Universidade Veiga de Almeida

Curso: Básico das engenharias

Disciplina: Cálculo Diferencial e Integral I

2^a Lista de Exercícios

Exercício 1: Calcule os limites dados abaixo:

(a)
$$\lim_{x \to +\infty} \frac{2x^2 - 5}{3x^4 + x + 2}$$
 (b) $\lim_{x \to +\infty} \frac{2x^3 - 5}{3x^2 + x + 2}$ (c) $\lim_{x \to +\infty} \frac{5x^2 - 3x + 1}{2x^2 + 4x - 7}$

(b)
$$\lim_{x \to +\infty} \frac{2x^3 - 5}{3x^2 + x + 2}$$

(c)
$$\lim_{x \to +\infty} \frac{5x^2 - 3x + 1}{2x^2 + 4x - 7}$$

(d)
$$\lim_{x \to -\infty} \frac{4 - 7x}{2 + 3x}$$

(d)
$$\lim_{x \to -\infty} \frac{4 - 7x}{2 + 3x}$$
 (e) $\lim_{x \to -\infty} \frac{2x^2 - 3}{4x^3 + 5x}$ (f) $\lim_{x \to +\infty} \frac{2 - x^2}{x + 3}$

(f)
$$\lim_{x \to +\infty} \frac{2-x^2}{x+3}$$

(g)
$$\lim_{x \to +\infty} \frac{\sqrt[3]{x+1}}{x+1}$$

$$\text{(g)} \lim_{x \to +\infty} \frac{\sqrt[3]{x+1}}{x+1} \qquad \qquad \text{(h)} \lim_{x \to +\infty} \frac{x^2}{10+x\sqrt{x}} \qquad \qquad \text{(i)} \lim_{x \to -\infty} \frac{6x^2}{\sqrt[3]{5x^6-1}}$$

(i)
$$\lim_{x \to -\infty} \frac{6x^2}{\sqrt[3]{5x^6 - 1}}$$

Exercício 2: Calcule os limites dados abaixo:

(a)
$$\lim_{x \to 7} \frac{\sqrt{x} - \sqrt{7}}{\sqrt{x+7} - \sqrt{14}}$$
 (b) $\lim_{x \to 1} \frac{\frac{1}{x^2} - 1}{x-1}$ (c) $\lim_{x \to p} \frac{\frac{1}{x} - \frac{1}{p}}{x-p}$

(b)
$$\lim_{x \to 1} \frac{\frac{1}{x^2} - 1}{x - 1}$$

(c)
$$\lim_{x \to p} \frac{\frac{1}{x} - \frac{1}{p}}{x - p}$$

(d)
$$\lim_{x \to 2^+} \frac{\sqrt{x^2 - 4} + \sqrt{x - 2}}{\sqrt{x - 2}}$$
 (e) $\lim_{x \to 3^+} \frac{4x^2}{9 - x^2}$ (f) $\lim_{x \to 3^-} \frac{4x^2}{9 - x^2}$

(e)
$$\lim_{x \to 3^+} \frac{4x^2}{9 - x^2}$$

(f)
$$\lim_{x \to 3^{-}} \frac{4x^2}{9 - x^2}$$

(g)
$$\lim_{x \to 0^+} \frac{\sqrt{3+x^2}}{x}$$

(h)
$$\lim_{x \to 0^{-}} \frac{\sqrt{3+x^2}}{x}$$
 (i) $\lim_{x \to 3^{+}} \frac{\sqrt{x^2-9}}{x-3}$

(i)
$$\lim_{x \to 3^+} \frac{\sqrt{x^2 - 9}}{x - 3}$$

$$(j) \lim_{x \to 4^+} \frac{x}{x - 4}$$

(k)
$$\lim_{x \to 4^{-}} \frac{x}{x - 4}$$

(k)
$$\lim_{x \to 4^{-}} \frac{x}{x-4}$$
 (l) $\lim_{x \to 2^{+}} \frac{x+2}{x^2-4}$

(m)
$$\lim_{x\to 2^-} \frac{x+2}{x^2-4}$$

(n)
$$\lim_{x \to 5^+} \frac{4x}{(x-5)^2}$$

(n)
$$\lim_{x \to 5^+} \frac{4x}{(x-5)^2}$$
 (o) $\lim_{x \to 5^-} \frac{4x}{(x-5)^2}$

(p)
$$\lim_{x \to 1^+} \frac{x-3}{x^2-1}$$

(q)
$$\lim_{x \to 1^{-}} \frac{4 - x^2}{x^3 - 1}$$

(q)
$$\lim_{x \to 1^{-}} \frac{4 - x^2}{x^3 - 1}$$
 (r) $\lim_{x \to 3^{-}} \frac{2x^2 + 5x + 1}{x^2 - x - 6}$

(s)
$$\lim_{x \to +\infty} \frac{\sqrt{3+x^2}}{x}$$

(t)
$$\lim_{x \to -\infty} \frac{\sqrt{3+x^2}}{x}$$

Exercício 3: Calcule os valores de a e b para que tenhamos a identidade abaixo:

$$\lim_{x\rightarrow +\infty}[ax+b-\frac{x^3+1}{x^2+1}]=0.$$

Exercício 4: Determine, caso existam, as assíntotas horizontais e verticais dos gráficos das funções dadas abaixo:

(a)
$$f(x) = \frac{x^2 - 5}{2x^2 - 4}$$

(a)
$$f(x) = \frac{x^2 - 5}{2x^2 - 4}$$
 (b) $f(x) = \frac{x^3 + 5x^2 + 1}{x^2 + 1}$ (c) $f(x) = \frac{x^2 + 5x + 4}{x^5 + 1}$

(c)
$$f(x) = \frac{x^2 + 5x + 4}{x^5 + 1}$$

RESPOSTAS:

1) (a) 0 (b)
$$+\infty$$
 (c) $5/2$ (d) $-7/3$ (e) 0 (f) $-\infty$

(c)
$$5/2$$

$$(d) -7/3$$

$$(f) - \infty$$

(g) 0 (h)+
$$\infty$$
 (i) $\frac{6}{\sqrt[3]{5}}$

2) (a)
$$\sqrt{2}$$
 (b) -2 (c) $\frac{-1}{p^2}$ (d) 3 (e) $-\infty$ (f) $+\infty$ (g) $+\infty$

$$(h) -\infty \quad (i) +\infty \quad (j) +\infty \quad (k) -\infty \quad (l) +\infty \quad (m) -\infty \quad (n) +\infty$$

(o)
$$+\infty$$
 (p) $-\infty$ (q) $-\infty$ (r) $-\infty$ (s) 1 (t) -1

3)
$$a = 1 e b = 0$$

- 4) a) y=1/2 é assíntota horizontal e $x=\sqrt{2}$ e $x=-\sqrt{2}$ são assíntotas verticais.
 - b) Não há assíntotas.
 - c) y = 0 é assíntota horizontal e não há assíntota vertical.