Type theory

 $\mathsf{Con}_- : \mathbb{N} \to \mathsf{Set}$

 $\mathsf{Ty}_{-} \hspace{1cm} : \mathbb{N} \to \mathsf{Con}_{i} \to \mathsf{Set}$ $\mathsf{Sub} \hspace{1cm} : \mathsf{Con}_{i} \to \mathsf{Con}_{i} \to \mathsf{Set}$

 $\mathsf{Tm} \qquad : (\Gamma : \mathsf{Con}_i) \to \mathsf{Ty}_j \, \Gamma \to \mathsf{Set}$

Substitution calculus

· : Con_0

 $- \triangleright - \qquad : (\Gamma : \mathsf{Con}_i) \to \mathsf{Ty}_j \, \Gamma \to \mathsf{Con}_{i \sqcup j}$

-[-] : $\mathsf{Ty}_j \Delta \to \mathsf{Sub} \Gamma \Delta \to \mathsf{Ty}_j \Gamma$

 $\mathsf{id} \qquad : \mathsf{Sub}\,\Gamma\,\Gamma$

 $- \circ - \qquad : \operatorname{\mathsf{Sub}}\nolimits \Theta \, \Delta \to \operatorname{\mathsf{Sub}}\nolimits \Gamma \, \Theta \to \operatorname{\mathsf{Sub}}\nolimits \Gamma \, \Delta$

 ϵ : Sub Γ ·

 $-,- \qquad : (\sigma : \operatorname{\mathsf{Sub}}\nolimits \Gamma \Delta) \to \operatorname{\mathsf{Tm}}\nolimits \Gamma \left(A[\sigma] \right) \to$

 $\mathsf{Sub}\,\Gamma\,(\Delta\triangleright A)$

 π_1 : $\operatorname{Sub}\Gamma(\Delta \triangleright A) \to \operatorname{Sub}\Gamma\Delta$

 $\pi_2 \qquad \qquad : (\sigma : \mathsf{Sub}\,\Gamma\,(\Delta \triangleright A)) \to \mathsf{Tm}\,\Gamma\,(A[\pi_1\,\sigma])$

 $-[-] \hspace{1cm} : \operatorname{Tm} \Delta \, A \to (\sigma : \operatorname{Sub} \Gamma \, \Delta) \to \operatorname{Tm} \Gamma \, (A[\sigma])$

 $[\mathsf{id}] \qquad : A[\mathsf{id}] = A$

 $[\circ] : A[\sigma \circ \delta] = A[\sigma][\delta]$

ass : $(\sigma \circ \delta) \circ \nu = \sigma \circ (\delta \circ \nu)$

idl : $id \circ \sigma = \sigma$

 $\mathsf{idr} \qquad : \sigma \circ \mathsf{id} = \sigma$

 $\cdot \eta$: $(\sigma : \mathsf{Sub}\,\Gamma \cdot) = \epsilon$

 $\triangleright \beta_1 \qquad : \pi_1(\sigma, t) = \sigma$ $\triangleright \beta_2 \qquad : \pi_2(\sigma, t) = t$

 $\triangleright \eta \qquad : (\pi_1 \, \sigma, \pi_2 \, \sigma) = \sigma$

 $, \circ \qquad : (\sigma, t) \circ \delta = (\sigma \circ \delta, t[\delta])$

Function space

 $\Pi \qquad \qquad : (A: \mathsf{Ty}_i \, \Gamma) \to \mathsf{Ty}_j \, (\Gamma \triangleright A) \to \mathsf{Ty}_{i \sqcup j} \, \Gamma$

 $\mathsf{lam} \qquad : \mathsf{Tm} \, (\Gamma \triangleright A) \, B \to \mathsf{Tm} \, \Gamma \, (\Pi \, A \, B)$

 $\mathsf{app} \qquad : \mathsf{Tm}\,\Gamma\,(\Pi\,A\,B) \to \mathsf{Tm}\,(\Gamma \triangleright A)\,B$

 $\Pi \beta$: app $(\operatorname{lam} t) = t$ $\Pi \eta$: $\operatorname{lam} (\operatorname{app} t) = t$ $\Pi[] \hspace{1cm} : (\Pi \, A \, B)[\sigma] = \Pi \, (A[\sigma]) \, (B[\sigma^{\uparrow}])$

 $\operatorname{lam}[] \qquad : (\operatorname{lam} t)[\sigma] = \operatorname{lam} (t[\sigma^\uparrow])$

Sigma

 $\Sigma \qquad \qquad : (A: \mathsf{Ty}_i \, \Gamma) \to \mathsf{Ty}_j \, (\Gamma \triangleright A) \to \mathsf{Ty}_{i \sqcup j} \, \Gamma$

 $-,- \qquad : (u:\operatorname{Tm}\Gamma\,A) \to \operatorname{Tm}\Gamma\,(B[\langle u\rangle]) \to$

 $\mathsf{Tm}\,\Gamma\,(\Sigma\,A\,B)$

 $\operatorname{proj}_1 : \operatorname{Tm}\Gamma(\Sigma AB) \to \operatorname{Tm}\Gamma A$

 $\operatorname{proj}_2 \qquad : (t: \operatorname{Tm}\Gamma\left(\Sigma \, A \, B)\right) \to \operatorname{Tm}\Gamma\left(B[\langle \operatorname{proj}_1 u \rangle]\right)$

$$\begin{split} \Sigma \beta_1 & : \operatorname{proj}_1\left(u,v\right) = u \\ \Sigma \beta_2 & : \operatorname{proj}_2\left(u,v\right) = v \end{split}$$

 $\Sigma \eta$: $(\operatorname{proj}_1 t, \operatorname{proj}_2 t) = t$

 $\Sigma[] \hspace{1cm} : (\Sigma \, A \, B)[\sigma] = \Sigma \, (A[\sigma]) \, (B[\sigma^{\uparrow}])$

, [] $: (u,v)[\sigma] = (u[\sigma],v[\sigma])$

Unit

 $\top \qquad : \mathsf{Ty}_0\,\Gamma$

 $\mathsf{tt} \qquad : \mathsf{Tm}\,\Gamma\,\top$

 $\top \eta$: $(t : \mathsf{Tm}\,\Gamma\,\top) = \mathsf{tt}$

 $\top[] \hspace{1cm} : \top[\sigma] = \top$

 $\mathsf{tt}[] \qquad : \mathsf{tt}[\sigma] = \mathsf{tt}$

Empty

 \perp : Ty₀ Γ

 $\mathsf{abort} \qquad : \mathsf{Tm}\,\Gamma\,\bot \to \mathsf{Tm}\,\Gamma\,C$

 $\bot[] \hspace{1cm} : \bot[\sigma] = \bot$

abort[] : $(abort t)[\sigma] = abort (t[\sigma])$

Coquand universes

 $\mathsf{U}_{-} \qquad : (i:\mathbb{N}) \to \mathsf{Ty}_{i+1} \, \Gamma$

 $\mathsf{EI} \qquad : \mathsf{Tm}\,\Gamma\,\mathsf{U}_i \to \mathsf{Ty}_i\,\Gamma$

c : $\operatorname{Ty}_i \Gamma \to \operatorname{Tm} \Gamma \operatorname{U}_i$

 $\mathsf{U}\beta \qquad \quad :\mathsf{El}\,(\mathsf{c}\,A)=A$

 $U\eta$: c(EIa) = aU[] : $U_i[\sigma] = U_i$

 $\mathsf{EI}[] \qquad : (\mathsf{EI}\,a)[\sigma] = \mathsf{EI}\,(a[\sigma])$

Booleans

Bool : Ty_0

true : $\mathsf{Tm}\,\Gamma\,\mathsf{Bool}$ false : $\mathsf{Tm}\,\Gamma\,\mathsf{Bool}$

 $\text{if} \qquad \qquad : (P: \mathsf{Ty}_i \, (\Gamma \rhd \mathsf{Bool})) \to \mathsf{Tm} \, \Gamma \, (P[\langle \mathsf{true} \rangle]) \to$

 $\operatorname{\mathsf{Tm}}\Gamma\left(P[\langle\operatorname{\mathsf{false}}\rangle]\right) \to (t:\operatorname{\mathsf{Tm}}\Gamma\operatorname{\mathsf{Bool}}) \to$

 $\operatorname{\mathsf{Tm}}\Gamma\left(P[\langle t \rangle]\right)$

 $\mathsf{Bool}\beta_{\mathsf{true}}\,:\mathsf{if}\,P\,u\,v\,\mathsf{true}=u$

 $\mathsf{Bool}\beta_{\mathsf{false}}: \mathsf{if}\,P\,u\,v\,\mathsf{false} = v$

 $\mathsf{Bool}[] \qquad : \mathsf{Bool}[\sigma] = \mathsf{Bool}$

 $\mathsf{true}[]$: $\mathsf{true}[\sigma] = \mathsf{true}$ $\mathsf{false}[]$: $\mathsf{false}[\sigma] = \mathsf{false}$

if[] : $(if P u v t)[\sigma] = if (P[\sigma^{\uparrow}]) (u[\sigma]) (v[\sigma]) (t[\sigma])$

Abbreviations

 $\mathsf{wk} \qquad : \mathsf{Sub} \left(\Gamma \triangleright A \right) \Gamma := \pi_1 \, \mathsf{id}$

vz : $\mathsf{Tm}\,(\Gamma \triangleright A)\,(A[\mathsf{wk}]) := \pi_2\,\mathsf{id}$

 $\operatorname{vs} \qquad \qquad (t:\operatorname{Tm}\Gamma\,A):\operatorname{Tm}\left(\Gamma\triangleright B\right)(A[\operatorname{wk}]):=t[\operatorname{wk}]$

 $\langle -\rangle \qquad \qquad (t: \operatorname{Tm}\Gamma\,A): \operatorname{Sub}\Gamma\,(\Gamma \triangleright A) := (\operatorname{id},t)$

 $-^{\uparrow}$ $(\sigma : \mathsf{Sub}\,\Gamma\,\Delta) : \mathsf{Sub}\,(\Gamma \triangleright A[\sigma])\,(\Delta \triangleright A) :=$

 $(\sigma \circ \mathsf{wk}, \mathsf{vz})$

 $[\mathsf{id}] \qquad : t[\mathsf{id}] = t$

 $[\circ] : t[\sigma \circ \delta] = t[\sigma][\delta]$

 $\pi_1 \circ \qquad : (\pi_1 \, \sigma) \circ \delta = \pi_1 \, (\sigma \circ \delta)$

 $\pi_2[]$: $(\pi_2 \sigma)[\delta] = \pi_2 (\sigma \circ \delta)$

 $\mathsf{app}[] \qquad : (\mathsf{app}\,t)[\sigma^\uparrow] = \mathsf{app}\,(t[\sigma])$

 $- \Rightarrow - \quad : (A\,B: \mathsf{Ty}_i\,\Gamma) \to \mathsf{Ty}_{i\sqcup j}\,\Gamma := \Pi\,A\,(B[\mathsf{wk}])$

 $-\,\$\,-\qquad :(t:\operatorname{Tm}\Gamma\,(\Pi\,A\,B))(u:\operatorname{Tm}\Gamma\,A):$

 $\operatorname{Tm}\Gamma\left(B[\langle u\rangle]\right):=(\operatorname{app}t)[\langle u\rangle]$

 $\$\beta \qquad \qquad : (\operatorname{lam} t)\,\$\,u = t[\langle u \rangle]$

 $\$\eta \qquad \qquad : \mathsf{lam}\left(t[\mathsf{wk}]\,\$\,\mathsf{vz}\right) = t$

 $\mathsf{proj}_1[] \qquad : (\mathsf{proj}_1\,t)[\sigma] = \mathsf{proj}_1\,(t[\sigma])$

 $\mathsf{proj}_2[] \qquad : (\mathsf{proj}_2\,t)[\sigma] = \mathsf{proj}_2\,(t[\sigma])$

 $c[] \qquad : (c A)[\sigma] = c (A[\sigma])$