MOTIVATIONS ...

Def. PROBLEM, ALGO

PROBLEM: TASK TO BE EXECUTED AUTOMATICALLY EXAMPLE: FIND THE MAX IN A SEQ. OF NUMBERS

ALGORITHM: SEQUENCE OF PRECISE, FORMAL STEPS
THAT ALLOW TO SOLVE THE ARTISLEM.

PROFRAM: TRANSLATION OF AN ALGORITHM ____ INTO A PROGRAMMING LANGUAGE TRADITIONAL COMPUTATIONAL METHOD

PROBLEM

PROBLEM

PROBLEM

SOLVING

(CREATIVE)

ALGORITHM IMPLEMENTATION FORMANC)

MOTIVATION

THE TRADITIONAL COMP. HETHOD OFFEN FAILS BECAUSE FROBLEMS EXIST FOR WHICH IT IS HARD OR IMPOSSIBLE TO IMAGINE AN ALGORITHM (COMPLEX PROBLEMS)

EXAMPLES

- 1. Client Cotegoritation
- 2. Development of a new drug
- 3. Face recognition
- 4. Driving a robot in a 3D space

IDEA: GIVING COMPUTERS THE ABILITY TO LEARN HOW TO SOLVE PROBLEHS

(MACHINE LEARNING, COMPUTATIONAL INT.)

LEARNING: IMPROVING BY MEANS OF EXPERIENCE

BIO-INSPIRED ALGORITHMS

- 1) NEURAL WETS
- 2) EVOLUTIONARY ALGORITHMS (GENETIC ALGORITHMS, GENETIC PROGRAHMING, ...)
- 3) Fuzzy Systems
- 4) SWARM INTECLIGENCE (PARTICLE SWARM OPTIMIZATION)
- 5) LOCAL SEARCH (HILL CLIMBING, SIMULATED ANNEALING...)

OPTIMIZATION PROBLEMS (O.P.)

INFORMALLY

SOLVING AN O.P. HEARS TO FIND THE BEST SOLUTION (S)
IN A (TYPICALLY HUGE) SET OF POSSIBLE ALTERNATIVES.

MORE FORMALLY

AN O.P. IS A PAIR (S, P), WHERE:

- S IS THE SET OF ALL EXISTING SOLUTIONS (SEARCH SPACE)

- f: S-> TR RETURNS A NUMBER FOR EACH SOLUTION QUANTIFYING ITS QUALITY (FINESS FUNTION)

OBJECTVE

FIND A SOWTON XES SUCH THAT

or
$$f(y) \ge f(x)$$
 (MINIMIRATION PB.)

or $f(y) \le f(x)$ (MAXIMIRATION PB.)

SOLUTION X 15 CALLED GLOBAL OPTIMUM

OPTIMIZATION ACGORITHM

AN MERATIVE ALGORITHM THAT, AT EVERY STEP, DUTPUTS A SOLUTION.

$$\begin{bmatrix} \dots, S_1, S_2, S_3, \dots, S_m, \dots \end{bmatrix}$$