tweeDe – A Universal Dependencies treebank for German tweets

Ines Rehbein, Josef Ruppenhofer and Bich-Ngoc Do

LiMo and IDS Mannheim

TLT 2019

Overview

- First German treebank for Twitter microtext
 - within the framework of Universal Dependencies
 - over 12,000 tokens from over 500 tweets

Outline of the talk

- Data selection and preprocessing
- Annotation process and IAA
- Baseline parsing results

Motivation

- Why another treebank for German?
- Treebanks for new language varieties
 - focus on private communication
 - \bullet highly informal, not carefully edited \to spelling errors and ungrammatical structures
 - ullet often lacks punctuation o problems for sentence segmentation
 - ullet creative use of language o high ratio of OOV

Data Selection

- Annotation of user-generated microtext is challenging
 - brevity of the messages
 - ullet missing context information o highly ambiguous texts
- Solution: extract short communication threads
 - threads range in length from 2 34 tweets
 - annotators can see context, helps to resolve ambiguities

Data collection

- Data selection process:
 - Use German stop words as query terms to avoid topic bias
 - Retrieve conversation threads and download tweets
 - Only keep private communication between two or more users (manually remove ads, automatically generated messages, ...)
 - Treebank preserves the temporal order of the tweets in the same thread

Data structure and meta information

```
# tweet_id="969249808396537858" date="Sun Apr 14 09:57:57 +0000 2013" author="JD"
# text = "Trinkspiel" 10/10 mit @JzudemD Bestes Lied ever, kann mit nix competen sry hater
# sent_1d = 15 tweet_sent_1d = 2
# text = Bestes Lied ever, kann mit nix competen sry hater
        Bestes
                        ADJ
                                ADJA
                                        Case=Nom|Degree=Sup|Gender=Masc|Number=Sing
                                                                                                amod
                                        Case=Nom|Gender=Masc|Number=Sing
        Lied
                Lied
                        NOUN
                                                                                       root
        ever
                ever
                        ADV
                               ADV
                                                       advmod
                                                                       SpaceAfter=No
                        PUNCT
                                                       punct
                               $,
                können AUX
                                VMFIN
                                       Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8
        kann
                                APPR
        mit
                                                       case
        nix
                nix
                        PRON
                               PIS
                                        Number=Sing|PronType=Neg
        competen
                        compete VERB
                                        VVINF VerbForm=Inf
                                                                       parataxis
        sry
                        INTJ
                               ITJ
                                                       discourse
                                        Case=Nom|Gender=Masc|Number=Plur
        hater
                hater
                        NOUN
                                                                                       vocative
```


UD Annotatrix (Tyers et al. 2018), https://github.com/jonorthwash/ud-annotatrix

Segmentation

Tweets now have up to 280 characters

Translation:

@surfguard @Mathias59351078 @ArioMirzaie Some make me laugh, some make me think "hm" and still others make me feel appalled. I dont have anything to do with any of them. If you blame me for the color of my skin, you're a racist.

Segmentation

Raw tweet:

@surfguard @Mathias59351078 @ArioMirzaie Some make me laugh, some make me think "hm" and still others make me feel appalled. I dont have anything to do with any of them. If you blame me for the color of my skin, you're a racist.

Segmented text:

- # 1 @surfguard @Mathias59351078 @ArioMirzaie
- # 2 Some make me laugh, some make me think "hm" and still others make me feel appalled.
- # 3 I dont have anything to do with any of them.
- # 4 If you blame me for the color of my skin, you're a racist.

Segmentation

Tokenisation

 $\begin{array}{cccc} \text{(1)} & \text{Kennste} & ? & (\text{raw}) \\ & \text{Kennst} & e ? & (\text{tokenised}) \\ & \text{kennen du ? (lemmatised)} \\ \end{array}$

"Do you know that?"

Tokenisation

 $\begin{array}{cccc} \text{(2)} & \text{Kennste} & ? & (\text{raw}) \\ & \text{Kennst} & e \ ? & (\text{tokenised}) \\ & \text{kennen du ?} & (\text{lemmatised}) \end{array}$

"Do you know that?"

(3) Japan Urlaub (raw) Japan Urlaub (tokenised) Japan Urlaub (lemmatised)

"vacation in Japan"

Tokenisation

 $\begin{array}{cccc} \text{(4)} & \text{Kennste} & ? & (\text{raw}) \\ & \text{Kennst} & e ? & (\text{tokenised}) \\ & \text{kennen du ? (lemmatised)} \end{array}$

"Do you know that?"

(5) Japan Urlaub (raw) Japan Urlaub (tokenised) Japan Urlaub (lemmatised)

"vacation in Japan"

Annotation

Data preannotated with UDPipe (Straka and Straková, 2017)

- Morphology and Parts-of-Speech
 - one annotator only
 - STTS (Schiller et al. 1995)
 - UD PoS (Petrov et al. 2012)
- Dependencies
 - all trees independently annotated by two annotators
 - disagreements resolved in discussion
 - consistency checks with scripts and DECCA (Dickinson and Meurers, 2003)

Annotation

Data preannotated with UDPipe (Straka and Straková, 2017)

- Morphology and Parts-of-Speech
 - one annotator only
 - STTS (Schiller et al. 1995)
 - UD PoS (Petrov et al. 2012)
- Dependencies
 - all trees independently annotated by two annotators
 - disagreements resolved in discussion
 - consistency checks with scripts and DECCA (Dickinson and Meurers, 2003)
- Inter-annotator agreement: 0.83 κ for labelled attachments, 0.89 κ for unlabelled attachments

Corpus statistics for 4 German UD treebanks

	text type	trees	tokens
UD-HDT	computer magazin	206,794	3,800,000
UD-TüBa	newspaper	104,787	1,959,474
UD-GSD	mostly web reviews	15,590	287,740
tweeDe	private tweets	1,301	12,073

Corpus statistics for 4 German UD treebanks

	text type	trees	tokens
UD-HDT	computer magazin	206,794	3,800,000
UD-TüBa	newspaper	104,787	1,959,474
UD-GSD	mostly web reviews	15,590	287,740
tweeDe	private tweets	1,301	12,073

Figure: Distribution of UD PoS tags in four German UD treebanks.

tweeDe - Corpus statistics

tweeDe	# tweets	# tok	# vocab	000	lower
train	250	5,747	2,035	0	0
dev	69	1,917	861	520	479
test	200	4,409	1,661	1,157	1,034
total	519	12,073	3,639		

- OOV: number of out-of-vocabulary words wrt training set
- lower: OOV for lower-cased word forms.

Around 10% of the tweets include a non-projective tree structure.

Parsing baselines

 Parsing results for the Dozat parser (Dozat et al. 2017) on tweeDe, using gold POS

	PoS	dev		test	
	tagset	UAS	LAS	UAS	LAS
	UD	82.1	74.3	80.6	72.7
gold	STTS	73.5	63.0	70.3	60.8
	вотн	82.5	74.9	81.5	74.3

Parsing baselines

 Parsing results for the Dozat parser (Dozat et al. 2017) on tweeDe, using gold POS

	PoS	dev		te	st
	tagset	UAS	LAS	UAS	LAS
	UD	82.1	74.3	80.6	72.7
gold	STTS	73.5	63.0	70.3	60.8
	вотн	82.5	74.9	81.5	74.3

 Parsing results for the Dozat parser (Dozat et al. 2017) on tweeDe, using automatically predicted POS

	PoS	dev		test	
	tagset	UAS	LAS	UAS	LAS
	UD	78.9	69.9	76.0	67.1
auto	STTS	72.9	63.2	71.2	62.6
	вотн	79.1	70.7	76.6	68.1

Parsing baselines II

 Effect of more training data: Dozat parser trained on tweeDe and UD-GSD

	PoS	dev		test	
	tagset	UAS	LAS	UAS	LAS
	UD	88.2	81.7	86.4	80.5
gold	STTS	85.2	77.3	81.4	74.0
	BOTH	88.9	82.7	87.1	81.0

Parsing baselines II

 Effect of more training data: Dozat parser trained on tweeDe and UD-GSD

	PoS	dev		test	
	tagset	UAS	LAS	UAS	LAS
	UD	88.2	81.7	86.4	80.5
gold	STTS	85.2	77.3	81.4	74.0
0	BOTH	88.9	82.7	87.1	81.0

	PoS	dev		te	st
	tagset	UAS	LAS	UAS	LAS
	UD	85.9	78.2	82.9	76.0
auto	STTS	84.9	76.4	82.3	74.8
	вотн	86.3	78.1	83.3	76.4

Comparison to other Twitter dependency treebanks

	# token	# tweets	LAS	
EN (Foster et al. 2011)	n.a.	519*	67.3	•
EN (Kong et al. 2014)	12,149	840	_	
EN-AAE (Blodgett et al. 2018)	3,072	250	56.1	*
EN-MS (Blodgett et al. 2018)	3,524	250	67.7	*
EN (Liu et al. 2018)	55,607	3,550	77.7	*
IT (Sanguinetti et al. 2018)	124,410	6,712	81.5	*
DE (this work)	12,073	519	68.1	*
DE (this work)	+ UD-GSD		76.4	*

- \star Foster et al. only report # sentences, not # tweets
- Seddah et al. (2012): phrase structure treebank
- ◆ Malt parser (Nivre et al. 2006)
- biaffine parser (Dozat & Manning 2017; Dozat et al. 2017)

Conclusions

- First German Twitter treebank, as a new training and testsuite for UD parsing
 - focus on informal communication
 - PoS, morphology, universal dependencies
- Parsing baselines
 - with the biaffine parser of Dozat et al. (2017): 83% (UAS) and 76% (LAS)
- Data will be available for research purposes: http://www.cl.uni-heidelberg.de/~rehbein/ resources/tweeDe.mhtml

Thanks for listening! Questions?