Titre : Phonons et capacité thermique

Présentée par : Damien Moulin Rapport écrit par : Damien Moulin

Correcteur : Jean-Noël Aqua Date : 30/04/2020

Bibliographie de la leçon :			
Titre	Auteurs	Éditeur	Année
Physique Statistique	DGLR		
Physique du solide	Kittel		

Plan c	létaille
--------	----------

Niveau choisi pour la leçon: L3

Pré-requis :

Ondes sonores dans un solide Oscillateurs harmoniques quantiques Ensemble grande canonique Gaz de photons

I. Description qualitative des phonons

1) Rappel sur les ondes élastiques

Rapide parcours du raisonnement vu en L2 permettant, à partir d'un modèle d'oscillateurs couplés, d'arriver à l'équation de d'Alembert pour la propagation des ondes sonores dans un solide.

2) Analogie photons/phonons

Photon : quanta d'énergie EM. Phonon : quanta d'énergie de vibration élastique.

II. Vibration collective des atomes dans un cristal

1) Description du système et ondes progressives

Système : ensemble de masses liés par des ressorts avec conditions au limites périodiques. Equation du mouvement. Recherche d'une solution sous la forme d'une onde progressive. Conditions sur les vecteurs d'onde possibles.

2) Modes propres découplage des équations du mouvement

Découplage des équations du mouvement par changement de base.

3) Quantification des modes propres

III. Application à la capacité calorifique des solides

1) Énergie moyenne du système

Calcul de l'énergie moyenne du système ainsi défini par analogie entre phonons et photons (en introduisant la distribution de bose einstein pour un potentiel chimique nul).

2) Approximation de Debye et calcul de la capacité calorifique

Calcul de l'énergie et de la capacité calorifique via l'approximation de Debye

3) Discussion

Comparaison du réultat obtenu avec les données expérimentales. Justification de la justesse à basse température et à haute température.

Questions posées par l'enseignant

Q1: Vous avez tracé une sorte de relation de dispersion ... est-ce que il y a d'autres formes possibles pour la relation de dispersion pour les ondes sonores ?

Q1bis: Vous avez décrit des modes acoustiques, vous pouvez me parler des modes optiques ?

- -->L'hyp du réseau de Bravais, mode acoustique ok mais si c'est pas un réseau de Bravais alors modes optiques (énergie plus haute, fréquence supérieure et en forme de chapeau ...
- Q3: pourquoi vous n'avez pas besoin de prendre en compte les mode optiques ?
 - --> basse température donc modes pas peuplés
- Q4: si on avait fait un calcul classique, on aurait obtenu quoi ? Avec particule classique ...
 - --> Dulong et Petit, Thm d'équipartition, et chaque particule a 6D --> Energie à 3NkbT
- Q5 : c'est juste un therme quadratique qui apporte 1/2 kbT à l'énergie ?

Q5bis : Si j'ai un couple de torsion, ça donne 1/2 kbT ?

-> non, seulement pour les variables cartésiennes le thm d'équipartition d'énergie

Q6 : "La c'est de la physique" Pourquoi on modélise par des ressorts ? C'est quoi l'hyp sous-jacente ?

Q6bis : On est très proche de l'équilibre, en termes de déplacement des atomes ça veut dire quoi ? Ils sont faibles devant quoi les déplacements ?

Q7: En pratique, c'est de cb ces déplacements?

-> quelques pourcents de la distance atomique

il faut le dire et insister proprement : on fait un DL pcq déplacement faible devant distance interatomique

Q8: Si on ne peut pas faire cette hyp, on fait quoi et dans quel cas?

--> dilatation d'un solideQ9 mathématiquement il faudrait décrire quoi ?

 \rightarrow effet anharmonique il faut thermes non lineaire du x^3

Q10 : Où la quantification intervient. Quel type de quantification vous avez dans cette leçon ?

--> condition au limite

électrons) est important ? → supraconductivité

Q10 bis : C'est la seule que vous utilisez ?

Q10 ter : Dans le calcul de l'énergie (intégrale, blablabla ..), d'où sortent les différents termes ?

--> quantification de l'énergie car OH quantique Quantification de k et de l'amplitude!

Q11 : Vous connaissez un autre cas physique où la dynamique quantique des atomes (et pas des

Commentaires donnés par l'enseignant

Avis général sur la leçon (plan, contenu, etc.)

La leçon a traité des points importants et le fil conducteur de la capacité thermique bien filé. Néanmoins la quantification des phonons liée à la quantification des O.H. n'a été que survolée alors que c'était une notion centrale du titre « phonons ». On pourrait passer moins de temps sur la dérivation liminaire des équations du mouvement, à supposer déjà vues, pour passer un peu plus de temps sur cette quantification (dont le résultat est lui aussi à supposer déjà vu).

Notions fondamentales à aborder, secondaires, délicates

O.H., oscillateurs couplés, mode de vibration collective, quantification, bosons, physique statitstique et calcul de l'énergie

Expériences possibles (en particulier pour l'agrégation docteur)

Bibliographie conseillée

Diu