

2-1.벡터의 연산 ~ 2-2.평면벡터의 성분과 내적

1. 다음 그림과 같이 한 변의 길이가 1인 정육각형 ABCDEF가 있다. \overline{AD} 와 \overline{BE} 의 교점을 G라고 할 때, 다음 벡터 중 크기가 다른 하나는?

- ① \overrightarrow{AG}
- \bigcirc \overrightarrow{BC}
- \bigcirc \overrightarrow{DF}
- $(4) \overrightarrow{EG}$
- $\bigcirc \overrightarrow{DC}$

2. 사각형 ABCD에서 $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{BC} = \overrightarrow{b}$, $\overrightarrow{CD} = \overrightarrow{c}$, $\overrightarrow{DA} = \overrightarrow{d}$ 라 할 때, $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d}$ 를 간단히 나타낸 것은?

- $\stackrel{\rightarrow}{\mathbb{Q}}$
- \bigcirc \overrightarrow{b}
- $\stackrel{\rightarrow}{\mathbb{G}}$
- \overrightarrow{d}
- $\vec{\odot}$ $\vec{0}$

3. \vec{x} - $\vec{3a}$ + $2(\vec{2b}$ - \vec{x})= $\vec{3b}$ 를 만족시키는 \vec{x} 를 \vec{a} , \vec{b} 로 나타낸 것은?

- $\overrightarrow{a} \overrightarrow{3b}$
- $\bigcirc -3\vec{a} + \vec{b}$
- $\vec{3} \vec{a} \vec{3b}$
- $\overrightarrow{a} + 3\overrightarrow{b}$
- $\stackrel{\rightarrow}{\text{(5)}} \vec{3a} \vec{b}$

4. 두 점 A, B의 위치벡터를 각각 \overrightarrow{a} , \overrightarrow{b} 라 할 때, 선 분 AB를 5:3으로 내분하는 점 P의 위치벡터를 \overrightarrow{a} , \overrightarrow{b} 로 나타낸 것은?

- $\overrightarrow{3a} + 5\overrightarrow{b}$
- ② $\frac{3}{8}\vec{a} + \frac{5}{8}\vec{b}$
- $3 3\vec{a} + 5\vec{b}$
- $(4) \frac{3}{8}\vec{a} + \frac{5}{8}\vec{b}$
- $\bigcirc -\frac{3}{2}\vec{a} + \frac{5}{2}\vec{b}$

5. 두 실수 k, l과 세 평면벡터 \vec{a} , \vec{b} , \vec{c} 에 대하여 벡터의 연산법칙이 옳은 것만을 \langle 보기 \rangle 에서 모두고른 것은?

<보기>

- $\neg . \ \overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$
- $\sqsubseteq. \ (\stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b}) + \stackrel{\rightarrow}{c} = \stackrel{\rightarrow}{a} + (\stackrel{\rightarrow}{b} + \stackrel{\rightarrow}{c})$
- \Box . $(k+l)\vec{a} = k\vec{a} + l\vec{a}$
- $\; \exists. \; (\overrightarrow{a} + \overrightarrow{b}) \; \bullet \; \overrightarrow{c} = \overrightarrow{a} \; \bullet \; (\overrightarrow{b} + \overrightarrow{c})$
- ① 7, L, ⊏
- ② ¬, ∟, ≥
- ③ 7, ⊏, ≥
- ④ ∟, ⊏, ≥
- ⑤ 7, ∟, ⊏, ⊒

6. 좌표평면 위의 세 벡터 \vec{a} =(3,-2), \vec{b} =(1,4), \vec{c} =(-7,14)에 대하여 \vec{c} = \vec{ma} + \vec{nb} 로 나타낼 때 두 상수 m, \vec{n} 의 곱은?

- $\bigcirc -6$
- ② -3
- 3 -1
- **4** 2
- (5) 6

- **7.** 점 (4,-2)을 지나고 직선 $\frac{x-1}{2} = \frac{y+3}{3}$ 에 수직 인 직선의 x절편을 구하면?
 - $\bigcirc -3$
- (2) -1
- 3 1
- 4 3
- **⑤** 5
- **8.** 두 직선 $x-2=\frac{y+1}{7}$, $\frac{1-x}{3}=\frac{y+2}{3}$ 가 이루는 각의 크기를 x°라 할 때, $\cos x$ °의 값을 구하면?
 - ① $-\frac{3}{5}$
- ② $-\frac{1}{5}$
- $3\frac{1}{5}$
- $4 \frac{3}{5}$
- 9. 두 벡터 \vec{a} , \vec{b} 에 대하여 $|\vec{a}|=4$, $|\vec{b}|=3$ 이고, $\vec{a}+3\vec{b}$ 와 $\vec{a}-\vec{b}$ 가 서로 수직일 때, $\vec{a}\cdot\vec{b}$ 의 값을 구하면?
 - ① 1
- ② $\frac{5}{2}$
- 3 4
- $4\frac{11}{2}$
- ⑤ 7
- **10.** 한 평면 위의 서로 다른 네 점 O, A, B, C에 대하여 $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, $\overrightarrow{OC} = \overrightarrow{ma} 4\overrightarrow{b}$ 일 때, 세 점 A, B, C가 한 직선 위에 있도록 실수 m의 값을 구하면? (단, 두 벡터 \overrightarrow{a} , \overrightarrow{b} 는 영벡터가 아니고 서로 평행하지 않다.)
 - \bigcirc 1
- ② 2
- 3
- **4**
- (5) 5

- **11.** 점 A(5,1), B(4,0)에 대하여 $|\overrightarrow{AP}| = 4$ 를 만족시키는 점 P가 그리는 도형의 넓이를 S_1 , $|\overrightarrow{BQ}| = 1$ 을 만족시키는 점 Q가 그리는 도형의 넓이를 S_2 라할 때, $S_1 S_2$ 의 값을 구하면?
 - (1) 15π
- ② 13π
- (3) 11π
- (4) 9π
- 57π
- **12.** 두 벡터 \vec{a} , \vec{b} 에 대하여 $|\vec{a}|=3$, $|\vec{b}|=2$, $|\vec{3}\vec{a}-2\vec{b}|=7$ 일 때, 내적 $\vec{a}\cdot\vec{b}$ 의 값은?
 - 1 2
- ② 3
- 3 4
- **(4)** 5
- **⑤** 6
- 13. 두 위치벡터 $\overrightarrow{OA}=(10,6)$ 와 $\overrightarrow{OB}=(14,4)$ 가 주어 졌을 때, $\overrightarrow{CA} \cdot \overrightarrow{CB}=0$ 을 만족시키는 점 C에 대한 위치벡터 \overrightarrow{OC} 의 크기의 최댓값과 최솟값의 합을 구하면?
 - ① $13-2\sqrt{2}$
- ② 13
- $313+2\sqrt{2}$
- 4 26
- (5) $26+2\sqrt{2}$
- **14.** 두 벡터 $\vec{a}=(x+1,3)$, $\vec{b}=(4,-x)$ 가 서로 수직 일 때, x의 값을 구하시오.
- **15.** 두 벡터 \vec{a} =(-2,4), \vec{b} =(2,5)에 대하여 $2(\vec{a}-\vec{b})+\vec{b}$ 의 크기를 구하시오.
- **16.** 좌표평면 위의 세 점 O, A, B에 대하여 $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ 라 하자. $\overrightarrow{a} \cdot \overrightarrow{b} = 12$, $|\overrightarrow{a}| = 5$, $|\overrightarrow{b}| = 3$ 일 때, 두 선분 OA, OB를 이웃하는 두 변으로 하는 평행사변형의 넓이를 구하시오.

- 17. 두 벡터 \overrightarrow{a} , \overrightarrow{b} 가 이루는 각의 크기가 $60\degree$ 이고, $|\vec{b}|=4$, $|2\vec{a}-3\vec{b}|=4\sqrt{7}$ 일 때, $|\vec{a}|$ 의 최댓값을 구하 시오.
- **18.** \mathbf{M} $\mathbf{H}\mathbf{E}\vec{a}$, \vec{b} , \vec{c} ? $|\vec{a}| = \sqrt{6}$, $|\vec{b}| = \sqrt{3}$, $|\stackrel{
 ightarrow}{c}|=\sqrt{15}$, $\stackrel{
 ightarrow}{a+}\stackrel{
 ightarrow}{b+}\stackrel{
 ightarrow}{c=0}$ 를 만족시킬 때, 두 벡터 $\stackrel{
 ightarrow}{a}$ 와 $\overset{
 ightarrow}{b}$ 가 이루는 예각의 크기를 구하시오.

천안업성고

- 1) [하] ③
- 2) [하] ⑤
- 3) [하] ②
- 4) [하] ②
- 5) [중] ①
- 6) [중] ①
- 7) [하] ③
- 8) [중] ④
- 9) [중] ④
- 10) [하] ⑤
- 11) [중] ①
- 12) [중] ③
- 13) [중] ④
- 14) [하] -4
- 15) [중] $3\sqrt{5}$
- 16) [중] 9
- 17) [중] 4
- 18) [중] $\frac{\pi}{4}$

