मार्गियां अस्ति । अस्ते । अस्ते । अस्ति । अस्ति । अस्ति । अस्ति । अस्ते । अस्ते । अस्ते । अस्ते । अस्

Indian Institute of Technology Ropar Department of Mathematics

MA102 - Linear Algebra and Integral Transforms and Special Functions

Second Semester of Academic Year 2023-24

Notation:

- Field \mathbb{F} is \mathbb{R} or \mathbb{C} .
- N(T):=Null space of T and R(T):=Range space of T.
- 1. Consider $P_3[x]$ be space of all polynomials of degree ≤ 3 , over the field \mathbb{R} .
 - Define T(P(x)) = xP'(x) P(x), for all $P(x) \in P_3[x]$.
 - (a) Show that T is a linear transformation on $P_3[x]$.
 - (b) Find N(T) and R(T).
- 2. Let $T: P(\mathbb{R}) \to P(\mathbb{R})$, (where $P(\mathbb{R})$ is space of all ploynomials over the field \mathbb{R}), be defined by T(f(x)) = f'(x). Prove that
 - (a) T is a linear map.
 - (b) T is onto, but not one-to-one.
- 3. Let V and W be vector spaces over the field \mathbb{F} with subspaces V_1 and W_1 , respectively. If $T:V\to W$ is a linear map, prove that $T(V_1)$ is a subspace of W and that $\{x\in V:T(x)\in W_1\}$ is a subspace of V.
- 4. Let $T: \mathbb{R}^3(\mathbb{R}) \to \mathbb{R}(\mathbb{R})$ be a linear map. Describe geometrically the possibilities for the null space of T.
- 5. Let $T: \mathbb{R}^3(\mathbb{R}) \to \mathbb{R}^3(\mathbb{R})$ be the linear map that reflects a vector in the xy plane. Find the Linear map.
- 6. Let $P(\mathbb{R})$ be space of all polynomials over the field \mathbb{R} . Define $T: P(\mathbb{R}) \to P(\mathbb{R})$ by

$$T(f)(x) = \int_0^x f(t)dt$$

for all $f \in P(\mathbb{R})$.

Prove that

- (a) T is a linear map.
- (b) T is one-to-one.
- (c) T is not onto.
- 7. Let $V = C(\mathbb{R})$, the vector space of continuous real-valued functions over the field \mathbb{R} . Define $T: V \to \mathbb{R}$ by

$$T(f) = \int_{-1}^{1} f(t)dt$$

for all $f \in V$.

- (a) Show that T is a linear map.
- (b) What can you say about injectivity of T?
- 8. Give an example of a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that N(T) = R(T).
- 9. Suppose V and W are finite-dimensional vector spaces over the field \mathbb{F} .
 - (a) If $\dim(V) > \dim(W)$. Then, show that there is no injective linear map from V to W.
 - (b) If $\dim(V) < \dim(W)$. Then, show that there is no surjective linear map from V to W.

- 10. Prove that there does not exist a linear map $T: \mathbb{R}^5(\mathbb{R}) \to \mathbb{R}^5(\mathbb{R})$ such that R(T) = N(T).
- 11. Let $T: V \to W$ be a linear map (where V and W are vector spaces over the field \mathbb{F}) and $\{v_1, v_2, ..., v_n\}$ is a set of vectors in V such that $\{T(v_1), ..., T(v_n)\}$ is a linearly independent set in W. Prove that $\{v_1, v_2, ..., v_n\}$ is linearly independent set in V. Is the converse true? (If true prove it otherwise give a counterexample.)
- 12. Let V and W be vector spaces over the \mathbb{F} and $T:V\to W$ be a linear map.
 - (a) Prove that T is one-to-one if and only if T carries linearly independent subsets of V onto linearly independent subsets of W.
 - (b) Suppose $B = \{v_1, v_2, ..., v_n\}$ is a basis for V and T is one-to-one and onto. Prove that $T(B) = \{T(v_1), T(v_2), ..., T(v_n)\}$ is a basis for W.

***** END *****