CS 271 - Introduction to Artificial Intelligence

Fall 2016

HomeWork 5

Name: $Liangjian\ Chen$

ID: #52006933 November 10, 2016

Problem 1 Solution:

(a) True: 1 * 4 = 4(B = True, A = True). False: (2 * 2 - 1) * 4 = 12

(b) False: 1. (A = True or B = True or C = True or D = True). True: 16 - 1 = 15.

(c) True: 0 False: 16

Problem 2 Solution:

Set: Locate(a,b): a is at b' house.

Statement: $\neg locate(car, Fred) \rightarrow locate(car, John)$ $\neg locate(car, John) \rightarrow locate(car, Fred)$

Constrains: No, I can not.

Problem 3 Solution:

First, it is obvious that a must be true, otherwise for any logical expression s $s \land \neg a = Flase$ i.e. it is unsatisfied.

a	P	Q	$P \vee a$	$Q \vee \neg a$
1	0	0	1	0
1	0	1	1	1
1	1	0	1	0
1	1	1	1	1
	1 1 1 1	a P 1 0 1 0 1 1 1 1 1 1	$\begin{array}{c cccc} a & P & Q \\ \hline 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

From the table, we can conclude, for any logical expression $P, Q, P \vee a = 1, Q \vee \neg a = Q$. Thus the unit resolution is sound.

Problem 4 Solution:

$$\neg[((P \lor \neg Q) \to R) \to (P \land Q)]$$

$$\Leftrightarrow \neg[(\neg(P \lor \neg Q) \lor R) \to (P \land Q)]$$

$$\Leftrightarrow \neg[\neg(\neg(P \lor \neg Q) \lor R) \lor (P \land Q)]$$

$$\Leftrightarrow (\neg P \lor R) \land (Q \lor R) \land (\neg P \lor \neg Q)$$

Problem 5 Solution:

$$\begin{split} r_{i,j} &= \neg q_{i,1} \wedge \neg q_{i,2} \wedge \ldots \wedge \neg q_{i,j-1} \wedge q_{i,j} \wedge \neg q_{i,j+1} \wedge \ldots \wedge \neg q_{i,n} \\ R_i &= r_{i,1} \vee r_{i,2} \vee \ldots \vee r_{i,n} \\ Row &= R_0 \wedge R_1 \wedge \ldots \wedge R_n \\ \\ c_{i,j} &= \neg q_{1,j} \wedge \neg q_{2,j} \wedge \ldots \wedge \neg q_{i-1,j} \wedge q_{i,j} \wedge \neg q_{i+1,j} \wedge \ldots \wedge \neg q_{n,j} \\ C_i &= c_{1,i} \vee c_{2,i} \vee \ldots \vee c_{n,i} \\ Col &= C_1 \wedge C_2 \wedge \ldots \wedge C_n \\ \\ xd^1_{i,j} &= \neg q_{1,j-i+1} \wedge \neg q_{2,j} \wedge \ldots \wedge \neg q_{i-1,j-1} \wedge q_{i,j} \wedge \neg q_{i+1,j+1} \wedge \ldots \wedge \neg q_{n,i-j+m} (i \leq j) \\ xd^1_{i,j} &= \neg q_{i-j+1,1} \wedge \neg q_{2,j} \wedge \ldots \wedge \neg q_{i-1,j-1} \wedge q_{i,j} \wedge \neg q_{i+1,j+1} \wedge \ldots \wedge \neg q_{n,j-i+n} (i \geq j) \\ xD_i &= \bigvee_{x-y=i} xd_{x,y} \\ xDiagnol &= xD_{-m} \wedge xD_{-m+1} \wedge \ldots \wedge xD_n \\ \\ yd_{i,j} &= \neg q_{1,i+j-1} \wedge \neg q_{2,i+j-2} \wedge \ldots \wedge \neg q_{i-1,j+1} \wedge q_{i,j} \wedge \neg q_{i+1,j-1} \wedge \ldots \wedge \neg q_{i+j-1,1} (i \leq j) \\ \end{split}$$

$$\begin{aligned} yd_{i,j} &= \neg q_{1,i+j-1} \wedge \neg q_{2,i+j-2} \wedge \dots \wedge \neg q_{i-1,j+1} \wedge q_{i,j} \wedge \neg q_{i+1,j-1} \wedge \dots \wedge \neg q_{i+j-1,1} (i \leq j) \\ yd_{i,j} &= \neg q_{i+j-m,m} \wedge \neg q_{i+j-m+1,m-1} \wedge \dots \wedge \neg q_{i-1,j+1} \wedge q_{i,j} \wedge \neg q_{i+1,j-1} \wedge \dots \wedge \neg q_{n,m-i-j} (i > j) \\ yD_i &= \bigvee_{x+y=i} d_{x,y} \\ yDiagnol &= D_2 \wedge D_3 \wedge \dots \wedge D_{n+m} \end{aligned}$$

Final answer is $Row \wedge Col \wedge xDiagnol \wedge yDiagnol$.

Problem 6 Solution:

(a) Table is shown below:

P	Q	R	$P \wedge (Q \wedge R)$	$(P \wedge Q) \wedge R$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

(b) Table is shown below:

P	Q	R	$P \wedge (Q \vee R)$	$(P \wedge Q) \vee (P \wedge R)$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

(c) Table is shown below:

\overline{P}	Q	$\neg (P \land Q)$	$\neg P \lor \neg Q$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

(d) Table is shown below:

\overline{P}	Q	$P \leftrightarrow Q$	$(P \land Q) \lor (\neg P \land \neg Q)$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	1	1

Problem 7 Solution:

- (a) valid, $\neg Smoke \lor Smoke$.
- (b) Neither
- (c) Neither $\neg(\neg Smoke \lor Fire) \lor (Smoke \lor \neg Fire)$ ($Smoke \land \neg Fire$) $\lor Smoke \lor \neg Fire$ $Smoke \lor \neg Fire$
- (d) valid, $Smoke \lor Fire \lor \neg Fire = Smoke \lor True = True$
- (e) valid, $\neg Smoke \lor \neg Heat \lor Fire \leftrightarrow \neg Smoke \lor \neg Heat \lor Fire$. Left part and right part are same.
- (f) valid $Big \lor Dumb \lor \neg Dumb \lor Big = True \lor Big = True$.

Problem 8 Solution:

Prove KB
$$\land \neg Q$$
 is unsatisfied. KB is: $\{\neg P \lor Q, \neg L \lor \neg M \lor P, \neg B \lor \neg L \lor M, \neg A \lor \neg P \lor L, \neg A \lor \neg B \lor L, A, B, \neg Q\}$

step 1 unit clause
$$A = Ture, \ B = True, \ Q = False$$
 $\{\neg P, \neg L \lor \neg M \lor P, \neg L \lor M, \neg P \lor L, L\}$

step 2 unit clause
$$L = Ture, P = False$$
 $\{\neg M, M\}$

It is unsatisfied, thus problem solved.