MATH/CMSC 27700 FALL 2020: HW 5

Due: November 6th at 9PM.

Note 1: As noted, the "Take Home Test" Question (in red) must be worked on individually.

Note 2: Answers must be fully explained (unless otherwise specified). Follow the Homework policy (see syllabus) and remember to write up all solutions on your own.

Note 3: Later parts of Q4 may be difficult. I don't necessarily expect people to finish it.

(1) Let $f: B_1 \to B_2$ be a morphism¹ of Boolean algebras. Show that for all $b \in B_1$, we have:

$$f(\neg_{B_1}b) = \neg_{B_2}f(b)$$

Hint: In one approach to this problem you might want to show that complements in distributive lattices are unique.

(2) Let B be a Boolean algebra, and F be a filter. Recall we defined the equivalence relation \sim_F on B by $b_1 \sim_F b_2$ is $((\neg b_1) \vee b_2) \wedge ((\neg b_2) \vee b_1)$.

We defined the operations

$$\forall_{B_F}: (B/\sim_F) \times (B/\sim_F) \to B/\sim_F$$

$$\neg_{B_F}: B/\sim_F \to B/\sim_F$$

by $[b_1] \vee_{B_F} [b_2] := [b_1 \vee b_2]$. and $\neg_{B_F} [b_1] := [\neg b_1]$.

- (a) Take Home Test Question: Show that \neg_{B_F} is well defined.
- (b) Show that \forall_{B_F} is well defined, that is to say the above definition does not depend on the chosen representatives of the conjugacy class.
- (3) (a) Take Home Test Question: Let $f: B_1 \to B_2$ be a morphism of Boolean algebras. Let \leq_1, \leq_2 be the corresponding partial orders under the equivalence between Boolean algebras and complemented distributive lattices. Show that if $b \leq_1 a$ then $f(b) \leq_2 f(a)$.
 - (b) Is the converse true? That is to say let (L_1, \leq_1) , (L_2, \leq_2) be two complemented, distributive lattices. Let $g: L_1 \to L_2$ is a map of sets, with the property that if $b \leq_1 a$ then $g(b) \leq_2 g(a)$. Does g necessarily give a morphism of Boolean algebras (with respect to the Boolean algebra structures associated to the lattice structures)?
- (4) (See note 3) Suppose that B is a boolean algebra.
 - (a) Show that if $(L_1, \Gamma_1) \xrightarrow{s} (L_2, \Gamma_2)$ is an *interpretation*² (see footnote), then this induces a morphism which we denote Lind(s),

$$Lind(L_1, \Gamma_1) \xrightarrow{Lind(s)} Lind(L_2, \Gamma_2).$$

Show that this is compatible with composition of morphisms (i.e. for interpretations $(L_1, \Gamma_1) \xrightarrow{s_1} (L_2, \Gamma_2) \xrightarrow{s_2} (L_3, \Gamma_3)$, we have that $Lind(s_2 \circ s_1) = Lind(s_2) \circ Lind(s_1)$.

Note: This shows that Lind is a functor from propositional theories to Boolean algebras.

Firstly note that s naturally extends to a function (which we also denote s) $s: Form(L_1) \to Form(L_2)$.

We require that if $\Gamma_1 \vdash \phi$, then $\Gamma_2 \vdash s(\phi)$.

We denote an interpretation by

$$(L_1, \Gamma_1) \xrightarrow{s} (L_2, \Gamma_2).$$

Note that interpretations can be composed.

¹That is to say $f(b_1 \wedge b_2) = f(b_1) \wedge C f(b_2)$, $f(b_1 \vee b_2) = f(b_1) \vee C f(b_2)$, $f(0_B) = 0_C$, and $f(1_B) = 1_C$.

²We say that an *interpretation* of (L_1, Γ_1) in (L_2, Γ_2) is a morphism $s: L_1 \to Form(L_2)$, with the below detailed properties.

(b) Show that there is a propositional theory Th(B) such that the associated Lindenström–Tarski algebra is isomorphic³ to B, that is to say: $Lind(Th(B)) \cong B$.

Hint: Start by constructing a propositional theory (L', Γ') with a surjective morphism of sets

$$Lind(L', \Gamma') \to B$$
,

and then modify as needed.

- (c) Show that we can define Th in part (b) of this question such that for every morphism of boolean algebras $B_1 \xrightarrow{f} B_2$ we have an interpretation of propositional theories $Th(B_1) \xrightarrow{Th(f)} Th(B_2)$, and this is compatible with composition of morphisms (that is to say for $B_1 \xrightarrow{f} B_2 \xrightarrow{g} B_3$, we have that $Th(f \circ g) = Th(f) \circ Th(g)$, or abstractly $Th : Bool \to Prop$ is a functor [see notes Appendix B]).
- (d) Bonus/Challenge: Show that we can define Th such that there is a natural transformation [in the sense given in the appendix to the notes] $Th \circ Lind \Leftarrow Id_{Prop}$, where Prop is the category where objects are theories in propositional logic, and morphisms are interpretations, and Id_{Prop} is the identity functor on this category.

³Two Boolean algebras B_1 , B_2 are isomorphic if there are inverse morphisms of Boolean algebras $f: B_1 \rightleftarrows B_2: g$.