北京工业大学 2016-2017 学年第 1 学期 《集合与图论》考试试卷A卷

考试说明:		
承诺:		

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条 例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做 到不违纪、不作弊、不替考。若有违反,愿接受相应的处分。

承诺人:	学号:	班号:
------	-----	-----

注: 本试卷共 10 大题, 共 10 页, 满分 100 分, 考试时必须使用卷后附 加的统一答题纸和草稿纸。

卷 面 成 绩 汇 总 表 (阅卷教师填写)

题号	_	\equiv	三	四	五	六	七	八	九	+	总成绩
满分											
得分											

一、选择题(8分)

1、设 $A=\{1, 2, 3\}$,则 A 上的二元关系有()个。

A. 23; B. 32; C. $2^{3\times3}$; D. $3^{2\times2}$.

2、设集合 A={1, 2, 3, 4, 5} 上偏序关系的哈斯图为()

则子集 $B=\{2,3,4\}$ 的最大元();最小元();

极大元(资料由公);极小元话]收集整;并上界公章);上

确界(

); 下界(); 下确界(

)。

无, 4, 2、3, 4, 1, 1, 4, 4; B、无, 4、5, 2、

3, 4, 5, 1, 1, 4, 4;

C、无, 4, 2、3, 4、5, 1, 1, 4, 4; D、无, 4, 2、3, 4,

1, 1, 4, 无。

3、下图中既不是 Euler 图,也不是 Hamilton 图的图是()

4. 集合 $A=\{1, 2, 3, 4, 5, 6, 7, 8\}$ 上的关系 $R=\{\langle x, y \rangle | x+y=10 \ \text{且}\}$ $x, y \in A$, 则 R 的性质为 ().

A. 自反的

B. 对称的

C. 传递且对称的

D. 反自反且传递的

得 分

二、判断题(8分)

- 1. () 若 R₁、R₂是非空集合 A 上的传递关系,则 R₁∪ R 。是 A 上的传递关系。
- 2. ()设 f 是 A 到 B 的函数, g 是 B 到 C 的函数, 若 g°f 是 单射,则f是单射。
- 3. ()设正则5叉树的树叶数为17,则分支数为i=3
- 4. () 如果一个有向图 D 是欧拉图,则 D 是强连通图。

三、(10 分) 证明: $(A \cup B) - (A \cap B) = (B-A) \cup (A-B)$

四、(10分) R是A上一个二元关系,证明: 若R是A上一个等价关系,则S也是A上的一个等价关系,其中S描述如

下: $S = \{\langle a,b \rangle | (a,b \in A) \land ($ 对于某一个 $c \in A$,有 $\langle a,c \rangle \in R$ 且 $\langle c,b \rangle \in R$)}

得 分

五、(10 分) $f:A \to B$ 是从A到B的函数,定义一个函数 $g:B \to 2^A$ 对任意 $b \in B$ 有 $g(b) = \{x \mid (x \in A) \land (f(x) = b)\}$ 证明: 若 f

是A到B的满射,则g是从B到 2^A 的单射。

六、(12分) 求递推关系 a_n-4 $a_{n-1}+4a_{n-2}=2^n$ 的通解

得 分

七、(10分)用 Di jkstra 算法求图中起点 V1→V7 的最短路径及路长最短路。

八、(12分)在二叉树中

- 1. 求带权为 2, 3, 5, 7, 8 的最优二叉树 T。(5 分)
- 2. 求 T 对应的二元前缀码。(5分)

得 分

九、(10 分) 设 G 为 n 阶无向简单图, $n \ge 5$, 证明 G 或 \overline{G} 中必含圈.

十、(10 分)设 G 是连通的简单的平面图, 面数 r<12, $\delta(G) \ge 3$.

- (1) 证明 G 中存在次数≤4 的面
- (2) 举例说明当 r=12 时, (1) 中结论不真.

	答	题	纸	
姓名:	学-	号:		

	草	稿	纸	
班 夕。	坐-			