SEQUENCE LISTING

<110> THE GENERAL HOSPITAL CORPORATION
SHELLEY, CARL SIMON
FAROKHZAD, OMID C.

<120>	METHODS FOR DIAGNOSING AND TREATING TUMORS AND SUPPRESSING CIPROMOTERS	D												
<130>	M00765.70064													
<140> <141>	not yet assigned 2003-09-23													
<150> <151>	US 60/412,964 2002-09-23													
<160>	28													
<170>	PatentIn version 3.2													
<210> <211> <212> <213>	DNA													
<400> gcctcg	1 gggag gtggtggagt gacctggccc cagtgctgcg tccttatcag ccgagccggt	60												
cccagc	etett geteetgeet gtttgeetgg aaatggeeae getteteett eteettgggg	120												
tgctgg	stggt aageecagae getetgggga geacaacage agtgeagaea eecaceteeg	180												
gagagc	ecttt ggtctctact agcgagcccc tgagctcaaa gatgtacacc acttcaataa	240												
caagtg	gacce taaggeegae ageaetgggg accagacete agecetacet eecteaactt	300												
ccatca	atga gggateccet etttggactt ccattggtge cageactggt teccetttae	360												
ctgagc	caac aacctaccag gaagtttcca tcaagatgtc atcagtgccc caggaaaccc	420												
ctcatg	caac cagtcatect getgtteeca taacageaaa etetetagga teecacaeeg	480												
tgacag	gtgg aaccataaca acgaactcte cagaaacete cagtaggace agtggageee	540												
ctgtta	ccac ggcagctage tetetggaga cetecagagg cacetetgga ecceetetta	600												
ccatgg	caac tgtctctctg gagacttcca aaggcacctc tggaccccct gttaccatgg	660												
caactg	actc totggagaco tocactggga coactggaco coetg**acc atgacaactg	720												
gctctc	tgga gccctccage ggggccagtg gaccccaggt ctctagcgta aaactatcta	780												
caatga	tgtc tccaacgacc tccaccaacg caagcactgt gcccttccgg aacccagatg	840												
agaacto	cacg aggeatgetg ceagtggetg tgettgtgge cetgetggeg gteatagtee	900												
tegtgg	ctct gctcctgctg tggcgccggc ggcagaagcg gcggactggg gccctcgtgc	960												
tgagcag	gagg tggcaagcgt aacggggtgg tggacgcctg ggctgggcca gcccaggtcc	1020												

ctgaggaggg	ggccgtgaca	gtgaccgtgg _.	gagggtccgg	gggcgacaag	ggctctgggt	1080
tccccgatgg	ggaggggtct	agccgtcggc	ccacgctcac	cactttcttt	ggcagacgga	1140
agtctcgcca	gggctccctg	gcgatggagg	agctgaagtc	tgggtcaggc	cccagcctca	1200
aaggggagga	ggagccactg	gtggccagtg	aggatggggc	tgtggacgcc	ccagctcctg	1260
atgagcccga	agggggagac	ggggctgccc	cttaagtgtc	ggtgaatagt	gaggctggag	1320
gccggaatct	cagccagcct	ccagcacctt	ccctctcacc	atcccactgc	cccctcgctc	1380
ccatgtttcc	acceggeace	ctgatcctca	cccgaatctc	cttttttt	ttcttttgag	1440
acagagtttc	gctttgtcgc	ccaggctgga	gtgcaatgca	cgatctcagt	tcactgcaac	1500
ctctgcctcc	taagttcagg	cgattctcct	gcctcagctt	cccgagtaac	tgagattaca	1560
ggcacccacc	accatgccca	gctgcttttt	tgtatttttg	gtagagatgg	ggtttcacca	1620
tgttggctag	gctggtctca	aactcctgac	ctcaggtgat	ctacctgcct	cagootocca	1680
aagtgctgag	attacagaca	tgagcctccg	cgccttgcct	cctcacccac	ctcttcactc	1740
tgaatcctca	tgaggcttct	cagccctgga	tttcctgctg	ccatcctcac	ccagcaccca	1800
caactagcgc	ctgggcaggg	cagggctggc	acctctcaac	gtctgtggac	tgaatgaata	1860
aaccctcctc	atccacccc					1879

<210> 2 <211> 400 <212> PRT

<213> Homo sapiens sialophorin

<400> 2

Met Ala Thr Leu Leu Leu Leu Gly Val Leu Val Val Ser Pro Asp

Ala Leu Gly Ser Thr Thr Ala Val Gln Thr Pro Thr Ser Gly Glu Pro

Leu Val Ser Thr Ser Glu Pro Leu Ser Ser Lys Met Tyr Thr Thr Ser

Ile Thr Ser Asp Pro Lys Ala Asp Ser Thr Gly Asp Gln Thr Ser Ala

Leu Pro Pro Ser Thr Ser Ile Asn Glu Gly Ser Pro Leu Trp Thr Ser

Ile Gly Ala Ser Thr Gly Ser Pro Leu Pro Glu Pro Thr Thr Tyr Gln

Glu Val Ser Ile Lys Met Ser Ser Val Pro Gln Glu Thr Pro His Ala

Thr Ser His Pro Ala Val Pro Ile Thr Ala Asn Ser Leu Gly Ser His

Thr Val Thr Gly Gly Thr Ile Thr Thr Asn Ser Pro Glu Thr Ser Ser

140

3/30

130.

135

Arg Thr Ser Gly Ala Pro Val Thr Thr Ala Ala Ser Ser Leu Glu Thr 155 150 Ser Arg Gly Thr Ser Gly Pro Pro Leu Thr Met Ala Thr Val Ser Leu 170 165 Glu Thr Ser Lys Gly Thr Ser Gly Pro Pro Val Thr Met Ala Thr Asp Ser Leu Glu Thr Ser Thr Gly Thr Thr Gly Pro Pro Val Thr Met Thr 200 Thr Gly Ser Leu Glu Pro Ser Ser Gly Ala Ser Gly Pro Gln Val Ser Ser Val Lys Leu Ser Thr Met Met Ser Pro Thr Thr Ser Thr Asn Ala 235 Ser Thr Val Pro Phe Arg Asn Pro Asp Glu Asn Ser Arg Gly Met Leu 245 Pro Val Ala Val Leu Val Ala Leu Leu Ala Val Ile Val Leu Val Ala Leu Leu Leu Trp Arg Arg Gln Lys Arg Arg Thr Gly Ala Leu 280 Val Leu Ser Arg Gly Gly Lys Arg Asn Gly Val Val Asp Ala Trp Ala Gly Pro Ala Gln Val Pro Glu Glu Gly Ala Val Thr Val Thr Val Gly Gly Ser Gly Gly Asp Lys Gly Ser Gly Phe Pro Asp Gly Glu Gly Ser 325 Ser Arg Arg Pro Thr Leu Thr Thr Phe Phe Gly Arg Arg Lys Ser Arg 345 Gln Gly Ser Leu Ala Met Glu Glu Leu Lys Ser Gly Ser Gly Pro Ser 360 Leu Lys Gly Glu Glu Pro Leu Val Ala Ser Glu Asp Gly Ala Val Asp Ala Pro Ala Pro Asp Glu Pro Glu Gly Gly Asp Gly Ala Ala Pro 390

<210> 3 <211> 1893 <212> DNA <213> Homo sapiens

<400> 3
cttccctgcc tccctcaggt cccagctctt gctcctgcct gtttgcctgg aaatggccac 60
gcttctcctt ctccttgggg tgctggtggt aagcccagac gctctgggga gcacaacagc 120
agtgcagaca cccacctccg gagagccttt ggtctctact agcgagcccc tgagctcaaa 180

gatgtacacc	acttcaataa	caagtgaccc	taaggccgac	agcactgggg	accagacctc	240
agccctacct	ccctcaactt	ccatcaatga	gggatcccct	ctttggactt	ccattggtgc	300
cagcactggt	tcccctttac	ctgagccaac	aacctaccag	gaagtttcca	tcaagatgtc	360
atcagtgccc	caggaaaccc	ctcatgcaac	cagtcatcct	gctgttccca	taacagcaaa	420
ctctctagga	tcccacaccg	tgacaggtgg	aaccataaca	acgaactctc	cagaaacctc	480
cagtaggacc	agtggagccc	ctgttaccac	ggcagctagc	tctctggaga	cctccagagg	540
cacctctgga	cccctctta	ccatggcaac	tgtctctctg	gagacttcca	aaggcacctc	600
tggaccccct	gttaccatgg	caactgactc	tctggagacc	tccactggga.	ccactggacc	660
ccctgttacc	atgacaactg	gctctctgga	gccctccagc	ggggccagtg	gaccccaggt	720
ctctagcgta	aaactatcta	caatgatgtc	tccaacgacc	tccaccaacg	caagcactgt	780
gcccttccgg	aacccagatg	agaactcacg	aggcatgctg	ccagtggctg	tgcttgtggc	840
cctgctggcg	gtcatagtcc	tcgtggctct	gctcctgctg	tggcgccggc	ggcagaagcg	900
gcggactggg	gccctcgtgc	tgagcagagg	cggcaagcgt	aacggggtgg	tggacgcctg	960
ggctgggcca	gcccaggtcc	ctgaggaggg	ggccgtgaca	gtgaccgtgg	gagggtccgg	1020
gggcgacaag	ggctctgggt	tccccgatgg	ggaggggtct	agccgtcggc	ccacgctcac	1080
cactttcttt	ggcagacgga	agtctcgcca	gggctccctg	gcgatggagg	agctgaagtc	1140
tgggtcaggc	cccagcctca	aaggggagga	ggagccactg	gtggccagtg	aggatggggc	1200
tgtggacgcc	ccagctcctg	atgagcccga	agggggagac	ggggctgccc	cttaagtgtc	1260
ggtgaatagt	gaggctggag	gccggaatct	cagccagcct	ccagcacctt	ccctctcacc	1320
atcccactgc	cacatagata	ccatgtttcc	acceggeace	ctgatcctca	cccgaatctc	1380
cttttttt	ttcttttgag	acagagtttc	gctttgtcgc	ccaggctgga	gtgcaatgca	1440
cgatctcagt	tcactgcaac	ctctgcctcc	taagttcagg	cgattctcct	gcctcagctt	1500
cccgagtaac	tgagattaca	ggcacccacc	accatgccca	gctgcttttt	tgtatttttg	1560
gtagagatgg	ggtttcacca	tgttggctag	gctggtctca	aactcctgac	ctcaggtgat	1620
ctacctgcct	cagcctccca	aagtgctgag	attacagaca	tgagcctccg	cgccttgcct	1680
cctcacccac	ctcttcactc	tgaatcctca	tgaggcttct	cagccctgga	tttcctgctg	1740
ccatcctcac	ccagcaccca	caactagcgc	ctġggcaggg	cagggctggc	acctctcaac	1800
gtctgtggac	tgaatgaata	aaccctcctc	atccacccct	aaaaaaaaa	aaaaaaaaa	1860
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaa			1893

<210> 4 <211> 400 <212> PRT

<213> Homo sapiens

290

<400> 4 Met Ala Thr Leu Leu Leu Leu Gly Val Leu Val Val Ser Pro Asp Ala Leu Gly Ser Thr Thr Ala Val Gln Thr Pro Thr Ser Gly Glu Pro Leu Val Ser Thr Ser Glu Pro Leu Ser Ser Lys Met Tyr Thr Thr Ser Ile Thr Ser Asp Pro Lys Ala Asp Ser Thr Gly Asp Gln Thr Ser Ala Leu Pro Pro Ser Thr Ser Ile Asn Glu Gly Ser Pro Leu Trp Thr Ser Ile Gly Ala Ser Thr Gly Ser Pro Leu Pro Glu Pro Thr Thr Tyr Gln Glu Val Ser Ile Lys Met Ser Ser Val Pro Gln Glu Thr Pro His Ala Thr Ser His Pro Ala Val Pro Ile Thr Ala Asn Ser Leu Gly Ser His Thr Val Thr Gly Gly Thr Ile Thr Thr Asn Ser Pro Glu Thr Ser Ser 135 Arg Thr Ser Gly Ala Pro Val Thr Thr Ala Ala Ser Ser Leu Glu Thr Ser Arg Gly Thr Ser Gly Pro Pro Leu Thr Met Ala Thr Val Ser Leu 170 Glu Thr Ser Lys Gly Thr Ser Gly Pro Pro Val Thr Met Ala Thr Asp 185 Ser Leu Glu Thr Ser Thr Gly Thr Thr Gly Pro Pro Val Thr Met Thr Thr Gly Ser Leu Glu Pro Ser Ser Gly Ala Ser Gly Pro Gln Val Ser 215 Ser Val Lys Leu Ser Thr Met Met Ser Pro Thr Thr Ser Thr Asn Ala 230 Ser Thr Val Pro Phe Arg Asn Pro Asp Glu Asn Ser Arg Gly Met Leu 250 Pro Val Ala Val Leu Val Ala Leu Leu Ala Val Ile Val Leu Val Ala 265 Leu Leu Leu Trp Arg Arg Gln Lys Arg Arg Thr Gly Ala Leu Val Leu Ser Arg Gly Gly Lys Arg Asn Gly Val Val Asp Ala Trp Ala

295

Gly Pro Ala Gln Val Pro Glu Glu Gly Ala Val Thr Val Thr Val Gly 305 Gly Ser Gly Gly Asp Lys Gly Ser Gly Phe Pro Asp Gly Glu Gly Ser Ser Arg Arg Pro Thr Leu Thr Thr Phe Phe Gly Arg Arg Lys Ser Arg Gln Gly Ser Leu Ala Met Glu Glu Leu Lys Ser Gly Ser Gly Pro Ser Leu Lys Gly Glu Glu Pro Leu Val Ala Ser Glu Asp Gly Ala Val 370 Asp Ala Pro Ala Pro Asp Glu Pro Glu Gly Gly Asp Gly Ala Ala Pro 5 <210> <211> 1924 <212> DNA

Human leukosialin

<400> 5 60 cctctgagcc cagccctccc tagcatcacc acttccatcc cattcctcag ccaagagcca ggaatcctga ttccagatcc cacgcttccc tgcctccctc aggtcccagc tcttgctcct 120 gcctgtttgc ctggaaatgg ccacgcttct ccttctcctt ggggtgctgg tggtaagccc 180 240 agacqctctg gggagcacaa cagcagtgca gacacccacc tccggagagc ctttggtctc tactagcgag cccctgagct caaagatgta caccacttca ataacaagtg accctaaggc 300 cgacagcact ggggaccaga cctcagccct acctccctca acttccatca atgagggatc 360 420 ccctcttigg acttccattg gtgccagcac tggttcccct ttacctgagc caacaaccta 480 ccaggaagtt tccatcaaga tgtcatcagt gccccaggaa acccctcatg caaccagtca 540 tcctqctqtt cccataacag caaactctct aggatcccac accgtgacag gtggaaccat aacaacgaac tctccagaaa cctccagtag gaccagtgga gcccctgtta ccacggcagc 600 tagetetetg gagaceteca gaggeacete tggaceceet ettaceatgg caactgtete 660 tctggagact tccaaaggca cctctggacc ccctgttacc atggcaactg actctctgga 720 gacetecact gggaccactg gacecectgt taccatgaca actggetete tggagecete 780 cageggggcc agtggacccc aggtetetag cgtaaaacta tetacaatga tgtetecaac 840 gacctccacc aacgcaagca ctgtgccctt ccggaaccca gatgagaact cacgaggcat 900 gctgccagtg gctgtgcttg tggccctgct ggcggtcata gtcctcgtgg ctctgctcct 960 gctgtggcgc cggcggcaga agcggcggac tggggccctc gtgctgagca gaggcggcaa 1020 gcgtaacggg gtggtggacg cctgggctgg gccagcccag gtccctgagg agggggccgt 1080

gacagtgacc gtgggagggt ccgggggcga caagggctct gggttccccg atggggaggg 1140 gtctagccgt cggcccacgc tcaccacttt ctttggcaga cggaagtctc gccagggctc 1200 cctggcgatg gaggagctga agtctgggtc aggccccagc ctcaaagggg aggaggagcc 1260 actggtggcc agtgaggatg gggctgtgga cgccccagct cctgatgagc ccgaaggggg 1320 agacggggct gccccttaag tgtcggtgaa tagtgaggct ggaggccgca atctcagcca 1380 qcctccaqca ccttccctct caccatccca ctgccccctc gctcccatgt ttccacccgg 1440 1500 caccetgate etcacegaa teteetttt tttttettt tgagacagag tttegetttg tegeceagge tggagtgeaa tgeacgatet cagtteactg caacetetge etectaagtt 1560 caggicgatte teetgeetea getteeegag taactgagat tacaggeace caccaccatg 1620 cccagctgct tttttgtatt tttggtagag atggggtttc accatgttgg ctaggctggt 1680 1740 ctcaaactcc tgacctcagg tgatctacct gcctcagcct cccaaagtgc tgagattaca gacatgagec teegegeett geeteeteac ecacetette actetgaate eteatgagge 1800 1860 ttetcagece tggattteet getgecatee teacecagea eccacaaeta gegeetggge agggcagggc tggcacctct caacgtctgt ggactgaatg aataaaccct cctcatccac 1920 1924 ccct

<210> 6 <211> 400 <212> PRT <213> Homo sapiens leukosialin

<400> 6
Met Ala Thr Leu Leu Leu Leu Gly Val Leu Val Val Ser Pro Asp
1 10 15

Ala Leu Gly Ser Thr Thr Ala Val Gln Thr Pro Thr Ser Gly Glu Pro 20 25 30

Leu Val Ser Thr Ser Glu Pro Leu Ser Ser Lys Met Tyr Thr Thr Ser 35 40 45

Ile Thr Ser Asp Pro Lys Ala Asp Ser Thr Gly Asp Gln Thr Ser Ala
50 55 60

Leu Pro Pro Ser Thr Ser Ile Asn Glu Gly Ser Pro Leu Trp Thr Ser 65 70 75 80

Ile Gly Ala Ser Thr Gly Ser Pro Leu Pro Glu Pro Thr Thr Tyr Gln 85 90 95

Glu Val Ser Ile Lys Met Ser Ser Val Pro Gln Glu Thr Pro His Ala 100 105 110

Thr Ser His Pro Ala Val Pro Ile Thr Ala Asn Ser Leu Gly Ser His 115 120 125

Thr Val Thr Gly Gly Thr Ile Thr Thr Asn Ser Pro Glu Thr Ser Ser

140 135 13Ò Arg Thr Ser Gly Ala Pro Val Thr Thr Ala Ala Ser Ser Leu Glu Thr 150 155 Ser Arg Gly Thr Ser Gly Pro Pro Leu Thr Met Ala Thr Val Ser Leu 170 Glu Thr Ser Lys Gly Thr Ser Gly Pro Pro Val Thr Met Ala Thr Asp Ser Leu Glu Thr Ser Thr Gly Thr Thr Gly Pro Pro Val Thr Met Thr Thr Gly Ser Leu Glu Pro Ser Ser Gly Ala Ser Gly Pro Gln Val Ser 215 Ser Val Lys Leu Ser Thr Met Met Ser Pro Thr Thr Ser Thr Asn Ala 235 Ser Thr Val Pro Phe Arg Asn Pro Asp Glu Asn Ser Arg Gly Met Leu 245 Pro Val Ala Val Leu Val Ala Leu Leu Ala Val Ile Val Leu Val Ala 265 Leu Leu Leu Trp Arg Arg Arg Gln Lys Arg Arg Thr Gly Ala Leu Val Leu Ser Arg Gly Gly Lys Arg Asn Gly Val Val Asp Ala Trp Ala 295 Gly Pro Ala Gln Val Pro Glu Glu Gly Ala Val Thr Val Thr Val Gly Gly Ser Gly Gly Asp Lys Gly Ser Gly Phe Pro Asp Gly Glu Gly Ser Ser Arg Arg Pro Thr Leu Thr Thr Phe Phe Gly Arg Arg Lys Ser Arg 345 Gln Gly Ser Leu Ala Met Glu Glu Leu Lys Ser Gly Ser Gly Pro Ser Leu Lys Gly Glu Glu Glu Pro Leu Val Ala Ser Glu Asp Gly Ala Val Asp Ala Pro Ala Pro Asp Glu Pro Glu Gly Gly Asp Gly Ala Ala Pro 385 <210> 7 2288 <211> <212> DNA Homo spaiens leukosialin <213> <400> 7 ggagcctcgg gaggtggtgg agtgacctgg ccccagtgct gcgtccttat cagccgagcc 60

ggtcccagct cttgctcctg cctgtttgcc tggaaatggc cacgcttctc cttctccttg

gggtgctggt ggtaagccca gacgctctgg ggagcacaac agcagtgcag acacccacct

120

180

ccggagagcc	tttggtctct	actagcgagc	ccctgagctc	aaagatgtac	accacttcaa	240
taacaagtga	ccctaaggcc	gacagcactg	gggaccagac	ctcagcccta	cctccctcaa	300
cttccatcaa	tgagggatcc	cctctttgga	cttccattgg	tgccagcact	ggttcccctt	360
tacctgagcc	aacaacctac	caggaagttt	ccatcaagat	gtcatcagtg	ccccaggaaa	420
cccctcatgc	aaccagtcat	cctgctgttc	ccataacagc	aaactctcta	ggatcccaca	480
ccgtgacagg	tggaaccata	acaacgaact	ctccagaaac	ctccagtagg	accagtggag	540
cccctgttac	cacggcagct	agctctctgg	agacctccag	aggcacctct	ggaccccctc	. 600
ttaccatggc	aactgtctct	ctggagactt	ccaaaggcac	ctctggaccc	cctgttacca	660
tggcaactga	ctctctggag	acctccactg	ggaccactgg	acccctgtt	accatgacaa	720
ctggctctct	ggagccċtcc	agcggggcca	gtggacccca	ggtctctagc	gtaaaactat	780
ctacaatgat	gtctccaacg	acctccacca	acgcaagcac	tgtgcccttc	cggaacccag	840
atgagaactc	acgaggcatg	ctgccagtgg	ctgtgcttgt	ggccctgctg	gcggtcatag	900
tectegtgge	tctgctcctg	ctgtggcgcc	ggcggcagaa	gcggcggact	ggggccctcg	960
tgctgagcag	aggcggcaag	cgtaacgggg	tggtggacgc	ctgggctggg	ccagcccagg	1020
tccctgagga	gggggccgtg	acagtgaccg	tgggagggtc	cgggggcgac	aagggctctg	1080
ggttccccga	tggggagggg	tctagccgtc	ggcccacgct	caccactttc	tttggcagac	11,40
ggaagtctcg	ccagggctcc	ctggcgatgg	aggagctgaa	gtctgggtca	ggccccagcc	1200
tcaaagggga	ggaggagcca	ctggtggcca	gtgaggatgg	ggctgtggac	gccccagctc	1260
ctgatgagcc	cgaaggggga	gacggggctg	ccccttaagt	gtcggtgaat	agtgaggctg	1320
gaggccggaa	teteageeag	cctccagcac	cttccctctc	accatcccac	tgccccctcg	1380
ctcccatgtt	tecaceegge	accctgatcc	tcacccgaat	ctccttttt	tttttcttt	1440
gagacagagt	ttcgctttgt	cgcccaggct	ggagtgcaat	gcacgatctc	agttcactgc	1500
aacctctgcc	tcctaagttc	aggcgattct	cctgcctcag	cttcccgagt	aactgagatt	1560
acaggcaccc	accaccatgc	ccagctgctt	ttttgtattt	ttggtagaga	tggggtttca	1620
ccatgttggc	taggctggtc	tcaaactcct	gacctcaggt	gatctacctg	cctcagcctc	1680
ccaaagtgct	gagattacag	acatgagcct	ccgcgccttg	cctcctcacc	cacctcttca	1740
ctctgaatcc	tcatgaggct	tctcagccct	ggatttcctg	ctgccatcct	cacccagcac	1800
ccacaactag	cgcctgggca	gggcagggct	ggcacctctc	aacgtctgtg	gactgaatga	1860
ataaaccctc	ctcttacaaa	tgccaaaatt	cattcagctt	tgatgataaa	cactgaggcc	1920
. caatggcctt	tatcatctag	ggagtatgaa	gaatgagcaa	gaggctaact	cagcgtgagt	1980
taccctggga	aaggaaagaa	gaaatggttc	atataggaca	cacatagata	ccttcaaggg	2040

WO 2004/026120 PCT/US2003/030213 10/30

2100

2160222022802288

tgtttgtaga gttgtttctt aagtagttgg tttccttcac agaaagttct taaactcaga

atatacccat ccatgcaccc caccagcaat acaaagaccc caaacaaaaa attactatat

acatacocat soutgoaco, cassagoat asaasgasso saassaaaa asaastatat												
tottacceta cgcatggott cotoctotto ttgacgottt toataatgtg caaagtoato												
aaagattgag gtggtatgct tgaaagtagc aattatttta agcacttgct tagctttttc												
aagggacg												
<210> 8 <211> 400 <212> PRT <213> Homo sapiens leukosialin												
<pre><400> 8 Met Ala Thr Leu Leu Leu Leu Gly Val Leu Val Val Ser Pro Asp 1 5 10 15</pre>												
Ala Leu Gly Ser Thr Thr Ala Val Gln Thr Pro Thr Ser Gly Glu Pro 20 25 30												
Leu Val Ser Thr Ser Glu Pro Leu Ser Ser Lys Met Tyr Thr Thr Ser 35 40 45												
'Ile Thr Ser Asp Pro Lys Ala Asp Ser Thr Gly Asp Gln Thr Ser Ala 50 55 60												
Leu Pro Pro Ser Thr Ser Ile Asn Glu Gly Ser Pro Leu Trp Thr Ser 65 70 75 80												
Ile Gly Ala Ser Thr Gly Ser Pro Leu Pro Glu Pro Thr Thr Tyr Gln 85 90 95												
Glu Val Ser Ile Lys Met Ser Ser Val Pro Gln Glu Thr Pro His Ala 100 105 110												
Thr Ser His Pro Ala Val Pro Ile Thr Ala Asn Ser Leu Gly Ser His 115 120 125												
Thr Val Thr Gly Gly Thr Ile Thr Thr Asn Ser Pro Glu Thr Ser Ser 130 135 140												
Arg Thr Ser Gly Ala Pro Val Thr Thr Ala Ala Ser Ser Leu Glu Thr 145 150 155 160												
Ser Arg Gly Thr Ser Gly Pro Pro Leu Thr Met Ala Thr Val Ser Leu 165 170 175												
Glu Thr Ser Lys Gly Thr Ser Gly Pro Pro Val Thr Met Ala Thr Asp 180 185 190	•											
Ser Leu Glu Thr Ser Thr Gly Thr Thr Gly Pro Pro Val Thr Met Thr 195 200 205												
Thr Gly Ser Leu Glu Pro Ser Ser Gly Ala Ser Gly Pro Gln Val Ser 210 225 220												
Ser Val Lys Leu Ser Thr Met Met Ser Pro Thr Thr Ser Thr Asn Ala 225 230 240												

Ser Thr Val Pro Phe Arg Asn Pro Asp Glu Asn Ser Arg Gly Met Leu 245 250 255

Pro Val Ala Val Leu Val Ala Leu Leu Ala Val Ile Val Leu Val Ala 260 265 270

Leu Leu Leu Trp Arg Arg Gln Lys Arg Arg Thr Gly Ala Leu 275 280 285

Val Leu Ser Arg Gly Gly Lys Arg Asn Gly Val Val Asp Ala Trp Ala 290 295 300

Gly Pro Ala Gln Val Pro Glu Glu Gly Ala Val Thr Val Thr Val Gly 305 310 315 320

Gly Ser Gly Gly Asp Lys Gly Ser Gly Phe Pro Asp Gly Glu Gly Ser 325 330 335

Ser Arg Arg Pro Thr Leu Thr Thr Phe Phe Gly Arg Arg Lys Ser Arg 340 345 350

Gln Gly Ser Leu Ala Met Glu Glu Leu Lys Ser Gly Ser Gly Pro Ser 355 360 365

Leu Lys Gly Glu Glu Glu Pro Leu Val Ala Ser Glu Asp Gly Ala Val 370 375 380

Asp Ala Pro Ala Pro Asp Glu Pro Glu Gly Gly Asp Gly Ala Ala Pro 385 . 390 395 400

<210> 9

<211> 5050

<212> DNA

<213> Homo sapiens leukosialin (CD43)

<400> 9

60 ccccctqca qaatqqqcac cccqttacct ttctqaqcca ctqtqcqcaq aaaaqaqaqc atgttggcca ggctggtctc gaactcctga cctcaagtga tcagcctgcc ttacctccca 120 180 aaqtcctqqq attacagqcq tqaaccacca cgctcagcct ctgaatactt tgtactcaag ccatttttca gtgctgtgtt tgcagtgagc acacccgagg gatgaagaca cgtctccctg 240 tgggaacctg ggcttaccag ggcccctaga ggaggggaat ctctcaagct cagagctcta 300 tggctgcggt gcaggcccac tgtgtgcatg gtgtcagtct gggcccttcc atgttgcccc 360 cgtgggactt ggggtaaggg gaactgatgc aaacatcacg ctgctgttgc ttggtgtgag 420 caattaattc ctgtggctct cacccaggag tctcatgtct ttgggtcaga caaactcatc 480 agettgtaga aatggcacag teccaeggge etgttagaat ettetattgt geacatgttg 540 ctcttaaaat atacaaatca gttttgattt taaaaaaatta tttatttttt tagtgatagg 600 agttttgcta cgttgcccag gctggtttca aactcttggg ctcaggaggt cctcccactt 660 tggcctggac tgccagcata atgtatcacc acacccggga ctgattttcg tttttcaaga 720

acaaaaacca	aaaacataca	caaaccgaga	gtcaaagctt	gctaattaga	ggaaagtcag	780
gaaatgggaa	ccattcaaag	aagaaaatac	cccacctcc	tactctcacc	tatccaaaga	840
caattaggtg	aatcccttag	tagatatctt	tccagacggt	tttccatata	gattcccata	900
tctggccagg	cgcggtggct	cacacctgta	atcctagcgc	ttggggaggc	tgaggcggat	960
ggaccacctg	aggtcaggag	ttcgagacca	gcctgaccaa	catggagaaa	cctcgtctct	1020
acgaaaaata	caaaattagc	cgggcacagt	ggtgcaagcc	tgtaatccca	gctactcagg	1080
aggccgaggc	aggagaattg	cttgaaccta	ggaggcagac	attgtgctgä	gccgagccaa	1140
gatcatgcca	ttgcactaaa	ctccgcctta	aaaaaaaaaa	aaaagattcc	cacatcttta	1200
ctagtttgca	gaaataagat	cctagcatat	gcagtgtgta	ggaaccacct	tggtttagcc	1260
acgtctctgt	gactgggggc	cactgtggtg	acccccagct	ccccggacag	agtcaagagc	1320
tcaccagcct	gcaaaggttt	tcacggcccc	cagccagact	cgggggcttc	ctcttgccct	1380
gctacttcct	gggagctctg	agggcaggaa	atggcgccac	tcagctcctg	gcctaacagc	1440
ttggggacca	caaatgcaaa	ggaaaccacc	ctccctccc	acctcctcct	ctgcaccctt	1500
gagttctcag	gctcacattc	ccaccaccca	cctctgagcc	cagecetece	tagcatcacc	1560
acttccatcc	cattcctcag	ccaagagcca	ggaatcctga	ttccagatcc	cacgcttccc	1620
tgcctccctc	aggtgagccc	cagaccccca	ggcaccccgc	tggcccctga	aggagcaggt	1680
ġatggtgctg	tcttcgccca	gcagctgtgg	gagcaggcgg	gtggggcagg	atggaggggt	1740
gggtggggtg	ggtggagcca	gggcccactt	cctttcccct	tggggccctg	tccttcccag	1800
tcttgcccca	gcctcgggag	gtggtggagt	gacctggccc	cagtgctgcg	tccttatcag	1860
ccgagccggt	aagagggtga	gacttggtgg	ggtaggggcc	tcagtgggcc	tgggaatgtg	1920
cctgtggctt	gaaaagactc	tgacaggtta	tgatgggaag	agattgggag	ccattgggct	1980
gcacagggtc	agggaaggcc	aggagggct	ggtcactgct	ggaatctaag	ctgctgaggc	2040
tggagggagc	ctcaggatgg	ggctgatggg	ggagctgcca	gcatctgttc	ctctgtcatt	2100
tctgataaca	gtaaaagcca	gcatggaaaa	aaccgttaaa	ccgcaggttg	ggectggecg	2160
ttggcaggga	agtgggcaga	ggggaggccc	ggccaggtcc	tccggcaact	cccgcgtgtt	2220
ctgcttctcc	ggctgcccac	ctgcaggtcc	cagctcttgc	tectgectgt	ttgcctggaa	2280
atggccacgc	ttctccttct	ccttggggtg	ctggtggtaa	gcccagacgc	tctggggagc	2340
acaacagcag	tgcagacacc	cacctccgga	gagcctttgg	tctctactag	cgagcccctg	2400
agctcaaaga	tgtacaccac	ttcaataaca	agtgacccta	aggccgacag	cactggggac	2460
cagacctcag	ccctacctcc	ctcaacttcc	atcaatgagg	gatcccctct	ttggacttcc	2520
attggtgcca	gcactggttc	ccctttacct	gagccaacaa	cctaccagga	agtttccatc	2580

aagatgtcat	cagtgcccca	ggaaacccct	catgcaacca	gtcatcctgc	tgttcccata	2640
acagcaaact	ctctaggatc	ccacaccgtg	acaggtggaa	ccataacaac	gaactctcca	2700
gaaacctcca	gtaggaccag	tggagcccct	gttaccacgg	cagctagctc	tctggagacc	2760
tccagaggca	cctctggacc	ccctcttacc	atggcaactg	tetetetgga	gacttccaaa	2820
ggcacctctg	gaccccctgt	taccatggca	actgactctc	tggagacctc	cactgggacc	2880
actggacccc	ctgttaccat	gacaactggc	tctctggagc	cctccagcgg	ggccagtgga	2940
ccccaggtct	ctagcgtaaa	actatctaca	atgatgtctc	caacgacctc	caccaacgca	3000
agcactgtgc	ccttccggaa	cccagatgag	aactcacgag	gcatgctgcc	agtggctgtg	3060
cttgtggccc	tgctggcggt	catagtcctc	gtggctctgc	tectgctgtg	gcgccggcgg	3120
cagaagcggc	ggactggggc	cctcgtgctg	agcagaggcg	gcaagcgtaa	cggggtggtg	3180
gacgcctggg	ctgggccagc	ccaggtccct	gaggagggg	ccgtgacagt	gaccgtggga	3240
gggtccgggg	gcgacaaggg	ctctgggttc	cccgatgggg	aggggtctag	ccgtcggccc	3300
acgctcacca	ctttctttgg	cagacggaag	tetegecaġg	getecetgge	gatggaggag	3360
ctgaagtctg	ggtcaggccc	cagcetcaaa	ggggaggagg	agccactggt	ggccagtgag	3420
gatggggctg	tggacgcccc	agctcctgat	gagcccgaag	ggggagacgg	ggctgcccct	3480
taagtgtcgg	tgaatagtga	ggctġgaggc	cgcaatctca	gccagcctcc	agcaccttcc	3540
ctctcaccat	cccactgccc	cctcgctccc	atgtttccac	ccggcaccct	gatcctcacc	3600
cgaatctcct	tttttttt	cttttgagac	agagtttcgc	tttgtcgccc	aggctggagt	3660
gcaatgcacg	atctcagttc	actgcaacct	ctgcctccta	agttcaggcg	attctcctgc	3720
ctcagcttcc	cgagtaactg	agattacagg	cacccaccac	catgcccagc	tgcttttttg	3780
tatttttggt	agagatgggg	tttcaccatg	ttggctaggc	tggtctcaaa	ctcctgacct	3840
caggtgatct	acctgcctca	gcctcccaaa	gtgctgagat	tacagacatg	agcctccgcg	3900
ccttgcctcc	tcacccacct	cttcactctg	aatcctcatg	aggcttctca	gccctggatt	3960
tectgetgee	atcctcaccc	agcacccaca	actagegeet	gggcagggca	gggctggcac	4020
ctctcaacgt	ctgtggactg	aatgaataaa	ccctcctcat	ccacccctat	ttatctccat	4080
caccatttcc	ccctctttct	tgttcctgga	aacggctgct	gagtctccat	cggccaaact	4140
tatctgccct	gtgatttctt	tgacaattct	ccttttcccc	cagaacccac	cctgggttga	4200
ccagagtctg	ggaagaagga	caagagaacc	cggcaaactc	cctcctagga	ttaactttgt	4260
aaagcaccct	tgccctgtag	ctgcaagggc	tgtggaacct	gggcagcccg	caaccacctt	4320
tagctctggg	cccccaggc	cagcctggag	catggctggg	tggggccacc	agcccatgct	4380
ctcaggcggg	cctgtgatct	ttcccagggc	acatggactg	taggctggcc	ctggcccaca	4440

ccaccacact	ctccccagcc	atggacagag	gcagccagag	gcctcacggt	ttctcctccg	4500
agtttctggc	tgggtgtagt	tctcagaaac	cccagtgcct	gcgtgtgtcc	actcgtgggt	4560
gtggtttgtg	tgcaagagct	gaggatttgg	cgatgcttgg	gaggggtagt	tgtgggtaca	4620
gacggtgtgg	gggtgggaag	tggtgcagag	actgaagagg	gtcaacctgg	gcatggggga	4680
cacagggact	gctgagaacg	tgcgtgtcat	ctttgctctg	atggggtgga	catagcagaa	4740
aatctaactc	tgtctgtagc	cccatacaga	atgccagggt	gagcacagtg	gctggtgcct	4800
ttaatcccag.	cactttggaa	agttgaggca	ggaggatcgc	ttgagcccag	gagttcgagt	4860
ctgaagtgag	ctgtgattgc	accactgcac	ttcagcctgg	gcaacagagt	gagcccctgt	4920
ctcaaaaaag	aaaagaaaaa	gaaagccagg	cttcatggaa	agatcgtatg	tgtgacccaa	4980
tatgagttct	tcagetcagç	catggtaatc	ccttccttga	agtctccatt	tctgcagtac	5040
acatgcatgt						5050

<210> 10

<211> 400

<212> PRT

<213> Homo sapiens leukosialin (CD43)

<400> 10

Met Ala Thr Leu Leu Leu Leu Gly Val Leu Val Val Ser Pro Asp 1 5 10 15

Ala Leu Gly Ser Thr Thr Ala Val Gln Thr Pro Thr Ser Gly Glu Pro 20 25 30

Leu Val Ser Thr Ser Glu Pro Leu Ser Ser Lys Met Tyr Thr Thr Ser 35 40 45

Leu Pro Pro Ser Thr Ser Ile Asn Glu Gly Ser Pro Leu Trp Thr Ser 65 70 75 80

Ile Gly Ala Ser Thr Gly Ser Pro Leu Pro Glu Pro Thr Thr Tyr Gln
85 90 95

Glu Val Ser Ile Lys Met Ser Ser Val Pro Gln Glu Thr Pro His Ala

Thr Ser His Pro Ala Val Pro Ile Thr Ala Asn Ser Leu Gly Ser His 115 120 125

Thr Val Thr Gly Gly Thr Ile Thr Thr Asn Ser Pro Glu Thr Ser Ser 130 135 140

Arg Thr Ser Gly Ala Pro Val Thr Thr Ala Ala Ser Ser Leu Glu Thr 145 150 155 160

Ser Arg Gly Thr Ser Gly Pro Pro Leu Thr Met Ala Thr Val Ser Leu 165 170 175 15/30

								15/3	U							
Glu	Thr	Ser	Lys 180	Gly	Thr	Ser	Gly	Pro 185	Pro	Val	Thr	Met	Ala 190	Thr	Asp	
Ser	Leu	Glu 195	Thr	Ser	Thr	Gly	Thr 200	Thr	Gly	Pro	Pro	Val 205	Thr	Met	Thr	
Thr	Gly 210	Ser	Leu	Glu	Pro	Ser 215	Ser	Gly	Ala	Ser	Gly 220	Pro	Gln	Val	Ser	
Ser 225	Val	Lys	Leu	Ser	Thr 230	Met	Met	Ser	Pro	Thr 235	Thr	Ser	Thr	Asn	Ala 240	
Ser	Thr	Val	Pro	Phe 245	Arg	Asn	Pro	Asp	Glu 250	Asn	Ser	Arg	Gly	Met 255	Leu	
Pro	Val	Ala	Val 260	Leu	Val	Ala	Leu	Leu 265	Ala	Val	Ile	Val	Leu 270	Val	Ala	•
Leu	Leu	Leu 275	Leu	Trp	Arg	Arg	Arg 280	Gln	Lys	Arg	Arg	Thr 285	Gly	Ala	Leu	
Val	Leu 290	Ser	Arg	Gly	Gly	Lys 295	Arg	Asn	Gly	Val	Val 300	Asp	Ala	Trp	Ala	
Gly 305	Pro	Ala	Gln	Val	Pro 310	Glu	Glu	Gly	Ala	Val 315	Thr	Val	Thr	Val	Gly 320	
Gly	Ser	Gly	Gly	Asp 325	Lys	Gly	Ser	Gly	Phe 330	Pro	Asp	Gly	Glu	Gly 335	Ser	
Ser	Arg	Arg	Pro 340	Thr	Leu	Thr	Thr	Phe 345	Phe	Gly	Arg	Arg	Lys 350	Ser	Arg	
Gln	Gly	Ser 355	Leu	Ala	Met	Glu	Glu 360	Leu	Lys	Ser	Gly	Ser 365	Gly	Pro	Ser	
Leu	Lys 370	Gly	Glu	Glu	Glu	Pro 375	Leu	Val	Ala	Ser	Glu 380	Asp	Gly	Ala	Val	
Asp 385	Ala	Pro	Ala	Pro	Asp 390	Glu	Pro	Glu	Gly	Gly 395	Asp	Gly	Ala	Ala	Pro 400	
<210 <211 <211 <211	l> 1 2> I	L1 L879 DNA Homo	sapi	lens	sial	Lopho	orin	(CD4	13)							
<400 gcci		ll gag g	gtggt	ggag	gt ga	accto	gece	caç	gtgct	gcg	tcct	tato	cag c	cgag	ıccggt	60
ccc	agcto	ctt ç	gctco	etgco	ct gt	ttgc	ctgo	g aaa	tggc	ccac	gctt	ctcc	ctt c	tcct	tgggg	120
tgc	ggto	ggt a	agco	caga	ac go	ctato	iggga	gca	caac	cagc	agto	gcaga	aca c	ccac	ctccg	180
gaga	agcct	tt ç	gtct	ctac	ct ag	gcgaç	lccc	tga	gcto	caaa	gato	gtaca	acc a	actto	aataa	240
caa	gtgad	ccc t	aagg	gccga	ac ag	gcact	gggg	aco	agac	cctc	agco	ctac	ect o	cctc	aactt	300
ccat	caat	ga g	ggat	ccc	ct ct	ttgç	gactt	: cca	ttgg	ıtgc	cago	cacto	ıgt t	cccc	tttac	360

	ctgagccaac	aacctaccag	gaagtttcça	tcaagatgtc	atcagtgccc	caggaaaccc		420
•	ctcatgcaac	cagtcatcct	gctgttccca	taacagcaaa	ctctctagga	tcccacaccg		480
	tgacaggtgg	aaccataaca	acgaactctc	cagaaacctc	cagtaggacc	agtggagccc		540
	ctgttaccac	ggcagctagc	tctctggaga	cctccagagg	cacctctgga	cccctctta		600
	ccatggcaac	tgtctctctg	gagacttcca	aaggcacctc	tggaccccct	gttaccatgg		660
	caactgactc	tctggagacc	tccactggga	ccactggacc	ccctgttacc	atgacaactg		720
	gctctctgga	gccctccagc	ggggccagtg	gaccccaggt	ctctagcgta	aaactatcta		780
	caatgatgtc	tccaacgacc	tccaccaacg	caagcactgt	gcccttccgg	aacccagatg		840
	agaactcacg	aggcatgctg	ccagtggctg	tgcttgtggc	cctgctggcg	gtcatagtcc		900
	tcgtggctct	gctcctgctg	tggcgccggc	ggcagaagcg	gcggactggg	gccctcgtgc		960
	tgagcagagg	tggcaagcgt	aacggggtgg	tggacgcctg	ggctgggcca	gcccaggtcc		1020
	ctgaggaggg	ggccgtgaca	gtgaccgtgg	gagggtccgg	gggcgacaag	ggctctgggt		1080
	tccccgatgg	ggaggggtct	agccgtcggc	ccacgeteae	cactttcttt	ggcagacgga		1140
	agtctcgcca	gggctccctg	gcgatggagg	agctgaagtc	tgggtcaggc	cccagcctca		1200
	aaggggagga	ggagccactg	gtggccagtg	aggatggggc	tgtggacgcc	ccagctcctg		1260
	atgagcccga	agggggagac	ggggctgccc	cttaagtgtc	ggtgaatagt	gaggctggag		1320
	gccggaatct	cagccagcct	ccagcacctt	ccctctcacc	atcccactgc	cccctcgctc		1380
	ccatgtttcc	acccggcacc	ctgatcctca	cccgaatctc	ctttttttt	ttcttttgag		1440
	acagagtttc	gctttgtcgc	ccaggctgga	gtgcaatgca	cgatctcagt	tcactgcaac		1500
	ctctgcctcc	taagttcagg	cgattctcct	gcctcagctt	cccgagtaac	tgagattaca		1560
	ggcacccacc	accatgccca	gctgcttttt	tgtatttttg	gtagagatgg	ggtttcacca	•	1620
	tgttggctag	gctggtctca	aactcctgac	ctcaggtgat	ctacctgcct ⁻	cagcetecca		1680
	aagtgctgag	attacagaca	tgagcctccg	cgccttgcct	cctcacccac	ctcttcactc		1740
	tgaatcctca	tgaggcttct	cagccctgga	tttcctgctg	ccatcctcac	ccagcaccca		1800 ·
	caactagcgc	ctgggcaggg	cagggctggc	acctctcaac	gtctgtggac	tgaatgaata		1860
	aaccetecte	atccacccc						1879

<210> 12 <211> 400 <212> PRT <213> Homo sapiens sialophorin (CD43)

<400> 12

Met Ala Thr Leu Leu Leu Leu Gly Val Leu Val Val Ser Pro Asp 1 5 10 15

WO 2004/026120 PCT/US2003/030213 17/30

Ala	Leu	Gly	Ser 20	Thr	Thr	Ala	Val	Gln 25	Thr	Pro	Thr	Ser	Gly 30	Glu	Pro
Leu	۷al	Ser 35	Thr	Ser	Glu	Pro	Leu 40	Ser	Ser	Lys	Met	Tyr 45	Thr	Thr	Ser
Ile	Thr 50	Ser	Asp	Pro	Lys	Ala 55	Asp	Ser	Thr	Gly	Asp 60	Gln	Thr	Ser	Ala .
Leu 65	Pro	Pro	Ser	Thr	Ser 70	Ile	Asn	Glu	Gly	Ser 75	Pro	Leu	Trp	Thr	Ser 80
İle	Gly	Ala	Ser	Thr 85	Gly	Ser	Pro	Leu	Pro 90	Glu	Pro	Thr	Thr	Tyr 95	Gln
Glu	Val	Ser	Ile 100	Lys	Met	Ser	Ser	Val 105	Pro	Gln	Glu	Thr	Pro 110	His	Ala
Thr	Ser	His 115	Pro	Ala	Val	Pro	Ile 120	Thr	Ala	Asn	Ser	Leu 125	Gly	Ser	His
Thr	Val 130	Thr	Gly	Gly	Thr	Ile 135	Thr	Thr	Asn	Ser	Pro 140	Glu	Thr	Ser	Ser
Arg 145	Thr	Ser	Gly	Ala	Pro 150	Val	Thr	Thr	Ala	Ala 155	Ser	Ser	Leu	Glu	Thr 160
Ser	Arg	Gly	Thr	<i>Ser</i> 165	Gly	Pro	Pro	Leu	Thr 170	Met	Ala	Thr	Val	Ser 175	Leu
Glu	Thr	Ser	Lys 180	Gly	Thr	Ser	Gly	<i>Pro</i> 185	Pro	Val	Thr	Met	Ala 190	Thr	Asp
Ser	Leu	Glu 195	Thr	Ser	Thr	Gly	Thr 200	Thr	Gly	Pro	Pro	Val 205	Thr	Met	Thr
Thr	Gly 210	Ser	Leu	GIu	Pro	<i>S</i> er 215	Ser	Gly	Ala	Ser	Gly 220	Pro	Gln	Val	Ser
Ser 225	Val	Lys	Leu	Ser	Thr 230	Met	Met	Ser	Pro	Thr 235	Thr	Ser	Thr	Asn	Ala 240
Ser	Thr	Val	Pro	Phe 245	Arg	Asn	Pro	Asp	Glu 250	Asn	Ser	Arg	Gly	Met 255	Leu
Pro	Val	Ala	Val 260	Leu	Val	Ala	Leu	Leu 265	Ala	Val	Ile	Val	Leu 270	Val	Ala
Leu	Leu	Leu 275	Leu	Trp	Arg	Arg	Arg 280	Gln	Lys,	Arg	Arg	Thr 285	Gly	Ala	Leu
Val	Leu 290	Ser	Arg	Gly	Gly	Lys 295	Arg	Asn	Gly	Val	Val 300	Asp	Ala	Trp	Ala
Gly 305	Pro	Ala	Gln	Val	Pro 310	Glu	Glu	Gly	Ala	Val 315	Thr	Val	Thr	Val	Gly 320
Gly	Ser	Gly	Gly	Asp 325	Lys	Gly	Ser	Gly	Phe 330	Pro	Asp	Gly	Glu	Gly 335	Ser
Ser	Arg	Arg	Pro	Thr	Leu	Thr	Thr	Phe	Phe	Gly	Arg	Arg	Lys	Ser	Arg

340 . 345 . 350

Gln Gly Ser Leu Ala Met Glu Glu Leu Lys Ser Gly Ser Gly Pro Ser 355 360 365

Leu Lys Gly Glu Glu Glu Pro Leu Val Ala Ser Glu Asp Gly Ala Val 370 380

Asp Ala Pro Ala Pro Asp Glu Pro Glu Gly Gly Asp Gly Ala Ala Pro 385 390 395 400

<210> 13 .

<211> 6503

<212> DNA <213> Homo sapiens sialophorin (CD43)

<400> 13
aagcttgcta attagaggaa agtcaggaaa tgggaaccat tcaaagaaga aaatacccc
60
acctcctact ctcacctatc caaagacaat taggtgaatc ccttagtaga tatctttcca
gacggttttc catatagatt cccatatctg gccaggcgcg gtggctcaca cctgtaatcc
tagcgcttgg ggaggctgag gcggatggac cacctgaggt caggagttcg agaccagcct
240

gaccaacatg gagaaacctc gtctctacga aaaatacaaa attagccggg cacagtggtg 300 caagcctgta atcccagcta ctcaggaggc cgaggcagga gaattgcttg aacctaggag 360

gcagacattg tgctgagccg agccaagatc atgccattgc actaaactcc gccttaaaaa 420

aaaaaaaaa agattcccac atctttacta gtttgcagaa ataagatcct agcatatgca 480 qtqtqtagga accaccttgg tttagccacg tctctgtgac tgggggccac tgtggtgacc 540

cccagctccc cggacagagt caagagctca ccagcctgca aaggttttca cggcccccag 600

ccagactegg gggetteete ttgeeetget actteetggg agetetgagg geaggaaatg 660

gcgccactca gctcctggcc taacagcttg gggaccacaa atgcaaagga aaccaccctc 720

ccctcccacc tcctcctctg cacccttgag ttctcaggct cacattccca ccacccacct 780

ctgagcccag ccctccctag catcaccact tccatcccat tectcagcca agagccagga 840 atcctgattc cagatcccac gcttccctgc ctccctcagg tgagccccag acccccaggc 900

accocgetgg cccetgaagg agcaggtgat ggtgetgtet tegeceagea getgtgggag 960

caggegggtg gggcaggatg gaggggtggg tggggtgggt ggagccaggg cccacttcct 1020

ttccccttgg ggccctgtcc ttcccagtct tgccccagcc tcgggaggtg gtggagtgac 1080

ctggccccag tgctgcgtcc ttatcagccg agccggtaag agggtgagac ttggtggggt 1140

aggggcctca gtgggcctgg gaatgtgcct gtggcttgaa aagactctga caggttatga 1200

tgggaagaga ttgggagcca ttgggctgca cagggtcagg gaaggccagg aggggctggt 1260

cactgctgga atctaagctg ctgaggctgg agggagcctc aggatggggc tgatggggga 1320

gctgccagca tctgttcctc tgtcatttct gataacagta aaagccagca tggaaaaaac 1380

		•				
cgttaaaccg	caggttgggc	ctggccgttg	gcagggaagt	gggcagaggg	gaggcccggc	1440
caggtcctcc	ggcaactccc	gcgtgttctg	cttctccggc	tgcccacctg	caggtcccag	1500
ctcttgctcc	tgcctgtttg	cctggaaatg	gccacgcttc	tccttctcct	tggggtgctg	1560
gtggtaagcc	cagacgctct	ggggagcaca	acagcagtgc	agacacccac	ctccggagag	1620
cctttggtct	ctactagcga	gcccctgagc	tcaaagatgt	acaccacttc	aataacaagt	1680
gaccctaagg	ccgacagcac	tggggaccag	acctcagccc	tacctccctc	aacttccatc	1740
aatgagggat	ccctctttg	gacttccatt	ggtgccagca	ctggttcccc	tttacctgag	1800
ccaacaacct	accaggaagt	ttccatcaag	atgtcatcag	tgccccagga	aacccctcat	1860
gcaaccagtc	atcctgctgt	tcccataaca	gcaaactctc	taggatccca	caccgtgaca	1920
ggtggaacca	taacaacgaa	ctctccagaa	acctccagta	ggaccagtgg	agcccctgtt	1980
accacggcag	ctagctctct	ggagacctcc	agaggcacct	ctggaccccc	tcttaccatg	2040
gcaactgtct	ctctggagac	ttccaaaggc	acctctggac	cccctgttac	catggcaact	2100
gactctctgg	agacctccac	tgggaccact	ggaccccctg	ttaccatgac	aactggctct	2160
ctggagccct	ccagcggggc	cagtggaccc	caggtctcta	gcgtaaaact	atctacaatg	2220
atgtctccaa	cgacctccac	caacgcaagc	actgtgccct	teeggaaeee	agatgagaac	2280
tcacgaggca	tgctgccagt	ggctgtgctt	gtggccctgc	tggcggtcat	agtcctcgtg	2340
gctctgctcc	tgctgtggcg	ccggcggcag	aagcggcgga	ctggggccct	cgtgctgagc	2400
agaggcggca	agcgtaacgg	ggtggtggac	gcctgggctg	ggccagccca	ggtccctgag	2460
gagggggccg	tgacagtgac	cgtgggaggg	tccgggggcg	acaagggctc	tgggttcccc	2520
gatggggagg	ggtctagccg	teggeceaeg	ctcaccactt	tctttggcag	acggaagtct	2580
cgccagggct	ccctggcgat	ggaggagctg	aagtctgggt	caggccccag	cctcaaaggg	2640
gaggaggagc	cactggtggc	cagtgaggat	ggggctgtgg	acgccccagc	tcctgatgag	2700
cccgaagggg	gagacggggc	tgccccttaa	gtgtcggtga	atagtgaggc	tggaggccgg	2760
aatctcagcc	agcctccagc	accttccctc	tcaccatccc	actgccccct	cgctcccatg	2820
tttccacccg	gcaccctgat	cctcacccga	atctcctttt	ttttttttt	ttgagacaga	2880
gtttcgcttt	gtcgcccagg	ctggagtgca	atgcacgatc	tcagttcact	gcaacctctg	2940
cctcctaagt	tcaggcgatt	ctcctgcctc	agcttcccga	gtaactgaga	ttacaggcac	3000
ccaccaccat	gcccagctgc	ttttttgtat	ttttggtaga	gatggggttt	caccatgttg	3060
gctaggctgg	tctcaaactc	ctgacctcag	gtgatctacc	tgcctcagcc	tcccaaagtg	3120
ctgagattac	agacatgagc	ctccgcgcct	tgcctcctca	cccacctctt	cactctgaat '	3180
cctcatgagg	cttctcagcc	ctggatttcc	tgctgccatc	ctcacccagc	acccacaact	3240

WO 2004/026120 PCT/US2003/030213 20/30

•	_		•			
agegeetggg	cagggcaggg	ctggcacctc	tcaacgtctg	tggactgaat	gaataaaccc	3300
tcctcatcca	cccctattta	tctccatcac	catttccccc	tctttcttgt	tcctggaaac	3360
ggctgctgag	tctccatcgg	ccaaacttat	ctgccctgtg	atttctttga	caattctcct	3420
tttcccccag	aacccaccct	gggttgacca	gagtctggga	agaaggacaa	gagaacccgg	3480
caaactccct	cctaggatta	actttgtaaa	gcacccttgc	cctgtagctg	caagggctgt	3540
ggaacctggg	cagcccgcaa	ccacctttag	ctctgggccc	cccaggccag	cctggagcat	3600
ggctgggtgg	ggccaccagc	ccatgctctc	aggcgggcct	gtgatctttc	ccagggcaca	3660
tggactgtag	gctġgccctg	gcccacacca	ćcacactctc	cccagccatg	gacagaggca	3720
gccagaggcc	tcacggtttc	tectecgagt	ttctggctgg	gtgtagttct	cagaaacccc	3780
agtgcctgcg	tgtgtccact	cgtgggtgtg	gtttgtgtgc	aagagctgag	gatttggcga	3840
tgcttgggag	gggtagttgt	gggtacagac	ggtgtggggg	tgggaagtgg	tgcagagact	3900
gaagagggtc	aacctgggca	tgggggacac	agggactgct	gagaacgtgc	gtgtcatctt	3960
tgctctgatg	gggtggacat	agcagaaaat	ctaactctgt	ctgtagcccc	atacagaatg	4020
ccagggtgag	cacagtggct	ggtgccttta	atcccagcac	tttggaaagt	tgaggcagga	4080
ggatcgcttg	agcccaggag	ttcgagtctg	aagtgagctg	tgattgcacc	actgcacttc	4140
agcctgggca	acagagtgag	cccctgtctc	aaaaaagaaa	agaaaaagaa	agccaggctt	4200
catggaaaga	tcgtatgtgt	gacccaaata	tgagttcttc	agctcagcca	tggtaatccc	4260
ttccttgaag	tctccatttc	tgcagtacac	atgcatgtgc	gctctctctc	tctctctc	4320
tctcacacac	acacacacac	acacacacac	gegegegege	gcgcgcgcgc	gcgctctcct	4380
gcgaacagag	gcagggggag	aggggtttgc	cctggtctcg	gggactggtc	tggctggcgc	4440
ttccccactg	cacgtttcca	ggtttagttt	gtctgtgtct	cctcttccat	cccaggggct	4500
gagccccttc	catcctccaa	gaggaaccag	tgagagtgag	tgaaggaggg	gcctggagcc	4560
agggacttcc	cctgtggggc	ctgggtggag	aggggagaac	tcaatggtgc	tgcctttgag	4620
accagcccag	ctacagecca	ggagcacaca	tgggccaggg	cagttggtat	ttcccgagga	4680
caaagaggaa	attttcaaag	aggaagttgt	tgagttagag	cttgcggtgg	ctgagagcag	4740
acaggttgac	ctgcaaaaaa	agacagggga	ggcatgtgag	tgtgacagcc	ctgctctgtg	4800
gcctgggcag	gagatggggg	aaagggtcag	gtgggggatg	ggctcgtgca	gtgggagagg	4860
agacggaggg	agggagcggg	aaggggcttg	cttagtgggt	gggaagagct	gagctcggat	4920 ·
ggaaccagct	tctaccagcc	aggctgggca	cccactgggc	tgcatctggt	ggccttttct	4980
gattgctatt	tggactcact	gcagctgcag	aatgacagag	gccatgtcca	aaatccctta	5040
gagacactgt	tgtcttagag	ttgttaaaat	aagagccccc	atatcaggtt	tagaaaatac	5100

tgtcaccgaa cgaacgtcgc	tgtcctcagc	tccacctccc	tttcctttga	cagatatggt	5160
tgttttctaa gccaggactg	gttttagtca	ggtcctgggc	gaatcctgaa	aaaaagaggt	5220
agtacgggta aggaaggcac	cćaacagggc	tttcacaatc	cagaaaatat	caaaatataa	5280
gtgttaaaag agaggcacag	gccgggtgcg	gtggctcacg	cctgtaatct	cagcactttg	5340
ggaggccaag gtgggcagat	catgaggtca	ggagtttgag	accagcctgg	ccaatatgat	5400
gaaaccccgt ttctactaaa	aatacàaaag	ttagccaggc	atggtggtgt	gctcctgtaa	5460
teccagetae ttaggagget	gaggccagag	aattgcttga	accctggagt	cagaggttgc	5520
agtgagccgg gatcatgcca	ctgtactcca	ggctgggtga	caaagtgaga	ctgtctcaaa	5580
aaataaaaat aaataaaata	aataaaagag	aggcacaaac	agtgttatga	atgcaccaag	5640
gaaaatggtg cattcataac	tctcaggtga	agcctaccaa	gccatgcgtg	tgtgcacata	5700
tgtgtgtacg tgtgcatgtg	cgtgcgtgċa	tgtgcgtgcg	tgcatgtgcc	tgtgtgtgta	5760
tgtgtgcaca tgtgtgtgcg	catgtgtgtg	tgtgcgcgca	tgtgtgtgtg	catgcatgtt	5820
ctcccatgca tgtgtactgt	ggcaagggag	actttgagga	agagattcca	gtggctgagc	5880
agaagggete geattgeect	ggcgaaaggt	tggaaggctt	cacctgagag	tgtgtcgtgg	5940
cctttgtcat atccactgct	tgattccttt	ctttaaaaat	tatttttatt	gttttctaca	6000
tatgagaacc accacacctg	gctaattttt	gtatttttg	tagagatggg	gtttcaccat	6060
gttgtcccgg ctggtctcaa	actcccgggc	acaagagatc	cacctgcctc	agcctcccaa	6120
aatgctggga ctataggcat	gagccactgc	acccagccac	tgcttcattc	ctggtggctg	6180
ctgtgcctgg catgttgcag	atcctccatg	aatatgcatt	tgaatgaatg	aatgaatgaa	6240
tgaatgaatg gagatgacgc	ctcagagatt	ctttcttttg	agatgaggtc	tcattctgtc	6300
acccagacta gagggcagtg	gtgcaatcac	agctcaccac	agcctcaacc	tcctgggcct	6360
cccaagtagc tgcgatcaca	ggtgtgcacc	aacatgccca	gctaattttt	ttttaattt	6420
ttaatttgta cagacagggt	cttgctgtgt	tgcccaggct	ggtctcgaac	tcctgggctc	6480
aagtggtcct cccacctaag	.ctt				6503

<210> 14 <211> 400 <212> PRT

<213> Homo sapiens sialophorin (CD43)

^{· &}lt;400> 14 Met Ala Thr Leu Leu Leu Leu Gly Val Leu Val Val Ser Pro Asp

Ala Leu Gly Ser Thr Thr Ala Val Gln Thr Pro Thr Ser Gly Glu Pro 20 25 30

WO 2004/026120 PCT/US2003/030213 22/30

Leu	Val	Ser 35	Thr	Ser	Glu	Pro	Leu 40	Ser	Ser	Lys	Met	Tyr 45	Thr	Thr	Ser
Ile	Thr 50	Ser	Asp	Pro	ГÀз	Ala 55	Asp	Ser	Thr	Gly	Asp 60	Gln	Thr	Ser	Ala
Leu 65	Pro	Pro	Ser	Thr	Ser 70		Asn	Glu	Gly	Ser 75	Pro	Leu	Trp	Thr	Ser 80
Ile	Gly	Ala	Ser	Thr 85	Gly	Ser	Pro	Leu	Pro 90	Glu	Pro	Thr	Thr	Tyr 95	Gln
Glu	Val	Ser	Ile 100	Lys	Met	Ser	Ser	Val 105	Pro	Gļn	Glu	Thr	Pro 110	His	Ala
Thr	Ser	His 115	Pro	Ala	Val	Pro	Ile 120	Thr	Ala	Asn	Ser	Leu 125	Gly	Ser	His
Thr	Val 130	Thr	Gly	GLy	Thr	Ile 135	Thr	Thr	Asn	Ser	Pro 140	Glu	Thr	Ser	Ser
Arg 145	Thr	Ser	Gly	Ala	Pro 150	Val	Thr	Thr	Ala	Ala 155	Ser	Ser	Leu	Glu	Thr 160
Ser	Arg	Gly	Thr	Ser 165	Gly	Pro	Pro	Leu	Thr 170	Met	Ala	Thr	Val	Ser 175	Leu
Glu	Thr	Ser	Lys 180	Gly	Thr	Ser	Gly	Pro 185	Pro	Val	Thr	Met	Ala 190	Thr	Asp
Ser	Leu	Glu 195	Thr	Ser	Thr	Gly	Thr 200	Thr	Gly	Pro	Pro	Val 205	Thr	Met	Thr
Thr	Gly 210	Ser	Leu	Glu	Pro	Ser 215	Ser	Gly	Ala	Ser	Gly 220	Pro	Gln	Val	Ser
Ser 225	Val	Lys	Leu	Ser	Thr 230	Met	Met	Ser	Pro	Thr 235	Thr	Ser	Thr	Asn	Ala 240
Ser	Thr	Val	Pro	Phe 245	Arg	Asn	Pro	Asp ·	Glu 250	Asn	Ser	Arg	Gly	Met 255	Leu
Pro	Val	Ala	Val 260	Leu	Val	Ala	Leu	Leu 265	Ala	Val	I,le	Val	Leu 270	Val	Ala
Leu	Leu	Leu 275	Leu	Trp	Arg	Arg	Arg 280	Gln	Lys	Arg	Arg	Thr 285	Gly	Ala	Leu
Val	Leu 290	Ser	Arg	Gly	Gly	Lys 295	Arg	Asn	Gly	Val	Val 300	Asp	Ala	Trp	Ala
Gly 305	Pro	Ala	Gln	Val	Pro 310	Glu	Glu	Gly	Ala	Val 315	Thr	Val	Thr	Val	Gly 320
Gly	Ser	Gly	Gly	Asp 325	Lys	Gly	Ser	Gly	Phe 330	Pro	Asp	Gly	Glu	Gly 335	Ser
Ser	Arg	Arg	Pro 340	Thr	Leu	Thr	Thr	Phe 345	Phe	Gly	Arg	Arg	Lys 350	Ser	Arg
Gln	Gly	Ser 355	Leu	Ala	Met	Glu	Glu 360	Leu	Гуз	Ser	Gly	Ser 365	Gly	Pro	Ser

Leu Lys Gly Glu Glu Pro Leu Val Ala Ser Glu Asp Gly Ala Val 375 370 Asp Ala Pro Ala Pro Asp Glu Pro Glu Gly Gly Asp Gly Ala Ala Pro 395 <210> 2745 <211> <212> DNA Homo sapiens heterogeneous nuclear ribonucleoprotein K <400> 15 cggcagtctc gcgcggctac tgcagcactg gggtgtcagt tgttggtccg acccagaacg 60 cttcagttct gctctgcaag gatatataat aactgattgg tgtgcccgtt taataaaaga 120 atatggaaac tgaacagcca gaagaaacct tccctaacac tgaaaccaat ggtgaatttg 180 gtaaacgccc tgcagaagat atggaagagg aacaagcatt taaaagatct agaaacactg 240 atgagatggt tgaattacgc attctgcttc agagcaagaa tgctggggca gtgattggaa 300 aaggaggcaa gaatattaag geteteegta cagactacaa tgecagtgtt teagteecag 360 acagcagtgg ccccgagcgc atattgagta tcagtgctga tattgaaaca attggagaaa 420 480 ttctgaagaa aatcatccct accttggaag agggcctgca gttgccatca cccactgcaa ccagccagct cccgctcgaa tctgatgctg tggaatgctt aaattaccaa cactataaag 540 gaagtgactt tgactgcgag ttgaggctgt tgattcatca gagtctagca ggaggaatta 600 ttggggtcaa aggtgctaaa atcaaagaac ttcgagagaa cactcaaacc accatcaagc 660 ttttccagga atgctgtcct cattccactg acagagttgt tcttattgga ggaaaacccg 720 780 atagggttgt agagtgcata aagatcatcc ttgatcttat atctgagtct cccatcaaag gacgtgcaca gccttatgat cccaattttt acgatgaaac ctatgattat ggtggtttta 840 caatgatgtt tgatgaccgt cgcggacgcc cagtgggatt tcccatgcgg ggaagaggtg 900 960 gttttgacag aatgeeteet ggteggggtg ggegteecat geeteeatet agaagagatt 1020 atgatgatat gagccctcgt cgaggaccac ctccccctcc tcccggacga ggcggccggg gtggtagcag agctcggaat cttcctcttc ctccaccacc accacctaga gggggagacc 1080 tcatggccta tgacagaaga gggagacctg gagaccgtta cgacggcatg gttggtttca 1140 gtgctgatga aacttgggac tctgcaatag atacatggag cccatcagaa tggcagatgg 1200 cttatgaacc acagggtggc tccggatatg attattccta tgcagggggt cgtggctcat 1260 atggtgatct tggtggacct attattacta cacaagtaac tattcccaaa gatttggctg 1320 gatctattat tggcaaaggt ggtcagcgga ttaaacaaat ccgtcatgag tcgggagctt 1380 cgatcaaaat tgatgagcct ttagaaggat ccgaagatcg gatcattacc attacaggaa 1440 cacaggacca gatacagaat gcacagtatt tgctgcagaa cagtgtgaag cagtatgcag 1500

atgttgaagg attctaatgc aagatatttt ttctttttta tagtgtgaag cagtattctg

1560

• •						
gaaagttttt c	taagactag	tgaagaactg	aaggagteet	gcatctttt	ttttttatct	1620
gcttctgttt a	iaaaagccaa	cattcctctg	cttcataggt	gttctgcatt	tgaggtgtag	1680
tgaaatcttt g	rctgttcacc	agatgtaatg	ttttagttcc	ttacaaacag	ggttgggggg	1740
gggaagggcg t	gcaaaaact	aacattgaaa	ttttgaaaca	gcagcagagt	gagtggattt	1800
tatttttcgt t	attgttggt	ggtttaaaaa	attcccccca	tgtaattatt	gtgaacacct	1860
tgctttgtgg t	cactgtaac	atttgggggg	tgggacaggg	aggaaaagta	acaatagtcc	1920
acatgtccct g	gcatctgtt	cagagcagtg	tgcagaatgt	aatgctcttt	tgtaagaaac	1980
gttttatgat t	tttaaaata	aatttagtga	acctatttt	ggtggtcatt	tttttttaa	2040
gacagtcatt t	taaaatggt	ggctgaattt	cccaacccac	ccccaaacta	aacactaagt	2100
ttaattttca g	ctcctctgt	tggacatata	agtgcatctc	ttgttggaca	taggcaaaat	2160
aacttggcaa a	cttagttct	ggtgatttct	tgatggtttg	gaagtctatt	gctgggaaga	2220
aattccatca t	acatattca	tgcttataat	aagctgggga	ttttttgttt	gtttttgcaa	2280
atgcttgccc c	ctacttttca	acaattttct	atgttagttg	tgaagaacta	aggtggggag	2340
cagtactaca a	ıgttgagtaa	tggtatgagt.	atataccaga	attctgattg	gcagcaagtt	2400
tattaatcag a	ataacactt	ggttatggaa	gtgactaatg	ctgaaaaaat	tgattatttt	2460
tattagataa t	ttctcacct	atagacttaa	actgtcaatt	tgctctagtg	tcttattagt	2520
taaactttgt a	aaatatata	tatacttgtt	tttccattgt	atgcaaattg	aaagaaaaag	2580
atgtaccatt t	ctctgttgt	atgttggatt	atgtaggaat	gtttgtgtac	aattcaaaaa	2640
aaaaaaagat g	gaaaaaagtt	cctgtggatg	ttttgtgtag	tatcttggca	tttgtattga	2700
tagttaaaat t	cacttccaa	ataaataaaa	cacccatgat	gctag		2745
	sapiens he	terogeneous	s nuclear ri	ibonucleopro	otein complex	K
<400> 16						

Met Glu Thr Glu Gln Pro Glu Glu Thr Phe Pro Asn Thr Glu Thr Asn 1 5 10 15

Gly Glu Phe Gly Lys Arg Pro Ala Glu Asp Met Glu Glu Glu Gln Ala 20 25 30

Phe Lys Arg Ser Arg Asn Thr Asp Glu Met Val Glu Leu Arg Ile Leu 35 40 45

Leu Gln Ser Lys Asn Ala Gly Ala Val Ile Gly Lys Gly Gly Lys Asn 50 55 60

Ile Lys Ala Leu Arg Thr Asp Tyr Asn Ala Ser Val Ser Val Pro Asp 65 70 75 80

WO 2004/026120 PCT/US2003/030213 25/30

Ser	Ser	Gly	Pro	Glu 85	Arg	Ile	Leu	Ser	Ile 90	Ser	Ala	Asp	Ile	Glu 95	Thr
Ile	Gly	Glu	Ile 100	Leu	Lys	ГÀЗ	Ile	Ile 105	Pro	Thr	Leu	Glu	Glu 110	Gly	Leu
Gln	Leu	Pro 115	Ser	Pro	Thr	Ala	Thr. 120	Ser	Gln	Leu	Pro	Leú 125	Glů	Ser	Asp ·
Ala	Val 130		Суз	Leu	Asn	Tyr 135	Gln	His	Tyr	Lys	Gly 140	Ser	Asp	Phe	Asp
Cys 145	Glu	Leu	Arg	Leu	Leu 150	Ile	His	Gln	Ser	Leu 155	Ala	Gly	Gly	Ile	Ile 160
Gly	Val	Lys	Gly	Ala 165	Lys	Ile	Lys	Glu	Leu 170	Arg	Glu	Asn	Thr	Gln 175	Thr
Thr	Ile	Lys	Leu 180	Phe	Gln	Glu	Суѕ	Cys 185	Pro	His	Ser	Thr	Asp 190	Arg	Val
Val	Leu	Ile 195	Gly	Gly	Lys	Pro	Asp 200	Arg	Val	Val	Glu	Cys 205	Ile	Lys	Ile
Ile	Leu 210	Asp	Leu	Ile	Ser	G1u 215	Ser	Pro	Ile	Lys	Gly 220	Arg	Ala	Gln	Pro
225	. Asp				230					235					240
Met	Met	Phe	qeA	Asp 245	Arg	Arg	Gly	Arg	Pro 250	Val	Gly	Phe	Pro	Met 255	Arg
Gly	Arg	Gly	Gly 260	Phe	Asp	Arg	Met	Pro 265	Pro	Gly	Arg	Gly	Gly 270	Arg	Pro
Met	Pro	Pro 275	Ser	Arg	Arg	Asp	Tyr 280	Asp	Asp	Met	Ser	Pro 285	Arg	Arg	Gly
Pro	Pro 290	Pro	Pro	Pro	Pro	Gly 295	Arg	Gly	Gly	Arg	Gly 300	Gly	Ser	Arg	Ala
Arg 305	Asn	Leu	Pro	Leu	Pro 310	Pro	Pro	Pro	Pro	Pro 315	Arg	Gly	Gly	Asp	Leu 320
Met	Ala	Tyr	Asp	Arg 325	Arg	Gly	Arg	Pro	Gly 330	Asp	Arg	Tyr	Asp	Gly 335	Met
Val	Gly	Phe	Ser 340	Ala	Asp	Glu	Thr	Trp 345	Asp	Ser	Ala	Ile	Asp 350	Thr	Trp
Ser	Pro	Ser 355	Glu	Trp	Gln	Met	Ala 360	Tyr	Glu	Pro	Gln	Gly 365	Gly	Ser	Gly
Tyr	Asp 370	Tyr	Ser	Tyr	Ala	Gly 375	Gly	Arg	Gly	Ser	Tyr 380	Gly	Asp	Leu	Gly
Gly 385	Pro	Ile	Ile	Thr	Thr 390	Gln	Val	Thr	Ile	Pro 395	Lys	Asp	Leu	Ala	Gly 400

Ser Ile Ile Gly Lys Gly Gly Gln Arg Ile Lys Gln Ile Arg His Glu 405 \cdot 410 \cdot 415

Ser Gly Ala Ser Ile Lys Ile Asp Glu Pro Leu Glu Gly Ser Glu Asp
420 425 430

Arg Ile Ile Thr Ile Thr Gly Thr Gln Asp Gln Ile Gln Asp Ala Gln

Arg Ile Ile Thr Ile Thr Gly Thr Gln Asp Gln Ile Gln Asn Ala Gln 435 440 445

Tyr Leu Leu Gln Asn Ser Val Lys Gln Tyr Ser Gly Lys Phe Phe 450 455 460

<210> 17

<211> 1144

<212> DNA

<213> Homo sapiens Pur (pur-alpha)

<400> 17

cgactgaggc ggcgggcgga gcggcaggcg gcggcggcgc ggcagcggag cgcagcatca 60 tggcggaccg agacagcggc agcgagcagg gtggtgcggc gctgggttcg ggcggctccc 120 tagageacce eggeteggge teaggeteeg gegggggegg tggtggegge gggggeggeg 180 gcggcagtgg cggcggcggc ggcggggccc caggggggct gcagcacgag acgcaggagc 240 tggcctccaa gcgggtggac atccagaaca agcgcttcta cctggacgtg aagcagaacg 300 360 ccaagggccg cttcctgaag atcgccgagg tgggcgcggg cggcaacaag agccgcctta 420 ctctctccat gtcagtggcc gtggagttcc gcgactacct gggcgacttc atcgagcact 480 acqcqcaqct gggccccagc cagccgccgg acctggccca ggcgcaggac gagccgcgcc qqqcqctcaa aaqcqaqttc ctggtgcgcg agaaccgcaa gtactacatg gatctcaagg 540 600 qctccacgca gggccagacc attgcgctgc ccgcgcaggg gctcatcgag ttccgtgacg 660 ctctqqccaa gctcatcgac gactacggag tggaggagga gccggccgag ctgcccgagg 720 780 qcacctcctt qactqtqqac aacaagcgct tcttcttcga tgtgggctcc aacaagtacg gcgtgtttat gcgagtgage gaggtgaage ceacetateg caactecate accgtgeeet 840 acaaggtgtg ggccaagttc ggacacacct tctgcaagta ctcggaggag atgaagaaga 900 960 ttcaaqaqaa gcagagggag aagcgggctg cetgtgagca gettcaecag cagcaacage aqcaqcaqga ggagaccqcc gctgccactc tgctactgca gggtgaggaa gaaggggaag 1020 1080 aaqattgatc aaacagaatg aaacccccac acacacaca atgcatacac acacacacac agccacacac acagaaaata tactgtaaag aaagagagaa aataaaaagt taaaaagtta 1140 1144 aaaa

<210> 18

<211> 322

<212> PRT

27/30

<213> Homo sapiens purine-rich element binding protein A (PURA) <400> 18 Met Ala Asp Arg Asp Ser Gly Ser Glu Gln Gly Gly Ala Ala Leu Gly Ser Gly Gly Ser Leu Gly His Pro Gly Ser Gly Ser Gly Gly . Gly Gly Gly Gly Gly Gly Gly Gly Gly Ser Gly Gly Gly Gly Gly Ala Pro Gly Gly Leu Gln His Glu Thr Gln Glu Leu Ala Ser Lys Arg Val Asp Ile Gln Asn Lys Arg Phe Tyr Leu Asp Val Lys Gln Asn Ala Lys Gly Arg Phe Leu Lys Ile Ala Glu Val Gly Ala Gly Gly Asn Lys Ser Arg Leu Thr Leu Ser Met Ser Val Ala Val Glu Phe Arg Asp Tyr Leu Gly Asp Phe Ile Glu His Tyr Ala Gln Leu Gly Pro Ser Gln 120 Pro Pro Asp Leu Ala Gln Ala Gln Asp Glu Pro Arg Arg Ala Leu Lys Ser Glu Phe Leu Val Arg Glu Asn Arg Lys Tyr Tyr Met Asp Leu Lys 150 Glu Asn Gln Arg Gly Arg Phe Leu Arg Ile Arg Gln Thr Val Asn Arg 170 Gly Pro Gly Leu Gly Ser Thr Gln Gly Gln Thr Ile Ala Leu Pro Ala 185 Gln Gly Leu Ile Glu Phe Arg Asp Ala Leu Ala Lys Leu Ile Asp Asp Tyr Gly Val Glu Glu Glu Pro Ala Glu Leu Pro Glu Gly Thr Ser Leu Thr Val Asp Asn Lys Arg Phe Phe Phe Asp Val Gly Ser Asn Lys Tyr 230 Gly Val Phe Met Arg Val Ser Glu Val Lys Pro Thr Tyr Arg Asn Ser 250 lle Thr Val Pro Tyr Lys Val Trp Ala Lys Phe Gly His Thr Phe Cys 265 Lys Tyr Ser Glu Glu Met Lys Lys Ile Gln Glu Lys Gln Arg Glu Lys Arg Ala Ala Cys Glu Gln Leu His Gln Gln Gln Gln Gln Gln Glu Glu Thr Ala Ala Ala Thr Leu Leu Gln Gly Glu Glu Gly Glu 310 315

Glu Asp

```
<210> 19
<211> 22
<212> DNA
<213> Synthetic oligonucleotide (CD43 PyRo SS)
<400> 19
                                                                              22
gggcccactt cctttcccct tg
<210> 20
<211> 16
<212> DNA
<213> Synthetic oligonucleotide (CD43 PyRo SSUB)
<220>
<221> misc_feature
<222> (9)..(10)
<223> bromouracil
<220>
<221> misc_feature
<222> (13)..(15)
<223> bromouracil
<220>
<221> misc_feature
<222> (20)..(21)
<223> bromouracil
<220>
<221> misc_feature
<222> (23)...(23)
<223> biotin
<400> 20
                                                                              16
qqqcccaccc ccccgb
<210> 21
<211> 22
<212> DNA
<213> Synthetic oligonucleotide (CD43 Mut-11)
                                                                              22
gggcccactt ccttcatata tg
<210> 22
<211> 20
<212> DNA
<213> Synthetic oligonucleotide (NS-SS)
<400> 22
                                                                              20
gagttagctc actcattagg
```

29/30 <210> 23 <211> 21 <212> DNA <213> Synthetic oligonucleotide(LUC-2) <400> 23 21 atagccttat gcagttgctc t <210> 24 <211> 39 <212> DNA <213> Synthetic oligonucleotide (GeneRacer RNA Oligo) <220>, <221> misc_feature
<222> (5)..(5)
<223> bromouracil <220> <221> misc_feature <222> (21)..(21) <223> bromouracil <220> <221> misc_feature
<222> (26)..(26)
<223> bromouracil <220> <221> misc_feature <222> (31)..(31) <223> bromouracil <220> <221> misc feature <222> (39)..(39) <223> bromouracil <400> 24 39 cqacqqaqca cqaqqacacq acaggacgaa qgagagaaa <210> 25 <211> 54 <212> DNA <213> Synthetic oligonucleotide (GeneRacer Oligo dT Primer) <400> 25 54 gctgtcaacg atacgctacg taacggcatg acagtgtttt ttttttttt tttt <210> 26 <211> 23 <212> DNA <213> Synthetic oligonucleotide (GeneRacer 5' Primer)

23

<400> 26

cgactggagc acgaggacac tga

WO 2004/026120 PCT/US2003/030213 30/30

<210> <211> <212> <213>	27 27 DNA Synthetic oligonucleotide	(GeneRacer 5'	Nested	Primer)	
<400> ggacaci	27 tgac catggactga aggagta				27
<210> <211> <212> <213>	28 33 DNA Synthetic oligonucleotide	(LUC-4)			
<400>	28 ggta ggctgcgaaa tgttcatact	gtt ·			33