Ratio Test for convergence

Root Test: For a series $\sum_n a_n$ let $\alpha = \limsup_n |a_n|^{1/n}$. The series:

- Converges absolutely if $\alpha < 1$;
- **1** Diverges if $\alpha > 1$.
- **1** If $\alpha = 1$, the test gives no information.

Theorem (14.8 - Ratio Test)

A series $\sum_{n} a_n$ of non-zero terms:

- Converges absolutely if $\limsup \left| \frac{a_{n+1}}{a_n} \right| < 1$;
- ① Diverges if $\liminf \left| \frac{a_{n+1}}{a_n} \right| > 1$.
- **1** If $\liminf \left| \frac{a_{n+1}}{a_n} \right| \leqslant 1 \leqslant \limsup \left| \frac{a_{n+1}}{a_n} \right|$, the test gives no information.

Proof; examples

Partial proof, using Root Test. Let $\alpha = \limsup_n |a_n|^{1/n}$. We know: $\liminf \left|\frac{a_{n+1}}{2}\right| \le \alpha \le \limsup \left|\frac{a_{n+1}}{2}\right|$.

Case (i): $\alpha < 1 \Rightarrow$ series converges.

Case (ii): $\alpha > 1 \Rightarrow$ series diverges.

Examples: (1) $\sum_{k=1}^{\infty} \frac{k^4}{2^k}$ converges (absolutely). $a_k = \frac{k^4}{2^k}$.

Can use Root Test: $a_k^{1/k} = \frac{(k^{1/k})^4}{2}$, hence $\lim_{k \to \infty} a_k^{1/k} = \frac{1}{2} < 1$.

Can also use Ratio Test: $\frac{a_{k+1}}{a_k} = \frac{1}{2} \left(1 + \frac{1}{k}\right)^2$, hence $\lim \frac{a_{k+1}}{a_k} = \frac{1}{2} < 1$.

(2) $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges iff p > 1 (p-series). Ratio and Root tests are inconclusive.

Decimal expansions (Section 16) – almost no proofs!

For $x \in [0,\infty)$, we consider a decimal expansion $x = K.d_1d_2d_3\ldots = K + \sum_{j=1}^{\infty} \frac{d_j}{10^j}$, with $K = \{0,1,2,\ldots\}$ and $d_1,d_2,\ldots \in \{0,1,\ldots,9\}$. $\sum_j \frac{d_j}{10^j}$ converges (compare to $\sum_j \frac{1}{10^{j-1}}$).

Theorem (16.2)

Any real number has at least one decimal expansion.

The integer part of $z |z| = \text{greatest integer} \leq z$. Let

$$\begin{split} S &= \{n \in \mathbb{Z} : n \leqslant z\}, \ \lfloor z \rfloor = \sup S. \ \text{Clearly} \ \lfloor z \rfloor \leqslant z. \ \text{Can show:} \ \lfloor z \rfloor \in \mathbb{Z}. \\ \text{Idea of the proof:} \ K &:= \lfloor x \rfloor, \ \text{then} \ 0 \leqslant x - K < 1. \\ d_1 &:= \lfloor 10(x - K) \rfloor, \ \text{so} \ K + \frac{d_1}{10} \leqslant x < K + \frac{d_1+1}{10} \Rightarrow \left| x - \left(K + \frac{d_1}{10}\right) \right| < \frac{1}{10}. \\ d_2 &:= \lfloor 10^2 \left(x - K - \frac{d_1}{10}\right) \rfloor, \ \text{so} \ K + \frac{d_1}{10} + \frac{d_2}{10^2} \leqslant x < K + \frac{d_1}{10} + \frac{d_2+1}{10^2} \Rightarrow \left| x - \left(K + \frac{d_1}{10} + \frac{d_2}{10^2}\right) \right| < \frac{1}{10^2}. \end{split}$$

Continue in this manner.

More about decimal expansions

Theorem (16.3)

Any $x\geqslant 0$ has either exactly one decimal expansion, or exactly two – one ending in $**d000\dots(d\in\{1,\dots,9\}$, another ending in $**[d-1]999\dots$

For instance, $\frac{1}{2}=0.5000\ldots=0.4999\ldots$

Definition (16.4)

A repeating decimal expansion is one of the form

 $K.d_1 \ldots d_\ell \overline{d_{\ell+1} \ldots d_{\ell+r}} = K.d_1 \ldots d_\ell d_{\ell+1} \ldots d_{\ell+r} d_{\ell+1} \ldots d_{\ell+r} \ldots$

Theorem (16.5)

 $x \in \mathbb{Q}$ iff the decimal explansion of x is repeating.

Repeating decimal expansions

Theorem (16.5)

 $x \in \mathbb{Q}$ iff the decimal explansion of x is repeating.

x has repeating expansion $\Rightarrow x \in \mathbb{Q}$.

Suppose
$$x = K.d_1 \dots d_{\ell} \overline{d_{\ell+1} \dots d_{\ell+r}}$$
. Let $y = 0.\overline{d_{\ell+1} \dots d_{\ell+r}} = \sum_{j=1}^r d_{\ell+j} 10^{-j} + 10^{-r} \cdot \sum_{j=1}^r d_{\ell+j} 10^{-j} + 10^{-2r} \sum_{j=1}^r d_{\ell+j} 10^{-j} + \dots = \sum_{i=0}^\infty 10^{-ir} z$, where $z = \sum_{j=1}^r d_{\ell+j} 10^{-j} \in \mathbb{Q}$. So, $y = \frac{z}{1-10^{-r}} \in \mathbb{Q}$. $x = K + \sum_{j=1}^\infty \frac{d_j}{10^j} = K + \sum_{j=1}^\ell \frac{d_j}{10^j} + 10^{-\ell} y \in \mathbb{Q}$.

 $x \in \mathbb{Q} \Rightarrow x$ has repeating expansion: uses long division (see textbook).