6.7 1)
$$T \in \Sigma$$
, $car (7+3)^2 + (4-15)^2 + (4-2)^2 = 100 + 121 + 4 = 225$.
L'équation du plan tangent à la sphère Σ au point T est donnée par : $(7+3)(x+3) + (4-15)(y-15) + (4-2)(z-2) = 225$
 $10(x+3) - 11(y-15) + 2(z-2) - 225 = 0$
 $10x + 30 - 11y + 165 + 2z - 4 - 225 = 0$
 $10x - 11y + 2z - 34 = 0$

2) Comme $(14-2)^2 + (4+4)^2 + (-6-3)^2 = 144+64+81 = 289$, on constate bien que $T \in \Sigma$.

L'équation du plan tangent à la sphère Σ au point T est donnée par :

$$(14-2)(x-2) + (4+4)(y+4) + (-6-3)(z-3) = 289$$

$$12(x-2) + 8(y+4) - 9(z-3) - 289 = 0$$

$$12x - 24 + 8y + 32 - 9z + 27 - 289 = 0$$

$$12x + 8y - 9z - 254 = 0$$

3) Déterminons le centre et le rayon de la sphère Σ :

$$x^{2} - 2x + y^{2} - 10y + z^{2} + 6z - 27 = 0$$

$$(x - 1)^{2} - 1 + (y - 5)^{2} - 25 + (z + 3)^{2} - 9 - 27 = 0$$

$$(x - 1)^{2} + (y - 5)^{2} + (z + 3)^{2} = 62$$

On remarque que $T \in \Sigma$, étant donné que l'égalité $(-2)^2 + 12^2 + (-5)^2 - 2 \cdot (-2) - 10 \cdot 12 + 6 \cdot (-5) - 27 = 0$ est vérifiée.

L'équation du plan tangent à la sphère Σ au point T est donnée par :

$$(-2-1)(x-1) + (12-5)(y-5) + (-5+3)(z+3) = 62$$

$$-3(x-1) + 7(y-5) - 2(z+3) - 62 = 0$$

$$-3x + 3 + 7y - 35 - 2z - 6 - 62 = 0$$

$$-3x + 7y - 2z - 100 = 0$$

$$3x - 7y + 2z + 100 = 0$$

4) Recherchons le centre et le rayon de la sphère Σ :

$$49 x^{2} + 49 y^{2} + 49 z^{2} - 70 x + 42 y - 294 z + 34 = 0$$

$$x^{2} + y^{2} + z^{2} - \frac{10}{7} x + \frac{6}{7} y - 6 z + \frac{34}{49} = 0$$

$$(x - \frac{5}{7})^{2} - \frac{25}{49} + (y + \frac{3}{7})^{2} - \frac{9}{49} + (z - 3)^{2} - 9 + \frac{34}{49} = 0$$

$$(x - \frac{5}{7})^{2} + (y + \frac{3}{7})^{2} + (z - 3)^{2} = 9$$

Vu que $(3-\frac{5}{7})^2 + (-1+\frac{3}{7})^2 + (\frac{8}{7}-3)^2 = \frac{256}{49} + \frac{16}{49} + \frac{169}{49} = 9$, on a $T \in \Sigma$.

L'équation du plan tangent à la sphère Σ au point T est donnée par :

$$(3 - \frac{5}{7})(x - \frac{5}{7}) + (-1 + \frac{3}{7})(y + \frac{3}{7}) + (\frac{8}{7} - 3)(z - 3) = 9$$

$$\frac{16}{7}(x - \frac{5}{7}) - \frac{4}{7}(y + \frac{3}{7}) - \frac{13}{7}(z - 3) - 9 = 0$$

$$\frac{16}{7}x - \frac{80}{49} - \frac{4}{7}y - \frac{12}{49} - \frac{13}{7}z + \frac{39}{7} - 9 = 0$$

$$\frac{16}{7}x - \frac{4}{7}y - \frac{13}{7}z - \frac{260}{49} = 0$$

$$112x - 28y - 91z - 260 = 0$$