

Analysis HW 8 - Luke Miles - November 22, 2015

Exercise 7.1 - 6:

- (a) Let f(x) := 2 if $0 \le x < 1$ and f(x) := 1 if $1 \le x \le 2$. Show that $f \in \mathcal{R}[0,2]$ and evaluate its integral.
- (b) Let h(x) := 2 if $0 \le x \le 1$, h(1) := 3 and h(x) := 1 if $1 < x \le 2$. Show that $h \in \mathcal{R}[0,2]$ and evaluate its integral.

Solution:

(a) Let $\varepsilon > 0$, choose $\delta = \varepsilon/3$, and let $\dot{\mathcal{P}}$ be a tagged partition of [0,2] with $||\dot{\mathcal{P}}|| < \delta$. Now break $\dot{\mathcal{P}}$ into two pieces, $\dot{\mathcal{P}}_1$ with its tags in [0,1) and $\dot{\mathcal{P}}_2$ with its tags in [1,2]. Then the value of any x in any interval in $\dot{\mathcal{P}}_1$ is less than $1 + \delta$ and hence the value of $S(f,\dot{\mathcal{P}}_1)$ is less than $2(1 + \delta)$. Likewise, $S(f,\dot{\mathcal{P}}_2) \leq 1 + \delta$. Putting this all together:

$$|S(f, \dot{\mathcal{P}}) - 3| = |S(f, \dot{\mathcal{P}}_1) + S(f, \dot{\mathcal{P}}_2) - 3| < |2(1+\delta) + (1+\delta) - 3| = 3\delta = \varepsilon$$

(b) Do the same argument as for (a), but have 3 partitions. One whose tags are in [0,1), one who just has the tag 1, and one whose tags are in (1,2]. Then S of these three chunks can't exceed $2(1+\delta)$, 3δ , and $1+\delta$ respectively. So their sum cannot exceed $3+5\delta$, and if we choose $\delta=\varepsilon/5$, then S of the whole is within ε of 3. Hence the integral exists and is 3.

Exercise 7.1 - 9: If $f \in \mathcal{R}[a,b]$ and if $(\dot{\mathcal{P}}_n)$ is any sequence of tagged partitions of [a,b] such that $\|\dot{\mathcal{P}}_n\| \to 0$, prove that $\int_a^b f = \lim_n S(f,\dot{\mathcal{P}}_n)$. Suppose $\int_a^b f = L$. Then

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall \dot{\mathcal{P}} : (\|\dot{\mathcal{P}}\| < \delta \longrightarrow |S(f, \dot{\mathcal{P}}) - L| < \varepsilon),$$

where $\dot{\mathcal{P}}$ is a tagged partition over [a,b]. And since $\|\dot{\mathcal{P}}_n\| \to 0$, for any $\delta > 0$ we can choose a large enough k so that $\|\dot{\mathcal{P}}_k\| < \delta$ and hence $S(f,\dot{\mathcal{P}})$ is within ε of L. Taking the limit as $n \to \infty$, we reach equality.

Exercise 7.1 - 10: Let g(x) := 0 if $x \in [0,1]$ is rational and g(x) := 1/x if $x \in [0,1]$ is irrational. Explain why $g \notin \mathcal{R}[0,1]$. However, show that there exists a sequence $(\dot{\mathcal{P}}_n)$ of tagged partitions of [a,b] such that $\|\dot{\mathcal{P}}_n\| \to 0$ and $\lim_n S(g,\dot{\mathcal{P}}_n)$ exists.

Solution:

- Regardless of a chosen L, ε , and δ , we know $S(g, \dot{\mathcal{P}}) = 0$ if rational tags are chosen for $\dot{\mathcal{P}}$ and $S(g, \dot{\mathcal{P}}) \geq 1$ if irrational tags are chosen. Since the Riemman integral is unique, we have that $g \notin \mathcal{R}[0,1]$.
- Define $\dot{\mathcal{P}}_n$ to evenly split the interval [a,b] into n pieces of size 1/n, with all rational tags. Then clearly $||\dot{\mathcal{P}}|| = 1/n$ goes to zero as n goes to infinity. Furthermore, for any n, $S(g,\dot{\mathcal{P}}) = 0$.

Exercise 7.1 - 14: Let $0 \le a < b$, let $Q(x) := x^2$ for $x \in [a, b]$ and let $\mathcal{P} := \{[x_{i-1}, x_i]\}_{i=1}^n$ be a partition of [a, b]. For each i, let q_i be the positive square root of $\frac{1}{3}(x_i^2 + x_i x_{i-1} + x_{i-1}^2)$.

- (a) Show that q_i satisfies $0 \le x_{i-1} \le q_i \le x_i$.
- (b) Show that $Q(q_i)(x_i x_{i-1}) = \frac{1}{3}(x_i^3 x_{i-1}^3)$.
- (c) If \dot{Q} is the tagged partition with the same subintervals as \mathcal{P} and the tags q_i , show that $S(Q,\dot{Q}) = \frac{1}{3}(b^3 a^3)$.
- (d) Show that $Q \in \mathcal{R}[a,b]$ and $\int_a^b Q = \int_a^b x^2 dx = \frac{1}{3}(b^3 a^3)$.

Solution:

- (a) Expanding q_i , we have $0 \le x_{i-1} \le \sqrt{\frac{1}{3}(x_i^2 + x_i x_{i-1} + x_{i-1}^2)} \le x_i$. The first inequality clearly holds because $0 \le a$. To get the second and third inequalities, we square* and multiply by three: $3x_{i-1} \le x_i^2 + x_i x_{i-1} + x_{i-1}^2 \le 3x_i^2$. And this is clear enough if we keep in mind that $x_{i-1} < x_i$.
- (b) Just expand and simplify:

$$Q(q_i) \cdot (x_i - x_{i-1}) = (x_i^2 + x_i x_{i-1} + x_{i-1}^2)/3 \cdot (x_i - x_{i-1}) = \frac{1}{3}(x_i^3 - x_{i-1}^3)$$

(c) We get a telexcoping sum.

$$S(Q, \dot{Q}) = \sum Q(q_i)(x_i - x_{i-1}) = \sum (x_i^3 - x_{i-1}^3)/3 = (b^3 - a^3)/3$$

(d) For any ε , δ , and $\dot{\mathcal{P}}$, S is constant and evaluates to $(b^3 - a^3)/3$.

^{*}This is allowed because everything is positive.

Exercise 7.2 - 8: Suppose that f is continuous on [a,b], that $f(x) \ge 0$ for all $x \in [a,b]$ and that $\int_a^b f = 0$. Prove that f(x) = 0 for all $x \in [a,b]$.

<u>Solution</u>: Suppose that, for some $c \in [a, b]$, we have f(c) > 0. If, for some $\alpha > 0$, inf $f([c - \alpha, c + \alpha]) > 0$, then clearly the integral would be nonzero.[†] So no such α exists and hence c is a point of discontinuity and we have a contradiction.

Exercise 7.2 - 10: If f and g are continuous on [a,b] and if $\int_a^b f = \int_a^b g$, prove that there exists $c \in [a,b]$ such that f(c) = g(c).

<u>Solution</u>: If no such c existed, then one function would have to be strictly greater than the other[‡] and their integrals would be different. Hence, c must exist.

Exercise 7.2 - 12: Show that $g(x) := \sin(1/x)$ for $x \in (0,1]$ and g(0) := 0 belongs to $\mathcal{R}[0,1]$. Solution: With help from book hint. Note that g is bounded by 1 on [0,1] and that $\int_a^1 g$ exists for all $a \in (0,1)^\S$. Exercise 7.2 - 11 applies and we get that $g \in \mathcal{R}[a,b]$.

Exercise 7.2 - 13: Give an example of a function $f:[a,b] \to \mathbb{R}$ that is in $\mathcal{R}[c,b]$ for every $c \in (a,b)$ but which is not in $\mathcal{R}[a,b]$.

<u>Solution</u>: f(x) := 1/x with a := 0, b := 1 works. f is clearly in $\mathcal{R}[c, 1]$ for all $c \in (0, 1)$ because it is a continuous function over a closed interval. And since $\int_c^1 f$ gets arbitrarily large as c approaches 0 from the right, $\int_0^1 f$ can not exist.

Exercise 7.2 - 18: Let f be continuous on [a,b], let $f(x) \ge 0$ for $x \in [a,b]$, and let $M_n := (\int_a^b f^n)^{1/n}$. Show that $\lim(M_n) = \sup\{f(x) : x \in [a,b]\}$.

<u>Solution</u>: skipped

Exercise 7.3 - 8: Let F(x) be defined for $x \ge 0$ by F(x) := (n-1)x - (n-1)n/2 for $x \in [n-1,n), n \in \mathbb{N}$. Show that F is continuous and evaluate F'(x) at points where this derivative exists. Use this result to evaluate $\int_a^b [x] dx$ for $0 \le a < b$, where [x] is the floor of x.

<u>Solution</u>: If $x \in (n-1, n)$ then F is linear and hence continuous.

[†]Because $\int_{c-\alpha}^{c+\alpha} f > 0$ and there are no negative chunks to cancel it out.

[‡]intermediate value theorem

[§]continuous on closed interval

[¶]This can be seen with a geometric argument where you draw rectangles of width 1/(n-1) - 1/n and height n, with a combined area as big as you want. Alternatively, for any $\alpha > 0$, choose $a = e^{-\alpha}$.

We will show f is also continuous at x = n:

$$\lim_{x \to n-} F(x) = \lim_{x \to n-} ((n-1)x - (n-1)n/2) = (n-1)n - (n-1)n/2 = ((n+1)-1)n - ((n+1)-1)(n+1)/2 = F(n)$$

F'(x) = n - 1 = [x] and exists only when $x \in (n - 1, n)$. By the fundamental theorem of calculus etc:

$$\int_{a}^{b} [x]dx = \int_{a}^{b} F'(x) = F(b) - F(a)$$

Exercise 7.3 - 10: Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and let $v:[c,d] \to \mathbb{R}$ be differentiable on [c,d] with $v([c,d]) \subseteq [a,b]$. If we define $G(x) := \int_a^{v(x)} f$, show that $G'(x) = f(v(x)) \cdot v'(x)$ for all $x \in [c,d]$. Solution: Since $f \in \mathcal{R}[a,b]$, we can choose a function F so that F'(x) = f(x) for all $x \in [a,b]$. Then

$$\frac{d}{dx} \int_{a}^{v(x)} f(x)dx = \frac{d}{dx} (F(v(x)) - F(a)) = \left(\frac{d}{dx} F(v(x))\right) - \left(\frac{d}{dx} F(a)\right) = \|f(v(x)) \cdot v'(x)\| + \left(\frac{d}{dx} F(a)\right) - \left(\frac{d}{dx} F(a)\right) = \|f(v(x)) \cdot v'(x)\| + \left(\frac{d}{dx} F(a)\right) - \left(\frac{d}{dx} F(a)\right) = \|f(v(x)) \cdot v'(x)\| + \left(\frac{d}{dx} F(a)\right) - \left($$

Exercise 7.3 - 14: Show there does not exist a continuously differentiable function f on [0,2] such that f(0) = -1, f(2) = 4, and $f'(x) \le 2$ for $0 \le x \le 2$.

<u>Solution</u>: In general, if $g(x) \le h(x)$ for all x in [a,b], then $\int_a^b g \le \int_a^b h$. But if the described f existed then we'd have $2 \ge f'(x)$ and $\int_0^2 2 = 4 < 5 = \int_0^2 f'(x)$ which is ridiculous.

Exercise 4.3 - 16: If $f:[0,1] \to \mathbb{R}$ is continuous and $\int_0^x f = \int_x^1 f$ for all $x \in [0,1]$, show that f(x) = 0 for all $x \in [0,1]$.

<u>Solution</u>: If $\int_0^x f = \int_x^1 f$ then there exists an F so that F(x) - F(0) = F(1) - F(x) and hence 2F(x) = F(1) - F(0). Taking d/dx of both sides, we have 2f(x) = 0 and hence f(x) = 0 for all $x \in [0, 1]$.

Chain rule on first term, second term is zero.