1

GATE-EC-51

EE23BTECH11059- Tejas Mehtre*

Consider an FM broadcast that employs the pre-emphasis filter with frequency response

$$H_{pe}(\omega) = 1 + \frac{j\omega}{\omega_0},$$

where $\omega_0 = 10^4$ rad/sec.

For the network shown in the figure to act as a corresponding de-emphasis filter, the appropriate pair(s) of (R,C) values is/are _____

A.
$$R = 1k\Omega$$
, $C = 0.1\mu F$

B.
$$R = 2k\Omega$$
, $C = 1\mu F$

C.
$$R = 1k\Omega$$
, $C = 2\mu F$

D.
$$R = 2k\Omega$$
, $C = 0.5\mu F$

Solution:

Variable	Description	Value
$H_p re$	Frequency response of pre-emphasis filter	$1+j\frac{\omega}{\omega_0}$
ω_0	Fundamental Frequency	10 ⁴ rad/sec

TABLE 0

INPUT PARAMETERS

Transfer function of the above RC circuit will be

$$H(j\omega) = \frac{V_o(j\omega)}{V_i(j\omega)} = \frac{1}{1 + j\omega RC}$$
 (1)

The given RC circuit to act as de-emphasis filter

$$|H(j\omega)| = \frac{1}{|H_{pre}(\omega)|} \tag{2}$$

$$|H(j\omega)| = \frac{1}{|H_{pre}(\omega)|}$$

$$\frac{1}{\sqrt{1 + (\omega RC)^2}} = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_0}\right)^2}}$$

$$\omega_0 = \frac{1}{RC}$$
(4)

$$\omega_0 = \frac{1}{RC} \tag{4}$$

$$\omega_0 = 10^4 rad/sec \tag{5}$$

Thus $\omega_0 10^4$ rad/sec only possible if we choose $R = 1k\Omega$ and $C = 0.1\mu F$ from options. Hence, the correct option is (B).