1 Асимптотическая нормальность

Пусть заданы объекты из некоторого распределения:

$$\mathbf{X}^n = \{X_i\}_{i=1}^n,$$

где n число объектов.

Пусть задано некоторое открытое подмножество $\Theta \in \mathbb{R}^d$. Подмножество Θ задает множество статистических моделей $\mathcal{P}^n = \{P^n_\theta | \theta \in \Theta\}$. Пусть для каждого n существует мера P^n_0 которая доминирует все меры из множества \mathcal{P}^n . Пусть также все меры задаются своей плотностью p^n_θ .

Определение 1.1. Рассмотрим некоторую внутреннюю точку $\theta^* \in \Theta$ и последовательность $\delta_n \to 0$. Пусть существует вектор $\Delta_{\theta^*}^n$ и невырожденная матрица V_{θ^*} , такие, что последовательность $\{\Delta_{\theta^*}^n\}$ ограничена по вероятностной мере, а также для любого компакта $K \subset \mathbb{R}^d$ выполняется:

$$\sup_{h \in K} \left| \log \frac{p_{\theta^* + \delta_n h}^n}{p_{\theta^*}^n} (\boldsymbol{X}^n) - h^\mathsf{T} \boldsymbol{V}_{\theta^*} \Delta_{\theta^*}^n - \frac{1}{2} h^\mathsf{T} \boldsymbol{V}_{\theta^*} h \right| \stackrel{P_0^n}{\to} 0.$$

Тогда модель \mathcal{P}^n удовлетворяет условия локальной асимптотической нормальности в точке θ^* (local asymptotic normality).

Априорное распределение заданное на множестве Θ обозначим Π , а его плотность π . Предположим, что π положительно в некоторой окрестности точки θ^* .

Апостериорное распределение построенное на основе множестве объектов \mathbf{X}^n обозначим $\Pi_n(A|\mathbf{X}^n)$, где A некоторое борелевское множество. Будем обозначать случайную величину из апостериорного распределения как ϑ .

2 Теорема Бернштейна фон Мизеса

Теорема 1. Пусть для некоторой точки θ^* выполено условия локальной асимптотической нормальности (Onp.1.1). Пусть задано априорное распределение Π . Пусть для некоторой последовательности чисел $M_n \to \infty$ выполняется следующее условие:

$$P_0^n \Pi_n (||\vartheta - \theta^*|| > \delta_n M_n | \mathbf{X}^n) \to 0.$$
 (2.1)

Тогда последовательность апостериорных распределений сходится к последовательности нормальных:

$$\sup_{B} \left| \Pi_n \left(\frac{\vartheta - \theta^*}{\delta_n} \in B | \mathbf{X}^n \right) - N_{\Delta_{\theta^*}^n, V_{\theta^*}^{-1}} (B) \right| \stackrel{P_0^n}{\to} 0.$$

Доказательство. Апостериорное распределение для величины $H = \frac{\vartheta - \theta^*}{\delta_n}$ полученное для выборки \mathbf{X}^n обозначим Π_n . Также обозначим $N_{\Delta_{\theta^*}^n, V_{\theta^*}^{-1}}$ как Φ_n . Рассмотрим некоторый компакт $K \subset \mathbb{R}^d$. Рассмотрим условное апостериорное распределение:

$$\Pi_n^K(B|\mathbf{X}^n) = \Pi_n(B \cap K|\mathbf{X}^n)/\Pi_n(K|\mathbf{X}^n),$$

$$\Phi_n^K(B) = \Phi_n(B \cap K)/\Phi_n(K).$$

Рассмотрим некоторый компакт $K \subset \mathbb{R}^d$. Для любой окрестности $U(\theta^*) \subset \Theta$ существует некоторый номер n, такой, что $\theta^* + K\delta_n \subset U(\theta^*)$.

Рассмотрим функцию $f_n: K \times K \to \mathbb{R}$:

$$f_n(g,h) = \left(1 - \frac{\phi_n(h)s_n(g)\pi_n(g)}{\phi_n(g)s_n(h)\pi_n(h)}\right)_+,$$

где ϕ_n, π_n — распределение Φ_n и Π_n соответственно, s_n является отношением правдоподобия:

$$s_n(h) = \frac{p_{\theta^* + h\delta_n}^n}{p_{\theta^*}^n}.$$

Рассмотрим две произвольные последовательности $\{h_n\}, \{g_n\} \subset K$:

$$\log \frac{\phi_n(h_n)s_n(g_n)\pi_n(g_n)}{\phi_n(g_n)s_n(h_n)\pi_n(h_n)} =$$

$$= (g_n - h_n)^{\mathsf{T}} \mathbf{V}_{\theta^*} \Delta_{\theta^*}^n + \frac{1}{2} h^{\mathsf{T}} \mathbf{V}_{\theta^*} h_n - \frac{1}{2} g_n^{\mathsf{T}} \mathbf{V}_{\theta^*} g_n + o(1) -$$

$$= -\frac{1}{2} (h_n - \Delta_{\theta^*}^n)^{\mathsf{T}} \mathbf{V}_{\theta^*} (h_n - \Delta_{\theta^*}^n) + \frac{1}{2} (g_n - \Delta_{\theta^*}^n)^{\mathsf{T}} \mathbf{V}_{\theta^*} (g_n - \Delta_{\theta^*}^n) = o(1),$$

$$(2.2)$$

где первое слагаемое получено используя локальную асимптотическую нормальность (Oпp.1.1), а второе с плотности нормального распределения. Тогда из (2.2) получаем, что:

$$\sup_{a,h\in K} f_n(g,h) \xrightarrow{P_0}_{n\to\infty} 0. \tag{2.3}$$

Обозначим за Ξ_n событие, что $\Pi_n(K) > 0$. Рассмотрим некоторое $\eta > 0$, которое задает следующее множество:

$$\Omega_n = \{ \sup_{q,h \in K} f_n(g,h) \le \eta \}_*, \tag{2.4}$$

где * обозначает измеримое покрытие множества. Из (2.3) и (2.4) получаем следующее неравенство:

$$P_0^n || \Pi_n^K - \Phi_n^K || \mathbb{I}_{\Xi_n} \le P_0^n || \Pi_n^K - \Phi_n^K || \mathbb{I}_{\Xi_n \cap \Omega_n} + 2P_0^n || \Pi_n^K - \Phi_n^K || \mathbb{I}_{\Xi_n \setminus \Omega_n}, \tag{2.5}$$

где \mathbb{I}_{Ξ_n} — индикаторная функция, $||\cdot||$ является вариационной нормой (total-variational norm). Второе слагаемое равняется нулю в силу (2.3). Используя свойство данной нормы первое слагаемое принимает следующий вид:

$$\frac{1}{2}P_0^n||\Pi_n^K - \Phi_n^K||\mathbb{I}_{\Xi_n \cap \Omega_n} = P_0^n \int_K \left(1 - \frac{d\Phi_n^K}{d\Pi_n^K}\right)_+ d\Pi_n^K \mathbb{I}_{\Xi_n \cap \Omega_n} = \\
= P_0^n \int_K \left(1 - \int_K \frac{s_n(g)\pi_n(g)\phi_n^K(h)}{s_n(h)\pi_n(h)\phi_n^K(g)} d\Phi_n^K(g)\right)_+ d\Pi_n^K \mathbb{I}_{\Xi_n \cap \Omega_n}.$$

Используя неравенство Йенсена, а также (2.3) получаем следующее:

$$\frac{1}{2}P_0^n||\Pi_n^K - \Phi_n^K||\mathbb{I}_{\Xi_n \cap \Omega_n} \le P_0^n \int \left(1 - \frac{s_n(g)\pi_n(g)\phi_n^K(h)}{s_n(h)\pi_n(h)\phi_n^K(g)}\right)_+ d\Phi_n^K(g)d\Pi_n^K\mathbb{I}_{\Xi_n \cap \Omega_n} \le \eta.$$

Подставляя в (2.5) получаем, что для любого компакта $K \subset \mathbb{R}^d$ выполняется, что $P_0^n||\Pi_n^K - \Phi_n^K||\mathbb{I}_{\Xi_n} \to 0$.

Рассмотрим последовательность шаров $\{K_m\}$ с центом в нуле с радиусом M_m , причем $M_m \to \infty$.

Рассмотрим множество $\{\Xi_n|\Xi_n=\{\Pi_n(K_n)>0\}\}$, по условию теоремы (2.1) получим, что $P_0^n(\Xi_n)\to 0$. Также получаем, что $P_0^n||\Pi_n^{K_n}-\Phi_n^{K_n}||\to 0$.

Теперь рассмотрим $P_0^n||\Pi_n - \Phi_n||$:

$$|P_0^n||\Pi_n - \Phi_n|| \le |P_0^n||\Pi_n - \Pi_n^{K_n}|| + |P_0^n||\Phi_n - \Phi_n^{K_n}||$$

$$\le 2(\Pi(\mathbb{R}^d \setminus K_n)) + 2(\Phi(\mathbb{R}^d \setminus K_n)) \to 0,$$
(2.6)

так как увеличивая радиус компакта в бесконечность мы покроем все множество \mathbb{R}^d . Выражение (2.6) заканчивает доказательство данной теоремы.

Список литературы

[1] Kleijn, B. J. K., and van der Vaart, A. W. (2012). The Bernstein-Von-Mises theorem under misspecification. Electronic Journal of Statistics, 6, 354-381. https://doi.org/10.1214/12-EJS675