Assignment-1

AI24BTECH11036- Shreedhanvi Yadlapally

I. MCQ's with Single Correct Answer

1) The locus of z which lies in the shaded region (excluding the boundaries) is best represented by

(2005S)

- (a) z: z + 1 > 2 and $arg(z 1) < \frac{\pi}{4}$
- (b) z: z-1 > 2 and $arg(z-1) < \frac{\pi}{4}$ (c) z: z+1 < 2 and $arg(z+1) < \frac{\pi}{2}$
- (d) z: z-1 < 2 and $arg(z+1) < \frac{\pi}{2}$
- 2) a, b, c are integers, not all simultaneously equal and ω is the cube root of unity ($\omega \neq 1$), then the minimum value of $a + b\omega + c\omega^2 l$ is?

(2005S)4

- (a) 0
- (b) 1
- (c) $\frac{\sqrt{3}}{2}$ (d) $\frac{1}{2}$
- 3) Let $\omega = \frac{-1}{2} + i\frac{\sqrt{3}}{2}$, then the value of det?

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 - \omega^2 & \omega^2 \\ 1 & \omega^2 & \omega^4 \end{vmatrix}$$
 (1)

(2002-2M)2

- (a) 3ω
- (b) $3\omega\omega 1$
- (c) $3\omega^2$
- (d) $3\omega 1 \omega$
- 4) If $\frac{w \overline{w}z}{1 z}$ is purely real where $w = \alpha + i\beta, \beta \neq 0$ and $z \neq 1$. Then the set of values of z is?

(2006-3M) 2

- (a) z: z = 1
- (b) $z: z = \overline{z}$
- (c) $z: z \neq 1$
- (d) $z: z = 1, z \neq 1$

5) A man walks a distance of 3 units from the origin towards the north-east (N 45°E) direction. From there, he walks a distance of 4 units towards the northwest (N 45°W) direction to reach a poit P. The position of P in the Argand Plane is (2007-3M) 2

1

- (a) $3e^{\frac{i\pi}{4}} + 4i$
- (b) $3 4ie^{\frac{i\pi}{4}}$
- (c) $4 + 3ie^{\frac{i\pi}{4}}$
- (d) $3 + 4ie^{\frac{i\pi}{4}}$
- 6) If z = 1 and $z \neq \pm 1$, then all the values of $\frac{z}{1-z^2}$ (2007-3M)
 - (a) a line not passing through origin
 - (b) $z = \sqrt{2}$
 - (c) the x-axis
 - (d) the y-axis
- 7) A particle P starts from the point $z_0 = 1 + 2i$, where $i = \sqrt{-1}$. It moves horizontally away from origin by 5 units and then vertically away from origin by 3 units to reach apoint z_1 . From z_1 , the particle moves $\sqrt{2}$ units in the direction of the vector $\hat{i} + \hat{j}$ and then it moves through an angle $\frac{\pi}{2}$ in anticlockwise direction on a circle with centre at origin, to reach a point z_2 . The point z_2 is given by (2008) 2
 - (a) 6 + 7i
 - (b) -7 + 6i
 - (c) 7 + 6i
 - (d) -6 + 7i
- 8) Let $z = \cos \theta + i \sin \theta$. Then the value of $\sum_{m=1}^{15}$ $\operatorname{Im}(z^{2m-1})$ at $\theta = 2^{\circ}$ is (2009) 4

 - (a) $\frac{1}{\sin 2^{\circ}}$ (b) $\frac{1}{3 \sin 2^{\circ}}$ (c) $\frac{1}{2 \sin 2^{\circ}}$ (d) $\frac{1}{4 \sin 2^{\circ}}$
- 9) Let z = x + iy be a complex number where x and y are integers. Then the area of the rectangle whose vertices are the roots of the equation: $z\overline{z}^3 + \overline{z}z^3 = 350$ is (2009) 4
 - (a) 48
 - (b) 32

- (c) 40
- (d) 80
- 10) Let z be a complex number such that the imaginary part of z is non-zero and $a = z^2 + z + 1$ is real. The a cannot take the value (2012) 4
 - (a) -1
 - (b) $\frac{1}{3}$ (c) $\frac{1}{2}$

 - (d) $\frac{3}{4}$
- 11) Let complex numbers α and $\frac{1}{\alpha}$ lie on circles $(x-x_0)^2 + (y-y_0)^2 = r^2$ and $(x-x_0)^2 + (y-y_0)^2 = r^2$ $4r^2$ respectively. If $z_0 = x_0 + iy_0$ satisfies the equatio $2z_0^2 = r^2 + 2$, the $\alpha =$
 - (a) $\frac{1}{\sqrt{2}}$
 - (b)
 - (b) $\frac{1}{2}$ (c) $\frac{1}{\sqrt{7}}$ (d) $\frac{1}{3}$
- 12) Let S be the set of all complex numbers z satisfying $z - 2 + i \ge \sqrt{5}$. If the complex number z_0 is such that $\frac{1}{z_0 - 1}$ is the maximum of the set $\frac{1}{|z-1|}$: $z \in S$, then the principal argument
 - (a) $\frac{\pi}{4}$
 - (b) $\frac{3\pi}{4}$
 - (c) $\frac{\pi}{2}$
 - (d) $-\frac{\pi}{2}$
- II. MCQ's with One or More than One Correct
- 1) If $z_1 = a + ib$ and $z_2 = c + id$ are complex numbers such that $z_1 = z_2 = 1$ and $Re(z_1\overline{z_2})=0$, then the pair of complex numbers $w_1 = a + ic$ and $w_2 = b + id$ satisfies (1985 - 2 Marks) 2
 - (a) $w_1 = 1$
 - (b) $w_2 = 1$
 - (c) Re $(w_1\overline{w_2})=0$
 - (d) none of these.
- 2) Let z_1 and z_2 be complex numbers such that $z_1 \neq z_2$ and $z_1 = z_2$. If z_1 has positive real part and z_2 has negative imaginary part, then $\frac{z_1+z_2}{z_1-z_2}$ $(1986 - 2 \text{ Marks})^{\frac{2}{1} - \frac{2}{2}}$ may be
 - (a) zero
 - (b) real and positive
 - (c) real and negative
 - (d) purely imaginary
 - (e) none of the these.
- 3) If z_1 and z_2 are two non-zero complex numbers such that $z_1 + z_2 = z_1 + z_2$, then $\arg z_1 - \arg z_2$ is

equal to (1987 - 2 Marks) 4

- (a) $-\pi$
- (b) $-\frac{\pi}{2}$
- (c) 0
- (d) $\frac{\pi}{2}$ (e) π
- 4) The value of $\sum_{k=1}^{6} (\sin \frac{2\pi k}{7} i \cos \frac{2\pi k}{7})$ is

(1987 - 2 Marks) 4

- (a) -1
- (b) 0
- (c) -i(d) *i*
- (e) None