

. SEQUENCE LISTING

<110> Audonnet, Jean-Christophe

```
<120> Improved DNA Vaccines for Farm Animals, In particular bovines and
   procines
   <130> 454313-3154.2
   <140>
          09/766,442
   <141>
          2001-01-16
   <160> 106
   <170> PatentIn version 3.0
   <210>
          1
   <211>
          40
   <212>
          DNA
          Artificial sequence
    <213>
   <220>
          oligonucleotide used to prepare modified plasmid pVR1020
   <223>
Ø
   <400>
   gatctgcagc acgtgtctag aggatatcga attcgcggcc
                                                                          40
Ţ
<210>
          2
   <211>
          40
   <212> DNA
   <213> Artificial sequence
<220>
          oligonucleotide used to prepare modified plasmid pVR1020
   <223>
   <400> 2
   gatccgcggc cgcgaattcg atatcctcta gacacgtgct
                                                                          40
          3
   <210>
   <211>
          20
   <212>
          DNA
   <213> Artificial sequence
   <220>
          oligonucleotide used to prepare plasmid pNS050
   <223>
   <400> 3
                                                                          20
   ttggggaccc ttgattgttc
   <210>
          4
   <211>
          21
   <212>
          DNA
   <213> Artificial sequence
```


	<220>		
	<223>	oligonucleotide used to prepare plasmid pNS050	
	<400>	4	
		gaaa aagaagaagg c	21
	cegeag	gada dagaagaagg o	
	<210>	5	
	<211>	30	
	<212>	DNA	
	<213>	Artificial sequence	
	<220>		
	<223>	oligonucleotide used to amplify sequence of intron II of rabbit lobin gene	: g
	<400>	5	
	ctccat	gtcg acttggggac ccttgattgt	30
	<210>	6	
	<211>	30	
	<212>	DNA	
₫	<213>	Artificial sequence	
=== 	<220>		
	<223>	oligonucleotide used to amplify sequence of intron II of rabbit lobin gene	: g
Ė	<400>	6	
Ù	ctccat	gtcg acctgtagga aaaagaagaa	30
=			
المائية المائية	<210>	7	
	<211>	30	
		DNA	
		Artificial sequence	
H	<220>		
		oligonucleotide used to amplify plasmid pPB278 through PCR	
	<400>	7	
	ttgtcg	acat ggccgctcgc ggcggtgctg	30
	<210>	8	
		21	
	<212>		
		Artificial sequence	
	<220>	•	
	<223>	oligonucleotide used to amplify plasmid pPB278 through PCR	
		8	
	gcaggg	cage ggetagegeg g	21

```
<210> 9 *
   <211>
          51
   <212> DNA
   <213> Artificial sequence
   <220>
    <223>
          oligonucleotide used to prepare fragment for generating plasmid p
          PB28
   <400> 9
   ctgcacgage teeggtteta egacattgae egetggteaa gaeggaetga g
                                                                         51
   <210>
          10
   <211>
          56
   <212> DNA
   <213> Artificial sequence
   <220>
          oligonucleotide used to prepare fragment for generating plasmid p
    <223>
          PB28
   <400> 10
gatecteagt eegtettgae caegeggtea atgtegtaga aceggagete gtgeag
                                                                         56
₫
    <210>
         11
    <211>
          39
    <212> DNA
    <213> Artificial sequence
   <220>
   <223> primer used in amplification of modified form of BHV-1 gB gene
   <400> 11
   aaaatttcga tatccgccgc ggggcgaccg gcgacaacg
                                                                         39
   <210> 12
   <211>
          33
   <212> DNA
   <213>
          Artificial sequence
   <220>
           primer used in amplification of modified form of BHV-1 gB gene
   <223>
   <400> 12
   ggaagatett cagteegtet tgaccaegeg gte
                                                                         33
   <210>
         13
   <211>
          37
   <212> DNA
   <213> Artificial sequence
   <220>
   <223> oligonucleotide used in ligation of 1492bp fragment from plasmid
```

'n. Ø١

pPB28

DGYAB+42.OBCCH

<400> tcgtgc	13 etge ggegeaagge eegggegege etgtagt	37
<210>	14	
<211>	37	
<212>	DNA	
<213>	Artificial sequence	
<220>		
	oligonucleotide used in ligation of 1492bp fragment from plasmi	d
	pPB28	
<400>	14	
	taca ggcgcgcccg ggccttgcgc cgcaggc	37
<210>	15	
<211>	43	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	oligonucleotide used to prepare truncated form of BHV-1 gC gene)
<400>	15	
	ctgc ccgagttctc cgcgaccgcc acgtacgact agt	43
geaceg	organication and an arrangement and	
<210>	16	
	43	
	DNA	
	Artificial sequence	
,		
<220> <223>	oligonucleotide used to prepare truncated form of BHV-1 gC gene	۵
<223>	origonacieotide asea to prepare trancated form or bit i ge gene	•
<400>	16	4 2
ctagac	tagt cgtacgtggc ggtcgcggag aactcgggca gcg	43
	17	
<211>	·	
<212>		
<213>	Artificial sequence	
<220>		
<223>	primer used in amplification of modified form of BHV-1 gC gene	
<400>	17	
	toga tatocoggog ggggotogoo gaggaggog	39
<210>	18	
<211>	32	

	DNA Artificial sequence	
222		
	primer used in amplification of modified form of BHV-1 gC gene	
<400>	18	
ggaaga	tete tagtegtaeg tggeggtege gg	32
<210>	19	
	33	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	primer used to amplify truncated gD gene of BHV-1	
<400>	19	
tttctg	caga tgcaagggcc gacattggcc gtg	33
010		
<223>	primer used to amplify truncated gb gene of BHV-1	
<400>	20	
tttcta	gatt agggcgtagc ggggggggg g	31
<210>	21	
<211>	39	
<213>	Artificial sequence	
<220>		
<223>	primer used to amplify modified form of BHV-1 gD gene	
<400>	21	
aaaatt	tega tateceeege geegegggtg aeggtatae	39
0.7.0		
	Artificial pedaence	
<220>		
<223>	primer used to prepare modified form of BHV-1 gD gene	
<400>	22	
ggaaga	tott tagggegtag eggggggggg egg	33
	<213> <220> <223> <400> ggaaga <210> <211> <212> <213> <220> <223> <400> tttctg <210> <211> <212> <213> <220> <211> <212> <213> <220> <221> <213> <400> tttcta <210> <211> <212> <213> <220> <223> <400> tttcta <210> <211> <212> <213> <220> <213> <400> <211> <212> <213> <220> <223> <400> <210> <221> <213> <220> <223> <400> <210> <221> <210> <221> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210> <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210	<pre><213> Artificial sequence <220> <221> primer used in amplification of modified form of BHV-1 gC gene <400> 18 ggaagatctc tagtcgtacg tggcggtcgc gg <210> 19 <211> 33 <212> DNA <211> Artificial sequence <220> <223> primer used to amplify truncated gD gene of BHV-1 <400> 19 tttctgcaga tgcaagggcc gacattggcc gtg <210> 20 <211> 31 <212> DNA <213> Artificial sequence <220> <221> DNA <211> 31 <212> DNA <213> Artificial sequence <221> EVENT SET SET SET SET SET SET SET SET SET SE</pre>

```
<210> 23
<211> 34
<212> DNA
<213> Artificial sequence
<220>
<223> primer used in amplification of F gene of the Snook strain of BRS
<400> 23
aaattttctg cagatggcga caacagccat gagg
                                                                      34
<210> 24
<211>
      35
<212> DNA
<213> Artificial sequence
<220>
<223> primer used in amplification of F gene of the Snook strain of BRS
<400> 24
ttaaggatcc tcatttacta aaggaaagat tgttg
                                                                      35
<210> 25
<211>
      39
<212> DNA
<213> Artificial sequence
<220>
<223> primer used in amplification of truncated form of F gene
<400> 25
aattttggat cctcatgtgg tggattttcc tacatctac
                                                                      39
<210> 26
<211> 38
<212> DNA
<213> Artificial sequence
<220>
<223> primer used in amplification of modified form of F gene
                                                                     38
aaaattcacg tgaacataac agaagaattt tatcaatc .
<210> 27
<211>
     32
<212> DNA
<213> Artificial sequence
<220>
```


	<223>	primer used to amprily 6 dene of the basy shook strain	
	<400>	27	
		cgac atgtccaacc atacccatca tc	32
	<210>	28	
	<211>	38	
	<212>	AND	
	<213>	Artificial sequence	
	<220>		
	<223>	primer used to amplify G gene	
	<400>	28	
	ttaaaa	tcta gattagatct gtgtagttga ttgatttg	38
	<210>	29	
	<211>	33	
	<212>	DNA	
	<213>	Artificial sequence	
<u>.</u>	<220>		
w	<223>	primer used to amplify truncated form of G gene	
드네마디어디	<400>	29	
U	ttttaa	ggat ccgctaaagc caagcccaca tcc	33
F			
** 1	<210>	2.0	
	<211>		
=	<211>		
		Artificial sequence	
Q	(213)	Artificial sequence	,
	<220>		
	<223>	primer used to amplify truncated form of G gene	
ļ.	<400>	30	
	ttaaaa	tcta gattagatct gtgtagttga ttg	33
	<210>	- -	
	<211>	36	
	<212>		
	<213>	Artificial sequence	
	<220>		
	<223>	oligonucleotide used to amplify cDNA of EO gene	
	<400>	31	
	catacc	gtcg acatgaagaa actagagaaa gccctg	36
	<210>	32	
	<211>	40	
	<212>	DNA	


```
<213> Artificial sequence
<220>
      oligonucleotide used in amplification of cDNA of EO gene of the O
<223>
       sloss strai
<400> 32
                                                                     40
cataccggat cctcaggctg catatgcccc aaaccatgtc
<210> 33
<211> 39
<212> DNA
<213> Artificial sequence
<220>
<223> oligonucleotide used in synthesis of EO gene
<400> 33
catgacgcgg ccgctatgaa gaaactagag aaagccctg
                                                                     39
<210> 34
<211> 40
<212>
      DNA
<213> Artificial sequence
<220>
<223>
      oligonucleotide used in synthesis of EO gene
<400> 34
                                                                     40
catgacagat ctttaggctg catatgcccc aaaccatgtc
<210> 35
<211>
      33
<212> DNA
<213> Artificial sequence
<220>
<223> oligonucleotide used in the amplification of the cDNA of E2 gene
<400> 35
catgacgtcg acatgacgac tactgcattc ctg
                                                                     33
<210> 36
<211>
      36
<212> DNA
<213> Artificial sequence
<220>
<223> oligonucleotide used in the amplification of the cDNA of E2 gene
<400> 36
```


catgac	agat cttcaacgtc ccgaggtcat ttgttc	36
<210>	37 36	
<212>		
	Artificial sequence	
(213)	Altilitual bequence	
<220>		
	oligonucleotide used in the synthesis of the E2 gene	
(2237	origonacicotiae asca in the synthesize or the 12 gene	
<400>	37	
	gegg cegetatgae gactaetgea tteetg	36
	,	
<210>	38	
<211>	35	
<212>		
	Artificial sequence	
\213/	Altificial bequence	
<220>		
	oligonucleotide used in the synthesis of the E2 gene	
(2237	origonacteofiae asca in the synthesis of the ba gene	
<400>	38	
	agat ctcaagegaa gtaateeegg tggtg	35
cacgac	agac cccaagegaa geaaceeegg eggeg	
<210>	39	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
	oligonucleotide used in the amplification of the cDNA of E2 ge	270
<223>	orradification of the amplification of the come of the	3110
<400>	39	
	tcta gaatgaccac cacagettte etaate	36
accyca	cea gaacgaeeae cacageeeee ocaaco	-
<210>	40	
<211>		
	DNA	
	Artificial sequence	
<213>	Arcilicial sequence	
<220>		
	oligonucleotide used in the amplification of the cDNA of E2	
<223>	origonucteotide used in the amplification of the CDNA of E2	
<400>	40	
		39
actgta	agat ctttaagtat tcactccagc acccatagc	39
<210>	41	
<211>	41	
<212>		
<213>	Artificial sequence	
.000		
<220>		

OGV WOTHE OGOSOH

	<223>	oligonucleotide used in synthesis of E2 gene	
	<400> catgace	41 gegg cegeeetatg accaceacag ettteetaat e	41
	<210>		
	<211>		
	<212>	DNA Artificial sequence	
	(213)	Arcificial sequence	
	<220>		
	<223>	oligonucleotide used in synthesis of E2 gene	
	<400>	42	
		agat ctttatatga actctgagaa gtagtc	36
	ouoguo.	agaa coocacaa accoogagaa gengee	
	<210>		
	<211>		
	<212>		
.	<213>	Artificial sequence	
] =	<220>		
4ասու 1ն 1ն 16 և աման ուղեց ենսու Կյուի վուրե	<223>	oligonucleotide used in amplification of the cDNA of the E0 g	ene
념 전			
e Te	<400>	43	
``` ***	catacco	gtcg acatgagaaa gaaattggag aaggcactg	39
_ ;;			
1	<210>	44	
•	<211>	39	
=	<212>	DNA	
<del>-</del>	<213>	Artificial sequence	
4H 14.63 4G 4H 16.14			
4	<220>	oligonucleotide used in amplification of the cDNA of the E0 g	ana
# #	<223>	origonacteoride used in amplification of the CDNA of the Eo g	CHE
£	<400>	44	
	catacco	ggat ceteatgetg catgageace aaaceatge	39
	<210>	45	
	<211>		
	<212>		
		Artificial sequence	
		. —	
	<220>		
	<223>	oligonucleotide used in the synthesis of the EO gene	
	<400>	4.5	
		45 gegg cegetatgag aaagaaattg gagaaggeae tg	42
	cacgacg	gogg cogotatgag adagaaaceg gagaaggeac eg	12
	<210>		
	<211>	39	
	<b>-212</b>	DMA	

	<213>	Artificial sequence	
	<220>		
	<223>	oligonucleotide used in the synthesis of the EO gene	
	<400>		
	catacc	agat cttcatgctg catgagcacc aaaccatgc	39
	<210>	47	
	<211>		
	<212>		
	<213>	Artificial sequence	
	<220>		
	<223>	oligonucleotide used in amplification of cDNA of HN gene	
	<400>	47	
	catatc	gtcg acatggaata ttggaaacac acaaacagc	39
	<210>	4.8	
	<211>		
≠ ≒	<212>		
II II wat met dien hal hap	<213>	Artificial sequence	
1	<220>		
ţ.c.		oligonucleotide used in amplification of cDNA of HN gene	
= =	<400>	48	
1	catgac	gata tctagctgca gtttttcgga acttctgt	38
4			
ji T	<210>	49	
af Z	<211>		
±* *}	<212>	DNA	
նայն կույն հայն նում անոր	<213>	Artificial sequence	
i i	<220>		
	<223>	oligonucleotide used in the synthesis of the HN gene	
	<400>		
	catact	gcgg ccgctttaat tcaagagaac aat	33
	010		
	<210> <211>		
	<211>		
		Artificial sequence	
	7413/	metricial poquence	
	<220>		
	<223>	oligonucleotide used in the synthesis of the HN gene	
	<400>	50	
		gata tetagetgea gtttttegga aette	35

```
<210> 51 '
 <211>
 36
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> oligonucleotide used in the amplification of cDNA of the F gene
 <400> 51
 36
 catatcgtcg acatgatcat cacaaacaca atcata
 <210> 52
 <211>
 36
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> oligonucleotide used in the amplification of cDNA of the F gene
 <400> 52
 36
 catgaccaga tcttattgtc tatttgtcag tatata
<210> 53
<211>
 42
 <212> DNA
 <213> Artificial sequence
 <220>
 oligonucleotide used in the synthesis of the F gene
 <223>
3
IBIBI
 <400> 53
 42
 catactgcgg ccgctcaaat agacataaca aaactgcaac gt
 <210> 54
 <211>
 41
 <212> DNA
 <213> Artificial sequence
 <220>
 <223>
 oligonucleotide used in the synthesis of the F gene
 <400> 54
 41
 catatogata totatgoact agattgatac caacttccaa c
 <210>
 55
 <211>
 36
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> primer used in the amplification of the gB gene
```



	<400>	55	
	ttttaa	gata teatgecege tggtggeggt etttgg	36
	<210>	56	
	<211>	39	
	<212>	DNA	
	<213>	Artificial sequence	
	<220>		
	<223>	primer used in the amplification of the gB gene	
	.400.	56	
	<400>		39
	llllad	ggat ccctacaggg cgtcggggtc ctcgctctc	33
	<210>	57	
	<211>	39	
	<212>	DNA	
	<213>	Artificial sequence	
	<220>		
-		primer used in the amplification of the truncated form of the	gВ
		gene	_
 	<400>	57	
<u>J</u>	ttttaa	ggat ccctagtggt ccaccttgac cacgcggtc	39
<u> </u>			
F			
4	<210>	58	
TU	<211>	39	
3	<212>		
	<213>	Artificial sequence	
<u>m</u>	<220>		
J	<223>	primer used in the amplification of the modified form of the g	B a
Ф	12207	ene	- 5
ļ=i	<400>	58	
	aaaatt	tega tatecacete ggeetegeeg aegeeeggg	39
	<210>	59	
	<211>	36	
	<212>	DNA	
	<213>	Artificial sequence	
	<220>		
		primer used in the amplification of the gC gene	
	12237	primer about in one amplification of one go gone	
	<400>		
	ttttaa	gata tcatggcctc gctcgcgcgt gcgatg	36
	<210>	60	
	<211>		
	<212>	DNA	



	(2137	Arctifetat bequence	
	<220>		
		primer used in the amplification of the gC gene	
	<400>	60	37
	LLLLAA	agat ctttaaggcc ccgcctggcg gtagtag	، د
	<210>	61	
	<211>		
	<212>		
	<213>	Artificial sequence	
	<220>		
	<223>	primer used in the amplification of the truncated form of the	ЭC
		gene	
	<400>	61	
	ttttaa	agat ctttaggggg aggcgtcgta gcgctg	36
		62	
Ø	<211>		
÷]	<212>		
	<213>	Artificial sequence	
	<220>		
	<223>	primer used in the amplification of the modified form of the go	C 9
		ene	
	400		
# #==	<400>	62 tega tatecaegge geteggeaeg aegeceaae	3 9
	aaaacc	toga tatocacyge gereggeacy acgereaac	
o			
m	<210>	·	
m	<211>		
	<212>		
<b>!</b>	<213>	Artificial sequence	
	<220>		
		primer used in the amplification of the gD gene	
	<400>	63	
	aatttt	gata tcatgctgct cgcagcgcta ttggcg	36
	<210>	64	
	<211>		
	<212>		
		Artificial sequence	
		-	
	<220>		
	<223>	primer used in the amplification of the gD gene	
	<400>	64	
	aatttt	ggat ccctacggac cgggctgcgc ttttag	36



```
<210> 65
 <211>
 40
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> primer used in amplification of the truncated form the gD gene
 <400> 65
 aaattttgga tccctagcgg tggcgcgaga cgcccggcgc
 40
 <210> 66
 <211> 39
 <212> DNA
 <213> Artificial sequence
 <220>
 primer used in the amplification of the modified gD gene
 <223>
 <400> 66
Ą
 39
 aaaatttcga tatccacctt cccccgccc gcgtacccg
<210> 67
 <211>
 30
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> oligonucleotide used in the amplification of the cDNA of the ORF3
 gene
 <400> 67
 30
 cactacgata tcatggctca tcagtgtgca
 <210> 68
 <211>
 30
 <212> DNA
 <213> Artificial sequence
 <220>
 oligonucleotide used in the amplification of the cDNA of the ORF3
 <223>
 gene
 <400> 68
 30
 cactacagat ctttatcgtg atgtactggg
 <210>
 69
 <211>
 30
 <212> DNA
 <213> Artificial sequence
```

• •



```
<220>
<223> oligonucleotide used in the amplification of the cDNA of the ORF5
<400> 69
 30
ctcaccgtcg acatgagatg ttctcacaaa
<210>
 70
<211> 30
<212> DNA
<213> Artificial sequence
<220>
 oligonucleotide used in the amplification of the cDNA of the ORF5
<223>
 gene
<400> 70
 30
ctcacctcta gactaggcct cccattgctc
<210> 71
<211> 30
<212> DNA
<213> Artificial sequence
<220>
<223> oligonucleotide used in synthesis of ORF5 gene
<400> 71
 30
caccteggat cetttgeega tggcaacgge
<210> 72
<211>
 33
<212> DNA
<213> Artificial sequence
<220>
 oligonucleotide used in synthesis of ORF5 gene
<223>
<400> 72
cacctcggat ccttagactt cggctttgcc caa
 33
<210>
 73
<211> 30
<212> DNA
<213> Artificial sequence
<220>
<223> oligonucleotide used in amplification of the cDNA of the ORF6 gene
<400> 73
cactcagtcg acatgggagg cctagacgat
 30
```

. .

때 나무 때 때 다 때



```
<210>
 74
<211> 30
<212> DNA
<213> Artificial sequence
<220>
<223>
 oligonucleotide used in amplification of the cDNA of the ORF6 gene
<400> 74
cactcatcta gattaccggc catacttgac
 30
<210>
 75
<211> 30
<212> DNA
<213> Artificial sequence
<220>
 oligonucleotide used in amplification of the ORF6 gene
<223>
<400> 75
 30
cactacggat ccgtgtcacg cggccgactc
<210>
 76
<211>
 33
<212> DNA
<213> Artificial sequence
<220>
<223> oligonucleotide used in amplification of the ORF6 gene
cactacggat ccttaaacag ctcgtttgcc gcc
 33
<210>
 77
<211>
 30
<212>
 DNA
<213> Artificial sequence
<220>
 oligonucleotide used in the amplification of the cDNA of the ORF3
 gene
<400> 77
 30
cactacgata tcatggttaa tagctgtaca
<210>
 78
<211>
 30
<212> DNA
<213> Artificial sequence
<220>
```



	<223>	oligonucleotide used in the amplification of the cDNA of the cgene	RF3
	<400>	78	
		tcta gactatcgcc gtacggcact	-30
	caccac		
	<210>	79	
	<211>	30	
	<212>	DNA	
	<213>	Artificial sequence	
	<220>		
	<223>	oligonucleotide used in the amplification of the cDNA of the C	RF5
	1220	gene	
	<400>	79	
	cactac	gata tcatgttgga gaaatgcttg	30
	<210>	80	
		30	
	<212>		
		Artificial sequence	
<u>u</u>	1220		
	<220>		
	<223>	oligonucleotide used in the amplification of the cDNA of the Ggene	RF5
=	<400>	80	
<del></del>		agat ctctaaggac gaccccattg	30
: : U	ouccuo.		
ā			
Ш	<210>	81	
==	<211>	33	
m	<212>		
	<213>	Artificial sequence	
<del>-</del>	<220>		
2		oligonucleotide used in the synthesis of the ORF5 gene	
	12237	origonaciocitae aboa in one binenebib or one onto gene	
	<400>	81	
	cactac	ggat ccgccagcaa cgacagcagc tcc	33
	<210>	82	
	<211>	33	
	<212>	DNA	
	<213>	Artificial sequence	
	<220>		
		oligonual optide used in the symthesis of the ODEE serv	
	<223>	oligonucleotide used in the synthesis of the ORF5 gene	
	<400>	82	
	cactac	ggat cettagacet caactttgee eet	33



```
<210> 83 `
 <211>
 33
 <212> DNA
 <213> Artificial sequence
 <220>
 oligonucleotide used in the amplifiction of the cDNA of the ORF6
 <223>
 gene
 <400> 83
 33
 cacatcctgc agatggggtc gtccttagat gac
<210> 84
 <211>
 30
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> oligonucleotide used in the amplifiction of the cDNA of the ORF6
 gene
 <400> 84
 30
 cacateteta gattatttgg catatttgac
 <210> 85
 <211>
 30
 <212> DNA
 <213> Artificial sequence
 <220>
 oligonucleotide used in the synthesis of the ORF6 gene
 <223>
 30
 cactacggat ccgtgagtcg cggccgactg
 <210>
 86
 <211>
 33
 <212>
 DNA
 <213>
 Artificial sequence
 <220>
 oligonucleotide used in the synthesis of the ORF6 gene
 <223>
 <400> 86
 33
 cactacggat ccttaaacag cttttctgcc acc
 <210>
 87
 <211>
 30
 <212> DNA
 <213> Artificial sequence
 <220>
 <223>
 oligonucleotide used in the amplification of the cDNA of the HA g
```

7





## ene

<400> ctccate	87 gata tcatggaagc aaaactattc 30
<210><211><211><212><213>	88 30 . DNA Artificial sequence
<220> <223>	oligonucleotide used in the amplification of the cDNA of the HA g ene
<400> ctccat	88 caga tottaaatgo atattotgoa 30
<210><211><212><213>	89 30 DNA Artificial sequence
<220> <223>	oligonucleotide used in the synthesis of the modified HA gene
<400> tccgcg	89 gccg cacatgctaa caattccaca 30
<210><211><211><212><213>	
<220> <223>	oligonucleotide used in the synthesis of the modified HA gene
<400> tccgcgg	90 gccg cttacattga ttctagtttc ac 32
<210><211><211><212><213>	91 30 DNA Artificial sequence
<220> <223>	oligonucleotide used in the amplification of the cDNA of the NA g ene of the H1N1 strai
<400> cacctg	91 gtcg acatgaatcc aaatcagaag 30



```
30 -
<211>
<212> DNA
<213> Artificial sequence
<220>
 oligonucleotide used in the amplification of the cDNA of the NA g
<223>
 ene
<400> 92
 30
cacctgtcta gactacttgt caatggtgaa
<210> 93
<211>
 31
<212> DNA
<213> Artificial sequence
<220>
<223> oligonucleotide used in the synthesis fo the modified form of the
 NA gene
<400> 93
 31
cactacgaat tcacaaattg ggaatcaaaa t
<210> 94
<211>
 30
<212>
 DNA
<213> Artificial sequence
<220>
<223> oligonucleotide used in the synthesis fo the modified form of the
 NA gene
<400> 94
 30
aatttgtgaa ttcgcggccg cggatccggt
<210> 95
<211>
 30
<212> DNA
<213> Artificial sequence
<220>
 oligonucleotide used in the amplification of the HA gene
<223>
<400> 95
 30
ctgcacgtcg acatgaagac tgtcattgcc
<210>
 96
<211>
 24
<212> DNA
<213> Artificial sequence
<220>
<223> oligonucleotide used in the amplification of the HA gene of the H
```



## 3N2 strai

	<400>	30 .	
	gatatc	tcag atgcaaatgt tgca	24
	<210>	97	
	<211>	33	
		DNA	
	<213>	Artificial sequence	
	<220>		
	<223>	oligonucleotide used in the synthesis of the modified form of HA gene	the
	<400>	97	
	caccgc	ggat cccttccaga aaatggcagc aca	33
	0.00		
	<210>	98	
	<211>	33	
.222	<212>		
Li .Ti	<213>	Artificial sequence	
£. [	<220>		
	<223>	oligonucleotide used in the synthesis of the modified form of HA gene	the
7	<400>	98	
#= #1	caccgc	ggat cettagtett tgtatecega ett	33
: <del>''</del>			
	<210>	99	
A	<211>	30	
	<212>	DNA	
	<213>	Artificial sequence	
j	<220>		
H	<223>	oligonucleotide used in the amplification of the cDNA of the N ene	Αg
	<400>	99	
		gata tcatgaatcc aaagcaaaag	30
	caccea	gara reargances anageanang	50
	<210>	100	
	<211>	30	
	<212>	DNA	
	<213>	Artificial sequence	
	<220>		
	<223>	oligonucleotide used in the amplification of the cDNA of the N ene	A g
	<400>	100	
	cactca	tcta gattatatag gcatgagatc	30



```
<210> 101
<211> 33
<212> DNA
<213> Artificial sequence
<220>
 oligonucleotide used in the synthesis of the modified form NA gene
<223>
<400> 101
 33
cactacggat ccttcaagca atatgagtgc gac
<210> 102
<211> 33
<212> DNA
<213> Artificial sequence
<220>
<223> oligonucleotide used in the synthesis of the modified form NA gene
<400> 102
cactacggat ccttatgaag tccaccatac tct
 33
<210> 103
<211>
 36
<212> DNA
<213> Artificial sequence
<220>
<223> oligonucleotide used in the amplification of the cDNA of the bovi
 ne GM-CSF gene
<400> 103
 36
catatcgtcg acatgtggct gcagaacctg cttctc
<210> 104
<211>
 34
<212> DNA
<213> Artificial sequence
<223> oligonucleotide used in the amplification of the cDNA of the bovi
 ne GM-CSF gene
<400> 104
 34
catgaccaga tcttcacttc tgggctggtt ccca
<210> 105
<211>
 36
<212>
 DNA
<213> Artificial sequence
```

\ **1** 

<400> 106



catgaccaga tetteaette tgggetggtt eccagea



	·
<220> <223>	oligonucleotide used in the amplification of the cDNA of the porc
	ine GM-CSF gene
<400>	
catato	gtcg acatgtggct gcagaacctg cttctc 36
<210>	106
<211>	37
<212>	DNA
<213>	Artificial sequence
<220>	
. — — -	oligonucleotide used in the amplification of the cDNA of the porc
(4437	ine GM-CSF gene