Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson

 $\begin{array}{c} {\rm Prov~i~matematik} \\ {\rm Reell~analys,~1MA226} \\ {\rm ~2019\text{-}01\text{-}14} \end{array}$

Duration: 8.00 - 13.00. The exam consists of 8 problems, each worth 5 points. All solutions should be provided with details and appropriate justifications. No calculators are allowed.

- 1. A metric space (X, d) is called discrete if d(x, y) = 1 for all points $x \neq y$ in X. Prove that a discrete metric space (X, d) is compact if and only if the set X is finite.
- 2. Find the $\limsup_{n\to\infty}$ and $\liminf_{n\to\infty}$ of the following sequences:

(a).
$$x_n = e^{n(-1)^n}$$

(b).
$$x_n = n(\sqrt[n]{n} - 1)(-1)^n + \log n + \sin \frac{2\pi n}{3}$$
.

3. Prove that the series

$$F(x) = \sum_{n=1}^{\infty} n^{-x} \cos n\pi x$$

converges for all $x \in (1, \infty)$, and that the function F(x) is C^1 in the interval $(2, \infty)$.

4. Let the function $f:[0,1]\to\mathbb{R}$ be given by

$$f(x) = \begin{cases} 1 & \text{if } \frac{1}{2} \cdot 4^{-n} \le x \le 4^{-n} \text{ for some } n \in \{0, 1, 2, 3, \ldots\} \\ 0 & \text{otherwise.} \end{cases}$$

Prove that f is Riemann integrable on [0, 1], and determine $\int_0^1 f(x) dx$.

- 5. Assume that $f:[0,1]\to\mathbb{R}$ is a continuous function and that $\int_0^1 f(x)e^{-nx}\,dx=0$ for $n=0,1,2,\ldots$ Prove that f(x)=0 for all $x\in[0,1]$.
- 6. Prove that there exists an open set $U \subset \mathbb{R}^2$ with $(1, e+1) \in U$, and C^1 functions $u: U \to \mathbb{R}$ and $v: U \to \mathbb{R}$, such that u(1, e+1) = 0 and v(1, e+1) = 1, and such that for every $(x, y) \in U$, (u(x, y), v(x, y)) is a solution to the following system of equations:

$$\begin{cases} u + v = x \\ e^u + e^v = y. \end{cases}$$

When this holds, determine the differentials u'(1, e+1) and v'(1, e+1).

Also see next page / se även nästa sida!

7. Prove that there exists a unique bounded sequence $(x_n) = (x_1, x_2, x_3, \ldots)$ of real numbers satisfying

$$x_n = \frac{1}{n^2} + \sum_{m=1}^{\infty} \frac{x_m}{n+2^m}, \qquad (n = 1, 2, 3, \ldots).$$

[Hint: You may work in the metric space ℓ^{∞} which consists of all bounded sequences $(x_n) = (x_1, x_2, x_3, \ldots)$ in \mathbb{R} , with metric

$$d((x_n), (y_n)) := \sup_{n \ge 1} |x_n - y_n|.$$

You may take it as a known fact that this metric space ℓ^{∞} is complete.]

8. Let f be a continuous real function on \mathbb{R}^2 , and let A be a linear map from \mathbb{R}^2 to \mathbb{R} . Assume that the differential f'(x) exists for all $x \in \mathbb{R}^2 \setminus \{(0,0)\}$ and that

$$\lim_{x \to (0,0)} f'(x) = A$$

(convergence in the metric space $L(\mathbb{R}^2, \mathbb{R})$). Prove that then f'(0,0) exists and f'(0,0) = A.

LYCKA TILL / GOOD LUCK!