Imperial College London

Minkowski Functionals - Integral Formulation

		scalar measures		
W_0	$\int_K \mathrm{d} V$	$\frac{1}{3} \sum_{T \in \mathcal{F}_2} \langle \mathbf{C}_T, \mathbf{n}_T \rangle T $		
W_1	$\frac{1}{3} \int_{\partial K} dA$	$\frac{1}{3} \sum_{T \in \mathcal{F}_2} T $		
W_2	$\frac{1}{3} \int_{\partial K} G_2 \mathrm{d}A$	$\frac{1}{12} \sum_{\mathbf{e} \in \mathcal{F}_1} \mathbf{e} \alpha_{\mathbf{e}}$		
W_3	$\frac{1}{3} \int_{\partial K} G_3 \mathrm{d}A$	$\frac{1}{3} \sum_{\mathbf{v} \in \mathcal{F}_0} (2\pi - \sum_{T \in \mathcal{F}_2(\mathbf{v})} \phi_T^{\mathbf{v}})$		
		vectorial measures		
$(W_0^{1,0})_i$	$\int_K \mathbf{x}_i \mathrm{d}V$	$\sum_{T \in \mathcal{F}_2} (I_T)_{ik}(n_T)_k, \text{ see sec. } 2.4$		
$(W_1^{1,0})_i$	$\frac{1}{3} \int_{\partial K} \mathbf{x}_i \mathrm{d}A$	$\frac{1}{3} \sum_{T \in \mathcal{F}_2} T (\mathbf{C}_T)_i$		
$(W_2^{1,0})_i$	$\frac{1}{3} \int_{\partial K} G_2 \mathbf{x}_i \mathrm{d}A$	$\frac{1}{12}\sum_{\mathbf{e}\in\mathcal{F}_{t}} \mathbf{e} \alpha_{\mathbf{e}}(\mathbf{C}_{\mathbf{e}})_{i}$		
$(W_3^{1,0})_i$	$\frac{1}{3} \int_{\partial K} G_3 \mathbf{x}_i \mathrm{d}A$	$\frac{1}{3} \sum_{\mathbf{v} \in \mathcal{F}_0} (2\pi - \sum_{T \in \mathcal{F}_2(\mathbf{v})} \phi_T^{\mathbf{v}}) \mathbf{v}_i$		
	tens	orial measures (rank two)		
$(W_0^{2,0})_{ij}$	$\int_K \mathbf{x}_i \mathbf{x}_j \mathrm{d}V$	$\sum_{T \in \mathcal{F}_2} (J_T)_{ijk} (n_T)_k, \text{ see sec. } 2.5$		
$(W_1^{2,0})_{ij}$	$\frac{1}{3} \int_{\partial K} \mathbf{x}_i \mathbf{x}_j \mathrm{d}A$	$\frac{1}{3} \sum_{T \in \mathcal{F}_2} (I_T)_{ij}$		
$(W_2^{2,0})_{ij}$	$\frac{1}{3} \int_{\partial K} G_2 \mathbf{x}_i \mathbf{x}_j \mathrm{d}A$	$\frac{1}{36} \sum_{\mathbf{e} \in \mathcal{F}_1} \alpha_{\mathbf{e}} \mathbf{e} \cdot ((\mathbf{v}_1^2)_{ij} + (\mathbf{v}_1 \mathbf{v}_2)_{ij} + (\mathbf{v}_2^2)_{ij})$		
$(W_3^{2,0})_{ij}$	$\frac{1}{3} \int_{\partial K} G_3 \mathbf{x}_i \mathbf{x}_j \mathrm{d}A$	$\frac{1}{3} \sum_{\mathbf{v} \in \mathcal{F}_0} \left(2\pi - \sum_{T \in \mathcal{F}_2(\mathbf{v})} \phi_T^{\mathbf{v}} \right) (\mathbf{v}^2)_{ij}$		
$(W_1^{0,2})_{ij}$	$\frac{1}{3} \int_{\partial K} \mathbf{n}_i \mathbf{n}_j \mathrm{d}A$	$\frac{1}{3}\sum_{T\in\mathcal{F}_2} T (\mathbf{n}_T^2)_{ij}$		
$(W_2^{0,2})_{ij}$	$\frac{1}{3} \int_{\partial K} G_2 \mathbf{n}_i \mathbf{n}_j \mathrm{d}A$	$\frac{1}{24} \sum_{\mathbf{e} \in \mathcal{F}_1} \mathbf{e} \left((\alpha_{\mathbf{e}} + \sin \alpha_{\mathbf{e}}) (\ddot{\mathbf{n}}_{\mathbf{e}}^2)_{ij} + (\alpha_{\mathbf{e}} - \sin \alpha_{\mathbf{e}}) (\dot{\mathbf{n}}_{\mathbf{e}}^2)_{ij} \right)$		

Minkowski Tensor Visualization

$$W_0^{2,0}$$
 – moment tensor wire-
frame

 $W_3^{2,0}$ – moment tensor vertices

 $W_1^{0,2}$ – normal distribution $W_2^{0,2}$ – curvature distribution

Imperial College London

Minkowski Functionals – Translation Behavior

Homogeneity [unit]	rank 0	rank 1	rank 2	translation behaviour
$\lambda^5 \ [m^5]$	_	_	$W_0^{2,0}$	genuinely translation covariant
$\lambda^4 \ [m^4]$	_	$W_0^{1,0}$	$W_1^{2,0}$	genuinely translation covariant
$\lambda^3 \ [m^3]$		$W_1^{1,0}$	$W_2^{2,0}$	genuinely translation covariant
	W_0	_	$W_0 Q$	translation invariant
$\lambda^2 \ [m^2]$		$W_2^{1,0}$	$W_3^{2,0}$	genuinely translation covariant
	_	_	$W_1^{0,2}$	translation invariant
	W_1	_	$W_1 Q$	translation invariant
$\lambda^1 \ [m^1]$	_	$W_3^{1,0}$	_	genuinely translation covariant
	_	_	$W_2^{0,2}$	translation invariant
	W_2	_	$W_2 Q$	translation invariant
λ^0 [1]	W_3	_	$W_3 Q$	translation invariant