Unraveling Personality Patterns on Netflix: Leveraging User Behavior and Surveys

Data Preprocessing

As we can clearly see, the dataset has null values and inconsistencies in it. So we need to drop the null columns and assign 0 to null in non-empty Colmns

```
In [4]: ▶
```

```
data.dropna(axis=1, how='all',inplace=True)
data.fillna(0,inplace=True)
data.head()
```

Out[4]:

	Genre	Tags	Languages	Series or Movie	Hidden Gem Score	
Title						
Lets Fight Ghost	Crime, Drama, Fantasy, Horror, Romance	Comedy Programmes,Romantic TV Comedies,Horror	Swedish, Spanish	Series	4.3	
HOW TO BUILD A GIRL	Comedy	Dramas,Comedies,Films Based on Books,British	English	Movie	7.0	
The Con- Heartist	Comedy, Romance	Romantic Comedies,Comedies,Romantic Films,Thai	Thai	Movie	8.6	
Gleboka woda	Drama	TV Dramas,Polish TV Shows,Social Issue TV Dramas	Polish	Series	8.7	
Only a Mother	Drama	Social Issue Dramas,Dramas,Movies Based on Boo	Swedish	Movie	8.3	Lithuania,Pc

5 rows × 28 columns

Now the Dataset is free of null values and bull columns and the data seems more promosing for further Analysis

```
In [5]:

1 data.describe()
```

Out[5]:

	Hidden Gem Score	IMDb Score	Rotten Tomatoes Score	Metacritic Score	Awards Received	Awards Nominated For	
count	9425.000000	9425.000000	9425.000000	9425.000000	9425.000000	9425.000000	ξ
mean	5.534854	6.949613	37.373369	25.169125	5.398408	10.848064	1
std	2.452806	0.921831	37.281925	30.927880	15.322014	27.532930	Ę
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	(
25%	3.400000	6.500000	0.000000	0.000000	0.000000	0.000000	(
50%	5.300000	7.000000	30.000000	0.000000	1.000000	2.000000	(
75%	8.100000	7.500000	75.000000	55.000000	4.000000	9.000000	8
max	9.800000	9.700000	100.000000	100.000000	300.000000	386.000000	E
4							

Analysis

1.Logistic regression representation for IMDB votes V/s Awards Receving.

```
In [6]:

## Importing Libraries

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.metrics import mean_squared_error, r2_score
```

```
In [7]:

1   X = data['IMDb Votes'].values.reshape(-1, 1)
2   y = data['Awards Received'].values.reshape(-1, 1)
3
```

```
In [8]:
                                                                                    M
    ## Split the data into training and testing sets
 1
 2
   X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_
In [9]:
                                                                                    H
    ## Create and train the logistic regression model
 2
 3
    model = LogisticRegression()
 4
    model.fit(X_train, y_train)
 5
C:\Users\Supraja\anaconda3\envs\myenv\lib\site-packages\sklearn\utils
\validation.py:1111: DataConversionWarning: A column-vector y was pass
ed when a 1d array was expected. Please change the shape of y to (n_sa
mples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
C:\Users\Supraja\anaconda3\envs\myenv\lib\site-packages\sklearn\linear
_model\_logistic.py:444: ConvergenceWarning: lbfgs failed to converge
(status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as show
n in:
    https://scikit-learn.org/stable/modules/preprocessing.html (http
s://scikit-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear model.html#logistic
-regression (https://scikit-learn.org/stable/modules/linear_model.html
#logistic-regression)
  n_iter_i = _check_optimize_result(
Out[9]:
▼ LogisticRegression
LogisticRegression()
                                                                                    M
In [10]:
 1
    ## Make predictions using the trained model
 2
 3
    y_pred = model.predict(X_test)
 4
```

In [11]:

```
## Evaluate the model
 1
 2
   conf_matrix = confusion_matrix(y_test, y_pred)
 3
4
   class_report = classification_report(y_test, y_pred)
 5
 6
   print('Confusion Matrix:')
 7
   print(conf_matrix)
8
   print('\nClassification Report:')
9
   print(class report)
10
11
      2/2 0
```

242.0	0.00	0.00	0.00	1
251.0	0.00	0.00	0.00	1
accuracy			0.43	1885
macro avg	0.01	0.01	0.01	1885
weighted avg	0.18	0.43	0.26	1885

C:\Users\Supraja\anaconda3\envs\myenv\lib\site-packages\sklearn \metrics_classification.py:1334: UndefinedMetricWarning: Preci sion and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to con trol this behavior.

_warn_prf(average, modifier, msg_start, len(result))
C:\Users\Supraja\anaconda3\envs\myenv\lib\site-packages\sklearn
\metrics_classification.py:1334: UndefinedMetricWarning: Preci
sion and F-score are ill-defined and being set to 0.0 in labels
with no predicted samples. Use `zero_division` parameter to con
trol this behavior.

In [12]:

```
1
   ## Visualize the results
2
 3
   plt.figure(figsize=(6, 3))
   sns.scatterplot(x=X_test.flatten(), y=y_test.flatten())
4
   plt.plot(X_test.flatten(), y_pred.flatten(), color='red', linewidth=2)
5
   plt.xlabel('Hours of Usage')
   plt.ylabel('Subscribed')
   plt.title('Logistic Regression')
9
   plt.show()
10
11
12
```



```
In [88]:
    data.info()
 1
<class 'pandas.core.frame.DataFrame'>
Index: 9425 entries, Lets Fight Ghost to DreamWorks Happy Holidays fro
m Madagascar
Data columns (total 28 columns):
#
     Column
                            Non-Null Count
                                             Dtype
- - -
     -----
                            -----
                                             ----
                                             object
0
    Genre
                            9400 non-null
 1
     Tags
                            9389 non-null
                                             object
 2
                                             object
    Languages
                            9266 non-null
 3
     Series or Movie
                            9425 non-null
                                             object
 4
    Hidden Gem Score
                            9415 non-null
                                             float64
 5
    Country Availability
                            9414 non-null
                                             object
 6
    Runtime
                            9424 non-null
                                             object
7
    Director
                            7120 non-null
                                             object
8
    Writer
                                             object
                            7615 non-null
 9
    Actors
                            9314 non-null
                                             object
 10
    View Rating
                            6827 non-null
                                             object
    IMDb Score
11
                            9417 non-null
                                             float64
 12
    Rotten Tomatoes Score 5445 non-null
                                             float64
                                             float64
13
    Metacritic Score
                            4082 non-null
    Awards Received
                            5226 non-null
                                             float64
    Awards Nominated For
                            6376 non-null
                                             float64
15
 16
    Boxoffice
                            3754 non-null
                                             float64
    Release Date
                            9217 non-null
                                             datetime64[ns]
 17
 18
    Netflix Release Date
                            9425 non-null
                                             datetime64[ns]
    Production House
 19
                            4393 non-null
                                             object
    Netflix Link
 20
                            9425 non-null
                                             object
 21
    IMDb Link
                            9101 non-null
                                             object
 22
    Summary
                            9420 non-null
                                             object
 23
    IMDb Votes
                            9415 non-null
                                             float64
 24
    Image
                            9425 non-null
                                             object
 25
    Poster
                            8487 non-null
                                             object
```

9425 non-null

9424 non-null

dtypes: datetime64[ns](2), float64(8), object(18)

M

decision tree

26 27 TMDb Trailer

Trailer Site

memory usage: 2.3+ MB

2. What exactly represents the Netflix dataset's average geographic allocation for all viewing ratings?

object

object

In [13]: ▶

```
import pandas as pd

# Print the column names
print(data.columns)
```

In [22]:

```
import pandas as pd
 1
   import matplotlib.pyplot as plt
   from sklearn.preprocessing import LabelEncoder
 3
 5
   # Create a label encoder
 6
   encoder = LabelEncoder()
 7
8
   # Encode the country names
   data['Country Availability'] = data['Country Availability'].astype(str)
9
10
   data['Country Code'] = encoder.fit_transform(data['Country Availability'])
11
12
13
   # Group by 'View Rating' and calculate the mean of 'Country Code'
   grouped_data = data.groupby('View Rating')['Country Code'].mean()
14
15
16
   # Plot the histogram
   plt.hist(grouped_data, bins=15, ec='black')
17
18
19
   # Set the labels and title
20
   plt.xlabel('Mean Country Code')
   plt.ylabel('Frequency')
21
   plt.title('Histogram of Mean Country Code by View Rating')
22
23
   # Show the plot
24
25
   plt.show()
26
```


Random Forest

3.How could I use the Py WordCloud module to generate a word cloud visualization based on a DataFrame column?

```
In [23]:

1 !pip install --upgrade gensim
2
```

Requirement already satisfied: gensim in c:\users\supraja\anaconda3\envs\myenv\lib\site-packages (4.3.1)
Requirement already satisfied: numpy>=1.18.5 in c:\users\supraja\appda ta\roaming\python\python310\site-packages (from gensim) (1.23.5)
Requirement already satisfied: smart-open>=1.8.1 in c:\users\supraja\a naconda3\envs\myenv\lib\site-packages (from gensim) (6.3.0)
Requirement already satisfied: scipy>=1.7.0 in c:\users\supraja\anaconda3\envs\myenv\lib\site-packages (from gensim) (1.9.1)

In [24]: ▶

1 !pip li	st		

Package	Version
abel ny	1.3.0
absl-py alabaster	0.7.13
anyio	3.6.2
argon2-cffi	21.3.0
argon2-cffi-bindings	21.2.0
arrow	1.2.3
asttokens	2.0.8
astunparse	1.6.3
async-generator	1.10
attrs	22.1.0
Automat	22.10.0
Babel	2.11.0
backcall	0.2.0
beautifulsoup4	4.11.1
bibtexparser bleach	1.4.0 5.0.1
blis	0.7.9
branca	0.5.0
cachetools	5.2.0
catalogue	2.0.8
certifi	2022.9.24
cffi	1.15.1
charset-normalizer	2.1.1
click	8.1.3
colorama	0.4.6
confection	0.0.4
constantly	15.1.0
contourpy	1.0.5
cryptography	39.0.2
cssselect	1.2.0
cycler	0.11.0
cymem	2.0.7
datascience	0.17.5
debugpy decorator	1.6.3 5.1.1
defusedxml	0.7.1
Deprecated	1.2.13
docutils	0.18.1
entrypoints	0.4
et-xmlfile	1.1.0
exceptiongroup	1.1.0
executing	1.1.0
fake-useragent	1.1.1
fastjsonschema	2.16.2
filelock	3.9.0
flatbuffers	22.11.23
folium	0.12.1.post1
fonttools	4.37.4
free-proxy	1.1.0
funcy	2.0
gast	0.4.0 4.3.1
gensim google-auth	2.15.0
google-auth-oauthlib	0.4.6
google-pasta	0.2.0
grpcio	1.51.1
h11	0.14.0
h5py	3.7.0
httpcore	0.16.3

httpx	0.23.3
huggingface-hub	0.13.0
hyperlink	21.0.0
idna	3.4
imagesize	1.4.1
incremental	22.10.0
ipykernel	6.16.0
ipython	8.5.0
ipython-genutils	0.2.0
ipywidgets	8.0.2
itemadapter	0.7.0
itemloaders	1.0.6
jedi	0.18.1
Jinja2	3.1.2
jmespath	1.0.1
joblib	1.2.0
jsonschema	4.16.0
jupyter	1.0.0
jupyter_client	7.3.5
jupyter-console	6.4.4
jupyter-core	4.11.1
jupyterlab-pygments	0.2.2
jupyterlab-widgets	3.0.3
keras	2.11.0
kiwisolver	1.4.4
langcodes	3.3.0
libclang	14.0.6
lxml	4.9.2
Markdown	3.4.1
MarkupSafe	2.1.1
matplotlib	3.6.0
matplotlib-inline	0.1.6
mistune	2.0.4
murmurhash	1.0.9
nbclient	0.6.8
nbconvert	7.1.0
nbformat	5.6.1
nest-asyncio	1.5.6
nltk	3.8.1
notebook	6.4.12
numexpr	2.8.4
numpy	1.23.5
oauthlib	3.2.2
openpyxl	3.1.2
opt-einsum	3.3.0
outcome	1.2.0
packaging	21.3
pandas	1.5.0
pandocfilters	1.5.0
parsel	1.7.0
parso	0.8.3
pathy	0.10.1
pickleshare	0.7.5
Pillow	9.2.0
pip	22.2.2
plotly	5.10.0
preshed	3.0.8
prometheus-client	0.14.1
prompt-toolkit	3.0.31
Protego	0.2.1
protobuf	3.19.6

```
pure-eval
                                 0.2.2
                                 0.4.8
pyasn1
pyasn1-modules
                                 0.2.8
pycparser
                                 2.21
                                 1.10.7
pydantic
PyDispatcher
                                 2.0.7
                                 2.13.0
Pygments
pyLDAvis
                                 3.4.0
                                 23.0.0
py0penSSL
                                 3.0.9
pyparsing
                                 0.18.1
pyrsistent
PySocks
                                 1.7.1
                                 2.8.2
python-dateutil
python-dotenv
                                 0.21.1
pytz
                                 2022.4
                                 304
pywin32
pywinpty
                                 2.0.8
PyYAML
                                 6.0
                                 24.0.1
pyzmq
                                 5.3.2
qtconsole
QtPy
                                 2.2.1
queuelib
                                 1.6.2
regex
                                 2022.10.31
requests
                                 2.28.1
requests-file
                                 1.5.1
requests-oauthlib
                                 1.3.1
                                 1.5.0
rfc3986
rsa
                                 4.9
scholarly
                                 1.7.11
scikit-learn
                                 1.1.3
                                 1.9.1
scipy
Scrapy
                                 2.8.0
seaborn
                                 0.12.1
selenium
                                 4.8.0
Send2Trash
                                 1.8.0
service-identity
                                 21.1.0
                                 65.6.3
setuptools
                                 1.16.0
six
                                 6.3.0
smart-open
sniffio
                                 1.3.0
                                                                                          H
                                 2.2.0
Inow8511stemmer
sortedcontainers 2.4.0 soupsieve (data['Runtime'].head()).2.post1
                                 3.5.1
spacy
                                 3.0.12
spacy-legacy
spacy-loggers
                                 1.0.4
XeldáZ
                                 6.1.3
betisnkightd-Chene
                         < 30 mihu2e0
⊌pWim@cBUItDbAappRehelp
                             1-21h0u#
$\dagger bid@noHeartbide\help
                               > 1.0r2
Sphbokeowodab-htmlhelp < 30 miaudes
OphynacMotheb-jquery
                             1-22h0u0
NamenxRontimb; jdmaph: object 1.0.1
sphinxcontrib-qthelp
                                 1.0.3
sphinxcontrib-serializinghtml 1.1.5
                                 2.4.6
srsly
stack-data
                                 0.5.1
tenacity
                                 8.1.0
tensorboard
                                 2.11.0
tensorboard-data-server
                                 0.6.1
```

5.9.2

psutil

tensorboard-plugin-wit	1.8.1	NI.
₹en\$∂f#1ow	2.11.0	H
tensorflow-estimator	2.11.0	
tensorflow-intel	2.11.0	
tensorflow-io-gcs-filesystem 3 data1 = data['View Ratin termcolor	0.28.0 g'2.values.tolist() 2.1.1	
terminado	0.16.0	
textblob	0.17.1	
thinc	8.1.9	
threadpoolctl	3.1.0	
±inýe͡₹\$2	1.1.1	M
tldextract	3.4.0	
token pip install wordcloud	0.13.2	
torch	1.13.1	
torchaudio	0.13.1+cu116	
torchvision	0.14.1+cu116	
tornado	6.2	
kadmirement already satisfied teavslands	d:4w6Fd0loud in c:\users\supraja\anaconda3 s \$14902)	

ኒሮቭ¥5ኒ⋒ӯ€nv\lib\site-packages (14902)

keapsfemmatSalready satisfied:4m2€p1otlib in c:\users\supraja\anaconda \$ኖቂብvs\myenv\lib\site-packages0(₽ዮoff wordcloud) (3.6.0)

Reġɑi₩eMenekelready satisfied:ወpllow in c:\users\supraja\anaconda3\en Vwimtedv\lib\site-packages (fr@d.W@r@cloud) (9.2.0)

Rwġ@iedmė̀A€Pālpe@dţ satisfied:1ო0mβy>=1.6.1 in c:\users\supraja\appdat ล่งต่อติming\python\python310\sit@-ดือ@kages (from wordcloud) (1.23.5)

ጽጅያ፴፟ከ<u>ፀድ</u>ጠጅቫዊካ**፯፲**ቦᡛ፯dy satisfied:4påፍየaging>=20.0 in c:\users\supraja\app umłaip∂aming\python\python310\\$i₹6-βackages (from matplotlib->wordclou 2.1.1 d31i21.3

WēĢābpiement already satisfied:¹p∳piarsing>=2.2.1 in c:\users\supraja\ap ₩d₩idthoaming\python\python310@s2te-packages (from matplotlib->wordclo wabengodipgs 0.5.1

ฟิยติชั่นิคิยัติent already satisfied:2cอิก≹ourpy>=1.0.1 in c:\users\supraja\an ฟซอคฟ้ล3\envs\myenv\lib\site-pa@kage4 (from matplotlib->wordcloud) (1. widgetsnbextension

พ**ล่**ทูน**eremeat**ealready satisfied:0cvcler>=0.10 in c:\users\supraja\anacon ฟติธิฟุติคัญ⊌ฟุmyenv\lib\site-packages9(≇rom matplotlib->wordcloud) (0.11.0) Weapirement already satisfied:1fa4tiools>=4.22.0 in c:\users\supraja\a พละอิกส์ต3\envs\myenv\lib\site-påcRages (from matplotlib->wordcloud) (4. xgbaost 1.7.5

Remairementaseready satisfied:5p5tAon-dateutil>=2.7 in c:\users\supraj a\anaconda3\envs\myenv\lib\site-packages (from matplotlib->wordcloud) (2.8.2)

Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\supraja\a naconda3\envs\myenv\lib\site-packages (from matplotlib->wordcloud) (1.

Requirement already satisfied: six>=1.5 in c:\users\supraja\appdata\ro aming\python\python310\site-packages (from python-dateutil>=2.7->matpl otlib->wordcloud) (1.16.0)

In [28]:

```
1 import re
 2 | import numpy as np
 3 import pandas as pd
4 import matplotlib.pyplot as plt
5 from wordcloud import WordCloud
6 from nltk.corpus import stopwords
   from nltk.stem import WordNetLemmatizer
8
   from gensim.utils import simple_preprocess
9
   stop words = stopwords.words('english')
10
   stop_words.extend(['from', 'subject', 're', 'edu', 'use', 'not', 'would', 'say',
11
12
13
   lemmatizer = WordNetLemmatizer()
14
15
   def sent to words(sentences):
       for sent in sentences:
16
           sent = re.sub('\S^*@\S^*\s?', '', sent) # remove emails
17
           sent = re.sub('\s+', ' ', sent) # remove newline chars
18
           sent = re.sub("\'", "", sent) # remove single quotes
19
20
           sent = simple_preprocess(str(sent), deacc=True)
21
           sent = [lemmatizer.lemmatize(word) for word in sent] # Lemmatize words
22
           yield(sent)
23
   # Assuming 'data' is your DataFrame with a 'Languages' column
25
   data = pd.DataFrame({'Languages': ['English', 'Spanish', 'French', 'German', 'It
26
   # Assuming 'data' is your DataFrame with a 'Languages' column
27
   data1 = data['Languages'].values.tolist()
28
29
   data words = list(sent to words(data1))
30
31
   # Combine all words into a single string
   all_words = ' '.join([' '.join(words) for words in data_words])
32
33
34 # Create WordCloud object
35 | wordcloud = WordCloud(width=800, height=400, stopwords=stop_words, background_cd
36
37 # Display the word cloud
38 plt.figure(figsize=(8, 3))
39 plt.imshow(wordcloud, interpolation='bilinear')
40
   plt.axis('off')
41
   plt.show()
42
```


Gaussian Naive Bayes

4. How could We estimate the "View Rating" according to "Tags" within the Netflix collection using a Naive Bayes classifier and CountVectorizer?

```
In [29]:
                                                                                  H
    #Importing Liberaries
 2
 3 import pandas as pd
 4 import numpy as np
 5 from sklearn.naive_bayes import MultinomialNB
 6 from sklearn.feature_extraction.text import CountVectorizer
In [30]:
                                                                                  M
 1 # Load the dataset into a pandas DataFrame
 2 df = pd.read excel('Netflix Dataset Latest 2021.xlsx')
In [31]:
                                                                                  M
 1 # Training data
 2 X_train = np.array(['Tags'])
 3 y_train = np.array(['View Rating'])
In [32]:
                                                                                  H
 1 # Test data
 2 X test = np.array(['View Rating'])
```

```
In [33]:
                                                                                   H
 1 # Create a CountVectorizer to convert the text documents to a matrix of token co
 2 vectorizer = CountVectorizer()
 3 X_train_counts = vectorizer.fit_transform(X_train)
 4 X_test_counts = vectorizer.transform(X_test)
In [34]:
                                                                                   М
 1 # Train a Naive Bayes classifier
 2 classifier = MultinomialNB()
 3 classifier.fit(X_train_counts, y_train)
Out[34]:
▼ MultinomialNB
MultinomialNB()
In [35]:
                                                                                   M
 1 | # Predict the sentiment of the test data
 2 y_pred = classifier.predict(X_test_counts)
In [36]:
                                                                                   H
 1 # Print the predicted labels
 2 for doc, label in zip(X_test, y_pred):
 3
        print(f"{doc} -> {label}")
View Rating -> View Rating
In [ ]:
                                                                                   M
 1
In [ ]:
                                                                                   H
 1
```