28.12.2023 328197462

מטלת מנחה 12 - לוגיקה למדמ"ח 20466

שאלה 1

סעיף א

:שקולים לוגית שונדוקציה על מבני הפסוקים כי $\stackrel{*}{\alpha}$ ו מ

- . אם α הוא פסוק אלמנטרי, הרי שלפי ההגדרה $\alpha^* := -\alpha$, ובפרט הפסוקים שקולים.
- 2. יהא α פסוק המקיים את התנאי $\alpha^*\equiv \alpha$ ונוכיח כי גם α מקיים גם הוא תנאי זה. על פי ההגדרה, הפעלת $\alpha^*(\alpha)$ על α היא שלילתה של הפעלת $\alpha^*(\alpha)$ על α , שכן כל קשר α וכל פסוק אלמנטרי הנמצאים בפסוק α נמצאים בהכרח ב α . אי-לכך, ועל פי זהות 1 מעמוד 117,

$$\neg \alpha^* \equiv \neg \neg \alpha$$

- מקיים את התנאי (משר $(\alpha@\beta)$ כאשר (מיח בי מקיים את התנאי מניח בי $(\alpha@\beta)$ מקיים את התנאי .3 נניח כי
 - :@ =∨ גבור

משיקולים דומים לסעיף 2 בהוכחה, ועל פי משפט ההצבה ושקילות 6 מעמוד 117:

$$(\alpha \vee \beta)^* = (\alpha^* \wedge \beta^*) \equiv (\neg \alpha \wedge \neg \beta) \equiv \neg (\alpha \vee \beta)$$

י ועבור ∧= @ משיקולים דומים ולפי שקילות 7: ○

$$(\alpha \wedge \beta)^* = (\alpha^* \vee \beta^*) \equiv (\neg \alpha \vee \neg \beta) \equiv \neg(\alpha \wedge \beta)$$

סעיף ב

 α \equiv β יהיו α α פסוקים ונניח כי

 $_{,}$ $_{\alpha}$ $_{\alpha}$

 $-\alpha^*\equiv -\beta^*$ ומטרנזיטיביות יחס השקילות נובע כי $-\beta^*\equiv \beta$, ומטרנזיטיביות יחס השקילויות 2 ו-1 נובע כי:

$$\alpha^* \equiv \neg \neg \beta^* \equiv \beta^*$$

28.12.2023 328197462

שאלה 2

סעיף א

הטענה שגויה.

 Σ ואינו מספק את Γ ואינו מודל M המספק את $\Sigma = \{\alpha, \beta\}$ ונראה ניקח ונראה כי לכל ביים מודל

- $M(\beta) = F$ כי $M(\alpha \land \beta) = F$ אבל $M(\alpha \land \beta) = F$ ניקח $M(\beta) = \{\alpha, \neg \beta\}$ מספק את $M(\beta) = \{\alpha, \neg \beta\}$ ניקח $M(\beta) = \{\alpha, \neg \beta\}$
 - . באופן דומה עבור $M = \{ \neg \alpha, \beta \}$ ניקח ניקח ר ההסבר שקול לחלוטין. 2
- מספק את פסוקיה באופן ריק) אך אינו מספק $M=\{lpha, \neg\beta\}$ ניקח ניקח $\Gamma=\emptyset$ ניקח . $M=\{lpha, \neg\beta\}$ את Σ (הסבר שקול לצעד 1).

סעיף ב

הטענה נכונה

כיוון ראשון: נניח כי α ונראה כי קיים מודל לקבוצת הפסוקים $\Sigma \Rightarrow \alpha$. אכן, מההנחה $\alpha \Rightarrow \alpha$ נובע כי קיים מודל α המספק את α ואינו מספק את α . נבחר מודל α זה - אכן α אכן α וכן α מספק את α , לכן מספק את איחוד הקבוצות.