Лекция: Недетерминированные конечные автоматы (НКА) без выхода. Теорема о совпадении классов множеств слов, допускаемых конечными детерминированными и конечными недетерминированными автоматами. Процедура детерминизации НКА.

Лектор - доцент Селезнева Светлана Николаевна

Лекции по "Дискретной математике 2". 1-й курс, группа 141, факультет ВМК МГУ имени М.В. Ломоносова

Лекции на сайте http://mk.cs.msu.su

Определение недетерминированного конечного автомата без выхода

Конечный (недетерминированный) автомат без выхода (НКА) – это

$$\mathcal{A} = (A, Q, \Psi, q_1, F),$$

где
$$A = \{a_1, \dots, a_n\}, \quad n \geq 1, \quad -$$
 входной алфавит; $Q = \{q_1, \dots, q_r\}, \quad r \geq 1, \quad -$ множество состояний; $\Psi: A \times Q \to 2^Q \qquad \qquad -$ функция переходов; $q_1 \in Q \qquad \qquad -$ начальное состояние; $F \subseteq Q \qquad \qquad -$ множество заключительных состояний.

Напомним, что $2^Q = \{S \mid S \subseteq Q\}$ – множество всех подмножеств множества Q.

Отличия НКА и ДКА

Отличие между НКА и ДКА заключается в **функции переходов**.

В детерминированных КА $\psi: A \times Q \to Q$, т.е. по символу и состоянию функция **однозначно** выдает новое состояние.

В недетерминированных КА $\Psi: A \times Q \to 2^Q$, т.е. по символу и состоянию функция выдает **множество** состояний.

Что это означает с точки зрения функционирования автомата?

Входная лента			
$a \in A$			

Входная лента			
$a \in A$			

a_{i_1}	a _{i2}	 a_{i_k}	

Функционирование автомата $\mathcal{A} = (A, Q, \Psi, q_1, \digamma)$:

 $oxed{\mathsf{Ha}}$ входной ленте — слово $lpha = \mathsf{a}_{i_1} \mathsf{a}_{i_2} \dots \mathsf{a}_{i_k} \in \mathsf{A}^*$

a_{i_1}	a _{i2}	• • •	a_{i_k}	

На входной ленте — слово
$$\alpha = a_{i_1} a_{i_2} \dots a_{i_k} \in A^*$$
 $a_{i_1} \quad a_{i_2} \quad \dots \quad a_{i_k}$

$$q_1$$

На входной ленте — слово
$$lpha=a_{i_1}a_{i_2}\dots a_{i_k}\in A^*$$
 a_{i_1} a_{i_2} a_{i_k} $t=1$

$$q_1$$

На входной ленте — слово
$$\alpha=a_{i_1}a_{i_2}\dots a_{i_k}\in A^*$$
 a_{i_1} a_{i_2} \dots a_{i_k} $t=1$

$$t = 1$$
 $q_{i_2} \in \Psi(a_{i_1}, q_1)$
 $t = 2$
 $q_{i_3} \in \Psi(a_{i_2}, q_{i_2})$
...
 $t = k$

$$egin{aligned} \mathbf{t} &= \mathbf{1} \\ q_{i_2} &\in & \Psi(a_{i_1}, q_1) \\ \mathbf{t} &= \mathbf{2} \\ q_{i_3} &\in & \Psi(a_{i_2}, q_{i_2}) \\ & \cdots \\ \mathbf{t} &= \mathbf{k} \end{aligned}$$

$$egin{aligned} \mathbf{t} &= \mathbf{1} \\ q_{i_2} \in & \Psi(a_{i_1}, q_1) \\ \mathbf{t} &= \mathbf{2} \\ q_{i_3} \in & \Psi(a_{i_2}, q_{i_2}) \\ & \dots \\ \mathbf{t} &= \mathbf{k} \\ q \in & \Psi(a_{i_k}, q_{i_k}) \end{aligned}$$

$$egin{aligned} t &= 1 \ q_{i_2} \in & \Psi(a_{i_1}, q_1) \ t &= 2 \ q_{i_3} \in & \Psi(a_{i_2}, q_{i_2}) \ & \dots \ t &= k \end{aligned}$$

$$\mathbf{t} = \mathbf{k}$$
 $\mathbf{q} \in \Psi(a_{i_k}, q_{i_k})$

Функционирование автомата $\mathcal{A} = (A, Q, \Psi, q_1, F)$:

если $q \in F$, то слово α принимается автоматом.

Функционирование автомата $\mathcal{A} = (A, Q, \Psi, q_1, F)$:

если $q \in F$, то слово α принимается автоматом. Если существует "прочтение" слова α автоматом, которое переводит этот автомат в некоторое состояние $q \in F$, то слово α принимается НКА \mathcal{A} .

Т.е. НКА без выхода может "прочитывать" различными способами конечное слово $\alpha \in A^*$, записанное на входной ленте.

После каждого "прочтения" этого слова НКА перешел и находится в некотором состоянии из множества Q.

Если хотя бы однажды то состояние, в которое перешел НКА после "прочтения" слова, принадлежит множеству заключительных состояний F, то НКА **принимает** слово α .

Язык, принимаемый НКА без выхода

В результате работы НКА без выхода ${\mathcal A}$ конечное слово $\alpha \in A^*$ или **принимается**, или **отвергается**.

Т.е. НКА без выхода \mathcal{A} , как и ДКА без выхода, также определяет некоторое подмножество $L(\mathcal{A}) \subseteq A^*$ слов, которые он принимает.

Это множество $L(\mathcal{A})$ будем называть **языком, принимаемым** (или допускаемым) НКА без выхода \mathcal{A} .

Диаграмма переходов НКА без выхода

Рассмотрим способы задания НКА без выхода.

1. Диаграмма переходов (диаграмма Мура). **Диаграммой переходов** НКА $\mathcal{A} = (A, Q, \Psi, q_1, F)$ называется ориентированный граф (псевдограф) с пометками

$$D_{\mathcal{A}}=(V_{\mathcal{A}},E_{\mathcal{A}}),$$

```
где V_{\mathcal{A}} = Q; E_{\mathcal{A}} = \{(q, \mathbf{q'}) \mid a \in A, q \in Q, \mathbf{q'} \in \Psi(a, q)\}; причем дуге (q, q') \in E приписана пометка a, если \mathbf{q'} \in \Psi(a, q); вершина q_1 \in V помечена "звездочкой" *; вершины q \in F помечены символом "f".
```

Диаграмма переходов НКА без выхода

Т.е. в **диаграмме переходов** НКА без выхода $\mathcal{A} = (A, Q, \Psi, q_1, F)$

вершины - это состояния автомата;

если из состояния $q \in Q$, "прочитывая" символ $a \in A$, автомат может перейти в состояние $q' \in Q$, то в диаграмме переходов из вершины q проводится дуга в вершину q', причем эта дуга имеет пометку a;

начальное состояние $q_1 \in Q$ помечается символом *;

вершины из множества $F \subseteq Q$ (заключительные состояния) помечаются символом f (или как-то иначе).

Пример 1. Постороим диаграмму переходов НКА без выхода $\mathcal{A}=(A,Q,\Psi, extit{q_1},F)$, где $A=\{0,1\},\ Q=\{q_1,q_2\},\ F=\{q_2\}$ и

q	а	$\Psi(a,q_1)$
q_1	0	q_1
q_1	1	q_2
q_2	0	q_1, q_2
q_2	1	q_1

Пример 1. Постороим диаграмму переходов НКА без выхода $\mathcal{A}=(A,Q,\Psi, q_1,F)$, где $A=\{0,1\},\ Q=\{q_1,q_2\},\ F=\{q_2\}$ и

q	а	$\Psi(a,q_1)$
q_1	0	q_1
q_1	1	q_2
q_2	0	q_1, q_2
q_2	1	q_1

Пример 1. Постороим диаграмму переходов НКА без выхода $\mathcal{A}=(A,Q,\Psi, q_1,F)$, где $A=\{0,1\},\ Q=\{q_1,q_2\},\ F=\{q_2\}$ и

q	а	$\Psi(a,q_1)$
q_1	0	q_1
q_1	1	q_2
q ₂	0	q_1, q_2
q_2	1	q_1

$$q_2$$

Пример 1. Постороим диаграмму переходов НКА без выхода $\mathcal{A}=(A,Q,\Psi, q_1,F)$, где $A=\{0,1\},\ Q=\{q_1,q_2\},\ F=\{q_2\}$ и

q	а	$\Psi(a,q_1)$
q_1	0	q_1
q_1	1	q_2
q_2	0	q_1, q_2
q_2	1	q_1

Пример 1. Постороим диаграмму переходов НКА без выхода $\mathcal{A}=(A,Q,\Psi, \textcolor{red}{q_1},F)$, где $A=\{0,1\},\ Q=\{q_1,q_2\},\ \digamma=\{q_2\}$ и

q	а	$\Psi(a,q_1)$
q_1	0	q_1
q_1	1	q_2
q ₂	0	q_1, q_2
q_2	1	q_1

Пример 1. Постороим диаграмму переходов НКА без выхода $\mathcal{A}=(A,Q,\Psi, q_1,F)$, где $A=\{0,1\},\ Q=\{q_1,q_2\},\ F=\{q_2\}$ и

q	а	$\Psi(a,q_1)$
q_1	0	q_1
q_1	1	q_2
q ₂	0	q_1, q_2
q_2	1	q_1

Пример 1. Постороим диаграмму переходов НКА без выхода $\mathcal{A}=(A,Q,\Psi, q_1,F)$, где $A=\{0,1\},\ Q=\{q_1,q_2\},\ F=\{q_2\}$ и

q	а	$\Psi(a,q_1)$
q_1	0	q_1
q_1	1	q_2
q_2	0	q_1, q_2
q_2	1	q_1

Пример 1. Постороим диаграмму переходов НКА без выхода $\mathcal{A}=(A,Q,\Psi, q_1,F)$, где $A=\{0,1\},\ Q=\{q_1,q_2\},\ F=\{q_2\}$ и

q	а	$\Psi(a,q_1)$
q_1	0	q_1
q_1	1	q_2
q ₂	0	q_1, q_2
q_2	1	q_1

Какие слова из нулей и единиц принимает этот НКА?

Множества, принимаемые НКА без выхода

НКА без выхода определяют какие-то множества слов.

А какие это множества?

Мы докажем, что это **ровно** те множества, которые принимаются ДКА без выхода.

Т.е. мы докажем, что, расширив нашу модель, мы нисколько не расширили класс рассматриваемых множеств.

Теорема 1. Пусть A – конечный алфавит. Если множество L, $L \subseteq A^*$, принимается некоторым НКА \mathcal{A} , то найдется такой \mathcal{L} КА \mathcal{A}' , который принимат это же множество L, т.е. $L = L(\mathcal{A}')$.

Доказательство. Пусть $\mathcal{A} = (A, Q, \Psi, q_1, F)$ – HKA, который принимает множество L.

Мы построим ДКА $\mathcal{A}' = (A, Q', \psi, q_1', F')$, такой, что $L = L(\mathcal{A}')$.

Доказательство (продолжение). Положим, что

 $Q' = 2^Q \setminus \{\emptyset\}$, т.е. множество состояний ДКА – это множество непустых **подмножеств** множества состояний Q НКА;

 $q_1' = \{q_1\}$, т.е. **начальное** состояние ДКА – это множество, состоящее из одного элемента q_1 , начального состояния НКА;

 $F' = \{S \subseteq 2^Q \mid S \cap F \neq \emptyset\}$ — множество заключительных состояний ДКА — это множество тех подмножеств состояний НКА, которые содержат хотя бы одно заключительное состояние НКА.

Доказательство (продолжение). Теперь нам надо определить функцию переходов ψ .

Положим, что

$$\psi(a,S) = \bigcup_{q \in S} \Psi(a,q),$$

т.е. считывая символ $a \in A$ и находясь в состоянии $S \subseteq Q$, ДКА однозначно переходит в свое состояние S', которое есть объединение тех состояний, в которые может перейти НКА, считывая символ $a \in A$ и находясь в каждом из состояний $q \in S$.

Доказательство (продолжение). Получаем, что если $\alpha \in A^*$, то после "прочтения" этого слова ДКА \mathcal{A}' переходит в состояние, которое есть множество тех состояний, в которые может перейти НКА \mathcal{A} , после прочтения этого же слова α .

А когда НКА принимает слово α ?

Тогда и только тогда, когда он после "прочтения" слова α может перейти в одно из состояний из множества заключительных состояний F.

А мы положили **все** такие множества состояний и только их **заключительными** состояниями нашего ДКА.

T.e.
$$L(A') = L$$
.

Следствие из основной теоремы

Теорема 2. Класс множеств, принимаемых НКА без выхода, совпадает с классом множеств, принимаемых ДКА без выхода.

Доказательство.

- 1. Если множество $L \subseteq A^*$ принимается некоторым ДКА, то оно принимается и НКА, т.к. **детерминированный** автомат является частным случаем **недетерминированного** автомата.
- 2. Если множество $L\subseteq A^*$ принимается некоторым НКА, то оно принимается и некоторым ДКА, т.к. это доказано в теореме 1.

НКА и ДКА

Доказанные теоремы показывает, что нет необходимости рассматривать НКА, т.к. все, что можно выразить в НКА, выражается и в ДКА.

Однако, как мы увидим далее, иногда проще построить НКА, чем ДКА.

В частности, при применении некоторых операций над автоматами.

Детерминизация НКА

По доказательству теоремы 1 можно описать алгоритм, который по заданному НКА ${\cal A}$ строит ДКА ${\cal A}'$, такой что

$$L(A') = L(A).$$

Если в НКА |Q| = r, то в ДКА $|Q'| = 2^r - 1$.

Однако не все состояния в получаемом ДКА могут быть **достижимыми**.

Достижимые состояния ДКА

Пусть $\mathcal{A} = (A, Q, \psi, q_1, F)$ – **детерминированный** конечный автомат без выхода.

Состояние $q\in Q$ ДКА называется **достижимым**, если существут такое слово $\alpha\in A^*$, что $\bar{\psi}(\alpha,q_1)=q$.

Т.е. состояние **достижимо**, если ДКА может в него перейти после "прочтения" некоторого слова.

Теперь мы опишем алгоритм детерминизации НКА, в котором отброшены недостижимые состояния получаемого ДКА.

Алгоритм детерминизации НКА

Вход: НКА $\mathcal{A} = (A, Q, \Psi, q_1, F)$.

Выход: ДКА $\mathcal{A} = (A, Q', \psi, q'_1, F')$, такой, что $\mathcal{L}(\mathcal{A}') = \mathcal{L}(\mathcal{A})$.

Описание алгоритма.

extstyle ex

Шаг 2. Пусть $S\subseteq Q$ — не просмотренное состояние ДКА. Для каждого символа $a\in A$ выполняем следующие действия:

- 1) для каждого состояния $q \in S$ находим $\Psi(a,q)$, и пусть $S' = \bigcup_{q \in S} \Psi(a,q)$;
- 2) полагаем $\psi(a, S) = S'$.

Выполнив действия 1)–2) для каждого символа $a \in A$, полагаем состояние S просмотренным.

Алгоритм детерминизации НКА

Описание алгоритма (продолжение).

Шаг 3. Рассматриваем следующее *не просмотренное* состояний ДКА и переходим к *шагу 2.*

Если не осталось *не просмотренных* состояний ДКА, то полагаем заключительными состояниями все такие состояния ДКА $S \subseteq Q$, что $S \cap F \neq \emptyset$.

После чего алгоритм завершает работу.

Пример 2. Провести процедуру детерминизации НКА

$$\mathcal{A}=(A,Q,\Psi,q_1,F)$$
, где $A=\{0,1\};\ Q=\{q_1,q_2,q_3\};\ F=\{q_3\};$

и функция переходов Ψ задана таблицей:

$q \in Q$	$a \in A$	$\Psi(a,q)$
q_1	0	q_1
q_1	1	q_1, q_2
q_2	0	q_2
q_2	1	q_2, q_3
q_3	0	q ₃
q 3	1	q_3, q_1

$q\in Q$	$a \in A$	$\Psi(a,q)$
q_1	0	q_1
q_1	1	q_1, q_2
q_2	0	q_2
q_2	1	q_2, q_3
q 3	0	q 3
q 3	1	q_3, q_1

$q\in Q$	$a \in A$	$\Psi(a,q)$
q_1	0	q_1
q_1	1	q_1, q_2
q_2	0	q_2
q_2	1	q_2, q_3
q 3	0	q 3
q 3	1	q_3, q_1

$q \in Q$	$a \in A$	$\Psi(a,q)$
q_1	0	q_1
q_1	1	q_1, q_2
q_2	0	q_2
q_2	1	q_2, q_3
q 3	0	q 3
q 3	1	q_3, q_1

$q \in Q$	$a \in A$	$\Psi(a,q)$
q_1	0	q_1
q_1	1	q_1, q_2
q_2	0	q_2
q_2	1	q_2, q_3
q_3	0	q 3
q 3	1	q_3, q_1

$q \in Q$	$a \in A$	$\Psi(a,q)$
q_1	0	q_1
q_1	1	q_1, q_2
q_2	0	q_2
q_2	1	q_2, q_3
q 3	0	q 3
q ₃	1	q_3, q_1

$q \in Q$	$a \in A$	$\Psi(a,q)$
q_1	0	q_1
q_1	1	q_1, q_2
q_2	0	q_2
q_2	1	q_2, q_3
q 3	0	<i>q</i> ₃
q 3	1	q_3, q_1

$q \in Q$	$a \in A$	$\Psi(a,q)$
q_1	0	q_1
q_1	1	q_1, q_2
q_2	0	q_2
q_2	1	q_2, q_3
q 3	0	<i>q</i> ₃
q 3	1	q_3, q_1

$q \in Q$	$a \in A$	$\Psi(a,q)$
q_1	0	q_1
q_1	1	q_1, q_2
q_2	0	q_2
q_2	1	q_2, q_3
q 3	0	q 3
q 3	1	q ₃ , q ₁

Задачи для самостоятельного решения

- 1. Пусть НКА \mathcal{A} содержит r состояний. Какое максимальное число состояний может содержать ДКА \mathcal{A}' , построенный по алгоритму детерминизации НКА \mathcal{A} ?
- 2. Применить алгоритм детермининизации к НКА из примера 1. Какое множество слов принимает этот автомат?
- 3. Какое множество слов принимает НКА из примера 2?

Задачи для самостоятельного решения

4. Применить алгоритм детермининизации к НКА

$$\mathcal{A}=(A,Q,\Psi,q_1,F)$$
, где $A=\{0,1\};\ Q=\{q_1,q_2,q_3\};\ F=\{q_3\};$

и функция переходов Ψ задана таблицей:

$q\in Q$	$a \in A$	$\Psi(a,q)$
q_1	0	q_1
q_1	1	q_1, q_2
q_2	0	q_2
q_2	1	q_1, q_3
q_3	0	q_3
q_3	1	q_1

Какое множество слов принимает этот автомат?

Литература к лекции

1. Марченков С.С. Конечные автоматы. М.: Физматлит, 2008.

Конец лекции