Theoretische Informatik: Blatt 4

Abgabe bis 16. Oktober 2015 Assistent: Sascha Krug, CHN D42

Linus Fessler, Markus Hauptner, Philipp Schimmelfennig

Aufgabe 10

(a)

(b) Wir machen einen Widerspruchsbeweis. Annahme: L ist regulär. \Rightarrow Es gibt einen EA $A=(Q,\Sigma,\delta_A,q_o,F)$ mit L(A)=L. Sei m=|Q|

Betrachten wir die Wörter

$$\lambda, b, b^2, \cdots, b^m$$

Das sind mehr Wörter, als A Zustände hat. $\Rightarrow \exists i, j \ j \neq i$, sodass $\hat{d}(q_0, b^i) = \hat{d}(q_0, b^j)$ Also gilt nach Lemma 3.3

$$b^i z \in L \leftrightarrow b^j z \in L \quad \forall z \in \{0,1\}^*$$

Sei $z=a^{2i}$, dann gilt $b^iz=b^ia^{2i}\in L$ aber für $i\neq j,\ b^ja^{2i}\not\in L$

Also haben wir einen Widerspruch \Rightarrow die Annahme war falsch \Rightarrow L ist nicht regulär.

Aufgabe 11

(a) Wir machen einen Widerspruchsbeweis. Annahme: L ist regulär. Dann gilt das Pumping-Lemma für L. Wir betrachten nun das Wort

$$w = 0^{n_0} 1^{n_0}$$

Offensichtlich gilt $|w| \leq n_0$.

Daher gilt für die Zerlegung w = yxz nach (i) und (ii), dass $y = 0^l$, $x = 0^m$, $l + m \le n_0$.

Weil $w=yxz=0^{n_0}1^{n_0}\not\in L$ müssen nach (iii) auch alle $w\in\{yx^kz\mid k\in\mathbb{N}\}\not\in L$ sein, wenn wir nun das Wort

$$w = yx^2z = 0^l0^{2m}z$$

betrachten, dann hat sich die Anzahl der 0en erhöht, die Anzahl der 1en ist jedoch gleich geblieben. Dadurch ist jedoch nach Definition $w \in L$.

Es gibt ein Widerspruch \Rightarrow Die Annahme war falsch \Rightarrow L ist nicht regulär.