Задание 3. Алгоритмы безусловной нелинейной оптимизации. Методы первого и второго порядка

Цель работы

Применение методов первого и второго порядка (градиентный спуск, нелинейный метод сопряженных градиентов, метод Ньютона и алгоритм Левенберга-Марквардта) в задачах безусловной нелинейной оптимизации

Задачи и методы

Сгенерируйте случайные значения $\alpha \in (0,1)$ и $\beta \in (0,1)$. С использованием этих значений сгенерируйте массив зашумленных данных (x_k, y_k) для k = 0, ..., 100 по следующему правилу:

$$y_k = \alpha x_k + \beta + \delta_k$$
, $x_k = \frac{k}{100}$

где $\delta_k \sim N(0,1)$ — значения случайной величины со стандартным нормальным распределением. Аппроксимируйте полученные данные линейной и рациональной функциями:

- F(x,a,b) = ax + b (линейная аппроксимирующая функция);
- $F(x,a,b) = \frac{a}{1+bx}$ (рациональная аппроксимирующая функция),

c помощью метода наименьших квадратов путем численной (c точностью $\varepsilon = 0{,}001$) минимизации функции

$$D(a,b) = \sum_{k=0}^{100} (F(x_k, a, b) - y_k)^2.$$

Для решения задачи минимизации используйте градиентный спуск, метод метод Ньютона сопряженных градиентов, и алгоритм Левенберга-При необходимости самостоятельно Марквардта. задайте начальные приближения и прочие параметры методов. На графиках (отдельно для каждой аппроксимирующей функции) изобразите массив данных и графики аппроксимирующих функций, полученных с помощью указанных методов численной оптимизации. Проведите анализ полученных результатов (в терминах количества итераций, точности, числа вычислений функции и пр.) и сравните то, что получилось, с результатами работы алгоритмов из части ІІ Задания 2 для того же набора данных.