ABSTRACT

To realize an imide resin which is favorable in optical use.

The imide resin according to the present invention includes: a repeating unit represented by General Formula (1); a repeating unit represented by General Formula (2); and a repeating unit represented by General Formula (3), wherein an orientation birefringence of the imide resin ranges from -0.1×10-3 to 0.1×10-3,

General Formula (1)

$$\begin{array}{c|c}
R^2 & R^2 \\
\downarrow & R^1 & R^1 \\
\downarrow & R^1$$

where each of R¹ and R² independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R³ represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an aryl group having 6 to 10 carbon atoms,

General Formula (2)

where each of R⁴ and R⁵ independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R⁶ represents an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an aryl group having 6 to 10 carbon atoms,

General Formula (3)

where R⁷ represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R⁸ represents an aryl group having 6 to 10 carbon atoms.