1 第二节 1

1 第二节

$1.1 \quad 2.5.1$

题目 1. 证明: 欧氏空间的联络是唯一满足对任意常向量场 X 都有 $\nabla X = 0$ 的仿射联络.

解答. 回顾定义, 仿射联络满足

$$\nabla_{\alpha v + \beta w} X = \alpha \nabla_v X + \beta \nabla_w X$$

$$\nabla_X \alpha v + w = X(\alpha)v + \alpha \nabla_X v + \nabla_X w.$$

"⇒": 欧氏空间上的联络同时还是黎曼联络, 联络系数 $\Gamma^i_{jk}=0$. 所以对常向量场 $X=X^ie_i$, 其中 X^i 都是常数, 以及对任意 $Y\in \mathscr{X}(\mathbb{R}^n)$,

$$\nabla X(Y) = \nabla_Y X = Y(X^i)e_i = 0.$$

" \leftarrow ": 取欧氏空间的某联络 ∇ , 若其对任何常向量场 $X = X^i e_i$, $\nabla X = 0$, 则任取 $Y \in \mathcal{X}(\mathbb{R}^n)$,

$$0 = (\nabla X)Y = \nabla_Y X = Y(X^i)e_i + X^j \nabla_Y e_j = X^j \nabla_Y e_j,$$

即, 对任何 j, $\nabla_Y e_j = 0$. 所以联络系数 $\Gamma^i_{ik} = \omega^i(\nabla_{e_i} e_k) = 0$. 所以, 这个联络就是欧氏空间的默认联络.

1.2 2.5.2

题目 2. 证明: 对 C^1 向量场, 反对称性 [X,Y] = -[Y,X] 不一定成立; Jacobi 恒等式对 C^2 向量场成立.

解答. 不太理解第一部分. 如果这里 [X,Y] 指 Lie 括号, 那么即使对 C^1 向量场, 这也是成立的. 因此此题搁置.

$1.3 \quad 2.5.3$

题目 3. 证明挠率张量 $T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$ 是 (2,1) 型张量.

解答.

$$\begin{split} T(fX_1 + X_2, Y) = & \nabla_{fX_1 + X_2} Y - \nabla_Y f X_1 + X_2 - [fX_1 + X_2, Y] \\ &= f \nabla_{X_1} Y + \nabla_{X_2} Y - Y(f) X_1 - f \nabla_Y X_1 - \nabla_Y X_2 + Y(f) X_1 - f[X_1, Y] - [X_2, Y] \\ &= f T(X_1, Y) + T(X_2, Y). \end{split}$$

1.4 2.5.4

1 第二节 2

题目 4. 若 $c\colon I\to M$ 在 t_0 速度非零, 则存在 X 满足对所有 t_0 附近的 $t,\,X|_{c(t)}=\dot{c}(t).$

解答. 利用秩定理, 取坐标使 $c(t)=(t,0,\cdots,0)$. 则定义 $X=(1,0,\cdots,0)$ 即可.

 $1.5 \quad 2.5.5$

题目 5. 计算 $\operatorname{div}(fX)$, $\Delta(fh)$, $\operatorname{Hess}(fg)$.

解答. 1. $\operatorname{div}(fX)$. 根据定义, $\operatorname{div}(fX) = L_{fX}\operatorname{vol}$, 所以

$$(\operatorname{div}(fX)\operatorname{vol})(v_1,\cdots,v_n) = L_{fX}(\operatorname{vol}(v_1,\cdots,v_n)) - \sum_{i=1}^n \operatorname{vol}(v_1,\cdots,L_{fX}v_i,\cdots,v_n).$$