Algorytmy i struktury danych Wykład II – wyszukiwanie

Paweł Rembelski

PJWSTK

4 października 2009

- 1 Wyszukanie wskazanego elementu bez uporządkowania
 - Algorytm Find
- Wyszukanie elementu maksymalnego
 - Algorytm FindMax
- Wyszukanie elementu 2-go co do wielkości
 - Algorytm Find2nd
 - Algorytm Turniej szkic
- Wyszukanie elementów minimalnego i maksymalnego
 - Algorytm FindMinMax
 - Algorytm RecMinMax
- Wyszukiwanie i otoczka wypukła
 - Wstęp
 - Algorytm Jarvisa

Wyszukanie wskazanego elementu bez uporządkowania

Problem, struktura i specyfikacja algorytmu

Problem

Podać algorytm Alg(T, n, x) znajdujący indeks elementu x zapisanego w niepustym n-elementowym wektorze różnych liczb naturalnych T.

Struktura dla algorytmu

Struktura dla algorytmu Alg: $\langle \mathbb{N}, +, \neq \rangle$.

Specyfikacja algorytmu

Specyfikację algorytmu Alg stanowi para $\langle WP, WK \rangle$, gdzie warunki początkowy i końcowy są postaci kolejno:

- WP: T jest niepustym wektorem różnych liczb naturalnych, $n \in \mathbb{N}^+$, |T| = n, $\exists (!0 \le i < n) (T[i] = x)$,
- WK : Alg(T, n, x) = idx, gdzie T[idx] = x.

Wyszukanie wskazanego elementu bez uporządkowania

Algorytm Find

Rozwiązanie problemu – algorytm Find:

```
1 int Find(int T[], int n, int x) { \longleftarrow | WP: T jest niepustym wektorem różnych liczb naturalnych, n \in \mathbb{N}^+, |T| = n, \exists ! (0 \le i < n) (T[i] = x)
2 int idx:=0;
3 while (T[idx]\neqx)
5 idx:=idx+1;
6
7 return idx; \longleftarrow | WK: Find(T, n, x) = idx, gdzie T[idx] = x.
```

Poprawność algorytmu Find

- poprawność częściowa: wynika bezpośrednio z warunku początkowego i zaprzeczenia dozoru pętli iteracyjnej $(\neg T [idx] \neq x) \Rightarrow T [idx] = x$, stąd prawdziwy jest warunek końcowy Find(T, n, x) = idx, T [idx] = x,
- warunek stopu: z warunku początkowego $\exists ! (0 \leq i < n) (T[i] = x)$ i $n \in \mathbb{N}^+$. Zmienna idx inicjalizowana wartością 0 jest inkrementowana z każdą iteracja pętli o 1, stąd po i iteracjach pętli idx = i, czyli T[idx] = x, co kończy działanie algorytmu.

Zadanie. Podaj postać niezmiennik uzasadniającego poprawność częściową algorytmu Find.

Złożoność algorytmu Find

- operacja dominująca: porównanie elementów rozważanego uniwersum,
- <u>średnia złożoność czasowa</u>: $A(n) = \frac{n}{2} = \Theta(n)$, zakładając $Pr(T[i] = x) = \frac{1}{n}$, dla każdego $0 \le i < n$,
- pesymistyczna złożoność czasowa: oraz $W(n) = n = \Theta(n)$,
- złożoność pamięciowa: O(1).

Pytanie. Czy prawdziwe jest stwierdzenie $T(Find, n) = \Theta(n)$?

Twierdzenie

Algorytm Find jest optymalnym w sensie średnim i pesymistycznym rozwiązaniem postawionego problemu*.

^{*} powyższe twierdzenie jest prawdziwe w klasycznym modelu obliczeniowym deterministycznej maszyny Turinga. Nie jest ono jednak spełnione np. w modelu kwantowej maszyny Turinga (zob. *algorytm Grover'a*, 1996).

Wyszukanie elementu maksymalnego

Problem, struktura i specyfikacja algorytmu

Problem

Podać algorytm Alg(T, n) znajdujący indeks elementu maksymalnego w niepustym n-elementowym wektorze różnych liczb naturalnych T.

Struktura dla algorytmu

Struktura dla algorytmu Alg: $\langle \mathbb{N}, +, < \rangle$.

Specyfikacja algorytmu

Specyfikację algorytmu Alg stanowi para (WP, WK), gdzie warunki początkowy i końcowy są postaci kolejno:

- WP: T jest niepustym wektorem różnych liczb naturalnych, $n \in \mathbb{N}^+$, |T| = n,
- $WK : Alg(T, n) = idxMax, gdzie \forall (0 \le i < n)(T[i] \le T[idxMax]).$

Wyszukanie wskazanego elementu bez uporządkowania

Algorytm FindMax

Dowód częściowej poprawności algorytmu metodą niezmienników:

```
int FindMax(int T[], int n) \{\leftarrow V jest niepustym wektorem
                                                   różnych liczb naturalnych, n \in \mathbb{N}^+, |T| = n
                                                           ----- T[idxMax] < T[idxMax]
2
     int i:=1, idxMax:=0; ←
                                                         \Rightarrow \forall (0 < i < i) (T[i] < T[idxMax])
                ustalenie niezmiennika \forall (0 < j < i) (T[j] < T[idxMax])
3
     while (i<n) {\longleftarrow | weryfikacja niezmiennika: \forall (0 \leq j < i) (T[j] \leq T[idxMax])
        if T[idxMax] < T[i] idxMax := i; \leftarrow | \forall (0 < j < i) (T[j] < T[idxMax])
5
        i:=i+1; \leftarrow odtworzenie niezmiennika: \forall (0 \le i \le i) (T[i] \le T[idxMax])
6
     | (NZ \land \neg (i < n)) \Rightarrow \forall (0 \le j < i) (T[j] \le T[idxMax])
                                                         \Rightarrow \forall (0 < j < n) (T[j] < T[idxMax])
     return idxMax; \leftarrow | Alg (T, n) = idx, gdzie \forall (0 \le i \le n) (T[i] \le T[idx])
8
9
```

<u>Wnio</u>sek

Algorytm FindMax jest częściowo poprawny względem specyfikacji $\langle WP, WK \rangle$.

Zadanie. Udowodnij przez indukcję własność stopu algorytmu FindMax.

Złożoność algorytmu FindMax

- operacja dominująca: porównanie elementów rozważanego uniwersum,
- \underline{z} łożoność czasowa: $T(n) = n 1 = \Theta(n)$,
- złożoność pamięciowa: O(1).

Twierdzenie

Algorytm FindMax jest optymalnym rozwiązaniem postawionego problemu.

Wyszukanie elementu 2-go co do wielkości

Problem, struktura i specyfikacja algorytmu

Problem

Podać algorytm Alg(T, n) znajdujący indeks elementu 2-go co do wielkości w n-elementowym wektorze różnych liczb naturalnych T, gdzie $n \ge 2$.

Struktura dla algorytmu

Struktura dla algorytmu Alg: $\langle \mathbb{N}, +, <, > \rangle$.

Specyfikacja algorytmu

Specyfikację algorytmu Alg stanowi para $\langle WP,WK \rangle$, gdzie warunki początkowy i końcowy są postaci kolejno:

- WP: T jest niepustym wektorem różnych liczb naturalnych, $n \in \mathbb{N} \setminus \{0,1\}$, |T| = n,
- $WK : Alg(T, n) = idxSec, gdzie \exists ! (0 \le i < n) (T[i] > T[idxSec]).$

Wyszukanie elementu 2-go co do wielkości

Algorytm Find2nd

Rozwiązanie problemu – algorytm Find2nd:

```
---- WP: T jest niepustym wektorem
   int Find2nd(int T[], int n) {←
                                          różnych liczb naturalnych, n \in \mathbb{N} \setminus \{0, 1\}, |T| = n,
2
     int i:=2. idxMax. idxSec:
3
     if (T[0]<T[1]) { idxMax:=1; idxSec:=0; }
     else { idxMax:=0; idxSec:=1 }
     while (i<n) {
8
       if (T[i]>T[idxMax]) { idxSec:=idxMax; idxMax:=i; }
       else if (T[i]>T[idxSec]) idxSec:=i;
10
11
       i:=i+1;
12
13
14
                                                        --- \mid WK : Find2nd(T, n) = idxSec
      return idxSec; +
                                                    gdzie \exists ! (0 < i < n) (T[i] > T[idxSec])
15 }
```

Poprawność algorytmu Find2nd

- poprawność częściowa: tuż po inicjalizacji zmiennych w wierszach 4-5 prawdą jest, że zmienna idxSec wskazuje na 2-gi co do wielkości element w ciągu dwuelementowym T [0], T [1]. Niezmiennikiem pętli jest formuła NZ: $\exists ! (0 \le j < i) (T [j] > T [idxSec])$. Po wykonaniu instrukcji warunkowej w wierszach 8-9 prawdą jest, że $\exists ! (0 \le j \le i) (T [j] > T [idxSec])$. Zatem po wykonaniu instrukcji i := i+1 zachodzi $\exists ! (0 \le j < i) (T [j] > T [idxSec]) odtworzenie niezmiennika <math>NZ$. Po zakończeniu pętli iteracyjnej mamy i = n, stąd $\exists ! (0 \le i < n) (T [i] > T [idxSec])$,
- warunek stopu: z warunku początkowego $n \in \mathbb{N} \setminus \{0,1\}$. Zmienna i inicjalizowana wartością 2 jest inkrementowana z każdą iteracja pętli o 1, stąd po n-2 iteracjach pętli i=n, co kończy działanie algorytmu.

- operacja dominująca: porównanie elementów rozważanego uniwersum,
- <u>średnia złożoność czasowa</u>: $A(n) = \frac{2n}{2} + \frac{n}{2} \pm c = \Theta(n)$, gdzie $c \le 2$ jest pewną stałą, zakładając $Pr(T[i] > T[idxMax]) = \frac{1}{2}$, dla każdego $0 \le i < n$,
- pesymistyczna złożoność czasowa: oraz $W(n)=2n\pm c=\Theta(n)$, gdzie $c\leq 2$ jest pewną stałą,
- złożoność pamięciowa: O(1).

Pytanie. Czy algorytm Find2nd jest optymalnym rozwiązaniem dla rozważanego problemu?

Wyszukanie elementu 2-go co do wielkości

Algorytm Turniej – szkic

Pomysł. Zbuduj drzewo turnieju zgodnie z zasadą "przechodzi tylko wygrywający", np. dla T=[9,3,5,8,2,1,6,4,0,7] i n=10 otrzymujemy:

Pytanie. Ile porównań elementów tablicy T jest niezbędnych do zbudowania drzewa turnieju dla rozważanego przykładu (tj. n=10) i w przypadku ogólnym? **Pytanie**. Jak najmniejszym kosztem można znaleźć element 2-gi co do wielkości?

Wniosek

Element 2-gi co do wielkości jest jednym z tych, które "przegrały" z elementem maksymalnym. Tych elementów jest co najwyżej $\lceil \lg n \rceil$ i wśród nich należy wyszukać elementu maksymalnego np. stosując metodę FindMax.

Złożoność algorytmu Turniej

- operacja dominująca: porównanie elementów rozważanego uniwersum,
- pesymistyczna złożoność czasowa: $W(Turniej, n) = n - 1 + \lceil \lg n \rceil - 1 = n + \lceil \lg n \rceil - 2,$
- złożoność pamięciowa: O(n) ze względu na konieczność zapisywania rezultatów pojedynków.

Twierdzenie

Algorytm Turniej jest **optymalnym z dokładnością co do stałej** w przypadku pesymistycznym rozwiązaniem rozważanego problemu, tj. złożoność każdego innego optymalnego w przypadku pesymistycznym algorytm dla postawionego problemu jest rzędu W (Turniej, n) + $c = n + \lceil \lg n \rceil - 2 + c$, gdzie c jest nieujemną stałą naturalną.

Wyszukanie elementów minimalnego i maksymalnego

Problem, struktura i specyfikacja algorytmu

Problem

Podać algorytm $Alg\ (T,n)$ znajdujący indeks elementów minimalnego i maksymalnego w n-elementowym wektorze różnych liczb naturalnych T, gdzie n=2k i $k\in\mathbb{N}^+$.

Struktura dla algorytmu

Struktura dla algorytmu Alg: standardowa struktura liczb naturalnych.

Specyfikacja algorytmu

Specyfikację algorytmu Alg stanowi para $\langle WP,WK \rangle$, gdzie warunki początkowy i końcowy są postaci kolejno:

- WP: T jest niepustym wektorem różnych liczb naturalnych, $n=2k, \ k\in \mathbb{N}^+,$ |T|=n,
- WK : Alg (T, n) = (idxMin, idxMax), gdzie $\forall (0 \le i < n) (T [idxMin] \le T [i])$, $\forall (0 \le i < n) (T [idxMax] \ge T [i])$.

Pytanie. Czy sekwencyjne zastosowanie algorytmów FindMax i analogicznego FindMin jest poprawnym rozwiązaniem rozważanego problemu? Jeżeli tak, to jaka jest dokładna złożoność czasowa takiego rozwiązania?

4 października 2009

Wyszukanie elementów minimalnego i maksymalnego

Algorytm FindMinMax

Rozwiązanie problemu – algorytm FindMinMax:

```
różnych liczb naturalnych, n=2k, k \in \mathbb{N}^+, |T|=n,
2
    int i:=0:
3
    (int, int) s;
    for (i:=0; i< n/2; i:=i+1)
5
      if (T[i]>T[(n-1)-i])
6
6
       SWAP(T,i,(n-1)-i); ← ementów wektora
7
8
    s.idxMin:=FindMin(T[0...n/2-1],n/2); - | procedura wyszukania elementu
                            minimalnego analogiczna do omówionej metody FindMax
    s.idxMax:=FindMax(T[n/2...n-1],n/2);
9
10
                  WK : FindMinMax(T, n) = (idxMin, idxMax), gdzie
11
    return s;←
                   \forall (0 < i < n) (T[idxMin] < T[i]), \forall (0 < i < n) (T[idxMax] \ge T[i]).
12 }
```

Zadanie. Uzasadnij poprawność całkowitą algorytmu FindMinMax.

Złożoność algorytmu Jarvisa

- operacja dominująca: porównywanie elementów rozważanego uniwersum,
- <u>złożoność czasowa metody pomocniczej FindMin</u>: $T(FindMin, n) = \frac{n}{2} 1$,
- <u>złożoność czasowa metody pomocniczej FindMax</u>: $T(FindMax, n) = \frac{n}{2} 1$,
- złożoność czasowa algorytmu Jarvisa:

$$T(FindMinMax, n) = \frac{n}{2} + T(FindMin, n) + T(FindMax, n) = \frac{3}{2}n - 2,$$

złożoność pamięciowa algorytmu Jarvisa: O(1).

Twierdzenie

Algorytm FindMinMax jest **optymalnym z dokładnością co do stałej** rozwiązaniem rozważanego problemu, tj. złożoność każdego innego optymalnego algorytm dla postawionego problemu jest rzędu T (FindMinMax, n) + $c = \frac{3}{2}n - 2 + c$, gdzie c jest nieujemną stałą naturalną.

4 D > 4 D > 4 E > 4 E > E 990

Wyszukanie elementów minimalnego i maksymalnego

Algorytm RecMinMax

Pomysł. Zbuduj **rekurencyjnie** zmodyfikowane drzewo turnieju zgodnie z zasadą "przechodzą tylko elementy minimalny i maksymalny", rezultat znajdziemy w korzeniu drzewa, np. dla $\mathcal{T}=[9,3,5,8,2,1,6,4,0,7]$ i n=10 otrzymujemy:

Konstruujemy procedurę rekurencyjną RecMinMax(T, l, r), gdzie l i r to kolejno indeks lewego i prawego krańca aktualnie analizowanego fragmentu wektora T. Dalej załóżmy bez straty ogólności, że $(r-l+1)=n=2^k$ i $k\in\mathbb{N}^+$.

Rozwiązanie problemu – algorytm RecMinMax:

```
(int,int) RecMinMax(int T[], int 1, int r) \{\leftarrow P: T \text{ jest niepustym}\}
                  wektorem różnych liczb naturalnych, (r-l+1)=n=2^k, k\in\mathbb{N}^+. |T|=n.
2
     int idxMin, idxMax;
3
     (int,int) sl, sr;
4
5
     if (r-1=1)
6
       if (T[r]>T[l]) return (l,r) else return (r,l);
8
     else {
9
        sl := RecMinMax(T,1,(1+r)/2):
10
        sr := RecMinMax(T,((1+r)/2)+1,r):
11
       if (T[sl.idxMin] < T[sr.idxMin]) idxMin:=sl.idxMin else idxMin:=sr.idxMin;
12
13
        if (T[sl.idxMax]<T[sr.idxMax]) idxMax:=sl.idxMax else idxMax:=sr.idxMax;</pre>
14
       return (idxMin,idxMax); \leftarrow | WK: RecMinMax (T, I, r) = (idxMin,idxMax), gdzie
15
                          \forall (1 < i < r) (T [idxMin] < T [i]), \forall (1 < i < r) (T [idxMax] > T [i]).
16 }
17 }
```

Dowód częściowej poprawności algorytmu przez <u>indukcję</u> względem $k\in\mathbb{N}^+$, gdzie $n=2^k$:

- <u>baza indukcji</u>: dla k = 1, tj. n = 2 zachodzi r l = 1, zatem wykonany jest pierwszy warunek zewnętrznej instrukcji warunkowej, czyli if (T[r]>T[1]) return (1,r) else return (r,1);
 Stąd algorytm RecMinMax jest częściowo poprawny dla k = 1 i n = 2,
- <u>założenie indukcyjne</u>: dla $0 \le i < k$ i $n = 2^i$ algorytm RecMinMax jest częściowo poprawny,
- <u>teza indukcyjna</u>: dla k > 1 i $n = 2^k$ algorytm RecMinMax jest częściowo poprawny.

Dowód tezy indukcyjnej

Dla k>1, tj. n>2 mamy r-l>2, zatem wykonany jest drugi warunek zewnętrznej instrukcji warunkowej, czyli kolejno instrukcje w wierszach 9-10. Stąd i na podstawie założenia indukcyjnego zachodzi

$$\begin{aligned} \textit{sl.idxMin} &= & \text{indeks elem.} & \min \left(\left\{ \left. T\left[l \right], T\left[l+1 \right], \ldots, T\left[\left\lfloor \frac{l+r}{2} \right\rfloor \right] \right\} \right), \\ \textit{sl.idxMax} &= & \text{indeks elem.} & \max \left(\left\{ \left. T\left[l \right], T\left[l+1 \right], \ldots, T\left[\left\lfloor \frac{l+r}{2} \right\rfloor \right] \right\} \right), \end{aligned}$$

Dowód tezy indukcyjnej c.d.

oraz

$$sr.idxMin = indeks elem. \min \left(\left\{ T \left[\left\lfloor \frac{l+r}{2} \right\rfloor + 1 \right], T \left[\left\lfloor \frac{l+r}{2} \right\rfloor + 2 \right], \dots, T \left[r \right] \right\} \right)$$

$$sr.idxMax = indeks elem. \max \left(\left\{ T \left[\left\lfloor \frac{l+r}{2} \right\rfloor + 1 \right], T \left[\left\lfloor \frac{l+r}{2} \right\rfloor + 2 \right], \dots, T \left[r \right] \right\} \right)$$

Następnie wykonane są instrukcje warunkowe

```
if (T[sl.idxMin] < T[sr.idxMin]) idxMin:=sl.idxMin else idxMin:=sr.idxMin;
if (T[sl.idxMax] < T[sr.idxMax]) idxMax:=sl.idxMax else idxMax:=sr.idxMax;</pre>
```

14

15 return (idxMin,idxMax);

Stąd

$$idxMin = indeks elem. min({T[I], T[I+1],..., T[r]}),$$

 $idxMax = indeks elem. max({T[I], T[I+1],..., T[r]}),$

gdzie r - l = n i $n = 2^k$, dla k > 1, co kończy dowód.

Zadanie. Udowodnij przez indukcję własność stopu algorytmu RecMinMax.

Złożoność czasowa algorytmu RecMinMax

Niech dalej T(n) będzie liczbą operacji porównań elementów rozważanego uniwersum, jakie wykonuje algorytm RecMinMax dla danych rozmiaru n (ponownie zakładamy, że $n=2^k$ i $k\in\mathbb{N}^+$), wtedy:

$$T(n) = \begin{cases} 1 & \text{dla } n = 2 \\ 2T(\frac{n}{2}) + 2 & \text{dla } n > 2 \end{cases},$$

czyli dla $n=2^k$ i $k\in\mathbb{N}^+$

$$T\left(2^{k}\right) = \begin{cases} 1 & \text{dla } k = 1\\ 2T\left(2^{k-1}\right) + 2 & \text{dla } k > 1 \end{cases},$$

i ostatecznie* $T(2^k) = \frac{3}{2}2^k - 2$, stąd $T(n) = \frac{3}{2}n - 2^*$.

$$T\left(2^{k+1}\right) = 2\left(\frac{3}{2}2^k - 2\right) + 2 = 3 \cdot 2^k - 2 = \frac{3}{2}2^{k+1} - 2$$

co kończy dowód indukcyjny. Stąd dla $n=2^k$ i $k\in\mathbb{N}^+$ zachodzi $T(n)=\frac{3}{2}n-2$

^{*} k=1 mamy $T\left(2^1\right)=T\left(2\right)=\frac{3}{2}2-2=1$ co stanowi bazę indukcji. Załóżmy, że dla k>1 zachodzi $T\left(2^k\right)=\frac{3}{2}2^k-2$, wtedy dla k+1 mamy $T\left(2^{k+1}\right)=2T\left(2^k\right)+2$ i na podstawie założenia

Wniosek

Z twierdzenia o optymalności algorytmu FindMinMax i wyprowadzonej z powyższego równania rekurencyjnego postaci zwartej na T(n) wynika, że algorytm RecMinMax jest optymalnym rozwiązaniem postawionego problemu.

Złożoność pamięciowa algorytmu RecMinMax

Złożoność pamięciowa algorytmu RecMinMax z uwzględnieniem kosztów rekursji jest asymptotycznie równa wysokości zmodyfikowanego drzewa turnieju, tj. $S\left(n\right)=\Theta\left(\lg n\right)$.

Wyszukiwanie i otoczka wypukła

Wstęp

Własność

Niech $p_0=(x_0,y_0)$, $p_1=(x_1,y_1)$ oraz $p_2=(x_2,y_2)$ będą dowolnymi punktami płaszczyzny $\mathbb{N}\times\mathbb{N}$ oraz $det(p_0,p_1,p_2)$ wyznacznikiem takim, że

$$det(p_0, p_1, p_2) = (x_1 - x_0)(y_2 - y_0) - (y_1 - y_0)(x_2 - x_0),$$

wtedy, jeżeli:

- $det(p_0, p_1, p_2) > 0$ wtedy punkt p_2 leży po lewej stronie prostej przechodzącej przez punkty p_0, p_1 ,
- $det(p_0, p_1, p_2) = 0$ wtedy punkty p_0 , p_1 oraz p_2 są współliniowe,
- $det(p_0, p_1, p_2) < 0$ wtedy punkt p_2 leży po prawej stronie prostej przechodzącej przez punkty p_0, p_1 .

Definicja

Niech p_0 będzie wybranym płaszczyzny $\mathbb{N} \times \mathbb{N}$. Ustalamy relację porządku częściowego $\preceq_{p_0} \subseteq (\mathbb{N} \times \mathbb{N})^2$ taką, że $p_1 \preceq_{p_0} p_2$ wtedy i tylko wtedy, gdy $det(p_0,p_1,p_2) \geq 0$ dla dowolnych punktów $p_1,p_2 \in \mathbb{N} \times \mathbb{N}$. Relację \preceq_{p_0} będziemy nazywali porządkiem kątowym.

Wniosek

Niech Q będzie dowolnym zbiorem punktów płaszczyzny $\mathbb{N} \times \mathbb{N}$. Jeżeli dla dowolnego punktu p_0 dowolne dwa różne punkty p_1 , p_2 należące do dziedziny relacji \leq_{p_0} nie są współliniowe (tj. $det(p_0, p_1, p_2) \neq 0$), to relacja \leq_{p_0} jest relacją porządku liniowego w zbiorze Q.

Przykład. Zbiory punktów, w których relacja porządku kątowego jest/nie jest relacją porządku liniowego.

Definicja

Niech $Q \subset \mathbb{N} \times \mathbb{N}$ będzie zbiorem punktów płaszczyzny, z których każde trzy różne punkty **nie są współliniowe**. Otoczką wypukłą zbioru Q nazywamy zbiór $CH(Q) \subseteq Q$ taki, że wielokąt wypukły o wierzchołkach ze zbioru punktów CH(Q) zawiera wewnątrz wszystkie punktu zbioru $Q \setminus CH(Q)$ oraz CH(Q) jest najmniejszym takim zbiorem.

Przykład. Zbiór punktów Q oraz otoczka wypukła CH(Q) owego zbioru.

Wyszukiwanie i otoczka wypukła

Problem, struktura i specyfikacja algorytmu

Problem

Podać algorytm Alg(P, n) znajdujący liczbę punktów tworzących otoczkę wypukłą niepustego n-elementowego zbioru różnych i trójkami niewspółliniowych punktów Q płaszczyzny $\mathbb{N} \times \mathbb{N}$, zapisanego w wektorze (tablicy) punktów $P = [(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})].$

Struktura dla problemu

Rozszerzenie standardowej struktury dla algorytmu Alg: zbiór punktów płaszczyzny $\mathbb{N} \times \mathbb{N}$, z wyróżnioną relacją \preceq porządku kątowego.

Specyfikacja algorytmu

Specyfikację algorytmu Alg stanowi para $\langle WP,WK \rangle$, gdzie warunki początkowy i końcowy są postaci kolejno:

- WP: P jest niepustym wektorem różnych i trójkami niewspółliniowych punktów, $n \in \mathbb{N}^+, |P| = n$,
- WK : Alg(P, n) = |CH(Q)|, gdzie Q jest zbiorem reprezentowanym przez wektor P.

Wyszukiwanie i otoczka wypukła

Algorytm Jarvisa

int FindStart((int,int) P[], int n)

- warunek początkowy WP: P jest niepustym wektorem różnych i trójkami niewspółliniowych punktów, $n \in \mathbb{N}^+, |P| = n$,
- warunek końcowy WK: FindStart(P, n) = idx, gdzie P [idx] jest punktem o najmniejszej współrzędnej y a w razie niejednoznaczności kolejno najmniejszej współrzędnej x.

Zadanie. Uzasadnić całkowitą poprawność procedury FindStart.

int FindNext((int,int) P[], int n, (int,int) p)

- warunek początkowy WP: P jest niepustym wektorem różnych i trójkami niewspółliniowych punktów, $n \in \mathbb{N}^+, |P| = n, \exists (0 \le i < n) (P[i] = p),$
- warunek końcowy: WK: FindNext(P, n, p) = idx, gdzie $P[idx] \neq p$ jest punktem najmniejszym w sensie relacji porządku kątowego \leq_P (tj. względem punktu p).

Zadanie. Uzasadnić całkowitą poprawność procedury FindNext.

Rozwiązanie problemu – algorytmu Jarvisa:

```
int Jarvis((int,int) P[], int n) \{\leftarrow WP : P \text{ jest niepustym wektorem}\}
                               różnych i trójkami niewspółliniowych punktów, n \in \mathbb{N}^+, |P| = n
2
     int size:=0, start:=FindStart(P,n), tmp:=start;
3
     do {
        size:=size+1:
       tmp:=FindNext(P,n,T[tmp]);
     } while (tmp!=start)
8
9
10
     return size:←
                                                         ---- \mid WK : Jarvis(P, n) = |CH(Q)|,
                                        gdzie Q jest zbiorem reprezentowanym przez wektor P
11
12 }
```

Poprawność algorytmu Jarvisa

- poprawność częściowa: metoda pomocnicza FindStart ustala pierwszy wierzchołek poszukiwanej otoczki wypukłej start. Niech dalej α oznacza liczbę "odwiedzin" elementów wektora P. Niezmiennikiem pętli jest formuła: NZ: $size = \alpha - 1$. Stąd po wykonaniu instrukcji size := size + 1 prawdą jest, że $size = \alpha$. Procedura FindNext wyznacza kolejny wierzchołek otoczki wypukłej katowo najbliższy aktualnemu wierzchołkowi tmp. Zatem po wykonaniu instrukcji tmp := FindNext(P, n, tmp) prawdą jest $size = \alpha - 1 - odtworzenie niezmiennika$ NZ. Po zakończeniu pętli iteracyjnej mamy tmp = start, tj. pierwszy wierzchołek otoczki wypukłej start odwiedzony był 2-krotnie. Z własności geometrycznych otoczki wypukłej i procedury FindNext wynika, że każdy inny element wektora T (tj. wierzchołek zbioru Q) odwiedzony był co najwyżej jeden raz. Stąd liczba wierzchołków zbioru Q tworzących otoczkę wypukłą CH(Q) jest równa dokładnie $\alpha - 1 = \text{size}$, czyli Jarvis (P, n) = size = |CH(Q)|.
- warunek stopu: ponieważ zbiór Q jest zbiorem skończonym i $CH(Q) \subseteq Q$ oraz z powyższego rozumowania każdy wierzchołek zbioru Q inny niż start odwiedzany jest co najwyżej jeden raz, to ciąg wywołań metody FindNext jest także skończony dla dowolnego wektora P długości n reprezentującego zbiór Q.

Złożoność algorytmu Jarvisa

- operacja dominująca: porównywanie elementów rozważanego uniwersum względem relacji ≤,
- $\underline{\mathsf{z}}$ łożoność czasowa metody pomocniczej FindStart: $T\left(\mathsf{FindStart},n\right) = \Theta\left(1\right)$,
- złożoność czasowa metody pomocniczej FindNext: $T(FindNext, n) = \Theta(n)$,
- złożoność czasowa algorytmu Jarvisa:

$$T\left({\it Jarvis}, n
ight) = T\left({\it FindStart}, n
ight) + k \cdot \left(T\left({\it FindNext}, n
ight) + O\left(1
ight)
ight) = \Theta \left(kn
ight),$$

gdzie k jest liczbą punktów tworzących otoczkę wypukłą zbioru Q,

• złożoność pamięciowa algorytmu Jarvisa: O(1),

Pytanie. Jaka jest pesymistyczna złożoność czasowa algorytmu Jarvisa?

Pytanie. Jaka jest średnia złożoność czasowa algorytmu Jarvisa?

Literatura

- T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Wprowadzenie do algorytmów, WNT 2004.
- 2 L. Banachowski, K. Diks, W. Rytter, *Algorytmy i struktury danych*, WNT 1996.
- A. V. Aho, J. E. Hopcroft, J. D. Ullman, Algorytmy i struktury danych, Helion 2003.
- A. Dańko, T. L. Lee, G. Mirkowska, P. Rembelski, A. Smyk, M. Sydow, Algorytmy i struktury danych zadania, PJWSTK 2006.
- R. Sedgewick, Algorytmy w C++, RM 1999.
- N. Wirth, Algorytmy + struktury danych = programy, WNT 1999.
- A. Drozdek, D. L. Simon, Struktury danych w języku C, WNT 1996.
- O D. Harel, Rzecz o istocie informatyki Algorytmika, WNT 2001.

Zadania ćwiczeniowe

Zadania ćwiczeniowe

- Zaimplementuj algorytm Find.
- Zaimplementuj algorytm FindMax.
- Zaimplementuj algorytm Find2nd.
- Zaimplementuj algorytm Turniej.
- Zaproponuj algorytm wyszukania elementu 3-go co do wielkości w n-elementowym wektorze różnych liczb naturalnych T, gdzie n ≥ 3, bazujący na metodzie turniejowej. Uzasadnij poprawność algorytmu i oszacuj jego złożoność..
- Zaimplementuj algorytm FindMinMax.
- Zaimplementuj algorytm rekurencyjny RecMinMax, dla:
 - 1 rozmiaru danych weiściowych $n=2^k$ i $k \in \mathbb{N}^+$
 - 2 rozmiaru danych weiściowych n = 2k i $k \in \mathbb{N}^+$
- Przeprowadź doświadczalnie analizę porównawczą efektywności algorytmów FindMinMax i RecMinMax.
- Zaimplementuj następujący algorytm równoczesnego wyszukiwania minimum i maksimum w n-elementowym wektorze różnych liczb naturalnych T, gdzie n > 2:
 - dla każdej pary kolejnych elementów wektora ustawiam minimum na pozycji parzystej, a maksimum na pozycji nieparzystej.
 - 2 wyszukaj sekwencyjnie elementu minimalnego na pozycjach parzystych,
 - wyszukaj sekwencyjnie elementu maksymalnego na pozycjach nieparzystych.

Uzasadnij poprawność algorytmu i oszacuj jego złożoność. Czy podana metoda jest optymalnym rozwiązaniem rozważanego problemu?

- Zaimplementuj algorytm Jarvisa.
- Zaproponuj i zaimplementuj algorytm sprawdzania, czy dana relacja binarna w zbiorze {1,2,...,n}, zadana w postaci n-elementowego wektora T par postaci (x,y) jest:

Zadania ćwiczeniowe

- zwrotna,
- 2 symetryczna,
- 3 przechodnia.

Uzasadnij poprawność algorytmu i oszacuj jego złożoność.