Lecture 2

Root Finding and Iterative Method

Root Finding

Example 1 To what elevation should the cannon be raised to hit the target? Parameters:

- $g = \text{gravitational acceleration } (ms^{-2})$: known;
- V_0 = initial speed (ms^{-1}) : known;
- R = distance to target (m): known;
- θ^* = required elevation (radians): unknown.

Determine elevation θ^* needed to hit target using known values of parameters V_0 , R, and g.

- Coordinates of cannonball at time t are (x(t), y(t)).
- Motion of cannonball determined by Newton's 2nd law:

$$\begin{cases} x''(t) = 0, & x(0) = 0, x'(0) = V_0 \cos \theta^* \\ y''(t) = -g & y(0) = 0, y'(0) = V_0 \sin \theta^* - \frac{1}{2}gt^2 \end{cases}$$

- Want to find θ^* such that x(T) = R and y(T) = 0, where T is the time of flight.
- Can eliminate T using y(T) = 0 (i.e. object is on the ground).
- If y(T) = 0 then T = 0 or $T = \frac{2V_0 \sin \theta^*}{g}$.
- Reject T=0, so to have x(T)=R, we must have

$$x(T) = (V_0 \cos \theta^*)(\frac{2V_0 \sin \theta^*}{q}) = R$$

Zero-finding problem: find elevation θ^* such that $f(\theta^*) = 0$, where

$$f(\theta) := 2\sin\theta\cos\theta - \frac{Rg}{V_0^2}$$

Example 2 Suppose you pay an amount of money to a bank every year and they promise to pay you a lump sum when you retire. Over one year, you would pay an amount

$$\nu P = \frac{1}{1+i}P$$

for this service to compensate for the loss of interest, where i is the percentage interest rate.

Over n years you will pay

$$\nu P + \nu^2 P + \ldots + \nu^n P = \nu P \frac{1 - \nu^n}{1 - \nu} = T$$

Iterative Methods

- Algorithms for solving $f(x^*) = 0$ are usually iterative.
- Starting from $x^{(0)}$, make sequence of iterates

$$x^{(1)} = \phi(x^{(0)}),$$

$$x^{(2)} = \phi(x^{(1)}),$$

$$\vdots$$

$$x^{(k+1)} = \phi(x^{(k)}),$$

$$\vdots$$

- $\bullet~\phi$ function/rule generating successive iterates
- Rule $x^{(k+1)} = \phi(x^{(k)})$ for $k \ge 0$ is a recurrence relation.

Example 3 $x^{(0)} := 1$ and $\phi : \mathbb{R} \to \mathbb{R}$ is the function given by

$$(\forall t \in \mathbb{R}) \quad \phi(t) = 2t$$

Example 4 Given a > 0 and $x^{(0)} > 0$, consider sequence

$$x^{(k+1)} = \phi(x^{(k)}) = \frac{1}{2}(x^{(k)} + \frac{a}{x^{(k)}}) \quad (k = 0, 1, ...)$$

with a = 5 and $x^{(0)} = 3$. What does this sequence converge to?

Remark 1 Any iteration $x^{(k+1)} = \phi(x^{(k)})$ generates a sequence

$$\{x^{(k)}\}_{k=0}^{\infty} = \{x^{(0)}, x^{(1)}, x^{(2)}, ..., x^{(k-1)}, x^{(k)}, x^{(k+1)}, ...\}$$

Remark 2 Recall that the limit of sequence $\{x^{(k)}\}_{k=0}^{\infty}$ is $x^* \in \mathbb{R}$ iff

$$(\forall \epsilon > 0)(\exists K \in \mathbb{N}) \quad [(k \ge K) \implies |x^{(k)} - x^*| \le \epsilon]$$

Theorem 1 The sequence $\{x^{(k)}\}_{k=0}^{\infty}$ converges to $x^* \in \mathbb{R}$ or

$$\lim_{k \to \infty} x^{(k)} = x^*$$