Фамилия

группа

1	2	3	4	5	6	\sum
3	4	3	4	2	4	20

Сибирский федеральный университет Институт математики и фундаментальной информатики

Экзаменационная работа по уравнениям математической физики

2018-2019. З сессия

Демонстрационный вариант

Всюду ниже $\Omega \subset E_n$ — ограниченная односвязная область.

- **1.** Дать определения пространств $C^k(\Omega)$, $\overset{\circ}{C}^k(\Omega)$, $\overset{\circ}{C}^\infty(\Omega)$, $H^1(\Omega)$, $\overset{\circ}{H}^1(\Omega)$, $L_{p,loc}(\Omega)$ с указанием норм и скалярных произведений (если они определены). Какие из этих пространств являются банаховыми, гильбертовыми?
 - **2.** Дать определение α -обобщенной производной. Доказать ее единственность.
- **3.** Найти (по определению) обобщенную производную функции f(x) = x|x| в области $\Omega = (-2;1)$.
- 4. Дать определение следа $f(x)|_{\partial\Omega}$ функции класса $H^1(\Omega)$. Найти след $f(x)|_{\partial\Omega}$ функции $f(x)=\begin{cases} 0, & |x|<1,\\ 1/2, & |x|=1 \end{cases}$ в области $\Omega=(-1;1).$
 - **5.** Сформулировать лемму (неравенство) о следе для функции класса $H^1(\Omega)$.
- 6. Дать определение эквивалентности норм. Доказать эквивалентность норм $\|u\|=\int\limits_{\Omega}(u^2(x)+|\nabla u(x)|^2)dx$ и

 $||u||_1 = \int\limits_{\Omega} k(x) |\nabla u(x)|^2 \, dx$ в пространстве $\overset{\circ}{H}^1(\Omega)$. Здесь функция k(x) измерима по Лебегу и $0 < k_0 \leqslant k(x) \leqslant K$.