Variance Networks When Expectation Does Not Meet Your Expectations

Dmitry Molchanov

May 11, 2018

https://arxiv.org/abs/1803.03764

Stochastic Neural Networks

- Dropout
- Batch Normalization
- Bayesian Neural Networks
- Train time:
 - Inject noise
- Test time:
 - Mean propagation
 - Ensembling
 - Distillation / fast dropout / ...

Is noise informative?

- Dropout: 1 dropout rate per layer, no information in the noise
- FFG posterior
 - Small variance
 - Learns weight "uncertainty"; we can permute variances with almost no accuracy drop
- More complex posteriors?
 - Multiplicative normalizing flows? Maybe...
- Can we explicitly learn informative noise for better ensembling?

Outline

- Variance networks
- Variational dropout variance network
- Mean propagation
- Open questions

Variance networks

Consider a FFG distribution over the weights:

$$w_{ij} \sim N(\mu_{ij}, \sigma_{ij}^2)$$

$$w_{ij} = \mu_{ij} + \epsilon_{ij}\sigma_{ij}$$

• How to learn informative σ ? Eliminate μ completely!

$$w_{ij} \sim N(0, \sigma_{ij}^2)$$
$$w_{ij} = \epsilon_{ij}\sigma_{ij}$$

* Conditions apply

- Works almost the same as usual models!*
- Okay, this is strange:
 - Weights have random signs
 - Mean activation is 0 for every object
 - Why would this even work?!

Variance networks demystified

Let's look at the distribution of the activations:

$$y = Wx$$

$$w_{ij} \sim N(0, \sigma_{ij}^{2})$$

$$y_{i} \sim N\left(0, (\sigma_{i}^{2})^{\mathsf{T}}(x^{2})\right)$$

$$y_{i} = \epsilon_{i} \sqrt{(\sigma_{i}^{2})^{\mathsf{T}}(x^{2})}$$

(a.k.a. the local reparameterization trick)

Nonlinearities break this symmetry!

Variance networks demystified

ReLU = Abs + Binary Dropout

Variance networks demystified

- Nonlinearity breaks the symmetry
- The information is stored in the magnitude of the activations
- Biases add some more expressivity

Would other symmetric distributions work?

Symmetric binary dropout:

$$w_{ij} = \sigma_{ij}\epsilon_{ij}$$

$$P(\epsilon_{ij} = -1) = P(\epsilon_{ij} = 1) = \frac{1}{2}$$

Symmetric uniform distribution:

$$w_{ij} = \sigma_{ij}\epsilon_{ij}$$
$$\epsilon_{ij} \sim U(-1, 1)$$

All work approximately the same (but the LRT would be tricky…)

Outline

- Variance networks
- Variational dropout ⇔ variance network
- Mean propagation
- Open questions

Variational Dropout:

FFG posterior

$$w_{ij} \sim q(w_{ij}) = N(\mu_{ij}, \alpha \mu_{ij}^2)$$

Log-uniform prior distribution

$$p(w_{ij}) \propto \frac{1}{|w_{ij}|}$$

• ELBO favors large dropout rates α

$$L = E_{q(w)}p(y \mid x, w) - KL(q(w) \mid\mid p(w)) \to \max_{\mu, \alpha}$$

$$w_{ij} \sim q(w_{ij}) = N(\mu_{ij}, \alpha \mu_{ij}^2)$$

Kingma et. al. 2015 clipped alpha. Why?

Moreover, we can substitute

$$q(w_{ij}) = N(\mu_{ij}, \alpha \mu_{ij}^2) \approx N(0, \alpha \mu_{ij}^2)$$

$$KL(N(\mu_{ij}, \alpha \mu_{ij}^2) || N(0, \alpha \mu_{ij}^2)) = \frac{\alpha \mu_{ij}^2 + \mu_{ij}^2}{2\alpha \mu_{ij}^2} - \frac{1}{2} = \frac{1}{2\alpha} \to 0$$

- The predictions remain the same
- It is a pure variance network now!
- Only works with layer-wise and neuron-wise parameterization
- Start training as a usual low-variance network
- Smoothly transition into a variance-only network
- Faster, more stable training than pure variance-only

Variance network is variational dropout

$$q(w_{ij}) = N(0, \sigma_{ij}^{2})$$

$$KL(N(0, \sigma_{ij}^{2}) || Log U) = const$$

ELBO is now fairly simple:

$$L = E_{q(w)}p(y \mid x, w) + const$$

Ironic, one of the strongest priors results in no regularization...

- Variance network is actually the best possible variational dropout network!
- Sparse Variational Dropout is just a poor local optimum

	Layer	Neuron	Weight	Additive
ELBO	$-5.9\cdot 10^2$	$-7.7 \cdot 10^2$	$-6.4 \cdot 10^4$	$-2.3 \cdot 10^4$
Det. accuracy	11.3	11.3	81.3	96.3
Ens. accuracy	99.2	99.2	99.2	99.2

$$q(w_{ij}) = \mathcal{N}(w_{ij} \mid \mu_{ij}, \alpha \mu_{ij}^2)$$
 layer-wise $q(w_{ij}) = \mathcal{N}(w_{ij} \mid \mu_{ij}, \alpha_j \mu_{ij}^2)$ neuron-wise $q(w_{ij}) = \mathcal{N}(w_{ij} \mid \mu_{ij}, \alpha_{ij} \mu_{ij}^2)$ weight-wise $q(w_{ij}) = \mathcal{N}(w_{ij} \mid \mu_{ij}, \sigma_{ij}^2)$ additive

- Variance network is actually the best possible variational dropout network!
- Sparse Variational Dropout is just a poor local optimum ☺
- Why it happens?

$$L = E_{q(w)}p(y \mid x, w) - KL(q(w) \mid\mid p(w))$$

- Variance network "overfits": 1.0 training accuracy, low cross entropy
- KL divergence is exactly zero!
- Sparse Variational Dropout also has 1.0 training accuracy and low loss...
- ... but KL-term is huge

Sparsity in sparse variational dropout

- Then why is sparse variational dropout sparse?
- We aided the optimization process to get stuck in a sparse solution
- Variances are initialized with very small values
- In order to increase α it is easer to push μ to 0 than to increase $\log \sigma$

Do other models lead to variance networks?

Maybe the improper prior of Variational Dropout is at fault?

Student's t-distribution:

$$KL\left(N(\mu,\alpha\mu^{2})\mid\mid Students(\nu)\right) \simeq$$

$$\simeq const - \frac{1}{2}\log\alpha - \frac{1}{2}\log\mu^{2} + \frac{\nu+1}{2}E_{\epsilon}\log\left(\nu + \mu^{2}(1+\sqrt{\alpha}\epsilon)^{2}\right) \to$$

$$\to const - \frac{1}{2}\log\alpha + E_{\epsilon}\log(1+\sqrt{\alpha}\epsilon) \simeq KL(N(\mu,\alpha\mu^{2})\mid\mid LogU)$$

- LogU is a limit case of Student's t for $\nu = 0$
- Student's t with $\nu \approx 0$ behaves exactly like Variational Dropout

Do other models lead to variance networks?

Maybe the improper prior of Variational Dropout is at fault?

• ARD prior: $p(w_{ij}) = N(0, \sigma_{ij}^2), q(w_{ij}) = N(\mu_{ij}, \alpha \mu_{ij}^2)$ $KL(N(\mu,\alpha\mu^2) \mid\mid LogU) \simeq$

$$\simeq const - \frac{1}{2}\log\alpha + E_{\epsilon}\log(1 + \sqrt{\alpha}\epsilon)$$

$$KL\left(N\left(\mu,\alpha\mu^2\right)\mid\mid N\left(0,\sigma_*^2\right)\right) = \frac{1}{2}\log(1+\alpha^{-1})$$

- Maybe Variational Dropout wasn't the right way to extend Gaussian Dropout?

LogU

Experiments: classification

Architecture	Dataset	Network	Accuracy (%)		
			Stoch.	Det.	Ens.
LeNet5	MNIST	Dropout	99.1	99.4	99.4
		Variance	95.9	10.1	99.3
VGG-like	CIFAR10	Dropout	91.0	93.1	93.4
		Variance	91.3	10.0	93.4
VGG-like	CIFAR100	Dropout	77.5	79.8	81.7
		Variance	76.9	5.0	82.2

Experiments: adversarial attacks

Experiments: reinforcement learning

Experiments: reinforcement learning

Outline

- Variance networks
- Variational dropout variance network
- Mean propagation
- Open questions

Mean propagation

- In all conventional stochastic networks we could perform mean propagation
 - a.k.a. weight scaling rule
 - a.k.a. deterministic procedure
- It fails miserably on variance networks
- Why it fails and how to test whether it fails?
- DNN is a highly non-linear function of its weights
- Which weights can be substituted with their expectations?

Mean propagation

- DNN is a highly non-linear function of its weights
- Which weights can be substituted with their expectations?

$$q(w_{ij}) = N(\mu_{ij}, \sigma_{ij}^2)$$

- Can propagate $w_{ij} \rightarrow \mu_{ij} \Leftrightarrow DNN$ is almost linear in $w_{ij} \in (\mu_{ij} \sigma_{ij}, \mu_{ij} + \sigma_{ij})$
- Compare the curvature with the posterior variance:

$$\varkappa_{ij} = \sigma_{ij}^2 \frac{\partial^2}{\partial W_{ij}^2} [\log p(y \mid x, W, W_{\text{net}})] \bigg|_{W=M}$$

- Replace $w_{ij} \rightarrow \mu_{ij}$ if $\kappa_{ij} < threshold$, else sample $w_{ij} \sim q(w_{ij})$
 - Replace if σ_{ij} is small enough or if function is essentially linear

Mean propagation:

Mean propagation

Mean propagation:

- We can potentially make sigma very sparse!
- Probably sparsity follows from an optimization issue ②

Outline

- Variance networks
- Variational dropout variance network
- Mean propagation
- Open questions

Is it really more diverse?

 Consider a variance layer, followed by "abs" non-linearity:

$$|y_i| = \left| \epsilon_i \sqrt{\left(\sigma_i^2\right)^{\mathsf{T}}(x^2)} \right| = |\epsilon_i| \sqrt{\left(\sigma_i^2\right)^{\mathsf{T}}(x^2)}$$

- $E|\epsilon_i| \approx 0.8, \sqrt{D|\epsilon_i|} \approx 0.6$
- Approximation $|\epsilon_i| \approx N(E|\epsilon_i|, D|\epsilon_i|)$ has the same performance!
- Now the level of noise is similar to Gaussian dropout N(1, 0.5)
- Mean propagation?

Is it really more diverse?

- So Gaussian dropout $N(1, +\infty)$ is equivalent to N(1, 0.5)?!
- The non-linearity is at fault
 - ReLU is better (adds binary dropout on top)
- Empirically the uncertainty of variance networks is similar to dropout
 - Out-of-domain uncertainty
 - Toy regression
- What is the maximum effective amount of noise we can inject?

What happens during the phase transition?

- Before phase transition: information in the weights
- After phase transition: information in the variances

During phase transition - ???

Both mean propagation and mean zeroing work well!

Variance networks

- A fun counter-intuitive model
- First practical example where mean propagation fails that hard
- Variational dropout leads to unexpected results
- We probably need better ways to approximate the posterior to obtain better ensembles...
- Why do we need variance networks? Are they any good?
 What are the implications of the DNN loss structure,
 robustness to noise, etc.?