Detección de anomalías basada en técnicas de ensembles

Ignacio Aguilera Martos 8 de septiembre de 2019

Trabajo Fin de Grado Código disponible en GitHub

Contenidos

- 1. Concepto de anomalía basado en distancias
- 2. Aprendizaje Automático
- 3. Probabilidad Multivariante
- 4. Concepto probabilístico de anomalía
- 5. Modelos implementados
- 6. Resultados
- 7. Conclusiones y Trabajo Futuro

Concepto de anomalía basado en

distancias

Pensado para el caso uno-dimensional.

Pensado para el caso uno-dimensional.

Tukey's Fences

Valores fuera del rango $[Q_1-k(Q_3-Q_1),\,Q_3+k(Q_3-Q_1)]$ con k=1,5

Pensado para el caso uno-dimensional.

Tukey's Fences

Valores fuera del rango $[Q_1-k(Q_3-Q_1),\,Q_3+k(Q_3-Q_1)]$ con k=1,5

La propuesta de k = 1,5 es arbitraria.

Criterio

Aplicar el criterio de Tukey a cada una de las características.

Criterio

Aplicar el criterio de Tukey a cada una de las características. <u>Trivial</u>.

Criterio

Aplicar el criterio de Tukey a cada una de las características. Trivial.

Criterio de clusters

1. Agrupamos los datos por clusters.

Criterio

Aplicar el criterio de Tukey a cada una de las características. Trivial.

Criterio de clusters

- 1. Agrupamos los datos por clusters.
- 2. Encontramos el cluster más cercano para cada instancia.

Criterio

Aplicar el criterio de Tukey a cada una de las características. Trivial.

Criterio de clusters

- 1. Agrupamos los datos por clusters.
- 2. Encontramos el cluster más cercano para cada instancia.
- 3. Si la distancia del objeto al centroide del cluster es mayor que 1,5 veces la mayor distancia intercluster entonces es una anomalía.

Aprendizaje Automático

Problema que abordamos

Problema que abordamos

Problema de detección de anomalías

Es un problema de aprendizaje no supervisado pues no disponemos de las etiquetas.

Problema que abordamos

Problema de detección de anomalías

Es un problema de aprendizaje no supervisado pues no disponemos de las etiquetas.

Problema no supervisado y acierto

Es un problema no supervisado. Usaremos conjuntos de datos etiquetados.

Propiedades de conjuntos de alta dimensionalidad

1. La densidad disminuye exponencialmente al aumentar la dimensionalidad.

Propiedades de conjuntos de alta dimensionalidad

- 1. La densidad disminuye exponencialmente al aumentar la dimensionalidad.
- 2. Cuanto mayor es la dimensionalidad mayor debe ser el radio de una bola para englobar el mismo porcentaje de datos.

Propiedades de conjuntos de alta dimensionalidad

- 1. La densidad disminuye exponencialmente al aumentar la dimensionalidad.
- 2. Cuanto mayor es la dimensionalidad mayor debe ser el radio de una bola para englobar el mismo porcentaje de datos.
- 3. Casi todo punto está más cerca del borde del conjunto que de otro punto.

$$D(d,n) = (1 - \frac{1}{2}^{\frac{1}{n}})^{\frac{1}{d}}$$

Propiedades de conjuntos de alta dimensionalidad

- 1. La densidad disminuye exponencialmente al aumentar la dimensionalidad.
- 2. Cuanto mayor es la dimensionalidad mayor debe ser el radio de una bola para englobar el mismo porcentaje de datos.
- 3. Casi todo punto está más cerca del borde del conjunto que de otro punto.

$$D(d,n) = (1 - \frac{1}{2}^{\frac{1}{n}})^{\frac{1}{d}}$$

4. Casi todo punto es una anomalía sobre su propia proyección.

Propiedades de conjuntos de alta dimensionalidad

- 1. La densidad disminuye exponencialmente al aumentar la dimensionalidad.
- 2. Cuanto mayor es la dimensionalidad mayor debe ser el radio de una bola para englobar el mismo porcentaje de datos.
- 3. Casi todo punto está más cerca del borde del conjunto que de otro punto.

$$D(d,n) = (1 - \frac{1}{2}^{\frac{1}{n}})^{\frac{1}{d}}$$

4. Casi todo punto es una anomalía sobre su propia proyección.

Maldición de la alta dimensionalidad

A mayor dimensionalidad mayor número de puntos necesitamos para obtener una aproximación con funciones de igual regularidad.

Aproximación de funciones

Nuestro objetivo es aproximar la función de salida del sistema con los datos que tenemos.

Aproximación de funciones

Nuestro objetivo es aproximar la función de salida del sistema con los datos que tenemos.

Teoremas útiles

• Teorema de Aproximación de Weierstrass

Aproximación de funciones

Nuestro objetivo es aproximar la función de salida del sistema con los datos que tenemos.

Teoremas útiles

- Teorema de Aproximación de Weierstrass
- Serie de Fourier

Aproximación de funciones

Nuestro objetivo es aproximar la función de salida del sistema con los datos que tenemos.

Teoremas útiles

- Teorema de Aproximación de Weierstrass
- Serie de Fourier
- Teorema de Kolmogorov-Arnold

Teorema de Kolmogorov-Arnold

Teorema de Kolmogorov-Arnold

Teorema de Superposición Kolmogorov-Arnold

Sea f una función continua de varias variables $f: X_1 \times ... \times X_n \to \mathbb{R}$, entonces existen funciones $\Phi_q: \mathbb{R} \to \mathbb{R}$ y $\phi_{q,p}: X_p \to [0,1]$ tales que f se puede expresar como:

$$f(x) = f(x_1, ..., x_n) = \sum_{q=0}^{2n} \Phi_q(\sum_{p=1}^n \phi_{q,p}(x_p))$$

Teorema de Kolmogorov-Arnold

Teorema de Superposición Kolmogorov-Arnold

Sea f una función continua de varias variables $f: X_1 \times ... \times X_n \to \mathbb{R}$, entonces existen funciones $\Phi_q: \mathbb{R} \to \mathbb{R}$ y $\phi_{q,p}: X_p \to [0,1]$ tales que f se puede expresar como:

$$f(x) = f(x_1, ..., x_n) = \sum_{q=0}^{2n} \Phi_q(\sum_{p=1}^n \phi_{q,p}(x_p))$$

Dimensionalidad en datos y funciones

La maldición de la dimensionalidad es intrínseca a los datos. Este Teorema nos dice que la capacidad expresiva o complejidad de las funciones de una sola variable es la misma que las de varias variables.

Probabilidad Multivariante

Contenidos útiles

• Vectores aleatorios.

- Vectores aleatorios.
- Independencia.

- Vectores aleatorios.
- Independencia.
- Probabilidad condicionada (sucesos, variables y σ -álgebras) y sus propiedades.

- Vectores aleatorios.
- Independencia.
- Probabilidad condicionada (sucesos, variables y σ -álgebras) y sus propiedades.
- Esperanza condicionada (sucesos, variables y σ -álgebras) y sus propiedades.

- Vectores aleatorios.
- Independencia.
- Probabilidad condicionada (sucesos, variables y σ -álgebras) y sus propiedades.
- Esperanza condicionada (sucesos, variables y σ -álgebras) y sus propiedades.
- Desigualdades famosas.

Desigualdades famosas

Desigualdades famosas

Desigualdades estudiadas

- Desigualdad de Markov
- Desigualdad de Chebychev
- Cotas de Chernoff
- Desigualdad de Hoeffding

Concepto probabilístico de

anomalía

Notación usada

$$X = \{x_1, ..., x_n\}, \ x_i = (x_{s_1}, ..., x_{s_d})$$

Notación usada

$$X = \{x_1, ..., x_n\}, \ x_i = (x_{s_1}, ..., x_{s_d})$$

$$S = \{s_i | s_i \in \{s_1, ..., s_d\} \text{ con } i \in \Delta\}$$

Notación usada

$$X = \{x_1, ..., x_n\}, x_i = (x_{s_1}, ..., x_{s_d})$$

$$S = \{s_i | s_i \in \{s_1, ..., s_d\} \text{ con } i \in \Delta\}$$

X_S proyección de los datos en el subespacio S

Notación usada

$$X = \{x_1, ..., x_n\}, x_i = (x_{s_1}, ..., x_{s_d})$$

$$S = \{s_i | s_i \in \{s_1, ..., s_d\} \text{ con } i \in \Delta\}$$

X_S proyección de los datos en el subespacio S

$$p_{s_1,...,s_p}(x_{s_1},...,x_{s_p})$$

Notación usada

$$X = \{x_1, ..., x_n\}, \ x_i = (x_{s_1}, ..., x_{s_d})$$

$$S = \{s_i | s_i \in \{s_1, ..., s_d\} \text{ con } i \in \Delta\}$$

X_S proyección de los datos en el subespacio S

$$p_{s_1,...,s_p}(x_{s_1},...,x_{s_p})$$

$$p_{s_i}(x_{s_i})$$

Definición subespacio incorrelado

Decimos que un subespacio S es un subespacio incorrelado si y sólo si:

$$p_{s_1,...,s_p}(x_{s_1},...,x_{s_p}) = \prod_{i=1}^p p_{s_i}(x_{s_i})$$

Definición subespacio incorrelado

Decimos que un subespacio S es un subespacio incorrelado si y sólo si:

$$p_{s_1,...,s_p}(x_{s_1},...,x_{s_p}) = \prod_{i=1}^p p_{s_i}(x_{s_i})$$

Definición anomalía no trivial

Decimos que un objeto x_S es una anomalía no trivial respecto del subespacio S si:

$$p_{s_1,...,s_p}(x_{s_1},...,x_{s_p}) \ll p_{esp}(x_{s_1},...,x_{s_p})$$

Definición subespacio incorrelado

Decimos que un subespacio S es un subespacio incorrelado si y sólo si:

$$p_{s_1,...,s_p}(x_{s_1},...,x_{s_p}) = \prod_{i=1}^p p_{s_i}(x_{s_i})$$

Definición anomalía no trivial

Decimos que un objeto x_S es una anomalía no trivial respecto del subespacio S si:

$$p_{s_1,...,s_p}(x_{s_1},...,x_{s_p}) \ll p_{esp}(x_{s_1},...,x_{s_p})$$

Relación entre conceptos de anomalía

Este concepto de anomalía es complementario.

Ejemplo de anomalía

Ejemplo de anomalía

Modelos implementados

Algoritmos de ensamblaje

Algoritmos secuenciales

Algoritmos de ensamblaje

- Algoritmos secuenciales
- Algoritmos independientes

Algoritmos de ensamblaje

- Algoritmos secuenciales
- Algoritmos independientes

Ensamblaje secuencial:

Entrada: Conjunto de datos \mathcal{D} , Algoritmos base $\mathcal{A}_1, ..., \mathcal{A}_r$ j=1

repetir

Tomamos el algoritmo A_j según los resultados anteriores

Tomamos el conjunto de datos modificado $f_j(\mathcal{D})$ de anteriores ejecuciones

Ejecutamos el algoritmo \mathcal{A}_j sobre $f_j(\mathcal{D})$

j=j+1

hasta que fin;

Resultado: Combinación de los resultados

Algoritmos de ensamblaje

- Algoritmos secuenciales
- Algoritmos independientes

Ensamblaje independiente:

Entrada: Conjunto de datos \mathcal{D} , Algoritmos base $\mathcal{A}_1, ..., \mathcal{A}_r$ j=1

repetir

Tomamos el algoritmo A_j Creamos el conjunto de datos modificado $f_j(\mathcal{D})$ Ejecutamos el algoritmo A_j sobre $f_j(\mathcal{D})$ j=j+1

hasta que fin;

Resultado: Combinación de los resultados

Salida: scores: puntajes

```
HICS
Entrada: D: dataset
scores = []
sub = subespacios de alto contraste

para cada S \in sub hacer

Ajustamos un modelo con el algoritmo LOF con la proyección sobre S
scores = scores + puntaje LOF
fin
scores = \frac{scores}{|sub|}
```

CalcularConstraste

Entrada: subespacio: subespacio, M: número de iteraciones del subsampling, α : valor para obtener el tamaño de la muestra, D: conjunto de datos $size = n \cdot \frac{|subespacio|}{\alpha}$

$$dev = 0$$

para cada $i \in [1, M]$ hacer

 $comp_atr = aleatorio \ de \ subespacio$
 $sel_obj = muestra \ aleatoria \ de \ D \ de \ tamaño \ size$
 $dev = dev + CalcularDev(comp_atr, sel_obj, subespacio, D)$

fin

 $dev = \frac{dev}{M}$

Salida: dev: contraste

Calcular Dev

Entrada: comp_atr: atributo con el que comparar, sel_obj: muestra seleccionada aleatoriamente, subespacio: subespacio sobre el que calcular la desviación, D: conjunto de datos

max = 0

```
para cada d \in D hacer
```

```
\begin{array}{l} \operatorname{cum}_1 = \sum_{o \in D} o[\operatorname{comp\_atr}] \; \operatorname{si} \; o[\operatorname{comp\_atr}] < d[\operatorname{comp\_atr}] \\ \operatorname{cum}_2 = \sum_{o \in \operatorname{sel\_obj}} o[\operatorname{comp\_atr}] \; \operatorname{si} \; o[\operatorname{comp\_atr}] < d[\operatorname{comp\_atr}] \\ f_a = \frac{\operatorname{cum}_1}{|D|} \\ f_b = \frac{\operatorname{cum}_2}{|D|} \\ \operatorname{subs} = |f_a - f_b| \\ \operatorname{si} \; \operatorname{subs} > \max \; \operatorname{entonces} \\ | \; \; \max = \operatorname{subs} \\ \operatorname{fin} \end{array}
```

fin

Salida: max: máxima desviación

OUTRES

Salida: r: puntajes

```
Entrada: o: instancia, S: subespacio
para cada i \in (D \setminus S) hacer
    S' = S \cup \{i\}
    si S' es relevante entonces
         den(o, S') = \frac{1}{n} \sum_{p \in AN(o, S')} K_e(\frac{dist_{S'}(o, p)}{\epsilon(|S'|)})
         dev(o, S') = \frac{\mu - den(o, S')}{2\sigma}
         si dev(o, S') \ge 1 entonces
              r(o) = r(o) \cdot \frac{den(o,S')}{dev(o,S')}
          fin
          OUTRES(o, S')
    fin
    en otro caso
          Para recursividad
     fin
fin
```

24

Subespacio relevante

Decimos que un subespacio es relevante si no está distribuido uniformemente.

Subespacio relevante

Decimos que un subespacio es relevante si no está distribuido uniformemente.

Procedimiento

Si la proyección de los datos sobre un subespacio está distribuida según una uniforme entonces sus proyecciones en una dimensión también lo están.

Elementos involucrados

$$AN(o,S) = \{p | dist_S(o,p) \le \epsilon(|S|)\}$$

Elementos involucrados

$$AN(o, S) = \{p | dist_S(o, p) \le \epsilon(|S|)\}$$

$$\epsilon(|S|) = 0.5 \cdot \frac{h_{optimal}(|S|)}{h_{optimal}(2)}$$

Elementos involucrados

$$AN(o, S) = \{p | dist_S(o, p) \le \epsilon(|S|)\}$$

$$\epsilon(|S|) = 0.5 \cdot \frac{h_{optimal}(|S|)}{h_{optimal}(2)}$$

$$h_{optimal}(d) = (\frac{8\Gamma(\frac{d}{2}+1)}{\pi^{\frac{d}{2}}}(d+4)(2\sqrt{\pi})^d)n^{\frac{-1}{d+4}}$$

Elementos involucrados

$$AN(o, S) = \{p|dist_S(o, p) \le \epsilon(|S|)\}$$

$$\epsilon(|S|) = 0.5 \cdot \frac{h_{optimal}(|S|)}{h_{optimal}(2)}$$

$$h_{optimal}(d) = (\frac{8\Gamma(\frac{d}{2} + 1)}{\pi^{\frac{d}{2}}}(d+4)(2\sqrt{\pi})^d)n^{\frac{-1}{d+4}}$$

 $K_{\epsilon}(x) = (1 - x^2) \ \forall x < 1$

Proyecciones Aleatorias

```
Entrada: d: dimension, D: dataset, k: número de histogramas y proyecciones no\_neg = [\sqrt{d}] proyecciones = [] para \ cada \ i \in [1, k] \ hacer ind = no\_neg \ indices \ aleatorios \ en \ [0, d] proy = \text{vector con ceros en todas las posiciones menos en ind,} donde \ hay \ valores \ sacados \ de \ una \ normal \ \mathcal{N}(0, 1) proyecciones = [proecciones, proy] fin
```

Salida: proyecciones: proyecciones

ObtenerHistogramas

fin

Salida: $\{h_i\}_{i=1}^k$: histogramas

LODA

```
Entrada: x: instancia, \{h_i\}_{i=1}^k: histogramas, \{w_i\}_{i=1}^k: vectores de proyección 

para i=1 \to k hacer
\begin{array}{c} z_i = x^T w_i \\ \text{Obtenemos } p_i = p_i(z_i) \text{ del histograma } h_i \\ \text{fin} \\ f = \frac{-1}{k} \sum_{i=1}^k \log(p_i(z_i)) \end{array}
```

Salida: f: puntaje de anomalía de x

Mahalanobis Kernel

Mahalanobis Kernel

Salida: puntuaciones

```
Mahalanobis Kernel Entrada: D
S = DD^T
S = Q\Delta^2 Q^T.
Almacenamos los vectores propios columna no negativos de Q\Delta en
 una matriz D'
Normalizamos D' para que tenga media 0 y varianza 1.
vector\_media = media(D')
puntuaciones = []
para cada fila en D' hacer
   score = distancia(vector_media, fila)
   puntuaciones = [puntuaciones, score]
fin
```

Componentes

1. Componente basado en distancias: KNN con k=5

Componentes

- 1. Componente basado en distancias: KNN con k = 5
- 2. Componente basado en dependencia: Mahalanobis Kernel

Componentes

- 1. Componente basado en distancias: KNN con k=5
- 2. Componente basado en dependencia: Mahalanobis Kernel
- 3. Componente basado en densidad en subespacios: IForest

Nota

Aplicamos en todos los componentes la técnica de subsampling.

Trinity Entrada: D

Ejecutamos KNN con k=5 y guardamos el resultado en E_1 Ejecutamos Mahalanobis Kernel y guardamos el resultado en E_2 Ejecutamos IForest y guardamos el resultado en E_3 Estandarizamos E_1 , E_2 y E_3 a media 0 y varianza 1 Hacemos la media para obtener las puntuaciones **Salida:** puntuaciones

Recursos usados

• Implementación hecha en Python3

Recursos usados

- Implementación hecha en Python3
- Disponible en GitHub

Recursos usados

- Implementación hecha en Python3
- Disponible en GitHub
- Documentada con Sphinx

Resultados

Conversión del problema a semisupervisado

Conversión del problema a semisupervisado

Problema

Si queremos medir el rendimiento de los modelos necesitamos conjuntos de datos que tengan detectadas las anomalías.

Conversión del problema a semisupervisado

Problema

Si queremos medir el rendimiento de los modelos necesitamos conjuntos de datos que tengan detectadas las anomalías.

Solución

Vamos a utilizar los conjuntos de datos de ODDS de la Universidad de Stony Brooks.

Problema

Conjuntos de datos mantenidos por la Universidad Stony Brooks. Etiquetados los datos con 0 si son normales y 1 si son anomalías.

Nombre	Dimensionalidad	Número de instancias
annthyroid	6	7200
arrhythmia	274	452
breastw	9	683
cardio	21	1831
glass	9	214
ionosphere	33	351
letter	32	1600
lympho	18	148
mammography	6	11183
mnist	100	7603
musk	166	3062
optdigits	64	5216
pendigits	16	6870
pima	8	768

Nombre	Dimensionalidad	Número de instancias
satellite	36	6435
satimage-2	36	5803
speech	400	3686
thyroid	6	3772
vertebral	6	240
vowels	12	1456
wbc	30	378
wine	13	129

Modelos PyOD

Experimentación

Los 5 modelos se han puesto frente a modelos clásicos implementados en la librería PyOD.

Modelos PyOD

Experimentación

Los 5 modelos se han puesto frente a modelos clásicos implementados en la librería PyOD.

Angle-Based Outlier Detection (ABOD), Connectivity-Based Outlier Factor (COF), Histogram-Based Outlier Score (HBOS), K Nearest Neighbors (KNN), Local Outlier Factor (LOF), Minimum Covariance Determinant (MCD), One-Class Support Vector Machines (OCSVM), Principal Component Analysis (PCA), Subspace Outlier Detection (SOD) y Stochastic Outlier Selection (SOS)

Acierto

Mejores modelos

Trinity, Mahalanobis Kernel y LODA

Acierto

Mejores modelos

Trinity, Mahalanobis Kernel y LODA

Peores modelos

HICS y OUTRES

Dificultad del problema

Buenos resultados

Mejor resultado de HICS

Porcentaje de acierto

Data / Mod	Trinity	MK	OUTRES	LODA	HICS
annthyroid	26.2172 %	12.3595 %	7.4906 %	8.9887 %	6.5543 %
arrhythmia	48.4848 %	51.5151%	NAN	37.8787 %	NAN
breastw	93.3054 %	95.3974%	50.6276 %	95.3974	1.2552 %
cardio	44.3181 %	51.7045 %	NAN	59.0909 %	NAN
glass	11.1111 %	0 %	0 %	0 %	11.1111 %
ionosphere	73.0158 %	57.1428 %	NAN	46.8253 %	NAN
letter	16 %	15 %	NAN	4 %	NAN
lympho	83.3333 %	50 %	NAN	0 %	NAN
mammography	25.7692 %	1.1538 %	5.3846 %	28.0769 %	8.0769 %
mnist	40.2857 %	54.7142 %	NAN	2 %	NAN
musk	34.0206 %	0 %	NAN	32.9896 %	NAN
optdigits	1.3333 %	0 %	NAN	0 %	NAN
pendigits	25 %	16.6666 %	2.5641 %	0 %	NAN
pima	50.7462 %	38.8059 %	34.7014 %	54.8507 %	30.5970 %

Porcentaje de acierto

Data / Mod	Trinity	MK	OUTRES	LODA	HICS
satellite	54.3713 %	32.8585 %	NAN	12.6227 %	NAN
satimage-2	90.1408 %	90.1408 %	NAN	0 %	NAN
speech	0 %	4.9180 %	NAN	3.2786 %	NAN
thyroid	39.7849 %	22.5806 %	5.3763 %	1.0752 %	0 %
vertebral	3.3333 %	10 %	3.3333 %	0 %	3.3333 %
vowels	24 %	0 %	4 %	8 %	32 %
wbc	42.8571 %	0 %	NAN	71.4285 %	NAN
wine	60 %	10 %	0 %	80 %	80 %

Proyecciones

Proyección del conjunto wine

Proyecciones

Proyección del conjunto breastw

Proyecciones

Proyección del conjunto optdigits

Proyección del conjunto pima

Valores AUC

$$TPR = \frac{VP}{VP + FN}, \ FPR = \frac{FP}{VN + FP}$$

Valores AUC

$$TPR = \frac{VP}{VP + FN}, \ FPR = \frac{FP}{VN + FP}$$

Área bajo la curva

Data / Model	Tinity	MK	OUTRES	LODA	HICS
annthyroid	0.6015	0.5266	0.5003	0.5084	0.4953
arrhythmia	0.6983	0.7161	NAN	0.6362	NAN
breastw	0.9485	0.9646	0.6202	0.9646	0.2405
cardio	0.6919	0.7328	NAN	0.7737	NAN
glass	0.5360	0.4780	0.4780	0.4780	0.5360
ionosphere	0.7895	0.6657	NAN	0.5852	NAN
letter	0.5519	0.5466	NAN	0.488	NAN
lympho	0.9131	0.7394	NAN	0.4788	NAN
mammography	0.6200	0.4940	0.5156	0.6318	0.5294
mnist	0.6711	0.7506	NAN	0.4603	NAN
musk	0.6593	0.4836	NAN	0.6539	NAN
optdigits	0.4920	0.4851	NAN	0.4851	NAN
pendigits	0.6162	0.5736	0.5015	0.4883	NAN
pima	0.6217	0.5300	0.4985	0.6532	0.4669

Data / Model	Tinity	MK	OUTRES	LODA	HICS
satellite	0.6662	0.5089	NAN	0.3609	NAN
satimage-2	0.9500	0.9500	NAN	0.4938	NAN
speech	0.4915	0.5165	NAN	0.5082	NAN
thyroid	0.6913	0.6031	0.5149	0.4928	0.4873
vertebral	0.4476	0.4857	0.4476	0.4285	0.4476
vowels	0.6064	0.4822	0.5029	0.5236	0.6479
wbc	0.6974	0.4705	NAN	0.8487	NAN
wine	0.7831	0.5121	0.4579	0.8915	0.8915

Curvas ROC para Trinity

Curvas ROC para Mahalanobis Kernel

Curvas ROC para OUTRES

Curvas ROC para LODA

Curvas ROC para HICS

Tiempos

Data / Mod	Trinity	MK	OUTRES	LODA	HICS
annthyroid	28.5212	390.5937	193.6110	137.8692	1169.3422
arrhythmia	28.8828	0.1243	NAN	9.0474	NAN
breastw	23.3296	0.3165	117.8225	13.2879	315.4130
cardio	33.0496	6.5851	NAN	36.6768	NAN
glass	12.5272	0.0220	11.5349	4.0798	79.2560
ionosphere	16.5319	0.0565	NAN	6.9664	NAN
letter	41.8301	5.1648	NAN	31.8875	NAN
lympho	12.2874	0.0187	NAN	2.8804	NAN
mammography	31.5619	1444.1323	27765.1978	224.8207	2502.0258
mnist	42.7623	464.8962	NAN	150.1434	NAN
musk	42.8683	34.4336	NAN	60.4207	NAN
optdigits	36.2723	145.6876	NAN	103.9115	NAN
pendigits	34.0999	340.2855	2757.0345	135.0839	NAN
pima	26.3576	0.3482	40.6379	15.2128	150.1283

Tiempos

Data / Mod	Trinity	MK	OUTRES	LODA	HICS
satellite	48.2618	301.9960	NAN	129.6712	NAN
satimage-2	39.7535	200.5037	NAN	113.2818	NAN
speech	76.6633	62.2470	NAN	73.0844	NAN
thyroid	32.6503	65.3469	64.2370	72.1607	376.2697
vertebral	13.4726	0.0301	1.7653	4.6250	9.1404
vowels	36.2093	3.1876	426.6157	28.2930	5126.5627
wbc	17.0011	0.0675	NAN	7.5109	NAN
wine	11.2756	0.0165	58.9642	2.4540	774.9212

Conclusiones y trabajo futuro

 Rendimiento similar a los clásicos aunque los superan en algunos casos: potencial.

- Rendimiento similar a los clásicos aunque los superan en algunos casos: potencial.
- Mal enfoque de los algoritmos HICS y OUTRES. Detección de anomalías no triviales.

- Rendimiento similar a los clásicos aunque los superan en algunos casos: potencial.
- Mal enfoque de los algoritmos HICS y OUTRES. Detección de anomalías no triviales.
- Consumo de tiempo mucho mayor.

- Rendimiento similar a los clásicos aunque los superan en algunos casos: potencial.
- Mal enfoque de los algoritmos HICS y OUTRES. Detección de anomalías no triviales.
- Consumo de tiempo mucho mayor.
- Valores perdidos y tratamiento.

- Rendimiento similar a los clásicos aunque los superan en algunos casos: potencial.
- Mal enfoque de los algoritmos HICS y OUTRES. Detección de anomalías no triviales.
- Consumo de tiempo mucho mayor.
- Valores perdidos y tratamiento.
- Algoritmo nuevo.

Gracias por su atención. ¿Preguntas?