Propositional Logic

Summary of Definitions and Main Results

CS 245

1 Syntax of Propositional Logic

Statements of propositional logic come from a formal "language", denoted \mathcal{L}^p . A formal language consists of strings over an alphabet.

Definition 1 (The Alphabet of Propositional Logic)

The *alphabet* of the language of propositional logic consists of the following symbols:

- 1. Propositional Symbols: $p, q, r, p_1, p_2, \ldots, q_1, q_2, \ldots$;
- 2. Logical Connectives: \neg , \wedge , \vee , \rightarrow ; and
- 3. Punctuation: "(" and ")".

(Textbook: 2.2, p. 21 ff.)

Definition 2 (Well-Formed Formulae (WFFs) of Propositional Logic)

Let P be a set of propositional symbols. We define the *set WFF of well-formed formulae over* P inductively as follows.

- 1. $P \subseteq WFF$ (that is, every propositional symbol is a WFF by itself, called an *atom*);
- 2. if $\varphi \in WFF$, then $(\neg \varphi) \in WFF$; and
- 3. if $\varphi \in WFF$, $\psi \in WFF$, and $\star \in \{\land, \lor, \rightarrow\}$, then $(\varphi \star \psi) \in WFF$.

Nothing else is an element of WFF.

The set WFF is also denoted by $Form(\mathcal{L}^p)$. The set of "atoms"—well-formed formulae of length 1—is denoted $Atom(\mathcal{L}^p)$. (Textbook: Defs 2.2.1, 2.2.2, p. 23)

Normally, we say simply "formula" to mean "well-formed formula". Similarly, we may sometimes omit to write down parentheses, if it's clear where they should go. Nevertheless, a truly well-formed formula has all of the required parentheses.

Notational Conventions

We normally reserve certain kinds of symbols (often with subscripts) to denote certain classes of objects.

p, q, r, \dots	(lowercase Roman letters)	propositional symbols (or atomic formulae)
$\varphi, \psi, \eta, \dots$	(lowercase Greek letters)	well-formed formulae (formulae for short)
$\Sigma, \Gamma, \Delta, \dots$	(uppercase Greek letters)	sets of well-formed formulae
I,J,\dots	(uppercase Roman letters)	interpretations (i.e., truth assignments)

2 Interpretations and Models

The truth or falsity of a proposition depends on how we interpret it. Let *P* be a set of propositional symbols—the set of basic facts.

Definition 3 (Interpretations)

An *interpretation* is a function $I: P \to \{0,1\}$ that assigns either *true* (1) or *false* (0) to every propositional symbol in P. (Textbook: 2.4, p. 33 ff.)

Definition 4 (The Satisfaction Relation)

For every interpretation I and every well-formed formula φ , either I satisfies φ , denoted $I \models \varphi$, or I does not satisfy φ , denoted $I \not\models \varphi$. This relation is defined by the following inductive rules.

- If φ is an atom p, then $I \models \varphi$ if and only if I(p) = 1.
- If φ is a negation $\neg \psi$, then $I \models \varphi$ if and only if $I \not\models \psi$;
- If φ is a conjunction $(\psi_1 \wedge \psi_2)$, then $I \models \varphi$ if and only if both $I \models \psi_1$ and $I \models \psi_2$;
- If φ is a disjunction $(\psi_1 \vee \psi_2)$, then $I \models \varphi$ if and only if either $I \models \psi_1$ or $I \models \psi_2$ (or both); and
- If φ is an implication $(\psi_1 \to \psi_2)$, then $I \models \varphi$ if and only if either $I \not\models \psi_1$ or $I \models \psi_2$ (or both).

An interpretation I such that $I \models \varphi$ is called a *model* of φ . We define $mod(\varphi)$ to be the set of all models of φ , i.e., $mod(\varphi) = \{I \mid I \models \varphi\}$. (Textbook: 2.2.4, 2.4.5, p. 36–37)

Lemma 5 (Relevance)

Let L be the set of all propositional symbols in $\varphi \in WFF$ and let I_1 and I_2 be two interpretations such that $I_1(p) = I_2(p)$ for all $p \in L$. Then $I_1 \models \varphi$ if and only if $I_2 \models \varphi$.

Definition 6 (Adequate Set of Connectives)

A set of propositional connectives S is *adequate* if for an arbitrary k-ary Boolean function f there is a well formed formula φ_f that uses only logical connectives in S and propositional symbols p_1, \ldots, p_k , such that

$$I \models \varphi_f$$
 iff and only if $f(I(p_1), \dots, I(p_k)) = 1$

for all interpretations I.

(Textbook: 2.8, p. 65-6)

Theorem 7

The sets $\{\land, \neg\}$, $\{\lor, \neg\}$, and $\{\rightarrow, \neg\}$ are adequate sets of propositional connectives.

(Textbook: 2.8.1, 2.8.2, p. 67)

Definition 8 (Satisfiability and Validity)

A well-formed formula φ is

- valid (or a tautology) if $I \models \varphi$ for all interpretations I (i.e., if $mod(\varphi)$ is the set of all interpretations);
- satisfiable if $I \models \varphi$ for some interpretation I (i.e., φ has a model); and
- *unsatisfiable* otherwise (i.e., φ does not have a model).

(Textbook: 2.4.4,2.4.5, p. 36-37)

Definition 9 (Sets of Formulae: Lifting)

Let $\Sigma \subseteq WFF$ be a set of formulae.

We define $I \models \Sigma$ (*I* is a model of Σ) if there is an interpretation *I* such that $I \models \varphi$ for all $\varphi \in \Sigma$.

Thus $\mathsf{mod}(\Sigma)$, the set of all models of Σ , has the property $\mathsf{mod}(\Sigma) = \bigcap_{\varphi \in \Sigma} \mathsf{mod}(\varphi)$.

We define that Σ is satisfiable (resp. unsatisfiable) if Σ has (resp. does not have) a model.

Definition 10 (Logical Implication and Equivalence)

Let $\Sigma \subseteq WFF$ and $\varphi, \psi \in WFF$.

We say that Σ logically implies (or entails) φ , written $\Sigma \models \varphi$, if $\mathsf{mod}(\Sigma) \subseteq \mathsf{mod}(\varphi)$.

We say that φ is (logically) equivalent to ψ , written $\varphi \equiv \psi$, if $\mathsf{mod}(\varphi) = \mathsf{mod}(\psi)$.

Theorem 11 (Logical Implication and Satisfiability)

Let $\Sigma \subseteq WFF$ and $\varphi \in WFF$. Then

 $\Sigma \models \varphi$ if and only if $\Sigma \cup \{(\neg \varphi)\}$ is unsatisfiable.

3 Proof Systems and Their Properties

Definition 12 (Deduction Rules; Deduction Systems; Proofs)

A (deduction) rule is a tuple $\langle \psi_1, \dots, \psi_k \rangle$ where $k \geq 1$ and $\psi_i \in WFF$ for all k. If k = 1, the rule is called an axiom; if k > 1, the rule is called an inference rule.

A deduction system S (for the language of well-formed formulae) is a set of deduction rules.

A proof (or formal deduction) in S is a sequence $\langle \varphi_0, \dots, \varphi_n \rangle$, where $\varphi_i \in WFF$ for each i and $n \geq 1$, such that for every φ_i in the proof there is a rule $\langle \psi_1, \dots, \psi_{k-1}, \varphi_i \rangle \in S$ with $\{\psi_1, \dots, \psi_{k-1}\} \subseteq \{\varphi_1, \dots, \varphi_{i-1}\}$.

When a proof $\langle \varphi_0, \dots, \varphi_n, \varphi \rangle$ in S exists, we say that φ is a theorem of S, written $\vdash_S \varphi$.

Given a set $\Sigma\subseteq WFF$ of formulae and a formula φ , we define that φ is deducible from Σ in S, written $\Sigma\vdash_S \varphi$, if φ is a theorem of $S\cup\{\langle\psi\rangle\mid\psi\in\Sigma\}$. (Textbook: 4.4.1 is a particular instance of the above), p. 110)

Definition 13 (The Hilbert System)

The Hilbert System (H) is a deduction system for propositional logic defined by the tuples

Ax1:
$$\langle (\varphi \to (\psi \to \varphi)) \rangle$$
;
Ax2: $\langle ((\varphi \to (\psi \to \eta)) \to ((\varphi \to \psi) \to (\varphi \to \eta))) \rangle$;
Ax3: $\langle (((\neg \varphi) \to (\neg \psi)) \to (\psi \to \varphi)) \rangle$; and
MP: $\langle \varphi, (\varphi \to \psi), \psi \rangle$.

(Textbook: 4.1, using only Ax1-3 and R1 (MP), p. 109-10)

Theorem 14 (The Deduction Theorem)

 $\Sigma \cup \{\varphi\} \vdash_H \psi$ if and only if $\Sigma \vdash_H (\varphi \to \psi)$.

Definition 15 (Consistency)

A set of formulae $\Sigma \subseteq WFF$ is (syntactically) *consistent* if there is a formula $\varphi \in WFF$ such that $\Sigma \not\vdash_H \varphi$. Otherwise, we say that Σ is *inconsistent* (or *contradictory*). (Textbook: 5.2.2, p. 126)

Theorem 16 (Deducibility and Consistency)

 $\Sigma \vdash_H \varphi$ if and only if $\Sigma \cup \{(\neg \varphi)\}$ is inconsistent.

Theorem 17 (Soundness and Completeness of the Hilbert System)

```
If \Sigma \vdash_H \varphi, then \Sigma \models \varphi. In words, H is sound.
If \Sigma \models \varphi, then \Sigma \vdash_H \varphi. In words, H is complete.
```

(Textbook: 5.2.3, 5.3.7, p. 126, 131)

Definition 18 (Compactness)

 $\Sigma \subseteq WFF$ is satisfiable if and only if for every finite $\Sigma_0 \subseteq \Sigma$, Σ_0 is satisfiable. (Textbook: 6.1.1, p. 147)

Definition 19 (A Conservative Extension of the Hilbert System)

A conservative extension of H to enable handling of conjunctions and disjunctions: in addition to tuples in H, include the following.

(Textbook: 4.1, Ax4-9, p. 109-10)