Automated Theorem Proving

Time Limit: 2 Second Memory Limit: 256 MB

Automated Theorem Proving (ATP) is the process of proving theorems with computer programs. You are given n terms and a list of theorems in the form $t_i \to t_j$, where t_i and t_j are in the given set of terms. For each pair of terms (t_i, t_j) , find out if we can prove $t_i \to t_j$ with the given theorems.

Input

The first line of input contains a single integer n $(1 \le n \le 2000)$ - number of terms.

The following n lines describe the theorems with an adjacency matrix. The i-th line contains n integers $a_{i,1}, \ldots, a_{i,n}$, where the j-th entry $a_{i,j} = 1$ only if $t_i \to t_j$ is a theorem. It is guaranteed that $\forall i, a_{i,i} = 1$.

Output

Output an $n \times n$ binary matrix in the same format as the input. The (i, j)-th entry of the matrix is 1 only if $t_i \to t_j$ can be proved given the theorems.

Sample Inputs	Sample Outputs
3	1 1 1
1 1 1	1 1 1
1 1 0	0 0 1
0 0 1	