Distribuição de Energia Elétrica Transformadores Trifásicos no Sistema de Distribuição

Lucas Melo

Universidade Federal do Ceará

Agosto de 2021

Tranformadores

Os transformadores elétricos são elementos de fundamental importância no sistema elétrico.

Para o caso particular do sistema de distribuição temos dois casos específicos de transformadores:

- transformadores de potência nas subestações;
- transformadores de distribuição ao longo do alimentador.

Transformadores

Para termos uma correta representação do sistema de distribuição é necessário a correta modelagem dos transformadores.

O equacionamento mais simples de ser desenvolvido ocorre quando consideramos o **transformador monofásico**, conforme vimos na aula sobre regulação de tensão em que para representar um auto-transformador primeior foi necessário desenvolver o modelo do transformador monofásico.

Transformador monofásico

Neste modelo estão representados os seguintes efeitos:

- A resistência dos enrolamentos do transformador;
- O valor finito da permeabilidade magnética μ_c do núcleo do transformador, ou seja a relutância do circuito magnético é diferente de zero;
- O fluxo magnético não está totalmente confinado no núcleo do transformador;
- Existem **perdas ativas e reativas no núcleo** do transformador.

Transformador monofásico

$$V_S = a \cdot V_L + b \cdot I_2 \qquad \qquad I_S = c \cdot V_L + d \cdot I_2$$

$$a = \frac{1}{n}$$

$$b = \frac{Z_t}{n}$$

$$c = \frac{Y_m}{n}$$

$$d = \frac{Y_m \cdot Z_t}{n} + n$$

Escrevendo as equações acima de forma matricial:

$$\begin{bmatrix} V_S \\ I_S \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} V_L \\ I_2 \end{bmatrix}$$
 (1)

Como o sistema de distribuição é tipicamente trifásico, os transformadores utilizados podem ser modelados como transformadores monofásicos conectados trifasicamente. Algumas das possíveis ligações são:

- Delta Estrela aterrado
- Estrela Delta
- Estrela aterrado Estrela aterrado
- Delta Delta

Como é de amplo conecimento, a grande maioria dos transformadores de distribuição são do tipo **delta** - **estrela aterrado**, e será para esse modelo que iremos desenvolver seu equacionamento.

Mas antes de equacionarmos as relações de tensão e corrente entre primário e secundário em um transformador trifásico com ligação Δ -Y aterrado, cabe a pergunta:

Por que esse tipo de ligação é o mais utilizado no sistema de distribuição?

Podemos citar algumas características:

- Pode atender tanto sistemas a três quanto a quatro condutores;
- Disponibiliza a ligação de cargas em dois níveis de tensão: 380V e 220V, permitindo a conexão de cargas monofásicas e trifásicas fornecendo uma referência local de terra, além de poder disponibilizar um condutor neutro que escoa as correntes de desequilíbrio para a fonte.

Por que esse tipo de ligação é o mais utilizado no sistema de distribuição?

- O transformador com conexão Δ-Y aterrado tem a característica de bloquear a corrente de sequencia zero, como por exemplo no caso de faltas à terra. Dessa forma os relés de proteção que estão no lado primário do transformador não serão afetados por faltas deste tipo no circuito secundário do transformador.
- Também as **correntes harmônicas** ocasionadas por cargas conectadas no circuito secundário do transformador não irão afetar o circuito primário.
- No caso de faltas à terra ocorridas no circuito primário do transformador, as fontes conectadas no secundário não contribuem para a corrente de curto-circuito.
- Fornece uma **referência de terra** para as cargas conectadas no secundário, independente da configuração de terra do primário.

Zero-sequence diagram

Transformadores Trifásicos: Transformador de distribuição

Transformadores Trifásicos: Transformador de distribuição

Transformadores Trifásicos: Transformador de Potência

Transformadores Trifásicos: Transformador de Potência

No equacionamento dos transformadores trifásicos considararemos o seguinte modelo:

Considera-se que o defasamento das tensões e correntes de seq. positiva entre primário e secundário são:

Conexão abaixadora:

- V_{AB} adiantada de V_{ab} em 30°.
- I_A adiantada de I_a em 30°.

Conexão elevadora:

- V_{ab} adiantada de V_{AB} em 30°.
- I_a adiantada de I_A em 30°.

Transformadores Trifásicos: Conexão Δ - Y aterrado

Modelagem das tensões do transformador trifásico Δ - Y aterrado:

Aplicando lei das tensões de Kirchoff no secundário do transformador, obtemos a expressão para tensão de linha:

$$V_{ab} = V t_a - V t_b \tag{2}$$

Estabelecendo agora uma expressão para a relação de transformação entre primário e secundário, considerando apenas um transformador monofásico:

$$n_t = \frac{VLL_{Lado\ de\ alta}}{VLN_{Lado\ de\ baixa}} \tag{3}$$

Para o modelo apresentado, podemos aplicar:

$$|VLL| = n_t \cdot |V_t| \tag{4}$$

 V_t é a tensão no secundário do transformador ideal.

No lado de alta, a relação entre tensão de linha e tensão de fase é:

$$|VLN| = \frac{|VLL|}{\sqrt{3}} = \frac{n_t}{\sqrt{3}} \cdot |V_t| = a_t \cdot |V_t| \tag{5}$$

$$a_t = \frac{n_t}{\sqrt{3}} = \frac{VLL_{Lado\ de\ alta}}{\sqrt{3} \cdot VLN_{Lado\ de\ baixa}} \tag{6}$$

$$a_t = \frac{VLL_{Lado\ de\ alta}}{VLL_{Iado\ de\ haixa}} \tag{7}$$

As **tensões de linha do primário** estão relacionadas às **tensões de fase no secundário** por meio da seguinte equação:

$$\begin{bmatrix} V_{AB} \\ V_{BC} \\ V_{CA} \end{bmatrix} = \begin{bmatrix} 0 & -n_t & 0 \\ 0 & 0 & -n_t \\ -n_t & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} Vt_a \\ Vt_b \\ Vt_c \end{bmatrix}$$
 (8)

Em forma condensada:

$$VLL_{ABC} = AV \cdot V t_{abc} \tag{9}$$

Transformadores Trifásicos: Conexão Δ - Y aterrado

Modelagem das tensões do transformador trifásico Δ - Y aterrado:

A equação anterior relaciona tensão de linha no primário com tensões de fase no secundário, mas o que se quer é obter uma expressão para tensões de fase em ambos os lados. Para isso iremos aplicar a **teoria de componentes simétricas**.

A expressão das tensões de linha de sequencia no primário é:

$$VLL_{012} = A_S^{-1} \cdot VLL_{ABC} \tag{10}$$

$$A_S = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix} \tag{11}$$

$$a = 1,0/120^{\circ} \tag{12}$$

Desenvolvendo a expressão das tensões de fase com as tensões de linha de sequencia, temos que:

$$\begin{bmatrix} VLN_0 \\ VLN_1 \\ VLN_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & ts^* & 0 \\ 0 & 0 & ts^* \end{bmatrix} \cdot \begin{bmatrix} VLL_0 \\ VLL_1 \\ VLL_2 \end{bmatrix}$$
(13)

De forma reduzida:

$$VLN_{012} = T \cdot VLL_{012} \tag{14}$$

Em que:

$$ts = \frac{1}{\sqrt{3}} / 30^{\circ} \tag{15}$$

Como as tensões de linha de sequencia zero são nulas, podemos **atribuir o** valor 1,0 ao termo (1,1) da matriz T.

Assim, a expressão das tensões de fase no primário podem ser obtidas pelas tensões de fase de sequencia:

$$VLN_{ABC} = A_s \cdot VLN_{012} \tag{16}$$

Aplicando a equação de tensões de linha de sequencia:

$$VLN_{ABC} = A_s \cdot T \cdot VLL_{012} \tag{17}$$

$$VLN_{ABC} = A_s \cdot T \cdot VLL_{012} \tag{18}$$

Podemos escrever a equação acima dessa forma:

$$VLN_{ABC} = W \cdot VLL_{ABC} \tag{19}$$

$$W = A \cdot T \cdot A^{-1} = \frac{1}{3} \cdot \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$
 (20)

$$VLN_{ABC} = W \cdot VLL_{ABC} \tag{21}$$

Esta equação é muito importante pois **relaciona tensões de linha com tensões de fase no primário**, um de nossos objetivos iniciais.

É possível então, relacionar tensões de fase no primário com tensões fase no secundário:

$$VLN_{ABC} = W \cdot AV \cdot Vt_{abc} = a_t \cdot Vt_{abc}$$
 (22)

$$a_t = W \cdot AV = \frac{-n_t}{3} \cdot \begin{bmatrix} 0 & 2 & 1\\ 1 & 0 & 2\\ 2 & 1 & 0 \end{bmatrix}$$
 (23)

A tensão de fase ideal no secundário, em relação à tensão de fase no secundário é dada então por:

$$Vt_{abc} = VLG_{abc} + Zt_{abc} \cdot I_{abc}$$
 (24)

$$Zt_{abc} = \begin{bmatrix} Zt_a & 0 & 0\\ 0 & Zt_b & 0\\ 0 & 0 & Zt_c \end{bmatrix}$$
 (25)

Agora juntando estas duas equações:

$$\begin{array}{rcl} Vt_{abc} & = & VLG_{abc} + Zt_{abc} \cdot I_{abc} \\ VLN_{ABC} & = & a_t \cdot Vt_{abc} \end{array}$$

Obtemos:

$$VLN_{ABC} = a_t \left(VLG_{abc} + Zt_{abc} \cdot I_{abc} \right) \tag{26}$$

$$VLN_{ABC} = a_t \cdot VLG_{abc} + b_t \cdot I_{abc} \tag{27}$$

$$b_{t} = a_{t} \cdot Zt_{abc} = \begin{bmatrix} 0 & 2 \cdot Zt_{b} & Zt_{c} \\ Zt_{a} & 0 & 2 \cdot Zt_{c} \\ 2 \cdot Zt_{a} & Zt_{b} & 0 \end{bmatrix}$$
 (28)

Com as conatntes a_t e b_t definidas, é possível encontrar também as constantes A_t e B_t :

$$VLG_{abc} = A_t \cdot VLN_{ABC} - B_t \cdot I_{abc}$$
 (29)

$$A_t = AV^{-1} \cdot D = \frac{1}{n_t} \cdot \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \qquad B_t = Zt_{abc} = \begin{bmatrix} Zt_a & 0 & 0 \\ 0 & Zt_b & 0 \\ 0 & 0 & Zt_c \end{bmatrix}$$

$$D = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$
 (30)

Modelagem das correntes do transformador trifásico Δ - Y aterrado:

Aplicando Lei de Kirchoff, obtemos a expressão para **correntes de linha e de fase no primário** do transformador:

$$\begin{bmatrix} I_A \\ I_B \\ I_C \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} I_{AC} \\ I_{BA} \\ I_{CB} \end{bmatrix}$$
(31)

De forma reduzida:

$$I_{ABC} = D \cdot ID_{ABC} \tag{32}$$

Relacionando as correntes de fase do primário com as correntes de linha do secundário, obtemos:

$$\begin{bmatrix} I_{AC} \\ I_{BA} \\ I_{CB} \end{bmatrix} = \frac{1}{n_t} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix}$$
(33)

De forma reduzida:

$$ID_{ABC} = AI \cdot I_{abc} \tag{34}$$

Substituindo as equações:

$$I_{ABC} = D \cdot ID_{ABC} \tag{35}$$

$$ID_{ABC} = AI \cdot I_{abc} \tag{36}$$

$$I_{ABC} = D \cdot AI \cdot I_{abc} = c_t \cdot VLG_{abc} + d_t \cdot I_{abc}$$
(37)

$$c_t = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

$$d_t = D \cdot AI = \frac{1}{n_t} \cdot \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$

Transformador Trifásico: Conexão Δ - Y aterrado Exercício

Exemplo: Uma carga debalanceada está sendo atendida por uma linha trifásica de 1,0 milha de comprimento. O transformador da subestação que atende a carga é de 500 kVA, 138kV:12,47kV Δ -Y aterrado, com impedância de 0,085/85°. A linha que atende a carga tem um condutor de 336,4 26/7 ACSR com condutor neutro de 4/0 ACSR.

Transformador Trifásico: Conexão Δ - Y aterrado Exercício

A matriz de impedancia de fase da linha é dada por:

$$Z_{line-abc} = \left[\begin{array}{ccc} 0,4576+j1,0780 & 0,1560+j0,5017 & 0,1535+j0,3849 \\ 0,1560+j0,5017 & 0,4666+j1,0482 & 0,1580+j0,4236 \\ 0,1535+j0,3849 & 0,1580+j0,4236 & 0,4615+j1,0651 \end{array} \right]$$