Graphing Trig Functions

Using degrees, find the amplitude and period of each function. Then graph.

1)
$$y = \sin 3\theta$$

2)
$$y = 4\cos 3\theta$$

3)
$$y = 2\sin\frac{\theta}{3}$$

4)
$$y = \tan 2\theta$$

$$5) \quad y = 3\cos\frac{\theta}{2}$$

6)
$$y = \frac{1}{2} \tan \theta$$

Using radians, find the amplitude and period of each function. Then graph.

7)
$$y = \sin 3\theta$$

$$8) \quad y = \frac{1}{2} \tan \frac{\theta}{3}$$

9)
$$y = \frac{1}{2} \sec \theta$$

10)
$$y = 2\cos 4\theta$$

11)
$$y = 2\csc 2\theta$$

12)
$$y = 2\cot 2\theta$$

Graphing Trig Functions

Using degrees, find the amplitude and period of each function. Then graph.

1)
$$y = \sin 3\theta$$

2)
$$y = 4\cos 3\theta$$

3)
$$y = 2\sin\frac{\theta}{3}$$

4)
$$y = \tan 2\theta$$

$$5) \quad y = 3\cos\frac{\theta}{2}$$

$$6) \quad y = \frac{1}{2} \tan \theta$$

Using radians, find the amplitude and period of each function. Then graph.

7) $y = \sin 3\theta$

Amplitude: 1 Period: $\frac{2\pi}{3}$

8) $y = \frac{1}{2} \tan \frac{\theta}{3}$

9) $y = \frac{1}{2}\sec \theta$

10) $y = 2\cos 4\theta$

11) $y = 2\csc 2\theta$

12) $y = 2\cot 2\theta$

Create your own worksheets like this one with Infinite Algebra 2. Free trial available at KutaSoftware.com