Cognome e Nome:	_ Matricola:

Esercitazione Esame di Strutture Discrete

27 Luglio 2021

Rispondere ad 1 domanda a scelta, tra le 2 proposte, per ognuna delle 4 parti. Successivamente, ad ulteriori 2 domande a scelta. Giustificare le soluzioni, mostrando i calcoli fatti.

Soluzioni: assumo di rispondere alla domanda 1 di ogni parte, ed alla domanda 2 delle prime 2 parti, come svolgimento del compito.

In coda anche le risposte per le ultime 2 domande.

Prima parte

- 1. Data la formula $(p \land \neg q) \Rightarrow (\neg p \land (q \lor r))$, quali sono gli assegnamenti di valore alle variabili proposizionali p,q,r che soddisfano la formula ?
- 2. Dimostrare che $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap B \cap C)$

Seconda parte

- 3. Dimostrare che 2 interi consecutivi, n e n + 1, sono coprimi.
- 4. Calcolare $19^{40} \mod 13$

Terza parte

- 5. Dimostrare che $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$
- 6. Lanciamo un dado speciale con 12 facce (dodecaedro regolare) numerate da 1 a 12. Sapendo che il dado non è truccato, e quindi ognuna delle 12 facce ha la stessa probabilità di risultare la faccia in alto dopo il lancio, calcolare il valore atteso del lancio di questo dado.

Quarta parte

- 7. Dato il grafo orientato G in figura, quanti sono i percorsi di lunghezza 3 per ogni coppia di nodi?
- 8. Dimostrare che il grafo è fortemente connesso.

Risposta Domanda I parte: Domanda 1: Costruiamo la tavola della verità

p	q	r	$p \land \neg q$	$\neg p \land (q \lor r)$	$(p \land \neg q) \to (\neg p \land (q \lor r))$
f	f	f	f	f	t
f	f	t	f	t	t
f	t	f	f	t	t
f	t	t	f	t	t
t	f	f	t	f	f
t	f	t	t	f	f
t	t	f	f	f	t
t	t	t	f	f	t

6 assegnamenti su 8 soddisfano la formula.

Risposta Domanda II parte: Sappiamo che esiste un teorema che ci dice che 2 interi m e n sono coprimi se e solo se esistono h e k interi relativi tali che hm + kn = 1.

In questo caso, ossia per m = n + 1, scegliamo h = 1 e k = -1 e otteniamo hm + kn = n + 1 - n = 1.

Risposta Domanda III parte: Dobbiamo dimostrare che $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$. Abbiamo

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \frac{(n-1)!}{(k-1)!((n-1)-(k-1))!} + \frac{(n-1)!}{k!(n-1-k)!} = \frac{(n-1)!}{(k-1)!(n-k)!} + \frac{(n-1)!}{k!(n-1-k)!}$$

Minimo comune multiplo tra (k-1)!(n-k)! e k!(n-1-k)! è k!(n-k)! e quindi abbiamo

$$\frac{(n-1)!}{(k-1)!(n-k)!} + \frac{(n-1)!}{k!(n-1-k)!} = \frac{(n-1)!k + (n-1)!(n-k)}{k!(n-k)!} = \frac{(n-1)!(k + (n-k))!}{k!(n-k)!} = \frac{(n-1)!n}{k!(n-k)!} = \frac{n!}{k!(n-k)!} = \binom{n}{k}$$

Risposta Domanda IV parte:

Per trovare i percorsi di lunghezza 3 per ogni coppia di nodi del grafo orientato G in figura, costruiamo la matrice di adiacenza A e calcoliamo A^3 .

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix} \text{ Quindi, } A^2 = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \end{pmatrix}$$

Infine, abbiamo

$$A^{3} = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 2 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 2 & 1 & 1 \\ 1 & 2 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & 2 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

L'elemento in posizione (i, j) della matrice A^3 ci dice quanti sono i cammini di lunghezza 3 da i a j.

Risposta 5:

Domanda 2 prima parte.

Per dimostrare che $A\setminus (B\setminus C)=(A\setminus B)\cup (A\cap B\cap C)$ procediamo in questo modo: dimostriamo prima che $A\setminus (B\setminus C)\subseteq (A\setminus B)\cup (A\cap B\cap C)$ e poi il viceversa, ossia $(A \setminus B) \cup (A \cap B \cap C) \subseteq A \setminus (B \setminus C).$

Sia allora $x \in A \setminus (B \setminus C)$ quindi $x \in A$ e $x \notin (B \setminus C)$. Ci sono 2 casi $x \in B$ e $x \in C$ e l'altro caso è $x \notin B$. Nel primo caso abbiamo $x \in A, x \in B, x \in C$ e quindi $x \in A \cap B \cap C$ che implica $x \in (A \setminus B) \cup (A \cap B \cap C)$. Nel secondo caso abbiamo $x \in A$ e $x \notin B$, quindi $x \in A \setminus B$ e in conclusione $x \in (A \setminus B) \cup (A \cap B \cap C)$.

Sia adesso, $x \in (A \setminus B) \cup (A \cap B \cap C)$. Due casi sono possibili: primo caso $x \in A \setminus B$ ossia $x \in A$ e $x \notin B$ e di conseguenza $x \notin B \setminus C$. Quindi $x \in A \setminus (B \setminus C)$. Il secondo caso è $x \in A \cap B \cap C$ da cui deduciamo che $x \in A$ e $x \notin B \setminus C$ e di conseguenza $x \in A \setminus (B \setminus C)$.

Risposta 6:

Domanda 2 seconda parte.

Per il teorema di Eulero $19^{40} \equiv 19^{40 \mod \phi(13)} \equiv 19^{40 \mod 12} \equiv 19^4 \mod 13$

Inoltre $19^4 \equiv (19 \mod 13)^4 \equiv 6^4 \mod 13$.

Quindi, possiamo dire che $19^{40} \mod 13 = 6^4 \mod 13$.

Infine notiamo che $6^4 \mod 13 = (6^2)^2 \mod 13$ e $(6^2)^2 \equiv (6^2 \mod 13)^2 \equiv (36 \mod 13)^2 \equiv 3^2 \mod 13 = 9$.

Risultato finale $19^{40} \mod 13 = 9$.

Risposta alla II domanda della parte 3: Sappiamo che ognuna delle 12 facce ha la stessa probabilità di risultare la faccia in alto dopo il lancio, quindi se X è la variabile casuale che indica il valore uscito dopo un lancio del dado, per ogni $i=1,2,\ldots,12$ abbiamo $P(X=i)=\frac{1}{12}$. Quindi, il valore atteso

$$E[X] = \sum_{i=1}^{12} i \cdot \frac{1}{12} = \frac{1}{12} \sum_{i=1}^{12} i = \frac{1}{12} \cdot \frac{12 \cdot 13}{2} = 6.5$$

Risposta alla II domanda della parte 4 :

Per dimostrare che il grafo è fortemente connesso dobbiamo dimostrare che per ogni coppia di vertici i e j esiste un cammino da i a j ed un cammino da j a i, ossia che il grafo ha una sola componente fortemente connessa. Se consideriamo i 2 cicli di lunghezza 3 formati dai vertici 1, 2, 3 e 2, 5, 4, possiamo dire che i vertici 1, 2, 3 stanno nella stessa componente fortemente connessa, e i vertici 2, 5, 4 stanno nella stessa componente fortemente connessa. Ma, la connessione forte tra vertici è una relazione di equivalenza, quindi i vertici 1, 2, 3, 4, 5 stanno tutti in un'unica componente fortemente connessa.