CLAIMS

What is claimed is:

1	1.	A method for execution by a microprocessor in response to receiving a single
2		instruction, the method comprising:
3		receiving a first plurality of numbers and a second plurality of numbers; and
4		generating a third plurality of numbers, each of which is an absolute
5		difference between a number in the first plurality of numbers and a
6		number in the second plurality of numbers;
7		wherein the above operations are performed in response to the
8		microprocessor receiving the single instruction.
1	2.	A method as in claim 1 wherein an absolute difference between a first
2		number and a second number is computed using a method comprising:
3		producing a first intermediate number by subtracting the second number from
4		the first number;
5		producing a second intermediate number by subtracting the first number from
6		the second number; and
7		selecting a positive number from the first intermediate number and the
8		second intermediate number as the absolute difference between the
9		first number and the second number;
10		wherein the microprocessor is a media processor disposed on an integrated
11		circuit with a memory controller.

1	3.	A method as in claim 2 wherein the first intermediate number and the second
2		intermediate number are produced in parallel; and wherein the third plurality
3		of numbers are generated substantially simultaneously.
1	4.	A method as in claim 3 further comprising:
2		testing if an overflow occurs in producing the first intermediate number and

- the second intermediate number;
- saturating the absolute difference between the first number and the second number if an overflow occurs.
- 1 5. A method as in claim 1 wherein the first plurality of numbers are received 2 from an entry in a register file.
- 1 6. A method as in claim 5 wherein the single instruction specifies a way to partition a string of bits in the entry into the first plurality of numbers.
- 1 7. A method as in claim 5 wherein the single instruction specifies an index of the entry in the register file.
- 1 8. A method as in claim 1 wherein the third plurality of numbers are saved in an entry in a register file.

1

9.

2		the entry in the register file.
1	10.	A method as in claim 1 wherein a type of each of the first and second
2		pluralities of numbers is one of:
3		a) unsigned integer;
4		b) signed integer; and
5		c) floating point number.
1	11.	A method as in claim 1 wherein a size of each of the first and second
2		pluralities of numbers is one of:
3		a) 8 bits;
4		b) 16 bits; and
5		c) 32 bits.
1	12.	A machine readable media containing an executable computer program
2		instruction which when executed by a digital processing system causes said
3		system to perform a method comprising:
4		receiving a first plurality of numbers and a second plurality of numbers; and
5		generating a third plurality of numbers, each of which is an absolute
6		difference between a number in the first plurality of numbers and a

A method as in claim 8 wherein the single instruction specifies an index of

7

number in the second plurality of numbers;

8		wherein the above operations are performed in response to a microprocessor
9		of the digital processing system receiving the instruction.
1	13.	A media as in claim 12 wherein an absolute difference between a first
2		number and a second number is computed using a method comprising:
3		producing a first intermediate number by subtracting the second number from
4		the first number;
5		producing a second intermediate number by subtracting the first number from
6		the second number;
7		selecting a positive number from the first intermediate number and the
8		second intermediate number as the absolute difference between the
9		first number and the second number.
1	14.	A media as in claim 13 wherein the first intermediate number and the second
2		intermediate number are produced in parallel.
1	15.	A media as in claim 14 wherein the method further comprises:
2		testing if an overflow occurs in producing the first intermediate number and
3		the second intermediate number;
4		saturating the absolute difference between the first number and the second
5		number if an overflow occurs.

- 1 16. A media as in claim 12 wherein the first plurality of numbers are received
- 2 from an entry in a register file.
- 1 17. A media as in claim 16 wherein the single instruction specifies a way to
- 2 partition a string of bits in the entry into the first plurality of numbers.
- 1 18. A media as in claim 16 wherein the single instruction specifies an index of
- 2 the entry in the register file.
- 1 19. A media as in claim 12 wherein the third plurality of numbers are saved in an
- 2 entry in a register file.
- 1 20. A media as in claim 17 wherein the single instruction specifies an index of
- 2 the entry in the register file.
- 1 21. A media as in claim 12 wherein a type of each of the first and second
- 2 pluralities of numbers is one of:
- a) unsigned integer;
- 4 b) signed integer; and
- 5 c) floating point number.

1	22.	A media as in claim 12 wherein a size of each of the first and second
2		pluralities of numbers is one of:
3		a) 8 bits;
4		b) 16 bits; and
5		c) 32 bits.
1	23.	An execution unit in a microprocessor, the execution unit comprising:
2		a first circuit configured to receive a first plurality of numbers;
3		a second circuit configured to receive a second plurality of numbers; and
4		a third circuit coupled to the first circuit and the second circuit, the third
5		circuit, in response to the microprocessor receiving a single
6		instruction, generating a third plurality of numbers, each of which is
7		an absolute difference between a number in the first plurality of
8		numbers and a number in the second plurality of numbers.
1	24.	An execution unit as in claim 23 wherein the third circuit comprises a
2		plurality of units, each of the plurality of units comprising:
3		a fourth circuit configured to generate a first intermediate number by
4		subtracting a number in the second plurality of numbers from a
5		number in the first plurality of numbers;

O		a first circuit configured to generate a second intermediate number by
7		subtracting a number in the first plurality of numbers from a number
8		in the second plurality of numbers; and
9		a sixth circuit coupled to the fourth circuit and the fifth circuit, the sixth
10		circuit selecting a positive number from the first intermediate number
11		and the second intermediate number as an absolute difference
12		between the first number and the second number.
1	25.	A processing system comprising an execution unit as in claim 23.
1	26.	An execution unit in a microprocessor, the execution unit comprising:
2		means for receiving a first plurality of numbers and a second plurality of
3		numbers; and
4		means for generating a third plurality of numbers, each of which is an
5		absolute difference between a number in the first plurality of numbers
6		and a number in the second plurality of numbers;
7		wherein the above means perform operations in response to the
8		microprocessor receiving the single instruction.
1	27.	An execution unit as in claim 26 wherein an absolute difference between a
2		first number and a second number is computed using a unit comprising:
3		means for producing a first intermediate number by subtracting the second
4		number from the first number;

5		means for producing a second intermediate number by subtracting the first
6		number from the second number;
7		means for selecting a positive number from the first intermediate number and
8		the second intermediate number as the absolute difference between
9		the first number and the second number.
1	28.	An execution unit as in claim 27 wherein the first intermediate number and
2		the second intermediate number are produced in parallel.
1	29.	An execution unit as in claim 28 further comprising:
2		means for testing if an overflow occurs in producing the first intermediate
3		number and the second intermediate number;
4		means for saturating the absolute difference between the first number and the
5		second number if an overflow occurs.
1	30.	An execution unit as in claim 26 wherein the first plurality of numbers are
2		received from an entry in a register file.
1	31.	An execution unit as in claim 30 wherein the single instruction specifies a
2		way to partition a string of bits in the entry into the first plurality of numbers.
1	32.	An execution unit as in claim 30 wherein the single instruction specifies an
2		index of the entry in the register file.

- 1 33. An execution unit as in claim 26 wherein the third plurality of numbers are saved in an entry in a register file.
- 1 34. An execution unit as in claim 33 wherein the single instruction specifies an
- 2 index of the entry in the register file.
- 1 35. An execution unit as in claim 26 wherein a type of each of the first and
- 2 second pluralities of numbers is one of:
- a) unsigned integer;
- 4 b) signed integer; and
- 5 c) floating point number.
- 1 36. An execution unit as in claim 26 wherein a size of each of the first and
- 2 second pluralities of numbers is one of:
- a) 8 bits;
- 4 b) 16 bits; and
- 5 c) 32 bits.