Semiconductor Devices

Final Exam 12/12/2023

Name:	 	 	
ID#•			

- There are 4 problems in this exam.
- In taking the examination, you agree that all work recorded herein is your own. A student caught in the act of cheating will be given a grade of F on this examination.

Problem	Points		
1			
2			
3			
4			
Total			

Problem 1 (25 points)

The steady state minority carrier densities in a pn junction are shown below. $p_{n0}=1x10^3\ cm^{\text{-}3}, n_{p0}=1x10^4\ cm^{\text{-}3}$, the electron minority carrier density at the edge of the depletion region is $1x10^{14}\ cm^{\text{-}3}$ as indicated in the figure. Assume

$$\tau_{\rm n} = 0.01 \ \mu \text{s}, \ \tau_{\rm p} = 0.01 \ \mu \text{s}, \ \mu_{\rm n} = 1000 \ \text{cm}^2/\text{V.s}, \ \mu_{\rm p} = 500 \ \text{cm}^2/\text{V.s}.$$

$$n_i = 1.5x 10^{10} \ cm^{-3}, \ \frac{kT}{e} = 0.026 \ V, \ E_g = 1.12 \ eV, \ T = 300 \ K$$

- a) (5 points) Is the pn junction at equilibrium, forward biased, or reverse biased? Explain.
- b) (5 points) Indicate on the graph the p-region and the n-region and the doping level in each.
- c) (5 points) Determine the applied voltage.
- d) (5 points) Do low-level injection conditions prevail in the bulk regions?
- e) (5 points) Draw the energy band diagram and determine the energy barrier height in the conduction band.

Problem 2 (25 points)

Consider a Si pnp transistor with $N_E = 5x10^{17}$ cm⁻³, $N_B = 5x10^{16}$ cm⁻³, $N_C = 5x10^{15}$ cm⁻³, a metallurgical base width of 0.3 μ m, and a cross section area of $1x10^{-4}$ cm². Assume the critical electric field to be equal to $4x10^5$ V/cm.

$$\tau_n = 0.01 \ \mu s, \, \tau_p = 0.01 \ \mu s, \, \mu_n = 1000 \ cm^2/V.s, \, \mu_p = 500 \ cm^2/V.s.$$

$$n_i = 1.5 \times 10^{10} \text{ cm}^{-3}, \ \varepsilon_s = 11.7 \times 8.854 \times 10^{-14} \text{ F/cm}$$

- a) (5 points) Determine the operating region and draw the excess minority carrier densities across the emitter, base, and collector bulk regions for $V_{EB} = 0.7V$, $V_{EC} = 2.0V$.
- b) (5 points) Draw the energy band diagram corresponding to the part a).
- c) (5 points) Describe the procedure for estimating the total number of excess holes in the base (You don't need to find the actual value).
- d) (5 points) Determine the common-base breakdown voltage.
- e) (5 points) Determine V_{EC} at punch-through (neglect the E-B depletion region).

Problem 3 (25 points)

A MOS capacitor has an aluminum gate and a p-type semiconductor with doping $N_A = 10^{16}$ cm⁻³. The silicon dioxide gate has a thickness of 400 Å. The oxide charge density is $Q_{ss} = 3 \times 10^{11}$ cm⁻². For the aluminum-silicon dioxide junction, assume $\phi_m = 3.4V$ and for the silicon-silicon dioxide junction, $\chi = 3.25V$

$$\varepsilon_{ox} = 3.9 \varepsilon_{o}, \varepsilon_{s} = 11.7 \varepsilon_{o}, \ \varepsilon_{o} = 8.85 \times 10^{-14} \frac{F}{cm}, \ E_{g} = 1.12 eV$$

$$\frac{kT}{e} = 0.026V, \ n_{s} = 1.5 \times 10^{10} \ cm^{-2}$$

 Q'_{SS} is the number of electronic charges per unit area in the oxide

- a) (5 points) Calculate the flat-band voltage.
- b) (5 points) Calculate the threshold voltage.
- c) (5 points) Is this enhancement or depletion type?
- d) (5 points) Sketch the charge density along the MOS capacitor at the onset of inversion.
- e) (5 points) Sketch the energy band diagram in the semiconductor region at the onset of inversion.

Problem 4 (25 points)

Consider an n-channel MOSFET biased as shown in the figure below. Assume the following parameters: p^+ poly gate such that $E_F = E_V$,

$$t_{ox} = 100 \overset{o}{A}, Q_{SS}^{'} = 10^{11} cm^{-2}, N_A = 10^{16} cm^{-3}, n_i = 1.5 \times 10^{10} cm^{-3}$$

$$\frac{kT}{e} = 0.026V$$

$$\varepsilon_s = 11.7 \times \varepsilon_o, \varepsilon_{ox} = 3.9 \times \varepsilon_o, \varepsilon_o = 8.854 \times 10^{-14} F/cm$$

 $Q_{SS}^{'}$ is the number of electronic charges per unit area in the oxide

$$W = 10 \mu m, L = 2 \mu m, \mu_{m} = 700 \frac{cm^{2}}{V_{m}S}$$

- a) (5 points) Determine the threshold voltage V_{TN} .
- b) (10 points) Plot $\sqrt{I_D}$ versus V_{DS} for $V_{GD} = 0$ and $0 \le V_{DS} \le 5V$
- c) (10 points) Plot $\sqrt{I_D}$ versus V_{DS} for $V_{GD} = V_{TN}$ and $0 \le V_{DS} \le 5V$