LOGIQUE

Corrigé du contrôle continu du 6 Décembre 2007

Exercice 1(sur 6 points)

On se demande si les règles \to_g, \vee_g du calcul des séquents sont réversibles ou non.

1- Les 4 règles proposées sont des règles dérivées du système LK.

```
Règle 1:
1- A \vdash A, B \text{ (ax')}
2- \vdash A, A \rightarrow B (\rightarrow_d)
3 - \neg (A \rightarrow B) \models A (\neg_q)
4- \Gamma, A \to B \models \Delta ( Hypothèse)
5- \Gamma \vdash \neg (A \to B), \Delta (\neg_d)
6- \Gamma \vdash A, \Delta \ (5,3, \text{ coupure})
Règle 2:
1- A, B \vdash B (ax')
2-B \vdash A \rightarrow B (\rightarrow_d)
3- \Gamma, A \to B \longmapsto \Delta (Hypothèse)
4- \Gamma, B \vdash \Delta (2,3, coupure).
Règle 3:
1- A \vdash A, B \text{ (ax')}
2-A \vdash A \lor B (\lor_d)
3- \Gamma, A \vee B \vdash \Delta (Hypothèse)
4- \Gamma, A \vdash \Delta (2,3, coupure).
Règle 4:
1- B \vdash A, B \text{ (ax')}
2-B \vdash A \lor B (\lor_d)
3- \Gamma, A \vee B \vdash \Delta (Hypothèse)
```

4- Γ , $B \vdash \Delta$ (2,3, coupure).

- 2- Les règles \rightarrow_q, \vee_q du calcul des séquents sont donc *réversibles*.
- 3- Aucune de ces règles ne peut être simulée par une dérivation sans coupure de LK. Traitons en détail la règle 1:

Les règles de LK\{ coupure } sont toutes des règles d'introduction ou des règles structurelles. Supposons que la règle 1 soit simulée par une preuve π sans coupure, utilisant l'hypothèse $H:=\Gamma, A\to B \models \Delta$. Le sous-arbre π' de cette preuve, de racine $R=\Gamma \models A, \Delta$, n'a aucun noeud étiqueté par H, car $A\to B$ est une sous-formule de H qui n'est pas sous-formule de R. Donc π' est une preuve dans LK du séquent $\Gamma \models A, \Delta$. En remplaçant dans ce séquent (et dans π'), Γ par \emptyset , Δ par \emptyset et A par \bot , on obtient une preuve π'' de $\biguplus \bot$, ce qui n'est pas possible.

Pour la règle 2 (et la règle 4) on obtient une impossibilité en posant $\Gamma := \emptyset$ et $\Delta := \neg B$; Pour la règle 3 on obtient une impossibilité en posant $\Gamma := \emptyset$ et $\Delta := \neg A$.

Exercice 2(sur 5 points)

1- La suite suivante n'est pas une preuve dans le système LJ : le couple (ligne 4,ligne 5) n'est pas une instance de la règle \exists_d

$$\begin{array}{lll} R(x) \models R(x) & \text{ax} \\ R(x), \neg R(x) \models & \neg_g \\ R(x) \models \neg \neg R(x) & \neg_d \\ \forall x R(x) \models \neg \neg R(x) & \forall_g \\ \forall x R(x) \models \neg \exists x \neg R(x) & \exists_d \end{array}$$

- 2- Voici une preuve correcte dans LJ du séquent $\forall x R(x) \models \neg \exists x \neg R(x)$:
- 1- $R(x) \vdash R(x)(ax)$
- $2-R(x), \neg R(x) \vdash (\neg_q)$
- $3- \forall x R(x), \neg R(x) \vdash (\forall_q)$
- $4 \forall x R(x), \exists x \neg R(x) \vdash (\exists_a)$
- 5- $\forall x R(x) \models \neg \exists x \neg R(x) (\neg_d)$
- N.B. L'application de $\forall g$, pour passer de la ligne 2 à la ligne 3, est correcte puisque cette règle ne comporte aucune restriction sur la variable x. L'application de $\exists g$ à la ligne 4 est correcte car la variable x n'a pas d'occurrence *libre* dans $\forall x R(x)$.

Exercice 3(sur 13 points)

Q1- Réflexivité:

Voici une preuve, dans LJ, de $\vdash A \rightarrow A$

$$2- \vdash A \rightarrow A (\rightarrow_d)$$

Transitivité:

Voici une preuve, dans LJ, à partir des hypothèses $\vdash A \to B$ et $\vdash B \to C$ du séquent $\vdash A \to C$:

- 1- $A, B \vdash B(ax')$
- $2-A,B,C \vdash C \text{ (ax')}$
- 3- $A, B, B \rightarrow C \models C (1, 2, \rightarrow_g)$
- $4-A, B \rightarrow C \vdash A (ax')$
- 5- $A, A \rightarrow B, B \rightarrow C \vdash C(4, 3, \rightarrow_g)$
- 6- $A \rightarrow B, B \rightarrow C \models A \rightarrow C(\rightarrow_d)$
- 7- $\vdash A \rightarrow B$ (hypothèse)
- 8- $B \rightarrow C \vdash A \rightarrow C(7,6, \text{ coupure})$
- 9- $\vdash B \rightarrow C$ (hypothèse)
- 10- \vdash $A \rightarrow C(9,8, \text{ coupure})$

Donc, si $A \leq B$ et $B \leq C$, alors $A \leq C$.

Q2- Vérifions que $P \leq (P \vee \neg P)$:

- 1- $P \vdash P$ (ax)
- $2-P \vdash P \lor \neg P (\lor_d^1)$
- $3- \vdash P \rightarrow (P \lor \neg P) (\rightarrow_d)$

Vérifions que $\neg P \leq (P \vee \neg P)$.

- 1- $\neg P \vdash \neg P \text{ (ax)}$
- $2 \neg P \vdash P \lor \neg P (\lor_d^2)$
- 3- $\vdash \neg P \rightarrow (P \lor \neg P) (\rightarrow_d)$
- Q3 Donnons une preuve dans LJ de $\vdash \neg P \rightarrow (P \rightarrow \neg P)$ puis une preuve de $\vdash (P \rightarrow \neg P) \rightarrow \neg P$.

1-
$$\neg P, P \vdash \neg P \text{ (ax')}$$

$$2 - \neg P \vdash P \rightarrow \neg P (\rightarrow_d)$$

$$3- \vdash \neg P \rightarrow (P \rightarrow \neg P) (\rightarrow_d)$$

1-
$$P \vdash P(ax)$$

$$2-P, \neg P \vdash (\neg_q)$$

$$3-P \longmapsto P(ax)$$

$$4 - P \rightarrow \neg P, P \vdash (3, 2, \rightarrow_q)$$

$$5-P \to \neg P \models \neg P (\neg_d)$$

6-
$$\vdash (P \rightarrow \neg P) \rightarrow \neg P (\rightarrow_d)$$

Q4- Montrons que, pour toutes formules A, B, on a $A \leq A \vee B$ et $B \leq A \vee B$.

$$2-A \vdash A \lor B (\lor_d^1)$$

$$3- \vdash A \rightarrow (A \lor \tilde{B}) (\rightarrow_d)$$

$$2-B \vdash A \lor B (\lor_d^2)$$

$$3- \vdash B \rightarrow (A \lor B) (\rightarrow_d)$$

Q5- Supposons que A,B sont incomparables pour le préordre \preceq , i.e. $A \not\preceq B$ et $B \not\preceq A$. Si on avait $(A \lor B) \preceq A$, alors , par Q4, on aurait $B \preceq (A \lor B) \preceq A$ et par transitivité de \preceq (Q1), on aurait $A \preceq B$; mais cette affirmation est contraire à l' hypothèse d' incomparabilité de A avec B. Donc, en fait, $(A \lor B) \not\preceq A$. Donc, par Q4, $A \prec (A \lor B)$. Par un raisonnement analogue $B \prec (A \lor B)$.

Q6- Montrons que $\bot \prec P$ et $\bot \prec \neg P$:

$$1-\perp \vdash (\perp_a)$$

$$2-\perp \vdash P(\operatorname{aff}_d)$$

$$3- \vdash \perp \rightarrow P(\rightarrow_d)$$

$$1-\perp \models (\perp_g)$$

2-
$$\perp \models \neg P(\operatorname{aff}_d)$$

$$3- \vdash \bot \to \neg P(\to_d)$$

En logique classique, aucn des séquents suivants n'est valide :

$$\vdash P \to \bot \qquad \vdash \neg P \to \bot \qquad \vdash \neg P \to \neg P \qquad \vdash \neg P \to P.$$

En effet, ces séquents sont faux pour les valuations respectives $\nu(P) := 1, \nu(P) := 0, \nu(P) := 1, \nu(P) := 0$. On en déduit que $\bot \prec P, \bot \prec \neg P$ et que $P, \neg P$ sont incomparables par \preceq . Q7- En utilisant Q5, on en déduit que $P \prec (P \lor \neg P)$ et $\neg P \prec (P \lor \neg P)$.

7.1- Par Q6 et Q7, les 4 classes $[\bot]_{\equiv}$, $[P]_{\equiv}$, $[PP]_{\equiv}$, $[P \lor \neg P]_{\equiv}$ sont disctinctes. Par Q3, $[P]_{\equiv} = [P \to \neg P]_{\equiv}$ et on en déduit que l'on a aussi $P \equiv P \lor P \equiv (P \lor (P \to \neg P))$ et finalement $P \lor \neg P \equiv P \lor \neg P \lor (P \to \neg P)$ i.e. $[P \lor \neg P]_{\equiv} = [P \lor \neg P \lor (P \to \neg P)]_{\equiv}$. Donc l'ensemble quotient \mathcal{F}/\equiv a 4 classes :

$$\mathcal{F}/\equiv=\{[\bot]_{\equiv},[P]_{\equiv},[\neg P]_{\equiv},[P\vee\neg P]_{\equiv}\}$$

 $7.2 \,\mathrm{L'}$ ordre sur \mathcal{F}/\equiv induit par le préordre \leq est décrit par la figure 1. Cette figure représente

Fig. $1 - \mathcal{F}/\equiv$.

le diagramme de Hasse de l'ordre : chaque flèche relie un élément à son successeur. Deux éléments x,y sont liés par l'ordre ssi il y a un chemin de x à y dans le diagramme de Hasse. Q8- 8.1 Montrons que $P \prec \neg P \to P$

1- $P, \neg P \vdash P (ax')$

 $2 - P \vdash \neg P \rightarrow P (\rightarrow_d)$

$$3- \vdash P \rightarrow (\neg P \rightarrow P) (\rightarrow_d)$$

Considérons la structure de Kripke $\mathcal{K}:=(K,\leq,|\!\!\!-\!\!\!\!-)$ où $K=\{0,1\},0\leq 1$ et $|\!\!\!\!--|\!\!\!--|$ = $\{(1,P)\}$. On a :0 $\not|\!\!\!/--(\neg P\to P)\to P$, donc $\not|\!\!\!--|\!\!\!--|$ où $F=\{0,1\}$, $F=\{0,1\}$

8.2 Le séquent $\vdash (P \lor \neg P) \to (\neg P \to P)$ n'est pas prouvable dans LK (en effet il est rendu faux par la valuation $\nu(P) := 0$). Dans la structure de Kripke \mathcal{K} (définie plus haut) on a : $0 \mid \vdash (\neg P \to P)$ et $0 \not \vdash \vdash P \lor \neg P$, donc $0 \not \vdash \vdash (\neg P \to P) \to (P \lor \neg P)$, donc le séquent $\vdash (\neg P \to P) \to (P \lor \neg P)$ n'est pas prouvable dans LJ . On a ainsi montré que $(\neg P \to P)$ et $(P \lor \neg P)$ sont incomparables pour \preceq .

 $8.3 \ \mathcal{G}/\equiv a \ donc \ exactement \ 6 \ éléments :$

$$\mathcal{G} := \{ [\bot]_{\equiv}, [P]_{\equiv}, [\neg P]_{\equiv}, [P \vee \neg P]_{\equiv}, [\neg P \rightarrow P]_{\equiv}, [P \vee \neg P \vee (\neg P \rightarrow P)]_{\equiv} \}$$

8.4 L'ordre sur \mathcal{G}/\equiv induit par le préordre \preceq est décrit par son diagramme de Hasse sur la figure 2.

Fig. $2 - \mathcal{G}/\equiv$.