Министерство образования и науки Российской Федерации

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. БАУМАНА

Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления» (ИУ5) ДИСЦИПЛИНА: «Технологии машинного обучения»

Отчет по рубежному контролю №1 «Технологии разведочного анализа и обработки данных» Вариант №11

Выполнил: Студент группы ИУ5-61Б

Кочетков М. Д.

Преподаватель:

Гапанюк Ю.Е.

Задание:

Для заданного набора данных проведите обработку пропусков в данных для одного категориального и одного количественного признака. Какие способы обработки пропусков в данных для категориальных и количественных признаков Вы использовали? Какие признаки Вы будете использовать для дальнейшего построения моделей машинного обучения и почему? + для пары произвольных колонок данных построить график "Диаграмма рассеяния».

Dataset: https://www.kaggle.com/fivethirtyeight/fivethirtyeight-comic-characters-dataset (файл marvel-wikia-data.csv)

Выполнение РК:


```
815
                Year
                dtype: int64
  In [5]: #pa3Mep df
total_count = data.shape[0]
  Out[5]: 16376
 In [6]: # Выберем числовые колонки с пропущенными значениями
num_cols = []
total_count = data.shape[0]
for col in data.columns:
    temp_null_count = data[data[col].isnull()].shape[0]
    dt = str(data[col].dtype)
    if temp_null_count>0 and (dt='float64' or dt=='int64'):
        num_cols.append(col)
        temp_perc = round((temp_null_count / total_count) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col, dt, temp_null_count, temp_perc))
                temp_perc))
                Колонка APPEARANCES. Тип данных float64. Количество пустых значений 1096, 6.69%.
Колонка Year. Тип данных float64. Количество пустых значений 815, 4.98%.
  In [7]: #ВОЗЬМЕМ КОЛОНКУ Year # Запоминаем индексы строк с пустыми значениями flt_index = data[data['Year'].isnull()].index
                flt_index
  Out[7]: Int64Index([ 12, 854,
                                                     38,
                                                                 80, 114, 259, 310, 413, 683,
                                                                                                                                      789,
                                     16366, 16367, 16368, 16369, 16370, 16371, 16372, 16373, 16374,
                                  dtype='int64', length=815)
  In [8]: data_year = data[num_cols][['Year']]
    data_year.head()
  Out[8]:
                      Year
                 0 1962.0
                 1 1941.0
                2 1974.0
                 3 1963.0
                 4 1950.0
 In [9]: # Фильтр для проверки заполнения пустых значений indicator = MissingIndicator() mask_missing_values_only = indicator.fit_transform(data_year) mask_missing_values_only
  Out[9]: array([[False],
                             [False]
                            [False],
                              ··,
True],
                            [ True]
                            [ True]])
In [10]: strategy='mean'
In [11]: def test_num_impute(strategy_param):
    imp_num = SimpleImputer(strategy=strategy_param)
    data_num_imp = imp_num.fit_transform(data_year)
                       return data_num_imp[mask_missing_values_only]
new_year
Out[12]:
                 A 10 1094 051902
```

Out[12]:

```
        id
        Year

        0
        12
        1984.951803

        1
        38
        1984.951803

        2
        80
        1984.951803

        3
        114
        1984.951803

        4
        259
        1984.951803

        ...
        ...
        ...

        810
        16371
        1984.951803

        811
        16372
        1984.951803

        812
        16373
        1984.951803

        813
        16374
        1984.951803

        814
        16375
        1984.951803
```

815 rows x 2 columns

Out[13]:

	page_id	name	urislug	ID	ALIGN	EYE	HAIR	SEX	GSM	ALIVE	APPEARANCES	I APPEAR
0	1678	Spider- Man (Peter Parker)	VSpider-Man_(Peter_Parker)	Secret Identity	Good Characters	Hazel Eyes	Brown Hair	Male Characters	NaN	Living Characters	4043.0	А
1	7139	Captain America (Steven Rogers)	VCaptain_America_(Steven_Rogers)	Public Identity	Good Characters	Blue Eyes	White Hair	Male Characters	NaN	Living Characters	3360.0	٨
2	64786	Wolverine (James \"Logan\" Howlett)	\Wolverine_(James_%22Logan%22_Howlett)	Public Identity	Neutral Characters	Blue Eyes	Black Hair	Male Characters	NaN	Living Characters	3061.0	C
3	1868	Iron Man (Anthony \"Tony\" Stark)	Viron_Man_(Anthony_%22Tony%22_Stark)	Public Identity	Good Characters	Blue Eyes	Black Hair	Male Characters	NaN	Living Characters	2961.0	٨
4	2460	Thor (Thor Odinson)	VThor_(Thor_Odinson)	No Dual Identity	Good Characters	Blue Eyes	Blond Hair	Male Characters	NaN	Living Characters	2258.0	N
16371	657508	Ru'ach (Earth-616)	VRu%27ach_(Earth-616)	No Dual Identity	Bad Characters	Green Eyes	No Hair	Male Characters	NaN	Living Characters	NaN	
16372	665474	Thane (Thanos' son) (Earth-616)	VThane_(Thanos%27_son)_(Earth-616)	No Dual Identity	Good Characters	Blue Eyes	Bald	Male Characters	NaN	Living Characters	NaN	
16373	695217	Tinkerer (Skrull) (Earth-616)	VTinkerer_(Skrull)_(Earth-616)	Secret Identity	Bad Characters	Black Eyes	Bald	Male Characters	NaN	Living Characters	NaN	
16374	708811	TK421 (Spiderling) (Earth-616)	VTK421_(Spiderling)_(Earth-616)	Secret Identity	Neutral Characters	NaN	NaN	Male Characters	NaN	Living Characters	NaN	
16375	673702	Yologarch (Earth-616)	VYologarch_(Earth-616)	NaN	Bad Characters	NaN	NaN	NaN	NaN	Living Characters	NaN	

16376 rows × 13 columns

```
In [14]: # Выберем категориальные колонки с пропущенными значениями
    cat_cols = []
    for col in data.columns:
        temp_null_count = data[data[col].isnull()].shape[0]
        dt = str(data[col].dtype)
        if temp_null_count>0 and (dt=='object'):
```

```
for col in data.columns:
                          col in data.columns:
temp_null_count = data[data[col].isnull()].shape[0]
dt = str(data[col].dtype)
if temp_null_count>0 and (dt=='object'):
    cat_cols.append(col)
temp_null_count = null_count / tetal_count
                                 cat_cols.append(col) temp_prod((temp_null_count / total_count) * 100.0, 2) print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col, dt, temp_null_count,
                  temp_perc))
                  Колонка ID. Тип данных object. Количество пустых значений 3770, 23.02%. Колонка ALIGN. Тип данных object. Количество пустых значений 2812, 17.17%. Колонка EYE. Тип данных object. Количество пустых значений 9767, 59.64%. Колонка HAIR. Тип данных object. Количество пустых значений 4264, 26.04%. Колонка SEX. Тип данных object. Количество пустых значений 854, 5.21%. Колонка GSM. Тип данных object. Количество пустых значений 16286, 99.45%. Колонка ALIVE. Тип данных object. Количество пустых значений 3, 0.02%. Колонка FIRST APPEARANCE. Тип данных object. Количество пустых значений 815, 4.98%.
In [15]: #для очистки возьмем столбец SEX cat_temp_data = data[['SEX']] cat_temp_data.head()
Out[15]:
                                     SEX
                   0 Male Characters
                   1 Male Characters
                   2 Male Characters
                   3 Male Characters
                   4 Male Characters
In [16]: cat_temp_data['SEX'].unique()
Out[16]: array(['Male Characters', 'Female Characters', 'Genderfluid Characters', 'Agender Characters', nan], dtype=object)
In [17]: imp = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
data_imp = imp.fit_transform(cat_temp_data)
                  data_imp
Out[17]: array([['Male Characters'],
                               ['Male Characters'],
['Male Characters'],
                               ...,
['Male Characters'],
['Male Characters'],
['Male Characters']], dtype=object)
In [18]: # Пустые значения отсутствуют
                  np.unique(data_imp)
In [19]: cat_enc = pd.DataFrame({'SEX':data_imp.T[0]})
                  cat enc
Out[19]:
                                           SEX
                   0 Male Characters
                         1 Male Characters
                        2 Male Characters
                        3 Male Characters
                        4 Male Characters
                   16371 Male Characters
                   16372 Male Characters
                   16373 Male Characters
                   16374 Male Characters
```

16375 Male Characters

16374 Male Characters

16375 Male Characters

16376 rows × 1 columns

Out[20]:

	page_id	name	urlslug	ID	ALIGN	EYE	HAIR	SEX	GSM	ALIVE	APPEARANCES	I APPEAR
0	1678	Spider- Man (Peter Parker)	VSpider-Man_(Peter_Parker)	Secret Identity	Good Characters	Hazel Eyes	Brown Hair	Male Characters	NaN	Living Characters	4043.0	А
1	7139	Captain America (Steven Rogers)	VCaptain_America_(Steven_Rogers)	Public Identity	Good Characters	Blue Eyes	White Hair	Male Characters	NaN	Living Characters	3360.0	N
2	64786	Wolverine (James \"Logan\" Howlett)	\Wolverine_(James_%22Logan%22_Howlett)	Public Identity	Neutral Characters	Blue Eyes	Black Hair	Male Characters	NaN	Living Characters	3061.0	C
3	1868	Iron Man (Anthony \"Tony\" Stark)	VIron_Man_(Anthony_%22Tony%22_Stark)	Public Identity	Good Characters	Blue Eyes	Black Hair	Male Characters	NaN	Living Characters	2961.0	٨
4	2460	Thor (Thor Odinson)	VThor_(Thor_Odinson)	No Dual Identity	Good Characters	Blue Eyes	Blond Hair	Male Characters	NaN	Living Characters	2258.0	N
16371	657508	Ru'ach (Earth-616)	VRu%27ach_(Earth-616)	No Dual Identity	Bad Characters	Green Eyes	No Hair	Male Characters	NaN	Living Characters	NaN	
16372	665474	Thane (Thanos' son) (Earth-616)	VThane_(Thanos%27_son)_(Earth-616)	No Dual Identity	Good Characters	Blue Eyes	Bald	Male Characters	NaN	Living Characters	NaN	
16373	695217	Tinkerer (Skrull) (Earth-616)	VTinkerer_(Skrull)_(Earth-616)	Secret Identity	Bad Characters	Black Eyes	Bald	Male Characters	NaN	Living Characters	NaN	
16374	708811	TK421 (Spiderling) (Earth-616)	VTK421_(Spiderling)_(Earth-616)	Secret Identity	Neutral Characters	NaN	NaN	Male Characters	NaN	Living Characters	NaN	
16375	673702	Yologarch (Earth-616)	VYologarch_(Earth-616)	NaN	Bad Characters	NaN	NaN	Male Characters	NaN	Living Characters	NaN	

16376 rows × 13 columns

```
In [31]: # Диаграмма ресеяния
# зависимость количества выживших женских персонажей от года их первого появления в комиксах

fem_df = data[data['SEX'] == 'Female Characters'].groupby('Year').count()
fem_df .reset_index(inplace=True)
fem_df['ALIVED'] = fem_df['ALIVE']
fem_df

fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='Year', y="ALIVED", data=fem_df)
```

Out[31]: <matplotlib.axes._subplots.AxesSubplot at 0x117890390>

Таким образом для обработки пропусков в данных для количественного признака использовался метод импьютации средними значениями, а для категорийных признаков - импьютации наиболее частыми значениями. Для дальнейшего построения моделей можно использовать так же столбы с информацией о принадлежности к стороне героев, обработав предварительно пропуски, и в результате выстроить модель, которая дает достаточную информацию о тенденции выживаемости различных персонажей в зависимости от их пола и стороны в годы их первого появления в комиксах.