

Project By: PRASAD JADHAV

```
import pandas as pd
In [1]:
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from imblearn.over_sampling import SMOTE
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import StandardScaler
        from sklearn.model_selection import cross_val_score
        from sklearn.metrics import accuracy_score
        from sklearn.linear_model import LogisticRegression
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.ensemble import GradientBoostingClassifier
        from sklearn import svm
        from sklearn.model_selection import GridSearchCV
        from sklearn.model_selection import RandomizedSearchCV
        import warnings
In [2]:
        warnings.filterwarnings('ignore')
        dataset = pd.read_csv('heart.csv')
In [3]:
        dataset.shape
        (1025, 14)
Out[3]:
In [4]: dataset.head()
```

Out[4]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
Out[4]:	0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	0
	1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	0
	2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	0
	3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	0
	4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	0

In [5]: dataset.tail()

age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target Out[5]: 0.0 2.8 1.0 0.0 1.4

In [6]: dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1025 entries, 0 to 1024
Data columns (total 14 columns):

Ducu	COTAMMIS (COCUI		. O ± a 13 ,	, •
#	Column	Non-N	Null	Count	Dtype
0	age	1025	non-	-null	int64
1	sex	1025	non-	-null	int64
2	ср	1025	non-	-null	int64
3	trestbps	1025	non-	-null	int64
4	chol	1025	non-	-null	int64
5	fbs	1025	non-	-null	int64
6	restecg	1025	non-	-null	int64
7	thalach	1025	non-	-null	int64
8	exang	1025	non-	-null	int64
9	oldpeak	1025	non-	-null	float64
10	slope	1025	non-	-null	int64
11	ca	1025	non-	-null	int64
12	thal	1025	non-	-null	int64
13	target	1025	non-	-null	int64
dtype	es: float64	1(1),	inte	54(13)	

dtypes: float64(1), int64(13)
memory usage: 112.2 KB

In [7]: dataset.describe()

Out[7]:	age		sex cp		trestbps	trestbps chol		restecg	
	count	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	1025.000000	1025.000000	
	mean	54.434146	0.695610	0.942439	131.611707	246.00000	0.149268	0.529756	
	std	9.072290	0.460373	1.029641	17.516718	51.59251	0.356527	0.527878	
	min	29.000000	0.000000	0.000000	94.000000	126.00000	0.000000	0.000000	
	25%	48.000000	0.000000	0.000000	120.000000	211.00000	0.000000	0.000000	
	50%	56.000000	1.000000	1.000000	130.000000	240.00000	0.000000	1.000000	
	75%	61.000000	1.000000	2.000000	140.000000	275.00000	0.000000	1.000000	
	max	77.000000	1.000000	3.000000	200.000000	564.00000	1.000000	2.000000	

In [8]: dataset.corr()

Out[8]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	eì
age	1.000000	-0.103240	-0.071966	0.271121	0.219823	0.121243	-0.132696	-0.390227	380.0
sex	-0.103240	1.000000	-0.041119	-0.078974	-0.198258	0.027200	-0.055117	-0.049365	0.139
ср	-0.071966	-0.041119	1.000000	0.038177	-0.081641	0.079294	0.043581	0.306839	-0.401
trestbps	0.271121	-0.078974	0.038177	1.000000	0.127977	0.181767	-0.123794	-0.039264	0.061
chol	0.219823	-0.198258	-0.081641	0.127977	1.000000	0.026917	-0.147410	-0.021772	0.067
fbs	0.121243	0.027200	0.079294	0.181767	0.026917	1.000000	-0.104051	-0.008866	0.049
restecg	-0.132696	-0.055117	0.043581	-0.123794	-0.147410	-0.104051	1.000000	0.048411	-0.06
thalach	-0.390227	-0.049365	0.306839	-0.039264	-0.021772	-0.008866	0.048411	1.000000	-0.380
exang	0.088163	0.139157	-0.401513	0.061197	0.067382	0.049261	-0.065606	-0.380281	1.000
oldpeak	0.208137	0.084687	-0.174733	0.187434	0.064880	0.010859	-0.050114	-0.349796	0.310
slope	-0.169105	-0.026666	0.131633	-0.120445	-0.014248	-0.061902	0.086086	0.395308	-0.267
ca	0.271551	0.111729	-0.176206	0.104554	0.074259	0.137156	-0.078072	-0.207888	0.107
thal	0.072297	0.198424	-0.163341	0.059276	0.100244	-0.042177	-0.020504	-0.098068	0.197
target	-0.229324	-0.279501	0.434854	-0.138772	-0.099966	-0.041164	0.134468	0.422895	-0.438

In [9]: dataset.cov()

0	$\Gamma \cap I$	
uul	[IJ]	

	age	sex	ср	trestbps	chol	fbs	restecg	thalac
age	82.306450	-0.431198	-0.672251	43.085733	102.890625	0.392164	-0.635490	-81.44608
se	-0.431198	0.211944	-0.019491	-0.636863	-4.708984	0.004465	-0.013395	-0.52283
cţ	-0.672251	-0.019491	1.060160	0.688565	-4.336914	0.029108	0.023687	7.26829
trestbps	43.085733	-0.636863	0.688565	306.835410	115.657227	1.135165	-1.144685	-15.82282
cho	l 102.890625	-4.708984	-4.336914	115.657227	2661.787109	0.495117	-4.014648	-25.84179 ⁻
fbs	0.392164	0.004465	0.029108	1.135165	0.495117	0.127111	-0.019583	-0.07271
restecç	-0.635490	-0.013395	0.023687	-1.144685	-4.014648	-0.019583	0.278655	0.58790
thalach	-81.446089	-0.522838	7.268296	-15.822822	-25.841797	-0.072719	0.587909	529.26332
exanç	0.378144	0.030288	-0.195451	0.506798	1.643555	0.008303	-0.016373	-4.13611
oldpeak	2.218825	0.045812	-0.211407	3.857971	3.933301	0.004549	-0.031085	-9.45602
slope	-0.947742	-0.007584	0.083727	-1.303344	-0.454102	-0.013634	0.028073	5.61807
Ca	2.539458	0.053021	-0.187017	1.887842	3.949219	0.050406	-0.042482	-4.92991
tha	I 0.407093	0.056697	-0.104385	0.644446	3.209961	-0.009333	-0.006718	-1.40029
targe	t -1.040392	-0.064346	0.223903	-1.215584	-2.579102	-0.007339	0.035496	4.86519

In [10]: sns.distplot(dataset['target']) plt.show()

In [11]: sns.scatterplot(dataset['age'],dataset['target'])
 plt.show()


```
In [12]: features = [feature for feature in dataset.columns]
In [13]: plt.figure(figsize=(15,15))
   plt.suptitle('Univariate Analysis of Features',fontweight='bold',fontsize=15,y)
   for i in range(0,len(features)):
        plt.subplot(10,4,i+1)
        sns.kdeplot(x=dataset[features[i]],shade=True,color='red')
        plt.tight_layout()
```



```
In [14]: plt.figure(figsize = (15,15))
plt.suptitle('Univariate Analysis of Features',fontweight='bold',fontsize=20,y:

for i in range(0,len(features)):
    plt.subplot(10,4,i+1)
    sns.boxplot(data=dataset,x=features[i],color='red')
    plt.xlabel(features[i])
    plt.tight_layout()
```



```
In [ ]: for features in features:
    dataset = remove_outliers(dataset, features)
```

```
In [15]: dataset['target'].value_counts()
```

Out[15]: 0 499 Name: target, dtype: int64

```
In [16]: X = dataset.drop('target',axis=1)
y = dataset['target']
```

```
In [17]: X_res,y_res = SMOTE().fit_resample(X,y)
```

In [18]: X_train,X_test,y_train,y_test = train_test_split(X_res,y_res,test_size=0.20,rain)

```
In [19]: st = StandardScaler()
   X_train = st.fit_transform(X_train)
   X_test = st.fit_transform(X_test)
```

```
print(f'{model} Average cross val score is {np.mean(score)}')
             model_df[model] = round(np.mean(score)*100,2)
         model = LogisticRegression()
In [21]:
         model_val(model,X,y)
         LogisticRegression() Accuracy is 0.8388625592417062
         LogisticRegression() Average cross val score is 0.8429268292682928
         model = DecisionTreeClassifier()
In [22]:
         model_val(model,X,y)
         DecisionTreeClassifier() Accuracy is 1.0
         DecisionTreeClassifier() Average cross val score is 0.9931707317073171
In [23]:
         model = RandomForestClassifier()
         model_val(model,X,y)
         RandomForestClassifier() Accuracy is 1.0
         RandomForestClassifier() Average cross val score is 0.9970731707317073
         model = GradientBoostingClassifier()
In [24]:
         model_val(model,X,y)
         GradientBoostingClassifier() Accuracy is 0.957345971563981
         GradientBoostingClassifier() Average cross val score is 0.9639024390243902
         model_df
In [25]:
         {LogisticRegression(): 84.29,
Out[25]:
          DecisionTreeClassifier(): 99.32,
          RandomForestClassifier(): 99.71,
          GradientBoostingClassifier(): 96.39}
         import pickle
In [26]:
          import joblib
         pickle.dump(model,open('heart_disease_prediction.pkl','wb'))
In [27]:
         model = pickle.load(open('heart_disease_prediction.pkl','rb'))
In [28]:
In [30]: new_df = pd.DataFrame({
              'age':52,
              'sex':1,
              'cp':0,
              'trestbps':125,
              'chol':212,
              'fbs':0,
              'restecg':1,
              'thalach':168,
              'exang': 0,
              'oldpeak':1.0,
              'slope':2,
              'ca':2,
              'thal':3
          },index=[0])
In [31]: model.predict(new_df)
```

```
Out[31]: array([0], dtype=int64)

In [32]: p = model.predict(new_df)
    prob = model.predict_proba(new_df)
    if p == 1:
        print('Heart Disease!')
        print(f'You will be Heart Disease! with Probability of {prob[0][1]:.2f}')
    else:
        print('Not-Heart Disease!')
    Not-Heart Disease!
```

CONNECT WITH ME:

Linkedin GitHub kaggle • Mcdium