

Task History

Initiating Search

February 23, 2025, 7:45 PM

Substances:

Filtered By:

Structure Match: As Drawn

Search Tasks

Task		Search Type	View
Returned Substance Results + Filters (2,302)		Substances	View Results
Exported: Retri	eved Related Reaction Results + Filters (261)	Reactions	View Results
Filtered By:			
Substance Role: Catalyst:	[1,3-Bis[2,6-bis(1-methylethyl)phenyl]-1,3-dihydro-2 <i>H</i> -imylidene]dichloro[(1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene]ruthenium, [μ-[(2 <i>R</i> ,2' <i>R</i>)-1,1'-Bis[(4:dimethylethyl)-4,5-dihydro-2-oxazolyl-κ <i>N</i> ^β]-2,2'-bis(diphenylphosphino-κ <i>P</i>]ruthenocene]]tetrachlorobis(triphenylphosphine)diru[μ-[(2 <i>R</i> ,2' <i>S</i>)-1,1'-Bis[(4 <i>S</i>)-4-(1,1-dimethylethyl)-4,5-dihydroxazolyl-κ <i>N</i> ^β]-2,2'-bis(diphenylphosphino-κ <i>P</i>]ruthenocene]]tetrachlorobis(triphenylphosphine)diru[4-Methyl- <i>N</i> -[(1 <i>R</i> ,2 <i>R</i>)-2-(methylamino-κ <i>N</i>)-1,2-diphenylethyl]benzenesulfonamidato-κ <i>N</i>][(1,2,3,4,5,6-η)methyl-4-(1-methylethyl)benzene](1,1,1-trifluoromethanesulfonato-κ <i>O</i>]ruthenium, [4-Methyl- <i>N</i> -2-(methylamino-κ <i>N</i>)-1,2-diphenylethyl]benzenesulfonarκ <i>N</i>][(1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene] [tetrafluoroborato(1-)-κ <i>P</i>]ruthenium, (η ⁶ -Benzene)dichlororuthenium, Bis(dihydrogen-κ <i>H</i> ¹ ,κ <i>H</i> ²)dihydrobis(tricyclopentylphosphine)ruthenium, Chloro[2-(diphenylphosphino-κ <i>P</i>)benzenesulfonato-κ <i>O</i>] [(1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene]ruthe Dicarbonyldichlorobis(triphenylphosphine)ruthenium, Di-μ-iododiiodobis[(1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene]diruthenium, Iridium, compd. with	s)-4-(1,1- uthenium, o-2- uthenium, -1- [(1 R,2R)- midato-	

methylbenzenesulfonamidato-κ//][(1,2,3,4,5,6-η)-1-methyl-4-(1methylethyl)benzene](1,1,1-trifluoromethanesulfonatoκO)ruthenium, [N-[(1R,2R)-2-(Amino-κN)-1,2-diphenylethyl]-4methylbenzenesulfonamidato-κ/V]chloro[(1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene]ruthenium, [N-[(1R,2R)-2-(Amino-κN)-1,2-diphenylethyl]methanesulfonamidato-κ//][μ-[3-[(fluoroκ*F*)difluoromethyl]-5-(trifluoromethyl)phenyl-κ*C*]][(1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene][tris[3,5bis(trifluoromethyl)phenyl]boron]ruthenium, (OC-6-13)-Dichloro[(1R,2R)-1,2-cyclohexanediamine- κN^1 , κN^2][1,1'-[(1S)-2,2',3,3'-tetrahydro-1,1'-spirobi[1*H*-indene]-7,7'-diyl]bis[1,1-bis(4methoxy-3,5-dimethylphenyl)phosphine-κP]]ruthenium, (OC-6-13)-Dichloro[(1R,2R)-1,2-diphenyl-1,2-ethanediamine- κN^1 , κN^2] [1,1'-[(1*S*)-2,2',3,3'-tetrahydro-1,1'-spirobi[1*H*-indene]-7,7'diyl]bis[1,1-diphenylphosphine-κ*P*]]ruthenium, (*OC*-6-22-Δ)-Bis(acetato- κO , κO)[1,1'-(1R)-[1,1'-binaphthalene]-2,2'-diylbis[1,1diphenylphosphine-κ*P*]]ruthenium, (*OC*-6-22-Λ)-Bis(acetatoκΟ,κΟ')[1,1'-(1*S*)-[1,1'-binaphthalene]-2,2'-diylbis[1,1diphenylphosphine-κ*P*]]ruthenium, (*OC*-6-22)-Bis(acetato-κ*O*,κ*O*) [(1 R)-[1,1'-binaphthalene]-2,2'-diylbis[diphenylphosphineκ*P*]]ruthenium, (*OC*-6-54)-[1,1'-(4*R*)-[4,4'-Bi-1,3-benzodioxole]-5,5'-diylbis[1,1-bis(3,5-dimethylphenyl)phosphine-κ*P*[]chloro[2- $\hbox{$[(1\it{R},2\it{S})$-1,2-di(amino-\kappa\it{N})$-1-(4-methoxyphenyl)$-3-methylbutyl]$-5-}$ methoxyphenyl-kC]ruthenium, Platinum ruthenium alloy, Ruthenium, Ruthenium(1+), [1,1'-(1R)-[1,1'-binaphthalene]-2,2'diylbis[1,1-diphenylphosphine- κP]]chloro[(1,2,3,4,5,6- η)-1-methyl-4-(1-methylethyl)benzene]-, chloride (1:1), Ruthenium(1+), [(1,2,3,4-η)-1,3-cyclooctadiene][(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]-, tetrafluoroborate(1-) (1:1), Ruthenium, [(1,2,5,6-η)-1,5-cyclooctadiene]bis[(1,2,3-η)-2-methyl-2-propenyl]-, Ruthenium(1+), chlorobis[1,1'-(1,2ethanediyl)bis[1,1-diphenylphosphine-кP]]-, (TB-5-22)-, 1,1,1trifluoromethanesulfonate (1:1), Ruthenium(1+), chlorobis[1,3propanediylbis[diphenylphosphine-κ*P*]]-, (*TB*-5-22)-, salt with trifluoromethanesulfonic acid (1:1), Ruthenium, [2,6-bis[(4R)-4,5dihydro-4-phenyl-2-oxazolyl-κΛ³]pyridine-κΛ]dichloro(trimethyl phosphite-κP)-, (OC-6-14)-, Ruthenium alloy, base, Ru 84,Fe 16, Ruthenium, bis(acetato-κ*O*,κ*O*')[(4*S*)-[4,4'-bi-1,3-benzodioxole]-5,5'-diylbis[diphenylphosphine-κP]]-, (OC-6-22)-, Ruthenium, chloro[2-[(diphenoxyphosphino)oxy]phenyl-C,P]tris(triphenyl phosphite-P)-, (OC-6-24)-, Ruthenium, dichloro[1,1'-[[(4 5,5 5)-2,2dimethyl-1,3-dioxolane-4,5-diyl]bis(methylene)]bis[1,1diphenylphosphine- κP]][(αS)- α -(2-methylpropyl)-1 Hbenzimidazole-2-methanamine- κN^2 , κN^3]-, (*OC*-6-14)-, Ruthenium, dichloro[(1 R,2R)-1,2-diphenyl-1,2-ethanediamineκΝ,κΝ'][(25,2'5,55,5'5)-1,1'-(1,2-phenylene)bis[2,5diethylphospholane-κP]]-, (OC-6-13)-, Ruthenium, octacarbonyltetra-µ-hydrotetrakis(tributylphosphine)tetra-, tetrahedro, Ruthenium, tetracarbonyl-μ-hydrotrihydro-μhydroxy-µ3-hydroxy-µ4-oxotetrakis(tricyclohexylphosphine)tetra-, (4Ru-Ru), Ruthenium trichloride, stereoisomer of Di-µiododiiodobis[(1,2,3,4,5,6-η)-1-methyl-4-(1methylethyl)benzene]diruthenium, (TB-5-12)-(2,3-Dimethyl-2,3butanediaminatoκ/ν²,κ/ν³)hydrobis(triphenylphosphine)ruthenium, Tetra-μ₃chlorotetrakis[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4cyclopentadien-1-yl]tetraruthenium, Tetracarbonyl(triphenylphosphine)ruthenium, Triruthenium dodecacarbonyl, Tris(acetylacetonato)ruthenium Journal

Document

Type:

Language: English

Copyright © 2025 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your CAS SciFinder License Agreement and CAS information Use Policies.

Reactions (94)

View in CAS SciFinder

Steps: 1 Yield: 99%

Scheme 1 (1 Reaction)

Absolute stereochemistry shown, Rotation (-)

Suppliers (25)

31-116-CAS-22001860

1.1 Reagents: Deuterium Catalysts: Ruthenium

Solvents: Tetrahydrofuran; 24 h, 2 bar, 55 °C

Steps: 1 Yield: 99%

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 2 (1 Reaction)

31-116-CAS-4526046

1.1 **Reagents:** Deuterium **Catalysts:** Ruthenium

Solvents: Tetrahydrofuran; 5 h, rt

📜 Suppliers (106)

Steps: 1 Yield: 99%

One-step exchange-labelling of pyridines and other Nheteroaromatics using deuterium gas: catalysis by heterog eneous rhodium and ruthenium catalysts

By: Alexakis, Efstathios; et al

Tetrahedron Letters (2006), 47(29), 5025-5028.

Scheme 3 (1 Reaction)

Steps: 1 Yield: 99%

Steps: 1 Yield: 99%

Steps: 1 Yield: 99%

Steps: 1 Yield: 99%

31-116-CAS-22001852

Steps: 1 Yield: 99%

Reagents: Cesium carbonate, Deuterium

Catalysts: Ruthenium

Solvents: Tetrahydrofuran; 24 h, 2 bar, 55 °C

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 4 (1 Reaction)

$$\bigcup_{D}^{D}$$

31-116-CAS-22001845

Steps: 1 Yield: 99%

Reagents: Deuterium Catalysts: Ruthenium

📜 Suppliers (100)

Solvents: Tetrahydrofuran; 12 h, 2 bar, 50 °C

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 5 (1 Reaction)

Absolute stereochemistry shown, Rotation (-)

Suppliers (176)

HO

Absolute stereochemistry shown

31-116-CAS-5173454

Steps: 1 Yield: 99%

Enantiospecific C-H activation using ruthenium nanocatalysts

Reagents: Deuterium Catalysts: Ruthenium

Solvents: Water-d₂; 36 h, 2 bar, 55 °C

Suppliers (70)

By: Taglang, Celine; et al

Angewandte Chemie, International Edition (2015), 54(36), 10474-10477.

Experimental Protocols

Scheme 6 (1 Reaction)

Steps: 1 Yield: 99%

Steps: 1 Yield: 99%

Steps: 1 Yield: 99%

Steps: 1 Yield: 99%

31-116-CAS-22001853

Steps: 1 Yield: 99%

1.1 Reagents: Cesium carbonate, Deuterium

Catalysts: Ruthenium

Solvents: Tetrahydrofuran; 24 h, 2 bar, 55 °C

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 7 (1 Reaction)

31-116-CAS-6935502

1.1 Reagents: Deuterium Catalysts: Ruthenium

Solvents: Tetrahydrofuran; 5 h, rt

Steps: **1** Yield: **99%**

Steps: 1 Yield: 99%

One-step exchange-labelling of pyridines and other N-heteroaromatics using deuterium gas: catalysis by heterog eneous rhodium and ruthenium catalysts

By: Alexakis, Efstathios; et al

Tetrahedron Letters (2006), 47(29), 5025-5028.

Scheme 8 (1 Reaction)

31-116-CAS-22001854

1.1 Reagents: Cesium carbonate, Deuterium

Catalysts: Ruthenium

Solvents: Tetrahydrofuran; 24 h, 2 bar, 55 °C

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 9 (1 Reaction)

> Suppliers (97)

31-116-CAS-22001846

Steps: 1 Yield: 99%

.1 Reagents: Deuterium Catalysts: Ruthenium

Solvents: Tetrahydrofuran; 12 h, 2 bar, 50 °C

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 10 (1 Reaction)

Steps: **1** Yield: **99%**

31-116-CAS-22001844

Steps: **1** Yield: **99%**

1.1 **Reagents:** Deuterium **Catalysts:** Ruthenium

Solvents: Dimethylacetamide; 12 h, 2 bar, 50 °C

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 11 (1 Reaction)

Steps: **1** Yield: **99%**

□ Suppliers (84)

31-116-CAS-22001849

Steps: 1 Yield: 99%

1.1 Reagents: Deuterium Catalysts: Ruthenium

Solvents: Dimethylacetamide; 24 h, 2 bar, 55 °C

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 12 (1 Reaction)

Steps: **1** Yield: **99%**

➤ Suppliers (38)

Steps: 1 Yield: 99%

Steps: 1 Yield: 99%

31-116-CAS-22001848

Steps: 1 Yield: 99%

Steps: 1 Yield: 99%

Steps: 1 Yield: 99%

1.1 Reagents: Deuterium Catalysts: Ruthenium

Solvents: Tetrahydrofuran; 24 h, 2 bar, 55 °C

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 13 (1 Reaction)

31-614-CAS-30112304

1.1 Reagents: Deuterium Catalysts: Ruthenium

Solvents: Tetrahydrofuran; 24 h, 2 bar, 55 °C

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 14 (1 Reaction)

31-116-CAS-22001851

1.1 Reagents: Cesium carbonate, Deuterium

Catalysts: Ruthenium

Solvents: Tetrahydrofuran; 24 h, 2 bar, 55 °C

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 15 (1 Reaction)

> Suppliers (57)

Steps: **1** Yield: **99%**

Steps: 1 Yield: 95%

Steps: 1 Yield: 94%

Steps: 1 Yield: 93%

31-116-CAS-22001842

Steps: 1 Yield: 99%

I.1 Reagents: Deuterium Catalysts: Ruthenium

Solvents: Dimethylacetamide; 24 h, 2 bar, 50 °C

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 16 (1 Reaction)

Rotation (+)

Suppliers (166)

Absolute stereochemistry shown,

31-116-CAS-11593057

Steps: 1 Yield: 95%

Absolute stereochemistry shown

1.1 Reagents: Deuterium Catalysts: Ruthenium

Solvents: Water-d₂; 36 h, 2 bar, 55 °C

Experimental Protocols

Enantiospecific C-H activation using ruthenium nanocatalysts

By: Taglang, Celine; et al

Angewandte Chemie, International Edition (2015), 54(36), 10474-10477.

Scheme 17 (1 Reaction)

OH D D

31-614-CAS-31526752

Steps: 1 Yield: 94%

Reagents: Deuterium

Catalysts: *p*-Toluenesulfonic acid, Chloro [2-(diphenylp hosphino- κ *P*)benzenesulfonato- κ *O*][(1,2,3,4,5,6- η)-1-methyl-4-(1-methylethyl)benzene]ruthenium

Solvents: Toluene; 20 h, 3 MPa, 150 °C

Suppliers (97)

Experimental Protocols

Ru(dppbsa)-catalyzed hydrodeoxygenation and reductive etherification of ketones and aldehydes

By: Sun, Rui; et al

Organic Chemistry Frontiers (2022), 9(7), 1943-1954.

Scheme 18 (1 Reaction)

Suppliers (74)

Steps: 1 Yield: 92%

Steps: 1 Yield: 92%

Steps: 1 Yield: 92%

31-614-CAS-31526761

Steps: 1 Yield: 93%

1.1 Reagents: Deuterium

Catalysts: *p*-Toluenesulfonic acid, Chloro [2-(diphenylp hosphino-κ*P*)benzenesulfonato-κ*O*][(1,2,3,4,5,6-η)-1-methyl-4-

(1-methylethyl)benzene]ruthenium Solvents: Toluene; 20 h, 3 MPa, 150 °C

Experimental Protocols

Ru(dppbsa)-catalyzed hydrodeoxygenation and reductive etherification of ketones and aldehydes

By: Sun, Rui; et al

Organic Chemistry Frontiers (2022), 9(7), 1943-1954.

Scheme 19 (1 Reaction)

Rotation (-)

Suppliers (170)

31-116-CAS-2790211

Steps: 1 Yield: 92%

1.1 Reagents: Deuterium Catalysts: Ruthenium

Solvents: Water-d₂; 36 h, 2 bar, 55 °C

Experimental Protocols

Enantiospecific C-H activation using ruthenium nanocatalysts

By: Taglang, Celine; et al

Angewandte Chemie, International Edition (2015), 54(36),

10474-10477.

Scheme 20 (1 Reaction)

31-116-CAS-18697970

Steps: 1 Yield: 92%

1.1 **Catalysts:** Ruthenium, [(1,2,5,6-η)-1,5-cyclooctadiene]bis[(1,2, 3-η)-2-methyl-2-propenyl]-, (1*S*,1"*S*)-2,2"-Bis[(1*S*)-1-(diphenylp hosphino)ethyl]-1,1"-biferrocene

Solvents: Tetrahydrofuran; 8 h, rt

1.2 **Reagents:** Potassium carbonate, Deuterium

Solvents: Isopropanol; 48 h, 80 °C

Experimental Protocols

Ruthenium-Catalyzed Chemo- and Enantioselective Hydroge nation of Isoquinoline Carbocycles

By: Jin, Yushu; et al

Journal of Organic Chemistry (2018), 83(7), 3829-3839.

Scheme 21 (1 Reaction)

➤ Suppliers (195)

Suppliers (28)

31-116-CAS-9793291 Steps: 1 Yield: 92% Enantiospecific C-H activation using ruthenium nanocatalysts By: Taglang, Celine; et al Angewandte Chemie, International Edition (2015), 54(36), 10474-10477. Scheme 23 (1 Pagetian)

10474-10477.

Steps: 1 Yield: 85%

Steps: 1 Yield: 82%

31-116-CAS-9463343

Steps: 1 Yield: 87%

Enantiospecific C-H activation using ruthenium nanocatalysts

1.1 Reagents: Deuterium Catalysts: Ruthenium By: Taglang, Celine; et al

Solvents: Water-*d*₂; 36 h, 2 bar, 55 °C

Angewandte Chemie, International Edition (2015), 54(36), 10474-10477.

Experimental Protocols

Scheme 25 (1 Reaction)

Steps: 1 Yield: 86%

31-116-CAS-22001861

Steps: 1 Yield: 86%

Reagents: Cesium carbonate, Deuterium

Catalysts: Ruthenium

Solvents: Tetrahydrofuran; 24 h, 2 bar, 55 °C

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 26 (1 Reaction)

31-116-CAS-13006307

Steps: 1 Yield: 85%

Reagents: Deuterium Catalysts: Ruthenium

Solvents: Tetrahydrofuran; 5 h, rt

> Suppliers (65)

One-step exchange-labelling of pyridines and other Nheteroaromatics using deuterium gas: catalysis by heterog eneous rhodium and ruthenium catalysts

By: Alexakis, Efstathios; et al

Tetrahedron Letters (2006), 47(29), 5025-5028.

Scheme 27 (1 Reaction)

Absolute stereochemistry shown, Rotation (+)

Steps: 1 Yield: 82%

Steps: 1 Yield: 80%

31-614-CAS-36072891

Steps: 1 Yield: 82%

Reagents: Deuterium

Catalysts: 1-Butanol, 2-methyl-, sodium salt (1:1), (OC-6-54)-[1, 1'-(4R)-[4,4'-Bi-1,3-benzodioxole]-5,5'-diylbis[1,1-bis(3,5dimethylphenyl)phosphine-κ*P*]]chloro[2-[(1*R*,2*S*)-1,2-di(amino- κ N)-1-(4-methoxyphenyl)-3-methylbutyl]-5-methoxyphenylк*C*|ruthenium

Solvents: Tetrahydrofuran, Cyclopentyl methyl ether; 8 h, 15

atm, 25 °C

Experimental Protocols

Asymmetric Hydrogenation of α-Amino Esters into Optically Active β-Amino Alcohols through Dynamic Kinetic Resolution Catalyzed by Ruthenabicyclic Complexes

By: Ishikawa, Hiroki; et al

Organic Letters (2023), 25(13), 2355-2360.

Scheme 28 (1 Reaction)

Steps: 1 Yield: 82%

Absolute stereochemistry shown

Absolute stereochemistry shown

Suppliers (122)

Enantiospecific C-H activation using ruthenium nanocatalysts

Reagents: Deuterium Catalysts: Ruthenium

31-116-CAS-3039265

Solvents: Water-d₂; 36 h, 2 bar, 55 °C

Experimental Protocols

By: Taglang, Celine; et al

Angewandte Chemie, International Edition (2015), 54(36), 10474-10477.

Scheme 29 (1 Reaction)

Suppliers (104)

Absolute stereochemistry shown

31-116-CAS-22001857

Steps: 1 Yield: 80%

Reagents: Deuterium Catalysts: Ruthenium

Solvents: Dimethylacetamide; 24 h, 2 bar, 55 °C

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 30 (1 Reaction)

Absolute stereochemistry shown

> Suppliers (10)

Steps: 1 Yield: 79%

31-116-CAS-2737030

Steps: 1 Yield: 79%

1.1 Reagents: Deuterium Catalysts: Ruthenium

Solvents: Water-*d*₂; 36 h, 2 bar, 55 °C

Experimental Protocols

Enantiospecific C-H activation using ruthenium nanocatalysts

By: Taglang, Celine; et al

Angewandte Chemie, International Edition (2015), 54(36), 10474-10477.

Steps: 1 Yield: 79%

Steps: 1 Yield: 75%

Steps: 1 Yield: 75%

Scheme 31 (1 Reaction)

$$\xrightarrow{\mathsf{D}}$$

31-116-CAS-22001840

Catalysts: Ruthenium

Steps: 1 Yield: 79% 1.1 Reagents: Deuterium

Solvents: Tetrahydrofuran; 24 h, 2 bar, 50 °C

Suppliers (58)

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 32 (1 Reaction)

31-116-CAS-662963

Steps: 1 Yield: 75%

Enantiospecific C-H activation using ruthenium nanocatalysts

Reagents: Deuterium Catalysts: Ruthenium

Solvents: Water-d₂; 36 h, 2 bar, 55 °C

Experimental Protocols

By: Taglang, Celine; et al

Angewandte Chemie, International Edition (2015), 54(36),

10474-10477.

Scheme 33 (1 Reaction)

Suppliers (95)

Steps: 1 Yield: 72%

Steps: 1 Yield: 71%

Steps: 1 Yield: 70%

31-614-CAS-31526754

Steps: 1 Yield: 75%

1.1 Reagents: Deuterium

Catalysts: p-Toluenesulfonic acid, Chloro [2-(diphenylp hosphino-κP)benzenesulfonato-κO][(1,2,3,4,5,6- η)-1-methyl-4-

(1-methylethyl)benzene]ruthenium Solvents: Toluene; 20 h, 3 MPa, 150 °C

Experimental Protocols

Ru(dppbsa)-catalyzed hydrodeoxygenation and reductive etherification of ketones and aldehydes

By: Sun, Rui; et al

Organic Chemistry Frontiers (2022), 9(7), 1943-1954.

Scheme 34 (1 Reaction)

D

Absolute stereochemistry shown

Suppliers (31)

31-116-CAS-7258419

Steps: 1 Yield: 72%

Enantiospecific C-H activation using ruthenium nanocatalysts

Reagents: Deuterium Catalysts: Ruthenium

Solvents: Water-*d*₂; 36 h, 2 bar, 55 °C

Suppliers (212)

By: Taglang, Celine; et al

Angewandte Chemie, International Edition (2015), 54(36), 10474-10477.

Experimental Protocols

Rotation (+)

Suppliers (22)

Steps: 1 Yield: 71%

Enantiospecific C-H activation using ruthenium nanocatalysts

1.1 Reagents: Deuterium Catalysts: Ruthenium

Solvents: Water-d₂; 36 h, 2 bar, 55 °C

By: Taglang, Celine; et al

Angewandte Chemie, International Edition (2015), 54(36), 10474-10477.

Experimental Protocols

31-116-CAS-13995239

Scheme 36 (1 Reaction)

Suppliers (5)

Absolute stereochemistry shown, Rotation (+)

Steps: 1 Yield: 70%

Steps: 1 Yield: 68%

31-614-CAS-36072888

Steps: 1 Yield: 70%

Reagents: Deuterium

Catalysts: 1-Butanol, 2-methyl-, sodium salt (1:1), (OC-6-54)-[1, 1'-(4R)-[4,4'-Bi-1,3-benzodioxole]-5,5'-diylbis[1,1-bis(3,5dimethylphenyl)phosphine-κ*P*]]chloro[2-[(1*R*,2*S*)-1,2-di(amino- κ N)-1-(4-methoxyphenyl)-3-methylbutyl]-5-methoxyphenyl-

к*C*|ruthenium

Solvents: Tetrahydrofuran, Cyclopentyl methyl ether; 14 h, 15

atm, 25 °C

Experimental Protocols

Asymmetric Hydrogenation of α-Amino Esters into Optically Active β-Amino Alcohols through Dynamic Kinetic Resolution Catalyzed by Ruthenabicyclic Complexes

By: Ishikawa, Hiroki; et al

Organic Letters (2023), 25(13), 2355-2360.

Scheme 37 (1 Reaction)

31-116-CAS-22001859

Steps: 1 Yield: 70%

Reagents: Deuterium Catalysts: Ruthenium

Solvents: Tetrahydrofuran; 24 h, 2 bar, 55 °C

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 38 (1 Reaction)

Suppliers (188)

Suppliers (2)

31-116-CAS-13726956

Steps: 1 Yield: 68%

Enantiospecific C-H activation using ruthenium nanocatalysts

Reagents: Deuterium Catalysts: Ruthenium

Solvents: Water-d₂; 36 h, 2 bar, 55 °C

By: Taglang, Celine; et al

Angewandte Chemie, International Edition (2015), 54(36), 10474-10477.

Experimental Protocols

Scheme 39 (1 Reaction)

Steps: 1 Yield: 68%

Steps: 1 Yield: 67%

Steps: 1 Yield: 65%

31-116-CAS-945805

Steps: 1 Yield: 68%

Enantiospecific C-H activation using ruthenium nanocatalysts

1.1 **Reagents:** Deuterium **Catalysts:** Ruthenium

Solvents: Water-d₂; 36 h, 2 bar, 55 °C

Experimental Protocols

By: Taglang, Celine; et al

Angewandte Chemie, International Edition (2015), 54(36), 10474-10477.

Scheme 40 (1 Reaction)

31-116-CAS-22001858

1.1 Reagents: Deuterium Catalysts: Ruthenium

Solvents: Tetrahydrofuran; 24 h, 2 bar, 55 °C

Steps: 1 Yield: 67% Hydrogo

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 41 (1 Reaction)

31-116-CAS-14054302

📜 Suppliers (194)

Steps: 1 Yield: 65%

Enantiospecific C-H activation using ruthenium nanocatalysts

1.1 **Reagents:** Deuterium **Catalysts:** Ruthenium

Solvents: Water-*d*₂; 36 h, 2 bar, 55 °C

Experimental Protocols

By: Taglang, Celine; et al

Angewandte Chemie, International Edition (2015), 54(36), 10474-10477.

Steps: 1 Yield: 65%

Steps: 1

Steps: 1 Yield: 64%

Steps: 1 Yield: 65%

Steps: 1 Yield: 64%

Steps: 1 Yield: 62%

Scheme 42 (2 Reactions)

31-614-CAS-41125213

1.1 **Reagents:** Deuterium

📜 Suppliers (111)

Catalysts: Ruthenium (N-heterocyclic carbene or polyvinylp

yrrolidone stabilized); 2 h, 3 bar, rt

1.2 Reagents: Deuterium

Solvents: Tetrahydrofuran; 48 h, 2 bar, 55 °C

Experimental Protocols

Bringing Selectivity in H/D Exchange Reactions Catalyzed by Metal Nanoparticles through Modulation of the Metal and the Ligand Shell

By: Martinez-Espinar, Francisco; et al

Inorganic Chemistry (2023), 62(11), 4570-4580.

31-116-CAS-7138338

1.1 Reagents: Deuterium

Catalysts: Ruthenium, Poly(vinylpyrrolidone); 2 h, 3 bar, rt

1.2 Reagents: Deuterium

Solvents: Tetrahydrofuran; 48 h, 2 bar, 80 °C

Experimental Protocols

Selective catalytic deuteration of phosphorus ligands using ruthenium nanoparticles: a new approach to gain information on ligand coordination

By: Breso-Femenia, Emma; et al

Chemical Communications (Cambridge, United Kingdom) (2015), 51(91), 16342-16345.

Scheme 43 (1 Reaction)

31-116-CAS-22001850

1.1 **Reagents:** Deuterium **Catalysts:** Ruthenium

Solvents: Dimethylacetamide; 24 h, 2 bar, 55 °C

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 44 (1 Reaction)

> Suppliers (60)

Steps: 1 Yield: 62%

Steps: 1 Yield: 61%

31-116-CAS-22001847

Reagents: Deuterium Catalysts: Ruthenium

Solvents: Tetrahydrofuran; 24 h, 2 bar, 55 °C

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 45 (1 Reaction)

📜 Suppliers (109)

Suppliers (17)

Steps: 1 Yield: 61%

Steps: 1 Yield: 60%

31-116-CAS-9782236

Reagents: Deuterium

Catalysts: Tris(acetylacetonato)ruthenium, 1,1'-[2-[(Diphenylp hosphino)methyl]-2-methyl-1,3-propanediyl]bis[1,1-diphenylp hosphine], Aluminum triflate

Solvents: Tetrahydrofuran; 24 h, 160 °C

Experimental Protocols

Catalytic methylation of C-H bonds using CO₂ and H₂

By: Li, Yuehui; et al

Angewandte Chemie, International Edition (2014), 53(39), 10476-10480.

Scheme 46 (1 Reaction)

31-116-CAS-22001856

Reagents: Deuterium Catalysts: Ruthenium

Solvents: Tetrahydrofuran; 24 h, 2 bar, 55 °C

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 47 (1 Reaction)

Absolute stereochemistry shown Absolute stereochemistry shown

➤ Suppliers (192)

Steps: 1 Yield: 59%

Steps: 1 Yield: 60%

Steps: 1 Yield: 59%

Steps: 1 Yield: 50%

Steps: 1 Yield: 47%

31-116-CAS-7005009

.1 Reagents: Deuterium
Catalysts: Ruthenium

Solvents: Water-d₂; 36 h, 2 bar, 55 °C

Experimental Protocols

Enantiospecific C-H activation using ruthenium nanocatalysts

By: Taglang, Celine; et al

Angewandte Chemie, International Edition (2015), 54(36), 10474-10477.

Scheme 48 (1 Reaction) Steps: 1 Yield: 50%

31-116-CAS-22001841

.1 Reagents: Deuterium Catalysts: Ruthenium

Suppliers (75)

Solvents: Dimethylacetamide; 24 h, 2 bar, 50 °C

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 49 (1 Reaction)

31-116-CAS-7658446

Steps: 1 Yield: 47%

1.1 Reagents: Deuterium Catalysts: Ruthenium

Solvents: Water-d₂; 36 h, 2 bar, 55 °C

Experimental Protocols

Enantiospecific C-H activation using ruthenium nanocatalysts

By: Taglang, Celine; et al

Angewandte Chemie, International Edition (2015), 54(36), 10474-10477.

Scheme 50 (1 Reaction) Steps: 1 Yield: 43%

$$\begin{array}{c} NH_2 \\ O \\ O \\ O \\ O \end{array}$$

Absolute stereochemistry shown

Absolute stereochemistry shown

➤ Suppliers (10)

31-116-CAS-2456751

Steps: 1 Yield: 43%

Enantiospecific C-H activation using ruthenium nanocatalysts

1.1 Reagents: Deuterium Catalysts: Ruthenium

Solvents: Tetrahydrofuran; 36 h, 2 bar, 55 °C

Experimental Protocols

By: Taglang, Celine; et al

Angewandte Chemie, International Edition (2015), 54(36),

10474-10477.

Steps: 1 Yield: 42%

Steps: 1 Yield: 35%

Steps: 1 Yield: 32%

Scheme 51 (1 Reaction)

Absolute stereochemistry shown, Rotation (+)

Absolute stereochemistry shown

■ Suppliers (65)

31-116-CAS-4933151

Steps: 1 Yield: 42%

Enantiospecific C-H activation using ruthenium nanocatalysts

1.1 Reagents: Deuterium Catalysts: Ruthenium

Solvents: Water-d₂; 36 h, 2 bar, 55 °C

By: Taglang, Celine; et al

Angewandte Chemie, International Edition (2015), 54(36),

10474-10477.

Scheme 52 (1 Reaction)

Experimental Protocols

31-116-CAS-22781811

Steps: 1 Yield: 35%

Reagents: Potassium tert-butoxide, Deuterium

Catalysts: Ruthenium (on carbon)

Solvents: tert-Butyl methyl ether; 24 h, 2 bar, 55 °C

Experimental Protocols

Tuning the Reactivity of a Heterogeneous Catalyst using N-Heterocyclic Carbene Ligands for C-H Activation Reactions

By: Palazzolo, Alberto; et al

Angewandte Chemie, International Edition (2020), 59(47), 20879-20884.

Scheme 53 (1 Reaction)

HCI

HCI

Absolute stereochemistry shown, Rotation (-)

Absolute stereochemistry shown, Rotation (+)

Suppliers (46)

31-116-CAS-5523622

Steps: 1 Yield: 32%

Reagents: Deuterium Catalysts: Ruthenium

Experimental Protocols

Solvents: Tetrahydrofuran; 36 h, 2 bar, 55 °C

1.2 Reagents: Hydrochloric acid

Solvents: Water; 1 h, rt

Enantiospecific C-H activation using ruthenium nanocatalysts

By: Taglang, Celine; et al

Angewandte Chemie, International Edition (2015), 54(36),

10474-10477.

Steps: 1 Yield: 32%

Steps: 1 Yield: 30%

Steps: 1 Yield: 32%

Steps: 1 Yield: 30%

Steps: 1 Yield: 26%

Scheme 54 (1 Reaction)

Absolute stereochemistry shown

Absolute stereochemistry shown

□ Suppliers (37)

Enantiospecific C-H activation using ruthenium nanocatalysts

Reagents: Deuterium Catalysts: Ruthenium

Solvents: Water-d₂; 36 h, 2 bar, 55 °C

By: Taglang, Celine; et al

Angewandte Chemie, International Edition (2015), 54(36), 10474-10477.

Experimental Protocols

31-116-CAS-6992929

Scheme 55 (1 Reaction)

31-116-CAS-22001843

Reagents: Deuterium Catalysts: Ruthenium

Solvents: Tetrahydrofuran; 12 h, 2 bar, 55 °C

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 56 (1 Reaction)

Absolute stereochemistry shown, Rotation (-)

Absolute stereochemistry shown

Suppliers (38)

31-116-CAS-276018

Steps: 1 Yield: 26%

Enantiospecific C-H activation using ruthenium nanocatalysts

Reagents: Deuterium Catalysts: Ruthenium

Solvents: Dimethylformamide; 36 h, 2 bar, 55 °C

Experimental Protocols

By: Taglang, Celine; et al

Angewandte Chemie, International Edition (2015), 54(36), 10474-10477.

Steps: 1 Yield: 25%

Steps: 1 Yield: 20%

Steps: 1 Yield: 18%

Scheme 57 (1 Reaction)

> Suppliers (91)

31-116-CAS-22001838

Reagents: Deuterium Catalysts: Ruthenium

Solvents: Dimethylacetamide; 24 h, 2 bar, 50 °C

Hydrogen Isotope Exchange Catalyzed by Ru Nanocat alysts: Labelling of Complex Molecules Containing N-Heterocycles and Reaction Mechanism Insights

By: Pfeifer, Viktor; et al

Chemistry - A European Journal (2020), 26(22), 4988-4996.

Scheme 58 (1 Reaction)

Absolute stereochemistry shown

■ Suppliers (48)

Absolute stereochemistry shown

31-116-CAS-4594170

Steps: 1 Yield: 20%

Steps: 1 Yield: 25%

Enantiospecific C-H activation using ruthenium nanocatalysts

Reagents: Deuterium Catalysts: Ruthenium

Solvents: Dimethylformamide; 36 h, 2 bar, 55 °C

Experimental Protocols

By: Taglang, Celine; et al

Angewandte Chemie, International Edition (2015), 54(36), 10474-10477.

Scheme 59 (1 Reaction)

Absolute stereochemistry shown

31-116-CAS-597807

Steps: 1 Yield: 18%

Enantiospecific C-H activation using ruthenium nanocatalysts

Reagents: Deuterium Catalysts: Ruthenium

Solvents: Water-d₂; 36 h, 2 bar, 55 °C

By: Taglang, Celine; et al

Angewandte Chemie, International Edition (2015), 54(36), 10474-10477.

Experimental Protocols

Steps: 1

Steps: 1

Steps: 1

Scheme 60 (1 Reaction)

Suppliers (84)

31-116-CAS-1409233

.1 Reagents: Deuterium

Catalysts: Ruthenium, Poly(vinylpyrrolidone); 2 h, 3 bar, rt

1.2 Reagents: Deuterium

Solvents: Tetrahydrofuran; 88 h, 2 bar, 80 °C

Experimental Protocols

Selective catalytic deuteration of phosphorus ligands using ruthenium nanoparticles: a new approach to gain information on ligand coordination

By: Breso-Femenia, Emma; et al

Chemical Communications (Cambridge, United Kingdom) (2015), 51(91), 16342-16345.

Scheme 61 (1 Reaction)

31-116-CAS-5403179

Steps: 1

1.1 **Reagents:** Potassium phenoxide, Deuterium

 $\textbf{Catalysts:} \ \textbf{Ruthenium, chloro} \textbf{[2-[(diphenoxyphosphino)oxy]}$

phenyl-C,P]tris(triphenyl phosphite-P)-, (OC-6-24)-

Solvents: Tetrahydrofuran

Reexamination of the deuteration of phenol catalyzed by an orthometalated ruthenium complex

By: Lewis, Larry N.

Inorganic Chemistry (1985), 24(25), 4433-5.

Scheme 62 (1 Reaction)

31-614-CAS-38030186

Steps: 1

1.1 Reagents: Deuterium

Catalysts: Ruthenium alloy, base, Ru 84,Fe 16 (ionic-liquid-modified silica supported and functionalized with diethyl...), 2924183-46-8 (silica supported, iron ruthenium nanoparticles immobilized)

Solvents: Heptane; 18 h, 20 bar, rt → 200 °C

Experimental Protocols

Decarboxylation and Tandem Reduction/Decarboxylation Pathways to Substituted Phenols from Aromatic Carboxylic Acids Using Bimetallic Nanoparticles on Supported Ionic Liquid Phases as Multifunctional Catalysts

By: Levin, Natalia; et al

Journal of the American Chemical Society (2023), 145(41), 22845-22854.

Scheme 63 (1 Reaction)

Steps: 1

Steps: 1

Steps: 1

📜 Suppliers (228)

31-116-CAS-19188581

Reagents: Deuterium

Catalysts: Ruthenium, 1,4-Bis(diphenylphosphino)butane

Solvents: Tetrahydrofuran; 24 h, 60 °C

Experimental Protocols

Surprising Differences of Alkane C-H Activation Catalyzed by Ruthenium Nanoparticles: Complex Surface-Substrate Recogn ition?

By: Rothermel, Niels; et al

ChemCatChem (2018), 10(19), 4243-4247.

Scheme 64 (1 Reaction)

Suppliers (57)

31-116-CAS-22781840

Reagents: Potassium tert-butoxide, Deuterium

Catalysts: Ruthenium (on carbon)

Solvents: tert-Butyl methyl ether; 24 h, 2 bar, 55 °C

Experimental Protocols

Steps: 1

Tuning the Reactivity of a Heterogeneous Catalyst using N-Heterocyclic Carbene Ligands for C-H Activation Reactions

By: Palazzolo, Alberto; et al

Angewandte Chemie, International Edition (2020), 59(47), 20879-20884.

Scheme 65 (1 Reaction)

31-116-CAS-5690741

Steps: 1

Reagents: Deuterium

Catalysts: Ruthenium

> Suppliers (45)

Solvents: Benzene-d₆; 4 d, 10 psi, rt

Experimental Protocols

Reactions of Group III Biheterocyclic Complexes

By: Carver, Colin T.; et al

Journal of the American Chemical Society (2009), 131(29),

10269-10278.

Steps: 1

Scheme 66 (1 Reaction)

F F F F

📜 Suppliers (84)

31-116-CAS-5624078

.1 Reagents: Deuterium

Catalysts: Ruthenium, Poly(vinylpyrrolidone); 2 h, 3 bar, rt

1.2 Reagents: Deuterium

Solvents: Tetrahydrofuran; 88 h, 2 bar, 80 °C

Experimental Protocols

Selective catalytic deuteration of phosphorus ligands using ruthenium nanoparticles: a new approach to gain information on ligand coordination

By: Breso-Femenia, Emma; et al

Chemical Communications (Cambridge, United Kingdom) (2015), 51(91), 16342-16345.

Scheme 67 (2 Reactions)

Steps: 1

> Suppliers (85)

31-614-CAS-41125210

1.1 Reagents: Deuterium

Catalysts: Ruthenium (N-heterocyclic carbene or polyvinylp

yrrolidone stabilized); 2 h, 3 bar, rt

1.2 Reagents: Deuterium

Solvents: Tetrahydrofuran; 8 d, 2 bar, 55 °C

Experimental Protocols

Steps: 1

Steps: 1

Bringing Selectivity in H/D Exchange Reactions Catalyzed by Metal Nanoparticles through Modulation of the Metal and the Ligand Shell

By: Martinez-Espinar, Francisco; et al

Inorganic Chemistry (2023), 62(11), 4570-4580.

31-116-CAS-14147369

1.1 Reagents: Deuterium

Catalysts: Ruthenium, Poly(vinylpyrrolidone); 2 h, 3 bar, rt

1.2 **Reagents:** Deuterium

Solvents: Tetrahydrofuran; 88 h, 2 bar, 80 °C

Experimental Protocols

Selective catalytic deuteration of phosphorus ligands using ruthenium nanoparticles: a new approach to gain information on ligand coordination

By: Breso-Femenia, Emma; et al

Chemical Communications (Cambridge, United Kingdom) (2015), 51(91), 16342-16345.

Scheme 68 (1 Reaction)

Relative stereochemistry shown

➤ Suppliers (10)

Steps: 1

31-116-CAS-22781793

Steps: 1

Reagents: Potassium tert-butoxide, Deuterium

Catalysts: Ruthenium (on carbon)

Solvents: tert-Butyl methyl ether; 24 h, 2 bar, 55 °C

Experimental Protocols

Tuning the Reactivity of a Heterogeneous Catalyst using N-Heterocyclic Carbene Ligands for C-H Activation Reactions

By: Palazzolo, Alberto; et al

Angewandte Chemie, International Edition (2020), 59(47), 20879-20884.

Scheme 69 (1 Reaction)

Steps: 1

31-116-CAS-3201518

Steps: 1

Reagents: Deuterium

□ Suppliers (87)

Catalysts: Ruthenium, Poly(vinylpyrrolidone); 2 h, 3 bar, rt

Reagents: Deuterium

Solvents: Tetrahydrofuran; 88 h, 2 bar, 80 °C

Experimental Protocols

Selective catalytic deuteration of phosphorus ligands using ruthenium nanoparticles: a new approach to gain information on ligand coordination

By: Breso-Femenia, Emma; et al

Chemical Communications (Cambridge, United Kingdom) (2015), 51(91), 16342-16345.

Scheme 70 (1 Reaction)

Steps: 1

31-614-CAS-27478674

Steps: 1

Reagents: Phosphoric acid, Deuterium

Catalysts: Ruthenium

Solvents: Water-*d*₂; 1 h, 1000 Pa, 150 °C

Experimental Protocols

Stereoretentive C-H Bond Activation in the Aqueous Phase Catalytic Hydrogenation of Amino Acids to Amino Alcohols

By: Jere, Frank T.; et al

Organic Letters (2003), 5(4), 527-530.

Scheme 71 (1 Reaction)

Steps: 1

Suppliers (65)

31-116-CAS-19188580 Steps: 1 1.1 Reagents: Deuterium Catalysts: Ruthenium, 1,4-Bis(diphenylphosphino)butane

By: Rothermel, Niels; et al

Experimental Protocols

Solvents: Tetrahydrofuran; 24 h, 60 °C

ChemCatChem (2018), 10(19), 4243-4247.

Surprising Differences of Alkane C-H Activation Catalyzed by Ruthenium Nanoparticles: Complex Surface-Substrate Recogn

Scheme 72 (1 Reaction) Steps: 1

31-116-CAS-10218866 Steps: 1

Reagents: Deuterium Catalysts: Ruthenium, Poly(vinylpyrrolidone); 2 h, 3 bar, rt

Reagents: Deuterium Solvents: Tetrahydrofuran; 88 h, 2 bar, 80 °C

Experimental Protocols

Selective catalytic deuteration of phosphorus ligands using ruthenium nanoparticles: a new approach to gain information on ligand coordination

By: Breso-Femenia, Emma; et al

Chemical Communications (Cambridge, United Kingdom) (2015), 51(91), 16342-16345.

Scheme 73 (1 Reaction)

31-116-CAS-22781801

Steps: 1 Reagents: Potassium tert-butoxide, Deuterium

Catalysts: Ruthenium (on carbon)

Solvents: tert-Butyl methyl ether; 24 h, 2 bar, 55 °C

Experimental Protocols

Tuning the Reactivity of a Heterogeneous Catalyst using N-Heterocyclic Carbene Ligands for C-H Activation Reactions

By: Palazzolo, Alberto; et al

Angewandte Chemie, International Edition (2020), 59(47), 20879-20884.

Scheme 74 (1 Reaction) Steps: 1

Suppliers (137)

Heterocyclic Carbene Ligands for C-H Activation Reactions

Angewandte Chemie, International Edition (2020), 59(47),

By: Palazzolo, Alberto; et al

20879-20884.

31-614-CAS-38030188 Decarboxylation and Tandem Reduction/Decarboxylation Steps: 1 Pathways to Substituted Phenols from Aromatic Carboxylic 1.1 Reagents: Deuterium Acids Using Bimetallic Nanoparticles on Supported Ionic Catalysts: Ruthenium alloy, base, Ru 84,Fe 16 (ionic-liquid-Liquid Phases as Multifunctional Catalysts modified silica supported and functionalized with diethyl...), 2924183-46-8 (silica supported, iron ruthenium nanoparticles By: Levin, Natalia; et al immobilized) Journal of the American Chemical Society (2023), 145(41), Solvents: Heptane; 18 h, 20 bar, rt → 200 °C 22845-22854. **Experimental Protocols** Scheme 75 (4 Reactions) Steps: 1 Yield: 92% Suppliers (101) Suppliers (3) 31-116-CAS-22781782 Steps: 1 Yield: 92% Tuning the Reactivity of a Heterogeneous Catalyst using N-Heterocyclic Carbene Ligands for C-H Activation Reactions Reagents: Deuterium Catalysts: Ruthenium (on carbon) By: Palazzolo, Alberto; et al Solvents: Heptane; 24 h, 2 bar, 55 °C Angewandte Chemie, International Edition (2020), 59(47), **Experimental Protocols** 20879-20884. 31-116-CAS-22781783 Steps: 1 Yield: 92% Tuning the Reactivity of a Heterogeneous Catalyst using N-Heterocyclic Carbene Ligands for C-H Activation Reactions Reagents: Deuterium Catalysts: Ruthenium (on carbon) By: Palazzolo, Alberto; et al Solvents: Water-d₂; 24 h, 2 bar, 55 °C Angewandte Chemie, International Edition (2020), 59(47), **Experimental Protocols** 20879-20884. 31-116-CAS-22781781 Steps: 1 Yield: 92% Tuning the Reactivity of a Heterogeneous Catalyst using N-Heterocyclic Carbene Ligands for C-H Activation Reactions Reagents: Deuterium Catalysts: Ruthenium (on carbon) By: Palazzolo, Alberto; et al Solvents: Water-d₂; 24 h, 2 bar, 55 °C Angewandte Chemie, International Edition (2020), 59(47), **Experimental Protocols** 20879-20884. 31-116-CAS-22781780 Steps: 1 Yield: 92% Tuning the Reactivity of a Heterogeneous Catalyst using N-

Reagents: Deuterium

Experimental Protocols

Catalysts: Ruthenium (on carbon)

Solvents: Heptane; 24 h, 2 bar, 55 °C

1.1

Steps: 1 Yield: 67%

Scheme 76 (1 Reaction)

Steps: 1 Yield: 67%

📜 Suppliers (8)

31-614-CAS-42765282

Reagents: Deuterium

Catalysts: Ruthenium; 3 h, 4 bar, 120 °C

Experimental Protocols

Magnetically Induced Amination of Alcohols Using M Ni@Cu (M=Fe, Co) Nanoparticles as Catalysts

By: Varela-Izquierdo, Victor; et al

Angewandte Chemie, International Edition (2024), 63(50), e202412421.

Scheme 77 (1 Reaction)

Suppliers (14)

Absolute stereochemistry shown

Steps: 1 Yield: 54%

Steps: 1

31-116-CAS-18697972

Steps: 1 Yield: 54%

Catalysts: Ruthenium, [(1,2,5,6-η)-1,5-cyclooctadiene]bis[(1,2, 3-η)-2-methyl-2-propenyl]-, (1*S*,1"*S*)-2,2"-Bis[(1*S*)-1-(diphenylp hosphino)ethyl]-1,1"-biferrocene Solvents: Tetrahydrofuran; 8 h, rt

1.2 Reagents: Potassium carbonate, Deuterium Solvents: Isopropanol; 72 h, 80 °C

Experimental Protocols

Ruthenium-Catalyzed Chemo- and Enantioselective Hydroge nation of Isoquinoline Carbocycles

By: Jin, Yushu; et al

Journal of Organic Chemistry (2018), 83(7), 3829-3839.

Scheme 78 (1 Reaction)

Suppliers (61)

31-614-CAS-34988546

Reagents: Deuterium

Catalysts: 1,3-Dihydro-1,3-bis(2,4,6-trimethylphenyl)-2Himidazol-2-ylidene (Iridium and ruthenium supported), Iridium, compd. with ruthenium (2:1)

Solvents: Tetrahydrofuran; 24 h, 2 bar, 55 °C

Experimental Protocols

Steps: 1

N-Heterocyclic Carbene-Based Iridium and Ruthenium /Iridium Nanoparticles for the Hydrogen Isotope Exchange Reaction through C-H Bond Activations

By: Zuluaga-Villamil, Alejandra; et al

Organometallics (2022), 41(22), 3313-3319.

Scheme 79 (3 Reactions)

Suppliers (79)

31-614-CAS-34988550

Reagents: Deuterium

Catalysts: 1,3-Dihydro-1,3-bis(2,4,6-trimethylphenyl)-2Himidazol-2-ylidene (Iridium and ruthenium supported),

Iridium, compd. with ruthenium (1:2)

Solvents: Tetrahydrofuran; 24 h, 2 bar, 55 °C

Experimental Protocols

1.1 Reagents: Deuterium

Catalysts: 1,3-Dihydro-1,3-bis(2,4,6-trimethylphenyl)-2Himidazol-2-ylidene (Iridium and ruthenium supported),

Iridium, compd. with ruthenium (2:1)

Experimental Protocols

Steps: 1

N-Heterocyclic Carbene-Based Iridium and Ruthenium /Iridium Nanoparticles for the Hydrogen Isotope Exchange Reaction through C-H Bond Activations

By: Zuluaga-Villamil, Alejandra; et al

Organometallics (2022), 41(22), 3313-3319.

31-614-CAS-34988544

Solvents: Tetrahydrofuran; 24 h, 2 bar, 55 °C

Steps: 1

N-Heterocyclic Carbene-Based Iridium and Ruthenium /Iridium Nanoparticles for the Hydrogen Isotope Exchange Reaction through C-H Bond Activations

By: Zuluaga-Villamil, Alejandra; et al

Organometallics (2022), 41(22), 3313-3319.

31-614-CAS-34988536

Reagents: Deuterium

Catalysts: Ruthenium (bound to polyvinylpyrrolidone or IMes N-heterocyclic carbene), 1,3-Dihydro-1,3-bis(2,4,6-trimethy lphenyl)-2H-imidazol-2-ylidene (Iridium and ruthenium supported)

Solvents: Tetrahydrofuran; 24 h, 2 bar, 55 °C

Experimental Protocols

Steps: 1 N-Heterocyclic Carbene-Based Iridium and Ruthenium /Iridium Nanoparticles for the Hydrogen Isotope Exchange

By: Zuluaga-Villamil, Alejandra; et al

Reaction through C-H Bond Activations

Organometallics (2022), 41(22), 3313-3319.

Scheme 80 (1 Reaction)

Suppliers (85)

31-614-CAS-41125212

Steps: 1 Yield: 67%

1.1 Reagents: Deuterium

Catalysts: Ruthenium (N-heterocyclic carbene or polyvinylp

yrrolidone stabilized); 2 h, 3 bar, rt

1.2 Reagents: Deuterium

Solvents: Tetrahydrofuran; 8 d, 2 bar, 55 °C

Experimental Protocols

Bringing Selectivity in H/D Exchange Reactions Catalyzed by Metal Nanoparticles through Modulation of the Metal and the Ligand Shell

By: Martinez-Espinar, Francisco; et al

Inorganic Chemistry (2023), 62(11), 4570-4580.

Scheme 81 (3 Reactions)

HO NH₂

HO NH₂

Absolute stereochemistry shown

H₂N D NH₂ +

Absolute stereochemistry shown

Absolute stereochemistry shown

Suppliers (122)

Absolute stereochemistry shown

31-614-CAS-34988549

Steps: 1

1.1 Reagents: Deuterium

Catalysts: 1*H*-Imidazolium, 1-(3-sulfopropyl)-3-(2,4,6-trimethy lphenyl)-, inner salt (Iridium and ruthenium supported),

Iridium, compd. with ruthenium (2:1) **Solvents:** Water-*d*₂; 48 h, 2 bar, 55 °C

N-Heterocyclic Carbene-Based Iridium and Ruthenium /Iridium Nanoparticles for the Hydrogen Isotope Exchange Reaction through C-H Bond Activations

By: Zuluaga-Villamil, Alejandra; et al

Organometallics (2022), 41(22), 3313-3319.

Experimental Protocols

31-614-CAS-34988551

Steps: 1

1.1 **Reagents:** Deuterium

Catalysts: 1*H*-Imidazolium, 1-(3-sulfopropyl)-3-(2,4,6-trimethy lphenyl)-, inner salt (Iridium and ruthenium supported),

Iridium, compd. with ruthenium (1:2) **Solvents:** Water-*d*₂; 48 h, 2 bar, 55 °C

N-Heterocyclic Carbene-Based Iridium and Ruthenium /Iridium Nanoparticles for the Hydrogen Isotope Exchange Reaction through C-H Bond Activations

By: Zuluaga-Villamil, Alejandra; et al

Organometallics (2022), 41(22), 3313-3319.

Experimental Protocols

31-614-CAS-34988547

Steps: 1

1.1 Reagents: Deuterium

Catalysts: Ruthenium (bound to polyvinylpyrrolidone or IMes N-heterocyclic carbene), 1*H*-Imidazolium, 1-(3-sulfopropyl)-3-(2,4,6-trimethylphenyl)-, inner salt (Iridium and ruthenium supported)

Solvents: Water-*d*₂; 48 h, 2 bar, 55 °C

Experimental Protocols

N-Heterocyclic Carbene-Based Iridium and Ruthenium /Iridium Nanoparticles for the Hydrogen Isotope Exchange Reaction through C-H Bond Activations

By: Zuluaga-Villamil, Alejandra; et al

Organometallics (2022), 41(22), 3313-3319.

Scheme 82 (1 Reaction)

Steps: 1

Suppliers (7)

> Suppliers (137)

Suppliers (25)

31-614-CAS-38030190

Steps: 1

1.1 Reagents: Deuterium

Catalysts: Ruthenium alloy, base, Ru 84,Fe 16 (ionic-liquid-modified silica supported and functionalized with diethyl...), 2924183-46-8 (silica supported, iron ruthenium nanoparticles immobilized)

Solvents: Heptane; 1 h, 20 bar, rt → 200 °C

Experimental Protocols

Decarboxylation and Tandem Reduction/Decarboxylation Pathways to Substituted Phenols from Aromatic Carboxylic Acids Using Bimetallic Nanoparticles on Supported Ionic Liquid Phases as Multifunctional Catalysts

By: Levin, Natalia; et al

Journal of the American Chemical Society (2023), 145(41), 22845-22854.

Scheme 83 (2 Reactions)

Steps: 1

➤ Suppliers (93)

31-614-CAS-34988534

Steps: 1

1.1 Reagents: Deuterium

Catalysts: Poly(vinylpyrrolidone) (Iridium and ruthenium supported), Iridium, compd. with ruthenium (2:1)
Solvents: Tetrahydrofuran; 24 h, 2 bar, 55 °C

Experimental Protocols

N-Heterocyclic Carbene-Based Iridium and Ruthenium /Iridium Nanoparticles for the Hydrogen Isotope Exchange Reaction through C-H Bond Activations

By: Zuluaga-Villamil, Alejandra; et al

Organometallics (2022), 41(22), 3313-3319.

31-614-CAS-34681536

Steps: 1

1.1 Reagents: Deuterium

Catalysts: Poly(vinylpyrrolidone) (Iridium and ruthenium supported), Iridium, compd. with ruthenium (1:2)
Solvents: Tetrahydrofuran; 24 h, 2 bar, 55 °C

Experimental Protocols

N-Heterocyclic Carbene-Based Iridium and Ruthenium /Iridium Nanoparticles for the Hydrogen Isotope Exchange Reaction through C-H Bond Activations

By: Zuluaga-Villamil, Alejandra; et al

Organometallics (2022), 41(22), 3313-3319.

Scheme 84 (1 Reaction)

Steps: 1

 \rightarrow

+

+

Suppliers (97)

+

📜 Supplier (1)

D D D

📜 Supplier (1)

> Supplier (1)

31-614-CAS-30709671

Steps: 1

1.1 Reagents: Deuterium

Catalysts: Ruthenium, Poly(vinylpyrrolidone); 2 h, 3 bar, rt

1.2 Reagents: Deuterium

Solvents: Tetrahydrofuran; 48 h, 2 bar, 80 °C

Experimental Protocols

Selective catalytic deuteration of phosphorus ligands using ruthenium nanoparticles: a new approach to gain information on ligand coordination

By: Breso-Femenia, Emma; et al

Chemical Communications (Cambridge, United Kingdom) (2015), 51(91), 16342-16345.