CS & IT ENGING

Database Management System

DBMS

Lecture No. 2

Introduction

Topics to be Covered

Topic Integrity

Integrity Constraints & ER Model (2 Marks)

Topic

Normalization (2-4 Marks)

Topic

Queries (Relational Algebra, SQL, Tuple Relational Calculus) (4 Marks)

Topic

File Organization & Indexing(2-4 Marks)

Topic

Transactions & Concurrency Control (2- 4 Marks)

Foreign Key:

- Used to relate tables.
- Usually defined over two relations.
 - → Referenced and Referencing Relation.

Definition: Set of one or more attributes referencing to a primary key or

alternative key of the same relation or other relation.

X & Y can be from same relation or from two different relations.

Example 1: Relation 1: Stud (Sid, Sname, DOB)

Example 1: Relation 1: Stud (Sid, Sname, DOB)

Relation 2: ENROLL (Sid, Cid, Fee)

	J				1 ^{Fk}			
Stud	Sid	Sname	DOB	ENROLL	Sid	Cid	Fee	
	S1	A	1990		S1	C1	5000	
	S2	A	1992		S2	C2	4000	
	S 3	В	1990		S3	C3	4500	
				(S10	C1	5000	→ Not allowed

Here, Stud Relation is called Referenced Relation and ENROLL Relation is called Referencing Relation.

Example 2: Self Referencing

Example 2: Self Referencing

Inspiring Stories: Malati Mem

Background: From tea-garden community in Assam.

Struggles: British pushed opium addiction to control labor.

Achievements: Fought against it, taught villages about its danger—but got shot by police.

Impact: Showed how everyday people can stand up for health and freedom.

- FK attributes allows NULL values.
- Referencing Related Records whose Foreign Key value is NULL, is not related to any referenced related record.

Referenced and Referencing relation have 1: Many Relationship.

Referenced → Referencing (Many)>

Referencing → Referenced (At Most one)

Foreign key Integrity Constraints with Referenced Relation

(a) Insertion:

No violation so No action is needed.

(b) Deletion:

May cause violation, these are handled in 3 ways.

- (i) ON DELETE NO ACTION (default)
- Deletion restricted if Foreign Key violation occurs.

(ii) ON DELETE CASCADE

Forced to delete related referencing records.

A	В	C	S	D	E
al	2 =	5		_2	el
a2	4	6		2	e2
a3	6	10		NULL	e3
a4	NULL	12		4	e4
a5	8	6		_8_	es
a6	NULL	12		-8	e6

after	
removing a row	
(a5, 8, 6)	
in R	

A	В	C
11	2	5
12	4	6
13	6	10
14	NULL	12
16	NULL	12
	a1 a2 a3 a4 a6	11 2 12 4 13 6 14 NULL

D	Е
2	el
2	e2
NULL	e3
4	e4
	2 2 NULL

(iii) ON DELETE SET NULL X

Set Null in the rows that are deleted

after	•
removing a row	1
(a5, 8, 6)	
in R	

3	A	В	С
	al	2	5
	a2	4	6
	a3	6	10
	a4	NULL	12
ı	a6	NULL	12

S	D	Е
	2	e1
	2	e2
	NULL	e3
	4	e4
00	NULL	e5
1	NULL	e6

(c) Updation:

May cause violation, this is also handled in ways.

(i) ON UPDATE NO ACTION (default)

Updation is restricted if there are foreign keys dependent on the row deleted.

Ef

(ii) ON UPDATE CASCADE

Forced to delete the records referencing the row delete updated.

	a
hanging	a
5, 8, 6) to	a
15, 10, 6)	a
in R	a

A	В	C
al	2	5
a2	4	6
a3	6	10
a4	NULL	12
a5	10	6
a6	NULL	12

S	D	Е
١	2	el
	2	e2
	NULL	e3
	4	e4

(iii) ON UPDATE SET NULL

Sets NULL in the rows that are referenced to the updated value.

	al	1
changing	a2	4
$\xrightarrow{\text{(a5, 8, 6) to}}$	a3	(
(a5, 10, 6)	a4	NU
in R	a5	1
	26	NI

3	D	Е
١	2	el
ı	2	e2
	NULL	e3
	4	e4
	NULL	e5
	NULE	e6

12

Foreign key Integrity Constraints with Referencing Relation

- (a) Insertion: May cause foreign key violation
 - Sol: Restricted the Insertion if violation occurs.
- (b) Deletion: No Violation occurs
- (c) Updation: May cause Foreign key violation

Sol: Updation is restricted if Foreign key violation happens.

Referred Table	Insertion	No Violation
	Deletion	No Action, Cascade or Set NULL
	Updation	No Action, Cascade or Set NULL
Referencing Table	Insertion	May cause violation, Restricted If yes
	Deletion	No Violation
	Updation	May cause violation, Restricted If yes

Inspiring Stories: Helen Lepcha

Background: From Lepcha tribe in Sikkim.

Achievements: Followed Gandhi, helped Subhas Chandra Bose escape, wrote for tribal people.

Impact: Kept hope alive in mountains; a tribal heroine.

Q1: ISRO CSE 2016

Let R(a,b,c) and S(d,e,f) be two relations in which d is the foreign key of S that refers to the primary key of R. Consider the following four operations R and S

I. Insert into R

III. Delete from R

II. Insert into S

IV. Delete from S

Which of the following can cause violation of the referential integrity constraint above?

(A) Both I and IV

(C) All of these

(B) Both II and III

(D) None of these

Q1: ISRO CSE 2016

Let R(a,b,c) and S(d,e,f) be two relations in which d is the foreign key of S that refers to the primary key of R. Consider the following four operations R and S

I. Insert into R

II. Insert into S

III. Delete from R

IV. Delete from S

Which of the following can cause violation of the referential integrity constraint above?

(A) Both I and IV

(B) Both II and III

(C) All of these

(D) None of these

R(a,b,c)S(d,e,f)

Q2: GATE CSE 2017 SET-2

Consider the following tables T1 and T2.

In table T1, P is the primary key and Q is the foreign key referencing R in table T2 with ondelete cascade and on-update cascade. In table T2, R is the primary key and S is the foreign key referencing P in table T1 on-delete set NULL and on-update cascade.

In order to delete record (3,8) from table T1, the number of additional records that need to be deleted from table

T1 is _____ (a) (b) (c) 2 (d) 3

2	S	2	3	2	7	7	2	
T	R	R 2 8 3	8	3	9	5	7	
	Q	Q 2 8	8	3	8	9	5	8
√ T:	P	P 2 3 7	3	7	5	6	6 8 9	9

ON DELETE CASCADE ON UPDATE CASCADE

Q2: GATE CSE 2017 SET-2

- ➤ Since S(5K) refers to P (PK), removing (3, 8) row in T1, makes (8,3) row in T2 to (8, NULL) due to the ON DELETE SET NULL constraint
- Since Q(FK) refers to R(PK), deletion in a foreign key doesnt affect any table.

So zero entries are removed.

Answer: 0

T	1	T	2
P 2	Q	R	S
2	2	2 2	2
3	8	8	3
7	3	3	2
	8	9	7
	9	5	7
	5	7	2
	8		

ON DELETE SET NULL ON UPDATE CASCADE

Q3: GATE CSE 2005

The following table has two attributes A and C where A is the primary key and C is the foreign key referencing A with on-delete cascade.

The set of all tuples that must be additionally deleted to preserve referential integrity when the tuple (2,4) is deleted is:

Q3: GATE CSE 2005

- \triangleright On removing (2,4), the rows (5,2) and (7,2) are deleted.
- On removing (5,2), (9,5) is also deleted
- Ans: (5,2), (7,2) (9,5) are deleted

A	C
2	4
3	4
4	3
5	2
7	
9	2 5
9	4

- 1. Introduction to DB Anomalies
- 2. Functional Dependency V
- 3. Attribute closure & Membership test
- 4. Finding Candidate Keys ***
- 5. Lossless join and Dependency Preserving Decomposition **

6. Normal Forms

- 1 NF, 2 NF, 3 NF, BCNF → Theory Question
- Finding highest NF & Relational Schema **
- Decomposition into higher Normal Form
- Multivalued Dependency and 4 NF)
- 7. Canonical Cover of FD set (Minimal Cover)

Inspiring Stories: Pasaltha Khuangchera

Background: Mizo warrior from the hills.

Struggles: British troops marched into his land.

Achievements: Fought them in 1890 to protect villages; died in battle but did not run.

Impact: First known Mizo hero to fall fighting the British; a legend in Mizoram.

NORMALIZATION

- Process used to eliminate or reduce redundancy in Database tables.
- When two or more independent relations are stored in a single relation, there is a possibility of Redundancy.

Example:

For a Relation Student lets say the dependency is, Sid → Sname, DOB

For Course Table, Cid → Cname, Instructor

For Enroll Table, Sid, Cid → Fee

Stud, Course, enhall

Now lets say a table is created on these three relations, then the Relationship

formed is: F

Sid	Sname	DOB	Cid	Cname	Instructor	Fee
S1	A	1990	C1	DB	Korth	-
S2	A	1990	C1	DB	Korth	-
S3	В	1998	C1	DB	Korth	_
S3	В	1998	C2	Algo	Coremon	-
S3	В	1998	C3	OS	Galwin	_

Sid, Cid → Candidate key

There is redundant data.

Problems because of Redundancy: [DB Anamolies]

(i) Insertion Anamoly:

• The insertion of student data without a course or viceversa is not possible.

R	Sid	Sname	DOB	Cid	Cname	Instructor	Fee
	S1	A	1990	C1	DB	Korth	-
	S2	A	1990	C1	DB	Korth	_
	S3	В	1998	C1	DB	Korth	_
	S3	В	1998	C2	Algo	Coremon	_
	S3	В	1998	C3	os	Galwin	_

Problems because of Redundancy: [DB Anamolies]

(ii) Deletion Anamoly:

If someone wants to delete S3 data, then it deletes the C1 & C2 course as well.

R	Sid	Sname	DOB	Cid	Cname	Instructor	Fee
	S1	A	1990	C1	DB	Korth	_
	S2	A	1990	C1	DB	Korth	_
	S3	В	1998	Cl	DB	Korth	
_	S3	В	1998	C2,	Algo	Coremon	
_	S3	В	1998	C3/	OS	Galwin	_

(iii) Updation Anamoly:

• If the row (S3, B, 1998, C1, DB, Korth)has got updated to (S3, B, 1989, C1, DB, korth), then the data of S3 is inconsistent, like S3 has 2 different DOB's 1988

& 1989.

DOB Sid Cid Sname Fee Cname Instructor C1 S1 1990 Korth DBC1 S2 1990 DB Korth A 1998 **S**3 C1 DB Korth В 1998 **S**3 C2 B Algo Coremon 1998 **S**3 B C3 OS Galwin

- These Anamolies indirectly causes Inconsistency.
- The Goal of Normalization is to remove the Redundancy and Inconsistency.
- If there is 0% redundancy in DB table then there are No Database Anamolies present.

Inspiring Stories: Pa Togan

Background: Young Garo leader.

Achievements: Led a bold night attack on a British camp (1872); fell while fighting.

Impact: Garo people still honor him every year as a symbol of courage.

Telegram channel

THANK - YOU