Spanning Tree Protocol (STP)

Redundancy in Layer 2 Switched Networks

- Redundancy Deliminating single points of failure.
- Path redundancy Dephysical and logical Layer 2 loops (frame has not TTL) Depty (frame has not TTL)
- STP logically blocks physical loops, preventing frames circling the network forever.
- STP compensates for a failure by recalculating and opening up previously blocked ports.
- STA: Spanning Tree Algorithm
 - Creates a loop-free topology by selecting a single root bridge where all the other switches determine a single least-cost path, blocking redundant paths and recalculating in case of Link Failure.
- **!** STP enabled by default!!!

STP

Problems solved:

- MAC database instability: MAC address table constantly changing from the broadcast frames High CPU Switch unable to forward frames
- o 🚒 Broadcast Storm: high number of broadcasts overwhelming the network 🖖
- Duplicated unicast frames: devices receive twice the same frame from different paths.

• Usages:

- Solves L2 looping problems
- Provides alternative paths in case of failure
- Provides VLAN Load Balancing between trunks

STP Step 1 - Elect the Root Bridge (RB)

- STA designates a single switch as root bridge
- Root Bridge = Switch with the lowest BID (Bridge ID)
- BID = (Bridge Priority + VLAN ID) . Bridge MAC
 - Bridge Priority = 32768 (default). Range: 0...61440 (increments of 4096)
 - Can be changed to elect another root bridge
 - VLAN ID = Extended System ID
 - Bridge ID = Switch MAC Address

Example:

S1 BID: 32768.00A0.1101.V001

S2 BID: 32768.00A0.FF01.6689

S3 BID: 32767.0010.FF32.991B → Lowest → BID → Root Bridge

STP Step 1 - Elect the Root Bridge

STP Step 11 - Changing and verify Root Bridge

Option 1: Select root bridge manually

```
S1(config)# spanning-tree VLAN 1 root primary
...
S2(config)# spanning-tree VLAN 1 root secondary
```

Option 2: Change the priority value

```
S1(config)# spanning-tree VLAN 1 priority 24576
```

Verify Bridge ID and Root Bridge election

```
S1# show spanning-tree
```

STP Step 2 - Elect the Root Ports (RP)

- EVERY NON-ROOT SWITCH will select one RP.
 - **RP** (11, if equals then 22, ...):
 - 1 Port with overall lower cost to the Root Bridge
 - 2 Port with lower **Sender Bridge ID**
 - 3 Port with lower Sender Port Priority
 - 4 Port with lower **Sender Port ID**

Root Path Cost

Defaults

Link Speed	STP Cost: IEEE 802.1D-1998	RSTP Cost: IEEE 802.1w-2004
10 Gbps	2	2,000
1 Gbps	4	20,000
100 Mbps	19	200,000
10 Mbps	100	2,000,000

Modify Path Cost

```
S1(config)# interface f0/1
S1(config-if)# spanning-tree cost 25
```

STP Step 2 - Elect the Root Ports

STP Step 3 - Elect Designated Ports (DP)

- EVERY SEGMENT between 2 switches will have one DP.
 - All ports of Root Bridge
 DP
 - One end of a segment is RP DOTHER end is DP
 - All ports attached to end devices
 - Other segments without **DP**, one **DP** (**11**, if equals then **2**, ...):
 - 1 Port with overall lower cost to the Root Bridge
 - Port with lower Sender Bridge ID
 - 3 Port with lower Sender Port Priority
 - 4 Port with lower **Sender Port ID**

STP Step 3 - Elect Designated Ports

STP Step 4 - Elect Alternate/Blocked Ports (ALT/BLK)

Block ports that are not ■ RP or ■ DP ➡ ■ ALT/BLK

Multiple Equal-Cost Path: Lower Sender BID

S2: ■ RP is F0/1, because S4 has a lower
sender BID than S3.

Same cost Different Sender BID

Multiple Equal-Cost Path: Lower Sender Port ID

S4: ■ RP is F0/6, because S1 F0/1 has a lower 🛂 sender Port ID than S1 F0/2.

Same cost Different Sender BID Different Sender Port ID

STP Timers and Port States

STP convergence requires 3 timers, defined in Root Bridge (changeable):

- **Mello Timer**: Interval between PDUS. Default = **2 seconds** (range: 1...10 seconds)
- **J** Forward Delay Timer: Time that is spent in the listening and learning state. Default = **15 seconds** (range: 4...30 seconds)
- • Max Age Timer: Maximum length of time that a switch waits before attempting to change the STP Topology. Default = 20 seconds (range: 6...40 seconds)

Per-VLAN Spanning Tree (PVST)

A Root Bridge is elected for EACH spanning tree instance/VLAN Decided Load Balancing

• Cisco switches running IOS 15.0+ run PVST+ by default

Figure 10-2 Load Balancing with One Tree for VLAN 1 and Another for VLAN 2

PVST Config: PortFast and BPDU Guard

- PortFast: Ports that have end devices (Access Ports). Port in PWD state.
- BPDU Guard: Disables a PortFast port if a BPDU is received Port in errdisabled

```
S2(config)# interface range f0/11,f0/18,f0/6
S2(config-if-range)# spanning-tree portfast
S2(config-if-range)# spanning-tree bpduguard enable
```


Different Versions of STP

- Common STP (CST/STP/802.1D): 1998. 1 instance regardless number of VLANs.
- Per-VLAN STP (PVST+): Cisco enhanced STP. 1 instance per VLAN. PortFast, BPDU Guard.
- Rapid STP (RSTP/802.1w): Evolution of STP that provides faster convergence
- Rapid PVST+: Cisco enhanced RSTP. 1 instance per VLAN.
- Multiple STP (MSTP/802.1s): Maps multiple VLANs into the same spanning tree instance.
- Multiple Spanning Tree (MST): Cisco enhanced MSTP. Provides up to 16 instances of RSTP.

RSTP

- Alternate Port (alternate path to the Root Bridge) change to FWD state without waiting the network to converge.
- Backup Port: backup to a shared medium (Hub). Less common!!

