浙江大学 20<u>16</u> – 20<u>17</u> 学年<u>秋</u>学期 《 随机过程》补考试卷

课程号: <u>061B0160</u>, 开课学院: <u>数学科学学院</u>

考试试卷: √A 卷、B 卷 (请在选定项上打√)

考试形式: √闭、开卷 (请在选定项上打√), 允许带_计算器_人场

考试日期: _2016年_9月___日,考试时间: _120_分钟

诚信考试, 沉着应考, 杜绝违纪。

请注意:本试卷共六大题,四页,两大张。 请勿将试卷拆开或撕页!如发生此情况责任自负!

考生姓名:		学号:			专业: _				
	题序		=	111	四	五	六	总 分	
	得分								
	评卷人								
— .	填空题 设 {B(t Cov(B(3	【 (每小格 t); t ≥ 0} 点 3) - 2B(1)	3分, 共3 是标准布 ,B(2)) =	0 分,每个 朗运动, ,	外布均要 则 B(3) P(B(5.5)	写出参数) 2 <i>B</i> (1)	录从 l) = 3, <i>B</i> (1	$\Phi(2.5) = 0.$	
2.) = 服从二元II			$B \sim N(0,2)$,	A 与B
	相互独	立,则自相	目关函数 <i>R_x</i>	$s(s,t) = \underline{}$		$X(\frac{3\pi}{4})$	~	分布.	
	=	, {X	(t)}的均值	各态历经的	若自相关函 当且仅当均 立的强度均	值µ _X =	•	」,则谱密度 <i>S</i> , 引	χ(ω)
	$P(N_1(1))$) + N ₂ (2) = 分) 设X(t) -1) = 0.4。	= 2) =) = At + B (1)写出X(,t ≥ 0, 这 (t)的全部标	, <i>P(N₁(2)</i> 里 <i>A和B相</i>	= 2 N ₁ (1) 互独立服从 (2)求(X(1) + N ₂ (2) = 人相同分布), X(2))的 []]	= 2) = , P(A = 1) = 联合分布律及	0.6,

三. $(14 \, f)$ 以N(t)表示(0,t]内到达某商场的顾客数,设 $\{N(t); t \geq 0\}$ 是强度为 $\lambda = 5$ 的泊松过程,进商场的各顾客独立地以概率 0.4 购物,以概率 0.6 不购物。计算(1)在(0,1]内至少有 1 个顾客达到,且在(0,3]内恰有两个顾客到达的概率; (2)若已知在(0,3]内恰有 1 个顾客到达,求他到达的时间在(1,2)之间的概率; (3)若已知在(0,1]内至多有 2 个顾客到达,求至少有 1 个顾客购物的概率。

四. (14 分) 甲乙两人玩游戏,每局甲赢一元的概率为 0.4,输一元的概率为 0.3,平局的概率为 0.3,假设一开始甲有 1 元,乙有 2 元,游戏直到某人输光为止, X_n 为第 n 局后甲拥有的钱数,则 $\{X_n; n \geq 1\}$ 是一个时齐的 Markov 链,状态空间 $I = \{0,1,2,3\}$,求 (1) 一步转移矩阵P; (2) $P(X_2 = 1)$; (3) $P(X_2 = 1, X_4 = 2)$; (4) 甲输的概率。

五. (14 分) 设 $\{X_n; n \geq 0\}$ 是时齐的 Markov 链,状态空间 $I = \{1,2,3,4,5,6\}$,一步转移概率为: $p_{11} = p_{54} = p_{62} = 0.4, p_{12} = p_{56} = p_{65} = 0.6, p_{21} = p_{34} = p_{43} = 1.$ (1)求出所有的互达等价类,并指出哪些是闭的;(2)求出各状态的周期和常返性;(3)计算所有正常返态的平均回转时;(4)计算 $\lim_{n\to\infty}p_{12}^{(n)}n\lim_{n\to\infty}p_{55}^{(n)}$.

六. $(14\, \mathcal{G})$ 设 $X(t) = A\cos(t+2\pi B)$, $-\infty < t < \infty$, 这里A, B相互独立同服从区间 $(0,\ 1)$ 上的均匀分布。 (1)计算 $\{X(t); -\infty < t < \infty\}$ 的均值函数和自相关函数,并证明它是一个宽平稳过程; (2)计算 $\{X(t); -\infty < t < \infty\}$ 的时间均值< X(t) >和时间相关函数 $< X(t)X(t+\tau) >$,判断 $\{X(t); -\infty < t < \infty\}$ 是否为各态历经过程,说明理由。 (公式 $\cos(\alpha+\beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$, $\sin(\alpha+\beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$.)