۴ نوبت چهارم

تمرین ۱۵:

 $\phi(x,a)$ عنصر $t\in M$ وا روی مجموعهی $A\subseteq M$ حبری میخوانند هرگاه فرمولی چون $t\in M$. ۱ در زبان L(A) موجود باشد، به طوری که مجموعهی زیر متناهی باشد

$$\phi(M, a) = \{ m \in M | M \models \phi(m, a) \}$$

و p(x) نیز تایپ p(x) را جبری میخوانند هرگاه تنها تعداد متناهی عنصر آن را برآورده کنند. نشان دهید که عنصر t روی t جبری است اگروتنهااگر t تایپی جبری باشد.

 $B\supseteq A$ جبری است اگروتنهااگر برای هر مجموعه . ۲ نشان دهید که تایپ $p(x)\in S(A)$ جبری است اگروتنهااگر برای هر مجموعه . $p\subseteq q$ موجود باشند که $q\in S(B)$

تمرین ۱۶: به طور مستقیم (و بدون بحث توپولوژیک) نشان دهید که اگر در یک تئوری، تعداد تایپها متناهی باشد، آنگاه همه ی آن تایپها ایزوله اند (یعنی هر یک، تنها از یک فرمول نتیجه می شود). au تمرین ۱۷: (در یک زبان شمارا) به طور مستقیم (و بدون بحث توپولوژیک) نشان دهید که اگر در یک تئوری T داشته باشیم $S_n(T)$ آنگاه $S_n(T)$ آنگاه $S_n(T)$ آنگاه $S_n(T)$

تمرین ۱۸: فرض کنید $T = \operatorname{Th}(\mathbb{R}, \mathbb{Q}, <)$ که در آن \mathbb{Q} محمولی برای اعداد گویاست. آیا این تئوری، مدل اول دارد؟

تمرین ۱۹: فرض کنید $\{p_s|s\in \Upsilon^{<\omega}\}$ که در آن $\Upsilon^{<\omega}$ مجموعهی همهی دنبالههای متناهی ساخته شده با و ۱۹ است و هر p_s یک محمول. T نوشته شده با اصول زیر بیان می کند که این محمولها جهان را به صورت دوجملهای تجزیه می کنند:

- $\forall x \quad p_{\emptyset}(x) \bullet$
- $\exists x \quad p_s(x) \bullet$
- $\forall x \quad (p_s.(x) \lor p_{s}.(x) \leftrightarrow p_s(x)) \bullet$
 - $\forall x \neg (p_s,(x) \land p_{s},(x)) \bullet$

نشان دهید که T کامل و دارای حذف سور است. نیز نشان دهید که در این تئوری، هیچ فرمولی هیچ تایپی را ایزوله نمی کند و این تئوری مدل اول ندارد.