UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

DISCIPLINA: CIRCUITOS EL ÉTRICOS L Data:

JISCH LINA. CINCUIT	OS ELETRICOS I	Data	
Aluno(a):			

Avaliação 2º Estágio

1 - Considere o circuito da figura 1 onde os valores das indutâncias são: L1=L2=L3=1H e M12=M13=M23=0.5H. Todos os indutores do circuito não possuem energia inicial. Faça o que se pede:

Matrícula:

- 1.3 -Determine a polaridade de acoplamento dos indutores; (1.0)
- 1.4 Dado que a chave CH1 comuta a intervalos regulares de 1s (fica fechada por um segundo e fica aberta por um segundo e repete esse funcionamento ininterruptamente), determine expressão de $v_o(t)$ em um período completo de comutação da chave CH1. (2.0)

OBS: Resistores em ohm

- Figura 1
- 2 Para o circuito da figura 2, onde os valores dos componentes são: R=10Ω, L=6.25H, L=10mF e V_s = 10V, faça o que se pede. Neste circuito as chaves CH1 e CH2 operam de forma complementar (CH1 fecha quando CH2 abre e vive-versa).
- 2.1 Determine as equações $i_l(t)$ e $v_o(t)$ quando a chave CH1 está fechada. Para isso, considere uma corrente inicial $i_l(0) = i_x$ e uma tensão inicial $v_o(0) = v_{cx}$; (1.5)
- 2.2 Determine as equações $i_l(t)$ e $v_o(t)$ quando a chave CH2 está fechada. Para isso, considere uma corrente inicial $i_l(0) = i_y$ e uma tensão inicial $v_o(0) = v_{cy}$; (1.5)
- 2.3 Determine o tempo que a chave CH2 deve permanecer aberta para que a tensão no capacitor varie de $-2V_s$ (valor inicial) a $-V_s$ (valor final); (1.0)
- 2.4 Considerando o tempo obtido no item 2.3, verifique se a corrente que o indutor terá, no momento que a CH2 for fechada, será suficiente para elevar a tensão no capacitor de $-V_s$ (valor inicial) para $-2V_s$ (valor final); (1.5)
- 2.5 Se a resposta do item 2.4 for positiva, verifique se há corrente do indutor quando o período de fechamento de CH2 de encerra. Caso não, altere o valor do resistor (se possível) de modo que a elevação indicada no item 2.4 possa ocorrer. (1.5)

Figura 2

Formulário:

 $\begin{array}{l} x(t) = x(\infty) + [x(0) - x(\infty)] e^{-\frac{t}{\tau}} \\ A_1 e^{s_1 t} + A_2 e^{s_2 t} \text{ ou } v_f + A_1 e^{s_1 t} + A_2 e^{s_2 t} \\ D_1 t e^{-\alpha t} + D_2 e^{-\alpha t} \text{ ou } v_f + D_1 t e^{-\alpha t} + D_2 e^{-\alpha t} \\ B_1 e^{-\alpha t} \cos \left(\omega_d t\right) + B_2 e^{-\alpha t} \sin \left(\omega_d t\right) \text{ ou } \\ v_f + B_1 e^{-\alpha t} \cos \left(\omega_d t\right) + B_2 e^{-\alpha t} \sin \left(\omega_d t\right) \\ \alpha = \frac{1}{2Rc} \text{ ou } \alpha = \frac{R}{2L} \ \omega_0 = \frac{1}{\sqrt{Lc}} \end{array}$

$$\alpha = \frac{1}{2Rc}$$
 ou $\alpha = \frac{R}{2L}$ $\omega_0 = \frac{1}{\sqrt{Lc}}$

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

DISCIPLINA: CIRCUITOS ELETRICOS I	Data:	
Aluno(a):		

Aluno(a):_			
Matrícula:			

Avaliação 2º Estágio

1 – Considere o circuito da figura 1 onde os valores das indutâncias são: L1=L2=L3=1H e M12=M13=M23=0.5H. Todos os indutores do circuito não possuem energia inicial. Faça o que se pede:

Figura 1

- 1.1 Determine a polaridade de acoplamento dos indutores; (1.0)
- 1.2 Dado que a chave CH1 comuta a intervalos regulares de 1s (fica fechada por um segundo e fica aberta por um segundo e repete esse funcionamento ininterruptamente), determine a expressão de *v_o(t)* em um período completo de comutação da chave CH1. (2.0)

OBS: Resistores em ohm

- 2 Para o circuito da figura 2, onde os valores dos componentes são: $R=10\Omega$, L=6.25H, L=10mF e $V_s=10V$, faça o que se pede. Neste circuito as chaves CH1 e CH2 operam de forma complementar (CH1 fecha quando CH2 abre e vive-versa).
- 2.1 Determine as equações $i_l(t)$ e $v_o(t)$ quando a chave CH1 está fechada. Para isso, considere uma corrente inicial $i_l(0) = i_x$ e uma tensão inicial $v_o(0) = v_{cx}$; (1.5)
- 2.2 Determine as equações $i_l(t)$ e $v_o(t)$ quando a chave CH2 está fechada. Para isso, considere uma corrente inicial $i_l(0) = i_y$ e uma tensão inicial $v_o(0) = v_{cy}$; (1.5)
- 2.3 Determine o tempo que a chave CH2 deve permanecer aberta para que a tensão no capacitor varie de $-V_s$ (valor inicial) a $-0.5V_s$ (valor final); (1.0)
- 2.4 Considerando o tempo obtido no item 2.3, verifique se a corrente que o indutor terá, no momento que a CH2 for fechada, será suficiente para elevar a tensão no capacitor de $-0.5V_s$ (valor inicial) para $-V_s$ (valor final); (1.5)
- 2.5 Se a resposta do item 2.4 for positiva, verifique se há corrente do indutor quando período de fechamento de CH2 de encerra. Caso não, altere o valor do resistor (se possível) de modo que a elevação indicada no item possa ocorrer. (1.5)

Figura 2

Formulário: $$\begin{split} &x(t) = x(\infty) + [x(0) - x(\infty)]e^{-\frac{t}{\tau}} \\ &A_1e^{s_1t} + A_2e^{s_2t} \text{ ou } v_f + A_1e^{s_1t} + A_2e^{s_2t} \\ &D_1te^{-\alpha t} + D_2e^{-\alpha t} \text{ ou } v_f + D_1te^{-\alpha t} + D_2e^{-\alpha t} \\ &B_1e^{-\alpha t}\cos\left(\omega_d t\right) + B_2e^{-\alpha t}\sin\left(\omega_d t\right) \text{ ou } \\ &v_f + B_1e^{-\alpha t}\cos\left(\omega_d t\right) + B_2e^{-\alpha t}\sin\left(\omega_d t\right) \\ &\alpha = \frac{1}{2Rc} \text{ ou } \alpha = \frac{R}{2L} \ \omega_0 = \frac{1}{\sqrt{Lc}} \end{split}$$