Fidelity Results (the non-squared version)

		-	-		-			
	g=0.00	g=0.25	g=0.50	g=1.00	g=1.50	g=2.00	g=2.50	g=3.00
1 CSK								
state	1	0.811	0.469	0.123	0.0474	0.0263	0.0181	0.0141
16 CSK								
state	1	Infeasible						
66 CSK								
state	1	0.9984	0.9811	0.831	Infeasible	Infeasible	Infeasible	Infeasible
116 CSK								
state	1	0.9998	0.9925	0.9055	0.826	0.7585	0.6926	0.6885

To note

- 1. The 1 CSK state row gives us the overlap between the initial state and the final solution
- 2. The infeasibility is when I use the Mosek solver on MATLAB. The SDPT3 solver on MATLAB will return a feasible but bad solution. So don't worry about the infeasibility, we just need to run them on the SDPT3 solver to get a value for fidelity. The only slight issue is that the SDPT3 solver is at least 10x slower...
- 3. My computer can only handle max 116 CSK states.