Some Directional Derivatives

Thomas Cohn

9/17/18

Recall that X is path-connected if $\forall \alpha, \beta \in X, \exists \varphi : [0,1] \to X$ continuous with $\varphi(0) = \alpha$ and $\varphi(1) = \beta$.

Some More Special Cases

(4) Is GL (n, \mathbb{R}) , the set of invertible $n \times n$ real matrices, connected?

No! Consider $f: GL(n\mathbb{R}) \to \{0,1\}$, with $M \mapsto \frac{\frac{\det M}{|\det M|} + 1}{2}$. f is both continuous and surjective.

- (5) Exercise: $GL_{+}(n,\mathbb{R}) = \{M \in GL(n,\mathbb{R}) : \det M > 0\}$. Show that $GL_{+}(n,\mathbb{R})$ is path-connected.
- (6) $X \subseteq \mathbb{R} \leftrightarrow X$ is an interval or $X = \emptyset$ or X is a singleton. (Note that some people consider \emptyset and singletons to be an interval.)

Prop: For X a topological space, we have $f = (f_1, \ldots, f_n) : X \to \mathbb{R}^n$ continuous \leftrightarrow each f_i is continuous. Proof: \Rightarrow Let $f_j = p_j \circ f$ where $p_j : \mathbb{R}^n \to \mathbb{R}$ $(y_1, \dots, y_n) \mapsto y_j$. The composition of two continuous functions is continuous, and p_j is continuous, so f_j is continuous. \Leftarrow Assume X is a metric space. Fix $x_0 \in X$, $\varepsilon > 0$. There is $\delta_j > 0$ s.t. $|f_j(x) - f_j(x_0)| \leq \frac{\varepsilon}{\sqrt{n}}$ for $1 \leq j \leq n, \text{ when } d(x,x_0) < \delta_j. \text{ Then let } \delta = \min \{\delta_1,\ldots,\delta_n\}.$ $d(f(x),f(x_0)) = ||f(x_0)-f(x)|| \leq \sqrt{n} |f(x)-f(x_0)|_{\sup \text{ norm}} \leq \sqrt{n} \frac{\varepsilon}{\sqrt{n}} = \varepsilon \text{ when } d(x,x_0) < \delta.$

This is not true the other way!

Ex: $f: \mathbb{R}^2 \to \mathbb{R}$

$$(x_1, x_2) \mapsto \begin{cases} \frac{x_1 x_2}{x_1^2 + x_2^2} & (x_1, x_2) \neq (0, 0) \\ 0 & (x_1, x_2) = (0, 0) \end{cases}$$
 This is a continuous function of x_1 if x_2 is fixed.

This is a continuous function of x_2 if x_1 is fixed.

But f is not continuous on \mathbb{R}^2 since $f(\frac{1}{n}, \frac{1}{n}) = \frac{1}{2} \to \frac{1}{2} \neq f(0,0)$. So f is not sequentially continuous, and we're in a metric space, so f is not continuous.

Now, we present a potential paradox. Consider $f: \mathbb{R} \to \mathbb{R}$.

We say f is continuous at $a \leftrightarrow$ the graph of f is "almost horizontal" when magnified.

We say f is differentiable at $a \leftrightarrow$ the graph of f is "almost affine" (and not vertical) when magnified. But continuous at $a \not\to$ differentiable at a.

Try this in a vector space V.

 $f: V \to V, x \mapsto \lambda x$. This is the dilation centered at $\vec{0}$.

The dilation centered at \vec{p} :

$$V \rightarrow V \rightarrow \lambda(\vec{x} - \vec{p}) \mapsto \lambda(\vec{x} - \vec{p}) + \vec{p}$$

Put concisely, $\vec{x} \mapsto \lambda \vec{x} + (1 - \lambda)\vec{p}$

Given $f: V \to W$ with V, W vector spaces over \mathbb{R} (or perhaps \mathbb{C}), we define $\operatorname{Graph} f = \{(\vec{x}, f(\vec{x}) \in V \times W : \vec{x} \in V\}.$

Dilation about $(\vec{a}, f(\vec{a}))$ is $(\vec{x}, f(\vec{x})) \mapsto (\lambda(\vec{x} - \vec{a}) + \vec{a}, \lambda(f(\vec{x}) - f(\vec{a})) + f(\vec{a}))$.

Set $t=\frac{1}{\lambda}, \ \vec{u}=\frac{\vec{x}-\vec{a}}{t}$. So $\vec{x}=\vec{a}+t\vec{u}$. So the dilated grpah now looks like $\left\{\left(\vec{a}+\vec{u},f(\vec{a})\frac{f(\vec{a}+t\vec{u})-f(\vec{a})}{t}\right): \vec{u}\in V\right\}$

With $t \to 0$ (i.e. $\lambda \to \infty$), we want $f(\vec{a}) \frac{f(\vec{a} + t\vec{u}) - f(\vec{u})}{t}$ to be an affine function of $\vec{a} + \vec{u}$.

i.e. a linear function of $(\vec{a} + \vec{u})$ plus a constant.

i.e. a linear function of \vec{u} plus some other constant.

i.e. $T(\vec{u}) + \vec{b}$ with $\vec{b} = f(\vec{a})$.

Defn: This reduces to $\lim_{t\to 0} \frac{f(\vec{a}+t\vec{u})-f(\vec{a})}{t} = f'(\vec{a};\vec{u})$, the <u>directional derivative</u> of f at \vec{a} in direction \vec{u} .

We could try to make this theorem the core definition for multivariable differential calculus, but we won't!

(1) Munkres §5 EX 2: all $f'(\vec{a}; \vec{u})$ with fixed \vec{a} exist but not linear in \vec{u} .

(2)
$$f(x,y) = \begin{cases} x^3/y & y \neq 0 \\ 0 & y = 0 \end{cases}$$
 $f'(\vec{0}; \vec{v}) = \vec{0} \ \forall \vec{u}$. But $f(\frac{1}{n}, \frac{1}{n}u) \not\to 0$ as $n \to \infty$. So f is not continuous. Does that mean differentiability $\not\to$ continuity? No, we just need a stronger definition of differentiable.

(3) The Chain Rule (Munkres §7) will fail without a stronger assumption.

Something easier: vector-valued functions of a scalar.

 $f:I\subset\mathbb{R}\to W$ where I is an open interval and W is a vector space.

 $f'(x) = \lim_{t \to \infty} \frac{f(x+t) - f(x)}{t}$, but we need a topology on W.

Choose W to be a normed vector space, thus giving us a topology.

Fact: $\dim W < \infty \to \text{all norms on } W \text{ induce the same topology.}$