Theorem Statement

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation with associated matrix $A \in \mathbb{R}^{n \times n}$.

- 1. A is invertible
- 2. A has a pivot in every row
- 3. A has a pivot in every column
- 4. The system $A\mathbf{x} = \mathbf{b}$ has a unique solution for all $\mathbf{b} \in \mathbb{R}^n$
- 5. Ax = 0 has only the trivial solution

- 6. The columns of A are linearly independent
- 7. The columns of A span all of \mathbb{R}^n .
- 8. T is invertible
- 9. T is injective
- 10. T is surjective

We have the tools to prove all these, but really, it's just a summary of all the linear transformation and matrix algebra we've done so far!

One-sided inverse Implies the Other!

Theorem

Let $A \in \mathbb{R}^{n \times n}$. If there is some $B \in \mathbb{R}^{n \times n}$ such that

$$BA = I_n \text{ or } AB = I_n$$

Then, A is invertible and $A^{-1} = B$.

 $AB = I_n$ case

 $BA = I_n$ case