CS4450, CS5456 Introduction to Computer Networks

Lecture 10

Rachee Singh

Routing on a spanning tree using flooding

- 1. Step 1: Ignore all links not belonging to the spanning tree
- 2. Step 2: Source node sends or "floods" frames out to every neighbor on the spanning tree
- 3. Step 3: Send incoming frame out to all links other than the one that sent them

Flooding example

Eventually all nodes receive the frame

Spanning Tree

Routing on a spanning tree using flooding

- 1. Easy routing algorithms for trees
 - 1. Simply flood packets to all neighbors
- 2. Good properties:
 - 1. No loops
 - 2. No complex state to be stored on each node

What have we learnt so far?

1. Terminology

- 1. End systems (or hosts), switches, routers, links
- 2. Network performance metrics (latency, bandwidth, BDP, loss)

2. Design choices

- 1. Packets vs. circuits
- 2. Best effort vs. reliable (or guaranteed) delivery
- 3. Layering
- 4. End-to-end principle ("smart" end hosts but "dumb" network)

3. Physical layer

- 1. Modulate bits onto signals (modulation formats, signal quality)
- 2. Shanon and Hartley's law to channel capacity

4. Data link layer

- 1. Broadcast ethernet (legacy) with CSMA/CD
- 2. Switched ethernet
- 3. Broadcast storms and spanning tree protocol

What now?

- 1. The STP allows hosts connected to Ethernet to communicate
- 2. Do we need anything else for hosts to communicate on networks?
- 3. If you have multiple Ethernet networks
 - 1. Why not use spanning tree for all these networks?
 - 2. In short, given we have the data link layer (L2), why do we need the network layer (L3)?

Issues with routing using flooding

Issue 1: Each host has to do unnecessary packet processing! (to decide whether the packet is destined to the host)

Issues with routing using flooding

Issue 2: Higher latency!

(The packets unnecessarily traverse much longer paths)

Issues with routing using flooding

Issue 3: Lower bandwidth availability!
(Frames between 2-6 and 3-1 unnecessarily have to share bandwidth)

Why do we need a network layer?

- 1. Network layer performs routing of packets
 - 1. Alleviates issues with flooding
 - 2. It uses routing tables
 - 3. At Network layer (L₃), packets are the unit of communication
 - 4. .. like frames at L2

Routing packets using routing tables

Routing packets using routing tables

Network Layer (L3)

Network Layer Topics

- 1. Addressing
- 2. Forwarding
- 3. Routing

Network Layer Addresses

- 1. Network layer addresses are commonly called "IP addresses"
- 2. Hierarchical (unlike flat addresses)
- 3. We will discuss them later

Forwarding

- 1. The process by which a local router determines
 - 1. Output link (or next-hop) for each packet
- 2. How does the router do this?
 - 1. Read destination address from packet's L3 header
 - 2. Search own routing table for the destination address

Routing

- 1. Network-wide process that determines
 - 1. Content of routing tables
- 2. Routing determines the end-to-end path for each destination
- 3. How do routers do this?
 - 1. This is the focus of this and the next few lectures

Routing vs. Forwarding

- 1. Forwarding is a "data plane" function
 - 1. Directing one packet at a time
 - 2. Happens locally on every router
- 2. Routing is a "control plane" function
 - 1. Computing the routing tables that guide packets
 - 2. Jointly computed by routers using distributed algorithms
- 3. Forwarding and routing happen at very different timescales

Routing packets using routing tables

destination of a packet. This table is called a routing table

Goals of routing

- 1. Goal 1: valid routing in the network
 - 1. Routing finds a path to a given destination
 - 2. How to know if the state of routers' routing tables is valid?
- 2. Goal 2: efficient routing in the network

Validity of global routing state

- 1. Local routing state is the forwarding table in a single router
 - 1. By itself, the state of single router can not be evaluated
 - 2. It must be evaluated in terms of the global context
- 2. Global routing state is the collection of forwarding tables of all routers
 - 1. Global state determines the path packets take

What is "valid" routing state?

- 1. Global state is valid:
 - 1. if it produces forwarding decisions that always deliver packets to their destinations
- 2. Goal of routing protocols: compute valid routing state
- 3. But, how do we know if the routing state if valid?
 - 1. Need correctness conditions for routing

Necessary and sufficient conditions for valid routing state

- 1. Global routing state is valid if and only if:
 - 1. There are no dead ends (other than destinations)
 - 2. There are no loops
- 2. A dead end is when there is no outgoing link or next-hop
 - 1. Packet arrives at a router
 - 2. But the forwarding decision does not find a next-hop
- 3. A loop is when a packet cycles around the same set of nodes forever

Dead ends in routing state

Necessary ("only if") condition for validity

- 1. If you run into a dead end before reaching the destination
 - 1. Will never reach destination
- 2. If you run into a loop
 - 1. Will never reach the destination

Sufficient ("if") condition for validity

- 1. Assume no dead ends and no loops
- 2. Packet must keep wandering the network (without repeating)
- 3. Only finite number of links to visit in the network
 - 1. It cannot keep wandering forever (since no loops)
 - 2. Must eventually reach the destination

Check validity of routing state

- 1. Focus on a single destination
 - 1. Ignore all other routing state
- 2. Mark outgoing link or next-hop with an arrow
 - 1. Only one at each router
- 3. Eliminate all links with no arrows
- 4. Look at what is left

Check validity of routing state: example

Example: pick a destination

Example: put arrows on outgoing links to destination

Example: remove unused links

Example: remove unused links

Example: remove unused links

Easy to check validity

- 1. Dead ends are obvious
 - 1. Nodes without outgoing links
- 2. Loops are obvious
 - 1. Disconnected from rest of the graph

Goals of routing

- 1. Goal 1: valid routing in the network
 - 1. How to know if the state of routers' routing tables is valid?
- 2. Goal 2: efficient routing in the network
 - 1. Finding a least cost path to a given destination

"Cost" in routing

- 1. Least cost routing tries to find paths with minimum X
- 2. What can X be?
 - 1. Latency
 - 2. Number of hops in the path
 - 3. Weight
 - 4. Failure probability
 - 5. ...
- 3. Assume each link has some cost
- 4. We want to minimize the cost of paths
 - 1. Cost of a path = sum of the costs of links on the path

- 1. Approach 1: Link state routing
- 2. Approach 2: Distance vector routing

Least cost u->z path: u->v->z

Least cost u—>v path: u->v

- 1. Given: router graph and link cost
- 2. Goal: find least cost paths
 - 1. From each source router
 - 2. To each destination router
- 3. How do you find least cost paths from a source to ALL destinations?
 - 1. Dijkstra's algorithm

Least cost routes

- 1. Least cost routes automatically avoid loops
 - 1. No sensible cost metric is minimized by traversing loops
 - 2. Least cost routes end up forming spanning trees to the destination

Link state routing: protocol vs. algorithm

- 1. Link state routing protocol creates a global view of the network
 - 1. Where to create the global view?
 - 2. How to create the global view?
 - 3. When to run route computation?
- 2. Algorithm finds shortest paths on the global network view
 - 1. Create shortest paths using standard algorithms