

Partitioner och filsystem 2

File systems
FAT
Unix-like
NTFS

Vad är ett filsystem?

- Datorer behöver en metod för att lagra och hämta data...
- Referensmodell f
 ör filsystem (Carrier)
 - Filsystem kategori
 - Layout och storleksinformation
 - Innehålls kategori
 - Kluster och block data enheter
 - Metadata kategori
 - Tidsinformation, storlek, access kontroll
 - Adresser till allokerade data enheter
 - Filnamn kategori
 - Oftast ihop-kopplad med metadata
 - Applikations kategori
 - Quota
 - Journaler
- De modernaste påminner mycket om relations databaser

Windows

- NTFS (New Technology File System)
 - 6 versioner finns, de nyaste är v3.0 (Windows 2000) och v3.1 (XP, 2003, Vista, 2008, 7), kallas även 5.0, 5.1, 5.2, 6.0 och 6.1 (efter OS version)
 - Stöd för unicode, säkerhet, mm. är mycket mer komplext än FAT!
 - http://en.wikipedia.org/wiki/Ntfs
- FAT 12/16/32, VFAT (långa filnamn i Win95)
 - Används fortfarande men är inte effektivt för större lagringskapaciteter (klusterstorleken)
 - Långsammare access än NTFS
- Windows Future Storage (WinFS) inställt projekt, enligt rykten var det en SQL-databas som ligger ovanpå ett NTFS filsystem
 - Läs mer på: http://www.ntfs.com/
 - Och: http://en.wikipedia.org/wiki/WinFS

NTFS ←→ WinFS

FAT12, 16 och 32

- FAT12, finns på floppy diskar
 - Begränsad lagringskapacitet
 - Designat f
 ör MS-DOS 1.0
- FAT16, var designat f
 ör st
 örre diskar
 - Äldre OS använde detta
 - MS-DOS 3.0, Win95 OSR1, NT 3.5 och NT 4.0
 - Max diskstorlek 2 GB
- FAT32 kom när diskar större än 2GB kom
 - Vissa äldre och alla nya OS kan använda FAT32
 - Windows 98/Me/2000/XP/2003/Vista/7 och 2008
- Begränsningar med FAT32
 - Största formaterabara volymen är 32GB (större volymer kan dock användas, < 16 TiB)
 - Begränsade features vad gäller komprimering, kryptering, säkerhet och hastighet jämfört mot NTFS
- http://en.wikipedia.org/wiki/FAT_file_system

exFAT

- exFAT (Extended File Allocation Table, a.k.a. FAT64) is a proprietary file system suited especially for flash drives
- Introduced by Microsoft for embedded devices in Windows Embedded CE 6.0 and in their desktop operating system, starting with Windows Vista Service Pack 1
 - Support patches for XP and Linux is available
 - exFAT can be used where the NTFS file system is not a feasible solution, due to data structure overhead
- The advantages over previous File Allocation Table (FAT) file system versions include
 - Scalability to large disk sizes, up to 64 ZiB (Zebibyte)
 - Theoretical file size limit of 2^64 clusters, 16 EiB (Exbibyte)
 - Support for Access Control Lists (not supported in Windows Vista SP1)
 - Support for Transaction-Safe FAT File System (TFAT) (optionally WinCE activated function)
- The disadvantages compared to previous FAT versions include
 - Devices using exFAT are unable to use Windows Vista's ReadyBoost capability (Windows 7 supports the new exFAT filesystem with ReadyBoost)
 - Only one FAT and free space map (robustness?), TFAT have redundancy
 - Licensing status is unclear
 - At present limited or no support outside PC environment
- http://en.wikipedia.org/wiki/ExFAT

Tidsanalys av filer

År en viktig analys för att rekonstruera händelseförlopp

E: Entry (in NTFS

MFT) modified

- Varje fil har följande attribut (MAC(E))
 - Sista modifieringen (Last modified time)
 - Sista åtkomsttiden (Last accessed time)
 - Skapande tid (Creation time)

ACTION	LAST MODIFIED DATE-TIME	LAST ACCESSED DATE-TIME	CREATED DATE-TIME
File moved within a volume	Unchanged	Unchanged	Unchanged
File moved across volumes	Unchanged	Updated	Updated
File copied (destination file)	Unchanged	Updated	Updated

Table 10.2: Date-time stamp behavior on FAT and NTFS file systems.

Table 11.2:	Date-time	stamp b	behavior	on	UNIX.
-------------	-----------	---------	----------	----	-------

ACTION	LAST MODIFIED DATE-TIME	LAST ACCESSED DATE-TIME	INODE CHANGE DATE-TIME
File moved within a volume	Unchanged	Unchanged	Updated
File copied (destination file)	Updated	Updated	Updated

FAT/NTFS File Properties

A (Date Accessed) in NTFS turned off from 2003/Vista!

Tidsanalys av filer live och på image

- Att undersöka filer på egen hand live är inte att rekommendera (tidskrävande)
- Verktyg för att analysera filer finns som tex. AFind (fungerar inte på Vista/7) som scannar igenom hela systemet enligt en viss konfiguration
- Kan visa var skadlig aktivitet pågår just nu i filsystemet
- Kom ihåg att falska indikationer kan finnas i form av
 - Bakgrundstjänster
 - Normal nätverksaktivitet
- De forensiska verktygen FTK, Encase mm. Har filter, addons (File Visualization) eller möjlighet att scripta

Fler filsystem

- Linux native
 - ExtFS (Extended File System), ExtFS2, ExtFS3 (ext2 med journal),
 ExtFS4 (stödjer tex. extents = hela filen allokeras direkt)
 - UMSDOS (fixar Unix egenskaper i FAT)
- OS/2
 - HPFS (High Performance Filesystem)
- Macintosh/Apple OS X
 - MFS (Macintosh File System), HFS (Hierarchical File System), HFS+ (Mac OS Extended) and HFSX (Mac OS Extended with case sensitive file names), latest OS X have HFS read-only support
- UNiX och Solaris/OpenSolaris (HP, SUN etc.)
 - UFS (Unix File System), VxFS (Veritas File System), ZFS (Sun, Zettabyte File System – det extremaste? 128 bitars adressering...)
- IRIX (Silicon Graphics)
 - XFS

Ännu fler filsystem

- BSD/FreeBSD (Mac OS X är en BSD variant)
 - UFS/FFS (Fast File System), UFS2 and ZFS

Andra

- ReiserFS(3)/Reiser4 Ett av de bättre filsystemen! Hanterar många filer extremt bra, http://en.wikipedia.org/wiki/Reiser4
- IBM JFS 1/2 (Journaled File System) AIX, OS/2, Linux
- Btrfs (B-tree file system) bygger på design ideer från ReiserFS

CD/DVD

- UDF Universal Disk Format (DVD-ROM filsystem)
- ISO 9660 CD-ROM filesystem (ISO, Joliet, CDFS)
 - Joliet extensions medger unicode och långa filnamn
 - RockRidge medger länkar och långa filnamn
- Många fler finns... tex. inom embedded för flash minnen
 - http://www.forensics.nl/filesystems
 - http://en.wikipedia.org/wiki/Comparison_of_file_systems

FAT (File Allocation Table)

The following is an overview of the order of structures in a FAT partition or disk:

Boot	sectors	Allocation	File Allocation	Directory	Data Region (for files and directories) (To end of partition or disk)
	(optional)	Table #1	Table #2	(FAT12/16 only)	(

- Partition boot sector / Volume Boot Record (VBR)
 - BPB (Bios Parameter Block), pekare till OS boot loader kod
- FAT regionen
 - Två FAT tabeller, en för redundans, håller reda på vilka kluster som används och är lediga
- Root directory
 - En hierarkisk tabell som lagrar info om kataloger och filer
 - FAT 32 använder istället data regionen för detta (root directory kan ligga var som helst, dock oftast sekventiellt i början)
- Data regionen
 - Här lagras alla filer och katalogdata i kluster

Table 10.1. Data structure for the first 36 bytes of the FAT boot sector.

Byte Range	Description	Essential
0–2	Assembly instruction to jump to boot code.	No (unless it is a bootable file system)
3–10	OEM Name in ASCII.	No
11–12	Bytes per sector. Allowed values include 512, 1024, 2048, and 4096.	Yes
13–13	Sectors per cluster (data unit). Allowed values are powers of 2, but the cluster size must be 32KB or smaller.	Yes
14-15	Size in sectors of the reserved area.	Yes
16–16	Number of FATs. Typically two for redundancy, but according to Microsoft it can be one for some small storage devices.	Yes
17–18	Maximum number of files in the root directory for FAT12 and FAT16. This is 0 for FAT32 and typically 512 for FAT16.	Yes
19–20	16-bit value of number of sectors in file system. If the number of sectors is larger than can be represented in this 2-byte value, a 4-byte value exists later in the data structure and this should be 0.	Yes
21–21	Media type. According to the Microsoft documentation, 0xf8 should be used for fixed disks and 0xf0 for removable.	No
22–23	16-bit size in sectors of each FAT for FAT12 and FAT16. For FAT32, this field is 0.	Yes
24-25	Sectors per track of storage device.	No
26–27	Number of heads in storage device.	No
28-31	Number of sectors before the start of partition. $^{[1]}$	No
32–35	32-bit value of number of sectors in file system. Either this value or the 16-bit value above must be 0.	Yes

FAT boot sector

- The boot sector is located in the first sector of FAT file system and contains the bulk of the file system category of data.
- FAT12/16 and FAT32 have different versions of the boot sector, but they both have the same initial 36 bytes.
- The data structure for the first 36 bytes is given in Table 10.1, and the data structures for the remaining bytes are given in Tables 10.2 and 10.3.
- Boot sector/VBR = VBC + DPB (BPB)

FAT12/16 boot sector

Table 10.2. Data structure for the remainder of the FAT12/16 boot sector.

Byte Range	Description	Essent				
0–35 See Table 10.1.						
36–36	BIOS INT13h drive number.					
37–37	Not used.	No				
38–38	Extended boot signature to identify if the next three values are valid. The signature is 0x29.	No				
39–42	Volume serial number, which some versions of Windows will calculate based on the creation date and time.	No				
43–53	Volume label in ASCII. The user chooses this value when creating the file system.	No				
54–61	File system type label in ASCII. Standard values include "FAT," "FAT12," and "FAT16," but nothing is required.	No				
62-509	Not used.	No				
510-511	Signature value (0xAA55).	No				

Example VBR
 May be empty if no OS

	Offset	0	1	2	3	4	- 5	- 6	7	8	9	A	В	С	D	E	F	✓ <u>Q</u> ~
	00000000	EB	58	90	20	20	20	20	20	20	20	20	00	02	40	01	00	ëX@
	00000010	02	00	02	00	00	F8	1E	00	20	00	10	00	A3	00	00	00	ø£
	00000020	5D	6F	07	00	00	00	29	00	0.0	00	0.0	20	20	20	20	20]0.
	00000030	20	20	20	20	20	20	46	41	54	31	36	20	20	20	0.0	00	FAT16
	00000040	00	00	00	00	00	00	00	00	0.0	00	00	00	00	00	00	00	
	00000050	00	00	00	00	00	00	00	00	0.0	00	FA	FC	31	C0	8E	D0	úü1À∎Ð
	00000060	BC	В4	7B	06	57	8E	C0	В9	08	00	$_{\mathrm{BF}}$	В4	7B	F3	Α5	8E	¼′{.₩∥Ź¿′{ó¥∥
	00000070	D8	$^{\mathrm{BB}}$	78	00	0F	В4	37	0F	ΑO	56	88	16	91	2C	20	D2	Ø≫x′7. V∎.′, Ò
	00000080	78	15	B1	06	89	3F	89	47	02	F3	64	Α5	8A	0E	18	7C	x.±.∥?∥G.ód¥∥
	00000090	88	4D	F8	CD	13	EB	27	F6	45	F0	7F	75	08	66	8B	45	MøÍ.ë'öEð.u.f∥E
	0A000000	F8	66	AЗ	1C	7C	В4	08	CD	13	72	13	20	E4	75	0F	C1	øf£. '.İ.r. äu.Á
	000000B0	EA	08	42	89	16		7C		E1	3F	89	0E	18	. –	FB	BB	ê.B[[á?[û»
	000000C0	AA	55	В4	41	84	16	91	2C	CD	13	72	10	81	FB		AA	ªU'A∥.',Í.rûUª
	000000D0	75		F6		01		05	C6	06	02	7D	00	66	A1		7D	u.öÁ.t.Æ}.fiø}
	000000E0	BB	00	7E		10	00	66	81	3E	24	7E	0F	20	6E	76	0F	».~èf.>\$~. nv.
	000000F0	85	C3	00	E9	ЗΑ	02	BD	01	00	66	03	06			66	31	¶Ã.é:.⅓f f1
	00000100	D2	EΒ	4F	55	E8	D5	00	66	0F	В7	FD	В9	10	00		52	ÒëOUèÕ.f.·ý¹fR
	00000110	66	50	06	53	57	6A	10	89	E6	66	60	84	16	91	2C	1E	fP.SWj.∥æf`∥.´,.
	00000120	16	1F	В4	42	CD	13	1F	66	61	8D	64	10		10	5D	66	'B[fa.d.r.]f
	00000130	01	F8	29	FD	C1	E7	09	01	FB	21	ED	75	C6	C3	66	60	.ø)ýÁç∴ů!íuÆÃf`
	00000140	31	CO	8A	16	91	2C	CD	13	66	61	E2	C2		06	02	7D	1À∎.′,Í.faâÅÆ}
	00000150	4F	5D	66	52	66	50	55	53	66	0F	В7	36	18	7C	66	0F	O]fRfPUSf. 6. f.
	00000160	B7	3E	1A		66	F7	F6	31	C9	87	CA	66	F7	F7	E8	6B	->. f÷ö1É∥Êf÷÷èk
	00000170	00	29	CE	39	F5	76	02	89	F5	CO	E4	06	41	08	E1	88	.)Î9õv.∥õÀä.A.á∥
	00000180	C5	88	D6	84	16	91	2C	95	B4	02	BD	10	00	66	60	CD	Å Ö .1, 1.%f\Î
	00000190	13	66	61	72	17	66	0F	B6	C8	C1	E0	09	5B	01	C3	5D	.far.f.¶ÈÁà.[.Ã]
	000001A0	66	58	66	5A	66	01	C8	29	CD	75	A7	C3	4D	75	DE	95	fXfZf.È)ÍuSÃMuÞ∎
	000001B0	D1	2E	FC	7D	75	DF	31	F6	8E	D6	BC	B0	7B	8E	DE		ที.ü}นß1ö∥Ö¼*{∥Þf
	000001C0	8F	06	78	00	BE	E7	7D	AC	20	CO	74	09	B4		BB	07	x.%q}- Åt.'.».
	000001D0	00	CD	10	EB	F2	98	CD	16	CD	19	EB	FE	3B		FC	7D	.Í.ëò¶Í.Í.ëþ;.ü}
	000001E0	76 72	04 0D	8B	2E	FC	7D 00	C3	42 00	6F	6F 09	74 00	20 00	65 7F	72 00	72	6F	v.∎.ü}ÃBoot erro
L	000001F0	12	עט	0A	00	00	υU	UU	υU	DD	09	υU	υU	7 P	UU	55	AA	rÝUª

Table 10.3. Data structure for the remainder of the FAT32 boot sector.

Byte Range	Description	Esser	ntial	FAT32
0-35	See Table 10.1.	Yes		
36–39	32-bit size in sectors of one FAT.	Yes		boot sector
40–41	Defines how multiple FAT structures are written to. If bit 7 is 1, only one of the FAT structures is active and its index is described in bits 0-3. Otherwise, all FAT structures are mirrors of each other.	Yes		• Example VBR
42-43	The major and minor version number.	Yes		
44–47	Cluster where root directory can be found.	Yes	Offset 00000000	0 1 2 3 4 5 6 7 8 9 A B C D E F 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
48-49	Sector where FSINFO structure can be found.	No	00000010 00000020	02 00 00 00 00 F8 00 00 3F 00 FF 00 A3 00 00 00ø?.ÿ.£ 5D 6F 07 00 A8 03 00 00 00 00 00 00 02 00 00 00]□
50-51	Sector where backup copy of boot sector is located (default is 6).	No	00000030 00000040 00000050	01 00 06 00 00 00 00 00 00 00 00 00 00 00
52-63	Reserved.	No	00000060	7B 8E C1 8E D9 BD 00 7C 88 4E 02 8A 56 40 B4 41 { A U½. N. V@ A BB AA 55 CD 13 72 10 81 FB 55 AA 75 0A F6 C1 01 >> UÎ.rûU u.ÖÁ.
64–64	BIOS INT13h drive number.	No	00000080 00000090 000000A0	74 05 FE 46 02 EB 2D 8A 56 40 B4 08 CD 13 73 05 t.bf.ë- V@´.Î.s. B9 FF FF 8A F1 66 0F B6 C6 40 66 0F B6 D1 80 E2 ¹ÿÿ Nff.¶Æ@f.¶N ≜ 3F F7 E2 86 CD C0 ED 06 41 66 0F B7 C9 66 F7 E1 ?÷å ÎÂi.Af. Éf÷å
65-65	Not used.	No	000000B0 000000C0	66 89 46 F8 83 7E 16 00 75 38 83 7E 2A 00 77 32 f Fø * u8 * * v2 66 8B 46 1C 66 83 C0 0C BB 00 80 B9 01 00 E8 2B f F.f A *
66–66	Extended boot signature to identify if the next three values are valid. The signature is 0x29.	No	000000D0 000000E0 000000F0	00 E9 2C 03 A0 FA 7D B4 7D 8B F0 AC 84 C0 74 17 .é,. ú}'}∎å¬∎Åt. 3C FF 74 09 B4 0E BB 07 00 CD 10 EB EE A0 FB 7D ⟨ÿt.'.»Í.ëî û} EB E5 A0 F9 7D EB E0 98 CD 16 CD 19 66 60 80 7E ëå ù}ëà∎Í.Í.f.e~
67–70	Volume serial number, which some versions of Windows will calculate based on the creation date and time.	No	00000100 00000110 00000120 00000130 00000140	02 00 0F 84 20 00 66 6A 00 66 50 06 53 66 68 10
71–81	Volume label in ASCII. The user chooses this value when creating the file system.	No	00000150 00000160 00000170	E4 06 0A CC B8 01 02 CD 13 66 61 0F 82 75 FF 81 \(\alpha \to \bar{1} \),\(\bar{1} \), fa.\(\bar{1}\bar{u}\bar{y} \), C3 00 02 66 40 49 75 94 C3 42 4F 4F 54 4D 47 52 \(\bar{1} \),\(
82–89	File system type label in ASCII. Standard values include "FAT32," but nothing is required.	No	00000190 000001A0 000001B0	00 00 00 00 00 00 00 00 00 00 00 00 00
90-509	Not used.	No	000001C0 000001D0	68 65 72 20 6D 65 64 69 61 2E FF 0D 0A 44 69 73 her media.ÿDis 6B 20 65 72 72 6F 72 FF 0D 0A 50 72 65 73 73 20 k errorÿPress
510-511	Signature value (0xAA55).	No	000001E0 000001F0	61 6E 79 20 6B 65 79 20 74 6F 20 72 65 73 74 61 any key to resta 72 74 0D 0A 00 00 00 00 00 AC CB D8 00 00 55 AA rtËØU³

exFAT boot sector

Offset	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F	
00000000	EB	76	90	45	58	46	41	54	20	20	20	00	00	00	00	00	ëv.EXFAT
00000010	00	00	00	00	00	00	00	00	0.0	00	00	00	00	00	00	00	
00000020	00	00	00	00	00	00	00	00	0.0	00	00	00	00	00	00	00	
00000030	00	00	00	00	00	00	00	00	0.0	00	00	00	00	00	00	00	
00000040	A3	00	00	00	00	00	00	00	5D	6F	07	00	00	00	00	00	£]o
00000050	80	00	00	00	E0	01	00	00	80	02	00	00	9B	ED	00	00	à í
00000060	06	00	00	00	12	29	В6	5C	00	01	00	00	09	03	01	80)¶∖
00000070	00	00	00	00	00	00	00	00	33	C9	8E	D1	BC	F0	7B	8E	3É∥Ѽã{∥
00000080	D9	A0	FB	7D	В4	7D	8B	F0	AC	98	40	74	0C	48	74	0E	Ù û}´}∎ठँ¬∎@t.Ht.
00000090	B4	0E	BB	07	00	CD	10	EΒ	EF	ΑO	FD	7D	EΒ	E6	CD	16	´.≫Í.ëï ý}ëæÍ.
000000A0	CD	19	00	00	00	00	00	00	00	00	00	00	00	00	00	00	1
000000B0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000C0	00	00	00	00	00	00	00	00	0.0	00	00	00	00	00	00	00	
000000D0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000E0	00	00	00	00	00	00	00	00	0.0	00	00	00	00	00	00	00	
000000F0	00	00	00	00	00	00	00	00	0.0	00	00	00	00	00	00	00	
00000100	0D	OΑ	52	65	6D	6F	76	65	20	64	69	73	6B	73	20	6F	Remove disks o
00000110	72	20	6F	74	68	65	72	20	6D	65	64	69	61	2E	FF	0D	r other media.ÿ.
00000120	OA	44	69	73	6B	20	65	72	72	6F	72	FF	0D	OΑ	50	72	.Disk errorÿPr
00000130	65	73	73	20	61	6E	79	20	6B	65	79	20	74	6F	20	72	ess any key to r
00000140	65	73	74	61	72	74	0D	OΑ	0.0	00	00	00	00	00	00	00	estart
00000150	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000160	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000170	00	00	00	00	00	00	00	00	0.0	00	00	00	00	00	00	00	
00000180	00	00	00	00	00	00	00	00	0.0	00	00	00	00	00	00	00	
00000190	00	00	00	00	00	00	00	00	0.0	00	00	00	00	00	00	00	
000001A0	00	00	00	00	00	00	00	00	0.0	00	00	00	00	00	00	00	
000001B0	00	00	00	00	00	00	00	00	0.0	00	00	00	00	00	FF	FF	
000001C0	FF	FF	FF	FF	FF	FF	FF	FF	<i>yyyyyyyyyyyyy</i>								
000001D0	FF	FF	FF	FF	FF	FF	FF	FF	ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ								
000001E0	FF	FF	FF	FF	FF	FF	FF	FF	ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ								
000001F0	FF	FF	FF	00	1F	2C	55	AΑ	ÿÿÿÿÿÿÿÿÿÿ ;,Uª								

Example VBR

Root directory i FAT

- Type Dir or File Name Short or Long (LFN)
- Extension
- Deleted?
- Size
- Starting Cluster
- Created Date/Time*
- Modified Date/Time*
- Access Date

^{* =} Time is stored as an even number

Läsa fil i FAT exempel

- Först letar man i root directory efter mappen (type attribut) filen ligger i, vilket pekar ut mappens lagring av filer
- Sedan läser man utpekade filens entry i root directory för att se i vilket kluster filen börjar på tex. 184
- Därefter går man till motsvarande post/entry i FAT (184) som med sin pekare indikerar att filen fortsätter i kluster 185
- I den posten finns en ny pekare till nästa kluster som innehåller filen. Man fortsätter på detta vis tills man stöter på EOF i post/entry 224, dvs. kluster 225, som markerar filslut

FAT delete

FAT File System Structures 1

Root Directory Entries

File name Starting block

Deleted.doc 102

Bla.txt 106

Archive.pst 110

FAT File System Structures 2

Root Directory Entries					
	,	BI			
File name	Starting block	In			
_eleted.doc	102	10			
Bla.txt	106	10			
Archive.pst	110	10			
Archive.pst	110	10			
		10			
		10			
		10			

FAT

Radera fil och recovery i FAT

- Raderad katalog eller fil sätter första byten i entryt till 0xe5 i root directory
 - FAT block/kluster pekarna sätts till 0/free för varje kluster, se sid 246 i Carrier

Α

В

- File recovery
 - Två options
 - 1. Läsa blint
 - 2. Läsa NOT allocated clusters

- Fil A: enkelt

- Fil B: option 2 ok

- Fil C: båda missar

Available cluster info

57

57

Starting Cluster: 56 File Size: 7,094 bytes Cluster Size: 2,048 bytes

56

56

r Size: 2,048 bytes File Content

Allocated

60

60

61

61

59

59

Unallocated

58

58

C 56 57 58 59 60 61

UNIX filsystem UFS, ext2... osv.

- Använder datastrukturer som kallas för index noder i en tabell för att representera filer, bibliotek och symboliska länkar
- Inode fälten (128 byte) är av ett fixt antal och lagrar metadata
- Varje fil och mapp har ett associerat entry i inode tabellen
- Inodens nr som hanterar filen/mappen kan visas med ls -i
- Inode nr 1 används vanligen för att lagra bad blocks
- Inode nr 2 används alltid för root directory
- Bra program för lågnivå diskundersökning
 - The Sleuth Kit fsstat och istat kommandot
 - Linux Disk Editor Ide
 - Tune2fs visar filsystem info mm. för ext2/ext3
- Vissa icke traditionella UNIX filsystem har en ganska olik uppbyggnad på låg nivå tex. ReiserFS
 - Kräver sina egna program/verktyg

UNIX filsystem UFS, ext2... osv.

- Delar upp partitionen i ett antal block grupper för redundans, ca: 128MB (32k*4k) per grupp för file space
- Superblocket (1 kB) innehåller viktig filsysteminfo som block size, ant. block, block per grupp, last mounted mm.
 - Sparse superblock, group desc.
- Group descriptor håller reda på grupperna och var saker finns (bitmaps, inode table)
- Block/inode bitmappar hanterar allokeringsstatus

tune2fs kommandot

- Ger info om inoders index/fält- och block size
- Antalet inodes och blocks per grupp
- Mm. mm.

linuxbox:~# tune2fs -I /dev/hda2

tune2fs 1.40-WIP (14-Nov-2006)
Filesystem volume name: <none>
Last mounted on: <not available>

Filesystem UUID: 70be05e9-3e15-4456-be27-4153e420d320

Filesystem magic number: 0xEF53 Filesystem revision #: 1 (dynamic)

Filesystem features: filetype sparse_super

Default mount options: (none) not clean Filesystem state: Errors behavior: Continue Filesystem OS type: Linux Inode count: 14469312 Block count: 14460508 723025 Reserved block count: Free blocks: 9935321 Free inodes: 14340692

First block: 0

Block size: 4096

Fragment size: 4096
Blocks per group: 32768
Fragments per group: 32736
Inodes per group: 32736
Inode blocks per group: 1023

Last mount time: Sun Mar 28 21:06:36 2010 Last write time: Mon Apr 26 21:31:38 2010

Mount count: 1

Maximum mount count: 37

Last checked: Sun Mar 28 21:02:21 2010

Check interval: 15552000 (6 months)
Next check after: Fri Sep 24 21:02:21 2010

Reserved blocks uid: 0 (user root)
Reserved blocks gid: 0 (group root)

First inode: 11

Inode size: 128

UNIX filsystem, slå upp fil

- När systemet skall visa en viss fil tex. /etc/passwd går man först till superblocket för att hitta inod 2 (root directory)
- Man letar sedan upp mappen "etc" i blocket som inodens info lagras i
- När "etc" hittats går man till den inode som "etc" pekar på och letar efter "passwd" i dess info data block
- När "passwd" hittats går man till "passwd" inodens info och de data block "passwd" inoden refererar till och kan slutligen läsa in själva fildatat

Inode 2 (root directory) -> block 5

```
linuxbox:~# Ide -i 2 /dev/hda2

Device "/dev/hda2" is mounted, be careful
User requested autodetect filesystem. Checking device . . .

Found ext2fs on device.

Linux Disk Editor — Ide
```

Warning: First block (0) != Normal first block (1)

INODE: 2 (0x0000002)

drwxr-xr-x root root 4096 Sun Dec 24 01:10:00 2006

TYPE: directory

LINKS: 21

MODEFLAGS.MODE: 004.0755

SIZE: 4096 BLOCK COUNT: 8

UID: 00000 (root) GID: 00000 (root)

ACCESS TIME: Tue Apr 28 10:14:37 2009
CREATION TIME: Sun Dec 24 01:10:00 2006
MODIFICATION TIME: Sun Dec 24 01:10:00 2006

<u>DELETION TIME:</u> Thu Jan 1 01:00:00 1970

DIRECT BLOCKS: 0x00000005

INDIRECT BLOCK:

DOUBLE INDIRECT BLOCK: TRIPLE INDIRECT BLOCK:

block 5 4096 stort

linuxbox:~# Ide -b 5 /dev/hda2

```
0x00005000 02 00 00 00 0C 00 01 02 : 2E 00 00 00 02 00 00 00 .....
0x00005010 0C 00 02 02 2E 2E 00 00 : 0B 00 00 00 14 00 0A 02 .....
0x00005020 6C 6F 73 74 2B 66 6F 75 : 6E 64 00 00 0C 00 00 00 lost+found......
0x00005030 0C 00 03 02 65 74 63 00 : 23 05 00 00 0C 00 04 02 ....etc.#......
0x00005040 72 6F 6F 74 59 16 00 00 : 0C 00 03 02 74 6D 70 00 rootY......tmp.
0x00005050 79 16 00 00 0C 00 04 02 : 62 6F 6F 74 8C 16 00 00 v......boot....
0x00005060 10 00 07 07 76 6D 6C 69 : 6E 75 7A 00 8D 16 00 00 ....vmlinuz.....
0x00005070 0C 00 03 02 6C 69 62 00 : 29 19 00 00 0C 00 03 02 ....lib.)......
0x00005080 75 73 72 00 0F EE 00 00 : 0C 00 04 02 73 62 69 6E usr.....sbin
0x00005090 B3 EE 00 00 0C 00 03 02 : 76 61 72 00 5F 16 01 00 ......var. ...
0x000050A0 0C 00 03 02 62 69 6E 00 : B5 16 01 00 0C 00 03 02 ....bin.......
0x000050B0 64 65 76 00 A9 2A 01 00 : 0C 00 04 02 68 6F 6D 65 dev..*.....home
0x000050C0 AC 41 01 00 0C 00 03 02 : 6D 6E 74 00 AE 41 01 00 .A.....mnt..A..
0x000050D0 0C 00 04 02 70 72 6F 63 : AF 41 01 00 0C 00 03 02 ....proc.A.....
0x000050E0 6F 70 74 00 B0 41 01 00 : 10 00 06 02 66 6C 6F 70 opt..A.....flop
0x000050F0 70 79 00 00 B1 41 01 00 : 10 00 05 02 63 64 72 6F pv...A.....cdro
0x00005100 6D 00 00 00 B2 41 01 00 : 10 00 06 02 69 6E 69 74 m....A.....init
0x00005110 72 64 00 00 B3 41 01 00 : EC 0E 03 02 73 79 73 00 rd...A.....sys.
0x00005120 00 00 00 00 E0 0E 05 02 : 2E 72 6F 6F 74 00 00 00 ......root...
```

Is -i kommandot visar filens inod i inode table

Inode structure

linuxbox:~# Ide -i 1636804 /dev/hda2

Device "/dev/hda2" is mounted, be careful

User requested autodetect filesystem. Checking device . . .

Found ext2fs on device.

Warning: First block (0) != Normal first block (1)

INODE: 1636804 (0x0018F9C4)

-rwxr--r-- hjo hjo 17923572 Mon Apr 13 11:45:58 2009

TYPE: regular file

LINKS: 1

MODEFLAGS.MODE: 010.0744

SIZE: 17923572

BLOCK COUNT: 35056 = 512 byte block

UID: 01000 (hjo) GID: 01000 (hjo)

ACCESS TIME: Mon Apr 13 11:45:58 2009 CREATION TIME: Mon Apr 13 11:46:04 2009

MODIFICATION TIME: Mon Apr 13 11:45:58 2009

DELETION TIME: Thu Jan 1 01:00:00 1970

DIRECT BLOCKS: 0x0019500A 0x0019500B 0x0019500C

0x0019500D 0x0019500E 0x0019500F 0x00195010 0x00195011

0x00195012 0x00195013 0x00195014 0x00195015

INDIRECT BLOCK: 0x00195016

DOUBLE INDIRECT BLOCK: 0x00196B05

TRIPLE INDIRECT BLOCK:

Byte Range	Description	Essential
0-1	File mode (type and permissions) (see Tables 15.11, 15.12, and 15.13)	Yes
2-3	Lower 16 bits of user ID	No
4–7	Lower 32 bits of size in bytes	Yes
8-11	Access Time	No
12-15	Change Time	No
16–19	Modification time	No
20-23	Deletion time	No
24–25	Lower 16 bits of group ID	No
26–27	Link count	No
28-31	Sector count	No
32–35	Flags (see Table 15.14)	No
36–39	Unused	No
40-87	12 direct block pointers	Yes
88-91	1 single indirect block pointer	Yes
92–95	1 double indirect block pointer	Yes
96–99	1 triple indirect block pointer	Yes
100-103	Generation number (NFS)	No
104-107	Extended attribute block (File ACL)	No
108–111	Upper 32 bits of size / Directory ACL Yes /	No
112–115	Block address of fragment	No
116–116	Fragment index in block	No
117–117	Fragment size	No
118–119	Unused	No
120–121	Upper 16 bits of user ID	No
122–123	Upper 16 bits of group ID	No
124–127	Unused	No

UNIX filsystem forts.

Block/inode - bitmap

- Inoden har pekare till block där data lagras
 - Vid stora filer lagrar dessa istället pekare till nya block, upp till 3 ggr.
- Det finns speciella filtyper som inte lagrar data
 - Pekare till hårdvara, symbolisk länk etc. allt är filer i UNIX!
- Raderad fil fungerar lite olika i ext2 och ext3 filsystem
 - ext2fs markerar inoder med block pekare som lediga i block bitmaps och markerar "info inoden" som "deleted" i inode bitmap men låter block pekarna stå kvar i inoden
 - ext3fs nollställer även block pekarna i inoder med block pekare
- Det finns inga verktyg f\u00f6r att hantera journalen i journalbaserade filsystem \u00e4nnu som tex. ext3?

Ext3 delete

Before deletion

HOWTO recover deleted files on an ext3 file system

http://www.xs4all.nl/~carlo17/howto/undelete_ext3.html

After deletion

Block pointers are zeroed out in the inode

AND BLOCKS OF AN ALLOCATED FILE

B-tree/B+ tree (not a binary tree)

- Representerar sorterad data som medger effektiv insättning, hämtning och borttagning av poster, samt indexering av metadata i filsystem och databaser
 - http://en.wikipedia.org/wiki/B%2B_tree
 - http://en.wikipedia.org/wiki/B-tree
- Används av NTFS, HFS, ReiserFS, XFS, JFS2, btrfs, ext4 mm.

Ett enkelt B+ träd som länkar nycklarna 1-7 till

datavärdena d1-d7

 Den länkade listan (rött) medger snabb in-order traversering

Ext4 file system

- Ext4 is the successor of ext3 which is developed to solve performance issues and scalability bottleneck on ext3 and also provide backward compatibility with ext3
- Ext4 features
 - Bigger file/filesystem size support (assuming 4 kB blocks):
 because the block pointers are 48 bits instead of 32 bits

Filesystem	Max. file size	Max. filesystem size
ext3	2TB	16TB
ext4	16TB	1EB

- I/O performance improvement: delayed allocation, multi block allocator extent map and persistent preallocation
- Fast fsck: flex_bg and uninit_bg (file system feature flags)
- Reliability: journal checksumming
- Maintenance: online defrag
- Misc: backward compatibility with ext2/ext3, nanosec timestamps, subdir scalability, etc.

Ext4 file system - compability

- When you want to migrate an ext3 file system to ext4, you can do so gradually
 - This means that old files that you have not moved can remain in the older ext3 format, while new files (or older files that have been copied) will occupy the new ext4 data structures
 - In this way, you can migrate an ext3 file system online to an ext4 file system

Ext4 file system – Extents 1

- One of the primary disadvantages of ext3 was its method of allocation. Files were allocated using a bit map of free space, which was not very fast nor very scalable.
- Ext3's format is very efficient for small files but horribly inefficient for large files. Ext4 replaces ext3's mechanism with extents to improve allocation and support a more efficient storage structure.
- An extent is simply a way to represent a contiguous sequence of blocks. In doing this, metadata shrinks, because instead of maintaining information about where a block is stored, the extent maintains information about where a long list of contiguous blocks is stored (thus reducing the overall metadata storage).
- Extents in ext4 adopt a layered approach to efficiently represent small files as well as extent trees to efficiently represent large files. For example, a single ext4 inode has sufficient space to reference four extents (where each extent represents a set of contiguous blocks).
- For large files (including those that are fragmented), an inode can reference an index node, each of which can reference a leaf node (referencing multiple extents). This constant depth extent tree provides a rich representation scheme for large, potentially sparse files. The nodes also include selfchecking mechanisms to further protect against file system corruption.

Read more: http://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf

Ext4 file system – Extents 2

 Ext4 supports two block maps. Extent map is more efficient and can handle large file in comparison with the old indirect block map

Disk MBR and NTFS Boot sector (VBR/PBR)

NTFS (ej dokumenterat av MS)

http://technet2.microsoft.com/WindowsServer/en/library/8cc5891d-bf8e-4164-862d-dac5418c59481033.mspx

- NTFS har ingen speciell layout förutom i MBR/PBR
 - Alla administrativa metadata är vanliga filer som är synliga och kan finnas varsomhelst i volymen
- NTFS ökar komplexiteten i en forensisk analys
 - Eftersom filer (kluster) över tiden allokeras och deallokeras (skapas, raderas, ändrar storlek)
 - NTFS återanvänder gamla MFT entryn innan nya skapas
 - Gör det svårt att binda en viss fil till vissa kluster
- Om metadata blir korrupt eller skadat är det svårt att återskapa filerna
 - Specialiserade verktyg är att föredra

MBR (PBR) MFT	Metadata	Normal File System Space		? 1-MB dynamic disk DB
----------	-------	----------	--------------------------	--	---------------------------

MBR = Master Boot Record

MFT = Master File Table

PBR = Partition Boot Record (VBR)

Generell layout av ett NTFS filsystem

Table 13.18. Data structure for the boot sector.

Byte Range	Description Essential		NITEC			
0–2	Assembly instruction to jump to boot No (unless it is the code bootable file system).			NTFS		
3–10	OEM Name	No		boot sector		
11-12	Bytes per sector	Yes		DOOL SECTOR		
13-13	Sectors per cluster	Yes				
14–15	Reserved sectors (Microsoft says it must be 0)	No		 Example VBR 		
16–20	Unused (Microsoft says it must be 0)	No	Offset 00000000	0 1 2 3 4 5 6 7 8 9 A B C D E F Q Q ~ EB 52 90 4E 54 46 53 20 20 20 20 00 02 08 00 00 ëR.NTFS		
21–21	Media descriptor	No	00000010 00000020	00 00 00 00 00 F8 00 00 3F 00 FF 00 A3 00 00 00ø?.ÿ.£ 00 00 00 00 80 00 00 00 5C 6F 07 00 00 00 00 00┃		
22-23	Unused (Microsoft says it must be 0)	No	00000030	4E 4F 00 00 00 00 00 00 00 00 00 00 00 00 00		
24–31	Unused (Microsoft says it is not checked)	No	00000050 00000060 00000070	00 00 00 00 FA 33 CO 8E DO BC 00 7C FB 68 CO 07ú3Å D¼. ûhÅ. 1F 1E 68 66 00 CB 88 16 0E 00 66 81 3E 03 00 4Ehf.Ëf.>N 54 46 53 75 15 B4 41 BB AA 55 CD 13 72 0C 81 FB TFSu. A>2ÛÎ.rû		
32–35	Unused (Microsoft says it must be 0)	No	00000080	55 AA 75 06 F7 C1 01 00 75 03 E9 DD 00 1E 83 EC Uªu.÷Áu.éÝ lì 18 68 1A 00 B4 48 8A 16 0E 00 8B F4 16 1F CD 13 .h´H lôÍ.		
36–39	Unused (Microsoft says it is not checked)	No	000000A0 000000B0 000000C0	9F 83 C4 18 9E 58 1F 72 E1 3B 06 0B 00 75 DB A3 ■ Ä. X.rá;uÛ£ 0F 00 C1 2E 0F 00 04 1E 5A 33 DB B9 00 20 2B C8ÁZ3Û¹. +È 66 FF 06 11 00 03 16 0F 00 8E C2 FF 06 16 00 E8 fÿ■Åÿè		
40–47	Total sectors in file system	Yes	000000D0	4B 00 2B C8 77 EF B8 00 BB CD 1A 66 23 C0 75 2D K.+Èwï,.»Í.f#Åu- 66 81 FB 54 43 50 41 75 24 81 F9 02 01 72 1E 16 f.ûTCPAu\$.ùr		
48-55	Starting cluster address of MFT	Yes	000000F0 00000100	68 07 BB 16 68 70 0E 16 68 09 00 66 53 66 53 66 h.».hphfSfSf		
56–63	Starting cluster address of MFT Mirror \$DATA attribute	No	00000100	55 16 16 16 68 B8 01 66 61 0E 07 CD 1A 33 CO BF Uh,.faf.3A¿ 28 10 B9 D8 0F FC F3 AA E9 5F 01 90 90 66 60 1E (.ºØ.üóªéf`. 06 66 A1 11 00 66 03 06 1C 00 1E 66 68 00 00 00 .fiffh		
64–64	Size of file record (MFT entry)	Yes	\$FILE_	_NAME attribute? 59 5B 5A 66 59 66 59 1Flôf.fY[ZfYfY.		
65–67	Unused	No	00000160	0E 16 00 75 BC 07 1F 66 61 C3 A0 F8 01 E8 09 00u¼faà ø.è		
68–68	Size of index record	Yes	00000170	74 09 B4 0E BB 07 00 CD 10 EB F2 C3 0D 0A 41 20 t.'.»Í.ëòÃA		
69–71	Unused	No	00000190 000001A0	64 69 73 6B 20 72 65 61 64 20 65 72 72 6F 72 20 disk read error 6F 63 63 75 72 72 65 64 00 0D 0A 42 4F 4F 54 4D occurredBOOTM		
72–79	Serial number	No	000001B0 000001C0	47 52 20 69 73 20 6D 69 73 73 69 6E 67 00 0D 0A GR is missing 42 4F 4F 54 4D 47 52 20 69 73 20 63 6F 6D 70 72 BOOTMGR is compr		
80-83	Unused	No	000001D0 000001E0	65 73 73 65 64 00 0D 0A 50 72 65 73 73 20 43 74 essedPress Ct 72 6C 2B 41 6C 74 2B 44 65 6C 20 74 6F 20 72 65 rl+Alt+Del to re		
84–509	Boot code	No	000001F0 00000200	73 74 61 72 74 0D 0A 00 8C A9 BE D6 00 00 55 AA start ■◎¾ÖU³ 07 00 42 00 4F 00 4F 00 54 00 4D 00 47 00 52 00B.O.O.T.M.G.R.		
510-511	Signature (0xaa55)	No	00000210 00000220	04 00 24 00 49 00 33 00 30 00 00 D4 00 00 00 24\$.I.3.0Ô\$ 00 00 00 00 00 00 00 00 00 00 00 00 00		

\$MFT och MFT entry

- Var MFT börjar pekas ut i boot sectorn
- MFT och dess layout

MFT entry innehåll

Varje MFT entry är 1kB

- De första 42 byten i ett MFT entry används till 12 fixerade fält
- De överblivande 982 byten som initialt är tomt kan användas till att lagra vadsomhelst så länge det är mindre
- Det första fältet innehåller en signatur
 - FILE
 - BAAD (trasig)
- Flags fältet
 - Används filen?
 - Mapp eller fil?

Table 13.1. Data structure for a basic MFT entry.

Byte Range	Description	Essential		
0-3	Signature ("FILE")	No		
4–5	Offset to fixup array	Yes		
6–7	Number of entries in fixup array	Yes		
8-15	\$LogFile Sequence Number (LSN)	No		
16–17	Sequence value	No		
18-19	Link count	No		
20-21	Offset to first attribute	Yes		
22-23	Flags (in-use and directory)	Yes		
24–27	Used size of MFT entry	Yes		
28-31	Allocated size of MFT entry	Yes		
32-39	File reference to base record	No		
40-41	Next attribute id	No		
42-1023	Attributes and fixup values	Yes		

MFT innehåll/adresser

- MFT entrys raderas inte efter att ha skapats
- Om en fil inte kan få rum med sina attribut i ett entry kan filen använda multipla entryn
 - Om detta inträffar så kallas första entryt "base file record" eller "base file MFT"
 - Alla underliggande MFT entries har en referens till bas entryt i sitt fixerade fält (32-39)
- Varje MFT entry adresseras sekventiellt med 48 bitar
- Maximala MFT adressen ändras i takt med att MFT växer
- Varje MFT entry har även ett 16-bit sekvensnummer som inkrementeras varje gång entryt allokeras, fält (16-17)
- MFT entryt (index) och sekvensnumret kombineras till en 64-bitars filreferens adress (se bild)
- Sekvensnumret kan användas till
 - Detektera korrupt FS state
 - Del av ny fil
 - Återskapa raderad data

MFT entry/record # kopplad till fil

File system metadata files

- Eftersom allt på volymen är allokerat till filer så måste metadata lagras i filer
- MS reserverar de 16 (24) första entryna i MFT till att lagra administrativ filsystem metadata
- Första MFT entryt är en beskrivning av MFT (sig själv)
- Dessa entryn börjar alltid med \$ och stor bokstav
- Finns i root katalogen men döljs
- Testa tex. med FTK Imager (eller WinHex)!
 - Add Evidence Item -> Physical Drive
 - Markera [root]
- Orphan files
 - Pekar på parent (base) record i MFT som numera hanterar andra filer (dvs. orphan files är underliggande MFT entries utan förälder)
 - [server]\forensics\docs\AccessData\White Papers
 - wp.NT_Orphan_Files.en_us.pdf

The [Orphan] Folder

NOTE: The Orphan folder is created by FTK Imager and FTK to display recovered, orphaned files and folders

File system metadata files

Metadata Filename	File Name	MFT Rec#	Description
			This is the MFT itself (how can a record in the MFT contain the MFT?).
			This first MFT record contains descriptive information about the MFT. This is
			consistent with how NTFS workssince the MFT itself is just "a file", so it
Master File Table (MFT)	\$MFT	0	also needs a record in the MFT.
Master File Table 2			
(MFT2) or Master File			
Table Mirror	\$MFTMirr	1	This is a mirror of the first 16 records of the real Master File Table.
			The transaction logging file for the volume. This is part of NTFS's file system
Log File	\$LogFile	2	recoverability feature.
			Contains key information about the volume (partition) itself, such as its name,
Volume Descriptor	\$Volume	3	NTFS version, creation time, etc.
			This table contains the names and descriptions of the various types of NTFS
			file attributes used on the volume (It doesn't contain the attributes themselves,
Attribute Definition Table	\$AttrDef	4	but rather descriptions of what the attributes mean. Remembermetadata).
			This is a pointer to the root directory or folder of the volume. The filename is
Root Directory / Folder	~~	5	a single period.
			Contains a "map" showing which clusters on the volume are used and which
Cluster Allocation Bitmap	\$Bitmap	6	are available for use.
			This record contains a copy of the volume boot code (or a pointer to it). The
Volume Boot Code	\$Boot	7	volume boot code is also found in the volume boot sector.
			A list of all clusters on the volume that have been marked as "bad" (meaning,
			an error was detected on the volume somewhere in those clusters, so the file
Bad Cluster File	\$BadClus	8	system wants to be sure not to use them again).
Secure File	\$Secure	9	Contains information about the security and access control for the files.
			Table containing information for converting file names to the Unicode (16-bit)
Upper Case Table	\$UpCase	10	file naming system for international compatibility.
			A directory that contains files for optional extensions. Microsoft does not
Extend Directory	\$Extend	11	typically place the files in this directory into the reserved MFT entries.

FTK Imager och NTFS admin data

MFT attribut concept

MFT Entry

Header

- Ett MFT entry har liten intern struktur allt är egentligen attribut i NTFS
 - Tid, rättigheter, filnamn, fil-innehåll...
- Alla attribut lagrar två slags data
 - Header (generisk) och innehåll (specifik), se bild
 - Header = typ, storlek, namn
- Attributets innehåll kan ha vilket format som helst och storlek
 - Resident (lagring i MFT)
 - Non-resident (lagring i externt kluster)
- Non-resident kallas f
 ör cluster runs
 - LCN (Logical Cluster Number)
 - Filsystem adress
 - VCN (Virtual Cluster Number)
 - Filadress, kluster 0 10 "mappas"

Attribute

Headers

Attribute

Content

Unused

Space

Table 11.2. List of default MFT entry attribute types.

MFT standard attribut

- Ett nummer är definierat för varje typ av attribut
- Några ges i tabellen till höger
- Nästan alla entryn har ett 16 och 48 type id attribut
- Varje fil som har \$Data > 700 byte innebär att den blir non-resident
- Filer med flera \$Data indikerar ADS:er

Type Identifier	Name	Description		
16	\$STANDARD_INFORMATION	General information, such as flags; the last accessed, written, and created times; and the owner and security ID.		
32	\$ATTRIBUTE_LIST	List where other attributes for file can be found.		
48	\$FILE_NAME	File name, in Unicode, and the last accessed, written, and created times.		
64	\$VOLUME_VERSION	Volume information. Exists only in version 1.2 (Windows NT).		
64	\$OBJECT_ID	A 16-byte unique identifier for the file or directory. Exists only in versions 3.0+ and after (Windows 2000+).		
80	\$SECURITY_DESCRIPTOR	The access control and security properties of the file.		
96	\$VOLUME_NAME	Volume name.		
112	\$VOLUME_INFORMATION	File system version and other flags.		
128	\$DATA	File contents.		
144	\$INDEX_ROOT	Root node of an index tree.		
160	\$INDEX_ALLOCATION	Nodes of an index tree rooted in \$INDEX_ROOT attribute.		
176	\$BITMAP	A bitmap for the \$MFT file and for indexes.		
192	\$SYMBOLIC_LINK	Soft link information. Exists only in version 1.2 (Windows NT).		
192	\$REPARSE_POINT	Contains data about a reparse point, which is used as a soft link in version 3.0+ (Windows 2000+).		
208	\$EA_INFORMATION	Used for backward compatibility with OS/2 applications (HPFS).		
224	\$EA	Used for backward compatibility with OS/2 applications (HPFS).		
256	\$LOGGED_UTILITY_STREAM	Contains keys and information about encrypted attributes in version 3.0+ (Windows 2000+).		

NTFS MFT attribut

- Default "\$Data" attributet som skapas när en fil skapas har inget namn associerat till sig (main stream)
 - Däremot måste nya \$Data attribut som läggs till ha det
- Varje MFT entry som är en mapp har ett \$INDEX_ROOT attribut som innehåller information om alla filer och undermappar som finns i mappen
- Om mappen är stor så används även \$INDEX_ALLOCATION och \$BITMAP attributen för att lagra info
 - Ett mapp entry kan dessutom även ha \$Data attribut
 - Ett mapp entry kan alltså lagra både filinnehåll, en lista med filer och submappar
- \$INDEX_ROOT och \$INDEX_ALLOCATION attributen f\u00f6r en mapp har namnet \$I30

Entry med standard attribut

Speciella attribut

- Kap 12 i Carrier tar upp fördjupad analys av attribut
- Kap 13 i Carrier tar upp innehåll i attribut headers
- En fil kan ha upp till 65536 attribut! (2^16 type id)
 - Base MFT entry och non base MFT entrys f\u00f6r att f\u00e5 plats
 - Attribut headers måste alltid befinna sig i ett MFT entry
- Sparse attributes
 - Attribut med kluster som innehåller endast nollor skrivs inte till disken.
 - Reducerar filens storlek genom att spara non-resident \$DATA attribut som sparse
 - Typiskt innehåller sparse attributet i "cluster run" bara storlek

Speciella attribut Komprimering och kryptering

- Endast \$DATA attributet bör komprimeras, måste vara non-resident
- Attributflaggan i \$STANDARD_INFORMATION och \$FILE_NAME indikerar om filen är komprimerad
 - Delas upp i compression units
 - Okomprimerade runs
 - Sparse runs
 - Komprimerade runs
- Endast \$DATA attributet tillåts att krypteras (ej headern)
 - En \$LOGGED_UTILITY_STREAM skapas f\u00f6r filen/katalogen som inneh\u00e4ller krypteringsnycklarna
 - En flagga sätts i \$STANDARD_INFORMATION attributet och i varje attributs header vars attributinnehåll krypteras

\$STANDARD_INFORMATION och \$FILE_NAME samt flaggor

Table 13.5. Data structure for the \$STANDARD_INFORMATION attribute.

Byte Range	Description		Essential				
0-7	Creation time		No				
8-15	File altered time		Table 13.7. Data structure for the \$FILE_NAME attribute.				
16-23	MFT altered time						
24-31	File accessed time	Byte Range	Description	Essential			
32-35	Flags (see Table 13.6)	0-7	File reference of parent directory	y No			
36–39	Maximum number of versions	8-15	File creation time	Na Table 13 6 Flag values for		the \$STANDARD_INFORMATION	
40-43	Version number	16-23	File modification time	Table		ttribute.	JAMA HOIL
44–47	Class ID	24-31	MFT modification time	_ Flag Value	Description		Essential Essential
48-51	Owner ID (version 3.0+)	32–39	File access time	0x0001	Read Only		No
52-55	Security ID (version 3.0+)	40–47	Allocated size of file	0x0002	Hidden		No
56-63	Quota Charged (version 3.0+)	48-55	Real size of file	0x0004	System		No
64-71	Update Sequence Number (US)	56-59	Flags (see Table 13.6)	0x0020	Archive		No
		60–63	Reparse value	0x0040	Device		No
		64–64	Length of name	- 0x0080	#Normal		No
				_ 0x0100	Temporary		No
		65–65	Namespace (see Table 13.8)	0x0200	Sparse file		No
		66 +	Name	0x0400	Reparse point		No
				0x0800	Compressed		No
				0x1000	Offline		No
				0x2000	Content is not being	indexed for faster searches	No
				0x4000	Encrypted		No

Komprimerat attribut med fragmenterade runs på ojämna units

AnalyzeMFT with Python

- analyzeMFT.py is designed to fully parse the MFT file from an NTFS filesystem and present the results as accurately as possible in a format that allows further analysis with other tools http://www.integriography.com/
- At present, it parses the attributes from a \$MFT file to produce the following output (only description and the first entry):
 - python analyzeMFT.py -f \$MFT -o outfile.csv

```
"Record Number", "Good", "Active", "Record type", "Parent Folder", "Record Sequence", "Filename #1", "Std Info Creation date", "Std Info Modification date", "FN Info Modification date", "FN Info Access date", "FN Info Entry date", "Object ID", "Birth Volume ID", "Birth Object ID", "Birth Domain ID", "Filename #2", "FN Info Creation date", "FN Info Modify date", "FN Info Access date", "FN Info Entry date", "Filename #3", "FN Info Creation date", "FN Info Modify date", "FN Info Access date", "FN Info Entry date", "Filename #4", "FN Info Creation date", "FN Info Modify date", "FN Info Access date", "FN Info Entry date", "Standard Information", "Attribute List", "Filename", "Object ID", "Volume Name", "Volume Info", "Data", "Index Root", "Index Allocation", "Bitmap", "Reparse Point", "EA Information", "EA", "Property Set", "Logged Utility Stream"
```

ReFS (Resilient File System)

- Improved reliability for on-disk structures
 - ReFS uses B+ trees for all on-disk structures
 - The maximum file size is 16 Exbibytes (everything is 64-bit) and maximum volume size is 1 Yobibyte
 - Metadata and file data are organized into tables similar to relational database
 - File names and file paths are each limited to a 32 KB Unicode text string
- Built-in resiliency
 - ReFS employs an allocation-on-write update strategy for metadata
 - All ReFS metadata has built-in 64-bit checksums
 - No need to periodically run error-checking tools such as CHKDSK when using ReFS
- Compatibility with existing APIs and technologies
 - ReFS does not require new system APIs and most file system filters continue to work with ReFS volumes
 - ReFS supports many existing Windows and NTFS features as encryption, ACLs, symbolic links etc.
- Some NTFS features are not supported in ReFS
 - ADS will disappear, EFS file level compression, sparse files, ...
 - Will not work with earlier Windows than 8 only 64-bit support, no booting, ...

More info: http://en.wikipedia.org/wiki/Windows_Server_2012#ReFS