Equivalence of NFAs and DFAs

- Every language that can be described by some NFA can also be described by some DFA.
- The DFA in practice has about as many states as the NFA, although it often has more transitions.
- However, in the worst case, the smallest DFA can have 2^n states while the smallest NFA for the same language has only n states.

Say, an NFA, $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$.

Our goal is the description of a DFA D = $(Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ such that L(D) = L(N)

The components of D are as follows:

- The input *alphabets* of the two automata are same.
- The *start state* of *D* is the set containing only the start state of *N*.
- Q_D is the set of subsets (S) of Q_N ; i.e., Q_D is the power set (the set of all the subsets of a set) of Q_N . Note that if Q_N has n states, then Q_D will have 2^n states. Often, not all these states are accessible from the start sate of Q_D and inaccessible states can be thrown away.
- F_D is the set of subsets (S) of Q_N such that $S \cap F_N \neq \emptyset$. That is, F_D is all sets of N's states that include at least once accepting state of N.
- To compute $\delta_D(S, a)$ where $S \subseteq Q_N$ and input symbol a in Σ , we look at all the states p in S, see what states N goes to from p on input a, and take union of all those states.

$$\delta_D(S, a) = \bigcup \delta_N(p, a)$$
 where p in S .

Example: Design a nondeterministic finite automaton that accepts all and only the strings of 0's and 1's that end in 01 and find the equivalent DFA as well.

- Transition Diagram: [Book: Section 2.3.1- Fig 2.9]

Description of the equivalent DFA:

- Alphabet, Σ : {0, 1}
- **Start State**: {q₀}
- All Possible States:

$$\emptyset$$
, {q₀}, {q₁}, {q₂}, {q₀, q₁}, {q₀, q₂}, {q₁, q₂}, {q₀, q₁, q₂}

All Possible Final States:

$$\{q_2\},\,\{q_0,q_2\},\,\{q_1,q_2\},\,\{q_0,q_1,\,q_2\}$$

- Transition Table:

	0	1
Ø	Ø	Ø
→ { q ₀ }	$\{q_0,q_1\}$	$\{q_0\}$
{q ₁ }	Ø	$\{q_2\}$
*{q2}	Ø	Ø
$\{q_0, q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$
*{q ₀ , q ₂ }	$\{q_0,q_1\}$	$\{q_0\}$
*{q1, q2}	Ø	$\{q_{2}\}$
$*\{q_0, q_1, q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$

The complete subset construction

- Transition Diagram:

[Book: Section 2.3.5- Fig 2.14]

Book: Introduction to Automata Theory, Languages and Computation [3rd Ed.]