2.3.2 a) K... Körper ges: alle UR von K^{1×1} triviale UR: {(Q)} und K1×1 Sei U ein UR von K1x1 mit x EK ({0} (x) EU. Da UR bergt. abgeschlossen und $(-1) \in K$ muss auch $(-1)(x) = (-x) \in U$. Don UR bergl. + abgeschloren ist anch $(x)+(x)=(2x)\in U$ (2x)+(x)=3x & U (3x)+(x)=4x & U ... $(-\times)_{+}(-\times)=(-2\times)\in U$ $(-2x)+(-x)=(-3x)\in U$... ⇒ U=K1×1 => K1x1 hat nur triviale UR. b) ges alle UR von (Zz) 2×1 tiviale UR: {(0)} und (Zz)2x1 Da jeder UR (%) enthallen muss gibt es folgende nicht triviale TM: $a=\{(0),(0)\}$ $b=\{(0),(0)\}$ $c=\{(0),(0),(0)\}$ $d = \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \} = \{ \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \} = \{ \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \}$ c) (1)+(1)=(1) & c => kin UR d) $\binom{0}{1} + \binom{1}{1} = \binom{1}{0} \notin d \implies \text{kein UR}$ e) (1)+(1)=(1) & e => kin UR a) $\binom{0}{0} + \binom{0}{0} = \binom{0}{0} \in a$ $\binom{0}{0} + \binom{0}{0} = \binom{0}{0} \neq a$ $\binom{0}{0} + \binom{0}{0} = \binom{0}{0} \in a$ $0 \cdot {\binom{0}{0}} = {\binom{0}{0}} \in \alpha \quad 1 \cdot {\binom{0}{0}} = {\binom{0}{0}} \in \alpha \quad 0 \cdot {\binom{0}{1}} = {\binom{0}{0}} \in \alpha \quad 1 \cdot {\binom{0}{1}} = {\binom{0}{1}} \in \alpha$ => UR b) $\binom{0}{0} + \binom{0}{0} = \binom{0}{0} \in b$ $\binom{0}{0} + \binom{1}{0} = \binom{1}{0} \in b$ $\binom{1}{0} + \binom{1}{0} = \binom{0}{0} \in b$ $O\cdot\begin{pmatrix}0\\0\end{pmatrix}=\begin{pmatrix}0\\0\end{pmatrix}\in b$ $1\cdot\begin{pmatrix}0\\0\end{pmatrix}=\begin{pmatrix}0\\0\end{pmatrix}\in b$ $O\cdot\begin{pmatrix}1\\0\end{pmatrix}=\begin{pmatrix}0\\0\end{pmatrix}\in b$ $1\cdot\begin{pmatrix}1\\0\end{pmatrix}=\begin{pmatrix}1\\0\end{pmatrix}\in b$ $O\cdot\begin{pmatrix}1\\0\end{pmatrix}=\begin{pmatrix}0\\0\end{pmatrix}\in b$ $\begin{cases} 1 & (3) + (3) = (3) \in \mathcal{E} \\ 0 & (3) = (3) \in \mathcal{E} \end{cases} \qquad (3) + (4) = (4) \in \mathcal{E} \qquad (4) + (4) = (3) \in \mathcal{E} \\ 0 & (4) = (3) \in \mathcal{E} \qquad (4) = (4) \in \mathcal{E} \end{cases} \qquad (4) + (4) = (4) \in \mathcal{E}$ ⇒UR Nein, nicht jede Menge die Colenthald ist UR (siehe c,d,e).