Math 74, Week 15

Tianshuang (Ethan) Qiu

December 1, 2021

1 Mon Lec, 2b

 $g_2 = \sqrt{a_1 a_2}$, so $(1 + g_2)^2 = 1 + a_1 a_2 + 2\sqrt{a_1 a_2}$

Our left hand side should be $(1+a_1)(1+a_2) = 1+a_1a_2+a_1+a_2$. By Am-GM, $LHS \ge RHS$

Now we consider 3 elements. $g_3 = \sqrt[3]{a_1 a_2 a_3}$, and $(1 + g_3)^3 = 1 + a_1 a_2 a_3 + 3\sqrt[3]{a_1 a_2 a_3} + 3(a_1 a_2 a_3)^{2/3}$.

Now LHS has $(1 + a_1)(1 + a_2)(1 + a_3) = 1 + a_1 + a_2 + a_3 + a_1a_2 + a_1a_3 + a_2a_3 + a_1a_2a_3$ Here we can cancel the 1 on both sides, and by AM-GM we have $a_1 + a_2 + a_3 \ge 3\sqrt[3]{a_1a_2a_3}$. Now let the three terms be a_1a_2 , a_1a_3 , and a_2a_3 . By AM-GM we have $a_1a_2 + a_1a_3 + a_2a_3 \ge 3\sqrt[3]{a_1^2a_2^2a_3^2}$.

Thus we have shown that $LHS \ge RHS$ term by term.

2 Mon Lec, 3c

Since our plane passes through the point (5,9,12), we know that the equation of a plane can be given by $\frac{x}{r} + \frac{y}{s} + \frac{z}{t} = 1$. Furthermore we have $\frac{5}{r} + \frac{9}{s} + \frac{12}{t} = 1$. Now we apply the Hamonic Mean-GM inequality:

$$\frac{3}{\frac{5}{r} + \frac{9}{s} + \frac{12}{t}} \le \sqrt[3]{\frac{rst}{540}}$$

Now from the equation of the plane we know that LHS = 3, so now $\sqrt[3]{\frac{rst}{540}} \ge 3$, $\frac{rst}{540} \ge 27$ Finally, since the volume of this terahedron is equal to $\frac{1}{2}rst$, we know that $V \ge 7290$.

When the terms $\frac{5}{r}$, $\frac{9}{s}$, $\frac{12}{t}$ are equal, we have V = 7290. Furthermore their sum is equal to 1. Therefore they are each a third. r = 15, s = 27, t = 36.

3 Wed Dis, 3a

We know that both sides of the equation is positive, so the inequality is equivalent to us taking the natural log of both sides

$$\ln x^x \ge \ln \left(\frac{x+1}{2}\right)^{x+1}$$

$$x \ln x \ge (x+1) \ln \frac{x+1}{2}$$

Now consider the function $y \ln(y)$ and two values 1, x. By Jensen's inequality we have $(\ln(1) + x \ln(x))/2 \ge \frac{x+1}{2} \ln \frac{x+1}{2}$, which is identical to our initial statement when we multiply both sides by 2.