

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»				
КАФЕДРА <u>«Программное обеспечение ЭВМ и информационные технологии»</u>				
Лабораторная работа № <u>1</u>				
Дисциплина <u>Конструирование компиляторов</u>				
Тема Распознавание цепочек регулярного языка				
Вариант №3				
Студент Коноваленко В.Д.				
Группа ИУ7-21М				
Преподаватель <u>Ступников А.А.</u>				

Задание

Напишите программу, которая в качестве входа принимает произвольное регулярное выражение, и выполняет следующие преобразования:

- 1. По регулярному выражению строит НКА.
- 2. По НКА строит эквивалентный ему ДКА.
- 3. По ДКА строит эквивалентный ему КА, имеющий наименьшее возможное количество состояний, с использованием алгоритма Хопкрафта.
- 4. Моделирует минимальный КА для входной цепочки из терминалов исходной грамматики.

Результаты и выводы

Входные данные		Результат
Рег.выражение	Строка	
(a b)*abb(a b)*	пустая	False
	abb	True
	aaaaaaaabb	True
	bba	False
	aabbbba	True

Контрольные вопросы

- 1. Какие из следующих множеств регулярны? Для тех, которые регулярны, напишите регулярные выражения.
 - а. Множество цепочек с равным числом нулей и единиц. Не является регулярным множеством (возможно контекстнозависимая грамматика?)
 - b. Множество цепочек из $\{0,1\}^*$ с четным числом нулей и нечетным числом единиц.
 - 1(00|11|10|01)*
 - P.S. она не совсем верно работает)) Например, 101 пропускает.
 - с. Множество цепочек из $\{0, 1\}^*$, длины которых делятся на 3. $((0|1)(0|1)(0|1))^*$
 - d. Множество цепочек из $\{0, 1\}^*$, не содержащих подцепочки 101. 0*(1|00|000)*0*
- 2. Найдите праволинейные грамматики для тех множеств из вопроса 1, которые регулярны.

b	С	d
$S \rightarrow 1A$	$S \rightarrow A$	$S \rightarrow A$
$A \rightarrow 00A$	$A \rightarrow 0B$	$A \rightarrow 0A$
$A \rightarrow 11A$	$A \rightarrow 1B$	$A \rightarrow B$
$A \rightarrow 10A$	$A \rightarrow \epsilon$	$B \rightarrow 1B$
$A \rightarrow 01A$	$B \rightarrow 0C$	$B \rightarrow 00B$
$A \rightarrow \epsilon$	$B \rightarrow 1C$	$B \rightarrow 000B$
	$C \rightarrow 0A$	$B \rightarrow C$
	$C \rightarrow 1A$	$C \rightarrow 0C$
		$C \rightarrow \varepsilon$

3. Найдите детерминированные и недетерминированные конечные автоматы для тех множеств из вопроса 1, которые регулярны

b.

НКА

Рисунок 1 – НКА 3b

ДКА

Рисунок 2 – ДКА 3b

c.

НКА

Рисунок 3 — НКА Зс

ДКА

Рисунок 4 -- ДКА 3с

d.

НКА

Рисунок 5 -- 3d

Рисунок 6 -- ДКА 3d

4. Найдите конечный автомат с минимальным числом состояний для языка, определяемого автоматом $M=(\{A,B,C,D,E\},\{0,1\},d,A,\{E,F\})$, где функция задается таблицей

Состояние	Вход	
	0	1
A	В	С
В	Е	F
С	A	A
D	F	Е
Е	D	F
F	D	Е

Рисунок 7 -- 4 задание

Использовался метод различимых состояний.

Таблица неэквивалентности:

	A	В	C	D	Е	F
A						
В						
C						
D						
A B C D E						
F						

Вектор классов эквивалентности:

A	В	C	D	Е	F
0	1	2	1	3	3

Стартовая вершина: А

Терминальная вершина: Е

Минимальный КА:

Рисунок 8 -- Минимальный КА