Molecular Statistics, Week 1

Jimmy Charnley Kromann

Department of Chemistry University of Copenhagen

Motivation

Programming?!

Motivation

Video

Executing Python

python first _program.py

```
print "Hello World"

for i in range(5):
    print 'i', i
```

Output

```
Hello World
i 0
i 1
i 2
i 3
i 4
```


Programming in Python

- Variables and Datatypes
- Operators
- Comments
- Indentation
- Modules
- Looping
- If-else

Variables and Datatypes

- String
- Integer
- Float
- List

```
name = "Peter"  # String
age = 31  # Integer
height = 1.80  # Float
s = [2, 4, 8, 16] # List
```


Operators

Operator	Description
+	Addition
-	Subtraction
*	Multiplication
/	Division
%	Modulus
**	Exponent (a^b)

```
print 5.0 + 5.0
print 5.0 - 5.0
print 5.0 / 5.0
print 5.0 % 5.0
print 5.0**5.0

print 3 / 2
print 3.0 / 2.0
```


Comments and Indentation

Python is indentation based Indentation is **4 spaces**

Comments are very usefull when looking at previous code

```
a = 5
a = 5 # Error, why?
```

```
# Line comment
"""
Multiline
comment
```


Looping

```
my_list = [2.0, 4.0, 8.0]

for x in my_list:
    print x
```

```
for i in range(24):
    print 'i', i
```

```
x_list = [i**2 for i in range(10)]
```


Modules

Always in the top of the program Use Python modules or local .py-files

```
import random
import matplotlib.pyplot as plt
```

```
import video # imports video.py
```


Looping

$$K = \sum_{j=1}^{50} j^2$$

Looping

$$K = \sum_{j=1}^{50} j^2$$

```
j_list = range(1, 51)
K = 0

for j in my_list:
    K = K + j**2

print K
```

If and Else

Operator	Meaning
<	Is less than
<=	Is less than or equal to
>	ls greater than
>=	Is greater than or equal to
==	ls equal to
! =	ls not equal to

```
k = 1.0

if k == 5.0:
    print "The number is five"

if k < 5.0:
    print "Smaller than five"</pre>
```

First Exercise

```
import random
import matplotlib.pyplot as plt
# initialize some variables
n_particles = 100
n_steps = 1
dt = 0.01
# create the x- and y-coordinates
pos_x = [random.random() for i in range(n_particles)]
pos_y = [random.random() for i in range(n_particles)]
# plot the x- and y-coordinates in a figure.
plt.plot(pos_x, pos_y, 'ro')
plt.axis((-1, 1, -1, 1))
plt.savefig('coordinates_start.png')
```

The End

Exercise time

