Shamman Noor Shoudha

github | linkedin | website

(469) 473 9830 | nshoudha@gmail.com

Education

The University of Texas at Dallas, Richardson, Texas

Ph.D. in Electrical Engineering, GPA: 4.00/4.00 (Advisor: Dr. Naofal Al-Dhahir)

Aug, 2018 – Dec, 2020

Jan, 2021 - May, 2024

The University of Texas at Dallas, Richardson, Texas

M.Sc. in Electrical Engineering, GPA: 3.97/4.00

Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

Feb, 2013 - Sep, 2017

B.Sc. in Electrical and Electronic Engineering, GPA: 3.71/4.00

Skille

Machine Learning: Graph Neural Network, Convolutional Neural Network, Multilayer Perceptron, Support Vector Machine,

PyTorch Quantization, LSF GPUs

Programming: Python (OOPS), C/C++, MATLAB, GitLab, GitHub, Docker

Measurements & Lab Skills: USRPs, Spectrum Analyzers, Oscilloscopes, Signal Generators

Experience

Qualcomm Inc.

Senior Engineer, Modem Systems (Machine Learning)

June, 2024 – Present

- Increased GNSS positioning accuracy by 18% using Graph Neural Network inspired MLP for Google Pixel-3 wearable device (on production)
- Increased floating-point training time 12x using Load Sharing Facility GPUs and improved 8-bit quantization performance 15% using MSE-based quantization scheme and intelligent quantization encoding computation method.

Qualcomm Inc.

Internship, Modem Systems (Receiver Front-end)

May - Aug, 2023

Doubled pull-in range and quadrupled accuracy of carrier frequency offset estimation using 4 pilot symbols for 5G receiver (patent submitted)

Qualcomm Inc.

Internship, Modem Systems (Transmitter Front-end)

May - Aug, 2022

Achieved 37% peak-to-average-power ratio reduction using deep-Q learning based method of crest factor reduction for 5G transmitter

The University of Texas at Dallas

Research Assistant, Supervisor: Dr. Naofal Al-Dhahir

Aug, 2018 - May, 2024

- Improved Wi-Fi 6 (23%) and Bluetooth 5.1 (34%) based localization performance using OpenPose inspired CNN model and achieved centimeter-level accuracy in challenging indoor multipath environments.
- Reduced frame synchronization error below 1e-15 using CNN-based frame synchronizer for Aeronautical Mobile Telemetry receivers.
- Achieved target BER at 1e-5 with lower C/I ratio requirement using MMSE based joint LTE interference and multipath suppressor for Aeronautical Mobile Telemetry receivers.

Journal Publications

- 1. OpenPose-Inspired Reduced-Complexity CSI-based WiFi Indoor Localization, IEEE Communications Letters (2024)
- 2. Wi-Fi 5GHz CSI-based Single-AP Localization with Centimeter-Level Median Error", IEEE Access (2023)
- 3. Bridging the performance gap between two-way and one-way CSI-based 5 GHz WiFi ranging, IEEE Access 11 (2023)
- 4. Reduced-Complexity Decimeter-Level BLE Ranging in Multipath Environments, IEEE Access (2022)

Conference Publications

- 1. A Convolutional Neural Network based Frame Synchronizer, ITC (2021)
- 2. Joint LTE Uplink Interference and Multipath Suppression for Aeronautical Telemetry. ITC (2019)
- 3. Co-Existence of Aeronautical Mobile Telemetry and LTE Systems in the L-Band, ITC (2019)
- 4. Audio Visual Emotion Recognition using Wavelet Packet Domain Features, IEEE WIECON (2017)
- 5. Real time hand movement controlled robotic arm for risk prevention, IEEE R10-HTC (2018)

Projects

Wi-Fi sniffer

 Developed ERP-OFDM receiver for IEEE 802.11g Wi-Fi packets (2.400-2.4835 GHz) with operations: signal detection, frame synchronization, CFO compensation, phase tracking and correction, channel estimation and equalization, RF compensation, PHY and MAC PDUs decoding, and network SSID capture

MMSE Channel Estimator

Achieved NMSE lower than 1e-1 for SNR 15 dB for single snapshot and 64 transmit antennas using CNN based MMSE channel estimator

SVM Equalization

Acquired BER 1e-4 for AWGN channel with SNR 17 dB using non-linear SVM equalizers for AWGN and colored noise

Speech denoising using Fully Connected Neural Networks

 Collected and denoised (subjective evaluation) speech (babble from university cafeteria, SNR 10.4 dB) and non-speech (kitchen fan and garbage disposal noise, SNR 9.67 dB) signals using fully-connected CNN based speech denoiser with 6 convolutional layers

IoT Devices, Sensors and User Management System

 Programmed AES-128 encryption, decryption, and the RBAC process in Python with secured database access management architecture for IoT using Raspberry Pi 4 Bluetooth 5 connectivity