Fizyka Fazy Skondensowanej

Spis treści

1	Zad																					3
	1.1	Pierwsz	у																			3
		1.1.1																				3
		1.1.2																				3
		1.1.3																				3
		1.1.4																				3
	1.2	Drugi .																				4
		1.2.1																				4
		1.2.2																				4
		1.2.3																				4
		1.2.4																				4

1 Zadania

1.1 Pierwszy

1.1.1

- 1. Sieć krystaliczna, węzły sieci, proste sieciowe, płaszczyzny sieciowe, wskaźniki Millera (hkl), Komórka elementarna i typy układów krystalograficznych
- 2. Operacje symetrii, grupy punktowe.
- 3. Sieć prosta a sieć odwrotna. Objętości komórki elementarnej w sieci odwrotnej. Odległości międzypłaszczyznowe. Strefy Brillouina.

1.1.2

Obliczyć objętość komórki elementarnej dla układu regularnego, romboedrycznego, heksagonalnego, jednoskośnego.

1.1.3

Wykaż, że:

1. dla prostej sieci regularnej o stałej sieciowej a, odległość międzypłaszczyznowa

$$d_{hkl}^2 = \frac{a^2}{h^2 + k^2 + l^2}$$

2. obliczyć $\frac{1}{d_{hkl}^2}$ dla układu heksagonalnego oraz rombowego

1.1.4

Struktura diamentu zawiera dwa identyczne atomy w położeniach 000 i $\frac{1}{4}\frac{1}{4}\frac{1}{4}$ związane z każdym węzłem sieci powierzchniowo centrowanej (fcc). Obliczyć czynnik strukturalny dla tej struktury. Pokaż, że dozwolone odbicia spełniają warunek h+k+l=4n, gdzie wszystkie wskaźniki są parzyste, a n jest dowolna liczbą całkowitą, albo wszystkie składniki są nieparzyste.

1.2 Drugi

1.2.1

Energia oddziaływania między dwoma atomami w cząsteczce opisywana jest wzorem:

$$U(r) = -\frac{\alpha}{r^n} + \frac{\beta}{r^m}$$

Pokazać, że m > n.

1.2.2

Rozważ liniowy układ 2N jonów o ładunku równym na przemian $\pm q$. Załóż, że energia potencjalna odpychania między najbliższymi sąsiadami ma postać $\frac{A}{R^n}$.

1. Pokaż, że dla odległości między jonami odpowiadającej stanowi równowagi

$$U(R_0) = -\frac{2Nq^2 \ln(2)}{R_0} \left(1 - \frac{1}{n}\right)$$

2. Załóżmy, że kryształ został ściśnięty tak, że $R_0 \to R_0(1-\delta)$. Pokaż, że w wyrażeniu na pracę związaną ze ściśnięciem kryształu największy wkład opisuje człon $\frac{C\delta^2}{2}$ gdzie:

$$C = \frac{(n-1)q^2\ln(2)}{R_0}$$

1.2.3

Obliczyć stałą Madelunga dla kryształu NaCl:

1. przypadek jednowymiarowy (nić krystaliczna NaCl)

2. przypadek dwuwymiarowy (siatka płaska NaCl)

1.2.4

Obliczyć jakie ciśnienie należy przyłożyć do kryształu jonowego, aby odległość między jonami zmniejszyła się o 1 procent.

Spis rysunków

 Kod źródłowy