Prueba de concepto: Detección de armas sobre video

Florencia Priscilla Vela

Contexto del problema

Utilizamos sistemas de videovigilancia para reducir riesgos y minimizar impactos negativos en la seguridad de las personas. Actualmente estas tareas las llevan a cabo operadores humanos y esto presenta diversos inconvenientes.

Deep Learning

- Se volvió muy popular para la detección y clasificación de comportamiento humano.
 - Se está revolucionando el estado del arte.

Clasificación de Imágenes y Detección de Objetos

• • •

Solución del PROBLEMA

Pipeline con una Red Base

En la arquitectura de los detectores, las redes base ("base network") son arquitecturas de Redes Neuronales Convolucionales que incluyen:

- VGGNet
- ResNEt
- MobileNEt
- DenseNet

. . .

. . .

Faster RCNN

Con Detectron2

Con CSP Darnket

Modelo de Datos

Imágenes RGB cuadradas

...

- Una sola clase: "Handgun"
- Resolución 416 px x 1416x px
 - O Train: 1920 imágenes
 - O Test: 183 imágenes
 - Valid: 91 imágenes

Modelo de Datos

Outputs per training example: 3

Flip: Horizontal

...

Rotation: Between -10° and +10°

Shear: ±15° Horizontal, ±15° Vertical

Saturation: Between -25% and +25%

Brightness: Between -20% and +20%

Blur: Up to 1px

#Ø5 PRUEBAS Y RESULTADES

modelo	total training time	initial_weights	transfer learning frozen layers	batch	metrics/ precision	metrics/ recall	metrics/ mAP_0.5	metrics/ mAP_0.5:0.95
yolov5	0.67 hours	yolov5l.pt	0	32	0,9424	0,76119	0,88523	0,54002
yolov5	0.54 hours	yolov5l.pt	10	32	0,55767	0,53317	0,54675	0,22334
yolov5	0.42 hours	yolov5l.pt	10	16	0,55894	0,58635	0,53923	0,21019
yolov5	0.387 hours	yolov5s.pt	24	32	0,058534	0,054726	0,016555	0,0034362
yolov7	2.800 hours	yolov7_training.pt	0	16	0,8333	0,8205	0,851	0,4458
	公共							NAME OF BRIDE

• • •

modelo	total training time	initial_weights	transfer learning frozen layers	batch	metrics/ precision	metrics/ recall	metrics/ mAP_0.5	metrics/ mAP_0.5:0.95
yolov5	0.67 hours	yolov5l.pt	0	32	0,9424	0,76119	0,88523	0,54002
yolov5	0.54 hours	yolov5l.pt	10	32	0,55767	0,53317	0,54675	0,22334
yolov5	0.42 hours	yolov5l.pt	10	16	0,55894	0,58635	0,53923	0,21019
yolov5	0.387 hours	yolov5s.pt	24	32	0,058534	0,054726	0,016555	0,0034362
yolov7	2.800 hours	yolov7_training.pt	0	16	0,8333	0,8205	0,851	0,4458

• • •

modelo	total training time	initial_weights	transfer learning frozen layers		metrics/ precision	metrics/ recall	metrics/ mAP_0.5	metrics/ mAP_0.5:0.95	epoch
yolov5	0.67 hours	yolov5l.pt	0	32	0,9424	0,76119	0,88523	0,54002	100
yolov5	1.83 hours	yolov5l.pt	0	32	0,93763	0,88557	0,95886	0,62906	384
yolov5	1.462 hours	yolov5l.pt	10	32	0,64576	0,63184	0,71028	0,32273	377

...

Precisión-Recall Curve

Yolov5 con 384 iteraciones No frozen layers

Yolov7 con 100 iteraciones No frozen layers

Yolov5 con 377 iteraciones 10 frozen layers

#06 CONCLUSIONES

Conclusiones de las pruebas

Yolov7 tarda mucho en entrenar.

. . .

- Detectron2 tarda mucho en inferir.
- Un learning rate grande permite que el modelo aprenda más rápido, a costa de llegar a un conjunto final de pesos subóptimo.
- Se logró aplicar Transfer Learning.

Conceptos Aplicados

- Deep Learning
- Data Augmentation
- IoU
- detección de objetos
- Modelos de Detección Rápida

Líneas Futuras de Investigación

GRACIAS!

. . .

flor.p.vela@gmail.com