CLAIMS

What is claimed is:

1	1. A method comprising.		
2	determining a criticality of a next-in-line μOP of a first input stream; and		
3	if the next-in-line μOP of the first input stream is not critical, discarding the next-in-line		
4	μOP of the first input stream and placing a next-in-line μOP of a second input		
5	stream into an output stream.		
1	2. The method of claim 1, further comprising:		
2	if the next-in-line μOP of the first input stream is critical, placing the next-in-line μOP of		
3	the first input stream into the output stream and holding the next-in-line μOP of		
4	the second input stream.		
1	3. The method of claim 2, wherein holding the next-in-line μ OP of the		
2	second input stream comprises holding the next-in-line μOP of the second input stream		
3	until a next clock cycle.		
1	4. The method of claim 1, further comprising placing the discarded next-in-		
2	line µOP of the first input stream into a replay loop.		

- 1 5. A method comprising:
- 2 determining a criticality of a next-in-line μOP of a front-door stream; and
- 3 if the next-in-line front-door μOP is not critical, whacking the next-in-line front-door
- 4 μOP and placing a next-in-line μOP of a side-door stream into an execution
- 5 stream.
- 1 6. The method of claim 5, further comprising:
- 2 if the next-in-line front-door μOP is critical, placing the next-in-line front-door μOP into
 3 the execution stream and holding the next-in-line side-door μOP.
- 7. The method of claim 6, wherein holding the next-in-line side-door μOP
 2 comprises holding the next-in-line side-door μOP until a next clock cycle.
- 1 8. A method comprising:
- 2 examining whether there is contention for an entry slot into an execution stream;
- 3 examining a criticality of a next-in-line μ OP of a front-door stream if there is contention
- 4 at the entry slot; and
- 5 if the next-in-line front-door μOP is not critical, discarding the next-in-line front-door
- 6 μ OP and placing a next-in-line μ OP of a side-door stream into the entry slot.

- 1 9. The method of claim 8, further comprising:
- 2 if the next-in-line front-door μ OP is critical, placing the next-in-line front-door μ OP into
- 3 the entry slot and holding the next-in-line side-door μ OP.
- 1 10. The method of claim 9, wherein holding the next-in-line side-door μOP
- 2 comprises holding the next-in-line side-door μ OP until a next clock cycle.
- 1 11. The method of claim 8, further comprising placing the discarded next-in-
- 2 line front-door μ OP into a replay loop.
- 1 12. The method of claim 8, further comprising placing a pending μ OP into the
- 2 entry slot if there is no contention for the entry slot, the pending μOP comprising a next
 - in-line μOP of one of the front-door stream and the side-door stream.
- 1 13. A method comprising:
- 2 accessing a next-in-line μOP of an input stream;
- 3 applying a metric to the next-in-line μOP ; and
- 4 if the next-in-line μOP satisfies the metric, identifying the next-in-line μOP as critical.
- 1 14. The method of claim 13, further comprising identifying the next-in-line
- 2 μ OP as not critical if the next-in-line μ OP does not satisfy the metric.

- The method of claim 13, wherein the metric comprises comparing an age
 of the next-in-line μOP with a predefined threshold age.
- 1 16. The method of claim 13, wherein the metric comprises determining
- 2 whether a thread associated with the next-in-line μOP has been given priority.
- 1 The method of claim 14, further comprising issuing a select signal,
- 2 wherein the select signal indicates:
- 3 if the next-in-line μOP is critical, that the next-in-line μOP is selected for output; and
- 4 if the next-in-line μOP is not critical, that a next-in-line μOP of another input stream is
- 5 selected for output.
- 1 18. A method comprising:
- 2 accessing a next-in-line μOP of a front-door stream;
- 3 comparing an age of the next-in-line front-door μOP with a predefined threshold age; and
- 4 if the age of the next-in-line front-door μOP exceeds the threshold age, identifying the
- 5 next-in-line front-door μOP as critical.
- 1 19. The method of claim 18, further comprising identifying the next-in-line
- 2 front-door μOP as not critical if the age of the next-in-line front-door μOP is less than the
- 3 threshold age.

- 1 20. The method of claim 18, wherein the threshold age corresponds to an 2 oldest μOP .
- 1 21. The method of claim 18, wherein the next-in-line front-door μOP is
- 2 associated with a thread, the method further comprising:
- determining whether the thread has been given priority; and
- 4 if the thread does not have priority, identifying the next-in-line front-door μOP as not
- 5 critical.
- 1 22. The method of claim 19, further comprising issuing a select signal,
- 2 wherein the select signal indicates:
- 3 if the next-in-line front-door μOP is critical, that the next-in-line front-door μOP is
- 4 selected for output; and
- 5 if the next-in-line front-door μ OP is not critical, that a next-in-line μ OP of a side-door
- 6 stream is selected for output.
- 1 23. A method comprising:
- 2 accessing a next-in-line μOP of a front-door stream, the next-in-line front-door μOP
- 3 associated with a thread;
- 4 determining whether the thread has been given priority; and
- 5 if the thread has priority, identifying the next-in-line front-door μOP as critical.

- 1 24. The method of claim 23, further comprising identifying the next-in-line
- 2 front-door μ OP as not critical if the thread does not have priority.
- 1 25. The method of claim 23, further comprising:
- 2 comparing an age of the next-in-line front-door μOP with a predefined threshold age; and
- 3 if the age of the next-in-line front-door μOP is less than the threshold age, identifying the
- 4 next-in-line front-door μ OP as not critical.
- 1 26. The method of claim 24, further comprising issuing a select signal,
- 2 wherein the select signal indicates:
- 3 if the next-in-line front-door μOP is critical, that the next-in-line front-door μOP is
- 4 selected for output; and
- 5 if the next-in-line front-door μOP is not critical, that a next-in-line μOP of a side-door
- 6 stream is selected for output.

25		
27.	A device	comprising

- 2 a selector having a first input, a second input, and an output;
- 3 first circuitry coupled with the first input, the first circuitry to provide a first input stream
- 4 to the selector; and
- 5 second circuitry coupled with the second input, the second circuitry to provide a second
- 6 input stream to the selector, the second circuitry to
- 7 determine a criticality of a next-in-line μ OP of the first input stream, and
- 8 if the next-in-line μ OP of the first input stream is not critical, provide a
- 9 select signal to the selector indicating that the next-in-line μOP of
- the second input stream is selected for the output of the selector.
- 1 28. The device of claim 27, the second circuitry, if the next-in-line μ OP of the
- 2 first input stream is critical, to provide a select signal to the selector indicating that the
- 3 next-in-line μOP of the first input stream is selected for the output of the selector and
- 4 hold the next-in-line μ OP of the second input stream.
- 1 29. The device of claim 28, the second circuitry to hold the next-in-line μOP
- 2 of the second input stream until a next clock cycle.
- 1 30. The device of claim 27, further comprising execution circuitry coupled
- 2 with the output of the multiplexer.

1 31.	A device	comprising
-------	----------	------------

- 2 a multiplexer having a front-door input, a side-door input, and an output;
- a scheduler coupled with the first input, the scheduler to provide a front-door stream to
- 4 the multiplexer; and
- 5 a page miss handler coupled with the side-door input, the page miss handler to provide a
- 6 side-door stream to the multiplexer, the page miss handler to
- 7 determine a criticality of a next-in-line μ OP of the front-door stream, and
- 8 if the next-in-line front-door μOP is not critical, whack the next-in-line
- 9 front-door μ OP and place a next-in-line μ OP of the side-door
- stream into the output of the multiplexer.
- 1 32. The device of claim 31, the page miss handler to place the next-in-line
- 2 front-door μ OP into the output of the multiplexer and hold the next-in-line side-door μ OP
- 3 if the next-in-line front-door μ OP is critical.
- 1 33. The device of claim 32, the page miss handler to hold the next-in-line
- 2 side-door μOP until a next clock cycle.
- 1 34. The device of claim 31, further comprising execution circuitry coupled
- with the output of the multiplexer.

- 1 35. The device of claim 31, the page miss handler to provide a select signal to 2 another input of the multiplexer.
- 1 36. The device of claim 31, the page miss handler coupled with a whacking
- 2 element, the whacking element to determine the criticality of the next-in-line front-door
- 3 μ OP.
- 1 37. A device comprising:
- 2 a selector to receive an input stream; and
- 3 a whacking element coupled with the selector, the whacking element to
- 4 access a next-in-line μOP of the input stream,
- apply a metric to the next-in-line μ OP, and
- if the next-in-line μOP satisfies the metric, identify the next-in-line μOP
- 7 as critical.
- 1 38. The device of claim 37, the whacking element to identify the next-in-line
- 2 μ OP as not critical if the next-in-line μ OP does not satisfy the metric.
- 1 39. The device of claim 37, the whacking element, when applying the metric,
- 2 to compare an age of the next-in-line μOP with a predefined threshold age.

1	40. The device of claim 37, the whacking element, when applying the metric,	
2	to determine whether a thread associated with the next-in-line μOP has been given	
3	priority.	
1	41. The device of claim 38, the whacking element to provide a select signal to	
2	the selector, wherein the select signal indicates:	
3	if the next-in-line μOP is critical, that the next-in-line μOP is selected for output; and	
4	if the next-in-line μOP is not critical, that a next-in-line μOP of another input stream is	
5	selected for output.	
1	42. A device comprising:	
2	a multiplexer having a first input, a second input, and an output, the multiplexer to	
3	receive a front-door stream at the first input;	
4	a page miss handler coupled with the second input of the multiplexer, the page miss	
5	handler to provide a side-door stream to the multiplexer; and	
6	a whacking element coupled with the page miss handler, the whacking unit to	
7	access a next-in-line μOP of the front-door stream,	
8	compare an age of the next-in-line front-door μOP with a predefined	
9	threshold age, and	
10	if the age of the next-in-line front-door μOP exceeds a threshold age,	
11	identify the next-in-line front-door μOP as critical.	

- 1 43. The device of claim 42, the whacking element to identify the next-in-line
- 2 front-door μ OP as not critical if the age of the next-in-line front-door μ OP is less than the
- 3 threshold age.
- 1 44. The device of claim 42, wherein the threshold age corresponds to an oldest
- $2 \mu OP.$
- 1 45. The device of claim 42, wherein the next-in-line front-door μ OP is
- 2 associated with a thread, the whacking element to:
- 3 determine whether the thread has been given priority; and
- 4 if the thread does not have priority, identifying the next-in-line front-door μOP as not
- 5 critical.
- 1 46. The device of claim 43, the whacking element to provide a select signal to
- 2 the multiplexer, wherein the select signal indicates:
- 3 if the next-in-line front-door μ OP is critical, that the next-in-line front-door μ OP is
- 4 selected for output; and
- 5 if the next-in-line front-door μOP is not critical, that a next-in-line μOP of a side-door
- 6 stream is selected for output.

4

1	47. A device comprising:			
2	a multiplexer having a first input, a second input, and an output, the multiplexer to			
3	receive a front-door stream at the first input;			
4	a page miss handler coupled with the second input of the multiplexer, the page miss			
5	handler to provide a side-door stream to the multiplexer; and			
6	a whacking element coupled with the page miss handler, the whacking element to			
7	access a next-in-line μOP of the front-door stream, the next-in-line front-			
s 8	door μOP associated with a thread,			
9	determine whether the thread has been given priority, and			
-10	if the thread has priority, identify the next-in-line front-door μOP as			
11	critical.			
1	48. The device of claim 47, the whacking element to identify the next-in-line			
2	front-door μOP as not critical if the thread does not have priority.			
1	49. The device of claim 47, the whacking element to:			
2	compare an age of the next-in-line front-door µOP with a predefined threshold age; and			

if the age of the next-in-line front-door μOP is less than the threshold age, identify the

next-in-line front-door μOP as not critical.

1	50. The method of claim 48, the whacking element to provide a select signal	
2	to the multiplexer, wherein the select signal indicates:	
3	if the next-in-line front-door μOP is critical, that the next-in-line front-door μOP is	
4	selected for output; and	
5	if the next-in-line front-door μOP is not critical, that a next-in-line μOP of a side-door	
6	stream is selected for output.	
1	51. An article of manufacture comprising:	
2	a machine accessible medium providing content that, when accessed by a machine,	
3	causes the machine to	
4	determine a criticality of a next-in-line μOP of a first input stream; and	
5	if the next-in-line μOP of the first input stream is not critical, discard the next-in-	
6	line μOP of the first input stream and place a next-in-line μOP of a second	
7	input stream into an output stream.	
1	52. The article of manufacture of claim 51, wherein the content, when	
2	accessed, further causes the machine to:	
3	if the next-in-line μOP of the first input stream is critical, place the next-in-line μOP of	
4	the first input stream into the output stream and hold the next-in-line μOP of the	

second input stream.

- 1 53. The article of manufacture of claim 52, wherein the content, when
- 2 accessed, further causes the machine to hold the next-in-line μOP of the second input
- 3 stream until a next clock cycle.
- 1 54. The article of manufacture of claim 51, wherein the content, when
- 2 accessed, further causes the machine to place the discarded next-in-line μOP of the first
- 3 input stream into a replay loop.
- 1 55. An article of manufacture comprising:
- 2 a machine accessible medium providing content that, when accessed by a machine,
- 3 causes the machine to
- 4 access a next-in-line μOP of an input stream;
- 5 apply a metric to the next-in-line μOP; and
- if the next-in-line μOP satisfies the metric, identify the next-in-line μOP as
- 7 critical.
- 1 56. The article of manufacture of claim 55, wherein the content, when
- 2 accessed, further causes the machine to identify the next-in-line μOP as not critical if the
- 3 next-in-line μOP does not satisfy the metric.

- The article of manufacture of claim 55, wherein the content, when
- 2 accessed, further causes the machine, when applying the metric, to compare an age of the
- 3 next-in-line μ OP with a predefined threshold age.
- The article of manufacture of claim 55, wherein the content, when
- 2 accessed, further causes the machine, when applying the metric, to determine whether a
- 3 thread associated with the next-in-line μ OP has been given priority.
- 1 59. The article of manufacture of claim 56, wherein the content, when
- 2 accessed, further causes the machine to issue a select signal, the select signal to indicate:
- 3 if the next-in-line μ OP is critical, that the next-in-line μ OP is selected for output; and
- 4 if the next-in-line μ OP is not critical, that a next-in-line μ OP of another input stream is
- 5 selected for output.