☐ Résumé du cours : Interconnexion des Réseaux Téléphoniques ☐ Plan général 1. Interconnexion réseaux d'accès ↔ réseau de transport 2. Voix sur IP (VoIP) et interconnexion avec le RTC 3. Migration du RTC vers des réseaux tout-IP (NGN) ☐ 1. Le Réseau Téléphonique Commuté (RTC) ☐ Structure scss CopierModifier [Poste téléphonique] -- Réseau d'accès (analogique ou RNIS) [Commutateur RTC] [Réseau de transport numérique] Transmission par commutation de circuits • Qualité de service (QoS) garantie : O Pas de gigue, délai constant, canal dédié ☐ Par traduction (signalisation + données) Plan **Traduction Données** Numérisation (GSM/VoIP → PCM RTC) **Contrôle** Traduction de signalisation (Q.931 / SIP ↔ ISUP, SS7) **■** Exemples d'adressage : Un numéro téléphonique suffit à identifier le commutateur de raccordement. \square RNIS et GSM **RNIS** Numérisation dès le terminal → plus d'analogique \odot Signalisation : Q.931 (retransmise par LAP-D) \leftrightarrow ISUP (SS7) O Données: Canaux B (64kb/s) transmis dans trames MIC du RTC

GSM

© Signalisation: toujours Q.931

☐ Dynamique des échanges (ex. double appel) Signaux entre terminal et réseau : sql CopierModifier SETUP ightarrow CALL PROCEED ightarrow ALERT ightarrow CONNECT ightarrow CONNECT ACK Dans le RTC (SS7) : nginx CopierModifier $\mathsf{IAM} \, \to \, \mathsf{ACM} \, \to \, \mathsf{ANM} \, \to \, \mathsf{RLC}$ ☐ IAM = Initial Address Message \square ACM = Address Complete Message \square ANM = Answer Message \square 2. Voix sur IP (VoIP) **□** Objectifs • Réduction des coûts (mode paquet vs circuits) • Enrichissement (visiophonie, transfert, documents) O Interopérabilité avec le RTC ☐ Problèmes à résoudre **Problème Description** Délai fixe Carte son, codage, empilement protocolaire Gigue (délai variable) Due aux routeurs/IP: compensation via buffers, RTP/RTCP **☐** Bufferisation intelligente : \bullet Trop petit \rightarrow paquets perdus □ Protocoles de transport multimédia **Protocole Fonction RTP** Transport de paquets audio/vidéo (UDP) **RTCP** Contrôle de RTP (QoS, synchronisation) **SDP** Décrit la session (codecs, ports...) ☐ **RTP utilise UDP** pour limiter les délais ☐ RTP = horodatage + numérotation + type média

© Données : voix codée (ex : AMR à 10 kb/s) → **transcodage** vers PCM

☐ Protocoles de signalisation	
☐ SIP (Session Initiation Protocol)	
Fonctionnalités Localisation	Détails Trouver l'utilisateur via annuaire (SID @ / ID @)
Négociation des médias	Trouver l'utilisateur via annuaire (SIP @ / IP @) Via SDP
<u> </u>	Requêtes: INVITE, ACK, BYE, REGISTER, etc.
Transport	TCP ou UDP (pour la signalisation)
Flux audio/vidéo transmis via	,
□ H.323 (ITU-T)	
Conçu pour visioconfér	rence sur réseaux IP/ATM/IPX
© Composants:	
• Gatekeeper (G	K) : enregistre, autorise
•	$): interface RTC \leftrightarrow IP$
g ·	GC) : contrôle les GWs
© Signalisation:	etion (commo O 021)
	ation (comme Q.931)
 M H.245 : négociation des capacités Données : canaux logiques UDP pour RTP/RTCP 	
o Bomileos i cumum rogre	
☐ Exemple d'appel (RTC	C ↔ Internet via H.323)
nginx	
CopierModifier	Tourism I. Indonest
Utilisateur RTC \rightarrow GW \rightarrow IP $-$	→ Terminal Internet
1. Signaux Q.931 pour Si	ETUP
2. Conversion des format	
3. Données : RTP/UDP côté Internet ↔ PCM côté RTC	
□ 3. Migration du R	TC → NGN (Next Gen Networks)
☐ Objectifs	
• Supprimer le RTC	
• Mutualiser l'infrastructure : tout IP	
• Gérer la coexistence du	arant la transition

☐ **Mise en place de** Passerelles Élément Rôle **SG** (Signaling Gateway) Traduire la signalisation (ISUP \leftrightarrow SIP, SIP-T, H.323) MG (Media Gateway) Convertir les données (TDM \leftrightarrow RTP) MGC (Media Gateway Controller) Orchestrer les GWs, sélectionner codecs, ports, etc. ☐ **Exemple** : SIP-T encapsule l'ISUP dans SIP ☐ Protocoles de gestion des GWs **Protocole Usage MGCP** Contrôle par MGC des MGs (passerelles cœur et client) Megaco/H.248 Version plus complète/structurée ☐ **Utilise SDP** pour décrire les flux à créer

☐ Cas des abonnés résidentiels

Solution Description

RGW (**Residential Gateway**) Conversion analogique ↔ IP chez l'abonné **TGW** (**Trunk Gateway**) Conversion TDM ↔ IP dans le cœur de réseau

IPBX Remplace PABX dans les entreprises

☐ Résumé visuel : architecture de transition

css CopierModifier [Terminal RTC] \rightarrow [RGW] \rightarrow [Réseau IP] \leftarrow [MGC] \leftarrow [SG] \leftarrow [Réseau SS7 RTC] \uparrow contrôle \downarrow [MG]

⊘Conclusion

- \bullet Le RTC est fiable mais rigide \rightarrow VoIP permet + de services à moindre coût.
- **O** La **VoIP** impose des **problèmes QoS**, résolus par :
 - Buffers
 - O RTP/RTCP
 - © Contrôle via SIP/H.323
- Les passerelles assurent l'interopérabilité, puis la migration vers IP
- Le modèle final est **tout IP**, avec contrôle distribué (MGC/MG)