

GEOMETRÍA

Capítulo 22 Ses I

PRISMA Y CILINDRO

HELICO | THEORY

Muchos objetos que conocemos tienen forma de prismas y cilindros, de allí la importancia de conocer sus propiedades que presentan así como las fórmulas para calcular las áreas de las superficies lateral y total como la del volumen, con lo cual podremos encontrar luego

sus aplicaciones prácticas en la vida diaria.

PRISMA

Un prisma es un poliedro en el cual, dos de sus caras son regiones poligonales congruentes y paralelas denominadas bases, y el resto de caras son regiones paralelográmicas denominadas caras laterales.

01

Prisma Recto: Es el prisma cuyasesarrollo de la

Aristas laterales son perpendicular perficie del prisma

A las bases y sus caras laterales son

Regiones rectangulares.

1. Área de la superficie lateral.

2. Área de la superficie total.

3. Volumen.

PRISMA REGULAR: Es un prisma recto cuyas bases son regiones

poligonales regulares.

PRISMA CUADRANGULAR REGULAR

ABC: triángulo equilátero

ABCD: cuadrado

ABCDEF: hexágono

PARALELEPÍPEDO RECTÁNGULAR, ORTOEDRO O RECTOEDRO.

$$d^2 = a^2 + b^2 + c^2$$

HEXAEDRO REGULAR

$$A_T = 2(ab + bc + ac)$$

A: Área de la superficie Total.

V: Volumen del sólido.

$$V = a^3$$

HELICO | THEORY CILINDRO CIRCULAR RECTO O DE REVOLUC

Se genera al girar una región rectangular una vuelta alrededor de un eje que contiene a un lado. Las bases son círculos y la altura mide igual que la

h: longitud de su altura

R: longitud del radio de

la base

1. Área de la superficie lateral.

$$A_{SL} = 2\pi.r.h$$

2. Área de la superficie total.

$$\mathbf{A}_{\mathsf{ST}} = 2\pi.\mathbf{r}(\mathbf{r} + \mathbf{h})$$

3. Volumen.

$$V = \pi r^2 h$$

1. Determine el área de la superficie lateral de un prisma recto triangular, cuyas aristas básica miden 2 m, 3 m y 4 m y la Resbogión de su altura es 6 m.

 Piden: A_{SL} $A_{SL} = (2p_{base})h$ $A_{SL} = (2 + 3 + 4)6)$ $A_{SL} = (9).(6)$ $A_{SL} = 54 \text{ m}^2$

2. Las longitudes de las aristas básicas de un prisma recto son de 5 m, 5 m y 6 m, la

Resolution de su altura es 4 m. Calcule el volumen del prisma.

Piden: V

$$V = A_{(base)} \cdot h$$

Reemplaza

$$V = (12).4$$

$$V = 48 \text{ m}^3$$

3. Determine el área total del rectoedro mostrado.

Resolución:

Piden:

$$\mathbf{A_T} \mathbf{A_T} = 2(\mathbf{ab} + \mathbf{bc} + \mathbf{ac})$$

Reemplaza

ndA_T = 2(2.4 + 4.3 +
$$A_T = 2(8 + 72^3) = 6$$
)
$$A_T = 2(26)$$

$$A_T = 52 u^2$$

HELICO | THEORY

4. Determine el volumen de un prisma regular triangular, si la longitud de su arista

Resobésión: es 2 m y la longitud de su altura es igual a la longitud de la

- Piden: V
 V = A_(base). h
- Reemplazan

$$v = \left(\frac{2^{2} \cdot \sqrt{3}}{4}\right) \cdot \sqrt{3}$$

$$V = 3 \text{ m}^3$$

5. Determine el área de la superficie lateral del cilindro circular recto.

Resolución:

- Piden: A_{SL} $A_{SL} = 2\pi.r.h$
- Reemplazan do: $A_{SL} = 2\pi(2)(3)$

$$A_{SL} = 12\pi u^2$$

6. Determine el área de la superficie total del cilindro circular recto.

Resolución:

- Piden: A_{ST} $A_{ST} = 2\pi .r(r + h)$
- Reemplaza $\text{ndo:}_{A_{ST}} = 2\pi(4)(4+6)$ $A_{ST} = 2\pi(4)(10)$

$$A_{ST} = 80\pi u^2$$

7. Determine el volumen del cilindro circular recto.

- Se traza AB.
- BAC: Notable de 37° y
- Reemplazan 53° do: $V = \pi(2^2)(3)$

$$V = 12\pi u^3$$

8. Se tiene un recipiente cilíndrico, circular y recto, cuya longitud de su radio es 5 cm y

contiene agua, luego se introduce un sólido de metal y el nivel de

<u>газыные:</u> 2 ст.

mado de dichoisélido. VI

Del gráfico:

$$\sqrt{1} = \pi . (5)^2 (2)$$

$$V_1 = 50\pi \, \text{cm}^3$$