

Wars of the Wandering Realms (WoW)

10 milliseconds, 512 kilobytes

-9**९**–

ณ ดินแดนอันห่างไกลจากเมืองเอเธอร์เรียลเอเวอร์ดอน (Etherial Everdawn) "แคว้นอาร์เคนวัลด์" อาณาจักรเล็กๆ ตั้งอยู่
บนลุ่มแม่น้ำสายหลักที่เชื่อมต่อเมืองต่างๆเข้าด้วยกัน โดยจะแบ่งเมืองออกเป็นชั้นๆ เช่น เมืองชั้นที่ในสุด ไล่ลงไปเรื่อยๆ ตาม
สายของแม่น้ำ โดยกระแสน้ำจะไหลจากเมืองชั้นในสุดออกไปยังเมืองชั้นนอกกว่าเสมอ โดยมีเมืองหลวงจะตั้งอยู่ในชั้นในที่สุด
และมีเพียงเมืองเดียว คือ "เมืองอัลดาเรน" (Aldaren) – คูนย์กลางอำนาจในการต่อรองหรือผูกขาดการค้า เนื่องจากเป็น
เมืองชั้นในที่สุด

เมื่อกษัตริย์แห่งแคว้นอาร์เคนวัลด์ทรงอ่อนแอลง และทรงเห็นว่าตำแหน่งของเมืองอัลดาเรน - เมืองหลวงที่ตั้งอยู่ ณ ต้นน้ำลึก สุดของลุ่มแม่น้ำสายเวท สามารถใช้เป็นยุทธศาสตร์สำคัญสำหรับการขยายอำนาจได้ พระองค์จึงมีพระบัญชาให้เริ่ม "ยทธการสายธารศักดิ์สิทธิ์"

"จงล่องทัพตามกระแสน้ำ จงใช้แม่น้ำเป็นเส้นทางแห่งอำนาจ ยึดทุกเมืองที่บังอาจอยู่เบื้องล่างของเรา"

แต่ละเมืองจะมีเมืองลูกแตกแขนงต่อออกไปตามเส้นทางของลุ่มน้ำ ราวกับรากไม้เวทมนตร์ที่ขยายตัวลงเบื้องล่าง เมื่อแต่ละเมืองได้รับรู้ถึงเรื่องการกระจายอำนาจของกษัตริย์แห่งอัลดาเรน ก็ได้มีการฝึกกำลังพลกองทัพเรือของตน

21 กรกฎาคม 1259 - เวลาเช้ามืด

กองทัพเรือจากอัลดาเรน ได้ออกล่องเรือไปตามสายน้ำอันเยือกเย็นท่ามกลางสายหมอกที่หนาทีบ

กฎเหล็กของสายธารศักดิ์สิทธิ์

- การเดินทางมีแต่ขาล่อง ไม่มีขากลับ กองทัพเรือเดินทางได้ตามทิศทางการไหลของกระแสน้ำเท่านั้น
 - O เว้นแต่กำลังพลที่มีอยู่ ไม่สามารถต่อกรกับเมืองลูกใดๆได้อีก หรือเมืองลูกถูกตีจนหมดแล้ว
 - O จึงจำเป็นต้องถอยทัพกลับเพื่อไปยืดเมืองลูกที่ได้ล่องเรือผ่านมา เพื่อความหวังในการกระจายอำนาจต่อไป
- การล้มเหลวมีราคาที่ต้องจ่าย
 - กำลังพลจะถูกหักออกเป็นสัดส่วนเมื่อการยึดครองล้มเหลว 30% ของกำลังพล
 - O เช่นกัน เมื่อชนะ จะสามารถนำกำลังพลจากเมืองที่ตีได้มาเพียงแค่ 70% เนื่องจากเมืองนั้นสูญเสียกำลังพล จากการต่อสู้ไป 30% เช่นกัน

"การยืดครองเมือง จะสำเร็จลุล่วงได้ก็ต่อเมื่อ กำลังพลที่เรามีอยู่มีมากกว่าหรือเท่ากับกำลังพลที่เมืองลูกชั้นนอกกว่ามี โดยถ้า หากยืดเมืองลูกได้แล้ว ให้เกณฑ์กำลังพลของเมืองลูกไปกับเรือของกำลังพลที่มีอยู่ จากนั้นให้ล่องเรือต่อไปยังเมืองลูกของเมือง นั้นอีกที จนกว่ากำลังพลจะเดินทางมาถึงเมืองชั้นนอกที่สุด หรือไม่มีเมืองลูกใดให้ยึดต่อไปอีก จึงค่อยล่องเรือกลับมายังเมือง ข้างเคียงของเมืองลูกนั้น เพื่อกระจายอำนาจ"

โจทย์:

ให้เขียนโปรแกรมที่ทำหน้าที่ Simulate การสู้รบที่ต้องมีการเดินทางตามการไหลของกระแสน้ำ

กำหนดให้

การไหลของกระแสน้ำ จากเมือง a ไป b ถูกกำหนดโดยลำดับการ Input

ในกรณีที่เมือง a ยังไม่มีเมืองลูก (เมืองชั้นนอกกว่า) แล้วเมือง b มีเมือง a เป็นเมืองชั้นในเป็นเมืองแรก ก็ให้กระแสน้ำไหล จากเมือง a ไป b และถ้าหากมีเมืองใดที่อ้างว่าเมือง a เป็นเมืองแม่อีก ให้กระแสน้ำไหลจากเมืองนั้นไปเมือง a แทน (ไหลย้อนกลับไป)

- กล่าวคือจะมีกระแสน้ำที่ใหลจากเมืองแม่ไปยังเมืองลูก เพียงแค่เส้นเดียวเท่านั้น

ข้อมูลนำเข้า - มี n+1 บรรทัด

- บรรทัดแรกรับค่า n แสดงถึงจำนวนเมืองท่าทั้งหมดที่ปรากฏอยู่ในแผนที่ และรับ m แสดงถึงจำนวนกองกำลังพลที่ เมืองแรกมีอยู่ โดย $2 \le m, n \le 10^3$
- บรรทัดต่อมาจำนวน n บรรทัด รับหมายเลขแทนเมือง x และเมืองท่าในลำดับชั้นก่อนหน้า y และรับ z แทนกำลัง พลที่มีอยู่ในเมืองนั้นๆ

ข้อมูลส่งออก - มีหลายบรรทัด

```
#{เมืองที่มีการโจมตีอยู่} — { กำลังพลของเรา} , { กำลังพลของเมืองที่กำลังโจมตี }

({+กำลังพลที่ได้มาจากการโจมตีชนะ หรือ —กำลังพลที่สูญเสียจากการรบ} , {กำลังพลที่เรามีหลังจากการโจมตีเสร็จสิ้น})
```

บรรทัดสุดท้าย 2 บรรทัด

- พิมพ์จำนวนกำลังพลที่คงเหลืออยู่ หากกำลังพลเหลือ 0 นาย (ตายหมด) แล้ว ให้หยุดการโจมตีต่อ
- พิมพ์เมืองลูกที่ถูกยึดได้ตามลำดับออกมา หากยึดเมืองใดไม่ได้เลย ให้พิมพ์ IMPOSSIBLE

ตัวอย่างข้อมูลนำเข้าและข้อมูลส่งออก (Input/Output Examples)

ข้อมูลนำเข้า	ข้อมูลส่งออก		
15 100 1 0 30	#1 - 100, 30 (+21, 121)		
2 0 80 3 0 50 4 2 110 5 2 210 6 5 350 7 5 600 8 5 800 9 5 700 10 8 400 11 8 900 12 11 1000 13 11 1200 14 11 1500	#2 - 121, 80 (+56, 177)		
	#4 - 177, 110 (+77, 254)		
	#5 - 254, 210 (+147, 401)		
	#6 - 401, 350 (+245, 646)		
	#7 - 646, 600 (+420, 1066)		
	#8 - 1066, 800 (+560, 1626)		
	#10 - 1626, 400 (+280, 1906)		
	#11 - 1906, 900 (+630, 2536)		
	#12 - 2536, 1000 (+700, 3236)		
	#13 - 3236, 1200 (+840, 4076)		
	#14 - 4076, 1500 (+1050, 5126)		
	#9 - 5126, 700 (+490, 5616)		
	#3 - 5616, 50 (+35, 5651)		
	5651 1 2 4 5 6 7 8 10 11 12 13 14 9 3		

6 100 1 0 500 2 0 20 3 0 300 4 2 50 5 2 900	#1 - 100, 500 (-30, 70) #2 - 70, 20 (+14, 84) #4 - 84, 50 (+35, 119) #5 - 119, 900 (-36, 83) #3 - 83, 300 (-25, 58) 58 2 4
8 10 1 0 80 2 0 80 3 0 80 4 0 80 5 0 80 6 0 80 7 0 80	#1 - 10, 80 (-3, 7) #2 - 7, 80 (-3, 4) #3 - 4, 80 (-2, 2) #4 - 2, 80 (-1, 1) #5 - 1, 80 (-1, 0) 0 IMPOSSIBLE
3 300 1 0 50 2 0 9999999	#1 - 300, 50 (+35, 335) #2 - 335, 9999999 (-101, 234) 234

คำอธิบายกรณีทดสอบชุดที่ 2:

จาก Input สามารถวาดแผนที่ของเมืองได้ดังนี้ (เลขของเมือง - จำนวนทหารที่มีอยู่)

เริ่มแรกเราจะล่องเรือจาก 0 ไป 1 (ตามการไหลของแม่น้ำ)

เรามีกำลังพล 100 นาย กำลังพลที่เมืองที่ 1 มีคือ 500 นาย **เราพ่ายแพ้** โดยสูญเสียกำลังพลไป 30% (30 คน) เหลือ 70 นาย #1 - 100, 500 (-30, 70)

เนื่องจากเมืองที่ 1 ไม่มีเมืองลูก (เมืองชั้นนอก) เราจึงไปตีเมืองข้างเคียง คือเมืองที่ 2 ต่อ เรามีกำลังพล 70 นาย กำลังพลที่เมืองที่ 2 มีคือ 50 นาย เราชนะ โดยได้กำลังพลมาเพิ่ม 70% จาก 20 คน (14 คน) ดังนั้นเรามี 84 นาย #2 - 70, 20 (+14, 84)

เราจะลงไปตีเมืองลูกของเมืองที่ 2 ก่อน คือเมืองที่ 4 เรามีกำลังพล 84 นาย กำลังพลที่เมืองที่ 4 มีคือ 50 นาย เราชนะ โดยได้กำลังพลมาเพิ่ม 70% จาก 50 คน (35 คน) ดังนั้นเรามี 119 นาย #4 - 84, 50 (+35, 119)

เพราะเมืองที่ 4 ไม่มีเมืองลูกต่อแล้ว เราจึงไปตีเมืองข้างเคียงของเมืองที่ 4 คือเมืองที่ 5 เรามีกำลังพล 119 นาย กำลังพลที่เมืองที่ 5 มีคือ 900 นาย เราพ่ายแพ้ โดยสูญเสียกำลังพลไป 30% (36 คน) เหลือ 83 นาย #5 - 119, 900 (-36, 83)

เนื่องจากเมืองที่ 5 ก็ไม่มีเมืองลูกต่อแล้ว (เรามาถึงสุดสายน้ำ) เราก็จะ<u>กลับไปตีเมืองข้างเคียงที่ผ่านมาล่าสุด</u>คือเมืองที่ 3 (เมืองข้างเคียงของเมืองที่ 2) ที่เราได้ข้ามมา โดยล่องเรือกลับไปผ่านแม่น้ำที่มี และโจมตีเมืองที่ 3 ที่เหลืออยู่

เรามีกำลังพล 83 นาย กำลังพลที่เมืองที่ 3 มีคือ 300 นาย

เราพ่ายแพ้ โดยสูญเสียกำลังพลไป 30% (25 คน) เหลือ 58 นาย

#3 - 83, 300 (-25, 58)

สรุปแล้ว เราสามารถยึดเมืองได้เพียง 2 เมืองคือเมือง #2, #4 ตามลำดับการยึดดังกล่าว และเหลือกำลังพล 58 นาย พิมพ์

58

2 4

เกณฑ์การให้คะแนนและขอบเขตปัญหาย่อย (Scoring criteria's for subproblems)

การให้คะแนนจะพิจารณาจากเวลาและหน่วยความจำที่โปรแกรมใช้ในการประมวลผล

ระดับ	เงื่อนไข	Runtime และ Memory	ชุดทดสอบ	คะแนน
1	ไม่มีเงื่อนไขเพิ่มเติม	10 milliseconds, 512 kilobytes	13 ชุด	100%

