20241028 MATH3301 Tutorial 8 1.6) Proof: We may divide our proof into three parts. Partl: We prove that + is well-defined. For all geG, geg = e. For all i∈ Zpand (Qo,Qi, ..., Qp,) ∈ X: a₀a₁...a_{p-1}=e ⇒ a_{p-1}a₀a₁...a_{p-2}= a_{p-1}(a₀a₁...a_{p-2}a_{p-1})a_{p-1}=e => ap=ap-1000, ... ap-3= ap-2(ap-1000, ... ap-3 ap-2) ap-3=e => -- => aiain apalo ai = ai (ain apalo ai ai) ai = e Hence, $*: \mathbb{Z}_{p} \times X \to X$, $(\hat{a}, (a_0, a_1, \dots, a_{p-1})) \mapsto (a_i, a_{i+1}, \dots, a_{p-1}, a_0, \dots, a_{i+1})$ is well-defined Part 2: We prove that * is associative. For all i, $j \in \mathbb{Z}_p$ and $(a_0, a_1, \dots, a_{p-1}) \in X$, WLOG, assume that |i|+|j| < p. (i+j)*(ao, a, ···, ap-1) = (ai+j, ai+j+1, ···, ap-1, ao, ···, ai+j-1) i*[j*(ao,a,..., ap.,)] = i*(aj,aj+1,..., ap,,ao,...,aj-1) = (aitj, aitjt, ..., ap., ao, ..., aitj-1) Part 3: We prove that * has an identity OSZo orall (a, a, ..., ap-1) ∈ X: O*(a, a, ..., ap-1) = (a, a, ..., ap-1) Combine the three parts above, we've proven that In aX (b) Proof: We wish to find a ∈ X, such that its stablizer subgroup Ip) = Ip. For all a = H with a = e (actually e = e, so such choice is walid): $\alpha a - \alpha = \alpha^{p} = e \Rightarrow (\alpha, \alpha, \cdots, \alpha) \in X$ For all $\overline{i} \in \mathbb{Z}_p$, $\overline{i} * (a, a, ..., a) = (a, a, ..., a)$, so $\overline{i} \in (\mathbb{Z}_p)_{(a, a, ..., a)}$ This implies Ips (Ip) (a,a, a) (Ip) (so (Ip) (a,a, a) = Ip (a,a, a,a) e) Hence, XZP + O

(c) Proof: Actually we've proven $K \subseteq X^{\mathbb{Z}_p}$ it suffices to show $X^{\mathbb{Z}_p} \in K$. For all $(a_0, a_1, \dots, a_{p_2}, a_{p-1}) \in X^{\mathbb{Z}_p}$:
For all (ao, a,, ap, ap,) e X = =
On one hand, (do, a,, ap=2, ap=1) = 1 * (do, a1,, ap=2, ap=1)
= (a1, a2,, ap1, a0), so a0= a1= a2== ap2=up1=someae
On the other hand, (a., a.,, ap-2, ap-1) is in the superset X of Xtp,
So $\alpha^{\dagger} = \alpha \alpha \cdots \alpha \alpha = 0$, $\alpha_1 \cdots \alpha_{p_2} \alpha_{p_1} = e$
Hence, (ao, a,, apz, apr) SK, Xth SK and we are done.
2. (a) Proof: Assume to the contrary that K = X4p > ,
that is, K contains a montrivial element k.
As $k^p = e$ and $k \neq e$ and p is prime, $ord(k) \neq p$ $ H = m$, and we are done.
(b) Proof. Every orbit Zoa has cardinality Zoa = Zp / (Zoa).
(b) Proof: Every orbit $\mathbb{Z}_p \tilde{a}$ has cardinality $ \mathbb{Z}_p \tilde{a} = \mathbb{Z}_p / \mathbb{Z}_p \tilde{a} $. As $ \mathbb{Z}_p \tilde{a} > $ and $ \mathbb{Z}_p = p$ is prime, it must be true that $ \mathbb{Z}_p \tilde{a} = p$.
(c) Proof: According to the orbit decomposition formula:
$\frac{1}{\sqrt{2}} = X = X ^{2} + \frac{1}{\sqrt{2}} Z ^{2}$ all distinct non-singleton orbit
= + Some multiple of p
all distinct non-single to morbit
$\equiv (mod p) \rangle$
Hence, $m^p \equiv m^{p-1}m \equiv m \pmod{p}$
3,60) (1) Assume that there are 1/2 2-Sylow subgroups and 1/3 3-Sylow subgroups.
According to Sylow's First Theorem, M22 and M32
According to Sylow's Third Theorem,
$ \mathcal{E} = 24 = 2^3 \cdot 3 = p^n \cdot m, (p, n, m) = (2, 3, 3)$
m ₂ m and p (m ₂₊₁) ⇒ n ₆ 3 and 2 (m ₆ -1) ⇒ n ₆ ∈ {1,3}
$= 6 = 24 = 3! \cdot 8 = p^{n} \cdot m, (p,n,m) = (9,1,8)$
$1/3^{-120}$ M ₃ m and p (M ₃ -1) \Rightarrow M ₃ 8 and 3 (M ₃ -1) \Rightarrow M ₃ e\(\begin{array}{c} 1,4\\ 3 \end{array}\)

$- \text{ bit } S_4 = \{e, (4,2)(3,4), (1,3)(2,4), (1,4)(2,3), \dots \}$
(1,2,3), (3,2,1), (1,2,4), (4,2,1),
(1,3,4), (4,3,1), (2,3,9), (4,3,2),
(1,2), (3,4), (1,3,2,4), (1,4,2,3),
(1,3), (1,2,3,4), (2,4), (1,4,3,2),
(1,4), (1,2,4,3), (1,3,4,2), (2,3)}
Step 1: Find 4 distinct 3-Sylow subgroups of S4.
{e, (1,2,3), (3,2,1)}, {e, (1,2,4), (4,2,1)},
{e,(1,3,4),(4,3,1)}, {e,(2,3,4),(4,3,2)}
Step 2: Since Ma E \$1,43, it must be true that Ma=4,
so we've exhausted all possibilities.
(b) (1) It suffices to prove that the surjective map 6: HXK > HK, 6(h,k)=hkis injective.
Forall (h, k) (h, k') EHXK, hk=h'k'> h'h=k'kEHOK=se3 => (h, k)=(h', k')
Hence, 6 is injective, thus bijective, so HK = HxK = H K .
(i) Consider the Klein 4-group $K_{4} = \{e, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\} \leq S_{4}$
(ii) Consider the Klein 4-group $K_4 = \{e, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\} \le S_4$, and the transposition group $\mathbb{Z}_5 = \{e, (1,2)\}$
As Z2 OK4 = Fe3, and K4 S4 => 72 K4 = K47/2,
we obtain a 2-Sylow subgroup Z2K4 of S4 as 12K4 - 12/1K4 = 8.
4. (a) (b) POQ≤P ⇒ POG P = P2 > POG mpty9=1 > POG = > POG > POG≤Q → POG Q =9 POG mpty9=1 > POG = > POG >
Pna ≤a > 1Pna 1a1=9 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(5) Note that $ G = p' \cdot q$ and $ P = p'$, so P is a p -Sylow subgroup of G . Assume that $\#(p$ -Sylow subgroup of G) = r
Assume that $\#(p-Syllow subgroup of G) = r$
According to Sylow's Third Theorem, r/q and p/(r-1).
As pt (q-1), it must be true that r=1, so the conjugacy class of Pis SP3
This implies P16. Similarly, Q16.
Assume that 1x, y & C) are the generators of the prime groups P. Arespectively.
<a> 16 ⇒ y<a>=<a>y ⇒ ∃µ∈Z, ya = nMy 2= nM = PDG=3
< a> 26 ⇒ y< a> = (a> y = 3) = y ∈ Z, y x = x y = x y = y ∈ P(0) = e}. < y> 26 ⇒ < y> x = x < y> > = 2 = x < y > = 2 = x < y > = x < y > = 2 = x < y < y < y < y < y < y < y < y < y <
Hence, $\mu = \nu = 0 \pmod{p}$, $xy = yx$, and every $g, g \in G$ commute, the Abelian group G

(b) Proof Assume to the contrary that As has a subgroup Hoforder 15.
As $15=9.3$, where $p-1=4$ is not divisible by $q=3$, $H \cong \mathbb{Z}_{15}$
Take agenerator h of the cyclic group H, and consider its cycle put
Casel: $h = (1, 2, 3, 4, 5)$, now ord(h) = $5 < 15$, contradiction.
Case 2: h = (1,2,3,4)(5), now h & As, contradiction.
Case 3: h = (1,2,3)(4,5), now h & As, contradiction.
Case 4: $h = (1,2,3)(4)(5)$, now ord(h) = $3 < 15$, contradiction.
Case 5: $h = (1,2)(3,4)(5)$, now ord(h)=2<15, contradiction.
Case 6: $h = (1,2)(3)(4)(5)$, now the As, contradiction.
Case 7: $h = (1)(2)(3)(4)(5)$, now ord $(h) = 1 < 15$, contradiction.
Hence, our assumption is wrong, and we've proven that such Hailstoexist.
5.00) Solution: Consider the Sylow subgroup Hof B. As $ H = 5 \in (1, 0)$, Hisamontrivial propersubgroup of B.
As $ H = 5 \in (1, 0)$, H is a month initial proper subgroup of G.
As [B: H]=2, H is normal in G.
16) Solution: Notice that H 33 closed under conjugation.
According to Cauchy's Theorem, 2 & a prime factor of $10 \Rightarrow \exists 1466$, ord(y)=2
2 3 a prime factor of $ 0\rangle = 1\rangle (65)$, ord(y)=2
lake agenerator of \$5= 1. Nothethat socilyxy" = ord(x)=5
Case : If you y'= x, then every g, g'66, commute, the Abebang roup 60%
Case If MANI = 1x , then a can be regarded as 2 rotation and
Case 2: If $4 \times \sqrt{1} = 1 \times 1$, then x can be regarded as 24 rotation and x can be regarded as reflection, the month belian group $6 \approx D_5$
Date / /