Programmed By : Rithik Tripathi

Connect with me on Linkedin (https://www.linkedin.com/in/rithik-tripathi-data-scientist/)

In this notebook, We will see what are the problems of Linear Regression and Why do we need Regularisation

In [1]:

```
#Importing Libraries
import numpy as np
import pandas as pd
import random
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
%matplotlib inline
```

we will make a dataframe which could mimic a Sine curve

In [2]:

```
1 #Defining independent variable as angles from 60deg to 300deg converted to radians
2 x = np.array([i*np.pi/180 for i in range(10,360,3)])
```

In [3]:

```
1 #Setting seed for reproducability
2 np.random.seed(10)
```

In [4]:

```
#Defining the target/dependent variable as sine of the independent variable

# y = sin(x) + SOME NOISE BEING ADDED ON TOP OF IT

y_sin_noise = np.sin(x) + np.random.normal(0,0.15,len(x))

y_pure_sin = np.sin(x)

del_y = y_sin_noise - y_pure_sin
```

In [5]:

```
import seaborn as sns
sns.distplot(del_y, hist=True)

# we can see the errors being generated from noise form a normal distribution
```

C:\Users\rkt7k\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[5]:

<AxesSubplot:ylabel='Density'>

In [6]:

```
#Creating the dataframe using independent and dependent variable
sin_df = pd.DataFrame(np.column_stack([x,y_sin_noise]),columns=['x','y'])
```

```
In [7]:

1 sin_df.head()
```

Out[7]:

```
x y
0 0.174533 0.373386
```

- 1 0.226893 0.332243
- **2** 0.279253 0.043827
- **3** 0.331613 0.324311
- **4** 0.383972 0.467807

In [8]:

```
# sine curve with noise added

#Plotting the dependent and independent variables
plt.figure(figsize=(12,4))
plt.plot(sin_df['x'],sin_df['y'],'.')
```

Out[8]:

[<matplotlib.lines.Line2D at 0x1f01e2720d0>]

In [9]:

```
# this is how the pure sine column plot appears : without noise

#Plotting the dependent and independent variables
plt.figure(figsize=(12,4))
plt.plot(sin_df['x'],y_pure_sin,'.')
```

Out[9]:

[<matplotlib.lines.Line2D at 0x1f01e2d0f70>]


```
In [10]:
```

```
# using polynomial regression from power 1 to 15
for i in range(2,16): #power of 1 is already there, hence starting with 2
col_name = 'x_%d'%i # generating column name with the respective power
            sin_df[col_name] = sin_df['x']**i
4
6 sin_df.head()
```

Out[10]:

	x	у	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_10	x_11	x_12	x_13
0	0.174533	0.373386	0.030462	0.005317	0.000928	0.000162	0.000028	0.000005	8.610313e- 07	1.502783e- 07	2.622851e- 08	4.577739e- 09	7.989662e- 10	1.394459e- 10
1	0.226893	0.332243	0.051480	0.011681	0.002650	0.000601	0.000136	0.000031	7.023697e- 06	1.593626e- 06	3.615823e- 07	8.204043e- 08	1.861438e- 08	4.223469e- 09
2	0.279253	0.043827	0.077982	0.021777	0.006081	0.001698	0.000474	0.000132	3.698101e- 05	1.032705e- 05	2.883856e- 06	8.053244e- 07	2.248890e- 07	6.280085e- 08
3	0.331613	0.324311	0.109967	0.036466	0.012093	0.004010	0.001330	0.000441	1.462338e- 04	4.849296e- 05	1.608088e- 05	5.332620e- 06	1.768364e- 06	5.864117e- 07
4	0.383972	0.467807	0.147435	0.056611	0.021737	0.008346	0.003205	0.001231	4.724984e- 04	1.814264e- 04	6.966273e- 05	2.674857e- 05	1.027071e- 05	3.943671e- 06
4														>

Creating Train & Test set Randomly

In [11]:

```
1 sin_df['y_pure_sin'] = y_pure_sin
 3 # allocating random int to each record and if it is <3 => train & >3 => test
 # this is just a fancy way of doing train test split, nothing else
sin_df['randNumCol'] = np.random.randint(1, 6, sin_df.shape[0])
 6 sin df.head()
 7 train=sin_df[sin_df['randNumCol']<=3]
8 test=sin_df[sin_df['randNumCol']>3]
9 train = train.drop('randNumCol', axis=1)
10 test = test.drop('randNumCol', axis=1)
```

In [12]:

```
1 sin_df.randNumCol.value_counts()
2 # we can see the distribution is almost same
```

Out[12]:

- 1 28
- 3 26 5 22
- 22
- 4

19 Name: randNumCol, dtype: int64

Implementing Linear Regression

```
1 from sklearn.linear_model import LinearRegression
```

In [14]:

```
1 #Separating the independent and dependent variables
2 X_train = train.drop('y', axis=1).values
3 y_train = train['y'].values
4 y_sin_train = train['y_pure_sin'].values
6 X_test = test.drop('y', axis=1).values
7 y_test = test['y'].values
8 y_sin_test = test['y_pure_sin'].values
```

In [15]:

```
#Linear regression with one features
 1
    # on TRAINING SET
 3
 4 independent_variable_train = X_train[:,0:1] # this is array slicing => slicing only 1st feature from all components
   lr = LinearRegression(normalize=True)
 6
   lr.fit(independent_variable_train, y_train)
 7
 8 y_train_pred = lr.predict(independent_variable_train)
10 from sklearn.metrics import mean_squared_error as mse
11
   mse_train = mse(y_train_pred, y_train)
12
13
    # ON TESTING SET
14 independent_variable_test = X_test[:,0:1]
15
   y_test_pred = lr.predict(independent_variable_test)
16
    mse_test = mse(y_test_pred, y_test)
17
18 # printing results
   print("Train Error ", mse_train)
print("Test Error ", mse_test)
19
20
21
22
    # plotting scores
23
   plt.plot(X_train[:,0:1], y_train_pred, label = 'Predicted')
   plt.plot(X_train[:,0:1], y_train, '.', label = 'Actual')
25
   plt.legend()
```

Train Error 0.21314430958173897 Test Error 0.18974033118165387

Out[15]:

<matplotlib.legend.Legend at 0x1f01ec54130>

As we are using only one feature to predict, the output is a stringht line

This demonstrates that our model is a UNDERFITTED model, as its not able to capture the relationship as seen above

In [16]:

```
# performing the same task as above but with 3 features
    1
    3
    4 # on TRAINING SET
            independent_variable_train = X_train[:,0:3] # this is array slicing => slicing only 1st feature from all components
    7 lr = LinearRegression(normalize=True)
   8 lr.fit(independent_variable_train, y_train)
   9 y_train_pred = lr.predict(independent_variable_train)
10
11 from sklearn.metrics import mean_squared_error as mse
12 mse_train = mse(y_train_pred, y_train)
13
14 # ON TESTING SET
 15
            independent_variable_test = X_test[:,0:3]
y_test_pred = lr.predict(independent_variable_test)
17
              mse_test = mse(y_test_pred, y_test)
19 # printing results
print("Train Error ", mse_train)
print("Test Error ", mse_test)
23 # plotting scores
protecting storing storin
27 plt.legend()
```

Train Error 0.02147248177096577 Test Error 0.03045187888196913

Out[16]:

<matplotlib.legend.Legend at 0x1f01eca6790>

1 we can observe that with the increased features, model is trying to predict better as its getting closer to the sine curve

In [17]:

```
# performing the same task as above but with 7 features
    1
    3
    4 # on TRAINING SET
            independent_variable_train = X_train[:,0:7] # this is array slicing => slicing only 1st feature from all components
    7 lr = LinearRegression(normalize=True)
   8 lr.fit(independent_variable_train, y_train)
   9 y_train_pred = lr.predict(independent_variable_train)
10
11 from sklearn.metrics import mean_squared_error as mse
12 mse_train = mse(y_train_pred, y_train)
13
14 # ON TESTING SET
 15
            independent_variable_test = X_test[:,0:7]
y_test_pred = lr.predict(independent_variable_test)
17
              mse_test = mse(y_test_pred, y_test)
19 # printing results
print("Train Error ", mse_train)
print("Test Error ", mse_test)
23 # plotting scores
protecting storing storin
27 plt.legend()
```

Train Error 0.019095054809245043 Test Error 0.027717292848481637

Out[17]:

<matplotlib.legend.Legend at 0x1f01ed2a580>

1 Increasing the features more, we can observe that dependence is followed more closely now

Defining a function to automate this process and iterate th. range of features and plot results

In [18]:

```
1 def check_features_vs_result(train_x, train_y, test_x, test_y, features, models_to_plot):
 2
 3
 4
        Takes input train and test dataset, features and a dictionary with number of features to plot with respective plot location
 5
        and returns train v/s test results plot to better understand the overfitting / underfitting results.
 6
 8
            train_x : training data
 9
            train_y : training target feature
10
            test_x : testing data
11
            test_y : testing target feature
            features : (int) number of features to consider while plotting
12
13
            models_to_plot : dictionary : key -> number of features & value -> Plot location in subplot
14
15
        Returns :
        Respective train v/s test plot
16
17
18
19
        # fitting the model
20
21
        lr = LinearRegression(normalize=True)
        lr.fit(train_x, train_y)
train_y_pred = lr.predict(train_x)
test_y_pred = lr.predict(test_x)
22
23
24
25
        # checking features for which plot is to be made:
if features in models_to_plot :
26
27
            plt.subplot(models_to_plot[features])
28
29
            plt.tight_layout()
            plt.plot(train_x[:, 0:1], train_y_pred)
30
31
            plt.plot(train_x[:, 0:1], train_y, '.')
            plt.title('Number of Predictors: %d'%features)
32
33
34
        rss_train = sum((train_y_pred-train_y)**2)/train_x.shape[0]
35
        return_list = [rss_train]
36
37
        rss_test = sum((test_y_pred-test_y)**2)/test_x.shape[0]
38
        return_list.extend([rss_test])
39
40
        return_list.extend([lr.intercept_])
41
        return_list.extend(lr.coef_)
42
43
        return return_list
44
45
```

In [19]:

```
# Making DataFrame to store the results

col = ['mrss_train', 'mrss_test', 'intercept'] + ['coef_Var_%d'%i for i in range(1,16)]

ind = ['Number_of_variable_%d'%i for i in range(1,16)]

coef_matrix_simple = pd.DataFrame(index=ind, columns=col)

# defining a dictionary to store subpolot locations for respective number of features
models_to_plot = {1:231,3:232,6:233,9:234,12:235,15:236}
```

In [20]:

```
# Iterating through all powers of polynomial reg and storing results in the dataframe made above
    plt.figure(figsize=(12,8))
 2
    for i in range(1,16):
 4
        train_x = X_train[:,0:i]
train_y = y_train
test_x = X_test[:,0:i]
 5
 6
 7
        test_y = y_test
 8
 9
        \# row = i-1 because we need to start from 0th location
10
        \# column = i+3 because there are somdefault columns like x and y axis
11
        coef_matrix_simple.iloc[i-1, 0:i+3] = check_features_vs_result(
12
13
                                                         train_x, train_y, test_x, test_y,
14
                                                         features=i,
15
                                                         models_to_plot=models_to_plot
16
        )
```


Note: It is easily understood from above that initially the model was Underfitted as the number of features were less

It starting understaing the sine pattery as number of features increased

But when the features were given more & more, the model got Overfitted and Learned the noise present in data as well

In [21]:

1 coef_matrix_simple

Out[21]:

	mrss_train	mrss_test	intercept	coef_Var_1	coef_Var_2	coef_Var_3	coef_Var_4	coef_Var_5	coef_Var_6	coef_Var_7	
Number_of_variable_1	0.213144	0.18974	1.022026	-0.314825	NaN	NaN	NaN	NaN	NaN	NaN	
Number_of_variable_2	0.211909	0.187095	1.108613	-0.394472	0.012378	NaN	NaN	NaN	NaN	NaN	
Number_of_variable_3	0.021472	0.030452	-0.395777	2.211256	-0.985564	0.103652	NaN	NaN	NaN	NaN	
Number_of_variable_4	0.021433	0.030495	-0.429469	2.297581	-1.042236	0.117041	-0.001036	NaN	NaN	NaN	
Number_of_variable_5	0.01977	0.023449	-0.096495	1.196542	0.008412	-0.292937	0.068681	-0.00429	NaN	NaN	
Number_of_variable_6	0.019096	0.027915	-0.402994	2.460917	-1.644525	0.655694	-0.197059	0.031391	-0.001837	NaN	
Number_of_variable_7	0.019095	0.027717	-0.383432	2.364513	-1.484218	0.532799	-0.147927	0.020809	-0.000674	-0.000051	
Number_of_variable_8	0.01877	0.031513	-0.848928	5.059678	-7.017272	5.985346	-3.076467	0.923889	-0.160126	0.01492	
Number_of_variable_9	0.018764	0.032176	-0.938864	5.654966	-8.466056	7.732466	-4.26288	1.406429	-0.279989	0.032718	
Number_of_variable_10	0.018237	0.044286	-2.379595	16.259649	-38.022791	49.70171	-38.754405	18.930563	-5.952893	1.204084	
Number_of_variable_11	0.017761	0.034306	-0.337851	-0.367154	14.686782	-37.637253	46.978086	-34.37047	15.790354	-4.688212	
Number_of_variable_12	0.017555	0.027785	1.635685	-18.04956	77.796076	-157.789059	184.977871	-136.636942	66.609825	-21.947205	
Number_of_variable_13	0.01754	0.02935	0.84298	-10.307477	47.123532	-91.902126	98.300673	-61.92383	22.668915	-3.904411	
Number_of_variable_14	0.01718	0.056087	-5.499372	56.503431	-242.75995	599.968571	-927.089989	947.704446	-665.789454	329.548704	
Number_of_variable_15	0.015731	0.203073	-24.703978	273.274842	-1264.577986	3285.223124	-5365.479472	5882.772284	-4515.085155	2492.578419	-1

In [22]:

- 1 #Set the display format to be scientific for ease of analysis
 - 2 pd.options.display.float_format = '{:,.2g}'.format
 3 coef_matrix_simple

2 COET_IIIatri1x_S1IIIf

Out[22]:

	mrss_train	mrss_test	intercept	coef_Var_1	coef_Var_2	coef_Var_3	coef_Var_4	coef_Var_5	coef_Var_6	coef_Var_7	coef_Var_8
Number_of_variable_1	0.21	0.19	1	-0.31	NaN						
Number_of_variable_2	0.21	0.19	1.1	-0.39	0.012	NaN	NaN	NaN	NaN	NaN	NaN
Number_of_variable_3	0.021	0.03	-0.4	2.2	-0.99	0.1	NaN	NaN	NaN	NaN	NaN
Number_of_variable_4	0.021	0.03	-0.43	2.3	-1	0.12	-0.001	NaN	NaN	NaN	NaN
Number_of_variable_5	0.02	0.023	-0.096	1.2	0.0084	-0.29	0.069	-0.0043	NaN	NaN	NaN
Number_of_variable_6	0.019	0.028	-0.4	2.5	-1.6	0.66	-0.2	0.031	-0.0018	NaN	NaN
Number_of_variable_7	0.019	0.028	-0.38	2.4	-1.5	0.53	-0.15	0.021	-0.00067	-5.1e-05	NaN
Number_of_variable_8	0.019	0.032	-0.85	5.1	-7	6	-3.1	0.92	-0.16	0.015	-0.00058
Number_of_variable_9	0.019	0.032	-0.94	5.7	-8.5	7.7	-4.3	1.4	-0.28	0.033	-0.002
Number_of_variable_10	0.018	0.044	-2.4	16	-38	50	-39	19	-6	1.2	-0.15
Number_of_variable_11	0.018	0.034	-0.34	-0.37	15	-38	47	-34	16	-4.7	0.9
Number_of_variable_12	0.018	0.028	1.6	-18	78	-1.6e+02	1.8e+02	-1.4e+02	67	-22	4.9
Number_of_variable_13	0.018	0.029	0.84	-10	47	-92	98	-62	23	-3.9	-0.31
Number_of_variable_14	0.017	0.056	-5.5	57	-2.4e+02	6e+02	-9.3e+02	9.5e+02	-6.7e+02	3.3e+02	-1.2e+02
Number_of_variable_15	0.016	0.2	-25	2.7e+02	-1.3e+03	3.3e+03	-5.4e+03	5.9e+03	-4.5e+03	2.5e+03	-1e+03
4											•

```
In [23]:
```

```
1 coef_matrix_simple[['mrss_train','mrss_test']].plot()
2 plt.xlabel('Features')
3 plt.ylabel('MRSS')
4 plt.legend(['train', 'test'])
```

Out[23]:

<matplotlib.legend.Legend at 0x1f01f1d5250>

 $\ensuremath{\mathtt{1}}$ Same concept is being proved by this plot as well

Solution: Regularization Techniques