

생 성 형 A I - 랭 체 인 (L L M) 활 용

백엔드(풀스택) 엔지니어(자바,파이썬) 양성과정

문유정

010-8766-5119

zeein119@gmail.com

언() 1: 변수/자료구조

Python

1. 문자, 숫자, 언더바(_)

2. Bool: True / False

숫자 : int, float

문자:"",''

3. 리스트: [원소1, 원소2, ...]

데이터프레임 : pandas.DataFrame

4. 인덱스: 0부터 시작 / 종료 미포함 (종료-1)

R

1. 문자, 숫자, 언더바(_), 점(.)

백틱(`) 사용시 숫자 시작 가능

2. Bool: TRUE(T)/FALSE(F)

숫자 : numeric

문자:"",''

3. 벡터 : c(원소1, 원소2, ...)

리스트: list(...) 파이썬 딕셔너리와 비교

데이터프레임 : data.frame

4. 인덱스: 1부터 시작 / 종료 포함

언어 2 : 연산자

Python

- 1. 산술 연산자 : + , , * , /
 ** (거듭제곱)
 // (몫)
 % (나머지)
- 2. 할당 연산자 : = , += , -= , *= , /= , **= , //= , %=
- 3. 논리 연산자 and , or , not
 - * 비트 연산자 & , | , ~
 - * 삼항 연산

변수 = 참일때 값 if 조건 else 거짓일때 값

R

- 1. 산술 연산자 : + , $, ^{\star}$, /
 - **, ^ (거듭제곱)
 - %/% (몫)
 - %% (나머지)
- 2. 할당 연산자 : <- , = , ->
- 3. 논리 연산자 & , | , !
 - * 삼항 연산

변수 <- ifelse(조건, 참인경우, 거짓인 경우)

언() 3 : 조건문

Python

```
import datetime
now = datetime.datetime.now()
print(now)
print("현재는 ",now.year,"년",now.month,"월",now.day,"일 입니다.")
if 3 <= now.month <= 5:
  print("이번달은 ", now.month, "월로 봄입니다.")
elif 6 <= now.month <= 8:
  print("이번달은 ", now.month, "월로 여름입니다.")
elif 9 <= now.month <= 11:
  print("이번달은 ", now.month, "월로 가을입니다.")
else:
  print("이번달은 ", now.month, "월로 겨울입니다.")
```

R

```
student.score ← 100
student.grade ← 'F'
if(student.score>=90){
 student.grade \leftarrow 'A'
} else if(student.score >=80) {
 student.grade \leftarrow 'B'
} else {
 student.grade \leftarrow 'C'
print(student.grade)
```

언() 4: 번복문

Python

```
math_score = [88, 100, 70, 110, 77, 89]
for score in math_score:
  if(score < 0 or score > 100):
    continue
  print(score)
math_score = [88, 100, 70, 110, 77, 89]
for score in math_score:
  if(score < 0 or score > 100):
    print("잘못된 숫자가 입력되어 있습니다.")
    break
  print(score)
```

R

```
math_score ← c(88, 100, 70, 110, 77, 89)
for(score in math_score) {
  if( (score < 0) | (score > 100) ) next
  print(score)
math_score \leftarrow c(88, 100, 70, 110, 77, 89)
for(score in math_score) {
 if( (score < 0) | (score > 100)) {
    print("잘못된 숫자가 입력되어 있습니다.")
    break
  print(score)
```

언() 4: 번복문

Python sum = 0 i = 0 while i < 101: sum += i i += 1 print("1~100 까지의 합은 ", sum)

```
R
sum \leftarrow 0
i \leftarrow 0
while(i <= 100) {
 sum ← sum + i
i ← i + 1
cat("1~100 까지의 합은 ", sum)
```

언() 4: 번복문

```
Sum = 0
i = 0
while True:
if(i>100):
break
sum += i
i += 1
print("1~100 까지의 합은 ", sum)
```

```
R
i \leftarrow 0
sum \leftarrow 0
repeat {
if(i > 100){
  break
}else{
 sum ← sum + i
i ← i + 1
cat("1~100 까지의 합은 ", sum)
```

언어 5 : 함수

```
Python
def data_sum(x,y):
 idata_sum = x+y
 idata_mul = x*y
 return (idata_sum, idata_mul)
sum, mul = data_sum(3,5)
print(sum,mul)
# 가변인수 *매개변수: 리스트 처리 **매개변수: 딕셔너리 처리
```

```
R
data\_sum \leftarrow function(x,y){
 idata.sum ← x+y
 idata.mul ← x*y
 return(list(sum=idata.sum, mul=idata.mul))
maindata \leftarrow data_sum(3,5)
maindata$sum
maindata$mul
```

CSV III BB 171

Python

import pandas as pd

CSV 파일을 불러오기

data = pd.read_csv('data.csv')

CSV 파일을 CP949 인코딩으로 불러오기

data = pd.read_csv('data.csv', encoding='CP949')

데이터 프레임 출력

data.head()

R

CSV 파일을 불러오기

data <- read.csv('data.csv')

CSV 파일을 CP949 인코딩으로 불러오기

data <- read.csv('data.csv', encoding='CP949')

데이터 프레임 출력

head(data)

데()[탐색[기본정보]

Python

데이터프레임의 구조 확인

data.shape

열의 이름 확인

data.columns

데이터의 요약 정보 확인

data.info()

데이터 기초 통계량 확인

data.describe()

컬럼 데이터 빈도확인

data['column1'].value_counts()

R

데이터프레임의 구조 확인

dim(data)

#열의 이름 확인

colnames(data)

데이터의 요약 정보 확인

str(data)

데이터 기초 통계량 확인

summary(data)

컬럼 데이터 빈도확인

table(data\$column1)

데()[터텀색 [행추출]

Python

특정 조건을 만족하는 행 필터링

filtered_data = data[data['Age'] > 30]

필터링된 데이터 출력

print(filtered_data.head())

R

특정 조건을 만족하는 행 필터링

filtered_data <- data[data\$Age > 30,]

필터링된 데이터 출력

head(filtered_data)

데()[터탐색 [열추출]

Python

특정 열 선택

selected_columns = data[['Name', 'Age', 'Gender']]

선택된 열 출력

print(selected_columns.head())

R

특정 열 선택

selected_columns <- data[,c('Name', 'Age', 'Gender')]

선택된 열 출력

head(selected_columns)

데이터전처리 [결촉치]

Python

결측치 확인

missing_values = data.isnull().sum()

결측치가 있는 행 제거

data_cleaned = data.dropna()

결측치 대체

data_imputed = data.fillna(0) # 0으로 대체 (다른 값으로 대체 가능)

data_imputed.head()

R

결측치 확인

missing_values <- colSums(is.na(data))

결측치가 있는 행 제거

data_cleaned <- na.omit(data)

결측치 대체

data_imputed <- replace(data, is.na(data), 0) # 0으로 대체 (다른 값

으로 대체 가능)

head(data_imputed)

团员时对出口的对于

Python

import numpy as np

이상치 확인 (예: 표준편차 기반)

mean = np.mean(data['Value'])

std_dev = np.std(data['Value'])

threshold = 2 # 예: 2 표준편차 범위 이상은 이상치로 간주

outliers = data[(data['Value'] < mean - threshold * std_dev) |

(data['Value'] > mean + threshold * std_dev)]

이상치 제거

data_cleaned = data[~data.index.isin(outliers.index)]

R

이상치 확인 (예: 표준편차 기반)

mean_val <- mean(data\$Value)

std_dev <- sd(data\$Value)

threshold <- 2 # 예: 2 표준편차 범위 이상은 이상치로 간주

outliers <- data[data\$Value < mean_val - threshold * std_dev |

data\$Value > mean_val + threshold * std_dev,]

이상치 제거

data_cleaned <- data[!rownames(data) %in% rownames(outliers),

团员时对出口时对。

Python

이상치 대체 (예: 중앙값으로 대체)

median = np.median(data['Value'])

data_imputed = data.copy()

data_imputed.loc[outliers.index, 'Value'] = median

data_imputed.head()

R

이상치 대체 (예: 중앙값으로 대체)

median_val <- median(data\$Value)

data_imputed <- data

data_imputed[data\$Value < mean_val - threshold * std_dev |

data\$Value > mean_val + threshold * std_dev, 'Value']

<- median_val

head(data_imputed)

데이터전치인[정규화]

Python

from sklearn.preprocessing import MinMaxScaler

정규화를 위한 Min-Max 스케일러 생성

scaler = MinMaxScaler()

특정 열을 선택 (예: 'Value' 열)

values = data[['Value']]

데이터 정규화

normalized_values = scaler.fit_transform(values)

정규화된 데이터를 데이터프레임으로 변환

normalized_data = pd.DataFrame(normalized_values, columns=

['Normalized_Value'])

normalized_data.head()

R

특정 열 선택 (예: 'Value' 열)

values <- data\$Value

데이터 정규화 (0과 1 사이의 값으로 스케일링)

normalized_values <- (values - min(values)) / (max(values) -

min(values))

정규화된 데이터를 데이터프레임으로 변환

normalized_data <- data.frame(Normalized_Value =

normalized_values)

head(normalized_data)

데이터전치인 [표준화]

Python

from sklearn.preprocessing import StandardScaler

표준화를 위한 스케일러 생성

scaler = StandardScaler()

특정 열을 선택 (예: 'Value' 열)

values = data[['Value']]

데이터 표준화

standardized_values = scaler.fit_transform(values)

표준화된 데이터를 데이터프레임으로 변환

standardized_data = pd.DataFrame(standardized_values,

columns=['Standardized_Value'])

standardized_data.head()

R

특정 열 선택 (예: 'Value' 열)

values <- data\$Value

데이터 표준화 (평균이 0, 표준편차가 1이 되도록 스케일링)

standardized_values <- scale(values)

표준화된 데이터를 데이터프레임으로 변환

standardized_data <- data.frame(Standardized_Value =

standardized_values)

head(standardized_data)

데이터전치간[상관분석]

Python

import pandas as pd

#예시 데이터 생성

data = pd.DataFrame({'X': [1, 2, 3, 4, 5], 'Y': [2, 3, 5, 4, 6]})

공분산 계산

covariance = data['X'].cov(data['Y'])

상관계수 계산

correlation = data['X'].corr(data['Y'])

결과 출력

print("공분산:", covariance)

print("상관계수:", correlation)

R

예시 데이터 생성

data <- data.frame(X = c(1, 2, 3, 4, 5), Y = c(2, 3, 5, 4, 6))

공분산 계산

covariance <- cov(data\$X, data\$Y)

상관계수 계산

correlation <- cor(data\$X, data\$Y)

결과 출력

cat("공분산:", covariance, "\n")

cat("상관계수:", correlation, "\n")

시각한[이스토그램/박스]

Python

import pandas as pd

import matplotlib.pyplot as plt

한글 깨지는 것 방지

plt.rcParams["font.family"] = 'Malgun Gothic'

iris = pd.read_csv("iris.csv")

iris['Sepal.Length'].plot(kind='hist')

plt.show()

iris['Sepal.Length'].plot(kind='box')

plt.show()

iris.plot(kind='hist')

iris.plot(kind='box')

R

hist(iris\$Sepal.Length)

hist(iris\$Sepal.Width)

hist(iris\$Petal.Length)

hist(iris\$Petal.Width)

boxplot(iris)

boxplot(Sepal.Length~Sepal.Width, data = iris)

R 시각화 참조 : https://r-graphics.org

https://r-graph-

gallery.com/

시약한Plot/Linel 🞤

Python

import pandas as pd

import matplotlib.pyplot as plt

iris = pd.read_csv("iris.csv")

plt.plot(iris.index,'Sepal.Length',data=iris,linestyle='none',marker='o',markersize=

5,color='blue',alpha=0.5)

plt.plot(iris.index,'Sepal.Width',data=iris,linestyle='none',marker='o',markersize=5,

color='blue',alpha=0.5)

plt.plot(iris_df.index,'Petal.Length',data=iris_df,linestyle='solid',lw=3,color='gree

n',alpha=0.5)

plt.plot(iris.index,'Petal.Width',data=iris,linestyle='none',marker='o',markersize=

5,color='blue',alpha=0.5)

plt.plot(iris.index,'Species',data=iris,linestyle='none',marker='p',markersize=5,c

olor='blue',alpha=0.5)

R

head(iris,3)

plot(x = iris\$Sepal.Length, type = "p", ylim=c(0, 10), col=1)

lines(iris\$Sepal.Width, type = "p", ylim=c(0, 10), col=2)

lines(iris\$Petal.Length, type = "I", ylim=c(0, 10), col=3)

lines(iris\$Petal.Width, type = "o", ylim=c(0, 10), col=4)

lines(iris\$Species, type = "b", ylim=c(0, 10), col=5)

legend("topleft", colnames(iris), pch=1, col=1:5)

川學師Barl

Python

import pandas as pd

import matplotlib.pyplot as plt

iris = pd.read_csv("iris.csv")

iris['Sepal.Length'].plot(kind='bar')

iris.plot.bar(x='Sepal.Length',y='Sepal.Width')

R

install.packages("ggplot2")

library(ggplot2)

ggplot(iris)+geom_bar(aes(x=Sepal.Length))

ggplot(iris)+geom_bar(aes(x=Sepal.Length, y=Sepal.Width))

ggplot(iris)+geom_col(aes(x=Sepal.Length, y=Sepal.Width))

Python

import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

iris = pd.read_csv("iris.csv")
sns.pairplot(iris)

sns.scatterplot(x='Sepal.Length', y='Sepal.Width', data=iris,
hue='Species', style='Species')

R

pairs(iris[,1:4])

ggplot(iris)+geom_point(aes(x=Sepal.Length,y=Sepal.Width))
ggplot(iris)+geom_point(aes(x=Sepal.Length,y=Sepal.Width,
col=Species))
ggplot(iris)+geom_point(aes(x=Sepal.Length,y=Sepal.Width,
alpha=Species))
ggplot(iris)+geom_point(aes(x=Sepal.Length,y=Sepal.Width,
shape=Species))