PCT

世界知的所有権機関 国際事務局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類7

C07D 215/22, 239/96, 401/12, 403/12, A61P 35/00, A61K 31/47, 31/4725, 31/496, 31/517, 31/5355

A1

(11) 国際公開番号

WO00/43366

(43) 国際公開日

2000年7月27日(27.07.00)

(21) 国際出願番号

PCT/JP00/00255

(22) 国際出願日

2000年1月20日(20.01.00)

(30) 優先権データ

特願平11/14858 特願平11/26691 特願平11/142493 特願平11/253624

1999年1月22日(22.01.99) 1999年2月3日(03.02.99)

1999年5月21日(21.05.99) Л 1999年9月7日(07.09.99) Л

(71) 出願人 (米国を除くすべての指定国について) 麒麟麦酒株式会社 (KIRIN BEER KABUSHIKI KAISHA)[JP/JP] 〒104-8288 東京都中央区新川二丁目10番1号 Tokyo, (JP) (72) 発明者: および

(75) 発明者/出願人(米国についてのみ)

久保和生(KUBO, Kazuo)[JP/JP]

〒370-0852 群馬県高崎市中居町4-17-9

キリン中居寮207号室 Gumma, (JP)

藤原康成(FUJIWARA, Yasunari)[JP/JP]

〒370-1202 群馬県高崎市宮原町12-210 Gumma, (JP)

磯江敏幸(ISOE, Toshiyuki)[JP/JP]

〒370-1206 群馬県高崎市台新田町330-28 Gumma, (JP)

(74) 代理人

佐藤一雄, 外(SATO, Kazuo et al.)

〒100-0005 東京都千代田区丸の内三丁目2番3号 富士ビル323号 協和特許法律事務所 Tokyo, (JP)

(81) 指定国 AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特許 (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ,

添付公開書類

TM)

国際調査報告書

(54) Title: QUINOLINE DERIVATIVES AND QUINAZOLINE DERIVATIVES

(54)発明の名称 キノリン誘導体およびキナリゾン誘導体

$$R^{5}$$
 R^{6}
 R^{9}
 R^{10}
 R^{11}
 R^{2}
 R^{3}
 R^{4}
 R^{7}
 R^{10}
 R^{10}

(57) Abstract

Compounds having an antitumor activity and causing no morphological change in cells. Compounds of general formula (I), pharmaceutically acceptable salts of them and solvates thereof, and medicinal compositions containing the same. In formula (1), X and Z represent each CH or N; R¹⁻³ represent each H, optionally substituted alkoxy, etc.; R⁴ represents H; R⁵⁻⁸ represent each H, halogeno, alkyl, alkoxy, alkylthio, nitro or amino, provided that all of R⁵⁻⁸ do not represent H simultaneously; R⁹ and R¹⁰ represent each H, alkyl or alkylcarbonyl; and R¹¹ represents alkyl, alkenyl, alkynyl or aralkyl.

本発明は抗腫瘍活性を有しかつ細胞形態変化を生じさせない化合物の提供をその目的とする。式(I)の化合物およびその薬学上許容される塩および溶媒和物並びにこの化合物を含む医薬組成物が開示される。

(XおよびZはCHまたはNを表し、R''はH、置換アルコキシ、非置換アルコキシ等を表し、R'はHを表し、R''はH、ハロゲン、アルキル、アルコキシ、アルキルチオ、ニトロまたはアミノを表すが、R''が総てHを表すことはなく、R'およびR"はH、アルキル、アルキルカルボニルを表し、R"はアルキル、アルケニル、アルキニルまたはアラルキルを表す)

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AE アラブ音長国連邦	1	· CAME TO BONDAY	~ · · / // //	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	いたことは神田田ではんりもんと		3400 - 17(B)	つけが
CH スイス IE アイルランド MW マラウイ US 米国 CI コートジボアール IL イスラエル MX メキシコ U2 ウズベキスタン CM カメルーン IN インド MZ モザンピーク VN ヴェトナム CN 中国 IS アイスランド NE ニジェール YU ユーゴースラヴィア CR コスタ・リカ IT イタリア NL オランダ ZA 南アフリカ共和国 CU キューバ JP 日本 NO ノールウェー ZW ジンパブエ CY キプロス KE ケニア NZ ニュー・ジーランド ZW ジンパブエ C2 チェッコ KG キルギスタン PL ポーランド DE ドイツ KP 北朝鮮 PT ボルトガル	A A A A A A B B B B B B B B B B B B B B	グ首長国連邦 ウィグア・パーブーダ D2 ウィグア・パーブーダ D2 マイブア・パーブーダ E1 ローブ E1 ローブ E1 ローブ E2 ローブ E1 ローブ E2 ローブ E2 ローブ E3 ローブ E4	M 2 E S I R A B D E H M N R W R L E S I R A B D E H M N R W R L E S I R A B D E H M N R W R L E S I R A B D E H M N R W R L E S I R A B D E H M N R W R L E S I R A B D E H M N R W R L E S I R A B D E H M R W R R R R R R R R R R R R R R R R R	K Z LCI LK LL S LTU LUV MAC MCD MG MK MN	カザントン・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・	RSSSSISSTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	ロスシンススシセスチトタトトトタウンロンスンススシセスチャクコニザン・ルラドースメ ダニイン・ルラドースメ ダニイン・メ ダニイン・メ タス ドンル・メンススシセスチャク・トトタウトトタウス・バイン・バイン・バイン・バイン・バイン・バイン・バイン・バイン・バイン・バイン	
BE ペルマナ・ファ	BA ポズニ	ニア・ヘルツェゴビナ GI	B英国	ក្ប	ルクセンブルグ	SN	セネガル	
BE ペルマナ・ファ	B B ANN	\r\ GI	リ クレエタ	LV	フトワイア			
BG フルガリア GM ガンピア MD モルドヴァ TJ タジキスタン GN ギニア GN ギニア MG マダガスカル TM トルクメニスタン BR ブラジル GR ギリシャ MK マケドニア旧ューゴスラヴィア TR トルニメニスタン TR トルニグンド・トバゴ TT トリニダッド・トバゴ TT クジデニア ML マリ TT カクラライナ UA ウクライナ UA ウクライナ UA ウクライナ US 米国 CI コートジボアール IL イスラエル MX メキシコ UZ ウズベキスタン CN 中国 IS アイスランド NE ニジェール YU ユーデンタ IN インド NE ニジェール YU ユーデンカナスラ で CY キプロス KE ケニア NZ ニュー・ジーランド CY 北朝鮮 PT ボルトガル KP 北朝鮮 PT ボルトガル	BE ~~~	GI GI	E クルシア	MA	モロッコ	TD	チャード	
BG フルガリア GM ガンピア MD モルドヴァ TJ タジキスタン GN ギニア GN ギニア MG マダガスカル TM トルクメニスタン BR ブラジル GR ギリシャ MK マケドニア旧ューゴスラヴィア TR トルニメニスタン TR トルニグンド・トバゴ TT トリニダッド・トバゴ TT クジデニア ML マリ TT カクラライナ UA ウクライナ UA ウクライナ UA ウクライナ US 米国 CI コートジボアール IL イスラエル MX メキシコ UZ ウズベキスタン CN 中国 IS アイスランド NE ニジェール YU ユーデンタ IN インド NE ニジェール YU ユーデンカナスラ で CY キプロス KE ケニア NZ ニュー・ジーランド CY 北朝鮮 PT ボルトガル KP 北朝鮮 PT ボルトガル	BF ブルキ	デナ・ファソ GI	ゴーナ	MC	モナコ	TG	トーゴー	
B J ペナン GN ギニア MG マダガスカル TM トルクメニスタン B Y ペラルーシ GW ギニア・ピサオ 共和国 TT トリニダッド・トパゴ T C タンザニア ML マリ T C タンザニア ML マリ T C タンザニア ML マリ T C タンザニア UG ウガンダ CG コンゴー ID インドネシア MR モーリタニア UG ウガンダ CH スイス IE アイルランド MW マラウイ US 米国 US 米国 US 米国 US スキン C I コートジボアール IL イスラエル MX メキシコ UZ ウズベキスタン C I カメルーン IN インド MZ モザンピーク VN ヴェトナム CN 中国 IS アイスランド NE ニジェール YU ユーゴースラヴィア CR コスタ・リカ IT イタリア NL オランダ Z M 南アフリカ共和国 C マ キプロス KE ケニア NZ ニュー・ジーランド C チェッコ K G キルギスタン P T ポルトガル	BG フルカ	プリア GM	イ ガンピア	MD	モルドヴァ	ΤJ	タジキスタン	
BR フラジル GR ギリシャ MK マケドニア旧ユーゴスラヴィア TR トルコ	BJ ペナン		ν ギニア	MG	マダガスカル	TM	トルクメニスタン	
BY ペラルーシ GW ギニア・ビサオ 共和国 TT トリニダッド・トバゴ CA カナダ HR クロアチア ML マリ TZ タンザニア UA ウクライ UA ウクライトスイス IE アイルシンド MW マラウイ US 米国 CI コートジボアール IL イスラエル MX メキシコ U2 ウズベキスタン CM 中国 IS アイスランド NE ニジェール YU ユーゴースラヴィア CR コスタ・リカ IT イタリア NL オラング ZA 南アフリカ共和国 CY キゴロス KE ケニア NZ ニュー・ジーランド CY キブロス KE ケニア NZ ニュー・ジーランド DE ドイツ KP 北朝鮮 PT ボルトガル	BR ブラシ		R ギリシャ	MK	マケドニア旧ユーゴスラヴィア	TR	トルコ	
CA カナダ CF 中央アフリカ CG コンゴー CH スイス CH スイス CH スイス CH スイス CH スイス CH スイス CM カメルーン CM カメルーン CN 中国 CR コスタ・リカ CR カーアフリカ共和国 CR コスタ・レ CR コスタ と CR コス と CR コスタ と CR コス と CR			N ギニア・ビサオ		共和国			f
CF 中央アフリカ HU ハンガリー MN モンゴル UA ウクライナ CG コンゴー ID インドネシア MR モーリタニア US カゴンダ CH スイス IE アイルランド MW マラウイ US 米国 CM カメルーン IN インド MZ キザンピーク VN ヴェトナム CN 中国 IS アイスランド NE ニジェール YU ユーゴースラヴィア CR コスタ・リカ IT イタリア NL オランダ ZA 南アフリカ共和国 CU キューバ JP 日本 NO ノールウェー ZW ジンパブエ CY キプロス KE ケニア NZ ニュー・・ジーランド ZW ジンパブエ CE チェッコ KG キルギスタン PL ポーランド PT ボルトガル	CA カナタ	r Hi	R クロアチア	ML		ΤZ	タンザニア	
CH スイス IE アイルランド MW マラウイ US 米国 CI コートジボアール IL イスラエル MX メキシコ U2 ウズベキスタン CM カメルーン IN インド MZ モザンピーク VN ヴェトナム CN 中国 IS アイスランド NE ニジェール YU ユーゴースラヴィア CR コスタ・リカ IT イタリア NL オランダ ZA 南アフリカ共和国 CU キューバ JP 日本 NO ノールウェー ZW ジンパブエ CY キプロス KE ケニア NZ ニュー・ジーランド ZW ジンパブエ C2 チェッコ KG キルギスタン PL ポーランド DE ドイツ KP 北朝鮮 PT ボルトガル	トレストリング CF 中央ア	'フリカ HU	J ハンガリー			ŪĀ	ウクライナ	
CH スイス IE アイルランド MW マラウイ US 米国 CI コートジボアール IL イスラエル MX メキシコ U2 ウズベキスタン CM カメルーン IN インド MZ モザンピーク VN ヴェトナム CN 中国 IS アイスランド NE ニジェール YU ユーゴースラヴィア CR コスタ・リカ IT イタリア NL オランダ ZA 南アフリカ共和国 CU キューバ JP 日本 NO ノールウェー ZW ジンパブエ CY キプロス KE ケニア NZ ニュー・ジーランド ZW ジンパブエ C2 チェッコ KG キルギスタン PL ポーランド DE ドイツ KP 北朝鮮 PT ボルトガル	CG コンコ	f— 1 I	D インドネシア	MR	モーリタニア			
CI コートジボアール IL イスラエル MX メキシコ UZ ウズベキスタン CM カメルーン IN インド MZ モザンピーク VN ヴェトナム CN 中国 IS アイスランド NE ニジェール YU ユーゴースラヴィア CR コスタ・リカ IT イタリア NL オランダ ZA 南アフリカ共和国 CU キューバ JP 日本 NO ノールウェー ZW ジンパブエ CY キプロス KE ケニア NZ ニュー・ジーランド CZ チェッコ KG キルギスタン PL ポーランド DE ドイツ KP 北朝鮮 PT ポルトガル	CH スイス	, II	Ε アイルランド	MW	マラウイ			
CR コスタ・リカ IT イタリア NL オランダ ZA 南アフリカ共和国 CU キューバ JP 日本 NO ノールウェー ZW ジンパブエ CY キプロス KE ケニア NZ ニュー・ジーランド CZ チェッコ KG キルギスタン PL ポーランド DE ドイツ KP 北朝鮮 PT ポルトガル		・ジボアール []	し イスラエル	MX	メキシコ		ウズベキスタン	
CR コスタ・リカ IT イタリア NL オランダ ZA 南アフリカ共和国 CU キューバ JP 日本 NO ノールウェー ZW ジンパブエ CY キプロス KE ケニア NZ ニュー・ジーランド CZ チェッコ KG キルギスタン PL ポーランド DE ドイツ KP 北朝鮮 PT ポルトガル	CM カメル	<i>ーン</i> 11	V インド	ΜZ	モザンピーク	VN	ヴェトナム	
CR コスタ・リカ IT イタリア NL オランダ ZA 南アフリカ共和国 CU キューバ JP 日本 NO ノールウェー ZW ジンパブエ CY キプロス KE ケニア NZ ニュー・ジーランド CZ チェッコ KG キルギスタン PL ポーランド DE ドイツ KP 北朝鮮 PT ポルトガル	CN 中国	I 5	S アイスランド	NE	ニジェール			
CU キューバ JP 日本 NO ノールウェー ZW ジンパブエ CY キプロス KE ケニア NZ ニュー・ジーランド CZ チェッコ KG キルギスタン PL ポーランド DE ドイツ KP 北朝鮮 PT ポルトガル		7・リカ 11	Γ イタリア	NL	オランダ			
CY キプロス KE ケニア NZ ニュー・ジーランド C2 チェッコ KG キルギスタン PL ポーランド DE ドイツ KP 北朝鮮 PT ポルトガル		-バ 」 ;	P 日本			žw	ジンパブエ	
CZ チェッコ KG キルギスタン PL ポーランド DE ドイツ KP 北朝鮮 PT ポルトガル	L CY キプロ	ر X K	E ケニア		ニュー・ジーランド			
DE Fイツ KP 北朝鮮 PT ポルトガル	CZ チェッ			PI.	ポーランド			
	DE ドイツ	' Ki	P 北朝鮮	PΤ	ポルトガル			
	L							

明 細 書

キノリン誘導体およびキナゾリン誘導体

発明の背景

発明の分野

本発明は、抗腫瘍効果を有するキノリン誘導体およびキナゾリン誘導体に関し、 更に詳細には、腫瘍、糖尿病性網膜症、慢性関節リウマチ、乾癬、アテローム性 動脈硬化症、カポジ肉腫等の疾患の治療に有効なキノリン誘導体およびキナゾリ ン誘導体に関する。

背景技術

WO97/17329号公報には、抗腫瘍効果を有するキノリン誘導体およびキナゾリン誘導体が記載されている。しかし、WO97/17329号公報には、本発明による化合物はもちろんのこと、細胞形態変化への影響は開示されていない。

発明の概要

本発明者らは、キノリン誘導体およびキナゾリン誘導体の一群が、抗腫瘍効果 を有するのみならず、細胞形態への影響が小さいことを見い出した。細胞形態の 巨大化作用は組織障害誘発作用とも捉えられる。

本発明は、抗腫瘍活性を有しかつ細胞形態への影響が小さい化合物の提供をその目的とする。

本発明による化合物は、下記式(I)の化合物、またはそれらの薬学上許容される塩もしくは溶媒和物である。

$$R^{5}$$
 R^{6}
 R^{9}
 R^{10}
 R^{11}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{10}
 $R^$

(上記式中、

XおよびZは、それぞれ、CHまたはNを表し、

R'は、水素原子を表し、

R'、R'、R'およびR'は、同一または異なっていてもよく、水素原子、ハロゲン原子、Ciaアルキル基、Ciaアルコキシ基、Ciaアルキルチオ基、ニトロ基、またはアミノ基を表し、但し、R'、R'、R'およびR'総てが水素原子を表すことはなく、

R'およびR"は、同一または異なっていてもよく、水素原子、C₁₂アルキル基、またはC₁₂アルキルカルボニル基を表し、C₁₂アルキル基またはC₁₂アルキルカルボニル基のアルキル部分は、ハロゲン原子、C₁₂アルコキシ基、アミノ基(アミ

ノ基はCuアルコキシ基により置換されていてもよいCuアルキル基により置換されていてもよい)、または飽和または不飽和の3~7員炭素環式基または複素環式基により置換されていてもよく、

R"は、 C_{14} アルキル基、 C_{14} アルケニル基、 C_{14} アルキニル基(C_{14} アルキル基、 C_{14} アルケニル基および C_{14} アルキニル基は、それぞれ、ハロゲン原子または C_{14} アルコキシ基により置換されていてもよい)、またはR"-(CH_1) n-(nは $0\sim4$ の整数を表し、R"は飽和または不飽和の $3\sim7$ 員炭素環式基または複素環式基を表わし、この炭素環式基および複素環式基はハロゲン原子、 C_{14} アルキル基または C_{14} アルコキシ基により置換されていてもよく、また、他の飽和または不飽和の $3\sim7$ 員炭素環または複素環と縮合した二環性であってもよい)を表す)

本発明による化合物は、腫瘍、糖尿病性網膜症、慢性関節リウマチ、乾癬、ア テローム性動脈硬化症、カポジ肉腫、固形癌等の治療に有用である。

発明の具体的説明

化合物

本明細書において、基または基の一部としての「 C_{14} アルキル」および「 C_{14} アルコキシ」という語は、基が直鎖または分枝鎖の炭素数 $1 \sim 6$ 、好ましくは $1 \sim 4$ 、のアルキル基およびアルコキシ基を意味する。

本明細書において、基または基の一部としての「C14アルケニル」および「C,4アルキニル」という語は、基が直鎖または分枝鎖の炭素数2~6、好ましくは2~4、のアルケニル基およびアルキニル基を意味する。

 C_{16} アルキルの例としては、メチル、エチル、n - プロピル、イソプロピル、n - ブチル、i - ブチル、s - ブチル、t - ブチル、n - ペンチル、n - ヘキシルが挙げられる。

 C_{14} アルコキシの例としては、メトキシ、エトキシ、n - プロポキシ、i - プロポキシ、i - プトキシ、i - ブトキシ、i - ブトキシ・i - ブトキ

C₁₄アルケニルの例としては、アリル基、ブテニル基、ペンテニル基、ヘキセニル基が挙げられる。

C₂₄アルキニルの例としては、2-プロピニル基、ブチニル基、ペンチニル基、 ヘキシニル基が挙げられる。

ハロゲン原子とは、フッ素原子、塩素原子、臭素原子、またはヨウ素原子を意味する。

飽和または不飽和の $3\sim7$ 員炭素環または複素環は、好ましくは、 $5\sim7$ 員、 更に好ましくは、5または6員、の飽和または不飽和の炭素環または複素環であることができる。

飽和または不飽和の3~7員炭素環式基の例としては、フェニル基、シクロへ プチル基、シクロヘキシル基、シクロペンチル基が挙げられる。

飽和または不飽和の3~7員複素環は、酸素原子、窒素原子、および硫黄原子から選択される異種原子を一個以上含む。ここで、異種原子とは、酸素原子、窒素原子、および硫黄原子を意味する。飽和または不飽和の3~7員複素環式基の例としては、ピリジル基、ピペリジノ基、ピペラジノ基、モルホリノ基、イミダゾリル基、トリアゾリル基、テトラゾリル基、オキサゾリル基、チアゾリル基、ピロリジニル基、ピラゾリル基が挙げられる。

R"およびR"が表すことがある飽和または不飽和の複素環式基は他の飽和または不飽和の複素環と縮合して二環を形成していてもよく、この様な縮合環式基としては、ナフチル基、インダニル基、キノリル基、キナゾリニル基が挙げられる。

R'は、好ましくは、水素原子を表す。

R'およびR'は、好ましくは、置換されていてもよいC₁₄アルコキシ基を表す。 R'、R'およびR'が表すことができるC₁₄アルキル基、C₁₄アルコキシ基、C₁₄アルケニル基およびC₁₄アルキニル基は、基R"-(S)m-により置換されていてもよい。

R"が表すことができる炭素環式基および複素環式基は、好ましくは、飽和または不飽和の5または6員炭素環式基または複素環式基を表す。炭素環式基は、より好ましくは、7ェニル基を表す。複素環式基は、より好ましくは、1~4個の窒素原子を含む飽和または不飽和の5員複素環式基、あるいは窒素原子および酸素原子から選択される1~2個の異種原子を含む飽和または不飽和の6員複素環式基(好ましくは、ピリジル)を表す。6員複素環式基を構成する異種原子は、

より具体的には、1個の窒素原子および1個の酸素原子であるか、あるいは1または2個の窒素原子であることができる。

mが0のとき-(S) m-は結合を表す。

R'、R'およびR'が表すことができる置換された C_{14} アルコキシ基は、好ましくは、基R''- (CH_{1}) p-O- (R''は、ハロゲン原子、水酸基、 C_{14} アルコキシ基、 C_{14} アルコキシカルボニル基、Pミノ基(このPミノ基の1または2の水素原子は、それぞれ、 C_{14} アルキル基(この C_{14} アルキル基は水酸基または C_{14} アルコキシ基により置換されていてもよい)により置換されていてもよい)、基R'' R''N-C (=O) -O- (R''およびR''は式(I) で定義された内容と同義である)、または基R''- (S) M- (R''は式(I) で定義された内容と同義である)を表し、Pは1~6、好ましくは1~4、より好ましくは1または2、特に1、の整数を表す)を表す。

式(I)の化合物の好ましい群としては、

R'が水素原子を表し、R'およびR'が非置換C...アルコキシ基(好ましくはメトキシ基)を表す化合物、

R'が水素原子を表し、R'が置換された C_{\square} アルコキシ基(好ましくは基R''-($CH_{"}$)p-O-)を表し、R'が非置換 C_{\square} アルコキシ基(好ましくはメトキシ基)を表す化合物、

R'が水素原子を表し、R'が非置換 C_{11} アルコキシ基(好ましくはメトキシ基)を表し、R'が置換された C_{11} アルコキシ基(好ましくは基R''-(CH_1)p-O-)を表す化合物、

が挙げられる。

式(I)の化合物の好ましい群としては、

R'、R'、R'およびR'の少なくとも1つがハロゲン原子(好ましくは、塩素原子またはフッ素原子)を表す化合物、

R'、R'、R'およびR'の少なくとも1つがC1.1アルキル基を表す化合物、

R'、R'、R'およびR'のうち2つがメチル基を表し、残りの2つが水素原子を表す化合物、

R'、R'、R'およびR'の少なくとも1つが二トロ基、アミノ基、Cuアルコキ

シ基、またはC1.アルキルチオ基を表す化合物、

R'、R'およびR'が水素原子を表し、R'がハロゲン原子(更に好ましくは塩素原子またはフッ素原子)を表す化合物、

R'およびR'がC...アルキル基(更に好ましくはメチル基)を表し、R'およびR'が水素原子を表す化合物、

R'およびR'が水素原子を表し、R'およびR'がCユアルキル基(更に好ましくはメチル基)を表す化合物、

R'、R'およびR'が水素原子を表し、R'がCuアルキル基、Cuアルコキシ基、Cuアルキルチオ基、ニトロ基、またはアミノ基を表す化合物、が挙げられる。

R'およびR"において、置換基としての飽和、または不飽和の3~7員炭素環式基または複素環式基は、好ましくは、飽和または不飽和の5または6員炭素環式基または複素環式基を表す。

R'およびR"は、好ましくは、水素原子、メチル基、エチル基、プロピル基、メトキシメチル基、ホルミル基、アセチル基、ベンジル基、またはフェネチル基を表す。

式(1)の化合物の好ましい群としては、

R'、R'およびR"が水素原子を表す化合物、および

R'が水素原子を表し、R'およびR"のいずれかまたは両方が水素原子以外の基を表す化合物

が挙げられる。

R"が表すことができる基R"- (CH₂) n-において、nは好ましくは0~2の整数、更に好ましくは、0 または1 を表す。R"の好ましい例としては、置換されていてもよい飽和または不飽和の6 員炭素環式基(更に好ましくは、フェニル基)および置換されていてもよい飽和または不飽和の6 員複素環式基(更に好ましくは、ピリジル基)が挙げられる。6 員複素環式基を構成する異種原子は、より具体的には、1 個の窒素原子からなるか、あるいは1 個の窒素原子と1 個の酸素原子とからなることができる。

式(I)の化合物の好ましい群としては、XがNまたはCHを表し、ZがCH

を表す化合物が挙げられる。

式(I)の化合物の好ましい群としては、更に、式(Ia)の化合物が挙げられる。

(上記式中、

Xは、CHまたはNを表し、

R"およびR"は、同一または異なっていてもよく、非置換C_{Li}アルコキシ基または基R" - (C H_L) p - O - (R"は、N D + D

R"、R"、R"およびR"は、同一または異なっていてもよく、水素原子、ハロゲン原子、Cmアルキル基、Cmアルコキシ基、Cmアルキルチオ基、 ニトロ基、またはアミノ基を表し、但し、R"、R"、R"およびR"総てが水素原子を表すことはなく、

R"およびR"は、同一または異なっていてもよく、水素原子、C₁₄アルキル基、またはC₁₄アルキルカルボニル基を表し、C₁₄アルキル基またはC₁₄アルキルカルボニル基のアルキル部分は、ハロゲン原子、C₁₄アルコキシ基、アミノ基(アミ

ノ基はCi,アルコキシ基により置換されていてもよいCi,アルキル基により置換されていてもよい)、または飽和または不飽和の3~7員炭素環式基または複素環式基により置換されていてもよく、

R"は、C₁₄アルキル基、C₁₄アルケニル基、C₁₄アルキニル基(C₁₄アルキル基、C₁₄アルケニル基およびC₁₄アルキニル基は、それぞれ、ハロゲン原子またはC₁₄アルコキシ基により置換されていてもよい)またはR"-(CH₁) q-(qは0~4の整数を表し、R"は飽和または不飽和の6員炭素環式基または複素環式基を表し、この炭素環式基および複素環式基はハロゲン原子、C₁₄アルキル基またはC₁₄アルコキシ基により置換されていてもよく、また、他の飽和または不飽和の5または6員炭素環または複素環と縮合した二環性であってもよい)を表す)

R"およびR"は、いずれも非置換C14アルコキシ基(好ましくはメトキシ基)を表すことができる。

R"およびR"は、いずれか一方が非置換 C_{14} アルコキシ基(好ましくはメトキシ基)を表し、他方が基R"- (CH_{1}) p-O-を表すことができる。

基R"- (CH.) p-O-において、<math>pは好ましくは $1\sim4$ 、より好ましくは1または2、特に好ましくは1、を表す。

式(Ia)の化合物の好ましい群としては、

R"、R"、R"およびR"の少なくとも1つがハロゲン原子(好ましくは、塩素原子またはフッ素原子)を表す化合物、

R"、R"、R"およびR"の少なくとも1つがC...アルキル基を表す化合物、

R"、R"、R"およびR"のうち2つがメチル基を表し、残りの2つが水素原子を表す化合物、

R"、R"、R"およびR"の少なくとも1つが二トロ基、アミノ基、Ciaアルコキシ基、またはCiaアルキルチオ基を表す化合物、

R"、R"およびR"が水素原子を表し、R"がハロゲン原子(更に好ましくは塩素原子またはフッ素原子)を表す化合物、

R"およびR"がC…アルキル基(更に好ましくはメチル基)を表し、R"およびR"が水素原子を表す化合物、

R"およびR"が水素原子を表し、R"およびR"がC1.4アルキル基(更に 好ましくはメチル基)を表す化合物、

R"、R"およびR"が水素原子を表し、R"がC₁₁アルキル基、C₁₁アルコキシ基、C₁₄アルキルチオ基、ニトロ基、またはアミノ基を表す化合物、が挙げられる。

式(I a)の化合物の好ましい群としては、R"およびR"が水素原子を表す化合物が挙げられる。

式(Ia)の化合物の好ましい群としては、また、R"およびR"のいずれかまたは両方が水素原子以外の基を表す化合物が挙げられる。

R"が表すことができるR"- (CH,) q-において、qは好ましくは0~2 の整数、更に好ましくは、0または1を表す。R"の好ましい例としては、置換されていてもよいフェニル基および置換されていてもよい飽和または不飽和の6 員複素環式基(更に好ましくは、ピリジル基)が挙げられる。6 員複素環式基を構成する異種原子は、より具体的には、1個の窒素原子からなるか、あるいは1個の窒素原子と1個の酸素原子とからなることができる。R"が表すことがある飽和または不飽和の6 員炭素環式基または複素環式基は、好ましくは、他の飽和または不飽和の6 員炭素環または複素環と縮合した二環性であってもよい。

式(Ia)の化合物の好ましい群としては、

XがCHまたはNを表し、

R"およびR"が非置換Ciaアルコキシ基を表し、

R"、R"およびR"が水素原子を表し、

R³がハロゲン原子、C₁,アルキル基、C₁,アルコキシ基、またはニトロ基を表し、

R"およびR"が水素原子を表し、

R"が、C₁₄アルキル基、C₂₄アルケニル基、C₂₄アルキニル基(C₁₄アルキル 基、C₂₄アルケニル基およびC₂₆アルキニル基は、それぞれ、ハロゲン原子また はC₁₄アルコキシ基により置換されていてもよい)または-(CH₂) q-R"(q は0または1の整数を表し、R"はハロゲン原子、C₁₄アルキル基またはC₁₄アル コキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル 基を表す)を表す化合物、

XがCHまたはNを表し、

R"およびR"が非置換Cuアルコキシ基を表し、

R"、R"およびR"が水素原子を表し、

R"がハロゲン原子、Cuアルキル基、Cuアルコキシ基、またはニトロ基を表し、

R"およびR"のいずれかまたは両方が水素原子以外の基を表し、

R"が、 C_{14} アルキル基、 C_{24} アルケニル基、 C_{24} アルキニル基(C_{14} アルキル 基、 C_{14} アルケニル基および C_{24} アルキニル基は、それぞれ、ハロゲン原子または C_{14} アルコキシ基により置換されていてもよい)または $-(CH_1)$ q-R"(q は 0 または 1 の整数を表し、R"はハロゲン原子、 C_{14} アルキル基または C_{14} アルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す化合物、

XがCHまたはNを表し、

R"およびR"が非置換CIIアルコキシ基を表し、

R"、R"およびR"が水素原子を表し、

R"がハロゲン原子、C_{1.1}アルキル基、C_{1.1}アルコキシ基、またはニトロ基を表し、

R"が水素原子を表し、

R"が水素原子以外の基を表し、

R"が、 C_{14} アルキル基、 C_{24} アルケニル基、 C_{24} アルキニル基(C_{14} アルキル基、 C_{24} アルケニル基および C_{24} アルキニル基は、それぞれ、ハロゲン原子または C_{14} アルコキシ基により置換されていてもよい)または $-(CH_1)$ q-R"(q は 0 または 1 の整数を表し、R"はハロゲン原子、 C_{14} アルキル基または C_{14} アルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す化合物、

XがCHまたはNを表し、

R"およびR"のいずれか一方が非置換C」アルコキシ基を表し、他方が基R" - (CH₂) p - O - を表し、好ましくは、R"が非置換C」アルコキシ基を表し、

R"が基R"-(CH₂)p-O-を表し、

R"、R"およびR"が水素原子を表し、

R*がハロゲン原子、Ciiアルキル基、Ciiアルコキシ基、または二トロ基を表し、

R"およびR"が水素原子を表し、

R"が、CI。アルキル基、CI。アルケニル基、CI。アルキニル基(CI。アルキル基、CI。アルケニル基およびCI。アルキニル基は、それぞれ、ハロゲン原子またはCIIアルコキシ基により置換されていてもよい)または-(CHi)q-R"(qは0または1の整数を表し、R"はハロゲン原子、CIIアルキル基またはCIIアルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す化合物、

XがCHまたはNを表し、

R"およびR"のいずれか一方が非置換C…アルコキシ基を表し、他方が基R" - (CH.) p-O-を表し、好ましくは、R"が非置換C…アルコキシ基を表し、R"が基R" - (CH.) p-O-を表し、

R"、R"およびR"が水素原子を表し、

R³がハロゲン原子、C₁₄アルキル基、C₁₄アルコキシ基、またはニトロ基を表し、

R"およびR"のいずれかまたは両方が水素原子以外の基を表し、

R"が、C₁₄アルキル基、C₂₄アルケニル基、C₂₄アルキニル基(C₁₄アルキル基、C₂₄アルケニル基およびC₂₄アルキニル基は、それぞれ、ハロゲン原子またはC₁₄アルコキシ基により置換されていてもよい)または-(CH₂)q-R"(qは0または1の整数を表し、R"はハロゲン原子、C₁₄アルキル基またはC₁₄アルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す化合物、

XがCHまたはNを表し、

R"およびR"のいずれか一方が非置換 C_{\square} アルコキシ基を表し、他方が基R" $-(CH_{!})$ p-O-を表し、好ましくは、R"が非置換 C_{\square} アルコキシ基を表し、R"が基R" $-(CH_{!})$ p-O-を表し、

R"、R"およびR"が水素原子を表し、

R⁴がハロゲン原子、C_{II}アルキル基、C_{II}アルコキシ基、またはニトロ基を表し、

R"が水素原子を表し、

R"が水素原子以外の基を表し、

R"が、CIAアルキル基、CIAアルケニル基、CIAアルキニル基(CIAアルキル基、CIAアルケニル基およびCIAアルキニル基は、それぞれ、ハロゲン原子またはCIAアルコキシ基により置換されていてもよい)または-(CHA) q-R"(qは0または1の整数を表し、R"はハロゲン原子、CIAアルキル基またはCIAアルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す化合物、

XがCHまたはNを表し、

R"およびR"のいずれか一方が非置換C山アルコキシ基を表し、他方が基R" - (CH₂) p-O-を表し、好ましくは、R"が非置換C山アルコキシ基を表し、R"が基R" - (CH₂) p-O-を表し、

R"およびR"が水素原子を表し、

R"およびR"がハロゲン原子、C...アルキル基、C...アルコキシ基、またはニトロ基を表し、

R"およびR"が水素原子を表し、

R*が、Ciaアルキル基、Ciaアルケニル基、Ciaアルキニル基(Ciaアルキル基、Ciaアルケニル基およびCiaアルキニル基は、それぞれ、ハロゲン原子またはCiaアルコキシ基により置換されていてもよい)または-(CHi) q-R"(qは0または1の整数を表し、R"はハロゲン原子、Ciaアルキル基またはCiaアルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す化合物

が挙げられる。

本発明による化合物の好ましい例としては、実施例 $1\sim186$ に記載の化合物が挙げられる。

本発明による化合物の好ましい例としては、また、下記の化合物が挙げられる。

 $N - \{2 - \rho \Box \Box - 4 - [(6, 7 - ジメチル - 4 - キナゾリニル) オキシ]フェニル } - N' - イソプチルウレア、$

 $N-(4-\{[7-(ペンジルオキシ)-6-メトキシ-4-キナゾリニル]オ・キシ}-2-クロロフェニル)-N'-プロピルウレア、$

 $N-(4-\{[6-(ベンジルオキシ)-7-メトキシ-4-キナゾリニル]オキシ}-2-クロロフェニル)-N'-プロピルウレア、$

 $N-(2-DDD-4-\{[7-Xトキシ-6-(3-モルホリノプロポキシ)-4-キナゾリニル]オキシ}フェニル)-N'-プロピルウレア、$

 $N-[2-クロロ-4-({6-メトキシ-7-[2-(1H-1-イミダゾリル) エトキシ]-4-キナゾリニル} オキシ)フェニル]-<math>N'-$ エチルウレア、

 $N-[2-クロロ-4-({6-メトキシ-7-[2-(1H-1, 2, 3-ドリアゾール-1-イル) エトキシ]-4-キナゾリニル} オキシ)フェニル]-N -エチルウレア、$

 $N-[2-クロロ-4-({6-メトキシ-7-[3-(1H-1, 2, 3-トリアゾール-1-イル) プロポキシ]-4-キナゾリニル} オキシ)フェニル]-N'-エチルウレア、$

 $N-[2-クロロ-4-({6-メトキシ-7-[2-(4-メチルピペラジノ)}$ エトキシ]-4-キナゾリニル $\}$ オキシ)フェニル]-N'-エチルウレア、

N-(2-クロロ-4-([6-メトキシー7-(2-モルホリノエトキシ)

-4-キナゾリニル]オキシ}フェニル)-N'-エチルウレア、

N-(2-0ロロー4ー $\{[6-メトキシ-7-(3-モルホリノプロポキシ)-4-キナゾリニル]オキシ<math>\}$ フェニル $\}$ -N'-エチルウレア、

 $N-[2-クロロ-4-({6-メトキシ-7-[2-(ジメチルアミノ) エトキシ]-4-キナゾリニル} オキシ)フェニル]-<math>N'-$ エチルウレア、

 $N-[2-クロロ-4-({6-メトキシ-7-[2-(1H-1-イミダゾリル) エトキシ]-4-キナゾリニル} オキシ)フェニル<math>]-N'-プロピルウレア$ 、

 $N-[2-クロロ-4-({6-メトキシ-7-[2-(1H-1, 2, 3-トリアゾール-1-イル) エトキシ]-4-キナゾリニル} オキシ)フェニル]-N 、-プロピルウレア、$

 $N-[2-クロロ-4-({6-メトキシ-7-[3-(1H-1, 2, 3-トリアゾール-1-イル) プロポキシ]-4-キナゾリニル<math>}$ オキシ)フェニル]-N ープロピルウレア、

 $N-(2-DDD-4-\{[6-Xh+2)-7-(3-E)+1)$ -4-+ナゾリニル]オキシ $\{(6-Xh+2)-7-(3-E)+1\}$

 $N-[2-クロロ-4-({6-メトキシ-7-[2-(ジメチルアミノ) エトキシ]-4-キナゾリニル} オキシ)フェニル]-<math>N'-$ プロピルウレア、

 $N-[2-クロロ-4-({6-メトキシ-7-[2-(1H-1-イミダゾリル) エトキシ]-4-キナゾリニル} オキシ)フェニル]-<math>N'-$ ブチルウレア、

 $N-[2-クロロ-4-({6-メトキシ-7-[2-(1H-1, 2, 3-トリアゾール-1-イル) エトキシ]-4-キナゾリニル} オキシ)フェニル]-N'-ブチルウレア、$

 $N-[2-クロロ-4-({6-メトキシ-7-[3-(1H-1, 2, 3-トリアゾール-1-イル) プロポキシ]-4-キナゾリニル} オキシ)フェニル]-N'-ブチルウレア、$

 $N-[2-クロロ-4-({6-メトキシ-7-[2-(4-メチルピペラジノ) エトキシ]-4-キナゾリニル} オキシ)フェニル]-<math>N'-$ ブチルウレア、

 $N-(2-2-1-4-{[6-メトキシ-7-(2-モルホリノエトキシ)-4-キナゾリニル]オキシ}フェニル)-N'-ブチルウレア、$

N-(2-0-4-([6-x++)-7-(3-x++)/2-x++))-4-+ナゾリニル]オキシN'-7

51. N-(2-クロロ-4-{[6-メトキシ-7-(2-モルホリノエトキシ)

- 15 -

- -4-キノリル] オキシ $\}$ フェニル) N ' (2, 4-ジフルオロフェニル) ウレア、
- $62. N-\{2-DDD-4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ] フェニル} -N'-プロピルウレア、$
- 76. $N \{2 D 4 [(6, 7 ジメトキシ-4 キナゾリニル) オキシ[フェニル] N' エチルウレア、$

- 135. N-(2-クロロ-4-{ $[6-メトキシ-7-(3-ピペリジノプロポキシ)-4-キナゾリニル|オキシ}$ フェニル)-N'-プロピルウレア、

- 144. N-(2-2-1)00-4-{[6-x++2-7-(2-1)]144. N-(2-1)144. N-(2-1)14
- 145. $N-[2-DDD-4-(6-\lambda)+2-7-\{[2-(1H-1, 2, 2)]\}$
- $146. N-[2-クロロ-4-(7-\{[2-(1H-1-イミダソリル) エトキシ]-6-メトキシ-4-キノリル} オキシ)フェニル]-N'-プロピルウレア、$
- 148. N-[2-クロロー4-(6-メトキシ-7-{[2-(4-メチルピペラジノ) エトキシ] -4-キノリル} オキシ) フェニル] -N' -プロピルウレア、
- 149. N-(2-クロロ-4-{[7-(2-ヒドロキシエトキシ)-6-メトキシ-4-キノリル]オキシ}フェニル)-N'-プロピルウレア、

- 151. N-(2-クロロー4-{[6-メトキシ-7-(3-モルホリノプロポキシ)-4-キノリル]オキシ} フェニル)-N'-プロピルウレア、
- 152. $N-[2-クロロ-4-(6-メトキシ-7-{[3-(4-メチルピペラジノ) プロポキシ]-4-キノリル} オキシ) フェニル<math>]-N'-プロピルウレア、$
- 153. $N-[2-クロロ-4-(6-メトキシ-7-{[3-(1H-1, 2, 3-トリアゾールー1-イル) プロポキシ]-4-キノリル} オキシ) フェニル] <math>-N$ -プロピルウレア、
- 157. $N-\{2-DDD-4-[(7-\{3-[(2-EFD+2x+x))(x+x))]$ (メチル) アミノ]プロポキシ $\}-6-$ メトキシー4-キノリル) オキシ]フェニル $\}-N'-$ プロピルウレア、
- $159. N-\{2-000-4-[(6-3)++2-7-\{[5-(1H-1, 2, 3-1)] N-(2-0)] 4-+2] N-(2-0) N-(2$
- $160. N-[2-クロロ-4-(7-\{[4-(1H-1-イミダゾリル) ブトキシ]-6-メトキシー4-キノリル<math>\}$ オキシ) フェニル]-N'-プロピルウレア、
- 162. $N-(2-DDD-4-\{[6-X++v-7-(2-E)+v])$ N-(2-E) N-(2
- 163. N-(2-クロロ-4-{[6-メトキシ-7-(3-モルホリノプロポキシ)-4-キナゾリニル]オキシ} フェニル) -N'-(2, 4-ジフルオロフェニル) ウレア、
- 164. $N-[2-クロロ-4-(6-メトキシ-7-{[3-(4-メチルピペラジノ)プロポキシ]-4-キナゾリニル}オキシ)フェニル<math>]-N'-(2,4-2)$
 - $165. N-\{2-クロロ-4-[(7-\{3-[(2-ヒドロキシエチル)(メチル)アミノ]プロポキシ\}-6-メトキシ-4-キナゾリニル)オキシ]フェニル<math>\}-N$ -(2,4-ジフルオロフェニル)ウレア、

- 17 -

168. $N-(2-\rho \Box \Box -4-\{[6-)++>-7-(3-++)+]/2\Box$ ポキシ) -4-+ (100) -N'-(2,4-) (20) ポキシ) カレア、

169. $N-(2-2-10-4-\{[6-3]++2-7-(3-2]+2) + (2, 4-2) + ($

170. $N-[2-クロロ-4-(6-メトキシ-7-\{[2-(1H-1, 2, 3-$ トリアゾール-1-イル) エトキシ]-4-キノリル} オキシ) フェニル]-N'-(2, 4-ジフルオロフェニル) ウレア、

184. $N-(2-0-4-4-\{[6-メトキシ-7-(3-ピペリジノプロポキシ)-4-キナゾリニル] オキシ} フェニル) <math>-N'-メチルウレア$

185. N-(2-クロロ-4-{[6-メトキシ-7-(3-ピペリジノプロポキシ)-4-キナゾリニル] オキシ} フェニル)-N'-エチルウレア、および 186. N-(2-クロロ-4-{[6-メトキシ-7-(4-ピリジルメトキシ)-4-キノリル] オキシ} フェニル)-N'-(2, 4-ジフルオロフェニル)ウレア。

本発明による化合物の非常に好ましい例としては、下記の化合物が挙げられる

62. $N-\{2-クロロ-4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ] フェニル<math>\}-N'-$ プロピルウレア、

142. N-(2-クロロー4-{[6-メトキシ-7-(3-ピリジルメトキシ)-4-キノリル]オキシ} フェニル)-N'-プロピルウレア、および 169. N-(2-クロロー4-{[6-メトキシ-7-(3-ピリジルメトキシ)-4-キノリル]オキシ} フェニル)-N'-(2, 4-ジフルオロフェニル)ウレア。

本発明による化合物はその薬学上許容される塩とすることができる。好ましい例としてはナトリウム塩、カリウム塩またはカルシウム塩のようなアルカリ金属またはアルカリ土類金属の塩、フッ化水素酸塩、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩のようなハロゲン化水素酸塩、硝酸塩、過塩素酸塩、硫酸塩、リン酸塩

などの無機酸塩、メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩のような低級アルキルスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩のようなアリールスルホン酸塩、フマル酸塩、コハク酸塩、クエン酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩、酢酸、リンゴ酸、乳酸、アスコルビン酸のような有機酸塩、およびグリシン塩、フェニルアラニン塩、グルタミン酸塩、アスパラギン酸塩のようなアミノ酸塩などが挙げられる。

本発明による化合物は、また、溶媒和物(例えば、水和物)とすることができる。

化合物の製造

本発明の化合物は、例えば、スキーム1およびスキーム2にしたがって製造できる。

スキーム1

本発明による化合物の合成に必要な出発物質は市販されているか、または常法によって製造できる。例えば、4-クロロキノリン誘導体は、Org. Synth. Col. Vol. 3, 272 (1955)、Acta Chim. Hung., 112, 241 (1983)またはWO98/47873に記載されるような慣用手段によって合成することができる。また、4-クロロキナゾリン誘導体は、J. Am. Chem. Soc., 68, 1299 (1946)、J. Am. Chem. Soc., 68, 1305 (1946)に記載されるような慣用手段によって合成することができる。

あるいは、4-クロロキナゾリン誘導体は、まず、(1) 安息香酸エステルをホルムアミドと反応させてキナゾロン誘導体を得(製造例34参照)、次いで(2)トルエンまたはスルホランを溶媒として使用してオキシ塩化リンの存在下4-キナゾロン誘導体を加熱する(製造例35および36参照)ことにより製造できる。キナゾロン誘導体は安息香酸エステル、ナトリウムメトキシド、ホルムアミド、およびDMFやメタノールのような溶媒の存在下で合成するのが一般的である。

- (1) においては安息香酸エステルとホルムアルデヒドのみの存在下で反応が進行するため、使用原料が少ない点で有利である。4-キナゾロン誘導体のハロゲン化反応はキナゾロン誘導体とオキシ塩化リンとを加熱することにより実施するのが一般的である。この場合、キナゾリン誘導体の反応性がよいために溶媒の影響でキナゾリン誘導体が原料に戻ってしまい、反応が完結しないことが多かった。
- (2) においてはトルエンまたはスルホランの存在下で反応が完結するため、収 量増加の点から有利である。

次に適当な溶媒中または無溶媒中において、ニトロフェノールに対し4-クロロキノリン誘導体あるいは相当するキナゾリン誘導体を作用させ、4-(ニトロフェノキシ)キノリン誘導体あるいは相当するキナゾリン誘導体を合成した後、適当な溶媒(例えばN, N-ジメチルホルムアミド)中、触媒(例えば水酸化パラジウム-炭素、パラジウム-炭素)の存在下、水素雰囲気下において撹拌すると4-(アミノフェノキシ)キノリン誘導体あるいは相当するキナゾリン誘導体が得られる。あるいはまた、アミノフェノールに対し塩基(例えば水素化ナトリウム)の存在下、4-クロロキノリン誘導体あるいは相当するキナゾリン誘導体を作用させると4-(アミノフェノキシ)キノリン誘導体あるいは相当するキナゾリン誘導体が得られる。

あるいは、4- (アミノフェノキシ) キノリン誘導体あるいは相当するキナゾリン誘導体は、アミノフェノールを水酸化ナトリウム水溶液に溶解し、有機溶媒に溶解した4-クロロキナゾリン誘導体あるいは相当するキナゾリン誘導体と相間移動触媒存在下、または触媒なしで2層系反応させることによって製造できる(製造例37および38参照)。この反応では未反応のフェノール等および4-クロロキナゾリンの分解物は水層に残り、生成した目的物は有機層にあり、得られた有機層は目的物しか存在しないため後処理が簡便である点で有利である。また、副生成物であるN-アルキルアミノフェノキシーキナゾリンを抑制することが出来る点でも有利である。

得られた4-(アミノフェノキシ)キノリン誘導体あるいは相当するキナゾリン誘導体を塩基の存在下、酸クロリドあるいは酸無水物と反応させ、次いで、水素化リチウムアルミニウム等により還元することにより、R'に置換基を導入することができる(工程1A)。

あるいは、得られた4-(アミノフェノキシ)キノリン誘導体あるいは相当するキナゾリン誘導体をアルデヒドあるいはケトンと反応させ、イミン形成後にシアノ水素化ホウ素ナトリウム等により還元することにより、R'に置換基を導入することもできる(工程1B)。

R"に置換基が導入された誘導体を、公知の方法にしたがってイソシアナート誘導体(O=C=N-R")と作用させ(工程 2)、塩基(例えば、水素化ナトリウム)の存在下適当なアルキル化剤(R $^{\circ}$ H a 1) を作用させる(工程 3) ことにより式(I) の化合物を製造できる。

R'およびR"は、また、R'および/またはR"が水素原子であるウレア誘導体に塩基(例えば、水素化ナトリウム)存在下、適当なアルキル化剤(R'Hal、R"Hal)を作用させることによっても導入できる(工程5および7)。

R'および/またはR"が水素原子であるウレア誘導体は、スキーム1において得られた $4-(アミノフェノキシ)キノリン誘導体あるいは相当するキナソリン誘導体に、公知の方法に従ってイソシアナート誘導体を作用させるか、あるいは塩基(例えば、トリエチルアミン)の存在下トリホスゲン添加後に適当なアルキルアミン(<math>R"NH_2$ 、R"R"NH)を反応させることにより製造できる(工程4および6)。

キノリン環の7位に特定の置換基を有する誘導体は、例えば、スキーム3に従って製造できる。

<u>スキーム 3</u>

市販の4'-ヒドロキシアセトフェノン誘導体に対し適当な置換基(例えば、ベンジル基)を作用させ、水酸基を保護した後、ニトロ化剤(例えば硝酸-酢酸)を作用させることによりニトロ基を導入できる。

次に、ニトロ基を還元しアミノ基とした後、塩基の存在下、ギ酸エステルを作用させてキノロン環を形成させ、次いで塩素化剤(例えばオキシ塩化リン)を作用させることにより4-クロロキノリン誘導体を製造できる。

アミノフェノールに対し塩基(例えば、水素化ナトリウム)の存在下、得られた4-クロロキノリン誘導体を作用させると4-(アミノフェノキシ)キノリン誘導体を得ることができる。

得られた誘導体に公知の方法に従いイソシアナート誘導体(O=C=N-R")を作用させるか、あるいはトリホスゲン処理後に芳香族アミンまたはアルキルアミン(R"NH,)を作用させることによりウレア部分を合成できる。

次いで、キノリン環上の7位の水酸基の保護基(PG)を除去し、塩基の存在下ハロゲン化アルキル(R"Hal、R"はR"がアルコキシ基であるときのアルキル部分を表す)を作用させることにより、あるいはアルコール誘導体(R"OH)を公知の方法(例えば、光延反応)により作用させることにより、キノリン環の7位にアルコキシ基を有する本願の化合物を製造できる。

置換反応に用いるハロゲン化アルキルは市販されているか、あるいはJ.Am.Che m.Soc.,1945,67,736等に記載の方法に従って製造できる。

置換反応に用いるアルコール誘導体は市販されているか、あるいはJ.Antibiot.(1 993),46(1),177、Ann.Pharm.Fr.1977,35,503等に記載の方法に従って製造できる。

キノリン環の6位に特定の置換基を有する誘導体は、出発物質として3'-ヒ ドロキシアセトフェノン誘導体を用い、スキーム3に従って製造できる。

キナゾリン環の7位に特定の置換基を有する誘導体は、スキーム4に従って製造できる。

スキーム4

2-アミノー安息香酸エステル誘導体は、J.Med.Chem.1977,20,146等に記載の 方法に従って合成した2-ニトロー安息香酸誘導体を塩基(例えば、炭酸カリウム)の存在下、例えばジメチル硫酸によりエステル化した後、ニトロ基を例えば 鉄/酢酸により還元することにより製造できる。

次に得られた化合物を塩基の存在下ホルムアミドと作用させることにより4-キナゾロン環を形成させ、次いで塩素化剤(例えばオキシ塩化リン)を作用させ ることにより4-クロロキナゾリン誘導体を製造できる。

アミノフェノール誘導体に対し塩基(例えば、水素化ナトリウム)の存在下、得られた4-クロロキナゾリン誘導体を作用させると4-(アミノフェノキシ) キナゾリン誘導体を得ることができる。

公知の方法に従い得られた誘導体にイソシアナート誘導体(O=C=N-R")を作用させるか、あるいはトリホスゲン処理後に芳香族アミンまたはアルキルアミン(R"NH₂)を作用させることによりウレア部分を合成できる。

次いで、キナゾリン環上の7位の水酸基の保護基(PG)を除去し、塩基の存在下ハロゲン化アルキル(R"Hal、R"はR"がアルコキシ基であるときのアルキル部分を表す)を作用させることにより、あるいはアルコール誘導体(R"OH)を公知の方法(例えば、光延反応)により作用させることにより、キナゾリン環の7位にアルコキシ基を有する本願の化合物を製造できる。

置換反応に用いるハロゲン化アルキルおよびアルコール誘導体は市販されているか、あるいはスキーム3の説明に記載の文献に従って製造できる。

キナゾリン環の6位に特定の置換基を有する誘導体は、出発物質として3-ヒドロキシベンズアルデヒド誘導体を用い、スキーム4に従って製造できる。

化合物の用途/医薬組成物

本発明による化合物は、インビボにおいて腫瘍増殖抑制作用を有する(薬理試験例4参照)。

本発明による化合物は、また、インピトロにおいて血管内皮細胞をVEGF (Vascular endothelial growth factor)で刺激したときに起こるMAPK (mitogen-activated protein kinase)の活性化を阻害する (薬理試験例1および2参照)。血管内皮細胞をVEGFで刺激すると受容体下流のシグナル伝達系によりMAPKが活

性化され、リン酸化されたMAPKの上昇が認められる (Abedi,H. and Zachary, I., J.Biol.Chem., 272, 15442-15451(1997))。 MAPKの活性化は血管新生における血管内皮細胞の増殖に重要な役割を担うことが知られている (Merenmies, J. et al., Cell Growth & Differ., 83-10(1997);Ferrara, N. and Davis-Smyth, T., Endocr. Rev., 18, 4-25(1997))。 従って本発明による化合物は血管新生抑制作用を有する。

病態部位における血管新生は、主として、腫瘍、糖尿病性網膜症、慢性関節リウマチ、乾癬、アテローム性動脈硬化症、カポジ肉腫のような疾患、並びに固形癌の転移と深く結びついている(Forkman, J. Nature Med. 1: 27-31(1995); Bicknell, R., Harris, A. L. Curr. Opin. Oncol. 8: 60-65(1996))。従って、本発明による化合物は、腫瘍、糖尿病性網膜症、慢性関節リウマチ、乾癬、アテローム性動脈硬化症、カポジ肉腫のような疾患、並びに固形癌の転移の治療に用いることができる。

本発明による化合物は、細胞形態へ与える影響が小さい(薬理試験例3参照)。 従って、本発明による化合物は、生体に投与した場合、安全性に非常に優れている。

本発明によれば、本発明による化合物を含む医薬組成物が提供される。本発明による医薬組成物は腫瘍、糖尿病性網膜症、慢性関節リウマチ、乾癬、アテローム性動脈硬化症、カポジ肉腫のような疾患、並びに固形癌の転移の治療に用いることができる。

本発明によれば、また、本発明による化合物を、薬学上許容される担体と共には乳類に投与することを含んでなる、腫瘍、糖尿病性網膜症、慢性関節リウマチ、乾癬、アテローム性動脈硬化症、およびカポジ肉腫からなる群から選択される疾患の治療法が提供される。

本発明による化合物は、経口および非経口(例えば、静脈内投与、筋肉内投与、 皮下投与、直腸投与、経皮投与)のいずれかの投与経路で、ヒトおよびヒト以外 の動物に投与することができる。従って、本発明による化合物を有効成分とする 医薬組成物は、投与経路に応じた適当な剤型に処方される。

具体的には、経口剤としては、錠剤、カプセル剤、散剤、顆粒剤、シロップ剤などが挙げられ、非経口剤としては、注射剤、坐剤、テープ剤、軟膏剤などが挙げられる。

これらの各種製剤は、通常用いられている賦形剤、崩壊剤、結合剤、滑沢剤、 着色剤、希釈剤などを用いて常法により製造することができる。

賦形剤としては、例えば乳糖、ブドウ糖、コーンスターチ、ソルビット、結晶セルロースなどが、崩壊剤としては例えばデンプン、アルギン酸ナトリウム、ゼラチン末、炭酸カルシウム、クエン酸カルシウム、デキストリンなどが、結合剤としては例えばジメチルセルロース、ポリビニルアルコール、ポリビニルエーテル、メチルセルロース、エチルセルロース、アラビアゴム、ゼラチン、ヒドロキシプロピルセルロース、ポリビニルピロリドンなどが、滑沢剤としては、例えばタルク、ステアリン酸マグネシウム、ポリエチレングリコール、硬化植物油などがそれぞれ挙げられる。

また、上記注射剤は、必要により緩衝剤、pH調整剤、安定化剤、等張化剤、保存剤などを添加して製造することができる。

本発明による医薬組成物中、本発明による化合物の含有量は、その剤型に応じて異なるが、通常全組成物中0.5~50重量%、好ましくは、1~20重量%である。

投与量は患者の年齢、体重、性別、疾患の相違、症状の程度などを考慮して、個々の場合に応じて適宜決定されるが、例えば $0.1\sim100$ mg/kg、好ましくは $1\sim50$ mg/kgの範囲であり、これを1日1回または数回に分けて投与する。

本発明による化合物は他の医薬と組み合わせて投与することができる。投与は、同時に、あるいは経時的にすることができる。例えば、対象疾患が悪性腫瘍の場合、本発明による化合物を標的となる血管の血管内皮細胞に作用させることにより腫瘍を退縮させ、次いで、抗ガン剤を投与することにより腫瘍を効果的に消滅させることができる。抗ガン剤の種類や投与間隔等はガンの種類や患者の状態等に依存して決定できる。悪性腫瘍以外の疾患も同様に治療できる。

本発明によれば、更にまた、本発明による化合物を標的血管の血管内皮細胞と接触させることを含んでなる、標的血管の血管新生を阻害する方法が提供される。 標的血管としては、疾患の原因となる組織(例えば、腫瘍組織、網膜症組織、関節リウマチ組織)への栄養補給に関与する血管が挙げられる。本発明による化合 物と血管内皮細胞との接触は、例えば、全身投与(静脈内投与、経口投与等)、局所投与(経皮投与、関節内投与等)、キャリアーを用いる薬物ターゲティング(リポソーム、リピッドマイクロスフェアー、高分子化医薬等)により実施できる。

実施例

以下本発明を下記例により説明するが、本発明はこれらに限定されるものではない。

<u>製造例1:2-クロロ-4-[(6,7-ジメトキシ-4-キノリル)オキシ]ア</u> ニリン

ジメチルスルホキシド(10m1)に水素化ナトリウム(60w%、0.72g)を加え、50%730分攪拌後室温にし、4-7ミノ-3-クロロフェノール塩酸塩(1.61g)を加え室温で10分攪拌した。次に4-クロロ-6、7-ジメトキシキノリン(1.00g)を加え100%7で一晩攪拌した。反応液に水を加えクロロホルムで抽出した後、クロロホルム層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さにメタノールを加え、析出した結晶を吸引ろ取し、表題の化合物を0.89g、収率60%7で得た。

'H-NMR (CDCI, 400MHz): $\delta 4.05$ (s, 3H), 4.05 (s, 3H), 4.08 (s, 2H), 6.44 (d, J=5.4Hz, 1H), 6.85 (d, J=8.5Hz, 1H), 6.93-6.96 (m, 1H), 7.15 (d, J=2.7Hz, 1H), 7.41 (s, 1H), 7.54 (s, 1H), 8.48 (d, J=5.1Hz, 1H)

<u>製造例2:4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2,3-ジメ</u> <u>チルアニリン</u>

ジメチルスルホキシド(10ml)に水素化ナトリウム(60w%、0.72g)を加え、50℃で30分攪拌後室温にし、4-アミノ-2,3-ジメチルフェノール塩酸塩(1.55g)を加え室温で10分攪拌した。次に4-クロロー6,7-ジメトキシキノリン(1.00g)を加え100℃で一晩攪拌した。反応液に水を加えクロロホルムで抽出した後、クロロホルム層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して

得られた残さにメタノールを加え、析出した結晶を吸引ろ取し、表題の化合物を 0.94g、収率65%で得た。

'H-NMR (CDC1, 400MHz): $\delta 2.07$ (s, 3H), 2.15 (s, 3H), 3.62 (s, 2H), 4.05 (s, 3H), 4.07 (s, 3H), 6.25 (d, J=5.4Hz, 1H), 6.64 (d, J=8.5Hz, 1H), 6.83 (d, J=8.5Hz, 1H), 7.42 (s, 1H), 7.64 (s, 1H), 8.42 (d, J=5.4Hz, 1H)

<u>製造例3:4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2,5-ジメ</u> <u>チルアニリン</u>

ジメチルスルホキシド(10m1)に水素化ナトリウム(60w%、0.36g)を加え、50%730分攪拌後室温にし、4-7ミノー2,5-ジメチルフェノール(<math>1.23g)を加え室温で10分攪拌した。次に4-クロロー6,7-ジメトキシキノリン(<math>1.00g)を加え100%7で一晩攪拌した。反応液に水を加えクロロホルムで抽出した後、クロロホルム層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(1/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を得た。

<u>製造例4:3,5ージクロロー4ー[(6,7ージメトキシー4ーキノリル)オキシ]アニリン</u>

ジメチルスルホキシド(10m1)に水素化ナトリウム(60w%、0.36g)を加え、50%730分機拌後室温にし、4-7ミノ-2, 6-ジクロロフェノール(1.59g)を加え室温で10分機拌した。次に4-クロロ-6, 7-ジメトキシキノリン(1.00g)を加え100%7で一晩機拌した。反応液に水を加えクロロホルムで抽出した後、クロロホルム層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(1/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を0.35g、収率22%7で得た。 |H-NMR(CDC11, |400MHz|2): |63.84|3, |84|4, |85|4, |85|6

(s, 3H), 4.08(s, 3H), 6.28(d, J=5.4Hz, 1H), 6.

- 32 -

74 (s, 2H), 7.43 (s, 1H), 7.64 (s, 1H), 8.48 (d, J=5.4Hz, 1H)

<u>製造例5:4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2-ニトロア</u> ニリン

<u>製造例6:1-[2-アミノー4-(ベンジルオキシ)-5-メトキシフェニル]</u> -1-エタノン

 $1-(4-\text{L}^c \text{L}^c \text{L}^c$

精製し、表題の化合物を24.95g、収率77%(3ステップ)で得た。
'H-NMR(CDCl, 400MHz):δ2.51(s, 3H), 3.84(s, 3H), 5.14(s, 2H), 6.12(s, 2H), 7.15-7.62(m, 7H)

<u>製造例7:7-(ペンジルオキシ)-6-メトキシ-1,4-ジヒドロ-4-キ</u> ノリノン

1-[2-アミノ-4-(ベンジルオキシ)-5-メトキシフェニル]-1-エタノン(24.95g)をテトラヒドロフラン(450ml)に溶解し、ナトリウムメトキシド(24.87g)を加え室温で1時間攪拌後、ぎ酸エチルエステル(37.07ml)を加え室温で2時間攪拌後、水(150ml)を加え1晩攪拌した。0℃にて濃硫酸を加え<math>pH4にし、水を加えクロロホルム抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(10/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を17.16g、収率66%で得た。「H-NMR(DMSO-d。400MHz): δ 3.84(s,3H),5.19(s,2H),5.97(d,J=7.1Hz,1H),7.09(s,1H),7.28-7.51(m,6H),7.78(d,J=7.3Hz,1H),11.50-11.75(br,1H)

製造例8:7-(ベンジルオキシ)-4-クロロ-6-メトキシキノリン

7-(ベンジルオキシ)-6-メトキシ-1、4-ジヒドロ-4-キノリノン(17.16g)にオキシ塩化リン(14.19ml)を加え、加熱還流を 1時間した。減圧下溶媒を留去し、得られた残さをクロロホルムに溶解し、水酸化ナトリウム水溶液を加えアルカリ性にし、クロロホルム抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(10/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を3.82g、収率21%で得た。

'H-NMR (CDC1, 400MHz): δ4.06 (s, 3H), 5.32 (s, 2H), 7.30-7.55 (m, 8H), 8.56 (d, J=4.9Hz, 1H) 製造例9:4-{[7-(ペンジルオキシ)-6-メトキシ-4-キノリル] オキ

\underline{v} -2 $\underline{5}$ $\underline{-}$ $\underline{5}$ $\underline{+}$ $\underline{5}$ $\underline{+}$ \underline

ジメチルスルホキシド(25m1)に水素化ナトリウム(60w%、1.17g)を加え、60%730分攪拌後室温にした。次に4-7ミノ-2, 5-ジメチルフェノール(4.00g)を加え室温で10分攪拌後、7-(ベンジルオキシ)-4-クロロ-6-メトキシキノリン(4.36g)を加えた。22時間攪拌後反応液に水を加えクロロホルム抽出した後、クロロホルム層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さにメタノールを加え懸濁液とした。析出した結晶を吸引ろ取し、表題の化合物を3.04g、収率52%76

'H-NMR (CDC1, 400MHz): δ 2. 05 (s, 3H), 2. 16 (s, 3H), 3. 58 (s, 2H), 4. 06 (s, 3H), 5. 32 (s, 2H), 6. 28 (d, J=5. 1Hz, 1H), 6. 61 (s, 1H), 6. 81 (s, 1H), 7. 28-7. 42 (m, 3H), 7. 44 (s, 1H), 7. 49-7. 54 (m, 2H), 7. 63 (s, 1H), 8. 39 (d, J=5. 1Hz, 1H) 質量分析値 (ESI-MS, m/z): 401 (M'+1)

製造例 $10:N-(4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル] オキシ<math>\}$ - 2、5-ジメチルフェニル) - N'-(2、4-ジフルオロフェニル) ウレア

 $4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル]オキシ\}-2$ 、5-ジメチルアニリン(300mg)をクロロホルム(5m1)に溶解した後、2、<math>4-ジフルオロフェニルイソシアナート(200 μ 1)を加え、70℃にて1晩攪拌した。反応液を、クロロホルム/アセトン(75/25)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を368mg、収率88%で得た。

'H-NMR (CDC1, 400MHz): $\delta 2.17$ (s, 3H), 2.26 (s, 3H), 4.06 (s, 3H), 5.33 (s, 2H), 6.29 (d, J=5.1Hz, 1H), 6.42 (s, 1H), 6.76-6.93 (m, 3H), 6.70 (s, 3H), 7.30-7.54 (m, 7H), 7.60 (s, 1H), 8.00 (s, 1H), 11H), 11H0, 11H1, 11H2, 11H3, 11H3, 11H4, 11H5, 11H5, 11H6, 11H6, 11H6, 11H6, 11H7, 11H8, 11H9, 11H9,

製造例 $11:N-(4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル]オキシ}-2,5-ジメチルフェニル)-N'-(2-メトキシフェニル)ウレア$

 $4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル]オキシ\}-2$ 、5-ジメチルアニリン(300mg)をクロロホルム(5m1)に溶解した後、2-メトキシフェニルイソシアナート(0.24m1)を加え、<math>70℃にて1晩攪拌した。反応液を、クロロホルム/アセトン(75/25)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を365mg、収率89%で得た。

H-NMR (CDC1, 400MHz): δ 2. 17 (s, 3H), 2. 28 (s, 3H), 3. 83 (s, 3H), 4. 07 (s, 3H), 5. 33 (s, 2H), 6. 26 (s, 3H), 6. 29 (d, J=5. 4Hz, 1H), 6. 86-7. 06 (m, 4H), 7. 12 (s, 1H), 7. 30-7. 41 (m, 3H), 7. 46 (s, 1H), 7. 50-7. 56 (m, 3H), 7. 61 (s, 1H), 8. 11-8. 16 (m, 1H), 8. 43 (d, J=5. 4Hz, 1H)

製造例 $12:4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル] オ$ キシ1-2-クロロアニリン

ジメチルスルホキシド(3.6ml)に水素化ナトリウム(60w%、320mg)を加え、60℃で30分攪拌後室温にした。次に4~アミノー3~クロロフェノール塩酸塩(720mg)を加え室温で10分攪拌後、7~(ベンジルオキシ)~4~クロロ~6~メトキシキノリン(600mg)を加えた。105℃で22時間攪拌後反応液に水を加えクロロホルム抽出した後、クロロホルム層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さにメタノールを加え懸濁液とした。析出した結晶を吸引ろ取し、表題の化合物を533mg、収率66%で得た。

'H-NMR (CDC1, 400MHz): δ 4. 05 (s, 3H), 4. 08 (s, 2H) 5. 32 (s, 2H), 6. 42 (d, J=5. 1Hz, 1H), 6. 84 (d, J=8. 5Hz, 1H), 6. 93 (dd, J=2. 4Hz, 8. 1Hz, 1H), 7. 14 (d, J=2. 4Hz, 1H), 7. 29-7. 42 (m, 3H),

7. 44 (s, 1H), 7. 49-7. 53 (m, 2H), 7. 55 (s, 1H), 8. 45 (d, J = 5. 3Hz. 1H)

質量分析値(ESI-MS, m/z): 497 (M'+1)

製造例 $13:N-(4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル] オキシ}-2-クロロフェニル)-N'-(2,4-ジフルオロフェニル)ウレア$

 $4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル] オキシ\}-2$ ークロロアニリン (260mg) をクロロホルム (10m1) に溶解した後、2,4-ジフルオロフェニルイソシアナート <math>(198mg) を加え室温で2時間攪拌した。反応液をクロロホルム/アセトン (10/1) で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を337mg、収率94%で得た。「H-NMR (CDC1, 400MHz): 64.04 (s, 3H), 5.3 2 (s, 2H), 6.49 (d, J=5.1Hz, 1H), 6.86-6.96 (m, 3H), 7.10-7.17 (m, 2H), 7.22-7.28 (m, 1H), 7.

28-7.41 (m, 3H), 7.45-7.53 (m, 4H), 7.96-8.04 (m, 1H), 8.27 (d, J=9.0Hz, 1H), 8.49 (d, J=5.4Hz, 1H)

質量分析値(ESI-MS, m/z): 562, 564 (M'+1)

製造例 $14:N-\{2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キ$ ノリル) オキシ] フェニル $\}-N'-(2,4-ジフルオロフェニル)$ ウレア

 $N-(4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル] オキシ\}$ -2-クロロフェニル)-N'-(2,4-ジフルオロフェニル) ウレア(215mg)を、ジメチルホルムアミド(11ml)に溶解し、パラジウム炭素(215mg)を加え、水素雰囲気下室温で1晩攪拌した。反応液に酢酸エチル(30ml)を加え、セライト濾過した。溶媒を減圧下留去し、表題の化合物を174mg、収率96%で得た。

'H-NMR (DMSO-d_s, 400MHz): $\delta 3$. 94 (s, 3H), 6. 47 (d, J=5. 1Hz, 1H), 7. 01-7. 11 (m, 1H), 7. 18-7. 36 (m, 3H), 7. 44-7. 52 (m, 2H), 7. 95 (s, 1H),

7. 98-8. 13 (m, 1H), 8. 23 (d, J=9. 5Hz, 1H), 6. 50 (d, J=5. 1Hz, 1H), 8. 81 (s, 1H), 9. 31 (s, 1H) 質量分析値 (ESI-MS, m/z): 472 (M'+1)

製造例 $15:4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル]オ$ キシ $\{-2,3-ジメチルアニリン\}$

ジメチルスルホキシド (6 m 1) に水素化ナトリウム (6 0 w t %、0.32 g) を加え、室温で30分間攪拌した後、4-アミノ-2, 3-ジメチルフェノール (1.10g) を加え室温で10分間攪拌した。次に7-(ベンジルオキシ)-4-クロロ-6-メトキシキノリン (1.20g) を加え110℃で6時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出し、クロロホルム層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン (6/1) で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を0.78g、収率49%で得た。 'H-NMR (DMSO-d。400MHz) δ 1.87 (s,3H),1.96

(s, 3H), 3. 97 (s, 3H), 4. 78 (s, 2H), 5. 23 (s, 2H), 6. 12 (d, J=5. 3Hz, 1H), 6. 54 (d, J=8. 4Hz, 1H), 6. 69 (d, J=8. 4Hz, 1H), 7. 27-7. 51 (m, 7H), 8. 31 (d, J=5. 3Hz, 1H)

製造例 $16:N-(4-\{[7-(ペンジルオキシ)-6-メトキシ-4-キノリル]オキシ}-2,3-ジメチルフェニル)-N'-(2,4-ジフルオロフェニル)ウレア$

 $4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル]オキシ\}-2$ 、 $3-ジメチルアニリン(260mg)をN,N-ジメチルホルムアミド(5m1)に溶解した後、2、4-ジフルオロフェニルイソシアナート(121mg)を加えて室温で一晩反応した。メタノールを加え、減圧下溶媒を留去して得られた残さを、メタノール洗浄、適取し、表題の化合物を219mg、収率61%で得た。 <math>^{1}$ H-NMR(DMSO-d。,400MHz) δ 1.99(s,3H),2.17(s,3H),3.90(s,3H),5.24(s,2H),6.18(d,J=5.1Hz,1H),6.95-6.98(m,2H),7.25-7.63(m,

WO 00/43366 PCT/JP00/00255

- 38 -

9H), 8. 05-8. 08 (m, 1H), 8. 34-8. 36 (m, 2H), 8. 79 (s, 1H)

製造例17:7-(ベンジルオキシ)-4-(3-フルオロ-4-ニトロフェノ キシ)-6-メトキシキノリン

クロロベンゼン (3 m 1) に 7-(ベンジルオキシ) - 4-クロロ-6-メトキシキノリン (3 0 0 m g)、3-フルオロ-4-ニトロフェノール (7 8 5 m g)を溶解し、<math>1 3 0 %で5時間攪拌した。反応液にクロロホルム、水酸化ナトリウム水溶液を加え1時間攪拌した。反応液をクロロホルムで抽出し、クロロホルム層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去して得られた残さを、ヘキサン/酢酸エチル (1/1) で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を 1 9 7 m g、収率 4 7 % で得た。

'H-NMR (DMSO-d₆, 400MHz) δ3.83 (s, 3H), 5.25 (s, 2H), 6.91 (d, J=5.1Hz, 1H), 7.29-7.50 (m, 9H), 8.18-8.23 (m, 1H), 8.56 (d, J=5.1Hz, 1H) 製造例18:4-(4-アミノ-3-フルオロフェニキシ) -6-メトキシ-7-キノリノール

7-(ベンジルオキシ)-4-(3-フルオロ-4-ニトロフェノキシ)-6 -メトキシキノリン(190mg)をN,N-ジメチルホルムアミド(5m1)、トリエチルアミン(1m1)に溶解し、水酸化パラジウム(40mg)を加え、水素雰囲気下室温で一晩攪拌した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(20/1)で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を<math>75mg、収率56%で得た。

'H-NMR (DMSO-d₆, 400MHz) δ 3. 87 (s, 3H), 5. 11 (s, 2H), 6. 29 (d, J=5. 1Hz, 1H), 6. 77-6. 80 (m, 2H), 6. 93-6. 99 (m, 1H), 7. 19 (s, 1H), 7. 40 (s, 1H), 8. 31 (d, J=5. 1Hz, 1H), 10. 03 (s, 1H) 製造例19:N-(2. 4-ジフルオロフェニル) -N'- {2-フルオロ-4-(7-ヒドロキシ-6-メトキシ-4-キノリル) オキシ] フェニル} ウレア 4-(4-アミノ-3-フルオロフェノキシ) -6-メトキシ-7-キノリノ

ール(70 mg)をクロロホルム(1.5 m l)、N,N ージメチルホルムアミド(1 m l)に溶解した後、2,4 ージフルオロフェニルイソシアナート(43 m g)を加えて室温で3時間反応した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(20 / l)で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を定量的に得た。「1 H 1 H

製造例20:4-クロロー6-メトキシー7-キノリノール

4-クロロー6-メトキシー7-キノリノール(50 mg)、炭酸カリウム(40 mg)、ヨウ化テトラーn-ブチルアンモニウム(9 mg)、2-プロモエチルメチルエーテル(40 mg)をN,N-ジメチルホルムアミド(10 m l)に溶解し70 でで1晩攪拌した。減圧下溶媒を留去し、得られた残さに飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、ヘキサン/アセトン/ジクロロメタン(6/2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を47 mg、収率74 %で得た。

'H-NMR (CDC1, 400MHz): $\delta 3$. 49 (s, 3H), 3. 88-3. 90 (m, 2H), 4. 04 (s, 3H), 4. 32-4. 35 (m, 2H), 7. 35 (d, J=4. 9Hz, 1H), 7. 40 (s, 1H), 7. 43 (s, 1H), 8. 57 (d, J=4. 9Hz, 1H)

ジメチルスルホキシド (2 m 1) に水素化ナトリウム (6 0 w%、153 m g) を加え、60℃で30分攪拌後室温にし、4-アミノー3-クロロフェノール塩酸塩 (3 4 3 m g) を加え室温で10分攪拌した。次にジメチルスルホキシド (2 m 1) に溶解した4-クロロー6-メトキシー7- (2-メトキシエトキシ) キノリン (2 5 4 m g) を加え110℃で一晩攪拌した。反応液に水を加えクロロホルムで抽出した後、クロロホルム層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン (7/3) で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を得た。

'H-NMR (CDC1, 400MHz): $\delta 3. 49$ (s, 3H), 3. 89-3. 91 (m, 2H), 4. 02 (s, 3H), 4. 09 (s, 2H), 4. 33-4. 35 (m, 2H), 6. 43 (d, J=5. 4Hz, 1H), 6. 85 (d, J=8. 5Hz, 1H), 6. 93-6. 96 (m, 1H), 7. 15 (d, J=2. 7Hz, 1H), 7. 41 (s, 1H), 7. 52 (s, 1H), 8. 47 (d, J=5. 1Hz, 1H)

<u>製造例23:2-クロロ-4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]アニリン</u>

ジメチルスルホキシド(40m1)に水素化ナトリウム(60w%、5.80g)を加え、60%で30分攪拌後室温にした。次に4-アミノ-3-クロロフェノール塩酸塩(<math>13.05g)を加え室温で10分攪拌後、J. Am. Chem. Soc., 68, 1299(1946)、 J. Am. Chem. Soc., 68, 1305(1946) などに記載されるような慣用手段によって合成したクロロキナゾリン誘導体である、4-クロロ-6, 7-ジメトキシキナゾリン(8.

14g)を加えた。110℃で30分攪拌した後、反応液に水を加えクロロホルム抽出した。次いで、クロロホルム層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さにメタノールを加え懸濁液とした。析出した結晶を吸引ろ取し、表題の化合物を9.13g、収率76%で得た。

'H-NMR (CDC1, 400MHz): $\delta 4.05-4.08$ (m, 8H), 6.85 (d, J=8.5Hz, 1H), 7.00 (dd, J=2.7Hz, 8.8Hz, 1H), 7.21 (d, J=2.7Hz, 1H), 7.32 (s, 1H), 7.52 (s, 1H), 8.64 (s, 1H)

質量分析値(ESI-MS, m/z): 332 (M'+1)

<u>製造例24:N-ベンジル-N-(2,4-ジフルオロフェニル)アミン</u>

2,4ージフルオロアニリン(2.37ml)、ベンズアルデヒド(2.36ml)を溶解したメタノール(46ml)に硫酸マグネシウム(5.59g)と少量の酢酸を加え、室温で45分間攪拌した。氷冷下水素化ホウ素ナトリウム(2.64g)を加え、室温で1時間攪拌した。減圧下溶媒を留去し、水、酢酸エチルを加え攪拌し、セライトろ過した。有機層を酢酸エチルで抽出し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、ヘキサン/アセトン(30/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を3.04g、収率60%で得た。

'H-NMR (CDC1, 400MHz): δ4. 34 (s, 2H), 6. 56 -6. 82 (m, 3H), 7. 25-7. 38 (m, 5H)

製造例25:メチル 4- (ベンジルオキシ) -5-メトキシ-2-ニトロベン ゾエート

市販のメチルバニレート(50g)、炭酸カリウム(76g)をN, Nージメチルホルムアミド(200ml)に溶解し、臭化ベンジル(33ml)を10分かけて滴下し、室温で一晩攪拌した。水を200ml加え、酢酸エチルで抽出後、さらに有機相に飽和食塩水を加え酢酸エチルで抽出した。有機相に硫酸ナトリウムを加え乾燥した。次に、有機相をろ過後減圧下で溶媒を溜去し、得られた残査を真空ポンプで乾燥すると白色の固体を68g得た。続いて、氷冷下で酢酸10

0mlおよび硝酸200mlを加え、8時間攪拌後に水を加えた。得られた固体をろ取し、水で十分洗浄し真空ポンプで乾燥させ表題の化合物を74g得た。収率93%。

 $^{1}H-NMR$ (CDCl₃, 400MHz): 3. 90 (s, 3H), 3. 98 (s, 3H), 5. 21 (s, 2H), 7. 08 (s, 1H), 7. 31-7. 45 (m, 5H), 7. 51 (s, 1H)

製造例26:7-(ベンジルオキシ)-6-メトキシ-3,4-ジヒドロ-4-キナゾリノン

室温下でメチル 4- (ベンジルオキシ) -5-メトキシ-2-ニトロベンゾエート(15.0g)を酢酸(200ml)に溶解後、鉄(粉末)(13.2g)を加え、90度まで昇温し1時間攪拌した。得られた灰色の固体をセライトろ過し、酢酸で洗浄した。母液に濃塩酸を加えた後、溶媒を減圧溜去すると固体が析出した。得られた固体をろ取し、酢酸エチル、エーテルで洗浄し、真空ポンプで乾燥した。続いて、得られた固体にクロロホルム、メタノールを加えけん濁させた後、10%水酸化ナトリウム水溶液を加え溶解した。さらにクロロホルムで抽出し、水で洗浄した後、有機相を硫酸ナトリウムで乾燥し、次に、有機相をろ過後減圧下で溶媒を溜去し、得られた残査を真空ポンプで乾燥し、メチル 2-アミノー4-(ベンジルオキシ)-5-メトキシベンゾエートの粗精製物を9.5 g得た。収率70%。

得られたメチル 2-アミノ-4-(ベンジルオキシ)-5-メトキシベンゾエート(650mg)をN, N-ジメチルホルムアミド(15ml)、メタノール(3ml)に溶解し、ホルムアミド(0.46ml)、ナトリウムメトキシド(373mg)を加え、<math>100度まで昇温し、一晩攪拌した。室温まで冷却後水を10ml加えた。1 M塩酸水で反応液を中和すると固体が析出した。固体をろ取し、水、エーテルで洗浄後真空ポンプで乾燥し、表題の化合物を566mg得た。収率87%。

'H-NMR (DMSO-ds, 400MHz): 3.88 (s, 3H), 5.25 (s, 2H), 7.23 (s, 1H), 7.33-7.49 (m, 6H), 7.97 (s, 1H), 12.06 (br, 1H)

製造例27:7-(ベンジルオキシ)-4-クロロー6-メトキシキナゾリン

7-(ペンジルオキシ)-6-メトキシ-3,4-ジヒドロ-4-キナゾリノン(400mg)、ジイソプロピルエチルアミン(0.3ml)にオキシ塩化リン(515ml)を加え、20分間還流した。室温に冷却後、10%水酸化ナトリウム水溶液を加え、クロロホルムで抽出した。有機相を硫酸ナトリウムで乾燥し、有機相をろ過後減圧下で溶媒を溜去し、得られた残査を真空ポンプで乾燥し、表題の化合物を420mg得た。収率99%。

 $^{1}H-NMR$ (CDCl₃, 400MHz): 4. 08 (s, 3H), 5. 34 (s, 2H), 7. 35-7. 51 (m, 7H), 8. 86 (s, 1H)

製造例28:メチル 5- (ベンジルオキシ) -4-メトキシ-2-ニトロベン ゾエート

市販のメチル 3-ヒドロキシー4-メトキシベンゾエート(10g)、炭酸カリウム(23g)をN, Nージメチルホルムアミド(50ml)に溶解し、臭化ベンジル(6.5ml)を10分かけて滴下し、室温で一晩攪拌した。水を200ml加え、酢酸エチルで抽出後、さらに有機相に飽和食塩水を加え酢酸エチルで抽出した。有機相に硫酸ナトリウムを加え乾燥した。次に、有機相をろ過後減圧下で溶媒を溜去し、得られた残査を真空ポンプで乾燥すると白色の固体を8.4g得た。続いて、得られた固体7.0gをフラスコに入れ、氷冷下で酢酸100mlおよび硝酸200mlを加え、8時間攪拌後に水を加えた。得られた固体をろ取し、水で十分洗浄し真空ポンプで乾燥させ表題の化合物を7.9g得た。収率96%。

'H-NMR (CDCl₃, 400MHz): 3.89 (s, 3H), 3.96 (s, 3H), 5.21 (s, 2H), 7.15 (s, 1H), 7.34-7.45 (m, 6H)

<u>製造例29:6-(ペンジルオキシ)-7-メトキシ-3,4-ジヒドロ-4-</u> キナゾリノン

室温下でメチル 5-(ペンジルオキシ)-4-メトキシ-2-ニトロベンゾエート(15.8g)を酢酸(200ml)に溶解後、鉄(粉末)(13.9g)を加え、90度まで昇温し1時間攪拌した。得られた灰色の固体をセライトろ過

し、酢酸で洗浄した。母液に濃塩酸を加えた後、溶媒を減圧溜去すると固体が析出した。得られた固体をろ取し、酢酸エチル、エーテルで洗浄し、真空ポンプで乾燥した。続いて、得られた固体にクロロホルム、メタノールを加えけん濁させた後、10%水酸化ナトリウム水溶液を加え溶解した。さらにクロロホルムで抽出し、水で洗浄した後、有機相を硫酸ナトリウムで乾燥し、次に、有機相をろ過後減圧下で溶媒を溜去し、得られた残査を真空ポンプで乾燥し、メチル 2-アミノー5-(ベンジルオキシ)-4-メトキシベンゾエートの粗精製物を10.4g得た。収率73%。

得られたメチル 2-アミノ-5-(ベンジルオキシ)-4-メトキシベンゾエート(5.0g)をN、N-ジメチルホルムアミド(150ml)、メタノール(30ml)に溶解し、ホルムアミド(3.5ml)、ナトリウムメトキシド(2.8g)を加え、<math>100度まで昇温し、一晩攪拌した。室温まで冷却後水を10ml加えた。1 M塩酸水で反応液を中和すると固体が析出した。固体をろ取し、水、エーテルで洗浄後真空ポンプで乾燥し、表題の化合物を3.7g得た。収率76%。

'H-NMR (DMSO-d₄, 400MHz): 3. 92 (s, 3H), 5. 21 (s, 2H), 7. 16 (s, 1H), 7. 33-7. 49 (m, 5H), 7. 55 (s, 1H), 7. 99 (s, 1H), 12. 06 (br, 1H)

製造例30:6-(ベンジルオキシ)-4-クロロ-7-メトキシキナゾリン

6-(ペンジルオキシ)-7-メトキシ-3,4-ジヒドロ-4-キナゾリノン(3.5g)、ジイソプロピルエチルアミン(11.5ml)にオキシ塩化リン(3.1ml)を加え、20分間還流した。室温に冷却後、10%水酸化ナトリウム水溶液を加え、クロロホルムで抽出した。有機相を硫酸ナトリウムで乾燥し、有機相をろ過後減圧下で溶媒を溜去し、得られた残査を真空ポンプで乾燥し、表題の化合物を2.9g得た。収率72%。

 $^{1}H-NMR$ (CDCl₃, 400MHz): 4. 07 (s, 3H), 5. 32 (s, 2H), 7. 35-7. 53 (m, 7H), 8. 86 (s, 1H)

<u>製造例31:4-{[7-(ペンジルオキシ)-6-メトキシ-4-キナゾリニル]</u> <u>オキシ}-2-クロロアニリン</u> 7-(ベンジルオキシ)-4-クロロー6-メトキシキナゾリン(30.0g)とテトラブチルアンモニウムクロリド(13.9g)をアセトン(400ml)に溶解し室温で攪拌した。この溶液に20%水酸化ナトリウム水溶液(64ml)に溶解した4-アミノ-3-クロロフェノール塩酸塩(36.0g)を添加した後、3時間加熱還流した。室温まで冷却し、クロロホルム、水を加えた後クロロホルムで抽出し、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。次に、硫酸ナトリウムを除去した後、溶媒を留去して得られた残渣をメタノールで洗浄して得られた固体を真空ポンプで減圧乾固したところ表題の化合物が36.6g得られた。収率90%。

'H-NMR (DMSO-d₆, 400MHz): δ 3. 96 (s, 3H), 5. 34 (s, 2H), 6. 86 (d, J=8. 8Hz, 1H), 7. 00 (dd, J=2. 7Hz, 8. 8Hz, 1H), 7. 22 (d, J=2. 7Hz, 1H), 7. 35-7. 54 (m, 7H), 8. 53 (s, 1H)

製造例 $32:N-(4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キナゾ リニル] オキシ}-2-クロロフェニル)-N'-プロピルウレア$

 $4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キナゾリニル]オキシ}-2-クロロアニリン(12.2g)を無水クロロホルムに溶解した後、トリエチルアミン(8.4ml)を添加し室温で攪拌した。次に無水クロロホルム(12ml)にトリホスゲン(4.5g)を溶解し混合液中に滴下した。室温で20分攪拌した後、<math>n-プロピルアミン(4.9ml)を加えた。室温でさらに1時間攪拌すると白色固体が析出した。この固体を濾取しクロロホルムで洗浄すると表題の化合物が9.4g得られた。収率63%。$

「H-NMR (DMSO-d₆, 400MHz): δ0. 91 (t, J=7. 3Hz, 3H), 1. 44-1. 50 (m, 2H), 3. 06-3. 09 (m, 2H), 3. 98 (s, 3H), 5. 35 (s, 2H), 6. 97-7. 01 (m, 1H), 7. 23 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 37-7. 57 (m, 9H), 8. 20 (d, J=9. 3Hz, 1H), 8. 55 (s, 1H) 製造例33: N-{2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キナゾリニル) オキシ] フェニル} -N'-プロピルウレア

 $N-(4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キナゾリニル]$ オキシ $\}-2-$ クロロフェニル)-N'-プロピルウレア(42.2g)をトリフルオロ酢酸(200ml)に溶解した後、メタンスルホン酸(11.1ml)を添加し100℃で4時間攪拌した。室温まで戻しトリフルオロ酢酸を減圧留去した。残った混合物にクロロホルム、メタノールを加え、10%水酸化ナトリウム水溶液で3回抽出した。水相を濃塩酸で中和すると固体が析出した。得られた固体を水、メタノール、エーテルの順で洗浄し真空ポンプで減圧下乾燥すると表題の化合物20.7gが得られた。収率60%。

'H-NMR (DMSO-d₆, 400MHz): $\delta0.91$ (t, J=7.3Hz, 3H), 1. 42-1. 49 (m, 2H), 3. 06-3. 17 (m, 2H), 3. 84 (s, 3H), 6. 65 (s, 1H), 7. 03 (m, 1H), 7. 14 (d d, J=2. 7Hz, 9. 0Hz, 1H), 7. 20 (s, 1H), 7. 35 (d, J=2. 7Hz, 1H), 8. 05 (s, 1H), 8. 14 (dd, J=2. 7Hz, 20 (s, 20), 200 (s, 200 (s), 2

製造例34:6, 7-ジメトキシー4-キナゾロン

2-アミノ-3, 4-ジメトキシ安息香酸メチル(20.0g、94.8mm o l)にホルムアミド(150m l)を加えて、8.5時間 160 ℃に加熱した。 反応液を冷却後、ろ過し、得られた沈殿を水(100m l×2回)で洗浄した。 洗浄した沈殿を滅圧下乾燥して目的物を17.85g、収率91.5%で得た。 1

製造例35:4-クロロー6、7-ジメトキシキナゾリン

6, 7-ジメトキシ-4-キナゾロン(50.1g、0.24mol)にスルホラン(250ml) およびオキシ塩化リン(250ml=412.5g、2.69mol) を加えて120℃で1時間攪拌した。室温まで冷却後、減圧で過剰のオキシ塩化リンを留去し、残渣を氷水(1000ml)に注ぎクロロホルム(1000ml)を加えた。20%水酸化ナトリウムで水層のpHを6.5に調整し、有機層と水層を分液した。分液した有機層を水(1000ml×6回)で洗浄し

て、硫酸ナトリウムで乾燥した後、減圧濃縮した。残渣にテトラヒドロフラン (470 ml) を加え還流し、-5 \sim -10 \sim まで冷却し、濾過・乾燥して目的物を38.5g、収率71.4%で得た。

'H-NMR (DMSO-d₆, 400MHz): δ 4. 09 (s, 3H), 4. 09 (s, 3H), 7. 14 (s, 1H), 7. 34 (s, 1H), 7. 61 (s, 1H), 7. 97 (s, 1H)

<u>製造例36:4-クロロ-6,7-ジメトキシキナゾリン</u>

6, 7-ジメトキシ-4-キナゾロン(10.0g、48.5mmol)にトルエン(100ml) およびオキシ塩化リン(7.4g、48.6mmol)を加えて120℃で6.5時間攪拌した。室温まで冷却後、濾過し、トルエン(100ml、50ml)で洗浄して、乾燥し、目的物を11.5g、収率91%で得た。

製造例37:4-(4'-アミノ-3'-クロロ)-フェノキシ-6, 7-ジメトキシキナゾリン

4-アミノ-3-クロロフェノール塩酸塩(14.6g、81mmol)に水酸化ナトリウム(8.5g、0.21mol)および水(90ml)を加え溶解させ、<math>4-クロロ-6、7-ジメトキシキナゾリン(12g、53mmol)およびメチルエチルケトン(225ml)を加えて、2時間還流した。反応液を約50℃に冷却後、クロロホルム(500ml)および水(500ml)を加えて10分間攪拌した後、有機層と水層を分液した。分液した水層を更にクロロホルム(250ml)を加え、10分間攪拌した後、分液した。得られた有機層を減圧濃縮し、残渣を得た。残渣にメタノール(50ml)を加え30分間攪拌した後、濾過・乾燥して目的物を15.6g、収率85%で得た。

'H-NMR (DMSO-d₆, 400MHz): δ3. 95 (s, 3H), 3. 9 7 (s, 3H), 5. 33 (s, 2H), 6. 85 (d, J=8. 8Hz, 1H), 6. 98 (dd, J=2. 8Hz, J=8. 8Hz, 1H), 7. 20 (d, J=2. 8Hz, 1H), 7. 36 (s, 1H), 7. 51 (s, 1H), 8. 53 (s, 1H)

<u>製造例38:4-(4′-アミノ-3′-クロロ)-フェノキシ-6,7-ジメ</u>

<u>トキシキナゾリン</u>

4-アミノー3-クロロフェノール塩酸塩(1.3g、7.2mmol)に20%水酸化ナトリウム水溶液(3.5ml)および水(2ml)を加え溶解させ、4-クロロー6、7-ジメトキシキナゾリン(0.8g、3.6mmol)、クロロホルム(6ml)およびテトラブチルアンモニウムブロミド(0.58g、1.8mmol)を加えて、2時間還流した。反応液を冷却後、クロロホルム(10ml)および水(10ml)を加えて10分間攪拌した後、有機層と水層を分液した。分液した水層を更にクロロホルム(10ml)を加え、10分間攪拌した後、分液した水層を更にクロロホルム(10ml)を加え、10分間攪拌した後、分液した。得られた有機層を減圧濃縮し、残渣を得た。残渣にメタノール(2ml)を加え30分間攪拌した後、濾過・乾燥して目的物を1.0g、収率83%で得た。

<u>実施例1:N-(2,4-ジフルオロベンジル)-N'-{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2-フルオロフェニル</u> ウレア

4-[(6, 7-ジメトキシー4-キノリル) オキシ] -2-フルオロアニリン (100mg) をトルエン (5.0ml)、トリエチルアミン (1.0ml) に加熱溶解した後、ジクロロメタン (1.0ml) に溶解したトリホスゲン (103mg) を加えて3分間加熱還流した。次に2,4-ジフルオロベンジルアミン (54mg) を加えて、さらに5時間加熱還流した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン (2/1) で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を123mg、収率80%で得た。

H-NMR (CDC1, 400MHz): $\delta4.02$ (s, 3H), 4.03 (s, 3H), 4.47 (d, J=5.9Hz, 2H), 5.78-5.90 (m, 1H), 6.46 (d, J=5.4Hz, 1H), 6.74-6.99 (m, 4H), 7.03-7.14 (m, 1H), 7.35-7.44 (m, 2H), 7.50 (s, 1H), 8.16 (t, J=9.0Hz, 1H), 8.47 (d, J=5.1Hz, 1H)

質量分析値(FD-MS. m/z): 483 (M')

<u>実施例2:N-{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2-フルオロフェニル}-N'-(2-フルオロエチル)ウレア</u>

4-[(6,7-ジメトキシー4-キノリル)オキシ]-2-フルオロアニリン(100mg)をトルエン(10m1)、トリエチルアミン(0.5m1)に加熱溶解した後、ジクロロメタン(1.0m1)に溶解したトリホスゲン(47mg)を加えて5分間加熱還流した。次に塩酸2-フルオロエチルアミン(42mg)を加えて、さらに8時間加熱還流した。反応液に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出し、酢酸エチル層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を93mg、収率72%で得た。

'H-NMR (DMSO-d, 400MHz): $\delta 3$. 40 (m, 1H), 3. 4 7 (m, 1H), 3. 93 (s, 3H), 3. 95 (s, 3H), 4. 42 (t, J=4. 9Hz, 1H), 4. 54 (t, J=4. 9Hz, 1H), 6. 51 (d, J=5. 4Hz, 1H), 6. 88 (m, 1H), 7. 05 (m, 1H), 7. 28 (dd, J=2. 7Hz, J=11. 7Hz, 1H), 7. 40 (s, 1H), 7. 49 (s, 1H), 8. 21 (m, 1H), 8. 47 (br, 1H), 8. 48 (d, J=5. 4Hz, 1H)

質量分析値(ESI-MS,m/z): 404(M'+1)

<u>実施例3:N-{4-[(6, 7-ジメトキシ-4-キノリル)オキシ]-2-</u>フルオロフェニル}-N'-(2-ピリジルメチル)ウレア

4-[(6,7-i)]メトキシー4-iナノリル)オキシ] -2-iフルオロアニリン (100mg) をトルエン (5ml)、トリエチルアミン (1ml) に溶解した後、ジクロロメタンに溶解したトリホスゲン (104mg) を加えてリフラックスを5分間した。次に2-(r)ミノメチル)

ピリジン(40μ l)を加え、加熱還流を2時間した。反応液に飽和炭酸水素ナトリウム水溶液(1ml)、クロロホルム(2ml)を加えケイソウ土に保持し、クロロホルムで抽出した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(8/1)で展開するシリカゲルクロマトグラフィーにより精製し、

表題の化合物を126mg、収率88%で得た。

'H-NMR (CDC1, 400MHz): $\delta4$. 07 (s, 3H), 4. 09 (s, 3H), 4. 61 (d, J=5. 4Hz, 2H), 6. 40-6. 50 (br, 1H), 6. 61 (d, J=5. 9Hz, 1H), 6. 92-7. 01 (m, 2H), 7. 21-7. 25 (m, 1H), 7. 36 (d, J=7. 8Hz, 1H), 7. 56 (s, 1H), 7. 68-7. 78 (m, 2H), 7. 75 (s, 1H), 8. 27-8. 34 (m, 1H), 8. 49 (d, J=6. 1Hz, 1H), 8. 55 (d, J=4. 1Hz, 1H)

質量分析値(FD-MS, m/z): 448 (M')

実施例4: N-Pリル $-N'-\{4-[(6, 7ジメトキシ-4-キノリル) オキシ] <math>-2-$ フルオロフェニル} ウレア

4-[(6, 7-ジメトキシー4-キノリル) オキシ] -2-フルオロアニリン (100mg) をトルエン (5ml)、トリエチルアミン (1ml) に溶解した後、ジクロロメタンに溶解したトリホスゲン (104mg) を加え、加熱還流を5分間した。次にアリルアミン (22mg) を加えて、さらに加熱還流を4時間した。反応液に飽和炭酸水素ナトリウム水溶液 (1ml)、クロロホルム (2ml) を加えケイソウ土に保持し、クロロホルムで抽出した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン (2/l) で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を125mg、収率98%で得た。 'H-NMR (CDCl, 400MHz): δ3.91-3.96 (m, 2H), 4.06 (s, 3H), 4.09 (s,3H), 5.14-5.20 (m, 1H), 5.26-5.33 (m, 1H), 5.58-5.66 (br, 1H), 5.86-5.98 (m, 1H), 6.56 (d, J=5.9Hz, 1H), 6.88-7.01 (m, 2H), 7.23 (s, 1H), 7.55 (s, 1H), 7.66 (s, 1H), 8.26-8.33 (m, 1H), 8.47 (d, J=5.9Hz, 1H) 質量分析値 (FD-MS, m/z):397 (M')

<u>実施例5:N-{4-[(6, 7-ジメトキシ-4-キノリル)オキシ]-2-フルオロフェニル}-N'-プロピルウレア</u>

4-[(6, 7-ジメトキシ-4-キノリル) オキシ]-2-フルオロアニリン

 $(100 \, \mathrm{mg})$ をトルエン $(10 \, \mathrm{ml})$ 、トリエチルアミン $(2 \, \mathrm{ml})$ に溶解した後、ジクロロメタンに溶解したトリホスゲン $(104 \, \mathrm{mg})$ を加えて5 分間加熱還流した。次にプロピルアミン $(29 \, \mathrm{mg})$ を加え、40 分間加熱還流した。反応液に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した後、酢酸エチル層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール (10/1) で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を $89 \, \mathrm{mg}$ 、収率71%で得た。

 $^{t}H-NMR$ (CDC1, 400MHz): δ 0. 97 (t, J=7. 6Hz, 3 H), 1. 55-1. 64 (m, 2H), 3. 24-3. 29 (m, 2H), 4. 0 5 (s, 3H), 4. 06 (s, 3H), 5. 11 (t, J=5. 4Hz, 1H), 6. 51 (d, J=5. 4Hz, 1H), 6. 74-6. 76 (m, 1H), 6. 91-6. 99 (m, 2H), 7. 48 (s, 1H), 7. 52 (s, 1H), 8. 18-8. 23 (m, 1H), 8. 49 (d, J=5. 6Hz, 1H) 質量分析値 (FD-MS, m/z): 399 (M')

<u>実施例6:N-{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2-フルオロフェニル}-N'-(4-フルオロブチル)ウレア</u>

4-[(6,7-i)メトキシー4-iナノリル)オキシ] -2-iフルオロアニリン (100mg) をトルエン (6ml)、トリエチルアミン (1.0ml) に加熱溶解した後、ジクロロメタン (1.0ml) に溶解したトリホスゲン (104mg) を加えて 5 分間加熱還流した。次に

4-フルオロブチルアミン塩酸塩(55mg)を加えて、さらに2時間加熱還流した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を80mg、収率55%で得た。

 $^{1}H-N^{2}MR$ (CDC1, 400MHz): δ 1. 66-1. 87 (m, 4H),

- 3. 33-3.40 (m, 2H), 4. 04 (s, 3H), 4. 05 (s, 3H),
- 4. 44 (t, J = 5. 6Hz, 1H), 4. 56 (t, J = 5. 7Hz, 1H),
- 4. 90 (t, J = 5. 7H, z, 1H), 6. 48-6. 52 (m, 2H), 6.

93-7.02 (m, 2H), 7.42 (s, 1H), 7.51 (s, 1H), 8. 15 (t, J=8:9Hz, 1H), 8.50 (d, J=5.1Hz, 1H) 質量分析値 (FD-MS, m/z):431 (M')

<u>実施例 $7:N-\{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2-フ</u>ルオロフェニル<math>\}-N'-(2-プロピニル)$ ウレア</u>

4-[(6, 7-ジメトキシー4-キノリル) オキシ] -2-フルオロアニリン (150mg) をクロロホルム (10ml)、トリエチルアミン (2ml) に溶解し、ジクロロメタンに溶解したトリホスゲン (156mg) を加えて10分間加熱還流した。次にプロパルギルアミン (53mg) を加えて、さらに30分間加熱還流した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン (2/1) で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を164mg、収率87%で得た。「H-NMR (DMSO-d。400MHz) 62.49-2.51 (m, 1H), 3.90-3.95 (m, 8H), 6.52 (d, J=5.1Hz, 1H), 6.89-6.92 (m, 1H), 7.04-7.06 (m, 1H), 7.26-7.29 (m, 1H), 7.39 (s, 1H), 7.49 (s, 1H), 8.16-8.20 (m, 1H), 8.46-8.49 (m, 2H)

<u>実施例8:N-{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2-フ</u>ルオロフェニル-N'-エチルウレア

4-[(6,7-i)]メトキシー4-iナノリル)オキシ] -2-iフルオロアニリン (100mg) をトルエン (8m1)、トリエチルアミン (1.0m1) に加熱溶解した後、トルエン (1.0m1) に溶解したトリホスゲン (47mg) を加えて5分間加熱還流した。次に塩酸エチルアミン (60mg) を加えて、さらに5時間加熱還流した。反応液に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出し、酢酸エチル層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン (2/1) で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を70mg、収率53%で得た。 |H-NMR |H-NMR

WO 00/43366 PCT/JP00/00255

- 53 -

H), 3. 34 (m,2H), 4. 06 (s, 3H), 4. 08 (s, 3H), 5. 64 (br, 1H), 6. 55 (d, J=5. 6Hz, 1H), 6. 89 (dd, J=2. 7Hz, J=11. 2Hz, 1H), 6. 97 (m, 1H), 7. 26 (br, 1H), 7. 54 (s, 1H), 7. 62 (s, 1H), 8. 28 (t, J=9. 0Hz, 1H), 8. 47 (d, J=5. 6Hz, 1H)

質量分析値 (ESI-MS, m/z): 386 (M'+1)

<u>実施例9:NープチルーN'ー $\{4-[(6,7-ジメトキシ-4-キノリル) オ</u>$ $キシ] <math>-2-フルオロフェニル\}$ ウレア</u>

4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2-フルオロアニリン (100mg)をトルエン(8ml)、トリエチルアミン(1.0ml)に加熱溶 解した後、トルエン(1.0m1)に溶解したトリホスゲン(47mg)を加え て5分間加熱還流した。次にブチルアミン(80mg)を加えて、さらに5時間 加熱還流した。反応液に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽 出し、酢酸エチル層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得 ・ られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマ トグラフィーにより精製し、表題の化合物を117mg、収率81%で得た。 $^{1}H-NMR$ (CDCl₃, 400MHz): δ 0. 94 (t, J=7. 3Hz, 3 H), 1. 40 (m,2H), 1. 55 (m,2H), 3. 29 (dd, J=7. 1 Hz, J = 12. 9 Hz, 2 H), 4. 06 (s, 3 H), 4. 09 (s, 3 H), 5. 72 (br, 1H), 6. 56 (d, J=5. 9Hz, 1H), 6. 88 (d d, J = 2.7 Hz, J = 11.2 Hz, 1H), 6.97 (d, J = 9.0 Hz, 1H), 7. 33 (s, 1H), 7. 55 (s, 1H), 7. 65 (s, 1H), 8. 30 (t, J=9.0Hz, 1H), 8.46 (d, J=5.9Hz, 1H)質量分析値(ESI-MS,m/z): 414 (M'+1)

<u>実施例10:N-(sec-ブチル)-N'-{4-[(6,7-ジメトキシ-4-</u> キノリル)オキシ]-2-フルオロフェニル}ウレア

4-[(6,7-i)メトキシー4-iナノリル)オキシ]-2-iフルオロアニリン (100mg)、をクロロホルム (5ml)、トリエチルアミン (1ml) に溶解した後、ジクロロメタンに溶解したトリホスゲン (104mg) を加えて5分間

加熱還流した。次に $sec-ブチルアミン(48\mu1)$ を加え、10分間加熱還流した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(8/2)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を17mg、収率89%で得た。

'H-NMR (CDC1, 400MHz): $\delta0$. 95 (t, J=7. 6Hz, 3 H), 1. 18 (d, J=6. 6Hz, 3H), 1. 47-1. 55 (m, 2H), 3. 79-3. 89 (m, 1H), 4. 04 (s, 6H), 5. 28 (d, J=8. 1Hz, 1H), 6. 48 (d, J=5. 4Hz, 1H), 6. 89-6. 98 (m, 2H), 7. 08 (d, J=2. 7Hz, 1H), 7. 42 (s, 1H), 7. 51 (s, 1H), 8. 20-8. 24 (m, J=9. 0Hz, 1H), 8. 48 (d, J=5. 4Hz, 1H)

質量分析値(ESI-MS, m/z): 414 (M'+1)

実施例 $11:N-\{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2-$ フルオロフェニル $\}-N'-イソプチルウレア$

'H-NMR (CDC1,400MHz): δ 0. 94 (d, J=6.6Hz, 6H), 1.77-1.84 (m, 1H), 3.10-3.13 (m, 2H), 4.03 (s, 3H), 4.03 (s, 3H), 5.58 (t, J=5.4Hz, 1H), 6.47 (d, J=5.4Hz, H), 6.88-6.97 (m, 2H), 7.18 (s, 1H), 7.41 (s, 1H), 7.50 (s, 1H), 8.18-8.23 (m, 1H), 8.48 (d, J=5.1Hz, 1H)

質量分析値(ESI-MS, m/z): 414 (M'+1)

<u>実施例12:N-{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2-</u>フルオロフェニル}-N'-(1,2-ジメチルプロピル)ウレア

'H-NMR (CDC1, 400MHz): $\delta0$. 93 (d, J=2. 2Hz, 3H), 0. 95 (d. J=2. 4Hz, 3H), 1. 14 (d, J=6. 8Hz, 3H), 1. 72-1. 80 (m, 1H), 3. 76-3. 84 (m, 1H), 4. 04 (s, 3H), 4. 05 (s, 3H), 4. 91 (d, J=8. 5Hz, 1H), 6. 48 (d, J=5. 4Hz, 1H), 6. 74 (d, J=2. 9Hz, 1H), 6. 91-6. 98 (m, 2H), 7. 42 (s, 1H), 7. 51 (s, 1H), 8. 18-8. 23 (m, 1H), 8. 49 (d, J=5. 4Hz, 1H) 質量分析値 (ESI-MS, m/z): 428 (M'+1)

実施例 $13:N-\{2-クロロ-4-[(6,7-ジメトキシ-4-キノリル)]$ オキシ]フェニルN'-プロピルウレア

2-クロロー4~[(6,7-ジメトキシー4~キノリル) オキシ] アニリン(100 mg)をクロロホルム(7.5 ml)、トリエチルアミン(1 ml) に溶解した後、クロロホルムに溶解したトリホスゲン(99 mg)を加えて、加熱還流を5分間した。次にn-プロピルアミン(21 mg)を加えて、さらに加熱還流を2時間した。反応液に飽和炭酸水素ナトリウム水溶液を加えケイソウ土に保持し、クロロホルムで抽出した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(8/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を定量的に得た。

'H-NMR (CDC1, 400MHz): $\delta0.99$ (t, J=7.3Hz, 3Hz, 3Hz), 3Hz, 3Hz,

J = 2.7 Hz, 9. 0 Hz, 1H), 7. 21 (d, J = 2.7 Hz, 1H), 7. 43 (s, 1H), 7. 52 (s, 1H), 8. 27 (d, J = 9.0 Hz, 1H), 8. 50 (d, J = 5.1 Hz, 1H)

質量分析値(FD-MS, m/z): 415, 417 (M')

<u>実施例14:N-{2-クロロ-4-</u>[(6, 7-ジメトキシ-4-キノリル)]オキシ]フェニル] - [(6, 7-ジメトキシ-4-キノリル)]

2-クロロー4-[(6,7-ジメトキシー4-キノリル)オキシ]アニリン(122mg)、をクロロホルム(10m1)、トリエチルアミン(1m1)に溶解した後、ジクロロメタンに溶解したトリホスゲン(110mg)を加えて30分間室温で攪拌した。次に4-フルオロー2-メチルアニリン($126\mu1$)を加え、2時間室温で攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を142mg、収率79%で得た。「1+0mg(CDC1, 1+0mg0のMHz):1+0mg0の 1+0mg0の 1+0mg0の

質量分析値(ESI-MS, m/z): 482, 484 (M'+1) 実施例 $15:N-(5-プロモ-6-メチル-2-ピリジル)-N'-{2-ク$ $00-4-[(6,7-ジメトキシ-4-キノリル) オキシ]フェニル} ウレア$

2-クロロー4-[(6,7-ジメトキシー4-キノリル)オキシ]アニリン(12mg)、をクロロホルム(10ml)、トリエチルアミン(1ml)に溶解した後、ジクロロメタンに溶解したトリホスゲン(110mg)を加えて30分間室温で攪拌した。次に6-アミノー3-プロモー2-メチルピリジン(208mg)を加え、2時間室温で攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を155mg、収率77%

で得た。

'H-NMR (CDC1, 400MHz): $\delta2.69$ (s, 3H), 4.06 (s, 6H), 6.53 (d, J=5.4Hz, 1H), 6.56 (d, J=8.5Hz, 1H), 7.14-7.17 (m, 1H), 7.30 (d, J=2.7Hz, 1H), 7.44 (s, 1H), 7.53 (s, 1H), 7.75 (d, J=8.5Hz, 1H), 7.93 (s, 1H), 8.49 (d, J=9.0Hz, 1H), 8.52 (d, J=5.4Hz, 1H), 11.92 (s, 1H)

質量分析値(ESI-MS, m/z): 543, 545, 547 (M'+1) 実施例 $16:N-\{2-D-D-4-[(6,7-ジメトキシ-4-キノリル)]$ オキシ[7x-2] -N'-(5-D-D-2-ピリジル) ウレア

2-クロロー4ー[(6,7-ジメトキシー4ーキノリル)オキシ]アニリン(122mg)、をクロロホルム(10ml)、トリエチルアミン(1ml)に溶解した後、ジクロロメタンに溶解したトリホスゲン(110mg)を加えて30分間室温で攪拌した。次に2ーアミノー5ークロロピリジン(143mg)を加え、2時間室温で攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を148mg、収率82%で得た。「HーNMR(CDCl₃,400MH₂): δ 4.06(s,3H),4.06(s,3H),6.53(d,J=5.1H₂,1H),6.95(d,J=8.8H₂,1H),7.14-7.17(m,1H),7.31(d,J=2.7H₂,1H),7.44(s,1H),7.53(s,1H),7.64-7.67(m,1H),8.28(d,J=2.7H₂,1H),8.50-8.53(m,2H),8.92(s,1H),12.11(brs,1H)

質量分析値(ESI-MS, m/z)485, 487, 489:(M'+1) 実施例17: $N-(5-プロモ-2-ピリジル)-N'-\{2-クロロ-4-[(6, 7-ジメトキシ-4-キノリル) オキシ]フェニル} ウレア$

2-Dロロー4-[(6,7-ジメトキシ-4-キノリル)オキシ]アニリン(12 mg)、をクロロホルム(10 ml)、トリエチルアミン(1 ml)に溶解した後、ジクロロメタンに溶解したトリホスゲン(110 mg)を加えて30分間

室温で攪拌した。次に2-アミノー5-プロモピリジン(192mg)を加え、2時間室温で攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を108mg、収率55%で得た。 'H-NMR(CDC1, 400MHz): 64.06(s, 3H), 4.06(s, 3H), 6.53(d, J=5.1Hz, 1H), 6.80(d, J=8.8Hz, 1H), 7.14-7.18(m, 1H), 7.30(d, J=2.7Hz, 1H), 7.45(s, 1H), 7.53(s, 1H), 7.77-7.80(m, 1H), 8.15(s, 1H), 8.39(d, J=2.4Hz, 1H), 8.50(d, J=9.0Hz, 1H), 8.52(d, J=5.4Hz, 1H), 12.09(brs, 1H)

質量分析値 (ESI-MS, m/z): 529, 531, 533 (M'+1) 実施例 $18:N-\{2-DDD-4-[(6, 7-ジメトキシ-4-キノリル)$ オキシ]フェニル $\}$ -N' -(2-メトキシフェニル) ウレア

2-クロロー4-[(6,7-ジメトキシー4-キノリル)オキシ]アニリン(100 mg)をクロロホルム(10 m l)に溶解し、2- メトキシフェニルイソシアナート(54 mg)を加えて60 でで一晩攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(6/4)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を111 mg、収率77%で得た。

'H-NMR (CDC1, 400MHz): δ 3. 85 (s, 3H), 4.04 (s, 3H), 4.05 (s, 3H), 6.50 (d, J=5.1Hz, 1H), 6.89 -6.93 (m, 1H), 6.98-7.03 (m, 1H), 7.05-7.10 (m, 1H), 7.14 (dd, J=2.7Hz, 9.0Hz, 1H), 7.23 (d, J=2.7Hz, 1H), 7.35 (s, 1H), 7.36 (s, 1H), 7.44 (s, 1H), 7.52 (s. 1H), 8.05-8.07 (m, 1H), 8.34 (d, 1=9.0Hz, 1H), 1H0, 1H1, 1H2, 1H3, 1H3, 1H4, 1H5, 1H5, 1H6, 1H7, 1H8, 1H9, 1H

<u>実施例19:N-{2-クロロ-4-[(6,7-ジメトキシ-4-キノリル)</u>

オキシ]フェニル} - N'-(2-メチルフェニル) ウレア

2-0ロロー4ー[(6,7ージメトキシー4ーキノリル)オキシ]アニリン(122mg)をクロロホルム(10ml)に溶解し、0ートルイルイソシアナート(59mg)を加えて室温で一晩攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、少量のクロロホルムに溶解し、そこに多量のエーテルを加えた。析出した結晶を濾取し、表題の化合物を59mg、収率34%で得た。

'H-NMR (CDC1, 400MHz): $\delta2$. 38 (s, 3H), 4. 04 (s, 3H), 4. 05 (s, 3H), 6. 22 (s, 1H), 6. 47 (d, J=5. 1Hz, 1H), 7. 01 (s, 1H), 7. 11-7. 14 (m, 1H), 7. 18 (d, J=2. 7Hz, 1H), 7. 25-7. 35 (m, 3H), 7. 42 (s, 1H), 7. 46 (d, J=6. 8Hz, 1H), 7. 50 (s, 1H), 8. 37 (d, J=8. 8Hz, 1H), 8. 50 (d, J=5. 1Hz, 1H)

質量分析値(ESI-MS, m/z): 464, 466 (M'+1)

実施例 $20:N-\{2-クロロ-4-[(6,7-ジメトキシ-4-キノリル)]$ オキシ|フェニル $\}-N^*-(5-メチル-2-ピリジル)$ ウレア

 $2- \rho$ ロロー4ー[(6,7ージメトキシー4ーキノリル)オキシ]アニリン(122mg)、をクロロホルム(10ml)、トリエチルアミン(1ml)に溶解した後、ジクロロメタンに溶解したトリホスゲン(110mg)を加えて30分間室温で攪拌した。次に2-アミノー5-ピコリン(120mg)を加え、2時間室温で攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を119mg、収率69%で得た。

'H-NMR (CDC1, 400MHz): $\delta2$. 31 (s, 3H), 4.06 (s, 6H), 6.53 (d, J=5.4Hz, 1H), 6.76 (d, J=8.3Hz, 1H), 7.13-7.16 (m, 1H), 7.29 (d, J=2.7Hz, 1H), 7.43 (s, 1H), 7.49-7.52 (m, 1H), 7.54 (s, 1H), 8.00 (s, 1H), 8.14 (s, 1H), 8.52 (d, J=5.1Hz, 1H), 8.55 (d, J=9.0Hz, 1H), 12.57 (brs, 1H)

質量分析値(ESI-MS, m/z): 465, 467 (M'+1) 実施例21: $N-\{2-DDD-4-[(6, 7-ジメトキシ-4-キノリル)$ オキシ]フェニル $\}$ -N -(6-メチル-2-ピリジル) ウレア

2-クロロー4-[(6,7-ジメトキシー4-キノリル)オキシ]アニリン(122mg)、をクロロホルム(10m1)、トリエチルアミン(1m1)に溶解した後、ジクロロメタンに溶解したトリホスゲン(110mg)を加えて30分間室温で攪拌した。次に6-アミノー2-ピコリン(120mg)を加え、2時間室温で攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を73mg、収率42%で得た。

H-NMR (CDC1, 400MHz): $\delta2$. 57 (s, 3H), 4.06 (s, 6H), 6.54 (d, J=5.4Hz, 1H), 6.66 (d, J=8.1Hz, 1H), 6.83 (d, J=7.6Hz, 1H), 7.15-7.18 (m, 1H), 7.30 (d, J=2.7Hz, 1H), 7.44 (s, 1H), 7.54-7.59 (m, 2H), 8.36 (s, 1H), 8.52 (d, J=5.1Hz, 1H), 8.57 (d, J=9.0Hz, 1H), 12.45 (s, 1H)

質量分析値(ESI-MS, m/z): 465, 467 (M^*+1) 実施例22: $N-\{2-DDD-4-[(6,7-ジメトキシ-4-キノリル) オキシ] フェニル<math>N^*-(4-メトキシフェニル)$ ウレア塩酸塩

2-0ロロー4ー[(6,7-3)メトキシー4ーキノリル)オキシ] アニリン(100 mg)をクロロホルム(4 ml)に溶解した後、4ーメトキシフェニルイソシアナート(60 μ l)を加えて室温で一晩反応した。減圧下溶媒を留去し、得られた残さを少量のクロロホルムに溶解した。そこに多量のエーテルを加え、析出した沈殿を吸引濾過し、N-2-0ロロー4ー[(6,7-3)メトキシー4ーキノリル)オキシ]フェニルーN'-(4-3)ーンコニニル)ウレアを90 mg、収率67%で得た。ごれをメタノール4 mlにけん濁し、塩酸ーメタノール溶液を加え室温で4時間攪拌後、溶媒を留去すると表題の化合物が得られた。

'H-NMR (DMSO-d₄, 400MHz): $\delta 3$. 73 (s, 3H), 4. 0 3 (s, 3H), 4. 05 (s,3H), 6. 90 (d, J=9. 3Hz, 2H),

6. 97 (d, J = 6. 6Hz, 1H), 7. 37-7. 41 (m, 3H), 7. 62 (s, 1H), 7. 67 (d, J = 2. 7Hz, 1H), 8. 39 (d, J = 9. 0Hz, 1H), 8. 49 (s, 1H), 8. 82 (d, J = 6. 6Hz, 1H), 9. 49 (s, 1H)

<u>実施例23:N-{2-クロロ-4-[(6,7-ジメトキシ-4-キノリル)</u> オキシ|フェニル} - N'- (1-ナフチル) ウレア

2-クロロー4-[(6,7-ジメトキシー4-キノリル)オキシ]アニリン(122mg)をクロロホルム(10ml)に溶解し、1-ナフチルイソシアナート(75mg)を加えて室温で一晩攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、少量のクロロホルムに溶解し、そこに多量のエーテルを加えた。析出した結晶を濾取し、表題の化合物を105mg、収率57%で得た。

'H-NMR (CDC1, 400MHz): $\delta4$. 03 (s, 3H), 4. 04 (s, 3H), 6. 44 (d, J=5. 4Hz, 1H), 6. 72 (s, 1H), 7. 10 -7. 13 (m, 3H), 7. 41 (s, 1H), 7. 48 (s, 1H), 7. 55 -7. 69 (m, 4H), 7. 88-7. 96 (m, 2H), 8. 15 (d, J=7. 6Hz, 1H), 8. 38-8. 40 (m, 1H), 8. 48 (d, J=5. 1Hz, 1H)

質量分析値(ESI-MS, m/z): 500, 502 (M'+1) 実施例 24: $N-(2, 4-ジフルオロフェニル) -N'- <math>\{4-[(6, 7-\widetilde{y})\}$ メトキシー4-キノリル) オキシ]-2, $3-\widetilde{y}$ メチルフェニル $\}$ ウレア

4-[(6,7-i)メトキシー4-iナノリル)オキシ] -2, 3-iジメチルアニリン(710 mg)をクロロホルム(7 m l)に溶解した後、2, 4-iジフルオロフェニルイソシアナート(310 μ l)を加えて加熱還流を1時間した。そこに多量のエーテルを加え、析出した沈殿を吸引濾過し、表題の化合物を735 mg、収率70%で得た。

 $^{1}H-NMR$ (CDC1, 400MHz): δ 2. 14 (s, 3H), 2. 27 (s, 3H), 4. 04 (s, 3H), 4. 06 (s, 3H), 6. 27 (d, J = 5. 4Hz, 1H), 6. 78-6. 89 (m, 2H), 6. 95 (s, 1H),

7. 03 (d, J=8.5Hz, 1H), 7. 10 (s, 1H), 7. 40-7. 45 (m, 2H), 7. 61 (s, 1H), 8. 03-8. 12 (m, 1H), 8. 46 (d, J=5.4Hz, 1H)

質量分析値(FAB-MS, m/z):480 (M*+1)

実施例 $25: N-\{4-[(6,7-i)]++i)-4-i)$ オキシ[-2,3-i) オキシ[-2,3-i) オキン[-2,4-i] オキン[-2,3-i) カレア [-2,4-i] オキシ[-2,3-i) カレア [-2,4-i] オキシ[-2,3-i) カレア [-2,4-i] カレ [-2,4-i] カル [-2,4-i] カル

して得られた残さを、クロロホルム/メタノール(91/9)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を160mg、収率91%で得た。

H-NMR (CDC1, 400 MHz): $\delta 2.$ 12 (s, 3H), 2. 22 (s, 3H), 2. 25 (s, 3H), 4. 05 (s, 3H), 4. 06 (s, 3H), 6. 24 (d, J=5. 1Hz, 1H), 6. 33 (s, 1H), 6. 42 (s, 1H), 6. 94-7. 03 (m, 3H), 7. 43 (s, 1H), 7. 46-7. 55 (m, 2H), 7. 60 (s, 1H), 8. 43 (d, J=5. 1Hz, 1H)

実施例 $26:N-\{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2,3-ジメチルフェニル\}-N'-(3-フルオロ-2-メトキシフェニル)ウレア$

質量分析値(ESI-MS, m/z): 476 (M'+1)

4-[(6,7-i)] + 2-4-i) カキシ]-2, 3-i) メチルアニリン(120 mg)をクロロホルム(10 m l)、トリエチルアミン(1 m l)に溶解した後、ジクロロメタンに溶解したトリホスゲン(110 mg)を加えて30 分間室温で攪拌した。次に3-7 ルオロ-0 - アニシジン(132 μ l)を加え、2時間室温で攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(91/9)で展開するシリカゲル

クロマトグラフィーにより精製し、表題の化合物を23mg、収率13%で得た。 'H-NMR (CDC1:, 400MHz): $\delta2$. 15 (s. 3H), 2. 32 (s, 3H), 3. 84 (d, J=1. 7Hz, 3H), 4. 05 (s, 3H), 4. 08 (s, 3H), 6. 28 (d, J=5. 4Hz, 1H), 6. 72-6. 77 (m, 1H), 6. 96-7. 09 (m, 3H), 7. 43 (d, J=8. 5Hz, 1H), 7. 46 (s, 1H), 7. 60 (s, 1H), 7. 62 (s, 1H), 8. 02-8. 05 (m, 1H), 8. 46 (d, J=5. 4Hz, 1H)

質量分析値(ESI-MS, m/z):492 (M'+1)

実施例27: $N-(5-プロモ-6-メチル-2-ピリジル)-N'-{4-[(6,7-ジメトキシ-4-キノリル) オキシ]-2,3-ジメチルフェニル}ウレア$

4-[(6,7-i)] + 2-4-i] - 2,3-i) + 2-2 リン (120mg) をクロロホルム (10m1)、トリエチルアミン (1m1) に溶解した後、ジクロロメタンに溶解したトリホスゲン (110mg) を加えて30分間室温で攪拌した。次に6-7ミノー3-7ロモー2-メチルピリジン (208mg) を加え、2時間室温で攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール (91/9) で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を103mg、収率52%で得た。

'H-NMR (CDC1, 400MHz): $\delta 2$. 16 (s, 3H), 2. 42 (s, 3H), 2. 65 (s, 3H), 4. 06 (s, 3H), 4. 08 (s, 3H), 6. 32 (d, J=5. 1Hz, 1H), 6. 64 (d, J=8. 8Hz, 1H), 7. 04 (d, J=8. 8Hz, 1H), 7. 44 (s, 1H), 7. 64 (s, 1H), 7. 74 (d, J=8. 8Hz, 1H), 7. 91 (d, J=8. 8Hz, 1H), 8. 29 (s, 1H), 8. 45 (d, J=5. 4Hz, 1H), 11. 30 (b r s, 1H)

質量分析値(ESI-MS、m/z): 537, 539 (M'+1) 実施例 28:N-(5-2) 1-2 1 リン(3.00g)をクロロホルム(150ml)、トリエチルアミン(6ml)に溶解した後、ジクロロメタンに溶解したトリホスゲン(2.74g)を加えて室温で30分間攪拌した。次に2-アミノ-5-クロロピリジン(2.38g)を加えて、さらに室温で2時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(20/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を3.4g、収率77%で得た。

'H-NMR (CDC1, 400MHz): $\delta 2$. 16 (s, 3H), 2. 3 8 (s, 3H), 4. 06 (s, 3H), 4. 08 (s, 3H), 6. 31 (d, J=5. 4Hz, 1H), 6. 89 (d, J=8. 8Hz, 1H), 7. 04 (d, J=8. 8Hz, 1H), 7. 44 (s, 1H), 7. 62-7. 68 (m, 2H), 7. 90 (d, J=8. 8Hz, 1H), 8. 23 (d, J=2. 4Hz, 1H), 8. 45 (d, J=5. 4Hz, 1H), 8. 50 (s, 1H), 11. 23 (bright)

質量分析値(ESI-MS, m/z): 479, 481 (M'+1) 実施例 $29:N-(5-プロモ-2-ピリジル)-N'-{4-[(6,7-ジメトキシ-4-キノリル) オキシ]-2,3-ジメチルフェニル} ウレア$

4-[(6, 7-ジメトキシー4-キノリル) オキシ]-2, 3-ジメチルアニリン(120mg)をクロロホルム(10ml)、トリエチルアミン(1ml)に溶解した後、ジクロロメタンに溶解したトリホスゲン(110mg)を加えて30分間室温で攪拌した。次に2-アミノ-5-プロモピリジン(192mg)を加え、2時間室温で攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(91/9)で展開するシリカゲルクロマトグラフィーにより精製した。溶媒を留去し、少量のメタノールと多量のエーテルで結晶を析出させ濾取し、表題の化合物を80mg、収率41%で得た。

'H-NMR (CDC1, 400MHz): $\delta2.16$ (s, 3H), 2.38 (s, 3H), 4.06 (s, 3H), 4.08 (s, 3H), 6.31 (d, J=5.1

Hz, 1H), 6. 96 (d, J=8. 5Hz, 1H), 7. 03 (d, J=8. 8Hz, 1H), 7. 45 (s, 1H), 7. 64 (s, 1H), 7. 75-7. 7 (m, 1H), 7. 89 (d, J=8. 8Hz, 1H), 8. 31 (d, J=2. 4Hz, 1H), 8. 45 (d, J=5. 4Hz, 1H), 8. 81 (s, 1H), 11. 17 (brs, 1H)

質量分析値(ESI-MS, m/z):523,525 (M:+1)

実施例 $30: N-\{4-[(6, 7-ジメトキシ-4-キノリル) オキシ]-2, 3-ジメチルフェニル\}-N'-(2-メトキシフェニル) ウレア$

4-[(6,7-i)メトキシー4-iナノリル)オキシ]-2,3-iジメチルアニリン(120 mg)をクロロホルム(10 ml)に溶解し、2-iメトキシフェニルイソシアナート(60 μ l)を加えて室温で一晩攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、少量のクロロホルムに溶解し、そこに多量のエーテルを加えた。析出した結晶を濾取し、表題の化合物を131 mg、収率75%で得た。

'H-NMR (CDC1, 400MHz): $\delta 2$. 16 (s, 3H), 2. 32 (s. 3H), 3. 81 (s, 3H), 4. 06 (s, 3H), 4. 08 (s, 3H), 6. 25 (s, 1H), 6. 26 (d, J=5. 4Hz, 1H), 6. 85-6. 87 (m, 1H), 6. 97-7. 07 (m, 4H), 7. 41 (d, J=8. 5Hz, 1H), 7. 44 (s, 1H), 7. 62 (s, 1H), 8. 15-8. 17 (m, 1H), 8. 45 (d, J=5. 4Hz, 1H)

質量分析値(ESI-MS, m/z): 474 (M'+1)

実施例 $31:N-\{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2,3-ジメチルフェニル\}-N'-(2-メチルフェニル)ウレア$

 $4-[(6,7-ジメトキシ-4-キノリル) オキシ]-2,3-ジメチルアニリン (120 mg)をクロロホルム (10 ml)に溶解し、<math>\underline{o}$ -トルイルイソシアナート $(55 \mu 1)$ を加えて室温で一晩攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、少量のクロロホルムに溶解し、そこに多量のエーテルを加えた。析出した結晶を遮取し、表題の化合物を130 mg、収率70%で得た。

'H-NMR (CDC1, 400MHz): $\delta2.12$ (s, 3H), 2.22 (s, 3H), 2.26 (s, 3H), 4.05 (s, 3H), 4.07 (s, 3H), 6.23-6.28 (m, 3H), 7.02 (d, J=8.5Hz, 1H), 7.14-7.17 (m, 1H), 7.24-7.29 (m, 2H), 7.43 (s. 1H), 7.49 (d, J=8.5Hz, 1H), 7.60 (s, 1H), 7.63 (d, J=7.3Hz, 1H), 8.43 (d, J=5.4Hz, 1H)

質量分析値(ESI-MS, m/z): 458 (M'+1)

実施例32:N-(4-2)00-2-メチルフェニル $)-N'-\{4-[(6, 7-2)]$ 2-ジメトキシー4-11-1-1-2-1-2-3-ジメチルフェニル $\}$ ウレア

'H-NMR (CDC1, 400MHz): $\hat{o}2.14$ (s, 3H), 2.18 (s, 3H), 2.27 (s, 3H), 4.05 (s, 3H), 4.07 (s, 3H), 6.24 (d, J=5.4Hz, 1H), 6.33 (s, 1H), 6.40 (s, 1H), 7.03 (d, J=8.5Hz, 1H), 7.19-7.21 (m, 2H), 7.42-7.44 (m, 2H), 7.60 (s, 1H), 7.65 (d, J=9.0 Hz, 1H), 8.44 (d, J=5.1Hz, 1H)

質量分析値(ESI-MS, m/z): 492, 494 (M'+1)

<u>実施例33:N-{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2,3-ジメチルフェニル}-N'-(2-ピリジル)ウレア</u>

4-[(6,7-i)メトキシー4-iナノリル)オキシ]-2,3-iメチルアニリン(120mg)をクロロホルム(10m1)、トリエチルアミン(1m1)に溶解した後、ジクロロメタンに溶解したトリホスゲン(110mg)を加えて3

0分間室温で攪拌した。次に2-アミノピリジン(104mg)を加え、一晩加熱還流した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(91/9)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を72mg、収率44%で得た。

'H-NMR (CDC1, 400MHz): $\delta 2$. 16 (s, 3H), 2. 41 (s, 3H), 4. 06 (s, 3H), 4. 08 (s, 3H), 6. 32 (d, J=5. 4Hz, 1H), 6. 92-6. 98 (m, 2H), 7. 04 (d, J=8. 8Hz, 1H), 7. 44 (s, 1H), 7. 65 (s, 1H), 7. 67-7. 69 (m, 1H), 7. 97 (d, J=8. 8Hz, 1H), 8. 25-8. 27 (m, 1H), 8. 45 (d, J=5. 1Hz, 1H), 8. 72 (s, 1H), 11. 77 (br, 1H)

質量分析値(ESI-MS, m/z): 445 (M'+1)

実施例 $34:N-\{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2,3-ジメチルフェニル\}-N'-(5-メチル-2-ピリジル)ウレア$

4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2,3-ジメチルアニリン(120mg)をクロロホルム(10m1)、トリエチルアミン(1m1)に溶解した後、ジクロロメタンに溶解したトリホスゲン(110mg)を加えて30分間室温で攪拌した。次に2-アミノ-5-ピコリン(120mg)を加え、2時間室温で攪拌した。反応被にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(91/9)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を122mg、収率72%で得た。'H-NMR(CDC1,400MHz): 62.15(s,3H),2.28(s,3H),2.39(s,3H),4.04(s,3H),4.07(s,3H),6.32(d,J=5.4Hz,1H),6.90(d,J=8.3Hz,1H),7.02(d,J=8.8Hz,1H),7.43(s,1H),7.45-7.48(m,1H),7.64(s,1H),7.99(d,J=8.8Hz,1H),8.06(d,J=1.5Hz,1H),8.44(d,J=5.4Hz,1H),9.23(s,1H),11.77(br,1H)

質量分析値 (FD-MS, m/z): 458 (M')

実施例 $35:N-\{4-[(6,7-ジメトキシ-4-キノリル) オキシ]-2,3-ジメチルフェニル\}-N'-(6-メチル-2-ピリジル) ウレア$

4-[(6, 7-ジメトキシー4ーキノリル) オキシ]-2, 3-ジメチルアニリン(120mg)をクロロホルム(10ml)、トリエチルアミン(1ml)に溶解した後、ジクロロメタンに溶解したトリホスゲン(110mg)を加えて30分間室温で攪拌した。次に6-アミノ-2-ピコリン(120mg)を加え、一晩加熱還流した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(40/60)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を64mg、収率38%で得た。「H-NMR(CDC1,400MHz):δ2.16(s,3H),2.44(s,3H),2.54(s,3H),4.06(s,3H),4.08(s,3H),6.32(d,J=5.4Hz,1H),6.61(d,J=8.3Hz,1H),6.82(d,J=7.6Hz,1H),7.04(d,J=8.8Hz,1H),7.44(s,1H),7.53-7.57(m,1H),7.65(s,1H),7.79(s,1H),7.99(d,J=8.8Hz,1H),8.44(d,J=5.1Hz,1H),11.76(br,1H)

質量分析値 (FD-MS, m/z): 458 (M')

実施例36: $N-\{4-[(6,7-ジメトキシ-4-キノリル) オキシ]-2,$ 3-ジメチルフェニル $\}-N'-(4-メトキシフェニル)$ ウレア

4-[(6,7-i)] トキシー4-i リル (100 mg) をクロロホルム (4 ml) に溶解した後、4-i トキシフェニルイソシアナート (60 μ l) を加えて室温で一晩反応した。減圧下溶媒を留去し、得られた残さを少量のクロロホルムに溶解した。そこに多量のエーテルを加え、析出した沈殿を吸引濾過し、表題の化合物を115 mg、収率78%で得た。

'H-NMR (CDC1, 400MHz): $\delta2.02$ (s, 3H), 2.30 (s, 3H), 3.76 (s, 3H), 4.06 (s, 3H), 4.12 (s, 3H), 6.46 (d, J=6.3Hz, 1H), 6.78 (d, J=9.0Hz, 2H), 6.91 (d, J=8.8Hz, 1H), 7.39 (d, J=9.0Hz, 2H),

7. 67 (s, 1H), 7. 69 (d, J=8. 8Hz, 1H), 7. 92 (s, 1H), 8. 20-8. 23 (m, 1H)

質量分析値(ESI-MS, m/z): 474 (M'+1)

<u>実施例37:N-(2,4-ジフルオロフェニル)-N'-{4-[(6,7-ジ</u>メトキシ-4-キノリル)オキシ]-2,5-ジメチルフェニル}ウレア

4-[(6,7-i)]メトキシー4-iナノリル)オキシ] -2,5-iジメチルアニリン(200mg)をクロロホルム(15ml)に溶解した後、2,4-iジフルオロフェニルイソシアナート(88μ l)を加えて加熱還流を1時間した。反応液を、クロロホルム/アセトン(4/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を287mg、収率97%で得た。

'H-NMR (CDC1;, 400MHz): δ 2. 17 (s, 3H), 2. 26 (s,3H), 4. 05 (s, 3H), 4. 06 (s, 3H), 6. 31 (d, J=5. 4Hz, 1H), 6. 57 (s, 1H), 6. 81-6. 95 (m, 3H), 7. 00 (s, 1H), 7. 43 (s, 1H), 7. 55 (s, 1H), 7. 59 (s, 1H), 8. 05-8. 13 (m, 1H), 8. 47 (d, J=5. 4Hz, 1H) 質量分析値 (FD-MS, m/z): 479 (M')

<u>実施例38:N-{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2,5-ジメチルフェニル}-N'-プロピルウレア</u>

4-[(6,7-i)]メトキシー4-iリル)オキシ] -2,5-iジメチルアニリン(150mg)をクロロホルム(13ml)、トリエチルアミン(1.5ml)に溶解した後、クロロホルムに溶解したトリホスゲン(151mg)を加えて、加熱還流を5分間した。次にn-プロピルアミン(33mg)を加えて、さらに加熱還流を2時間した。反応液に飽和炭酸水素ナトリウム水溶液を加えケイソウ土に保持し、クロロホルムで抽出した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(4/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を178mg、収率95%で得た。

H-NMR (CDC1, 400MHz): $\delta0$. 94 (t, J=7. 3Hz, 3H), 1.51-1.65 (m, 2H), 2.15 (s, 3H), 2.26 (s, 3H), 3.21-3.28 (m, 2H), 4.05 (s, 3H), 4.06 (s,

3H), 4.63-4.69 (m, 1H), 5.97 (s, 1H), 6.31 (d, J=5.1Hz, 1H), 6.98 (s, 1H), 7.43 (s, 2H), 7.58 (s, 1H), 8.46 (d, J=5.4Hz, 1H)

質量分析値 (FD-MS, m/z): 409 (M')

<u>実施例39:N-(4-クロロ-2-メチルフェニル)-N'-{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2,5-ジメチルフェニル}ウレア</u>

4-[(6, 7-ジメトキシー4ーキノリル)オキシ]-2, 5-ジメチルアニリン(100mg)をクロロホルム(10ml)、トリエチルアミン(1ml)に溶解した後、ジクロロメタンに溶解したトリホスゲン(92mg)を加えて30分間室温で攪拌した。次に4ークロロ-2ーメチルアニリン(44μl)を加え、室温で一晩攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、少量のクロロホルムに溶解し、そこに多量のエーテルを加えた。析出した結晶を遮取し、表題の化合物を118mg、収率78%で得た。「H-NMR(CDCl, 400MHz): 62.16(s、3H), 2.21(s, 3H), 2.23(s, 3H), 4.05(s, 3H), 4.06(s, 3H), 6.28(d, J=5.4Hz, 1H), 6.30(s, 1H), 6.32(s, 1H), 6.98(s, 1H), 7.22-7.23(m, 2H), 7.43(s, 1H), 7.58(s, 1H), 7.59-7.63(m, 2H), 8.45(d, J=5.1Hz, 1H)

質量分析値(ESI-MS, m/z): 492, 494 (M'+1) 実施例40: N- $\{4-[(6,7-i)]$ 大キシー4ーキノリル)オキシ]-2, 5-i 大チルフェニル $\{i$ - N' - (4-i - 1) カレア 4-i - (6, i - i

去して得られた残さを、少量のクロロホルムに溶解させ、そこに多量のエーテルを加えた。析出した結晶を濾取し、表題の化合物を108mg、収率74%で得た。

'H-NMR (CDC1, 400MHz): δ2. 15 (s, 6H), 2. 30 (s, 3H), 4. 05 (s, 3H), 4. 06 (s, 3H), 6. 24 (s, 2H), 6. 28 (d, J=5. 1Hz, 1H), 6. 94 (s, 1H), 6. 96-7. 00 (m, 2H), 7. 42 (s, 1H), 7. 49-7. 52 (m, 1H), 7. 58 (s, 1H), 7. 64 (s, 1H), 8. 44 (d, J=5. 1Hz, 1H) 質量分析値 (ESI-MS, m/z): 476 (M'+1)

実施例 $41:N-\{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2,5-ジメチルフェニル\}-N'-(3-フルオロ-2-メトキシフェニル)ウレア$

4-[(6,7-ジメトキシ-4-キノリル) オキシ]-2,5-ジメチルアニリン (100mg)をクロロホルム (10ml)、トリエチルアミン (1ml) に溶解した後、ジクロロメタンに溶解したトリホスゲン (92mg)を加えて30分間室温で攪拌した。次に<math>3-フルオロ-0ーアニシジン (44 μ l)を加え、室温で一晩攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン (2 χ 1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を126mg、収率83%で得た。「H-NMR (CDCl,400MHz): δ 2.16(s,3H),2.27(s,3H),3.83(d,J=1.7Hz,3H),4.04(s,3H),4.07(s,3H),6.31(d,J=5.1Hz,1H),6.74-6.79(m,1H),6.97-7.03(m,3H),7.44(s,1H),7.57(s,1H),7.60(s,1H),7.66(s,1H),8.02-8.04(m,1H),8.48(d,J=5.1Hz,1H)

質量分析値(ESI-MS, m/z): 492 (M'+1)

実施例 $42: N-\{4-[(6, 7-ジメトキシ-4-キノリル) オキシ]-2, 5-ジメチルフェニル\}-N'-(2-メチルフェニル) ウレア$

4-[(6,7-i)]メトキシー4-iキノリル)オキシ]-2,5-iジメチルアニリン(100mg)をクロロホルム(10ml)に溶解し、0-トルイルイソシアナート(46μ l)を加えて室温で一晩攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を111mg、収率79%で得た。

'H-NMR (CDC1, 400MHz): δ 2. 12 (s, 6H), 2. 26 (s, 3H), 4. 03 (s, 3H), 4. 05 (s, 3H), 6. 27 (d, J=5. 1 Hz, 1H), 6. 77 (s, 1H), 6. 81 (s, 1H), 6. 91 (s, 1H), 7. 11-7. 15 (m, 1H), 7. 22 (s, 1H), 7. 24 (s, 1H), 7. 42 (s, 1H), 7. 59 (s, 1H), 7. 63 (d, J=7. 8Hz, 1H), 7. 68 (s, 1H), 8. 43 (d, J=5. 4Hz, 1H) 質量分析値 (ESI-MS, m/z): 458 (M'+1)

実施例 $43:N-\{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2,5-ジメチルフェニル\}-N'-(2-メトキシフェニル)ウレア$

 $4-[(6,7-ジメトキシ-4-キノリル) オキシ]-2,5-ジメチルアニリン(100mg)をクロロホルム(10ml)に溶解し、<math>2-メトキシフェニルイソシアナート(49\mul)を加えて一晩加熱還流した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を定量的に得た。$

H-NMR (CDC1, 400MHz): $\delta 2$. 14 (s, 3H), 2. 24 (s, 3H), 3. 75 (s, 3H), 4. 03 (s, 3H), 4. 07 (s, 3H), 6. 31 (d, J=5. 1Hz, 1H), 6. 84-6. 87 (m, 1H), 6. 95-7. 03 (m, 3H), 7. 06 (s, 1H), 7. 44 (s, 1H), 7. 56 (s, 1H), 7. 61 (s, 1H), 7. 63 (s, 1H), 8. 17-8. 20 (m, 1H), 8. 46 (d, J=5. 1Hz, 1H)

質量分析値 (ESI-MS, m/z): 474 (M'+1)

<u>実施例44:N-(5-ブロモ-6-メチル-2-ピリジル)-N'-{4-[(6,</u>

7-ジメトキシー4-キノリル)オキシ]-2,5-ジメチルフェニル}ウレア4-[(6,7-ジメトキシー4-キノリル)オキシ]-2,5-ジメチルアニリン(100mg)をクロロホルム(10m1)、トリエチルアミン(1m1)に溶解した後、ジクロロメタンに溶解したトリホスゲン(92mg)を加えて30分間室温で攪拌した。次に6-アミノ-3-ブロモ-2-メチルピリジン(69mg)を加え、室温で一晩攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、少量のクロロホルムに溶解し、そこに多量のエーテルを加えた。析出した結晶を濾取し、表題の化合物を80mg、収率48%で得た。

'H-NMR (CDC1, 400MHz): δ 2. 18 (s, 3H), 2. 42 (s, 3H), 2. 65 (s, 3H), 4. 06 (s, 3H), 4. 08 (s,

3H), 6. 34 (d, J=5. 4Hz, 1H), 6. 57 (d, J=8. 5Hz,

1H), 6. 98 (s, 1H), 7. 43 (s, 1H), 7. 62 (s, 1H), 7.

70 (s, 1H), 7. 74 (d, J=8.5Hz, 1H), 8. 05 (s, 1H),

8. 46 (d, J = 5. 4Hz, 1H), 11. 17 (br, 1H)

質量分析値(ESI-MS, m/z):537,539 (M'+1)

実施例45; $N-(2, 6-ジメトキシ-3-ピリジル) <math>-N'-\{4-[(6, 7-3)]$ $N'-\{4-[(6, 7-2)]$ $N'-\{4-[(6, 7-2$

4-[(6,7-ジメトキシー4-キノリル)オキシ]-2,5-ジメチルアニリン(100mg)をクロロホルム(10ml)、トリエチルアミン(1ml)に溶解した後、ジクロロメタンに溶解したトリホスゲン(92mg)を加えて30分間室温で攪拌した。次に3-アミノ-2,6-ジメトキシピリジン(70mg)を加え、室温で一晩攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、グロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、少量のクロロホルムに溶解し、そこに多量のエーテルを加えた。析出した結晶を適取し、表題の化合物を124mg、収率79%で得た。

 $^{\prime}H-NMR$ (CDC1, 400MHz): δ 2. 17 (s, 3H), 2. 27 (s,

- 74 -

3H), 3. 89 (s, 3H), 3. 95 (s, 3H), 4. 06 (s, 3H), 4. 07 (s, 3H), 6. 31 (d, J=5. 1Hz, 1H), 6. 34 (d, J=8. 5Hz, 1H), 6. 36 (s, 1H), 6. 74 (s, 1H), 6. 99 (s, 1H), 7. 44 (s, 1H), 7. 57 (s, 1H), 7. 60 (s, 1H), 8. 20 (d, J=8. 3Hz, 1H), 8. 46 (d, J=5. 1Hz, 1H) 質量分析値 (ESI-MS, m/z):505 (M'+1)

実施例 $46:N-\{4-[(6,7-ジメトキシ-4-キノリル) オキシ]-2,5-ジメチルフェニル\}-N'-(4-メトキシフェニル) ウレア$

 $4-[(6,7-ジメトキシ-4-キノリル) オキシ] -2,5-ジメチルアニリン (100 mg) をクロロホルム (4 m l) に溶解した後、<math>4-メトキシフェニルイソシアナート (60 \mu l) を加えて室温で一晩反応した。減圧下溶媒を留去し、得られた残さを少量のクロロホルムに溶解した。そこに多量のエーテルを加え、析出した沈殿を吸引濾過し、表題の化合物を<math>110 mg$ 、収率74%で得た。

'H-NMR (CDCl₃, 400MHz): δ 2. 07 (s, 3H), 2. 26 (s, 3H), 3. 76 (s, 3H), 4. 03 (s, 3H), 4. 08 (s, 3H), 6. 39 (d, J=6. 1Hz, 1H), 6. 80 (d, J=9. 0Hz, 2H), 6. 87 (s, 1H), 7. 36 (d, J=9. 0Hz, 2H), 7. 55 (br, 1H), 7. 62 (s, 1H), 7. 67 (s, 1H), 7. 80 (s, 1H), 8. 19 (br, 1H), 8. 27 (d, J=6. 1Hz, 1H) 質量分析値 (ESI-MS, m/z): 474 (M'+1)

実施例 $47:N-\{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2$ -ニトロフェニル $\}$ -N'-プロピルウレア

4-[(6,7-i)]メトキシー4-iリル)オキシ] -2-iトロアニリン(150 mg)をクロロホルム(10 ml)、トリエチルアミン(1.5 ml)に溶解した後、クロロホルムに溶解したトリホスゲン(144 mg)を加えて、加熱還流を5分間した。次にn-iロピルアミン(31 mg)を加えて、さらに加熱還流を2時間した。反応液に飽和炭酸水素ナトリウム水溶液を加えケイソウ土に保持し、クロロホルムで抽出した。減圧下溶媒を留去して得られた残さを、クロロ

ホルム/アセトン (4/1) で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を $160 \, \mathrm{mg}$ 、収率 $86 \, \%$ で得た。

'H-NMR (CDC1, 400MHz): $\delta1$. 01 (t, J=7. 5Hz, 3 H), 1. 59-1. 69 (m, 2H), 3. 27-3. 34 (m, 2H), 4. 05 (s, 3H), 4. 06 (s, 3H), 4. 95-5. 01 (br, 1H), 6. 47 (d, J=5. 4Hz, 1H), 7. 43-7. 51 (m, 3H), 8. 04 (d, J=2. 7Hz, 1H), 8. 53 (d, J=5. 4Hz, 1H), 8. 81 (d, J=9. 3Hz, 1H), 9. 74-9. 79 (br, 1H)

質量分析値 (FD-MS, m/z): 426 (M') 実施例48: N-(2, 4-ジフルオロフェニル) -N'-{4-[(6, 7-ジ

メトキシー4ーキノリル)オキシ]-2-ニトロフェニル}ウレア

4-[(6,7-i)]メトキシー4-iリル)オキシ] -2-iトロアニリン(100m) をクロロホルム(10m)、トリエチルアミン(1m) に溶解した後、クロロホルムに溶解したトリホスゲン(96mg) を加えて、加熱還流を5分間した。次に2, 4-iフルオロアニリン(45mg) を加えて、さらに加熱還流を1晩した。反応液に飽和炭酸水素ナトリウム水溶液を加えケイソウ土に保持し、クロロホルムで抽出した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(3/1) で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を81mg、収率56%で得た。

 $^{1}H-NMR$ (CDC1, 400MHz): δ 4. 05 (s, 3H), 4. 06 (s, 3H), 6. 50 (d, J=5. 1Hz, 1H), 6. 91-6. 98 (m, 3H), 7. 45 (s, 1H), 7. 49 (s, 1H), 7. 50-7. 54 (m, 1H), 7. 88-7. 97 (m, 1H), 8. 05 (d, J=2. 9Hz, 1H), 8. 54 (d, J=5. 1Hz, 1H), 8. 77 (d, J=9. 3Hz, 1H), 9. 98 (s, 1H)

質量分析値 (FD-MS, m/z):496 (M')

実施例 $49:N-\{3,5-ジクロロ-4-[(6,7-ジメトキシ-4-キノリル)]$ オキシ]フェニル]-N'-(2,4-ジフルオロフェニル)]ウレア

3, 5ージクロロー4ー[(6, 7ージメトキシー4ーキノリル) オキシ]アニ

リン(5 3 mg)をクロロホルム(5 m l)に溶解し、2,4 - ジフルオロフェニルイソシアナート(3 4 μ l)を加えて一晩加熱還流した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2 / l)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を5 6 mg、収率7 4%で得た。 'H-NMR(CDCl,400MHz): δ 4.05 (s,3H),4.09 (s,3H),6.26 (d,J=5.4Hz,1H),6.86-6.93 (m,2H),7.05 (s,1H),7.44 (s,1H),7.46 (s,1H),7.60 (s,2H),7.64 (s,1H),8.01-8.05 (m,1H),8.48 (d,J=5.4Hz,1H)

質量分析値(FAB-MS, m/z): 520, 522, 524 (M'+1) 実施例 50:N-(2,4-ジフルオロフェニル)-N'-(2-フルオロ-4-16-3) - (2-フルオロ-4-19-3) - (2-フルオロ-4-19-3) ウレア

N-(2,4-i)フルオロフェニル) $-N'-\{2-i)$ フェニル $-4-\{(7-i)$ ドロキシ-6-i トキシ-4-i フェニル-4-i フェニル-1 フェニ

'H-NMR (CDC1, 400MHz): $\delta2$. 57 (t, J=4. 4Hz, 4H), 2. 88 (m, 2H), 3. 69 (t, J=4. 4Hz, 4H), 3. 94 (s, 3H), 4. 26 (t, J=5. 9Hz, 2H), 6. 43 (d, J=5. 1Hz, 1H), 6. 77-6. 95 (m, 4H), 7. 35 (s, 1H), 7. 43 (s, 1H), 7. 96-8. 02 (m, 1H), 8. 13-8. 17 (m, 1H), 8. 44 (d, J=5. 1Hz, 1H)

<u>実施例51:N-(2-クロロ-4-{[6-メトキシ-7-(2-モルホリノエ</u>

<u>トキシ)-4-キノリル]オキシ}フェニル)-N'-(2、4-ジフルオロフェニル)</u>ウレア

 $N-\{2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キノリル) オキシ] フェニル \} -N'-(2,4-ジフルオロフェニル) ウレア <math>(174mg)$ を N, N-ジメチルホルムアミド <math>(9m1) に溶解した後、炭酸カリウム (64mg)、ヨウ化テトラーn-ブチルアンモニウム <math>(14mg)、N-(2-クロロエチル) モルホリン塩酸塩 (86mg) を加えた。70で17時間攪拌後、反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール <math>(20/1) で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を75mg、収率35%で得た。

'H-NMR (CDC1, 400MHz): $\delta 2.60-2.67$ (m, 4H), 2.95 (t, J=6.0Hz, 2H), 3.71-3.79 (m, 4H), 4.01 (s, 3H), 4.33 (t, J=6.0Hz, 2H), 6.50 (d, J=5.1Hz, 1H), 6.85-6.97 (m, 2H), 7.09-7.17 (m, 2H), 7.22-7.27 (m, 2H), 7.42 (s, 1H), 7.50 (s, 1H), 7.97-8.01 (m, 1H), 8.28 (d, J=9.0Hz, 1H), 8.51 (d, J=5.1Hz, 1H)

質量分析値(ESI-MS, m/z): 585, 587 (M'+1) 実施例52:N-(2, 4-ジフルオロフェニル)-N'-(4-{[6-メトキシ-7-(2-モルホリノエトキシ)-4-キノリル] オキシ}-2, 5-ジメチルフェニル)ウレア

 $N-(4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル]オキシ\}$ -2, 5-ジメチルフェニル)-N'-(2, 4-ジフルオロフェニル)ウレア (366mg)をN, N-ジメチルホルムアミド(6ml)に溶解し、水酸化パラジウム (366mg)を加え、水素雰囲気下室温で1晩攪拌した。減圧下溶媒を留去しクロロホルム、メタノールに溶解し、セライト濾過した。次に、減圧下溶媒を留去して得られた残さ(213mg)、炭酸カリウム(109mg)、ヨウ化テトラーn-ブチルアンモニウム(12mg)、N-(2-クロロエチル)モル

ホリン塩酸塩(74mg)をN、Nージメチルホルムアミド(5ml)に溶解し70℃で1晩攪拌した。減圧下溶媒を留去し、得られた残さに水を加えクロロホルムで抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(10/1)で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を106mg、収率55%で得た。

'H-NMR (CDC1, 400MHz): $\delta2$. 17 (s, 3H), 2. 27 (s, 3H), 2. 64 (t, J=4. 6Hz, 4H), 2. 96 (t, J=6. 0Hz, 2H), 3. 76 (t, J=4. 6Hz, 4H), 4. 03 (s, 3H), 4. 34 (t, J=6. 0Hz, 2H), 6. 31 (d, J=5. 4Hz, 1H), 6. 4 7 (s, 1H), 6. 81-6. 92 (m, 3H), 7. 00 (s, 1H), 7. 4 3 (s, 1H), 7. 54 (s, 1H), 7. 58 (s, 1H), 8. 05-8. 1 2 (m, 1H), 8. 47 (d, J=5. 4Hz, 1H)

<u>実施例53:N-(4-{[6-メトキシ-7-(2-モルホリノエトキシ)-4</u> -キノリル] オキシ}-2, 5-ジメチルフェニル)-N'-(2-メトキシフェニル) ウレア

 $N-(4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル] オキシ}-2$, 5-ジメチルフェニル)-N'-(2-メトキシフェニル) ウレア (363 mg)をN, N-ジメチルホルムアミド (6 m l) に溶解し、水酸化パラジウム (363 mg)を加え、水素雰囲気下室温で1晩攪拌した。減圧下溶媒を留去しクロロホルム、メタノールに溶解し、セライト濾過した。次に、減圧下溶媒を留去して得られた残さ(191 mg)、炭酸カリウム(219 mg)、ヨウ化テトラー n-ブチルアンモニウム(12 mg)、N-(2-D ロロエチル)モルホリン塩酸塩(148 mg)をN, N-ジメチルホルムアミド(5 m l)に溶解し70℃で1晩攪拌した。減圧下溶媒を留去し、得られた残さに水を加えクロロホルムで抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(10/1)で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を101 mg、収率55%で得た。

'H-NMR (CDC1, 400MHz): $\delta2$. 17 (s, 3H), 2. 28 (s, 3H), 2. 64 (t, J=4. 5Hz, 4H), 2. 96 (t, J=5. 9Hz, 2H), 3. 76 (t, J=4. 6Hz, 4H), 3. 83 (s, 3H), 4. 04 (s, 3H), 4. 34 (t, J=6. 0Hz, 2H), 6. 30 (d, J=5. 4Hz, 2H), 6. 86-6. 90 (m, 1H), 6. 96-7. 06 (m, 3H), 7. 16 (s, 1H), 7. 43 (s, 1H), 7. 57 (s, 1H), 7. 59 (s, 1H), 8. 11-8. 16 (m, 1H), 8. 46 (d, J=5. 4Hz, 1H)

<u>実施例54:N-(2-クロロ-4-{[6-メトキシ-7-(2-メトキシエトキシ)-4-キノリル</u>]オキシ}フェニル)-N'-(2,4-ジフルオロフェニル)ウレア

ジメチルスルホキシド (2 m 1) に水素化ナトリウム (6 0 w%、153 m g) を加え、60℃で30分攪拌後室温にし、4-アミノ-3-クロロフェノール塩酸塩 (3 4 3 m g) を加え室温で10分攪拌した。次にジメチルスルホキシド (2 m 1) に溶解した4-クロロー6-メトキシー7- (2-メトキシエトキシ) キノリン (2 5 4 m g) を加え110℃で一晩攪拌した。反応液に水を加えクロロホルムで抽出した後、クロロホルム層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン (7/3) で展開するシリカゲルクロマトグラフィーにより精製し、2-クロロー4- {[(6-メトキシー7- (2-メトキシエトキシ)-4ーキノリル]オキシ} アニリンを主生成物とする混合物332mgを得た。そのうち83mgをクロロホルム (5 m l) に溶解し、2、4ージフルオロフェニルイソシアナート (32 μ l) を加えて一晩加熱還流した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン (2/1) で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を50mg得た。

 $^{1}H-NMR$ (DMSO-d₆, 400MHz) δ 3. 75-3. 77 (m, 2H), 3. 94 (s, 3H), 4. 27-4. 29 (m, 2H), 6. 55 (d, J=5. 1Hz, 1H), 7. 04-7. 09 (m, 1H), 7. 25-7. 36 (m, 2H), 7. 42 (s, 1H), 7. 50 (s, 1H), 7. 51 (s, 1H), 8.

09-8.15 (m, 1H), 8.24 (d, J=9.0Hz, 1H), 8.49 (d, J=5.4Hz, 1H), 8.82 (s, 1H), 9.31 (s, 1H) 実施例55:N-(2-クロロ-4-{[6-メトキシ-7-(2-メトキシエトキシ)-4-キノリル|オキシ}フェニル)-N'-(2-メトキシフェニル)ウレア

ジメチルスルホキシド (2 m 1) に水素化ナトリウム (6 0 w %、1 5 3 m g) を加え、6 0 $\mathbb C$ で3 0 分攪拌後室温にし、4 - アミノ- 3 - クロロフェノール塩酸塩 (3 4 3 m g) を加え室温で1 0 分攪拌した。次にジメチルスルホキシド (2 m 1) に溶解した4 - クロロ- 6 - メトキシ- 7 - (2 - メトキシエトキシ) キノリン (2 5 4 m g) を加え1 1 0 $\mathbb C$ で一晩攪拌した。反応液に水を加えクロロホルムで抽出した後、クロロホルム層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン (7 / 3) で展開するシリカゲルクロマトグラフィーにより精製し、2 - クロロ- 4 - {[(6 - メトキシ- 7 - (2 - メトキシエトキシ) - 4 - キノリル]オキシ} アニリンを主生成物とする混合物 3 2 m g を得た。そのうち8 3 m g を クロロホルム (5 m 1) に溶解し、2 - メトキシフェニルイソシアナート (3 5 μ 1) を加えて一晩加熱還流した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン (2 / 1) で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を3 1 m g 得た。

'H-NMR (DMSO-d₆, 400MHz) δ 3. 75-3. 77 (m, 2H), 3. 90 (s, 3H), 3. 94 (s, 3H), 4. 27-4. 29 (m, 2H), 6. 55 (d, J=5. 1Hz, 1H), 6. 89-7. 05 (m, 3H), 7. 24-7. 27 (m, 1H), 7. 42 (s, 1H), 7. 48 (d, J=2. 7Hz, 1H), 7. 50 (s, 1H), 8. 08-8. 11 (m, 1H), 8. 18-8. 22 (m, 1H), 8. 49 (d, J=5. 4Hz, 1H), 8. 99-9. 03 (m, 2H)

<u>実施例56:N-(2,4-ジフルオロフェニル)-N'-(4-{[6-メトキシ-7-(2-メトキシエトキシ)-4-キノリル</u>オキシ}-2,3-ジメチルフェニル)ウレア

N-(4-{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル]オキシ}-2,3-ジメチルフェニル)-N'-(2,4-ジフルオロフェニル)ウレア(213mg)をN,N-ジメチルホルムアミド(5m1)、トリエチルアミン(1m1)に溶解し、水酸化パラジウム(40mg)を加え、水素雰囲気下室温で一晩攪拌した。反応液をセライト濾過しクロロホルム/メタノールで洗浄した。減圧下溶媒を留去して得られた残さ184mgのうちの90mgをN,N-ジメチルホルムアミド(1.5m1)に溶解し、そこに炭酸カリウム(32mg)、ヨウ化テトラーnーブチルアンモニウム(7mg)、2-ブロモエチルメチルエーテル(32mg)を加え、70℃で一晩攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出し、クロロホルム層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を110mg得た。

'H-NMR (DMSO-d₀, 400MHz): δ1. 97 (s, 3H), 2. 17 (s, 3H), 3. 31 (s, 3H), 3. 70 (t, J=4. 4Hz, 2H), 3. 90 (s, 3H), 4. 21 (t, J=4. 4Hz, 2H), 6. 18 (d, J=5. 1Hz, 1H), 6. 95-6. 98 (m, 2H), 7. 22-7. 31 (m, 1H), 7. 34 (s, 1H), 7. 51 (s, 1H), 7. 62 (d, J=8. 8Hz, 1H), 8. 03-8. 10 (m, 1H), 8. 36 (d, J=5. 1Hz, 1H), 8. 38 (s, 1H), 8. 79 (s, 1H) 実施例57: N-(4-{[6-メトキシ-7-(2-メトキシエトキシ)-4-キノリル]オキシ}-2, 3-ジメチルフェニル)-N'-(2-メトキシフェニル)ウレア

 $N-(4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル]オキシ\}$ -2, 3-ジメチルフェニル)-N'-(2-メトキシフェニル)ウレア(161mg)をN, <math>N-ジメチルホルムアミド(4ml)、トリエチルアミン(1ml)に溶解し、水酸化パラジウム(32mg)を加え、水素雰囲気下室温で一晩攪拌した。反応液をセライト濾過しクロロホルム/メタノールで洗浄した。減圧下溶媒を留去して得られた残さ223mgのうちの110mgをN, N-ジメチルホ

ルムアミド(1.5 m l)に溶解し、そこに炭酸カリウム(23 m g)、ヨウ化テトラーn-ブチルアンモニウム(5 m g)、2-ブロモエチルメチルエーテル(23 m g)を加え、70℃で一晩攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出し、クロロホルム層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を89 m g 得た。

'H-NMR (DMSO-d₆, 400MHz): δ 2.00 (s, 3H), 2.1 7 (s, 3H), 3.70 (t, J=4.2Hz, 2H), 3.83 (s, 3H), 3.90 (s, 3H), 4.22 (t, J=4.2Hz, 2H), 6.19 (d, J=5.1Hz, 1H), 6.81-6.88 (m, 2H), 6.94-6.97 (m, 2H), 7.34 (s, 1H), 7.51 (s, 1H), 7.58 (d, J=8.8Hz, 1H), 8.07 (d, J=8.8Hz, 1H), 8.36 (d, J=5.1Hz, 1H), 8.48 (s, 1H), 8.58 (s, 1H) 実施例 58:N-(2,4-37) N-(4-16-3) N-(4-16-3) N-(2-3) N-(2-3)

 $N-(4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル] オキシ}-2$, 5-ジメチルフェニル)-N'-(2, 4-ジフルオロフェニル)ウレア (366mg)をN, N-ジメチルホルムアミド(6m1)に溶解し、水酸化パラジウム(366mg)を加え、水素雰囲気下室温で1晩攪拌した。減圧下溶媒を留去しクロロホルム、メタノールに溶解し、セライト濾過した。次に、減圧下溶媒を留去して得られた残さ(213mg)、炭酸カリウム(109mg)、ヨウ化テトラーn-ブチルアンモニウム(12mg)、 $2-プロモエチルメチルエーテル(40\mu1)をN, <math>N-ジメチルホルムアミド(5m1)$ に溶解し70℃で1晩攪拌した。減圧下溶媒を留去し、得られた残さに水を加えクロロホルムで抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(10/1)で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を124mg、収率73%で得た。

WO 00/43366 PCT/JP00/00255

- 83 -

'H-NMR (CDCI₃, 400MHz): δ 2. 17 (s, 3H), 2. 26 (s, 3H), 3. 49 (s, 3H), 3. 90 (t, J=4. 8Hz, 2H), 4. 03 (s, 3H), 4. 34 (t, J=4. 8Hz, 2H), 6. 30 (d, J=5. 1Hz, 1H), 6. 57 (s, 1H), 6. 81-6. 95 (m, 3H), 7. 0 0 (s, 1H), 7. 43 (s, 1H), 7. 55 (s, 1H), 7. 57 (s, 1H), 8. 05-8. 14 (m, 1H), 8. 46 (d, J=5. 4Hz, 1H) 質量分析値 (ESI-MS, m/z): 524 (M'+1)

実施例 $59:N-(4-\{[6-メトキシ-7-(2-メトキシエトキシ)-4-$ キノリル] オキシ $\}-2$, 5-ジメチルフェニル)-N'-(2-メトキシフェニル)ウレア

 $N - (4 - \{[7 - (\%)\%) + 6 - 3 + 4 - 4 - 4 - 4 - 10 + 10 \}\}$ -2, 5-ジメチルフェニル) <math>-N' -(2-メトキシフェニル) ウレア (36)3mg)をN, N-ジメチルホルムアミド(6ml)に溶解し、水酸化パラジウ ム(363mg)を加え、水素雰囲気下室温で1晩攪拌した。減圧下溶媒を留去 しクロロホルム、メタノールに溶解し、セライト濾過した。次に、減圧下溶媒を 留去して得られた残さ(191mg)、炭酸カリウム(110mg)、ヨウ化テト 0mg)をN, N-ジメチルホルムアミド (5ml) に溶解し70℃で1晩攪拌 した。減圧下溶媒を留去し、得られた残さに水を加えクロロホルムで抽出し、ク ロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さ を、クロロホルム/メタノール(10/1)で展開する薄層シリカゲルクロマト グラフィーにより精製し、表題の化合物を128mg、収率76%で得た。 $^{\prime}H-NMR$ (CDC1, 400MHz): δ 2. 17 (s, 3H), 2. 28 (s, 3H), 3. 49 (s, 3H), 3. 83 (s, 3H), 3. 90 (t, J=4. 8 Hz, 2H), 4.04 (s, 3H), 4.35 (t, J=4.9Hz, 2H), 6.30 (d, J = 5. 4Hz, 1H), 6. 33 (s, 1H), 6. 86-6. 90(m, 1H), 6. 96-7. 06 (m, 3H), 7. 17 (s, 1H), 7. 43 (s, 1H), 7. 56 (s, 1H), 7. 58 (s, 1H), 8. 12-8. 17 (m, 1H), 8.45 (d, J=5.1Hz, 1H)

質量分析値(ESI-MS, m/z):518 (M'+1)

実施例 $60: N-(4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル]オキシ}-2,3-ジメチルフェニル)-N'-(2-メトキシフェニル)ウレア$

4-{[7-(ベンジルオキシ)-6-メトキシー4-キノリル]オキシ}-2, 3-ジメチルアニリン(260mg)をN, N-ジメチルホルムアミド(5m1)に溶解した後、2-メトキシフェニルイソシアナート(116mg)を加えて室温で一晩反応した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出し、クロロホルム層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を169mg、収率47%で得た。

'H-NMR (DMSO-d₆, 400MHz): $\delta1$. 99 (s, 3H), 2. 0 2 (s, 3H), 3. 83 (s, 3H), 3. 90 (s,3H), 5. 25 (s, 2 H), 6. 18 (d, J=5. 3Hz, 1H), 6. 81-6. 87 (m, 2H), 6. 95 (d, J=6. 1Hz, 1H), 7. 29-7. 59 (m, 7H), 8. 07 (d, J=6. 1Hz, 1H), 8. 35 (d, J=5. 3Hz, 1H), 8. 48 (s, 1H), 8. 58 (s, 1H)

実施例 $61:N-\{2-クロロ-4-[(6,7-ジメトキシ-4-キナゾリニル)$ オキシ]フェニルN'-(2,4-ジフルオロフェニル)ウレア

2- pun - 4- [(6,7- yun + 2)] pun + 2 pun + 3 pun + 4 pun +

'H-NMR (DMSO-d₆, 400MHz): δ3. 98 (s, 3H), 3. 99 (s, 3H), 7. 03-7. 10 (m, 1H), 7. 28-7. 37 (m, 2H), 7. 40 (s,1H), 7. 56 (s, 2H), 8. 08-8. 21 (m, 2H), 8. 57 (s, 1H), 8. 80 (s, 1H), 9. 30 (s, 1H) 質量分析値(ESI-MS, m/z): 487, 489 (M'+1) 実施例62: N-{2-クロロ-4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ]フェニル}-N'-プロピルウレア

2-クロロー4-[(6,7-ジメトキシー4ーキナゾリニル)オキシ]アニリン(5.13g)をクロロホルム(100ml)、トリエチルアミン(50ml)に溶解した後、クロロホルム(3ml)に溶解したトリホスゲン(4.59g)を加えて30分間攪拌した。次にn-プロピルアミン(2.74g)を加えて、さらに2時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(50/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を4.14g、収率64%で得た。

 $^{1}H-NMR$ (DMSO-ds, 400MHz): δ 0. 91 (t, J=7. 3Hz, 3H), 1. 41-1. 53 (m, 2H), 3. 05-3. 12 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 99 (t, J=5. 4Hz, 1H), 7. 22 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 38 (s, 1H), 7. 46 (d, J=2. 9Hz, 1H), 7. 54 (s, 1H), 8. 04 (s, 1H), 8. 20 (d, J=9. 3Hz, 1H), 8. 55 (s, 1H) 質量分析値 (ESI-MS, m/z): 417 (M'+1)

<u>実施例63:N-{4-[(6, 7-ジメトキシ-4-キナゾリニル)オキシ]フェニル}-N'-エチルウレア</u>

4-[(6,7-i)メトキシー4-iナゾリニル)オキシ] アニリン(50mg)をクロロホルム(3m1)、トリエチルアミン(0.2m1) に溶解した後、クロロホルムに溶解したトリホスゲン(50mg)を加えて室温で30分間攪拌した。次にエチルアミン塩酸塩(69mg)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を10mg、収率16%で得た。

 $^{t}H-NMR$ (DMSO-d₆, 400MHz): δ 1. 07 (t, J=7. 3Hz, 3H), 3. 11-3. 14 (m, 2H), 3. 97 (s, 3H), 3. 99 (s,

3H), 6. 10 (t, J=5. 4Hz, 1H), 7. 14 (d, J=9. 0Hz, 2H), 7. 37 (s, 1H), 7. 46 (d, J=9. 0Hz, 2H), 7. 55 (s, 1H), 8. 49 (br, 1H), 8. 53 (s, 1H)

質量分析値(ESI-MS, m/z):369 (M++1)

<u>実施例 6 4: N- $\{4-[(6, 7-ジメトキシ-4-キナゾリニル) オキシ]フェニル <math>\}$ - \mathbb{Z} -</u>

4-[(6,7-i)]メトキシー4-iナゾリニル)オキシ] アニリン (50mg)をクロロホルム (3m1)、トリエチルアミン (0.2m1) に溶解した後、クロロホルムに溶解したトリホスゲン (50mg) を加えて室温で 30 分間攪拌した。次にプロピルアミン $(21\mu1)$ を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を 30mg、収率 47%で得た。

'H-NMR (DMSO-d₆, 400MHz): δ 0. 89 (t, J=7. 6Hz, 3H), 1. 41-1. 50 (m, 2H), 3. 04-3. 08 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 15 (t, J=5. 9Hz, 1H), 7. 15 (d, J=8. 8Hz, 2H), 7. 37 (s, 1H), 7. 46 (d, J=9. 0Hz, 2H), 7. 55 (s, 1H), 8. 48 (br, 1H), 8. 53 (s, 1H)

質量分析値(ESI-MS, m/z):383 (M++1)

実施例 $6.5:N-ブチル-N'-\{4-\lceil(6,7-ジメトキシ-4-キナゾリニ$ ル) オキシ \rceil フェニル $\}$ ウレア

4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ] アニリン(50 mg)をクロロホルム(3 m 1)、トリエチルアミン(0.2 m 1)に溶解した後、クロロホルムに溶解したトリホスゲン(50 mg)を加えて室温で30分間攪拌した。次にブチルアミン(22 μ 1)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を29 mg、収率43%で得た。

 $^{1}H-NMR$ (DMSO-d₆, 400MHz): δ 0. 91 (t, J=7. 3Hz, 3H), 1. 28-1. 47 (m, 4H), 3. 07-3. 12 (m, 2H),

3. 97 (s, 3H), 3. 99 (s, 3H), 6. 12 (t, J=5.6Hz, 1H), 7. 15 (d, J=8.8Hz, 2H), 7. 37 (s, 1H), 7. 46 (d, J=9.0Hz, 2H), 7. 55 (s, 1H), 8. 47 (br, 1H), 8. 53 (s, 1H)

質量分析値(ESI-MS, m/z):397 (M++1)

<u>実施例66:N-{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]フェニル}-N'-ペンチルウレア</u>

4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]アニリン(50mg)をクロロホルム(3ml)、トリエチルアミン(0.2ml)に溶解した後、クロロホルムに溶解したトリホスゲン(50mg)を加えて室温で30分間攪拌した。次にアミルアミン(26 μ l)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を21mg、収率30%で得た。

'H-NMR (DMSO-d₆, 400MHz): δ 0. 89 (t, J=7. 1Hz, 3H), 1. 27-1. 47 (m, 4H), 1. 41-1. 48 (m, 2H), 3. 06-3. 11 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 13 (t, J=5. 6Hz, 1H), 7. 15 (d, J=9. 0Hz, 2H),

7. 37 (s, 1H), 7. 46 (d, J=8. 8Hz, 2H), 7. 55 (s, 1H), 8. 47 (br, 1H), 8. 53 (s, 1H)

質量分析値 (ESI-MS, m/z): 411 (M++1)

<u>実施例 6 7 : N - (sec - ブチル) - N' - {4 - [(6, 7 - ジメトキシ - 4 - + ナゾリニル) オキシ]フェニル</u> ウレア

4-[(6,7-i)メトキシー4-i+ナゾリニル)オキシ] アニリン (50mg)をクロロホルム (3m1)、トリエチルアミン (0.2m1) に溶解した後、クロロホルムに溶解したトリホスゲン (50mg) を加えて室温で 30 分間攪拌した。次にsec-ブチルアミン $(23\mu1)$ を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を 33mg、収率 49%で得た。

 $^{1}H-NMR$ (DMSO-d₆, 400MHz): δ 0.88 (t, J=7.3H

z, 3H), 1. 08 (d, J=6.6Hz, 3H), 1. 40-1. 47 (m, 2H), 3. 58-3. 64 (m, 1H), 3. 97 (s, 3H), 3. 99 (s, 3H), 5. 98 (t, J=8. 1Hz, 1H), 7. 15 (d, J=9. 0Hz, 2H), 7. 37 (s, 1H), 7. 46 (d, J=9. 0Hz, 2H), 7. 55 (s, 1H), 8. 38 (s, 1H), 8. 53 (s, 1H)

質量分析値(ESI-MS, m/z):397 (M++1)

<u>実施例68:NーアリルーN'- {4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]フェニル}ウレア</u>

4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]アニリン(50mg)をクロロホルム(3ml)、トリエチルアミン(0.2ml)に溶解した後、クロロホルムに溶解したトリホスゲン(50mg)を加えて室温で30分間攪拌した。次にアリルアミン塩酸塩(31mg)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を21mg、収率33%で得た。

 $^{1}H-NMR$ (DMSO-d₅, 400MHz): 3. 73-3. 76 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 5. 07-5. 21 (m, 2H), 5. 84-5. 92 (m, 1H), 6. 28 (t, J=5. 6Hz, 1H), 7. 16 (d, J=9. 0Hz, 2H), 7. 38 (s, 1H), 7. 47 (d, J=9. 0Hz, 2H), 7. 55 (s, 1H), 8. 53 (s, 1H), 8. 59 (s, 1H)

質量分析値 (ESI-MS, m/z):381 (M++1)

<u>実施例69:N-{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]フェニル}-N'-(2-プロピニル)ウレア</u>

4-[(6,7-i)メトキシー4-iナゾリニル)オキシ] アニリン $(50 \, \mathrm{mg})$ をクロロホルム $(3 \, \mathrm{m} \, \mathrm{l})$ 、トリエチルアミン $(0.2 \, \mathrm{m} \, \mathrm{l})$ に溶解した後、クロロホルムに溶解したトリホスゲン $(50 \, \mathrm{mg})$ を加えて室温で $30 \, \mathrm{d}$ 間挽拌した。次にプロパルギルアミン塩酸塩 $(31 \, \mathrm{mg})$ を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を $26 \, \mathrm{mg}$ 、収率 $41 \, \mathrm{%}$ で得た。 $^{\mathrm{l}}$ H $- \mathrm{NMR}$ (DMS)

O-d₆, 400MHz): 3. 11-3. 12 (m, 1H), 3. 89-3. 9 0 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 49 (t, J=5. 9Hz, 1H), 7. 17 (d, J=9. 0Hz, 2H), 7. 38 (s, 1H), 7. 48 (d, J=8. 8Hz, 2H), 7. 55 (s, 1H), 8. 53 (s, 1H), 8. 68 (s, 1H)

質量分析値 (ESI-MS, m/z):379 (M++1)

実施例 $70:N-(2,4-ジフルオロベンジル)-N'-\{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]フェニル}ウレア$

4-[(6,7-i)メトキシー4-iナゾリニル)オキシ] アニリン $(50\,\mathrm{mg})$ をクロロホルム $(3\,\mathrm{m}\,1)$ 、トリエチルアミン $(0.2\,\mathrm{m}\,1)$ に溶解した後、クロロホルムに溶解したトリホスゲン $(50\,\mathrm{mg})$ を加えて室温で $30\,\mathrm{d}$ 間攪拌した。次に 2 , 4-i フルオロベンジルアミン $(22\,\mathrm{m}\,1)$ を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を $32\,\mathrm{mg}$ 、収率 $41\,\mathrm{mg}$ で得た。

'H-NMR (DMSO-d₆, 400MHz): 3. 97 (s, 3H), 3. 98 (s, 3H), 4: 32-4. 33 (m, 2H), 6. 66 (t, J=5. 9Hz, 1H), 7. 06-7. 10 (m, 1H), 7. 16 (d, J=8. 8Hz, 2H), 7. 19-7. 24 (m, 1H), 7. 37 (s, 1H), 7. 40-7. 44 (m, 1H), 7. 48 (d, J=9. 0Hz, 2H), 7. 55 (s, 1H), 8. 52 (s, 1H), 8. 69 (s, 1H)

質量分析値(ESI-MS, m/z): 467 (M++1)

<u>実施例71:N-{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]フェニル}-N'-(2-ピリジルメチル)ウレア</u>

4-[(6,7-i)メトキシー4-iナゾリニル)オキシ] アニリン $(50\,mg)$ をクロロホルム $(3\,m1)$ 、トリエチルアミン $(0.2\,m1)$ に溶解した後、クロロホルムに溶解したトリホスゲン $(50\,mg)$ を加えて室温で 30 分間攪拌した。次に 2 、4-iジフルオロベンジルアミン $(31\,\mu1)$ を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を $31\,mg$ 、収率 43% で得た

'H-NMR (DMSO-d₆, 400MHz): 3. 42 (s, 2H), 3. 98 (s, 3H), 3. 99 (s, 3H), 7. 16-7. 19 (m, 2H), 7. 22 -7. 27 (m, 3H), 7. 38 (s, 1H), 7. 57 (s, 1H), 7. 67 (d, J=8. 8Hz, 2H), 7. 88-7. 92 (m, 1H), 8. 46-8. 48 (m, 1H), 8. 54 (s, 1H), 8. 87 (s, 1H), 12. 19 (s, 1H)

質量分析値 (FD-MS, m/z): 431 (M+)

実施例 $72:N-(2,4-ジフルオロフェニル)-N'-\{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]フェニル}ウレア$

4-[(6,7-i)]メトキシー4-iナゾリニル)オキシ] アニリン $(50\,\mathrm{mg})$ をクロロホルム $(3\,\mathrm{m}\,1)$ に溶解した後、2,4-iブルオロフェニルイソシアナート $(24\,\mu\,1)$ を加えて一晩加熱還流した。析出した結晶を濾取、洗浄し表題の化合物を $55\,\mathrm{mg}$ 、収率72%で得た

'H-NMR (DMSO-d₆, 400MHz): 3. 98 (s, 3H), 3. 99 (s, 3H), 7. 04-7. 08 (m, 2H), 7. 24 (d, J=8. 8Hz, 2H), 7. 29-7. 35 (m, 1H), 7. 38 (s, 1H), 7. 54 (d, J=9. 0Hz, 2H), 7. 56 (s, 1H), 8. 06-8. 14 (m, 1H), 8. 51-8. 54 (m, 1H), 8. 54 (s, 1H), 9. 11-9. 12 (m, 1H)

質量分析値(ESI-MS, m/z):453 (M++1)

<u>実施例 7 3 : N - {4 - [(6, 7 - ジメトキシ - 4 - キナゾリニル) オキシ]フェニル} - N' - (4 - フルオロフェニル) ウレア</u>

4-[(6,7-i)メトキシー4-iナゾリニル)オキシ] アニリン $(50\,mg)$ をクロロホルム $(3\,m1)$ に溶解した後、p-iフルオロフェニルイソシアナート $(2\,3\,\mu1)$ を加えて一晩加熱還流した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を $2\,6\,mg$ 、収率 $3\,6\,\%$ で得た。

 $^{1}H-NMR$ (DMSO-d₆, 400MHz): 3. 98 (s, 3H), 3. 99 (s, 3H), 7. 11-7. 15 (m, 2H), 7. 22 (d, J=8.8Hz,

2H), 7. 38 (s, 1H), 7. 46-7. 50 (m, 2H), 7. 54 (d, J=9. 0 Hz, 2H), 7. 56 (s, 1H), 8. 54 (s, 1H), 8. 72 (s, 1H), 8. 75 (s, 1H)

質量分析値(ESI-MS, m/z): 435 (M++1)

<u>実施例 7 4: N- $\{4-[(6, 7-ジメトキシ-4-キナゾリニル) オキシ]フェニル}-N'-(2-メチルフェニル) ウレア</u></u>$

 $4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ] アニリン <math>(50\,\mathrm{mg})$ をクロロホルム $(3\,\mathrm{ml})$ に溶解した後、 $o-トルイルイソシアナート <math>(25\,\mu$ l) を加えて一晩加熱還流した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を $30\,\mathrm{mg}$ 、収率41%で得た。

'H-NMR (DMSO-d₆, 400MHz): 2. 26 (s, 3H), 3. 98 (s, 3H), 3. 99 (s, 3H), 6. 93-6. 98 (m, 1H), 7. 13-7. 19 (m, 2H), 7. 22 (d, J=8. 8Hz, 2H), 7. 38 (s, 1H), 7. 54-7. 56 (m, 3H), 7. 83-7. 86 (m, 1H), 7. 93 (s, 1H), 8. 54 (s, 1H), 9. 10-9. 11 (m, 1H) 質量分析値 (ESI-MS, m/z): 431 (M⁺+1)

<u>実施例 $75:N-\{4-[(6, 7-ジメトキシ-4-++)]フ</u>$ エニルN'-(2-メトキシフェニル) ウレア</u>

 $4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ] アニリン <math>(50 \,\mathrm{mg})$ をクロロホルム $(3 \,\mathrm{m}\, 1)$ に溶解した後、 $2-メトキシフェニルイソシアナート <math>(27 \,\mu\, 1)$ を加えて一晩加熱還流した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を $34 \,\mathrm{mg}$ 、収率45%で得た。

'H-NMR (DMSO-d₆, 400MHz): 3. 89 (s, 3H), 3. 98 (s, 3H), 3. 99 (s, 3H), 6. 89-7. 05 (m, 3H), 7. 22 (d, J=8. 8Hz, 2H), 7. 38 (s, 1H), 7. 54 (d, J=8. 8Hz, 2H), 7. 56 (s, 1H), 8. 13-8. 15 (m, 1H), 8. 2 3-8. 24 (m, 1H), 8. 54 (s, 1H), 9. 40-9. 41 (m, 1

- 92 -

H)

質量分析値(ESI-MS, m/z):447 (M++1)

<u>実施例76:N-{2-クロロ-4-</u>[(6, 7-ジメトキシ-4-キナゾリニル) オキシ]フェニル} -N'-エチルウレア

2-クロロー4-[(6, 7-ジメトキシー4ーキナゾリニル) オキシ] アニリン(200mg)をクロロホルム(5ml)、トリエチルアミン(1ml) に溶解した後、クロロホルムに溶解したトリホスゲン(179mg)を加えて室温で30分間攪拌した。次にエチルアミン塩酸塩(246mg)を加えて、さらに室温で一晩攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を159mg、収率65%で得た。

¹H-NMR (DMSO-d₆, 400MHz): δ 1. 08 (t, J=7. 1Hz, 3H), 3. 11-3. 16 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 96 (t, J=5. 6Hz, 1H), 7. 23 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 39 (s, 1H), 7. 47 (d, J=2. 7Hz, 1H), 7. 55 (s, 1H), 8. 02 (s, 1H), 8. 20 (d, J=9. 3Hz, 1H), 8. 56 (s, 1H)

質量分析値(ESI-MS, m/z): 403 (M++1)

実施例77:N-ブチル $-N'-\{2-$ クロロ-4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ]フェニル} ウレア

2-クロロー4ー [(6,7-ジメトキシー4ーキナゾリニル)オキシ] アニリン(50mg)をクロロホルム(5m1)、トリエチルアミン(1m1)に溶解した後、クロロホルムに溶解したトリホスゲン(45mg)を加えて室温で30分間攪拌した。次にブチルアミン($22\mu1$)を加えて、さらに室温で30分間した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を30mg、収率46%で得た。

 $^{1}H-NMR$ (DMSO-d₆, 400MHz): δ 0. 91 (t, J=7. 3Hz, 3H), 1. 31-1. 46 (m, 4H), 3. 09-3. 14 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 96 (t, J=5. 6Hz, 1H), 7. 23 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 39 (s, 1H), 7. 47 (d, J=2. 7Hz, 1H), 7. 55 (s, 1H), 8. 03 (s, 1H), 8. 20 (d, J=9. 0Hz, 1H), 8. 56 (s, 1H) 質量分析値 (ESI-MS, m/z): 431 (M⁺+1)

<u>実施例78:N-{2-クロロ-4-[(6,7-ジメトキシ-4-キナゾリニ</u>ル)オキシ]フェニル-N'-ペンチルウレア

2-クロロー4ー [(6,7-ジメトキシー4ーキナゾリニル)オキシ] アニリン(50mg)をクロロホルム(5m1)、トリエチルアミン(1m1)に溶解した後、クロロホルムに溶解したトリホスゲン(45mg)を加えて室温で30分間攪拌した。次にアミルアミン($26\mu1$)を加えて、さらに室温で30分間した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を33mg、収率49%で得た。

'H-NMR (DMSO-d₅, 400MHz): $\delta0$. 90 (t, J=7. 1Hz, 3H), 1. 24-1. 34 (m, 4H), 1. 43-1. 48 (m, 2H), 3. 08-3. 14 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 97 (t, J=5. 1Hz, 1H), 7. 23 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 39 (s, 1H), 7. 47 (d, J=2. 8Hz, 1H), 7. 55 (s, 1H), 8. 03 (s, 1H), 8. 20 (d, J=9. 0Hz, 1H), 8. 56 (s, 1H)

質量分析値 (ESI-MS, m/z): 445 (M++1)

<u>実施例79:N-(secーブチル)-N'- {2-クロロー4-[(6, 7-ジメトキシー4-キナゾリニル)オキシ</u>]フェニル} ウレア

2-クロロ-4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]アニリン(50mg)をクロロホルム(5m1)、トリエチルアミン(1m1)に溶解し

た後、クロロホルムに溶解したトリホスゲン($45 \,\mathrm{mg}$)を加えて室温で $30 \,\mathrm{d}$ 間攪拌した。次に sec ープチルアミン($23 \,\mu\,1$)を加えて、さらに室温で30 分間した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を $34 \,\mathrm{mg}$ 、収率 $52 \,\mathrm{%}$ で得た。

'H-NMR (DMSO-d₆, 400MHz): δ 0. 89 (t, J=7. 6Hz, 3H), 1. 09 (d, J=6. 6Hz, 3H), 1. 43-1. 46 (m, 2H), 3. 58-3. 66 (m, 1H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 88 (d, J=7. 6Hz, 1H), 7. 22 (dd, J=2. 4Hz, 9. 3Hz, 1H), 7. 39 (s, 1H), 7. 47 (d, J=2. 7Hz, 1H), 7. 55 (s, 1H), 7. 98 (s, 1H), 8. 23 (d, J=9. 0Hz, 1H), 8. 55-8. 56 (m, 1H)

質量分析値(ESI-MS,m/z): 431(M⁺+1)

<u>実施例80:N-アリルーN'- {2-クロロ-4-[(6,7-ジメトキシ-4</u> -+ナゾリニル) オキシ]フェニル} ウレア

2-クロロー4-[(6,7-ジメトキシー4-キナゾリニル)オキシ]アニリン(50mg)をクロロホルム(5ml)、トリエチルアミン(1ml)に溶解した後、クロロホルムに溶解したトリホスゲン(45mg)を加えて室温で30分間攪拌した。次にアリルアミン塩酸塩(21mg)を加えて、さらに室温で30分間した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を45mg、収率72%で得た。

'H-NMR (DMSO-d₆, 400MHz): 3. 76-3. 79 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 5. 10-5. 24 (m, 2H), 5. 85-5. 94 (m, 1H), 7. 11 (t, J=5.4Hz, 1H), 7. 24 (dd, J=2.7Hz, 9.0Hz, 1H), 7. 39 (s, 1H), 7. 49 (d, J=2.7Hz, 1H), 7. 55 (s, 1H), 8. 14 (s, 1H),

8. 19 (d, J = 9.0 Hz, 1H), 8. 56 (s, 1H)

質量分析値(ESI-MS, m/z): 415 (M++1)

実施例 $81:N-\{2-クロロ-4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ]フェニル<math>\}-N'-(2-プロピニル)$ ウレア

2-クロロー4 - [(6, 7-ジメトキシー4-キナゾリニル) オキシ] アニリン (50mg) をクロロホルム (5ml)、トリエチルアミン (1ml) に溶解した後、クロロホルムに溶解したトリホスゲン (45mg) を加えて室温で30分間攪拌した。次にプロパルギルアミン塩酸塩 (21mg) を加えて、さらに室温で30分間した。析出した結晶を濾取、洗浄し表題の化合物を38mg、収率61%で得た。

'H-NMR (DMSO-d₆, 400MHz): 3. 16-3. 17 (m, 1H), 3. 93-3. 95 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 7. 25 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 30 (t, J=5. 6Hz, 1H), 7. 39 (s, 1H), 7. 50 (d, J=2. 7Hz, 1H), 7. 55 (s, 1H), 8. 16 (d, J=9. 3Hz, 1H), 8. 18 (s, 1H), 8. 56 (s, 1H)

質量分析値(ESI-MS, m/z):413 (M++1)

実施例82: $N-\{2-クロロ-4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]フェニル<math>N'-(2,4-ジフルオロベンジル)$ ウレア

2-クロロー4ー [(6,7-ジメトキシー4-キナゾリニル)オキシ] アニリン(50 mg)をクロロホルム(5 m l)、トリエチルアミン(1 m l)に溶解した後、クロロホルムに溶解したトリホスゲン(45 mg)を加えて室温で30分間攪拌した。次に2,4-ジフルオロベンジルアミン(22 μ l)を加えて、さらに室温で30分間した。析出した結晶を濾取、洗浄し表題の化合物を48 mg、収率64%で得た。

'H-NMR (DMSO-d₆, 400MHz): 3. 97 (s, 3H), 3. 99 (s, 3H), 4. 33-4. 36 (m, 2H), 7. 08-7. 12 (m, 1H), 7. 22-7. 28 (m, 2H), 7. 39 (s, 1H), 7. 42-7. 46 (m, 1H), 7. 49 (d, J=2. 7Hz, 1H), 7. 54 (s, 1H), 8. 18

-8. 20 (m, 2H), 8. 56 (s, 1H)

質量分析値(ESI-MS, m/z):501 (M++1)

<u>実施例83:N-{2-クロロ-4-</u> $[(6, 7-ジメトキシ-4-キナゾリニ ル) オキシ|フェニル}-N'-(2-ピリジルメチル) ウレア$

2-クロロー4 - [(6, 7-ジメトキシー4 -キナゾリニル) オキシ] アニリン (50 mg) をクロロホルム (5 m l)、トリエチルアミン (1 m l) に溶解した後、クロロホルムに溶解したトリホスゲン (45 mg) を加えて室温で30分間攪拌した。次に2 - (メチルアミノ) ピリジン (19 μ l) を加えて、さらに60度で1時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を26 mg、収率37%で得た。

'H-NMR (CDC1₃, 400MHz): 3. 51 (s, 2H), 4. 07 (s, 3H), 4. 07 (s, 3H), 7. 03-7. 10 (m, 2H), 7. 19 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 35 (s, 1H), 7. 36 (d, J=2. 7Hz, 1H), 7. 54 (s, 1H), 7. 76-7. 81 (m, 1H), 8. 38-8. 43 (m, 1H), 8. 56 (d, J=9. 0Hz, 1H), 8. 64 (s, 1H), 13. 53 (s, 1H)

質量分析値(ESI-MS, m/z):466 (M*+1)

実施例 $85:N-\{2-/2-4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ]フェニル} -N'-(4-フルオロフェニル) ウレア$

2- p- p-

 $^{1}H-NMR$ (DMSO-d₆, 400MHz): 3. 98 (s, 3H), 3. 99 (s, 3H), 7. 13-7. 17 (m, 2H), 7. 30 (dd, J=2. 4Hz, 8. 8Hz, 1H), 7. 40 (s, 1H), 7. 48-7. 51 (m, 2H), 7. 55-7. 56 (m, 2H), 8. 21 (d, J=9. 0Hz, 1H), 8.

31 (s, 1H), 8. 57 (s, 1H)

.質量分析値(ESI-MS, m/z): 469 (M++1)

 $\frac{1}{2}$ 実施例 $\frac{1}{2}$ $\frac{1}{2}$

2-クロロー4ー [(6, 7-ジメトキシー4ーキナゾリニル)オキシ] アニリン $(50 \, \mathrm{mg})$ をクロロホルム $(5 \, \mathrm{m} \, 1)$ に溶解した後、2-メトキシフェニルイソシアナート $(24 \, \mu \, 1)$ を加えて $60 \, \mathrm{gr} \, 1$ 時間攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を $39 \, \mathrm{mg}$ 、収率54%で得た。

 $^{\dagger}H-NMR$ (DMSO-d₆, 400MHz): 3. 90 (s, 3H), 3. 98 (s, 3H), 3. 99 (s, 3H), 6. 89-7. 05 (m, 3H), 7. 29 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 40 (s, 1H), 7. 54 (d, J=2. 7Hz, 1H), 7. 56 (s, 1H), 8. 09-8. 16 (m, 2H), 8. 58 (s, 1H), 8. 96-9. 02 (m, 2H) 質量分析値 (ESI-MS, m/z): 418 (M⁺+1)

<u>実施例87:N-{2-クロロ-4-[(6, 7-ジメトキシ-4-キナゾリニル)オキシ]フェニル}-N'-(5-クロロ-2-ピリジル)ウレア</u>

2ークロロー4ー [(6,7ージメトキシー4ーキナゾリニル)オキシ]アニリン(50mg)をクロロホルム(5ml)、トリエチルアミン(1ml)に溶解した後、クロロホルムに溶解したトリホスゲン(45mg)を加えて室温で30分間攪拌した。次に2ーアミノー5ークロロピリジン(23mg)を加えて、さらに60度で1時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を39mg、収率53%で得た。

 $^{1}H-NMR$ (DMSO-d₆, 400MHz): 3. 98 (s, 3H), 4. 00 (s, 3H), 7. 33 (dd, J=2. 7Hz, 9. 3Hz, 1H), 7. 40 (s, 1H), 7. 43-7. 48 (m, 1H), 7. 56 (s, 1H), 7. 60 (d, J=2. 7Hz, 1H), 7. 91 (dd, J=2. 7Hz, 9. 0Hz,

1H), 8. 35 (d, J=8. 8Hz, 1H), 8. 40 (d, J=2. 4Hz, 1H), 8. 58 (s, 1H), 10. 17 (s, 1H)

質量分析値 (ESI-MS, m/z): 486 (M++1)

<u>実施例88:N-{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]-</u> 2-フルオロフェニル}-N'-プロピルウレア

4-[(6,7-i)メトキシー4-iナゾリニル)オキシ] -2-iフルオロアニリン $(50\,mg)$ をクロロホルム $(3\,m1)$ 、トリエチルアミン $(0.3\,m1)$ に溶解した後、クロロホルムに溶解したトリホスゲン $(47\,mg)$ を加えて室温で30分間攪拌した。次にプロピルアミン $(20\,\mu1)$ を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を $9\,mg$ 、収率14%で得た。

'H-NMR (DMSO-d₆, 400MHz): $\delta0$. 90 (t, J=7. 6Hz, 3H), 1. 43-1. 49 (m, 2H), 3. 05-3. 10 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 61 (t, J=5. 6Hz, 1H), 7. 05-7. 07 (m, 1H), 7. 27-7. 31 (m, 1H), 7. 38 (s, 1H), 7. 54 (s, 1H), 8. 14-8. 19 (m, 1H), 8. 28-8. 29 (m, 1H), 8. 55 (s, 1H)

実施例 $89:N-ブチル-N'-\{4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ]-2-フルオロフェニル} ウレア$

 $4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]-2-フルオロアニリン(50mg)をクロロホルム(3ml)、トリエチルアミン(0.3ml)に溶解した後、クロロホルムに溶解したトリホスゲン(47mg)を加えて室温で30分間攪拌した。次にブチルアミン(24<math>\mu$ l)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を25mg、収率38%で得た。

'H-NMR (DMSO-d₆, 400MHz): $\delta0.91$ (t, J=7.3Hz, 3H), 1. 30-1.47 (m, 4H), 3. 09-3.13 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 58 (t, J=5.6Hz,

1 H), 7. 0 4 - 7. 0 7 (m, 1 H), 7. 2 8 - 7. 3 1 (m, 1 H), 7. 3 8 (s, 1 H), 7. 5 4 (s, 1 H), 8. 1 4 - 8. 1 9 (m, 1 H), 8. 2 6 - 8. 2 8 (m, 1 H), 8. 5 5 (s, 1 H)

質量分析値(ESI-MS, m/z): 415 (M++1)

<u>実施例90:N-(sec-ブチル)-N'-{4-[(6,7-ジメトキシ-4-</u> キナゾリニル)オキシ]-2-フルオロフェニル}ウレア

4-[(6,7-i)メトキシー4-iナゾリニル)オキシ] -2-iフルオロアニリン(50mg)をクロロホルム(3m1)、トリエチルアミン(0.3m1)に溶解した後、クロロホルムに溶解したトリホスゲン(47mg)を加えて室温で30分間攪拌した。次にsec-iチルアミン($25\mu1$)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を12mg、収率18%で得た。

 $^{1}H-NMR$ (DMSO-d₆, 400MHz): 0.89 (t, J=7.6Hz, 3H), 1.08 (d, J=6.6Hz, 3H), 1.39-1.48 (m, 2H), 3.58-3.64 (m, 1H), 3.97 (s, 3H), 3.99 (s, 3H), 6.51 (d, J=7.6Hz, 1H), 7.04-7.08 (m, 1H), 7.30 (dd, J=2.4Hz, 11.7Hz, 1H), 7.39 (s, 1H), 7.54 (s, 1H), 8.16-8.22 (m, 2H), 8.56 (s, 1H) 質量分析値 (ESI-MS, m/z): 415 (M+1)

<u>実施例91:N-アリル-N'-{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]-2-フルオロフェニル}ウレア</u>

4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ] -2-フルオロアニリン(50mg)をクロロホルム(3m1)、トリエチルアミン(0.3m1)に溶解した後、クロロホルムに溶解したトリホスゲン(47mg)を加えて室温で30分間攪拌した。次にアリルアミン塩酸塩(30mg)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を<math>18mg、収率28%で得た。

'H-NMR (DMSO-d₆, 400MHz): 3. 75-3. 79 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 5. 08-5. 22 (m, 2H),

- 100 -

5. 84-5. 94 (m, 1H), 6. 72 (t, J=5. 9Hz, 1H), 7. 06-7. 08 (m, 1H), 7. 30-7. 33 (m, 1H), 7. 39 (s, 1H), 7. 54 (s, 1H), 8. 13-8. 18 (m, 1H), 8. 40 (s, 1H), 8. 56 (s, 1H)

質量分析値(ESI-MS, m/z):399 (M++1)

実施例92: $N-{4-[(6, 7-ジメトキシ-4-キナゾリニル) オキシ]-2-フルオロフェニル}-N'-(2-プロピニル) ウレア$

4-[(6,7-ジメトキシー4-キナゾリニル)オキシ]-2-フルオロアニリン(50mg)をクロロホルム(3m1)、トリエチルアミン(0.3m1)に溶解した後、クロロホルムに溶解したトリホスゲン(47mg)を加えて室温で30分間攪拌した。次にプロパルギルアミン塩酸塩(29mg)を加えて、さらに室温で一晩攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さクロロホルムで洗浄し、表題の化合物を21mg、収率33%で得た。

 $^{t}H-NMR$ (DMSO-d₆, 400MHz): 3. 15 (t, J=2. 4Hz, 1H), 3. 91-3. 94 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 7. 07-7. 11 (m, 1H), 7. 33 (dd, J=2. 4Hz, 11. 7Hz, 1H), 7. 39 (s, 1H), 7. 54 (s, 1H), 8. 09-8. 15 (m, 1H), 8. 47-8. 48 (m, 1H), 8. 56 (s, 1H) 質量分析値 (ESI-MS, m/z): 397 (M⁺+1)

<u>実施例93:N-(2,4-ジフルオロベンジル)-N'-{4-[(6,7-ジ</u>メトキシ-4-キナゾリニル)オキシ]-2-フルオロフェニル}ウレア

 $4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]-2-フルオロアニリン(50mg)をクロロホルム(3m1)、トリエチルアミン(0.3m1)に溶解した後、クロロホルムに溶解したトリホスゲン(47mg)を加えて室温で30分間攪拌した。次に2,4-ジフルオロベンジルアミン(28<math>\mu$ 1)を加えて、さらに室温で一晩攪拌した。析出した結晶を適取、洗浄し表題の化合物を20mg、収率26%で得た。

'H-NMR (DMSO-d₅, 400MHz): 3. 97 (s, 3H), 3. 99 (s, 3H), 4. 34 (d, J=5. 8Hz, 2H), 7. 07-7. 11 (m, 3H), 7. 21-7. 27 (m, 1H), 7. 30-7. 33 (m, 1H), 7. 39 (s, 1H), 7. 41-7. 47 (m, 1H), 7. 54 (s, 1H), 8. 12-8. 16 (m, 1H), 8. 46-8. 47 (m, 1H), 8. 55 (s, 1H).

質量分析値 (FD-MS, m/z):484 (M+)

実施例 $94:N-(2,4-ジフルオロフェニル)-N'-{4-[(6,7-ジ$ メトキシー<math>4-キナゾリニル)オキシ]-2-フルオロフェニル $\}$ ウレア

4-[(6,7-i)メトキシー4-iナゾリニル)オキシ] -2-iフルオロアニリン(50mg)をクロロホルム(3m1)に溶解した後、2,4-iジフルオロフェニルイソシアナート($29\mu1$)を加えて60度で一晩攪拌した。析出した結晶を濾取、洗浄し表題の化合物を50mg、収率67%で得た。

'H-NMR (DMSO-d₆, 400MHz): 3. 98 (s, 3H), 3. 99 (s, 3H), 7. 04-7. 08 (m, 1H), 7. 13-7. 15 (m, 1H), 7. 29-7. 40 (m, 3H), 7. 55 (s, 1H), 8. 10-8. 23 (m, 2H), 8. 57 (s, 1H), 8. 97-9. 04 (m, 2H) 質量分析値 (ESI-MS, m/z): 471 (M⁺+1)

実施例 $95:N-{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]-2-フルオロフェニル}-N'-(2-メチルフェニル)ウレア$

4-[(6,7-i)メトキシー4-iナゾリニル)オキシ] -2-iフルオロアニリン(50mg)をクロロホルム(3m1)に溶解した後、o-iトルイルイソシアナート($30\mu1$)を加えて60度で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を17mg、収率24%で得た。

'H-NMR (DMSO-d₆, 400MHz): 2. 27 (s, 3H), 3. 98 (s, 3H), 3. 99 (s, 3H), 6. 95-6. 98 (m, 1H), 7. 12-7. 20 (m, 3H), 7. 36-7. 39 (m, 2H), 7. 55 (s, 1H), 7. 86 (d, J=7. 8Hz, 1H), 8. 21-8. 26 (m, 1H), 8.

35 (s, 1H), 8.57 (s, 1H), 9.00-9.02 (m, 1H) 質量分析値 (ESI-MS, m/z):449 (M++1)

<u>実施例96:N-{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]-</u> 2-フルオロフェニル}-N'-(2-メトキシフェニル)ウレア

 $4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]-2-フルオロアニリン(50mg)をクロロホルム(3m1)に溶解した後、<math>2-メトキシフェニルイソシアナート(32\mu1)を加えて60度で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を<math>22mg$ 、収率30%で得た。

'H-NMR (DMSO-d₆, 400MHz): 3. 89 (s, 3H), 3. 98 (s, 3H), 3. 99 (s, 3H), 6. 88-7. 04 (m, 3H), 7. 11 -7. 14 (m, 1H), 7. 35-7. 39 (m, 1H), 7. 40 (s, 1H), 7. 56 (s, 1H), 8. 12-8. 15 (m, 1H), 8. 19-8. 25 (m, 1H), 8. 57 (s, 1H), 8. 75-8. 78 (m, 1H), 9. 26-9. 29 (m, 1H)

質量分析値(ESI-MS, m/z): 465 (M+1)

実施例 $9.7:N-{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]-3-メチルフェニル}-N'-プロピルウレア$

 $4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]-3-メチルアニリン(50mg)をクロロホルム(3m1)、トリエチルアミン(0.2m1)に溶解した後、クロロホルムに溶解したトリホスゲン(48mg)を加えて室温で30分間攪拌した。次にプロピルアミン(20<math>\mu$ 1)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を30mg、収率47%で得た。

'H-NMR (DMSO-d₆, 400MHz): $\delta0$. 89 (t, J=7.5Hz, 3H), 1.41-1.50 (m, 2H), 2.03 (s, 3H), 3.03-3.08 (m, 2H), 3.98 (s, 3H), 3.99 (s, 3H), 6.13 (t, J=5.4Hz, 1H), 7.04 (d, J=8.5Hz, 1H), 7.28 (d, J=2.4Hz, 8.5Hz, 1H), 7.36 (d, J=2.4Hz, 1H),

- 103 -

7. 38 (s, 1H), 7. 58 (s, 1H), 8. 39 (s, 1H), 8. 50 (s, 1H)

質量分析値(ESI-MS,m/z): 397(M++ 1)

実施例 $98:N-プチル-N'-\{4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ]-3-メチルフェニル} ウレア$

4-[(6,7-i)メトキシー4-i+ナゾリニル)オキシ] -3-iメチルアニリン $(50\,\mathrm{mg})$ をクロロホルム $(3\,\mathrm{ml})$ 、トリエチルアミン $(0.2\,\mathrm{ml})$ に溶解した後、クロロホルムに溶解したトリホスゲン $(48\,\mathrm{mg})$ を加えて室温で 30分間攪拌した。次にブチルアミン $(24\,\mathrm{ml})$ を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPL Cにより精製し、表題の化合物を $31\,\mathrm{mg}$ 、収率 47%で得た。

'H-NMR (DMSO-d₆, 400MHz): $\delta0$. 91 (t, J=7. 3Hz, 3H), 1. 29-1. 46 (m, 4H), 2. 03 (s, 3H), 3. 07-3. 12 (m, 2H), 3. 98 (s, 3H), 3. 99 (s, 3H), 6. 11 (t, J=5. 6Hz, 1H), 7. 05 (d, J=8. 8Hz, 1H), 7. 27 (dd, J=2. 3Hz, 8. 5Hz, 1H), 7. 36 (d, J=2. 4Hz, 1H), 7. 38 (s, 1H), 7. 58 (s, 1H), 8. 39 (s, 1H), 8. 51 (s, 1H)

質量分析値(ESI-MS,m/z): 4 1 1 (M⁺+ 1)

実施例99: $N-(2, 4-ジフルオロフェニル)-N'-\{4-[(6, 7-ジ$ $メトキシ-4-キナゾリニル) オキシ]-3-メチルフェニル}ウレア$

 $4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]-3-メチルアニリン(50mg)をクロロホルム(3ml)に溶解した後、2,4-ジフルオロフェニルイソシアナート(23<math>\mu$ l)を加えて、一晩加熱還流した。析出した結晶を濾取、洗浄し、表題の化合物を59mg、収率79%で得た。

 $^{1}H-NMR$ (DMSO-d₆, 400MHz): 2. 07 (s, 3H), 3. 99 (s, 3H), 3. 99 (s, 3H), 7. 03-7. 08 (m, 1H), 7. 14 (d, J=8. 5Hz, 1H), 7. 29-7. 37 (m, 2H), 7. 39 (s, 1H), 7. 43 (d, J=2. 4Hz, 1H), 7. 60 (s, 1H), 8. 07

- 104 -

-8.14 (m, 1H), 8.52 (s, 1H), 9.03-9.05 (m, 1H) 質量分析値 (ESI-MS, m/z): 467 (M⁺+1)

実施例 $100:N-{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]}$ $-3-メチルフェニル}-N'-(4-フルオロフェニル)ウレア$

 $4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]-3-メチルアニリン(50mg)をクロロホルム(3ml)に溶解した後、<math>p-フルオロフェニルイソシアナート(22\mul)を加えて、一晩加熱還流した。析出した結晶を濾取、洗浄し、表題の化合物を<math>42mg$ 、収率58%で得た。

 $^{1}H-NMR$ (DMSO-d₆, 400MHz): 2.07 (s, 3H), 3.98 (s, 3H), 3.99 (s, 3H), 7.10-7.14 (m, 3H), 7.35 (dd, J=2.4Hz, 8.5Hz, 1H), 7.39 (s, 1H), 7.43 (d, J=2.4Hz, 1H), 7.46-7.49 (m, 2H), 7.59 (s, 1H), 8.51 (s, 1H), 8.66 (s, 1H), 8.70 (s, 1H) 質量分析値 (ESI-MS, m/z): 449 (M⁺+1)

実施例 $101:N-\{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]$ $-3-メチルフェニル\}-N'-(2-メトキシフェニル)ウレア$

 $4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ] -3-メチルアニリン (50 mg) をクロロホルム (3 m l) に溶解した後、<math>2-メトキシフェニルイソシアナート (26 \mu l) を加えて、一晩加熱還流した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を<math>41 mg$ 、収率55%で得た。

'H-NMR (DMSO-d₆, 400MHz): δ 2. 07 (s, 3H), 3. 8 9 (s, 3H), 3. 99 (s, 3H), 3. 99 (s, 3H), 6. 88-6. 9 7 (m, 2H), 7. 01-7. 03 (m, 1H), 7. 12 (d, J=8. 5Hz, 1H), 7. 35 (dd, J=2. 4Hz, 8. 5Hz, 1H), 7. 39 (s, 1H), 7. 44 (d, J=2. 4Hz, 1H), 7. 60 (s, 1H), 8. 13-8. 15 (m, 1H), 8. 23 (s, 1H), 8. 52 (s, 1H), 9. 33 (s, 1H)

質量分析値(ESI-MS, m/z): 461 (M+1)

<u>実施例102:N-{4-[(6, 7-ジメトキシ-4-キナゾリニル)オキシ</u>] $-2-メチルフェニル}-N'-プロピルウレア$

4-[(6,7-i)]メトキシー4-i+ナゾリニル)オキシ] -2-iメチルアニリン $(50\,\mathrm{mg})$ をクロロホルム $(3\,\mathrm{m}\,1)$ 、トリエチルアミン $(0.2\,\mathrm{m}\,1)$ に溶解した後、クロロホルムに溶解したトリホスゲン $(48\,\mathrm{mg})$ を加えて室温で30分間攪拌した。次にプロピルアミン $(20\,\mathrm{m}\,1)$ を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を $30\,\mathrm{mg}$ 、収率 47%で得た。

'H-NMR (DMSO-d₆, 400MHz): $\delta0$. 90 (t, J=7. 3Hz, 3H), 1. 42-1. 51 (m, 2H), 2. 21 (s, 3H), 3. 04-3. 09 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 53 (t, J=5. 6Hz, 1H), 7. 02 (dd, J=2. 7Hz, 8. 8Hz, 1H), 7. 08 (d, J=2. 7Hz, 1H), 7. 37 (s, 1H), 7. 54 (s, 1H), 7. 65 (s, 1H), 7. 85 (d, J=8. 8Hz, 1H), 8. 53 (s, 1H)

質量分析値(ESI-MS, m/z): 397 (M++1)

<u>実施例103: $N-ブチル-N'-\{4-[(6,7-ジメトキシ-4-キナゾリ</u>ニル) オキシ<math>]-2-メチルフェニル\}$ ウレア</u>

 $4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]-2-メチルアニリン(50mg)をクロロホルム(3m1)、トリエチルアミン(0.2m1)に溶解した後、クロロホルムに溶解したトリホスゲン(48mg)を加えて室温で30分間攪拌した。次にブチルアミン(24<math>\mu$ 1)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を37mg、収率56%で得た。

'H-NMR (DMSO-d₆, 400MHz): $\delta0$. 92 (t, J=7. 1Hz, 3H), 1. 31-1. 48 (m, 4H), 2. 21 (s, 3H), 3. 08-3. 13 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 50 (t, J=5. 4Hz, 1H), 7. 02 (dd, J=2. 7Hz, 8. 8Hz, 1H), 7. 08 (d, J=2. 7Hz, 1H), 7. 37 (s, 1H), 7. 54 (s,

- 106 -

1H), 7. 64 (s, 1H), 7. 86 (d, J=8. 8Hz, 1H), 8. 53 (s, 1H)

質量分析値 (ESI-MS, m/z): 411 (M++1)

実施例 $104:N-(2,4-ジフルオロフェニル)-N'-\{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]-2-メチルフェニル}ウレア$

4-[(6,7-i)メトキシー4-iナソリニル)オキシ] -2-iメチルアニリン $(50\,\mathrm{mg})$ をクロロホルム $(3\,\mathrm{ml})$ に溶解した後、2, 4-iジフルオロフェニルイソシアナート $(23\,\mathrm{ml})$ を加えて、一晩加熱還流した。析出した結晶を濾取、洗浄し、表題の化合物を定量的に得た。

'H-NMR (DMSO-d₆, 400MHz): 2. 29 (s, 3H), 3. 98 (s, 3H), 3. 99 (s, 3H), 7. 03-7. 11 (m, 2H), 7. 16 (d, J=2. 7Hz, 1H), 7. 29-7. 35 (m, 1H), 7. 38 (s, 1H), 7. 55 (s, 1H), 7. 87-7. 90 (m, 1H), 8. 13-8. 19 (m, 1H), 8. 36-8. 39 (m, 1H), 8. 55 (s, 1H), 8. 92-8. 95 (m, 1H)

質量分析値(ESI-MS, m/z): 467 (M++1)

実施例 $105:N-{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]$ $-2-メチルフェニル}-N'-(4-フルオロフェニル)ウレア$

 $4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]-2-メチルアニリン(50mg)をクロロホルム(3ml)に溶解した後、<math>p-フルオロフェニルイソシアナート(22\mul)を加えて、一晩加熱還流した。析出した結晶を濾取、洗浄し、表題の化合物を定量的に得た。$

'H-NMR (DMSO-d₆, 400MHz): 2. 28 (s, 3H), 3. 98 (s, 3H), 3. 99 (s, 3H), 7. 08-7. 15 (m, 4H), 7. 38 (s, 1H), 7. 47-7. 50 (m, 2H), 7. 55 (s, 1H), 7. 84 -7. 88 (m, 1H), 7. 98 (s, 1H), 8. 55 (s, 1H), 9. 03 -9. 05 (m, 1H)

質量分析値 (ESI-MS, m/z): 449 (M++1)

<u>実施例106:N- {4-[(6,7-ジメトキシー4ーキナゾリニル)オキシ</u>]

<u>-2-メチルフェニル}-N'-(2-メトキシフェニル)ウレア</u>

4-[(6,7-i)メトキシー4-iナゾリニル)オキシ] -2-iメチルアニリン (50mg) をクロロホルム (3m1) に溶解した後、2-iメトキシフェニルイソシアナート $(26\mu1)$ を加えて、一晩加熱還流した。析出した結晶を濾取、洗浄し、表題の化合物を70mg、収率95%で得た。

'H-NMR (DMSO-d₆, 400MHz): 2. 29 (s, 3H), 3. 90 (s, 3H), 3. 98 (s, 3H), 3. 99 (s, 3H), 6. 87-6. 97 (m, 2H), 7. 02-7. 04 (m, 1H), 7. 08 (dd, J=2. 9Hz, 8. 8Hz, 1H), 7. 14 (d, J=2. 7Hz, 1H), 7. 38 (s, 1H), 7. 55 (s, 1H), 7. 84 (d, J=8. 8Hz, 1H), 8. 13-8. 15 (m, 1H), 8. 55 (s, 1H), 8. 58 (s, 1H), 8. 61-8. 62 (m, 1H)

質量分析値(ESI-MS, m/z): 461 (M++1)

実施例 $107:N-{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]$ -2-ニトロフェニルN'-プロピルウレア

 $4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]-2-ニトロアニリン(50mg)をクロロホルム(10ml)、トリエチルアミン(0.2ml)に溶解した後、クロロホルムに溶解したトリホスゲン(43mg)を加えて室温で30分間攪拌した。次にプロピルアミン(18<math>\mu$ l)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を24mg、収率38%で得た。

'H-NMR (DMSO-d₆, 400MHz): $\delta0$. 91 (t, J=7.6Hz, 3H), 1.45-1.51 (m, 2H), 3.06-3.09 (m, 2H), 3.98 (s, 3H), 4.00 (s, 3H), 7.40 (s, 1H), 7.52 (br, 1H), 7.58 (s, 1H), 7.67-7.70 (m, 1H), 8.04-8.06 (m, 1H), 8.38-8.41 (m, 1H), 8.57 (s, 1H), 9.35 (s, 1H)

質量分析値(ESI-MS, m/z):428 (M+1)

<u>実施例108:N-ブチル-N'- {4-[(6, 7-ジメトキシ-4-キナゾリ</u>

ニル) オキシ]-2-ニトロフェニル) ウレア

 $4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]-2-ニトロアニリン(50mg)をクロロホルム(10m1)、トリエチルアミン(0.2m1)に溶解した後、クロロホルムに溶解したトリホスゲン(43mg)を加えて室温で30分間攪拌した。次にブチルアミン(22<math>\mu$ 1)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を15mg、収率23%で得た。

'H-NMR (DMSO-d₆, 400MHz): $\delta0$. 91 (t, J=7. 3Hz, 3H), 1. 30-1. 49 (m, 4H), 3. 10-3. 15 (m, 2H), 3. 98 (s, 3H), 4. 00 (s, 3H), 7. 40 (s, 1H), 7. 51 (br, 1H), 7. 57 (s, 1H), 7. 68 (dd, J=2. 9Hz, 9. 3Hz, 1H), 8. 05 (d, J=2. 9Hz, 1H), 8. 40 (d, J=9. 2Hz, 1H), 8. 57 (s, 1H), 9. 35 (s, 1H)

質量分析値(ESI-MS, m/z):442 (M+1)

実施例 $109:N-\{2-\rho \Box \Box -4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]フェニル<math>\}$ -N-メトキシメチル-N'-プロピルウレア

 $N-\{2-0$ ロロー4-[(6,7-3)メトキシー4-キナゾリニル)オキシ]フェニル $\}-N$ 、-プロピルウレア $(100\,\mathrm{mg})$ を無水テトラヒドロフラン $(30\,\mathrm{ml})$ に溶解し、水素化ナトリウム $(60\,\mathrm{wt})$ 88 mg)を加えて室温で15分間攪拌した。次にクロロメチルメチルエーテル $(67\,\mu\,\mathrm{l})$ を加えて、さらに室温で30分間攪拌した。減圧下溶媒を留去し、水を加えクロロホルムで抽出した。クロロホルム層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を $18\,\mathrm{mg}$ 、収率 $18\,\mathrm{\%}$ で得た。

- 109 -

J = 2.7 Hz, 1H), 8.66 (s, 1H)

質量分析値(ESI-MS, m/z): 461 (M+1)

<u>実施例110:N-アセチル-N-{2-クロロ-4-[(6,7-ジメトキシー4-キナゾリニル)オキシ]フェニル}-N'-プロピルウレア</u>

N- $\{2-\rho \Box \Box - 4-[(6,7-i)]$ メトキシー4ーキナゾリニル)オキシ]フェニル $\}$ -N'ープロピルウレア(100mg)を無水テトラヒドロフラン(30ml)に溶解し、水素化ナトリウム(60wt%、88mg)を加えて室温で15分間攪拌した。次に塩化アセチル(63μl)を加えて、さらに室温で2時間攪拌した。減圧下溶媒を留去し、水を加えクロロホルムで抽出した。クロロホルム層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/アセトンで展開するHPLCにより精製し、表題の化合物を27mg、収率26%で得た。

'H-NMR (DMSO-d₆, 400MHz): $\delta0$. 98 (t, J=7. 3Hz, 3H), 1. 59-1. 68 (m, 2H), 2. 04 (s, 3H), 3. 27-3. 36 (m, 2H), 4. 07 (s, 3H), 4. 08 (s, 3H), 7. 31-7. 33 (m, 1H), 7. 35 (s, 1H), 7. 41 (d, J=9. 0Hz, 1H), 7. 50-7. 51 (m, 2H), 8. 63 (s, 1H), 9. 08 (br, 1H)

質量分析値(ESI-MS, m/z): 459 (M++1)

実施例 $111:N'-\{2-クロロ-4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]フェニル}-N-メチル-N-プロピルウレア$

 $^{1}H-NMR$ (DMSO-d₆, 400MHz): δ 0. 99 (t, J=7. 3H

- 110 -

z, 3H), 1. 64-1. 74 (m, 2H), 3. 08 (s, 3H), 3. 34 (t, J=7. 6 Hz, 2H), 4. 07 (s, 3H), 4. 08 (s, 3H), 7. 00 (s, 1H), 7. 17 (dd, J=2. 7 Hz, 9. 3 Hz, 1H), 7. 31 (d, J=2. 7 Hz, 1H), 7. 38 (s, 1H), 7. 53 (s, 1H), 8. 41 (d, J=9. 0 Hz, 1H), 8. 64 (s, 1H)

質量分析値(ESI-MS, m/z):431 (M*+1)

実施例 $112:N'-\{2-クロロ-4-[(6,7-ジメトキシ-4-キナゾ リニル) オキシ]フェニル} -N-エチル-N-プロピルウレア$

'H-NMR (DMSO-d₆, 400MHz): $\delta1$. 00 (t, J=7. 3Hz, 3H), 1. 28 (t, J=7. 1Hz, 3H), 1. 69-1. 74 (m, 2H), 3. 32 (t, J=7. 6Hz, 2H), 3. 43 (q, J=7. 1Hz, 2H), 4. 07 (s, 3H), 4. 07 (s, 3H), 7. 02 (s, 1H), 7. 17 (dd, J=2. 9Hz, 9. 2Hz, 1H), 7. 31 (d, J=2. 7Hz, 1H), 7. 36 (s, 1H), 7. 53 (s, 1H), 8. 42 (d, J=9. 0Hz, 1H), 8. 63 (s, 1H)

質量分析値 (ESI-MS, m/z): 445 (M+1)

実施例 $113:N'-\{2-クロロ-4-[(6,7-ジメトキシ-4-キナゾ リニル) オキシ]フェニル<math>\}-N,N-ジプロピルウレア$

2-クロロー4- [(6, 7-ジメトキシー4-キナゾリニル) オキシ] アニリン (100 mg) をクロロホルム (3 m l)、トリエチルアミン (0.3 m l) に溶解した後、クロロホルムに溶解したトリホスゲン (90 mg) を加えて室温で15分間攪拌した。次にジプロピルアミン (62μ l) を加えて、さらに室温で

30分間攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、溶媒を留去して得られた結晶をヘキサンで洗浄し、表題の化合物を48mg、収率35%で得た。

 $^{1}H-NMR$ (DMSO-d₆, 400MHz): δ 0. 99 (t, J=7. 3Hz, 6H), 1. 66-1. 76 (m, 4H), 3. 32 (t, J=7. 8Hz, 4H), 4. 07 (s, 3H), 4. 07 (s, 3H), 7. 03 (s, 1H), 7. 16 (dd, J=2. 7Hz, 9. 3Hz, 1H), 7. 31 (d, J=2. 7Hz, 1H), 7. 34 (s, 1H), 7. 52 (s, 1H), 8. 43 (d, J=9. 0Hz, 1H), 8. 63 (s, 1H)

質量分析値(ESI-MS, m/z): 459 (M++1)

<u>実施例114:NープチルーN'-{2-クロロ-4-[(6,7-ジメトキシー4-キナゾリニル)オキシ</u>]フェニル $}$ -N-メチルウレア

2-クロロー4ー [(6, 7-ジメトキシー4ーキナゾリニル)オキシ] アニリン $(80 \, \text{mg})$ をクロロホルム $(3 \, \text{ml})$ 、トリエチルアミン $(0. 3 \, \text{ml})$ に溶解した後、クロロホルムに溶解したトリホスゲン $(72 \, \text{mg})$ を加えて室温で 15 分間攪拌した。次にN-メチルブチルアミン $(43 \, \mu \, 1)$ を加えて、さらに室温で 30 分間攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、溶媒を留去して得られた結晶をN+1 で洗浄し、表題の化合物を $26 \, \text{mg}$ 、収率 $24 \, \%$ で得た。

'H-NMR (DMSO-d₆, 400MHz): δ 0. 99 (t, J=7. 3Hz, 3H), 1. 38-1. 43 (m, 2H), 1. δ 2-1. δ 6 (m, 2H), 3. 07 (s, 3H), 3. 40 (t, J=7. 3Hz, 2H), 4. 07 (s, 3H), 4. 07 (s, 3H), 7. 00 (s, 1H), 7. 17 (dd, J=2. 7Hz, 9. 3Hz, 1H), 7. 31 (d, J=2. 7Hz, 1H), 7. 36 (s, 1H), 7. 53 (s, 1H), 8. 41 (d, J=9. 3Hz, 1H), 8. 63 (s, 1H)

質量分析値(ESI-MS, m/z): 445 (M+1)

実施例 $115:N'-\{2-D-D-4-[(6,7-ジメトキシ-4-キナゾ リニル)オキシ]フェニル}-N-(4-D-D-フェニル)-N-メチルウレア$

2-クロロー4-[(6,7-ジメトキシー4-キナゾリニル)オキシ] アニリン (80 mg) をクロロホルム (3 m1)、トリエチルアミン (0.3 m1) に溶解した後、クロロホルムに溶解したトリホスゲン (72 mg) を加えて室温で 15 分間攪拌した。次に4-クロロ-N-メチルアニリン (35 m1) を加えて、さらに 30 分間加熱還流した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、溶媒を留去して得られた結晶をエーテルで洗浄し、表題の化合物を 83 mg、収率 69%で得た。

 $^{1}H-NMR$ (DMSO-d₆, 400MHz): 3. 36 (s, 3H), 4. 06 (s, 3H), 4. 07 (s, 3H), 6. 89 (s, 1H), 7. 17 (dd, J=2.7Hz, 9. 0Hz, 1H), 7. 23 (d, J=2.7Hz, 1H), 7. 33-7. 35 (m, 3H), 7. 48-7. 50 (m, 3H), 8. 41 (d, J=9. 0Hz, 1H), 8. 61 (s, 1H)

質量分析値(ESI-MS, m/z): 499 (M++1)

<u>実施例116:N'-{2-クロロ-4-[(6,7-ジメトキシ-4-キナゾリ</u>ニル)オキシ]フェニル}-N, N-ジエチルウレア

2-クロロー4ー [(6,7-ジメトキシー4ーキナゾリニル)オキシ] アニリン(50mg)をクロロホルム(2m1)、トリエチルアミン(0.5m1)に溶解した後、クロロホルムに溶解したトリホスゲン(48mg)を加えて室温で30分間攪拌した。次にジエチルアミン(0.5m1)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を37mg、収率93%で得た。

'H-NMR (CDCl₃, 400MHz): δ 1. 30 (t, J=7. 1Hz, 6H), 3. 44 (q, J=7. 1Hz, 4H), 4. 12 (s, 3H), 4. 20 (s, 3H), 7. 16 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 27 (s, 1H), 7. 31 (d, J=2. 7Hz, 1H), 7. 59 (s, 1H), 8. 15 (s, 1H), 8. 48 (d, J=9. 0Hz, 1H), 8. 81 (s, 1H)

質量分析値(ESI-MS, m/z):431 (M++1)

<u>実施例117:N-{2-クロロ-4-[(6, 7-ジメトキシ-4-キナゾリニ</u>

ν) オキシ フェニル-N -メチルウレア

2-クロロー4-[(6,7-ジメトキシー4-キナゾリニル)オキシ]アニリン(50mg)をクロロホルム(2m1)、トリエチルアミン(0.5m1)に溶解した後、クロロホルムに溶解したトリホスゲン(48mg)を加えて室温で30分間攪拌した。次に-78度に冷却し、メチルアミン塩酸塩(130mg)を加えそのまま昇温し、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を41mg、収率70%で得た。

'H-NMR (DMSO-d₆, 400MHz): δ 2. 68 (d, J=4.4Hz, 3H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 86-6. 88 (m, 1H), 7. 21 (dd, J=2.7Hz, 9. 0Hz, 1H), 7. 37 (s, 1H), 7. 43 (d, J=2.7Hz, 1H), 7. 53 (s, 1H), 8. 07 (s, 1H), 8. 17 (d, J=9.0Hz, 1H), 8. 54 (s, 1H) 質量分析値 (ESI-MS, m/z): 389 (M*+1)

<u>実施例118:N'-{2-クロロ-4-[(6, 7-ジメトキシ-4-キナゾリ</u>ニル) オキシ] フェニル}-N, N-ジメチルウレア

2-クロロー4ー[(6,7-ジメトキシー4ーキナゾリニル)オキシ]アニリン(50mg)をクロロホルム(2ml)、トリエチルアミン(0.5ml)に溶解した後、クロロホルムに溶解したトリホスゲン(48mg)を加えて室温で30分間攪拌した。次に-78度に冷却し、ジメチルアミン塩酸塩(250mg)を加えそのまま昇温し、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を33mg、収率53%で得た。

 $^{1}H-NMR$ (CDC13, 400MHz): δ 3. 11 (s, 6H), 4. 12 (s, 3H), 4. 20 (s, 3H), 7. 05 (s, 1H), 7. 17 (dd, J=2. 4Hz, 9. 3Hz, 1H), 7. 31 (d, J=2. 4Hz, 1H), 7. 59 (s, 1H), 8. 15 (s, 1H), 8. 46 (d, J=9. 3Hz, 1H), 8. 82 (s, 1H)

質量分析値(ESI-MS, m/z): 403 (M+1)

実施例 $119:N-(2-クロロ-4-\{[6-メトキシ-7-(3-モルホリノ プロポキシ)-4-キナゾリニル] オキシ} フェニル) -N'-プロピルウレア$

'H-NMR (CDC13, 400MHz): δ 0. 89 (t, J=7. 44Hz, 3H), 1. 41-1. 50 (m, 2H), 1. 97 (t, J=6. 83Hz, 1H), 2. 33-2. 49 (m, 4H), 3. 04-3. 09 (m, 2H), 3. 32-3. 38 (m, 4H), 3. 52-3. 68 (m, 3H), 4. 03 (s, 3H), 4. 23-4. 29 (m, 1H), 4. 32 (t, J=5. 89Hz, 1H), 6. 98 (t, J=5. 49Hz, 1H), 7. 21 (dd, J=2. 68, 9. 03Hz, 1H), 7. 36 (s, 1H), 7. 46 (d, J=2. 68Hz, 1H), 7. 53 (d, J=7. 81Hz, 1H), 8. 03 (s, 1H), 8. 18 (d, J=9. 27Hz, 1H), 8. 54 (d, J=4. 39Hz, 1H) 質量分析値 (ESI-MS, m/z): 529 (M⁺)

 オキシ] フェニル} - N' - プロピルウレア(7 2 m g)、炭酸カリウム(3 0 m g)、1,2 - ジプロモエタン(6 2 μ I)をN,N - ジメチルホルムアミド(4 m I)に溶解し室温で 3 時間攪拌した。減圧下溶媒を留去して得られた残さに水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、N - (4 - {[7 - (2 - プロモエトキシ) - 6 - メトキシー4 - キナゾリニル] オキシ} - 2 - クロロフェニル) - N' - プロピルウレアを 4 0 mg、収率 4 5 % で得た。得られた中間体(4 5 mg)、炭酸カリウム(3 0 mg)、モルホリン(8 0 μ I)をN,N - ジメチルホルムアミド(2 m I)に溶解し室温で一晩攪拌した。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を 4 2 m g、収率 5 6 % で得た。

'H-NMR (CDC1₃, 400MHz): δ0. 89 (t, J=7. 32Hz, 3H), 1. 43-1. 49 (m, 2H), 2. 32-2. 38 (m, 2H), 2. 66 (bs, 1H), 2. 79 (t, J=5. 86Hz, 1H), 3. 04-3. 09 (m, 2H), 3. 29-3. 36 (m, 4H), 3. 53 (m, 1H), 3. 57-3. 59 (m, 2H), 3. 96 (s, 3H), 4. 31 (t, J=5. 85Hz, 1H), 6. 98 (m, 1H), 7. 21-7. 23 (m, 1H), 7. 41 (s, 1H), 7. 46-7. 47 (m, 1H), 7. 55 (d, J=12. 69Hz, 1H), 8. 03 (s, 1H), 8. 19 (d, J=9. 27Hz, 1H), 8. 55 (d, J=5. 37Hz, 1H),

質量分析値(ESI-MS, m/z):517 (M++1)

実施例 $121:N-(2-\rho \Box \Box -4-\{[7-(3-ヒドロキシプロポキシ)-6-メトキシ-4-キナゾリニル] オキシ} フェニル) -N'-プロピルウレア N-<math>\{2-\rho \Box \Box -4-[(7-ヒドロキシ-6-メトキシ-4-キナゾリニル) オキシ] フェニル} -N'-プロピルウレア (55mg),炭酸カリウム (20mg)、<math>3-プロモ-1-プロパノール$ (62 μ 1)をN,N-ジメチルホルムア

ミド(4ml)に溶解し室温で3時間攪拌した。減圧下溶媒を留去して得られた

残さに水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を25mg、収率40%で得た。

'H-NMR (CDC1₃, 400MHz): $\delta0$. 91 (t, J=7. 44Hz, 3H), 1. 24 (bs, 1H), 1. 43-1. 52 (m, 2H), 1. 97 (t, J=6. 22Hz, 2H), 3. $06\sim3$. 11 (m, 2H), 3. 56-3. 7 1 (m, 2H), 3. 97 (s, 3H), 4. 27 (m, 2H), 6. 99 (t, J=5. 62Hz, 1H), 7. 23 (dd, J=2. 68, 9. 03Hz, 1H), 7. 38 (d, J=9. 03Hz, 1H), 7. 47 (d, J=2. 68Hz, 1H), 7. 54 (s, 1H), 8. 05 (s, 1H), 8. 20 (d, J=9. 03Hz, 1H)

質量分析値(ESI-MS, m/z):461 (M++1)

実施例 $122:N-(2-クロロ-4-\{[7-(2-ヒドロキシエトキシ)-6$ -メトキシ-4-キナゾリニル] オキシ+20 フェニル+21 フェニル+22 アプロピルウレア

 $N-\{2-\rho \Box \Box -4-[(7-ヒドロキシ-6-メトキシ-4-キナゾリニル)$ オキシ] フェニル $\}-N$ -プロピルウレア (50 mg)、炭酸カリウム (30 mg)、エチレンブロモヒドリン (44 μ I)をN,N-ジメチルホルムアミド (4 m I) に溶解し室温で 3 時間攪拌した。減圧下溶媒を留去して得られた残さに水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を 12 mg、収率 22 %で得た。

'H-NMR (CDC13, 400MHz): $\delta0$. 91 (t, J=7. 44Hz, 3H), 1. 42-1. 49 (m, 2H), 3. 06-3. 11 (m, 2H), 3. 80-3. 83 (m, 2H), 3. 98 (s, 3H), 4. 22 (t, J=4. 64Hz, 2H), 4. 98 (t, J=5. 37Hz, 1H), 6. 99 (t, J=5. 37Hz, 1H), 7. 33 (dd, J=2. 69Hz, 9. 03Hz, 1H), 7. 39 (s, 1H), 7. 48 (d, J=2. 68Hz, 1H), 7. 55 (s,

- 117 -

1H), 8. 05 (s, 1H), 8. 19 (d, J=9. 27Hz, 1H), 8. 5 (s, 1H)

質量分析値(ESI-MS, m/z):447 (M++1)

実施例123:N-(2-)000-4-{[6-メトキシ-7-(4-ピリジル メトキシ) -4-キナゾリニル]オキシ} フェニル) -N'-プロピルウレア

原料 (N-{2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キナソリニル)オキシ]フェニル}-N'-プロピルウレア、80mg),炭酸カリウム (138mg)、4-クロロメチルピリジン塩酸塩(41mg)をN,N-ジメチルホルムアミド(1ml)に溶解し80℃で3時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをHPLCにて精製し、表題の化合物を65mg、収率66%で得た。

 $^{1}H-NMR$ (CDCl₃, 400MHz): δ 0. 96 (t, J=7. 6Hz, 3H),

- 1. 53-1. 64 (m, 2H), 3.25 (dd, J=7.3Hz, 12.9H
- z, 2H), 4. 07 (s, 3H), 5. 32 (s, 2H), 6. 66 (s, 1H),
- 7. 14 (dd, J = 2. 7Hz, 9. 0Hz, 1H), 7. 27 (s, 1H),
- 7. 29 (d, J = 2. 7Hz, 1H), 7. 41 (d, J = 5. 9Hz, 2H),
- 7. 54 (s, 1H), 8. 24 (d, J=9. 0Hz, 1H), 8. 59 (s, 1H), 8. 63 (d, J=6. 1Hz. 2H)

質量分析値(ESI-MS, m/z): 494 (M++1)

実施例 $124:N-[2-クロロ-4-({6-メトキシ-7-[(5-モルホリノペンチル)オキシ]-4-キナゾリニル}オキシ)フェニル<math>]-N'-プロピルウレア$

 $N-\{2-\rho \Box \Box -4-[(7-ヒドロキシ-6-メトキシ-4-キナゾリニル)$ オキシ] フェニル $\}$ -N'-プロピルウレア $(70\,\mathrm{mg})$ 、炭酸カリウム $(30\,\mathrm{mg})$ 、ペンタメチレンプロマイド $(80\,\mu\mathrm{l})$ をN, $N-ジメチルホルムアミド <math>(5\,\mathrm{ml})$ に溶解し室温で 3 時間攪拌した。減圧下溶媒を留去して得られた残さに水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、 $N-[4-(\{7-(5-ブ)\}]]$

ロモペンチル)オキシ} -6 ーメトキシー4ーキナゾリニル)オキシ] -2 ークロフェニル] ー N ・ 一プロピルウレアを4 3 mg、収率4 6%で得た。得られた中間体(4 3 mg)、炭酸カリウム(3 0 mg)、モルホリン(7 0 μ 1)をN, N ージメチルホルムアミド(4 m 1)に溶解し室温で一晩攪拌した。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を3 0 mg、収率6 8%で得た。

'H-NMR (CDCl₃, 400MHz): δ 1. 71 (t, J=7. 32Hz, 3H), 2. 28 (t, J=7. 20Hz, 2H), 2. 63 (m, 2H), 3. 08-3. 14 (m, 5H), 3. 29~3. 30 (m, 5H), 3. 47 (bs, 1H), 3. 73 (m, 1H), 3. 86-3. 90 (m, 2H), 4. 36 (t, J=4. 65Hz, 3H), 4. 46 (t, J=4. 76Hz, 1H), 4. 77 (s, 1H), 4. 99 (t, J=6. 34Hz, 2H), 7. 80 (m, 1H), 8. 02 (dd, J=2. 68Hz, 9. 27Hz, 1H), 8. 18 (s, 1H), 8. 27 (d, J=2. 68Hz, 1H), 8. 34 (s, 1H), 8. 8 5 (s, 1H), 9. 00 (d, J=9. 03Hz, 1H), 9. 35 (s, 1H) 質量分析値 (ESI-MS, m/z): 559 (M+1)

<u>実施例125:N-{2-クロロ-4-[(6-メトキシ-7-{[5-(1H-1), 2, 3-トリアゾール-1-イル) ペンチル|オキシ} -4-キナゾリニル)</u> オキシ|フェニル} -N'-プロピルウレア

トリアゾール(0.41ml)、1 - ブロモ-5 - クロロペンタン(1.0ml)、ヨウ化テトラブチルアンモニウム(10mg)、および3 M水酸化ナトリウム水溶液(1ml)をアセトン(10ml)に溶解し、50℃で18時間攪拌した。反応混合物に水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルムで展開するクロマトグラフィーにより精製し、中間体(390mg)を得た。

原料 $(N - \{2 - D - 4 - [(7 - E + D + b - 6 - A + b - 4 - b + b -$

38mg)、前述の中間体(52mg)をN,N-ジメチルホルムアミド(1ml)に溶解し120℃で5時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをHPLCにて精製」し、表題の化合物を41mg、収率38%で得た。

¹H-NMR (CDCl₃, 400MHz): $\delta0$. 96 (t, J=7. 6Hz, 3H), 1. 50-1. 65 (m, 4H), 1. 90-2. 08 (m, 4H), 3. 24 (d d, J=7. 1Hz, 12. 9Hz, 2H), 4. 01 (s, 3H), 4. 17 (t, J=6. 6Hz, 2H), 4. 44 (t, J=7. 3Hz, 2H), 4. 88-4. 94 (m, 1H), 6. 32 (s, 1H), 7. 14 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 25 (s, 1H), 7. 29 (d, J=2. 7Hz, 1H), 7. 48 (s, 1H), 7. 55 (s, 1H), 7. 70 (s, 1H), 8. 23 (d, J=9. 0Hz, 1H), 8. 58 (s, 1H)

質量分析値(ESI-MS, m/z):540 (M++1)

実施例 $126:N'-(2-クロロ-4-\{[6-メトキシ-7-(4-ピリジ ルメトキシ)-4-キナゾリニル]オキシ}$ フェニル)-N,N-ジエチルウレア

原料 (N' $-\{2-\rho \Box \Box -4-[(7-ヒドロキシ-6-メトキシ-4-キ+ ナゾリニル) オキシ]フェニル \} -N, N-ジエチルウレア、83mg),炭酸カリウム(138mg)、<math>4-\rho \Box \Box メチルピリジン塩酸塩(49mg)をN,N-ジメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(<math>3/1$)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをHPLCにて精製し、表題の化合物を57mg、収率56%で得た。

 $^{1}H-NMR$ (CDCl₃, 400MHz): $\delta1$. 26 (t, J=7. 3Hz, 6H), 3. 41 (q, J=7. 1Hz, 4H), 4. 08 (s, 3H), 5. 32 (s, 2H), 6. 98 (s, 1H), 7. 14 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 27 (s, 1H), 7. 29 (d, J=2. 7Hz, 1H), 7. 4 (d, J=5. 9Hz, 2H), 7. 55 (s, 1H), 8. 37 (d, J=9.

 $0\,H\,z$, $1\,H$), $8.\,5\,8$ (s, $1\,H$), $8.\,6\,3$ (d, $J=5.\,9\,H\,z$, $2\,H$) 質量分析値 (ESI-MS, m/z): $5\,0\,8$ (M^++1)

実施例 $127:N-(2-200-4-{[6-メトキシ-7-(4-モルホリノブトキシ)-4-キナゾリニル] オキシ} フェニル) <math>-N'-$ プロピルウレア

'H-NMR (CDCl₃, 400MHz): $\delta0$. 99 (t, J=7. 32Hz, 3H), 1. 56-1. 62 (m, 13H), 2. 00-2. 08 (m, 2H), 3. 26-3. 28 (m, 2H), 4. 04 (s, 3H), 4. 24 (m, 2H), 4. 72-4. 77 (m, 1H), 6. 65 (s, 1H), 6. 99 (s, 1H), 7. 19-7. 26 (m, 1H), 7. 30 (s, 1H), 7. 32-7. 34 (m, 1H), 7. 51 (s, 1H), 8. 25 (d, J=9. 03Hz, 1H), 8.

質量分析値(ESI-MS, m/z):545 (M++1)

61 (s, 1H)

実施例 $128:N-[2-クロロ-4-({6-メトキシ-7-[2-(4-メチルピペラジノ)エトキシ]-4-キナゾリニル} オキシ) フェニル]-N'-プロピルウレア$

 $N-\{2-\rho \Box \Box -4-[(7-ヒドロキシ-6-メトキシ-4-キナゾリニル)$ オキシ] フェニル $\}-N'-$ プロピルウレア(60mg)、炭酸カリウム(30mg)、1,2-ジプロモエタン(70μ I)をN,N-ジメチルホルムアミド(4mI) に溶解し室温で 3 時間攪拌した。減圧下溶媒を留去して得られた残さに水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、 $N-(4-\{[7-(2-プロモエトキシ)-6-メトキシ-4-キナゾリニル] オキシ<math>\}-2-$ クロロフェニル)- N'-プロピルウレアを 46mg、収率 62%で得た。得られた中間体(46mg)、炭酸カリウム(20mg)、N-メチルピペラジン(50μ I)をN,N-ジメチルホルムアミド(3mI)に溶解し室温で一晩攪拌した。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を 24mg、収率 50%で得た。

 1 H-NMR (CDC13, 400MHz): δ 0. 99 (t, J=7. 32Hz, 3H), 1. 61-1. 64 (m, 2H), 2. 75 (m, 2H), 3. 00-3. 16 (m, 4H), 3. 25-3. 16 (m, 4H), 3. 25-3. 29 (m, 2H), 4. 02 (s, 3H), 4. 27-4. 35 (m, 2H), 4. 78-4. 83 (m, 2H), 5. 33 (s, 3H), 6. 69 (s, 1H), 7. 17 (dd, J=2. 68Hz, 9. 03Hz, 1H), 7. 31 (s, 1H), 7. 49 (s, 1H), 8. 26 (d, J=9. 27Hz, 1H), 8. 59 (s, 1H)

実施例 $129:N-\{2-クロロ-4-[(7-\{2-[(2-ヒドロキシエチル)(メチル):アミノ] エトキシ} -6-メトキシ-4-キナゾリニル) オキシ] フェニル<math>1-N$ -プロピルウレア

クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、 $N-(4-\{[7-(2-プロモエトキシ)-6-Xトキシ-4-キナゾリニル]オキシ\}-2-クロロフェニル)-N'-プロピルウレアを36 mg、収率45%で得た。得られた中間体(36 mg)、炭酸カリウム(30 mg)、<math>N-X$ チルエタノールアミン(30 μ I)をN,N-ジ メチルホルムアミド(3 m I)に溶解し室温で一晩攪拌した。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を21 mg、収率55%で得た。

¹H-NMR (CDC1₃, 400MHz): δ 0. 98 (t, J=7. 32Hz, 3H), 1. 59 (m, 2H), 1. 94 (bs, 1H), 3. 23 (m, 2H), 4. 03 (s, 3H), 4. 07-4. 15 (m, 4H), 4. 76 (m, 4H), 5. 35 (s, 3H), 7. 10-7. 17 (m, 1H), 7. 28 (s, 3H), 7. 40 (s, 1H), 7. 54 (s, 1H), 8. 37 (d, J=9. 03Hz, 1H), 8. 64 (s, 1H)

質量分析値(ESI-MS, m/z):504 (M++1)

実施例 $130:N-[2-クロロ-4-({6-メトキシ-7-[3-(4-メチルピペラジノ)プロポキシ]-4-キナゾリニル} オキシ)フェニル]-N'-プロピルウレア$

Nージメチルホルムアミド (3 m 1) に溶解し室温で一晩攪拌した。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を 2 0 m g、収率 6 3 %で得た。

'H-NMR (CDC13, 400MHz): $\delta0$. 99 (t, J=7. 32Hz, 3H), 1. 58-1. 62 (m, 2H), 2. 25-2. 50 (m, 3H), 2. 70-2. 85 (m, 3H), 2. 92-2. 98 (m, 3H), 3. 25 (m, 2H), 4. 04 (s, 3H), 4. 25 (m, 2H), 4. 83 (m, 3H), 5. 34 (s, 3H), 6. 70 (s, 1H), 7. 21 (dd, J=2. 68, 9. 03Hz, 1H), 7. 26 (s, 2H), 7. 31 (s, 1H), 7. 49 (s, 1H), 8. 18 (d, J=9. 27Hz, 1H), 8. 59 (s, 1H) 質量分析値 (ESI-MS, m/z): 544 (M++1)

実施例 $131:N'-[2-クロロ-4-({6-メトキシ-7-[2-(1$ *H* $-1, 2, 3-トリアゾール-1-イル) エトキシ]-4-キナゾリニル} オキシ) フェニル]-<math>N, N$ -ジエチルウレア

原料(N'-{2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キナゾリニル)オキシ]フェニル}ーN、Nージエチルウレア、83mg),炭酸カリウム(138mg)、2-(1H-1,2,3-トリアゾル-1-イル)エチル 4ーメチルー1ーベンゼンスルフォナート(59mg)をN,Nージメチルホルムアミド(1m1)に溶解し80℃で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、中間体を得た。中間体とトリエチルアミン(0.027ml)のクロロホルム(1ml)溶液に、0℃でトリホスゲン(90mg)加えて、30分間攪拌した。反応混合物を0℃に冷却した後、ジエチルアミン(0.044ml)を滴下して加え、2時間かけて室温まで昇温した。反応混合物に飽和炭酸水素ナトリウム水溶液をを加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをHPLCにて精製し、表題の化合物を30mg、収率29%

で得た。

'H-NMR (CDCl₃, 400MHz): $\delta1$. 26 (t, J=7. 1Hz, 6H), 3. 41 (q, J=7. 1Hz, 4H), 4. 03 (s, 3H), 4. 53 (t, J=4. 9Hz, 2H), 4. 94 (t, J=5. 1Hz, 2H), 6. 98 (s, 1H), 7. 13 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 26 (s, 1H), 7. 73 (s, 1H), 7. 94 (s, 1H), 8. 38 (d, J=9. 0Hz, 1H), 8. 60 (s, 1H)

実施例 $132:3-\{[4-(3-200-4-\{[(ジエチルアミノ) カルボニ 20] フェノキシ) -6-メトキシ-7-キナゾリニル<math>[]$ プロピル -N, N-ジエチルカーバメイト

原料(N'-{2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キナゾリニル)オキシ]フェニル}-N, N-ジエチルウレア、83mg),炭酸カリウム(138mg)、3-ブロモ-1-プロパノール(0,027ml)をN,N-ジメチルホルムアミド(1m1)に溶解し80℃で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、中間体を得た。中間体とトリエチルアミン(0.027ml)のクロロホルム(1ml)溶液に、0℃でトリホスゲン(90mg)加えて、30分間攪拌した。反応混合物を0℃に冷却した後、ジエチルアミン(0.044ml)を滴下して加え、2時間かけて室温まで昇温した。反応混合物に飽和炭酸水素ナトリウム水溶液をを加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをHPLCにて精製し、表題の化合物を19mg、収率17%で得た。

'H-NMR (CDCl₃, 400MHz): $\delta1.04$ (t, J=7.1Hz, 6H), 1.22 (t, J=7.3Hz, 6H), 3.09 (q, J=7.1Hz, 4H), 3.36 (q, J=7.1Hz, 4H), 3.75 (t, J=6.3Hz, 2H), 3.97 (s, 3H), 4.29 (t, J=6.1Hz, 2H), 6.93 (s, 1H), 7.10 (dd, J=2.7Hz, 9.0Hz, 1H), 7.24 (d, J=2.7Hz, 1H), 7.27 (s, 1H), 7.45 (s, 1H), 8.33

- 125 -

(d, J = 9.3 Hz, 1H), 8.55 (s, 1H)

<u>実施例133:N-[2-クロロ-4-({6-メトキシ-7-[3-(4-ピリンルチオ)プロポキシ]-4-キナゾリニル</u>} オキシ)フェニル]-N'-プロピルウレア

原料(N-(4-{[7-(3-プロモプロポキシ)-6-メトキシ-4-キナゾリニル]オキシ}-2-クロロフェニル)-N'-プロピルウレア、80mg)、炭酸カリウム(138mg)、4-メルカプトピリジン(<math>22mg)をN,N-ジメチルホルムアミド(1m1)に溶解し室温で3時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、表題の化合物を60mg、収率72%で得た。

¹H-NMR (CDCl₃, 400MHz): $\delta0$. 91 (t, J=7.6Hz, 3H), 1.50-1.60 (m, 2H), 2.24-2.32 (m, 2H), 3.11-3.24 (m, 4H), 3.99 (s, 3H), 4.25 (t, J=5.9Hz, 2H), 4.70-4.80 (m, 1H), 6.62 (s, 1H), 7.11 (dd, J=2.7Hz, 9.0Hz, 1H), 7.11-7.16 (m, 2H), 7.23 (s, 1H), 7.25 (d, J=2.7Hz, 1H), 7.45 (s, 1H), 8.19 (d, J=9.0Hz, 1H), 8.30-8.34 (m, 2H), 8.55 (s, 1H)

質量分析値(ESI-MS, m/z):554 (M++1)

実施例 $134:N-\{2-クロロ-4-[(6-メトキシ-7-\{3-[(1-メ チル-1 H-1, 2, 3, 4-テトラゾール-5-イル) チオ]プロポキシ}-4-キナゾリニル) オキシ]フェニル<math>\}-N$ ープロピルウレア

原料 $(N-(4-\{[7-(3-プロモプロポキシ)-6-メトキシ-4-キナゾリニル]オキシ\}-2-クロロフェニル)-N'-プロピルウレア、<math>80mg$), 炭酸カリウム (138mg)、5-メルカプト-1-テトラゾール <math>(23mg) をN, N-ジメチルホルムアミド <math>(1m1) に溶解し室温で 3 時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール (3/1) で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄

ア

- 126 -

し、表題の化合物を71mg、収率85%で得た。

「H-NMR(CDCl₃, 400 MHz): $\delta0$. 91(t, J=7. 3 Hz, 3 H), 1. 51-1. 56(m, 2 H), 2. 39-2. 48(m, 2 H), 3. 17-3. 23(m, 2 H), 3. 56(t, J=7. 1 Hz, 2 H), 3. 86(s, 3 H), 3. 97(s, 3 H), 4. 27(t, J=5. 9 Hz, 2 H), 4. 75-4. 82(m, 1 H), 6. 63(s, 1 H), 7. 10(dd, J=2. 7 Hz, 9. 0 Hz, 1 H), 7. 24(d, J=3. 7 Hz, 1 H), 7. 44(s, 1 H), 8. 19(d, J=9. 0 Hz, 1 H), 8. 55(s, 1 H) 質量分析値(ESI-MS, m/z): 559(M^++1) 実施例 135:N-(2-D $10-4-{[6-メトキシ-7-(3-ピペリジノプロポキシ)<math>-4-キナゾリニル|オキシ}フェニル)<math>-N$ 1、-プロピルウレ

N- (2-クロロ-4-「(7-ヒドロキシ-6-メトキシ-4-キナゾリニ ル) オキシ]フェニル $\}$ - \mathbb{N} ' mg)、1,3-ジプロモプロパン(0.5ml)を<math>N,N-ジメチルホルムアミド(5ml) に溶解し室温で3時間攪拌した。減圧下溶媒を留去して得られた残さに水 を加え、クロロホルム/2ープロパノール(4/1)で抽出した。有機層を無水硫 酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、 N-(4-{[7-(3-ブロモプロポキシ)-6-メトキシ-4-キナゾリニ ル]オキシ - 2 - クロロフェニル - N' - プロピルウレアを451mg、収率7 1%で得た。 $N-(4-\{[7-(3-プロモプロポキシ)-6-メトキシ-4]$ ーキナゾリニル]オキシ} - 2-クロロフェニル} - N' - プロピルウレア (70 mg)、炭酸カリウム(54mg)、ピペリジン(39ul)をN.Nージメチルホルムアミ ド(2ml)に溶解し室温で一晩攪拌した。減圧下溶媒を留去して得られた残さ に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出した。有機層を無水 硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/ メタノール(20/1)で展開するシリカゲルクロマトグラフィーにより精製し、 表題の化合物を35mg、収率50%で得た。

 $^{1}H - NMR$ (CDCl₃, 400MHz): δ 0. 98 (t, J=7. 6Hz, 3H),

1. 46 (br, 2H), 1. 54-1. 66 (m, 8H), 2. 15 (br, 2H), 2. 44 (br, 2H), 2. 55 (br, 2H), 3. 20-3. 30 (m, 2H), 4. 04 (s, 3H), 4. 27 (t, J=6. 6Hz, 2H), 4. 77 (t, J=5. 9Hz, 1H), 6. 65 (s, 1H), 7, 17 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 32 (d, J=2. 7Hz, 1H), 7. 33 (s, 1H), 7. 49 (s, 1H), 8. 24 (d, J=9. 0Hz, 1H), 8. 61 (s, 1H)

実施例 $136:N-[2-クロロ-4-({7-メトキシ-6-[2-(4-メチルピペラジノ) エトキシ] -4-キナゾリニル} オキシ) フェニル] -N'-プロピルウレア$

(N-{2-クロロ-4-[(6-ヒドロキシ-7-メトキシ-4-キナゾリニ ル) オキシ] フェニル - N' - プロピルウレア (500mg)、炭酸カリウム (8 57mg)、1, 3-ジプロモプロパン(0.5ml)をN, N-ジメチルホルムアミド (5 m l) に溶解し室温で 3 時間攪拌した。減圧下溶媒を留去して得られ た残さに水を加え、クロロホルム/2-プロパノール(4/1)で抽出した。有 機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエー テルで洗浄し、N-(4-{[6-(2-ブロモエトキシ)-7-メトキシ-4-キナゾリニル]オキシト-2-クロロフェニルト-N'-プロピルウレアを45 1 mg、収率71%で得た。 $N-(4-\{[6-(2-ブロモエトキシ)-7-メ$ トキシー4ーキナゾリニル]オキシ}-2-クロロフェニル}-N'-プロピル ウレア(50mg)、炭酸カリウム(40mg)、 $N-メチルピペラジン(<math>50\mu$ 1)をN, N-ジメチルホルムアミド (1ml) に溶解し室温で一晩攪拌した。 減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加えてク ロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留 去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマト グラフィーにより精製し、表題の化合物を20mg、収率44%で得た。 $^{1}H-NMR$ (CDC1₃, 400MHz): δ 0. 98 (t, J=7. 3Hz, 3H), 1. 56-1. 65 (m, 2H), 1. 77 (br, 4H), 2. 3/1 (s, 3H), 2. 53 (br, 2H), 2. 71 (br, 2H), 2. 97 (t, J=6.

1 Hz, 3 H), 3.24-3.29 (m, 2 H), 4.04 (s, 3 H), 4.3 2 (t, J=6.1 Hz, 2 H), 4.83 (br, 1 H), 6.69 (s, 1 H), 7.16 (dd, J=2.7 Hz, 9.0 Hz, 1 H), 7.30 (s, 1 H), 7.31 (s, 1 H), 7.55 (s, 1 H), 8.25 (d, J=9.0 Hz, 1 H), 8.62 (s, 1 H)

質量分析値(ESI-MS, m/z):529 (M++1)

(500 mg)、炭酸カリウム(8 57mg)、1、3-ジブロモプロパン(0.5ml)をN, N-ジメチルホルム アミド (5 m l) に溶解し室温で3時間攪拌した。減圧下溶媒を留去して得られ た残さに水を加え、クロロホルム/2-プロパノール(4/1)で抽出した。有 機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエー テルで洗浄し、N-(4-{[6-(3-ブロモプロポキシ)-7-メトキシ-4 ーキナゾリニル] オキシ > - 2 - クロロフェニル > - N' - プロピルウレアを 4 51mg、収率71%で得た。N-(4-{[6-(3-ブロモプロポキシ)-7 ーメトキシ-4-キナゾリニル]オキシ}-2-クロロフェニル}-N'-プロ ピルウレア(50mg)、炭酸カリウム(40mg)、N-メチルピペラジン(5 0 μ l) をN, N-ジメチルホルムアミド (1 m l) に溶解し室温で一晩攪拌し た。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加え クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を 留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマ トグラフィーにより精製し、表題の化合物を20mg、収率44%で得た。 $^{1}H-NMR$ (CDC13, 400MHz): δ 0. 98 (t, J=7. 6Hz, 3H), 1. 58-1. 64 (m, 2H), 1. 71 (br, 4H), 2. 31 (s, 3H), 2. 53 (br, 2H), 2. 71 (br, 2H), 2. 11-2. 17 (m, 2H), 2. 30 (s, 3H), 2. 59-2. 62 (m, 2H), 3. 24-3.

- 129 -

29 (m, 2H), 4.04 (s, 3H), 4.26 (t, J=6.6Hz, 2H), 4.80 (br, 1H), 6.67 (s, 1H), 7.17 (dd, J=2.7Hz, 9.0Hz, 1H), 7.31 (s, 1H), 7.31 (s, 1H), 7.52 (s, 1H), 8.25 (d, J=9.0Hz, 1H), 8.61 (s, 1H) 質量分析値 (ESI-MS, m/z): 543 (M^++1)

実施例 $138:N-(2-2-4-4-{[7-メトキシ-6-(2-ピリジル$ $メトキシ)-4-キナゾリニル]オキシ}フェニル)-N'-プロピルウレア$

原料(N-(2-0-4-[(6-E)+2-7-4+2-4-4+7) ゾリニル)オキシ]フェニルN'-プロピルウレア、N'-80mg),炭酸カリウム(138mg)、N-90mg),炭酸カリウム(138mg)、N-90mg)とリジン塩酸塩(190mg)をN90mg)、N-

 $^{1}H-NMR$ (CDCl₃, 400MHz): δ 0. 91 (t, J=7.6Hz, 3H), 1.51-1.58 (m, 2H), 3.17-3.22 (m, 2H), 4.02 (s, 3H), 4.69 (br, 1H), 5.36 (s, 2H), 6.57 (s, 1H), 7.08 (dd, J=2.7Hz, 9.0Hz, 1H), 7.21-7.29 (m, 2H), 7.53-7.55 (m, 2H), 7.66-7.71 (m, 1H), 8.15 (d, J=9.0Hz, 1H), 8.55-8.57 (m, 2H) 質量分析値 (ESI-MS, m/z): 494 (M+1)

<u>実施例139:N-(2-クロロ-4-{[7-メトキシ-6-(3-モルホリ</u>ノプロポキシ)-4-キナゾリニル]オキシ}フェニル)-N'-プロピルウレア

原料(N-(4-{[6-(3-プロポキシ)-7-メトキシ-4-キナゾリニル]オキシ}-2-クロロフェニル)-N'-プロピルウレア、54mg),炭酸カリウム(138mg)、モルホリン(0.017ml)をN,N-ジメチルホルムアミド(1ml)に溶解し120で3時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、

WO 00/43366 PCT/JP00/00255

- 130 -

減圧下溶媒を留去して得られた残さを酢酸エチルで洗浄し、表題の化合物を42mg、収率77%で得た。

 $^{1}H-NMR$ (CDCl₃, 400MHz): $\delta0$. 91 (t, J=7. 6Hz, 3H), 1.47-1.59 (m, 4H), 1.88-2.00 (m, 2H), 2.35-2.48 (m, 4H), 3.20 (dd, J=7.3Hz, 12.9Hz, 2H), 3.62-3.74 (m, 4H), 3.97 (s, 3H), 4.15 (t, J=6. 3Hz, 2H), 4.74-4. 80 (m, 1H), 6.63 (s, 1H), 7.09 (dd, J=2.7Hz, 9.0Hz, 1H), 7.24 (d, J=2.7Hz, 1H), 7.42 (s, 1H), 8.18 (d, J=9.0Hz, 1H), 8.54

質量分析値(ESI-MS, m/z):530 (M++1)

(s, 1H)

原料(N-(4-{[6-(3-ブロモプロポキシ)-7-メトキシ-4-キナゾリニル]オキシ}-2-クロロフェニル)-N'-プロピルウレア、51mg), 炭酸カリウム(68mg)、2-(メチルアミノ)エタノール(<math>15mg)をN,N-ジメチルホルムアミド(<math>1m1)に溶解し80℃で3時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を25mg、収率48%で得た。

 $^{1}H-NMR$ (CDCl₃, 400MHz): δ 0. 95 (t, J=7.6Hz, 3H), 1.53-1.62 (m, 2H), 2.08-2.15 (m, 2H), 2.30 (s, 3H), 2.58 (t, J=5.4Hz, 2H), 2.68 (t, J=7.1Hz, 2H), 3.21-3.26 (m, 2H), 3.60 (t, J=5.4Hz, 2H), 4.02 (s, 3H), 4.23 (t, J=6.3Hz, 2H), 5.06 (t, J=5.6Hz, 1Hz), 6.79 (s, 1H), 7.13 (dd, J=2.7Hz, 9.0Hz, 1H), 7.27-7.28 (m, 2H), 7.48 (s, 1

WO 00/43366 PCT/JP00/00255

- 131 -

H), 8. 21 (d, J=9. 0 Hz, 1 H), 8. 5 8 (s, 1 H) 実施例 1 4 1 : $N-(2-DDD-4-\{[6-X++y-7-(2-ピリジル X++y)-4-+/]$ フェニル) -N'-プロピルウレア

原料(N-{2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キノリル)オキシ]フェニル}-N'-プロピルウレア、80mg),炭酸カリウム(13 8mg)、2-クロロメチルピリジン塩酸塩(41mg)をN,N-ジメチルホルムアミド(1ml)に溶解し80℃で3時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをHPLCにて精製し、表題の化合物を81mg、収率82%で得た。

'H-NMR (CDCl₃, 400 MHz): $\delta0$. 97 (t, J=7.6 Hz, 3H), 1.54-1.65 (m, 2H), 3.25 (dd, J=7.1 Hz, 12.9 Hz, 2H), 4.05 (s, 3H), 4.75-4.82 (m, 1H), 5.42 (s, 2H), 6.46 (d, J=5.4 Hz, 1H), 6.67 (s, 1H), 7.08 (dd, J=2.9 Hz, 9.0 Hz, 1H), 7.19 (d, J=2.7 Hz, 1H), 7.44 (s, 1H), 7.53 (s, 1H), 7.56 (d, J=7.8 Hz, 1H), 7.69 (dt, J=2.0 Hz, 7.8 Hz, 1H), 8.25 (d, J=9.0 Hz, 1H), 8.46 (d, J=5.1 Hz, 1H), 8.61 (d, J=4.6 Hz, 1H)

質量分析値(ESI-MS, m/z): 493 (M++1)

'H-NMR (CDCl₃, 400MHz): $\delta0$. 97 (t, J=7. 3Hz, 3H), 1. 54-1. 65 (m, 2H), 3. 25 (dd, J=7. 3Hz, 12. 9Hz, 2H), 4. 02 (s, 3H), 4. 82-4. 90 (m, 1H), 5. 30 (s, 2H), 6. 47 (d, J=5. 4Hz, 1H), 6. 72 (s, 1H), 7. 09 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 19 (d, J=2. 7Hz, 1H), 7. 32 (dd, J=4. 9Hz, 7. 8Hz, 1H) 7. 47 (s, 1H), 7. 52 (s, 1H), 7. 84 (d, J=7. 8Hz, 1H), 8. 26 (d, J=9. 3Hz, 1H), 8. 47 (d, J=5. 4Hz, 1H), 8. 58 (d, J=3. 2Hz, 1H), 8. 75(s, 1H)

質量分析値(ESI-MS, m/z):493 (M++1)

<u>実施例143:N-(2-クロロ-4-{[6-メトキシ-7-(4-ピリジルメトキシ)-4-キノリル|オキシ} フェニル)-N'-プロピルウレア</u>

原料($N-\{2-\rho \Box \Box -4-[(7-ヒドロキシ-6-メトキシ-4-キノリル)オキシ]フェニル\}-N'-プロピルウレア、<math>80mg$),炭酸カリウム(138mg)、 $4-\rho \Box \Box メチルピリジン塩酸塩(<math>41mg$)をN,N-ジメチルホルムアミド(<math>1m1)に溶解し80でで3時間攪拌した。反応混合物に水を加え、 $\rho\Box \Box ホルム-プロパノール(<math>3/1$)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをHPLCにて精製」し、表題の化合物を71mg、収率71%で得た。

 $^{1}H-NMR$ (CDCl₃, 400MHz): δ 0. 97 (t, J=7.6Hz, 3H), 1. 54-1. 65 (m, 2H), 3. 25 (dd, J=7.1Hz, 12.9Hz, 2H), 4. 05 (s, 3H), 4. 86-4. 92 (m, 1H), 5. 32 (s, 2H), 6. 48 (d, J=4.7Hz, 1H), 6. 73 (s, 1H), 7. 08 (dd, J=2.7Hz, 9.0Hz, 1H), 7. 19 (d, J=2.9Hz, 1H), 7. 38 (s, 1H), 7. 41 (d, J=6.1Hz, 2H), 7. 54 (s, 1H), 8. 26 (d, J=9.0Hz, 1H), 8. 46 (d, J=5.4Hz, 1H), 8. 61 (d, J=6.1Hz, 2H)

質量分析値(ESI-MS,m/z): 493(M++1)

<u>実施例144:N- (2-クロロ-4- {[6-メトキシ-7-(2-モルホリ</u>

<u>ノエトキシ)-4-キノリル|オキシ}フェニル)-N'-プロピルウレア</u>

原料(Nー{2-クロロー4-[(7-ヒドロキシー6-メトキシー4-キノリル)オキシ]フェニル}-N'-プロピルウレア、100mg),炭酸カリウム(172mg)、1,2-ジブロモエタン(0.086ml)をN,N-ジメチルホルムアミド(1ml)に溶解し室温で3時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、中間体(N-(4-{[7-(2-ブロモエトキシ)-6-メトキシ-4-キノリル]オキシ}-2-クロロフェニル)-N'-プロピルウレア)を得た。中間体、炭酸カリウム(138mg)、モルホリン(0.17ml)をN,N-ジメチルホルムアミド(1ml)に溶解し80℃で2時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を70mg、収率54%で得た。

 1 H-NMR (CDCl₃, 400MHz): δ0. 91 (t, J=7. 6Hz, 3H), 1. 50-1. 59 (m, 2H), 2. 57 (t, J=4. 6Hz, 4H), 2. 88 (t, J=5. 9Hz, 2H), 3. 18-3. 23 (m, 2H), 3. 68 (t, J=4. 6Hz, 4H), 3. 94 (s, 3H), 4. 26 (t, J=5. 9Hz, 2H), 4. 98 (t, J=5. 3Hz, 2H), 6. 41 (d, J=5. 3Hz, 1H), 6. 74 (br, 1H), 7. 03 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 14 (d, J=2. 7Hz, 1H), 7. 34 (s, 1H), 7. 43 (s, 1H), 8. 42 (d, J=5. 1Hz, 1H) 質量分析値 (ESI-MS, m/z): 515 (M⁺+1)

実施例 $145:N-[2-クロロ-4-({6-メトキシ-7-[2-(1H-1,2,3-トリアゾール-1-イル) エトキシ]-4-キノリル} オキシ)フェニル] <math>-N$ -プロピルウレア

原料 $(N-\{2-\rho \Box \Box -4-[(7-ヒドロキシ-6-メトキシ-4-キノ \cup N)]$ $\pi+\nu$ $\pi+$

チルー1ーベンゼンスルフォナート(59mg)をN,Nージメチルホルムアミド(1ml)に溶解し120℃で5時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルムーメタノールで展開したHPLCにて精製し、表題の化合物を92mg、収率92%で得た。

'H-NMR (CDCl₃, 400MHz): $\delta0$. 97 (t, J=7. 6Hz, 3H), 1.57-1. 63 (m, 2H), 3.23-3. 28 (m, 2H), 4.01 (s, 3H), 4.52 (t, J=5. 1Hz, 2H), 4.81 (br, 1H), 4.9 (t, J=5. 1Hz, 2H), 6.47 (d, J=5. 4Hz, 1H), 6. 69 (s, 1H), 7. 08 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 18 (d, J=2. 7Hz, 1H), 7. 37 (s, 1H), 7. 51 (s, 1H), 7. 72 (d, J=1. 0Hz, 1H), 7. 97 (d, J=1. 0Hz, 1H), 8. 26 (d, J=9. 0Hz, 1H), 8. 48 (d, J=5. 4Hz, 1H) 質量分析値 (ESI-MS, m/z): 497 (M^++1)

実施例 $146:N-[2-クロロ-4-({7-[2-(1H-1-イミダゾリル)} エトキシ]-6-メトキシ-4-キノリル} オキシ)フェニル<math>]-N'-プロピル$ ウレア

原料(N-{2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キノリル)オキシ]フェニル}-N'-プロピルウレア、80mg),炭酸カリウム(138mg)、2-(1H-1-イミダゾリル)エチル 4-メチル-1-ベンゼンスルフォナート(59mg)をN,N-ジメチルホルムアミド(1m1)に溶解し120℃で5時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルムーメタノールで展開したHPLCにて精製し、表題の化合物を81mg、収率82%で得た。

 $^{1}H-NMR$ (CDCl₃, 400MHz): δ 0. 96 (t, J=7.6Hz, 3H), 1. 50-1.65 (m, 2H), 1. 90-2.08 (m, 2H), 3. 24 (d d, J=7.1Hz, 12.9Hz, 2H), 4. 01 (s, 3H), 4. 17 (t, J=6.6Hz, 2H), 4. 44 (t, J=7.3Hz, 2H), 4. 88-4.

94 (m, 1H), 6. 32 (s, 1H), 7. 14 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 25 (s, 1H), 7. 29 (d, J=2. 7Hz, 1H), 7. 48 (s, 1H), 7. 55 (s, 1H), 7. 70 (s, 1H), 8. 23 (d, J=9. 0Hz, 1H), 8. 58 (s, 1H)

質量分析値(ESI-MS, m/z):496 (M++1)

 1 H-NMR(CDCl₃, 400MHz): δ 0. 92(t, J=7. 6Hz, 3H), 1. 45-1. 62(m, 2H), 2. 09-2. 18(m, 2H), 3. 21(d d, J=7. 1Hz, 12. 9Hz, 2H), 3. 87(t, J=5. 6Hz, 2H), 3. 94(s, 3H), 4. 31(t, J=6. 1Hz, 2H), 4. 81-4. 87(m, 1H), 6. 42(d, J=5. 1Hz, 1H), 6. 69(s, 1H), 7. 03(dd,J=2. 7Hz,9. 0Hz,1H),7. 14(d, J=2. 7Hz,1H),7. 36(s, 1H),7. 43(s, 1H),8. 20(d, J=9. 0Hz,1H),8. 42(d,J=5. 4Hz,1H)

実施例148:N-[2-クロロー4-((6-メトキシー7-[2-(4-メチ

原料 $(N-(4-\{[7-(2-プロモエトキシ)-6-メトキシ-4-キノリル] オキシ \} - 2-クロロフェニル) - N'-プロピルウレア、<math>50mg$)、炭酸カリウム (138mg)、1-メチルピペラジン <math>(0.055m1) をN, N-ジメチルホルムアミド <math>(1m1) に溶解し室温で18時間攪拌した。反応混合物に

水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、エーテルで洗浄し、表題の化合物を54mg、収率100%で得た。

'H-NMR (CDC13, 400MHz): $\delta0$. 92 (t, J=7. 3Hz, 3H), 1. 49-1. 62 (m, 2H), 2. 24 (s, 3H), 2. 35-2. 70 (m, 2H), 2. 90 (t, J=4. 6Hz, 2H), 3. 21 (dd, J=7. 3Hz, 12. 9Hz, 2H), 3. 94 (s, 3H), 4. 26 (t, J=6. 1Hz, 2H), 4. 75-4. 85 (m, 1H), 6. 41 (d, J=5. 1Hz, 1H), 6. 67 (s, 1H), 7. 04 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 14 (d, J=2. 7Hz, 1H), 7. 34 (s, 1H), 7. 42 (s, 1H), 8. 19 (d, J=9. 0Hz, 1H), 8. 42 (d, J=5. 1Hz, 1H)

質量分析値(ESI-MS, m/z):528 (M++1)

原料 (N-{2-クロロ-4-[(7-ヒドロキシー6-メトキシー4-キノリル)オキシ]フェニル}-N'-プロピルウレア、80mg),炭酸カリウム(138mg)、2-ブロモエタノール(0.021ml)をN,N-ジメチルホルムアミド(1ml)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を80mg、収率90%で得た。

 $^{1}H-NMR$ (CDCl₃, 400MHz): $\delta0.96$ (t, J=7.6Hz, 3H), 1.54-1.65 (m, 2H), 3.25 (dd, J=7.1Hz, 12.9 Hz, 2H), 3.99 (s, 3H), 4.07 (t, J=4.4Hz, 2H), 4.28 (t, J=4.6Hz, 2H), 6.46 (d, J=5.4Hz, 1H), 6.77 (d, J=8.3Hz, 1H), 7.08 (s, 1H), 7.08 (dd, J=2.7Hz, 9.0Hz, 1H), 7.42 (s, 1H), 7.49 (s, 1H), 8.25 (d, J=9.0Hz, 1H), 8.48 (d, J=2.9Hz, 1H)

実施例 $150:N-\{2-DDD-4-[(7-\{2-[(2-ヒドロキシエチル)(メチル)アミノ]エトキシ}-6-メトキシ-4-キノリル)オキシ]フェニル}-N'-プロピルウレア$

原料($N-(4-\{[7-(2-プロモエトキシ)-6-メトキシ-4-キノリル]オキシ\}-2-クロロフェニル)-N'-プロピルウレア、<math>50mg$),炭酸カリウム(138mg)、2-(メチルアミノ)エタノール(<math>0.040m1)をN,N-ジメチルホルムアミド(<math>1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、エーテルで洗浄し、表題の化合物を53mg、収率106%で得た。

'H-NMR (CDCl₃, 400MHz): $\delta0$. 97 (t, J=7. 6Hz, 3H), 1.54-1. 65 (m, 2H), 2.42 (s, 3H), 2.69 (t, J=5. 1Hz, 2H), 3.00 (t, J=5. 6Hz, 2H), 3.26 (dd, J=7. 1Hz, 12. 7Hz, 2H), 3. 64 (t, J=5. 1Hz, 2H), 3. 99 (s, 3H), 4. 26 (t, J=5. 6Hz, 2H), 4. 66-4. 69 (m, 1H), 6. 46 (d, J=5. 1Hz, 1H), 6. 70 (s, 1H), 7. 09 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 19 (d, J=2. 7Hz, 1H), 7. 39 (s, 1H), 7. 47 (s, 1H), 8. 24 (d, 1Hz, 1H), 1H, 1

原料 (N-(4-{[7-(3-ブロモプロポキシ)-6-メトキシ-4-キノリル]オキシ}-2-クロロフェニル)-N'-プロピルウレア、52mg),炭酸カリウム (138mg)、モルホリン (0.044ml)をN,N-ジメチルホルムアミド (1ml) に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール (3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、エーテルで洗浄し、表題の化合物を23mg、収率44%で得た。

- 138 -

 1 H-NMR(CDCl₃, 400MHz): δ 0. 92(t, J=7. 6Hz, 3H), 1. 49-1. 60(m, 2H), 2. 02-2. 11(m, 2H), 2. 40-2. 47(m, 4H), 2. 52(t, J=7. 1Hz, 2H), 3. 21(dd, J=7. 1Hz, 12. 9Hz, 2H), 3. 62-3. 69(m, 4H), 3. 95(s, 3H), 4. 20(t, J=6. 6Hz, 2H), 4. 70-4. 78(m, 1H), 6. 41(d, J=5. 1Hz, 1H), 6. 64(s, 1H), 7. 04(dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 15(d, J=2. 7Hz, 1H), 7. 37(s, 1H), 7. 43(s, 1H), 8. 20(d, J=9. 0Hz, 1H), 8. 42(d, J=5. 4Hz, 1H)

<u>実施例152:N-[2-クロロ-4-(6-メトキシ-7-{[3-(4-メチルピペラジノ)プロポキシ]-4-キノリル</u>} オキシ)フェニル]-N'-プロピルウレア

'H-NMR (CDCl₃, 400MHz): $\delta0$. 92 (t, J=7. 6Hz, 3H), 1.49-1.64 (m, 2H), 2.02-2.10 (m, 2H), 2.23 (s, 3H), 2.30-2.56 (m, 8H), 2.52 (t, J=7. 3Hz, 2H), 3.20 (dd, J=7. 1Hz, 12. 9Hz, 2H), 3.94 (s, 3H), 4.19 (t, J=6. 8Hz, 2H), 4.83-4. 92 (m, 1H), 6. 40 (d, J=5. 1Hz, 1H), 6. 69 (s, 1H), 7. 03 (dd, J=2. 9Hz, 9. 3Hz, 1H), 7. 14 (d, J=2. 7Hz, 1H), 7. 35 (s, 1H), 7. 42 (s, 1H), 8. 19 (d, J=9. 0Hz, 1H), 8. 42 (d, J=5. 4Hz, 1H)

質量分析値(ESI-MS,m/z): 542 (M++1)

実施例 $153:N-[2-クロロ-4-(6-メトキシ-7-{[3-(1$ *H* $-1, 2, 3-トリアゾール-1-イル) プロポキシ]-4-キノリル} オキシ) フェニル<math>[-N'-$ プロピルウレア

トリアゾール(0.41ml)、1ープロモー3ークロロプロパン (0.79ml)、ヨウ化テトラブチルアンモニウム (10mg)、および3M水酸化ナトリウム水溶液 (1ml)をアセトン (10ml) に溶解し、50℃で18時間攪拌した。反応混合物に水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルムで展開するクロマトグラフィーにより精製し、中間体 (327mg) を得た。

原料(Nー $\{2-0$ ロロー4ー[(7ーヒドロキシー6ーメトキシー4ーキノリル)オキシ]フェニル $\}$ ーN'ープロピルウレア、80mg),炭酸カリウム(138mg)、前述の中間体(43mg)をN,Nージメチルホルムアミド(1ml)に溶解し80℃で3時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルム / メタノールで展開するHPLCにより精製し、表題の化合物を54mg、収率52%で得た。

'H-NMR (CDCl₃, 400MHz): $\delta0$. 97 (t, J=7. 6Hz, 3H), 1. 54-1. 65 (m, 2H), 2. 49-2. 58 (m, 2H), 3. 26 (d d, J=7. 1Hz, 13. 2Hz, 2H), 4. 01 (s, 3H), 4. 15 (t, J=5. 9Hz, 2H), 4. 69 (t, J=6. 6Hz, 2H), 4. 90-5. 00 (m, 1H), 6. 46 (d, J=5. 1Hz, 1H), 6. 77 (s, 1H), 7. 08 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 19 (d, J=2. 7Hz, 1H), 7. 36 (s, 1H), 7. 51 (s, 1H), 7. 61 (s, 1H), 7. 67 (s, 1H), 8. 26 (d, J=9. 0Hz, 1H), 8. 47 (d, J=5. 4Hz, 1H)

質量分析値 (ESI-MS, m/z):511 (M++1)

実施例 $154:N-[2-クロロ-4-({7-[3-(1H-1-イミダゾリル)]}$ プロポキシ]-6-メトキシ-4-キノリル オキシ)フェニル-N'-プロピルウレア

イミダゾール(680mg)、1-プロモ-3-クロロプロパン (0.79ml)、ヨウ化テトラブチルアンモニウム (10mg)、および3 M水酸化ナトリウム水溶液 (1ml)をアセトン (10ml) に溶解し、50℃で18時間攪拌した。反応混合物に水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルムで展開するクロマトグラフィーにより精製し、中間体 (1-(3-クロロプロピル) -1 H-イミダゾール、525mg)を得た。

原料(N-{2-クロロー4-[(7-ヒドロキシー6-メトキシー4ーキノリル)オキシ]フェニル}ーN'ープロピルウレア、80mg),炭酸カリウム(13 8mg)、前述の中間体(42mg)をN,N-ジメチルホルムアミド(1ml)に溶解し80℃で3時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を23mg、収率23%で得た。

¹H-NMR (CDCl₃, 400MHz): $\delta0$. 91 (t, J=7. 3Hz, 3H), 1. 48-1. 60 (m, 2H), 2. 27-2. 36 (m, 2H), 3. 20 (d d, J=6. 8Hz, 12. 9Hz, 2H), 3. 97 (s, 3H), 4. 06 (t, J=5. 9Hz, 2H), 4. 21 (t, J=6. 8Hz, 2H), 6. 39 (d, J=5. 4Hz, 1H), 6. 90 (s, 1H), 6. 98-7. 04 (m, 2H), 7. 12 (d, J=2. 7Hz, 1H), 7. 30 (s, 1H), 7. 44-7. 48 (m, 2H), 8. 22 (d, J=9. 0Hz, 1H), 8. 41 (d, J=5. 4Hz, 1H)

<u>実施例155: $N-\{2-DDD-4-[(7-\{2-[ジ(2-ヒドロキシエチル) アミノ]エトキシ\} -6-メトキシ-4-キノリル) オキシ]フェニル} -N ープロピルウレア</u></u>$

原料 $(N-(4-\{[7-(2-プロモエトキシ)-6-メトキシ-4-キノリル]オキシ}-2-クロロフェニル)-N'-プロピルウレア、<math>50mg$),炭酸カリウム (138mg)、1-メチルピペラジン <math>(0.055m1) をN,N-ジメチルホルムアミド <math>(1m1) に溶解し室温で18時間攪拌した。反応混合物に水を加え、

WO 00/43366 PCT/JP00/00255

- 141 -

クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、エーテルで洗浄し、表題の化合物を46mg、収率92%で得た。

¹H-NMR (CDCl₃, 400MHz): $\delta0$. 92 (t, J=7. 3Hz, 3H), 1. 50-1. 60 (m, 2H), 2. 74 (t, J=4. 9Hz, 4H), 3. 04 (t, J=4. 9Hz, 2H), 3. 15-3. 24 (m, 2H), 3. 60 (t, J=5. 1Hz, 4H), 3. 94 (s, 3H), 4. 17 (t, J=5. 0Hz, 2H), 6. 41 (d, J=5. 4Hz, 1H), 6. 75 (s, 1H), 7. 04 (dd, J=2. 4Hz, 8. 8Hz, 1H), 7. 14 (d, J=2. 7Hz, 1H), 7. 38 (s, 1H), 7. 43 (s, 1H), 8. 19 (d, J=9. 0Hz, 1H), 8. 42 (d, J=5. 4Hz, 1H)

実施例 $156:N-\{2-クロロ-4-[(7-\{3-[ジ(2-ヒドロキシエチル) アミノ]プロポキシ\} -6-メトキシ-4-キノリル) オキシ]フェニル} -N'-プロピルウレア$

原料 (N-(4-{[7-(3-プロモプロポキシ)-6-メトキシ-4-キノリル]オキシ}-2-クロロフェニル)-N'-プロピルウレア、52mg),炭酸カリウム (138mg)、ジエタノールアミン (53mg) をN,N-ジメチルホルムアミド (1ml) に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール (3/1) で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、エーテルで洗浄し、表題の化合物を41mg、収率82%で得た。

'H-NMR (CDCl₃, 400MHz): $\delta0$. 89 (t, J=7. 3Hz, 3H), 1. 46-1. 56 (m, 2H), 1. 97-2. 05 (m, 2H), 2. 63 (t, J=5. 1Hz, 4H), 2. 69 (t, J=6. 1Hz, 2H), 3. 19 (d d, J=7. 1Hz, 13. 2Hz, 2H), 3. 60 (t, J=4. 9Hz, 4H), 3. 94 (s, 3H), 4. 32 (t, J=5. 9Hz, 2H), 5. 27-5. 35 (m, 1H), 6. 37 (d, J=5. 4Hz, 1H), 6. 94 (s, 1H), 7. 01 (d d, J=2. 9Hz, 9. 0Hz, 1H), 7. 10 (d, J=2. 7Hz, 1H), 7. 42 (s, 1H), 7. 53 (s, 1H), 8. 19

WO 00/43366 PCT/JP00/00255

- 142 -

(d, J=9.0Hz, 1H), 8.35 (d, J=5.4Hz, 1H) 質量分析値 (ESI-MS, m/z):547 (M++1)

実施例 $157:N-\{2-\rho \Box \Box -4-[(7-\{3-[(2-ヒドロキシエチル) (メチル) アミノ]プロポキシ} -6-メトキシ-4-キノリル) オキシ]フェニル<math>\}$ -N'-プロピルウレア

原料($N-(4-\{[7-(3-プロモプロポキシ)-6-メトキシ-4-キノリル]オキシ\}-2-クロロフェニル)-N'-プロピルウレア、<math>52mg$),炭酸カリウム(138mg)、2-(メチルアミノ)エタノール(<math>0.040ml)をN,N-ジメチルホルムアミド(<math>1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、エーテルで洗浄し、表題の化合物を51mg、収率98%で得た。

 $^{1}H - NMR$ (CDCl₃, 400MHz): δ 0. 91 (t, J=7. 6Hz, 3H),

- 1. 45-1. 59 (m, 2H), 2. 05 (t, J=6. 8Hz, 2H), 2.
- 24 (s, 3H), 2.51 (t, J=5.1Hz, 2H), 2.59 (t, J=
- 7. 1 Hz, 2 H), 3. 2 0 (dd, J = 6. 8 Hz, 1 2. 9 Hz, 2 H),
- 3. 57 (t, J = 5. 4Hz, 2H), 3. 95 (s, 3H), 4. 22 (t,
- J = 6.3 Hz, 2H), 5.00-5.08 (m, 1H), 6.40 (d, J =
- 5. 1 Hz, 1 H), 6. 79 (s, 1 H), 7. 03 (dd, J = 2. 7 Hz,
- 9. $0 \, \text{Hz}$, $1 \, \text{H}$), 7. $1 \, 3$ (d, J = 2. $7 \, \text{Hz}$, $1 \, \text{H}$), 7. $4 \, 2 \, 6$ (s,
- 1H), 7. 433 (s, 1H), 8. 19 (d, J=9. 0Hz, 1H), 8. 4 0 (d, J=5. 4Hz, 1H)

質量分析値(ESI-MS, m/z):517 (M++1)

実施例 $158:N-[2-クロロ-4-({6-メトキシ-7-[4-(1$ *H* $-1, 2, 3-トリアゾール-1-イル) プトキシ]-4-キノリル} オキシ) フェニル]-<math>N'$ -プロピルウレア

トリアゾール(0.41ml)、1-プロモー4-クロロブタン (0.93ml)、ヨウ化テトラブチルアンモニウム (10mg)、および3 M水酸化ナトリウム水溶液 (1ml) をアセトン (10ml) に溶解し、50℃で18時間攪拌した。反応混合物に水を加え、

クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルムで展開するクロマトグラフィーにより精製し、中間体(1-(4-クロロブチル)-1H-1, 2, 3-トリアゾール、314mg)を得た。

原料($N-\{2-\rho \Box \Box -4-[(7-ヒドロキシ-6-メトキシ-4-キノリル)オキシ]フェニル\}-N'-プロピルウレア、<math>80mg$),炭酸カリウム(138mg)、前述の中間体(48mg)をN,N-ジメチルホルムアミド(<math>1m1)に溶解し80℃で3時間攪拌した。反応混合物に水を加え、 $\rho \Box \Box ホルム-プロパノール(<math>3/1$)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、 $\rho \Box \Box \tau \mu \Delta / \lambda \beta / \lambda \delta$ 一、表題の化合物を42mg、収率40%で得た。

 $^{1}H-NMR$ (CDCl₃, 400MHz): δ 0. 96 (t, J=7. 3Hz, 3H), 1. 54-1. 65 (m, 2H), 1. 88-1. 98 (m, 2H), 2. 14-

2. 24 (m, 2H), 3. 26 (dd, J = 6.6 Hz, 13. 2Hz, 2H),

3. 99 (s, 3H), 4. 20 (t, J=5. 9Hz, 2H), 4. 55 (t,

J = 7. 1 Hz, 2H), 5. 00-5. 06 (m, 1H), 6. 46 (d, J =

5. $4 \, \text{Hz}$, $1 \, \text{H}$), 6. $8 \, 0$ (s, $1 \, \text{H}$), 7. $0 \, 8$ (dd, J = 2. $7 \, \text{Hz}$,

9. $0 \, \text{Hz}$, $1 \, \text{H}$), 7. $1 \, 9$ (d, J = 2. $7 \, \text{Hz}$, $1 \, \text{H}$), 7. $3 \, 7$ (s, 1

H), 7. 49 (s, 1H), 7. 68-7. 72 (m, 2H), 8. 26 (d,

J = 9.0 Hz, 1H), 8.47 (d, J = 5.1 Hz, 1H)

質量分析値(ESI-MS, m/z):525 (M+1)

実施例 $159:N-\{2-クロロ-4-[(6-メトキシ-7-\{[5-(1H-1,2,3-トリアゾール-1-イル)ペンチル]オキシ}-4-キノリル)オキシ]フェニル<math>\{-N',-$ プロピルウレア

トリアゾール(0.41ml)、1 - ブロモ-5 - クロロペンタン (1.0ml)、ヨウ化テトラブチルアンモニウム (10mg)、および3M水酸化ナトリウム水溶液 (1ml)をアセトン (10ml) に溶解し、50℃で18時間攪拌した。反応混合物に水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルムで展開するクロマトグラフィーにより精

WO 00/43366 PCT/JP00/00255

- 144 -

製し、中間体(1-(5-クロロペンチル-1H-1, 2, 3-トリアゾール、390mg)を得た。

原料(N-{2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キノリル)オキシ]フェニル}-N'-プロピルウレア、80mg),炭酸カリウム(13 8mg)、前述の中間体(51mg)をN,N-ジメチルホルムアミド(1ml)に溶解し80℃で3時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を33mg、収率31%で得た。

 $^{1}H-NMR$ (CDCl₃, 400MHz): $\delta0.92$ (t, J=7.6Hz, 3H), 1.47-1.59 (m, 2H), 1.85-2.03 (m, 4H), 3.21 (d d, J=6.6Hz, 13.2Hz, 2H), 3.94 (s, 3H), 4.11 (t, J=6.3Hz, 2H), 4.38 (t, J=7.1Hz, 2H), 4.86-4. 94 (m, 1H), 6.41 (d, J=5.4Hz, 1H), 6.71 (s, 1H), 7.03 (dd, J=2.4Hz, 9.0Hz, 1H), 7.14 (d, J=2.7Hz, 1H), 7.31 (s, 1H), 7.43 (s, 1H), 7.51 (s, 1H), 1.4 (d, 1.4), 1.4

質量分析値(ESI-MS, m/z):539 (M++1)

実施例 $160:N-[2-クロロ-4-({7-[4-(1H-1-イミダゾリル)] プトキシ]-6-メトキシ-4-キノリル} オキシ) フェニル<math>[-N,-]$ プロピルウレア

イミダゾール(680mg)、1-プロモ-4-クロロブタン(0.93ml)、ヨウ化テトラプチルアンモニウム(10mg)、および3 M水酸化ナトリウム水溶液(1ml)をアセトン(10ml)に溶解し、50℃で18時間攪拌した。反応混合物に水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルムで展開するクロマトグラフィーにより精製し、中間体(1-(4-クロロブチル)-1 H-1 F-1 H-1 F-1 F-1

原料(N-{2-クロロー4-[(7-ヒドロキシー6-メトキシー4ーキノリル)オキシ]フェニル}ーN'ープロピルウレア、80mg),炭酸カリウム(13 8mg)、および前述の中間体(48mg)をN,N-ジメチルホルムアミド(1m1)に溶解し 80° で3時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を29mg、収率28%で得た。

¹H-NMR (CDCl₃, 400MHz): $\delta0$. 96 (t, J=7. 3Hz, 3H), 1. 54-1. 65 (m, 2H), 1. 83-1. 95 (m, 2H), 1. 98-2. 08 (m, 2H), 3. 25 (dd, J=6. 8Hz, 12. 7Hz, 2H), 4. 00 (s, 3H), 4. 10 (t, J=7. 1Hz, 2H), 4. 20 (t, J=6. 1Hz, 2H), 5. 08-5. 16 (m, 1H), 6. 46 (d, J=5. 1Hz, 1H), 6. 83 (s, 1H), 6. 97 (s, 1H), 7. 06 (s, 1H), 7. 08 (dd, J=2. 9Hz, 9. 3Hz, 1H), 7. 18 (d, J=2. 7Hz, 1H), 7. 37 (s, 1H), 7. 49 (s, 1H), 7. 58 (s, 1H), 8. 26 (d, J=9. 0Hz, 1H), 8. 46 (d, J=5. 4Hz, 1H)

<u>実施例161:N-(2-クロロ-4-{[6-メトキシ-7-(4-ピリジルメトキシ)-4-キナゾリニル</u>]オキシ} フェニル)-N'-(2, 4-ジフルオロフェニル)ウレア

原料 $(N'-\{2-\rho \Box \Box -4-[(7-E \ \Box + \nu -6- \lambda F + \nu -4- +$

 $^{1}H-NMR$ (CDCI₃, 400MHz): δ 4. 03 (s, 3H), 5. 46 (s, 2H), 7. 03-7. 11 (m, 1H), 7. 28-7. 38 (m, 1H), 7.

47 (s, 1H), 7. 50 (d, J=5. 9Hz, 2H), 7. 56 (d, J=2. 7Hz, 1H), 7. 61 (s, 1H), 7. 95 (s, 1H), 8. 09-8. 18 (m, 1H), 8. 19 (d, J=9. 0Hz, 1H), 8. 57 (s, 1H), 8. 63 (d, J=5. 9Hz, 2H), 8. 81 (s, 1H), 9. 30 (s, 1H)

実施例 $162:N-(2-200-4-{[6-メトキシ-7-(2-モルホリノエトキシ)-4-キナゾリニル]オキシ}フェニル)-N'-(2,4-ジフルオロフェニル)ウレア$

原料(N'ー $\{2-\rho \Box \Box -4-[(7-ヒドロキシ-6-メトキシ-4-+$ ナゾリニル)オキシ]フェニル $\}$ -N'ー (2,4-i)フルオロフェニル)ウレア、100mg),炭酸カリウム(857mg)、1,2-iジブロモエタン(0.085ml)をN,N-iジメチルホルムアミド(1ml)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、中間体(Nー($4-\{[7-(2-i)\Box +1])$ -6-メトキシー4ーキナゾリニル]オキシ $\}$ -2-クロロフェニル)-N'ー(2,4-ジフルオロフェニル)ウレア)を得た。中間体、炭酸カリウム(138mg)、モルホリン(0.05ml)をN,N-iジメチルホルムアミド(1ml)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を57mg、収率46%で得た。

¹H-NMR (CDCl₃, 400MHz): $\delta2$. 54-2. 63 (m, 4H), 2. 85-2. 94 (m, 2H), 3. 66-3. 73 (m, 4H), 3. 97 (s, 3H), 4. 25-4. 32 (m, 2H), 6. 77-6. 88 (m, 2H), 7. 0.9 (s, 1H), 7. 1.4 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 2.57 (s, 1H), 7. 2.64 (s, 1H), 7. 4.44 (s, 1H), 7. 9.07. 9.99 (m, 1H), 8.22 (d, J=9.0Hz, 1H), 8.56 (s, 1H)

- 147 -

質量分析値(ESI-MS, m/z):586 (M++1)

<u>実施例163:N-(2-クロロ-4-{[6-メトキシ-7-(3-モルホリ</u> <u>ノプロポキシ)-4-キナゾリニル</u>]オキシ} フェニル)-N'-(2, 4-ジ フルオロフェニル)ウレア

'H-NMR (CDCl₃, 400MHz): $\delta2$. 06-2. 16 (m, 2H), 2. 43-2. 57 (m, 4H), 2. 56 (t, J=6. 8Hz, 2H), 3. 68-3. 75 (m, 4H), 4. 03 (s, 3H), 4. 27 (t, J=6. 6Hz, 2H), 6. 79-6. 91 (m, 2H), 7. 14 (s, 1H), 7. 19 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 28 (s, 1H), 7. 29 (d, J=9. 0Hz, 1H), 7. 33 (s, 1H), 7. 49 (s, 1H), 8. 26 (d, J=9. 0Hz, 1H), 8. 61 (s, 1H)

質量分析値(ESI-MS, m/z):600 (M*+1)

実施例 $164:N-[2-クロロ-4-({6-メトキシ-7-[3-(4-メチルピペラジノ)プロポキシ]-4-キナゾリニル} オキシ)フェニル]-N'-(2,4-ジフルオロフェニル)ウレア$

- 148 -

'H-NMR (CDCl₃, $400 \,\text{MHz}$): $\delta 2.01-2.12 \,\text{(m, 2H)}, 2.23 \,\text{(s, 3H)}, 2.23-2.80 \,\text{(m, 8H)}, 2.51 \,\text{(t, J=7.1)}$ Hz, 2H), 3.97 (s, 3H), 4.20 (t, J=7.2Hz, 2H), 6.73-6.87 (m, 2H), 7.13 (dd, J=2.7Hz, 9.0Hz, 1H), 7.24 (d, J=2.7Hz, 1H), 7.27 (s, 1H), 7.30 (s, 1H), 7.44 (s, 1H), 7.91-8.00 (m, 2H), 8.21 (d, J=9.0Hz, 1H), 8.56 (s, 1H)

実施例 $165: N-\{2-クロロ-4-[(7-\{3-[(2-ヒドロキシエチル) (メチル) アミノ]プロポキシ\} -6-メトキシ-4-キナゾリニル) オキシ]フェニル<math>\}$ -N'-(2,4-ジフルオロフェニル) ウレア

原料(N-(4-{[7-(3-ブロモプロポキシ)-6-メトキシ-4-キ

ナゾリニル]オキシ} -2-クロロフェニル) -N'-(2,4-ジフルオロフェニル) ウレア、59mg),炭酸カリウム(138mg)、2-(メトルアミノ) エタノール(0.040ml)をN,N-ジメチルホルムアミド(1ml)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、表題の化合物を58mg、収率100%で得た。 'H-NMR(CDCl3,400MHz): δ2.06-2.16(m,2H),2.30(s,3H),2.57(t,J=5.1Hz,2H),2.65(t,J=6.8Hz,1H),3.63(t,J=5.4Hz,2H),4.02(s,3H),4.28(t,J=6.1Hz,2H),6.79-6.91(m,2H),7.18(dd,J=2.7Hz,9.0Hz,1H),7.28(d,J=2.7Hz,1H),7.37(s,1H),7.48(s,1H),7.96-8.06(m,2H),8.26(d,J=9.0Hz,1H),8.59(s,1H)質量分析値(ESI-MS,m/z):588(M*+1)

<u>実施例166:N-[2-クロロ-4-($\{6-メトキシ-7-[2-(4-メチルピペラジノ)$ エトキシ $[-4-キノリル\}$ オキシ) フェニル[-N'-(2,4-2)] -ジフルオロフェニル) ウレア</u>

原料 (N-(4-{[7-(2-プロモエトキシ)-6-メトキシ-4-キノ

リル]オキシ} - 2 - クロロフェニル) - N' - (2, 4 - ジフルオロフェニル) ウレア、50mg),炭酸カリウム(138mg)、1 - メチルピペラジン(0.055ml)をN,N-ジメチルホルムアミド(1ml)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルム-プロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、表題の化合物を48mg、収率93%で得た。

'H-NMR (CDCl₃, 400MHz): δ 2. 31 (s, 3H), 2. 40-2. 75 (m, 8H), 2. 95 (t, J=6. 1Hz, 2H), 3. 99 (s, 3H), 4. 31 (t, J=5. 9Hz, 2H), 6. 48 (d, J=5. 1Hz, 1H), 6. 85-6. 96 (m, 3H), 7. 12 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 15 (s, 1H), 7. 22 (d, J=2. 7Hz, 1H), 7. 40 (s, 1H), 7. 47 (s, 1H), 7. 94-8. 03 (m, 1H), 8. 25 (d, J=9. 0Hz, 1H), 8. 49 (d, J=5. 1Hz, 1H) 実施例167: N-{2-クロロ-4-[(7-{2-[(2-ヒドロキシエチル)(メチル) アミノ|エトキシ} -6-メトキシー4ーキノリル) オキシ|フェニル} -N'-(2, 4-ジフルオロフェニル) ウレア

原料(N-(4-{[7-(2-プロモエトキシ)-6-メトキシー4ーキノリル]オキシ}-2-クロロフェニル)-N'-(2,4-ジフルオロフェニル)ウレア、50mg),炭酸カリウム(138mg)、2-(メチルアミノ)エタノール(0.040ml)をN,N-ジメチルホルムアミド(1ml)に溶解し室温で18時間 攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、表題の化合物を48mg、収率97%で得た。

'H-NMR (CDCl₃, 400MHz): δ 2. 44 (s, 3H), 2. 71 (t, J=4. 9Hz, 2H), 3. 02 (t, J=5. 6Hz, 4H), 3. 66 (t, J=5. 1Hz, 2H), 3. 97 (s, 3H), 4. 27 (t, J=5. 6Hz, 2H), 6. 46 (d, J=5. 4Hz, 1H), 6. 80-6. 93 (m, 2H), 7. 11 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 19 (d, J=2. 7Hz, 1H), 7. 45 (s, 1H), 7. 96-8. 04 (m, 1H), 8.

- 150 -

PCT/JP00/00255

原料(N-(4-{[7-(3-ブロモプロポキシ)-6-メトキシー4ーキノリル]オキシ}-2-クロロフェニル)-N'-(2,4-ジフルオロフェニル)ウレア、50mg),炭酸カリウム(138mg)、モルホリン(0.044ml)をN,N-ジメチルホルムアミド(1ml)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、表題の化合物を32mg、収率64%で得た。

'H-NMR (CDCl₃, 400MHz): $\delta2$. 06-2. 16 (m, 2H), 2. 43-2. 51 (m, 4H), 2. 56 (t, J=7. 3Hz, 2H), 3. 68-3. 74 (m, 4H), 4. 00 (s, 3H), 4. 25 (t, J=6. 6Hz, 2H), 6. 47 (d, J=5. 1Hz, 1H), 6. 84-6. 93 (m, 2H), 7. 06 (s, 1H), 7. 12 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 22 (d, J=2. 9Hz, 1H), 7. 42 (s, 1H), 7. 47 (s, 1H), 7. 95-8. 04 (m, 1H), 8. 25 (d, J=9. 0Hz, 1H), 8. 48 (d, J=5. 4Hz, 1H)

<u>実施例169:N-(2-クロロ-4-{ $[6-メトキシ-7-(3-ピリジル メトキシ)-4-キノリル]オキシ} フェニル)-N'-(2,4-ジフルオロフェニル)ウレア</u></u>$

N-{2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キノリル)オキシ]フェニル}-N'-(2,4-ジフルオロフェニル)ウレア(55mg)、炭酸カリウム(31mg)、3-ピコリルクロリド塩酸塩(22mg)をN,N-ジメチルホルムアミド(1ml)に溶解し、80度で1時間攪拌した。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。クロロホルム層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、表題の化合物を30mg、収率48%で得た

- 151 -

¹H-NMR (CDCI₃, 400MHz): $\delta4$. 03 (s, 3H), 5. 31 (s, 2H), 6. 49 (d, J=5. 4Hz, 1H), 6. 77-6. 88 (m, 2H), 7. 10-7. 16 (m, 2H), 7. 31-7. 35 (m, 1H), 7. 48 (s, 1H), 7. 54 (s, 1H), 7. 86 (d, J=7. 8Hz, 1H), 7. 96 (s, 1H), 8. 03-8. 10 (m, 1H), 8. 32 (d, J=9. 0Hz, 1H), 8. 42 (s, 1H), 8. 49 (d, J=5. 4Hz, 1H), 8. 59 (d, J=3. 9Hz, 1H), 8. 77 (s, 1H)

実施例 $170: N-[2-クロロ-4-({6-メトキシ-7-[2-(1H-1, 2, 3-トリアゾール-1-イル) エトキシ|-4-キノリル} オキシ) フェニル]-N'-(2, 4-ジフルオロフェニル) ウレア$

 $N-\{2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キノリル)$ オキシ]フェニル $\}-N'-(2,4-ジフルオロフェニル)$ ウレア (55mg)、炭酸カリウム (31mg)、2-(1H-1,2,3-トリアゾール-1-イル) エ チル 4-メチル-1-ベンゼンスルホナート (36mg) をN,N-ジメチルホルムアミド(1ml) に溶解し、80度で1時間攪拌した。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。クロロホルム層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、表題の化合物を46mg、収率72%で得た。

'H-NMR (CDCl₃, 400MHz): $\delta4$. 02 (s, 3H), 4. 53 (d, J=4. 9Hz, 2H), 4. 95 (d, J=5. 1Hz, 2H), 6. 47 (d, J=5. 1Hz, 1H), 6. 83-6. 92 (m, 2H), 7. 11 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 16 (d, J=2. 7Hz, 1H), 7. 39 (s, 1H), 7. 52 (s, 1H), 7. 58 (s, 1H), 7. 70 (s, 1H), 7. 76 (s, 1H), 8. 00 (s, 1H), 8. 01-8. 07 (m, 1H), 8. 29 (d, J=9. 0Hz, 1H), 8. 49 (d, J=5. 4Hz, 1H)

実施例 $171:N-(2-メトキシ-4-\{[6-メトキシ-7-(3-モルホリノプロポキシ)-4-キナゾリニル] オキシ} フェニル)-N'-プロピルウレア$

N-4-[(7-ヒドロキシ-6-メトキシ-4-キナゾリニル) オキシ]-2 -メトキシフェニル $\}$ - N ' -プロピルウレア (100mg)、炭酸カリウム (1 $38 \,\mathrm{mg}$), 1, $3 - \tilde{y} \tilde{y} \mathrm{d} = \tilde{y} \mathrm{d} \tilde{y}$ ミド(5ml)に溶解し室温で3時間攪拌した。減圧下溶媒を留去した得られた 残さに水を加え、クロロホルム/2-プロパノール(4/1)で抽出した。有機 層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテ ルで洗浄し、N-(4-[7-(3-ブロモプロポキシ)-6-メトキシ-4-キナゾリニル] オキシー2-メトキシフェニル} - N' - プロピルウレアを53 mg、収率4.1%で得た。 $N-(4-\{[6-(3-プロモプロポキシ)-7-メ$ トキシー4ーキナゾリニル]オキシ}-2-クロロフェニル}-N'ープロピル ウレア(50mg)、炭酸カリウム(60mg)、N-メチルピペラジン(100 μ 1) δ N, N-ジメチルホルムアミド(2ml)に溶解し室温で16時間攪拌 した。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加 えクロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒 を留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロ マトグラフィーにより精製し、表題の化合物を22mg、収率42%で得た。 $^{1}H-NMR$ (CDCl₃, 400MHz): δ 0. 97 (t, J=7. 6Hz, 3H), 1. 56-1. 60 (m, 2H), 2. 14 (br, 2H), 2. 50 (b r, 4H), 2. 58 (br, 2H), 3. 23-3. 26 (m, 2H), 3. 74 (br, 4H), 3.87 (s, 3H), 4.04 (s, 3H), 4.27-4.3 1 (m, 2H), 4. 62-4. 64 (m, 1H), 6. 65 (s, 1H), 6. 7 9-6. 85 (m, 2H), 7. 33 (s, 1H), 7. 53 (s, 1H), 8. 1 0 (d, J=8.5Hz, 1H), 8.62 (s, 1H)

質量分析値(ESI-MS, m/z):526 (M+ +1)

<u>実施例172:N-(2,4-ジフルオロフェニル)-N'-(2-メトキシー4-{[6-メトキシ-7-(3-モルホリノプロポキシ)-4-キナゾリニル]</u> オキシ}フェニル)ウレア

N-(2, 4-ジフルオロフェニル)-N'-4-[(7-ヒドロキシ-6-メトキシ-4-キナゾリニル)オキシ]-2-メトキシフェニルウレア(375m)

g)、炭酸カリウム(442mg)、1、3-ジブロモプロパン(242mg)をN,N-ジメチルホルムアミド(5ml)に溶解し室温で3時間攪拌した。減圧下溶媒を留去した得られた残さに水を加え、酢酸エチルで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、N-{4-[7-(3-ブロモプロポキシ)-6-メトキシー4-キナゾリニル]オキシー2-メトキシフェニル}-N'-(2,4-ジフルオロフェニル)ウレアを210mg、収率45%で得た。N-(4-{[6-(3-ブロモプロポキシ)-7-メトキシー4-キナゾリニル]オキシ}-2-クロロフェニル}-N'-プロピルウレア(130mg)、トリエチルアミン(0.5ml)、モルホリン(0.5ml)をN,N-ジメチルホルムアミド(4ml)に溶解し室温で18時間攪拌した。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を81mg、収率62%で得た。

¹H-NMR (CDCl₃, 400MHz): δ 1. 97-2. 00 (m, 2H), 2. 39 (br, 4H), 2. 49-2. 51 (m, 2H), 3. 58-3. 60 (m, 4H), 3. 88 (s, 3H), 3. 98 (s, 3H), 4. 25 (t, J=6. 3Hz, 2H), 4. 27-4. 31 (m, 2H), 4. 62-4. 64 (m, 1H), 6. 84 (dd, J=2. 7Hz, 8. 8Hz, 1H), 7. 03-7. 07 (m, 2H), 7. 28-7. 34 (m, 1H), 7. 38 (s, 1H), 7. 55 (s, 1H), 8. 11-8. 17 (m, 2H), 8. 55 (s, 1H), 8. 74 (s, 1H), 9. 18 (s, 1H)

質量分析値(ESI-MS, m/z):596 (M++1)

実施例 $173:N-(2-メトキシ-4-{[6-メトキシ-7-(3-モルホリノプロポキシ)-4-キノリル]オキシ}$ フェニル)-N'-プロピルウレア原料($N-{4-[(7-ヒドロキシ-6-メトキシ-4-キノリル)オキシ]-2-メトキシフェニル}-N'-プロピルウレア、<math>80mg)$,炭酸カリウム(138mg)、1,3-ジプロモプロパン(<math>0.10ml)をN,N-ジメチルホルムアミド

(1m 1) に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、中間体を得た。中間体、炭酸カリウム(138mg)、モルホリン(0.040ml)をN,Nージメチルホルムアミド(1m 1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を74mg、収率71%で得た。

'H-NMR (CDCI₃, 400MHz): $\delta0.95$ (t, J=7.6Hz, 3H), 1.52-1.69 (m, 2H), 2.06-2.15 (m, 2H), 2.43-2.49 (m, 4H), 2.55 (t, J=7.3Hz, 2H), 3.23 (dd, J=6.1Hz, 12.9Hz, 2H), 3.67-3.72 (m, 4H), 3.81 (s, 3H), 4.00 (s, 3H), 4.24 (t, J=6.8Hz, 2H), 6.44 (d, J=5.1Hz, 1H), 6.68 (d, J=2.4Hz, 1H), 6.76 (dd, J=2.4Hz, 8.8Hz, 1H), 7.40 (s, 1H), 7.53 (s, 1H), 8.12 (d, J=8.8Hz, 1H), 8.44 (d, J=5.1Hz, 1H)

実施例 $174:N-(2-メトキシ-4-\{[6-メトキシ-7-(4-ピリジ ルメトキシ)-4-キノリル]オキシ}フェニル)-N'-プロピルウレア$

原料(N-{4-[(7-ヒドロキシー6-メトキシー4-キノリル)オキシ] -2-メトキシフェニル}-N'-プロピルウレア、80mg),炭酸カリウム(138mg)、4-クロロメチルピリジン塩酸塩(48mg)をN,N-ジメチルホルムアミド(1ml)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を65mg、収率67%で得た。

'H-NMR (CDCl₃, 400MHz): δ 0. 95 (t, J=7. 3Hz, 3H), 1. 52-1. 69 (m, 2H), 3. 24 (dd, J=7. 3Hz, 12. 9H

z, 2H), 3.82 (s, 3H), 4.06 (s, 3H), 4.63-4.69(m, 1H), 5.32(s, 2H), 6.46(d, J=5.4Hz, 1H), 6.68 (d, J=2. 7Hz, 1H), 6. 77 (dd, J=2. 4Hz, 8. 5Hz, 1H), 7. 37 (s, 1H), 7. 42 (d, J = 6. 1Hz, 2H), 7. 59 (s, 1H), 8.14 (d, J=8.5Hz, 1H), 8.43 (d, J=5. 4 H z, 1 H), 8. 61 (d, J = 6. 1 H z, 2 H) 実施例175:N-エチル-N'-(4-{[6-メトキシ-7-(2-モルホ <u>リノエトキシ)-4-キノリル|オキシ</u>}-2,5-ジメチルフェニル)ウレア 原料(N-エチル-N'-{4-[(7-ヒドロキシ-6-メトキシ-4-キ ノリル)オキシ]-2,5-ジメチルフェニル}ウレア、76mg),炭酸カリウム (138mg)、1,2-ジブロモエタン(0.085ml)をN,N-ジメチルホルムアミ ド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホ ルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥 し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、中間体(N-(4

 $-\{[7-(2-7)12x]+2)\}-6-x+2-4-4-11x$ 5-ジメチルフェニル)-N'-エチルウレア)を得た。中間体、炭酸カリウム (138mg)、モルホリン(0.044ml)をN,N-ジメチルホルムアミド(1ml)に 溶解し室温で18時間攪拌した。反応混合物に水を加えクロロホルムープロパノー ル (3/1) で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を 留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製 し、表題の化合物を72mg、収率73%で得た。

 $^{1}H-NMR$ (CDCl₃, 400MHz): δ 1. 10 (t, J=7. 3Hz, 3H), 2. 07 (s, 3H), 2. 16 (s, 3H), 2. 53-2. 59 (m, 4H), 2. 88 (t, J = 5. 9Hz, 2H), 3. 20-3. 30 (m, 2H), 3. 66-3.71 (m, 4H), 3.96 (s, 3H), 4.26 (t, J=5.9Hz, 2H), 4. 73-4. 82 (m, 1H), 6. 16 (s, 1H), 6. 2 3 (d, J = 5.4 Hz, 1H), 6.88 (s, 1H), 7.35 (s, 1H),7. 40 (s, 1H), 7. 50 (s, 1H), 8. 38 (d, J=5. 1Hz, 1 H)

実施例 $176:N-[4-({6-メトキシ-7-[3-(4-メチルピペラジノ)} プロポキシ]-4-キノリル) オキシ) <math>-2$, 5-ジメチルフェニル]-N'-プロピルウレア

原料(N- {4-[(7-ヒドロキシ-6-メトキシ-4-キノリル)オキシ] -2,5-ジメチルフェニル} -N'-プロピルウレア、80mg),炭酸カリウム(138mg)、1,3-ジブロモプロパン(0.10ml)をN,N-ジメチルホルムアミド(1ml)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、エーテルで洗浄し、中間体(N-(4-{[7-(3-ブロモプロポキシ)-6-メトキシ-4-キノリル]オキシ}-2,5-ジメチルフェニル)-N'-プロピルウレア)を得た。中間体、炭酸カリウム(138mg)、1-メチルピペラジン(0.055ml)をN,N-ジメチルホルムアミド(1ml)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、エーテルで洗浄し、表題の化合物を33mg、収率31%で得た。

¹H-NMR (CDCl₃, 400MHz): $\delta0$. 91 (t, J=7. 6Hz, 3H), 1.50-1. 58 (m, 2H), 2.07-2. 20 (m, 2H), 2.12 (s, 3H), 2.23 (s, 3H), 2.28 (s, 3H), 2.33-2. 70 (m, 10H), 3.21 (dd, J=7. 3Hz, 13. 4Hz, 2H), 4.00 (s, 3H), 4.24 (t, J=6. 6Hz, 2H), 4. 64-4. 76 (m, 1H), 5. 95-6. 05 (m, 1H), 6. 27 (d, J=5. 1Hz, 1H), 6. 95 (s, 1H), 7. 39-7. 43 (m, 2H), 7. 54 (s, 1H), 8. 42 (d, J=5. 1Hz, 1H)

質量分析値(ESI-MS,m/z):536(M++1)

実施例 $177:N-(2,4-ジフルオロフェニル)-N'-[4-({6-メト +シ-7-[2-(1$ *H*-1,2,3-トリアゾール-1-イル) エトキシ]-4-ナノリル<math>1+2-キノリル1+2-ナノリル1+2-ナノリル1+2-ナノリア

原料 $(N-(2, 4-ジフルオロフェニル)-N'-\{4-[(7-ヒドロキ$

シー 6 ーメトキシー 4 ーキノリル)オキシ]ー 2 、5 ージメチルフェニル)ウレア、93mg),炭酸カリウム(138mg)、2 ー(1 H ー 1 、2 、3 ートリアゾールー 1 ーイル)エチル 4 ーメチルー1 ーベンゼンスルフォナート(52mg)をN,N ージメチルホルムアミド(1m1)に溶解し80でで5 時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を33mg、収率30%で得た。

'H-NMR (CDCl₃, 400MHz): δ 2. 10 (s, 3H), 2. 19 (s, 3H), 4. 01 (s, 3H), 4. 51 (t, J=4. 9Hz, 2H), 4. 93 (t, J=5. 4Hz, 2H), 4. 94 (s, 1H), 6. 28 (d, J=5. 1Hz, 1H), 6. 75-6. 88 (m, 2H), 6. 90 (s, 1H), 7. 36 (s, 1H), 7. 58 (s, 1H), 7. 60 (s, 1H), 7. 73 (s, 1H), 7. 99 (s, 1H), 8. 08 (dd, J=9. 3Hz, 15. 1Hz, 1H), 8. 41 (d, J=5. 1Hz, 1H)

<u>実施例178:N'-(2-クロロ-4-{ $[6-メトキシ-7-(2-モルホリノエトキシ)-4-キナゾリニル]オキシ}フェニル)-N, N-ジメチルウレア</u></u>$

下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を72mg、収率72%で得た。

'H-NMR (CDCl₃, 400MHz): δ 2. 58-2. 66 (m, 4H), 2. 90-2. 98 (m, 2H), 3. 08 (s, 6H), 3. 70-3. 79 (m, 4H), 4. 02 (s, 3H), 4. 29-4. 37 (m, 2H), 6. 97 (s, 1H), 7. 15 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 24-7. 26 (m, 1H), 7. 29 (s, 1H), 7. 49 (s, 1H), 8. 36 (d, 1H), 1H, 1

質量分析値(ESI-MS, m/z):502 (M++1)

実施例 $179:N'-(2-DDD-4-\{[6-メトキシ-7-(4-モルホリノブトキシ)-4-キナゾリニル]オキシ}フェニル)-N, N-ジメチルウレア$

原料(N'-{2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キナゾリニル)オキシ]フェニル}-N, Nージメチルウレア、80mg),炭酸カリウム(138mg)、1,4ージプロモブタン(0.12ml)をN,Nージメチルホルムアミド(1ml)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、中間体(N'-(4-{[7-(4-ブロモブトキシ)-6-メトキシ-4-キナゾリニル]オキシ}-2-クロロフェニル)-N, Nージメチルウレア)を得た。中間体、炭酸カリウム(138mg)、モルホリン(0.043ml)をN,Nージメチルホルムアミド(1ml)に溶解し室温で一晩攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を47mg、収率44%で得た。

 $^{1}H-NMR$ (CDCl₃, 400MHz): δ 1. 67-1. 77 (m, 2H), 1. 93-2. 03 (m, 2H), 2. 39-2. 50 (m, 4H), 3. 67 (s, 6H), 3. 64-3. 75 (m, 4H), 4. 02 (s, 3H), 4. 21 (t, J=6. 6Hz, 2H), 6. 97 (s, 1H), 7. 16 (dd, J=2. 7H)

z, 9. $3 \, \text{Hz}$, $1 \, \text{H}$), 7. 26 (s, $1 \, \text{H}$), 7. 28 (s, $1 \, \text{H}$), 7. 2 9 (d, J = 2. $7 \, \text{Hz}$, $1 \, \text{H}$), 7. 48 (s, $1 \, \text{H}$), 8. 36 (d, J = 9. $3 \, \text{Hz}$, $1 \, \text{H}$), 8. 59 (s, $1 \, \text{H}$)

実施例 $180:N'-(2-2-10-4-{[6-メトキシ-7-(4-ピリジルメトキシ)-4-キナゾリニル]オキシ}フェニル)-N, N-ジメチルウレア$

原料(N'-{2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キナゾリニル)オキシ]フェニル}-N、N-ジメチルウレア、50mg),炭酸カリウム(138mg)、4-クロロメチルピリジン塩酸塩(49mg)をN,N-ジメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を37mg、収率60%で得た。

'H-NMR (CDCl₃, 400MHz): $\delta3$. 07 (s, 6H), 4. 07 (s, 3H), 5. 32 (s, 2H), 6. 97 (s, 1H), 7. 15 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 26 (s, 1H), 7. 29 (d, J=2. 7Hz, 1H), 7. 41 (d, J=6. 1Hz, 1H), 7. 55 (s, 1H), 8. 37 (d, J=9. 0Hz, 1H), 8. 58 (s, 1H), 8. 63 (d, J=6. 1Hz, 1H)

質量分析値(ESI-MS, m/z):480 (M++1)

<u>実施例181:メチル 2- {[4-(3-クロロ-4-{[(ジメチルアミノ) カルボニル[アミノ} フェノキシ) -6-メトキシ-7-キナゾリニル[オキシ} アセタート</u>

- 160 -

により精製し、表題の化合物を37mg、収率60%で得た。

 $^{1}H-NMR$ (CDCl₃, 400MHz): δ 3. 07 (s, 6H), 3. 82 (s, 3H), 4. 06 (s, 3H), 4. 87 (s, 2H), 6. 97 (s, 1H), 7. 14 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 18 (s, 1H), 7. 29 (d, J=2. 7Hz, 1H), 7. 54 (s, 1H), 8. 36 (d, J=9. 0Hz, 1H), 8. 60 (s, 1H)

実施例 $182:N'-[2-クロロ-4-({6-メトキシ-7-[3-(4-メ チルピペラジノ) プロポキシ]-4-キナゾリニル} オキシ) フェニル]-<math>N$ 、N-ジメチルウレア

原料(N'ー $\{2-\rho \Box \Box -4-[(7-ヒドロキシ-6-メトキシ-4-キナゾリニル)オキシ]フェニル}-N, N-ジメチルウレア、400mg),炭酸カリウム(966mg)、1,3-ジブロモプロパン(0.51ml)をN,N-ジメチルホルムアミド(5 ml)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、中間体(N'ー(4ー<math>\{[7-(3-7)\Box +2)-6-3+1\}$ -2ークロロフェニル)-N, N-ジメチルウレア)を398mg、収率78%で得た。中間体(51mg)、炭酸カリウム(138mg)、1-3+1-2ークロロフェニル)の1、N-ジメチルウレア)を398mg、収率78%で得た。中間体(51mg)、炭酸カリウム(138mg)、1-3+1-2ーグラジン(0.055ml)をN,N-ジメチルホルムアミド(1ml)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、表題の化合物を46mg、収率85%で得た。

H-NMR (CDCI₃, 400MHz): $\delta2$. 06-2. 16 (m, 2H), 2. 29 (s, 3H), 2. 30-2. 60 (m, 10H), 3. 07 (s, 6H), 4. 02 (s, 3H), 4. 25 (t, J=6. 8Hz, 2H), 6. 96 (s, 1H), 7. 15 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 29 (d, J=2. 7Hz, 1H), 7. 30 (s, 1H), 7. 48 (s, 1H), 8. 36 (d, J=9. 0Hz, 1H), 8. 59 (s, 1H)

質量分析値(ESI-MS, m/z):529 (M++1)

実施例 $183:N'-\{2-クロロ-4-[(7-\{3-[(2-ヒドロキシエチ ル)(メチル) アミノ]プロポキシ\}-6-メトキシ-4-キナゾリニル) オキシ]フェニル<math>\}$ -N, N-ジメチルウレア

原料 $(N' - \{2- DDD-4-[(7- EFD + v-6- y) + v-4- +$ ·ナゾリニル)オキシ]フェニル}-N, N-ジメチルウレア、400mg) 炭酸カ リウム (966mg)、1,3-ジブロモプロパン (0.51<math>m1) をN,N-ジメチルホルムアミド(5ml)に溶解し室温で18時間攪拌した。反応混合物に水を加え、ク ロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウム で乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、中間体(N `-(4-{[7-(3-ブロモプロポキシ)-6-メトキシ-4-キナゾリニ || | ル| オキシ| - 2 - クロロフェニル| - N, N - ジメチルウレア| を398mg、収 率78%で得た。中間体(51mg)、炭酸カリウム(138mg)、2 - (メチルアミノ) エタノール(0.040ml)をN,N-ジメチルホルムアミド(1m1)に溶解し室温 で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/ 1) で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して 得られた残さをエーテルで洗浄し、表題の化合物を49mg、収率97%で得た。 $^{\mathsf{H}-\mathsf{NMR}}$ (CDCl₃, 400MHz): δ 2. 01-2. 11 (m, 2H), 2. 25 (s, 3H), 2.52 (t, J=5.1Hz, 2H), 2.61 (t, J=7. 1 Hz, 2 H), 3. 0 3 (s, 6 H), 3. 5 7 (t, J = 5. 1 Hz, 2H), 3. 98 (s, 3H), 4. 23 (t, J = 6.6 Hz, 2H), 6. 92 (s, 1H), 7. 10 (dd, J=2. 7Hz, 9. 3Hz, 1H), 7. 24 (d. J = 2.7 Hz, 1H), 7. 31 (s, 1H), 7. 44 (s, 1H), 8. 3 1 (d, J = 9. 0 Hz, 1 H), 8. 5 4 (s, 1 H) 質量分析値(ESI-MS,m/z): 504(M++1)

実施例 $184:N-(2-2-4-4-{[6-メトキシ-7-(3-ピペリジノプロポキシ)-4-キナゾリニル] オキシ} フェニル)-N'-メチルウレア$

 $N-\{2-D_{0}-4-\{(7-E_{0}+b-6-A_{0}+b-4-4+b-1)-A_{0}+b-1\}$ フェニルN - N

ノプロパノール (0.9g)、ジエチルアゾジカルボキシラート (1.9g) を添加した。2時間室温で攪拌後、トリフェニルホスフィン (2.8g)、ピペリジノプロパノール (0.6g)、ジエチルアゾジカルボキシラート (1.9g) を再び添加し、さらに10時間室温で攪拌した。減圧下溶媒を留去し、得られた残渣をクロロホルム/メタノール (20/1) で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を650mg、収率25%で得た。

'H-NMR (DMSO-d₆, 400MHz): δ 1. 37-1. 43 (m, 2H), 1. 43-1. 53 (m, 4H), 1. 96-2. 00 (m, 2H), 2. 29-2. 50 (m, 6H), 2. 68 (d, J=4. 6Hz, 3H), 3. 97 (s, 3H), 4. 23 (t, J=6. 3Hz, 2H), 6. 82-6. 85 (m, 1H), 7. 23 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 38 (s, 1H), 7. 47 (d, J=2. 7Hz, 1H), 7. 54 (s, 1H), 8. 07 (s, 1H), 8. 17 (d, J=9. 0Hz, 1H), 8. 55 (s, 1H) 質量分析値 (ESI-MS, m/z): 500 (M⁺+1)

<u>実施例185:N-(2-クロロ-4-{[6-メトキシ-7-(3-ピペリジノ</u> プロポキシ) -4-キナゾリニル] オキシ} フェニル) - N' -エチルウレア

'H-NMR (DMSO-d₆, 400MHz): δ 1. 08 (t, J=7.0Hz, 3H), 1. 38-1. 41 (m, 2H), 1. 47-1. 53 (m, 4H), 1. 95-2. 00 (m, 2H), 2. 31-2. 46 (m, 6H), 3. 10-3. 17 (m, 2H), 3. 97 (s, 3H), 4. 23 (t, J=6. 3Hz, 2H),

- 163 -

6. 96 (t, J=5. 6Hz, 1H), 7. 23 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 37 (s, 1H), 7. 47 (d, J=2. 7Hz, 1H), 7. 54 (s, 1H), 8. 02 (s, 1H), 8. 19 (d, J=9. 3Hz, 1H), 8. 55 (s, 1H)

質量分析値(ESI-MS,m/z): 514(M++1)

<u>実施例186:N-(2-クロロ-4-{[6-メトキシ-7-(4-ピリジルメトキシ)-4-キノリル]オキシ}フェニル)-N'-(2,4-ジフルオロフェニル)ウレア</u>

 $N-\{2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キノリル) オキシ] フェニル <math>N'-(2,4-i)$ フェニル) ウレア $(55\,mg)$, 炭酸カリウム $(62\,mg)$ 、 $4-(20\,mg)$ とリジン塩酸塩 $(22\,mg)$ を N 、 N-i メチルホルムアミド $(1\,m1)$ に溶解し $80\,math{\,\%}$ で 1 時間攪拌した。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、表題の化合物を $35\,mg$ 、収率 $55\,mag$ で 得た。

'H-NMR (DMSO, 400MHz): 3. 98 (s, 3H), 5. 41 (s, 2H), 6. 56 (d, J=5. 1Hz, 1H), 7. 04-7. 10 (m, 1H), 7. 25-7. 37 (m, 2H), 7. 47 (s, 1H), 7. 49-7. 52 (m, 4H), 7. 55 (s, 1H), 8. 08-8. 15 (m, 1H), 8. 24 (d, J=9. 0Hz, 1H), 8. 49 (d, J=5. 4Hz, 1H), 8. 60-8. 63 (m, 1H), 8. 81-8. 83 (m, 1H), 9. 30-9. 31 (m, 1H)

質量分析値(ESI-MS, m/z):563 (M++1)

実施例に記載の化合物の構造は下記に示されるとおりである。

R. 11		· \	Z	/	5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	///	>	>	<i>></i>	
R 10	н	Ħ	Ħ	Ħ	Ħ	Ħ	н	н	Ħ	Ħ	
R.º	н	H	ш	Ħ	н	н	ж	H	Ħ	н	
R®	ш	Н	五	Н	н	Н	H	Ξ	. #	Ħ	
R,	ш	斑	H	Н	Н	Н	耳	Ħ	H	Н	
R.	ſΞı	ᅜ	٠ [٢٠٠	ন	ί Ξ.,	[E.	নে	[z.	נציו	ت	
ጽ	Ħ	Ħ	I	Ħ	Ħ	Ħ	н	Н	Ħ	Ħ	
R	н	Ħ	H	н	н	Ħ	Н	H	H	н	
R ³	CH3O	CH,0	CH3O	CH ₃ O	CH30	CH30	CH,0	CH3O	CH3O	СН,О	
R 2	CH3O	CH30	CH3O	CH30	CH30	CH ₃ O	CH30	СН3О	CH3O	CH3O	
-	н	н	н	н	Ħ	ж	Ħ	H	H	H	
2	CH	СН	CH	СН	CH	СН	СН	СН	СН	СН	
×	СН	СН	СН	CH	СН	CH	CH	СН	СН	СН	
		2	က	4	2	9	~ .	∞	6	10	

*

	\rightarrow	\	>	£	N N N N	z S	z) [‡]	ž Ž
R 10	Ή	Ξ,	н	Ή	Ξ	Ħ	ĸ	I	H	æ
8	Ή	н	Ξ	Ŧ	Ħ	Ξ	I	Ή	Ħ	Ξ
R. ⁸	Н	H	五	Ħ	H	H	H	H	H	H
R7	エ	Η	五	н	H	Ξ.	. #	五	Η.	H
፠	(±,	ᄕᅩ	C 1	C 1	C 1	C 1	- -	7	C 1	
R5	エ	Ħ	Ħ	Ħ	Ħ	Ξ.	I	н	н	Ħ
₩ •	Ħ	Ħ	H	Ħ	Ξ	H	x	Ħ	H	I
<u>د</u> ه	снзо	CH30	СН,0	CH30	CH30	CH30	СН3О	СНЭО	CH3O	CH,O
R2	CH30	CH30	CH,0	0 ° Н Э	CH30	снэо	СНЭ	CH30	CH30	CH,0
z.	ж	Ħ	H	I	H	I	Ħ	H	H	H
.7	СН	СН	СН	СН	СН	СН	СН	СН	CH	СН
×	CH	СН	СН	CH	CHO	СН	CH	CH	110	СН
	=	12	13	14	15	16	11	18	19	20

			•								
R 11	g z	Soch Occh		u-\	g	O, CH3) z	i Ö	Z Š	\$ 0-	
R 10	H	H	Ħ	н	н	Ξ	Ħ.	Ξ	Ĭ	H	
R 9	x	Ξ	x	Ή	H	н	Ħ	Ξ	Ж	H	
R.	ж	Ħ	Н	x	, m	H	H	Н	н	Ξ	
R,	H	н	Η	H	н	H	H	H	H	н	
å	C 1	C 1	c 1	СН3	снэ	CH3	CH3	снэ	CH,	CH3	
R 5	I	×	н	снз	CH3	СН3	СН,	СН3	CH3	CH3	•
₩	Ξ	π	I	×	H	H	H	I	H	H	
R ₃	СН3О	СН3О	снэо	сно	СНЭ	CH,0	CH30	CH30	CH30	СН,0	
R ²	СН3О	СН3О	CH,0	Of Ho	CH30	CH30	0 ° Н Э	CH30	CH,0	CH30	
R.	x	H	Ξ	H	H	H	E	H	н	E	
7 .	СН	СН	СН	СН	СН	СН	СН	CH	СН	СН	
×	СН	СН	СН	СН	СН	СН	СН	СН	СН	СН	
	21	22	23	24	25	92	12	28	59	30	

R 1.1	₫- \	₫ ~	z	z Š	N N		5	\	ğ	Ď-√-	<u> </u>
R 10	Н	Ξ	H	Ħ	H	Ξ	H	Ħ	ï	H	
R3	Ħ	Ħ	Ξ	н	五	I	Ħ	Ħ	I	I	
R	ж	I	Ħ	×	н	Ħ	Ħ	н	H .	Ħ	
R,	I	Ħ	н	Ħ	Œ	Ħ	снэ	CH3	СН3	CH3	
Ré	снз	снз	СН3	СН3	СН3	CH3	CH3	СН3	CH,	СН3	
Rs	снз	снз	CH3	СН,	CH3	CH3	ĸ	н	Ħ	E	
₽ •	H	H	=	H	н	æ	H	H	н	н	
R 3	CH30	C.H.30	CH30	CH,0	СН3О	CH,0	СН,0	СНЭО	CH;O	СНЭО	
R²	снэ	CH,0	CH30	CH,O	сн,о	СНЭО	CH30	CH30	CH,0	CH,0	
ž	π	H	Ξ	H	Ξ	Ħ	н	H	H	×	
2	СН	СН	СН	СН	СН	CH	СН	СЖ	СН	СН	
×	СН	СН	СН	СН	СН	СН	СН	СН	СН	СН	
	31	32	33	34	35	36	37	88	39	40	

고 : -		ğ	ç Ş	Z, M	O N	o- 5	o- ễ	u	u_(, u —
R 10	· ·	<u> </u>	<i>)=</i> ~	<i>)</i> =⁄) - ~	/	<i>)</i> =			
						-t-a	,14	H	Ħ	H
R.	ж	Η	· I	Ξ	I	Ή	æ	н	Ξ	I
R.		н	H	Ħ	I	x	H	I	Ħ	H
R,	СН3	СН3	СН3	CH3	CH,	CH3	Ħ	Ŧ		Ξ
R.	CH,	CH3	СН3	CH3	CH3	СН3	N 02	NON	н	ह्न
R.	I	E	Ξ	H	I	I	Ħ	H	- 2	.
8	Ħ	Ħ	Ξ	π	=	Ξ	Ξ	H	Ħ	Ħ
R 3	снэо	снэо	СН3О	СН,О	снэо	CH3O	СН,О	CH30	CH30	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
R 2	снэо	CH,0	CH3O	CH,0	CH,0	CH3O	СН3О	СН,0	CH3O	сн, о С н
<u>م</u>	×	Ξ	Ξ	ж	H	Ŧ	H	I	H	Ξ
2	СН	СН	СН	СН	H O	СН	СН	CII	CII	СН
×	СН	СН	СН	СН	СН	СН	CH	СН	CH	СН
	41	42	43	44	45	46	47	48	40	20

R 1.1	u-		,o-\	u —	f _O	») o-{)) <u>) -</u>		>
R 10	н	H	#	Ξ	Н	H	Ξ	I .	Ξ	Ξ	
R.	Ħ	H	H	н	H	H	Ι	H	Ή	H	
R.ª	H	н	Ħ	Ŧ	Ξ	H	H	H	ж	H	
R,	Ξ	CH3	CH3	H	Н	ж	H	CH.	CH3	I	
R.°	- - -	снэ	CH3	C 1	C 1	CH3	СН3	СН3	CH3	снз	
R 5	Ξ	Ħ.	I	Ħ	Ħ	СН3	C H 3	Ħ	I	CH3	
ж •	ĸ	I	I	Ħ	I	Ξ	Ξ	H	Ξ	×	
የ አ	\ _\ _\	\rangle z \rangle \ran	\ \ \ \ \ \ \ \ \	св30(сн2)20	св30(сн2)20	CH30(CH2)20	CA30(CU2)20	CII30(CII ₂) ₂ 0	CII30(CII2)20		
R²	СН3О	CH30	0 ° H)	CH3O	сно	СН,0	СН,О	сн,о	СН,0	O f H ɔ̂	
ž	Ξ	Ξ	I	Ξ	I	I	Œ	Ħ	=	Ξ	
2	СН	СН	СН	СН	СН	СН	СН	СН	СН	СН	
×	СН	СН	СН	СН	СН	СН	СН	СН	СН	CH	•
	51	52	53	54	55	99	57	28	59	09	

R.1	u-\	>	>	>	>	\{	>	\$	\$	T
R 10	ж	Н	H	Н	H	н	Ħ	н	Ħ	I
R,	Ħ	Ħ	H	Ξ	н	н	H	Н	н	н
R _s	Ħ	н	Ħ	Ħ	н	H	H	Н	Ξ	Ħ
R,	Ħ	н	I	ш	Ħ	Ħ	н	H	五	Н
R°	- -	C 1	H	H	Ħ	Ħ	н	H	Ħ	Ħ
R.§	н	Ħ	н	H	H	н	н	н	H	H
R-	Ξ	Н	正	Н	H	H	H	H	н	H
^د	CH,	CH30	CH3O	CH3O	СНЭО	CH3O	CH3O	CH30	CH30	CH3O
R ²	CH,	CH30	CH3O	CH30	CH3O	CH30	CH30	CH30	CH3O	CH,0
<u>-</u>	I	н	Ξ	Ħ	н	H	H	Ξ	н	н
9 .	# O	СН	CH	СН	СН	СН	CH	СН	СН	СН
<	z	z	z	z	Ż	z	z	z	z	z
	61	29	63	64	65	99	19	89	69	70

R !!				f	SP CH		>	>	_	\$
μ.	$\overline{}$	<i>>=/</i>		-)			>	>	>	· >
R 10	Ξ	Н	н	I	Ħ	н	H	E	Ħ	н
R3	H	H	н	Ħ	ж	н	H	Н	Ħ	н
R8	Œ	н	Ħ	н	н	H	Ħ	王	H	Ħ
R,	Ξ	н	н	Ħ	Н	H	H	Ħ	н	Ħ
R.	Ξ	н	.	Ħ	н	C 1	0	c	c 1	CI
R ⁵	Н	H	Ħ	Ħ	Ħ	н	н	Н	I	Ħ
÷	H	I	Ħ	н	H	н	エ	н	Н	H
R3	CH3O	СНэО	CH3O	CH30	CH,0	CH,0	CH3O	CH3O	CH3O	CH30
R2	CH,0	CH;0	CH30	CH30	CH3O	CH3O	CH3O	CH,0	CH3O	CH30
<u>~</u>	Ŧ	ш	Ξ	н	н	н	H	I	Ξ	H
2	СН	СН	СН	СН	CH	СН	CH	СН	СН	СН
×	z	z	z	z	z	z	z	z	z	z
	11	72	73	74	75	92	11	78	79	80

R 11	//	m			o September 1) z	\$ >	>	>	
R 10	н	Ħ	H	H	Ξ	н	Н	.	н	
χ,	Ħ	#	E	H	Ξ	Н	Н	Н	н	
R8	н	н	Н	H	Ξ	Ħ	н	Н	田	
ጸ,	н	Н	H	Н	Ħ	Ħ	Н	Н	Н	
R.	C 1	C 1		C I	0	0.1	Ę	, <u>,</u>	נבו	
R _s	H	Ξ	Ξ	Ħ	Ħ	H	Ħ	н	н	
<u>ج</u>	Ξ	Ħ	H	Ħ	H	н	н	н	Ξ	
R ₃	CH30	CH3O	CH3O	CH3O	CH,30	CH30	CH3O	CH30	СН3О	
R ²	CH,0	СНЭО	CH3O	CH30	CH3O	CH30	СНЭО	CH30	СН,0	
<u>~</u>	Ξ	H	Ħ	H	H	H	H	Œ	Ħ	
2	СН	СН	CH	СН	СН	СН	СН	СН	СН	
×	z	z	z	z	z	z	z	z	z	
	81	85	8 8	85	98	87	88	83	06	

ਮ ਮ	\$	\$	m	u	f	o-5-	> >	}	ш	
R 10	Ξ	H	H	Ħ	. E	Ħ	Н	н	H	Ξ
R3	Ξ	I	#	н	Ħ	Ħ	н	н	н	H
Rs	Ħ	H	H	н	, H	Ħ	H	н	Ħ	Н
R7	H	Ξ	I	н	Ή	н	H	Н	н	H
ጽ	<u>(</u> ,	Ţ'n	(- -	ĹŦ.	[T.	(.	Ħ	Ħ	Ħ	H
R5 .	Н	Ħ	Ħ	ш		Ħ	CH3	CH3	CH3	СН3
ᅜ	н	ж	Ħ	Ħ	н	Н	H	H	H	Н
<u>ب</u>	CH,0	CH30	CH3O	CH3O	CH3O	CH30	CH3O	CH3O	снэо	СНЭО
요 2	CH,0	CH3O	СН3О	CH,	CH30	СНЭО	СН3О	CH3O	CH,0	CH3O
۳. آ	≖	Ħ	Ħ	Ħ	Ħ	н	н	Ħ	H	н
2	С Н .	СН	CH	СН	СН	СН	СН	CH	СН	СН
×	z	z	Z	z	z	z	z	z Z	z	z
	91	26	93	94	95	96	97	98	66	100

1

	က္								•	
R 11	Po-C	>	>	m 🔪		g S	>	>	>	>
R 10	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	I	Ħ	н
R9	Ħ	ж	Ή	H	. ж	ш	Ħ	#	CB ₂ OCB ₃	CII ₅ C(=0)-
R³	н	Ξ	H	ж	н	H	Н	н	= .	Н
R 7	H	Ħ	H	H	Ħ	Ħ	ж	н	н	Н
R.	Ħ	CH3	CH3	СН3	СН3	CH3	NO2	NO N	C I	0
ጽ	СН3	н	Ħ	н	Н	H	Ħ	н	Ή	Ħ
8	н	H	Ξ	H	H	Ħ	Ħ	Ħ	ж	н
R ³	CH,0	снэ	СН3О	CH30	CH30	CH3O	CH30	СНЭО	CH30	CH3O
R ²	CH30	CH30	CH30	CH30	CH30	СН3О	CH30	CH3O	СН3О	CH30
~ ~	Ħ	H	Ħ	Ħ	н	Ħ	I	H	H	H
2	СН	СН	СН	СН	СН	СН	СН	CH	CH	СН
×	z	z	z	z	z	z	z	z	z	Z,
	101	102	103	104	105	106	107	108	109	110

R 11	>	>	5	>		; >	CH,	CH3	>	>
R 10	CH3	CH3CH2	CH3(CH2)2	CH3	CH3	CH3CH2	н	СНЗ	н	н
ж •	エ	H	Ħ	H	н	Ħ	H	Ħ	Н	H
R®	H	Ξ	I	H	н	н	Н	I	H	Ħ
R,	æ	H	Ħ	Œ	н	Ħ	H	. ##	H	щ
R.	C I	C	. To	C I	CI	C I	C I	C 1	- - -	0 1
ж 2	Ξ	五	H	н	н	Н	Ħ	H	H	Ħ
2	H	H	Ħ	н	Н	H	H	H	н	H
<u>ج</u>	CH,0	CH3O	CH ₃ O	CH3O	CH30	CH3O	CH3O	CH3O		
ਲ •	CH3O	CH30	СН3О	СНЭО	CH3O	CH3O	CH3O	CH30	CH30	CH,0
<u>.</u>	I	H	H	H	Ħ	II	Ħ	Ξ	Ħ.	ж
2	СН	СН	СН	CH	СН	СН	СН	CH	CH	Ċ H
×	z	z .	z	z	z	z	Z	z	z	z
	111	112	113	114	115	116	117	118	119	120

R 1.1	>	>	>	>	>	\rangle	\rangle	>	>	>
R 10	н	н	н	Ħ	H	СН3СН2	Ħ	ш	æ	Ħ
요 2	Ħ	Н	ш	н	н	Ħ	H	ж	Ħ	н
R³	н	I	Ħ	Н	H	Ħ	Ħ	II	Ħ	Н
R7	Щ	Ħ	H	H	Ħ	H	H	Ħ	Ħ	Ħ
ж •	C 1	- -	- C	C 1	C 1	C 1	C 1	c I	C 1	C 1
R ⁵	н	H	Ħ	н	Ħ	ж	н	H	H	H
R4	н	H	ж	н 🗸	н О	Ŧ	H	ж	н	H
R 3	- VOH	,O	O -Z		Z	0		o \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	HO NO	
R 2	CH30	CH3O	CH30	CH30	CH30	CH30	CH3O	CH30 -	CH3O H	CH30 -
ጸ	н	н	H	н	H	Ħ	Ħ	エ	Ħ	Ħ
2	CH	СН	СН	СН	СН	СН	СН	СН	· CH	H)
×	z	z	z	z	z	z	z	z	z	z
	121	122	123	124	125	126	127	128	129	130

- 177 -

	(
R 1.1	` >	\rangle	> .	>	>	>	·	>	>	>
R 10	СН3СН2	CH3CH2	н	ш	н	Ξ	н	н	Ė	Н
R3	Ή	H	Ħ	Ħ	н	H	Ξ	H	H	H
R³	н	田	Ħ	Ħ	Ή	н	Ħ	H	Ħ	Ή
R,	出	н	Н	H	H	Ħ	Ħ	H	H	H
R.	C 1	0	0	10	- 0	C 1	C 1	C 1	C 1	C 1
R.	н	H	Ħ	H	Ħ	ш	н	田	H	H
R	н	H	н	H	Ħ·	ж	н	н	H	H
ጸ ³	O N N N N N N N N N N N N N N N N N N N		S	N. N. S.	0	о сн3 о	O. CH3O	CH3O	O CH3O \0	0°H3 ^o∕
R ²	CH30	CH;0	CH3O	CH3O	CH,0					_x _x Q
-	H	н	Ξ	H	H	H .	H	Ħ	Ħ	I
2	CH	CH	СН	CH	СН	СН	СН	СН	CH	СН
×	z	z	z	z	z	z	z.	z	z	z
	131	132	133	134	135	136	137	138	139	140

R 1.1	>	>	>	>	\ -	>	\	>	>	>
R 10	н	Ħ	Н	Н	H	Н	H	Ħ	Ħ	Н
R³	H	Н	Н	H	ш	Ħ	н	H	Н	H
R8	H	Ħ	н	Ħ	Ħ	Ħ	H	Н	H	Ħ
R. ⁷	H	Ħ.	Н	Ħ	Ħ	Щ	Ħ	н	Н	н
ጽ	C .	C I	C 1	C 1	C 1	C 1	C 1	0 1	C 1	CI
R 5	Ħ	н	Ħ	н	н	Ħ	ж	H	н	Н
ਲ •	Œ	Ħ	Ħ	Ħ	Ħ	н	Ħ	н	н	н
R 3				o' 	N. N		но > 0		\ ₀ \	HO NO OH
R ²	CH,0	CH30	CH30	CH3O	CH30	CH3O	CH30	CH30	CH3O	CH,0
<u>~</u>	Ξ	H	H	Н	H	H	н	ж	Ħ	Ħ
2	СН	СН	СН	СН	СН	CH	СН	СН	СН	СН
×	СН	СН	СН	CH	CH	CH	CH	СН	CH	СН
	141	142	143	144	145	146	147	148	149	150

R :	>	>	>	>	>	>	>	>	>	>
R 10	Н	Н	Ξ	ш	H	Ħ	Ħ	н	H	н
R	H	H	Ξ	Ħ	Ξ	Ħ	н	H	H	Ħ
R8	Ħ	н	H	н	Ħ	Ξ	I	H	н	Н
Α	Ħ	Н	Ħ	Н	H	н	Н	Ħ	I	ж
R°	C 1	C 1	C 1	C 1	- 2	-	10	C 1	C I	C 1
R ⁵	Ħ	Ξ	_ H	H	Н	H	Н	ж	Ħ	ш
. R³ R⁴	H	H 0	H O N-N	H	H O N OH	H \0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	HO N N ON H	H VO H	H_O_N_N-N	H O H
R ²	CH30	CH,0-	CH30	СНЭО	CH,0	CH30	СНЗО	CH30	CH3O	CH30
<u>~</u>	Ħ	H	Ξ	Ħ	Ħ	Ħ	Ħ	н	Н	H
2	СН	CH	СН	CH	СН	СН	СН	CH	СН	СН
×	СН	СН	СН	СН	СН	C.H	СН	CH	СН	СН
	151	152	153	154	155	156	157	158	159	160

R 11	>		\rangle	>	\rangle	>	r-~	CH3	CH3	CH3
R 10	Ħ	エ	Ħ	I	ж	Ħ	н	CH3	СН3	CH3
ж *	H.	н	H	I	Ħ	Ħ,	Ħ	H	Н	ж
K	H	#	Ħ	Ξ,	Ħ	H	н	н	H	Ħ
R.	I	Н	H	H	CH3	СН3	CH ₃	н	Ξ	Œ
ጸ•	CH30	CH3O	CH3O	снэо	CH3	CH3	CH3	C 1	CI	C 1
. 2	Ħ	Ħ	田	Ħ	H	Ħ	н	H	н	Ħ
X	出 .	I	Ħ.	Ħ	ш	Ħ	H	Ħ.	H	Н
R 3			o v	O					No.	
R ²	CH3O	CH30	OfH)	CH3O	CH30	CH,0	CH3O	CH3O	CH3O	CH3O
교	I	Ħ	H	Ξ	H	Ξ	Ħ	Ħ	H	H
2	CH	СН	СН	CH	СН	CH	CH	CH	CH	CH
×	z	z	CH	H O	CH	СН	СН	z	z	z
	171	172	173	174	175	176	177	178	179	180

R 1.1	CH3	CH3	CH3	СН3	>	u. —
R 10	CH3	CH3	CH3	Ħ	н	H
R.	н	#	H	I	Ξ	ж
R.	н	H	Ħ	H	н	н
R,	ж	ш	Н	H	H	H
R.	0.1	Ö	C 1	C 1		c 1
R s	# .	н	Ħ	H	H	н
R.	Ħ	Н	Ħ	H	H	H
ጸ ³			HO NO OH			0
R ²	CH30	CH30	СН3О	CH30	CH30	CH3O
ī.	Ħ	H	Ħ	Ħ	Ħ	H
2	CH.	СН	СН	СН	СН	СН
×	z	z	z	z	z	CH
	181	182	183	184	185	186

- 183 -

薬理試験例1:VEGF刺激による血管内皮細胞内のMAPKの活性化に対する 阻害能の測定

ヒト臍帯静脈血管内皮細胞(クロネティクス社より購入)は5%炭酸ガスイン キュペーター内においてEGM-2培地(クロネティクス社より購入)で50~ 70%コンフルエントとなるまで培養し、同培地で96ウェル平底プレートに各 ウェル1. 5×10'個で播種した。37℃で1晩培養した後、培地を0. 5% ウシ胎仔血清を含むEBM-2培地(クロネティクス社より購入)に交換し24 時間培養した。ジメチルスルホキシドに溶解させた被験物質を各ウェルに添加し て37℃で更に1時間培養した。ヒト組み換え型血管内皮増殖因子(以下、VE GFと略す)を最終濃度が50ng/mlとなるように添加し、37で8分間、 細胞を刺激した。培地を除去し細胞をリン酸緩衝生理食塩水 (pH7.4) で洗 浄した後、可溶化緩衝液(1%TritonX100、2mMオルトバナジル酸 ナトリウム、1mMエチレンジアミン4酢酸2ナトリウムを含むトリス緩衝生理 食塩水(pH7.4))を10μ1添加した。4℃で1時間振蕩して細胞を可溶化 し、その溶液に1%ラウリル硫酸ナトリウムを含むトリス緩衝生理食塩水を等量 添加しよく混合した。この溶液2μ1をPVDFフィルターにドットブロットす ることで吸着させ、このフィルターについて抗チロシンリン酸化MAPK抗体(第 一化学薬品株式会社より購入)を用いたイムノブロッティングを行った。

リン酸化されたMAPK量をデンシトメーターで定量し、被験物質非存在下でのVEGF添加によるリン酸化MAPK量を100%、被験物質およびVEGF非存在下でのリン酸化MAPK量を0%として、被験物質存在下でのリン酸化MAPK率によりMAPKの活性化を50%阻害するのに必要な被験物質の濃度 (IC_{50})を算出した。

結果は表1に示されるとおりであった。

表 1

T - A - 12	-,				
化合物	IC _{so} (nM)	化合物	IC _{so} (nM)	化合物	I C _{so} (nM)
	1. 8	45	2. 0	85	0.7
4	2. 1	46	4. 3	86	0. 6
5	2. 9	47	4. 0	87	58. 0
7	5. 2	48	0. 5	89	45. 0
8	11.0	49	4. 3	90	42. 0
9	5. 1	50	0. 5	92	46. 0
10	7. 8	52	4. 4	93	14. 0
11	15. 0	53	5. 9	94	1. 8
13	2. 2	54	0. 5	95	2. 7
14	0. 7	55	2. 8	96	(1
16	2. 9	56	5. l	97	518.0
17	11.0	57	6. 5	98	450. 0
18	0. 6	58	5. 1	99	8. 8
19	0. 6	59	5. 8	100	5. 2
20	8. 5	62	16.0	102	150. 0
21	3. 4	63	70. 0	103	53. 0
22	0. 4	64	42. 0	104	5. 3
23	5. 4	65	36. 0	105	2. 3
24	0. 6	66	21.0	106	<1
25 -	3. 9	67	345. 0	107	10. 2
26	5. 3	68	45. 0		
28	4. 0	69	67. 0		
29	4. 4	70	6. 8		
30	1. 7	71	750. 0		
31	2. 5	72	3. 9		
32	7. 3	73	<2		
33	3. 5	74	6. 0		
34	4. 2	75	1. 2		
35	3. 7	76	8. 0		
36	3. 3	77	71. 0		
37	2. 3	78	4. 1		
40	12.0	79	30. 0		
41	4. 9	80	13. 0		
42	5. 9	82	3. 8		
43	3. 8	83	>1000		

- 185 -

薬理試験例2:ELISA法を用いるKDRリン酸化阻害活性の測定

ヒトKDRをトランスフェクションしたNIH3T3細胞(Sawano A et al., Cel l Growth & Differentation, 7, 213-221(1996), "Flt-1 but not KDR/Flk-1 tyrosine kinase is a receptor for placenta growth factor, which is related to vascular encothelial growt h factor")を 5 %炭酸ガスインキュベータ内において 1 0 %ウシ胎仔血清を含む D MEM培地(GIBCO BRL社より購入)で50~70%コンフルエントと なるまで培養した。収獲した細胞を同培地でコラーゲンタイプ1コート96ウェ ル平底プレートに1.5x10⁴個/wellとなるように播種し37℃で1晩培 養した。0. 1%ウシ胎仔血清を含むDMEM培地に交換し、ジメチルスルホキ シドに溶解させた被験物質を各ウェルに添加して37℃で更に1時間培養した。 ヒト組換え型血管内皮増殖因子(以下、VEGFと略す)を最終濃度が100n g/mlとなるように添加し、37℃で2分間細胞を刺激した。培地を除去し細 胞をリン酸緩衝生理食塩水(pH7.4)で洗浄後、可溶化緩衝液(20mM H EPES (pH7. 4), 150mM NaCl, 0. 2%TritonX-10 0、10%Glycerol、5mM オルトバナジル酸ナトリウム、5mMエチ レンジアミン4酢酸2ナトリウム、2mM Na₄P₂O₇)を50μ1添加し、4 ℃で2時間振蕩して細胞抽出液を調製した。

ELISA用マイクロプレート(Maxisorp; NUNC社より購入)に 5μ g/mlの抗phospho-tyrosine抗体(PY20; Transduction Laboratories社より購入)を含むリン酸緩衝生理食塩水(pH7.4)を 50μ l加えて、4℃で1晩静置し固相化を行った。プレートを洗浄した後、ブロッキング液を 300μ l添加し室温で2時間静置してブロッキングを行った。洗浄後、上記の細胞抽出液を全量移し4℃で1晩静置した。洗浄後、抗KDR抗体(サンタクルーズ社より購入)を室温1時間反応させ、さらに洗浄後、ペルオキシダーゼ標識した抗ウサギIg抗体(アマシャム社より購入)を室温1時間反応させた。洗浄後、ペルオキシダーゼ用発色基質(住友ペークライト社より購入)を添加して反応を開始した。適当な発色が得られた後、反応停止液を添加し反応を止めてマイクロプレートリーダーにより450nmの吸光度を測定した。薬物を添加せずVEGFを添加した場合の吸光度を10

0%のKDRリン酸化活性、薬物及びVEGFを添加していない場合の吸光度を 0%のKDRリン酸化活性として各ウェルのKDRリン酸化活性を求めた。被験 物質の濃度を数段階に変えて、それぞれの場合におけるKDRのリン酸化に対す る阻害率を求め、被験物質のKDRリン酸化50%阻害濃度(IC50)を算出し た。

結果は表2に示される通りであった。

表 2

化合物	IC50 (nM)	化合物	1C50 (nM) 化合物	[C50 (nM)
62	11.0	103	78. 0	146	1. 0
63	150.0	104	3. 9	1 147	1.0
64	150.0	105	2. 0	148	15. 0
65	27. 0	106	1. 5	149	1.6
66	15. 0	107	11.0	150	1 1.8
67	63. 0	108	5. 0	151	0. 5
68	24. 0	110	>1000	152	0.8
69	64. 0	111	>1000	153	1.5
70	32. 0	112	>1000	154	1.5
71	350. 0	113	>1000	155	2. 1
72	3. 5	114	>1000	156	0.8
73	1. 0	115	>1000	157	0.4
74	11.0	116	>1000	158	1.6
75	1. 4	117	24. 0	159	1.9
76	3. 5	118	>1000	160	0. 9
77	6. 0	119	3. 6	161	3. 9
78	3. 4	120	3. 9	162	1.0
79	18.0	121	12. 5	163	1.4
80	2. 7	122	5. 8	164	0. 9
81	4. 1	123	8. 9	165	0. 6
82	8. 4	124	1. 9	166	2. 2
83	840. 0	125	2. 6	167	2. I
85	0. 5	126	>1000	168	1.0
86	1. 5	127	1.1	169	3. 7
87	110.0	131	>1000	170	l. L
88	61.0	l 32	>1000	175	4. 7
89	24. 0	133	8. 3	176	3. 7
90	57. 0	134	5. 0	177	2. 3
92	63. 0	135	1.0	178	>1000
93	37. 0	136	160.0	179	>1000
94	2. 3	137	24. 0	180	>1000
95	3.8	138	40. 0	181	>1000
96	0.4	139	15.0	182	>1000
97	490.0	140	36. 0	183	>1000
98	330. 0	141	14.0	184	0. 2
99	25. 0	142	2. 6	185	0. 5
100	13.0	143	3. 5	186	6. 3
101	3. 0	144	1.6		_
102	105.0	145	0.8		

薬理試験例3:核形態試験

A375ヒトメラノーマ細胞(財団法人癌研究会より入手) 2×10 個をカルチャースライド(Falcon製)上に播種し、37で培養した。5時間後、被験物質を 10μ M、 1μ Mとなるように添加し、さらに48時間培養を継続した。細胞を固定後、リボヌクレアーゼ(200μ g/m1)を含む 50μ g/m 1 ヨウ化プロピジウム溶液を加え核を染色した。染色された核を蛍光顕微鏡で観察し、核形態の異常の有無を解析した。被験物質の核形態変化は 1μ Mで形態変化した細胞が認められる場合には(2+)、 10μ Mで形態変化した細胞が認められない場合には(2+)とした。また、 10μ Mで形態変化した細胞が認められない場合には(2+)とした。

結果は表3に示されるとおりであった。

表3

	化合物番号	形態変化	化合物番号	形態変化
	13	(-)	37	(-)
-	14	(-)	38	(-)
	15	(-) ·	39	(-)
1	16	·(-)	40	(-)
	17	(-)	41	(-)
1	18	(-)	42	(-)
	20	(-)	43	(-)
	21	(-)	44	(-)
	22	(-)	45	(-)
ł	24	(-)	46	(-)
	25	(-)	47	(-)
1	26	(-)	48	· (-)
ĺ	28	(-)	49	(-)
	29	(-)	52	(-)
Ī	30	(-)	53	(-)
	31	(-)	55	(-)
	32	(-)	58	(-)
	33	(-)	59	(-)
	34	(-)	60	(-)
	35	(-)	61 -	(-)
L	36	(-)	62	(-)

<u>薬理試験例4:ヒトグリオーマ細胞(GL07)に対する抗腫</u>瘍効果

ヒトグリオーマ細胞GL07(実験動物中央研究所から入手)をヌードマウスに移植し、腫瘍体積が $100\,\mathrm{mm}$ ³程度になった時点で各群の腫瘍体積の平均が均一になるように1群4匹ずつに群分けをし、 $20\,\mathrm{mg}/\mathrm{kg}$ となるように被験

化合物を、対照群には媒体を9日間毎日、1日1回経口投与あるいは腹腔内投与した。投与開始日の腫瘍体積を1としたときの対照群のx日目の腫瘍体積をCx、被験化合物投与群の腫瘍体積をTxとし、腫瘍増殖抑制率(TGIR)=(1-Tx/Cx)×100を求めた。

本発明の化合物群の代表例に関して、腫瘍増殖抑制率を表4に示す。

表4

寒施例 投与部 TGIR 寒施例 投与部 TGIR 寒施例 投与部 TGIR (%) 公本部分 TGIR (%) 22 14 経口 54 24 14.7 経口 59 104 経口 22 149 経口 57 11 20 150 経口 47 13 腹腔内 81 107 経口 49 151 経口 44 16 腹腔内 85 110 経口 71 152 経口 44 18 経口 57 111 経口 78 154 経口 34 18 経口 57 111 経口 78 154 経口 22 25 腹腔内 68	4X X	· · · · · · · · · · · · · · · · · · ·	,		· · · · · · · · · · · · · · · · · · ·				
## 経口 61 102 経口 24 147 経口 34 5 経口 59 103 経口 23 148 経口 54 9 腹腔内 59 104 経口 22 149 経口 47 13 腹腔内 52 105 経口 20 150 経口 22 14 度位 47 13 腹腔内 81 107 経口 49 151 経口 44 16 腹腔内 85 110 経口 26 153 経口 34 44 16 腹腔内 85 110 経口 26 153 経口 34 44 24 経口 57 111 経口 78 154 経口 34 24 経口 63 112 経口 81 155 経口 24 25 腹腔内 68 113 経口 61 156 経口 24 28 腹腔内 64 115 経口 60 157 経口 24 28 腹腔内 64 115 経口 74 158 経口 24 29 経口 50 119 経口 74 158 経口 39 37 腹腔内 70 116 経口 83 159 経口 43 39 37 腹腔内 90 119 経口 40 160 経口 43 35 36 46 48 48 48 48 48 48 4		1	1	実 施 例	1	TGIR	実 施 例	投与部	TGIR
5 経口 59 103 経口 23 148 経口 54 9 腹腔内 59 104 経口 22 149 経口 47 13 腹腔内 52 105 経口 20 150 経口 47 14 腹腔内 81 107 経口 49 151 経口 44 16 腹腔内 85 110 経口 26 153 経口 44 17 腹腔内 85 110 経口 26 153 経口 53 18 経口 57 111 経口 78 154 経口 34 24 経口 57 111 経口 78 154 経口 29 25 腹腔内 68 113 経口 61 155 経口 29 25 腹腔内 68 113 経口 60 157 経口 29 25 腹腔内 84 114 経口 60 157 経口 24 29 経口 64 115 経口 74 158 経口 39 37 腹腔内 70 116 経口 83 159 経口 40 48 腹腔内 90 119 経口 40 160 経口 43 50 経口 59 120 経口 30 161 経口 39 51 経口 65 121 経口 21 163 経口 52 62 経口 78 123 経口 21 163 経口 52 64 経口 37 124 経口 27 165 経口 55 66 経口 26 125 経口 30 166 経口 55 67 経口 26 125 経口 30 166 経口 57 67 経口 26 125 経口 30 166 経口 57 68 経口 26 125 経口 30 166 経口 57 69 経口 26 128 経口 27 165 経口 44 69 経口 26 128 経口 32 171 経口 28 68 経口 26 128 経口 27 165 経口 42 69 経口 26 128 経口 32 171 経口 28 68 経口 26 138 経口 31 172 経口 42 77 経口 28 131 経口 32 171 経口 13 74 経口 28 131 経口 31 172 経口 42 77 経口 26 132 経口 20 174 経口 13 74 経口 28 131 経口 20 174 経口 21 77 経口 26 132 経口 20 174 経口 21 79 経口 28 134 経口 29 175 経口 33 89 経口 29 141 経口 28 182 経口 31 74 経口 26 138 経口 20 174 経口 33 89 経口 29 141 経口 28 182 経口 31 79 経口 28 134 経口 21 181 経口 22 82 経口 29 141 経口 28 182 経口 31 99 経口 33 144 経口 56 185 経口 35 100 経口 36 145 経口 57 186 経口 47			 	番号		(%)	番号	位	(%)
9 腹腔内 59 104 経口 22 149 経口 47 13 腹腔内 52 105 経口 20 150 経口 22 14 腹腔内 81 107 経口 49 151 経口 44 16 腹腔内 85 110 経口 71 152 経口 44 17 腹腔内 85 110 経口 26 153 経口 53 18 経口 57 111 経口 78 154 経口 34 24 経口 63 112 経口 81 155 経口 29 25 腹腔内 84 114 経口 60 157 経口 44 28 腹腔内 84 114 経口 60 157 経口 44 29 経口 64 115 経口 74 158 経口 39 37 腹腔内 70 116 経口 83 159 経口 40 48 腹腔内 90 119 経口 40 160 経口 43 50 経口 59 120 経口 30 161 経口 43 50 経口 59 120 経口 30 161 経口 39 51 経口 59 122 経口 21 163 経口 52 62 経口 78 123 経口 21 163 経口 52 64 経口 26 125 経口 31 164 経口 55 64 経口 26 125 経口 30 166 経口 52 67 経口 30 126 経口 30 166 経口 27 68 経口 26 125 経口 30 166 経口 27 67 経口 30 126 経口 30 166 経口 27 68 経口 26 125 経口 30 166 経口 27 67 経口 30 126 経口 27 165 経口 28 68 経口 26 125 経口 30 166 経口 27 69 経口 31 32 経口 21 169 経口 44 69 経口 26 128 経口 21 169 経口 28 69 経口 26 138 経口 21 169 経口 13 74 経口 26 132 経口 25 170 経口 64 73 経口 26 132 経口 21 169 経口 22 78 経口 26 132 経口 21 179 経口 13 74 経口 28 131 経口 20 174 経口 19 79 経口 28 134 経口 29 175 経口 17 80 経口 26 138 経口 21 179 経口 33 82 経口 27 136 経口 21 179 経口 33 83 経口 31 137 経口 20 178 経口 22 84 経口 29 141 経口 28 182 経口 31 85 経口 40 139 経口 21 181 経口 22 94 経口 29 141 経口 28 182 経口 31 95 経口 38 143 経口 27 180 経口 35 86 経口 40 139 経口 27 180 経口 48 99 経口 33 144 経口 56 185 経口 37 90 経口 38 144 経口						24	147	経口	34
13 腹腔内 52 105 経口 20 150 経口 22 14 腹腔内 81 107 経口 49 151 経口 44 44 16 腹腔内 77 109 経口 71 152 経口 44 17 腹腔内 85 110 経口 26 153 経口 53 84 53 18 経口 57 111 経口 78 154 経口 34 24 経口 63 112 経口 81 155 経口 29 25 腹腔内 68 113 経口 61 156 経口 24 29 経口 64 115 経口 60 157 経口 44 42 29 経口 64 115 経口 74 158 経口 39 37 腹腔内 70 116 経口 83 159 経口 40 48 腹腔内 90 119 経口 40 160 経口 43 39 37 腹腔内 70 116 経口 83 159 経口 40 48 腹腔内 90 119 経口 22 162 経口 40 43 55 44 40 55 44 40 55 44 40 55 40 40			 			23	148	経口	54
14 腹腔内 81 107 経口 49 151 経口 44 16 腹腔内 77 109 経口 71 152 経口 44 44 17 腹腔内 85 110 経口 78 154 経口 34 44 経口 53 経口 53 84 53 84 114 経口 78 155 経口 24 84 84 114 経口 81 155 経口 24 84 84 114 経口 60 157 経口 24 29 経口 64 115 経口 83 159 経口 39 37 腹腔内 70 116 経口 83 159 経口 43 37 腹腔内 70 116 経口 83 159 経口 43 37 84 14 84 14 84 16 16 84 15 84 14 84 16 16 84 16 83 159 84 14 48 16 16 84 16 83 159 84 14 84 16 16 84 16 83 159 84 16 43 85 16 16 16 16 16 16 16 1		+	 			22	149	経口	47
16 腹腔内 77 109 経口 71 152 経口 53 18 経口 57 111 経口 78 154 経口 34 経口 26 153 経口 34 24 経口 63 112 経口 81 155 経口 29 25 腹腔内 68 113 経口 61 156 経口 24 28 腹腔内 84 114 経口 60 157 経口 44 29 経口 64 115 経口 74 158 経口 39 37 腹腔内 70 116 経口 83 159 経口 40 48 腹腔内 90 119 経口 40 160 経口 43 43 48 44 44 45 20 61 156 45 40 40 40 40 40 40 40			52	105	経口	20	150	経口	22
17 腹腔内 85 110 経口 26 153 経口 53 18 経口 57 111 経口 78 154 経口 34 24 経口 63 112 経口 81 155 経口 29 25 腹腔内 68 113 経口 60 157 経口 24 29 経口 64 115 経口 83 159 経口 40 40 40 40 40 40 40 4			;	107		49	151	経口	44
18 経口 57 111 経口 78 154 経口 34 24 経口 63 112 経口 81 155 経口 29 25 腹腔内 68 113 経口 61 156 経口 24 28 腹腔内 84 114 経口 60 157 経口 44 29 経口 64 115 経口 74 158 経口 39 37 腹腔内 70 116 経口 83 159 経口 40 48 腹腔内 90 119 経口 40 160 経口 43 50 経口 59 120 経口 30 161 経口 39 51 経口 55 121 経口 22 162 経口 40 54 経口 59 122 経口 21 163 経口 55 62 経口 59 122 経口 21 163 経口 55 64 経口 59 122 経口 21 163 経口 55 64 経口 37 124 経口 27 165 経口 44 66 経口 26 125 経口 30 166 経口 27 67 経口 26 125 経口 30 166 経口 27 68 経口 26 125 経口 25 168 経口 27 68 経口 57 127 経口 25 168 経口 42 69 経口 26 128 経口 21 169 経口 42 69 経口 34 130 経口 32 171 経口 13 74 経口 26 128 経口 32 171 経口 13 74 経口 28 131 経口 31 172 経口 42 77 経口 26 132 経口 32 171 経口 13 74 経口 28 131 経口 31 172 経口 42 77 経口 26 132 経口 24 173 経口 21 79 経口 28 134 経口 29 175 経口 17 80 経口 21 133 経口 20 174 経口 19 79 経口 28 134 経口 29 175 経口 35 83 経口 31 137 経口 20 178 経口 28 84 84 21 179 経口 35 85 経口 27 136 経口 27 160 経口 35 85 経口 29 140 経口 21 181 経口 28 86 経口 29 141 経口 28 182 経口 31 98 経口 29 141 経口 28 182 経口 31 99 経口 33 144 経口 56 185 経口 59 100 経口 36 145 経口 57 166 経口 47	16		77	109	経口	71	152	経口	44
24 経口 63 112 経口 81 155 経口 29 25 腹腔内 68 113 経口 61 156 経口 24 28 腹腔内 84 114 経口 60 157 経口 44 44 29 経口 64 115 経口 74 158 経口 39 37 腹腔内 70 116 経口 83 159 経口 40 40 40 40 40 40 40 4	17	腹腔内	85	110	経口	26	153	経口	53
接腔内 68 113 経口 61 156 経口 24	18		57	111	経口	78	154	, 経口	34
接回内 84 114 経口 60 157 経口 44 29 経口 64 115 経口 74 158 経口 39 37 腹腔内 70 116 経口 83 159 経口 40 40 46 腹腔内 90 119 経口 40 160 経口 43 39 51 経口 59 120 経口 30 161 経口 39 51 経口 65 121 経口 22 162 経口 40 40 54 経口 59 122 経口 21 163 経口 55 64 経口 59 124 経口 27 165 経口 55 64 経口 37 124 経口 27 165 経口 27 66 経口 26 125 経口 30 166 経口 27 66 経口 30 126 経口 52 167 経口 28 68 経口 57 127 経口 25 168 経口 27 69 経口 26 128 経口 21 169 経口 25 168 経口 42 69 経口 26 128 経口 21 169 経口 55 56 64 420 27 28 42 69 経口 26 128 経口 21 169 経口 55 56 64 42 67 129 経口 25 170 経口 64 42 67 13 42 17 経口 57 42 17 経口 57 42 17 経口 13 42 17 42 17 42 17 42 17 42 17 42 17 42 17 42 17 42 17 42 17 42 17 42 17 42 17 42 17 42 17 42 17 42 17 42 17 42 17 18 42 17 18 42 17 18 42 17 18 42 17 18 42 17 18 42 17 18 42 17 18 42 17 18 42 17 18 42 18 42 18 42 18 42 18 42 18 42 18 42 18 42 18 42 18 42 18 42 18 42 18 42 18 42 18 42 18 42 18 42 18 42 18 43 44 44 44 44 44 44 4	24		63	112	経口	81	155	経口	29
29 経口 64 115 経口 74 158 経口 39 37 腹腔内 70 116 経口 83 159 経口 40 40 48 腹腔内 90 119 経口 40 160 経口 43 43 550 経口 59 120 経口 30 161 経口 39 51 経口 55 121 経口 22 162 経口 40 45 46 42 46 46 42 46 46 42 46 46	25		68	113	経口	61	156	経口	24
29 経口 64 115 経口 74 158 経口 39 37 腹腔内 70 116 経口 83 159 経口 40 40 48 腹腔内 90 119 経口 40 160 経口 43 43 50 経口 59 120 経口 30 161 経口 40 50 40 51 経口 65 121 経口 22 162 経口 40 54 経口 59 122 経口 21 163 経口 55 62 経口 78 123 経口 31 164 経口 55 64 経口 37 124 経口 27 165 経口 27 46 66 経口 26 125 経口 30 166 経口 27 67 経口 28 68 経口 57 127 経口 25 168 経口 27 68 経口 57 127 経口 25 168 経口 42 69 経口 26 128 経口 21 169 経口 55 71 経口 67 129 経口 25 170 経口 64 42 73 経口 28 131 経口 31 172 経口 13 74 経口 28 131 経口 31 172 経口 42 42 77 経口 26 132 経口 32 171 経口 13 74 経口 28 131 経口 31 172 経口 42 42 77 経口 26 132 経口 24 173 経口 21 18 経口 22 176 経口 22 28 134 経口 29 175 経口 17 80 経口 52 135 経口 23 177 経口 35 82 経口 27 136 経口 23 177 経口 35 83 経口 27 136 経口 23 177 経口 33 89 経口 27 136 経口 23 177 経口 33 89 経口 27 136 経口 21 179 経口 33 89 経口 29 140 経口 21 181 経口 21 21 24 24 24 24 25 25 25 25	28	腹腔内	84	114	経口	60	157	経口	44
159 240 159 240 159 240 159 240 159 150 240 159 120 240 300 161 240 390 30	29	経口	64	115	経口	74	158		39
50 経口 59 120 経口 30 161 経口 39 51 経口 65 121 経口 22 162 経口 40 54 経口 59 122 経口 21 163 経口 52 62 経口 78 123 経口 31 164 経口 55 64 経口 37 124 経口 27 165 経口 44 66 経口 26 125 経口 30 166 経口 27 67 経口 30 126 経口 52 167 経口 28 68 経口 57 127 経口 25 168 経口 42 69 経口 26 128 経口 21 169 経口 55 71 経口 26 128 経口 21 169 経口 55 71 経口 67 129 経口 25 170 経口 64 73 経口 34 130 経口 32 171 経口 64 73 経口 34 130 経口 32 171 経口 13 74 経口 28 131 経口 31 172 経口 42 77 経口 26 132 経口 24 173 経口 42 78 経口 28 131 経口 31 172 経口 42 78 経口 21 133 経口 20 174 経口 19 79 経口 28 134 経口 29 175 経口 17 80 経口 52 135 経口 62 176 経口 22 82 経口 27 136 経口 23 177 経口 35 83 経口 31 137 経口 20 178 経口 28 85 経口 26 138 経口 21 179 経口 33 89 経口 40 139 経口 27 180 経口 28 85 経口 29 140 経口 21 181 経口 21 94 経口 29 141 経口 28 182 経口 31 97 経口 29 141 経口 28 182 経口 31 97 経口 38 143 経口 56 185 経口 48 99 経口 33 144 経口 56 185 経口 48 99 経口 33 144 経口 56 185 経口 59 100 経口 36 145 経口 57 186 経口 47	37	腹腔内	70	116	経口	83	159		
51 経口 65 121 経口 22 162 経口 40 54 経口 59 122 経口 21 163 経口 52 62 経口 78 123 経口 31 164 経口 55 64 経口 37 124 経口 27 165 経口 44 66 経口 26 125 経口 30 166 経口 27 67 経口 30 126 経口 52 167 経口 28 68 経口 57 127 経口 25 168 経口 42 69 経口 26 128 経口 21 169 経口 55 71 経口 26 128 経口 21 169 経口 55 71 経口 34 130 経口 32 171 経口 64 73 経口 28 131 経口 31 172 経口 13 74 経口 28 131 経口 31 172 経口 21 78 経口 26 132 経口 24 <t< td=""><td>48</td><td>腹腔内</td><td>90</td><td>119</td><td>経口</td><td>40</td><td>160</td><td>経口</td><td>43</td></t<>	48	腹腔内	90	119	経口	40	160	経口	43
51 経口 65 121 経口 22 162 経口 59 54 経口 59 122 経口 21 163 経口 52 62 経口 78 123 経口 31 164 経口 55 64 経口 37 124 経口 27 165 経口 44 66 経口 26 125 経口 30 166 経口 27 67 経口 30 126 経口 52 167 経口 28 68 経口 57 127 経口 25 168 経口 42 69 経口 26 128 経口 21 169 経口 42 69 経口 26 128 経口 21 169 経口 42 71 経口 26 128 経口 25 170 経口 64 73 経口 34 130 経口 32 171 経口 13 74 経口 28 131 経口 31 172 経口 42 77 経口 26 132 経口 24 <t< td=""><td>50</td><td>経口</td><td>59</td><td>120</td><td>経口</td><td>30</td><td>161</td><td>経口</td><td>39</td></t<>	50	経口	59	120	経口	30	161	経口	39
123 経口 31 164 経口 55 64 経口 37 124 経口 27 165 経口 44 66 経口 26 125 経口 30 166 経口 27 67 経口 30 126 経口 52 167 経口 28 68 経口 57 127 経口 25 168 経口 42 69 経口 26 128 経口 21 169 経口 55 71 経口 67 129 経口 25 170 経口 64 73 経口 34 130 経口 32 171 経口 13 74 経口 28 131 経口 31 172 経口 42 77 経口 26 132 経口 24 173 経口 21 78 経口 26 132 経口 24 173 経口 21 78 経口 21 133 経口 20 174 経口 19 79 経口 28 134 経口 29 175 経口 17 80 経口 52 135 経口 62 176 経口 22 82 経口 27 136 経口 23 177 経口 35 83 経口 31 137 経口 20 178 経口 28 85 経口 26 138 経口 21 179 経口 33 89 経口 20 140 経口 21 181 経口 28 93 経口 29 140 経口 21 181 経口 21 94 経口 29 141 経口 28 182 経口 31 97 経口 48 142 経口 48 183 経口 22 98 経口 33 144 経口 56 185 経口 47 100 経口 36 145 経口 57 186 経口 47	51	経口	65	121	経口	22	162		
62 経口 78 123 経口 31 164 経口 55 64 経口 37 124 経口 27 165 経口 44 66 経口 26 125 経口 30 166 経口 27 67 経口 30 126 経口 52 167 経口 28 68 経口 57 127 経口 25 168 経口 42 69 経口 26 128 経口 21 169 経口 55 71 経口 67 129 経口 25 170 経口 64 73 経口 34 130 経口 32 171 経口 13 74 経口 28 131 経口 31 172 経口 42 77 経口 26 132 経口 24 173 経口 21 78 経口 21 133 経口 20 174 経口 19 <td< td=""><td>54</td><td>経口</td><td>59</td><td>122</td><td>経口</td><td>21</td><td>163</td><td>経口</td><td>52</td></td<>	54	経口	59	122	経口	21	163	経口	52
64 経口 37 124 経口 27 165 経口 44 66 経口 26 125 経口 30 166 経口 27 67 経口 30 126 経口 52 167 経口 28 68 経口 57 127 経口 25 168 経口 42 69 経口 26 128 経口 21 169 経口 55 71 経口 67 129 経口 25 170 経口 64 73 経口 67 129 経口 25 170 経口 64 73 経口 34 130 経口 32 171 経口 13 74 経口 28 131 経口 31 172 経口 42 77 経口 26 132 経口 24 173 経口 21 78 経口 26 133 経口 20 174 経口 19 79 経口 28 134 経口 29 175 経口 17 80 経口 27 136 経口 23 <td< td=""><td>62</td><td>経口</td><td>78</td><td>123</td><td>経口</td><td>31</td><td>164</td><td></td><td>55</td></td<>	62	経口	78	123	経口	31	164		55
66 経口 26 125 経口 30 166 経口 27 67 経口 30 126 経口 52 167 経口 28 68 経口 57 127 経口 25 168 経口 42 69 経口 26 128 経口 21 169 経口 55 71 経口 67 129 経口 25 170 経口 64 73 経口 34 130 経口 32 171 経口 13 74 経口 28 131 経口 31 172 経口 42 77 経口 26 132 経口 24 173 経口 21 78 経口 26 132 経口 20 174 経口 19 79 経口 28 134 経口 29 175 経口 17 80 経口 52 135 経口 62 176 経口 17 <td< td=""><td>64</td><td>経口</td><td>37</td><td>124</td><td>経口</td><td>27</td><td>165</td><td></td><td></td></td<>	64	経口	37	124	経口	27	165		
経口 30 126 経口 52 167 経口 28 68 経口 57 127 経口 25 168 経口 42 69 経口 26 128 経口 21 169 経口 55 71 経口 67 129 経口 25 170 経口 64 73 経口 34 130 経口 32 171 経口 13 74 経口 28 131 経口 31 172 経口 42 77 経口 26 132 経口 24 173 経口 21 78 経口 21 133 経口 20 174 経口 19 79 経口 28 134 経口 29 175 経口 17 80 経口 52 135 経口 29 175 経口 17 80 経口 52 135 経口 62 176 経口 22 82 経口 27 136 経口 23 177 経口 35 83 経口 27 136 経口 23 177 経口 35 83 経口 27 136 経口 20 178 経口 28 85 経口 26 138 経口 20 178 経口 28 85 経口 26 138 経口 21 179 経口 33 89 経口 40 139 経口 27 180 経口 45 93 経口 29 140 経口 21 181 経口 21 94 経口 29 141 経口 28 182 経口 31 97 経口 48 142 経口 48 183 経口 22 98 経口 38 143 経口 56 185 経口 47 100 経口 36 145 経口 57 186 経口 47	66	経口	26	125	経口	30	166		
69 経口 26 128 経口 21 169 経口 55 71 経口 67 129 経口 25 170 経口 64 73 経口 34 130 経口 32 171 経口 13 74 経口 28 131 経口 31 172 経口 42 77 経口 26 132 経口 24 173 経口 21 78 経口 21 133 経口 20 174 経口 19 79 経口 28 134 経口 29 175 経口 17 80 経口 52 135 経口 62 176 経口 22 82 経口 27 136 経口 23 177 経口 35 83 経口 31 137 経口 20 178 経口 28 85 経口 26 138 経口 21 179 経口 33 89 経口 29 140 経口 27 180 経口 45 93 経口 29 141 経口 28 <	67	経口	30	126	経口	52	167	経口	
69 経口 26 128 経口 21 169 経口 55 71 経口 67 129 経口 25 170 経口 64 73 経口 34 130 経口 32 171 経口 13 74 経口 28 131 経口 31 172 経口 42 77 経口 26 132 経口 24 173 経口 21 78 経口 21 133 経口 20 174 経口 19 79 経口 28 134 経口 29 175 経口 17 80 経口 52 135 経口 62 176 経口 22 82 経口 27 136 経口 23 177 経口 35 83 経口 31 137 経口 20 178 経口 28 85 経口 26 138 経口 21 179 経口 33 89 経口 40 139 経口 27 180 経口 45 93 経口 29 141 経口 28 <	68	経口	57	127	経口	25	168	経口	42
71 経口 67 129 経口 25 170 経口 64 64 73 経口 34 130 経口 32 171 経口 13 74 経口 28 131 経口 31 172 経口 42 42 77 経口 26 132 経口 24 173 経口 21 78 経口 21 133 経口 20 174 経口 19 79 経口 28 134 経口 29 175 経口 17 80 経口 52 135 経口 62 176 経口 22 82 経口 27 136 経口 23 177 経口 25 28 83 経口 31 137 経口 20 178 経口 28 85 経口 26 138 経口 20 178 経口 28 85 経口 26 138 経口 21 179 経口 33 89 経口 26 138 経口 21 179 経口 33 89 経口 40 139 経口 27 180 経口 45 93 経口 29 140 経口 21 181 経口 21 94 経口 29 141 経口 28 182 経口 31 97 経口 48 142 経口 48 183 経口 22 28 経口 38 143 経口 56 185 経口 59 100 経口 36 145 経口 57 186 経口 47	69	経口	26	128	経口	21	169	経口	
74 経口 28 131 経口 31 172 経口 42 77 経口 26 132 経口 24 173 経口 21 78 経口 21 133 経口 20 174 経口 19 79 経口 28 134 経口 29 175 経口 17 80 経口 52 135 経口 62 176 経口 22 82 経口 27 136 経口 23 177 経口 35 83 経口 27 136 経口 20 178 経口 28 85 経口 26 138 経口 20 178 経口 28 85 経口 26 138 経口 21 179 経口 33 89 経口 26 138 経口 27 180 経口 45 93 経口 29 140 経口 21 181 経口 21 94 経口 29 141 経口 28 182 経口 31 97 経口 29 141 経口 28 182 経口 31 97 経口 29 141 経口 28 182 経口 31 97 経口 38 143 経口 53 184 経口 48 99 経口 33 144 経口 56 185 経口 59 100 経口 36 145 経口 57 186 経口 47	71	経口	67	129	経口	25	170		64
77 経口 26 132 経口 24 173 経口 21 78 経口 21 133 経口 20 174 経口 19 79 経口 28 134 経口 29 175 経口 17 80 経口 52 135 経口 62 176 経口 22 82 経口 27 136 経口 23 177 経口 35 83 経口 31 137 経口 20 178 経口 28 85 経口 26 138 経口 21 179 経口 33 89 経口 40 139 経口 27 180 経口 45 93 経口 29 140 経口 21 181 経口 21 94 経口 29 141 経口 28 182 経口 31 97 経口 48 142 経口 48 183 経口 22 98 経口 38 143 経口 53 184 経口 48 99 経口 33 144 経口 56 185 経口 59 100 経口 36 145 経口 57 186 経口 47	73		34	130	経口	32	171	経口	13
77 経口 26 132 経口 24 173 経口 21 78 経口 21 133 経口 20 174 経口 19 79 経口 28 134 経口 29 175 経口 17 80 経口 52 135 経口 62 176 経口 22 82 経口 27 136 経口 23 177 経口 35 83 経口 31 137 経口 20 178 経口 28 85 経口 26 138 経口 21 179 経口 33 89 経口 40 139 経口 27 180 経口 45 93 経口 29 140 経口 21 181 経口 21 94 経口 29 141 経口 28 182 経口 31 97 経口 48 142 経口 48 183 経口 22 98 経口 33 144 経口 56 185 経口 59 100 経口 36 145 経口 57 <t< td=""><td>74</td><td></td><td>28</td><td>131</td><td>経口</td><td>31</td><td>172</td><td>経口</td><td>42</td></t<>	74		28	131	経口	31	172	経口	42
78 経口 21 133 経口 20 174 経口 19 79 経口 28 134 経口 29 175 経口 17 80 経口 52 135 経口 62 176 経口 22 82 経口 27 136 経口 23 177 経口 35 83 経口 31 137 経口 20 178 経口 28 85 経口 26 138 経口 21 179 経口 33 89 経口 40 139 経口 27 180 経口 45 93 経口 29 140 経口 21 181 経口 21 94 経口 29 141 経口 28 182 経口 31 97 経口 48 142 経口 48 183 経口 22 98 経口 38 143 経口 53 184 経口 48 99 経口 36 145 経口 56 185 経口 59 100 経口 36 145 経口 57 <t< td=""><td>77</td><td></td><td>26</td><td>132</td><td>経口</td><td>24</td><td>173</td><td></td><td>21</td></t<>	77		26	132	経口	24	173		21
80 経口 52 135 経口 62 176 経口 22 82 経口 27 136 経口 23 177 経口 35 83 経口 31 137 経口 20 178 経口 28 85 経口 26 138 経口 21 179 経口 33 89 経口 40 139 経口 27 180 経口 45 93 経口 29 140 経口 21 181 経口 21 94 経口 29 141 経口 28 182 経口 31 97 経口 48 142 経口 48 183 経口 22 98 経口 38 143 経口 53 184 経口 48 99 経口 33 144 経口 56 185 経口 59 100 経口 36 145 経口 57 186 経口 47	78	経口	21	133	経口	20	174	経口	
82 経口 27 136 経口 23 177 経口 35 83 経口 31 137 経口 20 178 経口 28 85 経口 26 138 経口 21 179 経口 33 89 経口 40 139 経口 27 180 経口 45 93 経口 29 140 経口 21 181 経口 21 94 経口 29 141 経口 28 182 経口 31 97 経口 48 142 経口 48 183 経口 22 98 経口 38 143 経口 53 184 経口 48 99 経口 33 144 経口 56 185 経口 59 100 経口 36 145 経口 57 186 経口 47	79	経口	28	134	経口	29	175	経口	17
83 経口 31 137 経口 20 178 経口 28 85 経口 26 138 経口 21 179 経口 33 89 経口 40 139 経口 27 180 経口 45 93 経口 29 140 経口 21 181 経口 21 94 経口 29 141 経口 28 182 経口 31 97 経口 48 142 経口 48 183 経口 22 98 経口 38 143 経口 53 184 経口 48 99 経口 33 144 経口 56 185 経口 59 100 経口 36 145 経口 57 186 経口 47	80		52	135	経口	62	176	経口	22
85 経口 26 138 経口 21 179 経口 33 89 経口 40 139 経口 27 180 経口 45 93 経口 29 140 経口 21 181 経口 21 94 経口 29 141 経口 28 182 経口 31 97 経口 48 142 経口 48 183 経口 22 98 経口 38 143 経口 53 184 経口 48 99 経口 33 144 経口 56 185 経口 59 100 経口 36 145 経口 57 186 経口 47	82		27	136	経口	23	177	経口	35
89 経口 40 139 経口 27 180 経口 45 93 経口 29 140 経口 21 181 経口 21 94 経口 29 141 経口 28 182 経口 31 97 経口 48 142 経口 48 183 経口 22 98 経口 38 143 経口 53 184 経口 48 99 経口 33 144 経口 56 185 経口 59 100 経口 36 145 経口 57 186 経口 47	83	経口	31	137	経口	20	178	経口	28
89 経口 40 139 経口 27 180 経口 45 93 経口 29 140 経口 21 181 経口 21 94 経口 29 141 経口 28 182 経口 31 97 経口 48 142 経口 48 183 経口 22 98 経口 38 143 経口 53 184 経口 48 99 経口 33 144 経口 56 185 経口 59 100 経口 36 145 経口 57 186 経口 47	85		26	138	経口	21	179	経口	33
94 経口 29 141 経口 28 182 経口 31 97 経口 48 142 経口 48 183 経口 22 98 経口 38 143 経口 53 184 経口 48 99 経口 33 144 経口 56 185 経口 59 100 経口 36 145 経口 57 186 経口 47			40	139	経口	27	180	経口	
94 経口 29 141 経口 28 182 経口 31 97 経口 48 142 経口 48 183 経口 22 98 経口 38 143 経口 53 184 経口 48 99 経口 33 144 経口 56 185 経口 59 100 経口 36 145 経口 57 186 経口 47	93		29	140	経口	21	181	経口	21
97 経口 48 142 経口 48 183 経口 22 98 経口 38 143 経口 53 184 経口 48 99 経口 33 144 経口 56 185 経口 59 100 経口 36 145 経口 57 186 経口 47			29	141	経口	28			
98 経口 38 143 経口 53 184 経口 48 99 経口 33 144 経口 56 185 経口 59 100 経口 36 145 経口 57 186 経口 47			48	142	経口	48	183		
99 経口 33 144 経口 56 185 経口 59 100 経口 36 145 経口 57 186 経口 47			38	143	経口	53			
100 経口 36 145 経口 57 186 経口 47	99		33	144	経口	56	185		
	100		36	145	経口	57	186		
	101	経口	44	146	経口	48			

TGIR(%)=腫瘍増殖抑制率(%)

- 190 -

請求の範囲

1. 式(I)の化合物またはそれらの薬学的に許容できる塩もしくは溶媒和物。

(上記式中、

XおよびZは、それぞれ、CHまたはNを表し、

 R^1 、 R^2 、および R^3 は、同一または異なっていてもよく、水素原子、 C_{14} アルキル基、 C_{14} アルコキシ基、 C_{24} アルケニル基、 C_{14} アルキニル基、ニトロ基、またはアミノ基を表し、この C_{14} アルキル基、 C_{14} アルコキシ基、 C_{14} アルコキシ基、 C_{14} アルカニル基 および C_{24} アルキニル基は、ハロゲン原子、水酸基、 C_{14} アルコキシ基、 C_{14} アルコキシ基、 C_{14} アルコキシスルボニル基、アミノ基(このアミノ基の1または2の水素原子は、それぞれ、 C_{14} アルキル基(この C_{14} アルキル基は水酸基または C_{14} アルコキシ基により置換されていてもよい)により置換されていてもよい)、基 R^2R^2N-C (=O) $-O-(R^2$ および R^3 は、同一または異なっていてもよく、水素原子または C_{14} アルキル基(このアルキル基は水酸基または C_{14} アルコキシ基により置換されていてもよい)を表す)、または基 R^2 -(S) M-(R^2 は、M-(R^2))を表す)、または基 R^2 -(S) M-(R^2) の M-(R^2) の

R'は、水素原子を表し、

R'、R'、R'およびR'は、同一または異なっていてもよく、水素原子、ハロゲン原子、Ciiアルキル基、Ciiアルコキシ基、Ciiアルキルチオ基、ニトロ基、またはアミノ基を表し、但し、R'、R'、R'およびR'総てが水素原子を表すことは

なく、

R°およびR"は、同一または異なっていてもよく、水素原子、C₁₄アルキル基、またはC₁₁アルキルカルボニル基を表し、C₁₄アルキル基またはC₁₁アルキルカルボニル基のアルキル部分は、ハロゲン原子、C₁₁アルコキシ基、アミノ基(アミノ基はC₁₁アルコキシ基により置換されていてもよいC₁₁アルキル基により置換されていてもよい)、または飽和または不飽和の3~7員炭素環式基または複素環式基により置換されていてもよく、

R"は、 C_{14} アルキル基、 C_{24} アルケニル基、 C_{24} アルキニル基(C_{14} アルキル基な、 C_{24} アルケニル基および C_{24} アルキニル基は、それぞれ、ハロゲン原子または C_{14} アルコキシ基により置換されていてもよい)、またはR"-(CH_{2}) n-(nは $0\sim4$ の整数を表し、R"は飽和または不飽和の $3\sim7$ 員炭素環式基または複素環式基を表わし、この炭素環式基および複素環式基はハロゲン原子、 C_{14} アルキル基または C_{14} アルコキシ基により置換されていてもよく、また、他の飽和または不飽和の $3\sim7$ 員炭素環または複素環と縮合した二環性であってもよい)を表す)

- 2. R'、R'およびR"が水素原子を表す、請求項1に記載の化合物。
- 3. R'が水素原子を表し、R'およびR"のいずれかまたは両方が水素原子以外の基を表す、請求項1に記載の化合物。
 - 4. XがNまたはCHを表し、ZがCHを表す、請求項1に記載の化合物。
- 5. 式(Ia)の化合物またはそれらの薬学的に許容できる塩もしくは溶媒和物。

(上記式中、

Xは、CHまたはNを表し、

 $R^{"}$ および $R^{"}$ は、同一または異なっていてもよく、非置換 $C_{"4}$ アルコキシ基または基 $R^{"}$ -($CH_{"}$)p-O-($R^{"}$ は、ハロゲン原子、水酸基、 $C_{"4}$ アルコキシ基、 $C_{"4}$ アルコキシカルボニル基、アミノ基(このアミノ基の1または2の水素原子は、それぞれ、 $C_{"4}$ アルキル基(この $C_{"4}$ アルキル基は水酸基または $C_{"4}$ アルコキシ基により置換されていてもよい)により置換されていてもよい)、基 $R^{"}$ R "N-C(=O)-O-($R^{"}$ および $R^{"}$ は、同一または異なっていてもよく、水素原子または $C_{"4}$ アルキル基(このアルキル基は水酸基または $C_{"4}$ アルコキシ基により置換されていてもよい)を表す)、または基 $R^{"}$ -(S)M-($R^{"}$ は、 $C_{"4}$ アルキル基により置換されていてもよい飽和または不飽和の $3\sim7$ 員炭素環式基または複素環式基を表し、Mは0または1を表す)を表し、Mは1 ~6 の整数を表す)を表し、

R"、R"、R"およびR"は、同一または異なっていてもよく、水素原子、ハロゲン原子、Cロアルキル基、Cロアルコキシ基、Cロアルキルチオ基、 ニトロ基、またはアミノ基を表し、但し、R"、R"、R"およびR"総てが水素原子を表すことはなく、

R"およびR"は、同一または異なっていてもよく、水素原子、Ciaアルキル基、またはCiaアルキルカルボニル基を表し、Ciaアルキル基またはCiaアルキルカルボニル基のアルキル部分は、ハロゲン原子、Ciaアルコキシ基、アミノ基(アミノ基はCiaアルコキシ基により置換されていてもよいCiaアルキル基により置換されていてもよい)、または飽和または不飽和の3~7員炭素環式基または複素環式基により置換されていてもよく、

R"は、C14アルキル基、C14アルケニル基、C14アルキニル基(C14アルキル基、C14アルケニル基およびC14アルキニル基は、それぞれ、ハロゲン原子またはC14アルコキシ基により置換されていてもよい)またはR"- (CH₁) q - (q は0~4の整数を表し、R"は飽和または不飽和の6員炭素環式基または複素環式基を表し、この炭素環式基および複素環式基はハロゲン原子、C14アルキル基またはC14アルコキシ基により置換されていてもよく、また、他の飽和または不飽和の5または6員炭素環または複素環と縮合した二環性であってもよい)を表す)

- 6. R"およびR"が非置換C"アルコキシ基を表す、請求項5に記載の化合物。
- 7. R"およびR"のいずれか一方が非置換C₁₄アルコキシ基を表し、他方が 基R"-(CH₂)p-O-を表す、請求項5に記載の化合物。
- 8. R"、R"、R"およびR"の少なくとも1つがハロゲン原子を表す、請求項5に記載の化合物。
- 9. R"、R"、R"およびR"の少なくとも1つが塩素原子またはフッ素原子を表す、請求項5に記載の化合物。
- 10. R"、R"、R"およびR"の少なくとも1つがC_いアルキル基を表す、請求項5に記載の化合物。
- 11. R"、R"、R"およびR"のうち2つがメチル基を表し、残りの2つが水素原子を表す、請求項5に記載の化合物。
- 12. R"、R"、R"およびR"の少なくとも1つが二トロ基、アミノ基、C ロアルコキシ基、またはCロアルキルチオ基を表す、請求項5に記載の化合物。
- 13. R"、R"およびR"が水素原子を表し、R"がハロゲン原子、C...アルキル基、C...アルコキシ基、ニトロ基、またはアミノ基を表す、請求項5に記載の化合物。
 - 14. R"およびR"の両方が水素原子を表す、請求項5に記載の化合物。
- 15. R"およびR"のいずれかまたは両方が水素原子以外の基を表す、請求項5に記載の化合物。
 - 16. XがCHまたはNを表し、

R"およびR"が非置換C...アルコキシ基を表し、

R"、R"およびR"が水素原子を表し、

R"がハロゲン原子、Cロアルキル基、Cロアルコキシ基、またはニトロ基を表し、

R"およびR"が水素原子を表し、

R"が、 C_{14} アルキル基、 C_{14} アルケニル基、 C_{14} アルキニル基(C_{14} アルキニル基基、 C_{14} アルケニル基および C_{14} アルキニル基は、それぞれ、ハロゲン原子または C_{14} アルコキシ基により置換されていてもよい)または $-(CH_1)_{14}$ 0 -R"(0

は0または1の整数を表し、R"はハロゲン原子、Cuアルキル基またはCuアルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す、請求項5に記載の化合物。

17. XがCHまたはNを表し、

R"およびR"が非置換Cuアルコキシ基を表し、

R"、R"およびR"が水素原子を表し、

R²がハロゲン原子、C₁₁アルキル基、C₁₁アルコキシ基、またはニトロ基を表し、

R"およびR"のいずれかまたは両方が水素原子以外の基を表し、

R"が、 C_{14} アルキル基、 C_{24} アルケニル基、 C_{24} アルキニル基(C_{14} アルキル基な、 C_{24} アルケニル基および C_{24} アルキニル基は、それぞれ、ハロゲン原子または C_{14} アルコキシ基により置換されていてもよい)または $-(CH_2)$ q-R"(q は 0 または 1 の整数を表し、R"はハロゲン原子、 C_{14} アルキル基または C_{14} アルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す、請求項 5 に記載の化合物。

18. XがCHまたはNを表し、

R"およびR"が非置換Cuアルコキシ基を表し、

R"、R"およびR"が水素原子を表し、

R"がハロゲン原子、C…アルキル基、C…アルコキシ基、または二トロ基を表し、

R"が水素原子を表し、

R"が水素原子以外の基を表し、

R"が、 C_{14} アルキル基、 C_{14} アルケニル基、 C_{14} アルキニル基(C_{14} アルキル基、 C_{14} アルキニル基は、それぞれ、ハロゲン原子または C_{14} アルコキシ基により置換されていてもよい)または $-(CH_1)$ q-R"(q は 0 または 1 の整数を表し、R"はハロゲン原子、 C_{14} アルキル基または C_{14} アルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す、請求項 5 に記載の化合物。

19. XがCHまたはNを表し、

R"およびR"のいずれか一方が非置換C山アルコキシ基を表し、他方が基R" - (CH) p - O - を表し、

R"、R"およびR"が水素原子を表し、

R⁴がハロゲン原子、C₁₁アルキル基、C₁₁アルコキシ基、またはニトロ基を表し、

R"およびR"が水素原子を表し、

R"が、 C_{14} アルキル基、 C_{24} アルケニル基、 C_{24} アルキニル基(C_{14} アルキル基、 C_{24} アルケニル基および C_{24} アルキニル基は、それぞれ、ハロゲン原子または C_{14} アルコキシ基により置換されていてもよい)または $-(CH_1)$ q-R"(q は 0 または 1 の整数を表し、R"はハロゲン原子、 C_{14} アルキル基または C_{14} アルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す、請求項 5 に記載の化合物。

- 20. R"が非置換C...アルコキシ基を表し、R"が基R"-(CH₁) p-O-を表す、請求項19に記載の化合物。
- 21. R"が、水酸基、アミノ基(このアミノ基の1または2の水素原子は、それぞれ、水酸基により置換されていてもよい C_{11} アルキル基により置換されていてもよい)、または基R"- (S) m- (R"は、 C_{11} アルキル基により置換されていてもよい1~4個の窒素原子を含む飽和または不飽和の5員複素環式基、あるいは C_{11} アルキル基により置換されていてもよい窒素原子および酸素原子から選択される1~2個の異種原子を含む飽和または不飽和の6員複素環式基を表し、mは0である)を表し、pが1~4の整数を表す、請求項19または20に記載の化合物。
 - 22. pが1である、請求項19~21のいずれか一項に記載の化合物。
- 23. R"が、基R"-(S) m-(ここでR"は、 C_{14} アルキル基により置換されていてもよい1または2個の窒素原子を含む不飽和の6員複素環式基を表し、mは0である)を表す、請求項 $19\sim21$ のいずれか一項に記載の化合物。
- 24. R"が、基R"-(S) m-(ここでR"は、 C_{14} アルキル基により置換されていてもよい1または2個の窒素原子を含む不飽和の6員複素環式基を表し、mは0 である)を表し、pが1 である、請求項1 9 ~ 2 1 のいずれか一項に

記載の化合物。

- 25. R"が置換されていてもよいピリジルである請求項23または24に記載の化合物。
 - 26. XがCHまたはNを表し、

R"およびR"のいずれか一方が非置換C_{1.7}アルコキシ基を表し、他方が基R" - (CH_2) p - O - を表し、

R"、R"およびR"が水素原子を表し、

R"がハロゲン原子、C_{II}アルキル基、C_{II}アルコキシ基、またはニトロ基を表し、

R"およびR"のいずれかまたは両方が水素原子以外の基を表し、

 R^{19} が、 C_{14} アルキル基、 C_{24} アルケニル基、 C_{24} アルキニル基(C_{14} アルキル基、 C_{24} アルケニル基および C_{24} アルキニル基は、それぞれ、ハロゲン原子または C_{14} アルコキシ基により置換されていてもよい)または $-(CH_1)$ $q-R^{19}$ (q は 0 または 1 の整数を表し、 R^{19} はハロゲン原子、 C_{14} アルキル基または C_{14} アルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す、請求項 5 に記載の化合物。

- 27. R["]が非置換C₁₁アルコキシ基を表し、R"が基R"-(CH₂) p-O-ーを表す、請求項26に記載の化合物。
- 28. R"が、水酸基、アミノ基(このアミノ基の1または2の水素原子は、それぞれ、水酸基により置換されていてもよい C_{11} アルキル基により置換されていてもよい)、または基R"-(S) m-(R"は、 C_{11} アルキル基により置換されていてもよい1~4個の窒素原子を含む飽和または不飽和の5員複素環式基、あるいは C_{11} アルキル基により置換されていてもよい窒素原子および酸素原子から選択される1~2個の異種原子を含む飽和または不飽和の6員複素環式基を表し、mは0である)を表し、pが1~4の整数を表す、請求項26または27に記載の化合物。
 - 29. pが1である、請求項26~28のいずれか一項に記載の化合物。
- 30. R"が、基R"-(S) m-(ここでR"は、 $C_{1.1}$ アルキル基により置換されていてもよい 1 または 2 個の窒素原子を含む不飽和の 6 員複素環式基を表

し、mは0である)を表す、請求項26~28のいずれか一項に記載の化合物。

- 31. R"が、基R"-(S) m-(ここでR"は、C山アルキル基により置換されていてもよい1または2個の窒素原子を含む不飽和の6員複素環式基を表し、mは0である)を表し、pが1である、請求項26~28のいずれか一項に記載の化合物。
- 32. R"が置換されていてもよいピリジルである請求項30または31に記載の化合物。
 - 33. XがCHまたはNを表し、

R"およびR"のいずれか一方が非置換C山アルコキシ基を表し、他方が基R" - (CH₁) p - O - を表し、

R"、R"およびR"が水素原子を表し、

R²がハロゲン原子、C₁₁アルキル基、C₁₁アルコキシ基、またはニトロ基を表し、

R"が水素原子を表し、

R"が水素原子以外の基を表し、

R"が、Cuアルキル基、Cuアルケニル基、Cuアルキニル基(Cuアルキル基、Cuアルケニル基およびCuアルキニル基は、それぞれ、ハロゲン原子またはCuアルコキシ基により置換されていてもよい)または一(CHu)q-R"(qは0または1の整数を表し、R"はハロゲン原子、Cuアルキル基またはCuアルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す、請求項5に記載の化合物。

- 34. R"が非置換C...アルコキシ基を表し、R"が基R"-(CH₁) p-O-ーを表す、請求項33に記載の化合物。
- 35. R"が、水酸基、アミノ基(このアミノ基の1または2の水素原子は、それぞれ、水酸基により置換されていてもよい C_{11} アルキル基により置換されていてもよい)、または基R''-(S) m-(R''は、 C_{11} アルキル基により置換されていてもよい $1\sim4$ 個の窒素原子を含む飽和または不飽和の5員複素環式基、あるいは C_{11} アルキル基により置換されていてもよい窒素原子および酸素原子から選択される $1\sim2$ 個の異種原子を含む飽和または不飽和の6員複素環式基を表

し、mは0である)を表し、pが $1\sim4$ の整数を表す、請求項33または34に記載の化合物。

- 36. pが1である、請求項33~35のいずれか一項に記載の化合物。
- 37. R"が、基R"-(S) m-(ここでR"は、C_{\square}アルキル基により置換されていてもよい1または2個の窒素原子を含む不飽和の6員複素環式基を表し、mは0である)を表す、請求項33~35のいずれか一項に記載の化合物。
- 38. R"が、基R"-(S) m-(ここでR"は、C-アルキル基により置換されていてもよい 1 または 2 個の窒素原子を含む不飽和の 6 員複素環式基を表し、mは 0 である)を表し、pが 1 である、請求項 3 3 \sim 3 5 のいずれか一項に記載の化合物。
- 39. R"が置換されていてもよいピリジルである請求項37または38に記載の化合物。
 - 40. XがCHまたはNを表し、

R"およびR"のいずれか一方が非置換 C_{II} アルコキシ基を表し、他方が基R" - (CH_{I}) p - O - を表し、

R"およびR"が水素原子を表し、

R"およびR"がハロゲン原子、C...アルキル基、C...アルコキシ基、またはニトロ基を表し、

R"およびR"が水素原子を表し、

R"が、 C_{14} アルキル基、 C_{14} アルケニル基、 C_{14} アルキニル基(C_{14} アルキル基な、 C_{14} アルケニル基および C_{14} アルキニル基は、それぞれ、ハロゲン原子または C_{14} アルコキシ基により置換されていてもよい)または $-(CH_1)$ q-R"(q は 0 または 1 の整数を表し、R"はハロゲン原子、 C_{14} アルキル基または C_{14} アルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す、請求項 5 に記載の化合物。

- 41. R"が非置換 C_{14} アルコキシ基を表し、R"が基R" (CH_{1}) p-O-を表す、請求項40に記載の化合物。
- 42. R"が、水酸基、アミノ基(このアミノ基の1または2の水素原子は、 それぞれ、水酸基により置換されていてもよいCuアルキル基により置換されて

いてもよい)、または基 $R''-(S)m-(R''は、C_{\square}$ アルキル基により置換されていてもよい $1\sim4$ 個の窒素原子を含む飽和または不飽和の5員複素環式基、あるいは C_{\square} アルキル基により置換されていてもよい窒素原子および酸素原子から選択される $1\sim2$ 個の異種原子を含む飽和または不飽和の6員複素環式基を表し、mは0である)を表し、pが $1\sim4$ の整数を表す、請求項40または41に記載の化合物。

- 43. pが1である、請求項40~42のいずれか一項に記載の化合物。
- 44. R"が、基R"-(S) m-(ここでR"は、 C_{\Box} アルキル基により置換されていてもよい1または2個の窒素原子を含む不飽和の6員複素環式基を表し、mは0である)を表す、請求項40~42のいずれか一項に記載の化合物。
- 45. R"が、基R"-(S) m-(ここでR"は、C1.アルキル基により置換されていてもよい 1 または 2 個の窒素原子を含む不飽和の 6 員複素環式基を表し、mは 0 である)を表し、pが 1 である、請求項 4 0 \sim 4 2 のいずれか一項に記載の化合物。
- 46. R"が置換されていてもよいピリジルである請求項44または45に記載の化合物。
- 47. 下記からなる群から選択される化合物またはそれらの薬学的に許容できる塩もしくは溶媒和物である、請求項1に記載の化合物:
- (13) $N \{2 \rho \Box \Box 4 [(6, 7 ジメトキシー4 キノリル) オキシ]$ フェニル $\} N' プロピルウレア、$
- (51) N-(2-クロロ-4-{[6-メトキシ-7-(2-モルホリノエトキシ)-4-キノリル] オキシ} フェニル) -N'-(2, 4-ジフルオロフェニル) ウレア、
- (62) $N-\{2-DDD-4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ] フェニル<math>\}-N'-プロピルウレア$ 、
- (76) $N \{2 D 4 [(6, 7 ジメトキシ 4 キナゾリニル) オキシ]フェニル\} N' エチルウレア、$
- (117) N- $\{2-クロロ-4-[(6, 7-ジメトキシ-4-キナゾリニル)$ オキシ] フェニル $\}$ -N'-メチルウレア、

- 200 -

- (119) N- $(2-クロロ-4-\{[6-メトキシ-7-(3-モルホリノプロポキシ)-4-キナゾリニル] オキシ} フェニル<math>)$ -N'-プロピルウレア、
- (135) N- $(2-\rho \Box \Box -4-\{[6-メトキシー7-(3-ピペリジノプロポキシ)-4-キナゾリニル]オキシ}フェニル)-N'-プロピルウレア、$
- (142) N- $(2-クロロ-4-\{[6-メトキシ-7-(3-ピリジルメトキシ)-4-キノリル]オキシ<math>\}$ フェニル)-N'-プロピルウレア、
- (143) N- $(2-クロロ-4-\{[6-メトキシ-7-(4-ピリジルメトキシ)-4-キノリル]オキシ} フェニル<math>)$ -パープロピルウレア、
- (144) N- $(2-クロロ-4-\{[6-メトキシ-7-(2-モルホリノエトキシ)-4-キノリル]オキシ} フェニル) -N'-プロピルウレア、$
- (145) N-[2-クロロ-4-{(6-メトキシ-7-[2-(1H-1, 2, 3-トリアゾール-1-イル) エトキシ]-4-キノリル} オキシ)フェニル]-N'-プロピルウレア、
- (146) N-[2-クロロ-4-(7-{[2-(1H-1-イミダゾリル) エトキシ]-6-メトキシー4-キノリル} オキシ)フェニル]-N'-プロピルウレア、
- (148) N $[2-クロロ-4-(6-メトキシ-7-{[2-(4-メチルピペラジノ) エトキシ] -4-キノリル} オキシ) フェニル] -N'-プロピルウレア、$
- (149) N- $(2-クロロ-4-\{[7-(2-ヒドロキシエトキシ)-6-メトキシ-4-キノリル]オキシ<math>\}$ フェニル) -N'-プロピルウレア、
- (151) N-(2-クロロ-4-{[6]-メトキシ-7-(3-モルホリノプロポキシ)-4-キノリル]オキシ}フェニル)-N'-プロピルウレア、
- (152) N-[2-クロロー4-(6-メトキシー7- $\{[3-(4-メチルピペラジノ) プロポキシ]-4-キノリル<math>\}$ オキシ) フェニル]-N -プロピルウレア、
- (153) N-[2-クロロー4-(6-メトキシ-7-{[3-(1H-1, 2, 3-トリアゾールー1-イル) プロポキシ]-4-キノリル} オキシ) フェニル] -N'-プロピルウレア、

(157) N $- \{2-クロロ-4-[(7-\{3-[(2-ヒドロキシエチル)(メチル)アミノ]プロポキシ\}-6-メトキシ-4-キノリル)オキシ]フェニル}-N'-プロピルウレア、$

(160) N-[2-クロロー4-(7-{[4-(1H-1-イミダゾリル) ブトキシ]-6-メトキシー4ーキノリル} オキシ) フェニル]-N'-プロピルウレア、

(162) N- $(2-クロロ-4-\{[6-メトキシ-7-(2-モルホリノエトキシ)-4-キナゾリニル]オキシ} フェニル)-N'-(2, 4-ジフルオロフェニル)ウレア、$

(163) $N-(2-\rho \Box \Box -4-\{[6-メトキシ-7-(3-モルホリノプロポキシ)-4-キナゾリニル]オキシ フェニル <math>N'-(2,4-ジフルオロフェニル)$ ウレア、

(164) N-[2-クロロ-4-(6-メトキシ-7-{[3-(4-メチルピペラジノ)プロポキシ]-4-キナゾリニル} オキシ)フェニル]-N'-(2,4-ジフルオロフェニル)ウレア、

(165) N- $\{2-\rho \Box \Box -4-[(7-\{3-[(2-ヒドロキシエチル)(メチル)アミノ]プロポキシ\}-6-メトキシ-4-キナゾリニル)オキシ]フェニル<math>\}$ -N'-(2,4-ジフルオロフェニル)ウレア、

(168) N-(2-クロロ-4-{[6-メトキシ-7-(3-モルホリノプロポキシ)-4-キノリル]オキシ} フェニル) -N'-(2, 4-ジフルオロフェニル) ウレア、

(169) N-(2-クロロー4-{[6-メトキシー7-(3-ピリジルメトキシ)-4-キノリル]オキシ} フェニル) -N'-(2, 4-ジフルオロフェニル) ウレア、

- '-(2, 4-ジフルオロフェニル)ウレア、
- (184) N-(2-クロロ-4-{[6-メトキシ-7-(3-ピペリジノプロポキシ)-4-キナゾリニル] オキシ} フェニル)-N'-メチルウレア
- (185) N $-(2-クロロ-4-\{[6-メトキシ-7-(3-ピペリジノプロポキシ)-4-キナゾリニル] オキシ} フェニル) -N'-エチルウレア、および$
- (186) N- $(2-クロロ-4-\{[6-メトキシ-7-(4-ピリジルメトキシ)-4-キノリル] オキシ} フェニル)-N'-(2, 4-ジフルオロフェニル)ウレア。$
- 48. 請求項1~47のいずれか一項に記載の化合物またはそれらの薬学的に許容できる塩もしくは溶媒和物を有効成分として含む、医薬組成物。
- 49. 腫瘍、糖尿病性網膜症、慢性関節リウマチ、乾癬、アテローム性動脈 硬化症、およびカポジ肉腫からなる群から選択される疾患の治療に使用される、 請求項48に記載の医薬組成物。
- 50. 請求項1~47のいずれか一項に記載の化合物またはそれらの薬学的に許容できる塩もしくは溶媒和物の、腫瘍、糖尿病性網膜症、慢性関節リウマチ、乾癬、アテローム性動脈硬化症、およびカポジ肉腫からなる群から選択される疾患の治療に使用される薬剤の製造のための使用。
- 51. 請求項1~47のいずれか一項に記載の化合物またはそれらの薬学的に許容できる塩もしくは溶媒和物の有効量を、薬学上許容される担体と共にほ乳類に投与することを含んでなる、腫瘍、糖尿病性網膜症、慢性関節リウマチ、乾癬、アテローム性動脈硬化症、およびカポジ肉腫からなる群から選択される疾患の治療法。
- 52. 請求項1~47のいずれか一項に記載の化合物またはそれらの薬学的 に許容できる塩もしくは溶媒和物を、標的となる血管の血管内皮細胞と接触させ ることを含んでなる、標的となる血管の血管新生を阻害する方法。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/00255

A.	CLASS	SIFICATION OF SUBJECT MATTER				
	Int.					
		A61K31/47, 31/4725,	, 31/51/, 31/5355			
Acc	ording to	International Patent Classification (IPC) o	r to both nat	ional classification and IPC		
		SSEARCHED	 :			
Min	imum do	ocumentation searched (classification system	n followed b	by classification symbols)		
	Int.					
		A61K31/47, 31/4725,	31/496	, 31/517, 31/5355		
Doo		ion searched other than minimum document				
DOC	umentati	ion searched other than minimum document	ation to the	extent that such documents are included	in the fields searched	
Flec	tronic de	ata base consulted during the international s	aarah (nama	of data hase and whom provide his area		
Licc		ius (stn)	catch (name	e of data base and, where practicable, sea	ren terms usea)	
	REGI	STRY (STN)				
C	DOCLI	MENTS CONSIDERED TO BE RELEVAN	т			
	—— 1					
	gory*	Citation of document, with indication		· · · · · · · · · · · · · · · · · · ·	Relevant to claim No.	
	A	WO, 96/9264, A1 (THE WELL		FOUNDATION LTD.),	1-50	
		28 March, 1996 (28.03.96 & EP, 782570, A & JP		5600, A		
			, 10 30	, 11		
	A	WO, 97/17329, A1 (Kirin	3rewery	Company, Limited.),	1-50	
		15 May, 1997 (15.05.97) & EP, 860433, A		:		
		& EF, 000433, A				
I	PX	JP, 11-158149, A (Kirin)			1-50	
		15 June, 1999 (15.06.99)	(Fami	lly: none)		
				-	,	
	1					
				İ		
$\overline{\Box}$	F				· · · · · · · · · · · · · · · · · · ·	
<u>Ц</u>		documents are listed in the continuation of	Box C.	See patent family annex.		
* "A"		categories of cited documents: nt defining the general state of the art which is no		"T" later document published after the inte- priority date and not in conflict with th		
	consider	ed to be of particular relevance		understand the principle or theory under	erlying the invention	
"E"	earlier document but published on or after the international filing "X" document of particular relevance; the claimed invention cannot be date considered novel or cannot be considered to involve an inventive					
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone						
cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot lead to involve an inventive step when the document is						
"O"		nt referring to an oral disclosure, use, exhibition of	r other	combined with one or more other such	documents, such	
"P"	P" document published prior to the international filing date but later "&" document member of the same patent family					
D.:		priority date claimed				
Date		ctual completion of the international search pril, 2000 (24.04.00)	ļ	Date of mailing of the international search 02 May, 2000 (02.05.		
	- A A3	221, 2000 (21.01.00)	Ì	02 may, 2000 (02.05.	•	
Na		siling address of the ICA		Australia I a CC		
ivam(ailing address of the ISA/		Authorized officer		
			1			
Facsi	mile No		1.	Telephone No.		

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/00255

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: 51,52 because they relate to subject matter not required to be searched by this Authority, namely:
The subject matter of claims 51 and 52 relates to a method for treatment of the human body by therapy or operation stipulated in PCT Rule 39.1(iv).
2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet) This International Searching Authority found multiple inventions in this international application, as follows:
This international occioning reaction, round managed in controls in and members approximately accounting the control of the co
•
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
\cdot .
4. No required additional search fees were timely paid by the applicant. Consequently, this international
search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
······································
Remark on Protest
No protest accompanied the payment of additional search fees.

A. 発明の属する分野の分類 (国際特許分類 (IPC))

Int. Cl'C07D215/22, 239/96, 401/12, 403/12, A61P35/00, A61K31/47, 31/4725, 31/496, 31/517, 31/5355

B. __調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1' C07D215/22, 239/96, 401/12, 403/12, A61P35/00, A61K31/47, 31/4725, 31/496, 31/517, 31/5355

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CAPLUS (STN) REGISTRY (STN)

C. 関連する	ると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	WO, 96/9264, A1 (THE WELL COME FOUNDATION LTD.), 28. 3月. 1996 (28. 03. 96) &EP, 782570, A & JP, 10-505600, A	1-50
A	WO, 97/17329, A1 (麒麟麦酒株式会社),15.5 月.1997 (15.05.97) &EP, 860433, A	1-50
PX	JP, 11-158149, A (麒麟麦酒株式会社), 15.6月.1999 (15.06.99) (ファミリーなし)	1 — 5 0

□ C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 24.04.00 国際調査報告の発送日 02.05.00 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4P 8217 国際の番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3491

国際調査報告

国際出願番号 PCT/JP00/00255

	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8条 成しなか	等3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作いった。
1. X	請求の範囲 <u>51,52</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
	PCT規則39.1(iv)に規定される「手術又は治療による人体の処置方法」に該当する。
2.	請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
	請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見 (第1ページの3の続き)
次に述	べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。
	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. 🗍 i	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載 されている発明に係る次の請求の範囲について作成した。
追加調査= - □	手数料の異議の申立てに関する注意 追加調査手数料の納付と共に出願人から異議申立てがあった。 追加調査手数料の納付と共に出願人から異議申立てがなかった。