DS n°9 : Fiche de calculs

Durée : 60 minutes, calculatrices et documents interdits

Nom et prénom :		Note:	
-----------------	--	-------	--

Porter directement les réponses sur la feuille, sans justification.

Matrice et algèbre linéaire

On considère l'application linéaire $u: \begin{cases} \mathbb{R}^3 & \longrightarrow \mathbb{R}^3 \\ \begin{pmatrix} x \\ y \\ z \end{pmatrix} & \longmapsto \begin{pmatrix} 2x + y - z \\ 3y - 2z \\ -x + 3y + z \end{pmatrix}$. On note \mathscr{C} la base canonique de \mathbb{R}^3 , \mathscr{B}_1 la base $\left(\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}\right)$ et \mathscr{B}_2 la base $\left(\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\right)$. On note $P_{\mathscr{B}_2}^{\mathscr{C}}$ la matrice de passage de \mathscr{B}_2 dans \mathscr{C} et $P_{\mathscr{C}}^{\mathscr{B}_1}$ la matrice de passage de \mathscr{C} dans \mathscr{B}_1 . Alors:

$$\operatorname{Mat}_{\mathscr{C}}(u) =$$
 (1)

$$P_{\mathscr{C}}^{\mathscr{B}_1} = \tag{3}$$

$$\operatorname{Mat}_{\mathscr{B}_1,\mathscr{B}_2}(u) =$$
 (4)

Dans \mathbb{R}^3 , soit \mathcal{P} le plan x+2y+3z=0 et \mathcal{D} la droite $\left\{\begin{array}{l} x=3z\\ y=2z \end{array}\right.$. Soit p la projection sur \mathcal{P} parallèlement à \mathcal{D} . On note \mathcal{B} la base canonique de \mathbb{R}^3 .

$$\operatorname{Mat}_{\mathscr{B}}(p) = \tag{5}$$

