Group 4

Al Jubaiar (26107) Shahnawaz Alam (32445) Safayet Hossain Shimul (32167) Md Tuhin Islam (32279)

- Results of Presentation 1
- Requirements
- Requirements > Criteria
- Candidate Solutions
- Uncertainty
- Risk Profile
- Decision Tree

Results of Presentation 1

Group	Stakeholder	Decision
4	Henkel AG & Co. KGaA	From which country should green hydrogen in the form of LOHC be imported?

Potential LOHC import countries

- The EU and UK countries: UK, Spain, Sweden, Norway, Denmark, Finland
- The Middle East and North Africa (MENA) region countries: Saudi Arabia, Oman, UAE, Morocco, Turkey, Algeria
- Other countries: Australia, Brazil, Canada, Chile, New Zealand, USA, Iceland

Strong/Slightly export-oriented country

ENERGY CONSUMPTION

Direct energy consumption						
Coal	1,000 MWh	89	84	82	77	55
Fuel oil	1,000 MWh	103	114	111	111	103
Gas	1,000 MWh	1,473	1,461	1,423	1,420	1,178
Other combustiles	1,000 MWh	20	7	4	4	2
Biofuels	1,000 MWh	0	0	0	41	146
Generated renewable energy ¹	1,000 MWh	3	2	4	7	10
Indirect energy consumption						
Bought-in electricity	1,000 MWh	780	769	752	739	720
Share of bought-in renewable electricity	%	11	11	48	68	70
Bought-in steam/heat	1,000 MWh	47	46	46	51	51
Total energy consumption	1,000 MWh	2,515	2,482	2,422	2,450	2,265
Share of renewable energy consumption	%	4	4	15	23	29
1						

¹ "Generated renewable energy" is understood as electricity and thermal energy generated on-site using fuel-free sources such as wind and solar power.

Strong/Slightly export-oriented country

- Strong/Slightly export-oriented country
- Maximum production cost < 3,00€ by 2030

- Strong/Slightly export-oriented country
- Maximum production cost < 3,00€ by 2030

- Strong/Slightly export-oriented country
- Maximum production cost < 3,00€ by 2030
- Transportation via ship or pipeline

- Strong/Slightly export-oriented country
- Maximum production cost < 3,00€ by 2030
- Transportation via ship or pipeline
- Maximum distance < 7500 km

Cost comparison of shipping and pipeline hydrogen transport routes

- Strong/Slightly export-oriented country
- Maximum production cost < 3,00€ by 2030
- Transportation via ship or pipeline
- Maximum distance < 7500 km

Other

Morocco, Germany to join work on green hydrogen production

The governments of Morocco and Germany have signed a pact that will facilitate the cooperation between the two countries in the development of green hydrogen projects.

The first two projects were outlined in the declaration of intent that was signed last week. One of them is the "Power-to-X" scheme that calls for the production of green hydrogen under a plan proposed by the Moroccan Solar Energy Agency (MASEN).

Sunset in the Sahara by Christopher L. on flickr.com CC BY 2.0

Energy MREnewable Fuels | Fuel Oil | Hydrogen | C

Australia and Ger for joint hydrogen

Reuters

January 27, 2023 11:03 AM GMT+1 - Updated 10 mo

Jan 27 (Reuters) - Australia and Germany haveuros (\$54.4 million), respectively, towards a Australian Minister for Climate Change and E

The two countries, which <u>signed</u> a bilateral al announced funding for four projects under th Incubator (HyGATE) initiative.

Home / News / National / Chile and Germany Sign Agreement to Promote Green Hydrogen

Chile and Germany sign agreement to promote green hydrogen

29 Jun 2021

 Both countries agreed to strengthen cooperation on green hydrogen and announced the creation of a working group within the framework of the Chilean-German Energy Association to identify viable projects for the so-called "fuel of the future."

This morning, the Minister of Energy, Juan Carlos Jobet, together with the Minister of Economy and Energy of Germany, Peter Altmaier, signed a joint declaration to strengthen cooperation on green hydrogen and announced the creation of a working group within the framework of the Chilean-German Energy Association to identify viable green hydrogen projects.

- Strong/Slightly export-oriented country
- Maximum production cost < 3,00€ by 2030
- Transportation via ship or pipeline
- Maximum distance < 7500 km
- Existing bilateral agreements between governments on hydrogen development

Requirements / Criteria

Strong/Slightly export-oriented country

Maximum production cost < 3,00€ by 2030

Transportation via ship or pipeline

• Maximum distance < 7500 km

 Existing bilateral agreements between governments on hydrogen development **Exporting countries**

Cost

Mode of transport

Transport distance

Geopolitics

Requirements / Criteria

Requirements	Criteria
Strong/Slightly export-oriented country	Exporting countries
Maximum production cost < 3,00€ by 2030	Cost
Transportation via ship or pipeline	Mode of transport
Maximum distance < 7500 km	Transport distance
Existing bilateral agreements between governments on hydrogen development	Geopolitics

Candidate Solutions

Reasons of choosing Decision Tree method -

- Honestly, we have limited expertise. Weighting each criterion necessitates in-depth knowledge and reliable sources
- All members of our group might not get common understating of scaling and weighting.
- Decision Tree works well both with qualitative and quantitative data.
- Decision trees are easy to interpret and understand, making them useful for communication with stakeholders, or even with our course mates.

Uncertainty

Uncertainties

Technological maturity

Geopolitical Stability

Uncertainties	Outcomes		
Technological	Developed (80%)		
maturity	Underdeveloped (20%)		
Geopolitical Stability	Stable conditions (70%)		
	Geopolitical tensions (30%)		

Uncertainties	Outcomes	Consequences of Alternative Spain	Consequences of Alternative Morocco	Consequences of Alternative Norway
Technological maturity	Developed (80%)			
	Underdeveloped (20%)			
Geopolitical Stability	Stable conditions (70%)			
	Geopolitical tensions (30%)			23

Uncertainties	Outcomes	Consequences of Alternative Spain	Consequences of Alternative Morocco	Consequences of Alternative Norway
	Developed	Low cost	Low cost	Low cost
	(80%)		Higher generation	High generation
Technological		Reliable transport	Reliable transport	Reliable transport
maturity	Underdeveloped (20%)	Not having comparative low production cost	Not having comparative low production cost	Not having comparative low production cost
		Not Reliable transport	Not Reliable transport	Not Reliable transport
Geopolitical Stability	Stable conditions	Extension of H2Med could deliver a pipeline network	Repurposed pipeline network by 2030	
	(70%)	Potential Reliable supply chain / transport	Potential Reliable supply chain / transport	Potential Reliable supply chain / transport
	Geopolitical tensions	No pipeline network by 2030	No repurposed pipeline by 2030	
	(30%)	Disruptions in supply chain	Disruptions in supply chain	Disruptions in supply chain

Decision Tree

Decision Node
Chance Node

Decision Tree

Decision Node

Chance Node

Decision Tree

Decision Node

Chance Node

THANKS