

Fully Dynamic Bin Packing Revisited

Published in APPROX/RANDOM 2015

Sebastian Berndt ¹ Klaus Jansen ² Kim-Manuel Klein ²

¹Institut für Theoretische Informatik, Universität zu Lübeck

²Department of Computer Science, Christian-Albrechts-University to Kiel

Fully Dynamic Bin Packing

Fully Dynamic Bin Packing = Online + Removal + Repacking

INS: *a*/0.2

INS: a/0.2, **INS**: b/0.3

INS: a/0.2, **INS**: b/0.3, **INS**: c/0.4

b

INS: a/0.2, INS: b/0.3, INS: c/0.4, INS: d/0.2

INS: a/0.2, INS: b/0.3, INS: c/0.4, INS: d/0.2, INS: e/0.3, REM: c

Shifting Moves = number of moved items

Migration Factor of $\Omega(1/\varepsilon)$ is necessary for ratio $1 + \varepsilon$ L = 1/2 - 1/9 (Migration Factor), S = 1/3 (Migration Factor)

INS: *L*, **INS**: *L*, **INS**: *L*, . . .

Migration Factor of $\Omega(1/\epsilon)$ is necessary for ratio $1 + \epsilon$

L = 1/2 - 1/9 (Migration Factor), S = 1/3 (Migration Factor)

INS: L, INS: L, INS: L, ...

Migration Factor of $\Omega(1/\epsilon)$ is necessary for ratio $1 + \epsilon$

L = 1/2 - 1/9 (Migration Factor), S = 1/3 (Migration Factor)

INS: L, INS: L, INS: L, ...,

INS: *S*, **INS**: *S*, **INS**: *S*, . . .

Migration Factor of $\Omega(1/\epsilon)$ is necessary for ratio $1 + \epsilon$

L = 1/2 - 1/9 (Migration Factor), S = 1/3 (Migration Factor)

INS: *L*, **INS**: *L*, **INS**: *L*, . . . ,

INS: S, INS: S, INS: S, ...

Ratio REM? Shifting M. Migration F. Authors	
--	--

Ratio	REM?	Shifting M.	Migration F.	Authors
3/2	Х	3	X	Gambosi, Postiglione,
				Talamo (2000)
4/3	X	7	X	Gambosi, Postiglione,
				Talamo (2000)

Ratio	REM?	Shifting M.	Migration F.	Authors
3/2	X	3	Х	Gambosi, Postiglione,
				Talamo (2000)
4/3	X	7	X	Gambosi, Postiglione,
				Talamo (2000)
$1 + \varepsilon$	X	poly(log n) [am.]	Х	lvković, Lloyd (1997)
$1+\varepsilon$	X	$2^{\text{poly}(1/\epsilon)}$	$2^{\text{poly}(1/\epsilon)}$	Epstein, Levin (2006)
$1 + \varepsilon$	X	$\mathcal{O}(1/\varepsilon^4)$	$\mathcal{O}(1/\varepsilon^4)$	Jansen, Klein (2013)

Ratio	REM?	Shifting M.	Migration F.	Authors
3/2	X	3	×	Gambosi, Postiglione, Talamo (2000)
4/3	×	7	×	Gambosi, Postiglione, Talamo (2000)
$1 + \varepsilon$	X	poly(log n) [am.]	X	lvković, Lloyd (1997)
$1+\varepsilon$	X	$2^{\text{poly}(1/\epsilon)}$	$2^{\text{poly}(1/\epsilon)}$	Epstein, Levin (2006)
$1 + \varepsilon$	X	$\mathcal{O}(1/\varepsilon^4)$	$\mathcal{O}(1/\varepsilon^4)$	Jansen, Klein (2013)
5/4	1	poly(log n) [am.]	X	lvković, Lloyd (1998)
$1+\varepsilon$	✓	$\mathcal{O}(1/\varepsilon^4\log(1/\varepsilon))$	$\mathcal{O}(1/\varepsilon^4\log(1/\varepsilon))$	this work

Large

Large

■ Pack via LP

- Pack via LP
- Pack via "Sorting"

1. Find items of size (0.5, 1]

0.51 0.6 0.8 0.55 0.63 0.78 0.52

- 1. Find items of size (0.5, 1]
- 2. Sort items by size

0.8 0.78 0.63 0.6 0.55 0.52 0.51

- 1. Find items of size (0.5, 1]
- 2. Sort items by size
- 3. Group items in lists

- 1. Find items of size (0.5, 1]
- 2. Sort items by size
- 3. Group items in lists
- 4. Round items

- 1. Find items of size (0.5, 1]
- 2. Sort items by size
- 3. Group items in lists
- 4. Round items

Packing Large Items

■ Pack rounded items via LP

- Pack rounded items via LP
- \blacksquare Size of lists depends on volume of instance \Rightarrow Shifting

- Pack rounded items via LP
- \blacksquare Size of lists depends on volume of instance \Rightarrow Shifting

- Pack rounded items via LP
- \blacksquare Size of lists depends on volume of instance \Rightarrow Shifting

- Pack rounded items via LP
- \blacksquare Size of lists depends on volume of instance \Rightarrow Shifting

- Pack rounded items via LP
- \blacksquare Size of lists depends on volume of instance \Rightarrow Shifting

Greedy fails: $\varepsilon \gg L \gg S$

Greedy fails: $\varepsilon \gg L \gg S$

 $(ins: L, ins: S, ..., ins: S)^*$

Greedy fails: $\varepsilon \gg L \gg S$

Greedy fails: $\varepsilon \gg L \gg S$

REM: S, **REM**: S, . . .

Greedy fails: $\varepsilon \gg L \gg S$

Idea: "Sort" small items from left to right

Idea: "Sort" small items from left to right

 $INS: L, INS: S, \ldots, INS: S,$

Idea: "Sort" small items from left to right

INS: *L*, **INS**: *S*,. . . , **INS**: *S*,

Idea: "Sort" small items from left to right

INS: *L*, **INS**: *S*,. . . , **INS**: *S*, **INS**: *L*

Idea: "Sort" small items from left to right

INS: *L*, **INS**: *S*,. . . , **INS**: *S*, **INS**: *L*

Idea: "Sort" small items from left to right

INS: L, INS: S,..., INS: S, INS: L

Idea: "Sort" small items from left to right

Idea: "Sort" small items from left to right

Idea: "Sort" small items from left to right

Stop at every 1/ε-th bin (buffer bin) to bound Migration

Pack large items via LP

- Pack large items via LP
- Pack small items via "Sorting"

- Pack large items via LP
- Pack small items via "Sorting"
- \blacksquare Small bins \Rightarrow little free space in other bins

- Pack large items via LP
- Pack small items via "Sorting"
- \blacksquare Small bins \Rightarrow little free space in other bins
- Relate nearly full/empty bins via potential function

Theorem (Jansen and Klein '13)

[Some requirements] There is an algorithm that returns for a LP/ILP pair (y,x) an α -improved LP/ILP pair (x',y') with $||x'|| \leq ||x|| - \alpha$ and $||y'|| \leq ||y|| - \alpha$.

Theorem (Jansen and Klein '13)

[Some requirements] There is an algorithm that returns for a LP/ILP pair (y,x) an α -improved LP/ILP pair (x',y') with $||x'|| \leq ||x|| - \alpha$ and $||y'|| \leq ||y|| - \alpha$.

Invariants:

■ Small Items are sorted from left to right

- Small Items are sorted from left to right
- Only buffer bins and large bins are non-full

- Small Items are sorted from left to right
- Only buffer bins and large bins are non-full
- Length of each | queue | is in $[1/\epsilon, 2/\epsilon]$

- Small Items are sorted from left to right
- Only buffer bins and large bins are non-full
- Length of each | queue | is in $[1/\epsilon, 2/\epsilon]$
- lacksquare Number of non-filled large bins is pprox

$$\Phi = \sum_{i} r_{i} + \varepsilon \cdot \overset{\text{ψ}}{\Delta} + \ell$$
fill-ratio of bb_{i} # mixed bins

Can we improve the lower bound on MF from $\Omega(1/\epsilon)$? (**REM**-operation, $\omega(1)$ sizes)

- **Can** we improve the lower bound on MF from $\Omega(1/\epsilon)$? (**REM**-operation, $\omega(1)$ sizes)
- Can we use ideas from offline bin packing to improve the running time from $\mathcal{O}(1/\epsilon^6 \cdot \log^4(1/\epsilon) \cdot n)$? (Plotkin and Shmoys and Tardos; Shachnai and Yehezkely; Jansen and Kraft)

- Can we improve the lower bound on MF from $\Omega(1/\epsilon)$? (**REM**-operation, $\omega(1)$ sizes)
- Can we use ideas from offline bin packing to improve the running time from $\mathcal{O}(1/\varepsilon^6 \cdot \log^4(1/\varepsilon) \cdot n)$? (Plotkin and Shmoys and Tardos; Shachnai and Yehezkely; Jansen and Kraft)
- Can we simplify the handling of the small items?

- Can we improve the lower bound on MF from $\Omega(1/\epsilon)$? (**REM**-operation, $\omega(1)$ sizes)
- Can we use ideas from offline bin packing to improve the running time from $\mathcal{O}(1/\varepsilon^6 \cdot \log^4(1/\varepsilon) \cdot n)$? (Plotkin and Shmoys and Tardos; Shachnai and Yehezkely; Jansen and Kraft)
- Can we simplify the handling of the small items?
- Can we adapt our techniques to other problems?