Aritmética Modular

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

No estudo da criptografia, muitos conceitos matemáticos são usados para criar uma base teórica para a definição de diferentes criptossistemas, um desses conceitos é a aritmética modular.

Sejam $A, B \in M$ três números inteiros. Por definição, dizemos que "A é congruente a B módulo M" quando (A - B) é um múltiplo de M, ou seja, existe algum número inteiro k tal que (A - B) = kM (lembre-se que isto é equivalente a dizer que o resto da divisão de (A - B) por M é igual a 0).

"A é congruente a B módulo M" pode ser denotado matematicamente por:

$$A \equiv B \pmod{M}$$

A partir disso conseguimos definir operações sobre os inteiros módulo M, criando o que chamamos de aritmética modular. Este simples conceito dá base a muitas ideias importantes para o estudo da criptografia e outras áreas da computação.

Vamos testar o que você acabou de aprender. Você será dado três números inteiros positivos $A, B \in M$, crie um programa que verifica se $A \equiv B \pmod{M}$. Se sim, informe também qual é o valor inteiro k que atende a equação (A - B) = kM.

Input

A entrada é composta por uma única linha contendo três números inteiros positivos separados por espaço, $A, B \in M \ (1 \le A, B, M \le 100)$.

Output

Se $A \equiv B \pmod{M}$ imprima duas linhas na saída, a primeira linha contendo apenas a palavra "Sim" (sem aspas) e a segunda linha contendo apenas o número inteiro k que atende a equação (A - B) = kM, note que k pode ser um inteiro negativo; caso contrário, imprima uma única linha contendo apenas a palavra "Nao" (sem aspas e sem o til sobre o caractére "a").

Examples

standard input	standard output
25 10 5	Sim
	3
7 2 4	Nao
2 1 1	Sim
	1
2 4 1	Sim
	-2
34 13 2	Nao
74 44 6	Sim
	5
7 7 2	Sim
	0

Note

No primeiro caso de teste, temos que $(25-10)=3\cdot 5$. Então 25 é congruente a 10 módulo 5 com k=3.

