

FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA LICENCIATURA EM ENGENHARIA INFORMÁTICA REDES DE COMPUTADORES II

TEMA: X.25

Grupo Docente:

• Regente: Eng^o. Felizardo Munguambe

• Assistente: Eng°. Délcio Chadreca

Tópicos da Aula

- ► Introdução
- ► Protocolo X.25
- ► Topologia
- ► Características Sistemáticas
- ► Níveis do Padrão X.25
- ► Formato do Pacote X.25
- ► Multiplexação no X.25
- ► Controle de Fluxo e Controle

16/09/20

Introdução

O X.25 é um protocolo padrão do International Telecommunication Union-Telecommunication Standardization Sector (ITU-T) para comunicações via WAN que define como dispositivos de usuários e dispositivos de rede estabelecem e mantêm conexões.

X.25 é visto com mais freqüência em redes propensas a erro.

Protocolo X-25

O X.25 é um conjunto de protocolos aderente às três primeiras camadas do Modelo OSI, definindo uma disciplina de comunicação entre terminais e uma rede pública ou privada.

Esta disciplina regulariza o estabelecimento de chamada, transmissão de dados, desconexão e controle do fluxo de dados.

O Canal Físico de Comunicação pode estabelecer comunicação simultânea com até 4095 circuitos virtuais com outros equipamentos ligados a Rede de pacotes.

O X25 suporta, de modo transparente, protocolos de níveis superiores como o TCP/IP e o SNA em verdadeiras redes WANs por um baixo custo agregado a solução.

SNA (System Network Architecture) é uma arquitetura complexa e sofisticada da IBM que define procedimentos e estrutura de comunicações de entrada e saída de um programa de aplicação e a tela de um terminal, ou ainda entre dois programas de aplicação. SNA consiste em um conjunto de protocolos, formatos e sequências operacionais que controlam o fluxo de informação dentro de uma rede de comunicação de dados ligada a um mainframe IBM, micro computadores, controladoras de comunicação e terminais.

Existem três categorias de dispositivos numa rede X.25:

- **DTE** data terminal equipment
 - Sistemas terminais (computadores, terminais) que comunicam através da rede X.25
- DCE data circuit-terminating equipment
 - Dispositivos de comunicação (modems, comutadores de pacotes), fornecendo o interface entre os DTEs e uma PSE
- − **PSE** − packet switching exchange
 - Centrais comutadoras da rede de comutação de pacotes
 - Transportam os dados entre os DTEs através da rede X.25

PAD – Packet Assembly /Disassembly

• Realiza a montagem e desmontagem de pacotes, isto e, possibilita a conversão de formatos fazendo terminais assincronos serem capazes de comunicar-se através de uma rede X.25 e vice-versa

16/09/20

Arquitetura X.25

Características sistêmicas do X25

Conectividade: O padrão X.25 é aceite por um grande número de países, além de permitir conexões com máquinas de arquiteturas diferentes.

Velocidade do serviço: Não superior a 2Mbps. Normalmente até 9,6 Kbps.

<u>Custo</u>: Existem vários parâmetros para definição da tarifação: por segmento transmitido (volume de dados), tempo de conexão ativa, distância, etc..

<u>Flexibilidade</u>: Várias formas de subscrição, tais como: Grupo Fechado, Seletivo, Tarifação Reversa, etc..

X25 não é aplicável para comunicação de voz e multi-midia.

<u>Confiabilidade</u>: As redes públicas de dados (PSDNs) são muito confiáveis em termos de erros de transmissão porque o protocolo X25 tem mecanismos próprios de garantia da integridade dos dados que ele trata, recuperando os erros quando ocorrem (usando técnica de retransmissão).

Segurança da informação: Rede segura. Formação de redes privativas (formando grupo fechado).

Níveis do Padrão X.25

Níveis do Modelo de Redes X.25

Nível Físico

Interface física entre o equipamento terminal (DTE) e um equipamento de terminação de Rede (DCE)

Nível de ligação de dados (nível trama)

- LAPB Link Access Procedures Balanced
- Especifica os procedimentos para estabelecer, manter e terminar uma ligação de dados que permite o envio fiável de tramas, sujeito a mecanismos de controlo de erros e de fluxo

Nível de rede (nível pacote)

- Oferece um Serviço de Circuitos Virtuais
- Especifica os procedimentos para estabelecer, manter e terminar circuitos virtuais e transferir pacotes de dados nos circuitos virtuais

Fluxo de Dados no Padrão X.25

Relações entre os Níveis do Modelo de Redes X.25

- Os dados do utilizador são passados para o nível 3 do Modelo X.25 (Nível de Pacotes) que adiciona a informação de controle dos dados do utilizador como Cabeçalho (*Header*), criando-se assim o **Pacote X.2 5**.
- A informação de controle do pacote X.25 é usada pelo **Protocolo X.25**.
- O pacote X.25 criado é passado para a entidade LAP-B, que por sua vez adiciona a informação de controle a frente e atrás do pacote, criando o **Frame LAP-B**
- A informação de controle do Frame LAP-B é usada pelo **Protocolo LAP-B**

Group # Q Channel # P(S) 0 P(R) M User Data

(b) Data packet with 7-bit sequence numbers

- O padrão X.25 usa uma variedade de pacotes, todos usando o mesmo formato básico, com algumas variações em alguns campos a seguir indicados:
- a) Pacote de dados com numero de sequência de 3, 7 e 15 bits
- b) Pacote de controle
- d) Pacotes RR, RNR e REJ com número de sequência de 3, 7 e 15 bits
- Os dados do utilizador são divididos em blocos de dados com um determinado comprimento máximo aos quais é adicionado um cabeçalho (*Header*) de 24 bits ou 32 bits, formando-se assim um pacote de dados do Padrão X.25
- O Cabeçalho (*Header*) inclui o **Número de Circuito Virtual** de 12 bits (4 bits indicando o Número do Grupo e 8 bits indicando o número de canal)

(d) RR, RNR, and REJ packets with 3-bit sequence number

(e) RR, RNR, and REJ packets with 7-bit sequence number

- Os campos P(S) e P(R) são usados também para as funções de controle de fluxo de dados e de controle de erros que ocorrem num circuito virtual
- P(S): Send Sequence Number
- − P(R) : *Receive Sequence Number*
- Para além de pacotes de dados o X.25 transmite pacotes com informação de controle referente ao estabelecimento, manutenção e terminação de circuitos virtuais.
- A informação de controle é transmitida no Pacote de Controle
- Cada pacote de controle inclui:
- Numero de circuito virtual
- Tipo de pacote, que identifica o tipo de função, de controle
- Informação de controle adicional, relacionada com as funções de controle

(a) Data packet with 3-bit sequence numbers

Q	D	1	0	Group Number			
		Ch	annel	Number			
			P(S)	0			
	M						
			User	Data			

(d) Data packet with 7-bit sequence numbers

(b) Control packet for virtual calls with 3-bit sequence numbers

(e) Control packet for virtual calls with 7-bit sequence numbers

0	0	1	1	0	0	0	0		
X	0	1	1	Group Number					
Channel Number									
	Packet Type								
		Addit	ional	Inform	nation				

(h) Control packet for virtual calls with 15bit sequence numbers

0	0	0	1 Group Number				
		Che	nnel	Number			
	P(R)		1	Packet Type			

(c) RR, RNR, and REJ packets with 3-bit sequence numbers.

0	0	1	0	Group Number		
		Ch	annet	Number		
		Pac	sket Ty	pe 1		
	P(R)					

(f) RR. RNR, and REJ packets with 7-bit sequence numbers.

0	0	1	1	0	0	0	0
X	0	1 1 Group Numi					
		Ch	annel	Numi	ber		
	Packet Type						
	P(R) – low order						
		P(I	d = (S)	igh on	der		

(i) RR, RNR, and REJ packets with 15-bit sequence numbers.

Multiplexação no X.25

- Um dos serviços mais importantes oferecidos pelo padrão X.25 é o da multiplexação
- Um DTE pode estabelecer até um máximo de 4095 circuitos virtuais simultâneos com outros DTEs num único link físico DTE-DCE
- O DTE pode internamente atribuir esses circuitos na forma que melhor entender.
- Circuitos virtuais individuais podem corresponder por exemplo a aplicações, processos, ou terminais.
- O Link DTE-DCE pode ser configurado para a multiplexação full-duplex
- O **Número de Circuito Virtual** de 12 bits é usado para associar o pacote ao circuito virtual
- 4 bits indicando o Número do Grupo e
- 8 bits indicando o Número de Canal Lógico

Servicos de Canais Virtuais

X.25 oferece um serviço de Circuitos Virtuais

Os Circuitos Virtuais são identificados na interface de acesso por um Número de Canal Lógico (12 bits). É possível multiplexar até 4095 circuitos virtuais numa interface de acesso

Os Circuitos Virtuais podem ser de dois tipos
» Comutados (SVC - Switched Virtual Circuits)

— Os circuitos virtuais comutados (chamadas virtuais) são estabelecidos e
terminados por meio de procedimentos de sinalização próprios do X.25
(sinalização in-band)

 A sinalização associada ao estabelecimento e terminação de Circuitos Virtuais recorre a pacotes de controlo e é realizada no mesmo canal lógico em que são transportados os pacotes de dados da chamada correspondente

Cont.

Permanentes (PVC - *Permanent Virtual Circuits*)

— Os circuitos virtuais permanentes são estabelecidos por meio de procedimentos de gestão e mantidos durante um período definido contratualmente

Controle de Fluxo e Controle de Erros no X.25

- O controle de fluxo e de erros do X.25 é idêntico no formato e nos procedimentos ao usado no HDLC (*High-level Data Link Control*).
- O protocolo de Janela deslizante é usado para o controle de fluxo e de erros.
- Cada pacote contem um *Send Sequence Number* e o *Receive Sequence Number*, isto é, um P(S) e o P(R).
- Por defaul são usados números de sequencia de 3 bits
- Opcionalmente, um DTE, pode solicitar a utilização de números de sequência de 7 bits
- O terceiro e o quarto bit em pacotes com números de sequencia de 3 bits são 0 e 1 respectivamente. Para pacotes com números de sequencia de 7 bits o terceiro e o quarto bit são 1 e 0 respectivamente.

Controle de Fluxo e Controle de Erros no X.25

- O P(S) é atribuído aos pacotes transmitidos pelo DTE em função dos circuitos virtuais, isto é, o P(S) de um novo pacote no mesmo circuito virtual é incrementado por um
- O P(R) contem o numero no próximo pacote a vir de um determinado circuito virtual. Este mecanismo permite o uso do mecanismo Piggyback para o reconhecimento (*acknowledgement*)
- Se um nodo não tem pacotes para enviar pode reconhecer os pacotes que recebe com o pacotes de controle *Receiver Ready* (RR) e *Receiver Not Ready* (RNR) com o mesmo significado como no HDLC
- Por *default* o tamanho da janela deslizante é 2, mas pode ser:
- 7 Para pacotes de numero de sequencia de 3 bits e
- um máximo de 127 para pacotes de números de sequencia de 7 bits

Controle de Fluxo e Controle de Erros no X.25

- O Reconhecimento, e como consequência a controle de fluxo, pode ter significado local ou *end-to-end* em função do bit D.
 - Quando o bit D=0 (o caso usual) o reconhecimento é entre o DTE e a rede. Esta informação é usada pelo DCE local ou pela rede para reconhecer a recepção de pacotes e controlar o fluxo do pacotes a partir do DTE para a rede.
 - Quando o bit D=1, o reconhecimento vem do DTE remoto.
- A forma básica de controle de erros no X.25 é através do **go- back-N ARQ**. O reconhecimento negativo é expresso na forma do pacote de controle Rejeição (REJ *Reject Control Packet*)
- Se um nodo recebe um reconhecimento negativo, então retransmite o pacote especificado e todos os pacotes subsequentes.

Sequencia de Pacotes no X.25

- O X.25 oferece um mecanismo de identificação da sequencia de pacotes de dados contíguos, designado Sequencia de Pacotes Completa (*Complete Packet Sequence*)
- Esta facilidade tem diversos tipos de uso. O mais importante é pelo protocolos de *Internetwoking*, para permitir que blocos de dados longos possam ser transmitidos por redes com restrições de pacotes de menor tamanho sem perder a integridade dos pacotes iniciais.
- Para especificar este mecanismo o X.25 define dois tipos de pacotes:
 - Pacote do tipo A: aquele no qual o bit M=1 e o bit D=0 e o pacote pode ter o seu tamanho máximo
 - Pacote do tipo B: é aquele que não é pacote do tipo A.
- Uma sequencia de pacotes complete consiste de zero ou mais pacotes de tipo A seguidos de pacote de tipo B.
- A rede pode combinar este sequencia para produzir pacotes de maior tamanho

Sequência de Pacotes no X.25

- A rede pode também segmentar os pacotes de tipo B em pacotes de menor tamanho para produzir uma Sequência Completa de Pacotes (*Complete Packet Sequence*)
- A for na qual o pacote B é tratado depende dos bits M e D
 - Se D=1, um reconhecimento end-to-end é enviado pelo DTE receptor para o DTE emissor.
 Este é de facto o sinal de reconhecimento da sequencia completa de pacotes (Complete Packet Sequence)
 - Se M=1, significa que há outras sequencias completas de pacotes adicionais por chegarem. Este mecanismo permite a formação de subsequências como parte de sequencias maiores, de modo que o reconhecimento end-to-end das subsequências possa ser feito, antes do fim da transmissão das sequencias maiores.

Controlo de Fluxo e Numero de Sequencia

Conclusão

- As redes X.25 foram as primeiras redes publicas orientadas a conexões, isto é, a primeira rede pública de dados
- Foram desenvolvida na década de 1970, num época em que em todos os países o serviço de telefonia era monopólio e as empresa de telefonia esperavam que em cada pais haveria somente uma rede de comunicação de dados.
- Para usar a rede X.25 um computador tinha que estabelecer uma chamada telefónica, essa chamada recebia um numero de conexão que seria usado em pacotes de transferência de dados.
- As redes X.25 operaram por uma cerca de uma década com relativo sucesso
- Algumas das desvantagens apontadas nas redes X.25 é o grande peso dos dados de controle de erros e de controle de fluxo de dados
- Na década de 1980 as redes X.25 foram substituídas em grande parte pelas redes *Frame Relay*.

Questões de reflexão

- 1. Fale da historia do X.25 e das razoes do surgimento deste tipo de rede
- 2. Quais são as vantagens de uso de redes X.25
- 3. Quais são os débitos que este tipo de rede suporta? Mínimo e Máximo
- 4. Apresente o formato de frame de cada pacote
- 5. Quantos tipos de pacotes existem neste tipo de rede e qual e a diferença entre os mesmos
- 6. Apresente interação de troca de pacotes entre duas interfaces de usuários na rede exemplificando o funcionamento de controlo de fluxo e sequencia. Assuma que o user-1 pretende enviar 10 pacotes de tamanho X para o user-2.
- 7. Como funciona o mecanismo de controlo de fluxo e janela deslizante?
- 8. Em link físico, quantas links virtuais e possível obter para interligar os usuários da rede?
- 9. Apresente a arquitectura X.25 e explique como um pacote sai da origem para o destino. Descreva também a funcionalidade dos dispositivos da topologia.
- 10. Assumindo a realidade Moçambique, em que caso poderia utilizar esta tecnologia?
- 11. Quais são as camadas do modelo OSI que esta tecnologia usou como base?
- 12. Explique detalhadamente o funcionamento de cada cada nível deste modelo.
- 13. Qual e a diferença entre ligação DTE e DCE? Apresenta uma lista de dispositivo para cada ligação

Bibliografia consultada

- ► Larry L. Peterson and Bruce S. Davie Computer Network a system approach 5th Edition
- ► Tanenbaum A. S. and Wetherall D. J. Computer networks 5th Edition.
- ► Mário Vestias Redes Cisco para profissionais 6ª Edição
- ► Adaptado do Professor Doutor Lourino Chemane

16/09/20

OBRIGADO!!!