Algorithm 1: Distributed privacy preserving sub-graph mining

Data: Each client maintains its local graph LG_i , all LG_i constitute a global graph GG, each node n_i^m in LG_i has its type t_i^m , there are N_t types in total, each directed edge also has its relation whether it belongs to LG_i or across LG_i and LG_j , all relation in GG forms collection R.

Result: legal sub-graph of GG with K edges

- ${f 1}$ Initial a multitree T with an empty root;
- **2** Genarate N_t TreeNodes with unique type at the next level in T;
- $\mathbf{3} \ depth \leftarrow 0 \; ;$

```
4 for depth \le K do
       /* Expand as much as possible
                                                                                   */
       foreach TreeNode TN_i at depth<sup>th</sup> level of T do
 5
           Graph g \leftarrow \text{content of } TN_i;
 6
           foreach node SouN_x in g do
 7
 8
               foreach relation r_p in R do
                   for
each node\ TarN_y with unique type do
 9
                       Genarate graph pattern (SouN_x, r_p, TarN_y);
10
                       if g + (SouN_x, r_p, TarN_y) is legal judged by
11
                         Algorithm2 then
                           g_{new} \leftarrow g + pattern\left(SouN_x, r_p, TarN_y\right);
12
                           A child of TN_i \leftarrow TN_{ij} with content g_{new};
13
                       else
14
                           continue;
15
16
                       end
                   end
17
               end
18
           end
19
       end
20
       /* duplicate removal
                                                                                   */
       for every different (TN_i, TN_i) pairs at depth<sup>th</sup> level of T do
21
           if TN_i \iff TN_j then
22
               Remove TN_j from T;
\mathbf{23}
           \mathbf{end}
\mathbf{24}
       end
25
26
       depth \leftarrow depth + 1;
27 end
```