I. $T(n)=O(n^{2})$ since T(n)=O(n) for the while loop

and T(n)=O(n) for in sert operation

Thus, the total worst asse runing time $T(n)=O(n\times n)=O(n\times n)$ T(n)=O(n)Thus, the while loop the and T(n)=O(n) for the while loop the and T(n)=O(1) for append operation

Thus, the total worst ase running time $T(n)=O(n\times 1)=O(n)$

b) for my implementation, the worst-ase runing time is $O(n)_{\infty}$ since my implementation $(a)_{\infty}$ consists of three "for loop and for since my implementation $(a)_{\infty}$ consists of three "for loop and for parallel the operation inside each loop T(n)=O(1) thus, for each for loop T(n)=O(nx1)=O(n) and the total worst-case running time is O(n+n+n)=O(3n)=O(n)

a) The entire list has to be iterated to reach the end of the function make the remove value function returns Value Error and end the loop. In that case, T(n) = O(n) for the outer while loop, and T(n) = O(n) for the inner remove function. Thus, the total worst-case ruming time is $O(n \times n) = O(n^2)$

C) My implementation consists of 2 parallel "for" loop, and for the operation inside each loop, To(n) = O(1) thus, for each loop $T(n) = O(n \times 1) = O(n)$, and the total worst-case runky time is O(n + n) = O(2n) = O(n)