

Interactive Open-Domain Story Generation

Seraphina Tarrant, Haining Feng, Nanyun Peng

Information Sciences Institute, University of Southern California

Motivation

- Can human-machine collaboration improve open-domain neural story generation?
- Can it improve specific story aspects, as well as overall quality?

Previous approaches to human-machine collaboration offer limited interaction. We design a system that enables human interaction at multiple stages of the process: story-planning, story-writing, diversity controls*, and model-selection.

Sample Interaction

Figure 1: full-interaction capabilities, annotated with example user actions. Interaction is iterative: users may edit or regenerate any text at any time.

We conduct user studies for multiple interaction scenarios, and explore *all-interaction, story-only, storyline-only,* and *diversity-only* variations under time constraints. We task some users with improving specifically one of Relevance, Creativity, Causal-Temporal Coherence.

Demo Diagram

System

Embedding Layer Beamsearch + Discriminators Relevance Softmax Softmax LSTM ---> LSTM ---> LSTM Softmax Embedding Layer Embedding Layer

Data

ROC Stories: 98,162 commonsense stories data split into 8:1:1 for training, dev and test sets.
Storylines are extracted via RAKE (a keyword extraction algorithm) as in Yao et al (2019).

We adapt the Plan-and-Write system; a storyline planning to story generation pipeline (Yao et al 2019) to enable interaction at the planning stage. We include a Title-to-Story baseline (no planning stage) and create a new Plan-and-Revise system, which incorporates discriminators for Relevance and Creativity, as in Holtzman et al. (2018).

Metrics

Self-reported

Subjects self-report on their engagement, satisfaction with their story, and perception of story quality.

Independent Ranking

Independent human judges are asked to rank all stories from 1-5 under eight experiment conditions for Overall Quality, Relevance, Creativity, and Causal-Temporal Coherence.

Results

Experiment	Overall	Creative	Relevant	C-T
Machine	2.34	2.68	2.46	2.54
Diversity only	2.50	2.96	2.75	2.81
Storyline only	3.21	3.27	3.88	3.65
Story only	3.70*	4.04	3.96*	4.24
All	3.54	3.62	3.93*	3.83
All + Creative	3.73	3.96*	3.98*	3.93*
All + Relevant	3.53*	3.52	4.05	3.91*
All + C-T	3.62*	3.88*	4.00*	3.98*

Table 1: Results for all experiments. Best scores per metric are bolded, scores not significantly different ($\alpha=0.1$, per Wilcoxon Signed-Rank Test) are starred. C-T stands for Causal-Temporal Coherence, the + experiments are the extensions where the user focuses on improving a particular quality.

- humans tasked with improving a specific story aspect are successful at doing so.
- interaction at both *planning* and writing stages improves story quality 10-50% over less interactive baselines.
- additional interaction increases user self-reported satisfaction.

^{*}diversity controls are softmax temperatures, which control the unusualness of system generations