Math 357 Long quiz 01C

2024–04–15 (M)

Your name:	

Let R be a commutative ring with a multiplicative identity $1_R \neq 0_R$. An element $\alpha \in R$ is **nilpotent** if there exists an $n \in \mathbf{Z}_{>0}$ such that $\alpha^n = 0_R$. The **nilradical** of R is the set

$$Nil(R) = \{\alpha \in R \,|\, \alpha \text{ is nilpotent}\}$$

- (a) Prove that Nil(R) is an ideal of R.
- (b) Prove that $Nil(R/Nil(R)) = \{0\}.$