Lightweight Deep CNN for Natural Image Matting via Similarity-Preserving Knowledge Distillation (SPKD)

- Introduction
- Methods
- Experiment
- Reference

Introduction

Knowledge Distillation

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network.

Introduction

Knowledge Distillation

F. Tung and G. Mori, (2019) Similarity-preserving knowledge distillation

Total loss = Cross entropy loss + KD loss + Similarity loss

Introduction

Knowledge Distillation

F. Tung and G. Mori, (2019) Similarity-preserving knowledge distillation

Batch similarity

$$L_{overall} = w_1 L_a(\alpha_t, \alpha_s) + (1 - w_1) L_a(\alpha_s, \alpha_{gt}) + w_2 \sum_{i=2}^{5} L_F(A_{ti}, A_{si})$$

Methods

Baseline Network Architecture

Baseline Network Architecture : Deep image matting

Student Network:

- The number of channels is half the number of teacher channels
- Reduction of layers in the encoder

Methods

Baseline Network Architecture

Similarity-Preserving Knowledge Distillation

Spatial Similarity Map

Similarity-Preserving Knowledge Distillation

Channel Similarity Map

Methods

Loss

$$L_{overall} = w_1 L_a(\alpha_t, \alpha_s) + (1 - w_1) L_a(\alpha_s, \alpha_{gt}) + w_2 \sum_{i=2}^{5} L_F(A_{ti}, A_{si})$$

 w_1 , w_2 : balancing parameters α_t : teacher prediction

 L_a : alpha prediction loss α_s : student prediction

 L_F : distillation loss (MSE loss) α_{gt} : Ground Truth

 A_{ti} : i-th teacher similarity map A_{si} : i-th student similarity map

Quantitative results

Quantitative evaluation on the Adobe-1k

Quantitative evaluation on the alphamatting.com

Method	MSE	SAD	Gradient Error	Connectivity	Method	MSE	SAD	Gradient Error	Connectivity
DIM-teacher	0.021	65.37	33.20	67.58	DIM-teacher	0.009	3.85	3.81	3.25
DIM-student	0.058	121.77	75.36	129.55	DIM-student	0.020	5.91	7.90	5.47
DIM-Hinton [31]	0.055	120.32	69.56	128.19	DIM-Hinton [31]	0.021	6.02	8.72	5.69
DIM-AT [32]	0.052	117.00	74.90	125.60	DIM-AT [32]	0.022	6.23	9.03	5.89
DIM-FSP [33]	0.065	136.12	95.47	147.83	DIM-FSP [33]	0.037	9.29	15.65	9.06
DIM-OFD [34]	0.042	94.47	54.56	100.66	DIM-OFD [34]	0.016	5.39	6.51	4.99
DIM-batch	0.055	124.43	74.36	132.25	DIM-batch	0.020	5.92	8.01	5.49
DIM-spatial	0.039	95.40	54.71	100.92	DIM-spatial	0.017	5.50	7.22	5.04
DIM-channel	0.038	94.76	56.36	100.36	DIM-channel	0.018	5.47	7.74	5.13
DIM-spatial+channel	0.034	84.37	47.63	89.35	DIM-spatial+channel	0.016	5.23	7.19	4.74
DIM-batch+spatial+channel	0.037	91.30	56.20	97.20	DIM-batch+spatial+channel	0.018	5.60	7.64	5.21

Experiment

Qualitative results

Qualitative evaluation on the Adobe-1k

Experiment

Ablation Studies

Impact on Layers for Distillation

Method	MSE	SAD	Gradient Error	Connectivity	- -
$conv_{2-5}$	0.034	84.37	47.63	89.35	Best : baseline
$conv_{3-5} + dconv_5$	0.041	98.25	58.90	104.80	
$conv_{4-5} + dconv_{5-4}$	0.042	95.98	62.44	102.08	
$conv_5 + dconv_{5-3}$	0.050	115.33	72.49	124.66	

Experiment

Ablation Studies

Impact on Baseline Backbone Network

Method	MSE	SAD	Gradient Error	Connectivity
IndexNet-teacher [25]	0.013	45.63	27.28	43.80
GCAM-teacher [27]	0.009	34.94	17.54	30.92
IndexNet-student IndexNet-spatial+channel GCAM-student GCAM-spatial+channel	0.027	65.21	42.56	66.83
	0.019	55.74	33.78	55.85
	0.017	52.61	34.27	46.24
	0.015	48.06	30.28	42.81

The number of Parameters in the network

	Teacher	Student		
DIM	25,582,595	5,181,795		
IndexNet	5,953,515	3,509,879		
GCAM	25,269,144	6,394,224		

- DIM (50%)
- IndexNet (75%)
- GCAM (50%)

(-%) is the remaining channel ratio

Reference

- N. Xu, B. L. Price, S. Cohen, and T. S. Huang, "Deep image matting," in *Proc. Comput. Vis. Pattern Recognit.*, 2017, pp. 311–320.
- H. Lu, Y. Dai, C. Shen, and S. Xu, "Indices matter: Learning to index for deep image matting," in *Proc. Int. Conf. Comput. Vis.*, 2019, pp. 3266–3275.
- Y. Li and H. Lu, "Natural image matting via guided contextual attention," in *Proc. Assoc. Adv. Artif. Intell.*, 2020, pp. 13673–13682.
- G. Hinton, O. Vinyals, and J. Dean, "Distilling the knowledge in a neural network," in *Proc. Neural Inf. Process. Syst. Workshops (NeurIPSW)*, 2015, pp. 1–9.
- F. Tung and G. Mori, "Similarity-preserving knowledge distillation," in *Proc. Int. Conf. Comput. Vis*, 2019, pp. 1365–1374.
- S. Zagoruyko and N. Komodakis, "Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer," in Proc. Int. Conf. Learn. Representation, 2017, pp. 1–13.
- J. Yim, D. Joo, J. Bae, and J. Kim, "A gift from knowledge distillation: Fast optimization, network minimization and transfer learning," in Proc. Comput. Vis. Pattern Recognit., 2017, pp. 7130–7138.
- B. Heo, J. Kim, S.Yun, H. Park, N.Kwak, and J.Y.Choi, "Acomprehensive overhaul of feature distillation," in Proc. Int. Conf. Comput. Vis., 2019, pp. 1921–1930.