第九章作业

9.1

参考答案

9.1

- (1) 为便于说明,将上述代码加上语句编号后如下所示:
 - (1) read (n)
 - (2) i:=1
 - (3) fen:=1
 - (4) L_1 : if $i \le n$ goto L_2
 - (5) goto L₃
 - (6) L_2 : t_1 :=fen*i
 - (7) $fen:=t_1$
 - (8) i:=i+1
 - (9) goto L₁
 - (10) L₃: write(fen)

根据基本块划分方法,首先确定基本块的入口语句,这里语句(1)、(4)、(5)、(6)、(10)都是入口语句;然后确定基本块。这段代码共划分为 5 个基本块,其中 B_1 ={(1),(2),(3)}, B_2 ={(4)}, B_3 ={(5)}, B_4 ={(6),(7),(8),(9)}, B_5 ={(10)}。

(2) 基本块划分结果及相应的流图如图 1 所示。

图 1 基本块划分结果及相应的流图

第十章作业

10.3

10.4

参考答案

10.3

- (1) 这段代码中有三个入口语句,分别是第一条语句、语句标号 L 标识的语句和最后一条语句,故可以划分为 3 个基本块。相应的流图如图 1 所示。
 - (2) 首先对 B₂进行优化。

削弱计算强度。对语句 A:=K*I 和 B:=J*I 进行计算强度削弱,由于循环控制变量 I 每次加 10,可以用 $T_1:=K*10$ 和 $A:=A+T_1$ 代替 A:=K*I,用 $T_2:=J*10$ 和 $B:=B+T_2$ 代替 B:=J*I,这就需要把对 A 和 B 赋初值的语句 A:=K*I 和 B:=J*I 提到循环之前,放在基本块 B_1 中。

对基本块 B_1 进行优化,经过常数传播和常数合并之后得到语句 A:=K,B:=J。而 B_2 中的语句 $T_1:=K*10$ 和 $A:=A+T_1$ 、以及 $T_2:=J*10$ 和 $B:=B+T_2$ 需要放在对 A 和 B 的引用之后,可以放在 goto 语句之前。这样,得到如图 2 所示的基本块和流图。

图 2 削弱计算强度后的基本块和流图

删除归纳变量。

I 是基本归纳变量,由于存在线性关系 A:=K*I 和 B:=J*I,所以,A、B 和 I 是同族归纳变量。所以,循环条件 I<100 可以用 A<K*100 或 B<J*100 代替,假如选前者,则 if 语句就可以变换为:

 $T_3:=K*100$

if A<T₃ goto L

这样,就可以删除归纳变量 I,语句 I:=I+10 删除后,得到如图 3 所示的基本块和流图。

代码外提。

由于 K 和 J 的值在程序执行过程中保持不变,即 K 和 J 是循环不变量,故 K*10、J*10 和 K*100 也是循环不变量,可以将他们提到循环之外,放在循环之前,即 B_1 中,删除 B_1 中的死代码 I:=1,得到如图 4 所示的基本块和流图。

图 3 删除归纳变量后的基本块和流图

图 4 代码外提后的基本块和流图

10.4

- (1) 假设数组 a 和 b 的存储空间起始地址分别用 A 和 B 表示,其元素地址计算公式中的常量分别用 a 和 b 表示,整型数的域宽为 4,则根据主教材第 8 章的翻译方案,可以将该程序段中的可执行语句翻译为如下的三地址代码。
 - (1) i:=1
 - (2) if i>m goto (21)
 - (3) j:=1
 - (4) if j>n goto (18)
 - (5) $t_1:=i*n$
 - (6) $t_1 := t_1 + j$
 - (7) $t_2:=A-a$
 - (8) $t_3:=4*t_1$
 - (9) $t_4:=i*n$
 - (10) $t_4 := t_4 + i$
 - (11) $t_5 := B b$
 - (12) $t_6:=4*t_4$
 - (13) $t_7 := t_5[t_6]$
 - (14) $t_2[t_3] := t_7$
 - (15) $t_8 := j+1$
 - (16) $j := t_8$
 - (17) goto (4)
 - (18) $t_9 := i+1$
 - (19) $i := t_9$
 - (20) goto (2)
 - (21) ...
- (2) 为将三地址代码划分为基本块,首先需要确定其入口语句,(1)中的三地址代码有7个入口语句,分别是(1)、(2)、(3)、(4)、(5)、(18)和(21)。然后根据入口语句可以将三地址代码划

分为 7 个基本块,分别是 $B_1=\{(1)\}$ 、 $B_2=\{(2)\}$ 、 $B_3=\{(3)\}$ 、 $B_4=\{(4)\}$ 、 $B_5=\{(5\sim17)\}$ 、 $B_6=\{(18)\sim(20)\}$ 和 $B_7=\{(21)\}$ 。

将控制流信息加入到基本块中,得到如图 5 所示的流图。

图 5 基本块及流图

(3) 对内循环代码进行所有可能的优化。

由图 5 可以看出,程序中的循环有: L_1 ={ B_4 , B_5 } 和 L_2 ={ B_2 , B_3 , B_4 , B_5 , B_6 }, 其中 L_1 是内循环。对于内循环 L_1 进行优化。

首先对 B5 进行基本块优化。

删除公共子表达式。第(9)句中的 i*n 和第(5)句中的 i*n 是公共子表达式,第(9)句中的 i*n 是冗余的,删除之,另外,第(15)和(16)句可以替换为 j:=j+1,结果如图 6(a)所示。

复制传播。用 t_1 代替后面表达式中出现的 t_4 ,涉及到语句(10)和(12),结果如图 6(b)所示。 删除公共子表达式。第(10)句中的 t_1 +j 和第(6)句中的 t_1 +j 是公共子表达式,第(12)句中的 $4*t_1$ 和第(8)句中的 $4*t_1$ 是公共子表达式,删除第(10)句和第(12)句中冗余的公共子表达式,结果如图 6(c)所示。

复制传播。用 t_1 代替后面表达式中出现的 t_4 (没有),用 t_3 代替后面表达式中出现的 t_6 ,涉及到语句(13),结果如图 6(d)所示。

删除死代码。由于语句(9)、(10)和(12)为 t_4 和 t_6 赋的值并没有被引用,所以他们是死代码,删除后,结果如图 6(e)所示。

(a)删除子表达式

(b)复制传播

(c)删除子表达式

(d)复制传播

(e)删除死代码

图 6 基本块 B5 的优化过程和结果

基本块 B5 优化后,程序流图如图 7 所示。

图 7 基本块 B5 优化后的流图

下面对由 B₄和 B₅构成的内循环进行优化。

代码外提。对于内循环而言,i、n、A、a、B、b 均是循环不变量,故可以将语句(5)、(7)和(11)提到循环之前,放在基本块 B_3 中。语句(5)外提后,语句(6) t_1 := t_1 +j 右边表达式中的 t_1 应该是由语句(5)定值的内循环不变量,为做区分,用 t_1 '表示。代码外提之后的基本块 B_3 和 B_5 如图 8(a)所示。

削弱计算强度。由语句(6')可知,每次循环, t_1 和 j 同步加 1,故语句(6')可以改写为 $t_1:=t_1+1$,而把为 t_1 赋初值的语句 $t_1:=t_1+j$ 放在循环之前,即基本块 B_3 中,而语句 $t_1:=t_1+1$ 需要调整到对 t_1 引用之后,可以放在语句(15')之后。由语句(8)可知,每次循环, t_3 和 t_1 同步增加, t_1 加 1, t_3

加 4,故语句(8)可以改写为 $t_3:=t_3+4$,而把为 t_3 赋初值的语句 $t_3:=4*t_3$ 放在循环之前,即基本块 B_3 中,而语句 $t_3:=t_3+4$ 需要调整到对 t_3 引用之后,即放在语句(14)之后。削弱计算强度后的基本块 B_3 和 B_5 如图 8(b)所示。

删除归纳变量。对于内循环而言,j 是基本归纳变量, t_1 和 t_3 是 j 的同族归纳变量。由于 $t_1:=t_1'+j$, $t_3:=4*t_1$,故 j>n 等价于 $t_3>4*(t_1'+n)$,所以,在进入内循环之前,在基本块 B_3 中先计算出 $4*(t_1'+n)$ 的值 T,即增加语句 $T:=t_1'+n$ 和 T:=4*T,并且用 $t_3>T$ 代替基本块 B_4 中的条件表达式。这样,内循环中的归纳变量 j 和 t_1 就不需要了,可以删除,即删除语句(15')和(6'),得到如图 8(c)所示的基本块 B_3 、 B_4 和 B_5 。

内循环优化后,程序流图如图 9 所示。

图 9 内循环优化后的流图

进一步,可以对外循环进行优化。

由于在外循环中,(7) t_2 :=A-a 和(11) t_5 :=B-b 也是循环不变量,故可以将他们提到外循环之前,放到基本块 B_1 中。

削弱计算强度。对基本块 B_3 进行计算强度削弱。由于 $t_1':=i*n$,每次循环,i 的值加 1, t_1' 的值加 n,故可以用 $t_1':=t_1'+n$ 代替 $t_1':=i*n$,需要将为 $t_1'赋初值的语句 <math>t_1':=i*n$ 放在循环之前,即 B_1 中,把语句 $t_1':=t_1'+n$ 放在引用 t_1' 的所有语句之后,为确保无误,可以放在循环变量调节语句之处,即放在基本块 B_6 中语句(20)之前。

删除归纳变量。外循环的基本归纳变量是 i,由于 $t_1':=i*n$,所以 t_1' 和 i 是同族归纳变量。 i>m 等价于 $t_1'>m*n$,可以在进入循环之前,先计算出 m*n 的值,即在基本块 B_1 中增加语句 W:=m*n,将基本块 B_2 中的条件表达式替换为 $t_1'>W$,这样,对循环而言,变量 i 不再需要,可以删除,即删除基本块 B_6 中的语句(18)和(19)。

此时, 基本块 B₁、B₂、B₃和 B₆如图 10 所示。

图 10 优化后的基本块 B_1 、 B_2 、 B_3 和 B_6

再对基本块 B_1 和 B_3 进行基本块优化,对基本块 B_1 依次进行常数传播和常数合并、删除死代码优化,结果如图 11(a)所示,其中常数 C 是 m*n 进行常数合并的结果。对基本块 B_3 依次进行常数传播和删除死代码优化,结果如图 11(b)所示。

- (a) 优化后的基本块 B₁
- (b) 优化后的基本块 B₃

图 11 优化后的基本块 B₁和 B₃

外循环优化后,程序流图如图 12 所示。

图 12 外循环优化后的流图