Scilab Manual for Digital Signal Processing by Mr Rajesh B Raut Electronics Engineering Shri Ramdeobaba College of Engg & Mgmt¹

Solutions provided by
Mr. Vipul S Lande
Electronics Engineering
Shri Ramdeobaba College of Engg & Mgmt, Nagpur

July 10, 2021

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes written in it can be downloaded from the "Migrated Labs" section at the website http://scilab.in

Contents

List of Scilab Solutions		4
1	Basic operations on sequences and plotting them in continuous/discrete form.	6
2	Analyzing the effect of Sampling of continuous time signal to avoid aliasing.	13
3	Convolving two sequences in discrete time domain in discrete frequency domain.	15
4	Evaluating circular convolution using DFT-IDFT method.	18
5	Designing of FIR filters for low pass, high pass and band reject response.	21
6	Designing of Butterworth IIR filters and its realisation to filter out noise from a given signal.	27
7	Designing of Chebychev/inverse Chebychev/elliptical filter from a given transfer function.	29
8	Application of sound effect on wave file like Flanging, Echo and Equiliser.	31
9	Polyphase decomposition by decimation method for a given decimation factor.	34
10	Spectral estimation of a sequence using Periodogram method.	36

11 Real-time data acquisition and plotting through external hardware interfaced through serial port.

List of Experiments

Solution 1.0	Basic operations on sequences and plotting them in continuous form	
Solution 1.1	Basic operations on sequences and plotting them in discrete form	
Solution 1.2	Basic operations on sequences Delaying and Advancing	1
Solution 2.0	Analyzing the effect of sampling of continuous time signal to avoid aliasing	1
Solution 3.0	Convolving two sequences in discrete time domain	1
Solution 4.0	Evaluating circular convolution using DFT IDFT	
	method	1
Solution 5.1	Design an Low Pass FIR Filter	2
Solution 5.2	To Design an High Pass FIR Filter	2
Solution 5.3	To Design Band Pass FIR Filter	2
Solution 5.4	To Design Band Stop FIR Filter	2
Solution 6.0	Designing of butterworth IIR filters and its realiza- tion to filter our noise from a given signal	2
Solution 7.0	Designing of chebychev inverse chebyshev elliptical filter from a given transfer function	2
Solution 8.0	Application of sound effect on wave file like Flanging Echo and Equalizer	3
Solution 9.0	Polyphase decomposition by decimation method for a given decimation factor	3
Solution 10.0	Spectral estimation of a sequence using Periodogram method	3
Solution 11.0	Real time Data acquisition and plotting through external hardware interfaced through serial port.	3

List of Figures

11.1	Real time Data acquisition and plotting through external hard-	
	ware interfaced through serial port	39

Basic operations on sequences and plotting them in continuous/discrete form.

Scilab code Solution 1.0 Basic operations on sequences and plotting them in continuous form

```
1 //Experiment -1.1
2 //Basic operations on sequences and plotting them in continuous form.
3
4 clear;
5 clc;
6 close;
7
8 //unit step
9 N=input('enter time of unit step sequence: ');//N=20 (only intiger value)
10 n=0:0.5:N-1;
11 NL=length(n)
12 y=ones(1,NL);
13 subplot(2,2,1);
14 plot(n,y);
```

```
15 title('UNIT STEP');
16 xlabel('Time-->'); ylabel('AMPL-->');
17
18 //ramp
19 N=input('enter time of ramp sequence: '); //N=20 (
      only intiger value)
20 \quad n = 0:0.5:N-1;
21 subplot(2,2,2);
22 plot(n,n);
23 title('RAMP');
24 xlabel('Time->'); ylabel('AMPL->');
25
\frac{26}{\sqrt{\exp \operatorname{onential} \exp (a*t)}}
27 N=input('enter time of expo. sequence: '); //N=20 (
      only intiger value)
28 \quad n=0:0.5:N-1;
29 a=input('enter value of a= '); //a=0.03
30 y = \exp(a*n);
31 subplot(2,2,3);
32 plot(n,y);
33 title('EXPONENTIAL');
34 xlabel('Time-->'); ylabel('AMPL-->');
35
36 //sine wave
37 f=input('enter frequency of sine sequence: '); //f=5
      (only intiger value)
38 t=0:0.001:1;
39 y = \sin(2*\%pi*f*t);
40 figure(1);
41 subplot (3,2,1);
42 plot(t,y);
43 title('SINE');
44 xlabel('Time->'); ylabel('AMPL->');
45
46 //cosine wave
47 f2=input('enter frequency of cosine sequence: ');//f
      =5 (only intiger value)
48 \quad t = 0:0.001:1;
```

```
49 y2 = \cos(2*\%pi*f2*t);
50 subplot (3,2,2);
51 plot(t,y2);
52 title('COSINE');
53 xlabel('Time-->'); ylabel('AMPL-->');
54
55 / \sin e + \cos i n e wave
56 \text{ y3} = \cos(2*\%\text{pi}*\text{f2}*\text{t}) + \sin(2*\%\text{pi}*\text{f*t});
57 subplot (3,2,3);
58 plot(t,y3);
59 title('SINE+COSINE');
60 xlabel('Time->'); ylabel('AMPL->');
61
62 //sine x sine wave
63 y4 = y.*y2;
64 subplot(3,2,4);
65 plot(t,y4);
66 title('SINE x COSINE');
67 xlabel('Time—>'); ylabel('AMPL—>');
```

Scilab code Solution 1.1 Basic operations on sequences and plotting them in discrete form

```
12 plot2d3(N,y);
13 title('IMPULSE');
14 xlabel('N'); ylabel('AMPL\rightarrow');
15
16 //unit step
17 N=input('enter length of unit step sequence: '); //N
      =20 (only intiger value)
18 n=0:1:N-1;
19 y = ones(1, N);
20 subplot (2,2,2);
21 plot2d3(n,y);
22 title('UNIT STEP');
23 xlabel('N'); ylabel('AMPL\rightarrow');
24
25 //ramp
26 N=input('enter length of ramp sequence: '); //N=20 (
      only intiger value)
27 \quad n=0:1:N-1;
28 subplot (2,2,3);
29 plot2d3(n,n);
30 title('RAMP');
31 xlabel('N'); ylabel('AMPL-->');
32
33 //exponential exp(a*t)
34 N=input ('enter length of expo. sequence: '); //N=20 (
      only intiger value)
35 \quad n=0:1:N-1;
36 a=input('enter value of a= '); //a=0.03
37 y=exp(a*n);
38 subplot (2,2,4);
39 plot2d3(n,y);
40 title('EXPONENTIAL');
41 xlabel('N'); ylabel('AMPL-->');
42
43 //sine wave
44 N=input('enter length of sine sequence: '); //N=60 (
      only intiger value)
45 n=0:1:N-1;
```

```
46 y = \sin(0.3 * \%pi * n);
47 figure(1);
48 subplot (3,1,1);
49 plot2d3(n,y);
50 title('SINE');
51 xlabel('N'); ylabel('AMPL-->');
52
53 //cosine wave
54 N=input ('enter length of cosine sequence: '); //N=60
      (only intiger value)
55 \quad n=0:1:N-1;
56 \ y = \cos(0.2 \% pi *n);
57 subplot(3,1,2);
58 plot2d3(n,y);
59 title('COSINE');
60 xlabel('N'); ylabel('AMPL-->');
61
62 / \sin e + \cos i n e wave
63 N=input('enter length of cosine/sine sequence: ');//
      N=80 (only intiger value)
64 \quad n = 0:1:N-1;
65 y = \cos(0.2 \% pi *n) + \sin(0.3 \% pi *n);
66 subplot(3,1,3);
67 plot2d3(n,y);
68 title('SINE+COSINE');
69 xlabel('N'); ylabel('AMPL-->');
```

Scilab code Solution 1.2 Basic operations on sequences Delaying and Advancing

```
1 //Experiment -1.3
2 //Basic operations on sequences and plotting them in continuous form.
3 clc;
4 clear;
```

```
5 close;
6 x = input ('Enter the input sequence:=')//x = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}
7 m = length(x);
8 lx = input ('Enter the starting index of original
      signal := ')//lx = -2
9 \text{ hx} = 1x+m-1;
10 n = lx:1:hx;
11 subplot (3,1,1)
12 \ a = gca();
13 a.x_location = "origin";
14 a.y_location = "origin";
15 a.data_bounds = [-10,0;10,10];
16 plot2d3('gnn',n,x);
17 \text{ xlabel}('n \Longrightarrow')
18 ylabel('Amplitdue--->')
19 title ('Original Sequence')
20 //
21 d = input('Enter the delay:=')// d = 1
22 n = lx+d:1:hx+d;
23 subplot(3,1,2)
24 \ a = gca();
25 a.x_location = "origin";
26 a.y_location = "origin";
27 \text{ a.data\_bounds} = [-10,0;10,10];
28 plot2d3('gnn',n,x)
29 xlabel('n==>')
30 ylabel('Amplitude--->')
31 title('Delayed Sequence')
32 / /
33 a = input('Enter the advance:=')// a = 2
34 n = 1x-a:1:hx-a;
35 subplot (3,1,3)
36 \ a = gca();
37 a.x_location = "origin";
38 a.y_location = "origin";
39 \text{ a.data\_bounds} = [-10,0;10,10];
40 plot2d3('gnn',n,x)
```

```
41 xlabel('n==>')
42 ylabel('Amplitude--->')
43 title('Advanced Sequence')
```

Analyzing the effect of Sampling of continuous time signal to avoid aliasing.

Scilab code Solution 2.0 Analyzing the effect of sampling of continuous time signal to avoid aliasing

```
//Experiment - 2
//Analyzing the effect of sampling of continuous
time signal to avoid aliasing.

clear;
clc;
close;

// Aliasing

// Aliasing

f = 60; // signal freq. in Hz

tmin = -0.05;

tmax = 0.05;

t = linspace(tmin, tmax, 400);

alpha = 1;
```

```
16 \text{ x_c} = \cos(\text{alpha} * 2 * \%\text{pi} * f * t);
17 figure;
18 plot(t, x_c)
19
20 Fs = 200 // for 400, 200, 120, 70, 40 Hz
21
22 T = 1/Fs;
23 nmin = ceil(tmin/T);
24 nmax = floor(tmax/T);
25 n = nmin:nmax;
26 \text{ x_s} = \cos(2*\%\text{pi}*f*n*T);
27 figure;
28 plot(t, x_c)
29 \text{ mtlb_hold}("on")
30 plot(n*T, x_s, '.')
31 mtlb_hold("off")
32
33 figure;
34 \text{ plot}(n*T, x_s, '-.');
35
36 //viewing spectrum of signals
37 t = soundsec(0.5);
38 s1=sin(2*\%pi*60*t);// signal frequency=60Hz
39 s2=sin(2*\%pi*200*t);//sampling frequency=200Hz
40 analyze(s1,10,600,22050)
41 analyze (s2,10,600,22050)
42 title ('Spectrum of signals')
```

Convolving two sequences in discrete time domain in discrete frequency domain.

Scilab code Solution 3.0 Convolving two sequences in discrete time domain

```
1  //Experiment - 3
2  //Convolving two sequences in discrete time domain.
3
4
5  clc;
6  clear;
7  close;
8  x=input('enter i/p x(n):');// x=[1 2 3 4 5 6]
9  m=length(x);
10  h=input('enter i/p h(n):');// h=[1 -1 1]
11  n=length(h);
12
13  subplot(2,2,1),
14  p=0:1:m-1;
15
16  a = gca ();
```

```
17 a.x_location = "origin";
18 a.y_location = "origin";
19 plot2d3('gnn',p,x)
20
21 title('i/p sequence x(n) is:');
22 xlabel('-->n');
23
24
25 x = [x, zeros(1,n)];
26
27 subplot (2,2,2),
28 q=0:1:n-1;
29
30 \ a = gca \ ();
31 a.x_location = "origin";
32 a.y_location = "origin";
33 plot2d3('gnn',q,h)
34 title('i/p sequence h(n) is:');
35 \text{ xlabel}('-->n');
36
37
38 h = [h, zeros(1, m)];
39
40 disp('convolution of x(n) & h(n) is y(n):');
41 y = zeros(1, m+n-1);
42 \quad for \quad i=1:m+n-1
43
       y(i) = 0;
       for j=1:m+n-1
44
            if (j < i + 1)</pre>
45
                 y(i)=y(i)+x(j)*h(i-j+1);
46
47
            end
48
        end
49 end
50 y
51 subplot(2,2,3)
52 r=0:1:m+n-2;
53
54 \ a = gca \ ();
```

```
55 a.x_location = "origin";
56 a.y_location = "origin";
57 plot2d3('gnn',r,y)
58
59
60 title('convolution of x(n) & h(n) is :');
61 xlabel('-->n');
```

Evaluating circular convolution using DFT-IDFT method.

Scilab code Solution 4.0 Evaluating circular convolution using DFT IDFT method

```
1 / Experiment - 4
2 //Evaluating circular convolution using DFT-IDFT
     method.
3
4 clear;
5 clc;
6 close;
7 x=input('enter 1st seq:');// x=[1 2 3 4 5 6]
8 h=input('enter 2nd seq:'); // h=[1 -1 1]
9
10
11 dif =abs( max(size(x)) - max(size(h)));
12 if(dif>0)
13
     h(\max(size(h))+dif) = 0;
14 else
     x(\max(size(x))+dif) = 0;
16 \text{ end}
17
```

```
18
19 X = fft(x, -1);
20 H = fft(h, -1);
21 \quad Y = X . * H;
22 y = ifft(Y);
23
24 subplot (3,2,1);
25 n=0:1:length(x)-1
26 plot2d3(n,x);
27 ylabel('amplitude--->');
                  n---->');
28 \text{ xlabel}('x(n))
29
30 subplot(3,2,2);
31 plot2d3(n,abs(X));
32 ylabel('amplitude--->');
                   k---->');
33 xlabel('X(k)
34
35 subplot(3,2,3);
36 n=0:1:length(h)-1
37 plot2d3(n,h);
38 ylabel('amplitude--->');
                  n---->');
39 xlabel('h(n)
40
41 subplot(3,2,4);
42 plot2d3(n,abs(H));
43 ylabel('amplitude--->');
                   k---->');
44 xlabel('H(k))
45
46 subplot(3,2,5);
47 n=0:1:length(y)-1
48 plot2d3(n,y);
49 ylabel('amplitude--->');
                  n--->');
50 xlabel('y(n)
51
52 subplot(3,2,6);
53 plot2d3(n,abs(Y));
54 ylabel('amplitude--->');
55 xlabel('Y(k) k--->');
```

```
56
57 disp(y,'the circular conv. resultant signal is');
```

Designing of FIR filters for low pass, high pass and band reject response.

Scilab code Solution 5.1 Design an Low Pass FIR Filter

```
samples');
16 wc = w/\%pi;
17 disp(wc, 'Normalized digital cutoff frequency in
      cycles/samples');
18 [wft,wfm,fr]=wfir('lp',M+1,[wc/2,0],'re',[0,0]);
19 disp(wft, 'Impulse Response of LPF FIR Filter:h[n]=')
20 //Plotting the Magnitude Response of LPF FIR Filter
21 subplot (2,1,1)
22 \quad plot(2*fr, wfm)
23 xlabel('Normalized Digital Frequency w--->')
24 ylabel ('Magnitude |H(w)| =')
25 title ('Magnitude Response of FIR LPF')
26 xgrid(1)
27 subplot (2,1,2)
28 plot(fr*fs,wfm)
29 xlabel('Analog Frequency in Hz f --->')
30 ylabel ('Magnitude |H(w)| =')
31 title('Magnitude Response of FIR LPF')
32 xgrid(1)
```

Scilab code Solution 5.2 To Design an High Pass FIR Filter

```
//Experiment - 5
//Designing of FIR filters for low pass, high pass,
band pass and band reject response.

// To Design an High Pass FIR Filter
//Filter Length = 5, Order = 4
//Window = Rectangular Window

clc;
clear;
clear;
fc = input("Enter Analog cutoff freq. in Hz=")//250
```

```
12 fs = input("Enter Analog sampling freq. in Hz=")//
      2000
13 M = input ("Enter order of filter =") //4
14 \text{ w} = (2*\%pi)*(fc/fs);
15 disp(w, 'Digital cutoff frequency in radians.cycles/
      samples');
16 \text{ wc} = \text{w}/\text{%pi};
17 disp(wc, 'Normalized digital cutoff frequency in
      cycles/samples');
   [wft, wfm, fr] = wfir('hp', M+1, [wc/2,0], 're', [0,0]);
18
19 disp(wft, 'Impulse Response of HPF FIR Filter:h[n]=')
20
   //Plotting the Magnitude Response of HPF FIR Filter
21 subplot (2,1,1)
22 plot (2*fr, wfm)
23 xlabel('Normalized Digital Frequency w--->')
24 ylabel ('Magnitude |H(w)| =')
25 title ('Magnitude Response of FIR HPF')
26 xgrid(1)
27 subplot (2,1,2)
28 plot(fr*fs,wfm)
29 xlabel('Analog Frequency in Hz f --->')
30 ylabel ('Magnitude |H(w)| = ')
31 title ('Magnitude Response of FIR HPF')
32 xgrid(1)
```

Scilab code Solution 5.3 To Design Band Pass FIR Filter

```
1 //Experiment - 5
2 //Designing of FIR filters for low pass, high pass,
        band pass and band reject response.
3
4 // To Design an Band Pass FIR Filter
5 //Filter Length = 5, Order = 4
6 //Window = Rectangular Window
```

```
7
8 clc;
9 clear;
10 xdel(winsid());
11 fc1 = input("Enter Analog lower cutoff freq. in Hz="
      )//250
  fc2 = input("Enter Analog higher cutoff freq. in Hz=
12
      ")//600
13 fs = input ("Enter Analog sampling freq. in Hz=")//
14 M = input("Enter order of filter =")//4
15 \text{ w1} = (2*\%pi)*(fc1/fs);
16 \text{ w2} = (2*\%\text{pi})*(\text{fc2/fs});
17 disp(w1, 'Digital lower cutoff frequency in radians.
      cycles/samples');
  disp(w2, 'Digital higher cutoff frequency in radians.
      cycles/samples');
19 wc1 = w1/\%pi;
20 \text{ wc2} = \text{w2/\%pi};
21 disp(wc1, 'Normalized digital lower cutoff frequency
      in cycles/samples');
  disp(wc2, 'Normalized digital higher cutoff frequency
       in cycles/samples');
   [wft, wfm, fr] = wfir('bp', M+1, [wc1/2, wc2/2], 're', [0,0])
  disp(wft, 'Impulse Response of BPF FIR Filter:h[n]=')
  //Plotting the Magnitude Response of HPF FIR Filter
25
26 subplot (2,1,1)
27 \text{ plot}(2*fr, wfm)
28 xlabel('Normalized Digital Frequency w--->')
29 ylabel ('Magnitude |H(w)| = ')
30 title ('Magnitude Response of FIR BPF')
31 xgrid(1)
32 subplot (2,1,2)
33 plot(fr*fs,wfm)
34 xlabel('Analog Frequency in Hz f --->')
35 ylabel ('Magnitude |H(w)| =')
```

```
36 title('Magnitude Response of FIR BPF')
37 xgrid(1)
```

Scilab code Solution 5.4 To Design Band Stop FIR Filter

```
1 / Experiment - 5
2 // Designing of FIR filters for low pass, high pass,
      band pass and band reject response.
4 // To Design an Band Stop FIR Filter
5 // Filter Length = 5, Order = 4
6 //Window = Rectangular Window
8 clc;
9 clear;
10 xdel(winsid());
11 fc1 = input("Enter Analog lower cutoff freq. in Hz="
      )//250
  fc2 = input("Enter Analog higher cutoff freq. in Hz=
      ")//600
13 fs = input ("Enter Analog sampling freq. in Hz=")//
14 M = input ("Enter order of filter =") //4
15 \text{ w1} = (2*\%pi)*(fc1/fs);
16 \text{ w2} = (2*\%\text{pi})*(\text{fc2/fs});
17 disp(w1, 'Digital lower cutoff frequency in radians.
      cycles/samples');
18 disp(w2, 'Digital higher cutoff frequency in radians.
      cycles/samples');
19 wc1 = w1/\%pi;
20 \text{ wc2} = \text{w2/\%pi};
21 disp(wc1, 'Normalized digital lower cutoff frequency
      in cycles/samples');
22 disp(wc2, 'Normalized digital higher cutoff frequency
       in cycles/samples');
```

```
[wft,wfm,fr]=wfir('sb',M+1,[wc1/2,wc2/2],'re',[0,0])
;

disp(wft,'Impulse Response of BSF FIR Filter:h[n]=')
;

// Plotting the Magnitude Response of HPF FIR Filter
subplot(2,1,1)
plot(2*fr,wfm)
xlabel('Normalized Digital Frequency w--->')
ylabel('Magnitude |H(w)|=')
title('Magnitude Response of FIR BSF')
xgrid(1)
subplot(2,1,2)
plot(fr*fs,wfm)
xlabel('Analog Frequency in Hz f --->')
ylabel('Magnitude |H(w)|=')
title('Magnitude Response of FIR BSF')
xgrid(1)
```

Designing of Butterworth IIR filters and its realisation to filter out noise from a given signal.

Scilab code Solution 6.0 Designing of butterworth IIR filters and its realization to filter our noise from a given signal

```
//Experiment - 6
//Designing of butterworth IIR filters and its
realization to filter our noise from a given
signal.

t = 0:0.001:4;
signal = sin(2*%pi*20*t);
noise = sin(2*%pi*50*t);
compound = signal + noise;

playsnd(compound);
```

```
13 myfilter = iir(15, 'lp', 'butt', [0.025 0], [0 0]); //
      butt, cheb1/2, ellip
14
15 output = flts(compound, myfilter);
16
17 halt('Press Enter');
18
19 playsnd(output);
20
21 // Sound difference in filtered sound
22 xsetech([0,0,1,1/2]);
23 plot2d(t,compound);
24 xtitle('input signal');
25 xsetech([0,1/2,1,1/2]);
26 plot2d(t,output);
27 xtitle('output signal');
```

Designing of Chebychev/inverse Chebychev/elliptical filter from a given transfer function.

Scilab code Solution 7.0 Designing of chebychev inverse chebyshev elliptical filter from a given transfer function

```
//Experiment - 7
//Designing of chebychev/inverse chebyshev/
elliptical filter from a given transfer function.

clc;
clear all;

cheblpf = iir(2, 'lp', 'cheb1', [0.3 0], [0.1 0]);
[hzm,fr]=frmag(cheblpf,256);
figure;
plot2d(fr',hzm')
title('Chebysheve Lowpass Filter')
```

```
14
15 [cells, fact, zzeros, zpoles] = eqiir('lp', 'ellip', [%pi
      *3/8, %pi *3.5/8], 0.1, 0.01);
16 h=fact*poly(zzeros, 'z')/poly(zpoles, 'z');
17 [hzm,fr]=frmag(h,256);
18 figure;
19 plot2d(fr',hzm')
20 title('Elliptical Lowpass Filter')
21
22
23
24 [valcoeff, filtamp, filtfreq] = wfir ('lp', 20, [.2
     0], 'hm', [0 0]);
25 figure;
26 plot2d(filtfreq, filtamp)
27 title('FIR-Hamming window Lowpass Filter')
28
29
30 hn=eqfir(33,[0 .2;.25 .35;.4 .5],[0 1 0],[1 1 1]);
31 [hm,fr]=frmag(hn,256);
32 figure;
33 plot2d(fr,hm)
34 title('FIR-Multiband Filter response')
```

Application of sound effect on wave file like Flanging, Echo and Equiliser.

Scilab code Solution 8.0 Application of sound effect on wave file like Flanging Echo and Equalizer

```
1
2  //Experiment - 8
3  //Application of sound effect on wave file like
        Flanging, Echo and Equalizer.
4
5
6  // The "dsp01.wav" file should be placed in current
        working directory
7  // The code can also be executed with any other
        small .wav file of duration 3-5 seconds.
8  clc;
9  clear;
10  clear all;
11
12  [y,fs] = wavread('dsp01.wav');
13  playsnd(y,fs);
```

```
14
15 halt('Original');
16
17 // Flanging
18 z = 0;
19 n = 1:length(y);
20 z(n) = y(n);
21 m = 11:length(y);
22 \times (m) = z(m) + 0.8*z(m-10).*cos(2*%pi*m/fs);
23 playsnd(x,fs);
24 halt('Flange');
25
26
27 // Echo
28 clc;
29 clear all;
30 \ a = 0.5;
31 [1,fs] = wavread('dsp01.wav');
32 len = length(1);
33 \text{ delay} = 0.4;
34 D = ceil(fs*delay);
35 \text{ m} = zeros(max(size(1)));
36 \text{ for } i = D+1:len
37
     m(i) = l(i) + a*l(i-D);
38 end
39
40 playsnd(m,fs);
41
42
43 halt('Echo');
44
45 // Equalizer
46 //For Low frequencies
47 clc;
48 clear all;
49
50 [h,fs] = wavread('dsp01.wav');
51 playsnd(h,fs);
```

```
52 halt ('Original');
53
54 \text{ j} = iir(3, 'bp', 'butt', [.01 .05], [0.03 0.03]);
55
56 k = flts(h(1,:),j);
57 playsnd(k,fs);
58 halt('Low');
59
60 // For Mid frequencies
61 clc;
62 clear all;
63
64 \text{ [g,fs]} = \text{wavread}('\text{dsp}01.\text{wav'});
65 playsnd(g,fs);
66 halt('Original');
67
68 j = iir(3, 'bp', 'ellip', [.05 .10], [.08 .03]);
69
70 k = flts(g(2,:),j);
71 sound(k,fs);
72
73 halt('Mid');
74
75 // For High frequencies
76 clc;
77 clear all;
78
79 [h,fs] = wavread('dsp01.wav');
80 playsnd(h,fs);
81 halt('Original');
82
83 j = iir(3, 'bp', 'butt', [.15 .25], [0.03 0.03]);
84
85 k = flts(h(1,:),j);
86 playsnd(k,fs);
87
88 halt('High');
```

Polyphase decomposition by decimation method for a given decimation factor.

Scilab code Solution 9.0 Polyphase decomposition by decimation method for a given decimation factor

```
1 / Experiment - 9
2 // Polyphase decomposition by decimation method for a
       given decimation factor.
3
4 clear;
5 clc;
6 close;
7 M = input ('Enter the filter length (M)= '); // Filter
     Length = 30
8 D = input ('Decimation Factor(D) ='); // Decimation
     Factor = 2
9 Ws =input('Enter stopband frequency(Ws)='); //
     Stopband Edge Frequency = 0.31
10 Wc = %pi/2; // Cutoff Frequency
11 Wp = Wc/(2*%pi); //Passband Edge Frequency
12
```

```
hn=eqfir(M,[0 Wp;Ws .5],[1 0],[2 1]);
disp(hn,'The LPF Filter Coefficients are:')
//Obtaining Polyphase Filter Coefficients from hn
p = zeros(D,M/D);
for k = 1:D
for n = 1:(length(hn)/D)
p(k,n) = hn(D*(n-1)+k);
end
end
disp(D,'For the given Decimation factor = ')
disp(p,'The Polyphase Decimator are:')
```

Spectral estimation of a sequence using Periodogram method.

Scilab code Solution 10.0 Spectral estimation of a sequence using Periodogram method

```
15 a.data_bounds =[0,0;8,11];
16 plot2d3('gnn',[1:N],Pxx)
17 a.foreground = 5;
18 a.font_color = 5;
19 a.font_style = 5;
20 title('Peridogram Estimate')
21 xlabel('Discrete Frequency Variable K ----->')
22 ylabel('Periodogram Pxx (k /N) ---->')
```

Real-time data acquisition and plotting through external hardware interfaced through serial port.

Scilab code Solution 11.0 Real time Data acquisition and plotting through external hardware interfaced through serial port

```
1 //Experiment - 11
2 //Real time Data acquisition and plotting through
      external hardware interfaced through serial port.
3
4 // This code requires serial toolbox installed on
      scilab.
5 // The code will execute only when Data acquisition
      hardware is connected on serial port(COM) of
      computer.
6
7 clear;
8 clc;
```


Figure 11.1: Real time Data acquisition and plotting through external hardware interfaced through serial port

```
9 close;
10
11 //s = openserial(1, "9600, n, 8, 1", "binary", "dtrdsr");
12 s = openserial(1, "9600, n, 8, 1", "binary", "none");
13 ns=input('Samples to be plotted: '); // 50
14 ts=input('Sampling time(sec): ');//2 sec
15 xpause (20000);
16
17 signal1=zeros(1,ns);
18 signal2=zeros(1,ns);
19 signal3=zeros(1,ns);
20 signal4=zeros(1,ns);
21 signal5=zeros(1,ns);
22 signal6=zeros(1,ns);
23 signal7=zeros(1,ns);
24 signal8=zeros(1,ns);
25
26 t=0:1*ts:ts*ns-1;
27 \quad j = 0;
28 clf()
29
       result = writeserial(s, "OK");//
30
       buf = readserial(s, [17]);
31
32
       xpause (200000);
33
34 for i=1:1:ns,
35
       result = writeserial(s, "OK");//
     // xpause (6000); //66941 usec after tx will begin
36
       buf = readserial(s, [17]);
37
       rbuf = str2code(buf);
38
39
40
       signal1(i) = abs((1/255)*(rbuf(2)-100));
41
       signal2(i) = abs((1/255)*(rbuf(4)-100));
       subplot(2,2,1)
42
       plot(t(i-j:i), signal1(i-j:i), '-r', t(i-j:i),
43
          signal2(i-j:i), '-b')
       a=gca();
44
       a.data_bounds=[0 -0.1;ts*ns-1 1.2];
45
```

```
h = legend('Signal-1', 'Signal-2', 2);
46
       xlabel('time in seconds -->')
47
       ylabel('parameter -->')
48
       title('DAS Response')
49
50
       set(gca(), "auto_clear", "off")
51
52
       signal3(i) = abs((1/255)*(rbuf(6)-100));
       signal4(i) = abs((1/255)*(rbuf(8)-100));
53
       subplot(2,2,2)
54
       plot(t(i-j:i), signal3(i-j:i), '-k', t(i-j:i),
55
          signal4(i-j:i), '-m')
       a = gca();
56
57
       a.data_bounds=[0 -0.1;ts*ns-1 1.2];
       h = legend('Signal-3', 'Signal-4', 2);
58
       xlabel('time in seconds -->')
59
       ylabel('parameter -->')
60
       title('DAS Response')
61
62
       set(gca(), "auto_clear", "off")
63
       signal5(i) = abs((1/255)*(rbuf(10)-100));
64
       signal6(i) = abs((1/255)*(rbuf(12)-100));
65
       subplot(2,2,3)
66
       plot(t(i-j:i), signal5(i-j:i), '-r', t(i-j:i),
67
          signal6(i-j:i), '-k')
       a = gca():
68
       a.data_bounds=[0 -0.1;ts*ns-1 1.2];
69
       h = legend('Signal-5', 'Signal-6', 2);
70
       xlabel('time in seconds -->')
71
72
       ylabel('parameter -->')
       title('DAS Response')
73
       set(gca(), "auto_clear", "off")
74
75
76
       signal7(i) = abs((1/255)*(rbuf(14)-100));
       signal8(i) = abs((1/255)*(rbuf(16)-100));
77
       subplot(2,2,4)
78
       plot(t(i-j:i), signal7(i-j:i), '-m', t(i-j:i),
79
          signal8(i-j:i), '-b')
80
       a = gca();
```

```
a.data_bounds=[0 -0.1;ts*ns-1 1.2];
81
       h = legend('Signal-7', 'Signal-8', 2);
82
       xlabel('time in seconds --->')
83
       ylabel('parameter -->')
84
       title('DAS Response')
85
       set(gca(), "auto_clear", "off")
86
       sleep(ts*1000);//wait for ts sec.
87
       j = j + 1;
88
        clear buf
89
90 \, \mathbf{end}
91 closeserial(s);
92 clear all
93 clc
94 disp("Required Data Plotted")
```