GEA Event

Ashish Kumar

At appropriate time-scales and conditions, granulation is in steady state

 $transfer in \approx constant \approx transfer out$

$$\frac{d[P_m]}{dt} \approx 0 \approx \frac{d[G_m]}{dt}$$

Two key implications

- 1. Fluxes are roughly constant (Dynamics are transient)
- 2. If feed is constant, product quality is consistent!

Scope: Desired Outcome

Twin-Screw Granulator applies High Shear Wet Granulation

Granule Size Distribution

Key questions for twin-screw granulation process development

What affects granulation time and mixing?

What control degree of rate processes involved in desired quality of granules?

Residence time distribution to know the granulation time and mixing

Residence time distribution to know the granulation time and mixing

Screw Configuration

- Number of kneading discs
- Stagger angle

Process parameters

- Material throughput
- Screw speed

Tracer concentration in granules produced was measured using NIR chemical imaging

API Map was used to measure RTD

Conceptual model to include three main components of RTD

Modified Tank-in-Series model used

Modified Tank-In-Series model

$$e(\theta) = \frac{b[b(\theta - p)]^{n-1}}{(n-1)!} exp^{[-b(\theta - p)]}$$

where,
$$b = \frac{n}{(1-p)(1-d)}$$

Analysis of residence time distribution in twin-screw granulation

RTD measurement by Chemical imaging **Model Formulation**

Outcomes

Measurement based - Mean residence time

Number of CSTR - Plug flow fraction
- Dead volume fraction

Dead volume fraction

$$\tau = \frac{\int_0^\infty t \cdot e(t)dt}{\int_0^\infty e(t)dt}$$

Mean residence time, τ (a measure of the mean of the distribution)

$$\sigma^2 = \frac{\int_0^\infty (t - \tau)^2 \cdot e(t) dt}{\int_0^\infty e(t) dt}$$

Variance, σ^2 (width of the distribution)

Analysis of residence time distribution in twin-screw granulation

Chemical imaging based RTD measurement Model Formulation

Outcomes

Measurement based - Mean residence time

Number of CSTR
 Plug flow fraction
 Dead volume fraction

Residence time reduces with increase in Measure of the mean of the distribution screw speed

Residence time reduces with increase in throughput...but not always

Residence time increases with increase in number of kneading discs.

Residence time reduces with increase in stagger angle.

Mean of the residence time distribution

Analysis of residence time distribution in twin-screw granulation

Chemical imaging based RTD measurement

Model Formulation

Outcomes

Measurement based - Mean residence time
- Mean centred variance

- Number of CSTR
- Plug flow fraction
- Dead volume fraction

Parameters of the TIS model estimated using experimental RTD based on least SSE

$$e(\theta) = \frac{b[b(\theta - p)]^{n-1}}{(n-1)!} e^{[-b(\theta - p)]}$$

Plug flow component of the RTD

Plug flow fraction decreases with increase in screw speed and throughput

Mixed flow component of the RTD

Material throughput controls mixing which reduces with increase in throughput

Mixed flow component of the RTD

Dead zone increases with screw speed, and reduces with increase in kneading discs

RTD analysis showed that

Screw speed controls the residence time,

Material throughput controls mixing.

Key questions for twin-screw granulation process development

What affects granulation time and mixing?

What control degree of rate processes involved in desired quality of granules?

Consigma™-1 system (GEA pharma systems, Collette)

Open barrel of a twin screw granulator

Consigma - 1 experiments

Lactose/PVP (97.5/2.5) premix was granulated with distilled water

Factors:

Parameters	Low	High
Throughput	10 Kg/h	25 Kg/h
Liquid-solid ratio	4.58 %	6.52%
Screw speed	500 RPM	900 RPM

Particle characterization by Laser Obscuration Time technique Responses: (Location 1, 3, 5)

Comparing average Feret diameter

Comparing average Feret diameter

At high Throughput and L/S

Average Feret diameter vs Aspect ratio

Population balance equation

$$\left| \frac{\partial n}{\partial t} + \nabla \cdot \left(\mathbf{u}_{p} n \right) - \nabla \cdot \left(D_{p} \nabla n \right) \right| =$$

Granule size distribution

$$N \delta(V - v_o) - \frac{\partial}{\partial V} (G n)$$

Nucleation and growth term

$$+\frac{1}{2}\int_{0}^{V}\beta(v,V-v)n(v)n(V-v)dv-n(V)\int_{0}^{\infty}\beta(v,V)n(v)dv$$
Aggregation term

$$+\int_{V}^{\infty} \Gamma(\Phi)b(V;\Phi)n(\Phi)d\Phi - \Gamma(V)n(V)$$

Breakage term

N = nucleation rate

G = growth rate

 β = aggregation rate

 Γ = breakage rate

b = daughter distribution

 v_0 = nuclei size

Ignoring effect of granulator design on granule size distribution

Multiple factors contribute to the variation in granule size distribution

Conclusions

Along with experimental study, an improved insight can be obtained by model-based analysis (as we already seen in case of RTD).

Screw speed controls the residence time, while the material throughput controls mixing.

High throughput can easily be achieved by simultaneously increasing the feed rate and screw speed.

What next...

Together with a Granule size distribution study it will be confirmed which mixing regime is most desirable.

In further study we will investigate material properties influence on the RTD and mixing.

Utilise the mixing and residence time information for mechanistic modeling of the TSG.

Thomas De Beer Ingmar Nopens Krist V. Gernaey UNIVERSITEIT GENT

Jurgen Vercruysse Valérie Vanhoorne

Maunu Toiviainen Panouillot Pierre-Emmanuel Mikko Juuti

Kris Schoeters

Laboratory of Pharmaceutical Process Analytical Technology

Ashish.Kumar@UGent.be