Sammanfattning av SG1218 Strömningsmekanik

Yashar Honarmandi yasharh@kth.se

4 november 2019

Sammanfattning

Innehåll

1	Kort om notation	1
2	Vektoranalys	1
3	Grundläggande koncept	1
4	Lösningar av Navier-Stokes' ekvation för newtonska fluider	5

1 Kort om notation

Vi kommer här arbeta i ett vänsterhandssystem. Vi kallar x-riktningen strömriktningen därför att vi oftast orienterar x-axeln parallellt med den riktningen det strömmar mest i. y-riktningen kallas normalriktningen och z-riktningen för spänningsriktningen.

2 Vektoranalys

3 Grundläggande koncept

Fluider Stela kroppar ger typiskt motstånd om de utsätts för skjuvning. Vi definierar fluider som ämnen som inte gör detta utan deformeras snabbare ju mer skjuvspänning de utsätts för.

Kontinua Ett kontinuum är ett medium så att egenskaper som temperatur och tryck är definierade i varje punkt i mediet som ett fält. När vi nu vet att all materia består av atomer, kan vi förstå kontinuumsbaserad teori som en approximation där fält tas som medelvärden över regioner av rummet. Detta är typiskt en bra approximation så länge alla relevanta storleksskalor är mycket större än atomära storheter.

Hastighetsfältet Hastighetsfältet **u** är ett vektorfält som anger i vilken riktning och hur snabbt ett fluid flödar. Vi betecknar typiskt dets komponenter som u, v, w.

Strömlinjer Strömlinjer är linjer som är så att hastigheten är tangentiell till linjen.

Ekvation för strömlinjen För en strömlinje ger formlikhet att

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{v}{u}.$$

Tidsändring och materiell derivata Betrakta ett fluidelement. Om det vid en given tid befinner sig i \mathbf{r} , kommer det under en tid δt förflytta sig en sträcka $\delta \mathbf{r}$. Värdet av något fält ϕ i det fluidelementet kommer då vara

$$\phi(\mathbf{r} + \delta \mathbf{r}, t + \delta t) = \phi(\mathbf{r}, t) + \partial_t \phi \delta t + \partial_s \phi \delta x_i.$$

Den totala tidsderivatan av ϕ för det givna elementet fås genom att beräkna ändringen av fältet och dela på den lilla tidsskillnaden. Vi får då

$$\frac{\mathrm{d}\phi}{\mathrm{d}t} = \partial_t \phi + \partial_i \phi \frac{\delta x_i}{\delta t} = \partial_t \phi + \partial_i \phi u_i = \partial_t \phi + (\mathbf{u} \cdot \vec{\nabla})\phi.$$

Detta kallar vi för den materiella derivatan av ϕ .

Acceleration Accelerationen är materiella derivatan av hastighetsfältet.

Kontrollvolymer I strömningsmekanik kommer vi betrakta fixa kontrollvolymer, som kommer betecknas V, och materiella kontrollvolymer, som betecknas V. En materiell kontrollvolym rör sig med fluidet, så att dens gränsyta ändras.

Tidsderivator av integraler Det gäller att

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V} \mathrm{d}V \, \phi = \int_{V} \mathrm{d}V \, \partial_{t} \phi,$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V} \mathrm{d}V \, \phi = \int_{V} \mathrm{d}V \, \partial_{t} \phi + \int_{S} \mathrm{d}S \cdot \phi \mathbf{u} = \int_{V} \mathrm{d}V \, \partial_{t} \phi + \vec{\nabla} \cdot (\phi \mathbf{u}).$$

Inkompressibla fluider En fluid är inkompresibel om volymsmåttet av en godtycklig materiell kontrollvolym ej ändras med tiden. Genom att använda tidsderivatorna ovan kan man visa att detta ger

$$\vec{\nabla} \cdot \mathbf{u} = 0.$$

Massa Massan av en fluid inom en volym V ges av

$$\int\limits_{V}\mathrm{d}V\,\rho$$

där ρ är tätheten.

Kontinuitetsekvationen Eftersom randen för en materiell kontrollvolym följer med den strömmande vätskan måste massan av volymen vara konstant. Detta ger

$$\int_{\mathcal{V}} d\mathcal{V} \, \partial_t \rho + \vec{\nabla} \cdot (\rho \mathbf{u}) = 0.$$

Om detta gäller överallt, måste integranden vara noll överallt. Detta kan skrivas som

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} + \rho \vec{\nabla} \cdot \mathbf{u} = 0.$$

Kontinuitetsekvationen för en inkompressibel fluid För en inkompressibel fluid är då

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = 0.$$

I praktiken antar vi att en inkompressibel fluid har ungefär konstant täthet överallt. Om alla relevanta hastigheter är mycket mindre än ljudhastigheten i mediet, kan fluidet approximeras som inkompressibelt.

Kontinuitetsekvationen kan även härledas ur betraktningar av produktion och förlust av fluid i en fix kontrollvolym, alla Vektoranalys.

Hjälpsats för fältintegraler i inkompressibla fluider Det gäller att

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathcal{V}} \mathrm{d}\mathcal{V} \, \rho \phi = \int_{\mathcal{V}} \mathrm{d}\mathcal{V} \, \partial_t \rho \phi + \vec{\nabla} \cdot (\rho \phi \mathbf{u})$$

$$= \int_{\mathcal{V}} \mathrm{d}\mathcal{V} \, \rho \partial_t \phi + \phi \partial_t \rho + \phi \vec{\nabla} \cdot (\rho \mathbf{u}) + (\rho \mathbf{u} \cdot \vec{\nabla}) \phi$$

$$= \int_{\mathcal{V}} \mathrm{d}\mathcal{V} \, \rho \frac{\mathrm{d}\phi}{\mathrm{d}t} + \phi \partial_t \rho + \phi \vec{\nabla} \cdot (\rho \mathbf{u}).$$

Kontinuitetsekvationen ger att de två andra termerna försvinner och

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathcal{V}} \mathrm{d}\mathcal{V} \, \rho \phi = \int_{\mathcal{V}} \mathrm{d}\mathcal{V} \, \rho \frac{\mathrm{d}\phi}{\mathrm{d}t}.$$

Strömfunktionen Definiera strömfunktionen Ψ så att

$$\partial_x \Psi = u, \ \partial_u \Psi = -v.$$

Man kan visa att denna är konstant längsmed en strömlinje.

Rörelsemängd Rörelsemängden av en fluid inom en volym V ges av

$$\int\limits_V \mathrm{d}V \, \rho \mathbf{u}.$$

Spänningstensorn För en (liten) volym med ytnormal n gäller

$$f_i = \tau_{ji} n_j$$

där τ är spänningstensorn. Spänningstensorn är ett tensorfält då den ger ett kraftfält i fluiden som måste integreras för att få totala kraften. Den totala kraften ges av

$$F_i = \int\limits_{S} dS_j \, \tau_{ji} = \int\limits_{V} dV \, \partial_j \tau_{ji}.$$

Newtons andra lag Newtons andra lag för en fluid ger

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathcal{V}} \mathrm{d}\mathcal{V} \, \rho u_i = \int_{\mathcal{V}} \mathrm{d}\mathcal{V} \, \rho g_i + \partial_j \tau_{ji},$$

där g är volymkraften. Med hjälp av hjälpsatsen från innan fås

$$\int_{\mathcal{V}} d\mathcal{V} \, \rho \frac{\mathrm{d}u_i}{\mathrm{d}t} = \int_{\mathcal{V}} d\mathcal{V} \, \rho g_i + \partial_j \tau_{ji}.$$

Detta gäller för en godtycklig materiell kontrollvolym, vilket ger

$$\frac{\mathrm{d}u_i}{\mathrm{d}t} = g_i + \frac{1}{\rho}\partial_j \tau_{ji}.$$

Kontinuitetsekvationen och Newtons andra lag är de fundamentala lagarna hastighetsfältet och spänningstensorns måste uppfylla. Tyvärr ger detta bara fyra ekvationer för att bestämma de tolv okända som ingår. Genom att betrakta bevarande av rörelsemängdsmoment får man att spänningstensorn är symmetrisk, men problemet återstår. Därför behöver vi göra approximationer och dylikt.

Eulers ekvationer Betrakta en fluid där det inte finns friktionskrafter internt i vätskan, en så kallad inviskös fluid. För denna är spänningstensorn $\tau_{ij} = -p\delta_{ij}$. Då förenklas Newtons andra lag till

$$\frac{\mathrm{d}u_i}{\mathrm{d}t} = g_i - \frac{1}{\rho}\partial_i p.$$

Detta är Eulers ekvationer. De har randvillkoret att $\mathbf{u} \cdot \mathbf{n} = 0$ på randytan.

Bernoullis ekvation Bernoullis ekvation är en ekvation som ger en förenklad beskrivning av en inviskös vätska. Det gäller att

$$(\mathbf{u} \cdot \vec{\nabla})\mathbf{u} = \frac{1}{2}\vec{\nabla}u^2 - \mathbf{u} \times \boldsymbol{\omega}$$

där $\boldsymbol{\omega} = \vec{\nabla} \times \mathbf{u}$ är vorticiteten. Genom att betrakta konstanta kraftfält i z-riktning och definiera $B = \frac{1}{2}u^2 + \frac{p}{\rho} + gz$ blir Newtons andra lag

$$\partial_t \mathbf{u} + \vec{\nabla} B = \mathbf{u} \times \boldsymbol{\omega}.$$

Betrakta nu en stationär vätska. Genom att integrera ekvationen ovan längsmed en strömlinje försvinner högersidan, vilket ger att B är konstant längsmed strömlinjen.

Newtons andra lag på integralform För en fix **g** kan vi integrera Newtons andra lag över en fix kontrollvolym för att ge

$$\int\limits_{V} \mathrm{d}V \, \rho \partial_t u_i + \rho u_j \partial_j u_i = M g_i + \int\limits_{V} \mathrm{d}V \, \partial_j \tau_{ij}.$$

För en inkompressibel fluid är $\rho u_j \partial_j u_i = \rho \partial_j (u_j u_i)$. I stationära fall fås då

$$\int_{S} dS_j \, \rho u_j u_i = Mg_i + \int_{S} dS_j \, \tau_{ij},$$

vilket på vektorform (möjligtvis bara i inviskösa fall) blir

$$\int_{S} (\mathbf{dS} \cdot \mathbf{u}) \mathbf{u} = Mg_i - \int_{S} \mathbf{dS} \, p.$$

Töjningstensorn Betrakta ett litet fluidelement som rör sig i någon riktning x_i . Över elementets längd δx ändras hastigheten med $\partial_i u_i \delta x_i$. Över ett litet tidsintervall δt kommer då fluidelementet att förlängas med $\delta s = \partial_i u_i \delta x_i \delta t$. Den linjära töjningen definieras som förlängningen per längd och tid, och ges här i x_i -riktningen av $\partial_i u_i$.

Betrakta vidare ett fluidelement i ett hastighetsfält i x_1x_2 -planet. Det kommer skjuvas över en tid δt så att det bildar en vinkel $\delta \alpha$ med x_2 -axeln och $\delta \beta$ med x_1 -axeln. Trigonometri ger

$$\delta \alpha = \frac{(u_1 + \partial_2 u_1 \delta x_2 - u_1) \delta t}{\delta x_2} = \partial_2 u_1 \delta t, \ \delta \beta = \partial_1 u_2 \delta t.$$

Skjuvningen per tid ges av $\partial_1 u_2 + \partial_2 u_1$.

Vi definierar nu töjningstensorn

$$e_{ij} = \partial_i u_j + \partial_j u_i.$$

Från denna kan vi få töjningen av ett givet element.

Vi noterar två saker: Töjningstensorn är symmetrisk, och för inkompressibla vätskor är den spårlös. Som med andra tensorer finns det även ett huvudaxelsystem där töjningstensorn är diagonal.

Friktion i fluider Friktion i fluider uppkommer vid töjning. Vi kommer behandla den som om den är proportionell mot töjningen.

Konstitutiva relationer och Newtonska fluider För en inkompressibel fluid kommer vi arbeta med den konstitutiva relationen

$$\tau_{ij} = -p\delta_{ij} + 2\mu e_{ij}.$$

En inkompressibel vätska som uppfyller denna konstitutiva relationen kallas för en Newtonsk fluid.

Viskositet I relationen ovan införde vi viskositeten μ .

Navier-Stokes' ekvation för en Newtonsk fluid . Vi har

$$\partial_j \tau_{ij} = -\partial_i p + \mu (\partial_j \partial_j u_i + \partial_j \partial_i u_j).$$

Genom att ordna om derivatorna innehåller den sista termen en derivata av hastighetsfältets divergens. Eftersom vi studerar Newtonska fluider är denna 0, och

$$\partial_j \tau_{ij} = -\partial_i p + \mu \partial_j \partial_j u_i.$$

Vi inför nu kinematiska ekvationen $\nu = \frac{\mu}{\rho}$, och skriver då kraftekvationen som

$$\frac{\mathrm{d}u_i}{\mathrm{d}t} = -\frac{1}{\rho}\partial_i p + \nu \partial_j \partial_j u_i + g_i.$$

Detta är Navier-Stokes' ekvation(er) för en Newtonsk fluid. På vektorform är den

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \vec{\nabla}) \mathbf{u} = -\frac{1}{\rho} \vec{\nabla} p + \nu \nabla^2 \mathbf{u} + \mathbf{g}.$$

Eftersom det finns friktion i vätskan, har ekvationen som randvillkor att $\mathbf{u} = \mathbf{0}$ på fasta ränder, eftersom vätskan kommer röra sig med randen.

Förenkling genom borttagning av kraftterm Antag att gravitationen inte driver flödet av en vätska utan bara sätter upp ett tryckfält i vätskan, och att detta är enda yttre kraften på vätskan. Då kan vi skriva $p = p' + p_g$, där p_g är trycket som uppstår på grund av gravitationen. Denna termen uppfyller $\rho \mathbf{g} - \vec{\nabla} p_g = 0$. Då blir Navier-Stokes' ekvation

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \vec{\nabla}) \mathbf{u} = -\frac{1}{\rho} \vec{\nabla} p' + \nu \nabla^2 \mathbf{u}.$$

Primmet tas oftast ej med.

4 Lösningar av Navier-Stokes' ekvation för newtonska fluider

Detta är lösningar av Navier-Stokes' ekvation för newtonska fluider i vissa specifika geometrier.

Couetteströmning Betrakta en fluid mellan två plattor. Fluiden har kinematisk viskositet ν , täthet ρ , konstant tryck p och befinner sig långt från in- och utlopp (vi säjer att strömningen är fullt utbildad). Plattorna är på ett avstånd h i y-riktning. Ena plattan är fäst, och andra plattan rör sig med en hastighet U i x-riktning. Vi vill nu bestämma stationära hastighetsfältet, volymsflödet per enhet längd i z-riktning och spänningen på de två plattorna.

Vi noterar först att problemet är symmetriskt i både x och z. Eftersom det inte finns något som driver flöde i z-riktning, måste $u_z=0$. Då ger inkompressibilitetsvillkoret att u_y är konstant och lika med 0 för att uppfylla randvillkoret. Det som återstår av Navier-Stokes' ekvation är

$$\nabla^2 u_x = \partial_y^2 u_x = 0,$$

och slutligen

$$u_x = U \frac{y}{h}.$$

Volymsflödet per längdenhet ges av

$$\Phi = \frac{1}{l} \int_{x=c} d\mathbf{S} \cdot \mathbf{u} = \frac{1}{l} \int_{0}^{l} dz \int_{0}^{h} dy U \frac{y}{h} = \frac{1}{2} U h.$$

För att hitta spänningarna längsmed ytorna, konstaterar vi först att ytorna har normalvektor $n_i = \pm \delta_{i2}$. Ytspänningarna ges då av

$$\tau_{ij}n_j = \pm \tau_{i2} = \pm \mu(\partial_i u_2 + \partial_2 u_i).$$

Den enda nollskilda kraftkomponenten är den första, och ges av

$$f_1 = \tau_{1j} n_j = \pm \mu \frac{U}{h} = \pm \frac{\rho \nu U}{h}.$$

Poiseuille-strömning Betrakta en fluid mellan två plattor. Fluiden har kinematisk viskositet ν , täthet ρ , tryck p med konstant gradient $-K\mathbf{e_x}$ och strömningen är stationär och fullt utbildad. Plattorna är båda fästa på ett avstånd h i y-riktning. Vi vill nu bestämma stationära hastighetsfältet, volymsflödet per längdenhet i z-riktning och spänningen på de två plattorna.

På samma sätt som för Couetteströmning fås $u_y=u_z=0$ och symmetri i x och z. Navier-Stokesä ekvation ger då

$$\nu \nabla^2 u_x = \nu \partial_y^2 u_x = \frac{1}{\rho} \mathbf{e_x} \partial_x p = -\frac{K}{\rho}, \ \partial_y^2 u_x = -\frac{K}{\mu}.$$

Detta har lösning

$$u_x = \frac{1}{2} \frac{Kh^2}{\mu} \left(\frac{y}{h} - \left(\frac{y}{h} \right)^2 \right).$$

Volymsflödet per längdenhet ges av

$$\begin{split} \Phi &= \frac{1}{l} \int\limits_{x=c}^{l} \mathrm{d}\mathbf{S} \cdot \mathbf{u} \\ &= \frac{1}{l} \int\limits_{0}^{l} \mathrm{d}z \int\limits_{0}^{h} \mathrm{d}y \, \frac{1}{2} \frac{Kh^2}{\mu} \left(\frac{y}{h} - \left(\frac{y}{h} \right)^2 \right) \\ &= \frac{1}{2} \frac{Kh^3}{\mu} \int\limits_{0}^{1} \mathrm{d}u \, (u - u^2) \\ &= \frac{1}{12} \frac{Kh^3}{\mu}. \end{split}$$

Normalvektorn ges på samma sätt som innan, och vi får

$$\tau_{ij}n_j = \pm \mu(\partial_i u_2 + \partial_2 u_i).$$

Enda nollskilda komponenten är

$$f_1 = \pm \frac{1}{2} Kh \left(1 - 2\frac{y}{h} \right).$$

Denna är lika med $\frac{1}{2}Kh$ på båda ytorna.

Stokes' första problem Betrakta en newtonsk fluid med kinematisk viskositet ν och täthet ρ i det halvoändliga rummet y > 0. Vid randen börjar en platta röra sig med hastighet U i x-riktningen vid t = 0. Vi vill nu bestämma hastighetsfältet.

Systemet är symmetriskt i xz-planet, och inkompressibiliteten ger då $\partial_y u_y = 0$. För att uppfylla randvillkoret måste då $u_y = 0$. Återigen finns det inget som driver flöde i z-riktning, så $u_z = 0$. Navier-Stokes' ekvation ger då

$$\partial_t u_x = -\frac{1}{\rho} \partial_x p + \nu \nabla^2 u_x.$$

Återigen använder vi symmetrin för att skriva detta som

$$\partial_t u_x = \nu \partial_y^2 u_x.$$

Vi kommer lösa detta med en likformighetsansats med den dimensionslösa variabeln $\eta = \frac{y}{\sqrt{\nu t}}$ på formen

$$u_x = Uf(\eta).$$

Jag borde lösa klart det här någon gång.