Zadanie: PIO

Pionek

XXV OI, etap I. Plik źródłowy pio.* Dostępna pamięć: 128 MB.

16.10-13.11.2017

W punkcie (0,0) nieskończonej kratki stoi pionek. Pionek ma n dozwolonych ruchów. Każdy z nich jest opisany za pomocą wektora o współrzędnych całkowitych. Pionek może każdy z ruchów wykonać co najwyżej raz, w dowolnej kolejności. Wektory opisujące ruchy mogą się powtarzać i wtedy pionek może wykorzystać każdy z nich.

Naszym celem jest dostać się pionkiem do punktu położonego możliwie najdalej od punktu początkowego (w odległości euklidesowej). Jak daleko może on dotrzeć?

Wejście

Pierwszy wiersz standardowego wejścia zawiera jedną dodatnią liczbę całkowitą n oznaczającą liczbę możliwych ruchów pionka. Każdy z kolejnych n wierszy zawiera dwie liczby całkowite x_i , y_i ($-10^4 \le x_i, y_i \le 10^4$) oddzielone pojedynczym odstępem i oznaczające wektor $[x_i, y_i]$ opisujący możliwy ruch pionka.

Wyjście

Twój program powinien wypisać na standardowe wyjście liczbę całkowitą oznaczającą kwadrat odległości od punktu (0,0) do najdalszego punktu, do którego może doskoczyć pionek.

Przykład

Dla danych wejściowych:

5

2 -2 -2 -2

0 2

3 1

-3 1

poprawnym wynikiem jest:

26

Wyjaśnienie do przykładu: Na rysunku przedstawiono rozwiązanie optymalne wykorzystujące ruchy opisane wektorami [0,2], [3,1] oraz [2,-2]. Inne, równie dobre rozwiązanie uzyskujemy za pomocą wektorów [0,2], [-3,1] oraz [-2,-2].

Testy "ocen":

```
1ocen: n=5, a wektory to [0,0], [1,0], [0,-1], [-1,0] i [0,1]; 2ocen: n=100, wektory to [i,j] dla i,j\in\{1,2,\ldots,10\}; 3ocen: n=200\,000, wszystkie wektory to [-1,-1].
```

Ocenianie

Zestaw testów dzieli się na następujące podzadania. Testy do każdego podzadania składają się z jednej lub większej liczby osobnych grup testów.

Podzadanie	Warunki	Liczba punktów
1	$n \le 20$	15
2	$n \le 2000$	45
3	$n \le 200000$	40