Principles of Programming

Jacques Carette

McMaster University

Lectures # 3 and # 4 - Fall 2013

Constructs

Five Common Constructs:

- Assignment
- Declaration (Variable and Constant)
- Sequence
- Test
- Loop

Assignment

• The Syntax:

"
$$x = t$$
;"

- x: a variable identifier
- ▶ t: an expression:
- The Semantics:

Filling the memory compartment labeled x with the value of the expression t.

- Examples:
 - ▶ Valid assignments: y = 3; x = y; x = (y + z) * (z x);
 - ▶ Invalid ones: y 5 = 3; z z = 0;

Two disjoint syntactic categories: Expressions & Statements

x + 3: an expression

$$y = x + 3$$
: a statement

Declaration

• The Syntax:

"
$$\{Tx; x = v;\}$$
" or " $\{Tx = v;\}$ "

- ► T: a type
- ▶ x: a variable
- ▶ v: a value of type T

A type can be:

- ► Scalar: byte, short, int, long, float, double, boolean, char
- ► Compound : Later!
- The Semantics of Tx = t:

- Examples: $\{ int x = 5; x = x + 1; \} \{ int x; x = 5; \}$
- Constant Declaration:
 final int x = 4;

Sequence

- If p_1 and p_2 are statements, then "{ p_1 p_2 }" is a statement. For simplicity, we write { p_1 { p_2 { p_3 p_4 } } } as { p_1 p_2 p_3 p_4 }
- Alternative view:See ; as the sequencing operation!

J.Carette (McMaster) CS/SE 2S03 5 / 9

- The Syntax:
 - "if (b) p_1 else p_2 "
 - ▶ b is a boolean expression
 - \triangleright p_1 and p_2 are statements
- The Semantics: (The initial state: T_0)
 - **1** Compute b in state T_0
 - 2 If true, p_1 in state T_1
 - \odot else p_2 in state T_2

- The Syntax:"While (b) S"
- The Semantics:
 - Evaluate b in the current state,
 - If it is false, do nothing (The state changes)
 - 3 otherwise execute S and repeat (The state changes)

The Semantics of Core - The Concept of a State

The structure consists three universes Var, Val, and State where

- Var is a finite set of variables
- Val is a set of values (inhabitants of types)
- **State** is a set of *states*. A state *s* is a function from a subset of Var, say V. to Val: $s: V \rightarrow Val$

Example:
$$[x = 5, y = 6]$$

$$ex: x \mapsto 5 \& y \mapsto 6$$

We define the following functions:

- ullet \oplus : $State \times (var = val) \rightarrow State$ (total)
- Θ : $Expr \times State \rightarrow Val$ (partial)
- Σ : $statements \times State \rightarrow State$ (partial)

Examples - \oplus , Θ , Σ

$$\Theta(x+3, [x=5, y=6]) = 8$$

 $\Theta(x+3, [x=5, y=6]) : Error!$

$$\Sigma(x=x+1;$$
 , $[x=5])=[x=6]$

9 / 9