Estágio Ribeirão Preto - 2024

1) Observe o trecho de código abaixo:

```
int INDICE = 13, SOMA = 0, K = 0;
enquanto K < INDICE faça
{
   K = K + 1;
   SOMA = SOMA + K;
}
imprimir(SOMA);</pre>
```

Ao final do processamento, qual será o valor da variável SOMA?

Resposta 91.

2) Dado a sequência de Fibonacci, onde se inicia por 0 e 1 e o próximo valor sempre será a soma dos 2 valores anteriores (exemplo: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34...), escreva um programa na linguagem que desejar onde, informado um número, ele calcule a sequência de Fibonacci e retorne uma mensagem avisando se o número informado pertence ou não a sequência.

IMPORTANTE:

Esse número pode ser informado através de qualquer entrada de sua preferência ou pode ser previamente definido no código;

Resposta

f) 21

```
def verifica_fibonacci(numero):
  a, b = 0, 1
  while b < numero:
   a, b = b, a + b
  if b == numero:
   return True
  else:
    return False
numero_informado = int(input("Informe um número para verificar se pertence à sequência
de Fibonacci: "))
if verifica_fibonacci(numero_informado):
  print(f"O número {numero_informado} pertence à sequência de Fibonacci.")
else:
  print(f"O número {numero_informado} não pertence à sequência de Fibonacci.")
3) Descubra a lógica e complete o próximo elemento:
a) 1, 3, 5, 7, ___
b) 2, 4, 8, 16, 32, 64, ____
c) 0, 1, 4, 9, 16, 25, 36, ____
d) 4, 16, 36, 64, ____
e) 1, 1, 2, 3, 5, 8, ____
f) 2,10, 12, 16, 17, 18, 19, ____
Resposta
a) 9
b) 128
c) 49
d) 100
e) 13
```

4) Você está em uma sala com três interruptores, cada um conectado a uma lâmpada em uma sala diferente. Você não pode ver as lâmpadas da sala em que está, mas pode ligar e desligar os interruptores quantas vezes quiser. Seu objetivo é descobrir qual interruptor controla qual lâmpada.

Como você faria para descobrir, usando apenas duas idas até uma das salas das lâmpadas, qual interruptor controla cada lâmpada?

Resposta

Quando você entra na sala com os três interruptores pela primeira vez, não sabe qual interruptor corresponde a qual lâmpada. Para resolver esse quebra-cabeça, você precisa usar uma estratégia inteligente.

Primeiro, você liga o interruptor A e deixa os interruptores B e C desligados. Em seguida, volta para a sala dos interruptores.

Na segunda visita à sala das lâmpadas, você mantém o interruptor A ligado, mas agora liga o interruptor B. Não mexa no interruptor C, deixe-o desligado.

Agora, observe as lâmpadas:

Se uma lâmpada estiver acesa, isso significa que o interruptor B controla essa lâmpada, porque é o único interruptor que você mudou desde a primeira visita. Então, o interruptor A controla a lâmpada que estava acesa na primeira visita, e o interruptor C controla a outra lâmpada.

Se uma lâmpada estiver apagada, isso indica que o interruptor B não controla essa lâmpada. Nesse caso, o interruptor que você não mexeu na segunda visita (C) controla essa lâmpada. Portanto, o interruptor A controla a lâmpada que permaneceu apagada desde a primeira visita, e o interruptor B controla a outra lâmpada.

Essa abordagem simples e inteligente permite determinar com certeza qual interruptor controla cada lâmpada, utilizando apenas duas visitas à sala das lâmpadas.

5) Escreva um programa que inverta os caracteres de um string.

IMPORTANTE:

- a) Essa string pode ser informada através de qualquer entrada de sua preferência ou pode ser previamente definida no código;
- b) Evite usar funções prontas, como, por exemplo, reverse;

Resposta

```
def inverter_string(string):
    string_invertida = ""
    for i in range(len(string) - 1, -1, -1):
        string_invertida += string[i]
    return string_invertida
    minha_string = "Olá, Jedi!"
    string_invertida = inverter_string(minha_string)
    print("String original:", minha_string)
    print("String invertida:", string_invertida)
```