Warstwa aplikacji część 2

Sieci komputerowe Wykład 8

Marcin Bieńkowski

Protokoły w Internecie

W dzisiejszym odcinku

* Poczta elektroniczna

* NAT vs. warstwa aplikacji

Wydajność HTTP

Poczta elektroniczna

Protokół SMTP

- Protokół przekazywania poczty.
- * Protokół czysto tekstowy, serwer nasłuchuje na porcie 25.

Wysyłanie bezpośrednie (1)

Chcemy wysłać pocztę do adresu abc@xyx.com.

* Łączymy się z adresem IP serwera odpowiedzialnego za odbieranie i przechowywanie pocztę dla domeny xyx.com.

* Rekord MX (mail exchange) w DNS a rekord A:

Wysyłając pocztę do abc@ii.uni.wroc.pl łączymy się z 156.17.4.1 (nie z 156.17.4.11).

Wysyłanie bezpośrednie (2)

Chcemy wysłać pocztę do adresu abc@xyx.com.

Wysyłanie pośrednie

Chcemy wysłać pocztę do adresu abc@xyx.com.

(Kroków może być więcej).

Przekazywanie pośrednie

- Zazwyczaj wymaga autoryzacji nadawcy u SMTP relay
 - * Różne mechanizmy autoryzacji są elementem protokołu SMTP.
 - * Zabezpieczenie przed rozsyłaniem niechcianej poczty (spamu).
 - * Czasem autoryzacja na podstawie adresu IP klienta.

Przykładowy email (otrzymany)

```
Delivered-To: marcin.bienkowski@cs.uni.wroc.pl
Received: by 10.64.232.142 with SMTP id to14csp146725iec;
        Sat, 23 Apr 2016 08:41:37 -0700 (PDT)
Received: from aisd.ii.uni.wroc.pl (algo2014.ii.uni.wroc.pl. [156.17.4.30])
        by mx.google.com with ESMTP id 1199si74849361fl.24.2016.04.23.08.41.36
        for <marcin.bienkowski@cs.uni.wroc.pl>;
        Sat, 23 Apr 2016 08:41:36 -0700 (PDT)
Received: by aisd.ii.uni.wroc.pl (Postfix, from userid 1000) id E6BCD5F84D;
        Sat, 23 Apr 2016 17:41:35 +0200 (CEST)
Date: Sat, 23 Apr 2016 17:41:35 +0200
From: mbi <mbi@ii.uni.wroc.pl>
To: marcin.bienkowski@cs.uni.wroc.pl
Subject: Testowy email
Message-ID: <20160423154135.GA11834@aisd.ii.uni.wroc.pl>
MIME-Version: 1.0
Content-Type: text/plain; charset=utf-8
Content-Disposition: inline
Content-Transfer-Encoding: 8bit
User-Agent: Mutt/1.5.23 (2014-03-12)
Jakaś treść maila.
```

pola ustawiane przez odbiorce

pola ustawiane przez serwery pośredniczące

pola ustawiane przez nadawcę

Pola nagłówka ustawiane przez klienta

From: To: Subject: Cc: Bcc: ("ślepa kopia") Message-ID: (unikatowy identyfikator wiadomości) Date: (data wysłania) In-Reply-To: (ID maila, na którego odpowiadamy)

References:

11

Typ zawartości

Pole Content-Type: nagłówka określa:

- * czym jest treść maila (w standardzie MIME)
 - + czysty tekst (text/plain)
 - + HTML (text/html)
- kodowanie znaków

```
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: 8bit
```

Załączniki pocztowe

--UNIKATOWY-CIĄG-ZNAKÓW

```
Content-Type: multipart/mixed; boundary= ,, -- UNIKATOWY-CIAG-ZNAKÓW"
Content-Transfer-Encoding: 8bit
--UNIKATOWY-CIĄG-ZNAKÓW
Content-Type: text/plain; charset=utf-8
Content-Disposition: inline
Content-Transfer-Encoding: 8bit
                                                            treść tekstowego maila w UTF-8
Wiadomość testowa
Μ.
--UNIKATOWY-CIĄG-ZNAKÓW
Content-Type: image/jpeg
Content-Disposition: attachment; filename="obrazek.jpg"
Content-Transfer-Encoding: base64
                                                             załącznik obrazek.jpg
ZAWARTOŚĆ-PLIKU-ZAKODOWANA-W-BASE64.
```

Dostarczanie poczty do użytkownika

- Protokół POP3.
- Protokół IMAP.
- Klienty pocztowe jako aplikacje WWW.

Spam: niechciane wiadomości pocztowe

Sposoby wykrywania i usuwania spamu:

- Ręczne blokowanie konkretnych tematów / nadawców
- Metody statystyczne (filtry bayesowskie)
- * Greylisting
- * SPF
- *****

Filtry bayesowskie (1)

Założenia:

- Dostajemy losowy email (z przestrzeni wszystkich maili).
- * Jest w nim słowo viagra.
- Jaka jest szansa, że ten email to spam?

$$\begin{aligned} & \text{Pr}[\text{spam} \mid \text{viagra}] = \frac{\text{Pr}[\text{viagra} \cap \text{spam}]}{\text{Pr}[\text{viagra}]} \\ & = \frac{\text{Pr}[\text{viagra} \mid \text{spam}] \cdot \text{Pr}[\text{spam}]}{\text{Pr}[\text{viagra}]} \end{aligned}$$

Filtry bayesowskie (2)

- Bierzemy zbiór słów {W_i}_i
- Estymujemy dla każdego z nich Pr[W_i | spam] i Pr[W_i | not spam]
 na podstawie zbioru treningowego.
- * Zakładamy niezależność Pr[Wi] i Pr[Wi | spam].

$$\Pr[\operatorname{spam} \mid \bigcap_{i=1}^{k} W_i] = \frac{\Pr[\bigcap_{i=1}^{k} W_i \mid \operatorname{spam}] \cdot \Pr[\operatorname{spam}]}{\Pr[\bigcap_{i=1}^{k} W_i]}$$
$$= \frac{\prod_{i=1}^{k} \Pr[W_i \mid \operatorname{spam}] \cdot \Pr[\operatorname{spam}]}{\prod_{i=1}^{k} \Pr[W_i]}$$

Greylisting

Wolne wysyłanie spamu jest nieopłacalne.

* Pomysł: każemy klientowi SMTP wysłać wiadomość ponownie za jakiś czas:

```
-> MAIL FROM: <nadawca@jakasdomena.pl>
<- 250 2.1.0 Sender ok
-> RCPT TO: <odbiorca@innadomena.pl>
<- 451 4.7.1 Please try again later
```

- * Ustawiamy okno czasowe ("nie wcześniej niż za 10 min. i nie później niż po godzinie").
 - * Jeśli klient ponowi w danym oknie czasowym, to akceptujemy jego email.
 - * Problemy z poprawnym ustawieniem okna.
 - Dostarczanie poczty przestaje być szybkim procesem.
- Stosowany wariant: zamiast odrzucać, odbieraj wolniej z okna TCP.

Spam: SPF (Sender Policy Framework)

* Rekord SPF w DNS dla danej domeny:

```
    ii.uni.wroc.pl TXT "v=spf1
        ip4:156.17.4.0/24
        mx:ii.uni.wroc.pl
        mx:gmail.com
        mx:google.com
        -all"
```

- * Definiuje jakie komputery są uprawnione do wysyłania poczty z polem From: równym adres@ii.uni.wroc.pl.
 - * komputery z adresów 156.17.4.0/24.
 - * serwery SMTP obsługujące pocztę dla domen ii.uni.wroc.pl, gmail.com i google.com.
- Rekord sprawdzany przez odbiorcę.
 - Problemy przy przekazywaniu poczty (komputer przekazujący nie jest już oryginalnym nadawcą!)

NAT vs. warstwa aplikacji

NAT

- * Bardzo powszechne rozwiązanie.
- * Z reszty Internetu cała sieć lokalna wygląda tak samo, jak pojedynczy komputer z adresem 12.34.56.78.

Co robi router z funkcją NAT?

* Pakiet

- * Z adresu i portu (A, P_A).
- * Do adresu i portu (C, P_C).

* Adres i port źródłowy pakietu podmienione na (B, P_B).

* Tablica NAT:

- * Przechowuje przez pewien czas przypisanie (A, P_A , C, P_C) $\rightarrow P_B$.
- * Dla kolejnych podobnych pakietów przypisanie będzie takie samo.
- * Jeśli przychodzi pakiet **z Internetu** do (B, P_B) to jego adres i port docelowy zostanie podmieniony na (A, P_A).

NAT a P2P

Kiedyś:

- * Komunikacja zawsze w modelu klient-serwer.
- Serwery nie są za routerami z NAT.
- Klienci mogą być za routerami z NAT

* Początkowa transmisja (np. TCP SYN) od klienta do serwera tworzy przypisanie $(A, P_A, C, P_C) \rightarrow P_B$, dzięki któremu pakiety z odpowiedziami serwera mogą wracać do klienta.

Obecnie:

- * Chcemy często przesyłać dane w modelu peer-to-peer (Bittorrent, Skype, ...)
- Obie strony są często za NAT!
- Brak naturalnej możliwości zainicjowania połączenia.

Odwrócone połączenie

- * C chce nawiązać połączenie z A, ale A jest za NAT.
- * Jeśli oba utrzymują kontakt z R, to C może poprosić (przez R) komputer A o nawiązanie bezpośredniego połączenia z C.
- Stosowane np. w Skype.

Odwrócone połączenie w protokole FTP

FTP: protokół przesyłania plików.

- * Na początku klient A łączy się z serwerem C na porcie 21 (połączenie na komunikaty kontrolne).
- * A wysyła polecenie "chcę pobrać plik i słucham na porcie X"
 - → C łączy się z portem X klienta A i wysyła plik (odrębne połączenie TCP)
 - → połączenie odrzucane przez NAT.
- * Tryb pasywny FTP: A wysyła polecenie "chce pobrać plik w trybie pasywnym"
 - → C zaczyna słuchać na porcie Y i wysyła komunikat "słucham na porcie Y"
 - → A łączy się z portem Y serwera C i pobiera plik.

Przekaźniki

- * Jeśli A i C utrzymują kontakt z R, to oba mogą nawiązać połączenie z R i R może przekazywać między nimi dane.
- Stosowane np. w Skype (jeśli wszystko inne zawiedzie).

Przechodzenie przez NAT (1)

- * A wysyła z portu P_A pakiet do R o treści "(A,P_A)".
- * Na routerze NAT zostaje utworzone przypisanie $(A,P_A) \rightarrow (B,P_B)$.
- * R widzi pakiet o treści "(A,PA)" od (B, PB), tj. poznaje przypisanie.

- * W taki sam sposób R poznaje przypisanie $(C,P_C) \rightarrow (D,P_D)$.
- * R odsyła poznane przypisania do A i C.

Przechodzenie przez NAT (2)

A łączy się z $(D,P_D) \rightarrow$ dane zostają przesłane do (C,P_C) .

D poza przypisaniem (C,P_C) \rightarrow (D,P_D) pamięta **listę odbiorców** pakietów, które wychodziły przez (D,P_D). D może wpuszczać: zawiera (R,P_R)

- * wszystkie pakiety (pełny asymetryczny NAT). 🗸
- * pakiety tylko od IP z listy (ograniczony as. NAT). 🗙

od R

* pakiety tylko od portów z listy (**ogranicz. portowo as. NAT**). \times od (R, P_R)

Wybijanie dziur (1)

Technika wybijania dziur (hole punching)

- * (C,P_C) wysyła pakiet do (B,P_B) . B odrzuca ten pakiet.
- * Ale na routerze D lista odbiorców pakietów, które wychodziły przez (D,P_D) to teraz (R,P_R) i (B,P_B) .
- * Jeśli (A, P_A) wyśle teraz pakiet do (D, P_D), to D zobaczy to jako pakiet od (B, P_B) i przekaże do (C, P_C).
- * Działa nawet dla asymetrycznych NAT ograniczonych portowo.

Wybijanie dziur (2)

- * Milcząco założyliśmy, że jeśli (A,P_A) wysyłało pakiet do (R,P_R) i potem do (D,P_D) , to w obu przypadkach B wybierze port P_B .
- * NAT asymetryczny: P_B zależy tylko od adresu i portu nadawcy.
- NAT symetryczny: P_B zależy od adresu i portu nadawcy i odbiorcy. Nie wiadomo jak łączyć dwóch klientów za symetrycznymi NAT.

Wydajność HTTP

Poprawianie wydajności HTTP

* Połączenia trwałe:

* Wiele żądań i odpowiedzi HTTP w jednym połączeniu TCP (standardowe zachowanie HTTP 1.1).

Pamięć podręczna w przeglądarce WWW:

- * Zapytanie GET z polem If-Modified-Since:
- * Serwer może umieszczać w nagłówku odpowiedzi pola:
 - Expires: (do kiedy można trzymać dokument w pamięci podręcznej) → można całkowicie pominąć żądanie strony.
 - Cache-Control: no-cache (nigdy nie trzymaj w pamięci podręcznej)

Serwery proxy (1)

serwery WWW w Internecie

- Przeglądarka wysyła zapytanie HTTP do serwera proxy.
- Proxy w razie potrzeby łączy się z serwerem HTTP.
- Serwer proxy odpowiada używając stron przechowywanych w swojej pamięci podręcznej.
- * W razie potrzeby przeglądarka może wymusić pominięcie proxy.

Serwery proxy (2)

serwery WWW w Internecie

Serwer proxy

- Wpisywany w ustawieniach przeglądarki HTTP
- * Czasem wymuszany przez ISP (integrowany z routerem obsługującym ruch z danej sieci).
- * Korzyści: głównie dla ISP (ograniczenie ilości danych).

Anonimiowe serwery proxy

- Serwer proxy dodaje do żądania HTTP dodatkowe pola.
 - * X-Forwarded-For: adres IP.
 - * Via: adres IP proxy.

- Anonimowe serwery proxy:
 - Nie dodają takich nagłówków.
 - * Zwykle płatne.

Odwrotne proxy (1)

- Wykorzystywane przez dostawców treści.
- * Zmniejszają obciążenie samego serwera WWW.
- * Adresy IP serwerów proxy podawane zazwyczaj przez DNS jako adresy IP przy rozwiązywaniu nazwy serwera WWW.
 - Serwery DNS zazwyczaj zwracają listę adresów IP w losowej albo cyklicznej kolejności.

Odwrotne proxy (2)

- Zysk dla klienta i dostawcy treści.
- * Ale wciąż duże opóźnienie w przesyłaniu pakietów pomiędzy klientami i serwerami proxy.
- * Jak opłacalnie przysunąć serwery proxy do klientów?

CDN (Content Distribution Networks)

klienci WWW w Internecie serwery proxy CDN

- * Serwery proxy obsługiwane przez osobną organizację (obsługuje wiele serwerów WWW).
 - * Akamai, Limelight, ...
 - * Setki tysięcy serwerów proxy.
- * CDN utrzymuje również serwery DNS: umożliwiają wybieranie bliskiego serwera proxy.

Lektura dodatkowa

- * Kurose & Ross: rozdział 2.
- * Tanenbaum: rozdział 7.