Tutorial 5 (with solution)

Modular Arithmetic

Question 1: Divisibility by 9

Let *x* be an *n*-digit number. Prove that

$$x \equiv a_{n-1} + a_{n-2} + \dots + a_1 + a_0 \pmod{9}$$
,

where a_i is the (i + 1)-th digit of x.

- Example 1:
 - Suppose x = 6213. $x \mod 9 = 6 + 2 + 1 + 3 \mod 9 = 3$.
- Example 2:
 - O Suppose x = 7218. Since the digit sum (mod 9) = $7 + 2 + 1 + 8 \pmod{9} = 0$, x must be divisible by 9.

Q.1 (solution)

An *n*-digit number *x* can be represented by

$$x = a_{n-1}10^{n-1} + a_{n-2}10^{n-2} + \dots + a_110 + a_0.$$

Since $10 \equiv 1 \mod 9$,

 $10^i \equiv 1 \mod 9$, for any integer *i*.

Then,

$$x \equiv a_{n-1} \times 1 + a_{n-2} \times 1 + \dots + a_1 \times 1 + a_0 \times 1 \pmod{9}.$$

 $\equiv a_{n-1} + a_{n-2} + \dots + a_1 + a_0 \pmod{9}.$

Q.E.D

Question 2: Diophantie Equation

■ Solve the equation

$$98x + 35y = 14$$
,

where *x* and *y* are integers.

Q.2 (solution)

- □ First, find gcd(98,35).
- By extended Euclidean algorithm,

$$98(-1) + 35(3) = 7.$$

■ Multiplying both sides by 2, we obtain
$$98(-2) + 35(6) = 14$$
.

- □ Therefore, $x_0 = -2$, $y_0 = 6$ is a particular solution.
- Dividing both sides by 7, we obtain

$$14(-2) + 5(6) = 2$$
.

It can be seen that

$$14(-2+5t) + 5(6-14t) = 2.$$

The general solution is

$$x = -2 + 5t, y = 6 - 14t,$$

where t is an integer.

98	35		
1	0	98	a
0	1	35	b
1	-2	28	c = a - 2b
-1	3	7	d = b - c

Question 3: Application

- ☐ The admission fee at a small fair is \$1.5 for children and \$4.00 for adult.
- □ On a certain day, the fair collected \$5,050.
- □ It was known that there attended more children than adults, and that in total there were not more than 3,000 people.
- How many possible combinations of number of children and number of adults could be used to satisfy the given conditions?

Q.3 (solution)

- □ Let *x* be the number of adults.
- □ Let *y* be the number of children.
- Set up the equations and inequalities:
- a) 4x + 1.5y = 5050, or 40x + 15y = 50500
- b) $0 \le x < y$
- c) $x + y \le 3000$

$$40(-1) + 15(3) = 5$$

Multiply both sides by 10100,

$$40(-10100) + 15(30300) = 50500.$$

40	15		
1	0	40	a
0	1	15	b
1	-2	10	c = a - 2b
-1	3	5	d = b - c

A particular solution:

$$x_0 = -10100$$
 and $y_0 = 30300$

All possible solutions

$$x = x_0 + tb/d = -10100 + 3t.$$

 $y = y_0 - ta/d = 30300 - 8t.$

$$d = \gcd(40,15) = 5$$

$$x = -10100 + 3t.$$
$$y = 30300 - 8t.$$

Since $x \ge 0$, $t \ge 10100/3$ or $t \ge 3367$ (since t is an integer) Since x < y,

$$-10100 + 3t < 30300 - 8t$$
.

$$t < 3672.73$$
 or $t \le 3672$ (since t is an integer)

Since
$$x + y \le 3000$$
,

$$20200 - 5t \le 3000$$

$$t \ge \frac{17200}{5} = 3440$$

Combining them, $3440 \le t \le 3672$.

No. of possible combinations = 233.

Question 4: Repeat-and-Multiply

a) Use the Repeat-and-Multiply method to compute 3⁹⁴ mod 17.

b) User Fermat's Little Theorem to compute $40^{110} \mod 37$.

Q.4(a) (solution)

 $\square 3^2 \equiv 9 \pmod{17}$ $3^4 \equiv (9)^2 \equiv 81 \equiv 13 \equiv -4 \pmod{17}$ $3^8 \equiv (-4)^2 \equiv 16 \equiv -1 \pmod{17}$ $3^{16} \equiv (-1)^2 \equiv 1 \pmod{17}$ $3^{32} \equiv 1 \pmod{17}$ $3^{64} \equiv 1 \pmod{17}$ \square Therefore. $3^{94} \equiv 3^{64}3^{16}3^83^43^2$ $\equiv (1)(1)(-1)(-4)(9)$ $\equiv 36 \equiv 2 \pmod{17}$

Q.4(b) (solution)

☐ First, note that

$$40^{110} \equiv 3^{110} \mod 37$$
.

- □ Since 37 is a prime, we can use Fermat's Little Theorem, which implies $3^{36} \equiv 1 \mod 37$.
- ☐ Hence,

$$40^{110} \equiv 3^{110} \equiv 3^{36 \times 3} 3^2 \equiv 9 \pmod{37}$$
.

Question 5: Fermat's Little Theorem

 \square Solve $x^{103} \equiv 4 \mod 11$.

Q.5 (solution)

- \square By Fermat's Little Theorem, $x^{10} \equiv 1 \mod 11$.
- \square Therefore, $x^{103} \equiv x^3 \mod 11$.
- \square We only need to solve $x^3 \equiv 4 \mod 11$.
- ☐ If we try all values from x = 1 through x = 10, we find that

$$x \equiv 5 \mod 11$$
.