

Securing IoT Servers: Shallow vs. Deep Neural Network Architectures

Niranjan W. Meegammana, Shilpa Sayura Foundation, Sri Lanka Harinda Fernando, Sri Lanka Institute of Information Technology, Sri Lanka

INTRODUCTION

An IoT Environment

- Application servers in IoT environments face critical challenges from network attacks.
- Conventional IDS and firewalls struggle to mitigate these attacks due to the unique network topologies, heterogeneity, and resource limitations of IoT networks.
- We investigate the effectiveness of shallow and deep neural network (NN) architectures in detecting attacks on IoT application servers.

OBJECTIVES

- Develop four shallow and a deep NN models.
- Create two datasets with 20 and 40 features.
- Train and test four models using two datasets.
- Compare and evaluate the performance of four models.

SOLUTION

- Creating varied complex NN models.
- Deploy them on IoT environments with varying resource levels.

Presented at
AINTEC 2024 Conference
ACM SIGCOMM 2024
UNSW, Sydney
Australia

METHODOLOGY

- Follow Machine Learning (ML) pipeline .
- Balance the UNSW-NB15 dataset using undersampling
- Create two datasets with 20 significant features obtained from Pearson Correlation and Information and 40 numeric features.
- Splitting: training (90%), validation (5%), and testing (5%).
- Shallow model: 1 layer (512 neurons)
- Deep model: 7 layers (256, 128, 64, 32, 16, 8, 4 neurons).
- Hyperparameter tuning using keras random search.

Best hyperparameters of four models

Configuration	Shallow20	Shallow40	Deep20	Deep40
Model Parameters	11265	49313	21008	54433
Data Inputs	20	40	20	40
Hidden layers	1	1	7	7
Neurons per layer	512	512	256, 128, 64,	256, 128, 64,
			32, 16, 8, 4	32, 16, 8, 4
activation_layer1	Relu	Tanh	tanh	ReLU
activation_layer2	-	-	tanh	ReLU
activation_layer3	-	-	ReLU	leaky_relu
activation_layer4	-	-	ReLU	ReLU
activation_layer4	-	-	ReLU	ReLU
activation_layer6	-	-	ReLU	ReLU
activation_layer7	-	-	leaky_relu	leaky_relu
optimizer	Rmsprop	Adam	Adam	Adam
learning_rate	0.001	0.001	0.001	0.001
weight_initializer	he_normal	he_normal	he_normal	glorot_uniform
batch_size	256	64	8	16
Output function	Sigmoid	Sigmoid	Sigmoid	Sigmoid

Four Models Trained

- Train four models using supervised learning.
- Test model performance and resource utilization.
- Compare and evaluate the model performance.

RESULTS

Validation loss and accuracy change during training Model performance evaluation

Performance Data	Shallow20	Deep20	Shallow40	Deep40
Training Time (S)	289	902	512	962
Max. Validation Accuracy	0.93	0.94	0.97	0.98
End Epoc	10	61	39	68
Minimum Validation Loss	0.166	0.130	0.088	0.057
Prediction Time	0.55	0.56	0.57	0.59
Test Accuracy	0.93	0.94	0.97	0.98
Precision	0.94	0.96	0.97	0.98
Recall	0.92	0.92	0.97	0.98
F1 Score	0.93	0.94	0.97	0.98
ROC AUC Score	0.986	0.990	0.996	0.998
Average Precision	0.987	0.991	0.996	0.998

Resource Utilization

Performance Data	Shallow20	Deep20	Shallow40	Deep40
Model Size (Kb)	110	190	648	708
Prediction Time (s)	0.55	0.56	0.57	0.59
CPU Usage %	0.25	0.26	0.30	0.32
Memory Usage (GB)	0.016	0.017	0.019	0.021

CONCLUSION

- Deep40 model demonstrates superior accuracy (98%) and generalization, with high resource usage (0.32%).
- Shallow20 models resource-efficient with reduced accuracy (95% of Deep40), low resource usage (75% of Deep40) suitable for resource-constrained environments.

REFERENCES

Aggarwal, Charu C. 2023. Neural Networks and Deep Learning. Springer Nature.

Bianchini, Monica, and Franco Scarselli. 2014. "On the Complexity of Neural Network Classifiers: A Comparison between Shallow and Deep Architectures." *IEEE Transactions on Neural Networks and Learning Systems* 25 (8): 1553–65. https://doi.org/10.1109/tnnls.2013.2293637.

Chollet, François. 2018. *Deep Learning with Python*. Shelter Island (New York, Estados Unidos): Manning. Hapke, Hannes, and Catherine Nelson. 2020. *Building Machine Learning Pipelines : Automating Model Life Cycles with Tensorflow*. Beijing; Boston; Farnham; Sebastopol; Tokyo O'reilly.

Moustafa, Nour, Mohamed Abdel-Basset, and Reda Mohamed. 2022. Deep Learning Approaches for Security

Threats in IoT Environments. Wiley-IEEE Press.

