

Do It Fast, Do It Incrementally

Christoph Koch, Yanif Ahmad, Oliver Kennedy,

Milos Nikolic, Andres Nötzli, Daniel Lupei, Amir Shaikhha

May 31st, 2013

What is this talk about?

- Monitor state
- Views over current and historical data
- High update rates
- Frequently fresh views
- Customized engines

Outline

- Background and Motivation
- (Recursive) Incremental Processing
 - Compilation Example
- Experimental Results
- Next Directions

Update-Intensive Applications

must sustain high update rates

Continuously arriving data

(e.g. buy/sell orders, sensor readings)

Continuously evaluated views

(e.g. over order books, active website users)

Data Stream Processing Systems

- Key architectural features
 - Continuous queries
 - Process queries over windows of input data
 - Assume append-only ordered inputs

- Problems:
 - Not designed for rapidly changing long-lived data
 - No "state-of-the-world" queries
 - No complex queries (e.g. nested aggregates)

Stream processing is unsuitable for update-intensive apps!

The DBToaster Project

 Automate the instantiation of special-purpose lightweight engines that are fast and scalable

- An aggressive query compilation technique
 - Turns queries into native code & eliminates all operators
 - The compiled engines incrementally maintain query results

Incremental Processing

- Incremental View Maintenance in Databases
 - Implemented in major systems (Oracle, DB2, PostgreSQL, ...)
 - Delta queries still evaluated using a classical query processing engine

DBToaster Compilation

Insight: Maintain query results recursively

Compute deltas of deltas, deltas of deltas...


```
SELECT SUM(R.A * S.C)
FROM R, S
WHERE R.B = S.B
```

A Simple 2-Way Join Aggregate

```
ON INSERT R(dA,dB) {
ON INSERT S(dB,dC) {
}
```

Maintenance Program


```
q := SELECT SUM(R.A * S.C)
FROM R, S
WHERE R.B = S.B
```

 1^{st} step \longrightarrow Materialize

```
q := SUM_{A*C; \leftrightarrow}(R \bowtie S)
ON INSERT R(dA,dB) {
ON INSERT S(dB,dC) {
}
```



```
\Delta R \longrightarrow
q':= SELECT SUM(R.A * S.C)
        FROM R + \Delta R, S
       WHERE R.B = S.B
q' := q +
       SELECT SUM(\DeltaR.A * S.C)
        FROM \Delta R, S
        WHERE \Delta R.B = S.B
        2^{nd} step \longrightarrow Compute Delta
```

```
q := SUM_{A*C:<>}(R \bowtie S)
ON INSERT R(dA,dB) {
ON INSERT S(dB,dC) {
}
```


Incrementally maintain

```
q += SELECT SUM(\Delta R.A * S.C)
FROM \Delta R, S
WHERE \Delta R.B = S.B
```

```
2<sup>nd</sup> step → Compute Delta
```

```
q := SUM_{A*C; <>}(R \bowtie S)
ON INSERT R(dA,dB) {
ON INSERT S(dB,dC) {
}
```



```
S B C ... ...
```

```
q +=
SELECT SUM(\Delta R.A * S.C)
FROM \Delta R, S
WHERE \Delta R.B = S.B
3^{rd} step \mapsto Optimize
```

```
q := SUM_{A*C; <>}(R \bowtie S)
ON INSERT R(dA,dB) {
ON INSERT S(dB,dC) {
```



```
3^{rd} step \longrightarrow Optimize
```

```
q := SUM_{A*C; <>}(R \bowtie S)
ON INSERT R(dA,dB) {
ON INSERT S(dB,dC) {
}
```



```
pistributive law

q += dA *

SELECT SUM(S.C)

FROM S

WHERE dB = S.B

3rd step → Optimize
```

```
q := SUM_{A*C; <>}(R \bowtie S)
ON INSERT R(dA,dB) {
ON INSERT S(dB,dC) {
}
```



```
q += dA *

SELECT SUM(S.C)

FROM S

WHERE dB = S.B
```

```
3^{rd} step \longrightarrow Optimize
```

```
q := SUM_{A*C; <>}(R \bowtie S)
ON INSERT R(dA,dB) {
ON INSERT S(dB,dC) {
```



```
q += dA *

SELECT S.B, SUM(S.C)

FROM S

GROUP BY S.B

[dB]
```

```
q := SUM_{A*C; <>}(R \bowtie S)
ON INSERT R(dA,dB) {
ON INSERT S(dB,dC) {
```



```
A Hash Map (indexed by S.B)

q += dA * mR[dB]

mR[B] := SELECT S.B, SUM(S.C)

FROM S

GROUP BY S.B
```

```
q := SUM_{A*C; <>}(R \bowtie S)
mR[B] := SUM_{C, \langle B \rangle}S
ON INSERT R(dA,dB) {
    q += dA * mR[dB]
ON INSERT S(dB,dC) {
}
```

Materialize \mapsto Compute Delta \mapsto Optimize


```
S B C
... ...
dB dC ← ΔS
```

```
mR[B] := SELECT S.B, SUM(S.C)

FROM S

GROUP BY S.B
```

```
q := SUM_{A*C; <>}(R \bowtie S)
mR[B] := SUM_{C, \langle B \rangle}S
ON INSERT R(dA,dB) {
    q += dA * mR[dB]
ON INSERT S(dB,dC) {
}
```



```
S B C
... ...
dB dC ← ΔS
```

```
mR[B] := SELECT S.B, SUM(S.C)

FROM S

GROUP BY S.B
```

```
mR[dB] += dC
```

```
q := SUM_{A*C; <>}(R \bowtie S)
mR[B] := SUM_{C, \langle B \rangle}S
ON INSERT R(dA,dB) {
    q += dA * mR[dB]
ON INSERT S(dB,dC) {
    mR[dB] += dC
}
```



```
q := SELECT SUM(R.A * S.C)
FROM R, S
WHERE R.B = S.B
```

Minimal memory overhead!

```
q := SUM_{A*C:<>}(R \bowtie S)
mR[B] := SUM_{C, <B}S
mS[B] := SUM_{A, \langle B \rangle}S
ON INSERT R(dA,dB) {
    q += dA * mR[dB]
    mS[dB] += dA
ON INSERT S(dB,dC) {
    mR[dB] += dC
    q += dC * mS[dB]
```


DBToaster Workflow

Extremely easy to build runtimes!

Reduced development cost!

Experimental Setup

- TPC-H Workload
 - Simulated realtime data warehouse
 - Update stream derived from TPC-H Gen
- Financial Benchmark
 - 24hr trace for an actively traded stock

DBToaster vs Commercial Engines

DBToaster achieves up to 4 OOM speedup!

Incremental Linear Algebra

- Applications: Machine learning, big-data analytics
- Goal: Eliminate expensive operations (e.g. matrix multiplication)
- Challenges:
 - Global program optimization
 - New building blocks (A^T, A⁻¹, SVD, etc.)

- Array data model, dense vs. sparse matrices
- Optimizing data layout, I/O sharing

- 4 years of research
- From SQL queries to runtime engines
 - Novel recursive compilation technique
 - Can handle nested aggregates
- Up to 4 OOM faster than commercial systems

DBToaster opens entirely new application domains!

Download Now: http://www.dbtoaster.org

Thanks!

Christoph Koch (EPFL)

Yanif Ahmad (JHU)

Oliver Kennedy (UB)

Milos Nikolic (EPFL)

Andres Nötzli (EPFL)

Daniel Lupei (EPFL)

Amir Shaikhha (EPFL)

Mohammed El Seidy (EPFL)

Mohammad Dashti (EPFL)

Download Now: http://www.dbtoaster.org