Name: Adithisri Vishwanath Register number: 2022116013

Department: Biomedical Engineering

Project Report: Breast Cancer Classification using MLP and Streamlit

Predicting Malignant vs. Benign Breast Cancer Cases Using MLP Classifier

Objective

To build a machine learning model that predicts whether a breast cancer tumor is malignant or benign using diagnostic image-derived features and deploy it via a web app for interactive predictions.

Steps and What I Did

1. Data Loading & Understanding

- Loaded the Breast Cancer Wisconsin Diagnostic dataset from sklearn.datasets.
- Examined the shape, feature names, target classes, and distribution.
- Understood that the dataset contains 569 samples and 30 numerical features related to cell nuclei.

2. Data Preprocessing

- Split the dataset into training (80%) and testing (20%) sets using train_test_split.
- Applied StandardScaler to normalize the input features critical for MLP model convergence.

3. Model Building

- Initialized and trained an MLPClassifier with two hidden layers (64 and 32 neurons).
- Chose ReLU activation and Adam optimizer.
- Set training iterations to 500 to allow convergence.

4. Model Evaluation

- Evaluated performance using metrics like precision, recall, accuracy, and F1-score.
- Created a confusion matrix to understand prediction distribution.
- Achieved a test accuracy of ~97%, with strong precision/recall values.

5. Saving the Model

 Used joblib to save both the trained model (mlp_2layer_model.pkl) and the scaler (scaler.pkl) for later use.

6. Building the Web App

- Developed a **Streamlit app** with 30 input fields, one for each feature.
- Loaded the model and scaler to make real-time predictions based on user input.
- The app provides clear feedback: **Benign or Malignant** prediction.
- https://qnq9i8mfkcpgin95dkvfxh.streamlit.app/" url for the app

Key Learnings from the Project

- MLP Classifier Effectiveness: MLP can yield high accuracy for classification tasks if preprocessing and architecture are well-tuned.
- **Importance of Scaling**: Feature scaling with StandardScaler is essential for neural network models to avoid convergence issues.
- **Model Deployment**: Streamlit offers a powerful and simple way to turn Python models into interactive apps.
- Evaluation Matters: Relying only on accuracy is misleading metrics like precision, recall, and F1-score provide deeper insights, especially in medical applications where false negatives can be dangerous.

Key Takeaways from the Course

- A clear ML pipeline—from data cleaning to model deployment—is crucial for any machine learning solution.
- Scikit-learn's versatility with preprocessing, modeling, and evaluation tools simplifies model development.
- Model interpretability and evaluation should be prioritized alongside accuracy.
- Hands-on projects help build real-world problem-solving skills beyond theory.
- Confidence gained in using libraries like Streamlit, joblib, and understanding the logic behind model selection, training, and testing.

Conclusion

This project not only improved my technical skills in machine learning but also strengthened my ability to deliver end-to-end solutions — from understanding raw data to deploying an accessible app for users. It also emphasized the importance of ethical AI in healthcare by minimizing prediction errors, especially false negatives.