Varietà differenziabili (seconda parte) Corso di Laurea in Matematica A.A. 2021-2022 Docente: Andrea Loi

- 1. Sia S^n la sfera unitaria in \mathbb{R}^{n+1} . Trovare un atlante differenziabile di S^n con 2(n+1) carte.
- 2. Dimostrare che la strutture differenziabili su S^n definite dall'esercizio precedente e dalle proiezioni stereografiche coincidono.
- 3. Sia S uno spazio topologico e \sim una relazione d'equivalenza aperta su S. Dimostare che lo spazio quoziente S/\sim é T_2 se e solo se $R=\{(x,y)\in S\times S\mid x\sim y\}$ é un sottoinsieme chiuso di $S\times S$.
- 4. Sia S uno spazio topologico N_2 e \sim una relazione d'equivalenza aperta su S. Dimostrare che lo spazio quoziente S/\sim é N_2 .
- 5. Dimostrare che la grassmanniana G(k,n) é uno spazio topologico connesso e compatto.
- 6. Siano M e N due varietà differenziabili e $q_o \in N$. Dimostrare che

$$i_{q_0}: M \to M \times N, p \mapsto (p, q_0)$$

é un'applicazione liscia.

- 7. Sia S^1 il cerchio unitario di \mathbb{R}^2 . Dimostrare che una funzione liscia $f: \mathbb{R}^2 \to \mathbb{R}$ si restringe ad una funzione liscia $f_{|S^1}: S^1 \to \mathbb{R}$.
- 8. Sia $F: \mathbb{R}^2 \to \mathbb{R}^3, (x,y) \mapsto (x,y,xy)$. Sia $p=(x,y) \in \mathbb{R}^2$. Trovare $a,b,c \in \mathbb{R}$ tali che:

$$F_{*p}(\frac{\partial}{\partial x}|_p) = a\frac{\partial}{\partial u}|_{F(p)} + b\frac{\partial}{\partial v}|_{F(p)} + c\frac{\partial}{\partial w}|_{F(p)}.$$

- 9. Siano x,y le coordinate standard su \mathbb{R}^2 e $U=\mathbb{R}^2\setminus\{(0,0)\}$. In U le coordinate polari $(\rho,\theta),\ \rho>0,\theta\in(0,2\pi)$ sono definite come $x=\rho\cos\theta$ e $y=\rho\sin\theta$. Si scrivano $\frac{\partial}{\partial\rho}$ e $\frac{\partial}{\partial\theta}$ in funzione di $\frac{\partial}{\partial x}$ e $\frac{\partial}{\partial y}$.
- 10. Sia p = (x, y) un punto di \mathbb{R}^2 . Allora

$$c_p(t) = \begin{pmatrix} \cos 2t & -\sin 2t \\ \sin 2t & \cos 2t \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

é una curva liscia in \mathbb{R}^2 che inizia in p. Calcolare c'(0).

11. Siano M e N varietà differenziabili e $\pi_1: M \times N \to M$ e $\pi_2: M \times N \to N$ le proiezioni naturali. Dimostrare che per $(p,q) \in M \times N$ l'applicazione

$$(\pi_{1*p}, \pi_{2*q}): T_{(p,q)}M \times N \to T_pM \times T_qN$$

é un isomorfismo.