MTH 100: Worksheet 9

- 1. Given any two $m \times n$ matrices A and B, prove that $\operatorname{rank}(A+B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$. Give a non-trivial example in which equality is achieved and a non-trivial example in which strict inequality holds.
- 2. Determine whether the following are linear transformations(Yes or No) Justify your answers.
 - (a) $T: \mathbf{R}^3 \to \mathbf{R}^2$ given by T(x, y, z) = (x + y, x z)
 - (b) $T: \mathbf{R}^3 \to \mathbf{R}^2$ given by $T(x, y, z) = (x + y, z^2)$
 - (c) $U: \mathbf{R}^{\mathbf{n} \times \mathbf{n}} \to \mathbf{R}^{\mathbf{n} \times \mathbf{n}}$ given by $U(A) = A^T$ where A^T indicates the transpose of the matrix A.
 - (d) $M: \mathbf{R}[t] \to \mathbf{R}[t]$ given by M(p(t)) = tp(t) for all polynomials $p(t) \in \mathbf{R}[t]$.
- 3. Determine all linear transformations $T: \mathbf{R}^1 \to \mathbf{R}^1$
 - (N.B.: $\mathbf{R^1}$ is the vector space consisting of all 1-tuples with real entries; it is essentially the same as \mathbf{R} , however regarded as only a vector space rather than a field.)
- 4. Consider the space $V = C[\mathbf{R}]$ and consider the mapping $D_{\epsilon}: V \to V$ given by $D_{\epsilon}(f) = f_{\epsilon}$ where $f_{\epsilon}(x) = f(x + \epsilon)$ for all x.
 - Here ϵ is an arbitrary but fixed real number. Is D_{ϵ} a linear transformation? Justify your answer.
- 5. Prove that there does not exist a linear transformation $T: \mathbf{R^5} \to \mathbf{R^2}$ such that Ker T= $\{(x_1, x_2, x_3, x_4, x_5) \in \mathbf{R^5}, x_1 = 3x_2, x_3 = x_4 = x_5\}$
- 6. Consider the field **C** of complex numbers as a vector space over the field **R**. Show that the function
 - $\phi: \mathbf{C} \to \mathbf{C}$ given by $\phi(z) = \bar{z}$ is a linear transformation. Here \bar{z} indicates the complex conjugate of z i.e. if z = a + ib, then $\bar{z} = a ib$. Show that complex conjugation is actually a multiplicative function i.e. if $w, z \in \mathbf{C}$, then $\phi(wz) = \phi(w)\phi(z)$. Finally show that ϕ is the only multiplicative linear transformation from \mathbf{C} to \mathbf{C} other than the zero and identity transformations.

- 7. Applying a proposition proved in class, construct three linear transformations, T_1, T_2, T_3 with domain $\mathbf{R^2}$ and codomain $\mathbf{R^3}$ such that rank $(T_i) = i$ for i = 1, 2, 3.
- 8. Let V be an n-dimensional space and let T be a linear operator V such that Range(T) = Kernel(T)

Show that n must be even.

Give an example of such an operator. (Note: A linear operator T on V is a linear transformation $T:V\to V$ i.e. the codomain is the same as domain.)