n_mods_6	p^{α}	w	$\left(\frac{1}{6} \left\{ n-1 \right\} \right)_{n}!$
309485	[-1]	(331)	(5) (11) (17)	1
510605	[-1]	(102121)	(5)	1
527945	[-1]	(331)	(5) (11) (29)	1
729305	[-1]	(145861)	(5)	1
746405	[-1]	(331)	(5) (11) (41)	1

`Observe the final column is re-computed with the CLOSED FORMS PI6 procedure.`

(4.1)

Table #4 showing the 9 solutions of $\left(\frac{1}{6} \left\{n-1\right\}\right)_n! = 1 \pmod{n}$ with $n = 1 \pmod{6}$ (i.e. $w = 1 \pmod{6}$)

```
> L6_plus_1 := []: for n from 7 by 6 to 10^6 do if
```

n	n_mods_6	p^{α}	w	$\left(\frac{1}{6} \left\{ n-1 \right\} \right)_n!$
1105	[1]	(13)	(5) (17)	1
14365	[1]	$(13)^2$	(5) (17)	1
34765	[1]	(409)	(5) (17)	1
303535	[1]	(3571)	(5) (17)	1
353365	[1]	(2437)	(5) (29)	1
508255	[1]	(9241)	(5) (11)	1
796717	[1]	(331)	(29) (83)	1
839185	[1]	(3571)	(5) (47)	1
872695	[1]	(10267)	(5) (17)	1

`Observe the final column is re-computed with the CLOSED FORMS PI6 procedure.`

(5.1)