MASCHINELLES LERNEN & DATAMINING

Vorlesung im Wintersemester 2017

Prof. E.G. Schukat-Talamazzini

Stand: 25. August 2017

Teil V

Gruppierung von Objekten

Hierarchisch

K-Means

FМ

Konzeptuell

Hierarchisch

K-Means

Relational

Überwachungsszenarien

Etikettierung der Lerndatenobjekte nach Klassenzugehörigkeit?

Überwachtes Lernen

Der Lehrer stellt Zielwert aller Lernobjekte bereit.

Klassifikation Vorhersage

Halbüberwachtes Lernen

Der Lehrer verrät Zielwert weniger Lernobjekte.

Bootstrap Transduktion

Reinforcement Lernen

Der Lehrer übt **Erfolgskontrolle** ("feed-back").

Spielstrategie Aktionsplanung

Unüberwachtes Lernen

Der Lehrer stellt keinerlei Zielwerte bereit.

Gruppierung Assoziation

Gruppierung a.k.a. Clusteranalyse

Partitionierung der Datenobjekte in Ballungs- oder Häufungsgebiete

Objektrepräsentation

Vektorraum · Attribute · Metrik

Zielgröße

global · lokal · ad hoc

Zerlegungsstrategie

- · top-down
- · bottom-up
- · Austausch (K-means, EM)
- · split & merge

Gruppenrepräsentation

Mengen · Prototypen · Verteilungen

Formeln · Regeln

Gruppen ähnlicher Objekte

Unscharfe Gruppenzuordnung

Hierarchisch

Hierarchische Gruppierung: agglomerativ/divisiv

K-Means

Hierarchisch

Mengendistanzfunktionen

Konzeptuell

$$d: \mathfrak{P}\Omega \times \mathfrak{P}\Omega \to \mathbb{R}_0^+$$

Single-Linkage

Kürzeste Brücke zwischen zwei Gruppen

$$d_{SL}(A, B) \stackrel{\text{def}}{=} \min_{x \in A} \min_{y \in B} d(x, y)$$

FМ

Complete-Linkage

Durchmesser nach Vereinigung zweier Gruppen

$$d_{CL}(A, B) \stackrel{\text{def}}{=} \max_{x \in A} \max_{y \in B} d(x, y)$$

Average-Linkage

Mittlerer bipartiter Punkteabstand

$$d_{\mathsf{AL}}(A,B) \stackrel{\mathsf{def}}{=} \frac{1}{|A| \cdot |B|} \sum_{x \in A} \sum_{y \in B} d(x,y)$$

Agglomerative Gruppierung

Generischer Bottom-up-Algorithmus

Gegeben sind die Datenobjekte $x_1, \ldots, x_T \in \Omega$

- INITIALISIERUNG Starte mit K = T Gruppen $\omega_t = \{x_t\}, t = 1..T$.
- DISTANZBERECHNUNG Berechne für alle $1 \le \kappa < \lambda \le K$:

$$D_{\kappa\lambda} \stackrel{\mathsf{def}}{=} d(\omega_{\kappa}, \omega_{\lambda})$$

VEREINIGUNG Vereinige die beiden Gruppen ω_{κ^*} , ω_{λ^*} mit

$$(\kappa^*, \lambda^*) = \underset{\lambda, \kappa}{\operatorname{argmin}} D_{\kappa\lambda}$$

Spektral

PC_1

TERMINIERUNG Wenn K=1 dann ENDE, sonst \rightsquigarrow 2.

K-Means

Kettenbildung und Lassoeffekt

Beispiel mit T=100 Objekten im ${\rm I\!R}^2$

Hierarchisch Hierarchisch

Mengendistanzfunktionen

Welche ist die beste?

Single-Linkage

..Ketteneffekt"

- erzeugt minimalen Spannbaum
- schwach monoton inv. monot. d-Transf.

Average-Linkage

Hierarchisch

weder Ketten- noch Lassoeffekt

- bevorzugt sphärische Ballungsgebiete
- schwach monoton Δ -invariant

K-Means

Complete-Linkage

..Lassoeffekt"

- extrem anfällig gegen Ausreißer
- schwach monoton inv. monot. d-Transf.

Getrimmte Distanzen

Diese Effekte lassen sich abmildern, wenn in der Distanzformel jeweils q > 1kleinste bzw. größte Distanzen eliminiert werden, wodurch die Einflußdramatik eventueller Ausreißer eingedämmt wird.

Dreiecksungleichung und Monotonie

Satz (Lance & Williams, 1967)

FМ

Es sei eine rekursive Form der Mengendistanzfunktion vorausgesetzt.

1. Gilt $\alpha_1 + \alpha_2 \ge 1$, $\beta \ge 0$ und $\gamma = 0$ und gilt die Dreiecksungleichung für alle Gruppendistanzen, so gilt sie auch noch nach der $d(\cdot, \cdot)$ -optimalen Vereinigung:

$$d(A_1 \uplus A_2, B) + d(A_1 \uplus A_2, C) \geq d(B, C)$$

2. Gilt $\alpha_1 + \alpha_2 + \beta \ge 1$ und $\gamma = 0$, so steigen die Gruppendistanzen schwach monoton an:

$$d(A_1 \uplus A_2, B) \geq d(A_1, A_2)$$

3. Erfüllt das Agglomerationsverfahren sogar die strenge Monotonie, so gelten für jede intermediäre Gruppenstruktur (mit Gruppe A) die ultrametrischen Ungleichungen:

$$\forall x, y \in A, \ \forall z \notin A: \quad d(x, y) < d(x, z)$$

Lance-Williams-Rekursion

Effizient auswertbare Mengendistanzfunktionen

Definition

Gehorcht eine Distanzfunktion $d: \mathfrak{P}\Omega \times \mathfrak{P}\Omega \to \mathbb{R}$ in eindeutiger Weise dem Schema

$$d(\{x\}, \{y\}) = d(x, y)$$

$$d(A_1 \uplus A_2, B) = \alpha_1 \cdot d(A_1, B) + \alpha_2 \cdot d(A_2, B) + \beta \cdot d(A_1, A_2) + \gamma \cdot |d(A_1, B) - d(A_2, B)|$$

so heißt diese Vorschrift Lance-Williams-Rekursion mit den reellwertigen Parametern $\alpha_1 > 0$, $\alpha_2 > 0$, β und γ .

Bemerkung

K-Means

Hierarchisch

Die drei X-Linkage-Funktionen besitzen alle die Lance-Williams-Gestalt:

- 1. Single-Linkage: $\alpha_1 = \alpha_2 = \frac{1}{2}$, $\beta = 0$, $\gamma = -\frac{1}{2}$
- 2. Complete-Linkage: $\alpha_1 = \alpha_2 = \frac{1}{2}$, $\beta = 0$, $\gamma = +\frac{1}{2}$
- 3. Average-Linkage: $\alpha_1 = \frac{|A_1|}{|A_1|+|A_2|}$, $\alpha_2 = \frac{|A_2|}{|A_1|+|A_2|}$, $\beta = 0$, $\gamma = 0$

Relational

Beispiel — Dendrogramm für Städtedistanzen

Strenge Monotonie

Je später zwei Gruppen im agglomerativen Clusteralgorithmus vereinigt werden, desto größer ist ihre Mengendistanz.

(Nichtmonotonie \simple Inversionen des Dendrogramms)

Hierarchisch

Weitere Distanzfunktionen

Simple-Average

Keine globale Semantik, aber schwach monoton und Δ -invariant:

$$d_{\mathsf{SA}}(A_1 \uplus A_2, B) \stackrel{\mathsf{def}}{=} \frac{1}{2} \cdot d_{\mathsf{SA}}(A_1, B) + \frac{1}{2} \cdot d_{\mathsf{SA}}(A_2, B)$$

Lance-Williams-Parameter: $\alpha_1 = \alpha_2 = \frac{1}{2}$, $\beta = 0$, $\gamma = 0$

Zentroid-Verfahren

Für numerische Attribute; weder schwach monoton noch Δ -invariant:

$$d_{\mathsf{ZEN}}(A,B) \stackrel{\mathsf{def}}{=} \|\mu(A) - \mu(B)\|^2$$

$$\text{Lance-Williams-Parameter: }\alpha_1=\frac{|A_1|}{|A_1|+|A_2|},\ \alpha_2=\frac{|A_2|}{|A_1|+|A_2|},\ \beta=-\alpha_1\alpha_2,\ \gamma=0$$

Median/Gower-Verfahren

Wie Zentroid; ignoriert aber die relativen Größen vereinigter Gruppen:

$$\alpha_1 = \alpha_2 = \frac{1}{2}, \quad \beta = -\frac{1}{4}, \quad \gamma = 0$$

Hierarchisch

K-Means

FM

Divisive Gruppierung

Generischer Top-down-Algorithmus

Gegeben sind die Datenobjekte $x_1, \ldots, x_T \in \Omega$.

- INITIALISIERUNG Starte mit K = 1 Gruppe(n) $\omega_1 = \{x_1, \dots, x_T\}$.
- HETEROGENITÄTSKRITERIUM Berechne für alle $1 \le \kappa \le K$ die Gruppenheterogenität

$$H_{\kappa} \stackrel{\mathsf{def}}{=} d(\omega_{\kappa})$$
.

AUFSPALTUNG Zerlege diejenige Gruppe ω_{κ^*} mit

$$\kappa^* = \underset{\kappa}{\operatorname{argmax}} H_{\kappa}$$

in zwei disjunkte Teilgruppen (z.B. via Austauschverfahren).

TERMINIERUNG Wenn K = T, dann Ende, sonst \rightsquigarrow 2.

Ward-Verfahren

Ähnelt der Zentroiddistanz · Garantiert aber Distanzmonotonie

Ward-Zielgröße

Das globale Clusterverzerrungsmaß

$$\varepsilon_{\mathsf{WARD}}(\{\omega_1,\ldots,\omega_K\}) \stackrel{\mathsf{def}}{=} \sum_{\lambda=1}^K \sum_{\mathbf{x}\in\omega_\lambda} \|\mathbf{x}-\boldsymbol{\mu}_\lambda\|^2, \qquad \boldsymbol{\mu}_\lambda = \mu(\omega_\lambda)$$

führt auf den Heterogenitätszuwachs

$$d_{\text{WARD}}(A, B) = \varepsilon' - \varepsilon = \frac{|A| \cdot |B|}{|A| + |B|} \cdot \|\mu(A) - \mu(B)\|^2$$

bei Vereinigung der Gruppen $A = \omega_{\kappa}$ und $B = \omega_{\lambda}$ und diese Formel wiederum auf eine Lance-Williams-Darstellung:

$$d_{\mathsf{WARD}}(A_1 + A_2, B) = \frac{(|A_1| + |B|) \cdot d(A_1, B) + (|A_2| + |B|) \cdot d(A_2, B) - |B| \cdot d(A_1, A_2)}{|A_1| + |A_2| + |B|}$$

Hierarchisch

Heterogenitätskriterien

Gruppendurchmesser

$$d_{\mathsf{DIAM}}(\omega) \stackrel{\mathsf{def}}{=} \max_{oldsymbol{x},oldsymbol{y} \in \omega} d(oldsymbol{x},oldsymbol{y})$$

Mittlere Innergruppenspanne

$$d_{AD}(\omega) \stackrel{\text{def}}{=} \frac{1}{|\omega|^2 - |\omega|} \sum_{\boldsymbol{x}, \boldsymbol{y} \in \omega} d(\boldsymbol{x}, \boldsymbol{y})$$

Empirische Gruppenvarianz

$$d_{\mathsf{VAR}}(\omega) \stackrel{\mathsf{def}}{=} \frac{1}{|\omega|} \sum_{\mathbf{x} \in \omega} \|\mathbf{x} - \boldsymbol{\mu}(\omega)\|^2 = \operatorname{spur}(\boldsymbol{S}(\omega))$$

Gaußäguivalente Entropie

$$d_{\mathsf{CE}}(\omega) \stackrel{\mathsf{def}}{=} -\frac{2}{|\omega|} \cdot \log \mathcal{N}(\omega \mid \boldsymbol{\mu}(\omega), \boldsymbol{S}(\omega)) = \mathsf{const} + \log \det \boldsymbol{S}(\omega)$$

Hierarchisch K-Means EM Relational Konzeptuell Spektral Clustergüte Σ Hierarchisch K-Means EM Relational Konzept

Hierarchische Gruppierung

Divisive Gruppierung $\hat{=}$ Top-down-Induktion

Kontrollflußregelung durch Heterogenitätsmaß; $O(T \cdot n_{split})$ Polythetische Verzweigungsfragen \cdot extensionale Zerlegung

Blinde Gruppierung

Keine Heterogenitätsprüfung Balancierte Aufspaltung in 2^b Gruppen

Agglomerative Gruppierung $\hat{=}$ Bottom-up-Iteration

Gierige Verschmelzung mit Aufwand $O(T \cdot T^2)$

ISODATA-Algorithmus

K-Means

Hierarchisch

"Split+merge"-Strategie Pulsierende Folge von Teilungen & Verschmelzungen

Welches ist die beste Gruppierungsstufe?

FМ

Wähle die "richtige" Clusteranzahl $K \in \{1, 2, ..., T\}$

Beispiel — Agrarnationen der EU (1993)

Vergleich unterschiedlicher Lance-Williams-Distanzen

Beispiel — Agrarnationen der EU (1993)

Datensatz 'agriculture' (cluster)

12 europäische Länder

Attribut x_1 = Bruttosozialprodukt der Hauptstadt

Attribut x_2 = Bevölkerungsanteil (%) in landwirtschaftlicher Anstellung

	В											
$\overline{x_1}$	16.8	21.3	18.7	5.9	11.4	17.8	10.9	16.6	21.0	16.4	7.8	14.0
x_2	2.7	5.7	3.5	22.2	10.9	6.0	14.0	8.5	3.5	4.3	17.4	2.3

K-Means

Hierarchisch

Gross National Product

Ward-Distanz

Beispiel — Verbrechensstatistik

Divisive Gruppierung mit 'diana'/R

diana (USArrests, metric='euclidean', stand=TRUE)

Datensatz 'USArrests' (datasets)

50 Objekte: Kriminalstatistiken aller US-Bundesstaaten (1973)

3 Attribute: "Murder", "Assault", "Rape" (Anzahl je 10⁵ Einwohner) und

1 Attribut: "UrbanPop" (Prozentsatz Stadtbevölkerung)

Hierarchisch K-Means

Austauschverfahren: (fuzzy) K-means

Hierarchisch

K-Means

FМ

Relational

Konzeptuell

K-Means

Permutationsverfahren

Gieriges Suchverfahren · extensional · alle Metriken

- INITIALISIERUNG Wähle eine Startpartition $\omega_1, \ldots, \omega_K$ mit vorgegebenen $|\omega_{\kappa}| = T_{\kappa}$.
- VERZERRUNGSDIFFERENZEN Berechne für alle $\mathbf{x} \in \omega_{\kappa}$ und $\mathbf{y} \in \omega_{\lambda}$ mit $\kappa \neq \lambda$

$$\Delta \varepsilon(\mathbf{x}, \mathbf{y}) \stackrel{\mathsf{def}}{=} \varepsilon(\{\ldots, \underline{\omega_{\kappa}', \omega_{\lambda}'}, \ldots\}) - \varepsilon(\{\omega_1, \ldots, \omega_{\kappa}\}).$$

VERTAUSCHUNG Vertausche innerhalb der aktuellen Partition das Datenvektorpaar

$$(\mathbf{x}^*, \mathbf{y}^*) = \operatorname{argmin} \Delta \varepsilon(\mathbf{x}, \mathbf{y})$$
.

TERMINIERUNG Wenn $\varepsilon < \theta$ dann Ende sonst \rightsquigarrow 2.

Scharfe Gruppierung

bei vorgegebener Gruppenanzahl $K \in \mathbb{N}$

GESUCHT

ist eine K-Partition des Datensatzes $\omega \subset \Omega$.

- **extensional:** Teilmengensystem $\omega_1 \uplus \omega_2 \uplus \ldots \uplus \omega_K = \omega$
- intensional: Gruppenprototypen $z_1, z_2, \ldots, z_K \in \Omega$

Verzerrung einer Gruppe

hinsichtlich einer Objektraummetrik $d: \Omega \times \Omega \to \mathbb{R}$:

$$arepsilon(\omega_{\kappa}) \stackrel{\mathsf{def}}{=} \sum_{oldsymbol{x} \in \omega_{\kappa}} d(oldsymbol{x}, oldsymbol{\mu}(\omega_{\kappa})) \;, \qquad \kappa = 1, \ldots, K$$

Verzerrung einer Partition

$$\varepsilon(\{\omega_1,\ldots,\omega_K\}) \stackrel{\mathsf{def}}{=} \sum_{\kappa=1}^K \varepsilon(\omega_\kappa)$$

Hierarchisch

Relational

Konzeptuell

Spektral

Intensionale Gruppierung

Gruppierung mit Prototypen — "Vektorquantisierung"

Lemma

Es sei $\omega_1, \ldots, \omega_K$ eine Gruppierung der Elemente x_1, \ldots, x_T des metrischen Raumes (Ω, d) , welche die globale Verzerrung minimiert. Dann gibt es **Gruppenprototypen** $z_1, \ldots, z_K \in \Omega$ mit

$$\mathbf{z}_{\kappa} = \underset{\mathbf{y} \in \Omega}{\operatorname{argmin}} \sum_{\mathbf{x} \in \omega_{\kappa}} d(\mathbf{x}, \mathbf{y})$$

2. Jeder Datenvektor \mathbf{x}_t , t = 1, ..., T gehört zu der Gruppe des nächstliegenden Prototypen:

$$\mathbf{x}_t \in \omega_{\kappa} \quad \Longrightarrow \quad d(\mathbf{x}_t, \mathbf{z}_{\kappa}) = \min_{\lambda} d(\mathbf{x}_t, \mathbf{z}_{\lambda})$$

Für die euklidische Distanz gilt natürlich $\mathbf{z}_{\kappa} = \boldsymbol{\mu}(\omega_{\kappa})$ für alle $\kappa = 1, \dots, K$.

Stapelweiser K-means-Algorithmus

Lloyd 1957 · Forgy 1965

INITIALISIERUNG Wähle eine zufällige Startpartition

$$\omega_1 \uplus \omega_2 \uplus \ldots \uplus \omega_K \ = \ \omega$$

REPRÄSENTATION Berechne alle neuen Prototypen

$$oldsymbol{z}_{\kappa} = oldsymbol{\mu}_{ ext{ZEN}}(\omega_{\kappa}) \overset{ ext{def}}{=} \operatornamewithlimits{argmin}_{oldsymbol{y} \in \Omega} \sum_{oldsymbol{x} \in \omega_{\kappa}} d(oldsymbol{x}, oldsymbol{y})$$

REKLASSIFIKATION Berechne alle neuen Gruppen

$$\omega_{\kappa} = \left\{ \mathbf{x}_{t} \in \omega \mid \underset{\lambda}{\operatorname{argmin}} d(\mathbf{x}_{t}, \mathbf{z}_{\lambda}) = \kappa \right\}$$

TERMINIERUNG Wenn $\varepsilon(\{\omega_1,\ldots,\omega_K\}) \leq \theta$ dann Ende sonst \rightsquigarrow 2.

Hierarchisch

K-Means

FМ

clusplot(pam(x = USArrests, k = 3))

K-Means

Spektral

Beispiel — 'USArrests'-Datensatz

K-medoids-Algorithmus minimiert $\|\cdot\|^1$ -Summe \cdot robuster als K-means

clusplot(pam(x = USArrests, k = 5))

Inkrementeller K-means-Algorithmus

MacQueen 1967

- INITIALISIERUNG Wähle zufällige Startprototypen $\{z_1, \ldots, z_K\}$, setze $t \leftarrow 1$.
- REKLASSIFIKATION Wähle $\mathbf{y} = \mathbf{x}_{t \text{mod } T}$ und setze $\kappa = \operatorname{argmin}_{\lambda} d(\mathbf{y}, \mathbf{z}_{\lambda})$.
- REPRÄSENTATION Verschiebe $\mathbf{z}_{\kappa} \leftarrow \alpha_t \cdot \mathbf{y} + (1 - \alpha_t) \cdot \mathbf{z}_{\kappa}$.
- TERMINIERUNG Wenn $\varepsilon(\cdot) \leq \theta$ dann Ende sonst $t \leftarrow t+1$ und \rightsquigarrow 2.

Bemerkungen

- 1. Die Gewinnerprototypen z_{κ} werden nach jedem Einzelschritt aktualisiert.
- 2. Die Datenprobe wird zyklisch oder randomisiert durchlaufen.
- 3. Distanz $d(x, y) = ||x y||^2$ \Rightarrow Zentroid $\hat{=}$ Mittelwert.
- 4. Mittelungsgewichte exponentiell ($\alpha_t \equiv \alpha_0$) oder kumulativ ($\alpha_t = \frac{1}{|\omega_{\kappa}|}$).
- 5. Schnellerer Abstieg aber Oszillationsgefahr!

Hierarchisch

Unscharfe Gruppierung

GESUCHT

ist eine **Zugehörigkeitsfunktion** für den Datensatz $\omega \subset \Omega$:

$$oldsymbol{u}: \left\{egin{array}{ll} \omega &
ightarrow & [0,1]^K \ oldsymbol{x}_t &
ightarrow & \left\{u_{\kappa,t}
ight\}_{\kappa=1}^K \end{array}
ight., \qquad \sum_{\kappa} u_{\kappa,t} = 1 \; (orall t)$$

Fuzzy K-means Zielgröße

Distanzfunktion ist (hier) der quadrierte euklidische Abstand:

$$\varepsilon(\{u_{\kappa}\},\{\boldsymbol{z}_{\kappa}\}) = \sum_{\kappa=1}^{K} \sum_{t=1}^{T} (u_{\kappa}(\boldsymbol{x}_{t}))^{\alpha} \cdot \|\boldsymbol{x}_{t} - \boldsymbol{z}_{\kappa}\|^{2}, \quad \alpha \geq 1$$

Opt. Prototypen/Zugehörigk.

Normierung \rightsquigarrow Lagrangemultiplikatoren

$$\sum_{\mathbf{x} \in \omega} \beta_{\mathbf{x}} \cdot \left(\sum_{\kappa=1}^{K} u_{\kappa}(\mathbf{x}) - 1 \right)$$

Spezialfälle

Harmonische Zugehörigkeitsfunktion

(Standardverfahren: Fuzzy K-means)

Cauchy Zugehörigkeitsfunktion

mit den Halbwertsbreiten $\eta_{\kappa} > 0$:

Zugehörigkeitsfunktionen

Fuzzy Clustering mit steileren Abklingraten

Fuzzy K-means-Algorithmus

- INITIALISIERUNG Wähle zufällige Startzugehörigkeiten $u_{\kappa,t} \in [0,1]$.
- PROTOTYPEN Für alle $1 \le \kappa \le K$ berechne

K-Means

$$\mathbf{z}_{\kappa} = \sum_{\mathbf{x} \in \omega} (u_{\kappa}(\mathbf{x}))^{\alpha} \cdot \mathbf{x} / \sum_{\mathbf{x} \in \omega} (u_{\kappa}(\mathbf{x}))^{\alpha}$$

ZUGEHÖRIGKEITEN Für alle $1 \le \kappa \le K$ und $\mathbf{x} \in \omega$ berechne neue unscharfe Gruppen:

$$u_{\kappa}(\mathbf{x}) = 1 / \sum_{\lambda=1}^{K} \left(\frac{\|\mathbf{x} - \mathbf{z}_{\kappa}\|^{2}}{\|\mathbf{x} - \mathbf{z}_{\lambda}\|^{2}} \right)^{\frac{1}{\alpha-1}}$$

TERMINIERUNG Wenn $\varepsilon < \theta$ dann Ende sonst \rightsquigarrow 2.

 $u_{\kappa}(\mathbf{x}) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} 1 - \|\mathbf{x} - \mathbf{z}_{\kappa}\|/r_{\kappa} & \text{falls } \|\mathbf{x} - \mathbf{z}_{\kappa}\| \leq r_{\kappa} \\ 0 & \text{sonst} \end{array} \right.$

 $u_{\kappa}(\mathbf{x}) \stackrel{\mathsf{def}}{=} 1 \left/ \left(1 + \left(\frac{\left\| \mathbf{x} - \mathbf{z}_{\kappa} \right\|^2}{\eta_{\kappa}} \right)^{\frac{1}{\alpha - 1}} \right) \right.$

Hyperkonische Zugehörigkeitsfunktion

Geometrische Clusterformen Perpendikulare Linien im \mathbb{R}^N

K-means

Cauchy

Hierarchisch

K-Means

mit den Radien $r_{\kappa} > 0$:

Hierarchisch

K-Means

FМ

Beispiel — 'agriculture'-Datensatz

Fuzzy K-means-Algorithmus ($\alpha \in \left\{ \sqrt{2}^i \mid i = 1, 2, 3, 4 \right\}$)

Component 1

Punktförmiges Zentrum im \mathbb{R}^2

 $d^{2}(\mathbf{x}, \mathbf{z}) = \|\mathbf{x} - \mathbf{z}\|^{2} = (x_{1} - z_{1})^{2} + (x_{2} - z_{2})^{2}$

Vertikal linienförmig im \mathbb{R}^2 $d^2(\mathbf{x},\mathbf{z}) = (x_1 - z_1)^2$

Horizontal linienförmig im \mathbb{R}^2 $d^2(\mathbf{x},\mathbf{z}) = (x_2 - z_2)^2$

Vertikal linienförmig im \mathbb{R}^3

$$d^{2}(\mathbf{x}, \mathbf{z}) = (x_{1} - z_{1})^{2} + (x_{2} - z_{2})^{2}$$
$$= ||\mathbf{x} - \mathbf{z}||^{2} - (x_{3} - z_{3})^{2}$$

Hierarchisch K-Means K-Means

Perpendikulare Linienzentren

Unendlich lange, koordinatenachsenparallele Cluster

Linienförmiges Klassenzentrum

des \mathbb{R}^N in Richtung der x_n -Achse, $n \in \{1, \dots, N\}$:

$$d^{2}(\mathbf{x} \mid \mathbf{z}, n) = \|\mathbf{x} - \mathbf{z}\|^{2} - (x_{n} - z_{n})^{2}$$

$$= \|\mathbf{x} - \mathbf{z}\|^{2} - (\mathbf{e}_{n}^{\top} \cdot (\mathbf{x} - \mathbf{z}))^{2}$$

$$= \|\mathbf{x} - \mathbf{z}\|^{2} - \|\mathbf{e}_{n}^{\top} \cdot (\mathbf{x} - \mathbf{z})\|^{2} = d^{2}(\mathbf{x} \mid \mathbf{z}, \mathbf{e}_{n})$$

Vom euklidischen Abstand wird also die Norm einer Achsenprojektion subtrahiert.

Verallgemeinerung auf "schräge" Cluster ?

Es ist naheliegend, daß dieser Zusammenhang auch für den nichtperpendikularen Fall gilt.

Hierarchisch

K-Means

FМ

M-dimensionale Hyperflächenzentren

Satz (Pythagoras)

Sei 0 < M < N. Für alle $\mathbf{x} \in \mathbb{R}^N$ berechnet sich der lotrechte Abstand zwischen x und der M-dimensionalen Hyperfläche mit dem Aufpunktvektor z und den orthonormalen Richtungsvektoren

$$oldsymbol{u}_1,\ldots,oldsymbol{u}_M\in {
m I\!R}^N$$
 gemäß

$$\min_{a_1,...,a_M} \left\| x - \left(z + \sum_{m=1}^M a_m u_m \right) \right\|^2 = \| x - z \|^2 - \left\| U^\top (x - z) \right\|^2,$$

wenn $\boldsymbol{U} = (\boldsymbol{u}_1, \dots, \boldsymbol{u}_M)$ ist.

Beweis.

Der Abstand für ein M-dimensionales Zentrum, das durch die orthonormalen Vektoren $\boldsymbol{U} = (\boldsymbol{u}_1, \dots, \boldsymbol{u}_M) \in \mathbb{R}^{N \times M}$ aufgespannt wird:

$$d^{2}(x \mid z, U) = \|x - z\|^{2} - \sum_{m=1}^{M} (u_{m}^{\top}(x - z))^{2} = \|x - z\|^{2} - \|U^{\top}(x - z)\|^{2}$$

Achsenrotation

Datentransformation $\phi: x \mapsto \boldsymbol{U}^{\top} x$, $\boldsymbol{U}^{\top} \boldsymbol{U} = \boldsymbol{U} \boldsymbol{U}^{\top} = \boldsymbol{E}$

Rotationen sind distanzinvariant

$$\|x\|^2 = x^\top x = x^\top E x = x^\top U U^\top x = \|U^\top x\|^2 = \sum_{n=1}^N (u_n^\top x)^2$$

Summendarstellung mit den Spaltenvektoren u_1, \ldots, u_N von U.

Linienbezogener Abstand in u_n -Richtung

$$d^{2}(\boldsymbol{x} \mid \boldsymbol{z}, \boldsymbol{u}_{n}) = \|\phi \boldsymbol{x} - \phi \boldsymbol{z}\|^{2} - ((\phi \boldsymbol{x})_{n} - (\phi \boldsymbol{z})_{n})^{2}$$

$$= \|\phi(\boldsymbol{x} - \boldsymbol{z})\|^{2} - (\boldsymbol{u}_{n}^{\top} \boldsymbol{x} - \boldsymbol{u}_{n}^{\top} \boldsymbol{z})^{2}$$

$$= \|\boldsymbol{x} - \boldsymbol{z}\|^{2} - (\boldsymbol{u}_{n}^{\top} (\boldsymbol{x} - \boldsymbol{z}))^{2}$$

Flächenbezogener Abstand in u, v-Richtung

(Richtungsvektoren u, v normiert und senkrecht zueinander)

$$d^{2}(x \mid z, u, v) = \|x - z\|^{2} - (u^{T}(x - z))^{2} - (v^{T}(x - z))^{2}$$

Hierarchisch

K-Means

Fuzzy K-Varieties

Definition

Das (unscharfe) Gruppierungsverfahren mit der Zielgröße

$$\varepsilon(\{\omega_{\kappa}\}) = \sum_{\kappa=1}^{K} \sum_{\mathbf{x} \in \omega} u_{\kappa}(\mathbf{x})^{\alpha} \cdot d^{2}(\mathbf{x} \mid \mathbf{z}_{\kappa}, \mathbf{U}_{\kappa})$$

heißt fuzzy K-varieties-Algorithmus; im Spezialfall M=1 heißt es **fuzzy** K-**lines**-Algorithmus.

Elliptotypzentren ("fuzzy K-elliptotypes")

$$d^{2}(\boldsymbol{x} \mid \boldsymbol{z}, \boldsymbol{U}) = \|\boldsymbol{x} - \boldsymbol{z}\|^{2} - \rho \cdot \|\boldsymbol{U}^{\top}(\boldsymbol{x} - \boldsymbol{z})\|^{2}$$

Spezialfälle: $\rho = 0$ Punktzentrum $\cdot \rho = 1$ Hyperflächenzentrum

Hyperkugelschalen ("fuzzy K-shells")

$$d^{2}(x \mid z, r) = (||x - z|| - r)^{2}$$

Gradientenabstieg für Fuzzy K-Varieties

Lemma

Die Minimierung der Zielgröße mit Lagrangemultiplikatoren für die Normierungsbedingungen liefert die Bestimmungsgleichungen

$$\mathbf{z}_{\kappa} = \left. \cdot \sum_{\mathbf{x} \in \omega} (u_{\kappa}(\mathbf{x}))^{\alpha} \cdot \mathbf{x} \right/ \left. \sum_{\mathbf{x} \in \omega} (u_{\kappa}(\mathbf{x}))^{\alpha} \right.$$

für die Aufpunktvektoren,

$$u_{\kappa}(\mathbf{x}) = 1 / \sum_{\lambda=1}^{K} \left(\frac{d^{2}(\mathbf{x} \mid \mathbf{z}_{\kappa}, \mathbf{U}_{\kappa})}{d^{2}(\mathbf{x} \mid \mathbf{z}_{\lambda}, \mathbf{U}_{\lambda})} \right)^{\frac{1}{\alpha-1}}$$

für die Gruppenzugehörigkeiten und für die Gruppenkovarianzen

$$\mathbf{S}_{\kappa} = \sum_{\mathbf{x} \in \omega} u_{\kappa}(\mathbf{x})^{\alpha} (\mathbf{x} - \mathbf{z}_{\kappa}) (\mathbf{x} - \mathbf{z}_{\kappa})^{\top}.$$

Die m-te Spalte $\mathbf{u}_{\kappa,m}$ von \mathbf{U}_{κ} schließlich ergibt sich als Eigenvektor zum m-größten Eigenwert von \boldsymbol{S}_{κ} .

Hierarchisch

Hierarchisch

Konzeptuell

Identifikation von Mischverteilungen

Problem

Angenommen, obige Daten sind gemäß

$$f(\mathbf{x}) = \sum_{\kappa=1}^{K} \pi_{\kappa} \cdot g(\mathbf{x}|\boldsymbol{\theta}_{\kappa})$$
 mischverteilt. Wie lauten die **bestpassenden** (ML) Verteilungsparameter $\hat{\pi}_{\kappa}$, $\hat{\boldsymbol{\theta}}_{\kappa}$, $\kappa = 1, \dots, K$ des Modells?

Lösung

Im Normalverteilungsfall $g(\mathbf{x}|\boldsymbol{\theta}_{\kappa}) = \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_{\kappa}, \boldsymbol{S}_{\kappa})$ existiert eine asymptotisch eindeutige Lösung sowie ein **lokales** Optimierungsverfahren (EM).

Mischungsidentifikation

K-Means

EM-Algorithmus

zur Identifikation gaußscher Mischverteilungen

- INITIALISIERUNG Wähle zufällige Startparameter $(\pi_{\kappa}, \boldsymbol{\mu}_{\kappa}, \boldsymbol{S}_{\kappa}), \kappa = 1, \dots, K$.
- ERWARTUNGSWERTE Berechne für $\kappa = 1..K$ und t = 1..T die a posteriori Wahrsch'keiten

$$\gamma_{\kappa,t} \stackrel{\mathsf{def}}{=} \mathrm{P}(\Omega_{\kappa} | \boldsymbol{x}_t) = \frac{\mathrm{P}(\Omega_{\kappa}) \cdot \mathrm{P}(\boldsymbol{x}_t | \Omega_{\kappa})}{\mathrm{P}(\boldsymbol{x}_t)} \propto \pi_{\kappa} \cdot \mathcal{N}(\boldsymbol{x}_t | \boldsymbol{\mu}_{\kappa}, \boldsymbol{S}_{\kappa})$$

MAXIMIERUNG

$$\pi_{\kappa} \leftarrow \frac{\sum_{t} \gamma_{\kappa,t}}{\sum_{t} \gamma_{\lambda,t}}, \quad \boldsymbol{\mu}_{\kappa} \leftarrow \frac{\sum_{t} \gamma_{\kappa,t} \boldsymbol{x}_{t}}{\sum_{t} \gamma_{\kappa,t}}, \quad \boldsymbol{S}_{\kappa} \leftarrow \frac{\sum_{t} \gamma_{\kappa,t} \boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\top}}{\sum_{t} \gamma_{\kappa,t}} - \boldsymbol{\mu}_{\kappa} \boldsymbol{\mu}_{\kappa}^{\top}$$

TERMINIERUNG Wenn die ML-Zielgröße $\ell(...)$ stagniert dann Ende sonst \rightsquigarrow 2. ch K-Means **EM** Relational Konzeptuell Spektral Clustergüte Σ Hierarchisch K-Means **EM** Relational Konzeptuell Spektral Cluste

Konvergenzeigenschaften

des EM-Algorithmus für Gaußsche Mischverteilungsmodelle (GMM)

1. Schwache Monotonie

Verfahren erreicht stationären Punkt

$$\ell(\theta_0) \leq \ell(\theta_1) \leq \ell(\theta_2) \leq \ell(\theta_3) \leq \ldots \leq \ell(\theta_j) \leq \ldots \leq \ldots$$

2. Beschränktheit

pathologische Aufgabenstellung ("ill-posed problem")

$$\mathcal{N}(\boldsymbol{\mu}_{\lambda}, \boldsymbol{S}_{\lambda}) = \mathcal{N}(\boldsymbol{x}_{t}, \boldsymbol{0})$$

3. Lokale Maxima

viele relative Maxima mit $\ell(\theta) < \infty$ und großem Einzugsbereich

4. Zyklischer Iterationsverlauf

Kraterrandphänomen

$$\theta_1 \neq \theta_2 \neq \ldots \neq \theta_m$$
 mit $\ell(\theta_1) = \ell(\theta_2) = \ldots = \ell(\theta_m)$

FM

Problematik des Rangdefizits

$$\operatorname{rg}(\boldsymbol{S}_{\kappa}) < N \Leftrightarrow \operatorname{det}(\boldsymbol{S}_{\kappa}) = 0 \Leftrightarrow \boldsymbol{S}_{\kappa}^{-1} = ?$$

Gratregularisierung

K-Means

Hierarchisch

Anisotropes Aufblasen der Konzentrationsellipse ("Speckschicht")

$$oldsymbol{S}^{(\delta)} \stackrel{\mathsf{def}}{=} oldsymbol{S} + \delta \cdot oldsymbol{E} = egin{pmatrix} s_{11} + \delta & s_{12} & \cdots & s_{1N} \\ s_{21} & s_{22} + \delta & \cdots & s_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ s_{N1} & s_{N2} & \cdots & s_{NN} + \delta \end{pmatrix}$$

Fixierung & Verklebung

Alle Eigenschaften des EM-Algorithmus bleiben erhalten:

- · Kovarianzmatrizen fixieren $(\forall \kappa: \mathbf{S}_{\kappa} \stackrel{!}{=} \mathbf{S}^*) \rightsquigarrow$ keine pathologische Lösung
- · Kovarianzmatrizen verkleben $(\forall \kappa, \lambda : \mathbf{S}_{\kappa} \stackrel{!}{=} \mathbf{S}_{\lambda}) \rightsquigarrow \text{mehr Robustheit}$

Hintergrundkomponente

Streuungsintensives Rückweisungscluster zur Ausreißerbehandlung

$$f_0(\cdot) = \mathcal{N}(\cdot \mid \boldsymbol{\mu}(\omega), \boldsymbol{S}_0)$$
 mit $\boldsymbol{S}_0 = \boldsymbol{S}(\omega)$ oder $\boldsymbol{S}_0 = \sigma_0^2 \cdot \boldsymbol{E}$

Verhalten in unkritischen Fällen

Was kann EM, das K-mean nicht kann?

Probabilistische PCA

Zerlegung des \mathbb{R}^N in systematisch und in zufällig streuende Komponenten

Normalverteilungsmodelle für rangdefizite Daten

Das homogene Faktoranalysemodell

$$\mathbb{X} = \boldsymbol{\mu} + \mathbb{E} + \boldsymbol{A} \cdot \mathbb{V} \quad \text{mit} \quad \left\{ egin{array}{l} \boldsymbol{\mu} \in \mathbb{R}^N \ \boldsymbol{A} \in \mathbb{R}^{N imes M} \ \mathbb{E} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \cdot \boldsymbol{E}_N) \ \mathbb{V} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{E}_M) \end{array}
ight.$$

(Dimension $M \leq N$; PCA-Annahme identischer Störvarianzen)

- besitzt als Ladungsvektoren die bereits hinlänglich bekannten M führenden Hauptachsen der Verteilungsellipse,
- definiert aber gleichzeitig eine explizite Wahrscheinlichkeitsverteilung für die Daten.

Relational Konzentuell Spektral Clustergüte Σ Hierarchisch K-Means FM Relational Konzentuell Spektral Cluster

PPCA-Schätzung bei bekanntem Modellrang M

Lemma (Tipping & Bishop 1999)

Der Zufallsvektor des homogenen FA-Modells ist gemäß $\mathbb{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{S})$ normalverteilt mit der Kovarianzmatrix

$$S = AA^{\top} + \sigma^2 \cdot E_N$$
.

Der **ML-Schätzer** für **S** ergibt sich durch Einsetzen der Schätzwerte

$$\hat{\mathbf{A}} = \mathbf{U}_M \cdot (\mathbf{D}_M - \sigma^2 \cdot \mathbf{E}_M)^{1/2}$$

$$\hat{\sigma}^2 = \frac{1}{N - M} \cdot \sum_{j=M+1}^{N} \lambda_j$$

mit der (M : N)-eigenzerlegten Datenkovarianzmatrix

$$\hat{\boldsymbol{S}}(\omega) \stackrel{!}{=} (\boldsymbol{U}_{M}, \boldsymbol{U}_{M}') \cdot \begin{pmatrix} \boldsymbol{D}_{M} & \boldsymbol{0} \\ \boldsymbol{0}^{\top} & \boldsymbol{D}_{M}' \end{pmatrix} \cdot (\boldsymbol{U}_{M}, \boldsymbol{U}_{M}')^{\top}, \quad \begin{pmatrix} \boldsymbol{D}_{M} & \boldsymbol{0} \\ \boldsymbol{0}^{\top} & \boldsymbol{D}_{M}' \end{pmatrix} = \operatorname{diag}(\lambda_{1}, \ldots, \lambda_{N}).$$

Hierarchisch K-Means EM Relational Konzeptuell Spektral Clustergüt

Invertierung der PPCA-Kovarianzmatrix

Kovarianzstruktur

Die ursprüngliche Darstellung zeigt eine rangverminderte Darstellung mit einem additiv aufgeprägtem Fehlergrat von σ^2 auf der Diagonalen.

$$\mathbf{S} = \mathbf{A}\mathbf{A}^{\mathsf{T}} + \sigma^2 \cdot \mathbf{E}_N$$

Die gleichwertige alternative Darstellung präsentiert eine vollständige Eigenzerlegung mit den kanonischen Eigenvektoren und -werten; nur die letzten (N-M) Eigenwerte wurden gemittelt.

$$S = \boldsymbol{U}_{M} \boldsymbol{D}_{M} \boldsymbol{U}_{M}^{\top} + \sigma^{2} \cdot \boldsymbol{U}_{M}^{\prime} \boldsymbol{U}_{M}^{\prime \top}$$

Inverse Kovarianz

Diese Inversionsformel verwendet ausschließlich die M führenden Eigenvektoren sowie die führenden reziproken Eigenwerte.

$$\mathbf{S}^{-1} = \frac{1}{\sigma^2} \cdot \left\{ \mathbf{E}_N - \mathbf{U}_M \cdot \left(\mathbf{E}_M - \sigma^2 \cdot \mathbf{D}_M^{-1} \right) \cdot \mathbf{U}_M^{\top} \right\}$$

Schätzung der mittleren Reststreuung

unter ausschließlicher Verwendung der $M \ll N$ Hauptachsen

$$\hat{\sigma}^{2} = \frac{1}{N - M} \cdot \operatorname{spur} \left(\mathbf{D}'_{M} \right)$$

$$= \frac{1}{N - M} \left\{ \operatorname{spur} \left(\mathbf{D}_{M}^{M} \mathbf{0} \right) - \operatorname{spur} \left(\mathbf{D}_{M} \right) \right\}$$

$$= \frac{1}{N - M} \left\{ \operatorname{spur} \left(\hat{\mathbf{S}}(\omega) \right) - \operatorname{spur} \left(\mathbf{D}_{M} \right) \right\}$$

$$= \frac{1}{N - M} \left\{ \frac{1}{T} \sum_{t=1}^{T} \|\mathbf{x}_{t} - \boldsymbol{\mu}\|^{2} - \sum_{j=1}^{M} \lambda_{j} \right\}$$

Hierarchisch

-ivieans

l

tional

ptuell Spek

Clustergüte

PPCA-Schätzung bei bekannter Störvarianz σ^2

Lemma (Meinicke & Ritter 2000)

Ein Zufallsvektor sei gemäß $\mathbb{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{S})$ normalverteilt mit der Kovarianzmatrix

$$\mathbf{S} = \mathbf{\Psi} + \sigma^2 \cdot \mathbf{E}_N$$

mit **bekannter** Störvarianz σ^2 und positiv-semidefinitem Ψ mit **unbekanntem** Rang $\nu = \operatorname{ran}\Psi$, $\nu \leq N$.

Mit der empirischen Datenkovarianz $\hat{\boldsymbol{S}}(\omega)$ und ihrer Eigenzerlegung $\hat{\boldsymbol{S}}(\omega) = \boldsymbol{U} \cdot \boldsymbol{D} \cdot \boldsymbol{U}^{\top}$, $\boldsymbol{D} = \operatorname{diag}(\lambda_1, \dots, \lambda_N)$ ergeben sich die ML-Schätzer

$$\hat{\nu} = |\{\lambda_i \mid \lambda_i > \sigma^2\}|$$
 und $\hat{\Psi} = \mathbf{U}_{\nu} \cdot (\mathbf{D}_{\nu} - \sigma^2 \cdot \mathbf{E}_{\nu}) \cdot \mathbf{U}_{\nu}^{\top}$.

sch K-Means FM Relational Konzentuell Spektral Clustergüte Σ Hierarchisch K-Means FM Relational Konzentuell Spektral

Effiziente Berechnung der PPCA-Dichtewerte

auch in extrem hochdimensionalen $(N\gg M)$ Vektorräumen

Determinante det(S)

Determinanten sind rotationsinvariant $(\det(\mathbf{S}) = \det(\mathbf{U}^{\top}\mathbf{S}\mathbf{U}))$; also gilt:

$$\det(\mathbf{S}) = \prod_{i=1}^{N} \tilde{\lambda}_{i} = \sigma^{2 \cdot (N-M)} \cdot \prod_{i=1}^{M} \lambda_{i} .$$

Quadratische Form $(x-\mu)^{ op} S^{-1}(x-\mu)$

Wegen der Darstellung von S^{-1} gilt für die quadratische Form

$$\mathbf{y}^{\top} \mathbf{S}^{-1} \mathbf{y} = \frac{1}{\sigma^{2}} \cdot \left\{ \mathbf{y}^{\top} \mathbf{E}_{N} \mathbf{y} - \mathbf{y}^{\top} \mathbf{U}_{M} \cdot (\mathbf{E}_{M} - \sigma^{2} \mathbf{D}_{M}^{-1}) \cdot \mathbf{U}_{M}^{\top} \mathbf{y} \right\}$$

$$= \frac{1}{\sigma^{2}} \cdot \left\{ \|\mathbf{y}\|^{2} - \|\tilde{\mathbf{y}}\|^{2} + \sigma^{2} \cdot \tilde{\mathbf{y}}^{\top} \mathbf{D}_{M}^{-1} \tilde{\mathbf{y}} \right\}$$

$$= \frac{\|\mathbf{y}\|^{2} - \|\tilde{\mathbf{y}}\|^{2}}{\sigma^{2}} + \sum_{i=1}^{M} \frac{\tilde{\mathbf{y}}_{i}^{2}}{\lambda_{i}}$$

unter Verwendung des Hauptachsenprojektionsvektors $\tilde{y} = U_M^\top y = U_M^\top \cdot (x - \mu)$.

Hierarchisch

K-Means

EM

Relational

Konzeptue

Spektral

Clustergute

e

Zweistufiges EM-Abkühlverfahren

- ① Vorwahl von $\sigma_{\max}^2 > 0$, $\sigma_{\min}^2 > 0$ und $\alpha \in (0,1)$.
- 2 Setze $\theta \leftarrow (\mu, \dots, \mu)$, $m \leftarrow 0$ und $\sigma_m^2 \leftarrow \sigma_{\max}^2$.
- SPHÄRISCHE GRUPPIERUNG (EM)

$$\ell(\boldsymbol{\theta} \mid \omega, \sigma_m^2) = \sum_{t} \sum_{\kappa} \gamma_{\kappa, t} \cdot \log \left(\pi_{\kappa} \cdot \mathcal{N}(\boldsymbol{x}_t \mid \boldsymbol{\mu}_{\kappa}, \sigma_m^2 \boldsymbol{E}) \right) \stackrel{!}{\to} \max$$

- **4** Setze $m \leftarrow m + 1$ und $\sigma_m^2 \leftarrow \alpha \cdot \sigma_{m-1}^2$.
- **5** Wenn K_{eff} < K dann \rightsquigarrow **3**.
- **INVIOLEMENTAL SERVICE PARTICLE PRODUCTION OF CONTROL O**

$$\mathcal{L}(\boldsymbol{\Theta} \mid \omega, \sigma_{m}^{2}) = \sum_{t} \sum_{\kappa} \gamma_{\kappa, t} \cdot \log \left(\pi_{\kappa} \cdot \mathcal{N}(\boldsymbol{x}_{t} \mid \boldsymbol{\mu}_{\kappa}, \boldsymbol{\Psi}_{\kappa} + \sigma_{m}^{2} \boldsymbol{E}) \right) \stackrel{!}{\rightarrow} \max$$

- Setze $m \leftarrow m+1$ und $\sigma_m^2 \leftarrow \alpha \cdot \sigma_{m-1}^2$.
- 8 Wenn $\sigma_m^2 > \sigma_{\min}^2$ dann \leadsto 6 sonst Ende

PPCA-Mischverteilungsidentifikation

Sphärische Gruppierung

Alle Gaußkomponenten sphärisch (kugelförmige Konzentration; konstante Streuung σ_m^2)

Klassenmittelwertvektoren μ_{κ}

Ende sobald Anzahl $K_{\rm eff}$ Gruppenprototypen gleich Sollgruppenzahl K ist.

Lokaladaptive Gruppierung

PPCA-Gaußkomponenten (zeppelinförmige Konzentration; variable Effektivdimension ν_{κ})

Rangdefiziente Matrizen Ψ_{κ}

- Reststreuung
- ☆ Ränge (Parameterkomplexität)

Beispiel — Handgeschriebene Ziffern

Relational

MNIST Datensammlung, LeCun 1998

Datensatz

Hierarchisch

60 000 (10 000) Lern- und Testmuster Originalziffern 28 × 28 Pixel zu 8 Bit \leadsto Umrasterung 8 × 8 Verschiedene Gruppenstärken $K \in \{1,2,4,8,16\}$ getestet

PPCA-Dimensionen alle zehn Ziffernklassen ν -Durchschnitt und min/max K=16 Mischungskomponenten im "Gefrierpunkt" σ_{\min}^2

Beispiel — die Ziffernklasse " 5

PPCA-Mischung für Ziffernklasse Ω_5

 ${\sf Gruppenanzahl}$

K = 6 gewählt

Modellrang $M \in \{4, 5, 6, 7\} \Rightarrow M \ll 64$

Hauptachsen von unten nach oben aufgetürmt als 8×8 -Grauwertbild

Hierarchisch K-Means EM Relational Konzeptuell Spektral Clustergüte Relationale Gruppierung

 ${\sf Datenobjekte\ mit\ wechselseitiger\ Distanz\ --\ ohne\ Attribute}$

MDS-Gruppierung

- 1. Mehrdimensionale Skalierung von ω nach $\omega' = \{x_1, \dots, x_T\} \subseteq \mathbb{R}^N$
- 2. K-means Gruppierung des Datensatzes ω'
- 3. Aufprägung der ω' -Gruppierung auf die Urbilder ω

Hierarchische Gruppierung: agglomerativ/divisiv

Austauschverfahren: (fuzzy) K-means

Mischungsidentifikation

Relationale Gruppierung

Konzeptuelle Gruppierung

Spektrale Gruppierung

Clustergütemaße

Zusammenfassung

K-Means

E W LILE CO M . I

Relational

Fuzzy K-medoids für Metriken

Konzeptuell

Spektral

Datensatz

Hierarchisch

Objektmenge $\omega = \{o_1, \dots, o_T\}$ mit der Abstandsmatrix

$$R = [r_{s,t}] \in \mathbb{R}^{T \times T}, \quad r_{s,t} = d(o_s, o_t)$$

Insbesondere gelte die Symmetrie $\mathbf{\mathit{R}}^{\top} = \mathbf{\mathit{R}}$ und die Definitheit $\mathrm{diag}(\mathbf{\mathit{R}}) = \mathbf{0}$.

Zugehörigkeitsfunktionen

• Harmonisch: $u_{\kappa}(o_t) = 1 / \sum_{\lambda=1}^{K} \left(\frac{r_{t_{\kappa},t}}{r_{t_{\lambda},t}}\right)^{\frac{2}{\alpha-1}}$

• Cauchy / possibilistisch:
$$u_{\kappa}(o_t) = \left(1 + \left(\frac{r_{t_{\kappa},t}}{\sqrt{\eta_{\kappa}}}\right)^{\frac{2}{\alpha-1}}\right)^{-1}$$

• Hyperkonisch:
$$u_{\kappa}(o_t) = \left\{ \begin{array}{ll} 1 - r_{t_{\kappa},t}/\rho_{\kappa} & \text{falls } r_{t_{\kappa},t} \leq \rho_{\kappa} \\ 0 & \text{sonst} \end{array} \right.$$

Für harmonische Zugehörigkeiten gilt die Normierungseigenschaft $\sum_{\lambda} u_{\lambda}(o_{t}) = 1$.

Hierarchisch K-Means EM Relational Konzeptuell Spektral Clustergüte Σ Hierarchisch K-Means EM Relational Konzeptuell Spektral Clustergüte Σ

RACE — Relationaler Austauschalgorithmus

GEGEBEN

Datenrelation $R \in \mathbb{R}^{T \times T}$, Gruppenzahl $K \in \mathbb{N}$, Iterationen $I \in \mathbb{N}$.

INITIALISIERUNG
Setze $i \leftarrow 1$.
Wähle zufällige Prototypenindizes $\{t_1, \dots, t_K\} \subseteq \{1, \dots, T\}$.

ITERATIONSSCHRITT

- 1. Bestimme alle Zugehörigkeiten $u_{\kappa}(o_t)$
- 2. Bestimme die "Restenergien"

$$e_{\kappa,t} = \sum_{\lambda \neq \kappa} u_{\lambda}(o_t)$$

3. Bestimme die neuen Prototypen

$$t_{\kappa} \leftarrow \underset{t=1..T}{\operatorname{argmin}} e_{\kappa,t}$$

TERMINIERUNG

Wenn i = I dann \rightsquigarrow Ende sonst $i \leftarrow i + 1$, \rightsquigarrow 2

oektral Clustergi

Hierarchisch

K-Means

Re

Relational

Konzeptuell Sp

Clustergüte

Hierarchisch

K-Means

EM

Relationa

211

opentiai

Clustergui

Beispiel — Text Mining

Automatische Erstellung eines Stichwortinventars

Datensammlung

Kapitel 2 aus dem Buch "Information Mining" (Th. Runkler) Alle Formeln und Sonderzeichen wurden entfernt. Großbuchstaben \mapsto Kleinbuchstaben

Objektmenge und Metrik

1605 Wortvorkommen, davon T=564 verschieden Matrix $\textbf{\textit{R}} \in {\rm I\!R}^{564 \times 564}$ der Levenshteinabstände

Verarbeitung

RACE-Algorithmus mit K=20 Gruppen und I=KT=11280 Schritten ESS-Defuzzifizierung auf 28 (bzw. 29) Wörter/Gruppe

Die 20 häufigsten Wörter des Textes

die der und für in als werden ist sich mit oder den sind ein auch daten läßt können abstand wird

Defuzzifizierung

Finales Schärfen (Aushärten) der Gruppenzugehörigkeiten

$$u_{\kappa}(o_t) \stackrel{\mathsf{def}}{=} \left\{ egin{array}{ll} 1 & \mathsf{falls} \ u_{\kappa}(o_t) = \max_{\lambda} u_{\lambda}(o_t) \\ 0 & \mathsf{sonst} \end{array} \right., \qquad \kappa = 1, \ldots, K$$

Diese Aushärtungsregel ergibt Partitionen mit variablen Gruppenstärken.

ESS-Defuzzyfizierung

(<u>..equal_size</u>, <u>subset")</u>

1 INITIALISIERUNG
Setze $\mathcal{I} \leftarrow \{1, 2, ..., T\}$ (Indexmenge)
Setze $\mathcal{C}_{\kappa} \leftarrow \varnothing$ (Gruppenindexmenge) für alle $\kappa = 1..K$

- 2 ITERATION (für alle t = 1, ..., T)
 - 1. Setze Gruppenindex $\lambda = t \operatorname{mod} K + 1$.
 - 2. Bestimme bestpassenden Restindex $t^* = \operatorname{argmax}_{t \in \mathcal{I}} u_{\lambda}(o_t)$.
 - 3. Verschiebe Index t^* von \mathcal{I} nach \mathcal{C}_{λ} .
- 3 TERMINIERUNG

 Jede Gruppe enthält entweder |T/K| oder |T/K| Datenelemente.

Beispiel — Text Mining

Gruppenprototypen $o_{t_1}, o_{t_2}, \ldots, o_{t_{20}}$

originalsignal mengenschreibweise bzw inkompatibilität quantisierungsschritte wertkontinuierlich intervallskalierten unterschiedlichen übereinstimmungen mindestabtastrate matrixdarstellung abtastzeitpunkten datencharakteristika ordnungsrelation objektdatensatz quantisierungsfehler polygonzug kovarianzmatrix speicherplatzes kaufmännisches

Gruppen Ω_1 , Ω_2 und Ω_6

(die Wörter mit den höchsten Zugehörigkeitsbewertungen)

Gruppe 1	Gruppe 2	Gruppe 6
originalsignal	mengenschreibweise	wertkontinuierlich
zeitsignal	matrixschreibweise	zeitkontinuierlich
ordinal	beschreiben	kontinuierliche
signal	schrittweise	wertebereich
signals	schreiben	rekonstruieren
digitalen	beschreibt	nichtnumerisch
zeitsignalen	geschrieben	willkürlich
proportional	beschrieben	konstruierten

Konzeptuelle Gruppierung

K-Means

FМ

Konzeptuell

Spektral

Lokale versus globale Objektähnlichkeit

Traditionelle Clusteranalyse

Lokaler Ähnlichkeitsbegriff (Hamming-Distanz)

$$d(\mathbf{x},\mathbf{y}) = \#\{\ell \mid x_{\ell} \neq y_{\ell}\}\$$

Konzeptuelle Gruppierung

Globale Ähnlichkeit (engste H-Umfassung)

$$d(\mathbf{x}, \mathbf{y}) = \min\{\sigma(h, \omega) \mid h \models \mathbf{x}, \mathbf{y}\}\$$

Überdeckungsgrad

der Hypothese h durch die Daten ω :

$$\sigma(h,\omega) = \frac{\#\{x \in \omega \mid h \models x\}}{\#\{x \in \Omega \mid h \models x\}} = \frac{\blacksquare}{\blacksquare}$$

Konzeptuelle Gruppierung

Gegeben

Objektbereich Ω · Hypothesenraum \mathcal{H} · Beispielmenge $\omega \subseteq \Omega$

Gesucht

eine **intensionale Partition** von ω , d.h.:

Eine Folge von Hypothesen h_1, \ldots, h_K , welche die beobachteten Beispiele aus ω sowie auch neue Objekte aus $\mathbf{\Omega} \setminus \omega$ überschneidungsfrei gegeneinander abgrenzen.

Und welches **Gütekriterium** optimiert die Partition ? ... ?

Hierarchisch

K-Means

Wiederholtes Austauschen von Gruppenelementen

".conceptual K-means"

Gütekriterium

Kumulativer Überdeckungsgrad

$$f(\mathbf{h}) = \frac{1}{K} \cdot \sum_{k=1}^{K} \sigma(h_k, \omega)$$

Gruppenprototypen

müssen unbedingt ω angehören! (Sterne, Überdeckung)

- Medoide
- Pseudomediane

Wahl der Gruppenzentren

Medoid

Dasjenige Gruppenelement mit minimaler Exzentrizität:

$$\mu_{\mathsf{med}}(\omega_{\kappa}) = \underset{m{x} \in \omega_{\kappa}}{\mathsf{argmin}} \, \varepsilon(m{x}, \omega_{\kappa}) = \underset{m{x} \in \omega_{\kappa}}{\mathsf{argmin}} \, \sum_{m{y} \in \omega_{\kappa}} d(m{x}, m{y})$$

Pseudomedian

Kombiniere je nach Skalentyp der \mathcal{X}_n , $n = 1, \dots, N$ komponentenweise Mittelwerte, Zentroide, Mediane:

$$\boldsymbol{\mu}_{\mathsf{pseudo}}(\omega_{\kappa}) \stackrel{\mathsf{def}}{=} (\mu_{\kappa,1}, \dots, \mu_{\kappa,N})^{\top}, \qquad \mu_{\kappa,n} \stackrel{\mathsf{def}}{=} \mu(\{x_n \mid \boldsymbol{x} \in \omega_{\kappa}\})$$

Ergibt eine hocheffizient berechenbare Näherung $\mu_{\sf pseudo} pprox \mu_{\sf med}$

Reintegration

Wegen $\mu_{\text{pseudo}}(\omega_{\kappa}) \notin \omega_{\kappa}$ verwende den nächsten ω_{κ} -Nachbarn:

$$\tilde{\mu}_{\mathsf{pseudo}}(\omega_{\kappa}) = \operatorname*{argmin}_{\pmb{x} \in \omega_{\kappa}} d(\pmb{\mu}_{\mathsf{pseudo}}(\omega_{\kappa}), \pmb{x})$$

Hierarchisch

K-Means

FM

Konzeptuell

Beispiel — Gebrauchtwagenhandel

Datensammlung

Objekt:	0 1	0 2	0 3	0 4	0 5	0 6	0 7	0 8
x ₁ Geschwindigkeit	h	m	h	1	m	1	h	m
x ₂ Farbe	r	r	g	Ь	Ь	g	Ь	r
x ₃ Preis	h	1	h	rh	rl	1	rh	rh

$$x_1 \in \mathcal{X}_1 = \{high, medium, low\}$$

 $x_2 \in \mathcal{X}_2 = \{red, blue, green\}$

$$x_3 \in \mathcal{X}_3 = \{ high, rel \mid high, rel \mid low, low \}$$

Hypothesen als Attributkomplexe

zum Beispiel: $x_1 \in \{h\} \land x_2 \in \{b,g\} \land x_3 \in \{h,rh,rl\}$

Ebene $x_1 = m$

Überdeckung
$$\sigma(h,\omega) = \frac{2}{6} = 0.\overline{3}$$

Konzeptueller Austauschalgorithmus

- INITIALISIERUNG Wähle Klassenzahl K und wähle z_1, \ldots, z_K zufällig aus ω .
- PROTOTYPEN STERNE

$$S_{\kappa} = S(\mathbf{z}_{\kappa} \mid \{\mathbf{z}_{1}, \ldots, \mathbf{z}_{K}\} \setminus \{\mathbf{z}_{\kappa}\})$$

STERNE SHYPOTHESEN Bestimme ω -eindeutigen Hypothesensatz $\mathbf{h} \in \mathcal{S}_1 \times \ldots \times \mathcal{S}_K$ mit

$$f(\mathbf{h}) = MAX$$

HYPOTHESEN S GRUPPEN

$$\omega_{\kappa} = \{ x \in \omega \mid h_{\kappa} \models x \}$$

⑤ GRUPPEN → PROTOTYPEN

$$oldsymbol{z}_{\kappa} = oldsymbol{\mu}_{\mathsf{med}}(\omega_{\kappa})$$

TERMINIERUNG Wenn $f(\mathbf{h}) \geq \theta$ dann \rightsquigarrow Ender sonst \rightsquigarrow 2

Relational

Konzeptuell

Beispiel — Gebrauchtwagenhandel

Erster Iterationsschritt

- P1 Wähle als initiale Prototypen $z_1 = o_1$ und $z_2 = o_2$ aus
- S1 Stern von z_1 :

$$h_1^1 = (x_2 = r, b) \land (x_3 = h, rh, rl) \text{ und } h_1^2 = (x_1 = h, l)$$

Stern von z_2 :

$$h_2^1 = (x_1 = h) \land (x_2 = g) \lor (x_3 = l)$$
 und $h_2^2 = (x_1 = m)$

G1 Dann gilt

$$h_1^1 \models o_1, o_4, o_5, o_7, o_8$$
 $h_1^2 \models o_2, o_3, o_6$
 $h_1^2 \models o_1, o_3, o_4, o_6, o_7$ $h_2^2 \models o_2, o_5, o_8$

H1 Nur die Kombinationen (h_1^1, h_2^1) und (h_1^2, h_2^2) bilden konzeptuelle Partitionen

$$f(h_1^1) + f(h_2^1) = 5/18 + 3/12 = 38/72$$

 $f(h_1^2) + f(h_2^2) = 5/24 + 3/12 = 33/72$

Hierarchisch

Beispiel — Gebrauchtwagenhandel

Zweiter Iterationsschritt

P2 Objekte und ihr Median in h_1^1

Attribut	o_1	0 4	o 5	0 7	o 8	Modus	Zentroid ist o ₇
x_1	h	1	m	h	m	h, m	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
<i>x</i> ₂	r	Ь	Ь	b	r	Ь	Zentrola ist 0 7
<i>X</i> 3	h	rh	rl	rh	rh	rh .	J

Die Hypothese h_2^1 hat Pseudomedian (m,g,I) und Median o_6

- \Rightarrow neue Gruppenprototypen sind $z_1 = o_7, z_2 = o_6$
- Section Stern von o_7 :

$$h_1^1 = (x_3 = h, rh)$$

 $h_1^2 = (x_1 = h, m) \land (x_2 = r, b) \land (x_3 = r, rh)$

Stern von o_6 :

$$h_2^1 = (x_1 = m, l) \wedge (x_3 = rl, l)$$

G2 Dann gilt

$$h_1^1 \models o_1, o_3, o_4, o_7, o_8$$
 $h_2^1 \models o_2, o_5, o_6$ $h_1^2 \models o_1, o_7, o_8$

H2 Nur die Kombination (h_1^1, h_2^1) bildet eine konzeptuelle Partition

$$f(h_1^1) + f(h_2^1) = 5/18 + 3/12 = 38/72$$

Hierarchisch

K-Means

EM

Relational

Konzeptuell

eptuell Spektral

Clustergü

9

Hierarchische Gruppierung: agglomerativ/divisiv

Austauschverfahren: (fuzzy) K-means

Mischungsidentifikation

Relationale Gruppierung

Konzeptuelle Gruppierung

Spektrale Gruppierung

Clustergütemaße

Zusammenfassung

Beispiel — Taxonomie spanischer Volkslieder

Gattungsdendrogramm nach konzeptueller Division

100 Lernbeispiele spanischer Volkslieder

22 Attribute mit nominalen / ordinalen Wertebereichen

Google Page Rank

"Gute Webseiten werden von guten Webseiten erwähnt."

Relevanz und Qualität

Seitenbewertung = Anfragepassung + Seriositätsmaß

$$score_q^{Google}(doc) = Rel_q(doc) + rank(doc)$$

Worldwide Web als gerichteter Graph

Adjazenzmatrix $\mathbf{A} \in \{1,0\}^{T \times T}$ mit $a_{st} = 1$ \Leftrightarrow $\mathsf{doc}_i \mapsto \mathsf{doc}_j$

Irrfahrtmodell

Der "Random Surfer" besucht Webseiten mit W'keit p_j und der Politik

$$p_j = (1-\beta) \cdot \frac{1}{T} + \beta \cdot \sum_i p_i \cdot a_{ij} \cdot \frac{1}{\sum_k a_{ik}}$$

Die **Gleichgewichtsverteilung** gehorcht einer Eigenwertaufgabe ($\lambda = 1$):

$$m{B}\cdotm{p} = \left((1-eta)\cdotrac{1}{T}+eta\cdot ilde{m{A}}
ight)\cdotm{p} = m{p} = m{\lambda}\cdotm{p} \;, \qquad ilde{a}_{ij}\stackrel{\mathsf{def}}{=}{}^{a_{ij}}\!\!\!/_{\sum_{m{k}}a_{ik}}$$

Schnitte in gewichteten Graphen

Definition

Sei $(\mathcal{K}, \mathcal{E}, \mathbf{A})$ ein ungerichteter, gewichteter Graph mit nicht-negativer, symmetrischer **Affinitätsmatrix A**. Für zwei Knotenmengen \mathcal{B} , \mathcal{C} sei

$$\ell_{\mathsf{aff}}(\mathcal{B},\mathcal{C}) = \sum_{s \in \mathcal{B}} \sum_{t \in \mathcal{C}} A_{st} , \qquad \tilde{\ell_{\mathsf{aff}}}(\mathcal{B},\mathcal{C}) = \frac{\ell_{\mathsf{aff}}(\mathcal{B},\mathcal{C})}{\ell_{\mathsf{aff}}(\mathcal{B},\mathcal{K})}$$

definiert. Eine Menge $\mathcal{C} \subset \mathcal{K}$ mit minimalem $\ell_{\mathsf{aff}}(\mathcal{C}, \mathcal{K} \setminus \mathcal{C})$ bzw. mit minimalem $\ell_{\text{aff}}(\mathcal{C}, \mathcal{K} \setminus \mathcal{C})$ heißt **Schnitt** oder **normierter Schnitt**. Eine Partition C_1, \ldots, C_K von K mit minimalem

$$\ell_{\mathsf{aff}}^{\widetilde{}}(\{\mathcal{C}_{\kappa}\}_{\kappa=1}^{K}) \stackrel{\mathsf{def}}{=} \frac{1}{K} \cdot \sum_{\kappa=1}^{K} \ell_{\mathsf{aff}}^{\widetilde{}}(\mathcal{C}_{\kappa}, \mathcal{K} \backslash \mathcal{C}_{\kappa})$$

heißt normierter K-Schnitt.

Bemerkung

Für die Affinitätsmatrix **A** gilt $A_{ss} = 0$ und $A_{st} = A_{ts}$ für alle $s, t \in \{1, ..., T\}$.

Hierarchisch

K-Means

FМ

Relational

Konzeptuell

Spektral

Hierarchisch

K-Means

Konzeptuell

Spektral

Clustergüte

K-NC als Spurmaximierung

"K-way normalized cut"

Matrixalgebraische Formulierung

Die **Indikatormatrix** $C \in \{1,0\}^{T \times K}$ beschreibt die Zugehörigkeit der Knoten v_t zu den Gruppen C_{κ} :

$$C_{t\kappa} \stackrel{\mathsf{def}}{=} \left\{ egin{array}{ll} 1 & t \in \mathcal{C}_{\kappa} \ 0 & t
ot\in \mathcal{C}_{\kappa} \end{array}
ight.$$

Die **Diagonalmatrix** $D \in \mathbb{R}^{T \times T}$ enthält je Knoten die Summe seiner ausgehenden (einlaufenden) Kantengewichte:

$$\mathbf{D} = \operatorname{diag}(\{d_s\}), \quad d_s \stackrel{\mathsf{def}}{=} \sum_{t=1}^T A_{st}$$

Lemma

Das K-NC Kriterium ist äquivalent zur Maximierung der Größe

$$\frac{1}{K} \cdot \operatorname{spur}\left(\mathbf{Z}^{\top} \mathbf{A} \mathbf{Z}\right)$$
 mit $\mathbf{Z} \stackrel{\text{def}}{=} \mathbf{C} \cdot (\mathbf{C}^{\top} \mathbf{D} \mathbf{C})^{-1/2}$.

Gewöhnliche & normierte Schnitte

Fakt

Die Berechnung eines (normierten) 2-Schnittes ist beweisbar NP-hart.

Gewöhnlicher Normierter Schnitt Minimale relative Mengenaffinität:

Proportion der Querverbindungsgewichte zu den Gewichten aller ${\mathcal C}$ verlassenden Kanten

Normierter K-Schnitt

Minimale Summe aller relativen Affinitäten zwischen den Schnittmengen C_{κ} und ihren Komplementen $\mathcal{K} \setminus \mathcal{C}_{\kappa}$

dungsgewichte

Schnitt

Dichotome Partition von \mathcal{K} mit minimaler

Summe der Querverbin-

zwischen \mathcal{C} und $\mathcal{K} \backslash \mathcal{C}$

Mengenaffinität:

Relaxationslösung

F. Chung: Spectral Graph Theory, AMS 1997

Skalierung

Die umskalierte Matrix $\tilde{\mathbf{Z}} := \mathbf{D}^{1/2} \mathbf{Z} \in \mathbb{R}^{T \times K}$ besitzt offenbar orthonormale Spalten:

$$\tilde{\mathbf{Z}}^{\top}\tilde{\mathbf{Z}} = \mathbf{E} \in \mathbb{R}^{K \times K}$$

Gelockerte Bedingung

Ersetze die komplizierte Strukturforderung für **Z** durch Orthonormalitätsbedingung (links).

⇒ Spurmaximierung durch Berechnung der *K* ersten Eigenvektoren

Lemma

Die Matrix $\tilde{\mathbf{Z}} \in \mathbb{R}^{T \times K}$ mit den K oberen Eigenvektoren von $\tilde{\mathbf{A}} := \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ als Spalten maximiert die Spur

$$\operatorname{spur}\left(\underbrace{\tilde{\boldsymbol{Z}}^{\top}\cdot\boldsymbol{D}^{-1/2}}_{\boldsymbol{Z}^{\top}}\cdot\boldsymbol{A}\cdot\underbrace{\boldsymbol{D}^{-1/2}\cdot\tilde{\boldsymbol{Z}}}_{\boldsymbol{Z}}\right)$$

unter der Bedingung $\tilde{\boldsymbol{Z}}^{\top}\tilde{\boldsymbol{Z}}=\boldsymbol{E}$.

Hierarchisch K-Means EM Relational Konzeptuell Spektral Clustergüte Σ Hierarchisch K-Means EM Relational Konzeptuell

Spektrale Gruppierung statt K-means

K-means Algorithmus modelliert ausschließlich **konvexe** Ballungsgebiete und findet nur **lokale** Verzerrungsminima.

2 Ringwolken — 2-means-Gruppierung

- 1. Bestimme $\tilde{\boldsymbol{A}}$
- 2. Berechne $\tilde{\mathbf{Z}}$ (EWP)
- 3. Ermittle $Z = D^{-1/2} \tilde{Z}$
- 4. Errate (?!) *C* aus *Z*

K-Means

Spektrale Gruppierung

Die metrische Struktur der Datenobjekte wird in einen gewichteten Graphen transformiert; anschließend wird der Graph in Polynomialzeit durch Berechnung eines Semi-Schnittes in K Teilgraphen partitioniert.

Spektral

Ng-Jordan-Weiss Algorithmus

- 1 AFFINITÄTSMATRIX $\mathbf{A} \in \mathbb{R}^{T \times T} \text{ mit } A_{st} \stackrel{\text{def}}{=} \left\{ \begin{array}{l} 0 & s = t \\ \exp\left\{-\|\mathbf{x}_s \mathbf{x}_t\|^2/2\sigma^2\right\} & s \neq t \end{array} \right.$
- 2 LAPLACEMATRIX $\mathbf{L} \in \mathbb{R}^{T \times T}$ via Normierung $L_{\mathsf{st}} \stackrel{\mathsf{def}}{=} \frac{A_{\mathsf{st}}}{\sqrt{\rho_{\mathsf{s}} \cdot \rho_{\mathsf{t}}}}, \quad \rho_{\mathsf{s}} \stackrel{\mathsf{def}}{=} \sum_{r=1}^{T} A_{r\mathsf{s}}$
- 3 K FÜHRENDE EIGENVEKTOREN

$$m{L} = \sum_{t=1}^{T} d_t^2 \cdot m{u}_t m{u}_t^{\top}, \quad m{U} \stackrel{\mathsf{def}}{=} (m{u}_1, \dots, m{u}_K) \in \mathbb{R}^{T imes K}$$

ZEILENWEISE NORMIERUNG

$$\tilde{\pmb{U}} \stackrel{\mathsf{def}}{=} \pmb{C}^{-1/2} \cdot \pmb{U} \;, \qquad \mathcal{C}_{\mathsf{st}} \; = \; \left\{ \begin{array}{ll} \sum_{\kappa=1}^{K} U_{\mathsf{t}\kappa}^2 & s = t \\ 0 & s \neq t \end{array} \right.$$

- 5 K-MEANS GRUPPIERUNG der Matrixzeilen $\tilde{\pi}: \{\tilde{\mathbf{v}}_1, \dots, \tilde{\mathbf{v}}_T\} \rightarrow \{1, 2, \dots, K\}$
- 6 PARTITIONIERUNG der Originaldaten $\pi: \left\{ \begin{array}{ll} \{\pmb{x}_1,\ldots,\pmb{x}_T\} & \rightarrow & \{1,2,\ldots,k\} \\ \pmb{x}_t & \mapsto & \tilde{\pi}(\tilde{\pmb{v}}_t) \end{array} \right.$

Gruppieren im Spektralraum

des Ähnlichkeitsgraphen

Eigenraummatrix $\boldsymbol{U} \in \mathbb{R}^{T \times K}$

Die K-dimensionalen Zeilenvektoren weisen eine hochdiskriminante Gruppenstruktur (innerer Ring — äußerer Ring) auf.

Warum funktioniert der NJW-Algorithmus ?

Beobachtung (geodätische Gruppenbildung)

Die Zeilen der Matrix \boldsymbol{U} bilden eine K-dimensionale Repräsentation der Daten, in der Objekte mit kurzem Verbindungsweg — geodätisch, nicht Luftlinie — nahe beieinander liegen. warum?

Spektral

Idealtypisches Szenarium (K = 3)

Objekte unterschiedlicher Gruppe besitzen den euklidischen Abstand $\infty.$

Affinitätsmatrix und Laplacematrix sind von **Blockdiagonalform** (geeignete Nummerierung der x_t vorausgesetzt)

$$A = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & A_2 & 0 \\ 0 & 0 & A_3 \end{pmatrix} , \qquad L = \begin{pmatrix} L_1 & 0 & 0 \\ 0 & L_2 & 0 \\ 0 & 0 & L_3 \end{pmatrix}$$

- Die Eigenvektoren von L sind die mit Nullen aufgefüllten Eigenvektoren der Blockmatrizen L_κ.
- Dank der Doppelnormierung von **L** besitzt jeder Block *genau einen* maximalen **Eigenwert Eins**.

Hierarchisch K-Means EM Relational Konzeptuell Spektral Clustergüte

Warum funktioniert der NJW-Algorithmus?

Idealtypisches Szenarium (K = 3)

Die K Haupteigenvektoren von \boldsymbol{L} rekrutieren sich aus den K Blockgewinnern.

$$m{U} = egin{pmatrix} m{u}_1' & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & m{u}_2' & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & m{u}_3' \end{pmatrix} \in \mathbb{R}^{T \times 3} \;, \qquad m{ ilde{U}} = egin{pmatrix} \mathbf{100} \\ \mathbf{010} \\ \mathbf{001} \end{pmatrix} \in \mathbb{R}^{T \times 3} \;$$

- ullet Die Matrix $oldsymbol{U}$ besitzt die K Eigenvektoren als Spalten.
- Alle Zeilen von **U** enthalten **genau einen** Eintrag ungleich Null.
- ullet In der zeilensummennormierten Matrix $ilde{m{U}}$ wird der Eintrag zur Eins.
- ightharpoonup Das Gruppieren der Zeilen (ightharpoonup Einheitsvektoren) ergibt zwangsläufig genau die richtigen Cluster!

Hierarchisch K-Means EM Relational Konzeptuell **Spektral** Clustergüte

Details zum NJW-Algorithmus

Lineare Störungstheorie

Analyse des NJW **ohne** Intercluster-Distanzen $= \infty$ Stewart & Sun: *Matrix Perturbation Theory*, 1990

 \Rightarrow **Eigengap** $\lambda_K - \lambda_{K+1}$ als untere Schranke der Gruppierungsstabilität

Abklingparameter $\sigma^2 > 0$

Minimale Endverzerrung nach dem K-means Clustering

 \Rightarrow Skalarer Optimierungslauf für σ^2

Startpartition für K-means

Die (idealen) Gruppenzentren liegen auf der Einheitsspäre. Sie stehen paarweise senkrecht aufeinander.

ightharpoonup Sukzessive Auswahl derjenigen $ightharpoonup t_t$ als Saatpunkte, die zu allen bereits selektierten Kandidaten maximal orthogonal sind.

Warum funktioniert der NJW-Algorithmus?

Denkfehler

"connected components"

Die ${\mathcal K}$ Haupteigenvektoren besitzen den gemeinsamen Eigenwert Eins.

Sie sind also keineswegs eindeutig bestimmt und voller Nullen, sondern spannen lediglich einen eindeutig bestimmten K-dimensionalen Unterraum auf.

Rettung der Argumentation

Statt \boldsymbol{U} erhalten wir $\boldsymbol{U}' = \boldsymbol{U}\boldsymbol{R}$ mit einer Rotationsmatrix $\boldsymbol{R} \in \mathbb{R}^{K \times K}$.

Bezeichne \boldsymbol{v}_t^{\top} die t-te Zeile von \boldsymbol{U} .

 \Rightarrow $\mathbf{v}_t^{\top} \mathbf{R}$ ist die t-te Zeile von \mathbf{U}' und für die Quadratnorm gilt:

$$(\mathbf{v}_t^{\top} \mathbf{R}) \cdot (\mathbf{R}^{\top} \mathbf{v}_t) = \mathbf{v}_t^{\top} \cdot (\mathbf{R} \mathbf{R}^{\top}) \cdot \mathbf{v}_t = \mathbf{v}_t^{\top} \cdot \mathbf{v}_t = \|\mathbf{v}_t\|^2$$

Die Zeilennormierung macht UR zu $\tilde{U}R$.

Zu clustern sind nicht mehr die **Einheitsvektoren** des \mathbb{R}^K , aber immerhin noch die Vektoren einer Orthonormalbasis R des Raumes.

Beispiele — NJW & Wettbewerber

Ng-Jordan-Weiss, K = 3

..random walk'

..geodesic K-means'

Hierarchisch K-Means EM Relational Konzeptuell Spektral Clustergüte Σ Hierarchisch K-Means EM Relational Konzeptuell Spektral C

Sonstige spektral orientierte Verfahren

Gruppierung nach Zusammenhangskomponenten

Bilde den ungerichteten Graphen mit den Kanten

$$(s,t) \in \mathcal{E}$$
 \Leftrightarrow $\|\mathbf{x}_s - \mathbf{x}_t\| \leq \theta$.

Wähle die Schranke θ so, daß #(ZSH-Komponenten) = K ist.

Gruppierung nach dem Irrfahrtprinzip (Meila & Shi)

Unterm Strich derselbe Ablauf wie beim NJW-Algorithmus, aber:

- · Nur die Zeilen der Affinitätsmatrix A werden normiert.
- \cdot Die Zeilen der Eigenvektormatrix $m{U}$ werden \emph{nicht} normiert.

Geodätischer K-means (Kannan & Vempala & Vetta)

Wiederum derselbe Ablauf wie beim NJW-Algorithmus, aber:

- · Nur die Zeilen der Affinitätsmatrix A werden normiert.
- · Die Urbilder der Clusterzentroide werden als Repräsentanten genutzt.

Hierarchisch K-Means EM Relational Konzeptuell **Spektral** Clustergüte

Dualisierte Berechnungen für K-means

Lemma

Sei $\omega = \{\mathbf{x}_1, \dots, \mathbf{x}_T\} \subset \mathbf{\Omega}$ und $\phi : \mathbf{\Omega} \to \mathbb{H}$ eine Expansion mit dem zugehörigen Kernoperator $K(\cdot, \cdot)$.

1. Das Zentroidelement der termexpandierten Daten $\phi(\omega)$ bezüglich des quadratischen euklidischen Abstandes $\|\cdot\|^2_{\mathbb{H}}$ ist der Mittelwertvektor

$$\mu = \frac{1}{T} \cdot \sum_{t=1}^{T} \phi(\mathbf{x}_t) .$$

- 2. Der Abstand zwischen μ und einem expandierten Objekt $\phi(\mathbf{y})$, $\mathbf{y} \in \mathbf{\Omega}$, läßt sich mit $\mathrm{O}(T^2)$ Kernoperatorauswertungen berechnen.
- 3. Die Berechnung der Abstände von μ zu allen $\phi(\mathbf{x}_t)$, $t=1,\ldots,T$, erfordert i.a. den Aufwand $\mathrm{O}(T^2N)$, wenn $\mathbf{\Omega}=\mathbb{R}^N$ ist.

K-means mit Termexpansion

Der Kernel Trick

Gruppieren in einem (impliziten) Expansionsraum $\phi(\Omega)$:

$$\phi: \mathbf{\Omega} \rightarrow \mathbb{H}, \quad \langle \phi \mathbf{x}, \phi \mathbf{y} \rangle_{\mathbb{H}} = K(\mathbf{x}, \mathbf{y})$$

Der **Kernoperator** $K(\cdot, \cdot)$ simuliert das "Rechnen" im RKHS \mathbb{H} .

Optimale K-Gruppierung in $\phi(\mathbf{\Omega})$

Ein Kodebuch $\{\mu_1,\ldots,\mu_K\}$ mit minimaler **Verzerrung**

$$\varepsilon(\left\{\omega_{\kappa}\right\}_{\kappa}) = \sum_{\kappa=1}^{K} \sum_{\mathbf{x} \in \omega_{\kappa}} \left\|\phi(\mathbf{x}) - \mu_{\kappa}\right\|^{2}$$

Berechnung von Gruppenzentr(oid)en μ_{κ} $\mu_{\kappa} \in \mathbb{H}$ mittelt (endlich viele) expandierte Objekte.

Berechnung von Prototypdistanzen $\|f - g\|_{\mathbb{H}}^2$ f ist ein expandiertes Objekt. g ist ein Gruppenzentrum.

Beweis.

- 1. \mathbb{H} als Hilbertraum ist insbesondere auch ein Vektorraum.
- 2. Kernbasierte Distanzberechnung (speziell $y = x_r \in \omega$):

$$\|\phi \mathbf{y} - \mu\|_{\mathbb{H}}^{2} = \left\|\phi \mathbf{y} - \frac{1}{T} \sum_{\mathbf{x_{t}}} \phi \mathbf{x_{t}} \right\|_{\mathbb{H}}^{2}$$

$$= \langle \phi \mathbf{y}, \phi \mathbf{y} \rangle - 2 \cdot \frac{1}{T} \cdot \sum_{\mathbf{x_{t}}} \langle \phi \mathbf{y}, \phi \mathbf{x_{t}} \rangle + \frac{1}{T^{2}} \cdot \sum_{\mathbf{x_{s}}, \mathbf{x_{t}}} \langle \phi \mathbf{x_{s}}, \phi \mathbf{x_{t}} \rangle$$

$$= K(\mathbf{y}, \mathbf{y}) - 2 \cdot \frac{1}{T} \cdot \sum_{\mathbf{x_{t}}} K(\mathbf{y}, \mathbf{x_{t}}) + \frac{1}{T^{2}} \cdot \sum_{\mathbf{x_{s}}, \mathbf{x_{t}}} K(\mathbf{x_{s}}, \mathbf{x_{t}})$$

$$= \frac{1}{T^{2}} \cdot \left\{ T^{2} \cdot G_{rr} - 2T \cdot \sum_{\mathbf{x_{t}}} G_{rt} + \sum_{\mathbf{x_{s}}, \mathbf{x_{t}}} G_{st} \right\}$$

$$= G_{rr} - 2\bar{g_{r}} + \bar{G}$$

3. Jede Kernoperatorauswertung kostet O(N), die Berechnung der Gramschen Matrix kostet $O(T^2N)$, und die Mittelungen über G und ihre Zeilen g_r bleiben bei $O(T^2)$.

Kernel K-means Algorithmus

Kostenpunkt: $O(T^2N + T^2I)$

- STARTWERTE Startgruppierung $\{\omega_{\kappa}^{(0)}\}$ und Kernmatrix \boldsymbol{G} , $G_{st} = K(\boldsymbol{x}_s, \boldsymbol{x}_t)$.
- NEUE OBJEKTZUGEHÖRIGKEIT

$$\kappa^*(\mathbf{x}) \stackrel{\mathsf{def}}{=} \underset{\lambda=1..K}{\operatorname{argmin}} \left\| \phi \mathbf{x} - \mu_{\lambda}^{(i)} \right\|$$

IMPLIZITE ZENTROIDBERECHNUNG

$$\omega_{\lambda}^{(i+1)} \leftarrow \{ \boldsymbol{x}_t \mid \kappa^*(\boldsymbol{x}_t) = \lambda \}$$

(keine *explizite* Berechnung der Mittelwertvektoren $\mu_{\lambda}^{(i+1)} \in \mathbb{H}$)

TERMINIERUNG Wenn $\varepsilon^{(i)}(\{\omega_{\kappa}\}) \leq \theta$ dann Ende sonst $i \leftarrow i + 1$ und \rightsquigarrow 2.

Hierarchisch

FМ

Spektral

Clustergüte

Hierarchisch

WKKM vs. normierter Schnitt

Minimale Verzerrung 🖨 maximale NC-Matrixspur

Lemma

Die Gruppenverzerrung des WKKM ist gleichwertig zum Ausdruck

$$\varepsilon(\{\omega_{\kappa}\}, \mathbf{w}) = \operatorname{spur}\left(\mathbf{W}^{\frac{1}{2}}\mathbf{G}\mathbf{W}^{\frac{1}{2}}\right) - \operatorname{spur}\left(\mathbf{U}^{\top} \cdot \mathbf{W}^{\frac{1}{2}}\mathbf{G}\mathbf{W}^{\frac{1}{2}} \cdot \mathbf{U}\right)$$

mit

$$\mathbf{\Phi} = (\phi \mathbf{x}_1, \dots, \phi \mathbf{x}_T)$$

$$G = \Phi^{T} \Phi$$

$$\mathbf{W} = \operatorname{diag}(\{w(\mathbf{x}_t)\}_t)$$

$$\boldsymbol{U} = \operatorname{diag}(\{\boldsymbol{s}_{\lambda}^{-\frac{1}{2}} \cdot \boldsymbol{W}_{\lambda}^{\frac{1}{2}} \cdot \boldsymbol{1}_{\lambda}\}), \quad \boldsymbol{s}_{\lambda} = \boldsymbol{1}_{\lambda}^{\top} \boldsymbol{W}_{\lambda} \boldsymbol{1}_{\lambda}.$$

Die ersten K Eigenvektoren der Matrix $\mathbf{W}^{\frac{1}{2}} \mathbf{G} \mathbf{W}^{\frac{1}{2}}$ liefern eine verzerrungsminimale Lösung unter der Relaxationsbedingung $\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{E}$ für die blockstrukturierte ($T \times K$)-Matrix \mathbf{U} .

(Beweis durch exzessives Nachrechnen)

Gewichteter Kernel K-means

Gewichtetes Verzerrungskriterium

Objektabhängige Gewichtung der Zentrumsabstände:

$$\varepsilon(\{\omega_{\kappa}\}, \mathbf{w}) = \sum_{\kappa=1}^{K} \sum_{\mathbf{x} \in \omega_{\kappa}} \mathbf{w}(\mathbf{x}) \cdot \|\phi(\mathbf{x}) - \mu_{\kappa}\|^{2}$$

Gruppenzentroide \(\hat{\text{\figs}}\) **gewichtete** Mittelwertvektoren.

Optimale Gruppenstruktur

Minimale Verzerrung ⇔ maximale Spur (NC):

- Kernmatrix $W^{\frac{1}{2}}GW^{\frac{1}{2}}$ korrespondiert mit normierter Affinität \tilde{A} .
- Mantelmatrix \boldsymbol{U} korrespondiert mit $\tilde{\boldsymbol{Z}}$. Jede Zeile von **U** ist ein skalierter K-Einheitsvektor.
- \to $U^{\top}U = E_{(K)}$ (*U* besitzt orthonormale Spalten)

WKKM kann (im Relaxationssinne) auch durch NJW gelöst werden!

K-Means

Spektrale Gruppierung

Vorzügliche und nachteilige Eigenschaften

NJW-Algorithmus

- · einstufiges Verfahren
- · metrische Distanzen
- · K-means über \mathbb{R}^K
- · Eigenvektoren $O(T^2K)$
- · Gruppen raten $O(TK^2I)$
- · Relaxationslösung !?!

WKKM-Algorithmus

- · iteratives Verfahren
- Mercer-reskalierbar
- · K-means über \mathbb{H} /dual
- · Gram-Matrix $O(T^2N)$
- · dualer K-means $O(T^2I)$
- · Startpartition ??

Hybride spektrale Gruppierung

- 1 Berechne ggf. die Affinitäten **A**, Zeilensummen **D** und $\tilde{\mathbf{A}} = \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$.
- 2 Startgruppierung $\{\omega_{\kappa}^{(0)}\}$ via **NJW-Algorithmus** auf $\tilde{\mathbf{A}}$.
- 3 Berechne die (virtuelle) Gram-Matrix $G = D^{-1}AD^{-1}$ und setze W = D.
- 4 Führe den i-ten Weighted-Kernel-K-Means-Doppelschritt durch.
- 5 Wenn $\varepsilon^{(i)}(\{\omega_{\kappa}\}) \leq \theta$ dann Ende sonst $i \leftarrow i+1$ und \rightsquigarrow 4.

Austauschverfahren: (fuzzy) K-means

Mischungsidentifikation

Relationale Gruppierung

Konzeptuelle Gruppierung

Spektrale Gruppierung

Clustergütemaße

Zusammenfassung

Hierarchisch

K-Means

EM

elational

nzeptuell

ektral Clustergüte

gute

Σ

Cluster Recovery Index

Externe Qualitätskriterien — Vergleich mit "Goldstandard"

Ausgangssituation

Objektmenge $\{o_1, \ldots, o_T\}$ mit wahrer und hypothetischer Gruppierung:

$$\omega_1^* \uplus \omega_2^* \uplus \ldots \uplus \omega_{K^*}^*$$
 versus $\hat{\omega}_1 \uplus \hat{\omega}_2 \uplus \ldots \uplus \hat{\omega}_{\hat{K}}$

Aufgabenstellung

Berechnen eines Übereinstimmungsmaßes zwischen $\{\omega_{\kappa}^*\}$ und $\{\hat{\omega}_{\kappa}\}$.

- Vergleich einer Ist-Lösung mit der Soll-Lösung
- Vergleich zweier Lösungen zweier Methoden

Problem

Gruppierungen sind nur eindeutig bis auf **Indexpermutation**.

Gütemaße für Gruppen & Partitionen

Fragen über Fragen

- ullet Mit welcher Vorgabeordnung $K\in {\rm I\! N}$ starte ich K-means ?
- Welche Zerlegungsebene wähle ich als Resultat aus?
 (agnes, diana, pam & Co.)
- Zerfällt ω_{κ} in **noch kleinere** Gruppen ?
- Trifft gelernte Partition $\{\hat{\omega}_{\kappa}\}_{\kappa}$ die wahre Gruppenstruktur ?

Problem

Hierarchisch

Hierarchisch

Weder **Gruppenverzerrungen** $\varepsilon(\omega_{\kappa})$ noch **Gesamtverzerrung** $\varepsilon(\{\omega_{\kappa}\}_{\kappa})$ beantworten auch nur eine dieser Fragen !

Der Rand-Index

Konzeptuell

Clustergüte

Relational

Überschneidungsfreie, scharfe Gruppen (W. M. Rand, 1971)

Kreuzadjazenzstatistiken

K-Means

Die Objekte o_1, \ldots, o_T bilden $M = \binom{T}{2}$ ungeordnete Paaren $\{o_s, o_t\}$.

	gleiche $\{\hat{\omega}_{\kappa}\}$ -Gruppe	verschiedene $\{\hat{\omega}_{\kappa}\}$ -Gruppen	
gleiche $\{\omega_{\kappa}^*\}$ -Gruppe	M_{11}	M_{10}	M_1 .
verschiedene $\{\omega_{\kappa}^*\}$ -Gruppen	M_{01}	M_{00}	M_0 .
	M. ₁	M. ₀	М

Definition

Unter dem **Rand-Index** zweier scharfer Objektpartitionen verstehen wir den relativen Anteil

$$C_{\text{rand}} \stackrel{\text{def}}{=} \frac{M_{11} + M_{00}}{M}$$

der kohärent gruppierten Punktepaare $\{o_s, o_t\}$.

Hierarchisch

Der bereinigte Rand-Index

"adjusted Rand index" (Hubert & Arabie, 1985)

Problem

- \oplus Maximum $C_{rand} = 1$ wird für äquivalente Partitionen angenommen.
- ⊖ Hohe C_{rand}-Werte entstehen auf Grund zufälliger Korrespondenzen.

Definition

Unter dem bereinigten Rand-Index zweier scharfer Objektpartitionen verstehen wir den Quotienten

$$C_{\mathsf{ari}} \stackrel{\mathsf{def}}{=} \frac{\mathsf{observed} - \mathsf{expected}}{\mathsf{maximum} - \mathsf{expected}} \ = \ \frac{C_{\mathsf{rand}} - \left\{ M_1.M_{\cdot 1} + M_0.M_{\cdot 0} \right\} \big/ \ M^2}{1 - \left\{ M_1.M_{\cdot 1} + M_0.M_{\cdot 0} \right\} \big/ \ M^2}$$

aus beobachtetem und größtmöglichem Übertreffen der allein zufallsbedingten Gruppenkohärenz.

Bemerkung

Ein störbereinigtes und permutationsinvariantes Vergleichsmaß ist auch die **Transinformation** $\mathcal{H}(\mathbb{K}_1) + \mathcal{H}(\mathbb{K}_2) - \mathcal{H}(\mathbb{K}_1, \mathbb{K}_2)$ zwischen dem wahren und dem hypothetischen Gruppenindex der Objekte.

Hierarchisch

K-Means

Clustergüte

Hierarchisch

K-Means

Konzeptuell

Clustergüte

Bestimmung des Hopkins-Index

RESAMPLING ω und $\bar{\omega}$ Ziehe $S \in \mathbb{N}$ Vektoren z_1, \ldots, z_S aus ω . Ziehe $S \in \mathbb{N}$ Vektoren y_1, \dots, y_S aus der konvexen Hülle

$$ar{\omega} \stackrel{\mathsf{def}}{=} \left\{ \sum_{t=1}^T a_t x_t \mid \sum_{t=1}^T a_t = 1, \ a_t \geq 0 \right\}$$

PUNKTDICHTE IN $\bar{\omega}$ Berechne die kumulative Punkt-Mengen-Distanz

$$\mathcal{E}_{\bar{\omega}}[d^*(\mathbb{X},\omega)] \approx D_{\bar{\omega}} = \sum_{s=1}^{S} \min_{x \in \omega} d(y_s,x)$$

PUNKTDICHTE IN ω Berechne die "leave-one-out" kumulative Punkt-Mengen-Distanz

$$\mathcal{E}_{\omega}[d^*(\mathbb{X},\omega^{(\mathbb{X})})] \approx D_{\omega} = \sum_{s=1}^{S} \min_{x \in \omega \setminus \{z_s\}} d(z_s,x)$$

4 AUSGABE Berechne den Quotienten $C_{\text{hop}} = D_{\bar{\omega}} / (D_{\bar{\omega}} + D_{\omega})$.

Die Heterogenität einer Punktmenge

Zerfällt $\omega \subset \Omega$ in noch kleinere Gruppen?

Definition

Für die Punktmenge ω mit der konvexen Hülle $\bar{\omega} \supset \omega$ ist der **Hopkins-Index** durch die relative Punktdichte

$$C_{\mathsf{hop}} \stackrel{\mathsf{def}}{=} \frac{\mathcal{E}_{\bar{\omega}}[d^*(\mathbb{X},\omega)]}{\mathcal{E}_{\bar{\omega}}[d^*(\mathbb{X},\omega)] + \mathcal{E}_{\omega}[d^*(\mathbb{X},\omega^{(\mathbb{X})})]}$$

im Gesamtbereich der ω -Hülle definiert.

Die beste Anzahl von Gruppen

Gretchenfrage $K \in \{1, 2, 3, 4, 5, 8\}$ bei der GMM-Identifikation

Ellenbogenheuristik Konkavknick bei K=4nebst Sättigungsauslauf

Ordnung und Güte einer Gruppierung Je mehr Gruppen — desto paßgenauer das Datenmodell

Lemma

Für einen Datensatz $\omega = \{\mathbf{x}_1, \dots, \mathbf{x}_T\} \subset \mathbb{R}^N$ und die Ordnung $K \in \mathbb{N}$ bezeichne

$$\varepsilon_{VQ}^{(K)}(\omega) \stackrel{\text{def}}{=} \underset{\mathbf{z_1}, \dots, \mathbf{z_K}}{\operatorname{argmin}} \sum_{t=1}^{T} \min_{\kappa} \|\mathbf{x}_t - \mathbf{z}_{\kappa}\|^2$$

die minimale quadratisch-euklidische Verzerrung der K-Partition und

$$\ell_{\textit{GMM}}^{(\mathcal{K})}(\omega) \stackrel{\textit{def}}{=} \underset{\theta \in \mathcal{M}_{\mathcal{K}}}{\textit{argmax}} \sum_{t=1}^{T} \log \sum_{\kappa=1}^{K} \left\{ \pi_{\kappa}^{(\theta)} \cdot \mathcal{N}(\boldsymbol{x}_{t} \mid \boldsymbol{\mu}_{\kappa}^{(\theta)}, \boldsymbol{S}_{\kappa}^{(\theta)}) \right\}$$

die maximale Güte eines K-Mischverteilungsmodells für den Datensatz. Dann gelten die Antitonie und die Monotonie

$$K \leq K' \quad \Rightarrow \quad \begin{cases} \varepsilon_{VQ}^{(K)}(\omega) & \geq & \varepsilon_{VQ}^{(K')}(\omega) \\ \ell_{GMM}^{(K)}(\omega) & \leq & \ell_{GMM}^{(K')}(\omega) \end{cases}$$

Hierarchisch

K-Means

Relational

Clustergüte

Hierarchisch

K-Means

Clustergüte

Die beste Anzahl von Gruppen

kann oft durch den Pseudo-F-Wert ermittelt werden

Der Pseudo-F-Wert

belohnt gute Gruppentrennung & bestraft große Gruppenanzahl

Problem

Die allermeisten Gruppierungskriterien verbessern sich systematisch mit wachsender Gruppenzahl K, sind also zur Auswahl der Gruppenzahl völlig ungeeignet.

Bemerkung

Die Monotonie ist in den meisten Kurven verletzt, denn K-means und GMM-Identifikation sind lokale Optimierungsverfahren.

Definition (Calinski-Harabasz)

Die Vergleichsgröße

$$C_{\mathsf{pseudo}}(\{\omega_1,\ldots,\omega_K\}) \stackrel{\mathsf{def}}{=} \frac{\mathrm{spur}(\boldsymbol{S}_B) / (K-1)}{\mathrm{spur}(\boldsymbol{S}_W) / (T-K)}$$

heißt **Pseudo-***F***-Wert** der Gruppierung $\{\omega_1, \ldots, \omega_K\}$.

Es bezeichnen S_R die Zwischengruppenstreuung und S_W die Innergruppenstreuung der Datenpartition.

Hier versagt der Pseudo-F-Wert!

Der EM-Algorithmus zur Mischungsidentifikation findet nur suboptimale GMM

Dreiphasige Gruppierung

- DIVISIVE GRUPPIERUNG Sukzessive Zerlegung mit 2-means in $K_{\text{max}} = 2^b$ Gruppen.
- GMM-IDENTIFIKATION Austauschiteration mit Gaußschem Mischverteilungsmodell (EM-Schritte).
- REAGGLOMERATION Bottom-up Gruppierung durch sukzessive ℓ_{GMM} -Maximierung.

Hierarchisch

Spektral

Clustergüte

Hierarchisch

regularisierte Gütemaße im Vergleich Beispiel:

Sieben Cluster im \mathbb{R}^7 · Hierarchische Gruppierung für K = 1, 2, ..., 10

Regularisierte Gütemaße für scharfe Gruppierungen ".cluster validity index"

Dunn's ISODATA

$$C_{\mathsf{iso}} \stackrel{\mathsf{def}}{=} \frac{\min_{\kappa \neq \lambda} \min_{\mathbf{x} \in \omega_{\kappa}} \min_{\mathbf{y} \in \omega_{\lambda}} d(\mathbf{x}, \mathbf{y})}{\max_{\kappa} \max_{\mathbf{x} \in \omega_{\kappa}} \max_{\mathbf{y} \in \omega_{\kappa}} d(\mathbf{x}, \mathbf{y})}$$

Rousseeuw's Silhouette

$$C_{\text{sil}} \stackrel{\text{def}}{=} \frac{1}{T} \sum_{t=1}^{T} \frac{b_t - a_t}{\max(a_t, b_t)} \qquad \qquad \text{mit } D_{\kappa, t} = \overline{d(\omega_{\kappa}, x_t)} \text{ und } \left\{ \begin{array}{l} a_t = D_{\kappa(t), t} \\ b_t = \min_{\lambda \neq \kappa(t)} D_{\lambda, t} \end{array} \right.$$

Expected Area Under Curve

$$C_{\mathsf{auc}} \stackrel{\mathsf{def}}{=} \frac{1}{T} \sum_{t=1}^{T} \mathsf{AUC}([d(x_{ullet}, x_t)], [x_{ullet} \in \omega_{\kappa(t)}])$$

Uni-/multivariat gaußsches BIC

$$C_{\text{bic}} \stackrel{\text{def}}{=} -\log \ell_{\text{GMM}}^{(K)} + \log(T) \cdot \text{df}(K, N) \quad \text{mit df}(K, N) = \begin{cases} K + 2NK & \text{(naiv)} \\ K + (N+3)\frac{NK}{2} & \text{(sonst)} \end{cases}$$

Clustergüte

Gütemaße für unscharfe Gruppierungen

Tendenz zur monotonen Verbesserung mit der Gruppenanzahl K

Partitionskoeffizient

$$C_{\mathsf{part}} \stackrel{\mathsf{def}}{=} \frac{1}{T} \sum_{t=1}^{T} \sum_{\kappa=1}^{K} u_{\kappa}^{2}(\boldsymbol{x}_{t}) \stackrel{!}{\longrightarrow} \mathsf{max}$$

Proportionsexponent

$$C_{\text{prop}} \stackrel{\text{def}}{=} \frac{1}{T} \sum_{t=1}^{T} \max_{\kappa} u_{\kappa}(\boldsymbol{x}_{t}) \stackrel{!}{\longrightarrow} \max$$

Klassifikationsentropie

$$C_{ ext{entro}} \stackrel{\text{def}}{=} -\frac{1}{T} \sum_{t=1}^{T} \sum_{k=1}^{K} u_{\kappa}(\boldsymbol{x}_{t}) \cdot \log_{2} u_{\kappa}(\boldsymbol{x}_{t}) \stackrel{!}{\longrightarrow} \min$$

Bemerkung

Partitionskoeffizient C_{part} , Proportionsexponent C_{prop} und Klassifikationsentropie C_{entro} nehmen ihre Optimalwerte (1/1/0) für die **scharfen** Gruppierungen $\{u_{\kappa}(\cdot)\}$ an. erarchisch K-Means EM Relational Konzeptuell Spektral Clustergüte Σ Hierarchisch K-Means EM Relational

Mischungsidentifikation in 😱

Ein Zoo konkurrierender Modelle — Kovarianzauslegung $\mathbf{S}_{\kappa} := \sigma_{\kappa}^2 \cdot \mathbf{U}_{\kappa} \mathbf{D}_{\kappa} \mathbf{U}_{\kappa}^{\mathsf{T}}$

Sphärische Modelle

$$\mathcal{N}(\boldsymbol{\mu}_{\kappa},\ \sigma^2\cdot \boldsymbol{E})$$

$$\mathcal{N}(\mu_{\kappa}, \ \sigma_{\kappa}^2 \cdot \pmb{E})$$

Diagonale Modelle

$$\mathcal{N}(\boldsymbol{\mu}_{\kappa}, \ \sigma^2 \cdot \boldsymbol{D})$$

VED
$$\mathcal{N}(oldsymbol{\mu}_{\kappa},\ \sigma_{\kappa}^2\cdot oldsymbol{D}$$
)

EVI
$$\mathcal{N}(\boldsymbol{\mu}_{\kappa},\ \sigma^2\cdot \boldsymbol{D}_{\kappa})$$

$$\mathcal{N}(\boldsymbol{\mu}_{\kappa}, \ \sigma_{\kappa}^2 \cdot \boldsymbol{D}_{\kappa})$$

K-Means

Hierarchisch

Global oder κ -variabel?

Volumen, Gesamtstreuung σ_{κ}^2 Gestalt, Dynamik D_{κ} Orientierung, Hauptachsen U_{κ}

Ellipsoidale Modelle

$$\mathcal{N}(\boldsymbol{\mu}_{\kappa}, \ \sigma^2 \cdot \boldsymbol{U} \ \boldsymbol{D} \ \boldsymbol{U}^{\top})$$

$$\mathcal{N}(\boldsymbol{\mu}_{\kappa}, \ \sigma^2 \cdot \boldsymbol{U}_{\kappa} \boldsymbol{D} \ \boldsymbol{U}_{\kappa}^{\top})$$

VEV
$$\mathcal{N}(oldsymbol{\mu}_{\kappa},\ \sigma_{\kappa}^2\cdotoldsymbol{U}_{\kappa}oldsymbol{D}\ oldsymbol{U}_{\kappa}^{ op})$$

$$\mathcal{N}(\boldsymbol{\mu}_{\kappa}, \ \sigma_{\kappa}^2 \cdot \boldsymbol{U}_{\kappa} \boldsymbol{D}_{\kappa} \boldsymbol{U}_{\kappa}^{\top})$$

Konzeptuell

Theractische Gruppierung. aggiomerativ/ divis

Relational

Austauschverfahren: (fuzzy) K-means

EM

Mischungsidentifikation

Relationale Gruppierung

Konzeptuelle Gruppierung

Spektrale Gruppierung

Clustergütemaße

Zusammenfassung

Mischungsidentifikation in @

BIC-Entscheidung: optimales GM-Modell & optimale Gruppenzahl K

Clustergüte

Agglomeratives Gruppieren number of components

```
hc (modelName, data, ...) 'R'-Paket: mclust
```

EM-Iteration

Hierarchisch

```
em (modelName, data, parameters, ...)

Start mit E-Schritt

me (modelName, data, z, ...)

Start mit M-Schritt
```

Bayes-Informationsmaß

K-Means

```
Mclust (data, G=1:9, modelNames) alle K \in \{1, ..., 9\}, alle GMM-Typen
```

Spektral

Zusammenfassung (5)

- Das Ziel der Gruppierung (Clusteranalyse) ist die unüberwachte Zerlegung eines Datensatzes in explizit oder implizit charakterisierte Teilmengen von Objekten.
- 2. Die hierarchischen Verfahren arbeiten bottom-up (agglomerativ) oder top-down (divisiv); das Resultat ist ein Gruppendendrogramm.
- 3. Die Austauschverfahren geben eine Anzahl $K \in \mathbb{N}$ vor und erzeugen scharfe (K-means) oder unscharfe (fuzzy K-means) K-Partitionen.
- Die EM-Gruppierung modelliert die Daten durch Identifikation einer gaußschen Mischverteilung.
- Neben sphärischen Gruppen lassen sich auch rangdefiziente Ballungsgebiete ermitteln (K-Elliptotypes oder Probabilistic PCA).
- 6. **Relationale** Datensätze werden entweder *agglomerativ* gruppiert oder wie auch **nominal** skalierte Objekte mit einem *K*-**medoids**-Austauschverfahren (*RACE*, *K-Sterne*).
- 7. Die **spektrale** Methode löst eine **Minimalschnittaufgabe** im Affinitätsgraphen der Datenobjekte und läuft auf eine Art gaußschen **Kernel-***K***-means**-Algorithmus hinaus.
- Ermittlung der Clusteranzahl durch Ellenbogenheuristik oder Pseudo-F-Wert.