Practice problems

Question 1: Direct proofs

Chapter 2.1

10%

Prove the following statements using a **direct proof**. Make sure to write the **final answer** in terms of the appropriate definition.

- 1. If n is even, then $n^2 n$ is even.
- 2. The product of two odd integers is always odd.

Question 2: Division theorem

Chapter 2.2

10%

Fill in the blanks in the style of the division theorem.

For all integers a and b (with b > 0), there is an integer q and an integer r such that:

1.
$$a = b \cdot q + r$$
 and

2.
$$0 \le r < b$$
.

1.
$$20 = \underline{} \cdot 6 + \underline{}$$

$$2. -13 = \underline{} \cdot 6 + \underline{}$$

3.
$$(3k^2 + 8) = \underline{} \cdot 3 + \underline{}$$

Question 3: Modulus

Chapter 2.2

10%

Solve the following modulus problems

- 1. 73 mod 6
- $2. -15 \mod 2$

Question 4: Proof by induction

Chapter 2.3

10%

Show that the sequence defined by the recursive formula

$$a_k = a_{k-1} + 2$$
, where $a_1 = 2$, and for $k \ge 2$

is equivalently described by the closed formula

 $a_n = 2r$

Question 5: Proof by induction Chapter 2.3 10% Use induction to prove that $\sum_{i=1}^{n} (2i-1) = n^2$ for each $n \ge 1$

Question 6: Deriving a recursive formula from a sum Chapter 2.4 10%

Consider the sum $\sum_{i=1}^{n} (3i+2)$

Use s_n to denote this sum. Find a recursive description of s_n .

Question 7: Proof by contradiction

Chapter 2.5

10%

Use **proof by contradiction** to prove the following statement:

If $n^2 - 1$ is divisible by 5, then n is not divisible by 5.

Question 8: Numerical representations Chapter 2.6 10% Write the following numbers as the sum of multiples of powers of the base. *Do not simplify!*

- 1. $(246)_{10} =$
- $2. (0100 \ 1001)_2 =$
- 3. $(FOOD)_{16} =$

Question 9: Binary \leftrightarrow Hexadecimal

Chapter 2.6

10%

HEX	0	1	2	3	4	5	6	7
BINARY	0000	0001	0010	0011	0100	0101	0110	0111
HEX	8	9	A	В	С	D	Е	F
BINARY	1000	1001	1010	1011	1100	1101	1110	1111

Using the table, convert directly between base-2 and base-16.

- 1. Convert (1111 0000 0000 1101) $_2$ to base-16
- 2. Convert (CAF3) $_{16}$ to base-2

Question 10: Binary \leftrightarrow Decimal

Chapter 2.6

10%

Using an algorithm, convert between base-2 and base-10.

- 1. Convert (75)₁₀ to base-2
- 2. Convert ($\tt 0101\ 1010\)_2$ to base-10

Answer key

Solution: Question 1

- 1. If n is even, then $n^2 n$ is even.
 - 1. n = 2k
 - 2. $n^2 n \Rightarrow (2k)^2 2k$
 - 3. $4k^2 2k$
 - 4. $2(2k^2 k)$
- 2. The product of two odd integers is always odd.
 - 1. Integer 1: n = 2k + 1 Integer 2: m = 2j + 1.
 - 2. $n \cdot m \Rightarrow (2k+1)(2j+1)$
 - 3. 4kj + 2k + 2j + 1
 - 4. 2(2kj+k+j)+1

- 1. $20 = 3 \cdot 6 + 2$
- $2. -13 = -3 \cdot 6 + 5$
- 3. $(3k^2 + 8) = (k^2 + 2) \cdot 3 + 2$

- 1. $73 \mod 6 = 1$
- 2. $-15 \mod 2 = 1$

Solution: Question 4

1. Check first term:

Recursive: $a_1 = 2$ Closed: $a_1 = 2(1)$

2. Find a_{m-1} with closed formula:

$$a_{m-1} = 2(m-1) = 2m - 2$$

3. Plug a_{m-1} into the recursive formula:

$$a_m = a_{m-1} + 2 a_m = 2m - 2 + 2$$

$$a_m = 2m$$

4. This matches the closed formula given, so we have proved it.

- 1. Check first 3 terms:
 - (a) n = 1: Left-hand side: $\sum_{i=1}^{1} (2i - 1) = (2(1) - 1) = 1$ Right-hand side: $1^2 = 1$
 - (b) n = 2: Left-hand side: $\sum_{i=1}^{2} (2i - 1) = (2(1) - 1) + (2(2) - 1)$ = 1 + 3 = 4Right-hand side: $2^2 = 4$
 - (c) n = 3: Left-hand side: $\sum_{i=1}^{3} (2i - 1) = (2(1) - 1) + (2(2) - 1) + (2(3) - 1)$ = 1 + 3 + 5 = 9Right-hand side: $3^2 = 9$
- 2. Rewrite the sum: $\sum_{i=1}^{m} (2i-1) = \sum_{i=1}^{m-1} (2i-1) + (2m-1)$
- 3. Find $\sum_{i=1}^{m-1} (2i-1)$ using the proposition: $\sum_{i=1}^{n} (2i-1) = n^2$ $\sum_{i=1}^{m-1} (2i-1) = (m-1)^2$ $\sum_{i=1}^{m-1} (2i-1) = m^2 2m + 1$
- 4. Plug $\sum_{i=1}^{m-1} (2i-1)$ into the sum from (2): $\sum_{i=1}^{m} (2i-1) = \sum_{i=1}^{m-1} (2i-1) + (2m-1)$ $\sum_{i=1}^{m} (2i-1) = m^2 2m + 1 + 2m 1 \sum_{i=1}^{m} (2i-1) = m^2$
- 5. This matches the original proposition, so we have proved it.

1. Rewrite the sum:

$$\sum_{i=1}^{m} (3i+2) = \sum_{i=1}^{m-1} (3i+2) + 3m+2$$

$$s_m = s_{m-1} + 3m + 2$$

2. Find
$$s_1$$
:

$$s_1 = \sum_{i=1}^{1} (3i+2) = 3(1) + 2 = 5$$

3. Write out together:

$$s_m = s_{m-1} + 3m + 2 \qquad s_1 = 5$$

Solution: Question 7

- 1. Hypothesis: $n^2 1$ is divisible by 5. Conclusion: n is not divisible by 5.
- 2. Negation: $n^2 - 1$ is divisible by 5 and n IS divisible by 5.
- 3. Symbolically:

$$n^2 - 1 = 5k \qquad n = 5j$$

4. Equation:

$$(5j)^2 - 1 = 5k$$

5. Simplify until contradiction:

- 1. $(246)_{10} = 2 \cdot 10^2 + 4 \cdot 10^1 + 6 \cdot 10^0$
- 2. $(0100 \ 1001)_2 = 1 \cdot 2^6 + 1 \cdot 2^3 + 1 \cdot 2^0$
- 3. (FOOD)₁₆ = $15 \cdot 16^3 + 13 \cdot 16^0$

- 1. Convert (1111 0000 0000 1101) $_2$ to base-16 = F 0 0 D
- 2. Convert (CAF3)₁₆ to base-2 = $1100\ 1010\ 1111\ 0011$

- 1. Convert (75)₁₀ to base-2
 - (a) 75 / 2 = 37 r 1
 - (b) 37 / 2 = 18 r 1
 - (c) 18 / 2 = 9 r 0
 - (d) 9 / 2 = 4 r 1
 - (e) 4 / 2 = 2 r 0
 - (f) 2 / 2 = 1 r 0
 - (g) 1/2 = 0 r 1
 - $= 0100 \ 1011$
- 2. Convert ($0101\ 1010\)_2$ to base-10
 - (a) = $1 \cdot 2^6 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^1 = 90$