Hunter Lybbert Student ID: 2426454 10-28-24 AMATH 567

HOMEWORK 5

Collaborators*:

*Listed in no particular order. And anyone I discussed at least part of one problem with is considered a collaborator.

1: From A&F: 2.6.5

Consider two entire functions with no zeroes and having a ratio equal to unity at infinity. Use Liouville's Theorem to show that they are in fact the same function. *Solution:*

(1 part, except maybe if there are multiple things to prove here)

2: From A&F: 2.6.10

... deduce

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(\xi)\xi}{\xi - z} d\theta$$

... explain why we have

$$0 = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(\xi)\xi}{\xi - 1/\bar{z}} d\theta$$

... use something to show

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(\xi) \left(\frac{\xi}{\xi - z} \pm \frac{\bar{z}}{\xi - \bar{z}} \right) d\theta$$

then \dots

Solution:

This is a beast of a problem there are approximately 9 things to show...

3: Suppose Ω is an open simply connected region and $z_0 \in \Omega$. Assume that f(z) is analytic in $\Omega \setminus \{z_0\}$ and satisfies

$$|f(z)| \le M|z - z_0|^{-\gamma}, \quad \gamma < 1.$$

Show that if the a specific choice for $f(z_0)$ is made then f extends to an analytic function on Ω .

(1 part, except maybe if there are multiple things to prove here) Solution:

4: Establish the following lemma:

Lemma 1

Suppose Ω is an open region and f(z) is continuous on $\overline{\Omega}$. Let Γ be a contour in $\overline{\Omega}$. Suppose a sequence of contours $\Gamma_n \subset \overline{\Omega}$ converge to Γ in the sense that there exists parameterizations z(t) of Γ and $z_n(t)$ of Γ_n defined on [a,b] satisfying

$$z_n(t) \xrightarrow{n \to \infty} z(t)$$
, uniformly on $[a, b]$,

$$z'_n(t) \xrightarrow{n \to \infty} z'(t)$$
, uniformly on $[a, b]$.

Then

$$\int_{\Gamma_n} f(z) dz \stackrel{n \to \infty}{\longrightarrow} \int_{\Gamma} f(z) dz.$$

Hint: Use that f is uniformly continuous on $\overline{\Omega}$.

(1 part, except maybe if there are multiple things to prove here) Solution:

- **5:** for any r, R > 0, let $C = \partial \Sigma$, $\Sigma = \{z \in \mathbb{C} : |\operatorname{Re} z| \le r \text{ and } 0 \le -\operatorname{Im} z \le R, R > 0\}$. In this problem \sqrt{z} denotes the principal branch with $\arg z \in [-\pi, \pi)$.
 - Show that if f(z) is analytic in a region that contains Σ ,

$$\oint_C f(z)\sqrt{z-1}\sqrt{z+1}\mathrm{d}z = 0.$$

(1 part)

Solution:

• Show that if f(z) is analytic in a region that contains Σ

$$\oint_C \frac{f(z)\mathrm{d}z}{\sqrt{z-1}\sqrt{z+1}} = 0.$$

(1 part)

Solution:

6: From A&F: 3.1.1 b,d

In the following we are given sequences. Discuss their limits and whether the convergence is uniform, in the region $\alpha \leq |z| \leq \beta$, for finite $\alpha, \beta > 0$.

$$\left\{\frac{1}{z^n}\right\}_{n=1}^{\infty}$$

(2 parts)

Solution:

$$\left\{\frac{1}{1+(nz)^2}\right\}_{n=1}^{\infty}$$

(2 parts)

Solution:

7: From A&F: 3.1.2 b,d

For each sequence in problem 1, what can be said if

- (a) $\alpha = 0$
- (b) $\alpha > 0$, $\beta = \infty$

(4 parts 2x2) Solution:

8: From A&F: 3.1.3 Compute the integrals

$$\lim_{n \to \infty} \int_0^1 nz^{n-1} dz \quad \text{and} \quad \int_0^1 \lim_{n \to \infty} \left(nz^{n-1} \right) dz$$

and show that they are not equal. Explain why this is not a counter example to Theorem 3.1.1. (A &F pg. 111)

(3 parts) Solution:

There are approximately 25 things to do