# Introducing Grid Search

HYPERPARAMETER TUNING IN PYTHON



Alex Scriven
Data Scientist



Your previous work:

```
neighbors_list = [3,5,10,20,50,75]
accuracy_list = []
for test_number in neighbors_list:
    model = KNeighborsClassifier(n_neighbors=test_number)
    predictions = model.fit(X_train, y_train).predict(X_test)
    accuracy = accuracy_score(y_test, predictions)
    accuracy_list.append(accuracy)
```

Which we then collated in a dataframe to analyse.

What about testing values of 2 hyperparameters?

Using a GBM algorithm:

- learn\_rate [0.001, 0.01, 0.05]
- $max_depth -[4,6,8,10]$

We could use a (nested) for loop!

Firstly a model creation function:

Now we can loop through our lists of hyperparameters and call our function:

```
results_list = []

for learn_rate in learn_rate_list:
    for max_depth in max_depth_list:
        results_list.append(gbm_grid_search(learn_rate,max_depth))
```



We can put these results into a DataFrame as well and print out:

```
results_df = pd.DataFrame(results_list, columns=['learning_rate', 'max_depth', 'accuracy
print(results_df)
```

| learning_rate | max_depth | accuracy |
|---------------|-----------|----------|
| 0.001         | 4         | 0.75     |
| 0.001         | 6         | 0.75     |
| 0.01          | 4         | 0.77     |
| 0.01          | 6         | 0.76     |

#### How many models?

There were many more models built by adding more hyperparameters and values.

- The relationship is not linear, it is exponential
- One more value of a hyperparameter is not *just* one model
- 5 for Hyperparameter 1 and 10 for Hyperparameter 2 is 50 models!

What about cross-validation?

10-fold cross-validation would make 50x10 = 500 models!

What about adding more hyperparameters?

We could nest our loop!

```
# Adjust the list of values to test

learn_rate_list = [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5]

max_depth_list = [4,6,8, 10, 12, 15, 20, 25, 30]

subsample_list = [0.4,0.6, 0.7, 0.8, 0.9]

max_features_list = ['auto', 'sqrt']
```



Adjust our function:

```
def gbm_grid_search(learn_rate, max_depth, subsample, max_features):
    model = GradientBoostingClassifier(
        learning_rate=learn_rate,
        max_depth=max_depth,
        subsample=subsample,
        max_features=max_features)
    predictions = model.fit(X_train, y_train).predict(X_test)
    return([learn_rate, max_depth, accuracy_score(y_test, predictions)])
```

Adjusting our for loop (nesting):

How many models now?

• 7x9x5x2 = 630 (6,300 if cross-validated!)

We can't keep nesting forever!

Plus, what if we wanted:

- Details on training times & scores
- Details on cross-validation scores

#### **Introducing Grid Search**

Let's create a grid:

- Down the left all values of max\_depth
- Across the top all values of learning\_rate

|           | learn_rate |           |          |          |  |  |
|-----------|------------|-----------|----------|----------|--|--|
|           |            | 0.001     | 0.01     | 0.05     |  |  |
| max_depth | 4          | (4,0.001) | (4,0.01) | (4,0.05) |  |  |
|           | 6          | (6,0.001) | (6,0.01) | (6,0.05) |  |  |
|           | 8          | (8,0.001) | (8,0.01) | (8,0.05) |  |  |

#### **Introducing Grid Search**

Working through each cell on the grid:

|           | learn_rate |           |          |          |  |  |
|-----------|------------|-----------|----------|----------|--|--|
|           |            | 0.001     | 0.01     | 0.05     |  |  |
| max_depth | 4          | (4,0.001) | (4,0.01) | (4,0.05) |  |  |
|           | 6          | (6,0.001) | (6,0.01) | (6,0.05) |  |  |
|           | 8          | (8,0.001) | (8,0.01) | (8,0.05) |  |  |

(4,0.001) is equivalent to making an estimator like so:

GradientBoostingClassifier(max\_depth=4, learning\_rate=0.001)

#### **Grid Search Pros & Cons**

Some advantages of this approach:

#### Advantages:

- You don't have to write thousands of lines of code
- Finds the best model within the grid (\*special note here!)
- Easy to explain

#### **Grid Search Pros & Cons**

Some disadvantages of this approach:

- Computationally expensive! Remember how quickly we made 6,000+ models?
- It is 'uninformed'. Results of one model don't help creating the next model.

We will cover 'informed' methods later!

## Let's practice!

HYPERPARAMETER TUNING IN PYTHON



# Gid Search with Scikit Learn

HYPERPARAMETER TUNING IN PYTHON



Alex Scriven

Data Scientist



#### GridSearchCV Object

Introducing a GridSearchCV object:

```
sklearn.model_selection.GridSearchCV(
    estimator,
    param_grid, scoring=None, fit_params=None,
    n_jobs=None, iid='warn', refit=True, cv='warn',
    verbose=0, pre_dispatch='2*n_jobs',
    error_score='raise-deprecating',
    return_train_score='warn')
```

#### Steps in a Grid Search

#### Steps in a Grid Search:

- 1. An algorithm to tune the hyperparameters. (Sometimes called an 'estimator')
- 2. Defining which hyperparameters we will tune
- 3. Defining a range of values for each hyperparameter
- 4. Setting a cross-validation scheme; and
- 5. Define a score function so we can decide which square on our grid was 'the best'.
- 6. Include extra useful information or functions

### GridSearchCV Object Inputs

The important inputs are:

- estimator
- param\_grid
- CV
- scoring
- refit
- n\_jobs
- return\_train\_score

#### GridSearchCV 'estimator'

The estimator input:

- Essentially our algorithm
- You have already worked with KNN, Random Forest, GBM, Logistic Regression

#### Remember:

Only one estimator per GridSearchCV object

#### GridSearchCV 'param\_grid'

The param\_grid input:

Setting which hyperparameters and values to test

Rather than a list:

```
max_depth_list = [2, 4, 6, 8]
min_samples_leaf_list = [1, 2, 4, 6]
```

This would be:

#### GridSearchCV 'param\_grid'

The param\_grid input:

Remember: The keys in your param\_grid dictionary must be valid hyperparameters.

For example, for a Logistic regression estimator:

ValueError: Invalid parameter best\_choice for estimator LogisticRegression



#### GridSearchCV 'cv'

The cv input:

- Choice of how to undertake cross-validation
- Using an integer undertakes k-fold cross validation where 5 or 10 is usually standard



#### GridSearchCV 'scoring'

The scoring input:

- Which score to use to choose the best grid square (model)
- Use your own or Scikit Learn's metrics module

You can check all the built in scoring functions this way:

```
from sklearn import metrics
sorted(metrics.SCORERS.keys())
```

#### GridSearchCV 'refit'

The refit input:

- Fits the best hyperparameters to the training data
- Allows the GridSearchCV object to be used as an estimator (for prediction)
- A very handy option!

### GridSearchCV 'n\_jobs'

The n\_jobs input:

- Assists with parallel execution
- Allows multiple models to be created at the same time, rather than one after the other

Some handy code:

```
import os
print(os.cpu_count())
```

Careful using all your cores for modelling if you want to do other work!

#### GridSearchCV 'return\_train\_score'

The return\_train\_score input:

- Logs statistics about the training runs that were undertaken
- Useful for analyzing bias-variance trade-off but adds computational expense.
- Does not assist in picking the best model, only for analysis purposes

#### Building a GridSearchCV object

Building our own GridSearchCV Object:

```
# Create the grid
param_grid = {'max_depth': [2, 4, 6, 8], 'min_samples_leaf': [1, 2, 4, 6]}

#Get a base classifier with some set parameters.
rf_class = RandomForestClassifier(criterion='entropy', max_features='auto')
```

#### Building a GridSearchCv Object

Putting the pieces together:

```
grid_rf_class = GridSearchCV(
    estimator = rf_class,
    param_grid = parameter_grid,
    scoring='accuracy',
    n_jobs=4,
    cv = 10,
    refit=True,
    return_train_score=True)
```

#### Using a GridSearchCV Object

Because we set refit to True we can directly use the object:

```
#Fit the object to our data
grid_rf_class.fit(X_train, y_train)

# Make predictions
grid_rf_class.predict(X_test, y_test)
```



## Let's practice!

HYPERPARAMETER TUNING IN PYTHON



# Understanding a grid search output

HYPERPARAMETER TUNING IN PYTHON



Alex Scriven

Data Scientist



### Analyzing the output

Let's analyze the GridSearchCV outputs.

Three different groups for the GridSearchCV properties;

- A results log
  - o cv\_results\_
- The best results
  - o best\_index\_ , best\_params\_ & best\_index\_
- 'Extra information'
  - o scorer\_ , n\_splits\_ & refit\_time\_

#### Accessing object properties

Properties are accessed using the dot notation.

For example:

grid\_search\_object.property

Where property is the actual property you want to retrieve



#### The `.cv\_results\_` property

```
The cv_results_ property:
```

Read this into a DataFrame to print and analyze:

```
cv_results_df = pd.DataFrame(grid_rf_class.cv_results_)
print(cv_results_df.shape)
```

```
(12, 23)
```

• The 12 rows for the 12 squares in our grid or 12 models we ran

#### The `.cv\_results\_` 'time' columns

The test\_score columns contain the scores on our test set for each of our cross-folds as well as some summary statistics:

| split0_test_score | split1_test_score |     | mean_test_score | std_test_score |
|-------------------|-------------------|-----|-----------------|----------------|
| 0.72820401        | 0.7859811         | ••• | 0.76010401      | 0.02995142     |
| 0.73539669        | 0.7963085         | ••• | 0.76590708      | 0.02721413     |
| 0.72929381        | 0.78686003        |     | 0.7718143       | 0.02775648     |
| 0.72820401        | 0.78554164        | ••• | 0.77044862      | 0.02794597     |
| 0.72885789        | 0.78795869        |     | 0.77122424      | 0.03288053     |

# The .cv\_results\_ 'param\_' columns

The param\_ columns store the parameters it tested on that row, one column per parameter

| param_max_depth | param_min_samples_leaf | param_n_estimators |
|-----------------|------------------------|--------------------|
| 10              | 1                      | 100                |
| 10              | 1                      | 200                |
| 10              | 2                      | 100                |
| 10              | 2                      | 200                |
| 10              | 2                      | 300                |

#### The `.cv\_results\_` 'param' column

The params column contains dictionary of all the parameters:

```
pd.set_option("display.max_colwidth", -1)
print(cv_results_df.loc[:, "params"])
```

```
params
{'max_depth': 10, 'min_samples_leaf': 1, 'n_estimators': 100}
{'max_depth': 10, 'min_samples_leaf': 1, 'n_estimators': 200}
{'max_depth': 10, 'min_samples_leaf': 2, 'n_estimators': 100}
{'max_depth': 10, 'min_samples_leaf': 2, 'n_estimators': 200}
{'max_depth': 10, 'min_samples_leaf': 2, 'n_estimators': 300}
```

### The `.cv\_results\_` 'test\_score' columns

The test\_score columns contain the scores on our test set for each of our cross-folds as well as some summary statistics:

| split0_test_score | split1_test_score |     | mean_test_score | std_test_score |
|-------------------|-------------------|-----|-----------------|----------------|
| 0.72820401        | 0.7859811         | ••• | 0.76010401      | 0.02995142     |
| 0.73539669        | 0.7963085         | ••• | 0.76590708      | 0.02721413     |
| 0.72929381        | 0.78686003        |     | 0.7718143       | 0.02775648     |
| 0.72820401        | 0.78554164        | ••• | 0.77044862      | 0.02794597     |
| 0.72885789        | 0.78795869        |     | 0.77122424      | 0.03288053     |

### The `.cv\_results\_` 'rank\_test\_score' column

The rank column, ordering the mean\_test\_score from best to worst:

| rank_test_score |
|-----------------|
| 9               |
| 4               |
| 1               |
| 3               |
| 2               |

#### Extracting the best row

We can select the best grid square easily from cv\_results\_ using the rank\_test\_score column

```
best_row = cv_results_df[cv_results_df["rank_test_score"] == 1]
print(best_row)
```

| mean_fit_time | <br>params             | <br>mean_test_score | rank_test_score |
|---------------|------------------------|---------------------|-----------------|
| 0.97765441    | <br>{'max_depth': 10,  | <br>0.7718143       | 1               |
|               | 'min_samples_leaf': 2, |                     |                 |
|               | 'n_estimators': 200}   |                     |                 |

### The .cv\_results\_ 'train\_score' columns

The test\_score columns are then repeated for the training\_scores .

Some important notes to keep in mind:

- return\_train\_score must be True to include training scores columns.
- There is no ranking column for the training scores, as we only care about test set performance

#### The best grid square

Information on the best grid square is neatly summarized in the following three properties:

- best\_params\_, the dictionary of parameters that gave the best score.
- best\_score\_ , the actual best score.
- best\_index , the row in our cv\_results\_.rank\_test\_score that was the best.

# The `best\_estimator\_` property

The best\_estimator\_ property is an estimator built using the best parameters from the grid search.

For us this is a Random Forest estimator:

type(grid\_rf\_class.best\_estimator\_)

sklearn.ensemble.forest.RandomForestClassifier

We could also directly use this object as an estimator if we want!

#### The 'best\_estimator\_' property

```
print(grid_rf_class.best_estimator_)
```

#### Extra information

Some extra information is available in the following properties:

• scorer\_

What scorer function was used on the held out data. (we set it to AUC)

• n\_splits\_

How many cross-validation splits. (We set to 5)

refit\_time\_

The number of seconds used for refitting the best model on the whole dataset.

# Let's practice!

HYPERPARAMETER TUNING IN PYTHON

