

STOR 320 Programming III

Lecture 14

Yao Li

Department of Statistics and Operations Research UNC Chapel Hill

Loop Functions (Apply Functions)

- Chapter 18 in R Programming for Data Science
- lapply(): Loop over a list and evaluate a function on each element
- sapply(): Same as lapply but try to simplify the result
- apply(): Apply a function over the margins of a matrix/data frame

lapply()

Operates on list, data frame and vectors

```
lapply(X, FUN, ...)
```

- Arguments:
 - X: A vector, list, or data frame
 - FUN: Function applied to each element of x
 - ...: Other arguments not in loop

lapply()

sapply()

Like lapply() but simplifies the output

```
sapply(X, FUN, OTHER)
```

- Arguments:
 - X: A vector, list, or data frame
 - FUN: Function applied to each element of x
 - OTHER: Other arguments not in loop

```
sapply(cars, min)

speed dist
4 2
```

```
typeof(sapply(cars, min))

[1] "double"
```


Example

 Use sapply() or lapply() to generate 100 random samples from normal distributions with means of 0 to 99 and save the random samples to A.

The k-th component of a is generated from N(k-1,1).

```
| set.seed(200)
| a = rep(NA,100)
| for (k in 1:100) {
| a[k]=rnorm(1,k-1,1) | solution |
| set.seed(200)
| A = sapply(0:99,rnorm,n=1,sd=1) | identical(a,A) | solution |
```


apply()

- Takes data frame or matrix as an input
- Gives output in vector, list or array

apply(X, MARGIN, FUN, ...)

- X: a data frame or matrix
- MARGIN: take a value or range between 1 and 2 to define where to apply the function:
 - MARGIN=1: the manipulation is performed on rows
 - MARGIN=2: the manipulation is performed on columns
 - MARGIN=c(1,2): the manipulation is performed on rows and columns
- FUN: tells which function to apply.

apply()

```
```{r}
M = matrix(1:1000,100,10)
sum_row = apply(M, 1, sum)
sum_col = apply(M, 2, sum)
identical(sum_row,as.integer(rowSums(M)))
identical(sum_col,as.integer(colSums(M)))
               ```{r}
               MIN = apply(Cigar, 2, min)
 [1] TRUE
               Q1 = apply(Cigar, 2, quantile, probs=0.25)
 [1] TRUE
               Q2 = apply(Cigar, 2, quantile, probs=0.5)
               Q3 = apply(Cigar, 2, quantile, probs=0.75)
              MAX = apply(Cigar, 2, max)
               FiveSum.Cigar = rbind(MIN, Q1, Q2, Q3, MAX)
               FiveSum.Cigar
                                                                              ndi sales
                                                                                pimin
                    state year
                                price
                                           pop
                                                  pop16
                                                          cpi
                MIN
                     1.0 63.0
                              23.400
                                        319.00
                                                 215.200 30.6
                                                               1322.573 53.4
                                                                               23.400
                Q1
                    15.0 70.0
                              34.775
                                       1053.00
                                                781.175 38.8
                                                               3327.869 107.9
                                                                               31.975
                Q2
                    26.5 77.5
                              52.300
                                       3174.00
                                                2315.300
                                                         62.9
                                                               6281.201 121.2
                                                                               46.400
                Q3
                    40.0 85.0
                               98.100
                                       5280.25
                                                3914.325 107.6 11024.110 133.2
                                                                               90.500
                    51.0 92.0 201.900 30703.30 22920.000 140.3 23074.000 297.9 178.500
```


Statistical Programming Assignment

- Instructions
 - Download Analysis 3 Zip Folder
 - Unzip Folder
 - Open Analysis 3 Rmd File
 - Knit to HTML
 - Read Introduction
- Three Part Assignment
 - Each Part Self Contained
 - Most Answers Require Copy-and- Paste
 - Where You See COMPLETE You Should Write/Place Code
 - Leave Code as is When You See #DO NOT CHANGE

Part 1: Discussion

- Process of Programming
 - Create Practice Example
 - Check Code Works
 - Apply Code to Real Data
 - Check Code Works
 - Create a Function of the Process
- Goals
 - Create a Function that Creates a Factor Variable of Abbreviated Weekdays (Easy)
 - Create a Function that Creates a Plot (Difficult)
- Start Working (15 min)

Part 2: Discussion

- Focus on Traffic Volume (DATA2) and Specific Location ("L103")
- Look at Table
- Goal: Reconstruct this Table

```
head(OUTPUT) #DO NOT CHANGE

## # A tibble: 6 x 3
## DAY median IQR
## <int> <dbl> <dbl>
## 1 3 85 34
## 2 4 84 37
## 3 5 76 34.2
## 4 6 83 33
## 5 7 79 38.0

## 6 10 87 21
```


Part 2: Discussion

- Steps:
 - Given the Day in April, Create Function that Outputs the Associated Row
 - Use the Function in a Loop to Construct the Table
- Two Loops
 - Initiate with NULL
 - Initiate with Empty Tibble
- Look at Lecture on Loops
- Q3 is Tricky
- Start Working (15 min)

Part 3: Discussion

- Functions That Apply Functions Across Dimensions Of R Object
- Doesn't Require a Loop
- Tibbles are Matrices
 - Apply Functions to Rows
 - Apply Functions to Columns (Think Summarize)
- Apply() Function to Matrix
 - To Rows apply(Matrix, 1, Function)
 - To Columns apply(Matrix, 2, Function)
- Start Working (Rest of Class)