Eigenschaften stetiger Funktionen

Satz 4.8 (Zwischenwertsatz) Seien $a, b \in \mathbb{R}$, $a \leq b$, $f: [a, b] \to \mathbb{R}$ eine stetige Funktion und γ eine Zahl zwischen f(a) und f(b). Dann existiert ein $c \in [a, b]$ mit $f(c) = \gamma$.

Def Sei $D \subset \mathbb{R}$, $f: D \to \mathbb{R}$. f heißt auf D nach oben (bzw. nach unten) beschränkt, falls es eine Konstante $K \in \mathbb{R}$ gibt, so dass für alle $x \in D$ gilt:

$$f(x) \le K \text{ (bzw. } f(x) \ge K)$$

f heißt beschränkt, falls es eine Konstante $M \in \mathbb{R}$ gibt, so dass für alle $x \in D$ gilt:

$$|f(x)| \le M$$

Satz 4.9 (Satz vom Maximum und Minimum) Seien $a, b \in \mathbb{R}$, $a \leq b$ und $f: [a, b] \to \mathbb{R}$ eine stetige Funktion. Dann ist f auf [a, b] beschränkt und nimmt sein Maximum und Minimum auf [a, b] an, d.h. es gibt $x_M, x_m \in [a, b]$, so dass

$$f(x_M) = \sup\{f(x) : x \in [a, b]\} =: M,$$

$$f(x_m) = \inf\{f(x) : x \in [a, b]\} =: m.$$

Def Sei $D \subset \mathbb{R}$, $f: D \to \mathbb{R}$. f heißt monoton wachsend (bzw. streng monoton wachsend bzw. monoton fallend bzw. streng monoton fallend), falls für alle $x_1, x_2 \in D$ mit $x_1 < x_2$ stets $f(x_1) \leq f(x_2)$ (bzw. $f(x_1) < f(x_2)$ bzw. $f(x_1) \geq f(x_2)$ bzw. $f(x_1) > f(x_2)$) gilt.

Satz 4.10 (Umkehrsatz für streng monotone Funktionen) Sei $I \subset \mathbb{R}$ ein Intervall, $f: I \to \mathbb{R}$ eine streng monotone und stetige Funktion. Dann ist I' := f(I) ein Intervall, $f: I \to I'$ bijektiv und die Umkehrung $f^{-1}: I' \to I$ streng monoton und stetig.

Def (Gleichmäßige Stetigkeit) Sei $D \subset \mathbb{R}$, $f: D \to \mathbb{R}$. f heißt gleichmäßig stetig auf D, falls

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in D : |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon.$$

Satz 4.11 Sei $f:[a,b]\to\mathbb{R}$ stetig. Dann ist $f:[a,b]\to\mathbb{R}$ auch gleichmäßig stetig.