

Figure 14-72. The capacitance of tank probes varies in a capacitance-type fuel tank indicator system as the space between the inner and outer plates is filled with varying quantities of fuel and air depending on the amount of fuel in the tank.

complicated by the fact that temperature affects the dielectric constant of the fuel. A compensator unit (mounted low in the tank so it is always covered with fuel) is wired into the bridge circuit. It modifies current flow to reflect temperature variations of the fuel, which affect fuel density and thus capacitance of the tank units. [Figure 14-74] An amplifier is also needed in older systems. The amplitude of the electric signals must be increased to move the servo motor in the analog indicator. Additionally, the dielectric constant of different turbine-engine fuels approved for a particular aircraft may also vary. Calibration is required to overcome this.

A fuel summation unit is part of the capacitance-type fuel quantity indication system. It is used to add the tank quantities from all indicators. This total aircraft fuel quantity can be

Figure 14-73. A simplified capacitance bridge for a fuel quantity system.

Figure 14-74. A fuel quantity tank unit and compensator unit installed inside a wing tank.

used by the crew and by flight management computers for calculating optimum airspeed and engine performance limits for climb, cruise, descent, etc. Capacitance-type fuel quantity system test units are available for troubleshooting and ensuring proper functioning and calibration of the indicating system components.

Many aircraft with capacitance-type fuel indicating systems also use a mechanical indication system to cross-check fuel quantity indications and to ascertain the amount of fuel onboard the aircraft when electrical power is not available. A handful of fuel measuring sticks, or drip sticks, are mounted throughout each tank. When pushed and rotated, the drip stick can be lowered until fuel begins to exit the hole on the bottom of each stick. This is the point at which the top of the stick is equal to the height of the fuel. The sticks have a calibrated scale on them. By adding the indications of all of the drip sticks and converting to pounds or gallons via a chart supplied by the manufacturer, the quantity of the fuel in the tank can be ascertained. [Figure 14-75]

Fuel Flowmeters

A fuel flowmeter indicates an engine's fuel use in real time. This can be useful to the pilot for ascertaining engine performance and for flight planning calculations. The types of fuel flow meter used on an aircraft depends primarily on the powerplant being used and the associated fuel system.

Measuring fuel flow accurately is complicated by the fact that the fuel mass changes with temperature or with the type of fuel used in turbine engines. In light aircraft with reciprocating