CURSO COMPLETO DE LANGCHAIN, LANGGRAPH Y AGENTES DE IA CON PYTHON

SANTIAGO HERNÁNDEZ RAMOS

Tema 1 – Introducción a LangChain: Tu primera aplicación con IA y LLMs

Guía de referencia

Usa esta guía como recordatorio rápido de componentes, clases y parámetros clave. Está pensada para cualquier proyecto, no solo para los ejemplos del curso.

• 1 · Configuración del entorno

Componente	Comando/Acción	Comentario
Entorno virtual	python -m venv venv	Crea un entorno aislado para las dependencias del proyecto
Activar entorno	venv\Scripts\activate (Windows)	Verifica que aparezca (venv) en tu terminal
Instalar LangChain	pip install langchain langchain-openai langchain-google- genai	Instala el framework base y conectores para proveedores
Estructura de carpetas	Organizar por temas/módulos	Facilita la navegación y mantenimiento del código

• 2 · Proveedores y modelos (clases y opciones)

Proveedor	Clase LangChain	Parámetros clave (ejemplos)	Notas
OpenAl	from langchain_openai import ChatOpenAI	<pre>model="gpt-4-mini" , temperature=0.0-1.0</pre>	$\begin{array}{c} \textbf{temperature} & \uparrow \rightarrow \text{m\'as creatividad/aleatoriedad;} \\ \downarrow \rightarrow \text{m\'as determinismo/consistencia.} \end{array}$
Google GenAl (Gemini)	<pre>from langchain_google_genai import ChatGoogleGenerativeAI</pre>	<pre>model="gemini-2.5-flash" , temperature=</pre>	Interfaz equivalente: cambiar proveedor requiere mínimos cambios.

Patrón común de inicialización

```
1lm = ChatOpenAI(model="gpt-4-mini", temperature=0.7)
# o
1lm = ChatGoogleGenerativeAI(model="gemini-2.5-flash", temperature=0.7)
```

• 3 · Gestión de credenciales (variables de entorno)

Sistema	Variable típica	Ejemplo de definición	Uso en código
Windows (CMD)	OPENAI_API_KEY	setx OPENAI_API_KEY "tu_clave"	LangChain las detecta automáticamente al crear ChatOpenAI .
Windows (CMD)	GOOGLE_API_KEY	setx GOOGLE_API_KEY "tu_clave"	Reabre VS Code/terminal para recargar el entorno.
macOS/Linux (bash/zsh)	OPENAI_API_KEY / GOOGLE_API_KEY	export OPENAI_API_KEY="tu_clave"	Añádelo a tu ~/.bashrc / ~/.zshrc para persistir.

Buenas prácticas

- Nunca hardcodees la API key en el script.
- Cierra y reabre la terminal tras definir la variable para que el proceso herede el valor.

4 · Invocación básica del LLM (Hello World)

Paso	Qué haces	Snippet
Definir prompt	Texto de entrada (puede venir de usuario o del programa)	pregunta = "¿En qué año llegó el ser humano a la Luna por primera vez?"
Invocar	Usas la interfaz unificada de LangChain	<pre>respuesta = llm.invoke(pregunta)</pre>
Leer resultado	Obtienes el contenido generado	<pre>print(respuesta.content)</pre>

Notas

- .invoke() es la interfaz estándar (sin importar el proveedor).
- El objeto devuelto suele incluir content con el texto generado.

• 5 · Prompt Templates (plantillas reutilizables y con variables)

Componente	Función	Sintaxis
PromptTemplate	Define prompts reutilizables con variables	from langchain.prompts import PromptTemplate
input_variables	Lista de variables dinámicas	<pre>input_variables=["nombre", "tema"]</pre>
template	Texto con placeholders	"Hola {nombre}, hablemos de {tema}"
Variables	Se sustituyen en tiempo de ejecución	Usar {variable} dentro del template

Patrón de uso

```
from langchain.prompts import PromptTemplate

plantilla = PromptTemplate(
    input_variables=["nombre"],
    template="Saluda al usuario.\nNombre del usuario: {nombre}\nAsistente:"
)

# (Opcional) Render manual:
prompt_renderizado = plantilla.format(nombre="Carlos")
```

Consejos

- Usa \n para estructurar instrucciones (roles, pasos, secciones).
- Declara todas las variables dinámicas en input_variables .
- Mantén el prompt claro y específico (instrucciones → contexto → salida esperada).

• 6 · Cadenas (Chains) con LangChain

Objetivo: Encadenar pasos como "plantilla \rightarrow LLM \rightarrow salida", con una API coherente.

Enfoque clásico (deprecado pero aún visto en código existente):

```
from langchain.chains import LLMChain

chain = LLMChain(llm=llm, prompt=plantilla)
resultado = chain.run(nombre="Carlos")  # pasa las variables del prompt
print(resultado)  # Texto generado por el LLM
```

Punto	Clave
LLMChain	API clásica; verás avisos de deprecated. Aún útil para leer/entender proyectos existentes.
Invocación	.run(**kwargs) pasa las variables para sustituir en la plantilla.
Evolución	La tendencia actual es usar la sintaxis basada en runnables/LCEL (se cubrirá en secciones posteriores).

• 7 · Parámetros y prácticas recomendadas

- Temperatura:
 - o $0.0-0.2 \rightarrow \text{Respuestas precisas/estables (QA factual, extracción)}.$
 - o 0.3-0.7 → Equilibrio general (asistentes, reformulación).
 - o 0.8–1.0 → Creatividad alta (brainstorming, copy).
- Trazabilidad: imprime/guarda prompt y parámetros (útil para depuración).
- Versiona prompts: tratar plantillas como artefactos (pueden romper resultados).
- Estructura por temas: carpetas por módulo/lección facilitan localizar ejemplos.
- Proveedor intercambiable: misma interfaz (.invoke) para OpenAl/Gemini → reduce vendor lock-in.

• 8 · LCEL (LangChain Expression Language) — cadenas modernas

Concepto	Cómo se hace con LCEL	Ventaja
Construir cadena	pipeline = plantilla 11m	Interfaz estándar y consistente
Invocar	<pre>result = pipeline.invoke({"var": "valor"})</pre>	Interfaz unificada con invoke() (igual que un LLM).
Paso de variables	Diccionario con claves = input_variables	Más claro que kwargs dinámicos.
Salida	result.content (objeto BaseMessage)	Estandariza la respuesta con LLMs.
Sustituye a	LLMChain().run() (deprecado)	Evita APIs distintas, warnings y ambigüedad.

Patrón mínimo

• 9 · Tipos de mensajes y roles en LangChain

Clase	Rol	Uso típico
SystemMessage	Sistema/Desarrollador	Instrucciones de comportamiento, tono, límites. (No se muestran al usuario.)
HumanMessage	Usuario	Preguntas y peticiones del usuario
AlMessage	Asistente	Respuestas del modelo LLM
BaseMessage	Clase padre	Base de todos los mensajes

```
# Ejemplo de uso
mensajes = [
    SystemMessage(content="Eres un asistente útil"),
    HumanMessage(content="¿Cuál es la capital de Francia?"),
    AIMessage(content="La capital de Francia es París")
]
```

• 10 · Streamlit para aplicaciones IA

Componente	Método	Función
Configuración página	st.set_page_config()	Título, favicon, layout
Elementos UI	<pre>st.title() , st.markdown()</pre>	Añadir títulos y texto
Session State	st.session_state	Persistir datos entre ejecuciones
Chat UI	st.chat_message(role)	Mostrar mensajes de chat
Input	st.chat_input()	Campo de entrada para usuario
Ejecutar app	streamlit run archivo.py	Lanza servidor local

```
# Configuración inicial
st.set_page_config(
    page_title="Mi Chatbot",
    page_icon="@"
)

# Inicializar estado
if "mensajes" not in st.session_state:
    st.session_state.mensajes = []

# Mostrar mensaje con rol
with st.chat_message("assistant"):
    st.markdown("Hola, ¿en qué puedo ayudarte?")
```

• 11 · Gestión de memoria en chatbots

Estrategia	Implementación	Consideración
Session State	st.session_state["mensajes"]	Persiste durante la sesión del navegador
Lista de mensajes	Almacenar como lista Python	Fácil de iterar y actualizar
Filtrado de roles	<pre>isinstance(msg, SystemMessage)</pre>	No mostrar mensajes del sistema
Historial completo	Enviar todos los mensajes al LLM	Mantiene contexto de conversación

```
# Patrón para gestión de memoria
if "mensajes" not in st.session_state:
    st.session_state.mensajes = []

# Mostrar historial
for mensaje in st.session_state.mensajes:
    if isinstance(mensaje, SystemMessage):
        continue # No mostrar mensajes del sistema

role = "assistant" if isinstance(mensaje, AIMessage) else "user"
    with st.chat_message(role):
        st.markdown(mensaje.content)
```

• 12 · Generación de respuestas con contexto

Estrategia	Método	Ventajas
Invoke directo	<pre>llm.invoke(st.session_state.mensajes)</pre>	Simple pero sin formato específico
Con plantilla	prompt 11m con LCEL	Control sobre comportamiento y formato
Streaming	.stream() en lugar de .invoke()	Respuesta progresiva como ChatGPT
Variables dinámicas	{"mensaje": pregunta, "historial": mensajes}	Contexto estructurado

```
# Con plantilla de prompt (recomendado)
prompt = PromptTemplate(
    input_variables=["historial", "mensaje"],
    template="""Eres un asistente útil y amigable.
    Historial: {historial}
    Responde a: {mensaje}
    Asistente:"""
)

cadena = prompt | 11m
respuesta = cadena.invoke({
    "historial": st.session_state.mensajes,
    "mensaje": pregunta
})
```

• 13 · Respuestas en streaming

Paso	Código	Propósito
Stream chunks	for chunk in chain.stream()	Recibir fragmentos
Concatenar	full_response += chunk.content	Construir respuesta completa
Actualizar UI	placeholder.markdown(full_response + " ")	Mostrar progreso con cursor
Finalizar	placeholder.markdown(full_response)	Mostrar sin cursor al terminar

```
st.session_state.mensajes.append(
    AIMessage(content=full_response)
)
```

Página de Notas del Tema

Esta página está pensada para que puedas anotar ideas clave, dudas y reflexiones importantes sobre el tema anterior.

Tema 2 – Fundamentos de LangChain: Componentes Core

Guía de referencia

Usa esta guía como recordatorio rápido de los componentes y APIs clave. Está pensada para cualquier proyecto, no solo para los ejemplos del curso.

• 1 · Runnables (núcleo de las "cadenas")

Concepto	¿Qué es?	¿Cuándo usarlo?	API/Operaciones clave	Notas
Runnable	Cualquier objeto invocable con .invoke(input) → output .	Para encapsular pasos de procesamiento (pre/post), modelos, parsers, etc.	.invoke(x)	Base de todo el LangChain Expression Language (LCEL).
Pipe ()	Operador de composición secuencial.	Para encadenar pasos donde la salida de uno es la entrada del siguiente.	r1 r2 r3	
RunnableLambda	Adapta una función Python (lambda/def) a Runnable.	Para integrar lógica propia (limpieza, formateo, validaciones).	RunnableLambda(fn)	Permite mezclar componentes LangChain con utilidades Python propias.

Patrón típico

- 1. Envuelve funciones Python con RunnableLambda (p. ej., formatear/transformar).
- 2. Conecta con otros runnables (modelo, parser) usando | | .
- 3. Ejecuta con .invoke(input) y recibe el resultado del último eslabón.

Buenas prácticas

- Asigna nombres descriptivos a cada paso (mejor trazabilidad).
- Aísla transformaciones de datos en funciones pequeñas y puras.
- Piensa en tipos de entrada/salida por paso (strings, dicts, listas).

• 2 · Paralelización con RunnableParallel

Objetivo	¿Cuándo usarlo?	¿Qué hace?	API/Operaciones clave	Salida
Ejecutar ramas independientes a la vez	Cuando varios pasos consumen el mismo input y no dependen entre sí (p. ej., resumir y analizar sentimiento sobre el mismo texto preprocesado).	"Abre" el flujo en ramas concurrentes y devuelve todos los resultados juntos.	RunnableParallel({key: runnable,})	<pre>dict con las claves definidas (p. ej., {"resumen": "", "sentiment_data": {}}).</pre>

Cómo encaja en la cadena

preprocesamiento | RunnableParallel({ "resumen": summaryBranch, "sentiment_data": sentimentBranch }) | mergeResults

Notas y cuidados

- El input de RunnableParallel se reutiliza para cada rama.
- Las ramas no garantizan orden; diseña tu merge para claves, no posiciones.
- Úsalo para ahorrar tiempo cuando el modelo/recursos lo permitan.

• 3 · Procesamiento por lotes con .batch(...)

Problema	Solución	Beneficios	API/Operaciones clave	Salida
Procesar muchas entradas (reseñas, consultas, etc.) de forma eficiente.	Ejecuta la misma cadena sobre una lista de inputs simultáneamente.	Mejor uso de recursos; menos sobrecarga; gestión de errores por elemento (si uno falla, continúan los demás); código más simple.	<pre>chain.batch([in1, in2, in3,])</pre>	list de resultados en el mismo orden de entrada.

Cuándo preferir .batch sobre un bucle con .invoke

- Siempre que tengas 2+ elementos a procesar y no requieras control personalizado paso a paso.
- Especialmente útil con modelos remotos: reduce latencias acumuladas.

Consejos

- Mantén cada unidad de trabajo "atómica" (una reseña, una consulta, etc.).
- Diseña la cadena para devolver objetos estructurados (p. ej., dict/JSON) y facilitar el post-proceso.

• 4 · Prompt Templates y Prompt Engineering

Concepto	¿Qué es?	¿Cuándo usarlo?	API/Operaciones clave	Buenas prácticas
PromptTemplate	Plantilla de texto con partes fijas (instrucciones/contexto) y variables (placeholders).	Cuando quieras separar instrucciones del contenido dinámico (preguntas, datos).	<pre>PromptTemplate(template=, input_variables=[])</pre>	Define la plantilla en una variable aparte y luego crea el objeto. Nombra claramente cada input_variable .
Validación local	Probar cómo se "rellena" el prompt sin llamar al LLM.	Antes de integrar en la cadena, para verificar posiciones y sustituciones.	prompt.format()	Ahorra tiempo y errores; ideal cuando mezclas mucho texto e inputs.
Prompt engineering	Disciplina para diseñar prompts efectivos (claridad, rol, formato de respuesta, restricciones).	Siempre: el prompt condiciona por completo el comportamiento del LLM.	_	ltera, testea y versiona plantillas; sé explícito (rol, estilo, longitud, formato de salida).

Patrón recomendado

- 1. Declara template (texto con placeholders).
- 3. Valida con prompt.format(...) .
- 4. Úsalo dentro de tu cadena (con el modelo, parsers, etc.).

• 5 · ChatPromptTemplate (plantillas para chats)

Concepto	¿Qué es?	¿Cuándo usarlo?	API/Operaciones clave	Notas
ChatPromptTemplate	Plantilla de lista de mensajes (con roles) para LLMs conversacionales.	Cuando separas instrucciones de sistema y contenido del usuario (y opcionalmente del asistente).	ChatPromptTemplate.from_messages([]) prompt.format_messages(**vars)	Es la opción por defecto para flujos conversacionales.
Roles	system , human (o user), ai (o assistant).	Definir comportamiento, entrada del usuario y referencias de respuestas previas.	Mensajes como tuplas: ("system", "") , ("human", "{texto}")	Compatible con modelos tipo chat; evita "concatenar" texto a mano.
Variables	Placeholders en cualquier mensaje.	Para inyectar datos dinámicos en mensajes concretos.	{nombre_variable}	Valídalo con format_messages antes de invocar al modelo.

Patrón recomendado

```
prompt = ChatPromptTemplate.from_messages([
    ("system", "Actúa como traductor ES→EN, sé preciso."),
    ("human", "{texto}")
])
messages = prompt.format_messages(texto="Hola, ¿cómo estás?")
# En cadena LCEL:
# chain = prompt | chat_model | StrOutputParser()
```

Consejos

- Mantén el mensaje de sistema claro (rol, objetivo, estilo, límites).
- Usa variables con nombres expresivos ({consulta} , {contexto} , {idioma_destino}).

• 6 · MessagesPlaceholder (inyectar historiales y listas de mensajes)

Problema	Solución	¿Qué permite?	API/Operaciones clave	Entrada esperada
Necesitas insertar múltiples mensajes (historial, few-shots) en la plantilla.	MessagesPlaceholder dentro de ChatPromptTemplate .	Reutilizar un listado de mensajes ya tipados (HumanMessage , AIMessage , etc.).	<pre>MessagesPlaceholder(variable_name="historial") prompt.format_messages(historial=[], pregunta_actual="")</pre>	Lista de BaseMessage (no un string concatenado).

Patrón típico con contexto + nueva pregunta

```
prompt = ChatPromptTemplate.from_messages([
    ("system", "Eres un asistente útil y mantienes el contexto."),
    MessagesPlaceholder(variable_name="historial"),
    ("human", "{pregunta_actual}")
])
# luego:
messages = prompt.format_messages(
    historial=historial_conversacion, # lista de mensajes
    pregunta_actual="¿Puedes detallar la arquitectura?"
)
```

Cuándo usarlo

• Chats con memoria (persistir turnos anteriores).

• In-Context Learning / Few-shot (inyectar ejemplos como mensajes).

Buenas prácticas

- Controla el límite de tokens recortando historial (ventana deslizante, resúmenes).
- Etiqueta claramente los mensajes de ejemplo (quién pregunta/responde).

• 7 · Plantillas por rol reutilizables

Concepto	¿Qué es?	¿Cuándo usarlo?	API/Operaciones clave	Ventaja
SystemMessagePromptTemplate	Plantilla solo para rol de sistema.	Reutilizar instrucciones de sistema con variables (rol, tono, normas).	<pre>SystemMessagePromptTemplate.from_template(" {tono}")</pre>	Modularidad; evita duplicar texto.
HumanMessagePromptTemplate	Plantilla solo para rol humano/usuario.	Normalizar cómo formateas la entrada de usuario en distintos módulos.	<pre>HumanMessagePromptTemplate.from_template("Mi pregunta sobre {tema} es: {pregunta}")</pre>	Homogeneiza la UX del prompt.
Composición	Combinar varias plantillas por rol en un prompt de chat.	Cuando distintos componentes aportan mensajes predefinidos.	ChatPromptTemplate.from_messages([system_t, human_t])	Jerarquía y reutilización limpias.

Patrón recomendado (composición)

```
system_t = SystemMessagePromptTemplate.from_template(
   "Eres un {rol} especializado en {especialidad}. Responde con tono {tono}."
)
human_t = HumanMessagePromptTemplate.from_template(
   "Mi pregunta sobre {tema} es: {pregunta}"
)
chat_prompt = ChatPromptTemplate.from_messages([system_t, human_t])
messages = chat_prompt.format_messages(
   rol="nutricionista", especialidad="dietas veganas",
   tono="profesional pero accesible",
   tema="proteinas vegetales",
   pregunta="¿Mejores fuentes para un atleta?"
)
```

Tips

- Centraliza tus plantillas por rol en módulos reutilizables.
- Versiona cambios de plantillas (p. ej., system_v1 , system_v2) para A/B testing.

• 8 · Output Parsers (estructurar la salida del LLM)

Objetivo	¿Por qué es clave?	Parsers comunes	Encaje en LCEL	Salida
Forzar/convertir la salida a un formato útil .	La mayoría de apps no consumen texto libre; necesitan JSON/CSV/objetos.	JsonOutputParser , PydanticOutputParser , StrOutputParser , CsvOutputParser	Se conectan al final de la cadena: prompt model parser	Tipos nativos (dict/list), strings o instancias Pydantic.

JSON "estricto"

- Usa JsonOutputParser() cuando esperes un JSON válido.
- Añade instrucciones de formato al prompt (si el parser las expone) o valida post-salida.

Modelos de datos con PydanticOutputParser

- Define un modelo Pydantic con campos y tipos.
- El parser valida y castea la salida al modelo (lanza error si no encaja).
- Útil para contratos entre componentes (APIs internas, pipelines).

Patrón con Pydantic

```
from pydantic import BaseModel, Field
from langchain_core.output_parsers import PydanticOutputParser

class Analisis(BaseModel):
    resumen: str = Field(..., description="Resumen en una frase")
    sentimiento: str = Field(..., description="positivo|negativo|neutro")
    razon: str

parser = PydanticOutputParser(pydantic_object=Analisis)

# (Opcional) Instrucciones de formato para el prompt:
# format_instructions = parser.get_format_instructions()
# ...inclúyelas en el mensaje de sistema/usuario.

chain = prompt | chat_model | parser
resultado: Analisis = chain.invoke(entrada)
```

Buenas prácticas

- Siempre termina tu cadena con un parser (aunque sea StrOutputParser).
- Si el parser ofrece get_format_instructions(), inyéctalas en el prompt.
- Maneja errores de parseo (reintentos con with_structured_output /fallbacks).
- Mantén los esquemas mínimos y estables (evita campos ambiguos).

9 · Pydantic (modelado y validación de datos)

Concepto	¿Para qué sirve?	¿Cómo se usa?	Ventajas
BaseMode1	Definir esquemas de datos con tipos y validación.	<pre>class Usuario(BaseModel): id:int; nombre:str; activo:bool=True</pre>	Convierte tipos (p. ej. "123"→123), valores por defecto, validación.
Field	Añadir metadatos/validaciones.	<pre>edad:int = Field(, ge=0, le=120, description="Años")</pre>	Reglas de rango, descripciones para guiar al LLM.
Serialización	Exportar modelos a formatos comunes.	.model_dump() , .model_dump_json()	Integración sencilla con APIs/BDs.

Patrón básico

```
from pydantic import BaseModel, Field

class Usuario(BaseModel):
    id: int
    nombre: str
    activo: bool = True

u = Usuario(id="123", nombre="Ana") # convierte tipos
json_str = u.model_dump_json()
```

Buenas prácticas

- Tipa todo (incluye listas, dicts y submodelos).
- Usa description en Field para que los LLMs entiendan qué devolver.
- Restringe con ge , le , min_length , etc., para salidas más fiables.

• 10 · Salidas estructuradas con LangChain + Pydantic

Objetivo	¿Qué hace?	API clave	Dónde encaja
Forzar al LLM a devolver objetos tipados	El modelo responde en el esquema Pydantic indicado.	<pre>chat_model.with_structured_output(MyModel) → .invoke()</pre>	Al final de la cadena LCEL: prompt chat (structured) .

Patrón recomendado

```
from pydantic import BaseModel, Field

class Analisis(BaseModel):
    resumen: str = Field(..., description="Resumen en una frase")
    sentimiento: str = Field(..., description="positivo|neutro|negativo")

chat = ChatOpenAI(model="gpt-4o-mini", temperature=0.6)
    structured = chat.with_structured_output(Analisis)

resultado: Analisis = structured.invoke("Analiza: ...")
    print(resultado.sentimiento)  # acceso tipado
    print(resultado.model_dump_json())  # JSON válido
```

Consejos

- Incluye descripciones en todos los campos; el LLM las usa como contrato.
- Si necesitas números/arrays anidados, tipa explícitamente (int , list[str] , submodelos).
- Maneja errores de parseo (reintentos/fallback a StrOutputParser).

• 11 · Arquitectura de proyectos LLM (estructura sugerida)

Carpeta	Contenido típico	Por qué
models/	Modelos Pydantic (esquemas de salida/entrada).	Contratos estables entre módulos.
prompts/	ChatPromptTemplate, plantillas por rol, few-shots.	Reutilización y versionado de prompts.
services/	Utilidades: E/S de ficheros, parsers, conectores API.	Aísla dependencias externas.
ui/	Interfaz (CLI/Web: Streamlit/Gradio/FastAPI).	Separa presentación de lógica.

Buenas prácticas

- Empieza por el modelo de salida (qué esperas del LLM) y diseña hacia atrás.
- Versiona prompts (system_v1 , system_v2) y testea con datos sintéticos.
- Mantén cadenas LCEL pequeñas y componibles.

• 12 · Diseñar esquemas Pydantic eficaces para LLMs

Elemento	Recomendación	Ejemplo
Campos string	Define propósito en description .	<pre>nombre:str = Field(,"Nombre completo extraído del documento")</pre>
Números	Restringe rango y unidad.	ajuste:int = Field(, ge=0, le=100, description="0-100")
Listas	Limita tamaño esperado (descripción) y tipo interno.	habilidades:list[str] = Field(,"Top 5-7 habilidades")
Submodelos	Representa bloques (experiencia, educación, etc.).	<pre>class Experiencia(BaseModel): periodo:str; rol:str</pre>

Plantilla general

```
class Resultado(BaseModel):
   titulo: str = Field(..., description="Título conciso")
   items: list[str] = Field(..., description="Lista de puntos clave (3-5)")
   score: int = Field(..., ge=0, le=100, description="Puntuación global")
```

• 13 · Ingesta de PDFs: extracción de texto (Python)

Tarea	Herramientas	API/esqueleto	Tips
Leer PDF en memoria	PyPDF2 , io.BytesIO	PdfReader(BytesIO(pdf_bytes))	Acepta bytes desde UI/web.
Extraer texto por página	<pre>page.extract_text()</pre>	<pre>ltera for i, page in enumerate(reader.pages):</pre>	Añade separadores entre páginas.
Limpieza	str.strip() / normalización	Quita líneas en blanco y espacios extra.	Ahorra tokens y coste.
Errores	try/except	Devuelve mensaje claro en errores.	PDFs escaneados → OCR externo.

Patrón básico

```
from io import BytesIO
from PyPDF2 import PdfReader

def extraer_texto_pdf(pdf_bytes: bytes) -> str:
    try:
        reader = PdfReader(BytesIO(pdf_bytes))
        partes = []
        for i, page in enumerate(reader.pages, start=1):
            tx = (page.extract_text() or "").strip()
            if txt:
                partes.append(f"\n--- Página {i} ---\n{txt}\n")
        texto = "".join(partes).strip()
        if not texto:
            return "ERROR: PDF vacío o solo imágenes."
        return texto
        except Exception as e:
        return f"ERROR: al procesar el PDF: {e}"
```

Buenas prácticas

- Para PDFs escaneados usa OCR (p. ej., Tesseract/DocTR) antes de pasar al LLM.
- Recorta texto si supera el límite de tokens (resúmenes por página o chunking).
- Normaliza codificación, bullets y tablas (considera parsers específicos si necesitas estructura).

Página de Notas del Tema

Esta página está pensada para que puedas anotar ideas clave, dudas y reflexiones importantes sobre el tema anterior.

Tema 3 – RAG y LangChain: Cargando y recuperando datos del mundo real

Guía de referencia

Usa esta guía como recordatorio rápido de componentes, opciones y "pitfalls". Está pensada para cualquier proyecto con LangChain, no solo para el ejemplo del curso.

1 · LangChain Community (integraciones externas)

Qué es: Paquete separado que concentra integraciones de terceros (loaders, stores, conectores a APIs y BBDD).

Relación con langchain-core: Core = abstracciones y protocolos; Community = implementaciones concretas.

Instalación básica

- Entorno: activa tu venv.
- Paquete: pip install langchain-community
- Imports típicos: from langchain_community.document_loaders import ...

Cuándo usarlo

- Cargar/procesar documentos (PDF, web, GDrive, Notion, Slack...).
- Conectarte a bases vectoriales (FAISS, Chroma, Pinecone, Milvus, Qdrant...).
- Integrarte con APIs de terceros (Google, etc.).

Patrón de dependencias

- Muchas integraciones requieren librerías extra (p. ej., pypdf , beautifulsoup4 , SDKs de proveedores).
- Error típico: ModuleNotFoundError → instala la dependencia indicada por el mensaje.

Buenas prácticas

- Fijar versiones en requirements.txt .
- Aislar secretos en variables de entorno/gestores (no subir credentials.json a VCS).
- Crear un módulo adapters/ donde centralizas loaders/conectores para cambiar proveedor sin tocar el resto del código.

2 · Document Loaders (cargar datos en objetos Document)

Qué hacen: Normalizan entradas externas a objetos Document con:

- page_content : texto (o contenido) del recurso.
- metadata : diccionario con contexto (ruta, url, título, autor, página, timestamps, etc.).

Fluio típico

1. Instanciar loader \rightarrow 2) load() (o lazy_load()) \rightarrow 3) lista/iterable de Document \rightarrow 4) procesar/splitear/embeddings.

Loaders comunes y notas

Loader	Uso típico	Dependencias frecuentes	Notas clave
PyPDFLoader	Leer PDFs, 1 Document por página	pypdf	Devuelve lista (páginas). metadata incluye número de página.
WebBaseLoader	Extraer HTML → texto	beautifulsoup4	Webs dinámicas pueden requerir alternativas (Selenium/Playwright).
CSVLoader , Unstructured*	Archivos ofimáticos variados	unstructured , pandas	unstructured maneja docx, pptx, etc.
NotionDBLoader , SlackDirectoryLoader , GmailLoader , etc.	SaaS	SDK/credenciales del proveedor	Requiere OAuth/keys y scopes adecuados.
Directorios (DirectoryLoader)	Carpeta con múltiples ficheros	según subloader	Combinalo con <i>glob</i> y subloaders específicos.

API de uso

```
from langchain_community.document_loaders import PyPDFLoader, WebBaseLoader

docs_pdf = PyPDFLoader("ruta/al.pdf").load()  # -> [Document, Document, ...]
docs_web = WebBaseLoader("https://ejemplo.com").load()
```

Patrones útiles

- Iterar páginas de PDF y preservar contexto: añade claves propias a metadata (p. ej., doc_id , section).
- lazy_load() para streams grandes: procesa en pipeline sin cargar todo en memoria.
- Normalización: crea una función que homogenice metadata (e.g., source , type , uri) para search logs y retrieval filters.

Problemas comunes

- Contenido dinámico no aparece con WebBaseLoader → usa un loader con navegador headless.
- Codificaciones raras \rightarrow asegúrate de encoding correcto o limpia con chardet / ftfy .

3 · Text Splitters (fragmentar para ventanas de contexto y eficiencia)

Problema que resuelven: Los LLMs tienen context window limitada (p. ej., ~128k tokens). Documentos largos → errores 413/429, coste alto, olvidos y peor attention.

Qué hacen: Dividen contenido en chunks (fragmentos) semánticamente razonables, con solapamiento para preservar continuidad.

Clases comunes y cuándo usarlas

Splitter	Cuándo usarlo	Claves de configuración
RecursiveCharacterTextSplitter	Opción por defecto "inteligente" (capítulos \rightarrow párrafos \rightarrow oraciones)	<pre>chunk_size , chunk_overlap , separators</pre>
CharacterTextSplitter	División rígida por separador simple	<pre>separator , chunk_size , chunk_overlap</pre>
TokenTextSplitter	Ajuste por tokens (útil si cobras/limitas por tokens)	<pre>encoding_name , chunk_size , chunk_overlap</pre>
MarkdownHeaderTextSplitter	Respeta jerarquía Markdown (#, ##, ###)	headers_to_split_on
SentenceTransformersTokenTextSplitter	Casos con embeddings específicos/tokenización ST	chunk_size , chunk_overlap

Parámetros esenciales

- chunk_size : tamaño del fragmento (caracteres o tokens).
- chunk_overlap : solape entre fragmentos (20–15% del chunk_size es frecuente).
- separators : prioridad de cortes ($\n\n$, \n , \n , , , , "" ...).
- length_function : cómo medir longitud (caracteres vs tokenizador).
- add_start_index : anota índice inicial en metadata para trazabilidad.

Patrones recomendados

- $\bullet \quad \mathsf{PDF} \to \mathsf{split} \; \mathsf{por} \; \mathsf{página} \; \mathsf{y} \; \mathsf{luego} \; \mathsf{por} \; \mathsf{texto} : \mathsf{combina} \quad \mathsf{PyPDFLoader} \quad \mathsf{con} \quad \mathsf{RecursiveCharacterTextSplitter} \; \; .$
- Tamaños orientativos (ajusta según caso/RAG store):
 - Resumenes/LLM direct query: 1–2k tokens, overlap 10–20%.
 - Embeddings para RAG: 300–800 tokens, overlap 10–15%.
- Preserva contexto en metadata : source , page , chunk , start_index , section .
- Evalúa calidad de chunks: revisa cortes en tablas/listas; quizá usa splitters específicos (Markdown/HTML).

Errores y costes

- Prompt demasiado largo → 413/429 o rate limit: reduce chunk_size , filtra/recupera top-k antes de invocar el LLM.
- Coste de inferencia alto → pre-summarization de chunks + map-reduce o refine.

Mini-pipeline canónico

```
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter

docs = PyPDFLoader("doc.pdf").load()  # 1 Document por página
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
chunks = splitter.split_documents(docs)  # mantiene metadata por chunk
```

• 4 · División "inteligente" de información con RecursiveCharacterTextSplitter

Objetivo: partir documentos largos en chunks manejables para LLMs y para indexación (RAG), preservando coherencia.

Clase principal

• from langchain.text_splitter import RecursiveCharacterTextSplitter

Parámetros clave

Parámetro	Qué controla	Guías prácticas
chunk_size	Longitud aproximada del fragmento (caracteres por defecto)	800–1200 para embeddings; 2k–4k para prompts directos; ajusta a la context window.
chunk_overlap	Solape entre fragmentos	10–20% del tamaño del chunk (p. ej., 100–200 sobre 1k).
separators	Prioridad de corte (capítulo → párrafo → oración → palabra)	Déjalo por defecto o personalízalo si cortas tablas/markdown.
length_function	Cómo medir longitud	Útil para trabajar en tokens (p. ej., tiktoken).
add_start_index	Añade posición al metadata	Facilita trazabilidad y highlights.

Patrones de uso

```
splitter = RecursiveCharacterTextSplitter(
    chunk_size=1000,
    chunk_overlap=150,
)
chunks = splitter.split_documents(docs) # preserva metadata por chunk
```

Por qué el *overlap*

Mitiga cortes en frases/secciones; aporta contexto al siguiente chunk.

Pitfalls

- chunk_size excesivo → errores 413/429 y coste alto.
- Sin $overlap \rightarrow respuestas$ que "pierden el hilo".
- PDFs: primero por página (loader) y luego por texto (splitter).

Patrón "map-reduce" para resúmenes

- 1. map: resume cada chunk.
- reduce: sintetiza todos los resúmenes en uno final (otra invocación al LLM).
 Ventaja: escalable a documentos muy grandes.

5 · Embeddings: conceptos esenciales

Definición: vector numérico de longitud fija que codifica el significado de un texto/objeto.

 $\textbf{Idea central} : \text{textos sem\'anticamente similares} \rightarrow \text{vectores cercanos (alta similitud)}; \text{ diferentes} \rightarrow \text{lejanos}.$

Propiedades útiles

- Dimensión fija (p. ej., 384, 768, 1024, 1536, 3072...).
- Distancias comunes: cosine, L2, dot-product.
- Dominio: texto, código, imágenes, audio (según modelo).

Buenas prácticas

• Mismo modelo para indexar y consultar.

- Versionado del modelo de embeddings: reindexa si cambias de modelo.
- Normalización (unit-length) si la base vectorial/consulta lo requiere.

Antipatrones

- Mezclar embeddings de proveedores/modelos distintos en el mismo índice.
- Usar dimensiones muy grandes sin necesidad → coste/latencia y mayor ruido.

• 6 · Embeddings con LangChain (OpenAl u otros)

Interfaz común

- from langchain_openai import OpenAIEmbeddings (o proveedor equivalente)
- Todos heredan de Embeddings → interoperables con VectorStore , Retriever , etc.

Uso mínimo

```
emb = OpenAIEmbeddings(model="text-embedding-3-large")
v = emb.embed_query("texto de ejemplo") # \rightarrow list[float]
V = emb.embed_documents(["t1", "t2", ...]) # batch
```

Comparación rápida

Opción	Ventaja	Considera
OpenAl (hosted)	Calidad, mantenimiento cero	Coste por uso, dependencia externa
Sentence-Transformers (local)	Sin datos a terceros	DevOps, GPU/CPU y memoria
Cohere/Azure/Google, etc.	Alternativas con SLAs/regiones	API keys, matices de licencia

Cálculo de similitud (ejemplo)

- Cosine similarity (0−1): cercano a 1 → muy similares.
- Para ranking de resultados recuperados del vectorstore.

Consejos de producción

- Cachear embeddings (evitar recomputar).
- Limpiar/normalizar texto antes de embeddar (lower, espacios, símbolos).
- Guardar metadata rico (source, page, section, chunk_id, model_version).

7 · Bases de datos vectoriales (VectorStores)

Qué son: almacenes optimizados para vectores + búsqueda por similitud/aproximada (ANN).

Flujo de INGESTA estándar

- 1. Cargar documentos (loaders).
- 2. Splittear en chunks (splitter).
- 3. Embeddings de cada chunk.
- 4. Indexar en el vectorstore (con su metadata).

Flujo de CONSULTA estándar

- 1. Convertir la query a embedding.
- 2. Buscar top-k vecinos (cosine/L2/dot).
- 3. Recuperar chunks + metadata.
- 4. (Opcional) Rerank con modelo cross-encoder.
- 5. Pasar contexto "elegido" al LLM.

Opciones habituales

Tipo	Ejemplos	Dónde encaja
Local/open source	Chroma, FAISS, Qdrant, Milvus	Desarrollo, POCs, on-prem, control total
Gestionadas (cloud)	Pinecone, Weaviate Cloud, Qdrant Cloud	Producción escalable, menor DevOps

Parámetros típicos del índice

Parámetro	Impacto
metric (cosine/L2/dot)	Afecta ranking y normalización
dim	Debe coincidir con el modelo de embeddings
Algoritmo ANN (HNSW, IVF, PQ)	Compromiso entre precisión, memoria y velocidad
top_k	Nº de vecinos; 3–10 suele ser buen punto de partida

Buenas prácticas

- Metadata filtering: añade source , doctype , page , lang , tags para búsquedas filtradas.
- Mantenimiento: compactación/reindexado periódico si hay muchas altas/bajas.
- Privacidad: si hay datos sensibles, prefiere local/on-prem o cifrado.

Errores comunes

- Desalinear dim con el modelo → excepción al indexar/consultar.
- Cambiar el modelo de embeddings sin reindexar → drift y malos resultados.
- top_k muy alto → latencia y coste; muy bajo → omisión de contexto relevante.

8 · VectorStores con LangChain (Chroma)

Objetivo: almacenar *chunks* embebidos y recuperar por similitud.

Paquetes e imports

- Instalación: pip install chromadb
- Import típico:
 - Hoy: from langchain_community.vectorstores import Chroma
 - $\bullet \quad \text{Aviso de migraci\'on: pronto} \rightarrow \quad \text{pip install langchain-chroma} \quad \text{y} \quad \text{from langchain_chroma import Chroma}$
- Loaders/splitter/embeddings frecuentes:
 - PyPDFDirectoryLoader , RecursiveCharacterTextSplitter , OpenAIEmbeddings

Creación & persistencia

Paso	API	Nota
Cargar PDFs de una carpeta	PyPDFDirectoryLoader(path).load()	Devuelve List[Document]
Splitear	<pre>splitter.split_documents(docs)</pre>	Preserva metadata
Embeddings	<pre>OpenAIEmbeddings(model="text-embedding-3-large")</pre>	Usa el mismo modelo para index y query
Construir índice	<pre>Chroma.from_documents(docs, embedding_function=emb, persist_directory="chroma_data")</pre>	Crea SQLite + carpeta
Reabrir índice	<pre>Chroma(persist_directory="chroma_data", embedding_function=emb)</pre>	No reingesta

Búsqueda básica

```
results = vectorstore.similarity_search(query, k=3)  # → List[Document] # Alternativas: similarity_search_with_score, max_marginal_relevance_search (MMR)
```

Parámetros prácticos

- persist_directory : ruta del índice en disco.
- collection_name : agrupa dominios distintos.
- k : vecinos a devolver (3–8 suele ir bien).
- mmr (vía max_marginal_relevance_search): más diversidad, menos duplicados.

Buenas prácticas

- Añade metadata útil: source , page , chunk_id , start_index , doctype , person_names , etc.
- Tamaños de chunk orientativos para RAG con contratos: 1000–5000 chars, overlap 200–1000.
- Reindexa si cambias modelo o parámetros de split.

Pitfalls

- k demasiado alto → latencia/ruido.
- Duplicados semánticos → usa MMR o Multi-Query Retriever (abajo).
- No mezcles embeddings de distinta dimensión en la misma colección.

• 9- Retrievers en LangChain (interfaz estándar)

Qué son: envoltorios de búsqueda que devuelven List[Document] con una interfaz unificada.

Creación desde un VectorStore

Search types y kwargs

search_type	Cuándo usar	search_kwargs típicos
"similarity"	Top-k más cercanos	k
"mmr"	Diversidad / menos duplicados	k , fetch_k (candidatos), lambda_mult (diversidad)
"similarity_score_threshold"	Filtrar por calidad mínima	score_threshold , k

Ventajas frente a .similarity_search directo

- Intercambiable (otro backend u otro tipo de búsqueda sin tocar el resto del pipeline).
- Compatible con retrievers avanzados de LC.

No confundir con: Document Loaders (ingesta). Retriever = consulta, Loader = carga inicial.

• 10 · Multi-Query Retriever (con LLM)

Qué hace (pipeline):

- 1. Reformula la query en variantes (sinónimos, subconsultas).
- 2. Ejecuta búsquedas por cada variante (usando tu retriever base).
- 3. Fusiona y desduplica resultados con ayuda de un LLM.

Setup mínimo

```
from langchain_openai import ChatOpenAI
from langchain.retrievers.multi_query import MultiQueryRetriever

base = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 2})
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
mqr = MultiQueryRetriever.from_llm(retriever=base, llm=llm)
docs = mqr.invoke(query)
```

Cuándo usarlo

- Consultas ambiguas o vocabulario heterogéneo.
- Colecciones con duplicidad alta.

Costes y control

- ↑ Llamadas a LLM → latencia/coste.
- Limita variantes (si el impl. lo permite) y mantén k razonable.
- Úsalo junto a MMR para máxima cobertura sin ruido.

• 11 · RAG (Retrieval-Augmented Generation)

Arquitectura canónica

- Retrieve: retriever.invoke(query) → docs .
- 2. Construcción de prompt: plantilla con contexto (chunks + metadata) + pregunta.
- 3. Generate: LLM responde usando solo el contexto (instrucción explícita).
- 4. Post-proceso: citar fuentes, verificar cobertura, formatear respuesta.

Elementos LangChain típicos

- PromptTemplate / ChatPromptTemplate
- RunnableParallel / RunnableSequence
- StrOutputParser
- retriever (puede ser Multi-Query, MMR, etc.)

Buenas prácticas de prompt

- Instrucción de grounding: "Responde solo con la información del CONTEXTO; si no está, di que no sabes."
- Citas: incluye source/page/chunk_id .
- Limita tokens: recorta a los n mejores chunks (3–6), ordenados por score/diversidad.

Mejoras comunes

- MMR o reranking (cross-encoder) tras retrieve.
- Fusionar resúmenes de chunk para reducir tokens.
- Filtros por metadata (fecha, persona, tipo de contrato).

Métricas de calidad

- Faithfulness / Groundedness (no alucina).
- Context Precision/Recall (recupera lo necesario sin ruido).
- Tiempo de respuesta y coste por consulta.

12 · Arquitectura base de un sistema RAG

Componentes mínimos

Componente	Rol	Claves de implementación
VectorStore (p. ej., Chroma)	Persistencia de embeddings	Chroma(persist_directory, embedding_function)
Embeddings	Index y query	Mismo modelo en index/consulta (OpenAIEmbeddings u otro)
Retrievers	Recuperación de chunks	<pre>vectorstore.as_retriever(search_type=, search_kwargs=)</pre>
LLM (consultas)	Reformulación/derivación y apoyo al retrieve	Modelo económico/determinista (p. ej. gpt-4o-mini , temperature=0)
LLM (generación)	Redacción final	Modelo más capaz; temperature baja-media
Prompts	Instrucciones del retrieve y de la respuesta	Separar en archivo prompts.py
Cadenas LCEL	Orquestación	RunnablePassthrough , PromptTemplate ,`

Config centralizada (config.py)

- Modelos: EMBEDDING_MODEL , QUERY_MODEL , GENERATION_MODEL .
- Chroma: CHROMA_DB_PATH .

• Retriever: SEARCH_TYPE ("mmr" , "similarity" ,...), SEARCH_K , MMR_LAMBDA (0-1), MMR_FETCH_K .

Buenas prácticas

- No "hardcodear" rutas ni modelos en código de negocio: usa config.py o env vars.
- Dos LLMs ≠ obligatorio, pero recomendable (coste vs calidad).

13 · Prompts del sistema

Tipos sugeridos

Prompt	Uso	Consejos
RAG main prompt	Instruye al LLM de respuestas para usar solo el contexto; cita fuentes	Variables: {context} , {question} ; exige estructura y cautela ("si no está, di que no sabes")
Multi-Query Retriever prompt	Derivar 2–4 consultas alternativas	Especializa al dominio (sinónimos legales, partes, ubicaciones, condiciones)
Relevancia por fragmento (opcional)	Filtrar chunks irrelevantes antes del prompt final	Útil si hay ruido en el índice
Extracción de entidades (opcional)	Añadir metadata rico (personas, direcciones, importes, fechas)	Útil tanto en ingesta como en pre-prompt

Antipatrones

- Prompt único y genérico para todo el pipeline.
- No fijar el formato de salida (dificulta UI/parseo).

14 · Cadena LCEL: orquestación de retriever → prompt → LLM → parseo

Esqueleto recomendado

```
rag_chain = (
    {
        "context": final_retriever | format_docs,  # subcadena
        "question": RunnablePassthrough()  # llega en invoke(...)
}
| prompt  # PromptTemplate con {context} y {question}
| llm_generation  # ChatOpenAI u otro
| StrOutputParser()
}
```

Puntos finos

- RunnablePassthrough(): "placeholder" para inyectar la pregunta en invoke .
- Subcadenas: permite preprocesar el output del retriever antes del prompt.
- Devuelve un único string (o estructura Pydantic si lo defines).

Errores típicos

- Mezclar Document directly en prompt sin formateo → contexto confuso.
- Usar distintos modelos de embeddings entre index y query.

15 · Recuperación híbrida (Ensemble Retriever)

Idea: combinar varios retrievers y agregar puntuaciones con pesos.

Setup típico

```
base = vectorstore.as_retriever(search_type="mmr",
  search_kwargs={"k": SEARCH_K, "lambda_mult": MMR_LAMBDA, "fetch_k": MMR_FETCH_K}
)
simr = vectorstore.as_retriever(search_type="similarity",
```

```
search_kwargs={"k": SEARCH_K}
)

mqr = MultiQueryRetriever.from_llm(retriever=base, llm=llm_queries, prompt=multiquery_prompt)

final_retriever = EnsembleRetriever(
   retrievers=[mqr, simr],
   weights=[0.7, 0.3],
   similarity_threshold=0.75,  # opcional: filtra resultados débiles
)
```

Cuándo usarlo

- Colecciones con duplicados y vocabulario variado.
- Queries ambiguas: MultiQuery cubre sinónimos; MMR aporta diversidad.

Parámetros clave

Parámetro	Efecto	Rango/tip
weights	Importancia relativa por retriever	Suma no tiene por qué ser 1; empieza con 0.7/0.3
similarity_threshold	Corta ruido	0.7–0.8 suele ser buen inicio
SEARCH_K	Vecinos finales	2–6 según longitud de chunks
MMR_LAMBDA	Relevancia vs diversidad	0.6–0.8 equilibrado
MMR_FETCH_K	Candidatos previos a MMR	20–50 típicamente

Pitfalls

- $\bullet \quad \text{Pesos mal calibrados} \rightarrow \text{o muy redundante o muy disperso}.$
- threshold alto \rightarrow sin resultados; bajo \rightarrow ruido.

Página de Notas del Tema

Esta página está pensada para que puedas anotar ideas clave, dudas y reflexiones importantes sobre el tema anterior.

Tema 4 – LangGraph

Guía de referencia

Usa esta guía como recordatorio rápido de los conceptos y APIs clave. Está pensada para cualquier proyecto, no solo para los ejemplos del curso.

• 1 · Qué es LangGraph (y cómo encaja con LangChain)

Pregunta	Resumen útil	Implicación práctica
¿Sustituye a LangChain?	No. Complementa a LangChain usando sus interfaces (Runnable, TypeDict, etc.).	Puedes combinar chains LCEL dentro de nodos de LangGraph.
¿Qué añade? Grafos con ciclos, ramificación dinámica (branching), estado global compartido.		Modela bucles, reintentos, bifurcaciones y memoria sin "salirte" a Python puro.
¿Cuándo usarlo?	Cuando hay decisiones dinámicas, iteraciones, memoria persistente, colaboración/ paralelismo entre partes.	Flujos lineales simples → LCEL; flujos complejos → LangGraph (o mixto).

• 2 · Componentes fundamentales

Componente	Qué es	¿Qué hace?	Tips
Estado (State)	Estructura (normalmente TypedDict) compartida por todo el grafo.	Lee/escribe datos accesibles por cualquier nodo.	Devuelve diccionarios parciales; LangGraph fusiona sobre el estado.
Nodo (Node)	Unidad de trabajo: función Python o Runnable .	Consume/actualiza parte del estado.	Mantén nodos cohesivos (1 responsabilidad).
Arista (Edge)	Conexión dirigida entre nodos.	Define el flujo (orden, bifurcaciones, ciclos).	Usa directivas START y END para entrada/salida.

3 · Patrón de arquitectura (paso a paso)

```
1. Define el estado (p.ej., class State(TypedDict): ... ).
```

```
5. \textbf{Conecta:} \quad \texttt{graph.add\_edge(START, "nodoA"); graph.add\_edge("nodoA", "nodoB"); graph.add\_edge("nodoB", END)} \ .
```

^{2.} Crea el grafo de estado: graph = StateGraph(State) .

^{3.} Declara nodos (funciones o runnables) que reciben y/o devuelven partes del estado.

^{4.} Añade nodos: graph.add_node("nombre", funcion_o_runnable) .

^{6.} Compila: app = graph.compile() .

^{7.} Invoca con estado inicial (dict): result = app.invoke(initial_state) .

• 4 · Estado: definición, lectura y escritura

Aspecto	Cómo hacerlo	Detalle clave	
Definir	<pre>class State(TypedDict): campo1: str; n: int;</pre>	Tipado guía el merge de salidas de nodos.	
Inicializar	initial = {"campo1": "", "n": 0,}	Solo necesitas lo mínimo para arrancar el flujo.	
Leer	En el nodo: acceder como dict (state["campo1"]).	Piensa el estado como contexto global .	
Actualizar	El nodo retorna dict parcial: {"campo1": nuevo_valor}	No necesitas devolver todo el estado.	
Persistencia	El estado viaja por todo el grafo.	Útil para memoria entre pasos no contiguos.	

Idea clave: Cada nodo devuelve un dict parcial y LangGraph lo fusiona en el estado según el esquema.

• 5 · Nodos: funciones y Runnables

Тіро	Ventaja	Cuándo
Función Python (state: State) -> dict	Simplicidad y control total.	Transformaciones, utilidades, E/S liviana.
Runnable de LangChain	Composición declarativa (LCEL), reutilización.	LLM calls, chains ya definidas, tool-calls.

Buenas prácticas de nodo

- Pura si es posible (misma entrada → misma salida).
- Pequeña y legible (una responsabilidad).
- Validación: si parseas respuestas de LLM, considera Pydantic/parsers estructurados.

• 6 · Aristas, orden y control de flujo

Acción	API/Concepto	Nota
Fijar inicio/fin	add_edge(START, "A") , add_edge("Z", END)	Requisito para la ejecución.
Secuencial	$A \rightarrow B \rightarrow C$	Flujo típico "pipeline".
Branching Arista condicional basada en estado		Permite rutas alternativas según condiciones.
Ciclos/iteraciones $A \rightarrow B \rightarrow A$ (con condición de parada)		Implementa bucles y reintentos dentro del grafo.

Diferencia con LCEL: No estás obligado a "salida del nodo = entrada del siguiente". Los nodos consultan el estado global.

• 7 · Compilación y ejecución

Paso	Qué hace	Tips
compile() Congela el grafo y valida la conexiones.		Compila una vez , reutiliza la app.
invoke(initial_state) Ejecuta el flujo con el estado inicial.		Loguea/inspecciona el estado de salida .
Estados parciales	Puedes añadir campos vacíos y llenarlos en nodos.	Útil cuando inputs llegan más tarde .

8 · Patrón típico de uso de "LLM sobre notas/datos" (generalización)

Paso	Patrón Qué cuidar	
Extracción	Nodo LLM que extrae listas (participantes, temas, acciones).	Pide formato explícito (CSV, JSON). Considera parsers .
Agregación	Nodo que construye documentos (acta, resumen) a partir del estado.	Lee múltiples claves del estado, escribe una.
Normalización	Funciones auxiliares (limpieza, split, casting). Mantén la lógica fuera del prompt si es determini	
Transcripción/ETL externo	Paso de ASR o carga de datos como etapa previa.	Encapsula E/S fuera del grafo y vuelca al estado.

Este patrón sirve para cualquier entrada textual (reuniones, entrevistas, tickets, logs) y cualquier salida estructurada (entidades, decisiones, artefactos).

• 9 · Estado avanzado: Annotated Types y reducers

Cuando varios nodos escriben la misma clave del estado, por defecto la última escritura sobrescribe a las anteriores. Para acumular/combinar resultados, define la clave como Annotated con una función reductora:

Elemento	Descripción	Ejemplos	
Tipo anotado	Annotated[List[str], reducer] La clave sabe cómo combinar nuevos valores.		
Reducer (reductora)	Función que combina valor actual + nuevo → combinado .	or actual + nuevo → combinado. operator.add (listas → concat; números → suma).	
Casos típicos	Logs acumulados, listas de errores, scoring incremental, merges. Logs: List[str] + operator.add → se concate		
Custom reducers	Función Python propia si lo predefinido no encaja.	Unir sets (evitar duplicados), merge de dicts por claves.	

Checklist para reducers

- Elige el tipo base correcto (list, set, dict, int...).
- Selecciona reducer coherente (add, union, merge...).
- Inicializa el estado con el neutro del tipo ([], set(), {}, 0...).
- Devuelve desde cada nodo solo la clave afectada (p.ej., {"logs": ["Paso X ok"]}).

• 10 · Buenas prácticas (que escalan)

- Diseña primero el estado: nombres claros, tipos útiles, qué produce/consume cada nodo.
- Nodos idempotentes cuando sea posible; facilita reintentos y bucles.
- Bifurcaciones explícitas: documenta condiciones y claves del estado usadas.
- Valida salidas de LLM con parsers/JSON cuando vayan al estado.
- Observabilidad: usa una clave logs (Annotated + reducer) para trazas.
- Modularidad: encapsula E/S externas (ASR, DB, APIs) fuera y escribe al estado.
- Composición: integra chains LCEL dentro de nodos cuando convenga.
- Reutilización: compila una vez y reusa la app para múltiples invocaciones.

• 11 · Control de flujo y decisiones (branching)

Necesito	Qué uso en LangGraph	¿Qué hace?	Notas rápidas
Bifurcar el flujo según el estado	Arista condicional (router/"routing function")	Evalúa router(state) y dirige a un nodo u otro.	Define un router puro (sin E/S externas).
Elegir nodo de destino por nombre	Mapping de rutas	El router devuelve una clave (p. ej. "par", "impar") que mapea a nombres de nodos.	Mantén coherencia entre claves devueltas y nombres de nodo.
Entrar por el principio con decisión	START → router()	Condiciona el primer salto del grafo.	Útil para pre-clasificar casos.
Finalizar tras cada rama	add_edge(" <rama>", END)</rama>	Cierra la ejecución en cualquier rama.	Puedes reconverger varias ramas antes de END .

Patrón (esqueleto):

- 1. Define estado mínimo (p. ej. number: int , resultado: str).
- 2. Declara nodos "hoja" (p. ej., caso_par , caso_impar) que solo escriben el resultado.
- 3. Declara router(state) que devuelve una clave de ruta ("par" / "impar").
- 4. Conecta START con arista condicional (source, router , { "par": "caso_par", "impar": "caso_impar" }).
- 5. Conecta cada rama a END (o a pasos posteriores).

Buenas prácticas

- El router no debe mutar estado; que sea determinista y pequeño.
- Prevé ruta por defecto (fallback) para entradas inválidas.
- Mantén los nombres de ramas autoexplicativos y documenta la condición.

• 12 · Aristas condicionales (routing) y decisiones

Necesito	API/Concepto	¿Qué hace?	Tips
Decidir camino en tiempo de ejecución	<pre>graph.add_conditional_edges(source_node, router_fn, routes_map)</pre>	Llama a router_fn(state) y salta al nodo mapeado.	El router_fn no muta estado; devuelve una clave (nombre de ruta).
Enrutar desde el inicio	START → router_fn (vía add_conditional_edges)	Primera bifurcación con el estado inicial.	Nombra rutas = nombres reales de nodos.
Cerrar cada rama	<pre>graph.add_edge("<rama>", END)</rama></pre>	Finaliza tras la rama.	O re-converge en un nodo común antes de END .

Esqueleto de router

```
def router(state: State) -> str:
    # lógica pura en base a `state`
    return "nodo_destino" # p. ej. "par" / "impar" / "escalado"
```

Errores comunes: rutas que **no** existen; router que **modifica** el estado; strings de ruta ≠ nombres de nodos.

• 13 Streaming y observabilidad con LangGraph

Necesito	API / Parámetro	¿Qué obtengo?	Cuándo usarlo
Ver progreso paso a paso	<pre>app.stream(initial_state, config=, stream_mode="updates")</pre>	Emite actualizaciones parciales del estado por nodo.	Para mostrar "qué cambió" en cada transición.
Ver estado completo tras cada nodo	stream_mode="values"	Estado completo después de cada ejecución de nodo.	Debug detallado o auditoría.
Ver tokens/mensajes LLM	stream_mode="messages"	Tokens/mensajes generados por LLMs de los nodos.	Inspeccionar prompts/respuestas.
Debug exhaustivo	stream_mode="debug"	Mezcla de valores, updates y mensajes.	Diagnósticos finos (más ruidoso).

Patrón básico (loop de streaming)

```
for chunk in app.stream(state_inicial, config=config, stream_mode="updates"):
    for node_name, salida in chunk.items():
        # p.ej., acumular trazas si `salida` contiene "historial"
```

Consejos de observabilidad

- Mantén una clave historial (Annotated + reducer) para trazas legibles.
- En UI (Streamlit, FastAPI websockets, etc.), pinta en tiempo real lo que llegue del stream.
- Limita stream_mode a lo necesario (menos ruido = mejor UX).

Config & threading (para reanudación)

- Estructura típica: config={"configurable": {"thread_id": ticket_id}} .
- El thread_id identifica la ejecución y permite reanudación contra el mismo checkpoint.

• 14· Detención y reanudación (Human-in-the-Loop) desde la UI

Paso	Qué haces	API/Concepto	Detalles clave
1. Invocar grafo	Lanzas stream() con state_inicial y config (incluye thread_id).	app.stream()	Si el grafo tiene interrupt_before= ["procesar_humano"] , se detiene ahí.
2. Leer estado parcial	Al detenerse, obtienes estado + config (con identificadores de checkpoint/hilo).	Devuelto tras stream()	<pre>Guarda en tu UI (p. ej., st.session_state["tickets"] [ticket_id]).</pre>
3. Solicitar input humano	Muestras textarea/campo para respuesta_humano .	UI (Streamlit)	También puedes mostrar contexto recuperado por RAG para ayudar al agente.
4. Actualizar estado persistido	Inyectas la respuesta en el estado del hilo detenido.	<pre>app.update_state(config, {"respuesta_humano": texto})</pre>	No re-compilas; actualizas el estado guardado en SQLite.
5. Reanudar ejecución	Continúas el grafo desde el punto de pausa.	<pre>app.stream(, config=config) o app.invoke(, config=config)</pre>	Usa el mismo config / thread_id que al pausar.
6. Cerrar ciclo	Lees respuesta_final , marcas ticket como resuelto (IA u humano), guardas trazas.	Estado final	Muestra fuentes, confianza, tiempos, quién resolvió.

Checklist HITL

- Define pausa con interrupt_before=["procesar_humano"] (o interrupt_after según convenga).
- Persiste con SqliteSaver (o MemorySaver si no necesitas durabilidad).
- Usa update_state(...) antes de reanudar.
- Mantén idempotencia: si re-intentas, los nodos deberían tolerarlo.

Página de Notas del Tema

Esta página está pensada para que puedas anotar ideas clave, dudas y reflexiones importantes sobre el tema anterior.

Tema 5 – Memoria y Gestión de Contexto con LangChain y LangGraph

Guía de referencia

Usa esta guía como recordatorio rápido de mecanismos y parámetros para gestionar memoria y contexto en apps con LLM. Es general y aplicable a cualquier proyecto (no depende de los ejemplos del curso).

1 · Conceptos clave (coste, contexto y sesiones)

Concepto	¿Qué es?	Por qué importa
Context window	Límite de tokens que el LLM puede procesar por petición.	Define cuánto historial/carácteres puedes enviar; superar el límite da errores o truncado.
Coste por tokens	La facturación se basa en tokens de entrada/salida.	Más historial ⇒ más coste y latencia. Optimiza memoria y prompts.
Historial de conversación	Mensajes previos de usuario y asistente.	Mantiene coherencia (p. ej., recordar el nombre del usuario).
Sesiones / threads	Identificador para aislar conversaciones concurrentes.	Evita mezclar historiales de distintos usuarios/hilos.
Persistencia	Dónde se guarda la memoria (RAM o disco/BD).	RAM es volátil; disco permite reanudar conversaciones tras reinicios.

2 · Patrón básico: historial manual en el prompt (rudimentario)

ldea: Mantener una lista history: List[BaseMessage] y pasarla a la plantilla con MessagePlaceholder("history") .

Elemento	Cómo se usa	Ventajas	Limitaciones / riesgos
MessagePlaceholder("history")	Inserta una variable (lista de mensajes) en el prompt.	Control total del prompt.	Gestión manual tediosa; crece sin control; sin sesiones por defecto.
HumanMessage , AIMessage	Tipos de mensaje para construir history .	Estructura clara.	Hay que actualizar history tras cada turno.
Bucle de chat	<pre>chain.invoke({"input": user_input, "history": history})</pre>	Fácil de entender.	Sin aislamiento por sesión; alto coste si el historial crece.

Cuándo evitarlo: apps multiusuario, historiales largos, necesidad de persistencia o control fino de coste.

• 3 · LangChain (simple, sin persistencia): RunnableWithMessageHistory

Para prototipos o apps sencillas sin necesidad de guardar en disco.

 $\textbf{Clase:} \quad \texttt{langchain_core.runnables.history.RunnableWithMessageHistory}$

Piezas esenciales

- Store en RAM: diccionario store: Dict[str, InMemoryChatMessageHistory] .
- Historial por sesión: InMemoryChatMessageHistory (no persistente).
- Factory de historial:

```
def get_session_history(session_id: str):
   if session_id not in store:
     store[session_id] = InMemoryChatMessageHistory()
   return store[session_id]
```

• Envoltura con memoria:

• Config por sesión (aislamiento):

```
config = {"configurable": {"session_id": "<id-sesión>"}}
resp = chain_with_memory.invoke({"input": user_input}, config=config)
```

Pros / Contras

Pros	Contras
Sencillo; añade memoria y sesiones con poco código.	RAM volátil; sin persistencia; menos flexible para flujos complejos.
Compatible con prompts existentes.	No apto para cargas concurrentes/robustas a producción.

Checklist rápido

- Define get_session_history
- Envuelve tu cadena con RunnableWithMessageHistory
- Pasa session_id vía config["configurable"]

• 4 · LangGraph (recomendado): MemorySaver + MessageState

Para control del flujo y memoria integrada en grafos, con checkpoints.

Conceptos LangGraph

Elemento	Descripción	Uso típico
StateGraph	Grafo de nodos con estado compartido.	Orquestar pasos (nodos) del agente.
MessageState	Estado predefinido con messages: List[BaseMessage] .	Mantener historial sin crear un estado custom.
Checkpointer	Guarda el estado tras cada nodo.	Inspección, reanudación, memoria.
MemorySaver	Checkpointer en RAM (no persistente).	Memoria rápida entre invocaciones del grafo.

Patrón mínimo

```
# 1) Definir grafo con estado de mensajes
workflow = StateGraph(StateSchema=MessageState)

# 2) Nodo de chat (lee historial y añade respuesta)
def chatbot_node(state: MessageState):
    sys = SystemMessage(content="Eres un asistente útil...")
    msgs = [sys] + state["messages"]
    resp = 1lm.invoke(msgs)
    return {"messages": [resp]} # se concatena al estado

workflow.add_node("chatbot", chatbot_node)
workflow.add_edge("START", "chatbot")

# 3) Compilar con checkpointer en RAM
memory = MemorySaver()
app = workflow.compile(checkpointer=memory)

# 4) Invocar por sesión (thread_id)
config = {"configurable": ("thread_id": "<id-sesión>"}}
```

```
result = app.invoke({"messages": [HumanMessage(content=user_input)]}, config=config)
```

Ventajas clave

- Sesiones robustas mediante thread_id .
- Checkpointing automático (mejor inspección y reanudación).
- Performance: menos sobrecarga de "pegado" manual del historial.

Considera persistencia

• MemorySaver es volátil. Para persistir, cambia el checkpointer (p. ej., SQLite/Redis) en lugar de MemorySaver .

• 5 · Ventana deslizante (control de coste): trim_messages

Objetivo: Enviar al LLM solo los N últimos turnos (manteniendo el historial completo en estado/checkpoint si quieres), para controlar tokens y latencia.

Función: langchain_core.messages.trim_messages

Parámetro	Qué hace	Notas
strategy="last"	Mantiene los últimos N "tokens" según contador.	Útil para ventana fija.
max_tokens=N	Límite usado por el contador.	Con contador "por mensaje", N \approx n^o de mensajes.
token_counter=len	Forma de contar tokens.	Con len sobre cada mensaje ⇒ cada mensaje cuenta como 1.
start_on="human"	Asegura que el primer mensaje recortado sea humano.	Recomendable en chats.
include_system=True	Preserva el SystemMessage .	Mantiene el rol/instrucciones.

Patrón de uso dentro del nodo

```
# Preparar el trimmer (una vez)
trimmer = trim_messages(
    strategy="last",
    max_tokens=4,  # p. ej., últimos 4 mensajes
    token_counter=len,  # cuenta cada mensaje como 1
    start_on="human",
    include_system=True,
)

def chatbot_node(state: MessageState):
    sys = SystemMessage(content="Eres un asistente...")
    # Recortar SOLO para invocar el LLM
    trimmed = trimmer.invoke(state["messages"])
    msgs = [sys] + trimmed
    resp = llm.invoke(msgs)
    return {"messages": [resp]} # El estado aún guarda TODO el historial
```

Buenas prácticas

- Mantén estado completo para auditoría, pero recorta para invocar el LLM.
- Ajusta max_tokens (o cambia a contador de tokens real) según el modelo/plan.
- Usa junto a checkpointers persistentes si necesitas reanudar sesiones largas.

• 6 · ¿Qué enfoque usar?

Caso	Enfoque recomendado	Motivo
Prototipo rápido, 1 usuario, sin reanudar	RunnableWithMessageHistory + InMemoryChatMessageHistory	Simplicidad.
Chat multiusuario con control de flujo	LangGraph (StateGraph + MessageState)	Orquestación + memoria integrada.
Memoria no persistente, rendimiento	LangGraph + MemorySaver	Rápido y aislado por thread_id .
Conversaciones largas / control de coste	Añade trim_messages (ventana deslizante)	Limita tokens enviados.
Reanudación tras reinicio/escala	Checkpointer persistente (SQLite/Redis/)	Estado durable.

• 7 · Memoria persistente con LangGraph (SQLiteSaver)

Objetivo: conservar historiales entre ejecuciones, reinicios o despliegues.

Pieza	¿Qué es?	Opciones/Detalles
Checkpointer	Mecanismo de guardado tras cada nodo del grafo.	Se pasa al compilar: app = graph.compile(checkpointer=) .
MemorySaver	Checkpointer en RAM (volátil).	Útil para prototipos, no persiste.
SQLiteSaver	Checkpointer persistente en disco.	Recomendado para conservar chats/hilos.
Conexión	<pre>sqlite3.connect("historial.db", check_same_thread=False)</pre>	check_same_thread=False permite acceso concurrente controlado.
Sesiones	<pre>config={"configurable":{"thread_id": "<id>"}}</id></pre>	Aísla historiales por chat/hilo. Reusar thread_id reanuda la conversación.

Patrón mínimo:

1. Estado y grafo

```
workflow = StateGraph(StateSchema=MessageState)
def chatbot_node(state):
    sys = SystemMessage("...instrucciones...")
    msgs = [sys] + state["messages"]
    resp = llm.invoke(msgs)
    return {"messages": [resp]}
workflow.add_node("chatbot", chatbot_node)
workflow.add_edge("START", "chatbot")
```

1. Persistencia

```
conn = sqlite3.connect("historial.db", check_same_thread=False)
cp = SQLiteSaver(conn)
app = workflow.compile(checkpointer=cp)
```

1. Invocación por sesión

```
config = {"configurable": {"thread_id": chat_id}}
app.invoke({"messages": [HumanMessage(content=user_input)]}, config=config)
```

Buenas prácticas

- Un thread_id por chat; un user_id (si lo modelas) para agrupar chats.
- Rotación/backup de la DB (vacuum, índices básicos).
- Si necesitas HA/escala: cambia a Postgres u otro checkpointer persistente equivalente.

8 · Memoria vectorial — conceptos y diseño

Idea: almacenar información en una BD vectorial y recuperar fragmentos relevantes por similitud semántica, en lugar de enviar todo el historial.

Decisión	Opciones	Comentarios
Ámbito	Por-chat, por-usuario (global), por-equipo	Lo normal: global por usuario + por-chat opcional.
Embeddings	OpenAl, Cohere, local (e5, Instructor)	Elige por calidad/coste; homogeneidad entre index y query.
Store	Chroma, FAISS, PGVector, Milvus, Weaviate	Chroma: simple y persistente en disco local.
Schema	<pre>document , id , metadata (p.ej., user_id , source , type)</pre>	Etiqueta: type ∈ {profile, preference, work, location,}.
Retriever	k (topK), distancia (cosine, I2), filtros por metadatos	Empieza con k∈[3,8] ; filtra por user_id .
Fusión con memoria secuencial	Ventana deslizante + vectorial	Vectorial aporta recuerdo duradero ; ventana controla coste del turno.

Cuándo usarla

- Chats largos/antiguos donde no compensa arrastrar todo el hilo.
- Perfilado progresivo de usuario (gustos, nombre, ubicaciones, rol...).
- Búsquedas "no literales" (sin depender de coincidencia exacta).

• 9 · Caso práctico (abstracto): combinar memoria volátil por chat + memoria vectorial global

Arquitectura lógica

- LangGraph + MemorySaver → historial activo del chat (barato y rápido).
- Vector store (Chroma) → memoria global del usuario (perfil, gustos, datos duraderos).
- Nodo de chat:
 - 1. Lee último HumanMessage (la consulta).
 - 2. Recupera memorias globales relevantes (k fijo, filtra por user_id).
 - 3. Inyecta memorias a SystemMessage (o como contexto adicional).
 - 4. [System] + (ventana deslizante del chat) + [Último Human] .
 - 5. Actualiza: añade AIMessage al estado + (opcional) extrae del último mensaje humano datos para guardar en vectorial.

Funciones típicas

- save_memory(text, user_id, type=...) \rightarrow añade document , id=uuid4() , metadata .
- search_memory(query, user_id, k=5) \rightarrow vector_store.query + filtros.
- Heurística de guardado (rápida) o Clasificador con LLM (mejor calidad) para decidir qué persistir:
 - Nombre: "me llamo..."
 - Ubicación: "vivo en... / soy de..."
 - Profesión: "trabajo como... / soy ..."
 - Preferencias: "me gusta... / me encanta..."

Consejos de implementación

- Mantén comandos de depuración (p. ej., memorias) para listar lo guardado.
- Sanitiza/normaliza texto (minúsculas, trimming, deduplicación por hash).
- Añade TTL o políticas (importancia, frescura) si temes crecimiento descontrolado.
- Registra fuente (chat_id, timestamp) en metadatos.

Página de Notas del Tema

Esta página está pensada para que puedas anotar ideas clave, dudas y reflexiones importantes sobre el tema anterior.

Tema 6 – Agentes de IA y herramientas externas con LangChain y LangGraph

Guía de referencia

Usa esta guía como recordatorio rápido de conceptos, opciones y APIs clave. Está pensada para cualquier proyecto, no solo para el ejemplo del curso.

• 1 · Concepto de "herramienta" (tool) en LLM apps

Idea central: una tool es funcionalidad externa invocable por el LLM para hacer algo más allá de generar texto (p.ej., consultar una BD, ejecutar Python, buscar en la web).

Concepto	Qué es	Por qué importa
Tool	Función externa (con nombre, descripción y esquema de E/S) que el LLM puede invocar .	Permite que el modelo decida cuándo usar capacidades externas.
Tool vs. nodo de grafo	En un grafo (LangGraph) tú ordenas el flujo; con <i>tools</i> el LLM decide invocar.	Mayor flexibilidad y autonomía del agente.
Tool calling nativo	Modelos modernos generan Ilamadas estructuradas (JSON) a tools (no texto libre).	Integración más estándar y segura.
Argument schemas	Tipos y validaciones (normalmente vía Pydantic/type hints).	El LLM sabe qué parámetros enviar y de qué tipo .
Tool artifacts	Datos extra que no se devuelven al LLM pero quedan disponibles para lógica posterior.	Útiles para registrar metadatos, resultados intermedios o salidas pesadas (p.ej., coordenadas detecciones).

• 2 · Tool calling moderno vs. enfoque legacy

Enfoque	Cómo funcionaba	Problemas	Alternativa actual
Legacy (texto libre)	Instruías al LLM para que devolviera un "necesito usar X con argumentos Y" en texto.	Frágil, parseo propenso a errores.	
Actual (tool calling)	El LLM devuelve una estructura JSON: tool_name , arguments , call_id .	_	Definir tools con esquemas y dejar que el LLM las invoque.

Claves de definición para tool calling efectivo

- Nombre corto y preciso.
- Descripción orientada a uso ("qué hace" y "cuándo usarla").
- Parámetros tipados (type hints / Pydantic): obligatorios, opcionales, formatos.
- Salida bien definida (string/objeto) y, si aplica, artifacts separados.

• 3 · Herramientas integradas y registro (LangChain)

Reutiliza tools existentes cuando sea posible. Ej.: Python REPL (intérprete Python) de langchain-experimental.utilities.PythonREPL .

Paso	Qué haces	Detalle clave
Instalar	pip install langchain-experimental	Módulo experimental con utilidades.
Crear instancia	<pre>python_repl = PythonREPL()</pre>	Inicializa el intérprete.
Registrar como tool	Tool(name=, description=, func=python_repl.run)	name y description guían al LLM para elegir esta tool.
Invocar manualmente	<pre>tool.run("print(2+2)")</pre>	Útil para testear la tool sin LLM.

Campos importantes al registrar (Tool)

- name : único y descriptivo (p.ej., python_repl).
- description : explícita, con cuándo usarla (p.ej., "ejecuta código Python para cálculos/lógica").
- **func** : callable que ejecuta la acción (p.ej., python_repl.run).

Consideraciones

- El LLM elegirá esta tool si su descripción encaja con la tarea.
- Seguridad: REPL puede ejecutar código arbitrario → sandboxing/guardrails en producción.

• 4 · Crear herramientas personalizadas con @tool (recomendado)

Ruta preferida por simplicidad y legibilidad.

Elemento	Requisito	Motivo
Decorador	<pre>from langchain_core.tools import tool</pre>	Convierte una función en tool.
Type hints	Obligatorios en parámetros y retorno	El LLM infiere tipos y valida entrada/salida.
Docstring	Describe qué hace y cuándo usarla	Se usa como description de la tool.

Esqueleto recomendado

- Firma: @tool(name="...") (opcionalmente sin nombre para usar el de la función)
- Parámetros tipados (p.ej., query: str)
- -> str | dict | ... retorno tipado
- Docstring clara: "Consulta la base de usuarios..."

Opciones útiles del decorador

Opción	Qué hace	Cuándo usarla
name=""	Cambia el nombre por defecto (el de la función).	Nombres más amigables o compatibles con tu convención.
return_direct=True	El resultado final de la ejecución será la salida de la tool (no vuelve al LLM).	Flujos donde no quieres post-procesar en el LLM (p.ej., descarga de archivo).
response_format=	Permite devolver salida para el LLM + artifacts separados.	Cuando necesitas registrar/encadenar metadatos pesados.
args_schema=MyModel	Define manualmente el esquema de entrada (Pydantic).	Validaciones avanzadas, alias, formatos específicos.
infer_schema=True	Deja que infiera esquema desde type hints.	Rápido prototipado si los hints son suficientes.

Inspección rápida (debug)

- tool_instance.name → nombre efectivo
- $\bullet \qquad \texttt{tool_instance.description} \ \to \ \texttt{descripción} \ \texttt{efectiva}$

• 5 · Alternativa: StructuredTool

Más flexible en algunos casos, pero más verboso. Útil si quieres construir la tool a partir de una función sin decorarla.

Cómo	Ejemplo mental	Notas
StructuredTool.from_function(fn=) o StructuredTool(**kwargs)	Envolvente explícito sobre una función ya existente.	Mantén type hints y docstring en la función base para que el esquema sea correcto.
Interfaz estándar	.run(**kwargs)	lgual que con @tool .

Cuándo preferir StructuredTool

- Necesitas fabricar tools dinámicamente (p.ej., a partir de un catálogo de funciones).
- Quieres separar definición de función y construcción de la tool por motivos de arquitectura.

6 · Patrón de diseño y buenas prácticas

- Diseña pocas tools, bien descritas. Evita solapamientos; las descripciones deben diferenciar claramente las capacidades.
- Valida inputs (type hints/Pydantic) y maneja errores con mensajes útiles para el LLM.
- Idempotencia y efectos colaterales controlados: si la tool escribe/borra, pide confirmaciones o usa dry-run.
- Observabilidad: registra tool_name , arguments , duration , artifacts y resultado.
- Seguridad:
 - Limita lo que el REPL puede ejecutar (listas blancas, timeouts, recursos).
 - Sanitiza entradas que viajan a SQL/APIs.
 - Mantén quotas/reintentos y circuit breakers para APIs externas.
- UX del agente: descripciones con triggers claros ("si necesitas cálculo aritmético...", "si debes consultar usuarios por ID...").
- Testing: prueba tools aisladas (tool.run(...)) y en bucle LLM (simulando invocaciones reales).

7 · Usar herramientas con LLMs en LangChain (tool calling básico)

Objetivo: habilitar que el modelo decida si llama a una tool y con qué argumentos.

Paso	Qué haces	API/Detalle
1) Crear el LLM	Instancia un chat model determinista.	ChatOpenAI(model="gpt-4o-mini", temperature=0.2) (o equivalente del proveedor que soporte tool calling).
2) Tener tools	Pueden ser personalizadas (@tool) o integradas.	Asegura type hints + docstring; nombre y descripción claros.
3) Asociar tools al LLM	El LLM "sabe" qué herramientas puede usar.	<pre>llm_with_tools = llm.bind_tools([mi_tool,])</pre>
4) Invocar al LLM	Si el modelo necesita una tool, devolverá tool_calls (JSON estructurado).	$\label{eq:resp} \mbox{resp = } \mbox{llm_with_tools.invoke("")} \ \rightarrow \ \mbox{resp.tool_calls} \ \mbox{(lista con name , args , id)}.$
5) Ejecutar la tool	Ejecuta tú la tool con esos args .	Preferible tool.invoke(args_dict) (acepta el JSON) — tool.run(texto) solo para una cadena simple.
6) Devolver al LLM (opcional)	Para cerrar la tarea con contexto.	Re-invoca el LLM incluyendo historial + resultado de la tool como mensaje/observación.

Reglas y trucos

- Nombres de tools (especialmente con OpenAl): alfanumérico y guiones bajos, sin espacios ni símbolos raros. Si incumples, el proveedor lanza error.
- Descripción debe decir qué hace y cuándo usarla; el LLM la usa para decidir.
- tool.run vs tool.invoke :
 - o run(input_str) → rápido para tests, solo un string; no gestiona args complejos.
 - o invoke($\{"arg1":..., ...\}$) \rightarrow acepta el payload estructurado que devuelve el LLM.
- LCEL (cadenas): puedes encadenar llm_with_tools y luego extraer tool_calls (p. ej., con operator.attrgetter("tool_calls") o utilidades de LCEL) y mapear a tool.invoke para un flujo más compacto.

• 8 · Devolver un "artefacto" para uso interno (respuesta + artifact)

Objetivo: que la tool devuelva dos salidas: una para el modelo y otra para tu app (logs, metadatos, binarios ligeros, etc.).

Qué configurar	Cómo funciona	Nota
response_format en la tool	Indica que habrá contenido para el LLM + artifact para uso interno.	Implementa el return como tupla (contenido, artifact) .
Firma tipada	Usa Tuple[str, int] , Tuple[str, dict] , etc.	Importa Tuple de typing .
Ejecución	tool.run() solo devuelve el contenido.	Para inspeccionar artifact, usa tool.invoke({}) o procesa el mensaje estructurado.

Ejemplo mental

- Contenido: "Resultado de la consulta SQL ..." (entra al LLM).
- Artifact: {"elapsed_ms": 123, "rows": 42} (no entra al LLM; lo usas en observabilidad/post-procesos).

9 · Herramientas predefinidas e integraciones (LangChain)

LangChain incluye un gran catálogo de tools (búsqueda, ofimática, nubes, DBs, mensajería, etc.).

Categoría	Ejemplos	Cómo se usa
Búsqueda/Web	Bing, Google, Tavily, Wikipedia	Suele requerir API key y cliente. Instancia el wrapper y ejecuta con .run o enchaína con tu LLM.
Docs/Ofimática	Google Sheets/Docs, Microsoft 365	Autenticación OAuth o API key; define scopes y crea la tool (normalmente en langchain_community.tools/).
Datos/DBs	SQL, Mongo, Elasticsearch	Configura conexión; tools para consultar/resumir tablas.
Mensajería/Comms	Slack, Twilio, Gmail (borradores)	Requiere credenciales; útiles para agentes que actúan (enviar aviso, crear borrador).
Cálculo/Code	Python REPL, interpretes	Peligroso en producción: sandbox, timeouts y whitelists.

Patrón típico de uso

- 1. Instalar paquete(s) externo(s) necesario(s) (pip install ...).
- 2. Importar wrapper y/o tool pre-hecha.
- 3. Configurar con claves/parámetros.
- 4. Probar con .run(...) .
- 5. Añadir a llm.bind_tools([...]) para que el agente/LLM pueda decidir usarla.

• 10 · Fundamentos de los agentes de IA (LangChain / LangGraph)

Definición: sistema dirigido por un LLM que elige acciones (tools) y su orden para lograr un objetivo.

Componente	Rol	Claves
LLM	"Cerebro" que decide el siguiente paso.	Debe soportar tool calling.
Toolkit	Conjunto de tools disponibles.	Limita y describe bien cada tool.
Plantilla de razonamiento	Patrón ReAct (Pensar→Actuar→Observar→ →Responder).	Viene predefinida en agentes de LangChain/LangGraph.
Memoria	Historial/estado para iterar correctamente.	Conversacional o específica de tarea.
Ejecutor del agente	Orquesta el bucle pensamiento/acción/observación.	En LangChain y LangGraph hay agentes predefinidos para no codificar el loop a mano.

Ciclo de un agente

- 1. **Instrucción** del usuario →
- 2. Pensamiento (LLM con prompt de agente) →
- 3. Elección de tool + args →
- 4. **Ejecución** de la tool →
- 5. **Observación** (resultado vuelve al contexto) →
- 6. Repite 2–5 hasta respuesta final.

Buenas prácticas

- Toolkit pequeño y bien diferenciado.
- Mensajes de error útiles para que el agente corrija.
- Guardrails: límites de pasos, coste, timeouts, rate limiting.
- Trazabilidad: log de tool_calls , duración, artifacts y resultados.

• 11 · Primer agente con LangChain (tool-calling + ejecución)

Objetivo: crear un agente que razone, elija tools y ejecute pasos automáticamente.

¿Qué hace?	Notas clave
Modelo con tool calling nativo.	Usa temperatura baja para comportamiento estable.
Colección de tools listas (buscar, leer, crear borradores).	Evita especificar tool por tool; el agente elige.
Añade capacidades específicas del negocio.	Combina toolkit + tools personalizadas en una lista.
Define pasos, criterios y formato.	agent_scratchpad es obligatorio en agentes LC: almacena pensamiento/acciones/observaciones intermedias.
Prepara un agente ReAct que puede invocar tools.	Requiere LLM con tool-calling.
Orquesta el bucle	Define límite de iteraciones para evitar bucles/costos.
Corre el flujo completo y devuelve output .	Pasa historial si necesitas contexto conversacional.
	nativo. Colección de tools listas (buscar, leer, crear borradores). Añade capacidades específicas del negocio. Define pasos, criterios y formato. Prepara un agente ReAct que puede invocar tools. Orquesta el bucle pensar→actuar→observar. Corre el flujo completo y

Buenas prácticas

- Nombre y descripción de cada tool: deben dejar claro cuándo usarlas.
- Errores: handle_parsing_errors=True reintenta automáticamente pasos frágiles.
- Coste/seguridad: limita herramientas peligrosas (REPL), añade timeouts/quotas.

• 12 · Añadir tools personalizadas al agente (patrones útiles)

Caso: extender un toolkit con una tool propia (p. ej., responder en el mismo hilo de un sistema de mensajería/correo).

Paso	API/Opción	Detalle
Definir tool	from langchain_core.tools import tool → @tool(name="create_reply_draft")	Usa type hints y un docstring que documente: qué hace, <i>cuándo</i> usarla y cada argumento.
Acceso a APIs	Usa wrapper/cliente del servicio (p. ej., toolkit.api_resource)	Mantén la lógica de autenticación/config en un sitio.
Cuerpo del mensaje	Construye payload (headers, codificación, referencias)	Ej.: añadir thread_id / in_reply_to cuando el servicio lo requiera para responder en hilo.
Añadir al agente	<pre>tools = toolkit.get_tools() + [create_reply_draft]</pre>	El agente la podrá elegir según la descripción.

Checklist de una tool sólida

- Args bien tipados (obligatorios vs opcionales).
- Errores descriptivos (ayudan al agente a corregir).
- Idempotencia o dry_run si hay efectos (envíos/altas).
- Artefactos si necesitas telemetría (duración, IDs creados).

• 13 · Agentes con LangGraph (recomendado para producción)

Objetivo: mismo patrón ReAct pero con estado y orquestación más estables.

Elemento	API/Opción	¿Qué hace?	Notas
Agente ReAct	<pre>from langgraph.prebuilt import create_react_agent</pre>	Crea un agente listo para tools.	Sustituye a create_tool_calling_agent en LC.
Memoria de checkpoints	from langgraph.checkpoint.memory import MemorySaver	Guarda/recupera estado entre pasos/llamadas.	Cambiable por almacenes persistentes.
Prompt	parámetro prompt= (system prompt)	Define el comportamiento.	No necesitas {agent_scratchpad} manual.
Config	<pre>config={"configurable": {"thread_id": ""}}</pre>	Aísla sesiones y reanuda estados.	Útil para multiusuario o sesiones largas.
Estado	Mensajes en state["messages"]	<pre>Entrada: HumanMessage (0 {"role":"user","content":""})</pre>	La salida se lee del último mensaje del estado.

Diferencias vs LangChain

- Menos pegamento manual (scratchpad/ejecutor) y mejor control de estado.
- API cambia con más frecuencia: revisa parámetros actualizados (p. ej., prompt= en lugar de state_modifier=).

• 14 · Sistemas multiagente con LangGraph Supervisor

Patrón: un supervisor selecciona/agrega respuestas de agentes especializados.

Componente	API/Opción	Función
Agentes especialistas	<pre>create_react_agent(model, tools=[], prompt="Eres especialista en X", name="")</pre>	Uno por área (búsqueda, cálculos, extracción, redacción).
Supervisor	from langgraph_supervisor import create_supervisor	Recibe la petición, decide a quién delegar y cuándo parar.
Modelos	Puedes usar modelos distintos por agente/supervisor	Optimiza coste/rendimiento por tarea.
Compilación	<pre>graph = create_supervisor(); compiled = graph.compile()</pre>	Genera el grafo ejecutable.
Ejecución	<pre>compiled.invoke({"messages":[]})</pre>	El estado final incluye trazas y mensajes.

Topologías

- Supervisor (recomendada): 1 coordinador + N expertos.
- Red: agentes colaboran entre sí.
- Jerárquica: varios niveles (más compleja y frágil).

Guardrails

- Límite de pasos/iteraciones, presupuesto, y tiempos.
- Trazabilidad: log de tool_calls , latencias, errores, artifacts.

• 15 · Arquitectura de una solución multiagente "product-ready"

Capas clave (independientes del dominio):

- 1. Interfaz & API
- API REST para ingestión de eventos/tareas (POST JSON), healthcheck, y consulta de estados.
- Cliente UI (dashboard) que lea estados/alertas, trace pasos y resultados.
- 1. Orquestación
- Supervisor + especialistas (LangGraph).
- Colas/jobs opcionales si ingestión es alta (no bloquees al cliente).
- Retentativas y backoff para tools externas.
- 1. Integraciones
- Búsqueda web (proveedor search), inteligencia (p. ej., análisis/escáner), mensajería/correo (notificaciones).
- Normaliza errores y rate limits por proveedor.
- 1. Observabilidad
- Logs estructurados (agente, tool, args resumidos, duración, coste).
- Trazas por thread_id y correlación con IDs de negocio.
- Métricas: latencia por tool, % reintentos, % éxito.
- 1. Seguridad y cumplimiento
- Sandboxes para ejecución de código.
- Escapes/sanitización (SQL, URLs, prompt injection).
- Controles de salida (validación de decisiones "riesgosas").
- 1. Persistencia
- Estados de LangGraph (checkpoints), resultados, y artefactos.
- Configuración por entorno (dev/staging/prod).

Página de Notas del Tema

Esta página está pensada para que puedas anotar ideas clave, dudas y reflexiones importantes sobre el tema anterior.