Cheminformatic notebook for picking subsets of compound libraries

Before you use:

```
    Obtain an SDF file containing a compound library
```

```
    Install RDkit conda enviroment
        conda create -n rdkit rdkit pandas ipykernel xlsxwriter
        or
        conda env create -f rdkit_env.yml
    Activate RDkit conda enviroment
        conda actiavte rdkit
```

Capabilities:

- Remove substructures (e.g. functional handles) to identify fragments
- Filter by:
 - catalog
 - QED score
 - molecular properties
 - geometry
 - substructure
- Pick diverse subsets using pickers:
 - Random()
 - MaxMinPicker()
 - ClusterMethod()
 - HierarchicalClusterPicker()
 - LeaderPicker()
- · Save libaries as:
 - .xlsx
 - .sdf

Import packages

```
import pandas as pd
import numpy as np
from glob import glob
from rdkit import Chem
from rdkit.Chem import AllChem, QED, PandasTools, rdMolDescriptors, Crippen, Draw, rdFMCS, rdRGroupDecomposition, rdFingerprintGenerator
from rdkit.SimDivFilters.rdSimDivPickers import MaxMinPicker, ClusterMethod, HierarchicalClusterPicker, LeaderPicker
from rdkit.Chem.FilterCatalog import FilterCatalog, FilterCatalogParams
from pathlib import Path
import matplotlib.pyplot as plt

PandasTools.RenderImagesInAllDataFrames(images=True)
PandasTools.InstallPandasTools()
pd.set_option('display.max_roums', 500)
pd.set_option('display.max_columns', 500)
pd.options.mode.copy_on_write = True
print(Path().absolute())

<frcere importlib._bootstrap>:488: RuntimeWarning: to-Python converter for boost::shared_ptr<RDKit::FilterMatcherBase> already registered; second conversion method ig
nored.
//mnt/d/OneDrive - University of North Carolina at Chapel Hill/Weeks_Lab/Jordan/Library_screen
```

Cheminformatic functions

```
def get moldecriptors(df, molcol='ROMol'):
      df['Num Ring'] = df[molcol].apply(lambda x: rdMolDescriptors.CalcNumRings(x))
       \begin{aligned} & \texttt{df['Num\ ArHetcy']} = \texttt{df[molcol].apply(lambda\ x:\ rdMolDescriptors.CalcNumAromaticHeterocycles(x))} \\ & \texttt{df['Num\ Hetcy']} = \texttt{df[molcol].apply(lambda\ x:\ rdMolDescriptors.CalcNumHeterocycles(x))} \\ & \texttt{df['Num\ Hetatm']} = \texttt{df[molcol].apply(lambda\ x:\ rdMolDescriptors.CalcNumHeteroatoms(x))} \end{aligned} 
      df['Num Ring'] = df[molcol].apply(lambda x: rdMolDescriptors.CalcNumRings(x))
df['Num Spiro'] = df[molcol].apply(lambda x: rdMolDescriptors.CalcNumSpiroAtoms(x))
      \label{eq:df['Frac Sp3']} df['Frac Sp3'] = df[molcol].apply(lambda \ x: \ rdMolDescriptors.CalcFractionCSP3(x))
      df['MR'] = df[molcol].apply(lambda x: Crippen.MolMR(x))
df['NPR1'] = df[molcol].apply(lambda x: rdMolDescriptors.CalcNPR1(x))
df['NPR2'] = df[molcol].apply(lambda x: rdMolDescriptors.CalcNPR2(x))
      # Get ligand geometry
     # Get Light geometry'

df['Geometry'] = 'Balanced'

df.loc[df.eval('NPR1 - NPR2 + 0.5 < 0'), 'Geometry'] = 'Rod-like'

df.loc[df.eval('- NPR1 - NPR2 + 1.5 < 0'), 'Geometry'] = 'Sphere-like'

df.loc[df.eval('NPR2 - 0.75 < 0'), 'Geometry'] = 'Disc-like'
      df['Geometry'] = df['Geometry'].astype('category')
def filter_by_catalog(df, molcol='ROMol', catalog='ALL'):
      df.reset index()
      params_all = FilterCatalogParams()
      if catalog == 'ALL'
           params\_all.AddCatalog(FilterCatalogParams.FilterCatalogs.ALL)
      else:
            params\_all.AddCatalog(FilterCatalogParams.FilterCatalogs.catalog)
      catalog all = FilterCatalog(params all)
      mask = df[molcol].apply(lambda x: catalog_all.HasMatch(x))
      return df.loc[~mask]
def filter_by_substructure(df, molcol='ROMol', substructures=[], drop=True):
      df.reset_index()
for sub in substructures:
            sub = Chem.MolFromSmiles(sub)
      \label{eq:dfsubstructure match'}  df["Substructure match'] = df[molcol].apply(lambda x: x.HasSubstructMatch(sub))  df = df[df['Substructure match'] != True]  
      df.drop(columns=['Substructure match']) if drop is True else None
      return df
def pick_molecules(df, molcol='ROMol', picker=MaxMinPicker(), pickersize=100, seed=23, drop=True):
   if picker == 'Random()' or picker == 'random':
            return df.sample(n=pickersize, frac=None, weights=None, random_state=seed)
      else:
            df.reset_index()
             mfpgen = rdFingerprintGenerator.GetMorganGenerator(radius=2,fpSize=2048)
            df['Fingerprint'] = df[molcol].apply(lambda x: mfpgen.GetFingerprint(x))
picks = picker.LazyBitVectorPick(list(df['Fingerprint']), len(df['Fingerprint']), pickersize, seed=seed)
            df.drop(columns=['Fingerprint']) if drop is True else None
return df.iloc[list(picks)]
```

Load library

Out[]:

```
In [ ]: sdf_df = PandasTools.LoadSDF('enamine_photo_library.sdf', idName='ID', molColName='ROMol', includeFingerprints=True, isomericSmiles=True, smilesName='SMILES', embedPr
```

Calculate properties for fragments and create dataframe

```
In []: df = sdf_df.copy()
    df['ROMol'].apply(lambda x: AllChem.EmbedMolecule(Chem.AddHs(x)))
    df = remove_substructure(df, molcol='ROMol')
    df['QED FFF'] = df['ROMol'].apply(lambda x: QED.default(x))
    df = get_qed(df, molcol='Fragment')
    df = get_moldecriptors(df, molcol='Fragment')
    df.describe()
```

]:	QED FFF	QED	MW	ALOGP	НВА	HBD	PSA	ROTB	AROM	ALERTS	Num Ring	Num ArHetcy	Num Hetcy	
cou	t 4297.000000	4297.000000	4297.000000	4297.000000	4297.000000	4297.000000	4297.000000	4297.000000	4297.000000	4297.000000	4297.000000	4297.000000	4297.000000	429
mea	n 0.689217	0.694891	201.946042	1.184824	2.979753	1.029323	50.468418	2.295090	1.158948	0.549686	1.951129	0.642774	1.256458	
s	d 0.088275	0.098529	42.101277	0.971195	0.958064	0.712077	18.701836	1.450601	0.679995	0.622297	0.599064	0.655633	0.685950	
m	n 0.180888	0.180888	18.015000	-2.132200	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25	6 0.650753	0.632300	175.162000	0.547500	2.000000	1.000000	37.380000	1.000000	1.000000	0.000000	2.000000	0.000000	1.000000	
50	6 0.707849	0.699260	196.250000	1.209000	3.000000	1.000000	49.640000	2.000000	1.000000	0.000000	2.000000	1.000000	1.000000	
75	% 0.751148	0.767090	225.288000	1.850700	4.000000	1.000000	63.320000	3.000000	2.000000	1.000000	2.000000	1.000000	2.000000	
ma	x 0.849093	0.935627	461.657000	6.309500	8.000000	4.000000	128.960000	13.000000	4.000000	4.000000	5.000000	3.000000	4.000000	

Save library dataframe as a pickle

Load library datafrom from a pickle

In []: df = pd.read_pickle('./temp_library.pkl')

Filter fragments by catalog

Catalog options:

- dataframe (1st position): library dataframe
- **molcol** (kwar, str): name of column containing molecular structures
- catalog (kwar, str): name of exclusion catalog (e.g. ALL, BRENK, CHEMBL, CHEMBL_BMS, CHEMBL_Dundee, CHEMBL_Glaxo, CHEMBL_Inpharmatica, CHEMBL_LINT, CHEMBL_MLSMR, CHEMBL_SureChEMBL, NIH, PAINS_A, PAINS_B, PAINS_C, ZINC)

In []: # df = filter_by_catalog(df, molcol='Fragment', catalog='ALL')

Filter fragments by molecular properties

Parameter options:

- QED: QED score
- MW: Molecular weight
- ALOGP: estimated log(P) or hydrophobicity
- HBA: Hydrogen-bond acceptor
- HBD: Hydrogen-bond donor
- PSA: Total polar surface area
- ROTB: Number of rotatable bonds
- AROM: Number of aromatic rings
- ALERTS: Number of structural alerts
- Num Ring: Number of rings
- Num ArHetcy: Number of aromatic heterocyles
- Num Hetcy: Number of heterocyles
- Num Hetatm: Number of heteroatoms
- Num Spiro: Number of spirocycles
- Frac Sp3: Fraction of sp3 character
- MR: Molar refractivity (polarizability)
- NPR1: Nomarlized principle moment ratio 1
- NPR2: Nomarlized principle moment ratio 2

	QED FFF	QED	MW	ALOGP	НВА	HBD	PSA	ROTB	AROM	ALERTS	Num Ring	ArHetcy	Num Hetcy	Num Hetatm	Num
count	610.000000	610.000000	610.000000	610.000000	610.000000	610.000000	610.000000	610.000000	610.000000	610.000000	610.000000	610.000000	610.000000	610.000000	610.0
mean	0.718827	0.733494	206.034841	1.081170	3.316393	1.081967	54.470377	2.157377	1.313115	0.393443	2.236066	1.090164	1.788525	4.244262	0.0
std	0.065901	0.071790	27.216334	0.804505	0.701788	0.685172	9.886750	1.102983	0.467666	0.502169	0.440194	0.286652	0.502407	0.697880	0.0
min	0.426986	0.527263	162.192000	-0.880500	2.000000	0.000000	40.710000	0.000000	1.000000	0.000000	2.000000	1.000000	1.000000	3.000000	0.0
25%	0.689159	0.679961	182.227000	0.539140	3.000000	1.000000	46.067500	1.000000	1.000000	0.000000	2.000000	1.000000	1.000000	4.000000	0.0
50%	0.733124	0.734555	202.261000	1.081850	3.000000	1.000000	53.070000	2.000000	1.000000	0.000000	2.000000	1.000000	2.000000	4.000000	0.0
75%	0.764206	0.783055	222.042000	1.617975	4.000000	1.000000	61.660000	3.000000	2.000000	1.000000	2.000000	1.000000	2.000000	5.000000	0.0
max	0.849093	0.922966	292.379000	3.299700	5.000000	3.000000	87.980000	6.000000	3.000000	2.000000	5.000000	2.000000	3.000000	5.000000	1.0

Pick diverse subset from filtered fragment library

Picker parameters:

- dataframe (1st position): library dataframe
- molcol (kwar, str): Name of column containing molecular structures
- picker (kwar, Func): picker function (e.g. Random(), MaxMinPicker(), ClusterMethod(), HeirarchicalClusterPicker(), LeaderPicker())
- pickersize (kwar, int): Number of compounds in subset
- seed (kwar, int): Number for random seed generation
- drop (kwar, bool): remove fingerprint column from dataframe

In []: filter_pick_df = pick_molecules(filter_df, molcol='ROMol', picker=MaxMinPicker(), pickersize=100, seed=23, drop=True)

Describe geometric deversity of subset

In []: print(filter_pick_df['Geometry'].value_counts())

Describe molecular properties of subset

]:	filter_pick_df.describe()															
]:		QED FFF	QED	MW	ALOGP	НВА	HBD	PSA	ROTB	AROM	ALERTS	Num Ring	Num ArHetcy	Num Hetcy	Num Hetatm	
	count	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.00000	100.000000	100.000000	100.000000	100.000000	100.000000	100.00
	mean	0.680649	0.761744	223.606530	1.328970	3.420000	1.110000	56.919600	2.790000	1.43000	0.510000	2.360000	1.110000	1.770000	4.510000	0.01
	std	0.084098	0.081549	31.220023	0.878436	0.713223	0.737111	9.979464	1.365484	0.49757	0.541136	0.559942	0.314466	0.600589	0.611258	0.10
	min	0.426986	0.540828	163.224000	-0.880500	2.000000	0.000000	40.710000	0.000000	1.00000	0.000000	2.000000	1.000000	1.000000	3.000000	0.00
	25%	0.648929	0.707028	197.748750	0.618080	3.000000	1.000000	49.970000	2.000000	1.00000	0.000000	2.000000	1.000000	1.000000	4.000000	0.00
	50%	0.686999	0.772731	223.276000	1.390160	3.000000	1.000000	56.620000	3.000000	1.00000	0.000000	2.000000	1.000000	2.000000	5.000000	0.00
	75%	0.736807	0.818351	248.569750	2.054650	4.000000	2.000000	63.040000	4.000000	2.00000	1.000000	3.000000	1.000000	2.000000	5.000000	0.00
	max	0.849093	0.915665	282.391000	3.030400	5.000000	3.000000	87.980000	6.000000	2.00000	2.000000	5.000000	2.000000	3.000000	5.000000	1.00

Display compounds in subset

Save subset libary to an excel file

Save parameters:

- dataframe (1st position): dataframe to save
- outfile (2nd position, str): name of excel file
- molCol (kwar, list(str)): name of columns containing molecules
- **size** (kwar, tuple(int)): size of molecule image in excel file

In []: PandasTools.SaveXlsxFromFrame(filter_pick_df, 'filtered_library_100_1.xlsx', molCol=['ROMol','Fragment'], size=(150, 150))

Save subset libary to an sdf file

Save parameters:

- dataframe (1st position): dataframe to save
- outfile (2nd position, str): name of excel file
- **molCol** (kwar, list(str)): name of columns containing molecules
- idname (kwar, str): name of column used for molecule title
- **properties**: (kwar, list): column names of properties to inbed in the sdf file
- allNumeric: (kwar, bool): embed all numeric columns in sdf file
- forceV3000: (kwar, bool): force sdf to be encoded using V3000 (more feature-rich than V2000)

^{*} limited to 50 images