McBits: fast constant-time code-based cryptography

Tung Chou

Technische Universiteit Eindhoven, The Netherlands

October 13, 2015

Joint work with Daniel J. Bernstein and Peter Schwabe

Outline

- Summary of Our Work
- Background
- Main Components of Our Software

Motivation

Code-based public-key **encryption** system:

- Confidence: The original McEliece system using Goppa code proposed in 1978 remains hard to break.
- Post-quantum security
- Known to provide fast encryption and decryption.

The state-of-the-art implementation before our work

• Biswas and Sendrier. *McEliece Cryptosystem Implementation:* Theory and Practice. 2008.

Issues:

- Decryption time: Lots of interesting things to do...
- Usability: haven't seen implementations that claim to be secure against timing attacks.

What we achieved

- For 80-bit security, we achieved decryption time of 26 544 cycles, while the previous work requires 288 681 cycles.
- For 128-bit security, we achieved decryption time of 60 493 cycles, while the previous work requires 540 960 cycles.
- We set new speed records for decryption of code-based system. Actually these are also speed records for public-key cryptography in general.
 - followed by 77 468 cycles for an binary-elliptic-curve
 Diffie-Hellman implementation (128-bit security). CHES 2013.
- Our software is fully protected against timing attacks.

Novelty

Novelty in our work:

- Using an additive FFT for fast root computation.
 - Conventional approach: using Horner-like algorithms.
- Using an transposed additive FFT for fast syndrome computation.
 - Conventional approach: matrix-vector multiplication.
- Using a sorting network to avoid cache-timing attacks.
 - Existing softwares did not deal with this issue.

Binary Linear Codes

A binary linear code C of length n and dimension k is a k-dimensional subspace of \mathbf{F}_2^n .

C is usually specified as

ullet the row space of a generating matrix $G \in \mathbf{F}_2^{k imes n}$

$$C = \{ \mathbf{m}G | \mathbf{m} \in \mathbf{F}_2^k \}$$

ullet the kernel space of a parity-check matrix $H \in \mathbf{F}_2^{(n-k) imes n}$

$$C = \{ \mathbf{c} | H\mathbf{c}^{\mathsf{T}} = 0, \ \mathbf{c} \in \mathbf{F}_2^n \}$$

Example:

$$G = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

c = (111)G = (10011) is a codeword.

Decoding problem

Decoding problem: find the closest codeword $\mathbf{c} \in C$ to a given $\mathbf{r} \in \mathbf{F}_2^n$, assuming that there is a unique closest codeword. Let $\mathbf{r} = \mathbf{c} + \mathbf{e}$. Note that finding \mathbf{e} is an equivalent problem.

- r is called the received word. e is called the error vector.
- There are lots of code families with fast decoding algorithms,
 e.g., Reed-Solomon codes, Goppa codes/alternant codes, etc.
- However, the general decoding problem is hard: best known algorithm takes exponential time.

Binary Goppa code

A binary Goppa code is often defined by

- a list $L=(a_1,\ldots,a_n)$ of n distinct elements in \mathbf{F}_q , called the support. For convenience we assume n=q in this talk.
- a square-free polynomial $g(x) \in \mathbf{F}_q[x]$ of degree t such that $g(a) \neq 0$ for all $a \in L$. g(x) is called the Goppa polynomial.
- In code-base encryption system these form the secret key.

Then the corresponding binary Goppa code, denoted as $\Gamma_2(L,g)$, is the set of words $c=(c_1,\ldots,c_n)\in \mathbf{F}_2^n$ that satisfy

$$\frac{c_1}{x-a_1} + \frac{c_2}{x-a_2} + \dots + \frac{c_n}{x-a_n} \equiv 0 \pmod{g(x)}$$

- can correct t errors
- suitable for building secure code-based encryption system.

The Niederreiter cryptosystem

Developed in 1986 by Harald Niederreiter as a variant of the McEliece cryptosystem.

- Public Key: a parity-check matrix $K \in \mathbf{F}_q^{(n-k) \times n}$ for the binary Goppa code
- Encryption: The plaintext ${\bf e}$ is an n-bit vector of weight t. The ciphertext ${\bf s}$ is an (n-k)-bit vector:

$$\mathbf{s}^{\mathsf{T}} = K \mathbf{e}^{\mathsf{T}}.$$

Decryption: Find a n-bit vector r such that

$$\mathbf{s}^{\intercal} = K \mathbf{r}^{\intercal}$$
.

 ${f r}$ would be of the form ${f c}+{f e}$, where ${f c}$ is a codeword. Then we use any available decoder to decode ${f r}$.

 A passive attacker is facing a t-error correcting problem for the public key, which seems to be random.

Decoder

- A syndrome is $H\mathbf{r}$, where H is a parity-check matrix.
- The error locator for e is the polynomial

$$\sigma(x) = \prod_{\mathbf{e}_i \neq 0} (x - a_i) \in \mathbf{F}_q[x]$$

With the roots e can be reconstructed easily.

• For cryptographic use the error vector ${\bf e}$ is known to have Hamming weight t.

Typical decoders decode by performing

- Syndrome computation
- Solving key equation
- Root finding (for the error locator)

The decoder we used is the Berlekamp decoder.

Timing attacks

Secret memory indices

- Cryptographic software C and attacker software A runs on a machine.
- A overwrites several caches lines $L = \{L_1, L_2, \dots, L_k\}$.
- C then overwrites a subset of L. The indices of the data are secret.
- A reads from L_i and gains information from the timing.

Secret branch conditions

Whether the branch is taken or not causes difference in timing.

Bitslicing

- Simulating logic gates by performing bitwise logic operations on m-bit words ($m=8,\ 16,\ 32,\ 64,\ 128,\ 256,\ \text{etc.}$). In our implementation m=128 or 256.
- Naturally process m instances in parallel. Our software handles m decryptions for m secret keys at the same time.
- It's constant-time.
- Can be much faster than a non-bitsliced implementation, depending on the application.
 - e.g., Eli Biham, A fast new DES implementation in software: implementing S-boxes with bitslicing instead of table lookups, gaining 2× speedup.

Main Components of the Implementation

- Root finding
- Syndrome computation
- Secret permutation

Root finding

Input:

$$f(x) = v_0 + v_1 x + \dots + v_t x^t \in \mathbf{F}_q[x]$$
 (assume $t < q$ without loss of generality)

• Output: a sequence of q bits \mathbf{w}_{α_i} indexed by $\alpha_i \in \mathbf{F}_q$ where $\mathbf{w}_{\alpha_i} = 0$ iff $f(\alpha_i) = 0$. Example:

$$(\mathbf{w}_{\alpha_1}, \mathbf{w}_{\alpha_2}, \dots, \mathbf{w}_{\alpha_q}) = (1, 0, 1, 1, 1, 0, 1, \dots)$$

- Can be done by doing multipoint evaluation:
 - Compute all the images $f(\alpha_1), f(\alpha_2), \ldots, f(\alpha_q)$.
 - And then for each α_i , OR together the bits of $f(\alpha_i)$.
- The multipoint evaluation we used: Gao-Mateer additive FFT

The Gao-Mateer Additive FFT

- Shuhong Gao and Todd Mateer. Additive Fast Fourier Transforms over Finite Fields. 2010.
- Deal with the problem of evaluating a 2^m -coefficient polynomial $f \in \mathbf{F}_q[x]$ over \hat{S} , the sequence of all subset sums of $\{\beta_1, \beta_2, \dots, \beta_m\} \in \mathbf{F}_q$. That is, the output is 2^m elements in \mathbf{F}_q :

$$f(0), f(\beta_1), f(\beta_2), f(\beta_1 + \beta_2), f(\beta_3), \dots$$

- ullet A recursive algorithm. Recursion stops when m is small.
- In decoding applications f would be the error locator, and $\{\beta_1, \beta_2, \dots, \beta_m\}$ can be any basis of \mathbf{F}_q over \mathbf{F}_2 .

The Gao-Mateer Additive FFT: main idea

- Assume that the sequence \hat{S} can be divided into two partitions S and S+1.
- Write f in the form $f_0(x^2-x)+x\cdot f_1(x^2-x)$. For comparison, a multiplicative FFT would use $f=f_0(x^2)+x\cdot f_1(x^2)$.
- For all $\alpha \in \mathbf{F}_q$, $(\alpha+1)^2 (\alpha+1) = \alpha^2 \alpha$. Therefore,

$$f(\alpha) = f_0(\alpha^2 - \alpha) + \alpha \cdot f_1(\alpha^2 - \alpha)$$

$$f(\alpha + 1) = f_0(\alpha^2 - \alpha) + (\alpha + 1) \cdot f_1(\alpha^2 - \alpha)$$

Once we have $f_i(\alpha^2 - \alpha)$, $f(\alpha)$ and $f(\alpha + 1)$ can be computed in a few field operations.

• Computing the f_0 and f_1 value for all $\alpha \in S$ recursively gives $f(\beta)$ for all $\beta \in \hat{S}$.

The Gao-Mateer Additive FFT: Improvements

In code-based cryptography $t \ll q$, which can be exploited to make the additive FFT much faster. Some typical choices of (q,t):

q	t						
2^{11}	27	32	35	40			
2^{12}	21	41	45	56	67		
2^{13}	18	29	95	115	119		

We keep track of the actual degree of polynomials being evaluated. In this way, the depth of recursion can be made smaller.

Take $q=2^{12}$, t=41 for example. Let L be the length of f. Then $(L,2^m)$ would go like:

- Original: $(2^{12}, 2^{12}) \to (2^{11}, 2^{11}) \to (2^{10}, 2^{10}) \to \cdots \to (1, 1)$
- Improved: $(42,2^{12}) \to (21,2^{11}) \to (11,2^{10}) \to \cdots \to (1,2^6)$

The Gao-Mateer Additive FFT: Improvements

Recall that for all $\alpha \in S$

$$f(\alpha) = f_0(\alpha^2 - \alpha) + \alpha \cdot f_1(\alpha^2 - \alpha)$$

In order to compute $f(\alpha)$, we need to compute $\alpha \cdot f_1(\alpha^2 - \alpha)$ for all $\alpha \in S$, which requires $2^{m-1} - 1$ multiplications.

However, when t+1=2,3, f_1 is a 1-coefficient polynomial, so $f_1(\alpha)=f_1(0)=c$.

$$c \cdot \langle \delta_1, \dots, \delta_{m-1} \rangle = \langle c \cdot \delta_1, \dots, c \cdot \delta_{m-1} \rangle$$

Once we have all the $c \cdot \delta_i$ the subset sums can be computed in $2^{m-1}-m$ additions. Computing all the $c \cdot \delta_i$ requires m-1 multiplications. Therefore $2^{m-1}-m$ of $2^{m-1}-1$ multiplications are replaced by the same number of additions.

Syndrome computation

Syndrome computation is defined as the following linear map:

$$M = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{t-1} & \alpha_2^{t-1} & \cdots & \alpha_n^{t-1} \end{pmatrix}$$

Consider the linear map M^{T} :

$$\begin{pmatrix} 1 & \alpha_1 & \cdots & \alpha_1^{t-1} \\ 1 & \alpha_2 & \cdots & \alpha_2^{t-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha_n & \cdots & \alpha_n^{t-1} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_t \end{pmatrix} = \begin{pmatrix} v_1 + v_2\alpha_1 + \cdots + v_t\alpha_1^{t-1} \\ v_1 + v_2\alpha_2 + \cdots + v_t\alpha_2^{t-1} \\ \vdots \\ v_1 + v_2\alpha_n + \cdots + v_t\alpha_n^{t-1} \end{pmatrix} = \begin{pmatrix} f(\alpha_1) \\ f(\alpha_2) \\ \vdots \\ f(\alpha_n) \end{pmatrix}$$

This transposed linear map is actually doing multipoint evaluation: syndrome computation is a transposed multipoint evaluation.

Transposing linear algorithms

Example: an addition chain for 79

By reversing the edges, we get another addition chain for 79:

Transposing linear algorithms

• A linear map: $a_0, a_1 \rightarrow a_0 b_0, a_0 b_1 + a_1 b_0, a_1 b_1$

$$\operatorname{in}_1 = a_0 \xrightarrow{b_0} a_0b_0 \longrightarrow \operatorname{out}_1 = a_0b_0$$

$$a_0 + a_1 \xrightarrow{b_0 + b_1} \operatorname{out}_2 = a_0b_1 + a_1b_0$$

$$\operatorname{in}_2 = a_1 \xrightarrow{b_1} a_1b_1 \longrightarrow \operatorname{out}_3 = a_1b_1$$

• Reversing the edges: $c_0, c_1, c_2 \rightarrow b_0 c_0 + b_1 c_1, b_0 c_1 + b_1 c_2$ out $a_1 = b_0 c_0 + b_1 c_1$ b_0 $c_0 + c_1$ $a_1 = c_0$ $b_0 + b_1$ b_1 $b_0 + b_1$ b_1 b_1 b_2 b_1 out $a_2 = b_0 c_1 + b_1 c_2$ a_2 a_3 a_4 a_5 a_5 a_5 a_6 a_7 a_8 a_8

Transposing linear algorithms

The original linear map:

$$\begin{pmatrix} a_0 b_0 \\ a_0 b_1 + a_1 b_0 \\ a_1 b_1 \end{pmatrix} = \begin{pmatrix} b_0 & 0 \\ b_1 & b_0 \\ 0 & b_1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$$

The transposed map:

$$\begin{pmatrix} b_0 c_0 + b_1 c_1 \\ b_0 c_1 + b_1 c_2 \end{pmatrix} = \begin{pmatrix} b_0 & b_1 & 0 \\ 0 & b_0 & b_1 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \end{pmatrix}$$

Reversing the edges automatically gives an algorithm for the transposed map. This is called the transposition principle.

Transposition principle

References:

- J. L. Bordewijk. Inter-reciprocity applied to electrical networks. 1956.
- O. B. Lupanov. On rectifier and contact-rectifier circuits. 1956.
- Charles M. Fiduccia. *On the algebraic complexity of matrix multiplication*. 1972.

Properties of the transposition principle:

- The reversal preserves the number of multiplications.
- The reversal preserves the number of additions plus the number of (nontrivial) outputs.

We compute the syndrome using a transposed additive FFT, including all the improvements.

Transposing the additive FFT

Naive approach

- The resulting algorithm is straight-line: no recursion/loops.
- This leads to efficiency problems: big code size, big memory demand.

Our current implementation: figure out the underlying code structure

 The order of components will be reversed in the transposed algorithm.

$$(M_1 M_2 \cdots M_n)^{\mathsf{T}} = (M_n^{\mathsf{T}} M_{n-1}^{\mathsf{T}} \cdots M_1^{\mathsf{T}}).$$

• The additive FFT can be combined with the divisions by $g(\alpha)^2$'s to save bit operations.

Secret permutation

FFT output	1	0	0	1	0	
\mathbf{F}_q elements	α_1	α_2	α_3	α_4	α_5	
support	$\alpha_{\pi(1)}$	$\alpha_{\pi(2)}$	$\alpha_{\pi(3)}$	$\alpha_{\pi(4)}$	$\alpha_{\pi(5)}$	

- Need to apply some secret permutation to the output of the additive FFT. The same issue arises for the input of the transposed additive FFT.
- The secret permutation should not leak information about the permutation being performed: Can't just move data around by loads and stores.
- The approach we took: sorting network

Sorting network

A sorting network sorts an array S of elements by using a sequence of comparators.

- A comparator can be expressed by a pair of indices (i, j).
- A comparator swaps S[i] and S[j] if S[i] > S[j].

A sorting network for sorting 8 elements http://en.wikipedia.org/wiki/Batcher%27s_sort

Sorting network

Permuting by sorting:

• Example: compute b_3,b_2,b_1 from b_1,b_2,b_3 can be done by sorting the key-value pairs $(3,b_1),(2,b_2),(1,b_3)$: the output is $(1,b_3),(2,b_2),(3,b_1)$

Turning comparators into conditional swaps: Since the keys are independent of the input data b_i 's, the conditions can be precomputed.

Each comparator can be implemented with 4 operations:

$$y \leftarrow b[i] \oplus b[j]; \quad y \leftarrow cy; \quad b[i] \leftarrow b[i] \oplus y; \quad b[j] \leftarrow b[j] \oplus y;$$

A possibly better alternative: Beneš permutation network.

Timings

			•		key eq			
2048	32	87	3326	9081	4267	6699	3172	26544
4096	41	129	8622	20846	7714	14794	8520	60493

Table: Number of cycles for decoding

Future works

- Optimizing key equation solving using asymptotically faster algorithms
- Explore other decoding algorithms
- Optimizing constant multiplications
- Tower fields
- ...

Thanks for your attention.

