Задача №1. Три тигра

Три тигра одновременно начинают движение по горизонтальной поверхности с постоянными по модулю скоростями. Скорость первого тигра в любой момент времени направлена на второго, скорость второго — на третьего, а скорость третьего — на первого. В начальный момент времени тигры образуют прямоугольный треугольник с катетами, равными L(рис. 1). Считайте размеры тигров много меньшими L. Модуль скорости первого тигра $v_1 = v$, где v— известная величина, а скорости второго и третьего тигров v_2 и v_3 таковы, что в процессе движения углы

в треугольнике ABC, образованном тиграми, остаются постоянными.

Введём систему координат так, как показано на рисунке. Начало координат совпадает с положением первого тигра в момент старта (точкой A).

При ответе на первые три вопроса считайте, что тигры не проскальзывают по поверхности и могут развивать любое усилие. Найдите:

- 1. время t, через которое тигры встретятся;
- 2. модули скоростей второго и третьего тигров v_2 и v_3 ;
- 3. координаты (x,y) точки, в которой тигры встретятся.

В действительности движение тигров ограничивается коэффициентами трения их лап о поверхность. Для каждого тигра он одинаков и равен μ . Ускорение свободного падения q.

4. В течение какого времени au с момента старта тигры могут поддерживать такое движение?

Задача №2. Поле цилиндра

Бесконечно длинный незаряженный металлический цилиндр радиуса R расположен в однородном электрическом поле \vec{E}_0 . Ось цилиндра и вектор напряженности поля горизонтальны и взаимно перпендикулярны (рис. 2). Напряженность поля направлена вправо. На поверхности цилиндра установилось некоторое распределение индуцированных зарядов.

Далее рассмотрим бесконечно длинный тонкостенный непроводящий цилиндр такого же радиуса R

вне поля \vec{E}_0 вдали от первого (проводящего) цилиндра. Поместим на его поверхность заряды так, чтобы зависимость плотности заряда от угла θ к горизонту (рис. 3) совпадала для обоих цилиндров. Непроводящий цилиндр расположен горизонтально в поле тяжести. Ускорение свободного падения равно \vec{q} (рис. 3).

R

 $|\vec{g}|$

Поместим внутрь непроводящего цилиндра гладкий точечный положительный заряд q массой m.

- 1. Определите изменение суммарной потенциальной энергии точечного заряда (энергии в поле тяжести и в электрическом поле) при перемещении его из крайнего левого положения в крайнее правое.
- 2. Точечный заряд помещают в самое нижнее положение и сообщают ему начальную скорость v_0 , направленную влево, перпендикулярно оси цилиндра. Найдите максимальную скорость заряда $v_{\rm makc}$ в процессе дальнейшего движения.
- 3. При каких значениях v_0 точечный заряд совершит полный оборот?

Задача №3. Электрическая тележка

Электрическая тележка для перемещения грузов состоит из двух цилиндрических колес и корпуса. Расстояние между осями колёс 2l. Центр масс тележки O выше пола на h и на x (x > 0) правее средней точки между осями. Электродвигатели сообщают колесам быстрое встречное вращение, как показано на рисунка A. Коэффиционт трения колёс о пол A

рисунке 4. Коэффициент трения колёс о пол $(\mu < l/h)$. Массой колёс можно пренебречь. Ускорение свободного падения g. Определите:

- ускорение тележки в начальный момент времени, если ее колеса не отрываются от пола;
- 2. при каком(их) значении(ях) возможно движение без отрыва колёс.

Задача №4. Неизвестная жидкость под поршнем

В атмосфере с давлением $p_0=10^5$ Па расположен вертикальный цилиндрический сосуд сечения $S=0.01~{\rm M}^2$ и высоты $2H~(H=1~{\rm M})$. Вдоль стенок сосуда может перемещаться без трения герметичный поршень. Стенки сосуда и поршень не проводят тепло. Изначально поршень покоится на небольших опорах, расположенных на высоте H над дном сосуда. Из-под поршня выкачивают весь воздух и помещают туда некоторое количество жидкости. После установ-

ления термодинамического равновесия температура содержимого сосуда оказалась равна $T_0=350~{
m K}.$ Затем включают нагреватель, и через дно сосуда

содержимое под поршнем медленно нагревается. В процессе нагрева измеряют температуру и давление под поршнем. Когда низ поршня достигает отметки 2H нагрев прекращают. График полученной зависимости от начала нагрева и до его окончания представлен на рисунке.

Удельная теплота парообразования жидкости при температуре $1,1T_0$ равна L=2,2 МДж/кг. Молярная масса жидкости $\mu=18$ г/моль, универсальная газовая постоянная R=8,31 Дж/ (моль · K), ускорение свободного падения g=9,8 м/с². Пар жидкости можно считать идеальным многоатомным газом. Объем жидкости много меньше SH. Определите:

- 1. массу M поршня;
- 2. массу m_0 содержимого под поршнем (суммарно во всех агрегатных состояниях);
- 3. количество теплоты Q, подведенной к сосуду **начиная с момента отрыва поршня от опор** и до момента окончания нагрева.

Задача №5. Термоисточник

Источник состоит из соединенных последовательно идеального источника постоянного напряжения ${\mathcal E}$ и терморезистора, сопротивление которого зависит от температуры по закону

$$R = R_0 \left(1 + \alpha \left(t - t_0 \right) \right)$$

где R_0 — сопротивление резистора при температуре $t_0 = 0$ °C, t — установившаяся температура резистора, α — постоянный коэффициент.

На графике приведена нагрузочная кривая источника, т. е. зависимость установившегося напряжения U_{AB} между его клеммами от силы протекающего через него тока I. При протекании тока $I_1=0.55$ А цепь разрывается, т.к. резистор плавится. Температура плавления известна и равна $t_{\rm пл}=306^{\circ}{\rm C}$. Мощность тепловых потерь в окружающую среду от нагретого до температуры t резистора равна $N=\beta \left(t-t_{\rm среды}\right)$, где β — постоянный неизвестный коэффициент. Считайте, что температура окружающей среды $t_{\rm среды}=t_0$. Определите:

- 1. напряжение ${\cal E}$ идеального источника;
- 2. сопротивление R_0 ;
- 3. напряжение U_{AB} между клеммами A и B, если к ним подключить резистор сопротивлением 10 Ом;
- 4. величину α ;
- 5. какую силу тока гарантированно не сможет пропускать аналогичный резистор, имеющий те же значения параметров R_0 и α , но очень высокую температуру плавления.

Рис. 8