Il teorema di Kutta-Joukowski

Alberto Artoni

Maggio 2017

Cos'è un tiro ad effetto?

Battuta Match-Point di Zaytsev

Perché gli aeroplani volano?

Spitfire

Zero

Introduzione

La *portanza* è la forza normale alla direzione della velocità di un corpo in movimento immerso in un fluido.

L'obiettivo del teorema di Kutta-Joukowski è di darne una giustificazione analitica.

Prime definizioni

Si dice *Fluido ideale* un fluido con densità costante e coefficiente di viscosità nullo.

Prime definizioni

Si dice *Fluido ideale* un fluido con densità costante e coefficiente di viscosità nullo.

Un *Fluido incomprimibile* è un fluido in cui, durante il moto, si conserva il volume. Tale moto è detto isocoro.

Prime definizioni

Si dice *Fluido ideale* un fluido con densità costante e coefficiente di viscosità nullo.

Un *Fluido incomprimibile* è un fluido in cui, durante il moto, si conserva il volume. Tale moto è detto isocoro. Tale richiesta si caratterizza analiticamente imponendo che

$$div \mathbf{v} = 0$$

Prime definizioni

Si dice *Fluido ideale* un fluido con densità costante e coefficiente di viscosità nullo.

Un *Fluido incomprimibile* è un fluido in cui, durante il moto, si conserva il volume. Tale moto è detto isocoro. Tale richiesta si caratterizza analiticamente imponendo che

$$div \mathbf{v} = 0$$

Un Fluido irrotazionale è un fluido all'interno del quale non vi sono vortici.

Prime definizioni

Si dice *Fluido ideale* un fluido con densità costante e coefficiente di viscosità nullo.

Un *Fluido incomprimibile* è un fluido in cui, durante il moto, si conserva il volume. Tale moto è detto isocoro. Tale richiesta si caratterizza analiticamente imponendo che

$$div \mathbf{v} = 0$$

Un *Fluido irrotazionale* è un fluido all'interno del quale non vi sono vortici. Si caratterizza analiticamente da

$$rot \mathbf{v} = 0$$

Proprietà

Equazione di Bernoulli

$$\frac{p}{
ho} + \frac{\mid\mid \mathbf{v}\mid\mid^2}{2} + gh = costante$$

Definizione Una funzione f(z) è detta *olomorfa* in un dominio **D** se differenziabile in senso complesso in ogni punto del dominio **D**.

Definizione Una funzione f(z) è detta *olomorfa* in un dominio **D** se differenziabile in senso complesso in ogni punto del dominio **D**.

Notazione Data una funzione f(z) poniamo:

$$f(z) = f(x + iy) = u(z) + iv(z) = u(x, y) + iv(x, y)$$

 $u(z) = \text{Re}(f(z)) \text{ e } v(z) = \text{Im}(f(z)).$

Proprietà

Teorema Una funzione f(z) è olomorfa se e solo se u e v sono differenziabili e se valgono le condizioni, dette di Cauchy-Riemann:

$$u_x = v_y$$

$$u_y = -v_x$$

Se f(z) olomorfa, le seguenti affermazioni sono equivalenti:

$$\frac{df}{dz} = \frac{\partial f}{\partial x} = u_x + iv_x$$

Proprietà

Teorema Una funzione f(z) è olomorfa se e solo se u e v sono differenziabili e se valgono le condizioni, dette di Cauchy-Riemann:

$$u_x = v_y$$

$$u_y = -v_x$$

Se f(z) olomorfa, le seguenti affermazioni sono equivalenti:

$$\frac{df}{dz} = \frac{\partial f}{\partial x} = u_x + iv_x$$

$$\frac{df}{dz} = grad(u(x, y)) = u_x - iu_y$$

Definizione

In un fluido ideale e incomprimibile in moto stazionario, irrotazionale, piano descritto dalla velocità $\mathbf{v} = \begin{pmatrix} u \\ v \end{pmatrix}$ è possibile definire f(z) funzione di variabile complessa f(z) = u - iv.

Definizione

In un fluido ideale e incomprimibile in moto stazionario, irrotazionale, piano descritto dalla velocità $\mathbf{v} = \begin{pmatrix} u \\ v \end{pmatrix}$ è possibile definire f(z) funzione di variabile complessa f(z) = u - iv. Supponendo \mathbf{v} differenziabile, si hanno automaticamente verificate le

Supponendo **v** differenziabile, si hanno automaticamente verificate le condizioni di Cauchy-Riemann. Infatti:

Definizione

In un fluido ideale e incomprimibile in moto stazionario, irrotazionale, piano descritto dalla velocità $\mathbf{v} = \begin{pmatrix} u \\ v \end{pmatrix}$ è possibile definire f(z) funzione di variabile complessa f(z) = u - iv.

Supponendo \mathbf{v} differenziabile, si hanno automaticamente verificate le condizioni di Cauchy-Riemann. Infatti:

$$div \mathbf{v} = u_x - v_y = 0 \Longleftrightarrow u_x = v_y$$

Definizione

In un fluido ideale e incomprimibile in moto stazionario, irrotazionale, piano descritto dalla velocità $\mathbf{v} = \begin{pmatrix} u \\ v \end{pmatrix}$ è possibile definire f(z) funzione di variabile complessa f(z) = u - iv.

Supponendo **v** differenziabile, si hanno automaticamente verificate le condizioni di Cauchy-Riemann. Infatti:

$$div \mathbf{v} = u_x - v_y = 0 \Longleftrightarrow u_x = v_y$$

$$rot \mathbf{v} = u_y + v_x = 0 \Longleftrightarrow u_y = -v_x.$$

Definizione

In un fluido ideale e incomprimibile in moto stazionario, irrotazionale, piano descritto dalla velocità $\mathbf{v} = \begin{pmatrix} u \\ v \end{pmatrix}$ è possibile definire f(z) funzione di variabile complessa f(z) = u - iv.

Supponendo **v** differenziabile, si hanno automaticamente verificate le condizioni di Cauchy-Riemann. Infatti:

$$div \mathbf{v} = u_x - v_y = 0 \Longleftrightarrow u_x = v_y$$

$$rot \mathbf{v} = u_y + v_x = 0 \Longleftrightarrow u_y = -v_x.$$

Quindi la funzione f(z) è olomorfa ed è detta velocità complessa.

Potenziale complesso

Definizione e proprietà

Se f(z) ammette primitiva, sia W(z) il potenziale complesso della funzione f(z), tale che:

$$f(z) = \frac{dW}{dz}$$

Sia $W=\phi+i\psi$, ossia ϕ parte reale e ψ parte immaginaria. Per le regole di derivazione di funzioni complesse, $\frac{dW}{dz}=\phi_{x}-i\phi_{y}$. Interpreto quindi ϕ come il potenziale reale della velocità: $grad(\phi)=\mathbf{v}$. Si osserva dalle condizioni di Cauchy-Riemann applicate alla W:

$$\nabla \phi \cdot \nabla \psi = 0$$

Potenziale complesso

Definizione e proprietà

Se f(z) ammette primitiva, sia W(z) il potenziale complesso della funzione f(z), tale che:

$$f(z) = \frac{dW}{dz}$$

Sia $W=\phi+i\psi$, ossia ϕ parte reale e ψ parte immaginaria. Per le regole di derivazione di funzioni complesse, $\frac{dW}{dz}=\phi_{\rm X}-i\phi_{\rm y}$. Interpreto quindi ϕ come il potenziale reale della velocità: ${\it grad}(\phi)={\bf v}$. Si osserva dalle condizioni di Cauchy-Riemann applicate alla W:

$$\nabla \phi \cdot \nabla \psi = 0$$

Infatti $\phi_x = \psi_y$ e $\phi_y = -\psi_x$, quindi $\phi_x \psi_x + \phi_y \psi_y = 0$. Interpreto le linee di livello di ψ come linee di corrente.

Serie di Laurent

Lo sviluppo in Serie di Laurent di una funzione f(z) in un punto c é dato da:

Serie di Laurent

Lo sviluppo in Serie di Laurent di una funzione f(z) in un punto c é dato da:

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-c)^n$$

dove a_n sono i coefficienti della formula integrale di Cauchy:

Serie di Laurent

Lo sviluppo in Serie di Laurent di una funzione f(z) in un punto c é dato da:

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-c)^n$$

dove a_n sono i coefficienti della formula integrale di Cauchy:

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)dz}{(z-c)^{n+1}}$$

con γ percorso antiorario attorno ad una curva semplice che contiene c in un dominio **A** in cui f(z) olomorfa.

Teorema dei Residui Si osserva che per n = -1:

$$\int_{\gamma} f(z)dz = 2\pi i a_{-1}$$

Teorema dei Residui Si osserva che per n = -1:

$$\int_{\gamma} f(z)dz = 2\pi i a_{-1}$$

Definizione Il termine a_{-1} è detto residuo integrale di f(z).

Teorema di Blasius

La forza ${\mathcal F}$ esercitata dal fluido sul corpo ${\mathbf B}$ è pari a:

$$\mathcal{F} = -i\frac{\rho}{2} \overline{\int_{\partial R} f^2 dz}$$

Dimostrazione

La forza \mathcal{F} che agisce su un corpo immerso in un fluido ideale è pari a:

$$\mathcal{F} = -\int_{\partial B} p \mathbf{n} ds = -\int_{\partial B} p(dy - idx)$$

Dimostrazione

La forza \mathcal{F} che agisce su un corpo immerso in un fluido ideale è pari a:

$$\mathcal{F} = -\int_{\partial B} p \mathbf{n} ds = -\int_{\partial B} p(dy - i dx)$$

Dall'equazione di Bernoulli $p = -\frac{\rho}{2} \mid\mid \mathbf{v}\mid\mid^2 = -\frac{\rho}{2}(u^2 + v^2)$

Dimostrazione

La forza \mathcal{F} che agisce su un corpo immerso in un fluido ideale è pari a:

$$\mathcal{F} = -\int_{\partial B} p \mathbf{n} ds = -\int_{\partial B} p(dy - i dx)$$

Dall'equazione di Bernoulli $p = -\frac{\rho}{2} || \mathbf{v} ||^2 = -\frac{\rho}{2} (u^2 + v^2)$

$$-i\frac{\rho}{2}\int_{\partial B}(u^2+v^2)dz$$

Dimostrazione

La forza \mathcal{F} che agisce su un corpo immerso in un fluido ideale è pari a:

$$\mathcal{F} = -\int_{\partial B} p \mathbf{n} ds = -\int_{\partial B} p(dy - i dx)$$

Dall'equazione di Bernoulli $p = -\frac{\rho}{2} || \mathbf{v} ||^2 = -\frac{\rho}{2} (u^2 + v^2)$

$$-i\frac{\rho}{2}\int_{\partial B}(u^2+v^2)\mathrm{d}z$$

Impongo il parallelismo di **v** al contorno: udy = vdx

Dimostrazione

La forza \mathcal{F} che agisce su un corpo immerso in un fluido ideale è pari a:

$$\mathcal{F} = -\int_{\partial B} p \mathbf{n} ds = -\int_{\partial B} p(dy - i dx)$$

Dall'equazione di Bernoulli $p = -\frac{\rho}{2} || \mathbf{v} ||^2 = -\frac{\rho}{2} (u^2 + v^2)$

$$-i\frac{\rho}{2}\int_{\partial B}(u^2+v^2)dz$$

Impongo il parallelismo di **v** al contorno: udy = vdx

$$f^2dz = (u^2 - v^2 - 2iuv)(dx + idy) = (u^2 + v^2)dx - i(u^2 + v^2)dy.$$

 $\overline{f^2dz} = \overline{(u^2 + v^2)dx + i(u^2 + v^2)dy} = (u^2 + v^2)dz$ quindi ho la tesi, cioè:

$$\mathcal{F} = -i\frac{\rho}{2} \int_{\partial B} f^2 dz$$

Sia ${\bf u}$ la velocità di un fluido ideale, incomprimibile di moto piano, irrotazionale e stazionario al di fuori di un corpo ${\bf B}$ di frontiera C. Sia inoltre ${\bf U}=(U,V)$ il valore costante assunto dalla velocità ad infinito. Allora, la forza ${\cal F}$ esercitata dal fluido sul corpo ${\bf B}$ è pari a

$$\mathcal{F} = -\rho \Gamma_{\mathcal{C}} \mid\mid \mathbf{U} \mid\mid \mathbf{n}$$

dove Γ_C la circuitazione della velocità lungo C e \mathbf{n} il versore normale a \mathbf{U} .

Dimostrazione - 1

Abbiamo già mostrato prima che la velocità complessa f(z) è una funzione analitica al di fuori dell'ostacolo \mathbf{B} .

Dimostrazione - 1

Abbiamo già mostrato prima che la velocità complessa f(z) è una funzione analitica al di fuori dell'ostacolo **B**. Posso quindi scrivere f(z) in serie di Laurent.

Dimostrazione - 1

Abbiamo già mostrato prima che la velocità complessa f(z) è una funzione analitica al di fuori dell'ostacolo **B**. Posso quindi scrivere f(z) in serie di Laurent.

$$f(z) = a_0 + \frac{a_{-1}}{z} + \frac{a_{-2}}{z^2} + \dots$$

Dimostrazione - 1

Abbiamo già mostrato prima che la velocità complessa f(z) è una funzione analitica al di fuori dell'ostacolo **B**. Posso quindi scrivere f(z) in serie di Laurent.

$$f(z) = a_0 + \frac{a_{-1}}{z} + \frac{a_{-2}}{z^2} + \dots$$

Per ipotesi non ci sono potenze di indice positivo: $a_0 = U - iV$.

Dimostrazione - 1

Abbiamo già mostrato prima che la velocità complessa f(z) è una funzione analitica al di fuori dell'ostacolo **B**. Posso quindi scrivere f(z) in serie di Laurent.

$$f(z) = a_0 + \frac{a_{-1}}{z} + \frac{a_{-2}}{z^2} + \dots$$

Per ipotesi non ci sono potenze di indice positivo: $a_0 = U - iV$.

$$\int_C f dz = \int_C (u - iv)(dx + idy) = \int_C \mathbf{v} d\mathbf{s} = \Gamma_C$$

Dimostrazione - 1

Abbiamo già mostrato prima che la velocità complessa f(z) è una funzione analitica al di fuori dell'ostacolo **B**. Posso quindi scrivere f(z) in serie di Laurent.

$$f(z) = a_0 + \frac{a_{-1}}{z} + \frac{a_{-2}}{z^2} + \dots$$

Per ipotesi non ci sono potenze di indice positivo: $a_0 = U - iV$.

$$\int_C f dz = \int_C (u - iv)(dx + idy) = \int_C \mathbf{v} d\mathbf{s} = \Gamma_C$$

Per il teorema dei Residui: $\int_C f dz = 2\pi a_{-1}i$, quindi posso esplicitare a_{-1} :

$$a_{-1} = \frac{\Gamma_C}{2\pi i}$$

Dimostrazione - 2

Sviluppo il quadrato di f^2 ed applico il teorema di Blasius e il teorema dei Residui.

Dimostrazione - 2

Sviluppo il quadrato di f^2 ed applico il teorema di Blasius e il teorema dei Residui.

$$f^2 = a_0^2 + \frac{2a_0a_{-1}}{z} + \cdots$$

Dimostrazione - 2

Sviluppo il quadrato di f^2 ed applico il teorema di Blasius e il teorema dei Residui.

$$f^2 = a_0^2 + \frac{2a_0a_{-1}}{z} + \cdots$$

$$\mathcal{F} = -i\frac{\rho}{2}\overline{\int_{\partial B}f^2dz} = -\frac{i\rho}{2}\overline{(4\pi i a_0 a_{-1})} =$$

Dimostrazione - 2

Sviluppo il quadrato di f^2 ed applico il teorema di Blasius e il teorema dei Residui.

$$f^2 = a_0^2 + \frac{2a_0a_{-1}}{z} + \cdots$$

$$\mathcal{F} = -i\frac{\rho}{2}\overline{\int_{\partial B} f^2 dz} = -\frac{i\rho}{2}\overline{(4\pi i a_0 a_{-1})} = \rho\Gamma_C(V - iU)$$

Dimostrazione - 2

Sviluppo il quadrato di f^2 ed applico il teorema di Blasius e il teorema dei Residui.

$$f^2 = a_0^2 + \frac{2a_0a_{-1}}{z} + \cdots$$

$$\mathcal{F} = -i\frac{\rho}{2} \int_{\partial B} f^2 dz = -\frac{i\rho}{2} \overline{(4\pi i a_0 a_{-1})} = \rho \Gamma_C (V - iU)$$

Prendendo $\mathbf{n} = \frac{(-V;U)}{||(-V;U)||}$, ottengo la tesi:

$$\mathcal{F} = -
ho\Gamma_{\mathcal{C}} \mid\mid \mathbf{U} \mid\mid \mathbf{n}$$

Flusso Attorno un ostacolo circolare

$$W=U(z+\frac{a^2}{z})$$

Linee di flusso attorno ad un ostacolo circolare

Flusso di una sorgente

$$W = \frac{\Gamma}{2\pi i} (\log z)$$

Flusso di una sorgente puntiforme

Combinazione di sorgente puntiforme ed ostacolo circolare

Dalle considerazioni precedenti, possiamo mettere insieme i pontenziali e vedere cosa otteniamo:

$$W = U(z + \frac{a^2}{z}) + i\frac{\Gamma}{2\pi}\log(z)$$

$$f(z) = \frac{dW}{dz} = U(1 - \frac{a^2}{z^2}) + i\frac{\Gamma}{2\pi}(\frac{1}{z})$$

Cerchiamo i punti stazionari ed andiamo a vedere i grafici delle linee di flusso.

Studio parametrico

$$P_{critici} = \frac{-i\frac{\Gamma}{2\pi} \pm \sqrt{-\frac{\Gamma^2}{4\pi^2} + 4U^2a^2}}{2U}$$

Effetto Magnus

Assenza di circuitazione

Presenza di circuitazione

Bibliografia

Chorin A., Marsden J.E. Mathematical introduction to fluid mechanics (Springer, 2000)