Användarmanual resQ.PL Kandidatprojekt i elektronik vid Linköpings Universitet

Version~0.1

 $21~\mathrm{maj}~2015$

PROJEKTIDENTITET

2015/VT, Undsättningsrobot Gr. 2 Linköpings tekniska högskola, ISY

Namn	Ansvar	Telefon	E-post
Nikolaj Agafonov	Dokumentansvarig (DA)	072-276 99 46	nikag669@student.liu.se
Adnan Berberovic	Projektledare (PL)	070-491 96 07	adnbe196@student.liu.se
Andreas Brorsson	Testansvarig (TA)	073-524 44 60	andbr981@student.liu.se
Fredrik Fridborn	Designansvarig Sensormo-	073-585 52 01	frefr166@student.liu.se
	dul (DSE)		
Robert Oprea	Designansvarig Styrmodul	070-022 10 18	robop806@student.liu.se
	(DST)		
Måns Skytt	Designansvarig Kommuni-	070-354 28 84	mansk700@student.liu.se
	kationsmodul (DK)		

E-postlista för hela gruppen: adnbe196@student.liu.se

Kund: Kent Palmkvist, 581 83 Linköping, Kundtelefon: 013-28 13 47, kentp@isy.liu.se

Kursansvarig: Tomas Svensson, 013-28 13 68, tomass@isy.liu.se Handledare: Olov Andersson, 013-28 26 58, Olov.Andersson@liu.se

Innehåll

1	Inledning	1
	Före användning av robot 2.1 Kalibrering	2
	Användning av robot 3.1 Manuellt läge	2 3
	3.2 Autonomt läge	- 1

Dokumenthistorik

Version	Datum	Utförda förändringar	Utförda av	Granskad
0.1	21 maj 2015	Första utkastet	ABr	-

1 Inledning

Denna användarmanual redogör hur undsättningsroboten resQ.PL används. Den första sektionen beskriver hur en besiktning av roboten före användning sker. Besiktningen säkerställer att kablar,sensorer och strömförsörjning sitter rätt. I den andra sektionen redogörs hur robotens används i det manuella respektive autonoma läget.

1

2 Före användning av robot

För att nyttja roboten krävs först att roboten är i sådant skick att den kan startas. Med en okulär besiktning kontolleras att nedan listad hårdvara finns och är rätt kopplad, mer utförlig förklaring ges i användarmanualen, se appendix ??.

- Strömbrytaren i bak på robotens chassi är avslagen under hela besikting och när kablar kopplas.
- Batteri med 7.2V spänning inkopplat.
- 16-pin flatkabel mellan styrmodulen och sensormodulen är inkopplad.
- 10-pin flatkabel mellan robotens chassi och styrmodulen är inkopplad.
- Reflexsensorn för avståndsmätning är kopplad till styrmodulen.
- Gripklon är kopplad till styrmodulen.
- Övriga sensorers kablar är kopplade till sensormodulen.
- Blåtands-modemet är anslutet.
- Brytaren för autonomt eller manuellt läge slås över till manuellt läge initial.

2.1 Kalibrering

På grund av att robotens underlag och omgivning varierar medför miljöbyte att sensorernas resultat avviker vid samma mätningar. Därför bör sensorerna kalibreras varje gång miljön roboten befinner sig i ändras. Om roboten inte kalibreras finns det en risk att roboten t.ex. inte känner av mållinje-tejpen vilket gör att uppdraget aldrig slutförs. Kalibreringen utförs genom att placera roboten på marken så att reflexsensorn i fronten inte befinner sig över den svarta målgångs-tejpen, roboten står i startposition med vägg på var sida. När roboten är placerad i startposition trycks den ?SVARTA/RÖDA? brytaren på sensormodulen för kalibrering.

3 Användning av robot

Roboten har två arbetslägen, autonom och manuellt läge. När strömmen slås på med brytaren i bak på chassit bör brytaren som väljer läge vara inställd på manuellt läge för att roboten inte ska röra sig. När strömmen slås på lyser LCD-skärmen upp med meddelandet: "MANUAL MODE".

e-post: adnbe196@student.liu.se

3.1 Manuellt läge

I manuellt läge krävs en Windows-dator men blåtand och programvaran som utvecklats till roboten. Brytaren på roboten sätts till manuellt läge och programvaran startas. Figur 1 nedan visar gränssnittet i manuellt läge. Roboten skickar ut information från sensorer och position i labyrinten som syns i nedre hörnet till vänster i det grafiska gränssnittet, dessa värden uppdateras kontinuerligt.

Figur 1: Manuell styrnings grafiska användargränssnitt

Roboten styrs och regleras med tangenterna på datorn. De olika tangenterna och deras uppgift tabuleras i tabell 1.

Tangent	Utför	
\uparrow	Roboten rörs framåt med vald hastighet, samma kraft på	
	båda motorer.	
1	Roboten rör sig bakåt med vald hastighet, samma kraft på	
	båda motorer.	
\rightarrow	Roboten roterar medurs.	
←	Roboten roterar moturs.	
↑+ →	Roboten rörs framåt och svänger åt höger med vald aggres-	
	sivitet och hastighet.	
1 + ←	Roboten rörs framåt och svänger åt vänster med vald aggres-	
	sivitet och hastighet.	
↓ + →	Roboten rörs bakåt och svänger åt höger med vald aggressi-	
	vitet och hastighet.	
+ ←	Roboten rörs bakåt och svänger åt vänster med vald aggres-	
	sivitet och hastighet.	
G	Öppnar gripklon.	
D	Stänger gripklon.	
Q, W, E, R	Styr med vilken agressivitet roboten ska svänga med, från	
	att svänga runt sin egen axel till att svänga en viss grad.	
1, 2, 3, 4, 5, 6, 7, 8, 9	Styr hastigheten på roboten med vald kraft till motorerna.	

Tabell 1: Manuella lägets tangentstyrning

3.2 Autonomt läge

I det autonoma läget ska roboten befinna sig i en labyrint enligt tävlingsreglerna se appendix ??. Roboten ställs mellan två väggar centrerat vinkelrätt i början på labyrinten i så kallad startposition. Brytaren för vilket läge roboten ska vara i ställs till autonom. Roboten kommer då att utforska labyrinten, hitta målet och sedan åka tillbaka till startpositionen.