

Indexação de Texto

Prof. Luciano Barbosa (Parte do material retirado dos slides dos livros adotados)

Projeto: Coleta e Busca de Entidades Estruturadas em um Domínio

Entidade Estruturada

- Def: objeto com atributos e valores associados
- Exemplos:

Benefícios: Melhoria na **Busca por Entidades**

Benefícios: Busca Estruturada

Benefícios: Análise Estatística

Origem: -- TODAS --Destinos: -- Topos --**\$**] ORIGEM **PREÇO EMPRESA** Belo Horizonte Los Angeles R\$ 1.444 27/07 05/08 Copa Airlines Belo Horizonte Los Angeles R\$ 1.444 28/07 05/08 Copa Airlines Belo Horizonte Los Angeles R\$ 1,444 29/07 05/08 Copa Airlines Los Angeles Copa Airlines Belo Horizonte R\$ 1.444 30/07 05/08 Los Angeles Copa Airlines Belo Horizonte R\$ 1.444 07/08 14/08 Belo Horizonte Los Angeles R\$ 1.444 07/08 16/08 Copa Airlines Belo Horizonte Los Angeles R\$ 1.444 07/08 21/08 Copa Airlines Belo Horizonte Los Angeles R\$ 1.444 07/08 28/08 Copa Airlines Copa Airlines Belo Horizonte Los Angeles R\$ 1.444 07/08 04/09 Belo Horizonte Los Angeles R\$ 1.444 | 12/08 25/08 Copa Airlines

Ticket Price (Median = R\$ 1528, Min = R\$ 1078)

Days prior to the trip (Median= 83 days)

Benefícios: Mercado de Dados

RESTAURANTS

43 restaurant specific attributes for restaurants of every type in the US, UK, France, Germany, and Australia.

LEARN MORE

DOCTORS

Database of over 1 million physician, dentist, and healthcare provider listings with the key data you need to make informed decisions.

LEARN MORE

HOTELS

Database of 140,000 hotel listings with over 35 attributes covering everything you need to know about a hotel.

LEARN MORE

Grande Interesse da Indústria

Coletor Focado em Entidades

Coletor Intra-Site

2 tarefas:

- Localizar páginas relevantes (Seletor de Links)
- Detectar páginas relevantes (Seletor de Páginas)

Tarefa 1: Localizar Páginas Relevantes

Desafio: evitar regiões não produtivas do site

Cln.ufpe.br

Tarefa 1: Localizar Páginas Relevantes

- 1. Encontrar manualmente 10 sites no domínio
- 2. Implementar 2 estratégias (1000 páginas visitadas por site):
 - Baseline: busca em largura
 - Heurística (usar âncora)
- 3. Comparar estatégias:
 - Harvest ratio: (número de páginas relevantes coletadas)/(total de páginas visitadas)
 - Mostrar tabela com resultados
- Importante:
 - Evitar sobrecarregar o site
 - Respeitar o robots.txt
 - Detectar o conteúdo da página com o campo Content-Type

Tarefa 2: Detectar Páginas com Instâncias

Tarefa 2: Detectar Páginas com Instâncias

- Rotular exemplos positivos e negativos (10 positivos e 10 negativos por site)
- Criar o conjunto de features (ex.: bag of words) usando feature selection (ex. frequência ou information gain)
- 3. Treinar o classificador com uma ferramenta de ML (ex.: scikitlearn, weka etc)
 - Métodos: Naïve bayes, Decision tree (J48), SVM (SMO), Logistic regression (logistic), Multilayer perceptron
- 4. Comparar estratégias:
 - Accuracy, precision e recall
 - Tempo de treinamento
 - Mostrar tabela com os resultados.

Coletor Focado em Entidades

■ Tarefa 3: Extrair Instâncias com seus Valores e Atributos

Bairro	Luzia
Número de Quartos	3
Área	75
Preço	1.400.000
Contato	(79)9828-1120
Telefone	(79)9828-1120

Tarefa 3: Extrair Instâncias com seus Valores e Atributos

- 1. Criar um wrapper para cada site
 - Criação do conjunto rotulado
- 2. Implementar uma solução que funcione para todos os sites
 - Ex: detectores de tipos do domínio
- 3. Comparar estratégias:
 - Accuracy, precision e recall
 - Mostrar tabela com os resultados.

- Criar conta no github: https://education.github.com/pack
- Adicionar como colaborador: ProfLuciano
- Colocar código e dados (conteúdo das páginas e informação extraída)

- Encontrar 10 sites no domínio
- 2. Crawling: implementar busca em largura
- 3. Classificação: rotular exemplos positivos e negativos
 - Positivo: página com entidade estruturada
- 4. Classificação: criar classificador de páginas
- 5. Crawling: implementar heurística
- 6. Extração: criar wrappers para cada site
- 7. Extração: implementar único wrapper que funcione para todos os sites do domínio
- 8. Integrar crawler e classificador (medir harvest ratio)

Pontos Importantes

- Saída do sistema
 - Páginas coletadas
 - Resultado da extração das páginas
- Para a apresentação do projeto, devem ser preparados slides
- Presença nas aulas de acompanhamento obrigatória para todos os integrantes do grupo
 - Pontualidade é importante
 - Conta para a nota de participação
- O integrante que n\u00e3o fizer sua parte no projeto recebe 0

Visão Geral de um Engenho de Busca

- Estrutura de dados que aumentam a velocidade da busca
- Importante para aplicações de larga escala: consultas e dados
- Métricas de avaliação
 - Espaço em disco
 - Velocidade de busca
 - Velocidade de indexação

Abordagem Simples: Grep

- Quais peças de Shakespeare contêm as palavras "Brutus" e "Cesar" mas não "Calpurnia"?
- Fazer um grep por "Brutus" e "Cesar" e remover as linhas com "Calpurnia"
- Por que o grep não é a melhor solução?
 - Devagar (para grandes coleções)
 - grep é orientado à linha, RI é orientado a documento
 - Outros operados não funcionam (ex. 'near')

Matrix termo-documento

Documentos

	Anthony	Julius	The	Hamlet	Othello	Macbeth	
	and	Caesar	Tempest				
	Cleopatra						
Anthony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
CLEOPATRA	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

Termos

Matrix termo-documento

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra						
ANTHONY	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
CLEOPATRA	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	
		,	,	1	,		

Brutus AND Cesar NOT Calpurnia

Matrix termo-documento

- Uma coleção de 1 milhão de documentos cada um com 1000 termos -> 1 bilhão de termos
- Assuma M=500.000 termos distintos na coleção
- Tamanho da matrix = 500.000 X 10⁶ = meio trilhão
 - Não mais que 1 bilhão de 1s
- Esparsa e ocupa muito espaço
- Melhor representação: armazenar somentes os 1s

Brutus	\longrightarrow	1	2	4	11	31	45	173	174	
Caesar	\longrightarrow	1	2	4	5	6	16	57	132	
CALPURNIA	,	2	21	ΕΛ	101	1				

Vocabulário

Postings

- Duas partes
 - Vocabulário: conjunto de palavras únicas nos textos
 - Postings:
 - Cada documento tem um identificador único (número)
 - Lista de docs onde a palavra ocorre (ordenada pelo identificador)

Índice Invertido Básico

Suporta consultas booleanas

- Ex.: Brutus and Cesar not Calpurnia
- And: procura termos e acha intersecção nos postings
- OR: procura termos e remove duplicatas
- NOT: remove termos
- Linear no tamanho dos postings se tiverem ordenados

Índice Invertido com Frequência

Vocabulary	n_i	Occurrences as inverte	ed lists	
to	2	[1,4],[2,2]		
do	3	[1,2],[3,3],[4,3]		
is	1	[1,2]		
be	4	[1,2],[2,2],[3,2],[4,2]		
or	1	[2,1]	To do in to be	
not	1	[2,1]	To do is to be. To be is to do.	To be or not to be.
I	2	[2,2],[3,2]		I am what I am.
am	2	[2,2],[3,1]	d_1	
what	1	[2,1]	<i>α</i> ₁	d_2
think	1	[3,1]	I think therefore I am.	
therefore	1	[3,1]	Do be do be do.	Do do do, da da da.
da	1	[4,3]		Let it be, let it be.
let	1	[4,2]	d_3	
it	1	[4,2]	ci 3	d_4

Suporta consultas com ranqueamento

Índice Invertido Posicional

Vocabulary	n_i
to	2
do	3
is	1
be	4
or	1
not	1
I	2
am	2
what	1
think	1
therefore	1
da	1
let	1
it	1

Occurrences as full inverted lists

[1,4,[1,4,6,9]],[2,2,[1,5]]

[1,2,[2,10]],[3,3,[6,8,10]],[4,3,[1,2,3]]

[1,2,[3,8]]

[1,2,[5,7]],[2,2,[2,6]],[3,2,[7,9]],[4,2,[9,12]]

[2,1,[3]]

[2,1,[4]]

[2,2,[7,10]],[3,2,[1,4]]

[2,2,[8,11]],[3,1,[5]]

[2,1,[9]]

[3,1,[2]]

[3,1,[3]]

[4,3,[4,5,6]]

[4,2,[7,10]]

[4,2,[8,11]]

I think therefore I am. Do be do be do.

 d_3

To be or not to be. I am what I am.

 d_2

Do do do, da da da. Let it be, let it be.

 d_4

Índice Invertido Posicional

Vocabulary	n_i
to	2
do	3
is	1
be	4
or	1
not	1
I	2
am	2
what	1
think	1
therefore	1
da	1
let	1
it	1

		L					
Occurrences as full inve	erted lists	consulta: "to do"					
[1,4,[1,4,6,9]],[2,2,[1,5]]							
[1,2,[2,10]],[3,3,[6,8,10]]	[1,2,[2,10]],[3,3,[6,8,10]],[4,3,[1,2,3]]						
[1,2,[3,8]]							
[1,2,[5,7]],[2,2,[2,6]],[3,2	2,[7,9]],[4,2,[9,12]]						
[2,1,[3]]							
[2,1,[4]]	To do is to be.						
[2,2,[7,10]],[3,2,[1,4]]	To be is to do.	To be or not to be.					
[2,2,[8,11]],[3,1,[5]]		I am what I am.					
[2,1,[9]]	d_1	d_2					
[3,1,[2]]							
[3,1,[3]]	I think therefore I am Do be do be do.	Do do do, da da da.					
[4,3,[4,5,6]]	Do be do be do.	Let it be, let it be.					
[4,2,[7,10]]	d_3						
[4,2,[8,11]]	43	d_4					

Índice Invertido Posicional

- Suporta consultas com ranqueamento e proximidade
- Demanda espaço extra: 40% sem stopwords e 80% com stopwords
- É o padrão usado por engenhos de busca

Outras Formas

- Lista pré-computada com scores
 - Ex.: carro [(1:3.6),(3:2.2)], 3.6 é o score do termo carro no documento 1
 - Melhora a velocidade mas reduz flexibilidade
- Listas de scores ordenadas
 - Processamento da consulta foca somente no começo das listas
 - Bastante eficiente para consultas de palavras únicas

Construção do Índice

Tokenização e pré-processamento

Doc 1. I did enact Julius Caesar: I was killed i' the Capitol; Brutus killed me.

Doc 2. So let it be with Caesar. The noble Brutus hath told you Caesar was ambitious:

Doc 1. i did enact julius caesar i was killed i' the capitol brutus killed me Doc 2, so let it be with caesar the noble brutus hath told you caesar was ambitious

Criação dos IDs dos Documentos

did

enact

docID

1

Cln.ufpe.br

Ordenar os Termos

term	docID		term	docID
i	1		ambitio	us 2
did	1		be	2
enact	1		brutus	1
julius	1		brutus	2
caesar	1		capitol	1
i	1		caesar	1
was	1		caesar	2
killed	1		caesar	2
i'	1		did	1
the	1		enact	1
capitol	1		hath	1
brutus	1		i	1
killed	1		i	1
me	1	\rightarrow	i'	1
SO	2		it	2
let	2		julius	1
it	2		killed	1
be	2		killed	1
with	2		let	2
caesar	2		me	1
the	2		noble	2
noble	2		SO	2
brutus	2		the	1
hath	2		the	2
told	2		told	2
you	2		you	2
caesar	2		was	1
was	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		was	2 1 2 2 2 2 1 2 2
ambitio	us 2		with	2

Construção do Índice

Merging de Índices

- Lida com memória limitada
 - 1. Constroi índice invertido até o limite da memória
 - 2. Escreve o índice parcial para o disco, e começa um novo
 - 3. No fim do processo, o disco possui vários índices parciais

Merging de Resultados

- Merging de índice funciona bem em grandes batches (offline)
- Alternativa:
 - Docs novos vão para um índice auxiliar
 - Busca é feita em ambos
 - Resultados são unidos
 - Periodicamente índices são unidos
 - Desempenho da busca cai

Compressão de Índices

Motivação:

- Usar menos disco
- Colocar mais dados em memória
- Ler dados compactados em memória mais rápido do que descompactado em disco

Dois tipos:

- Lossy: pré-processamento (ex.: stemming e stopword)
- Lossless: nenhuma informação perdida

Compressão de Dicionário

- Dicionário é pequeno comparado aos postings
- Motivação: colocá-lo em memória

Compressão de Dicionário

- Dicionário é pequeno comparado aos postings
- Motivação: colocá-lo em memória
- Abordagem simples: array com tamanho fixo de bytes

term	document	pointer to
	frequency	postings list
а	656,265	\longrightarrow
aachen	65	\longrightarrow
zulu	221	\longrightarrow
20 bytes	4 bytes	4 bytes

- Para termos pequenos: desperdício de espaço
- Não consegue representar termos longos

Dicionário como String

4 bytes 4 bytes 3 bytes

- Ponteiro no termo mostra sua posição inicial e final do anterior
- Ao invés de armazenar o termo, armazena-se o ponteiro

🚅 Dicionário como String com **Blocos**

Adiciona 1 byte contendo o tamanho do termo no string do dicionário

Compressão no Corpus Reuters

data structure	size in MB
dictionary, fixed-width	11.2
dictionary, term pointers into string	7.6
\sim , with blocking, $k=4$	7.1

Compressão de Postings

- Postings são bem maiores que dicionários (pelo menos 10 vezes)
- Guardar intervalos ao invés de ids

COMPUTER: 283154, 283159, 283202,

COMPUTER: 283154, 5, 43

Compressão de Postings

• Problema: intervalos para termos frequentes são pequenos e grandes para raros

	encoding	postings	list								
THE	doclDs			283042		283043		283044		283045	
	gaps				1		1		1		
COMPUTER	doclDs			283047		283154		283159		283202	
	gaps				107		5		43		
ARACHNOCENTRIC	doclDs	252000		500100							
	gaps	252000	248100								

Codificação de Tamanho Variável

- Solução: poucos bits para termos frequentes e muitos para raros
- Bastante usado na prática

Codificação de Tamanho Variável

- Se: o intervalo está dentro de 7 bits, coloque-o em binário nos 7 bits disponíveis e c =1
- 1 bit (mais alto) para ser o de continuação c
- Senão: coloque o intervalo em binário e os 7 bits menores no primeiro byte, e o restante nos próximos, c=1 no último c=0 nos restantes

Código Gamma

- Ex: 13 -> 1110101

 Tamanho Offset

 do offset

 em unário
- Concatenação do tamanho do offset em unário e offset
- Offset: número em binário sem o maior bit
 - Ex.: 13 -> 1101 -> 101
- Usa código unário: representa n com n1s e 0 no final
 - Ex.: 3 -> 1110
- 13 em inteiro: 32 bits
- 13 em unário: 7 bits
- 13 em código variável: 8 bits

number	unary code	length	offset	γ code
0	0			
1	10	0		0
2	110	10	0	10,0
3	1110	10	1	10,1
4	11110	110	00	110,00
9	1111111110	1110	001	1110,001
13		1110	101	1110,101
24		11110	1000	11110,1000
511		111111110	11111111	111111110,11111111
1025		11111111110	000000001	11111111110,0000000001

- Decodificação: 1110101...
 - Lê o unário até o 0
 - Determina o tamanho do offset
 - Adiciona o bit mais relevante retirado
- Código variável é mais simples e melhor para valores maiores

Compressão da Coleção Reuters

data structure	size in MB
collection (text, xml markup etc)	3600.0
collection (text)	960.0
T/D incidence matrix	40,000.0
postings, uncompressed (32-bit words)	400.0
postings, variable byte encoded	116.0
postings, γ encoded	101.0