Inatel – Instituto Nacional de Telecomunicações

Sistemas de Coordenadas

M002-E – Álgebra Linear e Geometria Analítica

Prof. Edson J. C. Gimenez

2019/Sem1

Referências

- 1. MUNEM, Mustafá A. **Cálculo Vol. 1.** Coautor David J. Foulis. Rio de Janeiro, RJ: Editora Guanabara Dois, 1986.
- 2. LARSON, Ron; HOSTETLER, Robert P.; EDWARDS, Bruce H. **Cálculo Vol. 2.** 8. ed. São Paulo, SP: Editora McGraw-Hill, 2006.
- 3. ANTON, Howard. **Cálculo Vol.2:** um novo horizonte. 6. ed. São Paulo, SP: Editora Bookman, 2000. v. 2
- 4. SWOKOWSKI, Earl William. **Cálculo com geometria analítica Vol.2.** 2. ed. São Paulo, SP: Makron Books, 1994. v. 2
- SIMMONS, George F. Cálculo com geometria analítica Vol.2. São Paulo, SP: McGraw-Hill, 1988.
- SPIEGEL, Murray Ralph. Cálculo avançado. São Paulo, SP: McGraw-Hill, 1975

Sistema de Coordenadas Retangulares

- a) No espaço bidimensional
- b) No espaço tridimensional

x = abscisa

y = ordenada

 $z = \cot a$

Sistema de Coordenadas Polares

Para construir um sistema de coordenadas polares (no plano), fixamos um ponto O, chamado de **pólo** (ou **origem**), e traçamos, a partir de O, um raio inicial, orientado, chamado de **eixo polar**. Com isto, podemos associar a cada ponto do plano suas **coordenadas polares**, designadas por (r, θ) , onde: $r = \acute{e}$ a distância de O a P e $\theta = \acute{e}$ o ângulo, no

sentido anti-horário, do eixo polar ao segmento OP.

* θ negativo qdo no sentido horário.

A figura mostra vários pontos no sistema de coordenadas polares. Observemos que, neste sistema, é conveniente localizar os pontos em relação a um conjunto de circunferências concêntricas e linhas radiais que passam pelo pólo.

Exemplos: coordenadas polares

Em coordenadas retangulares, cada ponto (x, y) tem uma representação única. Isto não ocorre em coordenadas polares. Exemplos:

- as coordenadas (r, θ) e $(r, \theta + 2\pi)$, representam um mesmo ponto.
- as coordenadas $(-r, \theta)$ e $(r, \theta + \pi)$, representam um mesmo ponto.

Exemplo 2: Um dado ponto tem um número ilimitado de conjuntos de coordenadas polares. Basta lembrarmos da trigonometria e veremos que o ponto $P(5,30^{\circ})$ é o mesmo que o ponto $P(5,390^{\circ})$, $P(5,-330^{\circ})$, $P(-5,210^{\circ})$ ou $P(-5,-150^{\circ})$.

coordenadas cartesianas retangulares.

$$\begin{array}{ll} \text{Polar} \rightarrow \text{retangular:} & x = r \cdot cos \, \theta & ; & y = r \cdot sen \, \theta \\ \\ \text{Retangular} \rightarrow \text{polar:} & r = \pm \sqrt{x^2 + y^2} & ; & tg \, \theta = \frac{y}{x} \end{array}$$

Exemplo 4: Dado o ponto cujas coordenadas polares são P(-6,315°). Encontre suas

$$x = r \cos \theta$$

$$x = -6 \cos 315^{\circ}$$

$$y = r \sin \theta$$

$$y = -6 \sin 315^{\circ}$$

$$x = -6 \cdot \frac{\sqrt{2}}{2}$$

$$y = -6 \left(-\frac{\sqrt{2}}{2}\right)$$

$$y = -6 \left(-\frac{\sqrt{2}}{2}\right)$$

$$y = 3\sqrt{2}$$

(Apostila)

Polar \rightarrow retangular: $x = r \cdot \cos \theta$; $y = r \cdot \sin \theta$

 $\mbox{Retangular} \rightarrow \mbox{polar}; \quad r = \pm \sqrt{x^2 + y^2} \qquad ; \qquad \mbox{tg } \theta = \frac{y}{}$

Exemplo 5: Dado que a equação polar de um gráfico é $r^2 = 4 sen 2\theta$ ache a equação cartesiana.

Solução: Como sen $2\theta = 2$ sen θ cos θ substituindo as equações dadas para transformações, $sen 2\theta = 2\left(\frac{y}{r}\right)\left(\frac{x}{r}\right)$. Substituindo ainda, $r^2 = x^2 + y^2$ obtemos:

$$x^2 + y^2 = 4 \cdot 2 \left(\frac{y}{r}\right) \left(\frac{x}{r}\right)$$
 \Rightarrow $x^2 + y^2 = \frac{8xy}{r^2}$

$$x^2 + y^2 = \frac{8xy}{r^2}$$

$$x^2 + y^2 = \frac{8xy}{x^2 + y^2}$$

$$(x^2 + y^2)^2 = 8xy$$

(Apostila)

 $Polar \rightarrow retangular; \quad x = r \cdot cos \, \theta \qquad ; \qquad y = r \cdot sen \, \, \theta$

Retangular \rightarrow polar: $r = \pm \sqrt{x^2 + y^2}$; $tg \theta = \frac{y}{x}$

Exemplo 6: Ache (r, θ) se r > 0 e $0^{\circ} < \theta < 360^{\circ}$ para o ponto cuja representação cartesiana é $(-\sqrt{3},-1).$

Solução: Verificamos no gráfico o ponto $\left(-\sqrt{3},-1\right)$

Como r > 0, temos
$$r = \sqrt{x^2 + y^2} = \sqrt{3 + 1} = 2$$

Como
$$tg \ \theta = \frac{y}{x} = \frac{-1}{-\sqrt{3}} = \frac{1}{\sqrt{3}} \implies \theta = arctg \frac{1}{\sqrt{3}} = 30^{\circ} + 180^{\circ} \implies \theta = 210$$

Portanto, o ponto $(r, \theta) = (2, 210^0)$.

(Apostila)

Polar
$$\rightarrow$$
 retangular: $x = r \cdot cos \theta$; $y = r \cdot sen \theta$
Retangular \rightarrow polar: $r = \pm \sqrt{x^2 + y^2}$; $tg \theta = \frac{y}{r}$

Exemplo 7: Ache a equação polar do gráfico cuja equação cartesiana é $x^2 + y^2 - 4x = 0$

Solução: substituindo $x = r \cdot \cos \theta$ e $y = r \cdot sen\theta$ na equação dada temos:

$$r^2 \cdot \cos^2 \theta + r^2 \cdot \sin^2 \theta - 4r \cdot \cos \theta = 0 \implies r^2 (\sin^2 \theta + \cos^2 \theta) - 4r \cdot \cos \theta = 0$$

$$\log \sigma r^2 - 4r \cos \theta = 0$$
 : $r(r - 4 \cos \theta) = 0$, assim: $r = 0$ ou $r - 4 \cos \theta = 0$

O gráfico de r=0 é a origem, contudo, ele é um ponto do gráfico de $r-4\cos\theta=0$, pois, r=0 quando $\theta=90^{\circ}$.

Logo, a equação polar do gráfico é $r = 4\cos\theta$.

Coordenadas Cilíndricas e Esféricas

Sistema de Coordenadas Cilíndricas

A versão no espaço tridimensional do sistema de coordenadas polares do plano é chamada de sistema de coordenadas cilíndricas.

A representação das coordenadas cilíndricas de um ponto P é (r, θ , z), sendo r e θ as coordenadas polares da projeção de P em um plano polar e z a distância orientada desse plano polar até P.

Exemplo 1 (Apostila):

Faça um esboço do gráfico de cada uma das seguintes equações onde c é uma constante:

a)
$$r = c$$

Solução:

Para um ponto $P(r, \theta, z)$ do gráfico de r = c, θ e z podem assumir quais quer valores e r é uma constante. O gráfico é um cilindro circular reto, tendo |c| como raio e z como seu eixo.

Exemplo 1 (Apostila):

Faça um esboço do gráfico de cada uma das seguintes equações onde c é uma constante:

b) $\theta = c$

Solução:

Para todos os pontos $P(r, \theta, z)$ do gráfico de $\theta = c$, r e z podem assumir qualquer valor, enquanto que θ permanece constante. O gráfico é um plano que passa pelo eixo z.

Exemplo 1 (Apostila):

Faça um esboço do gráfico de cada uma das seguintes equações onde c é uma constante:

c) z = c

Solução:

O gráfico de z = c é um plano paralelo ao plano polar e a uma distância orientada de c unidades.

Conversão de Coordenadas Cilíndricas / Retangulares

Para converter de **coordenadas cilíndricas** <u>para</u> **coordenadas retangulares**, usamos as equações:

$$x = r\cos\theta$$
 $y = rsen\theta$ $z = z$

Para converter de **coordenadas retangulares** <u>para</u> **coordenadas cilíndricas**, utilizamos as equações:

$$r^2 = x^2 + y^2 \qquad tg\,\theta = \frac{y}{x} \quad (x \neq 0) \qquad z = z$$

Exemplo 2 (Apostila):

Ache uma equação em coordenadas cartesianas das seguintes superfícies, cujas equações estão expressas em coordenadas cilíndricas:

a)
$$r = 6 \text{ sen } \theta$$

b) r.
$$(3 \cos \theta + 2 \sin \theta) + 6z = 0$$

Solução:

a) Multiplicando ambos os lados da equação por r, obtemos: $r^2 = 6rsen\theta$

Como
$$r^2 = x^2 + y^2$$
 e $rsen \theta = y$, então: $x^2 + y^2 = 6y$

b) Como $x = r \cos \theta$ e $y = rsen \theta$, temos : 3x + 2y + 6z = 0

Exemplo 3 (Apostila):

Ache uma equação em coordenadas cilíndricas para cada uma das seguintes superfícies, cujas equações estão expressas em coordenadas cartesianas:

a)
$$x^2 + y^2 = z$$
 b) $x^2 - y^2 = z$

b)
$$x^2 - y^2 = z$$

Solução:

a)
$$x^2 + y^2 = r^2$$
, $\log r^2 = z$

b)Sabemos que : $x = r \cos \theta$ e y = $rsen \theta$.

Substituindo x e y:

$$r^2\cos^2\theta - r^2sen^2\theta = z$$

$$r^2(\cos^2\theta - sen^2\theta) = z$$

$$r^{2}(\cos^{2}\theta - sen^{2}\theta) = z$$
 $*\cos^{2}\theta - sen^{2}\theta = \cos 2\theta$

$$\therefore r^2 \cos 2\theta = z$$

Sistema de Coordenadas Esféricas

$$\rho = \left| \overrightarrow{OP} \right|$$

 θ é o mesmo ângulo que em coordenadas cilíndricas.

 ϕ é o ângulo entre o eixo positivo z e o vetor $|\overline{OP}|$.

Note que:

$$\rho \ge 0$$
 $0 \le \phi \le \pi$

Conversão de Coordenadas (Esféricas - Retangulares)

Do triângulo retângulo OPP', temos

$$P = (\rho, \theta, \phi) \qquad (i) \cos \phi = \frac{z}{\rho} \implies z = \rho \cos \phi$$

$$(ii) \operatorname{sen} \phi = \frac{r}{\rho} \implies r = \rho \operatorname{sen} \phi$$

Do triângulo retângulo *QOP*; obtemos

$$(iii)\cos\theta = \frac{x}{r} \implies x = r\cos\theta$$

$$(iii) \cos \theta = \frac{x}{r} \implies x = r \cos \theta$$
$$(iv) \sin \theta = \frac{y}{r} \implies y = r \sin \theta$$

Conversão de Coordenadas (Esféricas - Retangulares)

converter coordenadas esféricas Para de para coordenadas retangulares, substituímos (ii) em (iii) para encontrar a coordenada x e substituímos (ii) em (iv) para encontrar a coordenada y, daí:

$$x = \rho \operatorname{sen}\phi \cos \theta$$
 $y = \rho \operatorname{sen}\phi \operatorname{sen}\theta$ $z = \rho \cos \phi$

Também, a distância entre dois pontos nos mostra que:

$$\rho^2 = \left| \overrightarrow{OP} \right|^2 = x^2 + y^2 + z^2$$

Usamos este resultado para converter de coordenadas retangulares para coordenadas esféricas.

Resumindo:

Polar
$$\rightarrow$$
 retangular: $x = r \cdot \cos \theta$; $y = r \cdot \sin \theta$

$$\mbox{Retangular} \rightarrow \mbox{polar} \colon \ r = \pm \sqrt{x^2 + y^2} \quad ; \qquad tg \ \theta = \frac{y}{x} \label{eq:retangular}$$

Cilíndricas
$$\rightarrow$$
 retangulares: $x = r \cdot \cos \theta$ $y = r \cdot \sin \theta$ $z = z$

Retangulares
$$\rightarrow$$
 cilíndricas: $r^2 = x^2 + y^2$ $tg \theta = \frac{y}{x}$ se $x \neq 0$ $z = z$

Esféricas
$$\rightarrow$$
 retangulares: $x = \rho \cdot \text{sen } \phi \cdot \cos \theta$ $y = \rho \cdot \text{sen } \phi \cdot \text{sen } \theta$ $z = \rho \cdot \cos \phi$

Retangulares
$$\rightarrow$$
 Esféricas: $\rho = \sqrt{x^2 + y^2 + z^2}$ $tg \theta = \frac{y}{x}$ $cos \phi = \frac{z}{\rho}$

Exercícios: