

Pratik Chowdhury,

Elvis Dsouza,

**Vedant Sahai** 







# WHATIS STACKOVERFLOW?





#### **Obtain the Dataset**

Obtain the dataset online. Train, test and validation

# OBTAINING DATASETS

We can easily find the datasets from the internet

We found a dataset online in TSV form, which we cleaned up by removing unneeded parameters with the help of Microsoft Excel to generate our current dataset

The dataset was loaded with the help of Pandas



#### **Obtain the Dataset**

Obtain the dataset online. Train, test and validation

#### **Perform Cleanup**

Remove all the stopwords present.

Perform cleanup

# CONVERT THE SENTENCE TO IT'S SIMPLEST FORM

As our algorithm, which does not rely on order or context, removing common words or symbols will not cause any major issue



# STOPWORD REMOVAL

Not every word will play a major role

Stopwords refer to the most common word which while provide context, play no role in a project like ours which does not rely on the context they can provide



# REMOVE UNUSED SYMBOLS

Symbols will not be used by our dataset

{, }, [, ] etc do not play any role in our project and hence can be removed safely



### CHANGE CASE

**CONVERT TO LOWER CASE** 

As upper and lower case would lead to different words, even if the meaning is the same, it is best to change to lower case so as to increase the size of the dataset instead of removing the words.



#### **Obtain the Dataset**

Obtain the dataset online. Train, test and validation

#### **Perform Cleanup**

Remove all the stopwords present.

Perform cleanup

#### Perform TF-IDF

TF-IDF is used to find the relevance of a word within the document



## TERM FREQUENCY

The frequency of a given word in a document

The weight of a word in a Document is simply proportional to it's Term Frequency





# Term Frequency has a few pitfalls





# INVERSE DOCUMENT FREQUENCY

# It is a measure of how much information the word provides

As such, we check how rare or common it is within the document. It is the logarithmically scaled inverse fraction of the documents that contain the word (obtained by dividing the total number of documents by the number of documents containing the term, and then taking the logarithm of that quotient):



### TF-IDF

Reflects how important a word is to a document in a collection or corpus

Multiply TF \* IDF



### CALCULATE TF-IDF

#### **Document 1**

| Term   | Term Count |
|--------|------------|
| this   | 1          |
| is     | 1          |
| а      | 2          |
| sample | 1          |

#### Document 2

| Term    | Term Count |
|---------|------------|
| this    | 1          |
| is      | 1          |
| another | 2          |
| example | 3          |

#### **Obtain the Dataset**

Obtain the dataset online. Train, test and validation

#### **Perform Cleanup**

Remove all the stopwords present.

Perform cleanup

#### Perform TF-IDF

TF-IDF is used to find the relevance of a word within the document

#### Convert to Multi label Binarizer

Helps make it easier for Linear Model to comprehend the topic



# MULTI-LABEL BINARIZER

Make it easier for the computer which does not understand labels like "git" but does understand 1 & 0

#### **Obtain the Dataset**

Obtain the dataset online. Train, test and validation

#### **Perform Cleanup**

Remove all the stopwords present.

Perform cleanup

#### Perform TF-IDF

TF-IDF is used to find the relevance of a word within the document

### Convert to Multi label Binarizer

Helps make it easier for Linear Model to comprehend the topic

### Train and Test our Linear Model

Check what went right and what went wrong







# MULTINOMIAL LOGISTIC REGRESSION

Easy to perform with the help of Scikit Learn





# ONE VS REST

Helps perform Multiclass Classification Compare one value (C++) with all of the other labels





#### **Obtain the Dataset**

Obtain the dataset online. Train, test and validation

#### **Perform Cleanup**

Remove all the stopwords present.

Perform cleanup

#### Perform TF-IDF

TF-IDF is used to find the relevance of a word within the document

#### Convert to Multi label Binarizer

Helps make it easier for Linear Model to comprehend the topic

## Train and Test our Linear Model

Check what went right and what went wrong

# Check the output

Based on the output, reach to a conclusion









