$$M = P \cdot \frac{J}{1 - (1 + J)^{-N}}$$

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

$$v'_i = \sum_{j=1}^n A_{ij} \cdot v_j$$

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \mu)^2}$$

$$f(x) = \sqrt{x}$$

$$F = \frac{Gm_1 m_2}{r^2}$$

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\mathbf{F}_{ab} = -G \frac{m_a m_b}{|\mathbf{r}_{ab}|^2} \hat{\mathbf{r}}_{ab}$$

$$\hat{\mathbf{r}}_{ab} = \frac{\mathbf{r}_b - \mathbf{r}_a}{|\mathbf{r}_b - \mathbf{r}_a|}$$