ECON3113 Microeconomic Theory I

Tutorial #1: The foundations of consumer choice

Your TA

PEGLER Dominic

E-mail: ecdjpegler@ust.hk

Office Room: Rm 6066, LSK Bldg

Zoom id: 515-008-9299

Online Office Hours: 4.30pm - 6.30pm - 6 pm, Tuesday/by appointment

Today's tutorial: the foundations of consumer choice

- Limitations of the 'traditional' approach
- A modern approach: the building blocks of consumer choice
 - Coherence
 - Preference relations
 - Choice function
- Exercises
- Postscript: Is Transitivity ever violated?

• Limitations of the 'traditional' approach to utility and consumer choice

 The traditional approach to consumer choice in economics starts with a utility function eg

•
$$U = x^{1/2}y^{1/2}$$

And a budget constraint

•
$$I = P_x x + P_y y$$

- And maximises U subject to $P_x x + P_y y \le I$
- But, we do not know *U* for individuals, who might not behave in this way in any case

 Can we build a theory of consumer choice that does not rely on knowing an individual's utility function?

The building blocks of a modern theory of consumer choice

- We will use one key concept and three building blocks:
 - Key concept: Coherence
 - Building blocks:
 - Choice function
 - Preference relation
 - Utility function
- Our goal is to show how these building blocks are linked

Building block #1: the Choice Function

- Assume that a consumer has a set of feasible alternatives, $A = \{x_1, x_2, ..., x_n\}$, and will choose one of them (ie not making a choice is not an option)
- Then we define c(A) as the <u>Choice Function</u> ie the choices made by the consumer Example:
- Assume that a consumer may choose from the following drinks in the morning:

 $A = \{\text{tea, espresso, latte}\}\$

- If the consumer chooses tea, then we may write $c(A) = \{tea\}$
- If the consumer chooses tea and latte, then we may write $c(A) = \{\text{tea}, \text{latte}\}$
 - Note that the consumer may choose more than one alternative
 - Note that c(A) is a set

Building block #1: the Choice Function

- Assume that a consumer has a set of feasible alternatives, $A = \{x_1, x_2, ..., x_n\}$, and will choose one of them (ie not making a choice is not an option)
- Then we define c(A) as the <u>Choice Function</u> ie the choices made by the consumer Example:
- Assume that a consumer may choose from the following drinks in the morning:

 $A = \{$ tea, espresso, latte $\}$

- If the consumer always chooses tea, then we may write $c(A) = \{tea\}$
- If the consumer always chooses either tea and latte, we may write $c(A) = \{\text{tea}, \text{latte}\}$
 - Note that the consumer may choose more than one alternative (and could choose the whole set A)

Key Concept: Coherence

• Assume that our consumer visits her/his favourite coffee shop and has the choice of:

$$A = \{$$
tea, espresso, latte $\}$

- Assume that she/he always chooses tea ie $c(A) = \{tea\}$
- Now suppose that an employee says that in fact there is a new product range, and that the consumer may now choose from:

$$B = \{\text{tea, espresso, hot chocolate}\}\$$

- Is it Coherent behavior:
 - Still to choose tea?
 - To switch to hot chocolate?
 - To switch instead to espresso?

Key Concept: Coherence

• Coherence in symbols:

Coherence:

- When offered set A, the consumer chooses tea and rejects espresso
- When offered set B, both tea and espresso are still available
- If the consumer switches to espresso, this is not Coherent behavior
- Coherent behavior is to choose tea or hot chocolate

Building block #2: The Preference Relation

• Given a set of alternatives, X, and any pair of alternatives, x and y:

$$x \ge y$$

means that x is at least as good as y

- x ≥ y is read as 'x is <u>weakly preferred</u> to y'
- x > y is read as 'x is strongly preferred to y'
- We assume that the pairwise comparison can be done for all x and y in X

Building block #2: The Preference Relation

• For any x and y in X, we have the following possibilities:

Possibility	Notation	Read: 'the consumer
$x \ge y$ and $y \ge x$	x ∼ y	Is indifferent between x and y'
$x \ge y$ but not $y \ge x$	x > y	strictly prefers x to y'
$y \ge x$ but not $x \ge y$	y > x	strictly prefers y to x'
Neither $x \ge y$ nor $y \ge x$	Not defined	cannot compare x and y'

- Therefore, $x \ge y$ is equivalent to saying either x > y or $x \sim y$
- The analysis here focuses on weak preference

Building block #2: The Preference Relation – Completeness, Reflexivity, and Transitivity

- Completeness: The preference relation is complete if a comparison exists for each \boldsymbol{x} and \boldsymbol{y} in \boldsymbol{X}
 - ie $x \ge y$, or $y \ge x$ or both
 - Includes comparing x to itself
- Reflexivity: The relation is reflexive if $x \ge x$ (ie the item is at least as good as itself)
- **Transitivity**: If x is preferred to y and y is preferred to z, then x is preferred to z:

If
$$x \ge y$$
 and $y \ge z$, then $x \ge z$

Building block #2: The Preference Relation – Completeness, Reflexivity, and Transitivity

- Why is Transitivity important?
- Example: The Money Pump Scheme
- Assume that Person 2 has preferences:
 - $x \ge y$, $y \ge 10 , $$8 \ge x$
- Then Person 1 could extract all Person 2's wealth as follows:

Step#	Step	Person	1		Perso	on 2	
1	Person 1 sells y to Person 2 for \$10	-у	+\$10		+y	-\$10	
2	Person 1 exchanges x for y from Person 2	-y +y	+\$10	-X	+y -y	-\$10	+x
3	Person 1 buys x from Person 2 for \$8	-y +y	+\$10 -\$8	-x +x	+y -y	-\$10 +\$8	+x -x
4	Repeat	Earns \$	2 each tim	e	Loses	\$2 each time	

- Assume that we have a set of alternatives, A
- Also assume that we have a preference relation that satisfies Completeness, Reflexivity and Transitivity
- Can our preference relation generate a choice function?
- That is, given A, can we find c(A)?
- The answer is 'yes' here's how...

- Assume that we have a set of alternatives, A, and a preference relation that satisfies
 Completeness, Reflexivity and Transitivity
- Assume that x' and y' are in A
- Two points:
 - If $y' \ge x'$ and $\underline{not} \ x' \ge y'$, then we would expect $x' \ \underline{not} \ to$ be chosen
 - If x' is chosen, we cannot find a y' in A that x' is not weakly preferred to
- Implication:
 - Given a set of alternatives, A, all choices are those members of A that are weakly preferred to everything in A
- This allows us to derive a Choice Function

- Assume that $A = \{\text{tea, espresso, latte}\}$
- Assume that we have the following preferences:
 - tea ≥ espresso; not espresso ≥ tea (ie tea strongly preferred to espresso)
 - tea ≥ latte; latte ≥ tea (ie indifferent between tea and latte)
 - latte ≥ espresso; <u>not</u> espresso ≥ latte (ie latte strongly preferred to espresso)
- We have the following preference table (row heading □ column heading):

	tea	espresso	latte
tea	~	>	~
espresso	<	~	
latte	~	>	~

	tea	espresso	latte
tea	~	>	~
espresso	<	~	
latte	~	>	~

- To find the members of c(A), look at the rows of the table
 - If the row header is (at least) weakly preferred to everything in the columns, then the row header is in c(A)
- So in this case $c(A) = \{\text{tea, latte}\}$
- Therefore, our preference relation implies a choice function:
 - $A \rightarrow c(A)$
 - {tea, espresso, latte} → {tea, latte}

Progress so far...

- So we have shown (but not proved!) that a well-defined preference relation that obeys
 Completeness, Reflexivity and Transitivity generates a choice function
- Next step:
 - To show that a utility function generates a preference relation and a choice function

- We may denote a binary relation R on a set A
- For $x, y \in A$, xRy means that x obeys the relation R with respect to y
- Are the following binary relations Complete, Reflexive and Transitive on the given sets?

Set	Binary relation	Complete	Reflexive	Transitive
All students at HKUST	'Takes the same course as'			

- We may denote a binary relation R on a set A
- For $x, y \in A$, xRy means that x obeys the relation R with respect to y
- Are the following binary relations Complete, Reflexive and Transitive on the given sets?

Set	Binary relation	Complete	Reflexive	Transitive
All people in the world	'Is an ancestor of'			

- We may denote a binary relation R on a set A
- For $x, y \in A$, xRy means that x obeys the relation R with respect to y
- Are the following binary relations Complete, Reflexive and Transitive on the given sets?

Set	Binary relation	Complete	Reflexive	Transitive
Rock, paper, scissors	' x beats y'			

- We may denote a binary relation R on a set A
- For $x, y \in A$, xRy means that x obeys the relation R with respect to y
- Are the following binary relations Complete, Reflexive and Transitive on the given sets?

Set	Binary relation	Complete	Reflexive	Transitive
Real numbers	'is a factor of'			

- We may denote a binary relation R on a set A
- For $x, y \in A$, xRy means that x obeys the relation R with respect to y
- Are the following binary relations Complete, Reflexive and Transitive on the given sets?

Set	Binary relation	Complete	Reflexive	Transitive
Words in an English dictionary	'has the same meaning as'			

- Given the following set $A = \{x_1, x_2, x_3, x_4\}$ and the given preferences, is the preference relation Complete, Reflexive and Transitive?
- If it fails one of the criteria, change it so that it meets them all

	x_1	x_2	x_3	x_4
x_1	~	>	~	<
x_2	<	~	~	<
x_3	<	>	~	<
x_4	>	~	>	~

- Given the following set $A = \{x_1, x_2, x_3, x_4\}$ and the given preferences, is the preference relation Complete, Reflexive and Transitive?
- If it fails one of the criteria, change it so that it meets them all

	x_1	x_2	x_3	x_4
x_1	~	>	~	<
x_2	<	~	~ <	<
x_3	< ~	>	~	<
x_4	>	~ >	>	~

• Use the correct preference relation to derive the choice function in this case

	x_1	x_2	x_3	x_4
x_1	~	>	~	<
x_2	<	~	<	<
x_3	~	>	~	<
x_4	>	>	>	~

- To find the choice function, look across each row
- If an element is weakly preferred to all others, then it is in c(A)
- $A \rightarrow c(A)$
- $\{x_1, x_2, x_3, x_4\} \rightarrow \{$

Progress so far...

- So we have shown (but not proved!) that a well-defined preference relation that obeys
 Completeness, Reflexivity and Transitivity generates a choice function
- Next step:
 - To show that a utility function generates a preference relation and a choice function

Postscript: Is Transitivity ever violated?

- A major topic of research and debate over the past 40 years
- A classic finding: 'Loss Aversion'
 - People hate losing much more than they like winning
 - Can lead to apparent violations of Transitivity between preferences
- Note: This requires a world of <u>uncertainty</u>, so different to the model that we have been considering

Postscript: Is Transitivity ever violated?

Suppose that an individual is offered 3 possibilities:

Kahneman, Daniel (2011). Thinking, Fast and Slow. Farrar, Straus and Giroux. ISBN 978-1-4299-6935-2. P(Win) Win P(Lose) Lose Retrieved March 10, 2016. \$1,000,000 75% \$200,000 25% Kahn & Man Daniel; Tversky, Amos (1979). "Prospect Theory: An Amalysis of Decision under \$200,000 \$50,000 25% 75% В Risk" (PDF). Econometrica. 47 (2): 263-\$10,000 \$10,000 75% 25% 291. CiteSeerX 10.1.1.407.1910. doi:10.2307/19141

85. ISSN 0012-9682. JSTOR 1914185.

Ranking according to expected gain ought to give preferences:

- A > B > C, therefore A > C
- But if the individual strongly does not want to lose a lot of money, we could have preferences:
 - A > B , B > C, but C < A
 - An apparent violation of Transitivity
 - But doesn't this mean that we shouldn't measure behaviour just on Expected Gain?

Tutorial - ECON 3113 Managerial Microeconomics

Postscript: Prospect Theory - references

Kahneman, Daniel; Tversky, Amos (1979). <u>"Prospect Theory: An Analysis of Decision under Risk"</u> (PDF). Econometrica. **47** (2): 263–291. <u>CiteSeerX</u> 10.1.1.407.1910. <u>doi:10.2307/1914185</u>. <u>ISSN</u> 0012-9682. <u>JSTOR</u> 1914185.

<u>Kahneman, Daniel</u> (2011). <u>Thinking, Fast and Slow</u>. Farrar, Straus and Giroux. <u>ISBN</u> <u>978-1-4299-6935-2</u>. Retrieved March 10, 2016.

https://www.bbc.co.uk/programmes/b0381l2v

Daniel Kahneman

Kirsty Young interviews psychologist and Nobel Laureate Daniel Kahneman.

O 45 minutes