

Indicateur de performance

www.kapei-conseil.com



Clément LEFAURE

Associé / Directeur technique

clefaure@kapei-conseil.com Mob:+33(0)7 82 02 95 00 20, Bd. Eugène Deruelle 69003 Lyon

# Fondements de l'informatique décisionnelle

Session n°2

# Conception d'un entrepôt décisionnel: Modélisation





# Session N°2: Agenda Conception d'un entrepôt décisionnel: Modélisation

- 1 Processus de modélisation
  - >Types de modèles de données
  - >Etape par étape
- 2 Au cœur du modèle multi-dimensionnel
  - >Hypercubes, « slice » et « dice »
  - >Les modèles dimensionnels
- 3 Concepts avancés
  - >Dimensions et tables de faits
  - >Architecture « bus », matrices et dimensions conformes



# Conception d'un entrepôt décisionnel: Modélisation

- Processus de modélisation
- 2. Au cœur du modèle multi-dimensionnel
- 3. Concepts avancés



# Processus de modélisation Modéliser des données quèsaco? (1/3)

Un modèle est une représentation graphique d'un objet, d'un système ou d'un concept complexe accompagnée d'une explication textuelle



Un modèle de données est une représentation graphique d'une base de données





# Processus de modélisation Modéliser des données quèsaco? (2/3)

> Est-ce que vous vous promèneriez dans une ville inconnue sans carte?



- > Peut-être...
- Vous pouvez toujours utiliser les panneaux de signalisation des rues...



# Processus de modélisation Modéliser des données quèsaco? (3/3)

- Sans doute...
- Mais comment faire dans les villes dont les habitants. parlent une autre langue ?
- On ne peut pas apprendre toutes les langues des pays dans lesquels on veut voyager à chaque fois...
- De la même façon il a fallut s'entendre sur une façon de représenter graphiquement les bases de données indépendamment de leurs systèmes de gestion et des langages de programmation.
- C'est l'intérêt d'un modèle de données





# Processus de modélisation Types de modèles de données

La modélisation d'applications décisionnelles s'inscrit dans la démarche classique de modélisation:





## Processus de modélisation dimensionnelle (1/7)

- Tout part d'une étude de besoin auprès des utilisateurs (key-users) de la futures application
- Ce recueil de desiderata est souvent effectué au moyen d'atelier de travail (workshops)
- Le résultat se présente souvent sous une forme de liste de questions que les utilisateurs se posent au cours de leurs analyses.

### Par exemple:

- > Quel est le nombre de bien vendus par compagnie ?
- > Quel est le revenu moyen pour chaque produit ?
- > Quel est le dernier niveau de stock pour un mois donné ?
- Quel le coût minimal pour un type de produit spécifique dans le dernier mois, présenté par région ?



## Processus de modélisation dimensionnelle (2/7)

- On essaie ensuite d'analyser cette liste de questions
- L'objectif est d'identifier:
  - Ce qui doit être mesuré (indicateurs)
  - Les AXES d'analyses (dimensions)
  - Les niveaux de regroupement (agrégats)
- Par exemple:
  - ➤ Quel est le nombre de bien vendus par COMPAGNIE ?
  - Quel est le revenu moyen pour chaque PRODUIT ?
  - > Quel est le dernier niveau de stock pour un MOIS donné ?
  - Quel le coût minimal pour un TYPE DE PRODUIT spécifique dans le dernier MOIS, présenté par REGION ?



# Processus de modélisation dimensionnelle (3/7)

- Qu'est-ce qui doit être mesuré ?
  - > Les indicateurs clés de performance (Key Performance Indicateur)
  - Ce sont des valeurs numériques
- Par exemple:

Chiffre d'Affaire Volume Marge Résultat



# Processus de modélisation dimensionnelle (4/7)

A mesurer par...

Rechercher les circonstances

Quoi?

Où?

Qui?

Chiffre d'Affaire Volume Marge Résultat

Comment?

Quand?



# Processus de modélisation dimensionnelle (5/7)

### A mesurer par...

Quoi? Vehicule

> Où? Marché

Qui?
Concessionaire

Chiffre d'Affaire

Volume

Marge

Résultat

Niveau de suivi Comment? Date Quand?



# Processus de modélisation dimensionnelle (6/7)

Une étoile apparait....





# Processus de modélisation dimensionnelle (7/7)





# Conception d'un entrepôt décisionnel: Modélisation

- 1. Processus de modélisation
- 2. Au cœur du modèle multi-dimensionnel
- 3. Concepts avancés



# Au cœur du modèle multi-dimensionnel Rappels sur les dimensions

#### Les dimensions :

- Contiennent des données qualitatives (champs texte ou date)
- Correspondent à un axe d'analyse métier
- ➤ Sont qualifiées par leur attributs
- Représentent en général un volume de données faible

### >Exemples:

- > Produit:
- > couleur du produit, packaging...
- > Magasin:
- > Géographie, Type de magasin, Type de tarif...
- > Client:
- > Genre du client, CSP...
- >RH:
- > Organisation de l'entreprise, type de poste...
- > Temps:
- > Jour, mois, trimestre, année...



# Au cœur du modèle multi-dimensionnel Rappels sur les tables de faits

#### Les tables de faits :

- ➤ Contiennent des données quantitatives (indicateurs numériques)
- ➤ Contiennent des informations détaillées
- ➤ Représentent la volumétrie la plus importante de l'entrepôt
- ➤Sont historisées
- >Exemples:
  - ➤ Quantité en stock dans le magasin X pour le produit Y à la date Z
  - ➤ Montant de vente pour le commercial X de l'agence Y sur le mois M
  - ➤ Fréquence de visite sur le site X du client Z
  - ➤ Salaire, augmentation pour le salarié X du service Y par le responsable Z



# Au cœur du modèle multi-dimensionnel Fonctionnement d'un hypercube: axes d'analyse





# Au cœur du modèle multi-dimensionnel Fonctionnement d'un hypercube: « slicing » & « dicing »

- Les outils multi-dimensionnel permettent aux utilisateurs de voir les données sous tous les angles.
- La possibilité de sélectionner différents angles d'analyse est appelée "slice" et "dice" par les anglo-saxons





# Au cœur du modèle multi-dimensionnel Modèle en « étoile »

Un schéma en étoile est une structure dimensionnelle qui représente une seule table de faits reliée directement aux dimensions

### Avantages:

- > Facilite la navigation lors de la restitution
- >Performances:
  - > nombre de jointures limité
- Inconvénients:
  - > Redondances dans les dimensions
  - >Alimentation complexe
  - >Le métier à modéliser n'est pas
  - >toujours aussi simple





# Au cœur du modèle multi-dimensionnel Modèle en « flocon »

Un schéma en flocon est en schéma en étoile mais avec certaines dimensions sur plusieurs niveaux (plus normalisées)

### > Avantages:

- >Réduction du volume
- >Maintenance + facile
- > Inconvénients:
  - ➤ Navigation plus difficile
  - ➤ Nombreuses jointures





# Au cœur du modèle multi-dimensionnel Modèle en « constellation »

Un schéma en constellation est en schéma en flocon mais avec des dimensions communes sur plusieurs tables de faits





# Conception d'un entrepôt décisionnel: Modélisation

- 1. Processus de modélisation
- 2. Au cœur du modèle multi-dimensionnel
- 3. Concepts avancés



# Au cœur du modèle multi-dimensionnel Dimensions: concepts avancés (1/2)

- Les attributs d'une dimension sont souvent organisés en hiérarchies:
  - ➤ Année → Trimestre → Mois → Jour
  - > Monde → Zone commerciale → Pays → Ville
  - ➤ Agence → Service → Employé
  - > Catégorie → Gamme → Famille de produit → Produit
- Les dimensions peuvent évoluer dans le temps (Slowly Changing Dimensions ou SCD)
  - > SCD type 0: Non gestion de la modification
  - > SCD type 1: Ecrasement de l'ancienne valeur
  - > SCD type 2: Historisation de l'ancienne valeur (avec un booléen ou une fourchette de dates)
  - > SCD type 3: Utilisation d'une colonne supplémentaire pour la nouvelle version (limité)
- « Junk » dimension (dimensions fourre tout):
  - > Pour éviter de créer plein de dimensions avec un seul attribut, on les regroupe dans une même dimensions, même s'ils n'ont aucun rapport entre eux
- Gestion de membre inconnu:
  - > Valeur « Unknown »: une ligne « joker » est créé dans la dimension
  - > Membre inféré: La dimension est alimentée automatiquement quand une nouvelle valeur est détectée lors de l'alimentation de la table de fait



# Au cœur du modèle multi-dimensionnel Dimensions: concepts avancés (2/2)

- Chaque dimension peut contenir des hiérarchies sur plusieurs niveaux:
  - > EX: Un « Client » appartient à un « Segment », et les « Segments » sont organisés en « Type »
- Ces hiérarchies correspondant aux niveaux de granularité (ou « niveau d'agrégation ») disponible pour les faits





# Au cœur du modèle multi-dimensionnel Tables de faits: concepts avancés

- Constitution d'une table de fait:
  - ➤ Une collection de liens vers des dimensions. EX: Magasin de Lyon, Produit A, Mois X
  - > Une collection de mesures (indicateurs). EX: CA, quantité en stock...
- Notion de granularité sur chaque axe:
  - > Le niveau de granularité sur chaque axe est très important
  - >EX: l'état des stocks peut être représenté dans plusieurs tables de faits:
    - > Le stock fin de mois par famille de produits au niveau de chaque magasin
    - > Le stock de fin d'année par produit dans chaque pays
    - > Ces tables auront les mêmes indicateurs mais des granularités différentes
- Types de tables de faits courants :
  - > Instantané périodique
  - > Instantané de transaction
  - ➤ Instantané récapitulatif



# Au cœur du modèle multi-dimensionnel Clés « métier » et clés « de substitution »

> Deux types de clés à utiliser dans les modèles dimensionnels

|                       | Business key                                           | Surrogate key                                                         |  |  |
|-----------------------|--------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| En français           | Clé « métier »                                         | Clé de substitution                                                   |  |  |
| Identifiant           | Dans le système<br>transactionnel source               | Dans le système<br>décisionnel                                        |  |  |
| Destinataire          | Métier: utilisateur final (elle est parlante pour lui) | Technique: technicien de maintenance                                  |  |  |
| Utilité               |                                                        | Permet de tracer les<br>différentes version d'un<br>même objet métier |  |  |
| Création              | Par copie dans le système source                       | Par incrémentation automatique                                        |  |  |
| Convention de nommage | « Code »,<br>« NO »,<br>« NB »                         | « Id »,<br>« Clé technique »,<br>« TK »                               |  |  |



# Au cœur du modèle multi-dimensionnel Matrice de bus

### La « matrice de bus » (ou « matrice des besoins »):

- > C'est un des documents permettant de spécifier un entrepôt de données multidimensionnel
- > Elle représente le schéma en étoile (ou en flocon) sous forme de tableau
- >II met en relation les dimensions et les mesures des tables de faits
- > En précisant la granularité du lien

#### Exemple:

|                    |              | Dimensions |         |            |            |  |  |
|--------------------|--------------|------------|---------|------------|------------|--|--|
|                    |              | Temps      | Produit | Géographie | Commercial |  |  |
| Tables<br>de faits | Stocks       | Mois       | Produit | Région     |            |  |  |
|                    | Ventes       | Jour       | Produit | Magasin    | Agent      |  |  |
|                    | Valorisation | Jour       | Produit |            |            |  |  |
|                    | Budget       | Mois       | Famille | Magasin    | Agent      |  |  |



# Au cœur du modèle multi-dimensionnel Architecture en bus





# Au cœur du modèle multi-dimensionnel Conformité des dimensions



Dimension « conforme » (ou commune)

### Création d'une dimension commune:

- >Imaginons qu'une compagnie comporte deux filiales avec des dimensions différentes
- ➤Il est généralement intéressant d'agréger les données sur une dimension commune
- Dans ce cas on liste des attributs communs aux deux filiales. L'agrégation est alors possible sur cette « dimension commune »



# Bibliographie & crédits

« Entrepôts de données: Guide pratique de modélisation dimensionnelle » 2eme Ed. par Ralph Kimball & Margy Ross, 2011

- « Slowly changing dimension », Wikipédia
  - > http://en.wikipedia.org/wiki/Slowly changing dimension



### Exercice:

> Transformer ce schéma de base de donnée relationnel en base multidimensionnelle



