In [1]:	<pre>from pprint import pprint import cv2 import numpy as np from matplotlib import pyplot as plt</pre>
In [2]:	<pre>image = cv2.imread("resources/Brush/image_39.png") img_copy = image.copy() img_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # plt.figure(figsize=())</pre>
In [3]:	<pre>dark_bright_threshold = 200 mean_of_gray_image = np.mean(img_gray) # Select threshold for further operation based on image brightness if mean_of_gray_image < dark_bright_threshold: # Image is dark contour_recognition_threshold = 120 print("Dark Image") else: # Image is bright contour_recognition_threshold = 200 print("Light Image") _, img_thresh = cv2.threshold(img_gray, contour_recognition_threshold, 255, cv2.THRESE)</pre>
	<pre>plt.subplot(1, 3, 1) plt.imshow(image) plt.subplot(1, 3, 2) plt.imshow(img_gray, "gray") plt.subplot(1, 3, 3) plt.imshow(img_thresh, "gray")</pre> Light Image
Out[3]:	<pre><matplotlib.image.axesimage 0x2006366c730="" at=""></matplotlib.image.axesimage></pre>
In [4]:	<pre>plt.subplot(1, 2, 1) plt.imshow(img_thresh, "gray") kernel = np.ones((3,3), np.uint8) img_thresh = cv2.morphologyEx(img_thresh, cv2.MORPH_OPEN, kernel, iterations=2) plt.subplot(1, 2, 2) plt.imshow(img_thresh, "gray")</pre>
Out[4]:	<pre><matplotlib.image.axesimage 0x20063794d60="" at=""></matplotlib.image.axesimage></pre>
In [5]:	<pre>contours, _ = cv2.findContours(img_thresh, cv2.RETR_TREE, cv2.cv2.CHAIN_APPROX_NONE) i = 0 for cnt in contours: print(cv2.contourArea(cnt)) im = img_copy.copy() cv2.drawContours(im, cnt, -1, (0, 255, 0), 2, cv2.LINE_AA) plt.subplot(1, len(contours), i+1)</pre>
	plt.imshow(im, "gray") i = i + 1 65025.0 8543.5 20.0 100 200 100 200 100 200 100 200 100 200
In [6]:	<pre># get greatest contour by area im_boundary = (img_thresh.shape[0]-1)*(img_thresh.shape[1]-1) areas = [cv2.contourArea(ar) for ar in contours] cnt = [x for x in areas if x!=im_boundary] cnt = contours[areas.index(max(cnt))] contour_area = cv2.contourArea(cnt) print("Area", contour_area) to_show_contour = img_copy.copy() cv2.drawContours(to_show_contour, cnt, -1, (0, 255, 0), 2, cv2.LINE_AA) plt.imshow(to_show_contour)</pre>
Out[6]:	Area 8543.5 <matplotlib.image.axesimage 0x20063922c10="" at=""> 0</matplotlib.image.axesimage>
In [7]:	rect = cv2.minAreaRect(cnt) rect_area = rect[1][0] * rect[1][1] box = cv2.boxPoints(rect) box = np.int0(box) print("Rectangle", rect[1][0], rect[1][1]) to_show_box = img_copy.copy() cv2.drawContours(to_show_box, [box], 0, (0, 0, 255), 2) plt.imshow(to show box)
Out[7]:	Rectangle 52.41005325317383 236.18572998046875 <matplotlib.image.axesimage 0x20063982520="" at=""> 0 50 100 250 250</matplotlib.image.axesimage>
In [8]:	hull = cv2.convexHull(cnt) hull_area = cv2.contourArea(hull) to_show_hull = img_copy.copy() cv2.drawContours(to_show_hull, [hull], 0, (255, 0, 0), 2) plt.imshow(to_show_hull)
Out[8]:	<pre><matplotlib.image.axesimage 0x200639d8460="" at=""></matplotlib.image.axesimage></pre>
In [9]:	<pre># Detect corners from grayscale image corners = cv2.goodFeaturesToTrack(np.float32(img_gray), 100, 0.01, 10) corners = np.int0(corners) to_show_corners = img_copy.copy() for corner in corners: x, y = corner.ravel() cv2.circle(to_show_corners, (x, y), 3, (80, 127, 255), 2) plt.imshow(to_show_corners) print("good corners", len(corners))</pre>
	good corners 48 50 100 200 250 50 100 50 100 50 100 150 200 250
In [10]:	<pre>def corner_harist(img, src_img): gray = cv2.cvtColor(src_img, cv2.COLOR_BGR2GRAY) gray = np.float32(gray) dst = cv2.cornerHarris(gray, 2, 3, 0.04) new_im = np.zeros((gray.shape[0], gray.shape[1]), dtype=np.uint8) new_im[dst > 0.01 * dst.max()] = 1 # Threshold for an optimal value, it may vary depending on the image. img[dst > 0.01 * dst.max()] = [0, 0, 255] # cv.imshow("inimage", img) return new_im</pre>
In [11]:	<pre>h_corners = cv2.cornerHarris(np.float32(img_gray), 2, 3, 0.04) h_corners = np.int0(h_corners) to_show_corners_harris = img_copy.copy() h_threshold = 0.05 for i in range(h_corners.shape[0]):</pre>
	50 - 100 - 200 - 250 0 50 100 150 200 250
In [12]:	<pre># Store features as dictionary ret = { "contour_points": len(cnt), "amount_contours": len(contours), "contour_length_area_ratio": (</pre>
	<pre>{'amount_contours': 3, 'aspect_ratio': 0.22190186196900147, 'contour_hull_length_ratio': 1.2315101944287248, 'contour_length_area_ratio': 0.07600862921145882, 'contour_length_hull_area_ratio': 0.06319689783155062, 'contour_length_rect_area_ratio': 0.05246026359600738, 'contour_points': 615, 'contour_points': 615, 'contour_rect_length_ratio': 1.1250679347978743, 'corners': 48, 'extent': 0.6901882607310412, 'harris_corners': 581, 'hull_rectangle_ratio': 0.8301082077768848, 'solidity': 0.8314437253661622}</pre>