

Suivi de l'évolution de l'épidémie de COVID-19 et des besoins médico-hospitaliers au Québec

Samedi, 25 avril 2020

Sommaire

Évolution à court terme de l'épidémie et besoins médico-hospitaliers

Objectif

Suivre l'évolution de l'épidémie de SARS-CoV-2 pour évaluer les besoin en ressources de soins de santé.

Résumé de la méthodologie

1ère étape: Un modèle de transmission du COVID-19 a été développé et calibré aux données de vigie épidémiologique pour prédire quotidiennement le nombre de nouvelles hospitalisations.

2^e **étape**: Les trajectoires d'utilisations de soins sont modélisées afin d'évaluer à court terme, (basé sur le prédictions ci-haut) les besoins en ressources hospitalières.

Modèle de transmission de type SEIR

 $1^{\text{ère}}$ étape: estime le R(t) et prédire nouvelles admissions

Modèle semi-mécanistique

L'impact des interventions est capturé indirectement à l'aide d'un taux de reproduction R(t) qui varie dans le temps.

Permet

- D'estimer l'impact des interventions passées et de faire des projections.
- D'élaborer des scénarios en variant le *R*(*t*).

Taux de reproduction R(t)

Le nombre moyen de transmissions secondaire par personne infecté.

Modèle demande des ressources

2e étape: prédire les besoins en ressources

Admissions passées (observations) et futures (du modèle transmission)

Day	Arrivals
2/27	3
2/2	13
6/	

Trajectoires d'utilisation

Estimation de la demande en ressources

Modèle de Markov

Les trajectoires d'utilisation des soins pour les personnes COVID-19 nouvellement admises en centre hospitalier.

Permet

- Une estimation de l'utilisation des ressources sur un horizon de 4 semaines.
- D'examiner l'impact de différentes politiques d'utilisation des ressources.

Évolution et besoins (25 avril)

Scénario hypothétique où le R(t) demeurerait constant

 Le taux de reproduction semble être autour de la valeur unitaire. On s'attend à ce que le nombre d'admissions reste relativement stable.

Stratification régionale plus fine

1) Montréal et Laval, 2) régions proches de Montréal, 3) autres

Interprétation

- La transmission dans les région de Montréal et Laval a diminuée mais le R(t) pourrait être en haut de 1.
- Un constant similaire s'applique aux régions proches de Montréal.
- Les autres régions devraient voir leur transmission décroître (mais large incertitude).

Avantages et limites

Un outil pour suivre l'épidémie et anticiper les besoins

Limites

- Les séries temporelles sont courtes (incertitude).
- Le modèle reflète principalement la transmission hors CHSLD.
- Les projections de la capacité hospitalière se base sur un un taux de reproduction constant. L'impact de potentielles mesure de déconfinement et/ou changements comportementaux n'est pas pris en compte.
- Nos résultats dépendent de la qualité des données de vigie épidémiologique et sont sensibles à leur qualité.

Avantages

- Modèle simple requérant peu de données mais assez flexible pour en intégrer de nouvelles.
- Possibilité d'explorer divers scénarios et politiques d'utilisation des ressources ainsi que de projections plus détaillées.
- Résultats mis à jour régulièrement.

Équations, paramètres et statistiques

Modèle de transmission du COVID-19 Étape 1

Schéma du modèle mathématique

Diagramme du modèle

Note

- Le nombre de cas importés Z(t) provient du V10.
- Les périodes de latence et d'infectiosité suivent des distributions d'Erlang-2.

Principaux paramètres du modèle

Table 1. Liste des paramètres du modèle

Paramètres	Symboles	Valeurs	Références
Taux de transmission	$\beta(t)$	Calibré	Non-applicable
Durée de la période d'incubation	1 / ε	5.2 jours	[1]
Proportion d'infections symptomatiques	κ_{s}	82%	[2]
Proportion d'infections symptomatiques requérant une hospitalisation (sévère)	κ_h	6.1% / κ_s	[3]*
Durée de la période infectieuse (communauté)	$1/\sigma_c$	5 jours	[4]
Durée de l'hospitalisation	$1/\sigma_d$	18.8 - $1/\sigma_c$ jours	[3]
Proportion des hospitalisations qui vont décéder	μ	1.3% / $(\kappa_s * \kappa_h)$	[3]*
Délai entre l'apparition des symptômes et le dépistage	$1/\pi$	2.5 jours	Prémisse
Proportion des cas symptomatiques qui seront dépistée	$\omega(t)$	60%	Prémisse

^{*}Paramètres standardisées à la distribution d'âge du Québec.

- 1. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. *N Engl J Med* 2020; 382(13):1199-1207.
- 2. Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill 2020; 25(10).
- 3. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. *Lancet Infect Dis* 2020.
- 4. Davies N, Kucharski A, Eggo R, Gimma A, CMMID COVID-19 Working Group, Edmunds W. The effect of non-pharmaceutical interventiosn on COVID-19 cases, deaths and demand for hospital services in the UK: a modelling study. In: Centre for Mathematical Modelling of Infectious Diseases, LSHTM; 2020.

Source des données

Nombre de cas confirmés

Ces données ne sont pas utilisées pour le moment en raison des variations importantes des critères d'éligibilité et des efforts de dépistage.

Nombre d'hospitalisations journalier

Données MED-ECHO.

Nombre de décès par jour

Ces données ne sont pas utilisées.

Cadre Bayésien - fonction de vraisemblance

Fonction de vraisemblance

Le nombre observé de nouvelle hospitalisation $(Hosp_t)$ au temps t suit une loi binomial négative :

$$Hosp_t \sim NB\left(H_t, H_t + \frac{{H_t}^2}{r}\right)$$

où H_t est le nombre d'hospitalisations prédit par le modèle et r est le paramètre de « sur-dispersion ». Pour ce dernier, une distribution gamma est utilisée :

$$r \sim Gamma(10, 0.01)$$

Note

 Le modèle peut facilement être calibré aux autres types de données épidémiologiques. Par exemple, sur de futures enquêtes de séroprévalence.

Cadre Bayésien - distributions à priori

Distributions à priori

■ Le nombre d'individus infectieux au début de la simulation (28 février 2020) est entre 1 et 30.

$$Z_{t=0} \sim Uniform(1,30)$$

■ Le paramètre de transmission R(t) au début de l'épidémie correspond à un R_0 de 2.2 (95%CI: 1.2-4.0).

$$\log(\beta_{t=0}) \sim Normal(\log(2.2/\sigma_c), 0.3)$$

 Les facteurs de réduction de la transmission, s'appliquant sur une période de 7 jours, prennent une valeur entre 0 et 1 :

$$\beta_t = \beta_{t=0} \times impact_t$$
$$impact_t \sim Uniform(0, 1)$$

Cadre Bayésien - Inférences statistiques

Procédure d'estimation

- Le modèle est calibré aux en utilisant des méthodes de Monte-Carlo par chaînes de Markov.
- Ces méthodes permettent d'obtenir des échantillons de la distribution postérieure du vecteur de paramètres. L'avantage de l'utilisation de méthodes Bayésienne est la propagation efficace de l'incertitude aux résultats.
- La librairie *Nimble* de R est utilisé. Des algorithmes adaptatifs de marche aléatoire de type Metropolis-Hasing et « *Automated Factor Slice sampling* » permettent une bonne convergence des chaînes.

Équations, paramètres et statistiques

Modélisation des besoins en ressources hospitalières Étape 2

Modélisation des trajectoires

Modèle de Markov - indices et états

Indices

- I états Markov (besoin courant en ressources)
- *J* états Markov (besoin en ressources après la transition)
- T jours de la simulation (t = 1,...,T)

États (niveau des besoins en ressources)

- 1. Lits en soins actif avant les soins intensifs (SI) (actifs 1)
- 2. Au SI
- 3. Au SI et ventilé
- 4. Lits en soins actif avant les SI (acfits 2)
- 5. Congé hospitalier
- 6. Décès

Modélisation des trajectoires

Modèle de Markov - intrants, paramètres et indicateurs

Intrants

- n^0 , un vecteur avec la distribution initiale de longueur I pour laquelle n^0 est le nombre d'individus nécessitant I.
- A, une matrice de dimension I × T qui décrit les nouvelles admissions en centre hospitalier et nécessitant des ressources spécifique (obtenu du modèle de transmission).

Paramètres

• P^* , est une matrice de transition de dimension $I \times J$ où $p^*_{i,j}$ est la probabilité de transition (par jour) de l'état i à l'état j, conditionnellement à son état actuel (diapo suivante).

Indicateurs

■ N, est une matrice *I* × *T* contentant le nombre d'individus nécessitant les ressources de l'état *I* au jour *t*.

Transitions et précisions

 P_{ii}^* - Transitions au au prochain état en fonction de l'état actuel

$oldsymbol{ ho^*}_{i,j}$	1 (actifs 1)	2 (SI)	3 (SI + respirateur)	4 (actifs 2)	5 (congé)	6 (décès)
1 (actifs 1)	p* _{1,1}	<i>p</i> * _{1,2}	p* _{1,3}	0	<i>p</i> * _{1,5}	<i>p</i> * _{1,6}
2 (SI)	0	$p^{*}_{2,2}$	0	$p^{*}_{2,4}$	$p^{*}_{2,5}$	$p^*_{2,6}$
3 (SI + respirateur)	0	0	$p^*_{3,3}$	$p^*_{3,4}$	$p^*_{3,5}$	$p^*_{3,6}$
4 (actifs 2)	0	0	0	$p^*_{4,4}$	$p^*_{4,5}$	$p^*_{4,6}$
5 (congé)	0	0	0	0	1	0
6 (décès)	0	0	0	0	0	1

Notes

- Les décès et les congés sont des états "absorbants".
- Les personnes hospitalisées requerront des SI avec ou sans ventilation et ne transitionnent pas entre ces états (les données actuelles ne permettant un suivi longitudinal de l'utilisation des ventilateurs).
- Les individus ne peuvent passer du state soins actifs 2 (état 1) au stade soins actifs 2 (état 4).
- Les probabilités de transition $(p^*_{i,j})$ sont estimés à partir de données hospitalières (MED-ECHO Live).

Collaborateurs

Équipes de modélisation

Université McGill

Mathieu Maheu-Giroux et David Buckeridge

Alexandra Schmidt Dirk Douwes-Schuoultz

Dimitra Panagiotoglou Alton Russell

Nicole Basta Maxime Lavigne

Arnaud Godin Yannan Shen

Yiqing Xia Aman Verma

Collaborateurs à INESSS

Catherine Truchon, Michèle de Guise, Mélanie Martin (liste non-exhaustive)

Collaborateurs à l'Université Laval

Marc Brisson, Guillaume Gingras, Mélanie Drolet

Remerciements

Support financier

Université McGill

M[i]⁴ Initiative interdisciplinaire en infection et immunité

Chaires de recherche du Canada

Canada Research Chairs

