import pandas as pd

df = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/utility_data_final.csv")

df.head()

	Electricity (kWh)	Water (litres/day)	Gas Flow (m^3/min)	Consumption Group
0	0.001298	107.0	0.029881	Normal
1	0.001597	97.0	0.032672	Normal
2	0.002266	64.0	0.038864	Normal
3	0.002279	87.0	0.040210	Normal
4	0.001024	86.0	0.029695	Normal

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

y = df['Consumption Group'].values

X = df.drop('Consumption Group', axis=1).values

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, test_size=0.3)

knn = KNeighborsClassifier(n_neighbors=6)

knn.fit(X_train, y_train)

y_pred = knn.predict(X_test)

from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score

print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
High Low Normal Very High	0.54 0.60 0.82 0.88	0.59 0.74 0.80 0.60	0.56 0.66 0.81 0.71	146 87 435 82
accuracy macro avg weighted avg	0.71 0.75	0.68 0.73	0.71 0.73 0.69 0.73	750 750 750

nnint/accuracy conne/y tact y nnod))

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.heatmap(confusion_matrix2, annot=True, fmt='d', cmap='Blues', cbar=False)

# Add axis labels and title
plt.xlabel('Predicted label')
plt.ylabel('True label')
plt.title('Confusion Matrix')

# Add a legend
class_names = ['high', 'low', 'normal', 'v_high']
plt.xticks(range(len(class_names)), class_names, rotation=45)
plt.yticks(range(len(class_names)), class_names)
plt.show()
```


Start coding or generate with AI.

2 of 3 02-05-2024, 21:11

3 of 3