MiniProject: MultiKnapsack with MinMaxType Constraints

Giảng viên hướng dẫn: TS. Phạm Quang Dũng

Nhóm 8:

Phạm Văn Duy - 20150631

Lê Hội Quang - 20156304

Nội dung trình bày

- Mô hình toán học
- Chiến lược tìm kiếm
- Kết quả thử nghiệm

Mô hình toán học: dùng mảng hai chiều

Biến:

- $Arr X[i][j], \ \forall \forall i \ i = 1...N, \ j = 1...M; \ D(X) = \{0, 1\}$
 - → X[i][j] = 1, nếu Item i xếp vào Bin j
 - → X[i][j] = 0, nếu ngược lại
- → Y[i][j], với i = 1...MaxType, j = 1...M; D(Y) = {0,1}
 - → Y[i][j] = 1, nếu trong Bin j chứa Item có type = i
 - ♦ Y[i][j] = 0, nếu ngược lại
- $ightharpoonup Z[i][j], với i = 1...MaxClass, j = 1...M; D{Z} = {0, 1}$
 - → Z[i][j] = 1, nếu trong Bin j chứa Item có class = i
 - ◆ Z[i][j] = 0, nếu ngược lại

Mô hình toán học: dùng mảng hai chiều

Ràng buộc

- ♦ Với mỗi Item:
 - igwedge Mỗi Item chỉ được xếp vào một Bin $\sum_{j=1}^{M} X[i][j] = 1, với i = 1...N$
 - ◆ Item i chỉ được xếp vào tập BinIndices $X[i][j]=0, với i=1...N, j \notin BinIndices(j)$

Mô hình toán học: dùng mảng hai chiều

Ràng buộc

- ♦ Với mỗi Bin j:
 - ◆ Tổng trọng số 1 >= LW[j] và <= W[j] $LW[j] \leq \sum_{i=1}^{N} X[i][j]*w[i] \leq W[j], với j=1...M$
 - lacktriang Tổng trọng số 2 <= P[j] $\sum_{i=1}^N X[i][j]*p[i] \leq P[j], với j=1...M$

 - igwedge Tổng số lượng class trong Bin j <= R[j] $\sum_{j=1}^{MaxClass} Z[i][j] \leq R[j].v \acute{\sigma}i j = 1...M$

Mô hình toán học: dùng mảng một chiều

◆ Biến:

- → X[i], với i = 1...N; D(X) = 1...M

 Biểu diễn Item i xếp vào bin X[i]
- → Y[i][j], với i = 1...MaxType, j = 1...M; D(Y) = {0,1}
 - → Y[i][j] = 1, nếu trong Bin j chứa Item có type = i
 - → Y[i][j] = 0, nếu ngược lại
- $ightharpoonup Z[i][j], với i = 1...MaxClass, j = 1...M; D{Z} = {0, 1}$
 - → Z[i][j] = 1, nếu trong Bin j chứa Item có class = i
 - → Z[i][j] = 0, nếu ngược lại

Mô hình toán học: dùng mảng một chiều

Ràng buộc

- ♦Với mỗi item:
 - ◆ Item i chỉ được xếp vào tập BinIndices i

$$X[i] \in BinIndices(i), v\acute{o}i = 1...N$$

Mô hình toán học: dùng mảng một chiều

Ràng buộc

- ♦Với mỗi Bin j:
 - ◆ Tổng trọng số 1 >= LW[j] và <= W[j] $LW[j] \leqslant \sum_{i=1}^{N} (X[i]=j)*w[i] \leqslant W[j], với j=1...M$
 - ◆ Tổng trọng số 2 <= P[j]</p>

$$\sum_{i=1}^{N} (X[i]=j) * p[i] \leq P[j], v \acute{\sigma} i j = 1...M$$

→ Tổng số lượng type trong Bin j <= T[j]</p>

$$\sum_{i=1}^{MaxType} Y[i][j] \leq T[j], v\acute{o}i j = 1...M$$

→ Tổng số lượng class trong Bin j <= R[j]</p>

$$\sum_{i=1}^{MaxClass} Z[i][j] \leq R[j], v \acute{o}i j = 1...M$$

Chiến lược tìm kiếm

- ◆ Sử dụng thư viện Choco để giải bài toán với mô hình 2 chiều.
- ♦ Sử dụng thư viện LocalSearch để giải bài toán với mô hình một chiều và hai chiều.
 - ♦ HillClimbing
 - ◆ TabuSearch
- Dùng thuật toán tham lam để giải bài toán
 - ♦ Xếp Item i (i = 1...N) vào Bin j ($j \in BinIndices(i)$) nếu vi phạm các ràng buộc bằng 0 (không tính ràng buộc về tải tối thiểu cho trọng số 1)
 - ◆ Nếu Item i không xếp được vào Bin j thì xét tiếp đến Bin tiếp theo thuộc BinIndices(i)
 - ◆ Sau khi xếp xong tất cả các Items, nếu ở Bin nào vi phạm ràng buộc (ràng buộc tải tối thiểu cho trọng số 1) thì ta lấy hết các Item trong Bin đó ra ngoài.

Kết quả thử nghiệm

Bộ dữ liệu	Choco	LocalSearch (hai chiều)	LocalSearch (một chiều)	Greedy
16 Items - 3 Bins	xếp được: 16Itemsthời gian: 518ms	- xếp được: 16 Items thời gian: 295ms	xếp được: 16Itemsthời gian: 267ms	xếp được: 16Itemsthời gian:708ms
100 Items - 1846 Bins	chạy rất chậm	tràn bộ nhớ	chạy rất chậm (> 10h)	xếp được: 0Itemsthời gian:813ms
1000 Items - 1846 Bins	tràn bộ nhớ	tràn bộ nhớ	tràn bộ nhớ	xếp được: 583Itemsthời gian:1311ms
3000 Items - 1846 Bins	tràn bộ nhớ	tràn bộ nhớ	tràn bộ nhớ	xếp được:1907 Itemsthời gian:15559ms

CẨM ƠN THẦY VÀ CÁC BẠN ĐÃ LẮNG NGHE!