Digital filtering Signal processing

Dell'Aria Doriano

Goffaux Lionel

October 21, 2020 Academic Year 2020-2021 Bachelor's degree in Computer Science

Faculté des Sciences, Université de Mons

1 Approximation of second order filters

Band-pass filter:

- 1. Finding θ : we computed $\theta = \frac{f}{2\pi}Fe = 1.88$.
- 2. Finding ρ : we fixed K = 1 and we drawn this graph representing the height differency between $\{120\text{Hz},121\text{Hz}\}$ and $\{119\text{Hz},120\text{Hz}\}$.

we fixed $\rho = 0.87$

3. Finding K : we computed $K = \frac{1}{A_{120Hz}} = 0.2432$.

The transfer function of the pass-band filter is

$$H(Z) = K \frac{1 - \cos(\theta) Z^{-1}}{1 - 2\rho \cos(\theta) Z^{-1} + \rho^2 Z^{-2}}$$

where K = 0.2432, $\rho = 0.87$ and $\theta = 1.88$.

Stop-band filter:

- 1. Finding θ : we computed $\theta = \frac{50}{2\pi} Fe = 0.78$.
- 2. Finding ρ : we fixed K = 1 and we drawn this graph representing the attenuation at 49.9 Hz and 50.1 Hz. We want to attenuate these frequency at -47dB

we fixed $\rho = 0.56$

3. Finding K : we computed $K = \frac{1}{A_{120Hz}} = 0.6713$.

The transfer function of the stop-band filter is

$$H(Z) = K \frac{1 - 2\cos(\theta)Z^{-1} + Z^{-2}}{1 - 2\rho\cos(\theta)Z^{-1} + \rho^2 Z^{-2}}$$

where K = 0.6714, $\rho = 0.56$ and $\theta = 0.78$.