Rank-76307 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^2 X_1 + X_1^2 X_3 + X_1 X_2^2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(8) is 1361355341

General information

Number of lines	2
Number of points	73
Number of singular points	0
Number of Eckardt points	0
Number of double points	1
Number of single points	16
Number of points off lines	56
Number of Hesse planes	0
Number of axes	0
Type of points on lines	9^{2}
Type of lines on points	$2, 1^{16}, 0^{56}$

Singular Points

The surface has 0 singular points:

The 2 Lines

The lines and their Pluecker coordinates are:

$$\begin{split} \ell_0 &= \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right]_{64} = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right]_{64} = \mathbf{Pl}(0,0,1,0,0,0)_2 \\ \ell_1 &= \left[\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]_{4744} = \left[\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]_{4744} = \mathbf{Pl}(0,1,0,0,0,0)_1 \end{split}$$

Rank of lines: (64, 4744)

Rank of points on Klein quadric: (2, 1)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 1 Double points: The double points on the surface are:

$$P_2 = (0,0,1,0) = \ell_0 \cap \ell_1$$

Single Points

The surface has 16 single points: The single points on the surface are:

 $\begin{array}{l} 0: \ P_0 = (1,0,0,0) \ \text{lies on line} \ \ell_0 \\ 1: \ P_3 = (0,0,0,1) \ \text{lies on line} \ \ell_1 \\ 2: \ P_{12} = (1,0,1,0) \ \text{lies on line} \ \ell_0 \\ 3: \ P_{13} = (2,0,1,0) \ \text{lies on line} \ \ell_0 \\ 4: \ P_{14} = (3,0,1,0) \ \text{lies on line} \ \ell_0 \\ 5: \ P_{15} = (4,0,1,0) \ \text{lies on line} \ \ell_0 \\ 6: \ P_{16} = (5,0,1,0) \ \text{lies on line} \ \ell_0 \\ 7: \ P_{17} = (6,0,1,0) \ \text{lies on line} \ \ell_0 \\ 8: \ P_{18} = (7,0,1,0) \ \text{lies on line} \ \ell_0 \end{array}$

The single points on the surface are:

Points on surface but on no line

The surface has 56 points not on any line: The points on the surface but not on lines are:

 $0: P_1 = (0, 1, 0, 0)$ $1: P_{93} = (3, 2, 0, 1)$ $2: P_{95} = (5, 2, 0, 1)$ $3: P_{111} = (5, 4, 0, 1)$ $4: P_{112} = (6, 4, 0, 1)$ $5: P_{133} = (3, 7, 0, 1)$ $6: P_{136} = (6, 7, 0, 1)$ $7: P_{146} = (0, 1, 1, 1)$ $8: P_{226} = (1, 3, 2, 1)$ $9: P_{232} = (7, 3, 2, 1)$ $10: P_{233} = (0, 4, 2, 1)$ $11: P_{234} = (1, 4, 2, 1)$ $12: P_{256} = (7, 6, 2, 1)$

 $13: P_{284} = (3, 2, 3, 1)$

9: $P_{138} = (0,0,1,1)$ lies on line ℓ_1

10: $P_{201} = (0,0,2,1)$ lies on line ℓ_1

11: $P_{265} = (0,0,3,1)$ lies on line ℓ_1

12: $P_{329} = (0, 0, 4, 1)$ lies on line ℓ_1

13: $P_{393} = (0, 0, 5, 1)$ lies on line ℓ_1

14: $P_{457} = (0,0,6,1)$ lies on line ℓ_1

15: $P_{521} = (0,0,7,1)$ lies on line ℓ_1

 $14: P_{287} = (6, 2, 3, 1)$

 $15: P_{290} = (1, 3, 3, 1)$

16: $P_{295} = (6, 3, 3, 1)$ 17: $P_{298} = (1, 4, 3, 1)$

18: $P_{305} = (0, 5, 3, 1)$

19: $P_{309} = (4, 5, 3, 1)$ 20: $P_{317} = (4, 6, 3, 1)$

 $P_{318} = (5, 6, 3, 1)$ 21: $P_{318} = (5, 6, 3, 1)$

 $22: P_{324} = (3, 7, 3, 1)$

23: $P_{326} = (5,7,3,1)$ 24: $P_{355} = (2,3,4,1)$

 $25: P_{370} = (1, 5, 4, 1)$

```
26: P_{371} = (2, 5, 4, 1)
                                                                  42: P_{483} = (2, 3, 6, 1)
27: P_{385} = (0,7,4,1)
                                                                  43: P_{492} = (3, 4, 6, 1)
28: P_{386} = (1, 7, 4, 1)
                                                                  44: P_{495} = (6, 4, 6, 1)
29: P_{414} = (5, 2, 5, 1)
                                                                  45: P_{499} = (2, 5, 6, 1)
30: P_{415} = (6, 2, 5, 1)
                                                                  46 : P_{500} = (3, 5, 6, 1)
31: P_{423} = (6, 3, 5, 1)
                                                                  47: P_{506} = (1, 6, 6, 1)
32: P_{424} = (7, 3, 5, 1)
                                                                  48: P_{510} = (5, 6, 6, 1)
33: P_{428} = (3,4,5,1)
                                                                  49: P_{518} = (5, 7, 6, 1)
34: P_{430} = (5, 4, 5, 1)
                                                                  50: P_{519} = (6,7,6,1)
35: P_{434} = (1, 5, 5, 1)
                                                                  51: P_{537} = (0, 2, 7, 1)
36: P_{436} = (3, 5, 5, 1)
                                                                  52: P_{538} = (1, 2, 7, 1)
37: P_{441} = (0, 6, 5, 1)
                                                                  53: P_{565} = (4, 5, 7, 1)
38: P_{448} = (7, 6, 5, 1)
                                                                  54: P_{570} = (1, 6, 7, 1)
39: P_{450} = (1, 7, 5, 1)
                                                                  55: P_{573} = (4, 6, 7, 1)
40: P_{474} = (1, 2, 6, 1)
41: P_{481} = (0, 3, 6, 1)
```

Line Intersection Graph

 $\begin{array}{c|c} 0 \ 1 \\ \hline 0 \ 0 \ 1 \\ 1 \ 1 \ 0 \\ \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1
in point	P_2

Line 1 intersects

Line	ℓ_0
in point	P_2

The surface has 73 points:

The points on the surface are:

$0: P_0 = (1,0,0,0)$	$20: P_{226} = (1, 3, 2, 1)$	$40: P_{371} = (2, 5, 4, 1)$
$1: P_1 = (0, 1, 0, 0)$	$21: P_{232} = (7, 3, 2, 1)$	$41: P_{385} = (0,7,4,1)$
$2: P_2 = (0, 0, 1, 0)$	$22: P_{233} = (0,4,2,1)$	$42: P_{386} = (1,7,4,1)$
$3: P_3 = (0,0,0,1)$	$23: P_{234} = (1, 4, 2, 1)$	$43: P_{393} = (0,0,5,1)$
$4: P_{12} = (1, 0, 1, 0)$	$24: P_{256} = (7, 6, 2, 1)$	$44: P_{414} = (5, 2, 5, 1)$
$5: P_{13} = (2, 0, 1, 0)$	$25: P_{265} = (0,0,3,1)$	$45: P_{415} = (6, 2, 5, 1)$
$6: P_{14} = (3, 0, 1, 0)$	$26: P_{284} = (3, 2, 3, 1)$	$46: P_{423} = (6, 3, 5, 1)$
$7: P_{15} = (4, 0, 1, 0)$	$27: P_{287} = (6, 2, 3, 1)$	$47: P_{424} = (7, 3, 5, 1)$
$8: P_{16} = (5, 0, 1, 0)$	$28: P_{290} = (1, 3, 3, 1)$	$48: P_{428} = (3,4,5,1)$
$9: P_{17} = (6, 0, 1, 0)$	$29: P_{295} = (6, 3, 3, 1)$	$49: P_{430} = (5, 4, 5, 1)$
$10: P_{18} = (7, 0, 1, 0)$	$30: P_{298} = (1, 4, 3, 1)$	$50: P_{434} = (1, 5, 5, 1)$
$11: P_{93} = (3, 2, 0, 1)$	$31: P_{305} = (0, 5, 3, 1)$	$51: P_{436} = (3, 5, 5, 1)$
$12: P_{95} = (5, 2, 0, 1)$	$32: P_{309} = (4, 5, 3, 1)$	$52: P_{441} = (0, 6, 5, 1)$
$13: P_{111} = (5, 4, 0, 1)$	$33: P_{317} = (4, 6, 3, 1)$	$53: P_{448} = (7, 6, 5, 1)$
$14: P_{112} = (6, 4, 0, 1)$	$34: P_{318} = (5, 6, 3, 1)$	$54: P_{450} = (1,7,5,1)$
$15: P_{133} = (3, 7, 0, 1)$	$35: P_{324} = (3,7,3,1)$	$55: P_{457} = (0,0,6,1)$
$16: P_{136} = (6, 7, 0, 1)$	$36: P_{326} = (5, 7, 3, 1)$	$56: P_{474} = (1, 2, 6, 1)$
$17: P_{138} = (0, 0, 1, 1)$	$37: P_{329} = (0, 0, 4, 1)$	$57: P_{481} = (0, 3, 6, 1)$
$18: P_{146} = (0, 1, 1, 1)$	$38: P_{355} = (2, 3, 4, 1)$	$58: P_{483} = (2, 3, 6, 1)$
$19: P_{201} = (0, 0, 2, 1)$	$39: P_{370} = (1, 5, 4, 1)$	$59: P_{492} = (3, 4, 6, 1)$
· - 201 (· , · , - , -)	(-, -, 1, 1)	33 : - 432 (3, 1, 0, 1)

$60: P_{495} = (6, 4, 6, 1)$	$65: P_{518} = (5, 7, 6, 1)$	$70: P_{565} = (4, 5, 7, 1)$
$61: P_{499} = (2, 5, 6, 1)$	$66: P_{519} = (6, 7, 6, 1)$	$71: P_{570} = (1, 6, 7, 1)$
$62: P_{500} = (3, 5, 6, 1)$	$67: P_{521} = (0, 0, 7, 1)$	$72: P_{573} = (4, 6, 7, 1)$
$63: P_{506} = (1, 6, 6, 1)$	$68: P_{537} = (0, 2, 7, 1)$	
$64: P_{510} = (5, 6, 6, 1)$	$69: P_{538} = (1, 2, 7, 1)$	