${\it CVXR} \ for \ Portfolio Analytics$

Xinran Zhao

2023/06/24

Contents

1 Introduction	3
2 Getting Started	3
2.1 Load Packages	3
2.2 Solvers	3
2.3 Data	4
2.4 Optimization Problems	5
3 Maximizing Mean Return	5
3.1 Portfolio Object	6
3.2 Optimization	6
3.3 Backtesting	7
4 Minimizing Variance	7
4.1 Global Minimum Variance Portfolio	8
4.1.1 Portfolio Object	8
4.1.2 Optimization	8
4.2 Long-Only and Group Constrained Minimum Variance Portfolio	8
5 Maximizing Quadratic Utility	10
5.1 Portfolio Object	10
5.2 Optimization	11
6 Minimizing Expected Shortfall	11
6.1 Portfolio Object	12
6.2 Optimization	12
7 Minimizing Expected Quadratic Shortfall	13
7.1 Portfolio Object	13
7.2 Optimization	13

8 Maximizing Mean Return Per Unit Risk	14
8.1 Maximum Sharpe Ratio Portfolios	14
8.2 Maximum ES ratio Portfolios	15
8.3 Maximum EQS ratio Portfolios	16
9 Comparative Performance of Portfolios	17
9.1 Backtesting with GMV, GMES, GMEQS portfolios	19
9.2 Backtesting with SR, ESratio, EQSratio portfolios	21
9.3 Efficient Frontier	23
9.3.1 Mean-StdDev Efficient Frontier	23
9.3.2 Mean-ES Efficient Frontier	28
9.3.3 Mean-EQS Efficient Frontier	31
9.3.4 Efficient Frontiers Comparison among minStd, minES and minEQS portfolios	32
Reference	36

1 Introduction

CVXR is an R package that provides an object-oriented modeling language for convex optimization, including the Second-Order Cone Optimization(SOCopt) required to minimize Expected Quadratic Shortfall(EQS) problem, which is not supported by other solvers in PortfolioAnalytics. Hence, CVXR is a significant extension of PortfolioAnalytics.

The purpose of this vignette is to demonstrate examples of optimization problems that can be solved in PortfolioAnalytics with CVXR and its many supported solvers. The problem types covered include not only Linear Programming(LP), Quadratic Programming(QP) but also Second-Order Cone Programming(SOCP). Multiple solvers supported by CVXR can be selected according to optimization types. For example, SCS and ECOS can completely cover the types of problems that ROI can deal with, such as mean-variance and ES problem. In order to better understand the functionality and use of PortfolioAnalytics, users are recommended to read the Vignette *Introduction to PortfolioAnalytics* first.

2 Getting Started

2.1 Load Packages

Load the necessary packages.

```
library(PortfolioAnalytics)
library(CVXR)
library(data.table)
library(xts)
library(PCRA)
```

2.2 Solvers

The website https://cvxr.rbind.io/ shows that CVXR currently supports the use of 9 solvers, some of which are commercial (CBC, CPLEX, GUROBI, MOSEK)¹ and the others are open source(GLPK, GLPK_MI, OSQP, SCS, ECOS).

The Portfolio Analytics package provides the following two main wrapper functions for constrainted optimization of portfolios using a wide variety of methods:

```
optimize.portfolio(R =, portfolio =, optimize_method =)
optimize.portfolio.rebalancing(R =, portfolio =, optimize_method =, rebalance_on =,
training_period =, rolling_window =)
```

Different solvers support different types of portfolio optimization problems, which should be specified by the argument optimize_method=c("CVXR", {CVXRsolver}) argument of the function optimize.portfolio and optimize.portfolio.rebalancing allows the user to specify the solver to use with CVXR. If the argument is optimize_method="CVXR", the default solver for LP and QP type portfolio optimization problems, such as maximum mean return and minimum variance portfolio optimization is OSQP, and the default solver for SOCP type portfolio optimizations, such as "robust portfolio optimization" to control for alpha uncertainty, and Expected Quadratic Shortfall (EQS) portfolio optimization, is ECOS.

¹MOSEK ,GUROBI, and CPLEX require licenses to use, but free academic licenses are available for all three.

Solver	LP	QP	SOCP
$\overline{\mathrm{CBC}}$	√		
GLPK	\checkmark		
$GLPK_MI$	\checkmark		
OSQP	✓	✓	
SCS	\checkmark	\checkmark	\checkmark
ECOS	\checkmark	\checkmark	\checkmark
CPLEX	\checkmark	\checkmark	$\overline{\checkmark}$
GUROBI	\checkmark	\checkmark	\checkmark
MOSEK	\checkmark	\checkmark	\checkmark

2.3 Data

The edhec data set from the PerformanceAnalytics package is used as example data for examples in Section 3 to Section 8. The edhec data set is an xts object that contains monthly returns for 13 hedge fund style indexes from 1997-01 to 2019-11. We use the edhec data of the last 5 years as the example data to show how to use the code.

```
data(edhec)
# Use edhec for a returns object
ret_edhec <- tail(edhec, 60)</pre>
colnames(ret_edhec) <- c("CA", "CTAG", "DS", "EM", "EMN", "ED", "FIA",</pre>
                    "GM", "LSE", "MA", "RV", "SS", "FF")
print(head(ret_edhec, 5))
#>
                CA
                      CTAG
                               DS
                                      EM
                                            EMN
                                                    ED
                                                          FIA
                                                                  GM
                   0.0088 -0.0089 -0.0220 0.0013 -0.0022 -0.0035 -0.0004
#> 2014-12-31 -0.0066
                                         0.0048 -0.0104 -0.0004
#> 2015-01-31  0.0013  0.0399 -0.0155 -0.0034
                                                              0.0229
0.0185
                                  0.0162
                                         0.0020
                                                0.0270
                                                       0.0086
                                                              0.0070
                                                0.0043
#> 2015-03-31
             0.0021
                    0.0097
                          0.0028
                                  0.0039
                                         0.0080
                                                       0.0021
                                                              0.0101
#> 2015-04-30
             0.0157 -0.0232
                           0.0071
                                  0.0378 -0.0029
                                                0.0113
                                                       0.0051 -0.0091
               LSE
                       MA
                              RV
                                     SS
                                           FF
#> 2014-12-31
            0.0012 0.0032 -0.0016
                                 0.0033 0.0021
#> 2015-01-31 -0.0009 0.0004 0.0025 0.0109 0.0017
#> 2015-03-31
            0.0036 0.0056 0.0033 0.0006 0.0069
# Get a character vector of the asset names
fund_edhec <- colnames(ret_edhec)</pre>
```

tsPlotMP is a function of R package PCRA which can plot time series for the return data.

```
tsPlotMP(ret_edhec, layout = c(2, 7), main = "Time Series Plot of Edhec Return")
```

Time Series Plot of Edhec Return

Fig 2.1

2.4 Optimization Problems

In this Vignette, all mean vectors and covariance matrices in the optimization formula will use standard sample based estimates. All optimization problems treated will use linear constraints unless stated otherwise. There will be one equality constraint, i.e., the full-investment constraint, and one or more inequality constraints such as the long-only and box constraints. More comprehensive constraint types can be found in the vignette Ross (2018) *Introduction to Portfolio Analytics*.

This vignette will be organized by objective type and provide some visual examples.

3 Maximizing Mean Return

The objective to maximize mean return is a linear problem of the form:

$$\max_{w} \mu' w$$

$$s.t. \quad Aw \ge b$$

$$Bw = c$$

Where μ is the estimated asset returns mean vector and w is the vector of portfolio weights.

3.1 Portfolio Object

The first step in setting up a model is to create the portfolio object, which contains the form of the constraints, and the objective specifications. In the following we create full-investment and box constraints specifications, and a maximum return objective specification.

```
# Create portfolio object
pspec_maxret <- portfolio.spec(assets = fund_edhec)</pre>
# Add constraints to the portfolio object
pspec_maxret <- add.constraint(pspec_maxret, type = "full_investment")</pre>
pspec_maxret <- add.constraint(portfolio = pspec_maxret, type = "box",</pre>
                            min = rep(0.02, 13),
                            \max = c(rep(0.15, 8), rep(0.1, 5)))
# Add objective to the portfolio object
pspec_maxret <- add.objective(portfolio = pspec_maxret,</pre>
                           type = "return", name = "mean")
pspec_maxret
#> **************
#> PortfolioAnalytics Portfolio Specification
#> **************
#>
#> Call:
#> portfolio.spec(assets = fund_edhec)
#> Number of assets: 13
#> Asset Names
#> [1] "CA"
                                                "FIA"
                                                                    "MA "
              "CTAG" "DS"
                           "FM"
                                  "EMN" "ED"
                                                       "GM"
                                                             "LSE"
#> More than 10 assets, only printing the first 10
#> Constraints
#> Enabled constraint types
       - full_investment
#>
       -box
#>
#> Objectives:
#> Enabled objective names
#> - mean
```

3.2 Optimization

The next step is to run the optimization. Note that optimize_method = c("CVXR", {CVXRsolver}) should be specified in the function optimize.portfolio to use CVXR solvers for the optimization, or use the default solver by giving optimize_method = "CVXR". For maximizing mean return problem, which is a linear programming, the default solver is OSQP.

```
#> optimize.portfolio(R = ret_edhec, portfolio = pspec_maxret, optimize_method = "CVXR",
      trace = TRUE)
#>
#> Optimal Weights:
#> CA CTAG DS EM EMN ED FIA
                                       GM LSE
                                                  MA
                                                      RV
#> 0.15 0.02 0.02 0.15 0.02 0.15 0.13 0.02 0.10 0.10 0.10 0.02 0.02
#> Objective Measures:
      mean
#> 0.002499
opt_maxret$solver
#> [1] "OSQP"
# Run the optimization with specific solver
opt_maxret_glpk <- optimize.portfolio(R = ret_edhec, portfolio = pspec_maxret,</pre>
                                 optimize_method = c("CVXR", "GLPK"), trace = TRUE)
opt_maxret_glpk$solver
#> [1] "GLPK"
```

3.3 Backtesting

An out of sample backtest is run with optimize.portfolio.rebalancing. In this example, an initial training period of 36 months is used and the portfolio is rebalanced quarterly.

The call to optimize.portfolio.rebalancing returns the bt_maxret object which is a list containing the optimal weights and objective measure at each rebalance period.

```
class(bt_maxret)
#> [1] "optimize.portfolio.rebalancing"
names(bt_maxret)
#> [1] "portfolio" "R" "call" "elapsed_time"
#> [5] "opt_rebalancing"
```

4 Minimizing Variance

The objective to minimize variance is a quadratic problem of the form:

$$\min_{\boldsymbol{w}} \quad \boldsymbol{w}' \Sigma \boldsymbol{w}$$

subject to portfolio managers' desired constraints, where Σ is the estimated covariance matrix of asset returns and \boldsymbol{w} is the set of portfolio weights. It is a quadratic problem.

4.1 Global Minimum Variance Portfolio

4.1.1 Portfolio Object

In this example, the only constraint specified is the full investment constraint, therefore the optimization problem is solving for the Global Minimum Variance (GMV) portfolio.

```
# Create portfolio object
pspec_gmv <- portfolio.spec(assets = fund_edhec)
# Add full-investment constraint
pspec_gmv <- add.constraint(pspec_gmv, type = "full_investment")
# Add objective of minimizing variance
pspec_gmv <- add.objective(portfolio = pspec_gmv, type = "risk", name = "var")</pre>
```

4.1.2 Optimization

```
opt_gmv <- optimize.portfolio(ret_edhec, pspec_gmv, optimize_method = "CVXR")</pre>
opt_gmv
#> PortfolioAnalytics Optimization
#>
#> Call:
\# optimize.portfolio(R = ret_edhec, portfolio = pspec_gmv, optimize_method = "CVXR")
#> Optimal Weights:
                           EM
                                 EMN
                                         ED
                                               FIA
                                                       GM
                                                             LSE
#>
      CA CTAG
                    DS
                                                                     MA
  0.0691 0.0141 -0.1101 -0.0199 0.1677 -0.1318 0.5433 0.0404 0.0184 0.3427
      RV
#>
             SS
                    FF
#>
  0.3225 0.0178 -0.2743
#>
#> Objective Measures:
   \mathit{StdDev}
#> 0.002011
```

As this example illustrates, a global minimum variance portfolio with only a full-investment constraint can have short positions.

4.2 Long-Only and Group Constrained Minimum Variance Portfolio

Various linear inequality constraint, such as box constraints, group constraints and a target mean return constraint, can be used with GMV portfolio construction. Here we demonstrate the case of linearly constrained minimum variance portfolio.

```
group_max = c(0.4, 0.8, 0.5))
pspec_mv <- add.constraint(pspec_mv, type = "return", return_target = 0.003)</pre>
pspec_mv
#> PortfolioAnalytics Portfolio Specification
#>
#> Call:
#> portfolio.spec(assets = fund_edhec)
#> Number of assets: 13
#> Asset Names
#> [1] "CA" "CTAG" "DS" "EM"
                               "EMN" "ED"
                                         "FIA" "GM"
                                                       "LSE" "MA"
#> More than 10 assets, only printing the first 10
#>
#> Constraints
#> Enabled constraint types
#>
      - full_investment
#>
      - long_only
#>
      - group
#>
      - return
#>
#> Objectives:
#> Enabled objective names
      - var
# optimization
opt_mv <- optimize.portfolio(ret_edhec, pspec_mv, optimize_method = "CVXR")</pre>
opt_mv
#> PortfolioAnalytics Optimization
#>
#> Call:
\#> optimize.portfolio(R = ret_edhec, portfolio = pspec_mv, optimize_method = "CVXR")
#>
#> Optimal Weights:
                 DS
                        EM
                             EMN
                                    ED
                                         FIA
                                                     LSE
        CTAG
#> 0.1500 0.0000 0.0000 0.0000 0.0000 0.0000 0.1989 0.0000 0.0000 0.6011 0.0000
     SS
#> 0.0000 0.0500
#>
#> Objective Measures:
#> StdDev
#> 0.005052
```

Compared to Section 4.1, the result shows that the more constraints, the larger the optimal value may be. But this example is closer to the real situation. The optimal weights show that the first group constraint is not binding, but the second one is binding with FIA plus MA at the upper bound of 0.8, and the third group constraint is binding at the lower bound with FF.

The use of an alternative to the CVXR default solver will get the same result to many significant digits. In this example we use $optimize_method = c("CVXR", "ECOS")$, since OSQP is the default solver, and get the very similar results.

```
opt_mv_ecos <- optimize.portfolio(ret_edhec, pspec_mv, optimize_method = c("CVXR", "ECOS"))
opt_mv_ecos
#> PortfolioAnalytics Optimization
#>
#> Call:
#> optimize.portfolio(R = ret edhec, portfolio = pspec mv, optimize method = c("CVXR",
      "ECOS"))
#>
#> Optimal Weights:
      CA
          CTAG
                   DS
                         EM
                              EMN
                                      ED
                                           FIA
                                                   GM
                                                        LSE
                                                               MA
                                                                      RV
#> 0.1500 0.0000 0.0000 0.0000 0.0000 0.0000 0.1989 0.0000 0.0000 0.6011 0.0000
#> 0.0000 0.0500
#>
#> Objective Measures:
   \mathit{StdDev}
#> 0.005053
opt_mv$solver
#> [1] "OSQP"
opt_mv_ecos$solver
#> [1] "ECOS"
```

5 Maximizing Quadratic Utility

Next we demonstrate the classical quadratic utility form of Markowitz's mean-variance optimal portfolios, where the quadratic utility function is $QU(\boldsymbol{w}) = \mu_p - \lambda \sigma_p^2 = \boldsymbol{\mu'w} - \lambda \boldsymbol{w'} \Sigma \boldsymbol{w}$:

$$\max_{w} \quad \mu' w - \lambda w' \Sigma w$$

$$s.t. \quad Aw \ge b$$

Here μ is the vector of estimated mean asset returns, $0 \le \lambda < \inf$ is the risk aversion parameter, Σ is the estimated covariance matrix of asset returns, and \boldsymbol{w} is the vector of weights. Quadratic utility maximizes return while penalizing variance risk. The risk aversion parameter λ controls how much portfolio variance is penalized, and when $\lambda = 0$ it becomes a maximum mean return problem of Section 3, and as $\lambda \to \inf$, it becomes the global minimum variance problem of Section 4.

5.1 Portfolio Object

In this case the objectives of the portfolio should be both return and risk, and for this example we will use a risk aversion parameter λ to be 20 by setting risk_aversion = 20.

5.2 Optimization

The optimization result opt_mvo shows the call, optimal weights, and the objective measure. Objective measure contains quadratic utility, mean return and standard deviation.

```
opt_mvo <- optimize.portfolio(ret_edhec, pspec_mvo, optimize_method = "CVXR")
opt_mvo
#> PortfolioAnalytics Optimization
#>
#> Call:
\# optimize.portfolio(R=ret\_edhec, portfolio = pspec_mvo, optimize_method = "CVXR")
#>
#> Optimal Weights:
          CTAG
                  DS
                         EM
                              EMN
                                                       LSE
                                                                     RV
      CA
                                           FIA
                                                              MA
#> 0.1502 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8498 0.0000
#>
      SS
#> 0.0000 0.0000
#>
#> Objective Measures:
#> optimal value
     -0.0001352
#>
#>
#>
#>
      mean
#> 0.003327
#>
#>
#>
    StdDev
#> 0.005583
```

6 Minimizing Expected Shortfall

Expected Shortfall(ES) is also called Conditional Value-at-Risk(CVaR) and Expected Tail Loss(ETL). The ES of a portfolio is

$$ES_{\gamma}(r_P) = ES_{\gamma}(\boldsymbol{w}) = -E(r_P|r_P \le q_{\gamma}(\boldsymbol{w}))$$
$$= -E(\boldsymbol{w}'\boldsymbol{r}|\boldsymbol{w}'\boldsymbol{r} \le q_{\gamma}(\boldsymbol{w}))$$

where r_P is a random return of a portfolio P, and r is the loss return which is negative, and q_{γ} is γ -quantile and γ is usually a "tail" probability such as 0.01, 0.05, in which case ES is a tail risk measure. But one could also choose $\gamma = 0.25$ or $\gamma = 0.5$, in which case ES is just a "downside" risk measure, and if $\gamma > 0.5$, the problem will take $1 - \gamma$ as the tail probability.

It was shown by Rockafellar, Uryasev, et al. (2000) that the optimal minimum ES portfolio is the result of the minimization:

$$\min_{\boldsymbol{w}} ES_{\gamma}(\boldsymbol{w}) = \min_{\boldsymbol{w},t} F_{\gamma}(\boldsymbol{w},t)$$

where

$$F_{\gamma}(\boldsymbol{w},t) = -t + rac{1}{\gamma} \int [t - \boldsymbol{w'r}]^+ \cdot f(\boldsymbol{r}) d\boldsymbol{r}$$

by replacing q_{γ} with the free variable t, and with the discrete data the formula is:

$$\hat{F}_{\gamma}(\boldsymbol{w},t) = -t + \frac{1}{n \cdot \gamma} \sum_{i=1}^{n} [t - \boldsymbol{w'r_i}]^{+}$$

The positive part function, $[t - w'r_i]^+$, can easily be converted to a collection of linear constraints, hence, the minimization of ES is equivalent to solving a linear programming problem.

The ES minimization problem is

$$\min_{\boldsymbol{w},t} \quad -t + \gamma^{-1} E(t - \boldsymbol{w'r_i})^+$$

where $0 < \gamma < 1$ is the tail probability value, and t is the value from which shortfalls are measured in the optimal solution. Many authors also use p or α as the quantile, e.g., in Rockafellar, Uryasev, et al. (2000) and other vignettes of PortfolioAnalytics, and use η as the risk measure variable, e.g., in Krokhmal (2007).

6.1 Portfolio Object

The default probability is $\gamma = 5\%$. Specific probability could be given by arguments.

6.2 Optimization

Notice that if optimize_method is not declared, the default solver is DEoptim. But we highly recommend using ROI solvers or CVXR solvers, because they provide accurate theoretical solutions for minES problem.

```
# GMES with default gamma=0.05
opt_es <- optimize.portfolio(ret_edhec, pspec_es, optimize_method = "CVXR")</pre>
opt es
#> PortfolioAnalytics Optimization
#>
#> Call:
#> optimize.portfolio(R = ret_edhec, portfolio = pspec_es, optimize_method = "CVXR")
#> Optimal Weights:
                  DS
                        EM
                                    ED
      CA
          CTAG
                              EMN
                                          FIA
                                                 GM
                                                      LSE
#> 0.0000 0.0000 0.0000 0.0000 0.2301 0.0000 0.3389 0.0000 0.0000 0.3657 0.0000
            FF
#>
      SS
#> 0.0652 0.0000
#> Objective Measures:
       ES
#> 0.003649
```

```
# GMES with specific gamma=0.1
opt_es_1 <- optimize.portfolio(ret_edhec, pspec_es_1, optimize_method = "CVXR")</pre>
opt es 1
#> PortfolioAnalytics Optimization
#>
#> Call:
#> optimize.portfolio(R = ret_edhec, portfolio = pspec_es_1, optimize_method = "CVXR")
#> Optimal Weights:
      CA
         CTAG
                  DS
                        EM
                             EMN
                                     ED
                                          FIA
                                                 GM
                                                      LSE
                                                             MA
                                                                   RV
#> 0.0000 0.0000 0.0000 0.0000 0.2066 0.0000 0.3572 0.0000 0.0000 0.3815 0.0000
    SS
            FF
#> 0.0547 0.0000
#>
#> Objective Measures:
#> 0.003017
```

7 Minimizing Expected Quadratic Shortfall

Expected Quadratic Shortfall(EQS) is also called Second-Moment Coherent Risk Measure(SMCR) in some situations, for example, in Krokhmal (2007). The objective to minimize EQS is in the form of:

$$\min_{\boldsymbol{w},t} \quad -t + \gamma^{-1} ||(t - \boldsymbol{w'r_i})^+||_2$$

where γ is the tail probability and $0 < \gamma < 1$, t is the value from which quadratic shortfalls are measured in the optimal solution. The default probability is $\gamma = 5\%$. Minimizing EQS could be incorporated into a convex problem as a second-order cone constraints, and PortfolioAnalytics uses ECOS in CVXR as the default solver for Second-Order Cone Optimization(SOCopt).

7.1 Portfolio Object

The default probability is $\gamma = 5\%$. Specified probability could be given by arguments.

7.2 Optimization

```
#>
\# optimize.portfolio(R = ret\_edhec, portfolio = pspec_eqs, optimize_method = "CVXR")
#>
#> Optimal Weights:
#>
           CTAG
                   DS
                         EM
                               EMN
                                       ED
                                            FIA
                                                         LSE
                                                                 MA
                                                                       RV
      CA
#> 0.0183 0.0000 0.0000 0.0000 0.1326 0.0000 0.5461 0.0000 0.0000 0.2472 0.0000
#>
#> 0.0558 0.0000
#>
#> Objective Measures:
#>
       EQS
#> 0.003757
```

8 Maximizing Mean Return Per Unit Risk

There are three basic types of risk measures: variance or standard deviation, ES and EQS. The problem of maximizing mean return per unit risk can be solved in a clever way by minimizing risk with a target return constraint, as is described below. For all three of these types of problems, both return and risk objectives should be used in PortfolioAnalytics. Then for each of these three optimization problems an appropriate argument needs to be given to the optimize.portfolio to specify the type of problem, as we describe below.

8.1 Maximum Sharpe Ratio Portfolios

The Sharpe Ratio of a random return r_P of a portfolio P is defined as:

$$\frac{E(r_P) - r_f}{\sqrt{Var(r_P)}}$$

The problem of maximizing the Sharpe Ratio can be formulated as a quadratic problem with a budget normalization constraint. It is shown in Cornuejols, Pena, and Tutuncu (2018), that this optimization problem can be formulated as the equivalent optimization:

$$\begin{aligned} & \underset{w}{minimize} & w' \Sigma w \\ & s.t. & (\hat{\mu} - r_f \mathbf{1})^T w = 1 \\ & \mathbf{1}^T w = \kappa \\ & \kappa > 0 \end{aligned}$$

which has a solution (w^*, κ^*) with $k^* \neq 0$, and the maximized Sharpe ratio given by $\tilde{w}^* = w^*/\kappa^*$.

When creating the portfolio, the argument maxSR = TRUE should be specified in the function optimize.portfolio to distinguish from the mean-variance optimization. NOTE: The default argument is maxSR = FALSE since the default action for dealing with both mean and var/StdDev objectives is to maximize quadratic utility.

```
# Create portfolio object
pspec_sr <- portfolio.spec(assets = fund_edhec)
## Add constraints of maximizing Sharpe Ratio
pspec_sr <- add.constraint(pspec_sr, type = "full_investment")</pre>
```

```
pspec_sr <- add.constraint(pspec_sr, type = "long_only")</pre>
## Add objectives of maximizing Sharpe Ratio
pspec_sr <- add.objective(pspec_sr, type = "return", name = "mean")</pre>
pspec_sr <- add.objective(pspec_sr, type = "risk", name = "var")</pre>
# Optimization
optimize_portfolio(ret_edhec, pspec_sr, optimize_method = "CVXR", maxSR = TRUE)
#> PortfolioAnalytics Optimization
#>
#> Call:
\# optimize.portfolio(R = ret edhec, portfolio = pspec sr, optimize method = "CVXR",
#>
      maxSR = TRUE)
#>
#> Optimal Weights:
           CTAG
                   DS
                          EM
                                EMN
                                       ED
                                             FIA
      CA
#> 0.0000 0.0029 0.0000 0.0000 0.1026 0.0000 0.4058 0.0000 0.0000 0.4865 0.0000
      SS
             FF
#> 0.0022 0.0000
#>
#> Objective Measures:
      mean
#> 0.002658
#>
#>
#>
    StdDev
#> 0.003975
#>
#>
#> Sharpe Ratio
    0.6687
```

8.2 Maximum ES ratio Portfolios

The ES ratio(ESratio), which is also called STARR in PortfolioAnalytics, is defined as:

$$\frac{E(r_P) - r_f}{ES_{\gamma}(r_P)}$$

Similar to maximizing Sharpe Ratio, the problem maximizing the ES ratio can be formulated as a minimizing ES problem with a budget normalization constraint.

When creating the portfolio, both return and ES objectives should be given. The default $\gamma=0.05$, and it can be specified by arguments. When solving the problem, the default argument ESratio = TRUE in the function optimize.portfolio specifies the problem type. We note that this argument is equivalent to maxSTARR = TRUE, which is used in other vignettes. If one of these two arguments is specified as FALSE, the action will be to minimize ES ignoring the return objective.

```
# Create portfolio object
pspec_ESratio <- portfolio.spec(assets = fund_edhec)
## Add constraints of maximizing return per unit ES
pspec_ESratio <- add.constraint(pspec_ESratio, type = "full_investment")
pspec_ESratio <- add.constraint(pspec_ESratio, type = "long_only")</pre>
```

```
## Add objectives of maximizing return per unit ES
pspec_ESratio <- add.objective(pspec_ESratio, type = "return", name = "mean")
pspec_ESratio <- add.objective(pspec_ESratio, type = "risk", name = "ES",
                            arguments = list(p=0.05))
# Optimization
optimize_portfolio(ret_edhec, pspec_ESratio, optimize_method = "CVXR", ESratio = TRUE)
#> PortfolioAnalytics Optimization
#>
#> Call:
#> optimize.portfolio(R = ret_edhec, portfolio = pspec_ESratio,
      optimize_method = "CVXR", ESratio = TRUE)
#>
#> Optimal Weights:
      CA
           CTAG
                   DS
                         EM
                               EMN
                                      ED
                                                    GM
                                                         LSE
                                            FIA
#> 0.0000 0.0000 0.0000 0.0000 0.2230 0.0000 0.3818 0.0000 0.0000 0.3866 0.0000
      SS
#>
#> 0.0086 0.0000
#>
#> Objective Measures:
      mean
#> 0.002375
#>
#>
        ES
#> 0.004533
#>
#>
#> ES ratio
     0.524
```

8.3 Maximum EQS ratio Portfolios

The EQS ratio of a random return r_P of a portfolio P is defined as:

$$\frac{E(r_P) - r_f}{EQS_{\gamma}(r_P)}$$

Similar to maximizing Sharpe Ratio, the problem maximizing EQS ratio could be formulated as a minimizing EQS problem with a budget normalization constraint.

When creating the portfolio, both return and EQS objectives should be given. The argument EQSratio = is used to specify the problem type and the default value is EQSratio = TRUE. If EQSratio = FALSE, the action will be to minimize EQS ignoring the return objective. The default $\gamma = 0.05$, and it can be specified by arguments.

```
# Create portfolio object
pspec_EQSratio <- portfolio.spec(assets = fund_edhec)
## Add constraints of maximizing return per unit EQS
pspec_EQSratio <- add.constraint(pspec_EQSratio, type = "full_investment")
pspec_EQSratio <- add.constraint(pspec_EQSratio, type = "long_only")
## Add objectives of maximizing return per unit EQS</pre>
```

```
pspec_EQSratio <- add.objective(pspec_EQSratio, type = "return", name = "mean")
pspec_EQSratio <- add.objective(pspec_EQSratio, type = "risk", name = "EQS",</pre>
                             arguments = list(p=0.05))
# Optimization
optimize.portfolio(ret_edhec, pspec_EQSratio, optimize_method = "CVXR", EQSratio = TRUE)
#> PortfolioAnalytics Optimization
#>
#> Call:
#> optimize.portfolio(R = ret_edhec, portfolio = pspec_EQSratio,
      optimize method = "CVXR", EQSratio = TRUE)
#>
#> Optimal Weights:
      CA
         CTAG
                   DS
                          EM
                               EMN
                                       ED
                                            FIA
                                                    GM
                                                         LSE
                                                                 MA
                                                                        RV
#> 0.0000 0.0000 0.0000 0.0000 0.1286 0.0000 0.6459 0.0000 0.0000 0.2126 0.0000
      SS
#> 0.0130 0.0000
#>
#> Objective Measures:
#>
      mean
#> 0.002211
#>
#>
       EQS
#>
#> 0.004538
#>
#>
#> EQS ratio
     0.4873
```

9 Comparative Performance of Portfolios

CVXR solvers provide the Second-Order Cone Optimization (SOCopt) capability required to minimize EQS problem, and managing EQS is of great significance for building portfolios.

In this section, we use the CRSP data set to generate different portfolios and show their performance by plotting cumulative gross returns and efficient frontiers.

The entire back-testing part may be slow, occupying most of the time in this Vignette. Therefore, we print out the time for readers' reference. My computer model is MacBook Air with M2, 8-Core CPU, 8-Core GPU and 16-core Neural Engine. The backtesting in Sections 9.1 and Section 9.2 takes about 3 minutes each to run, and the average running time for generating efficient frontiers in Section 9.3 is about 30 seconds.

The CRSP data set is an xts object that contains the daily returns of stocks from 1993-01 to 2015-12². We select the top 30 small cap stocks based on the market capitalization, and use this data set to show more meaningful and interesting results in this section.

```
# use CRSP daily data set
stocksCRSPdaily <- getPCRAData(dataset = "stocksCRSPdaily")</pre>
```

 $^{^2{\}rm CRSP};$ Center for Research in Security Prices, LLC.

```
smallcapTS <- selectCRSPandSPGMI(</pre>
 periodicity = "daily",
 stockItems = c("Date", "TickerLast", "CapGroupLast", "Return"),
 factorItems = NULL,
 subsetType = "CapGroupLast",
 subsetValues = "SmallCap",
 outputType = "xts")
# find top 30 small cap stocks based on the market capitalization
smallcapDT <- factorsSPGMI[CapGroupLast == "SmallCap"]</pre>
scSize <- smallcapDT[, mean(LogMktCap), by = "TickerLast"]</pre>
names(scSize)[2] <- "Size"</pre>
scSize <- scSize[order(scSize$Size, decreasing = TRUE),]</pre>
sc30largest <- scSize[,TickerLast][1:30]</pre>
# daily return of top 30 stocks
retD_CRSP <- smallcapTS[ , sc30largest]</pre>
print(head(retD_CRSP, 3))
#>
                   AVP
                              PBI
                                       ITT
                                                             GHC
#> 1993-02-01 0.024122806 0.018461538 0.01043478 0.003472222 0.003215434
#> 1993-02-02 0.008565310 0.000000000 0.00000000 0.003460208 0.004273504
#> 1993-02-03 0.008492569 0.006042296 0.01893287 0.006896552 0.010638298
#>
                  THC
                            AMD
                                       FMC
                                                 BMS
#> 1993-02-01 0.01190476 0.02000000 -0.002564103 0.01932367 -0.01275510
#> 1993-02-02 0.00000000 0.05882353 -0.002570694 0.01421801 0.01033592
#> 1993-02-03 0.01176471 0.01234568 -0.015463918 0.00000000 0.04347826
#>
                     R
                                 J
                                        RDC
                                                    DBD
#> 1993-02-01 -0.004115226 -0.013698630 0.05454545 0.007692308 0.000000000
#> 1993-02-03  0.016129032  0.009259259  0.03448276  -0.015594542  0.015625000
                    EAT
                               DLX
                                          BIG
                                                    HSC
#> 1993-02-01 -0.002717391 -0.002881844 -0.00729927 0.01572327 0.02450980
#> 1993-02-03  0.000000000  0.005797102  0.06382979  -0.00619195  0.03703704
#>
                    CY
                                                    CBRL
                              KMT
                                         MLHR
                                                                AXE
#> 1993-02-01  0.04545455  0.000000000  0.029585799  -0.005649718  0.020512821
CTB
                             IDTI
                                         CBB MATX
                                                         GGG
#> 1993-02-01 0.011194030 0.01666667 -0.006802721
                                               0 -0.005235602
#> 1993-02-02 0.003690037 -0.01639344 0.013698630
                                               0 0.021052632
#> 1993-02-03 0.029411765 0.00000000 0.020270269
                                                  0.020618556
```

In the following part, we only show the time series of monthly returns of 10 CRSP stocks in the last five years, but you can use this code to check the time series performance of all stocks in any frequency and any time period.

```
# monthly return of top 30 stocks in last 5 years
ep <- endpoints(retD_CRSP, on= "months", k=1)
prod1 <- function(x){apply(x+1, 2, prod)}
retM_CRSP <- period.apply(retD_CRSP, INDEX = ep, FUN = prod1) - 1
retM_CRSP_5 <- tail(retM_CRSP, 60)</pre>
```


Fig 9.1

9.1 Backtesting with GMV, GMES, GMEQS portfolios

In this example, we use daily return of all the CRSP 30 stocks to generate a comparative backtesting among Global Minimum Variance (GMV), Global Minimum ES (GMES) and Global Minimum EQS (GMEQS) portfolio. The strategy is to rebalance the portfolio at the end of each month with a rolling window of 500 days, and the performance of backtesting could be shown as a plot of cumulative returns and a plot of drawdown.

```
bt.ES <- optimize.portfolio.rebalancing(retD_CRSP, pspec_GMES,</pre>
                                               optimize_method = "CVXR",
                                               rebalance_on = "months",
                                               training_period = 30,
                                               rolling_window = 500)
bt.EQS <- optimize.portfolio.rebalancing(retD_CRSP, pspec_GMEQS,</pre>
                                               optimize_method = "CVXR",
                                               rebalance on = "months",
                                               training_period = 30,
                                               rolling_window = 500)
# Extract time series of portfolio weights
wts.GMV <- extractWeights(bt.GMV)</pre>
wts.GMV <- wts.GMV[complete.cases(wts.GMV),]</pre>
wts.ES <- extractWeights(bt.ES)</pre>
wts.ES <- wts.ES[complete.cases(wts.ES),]</pre>
wts.EQS <- extractWeights(bt.EQS)</pre>
wts.EQS <- wts.EQS[complete.cases(wts.EQS),]</pre>
# Compute cumulative returns of three portfolios
GMV <- Return.rebalancing(retM_CRSP, wts.GMV)</pre>
ES <- Return.rebalancing(retM_CRSP, wts.ES)</pre>
EQS <- Return.rebalancing(retM_CRSP, wts.EQS)</pre>
# Combine GMV, ES and EQS portfolio cumulative returns
ret.comb <- na.omit(merge(GMV, ES, EQS, all=F))</pre>
names(ret.comb) <- c("GMV", "GMES", "GMEQS")</pre>
backtest.plot(ret.comb, colorSet = c("black", "darkblue", "darkgreen"),
               ltySet = c(3, 2, 1))
```


Fig 9.2

#> The run time for Figure 9.2 is 2.7 mins

9.2 Backtesting with SR, ESratio, EQSratio portfolios

In this example, we use daily return of all the CRSP 30 stocks to generate a comparative backtesting among Maximum Sharpe Ratio (SR), Maximum ES Ratio (ESratio) and Maximum EQS Ratio (EQSratio) portfolio. The strategy is to rebalance the portfolio at the end of each month with a rolling window of 500 days, and the performance of backtesting could be shown as a plot of cumulative returns and a plot of drawdown.

```
training_period = 30,
                                              rolling_window = 500)
bt.EQSr <- optimize.portfolio.rebalancing(retD CRSP, pspec EQSr,
                                              optimize_method = "CVXR",
                                              rebalance_on = "months",
                                              training_period = 30,
                                              rolling_window = 500)
# Extract time series of portfolio weights
wts.Sr <- extractWeights(bt.Sr)</pre>
wts.Sr <- wts.Sr[complete.cases(wts.Sr),]</pre>
wts.ESr <- extractWeights(bt.ESr)</pre>
wts.ESr <- wts.ESr[complete.cases(wts.ESr),]</pre>
wts.EQSr <- extractWeights(bt.EQSr)</pre>
wts.EQSr <- wts.EQSr[complete.cases(wts.EQSr),]</pre>
# Compute cumulative returns of three portfolios
Sr <- Return.rebalancing(retM_CRSP, wts.Sr, rebalance_on = "months")</pre>
ESr <- Return.rebalancing(retM_CRSP, wts.ESr, rebalance_on = "months")
EQSr <- Return.rebalancing(retM_CRSP, wts.EQSr, rebalance_on = "months")</pre>
# Combine Sr, ESr and EQSr portfolio cumulative returns
ret.comb <- na.omit(merge(Sr, ESr, EQSr, all=F))</pre>
names(ret.comb) <- c("Sharpe ratio", "ES ratio", "EQS ratio")</pre>
backtest.plot(ret.comb, colorSet = c("black", "darkblue", "darkgreen"),
               ltySet = c(3, 2, 1))
```


Fig 9.3

#> The run time for Figure 9.3 is 3.3 mins

9.3 Efficient Frontier

We generate efficient frontiers with mean-StdDev, mean-ES and mean-EQS portfolios using 30 stocks from CRSP data set. For illustrative purposes, we use the last five years Considering that the data may show different properties over a long period of time, we only use the monthly return in the last 5 years to generate efficient frontiers, that is from 2011-01 to 2015-12 and defined in Section 2.3 as retM_CRSP_5. We can use create.EfficientFrontier to calculate the mean value and risk value for the frontier, then use chart.EfficientFrontier to draw the frontier.

9.3.1 Mean-StdDev Efficient Frontier

```
#>
#> Call:
#> create.EfficientFrontier(R = retM_CRSP_5, portfolio = pspec_sc,
      type = "mean-StdDev")
#>
#> Efficient Frontier Points: 24
#>
#> PortfolioAnalytics Portfolio Specification
#> **************
#>
#> Call:
#> portfolio.spec(assets = sc30largest)
#>
#> Number of assets: 30
#> Asset Names
#> [1] "AVP" "PBI" "ITT" "MUR" "GHC" "THC" "AMD" "FMC" "BMS" "DDS"
#> More than 10 assets, only printing the first 10
#>
#> Constraints
#> Enabled constraint types
       - full_investment
#>
       - long_only
chart.EfficientFrontier(meanvar.ef, match.col = "StdDev", type = "1",
                     chart.assets = FALSE, main = "Mean-StdDev Efficient Frontier",
                     RAR.text = "Sharpe ratio", pch = 1)
```

Mean-StdDev Efficient Frontier

Fig 9.4

Here we compute the maximum Sharpe ratio on the efficient frontier using the following set of efficient frontier mean and standard deviation values:

```
meanvar.ef$frontier[, 1:2]
                   mean
                            StdDev
#> result.1 0.01141173 0.03344369
#> result.2 0.01215050 0.03355371
#> result.3 0.01288927 0.03399953
#> result.4 0.01362804 0.03482453
#> result.5 0.01436681 0.03591935
#> result.6 0.01510558 0.03717268
#> result.7 0.01584435 0.03856204
#> result.8 0.01658312 0.04007328
#> result.9 0.01732189 0.04169314
#> result.10 0.01806066 0.04340948
#> result.11 0.01879943 0.04521131
#> result.12 0.01953820 0.04709002
#> result.13 0.02027697 0.04913130
#> result.14 0.02101574 0.05153252
#> result.15 0.02175451 0.05463076
#> result.16 0.02249328 0.05854817
#> result.17 0.02323205 0.06313372
#> result.18 0.02397082 0.06825285
#> result.19 0.02470959 0.07379462
#> result.20 0.02544836 0.07967088
#> result.21 0.02618713 0.08581858
#> result.22 0.02692591 0.09219807
#> result.23 0.02766468 0.09876525
#> result.24 0.02840345 0.10549834
sr = meanvar.ef$frontier[, 1]/meanvar.ef$frontier[, 2]
cat("maximum Sharpe ratio:", max(sr))
#> maximum Sharpe ratio: 0.4160534
cat("mean of the maximum SR portfolio:", meanvar.ef$frontier[, 1][sr == max(sr)])
#> mean of the maximum SR portfolio: 0.01806066
cat("StdDev of the maximum SR portfolio:", meanvar.ef$frontier[, 2][sr == max(sr)])
#> StdDev of the maximum SR portfolio: 0.04340948
```

Note that we have introduced a method of finding the maximum Sharpe ratio portfolio in Section 8.1, which may have the values a little different from the estimated maximum Sharpe ratio calculated using the discrete efficient frontier values.

We now use that method to compute the maximum Sharpe ratio portfolio directly:

```
#> optimize.portfolio(R = retM_CRSP_5, portfolio = pspec_MV, optimize_method = "CVXR",
     trace = TRUE, maxSR = TRUE)
#>
#> Optimal Weights:
#> AVP
          PBI
                  ITT MUR
                               GHC
                                      THC
                                            AMD
                                                   FMC
                                                         BMS
                                                                DDS
#> 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0755 0.0203 0.0000
       J RDC
                DBD
                         BC
                               EAT
                                   DLX
                                            BIG
                                                   HSC
                                                        GNTX
                                                                 CY
#> 0.0000 0.0000 0.0000 0.0000 0.3166 0.0718 0.0486 0.0000 0.0000 0.0000 0.0000
#> MLHR CBRL AXE CTB IDTI
                                    CBB
                                          MATX
                                                   GGG
#> 0.0000 0.2753 0.0000 0.0136 0.1218 0.0130 0.0436 0.0000
#> Objective Measures:
#>
    mean
#> 0.01819
#>
#>
#> StdDev
#> 0.04372
#>
#>
#> Sharpe Ratio
#> 0.4161
```

The above direct computation of the maximum Sharpe ratio portolio's Sharpe ratio = 0.4161, agrees to three significant digits with the value obtained by searching the discrete set of efficient frontier mean and standard deviation values.

Mean-StdDev Efficient Frontier

The theoretical maximum Sharpe ratio portfolio is very close to the result generated by the efficient frontier, and the Sharpe ratio value is same to 3 significant digits.

With different constraint types, we can create mean-StdDev efficient frontiers for multiple portfolios and overlay the plots.

```
pspec_sc_init <- portfolio.spec(assets = sc30largest)</pre>
pspec_sc_init <- add.constraint(pspec_sc_init, type = "full_investment")</pre>
# Portfolio with long-only constraints
pspec_sc_lo <- add.constraint(portfolio = pspec_sc_init, type = "long_only")</pre>
# Portfolio with long-only box constraints
pspec_sc_lobox <- add.constraint(portfolio = pspec_sc_init, type = "box",</pre>
                                  min = 0.02, max = 0.1)
# Portfolio with long-short box constraints
pspec_sc_lsbox <- add.constraint(portfolio = pspec_sc_init, type = "box",</pre>
                                  min = -0.1, max = 0.1)
# Combine the portfolios into a list
portf_list <- combine.portfolios(list(pspec_sc_lo, pspec_sc_lobox, pspec_sc_lsbox))</pre>
# Plot the efficient frontier overlay of the portfolios with varying constraints
legend_labels <- c("Long Only", "Long Only Box", "Long Short Box")</pre>
chart.EfficientFrontierOverlay(R = retM CRSP 5, portfolio list = portf list,
                                type = "mean-StdDev", match.col = "StdDev",
```

```
legend.loc = "bottomright", chart.assets = FALSE,
legend.labels = legend_labels, cex.legend = 1,
labels.assets = FALSE, lwd = c(3,3,3),
col = c("black", "dark red", "dark green"),
main = "Overlay Mean-StdDev Efficient Frontiers",
xlim = c(0.03, 0.11), ylim = c(0.005, 0.035))
```

Overlay Mean-StdDev Efficient Frontiers

Fig 9.6

The plot clearly shows that the long-short box constrained portfolio has the best performance, though it also requires shorting which may not be possible for many real-world portfolios.

9.3.2 Mean-ES Efficient Frontier

Generate the mean-ES efficient frontier:

Mean-ES Efficient Frontier

Fig 9.7

Generate multiple mean-ES efficient frontiers and overlay the plots.

Overlay Mean-ES Efficient Frontiers

Fig 9.8

For each mean-ES efficient frontier, the left endpoint is the global minimum ES and its corresponding mean return, the right endpoint is the maximum mean return and and its corresponding ES, that is, the minimum ES when the maximum mean return is the target return.

With the same target return, the portfolio under the long-short box constraints can have a minimum ES value. It performs best, but shorting may not be possible for many real-world portfolios. The mean-ES efficient frontier of the long-only portfolio covers the widest range, that is because it can reach a larger return range than the long-box portfolio, but it is not as easy to reach the target return as the long-short portfolio, it needs to take more risks.

We could also notice that the ordering of the three constrained portfolios is the same of for the minVar efficient frontiers.

Instead of generating efficient frontiers with different constraint types, we can also generate mean-ES efficient frontiers with different tail probability γ .

Overlay Mean-ES Efficient Frontiers

ES portfolio with a larger tail probability will have better performance, but this is only because larger tail probability gives a wider ES calculation range, so the expected ES value is smaller. Actually, these three lines cannot be compared because their x-lables are ES with different tail probabilities.

This plot mainly shows that the same portfolio will have different ES values under different tail probabilities. For example, the portfolio that reaches the maximum return, which is the right endpoint of each mean-ES efficient frontier. They are the same portfolio, but the ES values are different. It informs us the importance of tail probability for calculating ES. Different tail probabilities only focus on risks in different degrees, rather than changes in risk levels.

9.3.3 Mean-EQS Efficient Frontier

Mean-EQS Efficient Frontier

Mean-EQS efficient frontier is more like a piecewise function rather than a smooth curve.

9.3.4 Efficient Frontiers Comparison among minStd, minES and minEQS portfolios

In order to calculate the value of StdDev, ES and EQS of a portfolio, we provide a new function $extract_risk(R =, w =)$. Asset returns R and the portfolio weights w should be specified when using the function, ES_alpha and EQS_alpha are alternative arguments and the default values are 0.05.

```
# usage example: minStd Portfolio
minstd_port <- add.objective(pspec_sc, type = "risk", name = "StdDev")
minstd_w <- optimize.portfolio(retM_CRSP_5, minstd_port, optimize_method = "CVXR")$weight
# risk values with default alpha = 0.05
extract_risk(retM_CRSP_5, minstd_w)
#> $mean
#> [1] 0.01141173
#>
#> $$tdDev
```

```
[,1]
#> [1,] 0.03344369
#>
#> $ES
#> [1] 0.05088981
#> $EQS
#> [1] 0.05615236
# risk values with specific alpha
extract_risk(retM_CRSP_5, minstd_w, ES_alpha = 0.1, EQS_alpha = 0.1)
#> $mean
#> [1] 0.01141173
#>
#> $StdDev
#>
              [,1]
#> [1,] 0.03344369
#>
#> $ES
#> [1] 0.04633688
#>
#> $EQS
#> [1] 0.05615236
```

For comparing a specific risk type in minStd, minES and minEQS portfolios and generating multiple efficient frontiers, we provide a new function

```
chart.EfficientFrontierCompare(R =, portfolio =, risk_type =, match.col =, guideline =)
```

where risk_type is the risk to be compared, and match.col is the vector of the portfolios that participate in the comparison. If there are only two frontiers in the comparison, the default of the argument guideline is TRUE.

Efficient Frontiers

Fig 9.11

Efficient Frontiers

Fig 9.12

Reference

Cornuejols, Gerard, Javier Pena, and Reha Tutuncu. 2018. "Optimization Methods in Finance Second Edition."

Krokhmal, Pavlo A. 2007. "Higher Moment Coherent Risk Measures."

Rockafellar, R
 Tyrrell, Stanislav Uryasev, et al. 2000. "Optimization of Conditional Value-at-Risk."
 Journal of Risk 2: 21–42.