Announcements

Reminder: pset5 self-grading form and pset6 out, due Today 11/19 11:59pm Boston Time Assignment Project Exam Help

Class challenge out Today (will discuss in class)
 Add WeChat powcoder

Assignment Frbject Examerey is ed https://powcdefraching

Add WeChat powcoder

Slides credit: Jerry Zhu, Aarti Singh

Supervised Learning

Feature Space \mathcal{X}

Label Space \mathcal{Y}

Goal: Construct a predictor $f: \mathcal{X} \to \mathcal{Y}$ to minimize Assignment Project Exam Help

 $R(f) \equiv \mathbb{E}_{XY} [loss(Y, f(X))]$ https://powcoder.com

Optimal predictor (Bayes Add) We find to Add Add Add) We find the Add Ad

Training data \square Learning algorithm \square Prediction rule $\{(X_i,Y_i)\}_{i=1}^n$

Labeled

Labeled and Unlabeled data

Unlabeled data, X_i

Labeled data, Y_i

Cheap and abundant!

Expensive and scarce!

Free-of-cost labels?

Luis von Ahn: Games with a purpose (ReCaptcha)

Semi-Supervised learning

Training data
$$\square$$
 Learning algorithm \square Prediction rule $\{(X_i,Y_i)\}_{i=1}^n$ Assignment Project Exam Help $\widehat{f}_{n,m}$

Supervised learning (SL) https://powcoder.com

Labeled data $\{X_i, Y_i\}_{i=1}^{Me}$ Chat powcoder

"Crystal"

 X_i

 Y_i

Semi-Supervised learning (SSL)

Labeled data $\{X_i, Y_i\}_{i=1}^n$ and Unlabeled data $\{X_i\}_{i=1}^m$

Goal: Learn a better prediction rule than based on labeled data alone.

Semi-Supervised learning in Humans

Cognitive science

Assignment Project Exam Help Computational model of how humans learn from labeled and unlabeled data.

https://powcoder.com

- https://powcoder.com
 concept learning in children: x=animal, y=concept (e.g., dog)
- Daddy points to a brown Wichain powsoder!"
- Children also observe animals by themselves

Can unlabeled data help?

- Positive labeled data
- Negative labeled data
- Unlabeled data

Assume each class is a coherent group (e.g. Gaussian)

Then unlabeled data can help identify the boundary more accurately.

Can unlabeled data help?

Unlabeled Images

Labels "0" "1" "2" ..

This embedding can be done by manifold learning algorithms, e.g. tSNE

"Similar" data points have "similar" labels

Assignment Project Exam Help Algorithms

https://powcoder.com

Add WeChat powcoder Learning

Slides credit: Jerry Zhu, Aarti Singh

Some SSL Algorithms

- Self-Training
- Generative Anethigdemeintulemojdets Exam Help
- Graph-based methods://powcoder.com
- Co-Training
 Add WeChat powcoder
- Semi-supervised SVM
- Many others

Notation

- instance x, label y
- learner $f: \mathcal{A}$ Assignment Project Exam Help
- labeled data $(X_l, Y_l)_{\overline{powcoder.com}}$
- unlabeled data $X_u = \{\mathbf{x}_{l+1:l+u}\}$, available during training. Usually $l \ll u$. Let n = l + dd + WeChat powcoder
- test data $\{(x_{n+1...}, y_{n+1...})\}$, not available during training

Self-training

Our first SSL algorithm:

```
Input: labeled data \{(\mathbf{x}_i, y_i)\}_{i=1}^l unlabeled data \{\mathbf{x}_i\}_{j=l+1}^{l+u}.

1. Initially, let L = \{(\mathbf{x}_i, y_i)\}_{i=1}^l and U = \{\mathbf{x}_j\}_{j=l+1}^{l+u}.

2. Repeat: https://powcoder.com

3. Train f from L using supervised learning.

4. Apply f to Apply f to Apply f to Apply f to Train f from f
```

Self-training is a wrapper method

- ullet the choice of learner for f in step 3 is left completely open
- good for many real world tasks like natural language processing
- but mistake by f can reinforce itself

Self-training Example

Propagating 1-NN

- Input: labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$, distance function $d(\mathbf{x}_i, y_i)\}_{i=1}^l$ and $U = \{\mathbf{x}_j\}_{j=l+1}^{l+u}$.
- 2. Repeat until LAiden Chat powcoder
- 3. Select $\mathbf{x} = \operatorname{argmin}_{\mathbf{x} \in U} \min_{\mathbf{x}' \in L} d(\mathbf{x}, \mathbf{x}')$.
- 4. Set $f(\mathbf{x})$ to the label of \mathbf{x} 's nearest instance in L. Break ties randomly.
- 5. Remove x from U; add $(\mathbf{x}, f(\mathbf{x}))$ to L.

Propagating 1-Nearest-Neighbor: now it works

Propagating 1-Nearest-Neighbor: now it doesn't

But with a single outlier...

Related: Cluster and Label

```
Input: (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l), \mathbf{x}_{l+1}, \dots, \mathbf{x}_{l+u}, a clustering algorithm \mathcal{L}. Project Example palgorithm \mathcal{L}
```

- 1. Cluster $\mathbf{x}_1, \ldots, \mathbf{x}_{l+u}$ using \mathcal{A} .
- 2. For each cluster, leth the the dedinate ones in it:
- 3. Learn a supervised predictor from S: $f_S = \mathcal{L}(S)$.
- 4. Apply f_S to all unlabeded WseGhastipowiscodeer.

Output: labels on unlabeled data y_{l+1}, \ldots, y_{l+u} .

But again: **SSL** sensitive to assumptions—in this case, that the clusters coincide with decision boundaries. If this assumption is incorrect, the results can be poor.

Co-training

Assumptions

- feature split $x = [x^{(1)}; x^{(2)}]$ exists
- $x^{(1)}$ or $x^{(2)}$ alassignment Project Exam Helpier

https://powcoder.com

Add WeChat powcoder view

Co-training Algorithm

Co-training (Blum & Mitchell, 1998) (Mitchell, 1999) assumes that

- (i) features can be split into two sets;
- (ii) each sub-feature set is sufficient to train a good classifier.

Assignment Project Exam Help

- Initially two separate classifiers are trained with the labeled data, on the two sub-featuletters: represented er.com
- Each classifier the describes the diplowed deta, and 'teaches' the other classifier with the few unlabeled examples (and the predicted labels) they feel most confident.
- Each classifier is retrained with the additional training examples given by the other classifier, and the process repeats.

Co-training Algorithm

Blum & Mitchell'98

Input: labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$ each instance has two views $\mathbf{x}_i = \begin{bmatrix} \mathbf{x}_i^{(1)} & \mathbf{x}_i^{(2)} \end{bmatrix}$ and a learning speed k.

- 1. let $L_1 = L_2 = \{(xhttps://pow.coder.com$
- Repeat until unlabeled data is used up:

 Train view-1 $f^{(1)}$ from L_1 , view-2 $f^{(2)}$ from L_2 . 3.
- Classify unlabeled data with $f^{(1)}$ and $f^{(2)}$ separately. 4.
- Add $f^{(1)}$'s top k most-confident predictions $(\mathbf{x}, f^{(1)}(\mathbf{x}))$ to L_2 . 5. Add $f^{(2)}$'s top k most-confident predictions $(\mathbf{x}, f^{(2)}(\mathbf{x}))$ to L_1 . Remove these from the unlabeled data.

Semi-Supervised Learning

- Generative methods
- Graph-based methods

Assignment Project Exam Help

Co-Training

https://powcoder.com

Semi-Supervised SVMs

Add WeChat powcoder

Many other methods

SSL algorithms can use unlabeled data to help improve prediction accuracy if data satisfies appropriate assumptions

Next Class

Practical Advice for Applying ML

Machine learning system design; feature engineering; feature pre-processing learning with projectation of the processing of the system of the processing of the system of

https://powcoder.com

Add WeChat powcoder