2023 Weston Calc 3 Pretest

Allen Liu

June 2023

1.	Let $\vec{u}=\langle 2,0,-1\rangle$ and $\vec{v}=\langle 0,1,3\rangle$. Find the result of each of the following, and indicate whether each is a vector or a scalar (1 pt for each result, 1 pt for vector/scalar):	
	(a)	$3\vec{u}$
	(b)	$ec{u} + ec{v}$
	(c)	$ec{u}\cdotec{v}$
	(4)	$ec{u} imes ec{v}$
	(u)	$u \wedge v$
	(e)	$ec{v} imes ec{u}$
	()	
	(f)	$\ ec{u}\ $
	()	
	(g)	A unit vector parallel to \vec{u}
	(0)	-

(h) A unit vector perpendicular to \vec{v}

2. Let
$$f(x)$$
 be the vector valued function $\begin{bmatrix} \cos(\ln(x)) \\ e^{2x} \end{bmatrix}$
Find $\frac{df}{dx}$

- 3. Let $f(x,y,z)=2x^2+x\sin(y)+\cos(y)+\ln(z)$ Find each of the following partial derivatives (4 pts each):
 - (a) $\frac{\partial f}{\partial x}$
 - (b) $\frac{\partial f}{\partial y}$
 - (c) $\frac{\partial f}{\partial z}$
- 4. Let $f(x,y,z)=2x^2+x\sin(y)+\cos(y)+\ln(z)$ and point $p=(1,\frac{\pi}{2},e)$ Find the gradient of f at point p

- 5. Consider the surface S in \mathbb{R}^3 described by the function $z = \sin(x) + y^{\frac{1}{3}}$
 - (a) Find an equation of the normal (perpendicular) line to S at the point $(\pi, -8)$.
 - (b) Find an equation of the tangent plane to S at the same point $(\pi, -8)$.
- 6. Again, consider the surface S in \mathbb{R}^3 described by $z = \sin(x) + y^{\frac{1}{3}}$ Find the volume between S and the xy plane within the box with corners at the points $(0,0), (\pi,0), (0,1), (\pi,1)$.

7. Consider the vector field

$$\vec{F}(x,y,z) = \begin{bmatrix} 3x+y \\ y^2 \\ x\sqrt{z} \end{bmatrix}$$

- (a) Find the function for the divergence of \vec{F}
- (b) Find the function for the curl of \vec{F}

8. Again, consider the vector field

$$\vec{F}(x,y,z) = \begin{bmatrix} 3x+y \\ y^2 \\ x\sqrt{z} \end{bmatrix}$$

Let the surface S be the shape (circular paraboloid) defined by

$$z = -(x^2 + y^2) + 5, z \ge 1$$

Using Stokes' theorem and the curl function from question 7,1 find the sum of the curl of \vec{F} across S.²

You may find the following 3D graph of S helpful:

 $^{^{1}}$ This is a hint. How can you get Stokes' theorem to help even more than usual since you already know the curl function? If you find yourself taking the integral of $\sin^2 x$, you are not taking full advantage of the hint, but if you want to continue down that path it's dangerous to go alone, take this: $\sin^2(x) = \frac{1-\cos(2x)}{2}$, $\sin(2x) = 2\sin(x)\cos(x)$ ²Technically it's the sum of the *flux* of the curl to make it a scalar, but don't worry about the distinction. Stokes' theorem is the last topic we plan to cover in the course.