# DATA



# DATA

- Information about the problem to solve
- In the form of a distribution

#### $p_{\mathrm{data}}$

Classification and Regression:

$$p_{\text{data}} \in \Delta(\mathcal{X} \times \mathcal{Y})$$

Density estimation, Clustering and Dimensionality Reduction:

$$p_{\mathrm{data}} \in \Delta(\mathcal{X})$$





# DATA

- The data distribution  $P_{\mathrm{data}}$  is typically unknown
- But we can sample from it







# TRAINING, VALIDATION, TEST SETS



# TRAINING & TEST SET





# TRAINING & TEST SET



Not this one!

## DATA GENERATING DISTRIBUTION

- We use a probabilistic model of learning
- There is some probability distribution over example/label pairs called the data generating distribution
- Both the training data and the test set are generated based on this distribution

# DATA GENERATING DISTRIBUTION



## DATA GENERATING DISTRIBUTION



## TRAINING SET DESIGN

 The failure of a machine learning algorithm is often caused by a bad selection of training samples

• The issue is that we might introduce unwanted correlations from which the algorithm

derives wrong conclusions

"The US Army trained a program to differentiate American tanks from Russian tanks with 100% accuracy. Only later did analysts realized that the American tanks had been photographed on a sunny day and the Russian tanks had been photographed on a cloudy day. The computer had learned to detect brightness." [probably a legend]



# EXAMPLE: POLYNOMIAL CURVE FITTING

#### Data

$$\mathcal{D}_n = \{(x_1, y_1), ..., (x_n, y_n)\}$$

- Data generated from  $\sin(2\pi x)$  +noise
- Training set with n=10 points



#### MODEL AND HYPOTHESIS SPACE DOMANDA THATCA SU COS LE

- A model is like a "program" to solve the problem
- It is the implementation of a function  $f \in \mathcal{F}_{task}$  that can be tractably computed
- A set of models forms an hypothesis space

$$\mathcal{H}\subset\mathcal{F}_{\mathrm{task}}$$

 The learning algorithm seeks a solution within the hypothesis space



# EXAMPLE: POLYNOMIAL CURVE FITTING

#### Model

$$f_w(x) = \sum_{j=0}^{M} w_j x^j$$

$$f_{W}(x) = \sum_{j=0}^{M} w_j x^j$$

$$f_{W}(x) = \{w_0, \dots, w_M\}$$

$$f_{W}(x) = \{w_0, \dots, w_M\}$$

$$f_{W}(x) = \sum_{j=0}^{M} w_j x^j$$

Ho trasformato il problema. Il mio problema ora è quello di trovare i parametri corretti. Utilizzo sempre la stessa semplice funzioni che ogni volta ha diversi parametri. Calcolare il modello ora è calcolare i parametri.

Sarebbe impraticabile provare tutte le funzioni esistenti.

Devo restringere lo spazio di ricerca. Quindi riduco a trovare i parametri corretti.



# OBJECTIVE - THE IDEAL TARGET

Impossibile cercare l'intero spazio.

Se potessimo farlo otterremmo la soluzione perfetta.

Faccio una generalizzazione.

Quello che trovo è un proxy della soluzione perfetta.

Es: curve fitting. Cercare il polinomio corretto mi da una curva simile. Ma non esattamente quella curva.

- Minimize a **(generalization) error function**  $\mathit{E}(f; p_{\mathrm{data}})$
- It determines how well a solution  $f \in \mathcal{F}_{\mathrm{task}}$  fits some given data
- ullet Guides the selection of the best solution in  $oldsymbol{\mathscr{F}}_{\mathrm{task}}$

$$f^{\star} \in \arg\min_{f \in \mathcal{F}_{\text{task}}} E(f; p_{\text{data}})$$

Too large search space and we need an implementation.



# OBJECTIVE - THE FEASIBLE TARGET

- We need to restrict the focus on finding functions that can be implemented and evaluated in a tractable way
- We define a model hypothesis space  $\mathcal{H} \subset \mathcal{F}_{\mathrm{task}}$  and seek a solution within that space

$$f_{\mathcal{H}}^{\star} \in \arg\min_{f \in \mathcal{H}} E(f; p_{\text{data}})$$

Cannot be computed exactly, for  $p_{\mathrm{data}}$  is unknown



# OBJECTIVE - THE ACTUAL TARGET

• We need to work on a data sample, i.e. a **training set**,  $\mathcal{D}_n = \{z_1, ..., z_n\}$ Non ho accesso alla reale distribuzione.

where  $z_i = (x_i, y_i) \in \mathcal{X} \times \mathcal{Y} \quad \Big/$ 

 $z_i \sim p_{\text{data}}$ 

 $f_{\mathscr{H}}^{\star}(\mathscr{D}_n) \in \arg\min_{f \in \mathscr{H}} E(f; \mathscr{D}_n)$   $f_{\mathsf{ERROR}}$ 

Il mio training set di per se è già una generalizzazione. Aggiungo dell'errore rispetto alla perfezione durante il training. Un training set grande ci fa avvicinare alla reale distribuzione.



## ERROR FUNCTION

Typically the generalization and training error functions can be written in terms of a **pointwise loss**  $\mathcal{C}(f;z)$  measuring the error incurred by f on the training example z

$$E(f; p_{\text{data}}) = \mathbb{E}_{z \sim p_{\text{data}}} [\ell(f; z)]$$

$$E(f; \mathcal{D}_n) = \frac{1}{n} \sum_{i=1}^n \ell(f; z_i)$$

# EXAMPLE: POLYNOMIAL CURVE FITTING



Distanza della predizione dalla funzione reale per calcolare l'errore.

# EXAMPLE: POLYNOMIAL CURVE FITTING

Objective 
$$\int_{\mathcal{H}_M}^{\star} (\mathcal{D}_n) \in \arg\min_{f \in \mathcal{H}_M} E(f; \mathcal{D}_n)$$

equivalent to  $f_{w^{\star}}$  where

$$w^* \in \arg\min_{w \in \mathbb{R}^M} \frac{1}{n} \sum_{i=1}^n \left[ f_w(x_i) - y_i \right]^2$$

Requires solving a linear system of equations

Il problema diventa: trovare w vettore(parametri del polinomio) che minimizza l'errore



# LEARNING ALGORITHM

Solves the optimization problem targeting  $f_{\mathscr{H}}^{\star}(\mathcal{D}_n)$  but might end up in a different result



# EXAMPLE: NEURAL NETWORK OPTIMIZATION

Issues with optimization: saddle points, local minima



