Math 110: Linear Algebra

Michael Pham

Fall 2023

CONTENTS

Contents								
1	Intro	Introduction						
	1.1	Lecture - 8/24/2023	3					
		1.1.1 Complex Numbers	3					
		1.1.2 Addition of Complex Numbers	3					
		1.1.3 Multiplication of Complex Numbers	3					
		1.1.4 Complex Numbers, Polar Form, and Exponentials	4					
	1.2	Discussion - 8/25/2023	4					
2	Vect	Vector Spaces						
	2.1	Lecture - 8/29/2023	6					
		2.1.1 Fields	6					
		2.1.2 Vector Spaces	7					
	2.2	Lecture - 8/31/2023	9					
		2.2.1 Subspaces	9					
3	idk		10					
	3.1	Lecture - 9/5/2023	10					
		3.1.1 Recap	10					
			11					

WEEK 1

INTRODUCTION

1.1 Lecture - 8/24/2023

1.1.1 Complex Numbers

Definition 1.1 (Complex Numbers). We can represent complex numbers in three different ways, for $a,b \in \mathbb{R}$:

- 1. We can represent them as pairs: (a, b).
- 2. We can write them as a + bi.
- 3. We can also represent them geometrically; we can imagine a plane where the x-axis is the real axis, and the y-axis is the imaginary axis.

1.1.2 Addition of Complex Numbers

For complex numbers $\alpha = a + bi$ and $\beta = c + di$, we have that $\alpha + \beta = (a + bi) + (c + di) \coloneqq (a + c) + (b + d)i$.

Geometrically, we can think of the diagonal of the parallelogram constructed by the two vectors corresponding to α and β .

In terms of pairs, for $\alpha=(a,b)$ and $\beta=(c,d)$, we have $\alpha+\beta=(a+c,b+d)$.

We proceed similarly for subtraction.

Remark 1.2. We note here that addition for complex numbers is commutative; that is, $\alpha + \beta = \beta + \alpha$.

We also note here that in the complex world, we have the additive identity as well: 0 + 0i.

The additive inverse of α is simply $-\alpha$.

1.1.3 Multiplication of Complex Numbers

We observe that for $\alpha = a + bi$ and $\beta = c + di$, we can also define multiplication as: $\alpha\beta = (ac - bd) + (ad + bc)i$.

Similarly to addition, multiplication of complex numbers is also commutative.

For the multiplicative inverse, we can proceed as follow:

$$\frac{1}{a+bi} = \frac{a-bi}{(a+bi)(a-bi)}$$
$$= \frac{a-bi}{a^2+b^2}$$

And since we are working with some $\alpha \neq 0$, then we know that at least one of $a, b \neq 0$. Thus, we have that $a^2 + b^2 \neq 0$ as well.

Thus, we have the multiplicative inverse of $\alpha=a+bi$ as $\frac{a}{a^2+b^2}+\frac{b}{a^2+b^2}i$.

To divide complex numbers α and β , then we simply have to do $(a+bi)\cdot \frac{1}{c+di}=\frac{ac+bd}{c^2+d^2}+\frac{bc-ad}{c^2+d^2}i$.

We note here that both \mathbb{R} and \mathbb{C} are fields, with $\mathbb{R} \subseteq \mathbb{C}$.

1.1.4 Complex Numbers, Polar Form, and Exponentials

We can picture a vector from the origin, at some angle θ from the real axis. We observe that $a = r \cos(\theta)$ and $b = r \sin(\theta)$, where r is the length of the vector (or the "modulus" of the complex number a + bi).

1.2 Discussion - 8/25/2023

Problem 1.1. Let a = 1 + i, b = 2 - i. Find the following:

- 1. a + b
- 2.2a 3b
- **3.** *ab*
- 4. b/a

Solution. 1. a+b=(1+2)+(1+(-1))i=3+0i=3.

- 2. 2a 3b = 2(1+i) 3(2-i) = (2+2i) (6+3i) = -4+5i.
- 3. ab = (1(2) (1)(-1)) + (1(-1) + 2)i = 3 + i
- 4. To find b/a, can find the conjugate of the denominator, and proceed with $\frac{(2-i)(1-i)}{(1+i)(1-i)} = \frac{1-3i}{2}$.

Problem 1.2. Solve the equation $x^3 = 1$ in \mathbb{C} .

Solution. We can tackle this problem by working with the polar form of complex numbers instead. Define $\omega \coloneqq r\cos(\theta) + ir\sin(\theta)$.

Now, we observe that since we want to find $\omega^3=1$, then we have that r=1. Next, we can think of a circle (with radius r=1), and we rotate by 120° , yielding us three rotations before returning to the original position. Then solution then to our problem $\omega^3=1$ are the three points for these rotations.

We see then that the solutions are:

- 1. $\omega_1 = 1 + 0i = 1$
- 2. $\omega_2 = \cos(120) + i\sin(120) = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$
- 3. $\omega_3 = \cos(240) + i\sin(240) = -\frac{1}{2} \frac{\sqrt{3}}{2}i$

Problem 1.3. Find $x \in \mathbb{R}^4$ such that (4, -3, 1, 7) + 2x = (5, 9, -6, 8).

Solution. Let x = (0.5, 6, -3.5, 0.5)

Problem 1.4. Let $V = \mathbb{R}_+ = \{a \in \mathbb{R} : a > 0\}$. Define addition and scalar multiplication by $v \bigoplus w = vw$, $c \bigotimes v = v^c$. Convince yourself that $(V, \bigoplus, \bigotimes)$ is a vector space.

Now, what is the zero vector of this vector space? What is the additive inverse of a vector?

Solution. We observe that the zero vector v is 1. We see that $v \oplus w = (1)w = w$. We also see that $v \otimes w = w^1 = w$.

The additive inverse of any vector $w \in V$ is $w' = \frac{1}{w}$, as $w \bigoplus w' = w(w') = \frac{w}{w} = 1$.

Problem 1.5. Prove that for all positive integers n, we have that n(n+1) is even.

Solution. We proceed by cases.

If we have a positive integer which is even, we see then that we can rewrite n=2m for some $m\in\mathbb{Z}$. Then, we observe that $n(n+1)=2m(2m+1)=2(2m^2+m)$. By closure of integers, we have that $2m^2+m=j\in\mathbb{Z}$. Then, we have n(n+1)=2j, which is even by definition.

If the integer n is odd, then we see that n=2m+1. Now, we have n(n+1)=(2m+1)(2m+2)=(2m+1)(2(m+1))=2(m+1)(m+1). Again, since $\mathbb Z$ is closed under multiplication and addition, we have then that $(m+1)^2=j\in\mathbb Z$, so 2j is also even.

Problem 1.6. Show that $\sqrt{2}$ is not a ratio of integers.

Solution. Suppose for the sake of contradiction that $\sqrt{2}$ can be expressed as a ratio of integers. Then, there exist $m,n\in\mathbb{Z}$ such that $\sqrt{2}=\frac{m}{n}$, where $\gcd(m,n)=1$.

Now, observe that $2 = \frac{m^2}{n^2}$. Then, we see that $2n^2 = m^2$. But, we see then that this contradicts with the fact that $\gcd(m,n) = 1$, as this implies that m must have also been even.

Problem 1.7. Show that the opposite of a vector is unique.

Solution. We suppose for the sake of contradiction that for a vector v, there exists two different vectors which is the opposite of it.

Then, we see that v+w=0 and v+u=0. Then, we have that $v+w=v+u \implies w+u$. This thus contradicts with the fact that the two vectors are different; the opposite of a vector is unique.

WEEK 2

VECTOR SPACES

2.1 Lecture - 8/29/2023

2.1.1 Fields

Definition 2.1 (Fields). We define a field to be a set \mathbb{F} with two operations $(+,\cdot)$. We denote this by $\langle \mathbb{F}, +, \cdot \rangle$. These operations satisfying the following rules:

- 1. Closed under + and ·
 - If we add or multiply two elements in \mathbb{F} , the result will also be in \mathbb{F} . In other words, we have $+: \mathbb{F} \times \mathbb{F} \to \mathbb{F}$. The same for \cdot .
- 2. Commutativity
 - In other words, for all $a, b \in \mathbb{F}$, we have a + b = b + a. similarly, $a \cdot b = b \cdot a$.
- 3. Associativity
 - For all $a, b, c \in \mathbb{F}$, we have a + (b + c) = (a + b) + c, and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- 4. Identities
 - There exist elements $0 \neq 1 \in \mathbb{F}$, where we have 0 + a = a, and $1 \cdot a = a$.
- 5. Inverses
 - For any $a \in \mathbb{F}$, there exists $-a \in \mathbb{F}$ such that a + (-a) = 0. Furthermore, for any $a \in \mathbb{F}$, where $a \neq 0$, we have $a^{-1} \in \mathbb{F}$ such that $aa^{-1} = 1$.
- 6. Distributivity
 - For $a, b, c \in \mathbb{F}$, we have $c \cdot (a + b) = c \cdot a + c \cdot b$.

Example 2.2 (Finite Field of Five Elements). Suppose we have the integers mod 5. Now, we construct the following table for +:

We see that commutativity holds as the table is symmetric along the main diagonal; if we flip the columns and rows, we will still have the same table. We see that since there is a zero in every row and column, then an additive inverse exists for every number.

Now, for ⋅, we have the following table:

	0	1 0 1 2 3 4	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Again, we see that it is commutative by the same argument. Same applies for finding an inverse, though we have to make sure that we are only looking at rows/columns that are non-zero, and that we check if every row/column has a 1.

Remark 2.3 $(0 \cdot a = 0)$. We will show that $0 \cdot a = 0$, for any $a \in \mathbb{F}$. We can proceed as follow:

$$0 \cdot a = (0+0) \cdot a$$
$$= 0 \cdot a + 0 \cdot a$$

So, we have that $0 \cdot a = 0 \cdot a + 0 \cdot a$.

From here, we know that there exists some $-a \in \mathbb{F}$ such that $0 \cdot a + (-a) = 0$.

So, we have $0 \cdot a + (-a) = 0 \cdot a + (0 \cdot a + (-a))$. So, we have $0 = 0 \cdot a + 0 \implies 0 \cdot a = 0$.

Remark 2.4 (Uniqueness of Additive Inverses). We will prove that additive inverses are unique.

Suppose for contradiction, we have two elements $b, c \in \mathbb{F}$ such that a+b=0, a+c=0.

We see then that since a+b=0=a+c. Then, we have a+b=a+c. Then, we have (a+b)+b=(a+c)+b. From here, we see that (a+b)+b=(a+b)+c. Thus, we have b=c.

2.1.2 Vector Spaces

Definition 2.5 (Vector Spaces). A vector space V consists of two sets and two operations. We usually denote it by $\langle V, \mathbb{F}, +, \cdot \rangle$.

V is a set (of vectors).

 ${\mathbb F}$ is a set (of numbers/scalars). We note here that ${\mathbb F}$ must be a field its own operations.

We define the operation $+: V \times V \to V$, and $\cdot: \mathbb{F} \times V \to V$.

Example 2.6 (Canonical Example). The following are canonical examples: \mathbb{R}^n , \mathbb{C}^n or, generally, \mathbb{F}^n .

Given an $n \in \mathbb{N}$, we define $\mathbb{R}^n := \{(x_1, x_2, \dots, x_n) : x_j \in \mathbb{R}, \forall j = 1, 2, \dots, n\}.$

We also have $\mathbb{R}^{\infty} := \{(x_1, x_2, \ldots) : x_j \in \mathbb{R}, \forall j \in \mathbb{N}\}.$

Definition 2.7 (Vector Addition). Given (x_1, \ldots, x_n) , $(y_1, \ldots, y_n) \in \mathbb{F}^n$, we can define addition by adding the corresponding components together as follow:

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)\coloneqq(x_1+y_1,\ldots,x_n+y_n).$$

We see that we have a neutral vector whose components are all equal to 0 in regards to addition. We also see $(-x_1, \ldots, x_n) + (x_1, \ldots, -x_n) = (0_1, \ldots, 0_n)$.

We see then that the additive structure of our vector space must follow the same conditions seen in fields as well; $\langle V, + \rangle$ must be an Abelian group.

Definition 2.8 ((Scalar) Multiplication). We define multiplication to be that as follow:

Suppose we have some $c \in \mathbb{F}$, and some $(x_1, \dots, x_n) \in \mathbb{F}^n$, we define multiplication as follow:

$$c(x_1,\ldots,x_n) := (cx_1,\ldots,cx_n)$$

For rules, we observe that we have distributivity as follows, for scalars λ , μ and vectors u, v:

$$\lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v$$
$$(\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u$$

We also have associativity for the scalars λ, μ :

$$\lambda \cdot (\mu \cdot v) = (\lambda \cdot \mu) \cdot v$$

We also have the following rules:

$$1 \cdot v = v$$

Remark 2.9. We can think of scalar multiplication geometrically as stretching/compressing(/flipping) the vector.

Remark 2.10. We also note here that, for the associativity of \cdot for vector spaces, the \cdot operator is different in $\lambda \cdot (\mu \cdot v)$ and $(\lambda \cdot \mu) \cdot v$; the latter occurs in the field between two scalars, whereas the former is between a scalar and a vector – the dot is being overloaded.

2.2 Lecture - 8/31/2023

Example 2.11. Let S be any given set which is non-empty, and \mathbb{F} to be a field. We define \mathbb{F}^S as follow:

$$\mathbb{F}^S := \{ f : S \to \mathbb{F} \} .$$

Take \mathbb{F} as our field. We define, for any functions $f,g\in\mathbb{F}^S$, addition to be $(f+g)(s)\coloneqq f(s)+g(s)$, and for some $\lambda\in\mathbb{F}$, we define (scalar) multiplication to be $(\lambda\cdot f)(s)\coloneqq\lambda\cdot f(s)$.

Remark 2.12. We note here that in (f+g)(s)=f(s)+g(s), the first + takes place in \mathbb{F}^S , while the second + takes place in \mathbb{F} .

Similarly, the first \cdot takes place in $\mathbb{F} \times \mathbb{F}^S$, whereas the second \cdot takes place in \mathbb{F} .

Example 2.13. Define $\mathbb{F}:=\mathbb{R}$, and $S:=\{1,2\}$. Any function $f\in\mathbb{R}^S$ is completely described by (f(1),f(2)).

We see that adding two functions will result in adding the pairs together:

$$(f(1), f(2)) + (g(1), g(2)) = ((f+g)(1), (f+g)(2))$$

Likewise, with scalar multiplication, we have:

$$\lambda \cdot (f(1), f(2)) = ((\lambda \cdot f)(1), (\lambda \cdot f)(2))$$

Remark 2.14. Notice that if $S = \mathbb{N}$ (or any other countable set), then \mathbb{F}^s can be understood as \mathbb{F}^{∞} , which is an infinite sequence.

2.2.1 Subspaces

The following are basic observations in V:

- The zero vector is unique.
- The additive inverses are unique.
- $0 \cdot v = 0$
- $(-1) \cdot v = -v$

Definition 2.15 (Subspaces). Suppose we have a vector space V. Now, we have some $U \subseteq V$. We see that the following conditions must be met for U to be a subspace:

- Closure under addition and scalar multiplication.
- The zero vector is contained in U.

All the other rules for a vector space is inherited by virtue of the fact that $U \subseteq V$. We note here that U is also a vector space, contained within a vector space.

Subspaces can be added.

WEEK 3

IDK

3.1 Lecture - 9/5/2023

3.1.1 Recap

Recall that a subspace $U \subseteq V$, where V is a vector space, must satisfy the following two requirements:

- 1. Closure under vector addition and scalar multiplication.
- 2. The zero vector is contained in U.

We note that subspaces can be added. For example, suppose we have subspaces U, W of V. Then, we define addition of subspaces as:

$$U+W\coloneqq \{u+w:u\in U,w\in W\}\,.$$

Remark 3.1. We can add other things together as well. For example, we can add subsets together too.

Theorem 3.2. The sum U + W is also a subspace of V.

Proof. We can verify this as follows:

- 1. Since U,W are subspaces, they are both closed under addition and scalar multiplication. Then we see that $\lambda(u+w)=\lambda u+\lambda w$; $\lambda u\in U, \lambda w\in W$. Similarly, $(u_1+w_1)+(u_2+w_2)=(u_1+u_2)+(w_1+w_2)$. And we see that $(u_1+u_2)\in U$ and $(w_1+w_2)\in W$. So, we see that U+W is closed under addition and scalar multiplication.
- 2. For the zero vector, since both U, W contains the zero vector, then we can take $0 \in U$ and $0 \in W$. Then, we see that 0 + 0 = 0, so U + W contains the zero vector as well.

10

A Little Thought Experiment

Suppose we have the line y=x in \mathbb{R}^2 and the point (0,2). We note that when adding them together, we have a line shifted up two units. However, while the line y=x is a subspace of \mathbb{R}^2 , the point (0,2) isn't; the result is no longer a subspace. We can verify this by the fact that we don't have the zero vector.

Now, suppose that we instead added the point (2,2); while the singleton isn't a subspace itself, the result of the addition yields a subspace still. This is because the point (2,2) is an element of the subspace formed by y=x.

Remark 3.3. The key takeaway from this experiment is that, while adding two subspaces together guarantees a subspace, we can't guarantee the result if the sets aren't known subspaces.

3.1.2 Direct Sums

Definition 3.4 (Direct Sum of Subspaces). A sum U+W of 2 subspaces U,W of V is called a direct sum if every vector in this sum has a unique representation as u+w, where $u\in U,w\in W$.

Example 3.5. Let us take two different lines going through the origin. We observe that the result is the entire plane \mathbb{R}^2 .

We observe from here that every vector has a unique vector representation because if we have two different vectors, then we have the following:

$$v_1 + w_1 = v_2 + w_2$$
$$v_1 - v_2 = w_2 - w_1$$

Since $U \cap W = \{0\}$, we get $u_1 = u_2$ and $w_1 = w_2$.

Theorem 3.6. U + W is a direct sum (of subspaces) if and only if:

- $U \cap W = \{0\}$, or
- 0 has a unique representation $0 \in U + 0 \in W$.

Proof. We shall prove the equivalences by cycling through them.

- 1. Suppose we have a direct sum as per the definition. Then, every vector u+w must have a unique representation, including the zero vector 0. Since 0=0+0, we know that this must be the only representation.
- 2. We now want to show that if 0 has a unique representation, then $U \cap W = \{0\}$. We shall proceed by contraposition.
 - Let us suppose that $U \cap W \neq \{0\}$. Then, we see that there is a non-zero vector $v \in U \cap W$. That means then that v + (-v) = 0, where $v \in U$ and $-v \in W$. So, we see that 0 does not have a unique representation.
- 3. The final implication of $U \cap W = \{0\}$ implying direct sum's proof is the same as what we saw in our example.

Remark 3.7. Suppose we take two subspaces: is the intersection always at the origin? We see that this isn't the case, as if we take the intersection between some line in \mathbb{R}^2 and \mathbb{R}^2 itself (which is its own subspace!), we see that the intersection is actually the line itself.

Remark 3.8. If U and W are subspaces, then their intersection will also be a subspace. First, we observe that since $0 \in U$ and $0 \in W$, then $0 \in U \cap W$.

For closure, we see that since U, W are both closed, then suppose we have $v_1, v_2 \in U \cap W$. Since v_1, v_2 are in both U and W, then $v_1 + v_2 \in U$ and $v_1 + v_2 \in W$. Thus, we have that $v_1 + v_2 \in U \cap W$ as well.

Similarly, suppose we have some vector $v \in U \cap W$. Then, $v \in U \wedge v \in W$. This means then that $\lambda v \in U \wedge \lambda v \in W$, where $\lambda \in \mathbb{F}$; then we see that $\lambda v \in U \cap W$ too.

Thus, we see that $U \cap W$ is also a subspace.