Научно-исследовательская работа на тему:

Оптимизация планирования грузоперевозок в транспортной системе на основе метода потенциалов

Студент: Иванов Всеволод Алексеевич, группа ИУ7-72Б Руководитель курсовой работы: Барышникова Марина Юрьевна

Цель и задачи работы

Целью данной работы является разработка метода для планирования доставки товаров.

Выделены следующие задачи:

- провести анализ предметной области, сформулировать критерии оценки оптимальности решений;
- формализовать задание, определить необходимый функционал программного обеспечения;
- выбрать метод оптимизации;
- определить набор необходимых данных и способ их хранения;
- разработать программу в соответствии с выделенным функционалом.

Актуальность проблемы

- Торговые розничные сети занимают всё большую долю в общем объёме торговли.
- Эффективность их деятельности зависит от грамотности управления цепочками поставок (**SCM** Supply Chain Management).
- SCM комплекс подходов, помогающий эффективной интеграции поставщиков, производителей, дистрибьюторов и продавцов.

Этапы SCM

- Планирование. Управление жизненным циклом товаров, объёмах производства и закупок.
- Закупки. Управление снабжением, выбор поставщиков.
- Производство. Производство, контроль технологических изменений, управление качеством.
- Доставка. Управление заказами, складом и транспортировкой.
- Возврат. Составление графиков возврата, уничтожения и переработки.

Задачей выбрана разработка систем планирования наиболее оптимальных маршрутов доставок.

Математическая формализация

- Продукт: Vol объём тары.
- Транспорт T_i : Con стоимость топлива, вместимость c_i , затраты топлива f_i (л/км).
- Рейсы R_i : совершаются $T_{i \ mod \ N_T}$.
- Заказы O_i .
- Пункты маршрута (стоянка, склады, магазины) P_i : запас продукции a_i . t_{ij} , d_{ij} время и расстояние между P_i и P_j , v_{ijk} количество товара, перевезённое k-м рейсом.

Математическая формализация

• Ограничения

- Вместимость транспорта $v_{\{ijk\}}\cdot Vol \leq c_k, \forall i,j \in \overline{\{1,N_b+N_a\}}, \ k \in \overline{\{1,N_t\}}$
- Однонаправленность перемещений $v_{\{ijk\}} > 0 \Rightarrow v_{\{jik\}} = 0$
- Удовлетворение запросов $a_i + \sum_{\{j=1\}}^{N_b+N_a} \sum_{\{k=1\}}^{N_t} (v_{jik} \ v_{\{ijk\}}) \geq 0$
- Транспорт может въехать и выехать из пункта только одним путём

$$\begin{cases} \exists i, k, j_1, j_2 \colon j_1 \neq j_2, v_{ij_1k} > 0, v_{ij_2k} > 0 \\ \exists j, k, i_1, i_2 \colon i_1 \neq i_2, v_{i_1jk} > 0, v_{i_2jk} > 0 \end{cases}$$

• Критерий оптимизации – минимизация стоимости рейсов.

$$L(v) = Con \cdot \sum_{i=1}^{\{N_b+N_a\}} \sum_{j=1}^{\{N_b+N_a\}} d_{ij} \cdot \sum_{\{k=1\}}^{N_t} v_{ijk} \to min$$

Подходы к решению

Методы решения транспортной задачи:

- Симплекс-метод
- Метод потенциалов

•

В качестве основы выбран метод потенциалов, так как он позволяет:

- Строить транзитные маршруты через пункты потребления
- Учитывать ограничения на пропускную способность

Текущее состояние работы

- Изучена предметная область
- Составлена модель
- Выбран метод

• Продолжение работы будет заключаться в описании выбранного метода и способов его модификации для нужд данной задачи