Задачи к лекции 8

- **1.** Пусть K поле характеристики p > 0. Докажите, что $(a+b)^p = a^p + b^p$ для любых $a, b \in K$. Пусть $K \subseteq F$ расширение полей. Для каждого элемента $\alpha \in F$ обозначим через $K(\alpha)$ пересечение всех подполей в F, содержащих K и α .
- **2.** Докажите, что $K(\alpha)=\{\frac{f(\alpha)}{g(\alpha)}\mid f(x),g(x)\in K[x]$ и $g(\alpha)\neq 0\}.$
- **3.** Докажите, что если элемент $\alpha \in F$ алгебраичен над K и $h(x) \in K[x]$ его минимальный многочлен, то $K(\alpha) \simeq K[x]/(h(x))$.
- **4.** В зависимости от значения параметра $a \in \mathbb{Q}$ найдите степень расширения $[\mathbb{Q}(\alpha) : \mathbb{Q}]$, где α действительный корень уравнения $x^3 = a$.
- **5.** Избавьтесь от иррациональности в знаменателе выражения $\frac{1-\sqrt[3]{3}}{1+\sqrt[3]{3}-\sqrt[3]{9}}$.
- **6.** Пусть α комплексный корень многочлена $x^3 3x + 1$. Представьте элемент

$$\frac{3\alpha^2 + 4}{\alpha^4 + \alpha^3 - 2\alpha^2 + 1} \in \mathbb{Q}(\alpha)$$

в виде $f(\alpha)$, где $f(x) \in \mathbb{Q}[x]$ и $\deg f(x) \leqslant 2$.

- 7. Найдите минимальный многочлен для числа $\sqrt{2} + \sqrt{3}$ над \mathbb{Q} .
- 8. Найдите степень поля разложения для следующих многочленов:
 - (a) $x^3 2$ над \mathbb{Q} ;
 - (б) $x^4 2$ над \mathbb{Q} .
- **9.** Пусть K(x) поле рациональных дробей над полем K. Найдите степень расширения [K(x):K]. Какие элементы из K(x) алгебраичны над K?
- **10.** Пусть $K \subseteq F$ конечное расширение полей. Докажите, что все элементы поля F являются алгебраическими над K.
- **11.** Пусть $K \subseteq F$ конечное расширение полей. Какие значения может принимать его степень в случаях, когда $K = \mathbb{C}$ и $K = \mathbb{R}$?
- **12.** Пусть $K \subseteq F$ расширение полей. Докажите, что все элементы в F, алгебраические над K, образуют подполе в F.

Домашнее задание

1. Пусть α — комплексный корень многочлена $x^3 - x^2 - 3x + 1$. Представьте элемент

$$\frac{4\alpha^2 - 3\alpha + 1}{2\alpha^3 - \alpha^2 - 3\alpha + 5} \in \mathbb{Q}(\alpha)$$

в виде $f(\alpha)$, где $f(x) \in \mathbb{Q}[x]$ и $\deg f(x) \leqslant 2$.

- **2.** Найдите минимальный многочлен для числа $\sqrt{7} \sqrt{5}$ над \mathbb{Q} .
- **3.** Найдите степень поля разложения многочлена $x^4 x^2 + 1$ над \mathbb{Q} .
- **4.** Пусть $F = \mathbb{C}(x) = \{\frac{f(x)}{g(x)} \mid f(x), g(x) \in \mathbb{C}[x], g(x) \neq 0\}$ поле рациональных дробей над \mathbb{C} и $K = \mathbb{C}(y)$, где y = x + 1/x. Найдите степень расширения [F : K].