Effiziente Ansätze bei Fluid-Struktur-Wechselwirkungen mit großen Deformationen und Topologieänderungen

Barış İrhan

Wolfgang A. Wall

Ekkehard Ramm

Effiziente Ansätze bei Fluid-Struktur-Wechselwirkungen mit großen Deformationen und Topologieänderungen

- ⇒ Aim: In this project the main concern is to develop efficient and robust discretization techniques for the interaction of flexible thin-walled structures with the surrounding fluid flow, where the structure undergoes large deformations
- ⇒ Currently we are working on
 - Overlapping Domain Decomposition Methods, and
 - * | Coupled Level Set / Extended Finite Element Method

to solve pure fluid problems

Overlapping Domain Decomposition Methods

Overlapping Domain Decomposition Methods

- \Rightarrow Diploma thesis^(a), Peter Gamnitzer (Dipl.-Tech.Math.Univ.)
- ⇒ Pure fluid problems on fixed domain
- ⇒ Dirichlet-Dirichlet and "Chimera"-Dirichlet coupling
- ⇒ Mass conserving interpolation

⁽a) "Overlapping Domain Decomposition Methods in Application to Navier-Stokes Equations"

Overlapping Domain Decomposition Methods

 \Rightarrow Flow around a cylinder (Re = 100)

- ⇒ Mass conserving interpolation is important especially for pressure field
- ⇒ Different coupling conditions, e.g., Dirichlet-Neumann, Dirichlet-Robin

Coupled Level Set / Extended Finite Element Method

Level Set Method (LSM) \rightarrow To <u>track</u> internal moving boundaries on a fixed mesh

Extended Finite Element Method (XFEM) →
To model internal moving boundaries on a fixed mesh

Level Set Method

- ⇒ Interface tracking
- \Rightarrow Interface is captured on a <u>fixed</u> mesh by locating zero contour of a smooth scalar field ϕ (usually signed distance to the interface)

⇒ Evolution of the interface is governed by first order hyperbolic PDE

$$\frac{D\phi}{Dt} = \frac{\partial\phi}{\partial t} + \nabla\phi \cdot \mathbf{u} = 0 \qquad (*)$$

⇒ Streamline Upwind Petrov-Galerkin (SUPG) finite element method has been used to solve (*) numerically

Level Set Method

- ⇒ Change in topology and extension to 3D are easy to handle
- \Rightarrow Normal vector (n) to the interface and curvature (κ) of the interface can be accurately expressed in terms of smooth level set function, i.e.,

$$\mathbf{n} = \frac{\nabla \phi}{|\nabla \phi|}, \ \kappa = \nabla \cdot \mathbf{n}$$

⇒ Reinitialization, velocity extension, localization, particle level set method for improved performance

Extended Finite Element Method

⇒ Model moving (or evolving) boundaries on a fixed mesh

Two-phase fluid flow

Cohesive crack growth

Extended Finite Element Method

 \Rightarrow Idea: Enrich standard finite element approximation around the interface by product of standard nodal finite element shape functions with some suitable enrichment functions (Ψ) such that the kinematical constraints along the interface can be met

$$\mathbf{u}^h = \sum_{I=1}^{nnode} N_I \mathbf{u}_I + \sum_{I=1}^{nnode} \chi_I N_I \Psi ar{\mathbf{u}}_I$$
 standard enriched

discontinuous 'velocity' gradient

discontinuous 'displacement' fi eld

 $\Psi = H$ (heaviside function)

Coupling of XFEM with LSM

 \Rightarrow Use the level set function (ϕ) to activate the elements on and around the interface, and the nodes to be enriched

 \Rightarrow Use level set function (ϕ) to construct enrichment function (Ψ) if discontinuity in the gradient of a field quantity along the interface is expected

Two-Phase Fluid Flow Simulation

⇒ Navier-Stokes equations

$$\rho_{I}(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}) - 2\mu_{I} \nabla \cdot \epsilon(\mathbf{u}) + \nabla p = \mathbf{b} \qquad \text{in } \Omega_{F} \times (0, T)$$

$$\nabla \cdot \mathbf{u} = 0 \qquad \text{in } \Omega_{F} \times (0, T)$$

- ⇒ Interface conditions assumed
 - ightarrow Velocity is continuous along the interface, i.e., $\boxed{\mathbf{u}_1 = \mathbf{u}_2}$ on Γ_{int}
 - \rightarrow Traction is continuous along the interface, i.e., $\sigma_1 \cdot \mathbf{n}_{int} = \sigma_2 \cdot \mathbf{n}_{int}$ on Γ_{int}
- ⇒ Solved by coupled level set / extended finite element method

Two-Phase Fluid Flow Simulation

- \Rightarrow Level set function (ϕ) is used to construct enrichment function (Ψ) since a jump in the velocity gradient along the interface is expected because of the interface conditions prescribed
- ⇒ XFEM has been embedded into stabilized Navier-Stokes solver together with the refined integration scheme which is necessary for the elements cut by the interface

Examples $^{(b)} \rightarrow$ 'Jogged' channel

(b) (taken from) Chessa J., Belytschko T., "An Extended Finite Element Method for Two-Phase Fluids", ASME, Vol. 70, January 2003

$\textbf{Examples} \rightarrow \textbf{'Jogged' channel}$

Examples \rightarrow **Rising bubble**

$\textbf{Examples} \rightarrow \textbf{Rising bubble}$

Outlook

- ⇒ We are in parallel with the schedule
- ⇒ Next, we will try to develop a new method for the solution of fluid-structure interaction problems by combining the methods that we have

