

Facilitating SQL Query Composition and Analysis

Zainab Zolaktaf, Mostafa Milani, Rachel Pottinger

Department of Computer Science

University of British Columbia

Motivation: Facilitating SQL Query Composition and Analysis

- SQL query composition can be fundamentally difficult for users
 - Requires several cycles of tuning and execution of costly queries
- To write efficient SQL queries users can
 - Gain knowledge of database schema and tuples
 - Use hints or tutorials available on the system
 - E.g., On SDSS users are advised to write a ``Count'' query first!

 Our goal: predict SQL query performance properties - prior to execution

Motivation: Facilitating SQL Query Composition and Analysis

A new SQL query

$$Q_*, y_* = ?$$

Goal

Predict performance properties of Q_* , prior to submitting it the database

Output

- Answer size $(y_*^a) = 304$ rows
- CPU time $(y_*^c) = 105.37 \text{ sec}$
- Error class (y_*^e) = success
- Session class (y_*^s) = brows e^{q_*}

properties of Q_* , prior to submitting it the database

Challenges: Database Instance

- The Read of Messages & Decodorphia

 Ouery 1: Query cost [relative to the batch): 1009

 SLECT : (DestroyerEntiative), p.[Trict], p.[T
- Existing models for query performance prediction
 - System side applications (e.g., admission control, query optimization [LKNC12])
- Use query execution plan
 - Need database instance and statistics
- Problems
 - Query execution plan can be imprecise [LGMB15]
 - Limited access to database instance?
 - Sources on the hidden web
 - Customers of cloud data warehouses
 - Spotify, HSBC use Google BigQuery

Output

- Cardinality estimates?
- Cost estimates?
- Error class (y_*^e) = success
- Session class (y_*^s) = browser

Challenges: Large-scale Query Workloads

$$W = \{(Q_i, y_i)\}_{i=1}^n$$

1. Sloan Digital Sky Server (SDSS) [RTS14]

- Scientific computing domain
- Extracted ~600K SQL queries
- 2. SQLShare [JMH16]
 - SQL-as-a-Service platform
 - Users upload data, write queries
 - Contains ~27K SQL queries

- SQL Query workload (W)
 - Collection of labeled SQL queries submitted in the past
 - Labels are actual observations
 - Eliminate biases e.g., cardinality misestimates
 - Easily logged by DBMS
- Need large-scale and real-world query workloads
 - Reveal usage patterns from a variety of users

Problem Formulation: Facilitating SQL Query Composition and Analysis

Collection of labeled SQL queries

 $W = \{(Q_i, y_i)\}_{i=1}^n$

A new SQL query

$$Q_*, y_* = ?$$

```
SELECT q.name AS qname,
dbo.fDistanceArcMinEq(q.ra,q.dec,p.ra,p.dec), ...
FROM SpecObj AS s,
SDSSSQL010.MYDB_670681563.test.QSOQuery1_DR5 AS q, PhotoObj
AS p
WHERE ((s.bestobjid=p.objid) AND (s.ra BETWEEN 185 AND 190) AND
...) ORDER BY q.ra
```

Goal

Predict performance properties of Q_* , prior to submitting it the database

Output

- Answer size $(y_*^a) = 304$ rows
- CPU time $(y_*^c) = 105.37 \text{ sec}$
- Error class (y_*^e) = success
- Session class (y_*^s) = brows e^{q_*}

properties of Q_* , prior to submitting it the database

Approach Overview: Different Settings

SDSS

1. Homogeneous Instance: Q_* and the queries in W are posed to the same database instance

Approach Overview: Different Settings

SQLShare

2. Homogeneous Schema: Q_* and the queries in W are posed to different database instances with the same schema in the same DBMS

Approach Overview: Different Settings

SQLShare

3. Heterogeneous Schema: Q_* and the queries in W are posed to different databases with different schemas that run in the same DBMS

Approach Overview: Workload Analysis

- Perform workload analysis for
 - Better model selection
 - Better model evaluation
- SQL query statements
 - Digits and mathematical equations in statements
 - Affect query performance, e.g., answer size
 - Range in complexity w.r.t. length, #joins
- SQL query labels
 - Classification labels are imbalanced
 - Regression labels had a wide range

```
dbo.fDistanceArcMinEq(q.ra,q.dec,p.ra,p.dec), ...
     SDSSSQL010.MYDB_670681563.test.QSOQuery1_DR5 AS q, PhotoObj
WHERE ((s.bestobjid=p.objid) AND (s.ra BETWEEN 185 AND 190) AND
      ...) ORDER BY g.ra
```


Approach Overview: Models Evaluated

- To establish baselines we examined a broad set of models
 - Models that do not consider SQL query statement
 - Most frequent class (mfreq) classifier
 - Median of distribution for regression

- Models that do consider SQL query statement
- Query statement representation?
 - Bag-of-n-grams + TFIDF
 - Shallow Convolutional Neural Network (CNN)
 - 3-Layer Long Short-Term Memory (LSTM)
- Applied at character and word level

Results: CPU Time Prediction

- Characters) increases

Results: CPU Time Prediction in Different Settings

- From left to right, the range of MSE values increases as the problem setting complexity increases
- In each figure, the MSE of models increases as statement complexity increases
- Character-level models obtain lowest MSE and test loss value

Results: Answer Size Prediction

- Goal: predict answer size
- Report qerrors in different percentiles of the test data
- qerror: shows the factor by which a prediction differs from its true value

Answer size prediction gerror in SDSS

Model	50%	75%	80%	85%	90%	95%
median	1	36	50	144	1885	50000
ctfidf	1.13	4.86	10	25	88	727
ccnn	1.36	2.60	3.75	6.79	18	174
clstm	1.07	2.38	3.50	6.79	19	172
wtfidf	1.00	5.37	$\overline{11.04}$	31.98	100	879
wcnn	1.33	3.42	5.14	10.93	36	295
wlstm	1.12	2.62	4.27	10.43	30	292

Highlights:

- For 50% of queries, it is easy to predict and for top 10% prediction is very difficult
- NN models outperform traditional models which have fixed features
- Character-levels obtain the lowest qerror

Selected Related Work

Query Performance Prediction

- [LGMB15] Leis, V., Gubichev, A., Mirchev, A., Boncz, P., Kemper, A., & Neumann, T. (2015). How good are query optimizers, really?. Proceedings of the VLDB Endowment, 9(3), 204-215.
- [LKNC12Li] Jiexing, Arnd Christian König, Vivek Narasayya, and Surajit Chaudhuri. "Robust estimation of resource consumption for sql queries using statistical techniques." Proceedings of the VLDB Endowment 5, no. 11 (2012):
- [BDM19] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and Vivek Narasayya. 2019. Al Meets Al: Leveraging Query Executions to Improve Index Recommendations. In Proceedings of the 2019 ACM SIGMOD International Conference on Management of data. SIGMOD'19.

SQL Query Workloads

- [RTS14] M Jordan Raddick, Ani R Thakar, Alexander S Szalay, and Rafael DC Santos. 2014. Ten Years of SkyServer I: Tracking Web and SQL e- Science Usage. Computing in Science & Engineering 16, 4 (2014), 22–31.
- [JMH16] Shrainik Jain, Dominik Moritz, Daniel Halperin, Bill Howe, and Ed Lazowska. 2016. Sqlshare: Results from a multi-year sql-as-a-service experiment. In Proceedings of the 2016 International Conference on Management of Data. ACM, 281–293.

Contributions: Facilitating SQL Query Composition and Analysis

- Introduce and address 4 problems for predicting query performance properties - prior to execution
- Approach is based on using large-scale real-world query workloads
- Conduct extensive workload analysis
- Adapt data-driven machine learning models
 - Establish baselines and assess feasibility
- Results show character level models (e.g., ccnn) generalize better under different problem settings

