CURVES

- Regular Curves
- Tangent Line
- Arc Length
- Scalar Line Integrals

REGULAR CURVES

REGULAR CURVES

DEFINITION

A C^1 regular, parametrised curve is a C^1 function

$$\mathbf{c}(t) = (x_1(t), \dots, x_n(t))$$

with $\mathbf{c}'(t)
eq 0$ and $t \in (a,b)$.

EXAMPLES

- Circle: $\mathbf{c}(t) = (\cos(t), \sin(t)), 0 \le t \le 2\pi$
- Helix: $\mathbf{c}(t) = (\cos(t), \sin(t), t)$, $t \in \mathbb{R}$
- ullet Parabola: $\mathbf{c}(t)=(t,t^2)$, $t\in\mathbb{R}$
- Cardiod: $\mathbf{c}(t) = ((1 \cos(t))\cos(t), (1 \cos(t))\sin(t))$

TANGENT LINE

VELOCITY AND UNIT TANGENT VECTOR

DEFINITION

- Velocity vector: c'
- Unit tangent vector: $\frac{\mathbf{c}'}{|\mathbf{c}'|}$

TANGENT LINE

DEFINITION

The **tangent line** is the line L through $p=\mathbf{c}(t)$ in direction $\overrightarrow{\mathbf{V}}=\overrightarrow{\mathbf{T}}(t)$

$$L(u) = p + u \overrightarrow{\mathbf{V}}$$

EXAMPLE

EXAMPLE

$$\mathbf{c}(t) = (\cos t, \sin t), \quad t = 0$$

$$L(u) = (1,0) + u(0,1) = (1,u)$$

ARC LENGTH

ARC LENGTH

DEFINITION

The length, L (or arc length) of a C^1 regular, parametrised curve $\mathbf{c}:[a,b] o \mathbb{R}^n$ is

$$L = \int_C ds = \int_a^b ig| \mathbf{c}'(t) ig| dt$$

where
$$ds = |\mathbf{c}'(t)| dt$$
.

ARC LENGTH MOTIVATION

Partition [a,b] as $a=t_0 < t_1 \cdots < t_{n-1} < t_n = b$.

$$egin{aligned} L &\simeq \sum_{i=1}^n |\mathbf{c}(t_i) - \mathbf{c}(t_{i-1})| \ &= \sum_{i=1}^n \left| rac{\mathbf{c}(t_i) - \mathbf{c}(t_{i-1})}{t_i - t_{i-1}}
ight| (t_i - t_{i-1}) \ &= \sum_{i=1}^n \left| rac{\Delta \mathbf{c}}{\Delta t}
ight| \Delta t
ightarrow \int_a^b |\mathbf{c}'(t)| dt ext{ as } n
ightarrow \infty. \end{aligned}$$

ARC LENGTH EXAMPLES

- ullet Straight line: $\overline{{f c}(t)}=p+tV$
- ullet Circle: $\mathbf{c}(t) = (R\cos t, R\sin t)$
- Parabola: $\mathbf{c}(t) = (t, t^2)$

SCALAR LINE INTEGRALS

SCALAR LINE INTEGRALS

DEFINITION

The integral of f along C is

$$\int_C f ds = \int_a^b f(\mathbf{c}(t)) \, ig| \mathbf{c}'(t) ig| dt$$

SCALAR LINE EXAMPLES

EXAMPLE

$$\mathbf{c}(t) = (\cos t, \sin t, t)$$

$$f(x,y,z) = x^2 + y^2 + z^2$$