平面几何-三角法

1 三角法常用结论

Theorem 1.1 (正弦定理). 任意 $\triangle ABC$ 中,各边和它所对角的正弦值之比相等,且等于外接圆直径长,即

$$\frac{AB}{\sin C} = \frac{BC}{\sin A} = \frac{CA}{\sin B}.$$

Theorem 1.2 (分角线定理). $\triangle ABC$ 中,D 为 BC 所在直线上一点,则有

$$\frac{BD}{DC} = \frac{AB}{AC} \cdot \frac{\sin \angle DAB}{\sin \angle DAC}.$$

注意 AD 为中线或角平分线的特殊情况。

Proposition 1.3. 设 $\triangle ABC$ 与 $\triangle ABD$ 共用 AB 边,则下列等式成立:

$$\frac{\sin \angle BAC}{\sin \angle BAD} = \frac{BC}{BD} \cdot \frac{\sin \angle ACB}{\sin \angle ADB}.$$

Proposition 1.4. 给定 $0 < \alpha_1, \alpha_2, \beta_1, \beta_1 < 180^\circ$,设 $\alpha_1 + \beta_1 = \alpha_2 + \beta_2 < 180^\circ$,若

$$\frac{\sin \alpha_1}{\sin \beta_1} = \frac{\sin \alpha_2}{\sin \beta_2},$$

1

则有 $\alpha_1 = \alpha_2, \beta_1 = \beta_2$.

2 例题

2.1 Ex1

给定 $\triangle ABC$,内切圆与三边切点分别是 D、E、F,过 D 作 BC 垂线交 EF 于点 G,M 为 BC 中点。证明:A、G、M 三点共线。

2.2 Ex2

锐角 $\triangle ABC$ 中,O 为外接圆圆心,AH 为 BC 边上高线,延长 AO 交 BC 于 D, $\angle ADB$, $\angle ADC$ 内角平分线分别交 AB、AC 于 E、F,证明: EHF=90°.

2.3 Ex3

给定平行四边形 ABCD,DF、CE 为 $\triangle OCD$ 的两条高,过 O 做 AD 垂直线交 BA 延长线于 G。证明:G、E、F 共线。

3 练习题

3.1 Q1

设 ABCD 四点共圆,四边形 ABDE 为平行四边形。AC 与 BD 交于点 S,射线 AB 与 DC 交于点 F。证明: $\angle AFS = \angle ECD$.

3.2 Q2

已知 $\triangle ABF$, $\triangle AGC$ 是等边三角形,AD 平行于 FG。证明: $CD \parallel BF$.

3.3 Q3

已知 O、I 是 $\triangle ABC$ 外心、内心,CI、BI 分别交 AB、AC 于 E、F, $\angle BAC$ 角 平分线交 $\triangle ABC$ 外接圆 O 于 D,M 是 OI 中点。证明: $DM \perp EF$.

3.4 Q4

已知 O、H 是 $\triangle ABC$ 的外心、垂心,XY 是 $\triangle ABC$ 外接圆 O 的弦,且 XY 平行于 BC,YH 延长线交圆 O 于 D,过 D 作 AX 垂线,交圆 O 于 E,XE 交 BC 于 J。证明: $OJ \parallel AX$.

3.5 Q5

已知 $\triangle ABC$ 中 AH 为 BC 边上的高线,PB、PC 是 $\triangle ABC$ 外接圆切线,F 在 BC 上满足 CH=BF,过 F 做 PF 垂线交 AB 于 J,交 AC 于 G。证明: $\angle GPC=\angle BPJ$.

3.6 Q6

已知 AD 是 $\angle BAC$ 的角平分线,T 是 AD 上一点,BT、CT 分别交 $\triangle ABC$ 的外接圆 $\odot O$ 于 E、F,FD、ED 分别交 $\odot O$ 于 Y、X,FX 与 AB 交于 M,EY 与 AC 交于 N。证明: $MN \parallel BC$

3.7 Q7

已知圆 O_1 ,圆 O_2 分别是 $\triangle ABC$ 伪旁切圆,在 AB,AC 上切点分别是 F,E,过 O_1 , O_2 作 AC,AB 垂线交于点 P。证明: $AP \perp EF$.

3.8 Q8

已知点 I 是 $\triangle ABC$ 内心,直线 BI、CI 交 AC、AB 分别于 E、F,点 I'、I 关于 BC 对称,ID' \bot BE,I'G \bot CF,分别交 BC 于 D、G。求证 $\angle BGF = \angle CDE$.

3.9 Q9

已知 H、O 是 $\triangle ABC$ 垂心,外心,D 是 BC 中点,过 H 作 BC 平行线交 AD 于 G,AO 交 BH 于 E。求证: GH = EG.

3.10 Q10

 $\triangle ABC$ 内接于圆 O,H 为垂心,过 A 作 OH 垂线交外接圆于 P,OH 交 BC 延长线于 K,连接 AK 交外接圆于 Q,取 T 使得 ACTB 为平行四边形。证明:T、P、H、Q 四点共圆。

3.11 Q11

在 $\triangle ABC$ 中,H 是垂心,BE、CF 是高, $\angle BAC$ 的角平分线交 EF 于 X, $\angle EHF$ 的角平分线交 EF 于 Y,EF 交 $\triangle AXH$ 的外接圆于 P,交 $\triangle AYH$ 的外接圆于 Q。证明: B、C、Q、P 四点共圆。

