CAPSTONE PROJECT IMPROVED SOURCE OF DRINKING WATER

Presented By:
Spandana H A
National Institute of Engineering
Department of Information Science and Engineering

OUTLINE

- Problem Statement
- Proposed System
- System Development Approach
- Algorithm & Deployment
- Result
- Conclusion
- Future Scope
- References
- Screenshots

PROBLEM STATEMENT

Access to safe and improved sources of drinking water remains a critical issue, especially in rural and underdeveloped regions of India. Despite government initiatives and efforts under Sustainable Development Goals (SDGs), significant disparities still exist across states and communities. There is a need for a data-driven approach to identify and predict areas lacking access to safe drinking water, enabling better planning and targeted interventions.

PROPOSED SOLUTION

The system aims to predict access to improved sources of drinking water using data analytics and machine learning. This enables policymakers to identify areas at risk and make informed decisions.

Data Collection:

- Data from the 78th Round of NSSO survey on household drinking water sources.
- Includes location-wise data (state/UT), socio-economic indicators, and access levels.

Data Preprocessing:

- Handle missing values, normalize data, and perform feature selection for impactful attributes.
- Performed feature selection and encoding to prepare the dataset for modeling.

Machine Learning Algorithm:

- Use AutoAl in IBM watsonx.ai to automatically train and select the best regression model (Snap Boosting Machine Regressor).
- Model trained to predict the *Indicator* column a numeric representation of water source status.

Deployment:

- Model deployed using IBM Watsonx.ai Studio.
- Accessible via REST API for real-time prediction across regions.

Evaluation:

- Performance assessed using R² score and RMSE
- Model showed high accuracy in predicting improved source availability across states..

SYSTEM APPROACH

System requirements:

- Platform: IBM Watsonx.ai
- Dataset: NSSO 78th Round (Drinking Water Survey)
- Prediction Target: Indicator (Improved Water Access)
- Library required to build the model
 - AutoAl: Automated model selection and training
 - Runtime: 8 CPU, 32 GB RAM (Watsonx.ai)

watsonx.ai Studio

Date of last update: 05/06/2025 • Docs

Create

About

Summary

IBM watsonx.ai Studio provides the set of integrated tools for IBM watsonx.ai and Cloud Pak for Data as a Service. IBM watsonx.ai Studio is powered by IBM watsonx.ai Runtime. With a suite of tools for all skill levels, everyone can collaborate to develop machine learning solutions and on watsonx.ai, develop generative AI solutions. You can write code, visually code on a graphical canvas, or automatically build AI solutions.

ALGORITHM & DEPLOYMENT

Algorithm Selection:

AutoAl on IBM Watsonx.ai was used to automatically select and train the best machine learning model for predicting
water access indicators.

Data Input:

- Features: Household size, location, caste group, religion, water source type, distance to water source
- Target: Indicator (Improved Drinking Water Access)

Training Process:

- Data split into training and testing sets
- AutoAl performed preprocessing, feature engineering, and model tuning
- Best model selected based on performance metrics like accuracy and ROC AUC

Prediction Process:

- Model deployed in Watson Studio
- Accepts input features and returns predicted status of improved water access
- Can be used for real-time policy planning and analysis

RESULT

Prediction results

 The model effectively predicts whether a household has access to improved drinking water, aiding in data-driven decision-making.

 \times

CONCLUSION

- The project successfully leveraged IBM Watsonx and cloud-based Al tools to predict access to improved drinking water with high accuracy.
- The solution helps identify regions and communities lacking proper access, enabling focused planning and resource allocation.
- Challenges included data imbalance and limited real-time features,
 which were mitigated through preprocessing and feature selection.
- This approach proves effective in supporting data-driven decisions for achieving SDG targets related to clean water access.

FUTURE SCOPE

- Integrate real-time IoT sensor data (e.g., water quality, flow rate) for more dynamic and localized predictions.
- Expand the system to cover more states and rural regions with higher water scarcity levels.
- Apply advanced ML models like Gradient Boosting or Deep Learning for increased prediction accuracy.
- Utilize edge computing for faster decision-making in remote areas with low connectivity.
- Partner with local authorities and NGOs to drive real-world impact through targeted interventions.

REFERENCES

- Al Kosh Dataset Improved Source of Drinking Water (78th Round Survey)
 https://aikosh.indiaai.gov.in/web/datasets/details/improved_source_of_drinking_waterrown.html
 <a href="mailto:remailt
- IBM Cloud Lite Documentation Use of IBM Watson Studio, IBM Cloud Object Storage, and IBM Machine Learning Services – https://cloud.ibm.com
- Python Libraries Pandas, NumPy

Prediction results

×

1 A	В	С	D	Е
State	Sector	Indicator	Sub Indicator	Value
All India	Rural	Percentage of Persons Reported Access to Drinking Water,	Piped Water into Dwelling or Yard/plot Which was Sufficiently Available	22.5
All India	Urban	Percentage of Persons Reported Access to Drinking Water,	Piped Water into Dwelling or Yard/plot Which was Sufficiently Available	58.2
All India	All	Percentage of Persons Reported Access to Drinking Water,	Piped Water into Dwelling or Yard/plot Which was Sufficiently Available	32.9
All India	Rural	Percentage of Persons Reported Access to Drinking Water,	Improved Source of Drinking Water Located in the Household Premises	56.3
All India	Urban	Percentage of Persons Reported Access to Drinking Water,	Improved Source of Drinking Water Located in the Household Premises	76.3
All India	All	Percentage of Persons Reported Access to Drinking Water,	Improved Source of Drinking Water Located in the Household Premises	62.1
All India	Rural	Percentage of Persons Reported Access to Drinking Water,	Improved Source of Drinking Water Located in the Household Premises	59.6
All India	Urban	Percentage of Persons Reported Access to Drinking Water,	Improved Source of Drinking Water Located in the Household Premises	80.2
All India	All	Percentage of Persons Reported Access to Drinking Water,	Improved Source of Drinking Water Located in the Household Premises	65.6
All India	Rural	Percentage of Persons Reported Access to Drinking Water,	Exclusive Access to Improved Source of Drinking Water Located in the Ho	47.
All India	Urban	Percentage of Persons Reported Access to Drinking Water,	Exclusive Access to Improved Source of Drinking Water Located in the Ho	63.
All India	All	Percentage of Persons Reported Access to Drinking Water,	Exclusive Access to Improved Source of Drinking Water Located in the Ho	52.2
All India	Rural	Percentage of Persons Reported Access to Drinking Water,	Exclusive Access to Improved Source of Drinking Water Located in the Ho	50.
All India	Urban	Percentage of Persons Reported Access to Drinking Water,	Exclusive Access to Improved Source of Drinking Water Located in the Ho	66.
All India	All	Percentage of Persons Reported Access to Drinking Water,	Exclusive Access to Improved Source of Drinking Water Located in the He	55.
Andaman & Nicobar Islands	Rural	Percentage of Persons Reported Access to Drinking Water,	Piped Water into Dwelling or Yard/plot Which was Sufficiently Available	56.
Andaman & Nicobar Islands	Urban	Percentage of Persons Reported Access to Drinking Water,	Piped Water into Dwelling or Yard/plot Which was Sufficiently Available	70.
Andaman & Nicobar Islands	All	Percentage of Persons Reported Access to Drinking Water,	Piped Water into Dwelling or Yard/plot Which was Sufficiently Available	6
Andaman & Nicobar Islands	Rural	Percentage of Persons Reported Access to Drinking Water,	Improved Source of Drinking Water Located in the Household Premises	5
Andaman & Nicobar Islands	Urban	Percentage of Persons Reported Access to Drinking Water,	Improved Source of Drinking Water Located in the Household Premises	70.
Andaman & Nicobar Islands	All	Percentage of Persons Reported Access to Drinking Water,	Improved Source of Drinking Water Located in the Household Premises	62.
Andaman & Nicobar Islands	Rural	Percentage of Persons Reported Access to Drinking Water,	Improved Source of Drinking Water Located in the Household Premises	70.
Andaman & Nicobar Islands	Urban	Percentage of Persons Reported Access to Drinking Water,	Improved Source of Drinking Water Located in the Household Premises	98.
Andaman & Nicobar Islands	AII	Percentage of Persons Reported Access to Drinking Water,	Improved Source of Drinking Water Located in the Household Premises	81.
Andaman & Nicobar Islands	Rural	Percentage of Persons Reported Access to Drinking Water,	Exclusive Access to Improved Source of Drinking Water Located in the He	53.
Andaman & Nicobar Islands	Urban	Percentage of Persons Reported Access to Drinking Water,	Exclusive Access to Improved Source of Drinking Water Located in the He	69.
Andaman & Nicobar Islands	All	Percentage of Persons Reported Access to Drinking Water,	Exclusive Access to Improved Source of Drinking Water Located in the He	59.
Andaman & Nicobar Islands	Rural	Percentage of Persons Reported Access to Drinking Water,	Exclusive Access to Improved Source of Drinking Water Located in the He	66.
Andaman & Nicobar Islands	Urban	Percentage of Persons Reported Access to Drinking Water,	Exclusive Access to Improved Source of Drinking Water Located in the He	96.
Andaman & Nicobar Islands	All		Exclusive Access to Improved Source of Drinking Water Located in the He	
Andhra Pradesh	Rural	Percentage of Persons Reported Access to Drinking Water,	Piped Water into Dwelling or Yard/plot Which was Sufficiently Available	21.
Andhra Pradesh	Urban		Piped Water into Dwelling or Yard/plot Which was Sufficiently Available	

dwater_ai

Deployment spaces / dwater_ai / P8 - Snap Boosting Machine Regressor: dwp_ai

Deployments	Model details	_			
Input (1)					
Column		↑	Туре		
Indicator			other		
Sector			other		
State			other		
Sub Indicator			other		

In recognition of the commitment to achieve professional excellence

Spandana H A

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

Issued on: Jul 17, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/c9456f92-5ca3-4d6c-b323-3d687890c716

In recognition of the commitment to achieve professional excellence

Spandana H A

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

Issued on: Jul 17, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/c9456f92-5ca3-4d6c-b323-3d687890c716

In recognition of the commitment to achieve professional excellence

Spandana H A

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: Jul 21, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/dfb69242-bdb5-40fd-b736-9227ca8c3316

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Spandana H A

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 21 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

