## GateAssignment-2

1

## EE24BTECH11048-NITHIN.K

## 1 Q.1-Q.25 carry one mark each

- 1) Consider x, y, z to be right-handed Cartesian coordinates. A vector function is defined in this coordinate system as  $\mathbf{v} = 3x\mathbf{i} + 3xy\mathbf{j} yz^2\mathbf{k}$ , where  $\mathbf{i}$ ,  $\mathbf{j}$  and  $\mathbf{k}$  are the unit vectors along x, y and z axes, respectively. The curl of  $\mathbf{v}$  is given by
  - a)  $z^2 \mathbf{i} 3y \mathbf{k}$
  - b)  $z^2$ **j** + 3y**k**
  - c)  $z^2$ **i** + 3y**j**
  - d)  $-z^2\mathbf{i} + 3y\mathbf{k}$
- 2) Which of the following functions is periodic?
  - a)  $f(x) = x^2$
  - b)  $f(x) = \log x$
  - c)  $f(x) = e^x$
  - d) f(x) = const.
- 3) The function  $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 2x_1 4x_2 6x_3 + 14$  has its minimum value at
  - a) (1, 2, 3)
  - b) (0,0,0)
  - c) (3, 2, 1)
  - d) (1, 1, 3)
- 4) Consider the function  $f(x_1, x_2) = x_1^2 + 2x_2^2 + e^{-x_1 x_2}$ . The vector pointing in the direction of maximum increase of the function at the point (1, -1) is
  - a) (=)2-5
  - b)  $\langle = \rangle 1 5$
  - c) (=) -0.73 6.73
  - d) (=)2-4
- 5) Two simultaneous equations given by  $y = \pi + x$  and  $y = x \pi$  have
  - a) a unique solution
  - b) infinitely many solutions
  - c) no solution
  - d) a finite number of multiple solutions
- 6) In three-dimensional linear elastic solids, the number of non-trivial stress-strain relations, strain-displacement equations and equations of equilibrium are, respectively
  - a) 3, 3 and 3
  - b) 6, 3 and 3
  - c) 6, 6 and 3
  - d) 6, 3 and 6

- 7) An Euler-Bernoulli beam in bending is assumed to satisfy
  - a) both plane stress as well as plane strain conditions
  - b) plane strain condition but not plane stress condition
  - c) plane stress condition but not plane strain condition
  - d) neither plane strain condition nor plane stress condition
- 8) A statically indeterminate frame structure has
  - a) same number of joint degrees of freedom as the number of equilibrium equations
  - b) number of joint degrees of freedom greater than the number of equilibrium equations
  - c) number of joint degrees of freedom less than the number of equilibrium equations
  - d) unknown number of joint degrees of freedom, which cannot be solved using laws of mechanics
- 9) Consider a single degree of freedom spring-mass-damper system with mass, damping and stiffness of m, c and k, respectively. The logarithmic decrement of this system can be calculated using
  - a)  $\frac{2\pi c}{\sqrt{4mk-c^2}}$
  - b)  $\frac{\pi c}{\sqrt{4mk-c^2}}$
  - c)  $\frac{2\pi c}{\sqrt{mk-c^2}}$
  - d)  $\frac{2\pi c}{\sqrt{mk-4c^2}}$
- 10) Consider a single degree of freedom spring-mass system of spring stiffness  $k_1$  and mass m which has a natural frequency of 10 rad/s. Consider another single degree of freedom spring-mass system of spring stiffness  $k_2$  and mass m which has a natural frequency of 20 rad/s. The spring stiffness  $k_2$  is equal to
  - a)  $k_1$
  - b)  $2k_1$
  - c)  $\frac{k_1}{4}$
  - d)  $4k_1$
- 11) Consider a simply supported two-dimensional beam



If the beam is converted into a fixed-fixed beam as



then the degree of static indeterminacy will

- a) increase by 3
- b) increase by 2
- c) decrease by 1
- d) decrease by 3
- 12) An impulsive launch of a rocket minimizes the loss of burn-out velocity due to
  - a) aerodynamic drag force only
  - b) gravitational force only
  - c) both aerodynamic drag and gravitational forces
  - d) reaction jet control force
- 13) Multi-staging in rockets improves the burn-out performance by increasing mainly stage-wise
  - a) payload mass ratios
  - b) structural mass efficiencies
  - c) propellant masses
  - d) control system masses