武汉大学 2011--2012 第一学期概率统计 B 试题

(54 学时 A)

一、(12分) 若事件 B 和 A 满足: P(A) = 0.5, P(B) = 0.4 , P(AB) = 0.3

求 (1) $P(A \cup B)$; (2) P((A - B)|A).

- 二、(12 分)对以往数据的分析表明,当机器良好时,产品的合格率为 90%;当机器故障时,合格率为 30%。若每天开机时机器的良好率为 75%。试求某日的第一件产品不合格时,机器良好的概率。
- 三、(12分)随机变量X,Y独立且都服从泊松分布 $p(\lambda)$:

(1)证明: Z = X + Y 服从参数为 2λ 的泊松分布。

(2)若 $P{X = 1} = P{X = 0}$,求 $E(X^2Y^2)$ 。

四、(12 分) 随机变量X 服从区间(0,4) 的均匀分布;

(I)求 关于 y 的方程 $y^2 + Xy + 1 = 0$ 有实根的概率;

(2) 求 $Y = X^2$ 的概率密度。

五、(14分) 若随机变量(X,Y) 的联合概率密度为

$$f(x,y) = \begin{cases} 4xy & 0 < x \le 1, 0 < y \le 1 \\ 0 & \text{ } x \ne 0 \end{cases}$$

- (1)求随机变量 X 和 Y 的边缘概率密度 $f_{x}(x)$; $f_{y}(y)$:
- (2) X 和 Y 是否独立 ? (3) 求 Z=X+Y的概率密度。
- 六、(12分)一商店经销某种商品,每天的进货量 X 与销售量 Y 都服从[10,20]上的均匀分布,而且相互独立。已知商店每售出一单位商品可获利 1200 元,积压一单位则亏损 300 元。 试求此商店每天的平均利润。
- 七、(14分) 若随机变量 X 服从正态分布 $N(\mu, \sigma^2)$, $X_1, X_2 \dots X_n$ 是其样本,

求(1) μ , σ^2 的极大似然估计。(2) 判别他们的无偏性。如果有偏,化为无偏估计,并计算其方差。

八、(12 分) 若 X 服从正态分布 $N(\mu, \sigma^2)$, $X_1, X_2 \dots X_{16}$ 是其样本, $\overline{X}=567.2$ 、 $S^2=121.0$

问: μ 是否显著大于 560? (α = 0.05)($z_{0.05}$ = 1.65, $z_{0.025}$ = 1.96)

 $(t_{0.05}(15) = 1.75, t_{0.025}(15) = 2.13, t_{0.05}(16) = 1.75, t_{0.025}(16) = 2.12)$

满绩小铺: 1433397577, 搜集整理不易, 自用就好, 谢谢!