Cooperative Learning of Disjoint Syntax and Semantics

Serhii Havrylov

Germán Kruszewski Armand Joulin

The cat sat on the mat

$$\ell(y, f_{\theta}(x, t))$$

$$\mathbb{E}_{p_{\phi}(t|x)}[\ell(y, f_{\theta}(x, t))]$$

• RL-SPINN: Yogatama et al., 2016

Soft-CYK: Maillard et al., 2017

Gumbel Tree-LSTM: Choi et al., 2018

RL-SPINN: Yogatama et al., 2016

Soft-CYK: Maillard et al., 2017

Gumbel Tree-LSTM: Choi et al., 2018

Recent work has shown that:

 Trees do not resemble any semantic or syntactic formalisms (Williams et al. 2018).

RL-SPINN: Yogatama et al., 2016

Soft-CYK: Maillard et al., 2017

Gumbel Tree-LSTM: Choi et al., 2018

Recent work has shown that:

- Trees do not resemble any semantic or syntactic formalism (Williams et al. 2018).
- Parsing strategies **are not consistent** across random restarts (Williams et al. 2018).

RL-SPINN: Yogatama et al., 2016

Soft-CYK: Maillard et al., 2017

Gumbel Tree-LSTM: Choi et al., 2018

Recent work has shown that:

- Trees do not resemble any semantic or syntactic formalisms (Williams et al. 2018).
- Parsing strategies are not consistent across random restarts (Williams et al. 2018).
- These models fail to learn the simple context-free grammar (Nangia et al. 2018).

ListOps (Nangia, & Bowman (2018))

[MIN 1 [MAX [MIN 9 [MAX 10] 2 9 [MED 8 4 3]] [MIN 7 5] 6 9 3]]

[MAX 14 0 9]

[MAX 71[MAX 6817][MIN 26]3]

ListOps (Nangia, & Bowman (2018))

[MIN 1 [MAX [MIN 9 [MAX 10] 2 9 [MED 8 4 3]] [MIN 7 5] 6 9 3]]

[MAX 14 0 9]

[MAX 71[MAX 6817][MIN 26]3]

ListOps (Nangia, & Bowman (2018))

$$\mathbf{r}_i^{k+1} = \texttt{Tree-LSTM}(\mathbf{r}_i^k, \mathbf{r}_{i+1}^k)$$

$$s_k(i) = \langle \mathbf{q}, \mathbf{r}_i^{k+1} \rangle$$

$$\mathbf{r}_i^{k+1} = \texttt{Tree-LSTM}(\mathbf{r}_i^k, \mathbf{r}_{i+1}^k)$$

$$s_k(i) = \langle \mathbf{q}, \mathbf{r}_i^{k+1} \rangle$$

$$\mathbf{r}_i^{k+1} = \text{Tree-LSTM}(\mathbf{r}_i^k, \mathbf{r}_{i+1}^k)$$

$$\mathbf{r}_i^{k+1} = \texttt{Tree-LSTM}(\mathbf{r}_i^k, \mathbf{r}_{i+1}^k)$$

$$s_k(i) = \langle \mathbf{q}, \mathbf{r}_i^{k+1}
angle$$

$$\mathbf{r}_i^{k+1} = \texttt{Tree-LSTM}(\mathbf{r}_i^k, \mathbf{r}_{i+1}^k)$$

$$s_k(i) = \langle \mathbf{q}, \mathbf{r}_i^{k+1} \rangle$$

$$\mathbf{r}_i^{k+1} = \texttt{Tree-LSTM}(\mathbf{r}_i^k, \mathbf{r}_{i+1}^k)$$

$$s_k(i) = \langle \mathbf{q}, \mathbf{r}_i^{k+1}
angle$$

$$\mathbf{r}_i^{k+1} = \text{Tree-LSTM}(\mathbf{r}_i^k, \mathbf{r}_{i+1}^k)$$

$$s_k(i) = \langle \mathbf{q}, \mathbf{r}_i^{k+1}
angle$$

$$\mathbf{r}_i^{k+1} = \text{Tree-LSTM}(\mathbf{r}_i^k, \mathbf{r}_{i+1}^k)$$

Separation of syntax and semantics

Parser ϕ

Compositional Function heta

$$s_k(i) = \langle \mathbf{q}, \mathtt{Tree-LSTM}(\mathbf{r}_i^k, \mathbf{r}_{i+1}^k)
angle$$

$$\mathbf{r}_i^{k+1} = \texttt{Tree-LSTM}(\mathbf{r}_i^k, \mathbf{r}_{i+1}^k)$$

Parsing as a RL problem

Parser ϕ

Compositional Function heta

$$p_{\phi}(t|x) = \prod_{k=0}^{K} \pi_{\phi}(a_k^i|\mathbf{r}^k)$$

Size of the search space is

$$C_n \sim rac{4^n}{n^{3/2}\sqrt{\pi}}$$

Size of the search space is

$$C_n \sim rac{4^n}{n^{3/2}\sqrt{\pi}}$$

For a sentence with 20 words, there are 1_767_263_190 possible trees.

Syntax and semantic has to be learnt simultaneously model has to infer from examples that [MIN 0 1] = 0

Syntax and semantic has to be learnt simultaneously model has to infer from examples that [MIN 0 1] = 0

 nonstationary environment (i.e the same sequence of actions can receive different rewards)

Typically, the *compositional function* θ is learned faster than the *parser* ϕ .

Typically, the *compositional function* θ is learned faster than the *parser* ϕ .

This fast coadaptation limits the exploration of the search space to parsing strategies similar to those found at the beginning of the training.

High variance in the estimate of a parser's gradient ∇_φ
has to be addressed.

 ¹/₂ ¹

Learning paces of a parser θ and a compositional function φ have to be levelled off.

$$\nabla_{\phi} \mathcal{L} \approx \ell(f_{\theta}(x, t), y) \frac{\partial \log p_{\phi}(t|x)}{\partial \phi}$$

$$\nabla_{\phi} \mathcal{L} \approx \ell(f_{\theta}(x, t), y) \frac{\partial \log p_{\phi}(t|x)}{\partial \phi}$$

the moving average of recent rewards

$$\nabla_{\phi} \mathcal{L} \approx \underbrace{(\ell(f_{\theta}(x,t),y) - c)} \frac{\partial \log p_{\phi}(t|x)}{\partial \phi}$$

new reward

- [MIN 1 [MAX [MIN 9 [MIN 1 0] 2 [MED 8 4 3]] [MAX 7 5] 6 9]]
- [MAX 1 0]

- [MIN 1 [MAX [MIN 9 [MIN 1 0] 2 [MED 8 4 3]] [MAX 7 5] 6 9]]
- [MAX 1 0]

$$\nabla_{\phi} \mathcal{L} \approx (\ell(f_{\theta}(x, t), y) - c(x)) \frac{\partial \log p_{\phi}(t|x)}{\partial \phi}$$

- [MIN 1 [MAX [MIN 9 [MIN 1 0] 2 [MED 8 4 3]] [MAX 7 5] 6 9]]
- [MAX 1 0]

$$\nabla_{\phi} \mathcal{L} \approx (\ell(f_{\theta}(x, t), y) - c(x)) \frac{\partial \log p_{\phi}(t|x)}{\partial \phi}$$

- [MIN 1 [MAX [MIN 9 [MIN 1 0] 2 [MED 8 4 3]] [MAX 7 5] 6 9]]
- [MAX 1 0]

$$\nabla_{\phi} \mathcal{L} \approx (\ell(f_{\theta}(x, t), y) - c(x)) \frac{\partial \log p_{\phi}(t|x)}{\partial \phi}$$

self-critical training (SCT) baseline Rennie et al. (2017)

$$c(x) = \ell(f_{\theta}(x, \hat{t}), y)$$

$$\hat{t} = \arg\max p_{\phi}(t|x)$$

$$\frac{p_{\phi}(t|x)}{p_{\phi,11}(t|x)} \in [1 - \epsilon; 1 + \epsilon]$$

Proximal Policy Optimization (PPO) of Schulman et al. (2017)

• High variance in the estimate of a parser's gradient ∇_{φ} is addressed by using **self-critical training** (SCT) baseline of Rennie et al. (2017).

 Learning paces of a parser φ and a compositional function θ is levelled off by controlling parser's updates using Proximal Policy Optimization (PPO) of Schulman et al. (2017).

Extrapolation

Natural language inference (MultiNLI)

Time and Space complexities

Method	Time complexity	Space complexity	ListOps
RL-SPINN: Yogatama et al., 2016	O(nd²)	O(nd²)	X
Soft-CYK: Maillard et al., 2017	O(n ³ d+n ² d ²)	O(n³d)	X
Gumbel Tree-LSTM: Choi et al., 2018	O(n ² d+nd ²)	O(n ² d)	X
Ours	O(Knd²)	O(nd²)	✓

n – sentence length

d – tree-LSTM dimensionality

K – number of updates in PPO

Conclusions

- The separation between syntax and semantics allows coordination between optimisation schemes for each module.
- Self-critical training mitigates credit assignment problem by distinguishing "hard" and "easy" to solve datapoints.
- The model **can recover** a simple context-free grammar of mathematical expressions.
- The model performs competitively on several real natural language tasks.

github.com/facebookresearch/latent-treelstm