Равномерная сходимость функциональных рядов. Степенные ряды

1. Исходя из определения равномерной сходимости, докажите равномерную сходимость функционального ряда в промежутке:

1.1.
$$\sum_{n=1}^{\infty} x^{n-1}$$
, $-1/2 \le x \le 1/2$

1.1.
$$\sum_{n=1}^{\infty} x^{n-1}$$
, $-1/2 \le x \le 1/2$; **1.2.** $\sum_{n=1}^{\infty} x^n$, $-q \le x \le q$, $0 < q < 1$;

1.3.
$$\sum_{n=1}^{\infty} \left(\frac{x^{n-1}}{n} - \frac{x^n}{n+1} \right), \quad -1 \le x \le 1$$

1.3.
$$\sum_{n=1}^{\infty} \left(\frac{x^{n-1}}{n} - \frac{x^n}{n+1} \right), -1 \le x \le 1$$
1.4.
$$\sum_{n=1}^{\infty} \frac{1}{(x+n)(x+n+1)}, 0 \le x < +\infty;$$

1.5.
$$\sum_{n=1}^{\infty} \left(\frac{\sin nx}{\sqrt{n}} - \frac{\sin(n+1)x}{\sqrt{n+1}} \right), -\infty < x < +\infty$$
 1.6. $\sum_{n=1}^{\infty} \frac{x}{3^n \cdot \sqrt{1+nx}}, 0 \le x \le 2;$

1.7.
$$\sum_{n=1}^{\infty} \frac{x}{3^n \cdot \sqrt{1+nx}}, \quad 0 \le x \le 2.$$

2. Пользуясь признаком Вейерштрасса, докажите сходимость функционального ряда в указанном промежутке:

2.1.
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}$$
, $-1 \le x \le 1$

2.1.
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}, \quad -1 \le x \le 1 ;$$
 2.2.
$$\sum_{n=1}^{\infty} \frac{x^2}{1 + n^{3/2} x^2}, \quad -\infty < x < +\infty ;$$

2.3.
$$\sum_{n=1}^{\infty} \frac{\sin^2 2nx}{\sqrt[3]{n^4 + x^2}}, \quad -\infty < x < +\infty;$$

2.3.
$$\sum_{n=1}^{\infty} \frac{\sin^2 2nx}{\sqrt[3]{n^4 + x^2}}, \quad -\infty < x < +\infty;$$
 2.4.
$$\sum_{n=1}^{\infty} \frac{\arctan nx}{x^4 + n \cdot \sqrt[3]{n}}, \quad -\infty < x < +\infty;$$

2.5.
$$\sum_{n=1}^{\infty} \frac{(x+2)^n \cos^2 nx}{\sqrt{n^3 + x^4}}, \quad -3 \le x \le -1$$

2.5.
$$\sum_{n=1}^{\infty} \frac{(x+2)^n \cos^2 nx}{\sqrt{n^3 + x^4}}, \quad -3 \le x \le -1; \quad \textbf{2.6.} \quad \sum_{n=1}^{\infty} \frac{(n+2)^3 (2x)^{2n}}{x^2 + 3n + 4}, \quad -\frac{1}{4} \le x \le \frac{1}{4};$$

2.7.
$$\sum_{n=1}^{\infty} \frac{n \cdot \arctan 2n^2 x}{\sqrt[3]{n^7 + n + x}}, \quad 0 \le x < +\infty;$$

2.7.
$$\sum_{n=1}^{\infty} \frac{n \cdot \arctan 2n^2 x}{\sqrt[3]{n^7 + n + x}}, \quad 0 \le x < +\infty;$$
 2.8. $\sum_{n=1}^{\infty} \frac{\cos nx \cdot \sin \frac{1}{nx}}{4 + \ln^2 nx}, \quad 2 \le x < +\infty;$

2.9.
$$\sum_{n=1}^{\infty} \frac{x}{4+n^3 x^2}, \quad 0 \le x < +\infty$$

2.9.
$$\sum_{n=1}^{\infty} \frac{x}{4+n^3 x^2}$$
, $0 \le x < +\infty$; **2.10.** $\sum_{n=1}^{\infty} \operatorname{arctg} \frac{x}{x^2+n^3}$, $-\infty < x < +\infty$;

2.11.
$$\sum_{n=1}^{\infty} \frac{x}{1+n^2 x^4} \cdot \arctan \frac{x}{n}$$
, $-\infty < x < +\infty$; **2.12.** $\sum_{n=1}^{\infty} \frac{n^2}{n+1} \cdot \frac{x^2 \sin x}{1+n^5 x^4}$, $-\infty < x < +\infty$;

2.13.
$$\sum_{n=1}^{\infty} \sin^2 \frac{\sqrt{x}}{1+n^2 x}, \quad 0 \le x < +\infty$$

2.13.
$$\sum_{n=1}^{\infty} \sin^2 \frac{\sqrt{x}}{1+n^2 x}$$
, $0 \le x < +\infty$; **2.14.** $\sum_{n=1}^{\infty} \sin \frac{1}{nx} \cdot \ln \left(1 + \frac{x}{\sqrt{n}}\right)$, $0 < x < +\infty$.

3. Найдите радиус сходимости, интервал сходимости и область сходимости функционального ряда:

3.1.
$$\sum_{n=1}^{\infty} n^2 x^n$$
; **3.2.** $\sum_{n=1}^{\infty} 3^n (x+1)^n$; **3.3.** $\sum_{n=1}^{\infty} \left(\frac{n+1}{2n+3} \right)^n x^n$; **3.4.** $\sum_{n=1}^{\infty} \frac{(n+1)(x-2)^n}{4^{n+2}}$;

3.5.
$$\sum_{n=1}^{\infty} n^n x^n$$
; **3.6.** $\sum_{n=1}^{\infty} \left(\frac{n+2}{n+5}\right)^{n^2} x^n$; **3.7.** $\sum_{n=1}^{\infty} n! \left(\frac{x}{n}\right)^n$; **3.8.** $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n\sqrt{n}}$;

3.9.
$$\sum_{n=1}^{\infty} \left(\frac{2n-1}{3n+2}\right)^n (x+2)^n$$
; **3.10.** $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{2n+1}$; **3.11.** $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} (2n+3) x^{2n+1}}{3n^2+4}$;

3.12.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} \left(\frac{x-1}{3} \right)^n$$
; **3.13.** $\sum_{n=1}^{\infty} 4^{n^2} (x+1)^{n^2}$; **3.14.** $\sum_{n=1}^{\infty} \frac{(2n-1)!!}{n!} (x+2)^n$;

3.15.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (x+1)^n}{(n+2)\ln(n+2)};$$
 3.16.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (x+3)^n}{(3n-1)2^n};$$
 3.17.
$$\sum_{n=1}^{\infty} \frac{n^5 (x+5)^{2n+1}}{(n+1)!};$$

3.18.
$$\sum_{n=1}^{\infty} \frac{n^3 (x+4)^{2n+1}}{(n+3)!};$$
 3.19.
$$\sum_{n=1}^{\infty} \frac{n(x-4)^{3n}}{(4n-1)^3};$$
 3.20.
$$\sum_{n=1}^{\infty} (-1)^n (2n+1)^2 x^n;$$

3.21.
$$\sum_{n=1}^{\infty} \frac{x^{2n}}{(2n-3)2n}$$
; **3.22.**
$$\sum_{n=1}^{\infty} \frac{3n(x-2)^{3n}}{(5n-8)^3}$$
; **3.23.**
$$\sum_{n=1}^{\infty} \left(\frac{n}{2n+1}\right)^{2n-1} x^n$$
.

4. Найти сумму ряда:

4.1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$$
; **4.2.** $\sum_{n=1}^{\infty} n x^n$; **4.3.** $\sum_{n=1}^{\infty} \frac{x^n}{n}$; **4.4.** $\sum_{n=1}^{\infty} n^2 x^n$; **4.5.** $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n}}{n \cdot (2n-1)}$;

4.6.
$$\sum_{n=0}^{\infty} (2n+1)x^n$$
; **4.7.** $\sum_{n=1}^{\infty} n(n+2)x^n$; **4.8.** $\sum_{n=1}^{\infty} (n+5)x^{n-1}$; **4.9.** $\sum_{n=1}^{\infty} (n+2)x^{5n}$;

4.10.
$$\sum_{n=1}^{\infty} (n+1)x^{2n+2}$$
; **4.11.** $\sum_{n=1}^{\infty} \frac{x^{n-1}}{n(n-1)}$; **4.12.** $\sum_{n=1}^{\infty} \frac{x^n}{(n+1)(n+2)}$; **4.13.** $\sum_{n=1}^{\infty} \frac{5^n}{(n+1)x^n}$;

4.14.
$$\sum_{n=1}^{\infty} \frac{3^n}{(n+1)x^{3n}}$$
; **4.15.**
$$\sum_{n=1}^{\infty} \frac{(1-x^4)^n}{n+1}$$
; **4.16.**
$$\sum_{n=1}^{\infty} \frac{\sin^n x}{n+1}$$
; **4.17.**
$$\sum_{n=1}^{\infty} \frac{\cos^n x}{n+1}$$
; **4.18.**
$$\sum_{n=1}^{\infty} \frac{3^{n-1}}{n}$$