

CROP PEST RECOGNITION & CLASSIFICATION BASED ON DEEPESTNET DEEP LEARNING MODEL

PROBLEM STATEMENT

Farmers experience major crop damage due to:

- Inaccurate pest identification
- Time-consuming detection processes
- Inefficient pest management strategies

Existing models like Faster R-CNN are computationally expensive and less effective with small pest objects. Hence, there is a need for a faster and more accurate model optimized for real-time field deployment.

Our Solution

We propose DeepestNet, an Al-powered crop pest recognition system using EfficientNet-B4 for feature extraction and classification.

Key Features:

- High accuracy and speed
- Lightweight and scalable model
- Supports multiple pest categories
- Deployable via mobile devices, drones, or farm cameras

Applications

Smart Farming & Precision Agriculture Automated Crop Monitoring

Systems

Agricultural Research & Pest

Behavior Analysis

Government Agricultural

Departments

Mobile Apps for Farmers

Image Capture

Farmers or drones capture images of affected crops.

Image Preprocessing

Resizing, normalization, and data augmentation improve model input.

Feature Extraction

EfficientNet-B4 extracts deep image features.

Pest Classification

DeepestNet classifies pests using a softmax layer.

Result Display

Outputs pest name and control suggestions.

Under the Esteemed **Guidance of:** Dr. B. Narendra Kumar Rao, Ph.D. **Head of the** Department, CSE

Presented by:

S. Hidayathulla (21121A05N2)

M. Lakshmi Yashaswi (21121A05G2)

N. Hari Shankar (21121A05H2)

M. Reddy Sharvani (21121A05F4)

Advantages

- High Accuracy: Uses advanced **CNN** architecture
- Real-time Detection: Quick processing for immediate action
- Environmentally Friendly: Reduces pesticide misuse
- Scalable: Works with drones, phones, or farm IoT devices
- Cost-effective: Avoids expensive equipment or manual scouting