

UNIVERSIDAD NACIONAL DE ITAPUA - U.N.I.

Creada por Ley Nº:1.009/96 del 03/12/96

Facultad de Ingeniería

Programa de Estudios

Materia:	Física I		Semestre:	Primero
Ciclo:	Básico de Ingeniería			
Código de la materia:	003			
Horas Semanales:	Teóricas:	4		
	Prácticas:	2		
	Laboratorio:	2		
Horas Semestrales:	Teóricas:	68		
	Prácticas:	34		
	Laboratorio:	34		
Pre-Requisitos:	CPA			

I - OBJETIVOS GENERALES:

Adquirir un conocimiento general y las aplicaciones prácticas de las Leyes que rigen la Física en las áreas de la Mecánica y el Calor, y sus aplicaciones tecnológicas. Orientándose preferentemente a sus aplicaciones a la ingeniería.

II- OBJETIVOS ESPECIFICOS

Aplicar los conocimientos adquiridos en la resolución de problemas y ejercicios. Desarrollar capacidad de razonamiento crítico, y lógico en la aplicación de las leyes de la Física.

III. CONTENIDOS PROGRAMATICOS

UNIDAD 1. COMPOSICIÓN Y DESCOMPOSICIÓN DE VECTORES

Unidades y patrones. Fuerza. Representación gráfica de las fuerzas. Vectores. Componentes de un vector. Resultante o vector suma. Composición de fuerzas dadas por sus componentes rectangulares. Vector. Diferencia. Producto de escalar por vector. Producto escalar. Producto vectorial. Versores i,j,k.

UNIDAD 2. EQUILIBRIO

Introducción. Equilibrio. Primera Ley de Newton. Equilibrio estable, inestable e indiferente. Tercera ley de Newton. Ejemplos de equilibrio. Rozamiento.

UNIDAD 3. EQUILIBRIO. MOMENTO DE UNA FUERZA

Momento de una fuerza. Segunda condición de equilibrio. Resultante de un conjunto de fuerzas paralelas. Centro de gravedad. Pares.

UNIDAD 4. MOVIMIENTO RECTILÍNEO

Movimiento. Velocidad media. Velocidad instantánea. Aceleraciones media e instantánea. Movimiento rectilíneo uniformemente acelerado. Caída libre de los cuerpos. Componentes de la velocidad.

UNIDAD 5. SEGUNDA LEY DE NEWTON. GRAVITACIÓN

Introducción. Segunda Ley de Newton. Masa. Sistemas de unidades. Masa y peso. Ley de Newton de la gravitación universal. Masa de la tierra. Variaciones de g. Aplicaciones de la segunda ley de Newton.

UNIDAD 6. MOVIMIENTO EN UN PLANO

Movimiento de un proyectil. Movimiento circular. Fuerza centrípeta. Movimiento en una circunferencia vertical. Aceleración tangencial.

Aprobado por:Fecha:	Actualización No.:	Sello y Firma	Página 1 de 2
---------------------	--------------------	---------------	------------------

UNIVERSIDAD NACIONAL DE ITAPUA – U.N.I.

Creada por Ley Nº:1.009/96 del 03/12/96

Facultad de Ingeniería

Programa de Estudios

UNIDAD 7. TRABAJO Y ENERGÍA

Trabajo. Trabajo realizado cuando la fuerza es variable. Energía cinética. Energía potencial gravitacional. Valores absolutos de las energías cinéticas y potenciales. Energía potencial elástica. Trabajo e incremento de energía. Fuerzas conservativas y disipativas. Potencia. Potencia y velocidad.

UNIDAD 8. IMPULSO Y CANTIDAD DE MOVIMIENTO

Definición de impulso y cantidad de movimiento. Conservación de la cantidad de movimiento. Choques elásticos e inelásticos. Segunda ley de Newton.

UNIDAD 9. ROTACIÓN

Introducción. Velocidad angular. Aceleración angular. Rotación con aceleración angular constante. Relaciones entre velocidades angulares y lineales. Energía cinética de rotación. Momento de inercia. Trabajo y potencia en el movimiento de rotación. Momento y aceleración angular. Momento cinético.

UNIDAD 10. ELASTICIDAD

Fatiga. Deformación unitaria. Módulos de elasticidad. Constante recuperadora.

UNIDAD 11. ESTÁTICA DE FLUIDOS

Introducción. Presión en un fluido. Paradoja hidrostática. Manómetro. Principio de Arquímedes.

UNIDAD 12. DINÁMICA DE FLUIDOS

Régimen estacionario. Ecuación de continuidad. Teorema de Bernoulli. Aplicaciones del teorema de Bernoulli.

IV. METODOLOGIA

Clases Teóricas: Clases magistrales, grupales, participativas, demostrativas. Clases Prácticas: Clases magistrales, grupales. Trabajos Prácticos opcionales Clases de Laboratorio: Experiencias demostrativas de conceptos teóricas.

V- EVALUACION

Conforme al Reglamento Académico y Reglamento de Cátedra vigentes.

VI. BIBLIOGRAFÍA

- 1. Textos:Francis W. Sears Mark W. Zemansky Hugh D. Young "Física Universitaria ". Edit. Addison-Wesley Iberoamericana. 6a. Edición. USA 1988
- 2. John P. McKelvey y Howard Grothe "Física para ciencias e ingeniería ". Tomo I Ed. Harla. México.1980
- 3. Paul A. Tipler. "Física ". Volumen I. Ed. Reverté. Barcelona. 1992
- 4. Francis W. Sears Mark W. Zemansky Hugh D. Young Roger A. Freedman

Aprobado por:Fecha:	Actualización No.: Resolución No.: Fecha:	Sello y Firma	Página 2 de 2
---------------------	---	---------------	------------------