USN					

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

V Semester B. E. Examinations Nov/Dec-19

Computer Science and Engineering

ARTIFICIAL INTELLIGENCE (ELECTIVE)

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1	1.1	Write the <i>PEAS</i> description of the task environment for an automated	
		taxi.	02
	1.2	Write recursive function for depth-limited search.	02
	1.3	Write any two heuristic functions to solve 8-puzzle problem.	02
	1.4	Write four components used to define a game as a search problem.	02
	1.5	Define Entailment. Give an example.	02
	1.6	Give suitable examples for following using first order logic:	Ŭ -
	1.0	a) Atomic sentence,	
		b) Complex sentence,	
		c) Quantifiers.	02
	1.7	Write the rule of generalized Modus Ponens, how it is related to	02
	1.7	Modus Ponens?	02
	1.8	When does overfitting occurs during learning?	02
	1.9	Given a full joint distribution for the toothache cavity, catch world.	04
	1.9	Toothache ¬Toothache	
		$ catch \neg catch catch \neg catch $	
		Cavity 0.108 0.012 0.072 0.008	
		$\neg Cavity \mid 0.016 \mid 0.064 \mid 0.144 \mid 0.576$	
		a) Find $P(cavity)$	
		b) Find P(¬cavity) Toothache)	02
	1.10	Propose a problem statement for application of AI in industrial	
		automation or healthcare domain.	02

PART-B

2	a	Give the type of task environments for the following and discuss your	
		answer.	
		i) Automated taxi agent.	
		ii) Agent which spots defective parts.	05
	b	Write a schematic diagram for model-based reflex agent, function,	
		and an use case.	06
	c	Explain in detail the working of search trees.	05

3	а	Explain the working of greedy best-first search technique. Give an example and its drawback.	05
	b	Construct a relaxed problem for solving 8-puzzle and give the role of pattern databases.	05
	С	State constraint satisfaction problem. Discuss the modeling of Sudoku as a constraint satisfaction problem.	06
		OR	
4	a	Write the algorithm for recursive best-first search, and give its drawback.	05
	b	Compare online search problems with offline search problems. Discuss the working of online search agents.	05
	С	State a game as a search problems. Given a two-ply game tree, perform Alpha –Beta pruning.	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		3 12	06
5	a	Write the following in first order logic:	
		i) Some students of <i>DM</i> course has cleared <i>JEE</i> main and rest cleared <i>SAT</i> .	
		ii) Something that is white is not always milk, whereas the milk is always white.	
		iii) There exists a subset of students in DM class having i-	06
	b	phones. Discuss the following: i) Logical equivalence	06
		i) Logical equivalence	
		ii) AND Elimination	04
	c	Explain the steps used in knowledge engineering process.	04 06
	С	,	
6	c a	OR Translate the following into first order logic: i) No yellow frogs are edible ii) Every bag contains at least one coin.	06
6		OR Translate the following into first order logic: i) No yellow frogs are edible	
6	a	OR Translate the following into first order logic: i) No yellow frogs are edible ii) Every bag contains at least one coin. iii) Two regions overlap just in case they share a common part. Prove the resolution yields a complete infence algorithm by considering Wumpus world problems. Differentiate forward chaining with backward chaining. Illustrate the	06
6	a b	OR Translate the following into first order logic: i) No yellow frogs are edible ii) Every bag contains at least one coin. iii) Two regions overlap just in case they share a common part. Prove the resolution yields a complete infence algorithm by considering Wumpus world problems.	06

7	a	Give the principle of working of decision trees.	04
	Ъ	Dr.XYZ has a patient who is very sick. Without further treatment, this	
		patient will die in about 3 months. The only treatment alternative is a	
		risky operation. The patient is expected to live about 1 year if he	
		survives the operation, however the probability that the patient will	
		not survive the operation is 0.3. Draw the decision tree.	04
	c	Discuss the following:	
		i) Ensemble learning	
		ii) Reinforcement learning.	08
8	a	State Baye's rule. On an airport all passenger are checked carefully.	
		Let T with $t \in \{0,1\}$ be the random variable indicating whether	
		somebody is a terrorist or not. A true terrorist will be arrested with	
		the probability 0.98 and non-terrorist will be arrested with probability	
		0.001. One in hundred thousand passengers is a terrorist. What is the	
		probability that an arrested person actually a terrorist?	06
	b	Write full specification of Bayesian network. Demonstrate the process	
		of finding probability of occurrence of an event by considering	
		suitable example.	06
	c	Under which situation, dealing with uncertainty arises in AI.	04