Отчет по лабораторной работе $N^{\circ}222$

Изучение разряда неоновой лампы

Выполнили студенты 420 группы Понур К.А., Сарафанов Ф.Г., Сидоров Д.А.

Содержание

Bı	веде	ние .							•				•				•		•		•		٠	•	 •	•		 2
1	Исс	следов	ани	ен	еон	ово	ой .	ла	МΓ	ы	. •																•	 3
	1.1	Сняти	ие В	AX	нес	нов	ой	ла	МΠ	Ы																		 3
	1.2	Иссле	дов	ание	е ра	бот	ы	эел	ак	ca	ци	ОН	но	ГО	ге	неј	pa′	го	pa									 5
		1.2.1	Ва	рьи	ров	ани	e F	₹.																				 5
		1.2.2	Ba	рьи	ров	ани	e C	΄.																				 6
		1.2.3	Ва	рьи	ров	ани	$e \mathcal{E}$																					 7
2	Вы	вод фо	рм	ул														•					•		 	•	•	 8
3	Отв	веты н	ав	опр	ось	Ι.																						 11
	3.1	$N^{\underline{o}}1$.																										 11
	3.2	$N^{\underline{0}}2$.																										 11
	3.3	$N^{\underline{0}}4$.																										 11
	3.4	№5 .																										 12
	3.5	№6 .																										 13
	3.6	$N^{\underline{o}}7$.																										 13
4	Вы	вол																				_						14

Введение

В данной работе исследуется самостоятельный разряд в неоновой лампе ТН-30-2. Лампа представляет собой стеклянный баллон, заполненный неоном при давлении порядка 10-20 торр. Электроды у лампы в форме дисков, причём расстояние между электродами меньше диаметра электрода. Внутри лампы последовательно с электродами впаян балластный резистор с сопротивлением $R_{Ne}=10$ кОм. Целью данной работы является успешная сдача зачета по общефизу

1. Исследование неоновой лампы

1.1. Снятие ВАХ неоновой лампы

Таблица 1: Снятие вольт-амперной характеристики (ВАХ) неоновой лампы

U, B	<i>I</i> , мА	<i>U</i> , B	<i>I</i> , мА	<i>U</i> , B		<i>U</i> . B		<i>U</i> . B	
119.52	0.918	144.16	2.78	227.75	9.74	140.75	2.71	115.47	0.766
120.71	1.004	146.94	3	229.7	9.97	139.25	2.6	115.22	0.747
120.98	1.025	150.1	3.24	225.47	9.69	138.2	2.51	114.9	0.721
121.14	1.036	153.35	3.5	221.22	9.31	137.6	2.46	114.49	0.689
122.13	1.111	157.41	3.81	219.32	9.16	136.5	2.38	114.07	0.657
123.34	1.201	160.17	4.04	215.25	8.82	135.25	2.28	113.94	0.646
123.66	1.224	163.55	4.29	214	8.71	133.36	2.13	113.01	0.573
125.99	1.398	167.85	4.63	210.02	8.38	132.64	1.975	112.81	0.556
126.1	1.407	169.76	4.78	206	8.03	131.48	1.971	112.61	0.539
126.77	1.457	173.73	5.11	200.44	7.57	130.86	1.927	112.49	0.529
127.56	1.515	176.24	5.39	195.9	7.18	130.19	1.873	112.18	0.504
127.9	1.54	179.99	5.61	192.97	6.94	129.23	1.803	111.74	0.465
128.14	1.578	182.86	5.84	187.7	6.49	128.58	1.751	111.41	0.437
128.81	1.609	184.56	5.98	182.6	6.07	127.79	1.686	111.32	0.427
129.16	1.641	189.32	6.37	175.42	5.46	126.21	1.574	111.21	0.414
129.76	1.68	193.22	6.7	171.24	5.16	125.25	1.504	110.19	0.313
130.94	1.77	197.42	7.06	167.3	4.8	124.55	1.449	109.78	0.241
131.74	1.828	200.28	7.3	164.43	4.57	122.82	1.32		
131.93	1.841	203.9	7.61	161.8	4.31	121.42	1.217		
132.4	1.874	209.75	8.09	157.21	4	121.09	1.191		
132.7	1.898	214.4	8.52	154.05	3.75	120.7	1.162		
135.88	2.15	216.72	8.72	149.94	3.42	119.7	1.086		
136.89	2.23	218.18	8.87	145.66	3.09	118.9	1.027		
138.14	2.33	222.76	9.28	144.2	2.87	117.22	0.946		
141.97	2.62	226.52	9.62	142.2	2.82	116.33	0.834		

Рис. 1: Ход вольт-амперной характеристики неоновой лампы

Идеальная ВАХ системы из последовательно соединенных неоновой лампы и резистора

$$I = \frac{U - U_0}{R_0},\tag{1}$$

где по результатам аппроксимации с помощью MATLAB найдены коэффициенты

$$U_0 = (107 \pm 1) \text{ B} \tag{2}$$

$$R_0 = (12.36 \pm 0.09) \text{ кОм}$$
 (3)

1.2. Исследование работы релаксационного генератора

1.2.1 Варьирование R

Таблица 2: Снятие вольт-амперной характеристики (ВАХ) неоновой лампы

<i>R</i> , кОм	t, сек	<i>n</i> , периодов	<i>T</i> , c
220	18.1	50	0.36
300	22.7	50	0.46
350	26.37	50	0.53
450	32.23	50	0.64
500	14.2	20	0.71

Рис. 2: Зависимость периода колебаний от сопротивления R

1.2.2 Варьирование C

Таблица 3: Снятие вольт-амперной характеристики (ВАХ) неоновой лампы

C , мк Φ	t, сек	<i>n</i> , периодов	<i>T</i> , c
0.25	15.91	50	0.31
0.33	23.2	50	0.46
0.5	18.2	30	0.6
0.75	27.7	30	0.92
0.88	30.6	30	1.02

Рис. 3: Зависимость периода колебаний от емкости ${\cal C}$

1.2.3 Варьирование $\mathcal E$

Таблица 4: Снятие вольт-амперной характеристики (ВАХ) неоновой лампы

\mathcal{E} , B	t, сек	n, периодов	<i>T</i> , c
130	30.52	10	3.052
140	18.5	10	1.85
150	13.231	10	1.32
160	17.29	15	1.15
170	19.27	20	0.96
180	17.05	20	0.85

Рис. 4: Зависимость периода колебаний от напряжения ${\mathcal E}$

2. Вывод формул

Рассчитаем период колебаний генератора, схема которого представлена на рисунке.

$$\frac{\mathrm{d}U}{\mathrm{d}t} + I(V) = \frac{\mathcal{E} - U}{R}$$
, где I(U)- ток в лампе (4)

Рассмотрим стационарный режим (напряжение U на конденсаторе постоянно). Сила тока в таком случае определяется уравнением

$$I_{\rm cr} = \frac{\mathcal{E} - U}{R} \tag{5}$$

Стационарный режим работы схемы определяется путём совместного решения уравнения (5) и уравнения I = I(U), описывающего ВАХ лампы. Очевидно, что точка пересечения существует не при всех R. Случай, когда

$$R = R_{\rm kp} = \frac{\mathcal{E} - U}{I_{\rm r}} \tag{6}$$

является критическим, при дальнейшем увеличении сопротивления R стационарный режим оказывается невозможным. Именно в этом случае $(R>R_{\rm kp})$ в системе устанавливаются колебания.

Рассмотрим, как происходит колебательный процесс. Пусть вначале конденсатор не заряжен. При включении схемы он начнет заряжаться через сопротивление R, напряжение U при этом будет увеличиваться. Как только оно достигнет напряжения зажигания U_3 , газ в лампе начнет проводить ток, причем прохождение тока через лампу сопровождается разрядкой конденсатора. Действительно, нагрузочная прямая в этом случае не пересекается с характеристикой лампы, и значит, батарея \mathcal{E} , включенная через сопротивление R, не может поддерживать необходимую для горения лампы величину тока. Пока лампа горит, конденсатор разряжается, и напряжение на нем падает. Когда оно достигнет напряжения гашения $U_{\rm r}$, лампа перестанет проводить ток, и конденсатор вновь начнет

заряжаться. Очевидно, амплитуда колебаний равна $U_3-U_{\rm r}$. Как ясно из предыдущего, условие возникновения колебаний имеет вид

$$R > R_{\rm kp} = \frac{\mathcal{E} - U}{I_{\rm p}} \tag{7}$$

Вычеслим период колебаний. Полное время одного колебания Т будет складываться из времени зарядки τ_1 и времени зарядки τ_2 . Во время зарядки конденсатора лампа не горит (и врут календари), ток через нее I(V) = 0, и уравнение (5) принимает вид

$$RC\frac{\mathrm{d}U}{\mathrm{d}t} = \mathcal{E} - U \tag{8}$$

Если отсчитывать время от момента гашения лампы, то

$$U(t=0) = U_{\Gamma}, \tag{9}$$

и уравнение (5) имеет решение

$$U(t) = \mathcal{E} - (\mathcal{E} - U_{\rm r}) \exp\left[-\frac{t}{RC}\right]$$
 (10)

Отсюда получаем время зарядки

$$\tau_1 = RC \cdot \ln \frac{\mathcal{E} - U_{\rm r}}{\mathcal{E} - U_{\rm r}} \tag{11}$$

Мы будем представлять ВАХ лампы в виде:

$$I(U) = \frac{U - U_0}{R_0} \tag{12}$$

При этом уравнение (4) примет вид

$$C\frac{\mathrm{d}U}{\mathrm{d}t} + \frac{U - U_0}{R_0} = \frac{\mathcal{E} - U}{R} \tag{13}$$

Переобозначим

$$\frac{1}{\rho} = \frac{1}{R} + \frac{1}{R_0} \tag{14}$$

С учётом (14) получим

$$C\frac{\mathrm{d}U}{\mathrm{d}t} + U\left(\frac{1}{R} + \frac{1}{R_0}\right) = \left(\frac{\mathcal{E}}{R} + \frac{U_0}{R_0}\right) \tag{15}$$

$$\rho C \frac{\mathrm{d}U}{\mathrm{d}t} + U = \rho \left(\frac{\mathcal{E}}{R} + \frac{U_0}{R_0} \right) \tag{16}$$

Будем полагать, что при t=0 напряжение $U=U_3$.

Решая линейное неоднородное дифференциальное уравнение (16), получаем:

$$U(t) = \rho \left(\frac{\mathcal{E}}{R} + \frac{U_0}{R_0} \right) + \left[U_3 - \rho \left(\frac{\mathcal{E}}{R} + \frac{U_0}{R_0} \right) \right] \exp \left(-\frac{t}{\rho C} \right)$$
(17)

За время $t= au_2$ напряжение упадет до $U_{\rm r}$:

$$U_{\rm r} = \rho \left(\frac{\mathcal{E}}{R} + \frac{U_0}{R_0} \right) + \left[U_3 - \rho \left(\frac{\mathcal{E}}{R} + \frac{U_0}{R_0} \right) \right] \exp \left(-\frac{\tau_2}{\rho C} \right) \tag{18}$$

И, окончательно, это нам даст время разрядки

$$\tau_2 = \rho C \ln \frac{(U_3 - U_0)R + (U_3 - \mathcal{E})R_0}{(U_{\Gamma} - U_0)R + (U_{\Gamma} - \mathcal{E})R_0}$$
(19)

Таким образом, мы, зная из уравнений (11) и (19) соответственно τ_1 и τ_2 , сможем найти период колебаний

$$T = \tau_1 + \tau_2 \tag{20}$$

3. Ответы на вопросы

3.1. №1

Механизм зажигания самостоятельного разряда состоит в том, что при достаточно большой напряженности электрического поля электрон на длине свободного пробега приобретает энергию, достаточную для ионизации нейтрального атома. В результате соударения электрона с атомом, которое в этом случае становится неупругим, возникает положительный ион и еще один, вторичный, электрон. Уже два электрона устремляются к аноду, ионизируя на пути встречные атомы. Таким образом, возникает лавина электронов, двигающихся к аноду. Но сама по себе объемная ионизация электронами еще недостаточна для поддержания самостоятельного разряда. Необходим также механизм, обеспечивающий возникновение первичных электронов в области около катода, т.е. в начале их пути к аноду.

Положительные ионы разгоняются по пути к катоду. Имея большую массу, они не могут ионизовать атомы, но способны, однако, выбивать электроны из металлического катода. Эти электроны становятся первичными для новых лавин, что и обеспечивает самостоятельность разряда.

3.2. N_{2}

Чтобы запустить необходимую нам лавину электронов необходимо U_3 . Если лавина электронов уже запущена, то ток будет проходить через лампу до тех пор, пока напряжение $U_{\rm r}$ между катодом и анодом будет достаточно для того, чтобы поддерживать направленное движение частиц.

3.3. №4

Неоновую лампу наполняют газом при пониженном давлении, чтобы достичь оптимальных показателей светоотдачи лампы и её долговечности.

Максимальная светоотдача достигается максимально возможной температурой нити и её минимальным охлаждением. С этой стороны лучше всего подходит вакуум, т.к. нить будет охлаждаться только за счёт излучения.

Но вольфрам в вакууме при высоких температурах может начать испаряться, из-за чего уменьшается долговечность лампы.

Поэтому лампу заполняют каким-либо инертным газом, но давление выбирают как можно ниже.

3.4. №5

Рис. 5: Схемы

В первой схеме амперметр показывает значение тока, равное $I_a=I_1+I_2$. Поскольку нам нужен только ток I_2 , то ток I_1 и будет вносить погрешность в измерение.

$$\delta I = \frac{I_1}{I_2} = \frac{R_2}{R_1}. (21)$$

Подставляя известные значения сопротивлений ($R_v=10\,\mathrm{MOm}, R_a=10\,\mathrm{Om}, R_{Ne}=10\,\mathrm{кOm},$ получаем:

$$\delta I = \frac{10 \cdot 10^3 \cdot \text{OM}}{10 \cdot \text{MOM}} = 10^{-3}$$
 (22)

Рассмотрим вторую схему. В этом случае вольтметр показывает не напряжение на лампе, а $U=U_a+U_{Ne}$.

То есть

$$\delta U = \frac{U_a}{U_{Ne}} = \frac{R_a}{R_{Ne}} = 10^{-3} \tag{23}$$

3.5. **№**6

Релаксационные колебания — незатухающие колебания, возникающиие в системах, в которых существенную роль играют диссипативные силы. Рассеяние энергии, обусловненное этими силами, приводит к тому, что энергия накопленная в одном из накопителей, входящих в состав автоколебательной системы, не переходит полностью к другому накопителю, а рассеивается в системе, превращаясь в тепло.

3.6. №7

Колебания в неоновой лампе при Д

4. Вывод

Мы сняли ВАХ неоновой лампы, эксперимент в рамках погрешностей совпал с теоретической моделью.

Были определены коэффициенты $U_0 = (107 \pm 1)\,B$ и $R_0 = (12.36 \pm 0.09)\,\mathrm{кOm}$

Также получена зависимость $T = f_1(R), T = f_2(C), T = f_3(\mathcal{E})$. Полученные результаты мы сравнили с теоретическими значениями периода при этих параметрах. Если не учитывать пару вылетевших практических точек, то практика с хорошей степенью точности совпадает с теорией.