Chemical Espionage

A MODEL OF BUTTERFLY AND WASP INTERACTIONS USING DIFFERENTIAL EQUATIONS
ABIGAIL BALLARD, AUROD OUNSINEGAD, AND DASHON MITCHELL
COACHED BY DR. CHRISTOPHER MITCHELL
TARLETON STATE UNIVERSITY

The Problem

The female Large White Cabbage Butterfly uses aphrodisiacs to attract the males for mating. The male releases anti-aphrodisiacs to deter other males. However, this anti-aphrodisiacs attracts parasitic wasps. These wasp parasites the eggs and kill the larvae inside. We wanted to model this interaction to see how much anti-aphrodisiacs the butterflies need to produces for both of these species to coexist.

DRAFT

Parameters

Parameter	Description	Value	Assumptions
k	Carrying capacity	Varies	Varies with equilibrium
α	Birth rate of butterflies	25	Each butterfly lays 20-50 eggs
μ	Death rate of butterflies	20	High death rate since they are preyed upon frequently
ρ	Amount of anti- aphrodisiac	Varies	
σ	Death rate of wasps	12	Natural Death Rate
W	Wasp population		Measured in tens
В	Butterflies population		Measured on tens

Differential Equation Model

$$B' = \alpha B \left(1 - \frac{B}{k} \right) - \mu B - \rho B W$$
$$W' = \rho W B - \sigma W$$

Differential Equation Model

$$B' = \frac{\alpha B}{\alpha B} \left(\frac{B}{k} \right) - \mu B - \rho BW$$

$$W' = \rho WB - \sigma W$$

Explanation of the Differential Equation Model

Yellow: Rate at which the butterfly population is increasing.

Green: Rate at which butterflies/wasps die within their population.

Pink: Interaction rate between the anti-aphrodisiacs, the butterfly population, and the wasp population.

Low Level of Anti-Aphrodisiacs

- Wasps aren't able to find enough eggs to parasitize
- Butterfly populations grows to carrying capacity without any predators to hunt them.

High Level of Anti-Aphrodisiacs

Coexistence present, but small variations could drive population extinct.

Healthy Levels of Anti-Aphrodisiacs

Coexistence present at stable amounts for both species

Conclusions and Future Work

We found that the amount of anti-aphrodisiacs to achieve coexistence is 2 millimeters.

This result also agrees with the research we conducted for this project which also stated that males produces 2 millimeters on average.

My future work includes:

Including more predators in this model like birds.

Include equations on male butterflies and eggs.

Add in more variables to make the model more accurate such as temperature/climate.