离散数学习题课

第十三讲——格与布尔代数

Distributive lattices

Definition:

A lattice L is called a <u>distributive</u> if $\forall a, b, c \in L$,

(1)
$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$
, and

$$(2) \ a \lor (b \land c) = (a \lor b) \land (a \lor c)$$

- Since $(1) \Leftrightarrow (2)$, to show a lattice is distributive, we only need to verify one of them
- Distributive lattices are always modular

Bounded lattices

Definition:

A lattice L is called <u>bounded</u> if both $\bigvee L$ and $\bigwedge L$ exist, where $\bigvee L$ and $\bigwedge L$ are the supremum and the infimum of L, respectively.

- $\bigvee L$ is usually called top, denoted as 1
- $\bigwedge L$ is usually called <u>bottom</u>, denoted as 0
- Finite lattices are always bounded

Complemented lattices

Definition:

Let L be a bounded lattice, $a \in L$, b is called a <u>complement</u> of a if $a \lor b = 1$ and $a \land b = 0$.

A lattice L is called <u>complemented</u> if every element in L has complements.

- Complements may not be unique
- In distributive lattices, the complements are unique

Complete lattices

Definition:

A lattice L is called <u>complete</u> if $\forall S \subseteq L$, both $\bigvee S$ and $\bigwedge S$ exist, where $\bigvee S$ and $\bigwedge S$ are the supremum and the infimum of S, respectively.

- Finite lattices are always complete
- Complete lattices are always bounded
- For any set $A, \langle \mathcal{P}(A), \subseteq \rangle$ is a complete lattice

Ideals

Definition:

Let L be a lattice, $\emptyset \neq I \subseteq L$. I is called an <u>ideal</u> of L if

- (1) $\forall a, b \in I, a \lor b \in I$, and
- $(2) \ \forall a \in I, \forall x \in L, x \preccurlyeq a \implies x \in I$

- An ideal must be a sublattice
- Let $I(L) = \{x \mid x \text{ is an ideal of } L\}$, then $\langle I(L), \subseteq \rangle$ is a lattice
- Let $I_0(L) = I(L) \cup \{\emptyset\}$, $\langle I_0(L), \subseteq \rangle$ is a complete lattice
- $\forall S(\emptyset \neq S \subseteq I_0(L) \to \cap S \in I_0(L))$

Boolean algebras

Definition:

A complemented distributive lattice is called a <u>Boolean algebra</u>, denoted as $\langle B, \wedge, \vee, ', 0, 1 \rangle$, where ' is the complement operation, and 0, 1 are the bottom and top elements of B, respectively.

Comments:

If $\langle B, \wedge, \vee, ', 0, 1 \rangle$ is a Boolean algebra, then

- $(1) \ \forall a \in B, a'' = a;$
- $(2) \ \forall a, b \in B, (a \land b)' = a' \lor b', (a \lor b)' = a' \land b';$
- (3) $\forall a, b \in B, a \leq b \iff b' \leq a'$

Boolean subalgebras

Definition:

Let $\langle B, \wedge, \vee, ', 0, 1 \rangle$ be a Boolean algrebra. A nonemtpy subset

 $\emptyset \neq S \subseteq B$ is called a Boolean subalgebra of B, if

- $(1) \ \forall a, b \in S, a \land b \in S;$
- (2) $\forall a, b \in S, a \lor b \in S$; and
- $(3) \ \forall a \in S, a' \in S$

- Either (1) or (2) in the above conditions can be omitted
- Complemented sublattices of a Boolean algebra are not necessarily its Boolean subalgebras

Homomorphisms

Definition:

Let $\langle B_1, \wedge, \vee, ', 0, 1 \rangle, \langle B_2, \cap, \cup, -, \theta, E \rangle$ be two Boolean algrebras.

A function $\varphi: B_1 \to B_2$ is called a <u>homomorphism</u> from B_1 to

 B_2 , if

- (1) $\forall a, b \in B_1, \varphi(a \land b) = \varphi(a) \cap \varphi(b);$
- (2) $\forall a, b \in B_1, \varphi(a \vee b) = \varphi(a) \cup \varphi(b);$
- (3) $\forall a \in B_1, \varphi(a') = -\varphi(a).$

Comments:

• Either (1) or (2) in the above conditions can be omitted

Some important results

- The intersection of (any number of) subalgebras is also a subalgebra, if the intersection is nonempty
- Let $V_1 = \langle A, \circ_1, \circ_2, \dots \circ_n \rangle$, $V_2 = \langle B, \circ'_1, \circ'_2, \dots \circ'_n \rangle$, be two algebraic systems. If $\varphi : A \to B$ is a homomorphism from V_1 to V_2 , then $\varphi(V_1)$ is a subalgebra of V_2 .
- Let $\langle B_1, \wedge, \vee, ', 0, 1 \rangle$, $\langle B_2, \cap, \cup, -, \theta, E \rangle$ be two Boolean algrebras. If $\varphi : B_1 \to B_2$ is a homomorphism, then $(1) \varphi(0) = \theta$;
 - (2) $\varphi(1) = E$;

Representation theorem

Notations:

Let L be a lattice, $a, b \in L$, b is said to <u>cover</u> a if

$$a \prec b$$
 and $\forall c \in L(a \prec c \preccurlyeq b \rightarrow b = c)$.

Let L be a lattice, $x \in B$ is called an <u>atom</u> if x covers 0, where 0 is the bottom of L.

The representation theorem for finite Boolean algebras

For any finite Boolean algebra $V = \langle B, \wedge, \vee, ', 0, 1 \rangle$,

$$V \cong \langle \mathcal{P}(A), \cap, \cup, \sim, \emptyset, A \rangle,$$

where $A = \{x \mid x \text{ is an atom of } B\}.$

Duality Principle

The principle of Duality:

Any algebraic equality derived from the axioms of Boolean algebra remains true when the operators \vee and \wedge are interchanged and the identity elements 0 and 1 are interchanged.

- The equality <u>should not</u> contain other symbols
- The equality must hold for <u>all</u> Boolean algebras

Problems

- 1. Let L be a lattice, $\emptyset \neq I \subseteq L$. I is called an <u>ideal</u> of L if
 - (1) $\forall a, b \in I, a \lor b \in I$, and
 - $(2) \ \forall a \in I, \forall x \in L, x \preccurlyeq a \implies x \in I$

Let $I(L) = \{x \mid x \text{ is an ideal of } L\}, I_0(L) = I(L) \cup \{\emptyset\}.$

Show that

- (1) Let $\varphi: L \to I_0(L), \forall a \in L, \varphi(a) = \{x \mid x \in L \text{ and } x \leq a\},$ then φ is a homomorphism.
- (2) If L is finite, then $L \cong I(L)$.

Problems (cont.)

- 2. Let G be a group, L(G) denote the set of all subgroups of G, then $\langle L(G), \subseteq \rangle$ is a lattice, called the <u>lattice of subgroups</u>. Prove or disprove:
 - (1) $\langle L(G), \subseteq \rangle$ is always bounded
 - (2) $\langle L(G), \subseteq \rangle$ is always complemented
 - (3) $\langle L(G), \subseteq \rangle$ is always complete
 - (4) $\langle L(G), \subseteq \rangle$ is always distributive

Comments

Facts:

- (1) $\langle L(G), \subseteq \rangle$ is distributive if and only if $\forall S \subseteq G$, $|S| < \infty \to \langle S \rangle$ is cyclic.
- (2) $\langle L_N(G), \subseteq \rangle$ is modular, where $L_N(G)$ denotes the set of all normal subgroups of G.
- (3) H is an atom of $\langle L(G), \subseteq \rangle$ if and only if |H| is prime.

Corollaries:

- (1) If G is cyclic, then $\langle L(G), \subseteq \rangle$ is distributive
- (2) If G is abelian, then $\langle L(G), \subseteq \rangle$ is modular

Problems (cont.)

- Let L be a distributive lattice, $a \in L$. $\forall x \in L$, let $f(x) = x \lor a, g(x) = x \land a$.
 - (1) Show that, both f and g are endomorphisms.
 - (2) Find f(L) and g(L).
- 4. Let L be a distributive lattice, $a, b \in L$. Let

$$X = \{x \mid x \in L \text{ and } a \land b \leq x \leq a\}$$

$$Y = \{ y \mid y \in L \text{ and } b \preccurlyeq y \preccurlyeq a \lor b \}$$

Then, both X and Y are sublattices of L.

Show that, $X \cong Y$.

Problems (cont.)

- 5. Let $\langle B, \wedge, \vee, ', 0, 1 \rangle$ be a Boolean algrebra. $\forall x, y \in B$, let $x \oplus y = (x \wedge y') \vee (x' \wedge y)$ Show that, $\langle B, \oplus \rangle$ is an abelian group.
- 6. Let $\varphi: B_1 \to B_2$ be a homomorphism between two Boolean algebras. Show that, $\varphi^{-1}(0) = \{x \mid x \in B_1 \text{ and } \varphi(x) = 0\}$ is an ideal of B_1 .
- 7. For any given $n \in \mathbb{N}^+$, let $D_n = \{k \mid k \in \mathbb{N}^+ \text{ and } k \mid n\}$. Find a necessary and sufficient conditions under which $\langle D_n, \gcd, \operatorname{lcm} \rangle$ is a Boolean algebra.

Sylow Theorems

First Sylow Theorem

Let G be a finite group with $|G| = p^k m$, where p is prime and $p \nmid m$. Then

- $(1) \ \exists H \le G, \ |H| = p^k.$
- $(2) \ \forall H \le G, \forall i \in \mathbb{Z}_k,$

$$|H| = p^i \implies \exists H'(H' \le G \land |H'| = p^{i+1} \land H \le H')$$

Sylow Theorems (cont.)

Definitions:

A group H is called a <u>p</u>-group, if $|H| = p^k$, where p is prime, $k \in \mathbb{N}$.

A subgroup $H \leq G$ is called a Sylow *p*-subgroup of G, if $|H| = p^k$ and $|G| = p^k m$, where $p \nmid m$

Let $\operatorname{Syl}_p(G) = \{ H \mid H \text{ is a Sylow } p\text{-subgroup of } G \}$

Examples: If $|G| = 144 = 2^4 \cdot 3^2$, then

$$\begin{aligned} & \text{Syl}_2 = \{ H \leq G \mid |H| = 2^4 \}, \, \text{Syl}_3 = \{ H \leq G \mid |H| = 3^2 \}, \\ & \text{Syl}_5 = \{ H \leq G \mid |H| = 5^0 \} = \{ \{e\} \} \end{aligned}$$

Sylow Theorems (cont.)

Let G be a finite group. Then, for any prime p,

- Second Sylow Theorem
- (1) If H is a p-subgroup of G, and $K \in \operatorname{Syl}_p(G)$, then $\exists g \in G$, $gHg^{-1} \leq K$.
- (2) $\forall H, K \in \text{Syl}_p(G), \exists g \in G, gHg^{-1} = K.$
- (3) $\left| \operatorname{Syl}_p(G) \right| = [G : N(K)] \mid |G|, \text{ where } K \in \operatorname{Syl}_p(G).$
- Third Sylow Theorem
- (1) $\left| \operatorname{Syl}_p(G) \right| \equiv 1 \pmod{p}$.
- (2) $|\operatorname{Syl}_p(G)| \mid m$, where $|G| = p^k m, p \nmid m$.

Thank you

Any questions?