粗糙波动率

原文做法

原文: Volatility is Rough, Jim Gatheral, 2016.

Jim Gatheral等人对全球范围内21只股指做了研究,包括 SPX,FTSE,N225,GDAXI,RUT,AORD,DJI,IXIC,FCHI,HSI,KS11,AEX,SSMI,IBEX,NSEI,MXX,BVSR,GSPTSE,STO XX50E,FTST,FTSEMIB,采用的数据是http://realized.oxfordman.ox.ac.uk上提供的根据高频数据计算的 每日已实现波动率,数据时间范围从2000年到2017年.他们提出标的的**对数波动率的增量**满足如下规律

$$\log \sigma_{t+\Delta} - \log \sigma_t = \nu \left(W_{t+\Delta}^H - W_t^H \right) \tag{1}$$

为此, 他们研究的是

$$m(q, \Delta) = \langle |\log \sigma_{t+\Delta} - \log \sigma_t|^q \rangle,$$
 (1)

其中, Δ 是已实现波动率的时间间隔, $\Delta=1$ 即为相邻的两天. 他比较了 $q=0.5,1,1.5,2,3,\Delta=0,\cdots,100$, 然后比较了 $m(q,\Delta)$ 和 Δ 的关系, 以**标普500**为例, 结果满足下图

所以, 对每个 $q,m(q,\Delta) \propto \Delta^{\zeta q}$. 然后寻找 ζq 和q的关系, 直接根据拟合得到的 ζq 和 q 作个图,

$$\zeta_q = qH \tag{2}$$

斜率 $H \approx 0.13$. 然后对全部21只股指都类似做法, 得到

	names	h_est
0	SPX2.rk	0.129279
1	FTSE2.rk	0.140566
2	N2252.rk	0.110684
3	GDAXI2.rk	0.145953
4	RUT2.rk	NaN
5	AORD2.rk	0.081706
6	DJI2.rk	0.127363
7	IXIC2.rk	NaN
8	FCHI2.rk	0.127367
9	HSI2.rk	0.098814
10	KS11.rk	0.118414
11	AEX.rk	0.141698
12	SSMI.rk	0.176528
13	IBEX2.rk	0.123928
14	NSEI.rk	0.108156
15	MXX.rk	0.089456
16	BVSP.rk	0.107941
17	GSPTSE.rk	NaN
18	STOXX50E.rk	0.116263
19	FTSTI.rk	0.127094
20	FTSEMIB.rk	0.132047

然后是不同 Δ 下对数波动率增量 $(\log \sigma_{t+\Delta} - \log \sigma_t)$ 的分布,

#

下面对ETF50, ETF300 做类似分析, 数据采用2022.7.11过去三年的1分钟级数据, 去除收盘前五分钟数据后计算每天的分钟级hv.

50etf与300etf

对数波动率的增量与时间间隔的关系

上述拟合的一次函数斜率和q之间的关系

检验正态分布采用 python 中 scipy.stats 中的 ks 检验函数, 返回的 p>0.05 表示符合正态分布, 50以及300的检验结果分别为