Fast and Accurate Influence Maximization on Large Networks with Pruned Monte-Carlo Simulations (AAAI-14)

大坂 直人(東京大学) 秋葉 拓哉(東京大学) 吉田 悠一(NII & PFI) 河原林 健一(NII)

器量最大化

Influence Maximization

ネットワーク上の情報拡散

近傍の近傍の近傍の・・・

A mention network on Twitter generated by mentionmapp.com

バイラル (感染式) マーケティング

[Domingos, Richardson. KDD'01], [Richardson, Domingos. KDD'02]

- 「ロコミ」を利用したマーケティング戦略
 - 少数に無料 or 割引商品を提供
 - 多数に宣伝効果

■ (提供コスト) < (宣伝による利益)だと嬉しい

- 例: Hotmail
 - 18ヶ月で12,000,000ユーザに増加
 - 「Hotmailで無料電子メールを入手しよう」

疑問

- 影響力の高い少数の集団を選択するには?
- 口コミ(情報拡散)のモデルは?

影響最大化

離散最適化問題

[Kempe, Kleinberg, Tardos. KDD'03]

ここから: アルゴリズミックな話題

影響最大化

(Influence Maximization)

[Kempe, Kleinberg, Tardos. KDD'03]

- 入力
 - ■有向グラフ G = (V, E)
 - 辺確率 p_e $(e \in E)$
 - ■シードサイズ *k*
- ■問題
 - maximize $\sigma(S)$ $(|S| \le k)$
 - σ(·): 影響拡散 (情報拡散モデル依存)

独立カスケードモデル

(Independent Cascade Model)

[Goldenberg, Libai, Muller. Marketing Letters'01]

頂点の状態: 非活性 or 活性

拡散過程

- **0.** *S* ⊆ *V* (**シード**) 内の頂点を活性化
- 1. 活性頂点u は非活性頂点vを確率 p_{uv} で活性化(一回きり)
- 2. 新たな活性化がある限り 1 を反復

独立カスケードモデルの例

- 影響拡散 $\sigma(S)$
 - Sをシードとした時に活性化する頂点数の期待値

既存の結果

困難さ

影響最大化は

NP-hard

[Kempe, Kleinberg, Tardos. KDD'03]

 $\sigma(\cdot)$ の厳密計算は

#P-hard

[Chen, Wang, Wang. KDD'10]

アプローチ

貪欲アルゴリズム

[Kempe, Kleinberg, Tardos. KDD'03] 近似比 ≈ **63**%

<u>Monte-Carlo</u> シミュレーション σ(·)を近似

貪欲+シミュレーション:

貪欲アルゴリズム [Kempe, Kleinberg, Tardos. KDD'03]

$$S \leftarrow \emptyset$$

while $|S| < k$ **do**
 $t \leftarrow \arg \max_{v \in V} \sigma(S \cup \{v\}) - \sigma(S)$
 $S \leftarrow S \cup \{t\}$

$$\sigma(\cdot)$$
 の**劣モジュラ性**により

$$\sigma(\cdot)$$
 の**劣モジュラ性**により $\sigma(S) \ge \left(1 - \frac{1}{e}\right)$ OPT ≥ 0.63 OPT

[Nemhauser, Wolsey, Fisher. Mathematical Programming'78]

劣モジュラ

$$f(S+v) - f(S) \ge f(T+v) - f(T)$$
$$\forall S \subseteq T \subseteq V, v \in V$$

貪欲+シミュレーション:

Monte-Carlo シミュレーション

- 拡散過程を繰り返しシミュレート
 - 10,000回くらい
- 活性頂点数の平均を出力

ほぼ最適な解を出力
$$\left(1-\frac{1}{e}-\varepsilon'\right)$$
何が問題か?

問題: 貪欲+シミュレーションは スケーラビリティに乏しい

貪欲アルゴリズム

 $\sigma(\cdot)$ の計算回数: nk<

Monte-Carlo シミュレーション

 \downarrow $\sigma(\cdot)$ の計算時間: O(mR)

$$n = |V| > 10^6$$

$$m = |E| > 10^7$$

k: シードの数

 $R = \text{poly}(\varepsilon^{-1})$: シミュレーション数

既存手法

	低品質	高品質
低速	シミュレーション	Greedy Approach [Kempe, Kleinberg, Tardos. KDD'03] CELF [Leskovec, Krause, Guestrin, Faloutsos, VanBriesen, Glance. KDD'07] StaticGreedyDU [Cheng, Shen, Huang, Zhang, Cheng. CIKM'13]
高速	DegreeDiscount [Chen, Wang, Yang. KDD'09] PMIA [Chen, Wang, Wang. KDD'10] SAEDV [Jiang, Song, Cong, Wang, Si, Xie. AAAI'11] IRIE [Jung, Heo, Chen. ICDM'12]	おと単な

我々の貢献

- 枝刈りシミュレーションに基づく手法を提案
 - ■高速
 - ヒューリスティクスと同等
 - **60,000,000辺** のグラフを **20分** で処理
 - ■高精度
 - ■理論的保証を有する

シミュレーションベースの手法の スケーラビリティが飛躍的に向上

提案手法

提案手法の概要

■ 前処理: ランダムグラフの生成

☆ コインフリップテクニック

■ 貪欲法 $S \leftarrow \emptyset$ while |S| < k do $t \leftarrow \arg\max_{v \in V} \frac{\sigma(S \cup \{v\}) - \sigma(S)}{\sigma(S \cup \{t\})}$ $S \leftarrow S \cup \{t\}$ ① 提案高速化手法

前処理: ランダムグラフの生成

コインフリップテクニック

[Kempe, Kleinberg, Tardos. KDD'03]

影響拡散 $\sigma(S)$ の計算

ランダムグラフ上でSから

到達可能な頂点数の計算

各辺eを確率 p_e で残す

残った辺: 試行成功

消えた辺: 試行失敗

入力グラフ *G*

$\sigma(S)$ の近似

$$\sigma(S) \approx \frac{1}{R} \sum_{1 \le i \le R} \sigma_{G_i}(S)$$

$$\sigma_{G_i}(S) = G_i$$
上で S から
到達可能な頂点数

R = 200							
v	$\sigma_{G_1}(\{v\})$		$\sigma_{G_R}(\{v\})$	$\sigma(\{v\})$	L		
A	3	•••	2	2.4			
B	4		2	2.8			
C	2		2	1.6			
D	1		1	1	L		
E	1	•••	1	1			
F	3		2	2.2			

挑戦

右の表を可能な限り 高速に求めたい!

提案高速化手法

(各ランダムグラフに独立に適用)

1. Pruned BFS (枝刈り幅優先探索)

ソーシャルネットワークの構造的性質を利用

[Akiba, Iwata, Yoshida. SIGMOD'13] [Yano, Akiba, Iwata, Yoshida. CIKM'13] [Akiba, Iwata, Kawarabayashi, Kawata. ALENEX'14]

- $\mathbf{2.}$ 不要な $\sigma_{G_i}(\cdot)$ 再計算の検知・回避
- 3. 標本平均近似法によるランダムグラフ数Rの抑制 [Kimura, Saito, Nakano. AAAI'07], [Cheng, Shen, Huang, Zhang, Cheng. CIKM'13] [Sheldon et al., UAI'10]
 - 理論的根拠を与えた
 - $\sigma(\cdot)$ の見積もり精度に影響を与えない

Pruned BFS

- アイデア: ほとんどのBFSは冗長
- 前処理: 次数最大の頂点 H の先祖と子孫を計算
- 枝刈り (v から BFS):
 もしvが H の先祖なら, H の子孫を無視

Pruned BFS は効果的?

- パスグラフでは...
 - **非**効率的 Θ(|V|²)

ソーシャルネットワーク

- ソーシャルネットワークなら...
 - ■効率的
 - ハブ / 巨大連結成分の存在

ソーシャルネットワーク上の Pruned BFS の効果

(LiveJournal dataset, |V|=4.8M, |E|=69M, $p_e=0.1 \forall e$)

Naive BFSとPruned BFSで訪れた頂点数の分布

- 各頂点から訪れた平均頂点数
 - **400,000** (Naive BFS) ⇒ **6** (Pruned BFS)

高速化手法の直感的意味

- 前処理: ランダムグラフ $G_1, ..., G_R$
- 貪欲法

$$S \leftarrow \emptyset$$

while |S| < k do

$$t \leftarrow \arg\max_{v \in V} \frac{1}{R} \sum_{1 \le i \le R} \sigma_{G_i}(S \cup \{v\}) - \sigma_{G_i}(S)$$

 $S \leftarrow S \cup \{t\}$

k: while |S| < k do

n: arg max

 $R: \sum_{1 \leq i \leq R}$

 $m: \sigma_{G_i}(S \cup \{v\}) - \sigma_{G_i}(S)$

手法2 検知・回避 手法1 Pruned BFS

手法3

標本平均近似法

O(knmR)

美驗結果

実行時間[秒]の比較(手法3有)

各辺について $p_e = P$. シードサイズ k = 50

データセット	手法1 有 手法2 有	手法1 無 手法2 有	手法1 有 手法2 無	手法1 手法2	_
DBLP (<i>P</i> = 0.01)	27	26	149		158
$ \begin{array}{c} DBLP \\ (P = 0.1) \end{array} $	54	3,036	306	•	3,275
LiveJournal $(P = 0.01)$	327	1,934	2,176		3,820
LiveJournal $(P = 0.1)$	634	272,518	2,426	272	2,973
			データセット		E
	DBLP	655K	2.0M		
•	10分 ← 3日		Live Journal	4.8M	69M

25

影響拡散

各辺について $p_e = P$. シードサイズ k = 50

データセット 提案手法		StaticGreedy DU [Cheng+'13]	IRIE [Jung+'12]	PMIA [Chen+'10]	SAEDV [Jiang+'11]
DBLP (<i>P</i> = 0.01)	332	330	323	317	76
DBLP (<i>P</i> = 0 . 1)	100076		99533	99505	99579
LiveJournal $(P = 0.01)$	47527		41906	40544	26066
LiveJournal $(P = 0.1)$	1686629		1682436		1682242

・提案手法が最良

データセット	V	E
DBLP	655K	2.0M
Live Journal	4.8M	69M

実行時間 [秒]

各辺について $p_e = P$. シードサイズ k = 50

データセット	提案手法	StaticGreedy DU [Cheng+'13]	IRIE [Jung+'12]	PMIA [Chen+'10]	SAEDV [Jiang+'11]
$\begin{array}{c} DBLP \\ (P=0.01) \end{array}$	27	117	77	4	388
DBLP (<i>P</i> = 0 . 1)	52	ООМ	77	289	388
LiveJournal $(P = 0.01)$	327	ООМ	1,622	500	1,275
LiveJournal $(P = 0.1)$	663	OOM	1,635	OOM	1,294

ヒューリスティクスと同等

P に対して頑健

データセット	V	E
DBLP	655K	2.0M
Live Journal	4.8M	69M

今後の展望

・他モデルへの適用

■並列化

■ Pruned BFS の効率の解析

28th AAAI Conference on Artificial Intelligence (AAAI-14)

- 人工知能のトップ会議
- 7/27~31, Québec, Canada
- 採択論文: 約400本
 - 採択率28%
 - ■日本からは9本
- 参加者: 約1000人
- 機械学習,ゲーム理論,探索, 自然言語処理,プランニング, ビジョン,WEB,...

口頭発表

ポスター発表