National Institute of Technology, Silchar End-Semester (UG) Examinations, April- 2022

Subject Code: Ec 101 Subject: Basic Electronics
Semester: 1st Department: ECE, CSE, EE

Duration: 1.15 hours Total Marks: 30

Attempt any five Questions

Q1. (a) Consider a CE circuit using a BJT having $I_s=10^{-15}A$, a collector resistance $R_c=8.8K\Omega$, and a power supply of $V_{cc}=12V$.

- I. Determine the value of the bias voltage V_{BE} required to operate the transistor at V_{CE} =5.2V. What is the corresponding value of I_c ?
- II. Find the voltage gain A_v at this bias point. If an input sine-wave of 5mV peak amplitude is superimposed on V_{BE} , find the amplitude of output sine-wave signal (assume linear operation).
- (b) Simplify the following function F using K map: F(A,B,C,D)=(0,2,3,5,7,9,11,13,14) [3]

[3]

- Q2. (a) A CE amplifier utilizes a BJT with β =100 and V_A =100 V, is biased at I_c =1mA and has a collector resistance R_c =5K Ω . Find R_{in} , R_o and A_{vo} . If the amplifier is fed with a signal source having a resistance of 5K Ω , and a load resistance R_L =5 K Ω is connected to the output terminal, find the resulting A_v . [3]
 - (b) Draw the output characteristics of N-channel Enhancement type MOSFET and explain different regions of operation. [3]
- Q3. (a) Simplify the following Boolean expression into one literal

 W'X(Z'+YZ)+X(W+Y'Z) [3]
- (b) In the circuit shown in Figure 1, the voltage at the emitter was measured and found to be -0.7V. If β =50, find I_E , I_B , I_C and V_C . [3]

Figure 1

[4]

Figure 2

- **(b)** Design a combinational logic circuit with three input variables that will produce a logic 0 as output when more than one input variable are logic 0. [3]
- Q5. (a) If the differential amplifier has a differential gain of 20000. CMRR-80dB, then Find the common mode gain.
- **(b)** An OP-AMP has a slew rate of 5 V/usec. Find the largest sine wave output voltage possible at a frequency of 1 MHZ.
- c) For the circuit as shown in the figure 3, determine the following:
 - i) Drain current I_{DQ} ii) Gate to source voltage V_{GSQ} ii) Drain voltage V_{D} iv) Source voltage V_{s}

Figure 3

Q6. (a) What is the drain current for D-MOSFET having the characteristics of $I_{DSS} = 10$ mA, $V_{GS (off)} = -4$ V, and $V_{GS} = 2$ V. [2]

(b) If
$$V_1 = 10\sin(200t)$$
 and $V_2 = 15\sin(200t)$. What is V_{out} ? [4]

