Dados do Plano de Trabalho								
	Membranas poliméricas decoradas com nanopartículas de níquel: da construção à eletrooxidação de álcoois							
Modalidade de bolsa solicitada:								
•	Métodos eletroanalíticos para o controle de qualidade de anabolizantes utilizados na aquicultura							

1. OBJETIVOS

O objetivo geral deste trabalho é desenvolver membranas poliméricas decoradas com nanopartículas de níquel, visando sua aplicação em processos eletroquímicos que envolvam a oxidação de álcoois.

Quanto aos objetivos específicos, pode-se citar:

- (I) Explorar diferentes rotas sintéticas para a obtenção de nanopartículas de níquel;
- (II) Estudar a performance de celulose, polianinilina e Nafion®, como precursores poliméricos das membras decoradas com as nanopartículas;
- (III) Caracterizar as membranas poliméricas por diferentes técnicas físico-químicas;
- (IV) Estudar estratégias de imobilização das membranas em diferentes suportes eletródicos, visando o desenvolvimento de novos materiais anódicos;
- (V) Testar a performance dos anodos então desenvolvidos como catalisadores da eletrooxidação de álcoois.

2. METODOLOGIA

As nanopartículas de níquel (Ni-NPs) serão obtidas por diferentes rotas de síntese bottom-up conduzidas em meio aquoso, utilizando sais de Ni²⁺ como precursores. Os polimeros (celulose, polianinilina e Nafion®) serão previamente dissolvidos e diluídos em solventes apropriados até a concentração desejada. Para o desenvolvimento das membranas, a solução polimérica poderá ser utilizada como matriz para a formação de compósitos com Ni-NPs ou como um primeiro modificador sobre a superfície do eletrodo, seguido da imobilização do nanomaterial. Neste trabalho, serão utilizados suporte eletródicos à base de carbono e titânio devido às vantagens apresentadas por estes materiais em termos de área superficial, resistência à transferência de carga e facilidade para a modificação com diferentes precursores. A caracterização dos materiais e o êxito na obtenção dos ânodos de trabalho serão avaliados pelas técnicas de microscopia eletrônica de varredura (MEV-FEG Mira3 LMU, TESCAN), espectroscopia de raios-X (Diffractometer Miniflex-II, RIGAKU), espectroscopia de infravermelho (Cary 630, Agilent), além das voltametrias e espectroscopia de impedância eletroquímica (PGSTAT 302N, METROHM AUTOLAB). As medidas eletroquímicas serão realizadas em um potenciostato/galvanostato (PGSTAT 302N, METROHM AUTOLAB) conectado a uma célula convencional de três eletrodos: Ni-NPs@polímero/suporte como ânodo, eletrodo auxiliar de platina e Ag/AgCl/Cl⁻(sat) como eletrodo de referência. Os testes de reatividade, comportamento redox, parâmetros cinéticos e termodinâmicos, entre outras propriedades eletroquímicas de caráter qualitativo e quantitativo referentes ao processo redox de álcoois (metanol, etanol,

glicerol, etc.) serão investigadas por voltametria linear, cíclica e cronométodos, utilizando critérios de diagnóstico específicos para cada técnica. Os ensaios serão feitos em meio aquoso, sendo que o eletrólito suporte empregado dependerá da sensibilidade obtida em cada sistema para a oxidação das substâncias de interesse, no que se refere à densidade de corrente gerada, potencial necessário para a ocorrência da reação redox, perfil voltamétrico, seletividade/resolução do processo e ruído no sinal analítico. Os resultados serão reportados como média aritmética obtida entre três medidas.

3. CRONOGRAMA DE ATIVIDADES

As seguintes atividades (AT) serão realizadas pelo aluno de iniciação científica, no período compreendido entre agosto/2019 e julho/2020:

- AT1. Revisão bibliográfica;
- AT2. Estudo de diferentes rotas de síntese para a obtenção de Ni-NPs;
- AT3. Obtenção das matrizes poliméricas na ausência e presença das nanopartículas;
- AT4. Otimização dos parâmetros de controle para a obtenção das membranas poliméricas;
- AT5. Caracterização das membranas poliméricas;
- AT6. Imobilização em suportes eletródicos;
- AT7. Estudo da performance eletrocatalítica dos anodos recobertos com Ni-NPs@polímero para a oxidação de álcoois;
- AT-8: Comunicação dos resultados em eventos científicos nacionais e internacionais;
- AT-9: Elaboração e submissão de artigos para periódicos indexados;
- AT-10: Elaboração e envio do relatório final de atividades.

N°	2019				2020							
	08	09	10	11	12	01	02	03	04	05	06	07
AT1	X	X	X	X	X	X	X	X	X	X	X	X
AT2	X	X	X									
AT3			X	X								
AT4				X	X							
AT5					X	X	X					
AT6						X	X					
AT7							X	X	X			
AT8							X	X	X	X	X	X
AT9							X	X	X	X	X	X
AT10											X	X