Predicting the #1 Song on Spotify

An Analytics Approach for Kalshi Market Insights

Presented by Kenneth Lent

Overview

01 Introduction

05 Objective

09 Result

02 Problem

06 Hypothesis

10 Conclusion

03 Literary Preview

07 Methodology

11 Recommendation

04 Theoretical

08 Implementation

Presented by Juliana Silva

The Challenge

An Analytics Approach for Kalshi Market Insights

- Kalshi offers daily prediction markets: "Which song will be #1 on Spotify USA tomorrow?"
- Kalshi

- Market settles at 11 a.m. ET based on official Spotify U.S. Top 50 chart.
- Prices (1¢-99¢) reflect market's collective belief in a song's probability of hitting #1.
- Opportunity: External popularity signals (streaming, search, lyric engagement) often arrive before market settlement, creating potential for a data-driven trading edge.

Project Goal

Streaming-Sentiment Signals

- Primary Objective: Develop an analytical tool to predict the probability of a song reaching #1 on Spotify USA, providing actionable insights for Kalshi market traders.
- Core Idea:
 - Ingest and process timely data signals (Spotify charts, API metadata).
 - Engineer features capturing song momentum and characteristics.
 - Train a predictive model to generate calibrated probabilities.
 Identify mispricings in the Kalshi market.

Fueling the Model

Data & Features

01Spotify Charts CSVs

Daily rank, streams, track/artist IDs.

02 Spotify Web API

Track popularity, duration, explicitness, release date.

Rate limiting challenges. Didn't end up needing these features for a wellperforming model.

Fueling the Model

Data & Features

Key Engineered Features (Data Mining): days_since_release rank_change (daily)

- stream_momentum (vs. 3-day rolling average)

Forecasting #1

The Model

- Model: LightGBM Classifier
 - Chosen for efficiency and performance.
 - o class_weight='balanced' to handle #1 song rarity.
- Training & Testing Strategy:
 - Time-Based Rolling Window:
 - Evaluated daily from Jan 1, 2025, to May 11, 2025.
 - Train on all prior data, predict for the next day.
 Simulates real-world application.
- Key Features Used: rank, streams, rank_change, stream_momentum, popularity, duration_ms, explicit, days_since_release.

How Well Does It Predict?

- Overall Predictive Power (Aggregated Multi-Day Results):
 - ROC AUC: 0.97 (Excellent discrimination)
 - o Average Precision (PR Curve): 0.81
- Daily Prediction Averages (for #1 song):
 - Precision: 0.68
 - Recall: 0.68
- Calibration: Model probabilities reasonably well-calibrated.

"Predicted probabilities are generally reliable."

From Prediction to Potential Profit

Kalshi Market Edge

- Model generates probabilities before market settlement.
- Allows identification of potential over/undervalued contracts by comparing model probability to market-implied odds.
- Important Note: Predicting #1 is the first step. Actual profitability requires backtesting against Kalshi market conditions (liquidity, spreads).

Key Feature Drivers

- streams and current rank are highly influential.
- stream_momentum and general Spotify popularity also important.

Conclusion & Path Forward

• Conclusion:

- Successfully developed an analytical tool predicting Spotify's #1 song with strong performance (ROC AUC 0.97).
- Demonstrates value of API usage, feature engineering, and predictive modeling for market insights.

• Key Recommendations:

- Develop Backtesting Framework: Crucial for assessing real-world trading viability against Kalshi odds.
- Expand Data Sources: Incorporate web scraping (social media, news) and other APIs (Genius) to bolster the model.
- Monetization Potential: Data pipeline and model can be basis for a subscription insights service.

Acknowledging Limits & Next Steps

Limitations

- Google Trends unfeasibility (due to rate limits, but model still performed well).
- Relies on data availability; no live trading implemented.

Future Work

- Implement financial backtesting.
- Integrate diverse data (social media, news).
- Explore advanced models (ensembles, neural networks).
- Develop a user-friendly dashboard.
- Automate the daily pipeline.

Thank You & Questions

linkedin.com/in/klent-ai/