Math 240A: Real Analysis, Fall 2019

Homework Assignment 2

Due Friday, October 11, 2019

- 1. Let (X, \mathcal{M}, μ) be a measure space. If $E, F \in \mathcal{M}$ then $\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F)$.
- 2. Let (X, \mathcal{M}, μ) be a measure space and $E \in \mathcal{M}$. Define $\mu_E(A) = \mu(A \cap E)$ for any $A \in \mathcal{M}$. Show that μ_E is a measure.
- 3. Let (X, \mathcal{M}, μ) be a measure space and $E_n \in \mathcal{M}$ (n = 1, 2, ...). Prove the following:
 - (1) $\mu(\liminf_{n\to\infty} E_n) \leq \liminf_{n\to\infty} \mu(E_n);$
 - (2) $\mu(\limsup_{n\to\infty} E_n) \ge \limsup_{n\to\infty} \mu(E_n)$, provided that $\mu(\bigcup_{n=1}^{\infty} E_n) < \infty$.
- 4. Let (X, \mathcal{M}) be a measurable space and $\mu : \mathcal{M} \to [0, \infty]$ be such that $\mu(\phi) = 0$ and μ is finitely additive.
 - (1) Prove that μ is a measure if and only if it is continuous from below as in Theorem 1.8 (c) of the textbook.
 - (2) Assume in addition that $\mu(X) < \infty$. Prove that μ is a measure if and only if is continuous from above as in Theorem 1.8 (d) of the textbook.
- 5. Let (X, \mathcal{M}, μ) be a measure space. Let $E_n \in \mathcal{M}$ (n = 1, 2, ...) satisfy $\sum_{n=1}^{\infty} \mu(E_n) < \infty$. Prove that $\mu(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mu(E_n)$ if and only if $\mu(E_i \cap E_j) = 0$ for any i, j with $i \neq j$.
- 6. If μ is a σ -finite measure on a measure space (X, \mathcal{M}) , then it is semifinite, i.e., for any $E \in \mathcal{M}$ with $\mu(E) = \infty$, there exists $F \in \mathcal{M}$ such that $F \subset E$ and $0 < \mu(F) < \infty$.
- 7. Let μ be a semifinite measure on a measurable space (X, \mathcal{M}) . Suppose $E \in \mathcal{M}$ and $\mu(E) = \infty$. Show that for any C > 0 there exists $F \in \mathcal{M}$ such that $F \subset E$ and $C < \mu(F) < \infty$.
- 8. Let μ^* be an outer measure on X. Let $\{A_n\}_{n=1}^{\infty}$ be a sequence of disjoint μ^* -measurable sets. Prove that $\mu^*(E \cap (\bigcup_{n=1}^{\infty} A_n)) = \sum_{n=1}^{\infty} \mu^*(E \cap A_n)$ for any $E \subseteq X$.
- 9. Let \mathcal{A} be an algebra of a set X. Denote by \mathcal{A}_{σ} the collection of countable unions of sets in \mathcal{A} and by $\mathcal{A}_{\sigma\delta}$ the collection of countable intersections of sets in \mathcal{A}_{σ} . Let μ_0 be a premeasure on \mathcal{A} and μ^* the induced outer measure on X. Prove the following:
 - (1) For any $E \subseteq X$ and $\epsilon > 0$, there exists $A \in \mathcal{A}_{\sigma}$ such that $E \subseteq A$ and $\mu^*(A) \leq \mu^*(E) + \epsilon$;
 - (2) If $E \subseteq X$ and $\mu^*(E) < \infty$, then E is μ^* -measurable if and only if there exsits a $B \in \mathcal{A}_{\sigma\delta}$ such that $E \subseteq B$ and $\mu^*(B \setminus E) = 0$.
- 10. Let (X, \mathcal{M}, μ) be a finite measure space. Let μ^* be the outer measure induced by μ . Suppose $E \subseteq X$ satisfies $\mu^*(E) = \mu^*(X)$ (but not that $E \in \mathcal{M}$).
 - (1) If $A, B \in \mathcal{M}$ and $A \cap E = B \cap E$, then $\mu(A) = \mu(B)$.
 - (2) Let $\mathcal{M}_E = \{A \cap E : A \in \mathcal{M}\}$. Define $\nu : \mathcal{M}_E \to [0, \infty]$ by $\nu(A \cap E) = \mu(A)$ (which makes sense by Part (1)). Then \mathcal{M}_E is a σ -algebra on E and ν is a measure on \mathcal{M}_E .