

Statistical Computing and Simulation HW3

授課教授: 余清祥教授

學生: 統計碩一 106354003 林健宏

統計碩一 106354012 曹立諭

目錄

# Question 01.	2
# Question 02.	4
# Question 03.	5
# Question 04.	6
# Question 05	7
附錄 (R code)	
1	12
2	13
3	14
4	15
5	16

Question 01.

Experiment with as many variance reduction techniques as you can think of to apply the problem of evaluating P(X > 1) for $X \sim Cauchy$.

實際
$$\theta \approx P(X > 1) = 0.25$$

以 Monte-Carlo Integration 為基準,並使用其他變異數縮減方法去降低估計的誤差,使用方法有以下幾種: Hit or miss、Antithetic Variate、Importance Sampling、Control variate 以及 Stratified Sampling

(其中用於 Control variate 的另一函數為 $\frac{1}{1+x}$, $x=0\sim1$,Stratified Sampling 將定義域分為 5 層並平均分配抽樣數,用於 Importance Sampling 的另一函數為 $\frac{1}{x^2}$, $x=0\sim1$ 。)

每一個方法皆取 1000 個隨機樣本生成一個 $\hat{\theta}$,再生成 1000 樣本 $\hat{\theta}$,並運用其平均去估計真實的 θ 及計算樣本變異數。

在此以表格方式呈現

	MonteCarlo	Hit or miss	Antithetic	Importance	Control	Stratified(5)
$\mathrm{E}(\widehat{\theta})$	0.24997910	0.2498500	0.24999466	0.24997706	0.25017903	0.25001367
var(θ̂)	0.00000272	0.0001932	0.00000004	0.00000244	0.00000983	0.00000009

另外亦有探討抽樣樣本數的問題,分別取 100、1000、10000 樣本數,去探討樣本平均以及樣本變異數之間的關係。

在此以表格方式呈現

n = 100	Monte-Carlo	Hit or miss	Antithetic	Importance	Control	Stratified(5)
$\mathrm{E}(\hat{\theta})$	0.25028315	0.24937000	0.25002894	0.24989915	0.24878815	0.2500383
$var(\hat{\theta})$	0.00002736	0.00185055	0.00000041	0.00002551	0.00009001	0.0000008

n = 1000	Monte-Carlo	Hit or miss	Antithetic	Importance	Control	Stratified(5)
$\mathrm{E}(\hat{\theta})$	0.24997910	0.2498500	0.24999466	0.24997706	0.25017903	0.25001367
var(θ̂)	0.00000272	0.0001932	0.00000004	0.00000244	0.00000983	0.00000009

n = 10000	Monte-Carlo	Hit or miss	Antithetic	Importance	Control	Stratified(5)
$\mathrm{E}(\widehat{\theta})$	0.25001537	0.24978600	0.2499985	0.24997728	0.25001918	0.25000063
var(θ̂)	0.00000025	0.00001847	0.0000001	0.00000024	0.00000099	0.00000001

結論:

實際 $\theta = P(X>1) = 0.25$,由上表可知,每個方法都估計的數值相差無幾,只有 Antithetic Variate 與 Stratified Sampling 的樣本變異數來得非常小,而 Control variate 與 Hit or miss 來得相對大滿多,其中 Control variate 可能與取得函數有關,若是能取得更適合的函數,也許可以將樣本變異數降低更多。

而抽樣樣本數也是一個問題,當樣本數由小至大會發現樣本數的樣本變異數會下降很快,會近乎接近0。因此,在本題使用的估計方法以Antithetic Variate與Stratified Sampling為優,樣本數則是越多誤差越小。

Question 02.

Hammersley and Handscomb (1964) used the integration of $\$\theta = \int_0^1 \frac{e^x - 1}{e - 1} dx$ on (0,1) as a test problem of variance reduction techniques (which is about 0.4180233). Achieve as large a variance reduction as you can. (They achieved 4 million.)

實際
$$\theta = \int_0^1 \frac{e^{x}-1}{e^{-1}} dx \approx 0.4180233$$

以 Monte-Carlo Integration 為基準,並使用其他變異數縮減方法去降低估計的誤差,使用方法有以下幾種: Antithetic Variate、Importance Sampling、Control variate 以及 Stratified Sampling

(其中用於 Control variate 的另一函數為 $e^x-1, x=0\sim 1$,Stratified Sampling 將定義域分為 5 層 並平均分配抽樣數,用於 Importance Sampling 的另一函數為 $q(x)=\frac{4}{\pi(1+x^2)},\ 0< x<1$ 。)每一個方法皆取 1000 個隨機樣本生成一個 $\hat{\theta}$,再生成 1000 樣本 $\hat{\theta}$,並運用其平均去估計真實的 θ 及計算樣本變異數。

	Monte-Carlo	Antithetic	Importance	Control	Stratified(5)
$\mathrm{E}(\widehat{\Theta})$	0.41787975	0.41805356	0.41824956	0.4180233	0.41804309
var(θ̂)	0.00008453	0.00000281	0.00015477	9.253717e-36	0.00000345

結論:

實際 $\theta = \int_0^1 \frac{e^x - 1}{e^{-1}} dx \approx 0.4180233$,由上表可知,每個方法都估計的數值相差無幾,其中 Control variate 的樣本變異數相對於其他的方法來得小很多,近乎接近 0。

Question 03.

Let X_i , i=1,2,3,4,5 be independent exponential random variables each with mean 1, and consider the quantity $\theta = P(\sum_{i=1}^5 iX_i \ge 21.6)$.

Propose at least three simulation methods to estimate \$\theta\$ and compare their variances.

Question 04.

First, simulate 100 observations from Beta(2,3) and then use 3 density estimating methods to smooth the observations. You need to specify the parameters in the smoothing methods, and compare the results.

Question 05.

Let x be 100 equally spaced points on $[0,2\pi]$ and let $y_i = sinx_i + \epsilon_i$ with $\epsilon_i \sim N(0,0.09)$. Apply at least 3 linear smoothers and compare the differences, with respect to mean squares error (i.e., bias² and variance) from 1,000 simulation runs.

(a) Kernel smooth

(b) Spline smooth

(c) Lowess smooth

(d) Running mean smooth

	附錄 (R code)
	ub: https://github.com/CaoCharles/Statistical-Computing-and-Simulation-HW3arkdown:
1.	