

UNIVERSIDADE da MADEIRA

Centro de Competência de Ciências Exactas e da Engenharia

PROVA DE AVALIAÇÃO DE CONHECIMENTOS E COMPETÊNCIAS PARA ADMISSÃO AO ENSINO SUPERIOR

MATEMÁTICA 15/06/2011

Atenção: Não é permitido o uso de calculadora nem de telemóvel.
Duração: 120m
Nome:
B.I

Justifique os raciocínios utilizados na resolução das questões.

Questões:	1	2	3	4	5	6	7
Cotações:	2, 5	2, 5	2, 0	3 , 0	4 , 5	2 , 5	3, 0

1. Considere as sucessões de termos gerais:

$$a_n = \frac{(-1)^n}{2} \qquad b_n = 1 - (1 - n)^2$$
$$c_n = \frac{\sqrt{n}}{n+1} \qquad d_n = \left(\frac{1}{3}\right)^n$$

Indique, justificando:

- 1.1 uma sucessão monótona;
- 1.2 uma sucessão limitada;
- 1.3 uma sucessão convergente;
- 1.4 uma sucessão majorada mas não minorada.

- **2.** Considere $u_n = a^{n+1}$. Calcule o $\lim_{n \to +\infty} u_n$ nos seguintes casos:
 - **2.1** com a > 1
 - **2.2** com 0 < a < 1
- **3.** Determine o valor de k (ou valores de k) de modo que a função $f(x) = e^x + \frac{k + \log(1+x)^2}{1-x}$ intercepte os eixos coordenados em (0,-2).
- **4.** Sejam as funções $g(x) = \log\left(-x + \frac{3}{x}\right)$ e $h(x) = \sqrt[4]{\frac{x^2}{e^x}}$. Indique a afirmação correcta, *justificando*:
 - (A) $Dg \subset D_h$
 - **(B)** $D_q = D_h$
 - (C) $D_h \subset D_g$
- 5. Considere a seguinte função real de variável real:

$$j(x) = \begin{cases} \frac{x}{\sqrt[3]{1-x}} & x > 1\\ x - x^3 & x \le 1 \end{cases}$$

- **5.1** determine o domínio da função j(x);
- **5.2** calcule, caso existam, os zeros de j(x);
- **5.3** $\lim_{x \to 1^{-}} j(x)$ e $\lim_{x \to 1^{+}} j(x)$;
- **5.4** calcule, caso existam, as assímptotas de j(x);
- **5.5** estude a continuidade de j(x).

6. Seja tg $\theta = 2 \mod \theta \in \left]0, \frac{\pi}{2}\right[$. Mostre que:

$$\frac{\sin^2 \theta - \cos^2 \theta \lg \theta}{\sin \theta \cos \theta} = 1$$

7. Num determinado exame compareceram 60 alunos, dos quais 15 são do sexo masculino, 20 têm idade superior a 30 anos e 9 têm as 2 características anteriores.

Escolhido um aluno ao acaso, determine a probabilidade de esse aluno

- 7.1 ser do sexo masculino;
- 7.2 ter idade até 30 anos;
- 7.3 ser do sexo masculino e ter idade até 30 anos.

UNIVERSIDADE da MADEIRA

Centro de Competência de Ciências Exactas e da Engenharia

PROVA DE AVALIAÇÃO DE CONHECIMENTOS E COMPETÊNCIAS PARA ADMISSÃO AO ENSINO SUPERIOR

MATEMÁTICA 15/06/2011 - Soluções

1. divergente divergente a_n limitada $-\frac{1}{2} \le a_n \le \frac{1}{2}$ b_n não limitada, majorada $b_n \le 1$ monótona decrescente convergente $\lim c_n = 0$ convergente $\lim d_n = 0$ limitada $0 < c_n \le \frac{1}{2}$ d_n limitada $0 < d_n \le \frac{1}{3}$ monótona decrescente monótona decrescente 1.1 b_n ou c_n ou d_n 1.2 a_n ou c_n ou d_n 1.4 c_n ou d_n 1.3 2.1 a > 1 $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} a^{n+1} = a \lim_{n \to +\infty} a^n = +\infty$

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} a^{n+1} = a \lim_{n \to +\infty} a^n = +\infty$$

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} a^{n+1} = a \lim_{n \to +\infty} a^n = 0$$

0 < a < 1

2.2

3.
$$f(0) = -2 \Leftrightarrow e^0 + \frac{0 + \log(1 + 0)^2}{1 - 0} = -2 \Leftrightarrow \boxed{k = -3}$$

4.
$$D_g = \left\{ x : -x + \frac{3}{x} > 0 \right\} = \left] -\infty, -\sqrt{3} \left[\cup \right] 0, \sqrt{3} \left[D_h = \mathbb{R} \right] \right\}$$

 $\left(\left]-\infty,-\sqrt{3}\right[\cup\left]0,\sqrt{3}\right[\right)\subset\mathbb{R},$ a afirmação correcta é $% \left(\mathbf{A}\right)$ $Dg\subset D_{h}$

5.1
$$D_j = \mathbb{R}$$

5.2
$$j(x) = 0 \Leftrightarrow \frac{x}{\sqrt[3]{1-x}} = 0 \Leftrightarrow x = 0 \text{ com } x \neq 1, \text{ mas } 0 \notin]1, +\infty[$$

$$j\left(x\right)=0\Leftrightarrow x-x^{3}=0\Leftrightarrow x\left(1-x^{2}\right)=0\Leftrightarrow x=0\vee x=1\vee x=-1$$
os zeros de $j\left(x\right)$ são: $\left\{-1,0,1\right\}$

5.3
$$\lim_{x \to 1^{-}} j(x) = \lim_{x \to 1^{-}} (x - x^{3}) = 0$$

$$\lim_{x \to 1^{+}} j(x) = \lim_{x \to 1^{+}} \left(\frac{x}{\sqrt[3]{1 - x}} \right) = -\infty$$

5.4

$$m = \lim_{x \to -\infty} \frac{j(x)}{x}$$

$$= \lim_{x \to -\infty} \frac{x - x^3}{x}$$

$$= \lim_{x \to -\infty} (1 - x^2)$$

$$= -\infty$$

$$m = \lim_{x \to +\infty} \frac{j(x)}{x} = \lim_{x \to +\infty} \frac{\frac{x}{\sqrt[3]{1-x}}}{x}$$

$$= \lim_{x \to +\infty} \frac{1}{\sqrt[3]{1-x}} = 0$$

$$b = \lim_{x \to +\infty} (j(x) - mx)$$

$$= \lim_{x \to +\infty} \frac{x}{\sqrt[3]{1-x}} = +\infty$$

Existe apenas uma assímptota vertical em $x = 1^+$ (pela alínea 5.3)

5.5 Pela alínea **5.3)** j(x) não é contínua em x=1 (não existe $\lim_{x\to 1} j(x)$). Logo j(x) é contínua em $\mathbb{R}\setminus\{1\}$.

6.

$$tg \theta = 2 \Leftrightarrow \frac{\sin \theta}{\cos \theta} = 2 \Leftrightarrow \sin \theta = 2\cos \theta$$

$$\frac{\sin^2 \theta - \cos^2 \theta \operatorname{tg} \theta}{\sin \theta \cos \theta} = \frac{(2\cos \theta)^2 - (\cos \theta)^2 2}{(2\cos \theta)(\cos \theta)}$$
$$= \frac{4\cos^2 \theta - 2\cos^2 \theta}{2\cos^2 \theta} = \frac{2\cos^2 \theta}{2\cos^2 \theta} = 1$$

7. Considerando

A: "aluno do sexo masculino"

B: "aluno com idade até 30 anos"

7.1
$$P(\mathbf{A}) = \frac{15}{60} = 0.25$$

7.2
$$P(\mathbf{B}) = \frac{40}{60} = \frac{2}{3} = 0,667$$

7.3
$$P(\mathbf{A} \cap \mathbf{B}) = \frac{6}{60} = 0, 1$$