Fig. 11-8 Sequence of transformations for rotating an object about an axis that is parallel to the x axis.

Original Position of Object

Translate Rotation Axis onto x Axis

Rotate Object Through Angle u

(d)
Translate Rotation
Axis to Original Position

Invert Viewing z Axis

*

Axis to Align the Two z Axes Rotate About the World y

Viewing z Axis into the xz Plane of

the World System

Rotate About World

<u>a</u>

(e)

x Axis to Bring

the Two Viewing Axis to Align Rotate About the World z Systems

Figure 12-22 Oblique projection of a box onto the $z_v = 0$ plane.

Figure 12-23 Cavalier projections of a cube onto a view plane for two values of angle ϕ .

Note: Depth of the cube is projected equal to the width and height.

Chapter 12
Three-Dimensional Viewing

 ${\rm in}$

ıe

ın.

In et

d).

iis

Figure 12-24 Cabinet projections of a cube onto a view plane for two values of angle ϕ . Depth is projected as one-half that of the width and height.

443

where d_p ence poin Usit write the

In this rep

Figure 12-1

