

# COVID 19 Detection of Social Distancing In Industrial Environment

**Anshuman Dash** 

MBA in Business Analytics, REVA University, Bengaluru

Under the Guidance of

Sandeep Giri

Founder, Cloudx Lab







**Business Understanding** 

**Problem Statement** 

**Data Understanding** 

**Data Preparation** 

**Data Modelling** 

**Evaluation** 





#### Introduction

- Coronavirus (COVID-19) was a recently discovered coronaviral infectious condition. Many patients with COVID-19 suffer from mild to severe symptoms.
- Current research indicates that COVID-19 is passed through individuals through the means of direct or indirect interaction with infected persons (through infected items or surfaces).
- As a way to avoid the spread of COVID-19, the WHO recommends social isolation.



#### **Business Understanding**

- Roughly 80 % of companies believe that the pandemic would negatively harm their business.
- Most (53 percent) manufacturers expect COVID-19 to have its effect on their market.
- Some large industries have shut down facilities and have increased layoffs to curb financial impact
- According to the PWC study 2020, COVID will impact about 13 million American workers
- According to US Bureau of Labor Statistics, the manufacturing industry saw a decline of 720000 jobs since February 2020.



#### Problem Statement

- With COVID 19 requirements eased in numerous countries and factories preparing to reopen, ensuring employee safety in workplaces or factory shops is of priority for the organization.
- The aspect of social distancing at workplace is utmost importance for ensuring safe work environment for the employees and workers.
- The problem we are trying to address as part of this project is "How do we monitor and measure social distancing on the factory floor?"



#### Objectives of the study

- Monitor the movement and placement of workers on the factory shop floor using video streams from cameras
- Measure if the employees are keeping safe distance between each other while being on the floor
- Identify if any of the employees are violating the defined guidelines for social distancing
- Display the violations on a common screen on the floor
- Provide an alert indicating the violation
- Ensure employee health and safety measures are being maintained on the factory shop floor



## Project Methodology





#### Data Understanding

- Challenge
  - Many factories are yet to have CCTV cameras installed on their shop floors. It becomes very difficult at this moment to get live data from factory shop floors.
- Workaround used to build model
  - We have used publicly available images which comprises of group of people within one image
  - We have also used publicly available video files of "Oxford town center".











- Images are passed through an object detection model
- The model uses Darknet along with OpenCV and Yolo pretrained models for "Person" object detection
- 4 coordinates are identified for each object x,y, Width & Height
  - x = int(centerX (width / 2))
  - y = int(centerY (height / 2))
- Function is written to capture coordinates for paired objects, producing 8 data points in a row
- Each row is manually labelled for social distance violation
  - 0 No violation
  - 1 Violation present



- Data model deployment steps:
- Install dependencies
  - Scipy
  - OpenCV Python
  - Numpy
  - Imutils
- Import all the required libraries
- Download the pre-trained Yolo models Yolov3 weights and config file
- Read an image and pass it to the model for prediction
- Identify the "Person" objects in the images and the bounding boxes around each object
- Print 4 coordinates for each bounding box X, Y, Height and Width

- Compute the distance between two people in an image using bounding boxes
- Define a function to compute the Euclidean distance between every two "Person" objects in an image
- Define a function that returns the closest people
- Define a function to change the color of the closest people to red, if the distance between them are less than 50 pixels
- Print how many social distance violations per image
- Extract the coordinates of each paired objects in the image and label for social distance violation
- Run at least 10 machines learning models on the extracted data



**Image Processing** 



| [INFO] loading YO | OLO from disk                 |
|-------------------|-------------------------------|
| [INFO] accessing  | image                         |
| Pair 0-1 : [325   | 99 414 419] [190 85 307 468]  |
| Pair 0-2 : [325   | 99 414 419] [418 127 521 436] |
| Pair 0-3 : [325   | 99 414 419] [ 57 106 212 476] |
| Pair 0-4 : [325   | 99 414 419] [ 13 87 101 325]  |
| Pair 0-5 : [325   | 99 414 419] [664 119 697 224] |
| Pair 0-6 : [325   | 99 414 419] [523 115 577 290] |
| Pair 0-7 : [325   | 99 414 419] [398 118 450 192] |
| Pair 0-8 : [325   | 99 414 419] [588 116 624 251] |
| Pair 0-9 : [325   | 99 414 419] [286 117 340 327] |
| Pair 0-10 : [325  | 99 414 419] [151 89 195 186]  |
| Pair 0-11 : [325  | 99 414 419] [615 134 642 235] |
| Pair 0-12 : [325  | 99 414 419] [563 126 596 273] |
| Pair 0-13 : [325  | 99 414 419] [ 77 82 118 146]  |
| Pair 0-14 : [325  | 99 414 419] [385 133 446 386] |
| Pair 1-2 : [190   | 85 307 468] [418 127 521 436] |
| Pair 1-3 : [190   | 85 307 468] [ 57 106 212 476] |
| Pair 1-4 : [190   | 85 307 468] [ 13 87 101 325]  |
| Pair 1-5 : [190   | 85 307 468] [664 119 697 224] |
| Pair 1-6 : [190   | 85 307 468] [523 115 577 290] |
| Pair 1-7 : [190   | 85 307 468] [398 118 450 192] |
| Pair 1-8 : [190   | 85 307 468] [588 116 624 251] |

| mage | Pair    | Per 1 X | Per 1 Y | Per 1 Width | Per 1 Height | Per 2 X | Per 2 Y | Per 2 Width | Per 2 Height | Violation |  |
|------|---------|---------|---------|-------------|--------------|---------|---------|-------------|--------------|-----------|--|
|      | 4 0-1:  | 336     | 219     | 442         | 448          | 136     | 209     | 224         | 383          | 0         |  |
|      | 4 0-2 : | 336     | 219     | 442         | 448          | 419     | 229     | 529         | 459          | 1         |  |
|      | 4 0-3 : | 336     | 219     | 442         | 448          | 388     | 193     | 440         | 280          | 1         |  |
|      | 4 0-4 : | 336     | 219     | 442         | 448          | 259     | 239     | 344         | 455          | 1         |  |
|      | 4 0-5 : | 336     | 219     | 442         | 448          | 188     | 261     | 310         | 468          | 0         |  |
|      | 4 0-6 : | 336     | 219     | 442         | 448          | 309     | 192     | 354         | 298          | 0         |  |
|      | 4 0-7 : | 336     | 219     | 442         | 448          | 227     | 184     | 300         | 290          | 0         |  |
|      | 4 0-8 : | 336     | 219     | 442         | 448          | 288     | 179     | 316         | 224          | 0         |  |
|      | 4 0-9 : | 336     | 219     | 442         | 448          | 585     | 172     | 622         | 243          | 0         |  |
|      | 4 0-10: | 336     | 219     | 442         | 448          | 588     | 213     | 626         | 277          | 0         |  |
|      | 4 0-11: | 336     | 219     | 442         | 448          | 501     | 179     | 585         | 275          | 0         |  |
|      | 4 0-12: | 336     | 219     | 442         | 448          | 348     | 186     | 386         | 262          | 1         |  |
|      | 4 1-2 : | 136     | 209     | 224         | 383          | 419     | 229     | 529         | 459          | 0         |  |
|      | 4 1-3 : | 136     | 209     | 224         | 383          | 388     | 193     | 440         | 280          | 0         |  |
|      | 4 1-4 : | 136     | 209     | 224         | 383          | 259     | 239     | 344         | 455          | 0         |  |
|      | 4 1-5 : | 136     | 209     | 224         | 383          | 188     | 261     | 310         | 468          | 1         |  |
|      | 4 1-6 : | 136     | 209     | 224         | 383          | 309     | 192     | 354         | 298          | 0         |  |
|      | 4 1-7 : | 136     | 209     | 224         | 383          | 227     | 184     | 300         | 290          | 1         |  |
|      | 4 1-8 : | 136     | 209     | 224         | 383          | 288     | 179     | 316         | 224          | 0         |  |
|      | 4 1-9 : | 136     | 209     | 224         | 383          | 585     | 172     | 622         | 243          | 0         |  |
|      | 4 1-10: | 136     | 209     | 224         | 383          | 588     | 213     | 626         | 277          | 0         |  |
|      | 4 1-11: | 136     | 209     | 224         | 383          | 501     | 179     | 585         | 275          | 0         |  |
|      | 4 1-12: | 136     | 209     | 224         | 383          | 348     | 186     | 386         | 262          | 0         |  |
|      | 4 2-3 : | 419     | 229     | 529         | 459          | 388     | 193     | 440         | 280          | 0         |  |

**Video Processing** 





#### Model evaluation

- Implementation classifier review was carried out to assess the different classification methods
- Labelled data was split in to 80%-20% for training and test data
- Data was passed through 10 classification machine learning models and KPI results were compared to find the best model
- KPI comparison shows XGBoost is the best model with

highest Accuracy and F1 Score of 90.5%

|                               | Accuracy | Precision | Recall   | F1 Score |
|-------------------------------|----------|-----------|----------|----------|
| Algorithm                     |          |           |          |          |
| XGBoost                       | 0.905109 | 0.686041  | 0.845920 | 0.905109 |
| RandomForestClassifier        | 0.897810 | 0.752568  | 0.779442 | 0.897810 |
| GradientBoostingClassifier    | 0.890511 | 0.701214  | 0.767370 | 0.890511 |
| LinearDiscriminantAnalysis    | 0.875912 | 0.527778  | 0.937500 | 0.875912 |
| LogisticRegression            | 0.868613 | 0.500000  | 0.434307 | 0.868613 |
| LinearSVM                     | 0.868613 | 0.500000  | 0.434307 | 0.868613 |
| rbfSVM                        | 0.868613 | 0.500000  | 0.434307 | 0.868613 |
| QuadraticDiscriminantAnalysis | 0.861314 | 0.542951  | 0.639394 | 0.861314 |
| KNearestNeighbors             | 0.839416 | 0.601074  | 0.625726 | 0.839416 |
| DecisionTree                  | 0.795620 | 0.670168  | 0.619430 | 0.795620 |
| GaussianNB                    | 0.766423 | 0.464753  | 0.461002 | 0.766423 |



#### Deployment & Next Steps

- This solution can now to be deployed to the systems connecting to CCTV cameras on the factory shop floors.
- The detector could highlight people using red bounding boxes, if the distance between two or more people is below the minimum acceptable value.
- The system can also be configured to issue an alert to remind people to keep a safe distance or alert a supervisor to take action if the protocol is violated.









#### Q & A?