Problem 1. Find the area bounded by the following curves.

1.
$$y = x$$
, $y = x^2$.

2.
$$y = 2x$$
, $y = 8 - x^2$.

3.
$$y = x^2 - 1$$
, $y = 3$.

4.
$$y = x$$
, $y = \sqrt{x}$.

5.
$$y^2 = x$$
, $y^3 = x$.

6.
$$y^2 = x - 1$$
, $y = x - 3$.

Problem 2. Evaluate the following improper integrals.

1.
$$\int_{1}^{\infty} \frac{3}{x^4} dx$$
.

$$2. \int_{-1}^{\infty} \frac{x}{(x^2+4)^2} \, dx \, .$$

$$3. \int_{-\infty}^{0} \frac{dt}{(2t-5)^3} \, .$$

4.
$$\int_0^3 \frac{2}{\sqrt[3]{x-1}} \, dx \, .$$

5.
$$\int_{1}^{5} \frac{x}{(x^2-4)^2} dx$$
.

Problem 3. Find the area of the region enclosed by the following curves.

1.
$$y = 2/x^2$$
, $x = 3$, the x-axis to the right of $x = 3$.

2.
$$y = 1/(x+2)^2$$
 and the coordinate axes, area in the first quadrant.

3.
$$y = 1/\sqrt{x+4}$$
, $x = -4$ and the coordinate axes.

Answers on next page

Answers to problem 1.

1.
$$A = \int_0^1 (x - x^2) dx = 1/6$$
.

2.
$$A = \int_{-4}^{2} (8 - x^2 - 2x) dx = 36$$
.

3.
$$A = \int_{-2}^{2} (3 - (x^2 - 1)) dx = 32/3$$
.

4.
$$A = \int_0^1 (\sqrt{x} - x^2) dx = 1/3$$
.

5.
$$A = \int_0^1 (y^2 - y^3) dy = 1/12$$
.

6.
$$A = \int_{-1}^{2} ((y+3) - (y^2+1)) = 9/2.$$

Answers to problem 2.

- 1. Converges to 1.
- 2. Converges to 1/10.
- 3. Converges to -1/100.
- 4. Converges to $3(2^{2/3} 1)$.
- 5. Diverges.

Answers to problem 3.

1.
$$\int_{3}^{\infty} \frac{2}{x^2} dx = 2/3.$$

$$2. \int_0^\infty \frac{1}{(x+2)^2} \, dx = 1/2.$$

3.
$$\int_{-4}^{0} \frac{1}{\sqrt{x+4}} dx = 4.$$