Power MOSFET

3.0 A, 60 V, Logic Level, N-Channel SOT-223

Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits.

Features

- NVF Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Power Supplies
- Converters
- Power Motor Controls
- Bridge Circuits

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	60	Vdc
Drain-to-Gate Voltage ($R_{GS} = 1.0 \text{ M}\Omega$)	V_{DGR}	60	Vdc
Gate-to-Source Voltage - Continuous - Non-repetitive (t _p ≤ 10 ms)	V _{GS}	± 15 ± 20	Vdc Vpk
$\label{eq:decomposition} \begin{split} & \text{Drain Current} \\ & - \text{Continuous } @ \text{ T}_{A} = 25^{\circ}\text{C (Note 1)} \\ & - \text{Continuous } @ \text{ T}_{A} = 100^{\circ}\text{C (Note 2)} \\ & - \text{Single Pulse (t}_{p} \leq 10 \mu\text{s)} \end{split}$	I _D I _D I _{DM}	3.0 1.4 9.0	Adc Apk
Total Power Dissipation @ T _A = 25°C (Note 1) Total Power Dissipation @ T _A = 25°C (Note 2) Derate above 25°C	P _D	2.1 1.3 0.014	Watts Watts W/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 175	°C
Single Pulse Drain–to–Source Avalanche Energy – Starting $T_J = 25^{\circ}C$ ($V_{DD} = 25 \text{ Vdc}, V_{GS} = 5.0 \text{ Vdc},$ $I_{L(pk)} = 7.0 \text{ Apk}, L = 3.0 \text{ mH}, V_{DS} = 60 \text{ Vdc})$	E _{AS}	74	mJ
Thermal Resistance -Junction-to-Ambient (Note 1) -Junction-to-Ambient (Note 2)	R _{θJA} R _{θJA}	72.3 114	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. When surface mounted to an FR4 board using 1" pad size, 1 oz. (Cu. Area 1 $\rm in^2$).
- When surface mounted to an FR4 board using minimum recommended pad size, 2 oz. (Cu. Area 0.272 in²).

ON Semiconductor®

www.onsemi.com

3.0 A, 60 V $R_{DS(on)} = 120 \text{ m}\Omega$

N-Channel

SOT-223 CASE 318E STYLE 3

AYW

3055L=

MARKING DIAGRAM

3055L = Device Code

A = Assembly Location Y = Year

W = Work Week
■ Pb-Free Package

(Note: Microdot may be in either location)

PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

OFF CHARACTERISTICS Drain-to-Source Breakdown Voltage (Note 3) (V _{GS} = 0 Vdc, I _D = 250 µAdc) Temperature Coefficient (Positive) V(BR)DSS	Unit	Max	Тур	Min	Symbol	Characteristic				
(V _{SS} = 0 Vdc, I _D = 250 μAdc) Temperature Coefficient (Positive) Zero Gate Voltage Drain Current (V _{DS} = 60 Vdc, V _{SS} = 0 Vdc) (V _{DS} = 60 Vdc, V _{SS} = 0 Vdc) (V _{DS} = 60 Vdc, V _{SS} = 0 Vdc, T _J = 150°C) Gate-Body Leakage Current (V _{SS} = ± 15 Vdc, V _{DS} = 0 Vdc) (V _{DS} = V _{SS} , I _D = 250 μAdc) Threshold Temperature Coefficient (Negative) Static Drain-to-Source On-Resistance (Note 3) (V _{SS} = 5.0 Vdc, I _D = 1.5 Adc) (V _{SS} = 5.0 Vdc, I _D = 1.5 Adc, T _J = 150°C) Static Drain-to-Source On-Resistance (Note 3) (V _{SS} = 5.0 Vdc, I _D = 1.5 Adc, T _J = 150°C) Static Drain-to-Source On-Resistance (Note 3) (V _{SS} = 5.0 Vdc, I _D = 1.5 Adc, T _J = 150°C) Static Drain-to-Source On-Resistance (Note 3) (V _{SS} = 5.0 Vdc, I _D = 1.5 Adc, T _J = 150°C) Static Drain-to-Source On-Resistance (Note 3) (V _{SS} = 5.0 Vdc, I _D = 1.5 Adc, T _J = 150°C) Forward Transconductance (Note 3) (V _{DS} = 5.0 Vdc, I _D = 1.5 Adc, T _J = 150°C) Forward Transconductance (Note 3) (V _{DS} = 25 Vdc, V _{CS} = 0 V, I _D = 3.0 Adc) (V _{SS} = 5.0 Vdc, I _D = 3.0 Adc, V _{CS} = 0 Vdc, I _D = 3.0 Adc, V _{CS} = 0 Vdc, I _D = 3.0 Adc, V _{CS} = 0 Vdc, I _D = 3.0 Adc, V _{CS} = 0 Vdc, I _D = 3.0 Adc, V _{CS} = 0 Vdc, I _D = 3.0 Adc, V _{CS} = 0 Vdc, I _D = 3.0 Adc, V _{CS} = 0 Vdc, I							OFF CHARACTERISTICS			
(V _{DS} = 60 Vdc, V _{QS} = 0 Vdc, U _{SS} = 150°C) (Date Body Leakage Current (V _{GS} = ± 15 Vdc, V _{DS} = 0 Vdc) (Date Body Leakage Current (V _{GS} = ± 15 Vdc, V _{DS} = 0 Vdc) (Date Body Leakage Current (V _{GS} = ± 15 Vdc, V _{DS} = 0 Vdc) (Date Body Leakage Current (V _{GS} = ± 15 Vdc, V _{DS} = 0 Vdc) (Date Threshold Veltage (Note 3) (V _{DS} = V _{QS} , I _D = 250 μAdc) Threshold Temperature Coefficient (Negative) Static Drain-to-Source On-Resistance (Note 3) (V _{GS} = 5.0 Vdc, I _D = 1.5 Adc) Static Drain-to-Source On-Resistance (Note 3) (V _{SS} = 5.0 Vdc, I _D = 3.0 Adc) (V _{SS} = 5.0 Vdc, I _D = 3.0 Adc, I _D = 1.5 Adc, T _J = 150°C) Forward Transconductance (Note 3) (V _{DS} = 7.0 Vdc, I _D = 3.0 Adc) (V _{SS} = 5.0 Vdc, I _D = 1.5 Adc, T _J = 150°C) Forward Transconductance (Note 3) (V _{DS} = 25 Vdc, V _{GS} = 0 V, I _D = 3.0 Adc) (V _{DS} = 25 Vdc, V _{DS} = 0 V, I _D = 3.0 Adc) Transfer Capacitance (V _{DS} = 25 Vdc, V _{DS} = 0 V, I _D = 3.0 Adc, V _{DS} = - 40 60 SWITCHING CHARACTERISTICS (Note 4) Turn-On Delay Time (V _{DD} = 30 Vdc, I _D = 3.0 Adc, V _{DS} = 5.0 Vdc, I _D = - 7.6 15 Fall Time (V _{DD} = 30 Vdc, I _D = 3.0 Adc, V _{DS} = 5.0 Vdc, V _{DS} = 0 Vdc, V	Vdc mV/°C	_ _			V _{(BR)DSS}	Drain–to–Source Breakdown Voltage (Note 3) (V _{GS} = 0 Vdc, I _D = 250 μAdc)				
Continue	μAdc				I _{DSS}	$(V_{DS} = 60 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$			= 60 Vdc, V _{GS} = 0 Vdc)	
Cate Threshold Voltage (Note 3)	nAdc	- ± 100 nAdd			I _{GSS}	_S = ± 15 Vdc, V _{DS} = 0 Vdc)	Gate-Body Leakage Current (V _G			
1.0							ON CHARACTERISTICS (Note 3)			
	Vdc mV/°C				V _{GS(th)}	Gate Threshold Voltage (Note 3) (V _{DS} = V _{GS} , I _D = 250 μAdc)				
	mΩ	120	92	-	R _{DS(on)}	` '				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vdc	0.43 -		-	V _{DS(on)}	$(V_{GS} = 5.0 \text{ Vdc}, I_D = 3.0 \text{ Adc})$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mhos	-	5.7	_	9 _{fs}	(V _{DS} = 7.0 Vdc, I _D = 3.0 Adc)	Forward Transconductance (Note 3)			
							DYNAMIC CHARACTERISTICS			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	pF	440	313	_	C _{iss}		Input Capacitance			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		160	112	_	C _{oss}		Output Capacitance			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		60	40	_	C _{rss}	,	Transfer Capacitance			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						ote 4)	SWITCHING CHARACTERISTICS (N			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ns	25	11	-	t _{d(on)}		Turn-On Delay Time			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	70	35	_	t _r		Rise Time			
		45	22	-	t _{d(off)}		Turn-Off Delay Time			
	1	60	27	_	t _f	, , ,	Fall Time			
$V_{GS} = 5.0 \text{ Vdc}) \text{ (Note 3)} \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$	nC	15	7.6	-	Q _T		Gate Charge			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	1.4	-	Q ₁					
Forward On–Voltage		_	4.0	-	Q_2	VGS = 0.0 Vd0) (Note 0)				
						ERISTICS	SOURCE-DRAIN DIODE CHARACTE			
$(I_S = 3.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc},$ $t_a - 21 - t_a$	Vdc			- -	V _{SD}	$(I_S = 3.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc},$	Forward On-Voltage			
(IS = 0.0 Auto, VGS = 0 Vuc,	ns	_	35	_	t _{rr}		Reverse Recovery Time			
dl /dt 100 A/vo/ (Note 2)		_	21	-	t _a	$(I_S = 3.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc},$				
		_	14	_	t _b					
Reverse Recovery Stored Charge Q _{RR} - 0.044 -	μС	_	0.044	_	Q _{RR}		Reverse Recovery Stored Charge			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{3.} Pulse Test: Pulse Width $\leq 300~\mu s,$ Duty Cycle $\leq 2.0\%.$

^{4.} Switching characteristics are independent of operating junction temperatures.

TYPICAL ELECTRICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL ELECTRICAL CHARACTERISTICS

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

TYPICAL ELECTRICAL CHARACTERISTICS

Figure 13. Thermal Response

ORDERING INFORMATION

Device	Package	Shipping [†]
NTF3055L108T1G	SOT-223 (TO-261) (Pb-Free)	1000 / Tape & Reel
NVF3055L108T1G	SOT-223 (TO-261) (Pb-Free)	1000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04 ISSUE N

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
С	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
E	3.30	3.50	3.70	0.130	0.138	0.145
е	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
L	0.20			0.008		
L1	1.50	1.75	2.00	0.060	0.069	0.078
HE	6.70	7.00	7.30	0.264	0.276	0.287
θ		-			_	

STYLE 3:

PIN 1. GATE 2. DRAIN

3. SOURCE

10° 0°

109

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold O

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative