Hackthon 6

Hugo Castilho

2018-01-27

Abstract

During a 10 day period, a deployed estimator received new data and outcomes.

The received data had significant differences from the data used in training, but the models was still able to produce a reasonable estimation of the outcomes. The AUC ROC score for the new outcomes was 0.8752.

Using the new data and outcomes to retrain the data does not result in very impressive improvement, but should progressively increase as more outcomes arrive.

1 Intro

In a previous report we analysed a dataset with characteristics of an unknown population and if they became unemployed in the next 12 months. We will assume knowledge of this report, if you are not familiar please read it.

Several predictived models were tested and one was selected. This model was deployed online to receive further data during a 10 day period. In this time we received both more population samples and outcomes.

In this report we analyse the behaviour of our deployed model in light of the new information.

2 Exploratory data analysis

During this 10 day period we received 9943 new samples and 498 new outcomes. In this section we will have a look at the new data and check for any anomalies relative to the original data used to train the model.

Having a look at the data (appendix A on page 3) it's easy too spot that there are significant differences from the data used to train our model. We now have samples with *eaned dividends* and different genders. The proportions of the categories for *domestic relationship type* and *domestic status* do not match. There are also some changes in *job types* and *profession* This is a considerable amount of change for our model to deal with.

3 Model Analysis

Our model achieved an AUC ROC score of:

0.8752

Taking in consideration that the new population profile does no match the one for which our model was trainned for it is still a high score.

We can also have a look at the output of the model for the samples independently of our knowledge of the outcome. Ideally our models should give a loot more outcomes near 0 and 1 than in the middle. So lets look at the histogram of our *proba* output in fig. 1a.

While most of our outputs are near the edge, we see that this is only happening towards 1. This could mean that our new samples are a skewed view of the population or that the population itself is skewed toward 1 (becoming unemployed during the 12 moth period after the sample is collected). So lets compare with the histogram for the samples for which we do know the outcome (fig. 1b) and the true outcomes (fig. 1c).

Figure 1: Outcome and *proba* histograms.

We can see that we are not in an ideal situation, our population outcomes are skewed, we have to be extra careful. But the AUC ROC score and the RUC curve (fig. 2 on the following page) tells us that we should have a good predictive capability by carefully selecting a threshold.

Figure 2: ROC curve.

4 Retraining

We joined the new data (with outcomes) with the old and split into training and test sets. Afterward we trained the same model (GradientBoostingClassifier) with the new data to compare the score with our deployed estimator, see table 1.

Table 1: Country of origin top 10.

(a) Original dataset.

 $\begin{array}{cc} \text{Deployed estimator} & 0.9182 \\ \text{New estimator} & 0.9232 \end{array}$

As we can see there is not a big difference, but there is so little new data that this just means that no new "insights" came from the new data.

A Tables & Figures

Table 2: Country of origin top 10.

(a) Original d	lataset.	(b) New dat	aset.
u.s.	7330	u.s.	8935
unknown	126	mexico	210
mexico	111	unknown	185
philippines	60	philippines	53
de	50	de	39
puerto rico	39	india	37
jamaica	34	canada	32
cuba	34	${ m gb}$	32
el-salvador	30	puerto rico	30
canada	28	el-salvador	29

u.s.	452
mexico	9
unknown	8
de	4
india	3
hong	2
puerto rico	2
poland	2
china	2
ireland	2

Table 3: Domestic relationship type value counts.

(a) Original dataset.		(b) New dataset.	
not living with family	2919	has wife	5398
never married	2063	not living with family	2227
living with child	1750	living with child	1353
has husband	1106	never married	532
living with extende family	325	living with extende family	245
has wife	1	has husband	188

has wife	266
not living with family	119
living with child	66
never married	23
living with extende family	14
has husband	10

Figure 3: Birth date histograms.

250 -200 -150 -100 -50 -

(b) New samples.

(c) New samples with outcomes.

1930 1940 1950

1960 1970 1980 1990 2000 birth date

Table 4: Domestic status value counts.

(a) Original dataset.

single	3662
d	2073
married 2	1170
spouse passed	599
divorce pending	486
married not together	163
married 1	11

(b) New dataset.

married 2	5645
single	2853
d	983
divorce pending	211
spouse passed	154
married not together	93
married 1	4

281
145
52
8
6
6

Figure 4: Earned dividends histograms.

(b) New samples.

(c) New samples with outcomes.

Table 5: Ethnicity value counts.

(a) Original dataset.

white and privileged	6523
afro american	1210
asian	262
american indian	88
other	81

(b) New dataset.

white and privileged	8679
afro american	778
asian	315
american indian	92
other	79

white and privileged	431
afro american	46
asian	17
american indian	2
other	2

Table 6: Gender value counts.

(a) Original	dataset.	(b) New o	lataset
Famala	0164	Male	8904
Female	8104	Female	1039

Male 453 Female 45

Table 7: Job type value counts.

(a) Original dat	aset.	(b) New datase	et.
private	5919	private	6824
unknown	620	self-emp-not-inc	905
local-gov	618	local-gov	573
state-gov	368	${\it unknown}$	489
self-emp-not-inc	303	$\operatorname{self-emp-inc}$	426
federal-gov	236	state-gov	415
self-emp-inc	94	federal-gov	304
without-pay	4	without-pay	4
never-worked	2	never-worked	3

private	341
self-emp-not-inc	44
unknown	28
local-gov	28
self-emp-inc	24
state-gov	20
federal-gov	13

Figure 5: Interest earned histograms.

10⁴ 10³ 10¹ 10¹ 10¹ 0 1000 2000 3000 4000

(b) New samples.

(c) New samples with outcomes.

Figure 6: Monthly work histograms.

(b) New samples.

(c) New samples with outcomes.

100 150 200 250 300 350 400

Table 8: Profession value counts.

(a) Original dataset.		(b) New dataset.	(b) New dataset.	
(a) Original datase secretarial other specialist technician sales C-level unknown mechanic technology support vocational household labor estate employee defense contractor trucking agriculture	1949 1423 1096 978 842 622 420 247 184 131 108 58 58	vocational C-level specialist technician sales other secretarial trucking mechanic household labor unknown agriculture technology support defense contractor estate employee	1561 1316 1213 1112 780 736 666 637 501 492 388 279 244 16	
3		army	2	

C-level	68
vocational	68
sales	64
specialist technician	49
other	42
$\operatorname{trucking}$	38
household labor	33
mechanic	30
secretarial	29
unknown	28
defense contractor	18
agriculture	17
technology support	13
army	1

 ${\bf Table\ 9:\ School\ level\ value\ counts.}$

(a) Original dataset.		(b) New dataset.	(b) New dataset.		
secondary	2594	secondary	3243		
entry level college	2165	entry level college	2087		
college graduate	1188	college graduate	1691		
basic vocational	373	some post graduate	577		
some post graduate	355	basic vocational	402		
secondary 11	341	secondary 11	317		
advanced vocational	326	advanced vocational	303		
$10\mathrm{th}$	248	$10\mathrm{th}$	277		
secondary-7 through 8	123	secondary-7 through 8	208		
secondary 12	106	primary school	202		
secondary-9	104	secondary-9	172		
secondary-5 through 6	72	advanced post graduate	142		
advanced post graduate	61	secondary 12	140		
primary school	58	secondary-5 through 6	117		
primary 1 through 4	37	primary 1 through 4	49		
kindergarten	13	kindergarten	16		

secondary	179
entry level college	110
college graduate	76
some post graduate	26
secondary 11	20
primary school	13
$10\mathrm{th}$	12
advanced vocational	11
secondary 12	10
secondary-9	9
basic vocational	9
advanced post graduate	8
secondary-5 through 6	5
secondary-7 through 8	5
kindergarten	3
primary 1 through 4	2