315 programlama Dilleri

Yrd. Doç. Dr. Ahmet Arif AYDIN

Ödev Sonuçları

Geçen Haftanın Özeti

- İsimler (Names)
- Değişkenler (variables)
- Bağlanma (Bindings)
- Kapsam (Scopes)

Data Types-1 (Veri Tipleri)

- Başka veri tipleri tarafından tanımlanamazlar
- · Her programlama dilinin kendine ait ilkel tipleri bulunmaktadır.
- Eski programlama dillerinde sadece sayısal veri tipleri kullanılmıştır.
- Günümüzdeki programlama dillerinde bulunan veri tıpleri:
 - sayısal
 - mantiksal
 - kullanıcı tanımlı

Primitive Data Types <u>ilkel (basit)</u>

- 1- Numeric (Sayısal) Types
- 2- Boolean (mantiksal) Types
- 3- Character (karakter) Types

Primitive Data Types <u>ilkel (basit)</u>

1- Sayısal Veri Tipleri (Numeric Types)

integer Floating-point Complex Decimal

Sayısal veri tiplerinin programlama da önemi büyüktür.

1- Sayısal Veri Tipleri (Numeric Types)

- Tamsayı
- Bilinen en genel sayısal veri tipidir.
- Farklı programlama dillerinde farklı uzunlukta integer tipleri bulunmaktadır.

Primitive Data Types \frac{\frac{\text{! [kel (basit)}}{\text{veri tipleri}}}{\text{veri tipleri}}

1- Sayısal Veri Tipleri (Numeric Types)

integer

Floating-point

Complex

Decimal

byte	1 byte	-128	127	From +127 to -128	byte b = 65;
Dyre	IDyle	-120	16/	110111127 10 -120	•
<u>char</u>	2 byte	0	216-1	All Unicode characters	char c = 'A'; char c = 65;
short	2 byte	-2 ¹⁵	215-1	+32,767 to -32,768	short s = 65;
int	4 byte	-231	231-1	+2,147,483,647 to-2,147,483,648	int i = 65;
long	8 byte	-2 ⁶³	2 ⁶³ -1	From +9,223,372,036,854,775,807 -9,223,372,036,854,775,808	long I = 65L;

JAVA da bulunan integer olarak kabul edilen veri tipleri

1- Sayısal Veri Tipleri (Numeric Types)

- C, C++, C# da işaretsiz (unsigned integer) tipi bulunmaktadır.
- Bilgisayarda tanımlanırken en soldaki birinci bit <u>işaret biti</u> olarak tanımlanır.

Primitive Data Types \frac{\frac{\text{! [kel (basit)}}{\text{veri tipleri}}}{\text{veri tipleri}}

1- Sayısal Veri Tipleri (Numeric Types)

integer Floating-point Complex Decimal

- Kayan-noktalı veri tipi gerçek sayıları modellemekte kullanılır.
- sayıların gerçeğe yakın değerlerini tanımlamak için kullanılır
- Π (Pi sayısı): 3.1415926535897932384626433832797.... (100.000 digit)
- e: 2.71828182845904523536028747135266

Primitive Data Types <u>ilkel (basit)</u> veri tipleri

1- Sayısal Veri Tipleri (Numeric Types)

integer

Floating-point

Complex

Decimal

- Programlama dilleri
 - Float (4 byte)
 - Double (8 byte)

floating-point veri tiplerini içerir.

Primitive Data Types <u>ilkel (basit)</u>

1- Sayısal Veri Tipleri (Numeric Types)

1- Sayısal Veri Tipleri (Numeric Types)

integer Floating-point Complex Decimal

• Bazı programlama dilleri karmaşık sayıları desteklemektedir (Fortran, Python)

class complex([real[, imag]]) 5 + 3j Elektrik muhendisliği Fourier transform

Primitive Data Types \frac{\frac{\text{! [lkel (basit)}}{\text{veri tipleri}}}{\text{veri tipleri}}

1- Sayısal Veri Tipleri (Numeric Types)

integer Complex Decimal

- Sabit bir alanda <u>sabit uzunlukta ondalıklı kısım</u> bulundurmaktadır.
- Sabit uzunlukta olduğu için yapılacak işlemler güvenilirdir.
- Ticari uygulamalarda kullanılır: COBOL, C#

Primitive Data Types | ilkel (basit) | veri tipleri

2- Boolean Types

FALSE 0

TRUE 1

- En basit veri tipidir.
- 1 bitlik yer kaplar fakat bellekte 1 byte'lık alanda tutulurlar

Primitive Data Types <u>ilkel (basit)</u>

2- Boolean Types

FALSE 0

TRUE 1

- Değer aralığında sadece 2 değer bulunur: 0 ve 1
- ALGOL 60, C++ da 0 ve 1 karşılaştırma sonucu olarak kullanılabilir fakat Java ve C# da kullanılmaz yerine TRUE kullanılması gerekir.

3- Character Types

Karakterler bilgisayarlarda sayısal değerler olarak tutulmaktadır.

ASCII karakterler

http://www.bibase.com/ascii.htm

ASCII Tablosu

Dec	Нж	Char	•	Dec	Нж	HTML	Char	Dec	Нж	HTML	Char	Dec	Нж	HTML	Char
0	0	NUL	(null)	32	20		Space	64	40	@	e	96	60	`	
1	1	SOH	(Start of heading)	33	21	!	1	65	41	A	A	97	61	a	a
2	2	STX	(Start of text)	34	22	"	**	66	42	B	В	98	62	£#98;	ь
3	3	ETX	(End of text)	35	23	#	#	67	43	C	C	99	63	c	a
4	4	EOT	(End of transmission)	36	24	\$	\$	68	44	D	D	100	64	d	d
5	5	ENQ	(Enquiry)	37	25	%	%	69	45	E	E	101	65	e	•
6	6	ACK	(Acknowledge)	38	26	&	£	70	46	F	F	102	66	f	£
7	7	BEL	(Bell)	39	27	£#39;		71	47	G	G	103	67	g	g
8	8	BS	(Backspace)	40	28	((72	48	H	H	104	68	h	h
9	9	TAB	(Horizontal tab)	41	29))	73	49	I	I	105	69	i	i
10	A	LF	(NL line fd, new line)	42	2A	*	*	74	4A	J	J	106	6A	j	ά
11	В	VT	(Vertical tab)	43	2B	+	+	75	4B	K	K	107	6B	k	k
12	С	FF	(NP form fd, new page)	44	2C	,	,	76	4C	L	L SU	108	6C	l	1
13	D	CR	(Carriage return)	45	2D	-	-	77	4D	M	M	109	6D	m	m
14	E	so	(Shift out)	46	2E	.	ida. 🔏	78	4E	N	N N	110	6E	n	n
15	F	SI	(Shift in)	47	2F	£#47;	1/	79	4F	O	0	111	6F	o	0
16	10	DLE	(Data link escape)	48	30	0	O Z	80	50	£#80;	P	112	70	p	p
17	11	DC1	(Device control 1)	49	31	1	1	81	51	Q	Q	113	71	q	q
18	12	DC2	(Device control 2)	50	32	2	2	82	52	R	R	114	72	r	r
19	13	DC3	(Device control 3)	51	33	3	3	83	53	S	S	115	73	s	s
20	14	DC4	(Device control 4)	52	34	4	4	84	54	T	T	116	74	t	ŧ
21	15	NAK	(Negative acknowledge)	53	35	5	5	85	55	U	U	117	75	u	u
22	16	SYN	(Synchronous idle)	54	36	6	6	86	56	V	v	118	76	v	v
23	17	ETB	(End of trans. block)	55	37	7	7	87	57	W	W	119	77	w	w
24	18	CAN	(Cancel)	56	38	8	8	88	58	X	x	120	78	x	×
25	19	EM	(End of medium)	57	39	9	9	89	59	Y	Y	121	79	y	y
26	1A	SUB	(Substitute)	58	ЗА	:	:	90	5A	Z	Z	122	7A	z	z
27	1B	ESC	(Escape)	59	3в	;	7	91	5B	[[123	7B	{	{
28	1C	FS	(File separator)	60	3C	<	<	92	5C	\	Ň	124	7C		
29	1D	GS	(Group separator)	61	ЗD	=	=	93	5D]	1	125	7D	}	}
30	1E	RS	(Record separator)	62	3E	>	>	94	5E	^	À	126	7E	~	2
31	1F	US	(Unit separator)	63	ЗF	?	?	95	5F	_		127	7F		DEL
			•								_			www.bib	ase.com

Primitive Data Types Veri tipleri

3- Character Types

Bilgisayarların dünyanın dört bir yanına bağlanması ile ASCII karakterleri ihtiyacı karşılamamıştır ve ISO 8859-1 tablosu ortaya çıkmıştır.(256 karakter)

ISO 8859-1 tablosu

http://www.brescian et.com/appunti/vari/ tabellaascii/iso-8859-1.gif

							1	SO-885	9-1							
	-0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-A	-в	-c	-D	-E	-F
	NUL	зон	STX	ETX	EOT	ENQ	ACK	BEL	вз	HT	LF	VT	FF	CR	30	sı
0-	0000	0001	0002	0003	0004	0005	0006	0007	0008	0009	000A	000B	0000	000D	000E	000F
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
1-	0010	0011	0012	0013	0014	0015	0016	0017	0018	0019	001A	001B	0010	001D	001E	001F
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
2-	3P 0020	0021	0022	# 0023	\$ 0024	응 0025	0026	0027	0028	0029	002A	+ 002B	002C	002D	002E	002F
	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
	0	1	2	3	4	5	6	7	8	9	-	,	<	=	>	2
3-	0030	0031	0032	0033	0034	0035	0036	0037	0038	0039	003A	003B	003C	003D	003E	003F
	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
	@	A	В	С	D	E	F	G	н	I	J	K	L	M	N	0
4-	0040	0041	0042	0043	0044	0045	0046	0047	0048	0049	004A	004B	004C	004D	004E	004F
	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
_	P	Q	R	s	T	U	V	W	×	Y	Z	Е	\ \]	^	
5-	0050 80	0051 81	0052 82	0053 83	0054 84	0055 85	0056 86	0057 87	0058 88	0059 89	90	005B 91	005C	93	005E 94	005F 95
							£			i	j		1			
6-	0060	a 0061	b 0062	0063	0064	0065	0066	97 0067	h 0068	0069	006A	lc 006B	0060	006D	006E	OOEF
	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
	q	a	r	s	t	u	~	w	×	У	z	-{		}	~	DEL
7-	0070	0071	0072	0073	0074	0075	0076	0077	0078	0079	007A	007B	007C	007D	007E	007F
	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
	PAD	HOP	BPH	NBH	IND	NEL	SSA	ESA	HTS	HTJ	VTS	PLD	PLU	RI	332	333
8-	0080	0081	0082	0083	0084	0085	0086	0087	0088	0089	008A	008B	0080	008D	008E	008F
	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
9-	0090	PU1 0091	PU2	STS 0093	0094	MW 0095	SPA 0096	EPA 0097	909	SGCI 0099	SCI	CSI 009B	009C	OSC OOSD	9M 009E	APC 009F
9-	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
	NBSP	i	ċ	£.	327	¥		S		(C)	a			зну	(3)	
A -	00A0	00A1	00A2	00A3	00A4	00A5	00A6	00A7	00A8	00A9	OOAA	OOAB	OOAC	OOAD	OOAE	OOAF
	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
	•	±	2	3	-	μ	IP	-		1	0	>>	14	3-5	3/4	ž
в-	00B0	00B1	00B2	00B3	00B4	00B5	00B6	00B7	00B8	00B9	OOBA	OOBB	OOBC	OOBD	OOBE	OOBF
	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
	À	Á	Â	Ã	A	Å	Æ	Ç	È	É	Ê	Ë	Ì	Í	Î	Ĭ
C-	00C0 192	00C1 193	0002	0003	0004	00C5	0006	0007	200	201	202	00CB	204	00CD	206	207
			194	195 Ó	196 Ô		198	199				203 Û		205 Ý		
D-	Ð 00₽0	Ñ 00D1	00D2	00D3	00D4	Õ 00D5	00D6	00D7	Ø 00D8	Û 00D9	Ú 00DA	OODB	OODC	OODD	OODE	ß oodf
	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
	à	á	â	ã	ä	å	æ	Ç	è	é	ê	ë	ì	í	î	i
E-	00E0	00E1	00E2	00E3	00E4	00E5	00E6	00E7	00E8	00E9	OOEA	OOEB	OOEC	OOED	OOEE	OOEF
	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
	ð	ñ	ò	6	ô	õ	ö	÷	ø	ù	ú	û	ü	Ý	þ	Ÿ
F-	00F0	00F1	00F2	00F3	00F4	00F5	00F6	00F7	OOFS	00F9	OOFA	OOFB	OOFC	OOFD	OOFE	OOFF
	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255
	-0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-A	-в	-c	— D	-E	-F

3- Character Types

- 1991 yılında UCS-2 standardı oluşturulmuştur (16-bitkarakter seti)
- 2000 yılında ISO 4-byte lik karakter kodunu geliştirmiştir
 - UCS-4, UTF-32 (ISO/IEC 10646 Standard)

Karakter string tipi

birbirini takip eden karakterlerden (karakter dizilerinden) oluşur.

Eğer string ilkel tip olarak tanımlanmamışsa (Fortan 77, Basic) string verisi birbirini takip eden karakter dizisi olarak kaydedilir (C ve C++).

char ifade [] = "program"; ifade = ['p', 'r', 'o', 'g', 'r', 'a', 'm']

```
char s1[]="programlama";
char s2[40];
```

```
strcpy (s2, s1) s1'i s2'ye kopyala
```

strlen (s1) Stringin uzunlugunu ver

strcat (s1," dilleri") s1 in sonuna ekler

```
strcmp (s1, s2) Iki stringi karşılaştırır
```

```
s1 ="programlama";
s2 ="programlama";
```

```
s1="programlama dilleri";
s2="programlama";
```

JAVA

- String class bulunmaktadır
- charAt()
- substring (int beginIndex, int endIndex)
- replace (char oldChar, char newChar)
- trim ()
- boolean contains (CharSequence s)

Bazı programlama dillerinin içerisinde (built-in)
örüntü eşleştirme (<u>pattern matching</u>) fonksiyonlari bulunmaktadır
Perl, JavaScript, Ruby, ve PHP

Regular expresions ile örüntü bulma işlemi gerşekleştirilir.

C++, Java, Python, C#

Regular Expressions

$$/[A-Za-z][A-Za-z\d]+/$$

Programlama dillerindeki isim oluşturma kuralı

String uzunluğu üc biçimde tanımlanır

- 1. static
 - Python, Java, C++ standard string sınıfları
- 2. Sınırlı dinamik (limited dynamic)
 - C ve C++ ın izin verdiği maximum uzunluğa kadar string uzunlugu artabilir (1 byte)
- 3. Dinamik (sınırsız)
 - Javascript

Figure 6.2

Compile-time descriptor for static strings

Static string
Length
Address

Figure 6.3

Run-time descriptor for limited dynamic strings

Limited dynamic string
Maximum length
Current length
Address

Kullanıcı Tanımlı Sıralı Tipler

- 1. Enumeration (liste) Types
- 2. Subrange (alt alan) types

Belirlenmiş bir değer kümesi içinden secim yapılır

Yeni bir tip oluşturmayı sağlar

Kullanıcı Tanımlı Sıralı Tipler

1- Enumeration (liste) Types

- Gerçek hayattaki tipleri bir listeye dönüştürüp her bir değere index (0, 1,2,3 .. 6)
 değerleriyle erişim sağlanır.
- Belirlenen tip parantez içindeki değerlerle sınırlıdır.
- Bir döngü yardımıyla değerlere erişilebilir.

Kullanıcı Tanımlı Sıralı Tipler

1- Enumeration (liste) Types

```
enum günler {Mon, Tue, Wed, Thu, Fri, Sat, Sun};
```

```
enum renkler {red, blue, green, yellow, black}; c++ renkler renk1 = blue, renk12 = red;
```

Kullanıcı Tanımlı Sıralı Tipler

2- Subrange (alt alan) Types

Bir birini takıp eden sıralı tipin belirlenen alt kümesidir.

A..Z, 1..20, 50..100, a..z

Kullanıcı Tanımlı Sıralı Tipler

2- Subrange (alt alan) Types

Bir birini takıp eden sıralı tipin belirlenen alt kümesidir.

A..Z, 1..20, 50..100, a..z

type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun); subtype Weekdays is Days range Mon..Fri; subtype Index is Integer range 1..100;

ADA

Aynı tipden oluşan homojen verilerin oluşturdugu sıralı yapıdır.

Index yardımıyla dizinin elemanlarına erişim sağlanır.

C, C++, Java, Ada, ve C# gibi diller de diziye kaydedilecek elemanların tipi aynı olmak zorundadır.

JavaScript, Python, ve Ruby
<u>farklı tipdeki elemanları</u> aynı dizi içinde barındırır.

- · İndex yardımıyla dizi elemanlarına erişim sağlanır
- Syntax:
 - Diziadı (index değeri) -> istenilen eleman
 - []: Bir cok programlama dili
 - (): Fortran, Ada

Dizi index tipleri

- Integer (C, Java)
- Pascal: her türlü sıralı tip
 - Integer
 - Boolean
 - Char
 - enum

- Static array (efficiency)
 - index sınırları ve bellek yeri runtime dan önce hesaplanır.
- Fixed stack-dynamic array(efficiency)
 - index belirlenir bellek baglanması runtime da gercekleşir.
 - C ve Java nın statik olmayan değişkenleri
- Stack-dynamic array
 - Index sınırları ve bellek bağlanması dinamiktir.
- Fixed heap-dynamic array
 - Index sınırları ve bellek bağlanması dinamiktir. Bir defa belirlendikten sonra değişmez.
 - C , C++ , Java
- Heap-dynamic array
 - İndex aralıgı ve bellek bağlanması dinamiktir (Javascript, Python, Ruby)

```
C# (heap dynamic)
```

```
List<String> stringList = new List<String>();
stringList.Add("yeni");
```

```
Ruby
dizi= Array.new(['a', 'b', 'c'])
dizi[-2]
dizi.insert(0, 1)
dizi.insert(-1, 'd')
dizi.slice(1, 2)
dizi.push('f')
dizi.pop
dizi.delete_at(2)
```

Bazı programlama dilleri dizilere ilk değer atamaya izin verir.

Bazı programlama dilleri dizilere ilk değer atamaya izin verir.

Bazı programlama dilleri dizilere ilk değer atamaya izin verir.

Programlama dilleri diziler üzerinde farklı işlemlere izin verirler.

Python

slice

Çok boyutlu diziler matrislerin tanımlanmasında kullanılır.

matris= [[1, 2, 3],[4, 5, 6],[7, 8, 9]]

python

matris [i] [j]

Düzenli (rectengular) dizi

Düzensiz (jagged) dizi

C, C++, java, python destekler

Tek boyutlu dizi

Array

Element type

Index type

Index lower bound

Index upper bound

Address

Multidimensioned array

Element type

Index type

Number of dimensions

Index range 0

:
:
Index range n – 1

Address

Derleme zamanındaki Tek boyutlu dizi tanımı

Derleme zamanındaki çok boyutlu dizi tanımı