11 Publication number: 0 434 608 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 90810920.0

2 Date of filing: 27.11.90

(5) Int. CI.⁵: **C08K 5/3492,** C08K 5/34, C07D 251/24, // (C08K5/34,

5:3435, 5:3492)

(30) Priority: 05.12.89 US 446369

Date of publication of application : 26.06.91 Bulletin 91/26

(84) Designated Contracting States: AT BE CH DE ES FR GB IT LI NL

(1) Applicant : CIBA-GEIGY AG Klybeckstrasse 141 CH-4002 Basel (CH) (2) inventor: Birbaum, Jean-Luc, Dr. Planche Sup. 2
CH-1700 Fribourg (CH) inventor: Rody, Jean, Dr. Rütiring 82
CH-4125 Riehen (CH) Inventor: Slongo, Mario, Dr. Sägetrainweg 553
CH-1712 Tafers (CH) Inventor: Valet, Andreas, Dr. Im Bruckacker 18
W-7859 Eimeldingen (DE) Inventor: Winter, Roland A. E., Dr. 23 Banksville Road

Armonk, New York 10504 (US)

(54) Stabilized organic material.

67) o-Hydroxyphenyl-s-triazines of the formula I

$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

in which n is 1 to 4 and R_1 to R_7 are as defined in claim 1, can be used, in combination with sterically hindered amines of the polyalkylpiperidine type, for stabilizingorganic polymers. Some of these compounds are novel and can also be used without polyalkylpiperidine.

STABILIZED RGANIC MATERIAL

The present invention relates to an organic material containing, as stabilizers, a mixture of a sterically hindered amine and an o-hydroxyphenyl-s-triazine, and to novel o-hydroxyphenyl-s-triazine.

It is already known from US-Patent 4,619,956 that polymers can be stabilized against the action of light, moisture and oxygen by adding a mixture of a sterically hindered amine and an o-hydroxyphenyl-s-triazine. The triazines used in this context contain at least one phenyl group carrying a hydroxyl group in the o-position.

Triazine compounds of this type are relatively sparingly soluble in many substrates and tend to migrate. In accordance with the present invention, similar triazine derivatives which have an improved compatibility with or solubility in organic polymers are used.

The invention relates to an organic material which has been stabilized against damage caused by light, heat and oxygen and which contains

(a) at least one sterically hindered amine of the polyalkylpiperidine type and

(b) at least one o-hydroxyphenyl-s-triazine, wherein the triazine compound (b) is a compound of the formula i

15

20

25

30

$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

in which n is 1 to 4,

 R_1 and R_2 independently of one another are H, OH, C_1 - C_{12} alkyl, cyclohexyl or trifluoro-methyl, R_3 and R_4 independently of one another are H, OH, C_1 - C_{12} alkyl, cyclohexyl, C_1 - C_{18} -alkoxy or halogen and, in the event that n=1, can also be a radical -OR₇,

 R_{δ} and R_{θ} independently of one another are H, $C_1\text{-}C_{12}\text{alkyl}$ or halogen,

R₇, if n is 1, is

a) C_1 - C_{18} alkyl which is substituted by one or more of the groups OH, C_1 - C_{18} alkoxy, C_3 - C_{18} alkenoxy, halogen, phenoxy (which is unsubstituted or substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy or halogen), furyloxy,

45

50

55

-COOH, -COOR₈, -CONH₂, -CONHR₉, -CON(R₉)(R₁₀), -NH₂, -NHR₈, -N(R₉)(R₁₀), -NHCOR₁₁, -CN and/or by -O-CO-R₁₁,

b) C4-C50alkyl which is interrupted by one or more O and can be substituted by OH or/and glycidyloxy,

c) C₃-C₆alkenyl,

e) cyclohexyl which is unsubstituted or substituted by OH or -OCOR11,

- f) C₇-C₁₁phenylalkyl which is unsubstituted or substituted by OH, Cl or CH₃,
- g) -CO-R₁₂ or

h) -SO2-R13,

and if n is 2, R7 is

10

15

20

25

30

35

- a) C2-C18alkylene,
- b) C₄-C₁₂alkenylene,
- c) xylylene,

d) C3-C20alkylene which is interrupted by one or more O and/or substituted by OH,

e) a group -CH2CH(OH)CH2O-R15-OCH2CH(OH)CH2-, -CO-R16-CO-, -CO-NH-R17-NH-CO- or -(CH2)m-COO- R_{18} -OOC- $(CH_2)_m$ - (in which m is 1 to 3) or

and if n is 3, R7 is a group

$$-(CH_2)\frac{1}{m}COO = R_{19}$$
 m = 1-3,

and if n is 4, R7 is a group

$$-(CH_2)_{m} = COO - R_{20}$$
 m = 1-3,

R₈ is C₁-C₁₈alkyl, C₃-C₁₈alkenyl, C₃-C₂₀alkyl which is interrupted by one or more O, N or S and/or substituted by OH, C₁-C₄alkyl which is substituted by -P(O)(OR₁₄)₂, -N(R₉)(R₁₀) or -OCOR₁₁ and/or OH, C₃-C₁₈alkenyl, glycidyl or C₇-C₁₁phenylakyl,

 R_{e} and R_{10} independently of one another are $C_{1}\text{-}C_{12}\text{alkyl},\ C_{3}\text{-}C_{12}\text{alkoxyalkyl},$

 $C_4-C_{16} \\ dialkylaminoalkyl \ or \ C_5-C_{12} \\ cycloalkyl, \ or \ R_9 \ and \ R_{10} \ together \ are \ C_3-C_9 \\ alkylene \ or \ C_3-C_9 \\ oxaalkylene \ or \ C_8-C_9 \\ oxaalkylene \ oxaalkylene \\ oxaalkylene \ ox$ C₃-C₉azaalkylene,

R11 is C1-C18alkyl, C2-C18alkenyl or phenyl,

 $R_{12} \text{ is } C_1 - C_{18} \\ \text{alkyl, } C_2 - C_{18} \\ \text{alkenyl, phenyl, } C_1 - C_{12} \\ \text{alkoxy, phenoxy, } C_1 - C_{12} \\ \text{alkylamino or } C_8 - C_{12} \\ \text{arylamino or a large property.} \\ \text{arylamino or } C_8 - C_{12} \\ \text{arylamino } C_8 - C_{12} \\ \text{arylamino } C_8 - C_{12} \\ \text{arylamino } C_8 - C_{12} \\$ group -R24-COOH or -NH-R17-NCO,

 R_{13} is C_1 - C_{12} alkyl, C_6 - C_{12} aryl or C_7 - C_{14} alkaryl,

R₁₄ is C₁-C₁₂alkyl or phenyl,

R₁₅ is C₂-C₁₀alkylene, C₄-C₅₀alkylene which is interrupted by one or more 0, phenylene or a group -phenylene-X-phenylene- in which X is -O-, -S-, -SO₂-, -CH₂- or -C(CH₃)₂-,

R₁₆ is C₂-C₁₀alkylene, C₂-C₁₀oxaalkylene or C₂-C₁₀thiaalkylene, C₆-C₁₂arylene or C₂-C₆alkenylene,

 R_{17} is C_{2} - C_{10} alkylene, phenylene, tolylene, diphenylenemethane or a group

 R_{18} is C_2 : C_{10} alkylene or C_4 - C_{20} alkylene which is interrupted by one or more O, R_{19} is C_3 - C_{12} alkanetriyl, R_{20} is C_4 - C_{12} alkanetetryl,

R₂₄ is C₂-C₁₄alkylene, vinylene or o-phenylene.

5

15

20

30

40

45

50

If one of the substituents in formula I is C₁-C₁₂alkyl, it can be unbranched or branched alkyl, for example methyl, ethyl, propyl, isopropyl, n-butyl, i-butyl, s-butyl or t-butyl, pentyl, hexyl, heptyl, octyl, 2-ethylhexyl, dl-t-octyl, nonyl, decyl, undecyl or dodecyl. As C₁-C₁₈alkyl, R₈, R₁₁ and R₁₂ can additionally be, for example, tetradecyl, hexadecyl or octadecyl.

As C_1 - C_{18} alkoxy, R_3 and R_4 are preferably C_1 - C_{12} alkoxy. The alkoxy radical is preferably unbranched. Examples of these are methoxy, ethoxy, propoxy, butoxy, hexyloxy, octyloxy, decyloxy or dodecyloxy.

As substituted C₁-C₁₂alkyl, R₇ can be substituted by one or more of the groups OH, C₁-C₁₈alkoxy, halogen, phenoxy which is unsubstituted or substituted by C₁-C₁₈alkyl, C₁-C₁₈alkoxy or halogen, -COOH, -COOR₈, -CONH₂, -CONH₂, -CON(R₉)(R₁₀), -NH₂, -NH₂, -NH(R₉)(R₁₀), -NHCOR₁₁, -CN or -OCOR₁₁. The following groups are examples of such substituted alkyl groups: -CH₂CH₂OH, -CH₂CH(OH)CH₃, -CH₂CH(OH)C₁₀H₂₁, -CH₂CH₂OCH₃, -CH₂CH₂OC₂H₅, -CH₂CH₂OC₄H₉, -(CH₂)₃OH, -CH₂CH(OH)CH₂OC₁₂H₂, -CH₂CH₂OPhenyl, -CH₂CH₂CI-CH₂CH(OH)CH₂OPhenyl,

$$-$$
 CH $_2$ CH(OH)CH $_2$ О———ОС $_2$ Н $_5$.

 $-\text{CH}_2\text{COOH}, \ -\text{CH}_2\text{COOH}, \ -\text{CH}_2\text{COOC}_2\text{H}_6, \ -\text{CH}_2\text{COOC}_8\text{H}_{17}, \ -\text{CH}_2\text{CH}_2\text{COOCH}_3, \ -\text{CH}_2\text{CH}_2\text{COOC}_4\text{H}_9, \ -\text{CH}_2\text{COOC}_{12}\text{H}_{25}, \ -\text{CH}_2\text{CONHC}_{12}\text{H}_{25}, \ -\text{CH}_2\text{CON(C}_4\text{H}_9)_2, \ -\text{CH}_2\text{CONHC}_{12}\text{H}_{25}, \ -\text{CH}_2\text{CH}_2\text{CON(C}_2\text{H}_5)_2, \ -\text{CH}_2\text{CH}_2\text{NH}_2, \ -\text{CH}_2\text{CH}_2\text{N}_{12}, \ -\text{CH}_2\text{CH}_2\text{N}_2, \ -\text{CH}_2\text{CH}_2\text{NH}_2, \ -\text{CH}_2\text{CH}_2\text{N}_2, \ -\text{CH}_2\text{CH}_2\text{N}_2, \ -\text{CH}_2\text{CH}_2\text{COC}_3\text{H}_7, \ -\text{CH}_2\text{CH}_2\text{COCO}_3\text{H}_7, \ -\text{CH}_2\text{CH}_2\text{COCOC}_3\text{H}_7, \ -\text{CH}_2\text{CH}_2\text{COCOC}_3\text{H}_7, \ -\text{CH}_2\text{CH}_2\text{COCOC}_3\text{H}_{17}, \ -\text{CH}_2\text{CH}_2\text{COCOC}_{17}\text{H}_{16}, \ -\text{CH}_2\text{CH}_2\text{COCOC}_{17}\text{H}_{16}, \ -\text{CH}_2\text{CH}_2\text{COCOC}_3\text{CH}_{17}, \ -\text{CH}_2\text{CH}_2\text{COCOC}_{17}\text{H}_{16}, \ -\text{CH}_2\text{CH}_2\text{COCOC}_3\text{H}_{17}, \ -\text{CH}_2\text{CH}_2\text{COCOC}_{17}\text{H}_{16}, \ -\text{CH}_2\text{CH}_2\text{COCOC}_{17}\text{H}_{18}, \ -\text{CH}_2\text{CH}_2\text{COCOC}_{17}, \ -\text{CH}_2\text{CH}_2\text{COCOC}_{17}, \ -\text{CH}_2\text{CH}_2\text{COCOC}_{17}, \ -\text{CH}_2\text{CH}_2\text{CH}_2\text{COCOC}_{17}, \ -\text{CH}_2\text{CH}_2\text{COCOC}_{17}, \ -\text{CH}_2\text{CH}_2\text{CH}_2\text{COCOC}_{17}, \ -\text{CH}_2\text{CH$

As C_3 - C_6 alkenyl, R_7 can, for example, be allyl, methallyl or 2-butenyl. As C_3 - C_1 8alkenyl, R_8 can additionally als be, for example, octenyl, dodecenyl or oleyl. As C_2 - C_1 8alkenyl,

R₁₁ and R₁₂ can additionally als be vinyl.

As C7-C11phenylalkyl which is unsubstituted or substituted by OH, Cl or CH3, R7 and R8 can, for example, be phenylethyl, 2-hydroxy-2-phenylethyl, 2-phenylpropyl, 3-phenylpropyl, 4-chlorobenzyl or 4-methylbenzyl, but especially benzyl.

As C2-C16alkylene, R7 can be unbranched or branched alkylene, for example di-, tri-, tetra-, hexa-, octa-, deca- or dodeca-methylene, 2,2-dimethyl-prop-1,3-ylene or 1,2-propylene. As C4-C12alkenylene, R7 can, in particular, be 2-buten-1,4-ylene. As C3-C20alkylene which is interrupted by 0 and/or substituted by OH, R7 can, for example, be one of the groups -CH2CH(OH)CH2-, -CH2CH2OCH2CH2- or -CH2CH(OH)CH2O-(CH2)x-OCH2CH(OH)CH2- in which x = 2 - 10.

As C₃-C₂₀alkyl which is interrupted and/or substituted by OH, R₈ can, in particular, be alkyl which is substituted by OH or alkyl which is interrupted by O and substituted by OH. Examples of these are the groups - CH₂CH₂OH, -CH₂CH(OH)CH₃, -CH₂CH(OH)C₈H₁₃, -CH₂CH₂OC₄H₉, -CH₂CH₂OCH₂OH or -CH₂CH₂(OCH₂CH₂)pOH in which p = 2 - 9.

As C₁-C₄alkyl which is substituted by -P(O)(OR₁₄)₂, -N(R₉)(R₁₀) or -OCOR₁₁, R₈ can, for example, be -CH₂CH₂P(O)(OC₂H₅)₂, -CH₂P(O)(OC₆H₁₃)₂, -CH₂CH₂N(CH₃)₂, -CH₂CH₂CH₂N(C₂H₅)₂, -CH₂CH₂OCOC₇H₁₅ or -CH₂CH₂OCOCH = CH₂.

As C₃-C₁₂alkoxyalkyl, R₉ and R₁₀ can, in particular, be 2-(C₁-C₁₀alkoxy)-ethyl, for example 2-methoxyethyl, 2-butoxyethyl or 2-octyloxyethyl. As C₄-C₁₆dialkylaminoalkyl, R₉ and R₁₀ can, for example, be 2-dibutylaminoethyl, 2-diethylaminoethyl or 3-dimethylaminopropyl.

As C₅-C₁₂cycloalkyl, R₉ and R₁₀ can, for example, be cyclopentyl, cyclooctyl or cyclododecyl, but especially cyclohexyl. If R₉ and R₁₀ together are C₃-C₉alkylene, C₃-C₉oxaalkylene or C₃-C₉azaalkylene, they form, together with the N atom to which they are attached, a heterocyclic ring, for example a pyrrolidine, piperidine, 2,6-dimethylpiperidine, morpholine, dimethylmorpholine or piperazine ring.

As C1-C12alkoxy, R12 can, for example, be methoxy, ethoxy, butoxy, hexyloxy, octyloxy, decyloxy or dodecyloxy.

As C₁-C₁₂alkylamino or C₆-C₁₂arylamino, R₁₂ can, for example, be hexylamino, dodecylamino, phenylamino, naphthylamino or biphenylylamino.

As C₂-C₁₀alkylene, R₁₆, R₁₇ and R₁₈ can be unbranched or branched alkylene, for example 1,2-ethylene, tri-, tetra-, penta-, hexa-, octa- or deca-methylene, 1,2-propylene or 2,2-dimethyltrimethylene, while as oxaal-kylene or thiaalkylene, R₁₆ can, for example, be 2-oxatrimethylene, 3-oxapentamethylene, 3-thiapentamethylene or 2-thiatrimethylene. As C₂-C₆alkenylene, R₁₆ can, in particular, be -CH = CH-.

As C₈-C₁₂arylene, R₁₆ and R₁₇ can, for example, be phenylene, naphthylene or biphenylene. As C₇-C₁₅al-kylarylene, R₁₇ can, in particular, be tolylene.

As C₄-C₂₀alkylene which is interrupted by O, R₁₈ can be interrupted by 1-9 O atoms and can, in particular, be the divalent radical formed by removing the two hydroxyl groups from a polyethylene glycol or polypropylene glycol.

In the substituents, aryl on its own or in combined radicals is preferably phenyl, naphthyl or biphenylyl.

Compounds of the formula I which are preferred as the component (b) are those in which n is 1 to 4, R₁ and R₂ independently of one another are H, OH or C₁-C₄alkyl, R₃ and R₄ independently of one another are H, OH, C₁-C₄alkyl, C₁-C₄alkoxy, halogen or a radical -OR₇, R₅ and R₆ independently of one another are H or C₁-C₄alkyl,

R₇, if n is 1, is

45

50

55

20

a) C₁-C₁₈alkyl which is substituted by one or more of the groups OH, C₁-C₁₈alkoxy, allyloxy, phenoxy, furyloxy,

-COORs, -CON(Rs)(Rso) and/or by -OCORss.

b) C4-C50alkyl which is interrupted by on or more O and can be substituted by OH or/and glycldyloxy,

c) allyl, glycidyl or benzyl,

d) cyclohexyl or hydroxycycl hexyl,

and if n is 2, R_7 is C_4 - C_{12} alkenylene, C_4 - C_6 alkenylene, xylylene, C_3 - C_{20} alkylene which is interrupt d by one or more O and/or substituted by OH, or R_7 is a group -CH₂CH(OH)CH₂O- R_{15} -OCH₂CH(OH)CH₂-, -CO- R_{16} -CO-, -CH₂-COO- R_{16} -OOC-CH₂- or

and if n is 3, R_7 is a group $-CH_2COOCH_2$ $-C_2H_5$, and if n is 4, R_7 is a group

$$-\left\{CH_2COOCH_2\right\}_3^C$$
.

 R_8 is C_1 - C_{12} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{20} alkyl which is Interrupted by one or more O and/or substituted by OH or R_8 is C_1 - C_4 alkyl which is substituted by -P(O)(OR₁₄)₂,

R₉ and R₁₀ are C₁-C₆alkyl or R₉ and R₁₀ together are pentamethylene or 3-oxapentamethylene,

R₁₁ is C₁-C₁₂alkyl, C₂-C₅alkenyl or phenyl,

R₁₄ is C₁-C₁₄alkyl,

R₁₅ is C₂-C₈alkylene, C₄-C₅₀alkylene which is interrupted by one or more 0, or is a group

35 R₁₈ is C₂-C₈alkylene, C₂-C₆oxaalkylene or C₂-C₆thiaalkylene and R₁₈ is C₄-C₈alkylene or C₄-C₁₂alkylene which is interrupted by one or more O.

R₁ and R₂ are preferably hydrogen, chlorine or C₁-C₄alkyl, particularly hydrogen or methyl. R₃ and R₄ are preferably hydrogen, chlorine or C₁-C₄alkyl, particularly hydrogen, chlorine or methyl. R₅ and R₆ are preferably hydrogen.

Compounds of the formula I which are particularly preferred as component (b) are those in which n is 1, 2 or 4, R_1 and R_2 independently of one another are H or CH₃, R_3 and R_4 independently of one another are H, CH₃ or CI, R_5 and R_6 are hydrogen,

R₇, if n is 1, is

a) C₁-C₁₄alkyl which is substituted by one or more of the groups OH, C₁-C₁₅alkoxy, allyloxy, phenoxy, furyloxy,

-COOR₈, -CON(R₉)(R₁₀) and/or by -OCOR₁₁,

b) C_e-C₄₅alkyl which is interrupted by on or more O and can be substituted by OH or/and glycidyloxy, c) glycidyl or

6

50

45

5

10

20

30

d) hydroxycyclohexyl,

and if n is 2, R_7 is C_8-C_{12} alkenylene, 2-butenylene-1,4, xylylene, C_3-C_{20} alkylene which is interrupted by one or more O or substituted by OH, or R_7 is a group $-CH_2CH(OH)CH_2O-R_{16}-OCH_2CH(OH)CH_2-, -CO-R_{16}-CO-, -CH_2-COO-R_{16}-OOC-CH_2- or$

5

10

15

and if n is 4,
$$R_7$$
 is $-CH_2COOCH_2$ C

 R_8 is C_4 - C_{10} alkyl, oleyl, C_3 - C_{20} alkyl which is interrupted by one or more O and/or substituted by OH, or R_8 is - $CH_2P(O)(OR_{14})_2$,

20 Re and Rto are C2-Cealkyl

R₁₁ is C₆-C₁₀alkyl, C₂-C₃alkenyl

R₁₄ is C₁-C₁₄alkyl,

R₁₆ is C₂-C₈alkylene, C₁₀-C₄₈alkylene which is interrupted by more than one 0, or is a group

25

30

R₁₆ is C₄-C₈aikylene and R₁₈ is C₄-C₈aikylene.

A further preferred group of compounds of the formula I is formed by those in which n is 1 or 2 and, if n is 1, R_7 is a group -CH₂CH₂(OH)CH₂-OR₂₁ in which R_{21} is C₁-C₁₈alkyl, aliyl, phenyl, furyl, C_6 -C₁₂-alkanoyl or C₃-C₅alkenoyl and, if n is 2, R_7 is a group

-CH₂CH(OH)CH₂O-R₁₅-OCH₂CH(OH)CH₂- in which R₁₅ is as defined above.

The following compounds are examples of individual compounds of the formula I

40

45

35

50

55 $R_7 = CH_2$ phenyl $-CH_2CH_2OH$ $-CH_2CH_2OCOCH_3$ $-CH_2CH_2OCOCH=CH_2$

-CH₂CH(OH)CH₂OC₈H₁₇ -CH₂CH(OH)CH₂O(CH₂) ₁₂₋₁₄CH₃ -CH₂CH(OH)CH₂O phenyl -CH₂CH(OH)CH₂OCOC(CH₃)=CH₂

5

10

15

-CH₂COOH
-CH₂CH₂COOC₄H₈
-CH₂COOC₆H₁₇
-CH₂COO(CH₂CH₂O)₇H
-CH₂COO(CH₂CH(OH)CH₂OCOCH=CH₂
-CH₂COOCH₂CH(CH₃)OCH₂CH(CH₃)OCH(CH₃)CH₃
-CH₂COOCH₂P(O)(OC₂H₆)₂
-CH₂COOCH₂CH(OH)CH₂P(O)(OC₄H₈)₂
-CH₂COO(CH₂)₇CH=CHC₆H₁₇
-CH₂COOCH₂CH₂OCH₂CH₂OC₆H₁₃

25

20

 $-CH_2CONHCH_2CH_2CH_2N(CH_3)_2$ $-CH_2CONHC_8H_{17}$ $-CH_2CON(C_8H_{17})_2$

-CH₂CON(C₂H₅)₂

35 OR₇ OH

45

-CH₂CH(OH)CH₂O(CH₂)₁₂₋₁₄CH₃

55

 $\hbox{-CH}_2\hbox{COOCH}_2\hbox{CH(OH)CH}_2\hbox{OC}_8\hbox{H}_{17}$ -CH₂phenyl -CH₂CH=CH₂ -CH2CON(C4H9)2 -CH2CH2CONHC8H17 5 $-(CH_2)_3 - CONH$ 10 — (СН₂₎₃ -15 -CO-OC₆H₁₃ -CH₂CH₂Cl -CH₂CH₂CN 20 OR₇ 25 OH 30 35 -CH₂CH(OH)phenyl -CH₂CH(OH)CH₂O(CH₂)₁₂₋₁₄CH₃ -CH₂CH(OH)CH₂OCOphenyl 40 -CH₂CH(CH₃)OCOCH₃ -SO₂-C₁₂H₁₅ 45 -CH₂COOC₁₀H₂₁ -CH₂CONHCH₂CH₂OCH₃ 50 -CH₂CH₂CONHCH₂phenyl -(CH_2)₃ $CONH(CH_2$)₃ $N(C_2H_6$)₂

-CH2CONHC12H25

55

-CH₂CH(OH)CH₂-20

25

30

35

40

5

10

- 15

-CH₂-CH=CH-CH₂-

-(CH₂)₄--(CH₂)₆--(CH₂)₈

-(CH₂)₁₂--CH₂CH(OH)CH₂O-CH₂CH₂-OCH₂CH(OH)CH₂-

-CH₂CH(OH)CH₂O-(CH₂)₈-OCH₂CH(OH)CH₂-

$$- \mathsf{CH}_2 \mathsf{CH}(\mathsf{OH}) \mathsf{CH}_2 \mathsf{O} - \mathsf{SO}_2 - \mathsf{OCH}_2 \mathsf{CH}(\mathsf{OH}) \mathsf{CH}_2 - \mathsf{OCH}_2 - \mathsf{OCH}_2$$

-CH₂COO-(CH₂)₆-OCOCH₂-

50

-CO-(CH₂)₈-CO-

$$\begin{split} R_7 = & - \text{CH}_2\text{CH}(\text{OH})\text{CH}_3 \\ & - \text{CH}_2\text{CH}_2\text{OC}_4\text{H}_9 \\ & - \text{CH}_2\text{CH}_2\text{COC}_2\text{H}_5 \\ & - \text{CH}_2\text{COOC}_6\text{H}_{17} \\ & - \text{CH}_2\text{CH}(\text{OH})\text{CH}_2\text{OC}_4\text{H}_9 \\ & - \text{CH}_2\text{CH}(\text{OH})\text{CH}_2\text{Ophenyi} \end{split}$$

$$R_7 = -CH_2CH_2OH$$
 $-CH_2CH_2Ophenyl$
 $-CH_2COOC_6H_{13}$
 $-CH_2CH_2COO(CH_2CH_2O)_3H$
 $-CH_2CH(OH)CH_2OC_6H_{13}$
 $-CH_2CH(OH)CH_2Dhenyl$

Some of the triazine derivatives of the formula I are known compounds. Many such compounds and also their pr paration and their use as UV absorbers for organic materials are described in US Patents 3,244,708,

3,249,608 and 3,423,360. Their use in photographic materials is described in US Patent 3,843,371.

Another fraction of the triazine derivatives constitutes novel compounds. Compounds which are novel and are also a subject of the present invention are those of the formula is

 $\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

in which n is 1 to 4,

. 5

10

15

20

30

35

50

55

R₁ and R₂ independently of one another are H, OH, C₁-C₁₂alkyl, cyclohexyl or trifluoromethyl, R₃ and R₄ independently of one another are H, OH, C₁-C₁₂alkyl, cyclohexyl, C₁-C₁₈alkoxy or halogen and, in the event that n = 1, can also be a radical -OR₇,

 R_{δ} and R_{θ} independently of one another are H, $C_1\text{-}C_{12}$ alkyl or halogen,

R₇, if n is 1, is

a) C_1 - C_{12} alkyl which is substituted by phenoxy (which is unsubstituted or substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy or halogen) or by a group

-COOR₈, -CONH₂, -CONHR₉, -CON(R₉)(R₁₀), -NH₂, NHR₉, -N(R₉)(R₁₀) or -O-CO-R₂₂,

b) C_4 - C_{50} alkyl which is interrupted by more than one O and can be substituted by OH or/and glycidyloxy, be substituted by OH or/and glycidyloxy,

c) glycidyl or a group -CH₂CH(OH)CH₂O-R₂₃-OCH₂CH—CH₂,

d) cylohexyl substituted by OH or -OCOR11

e) a group -CH2CH(OH)CH2OR21

f) a group -SO₂-R₁₃,

g) a group -CO-R₁₂,

45 and if n is 2, R₇ is

a) C2-C12alkylene,

b) C₄-C₁₂alkenylene,

c) xylylene,

d) C₃-C₂₀alkylene which is interrupted by one or more 0 and/or substituted by OH,

e) a group -CH₂CH(OH)CH₂O-R₁₅-OCH₂CH(OH)CH₂-, -(CH₂)_m-COO-R₁₈-OOC-(CH₂)_m- (wherein m is 1-

3) or

and if n is 3,
$$R_7$$
 is a group $\left\{ (CH_2) \right\}_m = COO \left\{ \frac{1}{3} \right\}_3 = R_{20}$ (wherein m is 1-3),

and if n is 4,
$$R_7$$
 is a group $\left\{ (CH_2) \right\}_m COO \left\}_4 R$ (wherein m is 1-3),

R₈ is C₃-C₂₀alkyl which is interrupted by one or more O, N or S and can be substituted by OH, or R₈ is C₁-C₄alkyl which is substituted by -P(O)(OR₁₄)₂, -N(R₉)(R₁₀), or -OCOR₁₁ and/or OH, or R₈ is C₃-C₁₈alkenyl, glycidyl or C₇-C₁₁phenylalkyl,

 R_9 and R_{10} independently are C_1 - C_{12} alkyl, C_3 - C_{12} alkoxyalkyl, C_4 - C_{16} dialkylaminoalkyl or C_5 - C_{12} cycloalkyl, or R_9 and R_{10} together are C_3 - C_9 alkylene or C_3 - C_9 -oxaalkylene or C_3 - C_9 -azaalkylene,

R₁₁ is C₁-C₁₈alkyl, C₂-C₁₈alkenyl or phenyl,

R₁₂ is a group -R₂₄-COOH or -NH-R₁₇-NCO,

R₁₃ is C₁-C₁₂alkyl, C₆-C₁₂aryl or C₇-C₁₄alkaryl

R₁₄ is C₁-C₁₂aikyl or phenyl

R₁₅ is C₂-C₁₀alkylene, C₄-C₅₀alkylene which is interrupted by one or more 0, or R₁₅ is phenylene or a group -phenylene-X-phenylene- in which X is -O-, -S-, -SO₂-, -CH₂- or -C(CH₃)₂-,

R₁₇ is C₂ -C₁₀ alkylene, phenylene, tolylene, diphenylenemethane or a group

 R_{18} is C_2 - C_{10} alkylene or C_4 - C_{20} alkylene which is interrupted by one or more O,

R₁₉ is C₃-C₁₂alkanetriyl,

25

30

35

50

55

R₂₀ is C₄-C₁₂alkanetetryl,

 R_{21} is H, C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, phenyl, phenyl substituted by C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy or halogen, or R_{21} is C_2 - C_{19} alkanoyl, benzoyl, C_3 - C_{18} alkenoyl, furyl or a group

45 R₂₂ is C₂-C₅alkenyl,

wherein X is O, S,
$$SO_2$$
, CH_2 or $C(CH_3)_2$, and

R₂₄ is C₂-C₁₄alkylene, vinylene or o-phenylene.

Amongst these compounds of the formula Ia, preferred compounds are those in which n is 1 to 4, R₁ and

R2 Independently of ne another ar H, OH or C1-C4alkyl, R3 and R4 independently of one an ther ar H, OH, C1-C4alkyl, C1-C4alkoxy, halogen or a radical -OR7, R5 and R6 independently of one another are H or C 1-C. 4alkyl, R7, if n is 1, is C1-Ceakyl which is substituted by -COOR8, -COONHR9, -CON(R9)(R10) or -OCOR22, or R7 is glycidyl, hydroxycyclohexyl or a group

-CH₂CH(OH)CH₂OR₂₁, and if n is 2, R₇ is C₄-C₁₂alkylene, C₄-C₆alkenylene, xylylene, C₃-C₂₀alkylene which is Interrupted by one or more O and/or substituted by OH, or R7 is a group -CH2CH(OH)CH2O-R15-OCH2CH(OH)CH2-, -CH2-COO-R18-OOCCH2- or

and if n is 3,
$$R_7$$
 is a group $\left\{ -CH_2COOCH_2 \right\}_3$ $C-C_2H_5$,

and if n is 4,
$$R_7$$
 is a group $-CH_2COOCH_2$,

R₈ is C₃-C₂₀alkyl which is interrupted by one or more O and can be substituted by OH or R₈ is C₁-C₄alkyl which is substituted by -P(O)(OR₁₄)₂ or R₈ is C₃-C₁₈alkenyl,

Re and Re independently are C1-Calkyl or cyclohexyl or Re and Re together are pentamethylene or 3-oxapentamethylene,

R₁₄ is C₁-C₁₄alkyl,

10

15

20

45

50

R₁₅ is C₂-C₈alkylene, C₄-C₅₀alkylene which is interrupted by one or more 0, or R₁₅ is a group -phenylene-Xphenylene- in which X is -O-, -CH₂- or -C(CH₃)₂-,

R₁₈ is C₄-C₈alkylene or C₄-C₁₂alkylene which is interrupted by one or more 0,

 R_{21} is H, C_4 - C_{18} alkyl, allyl, phenyl, furyl, C_5 - C_{19} alkanoyl or C_3 - C_5 alkenoyl

and R_{22} is C_2 - C_5 alkenyl, in particular those in which n is 1, 2 or 4, R_1 and R_2 independently of one another are

H or CH₃, R₃ and R₄ independently of one another are H, CH₃ or CI, R₅ and R₆ are hydrogen,

R₇, if n is 1, is C₁-C₄alkyl which is substituted by -COOR₈, -CON(R₈)(R₁₀) or -O-COR₂₂, or R₇ is glycidyl, 2-hydroxycyclohexyl or a group -CH2CH(OH)CH2OR21, and if n ls 2, R7 is C6-C12alkenylene, 2-butene-1,4-ylene, xylylene or C₃-C₂₀alkylene which is interrupted by one or more O and/or substituted by OH, or R₇ is a group -CH2CH(OH)CH2O-R15-OCH2CH(OH)CH2-, -CH2-COO-R18-OOCCH2- or

and if n is 4,
$$R_7$$
 is a group $\left\{ CH_2COOCH_2 \right\}_4^C$

R₈ is C₃-C₂₀alkyl which is interrupted by one or more O and can be substituted by OH or R₈ is -CH₂P(O) (OR₁₄)₂

R₉ and R₁₀ are C₂-C₆alkyl

 R_{15} is C_2 - C_8 alkylen, C_{10} - C_{45} alkylene which is interrupted by on or more 0 or is a group

R₁₈ is C₄-C₈alkylene,

R₂₁ Is H, C₄-C₁₅alkyl, allyl, phenyl, furyl, C₅-C₁₂alkanoyl or C₃-C₅alkenoyl

and R₂₂ is C₂-C₃alkenyl.

The compounds of the formula la in which n is 2 are also preferred.

In general, the compounds of the formula I and Ia can be prepared by introducing the radical R7 into the p-hydroxyl group in a compound of the formula II

Η.

R₄

30

5

10

15

20

25

The compounds of the formula II are known compounds and can be prepared by a Friedel-Crafts reaction between cyanuric chloride and 1 mole of an aromatic compound of the formula

35

$$R_1$$
 R_2

40

and 1 mole of an aromatic compound of the formula

45

50

and 1 mole of resorcinol, as described, for example, in Swiss Patent 480,091 or in Swiss Patent 484,695 or in US Patent 3,244,708.

The conversion of II into I can be effected by various processes known per se, depending on the nature of the radical R₇. If R₇ is substituted alkyl, alkenyl, glycidyl, phenylalkyl, -CO-R₁₂, -SO₂-R₁₃, alkylene, alkenylene, xylylene or -COR₁₆CO-, the compound II r an alkali metal salt thereof can be reacted with a halog n compound of the formula Hal-R₇ or Hal-R₇-Hal in which Hal is chlorine, bromine or iodine, in particular with the compounds Cl-R₇ and Cl-R₇-Cl.

If R7 is a group

10

15

20

25

30

55

in which R'is hydrogen or CH_3 and Y is $-COOR_8$, $-CONH_2$, $-CONHR_8$, $-CON(R_9)(R_{10})$ or -CN, the compounds can be prepared by reacting a compound of the formula

R' | Сн₂=с--

in the manner of a so-called Michael addition reaction.

If R₇ is a group -CH₂CH(OH)-W in which W is alkyl, phenyl, phenylalkyl or -CH₂OR₂₁, such compounds can be prepared by reacting a compound of the formula II with an epoxide of the formula

W-CH-CH

Analogously, compounds of the formula I in which n is 2 and R₇ is a group -CH₂CH(OH)CH₂O-R₁₅-OCH₂CH(OH)CH₂-, can be prepared by reacting 2 moles of a compound II and 1 mole of a bis-glycidyl ether of the formula

35 Compounds of the formula I in which R7 is cyclohexyl substituted by OH can be prepared by reaction of II with cyclohexene oxide.

Compounds of the formula I in which n is 2 and R₇ is -CO-NH-R₁₇-NH-CO- can be prepared by reacting 2 moles of a compound of the formula II with 1 mole of a diisocyanate OCN-R₁₇-NCO. Compounds of the formula I in which n is 2 and R₇ is a group -CH₂CH(OH)CH₂- can be prepared by reacting 2 moles of a compound II with 1 mole of epichlorohydrin.

Compounds of formula I or la wherein n is 1 and R7 is a group

-CONH-R₁₇-NCO can be prepared from II by reaction with one molar equivalent of a

compound
$$R_{23}$$
 (OCH₂CH—CH₂)₂ or R_{24} O or OCN- R_{17} -NCO respectively.

It is also possible to convert a compound of the formula I into another compound of the formula I. For example, a hydroxyalkyl or aminoalkyl radical R₇ can be converted by acylati n with R₁₁COCI into the corre-

sponding acyloxy or acylamino derivative.

Or a cyanoalkyl radical R7 can be converted by reduction into an aminoalkyl radical. Compounds in which R7 is alkyl which is substituted by -COOR8 can be transesterified with another alcohol or polyol.

The methods required for the individual stages of the synthesis are known to those skilled in the art; some of them are described in greater detail in the examples which follow later.

The polyalkylpiperidines used as the component (a) preferably contain at least one group of the formula

in which R is hydrogen or methyl. R is preferably hydrogen. These are derivatives of polyalkylplperidines, in particular of 2,2,6,6-tetramethylplperidine. These compounds preferably carry one or two polar substituents or a polar spiro ring system in the 4-position of the piperidine ring. These compounds can be low-molecular or oligometric or polymetric compounds.

The following classes of polyalkyipiperidines are of particular importance.

a) Compounds of the formula III

$$\begin{bmatrix} RCH_2 & CH_3 & R \\ R_{31} & N & - O & - R_{32} \\ RCH_2 & CH_3 & - - R_{32} & - - R_{32} \end{bmatrix}$$

35

50

55

10

15

2Ò

25

30

in which n is a number from 1 to 4, R is hydrogen or methyl, R_{31} is hydrogen, amine oxide, hydroxyl, C_1 - C_{12} alkyl, $C_3-C_8 alkenyl,\ C_3-C_8 alkinyl,\ C_7-C_{12} aralkyl,\ C_1-C_{18} alkoxy,\ C_5-C_8 cycloalkoxy,\ C_7-C_9 phenylalkoxy,\ C_1-C_8 alkanoyl,\ C_8-C_8 cycloalkoxy,\ C_8-C_8 cyc$ C₃-C₅alkenoyl, C₁-C₁₈alkanoyloxy, benzyloxy, glycidyl or a group -CH₂CH(OH)-Z, in which Z is hydrogen, methyl or phenyl, R₃₁ being preferably H, C₁-C₄alkyl, allyl, benzyl, acetyl or acryloyl, and, if n is 1, R₃₂ is hydrogen, C₁-C₁₈alkyl which can be interrupted by one or more oxygen atoms, cyanoethyl, benzyl, glycidyl, a monovalent radical of an aliphatic, cycloaliphatic, araliphatic, unsaturated or aromatic carboxylic acid, carbamic acid or an acid containing phosphorus or a monovalent silyl radical, preferably a radical of an aliphatic carboxylic acid having 2 to 18 C atoms, a cycloaliphatic carboxylic acid having 7 to 15 C atoms, an α,β-unsaturated carboxylic acid having 3 to 5 C atoms or an aromatic carboxylic acid having 7 to 15 C atoms, or, if n is 2, is C_{1} -C₁₂alkylene, C₄-C₁₂alkenylene, xylylene, a divalent radical of an aliphatic, cycloaliphatic, araliphatic or aromatic dicarboxylic acid, dicarbamic acid, or acid containing phosphorus, or a divalent silyl radical, preferably a radical of an aliphatic dicarboxylic acid having 2 to 36 C atoms, a cycloaliphatic or aromatic dicarboxylic acid having 8-14 C atoms or an aliphatic, cycloaliphatic or aromatic dicarbamic acid having 8-14 C atoms, or, if n is 3, is a trivalent radical of an aliphatic, cycloaliphatic or aromatic tricarboxylic acid, an aromatic tricarbamic acid or an acid containing phosphorus, or a trivalent silyl radical, and, if n is 4, is a tetravalent radical of an aliphatic, cycloaliphatic or aromatic tetracarboxylic acid.

Examples of possible C₁-C₁₂alkyl substituents are methyl, ethyl, n-propyl, n-butyl, sec-butyl, tert-butyl, n-hexyl, n-octyl, 2-ethylhexyl, n-nonyl, n-decyl, n-undecyl or n-dodecyl.

As C₁-C₁₈alkyl, R₃₁ or R₃₂ can be the groups defined above and additionally, for example, n-tridecyl, n-tetradecyl, n-hexadecyl or n-octadecyl.

As C₃-C₈alkenyl, R₃₁ can, for example, be 1-pr penyl, allyl, methallyl, 2-butenyl, 2-pentenyl, 2-hexenyl, 2-octenyl, 4-tert-butyl-2-butenyl.

As C3-C8alkinyl, R31 is preferably propargyl.

As C7-C12aralkyl, R31 is especially phenethyl and, in particular, benzyl.

Examples of R₃₁ as C₁-C₆alkanoyl are f rmyl, propionyl, butyryl or octanoyl, but preferably acetyl, and examples of R₂₁ as C₃-C₅alkanoyl are especially acryloyl.

Examples of R₃₁ as C₁-C₁₈alkoxy are hexyloxy, heptyloxy, octyloxy or decyloxy. As cycloalkoxy, R₃₁ is preferably cyclohexyloxy. As phenylalkoxy, R₃₁ is preferably benzyloxy. Examples of R₃₁ as alkanoyloxy are acetoxy, butyroyloxy, hexanoyloxy, octanoyloxy, decanoyloxy or stearoyloxy.

Examples of R₃₂ as a monovalent radical of a carboxylic acid are a radical of acetic acid, caprolc acid, stearle acid, acrylic acid, methacrylic acid, benzolc acid or β-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionic acid.

Examples of R₃₂ as a divalent radical of a dicarboxylic acid are a radical of malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, maleic acid, itaconic acid, phthalic acid, dibutylmalonic acid, dibenzylmalonic acid, butyl-(3,5-di-tert-butyl-4-hydroxybenzyl)-malonic acid or bicycloheptenedicar-boxylic acid.

Examples of R₃₂ as a trivalent radical of a tricarboxylic acid are a radical of trimellitic acid, citric acid or nitrilotriacetic acid.

Examples of R₃₂ as a tetravalent radical of a tetracarboxylic acid are the tetravalent radical of butane-1,2,3,4-tetracarboxylic acid or pyromellitic acid.

Examples of R₃₂ as a divalent radical of a dicarbamic acid are a radical of hexamethylenedicarbamic acid or 2.4-toluvlenedicarbamic acid.

Preferred compounds of the formula III are those in which R is hydrogen, R₃₁ is hydrogen or methyl, n is 1 and R₃₂ is C₁-C₁₈alkyl, or n is 2 and R₃₂ is the diacyl radical of an aliphatic dicarboxylic acid having 4-12 C atoms.

The following compounds are examples of polyalkylpiperidine compounds of this class:

1) 4-Hydroxy-2.2.6.6-tetramethylpiperidine,

20

25

30

35

40

- 2) 1-Allyl-4-hydroxy-2,2,6,6-tetramethylpiperidine,
- 3) 1-Benzyl-4-hydroxy-2,2,6,6-tetramethylpiperidine,
 - 4) 1-(4-tert-Butyl-2-butenyl)-4-hydroxy-2,2,6,6-tetramethylpiperidine,
 - 5) 4-Stearoyloxy-2,2,6,6-tetramethylpiperidine,
 - 6) 1-Ethyl-4-salicyloyloxy-2,2,6,6-tetramethylpiperidine,
 - 7) 4-Methacryloyloxy-1,2,2,6,6-pentamethylpiperidine,
 - 8) 1,2,2,6,6-Pentamethylpiperidin-4-yl β-(3,5-dl-tert-butyl-4-hydroxyphenyl)-propionate,
 - 9) DI-(1-benzyl-2,2,6,6-tetramethylpiperidin-4-yl) maleinate,
 - 10) Di-(2,2,6,6-tetramethylpiperidin-4-yl) succinate.
 - 11) Di-(2,2,6,6-tetramethylpiperidin-4-yl) glutarate,
 - 12) Di-(2,2,6,6-tetramethylpiperidin-4-yl) adipate,
 - 13) Di-(2,2,6,6-tematrethylpiperidin-4-yl) sebacate,
 - 14) Di-(1,2,2,6,6-pentamethylpiperldin-4-yl) sebacate, 15) Di-(1,2,3,6-tetramethyl-2,6-dlethyl-plperidin-4-yl) sebacate,
 - 16) Di-(1-allyl-2,2,6,6-tetramethylpiperidin-4-yl) phthalate,
 - 17) 1-Hydroxy-4-β-cyanoethyloxy-2,2,6,6-tetramethylpiperidine,
 - 18) 1-Acetyl-2,2,6,6-tetramethylpiperidin-4-yl acetate,
 - 19) Tri-(2,2,6,6-tetramethylpiperidin-4-yl) trimellitate,
 - 20) 1-Acryloyl-4-benzyloxy-2,2,6,6-tetramethylpiperidine,
 - 21) Di-(2,2,6,6-tetramethylpiperidin-4-yl) diethylmalonate.
 - 22) Di-(1,2,2,6,6-pentamethylpiperidin-4-yl) dibutylmalonate.
- 45 23) Di-(1,2,2,6,6-pentamethylpiperidin-4-yl) butyl-(3,5-di-tert-butyl-4-hydroxybenzyl)-malonate,
 - 24) Di-(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate,
 - 25) Di-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate,
 - 26) Hexane-1',6'-bis-(4-carbamoyloxy-1-n-butyl-2,2,6,6-tetramethylpiperidine),
 - 27) Toluene-2',4'-bis-(4-carbamoyloxy-1-n-propyl-2,2,6,6-tetramethylplperidine),
 - 28) Tetra-(2,2,6,6-tetramethylpiperidin-4-yl) butane-1,2,3,4-tetracarboxylate,
 - 29) Tetra-(1,2,2,6,6-pentamethylpiperidin-4-yl) butane-1,2,3,4-tetracarboxylate,
 - 30) Tris-(1-propyl-2,2,6,6-tetramethylpiperidin-4-yl) phosphite,
 - 31) Tris-(1-propyl-2,2,6,6-tetramethylpiperidin-4-yl) phosphate,
 - 32) Phenyl-[bis-(1,2,2,6,6-pentamethylpiperidin-4-yl)] phosphonate,
- 55 33) 4-Hydroxy-1,2,2,6,6-pentamethylpiperidine,
 - 34) 4-Hydr xy-N-hydroxyethyl-2,2,6,6-tetramethylpiperidine,
 - 35) 4-Hydroxy-N-(2-hydroxypropyl-2,2,6,6-t tramethylplperidine,
 - 36) 1-Glycidyl-4-hydroxy-2,2,6,6-tetramethylpiperidine.

b) Comp unds of th formula IV

10

15

20

25

35

40

45

50

55

in which n is the number 1 or 2, R and R_{21} are as defined under a), R_{33} is hydrogen, C_1 - C_{12} alkyl, C_2 - C_5 hydroxyalkyl, C_5 - C_7 cycloalkyl, C_7 - C_8 aralkyl, C_2 - C_{18} alkanoyl, C_3 - C_5 alkenoyl, benzoyl or a group of the formula

and, if n is 1, R_{34} is hydrogen, C_1 – C_{18} alkyl, C_3 – C_8 alkenyl, C_5 – C_7 cycloalkyl, C_1 – C_4 alkyl which is substituted by a hydroxyl, cyano, alkoxycarbonyl or carbamide group, glycidyl or a group of the formula -CH₂-CH(OH)-Z or of the formula -CONH-Z in which Z is hydrogen, methyl or phenyl or R_{34} is a group -CO-CO-NH-(C_1 - C_{18} alkyl); or, if n is 2, R_{34} is C_2 – C_{12} alkylene, C_6 - C_{12} arylene, xylylene, a -CH₂-CH(OH)-CH₂- group or a group -CH₂-CH(OH)-CH₂-O-D-O- In which D is C_2 – C_{10} alkylene, C_6 - C_{16} arylene or C_6 - C_{12} cycloalkylene or, provided that R_{33} is not alkanoyl, alkenoyl or benzoyl, R_{34} can also be a divalent radical of an aliphatic, cycloaliphatic or aromatic dicarboxylic acid or dicarbamic acid or the group -CO-, or, if n is 1, R_{33} and R_{34} together can be the divalent radical of an aliphatic, cycloaliphatic or aromatic 1,2-dicarboxylic or 1,3-dicarboxylic acid.

Possible C₁-C₁₂alkyl or C₁-C₁₈alkyl substituents are as already defined under a).

Possible C5-C7cycloalkyl substituents are especially cyclohexyl,

As C7-C8aralkyl, R33 is especially phenylethyl or, in particular, benzyl. As C2-C5hydroxyalkyl, R33 is especially 2-hydroxyethyl or 2-hydroxypropyl.

Examples of R₃₃ as C₂-C₁₈alkanoyl are propionyl, butyryl, octanoyl, dodecanoyl, hexadecanoyl or octadecanoyl, but preferably acetyl, and examples of R₃₃ as C₃-C₅alkenoyl are especially acryloyl.

Examples of R34 as C2-Csalkenyl are allyl, methallyl, 2-butenyl, 2-pentenyl, 2-hexenyl or 2-octenyl.

Examples of R₃₄ as C₁-C₄alkyl which is substituted by a hydroxyl, cyano, alkoxycarbonyl or carbamide group are 2-hydroxyethyl, 2-hydroxypropyl, 2-cyanoethyl, methoxycarbonylmethyl, 2-ethoxycarbonylethyl, 2-aminocarbonylpropyl or 2-(dimethylaminocarbonyl)-ethyl.

Examples of possible C2-C12alkylene substituents are ethylene, propylene, 2,2-dimethyl-propylene, tetramethylene, hexamethylene, octamethylene, decamethylene or dodecamethylene.

Examples of possible C₆-C₁₅arylene substituents are o-, m- or p-phenylene, 1,4-naphthylene or 4,4'-bi-phenylene.

As C6-C12cycloalkylene, D is especially cyclohexylene.

Preferred compounds of the formula IV are those in which n is 1 or 2, R is hydrogen, R₃₁ is hydrogen or methyl, R₃₃ is hydrogen, C₁-C₁₂alkyl or a group of the formula

and, in the event that n = 1, R_{34} is hydrogen or $C_1 - C_{12}$ alkyl and, in the event that n = 2, R_{34} is $C_2 - C_8$ alkylene.

The following compounds are xamples of polyalkylpiperidine compounds f this class:

- 37) N,N'-Bis-(2,2,6,6-tetramethylpiperidin-4-yl)-hexamethylene-1,6-diamine,
- 38) N,N'-Bis-(2,2,6,6-tetramethylpiperidin-4-yl)-hexamethylene-1,6-diacetamide,
- 39) Bis-(2,2,6,6-tetramethylpiperidin-4-yl)-amine,
- 40) 4-Benzoylamino-2,2,6,6-tetramethylpiperidine,
- 41) N,N'-Bis-(2,2,6,6-tetramethylpiperidin-4-yl)-N,N'-dibutyladipamide,
- 42) N,N'-Bis-(2,2,6,6-tetramethylpiperidin-4-yl)-N,N'-dicyclohexyl-2-hydroxypropylene-1,3-diamine,
- 43) N,N'-Bis-(2,2,6,6-tetramethylpiperidin-4-yl)-p-xylylenediamine,
- 44) N,N'-Bis-(2,2,6,6-tetramethylpiperidin-4-yl)-succindiamide,
- 45) N-(2,2,6,6-Tetramethylpiperidin-4-yl)-β-aminopropionic acid dodecyl ester,
- 46) The compound of the formula

10

40

50

55

- 47) N-(1-Octyloxy-2,2,6,6-tetramethylpiperidin-4-yl)-N'-dodecyl-oxalamide
- 48) N-(2,2,6,6-Tetramethylpiperidin-4-yl)- α -dodecylsuccinimide,
- 49) 4-Methacrylamido-1,2,2,6,6-pentamethylpiperidine.
- c) Compounds of the formula V,

 $\begin{bmatrix}
RCH_2 & CH_3 & R \\
R_{31} & N & O \\
RCH_2 & CH_3
\end{bmatrix}$

in which n is the number 1 or 2, R and R₃₁ are as defined under a) and, if n is 1, R₃₅ is C_2 - C_8 alkylen or C_2 - C_8 hydroxyalkylene or C_4 - C_{22} acyloxyalkylene and, if n is 2, R₃₅ is the gr up (-CH₂)₂C(CH₂-)₂.

Examples of R₃₅ as C₂-C₈alkylene or C₂-C₈hydroxyalkylene are ethylene, 1-methyl thylene, propylene,

2-ethylpropylene r 2-ethyl-2-hydroxymethylpropylene.

An xample of R₃₅ as C₄-C₂₂acyloxyalkylene is 2-ethyl-2-acetoxymethylpropylene.

The following compounds are examples of polyalkylpiperidine compounds of this class:

50) 9-Aza-8,8,10,10-tetramethyl-1,5-dioxaspiro[5.5]undecane,

51) 9-Aza-8,8,10,10-tetramethyl-3-ethyl-1,5-dioxaspiro[5.5]undecane,

52) 8-Aza-2,7,7,8,9,9-hexamethyl-1,4-dioxaspiro[4.5]decane,

53) 9-Aza-3-hydroxymethyl-3-ethyl-8,8,9,10,10-pentamethyl-1,5-dioxaspiro[5.5]undecane,

54) 9-Aza-3-ethyl-3-acetoxymethyl-9-acetyl-8,8,10,10-tetramethyl-1,5-dioxaspiro[5.5]undecane,

55) 2,2,6,6-Tetramethylpiperidin-4-spiro-2'-(1',3'-dioxane)-5'-spiro-5"-(1",3"-dioxane)-2"-spiro-4"-

(2"',2"',6"',6"'-tetramethylpiperidine).

5

10

15

20

25

30

35

40

45

55

d) Compounds of the formulae VIA, VIB and VIC

in which n is the number 1 or 2, R and R $_{31}$ are as defined under a), R $_{36}$ is hydrogen, C $_1$ -C $_{12}$ alkyl, allyl, benzyl, glycidyl or C $_2$ -C $_6$ alkoxyalkyl and, if n is 1, R $_{37}$ is hydrogen, C $_1$ -C $_{12}$ alkyl, C $_3$ -C $_6$ alkenyl, C $_7$ -C $_6$ aralkyl, C $_6$ -C $_7$ cycloalkyl, C $_2$ -C $_6$ alkoxyalkyl, C $_6$ -C $_{10}$ aryl, glycidyl or a group of the formula -(CH $_2$) $_p$ -CO-O-Q or the formula -(CH $_2$) $_p$ -CO-CO-Q in which p is 1 or 2 and Q is C $_1$ -C $_4$ alkyl or phenyl, or, if n is 2, R $_{36}$ is C $_2$ -C $_{12}$ alkylene, C $_4$ -C $_{12}$ alkenylene, C $_6$ -C $_{12}$ arylene, a group -CH $_2$ -CH(OH)-CH $_2$ -O-D-O-CH $_2$ -CH(OH)-CH $_2$ - in which D is C $_2$ -C $_{10}$ alkylene, C $_6$ -C $_{16}$ arylene or C $_6$ -C $_{12}$ cycloalkylene, or a group -CH $_2$ CH(OZ')CH $_2$ -(OCH $_2$ -CH(OZ')CH $_2$) $_2$ - in which Z' is hydrogen, C $_1$ -C $_{16}$ alkyl, allyl, benzyl, C $_2$ -C $_{12}$ alkanoyl or benzoyl, T $_1$ and T $_2$ independently of one another are hydrogen, C $_1$ -C $_{16}$ alkyl or C $_6$ -C $_{10}$ aryl or C $_7$ -C $_9$ aralkyl each of which is unsubstituted or substituted by halogen or C $_1$ -C $_4$ alkyl, or T $_1$ and T $_2$, together with the C atom linking them, form a C $_6$ -C $_{12}$ cycloalkane ring.

Examples of possible C₁-C₁₂alkyl substituents are methyl, ethyl, n-propyl, n-butyl, sec-butyl, tert-butyl, n-hexyl, n-octyl, 2-ethylhexyl, n-nonyl, n-decyl, n-undecyl or n-dodecyl.

Examples of possible C₁-C₁₈alkyl substituents can be the groups defined above and also, for example, n-tridecyl, n-tetradecyl, n-hexadecyl or n-octadecyl.

Examples of possible C₂-C₆alkoxyalkyl substituents are methoxymethyl, ethoxymethyl, propoxymethyl, tert-butoxymethyl, ethoxyethyl, ethoxypropyl, n-but xyethyl, tert-butoxy thyl, isopropoxyethyl or propoxypropyl.

Examples of R₃₇ as C₃-C₅alkenyl are 1-propenyl, allyl, methaliyl, 2-butenyl or 2-pentenyl.

As C7-Cearalkyl, R37, T1 and T2 are especially phenethyl or, in particular, benzyl. If T1 abd T2, together with the C atom, form a cycloalkane ring, this can, for example, be a cyclopentane, cyclohexane, cyclooctane or cyclododecane ring

Examples of R₃₇ as C₂-C₄hydroxyalkyl are 2-hydroxyethyl, 2-hydroxypropyl, 2-hydroxybutyl or 4-hydroxybutyl.

As C_6 - C_1 0aryl, R_{37} , T_1 and T_2 are especially phenyl, α -naphthyl or β -naphthyl each of which is unsubstituted or substituted by halogen or C_1 - C_4 alkyl.

Examples of R₃₇ as C₂-C₁₂alkylene are ethylene, propylene, 2,2-dimethylpropylene, tetramethylene, hexamethylene, octamethylene, decamethylene or dodecamethylene.

As C4-C12alkenylene, R37 is especially 2-butenylene, 2-pentenylene or 3-hexenylene.

Examples of R₃₇ as C₆-C₁₂arylene are o-, m- or p-phenylene, 1,4-naphthylene or 4,4'-biphenylene.

Examples of Z' as C2-C12alkanoyl are propionyl, butyryl, octanoyl or dodecanoyl, but preferably acetyl.

As C2-C10alkylene, C6-C15arylene or C6-C12cycloalkylene, D is as defined under b).

The following compounds are examples of polyalkylpiperidine compounds of this class:

56) 3-Benzyl-1,3,8-triaza-7,7,9,9-tetramethylspiro[4.5]decane-2,4-dione,

57) 3-n-Octyl-1,3,8-triaza-7,7,9,9-tetramethylspiro[4.5]decane-2,4-dione,

58) 3-Allyl-1,3,8-triaza-1,7,7,9,9-pentamethylspiro[4.5]decane-2,4-dione,

59) 3-Glycidyl-1,3,8-triaza-7,7,8,9,9-pentamethylspiro[4.5]decane-2,4-dione,

60) 1,3,7,7,8,9,9-Heptamethyl-1,3,8-triazaspiro[4.5]decane-2,4-dione,

61) 2-Isopropyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane,

62) 2,2-Dibutyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane,

63) 2,2,4,4-Tetramethyl-7-oxa-3,20-diaza-21-oxo-dispiro[5.1.11.2]heneicosane,

64) 2-Butyl-7,7,9,9-tetramethyl-1-oxa-4,8-diaza-3-oxospiro[4.5]decane,

65) 8-Acetyl-3-dodecyl-1,3,8-triaza-7,7,9,9-tetramethylspiro[4.5]decane-2,4-dione

or the compounds of the following formulae:

5

10

15

20

30

35

40

45

50

10 15 0=c-N $C - N - CH_2CH(OH)CH_2 - [OCH_2 - CH(OH)CH_2]_2$ 0 20 H₃C, CH₃ 25 N-0=0 30 NH-C=0 35 , Н3 ,CH3 **45** , 63 69 (89 (99

23

50

e) Compounds of the formula VII,

VΠ

in which n is the number 1 or 2 and R_{33} is a group of the formula

15

10

$$-E - (A) \times \begin{pmatrix} H_3C & CH_2R \\ N - R_{31} \\ H_2C & CH_2R \end{pmatrix}$$

20

25 In which R and R₃₁ are as defined under a), E is -O- or -NR₄₁-, A is C₂-C₆alkylene or -(CH₂)₃-O- and x is the numbers 0 or 1, R₃₉ is identical with R₃₈ or is one of the groups -NR₄₁R₄₂, -OR₄₃, -NHCH₂OR₄₃ or -N(CH₂OR₄₃)₂, R₄₀ is identical with R₃₈ or R₃₉, if n is 1, and, if n is 2, is a group -E-B-E- in which B is C₂-C₆alkylene which can be interrupted by -N(R₄₁)-, R₄₁ is C₁-C₁₂alkyl, cyclohexyl, benzyl or C₁-C₄hydroxyalkyl or a group of the formula

30

35

R₄₂ is C₁-C₁₂alkyl, cyclohexyl, benzyl or C₁-C₄hydroxyalkyl and R₄₃ is hydrogen, C₁-C₁₂alkyl or phenyl or R₄₁ and R₄₂ together are C₄-C₅alkylene or C₄-C₅oxaalkylene, for example

45

—
$$\text{CH}_2\text{CH}_2$$
 — CH_2CH_2 — CH_2CH_2 — CH_2CH_2 — CH_2CH_2

50

or R_{41} and R_{42} are each a group of the formula

Examples of possible C₁-C₁₂alkyl substituents are methyl, ethyl, n-propyl, n-butyl, sec-butyl, tert-butyl, n-hexyl, n-octyl, 2-ethylhexyl, n-nonyl, n-decyl, n-undecyl or n-dodecyl.

Examples of possible C₁-C₄hydroxyalkyl substituents are 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 2-hydroxybutyl or 4-hydroxybutyl.

Examples of A as C2-Cealkylene are ethylene, propylene, 2,2-dimethylpropylene, tetramethylene or hexamethylene.

Examples of R₄₁ and R₄₂ together as C₄-C₅alkylene or oxaalkylene are tetramethylene, pentamethylene or 3-oxapentamethylene.

The compounds of the following formulae are examples of polyalkylpiperidine compounds of this class :

55

5

10

15

20

-

••

 $\begin{array}{c|c} CH_{2}-CH_{2} & H_{3}C & CH_{3} \\ & & & \\ & &$

in which R =
$$\begin{pmatrix} C_4H_9 & H_3C & CH_3 \\ N & N & CH_3 \\ C_4H_9-N & H_3C & CH_3 \\ CH_3 & CH_3 & CH_3 \\ CH_4 & CH_3 & CH_3 \\ CH_5 & CH_5 & CH_5 \\ CH_5 & CH_5 &$$

in which R =
$$\begin{pmatrix} C_4H_9 & H_3C & CH_3 \\ N & N & CH_3 \end{pmatrix}$$
 $\begin{pmatrix} C_4H_9 & N & CH_3 \\ N & CH_3 & CH_3 \end{pmatrix}$
 $\begin{pmatrix} CH_3 & CH_3 & CH_3 \\ CH_3 & CH_3 & CH_3 \end{pmatrix}$

f) Oligomeric or polymeric compounds in which the recurring structural unit contains a 2,2,6,6-tetraalkylpiperi-

`СН3

din radical of the formula (I), in particular poly sters, poly thers, polyamides, polyamines, polyurethanes, polyureas, polyureas, poly(meth)acrylates, poly(meth)acrylates and copolymers thereof containing radicals of this type.

The compounds of the following formulae in which m is a number from 2 to about 200 are examples of 2,2,6,6-polyalkylpiperidine light stabilizers of this class.

5

86)
$$H_{3}C$$
 CH_{3} CH_{2} CH_{3} CH_{3} CH_{3} CH_{4} CH_{4} CH_{5} CH_{5}

91)
$$CH_3$$

$$CH_2 \longrightarrow m$$

$$O = C \longrightarrow H_3C \longrightarrow N \longrightarrow CH_3$$

$$C_6H_{13} \longrightarrow N \longrightarrow CH_3$$

$$H_3C \longrightarrow CH_3$$

10

40

45

50

55

94)
$$CH_{3} \rightarrow CH_{3} \rightarrow CH_{3}$$

Of these classes of compounds, classes a), d), e) and f) are particularly sultable, in particular the Compounds Nos. 10, 13, 14, 23, 24, 28, 29, 45, 47, 48, 63, 65, 69, 75, 77, 81, 84, 92 and 93.

Examples of organic materials which can be stabilized with the mixture of (a) and (b) or with a compound of the formula la are fats, waxes, oils, cosmetics or photographic materials, but particularly organic polymers. The following classes are examples of polymers of this type:

- 1. Polymers of monoolefins and diolefins, for example polypropylene, polyisobutylene, polybut-1-ene, polymethylpent-1-ene, polyisoprene or polybutadiene, and polymerizates of cycloolefins, for example cyclopentene or norbomene; and also polyethylene (which can, if desired, be crosslinked), for example high-density polyethylene (HDPE), low-density polyethylene (LDPE) and linear low-density polyethylene (LLDPE).
- 2. Mixtures of the polymers mentioned under 1), for example mixtures of polypropylene with polyisobutyl ne or of polypropylene with polyethylene (for example PP/HDPE or PP/LDPE) and mixt-

ures of different types of polyethylene (for example LDPE/HDPE).

5

10

15

20

25

30

35

40

45

50

55

3. Copolymers of monool fins and diolefins with one another or with other vinyl monomers, for example ethylene/propylene copolymers, linear low-density polyethylene (LLDPE) and mixtures thereof with low-density polyethylene (LDPE), propylene/but-1-ene copolymers, propylene/isobutylene copolymers, ethylene/hexene copolymers, ethylene/methylpentene copolymers, ethylene/hexene copolymers, propylene/butadiene copolymers, isobutylene/isoprene copolymers, ethylene/octene copolymers, propylene/butadiene copolymers, isobutylene/isoprene copolymers, ethylene/alkyl acrylate copolymers, ethylene/alkyl methacrylate copolymers, ethylene/vinyl acetate copolymers or ethylene/acrylic acid copolymers and salts thereof (ionomers), and also terpolymers of ethylene with propylene and a diene, such as hexadiene, dicyclopentadiene or ethylidenenorbornene; and also mixtures of such copolymers with one another and with polymers mentioned under 1), for example polypropylene/ethylene/propylene copolymers, LDPE-ethylene/vinyl acetate copolymers, LDPE-ethylene/acrylic acid copolymers.

3a. Hydrocarbon resins (for example C_6 - C_9), including hydrogenated modifications thereof (for example tackifying resins).

4. Polystyrene, poly-(p-methylstyrene) and poly-(α-methylstyrene).

- 5. Copolymers of styrene or α-methylstyrene with dienes or acrylic derivatives, for example styrene/butadiene, styrene/acrylonitrile, styrene/alkyl methacrylate, styrene/butadiene/alkyl acrylate, styrene/maleic anhydride or styrene/acrylonitrile/methyl acrylate; mixtures of high impact resistance formed from styrene copolymers and another polymer, for example a polyacrylate, a diene polymer or an ethylene/propylene/diene terpolymer; and block copolymers of styrene, for example styrene/butadiene/styrene, styrene/isoprene/styrene, styrene/ethylene-butylene/styrene or styrene/ethylene-propylene/styrene.
- 6. Graft copolymers of styrene or α-methylstyrene, for example styrene on polybutadiene, styrene on polybutadiene/styrene or polybutadiene/acrylonitrile copolymers, styrene and acrylonitrile (or methacrylonitrile) on polybutadiene; styrene, acrylonitrile and methyl methacrylate on polybutadiene; styrene and maleic anhydride or polybutadiene; styrene, acrylonitrile and maleic anhydride or maleimide on polybutadiene, styrene and maleimide on polybutadiene, styrene and alkyl acrylates or alkyl methacrylates on polybutadiene, styrene and acrylonitrile on ethylene/propylene/diene terpolymers, styrene and acrylonitrile on polyalkyl acrylates or polyalkyl methacrylates, styrene and acrylonitrile on acrylate/butadiene copolymers and mixtures thereof with the copolymers mentioned under 5), such as are known, for example, as so-called ABS, MBS, ASA or AES polymers.
- 7. Halogen-containing polymers, for example polychloroprene, chlorinated rubber, chlorinated or chlorosulfonated polyethylene, copolymers of ethylene and chlorinated ethylene, epichlorohydrin homopolymers and copolymers, in particular polymers formed from halogen-containing vinyl compounds, for example polyvinyl chloride, polyvinylidene chloride, polyvinyl fluoride or polyvinylidene fluoride; and copolymers thereof, such as vinyl chloride/vinylidene chloride, vinyl chloride/vinyl acetate or vinylidene chloride/vinyl acetate.
- 8. Polymers derived from α,β -unsaturated acids and derivatives thereof, such as polyacrylates and polymethacrylates, polyacrylamides and polyacrylonitriles.
- 9. Copolymers of the monomers mentioned under 8) with one another or with other unsaturated monomers, for example acrylonitrile/butadiene copolymers, acrylonitrile/alkyl acrylate copolymers, acrylonitrile/vinyl halide copolymers or acrylonitrile/alkyl methacrylate/butadiene terpolymers.
- 10. Polymers derived from unsaturated alcohols and amines or acyl derivatives or acetals thereof, such as polyvinyl alcohol, polyvinyl acetate, stearate, benzoate or maleate, polyvinylbutyral, polyallyl phthalate or polyallylmelamine; and copolymers thereof with olefins mentioned in item 1.
- 11. Homopolymers and copolymers of cyclic ethers, such as polyalkylene glycols, polyethylene oxide, polypropylene oxide or copolymers thereof with bisglycidyl ethers.
- 12. Polyacetals, such as polyoxymethylene, and also polyoxymethylenes of this type containing comonomers, for example ethylene oxide, and polyacetals modified with thermoplastic polyurethanes, acrylates or MRS
- Polyphenylene oxides and sulfides and mixtures thereof with styrene polymers or polyamides.
- 14. Polyurethanes derived from polyethers, polyesters and polybutadienes having terminal hydroxyl groups on the one hand and from aliphatic or aromatic polyisocyanates on the other hand, and also precursors thereof.
- 15. Polyamides and copolyamides derived from diamines and dicarboxylic acids and/or from aminocarboxylic acids or the corresponding lactams, such as polyamide 4, polyamide 6, polyamide 6/6, 6/10,

6/9, 6/12 or 4/6, polyamide 11, polyamide 12 and aromatic polyamides formed from m-xylene, diamine and adipic acid; and polyamides prepared from hexamethylenediamine and isophthalic and/or terephthalic acid and, if appropriate, an elastomer as modifier, for example

- poly-2,4,4-trimethylhexamethyleneterephthalamide or poly-m-phenyleneisophthalamide. Block copolymers of the polyamides mentioned above with polyolefins, olefin copolymers, ionomers or chemically attached or grafted elastomers; or with polyethers, for example polyethylene glycol, polypropylene glycol or polytetramethylene glycol. Also polyamides or copolyamides modified with EPDM or ABS; and polyamides which have been condensed during processing ("RIM polyamide systems").
- 16. Polyureas, polyimides, polyamide-imides and polybenzimidazoles.
- 17. Polyesters derived from dicarboxylic acids and dialcohols and/or from hydroxycarboxylic acids or the corresponding lactones, such as polyethylene terephthalate, polybutylene terephthalate, poly-1,4-dimethylolcyclohexane terephthalate, polyhydroxybenzoates and block polyether esters derived from polyethers having hydroxyl end groups; and also polyesters modified with polycarbonates or MBS.
- 18. Polycarbonates and polyester carbonates.
- 19. Polysulfones, polyether sulfones and polyether ketones.
- 20. Crosslinked polymers derived from aldehydes on the one hand and phenols, urea or melamine on the other hand, such as phenol/formaldehyde, urea/formaldehyde and melamine/formaldehyde resins.
- 21. Drying and non-drying alkyd resins.

10

15

20

25

30

35

40

45

50

55

- 22. Unsaturated polyester resins derived from copolyesters of saturated and unsaturated dicarboxylic acids with polyhydric alcohols, and also vinyl compounds as crosslinking agents, and also halogen-containing modifications thereof of low flammability.
 - 23. Crosslinkable acrylic resins derived from substituted acrylic acid esters, for example from epoxyacrylates, urethane acrylates or polyester acrylates.
 - 24. Alkyd resins, polyester resins and acrylate resins crosslinked with melamine resins, urea resins, polyisocyanates or epoxy resins.
 - Crosslinked epoxy resins derived from polyepoxides, for example from bis-glycidyl ethers or cycloaliphatic diepoxides.
 - 26. Natural polymers, such as cellulose, natural rubber, gelatine and the polymer-homologously chemically modified derivatives thereof, such as cellulose acetates, propionates and butyrates or the cellulose ethers, such as methylcellulose; and also colophony resins and derivatives.

The use of the compounds according to the invention in coatings of all types is particularly preferred. These can be pigmented or unpigmented coatings or metal effect coatings. They can contain an organic solvent or can be solvent-free or can be aqueous coatings.

The coatings can contain, as a binder, at least one of the polymers listed above. The following are examples of coatings containing special binders:

- 1. Coatings based on cold-crosslinkable or hot-crosslinkable alkyd, acrylate, polyester, epoxy or melamine resins or mixtures of such resins, if desired with an added acid curing catalyst;
- 2. Two-component polyurethane coatings based on acrylate, polyester or polyether resins containing hydroxyl groups, and on aliphatic or aromatic polyisocyanates;
- One-component polyurethane coatings based on masked polyisocyanates which are unmasked during baking;
 - 4. Two-component coatings based on (poly)ketimines and aliphatic or aromatic polylsocyanates;
 - 5. Two-component coatings based on (poly)ketimines and an unsaturated acrylate resin or a polyacetoacetate resin or a methyl methacrylamidoglycolate;
- Two-component coatings based on polyacrylates and polyepoxides containing carboxyl or amino groups;
 - 7. Two-component coatings based on acrylate resins containing anhydride groups, and on a polyhydroxyl or polyamino component;
 - 8. Two-component coatings based on (poly)oxazolidines and acrylate resins containing anhydride groups, or unsaturated acrylate resins or aliphatic or aromatic polyisocyanates;
 - 9. Two-component coatings based on unsaturated polyacrylates and polymalonates;
 - 10. Thermoplastic polyacrylate coatings based on thermoplastic acrylate resins or extraneously crosslinking acrylate resins in combination with etherified melamine resins;
 - 11. Coating systems based on siloxane-modified or silane-modified or fluorine-modified acrylate resins.
 - The coatings can als be radiation-curable. In this case the binder is composed of monomeric or oligomeric compounds which contain ethyl nic double bonds and are convirted into a crosslinked, high-molecular form by irradiation with actinic light or with electron beams. In most cases the binder is a mixture of such compounds. In radiation-curable coatings the compounds of formula I can be used also in absonce if a sterically hindered

amine.

5

15

20

25

30

35

40

45

50

55

The coatings can be applied as ne-coat r two-coat systems, it being preferable to add the stabilizers according to the invention to the unpigmented top coat.

The coatings can be applied to the substrates (metal, plastic, wood, etc.) by the customary processes, for example by brushing, spraying, curtain-coating, dipping or electrophoresis.

The amount of (a) and (b) added depends on the substrate and the requirements for its stability. In general, 0.01 to 5% by weight, in particular 0.02 to 2% by weight, of the component (a) and 0.02 to 5% by weight, in particular 0.05 to 3% by weight, of the component (b) are added, relative to the polymer.

The two components can be added on their own or as a mixture. Addition is preferably carried out before or during the shaping of the polymer. It can also be carried out as early as the preparation of the polymer, for example before or during polymerization.

The compounds of the formula la can also be used on their own, le. without a sterically hindered amine, for stabilizing organic polymers. In this case 0.01 to 10% by weight, for example, preferably 0.05 to 5% by weight, of a compound of the formula la is added to the polymer. The use of compounds of the formula la as a stabilizer for polycarbonates is of particular interest.

In addition to the stabilizers, according to the invention, of the formula la or the stabilizer combination (a) + (b), It is also possible to add other stabilizers to the polymer. The following are examples of these:

1. Antioxidants

1.1. Alkylated monophenols, for example 2,6-di-tert-butyl-4-methylphenol, 2-tert-butyl-4,6-dimethylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-n-butylphenol, 2,6-di-tert-butyl-4-isobutylphenol, 2,6-di-cyclopentyl-4-methylphenol, 2-(a-methylcyclohexyl)-4,6-dimethylphenol, 2,6-di-tert-butyl-4-methylphenol, 2,4,6-tricyclohexylphenol, 2,6-di-tert-butyl-4-methoxymethylphenol and 2,6-di-nonyl-4-methylphenol.

1.2. Alkylated hydroquinones, for example 2,6-di-tert-butyl-4-methoxyphenol, 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone and 2,6-diphenyl-4-octadecyloxyphenol.

1.3. Hydroxylated thiodiphenyl ethers, for example 2,2'-thiobis-(6-tert-butyl-4-methylphenol), 2,2'-thiobis-(4-octylphenol), 4,4'-thiobis-(6-tert-butyl-2-methylphenol).

1.4. Alkylidene bisphenols, for example 2,2'-methylenebis-(6-tert-butyl-4-methylphenol), 2,2'-methylenebis-(6-tert-butyl-4-methylphenol), 2,2'-methylenebis-(6-tert-butyl-4-methylphenol), 2,2'-methylenebis-(4-methyl-6-cyclohexylphenol), 2,2'-methylenebis-(6-nonyl-4-methylphenol), 2,2'-methylenebis-(4,6-di-tert-butylphenol), 2,2'-ethylidenebis-(4,6-di-tert-butylphenol), 2,2'-ethylidenebis-(6-tert-butyl-4-isobutylphenol), 2,2'-methylenebis-[6-(a-methylbenzyl)-4-nonylphenol), 2,2'-ethylidenebis-(6-tert-butyl-4-isobutylphenol), 2,2'-methylenebis-[6-(a-methylbenzyl)-4-nonylphenol),

2,2'-methylenebis-[6-(α,α-dimethylbenzyl)-4-nonylphenol], 4,4'-methylenebis-(2,6-di-tert-butyl-phenol), 4,4'-methylenebis-(6-tert-butyl-2-methylphenol), 1,1-bis-(5-tert-butyl-4-hydroxy-2-methylphenyl)-butane, 2,6-bis-(3-tert-butyl-5-methyl-2-hydroxybenzyl)-4-methylphenol, 1,1,3-tris-(5-tert-butyl-4-hydroxy-2-methylphenyl)butane, 1,1-bis-(5-tert-butyl-4-hydroxy-2-methylphenyl)-3-n-dodecylmercaptobutane, ethylene glycol bis-[3,3-bis-(3'-tert-butyl-4'-hydroxyphenyl)-butyrate], bis-(3-tert-butyl-4-hydroxy-5-methylphenyl)-dicyclopentadiene and bis-[2-(3'-tert-butyl-2'-hydroxy-5'-methylbenzyl)-6-tert-butyl-4-methylphenyl] terephthalate.

1.5. Benzyl compounds, for example 1,3,5-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzene, bis-(3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, isooctyl 3,5-di-tert-butyl-4-hydroxybenzylmercap-toacetate, bis-(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)-dithiol terephthalate,

1,3,5-tris-(3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris-(4-tert-butyl-3-hydroxy-2,6-dimethyl-benzyl) isocyanurate, dioctadecyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, the Ca salt of monoethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate and 1,3,5-tris-(3,5-dicyclohexyl-4-hydroxybenzyl) isocyanurate.

1.6. Acylaminophenols, for example 4-hydroxylauranilide, 4-hydroxystearanilide, 2,4-bis-(octylmer-capto)-6-(3,5-di-tert-butyl-4-hydroxylauranilino)-s-triazine and octyl N-(3,5-di-tert-butyl-4-hydroxyphenyl)-carbamate.

1.7. Esters of β-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionic acid, with monohydric or polyhydric alcohols, for example methanol, octadecanol, 1,6-hexanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris-(hydroxyethyl) isocyanurate and N,N'-bis-(hydroxyethyl)oxamide.

1.8. Esters of β-(5-tert-butyl-4-hydroxy-3-methylphenyl)-propionic acid with monohydric or polyhydric alcohols, for example methanol, ctadecanol, 1,6-hexanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, pentaerythritol, tris-(hydroxyethyl) isocyanurate and N,N'-bis-(hydroxyethyl)

roxyethyl)oxamide.

1.9. Esters of β-(3,5-dicycloh xyl-4-hydroxyphenyl)-propionic acid with m n hydric or polyhydric alcohols, for example methanol, octadecanol, 1,6-hexanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris-(hydroxyethyl) Isocyanurate and N,N'-bis-(hydroxyethyl)oxamide.

1.10. Amides of β-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionic acid, for example N,N'-bis-(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexamethylenediamine, N,N'-bis-(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-trimethylenediamine and N,N'-bis-(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hydrazine.

2. UV absorbers and light stabilizers

- 2.1. 2-(2'-hydroxyphenyl)-benzotriazoles, for example the 5'-methyl-, 3',5'-di-tert-butyl-, 5'-tert-butyl-, 5'-(1,1,3,3-tetramethylbutyl)-, 5-chloro-3',5'-di-tert-butyl-, 5-chloro-3'-tert-butyl-5'-methyl-, 3'-sec-butyl-5'tert-butyl-, 4'-octoxy-, 3',5'-di-tert-amyl-, 3',5'-bis-(α,α-dimethylbenzyl)- derivative.
- 2.2. 2-Hydroxybenzophenones, for example the 4-hydroxy, 4-methoxy-, 4-octoxy-, 4-decyloxy-, 4-dode-15 cyloxy-, 4-benzyloxy-, 4,2',4'-trihydroxy- or 2'-hydroxy-4,4'-dimethoxy- derivative. 2.3. Esters of unsubstituted or substituted benzoic acids, for example 4-tert-butylphenyl salicylate,

phenyl salicylate, octylphenyl salicylate, dibenzoylresorcinol, bis-(4-tert-butylbenzoyl)-resorcinol, benzoylresorcinol, 2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate and hexadecyl 3,5-di-tert-bu-

tyl-4-hydroxybenzoate.

20

35

40

55

- 2.4. Acrylates, for example ethyl or isooctyl α-cyano-β,β-diphenylacrylate, methyl α-carbomethoxycinnamate, methyl or butyl α-cyano-β-methyl-p-methoxycinnamate, methyl α-carbomethoxy-p-methoxycinnamate or N-(β-carbomethoxy-β-cyanovinyl)-2-methylindoline.
- 2.5. Nickel compounds, for example nickel complexes of 2,2'-thlobis-[4-(1,1,3,3-tetramethylbutyl)-phenol], such as the 1:1 complex or the 1:2 complex, if appropriate with additional ligands, such as n-bu-25 tylamine, triethanolamine or N-cyclohexyldiethanolamine, nickel dibutyldithiocarbamate, nickel salts of monoalkyl 4-hydroxy-3,5-di-tert-butylbenzylphosphonates, such as the methyl or ethyl ester, nickel complexes of ketoximes, such as 2-hydroxy-4-methylphenyl undecyl ketoxime, or nickel complexes of 1-phenyl-4-lauroyl-5-hydroxypyrazole, if appropriate with additional ligands.
- 2.6. Oxamides, for example 4,4'-di-octyloxyoxanilide, 2,2'-di-octyloxy-5,5'-di-tert-butyloxanilide, 2,2'-di-30 dodecyloxy-5.5'-dl-tert-butyloxanilide, 2-ethoxy-2'-ethyloxanilide, N,N'-bis-(3-dimethylaminopropyl)-oxalamide, 2-ethoxy-5-tert-butyl-2'-ethyloxanilide and a mixture thereof with

2-ethoxy-2'-ethyl-5,4'-di-tert-butyloxanilide or mixtures of o-methoxy- and p-methoxy-disubstituted oxanilides and of o-ethoxy- and p-ethoxy-disubstituted oxanilides.

- 3. Metal deactivators, for example N,N'-diphenyloxamide, N-salicylal-N'-salicyloylhydrazine, N,N'-bis-(salicyloyl)-hydrazine, N,N'-bis-(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hydrazine, 3-salicyloylamino-1,2,4-triazole and bis-(benzylidene)-oxalic acid dihydrazide.
- 4. Phosphites and phosphonites, for example triphenyl phosphite, diphenyl alkyl phosphites, phenyl dialkyi phosphites, tris-(nonylphenyl) phosphite, trilauryi phosphite, trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tris-(2,4-di-tert-butylphenyl) phosphite, dilsodecyl pentaerythritol diphosphite, bis-(2,4-di-tert-butylphenyl) pentaerythritol diphosphite, tristearyl sorbitol triphosphite, tetrakis-(2,4-ditertbutylphenyl) 4.4'-biphenylene diphosphonite and 3,9-bis-(2,4-di-tert-butylphenoxy)-2,4,8, 10-tetraoxa-3.9-diphosphaspiro[5.5]undecane.
- 5. Compounds which destroy peroxides, for example esters of β-thiodipropionic acid, for example the lauryl, stearyl, myristyl or tridecyl esters, mercaptobenzimidazole, the zinc salt of 2-mercaptobenzimi-45 dazole, zinc dibutyidithiocarbamate, dioctadecyl disulfide and pentaerythritol tetrakis-(β-dodecylmercapto)propionate.
 - 6. Polyamide stabilizers, for example copper salts in combination with iodides and/or phosphorus compounds and salts of divalent manganese.
- 7. Basic co-stabilizers, for example melamine, polyvinylpyrrolidone, dicyandiamide, triallyl cyanurate. 50 urea derivatives, hydrazine derivatives, amines, polyamides, polyurethanes, alkali and alkaline earth salts of higher fatty acids, for example Ca stearate, Zn stearate, Mg stearate, Na ricinoleate and K palmitate, antimony pyrocatecholate or tin pyrocatecholate.
 - 8. PVC stabilizers, for example organotin compounds or salts of barium, cadmium, zinc and led.
 - Other materials such as are customary in the technology of plastics and paints can also be added. Examples of these are fillers and reinforcing agents, pigments, dyes, plasticizers, solvents, lubricants, flow-control agents, fluorescent brighteners, nucleating agents, antistatic ag nts or fire-retarding agents.

The inventi n also relates, therefore, to organic polymers containing, as stabilizers, a sterically hindered

amine of the polyalkylpiperidine type and a hydroxyphenyltriazine of the formula I, and also to organic polymers containing a compound of the formula Ia as the stabilizer.

The polymers stabilized in this manner can be used in various shapes, for example as films, fibres, tapes, mouldings, profiles, latex, dispersions, paints or cements.

The following examples illustrate the invention in greater detail without intending to limit it to the examples. Parts and percentages are parts by weight and percentages by weight.

Preparation Examples

6

10

20

45

50

55

Example 1: 23.8 g (0.06 mol) of 2-(2,4-dihydroxyphenyl)-4,6-bis-(2,4-dimethylphenyl)-1,3,5-triazine (prepared as described in US Patent 3,244,708 Example 16) are suspended in 300 ml of xylene. 12.1 g (0.09 mol) of 97% butyl glycidyl ether and 0.75 g (0.006 mol) of dimethylbenzylamine are added to this suspension, and the mixture is heated to reflux temperature. After a reaction time of 5 hours the clear, brownish solution is cooled and clarified by filtration through 100 g of silica gel. The yellow solution is evaporated and the residue is recrystallized from hexane/toluene. This gives 27.3 g of pale yellow crystals of 2-[2-hydroxy-4(3-butoxy-2-hydroxypropyloxy)-phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin (= 86% yield). Melting point: 80-83°C (Compound 1).

In analogous manner the compounds 2 to 28, listed in Table 1, are obtained from 2-(2,4-dihydroxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine and an epoxy compound.

Table 1

EP 0 434 608 A1

	Compound	n	R ₇	Physical data
5	1	1	-CH ₂ CH(OH)CH ₂ OC ₄ H ₉	m.p. 80-83°C
	2	1	-CH ₂ CH(OH)CH ₂ OCOC(CH ₃)=CH ₂	m.p. 100-103°C
	3	2	-CH ₂ CH(OH)CH ₂ O-(CH ₂) ₄ -OCH ₂ CH(OH)CH ₂ -	m.p. 150-152°C
10	4	1	-CH ₂ CH(CH ₂) ₃ CH ₃	m.p. 115-117°C
10	5	1	OH -CH ₂ CH(OH)CH ₂ -OH	m.p. 165-167°C
15	6	1	-CH ₂ CH(OH)CH ₂ -O	m.p. 101-104°C
	7	1	-CH ₂ CH(OH)CH ₂ -O-CH ₂ CH-C ₄ H ₉	m.p. 75-77*C
20	8	1	C ₂ H ₅ OH CH ₃ (CH ₂) ₇ CH-CH-(CH ₂) ₇ COOC ₈ H ₁₇	Oil found: calc.: C: 75.6 % C: 75.9 %
25	9	2	-сн ₂ сн(он)сн ₂ -о Сн ₃ О-сн ₂ сн(он)сн ₂ -	H: 9.2% H: 9.1%

	Compound	п	R ₇	Physical data
5	10	1	-CH ₂ CH(OH)(CH ₂) ₁₁ CH ₃	m.p. 102-104°C
	11	1	-CH ₂ CH(OH)(CH ₂) ₇ CH ₃	m.p. 97-99°C
10	12	1	CH ₃ CH ₃ O O I I -CH ₂ CH(OH)CH ₂ O-CH(CH ₂ OCH ₂ CH-CH ₂) ₂	Oil found: calc.: C: 64.9 % C: 66.7 % H: 7.6 % H: 7.16% N: 4.4 % N: 5.4 %
15	13	1	CH ₃ O I -CH ₂ CH(OH)CH ₂ O- ₁ CH ₂ CH ₂ O ₃ -CH ₂ CH-CH ₂ r = 10-14 CH ₃	Oil found: N: 3.75 % calc.: N: 3.43 %
	14	2	-CH ₂ CH(OH)CH ₂ O-[CH ₂ CH ₂ O _] -CH ₂ CH(OH)CH ₂ - r = 10-14	Oil found: N: 5.17 % calc.: N: 5.18 %
20	15	1	-CH ₂ CH(OH)CH ₂ OCOC ₉ H ₁₉ НО	Oil found: N: 6.3 % calc.: N: 6.7 %
25	16	1		m.p. 152-155°C
	17	1	-CH ₂ CH(OH)CH ₂ O(C ₁₃ H ₂₇ to C ₁₅ H ₃₁)	Oil MS, NMR
30	18	1	-CH ₂ CH(OH)CH ₂ O(C ₁₂ H ₂₅ to C ₁₄ H ₂₉) CH ₃	Oil MS, NMR
35	19	2	-CH ₂ CH(OH)CH ₂ OCH ₂ CCH ₂ OCH ₂ CH(OH)CH ₂ - CH ₃	Resin found: C=71.3%, H = 6.6% calc.: C=71.4%, H = 6.6%
55	20	1	-CH ₂ CH(OH)CH ₂ OCOC ₁₀ H ₂₁ -tert.	Resin MS, NMR
	21	1	-CH ₂ CH(OH)CH ₂ OCH ₂ CH=CH ₂	m.p. 94-95°C
40	22	1	-CH ₂ CH(OH)CH ₃	m.p. 151-153°C
10	23	1	-CH2CH(OH)CH2O	m.p. 99-101°C
45	24	2	HO CO-O-CH ₂ —OH	Resin found: N= 8.2 % calc.: N= 8.3 %
		ı	l	1

50

Example 2: 22.1 g (0.05 mol) of 2-(2-hydroxy-4-hydroxyethoxy-phenyl)-4,6-bls(2,4-dimethylphenyl)-1,3,5-triazine (prepared as described in US Patent 3,244,708, Example 18), are dissolved in 300 ml of tetrahydrofurane at 40°C and 21 ml (0.15 mol) of triethylamine are added. A solution of 5.05 ml (0.053 mol) of acrylic acid chloride in 20 ml THF is added dropwise with stirring and with cooling the reaction mixture to 25-30°C. After further stirring of two hours the precipitated ammonium salt is filtered off, the filtrate is evaporated and the residue recrystallized from toluene-hexane mixture to obtain 22 g (88.7% yield) of 2-(2-hydroxy-4-acryloy-loxyethoxy-phenyl)-4,6-bls(2,4-dimethylphenyl)-1,3,5-triazine as slightly yellow crystals (compound No. 25).

m.p. 128-129°C.

In analogous manner the compounds No. 26 and 27 were prepared.

Compound	n	R ₇	Phys. data
25.	1	-CH ₂ CH ₂ OCOCH=CH ₂	m.p. 128-129°C
26	1	-CH ₂ CH(CH ₃)OCOCH=CH ₂	m.p. 128-129°C
27	1	-CH ₂ CH ₂ OCOCH(CH ₃)=CH ₂	m.p. 128-129°C

Example 3: 20 g (0.04 moi) of 2-(2-hydroxy-4-ethoxycarbonylmethoxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine (prepared as described in US Patent 3,244,708, Example 19), are dissolved in 100 ml of toluene, and 5 g (0.048 moi) of 2-methylpentanol and 0.5 g of dibutyltin oxide as catalyst are added, and the mixture is heated to reflux temperature. In the course of this a toluene/ethanol mixture is distilled off. The toluene is replenished dropwise from a dropping funnel. The transesterification reaction is complete after 2 hours. The solution is cooled and filtered through 80 g of silica gel and is then evaporated. The residue is recrystallized from ethanol. This gives 14 g of the compound 28 (see Table 2). Melting point: 87-89°C.

Compounds 29 to 37 are obtained analogously by transesterification with the corresponding alcohols.

Table 2

	1				
Compound	Rs	Physical data	a		
28	-CH ₂ CHCH ₂ CH ₃	m.p. 87 -89°C	ပ္စ	:	
29	-CH ₂ CH ₂ CH ₂ CH ₃	m.p. 136 -138°C	38°C		
30	-C ₈ H ₁₇ (isomer mixture)	Waxiike calcd. found	C 74.05% C 73.98%	H 7.28% H 7.36%	N 7.4% N 7.3%
31	-(CH ₂ CH ₂ O) _n H n = 7	Oil calcd. found	C 64.47% C 64.75%	H 6.99% H 7.00%	N 5.50% N 5.72%
32	-C ₁₀ H ₂₁ (isomer mixture)	Waxlike calcd. found	C 74.59% C 74.76%	H 7.61% H 7.73%	N 7.05% N 6.89%
33	-Си ₂ сн-оси ₂ сн-оси ₂ сн-си ₃	Resin calcd. found	C 70.45% C 70.12%	H 7.06% H 7.02%	N 6.85% N 6.84%
34	-CH ₂ -µ(OC ₄ H ₉) ₂ O	m.p. 75-78°C	၁		
35	-(CH ₂) ₈ CH=CH-(CH ₂) ₇ -CH ₃	Waxlike calcd. found	C 76.96% C 77.02%	H 8.42% H 8.47%	N 5.95% N 5.74%
· %	-(CH ₂₎₂ O(CH ₂₎₂ OC ₆ H ₁₃	Resin calcd. found	C 70.68% C 70.53%	H 7.37% H 7.49%	N 6.68% N 6.39%
37	-(CH ₂ CH ₂ O ₃ H n = 9	Resin calcd. found	C 63.44% C 63.54%	H 7.22% H 7.20%	N 4.93% N 5.01%

, **5**

Example 4: 9.1 g (0.02 mol) of 2-(2-hydroxy-4-carboxymethoxy-phenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine (prepared as described in US Patent 3,244,708, Example 16) are suspended in 40 ml of thionyl chloride, and 1 ml of DMF is added. The mixture is heated at reflux temperature for 2 hours. A clear yellow solution is formed with moderate evolution of gas. This solution is evaporated to give 9.5 g of [4-(4,6-di-2',4'-xylyl-s-triazin-2-yl)-3-hydroxyphenoxyl-acetyl chloride (Compound 38). This acid chloride is dissolved in 100 ml of toluene. 19.3 g (0.08 mol) of bis-(2-ethylhexyl)-amine are added dropwise at room temperature. The reaction proceeds exothermically from 22°C to 40°C. The mixture is left for 1 hour at room temperature to complete the reaction. The product is then purified by column chromatography over silica gel. This gives approx. 5 g of a pale yellow, highly viscous oil, [4-(4,6-di-2',4'-xylyl-s-triazin-2-yl)-3-hydroxyphenoxy]-acetic acid bis-(2-ethyl-hexyl)-amide (Compound 39).

Calcd. C 76.07%, H 8.61%, N 8.25% Found. C 75.91%, H 8.46%, N 8.16%

Example 5: 39.7 g (0.1 mol) of 2-(2,4-dihydroxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine are dissolved in 250 ml of DMF. 20.7 g of potassium carbonate are added to this brownish solution. An orange suspension is formed. 17 g (0.052 mol) of 1,12-dibromododecane are added and the mixture is heated at 100°C. The reaction is complete after 2 hours. The cooled reaction solution is then poured into 1.51 of water, and the precipitate is filtered off and washed with 2-3 times 100-200 ml of H_2O . The crystals are then recrystallized from xylene. Melting point: 158-163°C (Compound 40).

Compounds 41 and 42 are obtained analogously, using 1,6-dibromohexane, 1,4-dichloro-2-butene and p-xylylenedibromid..

Table 3

45	Compound	R ₇	Physical data
	40	-(CH ₂) ₁₂ -	m.p. 158 - 163°C
50	41	-(CH ₂) ₆ -	m.p. 203 - 205°C
	42 ′	-CH ₂ -CH=CH-CH ₂ -	m.p. 230 - 235°C
<i>65</i>	43	-CH ₂ CH ₂ -	m.p. 252 - 254°C

Example 6: 20 g (0.05 mol) of 2-(2,4-dihydroxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine ar suspended in 100 ml of toluene, and 100 ml of 1N NaOH and 1 g of tetrabutylammonium bromide are added. The mixture is heated for 10 minutes at 80°C and then cooled, to give a yellow paste. 12.3 ml (0.15 mol) of epibromohydrin are added to this paste and the mixture is again heated for 6 hours at 50°C. When the reaction is complete, methylene chloride is added to the organic phase, which is separated off from the aqueous phase and filtered through Hyflo. It is then evaporated and the crystalline residue is recrystallized from toluene. This gives 14 g of pale yellow crystals, 2-(2-hydroxy-4-glycidyloxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine (Compound 44), melting point 152-155°C.

Example 7: 9.07 g (0.02 mol) of Compound 44 and 7.95 g (0.02 mol) of 2-(2,4-dihydroxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine are suspended in 150 ml of xylene. 0.2 g of dimethylaminopyridine are added and the mixture is heated at reflux temperature. The reaction is complete after 4 hours. The mixture is diluted with 200 ml of toluene and cooled. In the course of this the product is precipitated. It is filtered off and purified further by recrystallization from toluene together with a little Fuller's earth. This gives 9.1 g of pale beige crystals, 1,3-bis-[4-[4,6-di-(2,4-dimethylphenyl)-s-triazine-2-yl]-3-hydroxy-phenoxy}-2-hydroxypropane (Compound 45), melting point: 222-224°C.

Example 8: 18.5 g (0.05 mol) of 2-(2,4-dihydroxyphenyl)-4,6-bis-(4-methylphenyl)-1,3,5-triazine (Helv. Chim. Acta 55, 1566 (1972)) and 3.9 g (0.05 mol) of potassium methoxide are suspended in 200 ml of anhydrous n-butanol, and 7.4 g (0.06 mol) of butyl chloroacetate are added dropwise between 50°C and 100°C. After 17 hours under reflux the solvent is evaporated and the crude product is washed with water, dried and recrystallized from petroleum ether (boiling point 110°C-140°C) (Compound No. 46).

Melting point : 142-146°C. Calcd. C 72.03 H 6.04 N 8.69% Found C 71.88 H 6.01 N 8.81%

25

30

35

40

45

50

55

Example 9:

CH₃

A) 55.4 g (0.15 mol) of 2-(2,4-dihydroxyphenyl)-4,6-bis-(4-methylphenyl)-1,3,5-triazine are dissolved in refluxing 2-butanone (1I) in the presence of 27.6 g (0.2 mol) of K₂CO₃. A catalytic amount (0.2 g) of KI is added, and 36.8 g (0.3 mol) of ethyl chloroacetate are added dropwlse over 1h30. After refluxing for 25 h, the reaction mixture is cooled in ice, the precipitate is filtered off, washed with water to neutrality and then with methanol. Drying in the oven yields the analytically pure 2-(2-hydroxy-4-ethoxycar-bonylmethoxyphenyl)-4,6-bis-(4-methylphenyl)-1,3,5-triazine (54 g, m.p. 166-167°C) (Compound No. 47).

B) 11.4 g (0.025 mol) of compound 47 and 3.9 g (0.03 mol) of octanol (Isomeric mixture) are refluxed in 120 ml xylene for 22 h in the presence of 0.62 g (2.5 mmol) of dibutyltinoxide. During the reaction a xylene/ethanol mixture is distilled off, the xylene being replenished dropwise from a dropping funnel. The reaction mixture is cooled t 40°C, filtered through a pad of Prolith and evaporated. Drying at 100°C/0.01 mmHg affords the transesterification product as a viscous yellow oil (12.5 g) that solidifies to a wax (Compound No. 48).

Calcd. C = 73.44%, H = 6.91%, N = 7.79%

F und C = 72.95%, H = 6.70%, N = 7.48%

Compounds No. 49 to 52 (Table 4) are obtained analogously by transesterification with the corresponding alcohols.

Table 4

Compound	n	R ₇	Physical data
49	1	-CH ₂ CH ₂ OCH ₃	m.p. 150 - 153°C
50	2	-CH ₂ CH ₂ OCH ₂ CH ₂ OC ₂ H ₅	m.p. 118 - 121°C
51	2	-(CH ₂) ₆ -	m.p. 235 - 238°C
52	4	-(CH ₂) 4-C	m.p. 219 - 231°C

Example 10: 40.6 g (0.11 mol) of 2-(2,4-dihydroxyphenyl)-4,6-bis-(4-methylphenyl)-1,3,5-triazine are dissolved in refluxing 2-butanone (500 ml) in the presence of 20.7 g (0.15 mol) of K₂CO₃. 18.1 g (0.055 mol) of 1,12-dibromodecane dissolved in 100 ml of 2-butanone are added dropwise over 3 h and the mixture is refluxed for 35 h. In the course of this, precipitation of the final product occurs. The reaction mixture is cooled in ice, the precipitate is filtered off, washed with water to neutrality and then with methanol. Drying in the oven affords 46.2 g of the analytically pure compound No. 53 (Table 5). Off-white solid, m.p. 219-220°C.

Analogous treatment with 1,6-dibromohexane or epibromohydrin gives compounds No. 54 and 55 (Table 5).

	Table 5		
6		CH ₃	
10	٠	N 0 0	R ₇
15		CH ₃	

20

	1	1		
	Compound	n	R ₇ .	Physical data
	53	2	-(CH ₂) ₁₂ -	m.p. 219-220°C
25	54	2	-(CH ₂) ₆ -O	m.p. 247-249°C
	55	1	-CH ₂ -CH-CH ₂	m.p. 205-208°C
30	56	1	-CH₂-CH-CH₂-OC₄H ₉	m.p. 166-167°C
	57	1	OH -CH ₂ -CH-CH ₂ -O-CH ₂ -CH-C ₄ H ₉ I OH C ₂ H ₅	m.p. 123-125°C
35				Yellow oil
4 0	58	1	-CH ₂ -CH-CH ₂ -O-CH [CH ₂ -OCH ₂ -CH-CH ₂]	calc. found C 66.02 % 64.52 % H 6.89 % 6.98 % N 5.63 % 5.23 %
40				
45	59	1	O CH ₃ II I -CH ₂ -CH-CH ₂ -O-C-C=CH ₂ I OH	m.p. 183-185°C
50	60	1	O II -CH ₂ -CH-CH ₂ -O-C-C ₉ H ₁₉ I OH	m.p. 135-138°C
J.	61	2	-OC-(CH ₂) ₈ -CO-	m.p. 220-228°C

Example 11: A mixture of 14.8 g (0.04 mol) of 2-(2,4-dihydroxyphenyl)-4,6-bis-(4-methylphenyl)-1,3,5-triazine, 10.4 g (0.08 mol) of butylglycidylether and 2.1 g (6.5 mmol) of tetrabutylammoniumbromide is refluxed in 150 ml of 2-butanon during 85 h. The reaction mixture is cooled in ice, the precipitate is filtered off, washed with water and methanol, and dried in the even. This yields 17.5 g of a pale yell w solid, m.p. 166-167°C (Com-

pound No. 56, Table 4).

Analogous treatment with the corresponding glycidyl ethers or esters yields the compounds 57 to 60 (Table 4).

Example 12: A solution of 3.6 g (0.015 mol) of sebacyl chloride in 10 ml toluene is added dropwise at 10°C to a solution of 2-(2,4-dihydroxyphenyl)-4,6-bis(4-methylphenyl)-1,3,5-triazine and 3.3 g (0.033 mol) of triethylamine in 100 ml toluene and 50 ml of DMF. After 50 h at room temperature, the reaction mixture is diluted with water, filtered, the precipitate is washed with water, methanol and chloroform, and dried in the oven. 8.7 g of the diester 61 (Table 4) are obtained as a pale beige solid, m.p. 220-228°C.

Example 13: When 20.5 g (0.06 mol) of 2-(2,4-dihydroxyphenyl)-4,6-diphenyl-1,3,5-triazine are treated with 22.8 g (0.12 mol) of 2-ethylhexyl glycidyl ether analogously to example 11, 23.3 g of the pale yellow compound No. 62 (m.p. 116 to 118°C) are obtained.

Example 14: 7.9 g (0.02 mol) of 2-(2,4-dihydroxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, 5.7 g (0.02 mol) of a technical mixture of dodecyl, tridecyl and tetradecyl glycidyl ethers (Araldite® DY 025) and 0.15 g of ethyl triphenylphosphonium iodide in 50 ml of mesitylene are heated at 160-165°C for 10 hours, with stirring. The reaction solution is washed with water, dried over MgSO₄ and filtered. The filtrate is stirred for 2 hours with 2 g of Filtrol 4, filtered and evaporated in vacuo. The residue is freed from residual mesitylene at 120°C and 0.01 mmHg. This leaves 12.1 g of an oil (Compound No. 63).

C₄₁H₅₅N₃O₄ Calcd. C 75.30 H 8.48 N 6.43% Found. C 75.0 H 8.1 N 6.8%

Application Examples

30

50

Example 15: Stabilization of a 2-coat metallic coating

A clear lacquer is prepared by mixing the following components:

59.2	Parts of a commercial acrylic resin (Uracron® XB 2263, DMS Resins BV, NL) which is a 50%
	solution in xylene

11.6 parts of a 90% melamine resin (Cymel® 327, Amer. Cyanamid Corp.)

19.4 parts of xylene

5.5 parts of butylgylcol acetate

9.3 parts of butanol

1.0 part of a levelling agent (Baysilon® A, Bayer AG) which is a 1% solution in xylene

100 parts lacquer containing 40% solids.

Samples of this laquer are mixed with 0.5% (related to the solids) of di(1,2,2,6,6-pentamethylpiperidin-4-yl) sebacate (= HA-1) and 1,5% (related to the solids) of a triazine stabilizer listed in table 6.

The clear lacquer is dilut d to a sprayable state with a mixture of 13:6:1 xylene/butanol/butyl glycol acetate and is sprayed onto a pr viously prepared aluminum sheet (coil-coated and primed with a silver-metallic paint based on polyester/cellulose acetobutyrate/melamine resin), and the sheet is baked for 30 minutes at 130°C. This results in a dry film thickness of 40-50 µm of clear lacquer. A clear lacquer c ntaining n light stabi-

lizer is used as a comparison.

The samples are xposed in a UVCON, Type UVB-313, weathering equipment with a cycle of 8 hrs of dry UV irradiation at 70°C and 4 hrs of condensation at 50°C. The 20°-gloss of the samples is measured in certain intervals of weathering time using the method of DIN 67530. The results are given in Table 6.

Table 6

	Piperidin	Triazine Stabil	lizer	20°-Gloss after exposure of						
10	Stabilizer	(Compound N	0.)	0	1600	3200	4800	6400	hrs 、	
		•		86	31	-	-	_		
15	0.5 % HA-1	1.5 % 1		86	79	74	77	61		
	0.5 % HA-1	1.5 % 30		86	74	68	66	57		
	0.5 % HA-1	1.5 % 32	•	82	69	72	68	59		
20	0.5 % HA-1	1.5 % 33		85	79	74	72	64		

Example 16

The preparation of the samples and their testing is the same as in Example 15. As comparison C-1 and C-2, two triazine derivatives known from US Patent 4,619,956, are used as triazine stabilizers.

- C-1 = 2-(2-hydroxy-4-dodecyloxyphenyl)-4,6-diphenyl-1,3,5-triazine
- C-2 = 2-(2-hydroxy-4-octadecyloxyphenyl)-4,6-diphenyl-1,3,5-triazine The results are shown in Table 7.

Table 7

30

Piperidin	Triazine Stabilizer	20°-Gloss after exposure of				
Stabilizer	**	0	1600	3200	4000 hrs	
_	-	84	19	-	-	
0.5 % HA-1	1.5 % Compound 34	84	80	78	59	
0.5 % HA-1	1.5 % Compound 35	85	81	80	75	
0.5 % HA-1	1.5 % Compound 36	85	80	78	76	
0.5 % HA-1	1.5 % Compound 37	85	80	79	77	
0.5 % HA-1	1.5 % Compound 39	85	81	72	74	
0.5 % HA-1	1.5 % C-1	85	54	35	37	
0.5 % HA-1	1.5 % C-2	79	38 -	34	37	

Example 17:

A similar clear lacquer is prepared from

	54.5	parts of Uracron® XB 2263
55	16.3	parts of Cymel® 327
	19.4	parts of xylene
	5.5	parts of butylgylcol acetate
	22	parte of butanol

part of Baysilon® A

100 parts lacquer containing 41.5% solids.

Samples of this laquer are mixed with 0.5% (related to the solids) of HA-1 and 1.5% (related to the solids) of a triazine stabilizer listed in Table 8. The lacquer is diluted to a sprayable state by diluting with a 13:6:1 mixture of xylene/butanol/butylglycol acetate and is sprayed onto an aluminium sheet which is coil coated and primed with a metallic blue commercial paint (Glasomax®, Glasurit GmbH, Münster). After baking for 30 minutes at 130°C the clear lacquer layer has a thickness of 40-45 μm.

The samples are weathered in a UVCON, Type UVB 313, as described in Example 15 and the 20°-gloss of the weathered samples is measured according to method DIN 67530. The results are shown in Table 8.

Table 8

10

Piperidin	Triazine Stabilizer		20°	20°-Gloss after exposure of			
Stabilizer	(Compo	und No.)		0	800	1600	2000 hrs
-	-			85	75	42	20-
0.5 % HA-1	1.5 %	4 .		86	80	78	78
0.5 % HA-1	1.5 %	6		87	81	81	81
0.5 % HA-1	1.5 %	7		85	81	81	79
0.5 % HA-1	1.5 %	10		86	82	80	80
0.5 % HA-1	1.5 %	11		. 86	81	81	78
0.5 % HA-1	1.5 %	17		86	81	81	81
0.5 % HA-1	1.5 %	18		87	81	80	80
0.5 % HA-1	1.5 %	62		84	80	78	81

Example 18

The two-coat samples are prepared as described in Example 15, however, no piperidin stabilizer is added. The samples are weathered in a Weatherometer with cycle CAM 159 and with using an edge filter of type A. Measured is the 20°-gloss before and after exposure, the results are shown in Table 9.

Table 9

35

40

55

45	Triazine Stabilizer (Compound No.)	20°-Gloss after exposure of 0 2000 3600 hrs				
70	none	85 47 25				
	34	86 71 64				
50	35	86 72 61				
	36	86 73 60				

Example 19

The two-coat samples are prepar d as describ d in Example 17, however, no piperidin stabilizer is added. The samples are weathered in a UVCON, type UVB-313 with cycle of 8 hrs of UV irradiation at 70°C and 4 hrs of condensation at 50°C. The 20°-gloss of the sample is measured according to method DIN 67530 before and

after exposure. Further the change of colour shade ∆E after exposure is measured according to method DIN 6174. The results are shown in Table 10.

Table 10

	Triazine Stabilizer	20°-Gloss after exposure of				ΔΕ	
10	(Compound No.)	0	800	1600	hrs	after 1600 h	
	none	85	75	42		6.6	
15	6	84	80	80	•	1.3	
	7	84	81	80	•	1.3	
	17	86	81	80		1.6	
	18	86	81	80		1.4	
20	62	86	82	.81		1.0	

Example 20: Stabilization of a radiation-curable system

A clear laquer is prepared by mixing 14 parts of tris(2-acryloyloxyethyl)isocyanurate with 6 parts of 1,6-hexanediol diacrylate and 0.4 parts of 1-benzoylcyclohexanol (as photoinitiator). A triazine stabilizer is added in an amount of 1.5%. The lacquer is coated to a white coil-coated aluminium sheet in a dry-thickness of about 40 µm.

The samples are hardened by UV irradiation in a PPG processor (2 × 80 W/cm, 2 × 10 m (min) and weathered in a UVCON, type UVB-313 with a cycle of 4 hours of UV irradiation at 60°C and 4 hrs of condensation at 50°C.

The yellowness index (method ASTM D 1925-70) of the samples is measured before and after the exposure. The results are shown in Table 11.

Table 11

25

30

35

Triazine Stabilizer		Yellow	e of		
(Compoun		0	200	400	600 hrs
none		-1.0	19.6	28.0	35.3
1.5 %	17	-0.6	1.8	1.8	2.1

Claims

- 1. An organic material which has been stabilized against damage caused by light, heat and oxygen and which contains
 - (a) at least one sterically hindered amine of the polyalkylpiperidine type and
- (b) at least one o-hydroxyphenyl-s-triazine, wherein the triazine compound (b) is a compound of the formula I

$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

in which n is 1 to 4,

1Ò

15

20

25

30

35

40

45

50

55

 R_1 and R_2 independently of one another are H, OH, C_1 - C_{12} alkyl, cyclohexyl or trifluoromethyl, R_3 and R_4 independently of one another are H, OH, C_1 - C_{12} alkyl, cyclohexyl, C_1 - C_{18} alkoxy or halogen and, in the event that n=1, can also be a radical -OR₇,

R₅ and R₆ independently of one another are H, C₁-C₁₂alkyl or halogen,

R₇, if n is 1, is

a) C_1 - C_{18} alkyl which is substituted by one or more of the groups OH, C_1 - C_{18} alkoxy, C_3 - C_{18} alkenoxy, halogen, phenoxy (which is unsubstituted or substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy or halogen), furyloxy,

-COOH, -COOR₈, -CONH₂, -CONHR₉, -CON(R₉)(R₁₀), -NH₂, -NHR₉, -N(R₉)(R₁₀), -NHCOR₁₁, -CN and/or by -O-CO-R₁₁,

b) C_4 - C_{50} alkyl which is interrupted by one or more O and can be substitued by OH or/and glycidyloxy, c) C_3 - C_6 alkenyl,

e) cyclohexyl which is unsubstituted or substituted by OH or -OCOR11,

f) C_TC₁₁phenylalkyl which is unsubstituted or substituted by OH,Cl or CH₃,

- g) -CO-R₁₂ or
- h) -SO2-R13,

and if n is 2, R7 is

- a) C2-C18alkylene,
- b) C₄-C₁₂alkenylene,
- c) xylylene,

d) C₃-C₂₀alkylene which is interrupted by one or mor O and/or substituted by OH,

e) a group -CH2CH(OH)CH2O-R15-OCH2CH(OH)CH2-, -CO-R16-CO-, -CO-NH-R17-NH-CO- or -(CH2)m-

COO- R_{18} -OOC-(CH₂)_m -(in which m is 1 to3) or

and if n is 3, R7 is a group 10

15

20

30

40

45

 $-(CH_2)$ $-COO + R_{19}$ m = 1-3,

and if n is 4, R7 is a group

 $-(CH_2)_{\overline{m}}COO - R_{20}$ m = 1-3,

 R_8 is C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{20} alkyl which is interrupted by one or more O, N or S and/or substituted 25 by OH, C_1 - C_4 alkyl which is substituted by -P(O)(OR₁₄)₂, -N(R₉)(R₁₀) or -OCOR₁₁ and/or OH, C_3 - C_{18} alkenyl, glycidyl or C₇-C₁₁phenylalkyl,

Re and Rio independently of one another are C1-C12alkyl, C3-C12alkoxyalkyl, C4-C16dlalkylaminoalkyl or C5-C₁₂cycloalkyl, or R₉ and R₁₀ together are C₃-C₉alkylene or C₃-C₉oxaalkylene or C₃-C₉azaalkylene,

R₁₁ is C₁-C₁₈alkyl, C₂-C₁₈alkenyl or phenyl,

R₁₂ is C₁-C₁₈alkyl, C₂-C₁₈alkenyl, phenyl, C₁-C₁₂alkoxy, phenoxy, C₁-C₁₂alkylamino or C₆-C₁₂arylamino or a group -R₂₄-COOH or -NH-R₁₇-NCO,

 R_{13} is $C_{1}\hbox{-} C_{12}$ alkyl, $C_{6}\hbox{-} C_{12}$ aryl or $C_{7}\hbox{-} C_{14}$ alkaryl,

R₁₄ is C₁-C₁₂alkyl or phenyl,

R₁₅ is C₂-C₁₀alkylene, C₄-C₅₀alkylene which is interrupted by one or more 0, phenylene or a group -phe-35 nylene-X-phenylene- in which X is -O-, -S-, -SO₂-, -CH₂- or -C(CH₃)₂-, $R_{16} \text{ is } C_2\text{-}C_{10} \text{alkylene, } C_2\text{-}C_{10} \text{oxaalkylene or } C_2\text{-}C_{10} \text{thiaalkylene, } C_6\text{-}C_{12} \text{arylene or } C_2\text{-}C_6 \text{alkenylene, } C_6\text{-}C_{12} \text{arylene} \text{ or } C_7\text{-}C_8 \text{alkenylene, } C_7\text{-}C_8 \text{alkenylene, } C_8\text{-}C_{12} \text{arylene} \text{ or } C_7\text{-}C_8 \text{alkenylene, } C_8\text{-}C_{12} \text{ arylene} \text{ or } C_7\text{-}C_8 \text{alkenylene, } C_8\text{-}C_{12} \text{ arylene} \text{ or } C_7\text{-}C_8 \text{ alkenylene, } C_8\text{-}C_{12} \text{ arylene} \text{ or } C_7\text{-}C_8 \text{ alkenylene, } C_8\text{-}C_{12} \text{ arylene} \text{ or } C_7\text{-}C_8 \text{ alkenylene, } C_8\text{-}C_{12} \text{ arylene} \text{ or } C_7\text{-}C_8 \text{ alkenylene, } C_8\text{-}C_{12} \text{ arylene} \text{ or } C_7\text{-}C_8 \text{ alkenylene, } C_8\text{-}C_{12} \text{ arylene} \text{ or } C_7\text{-}C_8 \text{ alkenylene, } C_8\text{-}C_{12} \text{ arylene} \text{ or } C_7\text{-}C_8 \text{ alkenylene, } C_8\text{-}C_{12} \text{ arylene, } C_8\text{-}C_8\text{-}C_{12} \text{ arylene, } C_8\text{-}C_{12} \text{ arylene, } C_8\text{-}C_8\text{-}C_8 \text{ arylene, } C_8\text{-}C_8\text{-}C_8 \text{ alkenylene, } C_8\text{-}C_8\text{-}C_8 \text{ arylene, } C_8\text{-}C_8\text{-}C_8 \text{ arylene, } C_8\text{-}C_8 \text{ arylene, } C_8 \text{ arylene, } C_8\text{-}C_8 \text{ arylene, } C_8\text{-}C_8 \text{ arylene, } C_8\text{-}C_8 \text{ arylene, } C_8\text{-}C_8 \text{ arylene, } C_8 \text{ arylene, } C_8 \text{ arylene, } C_8 \text{$

 R_{17} is C_2 - C_{10} alkylene, phenylene, tolylene, diphenylenemethane or a group

 R_{18} is C_2 - C_{10} alkylene or C_4 - C_{20} alkylene which is interrupted by one or more O_1

R₁₉ is C₃-C₁₂alkanetriyl,

R₂₀ is C₄-C₁₂alkanetetryl, 50

R₂₄ is C₂-C₁₄alkylene, vinylene or o-phenylene.

10

15

20

25

30

35

40

45

- 2. An organic material according to claim 1, wherein the triazine compound (b) is a compound of the formula I in which n is 1 to 4, R₁ and R₂ independently of one another are H, OH or C₁-C₄alkyl, R₃ and R₄ independently of one another are H, OH, C₁-C₄alkyl, C₁-C₄alkoxy, halogen or a radical -OR₇, R₆ and R₆ independently of one another are H or C₁-C₄alkyl, R₇, if n is 1, is
 - a) C_1 - C_{18} alkyl which is substituted by one or more of the groups OH, C_1 - C_{18} alkoxy, allyloxy, phenoxy, furyloxy,

-COOR₈, -CON(R₉)(R₁₀) and/or by -OCOR₁₁,

- b) C₄-C₅₀alkyl which is interrupted by one or more O and can be substituted by OH or/and glycidyloxy, c) allyl, glycidyl or benzyl,
- d) cyclohexyl or hydroxycyclohexyl,
- and if n is 2, R_7 is C_4 - C_{12} alkenylene, C_4 - C_6 alkenylene, xylylene, C_3 - C_{20} alkylene which is interrupted by one or more O and/or substituted by OH, or R_7 is a group -CH₂CH(OH)CH₂O- R_{15} -OCH₂CH(OH)CH₂-, -CO- R_{16} -CO- R_{16} -OOC-CH₂- or

and if n is 3,
$$R_7$$
 is a group $\left\{ -CH_2COOCH_2 \right\}_3$ C-C₂H₅,

and if n is 4,
$$R_7$$
 is a group $-CH_2COOCH_2$ C

 R_8 is C_1 - C_{12} alkyl, C_3 - C_{18} alkenyl, C_3 - C_{20} alkyl which is interrupted by one or more O and/or substituted by OH r R_8 is C_1 - C_4 alkyl which is substituted by -P(O)(OR₁₄)₂,

Re and Rio are Ci-Cealkyl or Re and R to together are pentamethylene or 3-oxapentamethylene,

R₁₁ is C₁-C₁₂aikyi, C₂-C₅aikenyl or phenyl,

R₁₄ is C₁-C₁₄alkyl,

10

15

20

25

30

35

40

45

50

R₁₅ is C₂-C₈alkylene, C₄-C₅₀alkylene which is interrupted by one or more 0, or is a group

 R_{16} is C_2 - C_8 alkylene, C_2 - C_6 oxaalkylene or C_2 - C_6 thiaalkylene and R_{18} is C_4 - C_8 alkylene or C_4 - C_{12} alkylene which is interrupted by one or more O.

- 3. An organic material according to claim 1, wherein the triazine compound (b) is a compound of the formula I in which n is 1, 2 or 4, R₁ and R₂ independently of one another are H or CH₃, R₃ and R₄ independently of one another are H, CH₃ or CI, R₅ and R₆ are hydrogen.
 - R₇, if n is 1, is
 a) C₁-C₁₄alkyl which is substituted by one or more of the groups OH, C₁-C₁₅alkoxy, allyloxy, phenoxy, furyloxy,

-COORs, -CON(Rs) (R10) and/or by -OCOR11,

- b) C_{e} - C_{45} alkyl which is interrupted by one or more O and can be substituted by OH or/and glycidyloxy, c) glycidyl or
- d) hydroxycyclohexyl,

and if n is 2, R_7 is C_8 - C_{12} alkenylene, 2-butenylene-1,4, xylylene, C_3 - C_{20} alkylene which is interrupted by one or more O or substituted by OH, or R_7 is a group -CH₂CH(OH)CH₂O- R_{16} -OCH₂CH(OH)CH₂-, -CO- R_{16} -CO-, -CH₂-COO- R_{16} -OOC-CH₂- or

and if n is 4,
$$R_7$$
 is $-CH_2COOCH_2$ $+$

R₈ is C₄-C₁₀alkyl, oleyl, C₃-C₂₀alkyl which is interrupted by one or more O and/or substituted by OH, or R₈ is -CH₂P(O)(OR₁₄)₂,

R₉ and R₁₀ are C₂-C₆alkyl

R₁₁ is C₆-C₁₀alkyl, C₂-C₃alkenyl

R₁₄ is C₁-C₁₄alkyl,

15

30

35

45

50

 R_{15} is C_2 - C_8 alkylene, C_{10} - C_{45} alkylene which is interrupted by more than one 0, or is a group

10 R₁₆ is C₄-C₈alkylene and R₁₈ is C₄-C₈alkylene.

- 4. An organic material according to claim 1, wherein the component (b) is a compound of the formula I in which n is 1 or 2 and, if n is 1, R₇ is a group -CH₂CH(OH)CH₂-OR₂₁ in which R₂₁ is C₁-C₁₈alkyl, allyl, phenyl, furyl, C₆-C₁₂alkanoyl or C₃-C₅alkenoyl and, if n is 2, R₇ is a group -CH₂CH(OH)CH₂O-R₁₅-OCH₂CH(OH)CH₂- in which R₁₅ is as defined in claim 1.
- An organic material according to claim 1, wherein the component (b) is a compound of the formula I in which R₁ and R₂ are hydrogen or methyl, R₃ and R₄ are hydrogen, chlorine or methyl and R₆ and R₆ are hydrogen.
- 6. An organic material according to claim 1, wherein the component (a) is a compound containing at least one group of the formula

in which R is hydrogen or methyl.

- 7. An organic material according to claim 6, wherein R is hydrogen.
- 8. An organic material according to claim 6, wherein the component (a) is one of the following compounds:

Di-(2,2,6,6-tetramethylpiperidin-4-yl) succinate,

Di-(2,2,6,6-tetramethylpiperidin-4-yl) sebacate,

Di-(1,2,2,6,6-pentamethylpiperidin-4-yl) sebacate,

Di-(1,2,2,6,6-pentamethylpiperidin-4-yl) butyl-(3,5-di-tert-butyl-4-hydroxybenzyl)-malonate,

Di-(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate,

Tetra-(2,2,6,6-tetramethylpiperidin-4-yl) butane-1,2,3,4-tetracarboxylate,

Tetra-(1,2,2,6,6-pentamethylpiperidin-4-yl) butane-1,2,3,4-tetracarboxylate,

N-(2,2,6,6-Tetramethylpiperidin-4-yl)-β-aminopropionic acid dodecyl ester,

N-(1-Octyloxy-2,2,6,6-tetramethylpiperidin-4-yl)-N'-dodecyl-oxalamide

N-(2,2,6,6-Tetramethylpiperidin-4-yl)-α-dodecylsuccinimide,

2,2,4,4-Tetramethyl-7-oxa-3,20-diaza-21-oxo-dispiro[5.1.11.2]heneicosane,

 $8-Acetyl-3-dodecyl-1,3,8-triaza-7,7,9,9-tetramethyl spiro \cite{Acetyl-3-dodecyl-1,3,8-triaza-7,7,9,9-tetramethyl spiro}\cite{Acetyl-3-dodecyl-1,3,8-triaza-7,7,9,9-tetramethyl spiro}\cite{Acetyl-3-dodecyl-1,3,8-triaza-1,3,8-$

20-(Dodecyloxycarbonylethyl)-2,2,4,4-tetramethyl-7-oxa-3,20-diaza-21-oxo-dispiro[5.1.11.2]henelco sane.

or a compound of the formulae

20 CH₃ R R CH₃

R-N-(CH₂)₃-N-(CH₂)₃-N-(CH₂)₃-N-R

.

15

10

30

or

25

35 CH₃ СН3

40

An organic material according to claim 1, which contains 0.01 to 5% by weight of the component (a) and 0.02 to 5% by weight of the component (b), relative to the material.

45

10. An organic material according to claim 9, which contains 0.02 to 2% by weight of the component (a) and 0.05 to 3% by weight of the component (b).

12. An organic polymer according to claim 11, which, in addition to the components (a) and (b) also contains

further stabilizers, fillers, reinforcing agents, pigments, dyes, plasticizers, solvents, lubricants, flow-control agents, fluorescent brighteners, nucleating agents, antistatic agents or fire-retarding agents.

13. An organic polymer according to claim 11, wherein the polymer is a coating binder. 55

11. An organic material according to claim 1, wherein the material is an organic polymer.

- 14. An organic material according to claim 1, wherein the material is a radiation-curable coating material.

- 15. A radiation-curable coating mat rial containing a hydroxyphenyltriazin of formula I as defined in claim 1 in the absence of a sterically hindered amine.
- 16. A process for stabilizing organic material against damage caused by light, heat and oxygen by the addition of the components (a) and (b) as defined in claim 1.
- 17. A compound of the formula la

5

10

15

20

30

35

40

45

50

55

$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

in which n is 1 to 4,

R₁ and R₂ independently of one another are H, OH, C₁-C₁₂alkyl, cyclohexyl or trifluoromethyl,

 R_3 and R_4 independently of one another are H, OH, C_1 - C_{12} alkyl, cyclohexyl, C_1 - C_{18} alkoxy or halogen and, in the event that n=1, can also be a radical -OR₇,

R₅ and R₅ independently of one another are H, C₁-C₁₂alkyl or halogen,

R- if n is 1, is

a) C_1 - C_{12} alkyl which is substituted by phenoxy (which is unsubstituted or substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy or halogen) or by a group -COOR₈, -CONH₂, -CONHR₉, -CON(R₉)(R₁₀), -NH₂, NHR₉, -N(R₉)(R₁₀) or -O-CO-R₂₂,

b) C₄-C₅₀alkyl which is interrupted by more than one O and can be substituted by OH or/and glycidyloxy,

- d) cyclohexyl substituted by OH or -OCOR11
- e) a group -CH₂CH(OH)CH₂OR₂₁
- f) a group -SO₂-R₁₃,
- g) a group -CO-R₁₂

and if n is 2, R7 is

- a) C2-C12 alkylene,
 - b) C₄-C₁₂aikenylene,
 - c) xylylene,
 - d) C3-C20alkylene which is interrupted by one or more 0 and/or substituted by OH,
- e) a group -CH₂CH(OH)CH₂O-R₁₆-OCH₂CH(OH)CH₂-, -(CH₂)_m-COO-R₁₈-OOC-(CH₂)_m- (wherein m is 1-3) or

and if n is 3,
$$R_7$$
 is a group $\left\{ (CH_2) \right\}_m = COO \left\{ \frac{1}{3} \right\}_3 = R_{20}$ (wherein m is 1-3),

and if n is 4,
$$R_7$$
 is a group $\left\{ (CH_2)_m COO \right\}_4 R$ (wherein m is 1-3),

 R_8 is C_3 - C_{20} alkyl which is interrupted by one or more O, N or S and can be substituted by OH, or R_8 is C_1 -C₄alkyl which is substituted by -P(O)(OR₁₄)₂, -N(R₉)(R₁₀), or -OCOR₁₁ and/or OH, or R₈ is C₃-C₁₈alkenyl, glycidyl or C7-C11phenylalkyl,

R₉ and R₁₀ independently are C₁-C₁₂alkyl, C₃-C₁₂alkoxyalkyl, C₄-C₁₆dialkylaminoalkyl or C₅-C₁₂cycloalkyl, or R_9 and R_{10} together are C_3 - C_9 alkylene or C_3 - C_9 -oxaalkylene or C_3 - C_9 azaalkylene,

R₁₁ is C₁-C₁₈alkyl, C₂-C₁₈alkenyl or phenyl, R₁₂ is a group -R₂₄-COOH or -NH-R₁₇-NCO,

 R_{13} is $C_1\text{--}C_{12}alkyl,\,C_6\text{--}C_{12}aryl\,or\,C_7\text{--}C_{14}alkaryl\,$

R₁₄ is C₁-C₁₂alkyl or phenyl

10

15

20

. 30

35

40

50

55

R₁₅ is C₂-C₁₀alkylene, C₄-C₅₀alkylene which is interrupted by one or more 0, or R₁₅ is phenylene or a group -phenylene-X-phenylene in which X is -O-, -S-, -SO₂-, -CH₂- or -C(CH₃)₂-, R_{17} is C_2 - C_{10} alkylene, phenylene, tolylene, diphenylenemethane or a group

 R_{18} is C_2 - C_{10} alkylene or C_4 - C_{20} alkylene which is interrupted by one or more O_*

R₁₉ is C₃-C₁₂alkanetriyl,

R₂₀ is C₄-C₁₂alkanetetryl,

R₂₁ is H, C₁-C₁₈alkyl, C₃-C₁₈alkenyl, phenyl, phenyl substituted by C₁-C₁₂alkyl, C₁-C₁₂alkoxy or halogen, or R21 is C2-C19alkanoyl, benzoyl, C3-C18alkenoyl, furyl or a group

R₂₂ is C₂-C₅alkenyl,

R₂₄ is C₂-C₁₄alkylene, vinylene or o-phenylene.

5

10

15

20

25

30

35

50

 A compound of the formula la according to claim 17, in which n is 1 or 2,

 R_1 and R_2 independently of one another are H, OH, C_1 - C_{12} alkyl or halogenomethyl, R_3 and R_4 independently of one another are H, OH, C_1 - C_{12} alkyl, C_1 - C_{18} alkoxy or halogen and, in the event that n=1, can also be a radical -OR₇,

 R_6 and R_6 independently of one another are H, C_1 - C_{12} alkyl or halogen, R_7 is C_1 - C_{12} alkyl which is substituted by phenoxy which is unsubstituted or substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy or halogen, C_1 - C_{12} alkyl which is substituted by -COOR $_6$, -CONH $_2$, -CONH $_9$, -CON(R_9)(R_{10}), -NH $_2$, -NHR $_9$ or -N(R_9)(R_{10}), C_6 - C_{20} alkyl which is interrupted by more than one O and is substituted by OH, glycldyl, cyclohexyl substituted by OH or -OCOR $_{11}$, a group -CH $_2$ CH(OH)CH $_2$ OR $_{19}$ or - SO $_2$ R $_{13}$, if n is 1, and, if n is 2, is C_2 - C_{12} alkylene, C_4 - C_{12} alkenylene, xylylene, C_3 - C_{20} alkylene which is interrupted by O and/or substituted by OH, or a group -CH $_2$ CH(OH)CH $_2$ O- R_{16} -OCH(OH)CH $_2$ - or -(CH $_2$) $_m$ -COO- R_{16} -OOC-

 $(CH_2)_m$ - in which m is 1-3, R_8 is C_3 - C_{20} alkyl which is interrupted by O, N or S and/or substituted by OH, C_1 - C_4 alkyl which is substituted by -P(O)(OR₁₄)₂, -N(R₉)(R₁₀) or -OCOR₁₁ and/or -OH, C_3 - C_{18} alkenyl, glycidyl or C_7 - C_{11} phenylalkyl, R_9 and R_{10} independently of one another are C_1 - C_{12} alkyl, C_3 - C_{12} alkoxyalkyl, C_4 - C_{16} dialkylaminoalkyl or C_5 -

 C_{12} cycloalkyl, or R_9 and R_{10} together are C_3 - C_9 alkylene or C_3 - C_9 oxaalkylene or C_3 - C_9 azaalkylene, R_{11} is C_1 - C_{19} alkyl, C_2 - C_{19} alkenyl or phenyl,

 R_{13} is C_1 - C_{12} alkyl, C_8 - C_{12} aryl or C_7 - C_{14} alkaryl,

R₁₄ is C₁-C₁₂alkyl or phenyl,

 R_{16} is C_2 - C_{10} alkylene, phenylene or a group -phenylene-X-phenylene in which X is -O-, -S-, -SO₂-, -CH₂- or -C(CH₃)₂,

R₁₈ is C₂-C₁₀alkylene or C₄-C₂₀alkylene which is interrupted by O, and R₁₉ is C₁-C₁₈alkyl, phenyl, phenyl which is substituted by C₁-C₁₂alkyl, C₁-C₁₂alkoxy or halogen, C₂-C₁₂alkanoyl, benzoyl or C₃-C₅alkenoyl.

19. A compound according to claim 17 of the formula la in which n is 1 to 4, R₁ and R₂ independently of one another are H, OH or C₁-C₄alkyl, R₃ and R₄ independently of one another are H, OH, C₁-C₄alkyl, C₁-C₄alkoxy, halogen or a radical -OR₇, R₅ and R₆ independently of one another are H or C₁ -C₄alkyl, R₇, if n is 1, is C₁-C₆alkyl which is substituted by -COOR₈, -COONHR₉, -CON(R₉)(R₁₀) or -OCOR₂₂, or R₇ is glycidyl, hydroxycyclohexyl or a group -CH₂CH(OH)CH₂OR₂₁, and if n is 2, R₇ is C₄-C₁₂alkyllene, C₄-C₆alkenylene, xylylene, C₃-C₂₀alkylene which is interrupted by one or more O and/or substituted by OH, or R₇ is a group -CH₂CH(OH)CH₂O-R₁₅-OCH₂CH(OH)CH₂-, -CH₂-COO-R₁₆-OOCCH₂- or

and if n is 3,
$$R_7$$
 is a group $\left\{ \text{CH}_2\text{COOCH}_2 \right\}_3^{\text{C-C}_2\text{H}_5}$

and if n is 4,
$$R_7$$
 is a group $-CH_2COOCH_2$,

 R_8 is C_3 - C_{20} alkyl which is interrupted by one or more O and can be substituted by OH or R_8 is C_1 - C_4 alkyl which is substituted by -P(O)(OR₁₄)₂ or R_6 is C_3 - C_{18} alkenyl,

 R_{θ} and R_{10} independently are C_1 - C_8 alkyl or cyclohexyl or R_{θ} and R_{10} together are pentamethylene or 3-oxapentamethylene,

R₁₄ is C₁-C₁₄alkyl,

10

15

20

25

30

35

40

45

55

 R_{15} is C_2 - C_8 alkylene, C_4 - C_{50} alkylene which is interrupted by one or more 0, or R_{15} is a group -phenylene-X-phenylene- in which X is -O-, -CH₂- or -C(CH₃)₂-,

 R_{18} is $C_4\text{--}C_8$ alkylene or $C_4\text{--}C_{12}$ alkylene which is interrupted by one or more 0,

 $\rm R_{21}$ is H, C₄–C₁₈alkyl, aliyl, phenyl, furyl, C₅–C₁₈alkanoyl or C₃–C₅alkenoyl and R₂₂ is C₂–C₅alkenyl.

20. A compound according to claim 17 of the formula Ia in which n is 1 or 2, R₁ and R₂ independently of one another are H or CH₃, R₃ and R₄ independently of one another are H, CH₃ or Cl, R₅ and R₆ are hydrogen, R₇, if n is 1, is C₁-C₄alkyl which is substituted by -COOR₈, -CON(R₉)(R₁₀) or -O-COR₂₂, or R₇ is glycidyl, 2-hydroxycyclohexyl or a group -CH₂CH(OH)CH₂OR₂₁, and if n is 2, R₇ is C₆-C₁₂akenylene, 2-butene-1,4-ylene, xylylene or C₃-C₂₀alkylene which is interrupted by one or more O and/or substituted by OH, or R₇ is a group -CH₂CH(OH)CH₂O-R₁₆-OCH₂CH(OH)CH₂-, -CH₂-COO-R₁₈-OOCCH₂- or

and if n is 4,
$$R_7$$
 is a group $\left\{ -CH_2COOCH_2 \right\}_4^C$,

 R_8 is C_3 - C_{20} alkyl which is interrupted by one or more O and can be substituted by OH or R_8 is - $CH_2P(O)(OR_{14})_2$ or oleyl

R₉ and R₁₀ are C₂-C₈alkyl

R₁₅ is C₂-C₈alkylene, C₁₀-C₄₅alkylene which is interrupted by one or more 0 or is a group

 R_{18} is $C_4\text{-}C_8$ alkylene, R_{21} is H, $C_4\text{-}C_{15}$ alkyl, allyl, phenyl, furyl, $C_5\text{-}C_{12}$ alkanoyl or $C_3\text{-}C_5$ alkenoyl and R_{22} is $C_2\text{-}C_3$ alkenyl.

- 21. A compound according to claim 17 of the formula la in which n is 2.
 - 22. A process for stabilizing organic material, in particular organic polymers, against damage caused by light, heat and oxyg n, by the addition of an o-hydroxyphenyl triazine, which comprises adding at least one com-

pound of the formula la according to claim 15.

- 23. An organic material containing at least one compound of the formula is according to claim 17 as a stabilizer against damage caused by light, heat and oxygen.
- 24. An organic polymer as a material according to claim 23.
- 25. An organic material according to claim 23, containing 0.01 to 10% by weight of a compound of the formula la, relative to the material.
- 26. A polycarbonate according to claim 24.
- 27. An organic material according to claim 23 which is a radiation-curable coating material.
- 28. The use of the compounds of claim 17 of the formula is as a stabilizer for organic materials, in particular for organic polymers.
 - 29. Use according to claim 28 as a stabilizer for polycarbonates.
- 30. The use of the compounds of claim 17 of the formula la as stabilizer for radiation-curable coating material.

Claims for the following Contracting State: ES

- An organic material which has been stabilized against damage caused by light, heat and oxygen and which contains
 - (a) 0.01 to 5% by weight of at least one sterically hindered amine of the polyalkylpiperidine type and (b) 0.02 to 5% by weight of at least one o-hydroxyphenyl-s-triazine, wherein the triazine compound (b) is a compound of the formula i

1

35

10

25

30

OH R1

45

50

in which n is 1 to 4,

R₁ and R₂ independently of one another are H, OH, C₁-C₁₂alkyl, cyclohexyl or trifluoromethyl,

 R_3 and R_4 independently of one another are H, OH, C_1 - C_{12} alkyl, cyclohexyl, C_1 - C_{18} alkoxy or halogen and, in the event that n=1, can also be a radical -OR₇,

R₅ and R₆ independently of one another are H, C₁-C₁₂aikyl or halogen,

R₇, if n is 1, is

a) C₁-C₁₈alkyl which is substituted by one or more of the groups OH, C₁-C₁₈alkoxy, C₃-C₁₈alkenoxy, hal gen, phenoxy (which is unsubstituted or substituted by C₁-C₁₈alkyl, C₁-C₁₈alkoxy or halogen), furyloxy,

-COOH, -COOR₈, -CONH₂, -CONHR₉, -CON(R₉)(R₁₀), -NH₂, -NHR₉, -N(R₉)(R₁₀), -NHCOR₁₁, -CN and/or by -O-CO-R₁₁,

b) C_4 - C_{50} alkyl which is interrupted by one or more O and can be substituted by OH or/and glycidyloxy,

c) C₃-C₆alkenyl,

10

15

20

25

30

35

40

45

55

e) cyclohexyl which is unsubstituted or substituted by OH or -OCOR11,

f) C_TC₁₁phenylalkyl which is unsubstituted or substituted by OH, Cl or CH₃₁

g) -CO-R₁₂ or

h) -SO2-R13,

and if n is 2, R7 is

a) C₂-C₁₈alkylene,

b) C₄-C₁₂alkenylene,

c) xylylene,

d) C₃-C₂₀alkylene which is interrupted by one or more O and/or substituted by OH,

e) a group -CH₂CH(OH)CH₂O-R₁₅-OCH₂CH(OH)CH₂-, -CO-R₁₆-CO-, -CO-NH-R₁₇-NH-CO- or -(CH₂)_m-COO-R₁₈-OOC-(CH₂)_m- (in which m is 1 to 3) or

and if n is 3, R7 is a group

$$(CH_2)_{\frac{m}{m}}COO = R_{19}$$
 $m = 1-3$,

and if n is 4, R7 is a group

$$= \frac{1-3}{100}$$
 $= 1-3$

 R_8 is C_1 – C_{18} alkyl, C_3 – C_{18} alkenyl, C_3 – C_{20} alkyl which is interrupted by one or more O, N or S and/or substituted by OH, C_1 – C_4 alkyl which is substituted by -P(O)(OR₁₄)₂, -N(R₉)(R₁₀) or -OCOR₁₁ and/or OH, C_3 - C_{18} alkenyl, glycidyl or C_7 - C_{11} phenylalkyl,

 R_{θ} and R_{10} independently of one another ar C_1 - C_{12} alkyl, C_3 - C_{12} alkoxyalkyl, C_4 - C_{16} dialkylaminoalkyl or C_6 - C_{12} cycloalkyl, or R_{θ} and R_{10} together are C_3 - C_{θ} alkylene or C_3 - C_{θ} oxaalkylene or C_3 - C_{θ} azaalkylene,

R₁₁ is C₁-C₁₈alkyl, C₂-C₁₈alkenyl r phenyl,

 R_{12} is C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, phenyl, C_1 - C_{12} alkoxy, phenoxy, C_1 - C_{12} alkylamino or C_6 - C_{12} arylamino or a group - R_{24} -COOH or -NH- R_{17} -NCO,

R₁₃ is C₁-C₁₂alkyl, C₆-C₁₂aryl or C₇-C₁₄alkaryl,

R₁₄ is C₁-C₁₂alkyl or phenyl,

5

10

15

20

30

40

45

55

 R_{15} is C_2 - C_{10} alkylene, C_4 - C_{50} alkylene which is interrupted by one or more 0, phenylene or a group -phenylene-X-phenylene- in which X is -O-, -S-, -SO₂-, -CH₂- or -C(CH₃)₂-,

R₁₆ is C₂-C₁₀alkylene, C₂-C₁₀oxaalkylene or C₂-C₁₀thiaalkylene, C₆-C₁₂arylene or C₂-C₆alkenylene,

R₁₇ is C₂-C₁₀alkylene, phenylene, tolylene, diphenylenemethane or a group

R₁₈ is C₂-C₁₀alkylene or C₄-C₂₀alkylene which is interrupted by one or more O,

R₁₉ is C₃-C₁₂alkanetriyl,

R₂₀ is C₄-C₁₂aikanetetryl,

R₂₄ is C₂-C₁₄alkylene, vinylene or o-phenylene.

An organic material according to claim 1, wherein the triazine compound (b) is a compound of the formula
I in which n is 1, 2 or 4, R₁ and R₂ independently of one another are H or CH₃, R₃ and R₄ independently of
one another are H, CH₃ or Cl, R₅ and R₆ are hydrogen,

R₇, if n is 1, is

a) C_1 - C_{14} alkyl which is substituted by one or more of the groups OH, C_1 - C_{16} alkoxy, allyloxy, phenoxy, furyloxy,

50

-COOR₈, -CON(R₉)(R₁₀) and/or by -OCOR₁₁,

- b) C_{8} - C_{45} alkyl which is interrupted by one or more O and can be substituted by OH or/and glycidyloxy,
- c) glycidyl or
- d) hydroxycyclohexyl,

and if n is 2, R₇ is C₆-C₁₂alkenylene, 2-butenylene-1,4, xylylene, C₃-C₂₀alkylene which is interrupted by one or more O or substituted by OH, or R₇ is a group -CH₂CH(OH)CH₂O-R₁₆-OCH₂CH(OH)CH₂-, -CO-R₁₆-CO-, -CH₂-COO-R₁₈-OOC-CH₂- r

and if n is 4, R_7 is $-CH_2COOCH_2$ -C

 R_8 is C_4 - C_{10} alkyl, oleyl, C_3 - C_{20} alkyl which is interrupted by one or more O and/or substituted by OH, or R_8 is -CH₂P(O)(OR₁₄)₂,

Re and Rio are C2-C8alkyl

 R_{11} is C_8 - C_{10} alkyl, C_2 - C_3 alkenyl

R₁₄ is C₁-C₁₄alkyl,

5

10

15

20

25

35

40

R₁₅ is C₂-C₈alkylene, C₁₀-C₄₅alkylene which is interrupted by more than one 0, or is a group

CH₃ CH₃

 R_{16} is C_4 - C_8 alkylene and R_{18} is C_4 - C_8 alkylene.

3. An organic material according to claim 1, wherein the component (a) is a compound containing at least one group of the formula

in which R is hydrogen or methyl, preferably wherein R is hydrogen.

- 4. An organic material according to claim 1, wherein the material is an organic polymer.
- 5. An organic polymer according to claim 4, wherein the polymer is a coating binder.
 - 6. An organic material according to claim 1, wherein the material is a radiation-curable coating material.
- 7. A radiation-curable coating material containing a hydroxyphenyltriazin of formula I as defined in claim 1 in the absence of a sterically hindered amine.
 - An organic material which has been stabilized against damage caused by light, heat and oxygen containing
 0.01 to 10% by weight of at least one compound of the formula la

$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

in which n is 1 to 4,

20

25

30

35

40

45

50

 R_1 and R_2 independently of one another are H, OH, C_1 - C_{12} alkyl, cyclohexyl or trifluoromethyl, R_3 and R_4 independently of one another are H, OH, C_1 - C_{12} alkyl, cyclohexyl, C_1 - C_{18} alkoxy or halogen and, in the event that n=1, can also be a radical -OR₇,

Re and Re independently of one another are H, C1-C12alkyl or halogen,

R₇, if n is 1, is

a) C_1 - C_{12} alkyl which is substituted by phenoxy (which is unsubstituted or substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy or halogen) or by a group -COOR₈, -CONH₂, -CONHR₉, -CON(R₈)(R₁₀), -NH₂, NHR₉, -N(R₉)(R₁₀) or -O-CO-R₂₂,

b) C₄-C₅₀alkyl which is interrupted by more than one O and can be substituted by OH or/and glycidyloxy,

d) cyclohexyl substituted by OH or -OCOR₁₁

e) a group -CH₂CH(OH)CH₂OR₂₁

f) a group -SO₂-R₁₃,

g) a group -CO-R₁₂

and if n is 2, R7 is

a) C2-C12alkylene,

b) C₄-C₁₂alkenylene,

c) xylylene,

d) C₃-C₂₀alkylene which is interrupted by one or more 0 and/or substituted by OH,

e) a group -CH₂CH(OH)CH₂O-R₁₅-OCH₂CH(OH)CH₂-, -(CH₂)_m-COO-R₁₈-OOC-(CH₂)_m- (wherein m is 1-3) or

and if n is 3,
$$R_7$$
 is a group $\left\{ (CH_2) \right\}_m = COO \left\{ \frac{1}{3} \right\}_3 = R_{20}$ (wherein m is 1-3),

5

10

15

20

and if n is 4, R_7 is a group $\left\{ (CH_2) \right\}_m COO \left\}_4 R$ (wherein m is 1-3),

 R_8 is C_3 - C_{20} alkyl which is interrupted by one or more O, N or S and can be substituted by OH, or R_8 is C_1 - C_4 alkyl which is substituted by -P(O)(OR₁₄)₂, -N(R₈)(R₁₀), or -OCOR₁₁ and/or OH, or R₈ is C_3 - C_{18} alkenyl, glycidyl or C_7 - C_{11} phenylalkyl,

 R_9 and R_{10} independently are C_1 - C_{12} alkyl, C_3 - C_{12} alkoxyalkyl, C_4 - C_{18} dialkylaminoalkyl or C_5 - C_{12} cycloalkyl, or R_9 and R_{10} together are C_3 - C_9 alkylene or C_3 - C_9 -oxaalkylene or C_3 - C_9 azaalkylene,

R₁₁ is C₁-C₁₈alkyl, C₂-C₁₈alkenyl or phenyl,

R₁₂ is a group -R₂₄-COOH or -NH-R₁₇-NCO,

R₁₃ is C₁-C₁₂alkyl, C₆-C₁₂aryl or C₇-C₁₄alkaryl

R₁₄ is C₁-C₁₂alkyl or phenyl

 R_{15} is C_2 - C_{10} alkylene, C_4 - C_{50} alkylene which is interrupted by one or more 0, or R_{15} is phenylene or a group -phenylene-X-phenylene in which X is -O-, -S-, -SO₂-, -CH₂- or -C(CH₃)₂-,

R₁₇ is C₂-C₁₀alkylene, phenylene, tolylene, diphenylenemethane or a group

25

30

35

R₁₈ is C₂-C₁₀alkylene or C₄-C₂₀alkylene which is interrupted by one or more O,

R₁₉ is C₃-C₁₂alkanetriyl,

R₂₀ is C₄-C₁₂alkanetetryl,

R₂₁ is H, C₁-C₁₈alkyl, C₃-C₁₈alkenyl, phenyl, phenyl substituted by C₁-C₁₂alkyl, C₁-C₁₂alkoxy or halogen, or R₂₁ is C₂-C₁₉alkanoyl, benzoyl, C₃-C₁₈alkenoyl, furyl or a group

40

45

$$CII_3$$
 CH_3
O
O
O
-O-CH(CH_2OCH_2CH CH_2)2,

50

R₂₂ is C₂-C₅alkenyl,

wherein X is O, S, SO_2 , CH_2 or $C(CH_3)_2$, and

R₂₄ is C₂-C₁₄alkylene, vinylene or o-phenylene.

- 9. An organic polymer as a material according to claim 8.
- 15 10. A polycarbonate according to claim 9.

10

25

30

35

45

55

- 11. An organic material according to claim 8 which is a radiation-curable coating material.
- 12. The use of the compounds of claim 8 of the formula la as a stabilizer for organic materials, in particular for organic polymers.
 - 13. Use according to claim 12 as a stabilizer for polycarbonates.
 - 14. The use of the compounds of claim 8 of the formula la as stabilizer for radiation-curable coating material.

EUROPEAN SEARCH REPORT

Application Number

EP 90 81 0920

	DOCUMENTS CONSID	ERED TO BE RELEVAN	٧T				
Category	Citation of document with indi-	cation, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)			
K, D	EP-A-0200190 (AMERICAN CV * claims; examples *	ANAMID COMPANY)	1-16	C08K5/3492 C08K5/34 C07D251/24			
(,0	CH-A-484695 (CIBA AKTIENS column 38, compound 47	ESELLSCHAFT)	17-21	//(CO8K5/34, 5:3435,5:3492)			
,	* claims *		22-30				
,		-					
				·			
				TECHNICAL FIELDS SEARCHED (Int. CL5)			
				C08K C08L C07D			
	The present search report has bee		<u> </u>	Examiner			
Place of search THE HAGUE		Date of completion of the search 11 MARCH 1991	1				
X : pai Y : pai	CATEGORY OF CITED DOCUMENT dicularly relevant if taken alone dicularly relevant if combined with annih nument of the same category	after the filling ter I) : document cite 1.: document cite	T: theory or principle underlying the invention E: carlier patent document, but published on, or after the filing date D: t document cited in the application L: document cited for other reasons				
A: technological background O: non-written disclosure P: intermediate document			& : member of the same patent family, corresponding				

m mar made out