

CMSC 170: Introduction to Artificial intelligence

Week 05: Augmenting the Spam Filter with Laplace Smoothing

John O-Neil V. Geronimo Institute of Computer Science University of the Philippines Los Baños

Content

- I. Review on Naïve Bayes Spam Filter
- II. Augmenting the Spam Filter with Laplace Smoothing

Content

- I. Review on Naïve Bayes Spam Filter
- II. Augmenting the Spam Filter with Laplace Smoothing

Background

Naïve Bayes Theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Spam Filtering Using Naïve Bayes

$$P(Spam|message) = \frac{P(message|Spam)P(Spam)}{P(message)}$$

Formula:

P(Spam|message)

$$= \frac{P(message|Spam)P(Spam)}{P(message)}$$

- $P(Spam) = \frac{count(Spam)}{count(Spam \cup Ham)}$
- P(Ham) = 1 P(Spam)
- P(message|Spam)
 - $= P(w_0|Spam) \dots P(w_n|Spam)$
- $P(w_n|Spam)$

$$= \frac{count(w in Spam)}{count(total no of words in Spam)}$$

- P(message|Ham)
 - $= P(w_0|Ham) \dots P(w_n|Ham)$
- $P(w_n|Ham)$
 - $= \frac{count(w \text{ in Ham})}{count(total \text{ no of words in Ham})}$
- *P*(*message*)
 - = P(message|Spam)P(Spam)
 - + P(message|Ham)P(Ham)

Putting it all together,

P(S|m)

$$= \frac{P(w_0|S)P(w_1|S) \dots P(w_n|S)P(S)}{P(w_0|S)P(w_1|S) \dots P(w_n|S)P(S) + P(w_0|H)P(w_1|H) \dots P(w_n|H)P(H)}$$

where m = message, S = Spam, and H = Ham

Spam Dataset

Buy now!

Ham Dataset

Spam Bag-of-Words

Index	Word	Frequency
0	you	1
1	will	1
2	love	1
3	this	2
4	product	1
5	i	1
6	used	1
7	cream	1

Index	Word	Frequency
8	and	1
9	it	1
10	removed	1
11	my	1
12	acne	1
13	buy	1
14	now	1

TNOW:

16

DS:

Ham Bag-of-Words

Index	Word	Frequency
0	lucky	1
1	i	3
2	am	1
3	in	1
4	love	3
5	with	1
6	my	1
7	bestfriend	1

Index	Word	Frequency
8	you	2
9	are	1
10	still	1
11	the	1
12	one	1
13	that	1
14	could	1
15	anymore	1

TNOW:

21

DS:

Is this message ham or spam?

I love you.

Compute for P(Spam|message):

$$\begin{split} P(Spam|message) &= \frac{P(message|Spam)P(Spam)}{P(message)} \\ &= \frac{P(message|Spam)P(Spam)}{P(message|Spam)P(Spam) + P(message|Ham)P(Ham)} \end{split}$$

$$= \frac{\frac{1}{4096}(0.5)}{\frac{1}{4096}(0.5) + \frac{2}{1029}(0.5)} = 0.1115931027 = 11.16\%$$

Since P(Spam|message) = 11.16%

The message "I love you." is classified as a **ham** message!

Is this message ham or spam?

I hate you.

Spam Bag-of-Words

Index	Word	Frequency
0	you	1
1	will	1
2	love	1
3	this	2
4	product	1
5	i	1
6	used	1
7	cream	1

Index	Word	Frequency
8	and	1
9	it	1
10	removed	1
11	my	1
12	acne	1
13	buy	1
14	now	1

TNOW:

16

DS:

Compute for P(message|Spam):

$$P("i"|Spam) = \frac{count("i" in Spam)}{count(total no of words in Spam)} = \frac{1}{16}$$

$$P(\text{"hate"}|Spam) = \frac{count(\text{"hate"} in Spam)}{count(total no of words in Spam)} = \frac{0}{16}$$

$$P("you"|Spam) = \frac{count("you" in Spam)}{count(total no of words in Spam)} = \frac{1}{16}$$

Compute for P(message|Spam):

$$P(message|Spam) = P(w_0|Spam)P(w_1|Spam) \dots P(w_n|Spam)$$

$$= P("i"|Spam)P("love"|Spam)P("you"|Spam)$$

$$= \frac{1}{2} \cdot \frac{0}{2} \cdot \frac{1}{2}$$

$$= 0$$

Ham Bag-of-Words

Index	Word	Frequency
0	lucky	1
1	i	3
2	am	1
3	in	1
4	love	3
5	with	1
6	my	1
7	bestfriend	1

Index	Word	Frequency
8	you	2
9	are	1
10	still	1
11	the	1
12	one	1
13	that	1
14	could	1
15	anymore	1

TNOW:

21

DS:

Compute for P(message|Spam):

$$P("i"|Ham) = \frac{count("i" in Ham)}{count(total no of words in Ham)} = \frac{3}{21}$$

$$P(\text{"hate"}|Ham) = \frac{count(\text{"hate"} in Ham)}{count(total \ no \ of \ words \ in Ham)} = \frac{0}{21}$$

$$P("you"|Ham) = \frac{count("you" in Ham)}{count(total no of words in Ham)} = \frac{2}{21}$$

Compute for P(message|Ham):

$$P(message|Ham) = P(w_0|Ham)P(w_1|Ham) \dots P(w_n|Ham)$$
$$= P("i"|Ham)P("hate"|Ham)P("you"|Ham)$$

$$=\frac{3}{21}*\frac{0}{21}*\frac{2}{21}$$

$$= 0$$

Compute for P(Spam|message):

$$\begin{split} P(Spam|message) &= \frac{P(message|Spam)P(Spam)}{P(message)} \\ &= \frac{P(message|Spam)P(Spam)}{P(message|Spam)P(Spam) + P(message|Ham)P(Ham)} \end{split}$$

$$= \frac{0 (0.5)}{0(0.5) + 0 (0.5)} = \frac{0}{0} = undefined$$

overfitting

Content

- I. Review on Naïve Bayes Spam Filter
- II. Augmenting the Spam Filter with Laplace Smoothing

Before

$$P(Spam) = \frac{count(Spam)}{count(Spam \cup Ham)}$$

$$P(Ham) = \frac{count(Ham)}{count(Spam \cup Ham)}$$

$$= 1 - P(Spam)$$

Now

$$P(Spam) = \frac{count(Spam)}{count(Spam \cup Ham)} \qquad P(Spam) = \frac{count(Spam) + k}{count(Spam \cup Ham) + 2k}$$

$$P(Ham) = \frac{count(Ham) + k}{count(Spam \cup Ham) + 2k}$$

$$= 1 - P(Spam)$$

Before

$$P(w_n|Spam) = \frac{count(w \ in \ Spam)}{count(total \ no \ of \ words \ in \ Spam)}$$

Now

$$P(w_n|Spam) = \frac{count(w \ in \ Spam) + k}{count(total \ no \ of \ words \ in \ Spam) + (k*(dSize + count(new \ words)))}$$

$$P(w_n|Spam) = \frac{count(w \ in \ Spam) + k}{count(total \ no \ of \ words \ in \ Spam) + (k*(dSize + count(new \ words)))}$$

dSize (or *dictionary size*) is the number of unique words found on both Spam and Ham dataset new words refers to the words present in the message to be classified but does not exist in the Ham and Spam dictionary

Spam	Ham
Secret link offers	Link for ticket offers
Click link win ticket offers	Click link for win
Click link will ticket offers	Reply link for ticket
Secret link offers for	Win ticket for secret
secret win	place

Is this message ham or spam?

Secret place haven

Consider k = 2

Spam Bag-of-Words

Index	Word	Frequency
0	secret	3
1	link	3
2	offers	3
3	click	1
4	win	2
5	ticket	1
6	for	1

TNOW:

14

DS:

Ham Bag-of-Words

Index	Word	Frequency
0	link	3
1	for	4
2	ticket	3
3	offers	1
4	click	1

Index	Word	Frequency
5	win	2
6	reply	1
7	secret	1
8	place	1
		-

TNOW:

17

DS:

Compute for P(Spam):

Since we have three emails in the spam dataset and a total of seven messages for both spam and ham dataset

$$P(Spam) = \frac{count(Spam) + k}{count(Spam \cup Ham) + 2k}$$

$$P(Spam) = \frac{3+2}{7+2(2)} = \frac{5}{11}$$

Compute for P(Ham):

Since we have four emails in the spam dataset and a total of seven messages for both spam and ham dataset

$$P(Ham) = \frac{count(Ham) + k}{count(Spam \cup Ham) + 2k}$$
$$P(Ham) = \frac{4+2}{7+2(2)} = \frac{6}{11}$$

Compute for P(message|Spam):

$$P("secret"|Spam) = \frac{count("secret"in Spam) + k}{count(total \ no \ of \ words \ in Spam) + (k*(dS + nW))}$$

$$P("place"|Spam) = \frac{count("place"in Spam) + k}{count(total \ no \ of \ words \ in Spam) + (k*(dS + nW))}$$

$$P("haven"|Spam) = \frac{count("haven"in Spam) + k}{count(total \ no \ of \ words \ in Spam) + (k*(dS+nW))}$$

$$P(w_n|Spam) = \frac{count(w \ in \ Spam) + k}{count(total \ no \ of \ words \ in \ Spam) + (k*(dSize + count(new \ words)))}$$

dSize (or *dictionary size*) is the number of unique words found on both Spam and Ham dataset new words refers to the words present in the message to be classified but does not exist in the Ham and Spam dictionary

Spam and Ham dictionary

Unique Words		
secret	for	
link	win	
offers	reply	
click	place	
ticket		

Dictionary Size: 9

Message to classify:

secret place haven

Count(new words): 1

Spam Bag-of-Words

Index	Word	Frequency
0	secret	3
1	link	3
2	offers	3
3	click	1
4	win	2
5	ticket	1
6	for	1

TNOW:

14

DS:

Compute for P(message|Spam):

$$P(\text{secret}|Spam) = \frac{count(\text{"secret"}in\ Spam) + k}{count(total\ no\ of\ words\ in\ Spam) + \left(k*(dS+nW)\right)} = \frac{3+2}{14+(2*(9+1))} = \frac{5}{34}$$

$$P(\text{place}|Spam) = \frac{count(\text{"place"}in Spam) + k}{count(total \ no \ of \ words \ in Spam) + \left(k*(dS+nW)\right)} = \frac{0+2}{14+(2*(9+1))} = \frac{2}{34}$$

$$P(\text{haven}|Spam) = \frac{count(\text{"haven"}in Spam) + k}{count(total \ no \ of \ words \ in Spam) + \left(k*(dS+nW)\right)} = \frac{0+2}{14+(2*(9+1))} = \frac{2}{34}$$

Ham Bag-of-Words

Index	Word	Frequency
0	link	3
1	for	4
2	ticket	3
3	offers	1
4	click	1

Index	Word	Frequency
5	win	2
6	reply	1
7	secret	1
8	place	1

TNOW:

17

DS:

Compute for P(message|Ham):

$$P(\text{secret}|\textit{Ham}) = \frac{count(\text{"secret"}in\;\textit{Ham}) + k}{count(total\;no\;of\;words\;in\;\textit{Ham}) + \left(k*(dS+nW)\right)} = \frac{1+2}{17+(2*(9+1))} = \frac{3}{37}$$

$$P(\text{place}|\textit{Ham}) = \frac{count(\text{"place"}in\;\textit{Ham}) + k}{count(total\;no\;of\;words\;in\;\textit{Ham}) + \left(k*(dS+nW)\right)} = \frac{1+2}{17+(2*(9+1))} = \frac{3}{37}$$

$$P(\text{haven}|\textit{Ham}) = \frac{count(\text{"haven"}\textit{in Ham}) + k}{count(total\ no\ of\ words\ in\ Ham) + \left(k*(dS+nW)\right)} = \frac{0+2}{17+(2*(9+1))} = \frac{2}{37}$$

Compute for P(message|Ham) and P(message|Spam):

$$= P(w_0|Spam)P(w_1|Spam) \dots P(w_n|Spam)$$

$$=\frac{5}{34}*\frac{2}{34}*\frac{2}{34}$$

$$=\frac{5}{9826}$$

$$= P(w_0|Ham)P(w_1|Ham) \dots P(w_n|Ham)$$

$$=\frac{3}{37}*\frac{3}{37}*\frac{2}{37}$$

$$=\frac{12}{50653}$$

Too small decimal values?

Use log probabilities for Naïve Bayes

Too small decimal values?

Use log probabilities for Naïve Bayes

Compute for Total Spam = P(message|Spam)P(Spam):

 $P(message|Spam) = P(w_0|Spam)P(w_1|Spam) \dots P(w_n|Spam) P(Spam)$

$$= \ln\left(\frac{5}{34} * \frac{2}{34} * \frac{2}{34} * \frac{5}{11}\right)$$

$$= -8.371806661$$

Compute for Total Ham = P(message|Ham)P(Ham):

 $P(message|Ham) = P(w_0|Ham)P(w_1|Ham) \dots P(w_n|Ham) P(Ham)$

$$= \ln\left(\frac{3}{37} * \frac{3}{37} * \frac{2}{37} * \frac{6}{11}\right)$$

= -8.548517784

Compute for P(Spam|message):

$$P(Spam|message) = \frac{P(message|Spam)P(Spam)}{P(message|Spam)P(Spam) + P(message|Ham)P(Ham)}$$

$$= \frac{\exp(total\ spam)}{\exp(total\ spam) + \exp(total\ ham)}$$

$$= \frac{\exp(-8.371806661)}{\exp(-8.371806661) + \exp(-8.548517784)}$$

$$= 0.5440631776 = \mathbf{54.41}\%$$

Since P(Spam|message) = 54.41%

The message "secret place haven" is classified as a **spam** message!

Content

- I. Review on Naïve Bayes Spam Filter
- II. Augmenting the Spam Filter with Laplace Smoothing

ExerciseCross validation

Keep safe!