Speech Recognition - EQ2340 HMM (Hidden Markov Models)

Control Engineering (Politecnico di Milano)

Lars Lindemann

Systems, Control and Robotics (KTH)

Royal Institute of Technology (KTH, Stockholm) 3rd November, 2015

Content

1. Introduction

- Problem Formulation
- System architecture

2. System Design, Training and Testing

- Feature Extraction
- HMM
- Training data and validation set
- Testing and tweaking

3. Results

- System Performance
- Conclusion
- Live Demonstration

Problem Formulation

Speech Recognition of a limited speech corpus

Problem Formulation

Speech Recognition of a limited speech corpus

- ► High demand in industry
- Usage in current systems (e.g. Siri)
- Easy to understand general principle

Problem Formulation

Speech Recognition of a limited speech corpus

- High demand in industry
- Usage in current systems (e.g. Siri)
- ► Easy to understand general principle

Speech Corpus

- General speech corpus to form sentences
- Multisyllabic, similar and short words to challenge the system

Problem Formulation

Speech Recognition of a limited speech corpus

Problem Formulation

Speech Recognition of a limited speech corpus

▶ Two examples...

Lars: affect

Natalie: recognition

System architecture

Overview of the Implementation

System architecture

Overview of the Implementation

Distinguish between training and validation/live demonstration

Content

1. Introduction

- Problem Formulation
- System architecture

2. System Design, Training and Testing

- Feature Extraction
- HMM
- Training data and validation set
- Testing and tweaking

3. Results

- System Performance
- Conclusion
- Live Demonstration

Feature Extraction

Possible problems

- ► Pitch
- Different speakers (absolut output value)
- Noise

Feature Extraction

Possible problems

- ▶ Pitch
- ▶ Different speakers (absolut output value)
- Noise

Feature Extraction

Possible problems

- ► Pitch
- Different speakers (absolut output value)
- Noise

Feature Extraction

Possible problems

- ► Pitch
- ▶ Different speakers (absolut output value)
- Noise

Continuous feature vectors

- ▶ 13 MFCC (Mel-frequency cepstrum coefficients)
- 26 dynamical features (independent of absolute value)
- 30 ms time frame

Feature Extraction

Possible problems

- ► Pitch
- Different speakers (absolut output value)
- Noise

Continuous feature vectors

- ▶ 13 MFCC (Mel-frequency cepstrum coefficients)
- ▶ 26 dynamical features (independent of absolute value)
- 30 ms time frame

Feature Extraction

Possible problems

- ► Pitch
- ▶ Different speakers (absolut output value)
- Noise

Continuous feature vectors

- ▶ 13 MFCC (Mel-frequency cepstrum coefficients)
- 26 dynamical features (independent of absolute value)
- 30 ms time frame

HMM

Number of States for left-right HMM

- ▶ Trade off: too few parameters vs. amount of training data
- ► Also: Limited training data
- State assignment due to syllables + start/end state

HMM

Number of States for left-right HMM

- ► Trade off: too few parameters vs. amount of training data
- ► Also: Limited training data
- State assignment due to syllables + start/end state

HMM

Number of States for left-right HMM

- ► Trade off: too few parameters vs. amount of training data
- Also: Limited training data
- ► State assignment due to syllables + start/end state

HMM

Number of States for left-right HMM

- ► Trade off: too few parameters vs. amount of training data
- Also: Limited training data
- ► State assignment due to syllables + start/end state

environmnent: 6 states chair: 4 states

HMM

Number of States for left-right HMM

- ► Trade off: too few parameters vs. amount of training data
- ► Also: Limited training data
- ► State assignment due to syllables + start/end state

environmnent: 6 states chair: 4 states

Output distributions

GMM (Gaussian Mixture Models)

Training data and validation set

Recorded data

- ▶ 5 people: 15 recordings per word
- ▶ One person has been disregarded
- ▶ 840 recordings in total, 60 per word

Training data and validation set

Recorded data

- ▶ 5 people: 15 recordings per word
- ▶ One person has been disregarded
- ▶ 840 recordings in total, 60 per word

k-fold approach

- ▶ k=5 sets
- ▶ 48 training and 12 validation samples

Testing and tweaking

Final HMM

- ▶ 5 sets have been tweaked on their validation set and compared on the whole set.
- Recognition rate in table below

Testing and tweaking

Final HMM

- ▶ 5 sets have been tweaked on their validation set and compared on the whole set.
- Recognition rate in table below

Testing and tweaking

Final HMM

- ▶ 5 sets have been tweaked on their validation set and compared on the whole set.
- Recognition rate in table below

word	1	2	3	4	5	6	7
validation set	1.00	1.00	1.00	1.00	1.00	1.00	1.00
overall	0.76	0.95	1.00	1.00	1.00	1.00	1.00
word	8	9	10	11	12	13	14
word validation set	0			11 0.833			14 1.00

Testing and tweaking

Some realizations

word I and 1st MFCC coefficient

Testing and tweaking

Some realizations

word I and 2nd MFCC coefficient

Content

1. Introduction

- Problem Formulation
- System architecture

2. System Design, Training and Testing

- Feature Extraction
- HMM
- Training data and validation set
- Testing and tweaking

3. Results

- System Performance
- Conclusion
- Live Demonstration

System Performance

Classification Errors

- ► Average Classification Error: 1.2 %(validation) and 4.9 % (overall)
- lacktriangle Most commonly missclassified: $\it hand$ with 16.6 % and 30 %

System Performance

Classification Errors

- ▶ Average Classification Error: 1.2 %(validation) and 4.9 % (overall)
- Most commonly missclassified: hand with 16.6 % and 30 %

System Performance

$$C =$$

System Performance

Lars: recognition Martin: recognition Natalie: recognition

Conclusion

Take aways

- ▶ If data is rare, use smaller k in k-fold approach
- Good training data is important
- Collect more training data (remember trade-off) but: then be aware of overfitting!

- Satisfying overall recognition rate
- ▶ Problems with the words hand and recognition
- less problems with affect and effect or short words

Conclusion

Take aways

- ▶ If data is rare, use smaller k in k-fold approach
- ► Good training data is important
- Collect more training data (remember trade-off) but: then be aware of overfitting!

- Satisfying overall recognition rate
- ▶ Problems with the words hand and recognition
- less problems with affect and effect or short words

Conclusion

Take aways

- ▶ If data is rare, use smaller k in k-fold approach
- Good training data is important
- Collect more training data (remember trade-off) but: then be aware of overfitting!

- Satisfying overall recognition rate
- ▶ Problems with the words hand and recognition
- less problems with affect and effect or short words

Conclusion

Take aways

- ▶ If data is rare, use smaller k in k-fold approach
- ► Good training data is important
- Collect more training data (remember trade-off) but: then be aware of overfitting!

- Satisfying overall recognition rate
- Problems with the words hand and recognition
- less problems with affect and effect or short words

Conclusion

Take aways

- ▶ If data is rare, use smaller k in k-fold approach
- Good training data is important
- Collect more training data (remember trade-off) but: then be aware of overfitting!

- Satisfying overall recognition rate
- ▶ Problems with the words *hand* and *recognition*
- less problems with affect and effect or short words

Conclusion

Take aways

- ▶ If data is rare, use smaller k in k-fold approach
- Good training data is important
- Collect more training data (remember trade-off) but: then be aware of overfitting!

- Satisfying overall recognition rate
- Problems with the words hand and recognition
- less problems with affect and effect or short words

Live Demonstration

...