Consider a DASH system for which there are N video versions (at N different rates and qualities) and N audio versions (at N different rates and qualities). Suppose we want to allow the player to choose at any time any of the N video versions and any of the N audio versions.

(a)) If we create files so that the audio is mixed in with the video, so server sends	s only one media stream
	at given time, how many files will the server need to store (Each a different U	$^{\prime}\mathrm{RL})?$

(b)	If the server instead sends the audio and video streams separately and has the client synchronize the
	streams, how many files will the server need to store?

Write your solution to Problem 1 in this box

Suppose you have a new computer just set up. dig is one of the most useful DNS lookup tool. You can check out the manual of dig at http://linux.die.net/man/1/dig. A typical invocation of dig looks like: dig @server name type.

Suppose that on April 19, 2018 at 15:35:21, you have issued "dig google.com A" to get an IPv4 address for google.com domain from your caching resolver and got the following result:

```
; <<>> DiG 9.8.3-P1 <<>> google.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 17779
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 4, ADDITIONAL: 4
;; QUESTION SECTION:
;google.com.
                            IN
                                   Α
;; ANSWER SECTION:
google.com.
                     239
                            TN
                                   Α
                                          172.217.4.142
;; AUTHORITY SECTION:
                                          ns4.google.com.
google.com.
                     55414 IN
                                   NS
google.com.
                     55414 IN
                                   NS
                                          ns2.google.com.
google.com.
                     55414 IN
                                   NS
                                          ns1.google.com.
google.com.
                     55414 IN
                                   NS
                                          ns3.google.com.
;; ADDITIONAL SECTION:
ns1.google.com. 145521 IN
                 215983 IN
215983 IN
                                          216.239.32.10
ns2.google.com.
                                  Α
                                          216.239.34.10
ns3.google.com.
                                          216.239.36.10
                                   Α
ns4.google.com.
                     215983 IN
                                          216.239.38.10
                                   Α
;; Query time: 81 msec
;; SERVER: 128.97.128.1#53(128.97.128.1)
;; WHEN: Wed Apr 19 15:35:21 2017
;; MSG SIZE rcvd: 180
```

- (a) What is the discovered IPv4 address of google.com domain?
- (b) If you issue the same command 1 minute later, how would "ANSWER SECTION" look like?
- (c) When would be the earliest (absolute) time the caching resolver would contact one of the google.com name servers again?
- (d) If the client keeps issuing dig google.com A every second, when would be the earliest (absolute) time the caching resolver would contact one of the .com name servers?

Write your solution to Problem 2 in this box

The sender side of $rdt3.0$ simply ignores (that is, takes no action on) all received packets that are either
in error or have the wrong value in the acknum field of an acknowledged packet. Suppose that in such
circumstances, rdt3.0 were simply to retransmit the current data packet. Would the protocol still work?
(Hint: Consider what would happen if there were only bit errors; there are no packet losses but premature
timeouts can occur. Consider how many times the <i>nth</i> packet is sent, in the limit as n approaches infinity).

Write your solution to Problem 3 in this box

Consid	er a reliable data transfer protocol that uses only negative acknowledgments.	Suppose the sender
sends of	data only infrequently. Would a NAK-only protocol be preferable to a protocol	col that uses ACKs?
Why?	Now suppose the sender has a lot of data to send and the end-to-end connection	tion experiences few
losses.	In this second case, would a NAK-only protocol be preferable to a protocol tha	t uses ACKs? Why?
	Write your solution	n to Problem 4 in this box

Write your solution to Problem 4 in this box

the sender at time t? Justify your answer.

Consider the GBN protocol with a sender window size of 4 and a sequence number range of 1,024. Suppose that at time t, the next in-order packet that the receiver is expecting has a sequence number of k. Assume that the medium does not reorder messages. Answer the following questions:

(a)	What are t	the	possible	sets of	of sequ	ence	numbers	inside	e the	senders	window	at	time	t? .	Justify	your
	answer.															
(b)	What are a	all p	ossible	values	of the	ACK	field in	all po	ssible	e messag	es curre	ntly	prop	agat	ing ba	ack to

Write your solution to Problem 5 in this box