

Lesson 5: Advanced Applications

5.6 Leveraging scikit-learn to Evaluate MLlib Models

Precision and Recall

How many selected items are relevant?

How many relevant items are selected?

Precision = Recall =

F1 =
$$\frac{\frac{2}{1 + 1}}{\text{precision recall}}$$

Confusion Matrix vs. Point Metrics

- Confusion matrix has fine-grained information about misclassifications
- Precision/Recall/F1 can be used in automated comparison (grid search)

Logistic Regression: Balanced Classes

<pre>print(classification_report(y_true, y_pred))</pre>				
	precision	recall	f1-score	support
0.0 1.0	0.74 0.70	0.92 0.37	0.82 0.49	1375 705
avg / total	0.73	0.73	0.71	2080

Unified Platform

Statistics

Feature Engineering

Recommendation

Classification/ Regression Tuning/ Evaluation

spark.ml + MLlib

