20/2/2019

Un gas alla temperatura di 0 °C occupa un volume di 2,5 L, mentre alla temperatura di 251 °C occupa un volume di 4,8 L.

- ▶ Calcola la costante di dilatazione volumica del gas.
- ► Verifica che essa è pari a $\frac{1}{273}$ °C⁻¹ fino alla seconda cifra significativa.

 $[3,7 \times 10^{-3} \, {}^{\circ}\text{C}^{-1}]$

Volume
Volume
AWA TEMP.
$$t$$
 TEMP. $0^{\circ}C$

$$\frac{V_{t}}{V_{o}} = 1 + \alpha t$$

$$\frac{V_{t}}{V_{o}} = 1$$

 $\frac{1}{273} \text{ °C}^{-1} = 0,0036630.... °C^{-1} = 3,7 \times 10^{-3} \text{ °C}^{-1}$ 2° cifa rignificativa

49 ★★★

Un gas è racchiuso dentro un contenitore cilindrico munito di un pistone libero di muoversi. La temperatura passa da 20 °C a 42 °C, mentre la pressione sul pistone è mantenuta costante. Il pistone, prima del riscaldamento, si trovava a un'altezza di 15 cm dalla base del contenitore cilindrico.

▶ Calcola l'altezza finale raggiunta dal pistone.

$$h_{42^{\circ}C} = h_{o} (1 + d \cdot 42^{\circ}C) = \frac{15 \text{ cm}}{1 + \frac{20}{273}} (1 + \frac{42}{273}) =$$

$$= 16,126... \text{ cm} \simeq 16 \text{ cm}$$

10 LEGGE DI GAY-LUSSAC

p costante

$$V_t = V_o(1+ t)$$

$$\alpha = \frac{1}{273} e^{-1}$$

t=temperature in °C

T = temperature anduta

T = t + 273 (VALORI NUMERICI DELLE TEMPERATURE)

fins un volere T della tempertura ansluta che conisponde a un certs volere t in °C

$$V_T = V_t = V_0 \left(1 + \frac{T - 273}{273}\right) = V_0 \left(1 + \frac{T}{273} - 1\right)$$
VOLUME A 273 K

$$V_T = (\frac{V_o}{273})^T =$$
 $V =$ direttamente propossionale alla temperature assoluta T (finata la pressione)

STATE 1 STATE 2 V_1 V_2 V_2 V_3 V_4 V_2 V_4 V_2 V_4 V_5 V_6 V_7 V_8 V_8

Un gas è contenuto in cilindro munito di pistone mobile di diametro interno pari a 26 cm; il gas occupa un volume iniziale di 8,5 dm³ e si trova alla temperatura di 32 °C. Mantenendo la pressione costante viene riscaldato fino alla temperatura di 56 °C.

► Calcola l'altezza raggiunta dal pistone dopo l'espansione.

[17 cm]

$$V_{4} = 8,5 L$$
 $V_{2} = ?$

$$T_{1} = (273 + 32) K = T_{2} = (273 + 56) K = 329 K$$

$$V_2 = V_1 \frac{T_2}{T_1} = (8,5 L) \frac{329}{305} = 9,168852... \times 10^3 \text{ cm}^3$$

$$l_{2} = \frac{V_{2}}{S} = \frac{9,168852... \times 10^{3} \text{ cm}^{3}}{13^{2} \pi \text{ cm}^{2}} = 0,01726... \times 10^{3} \text{ cm}$$
area di bose
$$2 = \frac{1}{13^{2} \pi} = \frac{9,168852... \times 10^{3} \text{ cm}^{3}}{13^{2} \pi \text{ cm}^{2}} = 0,01726... \times 10^{3} \text{ cm}$$