Geospatial Modeling Crash Course

A bit of a kitchen sink

Goal

Provide a training that exposes individuals to the framework and components of a common geospatial modeling process so they can more quickly engage with the material in their own work.

- Drive into the deep end
- Understand potential and follow the process
- Have a resource to look back on

Please Ask Questions

Outline

Part 1: Google Earth Engine (GEE)

- 4 sections
- A bit more straightforward
- You don't need to know GEE

Part 2: R

- 2 sections
- A bit less straightforward
- You don't need to know R (hopefully)

Introduction (Part 1)

GEE: Resources

https://drive.google.com/open?id=1W4TZS9eGWq_Sbd-2nmgeq48FbY3t-JxF

Introduction (Part 1)

GEE Presentation

https://docs.google.com/presentation/d/191dsyRePGyPruiH-fQ1nhx0jx7oJrJ2wa2pTP4NhK3E/edit#slide=id.g3556a9360b_0_25

Interact with GEE Drop Points (Part 2)

Generate potential training data in GEE

- NAIP imagery
- GEE basic functions

Import features in GEE (Part 3)

Learn how it import existing datasets into GEE

- Interoperability challenges

Modeling In GEE (Part 4)

Produce a geospatial model in GEE

- Apply advanced functions
- Generate Indices
- Visualize results

Break

R

Programming Language that allows for quick access to dataframes

- Developed for statistical purposes so it kinda stand out relative to other computer science languages
- thisIsAThing <- "Why would <- mean =?"</p>
- Call a function on a object object\$function
- Case sensitive
- Paths <- "need\\double\\backslash\\on\\windows"

There is a lot more, we just can't cover it here

Variable Selection in R (Part 5)

Engage with R packages to inform which predictors are important

- Manipulate dataframes
- Apply algorithms
- View statistical results

Random Forest Modeling in R (Part 6)

Apply a machine learning algorithm to predict

Bad Science

Process not Products

General Notes on Geospatial Modeling

Modeling is full of assumptions, know them

Understanding what it does poorly is equally as important as what it does well

Ideally your model provides more information then was previously available

Understand where the largest uncertainty is and use that to limit the specificity of your output

https://github.com/fortCollinDe

<u>V</u>

Follow Along by opening the html file

part1
part2
part3
part4
part5
part6

drawPolygon	4/9/2018 10:34 AM	PNG File	81 KB
drawPolygon2	4/9/2018 10:35 AM	PNG File	230 KB
geometrylmport	4/9/2018 10:41 AM	PNG File	6 KB
points	4/9/2018 11:25 AM	PNG File	2,322 KB
points1	5/28/2018 4:28 PM	PNG File	774 KB
pointsFalse	5/28/2018 4:35 PM	PNG File	842 KB
presencePoints	4/9/2018 11:15 AM	PNG File	84 KB
samplingInGEE	5/28/2018 4:39 PM	Chrome HTML Do	4,501 KB
samplingInGEE.rmd	5/28/2018 4:39 PM	RMD File	7 KB
sideBySide	4/9/2018 11:10 AM	PNG File	1,634 KB
■ trueColor	5/28/2018 4:25 PM	PNG File	882 KB

band is helpful in distinguishing between different types of vegetation. In this example we will sample deciduous forests in Iowa for

2015. We will load both true color and false color NAIP imagery to allow for the best distinction.

Creating geometries in earth engine is as simple as pressing the geometry button.

1.3 Define Region of Interest

🔲 Part X 🗏 plar X 🛕 Mor X 🔲 gee X 🛕 Goc X 🖟 20tl X 🎽 Inbr X 📋 gee X 🍣 Linl X Gitl × Secure https://code.earthengine.google.com/915fe2784a09fa68ac2cdc4a9c2afab4 NCSU GIS 610-003/6 📅 FCDEVELOPProjects 💎 DEVELOPedia 🌱 Apps 🛨 Bookmarks 🚳 Inbox - Outlook We Google Earth Engine Search places and datasets. carver.dan1 -Scripts Docs Assets Link 915fe2784a09fa68ac2cdc4a9c2afab4 Get Link spector Console Tasks Imports (1 entry) Use print(...) to write to ▶ var geometry: Polygon, 5 vertices 🖾 🔯 this console. Owner (2) // Load the Sentinel-1 ImageCollection. Filmage (12 bands) users/carverd. var sentinel1 = ee.ImageCollection('COPERNICUS/S1_GRD') users/carverd.. .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'W')) Diject (1 property) .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')) * crashCours. .filter(ee.Filter.eg('instrumentMode', 'IW')) extractV... Feature 1 **JSON** .filter(ee.Filter.eg('orbitProperties_pass', 'ASCENDING')) part1 .select("V.")//allows you to select all bands you want. start with V than 0.47105561861521 sampling... .filterDate('2017-01-01', '2017-12-31') .filterBounds(geometry) * wildRice cleanRF2... 11 - var makeComposite = function(month) { M 34_32_2016... AZ NMmou. .filter(ee.Filter.calendarRange(month, ee.Number(month).add(1),'month')) AZ_NMmou... i 14 .median() Arizona Ne... # 15 } RO_validation i 17 var composites = ee.List.sequence(1,12,2).map(makeComposite) Sentinal1_E... Sonoran Ba 19 - var combineBands = function(image, result) { ■ UntitledFile i 20 return ee.Image(result).addBands(image) # 21 } alibration i 22 var empty = ee.Image().select() extract_valu... i 23 var sentinel1 = ee.Image(composites.iterate(combineBands, empty)) I gooEyamplas Geometry Imports

Ask questions