MATH 321: Test 2 Study Guide

Lecture 1 – Random Samples and Common Statistics (5.5)

Basic concepts of random samples

- Random sample definition: X_1, \ldots, X_n are a random sample of size n from the population f(x) if they are iid random variables.
- Statistic (estimator) definition: The random variable / vector for any function of a random sample $Y = T(X_1, ..., X_n)$ is called a statistic, and it's distribution is called a sampling distribution.

Sample mean and variance

- Definitions
 - Sample mean: The arithmetic average of the values in a random sample

$$\bar{X} = \frac{X_1 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i$$

- Sample variance: The statistic defined by $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2$
- Sample standard deviation: The statistic defined by $S = \sqrt{S^2}$
- Theorem: Let X_1, \ldots, X_n be a random sample of size n from a population with mean μ and variance $\sigma^2 < \infty$. Then

(a)
$$\mu_{\bar{X}}=E(\bar{X})=\mu$$
 (b) $\sigma_{\bar{X}}^2=V(\bar{X})=\frac{\sigma^2}{n}$ (c) $E(S^2)=\sigma^2$

• Sampling distribution of \bar{X} from random sample X_1, \dots, X_n

Theorem: Mgf of the sample mean is $M_{\bar{X}}(t) = [M_X(t/n)]^n$

Sampling from the normal distribution

• Let X_1, \ldots, X_n be a random sample of size n from a Normal (μ, σ^2) distribution. Then

(a)
$$\bar{X} \perp \!\!\!\perp S^2$$
 (b) $\bar{X} \sim \text{Normal}(\mu, \frac{\sigma^2}{n})$ (c) $\frac{(n-1)}{\sigma^2} S^2 \sim \chi^2 (n-1)$

Chi-square random variables

- If $Z \sim \text{Normal}(0,1)$, then $Z^2 \sim \chi^2(1) \rightarrow \left(\frac{\bar{X} \mu}{\sigma}\right)^2 = Z^2 \sim \chi^2(1)$
- Additive df: If X_1, \ldots, X_n are mutually independent and $X_i \sim \chi^2(r_i)$ for $i = 1, \ldots, n$, then $Y = X_1 + \cdots + X_n \sim \chi^2(r_1 + \cdots + r_n)$
- Result / extension of this: If X_1, \ldots, X_n are mutually independent random variables with $X_i \sim \text{Normal}(\mu_i, \sigma_i)$ for $i = 1, \ldots, n$, then

1

$$\sum_{i=1}^{n} \left(\frac{\bar{X} - \mu}{\sigma}\right)^2 = \sum_{i=1}^{n} Z^2 \sim \chi^2(n)$$

t distribution

• Definition: Let X_1, \ldots, X_n be a random sample from a $N(\mu, \sigma^2)$ population. Then $\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$

• Derivation:
$$\frac{Z}{\sqrt{\chi^2_{\ r}/r}} \sim t_r$$

F distribution

• Definition: Let X_1, \ldots, X_n be a random sample from a $N(\mu_X, \sigma_X^2)$ population, and let Y_1, \ldots, Y_m be a random sample from an independent $N(\mu_Y, \sigma_Y^2)$ population. If

$$W = \frac{S_X^2/S_Y^2}{\sigma_X^2/\sigma_Y^2}$$
 then $W \sim F(n-1, m-1)$. In general, $W \sim F(r_1, r_2)$.

- Derivation: $\frac{\chi^2_{r_1}/r_1}{\chi^2_{r_2}/r_2} \sim F(r_1, r_2)$
- Relationship to other distributions theorem

(a) If
$$X \sim F(r_1, r_2)$$
 then $1/X \sim F(r_2, r_1)$ (b) If $X \sim t_r$ then $X^2 \sim F(1, r)$

Lecture 2 – Order Statistics (6.3)

Order statistics definition and distributions

• Definition: The order statistics are random variables that satisfy $X_{(1)} \leq \cdots \leq X_{(n)}$. In particular

$$X_{(1)} = \min_{1 \le i \le n} X_i,$$

$$X_{(2)} = \text{second smallest } X_i$$

$$\vdots$$

$$X_{(n)} = \max_{1 \le i \le n} X_i.$$

- Distribution theorems
 - Cdf:

$$F_{X_{(j)}}(x) = P(X_{(j)} \le x) = \sum_{k=j}^{n} \binom{n}{k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

$$= P(Y \le j), \quad \text{where} \quad Y \sim \text{Binomial} (n, p = P(X \le x) = F_X(x))$$

- Pdf:

$$\begin{split} f_{X_{(j)}}(x) &= \frac{n!}{(j-1)!(n-j)!} \left[F_X(x) \right]^{j-1} f_X(x) \left[1 - F_X(x) \right]^{n-j} \\ &= \left[\text{multinomial coefficient} \right] \times \left[j - 1 \text{ RVs } \leq x \right] \times \left[1 \text{ RV} \approx x \right] \times \left[n - j \text{ RVs } > x \right] \end{split}$$

•
$$f_{X_{(j)}}(x) = F'_{X_{(j)}}(x)$$

• Extreme order stats

Min
$$\to$$
 $F_{X_{(1)}}(x) = 1 - [1 - F_X(x)]^n;$ $f_{X_{(1)}}(x) = nf_X(x)[1 - F_X(x)]^{n-1}$
Max \to $F_{X_{(n)}}(x) = [F_X(x)]^n;$ $f_{X_{(n)}}(x) = n[F_X(x)]^{n-1}f_X(x)$

Specific order statistics and functions of order statistics

 \bullet Sample median M

$$M = \left\{ \begin{array}{ll} X_{(\frac{n+1}{2})} & \text{if } n \text{ is odd} \\ \left[X_{(\frac{n}{2})} + X_{(\frac{n}{2}+1)} \right]/2 & \text{if } n \text{ is even} \end{array} \right.$$

- Sample range, $R = X_{(n)} X_{(1)} = max(X_1, \dots, X_n) min(X_1, \dots, X_n)$
- $IQR = Q_3 Q_1$
- Midrange = $\frac{X_{(1)} + X_{(n)}}{2}$

Order statistics as estimators of population percentiles

• Expected value of the "position" of order statistics theorem

If
$$X_{(1)}, \ldots, X_{(n)}$$
 are order statistics, then $E[F_X(X_{(j)})] = \frac{j}{n+1}, \quad j = 1, \ldots, n$
Can use $X_{(j)}$ as an estimator of x_p , where $p = j/(n+1)$.

q-q plots

• Expected probability between two adjacent order statistics theorem:

$$E[F_X(X_{(j)}) - F_X(X_{(j-1)})] = \frac{1}{n+1};$$
 $E[F_X(X_{(1)})] = \frac{1}{n+1};$ $E[1 - F_X(X_{(n)})] = \frac{1}{n+1}$

• q-q plot definition: Let $x_{(1)}, \ldots, x_{(n)}$ be the observed sample order statistics and $x_{\frac{1}{n+1}}, \ldots, x_{\frac{n}{n+1}}$ be the percentiles from some particular distribution. A q-q plot is a plot of the points

$$(x_{(1)}, x_{\frac{1}{n+1}}), \ldots, (x_{(n)}, x_{\frac{n}{n+1}})$$

• Interpretation of a q-q plot

Good model \rightarrow Follows y = x line.

Bad model \rightarrow Strong deviation from this line.

• q–q plots for the normal distribution.

If plot
$$(x_{(1)}, z_{\frac{1}{n+1}})$$
, ..., $(x_{(n)}, z_{\frac{n}{n+1}})$, then $\frac{1}{\text{slope}} \approx \sigma$

Lecture 3 – Exploratory Data Analysis (6.2)

Univariate EDA

- Descriptive statistics: Goal is to summarize a whole dataset with a single or few measures
 - Sample mean $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - Sample variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{x})^2 = \frac{n}{n-1} v$
 - Data (or population) variance: $v = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2$
- Displaying data
 - Frequency tables: Data is grouped into intervals of equal length (bins)

Freq = count of observations in each; Relative freq = proportion of observations in each bin = Freq / n

- Histograms: Shape and summary stats

Right-skewed: mean > median > mode Symmetric: mean \approx median \approx mode Left-skewed: mean < median < mode

- Density histograms: Estimate underlying pdf

For constants c_1 and c_2 , $P(c_1 \le X < c_2) \approx \frac{\text{Freq}}{n}$ on $(c_1, c_2]$ Height of bar $h(x) = \frac{\text{Freq}}{n(c_2 - c_1)}$

- Empirical rule:
 - 1. $\approx 68\%$ of data is in $(\bar{x} s, \bar{x} + s)$.
 - 2. $\approx 95\%$ of data is in $(\bar{x} 2s, \bar{x} + 2s)$.
 - 3. $\approx 99.7\%$ of data is in $(\bar{x} 3s, \bar{x} + 3s)$.
- Order statistics:
 - 5 number summary
 - 1. Sample minimum $x_{(1)}$
 - 2. Lower quartile or First (lower) quartile $q_1 = \hat{x}_{0.25}$
 - 3. Median (second quartile) $m = \hat{x}_{0.5}$
 - 4. Third (upper) quartile $q_3 = \hat{x}_{0.75}$
 - 5. Sample maximum $x_{(n)}$
 - Other statistics

Sample range, $R = x_{(n)} - x_{(1)}$; $IQR = q_3 - q_1$; Midrange = $\frac{x_{(1)} + x_{(n)}}{2}$

- Boxplots: Visual of 5-number summary, also used to identify outliers

Suspected outlier \rightarrow Below $q_1 - 1.5 \times IQR$ (low outlier) or above $q_3 + 1.5 \times IQR$

Outlier \rightarrow Below $q_1 - 3 \times IQR$ (low outlier) or above $q_3 + 3 \times IQR$

- Another way to identify outliers: Three-sigma rule Outlier if outside $(\bar{x} 3s, \bar{x} + 3s)$
- q-q plots can be used to test potential models

Bivariate EDA

- Goal: Examine pairwise relationships between variables
- Visualizing dependence: Scatterplots can be used to look for positive, negative or no association.
- Quantifying linear dependence:

Sample correlation
$$r = \frac{1}{n-1} \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{s_x s_y}$$

Lecture 4 – Point Estimation (5.8 and 6.4)

Point estimators

- Definition: A point estimator is any function $\hat{\theta} = W(X_1, \dots, X_n)$ of a sample; that is, any statistic is a point estimator
- An estimator is a random variable (a function of the sample); an estimate is the realized value of the random variable once data is collected

Evaluate estimators

- Unbiased definition: Point estimator $\hat{\theta}$ is unbiased if $E(\hat{\theta}) = \theta$; otherwise it is biased. This tells us the mean of a statistic, regardless of n.
- Consistency definition: The property summarized by the WLLN that says if a sequence of the "same" sample quantity approaches a constant as $n \to \infty$, then it is consistent.

In other words, ff a statistic is consistent, then as $n \to \infty$, there is no variation in what the statistic converges to; the entire distribution converges to a constant.

- Convergence in probability
 - * Definition: A sequence of random variables, Y_1, Y_2, \ldots , converges in probability to a random variable Y if, for every $\epsilon > 0$,

$$\lim_{n\to\infty} P(|Y_n-Y| \ge \epsilon) = 0 \quad \text{or, equivalently,} \quad \lim_{n\to\infty} P(|Y_n-Y| < \epsilon) = 1$$

- * Notation: $Y_n \stackrel{p}{\to} Y$
- (Weak) Law of Large Numbers (WLLN)
 - * WLLN theorem: Let X_1, X_2, \ldots be *iid* random variable with $E(X_i) = \mu$ and $V(X_i) = \sigma^2 < \infty$. Define $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then for every $\epsilon > 0$,

$$\lim_{n \to \infty} P(|\bar{X}_n - \mu| < \epsilon) = 1 \qquad \lim_{n \to \infty} P(|\bar{X}_n - \mu| \ge \epsilon) = 0$$

that is, $\bar{X} \stackrel{p}{\to} \mu$.

Method of moments

- Types of moments:
 - $-k^{\text{th}}$ (population) moment of the distribution (about the origin) $=\mu'_k=E(X^k)$
 - The corresponding sample moment is the average = $m'_k = \frac{1}{n} \sum_{i=1}^n X_i^k$
- Official statement of Method of Moments:

Choose as estimates those values of the parameters that are solutions of the equations $\mu'_k = m'_k$, for k = 1, 2, ..., t, where t is the number of parameters to be estimated

- Steps to find MME
 - 1. Write $E(X^k)$ as a function of the parameters of interest (may have to integrate)
 - 2. Then estimate the parameter of interest by equating the population moment with the sample moment and solving for the parameter

Maximum Likelihood Estimation

- Needed items:
 - Parameter space: Set of all possible values for $\theta_1, \ldots, \theta_k$ in pdf (or pmf) $f(x \mid \theta_1, \ldots, \theta_k)$
 - Likelihood function: $L(\boldsymbol{\theta} \mid \mathbf{x}) = f(\mathbf{x} \mid \boldsymbol{\theta}) = \prod_{i=1}^{n} f(x_i \mid \boldsymbol{\theta})$

Equivalent to the joint pdf or pmf of the data, just with different information considered known.

- MLE definition: For each sample point \mathbf{x} , let $\hat{\theta}(\mathbf{x})$ be a parameter value at which $L(\theta \mid \mathbf{x})$ attains its maximum as a function of θ , with \mathbf{x} held fixed. A maximum likelihood estimator (MLE) of the parameter θ based on a sample \mathbf{X} is $\hat{\theta}(\mathbf{X})$.
- Steps to find MLEs
 - 1. Write the likelihood function (i.e. joint density function) and the log-likelihood

$$L(\theta \mid \mathbf{x}) = \prod_{i=1}^{n} f(\mathbf{x} \mid \theta) \qquad \rightarrow \qquad \ell(\theta) = \ln[L(\theta \mid \mathbf{x})]$$

Optimize the log-likelihood function by taking the derivatives with respect to the parameter of interest.

Set to zero and solve for the parameter of interest.

$$\ell'(\theta) = \frac{d}{d\theta}\ell(\theta) = 0$$
 \rightarrow $\hat{\theta} = \text{potential MLE}$

3. Verify that the global maximum of the log-likelihood function occurs at $\theta = \hat{\theta}$.

Find the second derivative of the log-likelihood function, then plug in $\hat{\theta}$ and see if less than zero.

$$\ell''(\theta) = \frac{d^2}{d\theta^2} \ell(\theta) \qquad \to \qquad \ell''(\hat{\theta}) \stackrel{?}{<} 0$$

If so, then we have $\hat{\theta}_{MLE}$.

 \bullet Finding MLEs for functions of parameters

Invariance property of MLEs: If $\hat{\theta}$ is the MLE of θ , then for any function $\tau(\theta)$, the MLE of $\tau(\theta)$ is $\tau(\hat{\theta})$

Distributions

Discrete Distributions

Discrete uniform (N_0, N_1)

Pmf
$$P(X = x \mid N_0, N_1) = \frac{1}{N_1 - N_0 + 1}; \quad x = N_0, \dots, N_1; \quad N_0 \le N_1$$

Mean and Variance
$$E(X) = \frac{N_0 + N_1}{2}, \qquad V(X) = \frac{(N_1 - N_0 + 1)^2 - 1}{12}$$

Mgf
$$M_X(t) = \frac{1}{N_1 - N_0 + 1} \sum_{x=N_0}^{N_1} e^{tx}$$

Notes

Bernoulli(p)

Pmf
$$P(X = x \mid p) = p^{x}(1-p)^{1-x}; \quad x = 0, 1; \quad 0$$

Mean and Variance
$$E(X) = p$$
, $V(X) = p(1-p) = pq$

Mgf
$$M_X(t) = (1 - p) + pe^t = q + pe^t$$

Notes Special case of binomial with
$$n = 1$$
.

Binomial (n, p)

Pmf
$$P(X = x \mid n, p) = \binom{n}{x} p^x (1-p)^{n-x}; \quad x = 0, 1, ..., n; \quad 0$$

Mean and Variance
$$E(X) = np$$
, $V(X) = np(1-p) = npq$

Mgf
$$M_X(t) = (q + pe^t)^n$$

Notes Sum of *iid* bernoulli RVs.

Geometric (p)

Pmf
$$P(X = x \mid p) = q^{x-1} p;$$
 $x = 1, 2, ...;$ 0

$$Cdf F_X(x \mid p) = 1 - q^x$$

Mean and Variance
$$E(X) = \frac{1}{p}, \qquad V(X) = \frac{1-p}{p^2} = \frac{q}{p^2}$$

$$\mathrm{Mgf} \hspace{1cm} M_X(t) = \tfrac{p\mathrm{e}^t}{1-q\mathrm{e}^t}; \hspace{1cm} t < -\ln(q)$$

Special case of negative binomial with r = 1.

Notes * See other geometric probabilities.

Alternate form Y = X - 1.

This distribution is memoryless: $P(X > s \mid X > t) = P(X > s - t);$ s > t.

Negative binomial (r, p)

Pmf
$$P(X = x \mid r, p) = P(X = x \mid r, p) = \binom{x-1}{r-1} p^r q^{x-r}; \qquad x = r, r+1, \dots; \qquad 0$$

Mean and Variance
$$E(X) = \frac{r}{p}, \qquad V(X) = \frac{r(1-p)}{p^2} = \frac{rq}{p^2}$$

Mgf
$$M_X(t) = \left[\frac{pe^t}{1-qe^t}\right]^r; \quad t < -\ln(q)$$

Hypergeometric (N, M, K)

Pmf
$$P(X = x \mid r, p) = P(X = x \mid N, M, K) = \frac{\binom{M}{x} \binom{N-M}{K-x}}{\binom{N}{K}}; \quad x = 0, 1, ..., \min(M, K)$$

Mean and Variance
$$E(X) = K\left(\frac{M}{N}\right), \qquad V(X) = K\left(\frac{M}{N}\right)\left(\frac{N-M}{N}\right)\left(\frac{N-K}{N-1}\right)$$

Mgf

Notes If do not require
$$M \ge K$$
, $\mathcal{X} = \{\max(0, K + M - N), \dots, \min(M, K)\}$, mean and variance converge to that of binomial $(n = K, p = M/K)$ when $N \to \infty$.

Poisson (λ)

Pmf
$$P(X = x \mid \lambda) = \frac{e^{-\lambda} \lambda^{x}}{x!}, \quad x = 0, 1, 2, ...; \quad \lambda > 0$$

$$\begin{array}{ll} \text{Mean and} \\ \text{Variance} \end{array} \quad E(X) = \lambda, \qquad V(X) = \lambda$$

Mgf
$$M_X(t) = e^{\lambda(e^t - 1)}$$

Notes If
$$X_i \stackrel{\perp}{\sim} \text{Poisson}(\lambda_i)$$
, then $\sum X_i \sim \text{Poisson}(\lambda = \sum \lambda_i)$.

Other geometric probabilities

• Let $X \sim \text{Geometric}(p)$.

$$P(X < \infty) = 1$$

$$P(X > x) = q^{x}$$

$$P(X \ge x) = q^{x-1}$$

$$P(a < X \le b) = q^{a} - q^{b}$$

$$P(a \le X \le b) = q^{a-1} - q^{b}$$

Continuous Distributions

Continuous uniform (a, b)

Pdf
$$f(x \mid a, b) = \frac{1}{b-a}, \quad a \le x \le b; \quad a, b \in \mathbb{R}, \quad a \le b$$

Cdf
$$F(x) = \frac{x-a}{b-a}$$
 $a \le x \le b$

Survival
$$S(t) = \frac{b-t}{b-a}$$
 $a \le t \le b$ if $T \sim \text{Uniform}(a, b)$

Mean and Variance
$$E(X) = \frac{a+b}{2};$$
 $V(X) = \frac{(b-a)^2}{12}$

Mgf
$$M_X(t) = \frac{e^{tb} - e^{ta}}{t(b-a)}$$
 $t \neq 0$

Notes

Exponential (λ)

Pdf
$$f(t \mid \lambda) = \lambda e^{-\lambda t}, \quad t \ge 0; \quad \lambda > 0$$

Cdf
$$F(t) = 1 - e^{-\lambda t}$$
 $t \ge 0$

Survival
$$S(t) = e^{-\lambda t}$$
 $t \ge 0$

Mean and Variance
$$E(X) = \frac{1}{\lambda};$$
 $V(X) = \frac{1}{\lambda^2}$

Mgf
$$M_X(t) = \frac{\beta}{\beta - t}$$
 $t < \beta;$ if $T \sim \text{Exp}(\beta)$

Special case of gamma with
$$\alpha = 1, \beta$$
.

Notes This distribution is memoryless:
$$P(T > a + b \mid T > a) = P(T > b);$$
 $a, b > 0.$ Alternate parameterization is with scale $\theta = 1/\lambda$.

Gamma (α, β)

Pdf
$$f(x \mid \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \quad x \ge 0; \quad \alpha, \beta > 0$$

Mean and Variance
$$E(X) = \frac{\alpha}{\beta}$$
 $V(X) = \frac{\alpha}{\beta^2}$

Mgf
$$M_X(t) = \left(\frac{\beta}{\beta - t}\right)^{\alpha} \quad t < \beta$$

Notes A special case is exponential
$$(\alpha = 1, \beta)$$
.
Alternate parameterization is with scale $\theta = 1/\beta$.

Normal (μ, σ^2)

Pdf
$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], \quad -\infty < x < \infty; \quad -\infty < \mu < \infty, \quad \sigma > 0$$

Mean and Variance
$$E(X) = \mu$$
, $V(X) = \sigma^2$

Mgf
$$M_X(t) = \exp\left[\mu t + \frac{\sigma^2 t^2}{2}\right]$$

Notes Special case: Standard normal
$$Z \sim \text{Normal} (\mu = 0, \sigma^2 = 1)$$
.

Lognormal (μ, σ^2)

Pdf
$$f(y \mid \mu, \sigma^2) = \frac{1}{y\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(\ln(y) - \mu)^2}{2\sigma^2}\right]; \qquad y \ge 0; \qquad -\infty < \mu < \infty; \qquad \sigma > 0$$

$$\begin{array}{ll} \text{Mean and} & E(Y) = \mathrm{e}^{\mu + \frac{\sigma^2}{2}}, \qquad V(Y) = \mathrm{e}^{2\mu + \sigma^2} (\mathrm{e}^{\sigma^2} - 1) \end{array}$$
 Variance

Mgf

If
$$Y \sim \text{Lognormal} \Longrightarrow \ln(Y) \sim \text{Normal}(\mu, \sigma^2)$$
;

If
$$Y \sim \text{Lognormal} \Longrightarrow \ln(Y) \sim \text{Normal}(\mu, \sigma^2)$$
; equivalently, if $X \sim \text{Normal}(\mu, \sigma^2)$ and $Y = e^X \Longrightarrow Y \sim \text{Lognormal}$.

 $\mu \text{ and } \sigma^2 \text{ represent the mean and variance of the normal random variable } X \text{ which appears in the exponent.}$

Beta (α, β)

Pdf
$$f(x \mid \alpha, \beta) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}; \quad 0 \le x \le 1; \quad \alpha, \beta > 0$$

$$\begin{array}{ll} \text{Mean and} & E(X) = \frac{\alpha}{\alpha + \beta}, \qquad V(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)} \end{array}$$

Mgf

Notes
$$B(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

Chi-square, $\chi^2(r)$

Pdf
$$f(x \mid r) = \frac{1}{\Gamma(\frac{r}{2})2^{r/2}} x^{\frac{r}{2}-1} e^{-\frac{x}{2}}, \quad x \ge 0; \quad r = 0.5, 1, 1.5, 2, \dots$$

Mean and Variance
$$E(X) = r$$
, $V(X) = 2r$

Mgf
$$M_X(t) = \left(\frac{\theta}{\theta - 2t}\right)^{r/2}$$
 $t < 1/2$

Notes Special case of (scale) gamma with $\alpha = r/2, \theta = 2$.

t(r)

Pdf
$$f(t \mid r) = f_T(t) = \frac{\Gamma(\frac{r+1}{2})}{\frac{1}{\sqrt{r\pi}}\Gamma(\frac{r}{2})} \left(\frac{1}{(1+t^2/r)^{(r+1)/2}}\right), \quad -\infty < t < \infty$$

 Cdf N/A

Mgf N/A

Notes See derivation notes above.

 $\boldsymbol{F}(r_1, r_2)$

Notes See derivation notes above.