לוגיקה - תרגול 8

גדירות - תזכורות

 Σ של מודל נקראת נסוקים בסוקים המספקת השמה הנדרה 1: השמה המספקת הנדרה לי

 $M\left(\Sigma\right)=\left\{ v\in\mathrm{Ass}\mid v\models\Sigma
ight\}$ היא הקבוצה. במודלים של המודלים של

נקראת K אחרת אות $M\left(\Sigma\right)=K$ כך ש־ Σ כך פסוקים קבוצת אם קיימת לדירה אחרת גדירה נקראת לא נקראת לדירה.

הוכחת גדירות

איך מוכיחים שקבוצת השמות K היא גדירה?

- .1 מראים בוצת פסוקים למפורשת.
- .2 מוכיחים כי $M\left(\Sigma\right)=K$ על ידי הכלה דו־כיוונית.

 K_j = $\{v\mid$ נגדיר את קבוצת לכל T נותנת $v\}$: ההשמות ההשמות גדיר את קבוצת ההשמות לכל היותר ל־ $j\in\mathbb{N}$ לכל היותר לי $j\in\mathbb{N}$ גדירה.

:2 תרגיל

 $X,Y\subseteq WFF$ תהיינה

 $M\left(X\cup Y
ight) =M\left(X
ight) \cap M\left(Y
ight)$ הוכיחו כי

משפט הקומפקטיות - תזכורת

לכל קבוצת פסוקים Σ מתקיים, Σ ספיקה אמ"מ כל תת־קבוצה סופית של ספיקה.

הוכחת אי־גדירות

איך מוכיחים שקבוצת השמות K אינה גדירה?

- $M\left(X
 ight) =K$ מניחים בשלילה ש־K גדירה ו־X גדירה ו־X מניחים בשלילה ש־ל. מניחים בשלילה ש־ל גדירה את א ניתן להניח דבר על X פרט לכך שהיא מגדירה את א.
- 2. בוחרים קבוצת פסוקים מפורשת Y שעבורה ידוע (או שניתן להוכיח בקלות) שעבורה על עבוצת עבורה ידוע (או שניתן להוכיח $Y=\{\neg p_i\mid i\in\mathbb{N}\}$, $Y=\{p_i\mid i\in\mathbb{N}\}$
- $M\left(X\cup Y
 ight)=M\left(X
 ight)\cap M\left(Y
 ight)=K\cap M\left(Y
 ight)=\emptyset$ מוכיחים ש־ $X\cup Y$ איננה ספיקה על ידי כך שמראים ש-3.
 - . מוכיחים ש־ $Y \cup Y$ ספיקה על ידי שימוש במשפט הקומפקטיות.

תהי $D\subseteq X\cup Y$ סופית.

 $D_Y = D \cap Y$ ר ו $D_X = D \cap X$ נסמן

 $v\in K$ נבנה השמה D_Y ונשלים אותה כך ש־ D_X . נתחיל בבניה ע"פ מבנה הפסוקים ב־ D_Y ונשלים אותה כך ש־ D_Y . נוכיח שהבניה מספקת את

 D_X את מספקת את מספקת את $v \Leftarrow v \in K$

 $D_X \cup D_Y = D$ מספקת את $v \Leftarrow D_Y$ ו ר D_X מספקת את מספקת ע

.5 מקבלים סתירה ולכן K אינה גדירה.

:3 תרגיל

. אינה אינה אינה אינה א K_{fin} = $\{v \in \mathrm{Ass} \mid$ שטומים של למספר T אינה אינה על הוכיחו כי

תרגיל 4:

. אינה אינה אינה א K_{inf} = $\{v \in \mathrm{Ass} \mid$ אטומים לאינסוף לאינה אינה $v\}$ נותנת כי

תרגול 8 לוגיקה

תרגיל 2:

 $X,Y\subseteq {\rm WFF} \ {\rm norm}$ תהיינה $M(X\cup Y)=M(X)\cap M(Y) \ {\rm constant}$ הוכיחו כי

הוכחה:

תרגיל 3:

. אינה $K_{fin} = \{v \in \mathrm{Ass} | v \in \mathsf{Ass} |$ אינה אינה אינה אינה כי $v \in \mathsf{Ass}$

הוכחה:

- נניח בשלילה ש K_{fin} גדירה. 1. אז קיימת קבוצת פסוקים x כך ש־M(X)=K
- $M(Y)=\{V_T\}$ ניתן לראות כי $Y=\{p_i|i\in\mathbb{N}\}$.2. נבחר.
- ענת אטומים אטומים אינה ספיקה: V_T אינה ספיקה: $X\cup Y$.3 ולכן $V_T\notin K_{fin}$. ולכן $M(X\cup Y)=M(X)\cap M(Y)=K_{fin}\cap \{V_T\}=\emptyset$
 - . נוכיח בעזרת משפט הקומפקטיות ש־Y ספיקה. תרית בעזרת משפט התריקבוצה חופית. $D\subseteq X\cup Y$ תתיקבוצה חופית. נסמן: $D_y=D\cap Y$, $D_X=D\cap X$ סופית. מכיוון ש־ $D_Y\subseteq D$ ורD סופית אז גם

 $D_Y = \{p_{i_1}, p_{i_2}, \dots, p_{i_k}\}$ ולכן היא מהצורה: D_Y ם ב־ D_i את האינדקס המקסימלי של mב

מאחר ו־ D_Y סופית בהכרח קיים m=1), מאחר ויים m=1

:נגדיר השמה v באופן הבא

$$v(p_I) = \begin{cases} T & i \le m \\ F & i > m \end{cases}$$

- $i \leq M$ כל הפסוקים ב־ D_Y הם מהצורה * $v \models D_Y \Leftarrow v$ אותם אותם $v \models D_Y \Leftrightarrow v \mapsto v$
- (נותנת T למספר שופי של אטומיים) $v \in K_{fin}$ אטומיים *

מספקת כל פסוק ב־X מספקת כל $v \Leftarrow v \models X \Leftarrow v \in M(X) \Leftarrow$ פסוק ב- $V \models D_X \Leftarrow D_X \subseteq X$ פסוק

 $D=D_X\cup D_Y$ גם את את ואת ואת ואת מספקת את מספקת ע בסה"כ פהי"כ קיבלנו כי D_x אותה אותה ואת שלכל תת־קבוצה חופית חופית וואת משפט הקומפקטיות נובע $X\cup Y$ ספיקה.

.5 בירה אינה K_{fin} אינה גדירה סתירה ולכן 3.5

:4 תרגיל

. אינה אינסוף $v\{\ v\}$

הוכחה:

- same .1
- $M(Y) = \{V_F\}$ נבחר $Y = \{ \neg p_i | i \in \mathbb{N} \}$.2 .2
- ולכן: $v_f \notin K_{inf}$ ולכן: ולכן $M(X \cup Y) = M(X) \cap M(Y) = K_{inf} \cap \{V_K\} = \emptyset$

$$M(X \cup Y) = M(X) \cap M(Y) = K_{inf} \cap \{V_K\} = \emptyset$$

$$.D_Y = \{ \neg p_{i_1}, \dots, p_{i_k} \}$$
 .4 נסמן ב־ח m בי את האינדקס המקסימלי של m ב בי