Proof: Arzela-Ascoli Theorem

We need to show \mathcal{F} is complete and totally bounded.

 $(C(X,\mathbb{R}^n),d_n)$ is complete, \mathcal{F} is closed in $C(X,\mathbb{R}^n) \implies \mathcal{F}$ is complete

Let $\delta > 0$. WTS \exists a finite collection S of functions in $C(X, \mathbb{R}^m)$ s.t. $\forall f \in \mathcal{F}, \exists g \in S$ s.t. $d_u(f, g) < \delta$.

 \mathcal{F} is bounded, so there exists K, s.t. $|f(x)| \leq K$, $\forall x \in X$, $\forall f \in \mathcal{F}$.

By uniform continuity, $\exists \delta > 0$ s.t. $d(u,v) < \delta_1 \implies |f(u) - f(v)| < \frac{\varepsilon}{4}, \forall x \in X, \forall f \in \mathcal{F}.$

By total boundedness of X, $\exists x_1, \dots, x_p \in X$ s.t. for some $i \in \{1, \dots, p\}$ then $|f(x) - f(x_i)| < \frac{\delta}{4} \forall f \in \mathcal{F}$

By total boundedness of $B_k(0) \subset \mathbb{R}^n$, \exists finitely many $y_1, y_2, \dots, y_q \in \mathbb{R}^n$ s.t. $|y - y_j| \leq \frac{\delta}{4}$

Consider all functions $\alpha: \{x_1, \dots, x_p\} \to \{y_1, \dots, y_p\}.$

There are finitely many such α , q^p .

For each α , if $\exists f \in \mathcal{F}$ such that $|f(x_i) - \alpha(x_i)| < \frac{\delta}{4}, \forall i = 1, \dots, p$

Choose one such f, call it g_{α} .

Let $S = \{g_{\alpha}\}$. This is a finite collection.

Then
$$|g_{\alpha}(x_i) - \alpha(x_i)| < \frac{\delta}{4} \forall i = 1, \dots, p$$

Let $f \in \mathcal{F}$. For each i = 1, ..., p choose one y_i s.t. $|f(x_i) - y_i| < \frac{\delta}{4}$.

Let α be a function that assigns to each x_i the corresponding y_j . Then $|f(x_i) - \alpha(x_i)| < \frac{\delta}{4} \forall i = 1, \dots, p$ Then $\exists g_{\alpha}$ as above.

Let $x \in X$. Choose x_i such that $d(x, x_i) < \delta_1$.

$$|f(x) - g_{\alpha}(x)| \le |f(x) - f(x_i)| + |f(x_i) - \alpha(x_i)| + |\alpha(x_i) - g_{\alpha}(x_i)| + |g_{\alpha}(x_i) - g_{\alpha}(x)| < \frac{\delta}{4} + \frac{\delta}{4} + \frac{\delta}{4} + \frac{\delta}{4} = \delta$$

$$\circ x'(t) = f(t, x(t)), f \text{ cts in } U \subset \mathbb{R} \times \mathbb{R}.$$

If in addition f is locally Lipschitz cts with respect to x, then $\exists h > 0$ such that (*) has a unique solution defined for $t \in [t_0 - h, t_0 + h]$.

If f is not locally Lipschitz, then uniqueness can fail.

E.g.
$$x'(t) = \sqrt{|x(t)|}$$

$$x(0) = 0$$

Existence still holds for small enough h.

Theorem 0.1 (Peano's Theorem) Suppose $f \in C(U)$, $(t_0, x_0) \in U$

Then $\exists h > 0$ s.t. (*) has a solution on $[t_0 - h, t_0 + h]$

$$\circ \iff$$

$$0 \circ x(t) = x_0 + \int_{t_0}^t f(s, x(s)) ds$$

$$x(t) = x_0 + f(t_0, x_0)(t - t_0)$$

$$x(t) = x(t_1) + f(t_1, x(t_1))(t - t_1)$$

Approximate w piecewise linear fcns, that limits to the function.