

Norges teknisk–naturvitenskapelige universitet Institutt for datateknologi og informatikk TDT4102 Prosedyreog objektorientert programmering Vår 2020

Øving 9

Frist: 2020-03-13

Mål for denne øvingen:

- Dynamisk minnehåndtering med pekere
- Implementering av kopikonstruktører og operator=
- Mer om operatoroverlasting

Generelle krav:

- Bruk de eksakte navn og spesifikasjoner gitt i oppgaven.
- Teorioppgaver besvares med kommentarer i kildekoden slik at læringsassistenten enkelt finner svaret ved godkjenning.
- Denne øvingen skal implementeres uten hjelp fra std_lib_facilities.h.
- 70% av øvingen må godkjennes for at den skal vurderes som bestått.
- Øvingen skal godkjennes av stud.ass. på sal.
- Det anbefales å benytte en programmeringsomgivelse(IDE) slik som Visual Studio Code.

Anbefalt lesestoff:

• Kapittel 17 og 18 i PPP.

Når man implementerer klasser er det vanlig å lage seg én .h-fil og én .cpp-fil per klasse. F.eks. hvis klassen heter Car, lager man Car.cpp og Car.h, og skriver all koden for klassen Car i disse filene. Du bør følge denne normen i oppgaver der det bes om å skrive klasser.

I denne øvingen skal vi ikke bruke std_lib_facilities.h. Du må derfor inkludere bibliotekene du trenger, og holde orden på navnerom selv.

Dynamisk minnehåndtering (15%)

I denne deloppgaven skal vi lage noen funksjoner for å bli kjent med dynamisk minnehåndtering. For en kjapp oppfriskning av hvorfor dette er nyttig, og hvordan dette gjøres, kan du se i vedlegget bakerst i øvingen. Det står også godt forklart i kapittel 17 i boken (spesielt 17.4).

a) Lag en funksjon void fillInFibonacciNumbers(int result[], int length). Funksjonen skal regne ut length antall tall i Fibonacci-tallfølgen og lagre disse i tabellen (array) result.

Fibonaccifølgen er følgen av tall som starter med 0 og 1 og der hvert påfølgende element er summen av de to foregående: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 osv. Funksjonen skal ikke selv gjøre noe minnehåndtering, og skal lagre verdiene i tabellen som tas inn som argument.

- b) Lag en funksjon void printArray(int arr[], int length). Funksjonen skal skrive ut length elementer fra tabellen.
- c) Lag en funksjon void createFibonacci(). Funksjonen skal be brukeren om lengden på tallrekka, dynamisk allokere en tabell av riktig størrelse, fylle denne med tall og skrive ut. Funksjonen kan oppføre seg omtrent som dette, erstatt kommentarene med din kode:

```
void createFibonacci() {
    // 1. Spør brukeren hvor mange tall som skal genereres
    // 2. Alloker minne til en tabell som er stor nok til tallrekka
    // 3. Fylle tabellen med fillInFibonacciNumbers()
    // 4. Skriv ut resultatet til skjerm med printArray()
    // 5. Frigjør minnet du har reservert
}
```

Test funksjonene ved å kalle createFibonacci() fra main().

2 En generell matriseklasse (25%)

I denne øvingen skal vi implementere en generell matriseklasse for å gjøre det mulig å representere matriser av vilkårlig størrelse.

a) Lag en klasse kalt Matrix. Klassen skal inneholde lagringsplass for $M \times N$ tall av typen double, som skal dynamisk allokeres ved instansiering. M og N er to vilkårlige heltall større enn 0.

I matriseoperasjoner kommer vi til å henvise til elementene i matrisen etter rad og kolonne. Derfor er det nyttig å ordne medlemmene i matrisen som en tabell. Siden M og N er dimensjonene på matrisen er det lurt å ta vare på disse verdiene i medlemsvariabler, f.eks rows og columns.

Det er også behov for å kunne si at en matrise er «ugyldig», altså at matrisen ikke er i en gyldig tilstand. En matrise som ikke er initialisert er ugyldig. Resultatet av en aritmetisk operasjon på to matriser av forskjellig størrelse skal også returnere en ugyldig matrise. Det er mulig å merke matrisen som ugyldig ved å bruke nullptr. Dersom du gjør dette trenger du ikke en ekstra variabel for å markere matrisen som ugyldig.

Nyttig å vite: Dynamisk allokerte todimensjonale tabeller

Det er to forskjellige teknikker for å lage dynamisk allokerte todimensjonale tabeller:

- Allokere en lang endimensjonal tabell og regne om fra todimensjonal indeks til endimensjonal indeks.
- Du kan brukere peker til peker teknikken. Her vil du få en «tabell av tabeller» og kan bruke todimensjonale indekser direkte.

Du husker kanskje at en peker bare er en variabel som inneholder en "minneadresse", altså hvor i datamaskinen noe ligger lagret. F.eks.

På denne måten kan vi for eksempel lage et array som innholder pekere, hvor hver av pekerne inneholder adressen til et annet array.

b) Lag følgende konstruktører for matrisen:

Matrix()

• En standardkonstruktør (default constructor) som skal initialisere matrisen til den ugyldige tilstanden. I praksis skal du ikke allokere minne i denne konstruktøren. Det eneste du må passe på er at tabellpekeren settes til en ugyldig verdi.

```
Matrix(int nRows, int nColumns)
```

• Skal konstruere en gyldig nRows x nColumns-matrise, initialisert som 0-matrisen (alle elementer er lik 0). Her må du allokere en matrise og initialisere verdiene.

Nyttig å vite: Delegerende konstruktør

For å forenkle denne oppgaven kan du gjenbruke kode for å lage de ulike konstruktørene. Imidlertid er det generelt smart å ikke kopiere kode rundt omkring i kodebasen din. For å unngå dette kan man for eksempel bruke en felles medlemsfunksjon som begge konstruktørene kaller. I C++11 kan man også bruke en delegerende konstruktør. Her er et eksempel på bruk av en slik konstruktør:

```
class Eksempel {
    public:
    Eksempel(int a) {
        // Kode for konstruktør én
    }

    Eksempel(int a, int b) : Eksempel{a} {
        // Kode for konstruktør to
        // Konstruktør én brukes for å behandle
        // det første argumentet
    }
}
```

```
explicit Matrix(int nRows)
```

• Denne skal konstruere en gyldig nRows x nRows-matrise, initialisert som identitetsmatrisen. Bruk delegerende konstruktør.

I lineær algebra er identitetsmatrisen (også kjent som enhetsmatrisen) en $N \times N$ -matrise med verdien 1 på diagonalen og 0 på de resterende plassene. Identitetsmatrisen har samme funksjon i matrisemultiplikasjon som tallet 1 i vanlig multiplikasjon: når en kvadratisk matrise multipliseres med enhetsmatrisen får man den opprinnelige matrisen som syar.

Vi bruker her explicit-nøkkelordet, som ikke dekkes av pensum. Dette nøkkelordet gjør at den aktuelle konstruktøren ikke kan brukes til å «automatisk» konvertere andre typer til den aktuelle klassen. I denne oppgaven bruker vi explicit for å unngå potensielle feil som kan være vanskelig å oppdage.

```
~Matrix()
```

- Destruktøren til Matrix. Denne skal frigi/slette alt dynamisk allokert minne.
- c) Lag set- og get-funksjoner for matrisen. get-funksjonen skal hente ut verdien til ett element i matrisen, uttrykt ved rad og kolonne. Tilsvarende skal set-funksjonen sette verdien til ett element. Funksjonene skal ha følgende prototyper:

```
double get(int row, int col) const;
void set(int row, int col, double value);
```

d) (Valgfritt) Overlast operator[] for matriseklassen. Man kan da slå opp i vår matriseklasse på samme måte som i blant annet std::vector. Eksempel på bruk:

```
Matrix A{4};
std::cout << A[0][2] << ", " << A[3][3] << std::endl;
Skriver ut 0, 1</pre>
```

- e) Lag medlemsfunksjonene getRows() const og getColumns() const. Disse skal returnere henholdsvis antall rader og kolonner i matrisen.
- f) Lag medlemfunksjonen isValid() const. Denne funksjonen skal returnere true om matrisen er gyldig, og ellers false.
- g) Overlast operator<. Å overlaste denne operatoren lar oss bruke Matrix med cout, som lar oss skrive ut matrisen på en enkel måte. Dette gjør også testing av koden vår enklere. Pass på at du håndterer ugyldige matriser.
- h) Test funksjonene dine. Lag en main()-funksjon, og opprett i den matriser med hver av de tre konstruktørene. Skriv så ut verdiene fra hver av de tre matrisene.

Test også at medlemsfunksjonene til Matrix-klassen gjør det de skal.

Merk at vi i denne oppgaven skal fremprovosere noen feil, så programmet ditt kan og skal oppføre seg litt rart.

a) Gitt følgende kode, hva skrives ut når dummyTest kjører?

```
void dummyTest() {
                                           Dummy a;
                                           *a.num = 4;
                                           Dummy b{a};
class Dummy {
                                           Dummy c;
    public:
                                           c = a;
                                           cout << "a: " << *a.num << endl;</pre>
    int *num;
                                           cout << "b: " << *b.num << endl;</pre>
    Dummy() {
        num = new int{0};
                                           cout << "c: " << *c.num << endl;
    }
                                           *b.num = 3;
    ~Dummy() {
                                           *c.num = 5;
        delete num;
    }
                                           cout << "a: " << *a.num << endl;</pre>
                                           cout << "b: " << *b.num << endl;</pre>
};
                                           cout << "c: " << *c.num << endl;
                                           cin.get(); // For å hindre at
                                           // programmet avslutter med en gang
                                       }
```

b) Opprett en ny kildefil (.cpp) med tilhørende headerfil, og skriv koden fra forrige oppgave inn der. Kall deretter dummyTest() fra main().

Stemte svaret ditt fra forrige oppgave? Kan du forklare hvorfor/hvorfor ikke?

NB: Programmet kræsjet sannsynligvis i slutten av dummyTest. Kan du forklare hvorfor?

c) Implementer kopikonstruktøren for Dummy.

Hint: Det kan være lurt å se i vedlegget dersom du er usikker på hvordan du skal gjøre dette. Det står også mer om dette i kapittel 18 i boken.

Kjør programmet - skriver programmet ut noe annet enn forrige gang?

Programmet kræsjer trolig fremdeles, da vi ikke har overlastet kopioperatoren (operator=) enda.

d) Implementer operator= for Dummy.

Programmet skal nå kunne kjøre fra start til slutt uten å kræsje. Skriver programmet nå ut det du forventet?

$\boxed{4}$ Overlaste kopiering og tilordning (25%)

Når vi har dynamisk allokert minne, må vi ordne enkelte ting selv som før ble gjort automatisk for oss. I tillegg til å passe på allokering og deallokering av minne, må vi også bestemme hvordan objektene våre skal kopieres. Vedlegget bakerst i øvingen gir en mer utfyllende beskrivelse av hvorfor og hvordan de følgende oppgavene skal implementeres.

a) Implementer kopikonstruktøren til Matrix-klassen. Konstruktøren skal implementeres i henhold til prinsippene bak dyp kopiering (deep copying), som beskrevet i vedlegget.

```
Matrix(const Matrix & rhs)
```

Kopikonstruktøren skal sørge for at det blir instansiert en ny matrise av samme størrelse som rhs og at alle verdier blir kopiert fra rhs. Hvis rhs er en ugyldig matrise skal selvsagt kopien også være en ugyldig matrise.

b) Implementer operator= for Matrix-klassen. Denne operatoren skal også implementeres i henhold til prinsippene bak dyp kopiering.

Pass på at operatoren din ikke lekker minne. En enkel måte å implementere operatoren riktig på er å bruke copy-and-swap-teknikken, som er forklart i vedlegget.

De påfølgende oppgavene kan ikke gjøres uten problemer hvis denne oppgaven ikke er gjort.

5 Operatoroverlasting (20%)

- a) Overlast operator +=. Dersom matrisene er av ulike dimensjoner, skal resultatet av operator-kallet bli en ugyldig matrise. Dvs. venstre operand skal bli en ugyldig matrise og returverdien skal være en ugyldig matrise.
- b) Overlast operator +. Dersom brukeren forsøker å gjøre en ulovlig operasjon, f.eks. ved å summere matriser av forskjellige dimensjoner, skal operatoren returnere en ugyldig matrise.

 Tips: Prøv å gjenbruke implementasjonen av +=. Bruk også gjerne kopikonstruktøren.
- c) Test løsningen din. Definer matrisene A, B og C som følger, og sjekk at du får svar som forventet av A += B + C.

$$A = \begin{bmatrix} 1.0 & 2.0 \\ 3.0 & 4.0 \end{bmatrix}, B = \begin{bmatrix} 4.0 & 3.0 \\ 2.0 & 1.0 \end{bmatrix}, C = \begin{bmatrix} 1.0 & 3.0 \\ 1.5 & 2.0 \end{bmatrix}$$

Svar: B og C skal være uendret. $A = \begin{bmatrix} 6.0 & 8.0 \\ 6.5 & 7.0 \end{bmatrix}$

d) (Valgfritt) Implementer operatorene -, -=, * og *=.

Merk: Det finnes to versjoner av operator-. En som kun har en høyreside, og en med både venstre- og høyreside.

Vedlegg: Forklaring av dynamisk minne, kopikonstruktør og operator =

Dynamisk minnehåndtering

Hittil i øvingsopplegget har vi blant annet brukt std::vector, som tar seg av minneallokkering automatisk. std::vector er implementert ved bruk av dynamisk allokert minne, men bruker ofte flere reallokeringer og mer minne enn nødvendig - dette gjør ikke noe i mange applikasjoner, men kan føre til ytelsesproblemer i f.eks. innebygde systemer (embedded systems). Dermed er det nyttig å kjenne til bruk av dynamisk allokert minne, uten std::vector. Merk at ytelse *ikke* er fokus i dette emnet.

Du lurer nå kanskje på hva som er poenget med å lære seg dynamisk minnehåndtering når vi kan bruke std::vector istedenfor, og vi ikke bryr oss om ytelse. Vi lærer det bort fordi det er gir en forstålese for hvordan f.eks std::vector er bygd opp. std::vector kan fra nå av tenkes på som noe annet enn enn «black-box», du lærer var som foregår «bak kulissene». Du lærer også om lavnivå programmering, som kan være nyttig å kunne hvis du f.eks skal jobbe med innebygde systemer.

Vi kan reservere minne mens programmet kjører, men vi kan ikke lage nye variabelnavn «på sparket». Derfor er pekere vesentlig når vi skal bruke dynamisk minne. For å reservere dynamisk minne i C++ bruker vi operatoren new, som returnerer en peker til begynnelsen av det minnet programmet har fått tildelt. Uten å ta vare på denne pekeren i en pekervariabel har vi ingen måte å lese fra eller skrive til dette minnet.

Merk at når vi reserverer minne med **new** kan ikke kompilatoren vite hvor lenge programmet har bruk for minnet, og vi må selv ta ansvar for å rydde opp etter oss. Det gjør vi med **delete**-operatoren:

```
void newAndDelete() {
    // Alloker minne for en int med new
    int *x = new int {};

    cout << "Skriv inn et heltall: ";
    cin >> *x;
    cout << "Takk! Du skrev: " << *x << endl;

    // Frigjør minnet når vi er ferdig med det
    delete x;
    x = nullptr;
}</pre>
```

Dersom man ikke gjør dette vil det over programmets levetid bli allokert mer og mer minne som ikke blir frigitt, helt til datamaskinen er tom for minne og programmet kræsjer. Dette kalles en minnelekkasje. Minnelekasjer er også i mange tilfeller en sikkerhetsrisiko. Det oppstår lett minnelekkasjer når man bruker dynamisk minne, så beste praksis er å kun bruke det der det er absolutt nødvendig. I eksempelet over er bruk av dynamisk minne helt unødvendig, men det er kun ment som et trivielt eksempel for å demonstrere syntaksen.

Konvensjonen er at den delen av programmet som reserverer minnet «eier» minnet og er derfor også ansvarlig for å frigjøre minnet. I prosedyral kode vil det som regel bety at funksjonen der minnet blir reservert også frigjør minnet, og i objektorientert kode (som bruker klasser) betyr det at man allokerer minne i konstruktøren til et objekt og frigjør det i destruktøren.

For å allokere minne til en tabell gjør man følgende:

```
void dynamicArrayExample() {
    int n = 0;
    cout << "How many numbers do you want to type? ";</pre>
    // Allocate memory for double array of size n
    double *numbers = new double[n] {};
    for(int i = 0; i < n; i++) {
        cout << "Input number: ";</pre>
        cin >> numbers[i];
    }
    cout << "You entered: ";</pre>
    for(int i = 0; i < n; i++) {</pre>
        cout << numbers[i] << " ";</pre>
    }
    cout << endl;</pre>
    // Release the memory when we're done with it
    delete[] numbers;
    numbers = nullptr;
}
```

Legg merke til at når vi frigjør minnet som er reservert for et array så må vi bruke delete[] og ikke delete!

Introduksjon til klasser med dynamisk allokerte medlemsvariabler

Det oppstår et spesialtilfelle vi må ta hensyn til når vi har dynamisk allokerte medlemsvariabler i en klasse.

Se på følgende eksempel:

```
class Example {
    private:
    int *anInt;

    public:
    Example(int i) {
        anInt = new int{i};
    }

    Example() {
        anInt = new int{0};
    }

    ~Example() {
        delete anInt;
    }

    int get() const { return *anInt; }
};
```

Ved første øyekast ser dette ut som en veldefinert klasse. Den konstrueres riktig, og dersom konstruktøren fullfører kan vi være sikre på at vi alltid har et initialisert heltall lagret i anInt. Problemet vi ser etter dukker først opp når vi skriver denne koden:

```
Example a{ 5 };
Example b;
b = a; // Hva skjer her?
```

Når vi skriver b = a kaller vi på operator =. Vi har imidlertid ikke definert noen slik operator. Operatoren som blir kalt er da en som kompilatoren lager automatisk. Denne operatoren tar en binær kopi, som vil si at den kopierer medlemsvariabel for medlemsvariabel uten å bry seg om noen av dem er dynamisk allokert.

Dette er et problem fordi den eneste medlemsvariabelen i klassen Example, anInt, er en peker. Dermed er det *pekeren* og *ikke* minnet pekeren peker til som blir kopiert. Resultatet er at b og a begge har en peker som peker til nøyaktig samme instans av det dynamisk allokerte heltallet!

La oss ta en kikk på følgende kodesnutt:

```
Example a{ 50 };
if (a.get() > 0) {
    Example b = a;
    cout << b.get() << endl;
}</pre>
```

Hva skjer i koden over?

Først legger vi merke til at blokken til if-setningen kommer til å bli kjørt siden vi vet at a er 5, og derfor større enn null. Vi kopierer a til b, b skrives ut, og idet vi forlater blokken vil b bli destruert. Med andre ord vil b sin destruktør bli kalt. Husk fra definisjonen av klassen at destruktøren sletter minnet som er dynamisk allokert og pekt på av anInt.

Hva skjedde med a sin anInt? Siden b og a hadde pekere til det samme dynamisk allokerte heltallet, vil pekeren i a nå være ugyldig.

Hvordan kan vi fikse dette? Det vi har beskrevet over kalles en *grunn kopi* (shallow copy), og er ikke alltid en dårlig løsning. I så fall må man holde nøye orden på hvor mange pekere som peker til det samme minnet, og det er utenfor pensum i dette emnet.

Løsningen er å implementere såkalt *dyp kopiering* (deep copying) i operator =. En dyp kopi av en peker kopierer også *minneområdet* som pekeren peker til. Når vi kopierer et objekt vil medlemsvariablene i det nye objektet peke til nye, dynamisk allokerte minneområder, og vi unngår problemene beskrevet over.

Kopikonstruktør og operator =

For å implementere dyp kopiering for Example-klassen, må vi legge til eksplisitte implementasjoner av en $kopikonstrukt \sigma r$ og operator =.

Kopikonstruktøren har alltid formen Klassenavn(const Klassenavn &). Det er denne som kalles når du initialiserer et objekt med et annet objekt av samme type, for eksempel ved å skrive Example b{a};.

```
Example::Example(const Example &other) : anInt{ nullptr } {
    this->anInt = new int{}; // Vi allokerer det vi trenger av minne
    *anInt = other.get(); // Vi kopierer verdier fra other til this
}
```

Tilordningsoperatoren kan imlementeres på forskjellige måter, en måte er vist i forelesning 10. Der allokerer tilordningsoperatoren nytt minne, kopierer over verdiene fra høyresiden og til slutt frigjør det gamle minnet.

En annen vanlig og god teknikk å bruke er «copy-and-swap». Kort fortalt bruker vi en call-by-value parameter for høyreoperanden, da tar vi inn en kopi (rhs) som automatisk opprettes med bruk av kopi-konstruktøren.

Deretter swapper vi alle medlemsvariabler (inkl. pekere til allokert data) mellom de to objektene. Dermed får this (venstresiden) tilordnet høyresidens verdier (og allokerte data) og rhs ender opp med det som skal slettes. Siden rhs er en lokal variabel vil destruktøren dens automatisk bli kalt når den går ut av scope.

```
Example &Example::operator=(Example rhs) {
    // Vi tar inn rhs som call-by-value
    std::swap(anInt, rhs.anInt) // Vi swapper pekere
    return *this;
}
```

std::swap ligger i biblioteket <utility>, og er veldig nyttig i dette tilfellet.