04: Buses II

Engr 315: Hardware / Software Codesign Andrew Lukefahr Indiana University

Announcements

- P2 is live
 - Going to need a Pynq.
- P3 is live.

Bus terminology

- A "transaction" occurs between an "<u>initiator</u>" and "<u>target</u>"
- Any device capable of being an initiator is said to be a "<u>bus master</u>"
 - In many cases there is only one bus master (<u>single</u> <u>master</u> vs. <u>multi-master</u>).

 A device that can only be a target is said to be a "slave device". Pa "EMA" uses two buses to move data between CPU + hardware

Data (TDATA) is only transferred when

TVALID is 1.

This indicates the **MASTER** is trying to transmit new data.

TREADY is 1.

This indicates the **SLAVE** is ready to receive the data.

If either TVALID or TREADY are 0, no data is transmitted.

If TVALID and TREADY are 1, TDATA is transmitted

at the positive edge of ACLK

Transferring data on a AXI4-Stream Bus.

TLAST

• Special signal to indicate a group or "burst" of transmissions is complete.

"Indicates the boundary of a packet"

Transferring data on a AXI4-Stream Bus.

TKEEP

• What if TDATA is 32-bits (4 bytes) wide, and I want to send 6 bytes?

• TKEEP let's me specify which bytes to "keep".

Transferring data on a AXI4-Stream Bus.

Let's build a custom block that does nothing!

```
module custom hw (
      input
                 ACLK,
                                                   Custom
      input
            ARESET,
                                               S_TDATA
      input [31:0] S TDATA,
                                               S TVALID
      input
            S TVALID,
      output S TREADY,
                                               S_TREADY
                                                        M_TREADY
      output [31:0] M TDATA,
      output
                 M TVALID,
      input
                 M TREADY
                     M-TDATA = N(S-TDATA)
      assign
assign
assign
                     M-TVALID = S-TVALID;
                      S-TRAAPY = M-TREADY,
endmodule
```

SLAVE

Let's build a custom block that does nothing!

```
module custom hw (
     input ACLK,
     input ARESET,
     input [31:0] S TDATA,
     input S_TVALID,
     output S TREADY,
     output [31:0] M TDATA,
     output M TVALID,
     input M TREADY
assign M TDATA = S TDATA;
assign M TVALID = S TVALID;
assign S TREADY = M TREADY;
endmodule
```


How would I flip all the bits of TDATA?

```
module custom hw (
      input
                  ACLK,
      input ARESET,
      input [31:0] S TDATA,
      input
           S TVALID,
      output S TREADY,
      output [31:0] M TDATA,
      output
                  M TVALID,
      input
            M TREADY
assign M_TDATA = 15_TDATA;
assign M TVALID = S TVALID;
assign S TREADY = M TREADY;
endmodule
```

```
Custom
Hardware

S_TDATA
S_TVALID

S_TREADY

M_TDATA
M_TVALID

SLAVE
```

How would I flip all the bits of TDATA?

```
module custom hw (
     input
           ACLK,
     input ARESET,
     input [31:0] S TDATA,
     input S TVALID,
     output S TREADY,
     output [31:0] M TDATA,
     output M TVALID,
     input M TREADY
assign M TDATA = ~S TDATA;
assign M TVALID = S TVALID;
assign S TREADY = M TREADY;
endmodule
```


Custom Hardware

M_TDATA

M_TVALID

M_TREADY

SLAVE

```
always-ff (@posedzo ACIK) begin
module custom hw buf (
         input
                           ACLK,
                                                 if (ARESET) begin
         input
                           ARESET,
                                                                                      Custom
                                                                                     Hardware
                                                    State C= So:
                                                                               S_TDATA
                                                                                            M_TDATA
         input [31:0]
                           S TDATA,
                                                                               S TVALID
                                                                                            M_TVALID
                                                                                                  SLAVE
                                                     buf L= 32'h0;
         input
                          S TVALID,
                                                 end else begin
                           S TREADY,
         output
                                                   state <= next State;
but <= next buf;
         output [31:0]
                          M TDATA,
         output
                           M TVALID,
         Input
                           M TREADY
                                                           always-comb hesin

M_TDATA = but
reg [31:0] but, next but;
enum { So, S, } state, vext State;
                                                                   m_TVALID=1'h0; {
S_TREADY = 1'h1; }
                                                                     next State = State;
                                case (state)
                                                                     rext but = buf;
                                     So: if (5_TVALTO) begin / wext-but = S_T DATA;
                                                                                         An_TUALED=1;
If (M_TREADY)
endmodule
```

```
module custom hw buf (
      input
                ACLK,
      input ARESET,
      input [31:0] S TDATA,
      input
                    S TVALID,
                    S TREADY,
      output
      output [31:0] M TDATA,
      output M TVALID,
      input
                    M TREADY
enum {S0, S1} state, nextState;
reg [31:0] nextVal;
always ff @(posedge ACLK) begin
   if (ARESET) begin
       state <= S0;
      M TDATA <= 32'h0
   end else begin
       state <= nextState;</pre>
      M TDATA <= nextVal;
   end
end
```

```
SLAVE
always comb begin
    S TREADY = 'h1;
                               S TREADY
                                           M_TREADY
    M TVALID = 'h0;
    nextState = state;
    nextVal = M TDATA;
    case(state)
        S0: begin
            if (S TVALID) begin
                nextState = S1;
                nextVal = S TDATA;
            end
        end
        S1: begin
            S TREADY = 'h0;
            M TVALID = 'h1;
            if (M TREADY) begin
                nextState = S0;
        end
    endcase
end
```

Custom Hardware

S_TVALID

M TDATA

M_TVALID

Vivado Demo

Next Time

- Memory-Mapped I/O
- Memory-Mapped Buses

References

- Zynq Book, Chapter 19 "AXI Interfacing"
- Practical Introduction to Hardware/Software Codesign
 - Chapter 10
- AMBA AXI Protocol v1.0
 - http://mazsola.iit.uni-miskolc.hu/~drdani/docs_arm/AMBAaxi.pdf
- https://lauri.võsandi.com/hdl/zynq/axi-stream.html

04: Buses II

Engr 315: Hardware / Software Codesign Andrew Lukefahr Indiana University

