National University of Computer and Emerging Sciences

Software Re-engineering (SE4001)

Date: April 24th 2024

Course Instructor(s)

Dr. Syed Muazzam Ali Shah

Quiz-III -(BSE-8B)

Total Time: 30 minutes

Total Marks: 10

Total Questions: 02

Semester: SP-2024 Campus: Karachi

Dept: Software Engineering

Student Name Roll No Section Student Signature

Q 1: Select the most appropriate option from the following multiple-choice questions. (5 marks)

- **1.** Which one of the following is among the six reverse engineering objectives as identified by Chikofsky and Cross II:
 - a. Refactoring
 - b. Data re-engineering
 - c. Restructuring
 - d. Reusability
- 2. In a programming language, the parser might classify keywords, identifiers, operators, and punctuation symbols as separate token types. [True/False]
- 3. Reverse engineering is performed to achieve two objectives.
 - a. Documentation of Artifacts and Design recovery
 - b. Refactoring and data re-engineering
 - c. Design recovery and Refactoring
 - d. Data re-engineering and documentation of artifacts
- **4.** High level reverse engineering means to create abstractions of source code in the form of design, architecture and/or documentation. [True/False]
- 5. Which one of the following is not considered as a token category in lexical analysis?
 - a. Keywords
 - b. identifiers
 - c. literals
 - d. pre-processor directives

Q 2: Using lexical analysis generate all possible valid tokens, specific their categories, and also specify the number of total valid token using the following piece of source code. (5 marks)

```
#include <stdio.h>
#include <iostream.h>
Int main () {
    Int a = 10;
    if (a < 2) {
        printf ("a is less than 2");
    } else {
        printf ("a is not less than 2");
    }
    printf ("value of a is: %d\n", a);
    return 0;
}</pre>
```

Sr#	Lexeme	Token
1	Int	keyword
2	main	identifier
3	(operator
4)	operator
5	{	operator
6	Int	keyword
7	a	identifier
8	=	operator
9	10	identifier
10	;	separator
11	if	keyword
12	(operator
13	a	identifier
14	<	operator
15	2	identifier
16)	operator
17	{	operator
18	printf	keyword
19	(operator
20	"a is less than 2"	string
21)	operator
22	;	separator
23	}	operator
24	else	keyword
25	{	operator

National University of Computer and Emerging Sciences

26	printf	keyword
27	(operator
28	"a is not less than 2"	string
29)	operator
30	;	separator
31	}	operator
32	printf	keyword
33	(operator
34	"value of a is: %d\n"	string
35	,	separator
36	а	identifier
37)	operator
38	;	separator
39	return	keyword
40	0	constant
41	;	separator
42	}	operator