强化学习基本原理及编程实现 09: 深度确定性策略梯度 郭宪

2019.11.24

人工智能学院 College of Artificial Intelligence

强化学习的目标函数

强化学习的目标函数:

$$J(\pi) = E[\sum_{k=t}^{\infty} \gamma^{k-t} r(s_k, a_k)]$$

如果表示从状态s经时间步 t 转移到状态s'的概率为: $p(s \rightarrow s', t, \pi)$

我们也可以表示折扣状态分布为: $\rho^{\pi}(s') := \int_{S} \sum_{t=1}^{\infty} \gamma^{t-1} p_1(s) p(s \to s', t, \pi) ds$

强化学习目标可以写为: $J(\pi_{\theta}) = \int_{S} \rho^{\pi}(s) \int_{A} \pi_{\theta}(s,a) r(s,a) dads$

随机策略梯度理论

强化学习目标可以写为: $J(\pi_{\theta}) = \int_{S} \rho^{\pi}(s) \int_{A} \pi_{\theta}(s,a) r(s,a) dads$

策略梯度理论:

$$\nabla_{\theta} J(\pi_{\theta}) = \int_{S} \rho^{\pi} (s) \int_{A} \nabla_{\theta} \pi_{\theta}(a \mid s) Q^{\pi} (s, a) dads$$

$$= \mathbb{E}_{s \sim \rho^{\pi}, a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a \mid s) Q^{\pi}(s, a) \right]$$

策略梯度很简单,尽管分布依赖于参数,但是策略梯度并不依赖于状态的分布

还没有解决的问题:如何估计行为值函数?

随机策略梯度理论

如何估计行为值函数?

1. 如果不用估计值, REINFORCE算法

$$\nabla_{\theta} J(\pi_{\theta}) = \int_{S} \rho^{\pi} (s) \int_{A} \nabla_{\theta} \pi_{\theta}(a \mid s) Q^{\pi} (s, a) dads$$

$$= \mathbb{E}_{s \sim \rho^{\pi}, a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a \mid s) Q^{\pi} (s, a) \right]$$

2. 如果用函数逼近的方法来估计值函数,则称为Actor-Critic框架。

 π Actor 调整策略网络的参数 π_{θ}

Critic调整行为值函数网络的参数 $Q^{\nu}(s,a)$

一般情况下,带入一个函数逼近器来代替行为值函数会引入偏差。与策略相容的无偏差的函数逼近器称为相容函数。

随机策略梯度的相容函数

策略梯度:

$$\nabla_{\theta} J(\pi_{\theta}) = \int_{S} \rho^{\pi}(s) \int_{A} \nabla_{\theta} \pi_{\theta}(a \mid s) Q^{\pi}(s, a) dads$$

$$= \mathbb{E}_{s \sim \rho^{\pi}, a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a \mid s) Q^{\pi}(s, a) \right]$$

将真正的行为值函数 $Q^{\pi}(s,a)$ 用函数来逼近,用来逼近的函数应该满足以下相容性条件:

$$Q^{w}(s, a) = \nabla_{\theta} \log \pi_{\theta}(a \mid s)^{T} w$$

W使得如下目标函数最小:
$$\varepsilon^2(w) = E_{s \sim \rho^{\pi}, a \sim \pi_{\theta}} \left[(Q^{w}(s, a) - Q^{\pi}(s, a))^2 \right]$$

随机 Off-policy Actor-Critic

采样策略为 β 要评估的策略为 π

目标函数为:

$$J_{\beta}(\pi_{\theta}) = \int_{S} \rho^{\beta}(s) V^{\pi}(s) ds$$
$$= \int_{S} \int_{A} \rho^{\beta}(s) \pi_{\theta}(a \mid s) Q^{\pi}(s, a) dads$$

Off-policy 策略梯度为:

$$abla_{ heta}J_{oldsymbol{eta}}(\pi_{ heta}) = E_{oldsymbol{s}\sim oldsymbol{
ho}^{eta},oldsymbol{a}\sim oldsymbol{eta}}igg[rac{\pi_{ heta}(a|s)}{eta_{ heta}(a|s)}
abla_{ heta}\log\pi_{ heta}(a|s)Q^{\pi}(s,a)igg]$$

随机策略 VS 确定性策略

随机策略:

$$\pi_{\theta}(a|s) = P[a|s;\theta]$$

在状态s,动作符合参数为 θ 的概率分布。训练时按照该概率分布采样。

确定性策略:

$$a = \mu_{\theta}(s)$$

在状态s, 动作是参数和状态的确定性函数

随机策略梯度对状态空间和动作空间积分。

$$\nabla_{\theta} J(\pi_{\theta}) = E_{s \sim \rho^{\pi}, a \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi}(s,a)]$$

确定性策略梯度只对状态空间积分。

因此, 计算随机策略梯度需要更多的样本, 特别是当动作空间有很多维数时。

确定性策略梯度强化学习算法

强化学习的框架:广义策略迭代

对于参数化的策略, 在进行策略改进时用的是梯度更新

确定性值函数

行为-值函数的定义:

$$Q^{\pi}(s_{t}, a_{t}) = \mathbb{E}_{r_{i \geq t}, s_{i > t} \sim E, a_{i > t} \sim \pi}[R_{t} \mid s_{t}, a_{t}]$$

利用迭代方式可以得到:

$$Q^{\pi}(s_{t}, a_{t}) = \mathbb{E}_{r_{t>t}, s_{t+1} \sim E_{t}}[r(s_{t}, a_{t}) + \gamma \mathbb{E}_{a_{t+1} \sim \pi}[Q^{\pi}(s_{t+1}, a_{t+1})]]$$

如果目标策略为确定性策略 μ ,则:

$$Q^{\mu}(s_{t}, a_{t}) = \mathbb{E}_{r_{t}, s_{t+1} \sim E_{t}}[r(s_{t}, a_{t}) + \gamma Q^{\mu}(s_{t+1}, \mu(s_{t+1}))]$$

期望仅仅依赖于环境

确定性策略梯度

策略改善: 在策略梯度的方向上更新参数

$$egin{aligned} heta^{k+1} \! = \! heta^k \! + \! lpha E_{s \sim
ho^{\mu^k}} \! igl[
abla_{ heta} Q^{\mu^k} \! igl(s, \mu_{ heta} \! igr(s) igr) igr] \end{aligned}$$

根据链式规则,得到确定性策略梯度理论:

$$abla_{ heta}J(\mu_{ heta})=E_{s\sim
ho^{\mu}}\!ig[
abla_{ heta}\mu_{ heta}(s)
abla_{a}Q^{\mu}(s,a)|_{a=\mu_{ heta}(s)}ig]$$

确定性 Actor-Critic 算法

异策略AC的方法:

行动策略为随机策略 eta(s,a)

要评估的策略为确定性策略: μ_{θ}

异策略确定性策略梯度: $\nabla_{\theta}J_{\beta}(\mu_{\theta}) = E_{s \sim \rho^{\beta}}[\nabla_{\theta}\mu_{\theta}(s)\nabla_{a}Q^{\mu}(s,a)|_{a=\mu_{\theta}(s)}]$

更新过程:

$$\delta_t \!=\! r_t \!+\! \gamma Q^{\hspace{1pt}w}(s_{t+1}, \mu_{ heta}(s_{t+1})) - Q^{\hspace{1pt}w}(s_t, a_t)$$
 ,

$$w_{t+1} = w_t + lpha_w \delta_t
abla_w Q^w(s_t, a_t)$$

$$oxed{ heta_{t+1}\!=\! heta_t\!+\!lpha_{ heta}
abla_{\! heta}\mu_{\! heta}(s_t)
abla_{\!a}Q^w(s_t,a_t)|_{a=\mu_{\! heta}(s)}}$$

确定性策略无需重采样

Qlearning(off-policy)

确定性策略梯度算法中如何评估行为值函数?

相容函数逼近

定理3:

函数逼近器 $Q^w(s,a)$ 是与确定性策略 $\mu_{\theta}(s)$ 及确定性策略梯度 $E[\nabla_{\theta}\mu_{\theta}(s)\nabla_aQ^w(s,a)|_{a=\mu_{\theta}(s)}]$ 相容条件:

1.
$$\nabla_a Q^w(s,a)|_{a=\mu_\theta(s)} = \nabla_\theta \mu_\theta(s)^T w$$

2. W最小化如下均方误差:

$$MSE(\theta, w) = E[\varepsilon(s; \theta, w)^{T} \varepsilon(s; \theta, w)]$$

其中:
$$\varepsilon(s;\theta,w) = \nabla_a Q^w(s,a)|_{a=\mu_\theta(s)} - \nabla_a Q^\mu(s,a)|_{a=\mu_\theta(s)}$$

相容函数的讨论

1.
$$\nabla_a Q^w(s,a)|_{a=\mu_\theta(s)} = \nabla_\theta \mu_\theta(s)^T w$$

满足该条件的相容函数为:

$$Q^{w}(s,a) = (a - \mu_{\theta}(s))^{T} \nabla_{\theta} \mu_{\theta}(s)^{T} w + V^{v}(s)$$

线性逼近函数对于预测全局的行为值函数并无用处,但是并不防碍作为局部 critic

相容函数的讨论

2. W最小化如下均方误差:

$$MSE(\theta, w) = E[\varepsilon(s; \theta, w)^{T} \varepsilon(s; \theta, w)]$$

其中:
$$\varepsilon(s;\theta,w) = \nabla_a Q^w(s,a)|_{a=\mu_{\theta}(s)} - \nabla_a Q^\mu(s,a)|_{a=\mu_{\theta}(s)}$$

直接优化该目标函数不可行:因为真实的梯度 $\nabla_a Q^{\mu}(s,a)|_{a=\mu_{\theta}(s)}$

在实际算法中:利用线性函数逼近器: $Q^{w}(s,a) = \phi(s,a)^{T}w$ 和时间差分的方法。

不能严格满足第二个条件

$$\delta_t \! = \! r_t \! + \! \gamma Q^w(s_{t+1}, \mu_{ heta}(s_{t+1})) - \! Q^w(s_t, a_t)$$

$$w_{t+1} \!=\! w_t \!+\! lpha_w \delta_t
abla_w Q^w(s_t, a_t)$$

$$egin{aligned} heta_{t+1} \!=\! heta_t \!+\! lpha_{ heta}
abla_{\! heta} \mu_{ heta}(s_t)
abla_{\!a} Q^w(s_t, a_t)|_{a = \mu_{\! heta}(s)} \end{aligned}$$

$$Q^w(s,a)$$
 , $\;\mu_ heta(s)$

利用神经网络进行逼近时,遇到的问题:

神经网络的训练假设数据之间是独立同分布的,而强化学习顺序采集的数据明显存在相关性。
 利用mini批方法进行优化数据可以得到充分利用。

DQN的成功:

- 1. 经验回放
- 2. 独立的目标网络

$$\begin{array}{c|c} S & \longrightarrow & w \\ & & \longrightarrow & A \\ S & \longrightarrow & \longrightarrow & Q(s,a) \end{array}$$

$$\delta_t \! = \! r_t \! + \! \left[\! \gamma Q^{rac{oldsymbol{w}}{}}\!\!\left(s_{t+1}, \mu_{rac{oldsymbol{ heta}}{}}\!\!\left(s_{t+1}
ight)
ight) \! - Q^w(s_t, a_t)$$

$$w_{t+1} \!=\! w_t \!+\! lpha_w \delta_t
abla_w Q^w(s_t, a_t)$$

$$egin{aligned} heta_{t+1} \!=\! heta_t \!+\! lpha_{ heta}
abla_{ heta} \mu_{ heta}(s_t)
abla_a Q^w(s_t, a_t)|_{a = \mu_{ heta}(s)} \end{aligned}$$

Nankai University

DDPG

DDPG算法伪代码

Randomly initialize critic network $Q(s,a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ .

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^{Q}, \theta^{\mu'} \leftarrow \theta^{\mu}$

Initialize replay buffer R

for episode = 1, M do

Initialize a random process N for action exploration

Receive initial observation state s_1

for t = 1, T do

行动策略为随机策略

Select action $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise

Execute action a_t and observe reward r_t and observe new state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

经验回放

Set
$$y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$$
 目标网络

Set $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$ 目标网络
Update critic by minimizing the loss: $L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i|\theta^Q)^2)$

Update the actor policy using the sampled gradient:

$$\nabla_{\theta^{\mu}}\mu|_{s_i} \approx \frac{1}{N} \sum_{i} \nabla_a Q(s, a|\theta^Q)|_{s=s_i, a=\mu(s_i)} \nabla_{\theta^{\mu}} \mu(s|\theta^{\mu})|_{s_i}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{Q'}$$
$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau)\theta^{\mu'}$$

目标网络参数更新

end for end for

DDPG扩展TD3

DDPG存在的问题

1. 值函数的过优估计问题

$$\begin{split} &\delta_t = r_t + \gamma Q^{\textcolor{red}{w}}(s_{t+1}, \mu_{\textcolor{red}{\theta}}(s_{t+1})) - Q^{\textcolor{red}{w}}(s_t, a_t) \\ &w_{t+1} = w_t + \alpha_w \delta_t \nabla_w Q^{\textcolor{red}{w}}(s_t, a_t) \\ &\theta_{t+1} = \theta_t + \alpha_\theta \nabla_\theta \mu_\theta(s_t) \nabla_a Q^{\textcolor{red}{w}}(s_t, a_t)|_{a = \mu_\theta(s)} \end{split}$$

解决问题的方法:

$$y_1 \! = \! r + \! \gamma \! \min_{i=1\,,\,2} \! Q_{ heta_i^{\,\prime}}\! \left(s^{\,\prime}\!, \pi_{\phi_1}\! \left(s^{\,\prime}\!
ight)
ight)$$

DDPG扩展TD3

2. 值函数高的方差

解决方法: 独立的目标网络

目标策略光滑:

$$y = r + Q_{ heta'}(s',\pi_{\phi'}(s') + \epsilon)$$
 , $\epsilon {\sim} clip\left(\mathcal{N}(0,\sigma),{-}\,c,c
ight)$

3. 策略网络与值函数网络之间存在耦合关系

Twin Delay 双延迟:目标网络更新,策略更新延迟

DDPG扩展TD3

Algorithm 1 TD3

Initialize critic networks Q_{θ_1} , Q_{θ_2} , and actor network π_{ϕ} with random parameters θ_1 , θ_2 , ϕ

Initialize target networks $\theta_1' \leftarrow \theta_1$, $\theta_2' \leftarrow \theta_2$, $\phi' \leftarrow \phi$ Initialize replay buffer \mathcal{B}

for t = 1 to T do

Select action with exploration noise $a \sim \pi_{\phi}(s) + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma)$ and observe reward r and new state s' Store transition tuple (s, a, r, s') in \mathcal{B}

Sample mini-batch of N transitions (s, a, r, s') from \mathcal{B} $\tilde{a} \leftarrow \pi_{\phi'}(s') + \epsilon, \quad \epsilon \sim \operatorname{clip}(\mathcal{N}(0, \tilde{\sigma}), -c, c)$ $y \leftarrow r + \gamma \min_{i=1,2} Q_{\theta'_i}(s', \tilde{a})$ Update critics $\theta_i \leftarrow \operatorname{argmin}_{\theta_i} N^{-1} \sum (y - Q_{\theta_i}(s, a))^2$ if $t \mod d$ then

Update ϕ by the deterministic policy gradient:

 $\nabla_{\phi} J(\phi) = N^{-1} \sum \nabla_{a} Q_{\theta_{1}}(s, a)|_{a = \pi_{\phi}(s)} \nabla_{\phi} \pi_{\phi}(s)$

Update target networks:

$$\theta_i' \leftarrow \tau \theta_i + (1 - \tau)\theta_i'$$

$$\phi' \leftarrow \tau \phi + (1 - \tau)\phi'$$

end if

end for

Environment	TD3	DDPG	Our DDPG	PPO	TRPO	ACKTR	SAC
HalfCheetah	9636.95 ± 859.065	3305.60	8577.29	1795.43	-15.57	1450.46	2347.19
Hopper	3564.07 ± 114.74	2020.46	1860.02	2164.70	2471.30	2428.39	2996.66
Walker2d	4682.82 ± 539.64	1843.85	3098.11	3317.69	2321.47	1216.70	1283.67
Ant	4372.44 ± 1000.33	1005.30	888.77	1083.20	-75.85	1821.94	655.35
Reacher	$\textbf{-3.60} \pm \textbf{0.56}$	-6.51	-4.01	-6.18	-111.43	-4.26	-4.44
InvPendulum	$\textbf{1000.00} \pm \textbf{0.00}$	1000.00	1000.00	1000.00	985.40	1000.00	1000.00
InvDoublePendulum	9337.47 ± 14.96	9355.52	8369.95	8977.94	205.85	9081.92	8487.15

D4PG: Distributed Distributional Deep Deterministic Policy Gradient

Actor-critic算法中策略梯度依赖于学到的critic, 这就意味着任何对critic学习过程进行改善的方法将直接改善actor更新质量。

值分布建模了由于函数逼近等带来的随机性,因此利用值分布进行更新critic将直接改善学习算法的表现。

用到的技巧:

- 1. 值分布式强化学习更细critic
- 2. 分布式并行Actor
- 3. N-step回报
- 4. 优先经验回访采数据

D4PG: Distributed Distributional Deep Deterministic Policy Gradient

Algorithm 1 D4PG

Input: batch size M, trajectory length N, number of actors K, replay size R, exploration constant ϵ , initial learning rates α_0 and β_0

- 1: Initialize network weights (θ, w) at random
- 2: Initialize target weights $(\theta', w') \leftarrow (\theta, w)$
- 3: Launch K actors and replicate network weights (θ, w) to each actor
- 4: **for** t = 1, ..., T **do**
- 5: Sample M transitions $(\mathbf{x}_{i:i+N}, \mathbf{a}_{i:i+N-1}, r_{i:i+N-1})$ of length N from replay with priority p_i
- 6: Construct the target distributions $Y_i = \left(\sum_{n=0}^{N-1} \gamma^n r_{i+n}\right) + \gamma^N Z_{w'}(\mathbf{x}_{i+N}, \pi_{\theta'}(\mathbf{x}_{i+N}))$ Note, although not denoted the target Y_i may be projected (e.g. for Categorical value distributions).
- 7: Compute the actor and critic updates

$$\delta_w = \frac{1}{M} \sum_i \nabla_w (Rp_i)^{-1} d(Y_i, Z_w(\mathbf{x}_i, \mathbf{a}_i))$$
$$\delta_\theta = \frac{1}{M} \sum_i \nabla_\theta \pi_\theta(\mathbf{x}_i) \mathbb{E}[\nabla_\mathbf{a} Z_w(\mathbf{x}_i, \mathbf{a})]|_{\mathbf{a} = \pi_\theta(\mathbf{x}_i)}$$

- 8: Update network parameters $\theta \leftarrow \theta + \alpha_t \delta_\theta$, $w \leftarrow w + \beta_t \delta_w$
- 9: If $t = 0 \mod t_{\text{target}}$, update the target networks $(\theta', w') \leftarrow (\theta, w)$
- 10: If $t = 0 \mod t_{\text{actors}}$, replicate network weights to the actors
- 11: **end for**
- 12: **return** policy parameters θ

D4PG: Distributed Distributional Deep Deterministic Policy Gradient

Figure 6: Experimental results for the three-dimensional (humanoid) parkour domain.