Division Lemma

Division Lemma

Division Lemma

The Division Lemma (Euclid)

Let $d \in \mathbb{N}$. Then for each $x \in \mathbb{Z}$, there exist unique numbers $q \in \mathbb{Z}$ and $r \in \{0, \dots, d-1\}$ such that x = (qd) + (r)

Outline of Proof.

quotient divisor

- **1** Prove existence of q and r when $x \in \omega$ by induction.
- (trea) P(x)

vemainder

2 Prove existence of q and r when $x \in \mathbb{Z}$.

- **1** Prove uniqueness of q and r.
- · (\den)(\frac{\pi}{\pi} \frac{\pi}{\pi} \frac

. P(x) is a "unique existence" sentence.

Strategy for uniqueness proof (See Lee 7 on uniqueness)

 $(\forall q_1, q_2 \in \mathbb{Z})(\forall r_1, r_2 \in \{0, ..., d-1\}) (\lambda = q_1 d + r_1) \land (b_1 = q_2 d + r_2)$

 $\Rightarrow (q_1 = q_2) \wedge (r_1 = r_2)$

Part 1: Proof of Existence of q and r when $x \in \omega$

Let P(x) be the sentence

```
There exist numbers q\in\mathbb{Z} and r\in\{0,\ldots,d-1\} such that x=qd+r. (WTS: (\forall x\in\omega) \rho(x) by induction)

BASE CASE: \rho(0) is true because \rho(0)=0.
```

CONCLUSION: Therefore, by induction, for each $x \in \omega$, P(x) is true.

INDUCTIVE STEP: Let
$$x \in \omega$$
 such that $P(x)$ is true. So we can pick $g_0 \in \mathbb{Z}$ and $r_0 \in \{0, \cdots, d-1\}$ such that $x = g_0 d + r_0$. Then $x_0 + 1 = g_0 d + r_0 + 1$. Now either $r_0 \in \{0, \cdots, d-2\}$ or $r_0 = d-1$.

Case 1. Suppose $r_0 \in \{0, \cdots, d-2\}$. Then $r_0 + 1 \in \{0, \cdots, d-1\}$. Let $g_0 = g_0$ and $r_0 = r_0 + 1$.

Then $g_0 \in \mathbb{Z}$, $r_0 \in \{0, \cdots, d-1\}$, and $x_0 + 1 = g_0 d + r_0$.

Case 2. Suppose $r_0 = d-1$. Then $x_0 + 1 = g_0 d + r_0 + 1 = g_0 d + d-1 + 1 = g_0 d + d = (g_0 + 1) d$.

Let $g_0 = g_0 + 1$ and $r_0 = 0$. Then $g_0 \in \mathbb{Z}$, $r_0 \in \{0, \cdots, d-1\}$, and $x_0 \in \mathbb{Z}$ and x_0

4/6

Part 2: Proof of Existence of q and r when $x \in \mathbb{Z}$

Consider any $x \in \mathbb{Z}$. Then either $x \ge 0$ or $x \le -1$.

Case 1. Suppose $x \ge 0$. Then $x \in \omega$, so P(x) is true by Part 1.

Case 1. Suppose
$$x \ge 0$$
. Then $x \in \omega$, so $F(x)$ is true by Part.

Case 2. Suppose $x \le -1$. Then $-t \in \omega$, so P(-t) is true by Part 1.

So we can pick
$$g \in \mathbb{Z}$$
 and $g \in \{0, \dots, d-1\}$ such that $-x = g \cdot d + r_0$.

Then
$$N = -q_0 d - r_0$$
 and $N + 1 = q_0 d - r_0 + 1$. Now $r_0 = 0$ or $r_0 \in \{1, \dots, d+\}$
Subcase a Suppose $r_0 = 0$. Then $N + K = -q_0 d + K$. Let $q = -q_0$ and $r = K^0$.

Then q & Z, n & fo, --, d-1 &, and x = gd + r.

Subcase b Suppose
$$r_0 \in \{1, \dots, d-1\}$$
. Then $n! = -q_0 d - r_0 = -q_0 d - d + d - r_0 = (q_0 - 1)d + (1 + d - r_0)$.

-Comment: In class, I mistakenly considered

needed.

141, which was not

Let $q = -q_0 - 1$ and $r = d - r_0$. Then $q_0 \in \mathbb{Z}$, $r \in \{0, \dots, d-1\}$, and $d = q_0 d + r$.

Thus in either subcase, P(x) is true.

Thus in either case, $P(\omega)$ is true. In other words, for each $A \in \mathbb{Z}$, $P(\omega)$ is true.

Part 3: Proof of Uniqueness of q and r

Consider any $x \in \mathbb{Z}$. Suppose $q_1, q_2 \in \mathbb{Z}, r_1, r_2 \in \{0, \dots, d-1\}, x = q_1d + r_1$, and $x=q_2d+r_2$. We wish to show that $q_1=q_2$ and $r_1=r_2$. Now either $r_1\leqslant r_2\leqslant r_1$ or $r_2\leqslant r_1$. We will only consider 1, < 12 because the other case is similar. Note that $0 = \chi - \chi = (q_1 d + r_1) - (q_2 d + r_2)$ $= (q_1 - q_2)d - (r_2 - r_1)$ So $[q_1-q_2]d = r_2-r_1$. Observe that $0 \le r_2-r_1 \le r_2 \le d-1$. So it follows that q-927,0 because d>1 and 5-1,00. Claim. q.-q2 = 0. Pf. Suppose otherwise, that is, assume gi-ge>1. Then (gi-ge) d > d, 60 r_2-r_1 > d. This is a contradiction to $r_2-r_1 \le d-1$.

By the claim, $g_1 = g_2$. Then $0 = (g_1 - g_2)d = G_2 - \Gamma_1$, so $\Gamma_1 = \Gamma_2$.

This complete the proof of uniqueness.

Recap To prove the division lemma:
$$(\forall d \in \mathbb{N})(\forall x \in \mathbb{Z})(\exists ! g \in \mathbb{Z})(\exists ! r \in \{0, ..., d-14\})(x = qd + r)$$
 Strategy for proof Let $d \in \mathbb{N}$.

$$0 \quad (\forall x \in \omega) (\exists q \in \mathbb{Z}) (\exists r \in \{0, \dots, d-1\}) (z = qd + r),$$

$$= \mathcal{P}(\omega)$$

$$\rightarrow \textcircled{3} \left(\forall 1 \in \mathbb{Z} \right) \left(\forall q_1, q_2 \in \mathbb{Z} \right) \left(\forall r_1, r_2 \in \{0, \dots, d-1\} \right)$$

$$\left[\left(d = q_1 d + r_1 \right) \wedge \left(d = q_2 d + r_2 \right) \right] \Rightarrow \left(q_1 = q_2 \right) \wedge \left(r_1 = r_2 \right) \right]$$

Scratch work

$$-11 = -3.5 + 4$$

$$= (-2-1).5 + 4$$

$$= -2.5 - 5 + 5$$

$$= (-2-1)5 + 4$$

$$= (-2-1)5 + 4$$

$$= (-2-1)5 + 4$$

-15 A -10 -5 0

