

Université Sultan Moulay Slimane Faculté Polydisciplinaire de Khouribga Département de Mathématiques et Informatique

ALGÈBRE III Support de cours

Prof. Nihale EL BOUKHARI

Filière SMIA - S2 Année universitaire : 2022 - 2023

Chapitre 1

Espaces vectoriels

Dans toute la suite, K désigne un corps commutatif.

1.1 Définitions

Définition 1.1.1. Soit E un ensemble muni de deux lois de composition :

- Une loi interne, notée + ;
- Une loi externe, donnée par

$$\mathbb{K} \times E \quad \to \quad E$$
$$(\lambda, x) \quad \mapsto \quad \lambda.x$$

On dit que (E, +, .) est un **espace vectoriel** si :

- -(E, +) est un groupe abélien;
- $\forall (\lambda, \mu) \in \mathbb{K}^2$, $\forall (x, y) \in E^2$, on a

i.
$$\lambda . (x + y) = \lambda . x + \lambda . y$$

ii.
$$(\lambda + \mu).x = \lambda.x + \mu.x$$

iii.
$$\lambda \cdot (\mu \cdot x) = (\lambda \mu) \cdot x$$

iv.
$$1_{\mathbb{K}}.x = x$$

Remarque 1.1.2. Les éléments de E sont appelés des vecteurs, et ceux de \mathbb{K} sont appelés des scalaires.

Exemples 1.1.3.

- 1. Le corps $(\mathbb{K}, +, .)$ est un \mathbb{K} -espace vectoriel. En effet, $(\mathbb{K}, +)$ est un groupe abélien, et pour tous $\lambda, \mu, x, y \in \mathbb{K}$, les conditions i., ii., iii., et iv. sont vérifiées.
- 2. $(\mathbb{C}, +, .)$ est aussi bien un \mathbb{R} -espace vectoriel qu'un \mathbb{C} -espace vectoriel. En effet, la définition 1.1.1 reste vérifiée pour $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.
- 3. Soit $\mathbb{K}[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} , qu'on munit de la loi interne $(P,Q)\mapsto P+Q$, et de la loi externe $(\lambda,P)\mapsto \lambda.P.$ Alors $(\mathbb{K}[X],+,.)$ est un \mathbb{K} -espace vectoriel.
- 4. On note $\mathbb{R}^{\mathbb{N}}$ l'ensemble des suites réelles. On munit $\mathbb{R}^{\mathbb{N}}$ des lois suivantes :

$$- \forall u = (u_n)_{n \in \mathbb{N}}, v = (v_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}, \quad u + v = (u_n + v_n)_{n \in \mathbb{N}};$$

$$- \forall \lambda \in \mathbb{R}, \quad \forall u = (u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}, \quad \lambda.u = (\lambda u_n)_{n \in \mathbb{N}}.$$

Alors $(\mathbb{R}^{\mathbb{N}}, +, .)$ est un \mathbb{R} -espace vectoriel.

Plus généralement, soit $\mathbb{K}^{\mathbb{N}}$ l'ensemble des suites à valeurs dans \mathbb{K} , alors $(\mathbb{K}^{\mathbb{N}}, +, .)$ est un \mathbb{K} -espace vectoriel.

5. Soient E un \mathbb{K} -espace vectoriel, et X un ensemble non-vide. On note $\mathcal{F}(X,E)$ l'ensemble des applications de X dans E. Alors $(\mathcal{F}(X,E),+,.)$ est un \mathbb{K} -espace vectoriel.

Proposition 1.1.4 (Règles de calcul).

Soit E un \mathbb{K} -espace vectoriel. Pour tous $\lambda \in \mathbb{K}$, $(x,y) \in E^2$, on a

$$-\lambda . x = 0_E \iff \lambda = 0_{\mathbb{K}} \text{ ou } x = 0_E$$

$$- \lambda.(x - y) = \lambda.x - \lambda.y$$

$$-\lambda \cdot (-x) = (-\lambda) \cdot x = -(\lambda \cdot x)$$

Démonstration.

 $- \Leftarrow |$ Soient $\lambda \in \mathbb{K}$ et $x \in E.$ Si $\lambda = 0_{\mathbb{K}},$ alors

$$\lambda . x = 0_{\mathbb{K}} . x = (0_{\mathbb{K}} + 0_{\mathbb{K}}) . x = 0_{\mathbb{K}} . x + 0_{\mathbb{K}} . x = \lambda . x + \lambda . x$$

D'où $\lambda . x = 0_E$. De même, si $x = 0_E$, alors

$$\lambda . x = \lambda . 0_E = \lambda . (0_E + 0_E) = \lambda . 0_E + \lambda . 0_E = \lambda . x + \lambda . x$$

Ce qui donne $\lambda . x = 0_E$.

 \Rightarrow | Inversement, on suppose que $\lambda . x = 0_E$.

Si $\lambda = 0_{\mathbb{K}}$, on obtient le résultat voulu. Supposons que $\lambda \neq 0_{\mathbb{K}}$. Dans ce cas, λ est inversible dans \mathbb{K} , et

$$\lambda^{-1}.(\lambda.x) = (\lambda^{-1}.\lambda).x = 1_{\mathbb{K}}.x = x$$

Or $\lambda . x = 0_E$, donc par l'implication réciproque, on obtient

$$\lambda^{-1}.(\lambda.x) = \lambda^{-1}.0_E = 0_E$$

D'où $x = 0_E$, ce qui prouve l'implication directe.

- Par la condition i. de la définition 1.1.1, on a

$$\lambda . x = \lambda . (x - y + y) = \lambda . (x - y) + \lambda . y$$

D'où $\lambda . x - \lambda . y = \lambda . (x - y)$.

- Par la condition i., on a

$$\lambda . x + \lambda . (-x) = \lambda . (x - x) = \lambda . 0_E = 0_E$$

Alors
$$\lambda \cdot (-x) = -(\lambda \cdot x)$$
.

De même, par la condition ii., on a

$$\lambda . x + (-\lambda) . x = (\lambda - \lambda) . x = 0_{\mathbb{K}} . x = 0_E$$

Donc $(-\lambda).x = -(\lambda.x)$.

Définition 1.1.5 (Espace vectoriel produit). Soient E_1 et E_2 deux \mathbb{K} -espaces vectoriels. Alors $E_1 \times E_2$, muni des lois

$$(x,y) + (z,t) = (x+z,y+t)$$
$$\lambda \cdot (x+y) = (\lambda \cdot x, \lambda \cdot y)$$

est un \mathbb{K} -espace vectoriel. On peut généraliser cette définition au produit cartésien de n espaces vectoriels.

Exemple 1.1.6. Pour tout $n \in \mathbb{N}^*$, \mathbb{R}^n est un \mathbb{R} -espace vectoriel. Plus généralement, \mathbb{K}^n est un \mathbb{K} -espace vectoriel.

Définition 1.1.7 (Structure d'algèbre). On dit que $(A, +, \times, .)$ est une \mathbb{K} -algèbre si :

- 1. (A, +, .) est un \mathbb{K} -espace vectoriel;
- 2. $(A, +, \times)$ est un anneau;
- 3. $\forall \lambda \in \mathbb{K}, \forall (x,y) \in A^2, \quad \lambda.(x \times y) = (\lambda.x) \times y = x \times (\lambda.y).$

Si, de plus, la loi \times est commutative, on dit que $(A, +, \times, .)$ est une \mathbb{K} -algèbre commutative.

Exemples 1.1.8.

- *K* est une *K*-algèbre commutative.
- $-(\mathbb{K}[X], +, \times, .)$ est une \mathbb{K} -algèbre commutative.
- Soit $\mathcal{F}(\mathbb{R}, \mathbb{R})$ l'ensemble des fonctions réelles. Alors $(\mathcal{F}(\mathbb{R}, \mathbb{R}), +, \circ, .)$ n'est pas une \mathbb{R} -algèbre : D'une part, $(\mathcal{F}(\mathbb{R}, \mathbb{R}), +, \circ)$ n'est pas un anneau. D'autre part, en général, on a

$$(\lambda.f) \circ g \neq f \circ (\lambda.g)$$

Contre-exemple: $f(x) = e^x$ et $g(x) = x^2$.

1.2 Sous-espaces vectoriels

Définition 1.2.1. Soit F une partie non-vide d'un \mathbb{K} -espace vectoriel E. On dit que F est un sous-espace vectoriel de E (en abrégé sev) si :

$$- \forall x, y \in F, \quad x + y \in F$$

 $- \forall \lambda \in \mathbb{K}, \quad \forall x \in F, \quad \lambda . x \in F$

ALGÈBRE III 4 N. EL BOUKHARI

Remarques 1.2.2.

- Si F est un sous-espace vectoriel de E, alors F, muni des lois induites par celles de E, est un K-espace vectoriel.
- $-\{0_E\}$ et E sont des sous-espaces vectoriels (dits triviaux) de E.

Exemples 1.2.3.

- 1. L'ensemble $F = \{(x,y) \in \mathbb{R}^2 : y = 0\}$ est un sous-espace vectoriel de \mathbb{R}^2 .
- 2. Soit $n \in \mathbb{N}$. Alors $\mathbb{K}_n[X] = \{P \in \mathbb{K}[X] : \deg(P) \leq n\}$ est un sous-espace vectoriel de $\mathbb{K}[X]$.
- 3. L'ensemble des suites convergentes est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.
- 4. Soit I un intervelle non-vide de \mathbb{R} , et $C(I,\mathbb{R})$ l'ensemble des fonctions continues sur I. Alors $C(I,\mathbb{R})$ est un sous-espace vectoriel de $\mathcal{F}(I,\mathbb{R})$.

Proposition 1.2.4. Soit F une partie de E. On a

$$F \ \textit{est un sev de } E \Leftrightarrow \left\{ \begin{array}{l} F \neq \emptyset \\ \forall \lambda \in \mathbb{K}, \ \forall x,y \in F, \quad \lambda x + y \in F \end{array} \right.$$

$$\Leftrightarrow \left\{ \begin{array}{l} 0_E \in F \\ \forall \lambda \in \mathbb{K}, \ \forall x,y \in F, \quad \lambda x + y \in F \end{array} \right.$$

Démonstration. Exercice.

Définition 1.2.5 (Sous-algèbre). Soit A une \mathbb{K} -algèbre, et $B \subset A$. On dit que B est une sous-algèbre de A si :

- -(B,+,.) est un sous-espace vectoriel de (A,+,.);
- $-(B,+,\times)$ est un sous-anneau de $(A,+,\times)$

Remarques 1.2.6.

- 1. Muni des lois induites par celles de $(A, +, \times, .)$, $(B, +, \times, .)$ devient une \mathbb{K} -algèbre.
- 2. B est une sous-algèbre de A si et seulement si :

i.
$$1_A \in B$$

ii.
$$\forall x, y \in B, \quad x \times y \in B$$

iii.
$$\forall \lambda \in \mathbb{K}, \quad \forall x, y \in B, \quad \lambda x + y \in B$$

Exercice 1.2.7.

- 1. Montrer que l'ensemble des suites complexes bornées est une sous-algèbre de $(\mathbb{C}^{\mathbb{N}},+,\times,.)$.
- 2. Soit $n \in \mathbb{N}$. L'ensemble $\mathbb{K}_n[X]$ est-il une sous-algèbre de $(\mathbb{K}[X], +, \times, .)$?

Proposition 1.2.8. Soit
$$(F_i)_{i\in I}$$
 une famille de sev de E . Alors $F=\bigcap_{i\in I}F_i$ est un sev de E .

Démonstration.

- Comme $0_E \in F_i, \ \forall i \in I, \text{ alors } 0_E \in \bigcap_{i \in I} F_i.$
- Soient $\lambda \in \mathbb{K}$, et $x, y \in \bigcap_{i \in I} F_i$. Pour tout $i \in I$, on a $x, y \in F_i$. Alors $\lambda x + y \in F_i$. Par suite,

 $\lambda x + y \in \bigcap_{i \in I} F_i$, ce qui prouve que $\bigcap_{i \in I} F_i$ est un sev de E.

Définition 1.2.9. Soit A une partie de E. On note I l'ensemble de tous les sev de E contenant A. Alors $\bigcap_{F \in I} F$ est le plus petit sev (au sens de l'inclusion) qui contient A. On le note $\operatorname{Vect}(A)$. $\operatorname{Vect}(A)$ est dit le sev **engendré** par A.

Propriétés des sev engendrés

- i. $A \subset B \Rightarrow \operatorname{Vect}(A) \subset \operatorname{Vect}(B)$
- ii. Soient $A \subset E$ et F un sev de E. On a

$$A \subset F \Rightarrow \operatorname{Vect}(A) \subset F$$

- Si A est un sev de E, alors Vect(A) = A.

Proposition 1.2.10. Soient F et G deux sev de E. Alors l'ensemble

$$S = \{x + y \mid x \in F, \ y \in G\}$$

est un sev de E. S est appelé la **somme** des sous-espaces F et G. On le note S = F + G.

Démonstration.

- Comme $0_E \in F$ et $0_E \in G$, alors $0_E = 0_E + 0_E \in S$.
- Soient $\lambda \in \mathbb{K}$ et $x, y \in S$. Il existe $x_F, y_F \in F$ et $x_G, y_G \in G$ tels que

$$x = x_F + x_G, \qquad y = y_F + y_G$$

Comme F et G sont des sev de E alors $\lambda x_F + y_F \in F$, et $\lambda x_G + y_G \in G$. D'où

$$\lambda x + y = \lambda x_F + y_F + \lambda x_G + y_G \in S$$

Alors S est un sev de E.

Définition 1.2.11. Soient F et G deux sev de E, et S = F + G.

- 1. Si $F \cap G = \{0_E\}$, on dit que S est la somme directe de F et G, et on écrit $S = F \oplus G$.
- 2. On dit que F et G sont supplémentaires dans E si

$$E = F + G$$
 et $F \cap G = \{0_E\}$

c'est-à-dire $E = F \oplus G$.

ALGÈBRE III 6 N. EL BOUKHARI

Exemple 1.2.12. Les sous-espaces

$$F = \{(x,0) : x \in \mathbb{R}\}, \qquad G = \{(0,y) : y \in \mathbb{R}\}$$

sont supplémentaires dans \mathbb{R}^2 .

Exercice 1.2.13. On note P l'ensemble des fonctions réelles paires, et I l'ensemble des fonctions impaires.

- 1. Vérifier que P et I sont des sev de $\mathcal{F}(\mathbb{R}, \mathbb{R})$.
- 2. Montrer que P et I sont supplémentaires dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

Remarques 1.2.14.

1. Un sev peut admettre plus d'un supplémentaire. Par exemple :

$$F = \{(x,0) : x \in \mathbb{R}\}, \quad G = \{(0,y) : y \in \mathbb{R}\}, \quad H = \{(y,y) : y \in \mathbb{R}\}$$

On
$$a$$
 $\mathbb{R}^2 = F \oplus G = F \oplus H$.

2. Ne pas confondre un supplémentaire et un complémentaire.

Proposition 1.2.15. Soient F et G deux sev de E. Alors F et G sont supplémentaires dans E si et seulement si

$$\forall x \in E, \quad \exists ! \ x_F \in F, \quad \exists ! \ x_G \in G \ : \quad x = x_F + x_G$$

Démonstration.

 \Rightarrow | **Existence.** Comme $E = F \oplus G$ alors, pour tout $x \in E$, il existe $x_F \in F$ et $x_G \in G$ tels que $x = x_F + x_G$.

Unicité. Soit $x \in E$. Soient $x_F, x_F' \in F$ et $x_G, x_G' \in G$ tels que

$$x = x_F + x_G = x_F' + x_G'$$

Alors $x_F - x_F' = x_G' - x_G$. Or $x_F - x_F' \in F$ et $x_G' - x_G \in G$, donc

$$x_F - x_F' = x_G' - x_G \in F \cap G$$

Comme $F \cap G = \{0_E\}$, alors $x_F - x_F' = x_G' - x_G = 0_E$. D'où $x_F = x_F'$ et $x_G = x_G'$, ce qui prouve l'unicité de x_F et x_G .

 \Leftarrow | Inversement, pour tout $x \in E$, on a l'existence de $x_F \in F$ et $x_G \in G$ tels que $x = x_F + x_G$. Alors E = F + G. Soit $x \in F \cap G$. Il existe un unique $(x_F, x_G) \in F \times G$ tel que $x = x_F + x_G$. Or, x se décompose sous la forme $x = x + 0_E$, avec $x \in F$ et $0_E \in G$. Alors l'unicité de (x_F, x_G) implique

$$x_F = x$$
, $x_G = 0_E$

De même, x s'écrit $x = 0_E + x$, avec $0_E \in F$ et $x \in G$. Donc l'unicité de (x_F, x_G) donne

$$x_F = 0_E, \quad x_G = x$$

Par suite, $x = 0_E$. Alors $F \cap G = \{0_E\}$. Ce qui prouve que $E = F \oplus G$.

Propriétés de la somme

Soient F, G, et H des sev de E. On a

- 1. $F \subset F + G$ et $G \subset F + G$.
- 2. Si $H \subset G$ alors $F + H \subset F + G$.
- 3. $\forall A, B \subset E$, on a $\operatorname{Vect}(A \cup B) = \operatorname{Vect}(A) + \operatorname{Vect}(B)$ (Exercice). En particulier, on a $\operatorname{Vect}(F \cup G) = F + G$.

Remarque 1.2.16. On peut définir la somme de n sous-espaces vectoriels F_1, \ldots, F_n comme suit :

$$F_1 + \dots + F_n = \{x_1 + \dots + x_n : x_i \in F_i, \forall 1 \le i \le n \}$$

Ainsi, $S = F_1 + \cdots + F_n$ est un sev de E. Les propriétés suivantes sont équivalentes :

$$i. \ \forall i \in [1, n], \ F_i \cap \sum_{\substack{j=1 \ i \neq i}}^n F_j = \{0_E\};$$

ii.
$$\forall (x_1,\ldots,x_n) \in F_1 \times \cdots \times F_n, \quad x_1+\cdots+x_n=0_E \implies x_1=\cdots=x_n=0_E.$$

Si les propriétés ci-dessus sont vérifiées, alors S est la somme directe des sous-espaces F_1, \ldots, F_n . On note

$$S = F_1 \oplus \cdots \oplus F_n = \bigoplus_{i=1}^n F_i$$

Si, de plus, $E = \bigoplus_{i=1}^{n} F_i$, on dit que les sous-espaces F_1, \ldots, F_n sont supplémentaires dans E.

$$\forall x \in E, \quad \exists! \ (x_1, \dots, x_n) \in \prod_{i=1}^n F_i, \quad x = x_1 + \dots + x_n = \sum_{i=1}^n x_i$$

1.3 Familles libres ou génératrices, bases

1.3.1 Combinaisons linéaires

Définition 1.3.1.

- Soient $(u_1, \ldots, u_n) \in E^n$ et $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}$. La somme $\sum_{k=1}^n \lambda_k u_k$ est appelée une **combinaison linéaire** des vecteurs u_1, \ldots, u_n avec les coefficients $\lambda_1, \ldots, \lambda_n$.
- Soit $(u_k)_{k\in I}$ une famille de vecteurs de E (finie ou infinie). On appelle **combinaison linéaire** de $(u_k)_{k\in I}$ toute somme $\sum_{k\in J} \lambda_k u_k$, avec $\lambda_k \in \mathbb{K}$ et J est une partie finie de I.

Proposition 1.3.2. *Soit A une partie de E.*

- Si $A = \emptyset$, alors $Vect(A) = \{0_E\}$.
- Si $A \neq \emptyset$, alors $\operatorname{Vect}(A)$ est l'ensemble des combinaisons linéaires des vecteurs de A.

Démonstration.

- $-\{0_E\}$ est le plus petit sev contenant \emptyset . Alors $\mathrm{Vect}(\emptyset)=\{0_E\}$.
- On suppose que $A \neq \emptyset$. Donc il existe $x_A \in E$ tel que $x_A \in A$. Soit F l'ensemble des combinaisons linéaires de A. Alors $A \subset F$, et :
 - i. $0_{\mathbb{K}}.x_A = 0_E \in F$;
 - ii. $\forall x, y \in F, \forall \lambda \in \mathbb{K}, \lambda x + y \in F$.

Ce qui prouve que F est un sev de E contenant A. Par suite, $Vect(A) \subset F$.

Inversement, Soit $\sum_{k=1}^{n} \lambda_k x_k$ une combinaison linéaire des vecteurs de A, avec $n \in \mathbb{N}^*$. Alors

$$\sum_{k=1}^n \lambda_k x_k \in \operatorname{Vect}(A), \text{ d'où } F \subset \operatorname{Vect}(A). \text{ Par conséquent, } F = \operatorname{Vect}(A).$$

Exemple 1.3.3. *Si* $A = \{u_1, ..., u_n\}$ *alors*

$$\operatorname{Vect}(A) = \left\{ \sum_{k=1}^{n} \lambda_k u_k \mid (\lambda_k)_{1 \le k \le n} \in \mathbb{K}^n \right\}$$

En particulier, pour n = 1, on a

$$Vect(u_1) = \mathbb{K}u_1 = \{\lambda u_1 \mid \lambda \in \mathbb{K}\}\$$

Le sev $\mathbb{K}u_1$ s'appelle une droite vectorielle.

Pour n=2, on a

$$Vect(u_1, u_2) = \mathbb{K}u_1 + \mathbb{K}u_2 = \{\lambda u_1 + \mu u_2 \mid \lambda, \mu \in \mathbb{K}\}\$$

Le sev $\mathbb{K}u_1 + \mathbb{K}u_2$ s'appelle un plan vectoriel.

1.3.2 Familles libres

Définition 1.3.4.

- Soit $\mathcal{B} = (u_1, \dots, u_n)$ une famille de vecteurs de E. On dit que la famille \mathcal{B} est **libre** si, pour tous $\lambda_1, \dots, \lambda_n \in \mathbb{K}$, on a

$$\sum_{k=1}^{n} \lambda_k u_k = 0_E \implies \forall 1 \le k \le n, \ \lambda_k = 0_{\mathbb{K}}$$

- Soit $\mathcal{B} = (u_k)_{k \in I}$ une famille quelconque. On dit que \mathcal{B} est **libre** si, pour tout $J \subset I$ fini, et pour tous $\lambda_k \in \mathbb{K}$, avec $k \in J$, on a

$$\sum_{k \in J} \lambda_k u_k = 0_E \implies \forall k \in J, \ \lambda_k = 0_{\mathbb{K}}$$

Dans le cas contraire, on dit que la famille \mathcal{B} est **liée**.

Exemples 1.3.5.

ALGÈBRE III 9 N. EL BOUKHARI

- Dans \mathbb{R}^2 , on note $e_1=(1,0)$ et $e_2=(0,1)$. Alors la famille $\mathcal{B}=(e_1,e_2)$ est libre. Plus généralement, dans \mathbb{R}^n $(n \geq 2)$, on note $e_i=(\delta_{ik})_{1\leq k\leq n}$. Alors la famille $\mathcal{B}=(e_i)_{1\leq i\leq n}$ est libre.
- Dans $E = \mathbb{R}^3$, on note $u_1 = (1, 1, 1)$, $u_2 = (1, 1, -1)$, et $u_3 = (0, 0, 1)$. Alors la famille (u_1, u_2, u_3) est liée. En effet, en choisissant $\lambda_1 = 1$, $\lambda_2 = -1$, et $\lambda_3 = -2$, on a

$$\lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3 = 0_E$$
 et $(\lambda_1, \lambda_2, \lambda_3) \neq (0, 0, 0)$

- Dans $\mathbb{K}[X]$, la famille $(X^n)_{n\in\mathbb{N}}$ est libre.

Remarques 1.3.6.

- 1. (x) est liée si et seulement si $x = 0_E$.
- 2. Toute famille qui contient au moins un vecteur nul est liée.
- 3. (x, y) est liée si et seulement si les vecteurs x et y sont colinéaires.
- 4. Si B est libre (resp. liée), alors toute sous-famille (resp. sur-famille) de B est libre (resp. liée). En particulier, l'ensemble vide \emptyset est une famille libre.
- 5. Si \mathcal{B} est une famille libre, on dit que les vecteurs de \mathcal{B} sont linéairement indépendants.

Exercice 1.3.7.

- 1. Soit $a \in \mathbb{K}$. On note $P_k = (X a)^k \in \mathbb{K}[X]$, pour tout $k \in \mathbb{N}$. Montrer que la famille $(P_k)_{k \in \mathbb{N}}$ est libre.
- 2. Soit I un intervalle de \mathbb{R} non réduit à un point. On note $E = \mathscr{F}(I, \mathbb{R})$ et, pour tout $n \in \mathbb{N}$, on définit les fonctions $f_n \in E$ comme suit

$$f_n(x) = x^n, \quad \forall x \in I.$$

Montrer que $(f_n)_{n\in\mathbb{N}}$ est une famille libre.

3. Soit $\mathcal{B} = (v_1, \dots, v_n)$ une famille de E, telle que $v_k \neq 0_E$, $\forall 1 \leq k \leq n$. Montrer que \mathcal{B} est libre si et seulement si la somme $\sum_{k=1}^n \mathbb{K} v_k$ est directe.

1.3.3 Familles génératrices

Définition 1.3.8. On dit qu'une famille $\mathcal{B} = (u_k)_{k \in I}$ est **génératrice**, ou que les vecteurs de \mathcal{B} engendrent l'espace E si

$$Vect(\mathcal{B}) = E$$

Ce qui équivaut à

$$\forall x \in E, \ \exists J \subset I \ \text{fini} \ , \exists (\lambda_k)_{k \in J} \ : \ x = \sum_{k \in J} \lambda_k u_k$$

En particulier, lorsque $\mathcal{B} = (u_k)_{1 \leq k \leq n}$ est finie, la famille \mathcal{B} est génératrice si et seulement si

$$\forall x \in E, \ \exists (\lambda_k)_{1 \le k \le n} : \ x = \sum_{k=1}^n \lambda_k u_k$$

Exemples 1.3.9.

- Dans \mathbb{R}^2 , on note $e_1=(1,0)$ et $e_2=(0,1)$. Alors la famille $\mathcal{B}=(e_1,e_2)$ est génératrice. Plus généralement, dans \mathbb{R}^n $(n \geq 2)$, la famille $\mathcal{B}=(e_i)_{1\leq i\leq n}$, où $e_i=(\delta_{ik})_{1\leq k\leq n}$, est génératrice.
- La famille (1;i) est génératrice du \mathbb{R} -espace vectoriel \mathbb{C} .
- On note $v_1 = (1; 1)$ et $v_2 = (1; -1)$. Alors la famille $\mathcal{B} = (v_1, v_2)$ est génératrice de \mathbb{R}^2 . En effet, Soit $(x, y) \in \mathbb{R}^2$. On a

$$(x,y) = \frac{x+y}{2}v_1 + \frac{x-y}{2}v_2$$

 $D'où(x,y) \in Vect(\mathcal{B}).$

– Dans $\mathbb{K}[X]$, la famille $(X^n)_{n\in\mathbb{N}}$ est génératrice.

Remarques 1.3.10.

1. Soit F un sev de E. On dit qu'une famille \mathcal{B} est génératrice de F si

$$Vect(\mathcal{B}) = F$$

2. En particulier, \emptyset est une famille génératrice de $\{0_E\}$, car $\mathrm{Vect}(\emptyset) = \{0_E\}$.

Exercice 1.3.11.

1. On note

$$v_1 = (1; 1; 1); \quad v_2 = (1; -1; 1); \quad v_3 = (1; 1; -1)$$

Montrer que la famille $\mathcal{B} = (v_1, v_2, v_3)$ est génératrice de \mathbb{R}^3 .

- 2. Soit $F = \{(x, y, z) \in \mathbb{R}^3 : x + 7y z = 0\}$. Déterminer une famille génératrice de F.
- 3. Soient les vecteurs

$$u_1 = (3; 2; -1), \quad u_2 = (1; 1; 0), \quad v_1 = (2; 1; -1), \quad v_2 = (0; 1; 1)$$

Montrer que $Vect(u_1, u_2) = Vect(v_1, v_2)$.

Exercice 1.3.12.

- 1. Soit $a \in \mathbb{C}$. On note $P_k = (X a)^k$, pour tout $k \in \mathbb{N}$. Montrer que la famille $(P_k)_{k \in \mathbb{N}}$ est génératrice de $\mathbb{C}[X]$.
- 2. Répondre à la question 1. pour \mathbb{K} un corps commutatif quelconque.

1.3.4 Bases

Définition 1.3.13. Une famille \mathcal{B} est dite une base de E si \mathcal{B} est libre et génératrice de E.

Exemples 1.3.14.

- 1. Soit $E = \mathbb{R}^n$. On note $e_k = (\delta_{kj})_{1 \leq j \leq n}$. Alors $\mathcal{B} = (e_k)_{1 \leq k \leq n}$ est la base canonique de \mathbb{R}^n .
- 2. La famille $(X^n)_{n\in\mathbb{N}}$ est la base canonique de $\mathbb{K}[X]$.
- 3. La famille $(1, X, ..., X^n)$ est une base de $\mathbb{K}_n[X]$.

Proposition 1.3.15. Une famille $\mathcal{B} = (e_1, \dots, e_n)$ est une base de E si et seulement si

$$\forall x \in E, \quad \exists!(\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n : \quad x = \sum_{k=1}^n \lambda_k e_k$$

Dans ce cas, les scalaires λ_k sont appelés les **composantes** de x dans la base \mathcal{B} .

Démonstration. Exercice.

1.4 Applications linéaires

1.4.1 Définitions et propriétés

Définition 1.4.1. Soient E et F deux \mathbb{K} -espaces vectoriels, et $f: E \to F$ une application.

On dit que f est une application linéaire si, pour tous $x, y \in E, \ \lambda \in \mathbb{K}$, on a

$$-f(x+y) = f(x) + f(y)$$
 (Additivité)

$$- f(\lambda x) = \lambda f(x)$$
 (Homogénéité)

Notations et terminologie

- L'ensemble des applications linéaires de E dans F est noté $\mathcal{L}(E,F)$.
- Une application linéaire de E dans E est appelée un **endomorphisme** de E. L'ensemble $\mathscr{L}(E,E)$ est noté $\mathscr{L}(E)$.
- Une application linéaire bijective est dite un **isomorphisme** de E dans F.
- Un endomorphisme de E bijectif est appelé un **automorphisme**. L'ensemble des automorphismes de E est noté $\mathrm{GL}(E)$.

Exemples 1.4.2.

- 1. L'application nulle θ_E et l'application Identité Id_E sont des endomorphismes de E.
- 2. L'application $z \mapsto \overline{z}$ est \mathbb{R} -linéaire dans \mathbb{C} , mais n'est pas \mathbb{C} -linéaire.
- 3. L'application $P \mapsto P'$ est un endomorphisme de $\mathbb{K}[X]$.
- *4.* Soit $\lambda \in \mathbb{K}$. L'application

$$h_{\lambda}: E \to E$$
$$x \mapsto \lambda.x$$

est un endomorphisme. h_{λ} est appelée **l'homothétie** de rapport λ . Si, de plus, $\lambda \neq 0_{\mathbb{K}}$, alors h_{λ} est un automorphisme et $(h_{\lambda})^{-1} = h_{\lambda^{-1}}$.

Remarques 1.4.3.

- Si $f \in \mathcal{L}(E,F)$, alors $f:(E,+) \to (F,+)$ est un morphisme de groupes. Il s'ensuit que

$$f(0_E) = 0_F$$

– Une application $f: E \to F$ est linéaire si et seulement si

$$\forall x, y \in E, \quad \forall \lambda \in \mathbb{K}, \quad f(\lambda x + y) = \lambda f(x) + f(y)$$

– Plus généralement, si $f \in \mathcal{L}(E, F)$ alors, pour tous $x_1, \ldots, x_n \in E$ et $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$, on a

$$f\left(\sum_{k=1}^{n} \lambda_k x_k\right) = \sum_{k=1}^{n} \lambda_k f(x_k)$$

Exercice 1.4.4. Déterminer tous les endomorphismes de l'espace vectoriel \mathbb{R} .

Définition 1.4.5. Si $F = \mathbb{K}$, alors toute application linéaire $f \in \mathcal{L}(E, \mathbb{K})$ est dite une forme linéaire sur E.

L'ensemble des formes linéaires sur E est appelé le **dual** de E, et est noté E^* .

Exemples 1.4.6.

1. Soient $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$. L'application

$$f: \mathbb{R}^n \to \mathbb{R}$$

$$(x_1, \dots, x_n) \mapsto \sum_{k=1}^n \alpha_k x_k$$

est une forme linéaire sur \mathbb{R}^n .

2. Soient I = [a, b] un intervalle fermé borné, et $E = \mathcal{C}(I)$ l'espace des fonctions continues sur I. Alors l'application

$$\varphi: f \mapsto \int_a^b f(t) dt$$

est une forme linéaire sur E.

3. On note $E = \mathscr{C}^1(I)$ l'espace vectoriel des fonctions de classe C^1 sur I. Soit $a \in I$. Alors les applications

$$f \mapsto f(a), \qquad f \mapsto f'(a)$$

sont des formes linéaires sur E.

1.4.2 Opérations sur les applications linéaires

Proposition 1.4.7. Soient $f, g \in \mathcal{L}(E, F)$ et $\alpha \in \mathbb{K}$. Alors les applications f + g et $\alpha.f$ sont linéaires.

 $(\mathcal{L}(E,F),+,.)$ est un \mathbb{K} -espace vectoriel.

Démonstration. Exercice.

Proposition 1.4.8. Si $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$, alors $g \circ f \in \mathcal{L}(E, G)$.

Démonstration. Exercice.

Proposition 1.4.9. *Soit* $f \in \mathcal{L}(E)$. *Alors les applications*

sont linéaires.

Démonstration. Exercice.

Corollaire 1.4.10. $(\mathcal{L}(E), +, \circ, .)$ est une \mathbb{K} -algèbre (non-commutative en général).

Remarque 1.4.11. *Pour tout* $f \in \mathcal{L}(E)$ *, on note*

$$f^{n} = \begin{cases} \underbrace{f \circ \cdots \circ f}_{n \text{ fois}} & \text{si } n \ge 1\\ Id_{E} & \text{si } n = 0 \end{cases}$$

Soient $f, g \in \mathcal{L}(E)$. Si $f \circ g = g \circ f$ alors

$$(f+g)^n = \sum_{k=1}^n C_n^k f^k \circ g^{n-k}$$

Proposition 1.4.12. Si f est un isomorphisme de E dans F, alors f^{-1} est un isomorphisme de F dans E.

Démonstration. Soient $x, y \in F$, et $\lambda \in \mathbb{K}$. Comme f est bijective, alors

$$\exists ! (x_0, y_0) \in E^2 : x = f(x_0), y = f(y_0)$$

C'est-à-dire $x_0 = f^{-1}(x), y_0 = f^{-1}(y)$. Par suite

$$f^{-1}(\lambda x + y) = f^{-1}(\lambda f(x_0) + f(y_0))$$

= $f^{-1}(f(\lambda x_0 + y_0))$
= $\lambda x_0 + y_0$
= $\lambda f^{-1}(x) + f^{-1}(y)$

Ce qui prouve que f^{-1} est linéaire.

Corollaire 1.4.13. Soit GL(E) l'ensemble des automorphismes de E. Alors $(GL(E), \circ)$ est un groupe (non-commutatif en général), appelé le **groupe général linéaire** de E.

Démonstration. On note $(\mathcal{B}(E), \circ)$ le groupe des bijections de E dans lui-même. Il suffit alors de vérifier que $\mathrm{GL}(E)$ est un sous-groupe de $(\mathcal{B}(E), \circ)$.

- Id_E ∈ $\mathrm{GL}(E)$. Donc $\mathrm{GL}(E) \neq \emptyset$.
- Soient $f, g \in GL(E)$. Par la proposition 1.4.12, $g^{-1} \in GL(E)$. D'où $f \circ g^{-1} \in GL(E)$. Par conséquent, GL(E) est un sous-groupe de $(\mathcal{B}(E), \circ)$.

1.4.3 Noyau et image d'une application linéaire

Définition 1.4.14. *Soit* $f \in \mathcal{L}(E, F)$.

- Le **noyau** de f est défini par :

$$\ker(f) = f^{-1}(\{0_F\}) = \{x \in E : f(x) = 0_F\}$$

- L'**image** de f est définie par :

$$Im(f) = f(E) = \{ y \in F : \exists x \in E, \ y = f(x) \}$$

Proposition 1.4.15. *Soit* $f \in \mathcal{L}(E, F)$. *Alors*

- L'image par f de tout sev de E est un sev de F.
- L'image réciproque par f de tout sev de F est un sev de E.

Démonstration.

- Soit H un sev de E. Montrons que f(H) est un sev de F.

D'abord, $0_E \in H$, donc $f(0_E) = 0_F \in f(H)$.

Soient $x, y \in f(H)$ et $\lambda \in \mathbb{K}$. Il existe $a, b \in H$ tels que x = f(a) et y = f(b). Or $\lambda a + b \in H$.

Donc $f(\lambda a + b) = \lambda f(a) + f(b) \in f(H)$. D'où $\lambda x + y \in H$.

- Soit G un sev de F. Montrons que $f^{-1}(G)$ est un sev de E.

Comme $0_F \in G$ et $f(0_E) = 0_F$, alors $0_E \in f^{-1}(G)$.

Soient $x,y\in f^{-1}(G)$ et $\lambda\in\mathbb{K}$. Alors $f(x),f(y)\in G$. D'où $\lambda f(x)+f(y)=f(\lambda x+y)\in G$.

Il s'ensuit que $\lambda x + y \in f^{-1}(G)$.

Corollaire 1.4.16. *Soit* $f \in \mathcal{L}(E, F)$. *Alors* $\ker(f)$ *est un sev de* E, *et* $\operatorname{Im}(f)$ *est un sev de* F.

Proposition 1.4.17. *Soit* $f \in \mathcal{L}(E, F)$. *Alors* f *est injective si et seulement si* $\ker(f) = \{0_E\}$.

Démonstration. Voir le module Algèbre II. (Remarquer que $f:(E,+)\to (F,+)$ est un morphisme de groupes).

ALGÈBRE III 15 N. EL BOUKHARI

Remarque 1.4.18. $f \in \mathcal{L}(E, F)$ est surjective si et seulement si Im(f) = F.

1.4.4 Familles de vecteurs et applications linéaires

Proposition 1.4.19. Soient $f \in \mathcal{L}(E, F)$, et \mathcal{F} une famille de vecteurs de E. Si \mathcal{F} est liée, alors $f(\mathcal{F})$ est liée (la réciproque est fausse en général).

Démonstration. Exercice.

Proposition 1.4.20. Soit $f \in \mathcal{L}(E, F)$. Alors f est injective si et seulement si l'image par f de toute famille libre de E est une famille libre de F.

Démonstration.

 $\Rightarrow | \text{ On suppose que } f \text{ est injective. Soit } \mathcal{L} = (x_k)_{k \in I} \text{ une famille libre de } E. \text{ Montrons que } f(\mathcal{L}) = (f(x_k))_{k \in I} \text{ est libre. Pour ce faire, soient } J \text{ une partie non-vide finie de } I, \text{ et } (\lambda_k)_{k \in J} \in \mathbb{K}^J \text{ tels que } \sum_{k \in J} \lambda_k f(x_k) = 0_F. \text{ Alors } f\left(\sum_{k \in J} \lambda_k x_k\right) = 0_F. \text{ Par l'injectivit\'e de } f, \text{ on obtient } \sum_{k \in J} \lambda_k x_k = 0_E. \text{ La famille } \mathcal{L} \text{ étant libre, on d\'eduit que } \lambda_k = 0_\mathbb{K}, \forall k \in J. \text{ Par cons\'equent, } f(\mathcal{L}) = (f(x_k))_{k \in I} \text{ est libre.}$ $\Leftarrow | \text{ Soit } x \in E \setminus \{0_E\}. \text{ Alors la famille } (x) \text{ est libre, d'où } (f(x)) \text{ est libre. Ce qui signifie que } f(x_k) = 0_K \text{ out } f(x_k) \text{ out } f(x_k) \text{ est libre.} \text{ est libre.}$

Proposition 1.4.21. Soient $f \in \mathcal{L}(E, F)$ et \mathcal{L} une famille de vecteurs de E. Alors

 $f(x) \neq 0_F$. Donc $x \notin \ker(f)$, montrant ainsi que $\ker(f) = \{0_E\}$. Donc f est injective.

$$f(\operatorname{Vect}(\mathcal{L})) = \operatorname{Vect}(f(\mathcal{L}))$$

Démonstration. Exercice.

Corollaire 1.4.22. Soient $f \in \mathcal{L}(E, F)$ et \mathcal{L} une famille génératrice de E. Alors f est surjective si et seulement si $f(\mathcal{L})$ est une famille génératrice de F.

Démonstration.

 \Rightarrow | On suppose que f est surjective. Soit $y \in F$. Il existe $x \in E$ tel que y = f(x). La famille $\mathcal L$ étant génératrice de E, il existe $x_1, \dots, x_n \in \mathcal L$, et $\lambda_1, \dots, \lambda_n \in \mathbb K$, tels que $x = \sum_{k=1}^n \lambda_k x_k$. D'où

$$y = f(x) = f\left(\sum_{k=1}^{n} \lambda_k x_k\right) = \sum_{k=1}^{n} \lambda_k f(x_k)$$

Par suite, $y \in \text{Vect}(f(\mathcal{L}))$. Alors $f(\mathcal{L})$ est une famille génératrice de F. \Leftarrow | Par la proposition 1.4.21, on a

$$f(\operatorname{Vect}(\mathcal{L})) = \operatorname{Vect}(f(\mathcal{L}))$$

Algèbre III 16 N. El Boukhari

Or, \mathcal{L} et $f(\mathcal{L})$ sont des familles génératrices de E et F respectivement, donc $\mathrm{Vect}(\mathcal{L}) = E$ et $\mathrm{Vect}(f(\mathcal{L})) = F$. D'où f(E) = F. Ce qui montre que f est surjective. \square

Corollaire 1.4.23. Soient $f \in \mathcal{L}(E, F)$ et \mathcal{B} une base de E. Alors f est bijective si et seulement si $f(\mathcal{B})$ est une base de F.

Démonstration. Exercice.

1.4.5 Projections et symétries vectorielles

Définition 1.4.24. Soient F et G deux sev de E tels que $F \oplus G = E$.

- L'application

$$p: F \oplus G \quad \to \quad E$$
$$a+b \quad \mapsto \quad a$$

est dite la **projection** sur F parallèlement à G.

- L'application

$$s: F \oplus G \rightarrow E$$
$$a+b \mapsto a-b$$

est dite la symétrie par rapport à F parallèlement à G.

Propriétés de p et s

- 1. $p \in \mathcal{L}(E)$ et $p \circ p = p^2 = p$.
- 2. $\ker(p) = G \text{ et } \operatorname{Im}(f) = f$.
- 3. $p \in GL(E)$ si et seulement si $G = \{0_E\}$.
- 4. $s \circ s = s^2 = \operatorname{Id}_E$. Donc $s \in \operatorname{GL}(E)$.

Définition 1.4.25. On appelle **projecteur** tout endomorphisme p tel que $p \circ p = p$.

Proposition 1.4.26. *Soit* $p \in \mathcal{L}(E)$ *un projecteur. Alors*

$$\operatorname{Im}(p) \oplus \ker(p) = E$$

Ainsi, p est la projection sur Im(p) parallèlement à ker(p).

Démonstration. Soit $x \in E$. On a x = p(x) + (x - p(x)), où $p(x) \in \text{Im}(p)$. De plus, on a

$$p(x - p(x)) = p(x) - p \circ p(x) = p(x) - p(x) = 0_E$$

Alors $x - p(x) \in \ker(p)$. D'où $x \in \operatorname{Im}(p) + \ker(p)$. Par suite, $E = \operatorname{Im}(p) + \ker(p)$. Soit $x \in \operatorname{Im}(p) \cap \ker(p)$. Alors $p(x) = 0_E$, et il existe $y \in E$ tel que x = p(y). D'où

$$p \circ p(y) = p(x) = 0_E$$

Or $p \circ p = p$, ce qui implique $p \circ p(y) = p(y) = x$. Donc $x = 0_E$. Par conséquent, $\operatorname{Im}(p) \cap \ker(p) = \{0_E\}$, ce qui donne $\operatorname{Im}(p) \oplus \ker(p) = E$.

Exercice 1.4.27. Soit E un \mathbb{C} -espace vectoriel. Soit $s \in \mathcal{L}(E)$ tel que $s \circ s = \mathrm{Id}_E$. On pose

$$F_1 = \{x \in E : s(x) = x\}; \qquad F_2 = \{x \in E : s(x) = -x\}$$

- 1. Montrer que F_1 et F_2 sont des sev de E.
- 2. Montrer que $E = F_1 \oplus F_2$.