Post-Lab Assessment: Induction Machine Lab

• **Description**: This assessment evaluates your knowledge and skills after completing the induction machine laboratory session. Please answer all questions honestly based on your lab experience. This will help us measure the effectiveness of the lab.

your lab experience. This will help us measure the effectiveness of the lab.
• Estimated Time: 15-20 minutes
Required
Student Information
1. Student name *
2. Student ID *
3. Gender *
○ Man
Woman
4. Program *
○ BFM
O BTI/BTX

O BHM

THEORETICAL KNOWLEDGE REASSESSMENT (CONCEIVE)

5.			nchronous spe a 50Hz supply?		e induction mo	otor
	\bigcirc	1000 rpm				
	\bigcirc	1200 rpm				
	\bigcirc	1500 rpm				
	\bigcirc	1800 rpm				
6.	The	slip of an	induction mot	or is defined a	S:	
	\bigcirc	(Ns - Nr)/N	s 1			
	\bigcirc	(Nr - Ns)/N	r			
	\bigcirc	Ns/Nr				
	\bigcirc	Nr/Ns				
7.	At n	o-load coi	ndition, the slip	p of an inducti	on motor is:	
	\bigcirc	Zero				
	\bigcirc	Very small ((1-3%)			
	\bigcirc	Around 5%				
	\bigcirc	Maximum				
8.	mac	hines.	ent understand	_		ectrical
		1	2	3	4	5

1	2	3	4	5
2.				
Rate your curre AC circuits	ent understand	aing of power	tactor measur	rement in
1	2	3	4	5
Rate your curre motors	nt understand	ding of speed-	-torque charac	cteristics i
1	2	3	4	5
Based on your induction moto	or changes slig	htly from no-	•	
•	or changes slig	htly from no-	•	
induction moto	or changes slig 5 SENTENCES)	htly from no- * er factor of an	load to full-lo	ad tor? List a
induction moto conditions. (3-5 What factors af	or changes slig 5 SENTENCES)	htly from no- * er factor of an	load to full-lo	ad tor? List a

EXPERIMENTAL DESIGN REASSESSMENT (DESIGN)

14.			e power factor I you use?	of a 3-phase	induction mot	or, which
	○ Sir	ngle watt	meter method			
	O Tw	o wattm	eter method			
	○ Th	ree wattr	meter method			
	O Vo	ltmeter-a	ammeter method			
15.			est, which para tant as voltage		ou expect to r	remain
	O Cu	rrent				
	O Po	wer facto	or			
	○ Sp	eed				
	O Po	wer cons	umption			
16.	-		fidence in setti fely Scale : 1 (No			
		1	2	3	4	5
17.	Rate yo		fidence in sele	cting appropri	ate voltage rar	nges for
		1	2	3	4	5
18.	Rate yo proced		fidence in iden	tifying and fol	lowing electric	cal safety
	•	1	2	3	4	5

strategy				
1	2	3	4	5
20. What modifica experimental s				ng. (5-7
sentences) *				

19. Rate your confidence in planning a systematic data collection

SECTION 4: PRACTICAL SKILLS (IMPLEMENT)

21. Rate your curre equipment saf	•	onnect three-	phase electrica	I
1	2	3	4	5
22. Rate your curr measurements	•	ise digital mul	timeters for AC	
1	2	3	4	5
23. Rate your curry variacs)	ent ability to o	perate variabl	e voltage sour	ces (like
1	2	3	4	5
24. Rate your curr systematically	•	•	ental data	
1	2	3	4	5
25. When starting	an induction r	motor for testi	ng, you should	J: *
Apply full v	oltage immediate	ely		
Start with re	educed voltage th	nen increase grad	ually	
Start with m	naximum frequen	су		
Connect the	e load first, then p	oower		

26.	Describe the mexperimental person sentences *	_	•		ne
27.	Rate the effect understand the *			•	
	1	2	3	4	5
28.	Rate the effect physical experi		virtual lab in p	preparing you	for the
	1	2	3	4	5

SECTION 5: ANALYSIS AND APPLICATION REASSESSMENT (OPERATE)

29. If the slip of load, the to	an induction mo que will:	otor increases	from no-load t	to full-
Always in	ncrease linearly			
Always d	ecrease			
First incr	ease then decrease	after maximum to	orque point	
Remain	constant			
30. Rate your co	onfidence in calc	ulating slip fro	m speed meas	surements
1	2	3	4	5
31. Rate your co	onfidence in inte	rpreting powe	r factor variation	ons in
1		3	4	5
from experi	onfidence in anal mental data	lyzing speed-ti	orque relation:	ships
1	2	3	4	5
	onfidence in drav from experimen		ul engineering)
1	2	3	4	5

splain how the knowledge gained from this lab applies to real
rplain how the knowledge gained from this lab applies to real dustrial applications. Give specific examples. (7-10 sentences) *

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

