(Yet Another) Introduction to Category Theory

Rui Gonçalves

ShiftForward

June 20, 2017

A Category

A Category

A Category

It's all about composition

Set Category

$$\{(a)=22i \rightarrow \{0,2,4\}$$

 $\{0,1,2\}$
 $\{(a)=2x+1$
 $\{(a)=2x+1$
 $\{(a)=2x+1\}$
 $\{(a)=2x+1\}$
 $\{(a)=2x+1\}$
 $\{(a)=2x+1\}$

Set Category

- id(x) = x
- $\bullet \ (g \circ f)(x) = g(f(x))$

Hask Category

Strong Stull
Book

Int

head [Int]

Hask Category

```
id :: a -> a
id x = x

compose :: (b -> c) -> (a -> b) -> (a -> c)
compose g f x = g (f x)
-- compose g f = g . f
-- compose = (.)
```

More Categories

- No objects (0)
- Single object (1)
- Orders
- Vector spaces (Vect)
- ...

Universal Constructions

- Patterns of relationships between objects
- Allows reusing laws from one category in others
- A balance of precision and recall
 - 1. pick a pattern and look for all its occurences
 - 2. rank the hits and pick the best fit

Initial Object

Initial Object

- The object is called 0
- ullet The unique arrow 0 o A is called 0_A
- The empty set is an initial object in **Set**
- Any empty type (such as Void) is an initial object in **Hask**

Terminal Object

Terminal Object

- The object is called 1
- ullet The unique arrow A
 ightarrow 1 is called 1_A
- Any singleton set is a terminal object in Set
- Any type with a single instance (such as ()) is a terminal object in **Hask**

Duality

- C^{op} is a category obtained by keeping all objects and reversing the arrows of category C
- Automatically a category:
 - $\blacksquare id^{op} = id$
 - $lacksquare ext{If } h=g\circ f$, then $h^{op}=f^{op}\circ g^{op}$

Duality

- Constructions in the opposite category are prefixed with "co" – coproducts, comonads, colimits...
- C^{op} may be equal to C (not in Set and Hask)
- The terminal object is an initial object in the opposite category!

- In universal constructions, the "shape" is the key
- It's enough to have a one-to-one mapping between objects
- In category theory, such a mapping is a pair of arrows, one being the *inverse* of the other

- f:A o B is an isomorphism iff there is an arrow $f^{-1}:B o A$ such that:
 - $lacksquare f^{-1}\circ f=id_A$
 - $lacksquare f\circ f^{-1}=id_B$

- Two initial objects must be isomorphic:
 - Let 0^A and 0^B be two initial objects with arrows $0_C^A:0^A\to C$ and $0_C^B:0^B\to C$ for every C
 - $lacksquare 0_{0B}^A \circ 0_0^B A$ is an arrow $0^A o 0^A$
 - But there can be only one arrow from 0^A to any other object, and we already have $id_A!$
- No need to show the same thing for the terminal object!

- Goal: generalize the notion of a cartesian product of sets
- First idea:
 - lacksquare three objects: A imes B is the product object of A and B
 - two arrows, $outl: A \times B \to A$ and $outr: A \times B \to B$, extracting the first and the second component


```
outl :: (Int, Bool) -> Int
outl (x, b) = x

outr :: (Int, Bool) -> Bool
outr (x, b) = b
```

```
outl :: Int -> Int
outl x = x

outr :: Int -> Bool
outr _ = True
```

```
outl :: (Int, Int, Bool) -> Int
outl (x, _, _) = x

outr :: (Int, Int, Bool) -> Bool
outr (_, _, b) = b
```

- Need to rank candidates
- Idea: find an arrow between candidates that reconstructs one in function of the other
- Let P and Q be two candidates for a product with arrows $outl_P$, $outr_P$, $outl_Q$ and $outl_Q$:
 - lacksquare P is "better" than Q iff there exists an unique arrow m:Q o P such that $outl_Q=outl_P\circ m$ and $outr_Q=outr_P\circ m$
 - Similiar to factorization in mathematics

• Is (Int, Bool) better than Int?

```
m :: Int -> (Int, Bool)
m x = (x, True)
```

• Is Int better than (Int, Bool)?

```
m :: (Int, Bool) -> Int
-- m (x, b) = ???
```

• Is (Int, Bool) better than (Int, Int, Bool)?

```
m :: (Int, Int, Bool) -> (Int, Bool)
m (x, _, b) = (x, b)
```

• Is (Int, Int, Bool) better than (Int, Bool)?

```
m :: (Int, Bool) -> (Int, Int, Bool)
-- m (x, b) = (x, ???, b)
```

- With the factorization condition, every time a product exists it is unique up to a unique isomorphism
- (a, b) is the best match in **Hask** A *factorizer* can show it:

```
factorizer :: (c -> a) -> (c -> b) -> (c -> (a, b))
factorizer outl outr = \x -> (outl x, outr x)
-- factorizer outl outr x = (outl x, outr x)
```

Coproducts

Coproducts

- By duality, when it exists, a coproduct is unique up to unique isomorphism
- Either a b is the best match in **Hask**:

```
-- Either a b = Left a | Right b

factorizer :: (a -> c) -> (b -> c) -> (Either a b -> c)

factorizer inl inr (Left a) = inl a

factorizer inl inr (Right b) = inr b
```

- Most data structures in programming are built using products and coproducts
- Many properties are composable: equality, comparison, conversions...
- Treating data structures by their shape paves the way for automatic derivation

• These types are isomorphic in **Hask**:

```
(String, Int, Bool) -- String * Int * Bool

((String, Int), Bool) -- (String * Int) * Bool

(String, (Int, Bool)) -- String * (Int * Bool)

data Contact = Contact { -- String * Int * Bool
   name :: String,
   age :: Int,
   gender :: Bool
}

(Int, Bool, String) -- Int * Bool * String * 1
```

• These types are isomorphic in **Hask**:

```
Either (Either String Int) Bool -- (String + Int) + Bool

Either String (Either Int Bool) -- String + (Int + Bool)

data JsValue = -- String + Int + Bool

JsString String |
JsNumber Int |
JsBoolean Bool

Either (Either Int Bool) String -- (Int + Bool) + String

data JsValue2 = -- String + Int + Bool + 0

JsString String | JsNumber Int |
JsBoolean Bool | Void
```

- Set and Hask are monoidal categories:
 - With the product as binary operation and the terminal object as unit
 - With the coproduct as binary operation and the initial object as unit
- It can be shown that every category that *has* products and a terminal object is also a monoidal category (and the dual proposition for coproducts)

• These types are isomorphic in **Hask**:

```
-- String * (Int + Bool)
(String, Either Int Bool)
-- (String * Int) + (String * Bool)
Either (String, Int) (String, Bool)
```

• These types are isomorphic in **Hask**:

```
-- String * 0
(String, Void)
-- 0
Void
```

- **Set** and **Hask** form a *semiring* under the product and coproduct
- Not every category with product and coproduct monoids is a semiring

Numbers	Types
0	Void
1	()
a+b	Either a b = Left a Right b
a imes b	(a, b) or Pair a b = Pair a b
2 = 1 + 1	data Bool = True False
$\overline{1+a}$	data Maybe = Nothing Just
	a

• Other mathematical concepts with meaning in type theory: exponentials, infinite sums, derivatives

What's More?

- Functors
- Natural transformations
- Function objects
- Everything else:)

Thank you!

- https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface
- Algebra of Programming, Richard Bird and Oege de Moor (1997)