TI Preparation of protein and polypeptide mercapto group PEGylation reagent

IN Liu, Xinyuan; Tang, Wei

PA Shanghai Biochemistry Inst., Chinese Academy of Sciences, Peop.

Rep. China

SO Faming Zhuanli Shenqing Gongkai Shuomingshu, 9 pp.

CODEN: CNXXEV

DT Patent

LA Chinese

FAN.CNT 1

111111111111111111111111111111111111111				
PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI CN 1110681	Α	19951025	CN 1994-112129	19940420
PRAI CN 1994-112129		19940420		

OS CASREACT 124:316978

GΙ

$$N(CH_2)$$
 5CO $+ OCH_2CH_2 - + OMe$

Ι

AB The title compd. (I), useful as a PEGylation reagent for mercapto group of protein or polypeptides, was prepd. by condensation of 6-maleimidocaproic acid with polyethylene glycol monomethyl ether using dimethylaminopyridine as catalyst and DCC as condensation agent at -20-10.degree. Thus, reaction of 1 g 6-maleimidocaproic acid with 5 g polyethylene glycol monomethyl ether (mol. wt. 5000) in CH2Cl2 in the presence of dimethylaminopyridine and DCC at -20-10.degree. gave, after purifn. With Sephadex G-25 column, 5 g I.

Poly(oxy-1,2-ethanediyl), .alpha.-[6-(2,5-dihydro-2,5-dioxo-lH-pyrrol-1-

yl)-1-oxohexyl]-.omega.-methoxy- (9CI) (CA INDEX NAME)

IT 158532-01-5DP, conjugates with mercapto-contq. proteins

RL: SPN (Synthetic preparation); PREP (Preparation)

(prepn. of protein and polypeptide mercapto group PEGylation reagent)

RN 158532-01-5 HCAPLUS

CN Poly(oxy-1,2-ethanediyl), .alpha.-[6-(2,5-dihydro-2,5-dioxo-1H-pyrrol-1-

yl)-1-oxohexyl]-.omega.-methoxy- (9CI) (CA INDEX NAME)

$$(CH2) 5 - C - CH2 - CH2 - CH2 - OMe$$

$$O - CH2 - CH2 - CH2 - OMe$$

[12] 发明专利申请公开说明书

[21]申请号 94112129.1

[43]公开日 1995 年 10 月 25 日

[51]Int.Cl⁶
C07D207 / 452

[22]申请日 94.4.20

[71]申请人 中国科学院上海生物化学研究所

地址 200031上海市岳阳路320号

[72]发明人 刘新垣 唐 徽

[74]专利代理机构 中国科学院上海专利事务所代理人 衷诚宜 汪克臻

C07K 1/107 C12P 21/00

说明书页数:

附图页数:

[54]发明名称 一种新型的蛋白质及多肽巯基聚乙二醇 (PEG)化试剂

|57||擠要

本发明为一种新型的蛋白质及多肽巯基 PEG 化试剂,N-马来酰亚胺氨基正己酸-mPEG 酯,用于改造蛋白质及多肽的溶解性,稳定性和免疫原性等。随着生物医学及基因工程技术的发展,大量的药用 PEG 化蛋白、多肽等的制备和生产,本发明提供的 PEG 代试剂,方法简便,成本低,具有广阔的应用前景。

(BJ)第 1456 号

- 1. 一种新型的蛋白质及多肽巯基的聚乙二醇 (PEG) 化试剂, 其特征在于:
- a. 由N-马来酰亚胺基正己酸与聚乙二醇 (mPEG-OH) 的羟基直接缩合成N-马来酰亚胺基正己酸-mPEG酯, 结构式:

- b. 缩合反应的温度为-20—10℃;
- c. 二甲氨基吡啶 (DMAP) 为催化剂; DCC为缩合剂。
- 2. 根据权利要求1a所述合成的N-马来酰亚胺基正己酸-mPEG酯, 其特征在于它能直接使用于蛋白质、多肽、氨基酸巯基的PEG化, 并 包括用于含巯基的其它化合物的PEG化。
- 3. 根据权利要求1a所述的使用的聚乙二醇(mPEG-OH),它的分子量为2000—20000。

一种新型的蛋白质及多肽巯基聚乙二醇 (PEG) 化试剂

近年来,聚乙二醇 (PEG) 被广泛用于对天然蛋白或重组蛋白的化学修饰,以期改造蛋白的溶解性, 稳定性和免疫原性等。双功能试剂N-马来酰亚胺基正己基酸邻硝基对磺酸基苯酯 (Mal-sac-NHSA) 常用来连接蛋白或多肽与PEG-NH₂ [Aldwin lois, Danute E. Nitecki; Analytical Biochem. 1987 164, 494。Robert J. Goodson, Nandini V. Katre; Bio/Technology 1990, 8, 343]。

使用符号说明:

mPEG-OH PEG-端己甲基化,另一端是羟基。

mPEG-NH。 PEG-端已甲基化,另一端是氨基。

本发明中称PEG化,是指mPEG化。

DCC 二环己基碳二亚胺。

DMAP 二甲氨基吡啶。

现有技术是这样的:

HC
$$-C$$
 0 $+ H_2N - (CH_2)_5 - COOH$

HC $-C$ 0 $+ H_2N - (CH_2)_5 - COOH$

HC $-C$ $-OH$

HC $-C$ $-OH$

$$HC = C$$
 $N = (CH_2)_S = COOH$ $N = COOH$

用于连接蛋白或多肽的巯基

上述试剂制备以及由PEG合成PEG-NH2等步骤繁杂,条件苛刻 [Manfred Mutter: Tetrahedron Letters 1987, 31, 2839。A.F. Buchmann, et al: Makromolekular Chemie, 1981, 182(4-6), 1379。 Michele Leonard et al: Makromolekular. Chemie 1988, 189, 1809。 Norbert Dereu: Synthetic Communitions 1991, 21(1), 85。Ruth King: J. Chem. Soe, 1921, 119, 2105]。

本发明设计的一条路线,可方便地合成另一种新的蛋白巯基PEG化试剂,步骤如下:

本发明的特点是合成的N-马来酰至胺基正己酸直接与mPEG-0H缩合反应,从而避开了llNSA及mPEG-NH。的合成,使步骤大为简化,反应条件温和,且产率高,产物纯化方便,大大降低了生产成本。将本发明合成的PEG化试剂用于牛血清白蛋白(BSA)及基因重组 Y-干扰素(rIFN-Y)的反应的结果表明,该试剂的活性高,选择性强,可广泛用于蛋白、多肽的巯基PEG化修饰,尤其是用于定点修饰。 随着生

物医学及基因工程技术的发展和深入,大量的药用PEG化蛋白、 多肽的制备和生产,本发明的巯基PEG化试剂具有很好的应用价值。

本发明的具体步骤在下述实施例中详细描述:

附图说明:

图1. Mal-Sac-PEG紫外吸收。

图2. PEG-BSA的SDS-PAGE电泳图。

- M. 标准分子量蛋白
- 1. BSA对照样品
- 2. 3. 低修饰 PEG-BSA混合样品。
- 4. 高修饰 PEG-BSA混合样品。

图3. PEG-IFN- Y的SDS-PAGE电泳图。

- M. 标准分子量蛋白
- 1. 97CyS-IFN-γ包涵体。
- 2. 修饰PEG-97CyS-IFN-γ样品。
- 3. 131CyS-IFN-γ包涵体。
- 4. 修饰PEG-131CyS-IFN- y样品。
- 5. 修饰PEG-97CyS-IFN- Y样品[含二巯基苏糖醇(DTT)30毫克 分子]。

实施例1. N-马来酰亚胺基正己酸的制备

马来酸酐10克(0.1克分子)和氨基正己酸13.1克(0.1克分子)在100ml醋酸中,室温下回流4小时,补加200ml醋酸,用水分离器分去水份,继续回流过夜。然后真空抽去醋酸,油状物用15ml氯仿溶解,过滤,浓缩,上硅胶柱层分离(以氯仿:醋酸=96:5液平衡),得N-马来酰亚胺氨基正己酸10克。

实施例2. N-马来酰亚胺氨基正己酸-mPEG酯的制备 取1克马来酰亚胺氨基正己酸和5克mPEG-OH(分子量6000) 0.001 克分子缩合; 以二氯甲烷作溶剂, 在二甲氨基吡啶 (DMAP) 与DCCI存在下, 温度-20—10℃, 反应4小时或过夜。混合物经乙醚沉淀, 乙醇重结晶, 再经Sephadex G-25柱进一步纯化, 可得纯品冻干粉5克, 置-20℃保存。

实施例3. N-马来酰亚胺氨基正己酸-mPEG酯的鉴定产物鉴定:

产品经紫外光谱(图1)扫描分析,符合结构式。 根据其数据定量计算,PEG活性产率可达90%以上,产物溶于水及二氯甲烷,-20 ℃保存2个月,活性稳定。

实施例4. N-马来酰亚胺氨基正己酸-mPEG酯的应用

牛血清白蛋白 (BSA) 经DTT处理后,与新合成的试剂在pH6.0,室温下反应。产物的SDS-PAGE电泳图谱 (图2)表明,有一条或多条修饰带。

另外, 通过基因突变方法, 在r-IFN中引入一个半胱氨酸, 用上述方法修饰, 可得50%-80%率的修饰产物1PEG-IFN-γ(数据见图3)。

图 1

+

图 2

图 3

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.