Study on VLC Channel Model Based on Poisson Stochastic Network Theory

Hao Wu 1 Qunjhen Fan2

Presentation
By
Name:Anuradha Uggi
I'd:EE21RESCH01008
Course:Al5002
Supervisor:Prof.GVV
Indian Institute of Technology Hyderabad

June 11, 2021

Index

- VLC?
 - Block Diagram of VLC Architecture
 - Transmitter
 - Receiver
 - Channel
 - Types of Channel
- Statistical Model of VL Channel
 - Poisson Stochastic Network Theory Model(PSNTM)
 - Homogeneous Poisson Point Process
 - SINR as Quality Metric
- Channel Model
 - Light Source Model
 - Impulse Response
 - Received power
 - Impact response (H(0))
- Power fluctuation degree
- Simulation Results
- Applications
- Conclusion

VLC?

- Message signals die out over longer distances
- Requirement of Carriers
- Modem to Place message on a Carrier

Figure 1: Source:Internet

Block Diagram of VLC Architecture

Figure 2: Source:Conference Paper[2]

Transmitter

- LD and LED dual-functional
- Plank's Theory: $E_g = hf$
- Modulation

Figure 3: Source:Internet

Receiver

- Light2Electric Signal Conversion by Photo-detector
- $R = \frac{e \times \eta}{h \times \nu}$: Ratio of output current to Input Optical Power.

Figure 4: Source:Internet

Channel

- Multi-Path Reflections
- $\lambda_{VL} < \lambda_{RW}$
- VL interference

Figure 5: Source:Internet

(日) (日) (日) (日) (日) (日)

Types of Channel

- LoS and NLoS
- Directed, Non-Directed and Hybrid Channels

Figure 6: Source:Conference Paper[1]

Study of Channel

- Appropriate Rxd power level is desired in any communication System
- Interference may deteriorate Rxd power
- Increasing Txd power, Optimizing the LED Layout and decreasing FOV of Rx are remedies
- Study of Channel is needed to Compute Rxd power
- To study the Channel random distribution of RPs is needed
- Finding the best Layout of LED is the Motto of this paper

Homogeneous Poisson Point Process

- Several RPs in space obey Poisson Distribution, so that the Network can be modelled as Poisson Stochastic Process
- Due to several properties HPPP can well approximate the actual reflection environment

Poisson Distribution:

$$P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!} 0 010 1 001 1000 (1)$$

Poisson Point Process:

$$P(\phi(A)) = n) = \frac{e^{\lambda|A|} \lambda |A|^n}{n!}$$
 (2)

Properties of HPPP

- If points in Space forms PP
- Subset of points is a rv with a Poisson Distribution
- Complete Independence
- Number of points in set A is a Poisson Rv with Parameter $\lambda |A|$

Figure 7: Source:Python Simulation

SINR as Quality metric

- Optical signals are highly Incoherent
- Reflections are regarded as interference
- SINR to describe the quality of signal reception
- PPP is Translation Invariant so Rx at different positions is moved to origin

Figure 8: Source:internet

Signal to Interference+Noise Ratio

SINR for a specific sender

$$SINR_{x}(n) = \frac{P_{x}S_{x}(n)/l(|x|)}{N + I - P_{x}S_{x}(n)/l(|x|)}$$
(3)

$$I = \sum_{x \in \phi} P_x S_x(n) / l(|x|) \tag{4}$$

- ullet |x|: distance from each sending end to receiving end
- \bullet P_x : Transmitted power
- \bullet S_x : Gain of each reflection point
- N : Noise power
- I: Total power received at Rx
- The path loss function

$$l(|x|) = (K|x|)^{\beta} \tag{5}$$

• K > 0 and $4.5 > \beta > 2$

Path Loss Function

Figure 9: Source:python simulation

Transmission Model

Figure 10: Source:conference paper[1]

• At the Tx end Photo-current signal Y(t) can be expressed as:

$$Y(t) = RX(t) \circledast h(t) + N(t)$$
(6)

R : Responsivity

$$R = \frac{I_{out}}{P_{in}} \tag{7}$$

$$R = \frac{e \times \eta}{h \times \nu} \tag{8}$$

- X(t): light signal emitted by LED
- h(t): Channel shock effect
- \bullet N(t): AWGN noise

Light Source Model

- Lambertian model is used to simulate the emission of Light source
- Light intensity distribution of an LED can be expressed as:

$$I(\theta) = I(0)cos^{m}(\theta), \theta \in (0, \frac{\pi}{2})$$
(9)

- \bullet θ is the beam exit angle
- m is Lambert coefficient can be expressed as:

$$m = -\frac{\ln 2}{\ln \cos \theta_{1/2}} \tag{10}$$

- \bullet $\theta_{1/2}$ is the half power angle
- I(0) is the central light intensity and can be expressed as:

$$I(0) = \frac{m+1}{2\pi} P_s {(11)}$$

• P_s is the Txing power of light source

Light Source Model simulation

1 10001 011 0101 000 1 000 010100 01011 0011 00 010 1 1 001 1 10001 011 01

Impulse Response

Figure 11: Source:conference paper[1]

- Channel Impulse response=sum of Impulse responses of single Tx and Rx set.
- Impulse response consisting single LED and Rx is expressed as:

$$h(t; S, R) = h^{0}(t; S, R) + \sum_{k=1}^{\infty} h^{k}(t; S, R)$$

Impulse Response

Figure 12: Source:conference paper[1]

• Impulse response of the direct-view channel:

$$h^{0}(t;S,R) = \frac{m+1}{2\pi}cos^{m}(\theta)d\Omega rect(\frac{\Psi}{FOV})\delta(t-\frac{d}{c}) \tag{13} \label{eq:13}$$

- Solid angle of the Rx : $d\Omega = cos \frac{A}{d^2}$
- ullet : receiving angle
- d : distance between LED and Rx

Received power

- Continuous data connection in all the places in the room
- Improper placing of LEDs and too small FOV of Rx lead to blind spots.
- Received power of LED light source can be expressed as :

$$P_r = H(0)P_t \tag{14}$$

- \bullet P_r : Received power
- ullet P_t : Average transmitted power

DC channel gain (H(0))

DC channel gain from impact responce can be obtained as :

$$H(0) = \begin{cases} cos(\Psi)cos^m \Psi T_s(\Psi)g(\Psi) \frac{A(m+1)}{2\pi d^2}, & 0 \le \Psi \le \Psi_c \\ 0, & \Psi > \Psi_c \end{cases}$$
 (15)

- $T_s(\Psi)$: optical filter gain
- $g(\Psi)$: optical concentrator

$$g(\Psi) = \begin{cases} \frac{n^2}{\sin^2 \Psi_c}, & 0 \le \Psi \le \Psi_c \\ 0, & \Psi > \psi_c \end{cases}$$
 (16)

n is refractive index

Variance of power distribution

$$D = \frac{1}{S} \iint_L [P_r(x,y) - \overline{P_r}]^2 dx dy = \frac{1}{S} \sum_{i=1}^N \iint_L [P_t f(u_i, v_i; x, y) - \overline{P_r}]^2 dx dy$$
 (17)

- Simulations for power fluctuation is performed for different layouts of LEDs
- 4-LED are symmetrically distributed
- Room dimensions: $5m \times 5m \times 3$
- Rx is placed on a plane at a height h from the floor.

Impulse Response

Applications

- By locating RPs Easedropping can be mitigated to add more security.
- Effective channel modelling results in reducing the effect of Interference which increases the SINR or quality of signal reception.

Conclusion

The scheme proposed in this paper can be used to obtain the optimal layout of LED lamp in visible light communication system.

Thank You!

