

Outline

- Introduction to Deep Learning (DL)
- The History of DL
- Programming Tools
- Artificial Neural Networks (ANNs)
- Optimization in DL
- Convolutional Neural networks (CNNs)
- Unsupervised Pre-trained Networks (UPNs)

ARCHITECTURE OF DEEP LEARNING

DL Architectures

- Higher-level Architecture
 - Convolutional Neural Networks (CNNs)
 - Unsupervised Pre-trained Networks (UPNs)
 - Autoencoders
 - Deep belief networks (DBNs)
 - Generative adversarial networks (GANs)
 - Recurrent Neural Networks (RNNs)
 - Bidirectional recurrent neural networks (BRNN)
 - LSTM
 - Recursive Neural Networks

Unsupervised Learning

Motivation and Strengths:

- Unsupervised learning is **not expensive** and **time consuming** like supervised learning.
- Unsupervised learning requires **no human intervention**.
- Unlabeled data is **easy** to **find** with large quantities, unlike labeled data which is scarce.

Weaknesses

• More difficult than supervised learning because there is NO Single objective (like test set accuracy)

Unsupervised Feature Learning

- Train representations with unlabeled data.
 - Minimize an unsupervised training loss.
 - Often based on generic priors about characteristics of good features
 - Usually train 1 layer of features at a time.

UPNs

- Unsupervised pre-trained networks (UPNs)
 - Motivation: representation leaning and transfer learning
 - Deep belief networks (DBNs)
 - Autoencoders
 - Generative adversarial networks (GANs)
 - RBM

DBN

- DBN's pre-requesitions
 - MRF
 - Sampling
 - RBMs

Restricted Boltzmann Machine (RBM)

- RBMs are building blocks for the multi-layer leaning architectures, e.g. DBNs.
- RBMs are a special case of general **Boltzmann Machines** (BMs).
- BMs are a particular form of Markov Random Field (MRF), a.k.a. Markov networks or undirected graph models.

DBNs

Boltzmann Machine

- BM: a network of symmetrically coupled stochastic binary units, 0s and 1s.
- Represents a probability distribution
- Can be used to **learn** important aspects of an unknown target distribution based on samples from this target distribution.
- Components:
 - Visible units $v \in \{0,1\}^D$
 - Hidden units $h \in \{0,1\}^D$
- Training process:
 - Adjusting the parameters to fit the training data.
 - Parameters: weights of the links between the nodes.

BM

W

- Training a BM is computationally difficult.
- Learning problem can be simplified by imposing **restriction** on the network topology.
 - e.g. remove the connections between the neurons in the same layer.

General Boltzmann Machine

Restricted Boltzmann Machine

RBM

- Hidden units model the **dependencies** between the components of observations
 - e.g. non-linear feature detectors

RBM

- Example
 - Just consider 1D data.

RBM

- Training
 - Usually based on gradient-based maximization of the likelihood.
 - Computing the gradient is computationally expensive
 - Sampling-based methods are employed to **approximate** the likelihood gradient
 - Sampling from an MRF is not straightforward
 - Solution: Markov Chain Monte Carlo (MCMC) methods easily applicable in the form of **Gibbs** sampling.

MRF

• Probabilistic Graphical Models

- Directed graphical models
 - Bayesian networks

- Undirected graphical models
 - MRF

Graphs

Directed graphical model

$$p(a,b,c) = p(c|a,b)P(a|b)p(C)$$
$$= p(c|a,b)p(b|a)p(a)$$

• **Definition**: for a graph with *K* nodes, the joint distribution is:

$$p(x_1, K, x_K) = \prod_{k=1}^{K} p(x_k | pa_k)$$

• pa_k : the set of parents of x_k

MRF

- Both directed and undirected graphical models specify a factorization, e.g. how to express the joint distribution.
- Both define a set of conditional independence properties.

Directed graphical models

P(A,B,C,D,E) = P(A)P(B)P(C|A,B)P(D|A)P(E|C)

- Parent-child
- Local conditional distribution

$$P(A, B, C, D, E) = \frac{1}{z} \pi_1(A, B) \pi_2(B, C, E) \pi_3(C, D) \pi_4(A, D)$$

- Maximal clique
- Potential function

Graphs

Undirected graphical model

- Clique: a subset of the fully connected nodes.
- Maximal clique: no node can be added such that the resulting set is still a clique

• We can define the factors in decomposition of the joint distribution as functions of the variable in the clique.

Graphs

Undirected factorization

- Factorization: $\psi_c(x_c)$ is a non-negative potential function of a maximal clique
- Partition function: the normalization constant (Z)

$$p(\underline{x}) = \frac{1}{Z} \prod_{c} \psi_{c}(x_{c})$$

• Example:

Potential functions in exponential form:

$$\psi_c(x_c) = \exp\{-E(x_c)\}\$$

- Image de-noising example
- Goal: construct an MRF using these **prior knowledge**:
 - Flipping pixel color probability is 10%
 - $(y_i s)$: array of noisy pixels (noisy image)
 - $(x_i s)$: inferred original pixels (clean image)
 - y_i and x_i are strongly correlated, since noise level is small.
 - Neighboring pixels x_i and $x_i s$ in image are strongly correlated.
 - e.g. neighboring pixels have the same value
 - Bias toward $x_i = 0$

- Image de-noising example
- Model as a pairwise MRF
- The graph has two types of cliques, each contains two variables (a pairwise MRF)
 - $\{x_i, y_i\}$ and $\{x_i, x_j\}$
 - $x_i \in \{-1,1\}$ and $y_i \in \{-1,1\}$
- $-\eta x_i y_i \quad \eta > 0$
- $hx_i \beta x_i x_j$ $h, \beta > 0$
- $E(X,Y) = h \sum_{i} x_{i} \beta \sum_{\{i,j\}} x_{i} x_{j} \eta \sum_{i} x_{i} y_{i}$

- Inference using Iterated conditional modes (ICM)
- $E(X,Y) = h \sum_{i} x_i \beta \sum_{\{i,j\}} x_i x_j \eta \sum_{i} x_i y_i$
 - Suppose: $h = 0, \beta = 1.0, \eta = 2.1$
- $E(x_i = -1) = [0 * -1] 1.0[(-1 * -1) + (-1 * 1) + (-1 * 1) + (-1 * 1) + (-1 * 1)]$ Neighboring pixels

- Conditionally independent
- Nodes of set A and B are sepearted by the third set C
- A and B are conditionally independent

$$A \perp\!\!\!\perp B \mid C$$

$$p(a_1, b_1 \mid c_1, c_2) = p(a_1 \mid c_1, c_2) p(b_1 \mid c_1, c_2)$$

