Subiectul B. ELEMENTE DE TERMODINAMICĂ

biectul B. E	ELEMENTE DE TERMODINAMICA
III.a.	
	$C_V = \frac{R}{\gamma - 1} = \frac{3}{2} \cdot R$
	$U_3 = v \cdot C_V \cdot T_3$
	$U_3 = \frac{3}{2} \cdot p_3 \cdot V_3 = 3 \cdot v \cdot R \cdot T_1$
	Rezultat final: $U_3 = 7479 \text{ J}$
b.	
	$C_{12} = \frac{Q_{12}}{v(T_2 - T_1)}$
	$Q_{12} = \Delta U_{12} + L_{12}$
	$C_{12} = C_V + \frac{3 \cdot p \cdot V}{2 \cdot v \cdot (T_2 - T_1)} = C_V + \frac{3 \cdot p \cdot V}{2 \cdot \left(\frac{p_2 \cdot V_2}{R} - \frac{p_1 \cdot V_1}{R}\right)}$
	Rezultat final: $C_{12} = 2 \cdot R = 16,62 \text{ J/mol} \cdot \text{K}$
C.	
	$Q_{ced} = Q_{23} + Q_{31}$
	$Q_{23} = v \cdot C_V \cdot (T_3 - T_2) = -3 \cdot p \cdot V$
	$Q_{31} = v \cdot C_p \cdot (T_1 - T_3) = -\frac{5}{2} \cdot p \cdot V$
	$Q_{ced} = -\frac{11}{2} \cdot p \cdot V = -\frac{11}{2} \cdot v \cdot R \cdot T_1$
	Rezultat final: $Q_{ced} = -13711,5 J$
d.	
	$L = \frac{(p_2 - p_1) \cdot (V_3 - V_1)}{2} = \frac{v \cdot R \cdot T_1}{2}$
	$Q_{abs} = L + \left Q_{ced} \right $
	Rezultat final: $\frac{L}{Q_{abs}} = \frac{1}{12}$