13a)
$$F_1 = k_1 (x_2 - x_1 - L) + k_2 (x_3 - x_1 - L)$$
 $F_2 = -k_1 (x_2 - x_1 - L) + k_1 (x_3 - x_2 - L) + k_2 (x_4 - x_2 - L)$
 $F_3 = -k_1 (x_3 - x_2 - L) - k_2 (x_3 - x_1 - L) + k_1 (x_4 - x_3 - L)$
 $F_4 = -k_1 (x_4 - x_3 - L) - k_2 (x_4 - x_2 - L)$

If we plug these straight in as in K old in the cade comments, we get a singular matrix, instead we fix x_1 at pos 0 , we get:

 $K = \begin{cases} 1 & 0 & 0 & 0 \\ k_1 & -2k_1 - k_2 & k_1 & k_2 \\ k_2 & k_1 & -2k_1 - k_2 & k_1 \\ 0 & k_2 & k_1 - k_1 - k_2 \end{cases}$

with $b = \begin{bmatrix} 0 & 0 & 0 & 0 \\ k_1 & -2k_1 - k_2 & k_1 & k_2 \\ k_2 & k_1 & -2k_1 - k_2 & k_1 \\ 0 & k_2 & k_1 - k_1 - k_2 \end{cases}$

with $b = \begin{bmatrix} 0 & 0 & 0 & 0 \\ k_1 & -2k_1 - k_2 & k_1 & k_2 \\ k_2 & k_1 & -2k_1 - k_2 & k_1 \\ 0 & k_2 & k_1 - k_1 - k_2 \end{cases}$

with $b = \begin{bmatrix} 0 & 0 & 0 & 0 \\ k_1 & -2k_1 - k_2 & k_1 & k_2 \\ 0 & k_2 & k_1 - k_1 - k_2 \end{cases}$

with $b = \begin{bmatrix} 0 & 0 & 0 & 0 \\ k_1 & -2k_1 - k_2 & k_1 & k_2 \\ 0 & k_2 & k_1 - k_1 - k_2 \end{bmatrix}$

And solving $K = b$

19) $\frac{du}{dx} = \frac{8\pi c^2 k^2 A}{kT \lambda^2 (A - 1)^2} - \frac{40\pi ch}{\lambda^6 (A - 1)} = 0$ where $A = e^{\lambda k}$
 $\frac{chA}{kT \lambda(A - 1)} = 5 \Rightarrow \lambda_{max} = \left(\frac{A}{b(A - 1)}\right) \frac{ch}{kT}$ Let $ch/kT = 1$
 $\frac{chA}{kT \lambda(A - 1)} = 5 \Rightarrow \lambda_{max} = \frac{A}{b(A - 1)} = 0$ where $A = e^{\lambda x}$
 $\frac{chA}{b(A - 1)} = 0$ where $A = e^{\lambda x}$

 \Rightarrow Since $\frac{ch}{kT} = 1$, $\lambda_{max} = \alpha = .2014$ (See hw4-ex19, py)