Test your understanding

* Four athletes *p*, *q*, *r*, and *s* run a race and are ranked in order of finish. Suppose all outcomes are equally likely.

- * Four athletes *p*, *q*, *r*, and *s* run a race and are ranked in order of finish. Suppose all outcomes are equally likely.
 - * Sample space Ω : the set of 4! = 24 permutations of (p, q, r, s).

- * Four athletes *p*, *q*, *r*, and *s* run a race and are ranked in order of finish. Suppose all outcomes are equally likely.
 - * Sample space Ω : the set of 4! = 24 permutations of (p, q, r, s).
 - * Events:

- * Four athletes *p*, *q*, *r*, and *s* run a race and are ranked in order of finish. Suppose all outcomes are equally likely.
 - * Sample space Ω : the set of 4! = 24 permutations of (p, q, r, s).
 - * Events:
 - * A := p is ahead of q.

- * Four athletes *p*, *q*, *r*, and *s* run a race and are ranked in order of finish. Suppose all outcomes are equally likely.
 - * Sample space Ω : the set of 4! = 24 permutations of (p, q, r, s).
 - * Events:
 - * A := p is ahead of q.
 - * B := r is ahead of s.

- * Four athletes *p*, *q*, *r*, and *s* run a race and are ranked in order of finish. Suppose all outcomes are equally likely.
 - * Sample space Ω : the set of 4! = 24 permutations of (p, q, r, s).
 - * Events:
 - * A := p is ahead of q.
 - * B := r is ahead of s.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/24 to each atom.

- * Four athletes *p*, *q*, *r*, and *s* run a race and are ranked in order of finish. Suppose all outcomes are equally likely.
 - * Sample space Ω : the set of 4! = 24 permutations of (p, q, r, s).
 - * Events:
 - * A := p is ahead of q.
 - * B := r is ahead of s.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/24 to each atom.
- * Are A and B independent events?

- * Four athletes *p*, *q*, *r*, and *s* run a race and are ranked in order of finish. Suppose all outcomes are equally likely.
 - * Sample space Ω : the set of 4! = 24 permutations of (p, q, r, s).
 - * Events:
 - * A := p is ahead of q.
 - * B := r is ahead of s.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/24 to each atom.
- * Are A and B independent events?

$$\mathbf{P}(\mathbf{A} \cap \mathbf{B}) \stackrel{?}{=} \mathbf{P}(\mathbf{A}) \, \mathbf{P}(\mathbf{B})$$

- * Four athletes *p*, *q*, *r*, and *s* run a race and are ranked in order of finish. Suppose all outcomes are equally likely.
 - * *Sample space* Ω : the set of 4! = 24 permutations of (p, q, r, s).
 - * Events:
 - * A := p is ahead of q.
 - * B := r is ahead of s.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/24 to each atom.
- * Are A and B independent events?

$$\mathbf{P}(\mathbf{A} \cap \mathbf{B}) \stackrel{?}{=} \mathbf{P}(\mathbf{A}) \, \mathbf{P}(\mathbf{B})$$

#ways q can be placed to the right of p

#ways r and s can be arranged in the remaining two positions

$$\mathbf{P}(A) = \mathbf{P}(B) = \frac{(3+2+1)2!}{4!} = \frac{1}{2}$$

- * Four athletes *p*, *q*, *r*, and *s* run a race and are ranked in order of finish. Suppose all outcomes are equally likely.
 - * *Sample space* Ω : the set of 4! = 24 permutations of (p, q, r, s).
 - * Events:
 - * A := p is ahead of q.
 - * B := r is ahead of s.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/24 to each atom.
- * Are A and B independent events?

$$P(A \cap B) \stackrel{?}{=} P(A) P(B)$$

#ways q can be placed to the right of p

#ways r and s can be arranged in the remaining two positions

$$\mathbf{P}(A) = \mathbf{P}(B) = \frac{(3+2+1)2!}{4!} = \frac{1}{2}$$

$$P(A \cap B) = \frac{3+2+1}{4!} = \frac{1}{4}$$

- * Four athletes *p*, *q*, *r*, and *s* run a race and are ranked in order of finish. Suppose all outcomes are equally likely.
 - * Sample space Ω : the set of 4! = 24 permutations of (p, q, r, s).
 - * Events:
 - * A := p is ahead of q.
 - * B := r is ahead of s.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/24 to each atom.
- * Are A and B independent events?

$$P(A \cap B) \stackrel{?}{=} P(A) P(B)$$

#ways r and s can be arranged in the remaining two positions

$$\mathbf{P}(A) = \mathbf{P}(B) = \frac{(3+2+1)2!}{4!} = \frac{1}{2}$$

$$\mathbf{P}(A \cap B) = \frac{3+2+1}{4!} = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = \mathbf{P}(A) \mathbf{P}(B)$$

- * Four athletes *p*, *q*, *r*, and *s* run a race and are ranked in order of finish. Suppose all outcomes are equally likely.
 - * *Sample space* Ω : the set of 4! = 24 permutations of (p, q, r, s).
 - * Events:
 - * A := p is ahead of q.
 - * B := r is ahead of s.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/24 to each atom.
- * Are A and B independent events?

$$\mathbf{P}(\mathbf{A} \cap \mathbf{B}) \stackrel{?}{=} \mathbf{P}(\mathbf{A}) \mathbf{P}(\mathbf{B})$$

#ways r and s can be arranged in the remaining two positions

$$\mathbf{P}(A) = \mathbf{P}(B) = \frac{(3+2+1)2!}{4!} = \frac{1}{2}$$

$$\mathbf{P}(A \cap B) = \frac{3+2+1}{4!} = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = \mathbf{P}(A) \mathbf{P}(B)$$

A and B are independent.