Package 'EBEN'

October 27, 2024

Type Package

Version 5.2

Title Empirical Bayesian Elastic Net

Date 2024-10-27
Maintainer Anhui Huang <anhui huang@gmail.com=""></anhui>
Description Provides the Empirical Bayesian Elastic Net for handling multicollinearity in generalized linear regression models. As a special case of the 'EBgImnet' package (also available on CRAN), this package encourages a grouping effects to select relevant variables and estimate the corresponding non-zero effects.
License GPL
Depends R (>= 2.10)
NeedsCompilation yes
Repository CRAN
Date/Publication 2024-10-27 17:00:16 UTC
Author Anhui Huang [aut, cre]
Contents EBEN-package 2 BASIS 3 BASISbinomial 4 EBelasticNet.Binomial 4 EBelasticNet.BinomialCV 6 EBelasticNet.Gaussian 7 EBelasticNet.GaussianCV 8 EBlassoNEG.Binomial 10 EBlassoNEG.BinomialCV 11 EBlassoNEG.Gaussian 13
EBlassoNEG.GaussianCV
y
Index 18

2 EBEN-package

EBEN-package

Empirical Bayesian Elastic Net (EBEN)

Description

Fast EBEN algorithms.

EBEN implements a normal and generalized gamma hierearchical priors.

- (**) Two parameters (alpha, lambda) are equivalent with elastic net priors.
- (**) When parameter alpha = 1, it is equivalent with EBlasso-NE (normal + exponential)

Two models are available for both methods:

- (**) General linear regression model.
- (**) Logistic regression model.

Multi-collinearity:

- (**) for group of high correlated or collinear variables: EBEN identifies the group of variables estimates their effects together.
- (**) group of variables can be selected together.
- *Epistasis (two-way interactions) can be included for all models/priors
- *model implemented with memory efficient c code.
- *LAPACK/BLAS are used for most linear algebra computations.

Details

Package: EBEN
Type: Package
Version: 5.2

Date: 2015-10-06 License: gpl

Author(s)

Anhui Huang

References

key algorithms:

Cai, X., Huang, A., and Xu, S. (2011). Fast empirical Bayesian LASSO for multiple quantitative trait locus mapping. BMC Bioinformatics 12, 211.

Huang A, Xu S, Cai X. (2013). Empirical Bayesian LASSO-logistic regression for multiple binary trait locus mapping. BMC genetics 14(1):5.

Huang, A., Xu, S., and Cai, X. (2014). Empirical Bayesian elastic net for multiple quantitative trait locus mapping. Heredity 10.1038/hdy.2014.79

Other publications:

Huang, A., E. Martin, et al. (2014). "Detecting genetic interactions in pathway-based genome-wide

BASIS 3

association studies." Genet Epidemiol 38(4): 300-309.

Huang, A., S. Xu, et al. (2014). "Whole-genome quantitative trait locus mapping reveals major role of epistasis on yield of rice." PLoS ONE 9(1): e87330.

Huang, A. (2014). "Sparse model learning for inferring genotype and phenotype associations." Ph.D Dissertation. University of Miami(1186).

BASIS

An Example Data File for the Gauss Model

Description

This is a 1000x481 sample feature matrix

Usage

data(BASIS)

Format

The format is: int [1:1000, 1:481] 0 -1 0 0 1 0 1 0 1 0 ...

Details

The data was simulated on a 2400cM chromosome, each column corresponded to an even spaced QTL

Source

Huang, A., Xu, S., and Cai, X. (2014). Empirical Bayesian elastic net for multiple quantitative trait locus mapping. Heredity 10.1038/hdy.2014.79

Examples

data(BASIS)

4 EBelasticNet.Binomial

BASISbinomial

An Example Data File for the Binomial Model

Description

This is a 500x481 sample feature matrix

Usage

```
data(BASISbinomial)
```

Format

The format is: int [1:500, 1:481] 0 -1 0 0 0 0 -1 -1 0 1 ...

Details

The data was simulated on a 2400cM chromosome, each column corresponded to an even spaced QTL

Source

Huang A, Xu S, Cai X: Empirical Bayesian LASSO-logistic regression for multiple binary trait locus mapping. BMC genetics 2013, 14(1):5.

Examples

data(BASISbinomial)

Description

Generalized linear regression, normal-Gxponential (NG) hierarchical prior for regression coefficients

Usage

```
EBelasticNet.Binomial(BASIS, Target, lambda, alpha,Epis = FALSE,verbose = 0)
```

EBelasticNet.Binomial 5

Arguments

BASIS	sample matrix; rows correspond to samples, columns correspond to features
Target	Class label of each individual, TAKES VALUES OF 0 OR 1
lambda	Hyperparameter controls degree of shrinkage; can be obtained via Cross Validation; lambda>0
alpha	Hyperparameter controls degree of shrinkage; can be obtained via Cross Validation; 0 <alpha<1< td=""></alpha<1<>
Epis	TRUE or FALSE for including two-way interactions
verbose	0 or 1; 1: display message; 0 no message

Details

If Epis=TRUE, the program adds two-way interaction of K*(K-1)/2 more columns to BASIS

Value

weight the none-zero regression coefficients:

col1,col2 are the indices of the bases(main if equal);

col3: coefficent value;col4: posterior variance;

col5: t-value; col6: p-value

logLikelihood log likelihood from the final regression coefficients

Wald Score
Intercept Intercept

lambda the hyperparameter; same as input lambda alpha the hyperparameter; same as input alpha

Author(s)

Anhui Huang; Dept of Electrical and Computer Engineering, Univ of Miami, Coral Gables, FL

References

Huang A, Xu S, Cai X: Empirical Bayesian LASSO-logistic regression for multiple binary trait locus mapping. BMC genetics 2013, 14(1):5.

```
library(EBEN)
data(BASISbinomial)
data(yBinomial)
#reduce sample size to speed up the running time
n = 50;
k = 100;
N = length(yBinomial);
set = sample(N,n);
```

EBelasticNet.BinomialCV

```
BASIS = BASISbinomial[set,1:k];
y = yBinomial[set];
output = EBelasticNet.Binomial(BASIS, y,lambda = 0.1,alpha = 0.5, Epis = FALSE,verbose = 5)
```

EBelasticNet.BinomialCV

Cross Validation (CV) Function to Determine Hyperparameter of the EB_Elastic Net Algorithm for Binomial Model with Normal-Gamma (NG) Prior Distribution

Description

Hyperparameter controls degree of shrinkage, and is obtained via Cross Validation (CV). This program calculates the maximum lambda that allows one non-zero basis; and performs a search down to 0.001*lambda_max at even steps. (20 steps)

Usage

```
EBelasticNet.BinomialCV(BASIS, Target, nFolds, foldId, Epis = FALSE, verbose = 0)
```

Arguments

BASIS	sample matrix; rows correspond to samples, columns correspond to features
Target	Class label of each individual, TAKES VALUES OF 0 OR 1
nFolds	number of n-fold cv
Epis	TRUE or FALSE for including two-way interactions
foldId	random assign samples to different folds
verbose	from 0 to 5; larger verbose displays more messages

Details

If Epis=TRUE, the program adds two-way interaction K*(K-1)/2 more columns to BASIS

Value

CrossValidation

col1: hyperparameter; col2: loglikelihood mean; standard ERROR of nfold

mean log likelihood

Lmabda_optimal the optimal hyperparameter as computed Alpha_optimal the optimal hyperparameter as computed

Author(s)

Anhui Huang; Dept of Electrical and Computer Engineering, Univ of Miami, Coral Gables, FL

EBelasticNet.Gaussian 7

References

Huang A, Xu S, Cai X: Empirical Bayesian LASSO-logistic regression for multiple binary trait locus mapping. BMC genetics 2013, 14(1):5.

Examples

```
## not run
library(EBEN)
data(BASISbinomial)
data(yBinomial)
#reduce sample size to speed up the running time
n = 50;
k = 100;
N = length(yBinomial);
set.seed(1)
set = sample(N,n);
BASIS = BASISbinomial[set,1:k];
y = yBinomial[set];
nFolds = 3
## Not run:
CV = EBelasticNet.BinomialCV(BASIS, y, nFolds = 3,Epis = FALSE)
## End(Not run)
```

EBelasticNet.Gaussian The EB Elastic Net Algorithm for Gaussian Model

Description

General linear regression, normal-Gamma (NG) hierarchical prior for regression coefficients

Usage

```
EBelasticNet.Gaussian(BASIS, Target, lambda, alpha,Epis = FALSE,verbose = 0)
```

Arguments

BASIS	sample matrix; rows correspond to samples, columns correspond to features
Target	Response each individual
lambda	Hyperparameter controls degree of shrinkage; can be obtained via Cross Validation; lambda >0
alpha	Hyperparameter controls degree of shrinkage; can be obtained via Cross Validation; 0 <alpha<1< td=""></alpha<1<>
Epis	TRUE or FALSE for including two-way interactions
verbose	0 or 1; 1: display message; 0 no message

Details

If Epis=TRUE, the program adds two-way interaction of K*(K-1)/2 more columns to BASIS

Value

weight the none-zero regression coefficients:

col1,col2 are the indices of the bases(main if equal);

col3: coefficent value; col4: posterior variance;

col5: t-value; col6: p-value

WaldScore Wald Score
Intercept Intercept

lambda the hyperparameter; same as input lambda alpha the hyperparameter; same as input alpha

Author(s)

Anhui Huang; Dept of Electrical and Computer Engineering, Univ of Miami, Coral Gables, FL

References

Huang, A., Xu, S., and Cai, X. (2014). Empirical Bayesian elastic net for multiple quantitative trait locus mapping. Heredity 10.1038/hdy.2014.79

Examples

```
library(EBEN)
data(BASIS)
data(y)
n = 50;
k = 100;
BASIS = BASIS[1:n,1:k];
y = y[1:n];
Blup = EBelasticNet.Gaussian(BASIS, y,lambda = 0.0072,alpha = 0.95, Epis = FALSE,verbose = 0)
betas = Blup$weight
betas
```

EBelasticNet.GaussianCV

Cross Validation (CV) Function to Determine Hyperparameters of the EBEN Algorithm for Gaussian Model

EBelasticNet.GaussianCV 9

Description

Hyperparameter controls degree of shrinkage, and is obtained via Cross Validation (CV). This program calculates the maximum lambda that allows one non-zero basis; and performs a search down to 0.0001*lambda_max at even steps. (20 steps)

Usage

```
EBelasticNet.GaussianCV(BASIS, Target, nFolds,foldId, Epis = FALSE, verbose = 0)
```

Arguments

DACTO

BAS12	sample matrix; rows correspond to samples, columns correspond to features
Target	Response each individual
nFolds	number of n-fold cv
Epis	TRUE or FALSE for including two-way interactions

foldId random assign samples to different folds

verbose from 0 to 5; larger verbose displays more messages

Details

If Epis=TRUE, the program adds two-way interaction K*(K-1)/2 more columns to BASIS

Value

```
CrossValidation
```

col1: hyperparameter; col2: loglikelihood mean; standard ERROR of nfold

mean log likelihood

Lmabda_optimal the optimal hyperparameter as computed Alpha_optimal the optimal hyperparameter as computed

Author(s)

Anhui Huang; Dept of Electrical and Computer Engineering, Univ of Miami, Coral Gables, FL

References

Huang, A., Xu, S., and Cai, X. (2013). Empirical Bayesian elastic net for multiple quantitative trait locus mapping. submitted.

```
library(EBEN)
data(BASIS)
data(y)
#reduce sample size to speed up the running time
n = 50;
k = 100;
BASIS = BASIS[1:n,1:k];
```

10 EBlassoNEG.Binomial

```
y = y[1:n];
## Not run:
CV = EBelasticNet.GaussianCV(BASIS, y, nFolds = 3,Epis = FALSE)
## End(Not run)
```

EBlassoNEG.Binomial

The EBlasso Algorithm for Binomial Model with Normal-Exponential-Gamma (NEG) Prior Distribution

Description

Generalized linear regression, normal-exponential-gamma (NEG) hierarchical prior for regression coefficients

Usage

```
EBlassoNEG.Binomial(BASIS, Target, a_gamma, b_gamma, Epis,verbose,group)
```

Arguments

BASIS	sample matrix; rows correspond to samples, columns correspond to features
Target	Class label of each individual, TAKES VALUES OF 0 OR 1
a_gamma	Hyperparameters control degree of shrinkage; can be obtained via Cross Validation; a_gamma>=-1
b_gamma	Hyperparameters control degree of shrinkage; can be obtained via Cross Validation; b_gamma>0
Epis	TRUE or FALSE for including two-way interactions
verbose	0 or 1; 1: display message; 0 no message
group	0 or 1; 0: No group effect; 1 two-way interaction grouped. Only valid when $\operatorname{Epis} = \operatorname{TRUE}$

Details

If Epis=TRUE, the program adds two-way interaction K*(K-1)/2 more columns to BASIS

Value

weight the none-zero regression coefficients:

col1,col2 are the indices of the bases(main if equal);

col3: coefficent value;col4: posterior variance;

col5: t-value; col6: p-value

logLikelihood log likelihood with the final regression coefficients

EBlassoNEG.BinomialCV 11

WaldScore	Wald Score
Intercept	Intercept
a_gamma	the hyperparameter; same as input

b_gamma the hyperparameter; same as input

Author(s)

Anhui Huang; Dept of Electrical and Computer Engineering, Univ of Miami, Coral Gables, FL

References

Huang, A., Xu, S., and Cai, X.(2012). Empirical Bayesian LASSO-logistic regression for multiple binary trait locus mapping. BMC Genetics. Submitted

Examples

```
library(EBEN)
data(BASISbinomial)
data(yBinomial)
#reduce sample size to speed up the running time
n = 50;
k = 100;
BASIS = BASISbinomial[1:n,1:k];
y = yBinomial[1:n];
output = EBlassoNEG.Binomial(BASIS,y,0.1,0.1,Epis = FALSE)
```

EBlassoNEG.BinomialCV Cross Validation (CV) Function to Determine Hyperparameters of the EBlasso Algorithm for Binomial Model with Normal-Exponential-Gamma (NEG) Prior Distribution

Description

Hyperparameters control degree of shrinkage, and are obtained via Cross Validation. This program performs three steps of CV.

```
1st: a = b = 0.001, 0.01, 0.1, 1;
2nd: fix b = b1; a = [-0.5, -0.4, -0.3, -0.2, -0.1, -0.01, 0.01, 0.05, 0.1, 0.5, 1];
3rd: fix a = a2; b = 0.01 to 10 with a step size of one for b > 1 and a step size of one on the logarithmic scale for b < 1
```

In the 2nd step, a can take value from -1 and values in [-1, -0.5] can be added to the set in line 13 of this function (The smaller a is, the less shrinkage.)

Usage

```
EBlassoNEG.BinomialCV(BASIS, Target, nFolds, foldId, Epis, verbose, group)
```

Arguments

BASIS	sample matrix; rows correspond to samples, columns correspond to features
Target	Class label of each individual, TAKES VALUES OF 0 OR 1
nFolds	number of n-fold cv
foldId	random assign samples to different folds
Epis	TRUE or FALSE for including two-way interactions
verbose	from 0 to 5; larger verbose displays more messages
group	TRUE or FALSE; FALSE: No group effect; TRUE two-way interaction grouped. Only valid when Epis = TRUE

Details

If Epis=TRUE, the program adds two-way interaction $K^*(K-1)/2$ more columns to BASIS Note: Given the fact that degree of shrinkage is a monotonic function of (a,b), The function implemented a 3-step search as described in Huang, A. 2014, for full grid search, user needs to modify the function accordingly.

Value

CrossValidation

col1: hyperparameters; col2: loglikelihood mean; standard ERROR of nfold

mean log likelihood

a_optimal the optimal hyperparameter as computed the optimal hyperparameter as computed

Author(s)

Anhui Huang; Dept of Electrical and Computer Engineering, Univ of Miami, Coral Gables, FL

References

Huang A, Xu S, Cai X: Empirical Bayesian LASSO-logistic regression for multiple binary trait locus mapping. BMC genetics 2013, 14(1):5.

Huang, A., S. Xu, et al. Whole-genome quantitative trait locus mapping reveals major role of epistasis on yield of rice. PLoS ONE 2014, 9(1): e87330.

```
library(EBEN)
data(BASISbinomial)
data(yBinomial)
#reduce sample size to speed up the running time
n = 50;
k = 100;
BASIS = BASISbinomial[1:n,1:k];
y = yBinomial[1:n];
## Not run:
CV = EBlassoNEG.BinomialCV(BASIS, y, nFolds = 3,Epis = FALSE, verbose = 0)
```

EBlassoNEG.Gaussian 13

End(Not run)

EBlassoNEG.Gaussian The EBlasso Algorithm for Gaussian Model with Normal-Exponential-Gamma (NEG) Prior Distribution

Description

General linear regression, normal-exponential-gamma (NEG) hierarchical prior for regression coefficients

Usage

EBlassoNEG.Gaussian(BASIS, Target, a_gamma, b_gamma, Epis, verbose, group)

Arguments

BASIS	sample matrix; rows correspond to samples, columns correspond to features
Target	Response each individual
a_gamma	Hyperparameters control degree of shrinkage; can be obtained via Cross Validation
b_gamma	Hyperparameters control degree of shrinkage; can be obtained via Cross Validation
Epis	TRUE or FALSE for including two-way interactions
verbose	from 0 to 5; larger verbose displays more messages
group	0 or 1; 0: No group effect; 1 two-way interaction grouped. Only valid when $\mbox{{\sc Epis}}=\mbox{{\sc TRUE}}$

Details

If Epis=TURE, the program adds two-way interaction $K^*(K-1)/2$ more columns to BASIS for memory efficient, the function pass n_effect to C. n_effect > n_true effects, which is a rough guess on how many variables will be selected by the function by providing a relative 'small' n_effect, the function will not allocate a large trunck of memory during computation.

Value

weight the none-zero regression coefficients:

col1,col2 are the indices of the bases(main if equal);

col3: coefficent value; col4: posterior variance;

col5: t-value; col6: p-value

WaldScore Wald Score
Intercept Intercept

residVar residual variance

a_gamma the hyperparameter; same as input b_gamma the hyperparameter; same as input

Author(s)

Anhui Huang; Dept of Electrical and Computer Engineering, Univ of Miami, Coral Gables, FL

References

Cai, X., Huang, A., and Xu, S. (2011). Fast empirical Bayesian LASSO for multiple quantitative trait locus mapping. BMC Bioinformatics 12, 211.

Examples

```
library(EBEN)
data(BASIS)
data(y)
n = 50;
k = 100;
BASIS = BASIS[1:n,1:k];
y = y[1:n];
output = EBlassoNEG.Gaussian(BASIS, y, a_gamma = 0.1, b_gamma = 0.1)
```

EBlassoNEG.GaussianCV Cross Validation (CV) Function to Determine Hyperparameters of the EBlasso Algorithm for Gaussian Model with Normal-Exponential-Gamma (NEG) Prior Distribution

Description

Hyperparameters control degree of shrinkage, and are obtained via Cross Validation. This program performs three steps of CV.

```
1st: a = b = 0.001, 0.01, 0.1, 1;
```

```
2nd: fix b= b1; a=[-0.5, -0.4, -0.3, -0.2, -0.1, -0.01, 0.01, 0.05, 0.1, 0.5, 1];
```

3rd: fix a = a2; b = 0.01 to 10 with a step size of one for b > 1 and a step size of one on the logarithmic scale for b < 1

In the 2nd step, a can take value from -1 and values in [-1, -0.5] can be added to the set in line 13 of this function (The smaller a is, the less shrinkage.)

Usage

```
EBlassoNEG.GaussianCV(BASIS, Target, nFolds, foldId, Epis,verbose, group)
```

EBlassoNEG.GaussianCV 15

Arguments

BASIS	sample matrix; rows correspond to samples, columns correspond to features
Target	Class label of each individual, TAKES VALUES OF 0 OR 1
nFolds	number of n-fold cv
foldId	random assign samples to different folds
Epis	TRUE or FALSE for including two-way interactions
verbose	from 0 to 5; larger verbose displays more messages
group	TRUE or FALSE; FALSE: No group effect; TRUE two-way interaction grouped. Only valid when Epis = TRUE

Details

If Epis= TRUE, the program adds two-way interaction $K^*(K-1)/2$ more columns to BASIS Note: Given the fact that degree of shrinkage is a monotonic function of (a,b), The function implemented a 3-step search as described in Huang, A. 2014, for full grid search, user needs to modify the function accordingly.

Value

CrossValidation

col1: hyperparameters; col2: loglikelihood mean; standard ERROR of nfold

mean log likelihood

a_optimal the optimal hyperparameter as computed the optimal hyperparameter as computed

Author(s)

Anhui Huang; Dept of Electrical and Computer Engineering, Univ of Miami, Coral Gables, FL

References

Huang A, Xu S, Cai X: Empirical Bayesian LASSO-logistic regression for multiple binary trait locus mapping. BMC genetics 2013, 14(1):5.

Huang, A., S. Xu, et al. Whole-genome quantitative trait locus mapping reveals major role of epistasis on yield of rice. PLoS ONE 2014, 9(1): e87330.

```
library(EBEN)
data(BASIS)
data(y)
#reduce sample size to speed up the running time
n = 50;
k = 100;
BASIS = BASIS[1:n,1:k];
y = y[1:n];
## Not run:
CV = EBlassoNEG.GaussianCV(BASIS, y, nFolds = 3,Epis = FALSE)
```

16 yBinomial

```
## End(Not run)
```

У

Sample Response Data for Gaussian Model

Description

Corresponding to the response of BASIS

Usage

data(y)

Format

The format is: num [1:1000, 1] 113.5 97.1 116.6 96.7 105.5 ...

Source

Huang, A., Xu, S., and Cai, X. (2014). Empirical Bayesian elastic net for multiple quantitative trait locus mapping. Heredity 10.1038/hdy.2014.79

Examples

data(y)

yBinomial

Sample Variable Data for Binomial Model

Description

Corresponding to the class label of BASISbinomial

Usage

```
data(yBinomial)
```

Format

```
The format is: int [1:500, 1] 1 1 1 1 1 1 1 1 1 1 ...
```

Source

Huang A, Xu S, Cai X: Empirical Bayesian LASSO-logistic regression for multiple binary trait locus mapping. BMC genetics 2013, 14(1):5.

yBinomial 17

Examples

data(BASISbinomial)

Index

```
* datasets
    BASIS, 3
    BASISbinomial, 4
    y, 16
    yBinomial, 16
* package
    EBEN-package, 2
BASIS, 3
BASISbinomial, 4
EBelasticNet.Binomial, 4
EBelasticNet.BinomialCV, 6
EBelasticNet.Gaussian, 7
EBelasticNet.GaussianCV, 8
EBEN (EBEN-package), 2
EBEN-package, 2
EBlassoNEG.Binomial, 10
EBlassoNEG.BinomialCV, 11
EBlassoNEG.Gaussian, 13
EBlassoNEG.GaussianCV, 14
y, 16
yBinomial, 16
```