udy do the his sheets shade Touris

Sequence Listing

- <110> Baker, Kevin Botstein, David Eaton, Dan Ferrara, Napoleone Filvaroff, Ellen Gerritsen, Mary Goddard, Audrey Godowski, Paul Grimaldi, Christopher Gurney, Austin Hillan, Kenneth Kljavin, Ivar Napier, Mary Roy, Margaret Tumas, Daniel Wood, William
- <120> SECRETED AND TRANSMEMBRANE POLYPEPTIDES AND NUCLEIC ACIDS ENCODING THE SAME
- <130> P2548P1C1
- <150> 60/067,411
- <151> December 3, 1997
- <150> 60/069,334
- <151> December 11, 1997
- <150> 60/069335
- <151> December 11, 1997
- <150> 60/069,278
- <151> December 11, 1997
- <150> 60/069,425
- <151> December 12, 1997
- <150> 60/069,696
- <151> December 16, 1997
- <150> 60/069,694
- <151> December 16, 1997
- <150> 60/069,702
- <151> December 16, 1997
- <150> 60/069,870
- <151> December 17, 1997
- <150> 60/069,873
- <151> December 17, 1997
- <150> 60/068,017
- <151> December 18, 1997
- <150> 60/070,440

- <151> January 5, 1998
- <150> 60/074,086
- <151> February 9, 1998
- <150> 60/074,092
- <151> February 9, 1998
- <150> 60/075,945
- <151> February 25, 1998
- <150> 60/112,850
- <151> December 16, 1998
- <150> 60/113,296
- <151> December 22, 1998
- <150> 60/146,222
- <151> July 28, 1999
- <150> PCT/US98/19330
- <151> September 16, 1998
- <150> PCT/US98/25108
- <151> December 1, 1998
- <150> 09/216,021

- <151> December 16, 1998
- <150> 09/218,517
- <151> December 22, 1998
- <150> 09/254,311
- <151> March 3, 1999
- <150> PCT/US99/12252
- <151> June 22, 1999
- <150> PCT/US99/21090
- <151> September 15, 1999
- <150> PCT/US99/28409
- <151> November 30, 1999
- <150> PCT/US99/28313
- <151> November 30, 1999
- <150> PCT/US99/28301
- <151> December1, 1999
- <150> PCT/US99/30095
- <151> December 16, 1999
- <150> PCT/US00/03565
- <151> February 11, 2000
- <150> PCT/US00/04414
- <151> February 22, 2000

- <151> March 2, 2000
- <150> PCT/US00/08439
- <151> March 30, 2000
- <150> PCT/US00/14042
- <151> May 22, 2000
- <150> PCT/US00/20710
- <151> July 28, 2000
- <150> PCT/US00/32678
- <151> December 1, 2000
- <150> PCT/US01/06520
- <151> February 28, 2001
- <160> 120
- <210> 1
- <211> 2454
- <212> DNA
- <213> Homo Sapien

<400> 1

ggactaatct gtgggagcag tttattccag tatcacccag ggtgcagcca 50 caccaggact gtgttgaagg gtgtttttt tcttttaaat gtaatacctc 100 ctcatctttt cttcttacac agtgtctgag aacatttaca ttatagataa 150 qtaqtacatq qtqqataact tctactttta ggaggactac tctcttctga 200 cagtectaga etggtettet acactaagae accatgaagg agtatgtget 250 cctattattc ctggctttgt gctctgccaa acccttcttt agcccttcac 300 acatcgcact gaagaatatg atgctgaagg atatggaaga cacagatgat 350 gatgatgatg atgatgatga tgatgatgat gatgaggaca actctctttt 400 tccaacaaga gagccaagaa gccattttt tccatttgat ctgtttccaa 450 tgtgtccatt tggatgtcag tgctattcac gagttgtaca ttgctcagat 500 ttaggtttga cctcagtccc aaccaacatt ccatttgata ctcgaatgct 550 tgatcttcaa aacaataaaa ttaaggaaat caaagaaaat gattttaaag 600 gactcacttc actttatggt ctgatcctga acaacaacaa gctaacgaag 650 attcacccaa aagcctttct aaccacaaag aagttgcgaa ggctgtatct 700 gtcccacaat caactaagtg aaataccact taatcttccc aaatcattag 750 cagaactcag aattcatgaa aataaagtta agaaaataca aaaggacaca 800

aaattgtete tteaaataeg tatggaetgg ataaetetga gaaacaeate 2300 tagtataaet gaataageag ageateaaat taaacagaea gaaacegaaa 2350 getetatata aatgeteaga gttetttatg tatttettat tggeatteaa 2400 catatgtaaa ateagaaaac agggaaattt teattaaaaa tattggtttg 2450 aaat 2454

<210> 2

<211> 379

<212> PRT

<213> Homo Sapien

<400> 2

Met Lys Glu Tyr Val Leu Leu Leu Phe Leu Ala Leu Cys Ser Ala 1 5 10 15

Lys Pro Phe Phe Ser Pro Ser His Ile Ala Leu Lys Asn Met Met 20 25 30

Leu Lys Asp Met Glu Asp Thr Asp Asp Asp Asp Asp Asp Asp Asp Asp 45

Asp Asp Asp Asp Glu Asp Asn Ser Leu Phe Pro Thr Arg Glu
50 55 60

Pro Arg Ser His Phe Phe Pro Phe Asp Leu Phe Pro Met Cys Pro
65 70 75

Phe Gly Cys Gln Cys Tyr Ser Arg Val Val His Cys Ser Asp Leu 80 85 90

Gly Leu Thr Ser Val Pro Thr Asn Ile Pro Phe Asp Thr Arg Met 95 100 105

Leu Asp Leu Gln Asn Asn Lys Ile Lys Glu Ile Lys Glu Asn Asp 110 115 120

Phe Lys Gly Leu Thr Ser Leu Tyr Gly Leu Ile Leu Asn Asn Asn 125 130 135

Lys Leu Thr Lys Ile His Pro Lys Ala Phe Leu Thr Thr Lys Lys 140 145 150

Leu Arg Arg Leu Tyr Leu Ser His Asn Gln Leu Ser Glu Ile Pro 155 160 165

Leu Asn Leu Pro Lys Ser Leu Ala Glu Leu Arg Ile His Glu Asn

Lys Val Lys Lys Ile Gln Lys Asp Thr Phe Lys Gly Met Asn Ala 185 190 195

Leu His Val Leu Glu Met Ser Ala Asn Pro Leu Asp Asn Asn Gly 200 205 210

Ile Glu Pro Gly Ala Phe Glu Gly Val Thr Val Phe His Ile Arg 220 Ile Ala Glu Ala Lys Leu Thr Ser Val Pro Lys Gly Leu Pro Pro Thr Leu Leu Glu Leu His Leu Asp Tyr Asn Lys Ile Ser Thr Val 245 Glu Leu Glu Asp Phe Lys Arg Tyr Lys Glu Leu Gln Arg Leu Gly Leu Gly Asn Asn Lys Ile Thr Asp Ile Glu Asn Gly Ser Leu Ala Asn Ile Pro Arg Val Arg Glu Ile His Leu Glu Asn Asn Lys Leu Lys Lys Ile Pro Ser Gly Leu Pro Glu Leu Lys Tyr Leu Gln Ile Ile Phe Leu His Ser Asn Ser Ile Ala Arg Val Gly Val Asn Asp 320 Phe Cys Pro Thr Val Pro Lys Met Lys Lys Ser Leu Tyr Ser Ala 335 Ile Ser Leu Phe Asn Asn Pro Val Lys Tyr Trp Glu Met Gln Pro 350 Ala Thr Phe Arg Cys Val Leu Ser Arg Met Ser Val Gln Leu Gly Asn Phe Gly Met <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 3 ggaaatgagt gcaaaccctc 20 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 4 toccaagetg aacactcatt etgc 24

```
<210> 5
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
gggtgacggt gttccatatc agaattgcag aagcaaaact gacctcagtt 50
<210> 6
<211> 3441
<212> DNA
<213> Homo Sapien
<400> 6
 cggacgcgtg ggcggacgcg tgggcccgcs gcaccgcccc cggcccggcc 50
 ctecgccctc cgcactcgcg cctccctccc tccgcccgct cccgcgccct 100
 cetecetece tectececag etgtecegtt egegteatge egageetece 150
 ggccccgccg gccccgctgc tgctcctcgg gctgctgctg ctcggctccc 200
 ggccggcccg cggcgccggc ccagagcccc ccgtgctgcc catccgttct 250
 gagaaggagc cgctgcccgt tcggggagcg gcaggctgca ccttcggcgg 300
 gaaggtetat geettggaeg agaegtggea eeeggaeeta gggeageeat 350
 teggggtgat gegetgegtg etgtgegeet gegaggegee teagtggggt 400
 cgccgtacca ggggccctgg cagggtcagc tgcaagaaca tcaaaccaga 450
 gtgcccaacc coggcctgtg ggcagccgcg ccagctgccg ggacactgct 500
 gecagaectg cececaggag egeageagtt eggageggea geegagegge 550
 ctgtccttcg agtatccgcg ggacccggag catcgcagtt atagcgaccg 600
 cggggagcca ggcgctgagg agcgggcccg tggtgacggc cacacggact 650
 tegtggeget getgaeaggg eegaggtege aggeggtgge aegageeega 700
 gtetegetge tgegetetag ceteegette tetateteet acaggegget 750
 ggaccgccct accaggatcc gcttctcaga ctccaatggc agtgtcctgt 800
 ttgagcaccc tgcagccccc acccaagatg gcctggtctg tgggggtgtgg 850
 cgggcagtgc ctcggttgtc tctgcggctc cttagggcag aacagctgca 900
 tgtggcactt gtgacactca ctcacccttc aggggaggtc tgggggcctc 950
 tcatccggca ccgggccctg gctgcagaga ccttcagtgc catcctgact 1000
 ctagaaggcc ccccacagca gggcgtaggg ggcatcaccc tgctcactct 1050
```


cagtgacaca gaggactect tgeatttttt getgetette egagggetge 1100 tggaacccag gagtggggga ctaacccagg ttcccttgag gctccagatt 1150 ctacaccagg ggcagctact gcgagaactt caggccaatg tctcagccca 1200 ggaaccaggc tttgctgagg tgctgcccaa cctgacagtc caggagatgg 1250 actggctggt gctgggggag ctgcagatgg ccctggagtg ggcaggcagg 1300 ccagggetge geateagtgg acacattget geeaggaaga getgegaegt 1350 cctgcaaagt gtcctttgtg gggctgatgc cctgatccca gtccagacgg 1400 gtgctgccgg ctcagccagc ctcacgctgc taggaaatgg ctccctgatc 1450 tatcaggtgc aagtggtagg gacaagcagt gaggtggtgg ccatgacact 1500 ggagaccaag cctcagcgga gggatcagcg cactgtcctg tgccacatgg 1550 ctggactcca gccaggagga cacacggccg tgggtatctg ccctgggctg 1600 ggtgcccgag gggctcatat gctgctgcag aatgagctct tcctgaacgt 1650 gggcaccaag gacttcccag acggagaget teggggggeae gtggetgeee 1700 tgccctactg tgggcatagc gcccgccatg acacgctgcc cgtgccccta 1750 gcaggagccc tggtgctacc ccctgtgaag agccaagcag cagggcacgc 1800 ctggctttcc ttggataccc actgtcacct gcactatgaa gtgctgctgg 1850 ctgggcttgg tggctcagaa caaggcactg tcactgccca cctccttggg 1900 cctcctggaa cgccagggcc tcggcggctg ctgaagggat tctatggctc 1950 agaggcccag ggtgtggtga aggacctgga gccggaactg ctgcggcacc 2000 tggcaaaagg catggcctcc ctgatgatca ccaccaaggg tagccccaga 2050 ggggagetee gagggeaggt geacatagee aaceaatgtg aggttggegg 2100 actgegeetg gaggeggeeg gggeegaggg ggtgegggeg etgggggete 2150 cggatacage etetgetgeg eegeetgtgg tgeetggtet eeeggeeeta 2200 gegecegeca aacetggtgg teetgggegg ceeegagaee ecaacacatg 2250 cttcttcgag gggcagcagc gccccacgg ggctcgctgg gcgcccaact 2300 acgacccgct ctgctcactc tgcacctgcc agagacgaac ggtgatctgt 2350 gacccggtgg tgtgcccacc gcccagctgc ccacacccgg tgcaggctcc 2400 cgaccagtgc tgccctgttt gccctgagaa acaagatgtc agagacttgc 2450 cagggctgcc aaggagccgg gacccaggag agggctgcta ttttgatggt 2500

gaccggaget ggcgggcage gggtacgcgg tggcaccccg ttgtgccccc 2550 ctttqqctta attaaqtqtq ctqtctgcac ctgcaagggg ggcactggag 2600 aggtgcactg tgagaaggtg cagtgtcccc ggctggcctg tgcccagcct 2650 gtgegtgtea accecacega etgetgeaaa eagtgteeag tggggteggg 2700 ggcccacccc cagctggggg accccatgca ggctgatggg ccccggggct 2750 geegttttge tgggeagtgg tteecagaga gteagagetg geaccectea 2800 gtgcccctt ttggagagat gagctgtatc acctgcagat gtggggcagg 2850 ggtgcctcac tgtgagcggg atgactgttc actgccactg tcctgtggct 2900 cggggaagga gagtcgatgc tgttcccgct gcacggccca ccggcggccc 2950 ccagagacca gaactgatcc agagctggag aaagaagccg aaggctctta 3000 gggagcagcc agagggccaa gtgaccaaga ggatggggcc tgagctgggg 3050 aaggggtggc atcgaggacc ttcttgcatt ctcctgtggg aagcccagtg 3100 cetttqctcc tetqtcctgc ctctactccc accccacta cctctgggaa 3150 ccacagetee acaaggggga gaggeagetg ggeeagaceg aggteacage 3200 cactocaagt cetgeeetge caccetegge etetgteetg gaageeecac 3250 ccctttcctc ctgtacataa tgtcactggc ttgttgggat ttttaattta 3300 tetteactea geaceaaggg ceeeegacae teeacteetg etgeeeetga 3350 gctgagcaga gtcattattg gagagttttg tatttattaa aacatttctt 3400 tttcagtcaa aaaaaaaaaa aaaaaaaaaa a 3441

<210> 7

<211> 954

<212> PRT

<213> Homo Sapien

<400> 7

Met Pro Ser Leu Pro Ala Pro Pro Ala Pro Leu Leu Leu Gly
1 5 10 15

Leu Leu Leu Gly Ser Arg Pro Ala Arg Gly Ala Gly Pro Glu 20 25 30

Pro Pro Val Leu Pro Ile Arg Ser Glu Lys Glu Pro Leu Pro Val 35 40 45

Arg Gly Ala Ala Gly Cys Thr Phe Gly Gly Lys Val Tyr Ala Leu
50 55 60

Asp Glu Thr Trp His Pro Asp Leu Gly Gln Pro Phe Gly Val Met 65 70 75

Arg Cys Val	Leu Cys	Ala	Cys	Glu	Ala	Pro 85	Gln	Trp	Gly	Arg	Arg 90
Thr Arg Gly	Pro Gly 95		Val	Ser	Cys	Lys 100	Asn	Ile	Lys	Pro	Glu 105
Cys Pro Thr	Pro Ala		Gly	Gln	Pro	Arg 115	Gln	Leu	Pro	Gly	His 120
Cys Cys Gln	Thr Cys		Gln	Glu	Arg	Ser 130	Ser	Ser	Glu	Arg	Gln 135
Pro Ser Gly	Leu Ser 140		Glu	Tyr	Pro	Arg 145	Asp	Pro	Glu	His	Arg 150
Ser Tyr Ser	Asp Arg		Glu	Pro	Gly	Ala 160	Glu	Glu	Arg	Ala	Arg 165
Gly Asp Gly	His Thr		Phe	Val	Ala	Leu 175	Leu	Thr	Gly	Pro	Arg 180
Ser Gln Ala	Val Ala		Ala	Arg	Val	Ser 190	Leu	Leu	Arg	Ser	Ser 195
Leu Arg Phe	Ser Ile 200		Tyr	Arg	Arg	Leu 205	Asp	Arg	Pro	Thr	Arg 210
Ile Arg Phe	Ser Asp		Asn	Gly	Ser	Val 220	Leu	Phe	Glu	His	Pro 225
Ala Ala Pro	Thr Gli 230		Gly	Leu	Val	Cys 235	Gly	Val	Trp	Arg	Ala 240
Val Pro Arg	Leu Se: 24!		Arg	Leu	Leu	Arg 250	Ala	Glu	Gln	Leu	His 255
Val Ala Leu	Val Th		Thr	His	Pro	Ser 265	Gly	Glu	Val	Trp	Gly 270
Pro Leu Ile	Arg Hi		Ala	Leu	Ala	Ala 280	Glu	Thr	Phe	Ser	Ala 285
Ile Leu Thr	Leu Gl		Pro	Pro	Gln	Gln 295	Gly	Val	Gly	Gly	300
Thr Leu Leu	Thr Le		Asp	Thr	Glu	Asp 310	Ser	Leu	His	: Phe	Leu 315
Leu Leu Phe	e Arg Gl 32		Leu	Glu	Pro	Arg 325	Ser	Gly	Gly	Leu	330
Gln Val Pro	Leu Ar 33		Gln	Ile	Leu	His 340		Gly	Gln	Leu	1 Leu 345
Arg Glu Leu	ı Gln Al 35	_	ı Val	. Ser	Ala	Gln 355		Pro	Gly	Phe	Ala 360
Glu Val Leu	ı Pro As	n Leu	Thr	Val	Gln	Glu	Met	Asp	Trp	Lev	ı Val

				365					370					375
Leu	Gly	Glu	Leu	Gln 380	Met	Ala	Leu	Glu	Trp 385	Ala	Gly	Arg	Pro	Gly 390
Leu	Arg	Ile	Ser	Gly 395	His	Ile	Ala	Ala	Arg 400	Lys	Ser	Cys	Asp	Val 405
Leu	Gln	Ser	Val	Leu 410	Cys	Gly	Ala	Asp	Ala 415	Leu	Ile	Pro	Val	Gln 420
Thr	Gly	Ala	Ala	Gly 425	Ser	Ala	Ser	Leu	Thr 430	Leu	Leu	Gly	Asn	Gly 435
Ser	Leu	Ile	Tyr	Gln 440	Val	Gln	Val	Val	Gly 445	Thr	Ser	Ser	Glu	Val 450
Val	Ala	Met	Thr	Leu 455	Glu	Thr	Lys	Pro	Gln 460	Arg	Arg	Asp	Gln	Arg 465
Thr	Val	Leu	Cys	His 470	Met	Ala	Gly	Leu	Gln 475	Pro	Gly	Gly	His	Thr 480
Ala	Val	Gly	Ile	Cys 485	Pro	Gly	Leu	Gly	Ala 490		Gly	Ala	His	Met 495
Leu	Leu	Gln	Asn	Glu 500	Leu	Phe	Leu	Asn	Val 505		Thr	Lys	Asp	Phe 510
Pro	Asp	Gly	Glu	Leu 515		Gly	His	Val	Ala 520		Leu	Pro	Tyr	Cys 525
Gly	His	Ser	Ala	Arg 530		Asp	Thr	Leu	Pro 535		Pro	Leu	Ala	Gly 540
Ala	Leu	Val	Leu	Pro 545		Val	Lys	Ser	Gln 550		Ala	Gly	His	Ala 555
Trp	Leu	Ser	Leu	Asp 560		His	Cys	His	Leu 565		туг	Glu	Val	Leu 570
Leu	Ala	Gly	Leu	Gly 575		Ser	Glu	Gln	Gly 580		. Val	Thr	Ala	His 585
Leu	. Leu	Gly	Pro	Pro 590		Thr	Pro	Gly	Pro 595		g Arg	, Leu	ı Lev	600
Gly	Phe	туг	Gly	Ser 605		ı Ala	Gln	ı Gly	Va]		Lys	s Asp) Lev	615
Pro	Glu	Leu	ı Leu	620		Leu	ı Ala	a Lys	625 625		: Ala	a Ser	: Leu	1 Met
Ιlε	e Thr	Thi	Lys	Gl ₃ 635		. Pro	Arç	g Gly	Glu 640		ı Arg	g Gly	/ Glr	1 Val 649
His	s Ile	e Ala	a Asr	1 Glr 650		s Glu	ı Val	l Gly	/ Gly		ı Arg	g Lei	ı Glu	ı Ala

950

```
<210> 8
  <211> 44
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Synthetic Oligonucleotide probe
   <210> 9
  <211> 28
  <212> DNA
  <213> Artificial Sequence
  <223> Synthetic oligonucleotide probe
  <400> 9
   eggaegegtg gggeetgege acceaget 28
ű
  <210> 10
  <211> 36
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Synthetic oligonucleotide probe
  <400> 10
   geogeteece gaacgggeag eggeteette teagaa 36
  <210> 11
  <211> 36
  <212> DNA
  <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 11
   ggcgcacagc acgcagcgca tcaccccgaa tggctc 36
   <210> 12
   <211> 26
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic Oligonucleotide Probe
   <400> 12
   gtgctgccca tccgttctga gaagga 26
   <210> 13
```

13

- <211> 22 <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 13

gcagggtgct caaacaggac ac 22

- <210> 14
- <211> 3231
- <212> DNA
- <213> Homo Sapien
- <400> 14
 - ggeggageag ceetageege eacegteget etegeagete tegtegeeae 50 tgccaccgcc gccgccgtca ctgcgtcctg gctccggctc ccgcgccctc 100 ceggeeggee atgeageece geegegeeca ggegeeeggt gegeagetge 150 tgecegeget ggecetgetg etgetgetge teggageggg geceegagge 200 agetecetgg ecaaceeggt geeegeegg ceettgtetg egeeegggee 250 gtgcgccgcg cagccctgcc ggaatggggg tgtgtgcacc tcgcgccctg 300 ageoggaeee geageaeeeg geeeeegeeg gegageetgg etacagetge 350 acctgeeceg cegggatete eggegeeaac tgeeagettg ttgeagatee 400 ttgtgccagc aaccettgtc accatggcaa ctgcagcagc agcagcagca 450 geageagega tggctacete tgcatttgca atgaaggeta tgaaggteee 500 aactgtgaac aggcacttcc cagtctccca gccactggct ggaccgaatc 550 catggcaccc cgacagette agectgttee tgetacteag gageetgaca 600 aaatcctgcc tcgctctcag gcaacggtga cactgcctac ctggcagccg 650 aaaacagggc agaaagttgt agaaatgaaa tgggatcaag tggaggtgat 700 cccagatatt gcctgtggga atgccagttc taacagctct gcgggtggcc 750 gcctggtatc ctttgaagtg ccacagaaca cctcagtcaa gattcggcaa 800 gatgccactg cctcactgat tttgctctgg aaggtcacgg ccacaggatt 850 ccaacaqtqc tccctcatag atggacgaag tgtgaccccc cttcaggctt 900 cagggggact ggtcctcctg gaggagatgc tcgccttggg gaataatcac 950 tttattggtt ttgtgaatga ttctgtgact aagtctattg tggctttgcg 1000 cttaactctg gtggtgaagg tcagcacctg tgtgccgggg gagagtcacg 1050

tgtgaaacct atagacgatg ttttaatgta ccttcagetc tctaaactgt 2550 gtgettetac tagtgtgtge tctttteact gtagacacta tcacgagacc 2600 cagattaatt tetgtggttg ttacagaata agtetaatca aggagaagtt 2650 tetgtttgac gtttgagtge eggetttetg agtagagtta ggaaaaccac 2700 gtaacgtage atatgatgta taatagagta taccegttac ttaaaaagaa 2750 gtetgaaatg ttegtttgt ggaaaagaaa etagttaaat ttactattee 2800 taacccgaat gaaattagee tttgeettat tetgtgcatg ggtaagtaac 2850 ttattetge actgtttgt tgaactttgt ggaaacatte tttegagttt 2900 gttttgtca ttttegtaac agtegtegaa etaggeetca aaaacatacg 2950 taacgaaaag geetagegag geaaattetg attgatttga atetatatt 3000 ttettaaaa agteaagggt tetatattgt gagtaaatta aatttacatt 3050 tgagttgtt gttgetaaga ggtagtaaat gtaagagagt actggteet 3100 teagtagtga gtatteeta tagtgeaget ttatttatet ceaggatgtt 3150 tttgtggetg tatttgattg atatggett ettetgatte ttgetaatt 3200 ceaaccatat tgaataaatg tgateaagte a 3231

<210> 15

<211> 737

<212> PRT

<213> Homo Sapien

<400> 15

Met Gln Pro Arg Arg Ala Gln Ala Pro Gly Ala Gln Leu Leu Pro 1 5 10 15

Ala Leu Ala Leu Leu Leu Leu Leu Gly Ala Gly Pro Arg Gly 20 25 30

Ser Ser Leu Ala Asn Pro Val Pro Ala Ala Pro Leu Ser Ala Pro
35 40 45

Gly Pro Cys Ala Ala Gln Pro Cys Arg Asn Gly Gly Val Cys Thr 50 55 60

Ser Arg Pro Glu Pro Asp Pro Gln His Pro Ala Pro Ala Gly Glu
65 70 75

Pro Gly Tyr Ser Cys Thr Cys Pro Ala Gly Ile Ser Gly Ala Asn 80 85 90

Cys Gln Leu Val Ala Asp Pro Cys Ala Ser Asn Pro Cys His His
95 100 105

Gly Asn Cys Ser Ser Ser Ser Ser Ser Ser Ser Asp Gly Tyr Leu

110 115 120

				110					110					
Cys	Ile	Cys	Asn	Glu 125	Gly	Tyr	Glu	Gly	Pro 130	Asn	Cys	Glu	Gln	Ala 135
Leu	Pro	Ser	Leu	Pro 140	Ala	Thr	Gly	Trp	Thr 145	Glu	Ser	Met	Ala	Pro 150
Arg	Gln	Leu	Gln	Pro 155	Val	Pro	Ala	Thr	Gln 160	Glu	Pro	Asp	Lys	Ile 165
Leu	Pro	Arg	Ser	Gln 170	Ala	Thr	Val	Thr	Leu 175	Pro	Thr	Trp	Gln	Pro 180
Lys	Thr	Gly	Gln	Lys 185	Val	Val	Glu	Met	Lys 190	Trp	Asp	Gln	Val	Glu 195
Val	Ile	Pro	Asp	Ile 200	Ala	Cys	Gly	Asn	Ala 205	Ser	Ser	Asn	Ser	Ser 210
Ala	Gly	Gly	Arg	Leu 215	Val	Ser	Phe	Glu	Val 220	Pro	Gln	Asn	Thr	Ser 225
Val	Lys	Ile	Arg	Gln 230	Asp	Ala	Thr	Ala	Ser 235	Leu	Ile	Leu	Leu	Trp 240
Lys	Val	Thr	Ala	Thr 245		Phe	Gln	Gln	Cys 250	Ser	Leu	Ile	Asp	Gly 255
Arg	Ser	Val	Thr	Pro 260		Gln	Ala	Ser	Gly 265		Leu	Val	Leu	Leu 270
Glu	Glu	Met	Leu	Ala 275		Gly	Asn	Asn	His 280		Ile	Gly	Phe	Val 285
Asn	Asp	Ser	Val	Thr 290		Ser	Ile	Val	Ala 295		Arg	Leu	Thr	Leu 300
Val	Val	Lys	Val	Ser 305		Cys	val	Pro	Gly 310		Ser	His	Ala	Asn 315
Asp	Leu	Glu	Cys	Ser 320		/ Lys	s Gly	Lys	Cys 325		Thr	Lys	Pro	Ser 330
Glu	Ala	Thr	Phe	Ser 335		s Thr	Cys	Glu	Glu 340		Туг	· Val	. Gly	Thr 345
Phe	Cys	Glu	Glu	350) Ala	a Cys	Gln	355		Pro	су Сув	s Glr	360
Asn	Ala	Ser	Cys	365) Ala	a Asr	ı Glu	1 Lys 370		n Asp	Gly	y Ser	375
Phe	Thr	Cys	; Val	Cys 380		ı Pro	o Gly	7 Tyr	Thr 385		/ Glu	ı Let	ı Cys	390
Ser	Lys	: Ile	e Asp	Ty:		s Ile	e Leu	ı Asp	Pro 400		s Arg	g Ası	n Gly	/ Ala 405

Thr Cys Ile	Ser Ser 410		Ser	Gly	Phe	Thr 415	Cys	Gln	Cys	Pro	Glu 420
Gly Tyr Phe	Gly Ser		Cys	Glu	Glu	Lys 430	Val	Asp	Pro	Cys	Ala 435
Ser Ser Pro	Cys Glr		Asn	Gly	Thr	Cys 445	Tyr	Val	Asp	Gly	Val 450
His Phe Thr	Cys Asr 455		Ser	Pro	Gly	Phe 460	Thr	Gly	Pro	Thr	Cys 465
Ala Gln Leu	Ile Asp		Cys	Ala	Leu	Ser 475	Pro	Суѕ	Ala	His	Gly 480
Thr Cys Arg	Ser Val		Thr	Ser	Tyr	Lys 490	Cys	Leu	Cys	Asp	Pro 495
Gly Tyr His	Gly Let 50		Cys	Glu	Glu	Glu 505	Tyr	Asn	Glu	Cys	Leu 510
Ser Ala Pro	Cys Let		Ala	Ala	Thr	Cys 520	Arg	Asp	Leu	Val	Asn 525
Gly Tyr Glu	Cys Va	_	Leu	Ala	Glu	Tyr 535	Lys	Gly	Thr	His	Cys 540
Glu Leu Tyr	Lys As		Cys	Ala	Asn	Val 550	Ser	Сув	Leu	Asn	Gly 555
Ala Thr Cys	Asp Se 56		Gly	Leu	Asn	Gly 565	Thr	Cys	Ile	Cys	Ala 570
Pro Gly Phe	Thr Gl 57	-	Glu	. Cys	Asp	Ile 580	Asp	Ile	Asn	Glu	Cys 585
Asp Ser Asn	Pro Cy 59		His	Gly	Gly	Ser 595	Cys	Leu	Asp	Gln	Pro 600
Asn Gly Tyr	Asn Cy		: Cys	Pro	His	Gly 610	Trp	Val	Gly	Ala	Asn 615
Cys Glu Ile	His Le		Trp	Lys	Ser	Gly 625	His	Met	Ala	Glu	Ser 630
Leu Thr Asr	Met Pr 63		His	s Ser	Leu	Tyr 640		Ile	Ile	Gly	Ala 645
Leu Cys Val	Ala Ph		e Leu	: Met	Leu	1le 655		Leu	Ile	· Val	Gly 660
Ile Cys Arg	J Ile Se 66		j Il∈	e Glu	Tyr	670		Ser	Ser	Arg	Pro 675
Ala Tyr Glu	ı Glu Ph 68		. Asr	а Суз	arg	Ser 685		Asp	Ser	Glu	Phe 690
Ser Asn Ala	a Ile Al	a Ser	: Ile	e Arg	, His	Ala	Arg	Ph∈	Gly	/ Lys	Lys

695 700 705

Ser Arg Pro Ala Met Tyr Asp Val Ser Pro Ile Ala Tyr Glu Asp
710 715 720

Tyr Ser Pro Asp Asp Lys Pro Leu Val Thr Leu Ile Lys Thr Lys
725 730 735

Asp Leu

- <210> 16
- <211> 43
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic Oligonucleotide Probe
- <400> 16

tgtaaaacga cggccagtta aatagacctg caattattaa tct 43

- <210> 17
- <211> 41
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic Oligonucleotide Probe
- <400> 17

caggaaacag ctatgaccac ctgcacacct gcaaatccat t 41

- <210> 18
- <211> 508
- <212> DNA
- <213> Homo Sapien
- <400> 18

ctctggaagg tcacggccac aggattccaa cagtgctccc tcatagatgg 50

acgaaagtgt gaccccctt tcaggctttc agggggactg gtcctcctgg 100

aggagatget egeettgggg aataateact ttattggttt tgtgaatgat 150

tetqtqaeta agtetattgt ggetttgege ttaactetgg tggtgaaggt 200

cagcacctgt gtgccggggg agagtcacgc aaatgacttg gagtgttcag 250

gaaaaggaaa atgcaccacg aagccgtcag aggcaacttt ttcctgtacc 300

tgtgaggagc agtacgtggg tactttctgt gaagaatacg atgcttgcca 350

gaggaaacct tgccaaaaca acgcgagctg tattgatgca aatgaaaagc 400

aagatgggag caatttcacc tgtgtttgcc ttcctggtta tactggagag 450

ctttgccaac cgaactgaga ttggagcgaa cgacctacac cgaactgaga 500

<220>

```
taggggag 508
<210> 19
<211> 508
<212> DNA
<213> Homo Sapien
<400> 19
ctctggaagg tcacggccac aggattccaa cagtgctccc tcatagatgg 50
 acgaaagtgt gaccccctt tcaggctttc agggggactg gtcctcctgg 100
 aggagatgct cgccttgggg aataatcact ttattggttt tgtgaatgat 150
 tctqtqacta agtctattgt ggctttgcgc ttaactctgg tggtgaaggt 200
 cagcacctgt gtgccggggg agagtcacgc aaatgacttg gagtgttcag 250
 gaaaaggaaa atgcaccacg aagccgtcag aggcaacttt ttcctgtacc 300
 tgtgaggagc agtacgtggg tactttctgt gaagaatacg atgcttgcca 350
 gaggaaacct tgccaaaaca acgcgagctg tattgatgca aatgaaaagc 400
 aagatgggag caatttcacc tgtgtttgcc ttcctggtta tactggagag 450
 ctttgccaac cgaactgaga ttggagcgaa cgacctacac cgaactgaga 500
 taggggag 508
<210> 20
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 20
 ctctggaagg tcacggccac agg 23
<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 21
 ctcagttcgg ttggcaaagc tctc 24
<210> 22
<211> 69
<212> DNA
<213> Artificial Sequence
```


<223> Synthetic oligonucleotide probe

<400> 22
cagtgeteee teatagatgg acgaaagtgt gaccecett teaggegaga 50
getttgeeaa eegaactga 69

<210> 23 <211> 1520

<212> DNA

<213> Homo Sapien

<400> 23

getgagtetg etgeteetge tgetgetget ceageetgta acetgtgeet 50 acaccacgee aggeeecee agageeetea ecacgetggg egeeeceaga 100 geccacacca tgeegggeae etaegeteee tegaceacae teagtagtee 150 cagcacccag ggcctgcaag agcaggcacg ggccctgatg cgggacttcc 200 cgctcgtgga cggccacaac gacctgcccc tggtcctaag gcaggtttac 250 cagaaagggc tacaggatgt taacctgcgc aatttcagct acggccagac 300 cageetggae aggettagag atggeetegt gggegeeeag ttetggteag 350 cctatgtgcc atgccagacc caggaccggg atgccctgcg cctcaccctg 400 gagcagattg acctcatacg ccgcatgtgt gcctcctatt ctgagctgga 450 gettgtgace teggetaaag etetgaaega caeteagaaa ttggeetgee 500 teateggtgt agagggtgge cactegetgg acaatageet etecatetta 550 cgtaccttct acatgctggg agtgcgctac ctgacgctca cccacacctg 600 caacacacco tgggcagaga gotocgotaa gggcgtocac toottotaca 650 acaacatcag cgggctgact gactttggtg agaaggtggt ggcagaaatg 700 aaccgcctgg gcatgatggt agacttatcc catgtctcag atgctgtggc 750 acggegggee etggaagtgt caeaggeace tgtgatette teceaetegg 800 ctgcccgggg tgtgtgcaac agtgctcgga atgttcctga tgacatcctg 850 cagettetga agaagaaegg tggegtegtg atggtgtett tgtecatggg 900 agtaatacag tgcaacccat cagccaatgt gtccactgtg gcagatcact 950 tcgaccacat caaggctgtc attggatcca agttcatcgg gattggtgga 1000 gattatgatg gggccggcaa attccctcag gggctggaag acgtgtccac 1050 atacccggtc ctgatagagg agttgctgag tcgtggctgg agtgaggaag 1100 agetteaggg tgteettegt ggaaacetge tgegggtett cagacaagtg 1150

gaaaaggtac aggaagaaa caaatggcaa agccccttgg aggacaagtt 1200 cccggatgag cagctgagca gttcctgcca ctccgacctc tcacgtctgc 1250 gtcagagaca gagtctgact tcaggccagg aactcactga gattcccata 1300 cactggacag ccaagttacc agccaagtgg tcagtctcag agtcctcccc 1350 ccacatggcc ccagtccttg cagttgtggc caccttccca gtccttattc 1400 tgtggctctg atgacccagt tagtcctgcc agatgtcact gtagcaagcc 1450 acagacaccc cacaaagttc ccctgttgtg caggcacaaa tatttcctga 1500 aataaatgtt ttggacatag 1520

<210> 24

<211> 433

<212> PRT

<213> Homo Sapien

<400> 24

Met Pro Gly Thr Tyr Ala Pro Ser Thr Thr Leu Ser Ser Pro Ser

1 5 10 15

Thr Gln Gly Leu Gln Glu Gln Ala Arg Ala Leu Met Arg Asp Phe
20 25 30

Pro Leu Val Asp Gly His Asn Asp Leu Pro Leu Val Leu Arg Gln 35 40 45

Val Tyr Gln Lys Gly Leu Gln Asp Val Asn Leu Arg Asn Phe Ser
50 55 60

Tyr Gly Gln Thr Ser Leu Asp Arg Leu Arg Asp Gly Leu Val Gly
65 70 75

Ala Gln Phe Trp Ser Ala Tyr Val Pro Cys Gln Thr Gln Asp Arg 80 85 90

Asp Ala Leu Arg Leu Thr Leu Glu Gln Ile Asp Leu Ile Arg Arg 95 100 105

Met Cys Ala Ser Tyr Ser Glu Leu Glu Leu Val Thr Ser Ala Lys 110 115 120

Ala Leu Asn Asp Thr Gln Lys Leu Ala Cys Leu Ile Gly Val Glu 125 130 135

Gly Gly His Ser Leu Asp Asn Ser Leu Ser Ile Leu Arg Thr Phe 140 145 150

Tyr Met Leu Gly Val Arg Tyr Leu Thr Leu Thr His Thr Cys Asn 155 160 165

Thr Pro Trp Ala Glu Ser Ser Ala Lys Gly Val His Ser Phe Tyr 170 175 180

Asn Asn	Ile	Ser	Gly 185	Leu	Thr	Asp	Phe	Gly 190	Glu	Lys	Val	Val	Ala 195
Glu Met	Asn	Arg	Leu 200	Gly	Met	Met	Val	Asp 205	Leu	Ser	His	Val	Ser 210
Asp Ala	Val	Ala	Arg 215	Arg	Ala	Leu	Glu	Val 220	Ser	Gln	Ala	Pro	Val 225
Ile Phe	Ser	His	Ser 230	Ala	Ala	Arg	Gly	Val 235	Cys	Asn	Ser	Ala	Arg 240
Asn Val	Pro	Asp	Asp 245	Ile	Leu	Gln	Leu	Leu 250	Lys	Lys	Asn	Gly	Gly 255
Val Val	Met	Val	Ser 260	Leu	Ser	Met	Gly	Val 265	Ile	Gln	Cys	Asn	Pro 270
Ser Ala	Asn	Val	Ser 275	Thr	Val	Ala	Asp	His 280	Phe	Asp	His	Ile	Lys 285
Ala Val	Ile	Gly	Ser 290	Lys	Phe	Ile	Gly	Ile 295	Gly	Gly	Asp	Tyr	Asp 300
Gly Ala	Gly	Lys	Phe 305	Pro	Gln	Gly	Leu	Glu 310	Asp	Val	Ser	Thr	Tyr 315
Pro Val	Leu	Ile	Glu 320	Glu	Leu	Leu	Ser	Arg 325	Gly	Trp	Ser	Glu	Glu 330
Glu Leu	Gln	Gly	Val 335	Leu	Arg	Gly	Asn	Leu 340	Leu	Arg	Val	Phe	Arg 345
Gln Val	Glu	Lys	Val 350		Glu	Glu	Asn	Lys 355	Trp	Gln	Ser	Pro	Leu 360
Glu Asp	Lys	Phe	Pro 365		Glu	Gln	Leu	Ser 370	Ser	Ser	Cys	His	Ser 375
Asp Leu	Ser	Arg	Leu 380	_	Gln	Arg	Gln	Ser 385		Thr	Ser	Gly	Gln 390
Glu Leu	Thr	Glu	Ile 395		Ile	His	Trp	Thr 400		Lys	Lev	Pro	Ala 405
Lys Trp	Ser	· Val	Ser 410		Ser	Ser	Pro	His 415		Ala	Pro	o Val	Leu 420
Ala Val	Val	. Ala	Thr 425		Prc	Val	Leu	1le 430		Trp	Leu	1	
<210> 25 <211> 22 <212> DN <213> Ar	Ά	.cial	l Sec	ruenc	ce								
<220> <223> Sy	nthe	etic	olig	gonuc	cleot	ide	prob	e					

```
<400> 25
   agttctggtc agcctatgtg cc 22
  <210> 26
  <211> 24
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Synthetic oligonucleotide probe
   <400> 26
   cgtgatggtg tctttgtcca tggg 24
   <210> 27
   <211> 24
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 27
   ctccaccaat cccgatgaac ttgg 24
   <210> 28
   <211> 50
   <212> DNA
   <213> Artificial Sequence
<223> Synthetic oligonucleotide probe
   <400> 28
    gagcagattg acctcatacg ccgcatgtgt gcctcctatt ctgagctgga 50
   <210> 29
   <211> 1416
   <212> DNA
   <213> Homo Sapien
   <400> 29
    aaaacctata aatatteegg attatteata eegteecace ategggegeg 50
    gateegegge egegaattet aaaccaacat geegggeace tacgeteect 100
    cgaccacact cagtagtecc ageacccagg geetgeaaga geaggeaegg 150
    geoctgatge gggactteec getegtggae ggecaeaacg acetgecect 200
    ggtcctaagg caggtttacc agaaagggct acaggatgtt aacctgcgca 250
```

ų.

Õ,

atttcagcta cggccagacc agcctggaca ggcttagaga tggcctcgtg 300

ggcgcccagt tctggtcagc ctatgtgcca tgccagaccc aggaccggga 350

tgccctgcgc ctcaccctgg agcagattga cctcatacgc cgcatgtgtg 400

cctcctattc tgagctggag cttgtgacct cggctaaagc tctgaacgac 450 actcagaaat tggcctgcct catcggtgta gagggtggcc actcgctgga 500 caatageete tecatettae gtacetteta catgetggga gtgcgctace 550 tgacgeteae ecacacetge aacacaceet gggcagagag etecgetaag 600 ggcgtccact ccttctacaa caacatcagc gggctgactg actttggtga 650 gaaggtggtg gcagaaatga accgcctggg catgatggta gacttatccc 700 atqtctcaga tgctgtggca cggcgggccc tggaagtgtc acaggcacct 750 gtgatettet eccaetegge tgeeeggggt gtgtgeaaca gtgeteggaa 800 tgttcctgat gacatcctgc agcttctgaa gaagaacggt ggcgtcgtga 850 tqqtqtcttt qtccatggga gtaatacagt gcaacccatc agccaatgtg 900 tccactgtgg cagatcactt cgaccacatc aaggctgtca ttggatccaa 950 qttcatcqqq attqqtqqaq attatqatqq qqccqqcaaa ttccctcaqq 1000 qqctqqaaga cqtqtccaca tacccggtcc tgatagagga gttgctgagt 1050 cgtggctgga gtgaggaaga gcttcagggt gtccttcgtg gaaacctgct 1100 gegggtette agacaagtgg aaaaggtaca ggaagaaaac aaatggcaaa 1150 geceettgga ggacaagtte eeggatgage agetgageag tteetgeeae 1200 tecqueetet eacquetgeg teagagacag agtetgaett eaggeeagga 1250 acteactqaq atteccatae actqqacaqe caagttacca gecaagtggt 1300 caqteteaqa gteeteece caecetgaca aaacteacae atgeecaceg 1350 tgcccagcac ctgaactcct ggggggaccg tcagtcttcc tcttcccccc 1400 aaaacccaaq gacacc 1416

<210> 30

<211> 446

<212> PRT

<213> Homo Sapien

<400> 30

Met Pro Gly Thr Tyr Ala Pro Ser Thr Thr Leu Ser Ser Pro Ser 1 5 10 15

Thr Gln Gly Leu Gln Glu Gln Ala Arg Ala Leu Met Arg Asp Phe 20 25 30

Pro Leu Val Asp Gly His Asn Asp Leu Pro Leu Val Leu Arg Gln 35 40 45

Val Tyr Gln Lys Gly Leu Gln Asp Val Asn Leu Arg Asn Phe Ser

50 55 60

				50					20					80
Tyr	Gly	Gln	Thr	Ser 65	Leu	Asp	Arg	Leu	Arg 70	Asp	Gly	Leu	Val	Gly 75
Ala	Gln	Phe	Trp	Ser 80	Ala	Tyr	Val	Pro	Cys 85	Gln	Thr	Gln	Asp	Arg 90
Asp	Ala	Leu	Arg	Leu 95	Thr	Leu	Glu	Gln	Ile 100	Asp	Leu	Ile	Arg	Arg 105
Met	Cys	Ala	Ser	Tyr 110	Ser	Glu	Leu	Glu	Leu 115	Val	Thr	Ser	Ala	Lys 120
Ala	Leu	Asn	Asp	Thr 125	Gln	Lys	Leu	Ala	Cys 130	Leu	Ile	Gly	Val	Glu 135
Gly	Gly	His	Ser	Leu 140	Asp	Asn	Ser	Leu	Ser 145	Ile	Leu	Arg	Thr	Phe 150
Tyr	Met	Leu	Gly	Val 155	Arg	Tyr	Leu	Thr	Leu 160	Thr	His	Thr	Cys	Asn 165
Thr	Pro	Trp	Ala	Glu 170	Ser	Ser	Ala	Lys	Gly 175	Val	His	Ser	Phe	Tyr 180
Asn	Asn	Ile	Ser	Gly 185	Leu	Thr	Asp	Phe	Gly 190	Glu	Lys	Val	Val	Ala 195
Glu	Met	Asn	Arg	Leu 200	Gly	Met	Met	Val	Asp 205	Leu	Ser	His	Val	Ser 210
Asp	Ala	Val	Ala	Arg 215	Arg	Ala	Leu	Glu	Val 220	Ser	Gln	Ala	Pro	Val 225
Ile	Phe	Ser	His	Ser 230		Ala	Arg	Gly	Val 235	Cys	Asn	Ser	Ala	Arg 240
Asn	Val	Pro	Asp	Asp 245		Leu	Gln	Leu	Leu 250	Lys	Lys	Asn	Gly	Gly 255
Val	Val	Met	Val	Ser 260		Ser	Met	Gly	Val 265	Ile	Gln	Сув	Asn	Pro 270
Ser	Ala	Asn	Val	Ser 275		· Val	Ala	Asp	His 280		Asp	His	Ile	Lys 285
Ala	Val	Ile	Gly	Ser 290	_	Phe	lle	Gly	Ile 295		Gly	Asp	Tyr	Asp 300
Gly	Ala	Gly	Lys	Phe		Glr	Gly	Leu	Glu 310		Val	Ser	Thr	Tyr 315
Pro	Val	Leu	Ile	Glu 320		Let	ı Leu	Ser	Arg 325		Trp	Ser	Glu	330
Glu	Leu	Gln	Gly	Val		ı Arç	g Gly	Asn	Leu 340		Arg	y Val	l Phe	Arg 345

<210> 31 <211> 1790 <212> DNA <213> Homo Sapien

440

<400> 31 cgcccagcga cgtgcgggcg gcctggcccg cgccctcccg cgcccggcct 50 gegtecegeg ceetgegeea eegeegeega geegeageee geegegee 100 cceggcageg ceggececat geeegeegge egeeggggee cegeegeeca 150 atcegegegg eggeegeege egttgetgee eetgetgetg etgetetgeg 200 teetegggge geegegagee ggateaggag eccaeaage tgtgateagt 250 ccccaggate ccaegettet categgetee teeetgetgg ccaeetgete 300 agtgcacgga gacccaccag gagccaccgc cgagggcetc tactggaccc 350 tcaacgggcg ccgcctgccc cctgagctct cccgtgtact caacgcctcc 400 accttggctc tggccctggc caacctcaat gggtccaggc agcggtcggg 450 ggacaacete gtgtgccacg cccgtgacgg cagcatectg gctggctcct 500 qcctctatgt tggcctgccc ccagagaaac ccgtcaacat cagctgctgg 550 tccaagaaca tgaaggactt gacctgccgc tggacgccag gggcccacgg 600 ggagacette etecacacea actaeteeet caagtacaag ettaggtggt 650 atggccagga caacacatgt gaggagtacc acacagtggg gccccactcc 700 tgccacatcc ccaaggacct ggctctcttt acgccctatg agatctgggt 750

ggaggccacc aaccgcctgg gctctgcccg ctccgatgta ctcacgctgg 800

<210> 32

<211> 422

<212> PRT

<213> Homo Sapien

<400> 32

Met Pro Ala Gly Arg Arg Gly Pro Ala Ala Gln Ser Ala Arg Arg
1 5 10 15

Pro Pro Pro Leu Leu Pro Leu Leu Leu Leu Cys Val Leu Gly
20 25 30

Ala Pro Arg Ala Gly Ser Gly Ala His Thr Ala Val Ile Ser Pro 35 40 45

Gln Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Leu Ala Thr Cys
50 55 60

Ser Val His	Gly Asp 65	Pro	Pro	Gly	Ala	Thr 70	Ala	Glu	Gly	Leu	Tyr 75
Trp Thr Leu	Asn Gly 80	Arg	Arg	Leu	Pro	Pro 85	Glu	Leu	Ser	Arg	Val 90
Leu Asn Ala	Ser Thr 95	Leu	Ala	Leu	Ala	Leu 100	Ala	Asn	Leu	Asn	Gly 105
Ser Arg Gln	Arg Ser 110	Gly	Asp	Asn	Leu	Val 115	Cys	His	Ala	Arg	Asp 120
Gly Ser Ile	Leu Ala 125	Gly	Ser	Cys	Leu	Tyr 130	Val	Gly	Leu	Pro	Pro 135
Glu Lys Pro	Val Asn 140	Ile	Ser	Cys	Trp	Ser 145	Lys	Asn	Met	Lys	Asp 150
Leu Thr Cys	Arg Trp 155	Thr	Pro	Gly	Ala	His 160	Gly	Glu	Thr	Phe	Leu 165
His Thr Asn	Tyr Ser 170	Leu	Lys	Tyr	Lys	Leu 175	Arg	Trp	Tyr	Gly	Gln 180
Asp Asn Thr	Cys Glu 185	Glu	Tyr	His	Thr	Val 190	Gly	Pro	His	Ser	Cys 195
His Ile Pro	Lys Asp 200	Leu	Ala	Leu	Phe	Thr 205	Pro	Tyr	Glu	Ile	Trp 210
Val Glu Ala	Thr Asn 215		Leu	Gly	Ser	Ala 220	Arg	Ser	Asp	Val	Leu 225
Thr Leu Asp	Ile Leu 230		Val	Val	Thr	Thr 235	Asp	Pro	Pro	Pro	Asp 240
Val His Val	Ser Arg 245		Gly	G1y	Leu	Glu 250	Asp	Gln	Leu	Ser	Val 255
Arg Trp Val	Ser Pro		Ala	Leu	Lys	Asp 265	Phe	Leu	Phe	Gln	Ala 270
Lys Tyr Gln	Ile Arg 275	_	Arg	Val	Glu	Asp 280	Ser	Val	Asp	Trp	Lys 285
Val Val Asp	Asp Val		Asn	Gln	Thr	Ser 295	Cys	Arg	Leu	Ala	Gly 300
Leu Lys Pro	Gly Thr		Tyr	Phe	Val	Gln 310	Val	Arg	Cys	Asn	Pro 315
Phe Gly Ile	Tyr Gly		Lys	Lys	Ala	Gly 325	Ile	Trp	Ser	Glu	330
Ser His Pro	Thr Ala		Ser	Thr	Pro	Arg 340	Ser	Glu	Arg	Pro	Gly 345
Pro Gly Gly	Gly Ala	Cys	Glu	Pro	Arg	Gly	Gly	Glu	Pro	Ser	Ser

360 350 355 Gly Pro Val Arg Arg Glu Leu Lys Gln Phe Leu Gly Trp Leu Lys 365 Lys His Ala Tyr Cys Ser Asn Leu Ser Phe Arg Leu Tyr Asp Gln 385 380 Trp Arg Ala Trp Met Gln Lys Ser His Lys Thr Arg Asn Gln Asp 395 Glu Gly Ile Leu Pro Ser Gly Arg Arg Gly Thr Ala Arg Gly Pro 410 Ala Arg <210> 33 <211> 23 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 33 cccgcccgac gtgcacgtga gcc 23 <210> 34 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 34 tgagccagcc caggaactgc ttg 23 <210> 35 <211> 50 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 35 caagtgeget geaacceett tggeatetat ggeteeaaga aageegggat 50 <210> 36 <211> 1771 <212> DNA <213> Homo Sapien <400> 36

cccacgegtc cgctggtgtt agatcgagca accctctaaa agcagtttag 50

<210> 37

<211> 300

<212> PRT

<213> Homo Sapien

<400> 37

Met Lys Phe Leu Leu Asp Ile Leu Leu Leu Leu Pro Leu Leu Ile 1 5 10 15

Val Cys Ser Leu Glu Ser Phe Val Lys Leu Phe Ile Pro Lys Arg 20 25 30

Arg Lys Ser Val Thr Gly Glu Ile Val Leu Ile Thr Gly Ala Gly
35 40 45

His Gly Ile Gly Arg Leu Thr Ala Tyr Glu Phe Ala Lys Leu Lys
50 55 60

Ser Lys Leu Val Leu Trp Asp Ile Asn Lys His Gly Leu Glu Glu 65 70 75

Thr Ala Ala Lys Cys Lys Gly Leu Gly Ala Lys Val His Thr Phe 80 85 90

Val Val Asp Cys Ser Asn Arg Glu Asp Ile Tyr Ser Ser Ala Lys 95 100 105

Lys Val Lys Ala Glu Ile Gly Asp Val Ser Ile Leu Val Asn Asn 110 115 120

Ala Gly Val Val Tyr Thr Ser Asp Leu Phe Ala Thr Gln Asp Pro 125 130 135

Gln Ile Glu Lys Thr Phe Glu Val Asn Val Leu Ala His Phe Trp 140 145 150

Thr Thr Lys Ala Phe Leu Pro Ala Met Thr Lys Asn Asn His Gly
155 160 165

His Ile Val Thr Val Ala Ser Ala Ala Gly His Val Ser Val Pro 170 175 180

Phe Leu Leu Ala Tyr Cys Ser Ser Lys Phe Ala Ala Val Gly Phe

His Lys Thr Leu Thr Asp Glu Leu Ala Ala Leu Gln Ile Thr Gly

210 205 200 Val Lys Thr Thr Cys Leu Cys Pro Asn Phe Val Asn Thr Gly Phe Ile Lys Asn Pro Ser Thr Ser Leu Gly Pro Thr Leu Glu Pro Glu 230 Glu Val Val Asn Arg Leu Met His Gly Ile Leu Thr Glu Gln Lys 245 Met Ile Phe Ile Pro Ser Ser Ile Ala Phe Leu Thr Thr Leu Glu Arg Ile Leu Pro Glu Arg Phe Leu Ala Val Leu Lys Arg Lys Ile Ser Val Lys Phe Asp Ala Val Ile Gly Tyr Lys Met Lys Ala Gln <210> 38 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 38 ggtgaaggca gaaattggag atg 23 <210> 39 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 39 ateceatgea teageetgtt tace 24 <210> 40 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 40 gctggtgtag tctatacatc agatttgttt gctacacaag atcctcag 48 <210> 41 <211> 1377 <212> DNA

<213> Homo Sapien

<210> 42

<211> 243 <212> PRT

<213> Homo Sapien

<400> 42

Met Arg Pro Leu Leu Val Leu Leu Leu Gly Leu Ala Ala Gly
1 5 10 15

Ser Pro Pro Leu Asp Asp Asn Lys Ile Pro Ser Leu Cys Pro Gly 20 25 30

His Pro Gly Leu Pro Gly Thr Pro Gly His His Gly Ser Gln Gly 35 40 45

Leu Pro Gly Arg Asp Gly Arg Asp Gly Arg Asp Gly Ala Pro Gly
50 55 60

Ala Pro Gly Glu Lys Gly Glu Gly Gly Arg Pro Gly Leu Pro Gly
65 70 75

Pro Arg Gly Asp Pro Gly Pro Arg Gly Glu Ala Gly Pro Ala Gly 80 85 90

Pro Thr Gly Pro Ala Gly Glu Cys Ser Val Pro Pro Arg Ser Ala 95 100 105

Phe Ser Ala Lys Arg Ser Glu Ser Arg Val Pro Pro Pro Ser Asp 110 115 120

Ala Pro Leu Pro Phe Asp Arg Val Leu Val Asn Glu Gln Gly His
125 130 135

Tyr Asp Ala Val Thr Gly Lys Phe Thr Cys Gln Val Pro Gly Val

Tyr Tyr Phe Ala Val His Ala Thr Val Tyr Arg Ala Ser Leu Gln
155 160 165

Phe Asp Leu Val Lys Asn Gly Glu Ser Ile Ala Ser Phe Phe Gln
170 175 180

Phe Phe Gly Gly Trp Pro Lys Pro Ala Ser Leu Ser Gly Gly Ala 185 190 195

Met Val Arg Leu Glu Pro Glu Asp Gln Val Trp Val Gln Val Gly
200 205 210

Val Gly Asp Tyr Ile Gly Ile Tyr Ala Ser Ile Lys Thr Asp Ser 215 220 225

Thr Phe Ser Gly Phe Leu Val Tyr Ser Asp Trp His Ser Ser Pro 230 235 240

Val Phe Ala

<210> 43 <211> 24


```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 43
tacaggecca gteaggacca gggg 24
<210> 44
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 44
agecagecte getetegg 18
<210> 45
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 45
gtctgcgatc aggtctgg 18
<210> 46
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 46
 gaaagaggca atggattcgc 20
<210> 47
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 47
 gacttacact tgccagcaca gcac 24
<210> 48
<211> 45
<212> DNA
<213> Artificial Sequence
```

<220> <223> Synthetic oligonucleotide probe

<400> 48 ggagcaccac caactggagg gtccggagta gcgagcgccc cgaag 45

<210> 49

<211> 1876

<212> DNA

<213> Homo Sapien <400> 49 ctcttttgtc caccagccca gcctgactcc tggagattgt gaatagctcc 50 atccagcctg agaaacaagc cgggtggctg agccaggctg tgcacggagc 100 acctgacggg cccaacagac ccatgctgca tccagagacc tcccctggcc 150 gggggcatct cctggctgtg ctcctggccc tccttggcac cacctgggca 200 gaggtgtggc caccccagct gcaggagcag gctccgatgg ccggagccct 250 gaacaggaag gagagtttct tgctcctctc cctgcacaac cgcctgcgca 300 gctgggtcca gccccctgcg gctgacatgc ggaggctgga ctggagtgac 350 agectggeee aactggetea agecagggea geeetetgtg gaateeeaac 400 cccgagcctg gcatccggcc tgtggcgcac cctgcaagtg ggctggaaca 450 tgcagctgct gcccgcgggc ttggcgtcct ttgttgaagt ggtcagccta 500 tggtttgcag aggggcagcg gtacagccac gcggcaggag agtgtgctcg 550 caacgccacc tgcacccact acacgcagct cgtgtgggcc acctcaagcc 600 agetgggetg tgggeggeae etgtgetetg caggecagae agegatagaa 650 qcctttgtct gtgcctactc ccccggaggc aactgggagg tcaacgggaa 700 gacaatcatc coctataaga agggtgootg gtgttogotc tgcacagcca 750 gtgtctcagg ctgcttcaaa gcctgggacc atgcaggggg gctctgtgag 800

catcagcacc tgccactgcc actgtccccc tggctacacg ggcagatact 900

gtccccagga atccttgtcg catgagctgc cagaaccatg gacgtctcaa 850

gccaagtgag gtgcagcctg cagtgtgtgc acggccggtt ccgggaggag 950

gagtgctcgt gcgtctgtga catcggctac gggggagccc agtgtgccac 1000

caaggtgcat tttcccttcc acacctgtga cctgaggatc gacggagact 1050

getteatggt gtetteagag geagacacet attacagage caggatgaaa 1100

tgtcagagga aaggeggggt getggeecag atcaagagee agaaagtgea 1150

<210> 50

<211> 455

<212> PRT

<213> Homo Sapien

<400> 50

Met Leu His Pro Glu Thr Ser Pro Gly Arg Gly His Leu Leu Ala 1 5 10 15

Val Leu Leu Ala Leu Leu Gly Thr Thr Trp Ala Glu Val Trp Pro 20 25 30

Pro Gln Leu Gln Glu Gln Ala Pro Met Ala Gly Ala Leu Asn Arg 35 40 45

Lys Glu Ser Phe Leu Leu Leu Ser Leu His Asn Arg Leu Arg Ser 50 55 60

Trp Val Gln Pro Pro Ala Ala Asp Met Arg Arg Leu Asp Trp Ser
65 70 75

Asp Ser Leu Ala Gln Leu Ala Gln Ala Arg Ala Ala Leu Cys Gly 80 85 90

Ile Pro Thr Pro Ser Leu Ala Ser Gly Leu Trp Arg Thr Leu Gln 95 100 105

Val Gly Trp Asn Met Gln Leu Leu Pro Ala Gly Leu Ala Ser Phe

			110					115					120
Val Glu	Val	Val	Ser 125	Leu	Trp	Phe	Ala	Glu 130	Gly	Gln	Arg	Tyr	Ser 135
His Ala	Ala	Gly	Glu 140	Cys	Ala	Arg	Asn	Ala 145	Thr	Cys	Thr	His	Tyr 150
Thr Gln	Leu	Val	Trp 155	Ala	Thr	Ser	Ser	Gln 160	Leu	Gly	Суѕ	Gly	Arg 165
His Leu	Cys	Ser	Ala 170	Gly	Gln	Thr	Ala	Ile 175	Glu	Ala	Phe	Val	Cys 180
Ala Tyr	Ser	Pro	Gly 185	Gly	Asn	Trp	Glu	Val 190	Asn	Gly	Lys	Thr	Ile 195
Ile Pro	Tyr	Lys	Lys 200	Gly	Ala	Trp	Cys	Ser 205	Leu	Сув	Thr	Ala	Ser 210
Val Ser	Gly	Cys	Phe 215	Lys	Ala	Trp	Asp	His 220	Ala	Gly	Gly	Leu	Cys 225
Glu Val	Pro	Arg	Asn 230	Pro	Cys	Arg	Met	Ser 235	Cys	Gln	Asn	His	Gly 240
Arg Let	ı Asn	Ile	Ser 245	Thr	Cys	His	Cys	His 250	Cys	Pro	Pro	Gly	Tyr 255
Thr Gly	/ Arg	Tyr	Cys 260	Gln	Val	Arg	Cys	Ser 265	Leu	Gln	Cys	Val	His 270
Gly Arg	g Phe	Arg	Glu 275	Glu	Glu	Cys	Ser	Cys 280	Val	Cys	Asp	Ile	Gly 285
Tyr Gly	y Gly	Ala	Gln 290	Cys	Ala	Thr	Lys	Val 295		Phe	Pro	Phe	His 300
Thr Cy	s Asp	Leu	Arg 305		Asp	Gly	Asp	Cys 310		Met	Val	Ser	Ser 315
Glu Ala	a Asp	Thr	Tyr 320		Arg	Ala	Arg	Met 325		Cys	Gln	Arg	330
Gly Gl	y Val	Leu	Ala 335		Ile	Lys	Ser	Gln 340		Val	Gln	Asp	345
Leu Al	a Phe	Tyr	Leu 350		Arg	Leu	Glu	Thr 355		Asn	ı Glu	ı Val	Thr 360
Asp Se	r Asp	Phe	Glu 365		Arg	Asn	Phe	Trp		e Gly	Leu	Thr	Tyr 375
Lys Th	r Ala	Lys	Asp 380		Phe	Arg	Trp	385		Gly	/ Glu	ı His	390
Ala Ph	e Thi	Ser	Phe 395		Phe	Gly	Glr	400		Asr	ı His	Gl _y	/ Leu 405

Val Trp Leu Ser Ala Ala Met Gly Phe Gly Asn Cys Val Glu Leu 410 415 Gln Ala Ser Ala Ala Phe Asn Trp Asn Asp Gln Arg Cys Lys Thr Arg Asn Arg Tyr Ile Cys Gln Phe Ala Gln Glu His Ile Ser Arg Trp Gly Pro Gly Ser 455 <210> 51 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 51 aggaacttct ggatcgggct cacc 24 <210> 52 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 52 gggtctgggc caggtggaag agag 24 <210> 53 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe gecaaggact cetteegetg ggccaeaggg gagcaeeagg cette 45 <210> 54 <211> 2331 <212> DNA <213> Homo Sapien <400> 54 cggacgcgtg ggctgggcgc tgcaaagcgt gtcccgccgg gtccccgagc 50 gtcccgcgcc ctcgccccgc catgctcctg ctgctggggc tgtgcctggg 100 gctgtccctg tgtgtggggt cgcaggaaga ggcgcagagc tggggccact 150 cttcggagca ggatggactc agggtcccga ggcaagtcag actgttgcag 200

į.

<210> 55

<211> 694

<212> PRT

<213> Homo Sapien

<400> 55

Met Leu Leu Leu Gly Leu Cys Leu Gly Leu Ser Leu Cys Val 1 5 10 15

Gly Ser Gln Glu Glu Ala Gln Ser Trp Gly His Ser Ser Glu Gln
20 25 30

Asp Gly Leu Arg Val Pro Arg Gln Val Arg Leu Leu Gln Arg Leu
35 40 45

Lys Thr Lys Pro Leu Met Thr Glu Phe Ser Val Lys Ser Thr Ile
50 55 60

Ile Ser Arg Tyr Ala Phe Thr Thr Val Ser Cys Arg Met Leu Asn 65 70 75

Arg Ala Ser Glu Asp Gln Asp Ile Glu Phe Gln Met Gln Ile Pro
80 85 90

Ala Ala Ala Phe Ile Thr Asn Phe Thr Met Leu Ile Gly Asp Lys 95 100 105

Val Tyr Gln Gly Glu Ile Thr Glu Arg Glu Lys Lys Ser Gly Asp 110 115 120

Arg	Val	Lys	Glu	Lys 125	Arg	Asn	Lys	Thr	Thr 130	Glu	Glu	Asn	Gly	Glu 135
Lys	Gly	Thr	Glu	Ile 140	Phe	Arg	Ala	Ser	Ala 145	Val	Ile	Pro	Ser	Lys 150
Asp	Lys	Ala	Ala	Phe 155	Phe	Leu	Ser	Tyr	Glu 160	Glu	Leu	Leu	Gln	Arg 165
Arg	Leu	Gly	Lys	Tyr 170	Glu	His	Ser	Ile	Ser 175	Val	Arg	Pro	Gln	Gln 180
Leu	Ser	Gly	Arg	Leu 185	Ser	Val	Asp	Val	Asn 190	Ile	Leu	Glu	Ser	Ala 195
Gly	Ile	Ala	Ser	Leu 200	Glu	Val	Leu	Pro	Leu 205	His	Asn	Ser	Arg	Gln 210
Arg	Gly	Ser	Gly	Arg 215	Gly	Glu	Asp	Asp	Ser 220	Gly	Pro	Pro	Pro	Ser 225
Thr	Val	Ile	Asn	Gln 230	Asn	Glu	Thr	Phe	Ala 235	Asn	Ile	Ile	Phe	Lys 240
Pro	Thr	Val	Val	Gln 245	Gln	Ala	Arg	Ile	Ala 250	Gln	Asn	Gly	Ile	Leu 255
Gly	Asp	Phe	Ile	Ile 260	Arg	Tyr	Asp	Val	Asn 265	Arg	Glu	Gln	Ser	Ile 270
Gly	Asp	Ile	Gln	Val 275	Leu	Asn	Gly	Tyr	Phe 280	Val	His	Tyr	Phe	Ala 285
Pro	Lys	Asp	Leu	Pro 290		Leu	Pro	Lys	Asn 295		Val	Phe	· Val	Leu 300
Asp	Ser	Ser	Ala	Ser 305		Val	Gly	Thr	Lys 310		. Arg	Gln	Thr	Lys 315
Asp	Ala	. Leu	Phe	Thr 320		Leu	His	Asp	Leu 325		Pro	Glr	Asp	Arg 330
Phe	Ser	: Ile	e Ile	Gly 335		Ser	Asn	Arg	1le 340		Val	. Trp) Lys	345
His	Leu	ı Ile	e Ser	7 Val 350		Pro	Asp	Ser	1le 355		Asp	Gly	/ Lys	360
Tyr	Ile	e His	s His	365		Pro	Thr	Gly	Gly 370		Asp) Ile	e Asn	375
Ala	Let	ı Glr	n Arg	380		e Arg	g Leu	Leu	385		з Туз	r Val	L Ala	390
Ser	Gly	/ Ile	e Gly	/ Asp 395		Sei	c Val	. Ser	Let 400		e Val	l Ph∈	e Lev	1 Thr 405
Asp	Gly	y Lys	s Pro	Thi	· Val	Gly	y Glu	ı Thi	: His	Th:	c Lev	ı Lys	s Ile	e Leu

				410					415					420
Asn	Asn	Thr	Arg	Glu 425	Ala	Ala	Arg	Gly	Gln 430	Val	Cys	Ile	Phe	Thr 435
Ile	Gly	Ile	Gly	Asn 440	Asp	Val	Asp	Phe	Arg 445	Leu	Leu	Glu	Lys	Leu 450
Ser	Leu	Glu	Asn	Cys 455	Gly	Leu	Thr	Arg	Arg 460	Val	His	Glu	Glu	Glu 465
Asp	Ala	Gly	Ser	Gln 470	Leu	Ile	Gly	Phe	Tyr 475	Asp	Glu	Ile	Arg	Thr 480
Pro	Leu	Leu	Ser	Asp 485	Ile	Arg	Ile	Asp	Tyr 490	Pro	Pro	Ser	Ser	Val 495
Val	Gln	Ala	Thr	Lys 500	Thr	Leu	Phe	Pro	Asn 505	Tyr	Phe	Asn	Gly	Ser 510
Glu	Ile	Ile	Ile	Ala 515	Gly	Lys	Leu	Val	Asp 520	Arg	Lys	Leu	Asp	His 525
Leu	His	Val	Glu	Val 530	Thr	Ala	Ser	Asn	Ser 535	Lys	Lys	Phe	Ile	Ile 540
Leu	Lys	Thr	Asp	Val 545	Pro	Val	Arg	Pro	Gln 550	Lys	Ala	Gly	Lys	Asp 555
Val	Thr	Gly	Ser	Pro 560	Arg	Pro	Gly	Gly	Asp 565	Gly	Glu	Gly	Asp	Thr 570
Asn	His	Ile	Glu	Arg 575	Leu	Trp	Ser	Tyr	Leu 580		Thr	Lys	Glu	Leu 585
Leu	Ser	Ser	Trp	Leu 590	Gln	Ser	Asp	Asp	Glu 595	Pro	Glu	Lys	Glu	Arg 600
Leu	Arg	Gln	Arg	Ala 605	Gln	Ala	Leu	Ala	Val 610		Tyr	Arg	Phe	Leu 615
Thr	Pro	Phe	Thr	Ser 620		Lys	Leu	Arg	Gly 625		Val	Pro	Arg	Met 630
Asp	Gly	Leu	Glu	Glu 635		His	Gly	Met	Ser 640		Ala	Met	Gly	Pro 645
Glu	. Pro	Val	. Val	Gln 650		Val	Arg	Gly	Ala 655		Thr	Gln	Pro	Gly 660
Pro	Leu	Leu	Lys	665		Asn	Ser	Val	Lys 670		. Lys	Glr	Asn	675
Thr	Lys	Lys	Arg	His 680		Arg	Asp	Gly	Val 685		Prc	Leu	His	His 690
Leu	Gly	, Ile	e Arg	ſ										

```
<210> 56
   <211> 24
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 56
    gtgggaacca aactccggca gacc 24
   <210> 57
   <211> 18
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 57
    cacatcgage gtctctgg 18
   <210> 58
   <211> 24
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
m
   <400> 58
   ageogeteet teteeggtte ateg 24
   <210> 59
   <211> 48
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 59
    tggaaggacc acttgatatc agtcactcca gacagcatca gggatggg 48
   <210> 60
   <211> 1413
   <212> DNA
   <213> Homo Sapien
   <400> 60
    cggacgcgtg gggtgcccga catggcgagt gtagtgctgc cgagcggatc 50
    ccagtgtgeg geggeagegg eggeggegge geeteeeggg eteeggette 100
    tgctgttgct cttctccgcc gcggcactga tccccacagg tgatgggcag 150
```

aatctgttta cgaaagacgt gacagtgatc gagggagagg ttgcgaccat 200

- <210> 61
- <211> 440
- <212> PRT
- <213> Homo Sapien
- <400> 61
- Met Ala Ser Val Val Leu Pro Ser Gly Ser Gln Cys Ala Ala Ala
 1 5 10 15

Ala	Ala	Ala	Ala	Ala 20	Pro	Pro	Gly	Leu	Arg 25	Leu	Leu	Leu	Leu	Leu 30
Phe	Ser	Ala	Ala	Ala 35	Leu	Ile	Pro	Thr	Gly 40	Asp	Gly	Gln	Asn	Leu 45
Phe	Thr	Lys	Asp	Val 50	Thr	Val	Ile	Glu	Gly 55	Glu	Val	Ala	Thr	Ile 60
Ser	Cys	Gln	Val	Asn 65	Lys	Ser	Asp	Asp	Ser 70	Val	Ile	Gln	Leu	Leu 75
Asn	Pro	Asn	Arg	Gln 80	Thr	Ile	Tyr	Phe	Arg 85	Asp	Phe	Arg	Pro	Leu 90
Lys	Asp	Ser	Arg	Phe 95	Gln	Leu	Leu	Asn	Phe 100	Ser	Ser	Ser	Glu	Leu 105
Lys	Val	Ser	Leu	Thr 110	Asn	Val	Ser	Ile	Ser 115	Asp	Glu	Gly	Arg	Tyr 120
Phe	Cys	Gln	Leu	Tyr 125	Thr	Asp	Pro	Pro	Gln 130	Glu	Ser	Tyr	Thr	Thr 135
Ile	Thr	Val	Leu	Val 140	Pro	Pro	Arg	Asn	Leu 145	Met	Ile	Asp	Ile	Gln 150
Lys	Asp	Thr	Ala	Val 155	Glu	Gly	Glu	Glu	Ile 160	Glu	Val	Asn	Cys	Thr 165
Ala	Met	Ala	Ser	Lys 170	Pro	Ala	Thr	Thr	Ile 175	Arg	Trp	Phe	Lys	Gly 180
Asn	Thr	Glu	Leu	Lys 185	Gly	Lys	Ser	Glu	Val 190	Glu	Glu	Trp	Ser	Asp 195
Met	Tyr	Thr	Val	Thr 200	Ser	Gln	Leu	Met	Leu 205	Lys	Val	His	Lys	Glu 210
Asp	Asp	Gly	Val	Pro 215	Val	Ile	Cys	Gln	Val 220	Glu	His	Pro	Ala	Val 225
Thr	Gly	Asn	Leu	Gln 230	Thr	Gln	Arg	Tyr	Leu 235	Glu	Val	Gln	Tyr	Lys 240
Pro	Gln	Val	His	Ile 245	Gln	Met	Thr	Tyr	Pro 250	Leu	Gln	Gly	Leu	Thr 255
Arg	Glu	Gly	Asp	Ala 260	Leu	Glu	Leu	Thr	Cys 265	Glu	Ala	Ile	Gly	Lys 270
Pro	Gln	Pro	Val	Met 275	Val	Thr	Trp	Val	Arg 280	Val	Asp	Asp	Glu	Met 285
Pro	Gln	His	Ala	Val 290	Leu	Ser	Gly	Pro	Asn 295	Leu	Phe	Ile	Asn	Asn 300
Leu	Asn	Lys	Thr	Asp	Asn	Gly	Thr	Tyr	Arg	Cys	Glu	Ala	Ser	Asn

315 305 310 Ile Val Gly Lys Ala His Ser Asp Tyr Met Leu Tyr Val Tyr Asp Pro Pro Thr Thr Ile Pro Pro Pro Thr Thr Thr Thr Thr Thr 335 Thr Thr Thr Thr Thr Ile Leu Thr Ile Ile Thr Asp Ser Arg 350 355 Ala Gly Glu Glu Gly Ser Ile Arg Ala Val Asp His Ala Val Ile 365 370 Gly Gly Val Val Ala Val Val Phe Ala Met Leu Cys Leu Leu Ile Ile Leu Gly Arg Tyr Phe Ala Arg His Lys Gly Thr Tyr Phe Thr His Glu Ala Lys Gly Ala Asp Asp Ala Ala Asp Ala Asp Thr Ala Ile Ile Asn Ala Glu Gly Gly Gln Asn Asn Ser Glu Glu Lys Lys Glu Tyr Phe Ile <210> 62 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 62 ggettetget gttgetette teeg 24 <210> 63 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 63 gtacactgtg accagtcagc 20 <210> 64 <211> 20 <212> DNA <213> Artificial Sequence <220>

<223> Synthetic oligonucleotide probe

```
<400> 64
atcatcacag attcccgagc 20
<210> 65
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 65
 ttcaatctcc tcaccttcca ccgc 24
<210> 66
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 66
 atagctgtgt ctgcgtctgc tgcg 24
<210> 67
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 67
 egeggeactg atececacag gtgatgggea gaatetgttt acgaaagaeg 50
<210> 68
<211> 2555
<212> DNA
<213> Homo Sapien
<400> 68
 ggggcgggtg gacgcggact cgaacgcagt tgcttcggga cccaggaccc 50
 cctcgggccc gacccgccag gaaagactga ggccgcggcc tgccccgccc 100
 ggeteeetge geegeegeeg eeteeeggga cagaagatgt geteeagggt 150
 ccctctgctg ctgccgctgc tcctgctact ggccctgggg cctggggtgc 200
 agggetgeec atceggetge cagtgeagee agecaeagae agtettetge 250
 actgecegee aggggaeeae ggtgeeeega gaegtgeeae eegaeaeggt 300
 ggggctgtac gtctttgaga acggcatcac catgctcgac gcaagcagct 350
```

ttgeeggeet geegggeetg eageteetgg acetgteaca gaaceagate 400

gegggtetga gtgtgaggtg ceaeteatgg getteeeagg geetggeete 1900
cagteacece tecaegeaaa geeetacate taageeagag agagacaggg 1950
cagetgggge egggetetea geeagtgaga tggeeageee eeteetgetg 2000
ceaeaceaeg taagttetea gteecaaeet eggggatgtg tgeagacagg 2050
getgtgtgae cacagetggg ceetgtteee tetggaeete ggteteetea 2100
tetgtgagat getgtggeee agetgaegag eeetaaegte eecaagaeeg 2150
agtgeetatg aggacagtgt eegeeetgee eteegeaaeg tgeagteeet 2200
gggeaeggeg ggeeetgeea tgtgetggta aegeatgeet gggeeetgee 2250
gggeteteee aeteeaggeg gaeeetgggg geeagtgaag gaageteeeg 2300
gaaagageag agggagaeg ggtaggege tgtgtgaete tagtettgge 2350
ceeaggaage gaaggaacaa aagaaaetgg aaaggaagat getttaggaa 2400
catgttttge tttttaaaa tatatatat tttataagag ateettteee 2450
atttateetg ggaagatgt ttteaaaete agagacaagg aetttggttt 2500
ttgtaagaca aacgatgata tgaaggeett ttgtaagaaa aaataaaaaa 2550
aaaaaa 2555

<210> 69

<211> 598

<212> PRT

<213> Homo Sapien

<400> 69

Met Cys Ser Arg Val Pro Leu Leu Leu Pro Leu Leu Leu Leu 1 5 10 15

Ala Leu Gly Pro Gly Val Gln Gly Cys Pro Ser Gly Cys Gln Cys 20 25 30

Ser Gln Pro Gln Thr Val Phe Cys Thr Ala Arg Gln Gly Thr Thr 35 40 45

Val Pro Arg Asp Val Pro Pro Asp Thr Val Gly Leu Tyr Val Phe
50 55 60

Glu Asn Gly Ile Thr Met Leu Asp Ala Ser Ser Phe Ala Gly Leu 65 70 75

Pro Gly Leu Gln Leu Leu Asp Leu Ser Gln Asn Gln Ile Ala Ser 80 85 90

Leu Arg Leu Pro Arg Leu Leu Leu Leu Asp Leu Ser His Asn Ser 95 100 105

Leu Leu Ala Leu Glu Pro Gly Ile Leu Asp Thr Ala Asn Val Glu

110 115 120

				110					113					120
Ala	Leu	Arg	Lẹu	Ala 125	Gly	Leu	Gly	Leu	Gln 130	Gln	Leu	Asp	Glu	Gly 135
Leu	Phe	Ser	Arg	Leu 140	Arg	Asn	Leu	His	Asp 145	Leu	Asp	Val	Ser	Asp 150
Asn	Gln	Leu	Glu	Arg 155	Val	Pro	Pro	Val	Ile 160	Arg	Gly	Leu	Arg	Gly 165
Leu	Thr	Arg	Leu	Arg 170	Leu	Ala	Gly	Asn	Thr 175	Arg	Ile	Ala	Gln	Leu 180
Arg	Pro	Glu	Asp	Leu 185	Ala	Gly	Leu	Ala	Ala 190	Leu	Gln	Glu	Leu	Asp 195
Val	Ser	Asn	Leu	Ser 200	Leu	Gln	Ala	Leu	Pro 205	Gly	Asp	Leu	Ser	Gly 210
Leu	Phe	Pro	Arg	Leu 215	Arg	Leu	Leu	Ala	Ala 220	Ala	Arg	Asn	Pro	Phe 225
Asn	Cys	Val	Cys	Pro 230	Leu	Ser	Trp	Phe	Gly 235	Pro	Trp	Val	Arg	Glu 240
Ser	His	Val	Thr	Leu 245	Ala	Ser	Pro	Glu	Glu 250	Thr	Arg	Сув	His	Phe 255
Pro	Pro	Lys	Asn	Ala 260	Gly	Arg	Leu	Leu	Leu 265	Glu	Leu	Asp	Tyr	Ala 270
Asp	Phe	Gly	Cys	Pro 275		Thr	Thr	Thr	Thr 280		Thr	Val	Pro	Thr 285
Thr	Arg	Pro	Val	Val 290		Glu	Pro	Thr	Ala 295		Ser	Ser	Ser	Leu 300
Ala	Pro	Thr	Trp	Leu 305		Pro	Thr	Ala	Pro 310		Thr	Glu	ı Ala	Pro 315
Ser	Pro	Pro	Ser	Thr 320		Pro	Pro	Thr	Val 325		Pro	Val	Pro	Gln 330
Pro	Gln	Asp	Суз	9rc 335		Ser	Thr	Cys	Leu 340		Gly	gly	Thr	Cys 345
His	: Leu	Gly	Thr	350		His	: Leu	Ala	Cys 355		суя	s Pro	Glu	360
Phe	e Thr	Gly	r Let	туг 365		s Glu	ı Ser	Gln	Met 370		glr Glr	n Gly	/ Thr	375
Pro	Ser	Pro	Thr	Pro 380		Thi	Pro	Arc	385		Arç	g Sei	c Leu	Thr 390
Lev	ı Gly	r Ile	e Glu	1 Pro		l Sei	Pro	Thi	Ser 400		ı Arç	y Val	l Gly	Leu 405

<213> Artificial Sequence

<223> Synthetic oligonucleotide probe

Gln Arg Tyr Leu Gln Gly Ser Ser Val Gln Leu Arg Ser Leu Arg Leu Thr Tyr Arg Asn Leu Ser Gly Pro Asp Lys Arg Leu Val Thr Leu Arg Leu Pro Ala Ser Leu Ala Glu Tyr Thr Val Thr Gln Leu Arg Pro Asn Ala Thr Tyr Ser Val Cys Val Met Pro Leu Gly Pro 455 Gly Arg Val Pro Glu Gly Glu Glu Ala Cys Gly Glu Ala His Thr Pro Pro Ala Val His Ser Asn His Ala Pro Val Thr Gln Ala Arg 490 Glu Gly Asn Leu Pro Leu Leu Ile Ala Pro Ala Leu Ala Ala Val Leu Leu Ala Ala Leu Ala Ala Val Gly Ala Ala Tyr Cys Val Arg Arg Gly Arg Ala Met Ala Ala Ala Gln Asp Lys Gly Gln Val 535 Gly Pro Gly Ala Gly Pro Leu Glu Leu Glu Gly Val Lys Val Pro Leu Glu Pro Gly Pro Lys Ala Thr Glu Gly Gly Glu Ala Leu Pro Ser Gly Ser Glu Cys Glu Val Pro Leu Met Gly Phe Pro Gly 585 580 Pro Gly Leu Gln Ser Pro Leu His Ala Lys Pro Tyr Ile 590 595 <210> 70 <211> 22 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 70 ecetecactg ececacegae tg 22 <210> 71 <211> 24 <212> DNA

```
<400> 71
cggttctggg gacgttaggg ctcg 24
<210> 72
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 72
 ctgcccaccg tccacctgcc tcaat 25
<210> 73
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 73
 aggactgeec acceptecace teceteaate gegeeacate ceace 45
<210> 74
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 74
 acgcaaagcc ctacatctaa gccagagaga gacagggcag ctggg 45
<210> 75
<211> 1077
<212> DNA
<213> Homo Sapien
<400> 75
 ggcactagga caaccttctt cccttctgca ccactgcccg tacccttacc 50
 cgccccqcca cctccttgct accccactct tgaaaccaca gctgttggca 100
 gggtccccag ctcatgccag cctcatctcc tttcttgcta gcccccaaag 150
```

ggcctccagg caacatgggg ggcccagtca gagagccggc actctcagtt 200

geoctetggt tgagttgggg ggeagetetg ggggeegtgg ettgtgeeat 250

ggetetgetg acceaacaaa cagagetgea gageeteagg agagaggtga 300

geeggetgea ggggacagga ggeeceteee agaatgggga agggtateee 350

tggcagagtc tcccggagca gagttccgat gccctggaag cctgggagaa 400

tggggagaga tcccggaaaa ggagagcagt gctcacccaa aaacagaaga 450
agcagcactc tgtcctgcac ctggttccca ttaacgccac ctccaaggat 500
gactccgatg tgacagaggt gatgtggcaa ccagctctta ggcgtgggag 550
aggcctacag gcccaaggat atggtgccg aatccaggat gctggagttt 600
atctgctgta tagccaggtc ctgtttcaag acgtgacttt caccatgggt 650
caggtggtgt ctcgagaagg ccaaggaagg caggagactc tattccgatg 700
tataagaagt atgccctccc acccggaccg ggcctacaac agctgctata 750
gcgcaggtgt cttccattta caccaagggg atattctgag tgtcataatt 800
ccccgggcaa gggcgaaact taacctctct ccacatggaa ccttcctggg 850
gtttgtgaaa ctgtgattgt gttataaaaa gtggctccca gcttggaaga 900
ccagggtggg tacatactgg agacagccaa gagctgagta tataaaggag 950
agggaatgtg caggaacaga ggcatcttcc tgggtttggc tccccgttcc 1000
tcactttcc cttttcattc ccaccccta gactttgatt ttacggatat 1050
cttgcttctg ttcccatgg agctccg 1077

<210> 76

<211> 250

<212> PRT

<213> Homo Sapien

<400> 76

Met Pro Ala Ser Ser Pro Phe Leu Leu Ala Pro Lys Gly Pro Pro 1 5 10 15

Gly Asn Met Gly Gly Pro Val Arg Glu Pro Ala Leu Ser Val Ala

Leu Trp Leu Ser Trp Gly Ala Ala Leu Gly Ala Val Ala Cys Ala
35 40 45

Met Ala Leu Leu Thr Gln Gln Thr Glu Leu Gln Ser Leu Arg Arg
50 55 60

Glu Val Ser Arg Leu Gln Gly Thr Gly Gly Pro Ser Gln Asn Gly 65 70 75

Glu Gly Tyr Pro Trp Gln Ser Leu Pro Glu Gln Ser Ser Asp Ala $80\,$ $85\,$ 90

Leu Glu Ala Trp Glu Asn Gly Glu Arg Ser Arg Lys Arg Ala 95 100 105

Val Leu Thr Gln Lys Gln Lys Gln His Ser Val Leu His Leu 110 $\,$ 115 $\,$ 120

His Gly Thr Phe Leu Gly Phe Val Lys Leu 245 250

<210> 77 <211> 2849

<212> DNA

<213> Homo Sapien

<400> 77

gategeagag aceteggaga cegegeggg gagaceggag tegetgggg 100
ggggggggace tgtgggetget egtacegeee eccaecetee tettetgeae 150
tgcegteete eggaagacet ttteecetge tetgtteet teacegagte 200
tgtgcatege eceggacetg geeggaggag ggettggeeg gegggagatg 250
etetagggge ggegeggag gageggeegg egggaceggag ggeeeggeag 300
gaagatggge teeegtgae agggaetett getggegtae tgeetgeee 350
ttgeetttge etetggeetg gteetgagte gtgtgeeea tgteeagggg 400
gaacageagg agtggaggg gactgaggag etgeegeae tgteeagggg 450
tgeegagagg etgeagaga gactgaggag etgeegtee eteeggacea 450
tgeegagagg getgaagaae aacatgaaaa atacaggeee agteaggace 550
atgtaceegg egacegegt geettgeget getgtgacee eggtacetee 550
atgtaceegg egacegegt geeceagate aacateacta tettgaaagg 600
ggagaaagggt gacegeggag ategaggeet eeaagggaaa tatggeaaaa 650

caggeteage aggggeeagg ggeeacactg gacceaaagg geagaaggge 700 tccatggggg cccctgggga gcggtgcaag agccactacg ccgccttttc 750 ggtgggccgg aagaagccca tgcacagcaa ccactactac cagacggtga 800 tettegacae ggagttegtg aacetetaeg accaetteaa catgtteaec 850 ggcaagttet actgetacgt geeeggeete taettettea geeteaacgt 900 gcacacctgg aaccagaagg agacctacct gcacatcatg aagaacgagg 950 aggaggtggt gatettgtte gegeaggtgg gegacegeag cateatgeaa 1000 agccagagcc tgatgctgga gctgcgagag caggaccagg tgtgggtacg 1050 cctctacaag ggcgaacgtg agaacgccat cttcagcgag gagctggaca 1100 cctacatcac cttcagtggc tacctggtca agcacgccac cgagccctag 1150 ctggccggcc acctcctttc ctctcgccac cttccacccc tgcgctgtgc 1200 tgaccccacc gestettess egatesetgg actesgasts estggetttg 1250 gcattcagtg agacgccctg cacacacaga aagccaaagc gatcggtgct 1300 cccagatccc gcagcctctg gagagagctg acggcagatg aaatcaccag 1350 ggeggggeac eegegagaac eetetgggae etteegegge eetetetgea 1400 cacateetea agtgaceeeg caeggegaga egegggtgge ggeagggegt 1450 cccagggtgc ggcaccgcgg ctccagtcct tggaaataat taggcaaatt 1500 ctaaaggtct caaaaggagc aaagtaaacc gtggaggaca aagaaaaggg 1550 ttgttatttt tgtctttcca gccagcctgc tggctcccaa gagagaggcc 1600 ttttcagttg agactctgct taagagaaga tccaaagtta aagctctggg 1650 gtcaggggag gggccggggg caggaaacta cctctggctt aattctttta 1700 agccacgtag gaactttett gagggatagg tggaccetga catecetgtg 1750 geettgeeca agggetetge tggtetttet gagteacage tgegaggtga 1800 tgggggetgg ggeeceagge gteageetee cagagggaca getgageece 1850 ctgccttggc tccaggttgg tagaagcagc cgaagggctc ctgacagtgg 1900 ccagggaccc ctgggtcccc caggcctgca gatgtttcta tgaggggcag 1950 ageteettgg tacatecatg tgtggetetg etecaecect gtgccaecec 2000 agagecetgg ggggtggtet ceatgeetge caecetggea teggetttet 2050 gtgccgcctc ccacacaaat cagccccaga aggccccggg gccttggctt 2100

<210> 78

<211> 281

<212> PRT

<213> Homo Sapien

<400> 78

Met Gly Ser Arg Gly Gln Gly Leu Leu Leu Ala Tyr Cys Leu Leu 1 5 10 15

Leu Ala Phe Ala Ser Gly Leu Val Leu Ser Arg Val Pro His Val 20 25 30

Gln Gly Glu Gln Gln Glu Trp Glu Gly Thr Glu Glu Leu Pro Ser 35 40 45

Pro Pro Asp His Ala Glu Arg Ala Glu Glu Gln His Glu Lys Tyr
50 55 60

Arg Pro Ser Gln Asp Gln Gly Leu Pro Ala Ser Arg Cys Leu Arg
65 70 75

Cys Cys Asp Pro Gly Thr Ser Met Tyr Pro Ala Thr Ala Val Pro 80 85 90

Gln Ile Asn Ile Thr Ile Leu Lys Gly Glu Lys Gly Asp Arg Gly 95 100 105

Asp Arg Gly Leu Gln Gly Lys Tyr Gly Lys Thr Gly Ser Ala Gly

115 120 110 Ala Arg Gly His Thr Gly Pro Lys Gly Gln Lys Gly Ser Met Gly Ala Pro Gly Glu Arg Cys Lys Ser His Tyr Ala Ala Phe Ser Val Gly Arg Lys Lys Pro Met His Ser Asn His Tyr Tyr Gln Thr Val 155 Ile Phe Asp Thr Glu Phe Val Asn Leu Tyr Asp His Phe Asn Met 170 Phe Thr Gly Lys Phe Tyr Cys Tyr Val Pro Gly Leu Tyr Phe Phe Ser Leu Asn Val His Thr Trp Asn Gln Lys Glu Thr Tyr Leu His 200 Ile Met Lys Asn Glu Glu Glu Val Val Ile Leu Phe Ala Gln Val Gly Asp Arg Ser Ile Met Gln Ser Gln Ser Leu Met Leu Glu Leu Arg Glu Gln Asp Gln Val Trp Val Arg Leu Tyr Lys Gly Glu Arg Glu Asn Ala Ile Phe Ser Glu Glu Leu Asp Thr Tyr Ile Thr Phe Ser Gly Tyr Leu Val Lys His Ala Thr Glu Pro 275 <210> 79 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 79 tacaggccca gtcaggacca gggg 24 <210> 80 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 80 ctgaagaagt agaggccggg cacg 24 <210> 81

- <211> 45
- <212> DNA
- <213> Artificial Sequence
- <223> Synthetic oligonucleotide probe
- <400> 81
- cccggtgctt gcgctgctgt gaccccggta cctccatgta cccgg 45
- <210> 82
- <211> 2284
- <212> DNA
- <213> Homo Sapien
- <400> 82
 - geggageate egetgeggte etegeegaga eeceegegeg gattegeegg 50 teetteeege gggegegaea gagetgteet egeacetgga tggeageagg 100 ggegeegggg teetetegae geeagagaga aateteatea tetgtgeage 150 cttcttaaag caaactaaga ccagagggag gattatcctt gacctttgaa 200 gaccaaaact aaactgaaat ttaaaatgtt cttcggggga gaagggagct 250 tgacttacac tttggtaata atttgcttcc tgacactaag gctgtctgct 300 agtcagaatt gcctcaaaaa gagtctagaa gatgttgtca ttgacatcca 350 gtcatctctt tctaagggaa tcagaggcaa tgagcccgta tatacttcaa 400 ctcaagaaga ctgcattaat tcttgctgtt caacaaaaaa catatcaggg 450 gacaaagcat gtaacttgat gatcttcgac actcgaaaaa cagctagaca 500 acccaactgc tacctatttt tetgteecaa egaggaagee tgteeattga 550 aaccagcaaa aggacttatg agttacagga taattacaga ttttccatct 600 ttgaccagaa atttgccaag ccaagagtta ccccaggaag attctctctt 650 acatggccaa ttttcacaag cagtcactcc cctagcccat catcacacag 700 attattcaaa gcccaccgat atctcatgga gagacacact ttctcagaag 750 tttggatcct cagatcacct ggagaaacta tttaagatgg atgaagcaag 800 tgcccagete ettgettata aggaaaaagg ccatteteag agtteacaat 850 tttcctctga tcaagaaata gctcatctgc tgcctgaaaa tgtgagtgcg 900

ctcccagcta cggtggcagt tgcttctcca cataccacct cggctactcc 950

aaagcccgcc accettctac ccaccaatgc ttcagtgaca ccttctggga 1000

cttcccagcc acagctggcc accacagctc cacctgtaac cactgtcact 1050

<210> 83

<211> 431

<212> PRT

<213> Homo Sapien

<400> 83

Met Phe Phe Gly Gly Glu Gly Ser Leu Thr Tyr Thr Leu Val Ile

	305					310					315	
Ser Leu Glu Thr	Ile 320	Pro	Phe	Thr	Glu	Ile 325	Ser	Asn	Leu	Thr	Leu 330	
Asn Thr Gly Asn	Val 335	Tyr	Asn	Pro	Thr	Ala 340	Leu	Ser	Met	Ser	Asn 345	
Val Glu Ser Ser	Thr 350	Met	Asn	Lys	Thr	Ala 355	Ser	Trp	Glu	Gly	Arg 360	
Glu Ala Ser Pro	Gly 365	Ser	Ser	Ser	Gln	Gly 370	Ser	Val	Pro	Glu	Asn 375	
Gln Tyr Gly Leu	Pro 380	Phe	Glu	Lys	Trp	Leu 385	Leu	Ile	Gly	Ser	Leu 390	
Leu Phe Gly Val	Leu 395	Phe	Leu	Val	Ile	Gly 400	Leu	Val	Leu	Leu	Gly 405	
Arg Ile Leu Ser	Glu 410	Ser	Leu	Arg	Arg	Lys 415	Arg	Tyr	Ser	Arg	Leu 420	
Asp Tyr Leu Ile	Asn 425	Gly	Ile	Tyr	Val	Asp 430						
<210> 84 <211> 30 <212> DNA <213> Artificial Sequence												
<220> <223> Synthetic oligonucleotide probe												
<400> 84 agggaggatt atc	cttga	icc t	ttgā	agad	ec 30)						
<210> 85 <211> 18 <212> DNA <213> Artificia	l Sec	Jueno	ce									
<220> <223> Synthetic	olig	jonu	cleot	ide	prob	oe						
<400> 85 gaagcaagtg ccc	agcto	2 18										
<210> 86 <211> 18 <212> DNA <213> Artificia	l Sed	quen	ce									
<220> <223> Synthetic	oli	gonu	cleo	tide	pro	be						
<400> 86 cgggtccctg ctc	tttg	g 18										

```
Õ
```

```
<210> 87
<211> 24
<212> DNA
<213> Artificiál Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 87
caccgtagct gggagcgcac tcac 24
<210> 88
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 88
 agtgtaagtc aagctccc 18
<210> 89
<211> 49
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 89
 gcttcctgac actaaggctg tctgctagtc agaattgcct caaaaagag 49
<210> 90
<211> 957
<212> DNA
 <213> Homo Sapien
<400> 90
 cctggaagat gcgcccattg gctggtggcc tgctcaaggt ggtgttcgtg 50
 gtcttcgcct ccttgtgtgc ctggtattcg gggtacctgc tcgcagagct 100
  cattccagat gcacccctgt ccagtgctgc ctatagcatc cgcagcatcg 150
  gggagaggcc tgtcctcaaa gctccagtcc ccaaaaggca aaaatgtgac 200
  cactggactc cctgcccatc tgacacctat gcctacaggt tactcagcgg 250
  aggtggcaga agcaagtacg ccaaaatctg ctttgaggat aacctactta 300
  tgggagaaca gctgggaaat gttgccagag gaataaacat tgccattgtc 350
  aactatgtaa ctgggaatgt gacagcaaca cgatgttttg atatgtatga 400
  aggcgataac tetggacega tgacaaagtt tattcagagt getgetecaa 450
  aatccctgct cttcatggtg acctatgacg acggaagcac aagactgaat 500
```

aacgatgcca agaatgccat agaagcactt ggaagtaaag aaatcaggaa 550 catgaaattc aggtctagct gggtatttat tgcagcaaaa ggcttggaac 600 tcccttccga aattcagaga gaaaagatca accactctga tgctaagaac 650 aacagatatt ctggctggcc tgcagagatc cagatagaag gctgcatacc 700 caaagaacga agctgacact gcagggtcct gagtaaatgt gttctgtata 750 aacaaatgca gctggaatcg ctcaagaatc ttattttct aaatccaaca 800 gcccatattt gatgagtatt ttgggtttgt tgtaaaccaa tgaacatttg 850 ctagttgtat caaatcttgg tacgcagtat ttttatacca gtattttatg 900 tagtgaagat gtcaattagc aggaaactaa aatgaatgga aattcttaaa 950 aaaaaaaa 957

<210> 91

<211> 235

<212> PRT

<213> Homo Sapien

<400> 91

Met Arg Pro Leu Ala Gly Gly Leu Leu Lys Val Val Phe Val Val
1 5 10 15

Phe Ala Ser Leu Cys Ala Trp Tyr Ser Gly Tyr Leu Leu Ala Glu 20 25 30

Leu Ile Pro Asp Ala Pro Leu Ser Ser Ala Ala Tyr Ser Ile Arg
35 40 45

Ser Ile Gly Glu Arg Pro Val Leu Lys Ala Pro Val Pro Lys Arg
50 55 60

Gln Lys Cys Asp His Trp Thr Pro Cys Pro Ser Asp Thr Tyr Ala 65 70 75

Tyr Arg Leu Leu Ser Gly Gly Gly Arg Ser Lys Tyr Ala Lys Ile 80 85 90

Cys Phe Glu Asp Asn Leu Leu Met Gly Glu Gln Leu Gly Asn Val 95 100 105

Ala Arg Gly Ile Asn Ile Ala Ile Val Asn Tyr Val Thr Gly Asn 110 115 120

Val Thr Ala Thr Arg Cys Phe Asp Met Tyr Glu Gly Asp Asn Ser 125 130 135

Gly Pro Met Thr Lys Phe Ile Gln Ser Ala Ala Pro Lys Ser Leu 140 145 150

Leu Phe Met Val Thr Tyr Asp Asp Gly Ser Thr Arg Leu Asn Asn 155 160 165

Asp Ala Lys Asn Ala Ile Glu Ala Leu Gly Ser Lys Glu Ile Arg Asn Met Lys Phe Arg Ser Ser Trp Val Phe Ile Ala Ala Lys Gly 190 Leu Glu Leu Pro Ser Glu Ile Gln Arg Glu Lys Ile Asn His Ser 200 Asp Ala Lys Asn Asn Arg Tyr Ser Gly Trp Pro Ala Glu Ile Gln 215 Ile Glu Gly Cys Ile Pro Lys Glu Arg Ser 230 <210> 92 <211> 20 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 92 aatgtgacca ctggactccc 20 <210> 93 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 93 aggettggaa etecette 18 <210> 94 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 94 aagattettg agegatteea getg 24 <210> 95 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 95 aatccctgct cttcatggtg acctatgacg acggaagcac aagactg 47

161

```
<210> 96
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 96
 ctcaagaagc acgcgtactg c 21
<210> 97
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 97
 ccaacctcag cttccgcctc tacga 25
<210> 98
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 98
 catccagget egecactg 18
<210> 99
<211> 20
<212> DNA
 <213> Artificial Sequence
<223> Synthetic oligonucleotide probe
 <400> 99
  tggcaaggaa tgggaacagt 20
 <210> 100
 <211> 25
 <212> DNA
 <213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
 <400> 100
  atgctgccag acctgatcgc agaca 25
 <210> 101
 <211> 19
 <212> DNA
```

```
<213> Artificial Sequence
           <223> Synthetic oligonucleotide probe
           <400> 101
              gggcagaaat ccagccact 19
           <210> 102
           <211> 18
           <212> DNA
            <213> Artificial Sequence
            <223> Synthetic oligonucleotide probe
            <400> 102
               cccttcgcct gcttttga 18
            <210> 103
            <211> 27
             <212> DNA
            <213> Artificial Sequence
<220>
The state of the s
            <223> Synthetic oligonucleotide probe
             <400> 103
               gccatctaat tgaagcccat cttccca 27
             <210> 104
          <211> 19
             <212> DNA
            <213> Artificial Sequence
               <223> Synthetic oligonucleotide probe
grania
E
             <400> 104
               ctggcggtgt cctctcctt 19
               <210> 105
               <211> 21
               <212> DNA
               <213> Artificial Sequence
               <223> Synthetic oligonucleotide probe
                <400> 105
                   cctcggtctc ctcatctgtg a 21
                <210> 106
                <211> 20
                 <212> DNA
                <213> Artificial Sequence
                 <220>
```



```
<223> Synthetic oligonucleotide probe
   <400> 106
   tggcccagct gacgagccct 20
   <210> 107
   <211> 21
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 107
    ctcataggca ctcggttctg g 21
   <210> 108
   <211> 19
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 108
    tggctcccag cttggaaga 19
   <210> 109
   <211> 30
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
in i
O
    cagetettgg etgtetecag tatgtaceca 30
ļ.
   <210> 110
   <211> 21
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 110
     gatgeetetg tteetgeaca t 21
    <210> 111
    <211> 48
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 111
```

```
ggattctaat acgactcact atagggctgc ccgcaacccc ttcaactg 48
   <210> 112
   <211> 48
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 112
    ctatgaaatt aaccctcact aaagggaccg cagctgggtg accgtgta 48
   <210> 113
   <211> 43
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 113
    ggattetaat acgaeteaet atagggeege eeegeeacet eet 43
   <210> 114
   <211> 48
   <212> DNA
   <213> Artificial Sequence
  <220>
<223> Synthetic oligonucleotide probe
ctatgaaatt aaccctcact aaagggactc gagacaccac ctgaccca 48
<210> 115
  <211> 48
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 115
    ggattctaat acgactcact atagggccca aggaaggcag gagactct 48
   <210> 116
   <211> 48
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic Oligonucleotide probe
    ctatgaaatt aaccctcact aaagggacta gggggtggga atgaaaag 48
```

<210> 117

```
<211> 48
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 117
    ggattetaat acgaeteaet atagggeece cetgagetet eeegtqta 48
   <210> 118
   <211> 48
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 118
    ctatgaaatt aaccctcact aaagggaagg ctcgccactg gtcgtaga 48
   <210> 119
   <211> 48
   <212> DNA
   <213> Artificial Sequence
THE THE PARTY
   <223> Synthetic oligonucleotide probe
   <400> 119
    ggattctaat acgactcact atagggcaag gagccgggac ccaggaga 48
<210> 120
   <211> 47
   <212> DNA
Tj
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 120
    ctatgaaatt aacceteact aaagggaggg ggeeettggt getgagt 47
```