

AMENDMENT TO THE CLAIMS

Please amend the claims as shown in the listing below.

1-6. (Cancelled)

7. (Currently Amended) A polyester resin composition, comprising:

an amorphous polyester resin (I); ~~reacted partially with~~ a reactive compound (II) containing two or more glycidyl groups and/or isocyanate groups per molecule and having a weight average molecular weight of not less than 200 and not more than 500 thousands; and an amorphous polyester resin (III),

wherein a portion of said two or more glycidyl groups and/or isocyanate groups of said reactive compound (II) is reacted with said amorphous polyester resin (I).

8. (Previously Presented) The polyester resin composition according to claim 7, wherein the amorphous polyester resin (I) contains an aromatic dicarboxylic acid of a carbon number of 8 to 14, and an aliphatic or alicyclic glycol of a carbon number of 2 to 10 at 50 mole % or more of an acid component and a glycol component, respectively.

9. (Original) The polyester resin composition according to claim 8, wherein the aromatic dicarboxylic acid of a carbon number of 8 to 14 is terephthalic acid and/or isophthalic acid.

10. (Previously Presented) The polyester resin composition according to claim 8, wherein the aliphatic or alicyclic glycol of a carbon number of 2 to 10 is at least one compound selected from the group consisting of ethylene glycol, diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, 1,2-propanediol, 1,3-propanediol and 2-methyl-1,3-propanediol.

11. (Original) The polyester resin composition according to claim 7, wherein the reactive compound (II) is a copolymer comprising (X) 20 to 99% by weight of vinyl aromatic monomer, (Y) 1 to 80% by weight of hydroxyalkyl (meth) acrylate or glycidylalkyl (meth) acrylate, and (Z) 0 to 79% by weight of alkyl (meth) acrylate.

12. (Original) The polyester resin composition according to claim 7, wherein the amorphous polyester resin (I) contains a polyfunctional compound unit having three or more carboxyl groups and/or hydroxyl groups as a monomer component at 0.001 to 5 mole % of an acid component and/or a glycol component, respectively.

13. (Previously Presented) The polyester resin composition according to claim 7, wherein the amorphous polyester resin (III) contains an aromatic dicarboxylic acid of a carbon number of 8 to 14, and an aliphatic or alicyclic glycol of a carbon number of 2 to 10 at 50 mole % or more of an acid component and a glycol component, respectively.

14. (Original) The polyester resin component according to claim 13, wherein the aromatic dicarboxylic acid of a carbon number of 8 to 14 is terephthalic acid and/or isophthalic acid.

15. (Previously Presented) The polyester resin composition according to claim 13, wherein the aliphatic or alicyclic glycol of a carbon number of 2 to 10 is at least one compound selected from the group consisting of ethylene glycol, diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, 1,2-propanediol, 1,3-propanediol and 2-methyl-1,3-propanediol.

16. (Original) The polyester resin composition according to claim 7, wherein the amorphous polyester resin (III) contains a polyfunctional compound unit having three or more carboxyl groups and/or hydroxyl groups as a monomer component at 0.001 to 5 mole % of an acid component and/or a glycol component, respectively.

17. (Currently Amended) A polyester resin composition, comprising:
an amorphous polyester resin (I); reacted partially with a reactive compound (II)
containing two or more glycidyl groups and/or isocyanate groups per molecule and having a
weight average molecular weight of not less than 200 and not more than 500 thousands; and
a crystalline polyester resin (IV),
wherein a portion of said two or more glycidyl groups and/or isocyanate groups of
said reactive compound (II) is reacted with said amorphous polyester resin (I).

18. (Previously Presented) The polyester resin composition according to claim 17,
wherein the amorphous polyester resin (I) contains an aromatic dicarboxylic acid of a carbon
number of 8 to 14 and an aliphatic or alicyclic glycol of a carbon number of 2 to 10 at 50 mole %
or more of an acid component and a glycol component, respectively.

19. (Original) The polyester resin composition according to claim 18, wherein the
aromatic dicarboxylic acid of a carbon number of 8 to 14 is terephthalic acid and/or isophthalic
acid.

20. (Previously Presented) The polyester resin composition according to claim 18,
wherein the aliphatic or alicyclic glycol of a carbon number of 2 to 10 is at least one compound
selected from a group consisting of ethylene glycol, diethylene glycol, neopentyl glycol, 1,4-
cyclohexanedimethanol, 1,2-propanediol, 1,3-propanediol and 2-methyl-1,3-propanediol.

21. (Original) The polyester resin composition according to claim 17, wherein the
reactive compound (II) is a copolymer comprising (X) 20 to 99% by weight of vinyl aromatic
monomer, (Y) 1 to 80% by weight of hydroxyalkyl (meth) acrylate or glycidylalkyl (meth)
acrylate and (Z) 0 to 79% by weight of alkyl (meth) acrylate.

22. (Original) The polyester resin composition according to claim 17, wherein the
amorphous polyester resin (I) contains a polyfunctional compound unit having three or more
carboxyl groups and/or hydroxy groups as a monomer component at 0.001 to 5 mol % of an acid
component and/or a glycol component, respectively.

23. (Original) The polyester resin composition according to claim 17, wherein the crystalline polyester resin (IV) is polyethylene terephthalate, polybutyrene terephthalate or polylactic acid.

24. (Original) The polyester resin composition according to claim 17, wherein the crystalline polyester resin (IV) is reproduced polyethylene terephthalate.

25. (Currently Amended) A process for producing a molded article, comprising:
mixing a modifier with an amorphous polyester (III) and/or a crystalline polyester resin (IV), wherein the modifier comprises an amorphous polyester resin (I) and partially reacted with a reactive compound (II) containing two or more glycidyl groups and/or isocyanate groups per molecule and having a weight average molecular weight of not less than 200 and not more than 500 thousands, and wherein a portion of said two or more glycidyl groups and/or isocyanate groups of said reactive compound (II) is reacted with said amorphous polyester resin (I); and melt molding.

26. (Previously Presented) The process for producing a molded article according to claim 25, wherein the amorphous polyester resin (I) contains an aromatic dicarboxylic acid of a carbon number of 8 to 14, and an aliphatic or alicyclic glycol of a carbon number of 2 to 10 at 50 mole % or more of an acid component and a glycol component, respectively.

27. (Original) The process for producing a molded article according to claim 26, wherein the aromatic dicarboxylic acid of a carbon number of 8 to 14 is terephthalic acid and/or isophthalic acid.

28. (Previously Presented) The process for producing a molded article according to claim 26, wherein the aliphatic or alicyclic glycol of a carbon number of 2 to 10 is at least one compound selected from a group consisting of ethylene glycol, diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, 1,2-propanediol, 1,3-propanediol and 2-methyl-1,3-propanediol.

29. (Original) The process for producing a molded article according to claim 25, wherein the reactive compound (II) is a copolymer comprising (X) 20 to 99% by weight of vinyl aromatic monomer, (Y) 1 to 80% by weight of hydroxyalkyl (meth) acrylate or glycidylalkyl (meth) acrylate, and (Z) 0 to 79% by weight of alkyl (meth) acrylate.

30. (Original) The process for producing a molded article according to claim 25, wherein the amorphous polyester resin (I) contains a polyfunctional compound unit having three or more carboxyl groups and/or hydroxy groups as a monomer component at 0.001 to 5 mole % of an acid component and/or a glycol component, respectively.

31. (Previously Presented) The process for producing a molded article according to claim 25, wherein the amorphous polyester resin (III) contains an aromatic dicarboxylic acid of a carbon number of 8 to 14 and an aliphatic or alicyclic glycol of a carbon number of 2 to 10 at 50 mole % or more of an acid component and a glycol component, respectively.

32. (Original) The process for producing a molded article according to claim 31, wherein the aromatic dicarboxylic acid of a carbon number of 8 to 14 is terephthalic acid and/or isophthalic acid.

33. (Previously Presented) The process for producing a molded article according to claim 31, wherein the aliphatic or alicyclic glycol of a carbon number of 2 to 10 is at least one compound selected from the group consisting of ethylene glycol, diethylene glycol, neopentyl glycol, 1,4-cyclohexanediethanol, 1,2-propanediol, 1,3-propanediol and 2-methyl-1,3-propanediol.

34. (Original) The process for producing a molded article according to claim 25, wherein the amorphous polyester resin (III) contains a polyfunctional compound unit having three or more carboxyl groups and/or hydroxyl groups as a monomer component at 0.001 to 5 mole % of an acid component and/or a glycol component of a polyester, respectively.

35. (Original) The process for producing a molded article according to claim 25, wherein the crystalline polyester resin (IV) is polyethylene terephthalate (PET), polybutyrene terephthalate (PBT) or polylactic acid.

36. (Original) The process for producing a molded article according to claim 25, wherein the crystalline polyester resin (IV) is reproduced polyethylene terephthalate.

37. (Previously Presented) A molded article produced by the process according to any one of claims 25 to 36.

38. (Currently Amended) A modifier for a polyester resin used in the process according to any one of claims 25 to 36, obtained by partially reacting an amorphous polyester resin (I) with a reactive compound (II) containing a portion of two or more glycidyl groups and/or isocyanate groups per molecule contained in a reactive compound (II) and having a weight average molecular weight of not less than 200 and not more than 500 thousands.