Chapter 9

Problems and Theoretical Exercises

1. (a) $P(2 \text{ arrivals in } (0, s) \mid 2 \text{ arrivals in } (0, 1))$

=
$$P{2 \text{ in } (0, s), 0 \text{ in } (s, 1)}/e^{-\lambda}\lambda^2/2}$$

= $[e^{-\lambda s}(\lambda s)^2/2][e^{-(1-s)\lambda}]/(e^{-\lambda}\lambda^2/2) = s^2 = 1/9 \text{ when } s = 1/3$

- (b) $1 P\{\text{both in last } 40 \text{ minutes}\} = 1 (2/3)^2 = 5/9$
- 2. $e^{-3s/60}$
- 3. $e^{-3s/60} + (s/20)e^{-3s/60}$
- 8. The equations for the limiting probabilities are:

$$\Pi_{c} = .7\Pi_{c} + .4\Pi_{s} + .2\Pi_{g}
\Pi_{s} = .2\Pi_{x} + .3\Pi_{s} + .4\Pi_{g}
\Pi_{g} = .1\Pi_{c} + .3\Pi_{s} + .4\Pi_{g}
\Pi_{c} + \Pi_{s} + \Pi_{g} = 1$$

and the solution is: $\Pi_c = 30/59$, $\Pi_s = 16/59$, $\Pi_g = 13/59$. Hence, Buffy is cheerful 3000/59 percent of the time.

9. The Markov chain requires 4 states:

0 = RR = Rain today and rain yesterday

1 = RD = Dry today, rain yesterday

2 = DR = Rain today, dry yesterday

3 = DD = Dry today and dry yesterday

with transition probability matrix

$$\underline{P} = \begin{vmatrix} .8 & .2 & 0 & 0 \\ 0 & 0 & .3 & .7 \\ .4 & .6 & 0 & 0 \\ 0 & 0 & .2 & .8 \end{vmatrix}$$

148 Chapter 9

The equations for the limiting probabilities are:

$$\Pi_{0} = .8\Pi_{0} + .4\Pi_{2}
\Pi_{1} = .2\Pi_{0} + .6\Pi_{2}
\Pi_{2} = .3\Pi_{1} + .2\Pi_{3}
\Pi_{3} = .7\Pi_{1} + .8\Pi_{3}
\Pi_{0} + \Pi_{1} + \Pi_{2} + \Pi_{3} = 1$$

which gives

$$\Pi_0 = 4/15$$
, $\Pi_1 = \Pi_2 = 2/15$, $\Pi_3 = 7/15$.

Since it rains today when the state is either 0 or 2 the probability is 2/5.

10. Let the state be the number of pairs of shoes at the door he leaves from in the morning. Suppose the present state is i, where i > 0. Now after his return it is equally likely that one door will have i and the other 5 - i pairs as it is that one will have i - 1 ant the other 6 - i. Hence, since he is equally likely to choose either door when he leaves tomorrow it follows that

$$P_{i,i} = P_{i,5-i} = P_{i,i-1} = P_{i,6-i} = 1/4$$

provided all the states i, 5 - i, i - 1, 6 - i are distinct. If they are not then the probabilities are added. From this it is easy to see that the transition matrix P_{ij} , i, j = 0, 1, ..., 5 is as follows:

Since this chain is doubly stochastic (the column sums as well as the row sums all equal to one) it follows that $\prod_i = 1/6$, i = 0, ..., 5, and thus he runs barefooted one-sixth of the time.

- 11. (b) 1/2
 - (c) Intuitively, they should be independent.
 - (d) From (b) and (c) the (limiting) number of molecules in urn 1 should have a binomial distribution with parameters (M, 1/2).