CS1231(S) Tutorial 3: Sets

National University of Singapore

2019/20 Semester 1

When asked to 'find' a set in the following, the answer should involve a list of all of the elements in the set.

- 1. Which of the following are true? Which of them are false?
 - (a) $\emptyset \in \emptyset$.
 - (b) $\varnothing \subseteq \varnothing$.
 - (c) $\emptyset \in \{\emptyset\}$.
 - (d) $\varnothing \subseteq \{\varnothing\}$.
 - (e) $1 \in \{\{1, 2\}, \{2, 3\}, 4\}.$
 - (f) $\{1,2\} \subseteq \{3,2,1\}$.
 - (g) $\{3,3,2\} \subsetneq \{3,2,1\}$.
- 2. Let $A = \{1, \{1, 2\}, 2, \{1, 2\}\}$. Find |A|.
- 3. Let $A = \{0, 1, 4, 5, 6, 9\}$ and $B = \{0, 2, 4, 6, 8\}$. Find $|A|, |B|, |A \cap B|$, and $|A \cup B|$.
- 4. Let $A = \{2n+1 \mid n \in \mathbb{Z}\}$ and $B = \{2n-1 \mid n \in \mathbb{Z}\}$. Is A = B? Prove that your answer is correct.
- 5. Let $A = \{x \in \mathbb{Z} \mid 2 \leqslant x \leqslant 5\}$ and $B = \{x \in \mathbb{R} \mid 2 \leqslant x \leqslant 5\}$. Is A = B? Prove that your answer is correct.
- 6. Let $U = \{5, 6, 7, \dots, 12\}$ and $M_k = \{n \in \mathbb{Z} \mid n = km \text{ for some } m \in \mathbb{Z}\}$ for each $k \in \mathbb{Z}$. Find:
 - (a) $\{n \in U \mid n \text{ is even}\};$
 - (b) $\{n \in U \mid n = m^2 \text{ for some } m \in \mathbb{Z}\};$
 - (c) $\{-5,-4,-3,\ldots,5\}-\{1,2,3,\ldots,10\};$
 - (d) $\overline{\{5,7,9\}\cup\{9,11\}}$, where *U* is considered the universal set;
 - (e) $\{(x,y) \in \{1,3,5\} \times \{2,4\} \mid x+y \ge 6\};$
 - (f) $\mathcal{P}(\{2,4\});$
 - (g) $U \bigcup_{k=5}^{12} M_k$.
- 7. Show that for all sets A, B, C,

$$A \cap (B - C) = (A \cap B) - C.$$

8. (2009/10 Semester 2 exam question B) Prove that for all sets A and B,

$$(A \cup \overline{B}) \cap (\overline{A} \cup B) = (A \cap B) \cup (\overline{A} \cap \overline{B}).$$

9. Let A, B be sets. Show that $A \subseteq B$ if and only if $A \cup B = B$.

- 10. For sets A and B, define $A \oplus B = (A B) \cup (B A)$.
 - (a) Let $A = \{1, 4, 9, 16\}$ and $B = \{2, 4, 6, 8, 10, 12, 14, 16\}$. Find $A \oplus B$.
 - (b) Show that for all sets A, B,

$$A \oplus B = (A \cup B) - (A \cap B).$$

11. (2015/16 Semester 1 exam question 16(a)) Denote by |x| the absolute value of the integer x, i.e.,

$$|x| = \begin{cases} x, & \text{if } x \geqslant 0; \\ -x, & \text{if } x < 0. \end{cases}$$

Given the set $S = \{-9, -6, -1, 3, 5, 8\}$, for each of the following statements, state whether it is true or false, with explanation.

- (a) $\exists z \in S \ \forall x, y \in S \ z > |x y|$.
- (b) $\exists z \in S \ \forall x, y \in S \ z < |x y|$.
- 12. **Definition.** Let A, B be sets and $R \subseteq A \times B$. For $X \subseteq A$ and $Y \subseteq B$, define

$$R[X] = \{ y \in B \mid (x, y) \in R \text{ for some } x \in X \}, \text{ and }$$
$$R^{-1}[Y] = \{ x \in A \mid (x, y) \in R \text{ for some } y \in Y \}.$$

Conjecture. Let A, B be sets, and $R \subseteq A \times B$. Then $R^{-1}[R[X]] = X$ for all $X \subseteq A$.

- (a) Refute this conjecture.
- (b) Propose a necessary and sufficient condition on R for the conjecture above to hold. Prove the necessity and the sufficiency of your condition.