

RECOMMENDER

RECOMMENDATION ENGINE IS DEEPLY EMBEDDED IN OUR LIVES

WHY RECOMMENDER SYSTEM?

Choice overload

Long tail problem

Customer	What to choose?	Never exposed to long tail products
Saler	What to promote?	Poor sales on long tail products

THE DILEMMA OF THE RECOMMENDER

Recommender underlying assumption:

What customer bought haven't address all their needs.

If the history is the golden standard, there is no need for recommender.

Normal model underlying assumption:

History is going to repeat itself

If history is not going to repeat itself, there is no need for predictive model

AN EFFECTIVE RECOMMENDER NEEDS TO CATER

DIVERSE USER NEEDS

Meaning

History

Good recommender

Bad recommender

Familiarity

"This makes sense. I do by it regularly. It is convenient for me to see it on the recommendation."

'What is this?!"

Novelty

"Don't keep telling me everything I already knew."

Diversity

"Just because I bought chips before, doesn't mean chips are the only thing I will ever need!"

Serendipity

"This is a match made in heaven."

af fa

"It's summer and after all these fast food, I really need some exercise "."

"What the ??? I am a single man..."

ASSOCIATION RULE MINING - MARKET BASKET ANALYS

Basket 1

Basket 2

Basket 3

Basket 4

$$support(x \to y) = \frac{count(x \cup y)}{total count}$$

$$confidence(x \to y) = \frac{count(x \cup y)}{count(x)}$$

$$lift(x \to y) = \frac{confidence(x \to y)}{support(y)} = \frac{support(x \to y)}{support(x) \times support(y)}$$

	Support	Confidence	Lift
{beer} -> {diaper}	50%	67%	1.33
{beer, milk} -> {diaper}	100%	100%	2
{beer} -> {coke}	25%	0.33	0.67

Typically the association is interesting if it satisfy certain support, confidence and have a lift that is bigger than 1

SMART ADAPTIVE RECOMMENDATION SYSTEM

Get the similarity by Association Rule Mining

$$lift(x \rightarrow y) = \frac{confidence(x \rightarrow y)}{support(y)} = \frac{support(x \rightarrow y)}{support(x) \times support(y)}$$

Measure the similarity of the item to the items the users already

purchased

An oversimplified explanation

	Lift
{beer} -> {chip}	1.5
{beer} -> {pizza}	2
{beer} -> {milk}	0.2
{beer} -> {coke}	0.5

	Past purchase	Beer
	chip & pizza	Recommend
0	milk & coke	NOT

<u>ecomm</u>

FILTERING METHODS

The key is to define and calculate similarity

COLLABORATIVE FILTERING V.S. CONTENT BASED FILTERING

https://www.researchgate.net/publication/318129942_Recommender_System_for_News_Articles_using_Supervised_Learning

CONTENT BASED FILTERING

COLLABORATIVE FILTERING

User-based filtering

Item-based filtering

3

Item similarity

User-based filtering

Item-based filtering

0

3

0

User similarity

Item similarity

COLLABORATIVE FILTERING

User-based filtering

Item-based filtering

Item similarity

From internet and modified

User similarity

COLLABORATIVE FILTERING WITH MATRIX FACTORIZATIONS

BRING IN ADDITIONAL INFORMATION TO RECOMMENDER SYST

Item inforamtion

User inforamtion

Contextual inforamtion:

Location
Time
Weather
Special event
Holiday

.

DEEP LEARNING FOR RECOMMENDATION SYSTEM

Collaborative Item similarity

Social+Interest Graph Based (Your friends like Lady

Model Based Training SVM, LDA, SVD for implicit features

Gaga so you will like Lady Gaga, PYMK - Facebook, LinkedIn)

Filtering - Item-

(You like Godfather so you will like Scarface - Netflix)

> Collaborative Filtering - User-User Similarity

(People like you who bought beer also bought diapers - Target)

Deep learning

Item Hierarchy

Attribute-based

recommendations (You like action movies, starring

Clint Eastwood, you might like "Good,

Bad and the Ugly"

Netflix)

(You bought Printer you will also need ink - BestBuy)

EVALUATION

P@K

R@K

NDCG

https://en.wikipedia.org/wiki/Discounted_cumulative_gain

THE VALUE OF THE RECOMMENDATION SYSTEM

DXX

Netflix: 2/3 of the movies watched are recommended

Google news: recommendation generate 38% more click through

Amazon: 35% incremental sales from recommendation

Linkedin: Job matching algorithm improve the performance by 50%

