Assignment 1

- 1. (10 marks) Prove with induction that $\forall n > 0 \ \forall w \in \{a,b\}^* : n_a(w^n) = n \cdot n_a(w)$. You may use without proof that $n_a(xy) = n_a(x) + n_a(y)$. Hint: the recursive definition of w^n is $w^0 = \epsilon$ and $w^{n+1} = w \cdot w^n$.
- 2. (10 marks) Prove that for any language $L \subseteq \Sigma^*$ that $(L^r)^r = L$. You may use the fact that $(w^r)^r = w$ without proof. Hint: recall languages are sets, so this question relates to set equality.
- 3. (10 marks) Prove $(\forall i \in \mathbb{N} : w^i = \epsilon) \Leftrightarrow w = \epsilon$. Be sure to prove both directions of the implication. You may use without proof the fact that $\forall w \in \Sigma^* \forall i \geq 0 : |w^i| = i \cdot |w|$.
- 4. (10 marks) Let L, L' languages over Σ^* with $0 < |L| \le |L'| < n$ for some $n \in \mathbb{N}$. Prove formally using the definition of concatenation that $|L'| \le |L \cdot L'| \le |L| \cdot |L'|$. You may use the following lemma without proof: if w, x, y are words and $x \ne y$ then $wx \ne wy$.
- 5. (10 marks) Prove that $\forall L \subseteq \{0\}^* \Rightarrow L = L^r$. You may use without prove the fact that $|w| = |w^r|$.