Detectors: Harris, Scale invariance, Harris-Laplace, affine Harris-Laplace

Example: Finding Correspondences Between Images

- First step toward 3-D reconstruction: Find correspondences between *feature points* in two images of a scene
- Object recognition: Find correspondences between *feature points* in "training" and "test" image

2,106 images, 819,242 points

http://grail.cs.washington.edu/projects/rome/

Building Rome in a Day Sameer Agarwal, Noah Snavely, Ian Simon, Steven M. Seitz and Richard Szeliski International Conference on Computer Vision, 2009, Kyoto, Japan.

Interest points as "corner-like": Basic Harris detector

Interest Points

- Intuitively, junctions of contours.
- Generally more stable features over changes of viewpoint
- Intuitively, large variations in the neighborhood of the point in all directions

The distribution of the *x* and *y* derivatives is very different for all three types of patches

Flat

The distribution of *x* and *y* derivatives can be characterized [11] by the shape and size of the principal component ellipse

0.2

How to evaluate "interestness"?

 The distribution of gradients in a neighborhood W is represented by the inertia (shape, Harris) matrix:

$$m{H} = egin{bmatrix} \sum_{m{W}} m{I}_x m{I}_y \\ \sum_{m{W}} m{I}_x m{I}_y \\ \sum_{m{W}} m{I}_y \end{bmatrix}$$

- Elongations of the distribution = Eigenvalues of H: λ_{min} , λ_{max}
 - We want λ_{min} , λ_{max} to be approx. equal
 - We want λ_{\min} , λ_{\max} to be large

Harris detector and its variants

- We want λ_{\min} , λ_{\max} to be approx. equal
- We want λ_{\min} , λ_{\max} to be large

$$\mathbf{R} = 4 \frac{\lambda_{\min} \lambda_{\max}}{(\lambda_{\min} + \lambda_{\max})^2}$$

• $(R = 1 \text{ if } \lambda_{\min} = \lambda_{\max} \text{ but keep only the ones with large } \lambda_{\max})$

$$\boldsymbol{R} = \frac{\lambda_{\min} \lambda_{\max}}{\left(\lambda_{\min} + \lambda_{\max}\right)}$$

$$\mathbf{R} = \lambda_{\min} \lambda_{\max} - \mathbf{k} (\lambda_{\min} + \lambda_{\max})^2$$

Comp. efficient definition

- For any symmetric matrix H:
 - $\operatorname{Det}(H) = \lambda_{\min} \lambda_{\max}$
 - Trace(H) = λ_{\min} + λ_{\max} (The trace is the sum of the diagonal of H)

$$R = 4 \frac{Det(H)}{Trace(H)^2}$$

$$R = \frac{Det(H)}{Trace(H)}$$

$$R = Det(H) - kTrace(H)^2$$

Computation of *H* and gradients

- I_x means convolution with Gaussian of σ
- H should computed with different weights → Convolution with Gaussian

$$\boldsymbol{H} = \begin{bmatrix} \sum_{w} \boldsymbol{I}_{x}^{2} & \sum_{w} \boldsymbol{I}_{x} \boldsymbol{I}_{y} \\ \sum_{w} \boldsymbol{I}_{x} \boldsymbol{I}_{y} & \sum_{w} \boldsymbol{I}_{y}^{2} \end{bmatrix}$$
Constant weights

$$\boldsymbol{H} = \begin{bmatrix} \boldsymbol{G}_{\sigma} * \boldsymbol{I}_{x}^{2} & \boldsymbol{G}_{\sigma} * \boldsymbol{I}_{x} \boldsymbol{I}_{y} \\ \boldsymbol{G}_{\sigma} * \boldsymbol{I}_{x} \boldsymbol{I}_{y} & \boldsymbol{G}_{\sigma} * \boldsymbol{I}_{y}^{2} \end{bmatrix} = \boldsymbol{G}_{\sigma} * \begin{bmatrix} \boldsymbol{I}_{x}^{2} & \boldsymbol{I}_{x} \boldsymbol{I}_{y} \\ \boldsymbol{I}_{x} \boldsymbol{I}_{y} & \boldsymbol{I}_{y}^{2} \end{bmatrix}$$

Gaussian weights

Input

Interest point detection example

Interest points example

1. Compute x and y derivatives of image

$$I_x = G^x_\sigma * I \quad I_y = G^y_\sigma * I$$

Compute products of derivatives at every pixel

$$I_{x2} = I_x I_x \quad I_{y2} = I_y I_y \quad I_{xy} = I_x I_y$$

Compute the sums of the products of derivatives at each pixel

$$S_{x2} = G_{\sigma'} * I_{x2}$$
 $S_{y2} = G_{\sigma'} * I_{y2}$ $S_{xy} = G_{\sigma'} * I_{xy}$

4. Define at each pixel (x, y) the matrix

$$H(x,y) = \begin{bmatrix} S_{x2}(x,y) & S_{xy}(x,y) \\ S_{xy}(x,y) & S_{y2}(x,y) \end{bmatrix}$$

Compute the response of the detector at each pixel

$$R = Det(H) - k(Trace(H))^2$$

Characteristic scale

Scale Selection

- We need to decide what window size to use for computing the Harris matrix
- Equivalently, we need to choose the value of σ'
- The window size (or σ') must be consistent between different magnifications of the image

How to choose a neighborhood size? → Intuition

Best radius: Local extrema of function that measures amount of interesting stuff

- Why did we use the normalized Laplacian in the previous example?
- Justification (and basis for most scale selection operations in computer vision):
- Scale Selection Principle (T. Lindeberg):

In the absence of other evidence, assume that a scale level, at which some (possibly non-linear) combination of normalized derivatives assumes a local maximum over scales, can be treated as reflecting a characteristic length of a corresponding structure in the data.

What are normalized derivatives?

Example using 2nd order derivatives

$$\sigma^{n+m} \frac{\partial^{n+m} f}{\partial x^n \partial y^m} \quad \sigma^2 \nabla^2 f = \sigma^2 \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right)$$

$$\nabla_{\sigma}^2 I = \nabla^2 G_{\sigma} * I$$

Constant independent of σ

$$G_{k\sigma} - G_{\sigma} \approx (k-1)\sigma^2 \nabla^2 G_{\sigma}$$

The Laplacian of a Gaussian can be approximated by the difference of two Gaussian.

To compare the Laplacian at different scales we need to explain more carefully what the approximation is.

In practice: the scaled
Laplacian can be computed
by taking the difference
between level in a Gaussian
pyramid

Laplacian

Interest points as "blob-like": Basic Laplacian detector = Local maxima of characteristic scale

From Laplacian pyramid to detected points

• Find local extrema of $\nabla^2 G_{\sigma}$ over x,y, and σ (scale)

Combining the two: Harris-Laplace detector

Combining Harris and Laplace: Harris-Laplace detector

$$\boldsymbol{H} = \boldsymbol{G}_{\sigma_{I}} * \begin{bmatrix} \boldsymbol{I}_{x,\sigma_{D}}^{2} & \boldsymbol{I}_{x,\sigma_{D}} \boldsymbol{I}_{y,\sigma_{D}} \\ \boldsymbol{I}_{x,\sigma_{D}} \boldsymbol{I}_{y,\sigma_{D}} & \boldsymbol{I}_{y,\sigma_{D}}^{2} \end{bmatrix} \boldsymbol{R} = \boldsymbol{Det}(\boldsymbol{H}) - \boldsymbol{k}(\boldsymbol{Trace}(\boldsymbol{H}))^{2}$$

- The location x of the points detected by Harris is not scale invariant \rightarrow Depends on the choice of σ_l and σ_D .
- Reduce to one parameter: $\sigma_D = s\sigma_I (s = 0.7)$
- The Laplacian trick gives us a good σ but not where the interest point is.
- Chicken and egg problem:
 - If we knew x we could estimate σ
 - If we knew σ we could find x

Harris-Laplace: Algorithm summary

- Try Harris at different scales and report initial points and associated scales
 - Try different σ_l of the form $k^n \sigma_o$ $(k = \sqrt{2})$
 - Report points with large R
- 2. For each detected point *x*
 - Estimate characteristic scale $\sigma_{\!c}$ as maximum of $\sigma^2
 abla^2 m{G}_{\!\sigma}$
 - Find the point x' with the maximum of R in a 8x8 neighborhood of x by using the new scale $\sigma_l = \sigma_c$
 - Replace x by x'

Example from *Mikolajczyk and Schmid 2004*

Affine-invariant detection (*overview* only)

- Need to define a richer description of "neighborhood" or scale
- Use directional derivatives instead: σ_l replaced by Σ_l , σ_D replaced by Σ_D
- Σ_l represent an elliptical "neighborhood" instead of a circular one
- More degrees of freedom to search through but conceptually similar algorithm:
- Assume $\Sigma_D = s\Sigma_I$
- Find x's with initial selections of Σ_I
- Iterate:
 - Re-estimate "scale" Σ_{l}
 - Adjust the location of x based on new Σ_l

State of the Art: Affine Invariance

Example from Mikolajczyk and Schmid 2004

Affine Invariance

Application: Finding Correspondences

Initial detections

Scale: 4.9

Rotation: 19°

Example from Mikolajczyk and Schmid 2004

Final matches: 32 correct correspondences

Scale: 4.9

Rotation: 19°

Example from Mikolajczyk and Schmid 2004

Application: Finding Correspondences

Scale change: 1.7

Viewpoint change: 50°

Example from Mikolajczyk and Schmid 2004