Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики

Высшая школа прикладной математики и вычислительной физики

Лабораторная работа №5

Тема: «Решение задач многомерной минимизации с ограничениями»по дисциплине
«Методы оптимизаций»

Выполнили студенты

группы 3630102/80401 Мамаева Анастасия Сергеевна

Веденичев Дмитрий Александрович

Тырыкин Ярослав Алексеевич

Руководитель

Доцент, к.ф.-м.н. Родионова Елена Александровна

Санкт-Петербург 2021

СОДЕРЖАНИЕ

1	Постановка задачи	3
2	Введение ограничений	3
3	Преобразование исходной задачи	5
4	Построение аппроксимирующего множества S_0	6
5	Применимость метода	7
6	Описание алгоритмов	10
	6.1 Метод отсекающей гиперплоскости	10
	6.1.1 Начальный этап	10
	6.1.2 Основной этап	10
	6.1.3 Условие окончания вычислений	11
	6.2 Алгоритм вычисления субградиента	11
7	Результаты решения задачи	11
8	Оценка достоверности полученных результатов	15
9	Программная реализация	17
10	Выводы	17
11	Ответы на дополнительные вопросы	17
	11.1 Метод аппроксимации множества ограничений задачи	17
	11.2 Экспериментальные оценки сходимости метода	18
	11.3 Обоснование отклонения нормы разности от нормального процесса сходимости метода	19
Cı	писок литературы	21

1 Постановка задачи

Пусть имеется задача многомерной минимизации:

$$\varphi_0(x) = x_1^2 + x_2^2 + \cos(x_1 + 2x_2) - x_1 + 2x_2$$

Необходимо:

- 1. Добавить два линейных и одно нелинейное, заданное неквадратичной функцией, ограничения так, чтобы:
 - \bullet Минимальная точка x^* была внутренней точкой множества Ω
 - ullet Минимальная точка x^* была граничной точкой множества Ω
- 2. Решить задачу условной минимизации методом отсекающей гиперплоскости
- 3. В ходе вычислительного эксперимента нарисовать последовательность точек x_k и множество Ω

2 Введение ограничений

При выполнении лабораторной работы «Безусловная многомерная минимизация» была найдена точка оптимума $x^* = [0.268; -1.464]$ при точности вычислений $\varepsilon = 10^{-2}$.

Введём дополнительные ограничения так, чтобы x^* являлась внутренней точкой множества Ω_1 :

$$\Omega_1 = \begin{cases} x_1 + x_2 \le 0.1 \\ -2x_1 - x_2 \le 2 \\ e^{x_1} \le 3 \end{cases}$$

Введём дополнительные ограничения так, чтобы x^* являлась граничной точкой множества Ω_2 :

$$\Omega_2 = \begin{cases} x_1 + x_2 \le -1.195 \\ -2x_1 - x_2 \le 1.5 \\ e^{x_1} \le 3 \end{cases}$$

Построим получившиеся области в программном пакете Desmos, и убедимся в достоверности построения областей:

Рис. 1: Область Ω_1

Рис. 2: Область Ω_2

В результате построений убедились, что области подобраны верно, согласно изначальным требованиям задачи.

3 Преобразование исходной задачи

Необходимо найти

$$\min arphi_0(x) \ \ orall x \in \Omega$$
 где $arphi_0(x) = c^T x$ $\Omega = \{x \in \mathbb{R}^n | \ arphi(x) \leq 0\}$

 $\varphi(x)$ — непрерывная выпклая функция

Множество Ω задаётся только одним ограничением в виде неравенства, функция цели – линейная. Если множество Ω задано несколькими неравенствами

$$\varphi_i(x) \le 0, \ i = \overline{1, \ m}$$

где $\varphi_i(x)$ – непрерывные функции, то полагая $\varphi(x) = \max_{1 \leq i \leq m} \varphi_i(x)$, можем сввести задачу к вышеизложенной.

Если функция цели $\varphi_0(x)$ – нелинейная выпуклая, то, вводя дополнительную переменную $x^{(n+1)}$ и добавляя к Ω ограничение

$$\varphi_{m+1}(x, x^{(n+1)}) = \varphi_0(x) - x^{(n+1)} \le 0$$

можно перейти от исходной задачи к задаче минимизации линейной функции $x^{(n+1)}$ при вышесказанных условиях. Таким образом, без ограничения общности можно рассматривать исходную постановку задачи.

Приведём нашу задачу к виду, пригодному для применени алгоритма. Функция цели $\varphi_0(x)$ нелинейная, введём дополнительное ограничение $\varphi_4(x)$:

$$x_1^2 + x_2^2 + \cos(x_1 + 2x_2) - x_1 + 2x_2 - x_3 \le 0$$

тогда задача сводится к тому, чтобы найти минимум линейной функции

$$x_3 \to min$$

на множествах:

$$\Omega_1 = \max\{x_1 + x_2 - 0.1; -2x_1 - x_2 - 2; e^{x_1} - 3; x_1^2 + x_2^2 + \cos(x_1 + 2x_2) - x_1 + 2x_2 - x_3\} \le 0$$

$$\Omega_2 = \max\{x_1 + x_2 + 1.195; -2x_1 - x_2 - 1.5; e^{x_1} - 3; x_1^2 + x_2^2 + \cos(x_1 + 2x_2) - x_1 + 2x_2 - x_3\} \le 0$$

4 Построение аппроксимирующего множества S_0

Исходные множества ограничений Ω_1 , $\Omega_2 \subset \mathbb{R}^3$ аппроксимируются более простыми. Построим множества S так, чтобы они состояли только из линейны ограничений. Проще всего описать области прямоугольником. Найдём пересечение прямых:

$$\begin{cases} x_1 + x_2 = 0.1 \\ -2x_1 - x_2 = 2 \end{cases} \rightarrow \begin{cases} x_1 = -2.1 \\ x_2 = 2.2 \end{cases}$$

Решив $e^{x_1}=3$, получаем $x_1=1.099$. Подставляя в уравнение $-2x_1-x_2=2$, находим $x_2=-4.198$

Рис. 3: Область S_{0_1}

$$S_{0_1} = \begin{cases} -2.1 \le x_1 \le 1.099 \\ -4.198 \le x_2 \le 2.2 \\ -2 \le x_3 \le -1 \end{cases}$$

Аналогично аппроксмируем вторую область.

$$\begin{cases} x_1 + x_2 = -1.195 \\ -2x_1 - x_2 = 1.5 \end{cases} \rightarrow \begin{cases} x_1 = -0.305 \\ x_2 = -0.89 \end{cases}$$

Решив $e^{x_1}=3$, получаем $x_1=1.099$. Подставляя в уравнения $-2x_1-x_2=1.5$, находим $x_2=-3.698$

Рис. 4: Область S_{0_2}

$$S_{0_2} = \begin{cases} -0.305 \le x_1 \le 1.099 \\ -3.698 \le x_2 \le -0.89 \\ -2 \le x_3 \le -1 \end{cases}$$

5 Применимость метода

Для того, чтобы метод отсекающей гиперплоскости сходился необходимо выполнение теоремы:

Теорема 1. Пусть $\varphi(x)$ – непрерывная выпуклая функция, область Ω компактна, и в каждой точке множества S_0 субградиент а функции $\varphi(x)$ ограничен константой, то есть для $\forall x \in S_0$ справедливо неравенство $||a(x)|| \leq R$. Тогда любая предельная точка x^* $k = 0, 1, \ldots$ является оптимальной и $\varphi(x_k) \to 0$ $k \to \infty$.

Проверим выполнение всех требуемых условий для нашей задачи:

$$\Omega_{4} = \max \left\{ \psi_{4}(x) = x_{4} + x_{2} - 0.1 \right\}$$

$$\psi_{2}(x) = -2x_{4} - x_{2} - 2 \right\}$$

$$\psi_{3}(x) = e^{x_{1}} - 3$$

$$\psi_{4}(x) = x_{4}^{2} + x_{2}^{2} + \cos(x_{4} + 2x_{2}) - x_{4} + 2x_{2} - x_{3} \right\} \leq 0$$

 $\varphi_1(\infty)$, $\varphi_2(\infty)$ - une ûnoie, granut boungeuse u bonnymore agrebpemente $\varphi_3(x)$, $\varphi_4(\infty)$ - boungeuse

Torga $\varphi(x) = \max_{1 \le i \le 4} \varphi_i(x)$ - marme bunyana Anauorurno guis Ω_2 nougraem, "mo $\varphi(x)$ - bunyana. Dokamem, "mo obnacmu Ω_4 u Ω_2 komnakmen:

 Ω_1 и Ω_2 ограничены. Они образованы пересечением конечного числа зашкну- тых получискостей, то есть пересечением выпуклых зашкнутых иножест значит Ω_1 , Ω_2 выпуклыя, зашкнуты.

Поньзучесь нениной Тейне-Бореля (дие \mathbb{R}^n) из ограниченности и зош-клутости Ω_1 и Ω_2 спедует, что они компактия.

Tokameu , menepo umo $\forall x \in S_0 \Rightarrow ||a(x)|| \leq R$

 $\varphi(\infty) = \max_{1 \le i \le 4} \varphi_i(x)$, $\varphi_i(\infty) - \text{guapopereusuryeum}$

то а можно найти по формуле:

 $\alpha = \nabla \varphi_i(x)$, rge i-unôoù uz bozunonenox

Bername $\nabla \varphi_1(x)$, $\nabla \varphi_2(x)$, $\nabla \varphi_3(x)$, $\nabla \varphi_4(x)$: (i.e. obvacmu Ω_1)

$$\frac{\partial \varphi_{1}}{\partial x_{1}} = 1$$

$$\frac{\partial \varphi_{1}}{\partial x_{2}} = 1$$

$$\frac{\partial \varphi_{1}}{\partial x_{3}} = 0$$

$$\Rightarrow \nabla \varphi_{1}(x) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

 $\Rightarrow \nabla \varphi_1(\infty) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \Rightarrow \|\nabla \varphi_1(x)\|_2 = \sqrt{1^2 + 1^2 + 0^2} = \sqrt{2}$

Можеш посчитать вторую норицу, т.к в конечношериом евкиндовом пространстве инобор две норим эквивалентных.

$$\frac{\partial \psi_2}{\partial x_1} = -2$$

$$\frac{\partial \varphi_{2}}{\partial x_{2}} = -1 \qquad \Rightarrow \qquad \nabla \varphi_{2}(x) = \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix} \Rightarrow \qquad ||\nabla \varphi_{2}(x)||_{2} = \sqrt{(-2)^{2} + (-1)^{2} + O^{2}} = \sqrt{5}$$

$$\frac{\partial \varphi_2}{\partial x_3} = 0$$

$$\frac{\partial \varphi_3}{\partial x_4} = e^{x_1}$$

$$\frac{\partial \varphi_3}{\partial x_2} = 0 \qquad \Rightarrow \qquad \forall \varphi_3(x) = \begin{pmatrix} e^{x_1} \\ 0 \\ 0 \end{pmatrix} \qquad \Rightarrow \qquad \| \nabla \varphi_3(x) \|_2 = \sqrt{\left(e^{x_1}\right)^2 + 0^2 + 0^2} = e^{x_1}$$

$$\frac{\partial \varphi_3}{\partial z_3} = 0$$
 $\left| \begin{array}{c} e^{z_1} / 2 \text{ novut npu nausonsumu} & \infty_1 \in S_0 \\ \text{goomunement nousonsume zua tenue } e^{z_1} \end{array} \right|$

$$e^{\infty_1}|_{\infty_1=1.099}=3$$

$$\frac{\partial \varphi_{4}}{\partial x_{1}} = \lambda x_{1} - \sin(x_{1} + \lambda x_{2}) - 1$$

$$\frac{\partial \varphi_{4}}{\partial x_{2}} = \lambda x_{2} - \lambda \sin(x_{1} + \lambda x_{2}) + \lambda \Rightarrow \| \nabla \varphi_{4}(x) \| = \begin{pmatrix} \lambda x_{1} - \sin(x_{1} + \lambda x_{2}) - 1 \\ \lambda x_{2} - \lambda \sin(x_{1} + \lambda x_{2}) + \lambda \\ -1 \end{pmatrix}$$

$$\frac{\partial \varphi_{4}}{\partial x_{3}} = -1$$

$$\| \nabla \varphi_{4}(x) \|_{2} = \int (\lambda x_{1} - \sin(x_{1} + \lambda x_{2}) - 1)^{2} + (\lambda x_{2} - \lambda \sin(x_{1} + \lambda x_{2}) + \lambda)^{2} + (-1)^{2} \leq \int (\lambda x_{4} - 1 - 1)^{2} + (\lambda x_{2} - 2 + \lambda)^{2} + 1 = \int (\lambda x_{1} - \lambda)^{2} + (\lambda x_{2} - \lambda x_{1} + 4 + 4 + 4 + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda)^{2} + (\lambda x_{2} - \lambda x_{1} + 4 + 4 + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda)^{2} + (\lambda x_{2} - \lambda x_{1} + 4 + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda)^{2} + (\lambda x_{2} - \lambda x_{1} + 4 + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda)^{2} + (\lambda x_{2} - \lambda x_{1} + 4 + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda)^{2} + (\lambda x_{2} - \lambda x_{1} + 4 + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda)^{2} + (\lambda x_{2} - \lambda x_{1} + 4 + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda)^{2} + (\lambda x_{2} - \lambda x_{1} + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda)^{2} + (\lambda x_{2} - \lambda x_{1} + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda)^{2} + (\lambda x_{2} - \lambda x_{1} + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda)^{2} + (\lambda x_{2} - \lambda x_{1} + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda x_{2} - \lambda x_{1} + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda x_{2} - \lambda x_{1} + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda x_{2} - \lambda x_{1} + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda x_{2} - \lambda x_{1} + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda x_{2} - \lambda x_{1} + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda x_{2} - \lambda x_{1} + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda x_{2} - \lambda x_{1} + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda x_{2} - \lambda x_{1} + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda x_{2} - \lambda x_{1} + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda x_{2} - \lambda x_{1} + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda x_{2} - \lambda x_{1} + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda x_{2} - \lambda x_{1} + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda x_{2} - \lambda x_{1} + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda x_{2} - \lambda x_{1} + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda x_{2} - \lambda x_{1} + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda x_{2} - \lambda x_{1} + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda x_{2} - \lambda x_{1} + \lambda x_{2})^{2} + 1 = \int (\lambda x_{1} - \lambda x_{1} - \lambda$$

B ravecmbe R bozonième nautonome uz bozonoment. JTO econo $||a(x)|| \le \sqrt{76.332816}$

ожаночиные рассутдения проведён дин Ω_z :

$$\frac{\partial \varphi_{1}}{\partial x_{1}} = 1 \qquad \Rightarrow \quad \nabla \varphi_{1}(x) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \qquad \Rightarrow \quad \|\nabla \varphi_{1}(x)\|_{2} = \sqrt{1^{2} + 1^{2} + 0^{2}} = \sqrt{2}$$

$$\frac{\partial \varphi_{1}}{\partial x_{3}} = 0$$

$$\frac{\partial \varphi_{2}}{\partial x_{1}} = -\lambda$$

$$\frac{\partial \varphi_{2}}{\partial x_{2}} = -1 \implies \nabla \varphi_{2}(x) = \begin{pmatrix} -\lambda \\ -1 \\ 0 \end{pmatrix} \implies \|\nabla \varphi_{2}(x)\| = \sqrt{(-\lambda)^{2} + (-1)^{2} + 0^{2}} = \sqrt{5}$$

$$\frac{\partial \varphi_{2}}{\partial x_{3}} = 0$$

$$\frac{\partial \varphi_{3}}{\partial x_{1}} = e^{x_{1}}$$

$$\frac{\partial \varphi_{3}}{\partial x_{2}} = 0 \implies \nabla \varphi_{3}(x) = \begin{pmatrix} e^{x_{1}} \\ 0 \\ 0 \end{pmatrix} \implies ||\nabla \varphi_{3}(x)|| = e^{x_{1}}|_{x_{1} = 1.099} = 3$$

$$\frac{\partial \varphi_{3}}{\partial x_{3}} = 0$$

$$\frac{\partial \varphi_{q}}{\partial x_{i}} = \lambda x_{i} - \sin(x_{i} + \lambda x_{2}) - 1$$

$$\frac{\partial \varphi_{q}}{\partial x_{2}} = \lambda x_{2} - \lambda \sin(x_{i} + \lambda x_{2}) + \lambda$$

$$\frac{\partial \varphi_{q}}{\partial x_{3}} = -1$$

$$\Rightarrow \|\nabla \varphi_{q}(x)\| = \begin{pmatrix} \lambda x_{i} - \sin(x_{i} + \lambda x_{2}) - 1 \\ \lambda x_{i} - \sin(x_{i} + \lambda x_{2}) - 1 \\ \lambda x_{i} - \sin(x_{i} + \lambda x_{2}) - 1 \end{pmatrix}$$

$$\|\nabla \varphi_4(x)\| \le \sqrt{4x_1^2 - 8x_1 + 4x_2^2 + 5} \Big|_{\substack{x_1 = -0.805 \\ x_2 = -3.698}} = \sqrt{62.512.916}$$

В констве R возьшём наибочьшее из возмониюх. Птаким образом показам, что условим теореть выполнены. Метод будет сходиться.

6 Описание алгоритмов

6.1 Метод отсекающей гиперплоскости

6.1.1 Начальный этап

Зададим $\varepsilon > 0$ — параметр окончания вычислений. Будем считать $\Omega = \{x \in R^n | \varphi(x) \leq 0\}$ — непустым компактным множеством. Построим множество $S = \{x | a_i^T x - b^{(i)} \leq 0, \ i = -l, \ldots, -1, 0\}$, подбирая векторы a_i и числа $b^{(i)}$ так, чтобы S было компактно и $\Omega \subset S$.

Положим $S_0 = S$. Решим задачу линейного программирования

$$\min c^T x, \quad \forall x \in S_0$$

Пусть x_0 – решение этой задачи. Положим k=0 и перейдём к основному этапу.

6.1.2 Основной этап

Шаг 1:

Пусть S_k построено и x_k — решение задачи линейного программирования $\min c^T x$, $\forall x \in S_k$. Если $x_k \in \Omega$, то x_k — решение задачи, следует остановиться. Иначе для $k \geq 1$ проверим условие окончания и в случае невыполнения перейдём к шагу 2.

Шаг 2:

Построим в точке x_k субградиент a_{k+1} функции $\varphi(x): \varphi(x) \geq \varphi(x_k) + a_{k+1}^T(x - x_k)$ для $\forall x \in S_k$. Обозначим $b^{(k+1)} = -\varphi(x_k) + a_{k+1}^T x_k$ и определим область $S_{k+1}: S_{k+1} = \{x | a_{k+1}^T x - b^{(k+1)} \leq 0\} \cap S_k$. Ясно, что $S_{k+1} \subset S_k$ и для $k \geq 1$

$$S_k = \{x | a_j^T x - b^{(j)} \le 0, \ j = -l, \dots, -1, 0, \dots k\}$$

при использовании для решения симплекс-метода возникает проблема определения начального опорного вектора. Поэтому удобнее перейти к решению двойственной задачи

$$\max -b^T y$$

$$\sum_{i=-l}^{k} y^{(i)} a_i + c = 0, \quad y^{(i)} \ge 0, \quad i = \overline{-l, k}$$

Тогда в качестве начального опорного вектора можно взять решение предыдущего итерационного шага, дополнив его компонентной $y^{(k)} = 0$.

Заменим k на k+1 и перейдём к шагу 1.

6.1.3 Условие окончания вычислений

Если $||x_k - x_{k-1}|| < \varepsilon$, то x_k – решение задачи.

6.2 Алгоритм вычисления субградиента

На каждой итерации требуется вычислять субградиент функции $\varphi(x)$ в точке x_k . Если $\varphi(x)$ – дифференцируемая функция, то $a_{k+1} = \nabla \varphi(x_k)$. Если же $\varphi(x) = \max_{1 \le i \le m} \varphi_i(x)$, $\varphi_i(x)$ – дифференцируемые, $1 \le i \le m$, то a_{k+1} ищется так:

$$a_{k+1} = \sum_{i \in I(x_k)} \lambda_i \nabla \varphi_i(x_k), \ \sum_{i \in I(x_k)} \lambda_i = 1, \ \lambda_i \ge 0$$

$$I(x_k) = \{i | \varphi_i(x_k) = \max_{1 \le i \le m} \varphi_i(x_k)\}\$$

или можно положить

$$a_{k+1} = \nabla \varphi_i(x_k)$$

где i – любой индекс из $I(x_k)$.

Соответсвующая теорема о субградиенте функции $\varphi(x) = \{\max \varphi_i(x)\}, i = \overline{1, m}$ рассматривалась в курсе прошлого семестра.

7 Результаты решения задачи

При решении задачи многомерной минимизации, обозначенной в начале работы, в случае, когда точное решение x^* является граничной точкой системы ограничений, были полученны следующие результаты:

$$x^* = [0.267 - 1.467 - 1.867]$$

$$f(x*) = -1.867$$

Данные, полученные в результате работы программы:

• Оптимум задачи и значение функции в нем:

• Промежуточные вектора x_k , получаемые на каждой итерации метода при сужении области поиска решения:

```
xk = [-1.617 - 2.441 - 2.
xk = [0.1 -1.876 -2.
xk = [-0.154 - 1.461 - 2.
xk = [0.298 - 1.675 - 2.
xk = [0.134 - 1.417 - 2.
xk = [0.629 - 1.55 - 2.
xk = [0.388 - 1.548 - 1.926]
xk = [0.362 - 1.3]
                    -1.913
xk = [0.301 - 1.41 - 1.897]
xk = [0.262 -1.481 -1.887]
xk = [0.216 - 1.412 - 1.871]
xk = [0.28 -1.445 -1.871]
xk = [0.238 - 1.446 - 1.869]
xk = [0.27 -1.462 -1.868]
xk = [0.249 - 1.463 - 1.867]
xk = [0.265 -1.471 -1.867]
xk = [ 0.259 -1.463 -1.867]
```

• Параметры опорных планов, добавляемых к исходной системе ограничений на каждой итерации:

```
added plane: [-6.078 -8.152 -1.
                               1 * x <= 31.726
added plane: [ 1.46 -4.435 -1. ] * x <= 10.466
added plane: [-4.019 -2.454 -1. ] * x <= 6.204
added plane: [-1.29 -2.731 -1. ] * x <= 6.19
added plane: [-1.243 -0.793 -1. ] * x <= 2.958
added plane: [-0.313 -1.171 -1. ] * x <= 3.617
added plane: [-0.306 0.02 -1. ] * x <= 1.777
added plane: [ 0.879 0.144 -1.
                              ] * x <= 2.044
added plane: [ 0.195 -0.257 -1.
                               1 * x <= 2.318
added plane: [ 0.508 0.971 -1. ] * x <= 0.682
added plane: [ 0.186 0.349 -1. ] * x <= 1.419
added plane: [-0.048 -0.105 -1. ] * x <= 2.009
added plane: [-0.06 0.194 -1.
                               ] * x <= 1.573
added plane: [0.066 \ 0.125 -1.] * x <= 1.704
added plane: [-0.057 0.043 -1. ] * x <= 1.79
added plane: [ 0.007 0.011 -1. ] * x <= 1.853
added plane: [-0.054 -0.032 -1. ] * x <= 1.9
added plane: [-0.021 -0.046 -1.
                              ] * x <= 1.929
added plane: [-0.023 -0.009 -1.
                               ] * x <= 1.875
```

При минимизации той же целевой функции, но ограничниях, заданных таким образом, что точное решение является граничной точкой системы ограничений, были получены следующие данные:

$$x^* = [0.266 - 1.469 - 1.867]$$
$$f(x^*) = -1.867$$

• Оптимум задачи и значение функции в нем:

```
x* = [ 0.266 -1.47 -1.867]
f(x*) = -1.867
Iterations number = 11
```

• Промежуточные вектора x_k , получаемые на каждой итерации метода при сужении области поиска решения:

```
xk = [-1.305 -1.11 -2.]

xk = [-0.506 -1.204 -2.]

xk = [-0.043 -1.274 -2.]

xk = [ 0.44 -1.266 -2.]

xk = [ 0.678 -1.62 -1.921]

xk = [ 0.194 -1.356 -1.907]

xk = [ 0.168 -1.427 -1.873]

xk = [ 0.227 -1.429 -1.869]

xk = [ 0.298 -1.503 -1.869]

xk = [ 0.275 -1.463 -1.868]
```

• Параметры опорных планов, добавляемых к исходной системе ограничений на каждой итерапии:

Точность проведения расчетов в обоих опытах берется равной $\varepsilon=0.001$

Графическая илюстрация работы метода отсекающих гиперплоскостей приведодится ниже на примере решения задачи с системой ограничений ω_1 :

8 Оценка достоверности полученных результатов

Постановка нашей задачи полностью совпадает со II типом задач выпуключо nporparium pobarius (npormisi cemecino)

To econs paccuampubaem zagary murumuzamm $\min \varphi_0(x)$, $\varphi_i(x) \leq 0$, i=1,...,m, $\infty \in V_0$ rge V_0 - bringaine emonecto, a $\varphi_0(\infty)$, $\varphi_1(\times)$, ..., $\varphi_m(\times)$ - bringaine opyricism. Дия того, чтовы проверия найденное наши решение, воспользуещия теорешай Куна-Таккера:

 \mathcal{I} yems b zagare \mathbf{I} ποιονιες \mathbf{m} δουα οππιωανωνοῦ ποικοῦ, πεοδχομινο и достаточно, чтова $\exists y^* \ge 0$, чтова (x^*, y^*) была седеловой точкой оружкими вогранта $\psi(x, y)$.

Pennin zagary:
$$\begin{cases} x_1^2 + x_2^2 + \cos(x_1 + 2x_2) - x_1 + 2x_2 & \longrightarrow \min \\ x_1 + x_2 & \in 0.1 \\ -2x_1 - x_2 & \in 2 \\ e^{x_1} & \leq 3 \end{cases}$$

Составши орункцию Лагрантса:

 $\psi\left(x_{1},x_{2},\lambda_{1},\lambda_{2},\lambda_{3}\right)=x_{1}^{2}+x_{2}^{2}+\cos\left(x_{1}+\lambda x_{2}\right)-x_{1}+\lambda x_{2}+\lambda_{1}\left(0,1-x_{1}-x_{2}\right)+\lambda_{2}\left(\lambda+\lambda x_{1}+x_{2}\right)$ Находин частные производите данной оружили

$$\frac{\partial \psi}{\partial x_{1}} = 2x_{1} - \sin(x_{1} + 2x_{2}) - 1 - \lambda_{1} + 2\lambda_{2} - \lambda_{3}e^{x_{1}}$$

$$\frac{\partial \psi}{\partial x_2} = 2x_2 - 2\sin(x_1 + 2x_2) + 2 - \lambda_1 + \lambda_2$$

$$\frac{\partial \psi}{\partial \lambda_1} = 0.1 - x_1 - x_2$$

$$\frac{\partial \psi}{\partial \lambda} = 2 + \lambda x_1 + x_2$$

$$\frac{\partial \psi}{\partial \lambda_3} = 3 - e^{x_i}$$

nogemableur 6 cuemeury beknop x = [0,268; -1.464] u nougéme znavenue λ. λ. .. λ.

$$λ_{1} \cdot [0,1-0,268+1.464] = 0$$
 $λ_{2} = 0$
 $λ_{3} = 0$
 $λ_{3} = 0$
 $λ_{3} = 0$

Torga naugraeių:

$$\begin{cases} x_{1} \cdot [2x_{1} - \sin(x_{1} + 3x_{2}) - 1] = 0 \\ x_{2} \cdot [2x_{2} - 2\sin(x_{1} + 3x_{2}) - 1] = 0 \end{cases}$$

προβερικι δεποινενικ μαθεκική, nogemabub x^{*} :

 $0,268 \cdot [2\cdot0,268 - \sin(0,268 + 3\cdot(-1,464)) - 1] = -0.00021 \approx 0$
 c more combine go $c = 10^{-2}$.

Τηνοβερικι, что $c = 10^{-2}$.

Τηνοβερικι, что $c = 10^{-2}$.

Τηνοβερικι, ντο $c = 10^{-2}$.

 $\frac{\partial^2 f}{\partial x^2} = 2 - \cos(x_1 + 2x_2)$

 $\frac{\partial^2 f}{\partial x_i \partial x_i} = -\lambda \cos(x_i + \lambda x_i)$

 $\frac{\partial^2 f}{\partial x^2} = 2 - 4\cos(x_1 + 2x_2)$

$$H(f) = \begin{pmatrix} 2 - \cos(\alpha_1 + 2\alpha_2) & -2\cos(\alpha_1 + 2\alpha_2) \\ -2\cos(\alpha_1 + 2\alpha_2) & 2 - 4\cos(\alpha_1 + 2\alpha_2) \end{pmatrix}$$

Утовы матрица выла поножитеньно onfegenera, bocnoubzyeural refumerueur Ceubbecmpa:

$$2-\cos(0.268+2\cdot(-1,464))=2.886 \ge 0$$

 $\det(H(f))=(2,886\cdot 5,545)-1,442\cdot 1,442 \ge 0$

Проверши, что найденкай точка х*- ишнишанькай. Headorumballi bakulagicallu makake apolepiseus ormilulauskotto gue zagazu Ω_z

9 Программная реализация

В процессе реализации алгоритмов использовался язык программирования Python3.6. Для проверки полученных решений пользовались пакетом MATLAB2020b.

Исходный код находится в системе контроля версий GitHub https://github.com/Brightest-Sunshine/Optimization-methods-2021

10 Выводы

- 1. Скорость сходимости метода отсекающей гиперплоскости невысока. Она меньше геометрической.
- 2. Достоинство метода заключается в том, что решаемая на каждом итерационном шаге вспомагательная задача относится к задачам линейного программирования, метода решения которых хорошо разработаны. При переходе к двойственной постановке легко строится начальное приближение для двойственной задачи.

11 Ответы на дополнительные вопросы

11.1 Метод аппроксимации множества ограничений задачи

Так как по условию задачи множество ограничений задано в виде системы нелинейных уравнений, перед применением алгоритма возникает проблема приведения ограничений задачи к виду, удобному для вычислений. Аппроксимировать множество, ограниченного неравенствами с нелинейными функциями, можно при помощи выпуклого полиэдра, который можно построить следующим образом:

- Выбираем i—ую компоненту пространства R^n и ищем ее наибольшее и наименьшее значение среди всех точек множества ограничений методом перебора (то есть, строим диаметр множества по данной компоненте).
- Добавляем два неравенства, ограничивающих значения данной компоненты, в систему, задающую полиэдр.

Применив данные шаги к каждой из компонент простанства, получим систему линейных ограничений, задающих полиэдр со сторонами - диаметрами исходного аппроксимированного множества.

11.2 Экспериментальные оценки сходимости метода

В качестве дополнительной иллюстрации работы метода отсекающей гиперплоскости и демострации сходимости минимизирующей последовательности приводится следующий фрагмент программного вывода:

```
||xk+1 - xk|| = 2.582243568564431

||xk+1 - xk|| = 0.49640377292313925

||xk+1 - xk|| = 0.9569148924995217

||xk+1 - xk|| = 0.4697396448835498

||xk+1 - xk|| = 0.23297711264377402

||xk+1 - xk|| = 0.12421857775330745

||xk+1 - xk|| = 0.08603983379855869

||xk+1 - xk|| = 0.0440920961110314

||xk+1 - xk|| = 0.02158557117600382

||xk+1 - xk|| = 0.010873540903449877

||xk+1 - xk|| = 0.00545833601450149

x* = [0.266, -1.469, -1.867]

f(x*) = -1.867

Iterations number = 11
```

Решение строилось для задачи минимизации с областью допустимых значений, при которой решение задачи лежит на границе области. Точность вычислений ε бралась равной 0.01.

Кроме того, для демонстрации сходимости метода отсекающей гиперплоскости для разных ε была построена следующая зависимость фактической точности получения результата от требуемой, представленная на следующей иллюстрации:

Зависимость точности найденного решения от выбранного эпсилон

Для построения зависимости бралась задача минимизации с ограниченями, при которых решение находится на границе области допустимых значений. Точным решением на каждой итерации принималось решение задачи минимизации, полученное методом optimize из библиотеки SciPy - вспомогательного пакета математических функций, реализованного на языке программирования Python. Как видно на графике, точность изменялась в пределах от 0.1 до 10^{-6} .

11.3 Обоснование отклонения нормы разности от нормального процесса сходимости метода

Приведем для примера результаты решения задачи, приведенной в пункте 2, с решением, лежащим на границе области ограничений, и точностью $\varepsilon = 0.001$:

```
||xk - xk+1|| = 2.0053
||xk - xk+1|| = 0.8848
||xk - xk+1|| = 0.8132
||xk - xk+1|| = 0.4736
||xk - xk+1|| = 0.7754
||xk - xk+1|| = 0.4979
||xk - xk+1|| = 0.3469
||xk - xk+1|| = 0.603
||xk - xk+1|| = 0.658
||xk - xk+1|| = 0.4251
||xk - xk+1|| = 0.3409
||xk - xk+1|| = 0.2623
||xk - xk+1|| = 0.1012
||xk - xk+1|| = 0.0512
||xk - xk+1|| = 0.0272
||xk - xk+1|| = 0.0372
||xk - xk+1|| = 0.0162
||xk - xk+1|| = 0.0107
||xk - xk+1|| = 0.0076
||xk - xk+1|| = 0.0074
||xk - xk+1|| = 0.0032
||xk - xk+1|| = 0.0022
||xk - xk+1|| = 0.002
||xk - xk+1|| = 0.0011
||xk - xk+1|| = 0.001
||xk - xk+1|| = 0.0006
x* = [0.266, -1.469, -1.867]
f(x*) = -1.867
Iterations number = 26
```

Кроме того, построим график иллюстрации нормы разности двух соседних векторов x_k на каждой итерации:

Опредление 1. Последовательность $\{x_k\}$ называется сходящейся, если $\forall \varepsilon > 0 \ \exists N > 0: \ \forall k,m > N \Rightarrow ||x_k - x_m|| < \varepsilon$

Как видно, норма разности совершает несколько скачков, но в целом сходится к решению задачи с требуемой точностью. Отталкиваясь от определения выше, видим что в данном случае N=15. Это значит, что после того как номера индексов будут превосходить N=15, скачки прекратятся. Наличие же скачков связано с применением симплекс-метода на каждой итерации метода отсекающих гиперплоскостей. Из-за того, что симплекс имеет вытянутую форму, алгоритм берет слишком большой шаг, вследствие чего метод на данной итерации проходит дальше искомого решения, и появляется небольшое расхождение по норме.

Список литературы

- [1] Пшеничный Б. Н., Данилин Ю. М. Численные методы в экстремальных задачах. М.: Наука, 1975. 319с.
- [2] Численные методы условной минимизации/ Под ред. Ф. Гилл, У. Мюррей. М.: Мир, 1977. 290с.
- [3] Лесин В. В., Лисовец Ю. П. Основы методов оптимизации: Учебное пособие. 3-е изд., испр, СПб.: Издательство «Лань», 2011. 352с.