Planteamiento del problema Cruzando el río

Tipo de problema:

Este es un problema de estado completo.

Modelo de representación:

Para la representación del estado se hacen las siguientes consideraciones:

- Un estado puede ser representado con posiciones fijas para cada elemento, por lo que podemos representar únicamente si el elemento se encuentra o no en una posición convirtiéndolo en un estado binario. Para este caso se usará el orden {Granjero, Perro, Conejo, Repollo}.
- Se sabe que el segmento de estado Este es un complemento al segmento de estado Oeste por lo que es suficiente con representar una mitad y suponer que la otra mitad sigue las mismas reglas.

Con estas suposiciones podemos entonces crear una representación de estado usando 4 bits, un ejemplo de este sería $\{1, 1, 1, 1\}$, que representa $\{Granjero, Perro, Conejo, Repollo\}$ en el lado Este y $\{\}$ en el lado Oeste.

Estado inicial y final:

Basándonos en el modelo de representación propuesto podemos decir entonces que:

Estado inicial: $\{1, 1, 1, 1\}$ **Estado final:** $\{0, 0, 0, 0\}$

Acciones Posibles:

Inicialmente existen 8 acciones posibles:

- 1. Mover al granjero de Este a Oeste
- 2. Mover el granjero de Oeste a Este
- 3. Mover al granjero y el perro de Este a Oeste
- 4. Mover al granjero y el perro de Oeste a Este
- 5. Mover al granjero y el conejo de Este a Oeste
- 6. Mover al granjero y el conejo de Oeste a Este
- 7. Mover al granjero y el repollo de Este a Oeste
- 8. Mover al granjero y el repollo de Oeste a Este

Pero utilizando el modelo de representación, esto puede simplificarse a 4 acciones posibles:

- 1. Cambiar el valor para el granjero
- 2. Cambiar el valor para el granjero y el perro (Si ambos valen lo mismo)
- 3. Cambiar el valor para el granjero y el conejo (Si ambos valen lo mismo)
- 4. Cambiar el valor para el granjero y el repollo (Si ambos valen lo mismo)

Prueba de cumplimiento del objetivo:

Para probar que el objetivo fue completado se revisa que el estado en que nos encontramos sea el estado final representado por $\{0, 0, 0, 0\}$.

Costo de transición:

Para todo movimiento se asignará un coste de 1

Modelo de transición:

Para realizar la transición a nuevos estados, podemos obtener los nuevos estados posibles aplicando las 4 acciones posibles que se describieron antes a cada uno de los estados que podemos encontrar:

Estado Original	Acción 1	Acción 2	Acción 3	Acción 4
{0,0,0,0}	{1, 0, 0, 0}	{1, 1, 0, 0}	{1, 0, 1, 0}	{1, 0, 0, 1}
{0, 0, 0, 1}	{1, 0, 0, 1}	{1, 0, 1, 1}	{1, 1, 0, 1}	{ <i>No Op</i> }
{0, 0, 1, 0}	{1, 0, 1, 0}	{1, 1, 1, 0}	{ <i>No Op</i> }	{1, 0, 1, 1}
{0, 0, 1, 1}	{1, 0, 1, 1}	{1, 1, 1, 1}	{ <i>No Op</i> }	{ <i>No Op</i> }
{0, 1, 0, 0}	{1, 1, 0, 0}	{ <i>No Op</i> }	{1, 1, 1, 0}	{1, 1, 0, 1}
{0, 1, 0, 1}	{1, 1, 0, 1}	{ <i>No Op</i> }	{1, 1, 1, 1}	{ <i>No Op</i> }
{0, 1, 1, 0}	{0, 1, 1, 0}	{ <i>No Op</i> }	{ <i>No Op</i> }	{1, 1, 1, 1}
{0, 1, 1, 1}	{1, 1, 1, 1}	{ <i>No Op</i> }	{ <i>No Op</i> }	{ <i>No Op</i> }
{1, 0, 0, 0}	{0, 0, 0, 0}	{ <i>No Op</i> }	{ <i>No Op</i> }	{ <i>No Op</i> }
{1, 0, 0, 1}	{1, 0, 0, 1}	{ <i>No Op</i> }	{ <i>No Op</i> }	{0,0,0,0}
{1, 0, 1, 0}	{0, 0, 1, 0}	{ <i>No Op</i> }	{0, 0, 0, 0}	{ <i>No Op</i> }
{1, 0, 1, 1}	{0, 0, 1, 1}	{ <i>No Op</i> }	{0, 0, 0, 1}	{0,0,1,0}
{1, 1, 0, 0}	{0, 1, 0, 0}	{0, 0, 0, 0}	{ <i>No Op</i> }	{ <i>No Op</i> }
{1, 1, 0, 1}	{0, 1, 0, 1}	{0, 0, 0, 1}	{ <i>No Op</i> }	{0,1,0,0}
{1, 1, 1, 0}	{0, 1, 1, 0}	{0, 0, 1, 0}	{0, 1, 0, 0}	{ <i>No Op</i> }
{1, 1, 1, 1}	{0, 1, 1, 1}	{0, 0, 1, 1}	{0, 1, 0, 1}	{0, 1, 1, 0}