admits a finite index subgroup with positive first Betti number. Since the quotient of the unit ball in \mathbb{C}^n by a discrete cocompact subgroup has nonzero Euler characteristic, the proposition 3.1 can be applied.

Remark 3.5. — Llosa Isenrich and Py showed in fact the existence of infinitely many, pairwise not commensurable, word hyperbolic groups admitting subgroups of type \mathcal{F}_n and not of type \mathcal{F}_{n+1} .

4. Construction from right-angled polytopes

Hereafter the article Italiano, Martelli, and Migliorini (2023) will be mentioned as IMM5 and the article Italiano, Martelli, and Migliorini (2022) will be mentioned as IMM8.

The approach developed by IMM5 for the proof of theorem 1.2 is more combinatorial in nature. It starts by constructing a finite volume hyperbolic 5-manifold from a right-angled polytope in the hyperbolic space \mathbb{H}_5 , then a fibration $f \colon M \to S^1$ is constructed using a natural cubulation of the manifold M. In order to produce a compact object (and hence a word hyperbolic group) one needs to cap the boundary components of M to obtained a metric space M^{\vee} ; this can be done maintaining the negatively curved metric on M^{\vee} and an extension of the fibration exists.

4.1. The polytope and the manifold

The chosen model for hyperbolic space \mathbb{H}_5 is the Klein model: the unit ball in \mathbb{R}^5 with geodesic given by Euclidean segments.

The polytope P_5 in \mathbb{H}_5 is described as the intersections of the half-spaces

$$\underline{\varepsilon} \cdot \underline{x} = \sum_{i=1}^{5} \varepsilon_i x_i \le 1, \quad \underline{x} \in \mathbb{H}_5$$

where $\underline{\varepsilon}$ varies in the subgroup of $\{\pm 1\}^5$ defined by $\prod \varepsilon_i = 1$, i.e. an even number of the ε_i are equal to -1. We refer to IMM5 (section 1.1) for a complete description, and to IMM8 for further details on that polytope as well as a related series of right-angled polytopes in dimensions $3, \ldots, 8$. These polytopes were previously studied by Potyagailo and Vinberg (2005) who explained them starting from certain hyperbolic simplices. They are related (by duality) to a series of semiregular polytopes discovered by Gosset (1899).

The polytope P_5 has finite volume, is right-angled, and has 16 facets given by the hyperplanes where equality is achieved in the equation above. It has a big group of symmetries: the permutation of coordinates as well as the coordinate-wise pluttification by $\underline{\varepsilon}$ (cf. Lindgren, 1945, for this classical operation); this produces a group of symmetries of type D_4 and of order $2^4 \times 5! = 1920$. The hyperbolic reflections through the 16 hyperplanes bounding P_5 generate a discrete subgroup Γ of Isom(\mathbb{H}_5) that is known to be isomorphic to the congruence two subgroup of the group of integral matrices in