Proposition 1.11

July 18, 2021

M.F. Atiyah, I.G. MacDonald Introduction to Commutative Algebra

Let $\mathfrak{a} \nsubseteq \mathfrak{p}_i \ (1 \le i \le n)$ and the hypothesis be true for n-1. For each $i \le n$, $\mathfrak{a} \nsubseteq \mathfrak{p}$ for $j \ne i$; there are n-1 such j's, so by the induction hypothesis, $\mathfrak{a} \nsubseteq \bigcup_{\substack{j=1\\j\ne i}}^n \mathfrak{p}_j$; then there is some x_i in \mathfrak{a} that is not in any \mathfrak{p}_j for $j \ne i$.

Now let

$$y = \sum_{i=1}^{n} x_1 \cdots x_{i-1} x_{i+1} \cdots x_n$$

Can the *i*'th term be in \mathfrak{p}_i ? No, since then, as the ideal is prime, we would have $x_j \in \mathfrak{p}_i$ for some $j \neq i$. The factor x_i is in every term except $x_1 \cdots x_{i-1} x_{i+1} \cdots x_n$; then

$$x_i z + x_1 \cdots x_{i-1} x_{i+1} \cdots x_n = y \in \mathfrak{p}_i$$

Can y be in \mathfrak{p}_i ? Now the first summand is in the ideal, as is the right side, ten one of factors must be in the ideal, a contradiction to what we observed.