

UNIVERSIDAD LINDA VISTA

EX-FINCA STA CRUZ #1 PUEBLO NUEVO SOLISTAHUACÁN, CHIAPAS

INGENIERÍA EN DESARROLLO DE SOFTWARE

SISTEMAS DIGITALES

NOMBRE DEL ALUMNO: JOSE MOISES MARTINEZ HERNANDEZ SINDY FABIOLA PERDOMO RAPALO

DOCENTE: NELSON ORTIZ LÓPEZ

ACTIVIDAD DE APRENDIZAJE:

Ejercicios

FECHA DE ENTREGA:

26 de enero del 2025

1.1 Representaciones numéricas y señales

1. Describa en forma concisa la principal diferencia entre las cantidades analógicas y digitales.

Las cantidades analógicas pueden tomar cualquier valor sobre un intervalo continuo de valores, en cambio las digitales tiene un valor que se especifica como una de dos posibilidades (0 o 1, Alto o Bajo, True o False).

2. ¿Cuál es el número exacto de bytes en un sistema que contiene?

a) 32K bytes

(32 Kb)(1024 bytes) = 32,768 bytes.

b) 64M bytes

(64 Mb)(1,048,574 bytes) = 67,108,864 bytes.

c) 64G bytes

(64 Gb)(1,073,741,824 bytes) = 68,719,476,736 bytes.

1.2 Sistemas analógicos y digitales

3. ¿Cuál es la función de un transductor?

Un transductor es un dispositivo que convierte la variable física en eléctrica.

4. ¿Cuál es la función de un ADC?

Convierte la señal analógica de un transductor (entrada al ADC) a una señal digital (salida del ADC).

5. ¿Cuál es la función de un DAC?

Convierte la señal digital a una señal analógica (voltaje que varía entre 0 y 10 V).

6. ¿Cuál es la función de un actuador?

se conecta con frecuencia a un dispositivo o circuito que sirve como actuador para controlar la variedad física.

7. Un DAC de 8 bits tiene una salida de 3.92 Ma para una entrada de 01100010. ¿Cuál es la resolución y la salida a escala completa del DAC?

Salida a escala completa: $\frac{3.92mA}{98}$ * 255 $\approx 10.0mA$

Resolución:
$$\frac{10.0mA}{2^8-8} = \frac{10.0mA}{255} \approx 0.0392mA$$

8. ¿Cuántos voltajes de salida distintos puede producir un DAC de 12 bits?

$$2^{12} = 4096$$

Tiene 4096 voltios de salida.

1.3 Códigos BCD y ASCII

9. Represente el valor decimal 324 mediante su equivalente binario luego codifique el mismo número decimal en BCD?

Binario: 101000100

decimal a BCD: 0011 0010 0100

10. ¿Cuántos bits se requieren para representar un número decimal de ocho dígitos en BCD?

8 X 4 = 32

11. ¿Cuál es la ventaja de codificar un número decimal en BCD, en lugar de hacerlo en binario directo? ¿Cuál sería una desventaja?

ventajas : Facilidad de conversión, precisión en cálculos decimales, compatibilidad con displays.

Desventajas: Ineficiencia en el uso del espacio, complejidad en operaciones aritméticas.

12. Codifique el siguiente mensaje en código ASCII utilizando la representación hexadecimal: "Juan 3:16". Para ello registre en una tabla, el código respectivo en binario de 8 bits, en hexadecimal y en decimal para cada carácter.

Caracteres	b ₆₋₄	b ₃₋₀	Hexadecimal	Decimal
u	0010	0010	22	34
J	0100	1010	4A	74
u	0111	0101	75	117
а	0110	0001	61	97
n	0110	1110	6E	110
	0010	0000	20	32
3	0011	0011	33	51
:	0011	1010	3A	58
1	0011	0001	31	49
6	0011	0110	36	54
и	0010	0010	22	34

13. El siguiente mensaje en código en código ASCII con bits de relleno se almacena en ubicaciones contiguas de memoria de la computadora:

01010011 01010100 01001111 01010000 ¿Cuál es el mensaje?

b ₆₋₄	b ₃₋₄	Hexadecimal	Decimal	Caracteres
0101	0011	53	83	S
0101	0100	54	84	T
0100	1111	4F	79	0
0101	0000	50	80	Р

14. Convierta el número decimal 6514 tanto en código BCD como en ASCII. Muestre el resultado en una tabla para ver las diferencias.

	6	5	1	4
BCD	0110	0101	0001	0100
ASCII	54	53	49	52

^{*}Ver conversiones en anexo

Anexo

```
324 en BCD: : 0011

2 en BCD: : 0010

4 en BCD: 0100.
```

3	- Salida maxima 2n.	= n = es el mamoro de bits del pre La salida maxima: es lo comente maxima que puede generar el Dre
	Salida máxima =	3-92mr × 255
		= 10.16 mA.
	10-16mA = 1	0.16mA = 0.0297 mA
	98 por que o	1100010 es en biraño.

2 Carollo 2 1	100 1010 100 1010 111 0101 110 1110 110 1110
9 3 1) 1 1) 6 t) //	011 0011 38 51 011 0011 38 59 011 0001 36 59 011 010 0010 36 59 0010 0010 = 38 33 1010 = 74 1010 = 88
9 110 6 10 9 010 9 011 3	3 6 3001 = 97 k) 010 CO10 = 39 1110 = 110

