Fisica 1

UniVR - Dipartimento di Informatica

Fabio Irimie

Indice

1	Sistema di riferimento		
	1.1	Spazio cartesiano	2
2	Gra	andezze	3
	2.1	Grandezze scalari	3
	2.2	Grandezze vettoriali	3
		2.2.1 Scomposizione di un vettore	3
		2.2.2 Versori	4
		2.2.3 Somma di vettori	4
		2.2.4 Differenza di vettori	5
	2.3	Rapporti trigonometrici	5
	2.4	Prodotto scalare	5
		2.4.1 Prodotto scalare tramite componenti	6
	2.5	Prodotto vettoriale	6

1 Sistema di riferimento

È un **sistema di coordinate** rispetto al quale vengono misurate le grandezze coinvolte in un problema. Per fissare un sistema di riferimento si devono fissare:

- ullet Un punto di origine O
- Un insieme di assi lungo determinate direzioni

1.1 Spazio cartesiano

È il sistema di riferimento più comune, individuato da 2 o 3 rette mutuamente perpendicolari, dette **assi cartesiani**, avendo in comune un unico punto chiamato **origine**.

Figura 1: Spazio cartesiano bidimensionale

Definizione 1.1 (Coordinate cartesiane)

Le coordinate cartesiane di un punto P nello spazio vengono determinate tracciando il segmento di perpendicolare da P ad ognuno degli assi. La lunghezza di ciascun segmento da O fino al piede della perpendicolare determina il valore della coordinata cartesiana.

Figura 2: Tipi di spazio cartesiano

2 Grandezze

2.1 Grandezze scalari

Sono grandezze che si possono rappresentare con un numero reale, ad esempio la massa, la temperatura, ecc. Per definire una grandezza scalare è necessario specificare:

- Il valore numerico
- L'unità di misura

2.2 Grandezze vettoriali

Sono grandezze che si possono rappresentare con un **vettore**, ad esempio la forza, la velocità, ecc. Per definire una grandezza vettoriale è necessario utilizzare un vettore, cioè un segmento orientato definito da:

- Intensità (o modulo)
- Direzione
- Verso

Figura 3: Rappresentazione di un vettore

Si può moltiplicare un vettore per uno scalare, ottenendo un vettore con direzione del primo vettore e intensità uguale al prodotto del modulo del primo vettore per lo scalare. Il verso resterà lo stesso del primo vettore in caso di scalare positivo e sarà opposto in caso di scalare negativo.

2.2.1 Scomposizione di un vettore

Un vettore può essere scomposto in due vettori, detti **componenti**, lungo due direzioni ortogonali.

 $\vec{v} = \vec{v_x} + \vec{v_y}$ somma vettoriale

Figura 4: Scomposizione di un vettore

Il modulo del vettore \vec{v} si trova applicando il teorema di Pitagora al modulo delle componenti:

$$|\vec{v}| = \sqrt{|\vec{v_x}|^2 + |\vec{v_y}|^2}$$

2.2.2 Versori

Sono **vettori unitari** (con modulo = 1) diretti come gli assi, in genere indicati come $\hat{i}, \hat{j}, \hat{k}$.

Un vettore può essere indicato come somma dei versori, ciascuno moltiplicato per il modulo della rispettiva componente del vettore:

$$\vec{v} = v_x \hat{i} + v_y \hat{j}$$

Ad esempio:

$$\vec{a} = 2\hat{i} + 3\hat{j} \quad \text{o} \quad \vec{a}(2,3)$$

2.2.3 Somma di vettori

La somma di due vettori si ottiene sommando le rispettive componenti:

Figura 5: Somma di vettori

$$\vec{C} = \vec{A} + \vec{B}$$

$$A_x + B_x = C_x \quad A_y + B_y = C_y$$

$$\vec{C} = C_x \hat{i} + C_y \hat{j}$$

2.2.4 Differenza di vettori

La differenza di due vettori si ottiene sottraendo le rispettive componenti:

Figura 6: Differenza di vettori

$$\vec{C} = \vec{A} - \vec{B} = \vec{A} + (-\vec{B})$$

$$A_x - B_x = C_x \quad A_y - B_y = C_y$$

$$\vec{C} = C_x \hat{i} + C_y \hat{j}$$

2.3 Rapporti trigonometrici

$$\sin(\alpha) = \frac{opposto}{ipotenusa}$$
$$\cos(\alpha) = \frac{adiacente}{ipotenusa}$$
$$\tan(\alpha) = \frac{opposto}{adiacente}$$

2.4 Prodotto scalare

Il prodotto scalare tra due vettori \vec{A} e \vec{B} è definito come:

$$\vec{A} \cdot \vec{B} = AB\cos(\alpha)$$

Dove α è l'angolo tra i due vettori.

$$\alpha = 0 \quad A \cdot B = AB$$

$$\alpha = 90 \quad A \cdot B = 0$$

$$\alpha = 180 \quad A \cdot B = -AB$$

Il prodotto scalare è quindi il numero che si ottiene moltiplicando il modulo del primo per l'intensità del vettore componente del secondo lungo il primo $(b\cos\alpha)$. Un altro modo per scriverlo è:

$$\vec{a} \cdot \vec{b} = ab\cos(\alpha) = ab_a$$

Dove $b_a = b\cos(\alpha)$

2.4.1 Prodotto scalare tramite componenti

Presi 2 vettori:

$$\vec{A} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k} \quad \vec{A}(a_x, a_y, a_z)$$

$$\vec{B} = b_x \hat{i} + b_y \hat{j} + b_z \hat{k} \quad \vec{B}(b_x, b_y, b_z)$$

Il prodotto scalare si può calcolare come:

$$C = \vec{A} \cdot \vec{B} = a_x b_x + a_y b_y + a_z b_z$$

Perchè:

$$\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$$
$$\hat{i} \cdot \hat{j} = \hat{i} \cdot \hat{k} = \hat{j} \cdot \hat{k} = 0$$

Esempio 2.1

$$\vec{A} = 3\hat{i} + 2\hat{j} \quad \vec{B} = \hat{i} + 2\hat{j}$$

$$\vec{A} \cdot \vec{B} = 2 \cdot 3 + 3 \cdot 4 = 6 + 12 = 18$$

$$C = \vec{A} \cdot \vec{B} = (3\hat{i} + 2\hat{j}) \cdot (\hat{i} + 2\hat{j}) = 3 \cdot 1 + 2 \cdot 2 = 3 + 4 = 7$$

2.5 Prodotto vettoriale

Il prodotto vettoriale tra 2 vettori, è un vettore avente modulo uguale al prodotto dei loro moduli per il seno dell'angolo compreso tra essi:

$$|\vec{a} \times \vec{b}| = ab\sin(\alpha)$$

La direzione si individuano con la regola della mano destra.

Figura 7: Regola della mano destra

Il modulo del vettore risultante è uguale all'area del parallelogramma generato dai vettori \vec{a} e $\vec{b}.$