Exercices:

cos θ	$-\sin\theta\cos\alpha$	$\sin\theta\sin\alpha$	$a \cos \theta$
$\sin \theta$		$-\cos\theta\sin\alpha$	
0	$\sin \alpha$	cosα	d
0	0	0	1

Links	a _i	$\alpha_{\rm i}$	d _i	Θ_{i}
0				
1				
2				
3				
4				

La distance a se mesure selon l'axe des x et représente la longueur du lien.

La rotation α est l'angle entre z_{i-1} et z_i .

La distance d est mesurée le long de l'axe z_{i-1} et c'est la distance entre l'origine o_{i-1} et l'intersection entre x_i et z_{i-1}. Si c'est un joint rotoïde, alors il aura une valeur constante.

L'angle θ est mesuré entre x_{i-1} et x_i . Si c'est un joint prismatique, alors l'angle est constant.

Exercices:

	$-\sin\theta\cos\alpha$	$\sin\theta\sin\alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cos a	d
0	0	0	1

Links	a _i	a_{i}	d _i	Θ_{i}
0				
1				
2				
3				
4				

istance a se mesure selon l'axe des x et représente la longueur du lien.

La rotation α est l'angle entre z_{i-1} et z_i .

La distance d est mesurée le long de l'axe z_{i-1} et c'est la distance entre l'origine o_{i-1} et l'intersection entre x_i et z_{i-1}. Si c'est un joint rotoïde, alors il aura une valeur constante.

L'angle θ est mesuré entre x_{i-1} et x_i . Si c'est un joint prismatique, alors l'angle est constant.

Exercices:

	$-\sin\theta\cos\alpha$	$\sin\theta\sin\alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cos a	d
0	0	0	1

Links	a _i	a_{i}	d _i	Θ_{i}
0	0	0	A	0
1	В	0	0	q1
2	C	0	0	q2+π/2
3	0	0	q3-D	0
4	0	0	0	q4

istance a se mesure selon l'axe des x et représente la longueur du lien.

La rotation α est l'angle entre z_{i-1} et z_i .

La distance d est mesurée le long de l'axe z_{i-1} et c'est la distance entre l'origine o_{i-1} et l'intersection entre x_i et z_{i-1}. Si c'est un joint rotoïde, alors il aura une valeur constante.

L'angle θ est mesuré entre x_{i-1} et x_i . Si c'est un joint prismatique, alors l'angle est constant.

0

cos θ	$-\sin\theta\cos\alpha$	$\sin \theta \sin \alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cos a	d
0	0	0	1

Links	$\mathbf{a_{i}}$	a_{i}	d _i	Θ_{i}
0	0	0	A	0
1	В	0	0	q1
2	C	0 0		q2+π/2
3	0	0	q3-D	0
4	0	0	0	q4

cos θ	$-\sin\theta\cos\alpha$	$\sin \theta \sin \alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cosα	d
0	0	0	1

Links	a _i	$\alpha_{\rm i}$	d _i	Θ_{i}
0	0	0	A	0
1	В	0	0	q1
2	C	0 0		q2+π/2
3	0	0	q3-D	0
4	0	0	0	q4

A	1				
_	_	_	Н	ı	

1	0	0	0
0	1	0	0
0	0	1	Α
0	0	0	1

C1	-S1	0	BC1
S1	C1	0	BS1
0	0	1	0
0	0	0	1

cos θ	$-\sin\theta\cos\alpha$	$\sin \theta \sin \alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cos a	d
0	0	0	1

			1000	
Links	$\mathbf{a_i}$	$a_{\rm i}$	d _i	Θ_{i}
0	0	0	A	0
1	В	0	0	q1
2	C	0	0	q2+π/2
3	0	0	q3-D	0
4	0	0	0	q4

1	0	0	0	
0	1	0	0	
0	0	1	Α	
0	0	0	1	

C1	-S1	0	BC1
S1	C1	0	BS1
0	0	1	0
0	0	0	1

			43	
-	C2	-S2	0	CC2
	S2	C2	0	CS2
	0	0	1	0
	0	0	0	1

cos θ	$-\sin\theta\cos\alpha$	$\sin \theta \sin \alpha$	$a \cos \theta$
$\sin \theta$		$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cos a	d
0	0	0	1

Links	a _i	a_{i}	d _i	Θ_{i}
0	0	0	A	0
1	В	0	0	q1
2	C	0	0	q2+π/2
3	0	0	q3-D	0
4	0	0	0	q4

74				
1	0	0	0	
0	1	0	0	
0	0	1	Α	
0	0	0	1	

C1	-S1	0	BC1		
S1	C1	0	BS1		
0	0	1	0		
0	0	0	1		

 <i>A3</i>					A	4	
C2	-S2	0	CC2	1	0	0	0
S2	C2	0	CS2	0	1	0	0
0	0	1	0	0	0	1	d
0	0	0	1	0	0	0	1

cos θ	$-\sin\theta\cos\alpha$	$\sin\theta\sin\alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cosα	d
0	0	0	1

Links	a _i	a_{i}	d _i	Θ_{i}
0	0	0	A	0
1	В	0	0	q1
2	C	0	0	q2+π/2
3	0	0	q3-D	0
4	0	0	0	q4

71					
1	0	0	0		
0	1	0	0		
0	0	1	Α		
0	0	0	1		

C	1	- S1	0	BC1		
Sí	1	C1	0	BS1		
0		0	1	0		
0		0	0	1		

	-	43			A	4			A	5	
C2	-S2	0	CC2	1	0	0	0	C4	-S4	0	0
S2	C2	0	CS2	0	1	0	0	S4	C4	0	0
0	0	1	0	0	0	1	d	0	0	1	0
0	0	0	1	0	0	0	1	0	0	0	1

cos θ	$-\sin\theta\cos\alpha$	$\sin \theta \sin \alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cosα	d
0	0	0	1

Links	a _i	$\alpha_{\rm i}$	d _i	Θ_{i}
0	0	0	A	0
1	В	0	0	q1
2	C	0	0	q2+π/2
3	0	0	q3-D	0
4	0	0	0	q4

 $T_{05} = A1.A2.A3.A4.A5$

$Cos(q1+q2+q4+\pi/2)$	-Sin(q1+q2+q4+π/2)	0	B.Cos(q1)+C.Cos(q1+q2+π/2)
Sin(q1+q2+q4+π/2)	Cos(q1+q2+q4+π/2)	0	B.Sin(q1)+C.Sin(q1+q2+π/2)
0	0	1	q3-D+A
0	0	0	1

X2

Z4, Z5

X4, X5

L0

	$-\sin\theta\cos\alpha$	$\sin \theta \sin \alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cos a	d
0	0	0	1

Links	a _i	a_{i}	d _i	Θ_{i}
0	0	0	A	0
1	В	0	0	q1
2	C	0	0	q2+π/2
3	0	0	q3-D	0
4	0	0	0	q4

 $T_{05} = T_{01} T_{12} T_{23} T_{34} T_{45} = A1.A2.A3.A4.A5$

Cos(q1+q2+q4+π/2)	-Sin(q1+q2+q4+π/2)	0	B.Cos(q1)-C.Sin(q1+q2)
Sin(q1+q2+q4+π/2)	Cos(q1+q2+q4+π/2)	0	B.Sin(q1)+C.Cos(q1+q2)
0	0	1	q3-D+A
0	0	0	1

cos θ	$-\sin\theta\cos\alpha$	$\sin \theta \sin \alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cos a	d
0	0	0	1

Links	a _i	a_{i}	d _i	Θ_{i}
0	0	0	A	0
1	В	0	0	q1
2	C	0	0	q2+π/2
3	0	0	q3-D	0
4	0	0	0	q4

 $T_{05} = T_{01} T_{12} T_{23} T_{34} T_{45} = A1.A2.A3.A4.A5$

Cos(q1+q2+q4+π/2)	-Sin(q1+q2+q4+π/2)	0	B.Cos(q1)-C.Sin(q1+q2)
Sin(q1+q2+q4+π/2)	Cos(q1+q2+q4+π/2)	0	B.Sin(q1)+C.Cos(q1+q2)
0	0	1	q3-D+A
0	0	0	1

Exercices:

$$\cos (a + b) = \cos a \cos b - \sin a \sin b$$

$$\cos (a - b) = \cos a \cos b + \sin a \sin b$$

$$\sin (a + b) = \sin a \cos b + \cos a \sin b$$

$$\sin (a - b) = \sin a \cos b - \cos a \sin b$$

$$\sin(\theta + \frac{\pi}{2}) = +\cos\theta$$

$$\cos(\theta + \frac{\pi}{2}) = -\sin\theta$$

$$\tan(\theta + \frac{\pi}{2}) = -\cot\theta$$

$$\cot(\theta + \frac{\pi}{2}) = -\tan\theta$$