

Attack Graph Generation for Microservice Architecture

Authors:

Amjad Ibrahim, M.Sc. Stevica Bozhinoski Prof. Dr. Alexander Pretschner

- Motivation
- Background
- Method
- Evaluation
- Related Work
- Conclusion

- Motivation
- Background
- Method
- Evaluation
- Related Work
- Conclusion

Motivation

- Microservices are increasingly dominating the field of service systems
- Increase of utilizing third-party components
- Result in greater attack surface
- Need for an automatic detection of potential vulnerabilities

- Motivation
- Background
- Method
- Evaluation
- Related Work
- Conclusion

Background

- Microservices
- Vulnerability Scanners
- Attack Graphs

Topology

Resulting Attack Graph

Topology

Resulting Attack Graph

Topology

Resulting Attack Graph

Topology

Resulting Attack Graph

Topology

Resulting Attack Graph

Topology

Resulting Attack Graph

- Motivation
- Background
- Method
- Evaluation
- Related Work
- Conclusion

Method

- From Network Nodes to Microservices
- System Overview
- Attack Graph Generation for Docker Containers
 - Topology Parser
 - Vulnerability Parser
 - Attack Graph Generator

From Network Nodes to Microservices

- Adapt attack graph generator used in computer networks for microservices and map:
 - Hosts -> containers
 - Physical host link -> connection between containers
- Four level of privileges combination of access level(User, Admin) and access mode (virtual macine, host)
- Preconditions/Postconditions from manually selected rules

System Overview

Topology Parser

- Utilizing information of the docker-compose.yml file
- Networks keyword connection between components
- Published ports
- Privileged access

Vulnerability Parser

- Using Clair to generate vulnerabilities for each file
- Input: a given image
- Output: list of CVE-IDs, descriptions and attack vectors of the given image

Attack Graph Generator

- Input: list of vulnerabilities and topology
- Output: an attack graph
- Breadth-first search (BFS) algorithm
 - Monothonicity property
 - Termination
 - O(|N| + |E|) N nodes, E edges

- Motivation
- Background
- Method
- Evaluation
- Related Work
- Conclusion

Evaluation

- Evaluation of the proposed attack graph generator system
 - Application on four systems with various technologies, number of containers and vulnerabilities
 - Testing the system scalability with increasing number of containers and connections

Use Cases

Name	Description	Technology Stack	No.	No. vuln.	GitHub link
			Con-		
			tainers		
Netflix OSS	Combination of containers	Spring Cloud, Netflix Rib-	10	4111	https://github.
	provided by Netflix.	bon, Spring Cloud Netflix,			com/Oreste-Luci/
		Netflix's Eureka			netflix-oss-example
Atsea Sample	An example online store ap-	Spring Boot, React, NGINX,	4	120	https://github.com/
Shop App	plication.	PostgreSQL			dockersamples/
					atsea-sample-shop-app
JavaEE demo	An application for browsing	Java EE application, React,	2	149	https://github.com/
	movies along with other re-	Tomcat EE			dockersamples/
	lated functions.				javaee-demo
PHPMailer and	An artificial example creat-	PHPMailer(email creation	2	548	https://github.com/opsxcq/
Samba	ed from two separate con-	and transfer class for PHP),			exploit-CVE-2016-10033
	tainers. We use an augment-	Samba(SMB/CIFS network-			https://github.com/opsxcq/
	ed version for the scalability	ing protocol)			exploit-CVE-2017-7494
	tests.				

Scalability

- Testing performance for increasing number of containers in fully-connected fashion
- 20, 50, 100, 500 and 1000 fully-connected containers
- Topology parsing and vulnerability preprocessing result in linear increase in time
- Attack generation time increases with number of connections
- 1000 fully-connected containers in 13 minutes

- Motivation
- Background
- Method
- Evaluation
- Related Work
- Conclusion

Related Work

- Model Checker (Sheyner et al.)
 - Four hosts, eight atomic attacks in two hours
- Logical attack graph (Ou et al.)
 - 1000 fully-connected nodes in 1000 seconds
- Attack graph generator based on BFS (Ingols et al.)
 - 8901 nodes (23315 edges) in 0.5 seconds

- Motivation
- Background
- Method
- Evaluation
- Related Work
- Conclusion

Conclusion

- Successful attack graph generation in microservice systems
 - Heterogeneous microservice systems with different technologies
 - Fully automated
 - Scalable solution for bigger systems

Thank you for your attention

• Questions?