Кафедра дискретной математики МФТИ

Курс математической статистики

Игашов Илья, 593 групппа

Задание №2

№1. (К теоретической задаче 1)

Сгенерируйте выборку X_1,\ldots,X_N из равномерного распределения на отрезке $[0,\theta]$ для $N=10^4$. Для всех $n\leq N$ посчитайте оценки параметра θ из теоретической задачи: $2\bar{X},\ \bar{X}+\frac{X_{(n)}}{2},\ (n+1)X_{(1)},\ X_{(1)}+X_{(n)},\ \frac{n+1}{n}X_{(n)}.$ Постройте на одном графике разными цветами для всех оценок функции модуля разности оценки и истинного значения θ в зависимости от n. Если некоторые оценки (при фиксированном значении θ) сильно отличаются от истинного значения параметра θ , то исключите их и постройте еще один график со всеми кривыми (для измененного значения θ). Для избавления от больших значений разности в начале ограничьте масштаб графика. Для наглядности точки можно соединить линиями. Какая оценка получилась лучше (в смысле упомянутого модуля разности при n=N)? Проведите эксперимент для разных значений θ (количество графиков равно количеству значений θ).

In [1]:

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import uniform
%matplotlib inline
```

In [2]:

```
N = 10000

# Сгенерируем выборку для theta = 1.
theta = 1
sample = uniform.rvs(size=N, scale=theta)
```

In [3]:

```
# Посчитаем оценки для каждого n.

sample_mean = sample.cumsum() * [2 / n for n in range(1, N + 1, 1)]

sample_mean_max = sample.cumsum() / [n for n in range(1, N + 1, 1)] +

[np.max(sample[: n + 1])/2 for n in range(N)]

koeff_min = np.array([(n + 1) * np.min(sample[: n]) for n in range(1, N + 1,

1)])

min_max = np.array([np.min(sample[: n + 1]) + np.max(sample[: n + 1]) for n in range(N)])

koeff_max = np.array([(n + 1) / n * np.max(sample[: n]) for n in range(1, N + 1, 1)])
```

```
# Построим график функции модуля разности оценкии и истинного значения theta.
plt.figure(figsize=(10, 5))
plt.plot(np.linspace(1., N, N), abs(sample_mean - theta), label='sample_mean')
plt.plot(np.linspace(1., N, N), abs(sample mean max - theta), label='sample mean
max')
plt.plot(np.linspace(1., N, N), abs(koeff_min - theta), label='koeff_min')
plt.plot(np.linspace(1., N, N), abs(min max - theta), label='min max')
plt.plot(np.linspace(1., N, N), abs(koeff_max - theta), label='koeff_max')
plt.ylim(-100, 100)
plt.title(r'Difference between estimations and $\theta$. Scale 1')
plt.xlabel(r'Size of sample', fontsize='10')
plt.ylabel(r'$|\theta^*(X) - \theta|$', fontsize='10')
plt.grid()
plt.legend(fontsize=10, loc=3)
plt.show()
plt.figure(figsize=(10, 5))
plt.plot(np.linspace(1., N, N), abs(sample_mean - theta), label='sample_mean')
plt.plot(np.linspace(1., N, N), abs(sample_mean_max - theta), label='sample_mean
max')
plt.plot(np.linspace(1., N, N), abs(koeff min - theta), label='koeff min')
plt.plot(np.linspace(1., N, N), abs(min max - theta), label='min max')
plt.plot(np.linspace(1., N, N), abs(koeff max - theta), label='koeff max')
plt.ylim(-10, 10)
plt.title(r'Difference between estimations and $\theta$. Scale 2')
plt.xlabel(r'Size of sample', fontsize='10')
plt.ylabel(r'$|\theta^*(X) - \theta|$', fontsize='10')
plt.grid()
plt.legend(fontsize=10, loc=3)
plt.show()
plt.figure(figsize=(10, 5))
plt.plot(np.linspace(1., N, N), abs(sample_mean - theta), label='sample_mean')
plt.plot(np.linspace(1., N, N), abs(sample mean max - theta), label='sample mean
max')
plt.plot(np.linspace(1., N, N), abs(koeff_min - theta), label='koeff min')
plt.plot(np.linspace(1., N, N), abs(min_max - theta), label='min max')
plt.plot(np.linspace(1., N, N), abs(koeff max - theta), label='koeff max')
plt.ylim(-0.5, 0.5)
plt.title(r'Difference between estimations and $\theta$. Scale 3')
plt.xlabel(r'Size of sample', fontsize='10')
plt.ylabel(r'|\theta^*(X) - \theta^*(X)|) fontsize='10')
plt.grid()
plt.legend(fontsize=10, loc=3)
plt.show()
```


Исключим из дальнейших экспериментов оценку $(n+1)X_{(1)}$, поскольку эта оценка сильно отличается от истинного значения θ .

In [5]:

```
# Сгенерируем выборку для значения theta = 10.
theta = 10
sample = uniform.rvs(size=N, scale=theta)
```

In [6]:

```
# Посчитаем оценки для каждого n (koeff_min считать не будем).

sample_mean = sample.cumsum() * [2 / n for n in range(1, N + 1, 1)]

sample_mean_max = sample.cumsum() / [n for n in range(1, N + 1, 1)] +

[np.max(sample[: n + 1])/2 for n in range(N)]

min_max = np.array([np.min(sample[: n + 1]) + np.max(sample[: n + 1]) for n in range(N)])

koeff_max = np.array([(n + 1) / n * np.max(sample[: n]) for n in range(1, N + 1, 1)])
```

```
# Построим график функции модуля разности оценкии и истинного значения theta.
plt.figure(figsize=(10, 5))
plt.plot(np.linspace(1., N, N), abs(sample_mean - theta), label='sample_mean')
plt.plot(np.linspace(1., N, N), abs(sample mean max - theta), label='sample mean
max')
plt.plot(np.linspace(1., N, N), abs(min_max - theta), label='min_max')
plt.plot(np.linspace(1., N, N), abs(koeff max - theta), label='koeff max')
plt.ylim(-2, 2)
plt.title(r'Difference between estimations and $\theta$. Scale 1')
plt.xlabel(r'Size of sample', fontsize='10')
plt.ylabel(r'$|\theta^*(X) - \theta|$', fontsize='10')
plt.grid()
plt.legend(fontsize=10, loc=3)
plt.show()
plt.figure(figsize=(10, 5))
plt.plot(np.linspace(1., N, N), abs(sample mean - theta), label='sample mean')
plt.plot(np.linspace(1., N, N), abs(sample mean max - theta), label='sample mean
plt.plot(np.linspace(1., N, N), abs(min_max - theta), label='min_max')
plt.plot(np.linspace(1., N, N), abs(koeff_max - theta), label='koeff max')
plt.ylim(-0.5, 0.5)
plt.title(r'Difference between estimations and $\theta$. Scale 2')
plt.xlabel(r'Size of sample', fontsize='10')
plt.ylabel(r'|\theta^*(X) - \theta^*(X)|) fontsize='10')
plt.grid()
plt.legend(fontsize=10, loc=3)
plt.show()
plt.figure(figsize=(10, 5))
plt.plot(np.linspace(1., N, N), abs(sample_mean - theta), label='sample_mean')
plt.plot(np.linspace(1., N, N), abs(sample mean max - theta), label='sample mean
max')
plt.plot(np.linspace(1., N, N), abs(min max - theta), label='min max')
plt.plot(np.linspace(1., N, N), abs(koeff max - theta), label='koeff max')
plt.ylim(-0.05, 0.05)
plt.title(r'Difference between estimations and $\theta$. Scale 3')
plt.xlabel(r'Size of sample', fontsize='10')
plt.ylabel(r'$|\theta^*(X) - \theta|$', fontsize='10')
plt.grid()
plt.legend(fontsize=10, loc=3)
plt.show()
```


Уберем из рассмотрения еще две оценки: $2\bar{X},\ \bar{X}+\frac{X_{(n)}}{2}.$

In [8]:

```
# Сгенерируем выборку для значения theta = 77.
theta = 77
sample = uniform.rvs(size=N, scale=theta)
```

In [9]:

```
# Посчитаем оценки для каждого n (убрали sample_mean u sample_mean_max). 
\min_{n} = \min_{n} ([np.min(sample[: n + 1]) + np.max(sample[: n + 1])  for n in range(N)]) 
koeff_max = np.array([(n + 1) / n * np.max(sample[: n]) for n in range(1, N + 1, 1)])
```

```
# Построим график функции модуля разности оценкии и истинного значения theta.
plt.figure(figsize=(10, 5))
plt.plot(np.linspace(1., N, N), abs(min_max - theta), label='min_max')
plt.plot(np.linspace(1., N, N), abs(koeff max - theta), label='koeff max')
plt.ylim(-2, 2)
plt.title(r'Difference between estimations and $\theta$. Scale 1')
plt.xlabel(r'Size of sample', fontsize='10')
plt.ylabel(r'|\theta^*(X) - \theta^*(X)|) fontsize='10')
plt.grid()
plt.legend(fontsize=10, loc=3)
plt.show()
plt.figure(figsize=(10, 5))
plt.plot(np.linspace(1., N, N), abs(min_max - theta), label='min_max')
plt.plot(np.linspace(1., N, N), abs(koeff max - theta), label='koeff max')
plt.ylim(-0.5, 0.5)
plt.title(r'Difference between estimations and $\theta$. Scale 2')
plt.xlabel(r'Size of sample', fontsize='10')
plt.ylabel(r'$|\theta^*(X) - \theta|$', fontsize='10')
plt.grid()
plt.legend(fontsize=10, loc=3)
plt.show()
plt.figure(figsize=(10, 5))
plt.plot(np.linspace(1., N, N), abs(min_max - theta), label='min_max')
plt.plot(np.linspace(1., N, N), abs(koeff max - theta), label='koeff max')
plt.ylim(-0.25, 0.25)
plt.title(r'Difference between estimations and $\theta$. Scale 3')
plt.xlabel(r'Size of sample', fontsize='10')
plt.ylabel(r'$|\theta^*(X) - \theta|$', fontsize='10')
plt.grid()
plt.legend(fontsize=10, loc=3)
plt.show()
```


In [11]:

```
# Сгенерируем еще для значения theta = 0.5.
theta = 0.5
sample = uniform.rvs(size=N, scale=theta)
```

In [12]:

```
# Посчитаем оценки для каждого n.

min_max = np.array([np.min(sample[ : n + 1]) + np.max(sample[ : n + 1]) for n in range(N)])

koeff_max = np.array([(n + 1) / n * np.max(sample[ : n]) for n in range(1, N + 1, 1)])
```

```
# Построим график функции модуля разности оценкии и истинного значения theta.
plt.figure(figsize=(10, 5))
plt.plot(np.linspace(1., N, N), abs(min_max - theta), label='min_max')
plt.plot(np.linspace(1., N, N), abs(koeff max - theta), label='koeff max')
plt.ylim(-0.02, 0.02)
plt.title(r'Difference between estimations and $\theta$. Scale 1')
plt.xlabel(r'Size of sample', fontsize='10')
plt.ylabel(r'|\theta^*(X) - \theta^*(X)|) fontsize='10')
plt.grid()
plt.legend(fontsize=10, loc=3)
plt.show()
plt.figure(figsize=(10, 5))
plt.plot(np.linspace(1., N, N), abs(min_max - theta), label='min_max')
plt.plot(np.linspace(1., N, N), abs(koeff max - theta), label='koeff max')
plt.ylim(-0.0025, 0.0025)
plt.title(r'Difference between estimations and $\theta$. Scale 2')
plt.xlabel(r'Size of sample', fontsize='10')
plt.ylabel(r'$|\theta^*(X) - \theta|$', fontsize='10')
plt.grid()
plt.legend(fontsize=10, loc=3)
plt.show()
plt.figure(figsize=(10, 5))
plt.plot(np.linspace(1., N, N), abs(min_max - theta), label='min_max')
plt.plot(np.linspace(1., N, N), abs(koeff max - theta), label='koeff max')
plt.ylim(-0.001, 0.001)
plt.title(r'Difference between estimations and $\theta$. Scale 3')
plt.xlabel(r'Size of sample', fontsize='10')
plt.ylabel(r'$|\theta^*(X) - \theta|$', fontsize='10')
plt.grid()
plt.legend(fontsize=10, loc=3)
plt.show()
```


Вывод:

Самой плохой оказалась оценка $(n+1)X_{(1)}$, поэтому из всех экспериментов, кроме первого, она была исключена. Также оценки $2\bar{X},\ \bar{X}+\frac{X_{(n)}}{2}$ оказались не очень точными (видно из графиков экспериментов 1 и 2), поэтому они также были исключены из последующих измерений. Самыми точными (в смысле упомянутого модуля разности при n=N) оказались оценки $X_{(1)}+X_{(n)},\ \frac{n+1}{n}X_{(n)}.$