Started on Saturday, 10 February 2024, 12:56 PM

State Finished

Completed on Sunday, 11 February 2024, 7:08 PM

Time taken 1 day 6 hours

Grade 10.00 out of 10.00 (100%)

Grade 10.00 out of 10.00 (100)

Question ${\bf 1}$

Correct

Mark 1.00 out of 1.00

Consider the table below

	$x_2 = 0$	$x_2 = 1$
y = 0	3	9
<i>y</i> = 1	6	12

The quantity $p(x_2 = 0|y = 1)$ is given as

- _ 2
- $\frac{1}{2}$
- \[
 \frac{1}{3}
 \]
- 0 1

Your answer is correct.

The correct answer is:

1 2

Question ${\bf 2}$

Correct

Mark 1.00 out of 1.00

Consider the table below

	$x_2 = 0$	$x_2 = 1$
y = 0	3	9
<i>y</i> = 1	6	12

The quantity p(y = 1) is given as

- 35
- O 3
- 0 1
- <u>2</u>

Your answer is correct.

The correct answer is:

3 5

Question ${\bf 3}$

Correct

Mark 1.00 out of 1.00

The K –means algorithm is a/an

- Supervised learning algorithm
- Reinforcement learning algorithm
- Unsupervised learning algorithm
- O Deep learning algorithm

Your answer is correct.

The correct answer is:

Unsupervised learning algorithm

Question 4 Correct			
Mark 1.00 out of 1.00			
Unsupervised learning			
Both data and labels			
Neither data nor labels			
Requires data, but NO labels	~		
Labels but not data	-		
Cabels but not duta			
Vous angular is correct			
Your answer is correct. The correct answer is:			
Requires data, but NO labels			
Question 5			
Correct			
Mark 1.00 out of 1.00			
Clustering can be used to			
Group emails or search results			
All of these	~		
Analyze Customer shopping patterns			
 Image segmentation 			
Your answer is correct.			
The correct answer is:			
All of these			
Question 6 Correct			
Mark 1.00 out of 1.00			
The cluster assignment indicator $\alpha_2(3)$			
Equals 0 when $\bar{\mathbf{x}}(3)$ belongs to \mathcal{C}_2 and 1 otherwise			
Equals 1 when $\bar{\mathbf{x}}(2)$ belongs to \mathcal{C}_3 and 0 otherwise			
Equals 0 when $\bar{\mathbf{x}}(2)$ belongs to \mathcal{C}_3 and 1 otherwise			
© Equals 1 when $\bar{\mathbf{x}}(3)$ belongs to \mathcal{C}_2 and 0 otherwise			
-1			
Your answer is correct.			
The correct answer is:			
Equals 1 when $\bar{\mathbf{x}}(3)$ belongs to \mathcal{C}_2 and 0 otherwise			

Question 7

Correct

Mark 1.00 out of 1.00

The K -means **cost-function** to minimize is given as

$$\bigcirc$$
 min $\sum_{i=1}^{K} \sum_{j=1}^{M} \alpha_i(j) \| \overline{\mathbf{x}}(j) - \overline{\mathbf{\mu}}_i \|^2$

$$\bigcirc \min \sum_{i=1}^K \sum_{j=1}^M \alpha_i(j) \| \bar{\mathbf{x}}(j) - \overline{\boldsymbol{\mu}}_i \|$$

$$\bigcirc \min \sum_{i=1}^K \sum_{j=1}^M \alpha_i(j) (\overline{\mathbf{x}}(j) - \overline{\boldsymbol{\mu}}_i) (\overline{\mathbf{x}}(j) - \overline{\boldsymbol{\mu}}_i)^T$$

$$\bigcirc \min \sum_{i=1}^K \alpha_i(j) \|\bar{\mathbf{x}}(j) - \overline{\boldsymbol{\mu}}_i\|^2$$

Your answer is correct.

The correct answer is:

$$\min \textstyle \sum_{i=1}^K \sum_{j=1}^M \alpha_i(j) \| \bar{\mathbf{x}}(j) - \overline{\boldsymbol{\mu}}_i \|^2$$

Question 8

Correct

Mark 1.00 out of 1.00

To determine the cluster in iteration l,

$$^{\odot}$$
 We assign $\overline{\mathbf{x}}(j)$ to the closest centroid $\overline{\mu}_l^{(l-1)}$

We assign
$$\bar{\mathbf{x}}(j)$$
 to the farthest centroid $\bar{\boldsymbol{\mu}}_l^{(l-1)}$

We assign
$$\bar{\mathbf{x}}(j)$$
 to the centroid $\frac{\sum_{j:\bar{\mathbf{x}}(j)\in\mathcal{C}_i}\bar{\mathbf{x}}(j)}{\sum_{j:\bar{\mathbf{x}}(j)\in\mathcal{C}_i}1}$

We assign
$$\bar{\mathbf{x}}(j)$$
 to the centroid $\frac{\sum_{j:\bar{\mathbf{x}}(j)\in\mathcal{C}_{i}}\bar{\mathbf{x}}(j)}{M}$

Your answer is correct.

The correct answer is:

We assign $\overline{\mathbf{x}}(j)$ to the closest centroid $\overline{\mathbf{\mu}}_l^{(l-1)}$

Question 9		
Correct		
Mark 1.00 out of 1.00		
The centroids for the given clusters can be determined as		
$ \sum_{j:\bar{\mathbf{x}}(j)\in\mathcal{C}_{\bar{l}}} \bar{\mathbf{x}}(j) $ $ K $		
$\sum_{i:\overline{x}(i)\in\mathcal{C}}\overline{x}(i)$	✓	
$\bigcirc \sum_{j} \bar{\mathbf{x}}(j)$		
$\sum_{j} \overline{\mathbf{x}}(j)$ M		
Your answer is correct.		
The correct answer is:		
$\frac{\sum_{j:\bar{\mathbf{x}}(j)\in\mathcal{C}_{\hat{\boldsymbol{\ell}}}}\bar{\mathbf{x}}(j)}{\sum_{j:\bar{\mathbf{x}}(j)\in\mathcal{C}_{\hat{\boldsymbol{\ell}}}}1}$		
$\sum_{j:ar{\mathbf{x}}(j)\in\mathcal{C}_{ar{\mathbf{t}}}}1$		
Question 10		
Correct		
Mark 1.00 out of 1.00		
The centroids of the clusters are determined as		
igtherapsup Average of all points assigned to all clusters in iteration l		
Average of all points assigned to cluster i in iteration l		
igtherightarrow Average of only the new points assigned to cluster i in iteration l		
igtherapse Average of outliers assigned to cluster i in iteration l		
Your answer is correct.		
The correct answer is:		
Average of all points assigned to cluster i in iteration l		