Force and Acceleration

Objects with balanced forces (zero resultant force) are either stationary or moving at a steady speed in a straight line.

The speed or direction of something with a resultant force **changes**. It might speed up, slow down or change direction. This means that it accelerates.

The **acceleration** depends on the <u>resultant</u> force and the <u>mass</u> of the object. We would expect a 100 N force to have a bigger effect on a 100 g apple than on a 20 000 kg bus.

- 1 The diagram above shows a 50 kg trolley in a warehouse and a 2 kg skateboard.
 - (a) Calculate the resultant force on the trolley and also on the skateboard.
 - (b) Calculate the resultant force on each kilogram for the trolley and the skateboard.
 - (c) If the trolley and the skateboard were in a race with these forces, which would pull away from the start line more rapidly?

The acceleration of an object in m/s^2 is given by the resultant force per kilogram (in N/kg) on the object.

- 2 A 200 N force pulls a 25 kg trolley.
 - (a) Force on each kilogram = \div = newtons
 - (b) Complete the sentence: The acceleration (in m/s²) is
 - (c) A 4 kg cat uses a 20 N force to speed up. Work out the acceleration using an equation.

- (d) Work out the acceleration when 80 N of weight pulls a dropped 8 kg sandbag.
- (e) Work out the acceleration when 5 N of weight pulls a dropped 0.5 kg lump of cheese.

3	Model cars in a competition need to accelerate at 8 m/s ² .						
	(a) Complete: The force on each kilogram needs to be						newtons.
	(b) Work out the force needed on a 2 kg model using an equation.						
	force (N)	=	mass (kg)	X	acc	eleration (r	n/s^2
		=	2	×		8	
	(c) Work out the force needed on a 0.4 kg model using an equation.						
	force (N)		mass (kg)		_	-	
		=	0.4	×		8	
			100	(1.000		41.)	
	(d) Work out the force neede	ea tor	a 100 g car. (1000	g =	1 kg)	
<u> </u>	A bottle in a space station ac	ccelei	rates at 3 m/s	² whe	en an	astronaut į	oushes it.
1	A bottle in a space station ac					astronaut ¡	oushes it.
1						astronaut į	oushes it.
1		ı kilog	gram of the b	ottle?	•		
1	(a) What is the force on each	ı kilog	gram of the b	ottle?	•		
1	(a) What is the force on each	ı kiloç e bot	gram of the b tle with a 6 N	ottle? force	. Ho\	w many 3 N	
1	(a) What is the force on each(b) The astronaut pushed the	ı kiloç e bot	gram of the b tle with a 6 N	ottle? force	. Ho\	w many 3 N	
4	(a) What is the force on each(b) The astronaut pushed the	kilog e bot oottle	gram of the b tle with a 6 N ? (Each 3 N fo	ottle? force rce ad	. Hov	w many 3 N n 1 kg.)	forces is this?
4	(a) What is the force on each(b) The astronaut pushed the(c) What is the mass of the b	e bot oottle	gram of the b tle with a 6 N ? (Each 3 N fo ses a 5 m/s ² a	ottle? force rce ac	. Hov	w many 3 N n 1 kg.) n using an e	forces is this?
4	(a) What is the force on each(b) The astronaut pushed the(c) What is the mass of the b(d) Work out the mass if 45 N	e bot oottle	gram of the b tle with a 6 N ? (Each 3 N fo ses a 5 m/s ² a	ottle? force rce ac	. Hov	w many 3 N n 1 kg.) n using an e	forces is this?
4	 (a) What is the force on each (b) The astronaut pushed the (c) What is the mass of the b (d) Work out the mass if 45 N force (N) 	e bot oottle I caus = =	gram of the b tle with a 6 N ? (Each 3 N fo ses a 5 m/s ² a mass (kg)	force cceler ×	ts or	w many 3 N n 1 kg.) n using an e eleration (r	forces is this?
4	 (a) What is the force on each (b) The astronaut pushed the (c) What is the mass of the b (d) Work out the mass if 45 N force (N) 	e bot oottle I caus = =	gram of the b tle with a 6 N ? (Each 3 N fo ses a 5 m/s ² a mass (kg)	force cceler ×	ts or	w many 3 N n 1 kg.) n using an e eleration (r	forces is this?

Rewrite your word equations using symbols. a is the acceleration, F is the resultant force and m is the mass.

(a)
$$a =$$

(a) acceleration =

(b)
$$F =$$

(c)
$$m =$$

(b) resultant force = (c) mass =

7	Use your understanding of force and acceleration (including the equations) to calculate (a) The resultant force needed to give a $200~\rm kg$ pony a $2~\rm m/s^2$ acceleration.				
	(b) The acceleration when a $20000~\mathrm{kg}$ bus is driven with a $10000~\mathrm{N}$ resultant force.				
	(c) The mass of a melon if a $3\mathrm{N}$ force gives it a $6\mathrm{m/s^2}$ acceleration.				
8	A $1.6\mathrm{kg}$ computer is pulled with a $4\mathrm{N}$ force across a desk where there is $1.6\mathrm{N}$ of friction.				
	(a) Calculate the resultant force on the computer.				
	(b) Calculate the acceleration of the computer.				
9	Calculate the acceleration of				
	(a) A $40~\mathrm{kg}$ trolley pushed by $100~\mathrm{N}$ against $80~\mathrm{N}$ of friction.				
	(b) A 60 kg swimmer pushing forward with 200 N against 120 N of drag.				
10	A 0.3 kg firework needs to accelerate upwards at 80m/s^2 . As it rises there is a combined downwards force of 9N acting on it from its weight and the drag.				
	(a) Calculate the resultant force from the acceleration and mass.				
	(b) Calculate the upwards propulsion force needed to achieve this resultant force.				
11	A 300000 kg train takes 80 s to get to its top speed of 100 m/s on a flat track. On average, there is a combined friction and air resistance force of 50 kN = 50000 N. Calculate				
	(a) the acceleration needed. Remember: acceleration $=$ velocity change \div time taken.				
	(b) the resultant force.				
	(c) the force required from the engine.				