Rank-67243 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_3^3 + X_0^2 X_2 + X_0 X_1^2 + X_1^2 X_3 + X_0 X_2^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over ${\rm GF}(4)$ is 1432983961

General information

Number of lines	4
Number of points	25
Number of singular points	2
Number of Eckardt points	0
Number of double points	4
Number of single points	12
Number of points off lines	9
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{4}
Type of lines on points	$2^4, 1^{12}, 0^9$

Singular Points

The surface has 2 singular points:

$$\begin{aligned} 0: \ P_{57} &= \mathbf{P}(0,1,\omega,1) = \mathbf{P}(0,1,2,1) \\ 1: \ P_{73} &= \mathbf{P}(0,1,\omega^2,1) = \mathbf{P}(0,1,3,1) \end{aligned}$$

The 4 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]_{336} = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]_{336} = \mathbf{Pl}(0,0,0,0,0,1)_{101}$$

$$\ell_{1} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{341} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{341} = \mathbf{Pl}(0, 1, 0, 0, 0, 1)_{105}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & \omega & 1 \\ 0 & 1 & \omega^{2} & 1 \end{bmatrix}_{133} = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix}_{133} = \mathbf{Pl}(2, 3, 2, 3, 3, 1)_{346}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & \omega^{2} & 1 \\ 0 & 1 & \omega & 1 \end{bmatrix}_{153} = \begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix}_{153} = \mathbf{Pl}(3, 2, 3, 2, 2, 1)_{296}$$

Rank of lines: (336, 341, 133, 153)

Rank of points on Klein quadric: (101, 105, 346, 296)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 4 Double points:

The double points on the surface are:

$$P_2 = (0,0,1,0) = \ell_0 \cap \ell_1$$

$$P_{73} = (0,1,3,1) = \ell_1 \cap \ell_2$$

$$P_{57} = (0,1,2,1) = \ell_1 \cap \ell_3$$

 $P_{12} = (1, 1, 1, 0) = \ell_2 \cap \ell_3$

Single Points

The surface has 12 single points:

The single points on the surface are:

$$\begin{array}{l} 0: \ P_1 = (0,1,0,0) \ \text{lies on line} \ \ell_0 \\ 1: \ P_{11} = (0,1,1,0) \ \text{lies on line} \ \ell_0 \\ 2: \ P_{15} = (0,2,1,0) \ \text{lies on line} \ \ell_0 \\ 3: \ P_{19} = (0,3,1,0) \ \text{lies on line} \ \ell_0 \\ 4: \ P_{26} = (0,1,0,1) \ \text{lies on line} \ \ell_1 \\ 5: \ P_{33} = (3,2,0,1) \ \text{lies on line} \ \ell_2 \\ 6: \ P_{36} = (2,3,0,1) \ \text{lies on line} \ \ell_3 \end{array}$$

7: $P_{42} = (0, 1, 1, 1)$ lies on line ℓ_1

8: $P_{48} = (3, 2, 1, 1)$ lies on line ℓ_3

9: $P_{51} = (2, 3, 1, 1)$ lies on line ℓ_2

10: $P_{54} = (1, 0, 2, 1)$ lies on line ℓ_2

11: $P_{70} = (1,0,3,1)$ lies on line ℓ_3

The single points on the surface are:

Points on surface but on no line

The surface has 9 points not on any line:

The points on the surface but not on lines are:

$$0: P_0 = (1,0,0,0)$$

$$1: P_4 = (1, 1, 1, 1)$$

$$2: P_8 = (1, 0, 1, 0)$$

$$3: P_{40} = (2,0,1,1)$$

$$4: P_{41} = (3,0,1,1)$$

$$5: P_{56} = (3, 0, 2, 1)$$

$$6: P_{68} = (3, 3, 2, 1)$$

7:
$$P_{71} = (2, 0, 3, 1)$$

$$8: P_{79} = (2, 2, 3, 1)$$

Line Intersection Graph

$$\begin{array}{c|c} 0123 \\ \hline 0 & 0100 \\ 1 & 1011 \\ 2 & 0101 \\ 3 & 0110 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1
in point	P_2

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3
in point	P_2	P_{73}	P_{57}

Line 2 intersects

Line	ℓ_1	ℓ_3
in point	P_{73}	P_{12}

Line 3 intersects

Line	ℓ_1	ℓ_2
in point	P_{57}	P_{12}

The surface has 25 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$9: P_{26} = (0, 1, 0, 1)$	18: $P_{56} = (3, 0, 2, 1)$
$1: P_1 = (0, 1, 0, 0)$	$10: P_{33} = (3, 2, 0, 1)$	19: $P_{57} = (0, 1, 2, 1)$
$2: P_2 = (0,0,1,0)$	$11: P_{36} = (2,3,0,1)$	$20: P_{68} = (3, 3, 2, 1)$
$3: P_4 = (1, 1, 1, 1)$	$12: P_{40} = (2,0,1,1)$	$21: P_{70} = (1,0,3,1)$
$4: P_8 = (1,0,1,0)$	13: $P_{41} = (3,0,1,1)$	$22: P_{71} = (2,0,3,1)$
$5: P_{11} = (0, 1, 1, 0)$	$14: P_{42} = (0, 1, 1, 1)$	$23: P_{73} = (0, 1, 3, 1)$
$6: P_{12} = (1, 1, 1, 0)$	15: $P_{48} = (3, 2, 1, 1)$	$24: P_{79} = (2, 2, 3, 1)$
$7: P_{15} = (0, 2, 1, 0)$	$16: P_{51} = (2, 3, 1, 1)$	
$8: P_{19} = (0, 3, 1, 0)$	17: $P_{54} = (1, 0, 2, 1)$	