第2节 抛物线定义与几何性质综合问题(★★★)

强化训练

1.(2022•合肥模拟•★★)已知抛物线 $C: y^2 = 4\sqrt{3}x$ 的焦点为F,准线为l,过抛物线上一点P作准线的 垂线,垂足为 Q,若 $\angle PFQ = 60^{\circ}$,则 |PF| = (

- (A) $4\sqrt{3}$ (B) $2\sqrt{3}$ (C) $\sqrt{3}$ (D) 6

答案: A

解析: 如图, 抛物线 C 的焦点为 $F(\sqrt{3},0)$, 准线为 $l: x = -\sqrt{3}$, 记 l = x 轴交于点 H, 则 $|FH| = 2\sqrt{3}$, 由抛物线定义,|PQ| = |PF|,又 $\angle PFQ = 60^{\circ}$,所以 ΔPFQ 为正三角形,

于是只需到 ΔHFQ 中求出 |QF|, 即可得到 |PF|, 因为 $\angle PQF = 60^{\circ}$, 所以 $\angle HQF = 30^{\circ}$,

故 $|QF| = \frac{|FH|}{\sin / HOF} = \frac{2\sqrt{3}}{\sin 30^{\circ}} = 4\sqrt{3}$,结合 ΔPFQ 为正三角形可得 $|PF| = 4\sqrt{3}$.

2. (2022 •岳阳模拟 •★★★) 过抛物线 $C: y^2 = 2px(p > 0)$ 的焦点 F 且斜率 k > 0 直线与 C 交于 A, B 两点, A 在第一象限,过 A 作准线的垂线,垂足为 H,若 $\angle HFB$ 被 x 轴平分,则 k = 1.

答案: √3

解析: 要求直线 AB 的斜率,可尝试通过分析几何关系找倾斜角,

如图,因为 $\angle HFB$ 被 x 轴平分,所以 $\angle 1 = \angle 2$,又由抛物线定义, |AH| = |AF| ,所以 $\angle 3 = \angle 4$,

因为AH//x轴,所以 $\angle 1 = \angle 4$,故 $\angle 1 = \angle 2 = \angle 3 = \angle 4$,又 $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$,所以 $\angle 2 = 60^{\circ}$,

由图可知 $\angle 5 = \angle 2$,所以 $\angle 5 = 60^{\circ}$,故直线 AB 的斜率 $k = \tan 60^{\circ} = \sqrt{3}$.

答案: 6

解析:如图,因为A,F,M三点共线,所以AM是圆的直径,

由直径可联想到圆心为中点、圆周角为直角,故F是AM中点,且 $AN \perp MN$ ①,

设准线与x轴交于点H,则 $FH \perp MN$,结合①可得FH//AN,故|AN| = 2|FH|,

由题意,抛物线的焦点为 $F(\frac{3}{2},0)$,准线为 $x=-\frac{3}{2}$,所以|FH|=3,故|AN|=6,

结合抛物线定义可得|AF| = |AN| = 6.

4. $(2022 \cdot 北京模拟 \cdot \star \star \star \star)$ 已知抛物线 C 的焦点为 F,准线为 l,过 F 的直线 m 与 C 交于点 A 和 B,点 A 在 l 上的投影为 D,若 |AB| = |BD|,则 $\frac{|AB|}{|AF|} = ($

(A)
$$\frac{3}{2}$$
 (B) 2 (C) $\frac{5}{2}$ (D) $\frac{3}{3}$ (E) $\frac{3}{2}$ (E) $\frac{5}{2}$ (D) $\frac{3}{3}$

答案: A

解析: 如图,作
$$BE \perp$$
 准线于 E ,由抛物线定义,
$$\begin{cases} |BF| = |BE| \\ |AF| = |AD| \end{cases}$$
,所以
$$\frac{|AB|}{|AF|} = \frac{|AF| + |BF|}{|AF|} = \frac{|AD| + |BE|}{|AD|}$$
①,

故接下来应寻找|AD|和|BE|的关系,条件中有|AB|=|BD|,想到取底边中点,

取 AD 中点 H,连接 BH,则 $BH \perp AD$,所以 $\left|BE\right| = \left|DH\right| = \left|AH\right|$,故 $\left|AD\right| = 2\left|BE\right|$,

代入①可得
$$\frac{|AB|}{|AF|} = \frac{2|BE| + |BE|}{2|BE|} = \frac{3}{2}.$$

5. $(2022 \cdot \text{开平模拟} \cdot \bigstar \star \star \star \star)$ 已知抛物线 $C: y^2 = 16x$ 的焦点为 F,M 是 C 上一点,FM 的延长线交 y 轴 于点 N,若 $3\overrightarrow{FM} = 2\overrightarrow{MN}$,则 $|FN| = _____$.

答案: 16

解析:给出 $3\overline{FM} = 2\overline{MN}$,可设FM的长,并用它表示其它线段的长,

抛物线的准线为x=-4,焦点为F(4,0),如图,作 $MM' \perp$ 准线于M',交y轴于点G,

设
$$|FM|=2m$$
,因为 $3\overrightarrow{FM}=2\overrightarrow{MN}$,所以 $\frac{|FM|}{|MN|}=\frac{2}{3}$,故 $|MN|=3m$, $|FN|=5m$ ①,

由抛物线定义,|MM'| = |FM| = 2m,|MG| = |MM'| - |M'G| = 2m - 4,

从图形来看,可用相似比来建立关于 m 的方程,

因为
$$GM//OF$$
, 所以 $\frac{|GM|}{|OF|} = \frac{|MN|}{|FN|}$,

从而
$$\frac{2m-4}{4} = \frac{3m}{5m}$$
,故 $m = \frac{16}{5}$,代入①得 $|FN| = 16$.

6. $(2022 \cdot 河南模拟 \cdot \star \star \star \star)$ 过抛物线 $y^2 = 2px(p > 0)$ 的焦点 F 的直线交抛物线于 A, B 两点,交其准线于点 C,若点 F 是 AC 的中点,且 |AF| = 4,则 $|AB| = _____$.

答案: $\frac{16}{3}$

解析:如图,已知|AF|,只需求得|BF|即可求出|AB|,可先过A,B向准线作垂线,

作 AA' \bot 准线于 A' , BB' \bot 准线于 B' , 则 $\left|AA'\right| = \left|AF\right| = 4$, $\left|BB'\right| = \left|BF\right|$,

接下来我们可以设一段长,利用几何关系来分析其它有关线段的长,

设
$$|BB'| = |BF| = m$$
,因为 F 是 AC 中点,所以 $|AC| = 2|AF| = 2|AA'|$,从而 $\cos \angle CAA' = \frac{|AA'|}{|AC|} = \frac{1}{2}$,

故
$$\angle CAA' = 60^{\circ}$$
,又 BB' // AA' ,所以 $\angle CBB' = 60^{\circ}$,故 $|BC| = \frac{|BB'|}{\cos \angle CBB'} = 2m$,

所以
$$|CF|=3m$$
, $|AC|=2|CF|=6m$,又 $|AC|=2|AF|=8$,所以 $6m=8$,故 $m=\frac{4}{3}$,即 $|BF|=\frac{4}{3}$,

所以
$$|AB| = |AF| + |BF| = 4 + \frac{4}{3} = \frac{16}{3}$$
.

7.(2022•巫山模拟•★★★)抛物线 $E: y^2 = 4x$ 的焦点为 F,过 F的直线与 E 交于 A, B 两点,延长 FB交 E 的准线 l 于点 C,过 A, B 作 l 的垂线,垂足分别为 M, N,若 |BC|=2|BN|,则 ΔAFM 的面积为 ()

$$(A) 4\sqrt{.}$$

(A)
$$4\sqrt{3}$$
 (B) 4 (C) $2\sqrt{3}$

答案: A

解析:如图,我们可以设AF和BF的长,结合定义求其它线段的长,再分析几何关系建立方程,

设|AF|=m,|BF|=n,则|AM|=m,|BN|=n,

因为
$$|BC|=2|BN|$$
,所以 $|BC|=2n$, $|FC|=3n$,且 $\cos \angle NBC=\frac{|BN|}{|BC|}=\frac{1}{2}$,故 $\angle NBC=\frac{\pi}{3}$,

又
$$AM//BN$$
, 所以 $\angle MAC = \frac{\pi}{3}$, 从而 $\cos \angle MAC = \frac{|AM|}{|AC|} = \frac{m}{m+3n} = \frac{1}{2}$, 故 $m = 3n$,

找到m和n的关系,就能分析F在AC上的位置,结合|FH|是已知的,可由相似比求得|AM|,

由题意, 抛物线的焦点为F(1,0), 准线为l: x = -1, 所以|FH| = 2,

由m=3n知|AF|=|FC|,所以F为AC中点,又FH//AM,所以|AM|=2|FH|=4,

由
$$\angle MAC = \frac{\pi}{3}$$
和 $|AM| = |AF|$ 知 $\triangle AFM$ 是正三角形,所以 $S_{\triangle AFM} = \frac{1}{2} \times 4 \times 4 \times \sin \frac{\pi}{3} = 4\sqrt{3}$.

- 8. (2022•齐齐哈尔模拟•★★★★) 已知抛物线 $C: y^2 = 2px(p>0)$ 的准线 x = -1 与 x 轴交于点 A, F 为 C的焦点, $B \in C$ 上第一象限内的一点,则当 $\frac{|BF|}{|AB|}$ 取得最小值时, ΔABF 的面积为()
- (A) 2
- (B) 3
- (C) 4
- (D) 6

答案: A

解析: 抛物线的准线为 $x=-1 \Rightarrow p=2 \Rightarrow$ 抛物线的方程为 $y^2=4x$,其焦点为F(1,0),A(-1,0),

如图 1,直接分析 $\frac{|BF|}{|AB|}$ 的最小值不易,涉及 |BF|,可用定义转化为 P 到准线的距离来看,

作 BD 上 准线于 D,则 |BF| = |BD|,所以 $\frac{|BF|}{|AB|} = \frac{|BD|}{|AB|} = \sin \angle BAD$,

要使 $\sin \angle BAD$ 最小,只需 $\angle BAD$ 最小,此时直线 AB 与抛物线相切,如图 2. 可联立直线和抛物线用 $\Delta = 0$ 求 解,

设切线 AB 的方程为 x = my - 1, 联立 $\begin{cases} x = my - 1 \\ v^2 = 4x \end{cases}$ 消去 x 整理得: $y^2 - 4my + 4 = 0$ ①,

因为直线 AB 与抛物线相切,所以方程①的判别式 $\Delta = (-4m)^2 - 4 \times 1 \times 4 = 0$,解得: $m = \pm 1$,

代入①解得: $y = \pm 2$,所以 $y_B = \pm 2$,故 $S_{\Delta ABF} = \frac{1}{2} |AF| \cdot |y_B| = \frac{1}{2} \times 2 \times 2 = 2$.

9. $(2022 \cdot 昆明模拟 \cdot \star \star \star \star \star \star)$ 已知抛物线 $C: y^2 = 2px(p > 0)$ 的焦点为 F,第一象限的 A,B 两点在抛物线上,且 $FA \perp AB$, |AF| = 7, |BF| = 25,若直线 AB 的倾斜角为 θ ,则 $\cos \theta = _____.$

答案: $\frac{3}{4}$

解法 1: 涉及 |AF| 和 |BF| ,考虑抛物线的定义,如图,作 AA' 上准线于 A' , BB' 上准线于 B' ,

则 |AA'| = |AF| = 7, |BB'| = |BF| = 25, 因为 $FA \perp AB$,所以 $|AB| = \sqrt{|BF|^2 - |AF|^2} = \sqrt{25^2 - 7^2} = 24$,由图可知直线 AB 的倾斜角 $\theta = \angle ABB'$,于是构造一个直角三角形来求 $\angle ABB'$,

作 $AH \perp BB'$ 于 H,则 |BH| = |BB'| - |B'H| = |BB'| - |AA'| = 18,所以 $\cos \angle ABH = \frac{|BH|}{|AB|} = \frac{3}{4}$,故 $\cos \theta = \frac{3}{4}$.

解法 2: 题干的条件也可用 A 和 B 的坐标来翻译,于是设坐标,

设
$$A(x_1, y_1)$$
, $B(x_2, y_2)$, 则
$$\begin{cases} |AF| = x_1 + \frac{p}{2} = 7 & \text{①} \\ |BF| = x_2 + \frac{p}{2} = 25 & \text{②} \end{cases}$$

又 $FA \perp AB$, 所以 $|AB| = \sqrt{|BF|^2 - |AF|^2} = \sqrt{25^2 - 7^2} = 24$, 故 $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = 24$ ③,

观察发现用①②作差可求得 x_2-x_1 ,代入③又可求出 y_2-y_1 ,故可先算AB的斜率 $\tan\theta$,再求 $\cos\theta$,

由②-①可得: $x_2-x_1=18$, 代入③可得 $(y_2-y_1)^2=252$,

如图,由|BF|>|AF|及A、B都在第一象限知 $y_2>y_1$,所以 $y_2-y_1=6\sqrt{7}$,

故
$$\tan \theta = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6\sqrt{7}}{18} = \frac{\sqrt{7}}{3}$$
,即 $\frac{\sin \theta}{\cos \theta} = \frac{\sqrt{7}}{3}$,结合 $\sin^2 \theta + \cos^2 \theta = 1$ 可解得 $\cos \theta = \pm \frac{3}{4}$,

由图可知直线 AB 的倾斜角 θ 为锐角,故 $\cos \theta = \frac{3}{4}$.

10. (2022 • 湖北模拟 • ★★★★)已知抛物线 C 的焦点为 F,点 A,B 在抛物线上,以 AB 为直径的圆过 点 F,过线段 AB 的中点 P 作 C 的准线的垂线,垂足为 Q,则 $\frac{|PQ|}{|AB|}$ 的最大值为 ()

- (A) $\frac{1}{2}$ (B) $\frac{\sqrt{3}}{3}$ (C) $\frac{\sqrt{2}}{2}$ (D) 1

答案: C

解析:如图,因为以AB为直径的圆过F,所以 $FA \perp FB$,故 $|AB| = \sqrt{|AF|^2 + |BF|^2}$,

而结合抛物线定义,|PQ|也可用|AF|和|BF|表示,所以把它们设为变量,分析 $\frac{|PQ|}{|AB|}$ 的最大值,

作PQ \bot 抛物线的准线于Q, AA' \bot 准线于A', BB' \bot 准线于B',

设
$$|AF| = m$$
, $|BF| = n$, 则 $|AA'| = m$, $|BB'| = n$, $|PQ| = \frac{|AA'| + |BB'|}{2} = \frac{m+n}{2}$, $|AB| = \sqrt{m^2 + n^2}$,

$$\text{Figs.} \frac{|PQ|}{|AB|} = \frac{m+n}{2\sqrt{m^2+n^2}} = \frac{1}{2}\sqrt{\frac{(m+n)^2}{m^2+n^2}} = \frac{1}{2}\sqrt{\frac{m^2+n^2+2mn}{m^2+n^2}} = \frac{1}{2}\sqrt{1+\frac{2mn}{m^2+n^2}} \leq \frac{1}{2}\sqrt{1+\frac{2mn}{2mn}} = \frac{\sqrt{2}}{2},$$

当且仅当m=n时取等号,故 $\frac{|PQ|}{|AB|}$ 的最大值为 $\frac{\sqrt{2}}{2}$.

