Introduction to Categorical Data Analysis

DATA SCIENCE BOOTCAMP

Categorical Data Analysis

Methods for response (y) variable having scale that is categorical

Examples:

- Binary (Democrat or Republican)
 (Success or Not Success)
- Nominal (Favorite music genre: rock, classical, jazz)
- Ordinal (Rank: 1st, 2nd, 3rd)

For these problems, linear regression is not the correct approach.

Probability Distributions for Categorical Data

In linear regression: response y is continuous, and the (conditional) response $y \mid x$ is normally distributed.

Probability Distributions for Categorical Data

In linear regression: response y is continuous, and the (conditional) response $y \mid x$ is normally distributed.

In models where y is categorical, the response $y \mid x$ can take other distributions.

Let's first start simple.

The experiment of tossing a coin n times is an example of a binomial experiment.

The experiment of tossing a coin *n* times is an example of a binomial experiment.

Three conditions:

- *n* independent trials
- The outcome of a <u>single</u> trial is classified as 1 of 2 types:
 - Success
 - Not Success
- For each trial, the probability of success is the same:
 - $P(Success) = \pi$
 - Note: π is called the <u>parameter</u> of the experiment.

Y: random variable, represents the # of successes out of *n* trials

Example:

- 200 voters
- Each person votes:

Democrat – with p = 0.55Republican – with p = 0.45

Y: random variable, represents the # of successes out of *n* trials

Example:

- 200 voters
- Each person votes:

```
Democrat – with p = 0.55
Republican – with p = 0.45
```

• Then # Democrat votes ~ Binomial ($n=200, \pi=0.55$)

Y: random variable, represents the # of successes out of *n* trials

Example:

- 200 voters
- Each person votes:

```
Democrat – with p = 0.55
Republican – with p = 0.45
```

- Then # Democrat votes ~ Binomial ($n=200, \pi=0.55$)
- Note: if n = 1 (just one trial), then $Y \sim Bernoulli$ distribution

Y: random variable, represents the # of successes out of *n* trials

Example:

- 200 voters
- Each person votes:

Democrat – with p = 0.55

Republican – with p = 0.45

- Then # Democrat votes ~ Binomial ($n=200, \pi=0.55$)
- Note: if n = 1 (just one trial), then $Y \sim Bernoulli$ distribution

More generally, the random variable

$$Y \sim Binomial(n, p)$$

has probability mass function:

$$P(Y = y) = \frac{n!}{y!(n-y)!} \pi^{y} (1-\pi)^{n-y}$$

More generally, the random variable

$$Y \sim Binomial(n, \pi)$$

has probability mass function:

$$P(Y = y) = \frac{n!}{y!(n-y)!} \pi^{y} (1-\pi)^{n-y}$$

In general, for a binomial random variable Y,

The Expected Value is:

$$E(Y) = \mu_Y = n\pi$$

The <u>Variance</u> is:

$$Var(Y) = \sigma_Y^2 = n\pi(1-\pi)$$

More generally, the random variable

$$Y \sim Binomial(n, \pi)$$

has probability mass function:

$$P(Y=y) = \binom{n}{y} \pi^{y} (1-\pi)^{n-y}$$

In general, for a binomial random variable Y,

The Expected Value is:

$$E(Y) = \mu_Y = n\pi$$

The <u>Variance</u> is:

$$Var(Y) = \sigma_Y^2 = n\pi(1-\pi)$$

Let Y = # of people who voted Democrat. n = 3 voters. Suppose $P(vote\ Dem) = 0.5$ Possible values of Y are:

```
Let Y = \# of people who voted Democrat.

n = 3 voters.

Suppose P(vote\ Dem) = 0.5

Possible values of Y are: 0, 1, 2, 3
```

Let Y = # of people who voted Democrat. n = 3 voters.

Suppose $P(vote\ Dem) = 0.5$ Possible values of Y are: 0, 1, 2, 3

Then *Y* follows a binomial distribution:

$$Y \sim Binomial (n = 3, \pi = 0.5)$$

Let Y = # of people who voted Democrat. n = 3 voters.

Suppose $P(vote\ Dem) = 0.5$

Possible values of *Y* are: 0, 1, 2, 3

Then *Y* follows a binomial distribution:

$$Y \sim Binomial (n = 3, \pi = 0.5)$$

Let Y = # of people who voted Democrat. n = 3 voters.

Suppose $P(vote\ Dem) = 0.5$

Possible values of *Y* are: 0, 1, 2, 3

Then *Y* follows a binomial distribution:

$$Y \sim Binomial (n = 3, \pi = 0.5)$$

$$P(Y = y) = \frac{3!}{y!(3-y)!} (1/2)^{y} (1/2)^{3-y}$$

$$= \frac{3!}{y!(3-y)!} (1/8)$$

DATA SCIENCE BOOTCAMP

Before, we were thinking about the probability of various possible outcomes of Y, given a parameter π (and n data points).

Given π , what is is the probability of seeing y # successes, P(Y=y)?

Given $P(vote\ Dem) = 0.5$, what is is the probability of seeing $y \# Democrat\ votes$, P(Y=y)?

Before, we were thinking about the probability of various possible outcomes of Y, given a parameter π .

Given π , what is is the probability of seeing y # successes, P(Y=y)?

In real life, we're often more interested in going the other way. So now let's flip our thinking:

Given Y = y # successes, what is the underlying proportion π ?

Before, we were thinking about the probability of various possible outcomes of Y, given a parameter π .

Given π , what is is the probability of seeing y # successes, P(Y=y)?

In real life, we're often more interested in going the other way. So now let's flip our thinking:

Given Y = y # successes, what is the underlying proportion π ?

Example: on Wall St, I count 100 people, 15 of whom are women. What is the proportion of women on Wall St?

- There is an unknown parameter π (like a "state of nature")
- Have data, i.e. observations Y (or Y_1 , Y_2 , Y_3 , ...)
- Assume a model, i.e. $Y \sim Binomial(n, \pi)$

- There is an unknown parameter π (like a "state of nature")
- Have data, i.e. observations Y (or Y_1 , Y_2 , Y_3 , ...)
- Assume a model, i.e. $Y \sim Binomial(n, \pi)$

Goal: want $P(\pi \mid Y = y)$

- There is an unknown parameter π (like a "state of nature")
- Have data, i.e. observations Y (or Y_1 , Y_2 , Y_3 , ...)
- Assume a model, i.e. $Y \sim Binomial(n, \pi)$

Goal: want $P(\pi \mid Y = y)$

After we have data, we want to know the probability of seeing various values of π .

- There is an unknown parameter π (like a "state of nature")
- Have data, i.e. observations Y (or Y_1 , Y_2 , Y_3 , ...)
- Assume a model, i.e. $Y \sim Binomial(n, \pi)$

Goal: want $P(\pi \mid Y = y)$

After we have data, we want to know the probability of seeing various values of π .

In particular, we'd like to find the probability that is maximal.

Goal: want $P(\pi \mid Y = y)$

After we have data, we want to know the probability of seeing various values of π .

Two ways:

Goal: want $P(\pi \mid Y = y)$

After we have data, we want to know the probability of seeing various values of π .

Two ways:

1. Bayes Theorem.

Goal: want $P(\pi \mid Y = y)$

After we have data, we want to know the probability of seeing various values of π .

Two ways:

1. Bayes Theorem.

$$P(\pi \mid Y = y)$$
 is proportional to $P(\pi) P(Y = y \mid \pi)$

Goal: want $P(\pi \mid Y = y)$

After we have data, we want to know the probability of seeing various values of π .

Two ways:

1. Bayes Theorem.

$$P(\pi \mid Y = y)$$
 is proportional to $P(\pi) P(Y = y \mid \pi)$

likelihood

prior

Goal: want $P(\pi \mid Y = y)$

After we have data, we want to know the probability of seeing various values of π .

Two ways:

1. Bayes Theorem.

$$P(\pi \mid Y = y)$$
 is proportional to $P(\pi) P(Y = y \mid \pi)$

Some controversy in getting the prior:

 How to get it, what it means, subjective disagreements, subjective biases

2. Maximum Likelihood No priors; more limited, working only with the likelihood

Thinking with Likelihoods: The Idea

2. Maximum Likelihood

No priors; more limited, working only with the likelihood

We can conduct inferences about parameters using maximum likelihood.

Thinking with Likelihoods: The Idea

2. Maximum Likelihood

No priors; more limited, working only with the likelihood

We can conduct inferences about parameters using maximum likelihood.

Definition. The <u>likelihood function</u> is the probability of the observed data occurring, expressed as a function of the parameter value.

Thinking with Likelihoods: The Idea

2. Maximum Likelihood

No priors; more limited, working only with the likelihood

We can conduct inferences about parameters using maximum likelihood.

Definition. The <u>likelihood function</u> is the probability of the observed data occurring, expressed as a function of the parameter value.

Example.

Of the N = 2 people on Wall Street, 1 was a woman.

Then Y = # successes = 1.

Of the n = 2 people on Wall Street, 1 was a woman. Then Y = # successes = 1.

Of the n = 2 people on Wall Street, 1 was a woman.

Then Y = # successes = 1.

 $Y \sim Binomial (n = 2, \pi = ?)$

Binomial Distribution:

$$P(Y = y \mid n=2) = \frac{2!}{y!(2-y)!} (\pi)^{y} (1-\pi)^{2-y}$$

Of the n = 2 people on Wall Street, 1 was a woman.

Then Y = # successes = 1.

 $Y \sim Binomial (n = 2, \pi = ?)$

Binomial Distribution:

ribution:
$$P(Y = y \mid n=2) = \frac{2!}{y!(2-y)!} (\pi)^{y} (1-\pi)^{2-y}$$

$$P(Y = 1 \mid n=2) = 2\pi(1 - \pi)$$

Of the n = 2 people on Wall Street, 1 was a woman.

Then Y = # successes = 1.

 $Y \sim Binomial (n = 2, \pi = ?)$

Binomial Distribution:

ribution:

$$P(Y = y \mid n=2) = \frac{2!}{y!(2-y)!} (\pi)^{y} (1-\pi)^{2-y}$$

$$P(Y = 1 \mid n=2) = 2\pi(1 - \pi)$$

The likelihood function, below, is the probability of observing y=1, expressed as a function of parameter value π :

$$L(\pi) = 2\pi(1-\pi)$$

Of the n = 2 people on Wall Street, 1 was a woman.

Then Y = # successes = 1.

$$L(\pi) = 2\pi(1-\pi)$$

Of the n = 2 people on Wall Street, 1 was a woman.

Then Y = # successes = 1.

Of the n=2 people on Wall Street, 1 was a woman. Then Y=# successes = 1. $Y \sim Binomial (n=2, \pi=?)$

$$L(\pi) = 2\pi(1 - \pi)$$

If $\pi = 1$, the likelihood function represents the probability of observing y = 1.

Of the n = 2 people on Wall Street, 1 was a woman. Then Y = # successes = 1.

 $Y \sim Binomial (n = 2, \pi = ?)$

$$L(\pi) = 2\pi(1-\pi)$$

If $\pi = 1$, the likelihood function represents the probability of observing y = 1.

Then Y = # successes = 1.

 $Y \sim Binomial (n = 2, \pi = ?)$

$$L(\pi) = 2\pi(1-\pi)$$

If $\pi = 0$, the likelihood function represents the probability of observing y = 1.

Then Y = # successes = 1.

 $Y \sim Binomial (n = 2, \pi = ?)$

$$L(\pi) = 2\pi(1-\pi)$$

If $\pi = 0$, the likelihood function represents the probability of observing y = 1.

$$L(\pi = 0) = 2 \times 0 \times (1 - 0)$$

$$= 0$$

$$0.6$$

$$0.5$$

$$0.4$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

Then Y = # successes = 1.

 $Y \sim Binomial (n = 2, \pi = ?)$

$$L(\pi) = 2\pi(1-\pi)$$

If $\pi = 1/2$, the likelihood function represents the probability of observing y = 1.

Then Y = # successes = 1.

 $Y \sim Binomial (n = 2, \pi = ?)$

$$L(\pi) = 2\pi(1-\pi)$$

If $\pi = 1/2$, the likelihood function represents the probability of observing y = 1.

$$L(\pi = 1/2) = 2 \times 1/2 \times (1 - 1/2)$$

$$= 1/2$$

$$0.6$$

$$0.5$$

$$0.4$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

This is the maximum likelihood estimate.

Definition. The Maximum Likelihood (ML) estimate of a parameter π is the parameter value at which the likelihood function takes its maximum.

Intuitively, the Maximum Likelihood estimate $\hat{\pi}$ is your guess for the "state of nature" that best explains the data. It is the estimate for which the data is *most likely* to occur.

Definition. The Maximum Likelihood (ML) estimate of a parameter π is the parameter value at which the likelihood function takes its maximum.

Intuitively, the Maximum Likelihood estimate $\hat{\pi}$ is your guess for the "state of nature" that best explains the data. It is the estimate for which the data is *most likely* to occur.

Example: $L(\pi) = 2\pi (1 - \pi)$ is maximized at $\pi = \frac{1}{2}$. Thus the Maximum Likelihood estimate for $L(\pi)$ is $\hat{\pi} = \frac{1}{2}$.

Notes.

For Binomial random variable Y: $\hat{\pi} = y/n$

Mathematically, in Ordinary Least Squares ($Y|X \sim Normal$), the least squares estimates for the β parameters are the Maximum Likelihood estimates.