2015PHIOP21

MINOR-1 Elements of Materials Processing (PYL116) 02 Feb, 2017 (9:30 AM)

Time: 60 minutes

Max. Marks: 25

(a) Describe the three basic growth mod	des for the nucleation of epitaxial thin film	ns on a
substrate. Write the value of contact a	ingle θ in each case.	(4)
(b) Draw a cleanty (no explanation) show	ving the influence of misfit on the regime of i	nfluence
for the three thin film growth modes in	terms of surface energy ratio $(\gamma_s - \gamma_f)/\gamma_s$	(2)
(a) Show graphically the variation of temperatures.	nucleus density with time at different s	substrate (2)
(b) Comment on the temperature depend heterogeneous nucleation process.	dence of ΔG^* , the energy barrier for nucleation	on during (2)
What do you understand by the terms go you find out experimentally about the exi	grains and grain boundaries in a thin film? stence of grains in a thin film?	How can (3)
for each case.	s homoepitaxy and heteroepitaxy? Give one	e example (3)
substrate. What kind of stress will exist in		(2)
	r of GaN is grown over sapphire, what kind e) > a_o (GaN) and α (sapphire) > α (GaN).	of stress , (2)
spherical particle increases by (a) 10% (b) 20%	by 10%, the homogeneous nucleation backers 30% (d) 40% neterogeneous nucleation barrier height exier height is	pressed a
(a) ½ (b) ¼	ier height is (d) none of these .	2.3
7. Write the inequality relationship (or layered) type of film growth on a	among the various surface energies that	leads to 2
 8. Chose the condition(s) that are favorable (a) Higher substrate temperature (b) High deposition rate 	vorable for obtaining films with large grai (c) Lower substrate temperature (d) Lower deposition rate	n size.
9. How does the nucleation barrier he (a) Increase	eight vary with substrate temperature? (b) Decrease	