Partiel 2009

[Durée deux heures. Aucun document n'est autorisé. Les exercices sont indépendants. Seule les réponses soigneusement justifiées seront prises en compte.]

Exercice 1. Soit (X,Y) un couple aléatoire à valeurs dans \mathbb{R}^2 admettant une densité

$$f_{(X,Y)}(x,y) = \begin{cases} C & \text{si } \max(|x|,|y|) \le 2\\ 0 & \text{sinon} \end{cases}$$

- a) Déterminer C.
- b) X et Y sont-elles indépendantes?
- c) Calculer la loi de la v.a. X + Y.

Exercice 2. Soit (X, Y) le vecteur gaussien centré de matrice de covariance

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & 4 \end{array}\right)$$

Soit $Z = Y - \alpha X$.

- a) Quelle est la loi de Z? Préciser ses paramètres.
- b) Déterminer α tel que X et Z soient indépendantes.
- c) Calculer le coefficient de corrélation entre X et Y.
- d) Calculer le coefficient de corrélation entre X^2 et Y^2 .

Exercice 3. Soient $X \sim \mathcal{N}(0,1)$, et K une v.a. discrete telle que

$$\mathbb{P}(K = -1) = \mathbb{P}(K = 1) = 1/2$$

et K est indépendante de X. On consière Y = KX.

- a) Calculer $\mathbb{E}(Y)$, Var(Y) et Cov(X, Y).
- b) Calculer la fonction de répartition de Y et en déduire que $Y \sim \mathcal{N}(0,1)$.
- c) Montrer (par un argument simple) que le vecteur (X,Y) n'est pas gaussien.

Exercice 4. Soit $U_1, ..., U_n$ une suite i.i.d. $\sim \mathcal{U}[0,1]$. On pose $X_n = \min_{1 \le k \le n} U_k$ et $Y_n = nX_n$.

- a) Calculer la fonction de répartition de X_n et sa densité. Identifier la loi de X_n .
- b) Donner la fonction de répartition de Y_n .
- c) Montrer que $(Y_n)_{n\geq 1}$ converge en loi en précisant cette loi limite.

Exercice 5. Soit $(X_n)_{n\geq 1}$ une suite de v.a. telle que $X_n \sim \chi_n^2$ (une loi Khi-Deux de n de degrés de liberté).

- a) Rappeler la définition d'une variable aléatoire $\sim \chi_m^2, m \in \mathbb{N}^*$.
- b) Pour $n \geq 1$, calculer $\mathbb{E}(X_n)$ et $Var(X_n)$.
- c) Montrer que X_n/n converge presque sûrement en précisant le théorème utilisé et identifier la limite.
- d) Montrer que $X_n/\sqrt{n}-\sqrt{n}$ converge en loi en précisant le théorème utilisé et identifier la limite.