50 CHAPTER 3

Thus, Zorn's Lemma applies, giving us a prime ideal $P^* \in \mathcal{X}$ that is minimal among the ideals in \mathcal{X} . Since any prime ideal contained in P^* is in \mathcal{X} , we conclude that P^* is a minimal prime ideal of R. \square

Given an ideal I in a ring R and a prime ideal P containing I, we may apply Proposition 3.3 in the ring R/I to see that the prime ideal P/I contains a minimal prime Q/I of R/I. Then Q is a prime ideal of R which contains I and is minimal among the primes containing I. By way of abbreviation, we say that Q is a prime minimal over I.

Theorem 3.4. In a right or left noetherian ring R, there exist only finitely many minimal prime ideals, and there is a finite product of minimal prime ideals (repetitions allowed) that equals zero.

Proof. Note that the following proof does not require the full force of the right or left noetherian hypothesis, but only the ACC on two-sided ideals.

It suffices to prove that there exist prime ideals P_1, \ldots, P_n in R such that $P_1P_2\cdots P_n=0$. To see this, note that after replacing each P_i by a minimal prime ideal contained in it, we may assume that each P_i is minimal. Since any minimal prime P contains $P_1P_2\cdots P_n$, it must contain some P_j , whence $P=P_j$ by minimality. Thus the minimal prime ideals of R are contained in the finite set $\{P_1,\ldots,P_n\}$.

Suppose that no finite product of prime ideals in R is zero. Let \mathcal{X} be the set of those ideals K in R that do not contain a finite product of prime ideals. Since \mathcal{X} contains 0, it is nonempty. By the noetherian hypothesis (not Zorn's Lemma!), there exists a maximal element $K \in \mathcal{X}$.

As R/K is a counterexample to the theorem, we may replace R by R/K. Thus we may assume, without loss of generality, that no finite product of prime ideals in R is zero, while all nonzero ideals of R contain finite products of prime ideals.

In particular, 0 cannot be a prime ideal. Hence, there exist nonzero ideals I, J in R such that IJ=0. Then there exist prime ideals $P_1,\ldots,P_m,Q_1,\ldots,Q_n$ in R with $P_1P_2\cdots P_m\subseteq I$ and $Q_1Q_2\cdots Q_n\subseteq J$. But then

$$P_1 P_2 \cdots P_m Q_1 Q_2 \cdots Q_n = 0,$$

contradicting our supposition.

Therefore some finite product of prime ideals in R is zero. \square

The use of the noetherian condition in the proof of Theorem 3.4 to pass from R to R/K is known as noetherian induction. Since R/K is as small as possible among factor rings of R violating the theorem, it is known as a minimal criminal. (For this terminology we are indebted to Reinhold Baer, who remarked that, as in the larger world, it is the minimal criminal who is apprehended.)

In general, a ring may have infinitely many minimal prime ideals, as the following example shows.

A such that the cosets $a_i + AJ(R)$ generate A/AJ(R), then a_1, \ldots, a_n generate A. (To see this, consider the module $A/(a_1R + \cdots + a_nR)$.)

• PRIME IDEALS IN DIFFERENTIAL OPERATOR RINGS •

In this section, we will in some sense write down all of the prime ideals of a special class of noetherian rings – the differential operator rings $R[x;\delta]$, where R is assumed to be a commutative noetherian \mathbb{Q} -algebra. This will illustrate some of the phenomena that occur in more general settings and will also give us more examples of primitive noetherian rings.

Lemma 3.18. Let R be a ring, δ a derivation on R, and $S = R[x; \delta]$.

- (a) If I is a right ideal of R, then IS is a right ideal of S and $IS \cap R = I$.
- (b) If I is a δ -ideal of R, then IS is an ideal of S and IS = SI.
- (c) If J is an ideal of S, then $J \cap R$ is a δ -ideal of R.

Proof. Most of this is an easy computation. In (a), $IS \cap R = I$ because R is a direct summand of S as a left R-module. For (b), note that, if I is a δ -ideal and $a \in I$, then, because $xa = ax + \delta(a)$ and $\delta(a) \in I$, we have $xa \in IS$. For (c), note that if $a \in J \cap R$, then $\delta(a) = xa - ax \in J \cap R$. \square

Lemma 3.19. Let R be a commutative integral domain of characteristic zero with a nonzero derivation δ , and let $S = R[x; \delta]$. If I is a nonzero ideal of S, then $I \cap R \neq 0$.

Proof. Pick a nonzero element $s = s_n x^n + \cdots$ from I with degree n and leading coefficient s_n , and assume that $n \ge 1$. Choose $r \in R$ such that $\delta(r) \ne 0$, and look at the element sr - rs. An immediate calculation shows that

$$sr - rs = ns_n \delta(r) x^{n-1} + [terms of degree less than n - 1].$$

Since under our hypotheses $ns_n\delta(r) \neq 0$, we see that I contains a nonzero element of degree n-1. Hence, iterating this argument, we conclude that I contains a nonzero element of degree 0. \square

Lemma 3.20. If R is a ring, δ a derivation on R, and P a minimal prime ideal of R such that R/P has characteristic zero, then P is a δ -ideal.

Proof. Let $Q = \{r \in R \mid \delta^n(r) \in P \text{ for all } n \geq 0\}$. Using Leibniz's Rule (Exercise 2K), it is clear that Q is an ideal of R and is contained in P. We show that Q is prime as follows. Consider any $a, b \in R \setminus Q$. Choose nonnegative integers r and s as small as possible so that $\delta^r(a)$ and $\delta^s(b)$ are not in P, and then choose $c \in R$ such that $\delta^r(a)c\delta^s(b) \notin P$. Now use Leibniz's Rule to expand $\delta^{r+s}(acb)$, as follows:

$$\delta^{r+s}(acb) = \sum_{i=0}^{r+s} {r+s \choose i} \delta^{r+s-i}(a) \delta^i(cb)$$
$$= \sum_{i=0}^{r+s} \sum_{j=0}^{i} {r+s \choose i} {i \choose j} \delta^{r+s-i}(a) \delta^{i-j}(c) \delta^j(b).$$

Since $\delta^{r+s-i}(a) \in P$ whenever i > s and $\delta^j(b) \in P$ whenever j < s, all of the terms in the last summation are in P except for $\binom{r+s}{s}\binom{s}{s}\delta^r(a)c\delta^s(b)$, which is not in P because $\delta^r(a)c\delta^s(b)$ is not and R/P has characteristic zero. Thus, $\delta^{r+s}(acb) \notin P$, and so $acb \notin Q$, which shows that Q is prime. Since P is a minimal prime, we must have P = Q, and then, since Q is clearly a δ -ideal, the result follows. \square

In the next two proofs, we shall make use of Exercise 2ZA. For the case of a differential operator ring, it may be phrased as follows. Let R be a ring, δ a derivation on R, and $S = R[x; \delta]$. If I is a δ -ideal of R and $\hat{\delta}$ the derivation on R/I induced by δ , then $S/IS \cong (R/I)[\hat{x}; \hat{\delta}]$.

Lemma 3.21. Let R be a noetherian \mathbb{Q} -algebra with a derivation δ . Let $S = R[x; \delta]$, and let P be a prime ideal of S. Then $P \cap R$ is a prime ideal of R.

Proof. Since $P \cap R$ is a δ -ideal of R (Lemma 3.18), we can use Exercise 2ZA to reduce to a differential operator ring over $R/(P \cap R)$. Hence, we may assume that $P \cap R = 0$. If Q is any minimal prime of R, then R/Q has characteristic zero (since $R \supseteq \mathbb{Q}$), and so, by Lemma 3.20, Q is a δ -ideal. According to Theorem 3.4, there are minimal primes Q_1, \ldots, Q_m in R such that $Q_1Q_2\cdots Q_m = 0$. From Lemma 3.18, we infer that each Q_iS is an ideal of S, and that

$$(Q_1S)(Q_2S)\cdots(Q_mS) = Q_1Q_2\cdots Q_mS = 0.$$

Since P is prime, we have $Q_iS \subseteq P$ for some index i. Hence, $Q_i \subseteq P \cap R = 0$, and so $P \cap R = Q_i$ is a prime ideal, as claimed. \square

Theorem 3.22. Let R be a commutative noetherian \mathbb{Q} -algebra and $S = R[x; \delta]$ a differential operator ring.

- (a) If P is any prime ideal of S, then $P \cap R$ is a prime δ -ideal of R.
- (b) If Q is a prime δ -ideal of R, then QS is a prime ideal of S such that $QS \cap R = Q$. Furthermore, if P is any prime ideal of S such that $P \cap R = Q$, then either P = QS or $\delta(R) \subseteq Q$, and in the latter case S/QS and S/P are commutative rings.
 - (c) All prime factor rings of S are domains.

Proof. (a) This is contained in Lemmas 3.18 and 3.21.

(b) By Lemma 3.18, QS is an ideal of S such that $QS \cap R = Q$. From Exercise 2ZA we have that $S/QS \cong (R/Q)[\hat{x}; \hat{\delta}]$, where $\hat{\delta}$ is the derivation on R/Q induced by δ . Since R/Q is a domain, S/QS is a domain (Exercise 2O), and hence QS is a prime ideal of S.

If P is a prime ideal of S such that $P \cap R = Q$ but $P \neq QS$, then the image of P/QS in $(R/Q)[\hat{x};\hat{\delta}]$ is a nonzero ideal I such that $I \cap (R/Q) = 0$. It follows from Lemma 3.19 that $\hat{\delta} = 0$, whence $\delta(R) \subseteq Q$. Moreover, $(R/Q)[\hat{x};\hat{\delta}]$ is

then an ordinary polynomial ring over the commutative ring R/Q. Thus in this case S/QS is commutative, as is S/P (since $P \supseteq QS$).

(c) In the notation of part (b), if P = QS, we have already seen that S/P is a domain. Otherwise, S/P is a commutative prime ring, and again it is a domain. \square

One way to summarize Theorem 3.22 is to say that the prime ideals of S are parametrized by the prime δ -ideals of R. If Q is a prime δ -ideal of R and $\delta(R) \not\subseteq Q$, there is a unique prime ideal of S that contracts to Q (that is, whose intersection with R equals Q), namely, QS. If Q is a prime δ -ideal of R and $\delta(R) \subseteq Q$, then S/QS is a commutative ring isomorphic to an ordinary polynomial ring $(R/Q)[\hat{x}]$. In this case, the primes of S that contract to Q correspond to the primes of $(R/Q)[\hat{x}]$ that contract to zero in R/Q; these in turn correspond precisely to the primes in $K[\hat{x}]$, where K is the quotient field of R/Q.

Exercise 3ZE below shows that Lemmas 3.20 and 3.21 and Theorem 3.22 are all false in characteristic p.

Exercise 3W. Let R be a polynomial ring k[x] where k is an algebraically closed field of characteristic zero, and let $S = R[y; \delta]$ where $\delta = x \frac{d}{dx}$. Show that the only δ -ideals of R are 0 and the ideals $x^n R$ (for $n = 0, 1, \ldots$). Show that the only prime ideals of S are 0 and xS together with $xS + (y - \alpha)S$ for all $\alpha \in k$. Then show (without the computations used in Exercises 3O,P) that S is right primitive. [Hint: If $\alpha \in k$ is nonzero, then $xS + (x - \alpha)S = S$. Hence, no proper right ideal containing $(x - \alpha)S$ can contain a nonzero prime ideal.] \square

Exercise 3X. Let R be a polynomial ring k[x] where k is a field of characteristic zero, and let δ be any nonzero k-linear derivation on R. Show that there is a nonzero polynomial $g \in R$ such that $\delta = g \frac{d}{dx}$. If $S = R[y; \delta]$, show that S is right and left primitive. \square

We end the section with an example showing that Theorem 3.22 does not carry over to general skew polynomial rings $R[x; \alpha, \delta]$, even in characteristic zero.

Exercise 3Y. Let k be a field of characteristic 0, and let $U(\mathfrak{sl}_2(k)) = R[f; \alpha, \delta]$ as in Exercise 2S, where R is the k-subalgebra generated by e and k. Since $\mathfrak{sl}_2(k)$ is, by definition, a Lie subalgebra of $M_2(k)$, the vector space $V = k^2$ becomes a left $U(\mathfrak{sl}_2(k))$ -module, such that the module multiplication of any element of $\mathfrak{sl}_2(k)$ with any column vector from V is given by matrix multiplication.

Show that V is a simple $U(\mathfrak{sl}_2(k))$ -module, and conclude that its annihilator, call it P, is a left primitive ideal of $U(\mathfrak{sl}_2(k))$. (In fact, $U(\mathfrak{sl}_2(k))/P \cong M_2(k)$, and so P is a maximal ideal.) Now show that $P \cap R = \langle e^2, h^2 - 1 \rangle$, and conclude that $P \cap R$ is neither an α -ideal nor a δ -ideal of R. Finally, show that $P \cap R$ is not a prime (or even semiprime) ideal of R. \square