

Prof. Torsten Grust, Denis Hirn WSI — Database Systems Research Group

# Assignment 4

Handin until: Friday, 27.05.2022, 09:00

## 1. [10 Points] Bélády's Anomaly

In 1969, the Hungarian computer scientist *Lázló Bélády* † had proven that with increasing size of the buffer pool, there may still be an increase in page misses compared to smaller buffer pools. This phenomenon is known as *Bélády's Anomaly*.

- (a) You are given the following replacement strategies:
  - FIFO (First In First Out): The first page loaded into the buffer is also to be replaced first.
  - · LRU (not Clock Sweep): Replaces the Least Recently Used page first.

For buffer sizes of 3 and 4 pages, provide the content of a FIFO- and a LRU-buffer after *each* access to the following pages in order (pages are loaded and then immediately released, i.e., the **ref\_count()** of all pages in the buffer is 0):

|                      | $p_1$ | $p_2$ | $p_3$ | $p_4$ | $p_1$ | $p_2$ | $p_5$ | $p_1$ | $p_2$ | $p_3$ | $p_4$ | $p_5$ |
|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Buffer page 0        |       |       |       |       |       |       |       |       |       |       |       |       |
| Buffer page <i>n</i> |       |       |       |       |       |       |       |       |       |       |       |       |

Describe your observations in context of Bélády's Anomaly briefly.

(b) In general, is it even possible that Bélády's Anomaly occurs for an LRU-buffer? Explain briefly.

# 2. [20 Points] LRU-k

Here, we will examine LRU-k, a variant of the LRU- $k^1$  replacement strategy.

### Introduction:

For each page, LRU-k considers the points in time of the last k references. LRU-k uses this information to estimate how *frequent* a page is referenced. We denote disk pages by  $p_i$ . Below, a sequence of page references  $r_1, \ldots, r_t, \ldots$  where each  $r_t$  denotes some page p, will be referred to as *reference string*.

### Metric:

Let us first define a metric that determines the page that LRU-k replaces next.

## **Definition 1** Backward k-Distance

Assume a reference string  $r_1, r_2, ..., r_t$ . The Backward k-Distance  $b_t\left(p,k\right)$  is defined as follows:

$$b_t \left( p, k \right) = \left\{ \begin{array}{l} x, & \text{if } r_{t-x} = p \text{ and there exist exactly } k-1 \text{ other} \\ & \text{indices } i, \, t-x < i \leq t, \, \text{with } r_i = p. \\ \\ \infty, & \text{if } p \text{ does not occur at least } k \text{ times in reference} \\ & \text{string } r_1, \dots, r_t \end{array} \right.$$

In other words: Starting from position  $r_t$  in the reference string, we are traversing the reference string backwards looking for the k-th occurrence of page p. The distance x is the Backward k-Distance of the page. The distance is  $\infty$ , if p does not occur at least k times.

## Example:

Assume the reference string in Figure 1a, a buffer size of 3 pages, and the replacement algorithm LRU-2. Pages with gray backgrounds have been referenced already:

| Reference String     | $r_1$ | $r_2$ | $r_3$ | $r_4$ | <i>r</i> <sub>5</sub> |
|----------------------|-------|-------|-------|-------|-----------------------|
| Page                 | $p_1$ | $p_2$ | $p_3$ | $p_1$ | $p_4$                 |
| (a) Reference String |       |       |       |       |                       |

| Page                                               | Backward <b>2</b> -Distance                                           |
|----------------------------------------------------|-----------------------------------------------------------------------|
| p <sub>1</sub><br>p <sub>2</sub><br>p <sub>3</sub> | $b_5(p_1, 2) = 4$<br>$b_5(p_2, 2) = \infty$<br>$b_5(p_3, 2) = \infty$ |
|                                                    |                                                                       |

(b) Backward 2-Distance

Figure 1: Example: LRU-2

The next page we will reference is  $p_4$ . The buffer holds  $p_1, p_2$ , and  $p_3$  already and thus is full—we have to replace a page in the buffer. Calculation of the *Backward 2-Distance* determines the distances shown in Figure 1b. Neither  $p_2$  nor  $p_3$  have two occurrences in the reference string  $r_1, \ldots, r_5$ . Hence, both pages currently have a *Backward 2-Distance* of  $\infty$ . Page  $p_1$ , on the other hand, occurs twice. We are thus looking for distance x such that  $r_{5-x} = p_1$  and x = 1 further references to x = 10 occur in the range x = 12. For x = 13 one x = 14, since x = 15 and x = 15 is referenced once by x = 15.

## Replacement Strategy:

If the buffer is full, we replace the page with the greatest *Backward Distance*. In case multiple pages have a *Backward Distance* of  $\infty$ , we revert to another replacement strategy. In our case here, we revert back to the classic LRU page replacement algorithm.

### Your Tasks:

(a) Is it possible to find a parameter *k* for LRU-*k* such that LRU-*k* becomes equivalent to LRU? Explain briefly.

### (b) Scenario:

You are given transactions  $\mathcal{T}_1$  and  $\mathcal{T}_2$  and a buffer with 11 pages. The transactions reference pages from a table  $\mathcal{R}$  with 100 pages.

The transactions  $\mathcal{T}_1$  and  $\mathcal{T}_2$  have the following properties:

Transaction  $\mathcal{T}_1$  uses only part of  $\mathcal{R}$ . Specifically, it references pages 1 to 10. Therefore, its reference string is  $p_1, p_2, \dots, p_{10}$ .

×10

Transaction  $\mathcal{T}_2$  references **all** pages in sequential order. Therefore, the reference string is  $p_1, \dots, p_{100}$ .

Starting with transaction  $\mathcal{T}_1$ , the transactions reference pages in table  $\mathscr{R}$  alternatingly. The overall reference string r thus reads as follows:

 $r=p_1,p_1,p_2,p_2,p_3,p_3,p_4,p_4,\dots,p_{10},p_{10},p_1,p_{11},p_2,p_{12},p_3,p_{13},\dots,p_{10},p_{100}$ 

For this scenario, count the number of buffer misses for both, LRU-2 and the classic LRU algorithm. Which advantages (or disadvantages) do both strategies exhibit?