Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа компьютерных технологий и информационных систем

Отчёт по лабораторной работе № 3

Дисциплина: Автоматизация проектирования дискретных устройств (на английском языке).

Выполнил студент гр. 5130901/10101	(подпись)	_ Д.Л. Симоновский
Руководитель	(подпись)	А.А. Федотов

"<u>14</u>" февраля 2024 г.

Санкт-Петербург 2024

Оглавление

1.	Список иллюстраций:	2
2.	Задача:	3
3.	Решение:	3
4	Вывол.	c

1. Список иллюстраций:

Рис. 3.1. Результат тестирования моудля	4
Рис. 3.2. Результаты моделирования с внутренними сигналами	
Рис. 3.3. Результат тестирования после исправления багов	5
Рис. 3.4. RTL-Viewer модуля отладки	
Рис. 3.5. Настройка SignalTap II	
Рис. 3.6. Slow 1200mV 85C Model Fmax Summary	
Рис. 3.7. In-System Source and Probes.	7
Рис. 3.8. In-System Source and Probes. Работа. DIR = 0	7
Рис. 3.9. In-System Source and Probes. Работа. DIR = 1	7
Рис. 3.10. SignalTap II. Захват при div_cnt = 2500000	7
Рис. 3.11. Измененные настройки SignalTap II	7
Рис. 3.12. SignalTap II. Захват 16 сегментов по 8 измерений. DIR = 0	
Рис. 3.13. SignalTap II. Захват 16 сегментов по 8 измерений. DIR = 1	8
Рис. 3.14. Модуль реализующий проект	8
Рис. 3.15. RTL Viewer итогового проекта	8
Рис. 3.16. Timing Analyzer report.	9

2. Задача:

Изучить:

- Как создавать устройства в Quartus Prime.
- Как моделировать созданное устройство, используя модели.
- Как отладить созданное устройство используя ISSP и SignalTap II.
- Как реализовывать созданные устройства на плате.

3. Решение:

Возьмем код устройства из приложения к лабораторной:

```
CLK,
RST,
DIR,
[3:0] DIG,
 reg [24:0] div_cnt = 25'd1; //Clock divider
reg [ 3:0] Counter = 2'd1; //Clock divider wire cout; //Carry out reg [ 3:0] cnt_val; //value to count reg [ 1:0] rst_int = 2'd0; //Synchronized reset reg [ 3:0] Counter = 4'd0; //Counter
 always @(posedge CLK) rst_int <= {rst_int[0], RST};</pre>
 always @(posedge CLK, negedge rst_int[1])
if (!rst_int[1]) div_cnt <= 25'd1;
else div_cnt <= div_cnt + 25'd1;</pre>
  assign cout = (div_cnt == div_par);
 always @(posedge CLK, negedge rst_int[1])
  if (!rst_int[1]) Counter <= 4'd0;</pre>
    else if (cout) begin
       Counter <= Counter + cnt_val;
      })
5'b10000: Counter <= 4'd9;
5'b01001: Counter <= 4'd0;
  if (!rst_int[1]) HEX <= 7'b0111111;
      case (Counter)

4'b0000: HEX <= 7'b0111111; // "0"

4'b0001: HEX <= 7'b0000110; // "1"

4'b0010: HEX <= 7'b1011011; // "2"

4'b0101: HEX <= 7'b1001111; // "3"

4'b0100: HEX <= 7'b1101101; // "5"

4'b0110: HEX <= 7'b1101101; // "5"

4'b0111: HEX <= 7'b1011101; // "6"

4'b0111: HEX <= 7'b0000111; // "7"

4'b1000: HEX <= 7'b1111111; // "8"

4'b1011: HEX <= 7'b1101111; // "9"

default: HEX <= 7'b0111111; // "0"

endcase
  assign DIG = 4'b1000;
```

Данное устройство реализует счетчик от 0 до 9 на семисегментном индикаторе. Протестируем это устройство тестом первого класса:

```
`timescale 1ns / 1ns
    module tb_Lab3_1 ();
    reg tb_clk;
reg [5:0] tb_mem [0:127];
                 tb_clk;
     reg tb_dir;
wire [3:0] tb_dig;
                tb_dir;
      wire [6:0] tb_hex;
                 tb_reset;
      wire [6:0] tb_ss;
      localparam CLK_PERIOD = 20;
      initial begin : clock_gen
       tb_clk = 1'b0;
        forever #(CLK_PERIOD / 2) tb_clk = ~tb_clk;
      Lab3_1 #(25'd4) Lab3_1_inst (
        .CLK(tb_clk),
        .DIR(tb_dir),
       .DIG(tb_dig),
        .HEX(tb_hex)
      initial begin : reset_gen
      tb_reset = 1'b0;
       #(CLK_PERIOD * 5) tb_reset = 1'b1;
      initial begin : control_gen
       #(CLK_PERIOD * 55) tb_dir = 1'b1;
#(CLK_PERIOD * 44);
       $readmemb("ss_to_ascii.txt", tb_mem);
        #(CLK_PERIOD * 111) $stop;
      assign tb_ss = tb_mem[tb_hex];
```

Как можно заметить, сначала выполняется счет вверх, потом вниз. При этом первые 5 периодов СLК подается сигнал сброса. Для удобства добавлен модуль, который переводит из семисегментного кода в HEX.

Выполним компиляцию и посмотрим на результат запуска этого тестового модуля:

Рис. 3.1. Результат тестирования моудля.

Как мы видим, полученный результат отличается от ожидаемого. Добавим внутренние сигналы тестируемого модуля и найдем ошибку:

Way	ve - Default =====									777777										=+
<u></u> <21 →		Msgs																		
	/tb_Lab3_1/tb_clk	1	<u> </u>	T.	M.	u				M		TT.	J.	u	TT.	w		m	J.J.	LΩ
	/tb_Lab3_1/tb_dir /tb_Lab3_1/tb_dig	1000	(1000																	
	/tb_Lab3_1/tb_hex	06	(3f				χοε	;												
	/tb_Lab3_1/tb_reset	1																		
	/tb_Lab3_1/tb_ss	1	(0				1	V V		V V	. v v	v v v	VV	· v v -		V V V-	VV	V v v		
	/tb_Lab3_1/Lab3_1 /tb_Lab3_1/Lab3_1		1			2 13 14	15 16	7 18 1	9 (10 (11	12 13 11	4 15 16	17 18 1	9 1 20 1 21	22 23 2	4 1 25 1 26	27 28 2	29 130 131	32 (33 (3	4 (35 (36	37
	/tb_Lab3_1/Lab3_1	1	0				(1													
<i>□</i> == 0	Now	2.22 us) us	0.3	us	0.2	liiiiiiii 2us		dininini 3 us	0.4	luuruuru Hus	0.5	liiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	0.6	us	0.	Tus 7us	0.8	lus	dimin

Рис. 3.2. Результаты моделирования с внутренними сигналами.

Как видно на этом скриншоте, счетчик-делитель вместо того, чтоб сброситься продолжает считать, поэтому в дальнейшем числа не меняются. Поправим эту ошибку, добавив в модуль счетчика сброс:

Повторим тестирование модуля:

Рис. 3.3. Результат тестирования после исправления багов.

Как видим исправление этого модуля помогло и устройство работает корректно.

После моделирования устройство необходимо выполнить тестирование на плате. Разработаем для этого модуль, который позволит управлять всеми входами устройства с компьютера, а также отслеживать выходы:

```
module db Lab3 1 (
     (* altera_attribute = "-name IO_STANDARD \"3.3-V LVCMOS\"", chip_pin = "23" *)
      input CLK
     wire [6:0] HEX;
                db reset;
                db_dir;
db_clk_high;
     Lab3_1 #(25'd25000000) Lab3_1_inst (
        .RST(db_reset),
        .DIR(db_dir),
        .DIG(DIG),
        .HEX(HEX)
       .source ({db_reset, db_dir}),
.probe ({HEX, DIG}),
        .inclk0(CLK),
             (db_clk_high)
        .c0
```

Используя ISSP мы будем управлять входами направления счета и сброса, а отслеживать значение, передаваемое на счетчик.

Также создаем PLL, который выдает частоту в 2 раза больше заданной, чтоб используя SignalTap II видеть тактовый сигнал, однако пока SignalTap II не настроен, db_clk_high исчезнет при компиляции:

Puc. 3.4. RTL-Viewer модуля отладки.

Выполним настройку SignalTap II следующим образом:

Рис. 3.5. Настройка SignalTap II.

Добавим к проекту SDC файл и выполним полную компиляцию. Получим следующий Fmax для разработанного устройства:

Slo	w 1200mV 85C	Model Fmax Summa	гу								
۹	< <filter>></filter>										
	Fmax Restricted Fmax Clock Name										
1	54.29 MHz	54.29 MHz	altera_reserved_tck								
2	149.95 MHz	149.95 MHz	PLL_unit_inst altpll_component auto_generated pll1 clk[0]								
3	150.11 MHz	150.11 MHz	clock_in								

Puc. 3.6. Slow 1200mV 85C Model Fmax Summary.

Здесь важно, чтоб clock_in работал со скоростью минимум 25 МГц (частота платы). Как мы видим, это действительно выполняется.

Запишем разработанное устройство на плату для дальнейшей отладки.

Выполним настройку In-System Source and Probes:

🚹 0 S	1 0 SP_											
Index	Type	Alias	Name									
?[104]	**	[6:0] HEX	⊕ probe[104]									
P[30]	**	DIG	■ probe[30]									
S[10]			⊡ source[10]									
S1	-•	Reset	source[1]									
S0		DIR	source[0]									

Puc. 3.7. In-System Source and Probes.

Запустим его, выставим Reset в 1 (устройство начнет работу) и посмотрим на результат:

🚹 0 S	P_				
Index	Type	Alias	Name	Data	-256240224208192176160144128
?[104]	**	[6:0] HEX	⊕ probe[104]	7Dh	3Fh
P[30]	**	DIG	probe[30]	8h	8h
S[10]	-26		□ source[10]	2h	Oh X
S1		Reset	source[1]	1	
S0		DIR	source[0]	0	

Puc. 3.8. In-System Source and Probes. Pa δ oma. DIR = 0.

Как мы видим, устройство корректно начало считать вверх, как и было при тестировании. Изменим направление счета и посмотрим, что устройство корректно считает и в обратную сторону:

	·· _				
Index	Type	Alias	Name	Data	-256240224208192176160144128.
7[104]	**	[6:0] HEX	⊕ probe[104]	7Dh	7Fh X 6Fh X 3Fh X X 3Fh X 6Fh X 7Fh X 07h X 7Dh X 6Dh X 66h X 4Fh X 5Bh X 06h X 3Fh X
P[30]	**	DIG	probe[30]	8h	8h
S[10]	-25-75-		□ source[10]	3h	2h
S1		Reset	source[1]	1	
SO		DIR	source[0]	1	

Puc. 3.9. In-System Source and Probes. Paбoma. DIR = 1.

Перейдем в SignalTap II и настроим таким образом, чтоб сигнал захватывался при div_cnt = 2500000 т.е. параметр, переданный в модуль ранее (момент переключения на следующее значение). После этого выполним запуск и проучим следующий результат:

log: Trig @ 2024/02/14 16:16:29 (0:0:0.5 elaps											click to insert time bar															
Type Alias	Name	-12	-11	-10	-9	-β	-7	-6	-5	-4	-3	-2	-1	Q	1	2	3	4	5	6	7	8	9	1ρ	1,1	12
*	Lab3_1:Lab3_1_inst CLK		┖		┖		\neg				\neg _						\neg _				\neg		\neg		\neg _	
*	Lab3_1:Lab3_1_inst DIR																									
*	Lab3_1:Lab3_1_inst RST																									
*	:Lab3_1_inst Counter[30]								6							\sim							7			
\$	⊞b3_1:Lab3_1_inst DIG[30]															8h										
\$	E3_1:Lab3_1_inst HEX[60]									6								\rightarrow						7		
_	⊞:Lab3_1_inst div_cnt[240]	(2	499999	4_X_	2499999	5 X	24999996	. X	24999997	_X_;	24999998	\equiv X \equiv	24999999	X 2	5000000	\supset	1	\rightarrow	2	\equiv X \equiv	3	\rightarrow	4	\rightarrow	5	$\supset \subset$

Puc. 3.10. SignalTap II. 3axeam npu div cnt = 2500000.

Мы захватили момент перехода к следующей цифре, что можно заметить на скриншоте. Так же важно отметить, что благодаря PLL мы корректно наблюдаем сигнал CLK.

Теперь изменим настройки SignalTap II следующим образом:

Рис. 3.11. Измененные настройки SignalTap II.

Они позволят нам захватывать именно изменения НЕХ выхода и так 16 раз, в каждом по 8 измерений, это удобно позволит отслеживать изменения на этом выходе.

Поставим Reset = 1, DIR = 0 и запустим захват данных на SignalTap II:

 $Puc.\ 3.12.\ SignalTap\ II.\ 3ахват\ 16\ сегментов\ no\ 8\ измерений.\ DIR=0.$

Как и ожидалось мы видим как значение растет на отладке.

Повторим измерения, установив DIR = 1:

Puc. 3.13. SignalTap II. Захват 16 сегментов по 8 измерений. DIR = 1.

А теперь мы получаем направление счета вниз.

Теперь создадим модуль, который будет полноценно реализовывать модуль на плате:

Рис. 3.14. Модуль реализующий проект.

Его RTL схема приведена ниже:

Puc. 3.15. RTL Viewer итогового проекта.

Как по нему видно, этот файл действительно только задает входы и выходы созданному модулю.

Также добавим SDC файл для временных требований, включим SignalTap II и запустим полную компиляцию.

Используя Timing Analyzer, убедимся, что все временные требования выполняются, а также что SignalTap II действительно выключился:

Puc. 3.16. Timing Analyzer report.

Запишем полученный проект на плату. Данное устройство работает корректно и было продемонстрированно преподавателю.

4. Вывод:

В ходе лабораторной работы были получены навыки по многоэтапному тестированию устройства, сначала используя моделирование (без платы) средствами ModelSim, после чего тестирование уже на плате, используя In-System Sources and Probes Editor и SignalTap II и последующую реализацию модуля, готового к полноценному использованию на плате.

Данные навыки помогут при разработке как маленьких проектов, так и больших, которые не так просто отлаживать. ModelSim, In-System Sources and Probes Editor и SignalTap II очень сильно ускоряют отладку, что несомненно важно при работе с любым проектом.