©צוות קורס "תורת המספרים האלגוריתמית" סמסטר א תש"פ: בר אלון, מיכאל פרי, שמואל שמעוני, <mark>אריאל</mark> איברהים שאהין, דורון מור, חיה קלר, אלעד אייגנר-חורב. נכתב ע"י דורון מור

עיקרון האינדוקציה והסדר הטוב

הגדרה: קבוצת המספרים הטבעיים ₪ מוגדרת באופן הבא:

 \mathbb{N} האיבר 1 הינו איבר ב

 \mathbb{N} ב x+1 אזי גם x+1 ב \mathbb{N}

. עקרון הסדר הטוב (WOP): לכל תת קבוצה לא ריקה של \mathbb{Z} או \mathbb{Z} יש איבר מינימלי:

דוגמה: אם נבדוק את סכום המספרים האי זוגיים נראה תופעה מעניינת:

$$1 = 1$$

$$1 + 3 = 4$$

$$1 + 3 + 5 = 9$$

1 + 3 + 5 + 7 = 16

עם מעט חשיבה, נגיע למסקנה הבאה:

$$1 = 1 = 1^{2}$$

$$1 + 3 = 4 = 2^{2}$$

$$1 + 3 + 5 = 9 = 3^{2}$$

$$1 + 3 + 5 + 7 = 16 = 4^{2}$$

?10 אולי עד אולי אולי אולי אבל, עד מתי אבל, עד מתי זה נכון? אולי אולי אבל

ננסה להוכיח את הטענה הבאה:

שענה: $n \in \mathbb{Z}^+$ מתקיים ש

$$\sum_{i=1}^{n} (2i - 1) = n^2$$

הוכחה (בעזרת WOP): נסמן $S\subseteq \mathbb{Z}^+$ קבוצת המספרים המקיימים את הטענה, ו- $S\subseteq \mathbb{Z}^+$ קבוצת המספרים שלא מקיימים את הטענה. נניח בשלילה כי T לא ריקה. לכן, לפי WOP, קיים לה איבר מינימלי- נקרא לו a.

נשים לב כי 1 כן מקיים את הטענה:

$$\sum_{i=1}^{1} 2i - 1 = 2 * 1 - 1 = 1 = 1^{2}$$

.a > 1 ולכן

©צוות קורס "תורת המספרים האלגוריתמית" סמסטר א תש"פ: בר אלון, מיכאל פרי, שמואל שמעוני, <mark>אריאל</mark> איברהים שאהין, דורון מור, חיה קלר, אלעד אייגנר-חורב. נכתב ע"י דורון מור

לפי ההנחה בשלילה נקבל שעבור a מסוים מתקיים

$$\sum_{i=1}^{a} 2i - 1 \neq a^2$$

a-1 היות ו-a הוא מינימלי ב-T, נשקול את a-ו

$$\sum_{i=1}^{a} 2i - 1 \neq a^2$$

$$\sum_{i=1}^{a-1} 2i - 1 + (2a - 1) \neq a^2$$

$$\sum_{i=1}^{a-1} 2i - 1 \neq a^2 - 2a + 1$$

$$\sum_{i=1}^{a-1} 2i - 1 \neq (a-1)^2$$

a לא מקיים את הטענה! את למינימליות של a-1 כלומר, גם

היות והגענו לסתירה על ההנחה בשלילה, הרי שהטענה נכונה.

<u>אינדוקציה חלשה</u>

<u>:1 משפט</u>

תהי $S \subseteq \mathbb{N}$ תת קבוצה המקיימת:

וגם $1 \in S$ (ו.1)

 $k+1 \in S$ אזי $k \in S$ אם (1.2)

 $S = \mathbb{N}$ אזי

הוכחה: נניח בשלילה כי הטענה איננה נכונה, אזי $T\coloneqq\mathbb{N}\backslash S$ איננה קבוצה ריקה. לפי $a-1\in S$ איבר מינימלי יהי זה a היות ו-a>1 אזי a>1 אזי לסתירה.

ניסוח יותר נפוץ של משפט 1 הוא הניסוח הבא.

<u>:2 משפט</u>

 $n \in \mathbb{N}$ טענה מתמטית התלויה ב S(n)

בסיס: S(1) נכונה.

. נכונה S(k+1) צעד: אם S(k) נכונה אזי

©צוות קורס "תורת המספרים האלגוריתמית" סמסטר א תש"פ: בר אלון, מיכאל פרי, שמואל שמעוני,<mark>אריאל</mark> איברהים שאהין, דורון מור, חיה קלר, אלעד אייגנר-חורב. נכתב ע"י דורון מור

 $n \in \mathbb{N}$ אזי הטענה S(n) נכונה לכל

 $\forall n \in \mathbb{Z}^+$ מתקיים ש

$$\sum_{i=1}^{n} (2i - 1) = n^2$$

- $1 \in S$ (I.1)
- $k+1 \in S$ אז גם $k \in S$ אם (1.2)

 $.S = \mathbb{Z}^+$ ואז

הוכחה של (ו.1) (בסיס האינדוקציה): היות ומתקיים

$$\sum_{i=1}^{1} (2i - 1) = 2 * 1 - 1 = 1 = 1^{2}$$

 $.1 \in S$ נקבל כי

הנחה כי $k+1\in S$ אז גם $k+1\in S$. ההנחה כי $k+1\in S$ ההנחה כי אם $k+1\in S$ ההנחה כי $\sum_{i=1}^k (2i-1)=k^2$ היא נקראת הנחת האינדוקציה.

נשים לב כי

$$\sum_{i=1}^{k+1} (2i-1) = \frac{\sum_{i=1}^{k} (2i-1)}{k^2 + 2k} + (2(k+1)-1) = k^2 + 2k + 1 = (k+1)^2$$
לפי הנחת אינדוקציה

 $S = \mathbb{Z}^+$ אזי (ו.2) אזי את מקיימת את מקבוצה אזי בגלל שהקבוצה אזי

<u>אינדוקציה חזקה/שלמה</u>

:3 משפט

. תת קבוצה המקיימת: $S \subseteq \mathbb{N}$ תהי

וגם
$$1 \in S$$
 (S.1)

$$n+1 \in S$$
 אזי $\{0,1,2,...,n\} \in S$ אם (1.2)

 $S = \mathbb{N}$ אזי

ניסוח נפוץ יותר למשפט 3 הינו הניסוח הבא:

©צוות קורס "תורת המספרים האלגוריתמית" סמסטר א תש"פ: בר אלון, מיכאל פרי, שמואל שמעוני, <mark>אריאל</mark> איברהים שאהין, דורון מור, חיה קלר, אלעד אייגנר-חורב. נכתב ע"י דורון מור

<u>משפט 4:</u>

ערה מתמטית התלויה ב $n\in\mathbb{Z}^+$ המקיימת את התנאים הבאים: יהיו $n_0,n_1\in\mathbb{Z}^+$ כך $n_0,n_1\in\mathbb{Z}^+$ טענה מתמטית התלויה ב $n_0\leq n_1$

בסיס: $S(n_0), S(n_0+1), ... S(n_1)$ כולן נכונות.

נכונה. S(k+1) נכונות אז גם $S(n_0), S(n_0+1), ..., S(k-1), S(k)$ צעד: אם

 $n_0 \le n$ נכונה לכל גויה אזי הטענה S(n)

למה 5: אינדוקציה חלשה גוררת אינדוקציה חזקה.

נגדיר $S=\mathbb{N}$ נגדיר להראות ש $S=\mathbb{N}$. נרצה להראות ש $S=\mathbb{N}$. נגדיר

 $Q := \{n \in \mathbb{N} : k \in S \text{ for every natural } k < n\} \cup \{1\}$

מספיק להראות ש $Q=\mathbb{N}$ אכן אם כך, נשים לב כי אם $n\in\mathbb{N}$ אזי $S=\mathbb{N}$ לפי הגדרת . $Q=\mathbb{N}$ מספיק להראות ש $n\in S$ בלומר $n\in S$ בלומר $n\in S$.

נותר להראות כי $Q=\mathbb{N}$. לשם כך נשתמש באינדוקציה חלשה. (1.1) מתקיים ישירות מהגדרת $Q=\mathbb{N}$. כדי . $Q=\mathbb{N}$. כדי . $Q=\mathbb{N}$ יהי $D\in Q$ יהי $D\in S$. היות והוא בקבוצה, מתקיים ש-D=S לפי D=S לפי (1.2) ואם כך D=S ואם כך D=S שאומר ש-D=S כנדרש.

למה <u>6</u>: עיקרון האינדוקציה החזקה גורר את WOP.

 $T=\mathbb{N}$ אין לה איבר מינימלי. נראה שהקבוצה $S\subseteq\mathbb{N}$ שאין לה איבר מינימלי. נראה שהקבוצה $S=\mathbb{N}$, אכן מקיימת את עקרון האינדוקציה החזקה, ולכן $S=\mathbb{N}$, כלומר $S=\Phi$

 $S=\phi$ ולכן $T=\mathbb{N}$ ואז נקבל (S.1), (S.2) נרצה להראות ש

היות ו-1 איבר מינימלי ב- \mathbb{N} נקבל ש $S \neq S$ כי ב-S אין איבר מינימלי. לכן T ו-, 1 היות ו-1 איבר מינימלי ב- \mathbb{N} נקבל ש S נקבל ש (S.1).

נניח כי T
otin T + 1
otin T ונרצה להראות כי n+1
otin T. נניח בשלילה כי n+1
otin T כלומר n+1
otin T מעידה ש n+1
otin T איבר מינימלי ב-n+1
otin T בסתירה להנחה של-n+1
otin T איבר מינימלי.

ראינו ש WOP גורר אינדוקציה חלשה (משפט 1). ראינו גם שאינדוקציה חלשה גוררת חזקה (למה 5), ושאינדוקציה חזקה גוררת את ה-WOP (למה 6). כלומר, הוכחנו את המשפט הבא:

<u>משפט 7:</u>

העקרונות של אינדוקציה חלשה, אינדוקציה חזקה, ו-WOP הינם שקולים.