Chapitre 3 : variables aléatoires à densité

Une variable aléatoire réelle a une loi à densité s'il existe une fonction f positive, d'intégrale sur \mathbb{R} égale à 1 telle que pour tout intervalle [a, b],

$$\mathbb{P}(X \in [a,b]) = \mathbb{P}_X([a,b]) = \int_a^b f(t)dt.$$

Cette quantité est aussi égale à $\mathbb{P}_X([a,b[) = \mathbb{P}_X(]a,b]) = \mathbb{P}_X(]a,b[)$.

La fonction de répartition est

$$F_X(x) = \mathbb{P}(X \le x) = \int_{-\infty}^x f(t)dt$$
 et $F_X'(x) = f(x)$.

1) Exemples de lois à densité:

Loi uniforme sur [a, b], $\mathcal{U}(a, b)$, a < b:

$$f_X(x) = \frac{1}{b-a} 1_{[a,b]}(x)$$

Loi exponentielle, $\mathcal{E}(\lambda)$, $\lambda > 0$:

$$f_X(x) = \lambda e^{-\lambda x} 1_{\mathbb{R}_+}(x)$$

Loi gaussienne ou normale, $\mathcal{N}(m, \sigma^2)$, $m \in \mathbb{R}$, $\sigma^2 > 0$:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right)$$

Loi gaussienne centrée réduite, $\mathcal{N}(0,1)$:

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

2) Espérance, variance:

L'espérance de X à densité f est donnée par :

$$\boxed{\mathbb{E}(X) = \int_{\mathbb{R}} x f(x) dx}$$

lorsue l'intégrale $\int_{\mathbb{R}} |x| f(x) dx$ est finie.

La variance $\mathbb{V}(X) = \mathbb{E}((X - \mathbb{E}(X))^2)$ s'écrit:

$$\mathbb{V}(X) = \int_{\mathbb{R}} x^2 f(x) dx - \left(\int_{\mathbb{R}} x f(x) dx \right)^2$$

si $\int_{\mathbb{R}} x^2 f(x) dx < \infty$.

3) Calcul de loi à l'aide de la fonction de répartition:

Exemple (traité en cours) : si U a une loi uniforme sur [0,1], alors $X=-\ln(U)$ suit une loi exponentielle de paramètre 1.

4) Inégalités probabilistes:

a) Inégalité de Markov : Soit X une variable positive, intégrable. Soit x > 0,

$$\mathbb{P}(X \ge x) \le \frac{\mathbb{E}(X)}{x}.$$

b) Inégalité de Bienaymé-Tchebychev : Soit X une variable aléatoire de variance finie. Soit x > 0,

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge x) \le \frac{\mathbb{V}(X)}{r^2}.$$