Theoretical Mechanics 理论力学

Zhou Xiang 周详

Syllabus

Chapter 0 Preface Chapter 1 Survey of the Elementary Principles Chapter 2 Variational Principle and Lagrange's Equations **Chapter 3 The Central Force Problem Chapter 4 The Kinematics of Rigid Body Motion** Mid-term exam Chapter 5 The Rigid Body Equations of Motion **Chapter 6 Oscillations** Chapter 7 The Classical Mechanics of the Special Theory of Relativity Chapter 8 The Hamilton Equations of Motion **Chapter 9 Canonical Transformations** Final term exam Chapter 10 Introduction to the Lagrangian and Hamiltonian Formulations for **Continuous Systems and Fields**

5.7 The Heavy Symmetrical Top with One Point Fixed

We introduce torque which make things messy.

$$I_1 \dot{\omega}_1 - \omega_2 \omega_3 \left(I_2 - I_3 \right) = N_1$$

$$I_2 \dot{\omega}_2 - \omega_3 \omega_1 \left(I_3 - I_1 \right) = N_2$$

$$I_3 \dot{\omega}_3 - \omega_1 \omega_2 \left(I_1 - I_2 \right) = N_3$$

Consider a spinning top

Define Euler angles

5.7 The Heavy Symmetrical Top with One Point Fixed

5.7 The Heavy Symmetrical Top with One Point Fixed

Lagrangian for a Symmetrical Top

Assume $I_1 = I_2 \neq I_3$

Kinetic energy given by
$$T = \frac{1}{2}I_1\left(\omega_1^2 + \omega_2^2\right) + \frac{1}{2}I_3\omega_3^2$$

Use Euler angles

$$\omega = \begin{bmatrix} \dot{\phi} \sin \psi \sin \theta + \dot{\theta} \cos \psi \\ \dot{\phi} \cos \psi \sin \theta - \dot{\theta} \sin \psi \\ \dot{\phi} \cos \theta + \dot{\psi} \end{bmatrix}$$

$$\Longrightarrow T = \frac{I_1}{2} \left(\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta \right) + \frac{I_3}{2} (\dot{\phi} \cos \theta + \psi)^2$$

Lagrangian for a Symmetrical Top

Potential energy is given by the height of the CoM

$$V = Mgl\cos\theta$$

Lagrangian is

$$L = \frac{I_1}{2} \left(\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta \right) + \frac{I_3}{2} (\dot{\phi} \cos \theta + \dot{\psi})^2 - Mgl \cos \theta$$

Finally we are in real business!

How we solve this?

Note φ and ψ are cyclic

Can define conserved conjugate momenta

Conserved Momenta

$$L = \frac{I_1}{2} \left(\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta \right) + \frac{I_3}{2} (\dot{\phi} \cos \theta + \dot{\psi})^2 - Mgl \cos \theta$$

$$p_{\psi} = \frac{\partial L}{\partial \dot{\psi}} = I_3(\dot{\phi}\cos\theta + \dot{\psi}) = I_3\omega_3 = \text{const.} \equiv I_1a$$

$$p_{\phi} = \frac{\partial L}{\partial \dot{\phi}} = I_1 \dot{\phi} \sin^2 \theta + I_3 \cos \theta (\dot{\phi} \cos \theta + \dot{\psi}) = \text{const.} \equiv I_1 b$$

Solve them for $\dot{\phi}$ and $\dot{\psi}$

$$\dot{\phi} = \frac{b - a\cos\theta}{\sin^2\theta} \qquad \dot{\psi} = \frac{I_1 a}{I_3} - \cos\theta \frac{b - a\cos\theta}{\sin^2\theta}$$

We need $\theta(t)$ to get $\phi(t)$ and $\psi(t)\leftarrow$ Got rid of 2 degrees of freedom

Energy Conservation

$$E = \frac{I_1}{2} \left(\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta \right) + \frac{I_3}{2} (\dot{\phi} \cos \theta + \dot{\psi})^2 + Mgl \cos \theta$$

$$\frac{1}{2}I_3\omega_3^2 \text{ is constant and } \dot{\phi} = \frac{b - a\cos\theta}{\sin^2\theta}$$

$$E' = E - \frac{I_3 \omega_3^2}{2} = \frac{I_1 \dot{\theta}^2}{2} + \frac{I_1}{2} \frac{(b - a \cos \theta)^2}{\sin^2 \theta} + Mgl \cos \theta$$

We've got a 1-dim equation of motion of θ

It looks like a particle of "mass" I_1 under a potential

$$V(\theta) = \frac{I_1}{2} \left(\frac{b - a \cos \theta}{\sin \theta} \right)^2 + Mgl \cos \theta$$

1-D Equation of Motion

Simplify the equation of motion by defining

$$\alpha \equiv \frac{2E - I_3 \omega_3^2}{I_1}$$
 and $\beta \equiv \frac{2Mgl}{I_1}$

EoM becomes
$$\alpha = \dot{\theta}^2 + \left(\frac{b - a\cos\theta}{\sin\theta}\right)^2 + \beta\cos\theta$$

Switch variable from θ to $u = \cos \theta$

EoM
$$\rightarrow \dot{u}^2 = (1 - u^2)(\alpha - \beta u) - (b - au)^2$$

Integrate
$$t = \int_{u(0)}^{u(t)} \frac{du}{\sqrt{(1-u^2)(\alpha-\beta u)-(b-au)^2}}$$

which is Elliptic integral

Qualitative Behavior

Try to extract qualitative behavior

Same way as we did with central force problem

Consider the RHS of the last equation

$$\dot{u}^2 = f(u) \equiv (1 - u^2)(\alpha - \beta u) - (b - au)^2$$
$$= \beta u^3 - (\alpha + a^2) u^2 + (2ab - \beta)u + (\alpha - b^2)$$

Physical range is $f(u) = \dot{u}^2 \ge 0$ and $-1 \le u \le 1 (u = \cos \theta)$

$$f(u)$$
 is a cubic function of u with $\beta \equiv \frac{2Mgl}{I_1} > 0$

$$f(\pm 1) = -(b - au)^2 \le 0$$

Shape of f(u)

$$f(u) = 0$$
 has 3 roots $-1 \le u_1 \le u_2 \le 1 \le u_3$

Solution for $\dot{u}^2 = f(u)$ is bounded inside $u_1 \le u \le u_2$

 θ oscillates between

 $arccos(u_1)$ and $arccos(u_2)$

 ϕ and ψ determined by

$$\dot{\phi} = \frac{b - a\cos\theta}{\sin^2\theta}$$

$$\dot{\psi} = \frac{I_1 a}{I_3} - \cos \theta \frac{b - a \cos \theta}{\sin^2 \theta}$$

Nutation

Consider the sign of
$$\dot{\phi} = \frac{b - a\cos\theta}{\sin^2\theta} = \frac{b - au}{1 - u^2}$$

 $\dot{\phi}$ changes sign at u = u' = b/a

 $u' < u_1 \text{ or } u' > u_2 \Longrightarrow \phi \text{ is monotonous}$

 $u_1 < u' < u_2 \Longrightarrow \phi$ switches direction

Initial Condition

Suppose the figure axis is initially at rest

Spin the top, then release it "quietly"

$$\dot{\theta}_{t=0} = 0 \Longrightarrow f(u_{t=0}) = 0 \Longrightarrow u_{t=0} = u_1 \text{ or } u_2$$

$$\dot{\phi}_{t=0} = 0 \Longrightarrow b - au_{t=0} = 0 \Longrightarrow u_{t=0} = u'$$

Initially, the figure axis falls

It then picks up procession in ϕ

How does it know which way to go?

Uniform Precession

Can we make a top precess without bobbing?

i.e.
$$\dot{\theta} = 0$$
, $\dot{\phi} = \text{const} \leftarrow \dot{\phi} = \frac{b - a \cos \theta}{\sin^2 \theta}$

We need to have a double root for f(u) = 0

$$f(u_0) = (1 - u_0^2) (\alpha - \beta u_0) - (b - au_0)^2 = 0$$

$$f'(u_0) = -2u_0 (\alpha - \beta u_0) - \beta (1 - u_0^2) + 2a (b - au_0) = 0$$

Combine
$$\rightarrow \frac{\beta}{2} = a\dot{\phi} - \dot{\phi}^2 u_0$$

$$I_{1}a \equiv I_{3}\omega_{3}$$

$$\beta \equiv \frac{2Mgl}{I_{1}} \to Mgl = \dot{\phi} \left(I_{3}\omega_{3} - I_{1}\dot{\phi}\cos\theta_{0} \right)$$

Uniform Precession

$$Mgl = \dot{\phi} \left(I_3 \omega_3 - I_1 \dot{\phi} \cos \theta_0 \right)$$

For any given value of ω_3 and $\cos \theta_0$, you must give exactly the right "push" in ϕ to achieve uniform precession

Quadratic equation→2 solutions

Same top can do "fast" or "slow" precession

For the solutions to exist $I_3^2 \omega_3^2 > 4 Mg l I_1 \cos \theta_0$

$$\implies \omega_3 > \frac{2}{I_3} \sqrt{MglI_1 \cos \theta_0}$$

Uniform precession is achieved only by a fast top

Platonic year

Platonic year (柏拉图年) is defined by scientific astronomy as "The period of one complete cycle of the equinoxes around the ecliptic, or about 25,800 years"

The Saros Cycle

The saros (/ˈsɛərɒs/) (沙罗周期, 日蚀和月蚀关系的反复周期) is a period of exactly 223 synodic months (approximately 6585.3211 days, or 18 years, 11 days, 8 hours), that can be used to predict eclipses of the Sun and Moon.

Summary

Discussed rotational motion of rigid bodies

Euler's equation of motion

Analyzed torque-free rotation

Introduced the inertia ellipsoid

It rolls on the invariant plane

Dealt with simple cases

Analyzed the motion of a heavy top

Reduced into 1-dimensional problem of θ

Qualitative behavior -> Precession + nutation

Initial condition vs. behavior

6.1 Formulation of the Problem

Consider a system with n degrees of freedom

Generalized coordinates $\{q_1, ..., q_n\}$

Generalized force at the equilibrium

$$Q_i = -\left(\frac{\partial V}{\partial q_i}\right)_0 = 0 \leftarrow V \text{ is at an extremum}$$

V must be minimum at a stable equilibrium

Taylor expansion of V using $q_i = q_{0i} + \eta_i$

$$V = V_0 + \left(\frac{\partial V}{\partial q_i}\right)_0 \eta_i + \frac{1}{2} \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_0 \eta_i \eta_j + \cdots \approx \frac{1}{2} V_{ij} \eta_i \eta_j$$
Constant zero constant symmetric matrix

6.1 Formulation of the Problem

Kinetic energy is a 2nd-order homogeneous function of velocities

$$T = \frac{1}{2} m_{ij} (q_1, ..., q_n) \dot{q}_i \dot{q}_j = \frac{1}{2} m_{ij} \dot{\eta}_i \dot{\eta}_j$$

This requires that the transformation functions do not explicitly depend on time, i.e.

$$q_i = q_i \left(x_1, \dots, x_N \right)$$

 m_{ij} generally depend on $\{q_i\} \rightarrow \text{Taylor expansion}$

$$m_{ij} = \left(m_{ij}\right)_0 + \left(\frac{\partial m_{ij}}{\partial q_k}\right)_0 \eta_k + \cdots \approx T_{ij} \Longrightarrow T \approx \frac{1}{2} T_{ij} \dot{\eta}_i \dot{\eta}_j$$
Constant symmetric matrix

Lagrangian

For small deviation $\{\eta_i\}$ from equilibrium

$$L = T - V = \frac{1}{2} T_{ij} \dot{\eta}_i \dot{\eta}_j - \frac{1}{2} V_{ij} \eta_i \eta_j = \frac{1}{2} \tilde{\boldsymbol{\eta}} \mathbf{T} \dot{\boldsymbol{\eta}} - \frac{1}{2} \tilde{\boldsymbol{\eta}} \mathbf{V} \boldsymbol{\eta}$$

The equations of motion are

$$T_{ij}\ddot{\eta}_j + V_{ij}\eta_j = 0$$

This looks similar to $m\ddot{x} + kx = 0$

Difficulty: T_{ij} and V_{ij} have off-diagonal components

If **T** and **V** were diagonal

$$T_{ij}\ddot{\eta}_j + V_{ij}\eta_j \rightarrow T_{ii}\ddot{v}_i + V_{ii}\eta_i = 0 \leftarrow \text{no sum over } i$$

Can we find a new set of coordinates that diagonalizes **T** and **V**?