UNIVERSIDADE DE PASSO FUNDO

INSTITUTO DE TECNOLOGIA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

DISCIPLINA DE CONTROLE AUTOMÁTICO II

TRABALHO FINAL DA DISCIPLINA

ALUNOS:

WESLEY TISIAN (173726) HOMERO KEMMERICH (146676)

Planta II

Equação:

$$G_2(s) = \frac{23,8}{(s+1)(s+3,5)(s+6,8)}$$

Requisitos de controle:

Requisito	Valor
Amplitude degrau	1,0
%OS _d	20%
$e(\infty)_d$	7,5%
t_{s_d}	1,4
$u(t)_{max}$	2,6
$u(t)_{min}$	-2,6

Controlador Proporcional

$$C(s) = 2,56 \cdot E(s)$$

Objetivos esperados:

Espera-se que a saída do controlador seja proporcional à entrada e ao erro, ou seja, à medida que o erro aumenta, a saída também aumenta.

Comentários Iniciais:

Gráfico do RL (FIgura 1)

Gráfico de u(t) (Figura 3)

Requisito	Valor
Amplitude degrau	0,84
%OS _d	18,31%
t_p	1,26s
t_s	2,76s
$y(\infty)$	0,71
$e(\infty)$	28,59%
$u(t)_{max}$	0,84
$u(t)_{min}$	0,65

Controlador Integrador Puro

$$C(s) = \frac{0.83}{s}$$

O objetivo do controlador integrador puro é eliminar o erro, com a desvantagem de um alto tempo de assentamento.

Gráfico do RL (Figura 4)

Gráfico da resposta do sistema (Figura 5)

Gráfico de u(t) (Figura 6)

Requisito	Valor
Amplitude degrau	1,30
%OS _d	30,36%
t_p	4,34s
t_s	13,27s
$y(\infty)$	1
$e(\infty)$	0%
$u(t)_{max}$	1,36
$u(t)_{min}$	0,90

 \acute{E} possível observar que o controlador integral puro possui um tempo de assentamento muito elevado em relação ao controlador proporcional. Apesar disso, este controlador apresenta Erro zero.

Controlador Proporcional Integrativo

$$C(s) = \frac{23,8 \cdot (s+87,03)}{\cdot s(s+6,8)(s+3,5)(s+1)}$$

Objetivos esperados

A presença do componente integrativo permite a redução do erro em regime permanente no sistema (efetivamente zero) ao mesmo tempo que melhora o tempo de resposta, devido à correção do erro realizada pelo componente proporcional.

Gráfico do RL (Figura 7)

Gráfico da resposta do sistema (Figura 8)

Requisito	Valor
Amplitude degrau	1,19
%OS _d	19,08%
t_p	5,22s
t_s	11,52s
$y(\infty)$	1
$e(\infty)$	0%
$u(t)_{max}$	1,19
$u(t)_{min}$	0,92

Controlador por Atraso de Fase

$$C(s) = \frac{s+0.9}{s+0.1}$$

Objetivos esperados

Uma das principais características do controlador proporcional derivativo é a estabilidade do sistema. O controlador lag adiciona um atraso de fase na resposta do sistema, o que pode ajudar a melhorar a estabilidade, o que proporciona um melhor funcionamento na utilização de frequências mais baixas.

Gráfico da resposta do sistema

Gráfico de u(t)

Requisito	Valor
Amplitude degrau	1,11
%OS _d	17,05%
t_p	1,50s
t_s	3,35s
$y(\infty)$	0,96
$e(\infty)$	15,60%

$u(t)_{max}$	1,11
$u(t)_{min}$	0,86

Controlador Proporcional Derivativo

$$C(s) = \frac{23.8 \cdot (s+0.4417)}{(s+6.8)(s+3.5)(s+1)}$$

Objetivos esperados

Uma das principais características do controlador proporcional derivativo é a velocidade de resposta, potencializada pelo controle proporcional. Outra característica importante é a estabilidade do sistema, ocasionada pelo controle derivativo.

Gráfico do RL (Figura 9)

Gráfico da resposta do sistema (Figura 10)

Gráfico de u(t) (Figura 11)

|--|

Amplitude degrau	0,83
%0S _d	39,37%
t_p	0,34s
t_s	4,63s
<i>y</i> (∞)	0,59
$e(\infty)$	40,57%
$u(t)_{max}$	0,83
$u(t)_{min}$	0,54

Controlador por Avanço de Fase

$$C(s) = \frac{23.8 \cdot (s+3.5)}{(s+21.28)(s+6.8)(s+3.5)(s+1)}$$

Objetivos esperados

O controlador lead adiciona um avanço de fase na resposta do sistema, o que resulta em uma resposta mais rápida a mudanças no sinal de referência. Essa melhoria na velocidade de resposta do sistema, também reduz o tempo de assentamento da curva, e melhora o desempenho em frequências mais altas.

Gráfico do RL (Figura 12)

Gráfico de u(t)

Requisito	Valor
Amplitude degrau	1,01
%OS _d	19,52%
t_p	0,60s
t_s	1,37s
<i>y</i> (∞)	0,84
<i>e</i> (∞)	15,60%
$u(t)_{max}$	1,01
$u(t)_{min}$	0,77

É possível observar que o erro do lead é maior que o erro do controlador PD, porém, seu *overshoot* é menor quando comparado ao PD. Isso quer dizer, que é possível aumentar o ganho do lead , diminuindo o erro e possivelmente também o tempo de assentamento.

Controlador por Avanço-Atraso de Fase

$$C(s) = \frac{34,83s^2 + 153,2s + 109,7}{s^2 + 23,87s + 2,377}$$

Objetivo esperado

Espera-se de um controlador *lead-lag* um equilíbrio na estabilidade do sistema, obtendo respostas rápidas e poucas oscilações.

Requisito	Valor
Amplitude degrau	1,16
%OS _d	18,22%
t_p	0,65s
t_s	1,51s
<i>y</i> (∞)	0,98
<i>e</i> (∞)	2,12%
$u(t)_{max}$	1,16
$u(t)_{min}$	0,89

 \acute{E} importante observar que o ganho do controlador Lead-Lag foi de 34,83 , enquanto seu ganho proporcional foi de 2,52.

Controlador Proporcional Integrativo Derivativo

$$C(s) = \frac{111,3s+49,16}{s^3+11,3s^2+145,4s+72,96}$$

Objetivo esperado

O comportamento esperado de um controlador PID é uma combinação das características individuais dos termos proporcional, integral e derivativo.

O termo proporcional fornece uma ação de controle proporcional ao erro atual. Isso significa que o controlador PID reage imediatamente ao erro presente, ajustando a saída proporcionalmente ao erro. O termo integral integra o erro acumulado ao longo do tempo. Isso ajuda a corrigir erros em regime permanente, especialmente quando o erro se acumula ao longo do tempo ou quando há perturbações constantes.

Conclusão

A partir da comparação de diferentes saídas do controladores para a planta utilizada, é possível concluir que o mais indicado seria o controlador do tipo Avanço-Atraso de Fase (Lead-Lag) pelos seguintes motivos:

- Overshoot dentro da média de todos os controladores
- Baixo tempo de pico e baixo tempo de assentamento
- Alta fidelidade no sinal de saída (erro baixíssimo)
- Alta estabilidade do sistema ($\Delta u(t) \simeq 0,27$)