Assignment 2

Bryant Oblad A01770171

Question 1

Please respond to the following prompt:

Understand the {M, I, U}-system well enough to state and prove a metatheorem about what strings are in S. One way to think of this is as though you are creating some sort of litmus test to determine whether a given string is a theorem of the {M, I, U}-system. Your statement should be able to be used in the following way: If someone presents you with a string of Ms, Is, and Us and asks \ls this an MIU-theorem?" you might be able to answer deni-tively. I don't expect you to, because you won't be able to, classify all strings of the {M, I, U}-system.

Metatheorem: A string with never not start with a M.

To answer a question about understanding the {M, I U} - system, we must first define the axioms of the M I U syestem, They are as follows

#	Axiom
0	MI ∈ S
1	$xI \in S \Rightarrow xIU$
2	$Mx \in S \Rightarrow Mxx \in S$
3	$xIIIy \in S \Rightarrow xUy \in S$
4	$xUUy \in S \Rightarrow xy \in S$

Proof: If we observe axiom 0 we see that each axiom that follows axiom 0 is implied from a derived axiom 0. This implies that every M I U axiom after axiom 0 cannot exist without the definition of axiom 0, also we notice that axiom 0 is the only axiom of the 5 M I U axioms that does not contain any sort of variable (such as x), this allows for expansion on axiom 0. Therefore with the use of a variable, we see that for each axiom, axiom 0 implies another axiom, this proves that all M I U axioms will always start with an M.

Question 2

Let $P = \{(a,b,c) : a, b, c \in \mathbb{Z}, \text{ and } a^2 + b^2 = c^2\}$, and $T = \{(p, q, r) : p = x^2 - y^2, q = 2xy, \text{ and } r = x^2 + y^2, \text{ where } x, y \in \mathbb{Z}\}$.

Claim: T ⊆ P

Proof. To prove that $T \subseteq P$, we have to show that the ordered triple of $p^2 + q^2 = r^2$.

Computing $r^2 = x^4 + 2x^2y^2 + y^4$, $p^2 = x^4 - 2x^2y^2 + y^4$, $q^2 = 4x^2y^2$. If we replace $p^2 + q^2 = r^2$ into the from $a^2 + b^2 = c^2$, this shows that $(4x^2y^2) + (x^4 - 2x^2y^2 + y^4) = x^4 + 2x^2y^2 + y^4$ which is true and of the form $a^2 + b^2 = c^2$, Therefore $T \subseteq P$.

Question 3

Determine, with proof, the number of ordered triples (A₁, A₂, A₃) of sets which have the property that

(i)
$$A_1 \cup A_2 \cup A_3 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, and

(ii) $A_1 \cap A_2 \cap A_3 = \emptyset$ express the answer in the form $2^a 3^a 5^c 7^d$

Claim: There are 60,466,176, (6¹⁰) different ordered triples in $A_1 \cup A_2 \cup A_3 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, and that 60,466,176 can also be expressed in the form $2^a 3^a 5^c 7^d$ where a = 10, b = 10, c = 0, and d = 0

Proof. Let $i \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, We need to compute how many variations of $A_1 \cup A_2 \cup A_3 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ exist to make the statement $A_1 \cap A_2 \cap A_3 = \emptyset$ true. To do this task we can derive that a single instance of A_1 , A_2 , A_3 can contain, at least 1 instance of i and at most 2 instance of i, for each instance of i we need to compute how many variations each instance of i can have. Therefore I have constucted a table below to signify the possibilities each instance of i can have.

A ₁	A ₂	A ₃
i	-	-
-	i	-
-	-	i
i	i	-
i	-	i
-	i	i

for i at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Each one holds 6^1 possiblities to keep the statement $A_1 \cap A_2 \cap A_3 = \emptyset$ true. But since $i \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, we can say that $6^1 * 6^1 \dots 6^1$ for however many elements i could be, which is 10. This can be rewritten to be 6^{10} and in terms of $2^a 3^a 5^c 7^d$, a = 10, b = 0, c = 0, and d = 0, which is the same as 60,466,176.

Question 4

Claim: The system $\{\mu, \Phi, \neg, \lor, \land, \Rightarrow\}$ can be reduced to $\{\mu, \Phi, \nabla\}$, where $x \nabla y$ is equivalent to $\neg(x \lor y)$

Proof. In order to get the system $\{\mu, \Phi, \neg, \lor, \land, \Rightarrow\}$ to reduce to $\{\mu, \Phi, \nabla\}$ where \neg is "not", \lor is "or", \land is "and", \Rightarrow is "if/implies".

First we must prove a way to resolve each symbol in the set $\{\neg, \lor, \land, \Rightarrow\}$, to be equivelant to a set using the symbol ∇ . Given to us in the prompt $x \nabla y \equiv \neg(x \vee y)$. I show the equivelancy of $x \nabla y \equiv \neg(x \vee y)$ in the truth table below.

X	у	¬(x ∨ y)	x ▽ y
Т	Т	F	F
Т	F	Т	Т
F	Т	Т	Т
F	F	Т	Т

The truth table above proves $x \nabla y \equiv \neg(x \vee y)$ because the results of the truth table above are exactly the same, (FTTT). Following, we can now define the symbol ∇ as being nor, nor meaning "not or", however "not or" is difficult for me to think about in terms of a truth table so I prefer to evaluate or, then not. Since we now have nor defined we can use nor to mean the symbol ∇ .

The next thing we can interpret is the that $\neg x \equiv x \nabla x$ as I show in the truth table below which allows us to safely remove \neg . This is an important definition because it will be used in later truth tables.

x	¬х	x∇x
Т	F	F
Т	F	F
F	Т	Т
F	Т	Т

Next we will prove that ∨ is removable. See the truth table below.

x	у	x∨y	$(x \nabla y) \nabla (x \nabla y)$
Т	Т	Т	Т
Т	F	Т	Т
F	Т	Т	Т
F	F	F	F

Notice that we can explicetly say now that $x \lor y \equiv (x \bigtriangledown y) \bigtriangledown (x \bigtriangledown y)$ because we proved that for possible situation of x and y, $x \lor y \equiv (x \bigtriangledown y) \bigtriangledown (x \bigtriangledown y)$ holds true.

Next we will prove that \wedge can be shown via terms of ∇ .

x	у	(x ∧ y)	$\neg (\neg x \lor \neg y)$	$((x \bigtriangledown x) \bigtriangledown (y \bigtriangledown y)) \bigtriangledown ((x \bigtriangledown x) \bigtriangledown (y \bigtriangledown y))$
Т	Т	Т	Т	Т
Т	F	F	F	F
F	Т	F	F	F
F	F	F	F	F

Now we say that $(x \land y) \equiv \neg(\neg x \lor \neg y) \equiv ((x \bigtriangledown x) \bigtriangledown (y \bigtriangledown y)) \bigtriangledown ((x \bigtriangledown x) \bigtriangledown (y \bigtriangledown y))$ because of the definition we established in a previous truth table that $\neg x \equiv x \bigtriangledown x$. Therefore have proved we can remove \lor from the set in question.

Lastly, we need to prove that \Rightarrow can be removed from the set in question.

x	у	$x \Rightarrow y$	¬ (y ▽(x ▽ y))	$(y \nabla (x \nabla y)) \nabla (y \nabla (x \nabla y))$
Т	Т	Т	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

Referring to the truth table above we can now prove that $x \Rightarrow y \equiv (y \nabla (x \nabla y)) \nabla (y \nabla (x \nabla y))$ because of the definition we established in a previous truth table that $\neg x \equiv x \nabla x$ and using nor which we previously defined.

Finally we have proved that he system $\{\mu, \Phi, \neg, \lor, \land, \Rightarrow\}$ can be reduced to $\{\mu, \Phi, \nabla\}$, where $x \nabla y$ is equivalent to $\neg(x \lor y)$.