A Novel and Robust Face Clustering Method via Adaptive Difference Dictionary

Jiaxiang Ren¹, Shengjie Zhao¹, Kai Yang¹ and Brian Nlong Zhao²

¹ Key Laboratory of Embedded System and Service Computing, Tongji University ² Shanghai High School International Division

14 July, 2017

Contents

- 1 Sparse Subspace Clustering
 - Introduction to Sparse Subspace Clustering
 - Algorithm of Sparse Subspace Clustering
 - Experiments of SSC
 - Analysis
- 2 Enhanced Sparse Subspace Clustering
 - Algorithm
 - Improvements
- 3 Q & A

Introduction to Sparse Subspace Clustering

Sparse Subspace Clustering(SSC)

- E. Elhamifar and R. Vidal, "Sparse subspace clustering", CVPR 2009. IEEE Conference on. IEEE, pp. 2790–2797.
- E. Elhamifar and R. Vidal, "Sparse subspace clustering: Algorithm, theory, and applications," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11, pp. 2765–2781, Nov. 2013.

Tongji University ICME HIM'17 14 July, 2017 3 / 16

Face Clustering

Input & Target

- Input : variant face images from multiple subjects
- Target:find images that belong to the same subject

The Extended Yale B Dataset

- images from 38 subjects
 - 64 images per subject
 - resolution: 192 × 168

SSC Algorithm

The Self-Expressiveness Property of the Data

Each data point in a union of subspaces can be efficiently reconstructed by a combination of other points in the dataset.

$$\begin{aligned} &\min & & \| \boldsymbol{C} \|_1 + \lambda \| \boldsymbol{E} \|_1 \\ &\text{s.t.} & & \boldsymbol{Y} = \boldsymbol{Y} \boldsymbol{C} + \boldsymbol{E}, & \operatorname{diag}(\boldsymbol{C}) = \boldsymbol{0}, \end{aligned} \tag{1}$$

- $\mathbf{c} = [\mathbf{c}_1, \dots, \mathbf{c}_N]$ is the correlative coefficient matrix
- $\qquad \qquad \mathbf{Y} = [\mathbf{Y}_{N_1}, \dots, \mathbf{Y}_{N_K}] = [\mathbf{y}_1, \dots, \mathbf{y}_N] \in \mathbb{R}^{M \times N} \text{ is the input matrix, where } N = \sum_{k=1}^K N_k$
- $m{E} = [m{e}_1, \dots, m{e}_N] \in \mathbb{R}^{M \times N}$ is the auxiliary outliers matrix

$$\mathbf{W} = |\mathbf{C}| + |\mathbf{C}^{\mathsf{T}}| \tag{2}$$

where $\mathbf{W} = |\mathbf{C}| + |\mathbf{C}|^T$ is the similarity matrix, which means the similarity between the point i and j is equal to the sum of the absolute values of their correlative coefficients, i.e., $|c_{ij}| + |c_{ij}|$.

Tongji University ICME HIM'17 14 July, 2017 5 / 16

Experiments Results

Algorithm	LSA	SCC	LRR	LRR-H	LRSC	SSC	
2 Subjects							
Mean	32.80	16.62	9.52	2.54	5.32	1.86	
Median	47.66	7.82	5.47	0.78	4.69	0.00	
3 Subjects							
Mean	52.29	38.16	19.52	4.21	8.47	3.10	
Median	50.00	39.06	14.58	2.60	7.81	1.04	
5 Subjects							
Mean	58.02	58.90	34.16	6.90	12.24	4.31	
Median	56.87	59.38	35.00	5.63	11.25	2.50	
8 Subjects							
Mean	59.19	66.11	41.19	14.34	23.72	5.85	
Median	58.59	64.65	43.75	10.06	28.03	4.49	
10 Subjects							
Mean	60.42	73.02	38.85	22.92	30.36	10.94	
Median	57.50	75.78	41.09	23.59	28.75	5.63	

Figure: Clustering Error (%) of Different Algorithms on the Extended Yale B Dataset without Preprocessing the Data ¹

Tongji University ICME HIM'17 14 July, 2017

¹E. Elhamifar and R. Vidal, "Sparse subspace clustering: Algorithm, theory, and applications," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 35, no. 11, pp. 2765–2781, Nov. 2013.

Analysis

Analysis of Results

Figure: Coefficient matrix obtained when clustering error is less than 10%.

Figure: Coefficient matrix obtained when clustering error is higher than 20%.

The Defects of SSC

- Accuracy decreases for complicated variations
- Latent structures of multiple subspaces are too complicated to recover

Tongji University ICME HIM'17 14 July, 2017 7 / 16

Figure: The sparse correlative coefficients of the 76-th sample recovered by the proposed ESSC.

Adaptive Difference Dictionary

- Specific features for clustering
- Common features for robustness
- More robust for complicated variations such as disguises (improvement up to 9.0%)
- Scalable and generalized for clustering more subjects

Main Steps

- Construction of the adaptive difference dictionary
- 2 Sparse optimization program
- 3 Spectral clustering

Figure: Face clustering with the adaptive difference dictionary. The adaptive differences play the role to separate the samples so that they can gather in their own subspaces.

Construction of the Adaptive Difference Dictionary

Computing coarse coefficient matrix:

$$\mathbf{Y} = \mathbf{YC} + \mathbf{E}$$
, s.t. $\operatorname{diag}(\mathbf{C}) = \mathbf{0}$. (3)

Constructing the difference dictionary items:

$$SCR(\boldsymbol{c}_i) \triangleq \frac{\max(\boldsymbol{c}_i)}{\|\boldsymbol{c}_i\|}.$$
 (4)

$$\begin{aligned} & \boldsymbol{D} \triangleq \{\boldsymbol{d}_* | \forall \mathsf{SCR}(\boldsymbol{c}_*) > 0.1\} \in \mathbb{R}^{M \times N_d}, \\ & \boldsymbol{d}_* \triangleq \boldsymbol{y}_* - \boldsymbol{y}_{\mathsf{max}(\boldsymbol{c}_*)}, \end{aligned} \tag{5}$$

Tongji University ICME HIM'17 14 July, 2017 10/16

Sparse optimization program via the adaptive difference dictionary

Computing robust coefficient matrix:

$$\mathbf{Y} = \begin{bmatrix} \mathbf{Y} \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{B} \end{bmatrix} + \mathbf{Z}, \quad \text{s.t.} \quad \text{diag}(\mathbf{C}) = \mathbf{0},$$
 (6)

where ${\it Z}$ models the Gaussian-noise in data. The corresponding constrained optimization program is

min
$$\left\| \begin{bmatrix} \mathbf{C} \\ \mathbf{B} \end{bmatrix} \right\|_{1} + \frac{\lambda_{z}}{2} \left\| \mathbf{Z} \right\|_{F}^{2}$$

s.t. $\mathbf{Y} = \begin{bmatrix} \mathbf{Y}\mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{B} \end{bmatrix} + \mathbf{Z}, \ \mathbf{C}^{\mathsf{T}} \mathbf{1} = \mathbf{1}, \ \mathsf{diag}(\mathbf{C}) = \mathbf{0},$ (7)

which can be solved using the ADMM approach. Thereafter, we use a spectral clustering to get the final clustering results.

Tongii University ICME HIM'17 14 July, 2017 11 / 16

Geometric Interpretation

Figure: The sparse representation for recovering an image sample $\mathbf{y} \in \mathcal{S}_1$ in the intersection of \mathcal{S}_1 and $\mathcal{S}_2 \oplus \mathcal{S}_3$. (a) The distance to \mathcal{P}_1 is shorter than to \mathcal{P}_{-1} , so the sparse representation recovers correctly. (b) The distribution of the samples in \mathcal{S}_1 is odd because the spanned subspace is close to a line. The distance to \mathcal{P}_1 is larger than to \mathcal{P}_{-1} , so the sparse representation recovers incorrectly. (c) The adaptive difference dictionary generates the common feature space \mathcal{S}_D , where any image sample can "travel around" to find the nearest polytope of the subspace correctly.

Tongji University ICME HIM'17 14 July, 2017 12 / 16

Clustering Variant Face Images

 $\textbf{Table:} \ \text{Clustering Error Rates (\%) of Different Algorithms on the AR Database Using Different Features for } \textit{K} = 100 \ \text{Subjects}$

Variation		Method				
$Sample \times Subject$	Feature (Dimension)	LRR	SSC	RPCA+SSC	ESSC	
Expression	Downsample(55×40)	73.00	14.50	16.00	13.00	
4 × 100	LBP(5192)	70.75	8.75	4.25	10.00	
Illumination	Downsample(55 \times 40)	65.67	31.00	30.33	31.00	
3×100	LBP(5192)	67.67	6.00	6.00	0.33	
Disguise	Downsample(55 \times 40)	68.00	57.33	60.33	55.00	
3×100	LBP(5192)	65.33	17.67	14.33	12.67	

The clustering error for ESSC is the lowest in almost all cases which confirms the effectiveness of the adaptive difference dictionary.

Tongji University ICME HIM'17 14 July, 2017 13 / 16

Clustering Scalability

Figure: Clustering error rates for variant disguises on the AR database as a function of the number of subjects.

Q & A

Thanks!

Tongji University ICME HIM'17 14 July, 2017 16 / 16