Class 7: 1 Machine Learning

#clustering We will start with k-means clustering, one od the most prevelent of all clustering methods. Fast and could use large data set. Disadvantage is need to tell it value of k (how many clusters).

To get started let's make some data up:

```
rnorm(10)
```

tmp<-rnorm(30,3)</pre>

tmp

```
[1] -0.6862395 -0.3129806 -0.7094068 0.6377094 -1.1105379 1.2693465
[7] -0.1155685 0.4072695 1.0197550 0.3252456
```

#rnorm will give you a random numbers. Could get a histogram of values.

```
hist(rnorm(1000, mean=3))
```

Histogram of rnorm(1000, mean = 3)

```
200
     150
Frequency
     100
                                           2
                                                       3
                                                                              5
                                                                                          6
                                                                   4
                                          rnorm(1000, mean = 3)
```

```
[1] 2.11587105 0.07808208 1.97432806 2.25552132 2.83829980 0.13797719
[7] 2.92764697 3.47589445 1.68523908 2.89055474 2.47277531 4.81152179
[13] 3.36158552 3.30380775 2.95691098 1.38563523 3.85239915 2.61110471
[19] 1.88196559 3.48735518 3.35119603 5.22661576 3.29933696 2.94555053
[25] 2.03106963 3.14263617 2.63716877 3.37827959 3.91099075 3.81991285
```

```
tmp <- c(rnorm(30, 3), rnorm(30, -3))
x<-cbind(x=tmp, y=rev(tmp))</pre>
plot(x)
```


Cluster means:

K-means clustering with 2 clusters of sizes 30, 30

```
Χ
1 2.961298 -3.459674
2 -3.459674 2.961298
```

```
Clustering vector:
Within cluster sum of squares by cluster:
```

[1] 42.5357 42.5357

Available components: [1] "cluster" "tot.withinss" "centers" "totss" "withinss" "iter" [6] "betweenss" "ifault" "size"

k\$size

(between_SS / total_SS = 93.6 %)

```
Q2. The clustering result i.e. membership vector?
```

"centers" in k is the number of clusters you want (ie k) >Q1. How many points are in each cluster?

7

0

7

7

0

-6

hclust(d = dist(x))

Number of objects: 60

abline(h=8, col="red")

Cluster method

Distance

plot(hc)

 ∞

9

>

Q3. cluster centers

k\$cluster

[1] 30 30

```
k$centers
```

1 2.961298 -3.459674 2 -3.459674 2.961298

```
Q4. Make a plot of our data colored by clustering results with optionally the clusters centers
shown.
```

0

00

```
plot(x, col=c("red", "blue"))
```


0

Χ

2

4

-2

-4

: complete

: euclidean

```
Cluster Dendrogram
```


plot(x, col=grps)

Q. Plot our hclust results in terms of our data colored by cluster membership.

Χ

class 07: 2 Machine Learning

Kalodiah Toma (PID: A07606689)

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions?

```
nrow(x)
[1] 17

ncol(x)
[1] 4
```

head(x)

	England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

tail(x)

	England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
Fresh_fruit	1102	1137	957	674
Cereals	1472	1582	1462	1494
Beverages	57	73	53	47
Soft_drinks	1374	1256	1572	1506
Alcoholic_drinks	375	475	458	135
Confectionery	54	64	62	41

pairs(x, col=rainbow(17), pch=16, cex=2)

Q2. Which approach to solving the 'row-names problem' mentioned above do you prefer and why? Is one approach more robust than another under certain circumstances? x < read.csv(url, row.names=1) head(x) This is the preferred method as it it is not self distructive and will be transferred when rendering.

#PCA to the resuce

Help make sense of this data... The main function for PCA is base R is called prcomp()

It wants the transpose (with the t()) of our food data for analysis

dim(x)

[1] 17 4

t(x)

	Cheese	Carcass_	meat	Other	_meat	Fish	Fats_and	_oils	Sugars
England	105		245		685	147		193	156
Wales	103		227		803	160		235	175
Scotland	103		242		750	122		184	147
N.Ireland	66		267		586	93		209	139
	Fresh_p	potatoes	Fresl	h_Veg	Other	_Veg	Processed	d_potat	toes
England		720)	253		488			198
Wales		874	:	265		570			203
Scotland		566	;	171		418			220
N.Ireland		1033	}	143		355			187
	Process	sed_Veg	Fresh	_fruit	Cere	als 1	Beverages	Soft_d	drinks
England		360		1102	2 :	1472	57		1374
Wales		365		1137	7	1582	73		1256
Scotland		337		957	7	1462	53		1572
N.Ireland		334		674	1 :	1494	47		1506
	Alcohol	lic_drink	s Coi	nfectio	onery				
England		3	75		54				
Wales		4	75		64				
Scotland		4	58		62				
N.Ireland		1	35		41				

pca<-prcomp(t(x))
summary(pca)</pre>

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	3.176e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

PC1 captures over 67% of data PC2 captures nearly 30% of data so if make a plot of PC1 AND PC1 have 97% of data. Do not need all 17 PC.

One of the main results that folks look for is called the "score plot" aka PC plot, PC1 vs PC2 plot....

pca\$x

```
PC1
                             PC2
                                        PC3
                                                      PC4
England
          -144.99315
                       -2.532999 105.768945 -4.894696e-14
Wales
          -240.52915 -224.646925 -56.475555 5.700024e-13
Scotland
           -91.86934
                      286.081786 -44.415495 -7.460785e-13
           477.39164
                      -58.901862 -4.877895
N.Ireland
                                             2.321303e-13
```

```
plot(pca$x[,1],pca$x[,2])
```


Q3: Changing what optional argument in the above barplot() function results in the following plot? leaving beside out or setting it to false sets the "value" of beside as "0)

```
barplot(as.matrix(x), beside = 0, col=rainbow(nrow(x)))
```


Q5: Generating all pairwise plots may help somewhat. Can you make sense of the following code and resulting figure? What does it mean if a given point lies on the diagonal for a given plot?

```
pairs(x, col=rainbow(10), pch=16)
```


Q6. What is the main differences between N. Ireland and the other countries of the UK in terms of this data-set? There is one variable (in blue) that is most different and higher in N.Ireland. It is difficult to know what this point is from this type of graph. This is likely alcoholic drinks.

```
pca<-prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

```
PC1 PC2 PC3 PC4
Standard deviation 324.1502 212.7478 73.87622 3.176e-14
Proportion of Variance 0.6744 0.2905 0.03503 0.000e+00
Cumulative Proportion 0.6744 0.9650 1.00000 1.000e+00
```

Q7. Complete the code below to generate a plot of PC1 vs PC2. The second line adds text labels over the data points.

```
plot(pca$x[,1],pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500))
text(pca$x[,1], pca$x[,2], colnames(x))
```


Q8. Customize your plot so that the colors of the country names match the colors in our UK and Ireland map and table at start of this document.

```
plot(pca$x[,1],pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500))
text(pca$x[,1], pca$x[,2], colnames(x), col=c("orange", "red", "blue", "green"))
```



```
v \leftarrow round( pca\$sdev^2/sum(pca\$sdev^2) * 100 )
[1] 67 29 4 0
  z <- summary(pca)</pre>
  z$importance
                               PC1
                                         PC2
                                                   PC3
                                                                 PC4
Standard deviation
                        324.15019 212.74780 73.87622 3.175833e-14
Proportion of Variance
                          0.67444
                                     0.29052
                                              0.03503 0.000000e+00
Cumulative Proportion
                          0.67444
                                     0.96497
                                               1.00000 1.000000e+00
```

barplot(v, xlab="Principal Component", ylab="Percent Variation")

Principal Component

Q9: Generate a similar 'loadings plot' for PC2. What two food groups feature prominantely and what does PC2 maniply tell us about?

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,2], las=2 )
```


PC2 mainly tells us the variance between Wales and Scotland. The two food groups that feature prominantely are "fresh potatoes" and "soft-drinks".