Introdução à Recuperação de Informações https://github.com/fccoelho/curso-IRI

IRI 1: Introdução

Flávio Codeço Coelho

Escola de Matemática Aplicada, Fundação Getúlio Vargas

Sumário da Aula

- Introdução
- Estrutura do Curso
- 3 Avaliando a Recuperação
 - Revocação e Precisão
 - Outras métricas
- 4 Recuperação Booleana
 - Indices invertidos

¹adaptado de Hinrich Schütze

• Foco na Recuperação de informação em coleções de texto.

- Foco na Recuperação de informação em coleções de texto.
- Exercícios exigirão conhecimentos de programação em Python

- Foco na Recuperação de informação em coleções de texto.
- Exercícios exigirão conhecimentos de programação em Python
- Avaliação baseada em mini-projetos (um projeto a cada duas semanas)

- Foco na Recuperação de informação em coleções de texto.
- Exercícios exigirão conhecimentos de programação em Python
- Avaliação baseada em mini-projetos (um projeto a cada duas semanas)
- Projetos serão desenvolvidos em duplas rotatórias, ou seja, cada par de alunos só poderá trabalhar em um projeto.

- Foco na Recuperação de informação em coleções de texto.
- Exercícios exigirão conhecimentos de programação em Python
- Avaliação baseada em mini-projetos (um projeto a cada duas semanas)
- Projetos serão desenvolvidos em duplas rotatórias, ou seja, cada par de alunos só poderá trabalhar em um projeto.
- Dados e infraestrutura computacional serão fornecidos pela escola sempre que necessário

Este curso se restringirá à exploração e aplicação de modelos matemáticos de recuperação de informação

Modelos Booleanos

- Modelos Booleanos
 - Fuzzy

- Modelos Booleanos
 - Fuzzy
 - Modelo Booleano extendido

- Modelos Booleanos
 - Fuzzy
 - Modelo Booleano extendido
- Modelos Vetoriais

- Modelos Booleanos
 - Fuzzy
 - Modelo Booleano extendido
- Modelos Vetoriais
 - Espaços vetoriais

- Modelos Booleanos
 - Fuzzy
 - Modelo Booleano extendido
- Modelos Vetoriais
 - Espaços vetoriais
 - Indexação semântica latente

- Modelos Booleanos
 - Fuzzy
 - Modelo Booleano extendido
- Modelos Vetoriais
 - Espaços vetoriais
 - Indexação semântica latente
 - Classificação

- Modelos Booleanos
 - Fuzzy
 - Modelo Booleano extendido
- Modelos Vetoriais
 - Espaços vetoriais
 - Indexação semântica latente
 - Classificação
 - Clusterização

- Modelos Booleanos
 - Fuzzy
 - Modelo Booleano extendido
- Modelos Vetoriais
 - Espaços vetoriais
 - Indexação semântica latente
 - Classificação
 - Clusterização
- Modelos Probabilísticos

- Modelos Booleanos
 - Fuzzy
 - Modelo Booleano extendido
- Modelos Vetoriais
 - Espaços vetoriais
 - Indexação semântica latente
 - Classificação
 - Clusterização
- Modelos Probabilísticos
 - Redes Bayesianas

- Modelos Booleanos
 - Fuzzy
 - Modelo Booleano extendido
- Modelos Vetoriais
 - Espaços vetoriais
 - Indexação semântica latente
 - Classificação
 - Clusterização
- Modelos Probabilísticos
 - Redes Bayesianas
 - Graphical Models

- Modelos Booleanos
 - Fuzzy
 - Modelo Booleano extendido
- Modelos Vetoriais
 - Espaços vetoriais
 - Indexação semântica latente
 - Classificação
 - Clusterização
- Modelos Probabilísticos
 - Redes Bayesianas
 - Graphical Models
 - Belief Networks

Quão boa é nossa recuperação?

Antes de desenvolver qualquer estratégia de recuperação precisamos definir nossa meta e uma métrica de qualidade.

• A meta depende da necessidade informacional

Quão boa é nossa recuperação?

Antes de desenvolver qualquer estratégia de recuperação precisamos definir nossa meta e uma métrica de qualidade.

- A meta depende da necessidade informacional
- Existem algumas métricas classicas de qualidade

Precisão e Revocação (Recall)

Seja R um conjunto de documentos relevantes e |R| o número de documentos neste conjunto. Uma requisiçã de informação I, gera um conjunto A contendo |A| documentos em resposta. Seja $|R_a|$ o número de documentos da interseção entre R e A Podemos definir revocação como:

$$Rev = \frac{|R_a|}{|R|}$$

$$Precisão = \frac{|R_a|}{|A|}$$

Na Prática

Seja $R_q = \{d_3, d_5, d_9, d_{25}, d_{39}, d_{44}, d_{56}, d_{71}, d_{89}, d_{123}\}$ o conjunto de documentos relevantes para uma consulta q.

Ordenando o conjunto A_a de respostas a q em ordem decrescente de relevância, temos:

Resultados ordenados			
Ordem	Resultado	Precisão	Revocação
1	d_{123}	100%	10%
2	d_{84}	50%	10%
3	d_{56}	66%	20%
4	d_6	50%	20%
5	d_8	40%	20%
6	d_9	50%	30%

Problemas

- Conjunto |R| em situações reais pode ser difícil ou impossível de determinar.
- Revocação e Precisão são medidas correlacionadas.
- visão muito simplista sobre a qualidade da recuperação.

Média Harmônica

Como precisão e revocação são medidas correlacionadas, podemos buscar integrá-las em uma mesma medida.

Média Harmônica

$$F(j) = \frac{2}{\frac{1}{r_j} + \frac{1}{P_j}}$$

onde r_j e P_j são a revocação e a precisão do j-ésimo documento rankeado.

F(j) assume valores no intervalo [0,1], sendo 0 quando nenhum documento relevante for recuperado e 1 quando todos os documentos recuperados forem relevantes.

Medida E

E(j)

$$E(j) = 1 - \frac{1 + b^2}{\frac{b^2}{r_j} + \frac{1}{P_j}}$$

Onde b é um parâmetro the indica a importância relativa da revocação e da precisão. Quando b=1, E é o complemento da média harmônica. Quando b<1, damos mais peso à precisão e quando b>1 damos mais peso à revocação.

Medidas Subjetivas

Seja U um subconjunto de R que é do conhecimento do usuário. |U| é o número de documentos neste conjunto. Seja $|R_k|$ o número de documentos da interseção entre A e U, e $|R_u|$ o número de documentos pertencentes a A mas não a U, i.e., A - U

Cobertura e Novidade

Cobertura =
$$\frac{|R_k|}{|U|}$$

Novidade =
$$\frac{|R_u|}{|R_u| + |R_k|}$$

Recuperação Booleana

Modelo de recuperação no qual podemos construir consultas na forma de uma expressão booleana, ou seja, os termos de busca são combinados com operadores AND, OR e OR. este modelo vê cada documento como um simples conjunto de palavras.

Dados não estruturados de 1650

• Que peças de Shakepeare contêm as palavras Brutus AND CAESAR, mas NOT CALPURNIA?

- Que peças de Shakepeare contêm as palavras BRUTUS AND CAESAR, mas NOT CALPURNIA?
- Poderíamos fazer um grep em todas as peças de Shakespeare's por BRUTUS e CAESAR, e então remover as linhas contendo CALPURNIA.

- Que peças de Shakepeare contêm as palavras Brutus AND CAESAR, mas NOT CALPURNIA?
- Poderíamos fazer um grep em todas as peças de Shakespeare's por BRUTUS e CAESAR, e então remover as linhas contendo CALPURNIA.
- Porque o grep não é a solução?

- Que peças de Shakepeare contêm as palavras Brutus AND CAESAR, mas NOT CALPURNIA?
- Poderíamos fazer um grep em todas as peças de Shakespeare's por BRUTUS e CAESAR, e então remover as linhas contendo CALPURNIA.
- Porque o grep não é a solução?
 - Lento (para grandes coleções)

- Que peças de Shakepeare contêm as palavras Brutus AND CAESAR, mas NOT CALPURNIA?
- Poderíamos fazer um grep em todas as peças de Shakespeare's por BRUTUS e CAESAR, e então remover as linhas contendo CALPURNIA.
- Porque o grep não é a solução?
 - Lento (para grandes coleções)
 - grep é orientado a linhas, RI é orientada a documentos

- Que peças de Shakepeare contêm as palavras Brutus And Caesar, mas not Calpurnia?
- Poderíamos fazer um grep em todas as peças de Shakespeare's por BRUTUS e CAESAR, e então remover as linhas contendo CALPURNIA.
- Porque o grep não é a solução?
 - Lento (para grandes coleções)
 - grep é orientado a linhas, RI é orientada a documentos
 - "NOT CALPURNIA" não é trivial

- Que peças de Shakepeare contêm as palavras Brutus AND CAESAR, mas NOT CALPURNIA?
- Poderíamos fazer um grep em todas as peças de Shakespeare's por BRUTUS e CAESAR, e então remover as linhas contendo CALPURNIA.
- Porque o grep não é a solução?
 - Lento (para grandes coleções)
 - grep é orientado a linhas, RI é orientada a documentos
 - "NOT CALPURNIA" não é trivial
 - Outras operações, tais como por exemplo: encontrar a palavra ROMANS proxima da palavra COUNTRYMAN) não é factivel.

- Que peças de Shakepeare contêm as palavras Brutus AND CAESAR, mas NOT CALPURNIA?
- Poderíamos fazer um grep em todas as peças de Shakespeare's por BRUTUS e CAESAR, e então remover as linhas contendo CALPURNIA.
- Porque o grep não é a solução?
 - Lento (para grandes coleções)
 - grep é orientado a linhas, RI é orientada a documentos
 - "NOT CALPURNIA" não é trivial
 - Outras operações, tais como por exemplo: encontrar a palavra ROMANS proxima da palavra COUNTRYMAN) não é factivel.
 - Recuperação Rankeada (melhores documentos)

Matriz de incidência Termo-Documento

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra						
Anthony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
Cleopatra	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

Elemento é is 1 se o termo ocorre. Exemplo: CALPURNIA ocorre em *Julius Caesar*.

Elemento é 0 se o termo não ocorre. Exemplo: CALPURNIA não ocorre em *The tempest*.

Matriz de incidência Termo-Documento

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra						
Anthony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
CLEOPATRA	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

Elemento é is 1 se o termo ocorre. Exemplo: CALPURNIA ocorre em *Julius Caesar*.

Elemento é 0 se o termo não ocorre. Exemplo: CALPURNIA não ocorre em *The tempest*.

Matriz de incidência Termo-Documento

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra						
Anthony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
CLEOPATRA	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

Elemento é is 1 se o termo ocorre. Exemplo: CALPURNIA ocorre em *Julius Caesar*.

Elemento é 0 se o termo não ocorre. Exemplo: CALPURNIA não ocorre em *The tempest*.

Vetores de Incidencia

- \bullet Então temos um 0/1 vector para cada termo.
- Para responder à consulta Brutus and Caesar and not Calpurnia:

Vetores de Incidencia

- Então temos um 0/1 vector para cada termo.
- Para responder à consulta Brutus and Caesar and not Calpurnia:
 - Basta tomarmos os vetores para BRUTUS, CAESAR, e CALPURNIA
 - tomar o complemento do vetor para CALPURNIA
 - fazer um (bitwise) AND dos os três vetores
 - 110100 And 110111 And 101111 = 100100

ullet Considere $N=10^6$ documentos, cada um com cerca de 1000 tokens

- Considere $N=10^6$ documentos, cada um com cerca de 1000 tokens
- $\bullet \Rightarrow$ totalizando 10^9 tokens

- ullet Considere $N=10^6$ documentos, cada um com cerca de 1000 tokens
- $\bullet \Rightarrow$ totalizando 10^9 tokens
- Assumindo uma média de 6 bytes por token, incluindo espaços e pontuação \Rightarrow tamanho do *corpus* $6 \cdot 10^9 = 6 \text{ GB}$

- ullet Considere $N=10^6$ documentos, cada um com cerca de 1000 tokens
- $\bullet \Rightarrow$ totalizando 10^9 tokens
- Assumindo uma média de 6 bytes por token, incluindo espaços e pontuação \Rightarrow tamanho do *corpus* $6 \cdot 10^9 = 6 \text{ GB}$
- Assumindo que existam M = 500,000 termos distintos na coleção

- Considere $N=10^6$ documentos, cada um com cerca de 1000 tokens
- $\bullet \Rightarrow$ totalizando 10^9 tokens
- Assumindo uma média de 6 bytes por token, incluindo espaços e pontuação \Rightarrow tamanho do *corpus* $6 \cdot 10^9 = 6 \text{ GB}$
- Assumindo que existam M = 500,000 termos distintos na coleção
- (Note a diferença entre termo e token)

• $M = 500,000 \times 10^6 = \text{meio trilhão de 0s e 1s.}$

- $M = 500,000 \times 10^6 = \text{meio trilhão de 0s e 1s.}$
- Mas esta matriz n\u00e3o tem mais que 1 bilh\u00e3o de 1s.

- $M = 500,000 \times 10^6 = \text{meio trilhão de 0s e 1s.}$
- Mas esta matriz não tem mais que 1 bilhão de 1s.
 - Extremamente esparsa.

- $M = 500,000 \times 10^6 = \text{meio trilhão de 0s e 1s.}$
- Mas esta matriz n\u00e3o tem mais que 1 bilh\u00e3o de 1s.
 - Extremamente esparsa.
- Qual seria uma representação melhor?

- $M = 500,000 \times 10^6 = \text{meio trilhão de 0s e 1s.}$
- Mas esta matriz n\u00e3o tem mais que 1 bilh\u00e3o de 1s.
 - Extremamente esparsa.
- Qual seria uma representação melhor?
 - Registrar apenas os 1s.

Índice Invertido

Para cada termo t, armazenamos uma lista com os documentos em que este ocorre.

Índice Invertido

Para cada termo t, armazenamos uma lista com os documentos em que este ocorre.

Índice Invertido

Para cada termo t, armazenamos uma lista com os documentos em que este ocorre.

Construindo um Índice Invertido

- Junte os documentos a serem indexados:
 Friends, Romans, countrymen. So let it be with Caesar . . .
- Tokenize o texto, transformando cada documento em uma lista de tokens:
 - Friends Romans countrymen So . . .
- Realize um pré-processamento linguístico, produzindo uma lista de termos normalizados, que serão os termos indexados: friend roman countryman so ...
- Indexe os documentos em que cada termo ocorre criando um índice invertido, consistindo de um dicionário e postings.