

POLYNOMES

N'DRI VALERIE © UVCI 2017

septembre 2017

0

Table des matières

Objecti	fs	5
I - DÉF	INITIONS	7
A.	Polynômes à une indéterminé	
В.	Exercice : degré de polynômes	8
II - DIV	/ISION AVEC LES POLYNÔMES	9
A.	Définitions	9
В.	Exercice	10
C.	Exercice	11
D.	Exercice	11
III - RA	ACINES D'UN POLYNÔME	13
A.	Définitions	13
В.	Factorisation des polynômes à coefficients réels	14
C.	Exercice	14
D.	Exercice	15
Solution	n des evercices	17

Objectifs

À la fin de cette leçon, vous serez capable de :

- caractériser un polynôme ;
- effectuer des divisions avec des polynômes ;
- factoriser un polynôme ;
- déterminer la multiplicité d'une racine.

DÉFINITIONS

Polynômes à une indéterminé	7
Exercice : degré de polynômes	8

Objectifs

a la fin de cette section vous serez capable de :

- définir un polynôme ;
- déterminer le degré d'un polynôme ainsi que celui de la somme ou du produit de deux polynômes ;
- déterminer la parité d'un polynôme ;

A. Polynômes à une indéterminé

Définition

On appelle **polynôme ou fonction polynôme (ou fonction polynomiale) à une indéterminée** x sur R (ou C) l'expression définie par :

 $P(x) = a_n x n + a_{n-1} x n - 1 ... + a_2 x 2 + a_1 x + a_0 , n \in N$

où $a_n,..., a_2, a_1, a_0$ sont des éléments de R (ou C) appelés **coefficients** du polynômes P(x).

On utilise aussi la notation $P(x) = \sum_{k=0}^{n} a_k x^k$, $a_k x^k$ est un monôme et a_n est le

coefficient du monôme

Définition : degré d'un polynôme

Si $P(x) \neq 0$, on appelle **degré** de P(x), et on note deg(P) ou encore doP, le plus grand entier nature n tel quel $a_n \neq 0$. Le coefficient a_n est le coefficient du terme de plus haut degré.

Remarque

Une constante non nulle (ex : P(x) = 15) est un polynôme de degré 0. Le polynôme nul (ex : P(x) = 0) n'a pas de degré.

Exemple x2-5x+6 est un polynôme de degré 2 ;

-5x5+2x est un polynôme de degré 5.

- On dit que le polynôme P(x) est **pair** si et seulement si $\forall p \in N$, $\mathbf{a}_{2p+1} = \mathbf{0}$.
- On dit que le polynôme P(x) est **impair** si et seulement si $\forall p \in N$, $\mathbf{a}_{2p} = \mathbf{0}$.
- La somme et le produit de deux polynômes sont encore des polynômes et : $deg(P+Q) \le Max(deg(P), deg(Q))$ et deg(PQ) = deg(P) + deg(Q).

Exemple

a) P(x) = x4 + x2 + 1 est un polynôme pair.

b) P(x) = x3 - 3x est un polynôme impair.

c) si $P(x) = x^2 + x + 1$ et $Q(x) = -x^2 - 2x + 1$ alors

P(x) + Q(x) = -x + 2 et P(x)Q(x) = -x4 - 3x3 - 2x2 - x + 1, et on a bien

 $deg(P+Q) = 1 \le Max(deg(P), deg(Q)) = Max(2,2) = 2,$

deg(PQ) = 4 = deg(P) + deg(Q) = 2 + 2.

B. Exercice : degré de polynômes

[Solution n°1 p 17]

Parmi les affirmations suivantes, quelles sont celles qui sont vraies ?			
	Si le degré de P est d, alors celui de X2 P est d+2.		
	Si le degré de P est 2, alors celui de X2 +P est 2.		
	Si le degré de P est 4, alors celui de X2 +P est 4.		
	Le degré de P+Q est toujours la somme des degrés de P et de Q.		
	Le degré de P+Q est toujours égal soit au degré de P soit au degré de Q.		
	Le degré de PQ est la somme des degrés de P et de Q.		

Définitions	9
Exercice	10
Exercice	11
Exercice	11

Objectifs

A la fin de cette section, vous serez capable de :

- effectuer une division euclidienne
- diviser deux polynômes suivant les puissances croissantes.

A. Définitions

Division euclidienne ou division suivant les puissances décroissantes

Étant donnés deux polynômes N(x) et D(x) avec $D(x) \neq 0$, il existe un couple unique de polynômes (Q(x),R(x)) vérifiant:

N(x) = D(x)Q(x) + R(x) et (deg(R) < deg(D) ou R(x) = 0).

Définition

Le polynôme Q(x) est le **quotient** de la **division euclidienne** de N(x) par D(x). Le polynôme R(x) est le **reste** de la division euclidienne de N(x) par D(x). Si R(x) = 0, alors N(x) est divisible par D(x) (ou encore D(x) divise N(x)).

Exemple

Considérons la division euclidienne du polynôme N(x) = x3 + x + 1 par D(x) = x2 + x + 1.

Le quotient Q(x) est donné par Q(x) = x - 1 et le reste R(x) par R(x) = x + 2. On a donc

N(x) = (x3 + x + 1) = (x2 + x + 1)(x - 1) + x + 2.

Division suivant les puissances croissantes

Etant donné un entier naturel h et deux polynômes N(x) et D(x) avec $D(x) \neq 0$, il existe un couple unique de polynômes (Q(x),R(x)) vérifiant :

N(x) = D(x)Q(x) + xh+1 R(x) et (deg(Q) < h ou R(x) = 0).

Le polynôme Q(x) est le quotient de la division de N(x) par D(x) suivant les puissances croissantes jusqu'à *l'ordre h* et

le polynôme $\mathbf{R}(\mathbf{x})$ le reste de la division de N(x) par D(x) suivant les puissances croissantes jusqu'à l'ordre h.

Méthode : Disposition pratique de l'opération

On ordonne les deux polynômes N(x) et D(x) suivant les puissances croissantes : $N(x) = a_0 + a_1x + a_2x^2 + ...$ et $D(x) = b_0 + b_1x + b_2x^2 + ...$ et on pose la division (voir l'exemple ci-dessous).

Exemple

Déterminons le quotient de la division du polynôme suivant les puissances croissantes jusqu'à l'ordre 2 du polynôme N(x) = x5+x4+x3+2x2+4 par D(x) = x3+2.

Le quotient Q(x) est alors donné par Q(x) = x2+2 et le reste R(x) par R(x) = x - 1. On a donc

N(x) = x5 + x4 + x3 + 2x2 + 4 = (x3+2)(x2+2) + x3 (x-1).

B. Exercice

[Solution n°2 p 17]

Soit	Soit Q un polynôme non nul. On donne $P(x) = (x6+10x+1)Q(x) + 4x3 - 1$			
	Le polynôme 4x3 -1 est le reste de la division de P par Q.			
	La division de P par Q est une division suivant les puissances croissantes de x.			
	Le quotient de P par Q est $(x6+10x+1)$.			
	P(X)=(1-X2-X4)Q(X)+X5(1+2X+X2) est une division de P par Q suivant les puissances croissantes de X.			

DIVISION AVEC LES POLYNÔMES

C. Exercice

[Solution n°3 p 18]

On donne A(X) = X5 - 7X4 - X2 - 9X + 9 et B(X) = X2 - 5X + 4. Le quotient de A par B est :

- O X3 −2X2 −14X −6
- O X3 −14X −63
- O X3 −2X2 −14X −63

D. Exercice

[Solution n°4 p 18]

On donne A = X6 - 2X4 + X3 + 1 et B = X3 + X2 + 1.

Le reste de la division de A par B à l'ordre 4 suivant les puissances croissantes est :

- O X5(1+2X +X2).
- O 1+2X +X2
- O X5

RACINES D'UN POLYNÔME

Définitions	13
Factorisation des polynômes à coefficients réels.	14
Exercice	14
Exercice	15

Objectifs

A la fin de cette section vous serez capable de :

- Déterminer la(les) racine(s) d'un polynôme
- Déterminer son ordre de multipicité
- Factoriser un polynôme à coefficient réel.

A. Définitions

Définition : racine d'un polynôme

Soit a un nombre réel ou complexe.

Un polynôme P(x) est divisible par (x-a) si et seulement si P(a)=0.

Le nombre a est alors **racine du polynôme** P(x). (On dit aussi que a est **zéro** de P(x)).

Ordre d'une racine

Un nombre a est **racine d'ordre a**, $(a \in N^*)$ d'un polynôme P(x), si et seulement si P(x) est divisible par (x-a)a, mais pas par (x-a)a+1 (on dit que a est l'**ordre de multiplicité** du zéro a de P(x).

- Une racine simple est une racine d'ordre 1.
- Une racine double est une racine d'ordre 2.

Exemple

Le polynôme $P(x) = x^2 + x - 6$ admet 2 et -3 comme racines simples (ordre 1). Il peut s'écrire sous la forme $P(x) = x^2 + x - 6 = (x-2)(x+3)$; il est donc divisible par (x-2) et par (x+3).

Le polynôme P(x) = x4 - 10x3 + 21x2 - 16x + 4 admet 1 et 2 comme racines doubles (d'ordre 2). Il peut s'écrire sous la forme :

P(x) = x4 - 10x3 + 21x2 - 16x + 4 = (x-1)2(x-2)2.

Il est donc divisible par (x-1)2 et par (x-2)2.

B. Factorisation des polynômes à coefficients réels.

Fondamental : Théorème

Tout polynôme P(x) à coefficient complexes, de degré n strictement positif, admet exactement n racines, chacune étant comptée avec son ordre de multiplicité et s'écrit :

 $P(x) = a_n(x-x_1)a1 (x-x_2)a2 ... (x-x_p)ap avec a_1 + a_2 + + a_p = n.$

Les valeurs $x_1, x_2, ..., x_p$ sont toutes distinctes.

On dit que l'on a décomposé P(x) en produit de facteurs premiers.

Exemple

P(x) = x4-1 = (x2-1)(x2+1) = (x-1)(x+1)(x-i)(x+i)

Fondamental : Théorème :

Si un polynôme P(x) à **coefficients réels** admet le nombre complexe z pour racine, alors le conjugué de z est aussi racine, avec le même ordre de multiplicité. Donc **le nombre de racines non réelles de P(x) est pair.**

Exemple

Le polynôme P(x) = x2 - 2x + 5 admet 1 + 2i et donc 1 - 2i comme racines simples (d'ordre 1). Il peut s'écrire sous la forme P(x) = x2 - 2x + 5 = (x - 1 - 2i)(x - 1 + 2i).

Remarque : Conséquence

Tout polynôme à coefficients réels se factorise sous la forme :

 $Q(x) = a_n(x - x_1)n1 ...(x - x_k)nk (x^2 + p_1x + q_1)m1 (x^2 + p_rx + q_r)mr$ avec $\Delta_i = p_i^2 - 4q_i < 0$.

Polynômes de degré impair

Tout polynôme de degré impair à coefficients réels admet au moins une racine dans R.

C. Exercice

[Solution n°5 p 18]

On donne un polynôme P ainsi qu'une racine r=2 d'ordre de multiplicité égal à 3. On peut affirmer alors que

0	RACINES D'UN POLYNÔME
	P(x) est divisible par (x-2)
0	P(x) est divisible par (x-2)2
0	P(x) est divisible par (x-2)3
0	P(x) est divisible par (x-2)4

D. Exercice

[Solution n°6 p 18]

Soit un polynôme de degré 3 tel que 1 et -2 sont ses racines. P(x) peut s'écrire sous la forme :

- (x+1)(x-2)(ax+b)
- (x+1)(x-2)(ax2+bx+c)
- (x-1)(x+2)(ax+b)
- (x-1)(x+2)(ax2+bx+c)

0

Solution des exercices

> Solut	ion	n°1 (exercice p. 8)
	V	Si le degré de P est d, alors celui de X2 P est d+2.
		Si le degré de P est 2, alors celui de X2 +P est 2.
	V	Si le degré de P est 4, alors celui de X2 +P est 4.
		Le degré de P+Q est toujours la somme des degrés de P et de Q.
		Le degré de P+Q est toujours égal soit au degré de P soit au degré de Q.
		Le degré de PQ est la somme des degrés de P et de Q.
> Solut	ion	n°2 (exercice p. 10)
	V	Le polynôme 4x3 -1 est le reste de la division de P par Q.
		La division de P par Q est une division suivant les puissances croissantes de x.
	V	Le quotient de P par Q est (x6+10x+1).
	V	P(X)=(1-X2-X4)Q(X)+X5(1+2X+X2) est une division de P par Q suivant les puissances croissantes de X.
> Solut	ion	n°3 (exercice p. 11)

0	X3	-2X2	-14X	-6

- X3 -14X -63
- X3 -2X2 -14X -63

> Solution n°4 (exercice p. 11)

- X5(1+2X + X2).
- 1+2X +X2
- X5

> Solution n°5 (exercice p. 14)

- P(x) est divisible par (x-2)
- P(x) est divisible par (x-2)2
- \bigcap P(x) est divisible par (x-2)4

> Solution n°6 (exercice p. 15)

18

- (x+1)(x-2)(ax+b)
- (x+1)(x-2)(ax2+bx+c)
- (x-1)(x+2)(ax+b)
- (x-1)(x+2)(ax2+bx+c)