NGS基本データフォーマット

基礎生物学研究所

ゲノムインフォマティクストレーニングコース(GITC) 2020 春 準備編

杉浦宏樹

概要

- ・はじめに
 - ▶データフォーマットとは
 - ▶フォーマットを学ぶ理由
 - ➤Wet研究者がつまずきやすい点

- NGS基本データフォーマット
 - >FASTA, FASTQ, SRA
 - ➤ BED, GFF/GTF/GFF3, WIG
 - >SAM/BAM

<u>cd ~/data/4_format</u> で作業フォルダに移動

データフォーマットとは

- データを記録する際のルールルールがあれば情報を効率よく、正確に共有することができる
- 例:Webページ
- HTMLフォーマットを使用することで
 - ▶ハード(PC/スマートフォン)
 - > OS(Windows/Mac)
 - ➤ ソフト(Chrome/Safari/Firefox)

が違っても、同じページを閲覧可能

次世代シーケンサ解析では様々なフォーマットが存在 これらの把握が解析に必須!

フォーマットを学ぶ理由

• NGS解析の基礎知識だから 研究者間のコミュニケーションや解析方法の理解に必須

例 1) 同僚 X :A 遺伝子の塩基配列データを見せて fasta 形式が塩基配列情報を含むことを 理解していれば、やりとりがスムーズ

あなた : 了解です。fasta で送りますね

例 2) マニュアル : このソフトは fastaとfastq から BAM ファイルを生成します 入力と出力の形式から 「行う解析がわかる

あなた :マッピングを行うソフトなんだな

• 研究目的に合わせた解析に必要だから フォーマットを知ることで、自力で必要な情報を獲得でき 独自性の高い研究が可能に

- 例 3) 1 巨大な fasta ファイルから配列名だけ取り出したい
 - 2. fasta 形式では、配列名の頭に常に ">" がつく
 - 専用のプログラムがなくても 3. ">" がある行だけ集めれば、配列名のリストができる! 自分がほしい結果を得られる (grep コマンドが使えそうだ!)

Wet研究者がつまずきやすい点

- 形式がたくさんあって区別がつかない!
 - 実態はなじみ深い生物学的情報です
 - 解析で使われる場面や各フォーマットが含む生物学的情報に注目しましょう
- 「謎の文字」が出てくる!
 - \$, %, #など、「謎の文字」が頻出しますが、重要な情報
 - 「ヒトとコンピュータの両方が扱いやすい表記」を考えた努力の結晶
 - 使い方を理解すれば強力な武器になる

NGS解析の流れ

ゲノム(リファレンス)配列

FASTA 形式

>chr ACCITITICATICICACIGCAACGGCAAIRAIGICT CIGIGIGGATIRAAAAAACACGIGICICAIRACAC TICICAACIGGITACCIGCOGICAGIRAATIRAAAA TITITATICACTIRAGGICACIRAARACTITIRAACAA TAIRAGCAIRACGCACCACACATIRAAAAATIRCAC AGIRCACACACCICCAICAACGCATIRACACCAC

インデックス作成

リファレンス配列へのマッピング

@HD @SQ @PG	VN:1.0 SN:chr ID:bowtie2		SO:unsorted IN:4639675 PN:bowtie2	VN:	2.2.4		CL:"/bio/bin/bowtie2-alig				
SRR1515276.40	0	chr	4423609	42	51M	*	0	0	GCAATTICCTCACTGCCA		
SRR1515276.158	16	chr	501700	42	51M	*	0	0	ACCCACCCAGIGCAAAG		
SRR1515276.212	4	*	0	0	*	*	0	0	GGCCCCTTTCAGCGIGT		
SRR1515276.319	0	chr	2922768	42	51M	*	0	0	CCITIAAGITICATTIAAAG		
SRR1515276.367	16	chr	2753873	42	51M	*	0	0	CCCICICCCICCCACC		
SRR1515276.411	0	chr	3440721	42	51M	*	0	0	ACCCCATAATTTCTTCA		
SRR1515276.434	0	chr	4198737	42	51M	*	0	0	GCGCCGIJACGCATICIGG		

サンプルリード(ゲノム DNA/RNA) FASTQ 形式(配列+クオリティ)

遺伝子アノテーション GFF(GTF) 形式

chr RefSeq start_codon 190 192 1.000 + . gene_id "b0001"; transcript_id "b0001"; chr RefSeq CDS 190 252 1.000 + 0 gene_id "b0001"; transcript_id "b0001";

chr RefSeq stap_codon 253 255 1.000 + . gene_id "b0001"; transcript_id "b0001";

chr RefSeq exon 190 255 1.000 + . gene_id "b0001"; transcript>

コンピュータが 扱いやすい SAM 形式

BAM 形式 ······▶

並べ替え 検索 ゲノムブラウザへ

NGS基本データフォーマット

数十以上のフォーマットが存在しますが、 今回は頻出フォーマットに絞って紹介します

• 配列情報

FASTA, FASTQ, SRA

• アノテーション BED, GFF/GTF/GFF3, WIG

マッピング(アライメント)SAM/BAM

FASTA(.fasta, .fa, .mfa)

概要	配列情報の標準フォーマット
内容	塩基配列 アミノ酸配列
	公共 DB から得られる配列情報

○規則 タイトル行:">" で始まる行

>配列ID 説明(スペース区切り)

タイトル行は改行不可

配列:タイトル行の改行後に記載

塩基配列

配列中は改行可能

○ファイル例

>ETEC_chr Escherichia coli E24377A, complete genome AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAA GAGTGTCTGATAGCAGCTTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAAT TTTATTGACTTAGGTCACTAAATACTTTAACCAATATAGGCATAGCGCACA >pETEC_80 Escherichia coli E24377A plasmid TTCAGATTAAACACTCCAACATCACCGCGGGCAACTTTGCGCTGAATGCGACA GTGGCCGGCTCTGAAATCAGCAATACCACGCTGACGGCCACCACCAACATCAA CCTGACGGCTAAGACGAACATCCAAGCTGCGAGTTCTGGTGTTTTACCTGAAAGAT

>pETEC_80 Escherichia coli E24377A

配列ID 説明 (スペース区切り)

← タイトル行

←配列

FASTQ(.fastq, .fq) FASTA+Qualityの意味

概要	NGS 結果データの実質的な標準形式
内容	塩基配列、一塩基ごとの品質情報 (Quality value)
	マッピング、アセンブルでの入力データ形式

○規則

1 行目 : "@" の後にタイトル (配列IDや説明)

2 行目 : 塩基配列

3 行目 : "+" の後にタイトル (タイトルは省略可)

4 行目 : 塩基配列のクオリティ (Quality value)

* fastaとは異なり塩基配列やクオリティにも改行を入れない

○ファイル例

```
@SEQ_ID ← 配列 ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT ← 塩基配列
+ ←タイトル(今回は省略)
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CCCCCCC65 ← クオリティ(QV)
```

[実習 1] less コマンドで ex1.fq の中身を見て、fastq 形式を確認しよう

FASTQのポイント

塩基配列の信頼性も示せる Quality Value (Phred quality score)

ABI キャピラリーシーケンサーで この部分で表されていた値

 $QV = -10 \log_{10} p (p: 間違った塩基決定である確率)$

QV = 30 → p = 0.001 (エラー率 0.1% = 塩基の信頼性 99.9%)

QV = 20 → p = 0.01 (エラー率 1.0% = 塩基の信頼性 99.0%)

実際の FASTQ データをみると、 数値でなく、英数字や記号が書かれている!

 英数字や記号の正体

→ "ASCII 文字" を使って QV を 1 文字で表したもの

ASCII: American Standard Code for Information Interchange

コンピュータでは文字を数値で表す 通信のため文字と数値の対応関係を規定 0~127の数値に文字を割り当てる

A ←→ 65 (10 進数) APPLE ←→ 65;112;112;108;101 (10 進数)

FASTQ では ASCII 文字を使って、QV(数値)を文字で表す

利点:10 進数表記よりもファイルサイズを減らせる (字数が半分、区切り文字も不要)

塩基: G A T T G G T G A A T T 文字が各塩基 文字: 2 2 6 A N N - : 0 7 4 0 の OV を表現

QVから文字への変換規則

問題点: ASCII コードでは 0 - 32 はコンピュータ用の特殊文字に割り当てられている

ASCII 文字コード表

数值	文字
0	Null 文字
1	SOH(ヘッダ開始)
2	STX(テキスト開始)
3	ETX(テキスト終了)
4	EOT(転送終了)
30	RS(レコード区切り)
31	US(ユニット区切り)
32	(スペース)
33	!
34	11

- ・NGS では 10 30 を頻用 p = 0.001 → QV = 30 ···ASCIIコードではレコード区切りを意味
- ・妥協案として特定値を加算してから文字に変換QV 値 + X = ASCII 値とする

- X は現在 X = 33 でほぼ統一
 - 例) QV 30 を表す場合 30 + 33 = 63 → ASCII コードで 63 に該当する 文字を当てる("?" が該当)

・変換には ASCII 文字コード表と簡単な計算が必要

特殊文字コンピュータ田

[実習 2] ex2.fq の QV 値を求め、すべての配列の p 値(エラー確率)が 0.01 以下となるように 3' 側をトリミングしよう

```
ex2.fq
@SEQ_ID
GATTGGTGAATT
```

QV 値 + 33 = ASCII 値

??@A>=;9740,

ASC II 文字コード表

文字	10 進	16 進	文字	10 進	16	文字	10 進			10 進	16	文字	10 進	16 進									
NUL	0		DLE	16	10	SP	32	20	0	48		@	64	40	Р	80		`	96	60	р	112	
SOH	1	01	DC1	17	11	!	33	21	1	49	31	Α	65	41	Q	81	51	а	97	61	q	113	71
STX	2	02	DC2	18	12	"	34	22	2	50	32	В	66	42	R	82	52	b	98	62	r	114	72
ETX	3		DC3	19	13	#	35	23	3	51		С	67		S	83	53	С	99	63	S	115	73
EOT	4	04	DC4	20	14	\$	36	24	4	52	34	D	68	44	Т	84	54	d	100	64	t	116	74
ENQ	5		NAK	21	15	%	37	25	5	53		Е	69		U	85	55	е	101	65	u	117	75
ACK	6		SYN	22	16	&	38	26	6	54		F	70	46	V	86		f	102	66	V	118	
BEL	7	07	ETB	23	17	•	39	27	7	55	37	G	71	47	W	87	57	g	103	67	w	119	77
BS	8		CAN	24	18	(40	28	8	56		Н	72	48	X	88		h	104	68	X	120	
HT	9		EM	25	19)	41	29	9	57	39	I	73		Υ	89	59	i	105	69	У	121	79
LF*	10		SUB	26	1a	*	42	2a	:	58		J	74	4a	Z	90		j	106	6a	z	122	7a
VT	11		ESC	27	1b	+	43	2b	;	59		K	75		[91	5b	k	107	6b	{	123	7b
FF*	12		FS	28	1c	,	44	2c	<	60		L	76	4c	\¥	92		1	108	6с	1	124	7c
CR	13		GS	29	1d	-	45	2d	=	61	3d	М	77		1	93	5d	m	109	6d	}	125	7d
SO	14		RS	30	1e		46	2e	>	62		N	78	4e	^	94		n	110	6e	~	126	7e
SI	15	Of	US	31	1f	/	47	2f	?	63	3f	0	79	4f	_	95	5f	0	111	6f	DEL	127	7f

* LFはNL、FFはNPと呼ばれることもある。

http://e-words.jp/p/r-ascii.html

- * 赤字は制御文字、SPは空白文字(スペース)、黒字と 緑字は図形文字。
- * 緑字はISO 646で割り当ての変更が認められており、例えば日本ではバックスラッシュが円記号になっている

[実習 2] ex2.fq の QV 値を求め、すべての配列の p 値(エラー確率)が 0.01 以下となるように 3' 側をトリミングしよう

解説

@SEQ_ID ← 配列 ID GATTGGTGAATT ← 塩基配列

← 配列 ID (省略)

?? $@A >= :9740, \leftarrow OV$

① b

① p 値が 0.01 の時の QV 値を求める

$$QV = -10 log_{10} p$$

= -10 log_{10} 0.01
= -10 (-2)
= 20

QV < 20 部分をトリムすればよい

② 各文字を ASCII 値になおし、33 を引いて QV 値にする

塩基: G A T T G G T G A A T T

文字: ? @ A > = ; 9 7 4 0 ,

ASCII値: 63;63;64;65;62;61;59;57;55 52;48;44

QV値: 30;30;31;32;29;28;26;24;22 19;15;11

QV 値 + 33 = ASCII 値 QV 値 = ASCII 値 - 33

(参考)古いFASTQファイルを見る上での注意

- 1. QV 値はあくまでシーケンサーによる推定値 目安として利用
- 2. 古い Solexa / Illumina データでは規格が乱立!! ←注意

解析ソフト ver. (CASAVA)	~1.3	1.3~1.5	1.5~1.8	1.8~
参考使用時期	~2009	2009~2010	2010~2012	2012~
QV 値算出法	Solexa	Phred	Phred	Phred
X 値	64	64	64	33
QV range	-5~40	0~40	3~40 (2=end of read)	0~40

QV値 + X = ASCII 値

自分のデータがどのバージョン由来か確認し 解析ソフトの設定を補正する必要がある

FASTQのまとめ

概要: 塩基配列情報と各塩基の信頼性を表現する

規則: 1 行目 : "@" <u>配列IDやタイトル</u>

2 行目 : 塩基配列

3 行目 : "+"(配列名)

4 行目 : 塩基配列のクオリティ

ポイント:クオリティは ASCII 文字で表現されている

QV 値 + 33 = ASCII 値

FASTA/FASTQ を扱う際に便利なツール

Seqkit https://github.com/shenwei356/seqkit

SRA(Sequence Read Archive)

NGS データを登録するデータベース

配列データにはそれぞれ SRR, DRR, ERR で始まるアクセッション番号が付けられている。 ex) DRR140361

論文等でこの番号が記載されていれば、これを使いデータのダウンロードが可能である。

次世代シーケンサを使った研究ではFASTQファイルをSRAに登録し、 そのアクセッション番号を明記することが求められる。

SRA format(.sra)

- SRA で使用されている圧縮(バイナリ*)形式 * 機械語
- SRA への NGS データの登録とダウンロードのためだけの専用の形式
- FASTQ に変換可能

SRA を扱う際に便利なツール

SRA toolkit: https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/

SRA Toolkit 使用例

fastq-dump

…SRA 形式のファイルからFASTQ ファイルを抽出するコマンド

- ▶ シングルエンドリードの場合(オプションなしで実行する)
- \$ fastq-dump hoge.sra
- ▶ ペアエンドリードの場合(ファイルが分割されるように指示する必要がある)
- \$ fastq-dump --split-files hoge.sra

[実習 3]

DRR140361.sra はナミテントウの RAD-seq 解析結果のデータ (paired-end) である。SRA Toolkit の fastq-dump コマンドを使用して、sra 形式のファイルから fastq ファイルを抽出しよう。また ls コマンドで両ファイルのファイルサイズを確認しよう。

\$ fastq-dump --split-files DRR140361.sra

DRR140361_1.fastq, DRR140361_2.fastq と分割された fastq ファイルが 生成されていることを確認する。それぞれ forward と reverse に対応する。

\$ Is - Ih

sra 形式のファイルの方がサイズが小さいことを確認する。

NGS基本データフォーマット

数十以上のフォーマットが存在しますが、 今回は頻出フォーマットに絞って紹介します

• 配列情報

FASTA, FASTQ, SRA

• アノテーション

BED, GFF/GTF/GFF3, WIG

マッピング(アライメント)SAM/BAM

BED (.bed), GFF/GTF/GFF3(.gff/gff3)

概要	ゲノム上の特徴配列を表現する(アノテーション情報)
内容	遺伝子名 染色体上の位置 向き エキソン構造
	公共 DB からアノテーション情報をダウンロード
	解析したい領域の指定 アノテーション作業
	遺伝子構造予測ソフトの結果出力

<4 形式の違い>

BED	ブラウザでの描画情報(色など)を記録可能
GFF	拡張性が高く様々な特徴情報を記録可能
GTF	GFF の厳格化版 一貫した規則で特徴情報を記録可能
GFF3	GTF(GFF version2)の改良版

BED (Browser Extensible Data)

ブラウザでの描画情報(色など)を記録可能

○規則

項目数 3 - 12 タブ区切り

省略する場合は何も書かない(タブを 2 個連続させる)

染色体/	指定領域			スコ ア / 表記	ストラ	太線表示		表示色 赤, 緑, 青	ブロック(exon等)の情報 コンマ区切りで表記				
Scaffold 名	開始 位置	終止 位置	遺伝子名	の濃淡	ンド	開始位置	終了 位置	の強度 (0 - 255)	個数	サイズ	開始 位置		
chr22	1000	5000	cloneA	960	+	1000	5000	255,0,0	2	567,488,	0,3512		
chr22	2000	6000	cloneB	900	_	2000	6000	0,0,255	2	433,399,	0,3601		

1-3項目は必須

4-12 項目は省略可

領域開始位置=0 とした位置

BED フォーマットを扱う際に便利なツール

bedtools: http://bedtools.readthedocs.io/en/latest/

[実習 4] ex4.bed はヒトゲノム(GRCh37)の一部を bed 形式にしたものである less コマンドで bed 形式を確認しよう

BED format ブラウザ表示例

染色体/	指定	領域		スコ ア / 表記	ストラ	太線	表示	表示色 赤, 緑, 青	ブロック(exon等)の情報 コンマ区切りで表				
Scaffol d名	開始位置	終止位置	遺伝子名	の濃淡	ンド	開始位置	終了 位置	の強度 (0 - 255)	個数	サイズ	開始 位置		
chr22	1000	5000	itemA	960	+	1100	4700	0	2	1567,1488,	0,2512		
chr22	2000	7000	itemB	200	-	2200	6950	0	4	433,100,550,1500	, 0,500,2000,3500		

表示の濃淡

shade									
score in range	≤ 166	167-277	278-388	389-499	500-611	612-722	723-833	834-944	≥ 945

(参考)

- https://genome.ucsc.edu/FAQ/FAQformat.html#format1
- https://genome-asia.ucsc.edu/goldenPath/help/hgTracksHelp.html
 Example #3A

GFF (General Feature Format / Gene Finding Format)

拡張性が高く様々な特徴情報を記録可能

ゲノムアノテーションの標準的形式

○規則

項目数 5 - 9 タブ区切り

セミコロンで区切られたタグ-値の対

省略する場合は "-" や "." を入れる 指定領域 染色体/ 4 予測ソフト 領域の 開始 終止 ストラン **Scaffold** 枠 名 名等 種類 位置 付置 属性 スコア chr22 1001 5000 960 Manual + 0 exon chr22 Manual 2001 6000 900 0 NAME "pol1"; exon

必須

省略可

属性カラムに様々な情報を追加できる → 拡張性高

GFF format ブラウザ表示例

			指定 [·]	領域		ス			
染色体/ Scaffold 名	予測ソフト 名等	領域の種類	開始位置	終止位置	スコア	トランド	読 み 枠	属性	
chr22	TeleGene	enhancer	10000000	10001000	500	+	•	touch1	
chr22	TeleGene	promoter	10010000	10010100	900	+	•	touch1	
chr22	TeleGene	promoter	10020000	10025000	800	_		touch2	

GTF (General Transfer Format)

○規則 基本的に GFF と同じだが、仕様をより細かく規定

			指定	領域		スト		
染色体/ Scaffold 名	予測ソフト名等	領域の 種類	開始 位置	終止位置	スコア	・ランド	読 み 枠	属性
chr22	Twinscan	CDS	380	401	•	+	0	<pre>gene_id "001"; transcript_id "001.1";</pre>
chr22	Twinscan	CDS	501	650	•	+	2	<pre>gene_id "001"; transcript_id "001.1";</pre>
chr22	Twinscan	CDS	700	707	•	+	2	<pre>gene_id "001"; transcript_id "001.1";</pre>
chr22	Twinscan	start_codon	380	382		+	0	<pre>gene_id "001"; transcript_id "001.1";</pre>
chr22	Twinscan	stop_codon	708	710		+	0	<pre>gene_id "001"; transcript_id "001.1";</pre>

必須:CDS, start_codon, stop_codon

任意:5UTR, 3UTR, inter, inter CNS, intron_CNS, exon

それ以外は無効

遺伝子と転写産物の ID を表記する

[実習 5] ex5.gtf は ex4.bed と同じ領域を gtf 形式にしたものである less コマンドで gtf 形式を確認しよう

GFF3 (General Feature Format version3)

○規則

GTF (GFF version2) の改良版 いくつかのカラムでその値の制約が厳しくなっている 項目数 9 タブ区切り

			指定		スト			
染色体/ Scaffold 名	予測 ソフト 名等	領域の 種類	開始位置	終止位置	スコア	ランド	読 み 枠	属性

##gff-version 3

ID=exon00001	•	+	•	1500	1300	exon	ctg123 .
ID=exon00002	•	+	•	1500	1050	exon	ctg123 .
ID=exon00003	•	+	•	3902	3000	exon	ctg123 .
ID=exon00004	•	+	•	5500	5000	exon	ctg123 .
ID=exon00005	•	+	•	9000	7000	exon	ctg123 .

GFF/GTF/GFF3とBEDでは座標表現が異なる

GFF/GTF/GFF3:開始、終了ともに 1-based (1 から始まる) 座標

BED:開始は0-based,終了は1-based座標

具体例

黄色部分を示す時

GFF/GTF/GFF3:開始3,終了6 (長さは6-3+1=4)

BED:開始 2,終了 6 (長さは 6-2=4)

[実習 6] ex4.bed と ex5.gtf を開き、実際に座標がずれていることを確認しよう

WIG (wiggle)

概要	ゲノム上の量的特徴を表現するための形式
内容	ゲノム上の座標に対する "数値" 情報
	GC 含量、発現量などを表す
座標	開始、終了ともに 1-based (1 から始まる)

- ○規則 2 形式から選べる
 - 1) VariableStep 柔軟な指定が可能

variableStep chrom=chr2

30060122.5位置と値の組で領域を指定するため30070130.5間隔は位置ごとに変更可能

300751 28.2

2) FixedStep コンパクトな表現が可能

fixedStepchrom=chr3start=300601step=100間隔は固定で、開始位置と22.5間隔は先頭行で指定し、
後は値のみを示していく

30.5

25.8

WIG format ブラウザ表示例

<u>VariableStep</u>

variableSte	p chro	m=chr19 span=150
49304701	10.0	
49304901	12.5	
49305401	15.0	位置と値の組で
49305601	17.5	領域を指定するため
49305901	20.0	IV VV = SELV = V
49306081	17.5	間隔は位置ごとに
49306301	15.0	変更可能
49306691	12.5	
49307871	10.0	

FixedStep

```
fixedStep chrom=chr19 start=49307401 step=300 span=200
1000
900
800
同隔は固定で、
700
同始位置と間隔は
500
先頭行で指定し、
400
後は値のみを示していく
300
200
100
```


NGS基本データフォーマット

数十以上のフォーマットが存在しますが、 今回は頻出フォーマットに絞って紹介します

• 配列情報

FASTA, FASTQ, SRA

- アノテーション BED, GFF/GTF/GFF3, WIG
- マッピング(アライメント)SAM/BAM

SAM (Sequence Algnment Map)

概要	マッピング(アライメント)結果を表現
内容	マッピング情報(位置, インデル, ミスマッチ)
LIT	ペアフラグメントの状況, 塩基配列
	SNP、発現量解析への入力データ形式
座標	開始、終了ともに 1-based (1 から始まる)

○ファイル例

```
@HD VN:1.6 SO:coordinate
@SQ SN:ref LN:45
      99
r001
            ref
                      30
                          8M2I4M1D3M
                                           37 39
                                                  TTAGATAAAGGATACTG
r002
      0
            ref
                9
                      30
                          3S6M1P1I4M
                                                  AAAAGATAAGGATA
r003
            ref
                          5S6M
                                                                      * SA:Z:ref,29,-,6H5M
                                                  GCCTAAGCTAA
            ref
r004
      0
                16
                     30
                          6M14N5M
                                                  ATAGCTTCAGC
r003
      2064
            ref
                                                                      * SA:Z:ref,9,+,5S6M
                 29
                          6H5M
                                                  TAGGC
      147
            ref 37 30
                                              -39 CAGCGGCAT
                                                                      * NM:i:1
r001
```

[実習 7] ex7.sam を開き sam 形式を確認しよう

アッピング結果

○規則

ヘッダー部

@HD VN:1.6 SO:coordinate

@SQ SN:ref LN:45

"@"で開始

@HD VN: (バージョン) SO: (ソート状況)

@SQ SN: (リファレンス名) LN: (リファレンスの長さ)

マッピング結果部分 項目間はタブで区切る

			アライメント	マッ		1	ペアフラグメン トの場所			配	
クエリ 配列名	FLAG	リファ レンス 配列名	開始位置	ピン グ QV	CIGAR	Ref 名	開始	長さ	配列	列 Q V	オプション
r001	99	ref	7	30	8M2I4M1D3M	=	37	39	TTAGATAAAGGATACTG	*	
r002	0	ref	9	30	3S6M1P1I4M	*	0	0	AAAAGATAAGGATA	*	
r003	0	ref	9	30	5S6M	*	0	0	GCCTAAGCTAA	*	SA:Z:ref,29
r004	0	ref	16	30	6M14N5M	*	0	0	ATAGCTTCAGC	*	
r003	2064	ref	29	17	6н5м	*	0	0	TAGGC	*	SA:Z:ref,9,
r001	147	ref	37	30	9м	=	7	-39	CAGCGGCAT	*	NM:i:1

参考: https://samtools.github.io/hts-specs/SAMv1.pdf

SAMのポイント1:CIGAR

アライメント状況を数字と文字を組み合わせて示す

3M2D2M

3 塩基一致、2 塩基欠失、2 塩基一致

ref : ATGCGCATTAGCCTAA

read: GCA--AG

記号	状況							
M	一致							
I	挿入							
D	欠失							
N	イントロン(RNAvsDNAのみ)							
S	クリップ(塩基情報残す)							
Н	クリップ(塩基情報削除)							
Р	他リードが挿入されている							

SAMのポイント2:FLAG

フラグとはある状態についての有無を0 or 1 で表したもの ここではアライメントの状態を合わせて一つの整数値として記載 理解できると「マップされなかったリードだけ選ぶ」などの操作が可能になる

数値(10進数)	数値(2進数)	意味
1	00000000001	ペアリードがある
2	00000000010	両方適切にマップされている
4	00000000100	自分がマップされていない
8	00000001000	ペア相手がマップされていない
16	00000010000	逆鎖にマップされた(配列も逆鎖で表記)
32	00000100000	ペア相手は逆鎖にマップされた
64	000001000000	Read 1 の配列である
128	000010000000	Read 2 の配列である
256	000100000000	Multiple hit でトップヒットでないアライメント
512	00100000000	マッピング QV が低い
1024	01000000000	PCR あるいは光学的重複
2048	10000000000	キメラ検出された場合の補足的アライメント

複数の状況に合致する場合は数値を加算

(例) ペアリードがあり、, 両方マップされた \rightarrow 1 + 2 = 3

single end readの場合

数値(10進数) 数値(2進数)		意味					
1	000000000001	ペアリードがある					
4	00000000100	自分がマップされていない					
16	00000010000	逆鎖にマップされた(配列も逆鎖で表記)					

FLAG = 0:すべてのビット値が0になっている

正常にマップされており、順鎖に対してマップされている

FLAG = 4:正常にマップされなかった

FLAG = 16:正常にマップされており、逆鎖に対してマップされている

Paired end readでFLAG値の組合せを見る

自動で FLAG を計算してくれるサイト

https://broadinstitute.github.io/picard/explain-flags.html

SAMのまとめ

概要:各リードがマップされた場所と状態を表す

規則:ヘッダ部とアライメント部からなる タブ区切り

ポイント

CIGAR 値 → アライメント状況を数字と文字を組み合わせて示す

FLAG 値 → リードのマップ状況を数値で示す

SAM format の詳細な仕様書

http://samtools.github.io/hts-specs/SAMv1.pdf

BAM format

BAM

SAM をバイナリ(機械語)化したもの容量が小さくなるが、人には理解できないSAM に戻すことも可能なので必要に応じて変換

BAM indexing file

BAM ファイルに対して作られる検索用ファイル 高速検索や可視化ソフトなどに必要

SAM/BAM format を扱う際に便利なツール

- Samtools : http://www.htslib.org/
- **Picard**: https://broadinstitute.github.io/picard/index.html

NGS基本データフォーマットまとめ

	FASTA	FASTQ	SAM		
概要	配列情報の標準形式	NGS 結果の標準形式	マッピング結果を示す		
内容	塩基配列 アミノ酸配列	塩基配列と 一塩基毎の品質情報	マッピング情報ペアの状況, 塩基配列		
	公共 DB からの 配列情報ダウンロード	マッピング、アセンブル解析 での入力データ形式	マップ結果の閲覧、集計 SNP、発現量解析への入力		
特徴		QV 値は ASCII 文字で表現 SRA から変換可能	CIGAR, FLAG 値を利用 バイナリ化したのが BAM		

	BED	GFF	GTF	GFF3	WIG
概要	ゲノ	ム上の特徴	 ゲノム上の量的特徴を表現 		
内容	遺伝子名 染	色体上の位	ノン構造	ゲノム上の座標に対する "数値"情報	
	公共 DB から 解析したい 遺伝			GC 含量、発現量などを表す	
特徴	ブラウザでの 描画情報を記録	拡張性高	GFF の厳格化版 一貫した規則	GTF の 改良版	2 つの形式 VariableStep/FixedStep