

## **General information**

## Designation

Dalbergia latifolia

## Typical uses

Veneer; decorative plywood; speciality items: cutlery handles; brush backs; billiard cue butts; fancy turnery articles, woodwind instruments, boatbuilding, agricultural implements.

# **Composition overview**

## Compositional summary

| oompositional summary                               |                 |          |  |  |  |  |  |
|-----------------------------------------------------|-----------------|----------|--|--|--|--|--|
| Cellulose/Hemicellulose/Lignin/12%H2O               |                 |          |  |  |  |  |  |
| Material family                                     | Natural         |          |  |  |  |  |  |
| Base material                                       | Wood (tropical) |          |  |  |  |  |  |
| Renewable content                                   | 100             | %        |  |  |  |  |  |
| Composition detail (polymers and natural materials) |                 |          |  |  |  |  |  |
| Wood                                                | 100             | %        |  |  |  |  |  |
| Price                                               |                 |          |  |  |  |  |  |
| Price                                               | * 3.04 - 4.88   | B USD/lb |  |  |  |  |  |

| Thee                  | J.U <del>T</del> | 7.00  | OOD/ID   |
|-----------------------|------------------|-------|----------|
| Price per unit volume | * 159            | - 311 | USD/ft^3 |
|                       |                  |       |          |

# **Physical properties**

| Density | 0.0303 | - | 0.0368 | lb/in^3 |
|---------|--------|---|--------|---------|
|         |        |   |        |         |

## Mechanical properties

| Mechanical properties                  |          |   |        |          |
|----------------------------------------|----------|---|--------|----------|
| Young's modulus                        | * 1.75   | - | 2.15   | 10^6 psi |
| Yield strength (elastic limit)         | * 9.04   | - | 11     | ksi      |
| Tensile strength                       | * 14.1   | - | 17.3   | ksi      |
| Elongation                             | * 2.18   | - | 2.66   | % strain |
| Compressive strength                   | 8.3      | - | 10.1   | ksi      |
| Flexural modulus                       | 1.6      | - | 1.96   | 10^6 psi |
| Flexural strength (modulus of rupture) | 15.2     | - | 18.6   | ksi      |
| Shear modulus                          | * 0.131  | - | 0.16   | 10^6 psi |
| Shear strength                         | 1.89     | - | 2.31   | ksi      |
| Bulk modulus                           | * 0.347  | - | 0.389  | 10^6 psi |
| Poisson's ratio                        | * 0.35   | - | 0.4    |          |
| Shape factor                           | 5        |   |        |          |
| Hardness - Vickers                     | * 12.6   | - | 15.4   | HV       |
| Hardness - Brinell                     | * 72.5   | - | 88.7   | НВ       |
| Hardness - Janka                       | * 2.83e3 | - | 3.46e3 | lbf      |
|                                        |          |   |        |          |



# Rosewood (dalbergia latifolia) (l)

| SEDUPIICK                                    |                                  |  |  |  |  |  |
|----------------------------------------------|----------------------------------|--|--|--|--|--|
| Fatigue strength at 10^7 cycles              | * 4.57 - 5.58 ksi                |  |  |  |  |  |
| Mechanical loss coefficient (tan delta)      | * 0.0068 - 0.0083                |  |  |  |  |  |
| Differential shrinkage (radial)              | 0.15 - 0.18 %                    |  |  |  |  |  |
| Differential shrinkage (tangential)          | 0.23 - 0.26 %                    |  |  |  |  |  |
| Radial shrinkage (green to oven-dry)         | 2.4 - 3 %                        |  |  |  |  |  |
| Tangential shrinkage (green to oven-dry)     | 5.2 - 6.4 %                      |  |  |  |  |  |
| Volumetric shrinkage (green to oven-dry)     | * 11 - 18 %                      |  |  |  |  |  |
| Work to maximum strength                     | 0.983 - 1.2 ft.lbf/in^3          |  |  |  |  |  |
| Impact & fracture properties                 |                                  |  |  |  |  |  |
| Fracture toughness                           | * 8.01 - 9.74 ksi.in^0.5         |  |  |  |  |  |
| Thermal properties                           |                                  |  |  |  |  |  |
| Glass temperature                            | 171 - 216 F                      |  |  |  |  |  |
| Maximum service temperature                  | 248 - 284 F                      |  |  |  |  |  |
| Minimum service temperature                  | * -99.49.4 F                     |  |  |  |  |  |
| Thermal conductivity                         | * 0.231 - 0.283 BTU.ft/hr.ft^2.F |  |  |  |  |  |
| Specific heat capacity                       | 0.396 - 0.408 BTU/lb.♥           |  |  |  |  |  |
| Thermal expansion coefficient                | * 1.11 - 6.11 µstrain/F          |  |  |  |  |  |
| Electrical properties                        | 1000 10 707 10                   |  |  |  |  |  |
| Electrical resistivity                       | * 2.36e13 - 7.87e13 μohm.in      |  |  |  |  |  |
| Dielectric constant (relative permittivity)  | * 9.05 - 11.1                    |  |  |  |  |  |
| Dissipation factor (dielectric loss tangent) | * 0.11 - 0.134                   |  |  |  |  |  |
| Dielectric strength (dielectric breakdown)   | * 10.2 - 15.2 V/mil              |  |  |  |  |  |
| Magnetic properties                          |                                  |  |  |  |  |  |
| Magnetic type                                | Non-magnetic                     |  |  |  |  |  |
| Optical properties                           |                                  |  |  |  |  |  |
| Transparency                                 | Opaque                           |  |  |  |  |  |
| Critical materials risk                      |                                  |  |  |  |  |  |
| Contains >5wt% critical elements?            | No                               |  |  |  |  |  |
|                                              |                                  |  |  |  |  |  |
| Durability                                   |                                  |  |  |  |  |  |
| Water (fresh)                                | Limited use                      |  |  |  |  |  |
| Water (salt)                                 | Limited use                      |  |  |  |  |  |
| Weak acids                                   | Limited use                      |  |  |  |  |  |
| Strong acids                                 | Unacceptable                     |  |  |  |  |  |
| Weak alkalis                                 | Acceptable                       |  |  |  |  |  |
| Strong alkalis                               | Unacceptable                     |  |  |  |  |  |
|                                              |                                  |  |  |  |  |  |



# Rosewood (dalbergia latifolia) (l)

| Organic solvents        | Acceptable       |
|-------------------------|------------------|
| Oxidation at 500C       | Unacceptable     |
| UV radiation (sunlight) | Good             |
| Flammability            | Highly flammable |

# Primary production energy, CO2 and water

| Embodied energy, primary production | * 4.99e3 | - | 5.5e3  | BTU/lb  |
|-------------------------------------|----------|---|--------|---------|
| CO2 footprint, primary production   | * 0.574  | - | 0.633  | lb/lb   |
| Water usage                         | * 1.84e4 | - | 2.03e4 | in^3/lb |

# Processing energy, CO2 footprint & water

| Coarse machining energy (per unit wt removed) | * 483    | - | 534    | BTU/lb |
|-----------------------------------------------|----------|---|--------|--------|
| Coarse machining CO2 (per unit wt removed)    | * 0.0843 | - | 0.0932 | lb/lb  |
| Fine machining energy (per unit wt removed)   | * 2.99e3 | - | 3.31e3 | BTU/lb |
| Fine machining CO2 (per unit wt removed)      | * 0.522  | - | 0.577  | lb/lb  |
| Grinding energy (per unit wt removed)         | * 5.78e3 | - | 6.39e3 | BTU/lb |
| Grinding CO2 (per unit wt removed)            | * 1.01   | - | 1.12   | lb/lb  |

## Recycling and end of life

| Recycle                            | ×                        |
|------------------------------------|--------------------------|
| Recycle fraction in current supply | 8.55 - 9.45 %            |
| Downcycle                          | ✓                        |
| Combust for energy recovery        | ✓                        |
| Heat of combustion (net)           | * 8.49e3 - 9.16e3 BTU/lb |
| Combustion CO2                     | * 1.69 - 1.78 lb/lb      |
| Landfill                           | ✓                        |
| Biodegrade                         | ✓                        |

## **Notes**

## Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

## Links

| ProcessUniverse |  |  |
|-----------------|--|--|
| Reference       |  |  |
| Shape           |  |  |