Gluing Procedure for Module Loading

Zach Schillaci

Brandeis University

ATLAS ITK Strip Detector June 6, 2019

Table of Contents

- 1. Overview
- 1.1 Setup
- 1.2 Mixing
- 1.3 Program
- 1.4 Positioning
- 1.5 Glue Pattern
- 2. Performance
- 2.1 Definitions and Equations
- 2.2 Specifications and Measurements
- 3. Input Parameters
- 3.1 Dispensing
- 3.2 Timing
- 4. Modifications
- 4.1 Pattern
- 4.2 Dispense

1.1 Setup

- ▶ **Dispenser**: Techcon TS5000DMP-DCX Rotary Auger Valve
- Controller: Techcon TS5700
- ► Techcon controller fired via interface with Arduino
- LabVIEW sends commands to Arduino to set voltage high/low
- ▶ Width of trigger pulses set within LabVIEW VI (150 ms)
 - → **NOTE:** Firing failures observed for 125 ms trigger pulse
- Dispenser operates based upon preset controller settings
- Cycle terminates automatically based upon controller settings

1.1 Setup - Controller

- Password: 0000 (keep locked unless modifying parameters)
- ► Run in Sequential Encoder mode
 - → Sequential: dispense series of unique cycles frame-by-frame
 - \rightarrow *Encoder*: dispense duration set by encoder motor steps (N)
- First dispense sequence corresponds to purge process
 - → **NOTE:** Controller should be reset before running to ensure the dispense sequence begins at the first frame

1.2 Mixing

For loading one module ...

- 1. Before combining, thoroughly mix the individual components of SE4445 in respective containment vessels
- 2. Measure 3.5g of each SE4445 component (7g total) and thoroughly mix together until no separation is visible
- 3. Degas the mixture in the vacuum chamber for several minutes until the visible air bubbles disappear
- 4. Carefully pour the mixture along the inner wall of a syringe (PN 7012074) with a reusable dummy tip to prevent leakage
- 5. Insert a stopper (PN 7012170) and lower it to the glue level

1.3 Program

- 1. Place Kapton spacers onto the stave with the stencil using the assembly frame and HV tab for alignment
- 2. Execute *GlueRepeatedLinePattern.vi* from within module loading program at the location of the module to be loaded
- 3. Install a new 6-pitch feed path and tip (PN 7018107)
- 4. Manually lower the dispenser on the stage arm
- 5. Using the glue program calibrate the height of dispenser ($\approx 1-1.5$ mm) above the gluing surface
- 6. Remove the dummy tip and load glue syringe on the feed path
- 7. Connect the pressure line to the top of the glue syringe
- 8. Follow the prompts to automatically purge and glue
- 9. Manually raise the dispenser on the stage arm and dispose of entire glue pathway (syringe + feed path + tip)

1.4 Positioning

- ▶ The glue dispensing procedure relies on an accurate stave calibration (provided by *BuildThermomechanicalStave.vi*) to correctly position glue patterns onto stave
- GlueRepeatedLinePattern.vi reads from the virtual stave map and will move the dispenser into position over the top-left corner of the selected module
 - → NOTE: This relies on an accurate measurement of the camera-to-dispenser separation which is hard-coded into the glue VI. If the stage arm is modified, this must be re-measured and set within the VI.
- ► The user needs to manually set the height of the dispenser for each run, no changes along the lateral axes are required
- ► The glue procedure will proceed in the −y direction of the stage (towards the user), first purging over the close edge of the stave assembly frame

1.5 Glue Pattern

- Series of repeated lines of varying offsets and lengths
- Pattern config file read by GlueRepeatedLinePattern.vi
- ► Format is shown below for Pattern9-10
 - \rightarrow dx, dy: relative shifts between consecutive lines in x, y
 - I: length of line (incl. direction if flipped)
 - t: time of stage motion
- ▶ Automatically negates dx, I every other line (+x, -x, +x, ...)

dx [mm]	dy [mm]	l [mm]	t [s]
12.05	8.1	68	6.725
-7	12.5	77	6.625
-5	12	77	6.625
-5	12	77	6.625
-5	12	77	6.625
-5	12	77	6.625
-5	12	77	6.625
-1	10	29	2.695
-23	0	-17	1.555

1.5 Glue Pattern - In Detail

For Pattern9-10, the stage will move as follows ...

- 1. Shift by dx = +12.05, dy = 8.1 mm and move +68 mm in 6.725s
- 2. Shift by dx = +7, dy = 12.5 mm and move -77 mm in 6.625s
- 3. Shift by dx = -5, dy = 12 mm and move +77 mm in 6.625s
- 4. Shift by dx = +5, dy = 12 mm and move -77 mm in 6.625s
- 5. Shift by dx = -5, dy = 12 mm and move +77 mm in 6.625s
- 6. Shift by dx = +5, dy = 12 mm and move -77 mm in 6.625s
- 7. Shift by dx = -5, dy = 12 mm and move +77 mm in 6.625s
- 8. Shift by dx = +1, dy = 10 mm and move -29 mm in 2.695s
- 9. Shift by dx = -23, dy = 0 mm and move -17 mm in 2.695s

2.1 Definitions

Controller:

- Pressure (P): pressure supplied to glue reservoir ($0 \rightarrow 100 \text{ psi}$)
- ▶ Voltage (V): voltage supplied to auger motor (5 \rightarrow 24V)
- ▶ Encoder (N): number of encoder motor steps ($\propto R$)
- \triangleright Reverse Encoder (N_R): number of reverse encoder motor steps

Dispenser:

- Rotations (R): number of auger rotations
- ► Motor RPM (*RPM*): rotations per minute of auger
- ▶ Encoder Fraction (ϵ) : fractional rotation of auger corresponding to one step of the encoder motor
- ▶ Dispense Rate Parameters (α, β) : linear fit parameters of dispense rate versus voltage under a constant pressure

2.1 Equations

Motor RPM:

$$RPM(V) = 15.1 \times V - 1.4$$

Encoder Fraction:

$$R(N) = \epsilon N \rightarrow \epsilon = R/N \text{ (constant)}$$

Dispense Time [s]:

$$t(R, RPM) = 60 \frac{R}{RPM} \rightarrow t(N, V) = \frac{60 \epsilon N}{15.1 \times V - 1.4}$$

▶ Dispense Rate [g/s]:

$$r(V) = \alpha V + \beta$$

Dispense Amount [g]:

$$d(N, V) = r(V) \times t(N, V) = (\alpha V + \beta) \frac{60 \epsilon N}{15.1 \times V - 1.4}$$

2.2 Motor RPM

- Provided by Techcon in specification sheet
- ▶ Linear dependence RPM(V) on voltage within $5 \rightarrow 24V$

2.2 Encoder Fraction

- \triangleright Encoder Mode, N = 266256
- ightharpoonup Measurements conducted to determine encoder fraction (ϵ)
- Dispense time measured and averaged over 3 trials
- Motor RPM given by known equation
- ▶ Encoder fraction: $\epsilon = 1.1 \times 10^{-4}$

Encoder =	266256	Reverse =	0				
Voltage (V)	Times (s)			Time (s)	RPM	Rotations	Encoder Fraction
6	19.310	19.490	19.430	19.410	89.20	28.856	1.08E-04
8	14.420	14.530	14.780	14.577	119.40	29.008	1.09E-04
10	11.490	11.560	11.600	11.550	149.60	28.798	1.08E-04
12	9.620	9.750	9.660	9.677	179.80	28.998	1.09E-04
14	8.250	8.350	8.220	8.273	210.00	28.957	1.09E-04
16	7.260	7.300	7.350	7.303	240.20	29.238	1.10E-04
18	6.450	6.530	6.450	6.477	270.40	29.188	1.10E-04
20	5.830	5.920	5.920	5.890	300.60	29.509	1.11E-04
22	5.320	5.360	5.430	5.370	330.80	29.607	1.11E-04
24 4.9	4.960	5.030	4.980	4.990	361.00	30.023	1.13E-04
						Average:	1.10E-04

2.2 Dispense Time

- \triangleright Encoder Mode, N = 266256
- ► Follows 1/V dependence
- ► $t(R, RPM) = 60 \frac{R}{RPM} \rightarrow t(N, V) = \frac{60 \epsilon N}{15.1 \times V 1.4}$

2.2 Dispense Amount - 30 psi

- ▶ Encoder Mode, N = 100000, 6-pitch screw
- ▶ Results of 30 psi measurements over 5 dispense trials
- ightharpoonup Stable performance observed for pressure setting \geq 30 psi

2.2 Dispense Rate - 30 psi

- Average over 5 dispense trials used for analysis
- Dispense time obtained from t(N, V) using experimentally obtained value of encoder fraction (ϵ)
- ▶ Dispense rate parameters: $\alpha = 1.54 \times 10^{-3}, \beta = 0.0172$

Dispense Rate (g/s) vs. Voltage (V) - 30PSI

2.2 Sampling Rate

- Firing the controller through the serial port requires supplying a high pulse ($\approx 5V$) across pins 1 and 2
- Controller will not consistently fire for fast pulses (short width)
- Fractional success of firing is linear w.r.t. pulse width
- ightharpoonup Linear fit of data used to estimate sampling rate $\gtrsim 100$ ms

3.1 Dispensing

- ▶ Dispense parameters (P, V, N) are only programmable within the controller and must be set before dispense cycle
- ▶ In Sequential mode, each frame can have unique parameters
- Desired glue amount can be estimated using dispense equations if pressure (P) is set accordingly
 - ightarrow Dispense parameters here assume fixed pressure (P=30 psi)
- Slower dispense rates yield more consistent results and reduce undesired line offsets caused by timing delays between the controller firing and the start of stage motion
 - → Faster dispense rates require faster stage motion which exacerbates the problem of undesired line offsets
 - ightarrow As such, the dispense rate is set as low as possible ($V=5\,V$)
- ➤ Timing of stage motion in pattern config file must be tuned based upon dispense time (see timing section)

3.1 Dispensing - Reverse Cycle

- Reverse cycle of dispenser set by number of reverse encoder motor steps (N_R) programmable in each controller frame
- Must be set sufficiently large to prevent glue leakage from dispenser tip in-between lines
 - → **NOTE:** If too large, will increase undesired offset between lines
- ▶ Good performance found for $N_R = 7500, V = 5V$
 - → Used for all frames in Pattern9-10
- ► Line offsets in pattern config file (*dx*) fine-tuned to hide undesired line offsets caused by reverse cycle and timing delays
- Requires a pause in stage motion at the end of each line
 - \rightarrow Fixed to 750 ms in *GlueRepeatedLinePattern.vi* to accommodate time of reverse cycle $(t(N_R, V))$

3.2 Timing

- ► The stage motion timing sets the time it will take for the stage to move across a given line (set in pattern config file)
 - ▶ It must be greater than the estimated dispense time (based on set dispense parameters) to ensure gluing terminates just as stage reaches the end of line
 - It must also include the sampling rate of the controller as the firing time is uncertain within the window of sampling
 - ► An additional buffer is include to fine-tune the process which requires extensive testing to determine
- $T_{\text{Stage}} = T_{\text{Dispense}} + t_{\text{Sampling}} + t_{\text{tuning}}$
 - \rightarrow T_{Dispense} : given by t(N, V)
 - ightarrow $t_{\sf sampling}$: approximated as 125 ms
 - ightarrow t_{tuning} : fine-tuning buffer typically 550 ightarrow 750 ms

4.1 Pattern Modifications

- ► If only the pattern is to be modified (without adjusting dispense volume), modify the pattern config file
- ightharpoonup Offsets (dx, dy) and lengths (I) of lines may be freely changed
- Motion times (t) should probably not be changed
- Supply the new pattern config file as a default input to the VI
- ► Test to ensure dispensing/timing performance is as expected

4.2 Dispense Modifications

- For each line in the pattern ...
 - 1. Do not change pressure or voltage from the default values $(P=30 \text{ psi}, \ V=5 \ V)$ unless absolutely necessary
 - 2. Calculate the number of encoder steps (N) based upon the desired dispense amount using d(N, V = 5)
 - 3. Calculate the corresponding dispense time (T_{Dispense}) using the calculated value of N and t(N, V = 5)
 - 4. Estimate the stage motion time (T_{Stage}) based upon the dispense time (see timing section)
- ▶ Input the new dispense parameters in the controller (P, V, N)
- Modify the pattern config file with the new values of T_{Stage} and any changes to the pattern geometry
- Supply the new pattern config file as a default input to the VI
- ► Test to ensure dispensing/timing performance is as expected