哈爾濱工業大學

模式识别与机器学习实验报告

实验_**二**__

题	目	逻辑回归				
学	院	未来技术学院				
专	<u>1 1</u>	人工智能				
学	号	2023112419				
学	生	陈铠				
任	课教师	刘扬				

哈尔滨工业大学计算机科学与技术学院 2025 年秋季

一、 实验内容

(一)逻辑回归简要介绍

逻辑回归(Logistic Regression)是以二分类为主的判别式、监督学习的分类模型。

1逻辑回归的核心任务

逻辑回归的核心任务是针对输入的特征向量 $x \in \mathbb{R}^d$ 学习映射关系:

$$f(\mathbf{x};\theta): \mathbb{R}^d \to [0,1]$$

通过学习数据特征,建立拟合函数 $f(x;\theta)$ 来估计后验概率P(y=1|x),再基于概率阈值判别最终类别y。

在本实验中,主要研究逻辑回归的**线性二分类**问题。而事实上,也可以将逻辑回归算法拓展更广泛的问题上,例如通过对特征进行非线性映射,可以学习到非线性决策边界,通过设计 One-vs-Rest 或 Softmax 回归,可以实现多分类问题。

2 逻辑回归的数学模型

逻辑回归选用的拟合函数为

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x'}}$$

其中g(x)为 sigmoid 函数。 $\theta^T x = \sum_{i=0}^n \theta_i x_i$, $x_0 = 1$ 。

对于待分类样本,有
$$\hat{y} = \mathbb{I}[\theta^T x \ge 0]$$

3 逻辑回归的优化方法

3.1 符号定义

表 1 本实验使用符号

名称	符号	描述
特征矩阵	$X \in \mathbb{R}^{m \times n}$	每行 $x^{(i)} \in \mathbb{R}^n$ 为第 i 个样本,含 n 个特征(常置第一个特征为 1)
输出向量	$y \in \mathbb{R}^m$	每行 $y^{(i)}$ 为第 i 个样本的预测值(0 或 1)
参数向量	$\theta \in \mathbb{R}^n$	模型待优化变量
预测向量	$h \in \mathbb{R}^m$	每行 $h_i = h_{\theta}(x^{(i)})$

记训练集为 $\{(x^{(i)},y^{(i)})\}_i^m$ 且样本独立同分布,使用极大似然估计 MLE 以及交叉熵损失,可以得到

$$L(\theta) = P(y \mid X; \theta) = \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)}; \theta) = \prod_{i=1}^{m} (h_{\theta}(x^{(i)}))^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1 - y^{(i)}}$$
$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}) + (1 - y^{(i)}) \log (1 - h(x^{(i)}))$$

于是损失函数为

$$J(\theta) = -\frac{1}{m} [y^T \log h + (1 - y)^T \log (1 - h)] + \frac{\lambda}{2m} \theta^T \theta$$

其中 $\frac{\lambda}{2m}\theta^T\theta$ 为正则化项

模型的训练目标是

$$\theta^* = arg\underset{\theta}{min} J(\theta)$$

3.2 梯度下降法求解

梯度下降核心是求解损失函数梯度向量 $\nabla J(\theta) \in \mathbb{R}^n$,再沿负梯度方向更新参数单个参数的偏导数为

$$\frac{\partial}{\partial \theta_j} J(\theta) = -\frac{1}{m} \sum_{i=1}^m (y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)} + \frac{\lambda}{m} \theta_j$$

于是

$$\nabla J(\theta) == -\frac{1}{m} X^{T} (y - h) + \frac{\lambda}{m} \theta$$

更新公式为

$$\begin{split} \theta^{(t+1)} &= \theta^{(t)} - \alpha \cdot \nabla J(\theta^{(t)})\theta^{(t+1)} \\ &= \theta^{(t)} - \alpha \left[-\frac{1}{m} X^T (y - h^{(t)}) + \frac{\lambda}{m} \theta^{(t)} \right] \\ &= \theta^{(t)} + \frac{\alpha}{m} X^T (y - h^{(t)}) - \frac{\alpha \lambda}{m} \theta^{(t)} \end{split}$$

其中 $\frac{\alpha\lambda}{m}\theta^{(t)}$ 为正则项。

3.3 牛顿法求解

牛顿法使用二阶导数矩阵 Hessian 矩阵 $H \in \mathbb{R}^{n \times n}$ 加速收敛

$$H = \frac{1}{m}X^T DX + \frac{\lambda}{m}I$$

其中 $D \in \mathbb{R}^{m \times m}$ 是对角矩阵,对角元素 $D_{ii} = h_i(1 - h_i)$, $I \in \mathbb{R}^{n \times n}$ 是单位矩阵 更新公式为

$$\begin{split} \theta^{(t+1)} &= \theta^{(t)} - H^{-1} \nabla J (\theta^{(t)}) \\ &= \theta^{(t)} - \left(\frac{1}{m} X^T D^{(t)} X + \frac{\lambda}{m} I \right)^{-1} - \left[\frac{1}{m} X^T (y - h^{(t)}) + \frac{\lambda}{m} \theta^{(t)} \right] \end{split}$$

其中 $\frac{\lambda}{m}I$, $\frac{\lambda}{m}\theta^{(t)}$ 为正则项。

(二) 实验研究内容

1 研究样本数量、样本分布条件的影响

调整样本数量为100,200,类朴素贝叶斯分布与不满足类朴素贝叶斯分布。

2 研究两种求解方法和正则化的影响,

分别为: **梯度下降+无正则化、梯度下降+正则化、牛顿方法+无正则化、牛顿方法** +正则化。

3 研究模型在真实数据上的分类表现

使用 UCI 数据集(<u>https://archive.ics.uci.edu/dataset/267/banknote+authentication</u>)。 共 1372 个样本,特征维度为 4,类别为 2

二、 实验环境

操作系统: Windows 11 实验平台: pycharm

解释器版本: Python 3.12

工具包:

表 2 本实验使用工具包

工具包名称	版本
pip	25.2
matplotlib	3.10.6
numpy	2.3.3
scikit-learn	1.7.2

三、 实验结果及分析

(一) 样本数量、样本分布条件的影响

在该项中选用梯度下降+无正则化的求解方法

图 1-4 样本数量、样本分布条件的影响训练结果表 3 样本数量、样本分布条件的影响

样本量/类朴素贝叶斯分布	训练轮次	训练集 acc	验证集 acc	训练集 loss
 100/是	200	0.994	1.000	0.0181
200/是	200	0.991	1.000	0.0187
100/否	200	0.981	1.000	0.0664
200/否	200	0.978	0.975	0.0751

样本分布的影响: 当样本符合类朴素贝叶斯分布时,训练集 acc≥0.99、loss≤0.0187、验证集 acc=1.0,说明逻辑回归在数据满足线性可分或近似线性分布(如类朴素贝叶斯分布)时,模型拟合效率高、泛化稳定性强,且参数少。反之,逻辑回归性能略有下降,证明逻辑回归对数据分布敏感,依赖"特征与标签线性相关"假设

样本量的影响:类朴素贝叶斯分布下,逻辑回归在较小样本量的情况下均能保持极高准确率和泛化率,但当样本量较大时其训练时间、性能消耗增加,效果可能下降。

(二) 两种求解方法和正则化的影响

在该项中选择样本数量为200,分布为类朴素贝叶斯分布。

图 5-8 求解方法和正则化的影响训练结果 表 4 求解方法和正则化的影响

求解方法/正则化	训练轮次	训练集 acc	验证集 acc	训练集 loss
梯度下降/否	200	0.991	1.000	0.0187
梯度下降/是	200	0.991	1.000	0.0235
牛顿法/否	14	0.991	1.000	0.0132
牛顿法/是	10	0.991	1.000	0.0215

求解方法的影响:牛顿法显著降低了逻辑回归的训练轮次,说明其在解决该类问题上的高效性,但考虑到其求解方法需要计算 Hessian 矩阵,当样本特征映射至高维后,求解复杂度将极大增加,这是其局限性。

正则化的影响:逻辑回归加入正则化后 acc 不变、loss 略升,说明其过拟合控制能力有限,正则化仅通过惩罚参数抑制复杂度,无法从模型结构上避免过拟合。

(三)模型在真实数据上的分类表现

表 5 真实数据集上的表现

求解方法/正则化	训练轮次	训练集 acc	验证集 acc	训练集 loss
梯度下降/否	200	0.985	0.971	0.0418
梯度下降/是	200	0.985	0.971	0.0461
牛顿法/否	17	0.991	0.985	0.0183
牛顿法/是	10	0.993	0.985	0.0355

可以发现,模型在真实数据集上仍有较好的表现,且与自建数据集上的表现相近,验证了模型的正确性。

四、结论

样本符合类朴素贝叶斯分布时,模型训练精度高(acc≥0.991)、损失低(loss≤0.0187)、泛化能力强(验证集 acc≥1.0);而非该分布下,模型性能显著下降,且样本量增大会进一步加剧拟合难度与泛化能力下滑。

牛顿法求解效率与性能均优于梯度下降,无论在类朴素贝叶斯分布数据还是真实数据中,牛顿法的收敛轮次仅为梯度下降的1/10-1/20,且能实现更高的训练精度与更低的训练损失,是逻辑回归模型更高效的求解方法。

正则化在实验条件下作用有限:在样本符合类朴素贝叶斯分布(无过拟合)或真实数据(轻微过拟合风险)中,正则化仅轻微提高训练损失,对验证集泛化精度无影响;仅在牛顿法+真实数据的组合中,正则化小幅提升训练精度,但整体未改变模型核心性能。

五、 参考文献

- [1] (美) SHELDON AXLER 著; 杜现坤, 刘大艳, 马晶译. 线性代数应该这样学 第 3 版[M]. 北京: 人民邮电出版社, 2016.10.
- [2]周志华著. 机器学习[M]. 北京: 清华大学出版社, 2016.01.
- [3]谢文睿,秦州编著. 机器学习公式详解[M]. 北京: 人民邮电出版社,2021.03.
- [4]李航著. 统计学习方法 第 2 版[M]. 北京: 清华大学出版社, 2019.05.