

UNITED STATES AIR FORCE AFIOH

Clean CAM Technology –86 Demonstration Scientific and Technical Emission Summary Test Report Addendum AGE Bio Diesel Emission Evaluation

Environmental Quality Management, Inc. 1800 Carillon Boulevard Cincinnati, Ohio 45340

Mark D. Wade

Karta Technologies, Inc. 5555 Northwest Parkway San Antonio, TX 78249

20050201 069

December 2003

Approved for public release;

distribution is unlimited.

Risk Analysis Directora
Environmental Analysis
2513 Kennedy Circle

Air Force Institute for Operational Health Risk Analysis Directorate Environmental Analysis Division 2513 Kennedy Circle Brooks City-Base TX 78235-5116

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United States Air Force.

The Office of Public Affairs has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

Government agencies and their contractors registered with Defense Technical Information Center (DTIC) should direct requests for copies to: Defense Technical Information Center, 8725 John J. Kingman Rd., STE 0944, Ft. Belvoir, VA 22060-6218.

Non-Government agencies may purchase copies of this report from: National Technical Information Services (NTIS), 5285 Port Royal Road, Springfield, VA 22161-2103.

Vincent Falls, Capt, USAF, BSC

Chief, Air Quality Branch

Lynn M. Borland, Lt Col, USAF, BSC Chief, Environmental Analysis Division

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducting this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Lefferson Davis Highway, Suite 1204, Affington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blan	k) 2. REPORT DATE	3. REPORT TYPE AND DATES	COVERED
	December 2003	Final-Ad	dendum
4. TITLE AND SUBTITLE	Document 2005		ING NUMBERS
Clean CAM Technology-86			
		<u>-</u>	
6. AUTHOR(S)			
Environmental Quality Manageme			
Mark D. Wade (Karta Technolog	ies, Inc.)		
7. PERFORMING ORGANIZATION I	NAME(S) AND ADDRESS(ES)		DRMING ORGANIZATION RT NUMBER
Karta Technologies, Inc			· · · · · · · · · · · · · · · · · · ·
5555 Northwest Parkway		IOI	I-RS-BR-SR-2003-0004
San Antonio, TX 78249		·	
Sur Timomo, TII vo= 12			•
9. SPONSORING/MONITORING AG		-,	NSORING/MONITORING NCY REPORT NUMBER
Air Force Institute for Operationa	al Health	AGE	ACT REPORT NOWBER
Risk Analysis Directorate			
Environmental Analysis Division			
2513 Kennedy Circle			
Brooks City-Base, TX 78235-511 11. SUPPLEMENTARY NOTES	16		
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION AVAILABILITY	STATEMENT	12b. DIS	TRIBUTION CODE
Approved for public release; dist	ribution is unlimited		
	·		
·			
200			
13. ABSTRACT (Maximum 200 wor This report serves as the findings	rus) s of a field study on an engine tr	podification developed by Clean	Cam Technology (CCT) that
promises to reduce Nitrogen Oxi	de (NOv) emissions from various	is engines manufactured by Deti	roit Diesel. The Air Force
hired Environmental Quality Man	nagement Inc. to modify four A	M32A-86D generators that are 6	equipped with Detroit Diesel
4L-71N engines, conduct emission	on tests on the four operating up	its every six months and record	operational data on how well
the four units operated during the	one year field trial. This reno	art provides emissions factors for	or the modified units and
operational issues encountered du		it provides cimesions ractors re-	
operational issues encountered di	ming the field trials.		
			•
1			
1			
·			
14. SUBJECT TERMS			15. NUMBER OF PAGES
86 generators, AM32A-86D, Clo	ean Cam Technology, CCT, Ae	rospace Ground Support	586
Equipment, Internal Combustion			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	Unclassified	UL

THIS PAGE INTENTIONALLY LEFT BLANK

CONTENTS

<u>Section</u>	<u>Pag</u>	<u>;e</u>
Acronyms Test Method Refe	erences	vı ii
1.1 Backs	on	-1
2.1 AGE	Description and Emissions Sampling Locations	-1
3.1 Engir 3.2 Samp 3.3 Samp 3.4 Fuel (Approach 3- ne Logistics 3- ling Scenario 3- ling Schedule 3- Consumption 3- Operational Parameters 3-	-1 -1 -3 -5
4.1 Exha 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.1.8 4.1.9 4.1.1	Stack Gas Moisture Content 4- Particulate Sampling 4- Nitrogen Oxide 4- Carbon Monoxide 4- Adlehydes and Ketones 4- Volatile Organic Compounds 4-	-2 -2 -2 -2 -3 -3 -4 -4 -4
5.1 EPA 5.1.1 5.1.2 5.1.3		-1 -2 -2 -3

CONTENTS (continued)

Section	Ī	<u>1</u>	age
		5.1.5 Comparison to EPA Tier 2 Non-road Standards	5_4
	5 2	Hazardous Air Pollutants	5-4
	3.2	5.2.1 Volatile Organic Compounds (VOC)	5-4
			5-5
			5-5
	<i>5 A</i>	5.2.3 Aldehyde/Ketone Engine Operational Performance	5-5
• ;	5.4	ality Assurance Procedures	6_1
6	Qua	Quality Control Procedures	6-1
	0.1	6.1.1 Field QC Sample Collection/Preparation Procedures	6_1
		6.1.1.1 QC Procedures for Stack Gas Sample Collection	6-2
		6.1.1.2 Velocity/Volumetric Flow Rate QC Procedures	6-2
		6.1.1.2 Velocity/Volumetric Flow Rate QC Flocedures	6-2
		6.1.2 Exhaust Gas Blank Samples	6-3
	()	Sampling Containers, Preservatives, and Volume Requirements	6-5
	6.2	Decontamination Procedures	6-5
	0.3	Decontamination Procedures	6-7
	0.4	Sampling Packaging and Shipment Custody Procedures	. 6-7
	0.3	6.5.1 Field Custody Procedures	6-8
		Calibration Procedures and Frequency	6-0
	0.0	6.6.1 Field Instrument Calibration	6-9
	67	Data Reduction, Validation, and Reporting	6-10
•	0.7	6.7.1 Data Reduction	6-10
		6.7.1.1 Field Data Reduction Procedures	6-10
		6.7.1.2 Office Calculations	
		6.7.2 Analytical Data Validation Evaluation	6-11
		6.7.2.1 Procedures Used to Evaluate Field Data	6-11
		6.7.3 Data Reporting	
		6.7.3.1 Field Data Reporting	6-12
	6 9	Preventive Maintenance Review	6-12
	0.6	6.8.1 Field Instrument Preventive Maintenance	
	60	Corrective Action	
	0.9	Conceive Action	
Appen	dice	s (included on CD)	
Α		Emission Sampling Methods	
В		Example Calculations	
C		Field Data	
D		Analytical Results	•
${f E}$		AGE Performance Data	
F		Quality Assurance/Quality Control	

FIGURES

Numbe	<u>er</u>	Page
1-1	A/M 32A 86 Retrofit and Sampling Location	1-3
2-1	Schematic of -86 Stack Extension Modification	
2-2	Photograph of Test Configuration at Travis AFB	2-3
3-1	Schematic of Proposed Stack External Fuel Tank	3-6 [°]
3-2	External Fuel Tank Photograph (Travis AFB)	
	TABLES	
Numbe	<u>er</u>	Page
3-1	Sampling Program Breakdown of Responsibilities	3-2
3-2	Target Exhaust Pollutants for Each Engine Setting	3-4
3-3	ASGE Performance Data Log	3-8
4-1	Summary of Source Target Compounds for Volatile Organic Compounds	4-5
4-2	Target Polynuclear Aromatic Hydrocarbons	
4-3	Fuel Analysis	4-6
5-1	A/M32-86 Tailpipe Exhaust Stack Emission Factory Summary	
5-2	A/M32-86 Tailpipe Exhaust Stack Emission Factory Summary	
5-3	A/M32-86 Tailpipe Exhaust Stack Emission Factory Summary	
5-4	A/M32-86 Tailpipe Exhaust Stack Emission Factory Summary	5-10
5-5	A/M32-86 Tailpipe Exhaust Stack Emission Factory Summary	5-11
5-6	A/M32-86 Tailpipe Exhaust Stack Emission Factory Summary	
5-7	Percentages of Non-Carbon Particles in Various Diameter Ranges	5-13
5-8	A/M32–86 Emission Summary	5-14
5-9	A/M32-86 Generator Testing	5-15
5-10	A/M32-86 Generator Testing (VOC)	5-16
5-11	A/M32-86 Generator Testing (PAH)	5-18
5-12	A/M32-86 Tailpipe Exhaust Stack Emission Factory Summary	5-19
5-13	Fuel Analysis	5-20
6-1	Field Checks of Sampling Equipment	6-4
6-2	Field Checks of TGO, CO, and NO _x Analyzers	
6-3	Recommended Sample Containers, Preservation Techniques, and Holding T	imes 6-6
6-4	Field Equipment Calibration Summary	6-12

ACRONYMS

AFB Air Force Base

AFIERA Air Force Institute for Environment, Safety, and Occupational Health Risk Analysis

AGE Aerospace Ground Equipment CCT Clean Cam Technologies

CDRL Contract Data Requirements List CEM continuous emissions monitoring

CFM cubic feet per minute CO Carbon Monoxide CO₂ Carbon Dioxide

DOT Department of Transportation
DSCFM dry standard cubic feet per minute

EQ Environmental Quality Management, Inc.

FID flame ionization detector HAP Hazardous Air Pollutant

IATA International Aviation Transportation Association

ICAO International Civil Aviation Organization

IXRF Iridium X-ray Fluorescence
MCE carbon mass rate – exhaust
MCF carbon mass rate – fuel
MCI carbon mass rate – inlet air

NIOSH National Institute of Occupational Safety and Health

NO_X Nitrogen Oxides

NMHC Non Methane Hydrocarbons

PAH Polynuclear Aromatic Hydrocarbons PIC product of incomplete combustion

PM Particulate Matter PPM part per million

PPMVD part per million by volume dry

RSEO Risk Analysis Environmental Quality

SAP Sampling and Analysis Plan SEM scanning electron microscopy SPO System Program Office TPM Technical Program Manager

THC total hydrocarbon

VOC volatile organic compound

TEST METHOD REFERENCES

- Air Force Institute for Environment, Safety and Occupational Risk Analysis (AFIERA), Air Emissions Inventory Guidance Document for Mobile Sources at Air Force Installations, January 2002.
- American Society of Testing Materials (ASTM), http://www.astm.org/cgi-bin/SoftCart.exe/STORE/standardsearch.shtml?E+mystore
 - NIOSH Manual of Analytical Methods (NMAM), http://www.cdc.gov/niosh/nmam/nmammenu.html
 - United States Environmental Protection Agency (USEPA), Title 40, Code of Federal Regulations, Part 60, Appendix A http://www.epa.gov/ttn/emc/tmethods.html
- USEPA SW846
 http://www.epa.gov/epaoswer/hazwaste/test/methdev.htm

EXECUTIVE SUMMARY

The A/M32A-86D (-86) generator is one of the most widely used pieces of aerospace ground equipment (AGE) in the U.S. Air Force (AF). In June 1998, one -86 generator was retrofitted with the Clean Cam Technology (CCT) and tested at Southwest Research Institute in San Antonio, Texas. Emission test results showed that the CCT Retrofit reduced nitrogen oxide (NO_x) emissions by 76%, carbon monoxide (CO) and total hydrocarbon (THC) emissions each by 43%, and particulate matter (PM) emissions by 32% compared to non-retrofitted -86 generators. The emissions from the CCT unit met the Environmental Protection Agency (EPA) Non-Road Engine Emission Standards.

The purpose of this effort was to determine the long-term performance of the CCT retrofitted -86 generator. Prior to approving the CCT modification for general AF use, the AF needed to demonstrate that retrofitting did not negatively affect the operational performance of the unit, and that the CCT Retrofit reduced emissions to an acceptable level.

Program Objectives

In order to complete the objective of evaluating long-term AGE performance, four –86 generator engines (Detroit Diesel 4L-71N) were obtained through Warner Robins AFB in Georgia and retrofitted at the Clean Cam Technology Systems facility in Bakersfield, CA. Two of the retrofitted engines were then installed in two –86 generators (Units MG13 and MG18) at Elmendorf AFB (Engine Serial Numbers 4A268635 and 4A269999), and two of the retrofitted engines were installed in two –86 generators (Units DG87 and DG76) at Travis AFB (Engine Serial Numbers 4A268288 and 4A231886). Emissions were measured during a visit to each facility during the summer months of CY 2002. The operational performance of the retrofitted units was evaluated by AGE personnel at each base. The program simulated long-term CCT use, the impact of the CCT on emissions generated, and the effect of various ambient conditions on emissions and operational performance of the retrofitted units.

AGE Description

The -86 generator, rated at 148 brake horsepower (at 2000 rpm), is powered by the 4L-71N internal-combustion engine manufactured by Detroit Diesel Corporation. The Model A/M32A-86 is a naturally aspirated, two-stroke cycle, four-cylinder engine that utilizes a muffler and a 2-inch by 3-inch oval exhaust pipe exiting the bottom of the unit in a horizontal direction (Figure 2-1). The stock diesel motor was removed and replaced by a CCT retrofitted motor. The retrofit included a modified cam shaft, fuel injector, turbo charger exhaust, and other proprietary modifications. The generator can be fueled on either diesel or JP-8 fuel. Diesel and JP-8 fuel were used during the emission measurement program at Travis AFB. One generator was operated on diesel fuel at Travis AFB because diesel is the primary fuel type for ground support equipment at the base. Only JP-8 fuel was used at Elmendorf AFB.

Sampling Scenario

Specifically, the testing program assessed emissions of PM, including particle size, NO_x, CO, total non-methane hydrocarbons (TNMHC), and hazardous air pollutants (HAPs) through volatile organic compound (VOC), Polynuclear Aromoatic Hydrocarbon (PAH), and Aldehyde/Ketone sampling. In conjunction with these tests, engine exhaust gas flow rate, temperature, composition [carbon dioxide (CO₂) and oxygen (O₂)], and moisture were measured.

These parameters were measured at five specified loads: 10%, 25%, 50%, 75%, and 100% power. A load bank (an artificial load comprised of heating coils) provided the resistance necessary for AGE operation at the specified loads.

The JP-8 and diesel fuel (Travis AFB Unit DG87) used during the testing were sampled and analyzed for: percent sulfur, carbon, nitrogen, hydrogen, ash, aromatics, paraffins, olefins, naphthenes, and Btu per pound.

Emission Results

A summary of the criteria pollutant weighted emissions are provided in Table ES-1. The retrofitted units met the EPA Tier 2 standard for CO and the EPA Tier 1 standard for NO_x . The emissions were comparable for each test unit.

TABLE ES-1. A/M32-86 EMISSION SUMMARY

WEIGHTED RESULTS – BASED ON CCT PROVIDED HORSPEPOWER TRAVIS AFB

Unit No.	N	O _X	С	0	NMI	HC	PN	Ŋ	NO _X + NMHC
	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr	g/hp-hr (a)
DG87	0.13	4.67	0.03	1.20	0.01	0.34	0.01	0.44	5.01
DG76	0.14	5.12	0.05	1.83	0.01	0.57	NA ·	NA	5.69
EPA Tier 1		6.9							
EPA Tier 2				3.7				0.22	4.9

⁽a) EPA will use an NMHC +NOx standard of 4.9 g/hp-hr for Tier 2 nonroad diesel engines

WEIGHTED RESULTS -ELMENDORF AFB

Unit No.	N	O _X	C	0	NMI	IC	· Pl	М	NO _x + NMHC
	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr	g/hp-hr (a)
Mg13	0.13	4.72	0.04	1.45	0.01	0.56	0.01	0.47	5.28
EPA Tier 1		6.9							
EPA Tier 2				3.7				0.22	4.9

⁽a) EPA will use an NMHC +NOx standard of 4.9 g/hp-hr for Tier 2 nonroad diesel engines

WEIGHTING CRITERIA

Percent Load	Weighting Factor
100	0.05
75	0.25
50	0.30
25	0.30
10	0.10

Note: Weighting criteria specified in ISO 8178-4 "D2".

The weighted hazardous air pollutant emission indexes are summarized in Table ES-2. The total HAPs from unit MG13 were approximately three times higher than the DG87 unit. The MG13 unit was smoking during testing, indicating incomplete combustion, which contributes to higher HAP emissions.

TABLE ES-2. A/M32-86 GENERATOR TESTING HAZARDOUS AIR POLLUTANTS (HAPs) EMISSION FACTOR SUMMARY lbs/1000 lbs fuel

	Unit DG87 (Travis AFB)	Unit MG13 (Elmendorf AFB)
Exhaust Flow, dscfm	342	353
Average Fuel Flow, lbs/hr	4.41	4.90
Pollutant		
Formaldehyde	8.01E-03	3.16E-02
Acetaldehyde	5.67E-03	1.12E-02
Acrolein	1.11E-02	2.45E-02
2-Butanone (MEK)	5.96E-03	2.30E-02
Benzene	9.70E-02	1.22E-01
Bromomethane	1.11E-03	2.48E-02
Chloromethane	1.64E-03	4.25E-02
. Toluene	5.96E-02	1.13E-01
Ethylbenzene	1.21E-02	5.31E-02
Methylene chloride	3.70E-03	9.20E-02
m,p-Xylene	4.04E-02	1.11E-01
Naphthalene	ND	6.10E-02
o-Xylene	1.62E-02	7.25E-02
Styrene	7.87E-04	ND
Total HAPs	. 0.27	0.79

ND = Non-Detect

Conclusions

The retrofitted units did not meet the EPA Tier 1 requirement for NO_x emissions, 6.9g/hp-hr. The emissions from the retrofitted units did not meet the EPA Tier 2 requirement for particulate matter, 0.22g/hp-hr; or NO_x and NMHC, 4.9g/hp-hr. All retrofitted units were below the EPA Tier 2 CO standard of 3.7g/hp-hr.

It was difficult for CCT to simulate the performance problems because no JP-8 fuel was available at the rebuild facility. Future efforts should consider a supply of military-specified JP-8 during the engine retrofit to note engine abnormalities during the shake-down and dynamometer test periods.

A description of the engine performance difficulties is provided in Appendix E. Difficulties were encountered primarily when generators were operated on JP-8 fuel. The retrofitted units at Travis AFB operated well while burning diesel fuel during the target period. The units did not smoke at start-up or during operation while burning diesel fuel. The retrofitted units were also able to hold operational load and maintain proper operating temperature.

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 1

INTRODUCTION

This Emission Summary Scientific and Technical Report has been prepared by Environmental Quality Management, Inc. (EQ) under Delivery Order Number T0702BG0204 of the General Services Administration (GSA) Federal Technology Service, IT Solutions, Greater Southeast Region (Contract Number GS-10F-0293K), Task FA5710043T6.

The project requirements are described in the contract and its attached Statement of Work.

The project includes preparation of the following:

- Sampling and Analysis Plan (SAP) (Data Item 2.5 submitted February 26, 2002)
- Monthly progress, status, and management reports (Data Item 2.2)
- Conference agenda and minutes (Data Item 2.4, Submitted)
- A summary Scientific and Technical Report (Data Item 2.6, this document).

A description of the project background and objectives is provided in this section.

1.1 Background

The A/M32A-86D (-86) generator is one of the most widely used pieces of aerospace ground equipment (AGE) in the U.S. Air Force (AF). In June 1998, one -86 generator was retrofitted with the Clean Cam Technology (CCT) and tested at Southwest Research Institute in San Antonio, Texas. Emission test results showed that the CCT Retrofit reduced nitrogen oxide (NO_x) emissions by 76%, carbon monoxide (CO) and total hydrocarbon (THC) emissions each by 43%, and particulate matter (PM) emissions by 32% compared to non-retrofitted -86 generators. The emissions from the CCT unit met the Environmental Protection Agency (EPA) Non-Road Engine Emission Standards.

1.2 Objective

The purpose of this effort was to determine the long-term performance of the CCT retrofitted -86 generator. Prior to approving the CCT modification for general AF use, the AF needed to demonstrate that retrofitting did not negatively affect the operational performance of the unit, and that the CCT reduced emissions to an acceptable level.

In order to complete these objectives, four -86 generator engines (Detroit Diesel 4L-71N) were obtained through Warner Robins AFB in Georgia and retrofitted with the CCT at the Clean Cam Technology Systems facility in Bakersfield, CA. Two of the retrofitted engines were then installed in two -86 generators (Units MG13 and MG18) at Elmendorf AFB (Engine Serial Numbers 4A268635 and 4A269999), and two of the retrofitted engines were installed in two -86 generators (Units DG87 and DG76) at Travis AFB (Engine Serial Numbers 4A268288 and 4A231886) (see Figure 1-1). Emissions were measured during a visit to each facility during the summer months of CY 2002. The operational performance of the retrofitted units was evaluated by AGE personnel at each base. The program simulated long-term CCT use, the impact of the CCT on emissions generated, and the effect of various ambient conditions on emissions and operational performance of the retrofitted units.

Specifically, the testing program assessed emissions of PM, including particulate sizing, NO_x, CO, total non-methane hydrocarbons (TNMHC), and hazardous air pollutants (HAPs) through volatile organic compound (VOC), Polynuclear Aromoatic Hydrocarbon (PAH), and Aldehyde/Ketone sampling. In conjunction with these tests, engine exhaust gas flow rate, temperature, composition [carbon dioxide (CO₂) and oxygen (O₂)], and moisture were measured.

These parameters were measured at five specified loads: 10%, 25%, 50%, 75%, and 100% power. A load bank (an artificial load comprised of heating coils) provided the resistance necessary for AGE operation at the specified loads.

The JP-8 and diesel fuel (Travis AFB Unit DG87) used during the testing were sampled and analyzed for: percent sulfur, carbon, nitrogen, hydrogen, ash, aromatics, paraffins, olefins, naphthenes, and Btu per pound.

Figure 1-1. A/M 32A 86 Retrofit and Sampling Locations

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 2

AGE DESCRIPTION AND EMISSIONS SAMPLING LOCATIONS

2.1 AGE Description

The -86 generator, rated at 148 brake horsepower (at 2000 rpm), is powered by the 4L-71N internal-combustion engine manufactured by Detroit Diesel Corporation. The Model A/M32A-86 is a naturally aspirated, two-stroke cycle, four-cylinder engine that utilizes a muffler and a 2-inch by 3-inch oval exhaust pipe exiting the bottom of the unit in a horizontal direction (Figure 2-1). The stock diesel motor was removed and replaced by a CCT retrofitted motor. The retrofit included a modified cam shaft, fuel injector, turbo charger exhaust, and other proprietary modifications. The generator can be fueled on either diesel or JP-8 fuel. Diesel and JP-8 fuel were used during the emission measurement program at Travis AFB. One generator was operated on diesel fuel at Travis AFB because diesel is the primary fuel type for ground support equipment at the base. JP-8 fuel was used at Elmendorf AFB.

2.2 Sampling Locations

The -86 generator with the CCTS retrofit had a modified exhaust system that consisted of a muffler and a 4-inch-diameter exhaust pipe that exited horizontally at the bottom of the unit. A temporary exhaust duct was connected to the engine exhaust to facilitate emission measurement. The extension consisted of a 90-degree elbow from the exhaust into a vertical straight run, directing the flow from a horizontal direction to a vertical. The vertical extension provided one sampling location that was used for isokinetic sampling. This location was approximately 8 duct diameters (dd) downstream of the elbow. A second port was added to the vertical extension at a location 1 foot above the isokinetic port to provide access for a single-point sampling probe. Figure 2-2 is a photograph of the test configuration at Travis AFB.

Due to the need for additional sampling parameters, a second straight run was added to the existing extension that ran horizontally from the -86 exhaust to the elbow. The horizontal insulated section was of sufficient length to meet EPA Method 1A guidelines (at least 108 in. for

Figure 2-1. Schematic of -86 Stack Extension Modification

Figure 2-2. Photograph of Test Configuration at Travis AFB

sampling port locations in ducts less than 12 in. in diameter) so that additional sampling ports could be added for flow measurement. A second location for isokinetic sampling was added within the horizontal straight run, more than 2 dd downstream of the elbow and 8 dd upstream of the –86 exhaust terminus. The addition of the second isokinetic sampling location allowed simultaneous testing for PM and HAPs, thereby reducing field time.

Finally, EPA Method 1A was used to locate the velocity measurement points in the exhaust stack. Specifically, eight points, four on each of two perpendicular diameters, were used for velocity measurements. The velocity ports were ½-inch i.d. ports located more than 2 dd upstream of the extension's eblow and 2 dd downstream of the -86 exhaust.

SECTION 3

SAMPLING APPROACH

3.1 Engine Logistics

Warner Robins AFB personnel identified four Detroit Diesel Corporation 4L-71N diesel engines (used in the -86 AGE) and one complete AGE unit for use in this program. The four engines were shipped through Warner Robins AFB in Georgia to CCT in Bakersfield, California, for the retrofit. The complete AGE unit was shipped from Florida and was used as an example for the CCT personnel during the retrofit. Following the retrofit, two of the engines were shipped to Elmendorf AFB, Alaska. The remaining two engines were retrofitted and shipped to Travis AFB, California. Respective AGE personnel at each facility installed the engines in the -86 generators. The AGE remained in the field for approximately one year to note performance.

Table 3-1 outlines the sampling program and responsibilities.

3.2 Sampling Scenario

EQ traveled to each location during June 2002 to perform emission testing on the two retrofitted -86 AGE. During the emissions test program, AF personnel operated the generator and load bank to create specified loads. The AGE was operated at 10%, 25%, 50%, 75%, and 100% loading. At Travis AFB, one unit was operated on diesel fuel and one unit on JP-8 fuel. At Elmendorf AFB, the test unit was operated on JP-8 fuel. EQ personnel recorded the average load at approximately 15-minute intervals during each test run.

The first AGE at Travis and Elmendorf AFB was measured for PM including particle size distribution, NO_x, CO, TNMHC, O₂, CO₂, and HAPs. Three one-hour tests for these parameters were completed at each of the specified loads, with the exception of HAPs. The HAP sampling was conducted at each setting to provide one sample for the unit. Test duration was approximately 60 minutes based on historic non-retrofitted AGE data at each load setting.

TABLE 3-1. SAMPLING PROGRAM BREAKDOWN OF RESPONSIBILITIES

	G PROGRAM BREAKDOWN (Respon	nsibility
Phase	EQ	Air Force Personnel
Engine Logistics .	EQ contracted with CCT for retrofit of 4 engines Shipped units from Clean Cam Technologies to Elmendorf AFB and Travis AFB	 Shipped the engines to Clean Cam Technologies for retrofit Researched the availability of alternator kit and shipped with engines to CCT Installed retrofitted engines into the -86 AGE
Emissions Testing	Calibrated and operated sampling equipment (including manual methods and CEM methods) prior to and during testing Sampled shipment and analysis of exhaust and JP-8 samples Supplied external fuel tank Maintained Quality Assurance/Quality Control procedures	 Provided modified stack extension Operated AGE prior to and during testing Fueled AGE prior to and during testing Provided JP-8 fuel to operate AGE during emissions testing Operated generator load bank to create and maintain 10%, 25%, 50%, 75% and 100% loads during testing Recorded data on AGE operation during emissions testing Provided assistance with fittings and means of connecting fuel tank to AGE
Schedule	Scheduled testing during hot weather at each location; and tested two generators at Travis and one at Elmendorf	Approved schedule
AGE Operational Performance	Provided data sheets to AF to record operational data for subject year Evaluated collected data and included in final summary report	Provided list of operational and maintenance parameters to be tracked and documented for the retrofitted and control units Operated retrofitted and control AGE and maintained records Resolved operational problems as appropriate (CCT were contacted for assistance, as needed)
Reporting	Completed monthly progress reports Participated in quarterly conference calls, as required Provided meeting minutes Collected, assembled, and analyzed data and prepared final test results in electronic PDF format	Participated in quarterly conference calls, as required

Based on previous sampling programs, it was anticipated that the primary HAPs of concern would be formaldehyde, benzene, toluene, ethylbenzene, xylene, and polycyclic organic compounds. Therefore, sampling for HAPs consisted of VOCs, aldehydes/ketones, and polynuclear aromatic hydrocarbons (PAH). One 4-hour composite test, consisting of 1-hour tests at each setting (from 10% to 75%), was completed for HAPs analysis at Elmendorf AFB. One 1-hour composite test for VOCs and PAHs and one 2-hour composite test for aldehydes/ketones were completed at Travis AFB. Testing for VOC and PAH consisted of 15 minutes at each setting (10% to 75%), and testing for aldehydes/ketones consisted of 30 minutes per setting. The sample time varied based on sampling rates and sample volume requirements

Following testing of the first AGE at Travis AFB, emissions from the second retrofitted AGE were measured for gaseous pollutants only (NO_x, CO, TNMHC, O₂, CO₂). Approximately 30 minutes of sample were collected at each of the five load settings. Sampling on the second generator at Elmendorf AFB was not completed due to operational difficulties with the retrofit engine.

See Table 3-2 for Sampling Outline.

3.3 Sampling Schedule

Sampling was completed at each AFB over approximately six 12-hour days, as follows:

- Day one: Travel.
- Day two: Equipment set up.
- Day three: First AGE tested at 10% and 25% load settings at Travis AFB. (First AGE tested at 10%, 25%, and 50% at Elmendorf AFB.)
- Day four: First AGE tested at 50% and 75% load settings at Travis AFB. (First AGE tested at 75% at Elmendorf AFB.)
- Day five: First AGE tested at 100% load setting; Second tested at 10%, 25%, 50%, 75%, and 100% load settings. (Only one unit tested at Elmendorf AFB.)
- Day six: Tear down and depart site.

Testing personnel arrived on site at least one hour prior to emissions test start-up time.

Continuous emissions monitors (CEMs) were calibrated, and manual testing equipment was field checked. The AGE was fueled and started by AF personnel one-half hour before testing

TABLE 3-2. TARGET EXHAUST POLLUTANTS FOR EACH ENGINE SETTING

Load	Sampling Duration	Particulate	HAPs ⁸	NOx	TNMHC	00	CO ₂	02
Setting	0	Matter	(VOC, ALD/KET, PAH)					
Generator 1								
10%	3 hours (Three 1-hour test runs)	×	X	×	×	X	X	×
25%		×	X	×	X	X	×	×
20%	3 hours (Three 1-hour test runs)	×	X	×	X	×	×	×
75%		×	X	×	X	×	×	×
100%		×	×	×	X	×	×	×
Generator 2								
10%	30-minute test runs			×	×	×	×	×
25%	30-minute test runs			×	X	X	×	×
%05	30-minute test runs			×	×	×	X	×
75%	30-minute test runs			X	X	×	X	X
100%	30-minute test runs			X	X	×	×	×
							,000,	

^aThe HAP samples were composite collected over each setting. At Travis AFB, approximately 30 minutes of sample per setting (10% to 75%) was collected for VOCs and PAHs resulting in a 2-hour sample duration. Approximately 15 minutes of sample was collected for aldehydes/ketones resulting in a 1-hour sample duration. At Elmendorf AFB, approximately one hour of sample was collected at each setting (from 10% to 75%) resulting in a 4-hour sample duration. commenced. Testing at each load setting took approximately 4 hours; therefore, the three emissions tests at one load setting were completed in the morning, and three emission tests at the second setting completed in the afternoon. Following the final emissions test, EQ personnel recovered the samples, calibrated CEMs, and prepared for the following day's testing.

3.4 Fuel Consumption

Accurate measurement of JP-8 fuel use was imperative so that emission rates could be correlated with fuel consumption rates. Emission rates were then expressed in pounds of pollutant per thousand gallons of fuel consumed. Access to the fuel tank was difficult for the – 86 generator. Therefore, an auxiliary 5-gallon (Travis AFB) and 15-gallon (Elmendorf AFB) container was used at each location to accurately measure fuel usage. Two differently sized fuel containers were used. During the first test program at Travis AFB, the fuel tank was refueled frequently and the fuel temperature was relatively high. Therefore, a larger fuel tank was used at Elmendorf AFB to reduce fuel temperature and reduce filling frequency. The fuel supply and return lines were attached directly into the auxiliary fuel tank. The fuel tank was placed on top of a platform balance with a sensitivity of 0.01 lb; weights were recorded at the beginning and end of each test run. When fuel was added during the test, it was supplied from the base main fuel supply, and the weight was recorded after each addition. In this way, the overall fuel consumption was accurately calculated. The temperature of the fuel was monitored during testing. Figures 3-1 and 3-2 note the external fuel tank specifications.

In order to minimize fuel measurement errors, the fuel feed and return lines were suspended above the external tank to eliminate errors in weight measurement caused by the fuel line mass.

3.5 AGE Operational Parameters

The AGE shop at each base maintained records on the operation of each retrofitted CCT generator and two non-retrofitted units (control units). Records were maintained as outlined in Table 3-3, and included: hours operated, maintenance performed, breakdowns, and any operational problems encountered by the units during the field demonstration. Provisions were made to allow the CCT Systems to perform on-site repairs and maintenance of the retrofitted

Figure 3-1. Schematic of Proposed External Fuel Tank

Figure 3-2. External Fuel Tank Photograph (Travis AFB)

TABLE 3-3. ASGE PERFORMANCE DATA LOG

Clean Cam Technology (CCT) Fleid Demonstration Operational Record Keeping Log	
Location: Unit #: Is Unit Equipped with CCT: Field Trial Start Date:	
Hours Operated/Hobbs Meter: Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec Dec	July
Fuel Type: Fuel Usage (Gallons): Jan Feb Mar Apr May June June Sep Oct Nov Dec	June July Aug
Typical Use (aircraft model, average load): Jan Feb Mar Mar Apr May June June Aug Oct Nov Dec	June July
Cooling Water Temperature: Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec Dec	
Oil Consumption: Jan Feb Mar Apr May June June July Aug Sep Oct Nov Dec	
Standard Maintenance Service Date(s): Describe Standard Maintenance:	
Unscheduled Maintenance (describe required maintenance):	
Did Unit Require Wet Stacking (provide dates):	
General Comments on Unit Operation:	
Other Comments:	

units when problems occurred that could not be resolved by the AGE shop. The operational problems with each unit were summarized by each base and are provided in Appendix C.

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 4

TEST METHODOLOGY

This sample program involved sample collection from the exhausts of three retrofitted -86 AGE generators. The focus of the program was to verify reduction of engine emissions due to the CCT retrofit, and to assess the operational performance of the retrofitted -86 generator in the field. Emission sampling was completed at five load settings, during summer months, at each of the two AF bases where the AGE was in use. In order to minimize engine run time and program costs, the complete set of target pollutants was acquired at all five engine settings for one of the retrofitted generators at each location; emissions from the second generator at Travis AFB was monitored for gaseous pollutants only. The second unit at Elmendorf AFB (MG18) developed performance problems and testing could not be performed.

Sampling was completed for the following compounds at the engine exhaust:

- Oxygen and Carbon Monoxide (EPA Method 3A)
- Flow Rate and Moisture (EPA Methods 1-4)
- Filterable and Condensible Particulate (EPA Methods 5 and 202)
- Nitrogen Oxides (EPA Method 7E)
- Carbon Monoxide (EPA Method 10)
- HAPs: Characterized through VOCs (EPA Method 0030), Aldehydes and Ketones (EPA Method 0011), and polynuclear aromatic hydrocarbons (NIOSH Method 5506)
- Total Non-Methane Hydrocarbons (TNMHC) as Total Hydrocarbons (THC) and Methane (EPA Method 25A)

The engine exhaust was not sampled for sulfur dioxide, metals, or semi-volatiles. The entire list of target pollutants was sampled for one unit, and the gaseous pollutants were sampled from the second unit.

4.1 Exhaust Emission Test Methods

4.1.1 Stack Gas Volumetric Flow Rate

EPA Method 2A, "Determination of Stack Gas Velocity and Volumetric Flow Rates," was used to determine stack gas volumetric flow rates. Standard pitot tubes meeting the EPA specifications and an inclined manometer were used to measure velocity pressures. A calibrated Type "K" thermocouple was used to measure stack gas temperature. The stack gas velocity was calculated from the average square root of the stack gas velocity pressure, average stack gas temperature, stack gas molecular weight, and absolute static pressure. The volumetric flow rate was the product of velocity and stack cross-sectional area. The velocity measurements were made in the horizontal exhaust extension upstream of the sampling trains to avoid any flow disturbances.

4.1.2 Carbon Dioxide and Oxygen

EPA Method 3A was used to measure the concentration of CO₂ and O₂ in the stack gas. A zirconium oxide-based analyzer was calibrated with zero and three calibration gases before each test day. The calibration gases had concentrations of approximately 40% and 80% of the full-scale response of the analyzer. At the end of each sampling period, the analyzer was challenged with a zero and an upscale calibration gas. The calibration gasses were EPA Protocol (±2%) gases. The analyzer operated continuously through each of the test runs.

4.1.3 Stack Gas Moisture Content

EPA Reference Method 4, "Determination of Moisture Content in Stack Gases," was used to determine the moisture content of the exhaust. This method was conducted as part of each particulate measurement run. The initial and final contents of all impingers was determined gravimetrically.

4.1.4 Particulate Sampling

EPA Method 5, "Determination of Particulate Emissions from Stationary Sources," was used to determine filterable particulate matter, and EPA Method 202 was used to determine condensable (back-half), organic, and inorganic particulate matter. The sampling train consisted of a heated glass-lined probe, heated glass-fiber filter, and a series of impingers followed by a

vacuum pump, dry gas meter, and calibrated orifice. The filter temperature was maintained between 223° and 273°F. Thermocouples were used to monitor temperatures of the stack gas, sample probe, filter, and impinger exit gas.

For each load setting, one particulate sample was analyzed by scanning electron microscopy (SEM) equipped with an iridium X-ray fluorescence (IXRF) digital image system to determine the particulate size distribution by count and the aerodynamic particle shape. The EPA Method 5 filter media was modified for SEM analysis. A polycarbonate filter media was used after discussion with the analytical laboratory. The filter media chosen was based on the intent of gaining the highest possible quantity of measurable particulate matter.

4.1.5 Nitrogen Oxides (NO_x)

EPA Reference Method 7E, "Determination of Nitrogen Oxide Emissions from Stationary Sources (Instrumental Analyzer Procedure)," was employed. EQ used a chemiluminescent NO_x analyzer, manufactured by Thermo Environmental Instruments, for nitrogen oxide emission monitoring. The NO_x analyzer was operated continuously during each sampling test run. A zero and three calibration gases for the NO_x analyzer were used prior to the initial test run and at the end of each one-hour sampling period. The calibration gases were EPA Protocol calibration gases.

A stainless steel probe with a three-way valve on the exit end was inserted directly into the stack with a heated Teflon sample line attached to one side of the valve, and the calibration gas line attached to the other side. A conditioning system was attached to the exit end of the heated line for moisture removal. An unheated Teflon line connected the conditioning system and the analyzer. The same heated system was used to manifold stack and calibration gas to the NO_x and CO analyzers.

4.1.6 Carbon Monoxide (CO)

The CO concentration was measured by EPA Method 10. The CO sampling system used the same sampling system as described for the NO_x sampling system, plus a sample pump and a TECO Model 48 CO analyzer. The analyzer was calibrated with EPA Protocol calibration standards, and results were charted on a strip chart recorder.

4.1.7 Aldehydes and Ketones

The sampling train utilized to perform aldehyde and ketone sampling conformed to EPA Method 0011. A single composite sample run was collected over multiple engine loads.

4.1.8 Volatile Organic Compounds (VOCs)

EPA Method 0030, "Determination of Volatile Principal Organic Hazardous Constituents," was used to measure volatiles from the generator exhaust. A 20-liter exhaust gas sample was collected at a constant rate of 0.07 lpm. A volatile organic sampling train (VOST) was used consisting of a glass-lined probe, a series of resin traps, and a condensate container. A single sample was collected over multiple engine load settings. Table 4-1 notes the target compounds.

4.1.9 Polynuclear Aromatic Hydrocarbons (PAH)

National Institute of Occupational Safety and Health (NIOSH) Method 5506 was used to collect a sample for the target pollutants shown in Table 4-2. A sample was drawn through an in-stack filter across an XAD-2 resin trap at approximately 1 lpm. A single sample was collected over multiple engine load settings.

4.1.10 Total Non-Methane Hydrocarbons (TNMHC)

EPA Method 25A, "Determination of Total Hydrocarbons using a Flame Ionization Analyzer," was used to measure the TNMHC emissions. Stack gases were withdrawn via a stainless steel in-stack probe and heated (250°F) Teflon sample line, and delivered to the flame ionization detector (FID) with a heated sample pump. The analyzer, via an internal pumping system, withdrew the gas from the stack. Once inside the analyzer, the gas stream was split; a portion of the system was directed to an FID identical to the inlet, and a portion was directed to a proprietary-design non-methane hydrocarbon cutter. The cutter oxidized all hydrocarbons except methane. The methane-containing gas stream was then sent to an FID that determined the methane concentration. The response from each detector was converted to an analog signal (voltage) and recorded using a data acquisition system.

The analyzer was calibrated prior to, and at the conclusion of, each test run by using EPA Protocol 1 Calibration Gases.

TABLE 4-1. SUMMARY OF SOURCE TARGET COMPOUNDS FOR VOLATILE ORGANIC COMPOUNDS (EPA Method 0030)

ORGANIC COMP	OUNDS (EPA Method 0030)
VOS	T Compounds
Acetone	1,2-Dichloropropane
Benzene	1,3-Dichloropropane
Bromobenzene	2,2-Dichloropropane
Bromochloromethane	Cis-1,3-Dichloropropene
Bromodichloromethane	Trans-1,3-Dichloropropene
Bromoform	1,2-Dichloropropene
Bromomethane	Ethylbenzene
1,3-Butadiene	Hexachlorobutadiene
2-Butanone	2-Hexanone
n-Butylbenzene	Isopropylbenzene
Sec-Butylbenzene	p-Isopropyltoluene
Tert-butylbenzene	Methylene chloride
Carbon disulfide	4-Methyl-2-pentanone
Carbon tetrachloride	Naphthalene
Chlorobenzene	n-Propylbenzene
Chlorodibromomethane	Styrene
Chloroethane	1,1,1,2-Tetrachloroethane
Chloroform	1,1,2,2-Tetrachloroethane
Chloromethane	Tetrachloroethene
2-Chlorotoluene	Toluene
4-Chlorotoluene	1,2,3-Trichlorobenzene
1,2-Dibromo-3-chloro-propane	1,2,4-Trichlorobenzene
1,2-Dibromoethane	1,1,1-Trichloroethane
Dibromoethane	1,1,2-Trichloroethane
1,2-Dichlorobenzene	Trichloroethene
1,3-Dichlorobenzene	Trichlorofluoromethane
1,4-Dichlorobenzene	1,2,3-Trichloropropane
Dichlorodifluoromethane	1,2,4-Trimethylbenzene
1,1-Dichloroethane	1,3,5-Trimethylbenzene
1,2-Dichloroethane	Vinyl chloride
Cis-1,2-Dichloroethane	m-Xylene & p-Xylene
Trans-1,2-Dichloroethane	o-Xylene
1,1-Dichloroethane	

TABLE 4-2. TARGET POLYNUCLEAR AROMATIC HYDROCARBONS (PAH) (NIOSH METHOD 5506)

Polynuclear Arc	omatic Hydrocarbons
Naphthalene	Chrysene
Acenaphthylene	Benzo[b]fluoranthene
Acenaphthene	Benzo[k]fluoranthene
Fluorene	Benzo[a]pyrene
Anthacene	Benzo[e]pyrene
Phenanthrene	Benzo[ghi]perylene
Fluoroanthene	Indeno[1,2,3-cd]pyrene
Pyrene	Dibenz[a,h]anthracene
Benz[a]anthracene	

A methane response factor for the analyzer was obtained by introducing a methane calibration gas to the calibrated J.U.M. 109A analyzer. The calibration gas value for methane and its relationship to the response of the THC analyzer yields the methane response factor. The response factor was divided into the average methane concentration determined during sampling on the analyzer to allow the methane results to be calculated as methane. The methane content, as methane, was then subtracted from the THC measured to determine the total non-methane THC, as methane.

4.2 Fuel Analysis

One composite fuel sample was taken from each AGE during emission testing. Fuel samples were collected from the fuel supply line and analyzed for the parameters listed in Table 4-3.

TABLE 4-3. FUEL ANALYSIS

Analyte	Analytical Method
Sulfur (%)	ASTM D 5453
Carbon (%)	ASTM D 5291
Nitrogen (%)	ASTM D 4629
Hydrogen (%)	ASTM 5291
Ash (%)	ASTM D 482
Aromatics	PONA Analysis
Paraffins	PONA Analysis
Olefins	PONA Analysis
Naphthenes	PONA Analysis
Btu/lb	ASTM D 240

SECTION 5

RESULTS

The purpose of this testing effort was to determine the long-term performance of the CCT retrofitted -86 generator. Prior to approving the CCT modification for general AF use, the AF needed to demonstrate that retrofitting did not negatively affect the operational performance of the unit and that the CCT reduced emissions to an acceptable level.

In order to complete these objectives, emissions from two retrofitted –86 Generators A and B (DG87 and DG76 respectively) were measured during a visit to Travis AFB, and emissions from one retrofitted –86 Generator A (MG13) was measured at Elmendorf AFB in June 2002. Unit MG18 at Elmendorf AFB had operational problems that prevented emission testing. Specifically, the testing program assessed emissions of criteria pollutants including PM, with particulate sizing, NO_x, CO, TNMHC, and select HAPs through VOC, PAH, and aldehyde/ketone sampling. Particulate and HAP data was collected for DG87 and MG13 only. In conjunction with these tests, stack gas flow rate, temperature, composition (CO₂ and O₂), and moisture were measured.

These parameters were measured at five specified loads: 10%, 25%, 50%, 75%, and 100%. A load bank (an artificial load comprised of heating coils) provided the resistance necessary for AGE operation at the specified loads.

The JP-8 and diesel fuel used during the testing were sampled and analyzed for: percent sulfur, carbon, nitrogen, hydrogen, ash, aromatics, paraffins, olefins, naphthenes, and Btu per pound to compare with the specifications for these fuels.

The operational performance of the retrofitted units was evaluated by AGE personnel at each base.

5.1 EPA Tier 2 Pollutants

Emissions were collected directly from the engine's tailpipe through an exhaust stack. The results of the sampling at each AFB base are provided in the following sections. Table 5-1 illustrates a summary of trends of average emission factors for each pollutant at each load setting, at

both bases, and operated with diesel fuel instead of JP-8. Additional detail including emission results from individual runs, horsepower, and fuel usage is provided for each load setting in Tables 5-2 through 5-6.

5.1.1 Horsepower Calculations

During the emission test program, specific engine parameters were monitored to note engine performance. Facility personnel were responsible for collecting and maintaining the operating data and for operating the engine in a safe manner. Select engine operation parameters (including load setting, horsepower, and fuel usage) are included in Tables 5-2 through 5-6.

Accurate measurement of fuel use was imperative so that emission rates could be correlated with fuel consumption rates, expressed in pounds of pollutant per thousand gallons of fuel consumed. In addition, horsepower could not be measured directly. Therefore, horsepower was calculated by multiplying the fuel usage by a brake-specific fuel consumption factor (BSCF) that was equal to the fuel usage measured by Southwest Research Institute during previous testing efforts divided by the brake horsepower (BHP). This calculation, provided by CCT and reviewed by USAF personnel, allowed the emission rates to be correlated with horsepower, expressed as grams per horsepower hour (g/hp-hr). This data could then be compared directly with EPA's Tier 2 standards for non-road engines (as discussed in Section 5.1.5).

Calculated horsepower averaged from 18.07 to 17.45 at 10%, 42.43 to 41.98 at 25%, 87.28 to 78.30 at 50%, 124.79 to 106.31 at 75%, and 127.46 to 143.49 at 100% load settings at Travis AFB and Elmendorf AFB respectively. Fuel usage averaged about 3 gal/hr, 4 gal/hr, 5 gal/hr, 6 to 7 gal /hr, and 7 to 8 gal/hr at 10%, 25%, 50%, 75%, and 100%, respectively.

5.1.2 Gaseous Emissions

Tables 5-1 through 5-6 present the gaseous emissions data collected at the five power settings (100%, 75%, 50%, 25%, and 10%) at which the generator was operated during testing.

In general, gaseous pollutant emission factors for NO_x, CO, and NMHC reported as lbs/gal remained consistent across the five power settings. However, emission factors in g/hp-hr decreased by one-half to one-third as operation was increased from a load setting of 10% to 25%, and decreased again by a similar factor from 25% to 50%. Emission factors for NO_x and CO then remained fairly consistent from the 50% to 100% load settings while NMHC continued

to decrease significantly as power increased. Percent CO₂ increased and percent O₂ decreased as the load setting increased from 10% to 100%.

Gaseous pollutant emission factors for NO_X and CO were fairly consistent when compared from engines operated with diesel fuel versus those operated with JP-8 fuel. However, NMHC emission factors almost doubled when the engines were operated with JP-8 fuel. Percent CO₂ increased and percent O₂ remained comparable when the engine was operated with diesel and with JP-8. It was noted in the field that Unit DG76 had difficulty maintaining load and experienced high operating temperatures. This may contribute to the variance in emissions.

Overall gaseous results were similar at Travis AFB and Elmendorf AFB.

5.1.3 Particulate

Testing for particulate emissions was completed on one engine at Travis AFB and one at Elmendorf AFB (DG87 and MG13). Particulate emission factors in lbs/gal decreased slightly from the 10% load setting to the 75% load setting and then decreased by about two-thirds from the 75% load setting to the 100% load setting. Particulate emission factors expressed in g/hr-hr behaved similar to the NO_X, CO, and NMHC emission factors, approximately halving from the 10% to 25% load setting, and again from the 25% to 50% load setting. Tables 5-1 through 5-6 provide detailed results.

During the second PM test run, the filter media consisted of a polycarbonate material to allow for improved particle characterization by scanning electron microscopy. Each test run that used this material gained approximately twice the particulate mass as the other test runs. A review of the data determined that the mass gained; but not the particle distribution, was compromised by the filter material. These runs were not included in the PM average but are provided for review.

5.1.4 Particulate Characterization

During one run at each setting (Run 2), a particle sample was collected on a polycarbonate filter for analysis via scanning electron microscopy to count the particles in each size range. The results of the particle counts are provided in Table 5-7. Data was insufficient for particle sizing for all but the 100% setting at Travis AFB (DG87), and for the 10% and 25% settings at Elmendorf AFB (MG13). The particle loading was determined to be too high to allow for accurate analysis. The analysis for the remaining runs determined that the majority of particulate matter (>99%) was below 10 microns in size, with >94% of the particles at a diameter below 2.5 microns.

The distribution of the particles by mass was less consistent. As the load increased from 25% to 50% to 100% at Elmendorf AFB, the mass of particles less than 2.5 microns increased from 15% to 47% to 100%, respectively. However, at Travis AFB, the mass of particles less than 2.5 microns was only 36% at the 100% load setting.

5.1.5 Comparison to EPA Tier 2 Non-road Standards

Results from the five load settings were weighted based on the quantity of time spent at each load setting (ISO 8178-4 "D2") and compared to EPA Tier 2 Non-Road standards (Table 5-8). Previous testing completed at Southwest Research Institute in San Antonio, Texas (June 1998) demonstrated that the CCT retrofit reduced NO_X emissions by 76%, CO and THC emissions by 43%, and PM by 32% when compared to non-retrofit generators. However, the current data did not support this finding. Testing illustrated non-compliance with Tier 2 for the combined NO_X+NMHC standard of 4.9 g/hp-hr for the three generators. All three generators were well within the CO standard of 3.7 g/hp-hr. However, none of the generators were able to meet the PM standard of 0.22 g/hp-hr, with results approximately double the standard.

5.2 Hazardous Air Pollutants (HAPs)

Emissions of HAPs were quantified from two generators: DG87 at Travis AFB and MG13 at Elmendorf AFB. This was accomplished by collecting a composite sample over four engine load settings (10% through 75%) for VOCs, PAHs, and aldehydes/ketones, those parameters that featured most prominently in past sampling episodes. An overall HAP emission factor was calculated for each generator. The HAP emission factor from Generator DG87, tested at Travis AFB, was almost one-third that of the emission factor from Generator MG13, tested at Elmendorf AFB. Diesel fuel was used to operate DG87 during testing, while JP-8 was used to fuel MG13. See Table 5-9 for a detailed breakdown of detected HAPs.

5.2.1 Volatile Organic Compounds (VOC)

Speciation of VOC from a composite sample over the 10% load setting to the 75% load setting was performed for one engine at each AFB (DG87 and MG13). The detected compounds were similar to the speciated HAPs determined in historical test programs. These HAPs were naphthalene, benzene, toluene, ethylbenzene, xylene, styrene, bromomethane, and chloromethane,

all of which were detected in the exhaust stream. The portion of the HAP emission factor contributed by VOC was approximately 80%; benzene, toluene, and xylene were most prominent. A summary of the volatile emissions is provided in Table 5-10.

5.2.2 PAH

At Elmendorf AFB, a PAH composite sample over engine load settings of 10% through 75% was collected for Generator A (DG 87) and for Generator A (MG13). Approximately 8% of the total HAP emission factor was comprised of PAH. All other compounds were non-detect above 2 µg. See Table 5-11 for more detailed information on PAH emissions.

5.2.3 Aldehyde/Ketone

A composite aldehyde/ketone sample was collected for DG87 and MG13 over engine load settings 10% through 75%. Aldehyde/ketones contributed approximately 12% of the total HAP emission factor for both engines. See Table 5-12 for more detailed aldehyde/ketone emission information.

5.4 Engine Operational Performance

When the motor was installed by Elmendorf AFB, several problems were immediately noted. The turbo drain line was too close to the exhaust exit, the ether bottle could not be mounted in its original location, and the exhaust exit was routed downward and too close to the hand brake. Elmendorf AFB worked with CCT to resolve these problems. Once the motor was operating, Elmendorf noted additional problems and sent an electronic video to CCT for review. Based on the video, CCT identified the problems, modified the fuel control rack and injector, and shipped the parts to Elmendorf. After additional difficulties, CCT conducted dynometer research and determined that the generator could not operate properly with the turbo in the modified location. The units were then returned from Elmendorf AFB to CCT. The turbo chargers were re-routed to the original position and returned to Elmendorf AFB. The generators provided to Travis AFB were modified based on these initial operational problems.

However, additional operating difficulties with respect to the turbo boost were noted in July 2002. Air Force personnel worked with CCT to resolve these problems. In December

2003, Travis AFB noted that the generator had difficulty operating on JP-8 fuel. Additionally, the units at Elmendorf AFB were experiencing several maintenance problems.

Based on the operational difficulties encountered by both bases during the test period, it was decided that the program was no longer feasible and additional emissions testing was cancelled.

TABLE 5-1. A/M32-86 EMISSION FACTOR SUMMARY

						Load Setting	stting				
Pollutant	Unit	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr
	DG87	0.13	9.75	0.13	5.11	0.11	3,28	0.15	3.84	0.17	4.28
	DG76	0.16	11.98	0.14	5.56	0.13	3.75	0.15	3.74	0.16	3.93
	MG13	0.12	99.6	0.12	4.87	0.13	3.87	0.14	3.64	0.18	4.34
יים ישטיים ביים מון	DG87	4.25E-02	3.19	3.55E-02	1.41	2.55E-02	0.75	3.07E-02	0.79	3.20E-02	0.79
	DG76	7.03E-02	5.28	5.40E-02	2.14	4.14E-02	1.22	3.82E-02	0.98	3.56E-02	0.88
	MG13	5.16E-02	4.03	3.81E-02	1.51	2.98E-02	0.88	3.79E-02	0.97	7.35E-02	1.82
	DG87	1.54E-02	1.15	9.81E-03	3.89E-01	7.15E-03	0.21	5.80E-03	0.15	3.51E-03	8.68E-02
	DG76	2.49E-02	1.87	1.85E-02	0.74	1.16E-02	0.34	8.75E-03	0.22	6.03E-03	0.15
	MG13	2.47E-02	1.93	1.85E-02	0.74	1.05E-02	0.31	6.85E-03	0.18	5.37E-03	0.13
Property and a second s	DG87	1.47E-02	1.10	1.31E-02	0.52	1.02E-02	0.30	1.16E-02	0.30	7,71E-03	0.19
٠	DG76		na	na	na	na	па	na	na	na	na
	MG13	1.51E-02	1.13	1.27E-02	0.51	1.17E-02	0.34	1,35E-02	0.35	1.57E-02	0.39
a charachan an a	DG87	Higher petron in procession in	2	3.98	8	4.9	2	5.9	æ	7.00	Q
	DG76		∞	3.9	مِ	5.33	3	90.9	9	6.3	S
	MG13		0	4.16	9	5.8	∞	9.9	9	6.9	4
	DG87	16.58	86	15.53	53	14.18	∞_	12.73	73		36
	DG76	16.51	15	15.53	53	13.6	51	12.	20	12.7	23
	MG13	16.52	52	15.	21	12.8	34	11.5	94	7	32

Notes:

- DG87 and DG76 (Generators A and B) were tested at Travis AFB; MG13 (Generator A) was tested at Elmendorf AFB - DG87 was operated on diesel fuel during testing; DG76 and MG13 were operated on JP-8

- Results presented are the average of three runs.

- Only gaseous pollutants were measured from Unit DG76.

- PM results represent the total particulate matter (filterable and inorganic condensibles).

TABLE 5-2. A/M32–86 EMISSION FACTOR SUMMARY

TRAVIS AFB - 10% LOAD

		Fuel usage, Calculated	Calculated	Ž	NOX	၀၁	0	NMHC	НС	PM		CO_2	02
un No.	Run No. Unit No.		hp	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr	lbs/gal	lbs/gal g/hp-hr	lbs/gal	g/hp-hr	%	% %
1	DG87		18.03	0.12	8.93	0.04	0.04 3.01	0.01	1.12	0.01	1.01	3.12	16.70
2	DG87	2.81	17.01	0.14	10.23	0.04	3.20	0.02	1.19	0.03	2.28 (a) 3.21		16.59
3	DG87	2.86	17.31	0.13	10.11	0.04	3.37	0.02	1.15	0.02	1.20 3.34	3.34	16.45
Avg.	DG87	2.88	17.45	0.13	9.75	0.04	3.19	0.02	1.15	0.01	1.10	3.22	16.58
	9/5Q	2.88	17.45	0.16	11.98	0.07	5.28	0.02	1.87	na	na	3.28	3.28 16.51

(a) Run 2 not included in PM average.

ELMENDORF AFB - 10% LOAD

		Fuel usage, Calculated	Calculated	ž	NOx	00	0	NN	NMHC	ď	×	CO_2	O
Run No.	Run No. Unit No.	gal/hr	dų	lbs/gal	g/hp-hr	lbs/gal	lbs/gal g/hp-hr	lbs/gal	lbs/gal g/hp-hr	lbs/gal	lbs/gal g/hp-hr % %	%	%
	MG13	3.00	18.14	0.15	11.01	90.0	4.73	0.03	2.17	0.01	1.11	3.31	16.51
2	MG13	3.69	19.23	0.10	8.34	0.04	3.51	0.02	1.76	0.02	2.12(a) 3.31 16.52	3.31	16.52
3	MG13	2.78	16.84	0.13	9.62	0.05	3.85	0.02	1.86	0.02	1.15 3.28 16.53	3.28	16.53
Avg.	MG13	3.16	18.07	0.12	99.6	0.05	4.03	0.05	1.93	0.02	1.13 3.30 16.52	3.30	16.52

TABLE 5-3. A/M32–86 EMISSION FACTOR SUMMARY

TRAVIS AFB - 25% LOAD

		Fuel usage, Calculated	Calculated	Ż	NOx	Ö	93	NN	NMHC	P	PM	CO_2	O ₂
Run No.	Run No. Unit No.	gal/hr	dų	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr	lbs/gal	lbs/gal g/hp-hr	lbs/gal	g/hp-hr	%	% %
	289Q	3.46	39.57	0.14	5.54	0.04		0.01	0.44	0.01	0.52	3.96	15.54
5	DG87	3.81	43.54	0.12	4.89	0.03	1.36	0.01	0.37	0.03	1.28 (a) 3.96 15.54	3.96	15.54
3	DG87	3.74	42.82	0.12	4.89	0.04	1.42	0.01	0.36	0.01	0.52	4.01	4.01 15.52
Avg.	DG87	3.67	41.98	0.13	5.11	0.04	1.41	0.01	0.39	0.01	0.52		3.98 15.53
Н	929Q	3.67	41.98	0.14	9:26	0.05	2.14	0.02	0.74	na	na	3.96	3.96 15.53

(a) Run 2 not included in PM average.

ELMENDORF AFB - 25% LOAD

		Fuel usage,	Fuel usage, Calculated	Ź	NOx	C	CO	NN	NMHC	P	M	CO_2	O_2
Run No.	Run No. Unit No.	gal/hr	hp	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr	lbs/gal	lbs/gal g/hp-hr	lbs/gal	g/hp-hr	%	%
-	MG13	3.75	42.84	0.12	0.12 4.81	0.04	1.52	0.02	0.75	0.01 0.48 4.15 15.23	0.48	4.15	15.23
2	MG13	3.69	42.18	0.12	4.92	0.04	1.53	0.02	92.0	0.03	1.04(a) 4.16 15.20	4.16	15.20
m	MG13	3.70	42.26	0.12	4.88	0.04	1.49	0.05	0.70	0.01	0.53 4.16 15.20	4.16	15.20
Avg.	MG13	3.71	42.43	0.12	4.87	0.04	1.51	0.02	0.74	0.01	0.51 4.16 15.21	4.16	15.21
C													

TABLE 5-4. A/M32–86 EMISSION FACTOR SUMMARY

TRAVIS AFB - 50% LOAD

		Fuel usage,	Fuel usage, Calculated	ž	NOx	Ö	83	NMHC	НС	PM		CO ₂	°
Run No.	Run No. Unit No.	gal/hr	dų	lbs/gal		lbs/gal	3/hp-hr	lbs/gal g/hp-hr	g/hp-hr	lbs/gal	g/hp-hr %	%	%
1	DG87	5.02	77.57	0.11	3.28	0.02	0.73	0.01	0.21	0.01	0.28	4.90	4.90 14.24
2	DG87	5.28	81.59	0.11	3.13	0.02	0.72	0.01	0.21	0.02	0.59(a)	4.94 14.16	14.16
3	DG87	4.91	75.76	0.12	3.43	0.03	0.80	0.01	0.22	0.01	0.32	4.93	4.93 14.16
Avg.	DG87	5.07	78.30	. 0.11	3.28	0.03	0.75	0.01	. 0.21	0.01	0:30	4.92	14.18
	DG76	5.07	78.30	0.13	3.75	0.04	1.22	0.01	0.34	na	na	5.33	13.61
(a) D	Last inglish	Can Dans of and the Lands of the DNA persons											

(a) Run 2 not included in PM average.

ELEMENDORF AFB - 50% LOAD

		Fuel usage, Calculated	Calculated	Ź	NOx	Ö	CO	NN	NMHC	Id.	M	CO ₂	02
Run No.	Run No. Unit No.	gal/hr	dų	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr	lbs/gal	lbs/gal g/hp-hr	lbs/gal	Ibs/gal g/hp-hr % %	%	%
	MG13	5.52	85.21	0.15	0.15 4.27	0.03	0.03 0.98	0.01	0.36	0.01	0.35	5.79	12.94
2	MG13	5.57	86.01	0.13	3.72	0.03	0.82	0.01	0.32	0.03	0.94(a) 5.86 12.89	5.86	12.89
3	MG13	5.87	90.64	0.12	3.62	0.03	0.82	0.01	0.25	0.01	0.34	5.98	5.98 12.70
Avg.	MG13	5,65	87.28	0.13	3.87	0.03	0.88	0.01	0.31	0.01	0.34	5.88	5.88 12.84

TABLE 5-5. A/M32–86 TAILPIPE EXHAUST STACK EMISSION FACTOR SUMMARY

TRAVIS AFB - 75% LOAD

		Fuel usage, Calculated	Calculated	Ž	NOx	Ö	02	NMHC	НС	PM		CO_2	o O
Run No.	Run No. Unit No.	gal/hr	hp	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr	lbs/gal	lbs/gal g/hp-hr	lbs/gal	g/hp-hr	%	%
_	DG87	5.65	99.75	0.16	4.04	0.03	0.82	0.01	0.17		0.31	5.88	12.83
. 2	DG87	6.33	111.81	0.14	3.67	0.03	0.74	0.01	0.14	0.02	0.60(a) 6.00 12.72	00.9	12.72
3	DG87	80.9	107.38	0.15	3.82	0.03	0.80	0.01	0.14	0.01	0.29	6.05 12.65	12.65
Avg.	DG87	6.02	106.31	0.15	3.84	0.03	0.79	0.01	0.15	0.01	0.30	5.98 12.73	12.73
1	DG76	6.02	106.31	0.15	3.74	0.04	0.98	0.01	0.22	na	na	00.9	6.00 12.70

(a) Run 2 not included in PM average.

ELMENDORF AFB - 75% LOAD

Init No	Tinit No Fine Incade Coloniated	Colmitated	Ž	NO.	C	CO	ZZ	NMHC	þ	>	င်	Ć
2	The mage,	Calculated	1	 <	`)		, ,	7	7 .
	gal/hr	dq	lbs/gal	lbs/gal g/hp-hr	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr		g/hp-hr	%	%
MG13	96.90	121.81	Na	na	0.03	0.03 0.85	0.01	0.01 0.16		0.01 0.31 6.31 12.03	6.31	12.03
MG13	7.26	128.09	0.14	3.53	0.04	0.91	0.01	0.18	0.02	0.56(a) 6.67 12.10	29.9	12.10
MG13	7.05	124.47	0.15	3.76	0.05	1.16	0.01	0.18	0.01	0.38 6.92 11.69	6.92	11.69
MG13	7.07	124.79	0.14	3.64	0.04	0.97	0.01	0.18	0.01	0.35 6.63 11.94	6.63	11.94

TABLE 5-6. A/M32–86 EMISSION FACTOR SUMMARY

TRAVIS AFB - 100% LOAD

		Fuel usage, Calculated	Calculated	Z	NOx	O	93	MN	NMHC	PM	×	CO ₂	02
Run No.	Run No. Unit No.	gal/hr	ďų	'lbs/gal	g/hp-hr	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr		g/hp-hr	%	%
1	DG87	7.27	133.64	0.18	4.39	0.03	0.75	0.75 4.20E-03 0.10	0.10		0.01 0.19 6.87 11.55	6.87	11.55
2	DG87	8.03	147.61	0.17	4.21	0.03	0.81	3.30E-03	0.08	0.02	0.42 (a) 7.02 11.31	7.02	11.31
3	DG87	8.12	149.23	0.17	4.24	0.03	0.82	3.04E-03	0.08	7.61E-03		7.10	11.22
Avg.	DG87	7.81	143.49	0.17	4.28	0.03	0.79	3.51E-03	0.09	7.71E-03	0.19	7.00 11.36	11.36
1	DG76	7.81	143.49	0.16	3.93	0.04	0.88	0.01	0.15	na	na	6.35	6.35 12.23
4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 7.1											

(a) Run 2 not included in PM average.

ELMENDORF AFB - 100% LOAD

Run No. Unit No.		ruel usage,	Fuel usage, Calculated	ž	NOx	2	0	NMHC	HC	F	×	CO2	O ₂
-	It No.	gal/hr	ďų	lbs/gal	lbs/gal g/hp-hr	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr		lbs/gal g/hp-hr % %	%	%
1	MG13	6.92	127.31	na	na	0.08	0.08 1.85	0.01	0.01 0.14		0.41	96.90	11.46
2 M	MG13	6.97	128.13	0.19	4.60	0.08	1.95	5.04E-03	0.12	0.01	0.37(a) 7.06 11.19	7.06	11.19
3 M	MG13	6.91	126.95	0.17	4.08	0.07	1.64	0.01	0.14	0.01	0.37 6.87 11.32	6.87	11.32
Avg. M	MG13	6.93	127.46	0.18	4.34	0.07	1.82	0.01	0.13	1.57E-02	0.13 1.57E-02 0.39 6.94 11.32	6.94	11.32

TABLE 5-7.

Percentages of Non-Carbon Particles in Various Diameter Ranges by Number of Particles

	T-5-100-2	E-50-5-2	E-75-5-2	E-100-5-2
Diameter Range (um)			·	
.5-2.5	94.2%	97.7%	97.2%	100%
2.5-5.0	5.4%	1.8%	2.8%	0.0%
5.0-7.5	0.4%	0.3%	0.0%	0.0%
7.5-10	0.0%	0.0%	0.0%	0.0%
>10	0.0%	0.3%	0.0%	0.0%

^{*}All other runs had insufficient particles for a valid statistical analysis.

Percentages of Non-Carbon Particles in Various Diameter Ranges by Estimated Mass of Particles

	T-5-100-2	E-50-5-2	E-75-5-2	E-100-5-2
Diameter Range (um)				
.5-2.5	36.1%	14.7%	46.6%	100%
2.5-5.0	43.6%	12.2%	53.4%	0.0%
5.0-7.5	20.4%	9.3%	0.0%	0.0%
7.5-10	0.0%	0.0%	0.0%	0.0%
>10	0.0%	63.9%	0.0%	0.0%

^{*}All other runs had insufficient particles for a valid statistical analysis.

TABLE 5-8. A/M32-86 EMISSION SUMMARY

WEIGHTED RESULTS – BASED ON CCT PROVIDED HORSPEPOWER TRAVIS AFB

Unit No.	N	O_X	C	0	NM	HC	PN	Ŋ	NO _X + NMHC
4.22 0 1.00	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr	g/hp-hr (a)
DG87	0.13	4.67	0.03	1.20	0.01	0.34	0.01	0.44	5.01
DG76	0.14	5.12	0.05	1.83	0.01	0.57	NA	NA	5.69
EPA Tier 1		6.9							
EPA Tier 2				3.7				0.22	4.9

⁽a) EPA will use an NMHC +NOx standard of 4.9 g/hp-hr for Tier 2 nonroad diesel engines

WEIGHTED RESULTS -ELMENDORF AFB

Unit No	N	O _X	C	0	NMJ	HC	Pl	М	NO _x + NMHC
	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr	lbs/gal	g/hp-hr	g/hp-hr (a)
Mg13	0.13	4.72	0.04	1.45	0.01	0.56	0.01	0.47	5.28
EPA Tier 1		6.9							
EPA Tier 2				3.7				0.22	4.9

⁽a) EPA will use an NMHC +NOx standard of 4.9 g/hp-hr for Tier 2 nonroad diesel engines

WEIGHTING CRITERIA

Percent Load	Weighting Factor
100	0.05
75	0.25
50	0.30
25	0.30
10	0.10

Note: Weighting criteria specified in ISO 8178-4 "D2".

TABLE 5-9. A/M32-86 GENERATOR TESTING HAZARDOUS AIR POLLUTANTS (HAPs) EMISSION FACTOR SUMMARY lbs/1000 lbs fuel

i e	Unit DG87	Unit MG13
	(Travis AFB)	(Elmendorf AFB)
Exhaust Flow, dscfm	342	353
Average Fuel Flow, lbs/hr	4.41	4.90
Pollutant		
Formaldehyde	8.01E-03	3.16E-02
Acetaldehyde	5.67E-03	1.12E-02
, Acrolein	1.11E-02	2.45E-02
2-Butanone (MEK)	5.96E-03	2.30E-02
Benzene	9.70E-02	1.22E-01
Bromomethane	1.11E-03	2.48E-02
Chloromethane	1.64E-03	4.25E-02
Toluene	5.96E-02	1.13E-01
Ethylbenzene	1.21E-02	5.31E-02
Methylene chloride	3.70E-03	9.20E-02
m,p-Xylene	4.04E-02	1.11E-01
Naphthalene	ND	6.10E-02
o-Xylene	1.62E-02	7.25E-02
Styrene	7.87E-04	ND
Total HAPs	0.27	0.79

ND = Non-Detect

TABLE 5-10. A/M32-86 GENERATOR TESTING EMISSION FACTOR SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs)

		Unit DG	DG87 (Travis AFB)	(FB)		Ü	Unit MG13 (Elmendorf AFB)	mendorf A	7B)		
Flow Rate, dscfm (A)			342				353	33			
Fuel Flow, Ibs/hr (A)			4.41				5.30	30		Ave	Average
		lb/hr	la la	1bs/1,000	lbs/1,000 lbs fuel	/qI	lb/hr	lbs/1,00	lbs/1,000 lbs fuel		
			Detection		Detection		Detection		Detection	7. A	lbs/1,000 lbs
Analyte	CAS number	Detected	limit	Detected	limit	Detected	Ifmit	Detected	limit	ID/Nr	ruel
Chloromethane	74-87-3	7.23E-06		1.646E-03		2.25E-04		4.25E-02		1.16E-04	2.21B-02
Bromomethane	74-83-9	4.88E-06		1.11E-03		1.31E-04		2.48E-02		6.81E-05	1.29E-02
Chloroethane ^H	75-00-3		1.31E-06		2.98E-04		1.31E-06		2.48E-04	1.31E-06	2.73E-04
Freon 11 (Trichlorofluoromethane)	75-69-4		9.39E-07		2.13E-04		9.39E-07		1.77E-04	9.39E-07	1.95E-04
1,1-Dichloroethane ^H	75-34-3		1.31E-06		2.98E-04		1.31E-06		2.48E-04	1.31E-06	2.73E-04
Carbon Disulfide ^H	75-15-0		9.39E-07		2.13E-04		9.39E-07		1.77E-04	9.39E-07	1.95E-04
Acetone	67-64-1	5.02E-05		1.14E-02		1.41E-04		2.65E-02		9.55E-05	1.90E-02
Methylene Chloride ^H	75-09-2	1.63E-05		3.70E-03		4.88E-04		9:20E-02		2.52E-04	4.79E-02
trans-1.2-Dichloroethene	156-60-5		1.31B-06		2.98E-04		1.31E-06		2.48E-04	1.31E-06	2.73E-04
1.1-Dichloroethene	75-35-4		1.31E-06		2.98E-04		1.31E-06		2.48E-04	1.31E-06	2.73E-04
Vinyl Acetate ^H	108-05-4		4.69E-06		1.06E-03		4.69E-06		8.85E-04	4.69E-06	9.74E-04
c1s-1,2-Dichloroethene	156-59-2		1.31E-06		2.98E-04		1.31E-06		2.48E-04	1.31E-06	2.73E-04
2-Butanone (Methyl Ethyl Ketone)	78-93-3	2.63E-05		5.96E-03		1,22E-04		2.30E-02		7.41E-05	1.45E-02
Chloroform	67-66-3		1.31E-06		2.98E-04		1.31E-06		2.48E-04	1.31E-06	2.73E-04
1,1,1-Trichloroethane	71-55-6		1.31E-06		2.98E-04		1.31E-06		2.48E-04	1.31E-06	2.73E-04
Carbon Tetrachloride ^H	56-23-5		9.39E-07		2.13E-04		9.39E-07		1.77E-04	9.39E-07	1.95E-04
Benzene ^H	71-43-2	4.28E-04		9.70E-02		6.48E-04		1.22E-01		5.38E-04	1.10E-01
1,2-Dichloroethane ^H	107-06-2		1.31E-06		2.98E-04		1.31E-06		2.48E-04	1.31E-06	2.73E-04
Bromodichloromethane	75-27-4		9.39E-07		2.13E-04		9.39E-07		1.77E-04	9.39E-07	1.95E-04
cis-1,3-Dichloropropene	10061-01-5		1.31E-06		2.98E-04		1.31E-06		2.48E-04	1.31E-06	2.73E-04
trans-1,3-Dichloropropene ^H	10061-02-6		1.31E-06		2.98E-04		1.31E-06		2.48E-04	1.31E-06	2.73E-04
4-Methyl-2-pentanone (MIBK) ^H	108-10-1		4.69E-06		1.06E-03		4.69E-06		8.85E-04	4.69E-06	9.74E-04
Toluene	108-88-3	2.63E-04		5.96E-02		6.01E-04		1.13E-01		4.32E-04	8.64E-02
1,1,2-Trichloroethane ^H	79-00-5		1.31E-06		2.98E-04		1.31E-06		2.48E-04	1.31E-06	2.73E-04
Tetrachloroethene ^H	127-18-4		1.31B-06		2.98E-04		1.31E-06		2.48E-04	1.31E-06	2.73E-04
2-Hexanone	591-78-6		4.69E-06		1.06E-03		4.69E-06		8.85E-04	4.69E-06	9.74E-04

TABLE 5-10 (continued)											- 1
		Unit De	Unit DG87 (Travis AFB)	AFB)		Ç	Unit MG13 (Elmendorf AFB)	mendorf Al	(<u>B</u>)		- 1
Flow Rate, dscfm (A)			342				3.	353			
Fuel Flow, lbs/hr (A)			4.41				5.	5.30		Aver	ខា
		8	lb/hr	lbs/1,000 lbs fuel	lbs fuel	/qı	lb/hr	lbs/1,00	lbs/1,000 lbs fuel		
	•		Detection		Detection		Detection		Detection		
Analyte	CAS number	number Detected	limit	Detected	limit	Detected	limit	Detected	limit	lb/hr	
Dibromochloromethane	124-48-1		1.31E-06		2.98E-04		1.31E-06		2.48E-04	1.31E-06	
Chlorobenzene ^H	108-90-7		1.31E-06		2.98E-04		1.31E-06		2.48E-04	1.31E-06	
Ethyl Benzene ^H	100-41-4	5.35E-05		1.21E-02		2.82E-04		5.31E-02		1.68E-04	
m.p-Xvlene ^H	108-38-3	1.78E-04		4.04E-02		5.91E-04	•	1.11E-01		3.85E-04	
o-Xvlene ^H	95-47-6	7.13E-05		1.62E-02		3.85E-04		7.25E-02		2.28E-04	
Styrene	100-42-5	3.47E-06		7.87E-04			9.39E-07		1.77E-04	2.21E-06	
Bromoform	75-25-2		9.39E-07		2.13B-04		9.39E-07		1.77E-04	9.39E-07	
1.1.2.2-Tetrachloroethane	79-34-5		1.31E-06		2.98E-04		1.31E-06		2.48E-04	1.31E-06	
1,3-Butadiene ^H	106-99-0		4.69E-06		1.06E-03		4.69E-06		8.85E-04	4.69E-06	
1,2-Dichloropropane	78-87-5		1.31E-06		2.98E-04		1.31E-06		2.48E-04	1.31E-06	
The Late and Land	70.01 6		1 210 06		2 08P 04		1 31E.06		2 48F-04	1 31P.06	

lbs/1,000 lbs fuel

erage

2.73E-04 2.73E-04 3.26E-02 7.60E-02 4.44E-02

4.82E-04 1.95E-04 2.73E-04 9.74E-04 2.73E-04

2.73E-04

Trichloroethene 79-01-6 1.31E-06 2.98E-04 1.31E-06 1.31E-06 1.31E-06 1.31E-06 (A) The exhaust flow rate and fuel flow represent a weighted average based upon the amount of sample time spent at each setting.

TABLE 5-11. A/M32-86 GENERATOR TESTING POLYNUCLEAR AROMATIC HYDROCARBONS **EMISSION FACTOR SUMMARY**

		Unit DG87 (Travis AFB)	Travis AFB)	Unit MG13 (E	Unit MG13 (Elmendorf AFB)	Ave	Average
Flow Rate, dscfm (A)		342	2	3.	353	37	348
Fuel Flow, lbs/hr (A)		4.4		5.	5.30	4.	4.86
		lb/hr	lbs/1000lbs fuel	lb/hr	lbs/1000lbs fuel		lbs/1000lb
	CAS	Detection	Detection	Detection	Detection	lb/hr	fuel
Analyte	Number	Detected Limit	Detected Limit	Detected Limit	Detected Limit		
Naphthalene ^H	91-20-3	1.53E-04	3.47E-02 3.24E-04	3.24E-04	6.10E-02	2.38E-04	4.79E-02
2-Methylnapthlene	91-21-6	1.53E-04	3.47B-02 3.24E-04	3.24E-04	6.10E-02	2.38E-04	4.79E-02
2-Chloronapthalene	91-58-7	1.53E-04	3.47E-02	2.70E-05	5.09E-03	9.01E-05	1.99E-02
Acenaphthene	83-32-9	1.53E-04	3.47E-02	2.70E-05	5.09E-03	9.01E-05	1.99E-02
Acenaphthylene	208-96-8	1.53E-04	3.47E-02	2.70E-05	\$,09E-03	9.01E-05	1.99E-02
Fluorene	86-73-7	1.53E-04	3.47E-02	2,70E-05	\$.09E-03	9.01E-05	1.99E-02
Phenanthrene ^H	85-01-8	1.53E-04	3.47E-02	2.70E-05	\$.09E-03	9.01E-05	1.99E-02
Anthracene	120-12-7	1.53E-04	3.47E-02	2.70E-05	5.09E-03	9.01E-05	1.99E-02
Fluoranthene	206-44-0	1.53E-04	3.47E-02	2.70E-05	5.09E-03	9.01E-05	1,99E-02
Pyrene ^H	129-00-0	1.53E-04	3.47E-02	2.70E-05	5.09E-03	9.01E-05	1.99E-02
Chrysene	218-01-9	1.53E-04	3.47E-02	2.70E-05	5.09E-03	5.09E-03 9.01E-05	1.99E-02
Benzo(a)anthracene	56-55-3	1.53E-04	3.47E-02	2.70E-05	5.09E-03	9.01E-05	1.99E-02
Benzo(b)fluoranthene ^H	205-99-2	· 1.53E-04	3.47E-02	2.70E-05	\$.09E-03	5.09E-03 9.01E-05	1.99E-02
Benzo(k)fluoranthene ^H	207-08-9	1,53E-04	3.47E-02	2.70E-05	5.09E-03	9.01E-05	1.99E-02
Benzo(a)pyrene ^H	50-32-8	1.53E-04	3.47E-02	2.70E-05	5.09E-03	9.01E-05	1.99E-02
Indeno(1,2,3-c,d)pyrene ^H	193-3-5	1.53E-04	3.47E-02	2.70E-05	5.09E-03	9.01E-05	1.99E-02
Dibenzo(a,h)anthracene ^H	53-70-3	1.53E-04	3.47E-02	2.70E-05	5.09E-03	5.09E-03 9.01E-05	1.99E-02
Benzo(g,h,I)perylene ^H	191-24-2	1,53E-04	3.47E-02	2.70E-05	5.09E-03	5.09E-03 9.01E-05	1.99E-02

f. Hazardous Air Pollutant (HAP)

Note: Unless shown as detected, result was less than the reporting limit.

(A) The exhaust flow rate and fuel flow represent a weighted average based upon the amount of sample time spent at each setting.

TABLE 5-12. A/M32–86 GENERATOR TESTING EMISSION FACTOR SUMMARY ADELHYDE/KETONES

te 342 353 t) 4,1 4.90 w 4.41 4.90 w 4.41 4.90 t) lbs/1000 lbs lbs/1000 lbs lbs/1000 lbs tol lbs/1000 lbs lbs/1000 lbs lbs/nr tol 2.50E-05 8.01E-03 1.55E-04 3.16E-02 9.50E-05 dehyde)* 1.18E-05 5.67E-03 5.49E-05 1.12E-02 4.00E-05 dehyde)* 1.18E-05 2.67E-03 2.60E-05 5.30E-05 8.44E-05 dehyde)* 1.18E-05 2.26TE-03 2.60E-05 5.30E-02 8.4E-05 dehyde)* 3.33E-05 7.56E-03 3.29E-05 6.73E-02 8.94E-05 staldehyde)* 4.71E-06 1.07E-03 3.29E-05 6.73E-03 3.08E-05 staldehyde) 2.11E-05 4.78E-03 3.34E-05 8.26E-03 3.08E-05 staldehyde) 4.61E-06 1.07E-03 3.34E-05 6.83E-03 1.90E-05 dehyde) 9.32E-06		Unit DG87 (Unit DG87 (Travis AFB)	Unit MG13 (E	Unit MG13 (Elmendorf AFB)	Ave	Average
w 4.41 4.90 ty lbs/hr lbs/1000 lbs lbs/hr lbs/hr lbs/hr lbs/lnr lbs/hr	Flow Rate Dscfm (A)	m	42	3	53	3	348
Pack Pack	Fuel Flow Ibs/hr (A)	4.	41	4	06:	4	4.66
3.53E-05 8.01E-03 1.55E-04 3.16E-02 2.50E-05 5.67E-03 5.49E-05 1.12E-02 4.90E-05 1.11E-02 1.20E-04 2.45E-02 4.90E-05 1.11E-02 1.20E-04 2.45E-02 6ethyde)** 3.33E-05 2.67E-03 2.60E-05 5.30E-03 6rthyl Ethyl 9.81E-06 2.22E-03 3.29E-05 6.73E-02 6rthyl Ethyl 9.81E-06 1.07E-03 ND ND 6.33E-05 1.22E-03 3.34E-05 6.83E-03 6.83E-03 3.34E-05 6.83E-03 846) 9.32E-06 2.11E-03 3.34E-05 6.83E-03 846) 2.11E-05 1.05E-03 3.34E-05 6.83E-03 846) 2.11E-05 1.05E-03 3.34E-05 6.83E-03 846) 2.24E-05 7.34E-03 1.45E-04 2.96E-02	Analyte	lbs/hr	lbs/ 1000 lbs fuel	lbs/hr	lbs/ 1000 lbs fuel	lbs/hr	lbs/ 1000 lbs fuel
2.50E-05 5.67E-03 5.49E-05 1.12E-02	Formaldehyde	3.53E-05	8.01E-03	1.55E-04	3.16E-02	9.50E-05	1.98E-02
dehyde) ^H 4.90E-05 1.11E-02 1.20B-04 2.45E-02 dehyde) ^H 1.18E-05 2.67E-03 2.60E-05 5.30E-03 (ethyl Ethyl 9.81E-06 2.22E-03 3.29E-05 1.53E-02 sraldehyde) 4.71E-06 1.07E-02 1.25E-04 2.55E-02 hyde) 2.11E-05 4.78E-03 4.04E-05 8.26E-03 yde) 9.32E-06 2.11E-03 3.34E-05 6.83E-03 yde) 9.32E-05 7.34E-03 1.45E-04 2.96E-02	Acetaldehyde	2.50E-05	5.67E-03	5.49E-05	1.12E-02	4.00E-05	8.44E-03
dehyde) ^{II} 1.18E-05 2.67E-03 2.60E-05 5.30E-03 fethyl Ethyl 3.33E-05 7.56E-03 7.49E-05 1.53E-02 fethyl Ethyl 9.81E-06 2.22E-03 3.29E-05 6.73E-03 raldehyde) 4.71E-06 1.07E-02 1.25E-04 2.55E-02 hyde) 2.11E-05 4.78E-03 4.04E-05 8.26E-03 hyde) 9.32E-06 2.11E-03 3.34E-05 6.83E-03 yde) 9.32E-06 2.11E-03 1.45E-04 2.96E-02	Acrolein	4.90E-05	1.11E-02	1.20E-04	2.45E-02	8.44E-05	1.78E-02
tethyl Ethyl 3.33E-05 7.56E-03 7.49E-05 1.53E-02 staldehyde 2.22E-03 3.29E-05 6.73E-03 raldehyde) 4.71E-06 1.07E-03 ND ND hyde) 2.11E-05 4.78E-03 4.04E-05 8.26E-03 yde) 9.32E-06 2.11E-03 3.34E-05 6.83E-03 yde) 3.24E-05 7.34E-03 1.45E-04 2.96E-02	Propanal (Propionaldehyde) ^H	1.18E-05	2.67E-03	2.60E-05	5.30E-03	1.89E-05	3.98E-03
(ethyl Ethyl 9.81E-06 2.22E-03 3.29E-05 6.73E-03 sraldehyde) 4.71E-06 1.07E-03 ND ND hyde) 2.11E-05 4.78E-03 4.04E-05 8.26E-03 hyde) 2.11E-06 1.05E-03 3.34E-05 6.83E-03 yde) 9.32E-06 2.11E-03 3.34E-05 6.83E-03 yde) 3.24E-05 7.34E-03 1.45E-04 2.96E-02	Crotonaldehyde	3.33E-05	7.56E-03	7.49E-05	1.53E-02	5.41E-05	1.14E-02
raldehyde) 4.71E-06 1.07E-03 ND ND ND ND hyde) 2.11E-05 1.05E-03 4.04E-05 8.26E-03 4.61E-06 1.05E-03 3.34E-05 6.83E-03 3.24E-05 7.34E-03 1.45E-04 2.96E-02	Isobutraldehyde / Methyl Ethyl Ketone"	9.81E-06	2.22E-03	3.29E-05	6.73E-03	2.14E-05	4.48E-03
hyde) 4.71E-06 1.07E-03 ND ND hyde) 2.11E-05 4.78E-03 4.04E-05 8.26E-03 4.61E-06 1.05E-03 3.34E-05 6.83E-03 hyde) 9.32E-06 2.11E-03 3.34E-05 6.83E-03 3.24E-05 7.34E-03 1.45E-04 2.96E-02	Benzaldehyde	5.39E-05	1.22E-02	1.25E-04	2.55E-02	8.94E-05	1.89E-02
hyde) 2.11E-05 4.78E-03 4.04E-05 8.26E-03 4.61E-06 1.05E-03 3.34E-05 6.83E-03 yde) 9.32E-06 2.11E-03 3.34E-05 6.83E-03 3.24E-05 7.34E-03 1.45E-04 2.96E-02	Isopentanal (Isovaleraldehyde)	4.71E-06	1.07E-03	S	QN	5.60E-06	1.20E-03
yde) 4.61E-06 1.05E-03 3.34E-05 6.83E-03 yde) 9.32E-06 2.11E-03 3.34E-05 6.83E-03 3.24E-05 7.34E-03 1.45E-04 2.96E-02	Pentanal (Valeraldehyde)	2.11E-05	4.78E-03	4.04E-05	8.26E-03	3.08E-05	6.52E-03
yde) 9.32E-06 2.11E-03 3.34E-05 6.83E-03 3.24E-05 7.34E-03 1.45E-04 2.96E-02	o-Tolualdehyde	4.61E-06	1.05E-03	3.34E-05	6.83E-03	1.90E-05	3.94E-03
3.24E-05 7.34E-03 1.45E-04 2.96E-02	Hexanal (Hexaldehyde)	9.32E-06	2.11E-03	3.34E-05	6.83E-03	2.14E-05	4.47E-03
	m, p-Tolualdehyde	3.24E-05	7.34E-03	1.45E-04	2.96E-02	8.86E-05	1.84E-02

"-Hazardous Air Pollutant (HAP)

Note: ND = No Detection

(A) The exhaust flow rate and fuel flow represent a weighted average based upon the amount of sample time spent at each setting.

TABLE 5-13. FUEL ANALYSIS

Parameter	Analytical Method	Diesel (Travis)	JP-8 (Travis)	JP-8 (Elmendorf)
Btu/lb	ASTM D-240	19744	19704	19702
Sulfur %	ASTM D-5453	0.010	< 0.005	0.097
Carbon %	ASTM D-5291	86.25	85.97	86.04
Nitrogen %	ASTM 4629	103	6	7
Hydrogen %	ASTM D-5291	13.56	13.86	13.73
Ash %	ASTM D482	0.001	0.001	0.001
Naphthenes %1	PONA Analysis	83.6	84.9	55.8
Aromatics %	PONA Analysis	16.2	14.9	17.6
Parafins % ¹	PONA Analysis	0.0	0.0	26.3
Olefins %	PONA Analysis	0.2	0.2	0.3

The saturate fraction of the Travis fuel samples was too dense to permit separation of the naphthene fration by the refractivity intercept method. The saturates appeared in all naphthenes.

SECTION 6

QUALITY ASSURANCE PROCEDURES

6.1 Quality Control Procedures

As part of the engine testing program, EQ implemented a quality assurance (QA) and quality control (QC) program. QA/QC are defined as follows:

- Quality Control The overall system of activities whose purpose is to provide a quality product or service (e.g., the routine application of procedures for obtaining prescribed standards of performance in the monitoring and measurement process).
- Quality Assurance A system of activities whose purpose is to provide assurance that the overall QC is being conducted effectively.

Field Personnel for stack sampling were responsible for implementation of field QA/QC procedures. Individual laboratory managers were responsible for implementation of analytical QA/QC procedures. The overall Project Manager oversaw all QA/QC procedures to ensure that sampling and analyses met the QA/QC requirements and that accurate data results from the test program were obtained.

6.1.1 Field QC Sample Collection/Preparation Procedures

General field QC procedures were the following:

- Only the number of samples needed to represent the media being sampled were collected.
- To the extent possible, the quantities and types of samples and sample locations were determined prior to the actual field work.
- As few people as possible handled samples.
- Field personnel were responsible for the care and control of the samples collected until they were properly transferred or dispatched.
- Sample records were completed for each sample, using black waterproof ink or other measures to ensure the legibility and integrity of sample identification.

- Proper preservation, storage, and security procedures were followed during the field work, and additional samples were taken if needed.
- Storage conditions of samples were documented on the sample forms or project records.

6.1.1.1 QC Procedures for Stack Gas Sample Collection

This subsection provides a list of QC procedures that were employed during the field sampling effort. Method-specific QC procedures are detailed in the method descriptions contained in Appendix A. General QC checks that apply to all methods include the following:

- · Use of leak checks.
- Use of standardized forms, labels, and checklists.
- Ensurance of sample traceability.
- Collection of appropriate blanks.
- Use of calibrated instrumentation.
- Use of Protocol 1 and/or NIST-traceable calibration gases.
- Review of data sheets in the field to verify completeness.
- Use of validated spreadsheets for calculating results.

6.1.1.2 Velocity/Volumetric Flow Rate QC Procedures

Volumetric flow rates were determined during the isokinetic stack gas tests. The following QC procedures were followed during these tests:

- The Standard pitot tube was inspected visually prior to sampling.
- The pitot tube was leak-checked before sampling.
- Proper orientation of the pitot tube was maintained while measurements were made.
- The manometer oil was leveled and zeroed before each run.
- Pitot tube coefficients were determined based on physical measurement techniques as delineated in EPA Method 2A.

6.1.1.3 Moisture Content and Sample Volume QC Procedures

Gas stream moisture was determined by EPA Method 4 as part of the isokinetic stack gas tests. The following QC procedures were followed in determining the volume of moisture collected:

- The balance zero was checked and rezeroed if necessary before each weighing.
- The balance will be leveled and placed in a clean, motionless environment for weighings.

 The indicating silica gel will be fresh for each run and will be inspected periodically and replaced during runs, if needed.

The QC procedures that will be followed to ensure accurate sample gas volume determination are the following:

- The dry gas meter will be fully calibrated annually by using an EPA-approved intermediate standard device.
- Pretest, port-change, and posttest leakchecks will be completed (must be less than 0.02 cfm or 4 % of the average sample rate).
- The gas meter will be read to the thousandth of a cubic foot for all initial and final readings.
- Readings of the dry gas meter, meter orifice pressure (**Delta H**), and meter temperatures will be taken at every sampling point.
- Accurate barometric pressures will be recorded at least once per day.
- Pre- and posttest program dry gas meter checks will be completed to verify the accuracy of the meter calibration constant (Y).

All calibrations were conducted according to standard operating procedures (SOP) by using materials traceable to NIST reference materials. Calibrations will be conducted by qualified personnel thoroughly familiar with the sampling equipment. All calibration and audit results were recorded in a field logbook and/or the calibration/audit data sheets. Other specific QA/QC for particulate, VOST, aldehydes and ketones, and CEMS are in Appendix F, and in Tables 6-1 and 6-2.

6.1.2 Exhaust Gas Blank Samples

Stack gas blank samples consisted primarily of reagent blanks collected in the on-site sample recovery area during the test program. Reagent blanks included solvents used to recover stack samples, absorbing solutions, filters, and resins (Tenax, Tenax/charcoal). All reagent blanks were collected by transferring directly from storage containers to sample jars, or labeling filters and resins as blank samples.

A blank Method 0011 (aldehydes and ketones) sample train was taken to the stack sample location, leak checked, and then recovered in the same manner as the Method 0011 stack samples.

TABLE 6-1. FIELD CHECKS OF SAMPLING EQUIPMENT

Equipment	Checked Against	Allowable Difference
Pitot tube	Inspection	No visible damage
Thermocouples	ASTM 2F or 3F	1.5%
Probe nozzles	Caliper	High-low 0.004 in.

TABLE 6-2. FIELD CHECKS OF TGO, CO AND NOX ANALYZERS

	TIED CHICKS OF TGO, CO. 12.0	A
	Instrument Check	Acceptable Limit
	O ₂ , CO ₂ , CO & NO _x Calibration Error, % Span	±2%
Initial	TNMHC Calibration Error, % Gas Value	±5%
Calibration	Sampling System Bias	< 5% of Span
·	O ₂ , CO ₂ , CO & NO _x Calibration Error, % Span	±2%
	TNMHC Calibration Error, % Gas Value	±5%
	O ₂ , CO ₂ , CO & NO _x Drift, % Span	< 3% of Span
Daily Calibration	TGO Drift, % Span	< 3% of Span

The sampling media may contain small amounts of the target compounds emitted from naturally occurring or anthropogenic emission sources. Contamination may be introduced to the sampling media during handling of the media in the laboratory, in the field, or during shipping.

Blank samples were used to quantify these sources of contamination. A blank sample consisted of a complete set of sampling media (e.g., a polyurethane foam cartridge and a glass fiber filter) that had no air drawn through it by the sampling equipment. Field blank samples were collected during the monitoring program.

The field blanks were used to identify contamination resulting from field sample handling procedures. A field blank was handled in the same manner as an actual sample, undergoing the same preparation, installation in the sampler module, and recovery procedures.

The following stack sample blank corrections were performed.

- Particulate Acetone and methylene chloride blank.
- VOST Field and trip blanks.
- Aldehydes and Ketones Reagent blanks.

6.2 Sampling Containers, Preservative, and Volume Requirements

Table 6-3 lists the holding times, storage containers, and preservation requirements used for routine storage and handling of samples.

6.3 Decontamination Procedures

Stack-gas sampling equipment was pre-cleaned following standard source test method procedures. All stack-gas sampling equipment was cleaned on site as part of individual sample recovery procedures. Sample containers were purchased from a vendor with a certificate indicating that each lot of bottles was free of contaminants. All personnel associated with sample collection used designated personal protective equipment (PPE). Personnel followed standard PPE decontamination procedures for each level of PPE required. All personnel received the proper hazardous materials training as specified in 29 CFR 1910.

TABLE 6-3. RECOMMENDED SAMPLE CONTAINERS, PRESERVATION TECHNIQUES, AND HOLDING TIMES

Sample Location	Analyte	Matrix	Container Type and Size	Preservation	Holding Time
Stack Gas	Particulate Condensable particulate Volatile organics	Liquids, filters, and resins	AG/500 mL AG/1.0 L G/40 mL AG/1L	NA NA ≤4°C ≤4°C	NA NA 14 days 14 days to exit/40 days to analysis
	Aldehydes and Ketones	Liquid	AG/1.0 L	≤4 °C	14 days

Key:

A= Aluminum Foil

E = Envelope/Folder AG = Amberglass D = Denuder Tube

G = Glass

NA = Not Applicable

P = Plastic S = Stainless Steel Canister.

6.4 Sampling Packaging and Shipment

All samples were packaged and shipped according to the specifications detailed in the Hazardous Materials Transportation Regulations published by the U.S. Department of Transportation (DOT) (49 CFR 171-180) for ground transportation and the International Air Transport Association (IATA) regulations for air shipment. These regulations contain detailed instructions on how hazardous materials must be identified, packaged, marked, labeled, documented, and placarded. All personnel involved with sample shipment were trained and certified for shipment of hazardous materials.

When transferring possession of samples, the individuals relinquishing and receiving those samples signed, dated, and noted the time on the sample chain-of-custody record. This record documented sample transfer from the sampler, often through another person or commercial carrier, to the sample custodian or analyst.

The procedure for shipping samples was as follows:

- A complete sample inventory form (chain-of-custody) was enclosed with the samples being shipped, and a copy was retained by the Field Team Leader.
- DOT and IATA regulations were followed for shipping container requirements. The regulations
 required that the shipper make a reasonable determination whether the sample is classified as a
 hazardous material and, if so, that it is appropriately identified.
- Each package was designed and constructed, and its contents limited, so that under normal transportation conditions there was no significant release of materials to the environment and no potentially hazardous conditions.
- Samples were placed inside a shipping container for transport back to the laboratory.
- The samples (e.g., refrigerant packs, ice, chemical preservatives, etc.) were preserved as
 required by the test plan or analytical requirements and documented on the sample inventory
 record.

The Project Manager retained all freight bills and shipping records as part of the permanent records.

6.5 Custody Procedures

An overriding consideration for environmental measurement data is the ability to demonstrate that samples have been obtained from the locations stated by using the prescribed methods and that they have reached the laboratory without alteration. Evidence of collection, shipment, laboratory receipt, and laboratory custody until disposal was documented to accomplish this objective. A chain-of-custody record documented each sample and the individuals responsible for sample collection, shipment, and receipt. A sample was considered "in custody" under the following conditions:

- The sample was in a person's actual possession.
- It was in view after being in physical possession.
- The sample was secured in a locked compartment so that no one could tamper with it after it had been in physical custody.
- It was in a secured area, restricted to authorized personnel.

6.5.1 Field Custody Procedures

EQ initiated sample custody during collection of the samples. Preformatted labels were used at the time of collection. Documents prepared specifically for monitoring field sample collection and recovery were used to record pertinent information about the types and numbers of samples collected and shipped for analysis. The samples collected first were assembled at an on-site location for batching and paperwork checks. This task included matching similar sample types (e.g., solids, liquids) from all sampling locations. Sample packaging procedures complied with all DOT and IATA requirements for shipment of environmental samples. Establishing or maintaining sample integrity involved numerous steps or considerations in addition to custody documentation. For example, major concerns in programs of this nature are contamination, cross-contamination, and/or degradation of sample containers; absorbing and filtration media; recovery materials; and actual samples, as applicable. These problems were avoided or minimized at all times by using the following procedure:

- The lid of each labeled jar was secured with a strip of custody tape.
- Individual sample jars were sealed in plastic bags and placed in appropriate shipping containers.
- Volatile materials were stored, handled, and transported apart from sorbent materials [e.g., stored, handled, and shipped VOST tubes were kept apart from solvents (methylene chloride, acetone, toluene, etc.) used to recover the other sample trains].

- Volatile, organic, and aldehyde and ketone samples were sealed and kept away from sources of
 solvents, gasoline, etc., during recovery, transportation, storage, and analysis (e.g., particulate
 samples in which acetone was used were recovered remotely from preparation, recovery, and
 storage of VOST and aldehyde and ketone samples).
- Vermiculite was placed around the bags in the shipping container for protection from damage, if needed. Ice was placed in the shipping container, if required.
- One chain-of-custody form was completed for each shipping container and placed in a large plastic bag, and the bag was then taped to the inside lid of the shipping container.
- The container was taped closed with tape and sealed with custody tape on two sides such that opening the container would break the custody tape.

Collected samples were kept under lock and key or within sight at all times until their shipment to the laboratory. Field Personnel acted as sample custodians in order to monitor the location of collected samples.

A unique system for individual sample identification was used.

6.6 Calibration Procedures and Frequency

This subsection describes the calibration procedures and the frequency at which these procedures were performed for both field and laboratory instruments.

6.6.1 Field Instrument Calibration

The following equipment items were calibrated before and after field usage:

- Velocity measurement devices
- Gas flow rate metering systems
- Gas volume metering equipment
- · Gas composition measuring apparatus (Orsat).

The calibration records included device numbers, calibration dates, methods, and data and results, and were maintained on file at the EQ laboratory. Copies of applicable calibration records also were available at the job site for review.

Acceptance limits are shown for each equipment item in Table 6-4.

TABLE 6-4 FIELD EQUIPMENT CALIBRATION SUMMARY

Equipment	Calibrated Against	Allowable Error
		Y ±0.02 Y
Method 5 meter box	Reference test meter	ΔН@ 0.20 ΔН@
Memor 2 meter pox		post-test
	·	Y ±0.05 Y
Orsat	Certified cylinder gas	±0.5%
Pitot tube	Geometric specifications	See EPA Method 2
Thermocouple	ASTM-3F thermometer	±1.5%
Impinger (or condenser thermometer)	ASTM-3F	±2°F
Dry gas meter thermometer	· · ASTM-3F	±5°F
Probe nozzles	Caliper	High-low 0.004 in.
Barometer	NBS traceable barometer	±0.1 in. Hg

^aAs recommended in the Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III. Stationary Source-Specific Methods. EPA-600/4-77-027b, August 1977.

6.7 Data Reduction, Validation, and Reporting

Data was produced primarily from the following three sources:

- Engine operations during the test program.
- Field measurements data, including sampling records (volumes and duration), and observations.
- Sample analysis and characterization data.

All data generated by field activities or by the laboratory were reduced and validated prior to reporting. Specific data reduction, validation, and reporting procedures are described in the following subsections.

6.7.1 Data Reduction

6.7.1.1 Field Data Reduction Procedures

The stages of data confirmation began with an initial series of calculations completed on the same day as the sampling effort to establish that the pretest assumptions were correct and that the test procedures completed to that point were performed in an acceptable manner. This enabled the on-site test team to correct any faulty procedures, and provided a greater understanding of any immediate problems. The on-site data reduction and confirmation activities were performed by an experienced data management specialist.

6.7.1.2 Office Calculations

An experienced technician "double-checked" all data averages to verify numerical accuracy. Prior to use of the analytical data to calculate test results, a check was applied to designate any obvious "out-of-line" results for reanalysis.

All results of calculations were examined by another individual. Depending on the complexity of the work, this person either spot-checked certain calculations or repeated the entire effort. When all data were summarized, a check was made to determine test result correctness.

The initial field test data and resulting calculations were performed on a portable PC at the end of each test day. In the office, final results and result tables were developed on a microcomputer. Standard EPA method programs have been developed and validated for the computational systems to ensure that correct equations are utilized to generate results. The programs listed all entry items (for proofing purposes) and produced calculated results in hard copy form. Reference method equations were used to calculate the concentration and/or mass rate of each measured parameter.

6.7.2 Analytical Data Validation Evaluation

All data was compared to the acceptance criteria of the reference method. For example, particulate tests must be 100% isokinetic, $\pm 10\%$, to be acceptable. Laboratory data was acceptable only if calibration standards fall within the established control limits.

Outliers were treated on a case-by-case basis. All questionable data was reviewed in an attempt to find a reason for rejection. All questionable data is outlined in Section 5 of this scientific and technical report.

Unacceptable data was appropriately qualified in Section 5 of this scientific and technical report. Case narratives were prepared, which included information concerning data that fell outside acceptance limits and any other anomalous conditions encountered during sample analysis. After the Laboratory QA Officer approved these data, they were considered ready for data validation.

6.7.2.1 Procedures Used to Evaluate Field Data

Procedures used to evaluate field data included posttest field instrument calibration checks, acceptable isokinetic sampling rates, and demonstration of acceptable posttest leak checks.

6.7.3 Data Reporting

Data reporting procedures were performed for field operations as indicated in the following subsections.

6.7.3.1 Field Data Reporting

Field data reporting was conducted principally through the generation of test data tables containing tabulated results of all measurements made in the field, and documentation of all field calibration activities.

6.8 Preventive Maintenance Review

Well-maintained equipment is an essential ingredient in ensuring the quality, completeness, and timeliness of the field and analytical data. This subsection reviews the schedules of preventive maintenance that must be performed to minimize the downtime for critical measurement systems for each contracting company. Also, lists of critical spare parts that must be available at the individual field and laboratory sites must be developed and reviewed. This subsection represents a review of the preventive maintenance items that were required for the field operations.

6.8.1 Field Instrument Preventive Maintenance

Field source testing equipment and instrumentation that require maintenance and/or calibration were serviced immediately prior to conducting the test program.

Normal spare parts (e.g., control consoles, sample boxes, probes, glassware, sample bottles, etc.) as well as extra materials/supplies (e.g., filters, solutions, solvents, XAD traps, etc.) were available at the field site during testing.

Extra spare parts and equipment for process sample collection and compositing equipment, glassware, sample containers, etc., were available at the field site during testing. Extra materials/supplies (e.g., filters, solvents, etc.) required for the process sample collection were also available at the field site during testing.

Sufficient volumes of protocol and calibration gases for the CEM monitoring, extra fittings, sample lines, pumps, heating tapes, and analyzer cells, along with sufficient materials/supplies (e.g., pump oil, filters, etc.) were available at the field site during testing.

6.9 Corrective Action

Corrective action is the process of identifying, recommending, approving, and implementing measures to counter unacceptable procedures or procedures out of QC performance that can affect data quality. Corrective action can occur during field activities, laboratory analyses, data validation, and data assessment. All corrective actions proposed and implemented should be documented.

Corrective actions were initiated when data quality problems were determined during the program. These data quality problems were flagged "out of control" if they are outside the predetermined limits specified above for internal, performance, system, and data audits. When discovered, prompt action toward a solution was undertaken by the generator of the data. The corrective action was conducted through the following six activities:

- Define the quality problem.
- Notify the designated individuals listed in the work plan.
- Determine the cause of the problem.
- Determine the corrective action.
- Implement the corrective action.
- Verify the solution to the problem.

Corrective action was instituted immediately by the individual noting a problem in a measurement system.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX A EMISSION SAMPLING METHODS

EPA METHOD 5 AND EPA METHOD 202

Particulate

The test train utilized to perform the particulate and condensable particulate sampling will conform to U.S. EPA Methods 5 and 202 (M5/M202).

The impingers will be charged as indicated below (Figure 1):

- Impingers 1 through 3: 100 ml deionized water.
- Impinger 4: 300 g of silica gel.

The particulate train will consist of the following compounds:

- A borosilicate or stainless-steel nozzle with an inside diameter sized to sample the amount of exhaust specified in Method 5.
- A heated, borosilicate-lined probe equipped with a calibrated thermocouple to measure flue gas temperature and an S-type pitot tube to measure the flue gas velocity pressure.
- A heated oven containing a borosilicate connector and filter holder with a Soxhlet-extracted glass-fiber filter.
- A rigid borosilicate connector to join the outlet of the filter holder to the inlet of the impinger train.
- Greenburg-Smith impingers plus a thermocouple to detect sample gas exit temperature.
- A vacuum line (umbilical cord) with adapter to connect the outlet of the impinger train to a control module.
- A control module containing a 3-cfm carbon-vane vacuum pump (sample gas mover), a
 calibrated dry gas meter (sample gas volume measurement device), a calibrated orifice
 (sample gas flow rate monitor), and inclined manometers (orifice and gas stream pressure
 indicators).

FIGURE 1
PARTICULATE (front and backhalf) SAMPLING TRAIN
EPA METHOD 5 AND METHOD 202

A switchable, calibrated, digital pyrometer to monitor flue and sample gas temperatures.

The M5/M202 train will be calibrated to satisfy U.S. EPA requirements. Sample collection will follow U.S. EPA M5/M202 procedures. Prior to sampling, the number of traverse points and their locations will be calculated using U.S. EPA Method 1.

Figures 2, 3, and 4 illustrate the procedures that will be used to prepare the particulate sampling trains prior to each test, the procedures used to sample the stack flue gases, and the procedures used to recover the samples from the train, respectively. Each test will be 60 minutes in length, 50 ft^3 in sample volume, and isokinetic \pm 10%.

Particulate Matter Analysis (M5/M202)

The M5 probe/front-half acetone wash and filter fractions and back-half condensate from all test runs will be analyzed gravimetrically for particulates according to U.S. EPA M5/M202. The front-half particulate analysis will be performed according to the procedures established in U.S. EPA Reference Method 5 (40 CFR 60, Appendix A). As specified by the method, quartz filters exhibiting >99.5 % efficiency on 0.3-micron dioctyl phthalate smoke particles will be used. Particulate analysis of the filter will be performed by oven-drying the filter. The filter will be oven-dried for 2 to 3 hours at 105°C (220°F) and cooled in a desiccator. The filter will be weighed to a constant weight.

Constant weight means a difference of no more than 0.5 mg or 1% of total weight less tare weight, whichever is greater, between two consecutive weighings.

The acetone probe rinse will be checked for any leakage during transport. The liquid will be measured volumetrically to the nearest ± 1 ml. The contents will be transferred to a tared 250-ml beaker. The probe rinse will be evaporated to dryness at ambient temperature and pressure. The beaker will be weighed to a constant weight and the results reported to the nearest 0.1 mg.

FIGURE 2
PREPARATION PROCEDURES FOR PARTICULATE (M5/M202)
SAMPLING TRAIN

FIGURE 3
TEST PROCEDURES FOR PARTICULATES (M5/M202)

SAMPLE RECOVERY PROCEDURES FOR PARTICULATE (MS/M202) SAMPLING TRAIN FIGURE 4

The back-half condensable particulate fraction analysis will be performed according to procedures established in U.S. EPA Reference Method 202 (40 CFR 60, Appendix A). The back-half water and wash samples will be combined in a separator funnel to separate aqueous and organic phases. The organic-phase extract will be placed in a tared beaker and evaporated to dryness at ambient temperature and pressure, then desiccated to a constant 0.1-mg weight. A methylene chloride extraction will be performed on the distilled water blank sampling to obtain a blank correction value.

The extracted water sample and extracted distilled water sample blank will be poured into tared beakers, evaporated to dryness at 220 to 230°F, then desiccated at ambient temperature and pressure to a constant 0.1-mg weight. The residue weight of the dried distilled water samples will be adjusted based on the water blank sample correction factor.

Particulate QC Sampling Procedures

The sampling QC procedures that will be used to ensure representative measurements of particulates are the following:

- The sample rate must be within 10 % of the true isokinetic (100 %) rate.
- All sampling nozzles will be manufactured and calibrated according to U.S. EPA standards.
- Particulate filters will be pre-test and post-test weighed (following 24 hours of desiccation) to the nearest 0.1 mg to a constant (± 0.5 mg) value.
- Recovery procedures will be completed in a clean environment.
- Sample containers for liquids will be constructed of borosilicate with Teflon[®]-lined lids. Filters will be stored in plastic or borosilicate petri dishes.

EPA METHOD 0011-FORMALDEHYDE SAMPLING TRAIN

The formaldehyde in the stack gas emission stream will be determined by U.S. EPA Method 0011. The sampling train (see Figure 1) will consist of the following components connected in a series:

- A calibrated borosilicate nozzle attached to a heated borosilicate probe.
- A rigid borosilicate connector to join the outlet of the sampling probe to the inlet of the impinger train.
- An impinger train consisting of four impingers. The first, second, and third impingers will each contain 100 ml of cleaned 2,4-dinitrophenylhydrazine (DNPH) solution. The fourth impinger will contain 300 grams of dry preweighed silica gel. The second impinger will be a Greenburg-Smith type; all other impingers will be of a modified design. All impingers will be maintained in a crushed ice bath.
- A vacuum line (umbilical cord with adapter) to connect the outlet of the fourth impinger train to a control module.
- A control module containing a 3-cfm carbon-vane vacuum pump (sample gas mover), a
 calibrated dry gas meter (sample gas volume measurement device), a calibrated orifice
 (sample gas flow rate monitor), and inclined manometers (orifice and gas stream pressure
 indicators).

Figures 2, 3, and 4 outline the preparation, sampling, and recovery procedures that will be used to determine the formaldehyde at the stack location.

Formaldehyde Analysis Procedures

The analytical procedures for the quantification of formaldehyde will be performed as specified in U.S. EPA Methods 0011 and 0011A utilizing high-performance liquid chromatography (HPLC).

FIGURE 1. EPA METHOD 0011 - FORMALDEHYDE SAMPLING TRAIN

FIGURE 2
PREPARATION PROCEDURES FOR FORMALDEHYDE SAMPLING TRAIN

FIGURE 3 SAMPLING PROCEDURES FOR FORMALDEHYDE

SAMPLE RECOVERY PROCEDURES FOR FORMALDEHYDE SAMPLING TRAIN FIGURE 4

Each of the three DNPH impingers will be recovered, composited, and analyzed as one sample. The samples must be chilled immediately to stabilize the DNPH-carbonyl derivatives.

The HPLC will be calibrated prior to use each day. Calibration standard mixtures will be prepared from appropriate reference materials and will contain analytes appropriate for the method of analysis.

If a correlation of 0.996 cannot be obtained, additional standards must be analyzed to define the calibration curve. A midpoint calibration check standard will be analyzed each shift to confirm the validity of the initial calibration curve. The check standard must be within 20% of the initial response curve to demonstrate that the initial calibration curve is still valid.

Calibration data, including the correlation coefficient, will be retained in laboratory notebooks to maintain a permanent record of instrument performance.

At least one method blank and two method spikes will be included in each laboratory lot of samples. The method spikes and blanks will be in aqueous media. Method spikes will be examined to determine if contamination is being introduced in the laboratory.

The spikes will be examined to determine both precision and accuracy. Accuracy will be measured by the percent recovery of the spikes; precision will be measured by the reproducibility of both method spikes.

Formaldehyde QC Sampling Procedures

The following QC procedures will ensure representative formaldehyde data are taken:

- Reagents will be used that meet method criteria. A supply of the DNPH reagent will be extracted the day before shipping to the test site. Two aliquots from each lot of DNPH prepared will be reserved for blank analysis per U.S. EPA Method 0011.
- The formaldehyde trains will be assembled and recovered in an environment free from uncontrolled dust and contaminated organics, and will be performed in an area away from other test train recovery activities to minimize contamination. The train will be prerinsed with DNPH to eliminate any acetone residue prior to charging.
- DNPH will be stored in a cool environment and away from other solvents.

EPA METHOD 0030 (VOST)

Volatile Organic Compounds

The volatile organics in the stack gas emission stream will be determined by U.S. EPA Method 0030 (VOST). This sampling train (see Figure 1) will consist of the following components connected in series:

- A heated borosilicate or quartz probe containing a glass wool particulate filter.
- An ice-water-cooled condenser connected to the probe, followed by a temperature sensor, an adsorption cartridge containing 1.6 grams of Tenax, and a condensate trap.
- A section of Teflon tubing used to connect the outlet of the condensate trap to a second
 condenser, which will be followed by a backup sorbent trap containing 1 gram of Tenax and
 1 gram of activated charcoal, a second condensate collector, and a borosilicate tube
 containing an unweighed amount of dry silica gel.
- A tube of silica gel connected via an umbilical cable to a control console containing flow controllers, a calibrated 1-liter-per-minute dry gas meter, a sample pump, a temperature indicator, and other components.

A total of one VOST tube pair will be collected during each test period. The volatile organics will be determined by analyzing the tube pair by purge-trap-desorb GC/MS.

Figures 2, 3 and 4 outline the preparation, sampling, and recovery procedures that will be used to determine the volatile organics at the stack location.

FIGURE 1 EPA METHOD 0030 - VOLATILE ORGANIC SAMPLING TRAIN (VOST)

FIGURE 2
PREPARATION PROCEDURES FOR VOLATILE
ORGANICS SAMPLING TRAIN

FIGURE 3
SAMPLING PROCEDURES FOR VOLATILE ORGANICS

FIGURE 4
RECOVERY PROCEDURES FOR VOLATILE ORGANICS

Volatile Organics Analysis

The VOST samples will be placed in cold storage ($<4^{\circ}$ C) upon receipt in the laboratory. The samples have a recommended 14-day holding time from collection to analysis. The samples will require no additional preparation for analysis, except addition of the internal standard and the surrogate (D_8 -toluene).

Volatile organics present in stack gases will be collected on Tenax and Tenax/charcoal sorbent cartridges using a VOST. Method 5040 (SW-846, third edition) describes in detail the procedural steps required to desorb VOST cartridges and analyze the effluent gas stream for VOCs. Additionally, if peaks of other compounds appear in the total ionization chromatogram (up to 10), they will be tentatively identified using a forward library search against the U.S. EPA/National Institutes of Health (NIH) mass spectral library and semiquantified relative to an internal standard spiked into the traps prior to analysis.

Methanolic solutions of internal standard compounds will be spiked onto each set of tubes prior to thermal desorption and analysis.

After spiking, the contents of the sorbent cartridges will be desorbed thermally for approximately 10 minutes at 180°C with organic-free nitrogen or helium gas, and bubbled through a tower to impinge water desorbed from the cartridges. Target analytes will be trapped on an analytical adsorbent trap. After the 10-minute desorption, the analytical adsorbent trap will be heated rapidly to 180°C with the carrier gas flow reversed. VOCs will be desorbed from the analytical trap and vented directly to a megabore column in the GC. The VOCs will be separated by temperature-programmed GC and detected by low-resolution MS. Concentrations of VOCs will be calculated using the internal standard technique.

VOST OC

The QC procedures that will ensure representative volatile organics data are the following:

- All sample and recovery glassware will be precleaned as per the procedure outlined in U.S. EPA Method 0030.
- The distilled water used for recovery of the condensate sample will be HPLC grade.

- Blanks of distilled water and unused tube pairs will be retained for blank analysis.
- All condensate and tube pair samples will be maintained at 4°C following collection and prior to analysis.
- VOST train preparation and recovery will be conducted in an area away from other test train recovery activities to avoid solvent contamination.

CONTINUOUS EMISSION MONITORING METHODS

The continuous emission monitoring system (CEMS) will be utilized to monitor gaseous emissions from stationary sources. The CEMS will monitor one or more of the following analytes: oxygen (O₂), carbon dioxide (CO₂), carbon monoxide (CO), sulfur dioxide (SO₂), nitrogen oxides (NO_x), and total hydrocarbons (THCs). These measurements will satisfy the requirements of the following U.S. EPA Reference Methods:

- Method 3A Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources.
- Method 6C Determination of Sulfur Dioxide Emissions from Stationary Sources.
- Method 7E Determination of Nitrogen Oxide Emissions from Stationary Sources.
- Method 10 Determination of Carbon Monoxide Emissions from Stationary Sources.
- Method 25A Determination of Total Gaseous Organic Concentration Using a Flame Ionization Analyzer.

The CEMS consists of the sampling interface, the analyzers, and the data collection system. The sample interface will begin at the sample probe and extract the sample from the source, transport the samples to the analyzers, and filter the samples. For most of the analytes the moisture in the sample will be removed in the sample interface prior to analysis. Only the flame ionization analyzer sample will be analyzed on a wet basis. The sample interface will allow calibration gas to be introduced at the analyzer and at the sample probe. The analyzers will provide the next component of the CEMS. The analyzers must meet specific calibration requirements. The data collection system will record the raw voltage signal output from the analyzers, convert the signal to represent the analyte concentration, and store these concentrations as discrete averages (usually 1-minute averages). At the end of any test run, the data collection system will correct the test results for calibration drift and bias as required in the EPA methods.

The CEMS can be operated to monitor one or all of the analytes. The sampling interface will be modified to suit the source characteristics and the desired analytes.

Sample Interface

The hot, wet sample interface (see Figure 1) must be used if THCs are being measured. The sample will be extracted through a heated probe, filter, and sample line to prevent condensation. The sample interface components that are outside the stack will be maintained at or above 250 °F. The hot, wet sample interface will consist of the following components:

- An unheated inner stainless-steel probe extension, which will be maintained at stack temperature.
- A heated probe section (at least 250 °F) which penetrates the stack wall and connects the inner probe to the heated filter box.
- A heated filter box (at least 250 °F) which contains calibration gas injection ports and an inline stainless-steel filter.
- A heated sample line (at least 250 °F) to transport the sample from the filter box to the analyzer manifold.
- A heated manifold, which will split the sample between the heated and unheated analyzers.
- A VIA MAK II low-contact refrigerated condenser to remove water.
- A flow distribution manifold to maintain the required sample flow to each analyzer.

Figure 1
Continuous Emissions Monitoring System

One fraction of the sample will be transported by a short heated line to the hydrocarbon analyzer. The remaining sample will be sent to a VIA MAK II low-contact refrigerated condenser to remove water. The condenser will be maintained at 38 °F, and condensed moisture will be removed continuously from the bottom of the condenser through a peristaltic pump. The dried sample will pass through a pump and control valve, and will be distributed to the various analyzers by a distribution manifold. The critical flow parameter for each analyzer will be monitored with a rotameter as described below. The sample control valve will be adjusted to ensure that the sample gas always will be provided in excess, and that the excess sample will be released to the atmosphere.

Calibration

Calibration of the CEMS is always conducted in two steps: internal (direct to the instrument) and bias (direct to the probe end in the heated filter box). The internal calibration always is conducted first to verify instrument response. The internal calibration is conducted by introducing a calibration standard through the flow distribution manifold.

The instrument response will be adjusted initially by observing the front display of the analyzer. All final calibration response data must be collected from the datalogger display. Typically, there will be a slight difference between the analyzer front panel display and the data logger display, and the calibration data must be consistent with the recorded test data.

The bias calibration will be conducted prior to the start of the test run. This calibration will be conducted by introducing the calibration gas standard to a tee on the end of the probe in the heated filter box. The calibration gas will be supplied in excess and the surplus gas will flow out of the open end of the probe into the stack. This will ensure that bias calibrations are conducted at stack pressure.

The calibration drift will be measured at the end of the test run by repeating the bias calibration for zero and one or more calibration standards. The difference between the pretest and posttest CEMS response will be the calibration drift.

Analyzers

0

0

The following analyzers may be used in the CEMS:

Total hydrocarbons:

JUM Model VE-7

Flame ionization analyzer

Range: 0 to 100, 0 to 10,000 ppm as carbon equivalent.

Sulfur dioxide:

Bovar Corporation Model 721, version AT or M

Nondispersive infrared adsorption

Range: 0 to 500, 0 to 5000 ppm as SO₂.

Nitrogen oxides:

Thermo Environmental Company (TECO) Model 42H

Chemiluminescence

Range: Between 0 to 25 and 0 to 5000 ppm as NO or as NO_X ; NO_2 by difference.

API Model 200

Chemiluminescence

Range: Between 0 to 100 and 0 to 10,000 ppm as NO or NO_X; NO₂ by difference.

Carbon monoxide:

TECO Model 48 or 48H

Gas correlation nondispersive infrared

Range: 0 to 10 and 0 to 1,000 ppm (Model 48) and 0 to 10,000 ppm (Model 48H).

API Model 100

Gas correlation nondispersive infrared

Range: 0 to 100 and 0 to 1,000 ppm.

Carbon dioxide:

Fugi/ACS Model 760

Nondispersive infrared

Range: 0 to 20 %.

Oxygen:

Siemens Oxymat 5E Paramagnetic Range: 0 to 25 %.

Servomex 1400 Paramagnetic Range: 0 to 25 %.

EPA Reference Methods

The performance parameters for the EPA Reference Methods are presented in Table 1.

The universal WESTON calibration performance requirements, applicable to all parameters, are the following:

Calibration error: ± 2%
Calibration bias: ± 2%

• Calibration drift: ± 3%

All parameters will be calibrated using zero plus three upscale gas standards. All sample data will be corrected using the EPA method 6C bias correction.

$$C_{\text{corrected}} = \frac{(C_{\text{raw}} - Z_b)}{(S_b - Z_b)} \times S_{\text{std}}$$

Where:

C_{corrected} = Run average concentration corrected for instrument bias and drift.

 C_{raw} = Raw run average concentration before correction.

 Z_b = Average pre- and posttest zero bias response.

 S_b = Average pre and posttest upscale bias response.

 S_{std} = True value of upscale bias standard.

Parameter M	100	CHARLES						
	Method	Calibration Gas		Calibration Bias	Calibration	Interference	Calibration Blas	Other Requirements
ڻ ک		(% F _s) ^(s)	(% F,) ^(b)	(% F,) ^(c)	Drift (% F,)	Check	Drift Correction	
	3A	Zero - 0	±2%F ₈	±5%F	± 3 % F _s /run	Per Method 20 ^(d)	Per Method 6C	
		Low - N/R						
•		Mid - 40 to 60						
		High - 80 to 100						
CO ₂	3A	Zero - 0	±2%Fs	±5%Fs	± 3 % F _s /run	Per Method 20 ⁽⁴⁾	Per Method 6C	
ı		Low-N/R						
		Mid - 40 to 60						
		High - 80 to 100						
SO ₂	ည	Zero - 0	±2%F	±5%Fs	±3 % F _s /run	7% of Method	Linear correction	
ı		Low-N/R				(C)	for average bias	
		Mid - 40 to 60		٠			response	
•		High - 80 to 100						
8	91	Zero - 0	±2%F,0	±2%F(t)	± 10 % F ₂ /8 hrs	For CO ₂ and H ₂ O	Per Method 6C ¹⁸⁷	
		Low-N/R						
		Mid - Approx. 30	•					
		High - Approx. 60						
NOX	7E	Zero - 0	±2%Fs	±5%F,	±3%F _s /run	Per Method 20	Per Method 6C	NO2/NO converter
		Low - N/R				•		efficiency 98% minimum.
		Mid - 40 to 60						
		High - 80 to 100						
THC	25A	Zero - 0	# 5 % C ₈	±5%Cg(h)	±3%Fs/run	Z/R	Per Method 6C ^w	Pretest calibration required
		Low 25 to 35						within 2 hours of start of
		Mid - 40 to 60						test run.
,		High - 80 to 90						

NAR = C. C. = C.

Not required by method. Instrument full scale or span value.

Calibration gas value

% F, = Percent full scale of calibration range.

Calibration error = difference between known calibration value and instrument response when injected directly into instrument.

Calibration bias = difference between instrument response when calibration gas is injected directly into the instrument and when calibration gas is injected at the sample probe.

Substitute 500-ppm NO for oxygen or carbon dioxide during interference check.

Required for first use at a source category only.

Difference between calibration error and calibration bias is not specified in method; CO accuracy requirement is applied to both. Not specific method, but required as WESTON basic operating procedure.

According to method, all calibrations are conducted from probe.

Stack CEM QC Sampling Procedures

The following QC procedures will be applied to ensure collection of representative CEM data.

- CEMs (probe to sample conditioner) will be leak-checked prior to the testing.
- All CEMs will be calibrated prior to testing to ensure precise and accurate data. Cylinder gases with a certified accuracy of ±2 % or Protocol One standards will be used to calibrate each of the analyzers. Each analyzer will be calibrated at four points (zero, low, mid, and high range). Nitrogen- or hydrocarbon-free air will be used to set the instrument zero. The three calibration standards will be approximately 20 to 30, 45 to 55, and 80 to 100 % of span.
- Pre- and posttest calibration bias tests will be performed for each test run. The bias check
 will be performed with the calibration standard that is closest to the observed concentration
 in the sample gas. The average pretest/posttest bias drift will not exceed 3 % of full scale.
- A permanent data record of CEM analyzer responses will be made on a strip chart data logger and on the sampling data sheets.

Formulae: Table 1

MW: Table 1

CAS: Table 2

RTECS: Table 2

METHOD: 5506, Issue 3

EVALUATION: PARTIAL

Issue 1: 15 May 1985 Issue 3: 15 January 1998

OSHA: Table 3 NIOSH: Table 3

ACGIH: Table 3

PROPERTIES: Table 1

Compounds

acenaphthene acenaphthylene anthracene benz[a]anthracene benzo[b]fluoranthene benzolkliluoranthene benzo[ghi]perylene benzo[a]pyrene benzo[e]pyrene chrysene dibenzija,hjanthracene

fluoranthene

fluorene indeno[1,2,3-cd]pyrene naphihalene phenenthrene pyrene

NAMES & SYNONYMS: Polycyclic aromatic hydrocarbons, PAHs; also see Table 2.

	SAMPLING	,	MEASUREMENT
SAMPLER: FILTER	R + SORBENT TUBE (37-mm, 2-jim, PTFE + washed XAD-2, †90 mg/50 mg)	TECHNIQUE:	HPLC, FLUORESCENCE/UV DETECTION
		ANALYTE:	compounds listed above
FLOW RATE:	2 L/min	EXTRACTION:	5 mL acetonitrile; uttrasonic bath, 30 to 60
VOL-MIN: -MAX:	200 L 1000 L	INJECTION VOLUME:	minutes 10 to 50 uL
SHIPMENT:	transfer filters to culture tubes; wrap sorbent and culture tubes in Al foil; ship @ 0 °C	MOBILE PHASE:	acetonitrile/water gradient @ ambient
SAMPLE STABILITY	unknown; protect from heat and UV light	COLUMN:	temperature, 1 mL/min
FIELD BLANKS: MEDIA BLANKS:	3 to 10 field blanks per set 6 to 10 media blanks per set	DETECTOR:	250 x 4.6-mm, reversed-phase, 5-µm C ₁₈ UV @ 254 nm; fluorescence @ 340 nm
	ACCURACY		(excitation), 425 nm (emission)
		CALIBRATION:	standards in acetonitrile
RANGE STUDIED:	not determined	RANGE:	SEE EVALUATION OF METHOD
BIAS:	not determined	ESTIMATED LOD:	SEE EVALUATION OF METHOD
OVERALL PRECISION (S _{rt}):	not determined	PRECISION (S.):	see EVALUATION OF METHOD
ACCURACY-	not determined		

APPLICABILITY: This method is applicable to samples that can be extracted with acetonitrile. This method is not applicable to samples that require a different extraction solvent or contain large amounts of highly adsorptive particulate matter, e.g., fly ash or diesel soot, also, this method is not applicable to asphalt fume samples.

INTERFERENCES: Any compound that elutes at the same HPLC retention time may interfere. Heat, ozone, NO2, or UV light may cause sample degradation,

OTHER METHODS: This revises P&CAM 206 and 251 [1]. Method 5515 uses the same sampling technique, with gas chromatographic measurement [2]. Method 5600 uses the same sampling technique, and a flow-injection method to determine total polycyclic aromatic compounds at two different sets of fluorescent wavelengths [3].

NIOSH Manual of Analytical Methods (NMAM), Fourth Edition

REAGENTS:

- 1. Water, distilled, deionized, degassed
- Acetonitrile, HPLC grade, degassed.
 PAH test mixture,* a liquid standard containing the PAHs except benzole]pyrene (EPA 610 Polynuclear Aromatic Hydrocarbons Supelco, Cat. No. 4-8743; or equivalent).
- Benzo[e]pyrene,*solid (Supelco, Cat. No. 44-2475; or equivalent).

* See SPECIAL PRECAUTIONS

EQUIPMENT:

- 1. Sampler:
 - a Filter. 37-mm, 2-µm pore size, PTFE membrane filter laminated to PTFE, (Zeffuor, Pall Gelman Sciences, Cat. No. P5PJ037; SKC Inc., Cat. No. 225-17-07; or equivalent filter), cellutose spacer ring, 37-mm OD, 32-mm ID, (SKC Inc., Cat. No. 225-23; or equivalent) in a 37-mm cassette filter holder.

NOTE: if sampling is to be done in bright sunlight, use opaque or foil-wrapped cassettes to prevent sample degradation

Sorbenttube, washed XAD-2 resin (front = 100 mg; back = 50 mg) (ORBO 43, Supelco, Cat. No. 2-0258; or equivalent), connected to filter with minimum length of PVC tubing. Plastic caps are required after sampling.

NOTE: If pressure drop is excessive or pump fails, use a larger diameter sorbent tube with XAD-2 resin (ORBO 42 Large, Supelco, Cat. No. 2-0264U; or equivalent).

- 2. Personal sampling pump capable of operating for 8 h at 2 L/min, with flexible connecting tubing.
- Aluminum foil.
- Refrigerant, bagged.
- Culture tubes, PTFE-lined screw cap, 13-mm x 100-mm
- **Forceps**
- Syringe filters, 0.45-µm, 25-mm, PTFE (Acrodisc-CR, Pall Gelman Sciences, Cat. No 4219; or equivalent).
- Pipet, 5-mL.
- Syringe or micropipets, 1- to 100-µL.
- Ultrasonic bath. 10
- HPLC, with gradient capability, fluorescence (excitation @ 340 nm, emission @ 425 nm) and UV (254 nm) detectors in series, electronic integrator, and a 250 x 4.6-mm C₈ column (Vydac 201TP, The Separations Group, Hesperia, CA, Cat. No. 201TP54; or equivalent).
- Volumetric flasks, 10- and 100-mL,
- 13. Recommendation: lighting in laboratory should be incandescent or UV-shielded fluorescent.

SPECIAL PRECAUTIONS: Treat all polynuclear aromatic hydrocarbons as carcinogens. Samples and unused standards are considered toxic waste. Dispose of in an appropriate manner. Counter tops and equipment should be checked regularly with a "black light" for fluorescence as an indicator of contamination by PAHs.

SAMPLING:

- 1. Calibrate each personal sampling pump with a representative sampler in line
- 2 Take personal samples at 2 L/min for a total sample size of 200 to 1000 L.
- 3 Immediately after sampling, transfer the filter carefully with forceps to a culture tube Hold filter at edge to avoid disturbing the collected sample. Cap the tube and wrap in aluminum foil. NOTE: This step is necessary to avoid loss of analytes by sublimation.
- 4. Cap the sorbent tube and wrap in aluminum foll.
- 5 Ship to laboratory in insulated container with bagged refrigerant.

SAMPLE PREPARATION:

NOTE: UV light may degrade PAHs; therefore, recommend using yellow, UV-absorbing shields for fluorescent lights or use incandescent lighting

- 6. Retrigerate samples upon receipt at laboratory.
- 7. Extract PAH from filters.
 - a. Add 5.0 mL of acetonitrile to each culture tube containing a filter. Similarly, add 5.0 mL of acetonitrile to each culture tube containing the media and reagent blanks. Cap the tubes
 - b. Place capped tubes in an ultrasonic bath for 30 to 60 min.
- 8. Desorb PAH from sorbent.
 - a. Score each sorbent tube with a file in front of the front (larger) sorbent section. Break tube at score line.
 - b. Transfer front glass wool plug and front sorbent section to a culture tube. Transfer back sorbent section, and the middle glass wool plug to a second culture tube.
 - c Add 5.0 mL acetonitrile to each culture tube. Cap the tubes.
 - d. Place capped tubes in an ultrasonic bath for 30 to 60 min.
- 9. Filter all sample extracts through an 0 45-µm syringe filter.

CALIBRATION AND QUALITY CONTROL:

- 10. Calibrate daily with at least six working standards.
 - NOTE: If a benzo[e]pyrene standard is needed, weigh desired amount and add to a known volume of the PAH test mixture.
 - a. Dilute aliquots of the PAH test mixture (containing benzo[e]pyrene if needed) with acetonitrile in 10-mL volumetric flasks. The concentration range should cover most of the PAH concentrations in the samples.
 - b During analysis, intersperse working standards with samples and blanks
 - c. Prepare calibration graphs (peak area vs. µg of each PAH per sample).
- 11 Recovery and desorption efficiency.
 - Determine recovery (R) from filters and desorption efficiency (DE) from sorbent tubes at least once for each lot of filters and sorbent tubes used in the range of interest.
 - (1) Filters. Using a microliter syringe or a micropipette, spike four filters at each of five concentration levels with a mixture of the analytes. Allow the filters to dry in the dark overnight. Analyze the filters (steps 7, 9, and 13 through 15) Prepare graphs of R vs. amounts found.
 - (2) Sorbent tubes. Transfer an unused front sorbent section to a culture tube. Prepare a total of 24 culture tubes in order to measure DE at five concentration levels plus blank in quadruplicate. Using a microliter syringe or micropipette, add calibration stock solution directly to sorbent. Cap culture tubes and allow to stand overnight. Desorb and analyze (steps 8, 9, and 13 through 15). Prepare graphs of DE vs. amounts found.
 - Check R and DE at two levels for each sample set, in duplicate. Repeat determination of R or DE graphs if checks do not agree to within ±5% of R or DE graph
- 12 Analyze at least three field blanks for each sample medium.

MEASUREMENT:

NIOSH Manual of Analytical Methods (NMAM), Fourth Edition

- Set HPLC according to manufacturer's instructions, conditions on page 5506-and steps 14 and
 15.
- 14. Inject sample aliquot (10 to 50 µL). Start mobile phase gradient:
 - a. Linear gradient from 60% acetonitrile/40% deionized water to 100% acetonitrile at 1 mL/min over 20 mln.
 - b Hold at 100% acetonitrile for 20 min
 - c. Linear gradient to initial condition, 5 min.
- 15. Measure peak areas for each analyte using the appropriate detector as specified in Table 1.
 - NOTE 1. The order of elution for the PAHs appears in Table 4.
 - NOTE 2: If peak area is above the calibration range, dilute with acetonitrile, reanalyze, and apply dilution factor in calculations.
 - NOTE 3: If sample has many interferences, additional sample cleanup may be necessary.

CALCULATIONS:

- 16. Read the mass, µg (corrected for R or DE) of each analyte found on the filter (W) and front sorbent (W) and back sorbent (W) sections, and on the average media blank filter (B) and front sorbent (B and back sorbent (B) sections from the calibration graphs.
- 17. Calculate concentration, C (mg/m²), as the sum of the particulate concentration and the vapor concentration in the actual air volume sampled, V (L).

$$C = \frac{\left(W + W_f + W_b - B - B_f - B_b\right)}{V}, mg/m^3$$

- NOTE 1: µg/mL = mg/m³
- NOTE 2: W, and W, include analyte originally collected on the filter as particulate, then volatilized

during sampling. This can be a significant fraction for many PAHs (e.g., anthracene,

fluoranthene, fluorene, naphthalene, phenanthrene)

EVALUATION OF METHOD:

The UV detector is used to analyze for some PAHs (see Table 1), and the remaining PAHs are analyzed by a fluorescent detector, which gave better sensitivity for some PAHs. The ranges of the limit of detection (LOD) and the limit of quantitation (LOQ) values for the 17 PAHs are reported in Table 4 [4]. The LOD and LOQ values varied because of differences in the detectors used and the concentrations of the standards. Therefore, it is important that the LOD and LOQ values be determined for each set of samples. The LOQs are the lower end of the analytical ranges. The upper end of the analytical ranges were not determined

This method was evaluated by means of a user check [5]. An independent laboratory prepared spiked filters and sorbent tubes for a recovery and desorption efficiency study (see Table 4). For the filters, except naphthalene, the recovery results were greater than or equal to 75%. Since naphthalene is fairly volatile under ambient conditions, this may account for the poor recovery results. For the sorbent tubes, only four of the 17 analytes had desorption efficiencies that were greater than or equal to 75%. During the user check, the sorbent tubes were extracted by adding 5 mL acetonitrile and were allowed to stand for 30 minutes with occasionalswiring. In more recent quality control experiments, the desorption efficiencies were often better for some analytes (see Table 4) [4]. These results were achieved using an ultrasonic bath for 30 to 60 minutes. The results indicated the importance of preparing media spikes for recovery and desorption efficiency studies for each set of samples; moreover, the results reenforce this need when using new lots of media.

REFERENCES:

- [1] NIOSH [1977]. Total particulate aromatic hydrocarbons: Method P&CAM 206. NIOSH Manual of Analytical Methods, 2nd ed., Vol. 1. Cincinnati, OH: National Institute for Occupational Safety and Health, DHEW (NIOSH) Publication No. 77-157-A.
- [2] NIOSH [1994]. Polynuclear aromatic hydrocarbons by GC: Method 5515. In: Eller PM, Cassinelli ME, eds. NIOSH Manual of Analytical Methods (NMAR), 4th ed. Cincinnati, OH: National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 94-113.
- [3] NIOSH [1998]. Polycyclic aromatic compounds: Method 5800. In: Eller PM, Cassinelli ME, eds NIOSH Manual of Analytical Methods (NMAM), 4th ed., 2th Supplement. Cincinnati, OH: National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 98-119
- [4] NIOSH unpublished data.
- User Check Report for Method 5506, Analytical Report for NIOSH Sequence 4170 (NIOSH, DPSE, MRSB, unpublished, March 16, 1984).
- [6] Handbook of Chemistry and Physics, 78th ed. [1997], Boca Raton, FL: CRC Press.
- [7] IARC [1983]. IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans: polynuclear aromatic compounds, Parti, chemical, environmental and experimental data. Vol. 32 Lyon, France: World Health Organization, International Agency for Research on Cancer.
- [8] Lenga RE, Votoupal KL, eds. [1993]. The Sigma-Aldrich library of regulatory and safety data, Volume 1. Sigma-Aldrich Company.
- [9] NIOSH [1998]. Registry of toxic effects of chemical substances data base. Cincinnati, OH: National Institute for Occupational Safety and Health. Unpublished data base.
- [10] NIOSH [1997]. NIOSH pocket guide to chemical hazards. Cincinnati, OH: National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 97-140.
- [11] ACGIH [1997]. 1997 TLVS and BEIS, Threshold limit values for chemical substances and physical agents, Biological exposure Indices. Cincinnati, OH: American Conference of Governmental Industrial Hygienists (ACGIH).
- [12] NIOSH [1992]. NIOSH recommendations foroccupational safety and health, compendium of policy documents and statements. Cincinnati, OH: National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 92-109.

METHOD REVISED BY:

L. D. Olsen, B. R. Belinky, C. E. Neumeister, L. B. Jaycox, and D. D. Dollberg, NIOSH/DPSE

TABLE 1. FORMULAS AND PHYSICAL PROPERTIES.

COMPOUND (by M.W.)	FORMÜLÄ	WEIGHT	DETECTOR	MELTING POINT (°C)	BOILING POINT (°C)	REFERENCE
1. NAPHTHALENE	C ₁₀ H ₈	128.17	υv	80.2	218	[6]
2. ACENAPHTHYLENE	C ₁₂ H _e	152.20	υv	92.5	280	[6]
3. ACENAPHTHENE	C12H10	154.21	u∨	93.4	279	[6]
4. FLUORENE	C12H30	166.22	υV	115	295	[6]
5. ANTHRACENE	C _H H ₁₀	178.23	ÛΛ	215	340	[6]
6. PHENANTHRENE	C14H10	178.23	. UV	99,2	340	[6
7. FLUORANTHENE	C16H10	202.26	FL	108	384	[6]
8. PYRENE	C ₁₈ H ₁₀	202.28	FL	151	404	[6]
9. BENZ[a]ANTHRACENE	C ₁₂ H ₁₂	228.29	FL	167	435	[7]
10. CHRYSENE	C18H12	228.29	UV	258	448	[6]
11. BENZO[b]FLUORANTHENE	C ₂₀ H ₁₂	252.32	FL	168	-	[7]
12. BENZOJKJFLUORANTHENE	C ₂₀ H ₁₂	252.32	FL	217	480	[6]
13. BENZO[a]PYRENE	C ₂₀ H ₁₂	252.32	FL	177	495	[6, 8]
14. BENZO[ø]PYRENE	C ₂₀ H ₁₂	252.32	FL	178	311	[6]
15. BENZO(ghi]PERYLENE	C22H12	276.34	FL	278	-	[7]
16. INDENO[1,2,3-cd]PYRENE	C ₂₂ H ₁₂	276.34	FL	. 164	-	[7]
17. DIBENZ[a,h]ANTHRACENE	C ₂₂ H ₁₄	278.35	FL	270	524	[7, 8]

TABLE 2. SYNONYMS, CAS AND RTECS NUMBERS.

COMPOUND (alphabetically)	SYNONYMS, CAS and RTECS Numbers*
1. ACENAPHTHENE	CAS #83-32-9; RTECS #AB1000000
2. ACENAPHTHYLENE	acenaphthelene; CAS # 208-96-8; RTECS # AB1254000
3. ANTHRACENE	CAS # 120-12-7; RTECS # CA9350000
4. BENZĮajANTHRACENE	1,2-benzanithracene; benzo[b]phenanithrane; 2,3-benzophenanithrane; tetraphene; CAS # 58-55-3; RTECS # CV9275000
5. BENZO[b]FLUORANTHENE	3,4-benzoftuoranthene; 2,3-benzoftuoranthene; benz[e]acephenanthrylene; B(b)F; CAS # 205-99-2; RTECS # CU1400000
6. BENZO[K]FLUORANTHENE	11,12-benzotuoranthene; CAS # 207-06-9; RTECS # DF6350000
7. BENZO(ghi)PERYLENE	1,12-benzoperylene; CAS # 191-24-2; RTECS # DI6200500
8. BENZO(a)PYRENE	3,4-benzopyrene; 6,7-benzopyrene; B(a)P; BP; CAS # 50-32-8; RTECS # DJ3675000
9. BENZO[e]PYRENE	1,2-benzopyrene; 4,5-benzopyrene; B(e)P; CAS # 192-97-2; RTECS # DJ4200000
10 CHRYSENE	1,2-benzophenanthrene; benzo[a]phenanthrene; CAS # 218-01-9; RTECS # GC0700000
11. DIBENZ[a,h]ANTHRACENE	1,2,5,6-dibenzanthracene; CAS # 53-70-3; RTECS # HN2625000
12. FLUORANTHENE	benzo[jk]#uorene; CAS # 206-44-0; RTECS # LL4025000
13. FLUORENE	CAS #86-79-7; RTECS #LL5670000
14. INDENO[1,2,3-cd]PYRENE	2,3-phenylenepyrene; CAS # 193-39-5; RTECS # NK9300000
15. NAPHTHALENE	naphthene; CAS # 91-20-3; RTECS # QJ0525000
16. PHENANTHRENE	CAS #85-01-8; RTECS #SF7175000
17. PYRENE	benzo[def]phenanthrene; CAS # 129-00-0; RTECS # UR2450000

Data from [6, 8, and 9].

TABLE 3. EXPOSURE LIMITS!

COMPOUND	OSHA!	NIOSH	ACGIH	
1. ANTHRACENE	0.2 mg/m ²	-		
2. BENZ[a]ANTHRACENE			suspect human carcinogen	
3. BENZO[b]FLUORANTHENE	-		suspect human carcinogen	
4. BENZOJajPYRENE	0.2 mg/m³	-	suspect human carcinogen	
5. CHRYSENE	0.2.mg/m³	potential occupational carcinogen ⁶	animal carcinogen	
6. NAPHTHALENE	10 ppm; STEL 15 ppm	10 ppm; STEL 15 ppm	10 ppm; STEL 15 ppm	
7. PHENANTHRENE	0.2 mg/m³		-	
8. PYRENE:	0.2 mg/m³	-	-	

[&]quot;This table only includes the compounds with established exposure limit values.

1 Information from [10].

Information from [11].

Information from [12].

TABLE 4. LOD AND LOQ VALUES, AND RECOVERY DATA.

	Range o	of values	Recov	veries (%)
COMPOUND (by elution order)	LOD (µg per sample)	LOQ {µg per sample}	Filters	Sorbent tubes
1. NAPHTHALENE	0.20 - 0.80	0:39 - 2.6	49.6	68.5
2. ACENAPHTHYLENE	0.090 - 2.0	0.28 - 6.6	98.2	98.2
3. ACENAPHTHENE	0.20 - 5.0	0.58 - 16.	-	-
4. FLUORENE	0.030 - 0.30	0.099 - 0.26	95.0	95.0
5. PHENANTHRENE	0.0070 - 0.060	0.023 - 0.19	99.0, 90.4*	84.0, 92.5", 82.6"
6. ANTHRACENE	0.001D - 0.090	0.023 - 0.30	81.8, 94.4*	72.8, 96.2°, 72.9
7. FLUORANTHENE	0.0020 - 0.090	0.0066 - 0.30	94.9, 90.4*	73.0, 93.5*, 81.7
8. PYRENE	0.0010 - 0.30	0.0036 - 0.99	94.4, 76.1*	84.9, 77.0*, 75.9
9. BENZ[a]ANTHRACENE	0.0010 - 0.090	0.0042 - 0.30	86.6, 92.7*	62.4, 95.0°, 72.3
10. CHRYSENÉ	0.0070 - 0.20	0.023 - 0.37	94.6, 89.9*	62.7, 89.8*, 74.0
11. BENZO[e]PYRENE	0.0060 - 0.80	.0.020 - 2.6	110	48.3
12. BENZO[b]FLUORANTHENE	0.0030 - 0.20	0.011 - 0.66	94.8	64.2
13. BENZO[k]FLUORANTHENE	0.0020 - 0.040	0.0054 - 0.13	103	53.2
14. BENZO(a)PYRENE	0.0020 - 0.10	0.0051 - 0.33	101, 88.1*	50.4, 91.6*, 68.4
15. DIBENZ[a,h]ANTHRACENE	0.0040 - 0.60	0.014 - 2.0	76.5	61.0
16. BENZO(ghi)PERYLENE	0.0030 - 0.50	0.011 - 1.7	76.5	61.0
17. INDENO[1,2,3-cd]PYRENE	0.0090 - 0.20	0.027 - 0.66	91.6	36.5

Data from [4].
Data from [5]

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B EXAMPLE CALCULATIONS

NOMENCLATURE AND DIMENSIONS

An = Cross-sectional area of sampling nozzle, sq.ft.

As = Cross-sectional area of stack, sq.ft.

Bws = Proportion by volume of water vapor in the gas stream, dimensionless

Cp = Pitot tube coefficient, dimensionless

Cs = Concentration of pollutant matter in stack gas - dry basis, grains per standard cubic foot (gr/dscf)

% CO = Percent of carbon monoxide by volume, dry basis

% CO₂ = Percent of carbon dioxide by volume, dry basis

 ΔH = Average pressure drop across the sampling meter flow orifice, inches of water (in.H₂0)

GCV = Gross calorific value, Btu/lb

I = Percent of isokinetic sampling

La = Maximum acceptable leakage rate for either a pretest leak check or for a leak check following a component change; equal to 0.020 cubic foot per minute or 4% of the average sampling rate, whichever is less

Md = Dry molecular weight, lb/lb-mole

Mn = Total amount of pollutant matter collected, milligrams (mg)

Ms = Molecular weight of stack gas (wet basis), lb/lb-mole

% N₂ = Percent of nitrogen by volume, dry basis

% O₂ = Percent of oxygen by volume, dry basis

ΔP = Velocity head of stack gas, inches of water (in.H₂O)

Phar = Barometric pressure, inches of mercury (in.Hg)

NOMENCLATURE AND DIMENSIONS (continued)

Ps = Absolute stack gas pressure, inches of mercury (in.Hg)

Pstd = Gas pressure at standard conditions, inches of mercury (29.92 in.Hg)

pmr = Pollutant matter emission rate, pounds per hour (lb/h)

Qs = Volumetric flow rate – wet basis at stack conditions, actual cubic feet per minute (acfm)

Qsstd = Volumetric flow rate – dry basis at standard conditions, dry standard cubic feet per minute (dscfm)

Tm = Average temperature of dry gas meter, °R

Ts = Average temperature of stack gas, °R

Tstd = Temperature at standard conditions, (528°R)

Vlc = Total volume of liquid collected in impingers and silica gel, ml

Vm = Volume of dry gas sampled at meter conditions, cu. ft.

Vmstd = Volume of dry gas sampled at standard conditions, cu. ft.

Vs = Average stack gas velocity at stack conditions, ft/s

Vwstd = Volume of water vapor at standard conditions, scf

Y = Dry gas meter calibration factor, dimensionless

ø = Total sampling time, minutes

NOTE: Standard condition = 68°F and 29.92 in.Hg

EXAMPLE CALCULATIONS FOR POLLUTANT EMISSIONS

Volume of dry gas sampled corrected to standard conditions, ft³.
 Note: Vm must be corrected for leakage if any leakage rates exceed La.

$$Vmstd = 17.647 \times Vm \times Y \left[\frac{Pbar + \frac{\Delta H}{13.6}}{TM, \circ R} \right]$$

2. Volume of water vapor at standard conditions, ft³.

$$Vwstd = 0.04707 \times Vlc$$

3. Moisture content in stack gas, dimensionless.

$$Bws = \frac{Vwstd}{Vwstd + Vmstd}$$

4. Dry molecular weight of stack gas, lb/lb-mole.

$$Md = 0.44 (\% CO_2) + 0.32 (\% O_2) + 0.28 (\% N_2 + \% CO)$$

5. Molecular weight of stack gas, lb/lb-mole.

$$Ms = Md(1-Bws) + 18Bws$$

6. Stack velocity at stack conditions, f/s.

$$Vs = (85.49) (Cp) \left(avg \sqrt{\Delta} P\right) \sqrt{\frac{Ts, \circ R}{(Ps)(Ms)}}$$

7. Stack gas volumetric flow rate at stack conditions, cfm.

$$Os = 60 \times Vs \times As$$

8. Dry stack gas volumetric flow rate at standard conditions, cfm.

$$Qsstd = (17.647) (Qs) \left(\frac{Ps}{Ts}\right) (1 - Bws)$$

EXAMPLE CALCULATIONS FOR POLLUTANT EMISSIONS (continued)

9. Isokinetic Rate, %.

$$Iso = \frac{(0.0945 \times Ts, ^{\circ}R \times Vmstd)}{(1 - Bws) \times (\theta \times Vs \times Ps \times (0.005454 \times Dn^{2}))}$$

10. Concentration in gr/dscf.

$$Cs = (0.01543) \left(\frac{Mn}{Vmstd} \right)$$

11. Pollutant mass emission rate, lb/h.

pmr, lb / hr =
$$\left(\frac{Cs}{7000}\right)$$
 x Qsstd x 60

12. Pollutant mass emission rate, lb/MM Btu.

pmr, lb / MM Btu =
$$\left(\frac{pmr, lb/hr}{MM Btu/hr}\right)$$

13. F-factor (Fd).

$$Fd = \frac{10^6 (3.64 \times \% H) + (1.53 \times \% C) + (0.57 \times \% S) + (0.14 \times \% N) - (0.46 \times \% O_2)}{GCV (Btu/lb)}$$

14. F-factor, pollutant mass emission rate, lb/MM Btu (O2-based).

$$= \frac{1b / dscf x F x 20.9}{(20.9 - \% O_2)}$$

15. Heat input, MM Btu/hr fuel.

$$= \frac{GVC (Btu/lb)*Feed Rate (lb/hr)}{10^6}$$

16. Heat input, MM Btu/hr, F-factor.

$$= \frac{Q \operatorname{sstd}}{Fd} x \left[(20.9 - \% O_2) + 20.9 \right] x 60$$

EXAMPLE CALCULATIONS FOR GASEOUS POLLUTANTS MEASURED BY CONTINUOUS EMISSION MONITORS (CEMs)

1) Concentrations, parts per million, dry basis:

ppm, dry = ppm, wet basis
$$\div \left(1 - \frac{BWS, \%}{100}\right)$$

2) Pollutant Mass Emission Rate, pounds per hour.

PMR, lb/hr =
$$\frac{ppm, dry \times Compound Molecular Weight}{(385.3 \times 10^6)} \times dscfm \times 60$$

Molecular Weights of Target Compounds

TGO	=	Total Gaseous Organics	16.01 (Methane)						
SO_2	=	Sulfur Dioxide	64.05						
NO_2	=	Nitrogen Oxides	46.00						
CO	=	Carbon Monoxide 28.01							
BWS	=	Proportion by Volume of V	Vater Vapor in the Gas Stream						
PMR	=	Pollutant Mass Emission Rate, pounds per hour							
DSCFM	=	Dry standard cubic feet per	minute						

HORSE POWER CALCULATIONS

-86 Horsepower Calculation

Example Calculation: Travis AFB, 10% load

Horsepower = Travis Fuel Usage(|bs/hr) / (Southwest Fuel Usage (|bs/hr) / Brake Horsepower)

Horsepower = 21 36 / (17.3 / 14.6) = 18.03

		Travis Fuel Usage	Southwest Fuel Usage	Brake Horsepower	Brake Specific Fuel Consumption	
Location/load	Run No.	lbs/hr	llbs/hr	BHP	BSFC (=SW Fuel/BHP)	horsepower ELM Fuel/BSFC)
Travis AFB						
10%	1	21 36	17.3	14.6	1.18	18.03 .
	2 3	20 16	17.3	14.6	1.18	17.01
	3	20 51	17.3	14.6	1.18	17.31
Average						17.45
Unit 2 10%	1	20.68	17.30	14.6	1.18	17.45
25%	1	24.81	23.2	37	0.63	39.57
2070		27.3	23.2	37	0.63	43.54
	2 3	26.85	23.2	37	0.63	42.82
Average	ŭ	20,00				41.98
50%	1	36.02	33.9	73	0.46	77.57
0070	2	37.89	33.9	73	0.46	81.59
	3	35.18	33.9	73	0.46	75.76
Average	_					78.30
75%	1	40.51	43.7	107.6	0.41	99.75
	2	45.41	43.7	107.6	0.41	111.81
	3	43.61	43.7	107.6	0.41	107.38
Average						106.31
100%	1	52.12	56.2	144.1	0.39	133.64
		57.57	56.2	144.1	0.39	147.61
	2 3	58.2	56.2	144.1	0.39	149.23
Average	-					143.49

-86 Horsepower Calculation

Example Calculation: Elmendorf AFB, 10% load

Horsepower = Elmendorf Fuel Usage(lbs/hr) / (Southwest Fuel Usage (lbs/hr) / Brake Horsepower)

Horsepower = 21.49 / (17.3 / 14.6) = 18.14

Location/load	Run No.	Elmenorf Fuel Usage lbs/hr	Southwest Fuel Usage ibs/hr	Brake Horsepower BHP	Brake Specific Fuel Consumption BSFC (=SW Fuel/BHP)	Calculated horsepower (=ELM Fuel/BSFC)
Elmendorf AFB						
10%	1	21.49	17.3	14.6	1.18	18.14
	2	22.79	17.3	14.6	1.18	19.23
	3	19.95	17.3	14.6	1.18	16.84
Average		21.41				18.07
25%	1	26.86	23.2	37	0.63	42.84
	2	26.45	23.2	37	0.63	42.18
	3	26.50	23.2	37	0.63	42.26
Average	_	26.60				42.43
50%	1	39.57	33.9	73	0.46	85.21
0070		39.94	33.9	73	0.46	86.01
•	2 3	42.09	33.9	73	0.46	90.64
Average	Ŭ	12.00		,,,		87.28
75%	1	49.47	43.7	107.6	0.41	121.81
1070	2	52.02	43.7	107.6	0.41	128.09
	3	50 55	43.7	107 6	0.41	124.47
Average	3	30 33	70 /	107 0	0.71	124.79
,go		*				
100%	1	49.65	56.2	144.1	0.39	127 31
	2	49.97	56.2	144.1	0 39	128.13
	3	49.51	56.2	144.1	0.39	126.95
Average						127.46

CEM – GASEOUS POLLUTANTS (CO, CO₂, O₂, THC, NO_X) – TRAVIS AFB

Trav 10% 06/ Plant Name
Sampling Location
Date
Run Number
Start Time

ivis AFB	% Load - Generator	6/11/2002	1	0817	0917

Mark Wade	r Tom Gerstle	tor Doug Allen		
lant Rep.	eam Leader	EM Operator	roject Number	

-	_	_	_	_	_
ואמווומפו					
	8	CO2	02	THC	ŠON
		Γ-		Γ	Ì

	Analyzer	Analyzer
	Number	Span
S		200
CO2		25
02		25
THC		300
Š		1000

	Calibration	CALIBRATIO	ON ERROR CHECK	HECK		SYSTEMC	SYSTEM CAL CHECK				Calibration
		Calibration		Analyzer		PRETEST		POST TEST	٦		Correction
	Specification	Value	Cylinder	Calibration	Difference	System	Syst. Bias	System	Syst. Bias	Drift	Factors
	(% of Span)	(% or ppm)	Number (1)	Response	(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Span)	
CO Zero	0			0.3	0.2	0.4	-0.1	0.3	0.0	-0.1	Co=0.4
COLOW	~30	30.1		30.3	0.1						
CO Mid	09~	59.4		59.1	-0.1	59.1	0.0	58.9	-0.1	-0.1	Cm=59.0
CO High	80-100 (2)	149.4		150.4	0.5						
CO2 Zero	0	0		0	0.0	-0.1	-0.4	0	0.0	0.4	-Co=0.1
CO2 Low	NR										
CO2 Mid	40-60	6.6		10	0.4	10	0.0	10	.0.0	0.0	Cm=10.0
CO2 High	80-100	20.5		20.4	-0.4						
O2 Zero	0	0		0	0.0	0	0.0	0	0.0	0.0	Co=0.0
O2 Low	NR										
O2 Mid	40-60	10.5		10.5	0.0						
O2 High	80-100	20		20	0.0	20	0.0	20	0.0	0.0	Cm=20.0
THC Zero	0	0		-0.2		-0.1	0.0	4		1.4	
THC Low	25-35	49.6		50.3	1.4	50.2	0.0	54.2		1.3	
THC Mid	45-55	124.6		125	0.3	126	0.3				
THC High	06-08	298.6		300		299	-0.3				
NOx Zero	0	0		-1	-0.1	0.1	0.1	1	0.2	0.1	0.0=0.0
NOx Low	20-30 (3)										
NO _x Mid	45-55	448		443	-0.5	441	-0.2	441	-0.2	0.0	Cm=441.0
NOx High	80-90	885.5		988	0.1						

Plant Name
Sampling Location
Date
Run Number
Start Time

ravis AFB	% Load - Generator 1	06/11/02	2	1010	1050
Trav	10%				L

Γ	Plant Rep.	Mark Wade
or 1	Team Leader	Tom Gerstl
	CEM Operator	Doug Allen
	Project Number	030174.000
	_	

Analyzer	Span	200	25	52	300	1000
Analyzer	Number					
		8	CO2	05	THC	Š

Calibration	Correction	Factors		Co=0.4		Cm=58.8		-Co=0.1		Cm=10.0		Co=0.0			Cm=20.0					Co=0.6		Cm=440.5	
<u>၂</u>		Drift	(% of Span)	0.1		-0.1		-0.4		0.0		0.0			0.0	0.2	0.0			-0.1		-0.1	
		Syst. Bias	(% of Span)	0.1		-0.2		-0.4		0.0		0.0			0.0					0.1		-0.3	
	POST TEST	System	Response	0.4		58.7		-0.1		10		0			20	4.5	54.3			0,1		440	
SYSTEM CAL CHECK		Syst. Bias	(% of Span)	0.0		-0.1		0.0		0.0		0.0			0.0	1.4	1.3			0.2		-0.2	
SYSTEM C	PRETEST	System	Response	0.3		58.9		0		10		0			20	4	54.2					441	
		Difference	(% of Span)	0.2	0.1	-0.1	0.5	0.0		0.4	-0.4	0.0		0.0	0.0		1.4	6.0		-0.1		S'0-	
CHECK	Analyzer	Calibration	Response	6.0	30.3	59.1	150.4	0		10	20.4	0		10.5	20	-0.2	50.3	125	300	-1		443	Ì
ON ERROR CHECK		Cylinder	Number (1)																				
CALIBRATI	Calibration	Value	(% or ppm)	0	30.1	59.4	149.4	0		6.6	20.5	0		10.5	20	0	9.64	124.6	298.6	0		448	
Calibration CALIBRATION	Gas	Specification	(% of Span)	0	~30	09~	80-100 (2)	0	NR	40-60	80-100	0	NR	40-60	80-100	0	25-35	45-55	06-08	0	20-30 (3)	45-55	
				CO Zero	COLow	CO Mid	CO High	CO2 Zero	CO2 Low	CO2 Mid	CO2 High	O2 Zero	O2 Low	O2 Mid	O2 High	THC Zero	THC Low	THC Mid	THC High	NOx Zero	NOx Low	NO _x Mid	

Analyzer

Analyzer

Plant Name
Sampling Location
Date
Run Number
Start Time

_	_		· · · · · ·			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Trans A ED	IIAVIS ALD	10% Load - Generator 1	06/11/02	3	1135	1215

Mark Wade	Tom Gerstle	Doug Allen	030174.0003.0
Plant Rep.	Team Leader	CEM Operator	Project Number

	Number	Span
8		500
CO2		25
05		. 25
THC		300
Ň		1000
NA T O		10

	Calibration	CALIBRATI	CALIBRATION ERROR CHECK	HECK		SYSTEM CAL CHECK	AL CHECK				Calibration
ê	Gas	Calibration		Analyzer		PRETEST		POST TEST	L		Correction
	Specification	Value	Cylinder	Calibration	Difference	System	Syst. Bias	System	Syst. Bias	Drift	Factors
	(% of Span)	(% or ppm)	Number (1)	Response	(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Span)	
CO Zero	0	0		6.0	0.2	0.4	-0.1	0.2	-0.1	-0.1	Co=0.3
CO Low	~30	30.1		30.3	0.1						
CO Mid	09~	59.4		59.1	-0.1	58.7	-0.2	58.3	-0.4	-0.2	Cm=58.5
CO High	80-100 (2)	149.4		150.4	0.5						
CO2 Zero	0	0		0	0.0	-0.1	-0.4	-0.2	8.0-	-0.4	-Co=0.2
CO2 Low	NR										
CO2 Mid	40-60	6.6		10	0.4	10	0.0	6.6	-0.4	-0.4	Cm=10.0
CO2 High	80-100	20.5		20.4	-0.4						
O2 Zero	0	0		0	0.0	0	0.0	0	0.0	0.0	Co=0.0
O2 Low	NR										
O2 Mid	40-60	10.5		10.5	0.0						
O2 High	80-100	20		20	0.0	20	0.0	20	0.0	0.0	Cm=20.0
THC Zero	0	0		-0.2		4.5	1.6	3.8		-0.2	
THC Low	25-35	49.6		50.3	1.4	54.3	1.3	51.7		6.0-	
THC Mid	45-55	124.6		125	0.3						
THC High	80-90	298.6		300							
NOx Zero	0	0		-1	-0.1	0.1	0.1	1.1	0.2	0.1	Co=0.6
NOx Low	20-30 (3)										
NOx Mid	45-55	448		443	-0.5	440	-0.3	438	-0.5	-0.2	Cm=439.0
NOx High	06-08	885.5		988	0.1						

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 10% Load
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

Run 1	Ī	ÇO.	CO2	02	THC	NOx	Methane
Date	Time	ppm	%	%	ppm	ppm	ppm
06/11/2002	8:17:46	77.34	3.324	16,446	48.66	152.8	2.42
06/11/2002	8:18:46	77.74	3.288	16.465	48.85	152.4	2.41
06/11/2002	8:19:46	77.63	3.282	16.486	49.61	151.2	2.4
06/11/2002	8:20:46	77.8	3.272	16.506	49.43	151.2	2.39
06/11/2002	8:21:46	76.93	3.258	16.51	50.07	151.2	2.38
06/11/2002	8:22:46	77.62	3.274	16.515	49.92	150.6	2.35
06/11/2002	8:23:46	78.03	3.244	16.519	50.41	150.2	2.32
06/11/2002	8:24:46	77 73	3.252	16.529	50.31	150.2	2.21
06/11/2002	8:25:46	77 72	3.24	16.534	50.98	149.7	2.29
06/11/2002	8:26:46	77.96	3.188	16.597	50.7	150.1	2.2
06/11/2002	8:27:47	77.49	3.176	16.641	51.44	148.2	2.18
06/11/2002	8:28:47	78.69	3.147	16.642	51.92	147.4	2.03
06/11/2002	8:29:47	77.49	3.17	16.645	51 11	148.9	1.85
	8:30:47	77.45	3.16	16 639	52.37	149.9	1.9
06/11/2002	8:31:47	78.63	3.154	16.644	51.52	149:2	1.87
06/11/2002			3.172	16.635	52.05	149.9	1.85
06/11/2002	8:32:47	77.63 78.34	3.172	16.64	52.92	150.2	1.84
06/11/2002	8:33:47			16.61	51.89	150.4	1.83
06/11/2002	8:34:47	78.62	3.2 3.186	16.597	52.35	151.6	1.85
06/11/2002	8:35:47	77.92	3.188	16.598	52.78	151 1	1.92
06/11/2002	8:36:45	78.85	3.206	16.593	52.66	149.9	1.89
06/11/2002		79.57 79 18	3.189	16.587	52.56	149.2	1.88
06/11/2002	8:38:45 8:39:45	78.51	3.208	16.587	52.62	150.2	1.86
06/11/2002	1 1	79.83	3.207	16.575	53.35	150.2	1.86
06/11/2002		80.89	3.201	16.577	52.95	150.2	1.87
06/11/2002		81.36	3.221	16.573	53.55	150.1	1.89
06/11/2002		80.98	3.193	16.575	53.03	149.2	1.88
06/11/2002			3.223	16.569	53.44	149.2	1.87
06/11/2002		81.53	3.206	16.574	53.17	149.2	1.9
06/11/2002		80.48	3.206	16.575	53.05	149.2	1.86
06/11/2002		81.8	2.815	17.08	57.1	149	1.99
06/11/2002		93.58	2.3	17 769	59.26	131.7	2.25
06/11/2002		95.59	2.331	17.763	59.22	118.1	2.24
06/11/2002		96.6	2.311	17.761	59:65	118.1	2.25
06/11/2002	1	94.82	2.329	17 752	58.84	118.7	2.22
06/11/2002		90.49	3.151	16.666	53.39	125.3	1.94
06/11/2002	1	81.49	3,204	16.559	53.36	146.7	1.81
06/11/2002		81.02	3.229	16.561	52.91	149.2	1.78
06/11/2002		80.72	3.204	16.561	53.28	149.6	1.8
06/11/2002		81.42	3.229	16.555	53.35	150.2	1.78
06/11/2002		81.28	3.218	16.558	53.4	150.2	1.79
06/11/2002		80.96	3.161	16.624	53.23	149.8	1 78
06/11/2002		80.78	3.217	16.572	59.69	147.7	1.78
06/11/2002		81 65	3.194	16.571	57.28	149.1	1.77
06/11/2002	ľ	81.14	3.226	16.558	56.89	150	1.79
06/11/2002	ſ	81 61	3.22	16.55	55.69	149.8	1.79
06/11/2002		81 72	3.229	16.545	55.97	150.2	1 78
06/11/2002		85.07	2.548	17.33	60.35	147.2	1.92
06/11/2002	1	95.52	2.314	17.746	60.1	123.8	2.18
06/11/2002	1	93.39	2.853	17.05		119.7	2.02
06/11/2002		83.87	3.246	16.53	54.62	140.9	1.75
06/11/2002		82.54	3.218	16.543	54.69	151	1.75
06/11/2002		82.41	3.235	16.538			1.76
06/11/2002		1					1.76

1	06/11/2002	9.11:45	81.74	3.21	16.551	54.57	151.2	1.72
ı	06/11/2002	9:12:45	80.36	3.216	16.57	53.94	151 7	1.69
ı	06/11/2002	9:13:45	80.8	3.212	16.555	54.4	153.7	1.68
ı	06/11/2002	9:14:45	82.28	3.229	16.54	54.55	152.6	1.71
ı	06/11/2002	9:15:45	81.15	3.231	16.545	54.82	152.2	1.68
ı	06/11/2002	9:16:45	80.87	3.191	16.569	54.96	152.7	1.7
١								
٠		Average	81.7	3.1	16.7	53.8	146.8	2.0

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 10% Load
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

Run 2	ſ	co	CO2	02	THC	NOx	Methane
Date	Time	ppm	%	%	ppm	ppm	ppm
06/11/2002	10:10:53	79.28	3.182	16.613	51.48	158.5	1.55
06/11/2002	10:11:53	79.83	3.207	16.607	52.63	159.2	1.58
06/11/2002	10:12:53	80.48	3.199	16.607	52.7	159.2	1.59
06/11/2002	10:13:53	80.11	3.193	16.607	52.57	159.1	1.59
06/11/2002	10:14:53	80.13	3.214	16.606	52.64	159.2	1.59
06/11/2002	10.15:53	79.87	3.191	16.604	53.11	159.2	1.6
06/11/2002	10:16:53	78.94	3.211	16.608	52.9	159.2	1.58
06/11/2002	10:17:53	79.46	3.195	16.612	52.67	159.2	1.61
06/11/2002	10:18:53	80.42	3.194	16.611	52.91	158.6	1.64
06/11/2002	10.19:53	80.16	3.203	16.614	53.04	158.2	1.6
06/11/2002		80.61	3.187	16.606	53.78	158.2	1.64
06/11/2002	10:21:53	81.63	3.217	16.6	53.57	158.2	1 62
06/11/2002	10:22:53	81.57	3.199	16.598	53.13	158.2	1.61
06/11/2002	10:23:53	80.88	3.196		52.98	158.2	1.63
06/11/2002	10:24:53	80.91	3.2	16.609	53.06	158.2	1.59
06/11/2002	10:25:53	81.78	3.195	16.599	53.98	157 9	1.59
06/11/2002	10:26:53	81.86	3.219	16.598	54.58	158.2	1.63
06/11/2002	10:27:54	81.87	3.191	16 603	53.28	158.2	1.58
06/11/2002	10:28:54	80.96	3.21	16.594	53.55	158.2	1.62
06/11/2002	10:29:54	81 54	3.209	16.59	54	158.9	1.57
06/11/2002	10:30:54	81.03	3.202	16.587	53.59	158.7	1.6
06/11/2002		81.21	3.236		53.4	159.3	1.59
06/11/2002	10:32:54	80.36	3.2		52.86	159.3	1.54
06/11/2002	1	80.61	3.224		53.18		1.57
06/11/2002		81.5	3.237	16.563		159.3	1.57
06/11/2002	10:35:52	81.72	3.213				1.57
06/11/2002	10:36:52	81.69	3.238	ł .	54.23		1.59
06/11/2002	10:37:52	81.36	3.213				1.62
06/11/2002		81 88	3.216		2		1.59
06/11/2002		83.39	3.226		4		1.62
06/11/2002		83.65	3.21				1.64
06/11/2002		83.5	3.239				1.66
06/11/2002	1	83.29	3.211				1.61
06/11/2002		83.4	3.218				1.67
06/11/2002		83.15	3.22				1.66
06/11/2002		84.19	3.219	1			1.6
06/11/2002		84.21	3.24				1.63
06/11/2002		84.7	3.209				1.59
06/11/2002		83.43	3.234				1.7
06/11/2002	10:49:53	84.12	3.23	16.557	54.95	157 3	1.68
<u> </u>	Average	81.6	3.2	16.6	53.9	158.4	1.6

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 10% Load
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

Run 3	ſ	co I	CO2	02	THC	NOx	Methane
	Time	ppm	%	%	ppm	ppm	ppm
06/11/2002	11:35:03	84.8	3.229	16.513	49.48	148.9	1.59
06/11/2002	11:36:03	84.01	3.261	16.484	53.15	159.4	1.68
06/11/2002	11:37:03	84.48	3.233	16.479	53.35	160.2	1.67
06/11/2002	11:38:03	85.58	3.25	16.485	53.63	160.2	1.68
06/11/2002	11:39:03	85.51	3.253	16.468	53.1	160.6	1.66
06/11/2002	11:40:03	86.24	3.243	16.475	53.09	161.2	1 66
06/11/2002	11:41:03	86.17	3.26	16.467	53.12	161.2	1.68
06/11/2002	11:42:03	86.07	3.22	16.487	52.98	160.3	1.63
06/11/2002	11:43:03	86.76	3.261	16.48	53.27	160.8	1.69
06/11/2002	11:44:03	86.97	3.254	16.462	53.84	160.9	1.71
06/11/2002	11:45:03	88.19	3.251	16.472	54.05	161.1	1.74
06/11/2002	11:46:03	88.83	3.259	16.47	53.84	160.2	1.72
06/11/2002	11:47:03	87.72	3.249	16.458	54.33	160.3	1.73
06/11/2002	11:48:03	88.53	3.279	16.448	1 1	161.2	1.71
06/11/2002	11:49:03	87.42	3.254	16.452		161.2	1.69
06/11/2002	11:50:03	88.06	3.26	16.459		161.2	1 71
06/11/2002	11:51:03	88.93	3,263	16.455		161.2	1.63
06/11/2002	11:52:04	87.2	3.249	16.456		161.2	1.66
06/11/2002	11:53:04	89 94	3.275	16.454		160.5	1.68
06/11/2002	11:54:04	89.46	3,245	16.45		160.2	1.65
06/11/2002	11:55:04	89.6	3.261	16,448		160.2	1.66
06/11/2002	11:56:04	89.53	3.26	16.447	53.69	160.2	1.68
06/11/2002	11:57:04	89.66	3.26	16.443		159.4	1.71
06/11/2002	11:58:04	88.71	3.279	16.44	53.95	159.2	1.71
06/11/2002	11:59:04	89 79	3.246	16.446	53.99	160.1	1.7
06/11/2002	12:00:04	88.84	3.268	16.45	53.65	160.2	1.71
06/11/2002	12:01:04	88.51	3.266	16.442	53.01	160.2	1.7
06/11/2002	12:02:04	89.36	3.255	16.445		161.1	1.71
06/11/2002	12:03:04	89.65	3.281	16.435		160.2	1.69
06/11/2002	12:04:04	87.81	3.244	16.44		160.1	1.66
06/11/2002	12:05:04	88.11	3.273	16.443		159.4	1.68
06/11/2002	12:06:04	88.41	3.255	16.446		160.2	1.68
06/11/2002	12:07:04	87.93	3.276			160.5	1.68
06/11/2002	12:08:04	89.45	3.29	16.414	1	161.2	1.69
06/11/2002	12:09:04	89.67	3.263	16.41	1	1	1.7
06/11/2002	12:10:04	89 15	3.291	16.419		161.2	1.66
06/11/2002	12:11:04	88.18	3.251	16.444		160.9	1.63
06/11/2002	12:12:02	87.04	3.258			•	1.65
06/11/2002	12:13:02	87.84	3.287	16.424	1		1.65
06/11/2002	12:14:03	•	3.251	16.432			1.66
06/11/2002	12:15:03	87.69	3.269	16.436	53.43	160.9	1.67
<u></u>	<u></u>			10-	<u> </u>	400.0	1.7
	Average	87.9	3.3	16.5	53.3	160.2	1./

Data Summary		CO	CO2	O2	THC	NOx	Methane
Run	Time	ppm	%	%	ppm	ppm	ppm
Run 1	08:17-09:16	81.7	3.1	16.7	53.8	146.8	1.95
Run 2	10:10-70:49	81.6	3.2	16.6	53.9	158.4	1.61
Run 3	11:35-12:15	87.9	3.3	16.5	53.3	160.2	1.68

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 10% Load
Date:	06/11/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	CO
Molecular Weight:	28.01

Calibration Corrected

	Start-Stop	Raw Data	Calibration Data			Data
Run No.	Time	(ppm)	Cma	Co	Cm	(% or ppm)
1	08:17-09:16	81.7	59.4	0.4	59.0	82.36
2	10:10-10:49	81.6	59.4	0.4	58.8	82.59
3	11:35-12:15	87.9	59.4	0.3	58.5	89.39
	•			Aver	age	84.78

Calibration Error Correction

Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Mass Emission Rate (lb/hr)

E(lb/hr)=Cgas*MWgas*Qs(dscfm)*60/385300000

Mass Emission Rate (lb/1000 lb fuel)

E(lb/MMBtu)=E(lb/hr)/Fuel flow * 1000

Pollutant	MWgas
co	28.01
Methane	16.00
NOx	46.01
SO2	64.06

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 10% Load
Date:	06/11/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	CO2
Molecular Weight:	

	i Weight.					Calibration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.	Time	(% or ppm)	Cma	Со	Cm	(% or ppm)
1	08:17-09:16	3.1	9.9	-0.1	10.0	
2	10:10-10:49	3.2	9.9	-0.1	10.0	
3	11:35-12:15	3.3	9.9	-0.2	10.0	
	· · · · · · · · · · · · · · · · · · ·	•		Ave	rage	3.22

Calibration Error Correction
Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 10% Load
Date:	06/11/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	O2
Molecular Weight:	

						Calibration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.	Time	(% or ppm)	Cma	Co	Cm	(% or ppm)
1	08:17-09:16	16.7	20.0	0.0	20.0	16.70
2	10:10-10:49	16.6	20.0	0.0	20.0	16.59
3	11:35-12:15	16.5	20.0	0.0	20.0	16.45
				Ave	rage	16.58

<u>Calibration Error Correction</u> Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Total Hydrocarbon Data Correction

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 10% Load
Date:	06/11/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	THC
Molecular Weight:	16.00

			Source Info	Corrected	
			Stack	Stack	Data
	Start-Stop	Raw Data	Flow	Moisture	Dry Basis
Run No.		(ppm)	(dscfm)	(%)	(ppm)
	08:17-09:16	53.8	332.70	3.90	
2	10:10-10:49	53.9	332.80	3.47	
3	11:35-12:15	53.3	329.70	3.75	55.39
				Average	55.73

Moisture Correction
Cgas(dry)=Cgas(wet)/(1-(% moisture/100))
Mass Emission Rate (lb/hr)
E(lb/hr)=Cgas(dry)*MWgas*Qs(dscfm)*60/385300000

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 10% Load
Date:	06/11/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	N0x
Molecular Weight:	46.01

						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.	Time	(% or ppm)	Cma	Co	Сm	(% or ppm)
1	08:17-09:16	146.8	448.0	0.6	441.0	148.74
2	10:10-10:49	158.4	448.0	0.6	440.5	160.71
3	11:35-12:15	160.2	448.0	0.6	439.0	163.13
1				Ave	rage	157.53

Calibration

Calibration Error Correction

Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Mass Emission Rate (lb/hr)

E(lb/hr)=Cgas*MWgas*Qs(dscfm)*60/385300000

Mass Emission Rate (lb/1000 lb fuel)

E(lb/MMBtu)=E(lb/hr)/Fuel flow * 1000

Pollutant	MWgas
CO	28.01
Methane	16.00
NOx	46.01
SO2	64.06

Date:	Run:	T-10-1			Но	rsepower:	18.03	
	Flow (dscfm):	332.7			Fuel Usag	je (gal/hr):	2.98	
	Moisture (%): Pollutant:	3.9 NO x	CO	NMHC	THC	Methane	CO2	02
	Concentration (ppm or %)	148.74	82 36	54.01	55 96	195	3.12	16.70
	Mass Rate (lb/hr)	0.35	0.12	0.04	4.61E-02	1.62E-03	0.01	0.03
	Mass Rate (lb/gal fuel)	0.12	0 04	0.01	0 02	0 00	0.00	0 01
	Mass Rate (gr/hp*hr)	8.93	3.01	1.12	1.16	0.04	0.18	0.70

Date: 06/11/2002	Run: Flow (dscfm):	T-10-2 332.8				rsepower: je (gal/hr):	17.01 2.81	
	Moisture (%): Pollutant: Concentration (ppm or %) Mass Rate (lb/hr) Mass Rate (lb/gal fuel) Mass Rate (gr/hp*hr)	3.47 NOx 160.71 0.38 0.14	CO 82 59 0.12 0.04 3.20	NMHC 54.22 0.04 0.02 1.19	THC 55 83 4.60E-02 0.02 1.23	Methane 1 61 1.34E-03 0.00 0.04	3.21 0.01 0.00 0.20	O2 16.59 0.03 0.01 0.73

Date: 06/11/2002	Run: Flow (dscfm):	T-10-3 329.7				rsepower: je (gal/hr):	17.31 2.86	
	Moisture (%): Pollutant:	3.75 NOx 163.13	CO 89.39	NMHC 53.71	THC 55.39	Methane 1.68	CO2 3.34	O2 16.45
	Concentration (ppm or %) Mass Rate (lb/hr) Mass Rate (lb/gal fuel)	0.39 0.13	0.13	0.04 0.02	4.52E-02 0.02	1 38E-03 0.00	0.01 0.00	0.03 0.01
•	Mass Rate (gr/hp*hr)	10.11	3.37	1.15	1.19	0.04	0.20	0.71

Date: 06/13/2002	Run: Flow (dscfm):	T-2-10 304				rsepower: je (gal/hr):	17.45 2.88	
	Moisture (%): Pollutant: Concentration (ppm or %) Mass Rate (lb/hr) Mass Rate (lb/gal fuel) Mass Rate (gr/hp*hr)	3.7 NOx 211.32 0.46 0.16 11.98	CO 153.05 0.20 0.07 5.28	95.36 0.07 0.02 1.87	THC 96.71 7.28E-02 0.03 1.89	Methane 1.35 1 02E-03 0.00 0.03	3.28 0.01 0.00 0.18	O2 16.51 0.03 0.01 0.65

·. . .

Plant Name
Sampling Location
Date
Run Number
Start Time

Travis AFB 25% Load - (06/11/2002 1304

Mark	eam Leader Tom	EM Operator Doug	roject Number 0301
Mark Wade	Tom Gerstle	Doug Allen	030174.0003.002

Analyzer Span	200	23	2	30(100
Analyzer Number					
	8	202	05	THC	Š

CALIBRATION
Calibration Analyzer
Cylinder
(% or ppm) Number (1) Response
L
30.1
59.4
149.4
0
6.6
20.5 20.4
0
10.5
20 20
0 -0.2
49.6 50.3
124.6
298.6 300
0
448 443
885.5

Plant Name
Sampling Location
Date
Run Number
Start Time
Stop Time

Travis AFB 25% Load - Generator 1 06/11/02 2 1420

Mark Wade	Tom Gerstle	Doug Allen	030174.0003.0
Plant Rep.	Team Leader	CEM Operator	Project Number

	Analyzer	Analyzer
	Number	Span
္ပ		200
C02		25
02		25
THC		008
Š		1000

	Calibration	CALBRATI	ON BRROR CHECK	HECK		SYSTEM CAL CHECK	AL CHECK				Calibration
		Calibration		Analyzer		PRETEST		POST TEST	ړ		Correction
	Specification	Value	Cylinder	Calibration	Difference	System	Syst. Bias	System	Syst. Bias	Drift	Factors
	(% of Span)	(% or ppm)	Number (1)	Response	(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Span)	
CO Zero	0	0		0.3	0.2	0.2	0.1	0.2	-0.1	0.0	Co=0.2
COLOW	~30	30.1		30.3	0.1						
CO Mid	09~	59.4		59.1	-0.1	57.7	-0.7	57.8	-0.7	0.0	Cm=57.8
CO High	80-100 (2)	149.4		150.4	0.5						
CO2 Zero	0	0		0	0.0	-0.1	-0.4	-0.2	-0.8	-0.4	-Co=0.2
CO2 Low	NR										
CO ₂ Mid	40-60	6'6		01	0.4	6.6	-0.4	6.6	-0.4	0.0	Cm=9.9
CO2 High	80-100	20.5		20.4	-0.4						
O2 Zero	0	0		0	0.0	0	0.0	0	0.0	0.0	Co=0.0
O2 Low	NR										
O2 Mid	40-60	10.5		10.5	0:0						
O2 High	80-100	20		20	0.0	20	0.0	. 20	0.0	0.0	Cm=20.0
THC Zero	0	0		-0.2		3.6	1.3	1.9		9.0-	
THC Low	25-35	49.6		50.3	1.4	51.6	0.4	51.2		-0.1	
THC Mid	45-55	124.6		125	0.3						
THC High	06-08	298.6		300							
NOx Zero	0	0		-1	-0.1	0.1	0.1	0	0.1	0.0	Co=0.1
NOx Low	20-30 (3)										***
NO _x Mid	45-55	448		443	-0.5	435	-0.8	435	-0.8	0.0	Cm=435.0
NOx High	80-90	885.5		886	0.1						

Plant Name
Sampling Location
Date
Run Number
Start Time
Stop Time

	Generator 1				
Travis AFB	25% Load -	06/11/02	153	1613	

03	C05	05	2 THC	XON
Mark Wade	Tom Gerstle	Doug Allen	030174.0003.002	

Plant Rep. Team Leader CEM Operator Project Number

	Analyzer	Analyzer
	Number	Span
8		200
COS		25
02		52
되		300
Š		0001

	Calibration	CALIBRATIO	ON BRROR CHECK	HECK		SYSTEM CAL CHECK	AL CHECK				Calibration
٠	Gas	Calibration		Analyzer		PRETEST		POST TEST	ل		Correction
	Specification	Value	Cylinder	Calibration	Difference	System	Syst. Bias	System	Syst. Bias	Drift	Factors
	(% of Span)	(% or ppm)	Number (1)	Response	(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Span)	
CO Zero	0	0		0.3	0.2	0.2	0.1	0.1	-0.1	-0.1	Co=0.2
COLow	~30	30.1		30.3	0.1						
CO Mid	09~	59.4		59.1	-0.1	57.8	-0.7	57.7	-0.7	0.0	Cm=57.8
CO High	80-100 (2)	149.4		150.4	0.5						
CO2 Zero	0	0		0	0.0	-0.2	-0.8	-0.2	8.0-	0.0	-Co=0.2
CO2 Low	NR										
CO2 Mid	40-60	6.6		10	0.4	6.6	-0,4	6'6	-0.4	0.0	Cm=9.9
CO2 High	80-100	20.5		20.4	-0.4						
O2 Zero	0	0		0	0.0	0	0.0	0	0.0	0.0	Co=0.0
O2 Low	NR										
O2 Mid	40-60	10.5		10.5	0.0						
O2 High	80-100	20		20	0.0	20	0.0	20	0.0	0.0	Cm = 20.0
THC Zero	0	0		-0.2		1.9	0.7	1.3		-0.2	
THC Low	25-35	49.6		50.3	1.4	51.2	0.3	50.6		-0.2	
THC Mid	45-55	124.6		125	0.3						
THC High	80-90	298.6		300							
NOx Zero	0	0		-1	-0.1	0	0.1	-0.1	0.1	0.0	-Co=0.1
NOx Low	20-30 (3)										
NO _x Mid	45-55	448		443	-0.5	435	-0.8	434	6.0-	-0.1	Cm=434.5
NOx High	80-90	885.5		988	0.1						

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 25% Load
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

Run 1		co	CO2	02	THC	NOx	Methane
Date	Time	ppm	%	%	ppm	ppm	ppm
06/11/2002	13:04:40	83.47	3.865	15.565	42.24	197.8	1.48
06/11/2002	13:05:41	83.3	3.859	15.569	42.45	197.8	1.48
06/11/2002	13:06:41	82.64	3.847	15.544	42.78	197.2	1.45
06/11/2002	13:07:41	83.16	3.888	15.54	43.04	197.6	1,48
06/11/2002	13:08:41	80.84	3.882	15.53	42.64	198.1	1.45
06/11/2002	13:09:41	81.2	3.878	15.543	42.6	196.8	1.46
06/11/2002	13:10:41	81 17	3.874	15.558	42	196.1	1.43
06/11/2002	13:11:41	81.47	3.852	15.562	42.35	195.2	1.47
06/11/2002	13:12:41	81.83	3.891	15.54	43.22	195.9	1.49
06/11/2002	13:13:41	83.23	3.87	15.534	42:68	196.4	1.48
06/11/2002	13:14:41	82.13	3.874	15.542	42.54	196.6	1,46
06/11/2002	13:15:41	83.25	3.878	15,541	43.29	196.2	1.48
06/11/2002	13:16:41	84.17	3.869	15.534	43.03	195.8	1.48
06/11/2002	13:17:41	83.54	3.892	15.534	43.46	196.2	1.48
06/11/2002	13:18:41	83.25	3.865	15.536	43.6	195.8	1.48
06/11/2002	13:10:41	83.16	3.869	15.548	43.25	195.7	1.48
06/11/2002	13:20:41	81 14	3.857	15.572	43.03	194.8	1.49
06/11/2002	13:21:41	81.28	3.84	15.584	42.35	194.2	1.48
06/11/2002	13:22:41	80.17	3.801	15.66	40.93	194.2	1.47
06/11/2002	13:28:40	85.27	3.857	15.535	43.07	198	1.45
06/11/2002	13:29:40	85.2	3.873	15.53	47 15		1.63
06/11/2002	13:30:40	84.9	3.884	15.526	48.37		1.68
06/11/2002	13:31:40	84.24	3.857	15.534	48.31	196.8	1.68
06/11/2002	13:32:40	85.03	3.876	15.544	48.36	196,1	1.67
06/11/2002	13:33:40	83.9	3.858	15.539	48.25	195.2	1.68
06/11/2002	13:34:40	83.86	3.872	15.536	48.61		1.68
06/11/2002	13:35:40	84.16	3.875		48.06		1.68
06/11/2002	13:36:40	83.88	3.868				1.68
06/11/2002	13:37:40	84.82	3.898		48.74		1.69
06/11/2002	13:38:40	84.67	3.866	15.517	47.82		1,66
06/11/2002	13:39:40	83.41	3.886	15.508	48.39	197.2	1.57
08/11/2002	13:40:40	83.92	3.89	15.531	48.5		1.66
06/11/2002		76.99	3.885			169.7	
06/11/2002		79.98	3,902				
06/11/2002	13:43:40	80.14	3.877	15.52	48.7	137.6	1.69
L		90.0	9.0	15.5	45.1	193.4	1.6
	Average	82.8	3.9	10.5	45.1	183.4	1.0

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 25% Load
Project Number:	030174.0003.002
CFM Operator:	Dong Alien

Run 2		co	CO2	O2	THC	NOx	Methane
	Time	ppm	%	%	ppm	ppm	ppm
06/11/2002	14:20:14	85.17	3.845	15.576	41.89	179.2	1.67
06/11/2002	14:21:14	86.13	3.885	15.557	43.06	185.9	1.66
06/11/2002	14:22:14	86.74	3.868	15.543	43.19	186.9	1.63
08/11/2002	14:23:14	86	3.883	15.542	43.61	187.2	1.63
08/11/2002	14:24:14	85,51	3.88	15.532	43.43	188.1	1.62
06/11/2002	14:25:14	86.98	3.895	15.537	43.3	187.2	1.6
06/11/2002	14:26:14	86.8	3.865	15.54	43.56	187 1	1.5B
06/11/2002	14:27:14	86.09	3.884	15.541	43.24	187 1	1.59
06/11/2002	14:28:14	87.32	3.871	15.639	43.06	186.8	1.57
06/11/2002	14:29:14	86.47	3.879	15.529	42.88	186.4	1.55
06/11/2002	14:30:14	84.85	3.89	15.531	42.6	186.1	1.52
06/11/2002	14:31:15	84.81	3.856	15.541	42.8		1.5
06/11/2002	14:32:15	85.74	3.884	15.537	42.47	186.1	1.5
06/11/2002	14:33:15	85.35	3.872	15.534	42.21	186.1	1.5
06/11/2002	14:34:13	84.75	3.866	15,534	42.44	186.3	1.5
06/11/2002	14:35:13	84.26	3.888	15.535	42.2	186.6	1.48
06/11/2002	14:38:13	83.92	3.847	15,556	42.06	185.2	1.47
06/11/2002	14:37:18	83.33	3.863	15.552	42.23	184.1	1.45
06/11/2002	14:38:13	83.97	3.873	15.534	42.06	185	
06/11/2002	14:39:13	84.75	3.86	15.535	41.97	185.1	1.46
06/11/2002	14:40:13	85.1	3.888	15.53	42.29	184.6	
06/11/2002	14:41:13	85.66	3.872	15.532	42.13		1.41
06/11/2002	14:42:13	85.68	3.833	15.603	38.56	185.9	
06/11/2002	14:55:14	85.67	3.875	15.549		185.1	1,47
06/11/2002	14:56:14	84.42	3.851	15.552	39.11	188.4	
06/11/2002	14:57:14	65.27	3.874	15.552	39.17	190	
06/11/2002	14:58:14	84.32	3.859	15.546	39.51	189.8	
06/11/2002	14:59:14	84.72	3.874	15.538	38.89	188.8	1.41
	Average	B5.3	3.9	15.5	41.9	186.3	1.5

	
Plant Name:	Travis AFB
Sampling Location:	Gen. 1 · 25% Load
Project Number:	030174.0003.002
CEM Coorator	Dong Allen

Run 3	ſ	col	CO2	02	THC	NOx	Methane
Date	Time	ppm	%	%	ppm	ppm	ppm
06/11/2002	15:35:52	91.42	3.881	15.527	41.28	183.1	1.55
06/11/2002	15:36:52	91	3.903	15.528	41.23	183.1	1.54
06/11/2002	15:37:52	90.23	3.886	15.53	41.29	183.4	1.49
06/11/2002	15:38:52	88.07	3.89	15.534	41 13	184.1	1.51
06/11/2002	15:39:52	88.88	3.899	15.525	40.94	184.1	1.5
06/11/2002	15:40:52	90.03	3.881	15.519	41.02	184.1	1.51
06/11/2002	15:41:52	90.99	3.908	15.519	40.79	183.7	1.49
06/11/2002	15:42:52	92.41	3.886	15.521	40.88	182.6	1.49
06/11/2002	15:43:52	89.4	3.888	15.53	40.61	183.1	1.45
06/11/2002	15:44:50	88.61	3.898	15.527	40.63	183.8	1.45
06/11/2002	15:45:50	88.28	3.886	15.512	40.47	183.2	1.42
06/11/2002	15:46:50	87.22	3.912	15.503	40.47	184.1	1.42
06/11/2002	15:47:50	87.81	3,895	15.514	40.34	184.1	1.42
06/11/2002	15:48:50	88.27	3.887	15.517	40.29	183.1	1.4
06/11/2002	15:49:50	89.49	3.906	15.514	40.46	183.1	1,43
06/11/2002	15:50:50	89.97	3.88	15.515	40.55	183	1.44
06/11/2002	15:51:50	89.09	3.903	15.515	40.58	182.9	1.44
06/11/2002	15:52:50	89.33	3.888	15.517		183.1	1.42
06/11/2002	15:53:50	89.21	3.889	15.513	40.2	182.9	1.4
06/11/2002	15:54:51	88.3	3.904	15.513		182.7	1.39
06/11/2002	15:55:51	87.69	3.871	15.526		183.1	1.39
06/11/2002	15:56:51	87.04	3.896	15.522	39.97	183.1	1.4
06/11/2002	15:57:51	88.39	3.877	15.521	40.11	182.4	1.39
06/11/2002	15:58:51	87 78	3.887	15.517	40.27	183.1	1.41
08/11/2002	15:59:51	87 18	3.895	15.516		183.1	1.36
08/11/2002	16:00:51	86.79	3.87	15.517		183.1	1.38
06/11/2002	16:01:51	85.17	3.893	15.527	38.61	183.5	1.35
06/11/2002	16:02:51	84	3.868	15.531	38.47	185 184.5	1.34 1.35
06/11/2002	16:03:51	86.15	3.883 3.886	15.519 15.515	38.37 37.7	184.1	1.33
06/11/2002	18:04:51 16:05:51	86.56 85.31	3.872	15.513		183.3	1.33
06/11/2002		84.83	3.904	15.51	36.93	183.1	1.31
06/11/2002	16:00:51	84.48	3.882	15.502		183.5	1.3
06/11/2002	16:07:51	84.52		15.502		183.5	1.33
06/11/2002	16:09:51	85.37	3.891	15.503		183.1	1.3
06/11/2002	18:10:51	84.84		15.506		183.1	1.33
06/11/2002		84.86		15.501	38.16	182.3	1.33
06/11/2002		85.61	3.877	15.503		182.1	1.32
06/11/2002		83.3		15.501	38.18	182.7	1.28
06/11/2002				15.505		183.1	1.28
1 "		1 32.00					
L	Average	87.5	3.9	15.5	39.6	183.3	1.4

Data Sun	nmary	00	COS	Q2	THC	NOx	Methane
Run	Time	ppm	%	%	ppm	ppm	ppm
Run 1	19:04-13:43	82.8	3.9	15.5	45.1	193.4	1.56
Run 2	14:20-14:59	85.3	3.9	15.5	41.9	186.3	1.51
Run S	15:35-16:14	87.5	3.9	15.5	39.6	183.3	1.40

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 25% Load
Date:	06/11/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	CO
Molecular Weight:	28.01

						Calibration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.	Time	(ppm)	Cma	Со	Cm	(% or ppm)
1	13:04-13:43	82.8	59.4	0.2	58.0	
2	14:20-14:59	85.3	59.4	0.2	57.8	
3	15:35-16:14	87.5	59.4	0.2	57.8	
	· L			Ave	rage	87.62

Calibration Error Correction
Cgas=(Cobs-Co)*(Cma/(Cm-Co))
Mass Emission Rate (lb/hr)
E(lb/hr)=Cgas*MWgas*Qs(dscfm)*60/385300000
Mass Emission Rate (lb/1000 lb fuel)
E(lb/MMBtu)=E(lb/hr)/Fuel flow * 1000

Pollutant	MWgas
CO	28.01
Methane	16.00
NOx	46.01
SO2	64.06

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 25% Load
Date:	06/11/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Poliutant:	CO2
Molecular Weight:	

	•					Calibration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.	Time	(% or ppm)	Cma	Co	Cm	(% or ppm)
1	13:04-13:43	3.9	9.9	·-0.2	9.9	3.96
2	14:20-14:59	3.9	9.9	-0.2	9.9	3.96
3	15:35-16:14	3.9	9.9	-0.2	9.9	4.01
				Ave	rage	3.98

<u>Calibration Error Correction</u> Cgas=(Cobs-Co)*(Crna/(Crn-Co))

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 25% Load
Date:	06/11/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	O2
Molecular Weight:	

Molecula	ir vveigni.				1	Calibration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.	- ·	(% or ppm)	Cma	Co	Cm	(% or ppm)
1	13:04-13:43	15.5	20.0	0.0	20.0	15.54
2	14:20-14:59	15.5	20.0	0.0	20.0	15.54
3	15:35-16:14		20.0	0.0	20.0	15.52
				Ave	rage	15.53

<u>Calibration Error Correction</u> Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Total Hydrocarbon Data Correction

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 25% Load
Date:	06/11/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	THC
Molecular Weight:	16.00

			Source Info	Corrected	
			Stack	Stack	Data
	Start-Stop	Raw Data	Flow	Moisture	Dry Basis
Run No.	Time	(ppm)	(dscfm)	(%)	(ppm)
1'	13:04-13:43	45.1	`340.40	4.36	47.19
2	14:20-14:59	41.9	341.00	3.87	43.62
3	15:35-16:14	39.6	340.40	4.07	41.28
				Average	44.03

Moisture Correction
Cgas(dry)=Cgas(wet)/(1-(% moisture/100))
Mass Emission Rate (lb/hr)
E(lb/hr)=Cgas(dry)*MWgas*Qs(dscfm)*60/385300000

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 25% Load
Date:	06/11/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	N0x
Molecular Weight:	46.01

INDICCUIE	ii vveigitt.	40.01				Calibration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.		(% or ppm)	Cma	Co	Cm	(% or ppm)
1	13:04-13:43	193.4	448.0	0.6	436.5	
2	14:20-14:59	186.3	448.0	0.1	435.0	
3	15:35-16:14	183.3	448.0	-0.1	434.5	
				Ave	rage	192.99

Calibration Error Correction

Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Mass Emission Rate (lb/hr)

E(lb/hr)=Cgas*MWgas*Qs(dscfm)*60/385300000

Mass Emission Rate (lb/1000 lb fuel)

E(lb/MMBtu)=E(lb/hr)/Fuel flow * 1000

Pollutant	MWgas
CO	28.01
Methane	16.00
NOx	46.01
SO2	64.06

Date: 06/11/2002	Run: Flow (dscfm):	T-25-1 340.4				rsepower: je (gal/hr):	39.57 3.46	
	Moisture (%): Pollutant:	4.36 NOx 198.10	CO 84.91	NMHC 47,19	THC 47 19	Methane 1.56	CO2 3.96	O2 15.54
ł	Concentration (ppm or %) Mass Rate (lb/hr)	0.48	0.13	0.04	3.98E-02	1.32E-03	0.01	0.03
	Mass Rate (lb/gal fuel)	0.14	0.04	0 01 0.44	0.01 0.46	0.00 0.02	0 00 0.11	0.01 0.30
	Mass Rate (gr/hp*hr)	5.54	1.45	0.44	0.40	0.02	V.11	0.00,

Run: Flow (dscfm):	T-25-2 341				rsepower: je (gal/hr):	43.54 3.81	
Moisture (%): Pollutant: Concentration (ppm or %)	3.87 NOx 191.83	CO 87.87	NMHC 43.62	THC 43.62	Methane 1.51	CO2 3.96	O2 15.54
Mass Rate (lb/hr) Mass Rate (lb/gal fuel)	0.47 0.12	0.13	0.04 0.01	3.68E-02 0.01	1.28E-03 0.00	0.01 0.00	0.03
Mass Rate (gr/hp*hr)	4.89	1.36	0.37	0.38	0.01	0.10	0.28

Date: 06/11/2002	Run: Flow (dscfm):	T-25-3 340.4				rsepower: je (gal/hr):	42.82 3.74	
	Moisture (%): Pollutant:	4.07 NOx 189.03	CO 90.09	NMHC 41.28	THC 41.28	Methane 1.40	CO2 4.01	O2 15.52
	Concentration (ppm or %) Mass Rate (lb/hr)	0.46	0.13	0.03	3.48E-02 0.01	1.19E-03 0.00	0.01 0.00	0.03 0.01
	Mass Rate (lb/gal fuel) Mass Rate (gr/hp*hr)	0.12 4.89	0.04 1.42	0.01 0.36	0.01	0.00	0.10	0.28

Date: 06/13/2002	Run: Flow (dscfm):	T-2-25 320.7				rsepower: e (gal/hr):	41.98 3.67	
į	Moisture (%): Pollutant:	4.1 NOx 223.68	CO 141.72	NMHC 85.59	THC 86.52	Methane 0.93	CO2 3.96	O2 15.53
	Concentration (ppm or %) Mass Rate (lb/hr) Mass Rate (lb/gal fuel)	0.51 0.14	0.20	0.07 0.02	6.87E-02 0.02	7.43E-04 0.00	0.01 0.00	0.02 0.01
	Mass Rate (gr/hp*hr)	5.56	2.14	0.74	0.74	0.01	0.09	0.27

Plant Name
Sampling Location
Date
Run Number
Start Time
Stop Time

Iravis AFB	50% Load - Generator 1	06/12/2002	1	0733	0813
E	ઝ			L.	

Mark Wade	Tom Gerstle	Doug Allen	030174.0003.002
Plant Rep.	Team Leader	CEM Operator	Project Number

	Analyzer Number	Analyzer Span
8		200
C02		52
02		25
THC		300
Š		1000

	Calibration	CALTBRATTC	ON ERROR CHECK	HECK		SYSTEM CAL CHECK	AL CHBCK				Calibration
		Calibration		Analyzer		PRETEST		POST TEST			Correction
	Specification	Value	Cylinder	Calibration	Difference	System	Syst. Bias	System	Syst. Bias	Drift	Factors
	(% of Span)	(% or ppm)	Number (1)		(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Span)	
CO Zero	0			9.0	0.3	9.0	0.0	9.0	0.0	0.0	Co=0.6
CO Low	~30	30.1									
CO Mid	9~	59.4				59.9	0.3	59.7	0.2	-0.1	Cm=59.8
CO High	80-100 (2)	149.4									
CO2 Zero	0	0		-0.1	-0.4	-0.2	-0.4	-0.2	-0.4	0.0	-Co=0.2
CO2 Low	NR										
CO2 Mid	40-60	6.6				10.1	0.8	10,1	0.8	0.0	Cm=10.1
CO2 High	80-100	20.5		20.5	0.0						
O2 Zero	0	0		0	0.0	0	0.0	0	0.0	0.0	Co=0.0
O2 Low	NR										
O2 Mid	40-60	10.5		. 10.5	0.0						
O2 High	80-100	20				20.1	0.4	20.1	0.4	0.0	Cm=20.1
THC Zero	0	0		-0.5		0.5	0.3	3.5		1.0	
THC Low	25-35	49.6				49.8	0.1	51.2		0.5	
THC Mid	45-55	124.6				124.5	0.0				
THC High	80-90	298.6		299		299	0.0				
NOx Zero	0	0		0	0.0	0	0.0	1	0.1	0.1	Co=0.5
NOx Low	20-30 (3)	1									WW.
NO _x Mid	45-55	448				442	9.0-	442	-0.6	0.0	Cm=442.0
NO _x High	80-90	885.5		880	-0.6						

Plant Name
Sampling Location
Date
Run Number
Start Time

_					
Travis AFB	50% Load - Generator 1	06/12/02	2	0851	0931

Mark Wade	Tom Gerstle	Doug Allen	030174.0003.00
Plant Rep.	Team Leader	CEM Operator	Project Number

8	C02	02	THC	XON

Analyzer	Span	200	25	25	300	1000
Analyzer	Number					
		8	C02	02	THC	Š N

	Calibration CALIBRATION	CALIBRATI	ION BRROR CHECK	HECK		SYSTEM CAL CHECK	AL CHECK				Calibration
	Gas	Calibration		Analyzer		PRETEST		POST TEST			Correction
	Specification		Cylinder	Calibration	Difference	System	Syst. Bias	System	Syst. Bias	Drift	Factors
	(% of Span)	(% or ppm)	Number (1)	Response	(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Sp	
CO Zero	0	0		9.0	0.3	9.0	0.0	9.0	0.0	0.0	Co=0.6
COLow	~30	30.1									
CO Mid	09~	59.4				59.7	0.2	59.7	0.2	0.0	Cm=59.7
CO High	80-100 (2)	149.4									
CO2 Zero	0	0		-0.1	-0.4	-0.2	-0.4	-0.2	-0.4	0.0	-Co=0.2
CO2 Low	NR										
CO2 Mid	40-60	6.6				10.1	0.8	10.1	0.8	0.0	Cm=10.1
CO2 High	80-100	20.5		20.5	0.0						
O2 Zero	0	0		0	0.0	0	0.0	-0.1	-0.4	-0.4	-Co=0.1
O2 Low	NR										
O2 Mid	40-60	10.5		10.5	0.0						
O2 High	80-100	20				20.1	0.4	20.1	0.4		Cm=20.1
THC Zero	0	0		-0.5		3.5	1.3			0.4	
THCLow	25-35	49.6				51.2	0.5	50.4		-0.3	
THC Mid	45-55	124.6									
THC High	80-90	298.6		299							
NO _x Zero	0	0		0	0.0	-	0.1	1	0.1	0.0	Co=1.0
NOx Low	20-30 (3)										· .
NO _x Mid	45-55					442	9.0-	442	-0.6	0.0	Cm=442.0
NOx High	06-08	885.5		880	-0.6						

Plant Name
Sampling Location
Date
Run Number
Start Time

FB	Load - Generator 1	2/02	3	1005	1045
Travis AFB	50% Load	06/12/02		1	

Mark Wade	Tom Gerstle	Doug Allen	030174.0003.002
Plant Rep.	Team Leader	CEM Operator	Project Number

Analyzer	Span	200	52	25	300	1000
Analyzer	Number					
		ပ္ပ	202	02	五	Š

	Calibration	CALIBRATION	ON ERROR CHECK	HECK		SYSTEM CAL CHECK	AL CHECK				Calibration
	Gas	Calibration		Analyzer		PRETEST		POST TEST			Correction
	Specification	Value	Cylinder	Calibration	Difference	System	Syst, Bias	System	Syst. Bias	Drift	Factors
	(% of Span)	(% or ppm)	Number (1)	Response	(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Span)	
CO Zero	0	0		9.0	0.3	9.0	0.0	9.0	0.0	0.0	Co=0.6
COLow	~30	30.1									
CO Mid	09~	59.4				29.7	0.2	59.6	0.1	-0.1	Cm=59.7
CO High	80-100(2)	149.4									
CO2 Zero	0	0		-0.1	-0.4	-0.2	-0.4	-0.1	0.0	0.4	-Co=0.2
CO2 Low	NR										
CO ₂ Mid	40-60	6.6				10.1	0.8	10.1	0.8	0.0	Cm=10.1
CO2 High	80-100	20.5		20.5	0.0						
O2 Zero	0	0		0	0.0	-0.1	-0.4	-0.1	-0.4	0.0	-Co=0.1
O2 Low	NR										
O2 Mid	40-60	10.5		10.5	0.0						***
O2 High	80-100	20				20.1	0.4	20.1	0.4		Cm=20.1
THC Zero	0	0		50-		4.6	1.7	4.8		0.1	
THC Low	25-35	49.6				50.4	0.3	20		-0.1	
THC Mid	45-55	124.6									
THC High	80-90	298.6		299							
NOx Zero	0	0		0	0.0	1	0.1	1	0.1	0.0	Co=1.0
NOx Low	20-30 (3)	- 1									₩.
NO _x Mid	45-55	5 448				442	-0.6	441	-0.7	-0.	Cm=441.3
NOx High	06-08	885.5		088	-0.6						

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 50% Load
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

Run 1	Г	co I	CO2	02	THC	NOx	Methane
Date	Time	ppm	%	%	ppm	ppm	ppm
06/12/2002	7:33:48	84.75	4.944	14.154	34.72	225	0.3
06/12/2002	7:34:49	85.35	4.951	14.163	35.04	226.2	0.28
06/12/2002	7:35:49	85.16	4.929	14.172	35.62	227 1	0.3
06/12/2002	7:36:49	83.95	4.952	14.179	36.32	228.2	0.29
06/12/2002	7:37:49	84.37	4.924	14.182	36.75	228.5	0.32
06/12/2002	7:38:49	84.19	4.937	14 186	37.27	229.2	0.33
06/12/2002	7:39:47	85.02	4.941	14 185	37.61	229.7	0.34
06/12/2002	7.40:47	84.9	4.922	14.178	37.64	230.2	0.32
06/12/2002	7.41:47	83.86	4.95	14.178	38.07	230.7	0.33
06/12/2002	7.42:47	83.7	4.932	14.183	38.65	231.5	0.32
06/12/2002	7:43:47	84.83	4.938	14.176	38.71	232	0.34
06/12/2002	7:44:47	84.71	4.949	14.173	39.09	231.5	0.33
06/12/2002	7:45:47	85.51	4.93	14.17	39.71	231.4	0.32
06/12/2002	7:46:47	85.6	4.96	14.166	39.48	232.2	0.34
06/12/2002	7:47:47	84.44	4.936	14.168	39.74	233.2	0.3
06/12/2002	7:48:47	84.01	4.949	14.168	40.65	233.8	0.34
06/12/2002	7:49:47	86.37	4.965	14.147	40.7	233.2	0.33
06/12/2002	7:50:47	86.01	4.951	14.149	40.31	233.7	0.34
06/12/2002	7:51:47	85.84	4.974	14.151	40.5	235	0.31
06/12/2002	7:52:47	85.68	4.808	14.36	39.81	234.9	0.34
06/12/2002	7:53:47	82.01	4.836	14.355	40.29	224.3	0.35
06/12/2002	7:54:47	83.78	4.857	14.312	40.61	224.8	0.34
06/12/2002	7:55:48	82.68	4.857	14.312	40.98	226.2	0.34
06/12/2002	7.56.48	83.85	4.877	14.301	41.54	226.2	0.34
06/12/2002	7:57:48	83.8	4.85	14.303	41.44	226.4	0.33
06/12/2002	7:58:48	83.77	4.881	14.288	41.44	227.2	0.32
06/12/2002	7:59:48	82.98	4.863	14.295	41.52	228	0.31
06/12/2002	8:00:48	83.53	4.871	14.29	46.23	228.2	0.49
06/12/2002	8:01:48	83.7	4.886	14.28	43.64	227.3	0.36
06/12/2002		85.16	4.871	14.276	44.5	227.2	0.38
06/12/2002		84.7	4.889	14.283	44.61	227.9	0.4
06/12/2002		84.7	4.866		43.96	4	0.37
06/12/2002		84.51	4.884	14 278	43.66		0.39
06/12/2002		85.05	4.886	14.27	44.42	229.1	0.36
06/12/2002		86.13	4.875	E .	44.32	228	
06/12/2002		86.83	4.901	14.264	43 94		0.39
06/12/2002		85.85	4.869	14.271	43.71		
06/12/2002	•	85.97	4.806		43.68	1	
06/12/2002		85.56	4851	14.312	44.38		
06/12/2002	8:12:48	88.13	4.889	14.261	44.85	226.1	0.39
L	Average	84.8	4.9	14.2	40.8	229.0	0.3

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 50% Load
Project Number:	030174.0003.002
CEM Operator.	Doug Allen

Run 2		co	CO2	02	THC	NOx	Methane
Date	Time	ppm	%	%	ppm	ppm	ppm
06/12/2002	8:51:35	90.79	4.934	14.184	43.86	233.2	0.32
06/12/2002	8:52:35	90.98	4.92	14.199	44.74	232.4	0.36
06/12/2002	8:53:35	89.47	4.942	14 197	44.19	232.2	0.33
06/12/2002	8:54:35	89.99	4.916	14.193	44.16	232.1	0.32
06/12/2002	8:55:35	90.47	4.953	14.173	44.36	232.1	0.33
06/12/2002	8:56:36	90.9	4.937	14.173	44.7	232.5	0.32
06/12/2002	8:57:33	90.12	4.927	14.177	44.58	233.2	0.31
06/12/2002	8:58:33	90.12	4.956	14.167	44.3	233.2	0.31
06/12/2002	8:59:34	90.89	4.933	14.166	44.27	233.1	0.3
06/12/2002	9:00:34	90.93	4.944	14 164	45.9	232.8	0 29
06/12/2002	9:01:34	91.43	4.948	14.165	45.73	232.6	0.33
06/12/2002	9:02:34	91 73	4.932	14.173	45.38	232.3	0.33
06/12/2002	9:03:34	90.76	4.953	14.174	44.95	233.2	0.33
06/12/2002	9:04:34	90.33	4.922	14.176	45.41	232.6	0.3
06/12/2002	9:05:34	90.14	4.94	14.18	44.93	232.2	0.33
06/12/2002	9:06:34	90.66	4.941	14 165	44.75	232.5	0.3
06/12/2002	9:07:34	90.68	4.941	14.161	44.78	233.2	0.29
06/12/2002	9:08:34	91.51	4.957	14.157	. 44.66	233.2	0.32
06/12/2002	9:09:34	91.38	4.926	14.166	43.82	233.5	0.28
06/12/2002	9:10:34	88.36	4.948	14.163	41.39	235.1	0.25
06/12/2002	9:11:34	86.49	4.931	14.167	40.49	236.9	0.21
06/12/2002	9:12:34	87.23	4.938	14.17	40.14	236.9	0.24
06/12/2002	9:13:34	86.29	4.952	14.156	39.95	236.1	0.21
06/12/2002	9:14:34	87	4.935	14.152	40.42	235.9	0.23
06/12/2002	9:15:34	87.96	4.962	14.149	41.38	235.1	0.23
06/12/2002	9:16:34	87.86	4.929	14.161	40.96	235.6	0.24
06/12/2002	9:17:34	88.53	4.941	14.161	41.14		0.24
06/12/2002	9:18:35	88.44	4.943	14.157	41.14	234.1	0.25
06/12/2002	9:19:35	87.33	4.936	14.153	41.13	234.7	0.26
06/12/2002	9:20:35	87.91	4.96	14.146	40.83	234.4	0.22
06/12/2002	9:21:35	88.4	4.933	14.147	42.5	234.1	0.23
06/12/2002	9:22:35	89.17	4.958	14.143	43.54	234.1	0.23
06/12/2002	9:23:35	91.04	4.945	14.147	43.65	233.7	0.29
06/12/2002	9:24:35	91 57	4.942	14.148	.43.21	233.2	0.3
06/12/2002	9:25:35	91.23	4.958	14.143	42.72	234.1	0.31
06/12/2002	9:26:35	90.24	4.938	14.143	42.52	234.1	0.27
06/12/2002	9:27:35	90.24	4.966	14.14	43.46		0 33
06/12/2002	9:28:35	90.08	4.942	14.145	43.16	•	0.31
06/12/2002	9:29:35	8976	4.95	14.138	43.28	234.1	0.31
06/12/2002	9:30:35	89.57	4.959	14.135	43.29	234.4	0.31
	A		10	140	40.0	222.0	0.3
	Average	89.7	4.9	14.2	43.2	233.8	<u> </u>

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 50% Load
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

Run 3		co	CO2	02	THC	NOx	Methane
Date	Time	ppm	%	%	ppm	ppm	ppm
06/12/2002	10:05:54	94.2	4.972	14.133	42.76	236.1	0.31
06/12/2002	10:06:54	91.99	4.965	14.139	41.55	237.7	0.29
06/12/2002	10:07:54	90.1	4.962	14.144	41.26	238.6	0.27
06/12/2002	10:08:54	89.12	4.976	14.139	40.79	238.7	0.24
06/12/2002	10:09:52	88.38	4.948	14.151	39.74	238.1	0.26
06/12/2002	10:10:52	88.68	4.972	14.132	39.47	237.6	0.22
06/12/2002	10:11:52	89.56	4.971	14.139	39.85	237.1	0.25
06/12/2002	10:12:52	90.82	4.956	14.138	39.88	237.1	0.24
06/12/2002	10:13:52	90.47	4.979	14.14	40.36	236.3	0.25
06/12/2002		91.11	4.963	14.121	40.18	235.5	0.25
06/12/2002	10:15:52	91.17	4.98	14.126	40.08	236.1	0.23
06/12/2002		91.25	4.974	14.125	40.05	236 1	0.26
06/12/2002	10:17:53	90.69	4.981	14.102	40.1	236.2	0.22
06/12/2002	1 1	90.71	4.999	14.104	40.39	237.4	0.25
06/12/2002		90.65	4.958	14.12	40.5	238.1	0.24
06/12/2002	1	91.18	4.981	14.122	42.52	237.7	0.24
06/12/2002		91.24	4.963	14.138	41 67	236 7	0.26
06/12/2002		91.1	4.965	14.14	41.46	236.1	0.28
06/12/2002		91.6	4.981	14.12	41.82	236.9	0.29
06/12/2002	· .	92.9	4.957	14.127	42.34	237.1	0.31
06/12/2002	10:25:53	92 91	4.982	14.13	42.51	236.8	0.29
06/12/2002	10:26:53	92.86	4.968	14.119	42.57	237.1	0.29
06/12/2002		92.94	4.974	14.126	42.28	238	0.32
06/12/2002	10:28:53	93.45	4.974	14.121	42.31	237	0.31
06/12/2002	10:29:53	94.73	4.967	14.114	42.45	236.1	0.3
06/12/2002	10:30:53	96 17	4.99	14.109	42.76	235.6	0.27
06/12/2002	10:31:53	95.34	4.962	14.116	42.61	236.1	0.25
06/12/2002	10:32:53	95.53	4.966	14.125	42.32	236.1	0.29
06/12/2002	10:33:53	96.08	4.967	14.117	42.53	235.4	0.3
06/12/2002	10:34:53	95.93	4.987	14.108	43.04	235.8	0.29
06/12/2002	10:35:53	95.05	4.964	14.111	42.51	236 1	0.32
06/12/2002	10:36:54	94.02	4.987	14.119	43.01	236.6	0.27
06/12/2002	10:37:54	94.59	4.967	14.117	43.29		0.29
06/12/2002	10:38:54	94.73	4.921	14.197	42.82	236.1	0.3
06/12/2002	10:39:54	90 57	4.862	14.304	43.18	232.2	0.3
06/12/2002	10:40:54	89 78	4.839				
06/12/2002	10:41:54	88.44	4.87	14.314	42.52	230.3	
06/12/2002	10:42:54	89.3	4.849	14.304		231.2	1
06/12/2002	10:43:54	89.43	4.868	14.299	42.91		
06/12/2002	10:44:54	89	4.853	14.309	43.22	231 9	0.29
	Average	91.9	5.0	14.2	41.8	235.9	0.3

Data Sumi	mary	co	CO2	O2	THC	NOx	Methane
Run	Time	ppm	% .	%	ppm	ppm	ppm
Run 1	07:33-08:12	84.8	4.9	14.2	40.8	229.0	0.34
Run 2	08:51-09:30	89.7	4.9	14.2	43.2	233.8	0.29
Run 3	10:05-10:44	91.9	5.0	14.2	41.8	235.9	0.27

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 50% Load
Date:	06/12/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	CO
Molecular Weight:	28.01

MOIOGAIC	ar treight.	20.01]	Calibration
						Corrected
F	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.		(ppm)	Cma	Со	Cm	(% or ppm)
	07:33-08:12	84.8	59.4	0.6	59.8	84.46
2	08:51-09:30	89.7	59.4	0.6	59.7	89.55
3	10:05-10:44	91.9	59.4	0.6	59.7	91.89
	<u> </u>			Ave	rage	88.63

Calibration Error Correction

Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Mass Emission Rate (lb/hr)

E(lb/hr)=Cgas*MWgas*Qs(dscfm)*60/385300000

Mass Emission Rate (lb/1000 lb fuel)

E(lb/MMBtu)=E(lb/hr)/Fuel flow * 1000

Pollutant	MWgas
CO	28.01
Methane	16.00
NOx	46.01
SO2	64.06

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 50% Load
Date:	06/12/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	CO2
Molecular Weight:	

			•			Campration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.	Time	(% or ppm)	Cma	Co	Cm	(% or ppm)
1	07:33-08:12	4.9	9.9	-0.2	10.1	4.90
2	08:51-09:30	4.9	9.9	-0.2	10.1	4.94
3	10:05-10:44	5.0	9.9	-0.2	10.1	4.93
				Aye	rage	4.93

<u>Calibration Error Correction</u> Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 50% Load
Date:	06/12/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	O2
Molecular Weight:	

Molecula	ır Welght:				1	O-tile-estion
						Calibration
				*		Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.	· · · · · · · · · · · · · · · · · · ·	(% or ppm)		Co	Cm	(% or ppm)
	07:33-08:12			0.0	20.1	14.17
	08:51-09:30		20.0	-0.1	20.1	14.11
	10:05-10:44		20.0	-0.1	20.1	14.11
	10.00 10.11	I		Ave	rage	14.13

<u>Calibration Error Correction</u> Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Total Hydrocarbon Data Correction

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 50% Load
Date:	06/12/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	THC
Molecular Weight:	16.00

			Source Info	rmation	Corrected	Mass	Mass	Mass
			Stack	Stack	Data	Emission	Emission	Emission
	Start-Stop	Raw Data			Dry Basis	Rate	Rate	Rate
Run No.		(maga)	(dscfm)	(%)	(mgg)	(lb/hr)	(lb/1000 lb fuel)	
	07:33-08:12	40.8				0.04	0.0076	
	08:51-09:30				45.71	0.04	0.0074	
	10:05-10:44				43.82	0.04	0.0070	
	10.00-10.44	71.0	-	Average		0.04	0.0074	0.1832

Moisture Correction

Cgas(dry)=Cgas(wet)/(1-(% moisture/100))

Mass Emission Rate (lb/hr)

E(lb/hr)=Cgas(dry)*MWgas*Qs(dscfm)*60/385300000

Travis AFB
Gen. 1 - 50% Load
06/12/2002
030174.0003.002
Doug Allen
N0x
46.01

Corrected Data Raw Data | Calibration Data Start-Stop (% or ppm) Cm Co Cma (% or ppm) Run No. Time 231.85 0.5 442.0 448.0 229.0 07:33-08:12 236.47 1.0 442.0 448.0 233.8 08:51-09:30 2 238.92 1.0 441.5 235.9 448.0 10:05-10:44 235.75 Average

Calibration

Calibration Error Correction

Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Mass Emission Rate (lb/hr)

E(lb/hr)=Cgas*MWgas*Qs(dscfm)*60/385300000

Mass Emission Rate (lb/1000 lb fuel)

E(lb/MMBtu)=E(lb/hr)/Fuel flow * 1000

Pollutant	MWgas
co	28.01
Methane	16.00
NOx	46.01
SO2	64.06
<u> </u>	

Date:	Run:	T-50-1			Но	rsepower:	77.57	
	Flow (dscfm):	337.1			Fuel Usag	e (gal/hr):	5.02	
	Moisture (%): Pollutant:	4.68 NO x	СО	NMHC	THC	Methane	CO2	02
	Concentration (ppm or %)	231.85	84.46	42 41	42.75	0.34	4.90	14.24
l	Mass Rate (lb/hr)	0.56	0.12	0.04	3.57E-02	2.86E-04	0.01	0.02
	Mass Rate (lb/gal fuel)	0.11	0.02	0 01	0.01	0.00	0 00	0.00
	Mass Rate (gr/hp*hr)	3.28	0.73	0.21	0.21	0.00	0.07	0.14

Date:	Run:	T-50-2			Но	rsepower:	81.59	
06/12/2002	Flow (dscfm):	332.1		-	Fuel Usag	je (gal/hr):	5 28	
	Moisture (%): Pollutant:	5.39 NO x	СО	NMHC	THC	Methane	CO2	02
	Concentration (ppm or %)	236.47	89.55	45 42	45.71	0.29	4.94	14.16
	Mass Rate (lb/hr)	0.56	0.13	0.04	3.76E-02	2.40E-04	0.01	0 02
	Mass Rate (lb/gal fuel)	0 11	0.02	0.01	0 01	0.00	0.00	0.00
	Mass Rate (gr/hp*hr)	3.13	0.72	0.21	0.21	0.00	0.06	0.13

Date:	Run:	T-50-3				rsepower:	75.76	
06/12/2002	Flow (dscfm):	333.9			Fuel Usaç	e (gal/hr):	4.91	
	Moisture (%): Pollutant:	4.68 NO x	CO	NMHC	THC	Methane	CO2	02
	Concentration (ppm or %)	238 92	91.89	43.55	43.82	0.27	4.93	14.16
	Mass Rate (lb/hr)	0.57	0.13	0.04	3.62E-02	2.25E-04	0.01	0.02
	Mass Rate (lb/gal fuel)	0 12	0.03	0.01	0.01	0.00	0.00	0.00
	Mass Rate (gr/hp*hr)	3.43	0.80	0.22	0.22	0.00	0.07	0.14

Date:	Run:	T-2-50			Ho	rsepower:	78.30	
06/13/2002 1	Flow (dscfm):	341.8			Fuel Usaç	ge (gal/hr):	5.07	
	Moisture (%):	4.7						
	Poliutant:	NOx	CO	NMHC	THC	Methane	CO2	02
i	Concentration (ppm or %)	264.30	141.00	69.35	69.84	0.49	5.33	13.61
	Mass Rate (lb/hr)	0 65	0.21	0.06	5.91E-02	4.17E-04	0.01	0.02
ļ	Mass Rate (lb/gal fuel)	0.13	0.04	0.01	0 01	0.00	0.00	0.00
	Mass Rate (gr/hp*hr)	3.75	1.22	0.34	0.34	0.00	0.07	0.13

Plant Name
Sampling Location
Date
Run Number
Start Time

			_	
Travis AFB	75% Load - Generator 1	06/12/2002	1	1121

Plant Rep.	Mark
Team Leader	Tom
CEM Operator	Doug
Project Number	0301

Mark Wade	Tom Gerstle	Doug Allen	030174.0003.002
ep.	eader	perator	Number

0 8 8	Analyzer Number	Analyzer Span 200 25
1 원		300
Š		1000

Ç 5			ार्		5		7		E		=			<u></u>					0.1		9.5	
Calibration		Factors	Co=0.6		Cm=59.5		-Co=0.2		Cm=10.1		-Co=0.1			Cm=20.					Co=1.0		3 Cm=439.5	
	T	Drift	O'O		-0.2		-0.4		0.0		-0.4			-0.4	1.5	0.3			0.0		-0.3	
	-		o o obau	200	19		10.4		80		10-			0.0					0.1		-1.0	
	POST TEST			0.0	503	25.5	60	7.0-	101	1.01	1			oc C		Ş	S'OC		1	*	438	
l t		Syst. Bias	(% of Span)	0.0	10	0.1	0	0.0	00	0.0		0.0		70			7.5			5	70	
SYSTEM CAL CHECK	PRETEST			0.0	3	39.0	;	-0.T		10.1		0			20.1	C.)	2				1	441
		Difference	(% of Span)	0.3				-0. 4			0.0	0.0		0.0						0.0		
HECK	Analyzer	Calibration		9.0				-0.1			20.5	0		10.5		-0.5			299	0		
IN FRROR CHECK		Cylinder	Number (1)																			
CALTERATION	Colibration	Value	Ê	_	30.1	59.4	149.4	0		6.6	20.5	0		10.5	20	0	49.6	124.6	298.6	0		448
olihendilon l	oration.	Greenfication		10	~30	09~	80-100 (2)	0	NR	40-60	80-100	0	NR.	40-60	80-100	0	25-35	45-55	80-90	0	20-30 (3)	75-55
L	- 3	<u> </u>		CO Zero	COLow	CO Mid	CO High	CO2 Zero	CO2 Low	CO2 Mid	CO2 High	O2 Zero	O2 Low	O2 Mid	O2 High	THC Zero	THC Low	THC Mid	THC High	NOx Zero	NOx Low	NO. Mid

Plant Name
Sampling Location
Date
Run Number
Start Time

Mark Wade	Tom Gerstle	Doug Allen	030174.0003.002
Plant Ren.	Team Leader	CEM Operator	Project Number

Analyzer	Span	200	25	25	300	1000	
Analyzer	Number						
		8	C02	02	표	Š	

	_		9		7		7		- 1		<u></u>	***	***	଼					ó		7.		1
Correction	Toototo.	raciois	Co=0.6		Cm=59.2		-Co=0.2		Cm=10.		-Co=0.			Cm=20.0					Co=1.0		Cm=437.5		
	1	Drift (% of Span)	0.0		-0.1		0.0		0.0		0.0			0.0	-0.1	-0.5			0.0		-0.1		
	- 1	Syst. Bias	0.0		-0.1		-0.4		.08		4.0-			0.0					0 1		-1.1		**************************************
	POST TEST	System	┺		20 1	7.77	20-		10.1		10			20						1	437		
AL CHECK		Syst. Bias	(% Of Spain)	0.0	10	-0.T	70	1.0-	80	9		-0.4						er w		Ö			
SYSTEM CAL CHECK	PRETEST	System	Kesponse	0.0	203	5.45	0		101	10.1		-0.I		00	77	4 00	30.3				738		
		Difference	(% of Span)	0.3				4·0-			0.0	0.0		0.0						0:0		1	
HECK	Anglyzer	Calibration	Response	9.0				-0.1			20.5	0		10.5		-0.5			299	0		100	-
ON ERROR CHECK		Cylinder	Number (1)																				
CALIBRATION	Collination	Value	(% or ppm)	0	30.1	59.4	149.4	0		6.6	20.5	0		10.5	20	0	49.6	124.6	298.6	0			2 200
J dollaration	Diamon	Gas Specification	_	0	~30	09~	80-100 (2)	0	NR	40-60	80-100	0	NR	40-60	80-100	0	25-35	45-55	06-08	0	20-30 (3)	45-55	
<u> </u>				CO Zero	COLow	CO Mid	CO High	CO2 Zero	CO2 Low	CO2 Mid	CO2 High	O2 Zero	O2 Low	O2 Mid	O2 High	THC Zero	THCLow	THC Mid	THC High	NOx Zero	NOx Low	NO _x Mid	

Plant Name
Sampling Location
Date
Run Number
Start Time
Stop Time

r	_					
	Travis AFB	75% Load - Generator 1	06/12/02	3	1351	1431

Mark Wade	Tom Gerstle	Doug Allen	030174.0003.002
Plant Rep.	Team Leader	CEM Operator	Project Number

Analyzer	Span	200	25	25	300	1000
Analyzer	Number					
		8	C02	02	THC	Š

) dodda Mo	ADan		SYSTEM CAL CHECK	AI. CHECK				Calibration
	Calibration	CALIBRATIO	ON ERROR CRECK	A STATE OF		PPETER	Г	POST TEST			Correction
	Gas	Calibration		Ananyzer	Difference	System	Syst. Bias	System	Syst. Bias	Drift	Factors
	Specification	vaine v	Nimber (1)	Desnonse	(% of Snan)	Response	(% of Span)	Response	(% of Span)	(% of Span)	
	(% of Span)	idd io ok)	IAUIIIUOEI (1)	Semodean	0.3	90	0.0	0.4	-0.1	-0.1	Co=0.5
CO Zero	0			200							
COLow	~30	30.1				-		702	0.3	00	Cm=58.9
CO Mid	09~	59.4				59.1	-0.I	78.7	7.5-		
CO High	80-100(2)	149.4									5
CO2 Zero	0	0		-0.1	-0.4	-0.2	-0.4	-0.2	-O.4	0.0	7.0-0
CO2 Low	NR										101
CO2 Mid	40-60	6.6				10.1	0.8	10.1	0.8		CIII-10:1
CO2 High	80-100	20.5		20.5	0.0						
O2 Zero	0	0		0	0.0	-0.1	-0.4	-0.1	-0.4	0.0	-C0=0.1
O2 Low	NR	I									
O2 Mid	40-60	10.5		10.5	0.0					0	Cm=20.0
O2 High	80-100	20				20	0.0	20			_8
THC Zero	0	0 (-0.5		3.6				0.1	
THCLow	25-35	5 49.6				49.5	0.0	C.UC		Ö	
THC Mid	45-55	5 124.6	1.0								
THC High	80-90) 298.6	ا	299						00	0.1-0.7
NOx Zero		0 0		0	0.0		0.1		0.1		
NO _x Low	20-30 (3)					1		757	-12	10-	Cm=436.5
NO _x Mid	45-55		~			43/	-1.1				889
NOx High	06-08	0 885.5]	088	-0.0	0					

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 75% Load
Project Number:	030174.0003.002
CFM Operator:	Doug Allen

Run 1	F	co 1	CO2	02	THC	NOx	Methane
	ime	ppm	%	%	ppm	ppm	ppm
06/12/2002	11:21:07	104.79	5.774	13.069	39.43	328 2	0.08
06/12/2002	11:22:07	106.11	5.771	13.082	38.75	328.2	0.1
06/12/2002	11:23:07	106 95	5.792	13.065	38.83	328.2	0.06
06/12/2002	11:24:07	108.34	5.785	13.061	39.19	328.7	0.07
06/12/2002	11:25:07	106.48	5.798	13.068	39.77	330.5	0.08
06/12/2002	11:26:07	107.41	5.771	13.065	39.45	330.4	0.08
06/12/2002	11:27:07	105.85	5.776	13.086	38.72	331.2	0.07
06/12/2002	11.28:07	106.01	5.78	13.069	38.86	330.9	0.05
06/12/2002	11:29:07	107.35	5.792	13 054	39.46	331.3	0.06
06/12/2002	11:30:07	108.43	5.803	13.053	39.51	332.4	0.06
06/12/2002	11:31:07	107.58	5.813	13.014	40.14	333.2	0.07
06/12/2002	11:32:08	114.99	5.994	12.81	40.62	336 5	0 06
06/12/2002	11:33:08	121.66	6.007	12.763	40 63	340.4	0.07
06/12/2002	11:34:08	123.23	6.001	12.769	40.21	340.6	0.06
06/12/2002	11:35:08	123.23	6.022	12.742	41.2	340.6	0.1
06/12/2002	11:36:08	123.37	6.016	12.777	41.08	342.7	0.09
06/12/2002	11:37:08	121.54	5.986		40.92	341.2	0.1
06/12/2002	11:38:08	121.99	6.017		41.25	340.2	0.09
06/12/2002	11:39:08	122.86	6.015	12.762	41	341.2	0:07
06/12/2002	11:40:08	122.34	5.876	12.929	41.21	340.3	
06/12/2002	11:41:08	112.73	5.968	12.841	41.68	334.7	0.07
06/12/2002	11:42:08	120.7	5.999	12.76	42.01	338.4	
06/12/2002	11:43:08	120.29	6.036	12.747	41.45	340.3	
06/12/2002	11:44:08	119 82	6.011	12 756	40.68		1
06/12/2002			6.02			1	1 1
06/12/2002			6.013	12.762	40.37		
06/12/2002			5.991	12.78			
06/12/2002			6.006	12.7			
06/12/2002	1		6 018	12 749	40.07		
06/12/2002		t	6.002	12.76			
06/12/2002	I	1		12.7	. [
06/12/2002	1		6.01	12.76		1	
06/12/2002			6.0			I .	•
06/12/2002	ı	E .	6.01	12.7	5 37.38		
06/12/2002			6.00	12.74	8 36.44		
06/12/2002				1 12.73		1	l l
06/12/2002	II .	2	•	9 12.74		1	- 4
06/12/2002	1	1		6 12.76		1	
06/12/200	T	1	1	6 12.76			
06/12/2002	-1	1	6.01	3 12.73	8 36.5	1 340.	6 -0.02
1 33,1223							ļ
<u> </u>	Average	114.4	4 5.	9 12	.8 39.	6 338.	3 0.1

- -	
Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 75% Load
Project Number:	030174.0003.002
CFM Operator:	Doug Allen

		- CO T	CO2	O2 T	THC	NOx	Methane
Run 2		CO	%	%	ppm	ppm	ppm
Date	Time	ppm 113.23	6.014	12.693	35.26	342.6	-0.1
06/12/2002	12:38:35	115.23	6.089	12.661	35.28	341.3	-0.09
06/12/2002	12:39:35		6.067	12.654	36.04	342.2	-0.07
06/12/2002	12:40:35	116.84	6.042	12.712	36.15	343.5	-0.11
06/12/2002		116.18	6.036	12.717	36.14	342.6	-0.05
06/12/2002		115.7	6 004	12.745	36.43	340 9	-0 05
06/12/2002		113.71	6.061	12 704	36.51	339.4	-0.06
06/12/2002		114.93	6.022	12.716	36.43	341	-0 06
06/12/2002		114.91	6.022	12.722	36.54	341.8	-0.09
06/12/2002			6.027	12.72	36.3	341.2	-0.08
06/12/2002				12.721	36.08	342.1	-0.1
06/12/2002			6.023	12.718	1 . I	341.7	-0.11
06/12/2002		11	6.044			340.8	-0.11
06/12/2002	12:50:36		6.029	12.693	36.16	341.1	-0.08
06/12/2002			6.057	12.711	1	340.7	-0.09
06/12/2002	12:52:36		6.047	12.68	35.87	342.2	-0.08
06/12/2002			6.063		1 1	343.2	-0.11
06/12/2002			6.051			342.4	-0 09
06/12/2002	2 12:55:36		6 022			341.4	-0.09
06/12/200			6.032				-0.07
06/12/200		1	6.034		1	¥ 1112	-0.08
06/12/200			6.048				-0.04
06/12/200			6.059		1 -		-0.04
06/12/200		- 1	6.035 6.06				-0.05
06/12/200			6.04			1	-0.04
06/12/200			6 052				-0.06
06/12/200			6.031		1		-0.06
06/12/200					•		
.06/12/200					·		
06/12/200					- (
06/12/200				1		1	
06/12/200					1		-0.07
06/12/200			1			•	-0.1
06/12/200				- 1			1
06/12/200			1	2		1 111 -	
06/12/200			· L			1	
06/12/200				~ L		1	
06/12/200	02 13:14:3			-			
06/12/20				1			
06/12/20						- 1	
06/12/20	02 13:17:3	35 119	6.04	12.04	J 30.		
		110	6.	0 12	7 36.	4 342.8	-0.1
-	Average	116.0	۰۰ اد	<u>vi 12</u>			

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 75% Load
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

Run 3		co	CO2	02	THC	NOx	Methane
	Time	ppm	%	%	ppm ·	ppm]	ppm
06/12/2002	13:51:30	124.26	6 149	12.534	36.58	350.7	-0.08
06/12/2002	13:52:30	124.75	6.166	12.552	36 31	349.2	-0.09
06/12/2002	13:53:30	125.04	6.127	12,569	36.43	349.1	-0 05
06/12/2002	13:54:30	123.83	6 116	12.595	36.29	349.2	-0.09
06/12/2002	13:55:30	118.34	6 041	12.695	36.98	347 5	-0 08
06/12/2002	13:56:31	122.29	6 113	12.585	37.19	347.2	-0.08
06/12/2002	13:57:31	121.78	6.121	12,605	37.03	350.5	-0.06
06/12/2002	13:58:31	122.18	6.084	12.616	37.34	349.8	-0.06
06/12/2002	13:59:31	122.37	6.124	12.592	37.25	348 3	-0.07
06/12/2002	14:00:31	122.71	6.088	12.622	37.56	350.6	-0.1
06/12/2002	14:01:31	122 47	6.08	12.631	37.5	349.7	-0.09
06/12/2002	14:02:31	119.77	6.081	12.648	37 04	348.9	-0.1
06/12/2002	14:03:31	118.89	6.072	12.629		348.3	-0.08
06/12/2002	14:04:31	119.21	6.1	12.625		349.1	-0.1
06/12/2002		120.5	6.096	12.605		349 1	-0.14
1		119,15	6.1		·I	348.2	-0.14
06/12/2002 06/12/2002		117.19	6.046			347.6	-0.15
Ĭ	1	114.72	6.091			346.1	-0.16
06/12/2002	1	118.2	6 116			348 4	-0.15
06/12/2002		118.69	6.095			347.7	-0.17
06/12/2002	1	119.57	6.094			346 9	-0.15
		118.34	6.095			346.2	-0 16
06/12/2002		118.18	6.08			347.1	-0.12
06/12/2002		117.07	6.106			346.2	-0.13
06/12/2002		120 17	6.098	1	1	347	-0.12
06/12/2002	1	121.88	6.101		1	348	-0.1
06/12/2002		119.32			1	347.9	-0.1
		121.4	4			346.1	-0.1
06/12/2002	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	124.4	6.118			344.7	-01
06/12/2002		125 09	1			346.4	
06/12/2002		123.98		1	1	346.9	
06/12/2002			6.085		1	344.8	
06/12/2002						345	-0.12
06/12/2002			1		35.35	344.7	-0.11
06/12/200		1					
06/12/200		1	1	1		345 1	
06/12/200	i					344.4	-0.12
06/12/200			1			344.9	
06/12/200	-1	1			· ·	346.3	
			1		_		-0.11
06/12/200	2 14.30.30	122.02]		1		
L	Average	121.2	6.	1 12.	6 35.	347.3	-0.1
	Avelage			<u></u>			

Data Sum	marv [co	CO2	02	THC	NOx	Methane
Run	Time	mag	%	%	ppm	ppm	ppm
		114.4	5.9	12.8	39.6	338.3	0.1
Run 1	11:21-12:00			- 1	36.4	342.8	-0.1
Run 2	32:38-13:17	116.0	6.0	12.7			111
Run 3	13:51-14:30	121.2	6.1	12.6	35.1	347.3	-0.1

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 75% Load
Date:	06/12/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	СО
Molecular Weight:	28.01
TIMOTOCONICO TTO STATE	

Molecular	Weight:	28.01			[Calibration
					1	Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Dun No		(ppm)	Cma	Co	Cm	(% or ppm)
Run No.	11:21-12:00		59.4	0.6	59.5	
	12:38-13:17			0.6	59.2	
	13:51-14:30			0.5	58.9	
3	13.51-14.50	121,12		Ave	rage	118.20

Calibration Error Correction

Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Mass Emission Rate (lb/hr)

E(lb/hr)=Cgas*MWgas*Qs(dscfm)*60/385300000

Mass Emission Rate (lb/1000 lb fuel)

E(lb/MMBtu)=E(lb/hr)/Fuel flow * 1000

Pollutant	MWgas
co	28.01
Methane	16.00
NOx	46.01
SO2	64.06

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 75% Load
Date:	06/12/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	CO2
Molecular Weight:	

						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.	1 ' 1	(% or ppm)	Cma	Co	Cm	(% or ppm)
	11:21-12:00	5.9	9.9	-0.2	10.1	5.88
1 2	12:38-13:17	6.0		-0.2	10.1	6.00
	13:51-14:30	6.1	9.9	-0.2	10.1	6.05
3	113.51-14.50	<u> </u>	1	Ave	rage	5.98

Calibration

<u>Calibration Error Correction</u> Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 75% Load
Date:	06/12/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	O2
Molecular Weight:	

Molecular Weight:						Calibration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.	•	(% or ppm)		Со	Cm	(% or ppm)
	11:21-12:00	12.8		-0.1	20.1	12.83
1 2	12:38-13:17	12.7	20.0	-0.1	20.0	
3	13:51-14:30	12.6	20.0	-0.1	20.0	
	1			Ave	rage	12.74

Calibration Error Correction
Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Total Hydrocarbon Data Correction

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 75% Load
Date:	06/12/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	THC
Molecular Weight:	16.00

			Source Info	Corrected	
			Stack	Stack	Data
	Start-Stop	Raw Data	Flow	Moisture	Dry Basis
Run No.	·	(ppm)	(dscfm)	(%)	(ppm)
1	11:21-12:00	39.6	359.20	5.92	
2	12:38-13:17	36.4	359.60	5.30	
	13:51-14:30	35.1	354.30	6.47	37.53
	1,0.0.	<u>. </u>	<u> </u>	Average	39.32

Moisture Correction
Cgas(dry)=Cgas(wet)/(1-(% moisture/100))
Mass Emission Rate (lb/hr)
E(lb/hr)=Cgas(dry)*MWgas*Qs(dscfm)*60/385300000

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 75% Load
Date:	06/12/2002
Project Number:	030174.0003.002
CEM Operator.	Doug Allen
Pollutant:	N0x
Molecular Weight:	46.01

					Corrected
Start-Stop	Raw Data	Calibration D	ata		Data
•		Cma	Ç	Cm	(% or ppm)
			1.0	439.5	344.59
			1.0	437.5	350.76
					356.28
13:51-14:30	347.3	440.0			350.55
	Start-Stop Time 11:21-12:00 12:38-13:17 13:51-14:30	Time (% or ppm) 11:21-12:00 338.3 12:38-13:17 342.8	Time (% or ppm) Cma 11:21-12:00 338.3 448.0 12:38-13:17 342.8 448.0	Time (% or ppm) Cma Co 11:21-12:00 338.3 448.0 1.0 12:38-13:17 342.8 448.0 1.0 13:51-14:30 347.3 448.0 1.0	Time (% or ppm) Cma Co Cm 11:21-12:00 338.3 448.0 1.0 439.5 12:38-13:17 342.8 448.0 1.0 437.5

Calibration

Calibration Error Correction

Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Mass Emission Rate (lb/hr)

E(lb/hr)=Cgas*MWgas*Qs(dscfm)*60/385300000

Mass Emission Rate (lb/1000 lb fuel)

E(lb/MMBtu)=E(lb/hr)/Fuel flow * 1000

Pollutant	MWgas
CO	28.01
Methane	16.00
NOx	46.01
SO2	64.06

Date:	Run:	T-75-1				rsepower:	99.75	
06/12/2002	Flow (dscfm):	359.2 5 92			Fuel Usag	je (gal/hr):	5.65	
	Moisture (%): Pollutant:	NOx	CO	NMHC	THC	Methane	CO2	O 2
1	Concentration (ppm or %)	344 59	114.83	42.05	42.05	0.10	5.88	12.83
]	Mass Rate (lb/hr)	0.89	0.18	0 04	3.74E-02	8.95E-05	0.01	0.02
1	Mass Rate (lb/gal fuel)	016	0.03	0.01	0.01	0.00	0.00	0.00
	Mass Rate (gr/hp*hr)	4.04	0.82	0.17	0.17	0.00	0.07	0.10

Date:	Run:	T-75-2			Ho	rsepower:	111.81	
06/12/2002	Flow (dscfm):	359.6			Fuel Usag	je (gal/hr):	6.33	
	Moisture (%): Pollutant:	5.3 NO x	CO	NMHC	THC	Methane	CO2	O 2
	Concentration (ppm or %)	350 76	117.01	38.39	38.39	0.00	6.00	12 72
	Mass Rate (lb/hr)	0.90	0.18	0.03	3.42E-02	0.00E+00	0 01	0.02
	Mass Rate (lb/gal fuel)	0.14	0.03	0.01	0 01	0.00	0.00	0.00
	Mass Rate (gr/hp*hr)	3.67	0.74	0.14	0.14	0.00	0.06	0.09

Date:	Run:	T-75-3				rsepower:	107.38	
06/12/2002	Flow (dscfm):	354.3			Fuel Usag	je (gal/hr):	6.08	
	Moisture (%): Pollutant:	6.47 NO x	co	NMHC	THC	Methane	CO2	02
	Concentration (ppm or %)	356.28	122.77	37.53	37.53	0.00	6.05	12.65
	Mass Rate (lb/hr)	0.90	0.19	0 03	3.29E-02	0.00E+00	0.01	0.02
	Mass Rate (lb/gal fuel)	0.15	0.03	0 01	0 01	0 00	0.00	0.00
	Mass Rate (gr/hp*hr)	3.82	0.80	0.14	0.14	0.00	0.06	0.09

Date:	Run:	T-2-75			Ho	rsepower:	106.31	
	Flow (dscfm):	358.2			Fuel Usag	je (gal/hr):	6.02	
	Moisture (%): Pollutant:	5.9 NO x	СО	NMHC	THC	Methane	CO2	O2
ł	Concentration (ppm or %)	341.43	147.24	59.38	59.58	0.20	6.00	12.70
ì	Mass Rate (lb/hr)	0.88	0.23	005	5.28E-02	1.78E-04	0.01	0.02
	Mass Rate (lb/gal fuel)	0.15	0.04	0.01	0.01	0.00	0.00	0.00
	Mass Rate (gr/hp*hr)	3.74	0.98	0.22	0.23	0.00	0.06	0.10

.

•

Plant Name
Sampling Location
Date
Run Number
Start Time
Stop Time

Travis AFB 100% Load - Generator 06/13/2002 1 0731 0811
--

Mark Wade	Tom Gerstle	Doug Allen	030174.0003.0
Plant Rep.	Team Leader	CEM Operator	Project Number

Analyzer Number CO	Analyzer Span 200
CO2	25
02	25
THC	300
ŠON	1000

HKKOK -
Cylinder Canbration
INUITING (1) TOOM
· 10.7

Plant Name
Sampling Location
Date
Run Number
Start Time

Travis AFB 100% Load - 06/13/02 2 0845
--

Mark Wade	Tom Gerstle	Doug Allen	030174.0003.0
Plant Rep.	Team Leader	CEM Operator	Project Number

Т	-				-	
Number						
(8	C02	02	THC	Š	
ſ		Γ	T	T	1	

Calibration Calibration Gas Gas Specification (% of Span) (% of Sp	Calibration Calibration Value (% or ppm) Nu	JIN ERNON CILICAN				r				
Gas Specification (% of Span) -30 -60 80-100 (2) NR 40-60 80-100 0 10 80-100 0 0 0 0 0			A A		DEPTECT		POST TEST			
Specification (% of Span) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Analyzer		TOTAL TOTAL	7	0.00	Cret Rine	Drift	Factors
(% of Span) 0 -30 -60 80-100(2) 0 NR 40-60 80-100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Cylinder	Calibration	Difference		Syst. Bias	_	Syst. Lines	(og of Snan)	
25-35	6	Number (1)	Response	(% of Span)	_	(% of Span)	_	(70 OI Span)	(image to a)	S 0=0.0
88	>		9.0	0.3	0.8	-0.1	0.8	0.1	0.0	
88 80-10 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	30.1									
8 8 9 9	59.4					3	C.	000	00	Cm=152.0
	149.4		152	1.3	152	0.0	177	0.0		Co=0.0
	0		-0.2	-0.8	0.1	7.1	1.0-	7.0		
10 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8										
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6.6				100	70	700	<u> 10 4 </u>	0.0	Cm=20.6
	20.5		20.7	0.8	70.p	+0	0.02			0.0-0.0
9.3	0		0	0.0	0	0.0	O	0.0		
9 8					3.5	7	901	40-	0.0	Cm=10.6
9.3	10.5		10.7	0.8	10.0	+.O-	10.01			
	20					1.4	2.5		1 -0.2	
	0		0		4.2	1.4			-0.7	
	49.6				48.9	7.0-				
FHC Mid 45-55	124.6									
FHC High 80-90	298.6		295				2	100	0.1	Co=2.6
NOx Zero 0	0		-1	-0.1	7	0.3		5		
NOx Low 20-30 (3)					277	20	CAA	9.0-	-0.1	Cm=442.5
NOx Mid 45-55	448		3	30		3				
NOx High 80-90	885.5		881	c.u-						

Plant Name
Sampling Location
Date
Run Number
Start Time
Stop Time

Mark Wade	Tom Gerstle	Doug Ailen	030174.0003.00
Plant Rep.	Team Leader	CEM Operator	Project Number

Analyzer	Span	200	25	25	300	1000
Analyzer	Number					
		8	00	02	H 오	Š

<u> </u>	_		œ	***		5:	0			9.0	0		9.6						3.6		1.5		
Calibration	Factors	מכוסופ	Co=0.8			Cm=151.5	Co=0.0			Cm=20.6	Co=0.0		Cm=10.6						Co=3.6		Cm=441.5		
	T	(% of Span)	0.0			-0.5	0.8			4.0-	0.0		0.0		0.3	0.3			0.1		-0.1		
	;	Syst. Bias (%) of Span)	0.1			-0.5	121	7.7		8.0-	100		-0.4						50		-0.7		
	POST TEST	System	+-	25		151				20%		>	10.6		43				V		441		(1) 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SYSTEM CAL CHECK		Syst. Bias	(70 OL Spain)	1.0-			0.0	P.O.		3		0.0	70		-	1.4					-0.6		
SYSTEM C	PRETEST	System	Kesponse	0.0		01.	zer	-0.1			0.02 0.02	O		10.0		3	40.9			3.1	CVV		
		Difference	(% of Span)	0.3			1.3	-0.8			0.8	0.0		0.8						-0.1		200	7
HECK	Analyzer			9.0			152	-0.2			20.7	0		10.7		0			295	-1			200
N ERROR CHECK		Cylinder	Number (1)																				
CAL TRRATIO	Colibration	Value	(% or ppm)	0	30.1	59.4	149.4	0		6.6	20.5	0		10.5	20	0	49.6		298.6	0			2000
Colibration	Calloration	Specification	(% of Span)	0	~30	09~	80-100 (2)	0	NR	40-60	80-100	0	NR	40-60	80-100	0	25-35	45-55	06-08	0	20-30 (3)	45-55	
15		<u>(8)</u>	<u></u>	CO Zero	COLow	CO Mid	CO High	CO2 Zero	CO2 Low	CO2 Mid	CO2 High	O2 Zero	O2 Low	O2 Mid	O2 High	THC Zero	THCLow	THC Mid	THC High	NOx Zero	NOx Low	NO _x Mid	

Plant Name:	Travis AFB	
Sampling Location:	Gen. 1 - 100% Load	
Project Number:	030174.0003.002	
CEM Operator:	Doug Allen	

Dan 1	Г	co T	CO2	O2	THC	NOx	Methane
Run 1	Time	ppm	%	%	ppm	ppm	ppm
Date 06/13/2002	7:31:55	128 24	6.875	11.676	31.43	438.2	-0.26
	7:32:55	127.78	6.844	11.77	31.33	443.5	-0.21
06/13/2002	7:33:55	121.72	6.767	11.83	31.27	436.4	-0.25
06/13/2002	7:34:55	128.29	6.859	11.716		441	-0.25
06/13/2002	7:34:55	128.16	6.874	11.72		452.8	-0.22
06/13/2002	7:36:55	132.59	6.887	11.677		455.7	-0.2
06/13/2002	7:37:55	135.12	6.916	11.662		459.6	-0.21
06/13/2002	7:38:55	133.5	6.882	11.67		463.6	-0.21
06/13/2002	7:39:55	134.32	6.889	1		465.8	-0.2
06/13/2002	7:40:55	132.48	6.87			466.5	-0.21
06/13/2002	7:41:55	134.74	6.879		1	466.8	-0.22
	7:42:55	136.47	6.892			467.2	-0.21
06/13/2002	1	134.56	6 864			468.4	-0.2
06/13/2002	1 1 1 1 1 1 1 1	135.21	6.903		1	468.9	-0.2
06/13/2002	1	137.15	6.886			469.8	-0.21
06/13/2002		138.06	6.892	I		470.5	-0.22
06/13/2002	1 1	136 46	6 906	1		471.9	-0.23
06/13/2002		136.52	6.883	3	1	474	-0.24
06/13/2002	1	137.35	6.913			474.9	-0.22
06/13/2002		138.77	6.918			475.5	-0.23
06/13/2002		140.88	6.911			477.3	-0.26
06/13/2002	1	140.22	6.927			479.1	-0.26
	1	140.86	6.912				-0 23
06/13/2002		140.69	6.92	" L		481.6	-0.25
06/13/2002		140.00	6.93			482 5	-0.25
06/13/2002		•	6.93	L	8 29.65	482.5	-0.23
06/13/2002			t .	. 1		483.5	
06/13/2002		1 .			7 29.58	485.1	-0.25
06/13/2002	1			1		485.5	
06/13/2002					2 30.19	484.9	
06/13/200/	-1				1	481.4	
06/13/200/	~ ·	1			6 29.5	485.1	-0.39
06/13/200		1	1	4 11.60	8 28.63	485	
06/13/200		1		7 11.62	4 28.96		1
06/13/200		1		4 11.60	8 28.9		
06/13/200		1	ŧ	4 11.62		1	
06/13/200		1	1 .	3 11.60	9 29.0		1
06/13/200			1	1 11	.6 29.29		
06/13/200		· .		4 11.60	7 29.5		1
06/13/200						484.7	-0.2
1 00,10200	_			_ _			
I	Average	136.8	6	.9 11	.7 30.0	6 472.3	3 -0.

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 100% Load
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

	_	co T	CO2	02	THC	NOx	Methane
Run 2			%	%	ppm	ppm	ppm
	Time	ppm 155.04	7.016	11.466	26.75	481.5	-0.26
06/13/2002	8:45:47	159.52	7.062	11.412	28.26	488.2	-0.26
06/13/2002	8:46:47	160.86	7.038	11.429	28.35	493.5	-0.22
06/13/2002	8:47:47	160.00	7 072	11 422	29	495.6	-0.22
06/13/2002	8:48:47	159.48	7.031	11 439	28.93	497.2	-0.2
06/13/2002	8:49:47	160.9	7 071	11,406	28.69	498.8	-0.2
06/13/2002	8:50:47	162.57	7 074	11 398	28.74	499.9	-0.18
06/13/2002	8:51:47	164.14	7.045	11.429	28.48	500.1	-0.23
06/13/2002	8:52:47	161.49	7 067	11,422	28.58	501	-0.23
06/13/2002	8:53:47		7.044	11.416	28.51	500.9	-0.23
06/13/2002	8:54:47	163.85	7.073	11.417	28.45	500.4	-0.25
06/13/2002	8:55:47	163.08	7.076	11.398	28.5	500.4	-0.23
06/13/2002	8:56:47	164.71	7.048	11.428	28.28	500.4	-0.25
06/13/2002	8:57:47	162.99	7.049	11.44	27.95	500.4	-0 27
06/13/2002	8:58:47	162.78			27.76	499.1	-0.29
06/13/2002	8:59:47	162.17	7.018	11.444		497.2	-0.3
06/13/2002		161.35	7.054			497.3	-0.31
06/13/2002		162.15	7.03	l	1	497.1	-0.27
06/13/2002		164.37	7.058	l .		498.1	-0.3
06/13/2002		162.73	7.042		1 1	497.6	-0.27
06/13/2002		160.03	7.02			497.4	-0 27
06/13/2002		161.39	7.043 7.039		1		-0.27
06/13/2002		160.79				497.9	-0.28
06/13/2002		161.69	7.036 7.058			496.8	-0.29
06/13/2002		163.05	7.030	1		1	-0.29
06/13/2002	1	162.23	7.056	1 ,	1	1 - 1 - 1	-0.3
06/13/2002		162.76	7.030	1			
06/13/2002		158.93				1	-0.32
06/13/2002		160.3	1		1 .	1	-0.33
06/13/2002		161.26			- 1		
06/13/200		162.99					-0.33
06/13/200		159.53	1	1	· 1		-0.34
06/13/200			l				
06/13/200							-0.36
06/13/200				1	* I		
06/13/200					- 1	- [
06/13/200				- 1	- 1		
06/13/200				• · · · · - ·			
06/13/200			1		-1 - ::::	1	
06/13/200					-	1	
06/13/200	2 9:24:46	163.98	7.00	11.50	٦ - ١		
		161.6	7.	1 11.	4 26.0	6 499.	4 -0.3
	Average	101.0	<u> </u>		-1		

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 100% Load
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

D	Г	co	CO2	02	THC	NOx	Methane
Run 3	Time	ppm	%	%	ppm	ppm	ppm
Date 00000		164.5	7,111	11.353	23.91	510.6	-0.32
06/13/2002 06/13/2002		162.25	7.102	11.332	24.12	510.9	-0.3
		163.74	7 104	11.358	24.7	5128	-0.32
06/13/2002	1 11	165.33	7 106	11 344	25.2	511.1	-0.29
06/13/2002		165.15	7 092	11.357	25.73	511.1	-0.31
06/13/2002	1 1	167.27	7.141	11.311	26.11	512.4	-0.28
06/13/2002	1	169.83	7 105	11 317		514.1	-0.27
06/13/2002		170.04	7.128			515.4	-0.3
06/13/2002		170.04	7.11	11.331		515.4	-0.27
06/13/2002		170.77	7 118			515.4	-0.28
06/13/2002			7.127			515 3	-0.28
06/13/2002		173.42	7.095	1		514.4	-0.3
06/13/2002			7.0 9 5 7.125	4		514	-0.29
06/13/2002		173.63		ľ		512.8	-0.31
06/13/2002		171.98	7.091	1	1 h	512.8	-0.3
06/13/2002			7.11			513.4	-0.29
06/13/2002	L.		7 137		1	514.2	-0.28
06/13/200			7.119			515.4	-0.28
06/13/200		1	7.117	3		515.4	-0.31
06/13/200			7 089		1 .1	515.4	-0.3
06/13/200	1		7.114			515	-0.31
06/13/200		1 1	7 155			517.1	-0.34
06/13/200	2 10:21:13		7.131		25.32	516.6	-0.3
06/13/200			7.146			517.8	-0.28
06/13/200			7.113			519.3	-0.26
06/13/200	2 10:24:11		7.13				-0.29
06/13/200	2 10:25:11	169.57	7.11		•		-0.26
06/13/200	2 10:26:11	167.19	7 07				-0.27
06/13/200	2 10:27:11		7.12				-0.27
06/13/200	2 10:28:11		7.0		3		-0.34
06/13/200	2 10:29:11		7.11				
06/13/200	10:30:1	168.64	7.09				1
06/13/200	2 10:31:1		7 09			h	1
06/13/200			7.12				
06/13/200		1 164.05					1
06/13/200				- 1			
06/13/200		1 157.83					1
06/13/200					1		
06/13/20		1 159.72	7 11				1
06/13/20		1 .			1		1
06/13/20			7.12	9 11.31	6 22.87	515.7	-0.38
1 00.00		1		1			
L	Average	167.9	7	.1 11	.3 25.0	515.2	-0.3
		<u> </u>					

						110	14-46-22
Data Sum	marv	CO	CO2	02	THC	NOx	Methane
	Time	mag	%	%	ppm	ppm	ppm
Run					30.6	472.3	-0.2
Run 1	07:31-08:10	136.8	6 9	11.7	30.0		
Run 2	08:45-09:24	161.6	7.1	11.4	26.6	499.4	-0.3
nun 2		* * * * * * *	7.1	11.3	25.0	515.2	-0.3
Run 3	10:00-10:39	167.9	7.1	11.3	20.0	010.2	

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 100% Load
Date:	06/13/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	CO .
Molecular Weight:	28.01

Molecula	r Weight:	28.01				
						Calibration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.		(ppm)	Cma	Co	Cm	(% or ppm)
	07:31-08:10	136.8	149.4	0.7	152.0	
	08:45-09:24	161.6	149.4	0.8	152.0	
	10:00-10:39		149.4	0.8	151.5	
	10.00 10.00			Ave	rage	152.98

Calibration Error Correction

Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Mass Emission Rate (lb/hr)

E(lb/hr)=Cgas*MWgas*Qs(dscfm)*60/385300000

Mass Emission Rate (lb/1000 lb fuel)

E(lb/MMBtu)=E(lb/hr)/Fuel flow * 1000

Pollutant	MWgas
СО	28.01
Methane	16.00
NOx	46.01
SO2	64.06

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 100% Load
Date:	06/13/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	CO2
Molecular Weight:	

Molecule	ir vveigni.				1	Calibration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.		(% or ppm)	Cma	Co	Cm	(% or ppm)
1	07:31-08:10	6.9	20.5	0.0	20.6	
2	08:45-09:24	7.1	20.5	0.0	20.6	
3	10:00-10:39	7.1	20.5	0.0	20.6	7.10
	5			Ave	rage	7.00

<u>Calibration Error Correction</u> Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 100% Load
Date:	06/13/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	O2
Molecular Weight:	

Molecula	r Weight:					Calibration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.		(% or ppm)		Co	Cm	(% or ppm)
	07:31-08:10		10.5	0.0	10.6	11.55
	08:45-09:24		10.5	0.0	10.6	11.31
3	10:00-10:39		10.5	0.0	10.6	11.22
	10.00	<u> </u>		Ave	rage	11.36

<u>Calibration Error Correction</u> Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Total Hydrocarbon Data Correction

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 100% Load
Date:	06/13/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	THC
Molecular Weight:	16.00

			Source Info	Corrected	
			Stack	Stack	Data
F	Start-Stop	Raw Data	Flow	Moisture	Dry Basis
Run No.		(ppm)	(dscfm)	(%)	(ppm)
	07:31-08:10	30.6	377.50	6.43	
	08:45-09:24	26.6	378.00	5.78	1
	10:00-10:39			6.81	26.86
	10.00 10.00		<u> </u>	Average	29.28

Moisture Correction
Cgas(dry)=Cgas(wet)/(1-(% moisture/100))
Mass Emission Rate (lb/hr)
E(lb/hr)=Cgas(dry)*MWgas*Qs(dscfm)*60/385300000

Plant Name:	Travis AFB
Sampling Location:	Gen. 1 - 100% Load
Date:	06/13/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	N0x
Molecular Weight:	46.01
HAIOIOGGG ALOID	

						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Dum No	Time	(% or ppm)	Cma	Co	Cm	(% or ppm)
Run No.	07:31-08:10	472.3		1.0	442.5	
	08:45-09:24	499.4		2.6	442.5	
	10:00-10:39	515.2		3.6	441.5	523.43
3	10:00-10.39	010.2		Ave	rage	502.53

Calibration

Calibration Error Correction

Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Mass Emission Rate (lb/hr)

E(lb/hr)=Cgas*MWgas*Qs(dscfm)*60/385300000

Mass Emission Rate (lb/1000 lb fuel)

E(lb/MMBtu)=E(lb/hr)/Fuel flow * 1000

Pollutant	MWgas
CO	28.01
Methane	16.00
NOx	46.01
SO2	64.06

Date: 06/13/2002	Run: Flow (dscfm):	T-100-1 377.5				rsepower: je (gal/hr):	133.64 7.27	
	Moisture (%): Pollutant:	6.43 NOx 478.21	CO 134.38	NMHC 32.68	THC 32 68	Methane 0.00	CO2 6.87	O2 11.55
	Concentration (ppm or %) Mass Rate (lb/hr)	1.29	0.22	0.03		0.00E+00	0.02	0.02
	Mass Rate (lb/gal fuel) Mass Rate (gr/hp*hr)	0.18 4.39	0.03 0.75	0.00 0.10	0.00 0.10	0.00 00.0	0.00 0.06	0.00 0.07

Date:	Run:	T-100-2 378			Ho Fuel Usag	rsepower: e (gal/hr):	147.61 8.03	
06/13/2002	Flow (dscfm): Moisture (%): Pollutant:	5.78 NO x	со	NMHC	THC	Methane	CO2	O 2
	Concentration (ppm or %)	505.95	158.86	28.28	28.28	0.00	, 7.02	11.31
	Mass Rate (lb/hr)	1.37	0.26	0.03	2.65E-02	0.00E+00	0 02	0.02
	Mass Rate (lb/gal fuel)	0.17	0.03	0.00	0.00	0.00	0 00	0 00
•	Mass Rate (gr/hp*hr)	4.21	0.81	0.08	0.08	0.00	0.06	0.07

Date:	Run:	T-100-3				rsepower: je (gal/hr):	149.23 8 12	
06/13/2002	Flow (dscfm): Moisture (%): Pollutant:	371.3 6.81 NOx	СО	NMHC	THC	Methane	CO2	O 2
	Concentration (ppm or %)	523.43	165.69	26.86	26.86	0.00	7 10	11.22
	Mass Rate (lb/hr)	1.39	0.27	0.02	2.47E-02	0.00E+00	0.02	002
	Mass Rate (lb/gal fuel)	0.17	0.03	0.00	0.00	0.00	0 00	0.00
	Mass Rate (gr/hp*hr)	4.24	0.82	80.0	0.08	0.00	0.05	0.08

Date: 06/13/2002	Run: Flow (dscfm):	T-2-100 386				rsepower: je (gal/hr):	143.49 7.81	
	Moisture (%): Pollutant: Concentration (ppm or %)	6.3 NOx 448.97	CO 165.28	NMHC 49.28	THC 49.30	Methane 0.02	CO2 6.35	O2 12.23
	Mass Rate (lb/hr)	1.24	0.28	0.05	4.71E-02	1 92E-05	0.02	0.02
	Mass Rate (lb/gal fuel)	0.16	0.04	0.01	0.01 0.15	0.00 0.00	0 00 0.05	0 00 0.07
I	Mass Rate (gr/hp*hr)	3.93	0.88	0.15	0.15	0.00	0.03	0.07

Plant Name Travis AFB
Sampling Location Generator 2
Date 06/13/2002
Run Number
Start Time
Stop Time

Plant Rep.	Team Leader	CEM Operator	Project Number	
Travis AFB	Generator 2	06/13/2002		

8	C02	05	THC	XON
Mark Wade	Tom Gerstle	Doug Allen	030174.0003.002	

	Analyzer	Analyzer
	Number	Span
ပ္ပ		200
CO2		25
02		25
THC		300
Š		1000

	Coliberation	Calibration CALIBDATION	ON EPPOR CHECK	THECK		SYSTEM CAL CHECK	AL CHECK				Calibration
	Garioranon	Calibration	NOW THE REAL PROPERTY.	Analyzer		PRETEST		POST TEST			Correction
	Specification		Cylinder	Calibration	Difference	System	Syst. Bias	System	Syst. Bias	Drift	Factors
	(% of Span)	(% or nnm)	Number (1)	Response	(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Span)	
CO Zero	0	0		9.0	0.3	0.8		0.6	0.0	0.1	Co=0.7
COLow	~30	30.									
Di Mid	09~										
CO High	80-100 (2)			152	1.3	151	-0.5	152	0.0		Cm=151.5
CO2 Zero	0	0		-0.2	-0.8	0.1	1.2	-0.1	0.4	-0.8	Co=0.0
CO2 Low	NR										
CO2 Mid	40-60	6.6									
CO2 High	80-100	20.5		20.7	0.8	20.5	-0.8	20			Cm=20.6
O2 Zero	0	0		0	0.0	0	0.0	0	0.0	0.0	Co=0.0
O2 Low	NR	-									
O2 Mid	40-60	10.5		10.7	0.8	10.6	-0.4	10.6	-0.4	0.0	Cm=10.0
O2 High	80-100	20								,	
THC Zero	0	0 (0		4.3				1.4	
THC Low	25-35	5 49.6				47.7	-0.6	55.6		2.6	
THC Mid	45-55	5 124.6									
THC High	06-08	0 298.6		295							
NOx Zero)	0 0		-1	-0.1	4	0.5	7	0.2	-0.3	C7=00
NOx Low	20-30 (3)	7								10	7 W - W - W - W - W - W - W - W - W - W
NOx Mid	45-55					4	7:0-	440	o.U-		536
NOx High	06-08	0 885.5		881	-0.5	16					

— — — — — — — — — — — — — — — — — — —	
Plant Name:	Travis AFB
Sampling Location:	Gen. 2
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

10%	Г	co	CO2	O2	THC	NOx	Methane
Date	Time	ppm	%	%	ppm_	ppm	ppm
06/13/2002	11:40:50	153.65	3.248	16.725	98.12	206.1	1.45
06/13/2002	11:41:50	157.34	3.274	16.723	97.41	206.2	1.44
06/13/2002	11:42:50	159.5	3.259	16.708	96.59	206.2	1.44
06/13/2002	11:43:50	159.45	3.282	16.704	95.77	206.6	1.41
06/13/2002	11:44:50	158.89	3.268	16.705	94.96	207.2	1.38
06/13/2002	11:45:51	156.97	3.275	16,695	94.18	207.2	1.38
06/13/2002	11:46:51	157.9	3.3	16.674	93.76	208	1.41
06/13/2002	11:47:51	159.69	3.284	16.663		208.7	1.39
06/13/2002	11:48:51	156.41	3.288	16.701	92.78		1.36
06/13/2002	11:49:51	153.48	3.292	16.66	92.48		1.37
06/13/2002	11:50:51	151.2	3.301	16.661	92.73		1.35
06/13/2002	11:51:51	152.11	3.306	16,652			1.33
06/13/2002	11:52:51	152.85	3.293	16.657			1.34
06/13/2002	11:59:51	152.92	3.322	16.653	91.42		1.3
06/13/2002	11:54:51	153.76	3.299	18.644	91.31	211.2	
06/13/2002		154.27	3.318	16.643			1.28
06/13/2002	11:56:51	154.55	3,318	16.635			
06/13/2002	11:57:51	154.8	3.305				
06/13/2002	11:58:51	151.82	3.325	16.638			
06/13/2002	11:59:51	152.22	3.29	16.625	90.48	210.6	
	1			<u> </u>			
<u></u>	Average	155.2	3.3	16.7	93.1	209.1	1.3

Plant Name:	Travis AFB
Sampling Location:	Gen. 2
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

2!	1%	CO	CO2	02	THC	NOx	Methane
Date	Time	ppm	%	%	ppm_	ppm	ppm
06/13/20	02 12:13:50	148.21	3.953	15.733	90.2	219.2	1.01
06/13/20	02 12:14:50	149.96	3.924	15.732	87.08	220.2	1.01
06/13/20	02 12:15:50	148.36	3.929	15.771	82.63	219.9	0.92
06/13/20	02 12:16:50	143.59	3.894	15.797	81.93	217 1	0.94
06/13/20	02 12:17:50	143.26	3.948	15.725	82.35	217.3	0.96
06/13/20	02 12:18:50	143.73	3.977	15.681	83.43	219.2	0.9
06/13/20		142.08	3.964	15.689	83.34	220.8	ده
06/13/20	02 12:20:50	141.67	3.999	15.658	85.11	221.5	0.
06/13/20	02 12:21:50	139.6	3.971	15.654	84.82	222.2	0.9
06/13/20	02 12:22:50	140.01	3,988	15.646	82.05	223	0.9
06/13/20	02 12:23:50	141 12	3.983	15.649	81.27	223.2	0.9
06/13/20	02 12:24:50	141.49	3.957	15.635	80.7		0.8
06/13/20	02 12:25:50	147.03	3.994	15.646			0.9
06/13/20	02 12:26:50	146.6	3.971	15.644	80.86		0.8
06/13/20	02 12:27:51	145.65	3.991	15.642	80.72		0.9
06/13/26	02 12:28:51	146.98	3.983	15.633			0.9
06/13/2	002 12:29:51	145.22	3.987	15.628	81.45		٥
06/13/2	002 12:30:51	141 74	3.994	15.641	82.59		0.9
06/13/2	12:31:51	139.89	3.974	15.633	84.6		0.8
06/13/2	002 12:32:51	138.87	3.998	15.642	82.9	222.2	0.9
	1	1					
	Average	143.8	4.0	15.7	83.0	221,2	•

———	
Plant Name:	Travis AFB
Sampling Location:	Gen. 2
Project Number.	030174.0003.002
CEM Operator:	Doug Allen

50%	Г	co	CO2	02	THC	NOx	Methane
	Time	ppm	%	%	ppm	ppm	ppm
06/13/2002	12:43:51	143.09	5.346	13.703	64.68	261.2	0.51
06/13/2002	12:44:51	144.76	5.291	13.812	67 71	261.4	0.52
06/13/2002	12:45:51	136.4	5.214	13.904	65.26	257.2	0.52
08/13/2002	12:46:49	140.51	5.367	13.7	67.3	256.8	0.5
06/13/2002	12:47:49	146.72	5.386	13.707	68.49	261.5	0.53
06/13/2002	12:48:49	147.45	5.373	13.691	68.21	261.2	0.54
06/13/2002	12:49:49	146.31	5.386		65.91	261 7	0.54
06/13/2002	12:50:50	146.31	5.378	13.702	63.47	261.4	0.49
06/13/2002	12:51:50	145.5	5.353		63.42		0.47
06/13/2002	12:52:50	146.82	5,373		i		0.47
06/13/2002	12:53:50	146.41	5.341	13.716			
06/13/2002	12:54:50	146.64	5.365				0.47
06/13/2002	12:55:50	146.43	5.36		63.51	261.2	
06/13/2002	12:56:50	139.44	5.233		62.46		0.44
06/13/2002	12:57:50	133.62	5.275		70.34		0.47
06/13/2002	12:58:50	140.94	5.355				
06/13/2002	12:59:50	140.73	5.379				
06/13/2002	13:00:50	140.6	5.349		68.45	1	
06/13/2002	13:01:50	141.9	5.362		1	1	
06/13/2002	13:02:50	139.84	5.365	13.713	64.58	282.5	0.45
	Average	143.0	5.3	13.7	68.6	260.9	0.5

Plant Name:	Travis AFB
Sampling Location:	Gen. 2
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

75%	ſ	co	CO2	02	THC	NOx	Methane
Date	Time	ppm	%	%	ppm	ppm	ppm
06/13/2002	13:10:51	141.4	6.012	12.852	55.43	328.6	0.31
06/13/2002	13:11:51	150.5	8.045	12.831	55.14	333.6	0.21
06/13/2002	13:12:51	151.43	6.051	12.814	54.27	333.7	0.21
06/13/2002		150.4	6.017	12.822	54.07	334.4	0.2
06/13/2002		145.73	6.022	12.798	54.74	334.4	0.19
06/13/2002		148.34	6.018		67.69	333.2	0.26
06/13/2002	13:16:51	148.09	6.042		61 18	334.9	0.26
06/13/2002	13:17:51	142_47	6.019		59.45		0.2
06/13/2002	13:18:51	148.02	6,001	12.829	57.3	335	0.25
08/13/2002	13:19:51	147.54	6.025			333.6	0,23
06/13/2002		153.02	6.029	12,784		336.7	0.23
06/13/2002	13:21:51	151 79	6.08	12.754		337.4	0.22
06/13/2002	13:22:51	152.52	6.04	12.771	53.4	339	0.17
06/13/2002		152.59	6.035			340.2	0.15
06/13/2002	13:24:51	150.3	6.038			339.5	
06/13/2002	13:25:51	149.9	5.987	12.85			
08/13/2002	13:26:51	145.38	5.843	13.081			
06/13/2002		150.39	6.029	12.788			
06/13/2002		154.44	6.029	12.817			
06/13/2002		152.16	6.009	12.83	53.99	342.7	0.17
				L			
L	Average	149.3	6.0	12.8	56.1	336.3	0.2

Plant Name:	Travis AFB
Sampling Location:	Gen. 2
Project Number:	030174.0003.002
CEM Operator	Doug Allen

100%	[CO	CO2	02	THC	NOx	Methane
Date	Time	ppm	%	%	ppm	ppm	ppm
06/13/2002	13:41:50	150.36	6.249	12.54	46.8	430.8	0.01
06/13/2002	13:42:50	167 74	6.443	12.237	45.36	435.6	0.02
06/13/2002	13:43:50	176.21	6.446	12.27	45.02	441.B	0.03
06/13/2002	13:44:50	174.2	6.441	12.241	45.44	442.5	0
06/13/2002	13:45:50	172.42	6.451	12.243	45.92	445.6	0.02
08/13/2002	13:46:50	172.25	6.45	12.247	44.66		0
06/13/2002	13:47:50	173.8	6.405	12.256	45.32	448.7	-0.01
08/13/2002	13:48:50	168.93	6.392	12.34	45.29	450.8	0.01
06/13/2002	13:49:50	159.74	6.327	12,401	45.83	450.5	0.03
06/13/2002	13:50:50	170.96	6.426	12.279	44.82	449.8	0.01
06/13/2002	13:51:50	170.17	6.434	12.265	44.33	450.4	-0.01
06/13/2002	13:52:51	168.61	6.42	12.267	47.02		0.01
06/13/2002	13:53:51	169.58	6.413	12.308	45.6B	454.3	0.01
06/13/2002	13:54:51	159.16	6.222	12.529	46.52	444.5	0.02
06/13/2002	13:55:51	160.91	6.318	12.429	46.01	427 1	-0.01
06/13/2002	13:58:51	164.66	6.296	12.444	46.56		-0.01
06/13/2002	13:57:51	166.39	6.308	12.418	48.3		
06/13/2002	13:58:51	167.27	6.322	12.419	47.98	430.5	
06/13/2002	13:59:51	168.82	6.291	12.423			
06/13/2002	14:00:51	168.41	6.318	12.426	49.2	429.8	0.09
		İ		l	1		
	Average	167.5	6.4	12.3	46.2	441.4	0.0

Data Summary	Time	CO	CO2 %	O2 %	THC ppm	NOx ppm	Methaine ppm
	11:40-11:59	155.2	3.3	16.7	93.1	209.1	1.35
25%	12:13-12:32	143.8	4.0	15.7	83.0	221.2	0.93
	12:43-13:02	143.0	5.3	13.7	66.6	260.9	0.49
	13:10-13:29	149.3	6.0	12.8	56.1	336.3	0.20
1	13:41-14:00	167.5	6.4	12.3	46.2	441.4	0.02

Plant Name:	Travis AFB
Sampling Location:	Gen. 2
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

10%	1	CO	CO2	02	THC	NOx	Methane
Date	Time	ppm	%	%	ppm	ppm	ppm
06/13/2002	11:40:50	153.65	3.248	16.725	98.12	206.1	1.45
06/13/2002	11:41:50	157.34	3.274	16.723	97.41	206.2	1.44
06/13/2002	11:42:50	159.5	3.259	16.708	96.59	206.2	1.44
06/13/2002	11:43:50	159.45	3.282	16.704	95.77	206.6	1.41
06/13/2002	11:44:50	158.89	3.268	16.705	94.96	207.2	1.38
08/13/2002	11:45:51	156.97	3.275	18.695	94.18	207.2	1.38
06/13/2002	11:46:51	157.9	3.3	16.674	93.76	208	1.41
06/13/2002	11:47:51	159.69	3.284	16.663		208.7	1.39
06/13/2002	11:48:51	156.41	3,288	16.701	92.78	208.6	1.36
06/13/2002	11:49:51	153.48	3.292	16.66	92.48	208.2	1.37
06/13/2002	11:50:51	151.2	3.301	16.661	82.73	210.2	1.35
06/13/2002		152.11	3.308	16,652	92.13	210.2	1.33
06/13/2002	11:52:51	152.85	3.293	16.657	91.99	210.8	1.34
06/13/2002		152.92	3.322	16.653	91.42	211.2	1.3
06/13/2002		153.76	3.299	16.644	91.31	211.2	
06/13/2002	1 1	154.27	3.318	16.643	91.02	211.2	
06/13/2002		154.55	3,318	16.635	90.82	211,2	
06/13/2002		154.8	3.305	16.641	90.82	211.2	1.28
06/13/2002		151.82	3.325	16.638	90.79	211.2	1.25
06/13/2002		152.22	3.29	16.625	90.48	210.6	1.2
				l			
<u></u>	Average	155.2	3.3	16.7	93.1	209.1	1.3

Plant Name:	Travis AFB
Sampling Location:	Gen 2
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

25%	r	co	CO2	02	THC	NOx	Methane
Date	Time	ppm	%	%	ppm	ppm	ppm
06/13/2002	12:13:50	148.21	3.953	15.733	90.2	219.2	1.01
06/13/2002	12:14:50	149.96	3.924	15.732	87.08	220.2	1.01
06/13/2002	12:15:50	148.36	3.929	15.771	82.63	219.9	0.92
08/13/2002		143.59	3.894	15.797	81.93	217 1	0.94
06/13/2002		143.26	3.948	15.725	82.35	217.3	0.96
06/13/2002		143.73	3.977	15.681	83.43	219.2	0.92
06/13/2002		142.08	3.964	15.669	83.34	220.8	9.0
06/13/2002	12:20:50	141.67	3.999	15.858	85.11	221.5	0.9
06/13/2002	12:21:50	139.6	3.971	15.654	84.82	222.2	0.91
06/13/2002	12:22:50	140.01	3.988	15.646	82.05	223	0.92
06/13/2002	12:23:50	141 12	3,983	15.649	81.27	223.2	0.91
08/13/2002	12:24:50	141.49	3.957	15.635	80.7	223.2	0.85
06/13/2002	12:25:50	147.03	3.994	15.646	80.73		0.92
06/13/2002		146.6	3.971	15.844	80.86		0.91
. 06/13/2002		145.65	3.991	15.642	80.72	221.9	
06/13/2002		146.98	3.983	15.633	80.69	221.8	0.91
06/13/2002		145.22	3.987	15.628	81.45	222.2	0.9
06/13/2002		141 74	3.994	15.641	82.59		0.93
06/13/2002		139.89		15.633	84.6	222.2	0.92
06/13/2002	,	138.87		15.642	82.9	222.2	0.94
1310200				I		l	l
	Average	145.8	4.0	15.7	83.0	221.2	0.9

Plant Name:	Travis AFB
Sampling Location:	Gen. 2
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

50%	Ī	CO	CO2	O2	THC	NOx	Methane
Date	Time	ppm	%	%	ppm	ppm	ppm
06/13/2002	12:43:51	143.09	5.346	13.703	64.68	261.2	0,51
06/13/2002	12:44:51	144.78	5.291	13.812	67 71	261.4	0.52
06/13/2002	12:45:51	136.4	5.214	13.904	65.26	257.2	0.52
08/13/2002	12:46:49	140.51	5.367	13.7	67.3	256.8	0.5
06/13/2002	12:47:49	148.72	5.386	13.707		261.5	0.53
06/13/2002	12:48:49	147.45	5.373	13,691	88.21	261.2	0.54
06/13/2002	12:49:49	146.31	5.386	13.689		261 7	0.54
06/13/2002	12:50:50	146.31	5.378	13.702	63.47	261.4	0.49
06/13/2002	12:51:50	145.5	5.353			261.8	0.47
06/13/2002	12:52:50	146.82	5.373	13.714			0.47
08/13/2002	12:53:50	146.41	5.341	13.716		261.2	0.47
06/13/2002	12:54:50	146.64	5.365	13.712			0.47
06/13/2002	12:55:50	146.43	5.36			261.2	0.44
06/13/2002	12:56:50	139.44	5.233		62.46		
06/13/2002	12:57:50	133.62	5.275	13.837			0.47
06/13/2002	12:58:50	140.94	5.355	13.7			0.53
06/13/2002	12:59:50	140.73	5,379	13.699			0.52
06/13/2002	13:00:50	140.6	5.349			6	0.49
. 06/13/2002	13:01:50	141.9	5.362	13.704	66.37	262.4	0.51
06/13/2002	13:02:50	139.84	5.365	13.713	64.58	262.5	0.45
	1			i	l		L
	Average	143.0	5.3	13.7	66.6	260.9	0.5

Plant Name:	Travis AFB
Sampling Location:	Gen. 2
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

75%	1	co	CO2	02	THC	NOx	Methane
Date	Time	ppm	%	*_	ppm	ppm	ppm
06/13/2002	13:10:51	141.4	6.012	12.852	55.43	328.6	0.31
06/13/2002	13:11:51	150.5	6.045	12.831	55.14	333.6	0.21
06/13/2002	13:12:51	151.43	6.051	12.814	54,27	333.7	0.21
06/13/2002	13:13:51	150.4	6.017	12.822	54.07	334.4	0.2
06/13/2002	13:14:51	145.73	6.022	12.798	54.74	334.4	0.19
06/13/2002	19:15:51	148.34	6.016	12.785	67.69	333.2	0.26
06/13/2002	13:16:51	148.09	6.042	12.792	61 18	334.9	0.26
06/13/2002	13:17:51	142.47	6.019	12.775	59.45	336.2	0.2
06/13/2002	13:18:51	148.02	6.001	12.829	57.3	335	0.25
08/13/2002	13:19:51	147.54	6.025	12.816	56.58		0.23
06/13/2002	13:20:51	153.02	6.029	12.784	54.71	336.7	0.23
06/13/2002	13:21:51	151 79	6.08	12.754	54.41	337.4	0.22
06/13/2002	13:22:51	152.52	6.04	12.771	53.4	339	0.17
06/13/2002	13:23:51	152.59	6.035	12.8	52.84	340.2	0.15
06/13/2002	13:24:51	150.3	6.038	12.794	52.82	339.5	0.13
06/13/2002	13:25:51	149.9	5.987	12.85	58.53	338.8	0.17
06/13/2002	13:26:51	145.38	5.843	13.081	55.8	337.2	0.16
06/13/2002	13:27:51	150.39	6.029	12.788	54.08	834.7	0.14
06/13/2002	13:28:51	154.44	6.029	12.817	54.78	342.3	
06/13/2002		152.16	6.009	12.83	53.99	342.7	0.17
						İ	
	Average	149.3	6.0	12.8	56.1	336.3	0.2

OF IN PAGE	
Plant Name:	Travis AFB
Sampling Location:	Gen. 2
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

					77.10	NO. T	Methane
100%		co	CO2	02	THC	NOx	
Date	Time	ppm	%	%	ppm	ppm	ppm
06/13/2002	13:41:50	150.36	6.249	12.54	46.8	430.8	0.01
06/13/2002	13:42:50	167 74	6.443	12.237	45.36	435.6	0.02
06/13/2002	13:43:50	176.21	6.446	12.27	45.02	441.8	0.03
06/13/2002	13:44:50	174.2	6.441	12.241	45.44	442.5	0
06/13/2002		172.42	6.451	12.243	45.92	445.6	0.02
06/13/2002		172.25	6.45	12.247	44.66	448.7	0
06/13/2002		173.8	6.405	12.256	45.32	448.7	-0.01
06/13/2002		168,93	6,392	12.34	45.29	450.8	0.01
06/13/2002		159.74	6.327	12.401	45.83	450.5	0.03
06/13/2002		170.96	6.426	12.279	44.82	449.8	0.01
06/13/2002			6.434	12.265	· 44.33	450.4	-0.01
06/13/2002		168.61	5.42	12.267	47.02	452.3	0.01
06/13/2002		169.58	6.413	12,308	45.68	454.3	0.01
06/13/2002		159.16	6.222	12.529	46.52	444.5	0.02
06/13/2002			6.318	12.429	48.01	427 1	-0.01
06/13/2002	-	164.66		L		433.1	-0.01
06/13/2002	- 1	166.39	6.308	12.418		431.3	0.02
		167.27	6.322				0.05
06/13/2002				12.423			
06/13/2007			6.318				
06/13/200	14:00:51	168.41	6.318	12.420	-0.2	720.0	1
				40.0	46.2	441.4	0.0
	Average	167.5	6.4	12.3	40.2	7417	0.0

Data Summary Run Time	CO	CO2 %	O2 %	THC ppm	NOx ppm	Methane ppm
10% 11:40-11:	59 155.2	3.3	16.7	93.1	209.1	1.35
25% 1218 12		4.0	15.7	83.0	221.2	0.93
50% 1243-13		5.3	13.7	66.6	260.9	0.49
75% 13:10-13:		6.0	12.8	56.1	336.3	0.20
100% 13:41-14:		6.4	12.3	46.2	441.4	0.02

.

Plant Name:	Travis AFB
Sampling Location:	Gen. 2
Date:	06/13/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	CO
Molecular Weight:	28.01

						Calibration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.	Time	(ppm)	Cma	Co	Cm	(% or ppm)
10%	11:40-11:59	155.2	149.4	0.7	151.5	
25%	12:13-12:32	143.8	149.4	0.7	151.5	
50%	12:43-13:02	143.0	149.4	0.7	151.5	
75%	13:10-13:29	· 149.3	149.4	0.7	151.5	147.2
100%	13:41-14:00	167.5	149.4	0.7	151.5	165.3
Average						149.7

Calibration Error Correction

Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Mass Emission Rate (lb/hr)

E(lb/hr)=Cgas*MWgas*Qs(dscfm)*60/385300000

Mass Emission Rate (lb/1000 lb fuel)

E(lb/MMBtu)=E(lb/hr)/Fuel flow * 1000

Pollutant	MWgas
CO	28.01
Methane	16.00
NOx	46.01
SO2	64.06

Plant Name:	Travis AFB
Sampling Location:	Gen. 2
Date:	06/13/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	CO2
Molecular Weight:	

Molecula	r weight.					Calibration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.		(% or ppm)	Cma	Со	Cm	(% or ppm)
	11:40-11:59	3.3	20.5	0.0	20.6	3.3
	12:13-12:32	4.0	20.5	0.0	20.6	
	12:43-13:02	5.3	20.5	0.0	20.6	
	13:10-13:29	6.0	20.5	0.0	20.6	
	13:41-14:00	6.4	20.5	0.0	20.6	
				Avei	age	5.0

<u>Calibration Error Correction</u> Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Plant Name:	Travis AFB
Sampling Location:	Gen. 2
Date:	06/13/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	O2
Molecular Weight:	

	ii vveigrii.			•		Calibration Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.	•	(% or ppm)	Cma	Co	Cm	(% or ppm)
10%	11:40-11:59	16.7	10.5	.0,0	10.6	16.5
25%	12:13-12:32	15.7	10.5	0.0	10.6	15.5
50%	12:43-13:02	13.7	10.5	0.0	10.6	13.6
	13:10-13:29	12.8	10.5	0.0	10.6	12.7
	13:41-14:00	12.3	10.5	0.0	10.6	12.2
	<u> </u>			Ave	rage	14.1

<u>Calibration Error Correction</u> Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Total Hydrocarbon Data Correction

Plant Name:	Travis AFB
Sampling Location:	Gen. 2
Date:	06/13/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	THC
Molecular Weight:	16.00

			Source info	Corrected	
			Stack	Stack	Data
	Start-Stop	Raw Data	Flow	Moisture	Dry Basis
Run No.	Time	(ppm)	(dscfm)	(%)	(ppm)
	11:40-11:59	93.1	304	3.70	96.7
25%	12:13-12:32	83.0	321	4.10	86.5
	12:43-13:02	, 66.6	342	4.70	69.8
	13:10-13:29	56.1	358	5.90	59.6
	13:41-14:00	46.2	386	6.30	
L		····		Average	72.4

Moisture Correction
Cgas(dry)=Cgas(wet)/(1-(% moisture/100))
Mass Emission Rate (lb/hr)
E(lb/hr)=Cgas(dry)*MWgas*Qs(dscfm)*60/385300000

Plant Name:	Travis AFB
Sampling Location:	Gen. 2
Date:	06/13/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	N0x
Molecular Weight:	46.01

						Calibration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata		⁻ Data
Run No.	Time	(% or ppm)	Cma	Co	Cm	(% or ppm)
10%	11:40-11:59	209.1	448.0	2.5	440.5	211.3
25%	12:13-12:32	221.2	448.0	2.5	440.5	223.7
50%	12:43-13:02	260.9	448.0	2.5	440.5	264.3
75%	13:10-13:29	336.3	448.0	2.5	440.5	341.4
100%	13:41-14:00	441.4	448.0	2.5	440.5	449.0
				Ave	rage	297.9

Calibration Error Correction

Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Mass Emission Rate (lb/hr)

E(lb/hr)=Cgas*MWgas*Qs(dscfm)*60/385300000

Mass Emission Rate (lb/1000 lb fuel)

E(lb/MMBtu)=E(lb/hr)/Fuel flow * 1000

Pollutant	MWgas
CO	28.01
Methane	16.00
NOx	46.01
SO2	64.06

CEM - GASEOUS POLLUTANTS (CO, CO₂, O₂, THC, NO_X) -ELMENDORF AFB

Plant Name
Sampling Location
Date
Run Number
Start Time

Mark Wade	Tom Gerstle	Doug Allen	030174.0003.002
Plant Rep.	Team Leader	CEM Operator	Project Number

-	Analyzer	Analyzer
	Number	Span
8		500
C02		52
02		52
THC		300
Š		1000

	Calibration	CALIBRATIC	ION ERROR CHECK	HECK		SYSTEM C	SYSTEM CAL CHECK				Calibration
		Calibration		Analyzer		PRETEST		POST TEST	Ŀ		Correction
	Specification	Value	Cylinder	Calibration	Difference	System	Syst. Bias	System	Syst. Bias	Drift	Factors
	(% of Span)	(% or ppm)	Number (1)	Response	(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Span)	
CO Zero	0	0		0.4	0.2	6.0	0.1	0.4	0.0	0.1	Co=0.4
COLow	~30	30.1		29.5	-0.3						
CO Mid	09~	59.4		58.5	-0.4						
CO High	80-100 (2)	149.4		149	-0.2	149	0.0	148	-0.5	-0.5	Cm=148.5
CO2 Zero	0	0		-0.2	8.0-	-0.2	0.0	-0.3	0'0	0.0	-Co=0.2
CO2 Low	NR										
CO2 Mid	40-60	6.6		10	0.4	10.1	0.4	10	0.0	-0.4	Cm=10.1
CO ₂ High	80-100	2		20.4	-0.4						
O2 Zero	0	0		-0.1	-0.4	0	0.4	0	0.4	0.0	Co=0.0
O2 Low	NR										
O2 Mid	40-60	10.5		10.5	0.0						
O2 High	80-100	20		19.9	-0.4	20	. 0.4	19.9	0.0	-0.4	Cm=20.0
THC Zero	0	0		-0.2		2.7	1.0	6.3		1.2	
THC Low	25-35	49.6		48.4	-2.4	50.1	0.6				
THC Mid	45-55	124.6		121	-2.9	123.5	0.8	127		1.2	
THC High	80-90	298.6		297		295	-0.7				
NOx Zero	0	0		0.4	0.0	1	0.1	0.4	0.0	-0.1	Co=0.7
NOx Low	20-30 (3)										
NO _x Mid	45-55	448		444	-0.4	445	0.1	445	0.1	0.0	Cm=445.0
NOx High	06-08	885.5		883	-0.3						

Plant Name
Sampling Location
Date
Run Number
Start Time

Imendorf AFB	Load - Generator 1	06/25/02	2	0845	0630
Elmendo	10% Los	06/2			

Mark Wade	Tom Gerstle	Doug Allen	030174.0003.(
Plant Rep.	Team Leader	CEM Operator	Project Number	

	Analyzer	Analyzer
	Number	Span
8		200
CO2		25
02		52
THC		300
Š		1000

	Calibration	CALIBRATION	ON ERROR CHECK	HECK		SYSTEM CAL CHECK	AL CHECK				Calibration
		Calibration		Analyzer		PRETEST		POST TEST			Correction
	Specification	Value	Cylinder	Calibration	Difference	System	Syst. Bias	System	Syst. Bias	Drift	Factors
	(% of Span)	(% or ppm)	Number (1)	Response	(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Span)	
CO Zero	0			9.0	0.2	0.4	0.0	0.3	-0.1	-0.1	Co=0.4
COLow	~30	30.1		29.5	-0.3						
CO Mid	09~	59.4		58.5	-0.4						
CO High	80-100 (2)	149.4		149	-0.2	148	-0.5	148	-0.5	0.0	Cm=148.0
CO2 Zero	0	0		-0.2	-0.8	-0.2	0.0	-0.1	0.4	0.4	-Co=0.2
CO2 Low	NR										
CO2 Mid	40-60	6.6		10	0.4	10	0.0	1.0	0.0	0.0	Cm=10.0
CO2 High	80-100	20.5		20.4	-0.4						
O2 Zero	0	0		-0.1	-0.4	0	0.4	0	0.4	0.0	Co=0.0
O2 Low	NR										
O2 Mid	40-60	10.5		10.5	0.0						
O2 High	80-100	20		19.9	-0.4	19.9	0.0	19.9	0.0	0.0	Cm=19.9
THC Zero	0	0		-0.2		6.3	2.2	6.4		0.0	
THC Low	25-35	49.6		48.4	-2.4						
THC Mid	45-55	124.6		121	-2.9	127	2.0	128		0.3	
THC High	80-90	298.6		297							
NOx Zero	0	0		0.4	0.0	0.4	0.0	0.4	0.0	0.0	Co=0.4
NOx Low	20-30 (3)										
NO _x Mid	45-55	448		444	-0.4	445	0.1	444	0:0	-0.1	Cm=444.5
NOx High	06-08	885.5		883	-0.3						

Analyzer Analyzer

Plant Name
Sampling Location
Date
Run Number
Start Time
Stop Time

Elmendorf AFB	3
10% Load - Generator 1	1005
06/25/02	1050

Colibration			ATO CALL OF THE CA	
i				
1000	J	NOX		1
300		2 THC	030174.0003.00	Project Number
25	0.	05	Doug Allen	CEM Operator
25		C05	Tom Gerstle	Team Leader
200		8	Mark Wade	Plant Rep.
Span	Number			

	Calibration	CALIBRATION	ION ERROR CHECK	CHECK		SYSTEM CAL CHECK	AL CHECK				Calibration
	Gas	Calibration		Analyzer		PRETEST	•	POST TEST	- 1		Correction
	Specification	_	Cylinder	Calibration	Difference	System	Syst. Bias	System	Syst. Bias	Druft	Factors
,	(% of Span)	(% or ppm)	Number (1)	Response	(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Span)	
CO Zero	0			0,4	0.2	0.3	0.1	0.3	-0.1	0.0	Co=0.3
COLow	~30	30.1		29.5	-0.3						
CO Mid	09~	59.4		58.5	-0.4						
CO High	80-100 (2)	149.4		149	-0.2	148	-0.5	148	-0.5	0.0	Cm=148.0
CO2 Zero	0	0		-0.2	-0.8	-0.1	0.4	-0,1	0.4	0.0	-Co=0.1
CO2 Low	NR										
CO2 Mid	40-60	6'6		01 .	0.4	10	0.0	10	0.0	0.0	Cm=10.0
CO2 High	80-100	20.5		20.4	-0.4						
O2 Zero	0	0		-0.1	-0.4	0	0.4	0	0.4	0.0	Co=0.0
O2 Low	NR										
O2 Mid	40-60	10.5		10.5	0.0						
O2 High	80-100	20		19.9	-0.4	19.9	0.0	19.9	0.0	0.0	Cm=19.9
THC Zero	0	0		-0.2		6.4	2.2	9.9		0.1	
THC Low	25-35	49.6		48.4	-2.4						
THC Mid	45-55	124.6		121	-2.9	128	2.3	129		0.3	
THC High	06-08	298.6		297							
NO _x Zero	0	0		0.4	0.0	0.4	0.0	0.4	0.0	0.0	Co=0.4
NOx Low	20-30 (3)										
NO _x Mid	45-55	448		444	-0.4	444	0.0	444	0.0	0.0	Cm=444.0
NO _x High	80-90	885.5		883	-0.3						

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 10% Load
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

Run 1		СО	CO2	02	THC	NOx	Methane
Date	Time	ppm	%	%	ppm	ppm	ppm
06/25/2002	7:30:46	136.07	3.24	16.45	95.59	181.5	1.45
06/25/2002	7:31:46	133.82	3.257	16.459	95.69	181.5	1.48
06/25/2002	7:32:46	132.87	3.236	16.465	95.34	181 5	1.47
06/25/2002	7:33:44	130 45	3.233	16.472	94.39	180.8	1.46
06/25/2002	7:34:44	130 18	3.251	16.471	93.38	181	1.47
06/25/2002	7:35:44	129.31	3.221	16.475	94 51	180.4	1.45
06/25/2002	7:36:44	128.78	3.233	16.481	94.19	179.5	1.45
06/25/2002	7:37:44	127.65	3.227	16.479	94.29	179.5	1.44
06/25/2002	7:38:44	128.68	3.219	16.482	94.14	179.5	1.45
06/25/2002	7:39:44	128.18	3.237	16.477	93.38	179.5	1.45
06/25/2002	7:40:44	128.12	3.209	16.481	93.36	179.5	1.45
06/25/2002	i	128.54	3,235	16.479	94.14	179.5	1.45
06/25/2002	7:42:44	127.37	3.222	16.478	94.81	179.3	1.43
06/25/2002	2	126.95	3.224	16.476	94.29	179.5	1.44
06/25/2002		126.27	3.231	16.476	94.25	179.5	1.44
06/25/2002		125.67	3.205	16.481	93.31	179.5	1.41
		126.04	3.228	16.488	93.3	179	1.41
06/25/2002 06/25/2002		126.35	3.209	16.487	96.39	178.1	1.37
		126.44	3,222	16.484	95.94	178	1.39
06/25/2002		124.33	3.222	16.482	107.65	178.5	1 36
06/25/2002		124.09	3,207	16.48	102.03	178.1	1.49
06/25/2002		124.09	3,229		104.19	177.5	1.52
06/25/2002		124.76	3.205		102.06	177.3	1.45
06/25/2002		124.76	3.222	16.483	101.26	177.2	1.39
06/25/2002	1	123.23	3.214		101.53	177.5	1.38
06/25/2002		123.23	3.212		102.54	176.9	1.41
06/25/2002	1	123.88	3.238	-	101.95	176.5	1.44
06/25/2002		124.08	3.214		101.8	176.5	1,44
06/25/2002		123.55	3.23		100 91	176.6	1.36
		122.66	3.223		99.62	177.4	1.39
06/25/2002		122.74	3.226		99.64	176.5	1.41
06/25/2002		123.2	3.236		101.84	176.5	1.42
06/25/2002	1	121.84	3.230		102.39		1.39
06/25/2002	1	121.29	3.24		101.11	176.5	1.4
06/25/2002		121.29	3.215		101.28		1.37
06/25/2002			3.213		101.68		1.38
06/25/2002		121.42	3.226 3.225		105.11	176	1.41
06/25/2002		121.49	3.225		105.11	1	1.4
06/25/2002		121.2			103.52	175.5	1.39
06/25/2002		122.23	3.229		104.04		1.41
06/25/2002		121.48	3.205 3.222	i 1	108.33	175.5	1 39
06/25/2002		122.04			103.74		1.38
06/25/2002	1	121.85	3.216		103.63	175.5	1.30
06/25/2002	4	121.87	3.211		103.7	175.5	1.39
06/25/2002		121.93	3.229		105.08	i	1 38
06/25/2002	8:14:44	121.68	3 209	16.474	100.08	1/4.5	'36
L	Average	125.3	3.2	16.5	99.3	177.8	1.4

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 10% Load
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

Run 2	Γ	co	CO2	O2	THC	NOx	Methane
Date	Time	ppm	%	%	ppm	ppm	ppm
06/25/2002	8:45:36	121.13	3.237	16 448	100	171 5	1.43
06/25/2002	8:46:36	121.33	3.233	16.447	101.36	172.2	1.45
06/25/2002	8:47:36	121.23	3.234	16.445	101.37	172.1	1.43
06/25/2002	8:48:36	120.83	3.246	16.439	101.44	170.9	1.41
06/25/2002	8:49:37	119.76	3.226	16.44	106.78	170.5	1.37
06/25/2002	8:50:37	119	3.251	16.439	109 37	170.5	1.41
06/25/2002	8:51:37	118.64	3.238	16.439	104 81	170.5	1.42
06/25/2002	8.52.37	118.04	3.242	16.438	104.53	170.5	1.42
06/25/2002	8:53:37	118.27	3.247	16.441	106.05	170.5	1.45
06/25/2002	8:54:37	120.1	3.228	16.443	103.95	170.5	1.46
06/25/2002	8:55:37	119 54	3.251	16.443	102.71	169.7	1.46
06/25/2002	8:56:37	119 07	3.232	16.44	103.32	170 5	1.45
06/25/2002	8:57:37	118.92	3.243	16.44	102.54	169.5	144
06/25/2002	8:58:37	118.69	3.244	16.436	102.28	169.7	1.44
06/25/2002	8:59:37	118.46	3.232	16.441	101.78	170.9	1.43
06/25/2002	9:00:37	118.76	3.252	16 438	101.78	170.5	1.42
06/25/2002	9:01:37	119.39	3.226	16.441	101.26	170.5	1.39
06/25/2002	9:02:37	119.47	3.245	16.442	101 83	170.5	1.4
06/25/2002	9:03:37	119.61	3.238	16.438	101.97	170.5	1.41
06/25/2002	9:04:37	118.9	3.236	16.445	100.58	169.7	1 39
06/25/2002	9:05:37	118.37	3.252	16.433	101.67	169.5	1.41
06/25/2002	9:06:37	118.07	3.228	16.439	102.22	170.5	1.38
06/25/2002	9:07:37	117.8	3.254	16.436	103.07	170.2	1.41
06/25/2002	9:08:38	117.14	3.239	16.44	102.41	169.8	1.41
06/25/2002	9:09:38	117.07	3.246	16.425	100.63	170	1.42
06/25/2002	9:10:38	116.53	3.253	16.418	100.22	169.5	1.41
06/25/2002	9:11:38	116.45	3.231	16.433	100.31	169.5	1.39
06/25/2002	9:12:38	116.87	3.257	16.432	100.21	169.5	1.42
06/25/2002	9:13:38	117.35	3.236	16.435	107.4	169.5	1.39
06/25/2002	9:14:36	117.29	3.242	16.436	102.58	169.4	1.4
06/25/2002	9:15:36	116.32	3.257	16.437	103.31	169.5	1 39
06/25/2002		116.22	3.233	16.43		169.5	1.39
06/25/2002		115.61	3.257	16.426	101.55	169.5	1.4
06/25/2002		115.84	3.243	16.416	102.37	170.1	1.37
06/25/2002	1 1	116.29	3.253	16.417	100.44	171.3	1 39
06/25/2002		115.34	3.268	16.433	100.6		1.39
06/25/2002		115.48	3.247	16.427	100.38		1.4
06/25/2002		114.72	3.26	16.428	101.51	171.5	1.41
06/25/2002		115.25	3.255	16.428		171.5	
06/25/2002		115.52	3.248	16.425	101.99	171.2	1.4
06/25/2002		115.88		1			
06/25/2002		115.04					
06/25/2002	•	114.66					
06/25/2002	4	114.44					
06/25/2002	9:29:37	113.64	3.257	16.423	101.46	171.5	1.39
	<u> </u>	1			455.5	470-	
	Average	117.6	3.2	16.4	102.3	170.5	1.4

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 10% Load
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

Run 3	ſ	·CO	CO2	O2	THC	NOx	Methane
Date	Time	ppm	%	%	ppm	ppm	ppm
06/25/2002	10:05:17	114.97	3,248	16.453	86 67	173	1.25
06/25/2002	10:06:17	115.39	3.231	16.453	89.02	173.1	1.25
06/25/2002	10:07:17	116.1	3.24	16.459	87.49	173.5	1.25
06/25/2002	10:08:17	116.32	3.238	16.457	89.91	173.1	1.24
06/25/2002	10:09:17	115.83	. 3 224	16.464	90.15	172.7	1.24
06/25/2002	10:10:17	116.13	3.246	16.46	89.85	173.5	1.27
06/25/2002	10:11:17	115.29	3.223	16.462	88.4	173.5	1.25
06/25/2002	10:12:17	115.56	3.251	16.443	88.98	172.9	1.26
06/25/2002	10:13:17	114.56	3.245	16.454	89.11	173.1	1.24
06/25/2002	10:14:17	113.73	3.23	16.461	89.61	173.1	1.24
06/25/2002	10:15:17	113 57	3.247	16.458	89.77	172.5	127
06/25/2002	10:16:17	113.59	3.219	16.461	89.51	172.5	1.25
06/25/2002	10:17:18	113.63	3.245	16.458	88.71	172.5	1.26
06/25/2002	10:18:18	113.83	3.233	16.459	88.84	172.5	1.24
06/25/2002	10:19:18	114.1	3.241	16.462	89.35	172.5	1.27
06/25/2002	10:20:18	114.42	3.25	16.451	89.39	171.8	1.26
06/25/2002	10:21:18	113.21	3,231	16.459	88.98	172.1	1.24
06/25/2002	10:22:18	112.97	3.257	16.449	88.4	172.5	1.24
06/25/2002	10:23:18	113.19			88.01	171.6	1 22
06/25/2002	10:24:18	112.02			87.45	172.3	1.21
06/25/2002	10:25:18	111.96	i i	16.448	87.51	172.5	1.21
06/25/2002	10:26:18	112 92			93.22	172	1 32
06/25/2002	10:27:18	112.84	B i		103.09	171.5	1.49
06/25/2002	10:28:18	113.48	3.239	16.429	103.78	171.5	1.75
06/25/2002	10:29:18	112.91	3.268	16.439	99.68	172	
06/25/2002	10:30:18	112.5	3.255	16 447	100.1	172	1.46
06/25/2002	10:31:18	112 04	3.247	16.446	98.57	172.3	1.45
06/25/2002	10:32:18	112.66	3.263		97.39		
06/25/2002	10:33:18	113.52			101.77		
06/25/2002	10:34:18	112 93			99.91	171.5	
06/25/2002	10:35:18	112.92	3.244	16.456	101.39		
06/25/2002	10:36:18				102.08		
06/25/2002	10:37:19	113.06	3.252	16.45	100.87	171.4	
06/25/2002	10:38:19			16.435	99.77		
06/25/2002	10:39:19				100.35		
06/25/2002	10:40:19			16.443	98.54		1.42
06/25/2002	10:41:19			16.437	99.31		
06/25/2002	10:42:17				98.37		
06/25/2002	10:43:17	111.54	3.246	16.432	99.59		
06/25/2002	10:44:17				100.15		1.43
06/25/2002	10:45:17	112.1			98.85		1.42
06/25/2002	10:46:17	111.79			100.14		
06/25/2002	10:47:17	112.39	3.273		102.07		9
06/25/2002	10:48:17	111.42			100.72		
06/25/2002	10:49:17	112.38	3.261	16.449	103.57	171.6	1.48
		440.0		16.4	94.9	172.3	1.4
	Average	113.3	3.2	16.4	34.9	1/2.3	1

Data Sum	mary	CO	CO2	O2	THC	NOx	Methane
Run	Time	ppm	%	%	ppm	ppm	ppm
Run 1	07:30-08:14	125.3	3.2	16.5	99.3	177.8	1.42
Run 2	08:45-09:29	117.6	3.2	16.4	102.3	170.5	1.41
Run 3	10:05-10:49	113.3	3.2	16.4	94.9	172.3	1.36

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 10% Load
Date:	06/25/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	CO
Molecular Weight:	28.01

**	noiceaidi iii	oigi it.	20.01				
-					•		Calibration
							Corrected
Г		Start-Stop	Raw Data	Calibration D	ata		Data
l	Run No.	Time	(ppm)	Cma	Со	Cm	(% or ppm)
Γ	1	07:30-08:14	125.3	149.4	0.4	148.5	126.00
T	2	08:45-09:29	117.6	149.4	0.4	148.0	118.65
Γ	3	10:05-10:49	113.3	149.4	0.3	148.0	114.30
_					Ave	rage	119.65

Calibration Error Correction

Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Mass Emission Rate (lb/hr)

E(lb/hr)=Cgas*MWgas*Qs(dscfm)*60/385300000

Mass Emission Rate (lb/1000 lb fuel)

E(lb/MMBtu)=E(lb/hr)/Fuel flow * 1000

Pollutant	M Wgas
CO	28.01
Methane	16.00
NOx	46.01
SO2	64.06

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 10% Load
Date:	06/25/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Poliutant:	CO2
Molecular Weight:	

	ar weight.					Calibration Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.		(% or ppm)	Cma	Co	Cm	(% or ppm)
1	07:30-08:14	3.2	9.9	-0.2	10.1	3.31
2	08:45-09:29	3.2	9.9	-0.2	10.0	3.31
3	10:05-10:49	3.2	9.9	-0.1	10.0	3.28
				Ave	rage	3.30

Calibration Error Correction
Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 10% Load
Date:	06/25/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	O2
Molecular Weight:	

			•			Calibration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.	Time	(% or ppm)	Cma	Co	Cm	(% or ppm)
1	07:30-08:14	16.5	20.0	0.0	20.0	16.51
2	08:45-09:29	16.4	20.0	0.0	19.9	16.52
3	10:05-10:49	16.4	20.0	0.0	19.9	16.53
Later				Ave	rage	16.52

<u>Calibration Error Correction</u> Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Total Hydrocarbon Data Correction

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 10% Load
Date:	06/25/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	THC
Molecular Weight:	16.00

•			Source Info	rmation	Corrected
			Stack	Stack	Data
	Start-Stop	Raw Data	Flow	Moisture	Dry Basis
Run No.		(ppm)	(dscfm)	(%)	(ppm)
	07:30-08:14	99.3	344	3.77	103.21
2	08:45-09:29	102.3	287	3.75	106.32
3	10:05-10:49	94.9	287	3.84	
<u></u>	<u> </u>			Average	102.73

Moisture Correction
Cgas(dry)=Cgas(wet)/(1-(% moisture/100))
Mass Emission Rate (lb/hr)
E(lb/hr)=Cgas(dry)*MWgas*Qs(dscfm)*60/385300000

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 10% Load
Date:	06/25/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	N0x
Molecular Weight:	46.01

Molecular	recigiti.	40.01				Calibration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.	Time	(% or ppm)	Cma	Co	Cm	(% or ppm)
1	07:30-08:14	177.8	448.0	0.7	445.0	178.62
2	08:45-09:29	170.5	448.0	0.4	444.5	171.60
3	10:05-10:49	172.3	448.0	0.4	444.0	173.60
L		2		Ave	rage	174.60

Calibration Error Correction

Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Mass Emission Rate (lb/hr)

E(lb/hr)=Cgas*MWgas*Qs(dscfm)*60/385300000

Mass Emission Rate (lb/1000 lb fuel)

E(lb/MMBtu)=E(lb/hr)/Fuel flow * 1000

Pollutant	MWgas
CO	28.01
Methane	16.00
NOx	46.01
SO2	64.06

D-1	Days	E-10-1			Но	rsepower:	18 14	
Date: 06/25/2002	Run: Flow (dscfm):	343.6			Fuel Usag	je (gal/hr):	3.00	
	Moisture (%): Pollutant:	3.77 NO x	СО	NMHC	THC	Methane	CO2	O2
	Concentration (ppm or %)	178.62 0.44	126.00 0.19	101 7 9 0.09	103.21 8.78E-02	1.42 1.22E-03	3.31 0.01	16.51 0 03
	Mass Rate (lb/hr) Mass Rate (lb/gai fuel)	0.44	0.06	0.03	0.03	0.00	0.00	0.01
i	Mass Rate (gr/hp*hr)	11.01	4.73	2.17	2.20	0.03	0.20	0.71
							10.22	

Date: 06/25/2002	Run: Flow (dscfm):	E-10-2 287.4				rsepower: je (gal/hr):	19.23 3.69	
	Moisture (%): Pollutant: Concentration (ppm or %) Mass Rate (lb/hr) Mass Rate (lb/gal fuel) Mass Rate (gr/hp*hr)	3.75 NOx 171 60 0.35 0.10 8.34	CO 118.65 0.15 0.04 3.51	NMHC 104 91 0.07 0.02 1.76	THC 106.32 7.57E-02 0.02 1.79	Methane 1.41 1.01E-03 0.00 0.02	3.31 0.01 0.00 0.15	O2 16.52 0.02 0.01 , 0.56

Date: 06/25/2002	Run: Flow (dscfm):	E-10-3 286.8				rsepower: ge (gal/hr):	16.84 2 78	
	Moisture (%): Pollutant: Concentration (ppm or %) Mass Rate (lb/hr) Mass Rate (lb/gal fuel) Mass Rate (gr/hp*hr)	3.84 NOx 173.60 0.36 0.13 9.62	CO 114.30 0.14 0.05 3.85	NMHC 97.28 0.07 0.02 1.86	THC 98.64 7.00E-02 0.03 1.89	Methane 1.36 9.72E-04 0.00 0.03	3.28 0.01 0.00 0.17	O2 16.53 0.02 0.01 0.64

.

Elmendorf AFB 25% Load - Gener 06/25/2002 1125 1210 Plant Name
Sampling Location
Date
Run Number
Start Time

erator 1	Plant Rep. Team Leader CEM Operator
	Project Number

				-
Mark Wade	Tom Gerstle	Dong Allen	030174.0003.002	

•		
	Analyzer	Analyzer
	Number	Span
8		200
202		52
020		97
THC		300
Š		1000

	Calibration	CALIBRATI	CALIBRATION FRROR CHECK	HECK		SYSTEM CAL CHECK	AL CHECK				Calibration
		Calibration		Analyzer		PRETEST		POST TEST			Correction
	Specification		Cylinder	Calibration	Difference	System	Syst. Bias	System	Syst. Bias	Drift	Factors
	(% of Span)	<u>8</u>		Response	(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Span)	
CO Zero	0			0.4	0.2	0.3	0.1	0.4	0.0	0.1	Co=0.4
CO Low	~30	30.1		29.5	-0.3						
CO Mid	09~	59.4	4	58.5	-0.4						
CO High	80-100 (2)	149.4		149	-0.2	148	-0.5	148	-0.5		기
CO2 Zero	0	0		-0.2	-0.8	-0.1	0.4	-0.1	0.4	0.0	-Co=0.1
CO2 Low	NR										
CO2 Mid	40-60	6.6		01	0.4	10	0.0	01	0.0	0.0	Cm=10.0
CO2 High	80-100	20.5		20.4	-0.4						
O2 Zero	0	0		-0.1	-0.4	0	0.4	0	0.4	0.0	Co=0.0
O2 Low	NR										
O2 Mid	40-60	10.5		10.5	0.0						
O2 High	80-100	20		19.9	-0.4	19.9	0.0	20	0.4		Cm=20.0
THC Zero	0	0		-0.2		9.9	2.3	6.8		0.1	
THC Low	25-35	49.6		48.4	-2.4						
THC Mid	45-55	124.6		121	-2.9	129	2.7	130		0.3	
THC High	06-08	298.6		297							
NOx Zero	0	0		0.4	0.0	0.4	0.0	0.4	0.0	0.0	Co=0.4
NOx Low	20-30 (3)										×.
NO _x Mid	45-55	448		444	-0.4	444	0.0	443	-0.1	1.0-	Cm=443.5
NOx High	80-90	885.5		883	-0.3						

Plant Name
Sampling Location
Date
Run Number
Start Time

Elmendorf AFB	25% Load - Generator 1	06/25/02	2	1245	1330

zer Analyzer	 ser Span	200	25	25	000
Analyzer	Number	8	CO2	02	Š

	Calibration	CALIBRATIO	ON ERROR CHECK	HECK		SYSTEMC	SYSTEM CAL CHECK				Calibration
		Calibration		Analyzer		PRETEST		POST TEST	ا		Correction
	Specification	Value	Cylinder	Calibration	Difference	System	Syst. Bias	System	Syst. Bias	Drift	Factors
	(% of Span)	(% or ppm)	Number (1)	Response	(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Span)	
CO Zero	0	0		0.4	0.2	0.4	0.0	0.4	0.0	0.0	Co=0.4
CO Low	~30	30.1		29.5	-0.3						
CO Mid	09~	59.4		58.5	-0.4						
CO High	80-100 (2)	149.4		149	-0.2	148	-0.5	148	-0.5	0.0	Cm=148.0
CO2 Zero	0	0		-0.2	-0.8	-0.1	0.4	-0.2	0.0	-0.4	-Co=0.2
CO2 Low	NR										
CO2 Mid	40-60	6.6		10	0.4	10	0.0	10.1	0.4	0.4	Cm=10.1
CO2 High	80-100	20.5		20.4	-0.4						
O2 Zero	0	0		-0.1	-0.4	0	0.4	0	0.4	0.0	Co=0.0
O2 Low	NR										
O2 Mid	40-60	10.5		10.5	0.0						
O2 High	80-100	20		. 19.9	-0.4	20	0.4	20	0.4	0.0	Cm=20.0
THC Zero	0 0	0		-0.2		8.9	2.3	6.1		-0.2	
THC Low	25-35	49.6		48.4	-2.4		·				
THC Mid	45-55	124.6		121	-2.9	130	3.0	126		-1.3	
THC High	80-90	298.6		297							
NOx Zero	0	0		0.4	0.0	0.4	0.0	0.4	0.0	0.0	Co=0.4
NOx Low	20-30 (3)										888 L
NO _x Mid	45-55	448		444	-0.4	443	-0.1	443	-0.1	0.0	Cm=443.0
NOx High	80-90	885.5		883	-0.3						

Plant Name
Sampling Location
Date
Run Number
Start Time

Mark Wade	Tom Gerstle	Doug Allen	030174.0003.002
Plant Rep.	Team Leader	CEM Operator	Project Number

	Analyzer	Analyzer
	Number	Span
ပ္ပ		200
C02		25
02		25
THC		300
Š		1000

	Calibration CALIBRATION	CALIBRATI	ON ERROR CHECK	HECK		SYSTEM CAL CHECK	AL CHECK				Calibration
	Gas	Calibration		Analyzer		PRETEST		POST TEST			Correction
	Specification		Cylinder	Calibration	Difference	System	Syst. Bias	System	Syst. Bias	Drift	Factors
	(% of Span)	8	Number (1)	Response	(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Span)	
CO Zero	0			0.4	0.2	0.4	0.0	0.4	0.0	0.0	Co=0.4
COLow	~30	30.1		29.5	-0.3						
CO Mid	09~	59.4		58.5	-0.4						
CO High	80-100 (2)	149.4		149	-0.2	148	-0.5	147	-1.0	-0.5	Cm=147.5
CO2 Zero	0	0		-0.2	-0.8	-0.2	0.0	-0.2	0.0	0.0	-Co=0.2
CO2 Low	NR										1
CO2 Mid	40-60	6.6		10	0.4	10.1	0.4	10.1	0.4	0.0	Cm=10.1
CO2 High	80-100	20.5		20.4	-0.4						
O2 Zero	0	0		-0.1	-0.4	0	0.4	0	0.4	0.0	Co=0.0
O2 Low	NR										
O2 Mid	40-60	10.5		10.5	0:0						0
O2 High	80-100	20		19.9	-0.4	20		20	0.4		Cm=20.0
THC Zero	0	0		-0.2		6.1	2.1	6.7		0.2	
THC Low	25-35	49.6		48.4						· ·	
THC Mid	45-55	124.6		121	-2.9	126	1.7	126		0.0	
THC High	06-08	298.6		297							
NOx Zero	0	0		0.4	0.0	0.4	0.0	0.4	0.0	0.0	C0=0.4
NOx Low	20-30 (3)										23
NOx Mid	45-55	448		444		443	-0.1	442	-0.2	-0.1	Cm=442.3
NOx High	80-90	885.5		883	-0.3						

Plant Name:	Eimendorf AFB
Sampling Location:	Gen. 1 - 25% Load
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

Run 1		CO	CO2	02	THC	NOx	Methane
Date	Time	ppm	%	_%_	ppm	ppm	ppm
06/25/2002	11:25:38	104.2	4.116	15.185	88.42	197.5	1 13
06/25/2002	11:26:38	104.98	4.13	15.2	87.67	197.9	1 14
06/25/2002	11:27:38	103.93	4.13	15.189	87.08	197 7	1 13
08/25/2002	11:28:38	102.88	4,123	15.189	86.75	197.6	1 12
06/25/2002	11:29:38	102.88	4.143	15.189	87 18	197.6	1 12
06/25/2002	11:30:38	102.38	4.121	15.19	87.29	197.6	1 11
06/25/2002	11:31:38	102.77	4,141	15.184	87.92	197.6	1 11
06/25/2002	11:32:38	102.63	4.132	15.189	87.34	197.6	1 11
06/25/2002	11:33:38	102.22	4.128	15.188	85.31	197.5	1.09
06/25/2002	11:34:38	101.92	4,145	15.187	86.77	197.6	1.08
06/25/2002	11:35:38	101.66	4.127	15,189	85.83	197.6	1.09
06/25/2002	11:36:38	101.47	4,153	15.18	85.53	197.6	1,1
06/25/2002	11:37:39	101.36	4.138	15.188	86.54	198.4	1.09
06/25/2002	11:38:39	101.32	4.138	15.193	86.91	198.6	1.1
06/25/2002		101.5	4.143	15.192	85.71	197.6	1.09
06/25/2002	11:40:39	101 18	4.12B	15.19	86.32	197 1	1.11
06/25/2002		101.36	4.155	15.195	86.05	196.6	1.1
06/25/2002	11:42:39	101.62	4,129	15,193	85.48	197 1	1.08
06/25/2002		101.08	4.138	15.202	86	196.1	1.1
06/25/2002		101 76	4.142		84.88	195.6	1.09
06/25/2002		101.25	4.131	15,195	84.13	196.6	1.06
06/25/2002		100.91	4,151	15.2	93.87	196.6	1.03
06/25/2002		101 16	4.124	15.2	86.54	195.7	1.07
06/25/2002		101.45	4.144	15,198	86.31	195.9	1.08
06/25/2002			4.138	15,189	85.38	196.6	1.08
06/25/2002		101.09	4.14	15.194	85.29	196.6	1.06
06/25/2002			4.153		86.18	196	1.06
	1 1		4.13		85.5	195.6	1.1
08/25/2002	4	100.78	4.154	15.2	83.72	196.3	1.08
08/25/2002	1		4.131		82.88	196.6	1.06
08/25/2002		101.05	4.131		82.7	196.5	1.07
06/25/2002			4.138		83.82	196.3	1.05
06/25/2002			4.13		83.51	195.8	1.06
08/25/2002		101.4	4.154		83.01	196.2	1.06
08/25/2002		101.22	4.137		83.73	195.6	1.05
06/25/2002			4.128		83.86	195.6	1.03
08/25/2002		101.23	4.15		84.27	194.6	1.08
06/25/2002		101.3	4.128		83.38	194.6	1.05
06/25/2002		101.0	4,158		82.98	195.4	1.07
08/25/2002	1		4,152	15.187	82.5	195.6	1.06
06/25/2002		101.48	4.145		87.37	195.6	1.05
06/25/2002		101.9	4.154		83.55	195.1	1.06
06/25/2002		101.59	4.132	15.19	85.11	195.2	1.07
06/25/2002			4.164	15,191	83.72	194.8	1.00
06/25/2002	,	102.04	4.142	15.196	84.62	195.6	1.08
1 2222002	1						
L	Average	101.7	4.1	15.2	85.5	196.5	1.1

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 25% Load
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

Run 2	Г	co	COS	02	THC	NOx	Methane
Date	Time	ppm	%	%	ppm	ppm	ppm
06/25/2002	12:45:15	101.49	4.15	15.185	90.82	195.7	1 11
06/25/2002	12:46:15	100.52	4.13	15.188	90.77	195.9	1 11
06/25/2002	12:47:15	100.55	4.156	15.185	91.56	195.6	1 13
06/25/2002	12:48:13	101.14	4.139	15.175	89.37	195.6	1 13
06/25/2002	12:49:13	101.1	4.139	15.178	88.53	195.6	1 13
06/25/2002	12:50:13	101.07	4.161	15.168	88.07	195.9	1 12
06/25/2002	12:51:13	100.97	4.136	15.168	88	197	1 11
08/25/2002	12:52:13	100.94	4.158	15.172	88.56	197.5	1.12
06/25/2002	12:53:13	100.8	4.147	15.183	86.75	197	1.1
06/25/2002	12:54:14	100.9	4,138	15.187	88.64	196.5	1.06
06/25/2002	12:55:14	100.72	4.153	15.182	87.02	196.5	1.09
06/25/2002	12:56:14	100.27	4.13	15.189	87.2	197	1.08
06/25/2002	12:57:14	100.84	4.154	15.178	89.5	196.4	1.08
06/25/2002	12:58:14	101.18	4.143	15.175	88.98	195.6	1.09
06/25/2002	12:59:14	101.3	4.149	15.172	88.03	195.6	11
06/25/2002	13:00:14	100.87	4.155	15.185	87.58	194.6	11
06/25/2002	13:01:14	101.69	4.128	15.183	88.85	194.5	1.1
06/25/2002	13:02:14	107 17	4.156	15.18	94.18	194.9	1 13
06/25/2002	13:03:14	108.34	4.136	15.184	95.37	194.7	1 14
08/25/2002	13:04:14	109.14	4.141	15.199	91.66	196.6	1 13
06/25/2002	13:05:14	103.76	4.139	15,202	88.37	198.4	1.13
06/25/2002		101.3	4.122	15,192	86.28	199.4	1.1
08/25/2002		101 13	4.153	15.192	86.25	199.9	1 11
06/25/2002		100.63	4,116	15.193	85.86	201 1	1,07
06/25/2002		100.98	4.141	15,194	85.18	199.6	11
06/25/2002	13:10:14	100.53	4.132	15.2	85.15	199.2	1.1
06/25/2002		100.62	4.129	15.204	85.34	198.5	1.07
06/25/2002	13:12:14	99.88	4.134	15.212	84.3	198.5	1.08
06/25/2002	13:13:14	100.05	4.107	15.21	83.97	197.5	1.07
06/25/2002		99.53	4.13	15.21	84.66	197.5	1.06
06/25/2002		99.45	4.123	15.199	84.13	1977	1.08
06/25/2002	13:16:15	98.88	4,123	15,221	82.67	198.5	1.06
06/25/2002		98.94	4.127	15,199	83.71	198	1 18
06/25/2002		99.54	4.117	15.193	82.85	197.8	1.04
06/25/2002		98.68	4,143		84.91	198.5	1.1
06/25/2002		98.6	4,112	15.21	83.76	198	1.1
06/25/2002		99.43		15.213	83.53	197.5	11
06/25/2002		99.13			84.2	197.5	1 12
06/25/2002		98.97	4,109	15.22	82.48	196.8	1.09
06/25/2002		98.56	4.12	15.231	82.08	196.5	1.05
06/25/2002	1				82.02	195.7	1
06/25/2002			4.115		81.55	195.5	1.
06/25/2002						195.3	1.0
06/25/2002				15.224	81 12	194.5	1.0
06/25/2002			i .		82.04	194.5	1 11
1			l	1	L		
	Average	100.7	4.1	15.2	86.4	196.9	1.

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 25% Load
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

Run 3		CO	CO2	02	THC	NOx	Methane
Date	Time	ppm	%	%	ppm	ppm	ppm
06/25/2002	14:01:11	97 79	4.132	15.164	77 73	194.7	1.03
06/25/2002	14:02:11	98.14	4.157	15.178	78.84	195.4	1.06
06/25/2002	14:03:11	98.09	4.133	15.16	79.42	194.5	1.06
06/25/2002	14:04:11	98.19	4,158	15.189	78.95	195.7	1.07
06/25/2002	14:05:11	97.08	4.126	15.192	79.38	196	1.05
06/25/2002	14:06:11	97.92	4.136	15.184	79.78	194.5	1.07
06/25/2002	14:07:11	97.49	4.139	15.198	81 11	195.4	1.07
06/25/2002	14:08:11	98.48	4.117	15.207	80.58	194.6	1.07
06/25/2002	14:09:11	97.92	4.13	15.218	79.79	195.4	1.09
06/25/2002	14:10:11	97.96	4.107	15.217	79.17	194.6	1.08
06/25/2002	14:11:11	97.95	4.123	15.204	80.11	194.6	1.06
06/25/2002	14:12:11	97 72	4.125	15.201	80.38	194.9	1.08
06/25/2002	14:13:11	98.89	4.124	15.193	80.52	194.1	1.08
06/25/2002	14:14:11	98.84	4,144	15,195	80.38	195.6	1.06
06/25/2002	14:15:11	97.85	4.109	15.218	79.72	195.6	1.04
08/25/2002		97.92	4.12	15.226	80.14	194.7	1.05
08/25/2002		97.89	4,109	15.226	80.28	194.6	1.06
06/25/2002		98.49	4,105	15.207	80.23	194	1.05
06/25/2002		98.79	4.132	15.194	78.97	193.9	1.05
08/25/2002		98.59	4.111	15.207	79.34	194.6	1.04
08/25/2002		98.99	4.136	15.18	79.96	194,2	1.05
06/25/2002		98,56	4.134	15.187	79.09	194.8	1.02
08/25/2002	1		4.122	15.215	79.24	195.7	1.04
06/25/2002		97.52	4.123	15.217	78.82	194.2	1.03
06/25/2002		98.14	4,101	15.22	80.53	193.3	1.04
06/25/2002		98.49	4.123	15.22	78.87	192.6	1.06
06/25/2002		98.57	4.103	15,217	78.55	192.6	1.04
06/25/2002		98.67	4.115	15.211	78.78	192	1.03
06/25/2002		98.52	4.128	15.215	81	191.6	1.05
06/25/2002		103.62	4,107	15.203		192.2	1.06
06/25/2002		101.11	4.124	15.222	79.22	192.9	
06/25/2002		99.26	4.108	15.219		194	
06/25/2002			4.106			196.1	1.05
06/25/2002			4.111	15.243		1	
06/25/2002		97 79	4.086	15.234		195.8	1.04
06/25/2002			4.117	15.211	76.48		
06/25/2002		98.55	4.12	15.197			ž.
06/25/2002			4.125		1		1.05
06/25/2002			4.133				
06/25/2002			4,122				1.05
06/25/2002		97.47	4.151	15.184			
06/25/2002		96.99	4.133	15.183	1	198.6	
06/25/2002		97.21	4.139				
06/25/2002		97.25	4.131	15.202			
06/25/2002		97 15	4.119				11
06/25/2002		97.26		15,202			11
L							ļ
	Average	98,3	4.1	15.2	79.1	195.3	1.1

Data Summary		00	CO2	02	THC	NOx	Methane
Run	Time	ppm	%	%	ppm	ppm	рргп
Run 1	11:25-12:09	101 7	4.1	15.2	85.5	198.5	1.08
Run 2	12:45-13:29	100.7	4.1	15.2	86.4	196.9	1 10
Run 3	14:01-14:46	98.3	4,1	15.2	79.1	195.3	1.06

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 25% Load
Date:	06/25/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	CO
Molecular Weight:	28.01

Calibration Corrected

	Start-Stop	Raw Data	Calibration Data			Data
Run No.	Time	(ppm)	Cma	Co	Cm	(% or ppm)
. 1	11:25-12:09	101.7	149.4	0.4	148.0	
2	12:45-13:29	100.7	149.4	0.4	148.0	101.56
3	14:01-14:46	98.3	149.4	0.4	147.5	99.39
				Ave	rage	101.18

Calibration Error Correction

Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Mass Emission Rate (lb/hr)

E(lb/hr)=Cgas*MWgas*Qs(dscfm)*60/385300000

Mass Emission Rate (lb/1000 lb fuel)

E(lb/MMBtu)=E(lb/hr)/Fuel flow * 1000

Pollutant	MWgas
CO	28.01
Methane	16.00
NOx	46.01
SO2	64.06

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 25% Load
Date:	06/25/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	CO2
Molecular Weight:	

Molecula	r Weight:		•			
						Calibration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.		(% or ppm)		Со	Cm	(% or ppm)
1	11:25-12:09	4.1	9.9	-0.1	10.0	
2	12:45-13:29	4.1	9.9	-0.2	10.1	4.16
3	14:01-14:46	4.1	9.9	-0.2	10.1	4.16
L	I	L		Ave	rage	4.16

<u>Calibration Error Correction</u> Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 25% Load
Date:	06/25/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	O2
Molecular Weight:	

Calibration Corrected Data Start-Stop Raw Data Calibration Data (% or ppm) 15.23 (% or ppm) Cma Со Cm Run No. Time 11:25-12:09 15.2 20.0 Q.O 20.0 15.2 20.0 0.0 20.0 15.20 12:45-13:29 15.20 20.0 14:01-14:46 15.2 20.0 0.0 15.21 Average

<u>Calibration Error Correction</u> Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Total Hydrocarbon Data Correction

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 25% Load
Date:	06/25/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	THC
Molecular Weight:	16.00

			Source Info	Corrected	
			Stack	Stack	Data
[Start-Stop	Raw Data	Flow	Moisture	Dry Basis
Run No.	•	(ppm)	(dscfm)	(%)	(ppm)
1	11:25-12:09	85.5	320	5.31	
2	12:45-13:29	86.4	321	4.31	90.27
3	14:01-14:46	79.1	321	4.07	82.47
L				Average	87.69

Moisture Correction
Cgas(dry)=Cgas(wet)/(1-(% moisture/100))
Mass Emission Rate (lb/hr)
E(lb/hr)=Cgas(dry)*MWgas*Qs(dscfm)*60/385300000

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 25% Load
Date:	06/25/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	N0x
Molecular Weight:	46.01

Molecular	volgitti	40.01				Calibration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.	Time	(% or ppm)	Cma	Co	Cm	(% or ppm)
1	11:25-12:09	196.5	448.0	0.4	443.5	
2	12:45-13:29	196.9	448.0	0.4	443.0	198.90
3	14:01-14:46	195.3	448.0	0.4	442.5	
				Ave	rage	198.22

Calibration Error Correction
Cgas=(Cobs-Co)*(Cma/(Cm-Co))
Mass Emission Rate (lb/hr)
E(lb/hr)=Cgas*MWgas*Qs(dscfm)*60/385300000
Mass Emission Rate (lb/1000 lb fuel)
E(lb/MMBtu)=E(lb/hr)/Fuel flow * 1000

Pollutant	MWgas
CO	28.01
Methane	16.00
NOx	46.01
SO2	64.06

Date: 06/25/2002	Run: Flow (dscfm):	E-25-1 319.7			Ho Fuel Usag	42.84 3.75		
	Moisture (%): Pollutant:	5.31 NO x	CO	NMHC	THC	Methane	CO2	02 15.23
	Concentration (ppm or %)	198.29	102.59	89.25	90.33	1.08	4.15	
	Mass Rate (lb/hr)	0.45	0.14	0.07	7:15E-02	8.60E-04	0.01	0.02
	Mass Rate (lb/gal fuel)	0.12	0.04	0.02	0.02	0.00	0.00	0.01
	Mass Rate (gr/hp*hr)	4.81	1.52	0.75	0.76	0.01	0.10	0.26

Run: Flow (dscfm):	E-25-2 321.1			• • • •		42.18 3.69	
Pollutant:	NOx	CO	NMHC 89 17	THC 90.27	Methane 1.10	CO2 4.16	02 15.20
***			0.07			0.01	0.02
Mass Rate (lb/gal fuel)	0.12	0.04	0.02	0.02 0.77	0.00 0.01	0.00 0.10	0.01 0.26
	Flow (dscfm): Moisture (%): Pollutant: Concentration (ppm or %) Mass Rate (lb/hr)	Flow (dscfm): 321.1 Moisture (%): 4.31 Pollutant: NOx Concentration (ppm or %) 198.90 Mass Rate (lb/hr) 0.46 Mass Rate (lb/gal fuel) 0.12	Flow (dscfm): 321.1 Moisture (%): 4.31 Pollutant: NOx CO Concentration (ppm or %) 198.90 101.56 Mass Rate (lb/hr) 0.46 0.14 Mass Rate (lb/gal fuel) 0.12 0.04	Flow (dscfm): 321.1 Moisture (%): 4.31 Pollutant: NOx CO NMHC Concentration (ppm or %) 198.90 101.56 89.17 Mass Rate (lb/hr) 0.46 0.14 0.07 Mass Rate (lb/gal fuel) 0.12 0.04 0.02	Flow (dscfm): 321.1 Fuel Usage Moisture (%): 4.31 Pollutant: NOx CO NMHC THC Concentration (ppm or %) 198.90 101.56 89.17 90.27 Mass Rate (lb/hr) 0.46 0.14 0.07 7.18E-02 Mass Rate (lb/gal fuel) 0.12 0.04 0.02 0.02	Flow (dscfm): 321.1 Fuel Usage (gal/hr): Moisture (%): 4.31 Pollutant: NOx CO NMHC THC Methane Concentration (ppm or %) 198.90 101.56 89.17 90.27 1.10 Mass Rate (lb/hr) 0.46 0.14 0.07 7.18E-02 8 80E-04 Mass Rate (lb/gal fuel) 0.12 0.04 0.02 0.02 0.00	Flow (dscfm): 321.1 Fuel Usage (gal/hr): 3.69 Moisture (%): 4.31 Pollutant: NOx CO NMHC THC Methane CO2 Concentration (ppm or %) 198.90 101.56 89.17 90.27 1.10 4.16 Mass Rate (lb/hr) 0.46 0.14 0.07 7.18E-02 8 80E-04 0.01 Mass Rate (lb/gal fuel) 0.12 0.04 0.02 0.02 0.00 0.00

Date:	Run:	E-25-3 321.1				rsepower: je (gal/hr):	42.26 3.70	
06/25/2002	Plow (dscfm): Moisture (%): Pollutant:	4.07 NOx CO		NMHC	THC Methane		CO2	02
	Concentration (ppm or %)	197.46	99.39	81.41	82.47	1.06	4.16	15.20
	Mass Rate (lb/hr)	0.45	0.14	0 06	6 56E-02	8.48E-04	0.01	0.02
	Mass Rate (lb/gal fuel)	0.12	0.04	0 02	0.02	0.00	0.00	0.01
,	Mass Rate (gr/hp*hr)	4.88	1.49	0.70	0.70	0.01	0.10	0.26

•

Plant Name
Sampling Location
Date
Run Number
Start Time

Mark Wade	Tom Gerstle	Doug Allen	030174.0003.002
Plant Rep.	Team Leader	CEM Operator	Project Number

	Analyzer	Analyzer
S		200
SS		25
02		52
THC		300
NON		1000

	Colibration	CAT IRRATION	ON HRROR CHECK	HECK		SYSTEM CAL CHECK	AL CHECK				Calibration
		Calibration		Analyzer		PRETEST		POST TEST			Correction
	Specification		Cylinder	Calibration	Difference	System	Syst, Bias	System	Syst. Bias	Drift	Factors
	(% of Span)	6	Number (1)	Response	(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Span)	
CO Zero	0			0.4	0.2	0.4	0.0	0.7	-0.1	-0.1	Co=0.3
CO Low	~30	30.1		29.5	-0.3						
CO Mid	09~	59.4		58.5	-0.4						
CO High	80-100(2)	149.4		149	-0.2	147	-1.0	147	-1.0	0.0	Cm=147.0
CO2 Zero	0	0		-0.2	-0.8	-0.2	0.0	-0.1	0.4	0.4	-Co=0.2
CO2 Low	NR										
CO2 Mid	40-60	6.6		10	0.4	10.1	0.4	6.6	-0.4	-0.8	Cm=10.0
CO2 High	80-100	20.5		20.4	-0.4						
O2 Zero	0	0		-0.1	-0.4	0	0.4	0	0.4	0.0	Co=0.0
O2 Low	NR										
O2 Mid	40-60	10.5		10.5	0.0						
O2 High	80-100	20		19,9	-0.4	20	0.4	19.9	0.0		Cm=20.0
THC Zero	0	0		-0.2		6.7	2.3	5.9		-0.3	
THC Low	25-35	49.6		48.4	-2.4						
THC Mid	45-55	124.6		121	-2.9	126	1.7	129		1.0	
THC High	80-90	298.6		297							
NOx Zero	0	0 (0.4	0.0	0.4	0.0	0.4	0.0	0.0	Co=0.4
NOx Low	20-30 (3)										
NO _x Mid	45-55	448		444	-0.4	442	-0.2	441	-0.3	-0.T	CE=441.3
NOx High	06-08	885.5		883	-0.3						

Plant Name
Sampling Location
Date
Run Number
Start Time

Plant Rep.	Team Leader	CEM Operator	Project Number		
Elmendorf AFB	50% Load - Generator 1	06/25/02	2	1642	1727

8	202	05	THC	NOX
Mark Wade	Tom Gerstle	Doug Allen	030174.0003.002	

THC 300

	Calibration	CALIBRATIO	ON PRROR CHECK	HECK		SYSTEM CAL CHECK	AL CHECK				Calibration
		Calibration		Analyzer		PRETEST		POST TEST	I. I		Correction
	Specification	Value	Cylinder	Calibration	Difference	System	Syst. Bias	System	Syst. Bias	Drift	Factors
	(% of Span)	(% or ppm)	$\overline{}$	Response	(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Span)	
CO Zero	0			0.4	0.2	0.2	0.1	0.3	0.1	0.1	Co=0.3
COLow	~30	30.1		29.5	-0.3						
CO Mid	09~	59.4		58.5	-0.4						
CO High	80-100 (2)	149.4		149	-0.2	147	-1.0	147	-1.0		Cm=147.0
CO2 Zero	0	0		-0.2	-0.8	-0.1	0.4	-0.2	0.0	-0.4	-Co=0.2
CO2 Low	NR										
CO2 Mid	40-60	6.6		10	0.4	6.6	-0.4	6.6	-0.4	0.0	Cm=9.9
CO2 High	80-100	20.5		20.4	-0.4						
O2 Zero	0	0		-0.1	-0.4	0	0.4	0	0.4	0.0	Co=0.0
O2 Low	NR										
O2 Mid	40-60	10.5		10.5	0.0						
O2 High	80-100	20		. 19.9	-0.4	19.9	0.0	19.9	0.0		Cm=19.9
THC Zero	0	0		-0.2		5.9	2.0	5.8		0.0	
THC Low	25-35	49.6		48.4	-2.4						
THC Mid	45-55	124.6		121	-2.9	129	2.7	131		0.7	
THC High	06-08	298.6		297							
NOx Zero	0	0		0.4	0.0	0.4	0.0	0.4	0.0	0.0	Co=0.4
NOx Low	20-30 (3)										· ·
NOx Mid	45-55	448		444	-0.4	. 441	-0.3	441	-0.3	0.0	CIB=#41.0
NOx High	80-90	885.5		883	-0.3						

Plant Name
Sampling Location
Solute
Run Number
Start Time
Stop Time

50% Load - Generator 1 06/25/02	3	1800	1845

Mark Wade	Tom Gerstle	Doug Allen	030174.0003.00
Plant Rep.	Team Leader	CEM Operator	Project Number

CO 25 25 74 700 NOx 1000		Analyzer	Analyzer
		Number	Span
	8		200
1	C02		25
	02		25
	THC		300
	Š		1000

	Collbration	CATTRDATIO	ION REPOR CHECK	'HECK		SYSTEM CAL CHECK	AL CHECK				Calibration
		College Street		Anolyger		PRETEST	_	POST TEST	ε		Correction
	Cas	Calibration	:	Allany &			Т	G. 15 6.2		Dist.	Factors
	Specification	Value	Cylinder	Calibration	Difference	System	Syst. Blas	System	Syst. Dias	100	
	(% of Snan)	(maa oc 2001)	Number (1)	Response	(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Span)	
CO Zono	0		L	0.4	0.2	0.3	0.1	0.2	-0.1	-0.1	Co=0.3
OTON COL	^				3						
CO Low	~30	30.1		29.5	-0.3						
CO Mid	09~	59.4		58.5	-0.4						
CO High	80-100(2)	149.4		149	-0.2	147	-1.0	145	-2.0		Cm=140.0
CO2 Zero	0	0		-0.2	-0.8	-0.2	0.0	-0.2	0.0	0.0	-Co=0.2
CO2 Low	NR								9		Ç
CO2 Mid	40-60	6.6		. 10	0.4	6.6	-0.4	10	0.0	0.4	CII=10.0
CO2 High	80-100	20.5		20.4	-0.4						
02 Zero	0	0		-0.1	-0.4	0	0.4	0	0.4	0.0	Co=0.0
O2 Low	NR										
O2 Mid	40-60	10.5		10.5							6
O2 High	80-100	20		19.9	-0.4	19.9			0.4		Cm=20.0
THC Zero	0	0		-0.2		5.8	2.0	5.1		-0.2	
THC Low	25-35	49.6		48.4						100	
THC Mid	45-55	124.6		121	-2.9	131	3.3	129		-0.7	
THC High	06-08	298.6		297							
NOx Zero	0	0(0.4	0.0	0,4	0.0	0.4	0.0	0.0	C0=0.4
NOx Low	20-30 (3)										0.000
NO _x Mid	45-55	448		444		441	-0.3	443	- -	0.7	10
NOx High	06-08	885.5		883	-0.3						

Plant Name:	Elmendorf AFB
Sampling Location:	Ges. 1 - 50% Load
Project Number:	030174.0003.002
CEM Operator	Doug Allen

Run 1	r	co	CO2	02	THC	NOx	Methane
	Time	ppm	%	%	ppm	ppm	ppm
06/25/2002	15:20:46	111 79	5.764	12.976	73.74	296.1	0.8
06/25/2002	15:21:46	110.76	5.743	13.01	73.2	296.6	0.81
06/25/2002	15:22:48	112.05	5.74	12.98	72.7	294	0.79
06/25/2002	15:23:46	113.62	5.77	12.911	72.17	294.3	0.78
06/25/2002	15:24:44	115.55	5.79	12,908	72.96	296.4	0.75
06/25/2002	15:25:44	115.78	5.811	12.936	73.01	298.6	0.78
06/25/2002	15:26:44	114.02	5.793	12.955	73.34	298	0.76
06/25/2002	15:27:44	112.79	5.763	12.958	72.79	296.6	0.75
06/25/2002	15:28:44	118.82	5.796	12.897	72.33	296	0.72
06/25/2002	15-29:44	114.6	5.799	12.889	73.95	297.4	0.76
06/25/2002	15:30:44	113.91	5.822	12.923	72.25	297.2	0.73
06/25/2002	15:31:44	112.89	5.798	12,926	72.63	297.9	0.75
06/25/2002	15:32:44	113.47	5,794	12.858	73.03	297.3	0.74
08/25/2002	15:33:44	114.99	5,849	12.889	70.8	300.4	0.73
08/25/2002		113.04	5.807	12.918	71.07	300.8	0.73
06/25/2002		113.74	5.816	12,878	71.8	297	0.75
06/25/2002		115.46	5.811	12.837	69.25	2977	0.72
06/25/2002		116.71	5.845	12.817	67.9	302.4	0.7
06/25/2002		116.54	5.877	12.84	69,35	305.6	0.7
06/25/2002		113.26	5.848	12.909	72.86	305	0.58
06/25/2002		113.21	5,841	12.837		301.3	0.72
06/25/2002		115.35	5.841	12.859		303.7	0.72
	1,011111	112.44	5.856			303.4	0.73
08/25/2002	1	111 73	5.824			300.6	0.71
06/25/2002	1	111 72	5.8			300.1	0.7
06/25/2002		110.24	5.811	12.925		1	0.72
06/25/2002		109.3	5.775			296.6	0.69
06/25/2002		110.54	5.791	12.938		297.5	0.68
06/25/2002		106.93	5.782		1		0.73
06/25/2002		110.41	5.77		1	296.6	0.73
06/25/2002		108.19			71.01	297.4	0.68
08/25/2002		110.18				295.4	0.7
06/25/2002		111.41	5.764		80.32	296.2	0.74
06/25/2002		126.95	5.753	12.844	76.34	298	
08/25/2002		123.32	5.751	12.831	73.09		0.69
08/25/2002		116.47	5.759	12.912	67.4		0.67
06/25/2002		111.32		12.849			
06/25/2002		113.01	5.777	12.840			0.68
06/25/2002		111 19	5.781				0.68
06/25/2002		109.86	5.804	12.9			
06/25/200		108.51	5.803				
06/25/2000	16:01:46	113.7	5.779				1
06/25/2000		112.55					
06/25/2002		110.01	5.787		-	1	
06/25/2000			5.806	12.9	3 67.3	300.7	0.6
	l	<u> </u>		<u> </u>			
	Average	113.1	5.8	12.	9 71.3	299.3	0.

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 50% Load
Project Number:	030174.0003.002
CEM Operator	Dong Alien

Run 2		co	CO2	Q 2	THC	NOx	Methane
Date	Time	ppm	%	%	ppm	ppm	ppm
06/25/2002	16:42:59	116.34	5.841	12.852	81.04	309	0.89
06/25/2002	16:43:59	114.9	5.859	12.829	82.1	306.6	0.8
06/25/2002	16:44:59	116.72	5.861	12.822	80.33	307.4	0.8
06/25/2002	16:45:59	115.05	5.85	12.879	77.63	308.1	0.8
06/25/2002	16:48:59	109.81	5.769	12.934	76.56	307.6	0.
06/25/2002	16:47:59	109.62	5.792	12.914	77.4	304.9	0.7
06/25/2002	16:48:59	112	5.803	12.908	78.66	302.6	0.8
06/25/2002	16:49:59	113.11	5.846	12.815	76.52	303.1	0.9
06/25/2002	16:50:59	117 72	5.96	12.698	75.49	303.2	0.
06/25/2002	16:51:59	116,29	5.87	12.81	74.23	308.1	0.7
06/25/2002	16:52:59	113.6	5.891	12.795	74.21	310.1	0.7
06/25/2002	16:53:59	114.23	5.859	12.834	73.04	309.9	0.7
06/25/2002	16:54:59	109.31	5.804	12.9	73.26	309.1	0.7
08/25/2002	16:55:59	107.94	5,806	12.91	74.3	305.8	0.7
08/25/2002	16:57:00	107.27	5,804	12.878	74.35	304.1	0.
06/25/2002	16:58:00	110.45	5.875	12.819	73.48	305.3	0.
06/25/2002	16:59:00	111.89	5.846	12.843	72.42	307 1	0.7
06/25/2002		108.29	5,838	12.853	71.82	306.9	0.7
06/25/2002		110.36	5.874	12.811	72.24	304.8	0.7
08/25/2002		112.12	5.897	12.754	72.58	307.3	0.7
06/25/2002		114.24	5.893	12.603	72.11	309.1	0.7
06/25/2002		113.29	5.889	12.768	71.52	309.1	0.7
08/25/2002		113.37	5.891	12.79	72.3	309.1	0.7
06/25/2002		112.06	5.853	12.838	71 75	309.6	0.7
06/25/2002		110.12	5.826	12.862	72.23	308.3	0.7
06/25/2002		110.12	5.824	12.883	72.75	307.5	0.7
• • • • • • • • • • • • • • • • • • • •			5.821	12.877	71.41	305.8	0.7
08/25/2002		108.31			70.26	305.6	0.7
06/25/2002		109.57	5.85	12.841	70.71	306.1	0.1
08/25/2002		110.96	5.852 5.874	12.79	69.8	306.6	0.
06/25/2002		112.06	5,894	12.801	68.57	308	0.1
06/25/2002		110.79				308.6	0.1
06/25/2002		109.07	5.83		67.81	306.5	0.1
08/25/2002		107.82	5.852		72.53		-
08/25/2002		109.37	5.869		72.44		0.7
06/25/2002		109.55	5.853		71 14	305.6	. 0.1
06/25/2002		111 17	5.894		71.58		0.1
06/25/2002		110.27	5.841		70.25	306.5	0.
06/25/2002		108.18	5.865		69.66		
08/25/2002		110.38	5.907		71.3		0.1
06/25/2002		112.36	5.922		72.76		0.1
06/25/2002		111.97	5.881		70.36	-	0.1
06/25/2002		110.17	5.89		70.34	307.5	0.1
06/25/2002		113.76	5.931		70.82	303.6	0.
08/25/2002		114.13	5.96		70.38	304.5	0.1
06/25/2002	17:26:59	113.B1	5.907	12.749	70.53	309.2	0.
	<u> </u>		<u> </u>			L	-
	Average	111.7	5.9	1 12.8	73.0	306.6	ī

4 =	
Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 50% Load
Project Number:	030174.0003.002
CEM Operator	Doug Allen

Run 3	Г	co	CO2	02	THC	NOx	Methane
Date	Time	ppm	%	%	ppm	ppm	ppm
06/25/2002	18:01:45	113.44	5.861	12.803	56.3	310.7	0.46
06/25/2002	18:02:45	114.58	5.957	12.652	66.39	309.8	0.45
06/25/2002	18:03:45	119.6	6.007	12.604	57 77	310.7	0.48
08/25/2002	18:04:46	123.08	6.083	12.527	57.08	314.4	0.52
06/25/2002	18:05:43	123.1	6.044	12.561	55.52	318.5	0.48
06/25/2002	18:06:43	121.39	6.035	12.58	54.75	320.8	0.47
06/25/2002		119.55	5.976	12.656	54.19	319.5	0.45
06/25/2002	18:08:44	119.73	6.007	12,601	54.8	317.5	0.47
06/25/2002		121.03	6.045	12.582	54.1	316.5	0.5
08/25/2002		121.89	6.023	12.588	53.68	318.5	0.45
06/25/2002		121.67	6.043	12.577	53.22	319.6	0.45
06/25/2002	1	118.76	5.948	12.694	52.65	320.4	0.46
06/25/2002		113,12	5.938	12.714		319.2	0.67
06/25/2002	1 1	113.89	5.98	12.668		315	0.84
06/25/2002		116.65	6,009	12,628		816.7	0.66
06/25/2002		115.45	5.975	12.706	63.95	316.8	0.67
06/25/2002	127121	115.6	6.028			316.9	0.65
08/25/2002		119.46	6.037	12.635	63.98	315.6	0.65
08/25/2002		114.54	5.938	12,756	63.2	318.4	0.66
06/25/2002		114.51	5.968			314.7	0.64
08/25/2002		113.57	5.922	1	62.78	316.1	0.65
06/25/2002		111.85	5.954			314.2	0.62
		112.93	5.931			314.1	0.64
06/25/2002		111.8	5.954			314.3	0.66
06/25/2002	1 -	115.78	6.003			314.4	0.69
06/25/2004		119.35	8.068			317.3	0.69
08/25/2002		119.09	6.034			319.4	0.64
06/25/200		120.73	6.078			318.8	0.84
06/25/200/		115.7	5.936				0.84
06/25/2007	8	111.46	5.93				0.63
06/25/2002		112.7	5,956	1			0.78
06/25/200		112.21	5.918				0.6
06/25/200		112.51	5.925	1		315.8	0.84
06/25/200		113.48	5.94			314.7	0.64
06/25/200		113.28	5.939			316.6	0.63
06/25/200		116.79	6.03			314.6	0.63
06/25/200		114.57				3177	0.63
08/25/200		112.37	5,916		62.68	315.6	
06/25/200		116.81	5.997			312.7	
06/25/200			5.992			314.7	
06/25/200					-	317.6	
06/25/200			5.97		2 62.97	315	
08/25/200					1 62.49	316.1	
06/25/200				·	1		
06/25/200						313.6	0.63
Volenzo	-	1	1		L	<u> </u>	
L	Average	116.3	6.	0 12.	7 60.8	3 316.3	0.6

Data Surr	mary	co	CO2	02	THC	NOx	Methane
Run	Time	ppm	%	%	ppm	ppm	ppm
Bun 1	15:20-16:04	113.1	5.8	12.9	71.2	299.3	
Run 2	16:42-17:26	1117	5.9	12.8	73.0	306.6	
Dun 3	18:01-18:45	116.3	6.0	12.7	60.8	316.3	0.60

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 50% Load
Date:	06/25/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	CO
Molecular Weight:	28.01

Calibration
Corrected
Data
m (% or ppm)

	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.	Time	(ppm)	Cma	Co	Cm	(% or ppm)
1	15:20-16:04	113.1	149.4	0.3	147.0	114.88
2	16:42-17:26	111.7	149.4	0.3	147.0	113.42
3	18:01-18:45	116.3	149.4	0.3	146.0	118.95
L				Ave	rage	115.75

Calibration Error Correction

Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Mass Emission Rate (lb/hr)

E(lb/hr)=Cgas*MWgas*Qs(dscfm)*60/385300000

Mass Emission Rate (lb/1000 lb fuel)

E(lb/MMBtu)=E(lb/hr)/Fuel flow * 1000

Pollutant	MWgas
CO	28.01
Methane	16.00
NOx	46.01
SO2	64.06

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 50% Load
Date:	06/25/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	CO2
Molecular Weight:	•

Moloodic	ii vveigni.					Calibration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata	,	Data
Run No.	, ,	(% or ppm)	Cma	Со	Cm	(% or ppm)
1	15:20-16:04	5.79	9.9	-0.2	10.0	5.8
2	16:42-17:26	5.86	9.9	-0.2	9.9	5.9
3	18:01-18:45	5.98	9.9	-0.2	10.0	6.0
				Ave	rage ·	5.9

<u>Calibration Error Correction</u> Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 50% Load
Date:	06/25/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	O2
Molecular Weight:	

<u> </u>	u vveigni.			•		Calibration Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.	Time	(% or ppm)	Cma	Co	Cm	(% or ppm)
1	15:20-16:04	12.9	20.0	0.0	20.0	12.94
2	16:42-17:26	12.8	20.0	0.0	19.9	12.89
3	18:01-18:45	12.7	20.0	0.0	20.0	12.70
		*****		Ave	rage	12.8

<u>Calibration Error Correction</u> Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Total Hydrocarbon Data Correction

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 50% Load
Date:	06/25/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	THC
Molecular Weight:	16.00

•			Source Info	Corrected	
			Stack	Stack	Data
	Start-Stop	Raw Data	Flow	Moisture	Dry Basis
Run No.		(ppm)	(dscfm)	(%)	(ppm)
1	15:20-16:04	71.2	368	5.42	
2	16:42-17:26	73.0	316	5.54	77.33
3	18:01-18:45	. 60.8	315	5.37	64.23
				Average	72.28

Moisture Correction
Cgas(dry)=Cgas(wet)/(1-(% moisture/100))
Mass Emission Rate (lb/hr)
E(lb/hr)=Cgas(dry)*MWgas*Qs(dscfm)*60/385300000

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 50% Load
Date:	06/25/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	N0x
Molecular Weight:	46.01

Calibration Corrected Data Raw Data | Calibration Data Start-Stop (% or ppm) Cma Cm (% or ppm) Run No. Time 303.57 448.0 0.4 441.5 1 15:20-16:04 299.3 0.4 441.0 311.39 2 16:42-17:26 306.6 448.0 0.4 442.0 320.47 316.3 448.0 3 18:01-18:45 311.81 Average

Calibration Error Correction

Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Mass Emission Rate (lb/hr)

E(lb/hr)=Cgas*MWgas*Qs(dscfm)*60/385300000

Mass Emission Rate (lb/1000 lb fuel)

E(lb/MMBtu)=E(lb/hr)/Fuel flow * 1000

Pollutant	MWgas
CO	28.01
Methane	16.00
NOx	46.01
SO2	64.06

Date: 06/25/2002	Run: Flow (dscfm):	E-50-1 368.3				rsepower: e (gal/hr):	85.21 5.52	
	Moisture (%): Pollutant: Concentration (ppm or %)	5.42 NO x 303.57	CO 114.88	NMHC 74.55	THC 75.27	Methane 0.72	CO2 5.79	O2 12.94
	Mass Rate (lb/hr)	0.80	0.18	0.07	6.86E-02	6.61E-04	0.01	0.02
	Mass Rate (lb/gal fuel)	0.15	0.03	0.01	0.01	0.00	0.00	0.00
	Mass Rate (gr/hp*hr)	4.27	0.98	0.36	0.37	0.00	0.08	0.13

06/25/2002	Run: Flow (dscfm):	E-50-2 315.8				rsepower: je (gal/hr):	86 01 5.57	
	Moisture (%): Pollutant:	5.54 NO x	CO	NMHC	THC	Methane	CO2	02
	Concentration (ppm or %)	311.39	113.42	76.56	77.33	0.77	5.86	12.89
	Mass Rate (lb/hr)	0.70	0.16	0 06	. 6.05E-02	6.06E-04	0.01	0.02
	Mass Rate (lb/gal fuel)	013	0.03	0.01	0.01	0.00	0.00	0.00
	Mass Rate (gr/hp*hr)	3.72	0.82	0.32	0.32	0.00	0.07	0.11

Date:	Run: .	E-50-3				rsepower:	90.64	
06/25/2002	Flow (dscfm):	315.1			Fuel Usag	je (gal/hr):	5.87	
	Moisture (%):	5 37						
	Pollutant:	NOx	CO	NMHC	THC	Methane	CO2	02
	Concentration (ppm or %)	320.47	118.95	63.63	64.23	0.60	5.98	12.70
	Mass Rate (lb/hr)	0.72	0.16	0.05	5.01E-02	4.71E-04	0.01	0.02
	Mass Rate (lb/gal fuel)	0.12	0.03	0.01	0.01	0.00	0.00	0.00
	Mass Rate (gr/hp*hr)	3.62	0.82	0.25	0.25	0.00	0.06	0.10

Sampling Location Plant Name Run Number Start Time Stop Time Date

Elmendorf AFB 75% Load - Generator 1	06/26/2002	1	1033	1118
---	------------	---	------	------

g d					
Der					
Marine		2	_		×
	၀	C02	02	THC	Š

Doug Allen 030174.0003.002

CEM Operator
Project Number

Tom Gerstle Mark Wade

Team Leader Plant Rep.

	1 = 1			_	_
Analyzer	200	25	25	300	1000
Analyzer					
	၀	202	02	THC.	Š
].

	Calibration	CALIBRATION	ON ERROR CHRCK	HECK		SYSTEM CAL CHECK	AL CHECK				Calibration
		Calibration		Analyzer		PRETEST		POST TEST			Correction
	Specification	Value	Cylinder	Calibration	Difference	System	Syst. Bias	System	Syst. Bias	Druft	Factors
	(% of Span)	(% or ppm)		Response	(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Span)	
CO Zero	0			0.4	0.2	9.0	-0.1	0.3	-0.1	-0.2	Co=0.5
COLOW	~30	30.1									
CO Mid	09~										
CO High	80-100 (2)	149.4		149	-0.2	154	2.5	155	3.0	0.5	Ö
CO2 Zero	0	0		-0.3	-1.2	-0.3	0.0	-0.4	-0.4	-0.4	-Co=0.4
CO2 Low	NR										
CO2 Mid	40-60	6.6		10	0.4	10	0.0	9.8	-0.8	-0.8	Cm=9.9
CO2 High	80-100	20.5		20.2	-1.2						
O2 Zero	0	0		-0.2	-0.8	-0.2	0.0	-0.3	-0.4	-0.4	-Co=0.3
O2 Low	NR										
O2 Mid	40-60	10.5		10.5	0.0						
O2 High	80-100	20		19.9	-0.4	19.9	0.0	19.7	-0.8	•	Cm=19.8
THC Zero	0	0		-0.5		-1.3	-0.3	5		2.1	
THC Low	25-35	49.6		50	0.8	20	0.0	53.1		0.1	
THC Mid	45-55	124.6		127	1.9	127	0:0				
THC High	80-90	298.6		297		297	0.0				
NOx Zero	0	0									
NOx Low	20-30 (3)										
NO _x Mid	45-55	448									
NOx High	06-08	885.5									

Plant Name
Sampling Location
75% I
Date
Run Number
Start Time

Elmendorf AFB 75% Load - Generator 1 06/27/02 2 1522 1607					,	
	Elmendorf AFB	75% Load - Generator 1	06/27/02	2	1522	1607

Mark Wade	Tom Gerstle	Doug Allen	030174,0003.002
Plant Rep.	Team Leader	CEM Operator	Project Number

	Analyzer	Analyzer
	Number	Span
္ပ		200
COS		52
02		25
THC		300
Š		1000

Colibration	CALIRDATION	TION PRINCE CHRCK	HPCK		SYSTEM CAL CHECK	AL CHECK				Calibration
Gas			Analyzer		PRETEST		POST TEST	c.		Correction
Specification		Cylinder	Calibration	Difference	System	Syst. Bias	System	Syst. Bias	Drift	Factors
(% of Span)	6	Number (1)	Response	(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Span)	
	0	┢	9.0	0.3		0.0	9.0	0.0	0.0	Co=0.6
ľ	~30 30.1	1	30	-0.1						
•	~60 59.4	4	65	-0.2						88
80-100(2)	(2) 149.4	4	149	-0.2	147	-1.0	147	-1.0		5
) 0	0	-0.1	-0.4	0.1	0.8	0	0.4	-0.4	Co=0.1
	NR.									
40	40-60 9.9	6	10	0.4	9.7	-1.2	9.6	-0.8	0.4	Cm=9.8
80-100	100 20.5	5	20.5	0.0						
	0	0	-0.1	-0.4	0	0.4	0	0.4	0.0	Co=0.0
	NR									
40	40-60 10.5	5	10.5	0.0						
80-100		20	20	0.0	20	0.0		-0.8		Cm=19.9
	0	0	0.3		3.8				0.2	
25	25-35 49.6	9:	49.6	0.0	47.1	-0.8	46.4		-0.2	
45	45-55 124.6	9:	123	-1.3						
80	80-90 298.6	.6	298							
	0	0	-0.1	0.0	5	0.5	9	1.0	0.5	Co=/.5
20-30 (3)	(6)						3			4.3
45	45-55 448	81	448		459	1.1	463	CT	0.4	CIII=401.0
38	80-90 885.5	.5	885	-0.1						

Plant Name
Sampling Location
Date
Run Number
Start Time

Elmendorf AFB 75% Load - Generator 1 06/27/02 3	1642	1737
--	------	------

Mark Wade	Tom Gerstle	Dong Allen	030174.0003.002
Plant Rep.	Team Leader	CEM Operator	Project Number

Analyzer	Span	200	25	52	300	1000
Analyzer	Number					
		S	C02	02	THC	Š

	Calibration ICAL IRRATION	CALIBRAT	TON FRROR CHECK	HECK		SYSTEM CAL CHECK	AL CHECK				Calibration
	Gas	Calibration		Analyzer		PRETEST		POST TEST			Correction
	Specification	Value	Cylinder	Calibration	Difference	System	Syst. Bias	System	Syst. Bias	Drift	Factors
	(% of Span)	(% or ppm)		Response	(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Sp	
CO Zero	0	_		9.0	0.3	9.0	0.0	9.0	0.0	0.0	Co=0.6
COLow	~30	30.1		30	-0.1						
CO Mid	09~	59.4		65	-0.2						,
CO High	80-100 (2)	149.4		149	-0.2	147	-1.0	146	-1.5		Cm=140.5
CO2 Zero	0	0		-0.1	-0.4	0	0.4	-0.1	0.0	-0.4	-Co=0.1
CO2 Low	NR										
CO2 Mid	40-60	6'6		10	0.4	9.8	-0.8	6.6	-0.4	0.4	Cm=9.9
CO2 High	80-100	20.5		20.5	0.0						
O2 Zero	0	0		-0.1	-0.4	0	0.4	0.1	0.8	0.4	Co=0.1
O2 Low	N. N.										
O2 Mid	40-60	10.5		10.5					į		
O2 High	80-100	20		20	0.0	19.8	-0.8		-0.4		CH=19.9
THC Zero	0	0		0.3		4.3	1.3	4.2		0.0	
THC Low	25-35	49.6		49.6	0.0	46.4	-1.1	46.2		-0.1	
THC Mid	45-55	124.6		123	-1.3						
THC High	06-08	298.6		298							
NOx Zero	0	0		-0.1	0.0	10	1.0	10	1.0	0.0	C0=10.0
NOx Low	20-30 (3)										7 63 6
NO _x Mid	45-55	448	-	448		463	1.5	404	1.0	0.1	- [2]
NOx High	06-08	885.5	-	885	-0.1						

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 75% Load
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

Run 1	Г	00	CO2	02	THC	NOx	Methane
	Time	ppm	%	%	ppm	ppm	ppm
06/26/2002	10:34:28	146.07	6.221	11 779	46.05		1.44
06/26/2002	10:35:29	146,26	6.185	11.808	45.67		1.44
08/26/2002	10:36:29	142.51	6.171	11.835	45.59		1.43
06/26/2002	10:37:29	142.99	6.176	11.832	45.47		1.44
06/26/2002	10:38:29	141.49	6.15	11.854	45.18		1.43
06/26/2002	10:39:29	142.14	6.168	11.857	44.96		1.43
06/26/2002	10:40:29	141 76	6.144	11.856	45		1.42
06/26/2002	10:41:29	141.27	6.149	11.859	44.73		1.41
06/26/2002	10:42:29	140.86	6.146	11.864	45.12		1.44
06/26/2002	10:43:29	142.42	6,136	11.875	45.18		1.45
06/26/2002	10:44:29	142.94	6.176	11.832	45.05		1.45
06/26/2002	10:45:29	147.63	6.179	11.802	45.1 6		1.43
06/26/2002	10:46:29	144.77	6.193	11.815	45.53		1,44
06/26/2002	10:47:29	143.12	6.174	11.831	46.45		1.44
06/26/2002	10:48:29	144.34	6.151	11.853	46.01		1.43
06/26/2002	10:49:29	141.19	6.146	11.864	46.49		1.44
08/26/2002	10:50:29	141.7	6.142	11.851	45.97		1.43
06/26/2002	10:51:29	142.79	6.16	11,853	45.29		1.44
06/26/2002	10:52:29	145.53	6.175	11.808	44.8		1.42
06/26/2002	10:53:29	145.45	6.165	11.834	44.64		1.41
06/26/2002	10:54:29	144.3	6.167	11.827	44.56		1.42
06/26/2002	10:55:30	146.38	6.177	11.806	43.55		1.98
06/26/2002	10:56:30	147,56	6,203	11 796	46.21	1	1.42
06/26/2002		149,59	6.207	11 767	45.47	1	1.41
06/26/2002		152.79	6.234	11.799	48.61	ł	1.45
06/26/2002		151.66	6.212	11.76	48.05		1.47
06/26/2002		147.98	6.175	11.807	47.49	Į .	1.46
06/26/2002	1	145.33	6.196	11 783	47 11	l	1.42
06/26/2002		150.81	6.175	11 794	49.39	1	1.48
06/26/2002		147.96	6.171	11.824	48.31		1.47
08/26/2002		148.34	6,186	11 784			1.43
06/26/2002		149.77	6.175	11.812			1.47
08/26/2002		148.79	6.171				1.49
08/26/2002		148.09	6,146				1.47
06/26/2002		146.99	6.179		1		1.46
06/26/2002	11:09:28	151.09	6.218				1.44
06/26/2002		153.63	6.179				1.44
06/26/2002	11:11:28	150.34	6.183				1.47
06/26/2002		152.9	6,209			1	1.46
06/26/2002		152.68	6.212	4			1.46
06/26/2002		148.57	6.17				1.44
06/26/2002		149.73	8.18				1.45
06/26/2002		152.77	6.216	1			1,44
06/26/2000		154.95	8.204				1.45
06/26/2002	11.18:29	150.12	6.20	11 77	49.27		
<u> </u>	Average	1400	6.2	11.	8 47.3	3	1.4
	Average	146.9	0	<u> </u>			

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 75% Load
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

Run 2		00	CO2	02	THC	NOx	Methane
Date	Time	ppm	%	%	ppm	ppm	ppm
06/27/2002	15:22:50	161.23	6.511	12 141	52.89	386.6	1 13
06/27/2002	15:23:50	160.98	6.543	12.089	53.59	390.7	1 12
06/27/2002	15:24:50	160.57	6.584	12.055	53.86	393.4	1 13
06/27/2002	15:25:50	164.15	6.593	12.038	53.28	396.3	1 13
06/27/2002	15:26:50	167 18	6.608	12.02	53.3	397.5	1 14
06/27/2002	15:27:50	166.07	6.825	12.002	53.61	398.8	1 12
06/27/2002	15:28:50	164.2	6.545	12.081	54.48	399.4	1 12
08/27/2002	15:29:50	158.97	6.575	12.06	53.56	394.8	1 13
06/27/2002	15:30:50	159.19	6.559	12.086	53.02	395.4	1 12
06/27/2002	15:31:51	157.06	6.578	12.036	53,53	397.8	1 11
06/27/2002	15:32:51	163.74	6.637	11.977	52.98	402.2	1.12
06/27/2002	15:33:51	164.98	6.61	12.01	53.21	404	11
06/27/2002	15:34:51	159.92	6.58	12.066	53.62	402	1.1
06/27/2002	15:35:51	156.15	6.557	12.067	58.55	401.8	1.06
06/27/2002	15:36:51	160.74	6.64	11.963	56.03	404.1	1 12
06/27/2002	15:37:51	184.75	6.622	11.988	55.81	408.4	1 12
06/27/2002	15:38:51	167 19	6.653	11.943	54.09	409.3	1 12
06/27/2002	15:39:51	169.15	6.64	11.988	53.11	408	1.09
06/27/2002	15:40:51	161.52	6.561	12.064	56.84	405.6	1 12
06/27/2002	15:41:51	180.99	6.593	12.043	56.31	402	1 14
06/27/2002	15:42:51	163.53	6.595	12.028	55.44	402.3	1 13
06/27/2002	15:43:51	164.51	6.61	12.007	55.71	404	1 13
06/27/2002	15:44.51	162.39	6.59	12.047	54.95	405.8	1.12
06/27/2002	15:45:51	162.86	6.631	11.972	55.19	407 1	11
06/27/2002	15:46:51	165.09	6.632	11.994	55.64	408.6	1.1
06/27/2002	15:47:51	165.21	6.62	11.987	55.65	407.9	1.09
06/27/2002	15:48:51	166.87	6.596	12.036	56	406.1	1.09
06/27/2002	15:49:51	164.12	6.595	12.033	55.45	4017	1.09
06/27/2002	15:50:51	161.34	8.545		57.37	399.5	1.08
06/27/2002	15:51:52	159.28	6.573	12.085	58.47	398.3	11
06/27/2002	15:52:52	158.19	6.5	12.145	57.84		1.1
06/27/2002	15:53:50	158.75	6.526	12.132	57.02	392.1	1 11
06/27/2002	15:54:50	158.21	6,524	12.135	57.35	388.7	1 11
06/27/2002		159.52	6.51	12.136	54.91	387 .5	1.06
06/27/2002	15:56:50	157.55	6.562	12.083	55.22	391.3	. 1.05
06/27/2002		160.35	6.569		57.51	396.2	1.08
06/27/2002		161.8	6.578		56.81	400.3	1.1
06/27/2002		161.48	6.592		56.78	401 7	1 11
06/27/2002		159.62	6.552		55.67		1.09
08/27/2002		162.24	6.653		53.93		1.08
06/27/2002		169.03	6.609	12.002	51 72		1.07
06/27/2002		163.72	6.622	11.997	51.02		1.06
06/27/2002		166.54	6.634	11.982	51.84		1.07
06/27/2002		163.54	6.647	11.945	51.33	408.3	1.07
06/27/2002	16:06:50	165.59	6.644	11.979	51.43	409.9	1.09
	Average	182.4	6.6	12.0	54.8	401.1	1.1

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 75% Load
Project Number:	030174.0003.002
CEM Operator:	Doug Allen

		r				No. I	
Run 3		co	CO2	02	THC	NOx	Methane
Date	Time	ppm	%	%	ppm	ppm	ppm
06/27/2002	16:42:28	160.38	6.596	12.024	48.57	397.8	1 14
06/27/2002	16:43:28	166.23	6.68	11.912	49.66	418	1 14
06/27/2002	16:44:28	173.03	6.698	11.884	51.51	422.4	1 15
06/27/2002	16:45:28	170.31	6.666	11.956	53.59	422.8	1 14
06/27/2002	16:46:25	165.59	6.662	11.934	54.06	418.9	1 13
06/27/2002	16:47:26	172.54	6.708	11.875	54.04	418.8	1 14
06/27/2002	16:48:26	174.38	6.695	11.912	53.72	420.7	1 14
06/27/2002	17:06:27	262.76	7 144	11 195	64.61	391.8	1.09
06/27/2002	17:07:27	231.93	7 118	11.288	63.71	420.5	11
06/27/2002	17:08:27	224.65	7.016	11.41	61 77	421 7	1.1
06/27/2002	17:09:27	217.25	6.989	11.475	59.28	421.6	1 11
06/27/2002	17:10:27	214.24	7.02	11.414	56.91	419.1	1.11
06/27/2002	17:11:27	217.94	6.955	11.5	54.27	421,9	1.1
06/27/2002	17:12:27	212.52	6.992	11.471	55.45	419.2	1.06
06/27/2002	17:13:27	221.69	6.966	11.445	57	420.4	1.06
06/27/2002	17:14:27	224.45	6.991	11.465	56.4	423.5	11
06/27/2002	17:15:27	214.88	6.87	11.625	54.31	421.6	1.1
06/27/2002	17:16:27	198.41	6.875	11.602	54.24	417 1	1.09
06/27/2002	17:17:28	205.21	6.919	11.569	54.26	417.1	1.1
06/27/2002	17:18:28	203.62	6.876	11.594	53.06	417	1.08
06/27/2002	17:19:28	207.27	6.935	11.54	52.84	416.9	1.08
06/27/2002	17:20:28	215.28	6.943	11.518	53.16	418.1	1.07
06/27/2002	17:21:28	206.85	6.9	11.587	52.8	417.9	1.08
06/27/2002	17:22:28	190.39	6.853	11.654	54.08	414.7	1.06
06/27/2002	17:23:28	199.5	6.907	11.56	53.49	413.5	1.08
06/27/2002	17:24:28	196.27	6.913	11.571	52.75	415.9	1.08
06/27/2002	17:25:28	202.02	6.889	11.59	52.42	415.6	1.07
06/27/2002	17:26:28	190.33	6.831	11.675	52.33	414.1	1.05
06/27/2002	17:27:28	199.75	6.92	11.556	53.96	410.4	1.08
06/27/2002	17:28:28	207 19	6.854	11.64	54.35	411.3	1.1
06/27/2002	17:29:26	198.01	6.824	11.698	52.5	407.5	1.08
06/27/2002	17:30:26	190.87	6.823	11.673	52.92	405	1.05
06/27/2002	17:31:28	189.67	6.782	11761	53.73	406	1.09
06/27/2002	17:32:26	182.7	6.832	11.671	53.39	407.4	1.09
06/27/2002	17:33:26	189.23	6.829	11.66	52.83	410	
06/27/2002	17:34:26	190.87	6.88	11.628	53.7	411.2	1.09
06/27/2002	17:35:26	191.86	6.824	11.675		414	
06/27/2002	17:36:26	190.53	6.853	11.643	54.83	4117	1 11
						L	
	Average	199.2	6.9	11.6	54.5	415.1	1.1

Data Sum	mary	CO	CO2	02	THC	NOx	Methane
Run	Time	ppm	%	%	ppm	ppm	ppm
Run 1	10:34-11:18	146.9	6.2	11.8	47.3		1.44
Run 2	15:22-16:06	162.4	6.6	12.0	54.8	401 1	1 10
Run 3	16:42-17:36	199.2	6.9	11.6	54.5	415.1	1.10

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 75% Load
Date:	06/26/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	CO
Molecular Weight:	28.01

Corrected Data Start-Stop Raw Data Calibration Data (% or ppm) Co Cm Time (ppm) Cma Run No. 142.03 0.5 154.5 10:34-11:18 146.9 149.4 1 165.16 149.4 0.6 147.0 162.4 15:22-16:06 2 0.6 146.5 203.39 149.4 3 16:42-17:36 199.2 170.19 Average

Calibration

Calibration Error Correction

Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Mass Emission Rate (lb/hr)

E(lb/hr)=Cgas*MWgas*Qs(dscfm)*60/385300000

Mass Emission Rate (lb/1000 lb fuel)

E(lb/MMBtu)=E(lb/hr)/Fuel flow * 1000

Pollutant	MWgas
CO	28.01
Methane	16.00
NOx	46.01
SO2	64.06

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 75% Load
Date:	06/26/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Poliutant:	CO2
Molecular Weight:	

MOISCUIA	ir vveigni:				ļ	Calibration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.	, ,	(% or ppm)	Cma	Со	Cm	(% or ppm)
1	10:34-11:18	6.2	9.9	-0.4	9.9	
2	15:22-16:06	6.6	9.9	0.1	9.8	
3	16:42-17:36	6.9	9.9	-0.1	9.9	6.92
				Ave	rage	6.63

<u>Calibration Error Correction</u> Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 75% Load
Date:	06/26/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	O2
Molecular Weight:	

	a weight.					Calibration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.		(% or ppm)		Co	Cm	(% or ppm)
1	10:34-11:18	11.8	20.0	-0.3	19.8	
2	15:22-16:06	12.0	20.0	0.0	19.9	
3	16:42-17:36	11.6	20.0	0.1	19.9	11.69
		· · · · · · · · · · · · · · · · · · ·		Ave	rage	11.94

<u>Calibration Error Correction</u> Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Total Hydrocarbon Data Correction

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 75% Load
Date:	06/26/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	THC
Molecular Weight:	16.00

		. [Source Info	Corrected	
			Stack	Stack	Data
	Start-Stop	Raw Data	Flow	Moisture	Dry Basis
Run No.	•	(ppm)	(dscfm)	(%)	(ppm)
1	10:34-11:18	47.3	368	5.41	49.98
2	15:22-16:06	54.8	357	5.69	58.06
3	16:42-17:36	54.5	359	6.22	
				Average	55.38

Moisture Correction
Cgas(dry)=Cgas(wet)/(1-(% moisture/100))
Mass Emission Rate (lb/hr)
E(lb/hr)=Cgas(dry)*MWgas*Qs(dscfm)*60/385300000

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 75% Load
Date:	06/26/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	N0x
Molecular Weight:	46.01

Calibration Corrected Data Calibration Data Start-Stop Raw Data Cm (% or ppm) (% or ppm) Cma Co Time Run No. 388.78 448.0 7.5 461.0 15:22-16:06 401.1 10.0 463.5 400.17 415.1 448.0 16:42-17:36 3 Average

Note: NOx was not measured during run 1 due to problems with the analyzer.

Calibration Error Correction
Cgas=(Cobs-Co)*(Cma/(Cm-Co))
Mass Emission Rate (lb/hr)
E(lb/hr)=Cgas*MWgas*Qs(dscfm)*60/385300000
Mass Emission Rate (lb/1000 lb fuel)
E(lb/MMBtu)=E(lb/hr)/Fuel flow * 1000

Pollutant	MWgas
CO	28.01
Methane	16.00
NOx	46.01
SO2	64.06

Date: 06/26/2002	Run: Flow (dscfm):	E-75-1 368.4		•		rsepower : je (gai/hr):	121.81 6.90	
	Moisture (%): Pollutant:	5.41 NOx na	CO 142.03	NMHC 48 54	THC .	Methane 1.44	CO2 6.31	O2 12.03
	Concentration (ppm or %) Mass Rate (lb/hr)	na	0.23	0.04	4.56E-02	1.32E-03	0 02	0 02
	Mass Rate (lb/gal fuel)	na	0 03	0.01	0.01	0.00	0.00 0.06	0.00 80.0
	Mass Rate (gr/hp*hr)	na	0.85	0.16	0.17	0.00	0.00	0.00

Date: 06/27/2002	Run: ! Flow (dscfm):	E-75-2 357.2	-			rsepower: je (gal/hr):	128.09 7.26	
	Moisture (%): Pollutant: Concentration (ppm or %) Mass Rate (lb/hr) Mass Rate (lb/gal fuel) Mass Rate (gr/hp*hr)	5.69 NOx 388.78 0.99 0.14 3.53	CO 165 16 0.26 0.04 0.91	NMHC 56 96 0.05 0.01 0.18	THC 58.06 5.13E-02 0.01 0.18	Methane 1.10 9.79E-04 0.00	6.67 0.02 0.00 0.06	O2 12.10 0.02 0.00 0.08

Date: 06/27/2002	Run: Flow (dscfm):	E-75-3 359.3				rsepower: ye (gal/hr):	124.47 7.05	
	Moisture (%): Pollutant: Concentration (ppm or %) Mass Rate (lb/hr) Mass Rate (lb/gal fuel) Mass Rate (gr/hp*hr)	6.22 NOx 400.17 1.03 0.15 3.76	CO 203.39 0.32 0.05 1.16	NMHC 57.01 0.05 0.01 0.18	THC 58.11 5.17E-02 0.01 0.19	Methane 1.10 9:85E-04 0.00 0.00	6.92 0 02 0 00 0.06	O2 11 69 0 02 0.00 0.08

٠.

Plant Name
Sampling Location
Date
Run Number
Start Time

Elmendorf AFB 100% Load - Ge 06/27/2002 1 1020 1105
--

Mark Wade	Tom Gerstle	Doug Allen	030174,0003,002	
Plant Rep.	Team Leader	. CEM Operator	Project Number	•

	Analyzer	Analyzer
	Number	Span
8		200
CO2		25
05		25
THC.		300
Š		1000

	Calibration	CALIBRATION	ON BRROR CHECK	HECK		SYSTEM CAL CHECK	AL CHECK				Calibration
	Gas	Calibration		Analyzer		PRETEST		POST TEST			Correction
	Specification	Value	Cylinder	Calibration	Difference	System	Syst. Bias	System	Syst. Bias	Drift	Factors
	(% of Span)	(2 or ppm)	Number (1)	Response	(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Span)	
CO Zero	0	0		9.0	0.3	9.0	0.0	9.0	0.0	0.0	Co=0.6
COLow	~30	30.1		30	-0.1						
CO Mid	09~	59.4		59.6	0.1						
CO High	80-100 (2)	149.4		149	-0.2	149	0.0	149	0.0	0.0	Cm=149.0
CO2 Zero	0	0		-0.1	-0.4	-0.1	0.0	-0.1	0.0	0.0	-Co=0.1
CO2 Low	NR										
CO2 Mid	40-60	6.6		10	0.4	10	0.0	6.6	-0.4	-0.4	Cm=10.0
CO2 High	80-100	20.5		20.5	0.0						
O2 Zero	0	0		-0.1	-0.4	-0.1	0.0	-0.1	0.0	0.0	-Co=0.1
O2 Low	NR										
O2 Mid	40-60	10.5		10.5	0.0						
O2 High	80-100	20		20	0.0	20	0.0	20.1	0.4	0.4	Cm=20.1
THC Zero	0 0	0		0.3		0.3	0.0	4.4		1.4	
THC Low	25-35	49.6		49.6	0.0	49.6		47.8		9.0-	
THC Mid	45-55	124.6		123	-1.3	123	0.0				
THC High	06-08	298.6		298		298	0.0				
NOx Zero	0	0									
NOx Low	20-30 (3)										
NOx Mid	45-55	448									
NOx High	06-08	885.5									

Plant Name
Sampling Location
Date
Run Number
Start Time

Mark Wade	Tom Gerstle	Dong Allen	030174.0003.0	
Plant Rep.	Team Leader	CEM Operator	Project Number	

	Ánalyzer	Analyzer
	Number	Span
8		200
C02		25
02		25
THC.		300
Š		1000

	Calibration	CALIBRATIO	ON ERROR CHECK	HECK		SYSTEM CAL CHECK	AL CHECK				Calibration
		Calibration		Analyzer		PRETEST		POST TEST	ال		Correction
	Specification	Value	Cylinder	Calibration	Difference		Syst. Bias	System	Syst. Bias	Drift	Factors
	(% of Span)	(% or ppm)	Number (1)	Response	(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Span)	
CO Zero	0	.1		9.0	0.3	9.0	0.0	9.0	0.0	0.0	Co=0.6
CO Low	~30	30.1		30	-0.1						
CO Mid	09~	59.4		9.65	0.1						,
CO High	80-100 (2)	149.4		149	-0.2	149	0.0	148	-0.5	-0.5	Cm=148.5
CO2 Zero	0	0		-0.1	-0.4	-0.1	0.0	0.1	0.8	0.8	Co=0.0
CO2 Low	NR										,
CO2 Mid	40-60	6'6		10	0.4	6.6	-0.4	10	0.0	0.4	Cm=10.0
CO2 High	80-100	20.5		20.5	0.0						
O2 Zero	0	0		-0.1	-0.4	-0.1	0.0	-0.1	0.0	0.0	-Co=0.1
O2 Low	NR										
O2 Mid	40-60	10.5		10.5	0.0						0.00
O2 High	80-100	20		. 20	0.0	20.1	0.4	1	-0.8		Cm=20.0
THC Zero	0	0		0.3						-0.3	
THC Low	25-35	49.6		49.6		47.8	-0.6	47		-0.3	
THC Mid	45-55	124.6		123	-1.3						
THC High	80-90	298.6		298							
NOx Zero	0	0		-0.1	0.0	0	0.0	3	0.3	0.3	C0=1.3
NOx Low	20-30 (3)										1
NO _x Mid	45-55	448		448	0.0	448	0.0	9 453	0.5	0.0	CIN=450.5
NOx High	80-90	885.5		885	-0.1						

Elmendorf A	100% Load	06/27/0		132	144	
Plant Name	Sampling Location	Date	Run Number	Start Time	Stop Time	

rf AFB	ad - Generator 1	7/02	3	1325	447
Elmendorf AFB	100% Load	06/27/02		132	144

Mark Wade	Tom Gerstle	Doug Allen	030174.0003.00
Plant Rep.	Team Leader	CEM Operator	Project Number

	Calibration	CALIBRATI	Calibration CALIBRATION ERROR CHECK	HECK		SYSTEMC	SYSTEM CAL CHECK				Calibration
	Gas	Calibration		Analyzer		PRETEST		POST TEST	I _ I		Correction
	Specification		Cylinder	Calibration	Difference	System	Syst. Bias	System	Syst. Bias	Drift	Factors
	(% of Span)	<u>8</u>	Number (1)	Response	(% of Span)	Response	(% of Span)	Response	(% of Span)	(% of Span)	
CO Zero	0	0		9.0	0.3	9'0	0.0	9.0	0.0	0.0	Co=0.6
COLow	~30	30.1		30	-0.1						
CO Mid	09~	59.4		9.65	0.1						1
CO High	80-100 (2)	149.4		149	-0.2	148	-0.5	147	-1.0		Cm=147.5
CO2 Zero	0	0		-0.1	-0.4	0.1	0.8	0.1	0.8	0.0	Co=0.1
CO2 Low	NR										i i
CO2 Mid	40-60	6.6		10	0.4	10	0.0	9.7	-1.2	-1.2	Cm=9.9
CO2 High	80-100	20.5		20.5	0.0						
O2 Zero	0	0		-0.1	-0.4	-0.1	0.0	0	0.4	0.4	-Co=0.1
O2 Low	NR										
O2 Mid	40-60	10.5		10.5	0.0						,
O2 High	80-100	20		20	0.0	19.8	-0.8		0.0		Cm=19.9
THC Zero	0	0		0.3						0.1	
THC Low	25-35	49.6		49.6		47	6.0-	47.1		0.0	
THC Mid	45-55	124.6		123	-1.3						
THC High	06-08	298.6		298					ì		
NO _x Zero	0	0		-0.1	0.0	3	0.3	5	0.5	0.2	C0=4:5
NOx Low	20-30 (3)								•		333
NO _x Mid	45-55	5 448		448		453	0.5	459	1.1	0.0	CIII=430.0
NOx High	80-90	885.5		885	-0.1						

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 100% Load
Project Number:	030174.0003.002
CEM Operator:	Doug Alicn

							10.00
Run 1		CO	CO2	02	THC	NOx	Methane
	Time	ppm	%	%	ppm 40.71	ppm	ppm _1.36
06/27/2002	10:20:48	168.7	6.744	11.691	40.26		1.35
06/27/2002	10:21:48	165.63	6.721			1	1.42
06/27/2002	10:22:48	165.72	6,759	11.687	42.16		1.64
06/27/2002	10:23:48	187.23	6.683	11 753	45.56		1.67
06/27/2002	10:24:49	184.66	6.844	11.524	42.19		1.62
06/27/2002	10:25:49	199.83	6.951	11.968	40.68		1.62
06/27/2002	10:26:49	199.82	6.961	11.354	40.75		1.58
06/27/2002	10:27:49	199.83	6.964	11.368	40.83		
06/27/2002	10:28:49	199.83	6.921	11.411	41.09		1.6 1.59
06/27/2002	10:29:49	199.83	6.926	11.432	40.78		,,,,,,
06/27/2002	10:30:47	199.83	6.904	11.442	40.77		1.58
06/27/2002	10:31:47	199.83	6.883	11.468	40.88		1.57
08/27/2002	10:32:47	199.83	6.912	11.456	40.08		1.55
06/27/2002	10:33:47	199.83	6.875	11.477	38.59		1.49
08/27/2002	10:34:47	199.83	6.889	11.489	40.84		1.52
06/27/2002	10:35:47	199.83	6.876	11.489	40.6		1.6
06/27/2002	10:36:47	199.83	6.905	11.445	39.69		1.57
06/27/2002	10:37:47	199.83	6.94	11.406	37.91		1.48
06/27/2002		199.83	6.949	11.369	38.38		1.45
08/27/2002		199.83	6.929	11.432	39,46		1.49
06/27/2002		199,83	6.849	11.505	39.42		1.53
06/27/2002		199.83	6.855	11.506	40.08	ļ	1.53
06/27/2002		199.83	6.913	11.43		Ì	1.56
06/27/2002		199.83	6.899	11.444	39.95	1	1.53
06/27/2002		199.83	6.942	11.41		1	1.61
06/27/2002		199.83	6,939	11,387	1	ļ	1.56
06/27/2002		199.83	6.953	11.383		l	1.49
06/27/2002		199.83	6.923	11,419	1		1.52
06/27/2002		199.83	6.894	11.458			1.5
1	1	199.83	6.872	11.504	1		1.51
06/27/2002			6.866	11.482			1.5
			6.948	11,398		3	1.45
06/27/2002			6.921	11.425		1	1.43
06/27/2002	1	4	6.909				1.47
06/27/2002	1		6,926				1.53
06/27/2002			6.912				1.46
06/27/2002			6.916				1.4
06/27/2002			6.905				1.4
06/27/2002			6.969			1	1.42
06/27/2002			6.956		38.7	1	1.44
06/27/2002			6,949			1	1.45
06/27/2002			6.95			ı	1.48
06/27/2002			6.901		39.22	:	1.41
06/27/2002		1	7.006				1.4
06/27/2002			7.002	11.296	37 71	ı.	1.42
1]			1			
L	Average	196.6	6.9	11.4	40.2	<u>: </u>	1.5

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 100% Load
Project Number:	030174.0003.002
CEM Operator	Done Allen

Run 2		00	CO2	02	THC	NOx	Methane
Date	Time	ppm	%	%	ppm	ppm	ppm
06/27/2002	12:20:39	364.26	6.974	11.055	41.9	519	1.50
06/27/2002	12:21:39	374.95	7.095	11 118	42.55	524.7	1.5
06/27/2002	12:22:39	363.32	7.057	11.089	41.85	528.3	1.50
06/27/2002	12:23:39	347.79	7.06	11 156	42.38	529.4	1.57
06/27/2002	12:24:37	370.3	7.081	11.091	41.8	529.9	1.5
06/27/2002	12:25:37	361.5	7.072	11 164	42.05	531 7	1.5
06/27/2002	12:26:37	359.61	7.069	11 134	42.05	531.3	1.5
06/27/2002	12:27:37	362.8	7.068	11 149	42.96	530.9	1.56
06/27/2002	12:28:37	369.45	7.069	11 133	43.06	528.5	1.59
06/27/2002	12:29:37	379.63	7.065	11 146	43.02	528.5	1.59
06/27/2002	12:30:38	364.29	7.09	11.155	43.45	529.7	1.0
06/27/2002	12:31:38	373.83	7.061	11.16	41.02	528.9	1.5
06/27/2002	12:32:38	364.11	7.067	11 189	42.98	528.2	1.5
06/27/2002	12:33:38	349.84	7.062	11 155	41.85	528.4	1.5
06/27/2002	12:34:38	347.2	7.058	11.211	41.4	527.2	1.5
06/27/2002	12:35:38	342.88	7.051	11 168	43.65	526.2	1.5
06/27/2002	12:36:38	346.64	7.032	11 184	42.94	525.7	1.5
06/27/2002	12:37:38	347.69	7.054	11 189	42.6	526.7	1.5
06/27/2002	12:38:38	343.66	7.037	11 178	42.09	528.7	1.5
06/27/2002	12:39:38	347	7.033	11.215	42.64	528.9	1.5
06/27/2002	12:40:38	332.44	7.037	11.233	42.28	529.3	1.5
06/27/2002	12:41:38	338.9	7.002	11.217	43.94	526.2	1.
08/27/2002		337 18	7.009	11.22	44.33	525.7	1.6
06/27/2002	12:43:38	341.29	6.975	11 185	44.01	526.6	1.5
06/27/2002	12:47:38	342.51	7 101	11 106	40.6	328.5	1.5
06/27/2002		381 72	7 111	11.087	40.28	529.9	1.
06/27/2002	12:49:39	359.23	7.1	11 134	40.6		1.4
06/27/2002		371 75	7 138	11.064	40.22	538.7	1.4
06/27/2002		393.37	7 147	11.054	40.32		1.4
08/27/2002		387.49	7.153	11.067	39.41	541	1.4
06/27/2002		384.58	7.11	11.098	38.78		
06/27/2002		366.46	7,117	11 125			
06/27/2002		362.72	7.11	11 112			
06/27/2002		384.48	7 137	11.074			
06/27/2002	1	366.83	7 107	11.127	36.17		
06/27/2002		372.64	7 182	10.99			1.3
06/27/2002		385.91	7.244				
06/27/2002		391.07	7.247	10.909			1.5
06/27/2002		387.56	7,202	10.995			
06/27/2002		380.24	7 185	11.02			
06/27/2002	4	379.19	7 181	11.018			1.3
06/27/2002	13:04:39	376.75	7.201	11.003	35.22	554.7	1
	Average	364.4	7.1	11.1	40.3	530.1	1.

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 100% Load
Project Number:	030174.0003.002
CEM Coemtor	Doug Allen

D	г	co	CO2	02	THC	NOx	Methane
Run 3	Time	ppm	%	%	ppm	ррт	ppm
	13:25:58	376.48	7 156	11 115	44.23	526.2	1.59
06/27/2002	13:26:58	366.4	7 124	11 126	44.15	526.8	1.59
06/27/2002	13:27:56	375.36	7 122	11 101	44.72	523.5	1.6
	13:28:56	384.77	7 119	11.079	44.35	525.5	1.6
06/27/2002 08/27/2002	13:29:56	372.54	7 119	11 132	43.B2	526.3	1.56
	13:30:56	380.98	7 126	11.064	43.28	526.5	1.56
06/27/2002	13:30:56	400.33	7 118	11.042	43.54	527.2	1.56
06/27/2002	13:31:56	397.26	7 137	11.093	45.12	526.9	1.57
06/27/2002		378.92	7 143	11.095	45.39	525.9	1.58
06/27/2002	13:33:56 13:34:56	366.11	7 126	11 103	45.02	523.1	1.58
06/27/2002	13:35:56	372.67	7 124	11.048	45.33	523.3	1.59
06/27/2002		372.87	7.097	11.046	45.15	525.9	1.56
06/27/2002	13:36:56	369.58	7.12	11.098	45.34	526.2	1.58
06/27/2002	13:37:56	365.79	7 105	11 148	45.67	524.9	1.58
06/27/2002	13:38:56	346.74	7.086		46.02	525.3	1.6
08/27/2002	13:39:56		7.08			522.7	1.58
06/27/2002	13:40:57	376.54				525.3	1.55
06/27/2002	13:41:57	386.31	7.096	1		524.9	1.55
06/27/2002	19:42:57	354.95	7 116			523.3	1.53
08/27/2002	13:43:57	354.31	7.073			524.1	1.52
06/27/2002	13:44:57	379.39	7.102			525.2	1.54
06/27/2002	13:45:57	367.63	7.15	9		523.2	1.55
06/27/2002	13:46:57	372.04	7 115				1.51
06/27/2002	13:47:57	395.96	7 197	1 .		525	1.52
06/27/2002	13:48:57	389.62	7.207		1	533.8	1.53
06/27/2002	13:49:57	386.6	7.229			537.6	
06/27/2002	13:50:57	399.23	7.28			538.2	1.54 1.52
06/27/2002	13:51:57	397.39	7.281			543.5	1.52
06/27/2002	13:52:57	381 78	7.262			547.3	1.47
08/27/2002	13:53:57	388.96	7,267				1.47
06/27/2002	13:54:57	401.31	7.310		1	547.5	1 12
06/27/2002	14:33:57	184.08	3.689			370.9	1.09
06/27/2002	14:34:57	161.45	5.20				1.08
06/27/2002	14:35:57	183.16	5.92				1.08
06/27/2002	14:36:57	214.42	6.37				1.08
06/27/2002	14:37:57	205.61	6.62				
06/27/2002	14:38:57	202.86					1.1
08/27/2002			6.72				1.08
06/27/2002					1	1	1.09
06/27/2002				-		1	
06/27/2002		I					
06/27/2002			1 .				1
06/27/2002							,
06/27/2002			5		-		1
06/27/2002	14:46:58	199.51	6.53	2 11.50	1 50.13	456.3	''"'I
	<u> </u>			, ,,	2 45.1	497.7	1.4
	Average	319.3	6.	9 11.	ZI 45.1	43/./	1.3
Data Summe	ary		CO2	02	THC	NOx	Methane
Run	Time	ppm	%_	<u> </u>	ppm	ppm	ppm
Run 1	10:20-11:04	325.0					1.51
Run 2	12:20-13:04	364.4		1			
Run S	18:25-14:46	319.3	3 6	.9 11	2 45.	9 497.7	1.40

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 100% Load
Date:	06/27/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	CO
Molecular Weight:	28.01

						Calibration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.	Time	(ppm)	Cma	Co	Cm	(% or ppm)
1	10:20-11:04	325.0	149.4	0.6	149.0	326.59
2	12:20-13:04	364.4	149.4	0.6	148.5	367.49
3	13:25-14:46	319.3	149.4	0.6	147.5	324.11
				Ave	rage	339.39

Calibration Error Correction

Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Mass Emission Rate (lb/hr)

E(lb/hr)=Cgas*MWgas*Qs(dscfm)*60/385300000

Mass Emission Rate (lb/1000 lb fuel)

E(lb/MMBtu)=E(lb/hr)/Fuel flow * 1000

Pollutant	MWgas
CO	28.01
Methane	16.00
NOx	46.01
SO2	64.0 6

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 100% Load
Date:	06/27/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	CO2
Molecular Weight:	•

Molecule	ır vveigni.				1	Calibration
						Corrected
	Start-Stop	Raw Data	Calibration D	ata	•	Data
Run No.		(% or ppm)	Cma	Со	Cm	(% or ppm)
1	10:20-11:04	6.9		-0.1	10.0	
2	12:20-13:04	7.1	9.9	0.0	10.0	
3	13:25-14:46	6.9	9.9	0.1	9.9	
				Ave	rage ·	6.94

<u>Calibration Error Correction</u> Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 100% Load
Date:	06/27/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	O2
Molecular Weight:	

						Calibration
•						Corrected
	Start-Stop	Raw Data	Calibration D	ata		Data
Run No.	Time	(% or ppm)	Cma	Co	Cm	(% or ppm)
1	10:20-11:04	11.4	20.0	-0.1	20.1	11.46
2	12:20-13:04	11.1	20.0	-0.1	20.0	11.19
3	13:25-14:46	11.2	20.0	-0.1	19.9	11.32
				Ave	rage	11.32

<u>Calibration Error Correction</u> Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Total Hydrocarbon Data Correction

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 100% Load
Date:	06/27/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	THC
Molecular Weight:	16.00

		Source Information			Corrected
			Stack	Stack	Data
	Start-Stop	Raw Data	Flow	Moisture	Dry Basis
Run No.	Time	(ppm)	(dscfm)	(%)	(ppm)
1	10:20-11:04	40.2	365	7.87	43.66
2	12:20-13:04	40.3	343	6.00	
3	13:25-14:46	45.9	325	6.54	
Lance	· · · · · · · · · · · · · · · · · · ·			Average	45.20

Moisture Correction
Cgas(dry)=Cgas(wet)/(1-(% moisture/100))
Mass Emission Rate (lb/hr)
E(lb/hr)=Cgas(dry)*MWgas*Qs(dscfm)*60/385300000

Plant Name:	Elmendorf AFB
Sampling Location:	Gen. 1 - 100% Load
Date:	06/27/2002
Project Number:	030174.0003.002
CEM Operator:	Doug Allen
Pollutant:	N0x
Molecular Weight:	46.01

Calibration Corrected Data Raw Data | Calibration Data Start-Stop Cm (% or ppm) Run No. Time (% or ppm) Cma 527.45 448.0 1.5 450.5 12:20-13:04 530.1 2 489.34 448.0 4.0 456.0 13:25-14:46 497.7 3 Average

Note: NOx was not measured during run 1 due to problems with the analyzer

Calibration Error Correction

Cgas=(Cobs-Co)*(Cma/(Cm-Co))

Mass Emission Rate (lb/hr)

E(lb/hr)=Cgas*MWgas*Qs(dscfm)*60/385300000

Mass Emission Rate (lb/1000 lb fuel)

E(lb/MMBtu)=E(lb/hr)/Fuel flow * 1000

Pollutant	MWgas
CO	28.01
Methane	16.00
NOx	46.01
SO2	64.06

Date:	Run:	E-100-1			Ho	rsepower:	127.31	
	Flow (dscfm): 364.8			•	Fuel Usage (gal/hr):		6.92	
	Moisture (%): Pollutant:	7.87 NO x	co	NMHC	THC	Methane	CO2	02
	Concentration (ppm or %)	na	326.59	42.15	43.66 `	1.51	6.90	11.46
	Mass Rate (lb/hr)	na	0.52	0.04	3.94E-02	1.37E-03	0.02	0.02
	Mass Rate (lb/gal fuel)	na	0.08	0.01	0 01	0.00	0.00	0.00
	Mass Rate (gr/hp*hr)	na	1.85	0.14	0.14	0.00	0.06	0.07

Date: 06/27/2002	Run: Flow (dscfm):	E-100-2 343.4			Horsepower: Fuel Usage (gal/hr):		128.13 6.97	
	Moisture (%): Pollutant:	6 NOx	co	NMHC	THC	Methane	CO2	02
	Concentration (ppm or %)	527.4 5	367.49	41.35	42 85	1.50	7.06	11 19
	Mass Rate (lb/hr)	1 30	0.55	0.04	3.64E-02	1.28E-03	0.02	0.02
	Mass Rate (lb/gal fuel)	0 19	80 0	0.01	0.01	0.00	0.00	0.00
	Mass Rate (gr/hp*hr)	4.60	1.95	0.12	0.13	0.00	0.06	0.07

Date:	Run:	E-100-3			Horsepower: Fuel Usage (gal/hr):		126.95 6.91	
06/27/2002	Flow (dscfm): Moisture (%):	325.2 6.54			rue: Osage (gaviii).		0.51	ï
	Pollutant:	NOx	CO	NMHC	THC	Methane	CO2	02
	Concentration (ppm or %)	48934	324.11	47 69	49.09	1.40	6.87	11.32
	Mass Rate (lb/hr)	1.14	0:46	0.04	3.95E-02	1.13E-03	0 02	0.02
	Mass Rate (lb/gal fuel)	017	0.07	0.01	0.01	0.00	0.00	0.00
	Mass Rate (gr/hp*hr)	4.08	1.64	0.14	0.14	0.00	0.05	0.07

PARTICULATE TRAVIS AFB

Travis AFB

US EPA Test Method 5 - Particulate Matter Generator Outlet Page 1 of 2

	RUN NUMBER RUN DATE RUN TIME	M5-10-1 06/13/2002 0730-0830	M5-10-2 06/13/2002 0845-0945	M5-10-3 06/13/2002 1000-1100	Average
	MEASURED DATA				
P _{static}	Stack Static Pressure, inches H ₂ O	-1.20	-1 20	-1.20	-1.20
у	Meter Box Correction Factor	1.001	1001	1001	1.001
P _{bar}	Barometric Pressure, inches Hg	30.40	30.40	30.40	30.40
V _m	Sample Volume, ft ³	50.668	52.055	52.345	51.689
Dp ^{1/2}	Average Square Root Dp, (in. H ₂ O) ^{1/2}	1.3153	1.3153	1.3153	1.3153
DH	Avg Meter Orifice Pressure, in. H ₂ O	2.47	2.50	2.50	2.49
	Average Meter Temperature, °F	87	100	97	95
T _m	<u> </u>	471	477	490	479
Ts	Average Stack Temperature, °F	43.1	38.4	42.0	41.2
V _{Ic}	Condensate Collected, ml		3.0	3.0	3.0
CO ₂	Carbon Dioxide content, % by volume	3.0			17.0
O_2	Oxygen content, % by volume	17.0	17.0	17.0	• • • • •
N_2	Nitrogen content, % by volume	80.0	80.0	80.0	80.0
C _p	Pitot Tube Coefficient	0.99	0.99	0.99	0.99
	Circular Stack? 1=Y,0=N:	1	4.00	1 4.00	4.00
As	Diameter or Dimensions, inches:	4.00 60	4.00	4.00	4.00°
Q	Sample Run Duration, minutes	0.205	0.205	0.205	0.205
D _n	Nozzle Diameter, inches	0.200	0.200		
	CALCULATED DATA				
A _n	Nozzle Area, ft ⁴	0.000229	0.000229	0.000229	0.000229
$V_{m(std)}$	Standard Meter Volume, ft*	49.978	50.214	50.751	50.314
$V_{m(std)}$	Standard Meter Volume, m	1.415	1.422	1 437	1 425
\mathbf{Q}_{m}	Average Sampling Rate, dscfm	0.833	0.837	0.846	0.839
Ps	Stack Pressure, inches Hg	30.31	3031	30.31	30 31
B _{ws}	Moisture, % by volume	3.9	3.5	3.7	3.7
B _{ws(sat)}	Moisture (at saturation), % by volume	3643.0	3860 9	4366.7	3956.9
V_{wstd}	Standard Water Vapor Volume, ft	2.029	1 807	1.977	1.938
1-B _{ws}	Dry Mole Fraction	0.961	0.965	0.963	0.963
M _d	Molecular Weight (d.b.), lb/lb-mole	29.16	29 16	29.16	29.16
M _s	Molecular Weight (w.b.), lb/lb•mole	28 72	28 77	28.74	28,75
Vs	Stack Gas Velocity, ft/s	115.1	115.4	116.2	115.6
A	Stack Area, ft ²	0.087			0.087
Qa	Stack Gas Volumetric flow, acfm	603	604	609	605
Q _e	Stack Gas Volumetric flow, dscfm	333	333	330	332
Q _s	Stack Gas Volumetric flow, dscmm	9	9	9	9
l i	Isokinetic Sampling Ratio, %	95.4	95.8	97.7	96.3

Travis AFB

US EPA Test Method 5 - Particulate Matter Generator Outlet

	RUN NUMBER RUN DATE RUN TIME	M5-10-1 06/13/2002 0730-0830	M5-10-2 06/13/2002 0845-0945	M5-10-3 06/13/2002 1000-1100	Average
	EMISSIONS DATA				
	Particulate Matter	,			
РМ	Filter Weight Gain, mg	21.55	72.7	28.3	
PM	Beaker Weight Gain, mg	5.15	4.85	7.25	
PM	Total Catch, g	0.0267	0 0776	0.0356	0.0466
CPM	Concentration, gr/dscf	8.24E-03	2.38E-02	1.08E-02	1.43E-02
CPM	Concentration, lb/dscf	1.18E-06	3.40E-06	1.54E-06	2.04E-06
EPM	Emission Rate, lb/hr	2.35E-02	6.80E-02	3.06E-02	4.07E-02
	Condensible Matter				
PM	Organic Gain, mg				
PM	Aqueous Gain, mg	18.7	19.9	17.6	
PM	Total Catch, g	0.0187	0.0199	0 0176	0.02
C _{PM}	Concentration, gr/dscf	5.77E-03	6.12E-03	5.35E-03	5.75 E-0 3
C _{PM} .	Concentration, lb/dscf	8.25E-07	8.74E-07	7.65E-07	8.21E-07
E _{PM}	Emission Rate, lb/hr	1.65E-02	1.74E-02	1.51E-02	1.63E-02
	Total Particulate Matter				
PM	Total Catch, g	4.54E-02	9.75E-02	5.32E-02	. 0.07
C _{PM}	Concentration, gr/dscf	1.40E-02	2.99E-02	1.62E-02	2.00E-02
C _{PM}	Concentration, lb/dscf	2.00E-06	4.28E-06	2.31E-06	2.86E-06
	Emission Rate, lb/hr	4.00E-02	8.54E-02	4.57E-02	5.70E-02

Travis AFB

US EPA Test Method 5 - Particulate Matter Generator Outlet

	RUN NUMBER RUN DATE RUN TIME	M5-25-1 06/11/2002 1255-1355	M5-25-2 06/11/2002 1410-1510	M5-25-3 06/11/2002 1530-1630	Average
	MEASURED DATA				
P _{static}	Stack Static Pressure, inches H ₂ O	-2.00	-2.00	-2.00	-2.00
у	Meter Box Correction Factor	1.001	1.001	1.001	1.001
. P _{bar}	Barometric Pressure, inches Hg	30.30	30 30	30.30	30.30
V _m	Sample Volume, ft ³	54.087	53.622	55.230	54.313
Dp ^{1/2}	Average Square Root Dp, (in. H ₂ O) ^{1/2}	1.4142	1.4142	1.4142	1.4142
DH	Avg Meter Orifice Pressure, in H₂O	2.70	2.68	2.70	2.69
T _m	Average Meter Temperature, °F	99	102	105	102
'm T _s	Average Stack Temperature, °F	553	557	557	556
V _{kc}	Condensate Collected, ml	50.5	43.9	47.4	47.3
CO ₂	Carbon Dioxide content, % by volume	3.6	3.7	3.9	3.7
_	Oxygen content, % by volume	15.9	15.9	15 5	15.8
O ₂	-	80.5	80.4	80.6	80.5
N ₂	Nitrogen content, % by volume	0.99	0.99	0.99	0.99
C _p	Pitot Tube Coefficient Circular Stack? 1=Y,0=N	0.55	1	1	
As	Diameter or Dimensions, inches:	4 00	4.00	4.00	4.00
Q	Sample Run Duration, minutes	60	60	60	60
D _n	Nozzle Diameter, inches	0.205	0.205	0.205	0.205
	CALCULATED DATA				
A _n	Nozzie Area, ft ^c	0.000229	0.000229	0.000229	0.000229
V _{m(std)}	Standard Meter Volume, ft"	52.107	51.380	52.643	52 043
V _{m(std)}	Standard Meter Volume, m"	1.475	1.455	1.491	1.474
Q _m	Average Sampling Rate, dscfm	0.868	0.856	0.877	0.867
P _s	Stack Pressure, inches Hg	30.15	30.15	30.15	30.15
B _{ws}	Moisture, % by volume	4.4	3.9	4.1	4.1
B _{ws(sat)}	Moisture (at saturation), % by volume	7597.4	7847.4	7847.4	7764.1
$V_{ m wstd}$	Standard Water Vapor Volume, ft	2.377	2 066	2.231	2.225 0.959
1-B _{ws}	Dry Mole Fraction	0.956	0.961	0.959	29.23
M _d	Molecular Weight (d.b.), lb/lb•mole	29.21	29.23	29.24	28.77
Mε	Molecular Weight (w.b.), lb/lb•mole	28.72	28.79	28.79	129.5
V _s	Stack Gas Velocity, ft/s	129.4	129.5	129.6	
Α	Stack Area, ft ²	0.1	0.1	0.1 678	0.09 678
Qa	Stack Gas Volumetric flow, acfm	678	678 241	340	341
Qs	Stack Gas Volumetric flow, dscfm	340	341 10	10	10
Q_s	Stack Gas Volumetric flow, dscmm	10	95.6	98.2	97.0
1	Isokinetic Sampling Ratio, %	97.2	95.0	50.2	07.0

Travis AFB

US EPA Test Method 5 - Particulate Matter Generator Outlet Page 2 of 2

	RUN NUMBER RUN DATE RUN TIME	M5-25-1 06/11/2002 1255-1355	M5-25-2 06/11/2002 1410-1510	M5-25-3 06/11/2002 1530-1630	Average
	EMISSIONS DATA			•	٠.
	Particulate Matter				
PM	Filter Weight Gain, mg	25.15	117.15	29.85	
PM	Beaker Weight Gain, mg	5.4	5.9	8.15	
PM	Total Catch, g	0.0306	0.1231	0.0380	0.0639
CPM	Concentration, gr/dscf	9.05 E- 03	3.70E-02	1.11E-02	1. 9 0E-02
CPM	Concentration, lb/dscf	1.29E-06	5.28E-06	1.59E-06	2.72E-06
E _{PM}	Emission Rate, lb/hr	. 0.03	0.11	0.03	0.06
	Condensible Matter				
PM	Organic Gain, mg				
PM	Aqueous Gain, mg	21.9	16.7	19	
PM	Total Catch, g	0.0219	0.0167	0.0190	0.02
CPM	Concentration, gr/dscf	6.49E-03	5.02E-03	5.57E-03	5.69E-03
CPM	Concentration, lb/dscf	9.27E-07	7.17E-07	7.96E-07	8.13E-07
EpM	Emission Rate, lb/hr	1.89E-02	1.47E-02	1.62E-02	1.66E-02
	Total Particulate Matter				
PM	Total Catch, g	5,25E-02	1.40E-01	5.70E-02	0.08
C _{PM}	Concentration, gr/dscf	1.55E-02	4.20E-02	1.67E-02	2.47E-02
CPM	Concentration, lb/dscf	2.22E-06	6.00E-06	2.39E-06	3.53E-06
	Emission Rate, lb/hr	4.53E-02	1.23E-01	4.87E-02	7.23E-02

Travis AFB

US EPA Test Method 5 - Particulate Matter Generator Outlet

	RUN NUMBER RUN DATE RUN TIME	M5-50-1 06/12/2002 Time	M5-50-2 06/12/2002 Time	M5-50-3 06/12/2002 Time	Average
	MEASURED DATA				
P _{static}	Stack Static Pressure, inches H₂O	-2 20	-2.20	-2.20	-2.20
y	Meter Box Correction Factor	1.001	1 001	1.001	1.001
P _{bar}	Barometric Pressure, inches Hg	30.30	30.30	30.30	30.30
V _m	Sample Volume, ft ³	38.179	39.127	39.661	38 989
Dp ^{1/2}	Average Square Root Dp, (in. H ₂ O) ^{1/2}	1.4491	1.4491	1.4491	1.4491
DH	Avg Meter Orifice Pressure, in. H ₂ O	1 40	1.40	1.40	1.40
	Average Meter Temperature, °F	66	79	83	76
T _m	Average Stack Temperature, °F	617	632	633	627
T _s	Condensate Collected, mi	40.6	42.2	40.9	41.2
V _{Ic}		4.0	5.0	5.0	47
CO ₂	Carbon Dioxide content, % by volume	15.0	14.0	14.0	143
. O ₂	Oxygen content, % by volume	81.0	81.0	81.0	81.0
N ₂	Nitrogen content, % by volume		0.99	0.99	0 99
C _p	Pitot Tube Coefficient	0.99 ·1	0.99	0.55	0.00
۸۵	Circular Stack? 1=Y,0=N: Diameter or Dimensions, inches:	4.00	4.00	4.00	4.00
As Q	Sample Run Duration, minutes	60	60	60	60
D _n	Nozzle Diameter, inches	0.178	0.178	0.178	0.178
	CALCULATED DATA				
A _n	Nozzie Area, ff	0.000173	0.000173	0.000173	
V _{m(std)}	Standard Meter Volume, ft	38.966	38.971	39.211	39.049
V _{m(std)}	Standard Meter Volume, m	1.103	1.104	1.110	1.106
Q _m	Average Sampling Rate, dscfm	0.649	0.650	0.654	0 651
P _s	Stack Pressure, inches Hg	30.14	30.14	30.14	30.14
B _{ws}	Moisture, % by volume	4.7	4.8	4.7	4.7
B _{ws(sat)}	Moisture (at saturation), % by volume	12370.9	13745.1	13840.4	13318.8
$V_{ m wstd}$	Standard Water Vapor Volume, ft	1.911	1.986	1.925	1.941
1-B _{ws}	Dry Mole Fraction	0 953	0.952	0.953	0.953
M _d	Molecular Weight (d.b.), lb/lb•mole	29.24	29.36	29 36	29.32
M _s	Molecular Weight (w.b.), lb/lb•mole	28.71	28.81	28.83	28.78 137.3
V _s	Stack Gas Velocity, ft/s	136.8	137.5	137.6	
Α	Stack Area, ft ²	0.1	0.1	0.1 720	0.09 719
Q	Stack Gas Volumetric flow, acfm	716	720	334	335
Qs	Stack Gas Volumetric flow, dscfm	337	334 9	9	9
Qs	Stack Gas Volumetric flow, dscmm	10		98.8	98.2
1	Isokinetic Sampling Ratio, %	97.3	98.3	90.0	ع.د

Travis AFB

US EPA Test Method 5 - Particulate Matter Generator Outlet

	RUN NUMBER RUN DATE RUN TIME	M5-50-1 06/12/2002 Time	M5-50-2 06/12/2002 Time	M5-50-3 06/12/2002 Time	Average
	EMISSIONS DATA		•		٠.
	Particulate Matter				
PM	Filter Weight Gain, mg	20.05	66 65	. 23	
PM	Beaker Weight Gain, mg	5.3	5.05	6.7	
PM	Total Catch, g	0.0254	0.0717	0.0297	0.0423
CPM	Concentration, gr/dscf	1.00E-02	2.84E-02	1.17E-02	1.67E-02
CPM	Concentration, lb/dscf	1.43E-06	4.06E-06	1.67E-06	2.39E-08
E _{PM}	Emission Rate, lb/hr	. 0.03	80.0	0.03	0.05
	Condensible Matter				
PM	Organic Gain, mg				
PM	Aqueous Gain, mg	16.6	21.7	17.2	
PM	Total Catch, g	0.0166	0.0217	00172	0.02
CPM	Concentration, gr/dscf	6.57E-03	8.59E-03	6.77E-03	7.31E-0
CPM	Concentration, lb/dscf	9.39E-07	1.23E-06	9.67E-07	1.04E-00
EPM	Emission Rate, lb/hr	1.90E-02	2.46E-02	1.94E-02	2.10E-0
	Total Particulate Matter				
PM	Total Catch, g	4.20E-02	9.34E-02	4.69E-02	0.06
CPM	Concentration, gr/dscf	1.66E-02	3.70E-02	1.85E-02	2.40E-02
CPM	Concentration, lb/dscf	2.37E-06	5.28E-06	2.64E-06	3.43E-06
	Emission Rate, lb/hr	4.80E-02	1.06E-01	5.28E-02	6.89E-02

Travis AFB

US EPA Test Method 5 - Particulate Matter Generator Outlet

	RUN NUMBER RUN DATE RUN TIME	M5-75-1 06/12/2002 11/20-1220	M5-75-2 06/12/2002 1237-1337	M5-75-3 06/12/2002 1350-1450	Average
	MEASURED DATA				
P _{static}	Stack Static Pressure, inches H ₂ O	-2.50	-2.50	-2.50	-2.50
у	Meter Box Correction Factor	1.001	1.001	1.001	1.001
P _{bar}	Barometric Pressure, inches Hg	30.30	30 30	30.30	3030
V _m	Sample Volume, ft3	42.720	42.864	43.022	42.869
Dp ^{1/2}	Average Square Root Dp, (in. H ₂ O) ^{1/2}	1.6492	1.6454	1.6432	1.6459
DH	Avg Meter Orifice Pressure, in. H ₂ O	1.70	1.70	1.70	1.70
T _m	Average Meter Temperature, °F	81	82	86	83
T _s	Average Stack Temperature, °F	732	737	745	738
اء V _{Ic}	Condensate Collected, ml	56.7	50.5	62.2	56.5
CO ₂	Carbon Dioxide content, % by volume	6.0	6.0	6.0	6.0
1	Oxygen content, % by volume	13.0	13.0	13.0	13.0
O ₂	,,,	81.0	81.0	81.0	81.0
N ₂	Nitrogen content, % by volume	0.99	0.99	0.99	0.99
C _p	Pitot Tube Coefficient	.1	0.99	0.55	0.00
As	Circular Stack? 1=Y,0=N: Diameter or Dimensions, inches:	4.00	4.00	4.00	4.00
Q	Sample Run Duration, minutes	60	60	60	60
D_n	Nozzle Diameter, inches	0.174	0.178	0.178	0.177
	CALCULATED DATA				
A _n	Nozzle Area, ft ⁴	0 000165	0.000173	0.000173	
V _{m(std)}	Standard Meter Volume, ft*	42.423	42.487	42.331	42.414
V _{m(std)}	Standard Meter Volume, m	1.201	1 203	1199	1.201
Q _m	Average Sampling Rate, dscfm	0.707	0.708	0.706	0.707
P.	Stack Pressure, inches Hg	30.12	30 12	30.12	30.12
B _{ws}	Moisture, % by volume	5.9	5.3	6.5	5.9
B _{ws(sat)}	Moisture (at saturation), % by volume	25834.9	26584.0	27813.4	26744.1
V_{wstd}	Standard Water Vapor Volume, ft	2.669	2 377	2.928	2.658
1-B _{ws}	Dry Mole Fraction	0.941	0.947	0.935	0.941
M _d	Molecular Weight (d.b.), lb/lb•mole	29.48	29.48	29.48	29.48
Ms	Molecular Weight (w.b.), lb/lb-mole	28.80	28 87	28.74	28.80 163.7
V _s	Stack Gas Velocity, ft/s	163.6	163.4	164.1	
A	Stack Area, ft ²	0.1	0.1	0.1 859	0.09 857
Q,	Stack Gas Volumetric flow, acfm	857	856 360	354	358
Q _s	Stack Gas Volumetric flow, dscfm	359 10	360 10	10	10
Q,	Stack Gas Volumetric flow, dscmm	10	99.5	100.6	101.4
	Isokinetic Sampling Ratio, %	104.0	99.5	100.0	101.7

Travis AFB

US EPA Test Method 5 - Particulate Matter Generator Outlet Page 2 of 2

	RUN NUMBER RUN DATE RUN TIME	M5-75-1 06/12/2002 1120-1220	M5-75-2 06/12/2002 1237-1337	M5-75-3 06/12/2002 1350-1450	Average
	EMISSIONS DATA				
	Particulate Matter				
PM	Filter Weight Gain, mg	26.45	104.05	28.9 5	
PM	Beaker Weight Gain, mg	6.85	77	9.7	
PM	Total Catch, g	0.0333	0.1118	0.0387	0.0612
C _{PM}	Concentration, gr/dscf	1.21E-02	4.06E-02	1.41E-02	2.23E-0
CPM	Concentration, lb/dscf	1.73E-06	5.80E-06	2.01E-06	3.18E-0
E _{PM}	Emission Rate, lb/hr	3.73E-02	1.25E-01	4.28E-02	6.84E-0
	Condensible Matter				
PM	Organic Gain, mg				
PM	Aqueous Gain, mg	26.8	20.8	23.1	
PM	Total Catch, g	0 0268	0.0208	0.0231	0.0
C _{PM}	Concentration, gr/dscf	9.75E-03	7.55E-03	8.42E-03	8.58E-0
CPM	Concentration, lb/dscf	1.39E-06	1.08E-06	1.20E-06	1.23E-0
E _{PM}	Emission Rate, lb/hr	3.00E-02	2,33E-02	2.56E-02	2.63E-0
	Total Particulate Matter				
PM	Total Catch, g	6.01E-02	1.33E-01	6.18E-02	0.0
CPM	Concentration, gr/dscf	2.19E-02	4.81E-02	2.25E-02	3.08E-0
C _{PM}	Concentration, lb/dscf	3.12E-06	6.88E-06	3.22E-06	4.41E-0
∽ PM			1.48E-01	6.84E-02	9.47E-0

Travis AFB

US EPA Test Method 5 - Particulate Matter Generator Outlet

	MEASURED DATA Stack Static Pressure, inches H ₂ O Meter Box Correction Factor Barometric Pressure, inches Hg Sample Volume, ft ³	-2.50 1.001	-2.50		
y Pbar V _m Dp ^{1/2} DH T _m T _s V _c CO ₂ O ₂ N ₂ C _p	Meter Box Correction Factor Barometric Pressure, inches Hg	1.001	-2.50		
P _{bar} V _m Dp ^{1/2} DH T _m T _s V _{sc} CO ₂ O ₂ N ₂ C _p	Barometric Pressure, inches Hg			- 2. 5 0	-2 50
V _m Dp ^{1/2} DH T _m T _s V _{sc} CO ₂ O ₂ N ₂ C _p			1.001	1.001	1 001
Dp ^{1/2} DH T _m T _s V _{ic} CO ₂ O ₂ N ₂ C _p	Sample Volume, ft ³	30.40	30.40	30.40	30:40
Dp ^{1/2} DH T _m T _s V _{ic} CO ₂ O ₂ N ₂ C _p		43.485	43.531	43 964	43.660
T _m T _s V _{tc} CO ₂ O ₂ N ₂ C _p	Average Square Root Dp, (in. H ₂ O) ^{1/2}	1.7889	1.7889	1.7889	1.7889
T _s V _{tc} CO ₂ O ₂ N ₂ C _p	Avg Meter Orifice Pressure, in. H ₂ O	1 80	1.84	1.82	1.82
T _s V _{tc} CO ₂ O ₂ N ₂ C _p	Average Meter Temperature, °F	63	75	80	73
V _{ic} CO ₂ O ₂ N ₂ C _p	Average Stack Temperature, °F	799	810	833	814
CO ₂ O ₂ N ₂ C _p	Condensate Collected, ml	65.4	57.2	68.1	63.6
O ₂ N ₂ C _p	Carbon Dioxide content, % by volume	7.0	7.0	7.0	7.0
N ₂ C _p	Oxygen content, % by volume	11.5	11.5	11 5	11.5
C _p	Nitrogen content, % by volume	81.5	81.5	81 5	81.5
·	Pitot Tube Coefficient	0 99	0.99	0.99	0.99
Αs	Circular Stack? 1=Y.0=N:	1	1	1	
,	Diameter or Dimensions, inches:	4.00	4.00	4.00	4.00
Q	Sample Run Duration, minutes	60	60	60	60
D_n	Nozzle Diameter, inches	0.178	0.178	0 178	0.178
	CALCULATED DATA				
$\mathbf{A}_{\mathbf{n}}$	Nozzle Area, ft ²	0.000173	0.000173	0.000173	0.00017
V _{m(std)}	Standard Meter Volume, ft	44.826	43.871	43.895 -	
V _{m(std)}	Standard Meter Volume, m	1.269	1.242	1.243	1.252
Q_{m}	Average Sampling Rate, dscfm	0.747	0.731	0.732	0.737
P _a	Stack Pressure, inches Hg	30.22	30.22	30.22	30.22
\mathbf{B}_{ws}	Moisture, % by volume	6.4	5.8	6.8	6.3
B _{ws(sat)}	Moisture (at saturation), % by volume	37019.7	39141.4	43836.8	39999 3
V_{watd}	Standard Water Vapor Volume, ft°	3.078	2 692	3.205	2.992
1-B _{ws}	Dry Mole Fraction	0.936	0.942	0.932	0.937
M_d	Molecular Weight (d.b.), lb/lb•mole	29.58	29.58	29.58	29.58
M_s	Molecular Weight (w.b.), lb/lb-mole	28.84	28.91	28.79	28.85
٧s	Stack Gas Velocity, ft/s	182.0	182.6	184.6	183.0
Α	Stack Area, ft ²	0.1	0.1	0.1	0.09 958
Q_a	Stack Gas Volumetric flow, acfm	953	956	966 371	376
Q,	Stock Con Volumetric flow deatm	378	378	.5.7 1	.7/1
Q _s	Stack Gas Volumetric flow, dscfm Stack Gas Volumetric flow, dscmm	11	11	11	11

Travis AFB

US EPA Test Method 5 - Particulate Matter Generator Outlet

### RUN TIME 0730-0830						
### RUN TIME 0730-0830		RUN NUMBER	M5-100-1	M5-100-2	M5-100-3	
EMISSIONS DATA Particulate Matter PM Filter Weight Gain, mg 24.05 95.85 24.15 PM Beaker Weight Gain, mg 9.05 7.35 7.85 PM Total Catch, g 0.0331 0.1032 0.0320 0.056 Cpm Concentration, gr/dscf 1.14E-02 3.63E-02 1.13E-02 1.96E-0 Cpm Concentration, lb/dscf 1.63E-06 5.19E-06 1.61E-06 2.81E-0 Epm Emission Rate, lb/hr 3.69E-02 1.18E-01 3.58E-02 6.34E-0 Condensible Matter PM Organic Gain, mg PM Aqueous Gain, mg PM Aqueous Gain, mg PM Total Catch, g 0.0179 0.0174 0.0232 0.0 Cpm Concentration, gr/dscf 6.16E-03 6.12E-03 8.16E-03 6.81E-0 Cpm Concentration, lb/dscf 8.80E-07 8.74E-07 1.17E-06 9.73E-0 Epm Emission Rate, lb/hr 1.99E-02 1.98E-02 2.60E-02 2.19E-0 Total Particulate Matter PM Total Catch, g 5.10E-02 1.21E-01 5.52E-02 0.0 Cpm Concentration, gr/dscf 1.76E-02 4.24E-02 1.94E-02 2.65E-04 Cpm Concentration, gr/dscf 2.51E-06 6.06E-06 2.77E-06 3.78E-02		RUN DATE	06/13/2002	06/13/2002	06/13/2002	Average
Particulate Matter		RUN TIME	0730-0830	0845-0945	1000-1100	
PM Filter Weight Gain, mg 24.05 95.85 24.15 PM Beaker Weight Gain, mg 9.05 7.35 7.85 PM Total Catch, g 0.0331 0.1032 0.0320 0.056 C _{PM} Concentration, gr/dscf 1.14E-02 3.63E-02 1.13E-02 1.96E-0 C _{PM} Concentration, lb/dscf 1.63E-06 5.19E-06 1.61E-06 2.81E-0 E _{PM} Emission Rate, lb/hr 3.69E-02 1.18E-01 3.58E-02 6.34E-0 Condensible Matter PM Organic Gain, mg 17.9 17.4 23.2 PM Aqueous Gain, mg 17.9 17.4 23.2 PM Total Catch, g 0.0179 0.0174 0.0232 0.0 C _{PM} Concentration, gr/dscf 6.16E-03 6.12E-03 8.16E-03 6.81E-0 C _{PM} Concentration, lb/dscf 8.80E-07 8.74E-07 1.17E-06 9.73E-0 E _{PM} Emission Rate, lb/hr 1.99E-02 1.98E-02 2.60E-02		EMISSIONS DATA				
PM Beaker Weight Gain, mg 9.05 7.35 7.85 PM Total Catch, g 0.0331 0.1032 0.0320 0.056 CPM Concentration, gr/dscf 1.14E-02 3.63E-02 1.13E-02 1.96E-0 CPM Concentration, lb/dscf 1.63E-06 5.19E-06 1.61E-06 2.81E-0 Emission Rate, lb/hr 3.69E-02 1.18E-01 3.58E-02 6.34E-0 Condensible Matter PM Organic Gain, mg PM Aqueous Gain, mg PM Total Catch, g 0.0179 0.0174 0.0232 0.0 CPM Concentration, gr/dscf 6.16E-03 6.12E-03 8.16E-03 6.81E-0 CPM Concentration, lb/dscf 8.80E-07 8.74E-07 1.17E-06 9.73E-0 EPM Emission Rate, lb/hr 1.99E-02 1.98E-02 2.60E-02 2.19E-0 Total Particulate Matter PM Total Catch, g 5.10E-02 1.21E-01 5.52E-02 0.0 CPM Concentration, gr/dscf 1.76E-02 4.24E-02 1.94E-02 2.65E-0 CPM Concentration, lb/dscf 2.51E-06 6.06E-06 2.77E-06 3.78E-0		Particulate Matter				
PM Total Catch, g	PM	Filter Weight Gain, mg		=		•
CPM Concentration, gr/dscf 1.14E-02 3.63E-02 1.13E-02 1.96E-0 CPM Concentration, lb/dscf 1.63E-06 5.19E-06 1.61E-06 2.81E-0 EPM Emission Rate, lb/hr 3.69E-02 1.18E-01 3.58E-02 6.34E-0 Condensible Matter PM Organic Gain, mg 17.9 17.4 23.2 PM Aqueous Gain, mg 17.9 0.0174 0.0232 0.0 CPM Concentration, gr/dscf 6.16E-03 6.12E-03 8.16E-03 6.81E-0 CPM Concentration, lb/dscf 8.80E-07 8.74E-07 1.17E-06 9.73E-0 EPM Emission Rate, lb/hr 1.99E-02 1.98E-02 2.60E-02 2.19E-0 Total Particulate Matter PM Total Catch, g 5.10E-02 1.21E-01 5.52E-02 0.0 CPM Concentration, gr/dscf 1.76E-02 4.24E-02 1.94E-02 2.65E-0 CPM Concentration, lb/dscf 2.51E-06 6.06E-06 2.777E-06	PM	Beaker Weight Gain, mg	,			
Cpm Concentration, lb/dscf 1.63E-06 5.19E-06 1.61E-06 2.81E-0 Epm Emission Rate, lb/hr 3.69E-02 1.18E-01 3.58E-02 6.34E-0 Condensible Matter PM Organic Gain, mg 17.9 17.4 23.2 PM Aqueous Gain, mg 17.9 0.0174 0.0232 0.0 PM Total Catch, g 0.0179 0.0174 0.0232 0.0 Cpm Concentration, gr/dscf 6.16E-03 6.12E-03 8.16E-03 6.81E-0 Cpm Concentration, lb/dscf 8.80E-07 8.74E-07 1.17E-06 9.73E-0 Epm Emission Rate, lb/hr 1.99E-02 1.98E-02 2.60E-02 2.19E-0 Total Particulate Matter PM Total Catch, g 5.10E-02 1.21E-01 5.52E-02 0.0 Cpm Concentration, gr/dscf 1.76E-02 4.24E-02 1.94E-02 2.65E-0 Cpm Concentration, lb/dscf 2.51E-06 6.06E-06 2.77E-06 3.78E-0	PM	Total Catch, g	0.0331	0.1032	0.0320	0.0561
Epm Emission Rate, Ib/hr 3.69E-02 1.18E-01 3.58E-02 6.34E-0 Condensible Matter PM Organic Gain, mg 17.9 17.4 23.2 PM Total Catch, g 0.0179 0.0174 0.0232 0.0 CpM Concentration, gr/dscf 6.16E-03 6.12E-03 8.16E-03 6.81E-0 CpM Concentration, Ib/dscf 8.80E-07 8.74E-07 1.17E-06 9.73E-0 Epm Emission Rate, Ib/hr 1.99E-02 1.98E-02 2.60E-02 2.19E-0 Total Particulate Matter PM Total Catch, g 5.10E-02 1.21E-01 5.52E-02 0.0 CpM Concentration, gr/dscf 1.76E-02 4.24E-02 1.94E-02 2.65E-0 CpM Concentration, Ib/dscf 2.51E-06 6.06E-06 2.77E-06 3.78E-0	C _{PM}	Concentration, gr/dscf	1.14E-02	3.63E-02	1.13E-02	1.96E-02
E _{PM} Emission Rate, lb/hr 3.69E-02 1.18E-01 3.58E-02 6.34E-02 Condensible Matter PM Organic Gain, mg 17.9 17.4 23.2 PM Aqueous Gain, mg 0.0179 0.0174 0.0232 0.0 C _{PM} Concentration, gr/dscf 6.16E-03 6.12E-03 8.16E-03 6.81E-0 C _{PM} Concentration, lb/dscf 8.80E-07 8.74E-07 1.17E-06 9.73E-0 E _{PM} Emission Rate, lb/hr 1.99E-02 1.98E-02 2.60E-02 2.19E-0 Total Particulate Matter PM Total Catch, g 5.10E-02 1.21E-01 5.52E-02 0.0 C _{PM} Concentration, gr/dscf 1.76E-02 4.24E-02 1.94E-02 2.65E-0 C _{PM} Concentration, lb/dscf 2.51E-06 6.06E-06 2.77E-06 3.78E-0	CPM	Concentration, lb/dscf	1.63E-06	5.19E-06	1.61E-06	2.81E-06
PM Organic Gain, mg 17.9 17.4 23.2 PM Aqueous Gain, mg 17.9 17.4 23.2 PM Total Catch, g 0.0179 0.0174 0.0232 0.0 C _{PM} Concentration, gr/dscf 6.16E-03 6.12E-03 8.16E-03 6.81E-0 C _{PM} Concentration, lb/dscf 8.80E-07 8.74E-07 1.17E-06 9.73E-0 E _{PM} Emission Rate, lb/hr 1.99E-02 1.98E-02 2.60E-02 2.19E-0 Total Particulate Matter PM Total Catch, g 5.10E-02 1.21E-01 5.52E-02 0.0 C _{PM} Concentration, gr/dscf 1.76E-02 4.24E-02 1.94E-02 2.65E-0 C _{PM} Concentration, lb/dscf 2.51E-06 6.06E-06 2.77E-06 3.78E-0		Emission Rate, lb/hr	3.69E-02	1.18E-01	3.58 E-0 2	6.34E-02
PM Aqueous Gain, mg 17.9 17.4 23.2 PM Total Catch, g 0.0179 0.0174 0.0232 0.0 C _{PM} Concentration, gr/dscf 6.16E-03 6.12E-03 8.16E-03 6.81E-03 C _{PM} Concentration, lb/dscf 8.80E-07 8.74E-07 1.17E-06 9.73E-0 E _{PM} Emission Rate, lb/hr 1.99E-02 1.98E-02 2.60E-02 2.19E-0 Total Particulate Matter PM Total Catch, g 5.10E-02 1.21E-01 5.52E-02 0.0 C _{PM} Concentration, gr/dscf 1.76E-02 4.24E-02 1.94E-02 2.65E-0 C _{PM} Concentration, lb/dscf 2.51E-06 6.06E-06 2.77E-06 3.78E-0		Condensible Matter				
PM Total Catch, g 0.0179 0.0174 0.0232 0.0 C _{PM} Concentration, gr/dscf 6.16E-03 6.12E-03 8.16E-03 6.81E-0 C _{PM} Concentration, lb/dscf 8.80E-07 8.74E-07 1.17E-06 9.73E-0 E _{PM} Emission Rate, lb/hr 1.99E-02 1.98E-02 2.60E-02 2.19E-0 Total Particulate Matter PM Total Catch, g 5.10E-02 1.21E-01 5.52E-02 0.0 C _{PM} Concentration, gr/dscf 1.76E-02 4.24E-02 1.94E-02 2.65E-0 C _{PM} Concentration, lb/dscf 2.51E-06 6.06E-06 2.77E-06 3.78E-0	PM	Organic Gain, mg				
CPM Concentration, gr/dscf 6.16E-03 6.12E-03 8.16E-03 6.81E-03 CPM Concentration, lb/dscf 8.80E-07 8.74E-07 1.17E-06 9.73E-03 EPM Emission Rate, lb/hr 1.99E-02 1.98E-02 2.60E-02 2.19E-03 Total Particulate Matter PM Total Catch, g 5.10E-02 1.21E-01 5.52E-02 0.0 CPM Concentration, gr/dscf 1.76E-02 4.24E-02 1.94E-02 2.65E-02 CPM Concentration, lb/dscf 2.51E-06 6.06E-06 2.77E-06 3.78E-0	PM	Aqueous Gain, mg	17.9	17.4	23.2	
CPM Concentration, Ib/dscf 8.80E-07 8.74E-07 1.17E-06 9.73E-0 EPM Emission Rate, Ib/hr 1.99E-02 1.98E-02 2.60E-02 2.19E-0 Total Particulate Matter PM Total Catch, g 5.10E-02 1.21E-01 5.52E-02 0.0 CPM Concentration, gr/dscf 1.76E-02 4.24E-02 1.94E-02 2.65E-0 CPM Concentration, Ib/dscf 2.51E-06 6.06E-06 2.77E-06 3.78E-0	PM	Total Catch, g	0.0179	0.0174	0.0232	0.02
CPM Concentration, lb/dscf 8.80E-07 8.74E-07 1.17E-06 9.73E-0 EPM Emission Rate, lb/hr 1.99E-02 1.98E-02 2.60E-02 2.19E-0 Total Particulate Matter PM Total Catch, g 5.10E-02 1.21E-01 5.52E-02 0.0 CPM Concentration, gr/dscf 1.76E-02 4.24E-02 1.94E-02 2.65E-0 CPM Concentration, lb/dscf 2.51E-06 6.06E-06 2.77E-06 3.78E-0	C _{PM}	Concentration, gr/dscf	6.16E-03	6.12E-03	8.16E-03	6.81E-03
E _{PM} Emission Rate, lb/hr 1.99E-02 1.98E-02 2.60E-02 2.19E-02 Total Particulate Matter PM Total Catch, g 5.10E-02 1.21E-01 5.52E-02 0.0 C _{PM} Concentration, gr/dscf 1.76E-02 4.24E-02 1.94E-02 2.65E-02 C _{PM} Concentration, lb/dscf 2.51E-06 6.06E-06 2.77E-06 3.78E-02	Cpu	Concentration, ib/dscf	8.80E-07	8.74E-07	1.17E-06	9.73E-07
PM Total Catch, g 5.10E-02 1.21E-01 5.52E-02 0.0 C _{PM} Concentration, gr/dscf 1.76E-02 4.24E-02 1.94E-02 2.65E-02 C _{PM} Concentration, lb/dscf 2.51E-06 6.06E-06 2.77E-06 3.78E-0		Emission Rate, lb/hr	1.99E-02	1.98E-02	2.60E-02	2.19E-02
C _{PM} Concentration, gr/dscf 1.76E-02 4.24E-02 1.94E-02 2.65E-04 Concentration, lb/dscf 2.51E-06 6.06E-06 2.77E-06 3.78E-05 2.51E-06 6.06E-06 2.77E-06 3.78E-05 2.51E-06 6.06E-06 2.77E-06 3.78E-05 2.51E-06 6.06E-06 2.77E-06 3.78E-05 2.51E-06 6.06E-06 2.77E-06 3.78E-05 2.51E-06 6.06E-06 2.77E-06 3.78E-05 2.51E-06 6.06E-06 2.77E-06 3.78E-05 2.51E-06 6.06E-06 2.77E-06 3.78E-05 2.51E-06 6.06E-06 2.77E-06 3.78E-05 2.51E-06 6.06E-06 2.77E-06 3.78E-05 2.51E-06 6.06E-06 2.77E-06 3.78E-05 2.51E-06 6.06E-06 2.77E-06 3.78E-05 2.51E-06 6.06E-06 2.77E-06 3.78E-05 2.51E-06 6.06E-06 2.77E-06 6.06E-06 6.06E		Total Particulate Matter				
C _{PM} Concentration, Ib/dscf 2.51E-06 6.06E-06 2.77E-06 3.78E-0	PM	Total Catch, g	5.10E-02	1.21E-01	5.52E-02	0.08
C _{PM} Concentration, lb/dscf 2.51E-06 6.06E-06 2.77E-06 3.78E-	CPM	Concentration, gr/dscf	1.76E-02	4.24E-02	1.94E-02	2.65E-02
TANKA AMMAA AARAA AARAA		Concentration, lb/dscf	2.51E-06	6.06E-06	2.77E-06	3.78E-06
		•	5.68E-02	1.37E-01	6.18E-02	8.53E-02
	E _{PM}	Emission Rate, lb/hr	5.68E-02	1.37E-01	6.18E-02	

PARTICULATE ELMENDORF AFB

Summary of Stack Gas Parameters and Test Results

030174.0003.002

Elmendorf AFB

US EPA Test Method 5 - Particulate Matter

Generator Outlet

	RUN NUMBER RUN DATE RUN TIME	E-10-5-1 06/25/2002 0730-0830	E-10-5-2 06/25/2002 0845-0945	E-10-5-3 06/25/2002 1000-1100	Average
	MEASURED DATA				٠
P _{static}	Stack Static Pressure, inches H ₂ O	-0 85	-0.85	-0.85	-0.85
у	Meter Box Correction Factor	1.001	1.001	1.001	1.001
Pbar	Barometric Pressure, inches Hg	29.90	29 90	29 90	29.90
V _m	Sample Volume, ft ³	52.196	43.840	44.452	46 829
Dp ^{1/2}	Average Square Root Dp, (in. H ₂ O) ^{1/2}	1.3450	1.1310	1.1314	1.2025
DH	Avg Meter Orifice Pressure, in. H ₂ O	2.37	1.70	1.70	1.92
T _m	Average Meter Temperature, °F	71	77	79	76
Ts	Average Stack Temperature, °F	440	450	453	448
V _{lc}	Condensate Collected, ml	43.5	35.8	37.1	38.8
CO2	Carbon Dioxide content, % by volume	3.2	3.2	3.2	3.2
02	Oxygen content, % by volume	16.5	16.4	16.4	16.4
N ₂	Nitrogen content, % by volume	80.3	80.4	80.4	80.4
C,	Pitot Tube Coefficient	0.99	0.99	0.99	0.99
	Circular Stack? 1=Y,0=N:	1	1	1	
As	Diameter or Dimensions, inches	4.00	4.00	4.00	4.00
Q	Sample Run Duration, minutes	60	60	60	60
, D _n	Nozzle Diameter, inches	0.201	0.201	0.201	0.201
	CALCULATED DATA				
An	Nozzle Area, ft*	0.000220	0.000220	0.000220	0.000220
V _{m(std)}	Standard Meter Volume, ft*	52.224	43.256	43.687	46.389
V _{m(std)}	Standard Meter Volume, m	1.479	1 225	1.237	1 314
\mathbf{Q}_{m}	Average Sampling Rate, dscfm	0.870	0.721	0.728	0.773
P _s	Stack Pressure, inches Hg	29.84	29 84	29.84	29.84
B _{ws}	Moisture, % by volume	3.8	3.7	3.8	3.8
B _{ws(sat)}	Moisture (at saturation), % by volume	2705.2	3000.6	3093.9	2933.2
V _{wstd}	Standard Water Vapor Volume, ft	2.048	1.685	1.746	1.826
1-B _{ws}	Dry Mole Fraction	0.962	0.963	0.962	0.962
M_d	Molecular Weight (d.b.), lb/lb•mole	29.17	29.17	29.17	29.17
Ms	Molecular Weight (w.b.), lb/lb•mole	28.75	28.75	28.74	28.75
V _s	Stack Gas Velocity, ft/s	116.6	98.6	98.8	104.7
A	Stack Area, ft ²	0.09			0.09 548
Q _a	Stack Gas Volumetric flow, acfm	611	516	517 287	306
Q _s	Stack Gas Volumetric flow, dscfm	344 10	287 8	287 8	300
Q _s	Stack Gas Volumetric flow, dscmm				- 1
	Isokinetic Sampling Ratio, %	100.4	99.4	100.6	100.1

Elmendorf AFB

US EPA Test Method 5 - Particulate Matter

Generator Outlet

	RUN NUMBER RUN DATE RUN TIME	E-10-5-1 06/25/2002 0730-0830	E-10-5-2 06/25/2002 0845-0945	E-10-5-3 06/25/2002 1000-1100	Average
	EMISSIONS DATA				
	Particulate Matter	•			
PM	Filter Weight Gain, mg	7.55	64.5	7.55	
PM	Beaker Weight Gain, mg	3.6	3.35	3.05	
PM	Total Catch, g	0.0112	0.0679	0.0106	0.029
C _{PM}	Concentration, gr/dscf	3.29E-03	2.42E-02	3.74E-03	1.04E-
CPM	Concentration, lb/dscf	4.71E-07	3.46E-06	5.35E-07	1.49E-
E _{PM}	Emission Rate, lb/hr	9.70E-03	5.96E-02	9.20E-03	2.62E-
	Condensible Matter				
PM	Organic Gain, mg				
PM	Aqueous Gain, mg	39.9	34.4	38.6	
PM	Total Catch, g	0.0399	0.0344	0 0386	0.03
CPM	Concentration, gr/dscf	1.18E-02	1.23E-02	1.36E-02	1.26E
CPM	Concentration, lb/dscf	1.68E-06	1.75E-06	1.95E-06	1.80E
E _{PM}	Emission Rate, lb/hr	3.47E-02	3.02E-02	3.35E-02	3.28E
	Total Particulate Matter				
PM	Total Catch, g	5 11E-02	1.02E-01	4.92E-02	6.75E
CPM	Concentration, gr/dscf	1.51E-02	3.65E-02	1.74E-02	2.30E-
C _{PM}	Concentration, lb/dscf	2.16E-06	5.21E-06	2.48E-06	3.28E-
E _{PM}	Emission Rate, lb/hr	4.44E-02	8.99E-02	4.27E-02	5.90E-

Elmendorf AFB

US EPA Test Method 5 - Particulate Matter

Generator Outlet

	RUN NUMBER	E-25-5-1	E-25-5-2	E-25-5-3	
	RUN DATE	06/25/2002	06/25/2002	06/25/2002	Average
	RUN TIME	1125-1225	1245-1345	1405-1505	
	MEASURED DATA				,
P _{static}	Stack Static Pressure, inches H ₂ O	-1.00	-1.10	-2 00	-1.37
у	Meter Box Correction Factor	1.001	1.001	1.001	1.001
P _{bar}	Barometric Pressure, inches Hg	29.90	29.90	29.90	29.90
V _m ⋅	Sample Volume, ft ³	50.176	49 657	50.116	49.983
Dp ^{1/2}	Average Square Root Dp, (in. H ₂ O) ^{1/2}	1.3450	1.3416	1.3416	1.3427
ÐН	Avg Meter Orifice Pressure, in. H ₂ O	2.19	2.20	2.18	2.19
T _m	Average Meter Temperature, °F	81	82	82	81
T _s	Average Stack Temperature, °F	550	553	555	553
V _{ic}	Condensate Collected, ml	58.7	46.5	44.3	49.8
CO2	Carbon Dioxide content, % by volume	4.0	40	4.0	4.0
O ₂ ·	Oxygen content, % by volume	15.0	15.0	15.0	15.0
N ₂	Nitrogen content, % by volume	81.0	81.0	81.0	81 0
C _p	Pitot Tube Coefficient	0 99	0.99	0.99	0.99
_	Circular Stack? 1=Y,0=N:	1	1	1	
As	Diameter or Dimensions, inches	4.00	4.00	4.00	4.00
Q	Sample Run Duration, minutes	60	60	60	60
D _n	Nozzle Diameter, inches	0.201	0.201	0.201	0.201
	CALCULATED DATA				
A _n	Nozzle Area, ft*	0 000220	0.000220	0.000220	0.000220
V _{m(std)}	Standard Meter Volume, ft°	49.235	48 651	49.107	48.998
V _{m(std)}	Standard Meter Volume, m*	1.394	1.378	1391	1 387
Q_{m}	Average Sampling Rate, dscfm	0.821	0 811	0.818	0.817
P_{s}	Stack Pressure, inches Hg	29.83	29.82	2975	29.80
B_{ws}	Moisture, % by volume	5.3	4.3	4.1	4.6
B _{ws(sat)}	Moisture (at saturation), % by volume	7495.0	7682.5	7825.5	7667.7
V_{wstd}	Standard Water Vapor Volume, ft	2.763	2.189	2.085	2.346
1-B _{ws}	Dry Mole Fraction	0.947	0.957	0.959	0.954
M _d	Molecular Weight (d.b.), ib/ib•mole	29.24	29.24	29.24	29.24
$M_{\rm s}$	Molecular Weight (w.b.), lb/lb•mole	28 64	28.76	28.78	28.73
Vs	Stack Gas Velocity, ft/s	123.8	. 123.4	123.6	123.6
A	Stack Area, ft ²	0.087	0.087	0.087	0.087
Qa	Stack Gas Volumetric flow, acfm	648	646	647	647
Q _s	Stack Gas Volumetric flow, dscfm	320	321	321	321
Q_{ϵ}	Stack Gas Volumetric flow, dscmm	9	9	9	9
	Isokinetic Sampling Ratio, %	101.7	100.0	101.0	100.9

Elmendorf AFB

US EPA Test Method 5 - Particulate Matter

Generator Outlet

PM PM PM	EMISSIONS DATA Particulate Matter Filter Weight Gain, mg Beaker Weight Gain, mg	10.2	69.2		•
PM PM	Filter Weight Gain, mg	• • • •	60.0		
PM PM	_	• • • •		40.0	
PM	Beaker Weight Gain, mg			13.2	
		3.85	4.2	4.75 .	0.0051
_	Total Catch, g	0.0141	0.0734	0.0180	0.0351
C _{PM}	Concentration, gr/dscf	4.40E-03	2.33E-02	5.64E-03	1.11E-02
C _{PM}	Concentration, lb/dscf	6.29E-07	3.33E-06	8.06E-07	1.59E-06
E _{PM}	Emission Rate, lb/hr	1.21E-02	6.41E-02	1,55E-02	3.06E-02
	Condensible Matter				
PM	Organic Gain, mg				
PM	Aqueous Gain, mg	. 39	36.9	38.8	
PM	Total Catch, g	0.0390	0.0369	0.0388	0.0382
C _{PM}	Concentration, gr/dscf	1.22E-02	1.17E-02	1.22E-02	1.20E-02
CPM	Concentration, lb/dscf	1.75E-06	1.67E-06	1.74E-06	1.72E-06
EpM	Emission Rate, lb/hr	3.35E-02	3.22E-02	3.36E-02	3.31E-02
	Total Particulate Matter			•	
PM	Total Catch, g	5 31E-02	1.10E-01	5.68E-02	7.34E-02
CPM	Concentration, gr/dscf	1.66E-02	3.50E-02	1.78E-02	2.31E-02
C _{PM}	Concentration, lb/dscf	2.38E-06	5.00E-06	2.55E-06	3.31E-06
. E _{PM}	Emission Rate, lb/hr	4.56E-02	9.63E-02	4.91E-02	6.36E-02

Elmendorf AFB

US EPA Test Method 5 - Particulate Matter

Generator Outlet

	DUN NUMBER	E-50-5-1	E-50-5-2	E-50-5-3	
	RUN NUMBER RUN DATE	06/25/2002	06/25/2002	06/25/2002	Average
	RUN TIME	1520-1620	1645-1745	1800-1900	Ů
	MEASURED DATA				
P _{static}	Stack Static Pressure, inches H ₂ O	-3 00	-3.00	-3.00	-3.00
у	Meter Box Correction Factor	1.001	1.001	1.001	1.001
P _{bar}	Barometric Pressure, inches Hg	29.90	29.90	29.90	29 90
V _m	Sample Volume, ft ³	56.995	48.480	48.403	51.293
Dp ^{1/2}	Average Square Root Dp, (in. H ₂ O) ^{1/2}	1.6791	1.4520	1.4490	1.5267
DH	Avg Meter Orifice Pressure, in. H ₂ O	2.92	2.11	2.10	2.38
Tm	Average Meter Temperature, °F	82	81	83	82
T ₈	Average Stack Temperature, °F	718	7 27	731	725
V _{ic}	Condensate Collected, ml	68.2	59.3	57.1	61.5
CO2	Carbon Dioxide content, % by volume	40	5.9	5.9	5.3
02	Oxygen content, % by volume	15.0	12.8	12.8	13.5
N ₂	Nitrogen content, % by volume	81.0	81 3	81.3	81.2
C _p	Pitot Tube Coefficient	0.99	0.99	0.99	0.99
, op	Circular Stack? 1=Y,0=N:	. 1	1	1	
As	Diameter or Dimensions, inches:	4.00	4.00	4.00	4.00
Q	Sample Run Duration, minutes	60	60	60	60
D _n	Nozzle Diameter, inches	0.201	0.201	0.201	0.201
	CALCULATED DATA				
A _n	Nozzle Area, ft ⁴	0.000220			0.000220
V _{m(std)}	Standard Meter Volume, ft	55.969	47.586	47 335	50.297
V _{m(std)}	Standard Meter Volume, m	1.585	1 347	1.340	1.424
Q_{m}	Average Sampling Rate, dscfm	0.933	0.793	0.789	0.838
Ps	Stack Pressure, inches Hg	29.68	29.68	29.68	29.68
B _{ws}	Moisture, % by volume	5.4	5.5	5.4	5.4
B _{ws(sat)}	Moisture (at saturation), % by volume	24165.8	25469.9	26064.9	25233.5
V_{wstd}	Standard Water Vapor Volume, ft	3.210	2.791	2.688	2.896
1-B _{ws}	Dry Mole Fraction	0 946	0.945	0 946	0.946
M _d	Molecular Weight (d.b.), lb/lb•mole	29.24	29.46	29.46	29 38
Ms	Molecular Weight (w b.), lb/lb•mole	28.63	28.82	28.84	28.76
V _s	Stack Gas Velocity, ft/s	167.3	144.8	144.7	152.2
A	Stack Area, ft ²	0.087			
Qa	Stack Gas Volumetric flow, acfm	876	758	757	797 333
Q _s .	Stack Gas Volumetric flow, dscfm	368	316	315 9	<i>33</i> 3 _[
Qs	Stack Gas Volumetric flow, dscmm	10	9		99.7
	Isokinetic Sampling Ratio, %	100.3	99.5	99.2	99.7

Summary of Stack Gas Parameters and Test Results

030174.0003.002

Elmendorf AFB

US EPA Test Method 5 - Particulate Matter Generator Outlet

	RUN NUMBER RUN DATE RUN TIME	E-50-5-1 06/25/2002 1520-1620	E-50-5-2 06/25/2002 1645-1745	E-50-5-3 06/25/2002 1800-1900	Average
	EMISSIONS DATA				
	Particulate Matter	•			
PM	Filter Weight Gain, mg	27.25	155.15	24.7	
PM	Beaker Weight Gain, mg	5.5	7.3	5.8	
PM	Total Catch, g	0.0328	0 1625	0.0305	0.0752
CPM	Concentration, gr/dscf	9.03E-03	5.27E-02	9.94E-03	2.39E-02
C _{PM}	Concentration, lb/dscf	1.29E-06	7.53E-06	1.42E-06	3.41E-06
E _{PM}	Emission Rate, lb/hr	2.85E-02	1.43E-01	2.69E-02	6.60E-02
	Condensible Matter				
PM	Organic Gain, mg				
PM	Aqueous Gain, mg	43.1	39.6	46.2	
PM	Total Catch, g	0.0431	0 0396	0.0462	4.30E-02
CPM	Concentration, gr/dscf	1.19E-02	1.28E-02	1.51E-02	1.33E-02
CPM	Concentration, lb/dscf	1.70E-06	1.83E-06	2.15E-06	1.89E-06
E _{PM}	Emission Rate, lb/hr	3.75E-02	3.48E-02	4.07E-02	3.76E-02
	Total Particulate Matter				
PM	Total Catch, g	7.59E-02	2.02E-01	7.67E-02	1.18E-01
CPM	Concentration, gr/dscf	2.09E-02	6.55E-02	2.50E-02	3.71E-02
C _{PM}	Concentration, lb/dscf	2.99E-06	9.36E-06	3.57E-06	5.31E-06
E _{PM}	Emission Rate, lb/hr	6.60E-02	1.77E-01	6.75E-02	1.04E-01

Summary of Stack Gas Parameters and Test Results

030174.0003.002 Elmendorf AFB

US EPA Test Method 5 - Particulate Matter

Generator Outlet

	RUN NUMBER	E-75-5-1	E-75-5-2	E-75-5-3	
	RUN DATE	06/26/2002	06/27/2002	06/27/2002	Average
	RUN TIME	1035-1135	1523-1623	1642-1753	
	MEASURED DATA			•	٠.
P _{static}	Stack Static Pressure, inches H ₂ O	-2.50	-2.00	-2.50	-2.33
У	Meter Box Correction Factor	1 001	1.001	1 00.1	1.001
P _{bar}	Barometric Pressure, inches Hg	29.90	29 90	29.90	29.90
V_{m}	Sample Volume, ft ³	44.979	43.365	43.452	43 932
Dp ^{1/2}	Average Square Root Dp, (in H ₂ O) ^{1/2}	1.7292	1.7030	1.7030	1.7117
DH	Avg Meter Orifice Pressure, in. H ₂ O	1.81	1.70	1 75	1.75
T _m	Average Meter Temperature, °F	72	78	79	76
Τ _ε	Average Stack Temperature, °F	781	813	786	793
V _{Ic}	Condensate Collected, ml	54.5	54.8	60.2	56.5
CO ₂	Carbon Dioxide content, % by volume	6.2	6.6	6.3	6.4
O_2	Oxygen content, % by volume	11.8	12.0	12.4	12.1
N_2	Nitrogen content, % by volume	82 0	81.4	81.3	81 6
C _p	Pitot Tube Coefficient	0.99	0.99	0.99	0.99
'	Circular Stack? 1=Y,0=N	1	1	1	
As	Diameter or Dimensions, inches:	4.00	4.00	4.00	4.00
Q	Sample Run Duration, minutes	60	60	60	60
D_n	Nozzle Diameter, inches	0.180	0.180	0.180	0.180
	CALCULATED DATA			,	
A _n	Nozzie Area, ft*	0.000177	0.000177	0.000177	0.000177
V _{m(std)}	Standard Meter Volume, ft	44 843	42.767	42.739	43.450
V _{m(std)}	Standard Meter Volume, m°	1.270	1.211	1.210	1.230
\mathbf{Q}_{m}	Average Sampling Rate, dscfm	0.747	0.713	0.712	0.724
Ps	Stack Pressure, inches Hg	29.72	29.75	29.72	29.73
B _{ws}	Moisture, % by volume	5.4	5.7	6.2	5.8
B _{ws(sat)}	Moisture (at saturation), % by volume	34284.1	403861	35195.8	36622.0
V_{wstd}	Standard Water Vapor Volume, ft	2.565	2.579	2834	2.659
1-B _{ws}	Dry Mole Fraction	0.946	0.943	0.938	0.942
M _d	Molecular Weight (d.b.), lb/lb•mole	29.46	29.54	29.50	29 50
Ms	Molecular Weight (w.b.), lb/lb•mole	28.84	28 88	28.79	28.84
٧s	Stack Gas Velocity, ft/s	176.1	175.4	173.9	175.2
Α	Stack Area, ft ²	0.087	0.087	0.087	0.087
Q_a	Stack Gas Volumetric flow, acfm	922	919	911	917
Q_s	Stack Gas Volumetric flow, dscfm	368	357	359	362
$Q_{\!\scriptscriptstyle{S}}$	Stack Gas Volumetric flow, dscmm	10	10	10	10
1	Isokinetic Sampling Ratio, %	100.2	98.6	97.9	98.9

Elmendorf AFB

US EPA Test Method 5 - Particulate Matter Generator Outlet

	RUN NUMBER RUN DATE RUN TIME	E-75-5-1 06/26/2002 1035-1135	E-75-5-2 06/27/2002 1523-1623	E-75-5-3 06/27/2002 1642-1753	Average
	EMISSIONS DATA				
	Particulate Matter				
PM	Filter Weight Gain, mg	23.1	78.25	29.15	
PM	Beaker Weight Gain, mg	7.15	8.65	7.85	
PM	Total Catch, g	0 0303	0.0869	0.0370	0.0514
C _{PM}	Concentration, gr/dscf	1.04E-02	3.14E-02	1.34E-02	1.84E-0
CPM	Concentration, lb/dscf	1.49E-06	4.48E-06	1.91E-06	2.63E-0
E _{PM}	Emission Rate, lb/hr	3.29E-02	9.60E-02	4.11E-02	5.67E-0
	Condensible Matter				
PM	Organic Gain, mg				
PM	Aqueous Gain, mg	46.1	55.3	57.6	0.050
PM	Total Catch, g	0 0461	0.0553	0.0576	0.0530
CPM	Concentration, gr/dscf	1.59E-02	2.00E-02	2.08E-02	1.89E-0
CPM	Concentration, lb/dscf	2.27E-06	2.85E-06	2.97E-06	2.70E-0
E _{PM}	Emission Rate, lb/hr	5.01E-02	6.11E-02	6.41E-02	5.84E-0
	Total Particulate Matter				
PM	Total Catch, g	7.64E-02	1.42E-01	9.46E-02	1.04E-0
CPM	Concentration, gr/dscf	2.63E-02	5.13E-02	3.42E-02	3.72E-0
CPM	Concentration, lb/dscf	3.75E-06	7.33E-06	4.88E-06	5.32E-0
	Emission Rate, lb/hr	8.30E-02	1.57E-01	1.05E-01	1.15E-0

Summary of Stack Gas Parameters and Test Results

030174.0003.002 Elmendorf AFB

US EPA Test Method 5 - Particulate Matter

Generator Outlet
Page 1 of 2

	RUN NUMBER RUN DATE RUN TIME	E-100-5-1 06/26/2002 1020-1120	E-100-5-2 06/27/2002 1205-1305	E-100-5-3 06/26/2002 1325-1425	Average
	MEASURED DATA				
P _{static}	Stack Static Pressure, inches H ₂ O	-3.30	-3.00	-3.00	-3 10
у	Meter Box Correction Factor	1.001	1.001	1.001	1.001
P _{bar}	Barometric Pressure, inches Hg	29 90	29.90	29 90	29.90
V _m .	Sample Volume, ft ³	44.458	40.997	39.323	41.593
Dp ^{1/2}	Average Square Root Dp, (in. H ₂ O) ^{1/2}	1.7889	1 6677	1,5811	1 6792
DH	Avg Meter Orifice Pressure, in H ₂ O	1.90	1.61	1.40	1.64
T _m	Average Meter Temperature, °F	71	75	75	73
T _s	Average Stack Temperature, °F	830	848	841	840
V_{ic}	Condensate Collected, ml	80.6	55 1	57.9	64 5
CO2	Carbon Dioxide content, % by volume	7.0	7.0	6.8	69
O ₂	Oxygen content, % by volume	11.6	11.6	11.3	11.5
N ₂	Nitrogen content, % by volume	81.4	81.4	81.9	81.6
C,	Pitot Tube Coefficient	0.99	0 99	0.99	0.99
"	Circular Stack? 1=Y,0=N:	1	1	1	
As	Diameter or Dimensions, inches:	4.00	4.00	4.00	4.00
Q	Sample Run Duration, minutes	60	60	60	60
D _n	Nozzle Diameter, inches	0.180	0 180	0.180	0.180
	CALCULATED DATA				
A _n	Nozzle Area, ft	0.000177	0.000177	0.000177	0.000177
V _{m(std)}	Standard Meter Volume, ft"	44.403	40.649	38.967	41.340
V _{m(std)}	Standard Meter Volume, m°	1.257	1.151	1 103	1.171
$\mathbf{Q}_{\mathbf{m}}$	Average Sampling Rate, dscfm	0.740	0.677	0.649	0.689
P _s	Stack Pressure, inches Hg	29.66	29.68	29.68	29.67
B _{ws}	Moisture, % by volume	7.9	, 60	6.5	6.8
B _{ws(sat)}	Moisture (at saturation), % by volume	44018.4	47943.3	46377.4	46113.0
$V_{ m wstd}$	Standard Water Vapor Volume, ft	3.794	2.594	2.725	3.038
1-B _{ws}	Dry Mole Fraction	0.921	0.940	0.935	0.932
M _d	Molecular Weight (d.b.), lb/lb•mole	29.58	29 58	29.54	29.57
M _s	Molecular Weight (w.b.), lb/lb•mole	28.67	28.89	28.79	28.78
V _s	Stack Gas Velocity, ft/s	186.5	174.3	165.1	175.3
Α	Stack Area, ft ²	0.1	0.1	0.1	0.09
Q _a	Stack Gas Volumetric flow, acfm	976	913	865	918
Q _s	Stack Gas Volumetric flow, dscfm	365	343	325	344
Q _s	Stack Gas Volumetric flow, dscmm	10	10	9	10
	Isokinetic Sampling Ratio, %	100.2	97.4	98.6	98.8

Summary of Stack Gas Parameters and Test Results

.030174.0003.002

Elmendorf AFB

US EPA Test Method 5 - Particulate Matter Generator Outlet

	RUN NUMBER RUN DATE RUN TIME	E-100-5-1 06/26/2002 1020-1120	E-100-5-2 06/27/2002 1205-1305	E-100-5-3 06/26/2002 1325-1425	Average
	EMISSIONS DATA				
	Particulate Matter				
PM	Filter Weight Gain, mg	44.25	40.2	37.1	
PM	Beaker Weight Gain, mg	10.8	12.45	10.65	
PM	Total Catch, g	0.0551	0.0527	0.0478	0.0518
C _{PM}	Concentration, gr/dscf	1.91E-02	2.00E-02	1.89E-02	1.93E-02
CPM	Concentration, lb/dscf	2.73E-06	2.86E-06	2.70E-06	2.76E-06
E _{PM}	Emission Rate, lb/hr	0.06	0.06	0.05	0.06
	Condensible Matter				•
РМ	Organic Gain, mg				
PM	Aqueous Gain, mg	50.2	40.2	45.7	
PM	Total Catch, g	0.0502	0.0402	0.0457	0.0454
C _{PM}	Concentration, gr/dscf	1.74E-02	1.53E-02	1.81E-02	1.69E-02
C _{PM}	Concentration, lb/dscf	2.49E-06	2.18E-06	2.59E-06	2.42E-0
E _{PM}	Emission Rate, lb/hr	5.46E-02	4.49E-02	5.04E-02	5.00E-02
	Total Particulate Matter				
PM	Total Catch, g	1.05E-01	9.29E-02	9.35E-02	9 72E-02
C _{PM}	Concentration, gr/dscf	3.66E-02	3.52E-02	3.70E-02	3.63E-0
CPM	Concentration, lb/dscf	5.23E-06	5.04E-06	5.29E-06	5.18E-06
	Emission Rate, lb/hr	1.14E-01	1.04E-01	1.03E-01	1.07E-0

VOLATILE ORGANIC COMPOUNDS TRAVIS/ELMENDORF

Travis and Elmendorf AFB SW-846 Method 0030 - VOST

	RUN NUMBER	T-0030-Comp	E-0030-Comp	
	RUN DATE	06/11/02,06/12/02	6/25/02- 6/27/02	Average
	RUN TIME	0856-1325,0753-1148	0732-1602, 1033-1058	
,	MEASURED DATA			
γ	Meter Box Correction Factor	0.971	0 966	0.969
P _{bar}	Barometric Pressure, inches Hg	30 30	29.90	30.10
P _{static}	Stack Static Pressure, inches H ₂ O	-2 01	-2.04	-2,03
V_{m}	Sample Volume, L	14 240	43.520	28.880
T _m	Average Meter Temperature, °F	84	68	76
C _p	Pitot Tube Coefficient	0.99	0 99	0.99
,	Circular Stack? 1=Y,0=N:	1	1	
A s	Diameter or Dimensions, inches:	4.00	4.00	4.00
. F	Fuel Flow, lb/hr	4.41	5.30	4.86
Θ	Sample Run Duration, minutes	60	150	105
	CALCULATED DATA			-
V _{m(std)}	Standard Meter Volume, dscl	13.649	42184	27.917
V _{m(std)}	Standard Meter Volume, dscf	0.482	1.490	0 99
P _s	Stack Pressure, inches Hg	30.15	29.75	29.95
A	Stack Area, ft ²	0.09	0.09	0 09
Qa	Stack Gas Volumetric flow, acfm	712	768	740
Qs	Stack Gas Volumetric flow, dscfm	342	3 53	348
Q _{s(cmm)}	Stack Gas Volumetric flow, dscmm	10	10	10

Travis and Elmendorf AFB Page 1 of 10

	030174.0003.002		
	<u>T-0030-Comp</u>	E-0030-Comp	Average
Acetone			
Molecular Weight, g/g-mole	58.08	58 08	
Target Catch, µg	0.54	1.50	1 02
Concentration, mg/dscm a	3.92E-02	1.10E-01	0.07
Concentration, ppbvd b	1.62E+01	4.55E+01	30.87
Emission Rate, lb/hr c	5.02E-05	1.41E-04	0.00
Emission Rate, lb/1000 lb fuel	1.14E-02	2.65E-02	0.02
Benzene			
Molecular Weight, g/g-mole	78.11	78.11	•
Target Catch, µg	{4.56}	{6.90}	5 73
Concentration, mg/dscm a	{3.34E-01}	{5.05E-01}	0.42
Concentration, ppbvd b	{1.03E+02}	{1.56E+02}	129.27
Emission Rate, lb/hr c	{4.28E-04}	{6.48E-04}	0.00
Emission Rate, lb/1000 lb fuel	9.70E-02	1.22E-01	0.11
Bromodichloromethane			
Molecular Weight, g/g-mole	163.83	163.83	
Target Catch, µg	0.01	0.01	0.01
Concentration, mg/dscm *	7.33E-04	7.33E-04	0.00
Concentration, ppbvd b	1.08E-01	1.08E-01	0.11
Emission Rate, lb/hr c	9.39E-07	9.39E-07	0.00
Emission Rate, lb/1000 lb fuel	2 13E-04	1 77E-04	0.00
Bromoform			
Molecular Weight, g/g-mole	252.73	252.73	
Target Catch, µg	0.01	0.01	0.01
Concentration, mg/dscm *	7 33E-04	7.33E-04	0.00
Concentration, ppbvd b	6.97E-02	6.97E-02	0.07
Emission Rate, lb/hr c	9.39E-07	9.39E-07	0.00
Emission Rate, lb/1000 lb fuel	2.13E-04	1.77E-04	0.00

 $^{^{}a}$ Milligrams per dry standard cubic meter at 68° F (20° C) and 1 atm.

b Parts per billion by volume.

^c Pounds per hour

Travis and Elmendorf AFB Page 2 of 10

	030174.0003.002		
	T-0030-Comp	E-0030-Comp	<u>Average</u>
Bromomethane			
Molecular Weight, g/g-mole	94.94	94.94	
Target Catch, µg	0.05	1.40	0.73
Concentration, mg/dscm *	3.81E-03	1.03E-01	0.05
Concentration, ppbvd b	9.65E-01	2.60E+01	13.48
Emission Rate, lb/hr c.	4.88E-06	1.31E-04	0.00
Emission Rate, lb/1000 lb fuel	1 11E-03	2.48E-02	0.01
2-Butanone			
Molecular Weight, g/g-mole	72.11	72.11	
Target Catch, µg	0.28	1.30	0.79
Concentration, mg/dscm	2.05E-02	9 52E-02	0.0
Concentration, ppbvd b	6.84E+00	3 18E+01	19.3
Emission Rate, lb/hr c	2.63E-05	1.22E-04	0.0
Emission Rate, lb/1000 lb fuel	5.96E-03	2.30E-02	0.0
1,3 Butadiene			
Molecular Weight, g/g-mole	54.09	54.09	
Target Catch, µg	0.05	0.05	0.0.
Concentration, mg/dscm *	3.66E-03	3.66E-03	0.00
Concentration, ppbvd b	1.63E+00	1.63E+00	1.6.
Emission Rate, lb/hr c	4.69E-06	4.69E-06	0.0
Emission Rate, lb/1000 lb fuel	1.06E-03	8.85E-04	0.0
Carbon disulfide			
Molecular Weight, g/g-mole	76.13	76.13	
Target Catch, µg	0.01	0.01	0.0
Concentration, mg/dscm *	7 33E-04	7.33E-04	. 0.0
Concentration, ppbvd b	2.31E-01	2.31E-01	· 0.2
Emission Rate, lb/hr c	9.39E-07	9.39E-07	0.0
Emission Rate, lb/1000 lb fuel	2.13E-04	1.77E-04	. 0.0

 $^{^{\}rm a}$ Milligrams per dry standard cubic meter at 68° F (20° C) and 1 atm

b Parts per billion by volume

c Pounds per hour

Travis and Elmendorf AFB Page 3 of 10

	030174.0003.002		
	<u>T-0030-Comp</u>	E-0030-Comp	Average
Carbon tetrachloride			
Molecular Weight, g/g-mole	153.84	153 84	
Target Catch, µg	0.01	0.01	0.01
Concentration, mg/dscm ²	7.33E-04	7.33E-04	0.00
Concentration, ppbvd b	1.15E-01	1 15E-01	0.11
Emission Rate, lb/hr c	9 39E-07	9.39E-07	0.00
Emission Rate, lb/1000 lb fuel	2.13E-04	1.77E-04	0.00
Chlorobenzene			
Molecular Weight, g/g-mole	112.56	112.56	
Target Catch, µg	0.01	0.01	0.01
Concentration, mg/dscm a	1 03E-03	1.03E-03	0.00
Concentration, ppbvd b	2.19E-01	2.19E-01	0.22
Emission Rate, lb/hr c	1.31E-06	1.31E-06	0.00
Emission Rate, lb/1000 lb fuel	2.98E-04	2.48E-04	0.00
Chlorodibromomethane			,
Molecular Weight, g/g-mole	208 28	208.28	
Target Catch, µg	0.01	0.01	0.01
Concentration, mg/dscm a	1 03E-03	1.03E-03	0.00
Concentration, ppbvd b	1.18E-01	1.18E-01	0.12
Emission Rate, lb/hr c	131E-06	1.31E-06	0.00
Emission Rate, lb/1000 lb fuel	2 98E-04	2.48E-04	0.00
Chloroethane			
Molecular Weight, g/g-mole	65.51	6551	
Target Catch, µg	{0.01}	{0.01}	0.0
Concentration, mg/dscm a	{1.03E-03}	{1.03E-03}	0.00
Concentration, ppbvd b	{3.77E-01}	{3.77E-01}	0.38
Emission Rate, lb/hr c	{1 31E-06}	{1.31E-06}	0.0
Emission Rate, 1b/1000 lb fuel	2.98E-04	2.48E-04	0.0
Chloroform			
Molecular Weight, g/g-mole	119.39	119.39	
Target Catch, µg	0.01	0.01	0.0
Concentration, mg/dscm a	1.03E-03	1.03E-03	0.0
Concentration, ppbvd b	2.07E-01	2 07E-01	0.2
Emission Rate, lb/hr c	1.31E-06	1 31E-06	0.0
Emission Rate, lb/1000 lb fuel	2.98E-04	2.48E-04	0.0

^a Milligrams per dry standard cubic meter at 68° F (20° C) and 1 atm.

b Parts per billion by volume.

e Pounds per hour

Travis and Elmendorf AFB Page 4 of 10

·	030174.0003.002		
	T-0030-Comp	E-0030-Comp	Average
Chloromethane			
Molecular Weight, g/g-mole	50.49	50.49	
Target Catch, µg	0.08	2.40	1 24
Concentration, mg/dscm a	5.64E-03	1 76E-01	0.09
Concentration, ppbvd b	2.69E+00	8.38E+01	43.23
Emission Rate, lb/hr c	7.23E-06	2.25E-04	0.00
Emission Rate, lb/1000 lb fuel	1.64E-03	4.25E-02	0.02
1,1-Dichloroethane			
Molecular Weight, g/g-mole	98.96	98.96	•
Target Catch, µg	0.01	0.01	0.01
Concentration, mg/dscm ²	1.03E-03	1.03E-03	000
Concentration, ppbvd b	2.49E-01	2.49E-01	0.25
Emission Rate, lb/hr c	1.31E-06	1 31E-06	0.00
Emission Rate, lb/1000 lb fuel	2 98E-04	2.48E-04	0.00
1,2-Dichloroethane			
Molecular Weight, g/g-mole	98 96	98 96	
Target Catch, µg	0.01	0.01	0.01
Concentration, mg/dscm a	1.03E-03	1.03E-03	0.00
Concentration, ppbvd b	2.49E-01	2 49E-01	0.25
Emission Rate, lb/hr c	1.31E-06	1.31E-06	0.00
Emission Rate, lb/1000 lb fuel	2.98E-04	2.48E-04	0.00
1,1-Dichloroethene			
Molecular Weight, g/g-mole	96.94	96.94	
Target Catch, µg	0.01	0.01	0.0
Concentration, mg/dscm ^a	1 03E-03	1 03E-03	0.0
Concentration, ppbvd b	2 54E-01	2.54E-01	0.2
Emission Rate, lb/hr e	1.31E-06	1.31E-06	0.0
Emission Rate, lb/1000 lb fuel	2.98E-04	2.48E-04	0.0

 $^{^{\}rm a}$ Milligrams per dry standard cubic meter at 68° F (20° C) and 1 atm.

b Parts per billion by volume.

c Pounds per hour

Travis and Elmendorf AFB Page 5 of 10

030174.0003.002				
	T-0030-Comp	E-0030-Comp	<u>Average</u>	
cis-1,2-Dichloroethene				
Molecular Weight, g/g-mole	96.94	96.94		
Target Catch, µg	0.01	0.01	0.01	
Concentration, mg/dscm a	1.03E-03	1.03E-03	0.00	
Concentration, ppbvd b	2 54E-01	2 54E-01	0.25	
Emission Rate, lb/hr c	1 31E-06	1 31E-06	0.00	
Emission Rate, lb/1000 lb fuel	2 98E-04	2.48E-04	0.00	
rans-1,2-Dichloroethene				
Molecular Weight, g/g-mole	96.94	96.94		
Target Catch, μg	0.01	0.01	0.01	
Concentration, mg/dscm a	1 03E-03	1.03E-03	0.00	
Concentration, ppbvd b	2.54E-01	2.54E-01	0.25	
Emission Rate, lb/hr c	1.31E-06	1.31E-06	0.00	
Emission Rate, lb/1000 lb fuel	2.98E-04	2.48E-04	0.00	
,2-Dichloropropane				
Molecular Weight, g/g-mole	112.99	112.99		
Target Catch, µg	[0.01]	{0.01}	0.01	
Concentration, mg/dscm a	{1 03E-03}	{1 03E-03}	0.00	
Concentration, ppbvd b	{2.18E-01}	{2.18E-01}	0.22	
Emission Rate, lb/hr c	{1.31E-06}	{1 31E-06}	0.00	
Emission Rate, lb/1000 lb fuel	2.98E-04	2.48E-04	0.00	

 $^{^{\}rm a}$ Milligrams per dry standard cubic meter at 68° F (20° C) and 1 atm.

b Parts per billion by volume.

^c Pounds per hour

Travis and Elmendorf AFB Page 6 of 10

030174.0003.002			
	T-0030-Comp	E-0030-Comp	<u>Average</u>
cis-1,3-Dichloropropene			
Molecular Weight, g/g-mole	110.97	110.97	
Target Catch, µg	0.01	0.01	0.01
Concentration, mg/dscm *	1 03E-03	1.03E-03	0.00
Concentration, ppbvd b	2.22E-01	2.22E-01	0.22
Emission Rate, lb/hr c	1.31E-06	I 31E-06	0.00
Emission Rate, lb/1000 lb fuel	2.98E-04	2.48E-04	0.00
rans-1,3-Dichloropropene			
Molecular Weight, g/g-mole	110.97	110.97	
Target Catch, µg	{0.01}	{0.01}	0.01
Concentration, mg/dscm *	(1 03E-03)	{1 03E-03}	0.00
Concentration, ppbvd b	[2.22E-01]	{2.22E-01}	0.22
Emission Rate, lb/hr c	{1.31E-06}	{1.31E-06}	0.00
Emission Rate, lb/1000 lb fuel	2.98E-04	2.48E-04	0.00
Ethylbenzene			•
Molecular Weight, g/g-mole	106.17	106.17	
Target Catch, µg	{0.57}	{3 00}	1.79
Concentration, mg/dscm a	{4.18E-02}	{2.20E-01}	013
Concentration, ppbvd b	{9.46E+00}	{4.98E+01}	29.63
Emission Rate, lb/hr c	{5 35E-05}	{2.82E-04}	000
Emission Rate, lb/1000 lb fuel	1.21E-02	5 31E-02	0.03
2-Hexanone			
Molecular Weight, g/g-mole	100.16	100.16	
Target Catch, µg	0.05	0.05	0.05
Concentration, mg/dscm a	3.66E-03	3.66E-03	0.00
Concentration, ppbvd b	8.80E-01	8.80E-01	0.88
Emission Rate, lb/hr c	4.69E-06	4.69E-06	0.00
Emission Rate, Ib/1000 lb fuel	1.06E-03	8.85E-04	0.00

^a Milligrams per dry standard cubic meter at 68° F (20° C) and 1 atm.

b Parts per billion by volume.

^c Pounds per hour.

Travis and Elmendorf AFB Page 7 of 10

030174.0003.002				
	T-0030-Comp	E-0030-Comp	<u>Average</u>	
Methylene chloride				
Molecular Weight, g/g-mole	84.93	84.93		
Target Catch, µg	{0.17}	{5.20}	2.69	
Concentration, mg/dscm a	{1.27E-02}	{3.81E-01}	0.20	
Concentration, ppbvd b	{3.61E+00}	{1.08E+02}	. 55.75	
Emission Rate, lb/hr c	{1.63E-05}	{4.88E-04}	0.00	
Emission Rate, lb/1000 lb fuel	3.70E-03	9 20E-02	0.05	
4-Methyl-2-pentanone	•		•	
Molecular Weight, g/g-mole	100.16	100.16	•	
Target Catch, µg	0.05	0.05	0.05	
Concentration, mg/dscm a	3.66E-03	3.66E-03	0.00	
Concentration, ppbvd b	8.80E-01	8.80E-01	0.88	
Emission Rate, lb/hr c	4.69E-06	4.69E-06	0.00	
Emission Rate, lb/1000 lb fuel	1.06E-03	8.85 E-04	0.00	
Styrene				
Molecular Weight, g/g-mole	104.15	104.15		
Target Catch, µg	0.04	0.01	0.02	
Concentration, mg/dscm a	2.71E-03	7.33E-04	0.00	
Concentration, ppbvd b	6.26E-01	1.69E-01	0.40	
Emission Rate, lb/hr e	3.47E-06	9 39E-07	0.00	
Emission Rate, lb/1000 lb fuel	7.87E-04	1.77E-04	0.00	

 $^{^{\}mathbf{a}}$ Milligrams per dry standard cubic meter at 68° F (20° C) and 1 atm.

b Parts per billion by volume.

c Pounds per hour

Travis and Elmendorf AFB Page 8 of 10

030174.0003.002			
	<u>T-0030-Comp</u>	E-0030-Comp	Average
1,1,2,2-Tetrachloroethane			
Molecular Weight, g/g-mole	167 85	167.85	:
Target Catch, µg	0.01	0.01	0.01
Concentration, mg/dscm *	1.03E-03	1.03E-03	0.00
Concentration, ppbvd b	1 47E-01	1.47E-01	<i>0.15</i>
Emission Rate, lb/hr c	1 31E-06	1.31E-06	0.00
Emission Rate, lb/1000 lb fuel	2 98E-04	2.48E-04	0.00
Tetrachloroethene			
Molecular Weight, g/g-mole	165.83	165.83	
Target Catch, µg	0.01	0.01	0.01
Concentration, mg/dscm a	1.03E-03	1.03E-03	0.00
Concentration, ppbvd b	1.49E-01	1.49E-01	0 15
Emission Rate, lb/hr c	1.31E-06	1.31E-06	0.00
Emission Rate, lb/1000 lb fuel	2.98E-04	2 48E-04	0.00
Toluene			
Molecular Weight, g/g-mole	94.14	94.14	
Target Catch, µg	2.80	6.40	4,60
Concentration, mg/dscm a	2.05E-01	4.69E-01	0.34
Concentration, ppbvd b	5.24E+01	1.20E+02	86.11
Emission Rate, lb/hr c	2.63E-04	6.01E-04	0.00
Emission Rate, lb/1000 lb fuel	5.96E-02	1.13E-01	0.09

 $^{^{\}text{a}}$ Milligrams per dry standard cubic meter at 68° F (20° C) and 1 atm .

b Parts per billion by volume.

c Pounds per hour

Travis and Elmendorf AFB Page 9 of 10

030174.0003.002				
	T-0030-Comp	E-0030-Comp	<u>Average</u>	
1,1,1-Trichloroethane				
Molecular Weight, g/g-mole	133.40	133.40		
Target Catch, µg	0.01	0.01	0.01	
Concentration, mg/dscm a	1.03E-03	1.03E-03	0.00	
Concentration, ppbvd b	1.85E-01	1.85E-01	0.18	
Emission Rate, lb/hr c	1.31E-06	1.31E-06	0.00	
Emission Rate, lb/1000 lb fuel	2,98E-04	2.48E-04	0.00	
1,1,2-Trichloroethane				
Molecular Weight, g/g-mole	133.40	133.40		
Target Catch, µg	0.01	0.01	0.01	
Concentration, mg/dscm a	1.03E-03	1.03E-03	0.00	
Concentration, ppbvd b	1.85E-01	1.85E-01	0.18	
Emission Rate, lb/hr c	1 31E-06	1.31E-06	0.00	
Emission Rate, lb/1000 lb fuel	2 98E-04	2 48E-04	0.00	
Trichloroethene				
Molecular Weight, g/g-mole	131 39	131.39		
Target Catch, µg	0.01	0.01	0.01	
Concentration, mg/dscm *	1.03E-03	1.03E-03	0.00	
Concentration, ppbvd b	1 88E-01	1.88E-01	0.19	
Emission Rate, lb/hr c	1.31E-06	1 31E-06	000	
Emission Rate, lb/1000 lb fuel	2.98E-04	2.48E-04	0.00	
Trichlorofluoromethane (Freon 11)				
Molecular Weight, g/g-mole	137.37	137.37		
Target Catch, µg	0.01	0.01	0.01	
Concentration, mg/dscm a	7.33E-04	7 33E-04	0.00	
Concentration, ppbvd b	1.28E-01	1 28E-01	013	
Emission Rate, lb/hr c	9.39E-07	9.39E-07	0.00	
Emission Rate, lb/1000 lb fuel	2.13E-04	1.77E-04	0.00	

 $^{^{\}rm a}$ Milligrams per dry standard cubic meter at 68° F (20° C) and 1 atm.

b Parts per billion by volume.

^c Pounds per hour

Travis and Elmendorf AFB Page 10 of 10

030174.0003.002				
	T-0030-Comp	E-0030-Comp	Average	
o-Xylene	,			
Molecular Weight, g/g-mole	106.17	106.17		
Target Catch, µg	0.76	4.10	2.43	
Concentration, mg/dscm a	1 07E-03	1 07E-03	0.00	
Concentration, ppbyd b	1.26E+01	6.81E+01	. 40 33	
Emission Rate, lb/hr c	7.13E-05	3.85E-04	0.00	
Emission Rate, lb/1000 lb fuel	1 62E-02	7.25E-02	0.04	
m-Xylene & p-Xylene	•			
Molecular Weight, g/g-mole	106.17	106.17		
Target Catch, µg	1 90	6.30	4.10	
Concentration, mg/dscm a	1.39E-01	4.62E-01	030	
Concentration, ppbvd b	3.15E+01	1.05E+02	68.05	
Emission Rate, lb/hr c	1.78E-04	5.91E-04	0.00	
Emission Rate, lb/1000 lb fuel	4.04E-02	1.11E-01	0.08	
Vinyl acetate				
Molecular Weight, g/g-mole	86.09	86.09		
Target Catch, µg	0.05	0.05	0.05	
Concentration, mg/dscm	3.66E-03	3.66E-03	0:00	
Concentration, ppbvd b	I.02E+00	1 02E+00	1.02	
Emission Rate, lb/hr c	4.69E-06	4.69E-06	0.00	
Emission Rate, lb/1000 lb fuel	1.06E-03	8.85E-04	0.00	

 $^{^{\}rm a}$ Milligrams per dry standard cubic meter at 68° F (20° C) and 1 atm

b Parts per billion by volume.

c Pounds per hour

POLYNUCLEAR AROMATIC HYDROCARBONS TRAVIS/ELMENDORF

Summary of Stack Gas Parameters and Test Results 030174.0003.002 Travis and Elmendorf AFB PAH

	RUN NUMBER RUN DATE RUN TIME	T-PAH-Comp 06/11/02,06/12/02 0856-1325,0753-1148	E-PAH-Comp 6/25/02-6/27/02 0732-1602, 1033-1058	Average
	MEASURED DATA			
P _{static}	Stack Static Pressure, inches H ₂ O	-2.01	-2.04	-2.03
у	Meter Box Correction Factor	1.273	1.086	1.180
P _{bar}	Barometric Pressure, inches Hg	30.30	29.90	30.10
V _m	Sample Volume, L ³	13.520	46.040	29.780
Dp ^{1/2}	Average Square Root Dp, (in. H ₂ O) ^{1/2}	1.4560	1.5371	1.4966
T _m	Average Meter Temperature, °F	84	69	77
T _s	Average Stack Temperature, °F	594	621	608
CO ₂	Carbon Dioxide content, % by volume	4.0	3.0	3.5
	Oxygen content, % by volume	15.0	17.0	16.0
O ₂	••	81.0	80.0	80.5
N ₂	Nitrogen content, % by volume		0.99	0.99
Cp	Pitot Tube Coefficient	0.99	0.99	0.33
As	Circular Stack? 1=Y,0=N: Diameter or Dimensions, inches:	4.00	4.00	4.00
F	Fuel Flow, lb/hr	4.41	5.30	
Q.	Sample Run Duration, minutes	60	150	105
	CALCULATED DATA			
V _{m(std)}	Standard Meter Volume,L3	16.922	49.871	33.397
V _{m(std)}	Standard Meter Volume,ft3	0.598	1.761	1.179
P _s	Stack Pressure, inches Hg	30.15	29.75	29.95
Bws	Moisture, % by volume	1.4	1.9	1.7
1-B _{ws}	Dry Mole Fraction	0.986	0.981	0.984
M_d	Molecular Weight (d.b.), lb/lb•mole	29.24	29.16	29.20
Ms	Molecular Weight (w.b.), lb/lb•mole	29.08	28.95	29.02
V_s	Stack Gas Velocity, ft/s	135.1	145.8	140.4
A	Stack Area, ft ²	0.1	0.1	0.09 740
$\mathbf{Q_a}$	Stack Gas Volumetric flow, acfm	712	768 353	348
Q _s	Stack Gas Volumetric flow, dscfm	342 10	10	10
Q_s	Stack Gas Volumetric flow, dscmm	10	10	10
	Naphthalene		400	~y A
	Analysis, ug/sample	2.0	12.0 128.2	
	Molecular Weight, MW	128.2 7.36E-09		
mm also	Concentration, lb/dscf Parts Per Million, Wet Basis	7.30E-09 2.21E-02		3.36E-02
ppmdv	Parts Per Million, Dry Basis	2.24E-02		3.42E-02
	Emission Rate, lb/hr	1.53E-04		2.38E-04
		3.47E-02		4.79E-02

	RUN NUMBER RUN DATE	T-PAH-Comp 06/11/02,06/12/02	E-PAH-Comp 6/25/02-6/27/02	Average
	RUN TIME	0856-1325,0753-1148 2.0	<i>0732-1602, 1033-1058</i> 12.0	7.0
	Analysis, ug/sample	142.2	142.2	142.2
	Molecular Weight, MW	7.36E-09	1.50E-08	0.0
•	Concentration, lb/dscf		4.06E-02	
ppmdv	Parts Per Million, Dry Basis	2.00E-02	4.00E-02 4.14E-02	
	Parts Per Million, Dry Basis	2.02E-02	4.14E-02 3.24E-04	
	Emission Rate, lb/hr	1.53E-04 3.47E-02	6.10E-02	
	Emission Rate, lb/1000 lb fuel	3.47 = -02	0.102-02	4.1 3L-02
• .	2-Chloronaphthalene			
	Analysis, ug/sample	2.0	1.0	1.9
	Molecular Weight, MW	162.6	162.6	
	Concentration, lb/dscf	7.36E-09	1.25E-09	
ppmdv	Parts Per Million, Wet Basis	1.74E-02	2.96E-03	
	Parts Per Million, Dry Basis	1.77E-02	3.02E-03	
	Emission Rate, lb/hr	1.53E-04	2.70E-05	
	Emission Rate, lb/1000 lb fuel	3.47E-02	5.09E-03	1.99E-0
	Acenaphthene			
	Analysis, ug/sample	2.0	1.0	1.
	Molecular Weight, MW	154.2	154.2	154.
	Concentration, lb/dscf	7.36E-09	1.25E-09	0.
ppmdv	Parts Per Million, Dry Basis	1.84E-02	3.12E-03	1.08E-0
P.F.	Parts Per Million, Dry Basis	1.87E-02	3.18E-03	1.09E-0
	Emission Rate, lb/hr	1.53E-04	2.70E-05	9.01E-0
•	Emission Rate, lb/1000 lb fuel	3.47E-02	5.09E-03	1.99E-0
	Acenaphthylene			
	Analysis, ug/sample	2.0	1.0	1.
	Molecular Weight, MW	152.2	152.2	
	Concentration, lb/dscf	7.36 E- 09	1.25E-09	
ppmdv	Parts Per Million, Wet Basis	1.86E-02	3.16E-03	
ppmav	Parts Per Million, Dry Basis	1,89E-02	3.22E-03	
	Emission Rate, lb/hr	1.53E-04	2.70E-05	
	Emission Rate, lb/1000 lb fuel	3.47E-02	5.09E-03	
	Fluorene			
	Analysis, ug/sample	2.0	1.0	1
	- · · · · · · · · · · · · · · · · · · ·	166.2		
	Molecular Weight, MW Concentration, lb/dscf	7.36E-09		
	•	7.36E-09 1.71E-02		
ppmdv	Parts Per Million, Dry Basis	1.73E-02		
	Parts Per Million, Dry Basis			9.01E-0
	Emission Rate, lb/hr Emission Rate, lb/1000 lb fuel	1.53E-04 3.47E-02		1.99E-0

	RUN NUMBER RUN DATE RUN TIME	T-PAH-Comp 06/11/02,06/12/02 0856-1325,0753-1148	E-PAH-Comp 6/25/02-6/27/02 0732-1602, 1033-1058	Average
				
	Phenanthrene		4.0	4 6
	Analysis, ug/sample	2.0	1.0	1.5
	Molecular Weight, MW	178.0	178.0	
	Concentration, lb/dscf	7.36E-09	1.25E-09	0.0
ppmdv	Parts Per Million, Dry Basis	1.59E-02		9.32E-03
	Parts Per Million, Dry Basis	1.62E-02		9.46E-03
	Emission Rate, lb/hr	· 1.53E-04	2.70E-05	
	Emission Rate, lb/1000 lb fuel	3.47E-02	5.09E-03	1.99E-02
	Anthracene			
	Analysis, ug/sample	2.0	1.0	1.8
	Molecular Weight, MW	178.2	178.2	178.2
	Concentration, lb/dscf	7.36E-09	1.25E-09	0.0
ppmdv	Parts Per Million, Dry Basis	1.59E-02	2.70E-03	9.31E-03
••	Parts Per Million, Dry Basis	1.61E-02	2.75E-03	9.45E-03
	Emission Rate, lb/hr	1.53E-04	2.70E-05	9.01E-05
	Emission Rate, lb/1000 lb fuel	3.47E-02	5.09E-03	1.99E-02
	Fluoranthene			
	Analysis, ug/sample	2.0	1.0	1.5
	Molecular Weight, MW	202.3	202.3	202.3
	Concentration, lb/dscf	7.36E-09	1.25E-09	0.0
ppmdv	Parts Per Million, Dry Basis	1.40E-02	2.38E-03	8.20E-03
• -	Parts Per Million, Dry Basis	1.42E-02	2.43E-03	8.32E-03
	Emission Rate, lb/hr	1.53E-04	2.70E-05	
	Emission Rate, lb/1000 lb fuel	3.47E-02	5.09E-03	1.99E-02
	Pyrene			
	Analysis, ug/sample	2.0	. 1.0	1.5
	Molecular Weight, MW	202.3	202.3	202.3
	Concentration, lb/dscf	7.36E-09	1.25E-09	0.0
ppmdv	Parts Per Million, Dry Basis	1.40E-02	2.38E-03	8.20E-0
• •	Parts Per Million, Dry Basis	1.42E-02	2.43E-03	8.32E-03
	Emission Rate, lb/hr	1.53E-04	2.70E-05	9.01E-0
	Emission Rate, lb/1000 lb fuel	3.47E-02	5.09E-03	1.99E-02
	Chrysene			•
	Analysis, ug/sample	2.0	1.0	1.5
	Molecular Weight, MW	228.3	228.3	228.3
	Concentration, lb/dscf	7.36E-09	1.25E-09	0.0
ppmdv	Parts Per Million, Dry Basis	1.24E-02	2.11E-03	
	Parts Per Million, Dry Basis	1.26E-02	2.15E-03	7.38E-03
	Emission Rate, lb/hr	1.53E-04	2.70E-05	9.01E-0
	Emission Rate, lb/1000 lb fuel	3.47E-02	5.09E-03	1.99E-02

	RUN NUMBER RUN DATE	T-PAH-Comp 06/11/02,06/12/02	E-PAH-Comp 6/25/02-6/27/02	Averag
	RUNTIME	0856-1325,0753-1148	0732-1602, 1033-1058	
	Analysis, ug/sample	2.0	1.0	1
	Molecular Weight, MW	228.3	228.3	228
	Concentration, lb/dscf	7.36E-09	1.25E-09	
ppmdv	Parts Per Million, Dry Basls	1.24E-02	2.11E-03	7.27E-
pp	Parts Per Million, Dry Basis	1.26E-02	2.15E-03	7.38E-
	Emission Rate, lb/hr	1.53E-04	2.70E-05	9.01E-
	Emission Rate, lb/1000 lb fuel	3.47E-02	5.09E-03	1.99E-
•	Benzo(b)fluoranthene			
	Analysis, ug/sample	2.0	1.0	1
	Molecular Weight, MW	252.3	252.3	252
	Concentration, lb/dscf	7.36E-09	1.25E-09	(
ppmdv	Parts Per Million, Dry Basis	1.12E-02	1.91E-03	6.58E-
•••	Parts Per Million, Dry Basis	1.14E-02	1.94E-03	6.67E-
	Emission Rate, lb/hr	1.53E-04	2.70E-05	9.01E-
	Emission Rate, lb/1000 lb fuel	3.47E-02	5.09E-03	1.99E-
	Benzo(k)fluoranthene			
	Analysis, ug/sample	2.0	1.0	•
	Molecular Weight, MW	252.3	252.3	252
	Concentration, lb/dscf	7.36E-09	1.25E-09	(
ppmdv	Parts Per Million, Dry Basis	1.12E-02	1.91E-03	6.58E-
	Parts Per Million, Dry Basis	1.14E-02	1.94E-03	6.67E-
	Emission Rate, lb/hr	1.53E-04	2.70E-05	9.01E-
	Emission Rate, lb/1000 lb fuel	3.47E-02	5.09E-03	1.99E
	Benzo(a)pyrene			
	Analysis, ug/sample	2.0	1.0	•
	Molecular Weight, MW	252.3	252.3	25
	Concentration, lb/dscf	7.36E-09	1.25E-09	(
ppmdv	Parts Per Million, Dry Basis	1.12E-02	1.91E-03	6.58E
• •	Parts Per Million, Dry Basis	1.14E-02	1.94E-03	6.67E
	Emission Rate, lb/hr	1.53E-04	2.70E-05	9.01E
	Emission Rate, lb/1000 lb fuel	3.47E-02	5.09E-03	1.99E
	Indeno(1,2,3-c,d)pyrene			
	Analysis, ug/sample	2.0	1.0	
	Molecular Weight, MW	276.3	276.3	27
	Concentration, lb/dscf	7.36E-09	1.25E-09	•
ppmdv	Parts Per Million, Dry Basis	1.03E-02		6.01E
	Parts Per Million, Dry Basis	1.04E-02		6.10E
	Emission Rate, lb/hr	1.53E-04		
	Emission Rate, lb/1000 lb fuel	3.47E-02		

	RUN NUMBER RUN DATE RUN TIME	T-PAH-Comp 06/11/02,06/12/02 0856-1325,0753-1148	E-PAH-Comp 6/25/02-6/27/02 0732-1602, 1033-1058	Average
	Dibenz(a,h)anthracene		4.0	
	Analysis, ug/sample	2.0	1.0	1.
	Molecular Weight, MW	278.4	278.4	278.
	Concentration, lb/dscf	7.36E-09	1,25E-09	0
ppmdv	Parts Per Million, Dry Basis	1.02E-02	1.73E-03	5.96E-0
P P · · · · ·	Parts Per Million, Dry Basis	1.03E-02	1.76E-03	
	Emission Rate, lb/hr	1.53E-04	2.70E-05	9.01E-0
	Emission Rate, lb/1000 lb fuel	3.47E-02	5.09E-03	1.99E-(
	Benzo(g,h,i,perylene)			_
	Analysis, ug/sample	2.0	1.0	1
	Molecular Weight, MW	276.3	276.3	
	Concentration, lb/dscf	7.36E-09	1.25E-09	C
ppmdv	Parts Per Million, Dry Basis	1.03E-02	1.74E-03	
Polosissa	Parts Per Million, Dry Basis	1.04E-02	1.78E-03	
	Emission Rate, lb/hr	1.53E-04	2.70E-05	
	Emission Rate, lb/1000 lb fuel	3.47E-02	5.09E-03	1.99E-

ALDEHYDE/KETONES TRAVIS/ELMENDORF

Summary of Stack Gas Parameters and Test Results 030174.003.0002

Travis and Elmendorf AFB Test Method 0011 - Aldehyde/Ketones

Page 1 of 3

	RUN NUMBER RUN DATE RUN TIME	T-0011-Comp 6/11/02, 6/12/02 0815-1338,0750-1155	E-0011-Comp 6/25/02, 6/26/02 0732-1602, 1045-1110	Average
	MEASURED DATA			
P _{static}	Stack Static Pressure, inches H ₂ O	-2.01	-1.84	-1.93
y	Meter Box Correction Factor	1.004	1.004	1.004
P _{bar}	Barometric Pressure, inches Hg	30.30	29.90	30.10
V _m	Sample Volume, ft ³	92.385	93.364	92.875
Dp ^{1/2}	Average Square Root Dp, (in H ₂ O) ^{1/2}	1.4560	1 5371	1.4966
DH	Avg Meter Orifice Pressure, in. H₂O	1.90	1.98	1.94
T _m	Average Meter Temperature, °F	81	72	77
Ts	Average Stack Temperature, °F	594	621	608
V _{Ic}	Condensate Collected, ml	99.0	111 9	105.5
CO₂	Carbon Dioxide content, % by volume	4.0	3.0	3.5
O ₂	Oxygen content, % by volume	15.0	17.0	16.0
N ₂	Nitrogen content, % by volume	81.0	80.0	80.5
	Pitot Tube Coefficient	0.99	0.99	0.99
C _p	Circular Stack? 1=Y,0=N:	1	1	
As	Diameter or Dimensions, inches:	4.00	4.00	4.00
F	Fuel Flow, lb/hr	4.41	4.90 120	120
Q	Sample Run Duration, minutes	120	0.191	0.191
D _n	Nozzle Diameter, inches	0 190	0.191	0.101
	CALCULATED DATA			
A _n	Nozzle Area, ft ^e	0.000197	0.000199	
V _{m(std)}	Standard Meter Volume, ft°	92.060	93.386	92.723
V _{m(std)}	Standard Meter Volume, m°	2.607	2.644	2.626
Qm	Average Sampling Rate, dscfm	0.767	0 778	0.773
Ps	Stack Pressure, inches Hg	30.15		29.96
B _{ws}	Moisture, % by volume	4.8	5.3	5.1 11671.3
B _{ws(sat)}	Moisture (at saturation), % by volume	10455 6	12886.9	4.964
V _{wstd}	Standard Water Vapor Volume, ft	4.660	5.267 0.947	0.949
1-B _{ws}	Dry Mole Fraction	0.952 29.24	29.16	29.20
M _d	Molecular Weight (d.b.), lb/lb-mole	28.70	28.56	28.63
M _s	Molecular Weight (w.b.), lb/lb•mole	136.0	146.7	141.3
V _s	Stack Gas Velocity, ft/s Stack Area, ft ²	0.1	0.1	0.09
A Q _a	Stack Area, it Stack Gas Volumetric flow, acfm	712	768	740
Q,	Stack Gas Volumetric flow, dscfm	342	353	348
Q,	Stack Gas Volumetric flow, dscmm	10	10	10
1	Isokinetic Sampling Ratio, %	99.4	96.7	98.1

Summary of Stack Gas Parameters and Test Results 030174.003.0002

Travis and Elmendorf AFB Test Method 0011 - Aldehyde/Ketones

Page 2 of 3

	RUN NUMBER RUN DATE	T-0011-Comp 6/11/02-6/12/02	E-0011-Comp 6/25/02, 6/26/02	Average
	RUNTIME	0815-1338,0750-1155	0732-1602, 1045-1110	
	EMISSIONS DATA			٠.
HCHO	<u>Formaldehyde</u>		0.40	404.0
	Target Catch, µg	72	310	191.0
	Concentration, µg/dscm	27.62	117.23	72.42
	Emission Rate, lb/hr	3 53E-05	1.55E-04	9.50E-05
	Emission Rate, lb/1000 lb fuel	8.01E-03	3.16E-02	1.98E-02
CH3CHO	Acetaldehyde			
	Target Catch, μg	· 51	110	80.5
	Concentration, µg/dscm	19.56	41.60	30.58
	Emission Rate, lb/hr	2.50E-05	5.49E-05	4.00E-05
	Emission Rate, lb/1000 lb fuel	5.67E-03	1.12E-02	8.44E-03
CH2CHCHO	Acrolein			
	Target Catch, µg	100	240	170.00
	Concentration, µg/dscm	38.36	90.76	64.56
	Emission Rate, lb/hr	4 90E-05	1.20E-04	8.44E-05
	Emission Rate, lb/1000 lb fuel	1.11E-02	2.45E-02	1.78E-02
CH ₃ CH ₂ CH ₂ OH	Propanal			
2112	Target Catch, µg	24	52	38.0
	Concentration, µg/dscm	9.2	19.7	14.4
	Emission Rate, lb/hr	1.18E-05		1.89E-05
	Emission Rate, lb/1000 lb fuel	2.67E-03	5.30E-03	3.98E-03
СН3СНСНСНО	Crotonaldehyde		•	
	Target Catch, µg	68	150	109.00
	Concentration, µg/dscm	26.09	56.72	41.40
	Emission Rate, lb/hr	3.33E-05	7.49E-05	5.41E-05
	Emission Rate, lb/1000 lb fuel	7.56E-03	1.53E-02	1.14E-02
CH3COC5H11	Methyl Ethyl Ketone/Butyraldehydes			
	Target Catch, µg	20	66	43.0
	Concentration, µg/dscm	77	25.0	16.3
	Emission Rate, lb/hr	9.81E-06	3.29E-05	2.14E-05
	Emission Rate, lb/1000 lb fuel	2.22E-03	6.73E-03	4.48E-03
C ₆ H ₅ CHO	Benzaldehyde			
. 0 . 0	Target Catch, µg	110	250	180.0
	Concentration, µg/dscm	42.2	94.5	68.4
	Emission Rate, lb/hr	5.39E-05		8.94E-05
	Emission Rate, lb/1000 lb fuel	1.22E-02		1.89E-02
CH3)2CHCH2CH	Cisonentanal			
5. 13/201 101 1201 II	Target Catch, µg	9.6	13	11.3
	Concentration, µg/dscm ·	3.7	4.9	4.3
	Emission Rate, lb/hr	4.71E-06		5.60E-06
	Emission Rate, lb/1000 lb fuel	1 07E-03		1.20E-03
	Litilission hate, ib/ 1000 ib tuer	1 0/12-03	1.522-00	202-00

Summary of Stack Gas Parameters and Test Results 030174.003.0002 Travis and Elmendorf AFB Test Method 0011 - Aldehyde/Ketones

Page 3 of 3

	RUN NUMBER RUN DATE RUN TIME	T-0011-Comp 6/11/02-6/12/02 0815-1338,0750-1155	E-0011-Comp 6/25/02, 6/26/02 0732-1602, 1045-1110	Average
	EMISSIONS DATA - Continued			
CH3(CH2)3CHO	Pentanal			
	Target Catch, µg	43	81	62.0
	Concentration, µg/dscm	16.5	30.6	23.6
	Emission Rate, lb/hr	2 11E-05	4.04E-05	3.08E-05
	Emission Rate, lb/1000 lb fuel	4.78E-03	8.26E-03	6.52E-03
C ₈ H₄CH₃CHO	o-Tolualdehyde			
	Target Catch, µg	9.4	67	38.2
	Concentration, µg/dscm	3.6	25.3	14.5
	Emission Rate, lb/hr	4.61E-06	3.34E-05	1.90E-05
	Emission Rate, lb/1000 lb fuel	1.05E-03	6.83E-03	3.94E-03
	m,p-Toluaidehyde			
	Target Catch, µg	66	290	178.000
	Concentration, µg/dscm	25.3	109.7	67.492
	Emission Rate, lb/hr	3.24E-05	1.45E-04	8.86E-05
	Emission Rate, lb/1000 lb fuel	7 34E-03	2.96E-02	1 84E-02
CH ₃ (CH ₂) ₄ CHO	<u>Hexanal</u>			
	Target Catch, µg	19	67	43
	Concentration, µg/dscm	7.3	25.3	16.3
•	Emission Rate, lb/hr	9.32E-06	3.34E-05	2.14E-05
	Emission Rate, lb/1000 lb fuel	2.11E-03	6 83E-03	4.47E-03

Run E-0011-Comp had a Rpt. Limit of 13.0; if ND result is shown in italics. Acetaldehyde and Hexanel were present in lab blank.

Run T-0011-Comp had a Rpt. Limit of 3.7; Acetaldehyde was present in lab blank; Acrolein may be blased due to matrix interference.

APPENDIX C
FIELD DATA

									_
	CLIENT	<u> </u>			<u>ii</u>	N	She	et No. 1/	
	LOCATION			Ľ		hecked BY	Date		
	SUBJECT_	_ ,				omputed By	Date		
4									
	-86	EMISSION	Measuremen	PROGRAM		,			
	TRA	us afb				111			
	Hose	EUSWARH ANODO	23	MARIMUM DUP	S ZGO KVA	-500 APS	: · !	† † †	
+									17
	CATERIA	TO A	-86 ID F	DG87		Voa	s 115 Across	. ! ' :	
	4671	oco Z (cers m	(i S		~7.4 lbs/g		\
		COAD (l .	(for) Fuce?	24) A	PS KUA		gar. Sp.gr.=0.81	4
Ī	७ ८१० ७। ४०	11.	43.2		:	PHS EW/0	OS - MATURE CANS		
	0845 6/11	oz Ko	29.8	` .		5 ~35 KVA	DEC-284	s ibe	
	0900 6/1	loz 10	25-8		Z	\$	80.		
1		loz 10	।त्र. ४	0 167	2	\$	21.36 lbs	1	
1	0950 6/11	Rother 10	39.20	117	7		Z.9 gA	1 2	
				111111			2.98		
۱		T	.33.80	4					
-1		102 10	76.7			5			†
	1052 6/	102. 10	18.5	methoden 132	P	5			
	HOS 60	uloz 10	M.O	131		25	DRUM + 25.2 H	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
		Person		122		· •	20.16 ibs/h		
		Jubi 10	40.55 33.05	1 : 1 : 1		5	Z-72 8A	lk.	
	u36 c	lukz 10					2.80	(2)	
	J205	luloz 10	22.60	15	Z	5			
	1230	Glaloz 10	13.20	14	2	5 ->	85.7.2 80 mm		+-
2	1235	Refuer 25	44.5	12:	*::::::	77 KVA	20.51 lbs/	Aur	
Ì	1310	6/11/02 25	28.7	5 16		TT KIN	2,77 0	Action (3)	
				<u> </u>			2.85 P.85 P.74	1.	
-	1345	Undoz 25		3 16			TOMAUT	V 5	1
	1260	Rofe S	LIE	65 12	3		24.81 lb		
	1350	chijer 25	1 1				3,46	(i)	
<u> </u>	1420	Gluloz 25	[.			1/ 11/11/2	∆ File 27.3 1	4	
	1435	chiloz 25	1		1	7	Gom.		
	1450	Glulaz Za	18.3	35 16		77	27.3 165/	* .	
		Refu					3,69 94	c/hr.(Z)	
_	1455	Walter Z	\$	1Z	d		7.01		+-
)								
	. ∱	north i		1. 1.		1	,		

						T.	
CLIENT			E		N	She Date	et No. <u>2/</u>
LOCATION SUBJECT	:	erra e green			omputed By	Date Date	
	- 1 · 1 · . · · · · · · · · · · · · · · ·						
Time	DATE	COMO(1.)	FUER WT. (16	.) For T	enf(cf) a	Ps KVA	
1525	Gluloz	25	30.35	الم	•	AFUEL: 2	6.85 lbs
1540	6/11/02	25	Z6.30	16:		77 60.	1 :
1565 1600	6/11/07 6/11/02	75 25	17245 41.15	16 1 7	f :	77 3.62	BAL/N.
1620	GINIOZ	Z 5	31.95	ısı		77	(3)
०नेहर्म	6/12/02	50	41.55	8.5		30 KVA BE	Jec = 22.95 167
0755	6/12/02	50	27.9	ısz		30 KVA	40min. B4.42 lbs/h.
osio Sefue	colizios.	50	18.60	106		30 KVA	4.8
0815	GIRA	50	45,40	10		136 KVA	>0
085 0	Glislos	<i>5</i> 0	35.85	131			50m.in.
0850 095	6/12/02	50	23.25 14.05	ios		130 KVA 130 KVA	57.62 lbs lbs.
<u> </u>	6[1 <u>2</u> 67 5062	5 0		105 9			5.25
OIFO	6 12 0Z	5 0	45.95	96			: 31-8-1bx
097.5	धास्त्रवर 6/12/62	50 50	36.40 14.15	150	1 .	130 130 3	50min. 8.16 lbs/h,
Refic						.	16 183/h.
1005	Glizlor Glizlor	50 50	45.10 25.80	163 113	1 1 1		32,25 114
1106 Refire	ક હિયેલ્ટ	<i>5</i> ₽	12.85	15		13c 35	l⊗ ibs∫w.
			73			4.	91 (3
5, 1120	Glizfoz	75	34,08	144		190 KVA	CEZ = 19.1 165
1135 1130	ુ લાયન્ટ હાયન્ટ	75 15	24.15 14.40	15°		190 EVA	38 2 Vbs/4
Refere	VILLE	2					5.33 X
1150	6/12/02	75 75	46.05 27.20	JOZ.		IGO DE	28.55 lba
1230	6/12/02 6/12/02	75	17.50	16		190	ranos 12.82 Usallar
1235	Refuel Girlor	75	44-5	100		190	5-79 GK/k. 5-91
1300	6/12/02	75	2 <i>8:0</i> 0	150		190 AFWE =	32 lbs. / (i
13/5	6/12/02	75	14. <i>[5</i>	165		190 47.	10 mins . 99 [65]/h
	REFUE					-	700
						6.6	

-	CLIENT			15	FŇ	Shee	t No. 3/
	LOCATION				Checked BY	Date Date	
	SUBJECT_				Computed By_	Date	
: :							
	Time(241. 1320) DATE 6/12/02	1	L	2 Temp(f) Augs KVA 5 190 NEXET	30,14	: 4 · 1 · 1/2 : :
	;	•				29.09 1/05	-
	1345 1406	6/12/02 6/12/02	1	· .	, , , , , , , , , , , , , , , , , , ,	45~. 38.79 165/hm	
	Refue	~				5.24 lbs/h.	(3)
-	1405	6/12/02	T	6.65 to		-31-33-155	
•	1425	<i>ુાય•</i> ટ હાાપૄંટ		15 5.36 16	L: : : : : : : :	north	A.9. 5.5 guells
	ren 1450	त्य. द्वारीवर	75	y-5 IX	1 1	35 lbs/h. 55	
-6							
زز	and reson	ટ હાંચીન્ટ	log 3	6.76 Kić	#	: 11.45 1bs.	in the state of th
	1610	Gliz/ OZ	100 2	5.75 14	-	8.69 lbs/b.	
	00 x 0725	6/13/02	100 4	2.50 68	246	9.28 BAL /4.	
i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	0745 0800	6/13/02 6/13/02		696 121 480 152	∆ Fire	: 27.7 ibs.	
****	# ROTUL		<u> </u>		41	49 lbs/hr.	
	- 0 876	Gli¥oz Gli¥oz	ico Z	6.25 96 5-10 148			an l
-41	2880	6/13/02	100 1	33 16	256	35	Avg.7.904/m
	265 0840	6/13/02	100 4:	5.ZO 94		7.7 gAL/N:	
÷ .	083 6	6/islot	106 5 C	65 147	266 DF	34.11 lbs.	
	0915 Rep	Glisla.		69 /53		58.48 lbs/hi.	
	<i>0</i> 915	6/13/0Z		40 97		7.9 gu /h.	7,5
	0946 0950			20 167 255 164	266 DĀ	2: 3305 lbg. 35min.	(2)
			\:	.zo 95		56.cc lbs/h. 7-66 ga/kr.	
:	0101	6/13/02	100 31	.zo 14:	266 Δfiet	33.95 lbs/fe	
- 	1630	6/13/00	100 - 12	2 <u>5</u> 155		58.20 lbs/hr	
17					8.12	7.86 ga/h.	(a)
		•					

	CLIENT				E	_	N	She Date	et No. 4/
+	SUBJECT_						Computed By		
And the second s		DATE (1362 160	7. 1 00		жит Те 30 9	-			
	1050	clisloz Elisloz	100		65 [1	53 58	25 24.25 lb 25 min. 58.2 lbs/lbs. 2 7.86 gal/l	~(3)	
-			: ; !						
+							:	: A	
			:						
+							j .		
			:	,		;			
1				:					

Environmental Quality Management, Inc.

		•_		
	Diont	Tomis	AFT	Date: 6/10/02 Clock Time: 1430
•	Compling 1	ocation:	Genera XS	Outlet Clock Time: 1430
	D #4	757/		Operators: Lk/16
	The management	December in	u _a . 30	Static Pressure, m.HoU:
•	Paroment	: F1€88ut€, III. or. • 4	Adoleo	cular wt., Dry: Pitot Tube, Cp: D-99 Side 1: Side 2:
	Moistine,	70	IVIORCE	Side 2:
	Stack Dilli	ension, m. D.	rameter of 3	Der Bulb °E.
	wet buid,	r:	· The amount	Dry Bulb, °F:
	Pitot #	· · · · · · · · · · · · · · · · · · ·	inem	10couple #
P= 8.9		77 9		$Md = (0.44 \times \% CO_2) + (0.32 \times \% O_2) + (0.28 \times \% N_2)$
3-17.98	Traverse	Velocity	G 1	$Md = (0.44 \times \% CO2) + (0.32 \times \% O2) + (0.26 \times \% O2)$
75=745.2	Point	Head	Stack	1-1- (0.11-). (0.20-). (0.20-)
We 19,66		in.H ₂ O	Temp, F	$Md = (0.44 \times) + (0.32 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times)$
W 28,71		9.le 9.3	140	$ MO = MO (\alpha + 0) $
K 2 18	2	9.5	140	$MS = Md \times \left(1 - \frac{\% H_2 0}{100}\right) + 18\left(\frac{\% H_2 0}{100}\right)$
24 = 30/18	3	4.5	738	100) (100)
15-297.6				() () ()
75%	1	8,2	784	$M_{S} = \left(\right) \times \left(1 - \frac{100}{100} \right) + 18 \left(\frac{1}{100} \right)$
refu=876	2	B. C	753	(100) (101)
	3	9.0	756	Ms =
stor=371.9				$\frac{1}{\text{Ts}} = \text{°F} = \text{°R}(\text{°F} + 460)$
	1	9.8	810	$\int S.P.$
	2	10-1	814	$Ps = Pb + \frac{S.P.}{13.6} = ($ $) + \frac{13.6}{}$
	2. 3	9.6	818	
				Ps = in. Hg Static = -3.0"
100%	. 1	11.0	826	
16	2	8,9	829	$\sqrt{\Delta P}$ =
13:03.16	3	10.5	829 824	$T_{s(\cdot R)}$
2 828				$V_{S} = 85.49 \times C_{p} \times \sqrt{\Delta P} \times \sqrt{\frac{T_{S}(R)}{P_{S} \times M_{S}}}$
15" 820°F				- IPSXMS
13° 375 le				$V_s = 85.49 \times () \times () \times $
いっかりん				√3 = 6J.49 × (
wr 381				$-Vs = ft^2$
12 hm 381		<u> </u>		$A_S = ft^2$
μ·,				7
		<u> </u>		$-Qs = Vs \times As \times 60s/m$
		 	ļ <u> </u>	$Q_s = \times \times 60$
, j				1
7				$-Q_{S} = acfm$
	L		<u> </u>	$-Q_s = dscfm$
		\ √ <u>\\ \</u> \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	=Ts=	Ag - apprint

Environmental Quality Management, Inc.

10,25,50,75,100

Plant:	Trike	AFB			Date:	6/10/6	<u> </u>
Sampling.	Location: _	Generator	Dutlet		llock Time	: 143	9
Dane #	/ 0 -			Operators:	mu/	T6	0 W
Barometri	c Pressure, i	n.Hg:		Static Press	ure, in. H_2): [8]	= d.0"
Moisture,	%: <u>4</u>	Molec	rular wt., Dry:	P	itot Tube, 9	p: 10 %	7.2"
Stack Dim	ension, in I	Diameter or S	cular wt., Dry:	3"	Side 2:	UI	7/
Wet Bulb.	F:			°F:		_	•
Pitot #		Therm	nocouple#			DOARN	(
				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,		
Traverse	Velocity	•	$Md = (0.44 \times$	$% CO_2) + (0$.32 × % O 2 _.)+(0.28×%	N2)
Point	Head	Stack				\ (15= 245-60
Number	$in.H_2O$	Temp, °F	$Md = (0.44 \times$)+(0.32×)+(0.28	×)	2 27.
<i>t</i>	6.4	1 m/	1 M/d ==			\ A	15=245.6 229. cfm=6
2	6.5	547	$Ms = Md \times \left(\right.$	$1 - \frac{\% H_2 U}{} +$	18 % H ₂ U	.)	
3.	6.2	569	Ins-max	100	100)	3
			,	$\langle (, \cdot, \cdot) \rangle$	()	102	2.7
1 2	5,5	560	Ms = ($)\times \left[1-\frac{100}{100}\right]$	$+18(\frac{100}{100})$	D:	5 1 1 V
2	6.0	565	3.50	(100)	A, (-0-)		
3	6.2	569	1472 —		*,		
,			Ts=	°F =	R("F	+460)	
し ル 3	5.5	500	. s.	P. ,	١.		
N	5.5	500	$Ps = Pb + \frac{S}{13}$	$\frac{1}{1.6} = 1$	13.6		
3	5.6	500	Ps =	• •		2003	
		101	PS =	m, ng	Vs =	208.3 acfus=	1124
	5.2	494				actui=	(210.
2	5.3	492	$\sqrt{\Delta P} =$				
	3,4	494	$Vs = 85.49 \times 6$	$\sqrt{\sqrt{\Lambda P}} \times \sqrt{1}$	Ts(R)		
		1 2 7	V S = 03.49 X (A MAY A	$Ps \times Ms$		
	-601/2	10 34	1	1.	1	\ \ [
2	4,0	122	$Vs = 85.49 \times 1$		()×√	***
	<i>G. U</i>	07/	Vs =	ft^2		. •	
	1. 1/	632	1, -	ft^2			
<u>'</u>	6.4	1117	As =	_			
- 2	7,	647	$Qs = Vs \times As$	\times 60 s/m			
	1.3	017	Qs =	×	×60		
·			142-				
	٠.		Qs =	acfm			
		=	Qs =	dscfm			
<i>(</i> /	√∆ŀ	=Ts=] ~ "				
		•					

	Plant:	Travi	s AFZ	3	Date:	4/11	102
	Sampling 1	Location:	Generata	Dutlet	Clock	Time: //	04
	K 1177 #F	- 10 W A	7/ / 1/ /	-1 717	erators:	NU /16	
	Rarometric	Pressure in	Har 30	.30 Sta	ric Pressure.	in.H ₂ O:	-0.30
	Moistrire	%· ¥	Molec	ular wt., Dry:	Pitot T	ube. Co:	2.99
	Stack Dim	ension in D	iameter or S	ide 1: 3.0	" Side	2:	
	Wet Bulh	oe.	minotor or c	Dry Bulb, °F:			•
	Pitot #	*•	Therm	occuple #			
	11100 "		1110111		•		
	Traverse	Velocity		$Md = (0.44 \times \%)$	$(0.32 \times$	$\% O_2 + (0.2)$	8×% N2)
	Point	Head	Stack	Mu = (0.77 % %	,(0.52 **	<u></u>	
	Number	in.H ₂ O	Temp,°F	$Md = (0.44 \times)$	+ (032x)+	(028x)	
., 4	7	4.2	445	$Md = (0.44 \times)$	(0.52 K) 1	(0.20 /	1201
DP=4.55	, ,		SUG		6H.0) (9	(0,H3	106
21.2.17	2	4.3	462	$Ms = Md \times \left(1 - \frac{9}{4}\right)$	$\frac{2}{100} + 18 -$	100	. , ,
≥P=4,33		113	177	, ,			16% Lad
15 254	7	4.8	454	$Ms = () \times ($	1		
15 - 16	2	4,8	40a		100)	100)	
2 28.71	3	4.7	459	Ms =			
N. 20.71			100	$\overline{Ts} = {}^{\circ}F$	· _ · · ·	R(°F+460))
15 22 28.28 16 22 28.28 16 20 28.28		3,8	482			-	
46	2	4.0	482	$Ps = Pb + \frac{S.P.}{13.6} =$	-+()+-		
76.01	3	4.2	481	13.6	,	13.6	
100 /1			,,,,	Ps = in	n. Hg 🦸	1.8	
State Marke		4.9	483	Ps = in	Static"		
~_war i	7	4.6	485	$\sqrt{\Delta P} = \cdot$	010		
1	.3	4.7	486	V \(\(\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\tint{\text{\text{\text{\text{\text{\tint{\text{\tint{\text{\tint{\text{\text{\text{\text{\text{\text{\tint{\text{\tint{\tint{\text{\tint{\text{\tint{\text{\tint{\text{\tint{\text{\tint{\tint{\text{\tint{\text{\tint{\text{\tint{\text{\tint{\text{\text{\tint{\tint{\tint{\tint{\tint{\tint{\text{\tint{\tint{\text{\tint{\ti}\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tin}\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tinit{\tint{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tinit{\tiin}\tinit{\tinit{\tinit{\tiin}\tinit{\tinit{\tiin}\tinit{\tiin}\tinit{\tiin}\tinit{\tiint{\tiin}\tiin}\tint{\tiint{\tiinit{\tiin{\tiin{\tiin{\tiinit{\tiin}\tiin}\tiin}\tiin}\tiint{\tiin}\tiin}\tiin}\tiin}\ti	Tsl	(۹۰	
01130		1.2	700	$Vs = 85.49 \times Cp \times$	$\sqrt{\Delta P} \times \sqrt{\frac{13}{2}}$	1 J	
e 1130			٠.	-	Y Ps×	(M·S	
ΔP= 4.37				$Vs = 85.49 \times ($	1~()×1-	
DP= 2.08	-			γ ₃ = 05.77 λ (, /^ (/^ \	•
SP				$Vs = ft^2$	_		
<i>□</i> x ₹ 1				As = ft			
15 29.66 ML= 29.71				$Qs = Vs \times As \times 60$			
Me 28.21	11			Qs= vs/hs/or) s) iii		
ML= 28.21 Ms = 30.43				Qs =	×	×60	
Ms = 30.43 Ps = 30.43 15= 183.55				Qs =	acfm		•
149/5							
ar 540.	(e	√∆P	=Ts=	Q s =	dscfm		
1 6 4	Į	· · · · · ·		1 .			

FIELD DATA SHEET. K = 2.42

Plant: Ar.'s AFB Sample Sample Sampling Location: -8. December: Run Number: Date: 6/1/02

Pretest Leak Rate: 0.004cfm @ 15 in.Hg.

Pretest Leak Check: Pitot: Cosat: AM

Sample Type: x5/22 Operator: Tc.

Pbar: 20.30 Ps: -1.2"

CO₂: 5/· O₂: 17'·

Probe Length/Type: 2(2492 Pitot#: 14)

Stack Diameter: 4'' As:

Assumed Bws: 4 Filter #: 82024

Meter Box #: 7 Y: 1.001 AH@: 1.77

Post-Test Leak Rate: 0.09/cfm @ 7 m.Hg.

Post-Test Leak Check: Pitot: Orsat: 44

										. houng	1	~ × • 9	ر .	\$	332.3	200	1 6	9 < 4	-		-	•		,	1
Pump	(in. Hg)		_		/)	-	1	_	1	1	9	9	7				,							
r Temp. Im	Outlet		لمد	32	80	18	28	%	\$\$	82	88	89	90	16	-										1/8
Dry Gas Meter Temp. Tm	Inlet		75	Q	85	28	ဝ	63	F,	ን ሪ	4	86	66	00/		,				*				,	Tm = 8
Impinoer	Temp. °F		29	49		52	55	84	४८	54	95	36	57	58											
ure °F	Filter		251	252	250	252	752	282	252	282	752	267	452	283											
Temperature °F	Probe		452	18.2	252	384	252	253	1254	283	757	250	252	592											4
Stack	Temp (Ts)		498	465	465	hOh	468	ובח	71.6	472	ובא	hbb	hSh	71h										,	Fr= 471.
	Actual		5.34	44.2	2.49	2.50	7.41	2.47	2.45	2.47	2.ug	2.48	254	b4'7				,							
Ησ	Desired		7.34	44.2	2.44	2,47	2.47	Lh.2	2:47	רץ.2	6h.2	2.48	2.54	544											SAH.
Velocity	Head.		6.73	1.73	1.73	1.73	1.73	(.73	1.73	1.73	ET.	1.73	1.93	1.73											12 = 12 SOS JA = 2247
Gas Meter	Reading	382.386		7:12	6366	399,22	403.84	407.52	42.4	416.91	421.12	426.02	429.30	433,054											VV = 50,668 V
Clock		28/2	0280	0825	0830	3280	0840	Smis	0880	25%0	8080	305	0169	0915											$\Delta Vm = 5$
Sampling	Time	0	S						10		S,	8													
Traverse	Number																								

Environmental Quality Management, Inc.

Plant	1 ravis	AFB		Run No. <u>T</u> -	590-1
Date 6	1/02	Sample Box No	<u>5</u> B-5	Job No. 30	174,0003,002
Sample L	cation General	mi-10%		Filter No. 8	30244
Train Pres	parer PK/	AG			
Sample Re	ecovery Person	AG DA			
Comment	00010191010011	mith 15	trailer /	202 back	rall
COMMON		Method 5			7
Front Half		•			
Acetone		Liquid		*	
Container	No.	Level Marked	Sealed	•	
Filter					
Container	No	•	Sealed		
			-		
Descriptio	n of Filter B	lack - cove	-od .		
•					
Samples S	tored and Locke	ed			
- · · · · ·					
Back Half	Moisture		•		
Liquid Lev	el Marked		Sealed		
	· .				
T 3.T.		Initial Vol		Weight (gra	ms)
Imp. No.	Contents	(ml) ·	Initial	Final	Net
1	DI tho	100	77.2.0	73/.1	9.1
. 2	DI H20		7328	751.0	18,2
3	E (100	626.3	630.4	4.1
	Empty		626,7	6 70.	
. 4	Silien Cel	250+	812.0	823.7	11-7
5					
6					
7	rotal .				43.
		<u></u>	I	<u></u>	
Decominties	o of Immin and O	- / Cul	. Inilly		

FIELD DATA SHEET

Pretest Leak Rate: . 002 cfm @ 10. Hg. Run Number: 45-10-2 Date: 6/11/02 Plant: Travis AFB Sampling Location: -860Exhaust Pretest Leak Check: Pitot: ____ Orsat: __

Probe Length/Type: 2'clb55 Pitot#: 1//A Sample Type: 115/202 Operator: 16 Stack Diameter: 401 Pbar: \$0.30 CO2: 31.

Assumed Bws: 4 Filter #: Real
Meter Box #: 7 Y: 1.00 L AH@: 2.115 Post-Test Leak Rate: .003 cfm @ 15 in.Hg. Nozzle IDO, 205 Thermocouple #: \$M-5 Orsat: Post-Test Leak Check: Pitot:

					3	රු රේ	605.1	•	de so	1771	. / 6		780		چ									
Pump	Vacuum (in He)	(Arr : m)	٦,	ù	1	α	0	0	5		7/	//	13	2				1						
Dry Gas Meter Temp. Tm	Outlet		95	66	86	8	99	99	99	66	96	8	86	bь										7
Dry Gas Me	Inlet		86	47	90/	103	1,01	201	601	h0/	103	107	701	/0/	<i>ز</i>					7				Tm = 100
	Impinger Temp. 'F		63	200	61	119	69	67	69	22	22.	Z	16	69					-					
Temperature °F	Filter		57	452	132	256	256	251	282	. h52	258	797	252	254										
Temper	Probe		787	253	253	282	257	253	253	283	25 Y	254	253	253										7 7
Stack	Temp (Ts)		256	797	9/1/2	Lhh	894	473	473	475	417	481	480	479	-									1 Ts= 477
ΔĤ	Actual		2.30	2.5	9.2	9.7	5.2	2.5	5.5	7.6	2.5	2.5	2.5	2.5	,	٠							,	TH = 2-50
۵	Destred		2,2٩	2.93	2.58	2.59	2.53	7.57	2.52	2.51	2.50	2.49	2.49	2.49										7
Velocity	Head.		1.73	7.13			1.73			1.73	1.13	7.13	1.73	(.13										5157=0
Gas Meter	Reading	433,313	434.92	437.89	442.36	11734	451.11	455.58	86.6%	464.49	0989	472.95	476.44	485.428									•	25C7= dV/ 7530.12= mVA
Clock		06:60	6965	000/	1005	1010	1015	1070	6701	T	\neg	0401	1045	/050										5= m/v
Sampling	Тіще	٥	S	Q	/5	970	25	35	35	04	45	56	55	ρφ										7
Traverse Point	Number																					-	-	

Plant	Travis	AFB		Run No. T	-5-10-2
Date 6/	1/02	Sample Box No.	5B -/	Job No. 30	174.003.002
Sample Lo	cation_	veritor ext	rars - 10%	Filter No.	PC011
Train Prep	arer	Oh/AG			
Sample Re	covery Person	D'A.			
	5/200				
Front Half				•	
Acetone		Liquid			
Container:	No	Level Marked	Sealed		
	•				
Filter					
Container 1	No		Sealed		
		1 1.			•
Description	n of Filter	lack:			•
		_			
Samples St	tored and Lock	ed			
7)1- 77-15/	7				
Back Half/					
Container	No			 ,	
Tionid Tax	ral Morkad		before?		
THIER IX	CI IVIAIACU		black		
		Initial Vol]	Weight (gran	ms)
Imp. No.	Contents	(ml)	Initial	Final	Net
1	04 44-5				7.3
	Per /120		7242	731-5	
. 2	DI 420	100		737.7	11.0
3	Elingty		619.5	623.9	4,4
4	Stica bel	250	816,6	872.3	15.7
5					
6					
ņ	[otal				344
		<u> </u>	l		17.
Decorintion	of Impineer (Catch: Clo-dy			,
TOUR THURS	or mhmacr (ann _ Closely			

10% Load

Operator: AE

Ps: -1.2" Sample Type: #5/202 Pbar: 30.30 Run Number: 165-10-3 Date: 6/11/102 Pretest Leak Rate: 204 cfm @ 10 in.Hg. Plant: Travis AFB Sampling Location: - St DE xhaust

Probe Length/Type: 2/6/1055 Pitot#: MA Stack Diameter: 4" As: CO2: 3%

Pretest Leak Check: Pitot: ____ Orsat: ___

VH@: 1.005 Post-Test Leak Rate: 2.0/2cfm @ 12 in.Hg. Thermocouple #: 54-5 Orsat: Filter #: 830246 Assumed Bws: 4 Filter #: B Meter Box #: 7 Y: 1/001 Post-Test Leak Check: Pitot: Nozzle ID: 0.205

					•	15		1.700		Dech.	7,00%	27/25		230	95	`		ī		-	 	-1	-
Pump	(in. Hg)		7	2	7	5	5	2	4	00	8	9	10	7									
Dry Gas Meter Temp. Tm	Outlet		hb	56	46	44	416	hb	ħЬ	36	38	35	98	8								,	1
Dry Gas Met	Inlet		bb	hb	44	bb	001	101	101	70/	201	107	20%	40		-			4				Tm = 97
Longitude	Temp. °F		19	58	58	59	[9]	19	29	\succeq	63	20	20	65									
ture °F	Filter		754 254	252	256	282	255	582	587	152	252	253	254	252									
Temperature °F	Probe		785	252	293	253	253	253	h 82.	252	758	121	354	252									4901
Stack	Temp (Ts)		488	486	984	486	28%	489	166	165	86h	064	795	493									1
ΔH	Actual		2.5	2.5	2.5	2.5	5.5	2.5	25	2.5	2.5		2,5	2.5									$\sqrt{AH} = 2.50 \sqrt{1s} =$
٥	Destred		2,45	2,45	2.46	2,4%	2.46	2:46	2,45	3.5	2.5	2.5	2,5	2.5									
Velocity	Head.		1,73	67.7	1,73	1.73	1.73	(.45	1.43	1.73	841	84%	1.73	673									(TAP = 1,3153
Gas Meter	Reading	768'587	490.75	494.91	12.64	503,62	508.22	512.61	516.5	520,8	535.5	Ì	533,9	146855									7
Clock		11.20	1125	08/1	1135	1140	1149	1150	1155	0021	1205	0/2/	5/2/	12.20									345 = MAV
Sampling	Time	0	6	9)	14	20	7,5	3.0	35	0/1	45	0.5	24	lejo									
Traverse	Number	d)	7	r	4	. 5	ىد	1	20	6	W))	7									

Plant	Travis Al	FB	`~`\$	Run No. 7	-M5-10-3
Date /a	11/02	Sample Box No.	<u>5B-3</u>	Job No. 30/	740003-002
Sample Lo	ocation _ Care	rator Owther		Filter No.	930246
Train Prep	arer	pulde /	A Greber		
2 ample 10	COACTA LCISOH	_ <i>DF</i>	•		
Comment	S	:			
Trans TTal	•				
Front Half Acetone	•	Liquid			
	No	Level Marked	Sealed		
COLUMN		LOVOI HIMMOI	bearco_		
Filter					
Container	No		Sealed_		
		Z /.			
Description	n of Filter <u>P</u>	icie		<u> </u>	
Samples S	tored and Locke	≈d	•		
Dools Hale) (a i ataum				
Back Half/	<u>Moisture</u> No.				
Comandi.					
Liquid Lev	el Marked		Sealed		•
Town No.	Contract	Initial Vol		Weight (gra	ems)
Imp. No.	Contents	(ml)	Initial	Final	Net
1	DI H20	100	712.9	723.6	10.7
- 2	DItho	100	713-2	725.5	12-3
3	Empty		618-5	622.7	4.2
4	Silica gel	250	828.9	843-7	14.8
5	17,700- 7-1		- 407		
6					
7.	Cotal .				42.0
		<u> </u>			700
Description					

Environmental Quality Management, Inc.

25% Load

122.5

		Trains	05	.2	Date	: 6/11/02
	Plant:	1 Farms		D. D.A	Cloc	k Time: 1255
nl=29.(6 nl=20.71 Mr=30.12	Sampling 1	ocation:	(energy	- Out at	Operators:	PU/16
					Charles Drecente	, in.H ₂ O:2.5"
WAY 2012	Barometric	Pressure, in.	.Hg:	1 1 D		Tube Cr. 0,99
Red 17.80	Moisture,	%:	Molec	ular wt., Dry. 2	Sid.	, in.H ₂ O:
15" 12-	Stack Dime	ension, in. Di	iameter or S	10e 1:	, Did	V 2.
V 2 - 5, 270	Wet Bulb,	°F:		_ Dry Buio, r		
10 = 2.3	Pitot #		Therm	ular wt., Dry: ide 1:2 _ Dry Bulb, °F occouple #		
15 560 15 4 641.5 act w 3210	·			1271 104440	(00) 1022	$\times \% O_2$)+(0.28×% N ₂)
14 = 641.5	Traverse	Velocity		$Md = (0.44 \times 9)$	6 CO2)+ (0.32	X % O 2) + (0.26 × % 11 2)
ac (3210	Point	Head	Stack		1.6000 1	10204
42chm = 3210	Number	in.H ₂ O	Temp, F	$Md = (0.44 \times$)+(0.32×)	+ (0.20 x)
1	,	5.7	559	Md = `	ar in a	(% H U)
255	2	5.7	560	$Ms = Md \times (1-$	$-\frac{70 \text{ H}_2 \text{ U}}{1000} + 18$	100
120	. 5	5.6	559	(100)	(100)
1				Ms = ((.)	
Į		5.le		$Ms = \langle \rangle$	$(1-\frac{100}{100})^{+1}$	°(100)
1	2	5,5 5. 6	560	Ms =		
	3	5.6	560	Ts=	•=	in (on , 460)
ML 29.16				1		
		5.5	560	S.P		
M: 30.15	٦	5.8	560	$Ps = Pb + \overline{13.6}$;=\	13.6
111/0	3	5.6	560		in Ho	13.6 - 7.0" Stutic = MBD
14/0				Ps =	ш. пд	27 110
vs= 216.9	- 1	5.5	559			
a Gra- (239.0	2	5.6	558	$\sqrt{\Delta P} =$	-	
10d × 320.3	3	5,5	558	$V_S = 85.49 \times C_I$	-	s(<u>R</u>)_
ug 400 5,583				$Vs = 85.49 \times C_i$	$0 \times \sqrt{\Delta P} \times \sqrt{P}$	s × M s
T52 559.2				$Vs = 85.49 \times ($)×()×√
7323	1	5.le	559	Vs =	ft^2	A
	2	5,5	559] v z =	J•	
@1618	3	5.2	558	As =	ft^2	Static = -3.0"
~/410				$Qs = Vs \times As$	c 60 s/m	JIMTIC - TI
		5,4	558			٠.
	2	5.3	559] Q s =	×	×60
	3	5.1	559 560	00-	acfm	
		•		Qs =		
		-/AP		Qs=	dscfm	

FIELD DATA SHEET

Plant: /Junia HFB
Sampling Location: Generalor
Run Number: 7-75-5-/ Date: _

Truis AFB

Pretest Leak Check: Pitot: _

Operator: 44/46 CO₂: Z.6 Probe Length/Type: Sample Type: 115/102
Pbar: 30.30 Stack Diameter: Pretest Leak Rate: 22 cfm @ 12 in Hg. Orsat:

Nozzle ID: 0.205 Phermocouple #:

Assumed Bws: 4 Prilter #: 830245	Meter Box #: 18-7 Y: 1.00/ AH@: 1.775	Post-Test Leak Rate: .066 cfm @ 12 in.Hg.	Post-Test Leak Check: Pitot: Orsat:
	-	#:	

							3		77	- •	}	1360 1360	, Pr.	•	230	B	-						
Pump	(in. Hg)	į	7	7	5	3	2	90	6	2	8		11	13									
Dry Gas Meter Temp. Tm	Outlet		116	46	pp	hb	9.6	R.	8	%	%	97	97	98									1
Dry Gas Me	Inlet		hb	95	86	ay	701	103	182	ho#	<i>(20)</i>	785	601	805					7				Tm = 99
Imniager	Temp. 'F	, A	જુક	58	58	1.9	63	65	66	99	89	h9	9	59									
Temperature °F	Filter		752	757	h92	h97	755	252	263	7%	75¢	253	282	263								\	
Temper	Probe		784	253	282	255	263	253	552.	253	757	784	253	282									7
Stack	Temp (Ts)		164	549	559	558	568	965	559	560	559	296	495	559	•							\	7.5=ST
ν	Actual			2.7	7	5.5	-	2.1	2.7	2.3	2.7	L'2	٥.٦	L. Z									2.70
ام	Desired		2.87	99. 2	2.64	2.65	297	2,66	2.66	2.66	99.7	2,66	2.65	2.67									= HV 2h
Velocity	Head.		2.0	2,5	2.0	2.8	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.6									<u> √Ap = 1.414</u>
Gas Meter	Reading	538.804	543.91	34B.67	29.785	559.98	562.05	569.06	511.00	575.95	580.00	584 32	584.69	592.891									N = 54, Nς]ν ΔΔ
Clock	2	65:71	13:00	13.05	1310	1315	1320	1325	1336	13.35	1340	1345	1350	3881					·				$\sqrt{2} = mV$
Sampling	Time	٥	5			20	25	30	35	40	45		55	00									7
Traverse	Number	0)	7	~	7	5	-g	7	00	8	0)	//	7)			-		٠				

Plant .	IGaris A	IFB		Run No 7	0174.0003.002
Date 6	11/02	Sample Box No.	53-2	Joh No. 3	174.000 3.002
Sample L	ocation Reve	Sample Box No.	25%	Filter No.	830245
Train Pres	parer A	LI AG			
Sample R	ecovery Person	DA			
Comment	s	Method 5	1202 fri	i.h.	
Front Hal					
Acetone		Liquid			
		Level Marked	Sealed		
Filter					
Container	No		Sealed _		
Descriptio	n of Filter B	ack:			
•			• •		
Samples S	tored and Locke	d			
Back Half					·+***
Container.	No				
Tionid Tor	rol Marleod		Cooled		
riding re	el marker		Sealed		And the second s
		Initial Vol		Weight (gra	me)
Imp. No.	Contents	(ml)	Initial	Final	Net
1	DI 1/20	100	710.4	724.0	13-6
2	DI HZO		730.Z	7465	16.3
3		100	630.2	635.3	5-1
4	Empty	000		895.3	
5	Silia bel	250	879.8	8-1507	15.5
6					
ŗ	l Total				50,5
		C1. A			
Description	of Impinger Ca	itch: Cloudy			

2,9

Stack Diameter: 4" Sample Type: <u>M8/202</u> Pbar: <u>30.30</u> CO2: 3-7 Pbar: Pretest Leak Rate: 002 cfm @ 11 in.Hg. Sampling Location: Caengrahm. Outled Run Number: 1-195-25-2 Date: 6/11/02 Pretest Leak Check: Pitot: ____ Orsat: ___ Travis AFB

Probe Length/Type: 2'61/655 Pitot#: Operator: As: _

Nozzle ID: 405 Thermocouple #:
Assumed Bws: 46 Filter #: PC018
Meter Box #: 7 Y: 6001 AH@: 1.775 Post-Test Leak Rate: .005 cfm @ 11 in.Hg. Orsat: __ Post-Test Leak Check: Pitot: _ Nozzle ID: 105

					actor :	14/	0/0		dxp	9	1111		Å	195.7			 						
Pump	(in He)		ی	3	7	O C	0	9	11	(3	14	17/	2	11			,						
Dry Gas Meter Temp. Tm	Outlet		86	88	99	8	86	66	99	99	001	001	00)	100	3								12
Dry Gas Met	Inlet		90	101	/03	105	901	90	101	107	107	101	106	106		.]			7				Tm = 10
,	Temp. °F		7	69	59	59,	36	×	5	58	59	99	19	29									
Temperature °F	Filter		25.0	295	h57	752	247	230	253	287	254	252	251	283									
Temper	Probe		157	282	252	255	251	252	754	253	254	255	752	75h									5/2
Stack	Temp (Ts)		280	559	559	559	557	556	558	558	558	557	553	554								•	42 - 52 - 52 - 12 - 12 - 15 - 15 - 15 - 1
ΑĤ	Actual		2.4	2.1	7.7	2.7	2.11	2.3	2.9	2,9	2.9	2.9	2,9	2.7					-				7.68
[8	Desired		27.7	2,66	7,66	2.69	2.6J	7.68	2.68	2,68	2,68	2,68	2.69	2.69									1 VH =
Velocity	Head.		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2,0	2.0	2.0.									
Gas Meter	Reading	593.095	597.96	91.209	64.909	611.02	6.5.01	619.62	67.479	01.259	633,44	638.00	642.63	846.71T					٠				1 Vm = 53.602 \ \Dp = 4
Clock		1410	1415	1420	1425	1430		0hh:	1445	1450	1458	1900	1505	NE!									Vm V
Sampling	Time	0	3	01/2		2.0	25	30	35		4.5	56	55	60					,				Ø
Traverse	Number																						

		SAMPLE	RECOVERY I	DATA _		
Date 6/1	rans AF.	Sample Box No.		Run No. Job No. 30	5-25-2 174.0003.002 06.018	-
Sample La	ocation God co	161 41 -		Filter No	<u>CO18</u>	
Train Prep	arer DA?	DA	<u>ø.</u>			•
Comment	3			····		•
Front Half Acetone		Liquid	y		·	
Container	No	Level Marked _	Sealed_			
			Sealed_			
Description	n of Filter <u>b</u>	lack				
Samples S	tored and Lock	ed				
Back Half/						
	,		Sealed			
		Initial Vol		Weight (gra	ms)	
Imp. No.	Contents	(ml)	Initial	Final	Net	
1	DENO	100	728-8	768.9	40.	
. 2	Derbro	11.	728-1	715.0	-13.1	
3			624-7	625.9	1.2	
4	36.	250	837-3	848.0	15.7	
5	رور	1000	0 0 0 0	0.70		,
6				 	439	/
	[otal	·			7	
<u>.</u>	- Crai		<u> </u>	<u> </u>		
Description	of Impinger C	atch: Cloud	y			

Plant: Travis AFB Sample Type: M5/202
Sampling Location: Caerenother Outlet Phar: 20.30
Run Number: L-M5-25-3Date: 6/11/02 CO2: 3-9
Pretest Leak Rate: .003 cfm @ /L in.Hg. Probe Length/Typ
Pretest Leak Check: Pitot: Orsat: Stack Diameter:

nple Type: M5/202 Operator: MB
Pbar: 30.30 Ps: -7
CO₂: 3-9 O₂: 15-5
Probe Length/Type: 2/216£5 Pitot#:
Stack Diameter: 4... As:

Nozzle ID: 205 Thermocouple #:
Assumed Bws: 4 Filter #:
Meter Box #: 7 X: 1.001 AH@: 1.775
Post-Test Leak Rate: .007 cfm @ 10 in.Hg.
Post-Test Leak Check: Pitot: Orsat:

					T	ACT PE	6.819	<u>ا</u>	; \ S	340,2	,	55	מל									
Pump	(in. Hg))S	3	7	2	2	9	7	8	80	0	6	9				,					
Dry Gas Meter Temp. Tm	Outlet		66	100	901	001	101	10)	ē	701	201	201	701	193								7
Dry Gas Met	Inlet		001	103	701	801	110	01/	2	011	011	01/	011	110				7				Tm = 105 "
1	Temp. °F		76	65	58	55	55	54	55	56	rë	500	59	09								
fure °F	Filter		157	258	162	252	757	252	253	h67	131	282	255	253							<u> </u>	
Temperature °F	Probe		147	253	1254	255	253	254	754	256	754	254	253	253								7
Stack	Temp (Ts)		551	556	556			999	560	557	558	626	557	555							•	Ts=57
ν	Actual		2.7	2.7	6.2	2.9	2.9	2.7	2.9	2.7	7.2	2,9	2.9	6.2								JAH = 7.700
[م	Desired		2.68	2.69	2.68	2,68	7.69	7.68	2,68	2.69	2.69	2.69	2.69	2.90								Inth
Velocity	Head		0.2	2,0	2.0	2,0	7.0	2,0	2.0	2,0	2.0	2.0	2.0	2.0								141/14 = dVV
Gas Meter	Reading	647.058	652.48	656.55	87.199	665.52	670.14	615.65	619,18	684.37	688.69	693.41	698.45	102,311							/	N
Clock		1530	1535	040	1546	1550	1555	0091	1605	0)91	5/9/	0291	1625	_								ΔVm= 55,163
Sampling	Time	0	5	10	15	70	25	90	35	95	45	20	.65					•				₫
Traverse Point	Number																					

~

Plant 7	Trais A	FB		Run No. <u>7</u> -	5-25-3	
Date 6/	11/02	Sample Box No.	53-5	Job No. 30	7174,0003,000	
Sample Lo	ocation Gen	embr #1 -	25%	Filter No. 🙎	30303	
Train Prep	arer D.A					
Sample Re	covery Person	DA	<u>.</u>			
	3			· · · · · · · · · · · · · · · · · · ·		
Front Half	•					
Acetone		Liquid	•			
Container	No	Level Marked	Sealed_			
Filter		•				
Container	No		Sealed _	· ·		
D	The T	lake				
Description	n or Fliter	190-				
Samples S	tored and Locke	ed				
Dampics O	Olca ma Pock	AI				
Back Half/	Moisture					
Liquid Lev	el Marked		Sealed _			
T 3T.	Comment	Initial Vol		Weight (gra	ms)	
Imp. No.	Contents	(ml)	Initial	Final	Net	
1	DFHO	100	724.5	783.6	59.1	
- 2	17	7	735-3	707.2	-18.	
3			630.8	633.5	2.7	
4	5.6-	250	823.7	837.4	13/7	
5						
6	,					
	l Total				474 -	_
•		<u> </u>		<u> </u>		
Description	of Impinger C	atch: <u>Lova</u>	ls.			
- oong	· · · · · · · · · · · · · · · · · · ·		/			
			7			

Plant:	Travis	AFB	Outlet	D	ate:	112/02	
Sampling	Location: _4	Denomber	Cutlet	C	lock Time: _	0825	
Run#:	50%	Load		Operators: .	PP. 176		
Barometr.	ic Pressure, ir	ı.Hg: _ <i>_30.</i>	30 5	Static Pressi	rre, in. H_2O :	4 88	
Moisture,	%: <u>4</u>	Molec	ular wt., Dry: _	Pi	tot Tube, Cp:	0,77	
Stack Din	nension, in. D	iameter or S	ide 1:3	<i>y</i>	Side 2:		
Wet Bulb	, °F:		_ Dry Bulb, °F:	:			
Pitot#_		Thern	ocouple #				1
Traverse		············				(000 mm	·)
1	Velocity		$Md = (0.44 \times \%)$	CO_2 +(0.	$32 \times \% \cup 2 $ $)+$	(0.28 × % F	12)
Point	Head	Stack	,	\	1 /	1	
Number		Temp, °F	$Md = (0.44 \times$)+(0.32×)+(0.28×)	2.0
1	6.3	620	Md =	٠ ١	(~ ~ ~)	Static	d-2
2	6.6	422	$M_8 = Md \times 1$	% H ₂ U }+	18 (% H 2 U)		
3.	6.9	424	$Md = (0.44 \times Md = 0.44 \times Md $	100)	100		
	6.9	621	, ,	(()		
2	有7,0	624	$Ms = ($ $) \times$	$[1-\frac{100}{100}]$	$+18[\frac{100}{100}]$		
3	6.9	623	3.7	(100)	(100)	بر	p= 2.604
1			$Ms = Ts = Ps = Pb + \frac{S.P.}{13.6}$			۵۱ درست (د.	-631 F
	6.9	627	Ts=	*F =	*R (*F + 4	60)	= 29,24
2	6.9	629	S.P.	. ,	\	Ms	= 28.79
3	6.6	630	$Ps = Pb + \frac{136}{136}$	·= (13.6	fs	= 30-17
1	6.7			• स.		,	V5 = 24/,
2	6.8	1034	Ps =	m. ng	Sta	stic=	1.8"
3	6.8	635					icfu= 70
		633	$\sqrt{\Delta P} =$				Isef = 3
	7,56,6	633	$Vs = 85.49 \times Cp$	/12	$Ts(^{\circ}R)$	*	
2	6.7	1 12 20	$Vs = 85.49 \times Cp$	X V DP X V	$\overline{Ps \times Ms}$		
3	0.5	624		,			
1	6.9	634	$Vs = 85.49 \times ($)×	()×	· 1	
2	7.1	634	Vs =			Ą	
3	7.1	633	5				NAIP= 7
			As =	ft^2	Static =	-2,0	WAT
			$Qs = Vs \times As \times$	60 s/m	710000		Ts=6
	<u> </u>	<u> </u>	<u>}</u>				Mid= 2
			Q s =	×	×60		N 28
		ļ	Qs=	acfm			Vs = 24
	<u> </u>						6
	$\sqrt{\Delta I}$	-Ts=] Q s =	dscfm			Refin= 7
	<u> </u>		7				d. 64. =

FIELD DATA SHEET

Sample Type: M5/201 Operator: 46

Pbar: 30,3 Ps: 2,3 "

CO₂: 4 O₂: 15

Probe Length/Type: 2 Copring Probe Length/Type: 4" As:

SO% | Oach Ll. 7

Nozzle ID: 2.128 Thermocouple #:

Assumed Bws: 4 Filter #: 8.20 ZV Z

Meter Box #: 7 Y: 1.00 Ll AH@: 6.725

Post-Test Leak Rate: 904 cfm 6 5 in.Hg.

Post-Test Leak Check: Pitot: Orsat:

					Acti		2411	7 1	1201	336.4		Lso	de de									_
Pump	(in. Hg)		/	/	_	1		3	3			8	5	9								
Dry Gas Meter Temp. Tm	Outlet		58	58	58	59	9	19	27	h9	65	61	60	69	:							12
Dry Gas Met	Inlet		54	୧୭	79	65	67	69	(۵)	13	194	16	17.	78								Tm = 66 L
Imbinaer	Temp. °F		9,5	43	43	46	44	49	50	51	52	53	53	₽4								
ure °F	Filter		252	582	253	250	h 57	282	187	162	1250	283	157	255								
Тетрегаture °F	Probe		152	262	263	263	253	253	252	782	252	251	254	250								5
Stack	Temp (Ts)		L99	619	819	729	h29					817	619	727								Ts = 6
Ч	Actual		h:/	1.4	1.4	h'1	1.4	1.4	1,4	7.	1.4	1.4	h:/	h'J	-							7 4.1
	Destred		41	1.39	1.39	1.39	1.39	14.1	17.1	<u>4.</u>	1.43	24.1	74.1	73,1								9 IVAH =
Velocity	Head		2.1	1,2	2,1	2,1	2.1	2.1	2,1	2(2.1	1.2	2.1	2.1								JAP = 1.449
Gas Meter	Reading	704.000	707.89	710.37	713.86	716,73	720.15	723.36	126.33	19'626	732.79	935.94	739.23	742.179								Vm= 38179/
Clock	e III	A 77.65	-	├		155	800	808	810	218	820	828	830	835								4Vm=_
Samoling	Time	0		5	15	2.0	25	30	36	94	45	50	55									
Traverse	Point Number																					

Plant 1	ravis A	FB		Run No T	M5-50-1
Date 6/	12/02	Sample Box No.	50-2	Joh No. 3	0174.0003.002
Sample Lo	ocation Gen.	1 - 50%		Filter No.	8-30247
Train Pret	arer 7	A	•		
Sample Re	covery Person	SA		· · · · · · · · · · · · · · · · · · ·	,
Comment	S	M5/2	or frin		
Front Half					
Acetone	•	Liquid			
Container		Level Marked _	Sealed		
	•				
Filter					
Container	No		Sealed_		
Description	n of Filter B/B	uk	Mark and a second		
Samples S	tored and Locke	d	····		
Back Half/ Container	Moisture No				
Liquid Lev	el Marked		Sealed_		
T NT	0	Initial Vol		Weight (gra	ms)
Imp. No.	Contents	(ml)	Initial	Final	Net
1	Stho	100	720.6	767.5	46.9
. 2	11	1/.	-735.7	714-8	-20-9
3			636.2	638-0	1.8
4	56.	250	895-3	908,1	12-8
5	307			1100	
6					
]	otal				40-6
Description	of Impinger Ca	tch: <u>Cloud</u>	ly		

FIELD DATA SHEET

Plant: Travis AFB Sample Ty Sample Ty Sampling Location: Generaby Outlet Pbs Run Number: 1-MB-50-1. Date: 6-12-02 CO Pretest Leak Rate: 012 cfm @ 10. in.Hg. Pro Pretest Leak Check: Pitot: _____ Orsat: _____ Sta

Sample Type: 105/202 Operator: 105/202

Pbar: 30.63 Ps. 2-7

CO₂: 65 O₂: 1977

Probe Length/Type: 29/15 Pitot#:
Stack Diameter: 411

Stack Diameter: 411

Stack Diameter: 411

Nozzle ID: .| 18 Thermocouple #:
Assumed Bws: 42 Filter #: PC628

Meter Box #: 1 Y: L(101 AH@: L.116

Post-Test Leak Rate: , \$00.2 cfm @ 8 in.Hg.

Post-Test Leak Check: Pitot: Orsat:

;			" Joh	4 1 2	120.1		45ch	333.7	•	W.		8											1
Pump	(in. Hg)		7	3	3	_			S	Q	7	<u>-</u>	8	Ø									
Dry Gas Meter Temp. Tm	Outlet		73	73	94	74	52	96	26	10	49	98	49	ŋq									100
	Inlet		74	47	80	∞	28	82	83	84	<i>&</i> 5	85	98	88									Tm=
Imornoer	Temp. °F		9	54	SB	58	57	58	51	58	58.	29	59	59								<u>.</u>	
ure º F	Filter		239	(97	253	255	756	258	252	787	256	hsZ	157	252							-		
Temperature ° F	Probe		122	253	252	253	724	253	1	293	75rd	767	767	252									22
Stack	Temp (Ts)		673	759	(32	632	(3)	632	632	634	28	638	0/19	676									Ts = 63
HΑ	Actual		1.4	7.7	ا,را	1,4	١,4	١.6	1,4	h'l	p'	かり	ה' - -	þ'/	•				-				7/1/=
٥	Desired		1.42	1.41	25.1	241	2p'	1.42	2611	1.42	1,42	1,42	7,47	1:40									9 NH =
Velocity	Head		2.1	2,1	2,1	2.	2.1	1.2) 7	2.1	2.1	7,7	7.1	2.1									PHY = 90
Gas Meter	Reading	747.552	71. 7元	150.43	953.22	09'554	18.85	18. 292	765.90	769.39	771.99.	775.25	478.46	781.679									Vm=39.127
Clock	e H	0820	0855	0060		0410	6415	0750	6750	0690	2560	Ohbo	ShbU	0450									
Sampling	Time	0	_		15									9									
Traverse	Point Number																						

Date 6/, Sample Lo Train Prep Sample Re	cation Gen arer VA		- / 	Job No. 30	-5-50-2 0174,0003.002 0C028
Front Half Acetone Container		Liquid Level Marked	Sealed		
Filter	No	•			
	of Filter				
Back Half/		ed			į.
			Sealed	7.	.782.4
T . NY.	~	Initial Vol		Weight (gray	
Imp. No.	Contents	(mI)	Initial	Final 🗷	Net
1	Deno	(00	7247	7874	57-7
- 2	11	100:	731.9	701.6	-30,3
3			6 26.2	625.1	-1.1
4	>6.	250	845.9	861.8	1519
5					
6					
7	otal				422 4
Description	of Impinger C	atch: Clo	d		

FIELD DATA SHEET

7.7.

50% boad

Plant: Travis AFB Sample Sample Sampling Location: Cardarate Outlet PRun Number: L-M5-50-3 Date: 6-12-02 CPretest Leak Rate: 005 cfm @ 10 in.Hg. Pretest Leak Check: Pitot: ___Orsat: ___ Sample Sampl

Sample Type: M5/202 Operator: Avlt.

Phar: 20.03 Ps: 2.7 CO₂: 65 O₂: 14

Probe Length/Type: 2'4/45.5 Pitot#: Stack Diameter: 4' As:

					4	25	720.3		dschu	334.1	-		24	8	<u>`</u>			 	·		T	· 		·····•	
Pump	(in. Hg)		1	,	3	2	3	¢	7	4	S	2	8	9											
Dry Gas Meter Temp. Tm	Outlet		81	Ø	81	81	8	∞ 	92	<u>∞</u>	8	80	80	8											2
Dry Gas Met	Inlet		28	Sg		8.1	88	87	86	86	88	85	98	85						 ٠.					7m = 00
Impander	Temp. °F		63	63	63	19	09	59	.59	58	58	59	59.	9											
ture °F	Filter		74n	47	250	282	251	254	254	1251	h52	787	162	152							-	-			\
Temperature °F	Probe		249	250	252	167	253	254	2.93	757	752	psz	784	253										_	6376
Stack	Temp (Ts)		b£9	929	635	635	636	638	637	629	929	979	629	633											Ts = 6
HΔ	Actual		h'l	h^1	h'1	h'1	h'1	1.4	1,4	h'/	<i>ħ'l</i>	7,	<u>5</u> .	1.4											+++
٥	Desired		24.1	1.43	143	1,43	1,43	1.43	. 1,43	1,44	h <i>b'1</i>	1.44	1.40	1.43									1		
Velocity	Head		2.1	2,1	7.7	2.1	2.1	2,1	2.1	2.1	7.1	7.7	2.1	2.1											1-1- dy
Gas Meter	Reading	182.065	185.56	788,75	792.27	195.37	199.01	902.22	965,69	908 9D	912.22	819.40	818.68	821.726											39. 66/
Clock	пте	5001			Ī	6201	0201	5801	0001	5,007			0/1/	20m											_= mVa
Sampling	Time	0	5						35	0%				09											
Traverse	Point Number																								

Date 6// Sample Lo Train Prep Sample Re	parer DA ecovery Person	Sample Box No.	<u>'</u>	Job No	5-50-3 30174-003-002 830304
Front Half Acetone		Liquid Level Marked _			,
Filter Container	No		Sealed _		
Samples Si	tored and Locke	ed			<u>*</u> -
Imp. No.	Contents	Initial Vol (ml)	Initial	Weight (gra	
1	DINO	100	7/6.6	789.9	
. 2	1	"	717.3	671.9	
3		 	623-1	623.1	0-0
4	50.	250	8437	856.7	13.0
5			0//		
6					
3	otal				40.9

Description of Impinger Catch:

Environmental Quality Management, Inc.

94535

GAS VELOCITY AND VOLUMETRIC FLOW RATE

	Dlont.	Travis	AFB		D	Date:
	Flant.	Location:	Ben of the	· dutlet		Clock Time: /2/0
	Samping.	م سے ہم	1	<i>j</i>	Operators:	RU/16
	Run#:	- Dunggung in	Uai	20 20	Static Press	arre, in HoO: - Zve
•	Baromeur	c Pressure, in	.mge	alor out Dry	P	itot Tube, Cp: 0-99
	Moisture,	%:	MUIUL	ide 1. 3	,	itot Tube, Cp: <u>0-99</u> Side 2:
	Stack Din	ersion, m. D.	Mineter of 2	_ Dry Bulb, °F	7.	
	Wet Bulb,	. F:	77%	Dry Dillo, locouple #		
	Pitot #		inern			
		la variation		1202-1000	* co-)+(0	$(32 \times \% O_2) + (0.28 \times \% N_2)$
	E .	Velocity	01-	$\mathbf{M} \mathbf{u} = (0.44 \times 1)$	<i>lu</i> CO2)	Bank word (cine of the new party)
	Point	Head	Stack	10.44.	1.10224	14 (028 ×)
a	Number		Temp, F	$Md = (0.44 \times $)+ (0.32 X)+(0.28×)
@ 1210		7,6	732	Md = `	<i>a</i> , <u>u</u> 0)	$-18\left(\frac{\% \text{ H}_20}{100}\right) = 3.0$
INO	2	8./	731	$Ms = Md \times 1$	$-\frac{70 \Pi_2 0}{100} +$	$-18 \frac{\sqrt{1120}}{100} - 20$
	<u> </u>	8.4] (100 /	(100)
		8.0	737	Ms = ()	(.)	. 19()
	2	8.4	738	Ms = ($\times \left(1 - \frac{1}{100}\right)$	$+18(\overline{100})$
- :	3	8,5	739	Ms =	(•
<u> </u>	t	7.3	738	d		en (en . 400)
e	2	7.7	738	Ts =	"F =	*R(*F+460)
@ (33°	3	8.2	742	S.I	2. /	\
• •	(7.7	738	$\int Ps = Pb + \frac{1}{13}$	- =(J+ 13.6 Q
	2	7.9	740]		15 =
	3	82	740] Ps =	in. Hg)+ 13.6 /s = - 2.5 "
				7		- 27/
	-			$\sqrt{\Delta P} =$		·
	1	7.8	745	1		$Ts(^{\circ}R)$
	2	7.9	747	$V_S = 85.49 \times C$	$p \times \sqrt{\Delta P} \times \sqrt{\Delta P}$	V Psy Ms
	3	8.1	748			
	,	7.7	743	$V_{S} = 85.49 \times ($ $V_{S} =$)>	×()× ₃
	2	7.5	744].,	£.2	V
	3	7.8	743		j.	025"
				As =	ft^2	$R_{S} = -2.5^{\text{n}}$
				$Q_{s} = V_{s} \times A_{s}$		
				Qs=	×	×60
				-Qs =	acfm	
				$-Q_s =$	dscfm	
		√∆≀	Ts=	٦,,		

75% load

Pretest Leak Rate: ,003 cfm @ 10 in.Hg. Run Number: T-M5-15-1 Date: 46/12/02 Orsat: Sampling Location: Generally Outlet Pretest Leak Check: Pitot: Plant: Travis AFB

Operator; Probe Length/Type: 2 Stack Diameter: 4" Sample Type: M5/202 Pbar: 30.3 CO₂: 4.78

Meter Box #: 7

4H@: 1.715 Nozzle ID: 194 Thermocouple #: 54-7 Post-Test Leak Rate: 004 cfm @ 10_in.Hg. Orsat: Assumed Bws: 4% Filter #: 830224 Y: 1604 Post-Test Leak Check: Pitot: __

					act~	6758		ost-	3593		750	hos	_		•	 ·	•							·
Pump	(in. Hg)		,	7	2	3	2	Ŋ	Š	9	7	90	Ø	9										
Dry Gas Meter Temp. Tm	Outlet		78	18	78	48	28	48	18	मेव	14	64	79	79										7
Dry Gas Met	Inlet		18	8	83	Вп	86	85	95	82	පුව	B	85	85						٠				Tm = 3
Tan special	Temp. °F		5 4	54	25	50	20	50	50	50	51	51	52	53					٠		٠			
ture °F	Filter		243	253	2 84	256	254	787	6 92	253	767	787	253	253									-	ζ
Temperature ° F	Probe		242	252	251	754	79H	252	255	255	253	757	254	253										135/
Stack	Temp (Ts)		916	714	726	736	139	737	739	146	076	73.5	734	138										Ts= 7
ΑН	Actual		1.1	1.9	1.9	1.7	1.9	1.7	ا'را	L'I	1.7	1.7	1.7	14										7
4	Desired		1.72	1.72	(.10	1.69	1.69	b9 ³ J	1.69	1.69	697	07.1	1.70	1.69										A.H.
Velocity	Head		2.72	742	282	262	7112	262	27.2	725	262	27.2	2.9.2	292							-			10 = 11649T
Gas Meter	Reading	822.039	826.12	829.64	832.92	836.51	840.36	843.66	847.00	850.52	854.26	857.87	42.298	254.759					,					1=47,001,14= NA
Clock	line	1120	1/25	1130	1135	1140	145	22	11.35	1200	12.05	0/2/	9121	1720										h=mV2
Sampling	Time	0	ß	9	Š							1												7
Traverse	Point																							

Date b// Sample La	Cavil AF 12/02 ocation Gen- parer DA	Sample Box No.	58· 2 10	Filter No. &	-5-75-1 0174.003.002 30 224
Sample Re	ecovery Person s	DA			
Commend	5				•
Front Half					
Acetone		Liquid			1
Container	No	Level Marked	Sealed _		
Filter					
Container	No		Sealed _		
Descriptio	n of Filter	lah			
Samples S	tored and Locke	ed			
Back Half					
Container :	No				
Liquid Lev	vel Marked		Sealed		
× 37		Initial Vol		Weight (gra	ms)
Imp. No.	Contents	(ml)	Initial	Final	Net
1	DI HO	1 00	714.7	784-1	69,4
- 2	0	(00.	736.0	711-9	-244
3		_	635.3	636.6	1-3
4	SG.	250	908-1	1918.5	10.4
5					
6					
	Total				56.7
Descrintion	n of Impinger C	atch: Cland	M		

CO2: Pretest Leak Rate: 12.00 cfm @ 12/in. Hg. Pretest Leak Check: Pitot: 13/10 Orsat: 14/14 Sampling Location: General Run Number: 7-16-75-1 Date: 6 AFB 1/ours

Plant:

Probe Length/Type: 1.66 Pitot#: 1/19 Sample Type: 145/262 Operator: 16 Stack Diameter:

Meter Box #: 7 Y: /ao/ AH@:/775

Post-Test Leak Rate: .004 cfm @ 12 in.Hg.
Post-Test Leak Check: Pi'ot: AIA Orsat: AIA Nozzle ID: @ / 78 Thermocouple #: Su-7
Assumed Bws: 44 Filter #: PCO27
Meter Box #: 7 Y: 180/ AH@: / 775

				7	adr	255.2		The for	2	8658	2	Ċ	£20	9	<i>\</i> ,						
Pump	(in. Hg)		W	3	4	BSA	h	e	7	00	0	Ø	111	. 21							
er Temp. Tm	Outlet		28	28	78	78/	Þ	66	29	<i>5C</i>	48	08	08	18							7
Dry Gas Meter Temp. Tm	Inlet		28	80	83	84	85	86	86	28	28	28	18	<i>18</i>	·						<u>Tm = _8</u>
Imninger	Temp. °F		19	5,5	57	В	55	55	55	55	55	57	57	09							
ure °F	Filter		248	548	152	183	852	254	255	253	249	156	251	254							
Temperature °F	Probe		340	253	253	253	255	757	253	150	253	150	321	657							375
Stack	Temp (Ts)		436	734	737	737	733	734	737		/ክረ	JhL	745	984							$T_s = 7$
1	Actual		02%	1.70	1.7	(,7	1.7	1.7	1.7	27	1.7	1.7	107	17	1						717
Ηα	Destred		89%	1.68	897	1.68	1.69	1.69	897	39%	69./	891/	90]/	69.1							= H\sqrt{2}
Velocity	Head		2.76	2,71	17.2	11:2	17.2	2.71	7.7	ンプ	7,78	てら	7:7	2.7					-		120 = 1.6 4SH
Gas Meter	Reading	168 798	868.4	20.218	181518	879.17	882,9	886,2		993. C	_	900,6	405.44	907.740							1 2 948 J H= MV
Clock		727		ļ .				_	4181	1317	(31)	1327	1332	1337							η= m^2
Sampling	Time	0	S	10		or	52	30	35	Ş	χ,	20	55	(Po)							7
Traverse	Number																				

Plant /	Tavo A	FD		Run No	- 5-75-2
Date 6/1	1/02	Sample Box No.	50-1	Job No. 3 6	174,000 3,00 6
Sample La	ocation Gen	- 41 - 75	7/5	Filter No. P	6027
Train Pren	arer DA		*		
Sample Re	ecovery Person	DA			
Comments	S	· · · · · · · · · · · · · · · · · · ·			
			*		
Front Half	•		and the same		
Acetone		Liquid			
	No.	Level Marked	Sealed		
Filter		•			
	No		Sealed		
		4			
Description	n of Filter 🔏 🖟	wi			
	_		:		
Samples St	tored and Locks	db			
Back Half/					
Container 1	No				
~··			01 - 4		
Liquid Lev	el Marked		Sealed		
		T	1	XX7.1.1.4./	
Imp. No.	Contents	Initial Vol		Weight (gran	
		(ml)	Initial	Final	Net
1	D# H2 0	100	725.2	765-8	40.6
. 2	1/	100.	7280	7220	-1,0
3			625-0	625,6	0.6
4	>6-	250	861.8	872.1	10.3
5	- 0-		\$		
6					
	rotal			·	60.50
		<u> </u>		<u> </u>	
Description	of Impinger C	atch: (O -	b		
	or miniment C				

75% load 6.5

Sample Type: 15/202 Pbar: 30.30 Run Number: 7-415-75-3 Date: 6/12/07 Pretest Leak Rate: 004 ofm @ 10 in.Hg. Sampling Location: Carralar Caller

Plant: Irawis AFB

Pretest Leak Check: Pitot: 1/14_Orsat: 4/14

CO₂: 47 6 O₂: 18 17

Probe Length/Type: 2,6165 Pitot#: 1/14 Operator: Ault Ps: _____ S.S _ As: _ Stack Diameter: 4

Nozzle ID: 198 Thermocouple #:
Assumed Bws: 47 Filter #:
Meter Box #: 7 Y: 1.001 AH@: 1.715 Post-Test Leak Rate: .001/2 cfm @ 10_ in.Hg. Orsat: Post-Test Leak Check: Pitot:

		•	a Chi	1858		Sich	757		6,	, , , ,	101										
Pump	(in. Hg)			د	7	4	t	2	4	5	ထ	80	80	9							
Dry Gas Meter Temp. Tm	Outlet		80	20	'n	82	78	82	8	ಜ	83	₽	28	84							7
Dry Gas Me	Inlet		<u></u>	85	so So	2	90	16	91	41	- 16	41	26	9j							198 = mI
Imninger	Temp. 'F		65	28		55	55	58	56	56	57	ಶಿಗ	દર	58							
ture °F	Filter		235	25/	253	236	252	255	797	254	256	252	253	255							
Temperature °F	Probe		210	757	252	754	253	ትይፖ	283	724	253	h \$Z	72 d	452				ŝ			7
Stack	Temp (Ts)		151	246	745	745	7.41	943	4hb	146	946	bhb	246	1 2 7							Ts=71
НΔ	Actual		1.7	1.7	1.7	-L7	L'I	UU	l'l	L''	L'I	L'I	[6]	6")							7
[4	Desired		1.65	597	1,65	. 894	991	894	891	1,69	89.1	897	1.69	1,69							= HV SH
Velocity	Head		2,7	27	2.7	2.7	2.7	2.9	7.7	2.7	7.5	2.7	2.7	2'تا							ग्रिक = प्रक्री
Gas Meter	Reading	909.979	5116	ηl'h/b	919.00	422.69	426.04	929.78	9.33.45	937.09	940,80	00 546	348.13	951.001							3.00
Clock	aEur	1350	1355	00 h/	M05	01 11		┡	M 25	+		on n		14 50							4Vm=4 3.022
Sampling	Time	0	5		15				35	40	577	S	55	07							
Traverse	Point																				

	<u> </u>	G Ď			
Plant	ravis A	P 13		Run No/	5-75-3
Date_6//	2/02	Sample Box No.	<u> 58 - 5</u>	Job No3	8>0243
Sample Lo	ocation Gen.	#1 -75%	<u></u>	Filter No	850243
Train Prep	arer	DA DA	•.		
Sample Re	covery Person	DA			
	3				
•					
Front Half	•				
Acetone		Liquid			
Container	No	Level Marked _	Sealed _		
Filter					
Container :	No		Sealed _		
					•
Description	n of Filt e r				
					·
Samples S	tored and Locks	ad			
T) 1 TT 10	ner e .				
Back Half					
Container	No		<u> </u>		
Timmid Tow	na I Mamlea d		belne?		
rading rev	CI IVISITACU		Statet		
	1	T	1	Weight (gra	ime)
Imp. No.	Contents	Initial Vol	7 1		
<u> </u>		(ml)	Initial	Final	Net
1	DIHO	100	1717.0	7580	41.0
. 2	. 1	100	719.4	722.4	7.0
3			623.3	623.1	-0,2
4	SG.	250	876.0	89414	18.4
5	-0,		0.0		
6					
] D 1				62.2
·	l Total		<u> </u>	<u> </u>	66.6
Description	of Impinger C	atch:		· · · · · · · · · · · · · · · · · · ·	

Environmental Quality Management, Inc.

GAS VELOCITY AND VOLUMETRIC FLOW RATE

	Plant	Tranis	AFE	Date: 6/13/62
	Sampling 1	Cocation:	Sucre to	Owtlet Clock Time: 0820
	Run #	199 %	land	Operators: PK/TE
	Rarometri	Dreceure in	Hg. 30	Static Pressure, in.H ₂ O: -2.5"
	Moisture	%· <	Molec	cular wt Dry: Pitot Tube, Cp: 0.99
	Stock Dim	encion in Di	ameter or S	cular wt., Dry: Pitot Tube, Cp:
	Wet Rulh	or.		Dry Bulb, °F:
	Pitot #	± •	Therm	nocouple #
	1 40t //			
1	Traverse	Velocity		
	Point	Head	Stack	
	Number	in.H ₂ O	Temp.°F	$\int M d = (0.44 \times) + (0.32 \times) + (0.28 \times)$
e	/	10.3	806	Md =
0820	2	10.2	800	$M_{S} = M_{d} \times \left(1 - \frac{\% H_{2} 0}{100}\right) + 18\left(\frac{\% H_{2} 0}{100}\right)$
•	3	10.5	798	$\int Ms = Ma \times (1 - \frac{100}{100}) + 10(\frac{100}{100})$
	1	10.5	799	$M_{S} = \left(\right) \times \left(1 - \frac{100}{100} \right) + 18 \left(\frac{1}{100} \right)$
	2	11,0	804	(250)
	3	11.0	811	Ms =
	1	10:1	815	$\overline{Ts} = $ °F = °R(°F + 460)
@	2	10.0		- 1.
	3	10.3	822	$P_{S} = Pb + \frac{S \cdot P}{12.6} = () + \frac{12.6}{12.6}$
9930	1		818	$P_{S} = Pb + \frac{S.P.}{13.6} = ($) + $\frac{13.6}{13.6}$ $P_{S} = Pb + \frac{S.P.}{13.6} = ($)
	2	10.3	818	
	3	10.5	825	7
				$\sqrt{\Delta P} =$
	,	10,3	822	
0	2	11.0	831	$Vs = 85.49 \times Cp \times \sqrt{\Delta P} \times \sqrt{\frac{Ts(^{\circ}R)}{Ps \times Ms}}$
@ 045	3	11.0	235	· · · · · · · · · · · · · · · · · · ·
777				
	1	10.5	2 25	73 - 05.47 ^(
	À	10.3	824	$- V_S = ft^2$
	3	10.2	828	$ As = ft^2 $
				$Q_{S} = V_{S} \times A_{S} \times 60 \text{ s/m} \qquad \text{Static} = -3.0^{\circ}$
				Os = acfm
		-/AE	=Ts=	Qs = dscfm
			1-19-	

FIELD DATA SHEET

Pretest Leak Rate: .005 cfm @ # in.Hg.
Pretest Leak Check: Pitot: 4/4 Orsat: 4/4 Run Number: 1-15-100-1 Date: 6/13/07 Sampling Location: Generaly Outlet Plant: Travis AFB

CO₂: 7 O₂: 11.5 Probe Length/Type: 14/15 Pitot#: 1/4 Operator: AND Ps: -2.5 Stack Diameter: 4" Sample Type: M\$202 Pbar: 30.4

As:

Post-Test Leak Rate: .006 cfm @ 5 in.Hg. Orsat: _ Post-Test Leak Check: Pitot: 100% load

					•	agr.	125		dsch	7722		22	8									
Pump	(m. Hg)		Q	0	Q	9	1	7	3	7	4	S		ഗ					-			
r Temp. Tm	Outlet		54	5 <i>\</i>	55	56	59	58	bS	61	29	h9	99	61								7
Dry Gas Meter Temp. Tm	Inlet		54	રાષ્ટ્રિ	9	63	69	69	b 9	11	43.	ነ ተ	75	26								$\frac{T_m}{T_m} = 6$
Impinger	Temp. °F		94	4,6	50	25	25	53	55	54	88	55	55	99							•	-
ure °F	Filter		482	482	253	251	252	252	182	253	251	250	752	E \$2								
Temperature °F	Probe		254	253	252			292	292	252	282	252	252	282								7991
Stack	Temp (Ts)		ከ£b	185	194	86h	708	806	809	808	208	718	810	815								7.= 7
•	Actual		b :1	1.8	1.9	1.8	8.)	1.8	8. 8.	8.	8.7	á	1,8	8.1								4,0
H¤	Desired		1.89	1.82	1.81	1.82	1.81	1.81	18'1	1.82	1.83	1.83	1.84	(.83							•	HV PS
Velocity	Head		3.7	3.2	3.2	3.2	2.5	3.2	2.5	2.2	3.2	3.2	3.2	2.5								1. J. 889
Gas Meter	Reading	951.499	958.46	959.18	962.57	24.996	97003	913.32	497.24	480.64	484,35	987.90	991.37	994.984								1/2×h,
Clock	7111116	0730	0735	0460		0360	0155 4	0 800		 	 		0 825	0 830	·							1284, 271- mV.
Sampling	Time	0		9	51	70	25					8		09								-
Traverse	Number																					

Train Prep	cation Gya. arer DA covery Person	Sample Box No.	<u> </u>	Filter NoS	30248
Front Half Acetone		Liquid	0.1.1	· ·	
Container	No	Level Marked _	Sealed	1.	
Filter Container			Sealed		
Description	o of Filter B	helk- Reo	d particles	f-o- ga	het Scalanth
	ored and Locke				
Back Half/ Container	Moisture No.				
Liquid Lev	el Marked		Sealed		
T \\ \tag{7}	0	Initial Vol		Weight (gra	ms)
Imp. No.	Contents	(mI)	Initial	Final	Net
1	DZ HO	100	723,5	787.4	63.9
- 2	'/	100.	737,7	718.7	719.0
3			632.2	6355	3.3
4.	Son	250	819-1	8363	55 7.2
5					
6					
_	l'otal			`	63,4
Description	of Impinger C	atch: Staht	rellon 1	iat	

FIELD DATA SHEET

Sample Type: #\$\frac{\text{18202}}{\text{30.4}} \text{Operator: } \frac{\text{AW}}{2.5} \text{CO}_2: \frac{7}{7} \text{O}_2: \frac{11.5}{11.5} \text{Probe Length/Type: 2'\text{4\text{4\text{4\text{6\text{1\text{6\text{1\text{7\text{1\text{6\text{1\text{6\text{1\text{7\text{1\text{6\text{1\text{6\text{1\text{7\text{1\text{6\text{1\text{6\text{1\text{6\text{1\text{6\text{1\text{6\text{1\text{6\text{1\text{6\text{1\text{6\text{1\text{6\text{1\text{6\text{1\text{6\text{1\text{6\text{1\text{6\text{1\text{6\text{1\text{2\text{1\text{6\text{1\text{6\text{1\text{6\text{1\text{6\text{1\text{2\text{1\text{6\text{1\text{6\text{1\text{6\text{1\text{6\text{1\text{1\text{6\text{1\text{6\text{1\text{1\text{1\text{6\text{1\text{6\text{1\text{1\text{6\text{1\text{6\text{1\text{6\text{1\text{6\text{1\text{1\text{6\text{1\text{6\text{1\text{6\text{1\text{6\text{1\text{1\text{6\text{1\text{6\text{1\text{1\text{6\text{1\text{6\text{1\text{1\text{1\text{6\text{1\text{1\text{1\text{1\text{1\text{1\text{1\text{1\text{1\text{1\text{1\text{1\text{1\text{1\text{1\text{1\text{2\text{1\text{2\text{1\tex{1\text{1\text{1\text{1\text{1\text{1\text{1\text{1\text{1\text{1\text{1\text{1\text{1\text{1\text{1\text{1\text{1\text{1\text{1\

| 100% | 100% | 5 \ \times | 100% | 1

;						مرا	5 }	6,500	()	7	<u>8</u>	3785		(7) \	86							1
Pump	(in. Hg)		7	w	2	4	S	S	9			5	10	11				<u></u>					
Dry Gas Meter Temp. Tm	Outlet		69	25	20	1	12	22	72	25	13	13	ባፋ	74					:				2/
Dry Gas Met	Inlet		B	74	16	18	18	18	19	79	19	, 8 0	80	18	, 					••			Tm =
	Temp. °F		54	63	91	88	51	28	59	23	63	65	64	67									
ture °P	Filter		Sh 7	251	155	251	255	254	253	252	254	754	75H	283									
Temperature °P	Probe		243	252	787	282	282	262	257	253	263	h97	524	255									101
Stack	Temp (Ts)		813	grif	817	815	910	8 15	812	208	803	h08	80A	801									17889/AH = 4-8 4/75= 810
Нν	Actual		1.80	087	1.8	. 87	8,)	8')	7.8	1.9	6.1	1.9	1.9	1.9									h 8-1=
ľ	Desired		1.83	1.84	1.83	1.84	1.84	1.84	1.85	1.81	1.87	1.84	1.99	98.4								,	SEAVAH =
Velocity	Head		3.2	3.2	3.2	3.2	3.2	3.2	3.5	3.2	3,2	3.2	3.2	3.2									17 = dD
Gas Meter	Reading	995.111	944.26	1002.15	1066.00	1609,4 th	1613.39	10.9101	0920 1620.63	7475 1024.42	1027,01	1032.3 3	1035.60	7 19 8 801									4Vm=43.53/
Clock	Time	1845	06.90	ı			0,410	0415	0260	9750	0250		rates	1945							ļ		
Sampling	Time	0		Q	9/	20	25		×	037	69	20	55	3									
Traverse	Point	IAGIIIDAI																					

Date V/ Sample Lo Train Prep Sample Re	parer DA ecovery Person	Sample Box No.	20%	Job No Filter No	7-5-100-2 0174-003-00-7 PCO15
Front Half Acetone Container		Liquid Level Marked	Sealed _		
Filter Container	No		Sealed_		
	n of Filter <u>Bla</u>	k d			
Back Half/				MA M	
			Sealed		
Imp. No.	Contents	Initial Vol		Weight (gra	
_ <u>-</u>	ļ	(ml)	Initial	Final	
1	DZ H2 0	100	729.2	801,1	71.9
- 2	1)	100	7738	705.8	-28.0
3			625.7	627-5	1-8
4	56,	250	872.1	883-6	11.5
5					
6					
י י	Cotal				57.20

Description of Impinger Catch: 5/3/4 Yellow + N+ in 1st Ing

FIELD DATA SHEET

Plant: TAVIS AFB Samp
Sampling Location: czeneratnc oxitlet
Run Number: 7-105-100-3 Date: 6-13-02
Pretest Leak Rate: 1004 cfm @ 10_ in.Hg.
Pretest Leak Check: Pitot: _____ Orsat: _____

Sample Type: 115,102. Operator: 41,02.
Phar: 30.4 Ps. 7.5 S
CO₂: 7 O₂: 11.5
Probe Length/Type: 2'atms. Pitot#:
Stack Diameter: 4" As:

	•	مرلي	\	9665	c	とかって	77.77	7.1.5	÷	ž	. •	<u>3</u> _							 	 ,	,		
Pump	vacuulii (in. Hg)					ð		S)		b	7	7	Ø	٦									
Dry Gas Meter Temp. Tm	Outlet		35	36	97	7	18	81	18	18	47	17	77	16							-		108
Dry Gas Met	Inlet		'n	080	83	85	86	85	78	83	દ	28	78	8 1									Tm = 5
1	Impinger Temp. °F		99	63	56	કર્ષ	53	54	Su	Sų	ટ્ય	52	-S	51							:		
ure ° F	Filter		700	h21	244	hSZ	252	157	257	25/	249	785	2.59	182									
Temperature ° F	Probe		223			152	282	282	253	252	254	282	292	797									7868
Stack	Temp (Ts)		818	833	836	835	839	840	839	831	837	832	824	830									$T_{S} =$
	Actual		1.9	8.)	<u>6,1</u>	<u>.</u>	1.8	1,8	9, 8,	1.8	9.1	8.1	6.1	8.1									~28T=HV
Η _Δ	Desired		1.85	1.83	1.83	1,84	(,83	1.83	1.93	1.83	1.83	1.84	1.85	1.83								,	5
Velocity	Head		2.5	3.2	3.2	3,2	3.2	32	2.5	3.2	3.2	3.2	3.2	3.5			ž						1-188
Gas Meter	Reading	1039.110	1043.19	1046.52	1050.44	18:2501	80'8501	1060.89	68'h901	1068.76	40.2401	1075.88	1099.39	1083.074								`	43,464 VA
Clock	Time	0001			1015		5701		1035														$\Delta V m = L$
Samuling	Time	•	5				25		35		45												
Traverse	Point Number																						

Plant 1	ravis A	FB		Rnn No. T	-5-100-3
Date 6/	13/02	Sample Box No.	58.2	Job No. 30	174.0003.002
Sample Lo	ocation Ger	Sample Box No.	-100%	Filter No.	830229
Train Prep	parer DA				
Sample Re	covery Person	20			
					ŧ
Front Half					
Acetone		Liquid			
Container	No	Level Marked _	Sealed		
Filter					
Container :	No		Sealed		
-	n of Filter <u>Blace</u>	a.le			
Description	n of Filter <u>Old</u>				
Samples St	tored and I ocke	ed			
Dampics O	COLCU AND LOCK	ли			
Back Half/	Moisture				
	No				
Liquid Lev	el Marked		Sealed		
Imp. No.	Contents	Initial Vol		Weight (gra	ms)
100.	Contents	(ml)	Initial	Final	Net
1	D\$ 4-0	100	715.0	781.5	66.5
. 2	1/	11	734.3	717-0	-17.3
. 3			1,36.3	636.4	0.1
4	56	250	901.4	920.2	18.8
5			1321		
6					
ŋ	Cotal		 		68.1
		1	<u> </u>		U 841 -

GAS VELOCITY AND VOLUMETRIC FLOW RATE

			NEB	•	Date:	13/02	
	Plant:	Travis	HIP	B Dullet	Clock Time;		
	Sampling l	Location:	generated	B Ortlet	ators: PU/T	6	
	Run #:			Opon	D in IT O		
	Barometric	Pressure, in.	Hg:	0.40 Stati	Ditot Tube Cn	0.99	
							•
	Stack Dim	ension, in. Di	iameter or S	ular wt., Dry: ide 1:	0100 2		
1180	Wet Bulb,	°F:	nend	_ Dry Build, F:		Co2 = 33	,
DP 125.1	Pitot#		Therm	ide 1:		or=16.7	
15" 4"				1 (0.44 # 00) ₂)+(0.32×%0 ₂)+	(028 × % N2)	
`	Traverse	A Process		$Md = (0.44 \times \%) \cup C$)2)+(0.32 × 70 O2)+	(0.20 × 10 21 2)	
	Point	Head	Stack	(6.4	(naa.), (nae.) //(2.	
	Number	in.H ₂ O	Temp, °F	$Md = (0.44 \times) + 1$	$(0.32 \times) + (0.28 \times)$	1 15= 101.	
@ 1140		1.5	435	Md = `	п и) (« H и)	Statiz = -0.75 acta = 530	5 ŝ
1140	2	1.4	435	$M_S = Md \times 1 - \frac{70}{3}$	$\frac{1}{100} + 18 \frac{101110}{100}$	Static -	
	3	1.3	434	1	00) (100)	acton = 530	
10%	l	1.25	1//	1 16	$-\frac{100}{100}$ + $18\left(\frac{100}{100}\right)$	15atur = 304	
/V /°	2	1,40	435	$Ms = () \times (1)$	$-\frac{100}{100}$ $+ \frac{100}{100}$	West 1	
	3	1.5	436	`` `Ma~	•	1,296	
				1713 -	•D (•E +	460) Ts = 504 Coz = 4.0 Or = 15.7 Static = -0.90 4.1% ectur = 603.4	
220	1	1.8	500	Ts = T	= K(r+	100) 15 00 1 100 = 4,0	
122	2	1.8	504	S.P.),	Pr. 15.7	_
01	3	1.10	505	$\frac{1}{1} Ps = Pb + \frac{13.6}{13.6} = 1$	13.6	Static = - 0.90	*
25%		1.5	504	n in	Hα	4.1%	
,	2_	18	505	PS =	11.5	acfus: 603.4	
	3_	1.6	504	 		1.1.	
			1,0/	$\sqrt{\Delta P} =$	[dsetm = 321.4	
@		5.0	636	$V_S = 85.49 \times Cp \times 3$	Ts(R)		
	2	2.1	636	$V_S = 85.49 \times C_P \times 1$	VAP X V PS X MS		11191
•	3_	2.2	634	4 ,	\'\	5.0 02 = 14.0 tic = -/204	1.47G
	1	2.3	433	$V_S = 85.49 \times ($)×()	×1 75.6	. 30
1.01	2	2.5	625	$-V_c = ft^2$	(0) =	6,0 02 = 14.0	
50%	2	2.0	6/4			tic= -1.20"	
110				As = ft'	_	7000	
1240				$-Qs = Vs \times As \times 60$	s/m Mossure	1.7%	
					′	115 = 139. Ce	
				Qs =	× × 60	1 / 130.8	
				Qs =	acfm	acron	
						1.7% US = 139.60 Acfm = 730.8 USC fm = 341.8	
	<u> </u>	√∆.	P =Ts=	Qs=	dscfm	(1)701	
		•					

Environmental Quality Management, Inc.

GAS VELOCITY AND VOLUMETRIC FLOW RATE

	Plant:	Travis	AF	-B Date: $6/(3/82)$
	Sampling I	ocation:	ć	Clock Time:
	Run #	Levere too	Ba	Met Operators: Nel-16
	-	T	TT '2	60 (10) Static Pressure in Ha()
	A / a interes 1	07. •	nafot <i>f</i>	mler put Dry Pilot 110c. CD: Vo 77
	Stack Lim	ension, in. Di	Billicies of 2	JAIC 1.
	Wet Bulb,	°F:		_ Dry Bulb, °F:
	Pitot #		Therm	Dry Bulb, °F:
A		•		•
9 310	Traverse	Velocity		$Md = (0.44 \times \% CO_2) + (0.32 \times \% O_2) + (0.28 \times \% N_2) = 6.0$
310	Point	Head	Stack	02 = /2.5
	Number	in.H ₂ O	Temp, °F	$Md = (0.44 \times) + (0.32 \times) + (0.28 \times)$
		2.5	780	$Md = (0.44 \times) + (0.32 \times) + (0.28 \times)$ $Md = \begin{pmatrix} 0.44 \times \\ Md = \end{pmatrix} + \begin{pmatrix} 0.44 \times \\ Md = \end{pmatrix} $
	2	2.6	709	$M_{\rm S} = M_{\rm d} \times \left 1 - \frac{\sqrt{1120}}{120} \right + 18 \left \frac{\sqrt{1120}}{1200} \right $
1.1	3	2.5	709	$V_{s} = /58.7$
75%		2.7	7/0	$M_{S} = () \times (1 - \frac{100}{100}) + 18(\frac{1}{100})$
10	2	2.7	7//	$Ms = (1 - \frac{1}{100}) + 10(\frac{100}{100})$ ds. f. = 358.2
	3	2,8	700	$M_{\rm S} =$
				$\frac{1}{Ts} = {}^{\circ}F = {}^{\circ}R({}^{\circ}F + 460)$
		3/	200	
		3.1	750	$Ps = Pb + \frac{S.P.}{13.6} = () + \frac{Co_2}{13.6} = \frac{7.0}{0_2} = \frac{7.0}{13.6} = \frac{7.9}{13.6}$ $O_2 = \frac{7.0}{13.6} = \frac{7.9}{13.6}
	2	3.7	750	13.6 13.6 1.5 Ts=755°F
1 . 4/	3	<u> ځيځ</u>	755	$Ps = \text{ in. Hg} \qquad \text{this} = -1/2 $
100%	2	3.0	759	S S N N N N N N N N N N N N N N N N N N
	2	34.2.8	765	
		3.2	7.65	$\sqrt{\Delta P} = \sqrt{78.8}$
				$Vs = 85.49 \times Cp \times \sqrt{\Delta P} \times \sqrt{\frac{Ts(R)}{Ps \times Ms}}$ $Vs = 85.49 \times () \times () \times () \times \sqrt{\frac{Ts(R)}{Ps \times Ms}}$ $Vs = 85.49 \times () \times () \times () \times \sqrt{\frac{Ts(R)}{Ps \times Ms}}$
				Ps × Ms 25ctm = 386
				
		 		
	-	 		$- V_S = ft^2$
			-	$As = ft^2$
				$Qs = Vs \times As \times 60 s/m$
				$Qs = \times \times 60$
				-Qs = acfm
		ļ	 	$Q_s = dscfm$
		√ Δ <i>I</i>	=Ts=	

Mertul eall Composite

FIELD DATA SHEET

Operator: A.G. Sample Type: Audier

Probe Length/Type: 2'6ess Pitot#: AJA 02: Stack Diameter: 4" Pbar: 30:30.

As:

Pretest Leak Check: Pitot: MR Orsat: MA

Pretest Leak Rate: 200 cfm @ 15 in.Hg. Run Number: 7-2011- Cary Date: 6/11/02

Sampling Location: Gueralo- Unflit

Plant: IRATS AFB

Meter Box #: 4 Y: (wt AH@: /6 60)
Post-Test Leak Rate: Qos5cfm @ 3 in.Hg. Post-Test Leak Check: Pitot: Orsat: Thermocouple #: --Filter #: JIM Assumed Bws: 4 Nozzle ID: 0.190

															By			4.				,			
Pump	(in. Hg)		,	/	_	,	,		~	/	7	Ŋ	9	2	4	7	h	ęj.	y	7)	4				
er Temp. Tm	Outlet		18	. 18	58	85	86	18	42	25	76,	23	25	46	44	11	23	20	40	64	lele				
Dry Gas Meter Temp. Tm	Inlet		85	86	88	76	43	96	92	92	56	86	36	00/	101	62	64	29	11	73	75				
Imprincer	Temp. 'F		50	20	85	bh	di	bt	89	23	28	(6/	61	29	29	05	Ah	1.66	46	64	48	82	·		
ire °F	Filter		250	250	502	750	847	252	588	563	250	250	250	250		278	542	257	252	245	253				
Temperature °F	Probe		741	240	242	250	250	250	152	253	350	952	842	150		250	252	250	250	250	549				
Stack	Temp (Ts)		86h	493	90	465	468	471	558	558	556	557	560	560	•	800	615	e16	613	1017	8/7				
**	Actual		02%	087	08:1	1.80	087	1.80	67	6%	1.9	6-1	67	6%		/.8	8%	18	1,8	811	8%				
Ησ	Desired		(.68	9.7	1.77	199	1.78	1.78	6%	67	6:1	67	1.9	1.9		87	87	817	8%	8/	87				
Velocity	Head.		(.73	1.73	1.73	1.73	1.93	1.13	2.0	2,0	2.0	2.0	2.0	2.0		2.1	2.1	ં.	77	٦٠/	7,6		•		
Gas Meter	Reading	845265		1000	665.3	1865. S	612,38	615.358	619.6	628.2	,	631.6	435.1	638,970	639.197	642.8	C46,5	650,8	654.2	657.5	661.322				
Clock	2	5180	02.90	7 5780		_	0240	0846	13/3		1323	1328	/333	1338	0520	_	0880	5680	0/80	0865	0830				
Sampling	Time	0	Ŋ	õ	15	8	25	30	35	ço Ço	ž	20	55	leo		es	70	75	80	85	90				
Traverse		10, 0) oppo	7	٤	3	J	9	1 7/52	7	~	3-	×	ۍ		-	7	r	3	٧	و				
	1	·				-	7	: 0	80	0/1	(a/5.100)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200	: \ \		11.60	ohild)	20%	Lead						

 $\sqrt{Vm} = \frac{9.238}{\sqrt{\Delta p}} = 1456 \text{ AH} = 1.896 \text{ Ts} = 594$

7m = 8/

FIELD DATA SHEET

Probe Length/Type: Stack Diameter: Sample Type: A CO2: _ Pretest Leak Check: Pitot: Orsat: Run Number: 7-cal-6-Date: 6 Plant: / Jrane Sampling Location: Pretest Leak Rate:

Operator:

Thermocouple #: Nozzle ID: , (10 Assumed Bws: 4
Meter Box #: 4

Orsat:
ck: Pitot:
Post-Test Leak Check:

Pump	(in He)	, G	1	2	9	4	٦	2												
r Temp. Tm	Outlet		22	75	2	75	75	76												
Dry Gas Meter Temp. Tm	Inlet		22	75	77	80	82	84								4] [E
Tmninger	Temp. °F		28	48	84	50	15	23	-					-			•			
ture °F	Filter		222	252	150	742	252	255												
Temperature °P	Probe		52	253	252	750	272	251												
Stack	Temp (Ts)		717	215	736		738													$\frac{T_S}{}$
¥ ₁ 4	Actual		2.1	۲٠/	2./	2.1	۵. ر	2.1											,	
Нδ	Desired		7.1	7.7	7.7	2.7	7.6	7.2												$\Delta H =$
Velocity	Head.		2.71	2.7/	2.7	2.7	A. 7	2.7												
Gas Meter		1061.322	• • •	669.3	674.0	677.6	681.6	685.333											•	$\sqrt{\Delta D_{\nu}}$
Clock		11.15		1/35		1146	1/50	55//												$\Delta Vm =$
Sampling	Time	90	96		501	110	115	(20												Q
Traverse Point	Number	0	1 /0	15 10 2	4 1	>	5	و												

Environmental Quality Management, Inc.

Plant	rauis A 11/02 cation <u>Ga</u>	FB Sample Box No.	HSR-3		7-00/1-Comp Bai 0174,0003.002
Date (Q)	cation Ga	Sample Box No.	HSR-3	Kill No	was .
Sample Loc Train Prepa Sample Rec Comments	cation <u>Ga</u>	sample box No.		ich No SE	3/7 <i>4/00</i> 03 002
Train Prepa Sample Rec Comments	erer		Pot	Filter No.	NA
Sample Rec Comments	#W	V/C		1 mm 110	
Comments	covery Person	KIL			
002220	botary i bison	Metho DOI	Composite		
	***************************************		:		
Front Half					
Acetone		Liquid			
Container N	Vo	Level Marked _	Sealed _		
•					
Filter					
Container N	√o		Sealed_		
The residual car	-£721				
Description	OF PULET				
Samples Str	ored and Locke	×d		••	
Samples Sa		AL			
Back Half/N	Moisture				•
Liquid Leve	el Marked		Sealed _		
	·	·			
Imp. No.	Contents	Initial Vol		Weight (gran	
тър. 110.	Combine	(ml)	Initial	Final	Net
1	DNPH.	180	714.1	774.2	60.1
- 2	BNPH	/80	724.9	741.5	ما ما ا
3	DN PH	/00	709.3	711.5	2.2
4	5/intel	250	845.5	865.6	20.1
5	1,,,,,,,,,				
6				· · ·	,
	otal	 	 	1	99.01
<u> </u>		·	<u> </u>	<u></u>	

EPA METHOD 30

VOLATILE ORGANIC SAMPLING TRAIN (VOST) SAMPLING DATA

Company: Trans AFB	City: <u>Fair Fiell</u> Ca Location: <u>Generator Butler</u>
Date: 6/102	Location: Our later Deter
Time:	Run #: 7-0020 - Coays
Meter #: <u> </u>	Y-Factor:
Barometric Pressure, in.Hg: 30.30	Operator: All
Ambient Temperature, °F: 85	Purge Time:
•	-

Vacuum Leak Check Data Initial, in Hg Final, in.Hg Time, min. Pre-test: Post-test:

	Clock	Meter		Dry Gas		
Sample	Time,	Volume,	Rotameter	Meter Temp.,	Vacuum,	Probe
Time (min)	(24-hr)	(liter)	Setting	La (°F) Out	(in.Hg)	Temp, °F
\mathcal{O}	0856	6/09,58	0.3	86 86	1	240
5	0901	6110.5	0.3	87 87	1	245
10	0906	6111.7	0.3	88 88	1	281
15	0911	6113.25	0.3	70 90	1	240
20	1815	4115.0		104 /03	1	240
25	1320	6116.2	0,3	64 104	. /	240
\$ 30	1325	10117.3	0,3	105 104	(242
	0753		0.3	60 60		240-
35	0758	41/8,4	0.3	60 60	1	240
9 40	0803	6119.4	0.3	61 61	.1	240
45	0808	6120.4	0-3	102 62	(240
50	0138	6121.6	4-3	83 82	ì	240
55	1143	6122.7	0.3	84 84	1	240
	Time (min) 5 10 15 20 25 70 35 40 45 50	Sample Time, Time (min) (24-hr) 0 0856 5 0901 /0 0906 // 0906 // 20 /8/5 25 /320 // 325 0753 35 0758 // 0808 50 0/38	Sample Time, Volume, Time (min) (24-hr) (liter) 0 0856 6/09.58 5 0901 6/10.5 10 0906 6/11.7 15 091/ 6/13.25 20 /3/5 6/15.0 25 /320 6/16.2 5 70 /325 6/17.3 0753 35 0758 6/18.4 9 40 0803 6/19.4 50 0/38 6/21.6	Sample Time, Volume, Rotameter Time (min) (24-hr) (liter) Setting **O 085% 6/09.5% 0.3 **S 0901 6/0.5 0.3 **Jo 090% 6/11.7 0.3 **Jo 091/ 6/13.25 0.3 **20 /8/5 6/15.0 0.3 **25 /329 6/16.2 0.3 **S 70 /325 6/17.3 0.3 **Jo 0803 6/18.4 0.3 **Jo 0803 6/19.4 0.3 **Jo 0808 6/20.4 0.3 **Jo 0808 6/20.4 0.3	Sample Time, Volume, Rotameter Meter Temp., Time (min) (24-hr) (liter) Setting L. (°F) Qut- 0 0856 6/09.53 0.3 86 86 5 0961 6/10.5 0.3 87 97 10 0906 6/11.7 2.3 88 88 15 0911 6/13.25 0.3 70 90 20 1815 4/15.0 0.3 /04 /03 25 /320 6/16.2 2.3 /04 /04 5 70 /325 6/17.3 0.3 /05 /04 0753 0.3 /05 /04 9 0803 6/19.4 0.3 60 60 9 0803 6/19.4 0.3 60 60 9 40 0803 6/19.4 0.3 60 60 9 40 0803 6/19.4 0.3 60 60 9 5 0808 6/20.4 0.3 83 82	Sample Time, (24-hr) (liter) Setting L. (°F) Out (in.Hg) **O 0856 6/09.53 0.3 86 86 / **S 0901 6/0.5 0.3 87 87 1 **Jo 0906 6/11.7 0.3 88 88 / **J4 0911 6/13.25 0.3 70 90 (**20 1815 6/14.0 0.3 /04 /03 1 **25 1/320 6/16.2 0.3 60 60 1 **35 0753 6/18, 4 0.3 60 60 1 **36 0863 6/120.4 0.3 60 60 1 **J5 0808 6/120.4 0.3 83 82 1

Nitrogen purge/activated carbon packing in sample holding container: $\frac{60}{193}$ $\frac{193}{193}$ $\frac{6123.82}{193}$ 0.3 85 84 $\frac{193}{193}$ $\frac{$

 V_{std}

TM 84

Environmental Quality Management, Inc

PAH

EPA METHOD 30 VOLATILE ORGANIC SAMPLING TRAIN (VOST) SAMPLING DATA

Company: Date:		: 30.30	- 	Lo Ru Y: Oj	ocation un #: -Facto perato	1 1/1	· Comp
		Vacun	ım Leak Cheo	ck Data			
	Initial, in.H		ıl, in.Hg	Time,	min.		
Pre-test:	25		25	. 7			
Post-test:						·	
			·	1 5 6			Γ
	Clock	Meter	7	Dry G		T /	Ducks
Sample	Time,	Volume,	Rotameter	Meter Te	- 1	Vacuum,	Probe
Time (min)	(24-hr)	(liter)	Setting	Bn (°F)		(in.Hg)	Temp, °F
0	0856	5117.08	0.3	1	82		, , , , , , , , , , , , , , , , , , , ,
5	0901	5/18.2	6.3		83	(
10	0906	519.4	0.3	89	84		
15	0911	5120.45		T	86		
20	1315	51220	0.3	109	101		
30	/325	5/23.1	0.3		03		
70	0753	2/23,0	0,7	7			
36	0758	5124.9	.0.3	62 9	59	1	
2 40	0803	5/25.8	0.3		60	1	
45	0808	5126.0	0.3		61	l	
30	1/38	5/28.3	0.3		82	1	
55	1143	5/29.2	Q.3	86	84	(
		arbon packing			iner:		
60	1148	arbon packing	0.3	88	85	1	
90	_	P. (in Hg)		00	•		
$V_{std} = V_{m}$ (lite	rs)× Y×17.64	$T_{\mathbf{m}}(^{\circ}\mathbf{R})$				•	

 V_{std}

13.50 AVM

TM 84

Company: Location: Project No:

Gound APB

Operator: D. A IIv-

Cal Gas Conc. Conc												Т				-								\neg
Post Test Run 1 Post Test Run 2 Post Test Run 2 Response		Comments	•																					
Direct Calibration	Post Test Run 3	Response		Time: //35/1/2/5			436		2,0		58.3						0.0			6.02	7.0.	6, 9		
Direct Calibration Post Test Run 1 Response Pom / % & Error ppm / % & WDrift % Blas Time: 71/5 Time: \$ 7-9 7 -1	Post Test Run 2	Response		Time: 1010-1050	0.(0.0		58.7		(5.0)	(44.4)			0.0			20.02	ø . 0-	[0.0]		
Direct Calibration Response ppm / % Error Time: 7/5 -1 0.0 20.4 10.0 20.0 10.0 20.0 10.0 20.0 10.0 20.0 10.0 20.0 10.0 20.0 10.0 20.0	Post Test Run 1	Response		Time: 817-917	dipase				0.3	-	78.4		10.1 H.O	-	•		0.0		(0.5	220		اه، ع	20%	
	Direct Calibration	Response		Time: 715		1	1441	1668 288	٥	. 42		3		3,	ī			1	10.5	0'02	1.0-)
		Cal Gas			0		864		0	1 Low 30.1			-	44	7.42 PIM 1.74.		C		5'0] PIW	High 1.0.0	() Sero	07 Low 9.9	٤.	High —

Company: Location: Project No:

Cen. 1 - 25% 30174.0003.002

Operator: D. A // Date: 6/11/07

	Comments																			······································			
Post Test Run 3	ø	ppm / % %Drift %Bias	Time: 1535-1615	.0.		434		0.		57.7		322 (0.1)	50.6 (48A).			0.0			20,02	7'0-	6.0		
Post Test Run 2	Response	ppm / % %Drift %Bias	51 -0261	0'9		435		7.0		57.8		129 (6.7) 1.3	6.05) 2.12			0.0			p.42	-0، ٦	9,9		
Post Test Run 1	Response	ppm / % %Drift %Bias	1344	0.0		435	•	2.9		57.7		(0.0) 海	21.5 (184)			0.0			0.02	-0.1	9.9		
Direct Calibration	Response	ppm / % % Error pr	Time: 7/5/121		1	443 438 4	-	0.3 0.2 6		28.3	150.4	3.8	215	20	300	0.0 0.0		5.01	10,0	70,2	10,0 9,9	1,62	
L	Cal Gas	Conc.		0	1	Mid 448	High 88555	0	_	4.65	High 149,1	9	49.6	9/2) piw	7862 4	0 0	<u> </u>	Mid 10-5	200	į.	0	10.5 bi) tr
				. Zero	NOX	Mic	High	Zero	S C C C	Mid	Higt	Zero	NT UT/	(Mcharc) Mic	High	Zero	MOT ZO	M	High	Zero	ر ر ر	Mid	High

Company: Location: Project No:

Gen. 1 - 50%.

Operator: 7 . 8/1-

		3 3 3 5	Direct Calibration	Pos	Post Test Run 1		Post .	Post Test Run 2		Pos	Post Test Run 3	33	
	Cat Gas	Resp	Response		Response		R	Response			Response		Comments
	Conc.	ppm / % % En	ō	ppm / % %Drift		38	ppm / % %Drift		Slas	ppm / % %Drift	%Drift	%Blas	
		Time: /	0h9	Time: 1	Time: 1 33 - 813		Time: 85/-	186-15	/	Time: //	Time: 1005 - 1045	15	
Zero	Ø	0.0	0.0	07/		<u> </u>	01			01			
MQX Low	١			•									•
Mid	8h/7 PIM		201	2.hh		24	777			1 54			
High	High Grass	088 088											
Zero	i	2.0		9:0			910			2.0			
(O Low 30	30		30,3										
Mid	MId 594		59.9	1.65		<u>~</u>	59.7		-	24 %			
High	16/11	High 14/9/11/52.2		`			•						
Zero	0			1	(8.0)		9/4	(-0.9)		4.8	(1)		
4(row	Low 49,6		10.560 51.7	_ 1	(44)	\$	50.4	(Lh)		0.05	(91)	•	
MICHAL) MICH	9. h 2/ piw		5421				,	•					
High	High 29% 6	662	1 299										•
Zero	0	0.0	<u>ပ</u>	010	× de	1	-0.1			1000			
Or Low			\				•						
Mid	10.5	10.5	(0-2										
High	High to, U		20.1	1.02			1007			10.1			
Zero	0	1.05	-0.2	7.0-			اع ١٥٠			1'0-			
COY LOW	ı	•											
Mid	5		- 0	10.7			0			10.			
High	High Car	120.5	265										

Company: Location: Project No:

Gen: 1-75% 30174.0003.002

Operator: D.A.II-Date: 4/17/0-

in 3	e Comments	%Bias	1431																•			
Post Test Run 3	Response	s ppm / % %Drift	Time: 1351-143	1.0		126		0,4		1.85		4.0 (-1)	10.5 (42)	\vdash		10-			0.01	20.0	20.07	20.0
Post Test Run 2	Response	ppm / % %Drift %Bias	Time: 2 38-1318	-0.7		484 437		9.0		1.65		(1-) 9%	49,5 (45)			1.0-			26.07	26.57	2.0.7	20.07 2.0-0.1
Post Test Run 1	Response	ppm / % %Drift %Blas	Time: //2//-/20/	٠۵.		8		0.6		59.3		(-1)	(7h) b'			1,00			w.0	w. v . +0.7	0.0	0.0 2.0
Direct Calibration	Response	ppm / % % Error ppr	Time: 6 40 TI	1 0.1 0		442 441 438	0.33	0 90 90		8 9 3 6 6 8d	152.2	D.5 4.0	05 0-05 8-64	1d.5	662	0.0		10.5	20.	20.	20	100
	Cal Gas	Conc.		Zero O	Low		High 885.5	Zero O	Low 30-/	Mid Sq.4	High 144,4		7/4/ MO7	Mc H MId (24%	1.84 7.48 %	Zero 0	Low	Low Nid Po. C	20.07	20.0	1000	0.00 0

Location: Project No: Company:

11 avis AFB Cen. 41-100% 30174-0003-002

Operator. D. All...
Date: 6/13/02

,	Direct Calibration	Post Test Run 1	Post Test Run 2	Post Test Run 3	
Response		Response	0	0	Comments
ppm/% % Error	히	ppm / % %Drift %Bias	ppm / % %Drift %Bias	ppm / % %Drift %Bias	Har.
Time: 650	\sim	Time: 73/- 81/	71me:846-925	Time: (000-10+10	
0.0 1.	ا حا	0.2	3.12	0 ' h	÷.
				-	,
744		2 hh	2.11	· hh	40
48 879					
0,60	اما	8·Q	<i>9</i> -0	8.0	9.0
30.6					······································
2.2					
121 251		165	157	ارخرا الاخرا	152
0.6		4.2 (-()	17 5.5	$\stackrel{\cdot}{\sim}$	(-) 7.8
48.0	1 1	48.9 (45)	(46,9 (45)	47.7 (42)	(4h) 9:55
771					
295 290					
0.0 0.0		ا ۵ ، ۵	0.0	0.0	o o
		-			,
10.7 16.6		9.01	10r 6	9.01	, ,
101					
10-200-		0.1	1.0-1	\$ po	100-
					·
0'01				•	_
902 102		20.02	10. C	5.02	20.6

CLIENT	Travs Al	B			PN	Shee	t No.
LOCATION	Gen#1100	142 - All	(0	Checked By_	Date	
SUBJECT	6/13/02				Computed By	Date	
7-100-1				CO+	02	- Maller	F-110)
Vine	<u>, NG</u>	<u> </u>				10,25	706,4
731-811	4744	/36.84	30.5 /	6,902	14660	= 0/2·S	
7-100-2	4446	161.63	26.6H	7.05 9		-0.28	7-8
845-923						U. C.0	
7-100-3							
1000-1040	545,4	167-82	25,03	7-114	11.325	-0-31	
							Flow (ds
1-2-10							
1140-1700	209 5	155,14	93,06	3, 293	16,670	1, 34	39 7
7-7-75							
1213 - 1232	721.7	143-65	\$ 2.90	3.969	15-672	0.92	32119
117650							
1243-1303	260.9	142.98	66.54	5, 343	13.735	110.49	34 1, 8
17-21-75							
					<u> </u>		1 · · · · · · · · · · · · · · · · · · ·
15/0-1770	336.4	149,41	56.06	6,020	12-818	0.20	358.7
T-2-100							
1341-1401	141.2	14 7,55	46:10/	1,367	12.350	0.07	3860
					<u>. </u>		
							I -1-1 { 1 } -1-+-

Travis
6/10-12/00
6/10-12/00
(ord; Hors
19 25, 50, 76
Fen. 1

ELMENDORF AFB

CLIENT		.,		F	N	Sheet No. 1/3
			H,		hecked BY	Date
LOCATION						
SUBJECT_					omputed By	Date
	-86 EMISSI	a measidenen	Reparter		ZGO AMPS	
	ELMENDOF	AFB	,		.,	FUEZ ~ 7.4 lbs/gac
						Time
	ENGINE ID	4A231886 -86	ED# MG13		·	(7055) START URS.
SP 8 Time	DATE	Lashs (1.)	FUEZ WI, Clos) Fue Ten	P(F) Aug.	10 hrs
KVEL	a danta					
05730	6/25/0Z	NO.	118.2	73	26	AMPS Diver: 19.7 163
Puni 0755	6/25/0Z	ю	109.35	POL	1 22	21.5 0 1 h.
0805	6/25/62	10	105.35	112	2	.dadadadadadadad
0825	6/25/02	10	98.50	118		6 A-PS M. Z.94 (5) hr. (1)
		10				
101 0915	6/25/02	16	81.00	145	2	6 DF1-2:95165
0940	G/25/2	10	71.50	158		Sain.
			1 :	1 163/2.167kg.:	21.55 lbs/h =	3.01 gar/h 22.8 ibs/6 (2)
AIOID FUE			106.85	13.1		3.000 au/h
DPSD.	GIZSIOZ	16	100.20	121		3.00 pa/h.
1005	6/25/07	la	167.7	125	ž	6 Afres = 26.6 lbs.
Jozo	6/75/0Z		96.0	141	-	6 AMS 80mia.
1023		16				19.93 bs/h.
1050	6/25/02	10	87.0	148	Ž	6
Nio	6/25/02	10	80.25	156	; ; 2	2.780AC/AI.
		_				
25% ADD FLOR						
1175	6/25/07	25	109.85	168		DEUX 29.1 45.
lieo	6/25/02	Z 5	98.96	िया	E	7 Amps GS min.
			-			1
1220	6/25/02	25	87.25	152		26.86 Us/ho (1)
1250	6/25/02	75	80.75	FSZ		3.6 gar /hr.
				0		7 3.6 gar /hr.
ADD FULL	:					
Z51 . 1305	6/26/67	25	106.65	123	•	AFUEL 24.25
1			90.ZO	1/17		55.4.
1340	Wissioz	ZS	40.23	147		26. 15 lbs/h (2)
1400	6/25/02	25	82.40	151		3.6994/4
				3.		Jan.
1405	GlZSIOZ	25	79.25	158		7
	! '	1 1		150		
1430	6/25/02	25	69.85	154	<u> </u>	
ADD FULL						
1435	6/25/02	25	107.15	127	6	
	· ·	3-	43.40			30m/n (3)
1505	6/25/02	26	טריכר	134	6	26.0 10111
						3.61g/c/h,
		}				
1 .		1			· '	

T	CLIENT			10	P	N	She	et No. Z/3
	LOCATION	i ;		E		hecked BY	Date	1 1
1	SUBJECT_					omputed By	Date	
ų.	OODOLOT							
						•		
		The DA	E LOND (FUEL WT.	(Ibs.) Fo	er Temp (F)	Anes	l ä
4	1520 <u> </u>	515 6/2	s/cz 5 0	86.10	1 1	153	-	2= 72.9 ibs
f		550 6/2 5	161 50	63.26		161	130	39.3165/Ar.
	•	D Firez		99,00		•	• • • • • • • • • • • • • • • • • • •	5.3GAL/AL
	V.	555 6/25	loz 50	48-5	o -	121	130 AF	5.48 12: 33.25 lbs
	1170 -		5/02 50	87.0		145		99 16/4
	. Mo		5/62 50	77.		153	150	5.4 gar/w.
ļ	100	645 61	15/02 50	65	75	158	130	5.5 locally
		ADDRES	•::				-	0
	<u> </u>	C50 6/2	sla so	98	15	128		H=46.7165
		1725 6/Z	5/02 SE	76	40	155	130	10.00. 4002 28.02 (65)
	MAS .	1740 6/2	5/02 50	66	90	157	130	2.800 (ms) (2)
	1600 -		25/07 .50	51.	45	168	130	5.4 5.58
		1815 G(25	AL 50	81.4	is	128	130 ДГ	W2 25.75163
1	(9)	1840 6/25	1	66.5		is (3.7	5
		1	, S					941.14 165/6. (3)
1	PP	1850 6/2	√ 02 50	55.	10	161	130	5.97GA(h.
						-		
	751.	1040 6/	24/02 75	99		100	200	4
-				-1	1.	!	D	55mm
5	-135	<u> </u>	26/0Z 75	79	<u> </u>	136	200	49.47 lbs/hr.
		1170 6	Izeloz 73		4	146	200	
Ì	i	1135 6	126/02 75	5	65	ISZ	200	6.68 cac/4.
-		ADD FUZ					_	
	100 t	1020 6	127/02 100	99.	20	101	245	49.8 lbs/h.
	010-1120						; ;	Addit Fult
1	13/1003	1050 61 ADD FUEZ	27/52 600	74	30	134	245	1055 -
1			27/02 100	99,	65	123	245	Full temps at 113°F
-	255. 255.	1120 6	1/27/02 100	: : : : : : : : : : : : : : : : : : : :	95	135	245 B	we = 4125 lbs.
	-	1	127/02 100			149 H	245	som.
+		4775 4	TOC TOC)	72			49.5 168hr
		. :						6.76R/h.

CLIENT			E	F	N	She	et No. 3 3
LOCATION					hecked BY	Date	
SUBJECT_			•	\mathbf{R}	omputed By	Date	The second
	4.4						
	:						
	Alme D	ATE LONG	(i) Fre	wir.(Isc.)	FUEL TONP. (F)	AMPS	
1 3	Fuct ·					, <u>, , , , , , , , , , , , , , , , , , </u>	
94%	! :	127/02 4		205	170	245	(947)
				0.15	134	245	
1205	को ।	i .		, į ,			Often: 53.35 (b).
1305	1 保護 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1:	74.30	152	245	65m:
	1 1 No.	[0 0	66.45	154	245	49.25 165/m
48.00	Z 3 5 6	terbe 1	00	48:70	160	245	6.65GAC/In
:	ADD Fee						Le. 87
100%	Saci	5/27/02	100	84.20	1ZZ	Z45 A	Tuer 38 lbs.
	214		<u>o</u> o	ているら	भ्दा	245	45min.
1325-1425	5.0				158		50.7 lbs b.
المختله	335	6/27/02	۵۵	54.90	158	245	
1323	395	6/27/02	2 0	46.20	<i>1</i> 63	245	4.51
1 1	IDD FOR		1 .				
X	/ 3 \$2		8	118.35	121	245	
Halle -	GENERMAN DO	1		4 1		بخنا	1
	436		පර	109.85	130	245 į	Seen 28.2165.
	∞ ≤	<i>6/27/0</i> 2	<i>9</i> 6	81.65	158	245	48.39 lbs/b
751						-	G.53GACILO
	SIS	eletion.	75	71.80	1,61	Zoo	10.74 Fire: 35.2 lbs.
157			! :	36.60	163	Zoo	40min
		70/27/02	5	32.0.0			52.8 lbs/h
	ADD FLEE						7.16AKIK.
	1600	6/27/02 7	5	7065	FG 142	200	Street 29.9 Hrs.
1023 =	1635	6/27/02	হৈ <u> </u>	40.75	156	Z00	35~a.
		1					51.3 lbs/k.
1012	ADD FUEZ	: :					6.9GN/h.
: !	[710	6/27/02 7	5	86.95	121	Z00 /	
	1 730	6/27/02	اسی	69.20	152	Zoo	UB = 37,35 Vs.
		1 :	1. 1		1.1		4547
,	1740	6/27/02		59 <i>15</i>	25 8	Z _O	49.8 Nolle
135	(755	बर्गावर र	8	49.60	161	200	6.7364c/hr.
	!	: ! :			, 1	-	6.95
		**					
			1				
			第11	. :	}	•	

25% Lord

MG-13 General (A) GAS VELOCITY AND VOLUMETRIC FLOW RATE

Plant:	[menlorf] Location: _	AFB			Date: _	6/29	1/02	
Sampling]	Location:	Generator	· Outler		Clock T	ime:		
Run#:	Pressure, in			Operators	:	116		
Barometric	Pressure, in	Hg: 29	95	Static Pre	ssure, in.	Ĥ₂O:		
Moisture.	%:	Molec	ular wt., Dry		Pitot Tul	be, Cp: _	0.99	
Stack Dim	ension, in. D	iameter or S	ide 1:	3"	Side 2:			
Wet Bulb.	°F:		_ Dry Bulb,	°F:		_ ·		
Pitot #		Therm	ocouple#_			-	5.6 = 3P	1.9
							120 = 21 =	1.7
Traverse	Velocity		Md = (0.44)	< % CO2)+((0.32×%	O_2)+(0.	28×% N 2) 75	3613
Point	Head	Stack			.	`	Vs = 224	107
Number	in.H ₂ O	Temp,°F	Md = (0.44)	<)+(0.32)	×)+(0).28×)	actur = ce	e (
	5.6	598	Md = `				doctor = 3	;(, ,
2	5.5	600	34-344	% H ₂ 0	1 1 9 96 1	H_20	10%	Loud
3	5.4	612	MS = Mux	100	10 1	00)		
	5.7	618		. () (1 54	28 × % N 2) 73 V5 = 224. actur = 60 doctur = 31 / 0 % Aic = - /.	3"
2	5.7	620	Ms = ($ x 1 - \frac{1}{100}$	+18 -	00		
3	5,8	627	,	, (100) (1)	00)		
			Ms =			,		
	6-9	685	$\overline{Ts} =$	•F =	°R	(°F + 460)	
7	6.3	685	S	.P. (\ \		5% Load	
3	6,4	685	$Ps = Pb + \frac{2}{1}$	$\frac{1}{2.6} = ($)+	3.6		a
í	6.0	693	1	J.U	.	25	To Low	
2	6.1	695	Ps =	in. Hg		ند / مز	1/2 = -1	·S''
3	6.3	696				Sta	76	
		•	$\sqrt{\overline{\Delta P}} =$					
	7,8	755			Ts(° H	8)		
2	8.1	759	$V_S = 85.49 \times$	$C_p \times \sqrt{\Delta P} \times$	VPCX I	M s		
3	7.9	762	1		,			
1	8.3	764	$Vs = 85.49 \times$	()×()× 1		104
2	8.2	767	Vs =			¥		
3	8.0	766]			_	% hour	9
			As =	ft²		ع و) to how	
			$Qs = Vs \times A$			5%	ntiz =	
			Qs =	×	×	< 60		
			Qs =	acfm				
<u></u>	-/AB		Qs=	dscfn	n			•

MG-13 Cocernfor (4) GAS VELOCITY AND VOLUMETRIC FLOW RATE

Plant:	E/wend	of AF	-15	Da	ate: <i>6/</i>	28/02	
Sampling	Location:	Enaber 1	Outler	Cl	ock Time:		
Run #:	Julian			Operators: _	RK/70		
Barometr	ic Pressure, in	Hg: 29	7. 95	Static Pressu	re, in.H ₂ O:		
Moisture.	%: 4	Molec	cular wt., Dry:	Pit	ot Tube, Cr	: <u>D. 99</u>	
Stack Din	nension, in. D	iameter or S	Side 1:3	S	ide 2:	o: <i>D, 99</i>	
Wet Bulb	, °F:		_ Dry Bulb, °	°F:			
Pitot #		Thern	Dry Bulb, on occupie #				
					_	,	
Traverse	Velocity		$Md = (0.44 \times$	% CO2)+(0.3	2×%02}+	$+(0.28 \times \% \text{ N}_2)$	
Point	Head	Stack				A	
Number		Temp, °F	$Md = (0.44 \times$)+(0.32×)+(0.28×) _/	1
0 1	6.8	711	Md = `		(chatic= 1.	>
2	6.6	717	Ms = Md x	$\left(1 - \frac{\% H_2 0}{1 + 1}\right)_{+1}$	8 (% H ₂ 0)) Static = -1.	
3	6.0	720	Me - Ma ~ (100	(100)		
3	6.6	700		$\langle \cdot \cdot \cdot \cdot \rangle$	()	•	
2_	6.7	706	$\int \mathbf{M} \mathbf{s} = ($	$\times \left(1 - \frac{100}{100}\right) +$	$18(\frac{100}{100})$		
3	6.8	720	Ms =	(100)	(100)		
					am (am)	
	5.4	650	Ts =	°F =	*R (*F +	460)	
3	5.7	655	s.	P. /			
3	5,8	660	$\int Ps = Pb + \frac{S}{13}$	$\frac{1}{16} = ($	+ 13.6		
1	5.0	616	1				
2	5.7	655	Ps =	in. Hg S	11:-	13"	
3	60	661	_1	ار	fare - 1	,, ,	
			$\sqrt{\Delta P} =$,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
					$Ts(^{\circ}R)$		
			$ Vs = 85.49 \times 6 $	$C_P \times \overline{\sqrt{\Delta P}} \times \sqrt{\frac{1}{2}}$	Ps×Ms		
			1	•			
			$Vs = 85.49 \times 0$	()×(()	×√	
			$-V_S =$	ft ²		Y	
			_1	-			
			As =	ft²			
		<u> </u>	$Qs = Vs \times As$	\times 60 s/m			
			Qs =	×	×60		
			Qs =	acfm			
	·		Qs =				
	$\sqrt{\Delta P}$	=Ts=	V3 -	dacim			

.00000000	OCHOCOCOCA.
#XXXXXX	*******
A88 24	*********
3835 F.B	*******
8000000000000000000000000000000000000	888 888 i
2000	W. 483
2200000	
400.00	700007777 T

Environmental Quality Management, Inc.

l .

JO% Load
GAS VELOCITY AND VOLUMETRIC FLOW RATE

1 28 = AP

		·r/ /	1 0		0			a i	, , ,	1-2	,
	Plant:	Elmender	F Hir	fore	13ase		Date:	6/	25/0	<u> </u>	
	Sampling !	Location:	sucrate	bushi	,		Clock	Time: _	·		
	Run #:	Elmender Location:	<u> </u>			Operato	ors:	KA 170	é		 ,
•	Barometri	c Pressure, in	LHg: 29	.90		Static P	ressure,	in.H ₂ O:			
	Moisture,	%: <u> </u>	Molec	ular wt.	, Dry:		Pitot T	ube, Cp:	0,9	9	_
	Stack Dim	ension, in. D	iameter or S	ide 1: _	3		Side	2:			
	Wet Bulb,	°F:		_ Dry I	Bulb, °F	÷		My=	28.71	. 2 - 16 4	9
	Pitot #		Thern	ocouple	#			_ B=2	4,50× -	- 1 ·	2.
	•	c Pressure, in %:		_	_		√ 5=	184.0	V.	DP - d. 1	442
	Traverse	Velocity		Md = (0.44×9	% CO2)	$+(0.32 \times$	%O2)+	(0.28×4	% N 2) 75 2	(,,,
	Point	Head	Stack	}	•				54(enfu	
@	Number	in.H ₂ O	Temp, °F	Md = (0.44×)+(0.3	(2×)+	$(0.28 \times$	303	drift.	مذاعم
08/8	1	4,3	Stack Temp,°F 443 443 443	Md =	`	, ,	,		ctatic	. = - O.	85"
	2	4.5	443	1., ,	(.	%H ₂ () (9	6H20)) ,		
	3	4.5	442	MS = M	10 × 1-	100	-)+10(-	100			
	1	4,6	443	1	•	1	`\	,			
	2	4.6	443	Ms = ()>	(1	+18				
	3	4,4	444	`	,	(10)0 / (100)			
é				Ms =						-4467	
936	1	4.2	456e	$\overline{Ts} =$		°F =	•	$R(^{\circ}F+4$	60)	e=4.467 e=2.11 s=454°1 = 0.85	
٦٦٤	2	4,5	456		מיס			•	7	3 : 454 1	:
	3	4.5	444	Ps = P	$b + \frac{3 \cdot F}{4}$	- = ()+-	10.6	fatic	2	
		4.5	456	1	13.6	•	•	15.0	~	0 00	
	2	4.6	456	Ps=		in. H	3			-209	
	>	4.5	455	1							
_				$\sqrt{\Delta P} =$			•			•	
@	1	4,2	453	ν Δι –		-	- Tol	• p)			
4	2	4,3	456	Vs = 85	.49 × Cp	$\times \sqrt{\Delta P}$	$\times\sqrt{\frac{131}{2}}$	<u> </u>			
050	3	4.3	458	1	•		V Ps×	M S	-		
	1	4.1	460	V = 05	100)×(۱~			
	2	4.0	794	1 2 = 07	49 2 (<i>J</i> ^\	.)^	V		
	3	3.9	456	Vs =		ft²			•		
			756	As =		ft^2	Sta	tie =	_ 0- ;	80 11	
				1		•					
				Qs = V	s×As×	60 s/m		***			
				Qs=	•	X		×60			
				1		£					
				Qs=		acfm					
		$\sqrt{\Delta P}$	=Ts=	Qs=		dsci	fm		٠.		

FIELD DATA SHEET

10% load

Stack Diameter: _ CO2: __

Sample Type: M5/102 Operator: 4487-Pbar: 72,79 Ps. - 0.85 Probe Length/Type: 2'668 Pitot#: Stack Diameter:

Nozzle ID: .201 Thermocouple #:
Assumed Bws: 4 Filter #: \$3.0228
Meter Box #: 7 Y: 1001 AH@: 1.175 Post-Test Leak Rate: a.col cfm @ 3 in.Hg.
Post-Test Leak Check: Pitot: ___ Orsat: ___ load K= 2. 243 Nozzle ID: 201 Thorn

				Γ	<u> </u>	<u> </u>	1	Τ	Ţ	<u></u>	1	Γ	Τ	T	T	Ţ	T	Τ	1	Ť	1	T	T	T	T	7
Pump	(in He)		_	_	_	1	7	2	7	7	2	h	7	h												
Dry Gas Meter Temp. Tm	Outlet		65	65	65	65	39	99	67	89	69	69	22	72												= 1
Dry Gas Met	Inlet		59	9	19	24	73	95	16	18	74	80	18	28		ļ					1					Tm = M
Tmninger	Terno. °F		79	99	58	25	54	59	.63	89	65	63	00)	5												
ure °F	Filter		254	246	254	₽8Z	2.53	282	h \$2	297	263	152	252	852												7/1.
Temperature °F	Probe		253	454	253	757	2.54	254	253	15 H	253	253	252	1251											/	100%
Stack	Temp (Ts)		64 430	95 h	439	857	439	014	244	443	2hh	745	ムカカ	655												Ts = 4
	Actual		7:0	2.3	4.7	2.4	2.4	2.4	2.4	2,4	24	2.4	7,4	7.4												= 2, 37 v
Нα	Desired		2.1	2.31	2.58	2.38	2.39	2,34	2.39	2.39	2,40	J' Y	ታ ' ሂ	7.4												Į,
Velocity	Head.		181	1.81	1.81	1.81	1.81	1.81	1.8.1	1,8)	1.81	1.81	1811	181												p = 1345v
Gas Meter	Reading	83.647	88.4	92.0	96.a	1.001	465.2	109.4	113.9	118.3	122.9	127.1	132.0	135,893												$\Delta Vm = 52.(9(\sqrt{\sqrt{\Lambda p}}))$
Ting K		0150	0135	0140	0745	0360		0800		080	0815	0380	0829	0 830												∆Vm=_
Sampling	Time	0	5	0/			7	20	3%	e4	ጵ	50		60												•
Point	Number											-														

Plant	mendor	+		Run No. E	-10-5-1	
		Sample Box No.	5B-5		01740003	
Sample Lo	ocation Gen	1 - 10%		Filter No. 8	30278	
Train Pres	arer D A	Lile-				
Sample Re	covery Person	D-A11-				
Comments	S					
			•			
Front Half	, ,					
Acetone		Liquid				
Container	No	Level Marked	Sealed _		· · · · · · · · · · · · · · · · · · ·	
Filter						
Container	No	•	Sealed		·	
			•			
Description	n of Filter					
Samples S	tored and Lock	ed				
Daalattake	0.600					
Back Half/	Moisture No.				e e	
Comanica	.110.	····				
Liquid Lev	el Marked		Sealed			
Imp. No.	Contents	Initial Vol		Weight (gra	ms)	
	Contents	(ml) ·	Initial .	Final	Net	
1	DI HO	100	7250	725-5	0.5	V/
- 2	11	11	738.2	760,4	22.2	
3			630.2	63810	7.8	
4	56	250	831.2	6471	13.0	
. 5			834.1			
6	·					
7	l otal				435	
Description	of Impinger C	latch: (74 T	mp. Yellow	•		

10% load (6,2,246

Stack Diameter: 4" Sampling Location: Generator Exaust Run Number: E-10-5:2 Date: 6-25-02 Pretest Leak Check: Pitot: MA Orsat: AIA Pretest Leak Rate: o. cfm @ 15 in.Hg. Plant: Elmendorf AFB

Operator: **A6**Ps: -0.65 CO₂: **3-2** O₂: **Tr./(**Probe Length/Type: **2'9435** Pitot#: Sample Type: #15/202 Pbar: 29.90

_ As: _

Assumed Bws: 4 Filter #: Pco14
Meter Box #: 7 Y: [.00] AH@: 1.775
Post-Test Leak Rate: .002 cfm @ 7 in.Hg. Orsat: _ Thermocouple #: 2-9 Post-Test Leak Check: Pitot: Nozzle ID: .201

Pump	(in. Hg)	G C	2	17	3	7	7	x	٨	8	۶	٨	B	u								
r Temp. Im	Outlet		77	72	73	73	73	24	74	75	25	75	76	74								72.1
Dry Gas Meter Temp. Tm	Inlet		7.5		78	29	/8	28	200	\$3	83	83	700	48				7				$\overline{Tm} = 7$
Imninger	Temp. °F		52	46	47	47	64	47	51	50	50	15	181	15								8,60
ure °F	Filter		152	255	254	252	158	253	254	249	254	252	752	252								Vs = 98.60
Temperature °F	Probe		243		252	_	251	252	352	252	251	252	252	252								201
Stack	Temp (Ts)		448	446	447	<i>Lhh</i>	447	8/1/8	36%	455	453	454	455	453	-							$\overline{Ts} = 4$
Ŧ	Actual		<u>.</u>	1,7	1.7	1.7	1.7	/ /	7.7	7.7	7.7	1.7	1.7	1.7								(67)
ЧΔ	Desired		ا 6م	1.69	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	21	21								$\int \sqrt{\Delta H} =$
Velocity	Head		7.28	128	7.28	877	1.38	1.28	82 /	1.28	1:28	1.28	87 7	877					•			$\sqrt{\Delta p} = 1.131$
Gas Meter	Keading	55,055	139.7	143.3	146,9	150.5	154.3	158.1	161.6	165.5	167.5	172.6	176.3	175.875							-	43.840
Time		23.80		0,855	0960	5060	0360	5160	0260	3260	0630	. 58 60	0360	2760								$\Delta V m \approx 2$
Sampling	Lime	0	5	10	(5		22]	35			50	55	60								
Point	- 1	0	-	~	~	7	>	و	7	<i>9</i> c.	9	0)	37	ತ								-

defu = 287.7 adm = 516.3

Plant <u>E</u>	Imendorf			Run No. E	-10-5-2
Date 6/7	25/02	Sample Box No.	5B-3		0174.0003.002
Sample L	ocation Gen-	Erha-st		Filter No. 0	C014
Train Pres	parer A. F.	/RK			
Sample R	ecovery Person	DA			·
Comment	s				
			•	,	
Front Half	ţ				
Acetone	Ma	Liquid			
Container	No	Level Marked	Sealed _		
Filter					
	No.	•	Sealed		
			•		
Description	n of Filter				
Samples S	tored and Lock	ed			
Back Half/	A faister				
	No				
Commind .	110.				
Liquid Lev	el Marked		Sealed		
T N-	C	Initial Vol]	Weight (gra	ms)
Imp. No.	Contents	(ml)	Initial	Final	Net
1	DI H20	100	71,55	728.6	13.1
. 2	DTHZO	100	71,6.4	623.0700	13.4
3	Empty	## Empty	62,20	625.4	3.4
4	Silica Gel	250	89,69	902-8	5.9
. 5			7		
6					
7	l Total		Comb. L	7298	35,8
			Vr T	7000	1110 -
Description	of Impinger C	atch: (9+ Top.	· Clo-dy		

10% (oad

Sampling Location: Generally Exaust Run Number: E-10-55 Date: 6-25-02
Pretest Leak Rate: . 006 cfm @ 4 in.Hg.
Pretest Leak Check: Pitot: 4/4 Orsat: A/A. Plant: Elmendorf AFB

Operator: #6 Ps: -0.85" Probe Length/Type:, 2'chs5 Pitot#? Sample Type: M5/202 Stack Diameter:

Assumed Bws: 4 Filter #: 830225
Meter Box #: 1 Y: 1.001 AH@: 1.775 Post-Test Leak Rate: 000 cfm @ 2 in Hg. Orsat: Nozzle ID: .201 Thermocouple #: Post-Test Leak Check: Pitot:

		mma	9					T	,	1		Τ.	1	7	1		 1		т-	т			-	 1	י ו	\searrow
Pump	(in. He)	/9	_	,	2	N	~	1	N	2	2	શ	n	5				1								9 000 1
Temp. Tm	Outlet		76	27.	25	96	18	16	76	47	بارا	44	7	7.8										\	2	Fx6 10
Dry Gas Meter Temp. Tm	Inlet		96	7.4	79	28	83	85		\$ B				85						7					b = U	1.43
	Temp. 'F		58	53	50	25	53		ટુક		23	53				·										63
 	Pilter		255	255	252	259	283	253	255	152	25.3	151	283	753												dsd 7869
Temperature °F	Probe		2.53	252		482	78 Y	282		h\$Z	p52	253	h97.85	252											5	dsd
Stack	Temp (Ts)		644	450	450	451	452	र्मश्रम	453	454	454	454	453	458	•										Ts= 115	211.5
	Actual		1.7	1.7	1.1	1.7	1.7	1,7	1.7	1.7	7:1	1.7	٦,)	1.1											7	
Ηo	Desired		1.69	1.69	1.64	1.69	1,70	1.70	02:1	1.10	1.70	1.10	1.20	1.69											$A = H \Delta$	ach
Velocity	Head.		1.28	1.28	92.7	1.28	82.1	1.28	1.28	92:1	62.1	1.28	1.28	62.7								•			= (1 3/L	3.8
Gas Meter	Reading	180.261	184.31	181.52	12.161	195.02	\neg	202.48	206.11	209.85	213.81	217.31	16.017	224.913											$\Delta V = \frac{d\Delta V}{d\Delta p} = d\Delta V$	3w5 =
Clock		/ 500/	1010	1015	1020	/ 570/	1050 1	6201	1040	-	1050	6501	100	//05											ोंफ= m∨∆	
Sampling	Time	0	5	0)	15	70	25	30	36	40	64	20	85	09	·										,	
Traverse	Number																									

Plant _	mender	_		Run No.	-10-5-3
Date 6/	25/12	Sample Box No.	78-2	Job No. 30	1740003.002
Sample La	ocation _/~	- 1 exhaust -	10%	Filter No	330225
Train Pres	parer FG.				
Sample R	ecovery Person	DA			·
Comment	s				
Front Hali	F				
Acetone	•	Liquid			
	No.	Level Marked _	Sealed		
Filter					
Container	No		Sealed _		
					•
Descriptio	n of Filter				
Samples S	tored and Lock	ed			
Back Half					
Container:	No				
T::37			G .1.7		
ridmo re.	el Marked	:	Sealed		, , , , , , , , , , , , , , , , , , ,
T NT-	Contract	Initial Vol		Weight (gra	ms)
Imp. No.	Contents	(ml)	Initial	Final	Net
1	DEHZO	:100	11,2,8	7269	14-1
- 2	DIHZO	100 .	73424	745.4	13-0
3	Empty	Empty	63,40	637-6	3.6
4	Silica Gol	250	92,33	929-7	6.4
5			1		
6					
ŗ	l Total				37.1
			ببب	<u> </u>	<u> </u>

N:\Forms\Forms\Emission Testing\Sample Recovery Data.doc

Description of Impinger Catch: 15t In Clary

Lo

Environmental Quality Management, Inc. 25% Load

GAS VELOCITY AND VOLUMETRIC FLOW RATE

	Plant.	Elmender	8 Air	Force Bas	5e	Date:	0/25/02	
	Sampling	Location: (Generator	Outles		Clock Time	·	
	Run #:	<i>δ57</i>	. Load		Operators	: ple /1	-6	· ·
	Barometri	c Pressure, in	Hg: 29.	90	Static Pres	ssure, in H ₂ C):	
	Moisture.	%:	Molec	ular wt., Dry:		Pitot Tube, (): Cp:	
	Stack Dim	ension, in. D	iameter or S	ide 1:3	3/	Side 2:		
	Wet Bulb,	°F:	-	_ Dry Bulb, °	F:		29.83 VEP = 2	/71
	Pitot #		Therm	ocouple#	201 3	95 - 20 - 20 B	68 DP = 4.1	8
				_	FILE L	7, 44 145 + 24	29.83 VET = 2, 68 DP = 4,5 75 = 55)+(0.28 × % N2) 2.5 = 55 ×) dscf = 56 ×) dscf = 56	2%
	Traverse	Velocity	4	$Md = (0.44 \times 10^{-3})$	% CO2)+(0.32×%O ₂))+(0.28×% N 2)	Vs = 201, 6
Ø	Point	Head	Stack			.	actures	94
	Number	in.H ₂ O	Temp,°F	$Md = (0.44 \times$)+(0.32>	<)+(0.28×	x) $dsctm^2$	29 3.>
	l	4.7	545	Md = `	, ,		SANTEC =	1.00"
	2	4.9	553	M - W 4 V (1	$\mathcal{H}_{2}0$	$_{+18}$ $\frac{\% H_2 0}{}$	SANTIC =	• •
	3	4,5	552	$\lim_{N\to\infty} S = \operatorname{Mid} X \Big(1$	100	100)	
	1	4.9	553		, ,) ()		
	2	4.9	554	Ms = ()	$\times 1 - \frac{100}{100}$	$ +18 _{\frac{100}{100}} $		
	3	2/,9	553] `	(100) (100)		
@		·		IMIS ==				
G	(4-6	551	$\overline{Ts} =$	°F =	*R(*F	+460)	
1340	2	4-8	552]	Ρ,		_ % 1.1"	
1770	3	5.1	551	$Ps = Pb + \frac{b}{12}$	'' =()+-136	-	
	- 1	4. 1	551	. 13	.0	13.0		
	2	4-9	553	Ps =	in. Hg	static		
	3	4.7	551	_j				
e [°]			1	$\sqrt{\Delta P} =$				
•	Ī	4.7	558	$V_{S} = 85.49 \times C$		Ts(°R)		
	2	4,8	556	$Vs = 85.49 \times C$	Cp×√∆P×	V Pex Ms		
-	3	4.8	551			1 1 5 1 1 1 2 5		-
	1	4.7	553	$Vs = 85.49 \times ($)	×()× 1	-
	2	4.6	330	Vs =	f. 2	•	, A	
	3	4,8	550]	j;		"	
				As =	ft^2	static =	-2,00"	
লাই ক্লে				$Qs = Vs \times As$			• -	
					•			
				Q s =	X	×60		
				Qs =	acfm			
				-				
		$\sqrt{\Delta P}$	=Ts=	Qs =	dscfm			

25% load

Sample Type: M5/202. Pbar: 24.40 CO2: 4 Plant: Elmendorf AFB
Sampling Location: Generated Exaust
Run Number: E-25-5-1 Date: 6-25-02
Pretest Leak Rate: 004 cfm @ 4 in.Hg.
Pretest Leak Check: Pitot: 4/4 Orsat: 4/4

Probe Length/Type: 2'6465 Pitot#: Stack Diameter: 4" As:

Assumed Bws: # Filter #: 8-30.26 AH@: 1.775 Post-Test Leak Rate Dod Lefin @ 6 in.Hg. Post-Test Leak Check: Pitot: Orsat: Thermocouple #: Nozzle ID: .201

				Г	Γ	i -			Π	 	T		Τ_		Τ	T	Т	1	T	T	T	T	T	T	Ţ	1	j
Pump	(in. Hg)		,	_	N	N	7	9	3	3	N	N	W	W													
Dry Gas Meter Temp. Tm	Outlet		bh	14	14	61	بال ا	77	9	1.9	28	79	29	29													
Dry Gas Me	Inlet		22	79	18	83	કુર્ત્ -	200	98	98	ß	87	80	88							7						Tm = 0
Tmninger	Temp. °F		3	54	દજ	35	99	90	58	59	5	20	19	62													Maishure 5,34
ure °F	Filter		285	ħ 52	263	256	557	253	552	757	252	752	251	251													Porsture
Temperature °F	Probe		250	287	h 52	283	283	252	263	254	452	253	252	157												· `	550 M
Stack	Temp (Ts)		549	547	548	548	548	550	589	580	550	255	553	5.53													Ts =
÷	Actual		2.)	2.2	2.2	2.2	2.2	2.2	2.2	2.2.	2.2	2.2	2.2	2.2													AH = 2.2 2
Ησ	Desired		2.16	2.17	2.17	2.17	2.(7	2,2	2.18	2.18	21.2	2.18	2,18	2, 2								•					
Velocity	Head.		1.81	1.81	1.81	181	1.8)	18%	7.81	1.81	1,81	1.81	1.8	118									•				8:521=5A 3+67 = a
Gas Meter	Reading	224.422	20.622	233.37	237.41	246.81	2460	250.49	254.65	258.78	1.69.2	A66.5	1.116	2 75.098													$= \sqrt{\Delta p} \sqrt{a/1.02} = mV_{\Delta}$
Clock		1/25	0511	11.35	0211	5411		65)]	1200	5071		1215		1225													^Vm =
Sampling	Time		G	07	1.5	2	25	30		40	45	20	55	09													,
Traverse	Number																										

Plant_	Imen dore	f		Run No. <u>E</u>	-25.5-
Date 6/7	5102	Sample Box No.	58-1	Job No. 3	0174.0003-002
Sample L	ocation Gen. 1	- Exhaust -	25%	Filter No 8	30226
Train Pres	parer DAN	a			
Sample R	ecovery Person	DA			
Comment	s				
	F				
		Liquid			
Container	No	Level Marked _	Sealed _		
Filter	•				
	Νo		Sealed		
Commin	110.		bomou		
Descriptio	n of Filter				
•					
Samples S	tored and Lock	red			
	5.5				
Container.	No				
ra I binoi I	zel Marked		Sealed		
Diquiti IV	OI WINDOU		boases		
T 37		Initial Vol		Weight (gran	ms)
imp. No.	Contents	(ml)	Initial	Final	Net
1	DINZO	100	7264	748-1	21.7
- 2	DIAZO		7251	74.0	15.9
3	=mptz	Empty	6230	627-1	4.1
4	Silica Gel	280	-83.41	848.7	17.0
5			831.2		
6					/
F	l'otal				58.7
		· · · · ·	.1		
Sample Recovery Person					
-		-		1	

Sampling Location: GRINGT EXAUST Pretest Leak Check: Pitot: NIN Orsat: NIA Run Number: E-15-5-1 Date: 6-25-02 Pretest Leak Rate: 2006 cfm @ 10 in.Hg. Plant: E/MMJONF AFB

Probe Length/Type: 2 (425 Pitot#: 118 Operator: Ac. Stack Diameter: 4" Sample Type: Mskoz. Pbar: 24.40 C05:

Meter Box #: 7 Y: [.wol AH@: 1.175]
Post-Test Leak Rate: .coe cfm @ B in.Hg.
Post-Test Leak Check: Pitot: AM Orsat: AM Filter #: Pcd24 Thermocouple #: Assumed Bws: 4 Nozzle ID: J2% 1000

ا ۾													<u> </u>			T		1	Γ		T-		T		
Pump	(in. Hg)		W	1	5	B	9	Þ	D	2	2	∞	0	න			ļ	ļ							
Dry Gas Meter Temp. Tm	Outlet		78	48	60	18	బ్	79	79	29	74	ોવ	79	79										-	S.
Dry Gas Met	Inlet		79	28	84	85	8	ૹ	8	88	8	8ી	Š	81						7					Tm = 8
Twomas	Temp. °F		7.0	18	é	09	59	58	54	53	ß	Bd	કુ	5							•				
ure °F	Filter		220	253	255	253	259	282	159	757	253	452	286	hSZ											
Temperature °F	Probe		244	457	752	y 62	283	ħØ	253	253	254	253	h\$7	255										,	5531
Stack	Temp (Ts)		555	585	455	585	554	653	255	228	155	155	549	554	-									-	$T_s = 5$
	Actual		2.2	2.2	2.2	2.7	2.2	2.2	2.2	2.2	2 2	2.2	2.2	7											1,20
Η [∇]	Desired		7.2	2.15	2,2	2.15		2.16	91.2	2.6	2.16	2.57	2.17	2,16										,	$= HV \sqrt{QH}$
Velocity	Head.		1.80	1.8	87	8./	1.8	1.8	1.8	1.8	8./	1.8	7.8	6.7											JAP = 1.7416 V
	Reading *	052.562	219.43	583,2	288.01	291.32	46.362	294.63	304,21	308.29	312.11	316.76	321.02	324.907						ي چېزو سندې او د کېزو					
Clock		1245 2	_	1265	. 2005/	1305		5161	0251	1325	1330	1335	1 240	1345											29. ph = MAV
Sampling	Time	0	5	, 0)	15	70	25	30.	35	ďη	45	20	55	09											۷
Traverse																									

D>0=1000

15ch 324.3

actm2 6/6.2

Bus = 4.3%

Plant E	lundurt			Run No. E	-25-3
Date		Sample Box No.	513-3	Job No. 34	PCU24
Sample Lo	ocation Gen-	1 - Boha.	1-25%	Filter No.	PCUZY
Train Prev	arer DA			-	
Sample Re	ecovery Person	Pla			
Comment	3	Method 5/	202 drai	-	
Front Half					
Acetone		Liquid			
Container	No	Level Marked	Sealed		
Filter					
Container	No		Sealed _		
Description	n of Filter		· · · · · · · · · · · · · · · · · · ·		
Samples S	tored and Locks	e d			
Dook Holf	Majatama				
Back Half/	No.				
Container !	140.				
Liquid Lev	el Marked		Sealed	7	
Dayana De i	O1 14M0ROC1				
		Initial Vol		Weight (gra	ms)
Imp. No.	Contents	(ml)	Initial	Final	Net
1	NO tho	100	719.3	773.4	54.1
2	DRMO	100	7(9.7	694.8	-24.9
3		700		626.0	3.0
			6230		
4	56-	250	902-8	917.1	14.3
5					
6					
۲	l'Otal	·			46.5
····		<u></u>	<u></u>	A	

Run Number: £-15-5-3 Date: 6-25-02

Pretest Leak Rate: ,00, cfm @ 1b in.Hg.

Pretest Leak Check: Pitot: A/K Orsat: A/A Sampling Location: Generator Exauct Plant: FIMENDONY AFB

Probe Length/Type: 2'6/ps/ Pitot#: 4/h. Operator: Ault As: Stack Diameter: _ Sample Type: Ms/202 Pbar: 24.90 CO2: 1

Nozzle ID: 201

Nozzle ID: 201 Thermocouple #:
Assumed Bws: 4 Filter #: 836231
Meter Box #: 7 Y: 601 AH@: 6.175
Post-Test Leak Rate: .002 cfm 6 5 in.Hg.
Post-Test Leak Check: Pitot: 4/4 Orsat: 4/4

Pump	Vacuum (in ite)		_	1	N	N	n	~	~	2		4	. ^	. ~				,			-		
-	Т-			"1			"	('')	12	W	7	7	5	N	 -	-	-	-	-	-	+		
er Temp. Tra	Outlet		78	22	18	84	78	78	200	49	70	79	19	bL									
Dry Gas Meter Temp. Tm	Inlet		79	જી	28	178	86	8	81	81	87	27	81	88						,			
	Temn on	To the second	63	63	h9	19	S	90	09	00	29	79	29	h9									
ture °F	Pilter		755	285	2,85	253	452	297	957	7584	250	253	657	052									
Temperature °F	Probe		249	252	252	32	784	283			251	253	253	2.83									
Stack	Temp (Ts)		554	551	565	555	257		585		559	9 55	552	551									
	Actual		2.1	7.1	7.7	2.2	2.2	2.2	2,2	2.7	2.2	2.2	2.2	2.2									
ΑH	Desired		2.₩	7.14	2.15	2.15	7.15	2.15	2.16	2.16	2,19	2.16	2,16	2.19									
Velocity	Head.		1.8	8:/	6//	, 8	8′/	8./	6.9	1.8	1.8	6.7											
Gas Meter	Reading	325.221	329.33	333,41	3,71.86	341.90	346.52	350.32	355.47	358.47	362.88	567.39	371.25	295,339			-						
Clock	Time	\$1405	0111	6/6/	1420		1430	(435	td40	1445	1450	1455	1500	1505						4			
Sampling	Time	0	5	CM	15	20	52	36	35	25	45	50	98	09							/		
Traverse	Point																						

Date 6/6 Sample Lo Train Prep Sample Re	ecovery Person	Sample Box No. - Exhaust -		Job No	-25-5-3 0174,008,002 830231
Front Half Acetone Container		Liquid Level Marked	Sealed_		
Filter Container	No		Sealed_		
Description	of Filter				
Samples St	ored and Lock	ed			·
Back Half/ Container l					
Liquid Lev	el Marked		Sealed _		
Υ	G	Initial Vol		Weight (gra	ms)
Imp. No.	Contents	(ml)	Initial	Final	Net
1	DD HO	100	729-0	746-3	17.3
. 2	'/	100	734.1	744.4	10.3 4
3			626.2	627.5	1,3
4	ر) ر	250	848-5	863.6	15.4
5					
6					
7	otal .				44.3
Description	of Impinger C	atch: 17 For	y clou	dy	

GAS VELOCITY AND VOLUMETRIC FLOW RATE

	Diame	Elmen	Inc	AER		Date:	6/25/02
	Plant:	I agains	Contracto	AFB ANDER			
	Dun #	Location:	Garciero	- Musica	Onemateur	Clock Time:	
				9 9 2	Operators	s: <u>Mk / 7</u> ssure, in.H ₂ C	<i>6</i>
	Moienre	oz.	Mole	miles wet Des	Static Fre	Discret Tube C);
	Stack Dim	ension in D	iometer or S	cular wi., Dry	211	Phot 140c, C	Cp: 0.99
	Wet Rulh	ersion, m. d	MAINICKET OF S	Dev Bulh	°1C.	Side 2:	£l = 6.58
	Pitot #	<u> </u>	Therm	Dry Dum,	r		Sr = 6.30
			. 1110111	5. B	12.9		120 - 257 75 - 719 1+(0.28×% N2)
	Traverse	Velocity		1 Md = (0.44)	x & CO2)+1	(n32 × % n2)	+ (0.28 × % N2)
	Point	Head	Stack	1424 - (0.44)	N N CO2) 1 ((0.52 × 10 0 2)	1 (020 × 10 12)
	Number	in.H ₂ O	Temp,°F	Md = (044)	× 1+1032	× 1+1038×	acto = 788) dscfu = 317
Ø	1	6.4	719	Md =	(0.52	A) 1 (0.20 A	Asetw= 311
608	2	10,6	719		% H ₂ 0)	(%H ₂ 0))
	3	loste	719 719	$Ms = Md \times $	$1 - \frac{100}{100}$	$+18 \frac{100}{100}$	Statie - 3.0
	1	6,5	720				5720.
	2	6.8	720	Ms = ()x 1	$\left(\frac{100}{100}\right)$	•
•	3	6.6	-118	1	100	(100)	
			·····	Ms =			sp=7.1
@	ι	7.1	725	$\overline{Ts} =$	*F =	°R (°F -	28=7.1 +460) (128 = 2.664 75 = 727 - Static = -3.00" 45=265.4 adm = 78/.6
1730	2	7.2	726e	,	D .		T5=727
(1)	3	7.3	726	$Ps = Pb + \frac{3}{1}$	$\frac{\cdot T}{2 \cdot \epsilon} = ($)+	- Static = -3,00 "
	ì	7.2	727] 1	3.6	13.6	VS=265.4
	2	6.9	728	Ps =	in. Hg		adu = 78/6
	3	6,9	729				
				$\sqrt{\Delta P} =$			dscfm = 327,7
0		71	731			Te(*R)	
47	2	7.1	730	$Vs = 85.49 \times$	$Cp \times \sqrt{\Delta P} \times$	V Pay Ma	
, , ,	3	7.0	130]		•	
		7.1	729	$Vs = 85.49 \times$	()	×()× .
	2	6.9		Vs =	- 3		Y
	3	7.0	726e	V S =	34	/ 5	-204
	~			As =	ft^2	static =	
,				$Qs = Vs \times A$	s × 60 s/m	•	
					•		
				Qs=	X	×60	
				Qs=	acfm		
	L	·		Qs=	dscfm		
		√∆P	=Ts=	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	62 01111		

FIELD DATA SHEET

Sample Type: MS/202 Plant: EMONDONE AFB

Operator: AND Ps. 310 Probe Length/Type: 2 6/2/25 Pitot#: Stack Diameter: Sampling Location: GPAPARAPT Exaust Run Number: E-50-51 Date: 6-25-07 Pretest Leak Rate: 002 cfm @ 10 in.Hg. Pretest Leak Check: Pitot: ____ Orsat: ___

5/0% land

Pump	(in. Hg)	,	7	3	3	9	7	6	σ	/8	12	13	2	1/6										
Dry Gas Meter Temp. Tru	Outlet		<i>8</i> 1	81	28	78	81	28	28	20	79	p2	79	54					4,					>
Dry Gas Met	Inlet		18	8	28	82	98	8	1,8	23	98	88	88	38						7				Tm = 87
Imninger	Temp. °F		65	63	. 29	95	56	5%	5.0	60	19.	h9	99	78	3		-			•				
ture °P	Filter		257	255	ትዓշ	254	252	253	253	252	282	252	252	252										-
Temperature °P	Probe		757	797	252	192	592	766	\ %	263	263	266	764	265									,	2
Stack	Temp (Ts)		214	711	717	118	121	n8.	机	V18	417	816	124	727										Ts = 71
]	Actual		2.0	2.0	3,1	3.1	3.1	3.1	3.(5.1	5.1	3.1	3.1	3.1										202
Hα	Desired		2.06	2.06	3.09	3.04	3 od	3.10	3.11	3.10	3.10	3,10	3.04	3.03									\	$=\frac{HV}{VH}$
Velocity	Head.		2.0	2.0	3.0	3.0	3,0	3,0	3.0	3.0	3.0	3,0	3.0	3.0.										p=1,679
Gas Meter	Reading	315.638	380.31	384.75	389.26	393.99	398.96	19.50/	408.53	413.36	418.52	422.99	428.21	432.633						•			>	- dV > 560
Clock		1520			-	15 40	15 45		1535	00 91		01 99	(5) 97	7 0291										28697 = mVA
Sampling	Time	0	es.	00	15	2	25	20	35	04	45	20		09										٧
Traverse	Number			•																				

BWS = SHB

acfn = 876.0

dsch = 368,5

ISO = 100.3%

Plant £	Imendor	f		Run No. E	-50-5- 0174-0013-0 =30230	
Date 6/	25/02	Sample Box No.	513-2	Job No. 3	0174-0003-0	کہ تھت
Sample Lo	ecation Gen-1	Exhast-	50%	Filter No8	= 30230	
Train Prep	arer DA			· · · · · · · · · · · · · · · · · · ·		· .
Sample Re	covery Person	DA			·	
Comments	·					
Front Half		•	•			
Acetone		Liquid				
Container :	No	Level Marked _	Sealed _			
Filter						
Container l	Νo	•	helpe2			
Description	n of Filter					
Samples St	ored and Locke	≈d				
Dampioo Di	orve and Louis					
Back Half/	Moisture					
Container 1	No					-
Liquid Lev	el Marked	· · · · · · · · · · · · · · · · · · ·	Sealed			-
		T 177 1	T	Wainht (ma		
Imp. No.	Contents	Initial Vol	T . 1.1.1	Weight (gra		-
1	No Hand	(ml) ·	Initial		Net	_
	DETTO	100	717-0	770.0	53	\dashv
- 2	- 11	100.		725.9	-1/3 /	_
3			677.3	642.5	5 2 /	_ .
4	56	250	929.7	947,0	11.3	
5						
6						
Ţ	otal				68.2	

Description of Impinger Catch:

FIELD DATA SHEET

Run Number: E-50-5-2 Date: 6-25-02 Pretest Leak Rate: 006 cfm @ 10 in.Hg. Pretest Leak Check: Pitot: Orsat: Sampling Location: General Excust Plant: FM PN dorf AFB

Operator: 438 Ps: 72.0 O2: 12.8 Probe Length/Type: 2'6/455 Pitot#: Sample Type: #5/202

As: Stack Diameter: 4^N

Y: 1,001 AH@: 1.115 Post-Test Leak Rate: ,606 cfm @ 12 m.Hg. Orsat: _Thermocouple #: Filter #: PC021 Post-Test Leak Check: Pitot: Assumed Bws: 4 Meter Box #: 1 Nozzle ID: 201 50% (bad)

YW.

																 					 		_
Pump	(in. Hg)		4	S	S	9	2	∞	9	9	1	01	12	2									
т Тетр. Тт	Outlet		17	77	հ	ባባ	200	11	బ్ద	ನಿ	18	78	28	49								-	1
Dry Gas Meter Temp. Tm	Inlet		74	18	98	83	85	85	88	%	86	98	98	86					,				
Tmninger	Temp. 'F		79	57	29	6.3	hy	49	99	99	89	1.9	6 4	71									
ure °F	Filtèr		258	255	255	253	251	252	250	253.	282	253	252	252	,								
Temperature °F	Probe		245	253	182	132	792		282			751	283	252									7
Stack	Temp (Ts)		729	722	727	724	127	727	125	425	729	131	127	ી3 ^ન	•								
	Actual		2.2	2.1	2.1	2.(2.1	1.2	2.1	2.1	2.1	2.1	2.1	21									2
HΦ	Desired		2.23	2.14	2.19	2.15	2.UL	2.15	2.15	2.15	2.15	2.W	2.15	ን ነ የ									
Velocity	Head.		2.2	2.1	2.1	2.1	2.1	2.1	7.7	2.1	2.(2, (2.1	2.1									×
Gas Meter	Reading	433.013	431.75	44.45	445.16	449.99	454,04	451.82	461.73	465.48	469.19	493.65	477.52	481,493				-					Ľ
Clock		1645	1650			1705	NIN	1915	1720	(725)		1935	1940	गुफ्ट									70.1
Sampling	Time	0	5	Q	15	70	2.5	30	35	ηÓ	4,5	90	55	09									
Traverse Point																							

AVm=48-460° √Δp=1,4510 ΔH= L. 11 Ts=72.1.

Ash = 120 299

Ash = 48.460° √Δp=1,4510 ΔH = L. 11 Ts=72.1.

Ash = 120 299 13mm = 55 V ackn = 757.9

Plant Z	Townlar F	AFB		Run No. Z	-50-5-2				
Date 6	25/02	Sample Box No. 5/3-3 Job No. 30/74,0003.00:							
Sample La	ocation Gene	rator Butter	r-50/6	Filter No. PC02/					
Train Prep	arer	Ph							
Sample Re	covery Person	DA			· ·				
Comments	·	Ph DX Method 5	1202 tozi	'n .					
Front Half	•								
Acetone		Liquid			•				
Container	No	Level Marked	Sealed						
Filter									
Container.	No		Sealed						
Samples S Back Half/	tored and Lock	ed							
Liquid Lev	el Marked	· · · · · · · · · · · · · · · · · · ·	Sealed						
Y		Initial Vol	Weight (gra	grams)					
Imp. No.	Contents	(ml)	Initial	Final	Net				
1	# H20	100	717.0	764-9	47.9 1				
. 2	1110	100 .	722.7	7101)	-12.6				
3 ,	Empto	_	6237	626.6	2.9 %				
4	Differe led	234	8670	888.1	21.1				
5									
6			٠.		,				
*	[otal				50.21				

Description of Impinger Catch:

FIELD DATA SHEET

Plant: Flmpn/lovf AFB
Sample
Sampling Location: Qentralby Exaus
Run Number: 25-2-2
Pretest Leak Rate: 26 cfm @ 10 in.Hg.
Pretest Leak Check: Pitot: Orsat:

Sample Type: #2/202_ Operator: 1050_ Pbar: 24,90 Ps:

CU₂: O₂: Probe Length/Type: 2 dws Pitot#: Stack Diameter: 411 As:

50% (OA)

Nozzle ID: 10 Thermocouple #:

Assumed Bws: 4 Filter #: 230227

Meter Box #: 7 Y: 1.00 AH@: 1.175

Post-Test Leak Rate: 1046 cfm @ 7 in.Hg.

Post-Test Leak Check: Pitot: Orsat:

Pump	(in. He)		_		2	8	7	7	କ୍ଷ	S	5	9	7	5								
Dry Gas Meter Temp. Tm	Outlet		81	78	81	986	19	79	79	ρq	0%	80	00	80							,	63~
Dry Gas Met	Inlet		bb	<u>@</u>	84	98	18	88	88	88	88	80	<i>જુ</i>	89				,	٠.			Tm = 0
Imninger	Temp. 'F		58	ઈવ	99	54	55	56	59,	58	5.4	61	59	19							\	2
Temperature °F	Filter		754	258	48Z	1257	25	252	151	7.5)	282	757	251	252								V Paus = 5, 4V
Tempera	Probe		711	254	252	256	754	157	251	757	253	757	253	252								2/2
Stack	Temp (Ts)		130	138	m38	133	73/	131	08/1	429	434	124	726	726	-							3 1 Ts = 731
	Actual		2.1	2.1	2.1	2.1.	2,1	2.1	2.)	2,1	2.1	2.1	2.1	2,1							,	7 1 6
ДΦ	Desired		2.13	7.12	2.12	7.4	2,[5	2.15	25	2,15	2.14	2,15	2.16	2.16							/	$\sqrt{\Delta H} =$
Velocity	Head.		2.1	2.1	2.1	2.1	2.1	2.	7.1	2,1	2.1	2.1	2.1	2,1							,	6449 = d
Gas Meter	Reading	481.472	486.49	489.99	494.13	491,89	502,09	24.908	510,44	5/4.29	51M. AG	522.19	526.24	530.375							,	8.403 VED =
Time		1800		0/8	18 15	1820				0 4 8)	18 45		1855	19 00								~E 9/8/4 = MAV
Sampling	Time	0	ഗ	0)	15	20	25	30	35	0h	む	20	95	90				,				7
Point	Number																					

Plant _	(men hort			Run No. E-	50-M5-3		
Date 6/	26/02	Sample Box No	98.5	Job No. 20	30227		
Sample Lo	ocation Gear	1 -		Filter No. 8	30227		
Train Prep	arerAll-	٤^					
Sample Ra	covery Person	Blolde					
Comments							
Front Half	•						
Acetone		Liquid					
		Level Marked	Sealed				
Filter							
Container	No		Sealed _	•			
		•			•		
Description	n of Filter						
Samples S	tored and Lock	ed					
Back Half/							
Container l	No						
Liquid Lev	el Marked		Sealed				
		Initial Vol		Weight (gran	ns)		
Imp. No.	Contents	(ml)	Initial	Final	Net		
1	DIHO	100	128.8	798.6			
- 2	11	100	739,9	711.7	28,2		
3		1 = -	633.4	634.6	12		
4	G16.	250		01.111	14,3 V		
5	4	78	847.1	861.4	1115		
· · · · · · · · · · · · · · · · · · ·				5			
6							
	Γotal				57.12		
Description	of Impinger (Catch: 1st in	einer clar	da			

919-552-3991

GAS VELOCITY AND VOLUMETRIC FLOW RATE

	Diant. /	Elmendorf	AFB	•	Date:	6/26/02				
	0 11	T	1.5	Out Time						
	Run #	75%	-	Op	erators: Nu	176				
	Barometri	c Pressure, in	.Hg: 2	3,90 Sta	tic Pressure, in	.H ₂ O:				
	Moisture.	%:	Molec	ular wt., Dry:	Pitot Tu	be, Cp: 0,99				
	Stack Dim	ension, in. D	iameter or S	ide 1:3 "	Side 2:	H ₂ O: be, Cp: <u>0.99</u>				
	Wet Bulb,	°F:		_ Dry Bulb, °F: _		_	•			
	Pitot #		Therm	_ Dry Bulb, °F: _ ocouple #		-				
	Traverse	Velocity		$Md = (0.44 \times \% C)$	$(0.32 \times \%)$	$(0.2) + (0.28 \times \% N_2)$	·			
4/26	Point	Head	Stack	·						
@	Number	in.H ₂ O	1	$Md = (0.44 \times) +$	$-(0.32 \times)+(0.32 \times)$).28×)				
6	1	9.7	789	Md =		-1.10 =-2.5	"			
	2	9,9	790	W V. J. (%	H_20	$\frac{H_20}{00}\right)^{5/4} = -Z_{-} \le$				
	3	10,0	787	$Ms = Ma \times 1$	100	00				
	ł	10,0	792	() (1	•			
	2	9.D	785	$Ms = () \times (1$	$-\frac{100}{100} + 18 = \frac{1}{1}$	00				
	3	9.3	705	· \	100/ (1	007				
			·	Ms =		, AP=10.27	Ts= 813			
27 e		10,5	812	$Ts = {}^{\circ}F$	= °R	(°F+460) SP=10.27 Static = -2.0				
	2	10.7	613	S.P.	/	11 + 7.0	xx 4			
	3	10,8	813	$Ps = Pb + \frac{13.6}{13.6} =$	()+ 1	3.6				
	1	10.5		Ps = in						
	2	9,5		PS = 111	. ng					
	3	9.6	815							
,		<i>a</i> ,		$\sqrt{\Delta P} =$						
/27 @		7/	828	$Vs = 85.49 \times Cp \times$	Ts(°)	<u>R)</u>				
1740	2	7./	650	$VS = 63.49 \times Cp \times C$	VAL A V Ps×1	M s				
۲,	3	9.9	83/) (
			727	$Vs = 85.49 \times ($)×($\int_{\mathcal{U}} x = -2.00^{4}$				
	2	9,0	92/	$Vs = ft^2$		1, -2 -04				
		175	30/	As = ft	2 State	12 = 2.00				
-#:33 7				ns J.						
				$Qs = Vs \times As \times 60$	s/m					
				Qs =	× ×	<60				
				Qs =	acfm		,			
	<u> </u>	- TAD	=Ts=	Qs=	dscfm					
		, ν Δr	1-12-	1						

FIELD DATA SHEET

Sampling Location: CHANGE EXAUST

Run Number: \$\overline{\alpha}\tilde{\beta}\tilde

Sample Type: ns/202 Operator: full 5
Pbar: 19.40 Ps: -1.5
CO₂: 6.7 O₂: // 8
Probe Length/Type: 26/16/5 Pitot#: 1//
Stack Diameter: 4" As:

Nozzle ID: 180 Thermocouple #:
Assumed Bws: 4 Filter #: 530 2.19
Meter Box #: 1 Y: 100 ΔH@: 1.175
Post-Test Leak Rate: 00 C cfm @ 10 in.Hg.
Post-Test Leak Check: Pitot: Orsat:

												_	_			 		 			 	 		_
Pump	(in. Hg)		-	,		7	2	~	e	N	S	9	9	7										
Dry Gas Meter Temp. Tm	Outlet		L 9	67	67	89	જ્9	89	69	69	0%	7.	1(22										75
Dry Gas Met	Inlet		67	83	69	16	23	SJ SJ	եև	81	74	gs Qs	91	ã					,	,				Tm
Impinger	Temp. 'F		54	51	Θh	<i>bh</i>	64	50	ع	19	78	40	55	56			-							
ture °F	Filter		253	282	C 57	197	283	152	552	252	757	263	253	752										
Temperature °F	Probe		253	252	292	253	251	2,51	252	253	782	252	282	251										173
Stack	Temp (Ts)		742	774	778	182	783	788	786	785	787	184	789	788	-									$Ts = \int 9$
	Actual		67	1.8	6.7	8.7	87	1.8	8,1	8,1	2.0	છં./	7,8	1.8										18.1
Нα	Desired		1.85	1.81	087	1,80	ටු වූ	1.00	1.81	1.8(7.83	181	187	1.87									7	17, AH =
Velocity	Head.		2.99	2.99	2.99	7.99	2.99	2.99	2.99	2.99	2.99	29.9	2.99	2.99										JAp = 1.7292
Gas Meter	Reading	530.634	8H,53	538,58	542,09	545.98	549.38	553.06	556.8a	560.34	563.91	S68.10	571,59	575.013								·		4 Vm = 4 4 199 √A
Clock		(035	oha	649	1050	1055	00//	1/05	01 11	1115	1120	1/25	1130	1/35									,	M=mV
Sampling	Time	0	9	/ 0/	15	20	25		35	40	105		85	09										7
Traverse	Number																							

150 : 100. L

dsdr = 368.6

actu = 927.0

19.5 - cmg

SAMPLE RECOVERY DATA

Plant _	Inen dort	<u>^</u>		Run No. <u>E</u> -	75-5-1
Date <u>12/1</u>	070	Sample Box No.	58.1	Job No 30	174.0803.002
Sample Lo	ecation Gen.	1-Exhast-		Filter No8	30219
Train Prep	arer DA				
Comments	·				
Front Half Acetone Container	•	Liquid Level Marked	Sealed		
Filter					
Container :	No		Sealed		
Description	n of Filter				
Samples St	tored and Lock	ed			
Back Half/	Moistrae				
			Sealed		
		Initial Vol		Weight (gran	ms)
Imp. No.	Contents	(ml)	Initial	Final	Net
1	DIPHO	1.00	730-6	800.8	70.2 /
- 2	1)	100	130.7	703.7	-77.0
3			626.7	626.6	-0.1
4	56.	250	863-6	875.0	11.4
5					
6					Ì
7	Cotal				54,5
					

Description of Impinger Catch: _

FIELD DATA SHEET

Plant: E man day f Aff
Sample Type:
Sampling Location: General Method
Run Number: E-75-5-1 Date: 6.27-02
Pretest Leak Rate: -00/cfm @ /Z in.Hg.
Probe Lea

Pbar: 28.70 Ps. - 3.6"

CO₂: 6.6 O₂: 2.6 Probe Length/Type: 2'64 Prot Stack Diameter: 4.8:

Nozzle ID: 0./80 Thermocouple #:
Assumed Bws: 5 Filter #: 2000
Meter Box #: 7 Y: 1.00 AH@: 1.775
Post-Test Leak Rate: 2005 cfm @ 10 m.Hg.
Post-Test Leak Check: Pitot: Orsat:

			•						Γ.		ı.		1	T		γ	1	1	т-	<u></u>	7	T	1		T	1	т
Pump	(in. Hg)	9	W	r	7	77	ß	9	9	~	3 0	000	0	6					,								
r Temp. Tm	Outlet		23	73	13	ħΔ	かっ	台	74	75	75	75	76	76												^	10
Dry Gas Meter Temp. Tm	Inlet		73	35	48	જ	á	28	83	8	83	84	8%	84							7						Tm = 77
Tonninger	Temp. 'F		ice	56	,	35	から	25	88	45	775	55	52	56				,									Bus 5.7%
	Filter		256	255	253	757	252	152	252	252	152	252	252	251												1	Bus
Temperature °F	Probe		240	283	252		152	252	858	753	257	252	252	251													813/
Stack	Temp (Ts)		808	518	915	9/8	813			608	118	518	918	0/2	•											,	$\overline{Ts} = \underline{\theta}$
	Actual		77	1.7	14	1.7	1.1	1.7	1.7	1.7	1.7	17	1.7	1.7													1.70
Ησ	Desired		1.7	1.68	1,72	1.12	1.13	(43	1.7	1.7	1.7	27	(.)	1.7													$\frac{3}{\sqrt{MH}} = \frac{1}{2}$
Velocity	Head.		2.9	2.9		2.9	2.A	2.9	2.9	2.9		4.9	2.9	2.9												-	= \$.703
Gas Meter	Reading	701.787	205.64	709.12	712.87	76.49		723.7	727.2	730.7	734.3	738.7	941.5	745,152				·								/	43,365 VAP =
Clock		(523	_			1543	1548		1558			1613		67.91	•												$\Delta V m = 4$
Sampling	Time	0		10	5)	n	75	30	35	ço	<i>بر</i> ر	50	8	09							7						V
Traverse		0	-	2	`	7	5	ŋ	7	9 00	4	ø)j	Z)													

4:23

Environmental Quality Management, Inc.

SAMPLE RECOVERY DATA

Plant E/	rendent	AFB		Run No. <u></u>	75-5-
Date 1/2	7/02	Sample Box No. A Fehana	88-5	Job No. 30	174.000 3.002
Sample Loc	ation Gen.	A paharst	-15/0	Filter No.	2/6020
Tanan Dana	mor 17 L	7.			
Sample Rec	covery Person	DAT			
Comments		· ·			
Front Half					
Acetone		Liquid			
Container N	No	Level Marked	Sealed		The second secon
Filter					
Container N	Vo		Sealed		
Description	of Filter				
Samples St	ored and Lock	æd			
Back Half/	<u>Moisture</u>				
Container 1	No				
Liquid Lev	el Marked		Sealed _		
		Initial Vol		Weight (gran	ns)
Imp. No.	Contents	(ml)	Initial	Final	Net /
1	DENW	100	730.2	761.8	31,6 1
- 2	11	100.	740.6	7517	11.1
3			633.2	634.6	14 V
4	56.	250	849,1	859.8	10.7
5					
6					110
r	l'otal				54.8
Description	ı of Impinger	Catch:			7

, a

Sample Type: \$\frac{1/20^4}{29.70}\$ Operator: \(\frac{L4}{24.70} \) Ps: \(\frac{2.5}{2.5} \) CO₂: \(\frac{C_2.7}{2.5} \) Probe Length/Type: \(\frac{7}{2} \) Color Stack Diameter: \(\frac{4}{2} \) As:

Nozzle ID: \$\langle \langle \rangle \r

Pump	(in. Hg)		4	EK)	7	7	13	6	9	7	. 00	0	6	11							
x Temp. Tm	Outlet		22	25	76	75	19	76	77	77	77	77	78	78							
Dry Gas Meter Temp. Tm	Inlet		00	28	76	76	18	83	78	800	85	58	88	500				7			
Tunnanger	Temp. °F		5	43	hh	8	2	12/2	47	47	47	47	47	4/8					•		
ure °F	Filter		253	258	252	252	252	252	252	252	252	25(152	252							
Temperature °F	Probe		238	251	645	352	252	252	253	252	751	727	252	253							
Stack	Temp (Ts)		8/6	617	264	762	815	न्दळ	618	819	809	813	624	128	•						
,	Actual		1.7	1.7	2.3	1,7	1.7	1.7	1.7	1.7	11	1.7	1.7	17							
Н	Desired		/.7	1.7	٤2	1.7	1.7	12	27	1.7	1.7	1.7	1.7	1.1							
Velocity	Head.		2.0	2.9	62	2.9	2.9	2.9	2.9	2.9	7.9	2.9	2.9	2.9						•	
Gas Meter	Reading	745.343	748.9	752.6	756.5	760.3	0392	76.25	0716	136	622	291.8	785.3	788795							
Clock		1642		~ 75 p)/	(108	[713	. 811)	1723	1728	1733	1738	1743	1748	1753			ŕ				
Sampling	Time	0	>	10	51	જ	32	30	58	oh	34	50	. 55	(00)							
Traverse Point	Number																				

State of Sta

NVm = 43.452V Δρ= 1.703 V dsn βυ 1:6.3

Ts= 786 / ac6 - = 91

F1016 :

750= 97.9

797

Tm =

SAMPLE RECOVERY DATA

Plant E	mendorf	AFB		Run No. E.	75-5-3
Date 4/	17/02	Sample Box No.	GB-2	Joh No Zo	174-0003-012
	cation Gene	1 Exhaut -		Filter No 8	30130
Sample Re	covery Person	Phila			•
Comments		5/202	dain		
• .			7		
Front Half					
Acetone		Liquid			
Container 1	No	Level Marked	Sealed		
Filter	.~	•	Contod		
Container I	No		Seared		
Description	n of Filter				
Samples St	ored and Lock	ed			
T)1 TT-15/) X = i -t				
Back Half/					
Contamer	.40.				
Liquid Lev	el Marked		Sealed		
rmquic 150 t					
	_	Initial Vol		Weight (gran	ns) -
Imp. No.	Contents	(ml)	Initial	Final	Net
1 1	2 the	(00	797	783.9	64.2
. 2	17	601	736.2	716.7	-19.5 V
3			636.6	636.4	-0.2
4	96-	700	881-8	897.5	15.7 V
5					
6			₹		
	l Cotal				60.le
		<u> </u>	1		102 -
Description	of Impinger (Catch:			- W 7 7 10

Environmental Quality Management, Inc.

GAS VELOCITY	A NITS	VALUE	<i>METERS</i>	ਦਾਰ	OTX7	D A	THE
Tran velatilit.	AND	VULUN	MEIKIC.	M N	A) YY	KA	II.

Plant:	Horydort	" AFB	Date: 6/26/02 Grantlet Clock Time: Operators: 8/6/76 29.90 Static Pressure, in.H ₂ O:
Sampling	Location:	Concrato	or Outlit Clock Time:
Run #:	100 %		Operators: Ple/TG
Barometri	c Pressure, in	.Hg: 2	29.90 Static Pressure, in H ₂ O:
Moisture,	%:	Molec	cular wt., Dry:Pitot Tube, Cp:9
Canala Dia	amaian in D	c	014. 1.
Wet Bulb,	°F:		Dry Bulb, °F:
Pitot #		Therm	
		- 	Oz = 11.7 \ Dz = 0.1
Traverse	Velocity		$Md = (0.44 \times \% CO_2) + (0.32 \times \% O_2) + (0.28 \times \% N_2)$
Point	Head	Stack	01 8,12 Bus = 5.5
Number	in.H ₂ O	Temp, °F	$Md = (0.44 \times) + (0.32 \times) + (0.28 \times) 4 \times 2.25$
	7.8	841	Md = . 75 = 200 840
Z	814	839	$M_{2} = M_{1} = \begin{pmatrix} 1 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$
3	8,2	842	$Md = (0.44 \times \% CO_2) + (0.32 \times \% O_2) + (0.28 \times \% N_2)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times) + (0.28 \times \% N_2)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times) + (0.28 \times \% N_2)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times \% N_2)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times \% N_2)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times \% N_2)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times \% N_2)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times \% N_2)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times \% N_2)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times \% N_2)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times \% N_2)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times \% N_2)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.32 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.28 \times) + (0.28 \times)$ $Md = (0.44 \times) + (0.28 $
	8.4	97	
Z	80	838	$Ms = () \times (1 - \frac{100}{100}) + 18(\frac{1}{100})$ wife 296.7
3	7-9	827	100) (100) 4242 877
			Ms = 272
1	8.2	-851	$\frac{Ms = \frac{dshw = 332}{Ts} = ^{\circ}F = \frac{dshw = 332}{ ^{\circ}R(^{\circ}F + 460) \frac{SP = 8.1}{SP = 2.84}}$ $= Ps = Pb + \frac{S.P.}{13.6} = () + \frac{13.6}{13.6} $
3	8.5	851	S.P. 75 +85/
3	8.3	850	$Ps = Pb + \frac{311}{126} = () + \frac{126}{126} = 7.8$
1	7.8		
2	7.7	852	Ps = in. Hg
3	Bio	852	<u></u>
			$\sqrt{\sqrt{\Delta P}} =$
+			
3	10,5	833	$V_{S} = 85.49 \times C_{p} \times \sqrt{\frac{T_{s}(^{\circ}R)}{P_{s} \times M_{s}}}$
3	10.7	1 6 41	property and the second
1	10.8	826	$Vs = 85.49 \times () \times () \times $
2	Not	1 0 30	
3	11.0	83/	$-Vs = ft^2$
	10.8	832	$As = ft^2 \qquad Ps = -2.6^{\prime\prime}$
			$Qs = Vs \times As \times 60 \text{ s/m}$
			<u></u>
			$Q_{s} = \times \times 60$
			Qs = acfm
	JAP		

FIELD DATA SHEET

Plant: £|Mpndorf AFB Samy Samy Sampling Location: Generaby Exaust Run Number: E-100-9-1 Date: 6-26-02 Pretest Leak Rate: .004 cfm @ 10 in.Hg.

Pretest Leak Check: Pitot: ___Orsat: 6717.062

Sample Type: #\square Operator: Awb
Pbar: 29.40 Ps: -3.3'
CO₂: -7.0 O₂: 11.6
Probe Length/Type: \$\mathcal{L}\text{chi2}\text{ptot#}\$: All As:

100%/000

Nozzle ID: 180 Thermocouple #:
Assumed Bws: 4 Filter #: 83.0311

Meter Box #: 1 X: L.00 AH@: L715

Post-Test Leak Rate: 04 cfm @ 10 in.Hg.
Post-Test Leak Check: Pitot: Orsat:

The		17.75	700.91					•					[
Point	Sampling	Time	Gas Meter	Velocity	Н		Stack	Temperature "F	ture °F	Ympthøer	Dry Gas Mei	Dry Gas Meter Temp. Tm	Vacuum
Number	Lime		Reading	Head	Desired	Actual	Temp (Ts)	Probe	Filter	Temp. °F	Inlet	Outlet	(in. Hg)
	0	0701	187-54-6										
	ડ	1025	医"化"种种	1-3-20	98.1	1.9	028	25A	254	55	1.9	99	_
	01	1630	583.49	3.2	1.85	6.1	128	155	292	49	67	99	\
	1,5	1035	20.188	3.2	1.85	6'1	828		760	hh	88	99	
	22	03.01	891.16	3,2	1.86	b7	828	251	252	84	7.1	63	8
	25	sh o)	594.34	3.2	1.9%	1.0	826	767	842	84	73	69	t
	30	10.50	59836	3.2	1,8%	1,0	878	282	249	84	24	67	S
	35	1055	601,90	3,2	1.8%	1.0	825	125	h87	84	96	89	9
	ş	1600	606.19	3.7	1.87	1,0	827	152	h87	84	11	64	6
	45	1/05	604,29	3.2	1.8%	10	834	252	252	84	18	69	ഞ
	50	0/ //	613.29	2.2	186	1.9	629	253	bh2	84	68	20	Ø
	35	1/15	616.96	3.2	98.1	1.0	1841	797	252	47	80	62	8
	99	1120	620.270	3.2	1,86	1.9	0718	253	787	48	200	16	10
						,	-))
											·		
		•											
											7		
							_	\					
		$\Delta Vm = 1$	Vm=44.458 V	VAP = 1.7899 V	IN VAH =	67	Ts=87	200			Tm = 7	>	

8ws ~ 7.9

acton : 976.4

dsch = 3650

Pro 7 1007

(X)

Plant: ElMend of AFB
Sampling Location: Clevera Vivex and Phan Run Number: E-100-5-2. Date: 6-21-67
Pretest Leak Rate: 4009 cfm @ 10 in.Hg. Prot Pretest Leak Check: Pitot: 11/4. Orsat: 4/4. Stac

Sample Type: 44.70 Operator: 45.7 Sample Type: 44.70 Ps: 2.6 CO₂: 11.6 Probe Length/Type: 276455 Pitot#: AIK Stack Diameter: 41. As:

(60% foly)

Nozzle ID: 180 Thermocouple #: 2-7

Assumed Bws: 4 Filter #: PCOZZ

Meter Box #: 7 Y: 1.00 AH®: 1.15

Post-Test Leak Rate: .002 cfm @ 15 in.Hg.

																						•	
Pump	(in. Hg)		7	7	J	0	6	//	7	7/	N	14	111	7/									
Dry Gas Meter Temp. Tm	Outlet		7	26	11	71	72	72	75	72	72	73	93	43									٠
Dry Gas Met	Inlet		1/	2(74	78	79	62	29	26	29	Bo	64	29					7				
Imainger	Temp. °F		×	6	5.5	54	58	5,5	56	57	8	го. N	59	29									
ture °P	Filter		252	255	252	252	252	252	752	152	253	253	253	283								·	
Temperature °F	Probe		457	152	752	252	757	252	252	252	252	251	252	250									
Stack	Temp (Ts)		838	843	852	850	853	853	2768	843	843	158	848	854	-								
	Actual		1.9	67	67	67	67	1.4	37	37	124	1.4	h7.	1.4									
Η	Desired		98.1	1.86	787	1. Ele	1.06	1.4	74	47)	1.4	14	h.1	1.44									`
Velocity	Head.		3.20		3.20	3.60	3, 20	2,5	2.5	2.5	2.5	2.5	2.5	2.5									
Gas Meter	Reading	179.029	624. Ce	628.2	632.8	(236.1	639.2	643.0	6460	1.649.1	652,3	655.43	658.95	661.968)		,			,			>
Clock	2	1308		5/2/		1225		5421	1240	5321	1250	1255	1300	1305									
Sampling	Time	0	5	Ø	15	Z	25	30	35	B	ζħ	20	55	09									
raverse	Number																					_	

550 = 97.4%

dsctn=343.6

actn: 917.8

 $\sqrt{\Delta p} = 1.6677\Delta H = 1$

AVm=L10.997

Gws - 6.0

TS= 848

Tm = 75

Environmental Quality Management, Inc.

SAMPLE RECOVERY DATA

Plant <u>E/</u>	neplact	Sample Box No		Run No. <u>£-1</u>	10-5-1 24/2003 80.3-
Date_10/2	6/02	Sample Box No	56-5	Job No. <u>30/</u>	74.000 3.00 2
Sample Loc	cation <u>&w</u>	on the author	100%	Filter No	8303//
Train Prepa	rer	Piklow			
Sample Rec	covery Person	D. Alle			
Comments		D. All- M5/202	+sai a		
Front Half		•			
Acetone		Liquid	•		
Container I	Йо	Level Marked	Sealed		
Filter					
Container I	No	•	Sealed		,
Description	of Filter				
Samples St	ored and Lock	ed			
Back Half/Container I					
			Cooled		
Liquid Lev	el Marked		Sealed		
		Initial Vol		Weight (gran	ms)
Imp. No.	Contents	(ml)	Initial	Final	Net
1	DX H20	100	723.7	803-0	79-3/
. 2	DF H20	100 .	736.8	7/3.2	-73.6 V
3	_		429.3	6 33.	3-8
4	Silla hel	250	828,0	849.	21.10
5					
6					740 6
	Total			1	80.6

Description of Impinger Catch:

Environmental Quality Management, Inc.

			ECOVERY DA		190
Plant	loundorf	AFB 1		Run No. E	- 75-5-2 277.0003-002 2022
Date 6/21		Sample Box No.	> 13- 7	Job No.	0603-002
Sample Loc	cation Geni	Frhast - 77	20 100/0	Filter No.	NOLE.
Troin Prend	rar () L				
Comments	covery Person	DA			
Front Half					
Acetone	_	Liquid	0-7-4		
Container I	NO	Level Marked	Seated		
Filter	•	ė	**		
Container N	٧٠		Sealed		
Contamor					
Description	of Filter				
Back Half/	<u>Moisture</u>	red			
Liquid Lev	el Marked		Sealed		
		Initial Vol		Weight (gran	ms)
Imp. No.	Contents	(ml)	Initial	Final	Net /
1	DP 4-0	100	721-1	779-7	58-64
. 2	11	100.	720,2	701.2	
3			624.5	626.4	1-91
4	56.	750	888.1	901.7	13.6 V
5	70.	130	0001	, - , -	
6					/
	l Cotal				55-1
•	· VIIII			<u> </u>	
Description	of Impinger	Catch:			;

FIELD DATA SHEET

Plant: Elmendorf AFB
Sampling Location: Apple Exaust
Run Number: E-100-5-3 Date: 6-27-02
Pretest Leak Rate: 1004 cfm @ Din.Hg.
Pretest Leak Check: Pitot: Orsat:

Sample Type: 14.6 | 2002. | 1.08 | 20.0 | 1.08 | 2.00.0 |

Nozzle ID: 180 Thermocouple #:
Assumed Bws: 4 Filter #: 830 3/2

Meter Box #: 7 Y: 400 AH@: 4.75

Post-Test Leak Rate: 2002 cfm @ 40 m.Hg.

Post-Test Leak Check: Pitot: Orsat:

		Million	3		T	1	1	т	T		T	Т			T	т-	T	T	T	T	T	7	T	T-	T
Pump	(in. Hg)		7	,	7	a	7	N	•	7	1	00	8	0											
r Temp. Tm	Outlet		24	77	93	93	93	93	72	72	25	72	73	73											
Dry Gas Meter Temp. Tm	Inlet		13	47	63	29	100	18	73	73	X	77	80	S S S S S S S S S S S S S S S S S S S					-		*				
Imninger	Temp. 'F		52	3	35	رگئ	51	33	ee	29	57	00	85	00								,			
ture °F	Filter		256	752	482	251	254	252	253	552	252	252	252	252											
Temperature ° F	Probe		283	752	252	2,50	251	253	255	254	8.52	558	121	150											
Stack	Temp (Ts)		856	865	458	268	849	861	1		843	158	834	829	_										
7	Actual		h'i	1.4	1.4	h'/	6'1	ا'ط	7.4	7.4	7.4	14	1.4	1.4											
Ηo	Desired		1.43	1,43	1,44	1,44	1.45	1,43	4%	7'4	1.4	1.4	1.4	114											
Velocity	Head.		2.5	2.5	25	2,5	2.5	2.5	2.5	2,5	2,5	2.5	8.5	2.5											
Gas Meter	Reading	662.240	66.88	668.89	612.15	675.36	678.7a	682.0	685.5	688,6	8/10	695.1	1698.4	701563											
Clock		1325	1330 (1335	040	345	0320	(335	00 H	7405	0/ //	1415	1420	1425											
Sampling	Time	0	2	0)	15	B	25		35		45	B	55	09											
Traverse	Number																								

lesset st

1/11/ Tm=_

Ts= 8411

actions glotice

12.9 - 6.5 i

4Vm=29131

736:05t

SAMPLE RECOVERY DATA

Plant &	Tomendorf	AFB	``````````````````````````````````````		Run No Job No	E-10	0-5-	3
Date 6/	27/02	Sample Box	No. 57	/د	Job No	30174.	0903.E	<u>ව ව</u>
Sample Loc	cation <u>Ou</u>	veritor	ante	100%				
Train Prepa	rer	nll						
Sample Rec	covery Person	DA	<u> </u>	*				
Comments	cation		45/202	· House	<u>ν</u>			
Front Half			,					•
Acetone		Liquid						
Container N	No	Level Mark	ed	Sealed				
Filter								
	No			Sealed				
~	of Filterored and Lock Moisture							
Container 1	No							
Liquid Lev	el Marked			Sealed				
		Initial V	701		Weight ((grams)		
Imp. No.	Contents	(ml)	-	Initial	Final		Net	
1	DI HLO	100		726.2	793		,7.1	
- 2	D1 H20	100		731.2	7051		26,2	/_
3	Emply	—		1026.4	625.2		1.2	. /
4	Silica bel	250		855.0	873.8	- 1	8,2	V
5						`		
6								
7	rotal [27.9	

Description of Impinger Catch:

Sampling Location: General Purtler Run Number: E-101/640ate: 1/25/09 Plant: 6/ worderf AF P.

Pretest Leak Rate: a.k. cfm @ Zin.Hg.
Pretest Leak Check: Pitot: ____ Orsat: ____

Sample Type: Ahur Operator: CO. Probe Length/Type: 2'62" Pitot#: 1/4
Stack Diameter: 4" Ann

K= 1:691

Y: 1,004 AH@: 1.6% Post-Test Leak Rate: 2051 cfm @ 40 in.Hg. Post-Test Leak Check: Pitot: ____ Orsat:___ Nozzle ID: Q/1/ Thermocouple #: Assumed Bws: 4 Filter #: Meter Box #: 4 Y: 1,004

			0.8 -1	0, th	۵ ع. و																					
Pump	(in. He)	3	_		-	_		,	1				_	-		-	-									
z Temp. Tra	Outlet		99	66	66	67	67	100	24.4	6	7(71	71	75	72	75	72	23	26	72	73	hL.				
Dry Gas Meter Temp. Tra	Inlet		6	100	80)	72	24	22	ab	41	- i	73	52	77	56	72	75	46	76	29	18	82				$T_m = \int$
Imninger	Temp. °F		ダア	47	46	50	20	25	///	3,	200	54	56	65	59	A CONTRACTOR	56	55	88	1	10	29	•			
ture °F	Filter		250	632	152	250	250	250	20	1/2	220	250	628	052	250	246	251	646	250	250	250					
Temperature °F	Probe		052	252	250	250	250	250	260	250	2	251	248	250	248	25/	253	151	251	250	251					1
Stack	Temp (Ts)		960	430	430	430	437	440	quit		24/	348	548	645	625	7/6	220	219	816	414	516					$\overline{Ts} = \frac{1}{\sqrt{s}}$
	Actual		9%	87	8%	13	81	87	1 83	,	20,	1,6	16	16	77	2,3	2.3	2.3	2.3	2,3	2.3					1.36
ΗV	Desired		9)'/	87	18	6.8	87	8:1	8 /	0,	011	1,6	16	1/6	1.6	2.3	23	2,3	2.3	2.2	2.2					= HQ
Velocity	Head.		181	187	181	1.81	1.81	187	181	0/	ail	9,	99	18	1.8	3,0	3.0	3.0	0'8	3,0	0120					152 = 427
Gas Meter	Reading	686.373	0:00	0460	697.4	700.9	2050	768.5	717.7	1000	1.6.5	717.5	722,9	726.5	730,383	734.0	738.4	743.3	746,6	750.9	745.34					3
Clock Time		10520	0735 (0740	0745	0220	0755		133	+-	();	144		1152	1157	1536	1,5,1	74.51	1551	1556	1601					$\Delta Vm = 43$.
Sampling	Time	0	3	0/		20	25	30	24	Z,	2	K.	20	58	69	65	2	36	00	88	90	,				
Traverse Point	Number		~	2	3	4	S	و	-		1	~	٦	17	و		٦	7	۱-۷	.d	e					
			·	1	<u>-</u>		- Job)	•	17	i 31	127	\ \frac{1}{6}	, e (~g	<u> </u>	I	7,7	9	1007	13.	200					

Plant: L'under AFB Sample Type: My Sampling Location: Grant My Pbar: 20.7

Run Number: L'oyl-Cy Date: 4/24/02 CO2: 3

Pretest Leak Rate: 200 cfm @ L'hn.Hg. Probe Length/T Pretest Leak Check: Pitot: __Orsat: ___ Stack Diameter:

le Type: 444 Operator: 44. As:

Nozzle ID: ©, 19/1 Thermocouple #:

Assumed Bws: Filter #:

Meter Box #: Y: (O M A H @: (Le q Post-Test Leak Rate: (P) cfm @ 10 in.Hg.

Post-Test Leak Check: Pitot: Orsat:

Pump	(in. Hg)		4		7	2	h	٦													
Temp. Tm	Outlet		00	89	89	80	20	70													
Dry Gas Meter Temp. Tm	Inlet		89	89	20	7.38	77	28								7					<u>Tm</u> =
Thomas	Temp. °F		25	14	2 h	47	51	N													
ure °F	Filter		250	152	0.52	250	152	555													
Temperature °F	Probe		542	255	152	152	249		1											ì	
Stack	Temp (Ts)		896	776		186	786	9.86													Ts =
-	Actual		2,2	7.32	1.1	2.2	2'2	2.2													! .
Ησ	Desired		2. (7	2.16	31.2	2.75	2.16	51.2		,											$\Delta H =$
Velocity	Head.		12.99	662	66-2	2.99	2,99	•	2.99												$\Delta \Delta p =$
Gas Meter	Reading	755543	1.636	763.8	8272	772.3	277.0	. APP	779.983												الم
Clock		1035		Shol	0501	1055	1100	5ab1										·			$\Delta Vm =$
Sampling	Time	90	,	00/		0)/	116														-
Traverse	Number		_	2	£	4	4	, 9											-		

SAMPLE RECOVERY DATA

Plant <u>E</u>	mendont A	FB		Run No. <u>E</u>	-10011 - Comp
Date 6/2	4/02	Sample Box No.	HSB-3		174.0003.002
Sample La	ocation _ Gove	tor Dutlet		Filter No	NA
Train Prep	oarer	2/4/d- Rhold	g ·		•
Sample Re	ecovery Person	Khlel	<u>e</u>		
Comment	S				
Front Half	;				
Acetone		Liquid			
Container	No.	Level Marked	Sealed		
<u> </u>					
Filter					
Container	No		Sealed		
~	A 7747	:			
Description	n of Filter	·			
Samples S	tored and Locke	≈d	·		
Back Half/	Moisture				
Container 1	No				
Liquid Lev	el Marked		Sealed		
		Initial Vol		Weight (gran	ms)
Imp. No.	Contents	(mI)	Initial	Final	Net
1	DNPA	180	720.2	769.4	49.2
. 2	DNPH	100	727.5	759.6	32./
3	DNPH	100	714.4	722.4	8.0
4	Eilien bel	250	833./	855.7	22.6
5					
6					
7	Cotal				111.9
		d			
Description	of Impinger C	atch:	•		4

Company: Elweuderf AFB Date: 6/25/02	City: Anchorage, AK
Date: 6/25/02	Location: bonneter Outler
Time:	Run #: <u>E-0030 - Com</u> ?
Meter #:	Y-Factor: 0.9766
Barometric Pressure, in Hg: 29.90	Operator: Na
Ambient Temperature, °F:	Purge Time:

Vacuum Leak Check DataInitial, in.HgFinal, in.HgTime, min.Pre-test:25)Post-test:

	Clock	Meter		Dry Gas		
Sample	Time,	Volume,	Rotameter	Meter Temp.,	Vacuum,	Probe
Time (min)	(24-hr)	(liter)	Setting	(°F)	(in.Hg)	Temp, °F
0	0732	6128,53	0.4	63 63	l	24/
	0737	6130.7	0.4	64 64		239
. 10	0742	6132.2	0.4	64 64	1	240
15	6747	6/33.5	0.4	65 65		24/
20	6752	6135.0	0,4	66 66	(239
26	0757	6136.5	0.4	67 67	l	239
3 =	0802	6138,9	0.4	69 68	1	241
35	1137	6/39.1	0,4	69 69	1	239
40	1142	6140.0	0,4	69 70	1	240
45	1147	6141.1	0,4	70 70	1	239
50	1152	G(42.1	0,4	21 70	1	240
55	1157	6143.1	0,4	12 72	1	240
No.	1202	6/44.1	0,4	73 72	Ĺ	240

Nitrogen purge/activated carbon packing in sample holding container:

$$V_{std} = V_m (liters) \times Y \times 17.647 \times \frac{P_b (in.Hg)}{T_m (\circ R)}$$

 V_{std}

10%

Restut &

Company: Elveudorf AFB	City: <u>Ancherage</u> , AK Location: <u>Location</u> Anger
Date: 6/25/02	Location: Journal Cufur
Time:	Run#: E-6030-COMP
Meter #:	Y-Factor: 0.9766
Barometric Pressure, in.Hg29.90	Operator: Rustus
Ambient Temperature, °F:	Purge Time:

pestat et 1532 50% Load,

	Clock	Meter		Dry	Gas		
Sample	Time,	Volume,	Rotameter	Meter '	Гетр.,	Vacuum,	Probe
Time (min)	(24-hr)	(liter)	Setting	(°	F)	(in.Hg)	Temp, °F
65	1537	6145,1	0.4	70	70	į ·	240
70	1542	12146,1	0.4	70	70	1	239
75	1547	6147,2	0.4	7/	71	1	239
85	1557	6149.2	0.4	73	73	\	240
90	1662	6150,3	0.4	74	73	·	239
Ge.							
94	1045	6152.1	0.4	67	6le	(240
100	1050	6159,7	0.4	67	67	(240
104	1055	6155,7	0,4	67	67	/	239
110	1100	6157,5	0.4	68	68	t	240
115.	1105	61594	0.4	6969	69	1	240
120	11.10	6161.14	0.4	70	70	(240

Nitrogen purge/activated carbon packing in sample holding container:

$$V_{std} = V_{m}(liters) \times Y \times 17.647 \times \frac{P_{b}(in.Hg)}{T_{m}(^{\circ}R)}$$

 V_{std}

VOST

proc 3

EPA METHOD 30

VOLATILE ORGANIC SAMPLING TRAIN (VOST) SAMPLING DATA

Company:	Flower last AF	B	City: Androge, AK
Date: 6	27/02		City: Androge, AK Location: Coverator Outle Run#: E-0030-Comp
Time:			Run #: E-0030 - Comp
Meter #:	VB-1		Y-Factor: O. Tha
Barometric 1	Pressure, in Hg: 29	<u>.90</u>	Operator: Wholst
	mperature, °F:		Purge Time:
		Vacuum Leak Che	ck Data
	Initial, in.Hg	Final, in.Hg	Time, min.
Pre-test:			·
Post-test:			

		Clock	Meter		Dry Gas		
	Sample	Time,	Volume,	Rotameter	Meter Temp.,	Vacuum,	Probe
	Time (min)	(24-hr)	(liter)	Setting	(°F)	(in.Hg)	Temp, °F
	1.25.	1033	6/62.9	0.4	65 65	1	239
	130.	1038	1164.4	0.4	66 66		241
'	135	1043	6166.5	6.4	67 66	1	241
	140	1048	6168,4	0.4	67 67		241
	145	1053	6170.2	6.4	68 68	1	241
i	150	1058	6172.05	0,7	69 69	ſ	241
						·	
Ì							
1					·		

Nitrogen purge/activated carbon packing in sample holding container:

$$V_{\text{std}} = V_{\text{m}}(\text{liters}) \times Y \times 17.647 \times \frac{P_{\text{b}}(\text{in}.\text{Hg})}{T_{\text{m}}(^{\circ}\text{R})}$$

 V_{std}

11 168.25

18 /s

Company: Elacador A 6-73 Date: 6/25/62 Time: WB-Z	City: Acclorage At Location: Generator Duther Run #: E-PAH-Comp Y-Factor: 1.08 (00
Barometric Pressure, in.Hg: 27.90 Ambient Temperature, °F:	Operator: Purge Time:
Vacuur	n Leak Check Data

		Vacuum Leak Chee	K Data
	Initial, in.Hg	Final, in.Hg	Time, min.
Pre-test:	25	25	
Post-test:			

Sample Time (min)	Clock Time, 732 (24-hr)	Meter Volume, (liter)	Rotameter Setting	Meter	Temp., F)	Vacuum, (in.Hg)	Probe Temp, °F
Ø.	5132.9	5130.78	0.4	64			
15	B747	51345		66	65	/	
20	0752	5135.8	0.4	Cele	6/		
			0.4			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
						1	
40	1142	5141.4	0.4	20	70	1	
45	1/47	5143.1	0.4	70	70	!	
50		5144,7			71	· · · · · · · · · · · · · · · · · · ·	
	1202	1 1		4	72		
	Time (min) 5 of 10 15 20 25 30 35 40 45	Sample Time, Time (min) 72(24-hr) 0 5432.7 5075733.0 10 0742 15 0747 20 0752 15 0757 30 0802 35 1137 40 1142 45 1/47 50 1/57	Sample Time, Volume, (liter) 0 5/32.7 5/30.78 50 5/32.0 5/32.0 10 6742 5/33.1 15 6747 6/34.5 20 0752 5/35.8 25 0757 5/37.2 30 0802 5/38.4 35 1/37 5/39.6 40 1/42 5/41.4 44 1/47 5/43.1 50 1/57 5/44.5	Sample Time, Volume, Rotameter Time (min) 12 (24-hr) (liter) Setting 0 5132.7 5132.0 0.4 10 0742 5133.1 0.4 15 6747 5134.5 0.4 20 0752 5135.8 0.4 25 0757 5137.2 0.4 30 0802 5138.4 0.4 35 1137 5139.6 0.4 40 1142 5141.4 0.4 50 1152 5149.7 0.4 51 1157 5143.1 0.4	Sample Time, Volume, Rotameter Meter Time (min) 72(24-hr) (liter) Setting (Constitution of Setti	Sample Time, Volume, Rotameter Meter Temp., (*F) O \$132.7 5730.78 0.4 64 64 \$0.742 5132.0 0.4 65 65 10 0742 5133.1 0.4 65 65 11 6747 5134.5 0.4 66 65 20 0752 5135.8 0.4 66 67 25 0757 5137.2 0.4 68 67 30 0802 5138.4 0.4 69 69 35 1137 5139.6 0.4 70 70 46 1142 5141.4 0.4 70 70 47 1142 5144.7 0.4 70 70 50 1152 5146.5 0.4 72 72	Sample Time, Volume, Rotameter Meter Temp., Vacuum, (in.Hg) 0 513-7 5132.0 0.4 64 64 1 10 0742 5133.1 0.4 65 65 1 10 0742 5135.8 0.4 68 67 1 20 0752 5137.2 0.4 68 67 1 30 0802 5138.4 0.4 69 69 1 35 1137 5139.6 0.4 70 70 1 45 1142 5141.4 0.4 70 70 1 46 1157 5143.1 0.4 70 70 1 51 1157 5146.5 0.4 72 72 1

Nitrogen purge/activated carbon packing in sample holding container:

$$V_{std} = V_m (liters) \times Y \times 17.647 \times \frac{P_b (in.Hg)}{T_m (\circ R)}$$

 V_{std}

Company: _	Eluculant AF	·B	City: Auctorge, Ak Location: Convertor Outles
Date:	25/02		Location: Comerator duther
Time:		•	Run#: E-PAH-COMP
Meter #:	UB-2		Y-Factor:
Barometric I	Pressure, in.Hg:	.9,90	Operator: Mill
	mperature, °F:		Purge Time:
		Vacuum Leak Che	ck Data
	Initial, in.Hg	Final, in.Hg	Time, min.
Pre-test:			•
Post-test:			

resout at 1534
50%
Load

√{~

	Clock	Meter			Gas		
Sample	Time,	Volume,	Rotameter	Meter	Temp.,	Vacuum,	Probe
Time (min)	(24-hr)	(liter)	Setting	(°F)	(in.Hg)	Temp, °F
65	1539	5150.0	0.4	7/	71	l	
70	1544	5151.7	0,4	71	71	ł	
75	1549	5153,2	0.4	フィ	72	1	
85	1559	5155,7	0.4	73	73	1	
90	1604	5/51.3	0.4	74	73	<i>t</i> -	
go-							
95	1045	5159.3	014	66	46	tel 1	
100	1650	5/62.0	0.4	67	68	(
105	1055	5162.3	0.4	68	63	. 1	
110	1100	5164,0	0.4	69	69	1	
115	1105	5165,7	0.4	69	69	1	. ~~~
120	1110	5/67.21	0.4	70	7/	1	

Nitrogen purge/activated carbon packing in sample holding container:

$$V_{std} = V_m (liters) \times Y \times 17.647 \times \frac{P_b (in.Hg)}{T_m (\circ R)}$$

 V_{std}

Company: Elmena Date: 6/27/02	lonf AFB		City: Prochange Location: Coners	AL in Octle
Time:			Run#: E-PAH-0	our
Meter #:			Y-Factor:	
Barometric Pressure,	in.Hg: 29.90		Operator: NULA	
Ambient Temperature		•	Purge Time:	
Initia Pre-test: Post-test:		cinim Leak Check inal, in.Hg	Data Time, min.	

	Clock	Meter		Dry Gas	·	
Sample	Time,	Volume,	Rotameter	Meter Temp.,	Vacuum,	Probe
Time (min)	(24-hr)	(liter)	Setting	(°F)	(in.Hg)	Temp, °F
125	1033	5/68.7	0.4	65 65		
130	1038	5170.3	0.4	66 66	1	_
135	1043	5171-9	0.4	27 67	1	
140	1048	6173.5	0.4	68 68	1	
145	1053	5175.1	0,4	69 69	′/	
150	1058	5176,82	0.4	70 70	Ţ	,
			·			
			_			
		Ī.				

Nitrogen purge/activated carbon packing in sample holding container:

$$V_{std} = V_m (liters) \times Y \times 17.647 \times \frac{P_b (in.Hg)}{T_m (°R)}$$

 $\boldsymbol{V}_{\text{std}}$

Location: Project No: Company:

Elm- So-t AFB Ger. A - Exhast - 60% 3474. cov 3- 002

Operator: D. 4//c-Date:

	Comments		-											-			,				· •		
Post Test Run 3	Response	0	Time: 1005-1050	0.0		मेत्रम		5.0	•		8/1	(1.0) 9.7	•	(02)) 621		0.0			19.9	1.0.1		0'01	
Post Test Run 2	Response	ppm / % %Drift %Bias	Time: 0845-0930	0.4		577		0.3			841	(0a) h.9		(1217 821		0.0			631	-0-		0.01	
Post Test Run 1	Response	ppm / % %Drift %Bias	Time: 730.815	h'4		145		٥. ا		-	871	(0.0) (.7		(119)		0.0			6'6	2,0-		10,0	
Direct Calibration	Response	ppm / % Error	9			5 HH 661	883 683	0.4 0.3	7.62 262	28.5 5.85	P 149	172 20-	1.03 1.8 .	(21 1235	297 795	0.0 1.0		5.01 5.01	19,9 20.0	7.0- 7.0-		1-01 0'0)	10.4 120.4
	Cal Gas	Conc.		C oraz	N D. Low		1	O Sero] ·o<	has piw			THC, Low 47.96	(Action Mid 124%	0- 3 CO High 748.6				High [6,99	Zero ()	MOT LOW	Mid 9-17	411gh 20.4 120.4

Project No: Company: Location:

Elmen dont AFB Gen. A. Exhant. 25-6 30174,0003.000

Operator: D.A /LDate: 6/25/01

	Comments																						
Post Test Run 3	Response	ppm / % %Drift %Bias	Time: 1400-1445	P:0		2 <i>bh</i>		0.4			77	(1°0) 1.9	-	(111) 921		0,0			0,05	5,5		1.01	
Post Test Run 2	Response	as	Time: (245-1330			443		D.4			148	0.15		(911) 921		0.0			20,0	7.0 ~		1.01	
Post Test Run 1	Response	ppm / % %Drift %Blas	Time: 1/25- 1210	50		2 hn		٥. دا			8 11	6.8 (0.0)		(121) 051		0.0			0.02	\.0.		Q18.10.0	
Direct Calibration	Response	ppm/% % Error	Time: 700-700	100 0.0	(T-0)	1 hb/n hh/n		0.4 0.3			8h1 bh1	97 20		621 121		0.0 1-0-			11,9	1.0- 2.0-		0'01 0-01	
	Cal Gas	Conc.		Zero O	Low	Mid 448) High	Zero ()	Low	Mid) High [4,4]	Zero O	Low	Mid (19.6	High	Zero 0	Low	Mid	High 9, 99	Zero 0	, Low	Mid 9.94	High
					νQχ		(0-1 000		<u>م</u>		ത്മ-0)		ARC	(MCH)	(002 -0)		5			ļ	કુ		

Compan Location Project N

		Comments				•										•								
	Post Test Run 3	Response	ppm / % %Drift %Bias	Time: 1802 1845	h 9		2 M		2'0			145	5. [(0.2)	-	129 (115)		0,0			1002	ار م		00	
Operator. D. 411 — Date: 6/25/0 ユ	Post Test Run 2	Response	%Bias	727) hh		0.3	-	٠	147	(5'0) 8'5		131 16)		0.0	-	-	[4,9]	ر2,0		5,0	
	Post Test Run 1	Response	ppm / % %Drift %Bias	Time: 1520-1605	0.4		164		2.0			147	5.9 (0.3)		(911) 621	, ,	6.0			(9,0	1.0-		9.7	
Elnedit HF1) 20174 1003 300-	Direct Calibration		ppm/% % Error	Time: 700	7.7	_	241 PpH		0.4 0.4			1 h1 6 h1	129 20		921 /21	·	-0. 'n'a			19.9 20.0	٦ /0- ٦ /0-		100 10.1	
19 1		Cal Gas	Conc.		Zero O	Low	Sh h piw		Zero ()	Low	Wid July		Zero $\mathcal O$		1.4.7 Mid / 24.6	High	Zero ()	Low	Mid	High 9,95	Zero O	Low	Mid 9,99	High
Company: Location: Project No:						\mathcal{W}_{t}		0-(000	•	S		0-20	240	(A)	۱ ۳۸۷)	0.3W		5			<	2		

Elnerlot Gen. A 75 30174.0003.002 Company: Location: Project No:

Operator: D. A 11--

		Direct Callbrat	bration	Pos	Post Test Run	1-	Post	Post Test Run 2	2	Post	Post Test Run 3		
	Cal Gas	Response	nse	14.	Response		œ	Response		Re	Response		Comments
	Conc.	Δ.		ppm / % %Drift	%Drift	%Bias	ppm / % %Drift		%Blas	ppm / % %Drift		%Bias	
		Time: \$95-/000	000/-\$	7/ше: /с	Time: 1033-1118	81	Time:			Time:			
Ž	Zero O												
NOK	Low												
	Mid 44 8												
U-(000 H	High 885, 5	5											
Z	Zero O	h'0		6.0									
2	Low 30-		28.8										
	Mid Sqr 4		546										
0-200 H	High 149.4	6171	451	155									
	Zero O	5.0-	61-	5.0	(1-1)								
	10W 49.96		80.0	73.[(46)						•		
(McH)	MId / 24.6		121										
H 00C-0	High 298.6	297	2 97										
]	Zero O		2.2	€ 10-1									
70	Low												
	Mid (0"56		0.5										
<u>.</u>	High 19-19		6'61	19.7			,						
	Zero O		3	h'0-									
100	Low												
	Mid 9,99	5	0'0	9.9 2									
	High 26.53		w.L										

			Comments																						
	75.2 \$ 75.3	Post Test Run 3	Response	Orift %Bias	Time: 1522 - 1607	01	133	- 464	44	0:0			741	7-17 (5)(3')	J. 7/5/(1/1)(2)			1.0		-	19.9	1.0-		2,0,	
		Post Te	Res	ppm / % %Drift	Time: 152	01		463 4	 	0.0			147	4.3 (.5	મું મુખ્ય			0.0			8.6)	0.0		8.6	
4 1/2-	6,001 \$ 2-101	Post Test Run 2	Response	%Drift %Bias	20-1305	2 - 4	2 4 2	65h 2018	ak.	٥			147	SE (1)	(4)) 42V	(0.3)	(43)	00	•		20.0	1.0		p. 1	
Operator: 75. A /		Post			. 1	3.0		453		9.0			841	3.6	0.74			1.0-			120.	0.1		0.01	
Opera Date:	1-001	Post Test Run 1	Response	%Drift %Blas	Time: 1020-1105	0.0		811	188					(1)	(५१:३)										
1F13			<u> </u>	or ppm / % %Drift		χυ,		*5~		9.0	٥		641	4.4	R.7.12			1.0.1			1.02	-g .		b ' b	
do 1 A 75%;		Direct Calibration	Response	ppm/% % Error	Time:	1.001	c e	84 1° 148	583 2	2.0	30.0,	24.0	149	0.3	49.5	123	862	1.0		10.5	0.01	-0.1		0.01	507
6 (men 3 20174	•		Cal Gas	Conc.		0	-	844 PIW	High 885/5	0	Low 30. 1	Mid 59.4	High / 4% 4	٥	Low 49.92	Mid /24. C	High 298.6	0		Mid 10.56	19.99	0			20.27
Company: Location: Project No:						Zero	NWP LOW	Mic	0- / Oo o High	Zero	S		Oros High	Zero	FLLC LOW		0-300 High	Zero	02 Low	Mic	High	Zero	COZ Low	Mic	High

Fr 15.7

the design of the second	PN Sheet No.
CLIENT Elmendert ATB LOCATION Gen. A. 40, 25, 50%	Checked By Date
SUBJECT 6/2 5/1	Computed By Date
10%	
Run Time NO	Leo THE COS ON HEALT
730815 #77-8	1175,2 199,4 13.2 116.5 1.74
7 0545-0530 170.5	1024 3.2 11024 154
3 1005-1850 177 3	113 3 1954 3 2 116 9 114
103 (439) 167 (50)	
2572	
11 1125-1210 (96.5	11 10 1-1 1 85 5 1 1 9 1 1 1 1 7 2 1 1 1 1 1 1 1
Z 1245-1250 196-99	1100.71 86.2 47 15.2 17.4
3 1400-1445 195.3	
50%	
1 1520-1105 299-3	11,15,11,71,21,15,8,11,12,9,10,7
7 1647-1727 306-16	1/1.6 72.9 5.9 72.8 0.8
Z 1642-1727 306-16	
3 1800-1845 316,3	
	▕▕▗▐▗▕▗ ▕▗▕▗▞▗▞▗▞▗▐▗▐▗▐▗▞▗▊ ▄▜▗▋▗▋▗▊▗▜▗▜▄ ▜ ▗▄▘▍▐▗▊▗▜▄▀▄▜▀▘░░░▎▞▝▀▀▀▜▘▘▜▕▝▜▀▀▀▝░░▝▞▝▊▀▜▀▜▀▜▘▘
	┆ ┱┇┆┦╏┆┆┇┇┇┇┼┼ ┼┼┼┼┼┼ ╏╏╎┼┼┼┼┼┆┆┆╂┼┼┼┼╟╟┼┼┼┼╂┆╽┟┼┼┼┼
	┪╋┪┢╩┪┪┪═┩╋ ┇┇╏╽╏╏┆ ╘┆┸ ╋╅┪╏╏╟╩╪╅╕┇╏╟┇╀╁╬╏╎┦┇┖╅┆┞╏╏╬╅╂┋
	▗▊▊▗▘▗░▗░▗░▗▊▗░▗▊▗░▄▊▗░▄▊▄░▄░▄░▄░▄░▄░▄░▄░ ▗░ ▗░▗░▗░▗░▗░ ▗░ ▗ ░▗░▗░▗░▗░▗░▗░▗░▗░▗░

Acres and the second se

Elmendorf
AFB
6/25-27/02
NOx
CO

Elmendors
AFB
6/25-27/02
THC
COZ End

APPENDIX D ANALYTICAL RESULTS

 $\mathbf{E}_{\mathbf{Q}}$

Environmental Quality Management, Inc.

and Elmendont

PROJECT ANALYTICAL SHEET (sheet 1 of 3_)											
Project Na	me: AF Gen	erator Testin	Project No.: 0301711-6003.007								
Project Dat	te(s): June	2002	Project Manager: Ton Gerstle								
Method(s):	Method	5	No. of Sites:	Z - Ssetti	- s Each						
			1								
RUN NO.	ID NO.	#/DESCRIPTION	TARE MASS	FINAL MASS	NET MASS						
7-5-10-1	02210	830244	264.45	286.3	21.55						
7-5-10-1	02211	320	114367.4	114372.55	5.15						
T-5-10-2	02212	PCOIL	54.8	127.5	72.7						
T-5-10-L	02213	317	1/3999.4	114004.75	4.85						
T-5-10-3	02214	830246	264.5	292.B	28.3						
T-5-10-3	02215	309	11084015	110847.5	7.25						
T-5-25-1	02216	830245	265.75	290.9	25.15						
T-5-25-1	02217	319	1153465	115351.9	5.4						
1-5-25-2	0221B	PCDIB	- 54.3	171.45	117.15						
7-5-25-2	02219	307	1068622	106868.1	5.9						
T.5-25-3	02220	830303	267.2	297.05	29.85						
1-25.3	onni	310	114523.85	114532.0	8.15						
T-5=50-1	ours	830 247	262.95	283.0	20.05						
T-5050-1	0223	306	111145.1	111150.4	53						
T 5" 50- 7	OTTA	PC 028	54.05	120.7	66.65						
T-5.50- Z	ans	314	11340955	113414.6	5.05						
T-5-50-3	onre	830304	214.55	287.55	23.0						
7-5-20-3	0227	316		114/214.1	6.7						
T-5-75-1	ours	830224	263.35	289-B	26.45						
1-5-75-1	oras	313	111917.25	111924.1	6.85						
T_5.75-7	onso	PC027	54.2	158.25	104.05						
5-5,75~2	023	315	113834.1	1/3841.8	7.7						
15.7513	122737	220022	21255	2975	28 95						

TRAUS		PROJEC	CT ANALYTICA	L SHEET (s	theet $2 \text{ of } 3$	
	RUN NO.	ID NO.	#/DESCRIPTION	TARE MASS	FINAL MASS	NET MASS
		02233	318	1156775	115687.2	9.7
	T-5-100-1		83024B	264.4	288.45	24.05
	T-5-100-	0235	312	107651.0	107660.05	- 9.05
	T-5-100-2	02236	PC05	54.3	150.15	95.85
	T-S-100-2	0237	308	112824.6		7.35
•	T-5-100.3	02238	630229	263.8	287.95	24.15
	T-5-1005	02239	311	10737625	107384./	7.85
EMENDER	6-5-10-	07240	830218	263.6	271.15	7.55
	E-5-10-1	024	325	1/3523.65	1/3527.25	3.6
	E-5-10-2	02242	PC014	55.25	119.75	64.5
	E-5-10	0243	324	114579.3	114582.15	-3.35
		02244	BSO 225	26555	273.1	7.55
	ŀ	02245	322	114501.2	114504.75	3.05
	1 -	02246	B30226	2628	273.0	10.2
	E-5-25-	02247	321	116085.	11608895	3.85
	E-2-52	02248	PC 024	53.95	69.20	69.2
		02249	327	113285,3	1/3289,55	4.2
		02250	B30231	263.60	276.8	13.2
	E-5-25=3	02251	329	105497.8		
	E-5-50-	02252	030230	263.8	291.05	27.25
	E-5-50-	02253	328	110180.50	110186.05	5.50
		02254	PC.021	53.8	208.95	155.15
		02255	323	115847.4	115854.7	7.3
		30056	830 227	264.3	289.0	24.7
		02257	326	115010.65	11501645	5.8
		m258	830219	265.6	288.7	23.1
	E-5-75-	0259	211	111767.9	111775.08	t 7.15

	PROJE	CT ANALYTICAL	SHEET (s	sheet, 3 of 3)	
RUN NO.	ID NO.	#/DESCRIPTION	TARE MASS	FINAL MASS	NET MASS
E-5-75-	20260	PCOZO	54.75	133.0	78.25
Į I	02261		• .	1093203	
		930310	262.15	291.3	29.15
E-5-75-3	ones	206	1116282	111636.05	7.85
ES 100-1	02264	830311	263 35	307.6	44.25
E-5-100-1	orus	- 199	110359.6	1103704	10.8
E-5-1000	- Orla	PCOZZ	54.2	94.4	40.2
E5-120-2	0267	200	112018.2	112030.6	-12.45
E-5-100-	302268	830317	262.6	299.7	37.1
	302219	198	114292.85	114303.5	10.65
BLANK	02-271	PC 023 FILTER	54.15	55.3	1.15
	02-270	BOJO PE DILTER	264.65	264.85	0.2
BUANK	02-772	ACETONE			
				April 1981	

First Analytical Laboratories

ANALYSIS REPORT

Method 202: Condensible Particulate

Project # 030174.0003.002

86 Generator Testing

Prepared for:

Environmental Quality Management 1800 Carillon Blvd. Cincinnati, OH 45240

Reviewed and Approved by:

William H. Wadlin, Ph. D.
Laboratory Manager

July 25, 2002

First Analytical Laboratories

CASE NARRATIVE

Project #: 20710 Report Date: 25-Jul-02

Client: Environmental Quality Management

Client Project ID: 030174.0003.002

Samples:

Thirty-one sets of Method 202 samples were submitted for determination of condensible particulate. All of the samples were received in good condition with no apparent leakage or damage.

Results:

The results are given in total milligrams for each fraction. For each subset, the aqueous fraction was greater than the organic fraction.

First Analytical Laboratories 1126 Burning Tree Dr. Chapel Hill, NC 27517

Tel. (919) 942-8607 FAX (919) 929-8688 www.firstanalyticallabs.com

ANALYSIS REPORT

CONDENSIBLE PARTICULATE WEIGHT

Project #: 20710

Client: Environmental Quality Management

Client Project ID: 030174.0003.002

Report Date: 25-Jul-02

Date Received: 16-Jul-02

Sample ID		Tare	Final	Particulate
Client	FAL	Weight	Weight	Weight
	•	g	g	mg
ORGANIC FRACT	TON	•	_	•
T-10-5-1	20710.T101	4 3411	4.3503	9.2
T-10-5-2	20710 T102	4.3333	4.3418	8.5
T-10-5-3	20710 T103	4.3281	4 3365	84
T-25-5-1	20710.T251	4.3484	4 3571	87
T-25-5-2	20710.T252	4.3754	4.3805	5.1
T-25-5-3	20710 T253	4.3594	4.3618	2.4
T-50-5-1	20710 T501	4.3347	4 3371	2.4
T-50-5-2	20710 T502	4 3631	4.3677	4.6
T-50-5-3	20710.T503	4 3713	4.3729	1.6
T-75-5-1	20710.T751	4 3213	4.3258	4.5
T-75-5-2	20710.T752	4 3131	4.3165	3.4
T-75-5-3	20710.7753	4.3195	4.3242	4.7
T-100-5-1	20710 T1001	4.3232	4.3250	18
T-100-5-2	20710 T1002	4.3801	4.3835	3.4
T-100-5-3	20710.T1003	4.3776	43796	2.0
E-10-5-1	20710.E101	4.3421	4.3526	10.5
E-10-5-2	20710.E102	4.3201	4.3267	6.6
E-10-5-3	20710.E103	4.3869	4 3920	5 1
E-25-5-1	20710.E251	4.3842	4.3912	7.0
E-25-5-2	20710 E252	4.4125	4.4179	5.4
E-25-5-3	20710.E253	4.4007	4.4071	6 4
E-50-5-1	20710.E501	4.3681	4.3765	8.4
E-50-5-2	20710 E502	4.3646	4.3675	2.9
E-50-5-3	20710.E503	4.3341	4.3427	8.6
E-75-5-1	20710.E751	4.3537	4.3606	6.9
E-75-5-2	20710.E752	4.3478	4.3509	3.1
E-75-5-3	20710.E753	4.3803	4.3866	6.3
E-100-5-1	20710.E1001	4.3682	4.3742	6.0
E-100-5-2	20710.E1002	4.3716	4 3746	3.0
E-100-5-3	20710 E1003	4.3550	4 3593	4.3
MeCi2 Blank	20710 OB	4.3786	4.3785	-01

First Analytical Laboratories 1126 Burning Tree Dr. Chapel Hill, NC 27517

Tel. (919) 942-8607 (919) 929-8688 FAX www.firstanalyticallabs.com

ANALYSIS REPORT

CONDENSIBLE PARTICULATE WEIGHT

Project # 20710

Client Environmental Quality Management

Client Project ID: 030174.0003.002

Report Date: 25-Jul-02

Date Received: 16-Jul-02

Sample ID		Particulate
Client	FAL	Weight
3.13 ().		mg
TOTALS		
T-10-5-1	20710.T101	27.9
T-10-5-2	20710 T102	284
T-10-5-3	20710.T103	26.0
T-25-5-1	20710 T251	30.6
T-25-5-2	20710.T252	21.8
T-25-5-3	20710.T253	21.4
T-50-5-1	20710.T501	19.0
T-50-5-2	20710.T502	26.3
T-50-5-3	20710.1503	18.8
T-75-5-1	20710.T751	31.3
T-75-5-2	20710.1752	24.2
T-75-5-3	20710 T753	27.8
T-100-5-1	20710 T1001	19.7
T-100-5-2	20710 T1002	20.8
T-100-5-3	20710.T1003	25.2
E-10-5-1	20710.E101	50. 4
E-10-5-2	20710.E102	41.0
E-10-5-3	20710.E103	43.7
E-25-5-1	20710.E251	46.0
E-25-5-2	20710.E252	42.3 .
E-25-5-3	20710 E253	45.2
E-50-5-1	20710.E501	51.5
E-50-5-2	20710 E502	42.5
E-50-5-3	20710 E503	54.8
E-75-5-1	20710.E751	53.0
E-75-5-2	20710 E752	58.4
E-75-5-3	20710.E753	63.9
E-100-5-1	20710.E1001	56.2
E-100-5-2	20710.E1002	43.2
E-100-5-3	20710 E1003	50.0
Blank	20710.B	0.5

First Analytical Laboratories 1126 Burning Tree Dr. Chapel Hill, NC 27517

Chapel Hill, NC 27517

(919) 942-8607 Tel. (919) 929-8688 www.firstanalyticallabs.com

ANALYSIS REPORT

CONDENSIBLE PARTICULATE WEIGHT

Project #: 20710

Client: Environmental Quality Management

Report Date: 25-Jul-02 Date Received: 16-Jul-02

05

Client Project ID: 030174.0003 002 **Particulate** Final Tare Sample ID Weight Weight FAL Weight Client

Cilent	FAL	weigin	wagiii	,, e.g.,,
	·	g	g	mg
AQUEOUS FRAC	CTION			
T-10-5-1	20710.T101	8.1951	8 2138	18 7
T-10-5-2	20710 T102	8.1059	8.1258	199
T-10-5-3	20710 T103	8 1939	8.2115	17.6
T-25-5-1	20710.T251	8.1637	8 1856	21.9
T-25-5-2	20710 T252	8.0513	8.0680	16.7
T-25-5-3	20710.T253	8.0263	8.0453	19.0
T-50-5-1	20710.T501	8.0466	8.0632	16.6
T-50-5-2	20710.T502	8 0893	8.1110	21.7
T-50-5-3	20710.T503	8 0716	8.0888	17.2
T-75-5-1	20710 T751	8.1806	8.2074	26.8
T-75-5-2	20710.T752	8.1983	8 2191	20.8
T-75-5-3	20710 T753	8.1878	8.2109	23.1
T-100-5-1	20710 T1001	8.2184	8.2363	179
T-100-5-2	20710.T1002	8.2686	8.2860	17.4
T-100-5-3	20710.T1003	8.0892	8.1124	23.2
E-10-5-1	20710.E101	8 1324	8 1723	39.9
E-10-5-2	20710 E102	8.1081	8.1 <i>4</i> 25	34.4
E-10-5-3	20710.E103	8.0554	8 0940	38.6
E-25-5-1	20710 E251	8.0203	8.0593	39 0
E-25-5-2	20710 E252	8.1316	8.1685	36.9
E-25-5-3	20710 E253	8.2280	8.2668	38.8
E-50-5-1	20710 E501	8.2735	8.3166	43.1
E-50-5-2	20710 E502	8.2940	8.3336	39.6
E-50-5-3	20710 E503	8.1731	8 2193	46.2
E-75-5-1	20710.E751	8 2505	8 2966	46.1
E-75-5-2	20710.E752	8.0501	8.1054	55.3
E-75-5-3	20710 E753	8.0393	8.0969	57.6
E-100-5-1	20710 E1001	8.0570	8.1072	50 2
E-100-5-2	20710.E1002	8.2553	8 2955	40.2
E-100-5-3	20710.E1003	8 1399	8.1856	45.7

8.0834

20710 AB

DI H2O Blank

8 0839

Do Environmental Quality Management, Inc.

Environmental Quality Management, Inc.

ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD

1 1 1 1 2 1 1 1	_						т						<u> </u>
25 4 Blvd		Condition of Receipt (Lab)						` `	Brok 2				
Reference Document No. Page 1 of Con Lole Report to: Ear Lole Report to: Ear Levil Bill to: Earne Con Bill to: Earne Con Role Report to Con Role R		Requested Analytical Method/(Parameters)	EPA Mothed 202	For Condensible	Particulate Matter				NUM - MeCla Cine + DI Had Brok &	Disposal by Lab W Archive	1 202	Date: 7/16/02	\
t flunk	LINE	Pre- servative	B/N	1		_	1		- MeCl	i	Marke	Without	
fination 1.184. Phone Bill. let No.	ONE CONTAINER PER LINE	Sample Volume	UNK				>		lum.	Sample Disposal: Return to Client []	Held	1. Received by	(Signature/Allination)
Lab Pu	ONECO	. Container Type	1 54/0)	Plasfie					, test	S. W.	QA Requirements:		
C Casting		Date/Time Collected							for wach			20/1/62	
Project Name 86 Generated Oject Number 030/7# 0203.		Sample Description/Type	Mech riuse:	2 Has Buch 20	hor Joh	6	/		Fractions 0	ossible Hazard Identification: Von-hazard Il Flammable Il Skin Irritanik Other	Umatound Time Required:	1 N	on) Oct
Project Name Project Number Project Manager Sample Team Leader		Sample Number	1-5-01-	2-5-01-	6-5-01-	1-5-52-	-25-5-	special Instructions:	7	ossible Hazard Identification: 4on-hazard 🛭 Flammable 🗓 SI	Curnaround Time Required:	Relinquished by	Delinenished by

Time:

(Signature/Affiliation)

Time:

(Signature/Affiliation)

Comments:

Environmental Quality Management, Inc.

ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD (cont.)

Reference Document No. Page 2 of 3

Project Name 86 Generator Testing

Project No. 0.20/7/. 000 3-00 2-

Sample Shipment Date 7/15/02

ONE CONTAINER PER LINE

Samble	Sample		Container	Container Sample	Pre	Requested Analytical	Condition on
Number	Description/Type	Collected	Туре	Volume	servative	Method/(Parameters)	Receipt (Lab)
7-25-5-3	Melly cinse;		Gen/	11/11	NIA	1209 Method 202	
7-50-5-1	D7 40 Buck 2		Plastie	-	,	For Condensible	
7-50-5-7			-			particlak	
7-50-5-3	sample war					matter	·
7-2-5-1				•		•	
7-75-5-2							
7-75-5-3							
1-5-00/-1			·				
7-100-5-2							
7-100-5-3							
Mech Blink							
OI HIO BLINK							
F-10-5-1							
15-10-5-2							
E-10-5-3							
E-25-5-1							
F. 15-5-7							
1-25-5-7							
F-50-5-1	>		→	>	≯	>	
, , ,							

Environmental Quality Management, Inc.

ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD (cont.)

Hererence Loa Page 3 c

Sample Shipment Date 7/15/62

ONE CONTAINER PER LINE

Project No. 030/74, 8403.002

Project Name 86 Semestar Testing

					-						·:			— т	 · · · · · ·	 	3
Condition on Receipt (Lab)																	(
Requested Analytical Method/(Parameters)	EPH Methol 202	For andensible	particulate norther					>	·							•	
Pre- servative	NA	•		,				\									
Sample Volume	NNK	 -						2									
Container	Ben	Plastic						Z									
Date/Time Collected																	
Sample Describiton/Type	M. Chrises	@ I 40 But 2	10]				A		-							
Sample	E-50-5-2		+	5-5-5-7	6-75-5-3	1-100-5-1	F-1/2-5-2	7-6-6-5	C - 00/ 2								

12 September 2002

Environmental Quality Management 1800 Carillon Blvd Cincinnati, OH 45240 Attention: Mr. Ronald Kolde

Re:

Particle Sizing, EQM #30174.0003.002

MVA Project No. 5228

Dear Mr. Kolde:

Enclosed please find a report of the particle size analysis of the ten particulate samples and one blank received from your office by MVA, Inc. on August 22, 2002. These samples were sent in regard to your Air Force Project USAF Travis/Elmendorf. A Lab Purchase Order No. 4446 accompanied the samples.

Your samples will be held at MVA, Inc. for 30 days from the above date. After that date we will dispose of the samples if we have not been advised in writing that they should be returned.

Please call me at 770-662-8509 if you have any questions.

Sincerely,

James R. Millette, Ph.D.

p L. Clitte

Executive Director

Enclosure

Report of Results -- MVA Project No. 5228

Particle Sizing, EQM #30174.0003.002 USAF Travis/Elmendorf Purchase Order No. 4446

For:

Environmental Quality Management 1800 Carillon Blvd Cincinnati, OH 45240 Attention: Mr. Ronald Kolde

By:

MVA, Inc. 5500 Oakbrook Parkway, Suite 200 Norcross, GA 30093

12 September 2002

L:PROJECTS:MVA5228:RP091202

5500 Oakbrook Parkway #200 Norcross, GA 30093 770-662-8509 • FAX 770-662-8532 www.mvainc.com

Report of Results -- MVA Project No. 5228

Particle Sizing, EQM #30174.0003.002 USAF Travis/Elmendorf

INTRODUCTION

Ten particulate samples and a blank on polycarbonate filters were received from Environmental Quality Management by MVA, Inc. on August 22, 2002. These samples were sent in regard to Air Force Project USAF Travis/Elmendorf with a request for particle size distribution by electron microscopy and information on particle morphology and qualitative description of the particles.

In the laboratory, samples were assigned MVA numbers as follows:

MVA # M3438 M3439 M3440 M3441 M3442 M3443	Description PC011, T-5-10-2, filter with black soot PC018, T-5-25-2, filter with black soot PC028, T-5-50-2, filter with black soot PC027, T-5-75-2, filter with black soot PC015, T-5-100-2, filter with black soot PC014, E-10-5-2, filter with black soot PC224, E-25-5-2, filter with black soot
	PC224, E-25-5-2, filter with black soot PC021, E-50-5-2, filter with black soot PC020, E-75-5-2, filter with black soot PC022, E-100-5-2, filter with black soot PC023, Blank

SAMPLE ANALYSIS

The samples were first examined by stereomicroscopy at magnifications from 1 to 50 times. The analysis was performed using a JEOL Model 6400 scanning electron microscope equipped with a Noran Voyager x-ray analysis system. The samples were examined using both secondary electron imaging and backscattered imaging at magnifications of 300x to 40,000x to determine a size distribution of particles that contained elements greater in atomic mass than carbon (carbon = atomic mass 6). Areas of the filter were also examined using both secondary electron imaging and backscattered imaging for carbon particles. Further analysis was performed using an analytical electron microscope (AEM) using a JEOL 1200, 100 kV scanning transmission electron microscope (STEM), equipped with a Noran EDS x-ray analysis system. This system was used to determine the size and elemental composition of the smallest particles.

RESULTS

Macroscopically, the sample filters appear to have thick deposits of dark soot-like material. The vast majority (nearly 100%) of the material in all samples (except the blank) was composed of very small (less than 0.5 μm) carbon particles that were aggregated together. Some of the aggregates were consistent with aciniform carbon soot (visually like bunches of grapes). Others appeared to be degraded or incompletely formed soot particles in aggregates. The aggregates were generally greater than 0.5 micrometers. Due to the fragile nature of the aggregates it was not possible to obtain reliable diameter ranges for the carbon particle aggregates. However, digital images taken with the transmission electron microscope were analyzed using the NIH image analysis program to size the ultimate carbon particles that make up the carbon soot aggregates. The average size of a representative sampling from all 10 samples of the individual carbon soot particles was 25 nm (0.025 μm) with a standard deviation of 8.8 nm.

Although not common, some non-carbon particles were found on the sample filters. For samples M3442, M3445, M3446 and M3447, there were a sufficient number of non-carbon particles upon which to perform a size distribution analysis. The results of the size distribution analyses are given on Table 1 (by number) and Table 2 (by estimated mass). Table 3 gives some information about the morphology of the non-carbon particles as shown by the comparison of particle aspect ratios (apparent length divided by apparent width). Over 60% of the non-carbon particles were essentially equant (having a length less than two times the width). Less than 15% of the non-carbon particles were elongated (having a length to width ratio greater than 3). Table 3 contains information about the aspect ratios for the four samples for which there were a sufficient number of non-carbon particles upon which to perform an analysis

Table 1. MVA 5228

Percentages of Non-Carbon Particles in Various Diameter Ranges by <u>Number</u> of Particles

	MVA Sample M3438	MVA Sample M3439	MVA Sample M3440	MVA Sample M3441	MVA Sample M3442
EQM Number	PC011	PC018	PC028	PC027	PC015
Diameter Range (um)					04 08
0.5 - < 2.5	NA*	NA*	NA*	NA*	94.2%
2.5 - < 5.0					5.4%
5.0 - < 7.5					0.4%
					0.0%
7.5 - < 10 ≥10					0.0%

	MVA Sample M3443	MVA Sample M3444	MVA Sample M3445	MVA Sample M3446	MVA Sample M3447	MVA Sample M3448
EQM Number	PC014	PC024	PC021	PC020	PC022	PC023
Diameter Range (um)	·					
0.5 - < 2.5	NA*	NA*	97.7%	97.2%	100.0%	NA*
2.5 - < 5.0			1.8%	2.8%	0.0%	
5.0 - < 7.5	1		0.3%	0.0%	0.0%	
7.5 - < 10			0.0%	0.0%	0.0%	
7.5 - < 10 ≥10			0.3%	0.0%	0.0%	

^{*}NA - Insufficient particles for a valid statistical analysis

Table 2. MVA 5228

Percentages of Non-Carbon Particles in Various Diameter Ranges by <u>Estimated Mass</u> of Particles

EQM Number	MVA Sample M3438 PC011	MVA Sample M3439 PC018	MVA Sample M3440 PC028	MVA Sample M3441 PC027	MVA Sample M3442 PC015
Diameter Range (um)	·	·			
0.5 - < 2.5	NA*	NA*	NA*	NA*	36.1%
2.5 - < 5.0					43.6%
5.0 - < 7.5					20.4%
7.5 - < 10					0.0%
≥10					0.0%

	MVA Sample M3443	MVA Sample M3444	MVA Sample M3445	MVA Sample M3446	MVA Sample M3447	MVA Sample M3448
EQM Number	PC014	PC024	PC021	PC020	PC022	PC023
Diameter Range (um)						
0.5 - < 2.5	NA*	NA*	14.7%	46.6%	100.0%	NA*
2.5 - < 5.0			12.2%	53.4%	0.0%	
5.0 - < 7.5			9.3%	0.0%	0.0%	
7.5 - < 10		Berte	0.0%	0.0%	0.0%	
≥10			63.9%	0.0%	0.0%	

^{*}NA - Insufficient particles for a valid statistical analysis

Table 3. MVA 5228

Percentages of Non-Carbon Particles in Various Aspect Ratio (length/width) Ranges

	MVA Sample M3442	MVA Sample M3445	MVA Sample M3446	MVA Sample M3447
EQM Number	PC015	PC021	PC020	PC022
Aspect Ratio Range				
1-2	62.2%	63.7%	74.4%	71.4%
2-3	22.4%	23.7%	14.0%	17.1%
3-5	14.7%	11.9%	11.6%	11.4%
> 5	0.7%	0.6%	0.0%	0.0%

Figure 1. Transmission electron microscope image of carbon soot aggregates in Sample M3438.

Figure 2. Transmission electron microscope image of carbon soot aggregates in Sample M3438.

Figure 3. Transmission electron microscope image of carbon soot aggregates in Sample M3439.

Figure 4. Transmission electron microscope image of carbon soot aggregates in Sample M3439.

Figure 5. Transmission electron microscope image of carbon soot aggregates in Sample M3440.

Figure 6. Transmission electron microscope image of carbon soot aggregates in Sample M3440.

Figure 7. Transmission electron microscope image of carbon soot aggregates in Sample M3441.

Figure 8. Transmission electron microscope image of carbon soot aggregates in Sample M3441.

Figure 9. Transmission electron microscope image of carbon soot aggregates in Sample M3442.

Figure 10. Transmission electron microscope image of carbon soot aggregates in Sample M3442.

Figure 11. Transmission electron microscope image of carbon soot aggregates in Sample M3443.

Figure 12. Transmission electron microscope image of carbon soot aggregates in Sample M3443.

Figure 13. Transmission electron microscope image of carbon soot aggregates in Sample M3444.

Figure 14. Transmission electron microscope image of carbon soot aggregates in Sample M3444.

Figure 15. Transmission electron microscope image of carbon soot aggregates in Sample M3445.

Figure 16. Transmission electron microscope image of carbon soot aggregates in Sample M3445.

Figure 17. Transmission electron microscope image of carbon soot aggregates in Sample M3446.

Figure 18. Transmission electron microscope image of carbon soot aggregates in Sample M3446.

Figure 19. Transmission electron microscope image of carbon soot aggregates in Sample M3447.

Figure 20. Transmission electron microscope image of carbon soot aggregates in Sample M3447.

MITSAR

L'antenant

Tank.

THE STATE OF

donarda de

ferensistant

1.00

DEnvironmental Quality Management, Inc.

Environmental Quality Management, Inc.
(A)

ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD

Pronda Lab Destination Lab Contact/Phone Lab Purchase Order No. Carrier/Waybill No. Travis/Elmander SOINTI. 0005. 00 3 T Gerstle R. Kolde Project Name USAF Sample Team Leader Project Number Project Manager

Reference Document No.

Page 1 of 2

Report to: Ron Kolch C

E Q

I 800 Cocillon Blych.

Cincinnati DH 45240

Bill to:

ONE CONTAINER PER LINE

Sample Number	Sample Number Sample Description/Type	Date/Time Collected	Container Type	Sample Volume	Pre- servative	Requested Analytical Method/(Parameters)	Condition of Receipt (Lab)
		A14 27.10 Column	37.70		24	Od Pacticle cize	
トロのこ	YOIV CARBONATE	2/11/2	25.52				
06.0.98	E. Iters Por					distribution by Scanning	
3 3 1						MAS) 1000 Sept of the A.O. A. C. A. C. A.	
PC028	Particulate			1			
CC 0 79	Coll 6/ 1/03	-				analysis, partiels	
		>	>	7	>	Mor phology	

Special Instructions:

pacticle size morphology and qualitative description of particles Sample Disposal: distribution and Pacticle size

(mos.)

و Disposal by Lab A Archive Return to Client II Non-hazard K Flammable [] Skin Irritant [] Other _ Possible Hazard Identification:

QA Requirements:

Turnaround Time Required:

Date: \$ (22/ 4 Rhuleston 1. Received by Date: 8/20/03 Normal K Rush D Results Required by 1. Relinquished by O. A.c. Kerin

Time: Time: _ Date: (Signature/Affiliation) HUA (Signature/Affiliation) 2. Received by Time: Time: Date: (Signature/Affiliation) (Signature/Affiliation) 2. Relinquished by

Comments:

N:\Forms\Forms\Emission Testing\Chain of Custody.doc

Environmental Quality Management, Inc.

ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD (cont.)

THE SHAW END

國國語

discount of the

Manual L

Project Name USAF Travis/Elucadorf

Project No. 30174.0003 003

Sample Shipment Date 8/20103

ONE CONTAINER PER LINE

e a/s c/n		Sample Description/Type	Date/Time Collected	Container Type	Sample Volume	Pre- servative	Requested Analytical Method/(Parameters)	Condition on Receipt (Lab)
Solution Annual Contracts of the Contract of t	S	a M C & S	ealse/7	61455	4.5	4 2	Ì	
		٠					D+Mecs	
		->	<i>→</i>	\rightarrow	>	->	>	
	}							
	1							
							·	
	<u> </u>		·					

Phoenix Chemical Laboratory, Inc.

FUEL AND LUBRICANT TECHNOLOGISTS 3953 SHAKESPEARE AVENUE CHICAGO, ILL. 60647-3497

August 8, 2002

RECEIVED FROM

Environmental Quality Management, Inc.

1800 Carillon Blvd.

Cincinnati, OH 45240

Attn: Tina Dunmoyer

SAMPLE OF

See below

LABORATORY NO

02 7 30 5-7

MARKED

See below

		•		
Lab. No.	02 7 30 5	02 7 30 6	02 7 30 7	
Sample of	JP8	Diesel	JP8	
Marked	Travis AFB 6/13/02 1200	Travis AFB 6/13/02 0700	E-JP8-1 6/27/02 0830	
PONA ANALYSIS				
Saturates Paraffins Napthenes Olefins Aromatics	84.9 Note 1 Note 1 0.2 14.9	83.6 Note 1 Note 1 0.2 16.2	- 26.3 55.8 0.3 17.6	
Sulfur, %	<0.005	0.010	0.097	
Carbon, %	85.97	86.25	86.04	
Hydrogen, %	13.86	13.56	13.73	
Nitrogen, ppm	6	103	7	
Ash, %	0.001	0.001	0.001	
Heat of Combustion, BTU/Lb., Gross , Net	19704 18440	19744 18507	19702 18449	
Napthenes Olefins Aromatics Sulfur, % Carbon, % Hydrogen, % Nitrogen, ppm Ash, % Heat of Combustion, BTU/Lb., Gross	Note 1 0.2 14.9 <0.005 85.97 13.86 6 0.001	Note 1 0.2 16.2 0.010 86.25 13.56 103 0.001	55.8 0.3 17.6 0.097 86.04 13.73 7 0.001	

Note 1: The Saturate fraction of the sample is to dense to permit separation of the naphthene fraction by the refractivity intercept methor. The saturates appear to be all naphthenes.

1800 Carillon Blvd Cincinnati, OH 45240 (513) 825-7500

Environmental Quality Management, Inc. Chain of Custody Record

coc Tracking: **EQ-1**0002

						L			(TESTS	٥			
Project No.		Project Name	August Sandar		$I_{\mathbb{Z}}^{*}$	Siens				,	2			
Samplers/Affiliation: (Print Name and Sign)				Lab P.O. No:		o of Con	イフハ 、	7 2 2 (1)	196,1	1457	:/4			
	Date	Time	Description/Matrix:	Sample Volume / Comments			%	~ (6 =>(5		<i>y</i> ,	7		\dashv	_
7.00.0	41 9/02 12 C	2	178	Just 1		X	×.	x ×	`x	^ ×				\dashv
1013	136/2	75	1/0-31	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u>۸</u>	χ	х х	λ	X ×	v		-	
)	(Sed of Como	2	小うな	30,00		^	×	×	Х	×	۲		-	
	30,000												\dashv	
														_
														_
											-			-
				÷			:						\dashv	\dashv
								\dashv					-	_
								+	_				+	+
								+	_			1	+	\perp
									_		+		+	_
													+	+
			Donning hy (Shratura)	Date	Time	1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	- ;	-\\\ \>		- ;];		-
Relinquished by: (Signature)	200/00	ر ج <u>ا</u>	Neceived by Logical			- 1	P61	という	ر کر کچ	375	} \(\frac{1}{2} \)		" K.C. F.	V
Relinquished by: (Signature)	Date	Time	Received by. (Signature)	re) Date	iii iiii		CHICAGO TC/LCAPY	Crit	0	77	3	4		
Relinquished by: (Signature)	Date	Time	Received by: (Signature)	rre) Date	Time	ē Ā	Aibili Number さらころのひを72 らい	230	20	82	(1)	g		·
Reporting/QA Requirements:	Tum Aro (EXACT	Turn Around Time (EXACT DUE DATE):		STANDARD REPORTOR JAPANOLIER	CANA COCO	405	Chain	of Custo	dy Seal N	Chain of Custody Seal Numbers				
			A compositor	Accompanies Shipment Pink - Project Files	rolect Fil) X	Yellow - Laboratory File	boratory	File					

Distribution: White - Accompanies Shipment Pink - Project Files Yellow - Laboratory File

Air Toxics Ltd.

180 Blue Ravine Road Ste. B

Folsom, CA 95630

Phone: 916/985-1000

Fax: 916/985-1020

eMail: atl@airtoxics.com

www.airtoxics.com

COMPREHENSIVE VALIDATION PACKAGE

Modified VOST 5041A/8260B

INVENTORY SHEET

Work Order #: 0207011B

	Page	e Nos.
	From	То
Work Order Cover Page & Laboratory Narrative	1 .	4
2 Sample Results and Raw Data (Organized by Sa		. 32
ATL Sample Results Form		
b. Target Compound Raw Data		
-Internal Standard Area and Retenetion	Time Summary	
-Surrogate Recovery Summary (If Appl	· · · · · · · · · · · · · · · · · · ·	
-Chromatogram(s) and Ion Profiles (If A		
3. QC Results and Raw Data	-ppressio)	
a. Method Blank (Results+ Raw Data)	. 34	52
b Surrogate Recover Summary Form (If Applic		53
c. Internal Standard Summary Form (If Applica		54
d. Duplicate Results Summary Sheet		
e. Matrix Spike/Matrix Spike Duplicate (Results	+ Raw Data	
f. Initial Calibration Data (Summary Sheet + Ra		772
g MDL Study (If Applicable)		
h. Continuing Calibration Verification Data (Sun	nmary Sheet 773	819
i Second Source LCS(Summary + Raw Data)	820	831
j Extraction Logs		
k Instrument Run Logs/Software Verification	832	833
l. GC/MS Tune (Results + Raw Data)	834	841
Shipping/Receiving Documents		
a Login Receipt Summary Sheet	843	843
b Chain-of-Custody Records	844	844
c Sample Log-In Sheet	845	845
d Misc Shipping/Receiving Records (list of indi		
Sample Receipt Discrepancy Report	. 846	847
5. Other Records (describe or list)		±
a Manual Spectral Defense	849	849
b Manual Integrations		
c Canister Dilution Factors	850	<u>851</u>
d Laboratory Corrective Action Request	-	
e. CAS Number Reference	852	852
f. Variance Table		
g Canister Certification	052	952
h Data Review Check Sheet	<u>853</u>	853
Comments:		
Completed by		
Judy Lee	Judy Lee / Document Control	7/22/02

AN ENVIRONMENTAL ANALYTICAL LABORATORY

0207011B **WORK ORDER #:**

Work Order Summary

Mr Tom Gerstle

BILL TO:

Mr Tom Gerstle

CLIENT:

Environmental Quality Management,

Environmental Quality Management, Inc 1800 Carillon Boulevard

Cincinnati, OH 45240

1800 Carillon Boulevard Cincinnati, OH 45240

PHONE:

800-229-7495 x 251

3966 P.O. #

FAX:

513-825-7495 -

PROJECT#

30174.0003.002 Elmendorf Air Force Base

DATE RECEIVED:

7/1/2002

CONTACT: DeDe Dodge

DATE COMPLETED:

7/15/2002

FRACTION#

NAME

TEST

01AB 02AB

04A

05A

E-0030-Comp Field Blank

03AB

Lab Blank

Lab Blank LCS

Modified VOST 5041A/8260B

Modified VOST 5041A/8260B

Modified VOST 5041A/8260B Modified VOST 5041A/8260B

Modified VOST 5041A/8260B

CERTIFIED BY:

linda d. Fruman

07/16/02 DATE:

Laboratory Director

Certification numbers: CA NELAP - 02110CA, NY NELAP - 11291, UT NELAP - 9166389892, LA NELAP/LELAP- AI 30763 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/02, Expiration date: 06/30/03

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 FAX (916) 985-1020

LABORATORY NARRATIVE VOST 5041A

Environmental Quality Management, Inc. Workorder# 0207011B

Three VOST Pair samples were received on July 01, 2002. The laboratory performed the analysis via EPA SW-846 Method 5041A using GC/MS in the full scan mode. VOST sorbent tubes are thermally desorbed at 180 degrees centrigrade for ten minutes by UHP helium carrier gas. The gas stream is then bubbled through 5 mL of organic free water and trapped on the sorbent trap of the purge and trap system. The trap is thermally desorbed to elute the components into the GC/MS system for further separation. See the data sheets for the reporting limits for each compound.

Requirement	VOST 5041A	ATL Modifications
Batch certification	Blanks from the same media as samples	Analysis of set of cartridges prior to onset of any project; Sampling media provided by the client is batch certified ahead of time, only if client provides blank cartridges.
Tenax/tenax charcoal tube analysis	Separate tube analysis	Tubes are desorbed and analyzed simultaneously, unless specified by client
Method blank	Cartridges from the same media batches as the samples	Cartridges used for daily method blank may or may not be from the same batch or sampling media.
Connection between cartridge thermal desorption apparatus & sample purge vessel	PTFE 1/16" Teflon tubing	Heated, 1/16" nickel line
Flow rates	40 mL/min	40-45 mL/min
Storage of standards	Amber bottles with PTFE-lined screw caps	Clear vials capped with PTFE mininert valves
Calibration criteria for non-CCCs	RSD = 15% for all<br non-CCCs	RSD = 30% for some compounds acetone, bromoform, vinyl acetate, bromomethane, chloromethane, 1,1,2,2-tetracholoroethane, & 1,2,3-trichloropropane; for some non-5041A compounds</td
BFB injection	Method 5041A - purge through water; Method 8260B - direct injection	Direct injection onto the column
Saturation level concentrations	Not specified	Samples desorbed into Tedlar bags

Receiving Notes

A Temperature Blank was included with the shipment. The ice included in the sample shipment melted during transit, therefore the temperature at receipt was greater than 6 degrees C. The client was notified via the login fax/email and the analysis proceeded

The chain of custody information for all samples did not match the entries on the sample tags. The client was notified and the information on the chain of custody was used to process and report the sample.

Analytical Notes

The recovery of surrogate 1,2-Dichloroethane-d4 and 4-Bromofluorobenzene in sample E-0030-Comp was outside control limits due to the presence of saturation levels of target and nontarget species. It is not possible to re-run to confirm matrix or dilute for matrix using sorbent tube media. Data is reported as qualified.

0002

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
- J Estimated value.
- E Exceeds instrument calibration range
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

			Table 1					
					Sample	· s	iample Extra	ıct
Client Sample ID	Lab Sample iD	Date Collected	Date Received	Date Extracted	Holding Time (Days)	Date Analyzed	Holding Time (Days)	Sample Condition
E-0030-Comp	0207011B-01AB	6/25/2002	7/ 1/2002	NA	13	7/ 8/2002	NA	Good
Field Blank	0207011B-02AB	6/25/2002	NA	NA	13	7/ 8/2002	NA	Good
Lab Blank	0207011B-03AB	6/25/2002	NA.	NA	13	7/ 8/2002	NA	Good
Lab Blank	0207011B-04A	"NA	NA	NA	NA	7/ 8/2002	NA	Good
LCS	0207011B-05A	NA	NA.	NA	NA	7/ 8/2002	NA	Good

Sample Results and Raw Data

AIR TOXICS LTD.

SAMPLE NAME: E-0030-Comp

ID#: 0207011B-01AB

MODIFTED VOST 5041A/8260B

		e a ce a le care pe 6/26/02
Distraction 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		te al Analysis 7/8/02
A BOULD A AND FOR THE STATE OF	Rpt. Limit	Amount
Compound	(ng)	(ng)
Chloromethane	10	240
Bromomethane	10	140
Chloroethane	10	Not Detected
Freon 11	10	Not Detected
1,1-Dichloroethene	10	Not Detected
Carbon Disulfide	10	Not Detected
Acetone	50	1500 E
Methylene Chloride	10	520
trans-1,2-Dichloroethene	10	Not Detected
1,1-Dichloroethane	10	Not Detected
Vinyl Acetate	50	Not Detected
cis-1,2-Dichloroethene	10	Not Detected
2-Butanone (Methyl Ethyl Ketone)	50	1300 E
Chloroform	. 10	Not Detected
1,1,1-Trichloroethane	10	Not Detected
Carbon Tetrachloride	10	Not Detected
Benzene	10	>6900 S
1,2-Dichloroethane	10	Not Detected
Frichloroethene	10	Not Detected
1,2-Dichloropropane	10	Not Detected
Bromodichloromethane	10	Not Detected
cis-1,3-Dichloropropene	10	Not Detected
trans-1,3-Dichloropropene	10	Not Detected
4-Methyl-2-pentanone	50	Not Detected
Toluene	10	>6400 S
1,1,2-Trichloroethane	10	Not Detected
Tetrachtoroethene	. 10	Not Detected
2-Hexanone	50	Not Detected
Dibromochloromethane	10	Not Detected
Chlorobenzene	10	Not Detected
Ethyl Benzene	10	3000 E
n,p-Xylene	10	>6300 S
o-Xylene	10	4100 E
Styrene	10	Not Detected
Bromoform	10	Not Detected
1,1,2,2-Tetrachloroethane	10	Not Detected
1.3-Butadiene	50	Not Detected

E = Exceeds instrument calibration range.

S = Saturated peak; data reported as estimated

Q = Exceeds Quality Control limits.
Container Type: VOST Pair

AIR TOXICS LTD.

SAMPLE NAME: E-0030-Comp ID#: 0207011B-01AB

MODIFIED VOST 5041A/8260B

		Method
Surrogates	%Recovery	Limits
Dibromofluoromethane	99	70-130
1,2-Dichloroethane-d4	172 Q	·70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	225 Q	70-130

Air Toxics Ltd.

180 Blue Ravine Road Ste. B

Folsom, CA 95630

Phone: 916/985-1000

Fax: 916/985-1020

eMail: atl@airtoxics.com

www.airtoxics.com

COMPREHENSIVE VALIDATION PACKAGE

Modified Method 0011 INVENTORY SHEET

Work Order #: 0206558

	Pag	e Nos.
	From	To
Wants Onder Carren Dago & Laboratory Narrative	1	3 .
. Work Order Cover Page & Laboratory Narrative . Sample Results and Raw Data (Organized by Sample)	5	16
a ATL Sample Results Form b Target Compound Raw Data	•	
-Internal Standard Area and Retenetion Time Summary		
-Surrogate Recovery Summary (If Applicable)		
-Chromatogram(s) and Ion Profiles (If Applicable)		
QC Results and Raw Data	18	22
a. Method Blank (Results+ Raw Data)		
b Surrogate Recover Summary Form (If Applicable)		
c Internal Standard Summary Form (If Applicable)	23	23
d Duplicate Results Summary Sheet		
e Matrix Spike/Matrix Spike Duplicate (Results + Raw Data	24	110
f Initial Calibration Data (Summary Sheet + Raw Data)		
g MDL Study (If Applicable)	111	137
h Continuing Calibration Verification Data (Summary Sheet	138	143
i Second Source LCS(Summary + Raw Data)	144	144
j Extraction Logs	145	147
k. Instrument Run Logs/Software Verification	175	
l. GC/MS Tune (Results + Raw Data)		
Shipping/Receiving Documents	149	149
a Login Receipt Summary Sheet	150	150
b Chain-of-Custody Records	151	151
c Sample Log-In Sheet		
d Misc Shipping/Receiving Records (list of individual records)	152	152
Sample Receipt Discrepancy Report		
5. Other Records (describe or list)	· ••	
a Manual Spectral Defense	154	167
b Manual Integrations	168	169
c Canister Dilution Factors	170	172
d. <u>Laboratory Corrective Action Request</u>	173	173
c CAS Number Reference	113	
f. Variance Table	-	
g. Canister Certification	174	174
h Data Review Check Sheet	1/4	1/7
Comments:		
Completed by:		
Judy Lee / Document C	ontrol	7/18/02
<i>u</i>		

AN ENVIRONMENTAL ANALYTICAL LABORATORY

0206558 **WORK ORDER #:**

Work Order Summary

CLIENT:

Mr. Tom Gerstle

BILL TO: Mr. Tom Gerstle

Environmental Quality Management,

Environmental Quality Management, Inc 1800 Carillon Boulevard

1800 Carillon Boulevard

Cincinnati, OH 45240

Cincinnati, OH 45240

3966 P.O. #

PHONE:

800-229-7495 x 251

30174.0003.002 Elmendorf Air Force Base

FAX: DATE RECEIVED: 513-825-7495 6/28/2002

PROJECT#

DATE COMPLETED:

7/15/2002

TEST

CONTACT: DeDe Dodge

FRACTION#	NAME
01A	E-0011-Comp
01AA	E-0011-Comp Duplicate
02A	DNPH Blank
03A	MeCl2/H2O Blank
04A	LCS
05A	Lab Blank

Modified Method 0011 Modified Method 0011 Modified Method 0011 Modified Method 0011 Modified Method 0011 Modified Method 0011

CERTIFIED BY-

Sinola d. Fruman

07/15/02

Laboratory Director

Certification numbers: CA NELAP - 02110CA, NY NELAP - 11291, UT NELAP - 9166389892, LA NELAP/LELAP- AI 30763 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/02, Expiration date: 06/30/03

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 (800) 985-5955 FAX (916) 985-1020

LABORATORY NARRATIVE Method 0011/8315A

Environmental Quality Management, Inc. Workorder# 0206558

Three Jar samples were received on June 28, 2002. The laboratory performed the analysis via Modified EPA SW-846 Method 0011/8315 using High Pressure Liquid Chromatography (HPLC) with an Ultraviolet (UV) Detector. See the data sheets for the reporting limits for each compound.

Receiving Notes

The chain of custody information for sample E-0011-Comp did not match the entry on the sample tag. The client was notified and the information on the chain of custody was used to process and report the sample.

The chain of custody information for samples DNPH Blank, and MeCl2/H2O Blank did not match the entries on the sample tags with regard to sample identification. The client was notified of the discrepancy by email/fax. Lack of a response was assumed to be permission given to use the information on the sample tag.

Analytical Notes

Acetaldehyde and Hexanal were detected in the laboratory blank. The "B" flags were applied to the associated results.

The extraction solvent was added to the samples E-0011-Comp and MeCl2/H2O Blank in the field, therefore the date of extraction is also the date of collection. The extraction date for the laboratory QC analyses that are associated with the workorder is the date that the extraction was completed.

The concentration of Iso-pentanal was below the Reporting Limit in the initial analysis of sample E-0011-COMP. %RPD method control limits are waived when analyte concentration in either the initial or the duplicate analysis is less than 5X the Reporting Limit. In addition, % RPD is not reported when one of the two replicate analyte concentrations is below the Reporting Limit.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B- Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- O Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Table 1								
Client Sample ID	Lab Sample ID	Date Collected	Date Received	Date Extracted	Sample Holding Time (Days)	Date Analyzed	Sample Extra Holding Time (Days)	Sample Condition
E-0011-Comp	0206558-01A	6/25/2002	6/28/2002	6/25/2002	0	7/12/2002	17	Good
E-0011-Comp Duplicate	0206558-01AA	6/25/2002	6/28/2002	6/25/2002	0	7/12/2002	17	Good
DNPH Blank	0206558-02A	6/26/2002	NA	7/ 1/2002	5	7/ 2/2002	1	Good
MeCl2/H2O Blank	0206558-03A	6/26/2002	NA	6/26/2002	0	7/ 2/2002	6	Good
LCS	0206558-04A	N A	NA	7/ 1/2002	NA	7/ 1/2002	0	Good
Lab Blank	0206558-05A	NA	NA	7/ 1/2002	NA	7/ 1/2002	0	Good

Sample Results and Raw Data

AIR TOXICS LTD.

SAMPLE NAME: E-0011-Comp

ID#: 0206558-01A

MODIFIED EPA SW-846 METHOD 0011/8315A HPLC

ilio Camerava (see a see a	Y Par	eof Callection 6/25/02 cof/Analysis 7/42/02
Compound	Rpt. Limit (ug)	Fot Extraction 6/25/02 Amount (ug)
Formaldehyde	13	310
Acetaldehyde	. 13	110 B
Acrolein	13	240
Propanal	13	52
Crotonaldehyde	. 13	150
Methyl Ethyl Ketone/Butyraldehydes	13	6 6
Benzaldehyde	13	250
sopentanal	13	Not Detected
Pentanal	13	81
o-Tolualdehyde	13	67
n,p-Tolualdehyde	13	290
Hexanal	13	67 B

B = Compound present in laboratory blank greater than reporting limit, background subtraction not performed. TOTAL VOLUME=485ML

Container Type: Jar

Air Toxics Ltd.

180 Blue Ravine Road Ste. B

Folsom, CA 95630

Phone: 916/985-1000

Fax: 916/985-1020

eMail: atl@airtoxics.com

www.airtoxics.com

COMPREHENSIVE VALIDATION PACKAGE

Modified NIOSH 5515 INVENTORY SHEET

Work Order #: 0207011A

	Page	Nos.
	From	То
Work Order Cover Page & Laboratory Narrative	1	4
2. Sample Results and Raw Data (Organized by Samp		45 .
a. ATL Sample Results Form		
b Target Compound Raw Data	•	
-Internal Standard Area and Retenetion Ti	me Summary	
-Surrogate Recovery Summary (If Application	*	
-Chromatogram(s) and Ion Profiles (If Ap		
3. QC Results and Raw Data	•	
a Method Blank (Results+ Raw Data)	47	57
b Surrogate Recover Summary Form (If Applicab	ole) 58	58
c Internal Standard Summary Form (If Applicable		60
d Duplicate Results Summary Sheet	·	
e Matrix Spike/Matrix Spike Duplicate (Results +	Raw Data	
f Initial Calibration Data (Summary Sheet + Raw		255
g MDL Study (If Applicable)	· ***	
h Continuing Calibration Verification Data (Summ		271
i Second Source LCS(Summary + Raw Data)	272	317
j Extraction Logs	318	318
k. Instrument Run Logs/Software Verification	319	322
I GC/MS Tune (Results + Raw Data)	323	341
4 Shipping/Receiving Documents	2.42	2.42
a Login Receipt Summary Sheet	343	343
b Chain-of-Custody Records	344	344
c Sample Log-In Sheet	345	345
d Misc Shipping/Receiving Records (list of indivi		. 347
Sample Receipt Discrepancy Report	346	
5. Other Records (describe or list)		
a Manual Spectral Defense		
b Manual Integrations	349	350
Canister Dilution Factors	349	330
d. <u>Laboratory Corrective Action Request</u>	351	351
e. CAS Number Reference		
f Variance Table		
g Canister Certification h Data Paviary Chark Sheet	352	352
h <u>Data Review Check Sheet</u>	332	,
Comments:		
Completed by		
Brad Mosakowski	Brad Mosakowski / Document Control	7/22/02

(Print Name & Title)

(Signature)

(Date)

AN ENVIRONMENTAL ANALYTICAL LABORATORY

0207011A **WORK ORDER #:**

Work Order Summary

Mr Tom Gerstle

BILL TO: Mr. Tom Gerstle

CLIENT:

Environmental Quality Management,

Inc.

Environmental Quality Management, Inc.

1800 Carillon Boulevard Cincinnati, OH 45240

1800 Carillon Boulevard Cincinnati, OH 45240

PHONE:

800-229-7495 x 251

P.O. # 3966

FAX:

513-825-7495

PROJECT#

30174.0003.002 Elmendorf Air Force Base

DATE RECEIVED:

7/1/2002

CONTACT:

DeDe Dodge

DATE COMPLETED:

7/15/2002

FRACTION# NAME 01A E-PAH-Comp 02A Trip Blank 03A Field Blank 04A LCS

TEST

Modified NIOSH 5515 Modified NIOSH 5515 Modified NIOSH 5515 Modified NIOSH 5515

05A

Lab Blank

Modified NIOSH 5515

CERTIFIED BY-

Sinda d. Fruman

07/16/02 DATE.

Laboratory Director

Certification numbers: CA NELAP - 02110CA, NY NELAP - 11291, UT NELAP - 9166389892, LA NELAP/LELAP- AI 30763 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/02, Expiration date: 06/30/03

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 (800) 985-5955 FAX (916) 985-1020

LABORATORY NARRATIVE Modified NIOSH 5515

Environmental Quality Management, Inc. Workorder# 0207011A

Three NIOSH Tubes XAD-2 with filter samples were received on July 01, 2002. The laboratory performed the analysis for Polyaromatic Hydrocarbons (PAHs) via Modified NIOSH Method 5515. The method involves solvent desorption using Methylene Chloride, followed by separation and analysis using GC/MS. See the data sheets for the reporting limits for each compound.

Requirement	NIOSH 5515	ATL Modifications
Target compounds	List includes Benzo(e)pyrene.	Standard list does not include Benzo(e)pyrene
Determination of Optimal Solvent	Test is performed on sample filters to determine optimal solvent: Acetonitrile, Benzene, Cyclohexane, or Methylene Chloride.	Methylene Chloride is used as the extraction solvent for all samples.
Standard preparation	Standards are prepared in Toluene using neat compounds.	Commercially available standard mixes in methylene chloride are used
Calibration range	Suggested range of 0.005 to 5 ug/mL.	Range is approximately 1.0 to 160 ug/mL.
Recovery study for filter	For each filter lot, spike 4 filters at each of the 5 calibration levels Extract, analyze, and calculate recovery.	Not performed unless requested.
Laboratory Control Spikes	With each analytical batch, spike and extract duplicate filters and tubes. If recovery varies by more than +/-5% from the recovery and desorption efficiency study results, than repeat the studies.	Spike filter and tube with each batch. Acceptance criterion is 50%-150%.
Lab Blank	Analyze at least three field blanks for each sample medium. Average blank level is subtracted from the sample results.	One lab blank is analyzed per batch; no blank subtraction is performed.
Concentration calculations	Results are corrected for %Recovery and desorption efficiency.	No correction of results performed. A copy of the desorption study is available upon request
Units	The air concentration in mg/m3 is reported.	Standard reporting unit is mass concentration (ug)
Detector	Flame Ionization Detector (FID)	Mass Spectrometer (MS)

Receiving Notes

A Temperature Blank was included with the shipment. The ice included in the sample shipment melted during transit, therefore the temperature at receipt was greater than 6 degrees C. The client was notified via the login fax/email and the analysis proceeded.

The chain of custody information for sample Trip Blank did not match the entry on the sample tag. The client was notified and the information on the chain of custody was used to process and report the sample.

Analytical Notes

A tube and a filter were received for each sample. The filter and sorbent were extracted and analyzed separately and the results for each analyte were combined additively and reported as a single concentration.

Results for sample E-PAH-Comp are reported from the front tube only as the back tube for this sample was non-detect for target analytes. There were no target analytes detected in the remaining samples in the front tubes, which implies that no significant breakthrough had occurred, and therefore only the front tube results are reported.

Sample results are not corrected for the desorption efficiency.

Definition of Data Qualifying Flags

Six qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

			Table 1					
					Sample	S	Sample Extra	act
Client Sample ID	Lab Sample ID	Date Collected	Date Received	Date Extracted	Holding Time (Days)	Date Analyzed	Holding Time (Days)	Sample Condition
E-PAH-Comp	0207011A-01A	6/25/2002	7/ 1/2002	7/ 9/2002	14	7/10/2002	1	Good
Trio Blank	0207011A-02A	6/26/2002	··NA	7/ 9/2002	13	7/10/2002	1	Good
Field Blank	0207011A-03A	6/26/2002	NA	7/ 9/2002	13	7/11/2002	2	Ġood
LCS	0207011A-04A	NA NA	NA	7/ 9/2002	NA	7/10/2002	1	Good
Lab Blank	0207011A-05A	NA NA	NA	7/ 9/2002	NA	7/10/2002	1	Good

Sample Results and Raw Data

AIR TOXICS LTD.

SAMPLE NAME: E-PAH-Comp

ID#: 0207011A-01A

MODIFIED NIOSH METHOD 5515 GC/MS

rue value		de of Collection; 6/25/02 de of Analysis: 7/10/02
Compound	Rpt. Limit (ug)	te of Extraction: #/9/02 Amount (ug)
Naphthalene	1.0	. 12
2-Methylnaphthalene	1.0	12
2-Chloronaphthalene	1.0	Not Detected
Acenaphthene	1.0	Not Detected
Acenaphthylene	1.0	Not Detected
Fluorene	1.0	Not Detected
Phenanthrene	1.0	Not Detected
Anthracene	1.0	Not Detected
Fluoranthene	1.0	Not Detected
Pyrene	1.0	Not Detected
Chrysene	10	Not Detected
Benzo(a)anthracene	1.0	Not Detected
Benzo(b)fluoranthene	1.0	Not Detected
Benzo(k)fluoranthene	1.0	Not Detected
Benzo(a)pyrene	1.0	Not Detected
Indeno(1,2,3-c,d)pyrene	1.0	Not Detected
Dibenz(a,h)anthracene	1.0	Not Detected
Benzo(g,h,i)perylene	1.0	Not Detected
Container Type: NIOSH Tubes XAD-2 w/Filt	ter	Method
Surrogates	%Recovery	Limits
2-Fluorobiphenyl	98.	50-150
Z-Proorobiphenyi Terphenyi-d14	100	50-150

Air Toxics Ltd.

180 Blue Ravine Road Ste. B

Foisom, CA 95630

Phone: 916/985-1000

Fax: 916/985-1020

eMail: atl@airtoxics.com

www.airtoxics.com

COMPREHENSIVE VALIDATION PACKAGE

Modified Method 0011 INVENTORY SHEET

Work Order #: 0206242

	Page	Nos.
	From	То
1 Work Order Cover Page & Laboratory Narrative	1	3
2 Sample Results and Raw Data (Organized by Sample	5	16
a. ATL Sample Results Form		
b. Target Compound Raw Data		
-Internal Standard Area and Retenetion Time	e Summary	
-Surrogate Recovery Summary (If Applicab		
-Chromatogram(s) and Ion Profiles (If Appl	icable)	
3 QC Results and Raw Data	18	22
a Method Blank (Results+ Raw Data)		
b Surrogate Recover Summary Form (If Applicable		
c Internal Standard Summary Form (If Applicable)	23	23
d Duplicate Results Summary Sheet		
e Matrix Spike/Matrix Spike Duplicate (Results + R		113
f Initial Calibration Data (Summary Sheet + Raw Da	ata)24	113
g MDL Study (If Applicable)		131
h. Continuing Calibration Verification Data (Summar	132 132	137
i Second Source LCS(Summary + Raw Data)	138	138
j Extraction Logs	139	141
k Instrument Run Logs/Software Verification		
L GC/MS Tune (Results + Raw Data)	***************************************	
4. Shipping/Receiving Documents	143	143
a Login Receipt Summary Sheet	143	144
b Chain-of-Custody Records	145	145
c Sample Log-In Sheet		173
d Misc Shipping/Receiving Records (list of individu	al records)	· 146
Sample Receipt Discrepancy Report	140	170
5. Other Records (describe or list)		
a. Manual Spectral Defense	1 4 0	164
b Manual Integrations	148	
c Canister Dilution Factors	165	166
d <u>Laboratory Corrective Action Request</u>	167	167
c CAS Number Reference	167	
f Variance Table	*** = ********************************	
g Canister Certification	168	168
h. Data Review Check Sheet	108	100
Comments:		
Completed by:		
Judy Lee	Judy Lee / Document Control	7/8/02
(Signature)	(Print Name & Title)	(Date)

AN ENVIRONMENTAL ANALYTICAL LABORATORY

WORK ORDER #: 0206242

Work Order Summary

CLIENT:

Mr. Tom Gerstle

BILL TO:

Mr. Tom Gerstle

Environmental Quality Management,

Environmental Quality Management, Inc

Inc.

1800 Carillon Boulevard

1800 Carillon Boulevard Cincinnati, OH 45240

Cincinnati, OH 45240

3966 P.O. #

PHONE: FAX:

800-229-7495 x 251 513-825-7495

PROJECT#

30174 0003 002 Travis AFB

DATE RECEIVED:

6/14/2002

CONTACT: DeDe Dodge

DATE COMPLETED:

6/26/2002

FRACTION# NAME 01A T-0011-Comp 01AA T-0011-Comp Duplicate Blank DNPH 02A Blank H2O/MeCl2 03A LCS 04A Lab Blank 05A

TEST Modified Method 0011 Modified Method 0011 Modified Method 0011

Modified Method 0011 Modified Method 0011 Modified Method 0011

CERTIFIED	BY:

Sinola) d	Freman

06/27/02 DATE:

Laboratory Director

Certification numbers: CA NELAP - 02110CA, NY NELAP - 11291, UT NELAP - 9166389892, LA NELAP/LELAP- AI 30763 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 01/01/02, Expiration date: 06/30/02

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 FAX (916) 985-1020

LABORATORY NARRATIVE

Method 0011/8315A

Environmental Quality Management, Inc. **Workorder# 0206242**

Three DNPH Bottle samples were received on June 14, 2002. The laboratory performed the analysis via Modified EPA SW-846 Method 0011/8315 using High Pressure Liquid Chromatography (HPLC) with an Ultraviolet (UV) Detector. See the data sheets for the reporting limits for each compound.

Receiving Notes

A Temperature Blank was included with the shipment. Temperature was measured and was not within 4 degrees C. +/- 2 degrees. Coolant in the form of blue ice was present. The client was notified via the login fax/email and the analysis proceeded.

Analytical Notes

The extraction solvent was added to the sample T-0011-Comp in the field, therefore the date of extraction is also the date of collection. The extraction date for the laboratory QC analyses that are associated with the workorder is the date that the extraction was completed.

Extraction solvent was not added to sample Blank DNPH at the time of collection which may have caused a breakdown of Acrolein in the acidic DNPH reagent. Acrolein results are reported as qualified.

Acetaldehyde was detected in the laboratory blank. The "B" flag was applied to the associated results.

The RPD of duplicate sample T-0011-Comp exceeded acceptance limits for the target compounds Iso-Pentanal and o-Tolualdehyde due to on-column concentrations that were less than 5X the reporting limit. There is no effect on data quality

The RPD of duplicate sample T-0011-Comp exceeded acceptance limits for the target compound m,p-Tolualdehyde.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B- Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Table 1								
Client Sample ID	Lab Sample ID	Date Collected	Date Received	Date Extracted	Sample Holding Time (Days)	Date Analyzed	Sample Extra Holding Time (Days)	set Sample Condition
T-0011-Comp	0206242-01A	6/11/2002	6/14/2002	6/11/2002	0	6/21/2002	10	Good
T-0011-Comp Duplicate	0206242-01AA	6/11/2002	6/14/2002	6/11/2002	0	6/21/2002	10	Good
Blank DNPH	0206242-02A	6/12/2002	NA	6/14/2002	2	6/14/2002	0	Good
Blank H2O/MeCl2	0206242-03A	6/12/2002	NA	6/14/2002	2	6/14/2002	0	Good
LCS	0206242-04A	. NA	NA	6/14/2002	NA	6/14/2002	0	Good
Lab Blank	0206242-05A	NA	NA	6/14/2002	NA	6/14/2002	0	Good

Sample Results and Raw Data

AIR TOXICS LTD.

SAMPLE NAME: T-0011-Comp

ID#: 0206242-01A

MODIFIED EPA SW-846 METHOD 0011/8315A HPLC

Ud Name 2 2062-016	cal	eof Collection: 5/15/02 e of Analysis: 16/23/02 e of Extraction: 6/15/02
Compound	Rpt. Limit (ug)	Amount (ug)
Formaldehyde	3.7	72
Acetaldehyde	3 .7 .	51 B
Acrolein	3.7	100 M
Propanal	3.7	24
Crotonaldehyde	3.7	68
Methyl Ethyl Ketone/Butyraldehydes	3.7	20
Benzaldehyde	3.7	110
sopentanal	37	9.6
Pentanal	3.7	43
o-Tolualdehyde	3.7	9.4
m,p-Tolualdehyde	3.7	66
Hexanal	3.7	19

B = Compound present in laboratory blank greater than reporting limit, background subtraction not performed.

M = Reported value may be biased due to apparent matrix interferences

TOTAL VOLUME=600ML

Container Type: DNPH Bottle

Air Toxics Ltd.

180 Blue Ravine Road Ste. B

Folsom, CA 95630

Phone: 916/985-1000

Fax: 916/985-1020

eMail: atl@airtoxics.com

www.airtoxics.com

COMPREHENSIVE VALIDATION PACKAGE

Modified Other NIOSH INVENTORY SHEET

Work Order #: 0206241

	Page	Nos.
	From	То
. Work Order Cover Page & Laboratory Narrative	1	4
2. Sample Results and Raw Data (Organized by Sample)	6	17
a. ATL Sample Results Form		
b Target Compound Raw Data		
-Internal Standard Area and Retenetion Time St	ımmary	
-Surrogate Recovery Summary (If Applicable)		
-Chromatogram(s) and Ion Profiles (If Applicab	ole)	
3. QC Results and Raw Data		
a. Method Blank (Results+ Raw Data)	19	29
b Surrogate Recover Summary Form (If Applicable)	30	. 30
c. Internal Standard Summary Form (If Applicable)	31 ·	34
d Duplicate Results Summary Sheet		
e Matrix Spike/Matrix Spike Duplicate (Results + Raw	Data	
f Initial Calibration Data (Summary Sheet + Raw Data)		137
g MDL Study (If Applicable)		
h Continuing Calibration Verification Data (Summary S	heet 138	161
i. Second Source LCS(Summary + Raw Data)	162	207
j Extraction Logs	208	208
k. Instrument Run Logs/Software Verification	209	211
l GC/MS Tune (Results + Raw Data)	212	223
4. Shipping/Receiving Documents		
Login Receipt Summary Sheet	225	225
b Chain-of-Custody Records	226	226
	227	227
 c. Sample Log-In Sheet d Misc Shipping/Receiving Records (list of individual) 		•
Sample Receipt Discrepancy Report	228	228
· · · · · · · · · · · · · · · · · · ·		
a Manual Spectral Defense		<u> </u>
b. Manual Integrations	230	231
c. <u>Canister Dilution Factors</u> d. <u>Laboratory Corrective Action Request</u>		
	232	232
e. CAS Number Reference		
f <u>Variance Table</u>	·	
g Canister Certification b Data Parious Charles Short	233	233
h. Data Review Check Sheet		
Comments:		
Completed by:		
Brad Mosakowski	Brad Mosakowski / Document Control	7/8/02
(Signature)	(Print Name & Title)	(Date)

AN ENVIRONMENTAL ANALYTICAL LABORATORY

WORK ORDER #: 0206241

Work Order Summary

CLIENT:

Mr Tom Gerstle

BILL TO: Mr. Tom Gerstle

Environmental Quality Management,

Environmental Quality Management, Inc.

1800 Carillon Boulevard

1800 Carillon Boulevard Cincinnati, OH 45240

Cincinnati, OH 45240

3966

PHONE:

800-229-7495 x 251

P.O. #

30174 0003 002 Travis AFB

FAX:

513-825-7495

PROJECT#

DeDe Dodge

DATE RECEIVED: DATE COMPLETED: 6/14/2002 6/26/2002

CONTACT:

FRACTION# NAME T-PAH-Comp. 01A 02A Blank-Trip LCS 03A Lab Blank 04A

TEST Modified Other NIOSH Modified Other NIOSH Modified Other NIOSH

Modified Other NIOSH

CERTIFIED BY

Sinda d. Fruman

06/27/02

Laboratory Director

Certification numbers: CA NELAP - 02110CA, NY NELAP - 11291, UT NELAP - 9166389892, LA NELAP/LELAP- AI 30763 Name of Accrediting Agency NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 01/01/02, Expiration date: 06/30/02

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 (800) 985-5955 FAX (916) 985-1020

0001

LABORATORY NARRATIVE Modified NIOSH 5515

Environmental Quality Management, Inc. Workorder# 0206241

Two NIOSH Tubes XAD-2 w/Filter samples were received on June 14, 2002. The laboratory performed the analysis for Polyaromatic Hydrocarbons (PAHs) via Modified NIOSH Method 5515. The method involves solvent desorption using Methylene Chloride, followed by separation and analysis using GC/MS. See the data sheets for the reporting limits for each compound.

Requirement	NIOSH 5515	ATL Modifications
Target compounds	List includes Benzo(e)pyrene.	Standard list does not include Benzo(e)pyrene.
Determination of Optimal Solvent	Test is performed on sample filters to determine optimal solvent: Acetonitrile, Benzene, Cyclohexane, or Methylene Chloride.	Methylene Chloride is used as the extraction solvent for all samples.
Standard preparation	Standards are prepared in Toluene using neat compounds.	Commercially available standard mixes in methylene chloride are used
Calibration range	Suggested range of 0.005 to 5 ug/mL.	Range is approximately 1.0 to 160 ug/mL.
Recovery study for filter	For each filter lot, spike 4 filters at each of the 5 calibration levels. Extract, analyze, and calculate recovery.	Not performed unless requested
Laboratory Control Spikes	With each analytical batch, spike and extract duplicate filters and tubes If recovery varies by more than +/-5% from the recovery and desorption efficiency study results, than repeat the studies.	Spike filter and tube with each batch Acceptance criterion is 50%-150%
Lab Blank	Analyze at least three field blanks for each sample medium. Average blank level is subtracted from the sample results.	One lab blank is analyzed per batch; no blank subtraction is performed
Concentration calculations	Results are corrected for %Recovery and desorption efficiency.	No correction of results performed. A copy of the desorption study is available upon request.
Units	The air concentration in mg/m3 is reported.	Standard reporting unit is mass concentration (ug).
Detector	Flame Ionization Detector (FID)	Mass Spectrometer (MS)

Receiving Notes

A Temperature Blank was included with in shipment. Temperature was measured and was not within 4 degrees C. +/- 2 degrees. Coolant was present. The client was notified via the login email and the analysis proceeded.

Analytical Notes

A tube and a filter were received for each sample. The filter and sorbent were analyzed separately, and then the results for each analyte were additively combined and reported as a single concentration.

The front and back portions of each tube were extracted separately to monitor for possible breakthrough. There were no target compound hits reported for the front end analysis which implies that no significant breakthrough had occurred during sample collection. Analytical results from only the front tubes were reported since no breakthrough was observed.

Definition of Data Qualifying Flags

Six qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Table 1								
					Sample	8	ample Extra	ıct
Client Sample ID	Lab Sample ID	Date Collected	Date Received	Date Extracted	Holding Time (Days)	Date Analyzed	Holding Time (Days)	Sample Condition
T-PAH-Comp.	0206241-01A	6/12/2002	6/14/2002	6/18/2002	6	6/20/2002	2	Good
Blank-Trip	0206241-02A	6/12/2002	NA	6/18/2002	6	6/20/2002	. 2	Good
LCS	0206241-03A	NA.	NA	6/18/2002	NA	6/20/2002	2	Good
Lab Blank	0206241-04A	NA.	NA.	6/18/2002	NA	6/20/2002	2	Good

Sample Results and Raw Data

AIR TOXICS LTD.

SAMPLE NAME: T-PAH-Comp.

ID#: 0206241-01A

MODIFIED NIOSH METHOD 5515 GC/MS

ile vaine 20 pp 193	0 2 2 2 6 2 2 0	ote of Collection: 6/12/02 ale of Arralysis: 6/20/02 are of Extraction: 6/18/02
Compound	Rpt. Limit (ug)	Amount (ug)
Naphthalene	2.0	Not Detected
2-Methylnaphthalene	2.0	Not Detected
2-Chloronaphthalene	2.0	Not Detected
Acenaphthene	2.0	Not Detected
Acenaphthylene	2.0	Not Detected
luorene	2.0	Not Detected
Phenanthrene	2.0	Not Detected
Anthracene	2.0	Not Detected
Fluoranthene	2.0	Not Detected
Pyrene	2.0	Not Detected
Chrysene	2.0	Not Detected
Benzo(a)anthracene	. 2.0	Not Detected
Benzo(b)fluoranthene	2.0	Not Detected
Benzo(k)fluoranthene	2.0	Not Detected
Benzo(a)pyrene	2.0	Not Detected
Indeno(1,2,3-c,d)pyrene	2.0	Not Detected
Dibenz(a,h)anthracene	2.0	Not Detected
Benzo(g,h,i)perylene	2.0	Not Detected
Container Type: NIOSH Tubes XAD-2 w/Filter		Method
Surrogates	- %Recovery	Limits
2-Fluorobiphenyl	104	50-150
Terphenyl-d14	104	50-150

Air Toxics Ltd.

180 Blue Ravine Road Ste. B

Folsom, CA 95630

Phone: 916/985-1000

Fax: 916/985-1020 eMail: atl@airtoxics.com

www.airtoxics.com

COMPREHENSIVE VALIDATION PACKAGE

Modified VOST 5041A/8260B

INVENTORY SHEET

Work Order #: 0206243

	Page T	Nos.
	From	To
Work Order Cover Page & Laboratory Narrative	1	4
2. Sample Results and Raw Data (Organized by Sample)	6	65 ·
a ATL Sample Results Form		
b Target Compound Raw Data		•
-Internal Standard Area and Retenetion Time Sun	nmary	
-Surrogate Recovery Summary (If Applicable)	_	
-Chromatogram(s) and Ion Profiles (If Applicable	e)	
QC Results and Raw Data	•	
a Method Blank (Results+ Raw Data)	67	74
b Surrogate Recover Summary Form (If Applicable)	75	75
c Internal Standard Summary Form (If Applicable)	76	76
d Duplicate Results Summary Sheet	4040	
e Matrix Spike/Matrix Spike Duplicate (Results + Raw D	Data	
f Initial Calibration Data (Summary Sheet + Raw Data)	77	342
g MDL Study (If Applicable)	***	
h. Continuing Calibration Verification Data (Summary Sho	eet <u>343</u>	389
i Second Source LCS(Summary + Raw Data)	390	401
j Extraction Logs		***
k. Instrument Run Logs/Software Verification	402	404
L GC/MS Tune (Results + Raw Data)	405	416
Shipping/Receiving Documents		
a. Login Receipt Summary Sheet	418	418
b Chain-of-Custody Records	419	419
c. Sample Log-In Sheet	420	420
d Misc Shipping/Receiving Records (list of individual rec	cords)	•
Sample Receipt Discrepancy Report	421	421
5. Other Records (describe or list)		•
a. Manual Spectral Defense	423	423
b. Manual Integrations	424	426
c. Canister Dilution Factors	427	428
d Laboratory Corrective Action Request		
e CAS Number Reference	429	429
f Variance Table		
g Canister Certification		
h Data Review Check Sheet	430	430
Comments.		
Comments: Completed by:		
	ad Mosakowski / Document Control	7/3

(Print Name & Title)

(Signature)

(Date)

AN ENVIRONMENTAL ANALYTICAL LABORATORY

0206243 **WORK ORDER #:**

Work Order Summary

CLIENT:

Mr. Tom Gerstle

BILL TO: Mr. Tom Gerstle

Environmental Quality Management,

Environmental Quality Management, Inc. 1800 Carillon Boulevard

1800 Carillon Boulevard Cincinnati, OH 45240

Cincinnati, OH 45240

PHONE:

800-229-7495 x 251

P.O. # 3966

FAX:

513-825-7495

PROJECT#

30174 0003 002 Travis Air Force Base

DATE RECEIVED:

6/14/2002

CONTACT:

DeDe Dodge

DATE COMPLETED:

6/26/2002

TEST NAME FRACTION# Modified VOST 5041A/8260B T-0030-Comp Tenax 01A Modified VOST 5041A/8260B T-0030-Comp Tenax-Charcoal 01B Modified VOST 5041 A/8260B Field Blank Tenax 02A Modified VOST 5041A/8260B Field Blank Tenax-Charcoal 02B Modified VOST 5041A/8260B Trip Blank Tenax 03A Modified VOST 5041A/8260B 03B Trip Blank Tenax-Charcoal Modified VOST 5041A/8260B Lab Blank 04A Modified VOST 5041A/8260B LCS 05A

CERTIFIED BY

Linda d. Fruman

06/27/02

Laboratory Director

Certification numbers: CA NELAP - 02110CA, NY NELAP - 11291, UT NELAP - 9166389892, LA NELAP/LELAP- AI 30763 Name of Accrediting Agency NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 01/01/02, Expiration date: 06/30/02

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 (800) 985-5955 FAX (916) 985-1020

LABORATORY NARRATIVE VOST 5041A

Environmental Quality Management, Inc. Workorder# 0206243

Six VOST Pair samples were received on June 14, 2002. The laboratory performed the analysis via Modified EPA SW-846 Method 5041A using GC/MS in the full scan mode. VOST sorbent tubes are thermally desorbed at 180 degrees centrigrade for ten minutes by UHP helium carrier gas. The gas stream is then bubbled through 5 mL of organic free water and trapped on the sorbent trap of the purge and trap system. The trap is thermally desorbed to elute the components into the GC/MS system for further separation. See the data sheets for the reporting limits for each compound.

Requirement	VOST 5041A	ATL Modifications
Batch certification	Blanks from the same media as samples	Analysis of set of cartridges prior to onset of any project; Sampling media provided by the client is batch certified ahead of time, only if client provides blank cartridges.
Tenax/tenax charcoal tube analysis	Separate tube analysis	Tubes are desorbed and analyzed simultaneously, unless specified by client
Method blank	Cartridges from the same media batches as the samples	Cartridges used for daily method blank may or may not be from the same batch or sampling media.
Connection between cartridge thermal desorption apparatus & sample purge vessel	PTFE 1/16" Teflon tubing	Heated, 1/16" nickel line
Flow rates	40 mL/min	40-45 mL/min
Storage of standards	Amber bottles with PTFE-lined screw caps	Clear vials capped with PTFE mininert valves
Calibration criteria for non-CCCs	RSD = 15% for all<br non-CCCs	RSD = 30% for some compounds: acetone, bromoform, vinyl acetate, bromomethane, chloromethane, 1,1,2,2-tetracholoroethane, & 1,2,3-trichloropropane; for some non-5041A compounds</td
BFB injection	Method 5041A - purge through water; Method 8260B - direct injection	Direct injection onto the column
Saturation level concentrations	Not specified	Samples desorbed into Tedlar bags

Receiving Notes

A Temperature Blank was included with the shipment. Temperature was measured and was not within 4 degrees C. +/- 2 degrees. Coolant in the form of blue ice was present. The client was notified via the login email and the analysis proceeded.

Analytical Notes

The recovery of internal standard Chlorobenzene-d5 and surrogate 4-Bromofluorobenzene in sample T-0030-Comp Tenax was outside control limits due to high level hydrocarbon matrix interference. It is not possible to re-run to confirm matrix or dilute for matrix using sorbent tube media. The un-subtracted raw spectra is provided to confirm the matrix interference. Data is reported as qualified.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Table 1								
Client Sample ID	Lab Sample ID	Date Collected	Date Received	Date Extracted	Sample Holding Time (Days)	Date Analyzed	Sample Extra Holding Time (Days)	Sample Condition
T-0030-Comp Tenax	0206243-01A	6/12/2002	6/14/2002	· NA	3	6/15/2002	NA	Good
T-0030-Comp Tenax-Char	0206243-01B	6/12/2002	6/14/2002	NA	3	6/15/2002	NA	Good
Field Blank Tenax	0206243-02A	6/12/2002	NA	NA	3	6/15/2002	NA	Good
Field Blank Tenax-Charco	0206243-02B	6/12/2002	NA	NA	3	6/15/2002	NA	Good
Trip Blank Tenax	0206243-03A	6/12/2002	NÁ	NA	3	6/15/2002	NA	Good
Trip Blank Tenax-Charcoa	0206243-03B	6/12/2002	NA	NA	3	6/15/2002	NA	Good
Lab Blank	0206243-04A	NA	. NA	NA	NA	6/15/2002	NA	Good
LCS	0206243-05A	NA NA	NA	NA	NA	6/15/2002	NA	Good

Sample Results and Raw Data

AIR TOXICS LTD.

SAMPLE NAME: T-0030-Comp Tenax

ID#: 0206243-01A

MODIFIED VOST 5041A/8260B

rile Naine				
	Rpt. Limit	Amount		
Compound	(ng)	(ng)		
Chloromethane	10	Not Detected		
Bromomethane	10	Not Detected		
Chloroethane	10	Not Detected		
Freon 11	. 10	Not Detected		
1,1-Dichloroethene	10	Not Detected		
Carbon Disulfide	10	Not Detected		
Acetone	50	460		
Methylene Chloride	. 10	77		
trans-1,2-Dichloroethene	10	Not Detected		
1,1-Dichloroethane	10	Not Detected		
Vinyl Acetate	50	Not Detected		
cis-1,2-Dichloroethene	[*] 10	Not Detected		
2-Butanone (Methyl Ethyl Ketone)	50	280		
Chloroform	10	Not Detected		
1,1,1-Trichloroethane	10	Not Detected		
Carbon Tetrachloride	10	Not Detected		
Benzene	10	4500 E		
1,2-Dichloroethane	10	Not Detected		
Trichloroethene	10	Not Detected		
1,2-Dichloropropane	10	Not Detected		
Bromodichloromethane	10	Not Detected		
cis-1,3-Dichloropropene	10	Not Detected		
trans-1,3-Dichloropropene	10	Not Detected		
4-Methyl-2-pentanone	50	Not Detected		
Toluene	10	2800 E		
1,1,2-Trichloroethane	10	Not Detected		
Tetrachloroethene	10	Not Detected		
2-Hexanone	50	Not Detected		
Dibromochloromethane	10	Not Detected		
Chlorobenzene	10	Not Detected		
Ethyl Benzene	10	570		
m,p-Xylene	10	1900		
o-Xylene	10	760		
Styrene	10	37		
Bromoform	10 .	Not Detected		
1,1,2,2-Tetrachloroethane	10	Not Detected		
1,3-Butadiene	50	Not Detecte		

E = Exceeds instrument calibration range.

Q = Exceeds Quality Control limits of 70% to 130%, due to matrix effects

Container Type: VOST Pair

AIR TOXICS LTD.

SAMPLE NAME: T-0030-Comp Tenax

ID#: 0206243-01A

MODIFIED VOST 5041A/8260B

File Name: night of 4 his Str. 1997 200 Date of Collection: 6/12/02 DilyFactor: Date of Analysis: 8/15/02/

		Method
Surrogates	%Recovery	Limits
Dibromofluoromethane	94	70-130 ·
1.2-Dichloroethane-d4	105	·70 - 130
Toluene-d8	94	70-130
4-Bromofluorobenzene	157 Q	70-130

E Q

Environmental Quality Management, Inc.

ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD

Reference Document No.	A- 60 - 6	
	Reference Document No.	Page 1 of

Report to: Low (2015/AL	77	1800 Catillen Baulavard	Cincipulati Daio 45240	Bill to: Same
Lab Destination Air Toxics Ltd	Jede Jodge 916-985-1000	3966		
Base Lab Destination	Lab Contact/Phone	Lab Purchase Order No.	Carrier/Waybill No.	
Project Name Elmendorf Air Fora	Project Number 30174,0003,002	Project Manager John Gerstan	Sample Team Leader Row Kolde	

ONE CONTAINER PER LINE

	Sample Number	Sample Description/Type	Date/Time Collected	Container Type	Sample Volume	Pre- servative	Requested Analytical Method/(Parameters)	Analytical rameters)	Condition on Receipt (Lab)
y my	Want F- Mill. Cast DATH Subtime	DAY Saltion	6/25/02	Glass	/) as 4.		Alde hydes	hydes + latonas	
	1/2:013/4	DNP. 17 F20	16/26/02	(slass	UNK		my 6.01	EPA Methol	
Man.		O M. V.					1100		
		7 7 7 9 700							
	Special Instructions:	ions:							
	Possible Hazard Identification: Non-hazard ☐ Flammable E	Possible Hazard Identification: Non-hazard ☐ Flammable ☐ Skin Irritant ☒	⊠ Other		Sample Disposat: Return to Client	Dispo	Disposal by Lab	Archive	(a(mos.)
	Turnaround Time Requ	Turnaround Time Required: As pur Method ©のNormal 図 Rush □ Results Required by	1100	QA Requirements:	nents: Nethol 001	1001			
	f. Relinquisher	1. Relinquished by Caramanian M. M. M.	Date: (127/02	1: Received by (Signature/Affiliation)			Date: Time:	
	2. Relinquished by (Signature/Affiliation)	y by	Date: Time:		2. Received by (Signature/Allifation)			Date: Time:	
	Comments:						٠,		
		of the state of th							(
				(,				ľ

-
Ŀ
200 W

Environmental Quality Management, Inc.

Bnvironmental Quality Management, Inc.

	1 1/13/1	1 1 1				\neg	_					Т		Т			_
	18 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Condition of Receipt (Lab)						Brok 12	•							
,	Reference Document No. Page 1 of Report to:		Requested Analytical Method/(Parameters)	19 Mothed 202	5 Coudensible	Particulate Mathe			run - Mecho ring + DI HOD	W Archive S (mos.)	0.0	100	Dates	I me:	Date:		
ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD	1st fluntiti	ar line	Pre- servative	WIA E	1 6		A		- Moch	il: B Disposal by Lab W Archive	la or all	I'm Mercad	·	iation)	istion)		
VSIS REQ OF CUSTC	Lab Destination Lab Contact/Phone Purchase Order No. Sarner/Waybill No.	ONE CONTAINER PER LINE	Sample Volume	UNK			-			Sample Disposal: Return to Client []		"	1. Received by	(Signature/Affiliation)	2. Received by (Slenature/Affiliation)		
ANAI	`\ .9	ONEC	Container Type	(64.46)	Plastic				1 +654		QA Roquirements:		•				
	1 (64) ng		Date/Time Collected	,					for ancl				20/1/2				
Bavironmental Quality Management, Inc.	Project Name 86 Gentral vject Number 03017# Gen 3 yet Manager Team Leader		Sample Description/Type	Mech riuse:	7 7 90 Oct IO	For sody	Elmpla	,	Fractions "	ossible Hazard Identification: on-hazard [] Flammable [] Skin Irriant] K Other		Kesuits Kequired by	For Molde	on)	Date:		
3 Bavir	Project Name Project Number Project Manager Sample Team Leader		Sample Number	1-5-01-	2-5-01-	2-5-0/-	-25-52-	pecial Instructions:	7	ossible Hazard Identification: ion-hazard D Flammable [] Sl	umaround Time Required:	ormal Kush []	. Relinquished by	oignamre/Aminamon)	. Relinguished by Signature/Affiliation)	omments:	

NNETSERVER\ADMINIPorms\Porms\Emission Testing\Chain of Custody.doc

Environmental Quality Management, Inc.

ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD (cont.)

Reference Document No. __ Page ____ of ______

Project Name 86 Generates Testing

Project No. 0.20/7/+ 0.00 3. 00 2-

Sample Shipment Date 7/15/02

Sample	Sample Description/Tune	Date/Time	Container	Sample Volume	Pre-	Requested Analytical Method/(Parameters)	Condition on Receipt (Lab)
7.70.16.2	Molle oinse:		Gen/	//N/		EPA Method 202	
1-60-6-1	DI KO Buck 4		Plastes		,	for Condensible	
4.7.67						particulate	
2.50.5.3	Comple, Min					matter	
7-8-5-1	-						
1-75-5-2							
5.5-5-3							
1-5-00/-							
7-100-5-2							
7-100-5-3							
Mr. Cl. Bluk							
DI HO Blink							
E-10-5-1							
15-10-5-2							
£-10-5-3							
£-25-5-1							
F- 15-5-7							
E-25-5-7					-\;	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	>			> _	>		

Environmental Quality Management, Inc.

ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD (cont.)

Project Name 86 Buretar Testing

Project No. 030/74, 6003.002

Sample Shipment Date 7/15/02

ANI L'AHO MANIATIVO EN

		•				
	· ,					
					*	
				•		
				•		
	·			•		
•						
	·					
	·					
			•			
	·	•	•			
	•					

APPENDIX E AGSE PERFORMANCE DATA

CLEAN CAM TECHNOLOGY -86 FIELD DEMONSTRATION QUARTERLY MEETING AGENDA 25 FEBRUARY 2002 1400 HOURS, EASTERN TIME ZONE

- I. Introductions
- II. Engine Rebuild Update
 - A. 2 Detroit Diesel (4L-71N) motors (ID numbers 4A268635 and 4A269999) and 1 complete AGSE (Hobart model) were shipped to Clean Cam Technology Systems (CCTS) in Bakersfield, California for retrofit on 4 January 2002.
 - B. The motors were rebuilt, shipped to Elmendorf AFB, and were received on 28 January 2002.
 - C. The motors were installed into 2 AGSE (Hollinsworth models) and several problems were noted:
 - The turbo oil drain back line was too close to the exhaust. The extreme heat would seize
 the oil and clog the drain line.
 - 2. The either bottle was blocked by the new air box for placement.
 - 3. The exhaust exit was too close to the hand brake and the diversion towards the ground caused damage to the asphalt during operation.
 - D. The problems were discussed with CCTS and several solutions were provided:
 - 1. The turbo drain line can be connected to the rear of the engine near the fly wheel. This will keep the line away from the exhaust.
 - 2. CCTS will attempt to make the airbox smaller to allow for normal either bottle placement. Also, a bracket can be fabricated to the rear of the airbox for the ether bottle.
 - 3. The exhaust routing will be modified so that it does not interfere with the hand brake and directs the exhaust parallel to the ground.
 - E. Discuss wet stacking issues.

III. Rebuild Configuration for 2 Remaining Motors

- A. 2 motors arrived at CCTS on 12 February 2002.
 - 1. Should the rebuild route the turbo over the valve cover and eliminate the problems noted or keep the existing turbo routing and solve the problems noted?
 - One of the motors had major damage upon arrival (cracked head, broken crankshaft, oil distribution pipe is broken, flywheel housing is broken). The second motor for rebuild will come from the AGSE set.
- B. What is the AGSE type at Travis AFB (Hobart of Hollinsworth)?
 - 1. Can Travis AFB send CCTS some electronic photos of the AGSE?
- C. Rebuild should be completed on both engines on 12 March 2002.

IV. Tentative Emission Measurement Dates

- A. Tentative schedule is to ship sampling equipment to Travis AFB, conduct testing (approx. 6 days), ship equipment to Elmendorf AFB (approx. 6 days), conduct testing at Elmendorf AFB (approx. 6 days). EQ may drive equipment to maintain control.
- B. Is driving to Elmendorf AFB in the winter possible?

V. Review Sampling Plan Comment Items

A. Refer to the fuel return line and AGSE maintenance log items in the attached email from Mr. William Likos WRALC/LEE.

Subject: Clean Cam Travis AFB

Date: Thu, 26 Dec 2002 10:45:45 -0600

X-MS-Has-Attach: X-MS-TNEF-Correlator:

Thread-Topic: Clean Cam Travis AFB

Thread-Index: AcKs/i+++PLFR8CFS2K6LDwZ2iOg3g==

Priority: Urgent Importance high

From: "Kramer William H MSgt 60 EMS/LGMGR" <William Kramer@travis af.mil>

To: "Tom Gerstle" <tgerstle@eqm.com>

Cc: "Salvitti Ronald E Civ 60 EMS/LGMG" <ronald.salvitti1@travis.af mil>

X-OriginalArrivalTime: 26 Dec 2002 16:45:46.0846 (UTC) FILETIME=[3D36AFE0:01C2ACFE]

Good morning Tom, our organization started running JP-8 in the DG87 test unit and we are experiencing problems. The list below is some of the problems we are experiencing:

- 1 Engine very unstable at idle speed (cold)
- 2 Excessive white smoke at idle speeds especially when (cold)
- 3. Low engine operating temperatures below 180F under full load
- 4 High engine oil consumption rate, over two to three quarts for every tank of fuel
- 5. There appears to be too much petroleum product leaving the exhaust system at idle We ran the unit in the rain and had to recover oil byproducts from the area
- 6 The unit still load tests fine but if we continue to run JP-8 I'm confident that will change
- 7. DG87 is brought in from the flight line regularly on a red X for excessive smoke
- 8 We see DG87 regularly for discrepancies related to the JP-8 test
- 9 Unit takes longer to warm-up at idle speed

Tom I want to start running DF-2 in this unit to cut down the maintenance man hours I'm devoting to the JP-8 test. I don't see a quick solution to rectify the deficiencies and want to avoid premature engine failure. This unit ran at full song before the JP-8 test and showed positive results, right now, it appears that JP-8 is not compatible with the unit under test. Please respond ASAP and provide your inputs on converting back to DF-2.

Respectfully, MSgt Kramer

DSN: 837-0940

COMM: 707-424-0940

From: "Don Fairchild" <donfairchild@gohighspeed.com>

To: <Kent.johnson@elemdorf.af.mil>

Cc: <tgerstle@eqm.com> Subject⁻ -86 generator engines

Date: Sat, 13 Apr 2002 10:38:55 -0700

X-Mailer: Microsoft Outlook IMO, Build 9.0.2416 (9.0.2910.0)

Importance: Normal

Msg Johnson

we have installed our test engine on the dyno to find out what is going on with the engines you have in Alaska. We have found out that the turbo will not put out the required amount of air to the engine in its current location. We moved the turbo back on top of the engine and it works as intended we also believe that with the turbo down on the side of the engine we have caused internal damage to the engine and therefore the engine will never perform as intended. We are therefore requesting you remove the engines and return them to us in California in order that we may disassemble inspect and correct any defects we may find, and return the engines to you as soon as possiable we regret any inconvenience this has or will cause you.

Don Fairchild clean cam technology systems Bakersfield calif (661)391-4520 office (661)391-4525 fax donfairchild@gohighspeed.com From: Wade Mark D Contr AFIERA/RSEQ < Mark D Wade@brooks af.mil>

To: "T Gerstle (E-mail)" <Tgerstle@eqm com>

Subject: FW: -86 generators

Date: Wed, 29 May 2002 07:50:22 -0500 X-Mailer: Internet Mail Service (5.5.2653.19)

MARK D. WADE AFIERA/RSEQ BROOKS AFB TX

DSN: 240-4858, COMMERCIAL (210) 536-4858 FAX DSN: 240-3945, COMMERCIAL (210) 536-3945 WEBSITE: https://www.afms.mil/afiera/ead_div.htm

----Original Message----

From Don Fairchild [mailto:donfairchild@gohighspeed.com]

Sent: Saturday, May 25, 2002 3:45 PM To: jeffery barton@elmendorf af.mil Cc: mark.d.wade@brooks.af.mil

Subject: -86 generators

I have the two engines back from Elmendorf, we have found that both turbochargers have had something go through them and destroyed the turbo wheels on the compressor side (intake side) of the turbo, please check and see that all intake hoses, and lines are free of foreign material and or dust particles, that all clamps are tight, check the air cleaner element for holes or other objects that may be in the intake system. Remember your training F.O.D foreign objects destroy. I will advise on further problems we find in the engines. Thank you for your attention to this matter.

Don Fairchild ccts (661)391-4520 office (661)391-4525 fax donfairchild@gohighspeed.com

This is the clamp we manufactured for the left side to hold the muffler

1/2 inch spacers installed between mount and brake lever assembly to allow clearance between brake rod and muffler

Interference between turbo-charger oil return line (90 degree fitting) and exhaust pipe from turbo-charger

Yoke assembly with existing mounting holes for K-7 contactor and Ether Bottle assembly (note Clean Cam air box behind Yoke)

K-7 Contactor mounted behind air filter box assembly using existing Holes in the contactor mounting bracket

Ether start assembly temporarily mounted on Voltage regulator (bottle removed) Mounting this assembly in this area severely limited

Original configuration of K-7 contactor and Ether start system (with bottle installed) on Yoke assembly. Minimum clearance between Voltage Regulator and Ether bottle

CLEAN CAM ENGINE INSTALLATION PROBLEMS WE DISCOVERED

- 1. The secondary Clean Cam fuel filter was removed from its mounting location on the engine block. This allows for the installation of the auxiliary starter solenoid. To accomplish this we used the original secondary fuel filter setup from the Hollingsworth –86D Generator set.
- 2. The muffler hanger bracket located on the left side of the unit had to be fabricated from 1/8 inch steel and bent over the engine mount bracket (see photo # 1).
- 3. Lowered the brake handle assembly ½ inch to allow for clearance between brake rod and the muffler. This was accomplished by placing ½ inch spacers between the brake mounting plate and the brake handle assembly. Longer bolts were installed, 3/8-by 2-¾ inch bolt to allow for the increased distance (see photo # 2).
- 4. The oil return line from the turbo-charger goes to the engine block behind the exhaust pipe from the turbo-charger. The 90-degree Clean Cam fitting contacts the exhaust pipe and requires you to force the muffler and exhaust pipe assembly to the right as much as possible to gain some clearance but still leaves them in contact with each other, causing chaffing. (see photo #3)
- 5. Relocated the K-7 contactor and the Ether start bottle assembly because the air box assembly of the Clean Cam engine interferes with the original mounting area for these components (see photo # 4). K-7 was easily relocated behind the air filter box assembly by rotating the contactor assembly and utilizing the mount holes. The Ether start bottle has nowhere to be relocated, as it will interfere with the voltage regulator if we attempted to make a bracket that would attach it to its original mounting area. Photos # 5 and # 6 show the relocated K-7 contactor and the temporary mounting of the Ether start bottle. Photo # 7 shows the original configuration of the K-7 contactor and the Ether start bottle assembly.
- 6. A tee fitting had to be added to the oil feed line of the blower bearings for the supercharger. This was needed to attach the oil line for the oil pressure switch and gauge located behind the engine control panel.
- 7. During the operational/functional check of the unit we noticed (after applying a 260 Amp, 3 Phase balanced load with a .8 power factor) the ground asphalt located under the exhaust muffler had softened considerably. The outside temperature at the time was 27 degrees Fahrenheit with snow and ice covering the ground. Another major concern is the closeness of the brake handle to the exhaust outlet and the potential for personnel to severely burn themselves via hot metal surfaces.

From: Wade Mark D Contr AFIERA/RSEQ < Mark D. Wade@brooks.af.mil>

To: "T Gerstle (E-mail)" <Tgerstle@eqm.com> Subject: FW: A/M32-86 Generator Draft Results Date: Wed, 25 Sep 2002 07:07:38 -0500

X-Mailer: Internet Mail Service (5.5.2653.19)

For your discussion with Gary Green.

----Original Message----

From: Davies Richard MSgt 3 EMS/LGMGS [mailto:Richard.Davies@ELMENDORF.af.mil] Sent: Tuesday, September 24, 2002 5:07 PM To: Wade Mark D Contr AFIERA/RSEQ

Cc: Barton Jeffery SSgt 3EMS/LGMG (E-mail); Clarence Mylander (E-mail); Noland David TSgt 3EMS/LGMGS (E-mail); Brault Norman Civ 3EMS/LGMGW

Subject: RE: A/M32-86 Generator Draft Results

Mr. Wade, here are the inputs for our clean cam A/M32A-86D units Additionally, you can remove MSGT Lemay from your mailings. He is no longer assigned to 3 EMS. Have a good day

Richard A. Davies, MSgt, USAF 517 CAT Manager

DSN (317) 551-0582 Comm (907) 551-0582 Fax 552-9098

-Original Message-----

From: Wade Mark D Contr AFIERA/RSEQ [mailto:Mark.D.Wade@brooks.af.mil] Sent: Monday, September 23, 2002 3:53 AM To: Likos William E Civ WRALC/LEEE; Muldoon James P 2dLt WRALC/LES-1;

Fowler Paula Ms 3CES/CEVQ; Mylander Clarence Mr 3EMS/LGMG; Lemay Michael MSgt 3EMS/LGMG; Labadie John MSgt 60 CRS/LGMG; Davies Richard MSgt 3

EMS/LGMGS; McComb Alesha R Civ WRALC/LESGF Subject: FW: A/M32-86 Generator Draft Results

For your information. As you can see we are very close to meeting EPA's Tier II nonroad engine standards.

I need an update from both Travis and Elmendorf on how the modified generators are operating and approximately how many hours have the operated since the emission tests Also is there any smoking problems on startup?

----Original Message-

From: Tina Dunmoyer [mailto:tdunmoyer@eqm.com]

Sent: Friday, September 20, 2002 3:14 PM

To: mark.d.wade@brooks.af mil; garycgreen@hotmail.com

Cc: tgerstle@eqm.com

Subject: A/M32-86 Generator Draft Results

For your information, please find attached a spreadsheet containing criteria and hazardous air pollutant summary emissions tables from the A/M32-86 generator testing completed at Travis AFB and Elmendorf AFB this past summer. Please note that particulate emissions reported include filterable and condensible (aqueous fraction only) fractions.

Thank you

Clean Cam Update 24 Sep 02.doc

TALKING PAPER

ON

-86 GENERATOR CLEAN CAM UPDATE

- Units at Elmendorf, MG13 and MG18 continue to run poorly and smoke excessively during start-up
- MG13 has approximately 150 hrs since emissions test, MG18 approximately 75 hours

- MG13

- Excessive smoke on start-up, will not accelerate to governed idle speed until 7 minutes after start, smoke is present throughout idling. Ambient temperature was 50 degrees Fahrenheit
- -- Unit will hold 250 Kva load once warm, however. The unit can only handle a 200 Kva shock load. Engine RPMs droop when a load greater than 200 amps is applied, 60 amps below recommended rated load. Smoke is not visibly significant when running under a load

- MG18

- -- Excessive smoke on start-up, as unit accelerates to idle RPM, smoke clears to a blue smoke. Runs up to governed speed and smoke clears. Ambient temperature was 50 degrees Fahrenheit
- -- Unit holds 250 Kva load with no smoke present. The unit will also hold a 250 Kva shock load without experiencing engine droop.
- Overall, the clean cam engine performance is substandard when compared to a normal A/M32A-86D. The units do not run up as quick and smoke excessively.
 Furthermore, MG13 fails to hold a rated load of 260 Kva when a shock load is applied

Clean Cam Technology Systems 1901 Mineral Court, Suite A · Bakersfield, CA 93308 661.391.4520 · 661.391.4525 (fax) www.cctskit.com

Febuary 15, 2002 Tom Gerstal Environmental Quality Management

Tom:

I am sending you the dyno sheets and the drawings I made and sent to Elmendorf AFB. If there is any thing further you need please contact me.

Sincerely,

Don Fairchild

P.S. OUR WHIT IS A hobBET.

6 Pages Including coord

Installation Instruction for the 4L-71T into the -86 generator unit.

The 4L-71T engine you are about to install has been rebuilt with the finest parts available. PLEASE TAKE CARE WHEN WORKING ON THIS ENGINE.

TO avoid possible injury to yourself or others refer to the Detroit diesel repair manual

When servicing this engine.

When installing engine use all items furnished with engine.

Install intake system as indicated in fig.1

Install exhaust system by mounting the muffler cross ways in the frame using the hangers Provided along with the hanger clamps. Be sure to install exhaust "U"clamp on exhaust pipe at the muffler connection as in fig.2

Fig. 1

Fig. 2

Flywhed engine INTAKED AIR FITTER BOX

end of Provided The OF Provided The Fitter

engine

Remove Tape Lovezing Tutake opening Prior to engine Installation, Luosen clamps and slide hose and clamps Tuto Proper Position Retighten clamps

Delaney & Ahlf Diesel Service Inc.

Glean Cam.

2001 Mercury S Bakerhidd, CA 0330 (005) 322-506 (005) 321-049

-		•	E	NGINI		REPO			(806) 52%
		ORDER I			3-0 2 88	- - -	UNIT NI MOD NI MILEAG	JMBER: JOE	<u> 23892</u> 7. 13-7000
Α.				PRE-S	TART	ING		······································	
I.PRIME DIL SYST		2. PRIME SYSTEM		3. ADJ. VALVES		4. TIME	ORS	5. ADJUST GOVERNOR	6. ADJ. INJ. RACKS
	<u>سب</u> ن	10.7							
• •				<u> </u>		4			. 44.
3.	B	ASIC E	NGIN	E RUN	IN		C.	BASIC RUN-	IN INSPECT
TIME AT	TIME	TIME STOP	RPM	BHP	WATER TEMP	OIL PRESS	2. NSPEC	QIL AT ROCKER ARM T FOR LUBE OIL LEAK	is
14K	800	10,00	1500	152	175	50	4. INSPEC	T FOR PUEL OIL LEAK T FOR WATER LEAKS	
THR	1000	1200	1700	164	170	55 58	s, CHECK	AND TIGHTEN ALL EX	F. BOLTS
).		TN	SPEC	TION A	MER	BASIC	RUN-	IN ·	
. ADJUS . TIME IN	EN CYL. H IT VALVE LJECTOR	(TOH)	13/15				5. ADJUS	ET GOVERNOR GA	iks
E. IME	TIME STOP	TOP RPA	A FULL LD	BHP	AL RU	AIR BOX		EXHAUST BACK PRESSURE FAL	CRANKCASE PRESSURE F/L
TART 2 00	300	1950	1700	WATER	174.5	LUBEO		LUBE OIL PRES	IDLE SPEED
ES F/L	INTAKE	RET. MA	N F/L	FULL 10	AD	TEMP F/		FIL DLE	600
		K.C		*>1	7	<u> </u>			
					PECIF	ICATI	ONS		
RANK S	R LINER 1		57 57 57 67	$\frac{D}{D}$		HEAD TY BLOWER INJECTO	TYPE	GTD SF80	7. /30%
REMAR	KS:								
		~ ·				····		*	
INAL RU		BS.			DYNAMO	OMETER:	#2	- F-7 2 4 V	-17-02

1
2
3
4
5
б
7
8
O

R.P.M.	TORQUE	TEMP	OP	HP
1500	532	175	50	152
1600	526	:175	53	160
1700	506	170	55	164
1800	401	170	58	137
1950	NOLO	AD 170	68	
* ************************************				
The second secon				
·				

also in

Delaney & Ahlf Diesel Service Inc.

CCTS 47/TRA

390f Mentury St. raffold, CA. 33308 661-322-5064 651-321-0491

ENGINE TEST REPORT

			DATE		28-01	_		, UNI	T NUMBER	L. UAZE	3635
		AIR ORDEI	_		62.	-			LNUMBER		3 5000
	EQ	UIPIMENI	NUMBER	_#	-/	_			MILEAGE	<u> </u>	
A.	•	\			PRE-ST	ARTING		: .			
1	LUBE OIL	•	EFUEL		EXHAUST	1	, ,		JUST	ADJUST	NUECTOR
· SYS	TEM	SYS	TEM	VAI	LVES	TIME	UECTORS	GOV	ERNOR	RA	CKS
						. : -					
В.		BASIC	ENGINE!	RUN-IN	•		C	BA	SIC RUN-I	N INSPECT	TON
TIME AT	TIME	TIME		,	WATER	OIL	I. CHECK	OLATR	OCKER A	RM MECH	
SPEED	START	STOP	RPM	BHP	TEMP	PRES.	2. INSPEC	TFORLU	BE OIL LE	AKS	
IHR	800	900	1200	151	180	50	3. INSPEC	TFORFU	EL OIL LE	AKS	
HR	900	10.00	1400	157	100	51	4. INSPEC	T FOR WA	TERLEAR	KS -	
MA	1000	1100	1900	168	190	54	5. CHECK	& TIGHT	EN ALL EX	T. BOLTS	
IHL	400	1200	2000	167	120	55			, <i>,</i>	,	
D.				INSPEC	TION AFT	ER BASTO	RUN-IN				
1. TIGHTE	NCLY.H	EAD & RO	KER SHA	FT BOLTS			4. ADJUST	GOVERN	OR GAP		
2. ADJUST	VALVES	(HOT) /	3115	منت:			5: ADJUST INJECTOR RACKS				
3. TIME IN	UECTORS	•	480	• •		101	-			·	
E.					FINAL	RUNIN	V-1/				~ 34
TIME	TIME	TOP RPM	TOP RPM	BU			BOX	EXHAU	TBACK	CRANK	
START	STOP	NOLD	FULLD	HORSE	POWER	PRESS	URE F/L	PRESSI	JRE F/L	PRESSU	RE F/L
2000	300	2/50	2000	16	7	27	PSI			42	7
BLOWER		FUEL O		WATER		LUBE OIL TEMP			IL PRES.	DLES	PEED
RES.		RET. M		FULL]		F/L		F/L	IDLE		
27	P51	65	>		50		2	50	12	60	0
					INE SPEC	TEICATIO	DNS				·
BLOCK TY	PE & SIZE	<u>.</u>	57	P		READ TY	PE:	4	VAIV	e Tur	00
CRANK SI	ZE:	-	<u> 57</u>	D		BLOWER'	TYPE: ,		396	BYPA	53
CYLINDER	LINERT	YPE:	CCT	S 37	D.	NUECTOR	TYPE:	7	7670	2	٠.
PISTON T	PE:		CCT	S TU	RBO		:				
							<u> </u>				
REMARKS	i	4		RAN	. 10	HR	on 2	YNO	7		
modJ	9140	2 429	?.	ZNI	149	~O	::13/	15-41	quve.	S-	
		4		1							
	,									f	
			11.	1 pore	4 -		-				
TNAL RUN	OK'D:	eul b	effect)		DYNAMO	METER:	#1_	~	DATE: /	-7-02	<u> </u>

132

1								
	R.P.M.	TORQUE	TEMP	OIL PRES	HORSEPOWER			
1	1500	475	186	. 43	135			
2	1600	480	186	45	146			
3	1700	469	180	50	151			
74	1800	461	180	51	157			
5	1900	466	180	54	168			
6	2000	440	180	55	167			
7	2150	NO	LOAD					
8								
9								
10								
11		₩ •	·	•				
12								
13								
14		•						
15	,							
-				A				

The state of the s

المرابعة على المستخطور

APPENDIX F QUALITY ASSURANCE/QUALITY CONTROL

CALIBRATION PROCEDURES AND RESULTS

All of the equipment used is calibrated in accordance with the procedures outlined in the Quality Assurance Handbook for Air Pollution Measurement Systems, Volume III (EPA 600/4-77-027b). The following pages describe these procedures and include the data sheets.

DRY GAS METER AND ORIFICE METER

Dry gas meters and orifices are calibrated in accordance with Section 3.3.2 of the QA Handbook. This procedure involves direct comparison of the dry gas meter to a reference dry test meter. The reference dry test meter is routinely calibrated using a liquid displacement technique. Before its initial use in the field, the metering system is calibrated over the entire range of operation. After each field use, the metering system is calibrated at a single intermediate setting based on the previous field test. Acceptable tolerances for the initial and final gas meter factors and orifice calibration factors are ± 0.02 and ± 0.20 from average, respectively.

Box No.:	MB-7	Bar Press (Pb):		29.3 3	in Hg			
Date: 3/13/02		Calibrated By		JK				
		RUN 1	RUN 2	RUN 3	RUN 4	RUN 5	RUN 6	
DH	Delta H	0.50	0.75	1 00	1 50	2.00	4.00	
in Hg	Vacuum	10	10	10	10	10	10	
Vw_1	Initial RTM	396.544	408 914	420 547	431.672	442.252	453.255	
Vw_2	Final RTM	406.545	418.455	430 645	441.720	452.315	463.235	
Vd_1	Initial DGM	51 398	63.784	75.535	86 782	97 489	108 599	
Vd_2	Final DGM	61 398	73.885	85.675	96.815	107 525	118 627	
Tw	Ave. Temp RTM °F	74	74	74	75	75	76	
Td	Ave Temp DGM °F	76	7 8	80	82	. 84	84	
t	Time (min.)	24.0	20.0	17.5	14.5	12.5	9.0	
Vw ₂ - Vw ₁	Net Volume RTM	10.001	9.541	10.098	10.048	10.063	9.980	
Vd ₂ - Vd ₁	Net Volume DGM	10.000	10.101	10.140	10.033	10.036	10.028	
	Y	1 003	0 950	1 005	1.011	1 014	1 000	
5.000000000000000000000000000000000000	dH@	1.656	1.888	1.710	1.783	1.755	1.857	
AVERAGE Y =	1.001	(Reference mete	er correction	factor of 1 00	04)			
Average Y Range =			0 981	то	1.021	ACC	EPT	
AVERAGE dH@	= 1.775							
Average o	iH@ Range =		1 575	то	1 975	ACC	EPT	
			alculations			<u> </u>		
	Y = (Vw *	Pb * (Td + 460)) /	(Vd * (Pb + (dHd / 13.6)) '	(Tw +460))			
	dH@ = 0.0317 * dHd / (Pb (Td + 460)) * (((Tw +460) * t) / Vw)^2							

Box No.:	MB7	Bar. Press.(Pb):	29.60	in. Hg
Date:	July 9, 2002	Pretest Gamma:	1.001	
Calibrated B	у ЈК	Pretest dH@:	1.775	
Plant:	avis/Elmondorf AFI	В		
		RUN 1	RUN 2	RUN 3
DH	Delta H	3.50	3.50	3.50
in Hg	Vacuum	10.00	10.00	10.00
Vw ₁	Initial RTM	650.486	666.935	709.051
Vw_2	Final RTM .	666.935	709.051	731.200
Vd_1	Initial DGM	788.905	805.335	847.485
Vd_2	Final DGM	805.335	847. 4 85	869.534
Tw	Ave. Temp RTM °F	68.0	69.0	69.0
Td	Ave. Temp DGM °F	74.0	82.0	83.0
t	Time (min.)	15.0	25.0	21.0
Vw ₂ - Vw ₁	Net Volume RTM	16.449	42.116	22.149
Vd_2 - Vd_1	Net Volume DGM	16.430	42.150	22.049
	Y	1.004	1.015	1.022
	dH@	1.627	0.682	1.737
AVERAGE Y	=	1.005		
% Difference	e from Yearly Y =	0.379	AC	CEPT
AVERAGE d	H@ =	1.349		

Calculations

Y = (Vw * Pb * (Td + 460)) / (Vd * (Pb + (dHd / 13.6)) * (Tw + 460)) $dH@ = 0.0317 * dHd / (Pb (Td + 460)) * (((Tw + 460) * time) / Vw)^2$

Box No.:	MB-4	Bar Press (Pb):		29 60	in. Hg		
Date:	December 28, 2001	Calibrated By		AH			
		RUN 1	RUN 2	RUN 3	RUN 4	RUN 5	RUN 6
DH	Delta H	0.50	0 75	1 00	1 50	2 00	4.00
in Hg	Vacuum	10	10	10	10	10	10,
Vw_1	Initial RTM	818.544	829.341	839 754	850 757	862.383	873.248
Vw_2	Final RTM	829 167	839 528	850 495	862.096	872 806	887 856
Vd_1	Initial DGM	96-934	107.848	118.403	129 530	141 283	152.274
Vd_2	Final DGM	107 679	118.175	129.254	140.982	151.817	167 005
Tw	Ave Temp RTM °F	66	65	66	6 6	67	66
Td	Ave. Temp DGM °F	69	7 3	7 0	75	76	8Ò
t	Time (min.)	25.0	20.0	18.0	16.0	13.0	13.0
Vw ₂ - Vw ₁	Net Volume RTM	10.623	10.187	10 741	11 339	10.423	14.608
Vd ₂ - Vd ₁	Net Volume DGM	10.745	10.327	10.851	11 452	10.534	14.731
	Y	0.993	1 000	0 995	1003	1.001	1.008
	dH@	1.551	1,601	1.570	1.654	1.726	1.738
AVERAGE Y =	1.004	(Reference met	er correction	factor of 1 0	04)		
Average Y I	Range =		0 984	то	1.024	ACC	CEPT
AVERAGE dH@	AVERAGE dH@ = 1.640						
Average dH@ Range =			1 440	то	1.840	ACC	CEPT
Calculations Y = (Vw * Pb * (Td + 460)) / (Vd * (Pb + (dHd / 13.6)) * (Tw +460))							
							,
	dH@ = 0	0317 * dHd / (Pb	(1d + 460))	* {((1\tilde{W} +460)} *	t) / vwj/2		

Box No.:	MB-4	Bar. Press (Pb):	29.50	in. Hg
Date:	July 9, 2002	Pretest Gamma:	1.004	
Calibrated B	y JK	Pretest dH@:	1.640	
Plant:	avis/Elmendorf AFI	В		
		RUN 1	RUN 2	RUN 3
DH	Delta H	2.50	2.50	2.50
in Hg	Vacuum	5.00	5.00	5.00
Vw_1	Initial RTM `	578.004	592,451	605.883
Vw_2	Final RTM	592.451	605.883	650.386
Vd_1	Initial DGM	780.785	795.245	808.732
Vd_2	Final DGM	7 9 5.2 45	808.732	854.295
Tw	Ave. Temp RTM °F	69.0	69.0	69.0
Td	Ave. Temp DGM °F	75.0	79.0	81.0
t	Time (min.)	16.0	15.0	50.0
Vw ₂ - Vw ₁	Net Volume RTM	14.447	13.432	44.503
Vd ₂ - Vd ₁	Net Volume DGM	14.460	13.487	45.563
	Y	1.004	1.008	0.993
	dH@	1.724	1.739	1.754
AVERAGE Y	=	0.993	•	
% Difference	e from Yearly Y =	-1.094	ACC	CEPT
AVERAGE d	H@ =	1.739		

Calculations

Y = (Vw * Pb * (Td + 460)) / (Vd * (Pb + (dHd / 13.6)) * (Tw +460)) dH@ = 0.0317 * dHd / (Pb (Td + 460)) * (((Tw +460) * time) / Vw)^2

Date:

Vost Box Number

1/7/02

VB-1

Flow Rate:

0.25 l/min

Rotameter Setting:

0.3

Bubble Meter Temp

72

		Run 1	
Bubble	Meter	Meter Box	
1	256 2	Initial Volume	4579.00
2	256.3	Final Volume	4596.35
3	256.4	Initial Temp.	88
4	256.4	Final Temp.	90
5	256.8	Average Temp.	89
6	256.2	Time:	64
7	256 5	QDGM=	262.699
Average:	256.38	Y=	0.9760

		Run 2	
Bubble	Meter	Meter Box	
1	256.1	Initial Volume	4560.00
2	256.5	Final Volume	4577.48
3	256 3	Initial Temp.	85
4	256.5	Final Temp	88
5	256 3	Average Temp.	86.5
6	256.6	Time:	64
7	256.3	QDGM=	265.878
Average:	256.37	. Y=	0.9642

		Run 3	
Bubble	Meter	Meter Box	
1	256.4	Initial Volume	4597.00
2	256	Final Volume	4614.39
3	255.8	Initial Temp.	90
4	256 0	Final Temp	88
5	256.4	Average Temp	¹ . 89
6	256 6	Time:	64
7	256 5	QDGM=	263 305
Average:	256.24	Y=	0.9732

QDGM = $(((Vm_2 - Vm_1) * TBm^0R) / (Tm^0R * Time)) * 1000$

Y = Bm Average / QDGM

Average Y=

0.9711

Date:

1/3/02

Flow Rate:

0.25 l/min

Vost Box Number:

VB-2

Rotameter Setting: Bubble Meter Temp. : 0.3 70

	•,	Run 1	
Bubble	Meter	Meter Box	
1	230.5	Initial Volume	4473.00
2	233.1	Final Volume	4476.00
3	233.5	Initial Temp	87
4	233.5	Final Temp.	87
5	234.4	Average Temp.	87
6	233 7	Time:	15.60
7	233.7	QDGM=	186 331
Average:	233.20	Y=	1.2515

		Rùn 2	
Bubble	Meter	Meter Box	
1	233.7	Initial Volume	4477.00
2	233.7	Final Volume	4480.00
3	233.8	Initial Temp	87
4	233.4	Final Temp.	87
5	233.5	Average Temp.	87
6	233 3	Time:	16.23
7	233.3	QDGM=	179.098
Average:	233.53	Y=	1.3039

		Run 3	
Bubble	Meter	Meter Box	
1	233.1	. Initial Volume	4481.00
2	233 1	Final Volume	4484.00
3	233.1	Initial Temp.	87
4	233.1	Final Temp	87
5	233	Average Temp.	87
6	233	Time	15.77
7	233.3	QDGM=	184.322
Average:	233.10	Y=	1.2646

QDGM = ((($Vm_2 - Vm_1$) * TBm^oR) / (Tm^oR * Time)) * 1000

Y = Bm Average / QDGM

Average Y=

1.2734

DRY GAS THERMOCOUPLES AND IMPINGER THERMOCOUPLES

The dry gas thermocouples are calibrated by comparing them with an ASTM-3 thermometer at approximately 32°F, ambient temperature, and a higher temperature between approximately 100°F and 200°F. The thermocouples agreed within 5°F of the reference thermometer. The impinger thermocouples are checked in a similar manner at approximately 32°F and ambient temperature, and they agreed within 2°F. The thermocouples may be checked at ambient temperature prior to the test series to verify calibration. Calibration data are included in the following Dry Gas Thermometer and Impinger Thermocouple Calibration Data Sheet(s).

TEMPERATURE SENSOR CALIBRATION DATA FORM FOR METER BOX

DATE: 28-Dec-01	THERMOCOUPLE NUMBER:	MB-4
AMBIENT TEMPERATURE: 69 °F	BAROMETRIC PRES.(In.Hg):	29.60
CALIBRATOR: AH		

Reference point number	Source ^a (Specify)	Reference Thermometer Temperature, F	Thermocouple Potentiometer Temperature,°F	Temperature Difference, ^b °F
Inlet 1	Ambient Air	69	69	o
2	Cold Bath	34	34	0
3	Hot Bath	150	147	3
Outlet 1	Ambient Air	69	67	2
2	Cold Bath	34	35	1
.3	Hot Bath	150	148	2
	1	•	1	

, in the second		
^a Type of calibration used.	•	ACCEPT
^o Allowable tolerance <u>+</u> 5°F		

Comments:

TEMPERATURE SENSOR CALIBRATION DATA FORM FOR METER BOX

DATE:	13-Mar-02		THERMOCOUPLE NUMBER:	MB-7
AMBIENT TEMPE	RATURE: 74	_°F	BAROMETRIC PRES.(In.Hg):	29.33
CALIBRATOR:	JK	_		

Reference point number	Source ^a (Specify)	Reference Thermometer Temperature,°F	Thermocouple Potentiometer Temperature,°F	Temperature Difference, ^b ^o F
Inlet 1	Ambient Air	74 ·	72	2
2	Cold Bath	40	. 39	1
3	Hot Bath	138	134	4
Outlet 1	Ambient Air	· 74	. 72	2
2	Cold Bath	40	39	1
3	Hot Bath	138	134	4
	1 1			1

^a Type of calibration used.		ACCEPT
^b Allowable tolerance ±5°F	·	

Comments⁻

TEMPERATURE SENSOR CALIBRATION DATA FORM FOR METER BOX

DATE:	2-Jan-02	_	THERMOCOUPLE NUMBER:	VB-1
AMBIENT TEMPER	RATURE:	67°F	BAROMETRIC PRES.(in.Hg):	29.60
CALIBRATOR:	AH		•	

Reference ' point number	Source ^a (Specify)	Reference Thermometer Temperature,°F	Thermocouple Potentiometer Temperature,°F	Temperature Difference, ^b °F
Inlet 1	Ambient Air	67	67	0
2	Cold Bath	36	36	0
3	Hot Bath	138	136	2
Outlet 1	Ambient Air	67	67	0
2	Cold Bath	37	.37	0
3	Hot Bath	148	148	. 0

*Tyne	of	cal	hra	tion	used

ACCEPT

^bAllowable tolerance ±5°F

Comments:

TEMPERATURE SENSOR CALIBRATION DATA FORM FOR METER BOX

DATE:	2-Jan-02		THERMOCOUPLE NUMBER:	VB-2
AMBIENT TEMPER	ATURE:	67 °F	BAROMETRIC PRES.(In.Hg):	29.60
CALIBRATOR:	АН		•	••

Réference point number	Source ^a (Specify)	Reference Thermometer Temperature,°F	Thermocouple Potentiometer Temperature,°F	Temperature Difference, ^b °F
Inlet 1	Ambient Air	67	66	1
2	Cold Bath	38	38	0
3	Hot Bath	130	130	0
Outlet 1	Ambient Air	67	67	0
2	Cold Bath	38	38	0
3	. Hot Bath	132	131	1

^a Type of calibration used.	ACCEPT

^bAllowable tolerance ±5°F

Comments:

TEMPERATURE SENSOR CALIBRATION DATA FORM FOR SAMPLE HEADS

DATE:	26-Dec-01				Ī
Reference	Source	Reference	Thermocouple	Temperature	
point	(Specify)	Thermometer	Potentiometer	Difference, ^b	
number		Temperature,°F	Temperature,°F	°F	
Sample Head No 1					4.00FDT
1	Ambient Air	68	69	1	ACCEPT
2	Cold Bath	37	37	0	
Sample Head No. 2				_	
1	Ambient Air	68 ·	68	0	ACCEPT
2	Cold Bath	37	38	1	
Sample Head No. 3				•	ACCEPT
1	Ambient Air	68	69	1	ACCEPT
2	Cold Bath	36	36	0	
Sample Head No. 4		_		•	ACCEPT
1	Ambient Air	68 .	68	0	ACCEPT
2	Cold Bath	37	38	1	
Sample Head No. 5]	4 .	ACCEPT
1	Ambient Air	68	69	0	ACCE
2	Cold Bath	37	37		
Sample Head No. 6		68	. 69	1	ACCEPT
1	Ambient Air Cold Bath		37	ò	
Completted No. 7		37	31		
Sample Head No. 7	Ambient Air	68	68	0	ACCEPT
	Cold Bath	37	38	1	
Cample Hood No. 9		31			
Sample Head No. 8	Ambient Air	68	68	0	ACCEPT
2	Cold Bath	37	37	0	

^aType of calibration used.

Calibrated By AH

^bAllowable tolerance ±2°F

DIGITAL INDICATORS FOR THERMOCOUPLE READOUT

A digital indicator is calibrated by feeding a series of millivolt signals to the input and comparing the indicator reading with the reading the signal should have generated. Errors did not exceed 0.5 percent when the temperatures were expressed in degrees Rankine. Calibration data are included in the following Thermocouple Digital Indicator Calibration Data Sheet(s).

THERMOCOUPLE DIGITAL INDICATOR CALIBRATION DATA SHEET

DATE: 13-N	Mar-02	INDICATOR NO.:	MB-7	
OPERATOR:	JK	SERIAL NO.:	10285505	
CALIBRATION DEVI	(Thermocouple Simulator	MANUFACTURER: _	Omega	

TEST	MILLIVOLT	EQUIVALEN	DIGITAL INDICATOR TEMP	DIFFERENCE, %
POINT NO.	SIGINAL	T TEMP, °F	READING, ⁰F	
1	-0.692	0	0	0.0
2	1.520	200	200	. 0.0
3	3.819	400	396	0.5
4	6.092	600	600	0.0
5	8.314	800	801	0.1
6	10.560	1000	1000	0.0
7	22.251	1200	1199	0.1
8	29.315	1400	1397	0.2
9	36.166	1600	1601	0.0
10	42.732	1800	1800	0.0

Percent difference must be less than or equal to 0.5 %

Percent difference:	(Equivalent Temp,.°R - Digital Indicator Temp., °R) * (1)
	(Equivalent Temp., °R)

Where ${}^{\circ}R = {}^{\circ}F + 460$

ACCEPT

THERMOCOUPLE DIGITAL INDICATOR CALIBRATION DATA SHEET

DATE: 28	3-Dec-01	INDICATOR NO.:	MB-4
OPERATOR:	АН	SERIAL NO.:	·
CALIBRATION DE	VI(Thermocouple Simulator	_ MANUFACTURER: _	Omega

TEST POINT NO.	MILLIVOLT SIGINAL	EQUIVALEN T TEMP, °F	DIGITAL INDICATOR TEMP READING, °F	DIFFERENCE, %
1	-0.692	0	-2	0.4
2	1.520	100	98	0.4
3	3.819	200	199	0.2
4	6.092	300	29 8	0.3
5	8.314	400	396	0.5
6	10.560	500	497	0.3
7	22.251	1000	998	0.1
8	29.315	1300	1296	0.2
9	36.166	1600	1596	0.2
10	42.732	1900	1895	0.2

Percent difference must be less than or equal to 0.5 %

Percent difference:	(Equivalent Temp,.ºR - Digital Indicator Temp., ºR) * (1
	(Equivalent Temp., °R)

Where ${}^{\circ}R = {}^{\circ}F + 460$

ACCEPT

THERMOCOUPLE DIGITAL INDICATOR CALIBRATION DATA SHEET

ATE:	2-Ja	n-02		INDICATOR NO.:	VB-1
PERAT	OR:		AH	SERIAL NO:	•
	ATION DEVICE:	Thermocouple	Simulator	MANUFACTURER:	Omega
				•	
	TEST POINT NO.	MILLIVOLT SIGINAL	equivalent temp, °f	DIGITAL INDICATOR TEMP READING, °F	DIFFERENCE, %
	1	-0.692	0	0	0.0
	2	1.520	100	100	0.0
	3	3.819	200	202	0.3
	4	6.092	300	301	0.1
	-5	8.314	400	400	0.0
	6	10.560	500	501	0.1
	7	22.251	1000	1002	0.1
	8	29.315	1300	1302	0.1
	9	36.166	1600	1603	0.1
	10	42.732	1900	1903	0.1
			ss than or equal	to 0 5 %	
	Percent differe	nce:	(Equivalent Tem	p,.°R - Digital Indicator 7	Temp., °R) * (100%)
	TOTOLIN UNION			'(Equivalent Temp	°R)

ACCEPT

Where ${}^{\circ}R = {}^{\circ}F + 460$

THERMOCOUPLE DIGITAL INDICATOR CALIBRATION DATA SHEET

DATE:	2-Jan-02		INDICATOR NO.:	VB-2
OPERATOR:	-	АН	SERIAL NO.:	
CALIBRATION DEVICE Thermocouple Simulator			MANUFACTURER:	Omega

TEST POINT NO.	MILLIVOLT SIGINAL	EQUIVALENT TEMP, °F	DIGITAL INDICATOR TEMP READING, °F	DIFFERENCE, %		
1	-0.692	0	0	0.0		
2	1.520	100	100	0.0		
3	3.819	200	202	0.3		
4	6.092	300	300	0.0		
5	8.314	400	399	0.1		
6	10.560	500	500	0.0		
7	22.251	1000	1001	0.1		
8	29.315	1300	1301	0.1		
9	36.166	1600	1602	0.1		
10	42.732	1900	1901	0.0		

Percent difference must be less than or equal to 0.5 %

Percent difference:	(Equivalent Temp,.°R	· Digital	Indicator	Temp.,	°R) * (100%)
				0>	•

(Equivalent Temp., °R)

Where ${}^{\circ}R = {}^{\circ}F + 460$

ACCEPT

Pitot Tube Calibration

Each pitot tube used in sampling meets all requirements of EPA Method 2, Section 4.1.** Therefore, a baseline coefficient of 0.84 is assigned to each pitot tube. The following pages show the alignment requirements of Method 2 and the Pitot Tube Inspection Data Sheet(s) for each pitot tube used during the test program.

^{**40} CFR 60, Appendix A, July 1995

PITOT TUBE CALIBRATIONS

Pitot ID	Date Calibrated	ρ	e e	α ₂	B ₂	>	6	4	2	*	σ _α	P _B	Ď,	A/2/D ₁	Accept/Reject
P2-1P	12/18/01	1.8	1.8	3.7	2.8	2	0.3	0.951	0.033	0.005	0.476	0.478	0.375	1.268	ACCEPT
P2-2P	12/18/01	6.7	0,4	3.0	0	4.0	0.5	0.945	0.007	0.003	0.473	0.473	0.375	1.260	ACCEPT
P2-3	12/21/01	3.1	7	3.9	0.9	2.1	1 .8	0.947	0.035	0.030	0.474	0.477	0.375	1.263	ACCEPT
P3-1	12/21/01	5.	5.6	1.8	2.8	1.6	L	0.941	0.026	0.021	0.475	0.475	0.375	1.255	ACCEPT
P3-2	12/21/01	3.7	1.8	2.8	2.6	3.4	1.9	0.940	0.056	0.031	0.477	0.478	0.375	1.253	ACCEPT
P3-3P	12/18/01	1.7	1.2	0.2	1.7	9.0	1.2	0.941	0.013	0.020	0.538	0.539	0.375	1.255	ACCEPT
P3-4P	12/18/01	1.7	0.3	4.5	0.4	1.3	9.4	0.943	0.021	0.007	0.474	0.474	0.375	1.257	ACCEPT
P4-1	12/21/01	9.0	4.1	1.6	1.5	2.3	1.3	0.955	0.038	0.022	0.477	0.477	0.375	1.273	ACCEPT
P4-2	12/18/01	0.2	1.8	1.5	4.	0.3	1.2	0.943	0.005	0.020	0.473	0.472	0.375	1.257	ACCEPT
P4-3P	12/21/01	:	1.2	0.8	0.4	1.8	0.5	0.895	0.028	0.008	0.472	0.473	0.375	1.193	ACCEPT
P4-4P	12/21/01	0.7	2.2	1.2	1.3	1.6	0.7	0.940	0.026	0.011	0.472	0.472	0.375	1.253	ACCEPT
P4-5P	12/21/01	3.6	2.1	3.6	1.2	8.0	0.5	0.930	0.013	0.008	0.472	0.472	0.375	1.240	ACCEPT
15-1	12/21/01	9.4	0.3	1.5	1.2	9.0	1.2	0.930	0.010	0.019	0.465	0.472	0.375	1.240	ACCEPT
T5-2P	12/21/01	0.3	2.0	6.0	1.0	0.8	1.2	0.975	0.014	0.020	0.488	0.472	0.375	1.300	ACCEPT
T5-3	12/21/01	5.5	1.6	6.4	1.5	1.5	1 .	0.935	0.024	0.024	0.468	0.472	0.375	1.247	ACCEPT
P6-1P	12/21/01	4.2	0.8	3.2	0.5	0.2	6.0	0.955	0.003	0.015	0.478	0.472	0.375	1.273	ACCEPT
P6-2	12/26/01	0.3	6.0	0.7	1.4	F	4.	0.941	0.018	0.023	0.475	0.475	0.375	1.255	ACCEPT
P6-3P	12/26/01	3.0	1.2	2.9	0.7	- -	4.0	0.910	0.017	9000	0.461	0.461	0.375	1.213	ACCEPT
P6-4P	12/26/01	6.0	9.	1.6	1.6	7	0.3	0.943	0.020	0.005	0.474	0.475	0.375	1.257	ACCEPT
T7-1P	12/26/01	0.1	0.5	6.3 6.3	9.0	0.4	0.2	0.928	9000	0.003	0.474	0.475	0.375	1.237	ACCEPT
P8-1	12/26/01	2.7	9.0	1.4	0.1	9.0	4.0	0.945	0.010	0.007	0.465	0.466	0.375	1.260	ACCEPT
P8-2	12/26/01	9.0	1.5	2.6	0.8	6.0	0,3	0.939	0.015	0.005	0.486	0.486	0.375	1.252	ACCEPT
P8-3P	12/27/01	9.0	6.0	9.0	1.2	Ξ	9.0	0.941	0.018	0.013	0.477	0.478	0.375	1.255	ACCEPT
P8-4P	12/27/01	0.3	9.0	0.7	0.1	0.7	0.5	0.941	0.011	0.008	0.473	0.473	0.375	1.255	ACCEPT
P8-5	12/26/01	0.7	0.7	0.4	0.3	0 :	0.	0.950	0.017	0.017	0.472	0.472	0.375	1.267	ACCEPT
P9-1	12/26/01	<u></u>	0.5	1 2	0.3	0.4	9.0	0.939	0.007	0.010	0.472	0.472	0.375	1.252	ACCEPT
P10-1P	12/26/01	2.7	0.3	3.0	9.0	1.4	2	0.929	0.023	0.019	0.472	0.472	0.375	1.239	ACCEPT
T11-1P	12/26/01	1.0	0.3	0.1	0.3	- :	0.5	0.965	0.019	0.008	0.472	0.472	0.375	1.287	ACCEPT
			#-1=Pito	Pitot Alone			#-1P=Fu	 1P = Full Probe Assembly 	sembly						

STACK THERMOCOUPLES

Each thermocouple is calibrated by comparing it with an ASTM-3F thermometer at approximately 32°F, ambient temperature, 212°F, and 500°F. The thermocouple reads within 1.5 percent of the reference thermometer throughout the entire range when expressed in degrees Rankine. The thermocouples may be checked at ambient temperature at the test site to verify the calibration. Calibration data are included in the following Thermocouple Calibration Data Sheet(s).

ENVIRONMENTAL QUALITY MANAGEMENT STACK THERMOCOUPLES

											
Thermo.	Them.	Date Calibrated	Ambient Air	Diff., %	Cold Bath	Diff., %	Hot Bath	D#f.,%	Hot Oil	D計., %	Accept/Reject
T2-1	Reference Pitot	12/27/01	67 68	0.19	38 40	0.40	162 159	0.48	442 440	0.22	ACCEPT
T2-2	Reference	12/27/01	67 67	0.00	38 39	0.20	172 166	0.95	460 458	0.22	ACCEPT
T2-3	Pitot Reference	12/27/01	67	0.19	38	0.20	180	0.78	460 454	0.65	ACCEPT
T2-4	Pitot Reference	1/4/01	68 72	0.19	39 33	0.00	175 200	0.00	437	0.45	ACCEPT
	Pitot Reference	240.	71	0.00	33	0.00	200	0.00	433	0.00	ACCEPT
T2-5	Pitot Reference		68		36		184	0.31	458	0.98	ACCEPT
T2-6	Pitot Reference	12/26/01 3/27/02	68 73	0.00	37 38	0.20	182 165	0.16	449 368	0.36	ACCEPT
12-1	Pitot	GETTUE	72	0.10	36	V. 1.0	184 156		365 460		
T3-1	Reference Pitot	12/27/01	67 68	0.19	39	0.00	153	0.49	453	0.76	ACCEPT
T3-2	Reference Pitol	12/27/01	67 68	Q.19	38 40	0.40	168 167	0.16	442 438		l
T3-3P	Reference Pitot	12/28/01	68 67	0.19	40 42	0.40	172 168	0.63	460 456	0.43	ACCEPT
T3-4P	Reference Pitot	12/28/01	68 67	0.19	36 37	0.20	162	0.16	460 454	0.65	ACCEPT
T3-5	Reference Pitct	12/26/01	68 67	0.19	38 37	0.20	188 184	0.62	456 455	0.11	ACCEPT
T3-6	Reference Pitot	12/26/01	68 68	0.00	38 39	0.20	187 184	0.46	458 455	0.11	ACCEPT
T4-1	Reference	12/28/01	68	0.19	39 40	0.20	177	0.16	460 458	0.22	ACCEPT
T4-2	Pitot Reference	12/28/01	67 68	0.00	39	0.20	178	0.31	460 455	0.54	ACCEPT
T4-3P	Pitot Reference	12/28/01	58 68	0.00	40 36	0.00	176 184	0.31	436	00.0	ACCEPT
T4-4P	Pitot Reference	12/28/01	68 68	0.00	36 36	0.20	186 180	0.16	436 440	0.67	ACCEPT
T4-5	Pitot Reference	<u> </u>	68 68	0.00	37 35	0.61	179 152	0.16	434 460	0.65	ACCEPT
74-6	Pitot Reference	.	68 68	0.00	38 35	0.00	151 179	0.63	454 458	0.00	ACCEPT
	Pitot	<u> </u>	68	0.00	35	0.40	175 178	0.47	458 458	0.11	ACCEPT
T4-7	Reference Pitot		68 68		38		175		457		
T4-8	Reference Pitot	3/27/02	73 72	0.19	37 36	0.20	165 164	0.16	400 397	0.35	ACCEPT
T5-1	Reference Pitot	12/28/01	68 68	0.00	36 37	0.20	181 181	0.00	450 449	0.11	ACCEPT
75-2P	Reference Pitot	12/28/02	68 68	0.00	37 37	0.00	186 184	0.31	458 456	0.22	ACCEPT
T5-3	Reference Pitot	12/28/01	68 68	0.00	36 37	0.20	178 177	0.16	450 448	0.22	ACCEPT
T5-4	Reference	3/27/02	73 72	0.19	36		170 168	0.32	390 388	0.24	ACCEPT
T5-5	Pitot Reference	3/27/02	73	0.19	36	0.20	170	0.32	402	0.35	ACCEPT
T6-1	Pitot Reference	12/28/01	72 68	0.00	35 38	0.20	168 198	0.30	399 451	0.33	ACCEPT
T6-2	Pitot Reference	12/28/01	68	0.00	39		196 198	0.15	448 451	0.11	ACCEPT
T6-3P	Pitot Reference	12/28/01	68 68	0.00	39 38		199 198	0.15	450 453	0.22	ACCEPT
T6-4P	Pitot Reference	<u> </u>	68 68	0.00	38 37		197 200	0.15	451 454	0.11	ACCEPT
T6-5	Pitot	1	68		37	1	199 198		453 451	0.11	ACCEPT
	Pitot	1	67 68	<u> </u>	38		196		450 450		ACCEPT
77-1	Pitot	100001	69		39		178		445	L	ACCEPT
T8-1	Pitot	1	68		39		186	·	452		ACCEPT
T8-2	Reference Pitot	12/28/01	68	<u> </u>	37 38		200 198	1	440 439		<u> </u>
T8-3P	Reference Pitot	12/28/01	68 68		37 38	l	181 180		440 437	1	ACCEPT
T8-4P	Reference Pitot	12/28/01	68		37		181 180		440 436		ACCEPT
T8-5	Reference Pitot	12/28/01	68	0.00	37	0.40	202 199	0.45	460 454		ACCEPT
T9-1	Reference	12/28/01	66	0.00	38	0.20	183	0.16	440	0.00	ACCEPT
10-1	Reference	12/28/01	68	0.00	38	0.20	181	0.16	448	0.22	ACCEPT
T11-1	Pliot Reference	12/28/01	68	0.00	39	0.00	182	0.31	448	0.55	ACCEPT
	Pitot	7	68	ıl .	35	}}	178	SI .	443	9	i

4

Dual-Analyzed Calibration Standard

1290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950

Fax: 248-589-2134

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory

P O No.:

1336 PN NO 3001

Project No.: 05-71938-021

SCOTT SPECIALTY GASES 1290 COMBERMERE STREET

TROY,MI 48083

Customer

ENVIRONMENTAL QUALITY MGT

TOM GERSTLE

1310 KEMPER MEADOW DRIVE

SUITE 100

CINCINNATI OH 45240

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards;

Procedure #G1; September, 1997.

Cylinder Number:

ALM060361

Certification Date:

1/06/01

Exp. Date:

1/08/2004

Cylinder Pressure ***:

1900 PSIG

ANALYTICAL

CERTIFIED CONCENTRATION (Moles)

ACCURACY**

TRACEABILITY

COMPONENT METHANE

Direct NIST and NMi

AIR

49.28 PPM

BALANCE

*** Do not use when cylinder pressure is below 150 psig

** Analytical accuracy is based on the requirements of EPA Protocal procedure G1, September 1997 Product certified as +/- 1% analytical accuracy is directly traceable to NIST or NMI standards.

REFERENCE STANDARD

TYPE/SRM NO.

EXPIRATION DATE

CYLINDER NUMBER

CONCENTRATION

COMPONENT

NTRM 2751

2/01/03

100.2 PPM

METHANE

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#

VARIAN/1400/08982426

DATE LAST CALIBRATED

ANALYTICAL PRINCIPLE FLAME IONIZATION

ANALYZER READINGS

(Z = Zero Gas

R = Reference Gas T = Test Gas r = Correlation Coefficient)

First Triad Analysis

Second Triad Analysis

Calibration Curve

METHANE

Date:01/06/01 Response Unit:AREA

21=0.00000 R1 = 91571.00 T1 = 44865.00 R2=91289.00 22 = 0.00000T2=44986.00 23=0.00000 T3 = 4493B.00 R3 = 91338.00

Ave Concentration

49.28

PPM

Concentration = A + Bx + Cx2 + Dx3 + Ex4

r=0.99999936

2761 Constants: A=0.039401

B=0.001075

0.00

00.0 = a

E = 0.00

APPROVED BY

Dual-Analyzed Calibration Standard

290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950

Fax: 248-589-2134

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory

P.O. No.:

Customer

SCOTT SPECIALTY GASES

Project No.: 05-86005-007

1336

ENVIRONMENTAL QUALTIY MANAGEMENT

DOUG ALLEN

1290 COMBERMERE STREET

1800 CARILLON BLVD CINCINNATI OH 45240

TROY,MI 48083

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards;

Procedure #G1; September, 1997.

Cylinder Number:

Certification Date: ALM005469

12/17/01

Exp. Date: 12/16/2004

1900 PSIG Cylinder Pressure ***:

ANALYTICAL

COMPONENT

CERTIFIED CONCENTRATION (Moles)

ACCURÂCY**

TRACEABILITY

CARBON DIOXIDE

9.94

+/-1%

Direct NIST and NMi

OXYGEN

19.99

+/- 1%

Direct NIST and NMi

NITROGEN

BALANCE

- *** Do not use when cylinder pressure is below 150 psig
- ** Analytical accuracy is based on the requirements of EPA Protocal procedure G1, September 1997 Product certified as +/- 1% analytical accuracy is directly traceable to NIST or NMI standards.

REFERENCE STANDARD

TYPE/SRM NO.

EXPIRATION DATE

CYLINDER NUMBER

CONCENTRATION

COMPONENT

NTRM 2300

1/01/04

ALM047453

23 34 %

CARBON DIOXIDE

NTRM 2350

2/01/04

A1377

23.51 %

OXYGEN

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#

PIR/2000/609015

ROSEMOUNT/755R/1000430

DATE LAST CALIBRATED

ANALYTICAL PRINCIPLE

12/14/01

12/17/01

PARAMAGNETIC

ANALYZER READINGS

(Z = Zero Gas

R=Reference Gas T=Test Gas

First Triad Analysis

Second Triad Analysis

r = Correlation Coefficient)

Calibration Curve

CARBON DIOXIDE

Date:12/14/01 Response Unit:%

Z1 = 0.00000 T1=78.00000 R1 = 130.0000R2 = 130.0000Z2=0.00000 T2 = 78.00000Z3 = 0.00000T3 = 78.00000R3 = 130.0000

9,940

Concentration = A + Bx + Cx2 + Dx3 + Ex4

r= .999996084 2300

Constants: B= 1.02E-1 A = -0.0019163 C=-7 77E-5

D=5.19E-6

OXYGEN

Avg. Concentration:

Response Unit:% Date:12/17/01 Z1=0.00000 R1 = 23.51000 T1 = 20.00000R2 = 23.5100022=0.00000 T2 = 20.0000023 = 0.00000 T3 = 20.00000

Concentration = A + Bx + Cx2 + Dx3 + Ex4

r= .9999986310

A=-0.0145321 Constants:

B=1.00 C = 0

Avg. Concentration:

Scott Specialty Gases

Dual-Analyzed Calibration Standard

1290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950

Fax: 248-589-2134

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory

TROY,MI 48083

P.O. No.: 3220

ENVIRONMENTAL QUALTIY MANAGEMENT

SCOTT SPECIALTY GASES 1290 COMBERMERE STREET Project No.: 05-90064-002

PO#7428

1800 CARILLON BLVD

CINCINNATI OH 45240

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards;

Procedure #G1; September, 1997.

Cylinder Number:

ALM035348

Certification Date:

3/26/02

Exp. Date:

Cylinder Pressure***:

1900 PSIG

ANALYTICAL

COMPONENT

CERTIFIED CONCENTRATION (Moles)

ACCURACY**

TRACEABILITY

CARBON DIOXIDE

+/- 1%

Direct NIST and NMi

OXYGEN

20.53 % 10.56 %

+/- 1%

Direct NIST and NMi

NITROGEN

BALANCE

*** Do not use when cylinder pressure is below 150 psig

** Analytical accuracy is based on the requirements of EPA Protocal procedure G1, September 1997

Product certified as +/- 1% analytical accuracy is directly traceable to NIST or NMI standards

REFERENCE STANDARD

TYPE/SRM NO.

CYLINDER NUMBER **EXPIRATION DATE**

CONCENTRATION

COMPONENT

NTRM 2300 NTRM 2350 1/01/04 2/01/04 ALM047730

A1377

23 34 % 23.51 % CARBON DIOXIDE

OXYGEN

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#

DATE LAST CALIBRATED

ANALYTICAL PRINCIPLE

PIR/2000/609015

ROSEMOUNT/755R/1000430

03/25/02

NDIR

03/25/02

PARAMAGNETIC

ANALYZER READINGS

(Z = Zero Gas

R=Reference Gas T=Test Gas

r = Correlation Coefficient)

First Triad Analysis

Second Triad Analysis

Calibration Curve

Concentration = A + Bx + Cx2 + Dx3 + Ex4

CARBON DIOXIDE

Date:03/25/02 Response Unit:%

T1 = 121.5000Z1=0.00000 R1 = 130.0000R2=130.1000 Z2=0.00000

20.53

Z3 = 0.00000 T3 = 121.6000 T2 = 121.6000R3 = 130.0000

r= ,999998

2300

Constants: B=9.84E-2 A=-0.0053288 C=-4.24E-5

D=6.13E-6

E=0

OXYGEN

Response Unit:% Date:03/25/02

T1 = 10.56000 Z1 = 0.000000R1 = 23.51000R2 = 23.51000 Z2 = 0.00000 T2 = 10.5600023 = 0.00000 T3 = 10.57000 R3 = 23.52000

Avg. Concentration:

Avg Concentration

10.56

Concentration = A + Bx + Cx2 + Dx3 + Ex4

r = 1.000

2350 A=0.0001380

Constants: B = 1.0000

C=0

D = 0

APPROVED BY:

COMPLIANCE CLASS

Dual-Analyzed Calibration Standard

1290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950

Fax: 248-589-2134

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory

P.O. No.:

1336 PN NO.3001

Project No.: 05-71938-029

TROY,MI 48083

Customer

ENVIRONMENTAL QUALITY MGT

TOM GERSTLE

1310 KEMPER MEADOW DRIVE

SUITE 100

CINCINNATI OH 45240

ANALYTICAL INFORMATION

SCOTT SPECIALTY GASES

1290 COMBERMERE STREET

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards;

September, 1997

Cylinder Number

ALM016610

Certification Date:

1/08/01

Exp. Date:

1/08/2004

Cylinder Pressure **:

2000 PSIG

ANALYTICAL

ACCURACY**

TRACEABILITY

COMPONENT **METHANE**

CERTIFIED CONCENTRATION (Moles)

+/- 2%

NIST and NMi

AIR

NTRM 2751

298 6 PPM ::

BALANCE

*** Do not use when cylinder pressure is below 150 psig

** Analytical accuracy is based on the requirements of EPA Protocal procedures ,

REFERENCE STANDARD

TYPE/SRM NO.

EXPIRATION DATE

CYLINDER NUMBER

AAL18705

CONCENTRATION

COMPONENT

100 2 PPM **METHANE**

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#

BECKMAN/400 A/2000630

DATE LAST CALIBRATED

01/08/01

ANALYTICAL PRINCIPLE

FLAME IONIZATION

APPROVED BY: Suf

COMPLIANCE CLASS

Scott Specialty Gases

Dual-Analyzed Calibration Standard

290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950

Fax: 248-589-2134

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory

P.O No.:

1336 PN NO.3001

Customer

Project No · 05-71938-027

ENVIRONMENTAL QUALITY MGT

TOM GERSTLE

1310 KEMPER MEADOW DRIVE

SUITE 100

CINCINNATI OH 45240

ANALYTICAL INFORMATION

SCOTT SPECIALTY GASES

1290 COMBERMERE STREET

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards;

September, 1997

TROY,MI 48083

Cylinder Number:

ALM059985

Certification Date:

1/08/01

Exp. Date:

1/08/2004

Cylinder Pressure ***:

2000 PSIG

ANALYTICAL

CERTIFIED CONCENTRATION (Moles)

ACCURACY**

TRACEABILITY

COMPONENT **METHANE**

PPM 124.6

+/- 2%

NIST and NMi

AIR

BALANCE

*** Do not use when cylinder pressure is below 150 psig

** Analytical accuracy is based on the requirements of EPA Protocal procedures , September 1997.

REFERENCE STANDARD

TYPE/SRM NO.

EXPIRATION DATE

CYLINDER NUMBER

CONCENTRATION

COMPONENT

NTRM 2751

AAL18705

100 2 PPM

METHANE

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#

BECKMAN/400 A/2000630

DATE LAST CALIBRATED

01/08/01

ANALYTICAL PRINCIPLE

FLAME IONIZATION

APPROVED BY: 4

Scott Specialty Gases

Dual-Analyzed Calibration Standard

1290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950

Fax: 248-589-2134

CERTIFICATE OF ACCURACY: Interference Free EPA Protocol Gas

Assay Laboratory

P.O. No '

Customer 3220

SCOTT SPECIALTY GASES

Project No.: 05-90064-006

ENVIRONMENTAL QUALTIY MANAGEMENT

PO#7428

1290 COMBERMERE STREET TROY,MI 48083

1800 CARILLON BLVD CINCINNATI OH 45240

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards;

Procedure #G1; September, 1997.

Cylinder Number:

ALM013077

Certification Date:

3/26/02

Exp. Date: 3/25/2004

Cylinder Pressure ***:

1880 PSIG

ANALYTICAL

CERTIFIED CONCENTRATION (Moles) COMPONENT

ACCURACY**

TRACEABILITY

NITRIC OXIDE

PPM . 448.0

+1-1%

Direct NIST and NMi

NITROGEN - OXYGEN FREE

BALANCE

TOTAL OXIDES OF NITROGEN

452.0 PPM Reference Value Only

*** Do not use when cylinder pressure is below 150 psig

** Analytical accuracy is based on the requirements of EPA Protocal procedure G1, September 1997

Product certified as +/- 1% analytical accuracy is directly traceable to NIST or NMI standards.

REFERENCE STANDARD

TYPE/SRM NO. NTRM 1686

EXPIRATION DATE

10/01/04

CYLINDER NUMBER

CONCENTRATION

COMPONENT

NO/N2

INSTRUMENTATION

NITRIC OXIDE

Date:03/19/02

Z1=0 11360

23=0 17630

Avg Concentration:

INSTRUMENT/MODEL/SERIAL#

FTIR System/8220/AAB9300205

DATE LAST CALIBRATED

500 7 PPM

ANALYTICAL PRINCIPLE

Scott Enhanced FTIR

ANALYZER READINGS

(Z = Zero Gas

R=Reference Gas T=Test Gas

r = Correlation Coefficient)

Calibration Curve

First Triad Analysis

R1 = 500.0881

T3 = 447 7115

Response Unit:PPM

T1=447.7814

T2=447.4968

R3 = 500.9831

Second Triad Analysis

R2=501.0287 Z2=0 12260

Date: 03/26/02 Response Unit: PPM

R1=500 1173 T1=448 1859 Z1 = -0.24490 R2 = 501.3585 22 = -0.11040

T3=448.1703

T2=448.2963

Z3=0.04130

R3 = 500.6241

Concentration \Rightarrow A + Bx + Cx2 + Dx3 + Ex4

r=0.999990

Constants: A = 0.0000000B = 1.000000C=0.000000

0000000 ad

E=0.000000

APPROVED BY:

Dual-Analyzed Calibration Standard

290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950

Fax: 248-589-2134

EPA Protocol Gas CERTIFICATE OF ACCURACY: Interference Free

Assay Laboratory

PO No:

1336

ENVIRONMENTAL QUALITY MGT

SCOTT SPECIALTY GASES

Project No.: 05-77299-008

DOUG ALLEN

Customer

1290 COMBERMERE STREET TROY,MI 48083

1310 KEMPER MEADOW DRIVE

SUITE 100

CINCINNATI OH 45240

ANALYTICAL

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards;

Procedure #G1; September, 1997

Cylinder Number:

ALM058944

Certification Date:

5/09/01

Exp. Date:

5/09/2003

Cylinder Pressure ***:

1904 PSIG

COMPONENT

CERTIFIED CONCENTRATION (Moles)

ACCURACY**

TRACEABILITY

NITRIC OXIDE

NITROGEN - OXYGEN FREE

PPM: 885:5

+/-1%

Direct NIST and NMi

TOTAL OXIDES OF NITROGEN

885.5

BALANCE

Reference Value Only

*** Do not use when cylinder pressure is below 150 psig

** Analytical accuracy is based on the requirements of EPA Protocal procedure G1, September 1997

Product certified as +/- 1% analytical accuracy is directly traceable to NIST or NMI standards.

REFERENCE STANDARD

TYPE/SRM NO. NTRM 1687

EXPIRATION DATE 3/01/03

CYLINDER NUMBER

ALM024688

CONCENTRATION

COMPONENT

NO/N2

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#

FTIR System/8220/AAB9300205

DATE LAST CALIBRATED

1000 PPM

ANALYTICAL PRINCIPLE

Scott Enhanced FTIR

ANALYZER READINGS

(Z=Zero Gas

R = Reference Gas T = Test Gas

r = Correlation Coefficient)

Calibration Curve

First Triad Analysis

Second Triad Analysis

NITRIC OXIDE

Date:05/02/01 Response Unit:PPM

T1=887.3146 71=0.01980 R1 = 1001.274 T2=886.7747 R2=1000.612 Z2=0.13200

Z3=0.33380 T3=885.3155 Avg. Concentration:

R3=998 1135

Date: 05/09/01 Response Unit: PPM

R1=1007 179 T2=884.3168 R2 = 1000.818T3=881.5648 R3=992.0023 73=0.44340

Avg Concentration:

Concentration = A + Bx + Cx2 + Dx3 + Ex4

r = 0.999990

A = 0.000000Constants: C = 0.0000000B=1.000000 0000000 m E=0.000000

Dual-Analyzed Calibration Standard

1290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950

Fax⁻ 248-589-2134

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory

TROY,MI 48083

P.O. No.:

1336 PN NO.3001

Project No: 05-71938-012

ENVIRONMENTAL QUALITY MGT

TOM GERSTLE

1310 KEMPER MEADOW DRIVE

SUITE 100

CINCINNATI OH 45240

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards;

Procedure #G1; September, 1997

SCOTT SPECIALTY GASES

1290 COMBERMERE STREET

Cylinder Number:

ALM001568 -

Certification Date:

1/09/01

Exp. Date:

1/09/2004

Cylinder Pressure ***:

1900 PSIG

ANALYTICAL

TRACEABILITY

CARBON MONOXIDE

COMPONENT

CERTIFIED CONCENTRATION (Moles)

ACCURACY** +/-1%

Direct NIST and NMi

NITROGEN

149 4

PPM.

BALANCE

*** Do not use when cylinder pressure is below 150 psig

** Analytical accuracy is based on the requirements of EPA Protocal procedure G1, September 1997 Product certified as +/- 1% analytical accuracy is directly traceable to NIST or NMF standards.

REFERENCE STANDARD

TYPE/SRM NO.

EXPIRATION DATE

CYLINDER NUMBER

CONCENTRATION

COMPONENT

NTRM 1681

3701/03

ALM022971

977.1 PPM

CARBON MONOXIDE

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#

HORIBA/A1A-220/57297601

DATE LAST CALIBRATED

01/09/01

ANALYTICAL PRINCIPLE

NDIR

ANALYZER READINGS

Z=Zero Gas

R = Reference Gas

T=Test Gas

r = Correlation Coefficient)

Calibration Curve

First Triad Analysis

Second Triad Analysis

CARBON MONOXIDE

Date:01/02/01 Response Unit:MV

T1 = 19 50000 21 = 0.00000R1 = 100.0000Z2 = 0.00000T2 = 19.50000Z3 = 0.00000 R3 = 100.0000 T3 = 19.50000

Ava Concentration:

PPM

148.8

Date: 01/09/01 Response Unit MV

Z1=0.00000 R1 = 100.0000 T1=19.60000

150 1

Z3 = 0.00000T3 = 19.70000

Ava Concentration:

R3 = 100 0000 PPM

Concentration = A + Bx + Cx2 + Dx3 + Ex4

rm 999999857 1681

A = 0 118597868 B=7.264635392 C=0.017490412

D=7.58397E-5 E=0

Scott Specialty Gases

Dual-Analyzed Calibration Standard

290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950

Fax: 248-589-2134

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory

TROY,MI 48083

PO No .

1336 PN NO 3001

SCOTT SPECIALTY GASES 1290 COMBERMERE STREET

Project No.: 05-71938-010

ENVIRONMENTAL QUALITY MGT TOM GERSTLE

1310 KEMPER MEADOW DRIVE

SUITE 100

Customer

CINCINNATI OH 45240

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards;

Procedure #G1; September, 1997

Cylinder Number:

ALM046772

Certification Date:

1/09/01

Exp. Date:

1/09/2004

Cylinder Pressure ***:

1900 PSIG

ANALYTICAL

CERTIFIED CONCENTRATION (Moles)

ACCURACY**

TRACEABILITY

COMPONENT

+/-1%

CARBON MONOXIDE

59.39

Direct NIST and NMi

NITROGEN

PPM

BALANCE

*** Do not use when cylinder pressure is below 150 psig

** Analytical accuracy is based on the requirements of EPA Protocal procedure G1, September 1997

Product certified as +/- 1% analytical accuracy is directly traceable to NIST or NMI standards.

REFERENCE STANDARD

TYPE/SRM NO. NTRM 1679

EXPIRATION DATE 1/01/03

CYLINDER NUMBER

ALM008021

CONCENTRATION

COMPONENT

CARBON MONOXIDE

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#

HORIBA/A1A-220/57297601

DATE LAST CALIBRATED

101 7 PPM

ANALYTICAL PRINCIPLE

01/09/01

NDIR

ANALYZER READINGS

(Z=Zero Gas

R=Reference Gas T=Test Gas

r = Correlation Coefficient)

First Triad Analysis

Second Triad Analysis

Calibration Curve

CARBON MONOXIDE

Date:01/02/01 Response Unit:MV

Z1 = 0.00000R1 = 100.0000T1=59 10000 T2=59.20000 R2 = 100.0000 Z2 = 0.000000R3 = 100.0000 T3 = 59 10000 Z3 = 0.00000

Avg Concentration:

Date: 01/09/01 Response Unit: MV

R1 = 100.0000 T1 = 59.20000 Z1 = 0.000000T2 = 59.20000R2 = 100.000022 = 0.00000

23 = 0.00000

T3 = 59.20000 R3 = 100.0000

PPM

Avg Concentration

Concentration = A + Bx + Cx2 + Dx3 + Ex4

r== .999995366

Constants:

B = 1.03693084

A = -0.024349778 C=-0.001050125

D=8,39335E-6

E=0

Dual-Analyzed Calibration Standard

1290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950

Fax: 248-589-2134

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory

TROY,MI 48083

P.O. No.:

1336 PN NO 3001

Project No : 05-71938-009

Customer

ENVIRONMENTAL QUALITY MGT

TOM GERSTLE

1310 KEMPER MEADOW DRIVE

SUITE 100

CINCINNATI OH 45240

ANALYTICAL INFORMATION

SCOTT SPECIALTY GASES

1290 COMBERMERE STREET

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards;

Procedure #G1: September, 1997.

Cylinder Number:

ALM049331

Certification Date:

1/09/01

Exp. Date:

1/09/2004

Cylinder Pressure***:

1900 PSIG

ANALYTICAL

CERTIFIED CONCENTRATION (Moles)

ACCURACY**

TRACEABILITY

CARBON MONOXIDE

PPM 30.07

+/- 1%

Direct NIST and NMi

NITROGEN

COMPONENT

BALANCE

*** Do not use when cylinder pressure is below 150 psig

** Analytical accuracy is based on the requirements of EPA Protocal procedure G1, September 1997

Product certified as +/- 1% analytical accuracy is directly traceable to NIST or NMI standards.

REFERENCE STANDARD

TYPE/SRM NO.

EXPIRATION DATE

CYLINDER NUMBER

CONCENTRATION

COMPONENT

NTRM 1679

1/01/03

ALM008021

101 7 PPM

CARBON MONOXIDE

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#

HORIBA/A1A-220/57297601

DATE LAST CALIBRATED

01/09/01

ANALYTICAL PRINCIPLE

NDIR

ANALYZER READINGS

(Z=Zero Gas

R=Reference Gas T=Test Gas

r = Correlation Coefficient)

First Triad Analysis

Second Triad Analysis

Calibration Curve

CARBON MONOXIDE

Date:01/02/01 Z.1 = 0.000000

Response Unit-MV

R1 = 100.0000

T1 = 29 70000

PPM

R2 = 100.0000 Z2 = 0.00000

T2=29 70000

T3 = 29 70000 R3 = 100.0000

Ava Concentration:

30.07

Date: 01/09/01 Response Unit: MV

21 = 0.00000

R1=100.0000 T1=29 70000

R2 = 100 0000

22=0.00000

T2=29 70000 R3 = 100.0000

Ava Concentration:

PPM 30.07

Concentration = A + Bx + Cx2 + Dx3 + Ex4

r= .999995366

Constants

A=-0.0243498 C=-0.001050125

B=1.04 D=8.39E-6