Лабораторна робота №9

Тема: «Нейронні мережі. Особливості вирішальних функцій».

Мета: Дослідження класифікаційних особливостей нейронних мереж. Вирішальні функції.

Час виконання: 2 години.

Навчальні питання:

- 1). Класифікаційні особливості двухслойного персептрона;
- 2). Особливості вирішальних функцій.

Теоретична частина

Класифікаційні особливості двухслойного персептрона.

Розглянемо загальний випадок двухслойного персептрона (рис.1).

Рис.1. Двухшаровий персептрон.

Нехай $x \in R^l$ і в прихованому слої p нейронів. Прихований слой нейронів відображає R^l в $H_p \in R^p$, де $H_p = \{(y_1, y_2, y_p) \in R^p, y_i \in [0, 1], 1 \le i \le p\}$ - гіперкуб. Іншими словами, кожний нейрон задає гіперплощину, яка розділяє простір навпіл, тобто прихований слой нейронів ділить простір R^l на поліедри. Всі вектори з кожного поліедра відображаються в вершину p — мірного одиничного куба. Виходний нейрон розділяє вектори в класах описаних поліедрами, тобто виконує переріз гіперкуба, отриманого в прихованому слої.

Приклад 1.

Розглянемо нейронну сіть з двома входами (l=2) і трьома нейронами (k=3). Тоді простір $R'=R^2$. Нехай перший слой нейронів задає розбиття ознакового простору (площина) як показно на рис. 2.

Рис.2. Розбиття ознакового простору (площина).

В кожному багатокутнику (може бути і нескінченний) всі точки відповідають одному класу (А або В). При цьому, в кожному багатокутнику знаки лінійних функціоналів g_1, g_2, g_3 зостаються постійними.

Значить, з кожним багатокутником зв'язано встановлене значення вектора виходів нейронів першого шару, причому для різних багатокутників ці значення різні. Оскільки значеннями компонент цього вектора ϵ 0 або 1, отримаємо, що кожному багатокутнику відповідає деяка вершина одиничного куба H^3 в просторі R^3 . При цьому, кожній вершині куба відповідає один клас A або B.

На рис.3 зображено одиничний куб H^3 , в якого темні вершини відносяться до класу A, а світлі вершини до класу B. Задача нейронів другого шару полягає в розділенні вершин цього куба.

В нашому прикладі, площина $y_1 + y_2 - y_3 = \frac{1}{2}$ є розділяючою для куба H^3 . Ця площина і задає параметри нейрона другого шару. Відмітимо, що вершина (1, 0, 1) в кубі не загружена, тобто в неї не відображається ні один багатокутник.

Рис.3. Поділ одиничного куба H^3 розділяючою площиною.

Трьохслойний персептрон.

Зовнішній (вихідний) нейрон реалізує лише одну гіперплощину.Одна розділяюча гіперплощина не завжди забезпечує бажаний розділ вершин гіперкуба. Наприклад, якщо два кінця його однієї з двох головних діагоналей відносяться до класу A, а два кінця другої діагоналі до класу B. З такою ситуацією ми стикалися в задачі XOR. Введемо ще один шар нейронів (рис.4)

Рис.4. Трьохшаровий персептрон.

Визначення.

Трьохшарова нейронна мережа дозволяє описати довільні розділи об'єднань поліедрів.

Доведення:

Розглянемо перший шар з p нейронів. На першому шарі формуються гіперплощини, оскільки формується поліедральне розбиття простору гіперплощинами. Для заданої скінченної множини прецендентів завжди можна побудувати розбиття простору ознак на поліедри таке, що **ні в якому поліедрі не знайдеться пари точок з різних класів.** Як показано вище, перший шар відображає поліедри в вершини p — мірного одиничного гіперкуба.

Оскільки з кожним поліедром пов'язані образи одного класу, то і з кожною вершиною гіперкуба пов'язаний один клас.

Кожний нейрон другого шару виконує переріз отриманого гіперкуба. Оберемо в якості таких перерізів гіперплощини, які відсікають рівно одну вершину гіперкуба. Оскільки кількість вершин гіперкуба дорівнює 2^p то кількість нейронів другого шару також дорівнює 2^p . Таким чином, вихід **нейронів** другого шару представляє собою вектор розмірності 2^p , у якого завжди одне значення дорівнює 1, а інші дорівнюють нулю. Назвемо нейрони другого шару нейронами класу A або B у відповідності з класом вершини гіперкуба, яку відсікає цей нейрон. Тепер очевидно, яким чином формувати третій шар нейронної мережі. Необхідно, у вихідному нейроні третього шару реалізувати **оператор логічного складання виходів нейронів другого шару, які відносяться до класу A.** таким чином, розділяюча гіперплощина вихідного нейрона задається рівнянням:

$$c_1z_1+c_2z_2+.....+c_kz_k=rac{1}{2},\;\;\;$$
 де $k=2^p,\;\;a\;\;c_i=egin{cases} 1\;\;$ якщо нейрон відноситься до класу A 0 в іншому випадку

Таким чином, можна побудувати трьохшаровий персептрон наступним чином. Нейрони першого шару розділяють простір ознак на поліедри одного класу і відображають їх у вершини гіперкуба. Нейрони другого шару відсікають вершини гіперкуба. Нейрон третього шару виконує класифікацію через оператор логічного складання. Таким чином визначення доведено.

Розглянемо як будується рівняння гіперплощини, що відсікає вершину p-мірного одиничного гіперкуба. Діагональ гіперкуба має довжину \sqrt{p} . Довжини діагоналей (p-1)- мірних одиничних гіперкубів, які є бічними гранями p- мірного одиничного гіперкуба, дорівнюють $\sqrt{p-1}$. Центр куба знаходиться в точці

$$\left(\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}\right)$$
. Відстань від центра куба до довільної вершини дорівнює $\frac{\sqrt{p}}{2}$.

Площину проводимо перпендикулярно головній діагоналі куба, інцидентну вершині, яку потрібно відсікти, так щоб відстань від цієї вершини до січної площини становило $\sqrt{p}-\sqrt{p-1}$

 $\frac{\sqrt{p}-\sqrt{p}-1}{2}$, причому дана точка повинна знаходитись на діагоналі куба, проведеної до відсікаємої вершини.

Побудова нейронної мережі.

Існує два підходи до задачі побудови нейронної мережі класифікатора. Перший підхід полягає в побудові мережі змінюючи архітектуру. Даний метод базується на точній класифікації прецендентів. Другий підхід полягає в підборі параметрів (ваги і пороги) для мережі заданої архітектури.

Алгоритми, які базуються на точній класифікації множин прецендентів.

За основу береться один нейрон. Далі нарощуємо нейрони, поки не отримаємо правильну класифікацію всіх прецендентів (рис.5).

Рис.5 класифікація прецендентів.

Починаємо з одного нейрона n(X), який називається **майстром**. Після його тренування отримуємо розподіл множини X на X^+ і X^- . Якщо X^+ включає вектори з двох класів, то вводимо новий вузол $n(X^+)$, який називаються **послідовником**.

Таким чином, на першому шарі знаходиться один майстер і декілька послідовників. **Ніякі вектори з різних класів не мають однакового виходу з першого шару.**

 $X_1 = \{y : y = f_1(x), x \in X\}$, де f_1 - відображення яке задає перший шар. Аналогічно будується другий шар, третій шар, і.т.д.

Визначення.

При правильному виборі ваг, кожен черговий шар правильно класифіку ϵ всі вектори, які правильно класифікував майстер і ще хотя би один нейрон.

Таким чином, отримаємо архітектуру, яка має скінченне число шарів, що правильно класифікують всі преценденти (рис.6).

Рис.6. Класифікація прецендентів.

Особливості вирішальних функцій.

Вирішальні функції. Припустимо, що нам відомі області існування трьох класів Ω_1 , Ω_2 , Ω_3 . Звичайно при проектуванні НМ кількість класів, що розпізнається збільшується на одиницю: додатковий клас Ω_4 має назву «Не розпізнаний об'єкт» і призначений для об'єктів, які не розпізнаються. Для пояснення такого принципу розпізнавання розглянемо класи Ω_1 , Ω_2 , Ω_3 на площині ознак $\{x_1, x_2\}$ (рис. 6.1.1).

Рис. 6.1.1. Простір ознак класів $\Omega_1 - \Omega_4$

Вказані на рис. 6.1.1 ділянки класів можуть бути розділені двома довільними безперервними прямими лініями g_1 та g_2 , які і є вирішальними (розділюючими) функціями чотирох класів (з врахуванням додаткового класу Ω_4 «Не розпізнаний об'єкт»). Після накреслення цих двох довільних прямих ліній, що роздяляють класи,

визначають вирішальні (розділюючі) функції цих прямих ліній по відрізках, які вони відсікають на осях координат.

Для функції
$$g_1$$
, отримаємо рівності $\frac{x_1}{-1} + \frac{x_2}{4} = 1$; $4x_1 - x_2 = -4$; $g_1^0 = 4x_1 - x_2 + 4 = 0$,

останню з яких перетворюємо у нерівність (за традицією знак рівності «=» замінюють на знак нерівності «≥»; але з рівним успіхом можна використовувати й знак «≤»)

$$g_1^0 = 4x_1 - x_2 + 4 \ge 0 ag{6.1.1}$$

Аналогічно для функції g_2 отримуємо $\frac{x_1}{3} + \frac{x_2}{12} = 1$; $4x_1 + x_2 = 12$; звідки отримаємо:

$$g_2 = 4x_1 + x_2 - 12 \ge 0 \tag{6.1.2}$$

Кожна з двох прямих (6.1.1) та (6.1.2) розділяє площину ознак $\{x_1, x_2\}$ на дві напівплощини: в одній напівплощині нерівність виконується, а в іншій — ні.

Наприклад, для точки $\{x_1 = x_2 = 0\}$ згідно (6.1.1) величина $g_1 = 4 > 0$. Ця нерівність виконується для всій напівплощини, у якій знаходиться точка $\{x_1 = x_2 = 0\}$. У цих твердженнях можна пересвідчитись розрахунками для будь-яких інших довільних точок всієї площини ознак $\{x_1, x_2\}$. Напівплощина, у якій виконується нерівність $g_1 > 0$, позначається пунктирною лінією. Тоді відповідно для іншої напівплощини, не позначеною пунктирною лінією, нерівність $g_1 > 0$ не виконується. Таким чином, достатньо отримати значення функції для будь-якої довільної точки, щоб визначити, у якій напівплощині виконується нерівність $g_1 > 0$. Звичайно така перевірка виконується для точки $\{x_1 = x_2 = 0\}$.

Таким же самим чином позначається пунктирною лінією напівплощина, у якій виконується нерівність $g_2 > 0$.

Вирішальні правила використовують вирішальні (розділяючі) функції для визначення класів (див. рис. 6.1.1):

- 1. Клас Ω_1 : якщо $g_1 < 0$ та $g_2 \ge 0$;
- 2. Клас Ω_2 : якщо $g_1 \ge 0$ та $g_2 \ge 0$;
- 3 Клас Ω_3 : якщо $g_1 \ge 0$ та $g_2 < 0$; (6.1.3)
- 4. Клас Ω_4 : якщо $g_1 < 0$ та $g_2 < 0$.

У цьому випадку для визначення класів ми використали нерівності, які, як відомо з математики, виконують логічні функції. Можливо отримати й апаратну реалізацію виразів (6.1.1) - (6.1.3).

У принципі вирішальні функції можуть бути не лише прямими лініями, але й нелінійними, наприклад, мати вигляд параболи $g_3 = x_1^2 - x_2 - 6x_1 + 8 \ge 0$ (рис. 6.1.1), при цьому пунктирна парабола частку півплощини, в якій нерівність виконується.

Максимізація мінімальної відстані вирішальної функції від двох сусідніх класів. По принципу дії апарат вирішальних функцій та вирішальних правил мало відрізняється від нейронних мереж (НМ), які виконують аналогічний логічний аналіз по розділу класів з аналогічним математичним та графічним поясненнями. Для обох напрямків аналізу *розміщення вирішальних функцій є невизначеним*: з рис. 6.1.1 видно, що для розділу класів можна використати безліч вирішальних функцій. Виникає проблема визначення «оптимальних» вирішальних функцій. Метод

вирішальних правил розглядається окремо від НМ, бо він у порівнянні з середовищем НМ з її більш жорсткими обмеженнями дозволяє зручніше виділити (шляхом математичних перетворень) «оптимальні» вирішальні функції. З цією метою використовується, наприклад, метод «опорних векторів», за яким у багатомірному гіперпросторі у двох сусідніх класах виділяють найближчі сусідні «опорні вектори» двох різних класів, між якими й визначають положення розділюючої їх «оптимальної» гіперплощини (цей метод використовується також й для розділу багатьох класів).

Вирішальні правила для складного розміщення класів.

Вирішальні функції та вирішальні правила використовуються у п-вимірному просторі кількісних ознак $\{x_1, x_2, ..., x_n\}$. Але далеко не завжди у таких НМ класи розміщуються таким чином, щоб між ними було зручно визначати вирішальні функції. Припустимо, що нам відомі області існування трьох класів Ω_1 , Ω_2 , Ω_3 на площині ознак $\{x_1, x_2\}$ (рис. 6.2.1), але класи Ω_1 , Ω_2 , Ω_3 «переплутані» між собою.

У цьому випадку ми можемо довільними вирішальними функціями « $g_1 > 0$ », « $g_2 > 0$ », « $g_3 > 0$ » розділити між собою класи. На базі отриманих вирішальних функцій та відомого розміщення класів згідно рис. 6.2.1 отримуємо вирішальні правила для визначення класів:

- 1. **Клас \Omega_1**, якщо (($g_1 > 0$ та $g_3 < 0$) або ($g_1 < 0$ та $g_3 < 0$)) або ((($g_1 < 0$ та $g_2 < 0$) та $g_3 > 0$) або ($g_1 < 0$ та $g_2 > 0$)).
 - 2. **Клас \Omega_2**, якщо ($g_1 > 0$ та $g_2 > 0$).
 - 3. *Клас* Ω_3 , якщо (($g_1 > 0$ та $g_2 < 0$) та $g_3 > 0$).

Можна впевнитись, що вирішальні функції однозначно визначають потрібні класи.

Таким чином, для класифікації об'єктів не ϵ завадою те, що вирішальна функція пересіка ϵ область існування класу. У зв'язку з цим всю область існування реальних ознак всіх класів можна розділити на однакові комірки, для кожної з яких можна визначити клас за вирішальними правилами.

Рис. 6.2.1. Простір ознак класів Ω_1 , Ω_2 , Ω_3 .

3 рис. 6.2.1 видно, що *розміщення вирішальних функцій є невизначеним*: для розділу класів можна використати безліч вирішальних функцій.

Завдання:

Рис.6.2.2. Розміщення трьох класів.

У площині 1-го квадранту з осей x_1 , x_2 (рис. 6.2.2), на яких позначаються виміряні ознаки при максимальних значеннях $x_{1max} = N$, $x_{2max} = N$ де N — порядковий номер студента у групі, виділити двома довільними прямими лініями три довільні ділянки (класи): Ω_1 , Ω_2 , Ω_3 .

Четверту ділянку розділу вважати невідомим класом.

Отримати:

- вирішальні функції та вирішальні правила для визначення класів;
- схему апаратної реалізації системи РО;
- налагоджену програму (на будь-якій мові) із використанням вирішальних функцій та вирішальних правил.

Примітка. Для отримання вирішальної функції використовують рівняння $x_1/a_1 + x_2/b_2 = 1$ (тут a_1, b_2 — координати точок пересічення прямою вирішальної функції відповідно осей x_1, x_2) з наступним переведенням його у нерівність вигляду $u = b_2 x_1 + a_1 x_2 \ge a_1 b_2$.

У налагодженій програмі використати генератор випадкових чисел для генерації ознак x_1, x_2 об'єктів у визначених межах.

Захист лабораторної роботи передбачає виконання поставлених завдань у повному обсязі.