MTH 411, Fall 2018, Quiz 2 (Thursday Long Quiz/12 pts)

1. (12 points) Suppose that \star is an associative binary operation on a set X. Let us define

$$A:=\{a\in X\ |\ a\star x=x\star a \text{ for every } x\in X\}.$$

Prove that A is closed under \star .

• Solution. To prove that A is closed under \star , we need to show that for every $a, b \in A$, we have $a \star b \in A$. So, let $a, b \in A$. We need to show that $a \star b \in A$, i.e. $(a \star b) \star x = x \star (a \star b)$ for every $x \in X$. So, let $x \in X$. Then

$$(a \star b) \star x = a \star (b \star x)$$
 since \star is associative
 $= a \star (x \star b)$ since $b \in A$
 $= (a \star x) \star b$ since \star is associative
 $= (x \star a) \star b$ since $a \in A$
 $= x \star (a \star b)$ since \star is associative

Thus, it follows that A is closed under \star .