

## CS 372 Lecture #6

#### **Overview of Networking:**

introduction to protocols

**Note**: Many of the lecture slides are based on presentations that accompany *Computer Networking: A Top Down Approach,* 6<sup>th</sup> edition, by Jim Kurose & Keith Ross, Addison-Wesley, 2013.



# Networks are complicated!

- hosts
- routers
- links of various media types
- applications
- protocols
- other hardware, software





# Layering of functionality Post Office example



Layers: each layer implements a service

- via its own internal-layer actions
- relying on services provided by layer above/below



## Internet protocol stack

- application: supporting network applications
  - e.g. FTP, SMTP, HTTP
- transport: process-process data transfer
  - e.g. TCP, UDP
- network: routing of datagrams from source to destination
  - e.g. IP, routing protocols
- link: data transfer between neighboring network elements
  - e.g.PPP, Ethernet
- physical: carries actual signals between devices
  - e.g. cable, wireless

application

transport

network

link

physical





## Why layering?

#### Dealing with complex systems:

- explicit structure allows identification and relationship of complex system's pieces
  - layered reference model for discussion
- modularization eases maintenance and updating of complex system
  - change of implementation of layer's service is transparent to rest of system
    - e.g., change in "deliver to address" procedure doesn't affect the rest of the system



#### Constraints

- The software for each layer depends only on the services of the software provided by neighboring layers (well-defined interfaces)
- The software at layer n at the destination receives exactly the same protocol message sent by layer n at the sender (consistency)
- These constraints mean that protocols within a protocol stack can be
  - tested independently
  - modified/replaced independently



## ISO/OSI reference model

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machinespecific conventions
- session: synchronization, checkpointing, recovery of data exchange
- Internet stack "missing" these layers
  - these services, if needed, must be implemented in the <u>application</u> layer of the Internet protocol stack

application
presentation
session
transport
network
link
physical



# ISO model end-to-end transport





## Summary

## Lecture #6

- Definitions:
  - protocol
  - encapsulation
- Internet protocol stack
- ISO layering model