MathLog

Ивченков Дмитрий М32341

April 2023

Пусть n-местное отношение R выразимо в формальной арифметике. По-кажите, что тогда его характеристическая функция C_R представима в формальной арифметике:

$$C_R(\overrightarrow{x}) = \begin{cases} 1, \ \overrightarrow{x} \in R \\ 0, \ \text{иначе} \end{cases}$$

Отношение R выразимо, значит для него существует формула ρ Пусть $\varphi(\overline{a_1},\ldots,\overline{a_n},u):=\rho(\overline{a_1},\ldots,\overline{a_n})$ & $u=1\vee\neg\rho(\overline{a_1},\ldots,\overline{a_n})$ & u=0 Проверим, что выполняется определение представимости функции:

- 1. если $C_R(a_1,\ldots,a_n)=u$, то $\vdash \varphi(\overline{a_1},\ldots,\overline{a_n},\overline{u})$
 - 1.1. $C_R(a_1, \ldots, a_n) = 1$, r.e. $\langle a_1, \ldots, a_n \rangle \in R$
 - 1.1.1. из выразимости R $\vdash \rho(\overline{a_1}, \dots, \overline{a_n})$
 - 1.1.2. по условию $\vdash u = 1$
 - 1.1.3. по схеме аксиом (3)

$$\begin{array}{l}
\alpha \to \beta \to \alpha \& \beta \\
\rho(\overline{a_1}, \dots, \overline{a_n}) \to u = 1 \to \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 1
\end{array}$$

- $u = 1 \rightarrow \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 1$ 1.1.5 Modus Popens 1.1.2.1.1.4
- 1.1.5. Modus Ponens 1.1.2, 1.1.4 $\rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 1$
- 1.1.6. по схеме аксиом (6)

$$\begin{array}{l}
\alpha \to \alpha \lor \beta \\
\rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 1 \to \\
\rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 1 \lor \neg \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 0
\end{array}$$

1.1.7. Modus Ponens 1.1.5, 1.1.6 $\vdash \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 1 \lor \neg \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 0$

$$\vdash \rho(a_1,\ldots,a_n) \otimes a = 1 \vee \neg \rho(a_1,\ldots,a_n) \otimes a =$$

Таким образом, $\vdash \varphi(\overline{a_1}, \dots, \overline{a_n}, \overline{1})$

1.2.
$$C_R(a_1, ..., a_n) = 0$$
, r.e. $\langle a_1, ..., a_n \rangle \notin R$

- 1.2.1. из выразимости R $\vdash \neg \rho(\overline{a_1}, \dots, \overline{a_n})$
- 1.2.2. по условию $\vdash u = 0$
- 1.2.3. по схеме аксиом (3)

$$\frac{\alpha \to \beta \to \alpha \& \beta}{\neg \rho(\overline{a_1}, \dots, \overline{a_n}) \to u = 0 \to \neg \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 0$$

$$p(\alpha_1, \dots, \alpha_n) = \alpha = 0$$
 $p(\alpha_1, \dots, \alpha_n)$
Modus Donors 1.2.1. 1.2.2

- 1.2.4. Modus Ponens 1.2.1, 1.2.3 $u = 0 \rightarrow \neg \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 0$
- 1.2.5. Modus Ponens 1.2.2, 1.2.4 $\neg \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 0$
- 1.2.6. по схеме аксиом (7)

$$\beta \to \alpha \lor \beta$$

$$\neg \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 0 \to$$

$$\rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 1 \lor \neg \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 0$$

1.2.7. Modus Ponens 1.2.5, 1.2.6

$$\vdash \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 1 \lor \neg \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 0$$

Таким образом, $\vdash \varphi(\overline{a_1}, \dots, \overline{a_n}, \overline{0})$

- 2. если $C_R(a_1,\ldots,a_n)\neq u$, то $\vdash \neg\varphi(\overline{a_1},\ldots,\overline{a_n},\overline{u})$
 - 2.1. $u = 0, C_R(a_1, \ldots, a_n) \neq 0$, r.e. $\langle a_1, \ldots, a_n \rangle \in R$
 - 2.1.1. по схеме аксиом (1)

$$\alpha \to \beta \to \alpha$$

 $\neg u = 1 \to \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 1 \to \neg u = 1$

- 2.1.2. Modus Ponens условия и 2.1.1 $\rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 1 \to \neg u = 1$
- 2.1.3. по схеме аксиом (5)

$$\alpha \& \beta \to \beta
\rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 1 \to u = 1$$

2.1.4. по схеме аксиом (9)

$$\begin{array}{l} (\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha \\ (\rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 1 \to u = 1) \to \\ (\rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 1 \to \neg u = 1) \to \neg (\rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 1) \end{array}$$

- 2.1.5. Modus Ponens 2.1.3, 2.1.4 $(\rho(\overline{a_1},\dots,\overline{a_n})\ \&\ u=1\to \neg u=1)\to \neg(\rho(\overline{a_1},\dots,\overline{a_n})\ \&\ u=1)$
- 2.1.6. Modus Ponens 2.1.2, 2.1.5 $\neg (\rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 1)$
- 2.1.7. по схеме аксиом (2)

$$\frac{\alpha \to \beta \to \alpha}{\rho(\overline{a_1}, \dots, \overline{a_n}) \to \neg \rho(\overline{a_1}, \dots, \overline{a_n})} \& u = 0 \to \rho(\overline{a_1}, \dots, \overline{a_n})$$

2.1.8. Modus Ponens условия и 2.1.7
$$\neg \rho(\overline{a_1},\dots,\overline{a_n}) \ \& \ u=0 \to \rho(\overline{a_1},\dots,\overline{a_n})$$

$$\alpha \& \beta \to \alpha$$

 $\neg \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 0 \to \neg \rho(\overline{a_1}, \dots, \overline{a_n})$

2.1.10. по схеме аксиом (9)

$$(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$$

$$(\neg \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 0 \to \rho(\overline{a_1}, \dots, \overline{a_n})) \to$$

$$(\neg \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 0 \to \neg \rho(\overline{a_1}, \dots, \overline{a_n})) \to$$

$$\neg (\neg \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 0)$$

2.1.11. Modus Ponens 2.1.8, 2.1.10 $(\neg \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 0 \rightarrow \neg \rho(\overline{a_1}, \dots, \overline{a_n})) \rightarrow$

$$\neg(\neg\rho(\overline{a_1},\ldots,\overline{a_n}) \& u=0)$$

2.1.12. Modus Ponens 2.1.9, 2.1.11 $\neg(\neg \rho(\overline{a_1}, ..., \overline{a_n}) \& u = 0)$

2.1.13. по схеме аксиом (3)

$$\frac{\alpha \to \beta \to \alpha \& \beta}{\neg(\rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 1)} \to \neg(\neg\rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 0) \to \neg(\rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 1) \& \neg(\neg\rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 0)$$

2.1.14. Modus Ponens 2.1.6, 2.1.13

$$\neg(\neg \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 0) \rightarrow \\ \neg(\rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 1) \& \neg(\neg \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 0)$$

 $2.1.15.\ \, {\rm Modus\ Ponens}\ \, 2.1.12,\, 2.1.14$

$$\neg(\rho(\overline{a_1},\ldots,\overline{a_n}) \& u=1) \& \neg(\neg\rho(\overline{a_1},\ldots,\overline{a_n}) \& u=0)$$

2.1.16. по закону Де Моргана

$$\neg \alpha \& \neg \beta \to \neg (\alpha \lor \beta)
\neg (\rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 1) \& \neg (\neg \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 0) \to \\
\neg (\rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 1 \lor \neg \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 0)$$

2.1.17. Modus Ponens 2.1.15, 2.1.16

$$\vdash \neg (\rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 1 \lor \neg \rho(\overline{a_1}, \dots, \overline{a_n}) \& u = 0)$$

Таким образом, $\vdash \neg \varphi(\overline{a_1}, \dots, \overline{a_n}, 0)$

2.2.
$$u=1, C_R(a_1,\ldots,a_n) \neq 1$$
, т.е. $\langle a_1,\ldots,a_n \rangle \notin R$
Аналогично, $\vdash \neg \varphi(\overline{a_1},\ldots,\overline{a_n},\overline{1})$

2.3.
$$u \neq 0, u \neq 1, C_R(a_1, \dots, a_n) \neq u$$

Аналогично, $\vdash \neg \varphi(\overline{a_1}, \dots, \overline{a_n}, \overline{u})$

3. для всех $a_i \in \mathbb{N}_0$ выполнено

$$\vdash (\exists x. \varphi(\overline{a_1}, \dots, \overline{a_n}, x)) \& (\forall p. \forall q. \varphi(\overline{a_1}, \dots, \overline{a_n}, p) \& \varphi(\overline{a_1}, \dots, \overline{a_n}, q) \rightarrow p = q)$$

3.1. для любых $a_i \in \mathbb{N}_0$ верно

либо
$$C_R(a_1,\ldots,a_n)=1$$
, либо $C_R(a_1,\ldots,a_n)=0$, т.е. $\exists x.\varphi(\overline{a_1},\ldots,\overline{a_n},x)$

3.2. для любых
$$a_i \in \mathbb{N}_0$$
 если $C_R(a_1, \dots, a_n) = 1$, т.е. $\langle a_1, \dots a_n \rangle \in R$, то $\vdash \varphi(\overline{a_1}, \dots, \overline{a_n}, \overline{1})$ и для $u \neq 1 \vdash \neg \varphi(\overline{a_1}, \dots, \overline{a_n}, \overline{u})$ тогда если $\varphi(\overline{a_1}, \dots, \overline{a_n}, p)$ и $\varphi(\overline{a_1}, \dots, \overline{a_n}, q)$, то $p = q = 1$. иначе $C_R(a_1, \dots, a_n) = 0$, т.е. $\langle a_1, \dots, a_n \rangle \notin R$, $\vdash \varphi(\overline{a_1}, \dots, \overline{a_n}, 0)$ и для $u \neq 0 \vdash \neg \varphi(\overline{a_1}, \dots, \overline{a_n}, \overline{u})$ тогда если $\varphi(\overline{a_1}, \dots, \overline{a_n}, p)$ и $\varphi(\overline{a_1}, \dots, \overline{a_n}, q)$, то $p = q = 0$. Итого, $\forall p. \forall q. \varphi(\overline{a_1}, \dots, \overline{a_n}, p)$ & $\varphi(\overline{a_1}, \dots, \overline{a_n}, q) \rightarrow p = q$ 3.3. по схеме аксиом (3)
$$\alpha \to \beta \to \alpha \& \beta \qquad (\exists x. \varphi(\overline{a_1}, \dots, \overline{a_n}, x)) \to (\forall p. \forall q. \varphi(\overline{a_1}, \dots, \overline{a_n}, p) \& \varphi(\overline{a_1}, \dots, \overline{a_n}, q) \to p = q) \rightarrow (\exists x. \varphi(\overline{a_1}, \dots, \overline{a_n}, x)) \& (\forall p. \forall q. \varphi(\overline{a_1}, \dots, \overline{a_n}, p) \& \varphi(\overline{a_1}, \dots, \overline{a_n}, q) \to p = q)$$
 3.4. Modus Ponens 3.1, 3.3
$$(\forall p. \forall q. \varphi(\overline{a_1}, \dots, \overline{a_n}, p) \& \varphi(\overline{a_1}, \dots, \overline{a_n}, q) \to p = q) \to (\exists x. \varphi(\overline{a_1}, \dots, \overline{a_n}, p) \& \varphi(\overline{a_1}, \dots, \overline{a_n}, q) \to p = q)$$
 3.5. Modus Ponens 3.2, 3.4
$$\vdash (\exists x. \varphi(\overline{a_1}, \dots, \overline{a_n}, x)) \& (\forall p. \forall q. \varphi(\overline{a_1}, \dots, \overline{a_n}, q) \to p = q)$$
 3.5. Modus Ponens 3.2, 3.4
$$\vdash (\exists x. \varphi(\overline{a_1}, \dots, \overline{a_n}, p) \& \varphi(\overline{a_1}, \dots, \overline{a_n}, q) \to p = q)$$

Таким образом, характеристическая функция C_R выразимого отношения R представима в формальной арифметике.