

Concours d'entrée 2013 - 2014 La distribution des notes est sur 25 Mathématiques

Durée: 3 heures 13 juillet 2013

I- (2.5 pts) L'espace est rapporté à un repère orthonormé (O; \vec{i} , \vec{j} , \vec{k}).

On considère dans le plan (P) d'équation 2x+y-2z+3=0, le cercle (C) de centre A(1;-3;1) et de rayon $\sqrt{3}$; et dans le plan (Q) d'équation x-y-z-3=0, le cercle (γ) de centre B(2;-1;0) et de rayon 3.

- 1- Ecrire un système d'équations paramétriques de chacun des deux axes (d) de (C) et (δ) de (γ) .
- 2-Déterminer le point d'intersection I de (d) et (δ) .
- 3- Montrer que I est le centre d'une sphère (S) contenant les cercles (C) et (γ) . Calculer le volume de (S).
- II- (3.5 pts) On considère l'équation (E): $(\cos^2 \alpha)z^2 + (\sin 2\alpha)z + 1 + \sin^2 \alpha = 0$ où $0 \le \alpha < \frac{\pi}{2}$.

Soit M' et M'' les images, dans le plan complexe, des solutions z' et z'' de (E).

- 1- Calculer z' et z'' en fonction de α et montrer que , quand α varie , $z'^2+z''^2$ reste constant .
- 2-Calculer M'M'' en fonction de α et déterminer α tel que M'M'' soit minimum.
- 3- Montrer que, quand α varie, M' et M'' varient sur une hyperbole (H) de centre O, pour laquelle on détermine les asymptotes, un foyer et la directrice associée. Tracer (H).
- III- (3.5 pts) On considère les suites (U_n) , (V_n) et (W_n) définies pour tout entier naturel $n \ge 1$ par

$$U_n = \frac{1^3}{n^4} + \frac{2^3}{n^4} + \dots + \frac{n^3}{n^4} \; ; \quad V_n = \frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2} \quad \text{et} \quad W_n = \sin\frac{1}{n^2} + \sin\frac{2}{n^2} + \dots + \sin\frac{n}{n^2} \; .$$

- 1- Montrer que (U_n) est majorée par 1 et que (V_n) converge vers $\frac{1}{2}$
- 2- a) En utilisant l'inégalité (1) : $x \frac{x^3}{6} \le \sin x \le x$ qui est vraie pour tout x dans $[0; +\infty[$, montrer que :

Pour tout $n \ge 1$ et pour tout entier naturel k, $\frac{k}{n^2} - \frac{1}{6n^2} \times \frac{k^3}{n^4} \le \sin \frac{k}{n^2} \le \frac{k}{n^2}$.

- b) Montrer que , pour tout $n \ge 1$, $V_n \frac{1}{6n^2} \times U_n \le W_n \le V_n$. En déduire que $V_n \frac{1}{6n^2} \le W_n \le V_n$.
- c) Montrer que (W_n) est convergente et déterminer sa limite .
- IV- (3.5 pts) On considère une urne contenant 10 boules dont n sont vertes, m sont rouges et les autres sont blanches telles que $n \ge 2$; $m \ge 2$ et $n + m \le 8$.

Un joueur paye 5 \$ et tire deux boules au hasard de cette urne .

Soit X la variable aléatoire qui est égale au gain algébrique du joueur après le jeu .

Le joueur gagne 15 \$ pour chaque boule verte tirée , 5 \$ pour chaque boule rouge tirée et perd 5 \$ pour chaque boule blanche tirée .

- 1- a) Déterminer les valeurs de X.
 - b) Calculer p(X=25) et p(X=15) en fonction de n et m.
 - c) Sachant que $p(X=25) = \frac{1}{15}$ et $p(X=15) = \frac{2}{15}$, déterminer n et m.
- 2- On suppose dans cette partie que l'urne contient 3 boules vertes, 2 boules rouges et 5 boules blanches.
 - a) Déterminer la loi de probabilité de X et calculer son espérance mathématique .
 - b) Calculer la probabilité que le joueur ait tiré 2 boules de même couleur sachant que son gain algébrique est positif .
- **V- (5 pts)** On donne dans un plan orienté, un cercle (C) de centre A et de rayon 3 et un cercle (C') de centre B et de rayon 1, tels que AB = 6.
 - 1- Soit S la similitude d'angle $\frac{\pi}{3}$ qui transforme (C) en (C').
 - a) Déterminer le rapport de S et justifier que son centre I est tel que IA = 3IB.
 - b) Montrer que $IA = \frac{18}{\sqrt{7}}$ et $IB = \frac{6}{\sqrt{7}}$. Construire I.
 - 2- Soit r la rotation de centre A et d'angle $\frac{2\pi}{3}$ et h l'homothétie de centre A et de rapport $\frac{2}{3}$.
 - a) Construire les points D et E tels que D = r(B) et E = h(B).
 - b) Calculer $\frac{BE}{AD}$ et $(\overrightarrow{AD}; \overrightarrow{BE})$. En déduire S(D).
 - c) Montrer que I appartient au cercle circonscrit au triangle ADE.

Dans ce qui suit, on rapporte le plan au repère orthonormé direct $(A; \overrightarrow{u}, \overrightarrow{v})$ tel que $\overrightarrow{u} = \frac{1}{6} \overrightarrow{AB}$.

- 3- Déterminer la relation complexe de la similitude S. En déduire l'affixe de I.
- 4- a) Déterminer la relation complexe de chacune de la rotation r et de l'homothétie h.
 - b) Déterminer l'affixe de chacun des points D et E et vérifier que S(D)=E.
- VI- (7 pts) On considère la fonction f définie sur l'intervalle]0; $+\infty[$ par $f(x) = \ell n^2 x \ell n x$.
 - Soit (C) la courbe représentative de f dans un repère orthonormé $(O; \vec{i}, \vec{j})$.
 - 1- Déterminer les points d'intersection A et B, ($x_A < x_B$), de (C) avec l'axe des abscisses.
 - 2- a) Dresser le tableau de variations de f et déterminer le point S correspondant au minimum de f .
 - b) Montrer que la restriction de f sur l'intervalle]0;1] admet une fonction réciproque f^{-1} que l'on déterminer a. suite géométrique croissante dont la raison est à déterminer .

- 3- a) Etudier la concavité de (C) et déterminer son point d'inflexion I.
 - b) Vérifier que les abscisses des points A, B, S et I sont, dans un certain ordre, 4 termes consécutifs d'une
- 4- Tracer (C) . (Unité graphique : 2 cm)
- 5- a) Déterminer, en fonction de α , une équation de la tangente (d) à (C) au point M d'abscisse α .
 - b) Déterminer l'ordonnée β du point d'intersection de (d) avec l'axe des ordonnées.
 - c) Montrer que , quand α décrit]0; $+\infty[$, β admet un minimum β_0 . Déterminer β_0 et la position correspondante de M .
- 6- a) Montrer que, pour tout $m > \beta_0$, il existe deux points M_1 et M_2 sur (C) où la tangente à (C) coupe l'axe des ordonnées au point d'ordonnée m.
 - b) Montrer que les abscisses α_1 et α_2 de M_1 et M_2 sont telles que $\alpha_1 \alpha_2 = e^3$.
 - c) Déterminer le point E de (C) tel que les tangentes à (C) aux points E et B se coupent sur l'axe des ordonnées.
- 7- On considère la suite (I_n) définie sur IN par $I_n = \int_{1}^{e} (\ell n x)^n dx$.
 - a) A l'aide d'une intégration par parties , montrer que , pour tout $n \ge 1$, $I_n = e nI_{n-1}$.
 - b) Calculer l'aire du domaine limité par (C) et l'axe des abscisses en cm^2 .

Concours d'entrée 2013 - 2014 La distribution des notes est sur 25 Solution de Mathématiques

Durée: 3 heures 13 juillet 2013

EXERCICE 1

- 1- L'axe (d) de (C) est perpendiculaire à (P) de A; u (2;1;-2) est un vecteur directeur de (d). Un système d'équations paramétriques de (d) est $(x=2t+1; y=t-3; z=-2t+1; t\in IR)$ L'axe (δ) de (γ) est perpendiculaire à (Q) de B; v (1;-1;-1) est un vecteur directeur de (δ) . Un système d'équations paramétriques de (δ) est $(x=m+2; y=-m-1; z=-m; m\in IR)$.
- 2- Le système (2t+1=m+2; t-3=-m-1; -2t+1=-m) a une solution unique m=t=1. donc, (d) et (δ) se coupent au point I(3;-2;-1).
- 3- I appartient à (d) alors I est équidistant de tous les points de (C); pour tout point M de (C), le triangle IAM est droite à A tel que $IA = \sqrt{4+1+4} = 3$ et $AM = r = \sqrt{3}$ alors $IM = \sqrt{IA^2 + AM^2} = \sqrt{12} = 2\sqrt{3}$. I appartient à (δ) alors I est équidistant de tous les points de (γ) ; pour tout point M de (γ) , le triangle IBM est droite à B tel que $IB = \sqrt{1+1+1} = \sqrt{3}$ et BM = r' = 3 alors $IM = \sqrt{IB^2 + BM^2} = \sqrt{12} = 2\sqrt{3}$. Donc I est équidistant de tous les points de $(C) \cup (\gamma)$. Par conséquent, I est le centre d'une sphère (S) de rayon $R = 2\sqrt{3}$ contenant le cercles (C) et (γ) .

EXERCICE 2

1- (E): $(\cos^2 \alpha)z^2 + 2(\sin \alpha \cos \alpha)z + 1 + \sin^2 \alpha = 0$; pour tous $[0; \frac{\pi}{2}[$, l'équation (E) est quadratique.

 $\Delta' = \sin^2 \alpha \cos^2 \alpha - \cos^2 \alpha - \sin^2 \alpha \cos^2 \alpha = -\cos^2 \alpha = i^2 \cos^2 \alpha.$

Les solutions de (E) sont $z' = \frac{-\sin\alpha\cos\alpha + i\cos\alpha}{\cos^2\alpha} = -\tan\alpha + \frac{1}{\cos\alpha}i$ et $z'' = -\tan\alpha - \frac{1}{\cos\alpha}i$.

$$z^{12} + z^{12} = \left(-\tan\alpha + \frac{1}{\cos\alpha}i\right)^2 + \left(-\tan\alpha - \frac{1}{\cos\alpha}i\right)^2 = 2\left(\tan^2\alpha - \frac{1}{\cos^2\alpha}\right) = 2(-1) = -2.$$

$$OU \quad z'^2 + z''^2 = (z' + z'')^2 - 2z'z'' = (-2\tan\alpha)^2 - 2\left(\frac{1}{\cos^2\alpha} - \tan^2\alpha\right) = -2(1) = -2 .$$

2-
$$M'M'' = |z'-z''| = \left|\frac{2}{\cos\alpha}i\right| = \left|\frac{2}{\cos\alpha}\right| = \frac{2}{\cos\alpha}$$
 puisque $0 \le \alpha < \frac{\pi}{2}$ alors $\cos\alpha > 0$.

M'M" minimum est équivalent à $\cos \alpha$ est maximum ou $0 < \cos \alpha \le 1$; donc

M'M'' est minimum quand $\cos \alpha = 1$; c'est quand $\alpha = 0$

3- $M'(-\tan\alpha; \frac{1}{\cos\alpha})$ et $M''(-\tan\alpha; \frac{-1}{\cos\alpha})$ sont les images de z'et z".

Les coordonnées x et y de chacun de M' et M" sont tels que $x^2 - y^2 = \tan^2 \alpha - \frac{1}{\cos^2 \alpha} = -1$.

donc, comme α varie, M' et M'' varie sur l'hyperbole (H) d'équation $y^2 - x^2 = 1$. Le centre de (H) est l'origine O, les asymptotes sont les droites d'équations y = x et y = -x. L'axe central de (H) est l'axe des ordonnées.

a = b = 1 alors $c = \sqrt{2}$; Donc $F(0, \sqrt{2})$ est un axe de (H) et le droite (d) d'équation $y = \frac{a^2}{c} = \frac{\sqrt{2}}{2}$ est la directrice associée.

Dessinez (H).

EXERCICE 3

$$1-U_n = \frac{1}{n^4} + \frac{2^3}{n^4} + \frac{3^3}{n^4} + \dots + \frac{n^3}{n^4} \text{ alors } U_n \le \underbrace{\frac{n^3}{n^4} + \frac{n^3}{n^4} + \frac{n^3}{n^4} + \dots + \frac{n^3}{n^4}}_{n \text{ times}} = n \left(\frac{n^3}{n^4}\right) = 1$$

 $V_n = \frac{1 + 2 + 3 + \dots + n}{n^2} = \frac{n(n+1)}{2n^2} \text{ alors } \lim_{n \to +\infty} V_n = \lim_{n \to +\infty} \frac{n^2}{2n^2} = \frac{1}{2} \text{ et } (V_n) \text{ converge de } \frac{1}{2}.$

- 2- La séquence (W_n) est définie pour $n \ge 1$ par $W_n = \sin \frac{1}{n^2} + \sin \frac{2}{n^2} + \sin \frac{3}{n^2} + \cdots + \sin \frac{n}{n^2}$.
 - a) En appliquant (1) à $\frac{1}{n^2}$ nous obtenons $\frac{1}{n^2} \frac{1^3}{6n^6} \le \sin \frac{1}{n^2} \le \frac{1}{n^2}$; à savoir $\frac{1}{n^2} \frac{1}{6n^2} \times \frac{1^3}{n^4} \le \sin \frac{1}{n^2} \le \frac{1}{n^2}$.
 - b) En appliquant (1) à $\frac{k}{n^2}$ pour $k \in \{1; 2; 3 \cdot \dots; n\}$ et en ajoutant les n inégalités nous obtenons $V_n \frac{1}{6n^2} \times U_n \le W_n \le V_n$.

Pour tous $n \ge 1$, $U_n \le 1$ alors $V_n - \frac{1}{6n^2} \le W_n \le V_n$.

c) (V_n) converge à $\frac{1}{2}$ et $\lim_{n \to +\infty} \frac{1}{6n^2} = 0$ alors (W_n) est convergente et sa limite est égale à $\frac{1}{2}$.

EXERCICE 4

- 1- La variable aléatoire X représente le gain algébrique total du joueur après le match.
 - a) Si le joueur tire 2 boules vertes alors, X = 15 + 15 5 = 25.
 - Si le joueur tire une boule verte et une rouge alors, X = 15 + 5 5 = 15.
 - Si le joueur tire une boule verte et un blanc alors, X = 15 5 5 = 5.
 - Si le joueur tire 2 boules rouges alors, X = 5+5-5=5.
 - Si le joueur tire une boule rouge et un blanc alors, X = 5 5 5 = -5.
 - Si le joueur tire 2 boules blanc alors X = -5 5 5 = -15.

Par conséquent, l'ensemble des valeurs de X est $\{-15; -5; 5; 15; 25\}$.

- b) Lorsque 2 boules sont tirées au hasard dans l'urne qui contient les 10 boules, l'espace de l'échantillon est équiprobable et consiste de $_{10}C_2$ de résultats possible.
 - (X = 25) représente l'événement " le joueur tire deux boules vertes "; donc

$$p(X = 25) = \frac{{}_{n}C_{2}}{{}_{10}C_{2}} = \frac{n(n-1)}{90}$$
.

• (X = 15) représente l'événement " le joueur tire un boules vertes et un rouges " donc

$$p(X=15) = \frac{n \times m}{{}_{10}C_2} = \frac{n \times m}{45}$$

c) $p(X = 25) = \frac{1}{15}$ est équivalente de $\frac{n(n-1)}{90} = \frac{1}{15}$; n(n-1) = 6 donc n = 3.

$$p(X=15) = \frac{2}{15}$$
 est équivalente de $\frac{n \times m}{45} = \frac{2}{15}$; $mn = 6$ ou $n = 3$; donc $m = 2$.

- 2- Supposons que dans cette partie que l'urne contient 3 boules vertes, 2 boules rouges et 5 boules blanches.
 - a) (X = -15) est le cas " le joueur tire deux boules blanches "; Donc $p(X = -15) = \frac{{}_5C_2}{{}_{10}C_2} = \frac{2}{9}$.
 - (X = -5) est le cas " le joueur tire 1 boule rouge et 1 blanche "; $p(X = -5) = \frac{2 \times 5}{{}_{10}C_2} = \frac{2}{9}$.
 - (X=5) est le cas " le joueur tire 1 boule verte et 1 blanche ou 2 boules rouges ";

$$p(X=5) = \frac{3\times5}{{}_{10}C_2} + \frac{{}_{2}C_2}{{}_{10}C_2} = \frac{16}{45}.$$

•
$$p(X=15) = \frac{2}{15}$$
 et $p(X=25) = \frac{1}{15}$

Le gain attendu du joueur est $\overline{X} = -15 \times \frac{2}{9} - 5 \times \frac{2}{9} + 5 \times \frac{16}{45} + 15 \times \frac{2}{15} + 25 \times \frac{1}{15} = 1$ \$.

b) Soit A: " le joueur tire 2 boules de même couleur " et B: " le gain algébrique est positive " . La probabilité requise est $p(A/B) = \frac{p(A \cap B)}{p(B)}$ ou

 $A \cap B$: " le joueur tire 2 boules vertes ou 2 boules rouges ";

$$p(A \cap B) = p(X = 25) + \frac{{}_{2}C_{2}}{{}_{10}C_{2}} = \frac{1}{15} + \frac{1}{45} = \frac{4}{45}$$
 et

$$p(B) = p(X = 5) + p(X = 15) + p(X = 25) = \frac{25}{45} = \frac{5}{9}$$
.

Donc
$$p(A/B) = \frac{p(A \cap B)}{p(B)} = \frac{4}{25}$$
.

EXERCICE 5

- 1- S est la similitude de centre I angle $\frac{\pi}{3}$ qui transforme (C) en (C').
 - a) Le rapport de S est $k = \frac{rayon \ de(C')}{rayon \ de(C)} = \frac{1}{3}$.
 - La similitude transforme le centre A de (C) dans le centre B de (C'); donc $IB = \frac{1}{3}IA$; alors IA = 3IB.
 - b) S(A) = B; alors $(\overrightarrow{IA}; \overrightarrow{IB}) = \frac{\pi}{3} (2\pi)$.
 - Dans le triangle *IAB* nous pouvons écrire $AB^2 = IA^2 + IB^2 2IA \times IB \times \cos \frac{\pi}{3}$; tel que

$$36 = 9IB^2 + IB^2 - 3IB^2$$
; $IB^2 = \frac{36}{7}$

Donc
$$IB = \frac{6}{\sqrt{7}}$$
 et $IA = \frac{18}{\sqrt{7}}$.

• Les points A et B étant donné, le point I appartient au cercle (γ) de centre A et de rayon -

Et le cercle (γ') de centre B et de rayon $\frac{6}{\sqrt{7}}$.

Les cercles (γ) et (γ') se coupent en deux points; I est le point tel que $(\overrightarrow{IA}; \overrightarrow{IB}) = +\frac{\pi}{3}$ (2π) .

- 2- Considère la rotation $r = r(A, \frac{2\pi}{3})$ et la dilatation $h = h(A, \frac{2}{3})$.
 - a) D = r(B); donc D est le point tel que AD = AB = 6 et $(\overrightarrow{AB}; \overrightarrow{AD}) = \frac{2\pi}{3}$ (2π) .
 - E = h(B); donc E est le point tel que $\overrightarrow{AE} = \frac{2}{3} \overrightarrow{AB}$; donc E est le point de AE = A et BE = A.
 - b) $\frac{BE}{AD} = \frac{2}{6} = \frac{1}{3}$.
 - $(\overrightarrow{AD};\overrightarrow{BE}) = (\overrightarrow{AD};\overrightarrow{BA}) = -(\overrightarrow{BA};\overrightarrow{AD}) = -(\overrightarrow{AB};\overrightarrow{AD}) + \pi = -\frac{2\pi}{3} + \pi = \frac{\pi}{3} (2\pi).$
 - Les relations ci-dessus avec S(A) = B montre que S(D) = E.

c)
$$S(D) = E$$
 donne $(\overrightarrow{ID}; \overrightarrow{IE}) = \frac{\pi}{3} (2\pi)$.

Le quadrilatère AEID est cyclique pour avoir deux angles complémentaires opposées $E\widehat{ID}$ et $E\widehat{AD}$; donc I appartient au cercle circonscrit au triangle ADE.

Dans ce qui suit, on rapporte le plan au repère orthonormé direct $(A; \overrightarrow{u}, \overrightarrow{v})$ tel que $\overrightarrow{u} = \frac{1}{6} \overrightarrow{AB}$.

3- Dans ce système, nous avons A(0;0), B(6;0)

La relation complexe de la similitude $S(I; \frac{1}{3}; \frac{\pi}{3})$ est du forme z' = az + b ou

$$a = \frac{1}{3}e^{i\frac{\pi}{3}} = \frac{1}{3}(\frac{1}{2} + \frac{\sqrt{3}}{2}i) = \frac{1}{6} + \frac{\sqrt{3}}{6}i.$$

•
$$B = S(A)$$
; tel que $z_B = a z_A + b$; $6 = b$.

Donc la relation complexe de S est $z' = (\frac{1}{6} + \frac{\sqrt{3}}{6}i)z + 6$.

L'affixe du center I de S est $z_I = \frac{b}{1-a} = \frac{6}{\frac{5}{6} - \frac{\sqrt{3}}{6}i} = \frac{36}{5 - \sqrt{3}i} = \frac{36(5 - \sqrt{3}i)}{28} = \frac{45}{7} - \frac{9\sqrt{3}}{7}i$.

4- a) la relation complexe du rotation $r(A; \frac{2\pi}{3})$ est du forme z' = az + b ou

$$a = e^{i\frac{2\pi}{3}} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i.$$

•
$$A = r(A)$$
; tel que $b = 0$.

Donc la relation complexe de r est $z' = \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)z$.

la relation complexe de la dilatation $h(A; \frac{2}{3})$ est $z' = \frac{2}{3}z$.

b) •
$$D = r(B)$$
; donc $z_D = (-\frac{1}{2} + \frac{\sqrt{3}}{2}i)z_B = 6(-\frac{1}{2} + \frac{\sqrt{3}}{2}i) = -3 + 3\sqrt{3}i$; $D(-3; +3\sqrt{3})$.

•
$$E = h(B)$$
; donc $z_E = \frac{2}{3}z_B = 4$; $E(4; 0)$.

•
$$(\frac{1}{6} + \frac{\sqrt{3}}{6}i)z_D + 6 = (\frac{1}{6} + \frac{\sqrt{3}}{6}i)(-3 + 3\sqrt{3}i) + 6 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i - \frac{3}{2}i - \frac{3}{2} + 6 = 4 = z_E$$
; donc $S(D) = E$.

EXERCICE 6

La fonction f définie sur l'intervalle]0; $+\infty[$ par $f(x) = \ell n^2 x - \ell n x$.

- 1- Les abscisses des points d'intersection de (C) et l'axe des abscisses sont les solutions de l'équation f(x) = 0 ce qui est équivalent à $\ell n^2 x \ell n x = 0$; $\ell n x = 0$ ou $\ell n x = 1$ donc x = 1 ou x = e. Les points d'intersection de (C) et x'x sont A(1;0) et B(e;0).
- 2- a) $\lim_{x \to 0^{+}} \ln x = -\infty$ donc $\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (\ln^{2} x \ln x) = +\infty$. $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \ln x (\ln x - 1) = +\infty$. $f'(x) = \frac{2\ln x - 1}{x}$.

Figure 18

Table de variations de f

Le point de (C) correspondant au minimum de f est $S(\sqrt{e}; -\frac{1}{4})$.

b) la restriction de f sur l'intervalle]0;1] est continue et strictement décroissante donc, il a un inverse fonction f^{-1} définie sur $f(]0;1]) = [0;+\infty[$.

Pour tous x dans $[0; +\infty[$, $y = f^{-1}(x)$ est équivalente à $x = f(y) = \ell n^2 y - \ell n y$;

tel que $\ln^2 y - \ln y - x = 0$ ou $y \in (0, 1)$ alors $\ln y \in (-\infty, 0)$; donc $\ln y = \frac{1 - \sqrt{1 + 4x}}{2}$ et

$$y = \exp\left(\frac{1 - \sqrt{1 + 4x}}{2}\right).$$

Finalement, f^{-1} est définie sur $[0; +\infty[$ by $f^{-1}(x) = \exp\left(\frac{1-\sqrt{1+4x}}{2}\right)$.

3- a)
$$f''(x) = \frac{3 - 2\ell n x}{x^2}$$
.

Table de concavité de (C)

La concavité de (C) changes au point $I(e\sqrt{e}; \frac{3}{4})$ Lequel est le point d'inflexion de (C). $\begin{array}{c|cccc}
x & 0 & e\sqrt{e} & +\infty \\
f''(x) & + & 0 & \end{array}$

(C) concaves upwards downwards

Figure 19

b) Les abscisses des points A , S , B et I sont respectivement 1 , \sqrt{e} , e et $e\sqrt{e}$; Ces nombres

sont , dans cet ordre , 4 termes consécutifs d'une suite géométrique croissante de rapport commun \sqrt{e} . 4- $\lim_{x\to 0^+} f(x) = +\infty$ alors , l'axe des ordonnées est asymptote à (C) .

Pour tous
$$n$$
 dans IN , $\lim_{x \to +\infty} \frac{\ell n^n x}{x} = 0$ alors, $\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(\frac{\ell n^2 x}{x} - \frac{\ell n x}{x} \right) = 0$;

Donc (C) a $de + \infty$ une direction asymptotique parallèle à l'axe d'abscisses.

Dessinez (C).

5- a) Une équation du tangente (d) à (C) au point M d'abscisse α est $y = f'(\alpha)(x - \alpha) + f(\alpha)$;

$$(d): y = \frac{2\ln\alpha - 1}{\alpha}(x - \alpha) + \ln^2\alpha - \ln\alpha.$$

b) (d) coupe y'y au point d'ordonnée $\beta = \ell n^2 \alpha - 3\ell n\alpha + 1$.

c) $\beta = \ell n^2 \alpha - 3\ell n\alpha + 1 = \left(\ell n\alpha - \frac{3}{2}\right)^2 - \frac{5}{4}$ alors, comme α trace $]0; +\infty[$, β trace $[-\frac{5}{4}; +\infty[$ et

prend sa valeur minimale valeur $\beta_0 = -\frac{5}{4}$ quand $\ln \alpha = \frac{3}{2}$; $\alpha = e\sqrt{e}$; telque M = I.

6- a) $\beta = m$ est équivalente à $\left(\ln \alpha - \frac{3}{2} \right)^2 = m + \frac{5}{4}$.

Pour tous $m > \beta_0$, l'équation $\beta = m$ est équivalente à $\ln \alpha - \frac{3}{2} = \sqrt{m + \frac{5}{4}}$ ou $\ln \alpha - \frac{3}{2} = -\sqrt{m + \frac{5}{4}}$;

alors , ils existent deux points M_1 et M_2 sur (C) avec abscisses α_1 et α_2 tel que $\ell n \, \alpha_1 = \frac{3}{2} + \sqrt{m + \frac{5}{4}}$ et $\ell n \, \alpha_2 = \frac{3}{2} - \sqrt{m + \frac{5}{4}}$ ou la tangente à (C) coupe l'axe des ordonnées au point avec ordonnée m.

- b) $\ln \alpha_1 + \ln \alpha_2 = 3$ alors $\ln (\alpha_1 \alpha_2) = 3$; tel que $\alpha_1 \alpha_2 = e^3$.
- OU a) $\beta = m$ est équivalente à $\ell n^2 \alpha 3\ell n\alpha + 1 m = 0$; $(\ell n\alpha)^2 3\ell n\alpha + 1 m = 0$. Pour l'équation quadratique $\ell n\alpha$: $(\ell n\alpha)^2 - 3\ell n\alpha + 1 - m = 0$, $\Delta = 4m + 5$ alors,

 Pour tous $m > \beta = -\frac{5}{4}$, cette équation a deux solutions en $\ell n\alpha$ et, $\ell n\alpha$ peut prendre n'importe quelle valeur réelle, donc ils existent deux valeurs de α pour lequel $\beta = m$; donc ils existent deux points M_1 et M_2 sur (C) ou la tangent à (C) coupe l'axe des ordonnées au point d'ordonnée m.
 - b) $\ln \alpha_1$ et $\ln \alpha_2$ sont les solutions de l'équation quadratique dans $\ln \alpha : (\ln \alpha)^2 3\ln \alpha + 1 m = 0$; donc $\ln \alpha_1 + \ln \alpha_2 = 3$ alors $\ln (\alpha_1 \times \alpha_2) = 3$; tel que $\alpha_1 \alpha_2 = e^3$.
 - c) Les tangentes à (C) de E et B se coupent sur l'axe des ordonnées si et seulement si l'abscisse est telle qui $x_B \times x_E = e^3$ ou $x_B = e$ alors $x_E = e^2$; $E(e^2; 2)$
 - 7- a) Soit $u(x) = (\ln x)^n$ et v'(x) = 1 alors $u'(x) = n \frac{(\ln x)^{n-1}}{x}$ et v(x) = x; donc

$$I_n = \int_{-1}^{e} (\ell n x)^n dx = \left[x (\ell n x)^n \right]_{1}^{e} - n \int_{-1}^{e} (\ell n x)^{n-1} dx = e - n I_{n-1}.$$

b) Pour tous x dans [1; e], $f(x) \le 0$ alors, La surface nécessaire S est telle que

$$S = -\int_{1}^{e} f(x) dx \quad unit\'e \ de \ surface \ .$$

$$\int_{1}^{e} f(x) dx = \int_{1}^{e} (\ell n^{2} x - \ell n x) dx = I_{2} - I_{1}.$$

$$I_0 = \int_1^e dx = [x]_1^e = e - 1 \text{ alors } I_1 = e - I_0 = 1 \text{ et } I_2 = e - 2I_1 = e - 2 \text{ ; donc } \int_1^e f(x) dx = e - 3 \text{ .}$$

Finalement, S = 3 - e unité de surface; tel que S = 12 - 4e cm².