

ANSWER KE	VS //	///i	///i	/// mariningo	//igo	///.	//imago //
		3 (2)	4 (4)	5 (1)	<i>(</i> (1)	7 (2)	8 (2)
(1) (4)nathongo	2. (3)	3. (2) mgthongo	4. (4) ///. mathongo	5. (1) /// mathonao	6. (1)	7. (2)	8. (2) ///. mathongo //
(4)	10. (2)						
$7C_3x^4x^{\left(3log_2 ight)} ight. ight.$							
$\Rightarrow \left(4+3t ight) \Rightarrow t=1,rac{-7}{3}$	$t=7; t=log_2^x \ \Rightarrow x=2$						
(3)			10				
The general	term of the binomial	expansion, $\left(\sqrt{2}+3\right)$	$\left(\frac{1}{5}\right)^{10}$ is given as,				
$T_{r+1}={}^{10}C_{r}$	$\left(2\right)^{\frac{10-r}{2}}\left(3\right)^{\frac{r}{5}}$ where,	, $0 \leq r \leq 10$					
	term both $(n-r)$ and		ive multiple of 2 an	d 5 respectively,			
Therefore th	e values of r for which	ch both $\frac{(n-r)}{2}$ and $\frac{r}{5}$	gives an integer val	ue are,			
r=0 and r	= 10 mathongo	/// mathongo					
Therefore, the	ne rational terms corre	espond for $r = 0$, $r = 0$	r = 10				
Hence the su	am of rational terms =	$= {}^{10}C_02^5 + {}^{10}C_{10}3^2$	= 32 + 9 = 41. mathongo				
	expansion $\left(\sqrt[4]{2} + \frac{1}{\sqrt[4]{2}}\right)$	$\left(\frac{1}{3}\right)^n : \frac{T_{4+1}}{T_{n-4+1}} = \frac{{}^nC_4}{{}^nC_{n-1}}$	$\frac{(2)^{\frac{n-4}{4}} \cdot (\frac{1}{3})^{\frac{4}{4}}}{(1)^{\frac{n-4}{4}} \cdot (1)^{\frac{n-4}{4}}}$	$\frac{1}{1} = \left(\sqrt{6}\right)^5 \Rightarrow \left(2\right)^{\frac{n-8}{4}}$	$\cdot \left(3\right)^{rac{n-8}{4}} = \left(\sqrt{6} ight)^5$		
\Rightarrow $(6)^{\frac{n-8}{4}} =$			(2) 4 $\cdot \left(\frac{1}{3}\right)^{-4}$				
` '	` /						
From the give	ven condition nongo						
$^{n}C_{r}$	$C_{r+2} = 2:15:70$						
$\Rightarrow \frac{n_{C_{r+1}}}{n_{C_{r+1}}} = \frac{1}{(n-r)}$	$\frac{2}{15}$ and $\frac{{}^{n}C_{r+1}}{{}^{n}C_{r+2}} = \frac{15}{70}$	$\frac{n! \operatorname{mat}}{(n-r-1)! \cdot (r+1)!}$ ongo					
((** * * *) *	(/ 1 - / /	(** / 2). (/ 12). /					
$\Rightarrow \frac{(n-r-1)!}{(n-r)\cdot(n-r)}$	$\frac{(r+1)\cdot r!}{(r-1)!\cdot r!} = \frac{2}{15}$ and $\frac{6}{(r-1)!\cdot r!}$	$(n-r-2)! \cdot (r+2) \cdot (r+1)!$	$\frac{3}{14} = \frac{3}{14}$				
$\Rightarrow \frac{r+1}{n-r} = \frac{r}{1}$ $\Rightarrow 17r = 2r$	$\frac{2}{5}$ and $\frac{r+2}{n-r-1}=\frac{3}{14}$ $n-15$ and $17r=3n$	/// mathongo	///. mathongo				
$\Rightarrow 3n-31$	$=2n-15, \ \Rightarrow n=$	16 and $r=1$					
Hence, average $= \frac{{}^{16}C_1 + {}^{16}C_2}{3}$	$ m age = rac{{}^{n}C_{r} + {}^{n}C_{r+1} + {}^{n}C_{r+1}}{3}$	2 /// mathongo					
=232.							
	cient of t^{24} in $(1+t^2)$	3					
⇒ coefficie ⇒ coefficie	ent of t^{24} in $\left(1+t^2\right)^{12}$ ent of t^{24} in $\left(1+t^2\right)^{12}$	$egin{array}{l} &(1+t^{12}+t^{24}+t^{36}\ &+t^{12}(1+t^2)^{12}+t \end{array}$	$^{(2)}_{24}(1+t^2)^{12}$				
	[neglecting	$t^{36} \left(1 + t^2\right)^{12}$]	(- ' - ')				
⇒ coefficie			C_0)				
$\Rightarrow t^{24} =$	$2 + ^{12}C_6$		Thou longo				

Answer Keys and Solutions

