

NPTEL ONLINE CERTIFICATION COURSE

Charging Infrastructure

Lecture-7

Revisiting Diode Bridge Rectifier with Capacitive Filter

Dr. Apurv Kumar Yadav

Department of Electrical Engineering

Recap

a bull-bridge un controlled rectibier

I The output voltage is uncontrolled, it only depends on input Ac voltage (Vs, Plc)

-) The input werest is ginusoidal in nature

Pomer is delivered in both the upde (tre &-re) to RL.

I The output voltage is not contant, it is reutilized DC voltage 3) J/(4 = [v,4)

it is continuously vorying

- brom to to to, the Capacitor 'c' is charging, while in the remaining portion of T/2, the Capacitor is discharging

To maintain the voltage between Vd, max & Vd, min the ever grand charging is equal to Evergy lost deving discharging

T= Ybs W=2xbs DWT=2x

Energy gained during charging => Ec= 1/2 C (Vamar - Vamin) -> 1 let, PL be the load power (power delined to load) I Energy delivered to load brom Capacitor during The Ed= PLX IX [T2-tc] Ltc=tb-ta) $E_{J} = P_{L} \times T_{2} \times \left[1 - \frac{t_{12}}{F_{12}} \right] \longrightarrow 2$ Ed = Ec (to ensure the Capacitor voltage is between Vol, mare 4 Vol, min) Yze (Vd, man - Vd, min) = PLX IX [1-tc]

In order to Select the Capacitos

- / Capacitance value
- > No Hage rating -> Vol, max = Vo + DVo -> No Hage rating -> Vol, max = Vo + DVo -> Will determine the parallel connection in the Capacitor bank

Thank You

