

HACETTEPE UNIVERSITY DEPARTMENT OF GEOMATICS ENGINEERING

ADJUSTMENT COMPUTATION & PARAMETER ESTIMATION 2021-2022 SPRING TERM ASSIGNMENT 9

ABDULSAMET TOPTAŞ - 21905024

Given the two interior orgles and the side length of a side opposide one of these argles, compute the side length and its man square error of the side which is opposite to the third interior ongle.

Given
$$7 \propto = 57^{9},5000 \pm 50^{9}$$

 $\beta = 30^{9},1780 \pm 60^{9}$
 $\alpha = 257,50 \pm 915 \text{ m}$
 $6 \approx 100 \pm 915 \text{ m}$

$$C = \frac{1}{1200}$$

$$C = \frac{1}{1$$

$$\sin\left[200 - (\alpha + \beta)\right] = \sin(\alpha + \beta) \Rightarrow \frac{c}{\sin(\alpha + \beta)} = \frac{a}{\sin(\alpha + \beta)} = \frac{a}{\sin$$

$$F = \begin{bmatrix} \frac{\partial f}{\partial a} & \frac{\partial f}{\partial \alpha} & \frac{\partial f}{\partial \beta} \end{bmatrix}$$

$$F = \begin{bmatrix} 4,250 & (190,593) & (63,067) \end{bmatrix}$$

$$\frac{\partial f}{\partial a} = \frac{\sin{(\alpha+\beta)} \cdot \sin{(\alpha+\beta)}}{\sin{(\alpha+\beta)}} = \frac{1,250 \text{ unitless}}{\sin{(\alpha+\beta)}}$$

$$\frac{\partial f}{\partial x} = \frac{a \cdot \cos(\alpha + \beta) \cdot \sin\alpha}{\sin^2 \alpha} = \frac{190,593}{\sin^2 \alpha}$$

$$\frac{\partial f}{\partial x} = \frac{a \cdot \cos(\alpha + \beta) \cdot \sin\alpha}{\sin^2 \alpha} = \frac{190,593}{\sin^2 \alpha}$$

$$\frac{\cos(\alpha + \beta) \cdot \sin\alpha}{\sin^2 \alpha} = \frac{190,693}{\sin^2 \alpha}$$

$$\frac{\cos(\alpha + \beta) \cdot \sin\alpha}{\sin^2 \alpha} = \frac{190,693}{\sin^2 \alpha}$$

$$F = \begin{cases} 4.250 \\ 490.593 \\ 63.069 \end{cases} \rightarrow \infty$$

$$\frac{\partial f}{\partial \beta} = \frac{a \cdot \cos(\alpha + \beta) \cdot \sin\alpha}{\sin\alpha} = \frac{a \cdot \cos(\alpha + \delta)}{\sin\alpha} = \frac{63,067 \text{ m}}{\sin\alpha}$$

$$K = \begin{bmatrix} a^2 & ma. \underline{m}\alpha & ra\alpha & \underline{m}\beta & r\alpha\beta \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

$$K = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3}$$

$$mc^2 = \sqrt{103603.51655} m^2$$
 = F. Kx · FT
 $mc^2 = \sqrt{103603.51655} m^2$ 4x3 3x3 3x

Abdulsamet TOPTAS 21905024

Given the two side lengths (b and c) and one interior angle (d) between these two sides of the below triongle, compute the other side length a and its mean square error. (standard error, formal error, ma).

Given
$$3 = 130^9$$
, 2080 ± 40^{cc}
 $b = 280$, $50 \text{ m} \pm 20 \text{ cm}$
 $c = 170$, $40 \text{ m} \pm 15 \text{ cm}$

$$Crb = 0, 2$$

 $1 < c = 0, 1$

Unknowns 7

$$100 = 0.45$$

q=2 mq=1

20. Ja= (26-2c.cosa) db+ (2c-2b.cosa) dc+ (2bc.sha) 200

$$\partial a = (b-c.cosx) \partial b + (c-b.cosd) \partial c + (bc.snd) \partial a$$

$$\frac{\partial x}{\partial b} = \frac{b - c \cdot \cos x}{a}$$

$$\frac{\partial f}{\partial b} = \frac{b - c \cdot \cos d}{a} \quad \frac{\partial f}{\partial c} = \frac{c - b \cdot \cos d}{a} \quad \frac{\partial f}{\partial \alpha} = \frac{bc \cdot \sin \alpha}{a}$$

$$0.921 \text{ unitless} \qquad 0.767 \text{ unitless} \qquad 109,27161 \text{ in } = 3$$

$$\frac{\partial f}{\partial \alpha} = \frac{bc.sna}{\alpha}$$
 $109,27161 \frac{1}{10} > 0,915 cm$

$$F = \begin{bmatrix} \frac{\partial f}{\partial b} & \frac{\partial f}{\partial c} & \frac{\partial f}{\partial c} \end{bmatrix} \Rightarrow F = \begin{bmatrix} 0.921 & 0.767 & 0.945 \end{bmatrix}$$

$$\begin{cases}
l = \frac{200.100.100}{T} & F = \begin{cases}
0.921 \xrightarrow{\longrightarrow} 1 \text{ withes;} \\
0.767 \xrightarrow{\longrightarrow} 1 \text{ withes;} \\
0.915 \xrightarrow{\longrightarrow} \infty
\end{cases}$$

$$\begin{cases}
d = 636620 & \text{radian} > cc \\
\text{unithes;}
\end{cases}$$

$$K_{x} = \begin{bmatrix} b^{2} & \text{mb,mc.rbe} & \text{mb,md.rab} \\ c^{2} & \text{mc.} & \frac{\text{md}}{8} \text{.rac} \\ symmetric & \left(\frac{s\zeta}{4}\right)^{2} \end{bmatrix} \Rightarrow K_{x} = \begin{bmatrix} 786802500 & 135 & 0,000251327 \\ 135 & 290708500 & 9000094248 \\ 0,000251327 & 9000094248 & 900000042 \end{bmatrix}$$

Abdulsomet TOPTAS 21905024