LEZIONE 16 La tecnologia e la minimizzazione dei costi Parte prima

CAPITOLO 9 La tecnologia e la minimizzazione dei costi

Parte prima

■ Un modello della tecnologia

Mario Gilli lezione 16 2

RIASSUNTO DELLA PUNTATA PRECEDENTE

- Il costo medio di un'impresa con un unico prodotto è definito come CMe(x) = CT(x)/x
- CMe aumenta quando CMa supera CMe e diminuisce quando CMa è inferiore a CMe. Quindi, quando CMe ha forma concava, CMa inizia sotto CMe e lo interseca quando CMe è minimizzato.
- Quando CT(0) = 0, CMa e CMe partono insieme.
 Quando CT(0) > 0, CMe tende a infinito per piccoli livelli di prodotto.

Mario Gilli lezione 16 3

- Il profitto è positivo quando il RMe, che coincide con la domanda inversa, supera il CMe. Il profitto aumenta quando il RMa supera il CMa.
- Data una funzione di costo medio o di ricavo medio, un semplice procedimento grafico consente di trovare il costo marginale o il ricavo marginale per specifici livelli di quantità.
- Il livello di produzione dove il CMe è minimizzato è definito scala di produzione efficiente, che si trova ponendo CMe'(x) = 0 oppure risolvendo l'uguaglianza CMe(x) = CMa(x)

rio Gilli lezione 16

La massimizzazione del profitto non è correlata alla scala efficiente, eccetto in casi fortuiti.

Le imprese con più prodotti complicano la nozione di costo medio, ma i concetti di costo marginale e ricavo marginale rimangono validi e l'uguaglianza CMa = RMa per ogni prodotto rimane la regola fondamentale per massimizzare il profitto.

tario Gilli lezione 16

ARGOMENTI OGGETTO DI STUDIO IN QUESTA LEZIONE

- In questa lezione analizziamo i modelli economici della tecnologia di produzione
- Rappresentiamo la tecnologia sia graficamente, tramite la mappa di isoquanti, sia algebricamente, con le funzioni di produzione. Analizziamo concetti quali la flessibilità e i rendimenti di scala.

Mario Gilli lezione 16 **6**

Imprese

- In questa lezione consideriamo le imprese come soggetti che trasformano gli INPUT in OUTPUT
- la TECNOLOGIA dell'impresa è una descrizione completa della relazione fra l'OUTPUT e gli INPUT
- Utilizziamo due modelli equivalente per descrivere la tecnologia di produzione:
 - □la mappa di isoquanti e
 - □ la funzione di produzione

Mario Gilli lezion

Isoquanti

- Un modo di rappresentare la tecnologia delle imprese è tramite l'uso degli isoquanti.
- Questi sono molto simili alle curve di indifferenza
- Un isoquanto è una curva nello spazio degli input e rappresenta il luogo delle combinazioni di input che producono il medesimo livello di output.
- Poiché abbiamo assunto che entrambi gli inputs sono effettivamente usati nel processo produttivo, ne consegue che gli isoquanti devono essere inclinati negativamente: se la quantità di un input diminuisce, allora la quantità dell'altro deve crescere per compensare e mantenere l'output costante.

Mario Gilli lezione

Il saggio marginale di sostituzione tecnica

- La nozione che gli input possano sostituirsi reciprocamente, mantenendo fisso il livello di produzione, è molto importante: l'inclinazione della tangente all'isoquanto in un punto è il SMST.
- In termini di isoquanti, la flessibilità si riferisce alle variazioni dei saggi marginali di sostituzione tecnica

ario Gilli lezione 16 13

Gli isoquanti convessi e i saggi marginali di sostituzione tecnica

- Le mappe di isoquanti usualmente presentano isoquanti convessi.
- la convessità degli isoquanti implica che, spostandosi lungo qualsiasi isoquanto e riducendo un input per incrementare l'altro, il SMST del secondo input per il primo è decrescente

Mario Gilli lezione 16 14

La tecnologia con SMST costanti o sostituti perfetti possiamo sempre sostituire una unità dell'input 1 con una data quantità dell'input 2. Il singolo isoquanto che rappresenta questa tecnologia è descritto dalla seguente funzione $a_1y_1 + a_2y_2 = x$

Tecnologia con saggi marginali di sostituzione decrescenti

l'ammontare di input 2 richiesto per sostituire una unità dell'input 1 diminuisce all'aumentare dell'input 1 usato e gli isoquanti sono convessi. Una particolare tecnologia che gode di questa proprietà è la

tecnologia Cobb-Douglas

 E' un esempio di tecnologia intermedia tra perfetti sostituti e perfetti complementi

$$y_1^a y_2^b = x \text{ con } a, b > 0$$

rio Gilli lezione 16

Una tecnologia con saggi marginali di sostituzione crescenti

- In questo caso l'ammontare di input 2 richiesto per sostituire una unità dell'input 1 aumenta all'aumentare dell'input 1 usato,
- il SMST è crescente e
- gli isoquanti sono concavi.

Mario Gilli lezione 16

Il saggio marginale di sostituzione tecnica

- Più gli isoquanti assumono una forma ad angolo retto, meno flessibile è la tecnologia; più gli isoquanti assumono forma di linee rette, più la tecnologia è flessibile.
- Il grado di flessibilità della tecnologia definita in questi termini dipende generalmente dalla scala temporale dell'analisi

Mario Gilli lezione 16

Le funzioni di produzione (1)

■ Le funzioni di produzione forniscono gli stessi dati indicati dalle mappe di isoquanti, ma sotto forma di funzione. Una funzione di produzione f indica, per ogni combinazione di input, la quantità massima di prodotto che si può realizzare a partire da tali input:

$$f(y_1, y_2) = x$$

Silli lezione 16 **24**

Le funzioni di produzione (2)

- NB: la funzione di utilità è ordinale, mentre la funzione di produzione è cardinale:
 - il livello di produzione è economicamente rilevante,
- quindi la funzione di produzione non può essere manipolata tramite trasformazioni monotone crescenti

Qual è la relazione tra funzioni di produzione e isoquanti?

Mario Gilli

Sezione orizzontale per derivare gli isoquanti

USO DELLA MAPPA DI ISOQUANTI O DELLA FUNZIONE DI PRODUZIONE (1)

- La mappa di isoquanti spesso rappresenta la tecnologia in modo più trasparente, per esempio, è possibile ricavare un'indicazione della flessibilità tecnologica.
- Mentre è impossibile tracciare su un grafico tutti i possibili livelli di prodotto, le funzioni di produzione offrono dati più completi.

rio Gilli lezione 16 28

USO DELLA MAPPA DI ISOQUANTI O DELLA FUNZIONE DI PRODUZIONE (2)

- Quando dobbiamo risolvere un problema di minimizzazione dei costi di un'impresa, se la tecnologia è codificata nella funzione di produzione possiamo utilizzare il calcolo differenziale.
- Le mappe di isoquanti sono limitate ai casi di un prodotto e due input, le funzioni di produzione consentono di codificare tecnologie di produzione per un prodotto e un numero indefinito di input

Mario Gilli lezione 16 29

Particolari funzioni di produzione:

- 1. La funzione di produzione con input complementi perfetti in rapporto a_1/a_2 è descritta dalla seguente funzione $x = \min\{a_1y_1; a_2y_2\}$
- La funzione di produzione con input sostituti perfetti in rapporto a/ /a₂ è descritta dalla seguente funzione

$$x = a_1 y_1 + a_2 y_2$$

3. La funzione di produzione Cobb-Douglas è descritta dalla seguente funzione con a,b>0 $x=y_1^ay_2^b$

Gilli lezione 16 30

Relazione esistente tra saggio marginale di sostituzione tecnica e funzione di produzione:

E' possibile dimostrare che

$$SMST = \frac{\frac{\partial f(y_1, y_2)}{\partial y_1}}{\frac{\partial f(y_1, y_2)}{\partial y_2}}.$$

La dimostrazione è immediata usando il calcolo differenziale e considerando un isoquanto come una funzione implicita ottenuta eguagliando la funzione di produzione ad una costante.

io Gilli lezione 16

Se definiamo la **produttività marginale dell'input** *i* come il tasso cui un incremento di un dato input pari a una unità aumenta la quantità di prodotto, matematicamente

$$PM_{i} = \frac{\partial f(y_{1}; y_{2})}{\partial y_{i}}$$

allora possiamo riscrivere

$$SMST = \frac{PM_1}{PM_2}.$$

32

Gilli lezione 16

simultanea di tutti gli input nella stessa proporzione, mentre i **rendimenti marginali** riflettono le conseguenze della variazione della quantità impiegata di un unico fattore.

Mario Gilli 38

I rendimenti di scala (1)

- Nelle prime due definizioni, la condizione t > 1 implica che stiamo osservando la reazione della produzione agli incrementi di scala degli input; nella terza definizione, poiché abbiamo il segno di uguaglianza, possiamo sia aumentare sia diminuire proporzionatamente la scala degli input.
- L'aspetto più importante da osservare è che ciascuna di queste definizioni implica che la diseguaglianza (o l'eguaglianza) è valida per ogni insieme di input e per tutte le variazioni proporzionali di tali input

Mario Gilli lezione 16 42

l rendimenti di scala (2)

- Perché una tecnologia potrebbe presentare rendimenti di scala crescenti? E perché potrebbe presentare rendimenti decrescenti?
 - Una ragione che spiega i rendimenti crescenti è di ordine puramente tecnologico. La produzione di acciaio negli altiforni, la generazione di elettricità attraverso la combustione del carbone sono esempi in cui, almeno sino a una scala piuttosto elevata, i processi diventano più efficienti all'aumentare della scala.
 - Un'altra ragione che spiega i rendimenti crescenti implica i concetti di specializzazione del lavoro e di produzione di massa.
 - Alcune spese di produzione, soprattutto quelle correlate alla conoscenza, non necessariamente si incrementano in proporzione alla scala di produzione.
 - I motivi generalmente addotti per spiegare i rendimenti decrescenti riguardano i costi di gestione e coordinamento

Mario Gilli lezione 16 43

I rendimenti di scala (3)

- Le definizioni formali dei rendimenti di scala crescenti, decrescenti e costanti hanno alla base la soddisfazione della corrispondente diseguaglianza per tutte le variazioni di scala e tutti i vettori di input considerati.
- Una tecnologia che presenta rendimenti crescenti per livelli bassi di produzione e rendimenti decrescenti per livelli più elevati non soddisfa alcuna delle definizioni date, pertanto non si può parlare di *rendimenti crescenti* e decrescenti da un punto di vista formale

I rendimenti di scala (4)

- Il SMST non dipende dai rendimenti di scala ma dai rendimenti marginali
- Quindi gli isoquanti continuano ad avere le forme viste in precedenza al variare dei rendimenti di scala
- Come mostra il disegno seguente varia solo la disposizione degli isoquanti nel piano, cioè il livello di produzione associato alle combinazioni di fattori della produzione

Mario Gilli lezione 16 45

Sostituti perfetti e rendimenti di scala

$$x = A(y_1^{\alpha} + y_2^{\alpha}) \Big|_{0 < A}^{0 < \alpha < \infty}$$

Rendimenti di scala :

$$t^{\alpha} \cdot x = At^{\alpha} (y_1^{\alpha} + y_2^{\alpha})$$

crescenti se $\alpha > 1$

costanti se $\alpha = 1$

decrescent ise $\alpha < 1$

lario Gilli lezione 16

Funzioni "Cobb-Douglas" e rendimenti di scala

$$x = y_1^{\alpha} \cdot y_2^{\beta}$$

 $0 < \alpha < 1$ $0 < \beta < 1$

Rendimenti di

di scala :

$$t^{\alpha+\beta}\cdot x = (t\cdot y_1)^{\alpha}\cdot (t\cdot y_2)^{\beta}$$

crescenti se $\alpha + \beta > 1$

costanti se $\alpha + \beta = 1$

decrescent i se $\alpha + \beta < 1$

Mario Gilli

lezione 16

- Riepilogo

- Gli isoquanti rappresentano il luogo delle combinazioni di input che mantengono l'output costante e rappresentano la TECNOLOGIA DI PRODUZIONE, cioè come combinare gli input per produrre un determinato livello di output.
- La quantità di output aumenta al muoversi verso nord-est nello spazio delle quantità.

Mario Gilli lezione 16

50

- Un modo alternativo ed equivalente di rappresentare la tecnologia è la FUNZIONE DI PRODUZIONE.
- Il Saggio Marginale di Sostituzione Tecnica misura l'inclinazione di un isoquanto.
- Gli isoquanti per sostituti perfetti sono linee parallele.
- Gli isoquanti per complementi perfetti hanno la forma ad L.
- Le tecnologie convesse sono molto più comuni nella realtà.
- Esempi di tecnologie convesse sono le Cobb-Douglas

Mario Gilli

lezione 16