

Course Name: Mathematics & Statistics-III (BSC-M301)

Multivariate Calculus (Integration)

Dr. Sharmistha Ghosh Professor, IEM-Kolkata

What is Calculus?

- **Calculus** is a branch of mathematics that explores **variables** and how they change by looking at them in infinitely small pieces called **infinitesimals**.
- Calculus, as it is practiced today, was invented in the **17th century** by British scientist **Isaac Newton** (1642-1726) and German scientist **Gottfried Leibnitz** (1646-1716), who independently developed the principles of calculus.
- It provides a framework for modeling systems in which there is change, and a way to deduce the predictions of such models.

Branches of Calculus

Differential Calculus

- Differentiation of functions of one or more variables
- Concerned with instantaneous rates of change and slope of curves

Integral Calculus

- Integration of function of one or more variables
- Concerned with accumulation of quantities and area under or between curves and many more

Functions of one or more variables

Single Variable Calculus

 Involves functions of single variable of the form

$$y = f(x)$$

Multivariable Calculus

- Involves functions of more than one variable i.e. multivariable functions of the form
- $\bullet \qquad z = f(x, y)$
- or w = f(x, y, z)or $w = f(x_1, x_2, ..., x_n)$

Two view points of Integration

Fundamental Theorem of Integral Calculus As a certain Summation – Limit of a sum

Inverse process of Differentiation

Geometrical Interpretation of $\int_a^b f(x)dx$

Form the sum
$$h(f(x_0) + f(x_1) + \dots + f(x_{n-1}))$$

$$\int_{a}^{b} f(x)dx = \lim_{h \to 0} h \sum_{r=0}^{n-1} f(x_r)$$

or
$$\lim_{n \to \infty} \frac{b-a}{n} \sum_{r=0}^{n-1} f(x_r)$$

 $\int_a^b f(x)dx$ geomeometrically represents the **area** of the space enclosed by the curve y = f(x), the ordinates x = a, x = b and the x - axis.

Multivariate Integration

Double Integrals

- Concerned with functions of two variables as z = f(x, y) and are integrals of the type
- $\iint f(x,y)dxdy$ or $\iint_R f(x,y)dxdy$

Triple Integrals

- Concerned with functions of three variables as w = f(x, y, z) and are integrals of the type
- $\iiint f(x, y, z) dx dy dz$ or $\iiint_R f(x, y, z) dx dy dz$

Course Contents

- **▶** Double Integrals
 - Applications in finding Area, Volume, Centre of Mass & Gravity
- > Triple Integrals with applications
- **► Vector Integration**
 - Line Integrals
 - Surface Integrals
 - Theorems of Green, Gauss & Stokes

Learning Outcome

Learn the methods for evaluating multiple integrals and their applications to different geometrical and physical problems.

Text / Reference Books

Text Books:

- ✓ **Higher Engineering Mathematics, B. S. Grewal**, Khanna Publishers, 43rd Edition.
- ✓ Engineering Mathematics-2B, *B. Basu Mallik & Krishanu Deyasi*, Cengage Learning.

▶ Reference Books:

- ✓ Advanced Engineering Mathematics, Michael Greenberg, Pearson
- ✓ Advanced Engineering Mathematics, Jain & Iyengar, Narosa.
- ✓ Advanced Engineering Mathematics, H. K. Dass, SultanChand.

Thank You

