U.S. PATENT APPLICATION

Inventor(s):

Satoshi

Nakagawa

Hiroshi

Mizoguchi

Seiko

Ando

Mikiro

Hayashi

Keiko Akio Ochiai Ozaki

Invention:

NOVEL POLYNUCLEOTIDES

NIXON & VANDERHYE P.C.

ATTORNEYS AT LAW
1100 NORTH GLEBE ROAD
8TH FLOOR
ARLINGTON, VIRGINIA 22201-4714
(703) 816-4000
Facsimile (703) 816-4100

NOVEL POLYNUCLEOTIDES

The present application claims benefit of Japanese Patent Application Nos. Hei. 11-377484 (filed December 16, 1999), 2000-159162 (filed April 7, 2000) and 2000-280988 (filed August 3, 2000), the entire contents of each of which is incorporated herein by reference.

The contents of the attached CD-R compact discs are incorporated herein by reference in their entirety. The attached discs contain an identical copy of a file "SEQ2.TXT" which were created on the discs on December 13, 2000, and are each 25,891 KB.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, computer readable recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded, and use of them as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

2. Brief Description of the Background Art

Coryneform bacteria are used in producing various useful substances, such as amino acids, nucleic acids, vitamins, saccharides (for example, ribulose), organic acids (for example, pyruvic acid), and analogues of the above-described substances (for example, N-acetylamino acids) and are very useful microorganisms industrially. Many mutants thereof are known.

For example, Corynebacterium glutamicum is a Grampositive bacterium identified as a glutamic acid-producing
bacterium, and many amino acids are produced by mutants

thereof. For example, 1,000,000 ton/year of L-glutamic acid which is useful as a seasoning for umami (delicious taste), 250,000 ton/year of L-lysine which is a valuable additive for livestock feeds and the like, and several hundred ton/year or more of other amino acids, such as L-arginine, L-proline, L-glutamine, L-tryptophan, and the like, have been produced in the world (Nikkei Bio Yearbook 99, published by Nikkei BP (1998)).

The production of amino acids by Corynebacterium qlutamicum is mainly carried out by its mutants (metabolic mutants) which have a mutated metabolic pathway and regulatory systems. In general, an organism is provided with various metabolic regulatory systems so as not to produce more amino acids than it needs. In biosynthesis of L-lysine, for example, a microorganism belonging to the genus Corynebacterium is under such regulation as preventing the excessive production by concerted inhibition by lysine and threonine against the activity of a biosynthesis enzyme common to lysine, threonine and methionine, i.e., an aspartokinase, (J. Biochem., 65: 849-859 (1969)). The biosynthesis arginine is controlled by repressing the expression of its biosynthesis gene by arginine so as not to biosynthesize an excessive amount of arginine (Microbiology, 142: 99-108 (1996)). It is considered that these metabolic regulatory mechanisms are deregulated in amino acid-producing mutants.

Similarly, the metabolic regulation is deregulated in mutants producing nucleic acids, vitamins, saccharides, organic acids and analogues of the above-described substances so as to improve the productivity of the objective product.

However, accumulation of basic genetic, biochemical and molecular biological data on coryneform bacteria is insufficient in comparison with Escherichia coli, Bacillus subtilis, and the like. Also, few findings have been obtained on mutated genes in amino acid-producing mutants. Thus, there are various mechanisms, which are still unknown, of regulating the growth and metabolism of these microorganisms.

chromosomal physical map of Corynebacterium glutamicum ATCC 13032 is reported and it is known that its genome size is about 3,100 kb (Mol. Gen. Genet., 252: 255-265 (1996)). Calculating on the basis of the usual gene density of bacteria, it is presumed that about 3,000 genes are present in this genome of about 3,100 kb. However, mainly concerning amino only about 100 genes biosynthesis genes are known in Corynebacterium glutamicum, and the nucleotide sequences of most genes have not been clarified hitherto.

In recent years, the full nucleotide sequence of the genomes of several microorganisms, such as *Escherichia coli*, *Mycobacterium tuberculosis*, yeast, and the like, have

been determined (Science, 277: 1453-62 (1997); Nature, 393: 537-544 (1998); Nature, 387: 5-105 (1997)). Based on the thus determined full nucleotide sequences, assumption of gene regions and prediction of their function by comparison with the nucleotide sequences of known genes have been carried out. Thus, the functions of a great number of genes have been presumed, without genetic, biochemical or molecular biological experiments.

In recent years, moreover, techniques for monitoring expression levels of a great number of genes simultaneously or detecting mutations, using DNA chips, DNA arrays or the like in which a partial nucleic acid fragment of a gene or a partial nucleic acid fragment in genomic DNA other than a gene is fixed to a solid support, have been The techniques contribute to the analysis of developed. microorganisms, such as yeasts, Mycobacterium tuberculosis, Mycobacterium bovis used in BCG vaccines, and the like (Science, 278: 680-686 (1997); Proc. Natl. Acad. Sci. USA, 96: 12833-38 (1999); Science, 284: 1520-23 (1999)).

SUMMARY OF THE INVENTION

An object of the present invention is to provide a polynucleotide and a polypeptide derived from a microorganism of coryneform bacteria which are industrially useful, sequence information of the polynucleotide and the polypeptide, a method for analyzing the microorganism, an

apparatus and a system for use in the analysis, and a method for breeding the microorganism.

The present invention provides a polynucleotide and an oligonucleotide derived from a microorganism belonging to coryneform bacteria, oligonucleotide arrays to which the polynucleotides and the oligonucleotides are fixed, a polypeptide encoded by the polynucleotide, an antibody which recognizes the polypeptide, polypeptide arrays to which the polypeptides or the antibodies are fixed, a computer readable recording medium in which the nucleotide sequences of the polynucleotide and the oligonucleotide and the amino acid sequence of the polypeptide have been recorded, and a system based on the computer using the recording medium as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

BRIEF DESCRIPTION OF THE DRAWING

Fig. 1 is a map showing the positions of typical genes on the genome of Corynebacterium glutamicum ATCC 13032.

Fig. 2 is electrophoresis showing the results of proteome analyses using proteins derived from (A) Corynebacterium glutamicum ATCC 13032, (B) FERM BP-7134, and (C) FERM BP-158.

Fig. 3 is a flow chart of an example of a system using the computer readable media according to the present invention.

Fig. 4 is a flow chart of an example of a system using the computer readable media according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

This application is based on Japanese applications No. Hei. 11-377484 filed on December 16, 1999, No. 2000-159162 filed on April 7, 2000 and No. 2000-280988 filed on August 3, 2000, the entire contents of which are incorporated hereinto by reference.

From the viewpoint that the determination of the full nucleotide sequence of Corynebacterium glutamicum would make it possible to specify gene regions which had not been previously identified, to determine the function of an unknown gene derived from the microorganism through comparison with nucleotide sequences of known genes and amino acid sequences of known genes, and to obtain a useful mutant based on the presumption of the metabolic regulatory mechanism of a useful product by the microorganism, the inventors conducted intensive studies and, as a result, found that the complete genome sequence of Corynebacterium glutamicum can be determined by applying the whole genome shotgun method.

Specifically, the present invention relates to the following (1) to (65):

- (1) A method for at least one of the following:
- (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
- (B) measuring an expression amount of a gene derived from a coryneform bacterium,
- (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
- (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
- (E) identifying a gene homologous to a gene derived from a coryneform bacterium,

said method comprising:

- (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,
- (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant

of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,

- (c) detecting any hybridization, and
- (d) analyzing the result of the hybridization.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (2) The method according to (1), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- (3) The method according to (2), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium Corynebacterium herculis, lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (4) The method according to (1), wherein the polynucleotide derived from a coryneform bacterium, the polynucelotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound

selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.

- (5) The method according to (1), wherein the polynucleotide to be examined is derived from *Escherichia* coli.
- (6) A polynucleotide array, comprising:

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and

a solid support adhered thereto.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (7) A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- (8) A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

- (9) A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
- (10) A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- (11) A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of (7) to (10), or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
- (12) A recombinant DNA comprising the polynucleotide of any one of (8) to (11).
- (13) A transformant comprising the polynucleotide of any one of (8) to (11) or the recombinant DNA of (12).
- (14) A method for producing a polypeptide, comprising:

culturing the transformant of (13) in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of (8) or (9) in the medium, and

recovering the polypeptide from the medium.

(15) A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:

culturing the transformant of (13) in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and

recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.

- (16) A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431.
- (17) A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
- (18) The polypeptide according to (16) or (17), wherein at least one amino acid is deleted, replaced, inserted or added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.
- (19) A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of (16) or (17), and having an activity which is substantially the same as that of the polypeptide.

- (20) An antibody which recognizes the polypeptide of any one of (16) to (19).
- (21) A polypeptide array, comprising:

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and

a solid support adhered thereto.

(22) A polypeptide array, comprising:

at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and

a solid support adhered thereto.

- (23) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
- (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information:
- (ii) a data storage device for at least temporarily storing the input information;
- (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for

screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and

- (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- (24) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
- (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
- (ii) at least temporarily storing said information;
- (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and (iv) screening and analyzing nucleotide sequence
- information which is coincident with or analogous to the target sequence or target structure motif information.
- (25) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
- (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence or target structure motif information;

- (ii) a data storage device for at least temporarily storing the input information;
- (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
- (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- (26) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
- (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;
- (ii) at least temporarily storing said information;
- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
- (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.

- (27) A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
- (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
- (ii) a data storage device for at least temporarily storing the input information;
- (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information, and determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
- (iv) an output devices that shows a function obtained by the comparator.
- (28) A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:

- (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
- (ii) at least temporarily storing said information;
- (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
- (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
- (29) A system based on a computer for determining a function of a polypeptice having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
- (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
- (ii) a data storing device for at least temporarily storing the input information;
- (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target

amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS.3502 to 7001; and

- (iv) an output device that shows a function obtained by the comparator.
- (30) A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
- (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
- (ii) at least temporarily storing said information;
- (iii) comparing the unleast one amino acid sequence information selected from SEQ ID NOS:3502 to /001 with the target amino acid sequence information; and
- (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
- (31) The system according to any one of (23), (25), (27) and (29), wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium

- (32) The method according to any one of (24), (26), (28) and (30), wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- (33)system according (31), wherein the The to microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium Corymebacterium glutamicum, acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium Corynebacterium melassecola, thermoaminogenes, and Conynebacterium ammoniagenes.
- The metho: ______to .32), merein (34)the microorganism belonging to the gents Coryneratherium is selected from the grant consisting of Corynebasterium glutamicum, Corynepacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, herculis, Corynebacterium Corynebacterium Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (35) A recording medium or storage device which is readable by a computer is which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of (23) or (27) or the method of (24) or (28)

- (36) A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of (25) or (29) or the method of (26) or (30).
- (37) The recording medical or storage device according to (35) or (36), while is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
- (38) A polymerate new my a homeowine dehydrogenase activity, comprising the amine acid sequence is which the Val residue at the 550% in the amine acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amine acid residue other than a Val residue.
- (39) A polypertide comprising an amino acid sequence in which the Val residue at the 59th position is the amino acid sequence as represented by SEQ JD NO:6952 is replaced with an amino acid residue other than 2 Val 1001due.
- (40) The polypeptide according to (53) or (39) wherein the Val residue at the 59th position (5 replaced with an Ala residue.

- (41) A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
- (42) A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue.
- (43) The polypeptide according to (41) or (42), wherein the Pro residue at the 458th position is replaced with a Ser residue.
- (44) The polyperitide randording to any in of (38) to (43), which is derived from Corynebacterium plantaticum.
- (45) A DNA encoding the polypeptide of any one of (38) to (44).
- (46) A recombinant DNA comprising the DNA of (45).
- (47) A transformant comprising the recombinant DNA of (46).
- (48) A transformant comprising in its chromosome the DNA of (45).
- (49) The transformant according to (47) or (48), which is derived from a coryneform bacterium.
- (50) The transformant according to (49), which is derived from Corynebacterium glutamicum.

(51) A method for producing L-lysine, comprising: culturing the transformant of any one of (47) to (50) in a medium to produce and accumulate L-lysine in the medium, and

recovering the L-lysine from the culture.

- (52) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
- (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereo: by the fermentation method, with a corresponding nucleicide sequence in SEQ ID NC. I to 3431;
- (ii) identifying a mutation point present in the production strain based on a result obtained by (1);
- (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point; and
- (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii)
- (53) The method according to (52), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.

- (54) The method according to (52), wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- (55) A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
- of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS: 1 to 3431;
- (ii) identifying a matter point present in the production strain based on a result obtain by (1);
- (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and
- (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- (56) The method according to (55), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (57) The method according to (55), wherein the mutation point is a mutation point which decreases or destabilizes the productivity.

- (58) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
- (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
- (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
- (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
- (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
- (59) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
- (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
- (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway;
- (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis

pathway or signal transmission pathway of a coryneform bacterium;

- (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and
- (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- (60) A coryneform bacterium, bred by the method of any one of (52) to (59).
- (61) The coryneform bacterium according to (60), which is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- (62) The coryneform bacterium according to (61), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (63) A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:

culturing a coryneform bacterium of any one of (60) to (62) in a medium to produce and accumulate at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof;

recovering the compound from the culture.

- (64) The method according to (63), wherein the compound is L-lysine.
- (65) A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:

(i) preparing

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and

- a protein derived from a bacterium of a parent strain of the production strain;
- (ii) separating the proteins prepared in (i) by two dimensional electrophoresis;
- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;

- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.

As used herein, the term "proteome", which is a coined word by combining "protein" with "genome", refers to a method for examining of a gene at the polypeptide level.

- (66) The method according to (65), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- (67)The method according to (66), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (68) A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).

The present invention will be described below in more detail, based on the determination of the full nucleotide sequence of coryneform bacteria.

1. Determination of full nucleotide sequence of coryneform bacteria

The term "coryneform bacteria" as used herein means a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium or the genus Microbacterium as defined in Bergeys Manual of Determinative Bacteriology, 8: 599 (1974).

Examples include Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, Brevibacterium saccharolyticum, Brevibacterium immariophilum, Brevibacterium Brevibacterium roseum, thiogenitalis, Microbacterium ammoniaphilum, and the like.

Specific examples include Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium callunae ATCC 15991, Corynebacterium glutamicum ATCC Corynebacterium glutamicum ATCC 13060, Corynebacterium glutamicum ATCC 13826 (prior genus and species: Brevibacterium flavum, or Corynebacterium lactofermentum), Corynebacterium glutamicum ATCC 14020 (prior genus and species: Brevibacterium divaricatum), Corynebacterium ATCC 13869 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium herculis ATCC 13868, Corynebacterium lilium ATCC 15990, Corynebacterium melassecola ATCC 17965, Corynebacterium thermoaminogenes FERM 9244, Brevibacterium saccharolyticum ATCC 14066, Brevibacterium immariophilum ATCC 13825, Brevibacterium roseum ATCC Brevibacterium thiogenitalis ATCC 19240, Microbacterium ammoniaphilum ATCC 15354, and the like.

(1) Preparation of genome DNA of coryneform bacteria

Coryneform bacteria can be cultured by a conventional method.

Any of a natural medium and a synthetic medium can be used, so long as it is a medium suitable for efficient culturing of the microorganism, and it contains a carbon source, a nitrogen source, an inorganic salt, and the like which can be assimilated by the microorganism.

In Corynebacterium glutamicum, for example, a BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine and the like can be used. The culturing is carried out at 25 to 35°C overnight.

After the completion of the culture, the cells are recovered from the culture by centrifugation. The resulting cells are washed with a washing solution.

Examples of the washing solution include STE buffer (10.3% sucrose, 25 mmol/1 Tris hydrochloride, 25 mmol/1 ethylenediaminetetraacetic acid (hereinafter referred to as "EDTA"), pH 8.0), and the like.

Genome DNA can be obtained from the washed cells according to a conventional method for obtaining genome DNA, namely, lysing the cell wall of the cells using a lysozyme and a surfactant (SDS, etc.), eliminating proteins and the like using a phenol solution and a phenol/chloroform solution, and then precipitating the genome DNA with ethanol or the like. Specifically, the following method can be illustrated.

The washed cells are suspended in a washing solution containing 5 to 20 mg/l lysozyme. After shaking, 5 to 20% SDS is added to lyse the cells. In usual, shaking is gently performed at 25 to 40°C for 30 minutes to 2 hours. After shaking, the suspension is maintained at 60 to 70°C for 5 to 15 minutes for the lysis.

After the lysis, the suspension is cooled to ordinary temperature, and 5 to 20 ml of Tris-neutralized phenol is added thereto, followed by gently shaking at room temperature for 15 to 45 minutes.

After shaking, centrifugation (15,000 \times g, 20 minutes, 20°C) is carried out to fractionate the aqueous layer.

After performing extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner,

3 mol/l sodium acetate solution (pH 5.2) and isopropanol are added to the aqueous layer at 1/10 times volume and 2 times volume, of the aqueous layer, respectively, followed by gently stirring to precipitate the genome DNA.

The genome DNA is dissolved again in a buffer containing 0.01 to 0.04 mg/ml RNase. As an example of the buffer, TE buffer (10 mmol/l Tris hydrochloride, 1 mol/l EDTA, pH 8.0) can be used. After dissolving, the resultant solution is maintained at 25 to 40°C for 20 to 50 minutes and then extracted successively with phenol, phenol/chloroform and chloroform as in the above case.

After the extraction, isopropanol precipitation is carried out and the resulting DNA precipitate is washed with 70% ethanol, followed by air drying, and then dissolved in TE buffer to obtain a genome DNA solution.

(2) Production of shotgun library

A method for produce a genome DNA library using the genome DNA of the coryneform bacteria prepared in the above (1) include a method described in Molecular Cloning, A laboratory Manual, Second Edition (1989) (hereinafter referred to as "Molecular Cloning, 2nd ed."). In particular, the following method can be exemplified to prepare a genome DNA library appropriately usable in determining the full nucleotide sequence by the shotgun method.

To 0.01 mg of the genome DNA of the coryneform bacteria prepared in the above (1), a buffer, such as TE buffer or the like, is added to give a total volume of 0.4 ml. Then, the genome DNA is digested into fragments of 1 to 10 kb with a sonicator (Yamato Powersonic Model 50). The treatment with the sonicator is performed at an output of 20 continuously for 5 seconds.

The resulting genome DNA fragments are blunt-ended using DNA blunting kit (manufactured by Takara Shuzo) or the like.

The blunt-ended genome fragments are fractionated by agarose gel or polyacrylamide gel electrophoresis and genome fragments of 1 to 2 kb are cut out from the gel.

To the gel, 0.2 to 0.5 ml of a buffer for eluting DNA, such as MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) or the like, is added, followed by shaking at 25 to 40°C overnight to elute DNA.

The resulting DNA eluate is treated with phenol/chloroform and then precipitated with ethanol to obtain a genome library insert.

This insert is ligated into a suitable vector, such as pUC18 Smal/BAP (manufactured by Amersham Pharmacia Biotech) or the like, using T4 ligase (manufactured by Takara Shuzo) or the like. The ligation can be carried out by allowing a mixture to stand at 10 to 20°C for 20 to 50 hours.

The resulting ligation product is precipitated with ethanol and dissolved in 5 to 20 μl of TE buffer.

Escherichia coli is transformed in accordance with a conventional method using 0.5 to 2 µl of the ligation solution. Examples of the transformation method include the electroporation method using ELECTRO MAX DH10B (manufactured by Life Technologies) for Escherichia coli. The electroporation method can be carried out under the conditions as described in the manufacturer's instructions.

The transformed Escherichia coli is spread on a suitable selection medium containing agar, for example, LB plate medium containing 10 to 100 mg/l ampicillin (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) when pUC18 is used as the cloning vector, and cultured therein.

The transformant can be obtained as colonies formed on the plate medium. In this step, it is possible to select the transformant having the recombinant DNA containing the genome DNA as white colonies by adding X-gal and IPTG (isopropyl- β -thiogalactopyranoside) to the plate medium.

The transformant is allowed to stand for culturing in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml of ampicillin has been added in each well. The resulting culture can be used in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium

containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(3) Production of cosmid library

The genome DNA (0.1 mg) of the coryneform bacteria prepared in the above (1) is partially digested with a restriction enzyme; such as Sau3AI or the like, and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under a 10 to 40% sucrose density gradient using a 10% sucrose buffer (1 mol/l NaCl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% sucrose, pH 8.0) and a 40% sucrose buffer (elevating the concentration of the 10% sucrose buffer to 40%).

After the centrifugation, the thus separated solution is fractionated into tubes in 1 ml per each tube. After confirming the DNA fragment size of each fraction by agarose gel electrophoresis, a fraction rich in DNA fragments of about 40 kb is precipitated with ethanol.

The resulting DNA fragment is ligated to a cosmid vector having a cohesive end which can be ligated to the fragment. When the genome DNA is partially digested with Sau3AI, the partially digested product can be ligated to, for example, the BamHI site of superCosl (manufactured by Stratagene) in accordance with the manufacture's instructions.

The resulting ligation product is packaged using a packaging extract which can be prepared by a method

described in Molecular Cloning, 2nd ed. and then used in transforming Escherichia coli. More specifically, the ligation product is packaged using, for example, a commercially available packaging extract, Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions and then introduced into Escherichia coli XL-1-BlueMR (manufactured by Stratagene) or the like.

The thus transformed Escherichia coli is spread on an LB plate medium containing ampicillin, and cultured therein.

The transformant can be obtained as colonies formed on the plate medium.

The transformant is subjected to standing culture in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin has been added.

The resulting culture can be employed in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

The full nucleotide sequence of genome DNA of coryneform bacteria can be determined basically according to the whole genome shotgun method (*Science*, 269: 496-512 (1995)).

The template used in the whole genome shotgun method can be prepared by PCR using the library prepared in the above (2) (DNA Research, 5: 1-9 (1998)).

Specifically, the template can be prepared as follows.

The clone derived from the whole genome shotgun library is inoculated by using a replicator (manufactured by GENETIX) into each well of a 96-well plate to which 0.08 ml per well of the LB medium containing 0.1 mg/ml ampicillin has been added, followed by stationarily culturing at 37°C overnight.

Next, the culture solution is transported, using a copy plate (manufactured by Tokken), into each well of a 96-well reaction plate (manufactured by PE Biosystems) to which 0.025 ml per well of a PCR reaction solution has been added using TaKaRa Ex Taq (manufactured by Takara Shuzo). Then, PCR is carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragments.

The excessive primers and nucleotides are eliminated using a kit for purifying a PCR product, and the product is used as the template in the sequencing reaction.

It is also possible to determine the nucleotide sequence using a double-stranded DNA plasmid as a template.

The double-stranded DNA plasmid used as the template can be obtained by the following method.

The clone derived from the whole genome shotgun library is inoculated into each well of a 24- or 96-well plate to which 1.5 ml per well of a 2 × YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin has been added, followed by culturing under shaking at 37°C overnight.

The double-stranded DNA plasmid can be prepared from the culture solution using an automatic plasmid preparing machine KURABO PI-50 (manufactured by Kurabo Industries), a multiscreen (manufactured by Millipore) or the like, according to each protocol.

To purify the plasmid, Biomek 2000 manufactured by Beckman Coulter and the like can be used.

The resulting purified double-stranded DNA plasmid is dissolved in water to give a concentration of about 0.1 mg/ml. Then, it can be used as the template in sequencing.

(4-2) Sequencing reaction

The sequencing reaction can be carried out according to a commercially available sequence kit or the like. A specific method is exemplified below.

To 6 µl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), 1 to 2 pmol of an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (DNA Research, 5: 1-9 (1998)) and 50 to 200 ng of the template prepared in the above (4-1) (the PCR product or plasmid) to give 10 µl of a sequencing reaction solution.

A dye terminator sequencing reaction (35 to 55 cycles) is carried out using this reaction solution and GeneAmp PCR System 9700 (manufactured by PE Biosystems) or the like. The cycle parameter can be determined in accordance with a commercially available kit, for example, the manufacture's instructions attached with ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit.

The sample can be purified using a commercially available product, such as Multi Screen HV plate (manufactured by Millipore) or the like, according to the manufacture's instructions.

The thus purified reaction product is precipitated with ethanol, dried and then used for the analysis. The dried reaction product can be stored in the dark at -30° C and the stored reaction product can be used at any time.

The dried reaction product can be analyzed using a commercially available sequencer and an analyzer according to the manufacture's instructions.

Examples of the commercially available sequencer include ABI PRISM 377 DNA Sequencer (manufactured by PE Biosystems). Example of the analyzer include ABI PRISM 3700 DNA Analyzer (manufactured by PE Biosystems).

(5) Assembly

A software, such as phred (The University of Washington) or the like, can be used as base call for use in analyzing the sequence information obtained in the above (4). A software, such as Cross_Match (The University of Washington) or SPS Cross_Match (manufactured by Southwest Parallel Software) or the like, can be used to mask the vector sequence information.

For the assembly, a software, such as phrap (The University of Washington), SPS phrap (manufactured by Southwest Parallel Software) or the like, can be used.

In the above, analysis and output of the results thereof, a computer such as UNIX, PC, Macintosh, and the like can be used.

Contig obtained by the assembly can be analyzed using a graphical editor such as consed (The University of Washington) or the like.

It is also possible to perform a series of the operations from the base call to the assembly in a lump using a script phredPhrap attached to the consed.

As used herein, software will be understood to also be referred to as a comparator.

(6) Determination of nucleotide sequence in gap part

Each of the cosmids in the cosmid library constructed in the above (3) is prepared in the same manner as in the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the insert fragment of the cosmid is determined using a commercially available kit, such as ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

About 800 cosmid clones are sequenced at both ends of the inserted fragment to detect a nucleotide sequence in the contig derived from the shotgun sequencing obtained in (5) which is coincident with the sequence. Thus, the chain linkage between respective cosmid clones and respective contigs are clarified, and mutual alignment is carried out. Furthermore, the results are compared with known physical maps to map the cosmids and the contigs. In case of Corynebacterium glutamicum ATCC 13032, a physical map of Mol. Gen. Genet., 252: 255-265 (1996) can be used.

The sequence in the region which cannot be covered with the contigs (gap part) can be determined by the following method.

Clones containing sequences positioned at the ends of the contigs are selected. Among these, a clone wherein only one end of the inserted fragment has been determined is selected and the sequence at the opposite end of the inserted fragment is determined.

A shotgun library clone or a cosmid clone derived therefrom containing the sequences at the respective ends of the inserted fragments in the two contigs is identified and the full nucleotide sequence of the inserted fragment of the clone is determined.

According to this method, the nucleotide sequence of the gap part can be determined.

When no shotgun library clone or cosmid clone covering the gap part is available, primers complementary to the end sequences of the two different contigs are prepared and the DNA fragment in the gap part is amplified. Then, sequencing is performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment is determined. Thus, the nucleotide sequence of the above-described region can be determined.

In a region showing a low sequence accuracy, primers are synthesized using AUTOFINISH function and

NAVIGATING function of consed (The University of Washington), and the sequence is determined by the primer walking method to improve the sequence accuracy.

Examples of the thus determined nucleotide sequence of the full genome include the full nucleotide sequence of genome of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1.

(7) Determination of nucleotide sequence of microorganism genome DNA using the nucleotide sequence represented by SEQ ID NO:1

A nucleotide sequence of a polynucleotide having a homology of 80% or more with the full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1 as determined above can also be determined using the nucleotide sequence represented by SEQ ID NO:1, and the polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention is within the scope of the present invention. The term "polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention" is a polynucleotide in which a full nucleotide sequence of the chromosome DNA can be determined using as a primer an oligonucleotide composed of continuous 5 to 50 nucleotides in the nucleotide sequence represented by SEQ ID NO:1, for example, according to PCR using the chromosome DNA as a template. A particularly preferred primer in determination of the full nucleotide sequence is an oligonucleotide having nucleotide sequences which are positioned at the interval of about 300 to 500 bp, and among oligonucleotides, an oligonucleotide having a nucleotide sequence selected from DNAs encoding a protein relating to a main metabolic pathway is particularly preferred. polynucleotide in which the full nucleotide sequence of the chromosome DNA can be determined using the oligonucleotide includes polynucleotides constituting a chromosome DNA derived from a microorganism belonging to coryneform Such polynucleotide is preferably a bacteria. a polynucleotide constituting chromosome DNA derived from a microorganism belonging to the genus Corynebacterium, more preferably a polynucleotide constituting a chromosome DNA of Corynebacterium glutamicum.

 Identification of ORF (open reading frame) and expression regulatory fragment and determination of the function of ORF

Based on the full nucleotide sequence data of the genome derived from coryneform bacteria determined in the above item 1, an ORF and an expression modulating fragment can be identified. Furthermore, the function of the thus determined ORF can be determined.

The ORF means a continuous region in the nucleotide sequence of mRNA which can be translated as an amino acid sequence to mature to a protein. A region of the DNA coding for the ORF of mRNA is also called ORF.

The expression modulating fragment (hereinafter referred to as "EMF") is used herein to define a series of polynucleotide fragments which modulate the expression of the ORF or another sequence ligated operatably thereto. The expression "modulate the expression of a sequence ligated operatably" is used herein to refer to changes in the expression of a sequence due to the presence of the EMF. Examples of the EMF include a promoter, an operator, an enhancer, a silencer, a ribosome-binding sequence, transcriptional termination sequence, and the like. In coryneform bacteria, an EMF is usually present in intergenic segment (a fragment positioned between genes; about 10 to 200 nucleotides in length). Accordingly, an EMF is frequently present in an intergenic segment of 10

nucleotides or longer. It is also possible to determine or discover the presence of an EMF by using known EMF sequences as a target sequence or a target structural motif (or a target motif) using an appropriate software or comparator, such as FASTA (Proc. Natl. Acad. Sci. USA, 85: 2444-48 (1988)), BLAST (J. Mol. Biol., 215: 403-410 (1990)) or the like. Also, it can be identified and evaluated using a known EMF-capturing vector (for example, pKK232-8; manufactured by Amersham Pharmacia Biotech).

The term "target sequence" is used herein to refer to a nucleotide sequence composed of 6 or more nucleotides, an amino acid sequence composed of 2 or more amino acids, or a nucleotide sequence encoding this amino acid sequence composed of 2 or more amino acids. A longer target sequence appears at random in a data base at the lower possibility. The target sequence is preferably about 10 to 100 amino acid residues or about 30 to 300 nucleotide residues.

The term "target structural motif" or "target motif" is used herein to refer to a sequence or a combination of sequences selected optionally and reasonably. Such a motif is selected on the basis of the three-dimensional structure formed by the folding of a polypeptide by means known to one of ordinary skill in the art. Various motives are known.

Examples of the target motif of a polypeptide include, but are not limited to, an enzyme activity site, a protein-protein interaction site, a signal sequence, and the like. Examples of the target motif of a nucleic acid include a promoter sequence, a transcriptional regulatory factor binding sequence, a hair pin structure, and the like.

Examples of highly useful EMF include a highexpression promoter, an inducible-expression promoter, and Such an EMF can be obtained by positionally the like. determining the nucleotide sequence of a gene which is known or expected as achieving high expression (for example, ribosomal RNA gene: GenBank Accession No. M16175 or Z46753) or a gene showing a desired induction pattern (for example, isocitrate lyase gene induced by acetic acid: Japanese Published Unexamined Patent Application No. 56782/93) via the alignment with the full genome nucleotide sequence determined in the above item 1, and isolating the genome fragment in the upstream part (usually 200 to 500 nucleotides from the translation initiation site). also possible to obtain a highly useful EMF by selecting an EMF showing a high expression efficiency or a desired induction pattern from among promoters captured by the EMFcapturing vector as described above.

The ORF can be identified by extracting characteristics common to individual ORFs, constructing a general model based on these characteristics, and measuring

the conformity of the subject sequence with the model. In the identification, a software, such as GeneMark (Nuc. Acids. Res., 22: 4756-67 (1994): manufactured by GenePro)), GeneMark.hmm (manufactured by GenePro), GeneHacker (Protein, Nucleic Acid and Enzyme, 42: 3001-07 (1997)), Glimmer (Nuc. Acids. Res., 26: 544-548 (1998): manufactured by The Institute of Genomic Research), or the like, can be used. In using the software, the default (initial setting) parameters are usually used, though the parameters can be optionally changed.

In the above-described comparisons, a computer, such as UNIX, PC, Macintosh, or the like, can be used.

Examples of the ORF determined by the method of the present invention include ORFs having the nucleotide sequences represented by SEQ ID NOS:2 to 3501 present in the genome of *Corynebacterium glutamicum* as represented by SEQ ID NO:1. In these ORFs, polypeptides having the amino acid sequences represented by SEQ ID NOS:3502 to 7001 are encoded.

The function of an ORF can be determined by comparing the identified amino acid sequence of the ORF with known homologous sequences using a homology searching software or comparator, such as BLAST, FAST, Smith & Waterman (Meth. Enzym., 164: 765 (1988)) or the like on an amino acid data base, such as Swith-Prot, PIR, GenBank-nr-

aa, GenPept constituted by protein-encoding domains derived from GenBank data base, OWL or the like.

Furthermore, by the homology searching, the identity and similarity with the amino acid sequences of known proteins can also be analyzed.

With respect of the term "identity" used herein, where two polypeptides each having 10 amino acids are different in the positions of 3 amino acids, these polypeptides have an identity of 70% with each other. In case wherein one of the different 3 amino acids is analogue (for example, leucine and isoleucine), these polypeptides have a similarity of 80%.

As a specific example, Table 1 shows the registration numbers in known data bases of sequences which are judged as having the highest similarity with the nucleotide sequence of the ORF derived from Corynebacterium glutamicum ATCC 13032, genes of these sequences, functions of these genes, and identities thereof compared with known amino acid translation sequences.

Thus, a great number of novel genes derived from coryneform bacteria can be identified by determining the full nucleotide sequence of the genome derived from coryneform bacterium by the means of the present invention. Moreover, the function of the proteins encoded by these genes can be determined. Since coryneform bacteria are

industrially highly useful microorganisms, many of the identified genes are industrially useful.

characteristics of Moreover, the respective clarified by classifying microorganisms be the can result, valuable functions thus determined. As information in breeding is obtained.

Furthermore, from the ORF information derived from bacteria, the ORF corresponding to coryneform microorganism is prepared and obtained according to the general method as disclosed in Molecular Cloning, 2nd ed. Specifically, an oligonucleotide having a or the like. nucleotide sequence adjacent to the ORF is synthesized, and ORF can be isolated and obtained using the oligonucleotide as a primer and a chromosome DNA derived from coryneform bacteria as a template according to the general PCR cloning technique. Thus obtained ORF sequences include polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3501.

The ORF or primer can be prepared using a polypeptide synthesizer based on the above sequence information.

Examples of the polynucleotide of the present invention include a polynucleotide containing the nucleotide sequence of the ORF obtained in the above, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

The polynucleotide of the present invention can be a single-stranded DNA, a double-stranded DNA and a single-stranded RNA, though it is not limited thereto.

The polynucleotide which hybridizes with the polynucleotide containing the nucleotide sequence of the ORF obtained in the above under stringent conditions includes a degenerated mutant of the ORF. A degenerated mutant is a polynucleotide fragment having a nucleotide sequence which is different from the sequence of the ORF of the present invention which encodes the same amino acid sequence by degeneracy of a gene code.

Specific examples include a polynucleotide comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3431, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

A polynucleotide which hybridizes under stringent polynucleotide obtained by colony conditions is a hybridization, Southern blot hybridization, plaque the probe, like using, as a the hybridization orpolynucleotide having the nucleotide sequence of the ORF Specific examples include a identified in the above. polynucleotide which can be identified by carrying out hybridization at 65°C in the presence of 0.7-1.0 M NaCl using a filter on which a polynucleotide prepared from colonies or plaques is immobilized, and then washing the filter with 0.1x to 2x SSC solution (the composition of 1x SSC contains 150 mM sodium chloride and 15 mM sodium citrate) at 65° C.

The hybridization can be carried out in accordance with known methods described in, for example, Molecular Cloning, 2nd ed., Current Protocols in Molecular Biology, DNA Cloning 1: Core Techniques, A Practical Approach, Second Edition, Oxford University (1995) or the like. Specific examples of the polynucleotide which can be hybridized include a DNA having a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the nucleotide sequence represented by any one of SEQ ID NO:2 to 3431 when calculated using default (initial setting) parameters of a homology searching software, such as BLAST, FASTA, Smith-Waterman or the like.

Also, the polynucleotide of the present invention includes a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931 and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

Furthermore, the polynucleotide of the present invention includes a polynucleotide which is present in the 5' upstream or 3' downstream region of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of

regulating an expression of a polypeptide encoded by the polynucleotide. Specific examples of the polynucleotide having an activity of regulating an expression of a polypeptide encoded by the polynucleotide includes a polynucleotide encoding the above described EMF, such as a promoter, an operator, an enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like.

The primer used for obtaining the ORF according to the above PCR cloning technique includes an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides in the nucleotide sequence of the ORF and an adjacent region or an oligonucleotide complementary comprising a sequence which is the oligonucleotide. Specific examples include oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431, and an oligonucleotide comprising a sequence complementary to the oligonucleotide comprising a sequence of at least 10 to 20 continuous nucleotide of any one of SEO ID NOS:1 to 3431. When the primers are used as a sense antisense primer, the above-described and an oligonucleotides in which melting temperature (Tm) and the number of nucleotides are not significantly different from each other are preferred.

The oligonucleotide of the present invention includes an oligonucleotide comprising a sequence which is the same as 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431 or an oligonucleotide comprising a sequence complementary to the oligonucleotide.

Also, analogues of these oligonucleotides referred (hereinafter also to as "analogous also provided oligonucleotides") are by invention and are useful in the methods described herein.

Examples of the analogous oligonucleotides include analogous oligonucleotides in which a phosphodiester bond in an oligonucleotide is converted to a phosphorothicate bond, analogous oligonucleotides in which a phosphodiester bond in an oligonucleotide is converted to an N3'-P5' phosphoamidate bond, analogous oligonucleotides in which ribose and a phosphodiester bond in an oligonucleotide is converted to a peptide nucleic acid bond, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 propynyluracil, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 thiazoluracil, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with C-5 propynylcytosine, analogous oligonucleotides in which oligonucleotide is replaced cytosine in an phenoxazine-modified cytosine, analogous oligonucleotides

in which ribose in an oligonucleotide is replaced with 2'-O-propylribose, analogous oligonucleotides in which ribose in an oligonucleotide is replaced with 2'-methoxyethoxyribose, and the like (Cell Engineering, 16: 1463 (1997)).

The above oligonucleotides and analogous oligonucleotides of the present invention can be used as probes for hybridization and antisense nucleic acids described below in addition to as primers.

Examples of a primer for the antisense nucleic acid techniques known in the art include an oligonucleotide which hybridizes the oligonucleotide of the present invention under stringent conditions and has an activity regulating expression of the polypeptide encoded by the polynucleotide, in addition to the above oligonucleotide.

3. Determination of isozymes

Many mutants of coryneform bacteria which are useful in the production of useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, are obtained by the present invention.

However, since the gene sequence data of the microorganism has been, to date, insufficient, useful mutants have been obtained by mutagenic techniques using a mutagen, such as nitrosoguanidine (NTG) or the like.

Although genes can be mutated randomly by the mutagenic method using the above-described mutagen, all genes encoding respective isozymes having similar properties relating to the metabolism of intermediates cannot be mutated. In the mutagenic method using a mutagen, genes are mutated randomly. Accordingly, harmful mutations worsening culture characteristics, such as delay in growth, accelerated foaming, and the like, might be imparted at a great frequency, in a random manner.

However, if gene sequence information is available, such as is provided by the present invention, it is possible to mutate all of the genes encoding target isozymes. In this case, harmful mutations may be avoided and the target mutation can be incorporated.

Namely, an accurate number and sequence information of the target isozymes in coryneform bacteria can be obtained based on the ORF data obtained in the above item 2. By using the sequence information, all of the target isozyme genes can be mutated into genes having the desired properties by, for example, the site-specific mutagenesis method described in *Molecular Cloning*, 2nd ed. to obtain useful mutants having elevated productivity of useful substances.

4. Clarification or determination of biosynthesis pathway and signal transmission pathway

Attempts have been made to elucidate biosynthesis pathways and signal transmission pathways in a number of organisms, and many findings have been reported. However, there are many unknown aspects of coryneform bacteria since a number of genes have not been identified so far.

These unknown points can be clarified by the following method.

The functional information of ORF derived from coryneform bacteria as identified by the method of above item 2 is arranged. The term "arranged" means that the ORF is classified based on the biosynthesis pathway of a substance or the signal transmission pathway to which the ORF belongs using known information according to the functional information. Next, the arranged ORF sequence information is compared with enzymes on the biosynthesis pathways or signal transmission pathways of other known organisms. The resulting information is combined with known data on coryneform bacteria. Thus, the biosynthesis pathways and signal transmission pathways in coryneform bacteria, which have been unknown so far, can be determined.

As a result that these pathways which have been unknown or unclear hitherto are clarified, a useful mutant for producing a target useful substance can be efficiently obtained.

When the thus clarified pathway is judged as important in the synthesis of a useful product, a useful mutant can be obtained by selecting a mutant wherein this pathway has been strengthened. Also, when the thus clarified pathway is judged as not important in the biosynthesis of the target useful product, a useful mutant can be obtained by selecting a mutant wherein the utilization frequency of this pathway is lowered.

5. Clarification or determination of useful mutation point

Many useful mutants of coryneform bacteria which are suitable for the production of useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, have been obtained. However, it is hardly known which mutation point is imparted to a gene to improve the productivity.

However, mutation points contained in production strains can be identified by comparing desired sequences of the genome DNA of the production strains obtained from coryneform bacteria by the mutagenic technique with the nucleotide sequences of the corresponding genome DNA and ORF derived from coryneform bacteria determined by the methods of the above items 1 and 2 and analyzing them

Moreover, effective mutation points contributing to the production can be easily specified from among these mutation points on the basis of known information relating to the metabolic pathways, the metabolic regulatory mechanisms, the structure activity correlation of enzymes, and the like.

When any efficient mutation can be hardly specified based on known data, the mutation points thus identified can be introduced into a wild strain of coryneform bacteria or a production strain free of the mutation. Then, it is examined whether or not any positive effect can be achieved on the production.

For example, by comparing the nucleotide sequence of homoserine dehydrogenase gene hom of a lysine-producing B-6 strain of Corynebacterium glutamicum (Appl. Microbiol. Biotechnol., 32: 269-273 (1989))with the nucleotide sequence corresponding to the genome of Corynebacterium glutamicum ATCC 13032 according to the present invention, a mutation of amino acid replacement in which valine at the 59-position is replaced with alanine (Val59Ala) was identified. A strain obtained by introducing this mutation into the ATCC 13032 strain by the gene replacement method can produce lysine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

Similarly, by comparing the nucleotide sequence of pyruvate carboxylase gene pyc of the B-6 strain with the nucleotide sequence corresponding to the ATCC 13032 genome, a mutation of amino acid replacement in which proline at

the 458-position was replaced with serine (Pro458Ser) was identified. A strain obtained by introducing this mutation into a lysine-producing strain of No. 58 (FERM BP-7134) of Corynebacterium glutamicum free of this mutation shows an improved lysine productivity in comparison with the No. 58 strain, which indicates that this mutation is an effective mutation contributing to the production of lysine.

In addition, a mutation Ala213Thr in glucose-6-phosphate dehydrogenase was specified as an effective mutation relating to the production of lysine by detecting glucose-6-phosphate dehydrogenase gene zwf of the B-6 strain.

Furthermore, the lysine-productivity of Corynebacterium glutamicum was improved by replacing the base at the 932-position of aspartokinase gene lysC of the Corynebacterium glutamicum ATCC 13032 genome with cytosine to thereby replace threonine at the 311-position by isoleucine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

Also, as another method to examine whether or not the identified mutation point is an effective mutation, there is a method in which the mutation possessed by the lysine-producing strain is returned to the sequence of a wild type strain by the gene replacement method and whether or not it has a negative influence on the lysine productivity. For example, when the amino acid replacement

mutation Val59Ala possessed by hom of the lysine-producing B-6 strain was returned to a wild type amino acid sequence, the lysine productivity was lowered in comparison with the B-6 strain. Thus, it was found that this mutation is an effective mutation contributing to the production of lysine.

Effective mutation points can be more efficiently and comprehensively extracted by combining, if needed, the DNA array analysis or proteome analysis described below.

6. Method of breeding industrially advantageous production strain

It has been a general practice to construct production strains, which are used industrially in the fermentation production of the target useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, by repeating mutagenesis and breeding based on random mutagenesis using mutagens, such as NTG or the like, and screening.

In recent years, many examples of improved production strains have been made through the use of recombinant DNA techniques. In breeding, however, most of the parent production strains to be improved are mutants obtained by a conventional mutagenic procedure (W. Leuchtenberger, Amino Acids - Technical Production and Use. In: Roehr (ed) Biotechnology, second edition, vol. 6,

products of primary metabolism. VCH Verlagsgesellschaft mbH, Weinheim, P 465 (1996)).

methods have Although mutagenesis largely contributed to the progress of the fermentation industry, they suffer from a serious problem of multiple, random introduction of mutations into every part of the chromosome. Since many mutations are accumulated in a single chromosome each time a strain is improved, a production strain obtained by the random mutation and selecting is generally inferior in properties (for example, showing poor growth, delayed consumption of saccharides, and poor resistance to stresses such as temperature and oxygen) to a wild type strain, which brings about troubles such as failing to establish a sufficiently elevated productivity, being frequently contaminated with miscellaneous bacteria, requiring troublesome procedures in culture maintenance, and the like, and, in its turn, elevating the production In addition, the improvement in the cost in practice. productivity is based on random mutations and thus the mechanism thereof is unclear. Therefore, it is very difficult to plan a rational breeding strategy for the subsequent improvement in the productivity.

According to the present invention, effective mutation points contributing to the production can be efficiently specified from among many mutation points accumulated in the chromosome of a production strain which

has been bred from coryneform bacteria and, therefore, a novel breeding method of assembling these effective mutations in the coryneform bacteria can be established. Thus, a useful production strain can be reconstructed. It is also possible to construct a useful production strain from a wild type strain.

Specifically, a useful mutant can be constructed in the following manner.

One of the mutation points is incorporated into a wild type strain of coryneform bacteria. examined whether or not a positive effect is established on the production. When a positive effect is obtained, the mutation point is saved. When no effect is obtained, the mutation point is removed. Subsequently, only a strain having the effective mutation point is used as the parent strain, and the same procedure is repeated. In general, the effectiveness of a mutation positioned upstream cannot be clearly evaluated in some cases when there is a ratedetermining point in the downstream of a biosynthesis pathway. Ιt is therefore preferred to successively evaluate mutation points upward from downstream.

By reconstituting effective mutations by the method as described above in a wild type strain or a strain which has a high growth speed or the same ability to consume saccharides as the wild type strain, it is possible to construct an industrially advantageous strain which is free

of troubles in the previous methods as described above and to conduct fermentation production using such strains within a short time or at a higher temperature.

For example, a lysine-producing mutant B-6 (Appl. Microbiol. Biotechnol., 32: 262-273 (1989)), which obtained by multiple rounds of random mutagenesis from a wild type strain Corynebacterium glutamicum ATCC 13032, enables lysine fermentation to be performed at temperature between 30 and 34°C but shows lowered growth and lysine productivity at a temperature exceeding 34°C. fermentation temperature should Therefore, the maintained at 34°C or lower. In contrast thereto, the production strain described in the above item 5, which is obtained by reconstituting effective mutations relating to lysine production, can achieve a productivity at 40 to 42°C equal or superior to the result obtained by culturing at 30 Therefore. strain is industrially 34°C. this to advantageous since it can save the load of cooling during the fermentation.

When culture should be carried out at a high temperature exceeding 43°C, a production strain capable of conducting fermentation production at a high temperature exceeding 43°C can be obtained by reconstituting useful mutations in a microorganism belonging to the genus Corynebacterium which can grow at high temperature exceeding 43°C. Examples of the microorganism capable of

growing at a high temperature exceeding 43°C include Corynebacterium thermoaminogenes, such as Corynebacterium thermoaminogenes FERM 9244, FERM 9245, FERM 9246 and FERM 9247.

A strain having a further improved productivity of the target product can be obtained using the thus reconstructed strain as the parent strain and further breeding it using the conventional mutagenesis method, the gene amplification method, the gene replacement method using the recombinant DNA technique, the transduction method or the cell fusion method. Accordingly, the microorganism of the present invention includes, but is not limited to, a mutant, a cell fusion strain, a transformant, a transductant or a recombinant strain constructed by using recombinant DNA techniques, so long as it is a producing strain obtained via the step of accumulating at least two effective mutations in a coryneform bacteria in the course of breeding.

When a mutation point judged as being harmful to the growth or production is specified, on the other hand, it is examined whether or not the producing strain used at present contains the mutation point. When it has the mutation, it can be returned to the wild type gene and thus a further useful production strain can be bred.

The breeding method as described above is applicable to microorganisms, other than coryneform

bacteria, which have industrially advantageous properties (for example, microorganisms capable of quickly utilizing less expensive carbon sources, microorganisms capable of growing at higher temperatures).

- 7. Production and utilization of polynucleotide array
- (1) Production of polynucleotide array

A polynucleotide array can be produced using the polynucleotide or oligonucleotide of the present invention obtained in the above items 1 and 2.

Examples include a polynucleotide array comprising a solid support to which at least one of a polynucleotide comprising the nucleotide sequence represented by SEQ ID NOS:2 to 3501, a polynucleotide which hybridizes with the under stringent conditions, polynucleotide polynucleotide comprising 10 to 200 continuous nucleotides in the nucleotide sequence of the polynucleotide adhered; and a polynucleotide array comprising a solid support to which at least one of a polynucleotide encoding polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 7001, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequences of the polynucleotides is adhered.

Polynucleotide arrays of the present invention include substrates known in the art, such as a DNA chip, a DNA microarray and a DNA macroarray, and the like, and comprises a solid support and plural polynucleotides or fragments thereof which are adhered to the surface of the solid support.

Examples of the solid support include a glass plate, a nylon membrane, and the like.

The polynucleotides or fragments thereof adhered to the surface of the solid support can be adhered to the surface of the solid support using the general technique for preparing arrays. Namely, a method in which they are adhered to a chemically surface-treated solid support, for example, to which a polycation such as polylysine or the like has been adhered (Nat. Genet., 21: 15-19 (1999)). The chemically surface-treated supports are commercially available and the commercially available solid product can be used as the solid support of the polynucleotide array according to the present invention.

As the polynucleotides or oligonucleotides adhered to the solid support, the polynucleotides and oligonucleotides of the present invention obtained in the above items 1 and 2 can be used.

The analysis described below can be efficiently performed by adhering the polynucleotides or

oligonucleotides to the solid support at a high density, though a high fixation density is not always necessary.

Apparatus for achieving a high fixation density, such as an arrayer robot or the like, is commercially available from Takara Shuzo (GMS417 Arrayer), and the commercially available product can be used.

Also, the oligonucleotides of the present invention can be synthesized directly on the solid support by the photolithography method or the like (Nat. Genet., 21: 20-24 In this method, a linker having a protective group which can be removed by light irradiation is first adhered to a solid support, such as a slide glass or the Then, it is irradiated with light through a mask (a photolithograph mask) permeating light exclusively at a definite part of the adhesion part. Next, oligonucleotide having a protective group which can be removed by light irradiation is added to the part. Thus, a ligation reaction with the nucleotide arises exclusively at the irradiated part. By repeating this procedure, oligonucleotides, each having a desired sequence, different from each other can be synthesized in respective parts. Usually, the oligonucleotides to be synthesized have a length of 10 to 30 nucleotides.

(2) Use of polynucleotide array

The following procedures (a) and (b) can be carried out using the polynucleotide array prepared in the above (1).

(a) Identification of mutation point of coryneform bacterium mutant and analysis of expression amount and expression profile of gene encoded by genome

By subjecting a gene derived from a mutant of coryneform bacteria or an examined gene to the following steps (i) to (iv), the mutation point of the gene can be identified or the expression amount and expression profile of the gene can be analyzed:

- (i) producing a polynucleotide array by the method of
 the above (1);
- (ii) incubating polynucleotides immobilized on the polynucleotide array together with the labeled gene derived from a mutant of the coryneform bacterium using the polynucleotide array produced in the above (i) under hybridization conditions;
- (iii) detecting the hybridization; and
- (iv) analyzing the hybridization data.

The gene derived from a mutant of coryneform bacteria or the examined gene include a gene relating to biosynthesis of at least one selected from amino acids,

nucleic acids, vitamins, saccharides, organic acids, and analogues thereof.

The method will be described in detail.

A single nucleotide polymorphism (SNP) in a human region of 2,300 kb has been identified using polynucleotide arrays (Science, 280: 1077-82 (1998)). In accordance with the method of identifying SNP and methods described in Science, 278: 680-686 (1997); Proc. Natl. Acad. Sci. USA, 96: 12833-38 (1999); Science, 284: 1520-23 (1999), and the like using the polynucleotide array produced in the above (1) and a nucleic acid molecule (DNA, RNA) derived from coryneform bacteria in the method of the hybridization, a mutation point of a useful mutant, which is useful in producing an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, or the like can be identified and the gene expression amount and the expression profile thereof can be analyzed.

The nucleic acid molecule (DNA, RNA) derived from the coryneform bacteria can be obtained according to the general method described in *Molecular Cloning*, 2nd ed. or the like. mRNA derived from *Corynebacterium glutamicum* can also be obtained by the method of Bormann et al. (*Molecular Microbiology*, 6: 317-326 (1992)) or the like.

Although ribosomal RNA (rRNA) is usually obtained in large excess in addition to the target mRNA, the analysis is not seriously disturbed thereby.

The resulting nucleic acid molecule derived from coryneform bacteria is labeled. Labeling can be carried out according to a method using a fluorescent dye, a method using a radioisotope or the like.

Specific examples include a labeling method in which psoralen-biotin is crosslinked with RNA extracted from a microorganism and, after hybridization reaction, a fluorescent dye having streptoavidin bound thereto is bound to the biotin moiety (Nat. Biotechnol., 16: 45-48 (1998)); a labeling method in which a reverse transcription reaction is carried out using RNA extracted from a microorganism as a template and random primers as primers, and dUTP having a fluorescent dye (for example, Cy3, Cy5) (manufactured by Amersham Pharmacia Biotech) is incorporated into cDNA (Proc. Natl. Acad. Sci. USA, 96: 12833-38 (1999)); and the like.

The labeling specificity can be improved by replacing the random primers by sequences complementary to the 3'-end of ORF (J. Bacteriol., 181: 6425-40 (1999)).

In the hybridization method, the hybridization and subsequent washing can be carried out by the general method (Nat. Bioctechnol., 14: 1675-80 (1996), or the like).

Subsequently, the hybridization intensity is measured depending on the hybridization amount of the nucleic acid molecule used in the labeling. Thus, the mutation point can be identified and the expression amount of the gene can be calculated.

The hybridization intensity can be measured by visualizing the fluorescent signal, radioactivity, luminescence dose, and the like, using a laser confocal microscope, a CCD camera, a radiation imaging device (for example, STORM manufactured by Amersham Pharmacia Biotech), and the like, and then quantifying the thus visualized data.

A polynucleotide array on a solid support can also be analyzed and quantified using a commercially available apparatus, such as GMS418 Array Scanner (manufactured by Takara Shuzo) or the like.

The gene expression amount can be analyzed using a commercially available software (for example, ImaGene manufactured by Takara Shuzo; Array Gauge manufactured by Fuji Photo Film; ImageQuant manufactured by Amersham Pharmacia Biotech, or the like).

A fluctuation in the expression amount of a specific gene can be monitored using a nucleic acid molecule obtained in the time course of culture as the nucleic acid molecule derived from coryneform bacteria. The culture conditions can be optimized by analyzing the fluctuation.

The expression profile of the microorganism at the total gene level (namely, which genes among a great number of genes encoded by the genome have been expressed and the expression ratio thereof) can be determined using a nucleic acid molecule having the sequences of many genes determined

from the full genome sequence of the microorganism. Thus, the expression amount of the genes determined by the full genome sequence can be analyzed and, in its turn, the biological conditions of the microorganism can be recognized as the expression pattern at the full gene level.

(b) Confirmation of the presence of gene homologous to examined gene in coryneform bacteria

Whether or not a gene homologous to the examined gene, which is present in an organism other than coryneform bacteria, is present in coryneform bacteria can be detected using the polynucleotide array prepared in the above (1).

This detection can be carried out by a method in which an examined gene which is present in an organism other than coryneform bacteria is used instead of the nucleic acid molecule derived from coryneform bacteria used in the above identification/analysis method of (1).

8. Recording medium storing full genome nucleotide sequence and ORF data and being readable by a computer and methods for using the same

The term "recording medium or storage device which is readable by a computer" means a recording medium or storage medium which can be directly readout and accessed with a computer. Examples include magnetic recording media, such as a floppy disk, a hard disk, a magnetic tape, and

the like; optical recording media, such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, and the like; electric recording media, such as RAM, ROM, and the like; and hybrids in these categories (for example, magnetic/optical recording media, such as MO and the like).

Instruments for recording or inputting in or on the recording medium or instruments or devices for reading out information in the recording medium appropriately selected, depending on the type of the recording medium and the access device utilized. various data processing programs, software, comparator and used for recording and utilizing formats polynucleotide sequence information or the like. of the present invention in the recording medium. The information can be expressed in the form of a binary file, a text file or an ASCII file formatted with commercially available software, for example. Moreover, software for accessing the sequence information is available and known to one of ordinary skill in the art.

Examples of the information to be recorded in the above-described medium include the full genome nucleotide sequence information of coryneform bacteria as obtained in the above item 2, the nucleotide sequence information of ORF, the amino acid sequence information encoded by the ORF, and the functional information of polynucleotides coding for the amino acid sequences.

The recording medium or storage device which is readable by a computer according to the present invention refers to a medium in which the information of the present invention has been recorded. Examples include recording media or storage devices which are readable by a computer storing the nucleotide sequence information represented by SEQ ID NOS:1 to 3501, the amino acid sequence information represented by SEQ ID NOS:3502 to 7001, the functional information of the nucleotide sequences represented by SEQ ID NOS:1 to 3501, the functional information of the amino acid sequences represented by SEQ ID NOS:3502 to 7001, and the information listed in Table 1 below and the like.

9. System based on a computer using the recording medium of the present invention which is readable by a computer

The term "system based on a computer" as used herein refers a system composed of hardware device(s), software device(s), and data recording device(s) which are used for analyzing the data recorded in the recording medium of the present invention which is readable by a computer.

The hardware device(s) are, for example, composed of an input unit, a data recording unit, a central processing unit and an output unit collectively or individually.

By the software device(s), the data recorded in the recording medium of the present invention are searched or analyzed using the recorded data and the hardware device(s) as described herein. Specifically, the software device(s) contain at least one program which acts on or with the system in order to screen, analyze or compare biologically meaningful structures or information from the nucleotide sequences, amino acid sequences and the like recorded in the recording medium according to the present invention.

Examples of the software device(s) for identifying ORF and EMF domains include GeneMark (Nuc. Acids. Res., 22: 4756-67 (1994)), GeneHacker (Protein, Nucleic Acid and Enzyme, 42: 3001-07 (1997)), Glimmer (The Institute of Genomic Research; Nuc. Acids. Res., 26: 544-548 (1998)) and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.

Examples of the software device(s) for identifying a genome domain or a polypeptide domain analogous to the target sequence or the target structural motif (homology searching) include FASTA, BLAST, Smith-Waterman, GenetyxMac Software Development), GCG Package (manufactured by Computer Group), GenCore (manufactured by Genetic (manufactured by Compugen), and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.

Such a recording medium storing the full genome sequence data is useful in preparing a polynucleotide array by which the expression amount of a gene encoded by the genome DNA of coryneform bacteria and the expression profile at the total gene level of the microorganism, namely, which genes among many genes encoded by the genome have been expressed and the expression ratio thereof, can be determined.

The data recording device(s) provided by the present invention are, for example, memory device(s) for recording the data recorded in the recording medium of the present invention and target sequence or target structural motif data, or the like, and a memory accessing device(s) for accessing the same.

Namely, the system based on a computer according to the present invention comprises the following:

- (i) a user input device that inputs the information stored in the recording medium of the present invention, and target sequence or target structure motif information;
- (ii) a data storage device for at least temporarily storing the input information;
- (iii) a comparator that compares the information stored in the recording medium of the present invention with the

target sequence or target structure motif information, recorded by the data storing device of (ii) for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and

(iv) an output device that shows a screening or analyzing result obtained by the comparator.

This system is usable in the methods in items 2 to 5 as described above for searching and analyzing the ORF and EMF domains, target sequence, target structural motif, etc. of a coryneform bacterium, searching homologs, searching and analyzing isozymes, determining the biosynthesis pathway and the signal transmission pathway, and identifying spots which have been found in the proteome analysis. The term "homologs" as used herein includes both of orthologs and paralogs.

10. Production of polypeptide using ORF derived from coryneform bacteria

The polypeptide of the present invention can be produced using a polynucleotide comprising the ORF obtained in the above item 2. Specifically, the polypeptide of the present invention can be produced by expressing the polynucleotide of the present invention or a fragment thereof in a host cell, using the method described in Molecular Cloning, 2nd ed., Current Protocols in Molecular

Biology, and the like, for example, according to the following method.

A DNA fragment having a suitable length containing a part encoding the polypeptide is prepared from the full length ORF sequence, if necessary.

Also, DNA in which nucleotides in a nucleotide sequence at a part encoding the polypeptide of the present invention are replaced to give a codon suitable for expression of the host cell, if necessary. The DNA is useful for efficiently producing the polypeptide of the present invention.

A recombinant vector is prepared by inserting the DNA fragment into the downstream of a promoter in a suitable expression vector.

The recombinant vector is introduced to a host cell suitable for the expression vector.

Any of bacteria, yeasts, animal cells, insect cells, plant cells, and the like can be used as the host cell so long as it can be expressed in the gene of interest.

Examples of the expression vector include those which can replicate autonomously in the above-described host cell or can be integrated into chromosome and have a promoter at such a position that the DNA encoding the polypeptide of the present invention can be transcribed.

When a procaryote cell, such as a bacterium or the like, is used as the host cell, it is preferred that the

recombinant vector containing the DNA encoding the of polypeptide the present invention can replicate autonomously in the bacterium and is a recombinant vector constituted by, at least a promoter, a ribosome binding sequence, the DNA of the present invention and transcription termination sequence. A promoter controlling gene can also be contained therewith in operable combination.

Examples of the expression vectors include a vector plasmid which is replicable in Corynebacterium glutamicum, as pCG1 (Japanese Published Unexamined Patent Application No. 134500/82), pcg2 (Japanese Published Unexamined Patent Application No. 35197/83), pCG4 (Japanese Published Unexamined Patent Application No. 183799/82), pCG11 (Japanese Published Unexamined Patent Application No. 134500/82), pCG116, pCE54 and pCB101 (Japanese Published Unexamined Patent Application No. 105999/83), pCE51, pCE52 and pCE53 (Mol. Gen. Genet., 196: 175-178 (1984)), and the like; a vector plasmid which is replicable in Escherichia coli, such as pET3 and pET11 (manufactured by Stratagene), pBAD, pThioHis and pTrcHis (manufactured by Invitrogen), pKK223-3 and pGEX2T (manufactured by Amersham Pharmacia Biotech), and the like; and pBTrp2, pBTac1 and pBTac2 (manufactured by Boehringer Mannheim Co.), (manufactured by Invitrogen), pGEMEX-1 (manufactured by Promega), pQE-8 (manufactured by QIAGEN), pKYP10 (Japanese

Published Unexamined Patent Application No. 110600/83), pKYP200 (Agric. Biol. Chem., 48: 669 (1984)), pLSA1 (Agric. Biol. Chem., 53: 277 (1989)), pGEL1 (Proc. Natl. Acad. Sci. USA, 82: 4306 (1985)), pBluescript II SK(-) (manufactured by Stratagene), pTrs30 (prepared from Escherichia coli JM109/pTrS30 (FERM BP-5407)), pTrs32 (prepared from Escherichia coli JM109/pTrS32 (FERM BP-5408)), pGHA2 (prepared from Escherichia coli IGHA2 (FERM B-400), Japanese Published Unexamined Patent Application 221091/85), pGKA2 (prepared from Escherichia coli IGKA2 BP-6798), Japanese Published Unexamined Application No. 221091/85), pTerm2 (U.S. Patents 4,686,191, 4,939,094 and 5,160,735), pSupex, pUB110, pTP5, pC194 and pEG400 (J. Bacteriol., 172: 2392 (1990)),pGEX (manufactured by Pharmacia), pET system (manufactured by Novagen), and the like.

Any promoter can be used so long as it can function in the host cell. Examples include promoters derived from Escherichia coli, phage and the like, such as trp promoter (P_{trp}) , lac promoter, P_{L} promoter, P_{R} promoter, P_{R} promoter, P_{R} promoter and the like. Also, artificially designed and modified promoters, such as a promoter in which two Ptrp are linked in series $(P_{trp} \times 2)$, tac promoter, lacT7 promoter letI promoter and the like, can be used.

It is preferred to use a plasmid in which the space between Shine-Dalgarno sequence which is the ribosome

binding sequence and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 nucleotides).

The transcription termination sequence is not always necessary for the expression of the DNA of the present invention. However, it is preferred to arrange the transcription terminating sequence at just downstream of the structural gene.

One of ordinary skill in the art will appreciate that the codons of the above-described elements may be optimized, in a known manner, depending on the host cells and environmental conditions utilized.

Examples of the host cell include microorganisms belonging to the genus Escherichia, the genus Serratia, the Bacillus, the genus Brevibacterium, the genus genus Corynebacterium, the genus Microbacterium, the genus Pseudomonas, and the like. Specific examples include Escherichia coli XL1-Blue, Escherichia coli XL2-Blue, Escherichia coli DH1, Escherichia coli MC1000, Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JM109, coli HB101, Escherichia coli Escherichia Escherichia coli W3110, Escherichia coli NY49, Escherichia coli GI698, Escherichia coli TB1, Serratia ficaria, fonticola, liquefaciens, Serratia Serratia Serratia marcescens, Bacillus subtilis, Bacillus amyloliquefaciens, Corynebacterium ammoniagenes, Brevibacterium immariophilum ATCC 14068, Brevibacterium saccharolyticum ATCC 14066,

Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13869, Corynebacterium glutamicum ATCC 14067 (prior genus and species: Brevibacterium flavum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum, or Corynebacterium lactofermentum, or Corynebacterium lactofermentum), Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium thermoaminogenes FERM 9244, Microbacterium ammoniaphilum ATCC 15354, Pseudomonas putida, Pseudomonas sp. D-0110, and the like.

when Corynebacterium glutamicum or an analogous microorganism is used as a host, an EMF necessary for expressing the polypeptide is not always contained in the vector so long as the polynucleotide of the present invention contains an EMF. When the EMF is not contained in the polynucleotide, it is necessary to prepare the EMF separately and ligate it so as to be in operable combination. Also, when a higher expression amount or specific expression regulation is necessary, it is necessary to ligate the EMF corresponding thereto so as to put the EMF in operable combination with the polynucleotide. Examples of using an externally ligated EMF are disclosed in Microbiology, 142: 1297-1309 (1996).

With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into the above-described host cells, such as a method in which a calcium ion is used (Proc. Natl. Acad. Sci. USA, 69: 2110

(1972)), a protoplast method (Japanese Published Unexamined Patent Application No. 2483942/88), the methods described in Gene, 17: 107 (1982) and Molecular & General Genetics, 168: 111 (1979) and the like, can be used.

When yeast is used as the host cell, examples of the expression vector include pYES2 (manufactured by Invitrogen), YEp13 (ATCC 37115), YEp24 (ATCC 37051), YCp50 (ATCC 37419), pHS19, pHS15, and the like.

Any promoter can be used so long as it can be expressed in yeast. Examples include a promoter of a gene in the glycolytic pathway, such as hexose kinase and the like, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, a heat shock protein promoter, MF α 1 promoter, CUP 1 promoter, and the like.

Examples of the host cell include microorganisms belonging to the genus Saccharomyces, genus Schizosaccharomyces, the genus Kluyveromyces, the genus Trichosporon, the genus Schwanniomyces, the genus Pichia, the genus Candida and the like. Specific examples include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, Schwanniomyces alluvius, Candida utilis and the like.

With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into yeast, such as an electroporation method (Methods. Enzymol.,

194: 182 (1990)), a spheroplast method (Proc. Natl. Acad. Sci. USA, 75: 1929 (1978)), a lithium acetate method (J. Bacteriol., 153: 163 (1983)), a method described in Proc. Natl. Acad. Sci. USA, 75: 1929 (1978) and the like, can be used.

When animal cells are used as the host cells, examples of the expression vector include pcDNA3.1, pSinRep5 and pCEP4 (manufactured by Invitorogen), pRev-Tre (manufactured by Clontech), pAxCAwt (manufactured by Takara Shuzo), pcDNAI and pcDM8 (manufactured by Funakoshi), pAGE107 (Japanese Published Unexamined Patent Application No. 22979/91; Cytotechnology, *3*:133 (1990)), pAS3-3 (Japanese Published Unexamined Patent Application No. 227075/90), pcDM8 (Nature, 329: 840 (1987)), pcDNAI/Amp Invitrogen), pREP4 (manufactured by (manufactured by Invitrogen), pAGE103 (J. Biochem., 101: 1307 (1987)), pAGE210, and the like.

Any promoter can be used so long as it can function in animal cells. Examples include a promoter of IE (immediate early) gene of cytomegalovirus (CMV), an early promoter of SV40, a promoter of retrovirus, a metallothionein promoter, a heat shock promoter, SRa promoter, and the like. Also, the enhancer of the IE gene of human CMV can be used together with the promoter.

Examples of the host cell include human Namalwa cell, monkey COS cell, Chinese hamster CHO cell, HST5637

(Japanese Published Unexamined Patent Application No. 299/88), and the like.

The method for introduction of the recombinant vector into animal cells is not particularly limited, so long as it is the general method for introducing DNA into animal cells, such as an electroporation method (Cytotechnology, 3: 133 (1990)), a calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), a lipofection method (Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)), the method described in Virology, 52: 456 (1973), and the like.

When insect cells are used as the host cells, the polypeptide can be expressed, for example, by the method described in *Bacurovirus Expression Vectors*, A *Laboratory Manual*, W.H. Freeman and Company, New York (1992), *Bio/Technology*, 6: 47 (1988), or the like.

Specifically, a recombinant gene transfer vector and bacurovirus are simultaneously inserted into insect cells to obtain a recombinant virus in an insect cell culture supernatant, and then the insect cells are infected with the resulting recombinant virus to express the polypeptide.

Examples of the gene introducing vector used in the method include pBlueBac4.5, pVL1392, pVL1393 and pBlueBacIII (manufactured by Invitrogen), and the like.

Examples of the bacurovirus include Autographa californica nuclear polyhedrosis virus with which insects of the family Barathra are infected, and the like.

Examples of the insect cells include Spodoptera frugiperda oocytes Sf9 and Sf21 (Bacurovirus Expression Vectors, A Laboratory Manual, W.H. Freeman and Company, New York (1992)), Trichoplusia ni oocyte High 5 (manufactured by Invitrogen) and the like.

The method for simultaneously incorporating the above-described recombinant gene transfer vector and the above-described bacurovirus for the preparation of the recombinant virus include calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), lipofection method (Proc. Natl. Acad. Sci. USA, 84: 7413 (1987)) and the like.

When plant cells are used as the host cells, examples of expression vector include a Ti plasmid, a tobacco mosaic virus vector, and the like.

Any promoter can be used so long as it can be expressed in plant cells. Examples include 35S promoter of cauliflower mosaic virus (CaMV), rice actin 1 promoter, and the like.

Examples of the host cells include plant cells and the like, such as tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat, barley, and the like.

The method for introducing the recombinant vector is not particularly limited, so long as it is the general method for introducing DNA into plant cells, such as the Agrobacterium method (Japanese Published Unexamined Patent Application No. 140885/84, Japanese Published Unexamined Patent Application No. 70080/85, WO 94/00977), the electroporation method (Japanese Published Unexamined Patent Application No. 251887/85), the particle gun method (Japanese Patents 2606856 and 2517813), and the like.

The transformant of the present invention includes a transformant containing the polypeptide of the present invention per se rather than as a recombinant vector, that is, a transformant containing the polypeptide of the present invention which is integrated into a chromosome of the host, in addition to the transformant containing the above recombinant vector.

When expressed in yeasts, animal cells, insect cells or plant cells, a glycopolypeptide or glycosylated polypeptide can be obtained.

The polypeptide can be produced by culturing the thus obtained transformant of the present invention in a culture medium to produce and accumulate the polypeptide of the present invention or any polypeptide expressed under the control of an EMF of the present invention, and recovering the polypeptide from the culture.

Culturing of the transformant of the present invention in a culture medium is carried out according to the conventional method as used in culturing of the host.

When the transformant of the present invention is obtained using a prokaryote, such as *Escherichia coli* or the like, or a eukaryote, such as yeast or the like, as the host, the transformant is cultured.

Any of a natural medium and a synthetic medium can be used, so long as it contains a carbon source, a nitrogen source, an inorganic salt and the like which can be assimilated by the transformant and can perform culturing of the transformant efficiently.

Examples of the carbon source include those which can be assimilated by the transformant, such as carbohydrates (for example, glucose, fructose, sucrose, molasses containing them, starch, starch hydrolysate, and the like), organic acids (for example, acetic acid, propionic acid, and the like), and alcohols (for example, ethanol, propanol, and the like).

Examples of the nitrogen source include ammonia, various ammonium salts of inorganic acids or organic acids (for example, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and the like), other nitrogencontaining compounds, peptone, meat extract, yeast extract, corn steep liquor, casein hydrolysate, soybean meal and

soybean meal hydrolysate, various fermented cells and hydrolysates thereof, and the like.

Examples of inorganic salt include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like.

The culturing is carried out under aerobic conditions by shaking culture, submerged-aeration stirring culture or the like. The culturing temperature preferably from 15 to 40°C, and the culturing time is generally from 16 hours to 7 days. The pH of the medium is preferably maintained at 3.0 to 9.0 during the culturing. The pH can be adjusted using an inorganic or organic acid, an alkali solution, urea, calcium carbonate, ammonia, or the like.

Also, antibiotics, such as ampicillin, tetracycline, and the like, can be added to the medium during the culturing, if necessary.

When a microorganism transformed with a recombinant vector containing an inducible promoter is cultured, an inducer can be added to the medium, if necessary.

For example, isopropyl- β -D-thiogalactopyranoside (IPTG) or the like can be added to the medium when a microorganism transformed with a recombinant vector containing *lac* promoter is cultured, or indoleacrylic acid

(IAA) or the like can by added thereto when a microorganism transformed with an expression vector containing trp promoter is cultured.

Examples of the medium used in culturing a transformant obtained using animal cells as the host cells include RPMI 1640 medium (The Journal of the American Medical Association, 199: 519 (1967)), Eagle's MEM medium (Science, 122: 501 (1952)), Dulbecco's modified MEM medium (Virology, 8, 396 (1959)), 199 Medium (Proceeding of the Society for the Biological Medicine, 73:1 (1950)), the above-described media to which fetal calf serum has been added, and the like.

The culturing is carried out generally at a pH of 6 to 8 and a temperature of 30 to 40° C in the presence of 5% CO, for 1 to 7 days.

Also, if necessary, antibiotics, such as kanamycin, penicillin, and the like, can be added to the medium during the culturing.

Examples of the medium used in culturing a transformant obtained using insect cells as the host cells include TNM-FH medium (manufactured by Pharmingen), Sf-900 II SFM (manufactured by Life Technologies), ExCell 400 and ExCell 405 (manufactured by JRH Biosciences), Grace's Insect Medium (Nature, 195: 788 (1962)), and the like.

The culturing is carried out generally at a pH of 6 to 7 and a temperature of 25 to 30°C for 1 to 5 days.

Additionally, antibiotics, such as gentamicin and the like, can be added to the medium during the culturing, if necessary.

A transformant obtained by using a plant cell as the host cell can be used as the cell or after differentiating to a plant cell or organ. Examples of the medium used in the culturing of the transformant include Murashige and Skoog (MS) medium, White medium, media to which a plant hormone, such as auxin, cytokinine, or the like has been added, and the like.

The culturing is carried out generally at a pH of 5 to 9 and a temperature of 20 to 40°C for 3 to 60 days.

Also, antibiotics, such as kanamycin, hygromycin and the like, can be added to the medium during the culturing, if necessary.

As described above, the polypeptide can be produced by culturing a transformant derived from a microorganism, animal cell or plant cell containing a recombinant vector to which a DNA encoding the polypeptide of the present invention has been inserted according to the general culturing method to produce and accumulate the polypeptide, and recovering the polypeptide from the culture.

The process of gene expression may include secretion of the encoded protein production or fusion protein expression and the like in accordance with the

methods described in *Molecular Cloning*, 2nd ed., in addition to direct expression.

The method for producing the polypeptide of the present invention includes a method of intracellular expression in a host cell, a method of extracellular secretion from a host cell, or a method of production on a host cell membrane outer envelope. The method can be selected by changing the host cell employed or the structure of the polypeptide produced.

When the polypeptide of the present invention is produced in a host cell or on a host cell membrane outer envelope, the polypeptide can be positively secreted extracellularly according to, for example, the method of Paulson et al. (J. Biol. Chem., 264: 17619 (1989)), the method of Lowe et al. (Proc. Natl. Acad. Sci. USA, 86: 8227 (1989); Genes Develop., 4: 1288 (1990)), and/or the methods described in Japanese Published Unexamined Patent Application No. 336963/93, WO 94/23021, and the like.

Specifically, the polypeptide of the present invention can be positively secreted extracellularly by expressing it in the form that a signal peptide has been added to the foreground of a polypeptide containing an active site of the polypeptide of the present invention according to the recombinant DNA technique.

Furthermore, the amount produced can be increased using a gene amplification system, such as by use of a

dihydrofolate reductase gene or the like according to the method described in Japanese Published Unexamined Patent Application No. 227075/90.

Moreover, the polypeptide of the present invention can be produced by a transgenic animal individual (transgenic nonhuman animal) or plant individual (transgenic plant).

When the transformant is the animal individual or plant individual, the polypeptide of the present invention can be produced by breeding or cultivating it so as to produce and accumulate the polypeptide, and recovering the polypeptide from the animal individual or plant individual.

Examples of the method for producing the polypeptide of the present invention using the animal individual include a method for producing the polypeptide of the present invention in an animal developed by inserting a gene according to methods known to those of ordinary skill in the art (American Journal of Clinical Nutrition, 63: 639S (1996), American Journal of Clinical Nutrition, 63: 627S (1996), Bio/Technology, 9: 830 (1991)).

In the animal individual, the polypeptide can be produced by breeding a transgenic nonhuman animal to which the DNA encoding the polypeptide of the present invention has been inserted to produce and accumulate the polypeptide in the animal, and recovering the polypeptide from the animal. Examples of the production and accumulation place

in the animal include milk (Japanese Published Unexamined Patent Application No. 309192/88), egg and the like of the animal. Any promoter can be used, so long as it can be expressed in the animal. Suitable examples include an α -casein promoter, a β -casein promoter, a β -lactoglobulin promoter, a whey acidic protein promoter, and the like, which are specific for mammary glandular cells.

Examples of the method for producing the polypeptide of the present invention using the plant individual include a method for producing the polypeptide of the present invention by cultivating a transgenic plant to which the DNA encoding the protein of the present invention by a known method (Tissue Culture, 20 (1994), Tissue Culture, 21 (1994), Trends in Biotechnology, 15: 45 (1997)) to produce and accumulate the polypeptide in the plant, and recovering the polypeptide from the plant.

The polypeptide according to the present invention can also be obtained by translation in vitro.

The polypeptide of the present invention can be produced by a translation system in vitro. There are, for example, two in vitro translation methods which may be used, namely, a method using RNA as a template and another method using DNA as a template. The template RNA includes the whole RNA, mRNA, an in vitro transcription product, and the like. The template DNA includes a plasmid containing a transcriptional promoter and a target gene integrated

therein and downstream of the initiation site, a PCR/RT-PCR product and the like. To select the most suitable system for the in vitro translation, the origin of the gene (prokaryotic synthesized to be encoding the protein cell/eucaryotic cell), the type of the template (DNA/RNA), the purpose of using the synthesized protein and the like In vitro translation kits having should be considered. various characteristics are commercially available from many companies (Boehringer Mannheim, Promega, Stratagene, or the like), and every kit can be used in producing the polypeptide according to the present invention.

Transcription/translation nucleotide of а DNA sequence cloned into a plasmid containing a T7 promoter can be carried out using an in vitro transcription/translation system E. coli T7 S30 Extract System for Circular DNA (manufactured by Promega, catalogue No. L1130). transcription/translation using, as a template, a linear prokaryotic DNA of a supercoil non-sensitive promoter, such as lacUV5, tac, $\lambda PL(con)$, λPL , or the like, can be carried out using an in vitro transcription/translation system Templates for Linear System Extract S30 (manufactured by Promega, catalogue No. L1030). of the linear prokaryotic DNA used as a template include a DNA fragment, a PCR-amplified DNA product, a duplicated oligonucleotide ligation, an in vitro transcriptional RNA, a prokaryotic RNA, and the like.

In addition to the production of the polypeptide according to the present invention, synthesis of a radioactive labeled protein, confirmation of the expression capability of a cloned gene, analysis of the function of transcriptional reaction or translation reaction, and the like can be carried out using this system.

The polypeptide produced by the transformant of the present invention can be isolated and purified using the general method for isolating and purifying an enzyme. example, when the polypeptide of the present invention is expressed as a soluble product in the host cells, the cells cultivation, centrifugation after by collected are suspended in an aqueous buffer, and disrupted using an ultrasonicator, a French press, a Manton Gaulin homogenizer, a Dynomill, or the like to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a purified product can be obtained by the general method used for isolating and purifying an enzyme, for example, solvent extraction, salting out using ammonium sulfate or the like, desalting, precipitation using an organic solvent, anion exchange chromatography using a resin, such as diethylaminoethyl (DEAE)-Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Chemical) or the like, cation exchange chromatography using a resin, such as S-Sepharose FF (manufactured by Pharmacia) or the like, hydrophobic chromatography using a resin, such as butyl sepharose, phenyl sepharose or the like, gel filtration using a molecular sieve, affinity chromatography, chromatofocusing, or electrophoresis, such as isoelectronic focusing or the like, alone or in combination thereof.

When the polypeptide is expressed as an insoluble product in the host cells, the cells are collected in the same manner, disrupted and centrifuged to recover the insoluble product of the polypeptide as the precipitate fraction. Next, the insoluble product of the polypeptide is solubilized with a protein denaturing agent. solubilized solution is diluted or dialyzed to lower the concentration of the protein denaturing agent the solution. Thus, the normal configuration of the polypeptide is reconstituted. After the procedure, a purified product of the polypeptide can be obtained by a purification/isolation method similar to the above.

When the polypeptide of the present invention or its derivative (for example, a polypeptide formed by adding a sugar chain thereto) is secreted out of cells, the polypeptide or its derivative can be collected in the culture supernatant. Namely, the culture supernatant is obtained by treating the culture medium in a treatment similar to the above (for example, centrifugation). Then, a purified product can be obtained from the culture medium using a purification/isolation method similar to the above.

The polypeptide obtained by the above method is within the scope of the polypeptide of the present invention, and examples include a polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431, and a polypeptide comprising an amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931.

Furthermore, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide is included in the scope of the present invention. The term "substantially the activity as that of the polypeptide" means activity represented by the inherent function, enzyme activity or the like possessed by the polypeptide which has not been deleted, replaced, inserted or added. The polypeptide can be obtained using a method for introducing part-specific mutation(s) described in, for example, Molecular Cloning, 2nd ed., Current Protocols in Molecular Biology, Nuc. Acids. Res., 10: 6487 (1982), Proc. Natl. Acad. Sci. USA, 79: 6409 (1982), Gene, 34: 315 (1985), Nuc. Acids. Res., 13: 4431 (1985), Proc. Natl. Acad. Sci. USA, 82: 488 (1985) and the like. For example, the polypeptide can be obtained by introducing mutation(s) to DNA encoding a polypeptide having the amino acid sequence represented by

any one of SEQ ID NOS:3502 to 6931. The number of the amino acids which are deleted, replaced, inserted or added is not particularly limited; however, it is usually 1 to the order of tens, preferably 1 to 20, more preferably 1 to 10, and most preferably 1 to 5, amino acids.

The at least one amino acid deletion, replacement, insertion or addition in the amino acid sequence of the polypeptide of the present invention is used herein to refer to that at least one amino acid is deleted, replaced, inserted or added to at one or plural positions in the amino acid sequence. The deletion, replacement, insertion or addition may be caused in the same amino acid sequence simultaneously. Also, the amino acid residue replaced, inserted or added can be natural or non-natural. Examples of the natural amino acid residue include L-alanine, L-asparagine, L-asparatic acid, L-glutamine, L-glutamic glycine, L-histidine, L-isoleucine, acid, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine, and the like.

Herein, examples of amino acid residues which are replaced with each other are shown below. The amino acid residues in the same group can be replaced with each other. Group A:

leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, 0-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine;
Group B:

asparatic acid, glutamic acid, isoasparatic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid;
Group C:

asparagine, glutamine;

Group D:

lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid;

Group E:

proline, 3-hydroxyproline, 4-hydroxyproline;

Group F:

serine, threonine, homoserine;

Group G:

phenylalanine, tyrosine.

Also, in order that the resulting mutant polypeptide has substantially the same activity as that of the polypeptide which has not been mutated, it is preferred that the mutant polypeptide has a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the polypeptide which has not been mutated, when calculated, for example, using default (initial setting) parameters by a homology searching software, such as BLAST, FASTA, or the like.

Also, the polypeptide of the present invention can be produced by a chemical synthesis method, such as Fmoc (fluorenylmethyloxycarbonyl) method, tBoc (t-butyloxycarbonyl) method, or the like. It can also be synthesized using a peptide synthesizer manufactured by Perkin-Elmer, Advanced ChemTech, Pharmacia, Instrument, Synthecell-Vega, PerSeptive, Technology Shimadzu Corporation, or the like.

The transformant of the present invention can be used for objects other than the production of the polypeptide of the present invention.

Specifically, at least one component selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof can be produced by culturing the transformant containing the polynucleotide or recombinant vector of the present invention in a medium to produce and accumulate at least one component selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof, and recovering the same from the medium.

The biosynthesis pathways, decomposition pathways and regulatory mechanisms of physiologically active substances such as amino acids, nucleic acids, vitamins, saccharides, organic acids and analogues thereof differ from organism to organism. The productivity of such a physiologically active substance can be improved using

these differences, specifically by introducing a heterogeneous gene relating to the biosynthesis thereof. For example, the content of lysine, which is one of the essential amino acids, in a plant seed was improved by introducing a synthase gene derived from a bacterium (WO 93/19190). Also, arginine is excessively produced in a culture by introducing an arginine synthase gene derived from Escherichia coli (Japanese Examined Patent Publication 23750/93).

To produce such a physiologically active substance, the transformant according to the present invention can be cultured by the same method as employed in culturing the transformant for producing the polypeptide of the present invention as described above. Also, the physiologically active substance can be recovered from the culture medium in combination with, for example, the ion exchange resin method, the precipitation method and other known methods.

Examples of methods known to one of ordinary skill in the art include electroporation, calcium transfection, the protoplast method, the method using a phage, and the like, when the host is a bacterium; and microinjection, calcium phosphate transfection, the positively charged lipid-mediated method and the method using a virus, and the like, when the host is a eukaryote (Molecular Cloning, 2nd ed.; Spector et al., Cells/a laboratory manual, Cold Spring Harbour Laboratory Press, 1998)). Examples of the host

include prokaryotes, lower eukaryotes (for example, yeasts), (for example, mammals), higher eukaryotes As the state of a recombinant isolated therefrom. polynucleotide fragment present in the host cells, it can chromosome ofthe host. integrated the into be Alternatively, it can be integrated into a factor (for example, a plasmid) having an independent replication unit These transformants are usable in outside the chromosome. producing the polypeptides of the present invention encoded by the ORF of the genome of Corynebacterium glutamicum, the polynucleotides of the present invention and fragments Alternatively, they can be used in producing thereof. arbitrary polypeptides under the regulation by an EMF of the present invention.

11. Preparation of antibody recognizing the polypeptide of the present invention

An antibody which recognizes the polypeptide of the present invention, such as a polyclonal antibody, a monoclonal antibody, or the like, can be produced using, as an antigen, a purified product of the polypeptide of the present invention or a partial fragment polypeptide of the polypeptide or a peptide having a partial amino acid sequence of the polypeptide of the present invention.

(1) Production of polyclonal antibody

A polyclonal antibody can be produced using, as an antigen, a purified product of the polypeptide of the present invention, a partial fragment polypeptide of the polypeptide, or a peptide having a partial amino acid sequence of the polypeptide of the present invention, and immunizing an animal with the same.

Examples of the animal to be immunized include rabbits, goats, rats, mice, hamsters, chickens and the like.

A dosage of the antigen is preferably 50 to 100 μg per animal.

When the peptide is used as the antigen, it is preferably a peptide covalently bonded to a carrier protein, such as keyhole limpet haemocyanin, bovine thyroglobulin, or the like. The peptide used as the antigen can be synthesized by a peptide synthesizer.

The administration of the antigen is, for example, carried out 3 to 10 times at the intervals of 1 or 2 weeks after the first administration. On the 3rd to 7th day after each administration, a blood sample is collected from the venous plexus of the eyeground, and it is confirmed that the serum reacts with the antigen by the enzyme immunoassay (Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory (1988)) or the like.

Serum is obtained from the immunized non-human mammal with a sufficient antibody titer against the antigen

used for the immunization, and the serum is isolated and purified to obtain a polyclonal antibody.

Examples of the method for the isolation and purification include centrifugation, salting out by 40-50% saturated ammonium sulfate, caprylic acid precipitation (Antibodies, A Laboratory manual, Cold Spring Harbor Laboratory (1988)), or chromatography using a DEAE-Sepharose column, an anion exchange column, a protein A- or G-column, a gel filtration column, and the like, alone or in combination thereof, by methods known to those of ordinary skill in the art.

- (2) Production of monoclonal antibody
- (a) Preparation of antibody-producing cell

A rat having a serum showing an enough antibody titer against a partial fragment polypeptide of the polypeptide of the present invention used for immunization is used as a supply source of an antibody-producing cell.

On the 3rd to 7th day after the antigen substance is finally administered the rat showing the antibody titer, the spleen is excised.

The spleen is cut to pieces in MEM medium (manufactured by Nissui Pharmaceutical), loosened using a pair of forceps, followed by centrifugation at 1,200 rpm for 5 minutes, and the resulting supernatant is discarded.

The spleen in the precipitated fraction is treated with a Tris-ammonium chloride buffer (pH 7.65) for 1 to 2 minutes to eliminate erythrocytes and washed three times with MEM medium, and the resulting spleen cells are used as antibody-producing cells.

(b) Preparation of myeloma cells

As myeloma cells, an established cell line obtained from mouse or rat is used. Examples of useful cell lines include those derived from a mouse, such as P3-X63Ag8-U1 (hereinafter referred to as "P3-U1") (Curr. Topics in Microbiol. Immunol., 81: 1 (1978); Europ. J. Immunol., (Nature, 276: 269 (SP-2) 6: 511 (1976)); SP2/O-Ag14 Immunol., 123: 1548 (1978)): P3-X63-Ag8653 (653) (J. (1979)); P3-X63-Ag8 (X63) cell line (Nature, 256: 495 (1975)), and the like, which are 8-azaguanine-resistant These cell lines are mouse (BALB/c) myeloma cell lines. subcultured in 8-azaguanine medium (medium in which, to a medium obtained by adding 1.5 mmol/l glutamine, 5×10^{-5} mol/l 2-mercaptoethanol, 10 $\mu g/ml$ gentamicin and 10% fetal calf serum (FCS) (manufactured by CSL) to RPMI-1640 medium (hereinafter referred to as the "normal medium"), azaguanine is further added at 15 $\mu g/ml$) and cultured in the normal medium 3 or 4 days before cell fusion, and 2×10^7 or more of the cells are used for the fusion.

(c) Production of hybridoma

The antibody-producing cells obtained in (a) and the myeloma cells obtained in (b) are washed with MEM medium or PBS (disodium hydrogen phosphate: 1.83 g, sodium dihydrogen phosphate: 0.21 g, sodium chloride: 7.65 g, distilled water: 1 liter, pH: 7.2) and mixed to give a ratio of antibody-producing cells: myeloma cells = 5:1 to 10:1, followed by centrifugation at 1,200 rpm for 5 minutes, and the supernatant is discarded.

The cells in the resulting precipitated fraction were thoroughly loosened, 0.2 to 1 ml of a mixed solution of 2 g of polyethylene glycol-1000 (PEG-1000), 2 ml of MEM medium and 0.7 ml of dimethylsulfoxide (DMSO) per 10° antibody-producing cells is added to the cells under stirring at 37°C, and then 1 to 2 ml of MEM medium is further added thereto several times at 1 to 2 minute intervals.

After the addition, MEM medium is added to give a total amount of 50 ml. The resulting prepared solution is centrifuged at 900 rpm for 5 minutes, and then the supernatant is discarded. The cells in the resulting precipitated fraction were gently loosened and then gently suspended in 100 ml of HAT medium (the normal medium to which 10^{-4} mol/l hypoxanthine, 1.5×10^{-5} mol/l thymidine and 4×10^{-7} mol/l aminopterin have been added) by repeated drawing up into and discharging from a measuring pipette.

The suspension is poured into a 96 well culture plate at 100 $\mu l/well$ and cultured at 37°C for 7 to 14 days in a 5% CO_2 incubator.

After culturing, a part of the culture supernatant is recovered, and a hybridoma which specifically reacts with a partial fragment polypeptide of the polypeptide of the present invention is selected according to the enzyme immunoassay described in *Antibodies*, A Laboratory manual, Cold Spring Harbor Laboratory, Chapter 14 (1998) and the like.

A specific example of the enzyme immunoassay is described below.

The partial fragment polypeptide of the polypeptide the present invention used as the antigen in the immunization is spread on a suitable plate, is allowed to react with a hybridoma culturing supernatant or a purified (d) described below as a first antibody obtained in antibody, and is further allowed to react with an anti-rat or anti-mouse immunoglobulin antibody labeled with an a chemical luminous substance, a radioactive enzyme, substance or the like as a second antibody for reaction suitable for the labeled substance. A hybridoma which specifically reacts with the polypeptide of the present invention is selected as a hybridoma capable of producing a monoclonal antibody of the present invention.

Cloning is repeated using the hybridoma twice by limiting dilution analysis (HT medium (a medium in which aminopterin has been removed from HAT medium) is firstly used, and the normal medium is secondly used), and a hybridoma which is stable and contains a sufficient amount of antibody titer is selected as a hybridoma capable of producing a monoclonal antibody of the present invention.

(d) Preparation of monoclonal antibody

The monoclonal antibody-producing hybridoma cells obtained in (c) are injected intraperitoneally into 8- to 10-week-old mice or nude mice treated with pristane (intraperitoneal administration of 0.5 ml of 2,6,10,14-tetramethylpentadecane (pristane), followed by 2 weeks of feeding) at 5×10^6 to 20×10^6 cells/animal. The hybridoma causes ascites tumor in 10 to 21 days.

The ascitic fluid is collected from the mice or nude mice, and centrifuged to remove solid contents at 3000 rpm for 5 minutes.

A monoclonal antibody can be purified and isolated from the resulting supernatant according to the method similar to that used in the polyclonal antibody.

The subclass of the antibody can be determined using a mouse monoclonal antibody typing kit or a rat monoclonal antibody typing kit. The polypeptide amount can

be determined by the Lowry method or by calculation based on the absorbance at 280 nm.

The antibody obtained in the above is within the scope of the antibody of the present invention.

The antibody can be used for the general assay using an antibody, such as a radioactive material labeled immunoassay (RIA), competitive binding assay, an immunotissue chemical staining method (ABC method, method, etc.), immunoprecipitation, Western blotting, ELISA assay, and the like (An introduction to Radioimmunoassay and Related Techniques, Elsevier Science (1986); Techniques Immunocytochemistry, Academic Press, Vol. 1 (1982), Vol. 2 (1983) & Vol. 3 (1985); Practice and Theory of Enzyme Immunoassays, Elsevier Science (1985); Enzyme-linked Shoin (1976);Assay (ELISA), Igaku Immunosorbent Antibodies - A Laboratory Manual, Cold Spring laboratory (1988); Monoclonal Antibody Experiment Manual, Kodansha Scientific (1987); Second Series Biochemical Experiment Course, Vol. 5, Immunobiochemistry Research Method, Tokyo Kagaku Dojin (1986)).

The antibody of the present invention can be used as it is or after being labeled with a label.

Examples of the label include radioisotope, an affinity label (e.g., biotin, avidin, or the like), an enzyme label (e.g., horseradish peroxidase, alkaline phosphatase, or the like), a fluorescence label (e.g., FITC,

rhodamine, or the like), a label using a rhodamine atom, (J. Histochem. Cytochem., 18: 315 (1970); Meth. Enzym., 62: 308 (1979); Immunol., 109: 129 (1972); J. Immunol., Meth., 13: 215 (1979)), and the like.

Expression of the polypeptide of the present invention, fluctuation of the expression, the presence or absence of structural change of the polypeptide, and the presence or absence in an organism other than coryneform bacteria of a polypeptide corresponding to the polypeptide can be analyzed using the antibody or the labeled antibody by the above assay, or a polypeptide array or proteome analysis described below.

Furthermore, the polypeptide recognized by the antibody can be purified by immunoaffinity chromatography using the antibody of the present invention.

- 12. Production and use of polypeptide array
- (1) Production of polypeptide array

A polypeptide array can be produced using the polypeptide of the present invention obtained in the above item 10 or the antibody of the present invention obtained in the above item 11.

The polypeptide array of the present invention includes protein chips, and comprises a solid support and the polypeptide or antibody of the present invention adhered to the surface of the solid support.

Examples of the solid support include plastic such as polycarbonate or the like; an acrylic resin, such as polyacrylamide or the like; complex carbohydrates, such as agarose, sepharose, or the like; silica; a silica-based material, carbon, a metal, inorganic glass, latex beads, and the like.

The polypeptides or antibodies according to the present invention can be adhered to the surface of the solid support according to the method described in Biotechniques, 27: 1258-61 (1999); Molecular Medicine Today, 5: 326-7 (1999); Handbook of Experimental Immunology, 4th edition, Blackwell Scientific Publications, Chapter 10 (1986); Meth. Enzym., 34 (1974); Advances in Experimental Medicine and Biology, 42 (1974); U.S. Patent 4,681,870; U.S. Patent 4,282,287; U.S. Patent 4,762,881, or the like.

The analysis described herein can be efficiently performed by adhering the polypeptide or antibody of the present invention to the solid support at a high density, though a high fixation density is not always necessary.

(2) Use of polypeptide array

A polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention adhered to the array can be identified using the polypeptide array to which the polypeptides of the present

invention have been adhered thereto as described in the above (1).

specifically, a polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention can be identified by subjecting the polypeptides of the present invention to the following steps (i) to (iv):

- (i) preparing a polypeptide array having the polypeptide of the present invention adhered thereto by the method of the above (1);
- (ii) incubating the polypeptide immobilized on the polypeptide array together with at least one of a second polypeptide or compound;
- (iii) detecting any complex formed between the at least one of a second polypeptide or compound and the polypeptide immobilized on the array using, for example, a label bound to the at least one of a second polypeptide or compound, or a secondary label which specifically binds to the complex or to a component of the complex after unbound material has been removed; and
- (iv) analyzing the detection data.

Specific examples of the polypeptide array to which the polypeptide of the present invention has been adhered include a polypeptide array containing a solid support to which at least one of a polypeptide containing an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a

polypeptide containing an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide containing an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, and a peptide comprising an amino acid sequence of a part of a polypeptide.

The amount of production of a polypeptide derived from coryneform bacteria can be analyzed using a polypeptide array to which the antibody of the present invention has been adhered in the above (1).

Specifically, the expression amount of a gene derived from a mutant of coryneform bacteria can be analyzed by subjecting the gene to the following steps (i) to (iv):

- (i) preparing a polypeptide array by the method of the above (1);
- (ii) incubating the polypeptide array (the first antibody) together with a polypeptide derived from a mutant of coryneform bacteria;
- (iii) detecting the polypeptide bound to the polypeptide immobilized on the array using a labeled second antibody of the present invention; and

(iv) analyzing the detection data.

Specific examples of the polypeptide array to which the antibody of the present invention is adhered include a polypeptide array comprising a solid support to which at least one of an antibody which recognizes a polypeptide comprising an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide comprising an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, or a peptide comprising an amino acid sequence of a part of a polypeptide.

A fluctuation in an expression amount of a specific polypeptide can be monitored using a polypeptide obtained in the time course of culture as the polypeptide derived from coryneform bacteria. The culturing conditions can be optimized by analyzing the fluctuation.

When a polypeptide derived from a mutant of coryneform bacteria is used, a mutated polypeptide can be detected.

13. Identification of useful mutation in mutant by proteome analysis

Usually, the proteome is used herein to refer to a method wherein a polypeptide is separated by two-dimensional electrophoresis and the separated polypeptide is digested with an enzyme, followed by identification of the polypeptide using a mass spectrometer (MS) and searching a data base.

The two dimensional electrophoresis means an electrophoretic method which is performed by combining two electrophoretic procedures having different principles. For example, polypeptides are separated depending on molecular weight in the primary electrophoresis. Next, the gel is rotated by 90° or 180° and the secondary electrophoresis is carried out depending on isoelectric point. Thus, various separation patterns can be achieved (JIS K 3600 2474).

In searching the data base, the amino acid sequence information of the polypeptides of the present invention and the recording medium of the present invention provide for in the above items 2 and 8 can be used.

The proteome analysis of a coryneform bacterium and its mutant makes it possible to identify a polypeptide showing a fluctuation therebetween.

The proteome analysis of a wild type strain of coryneform bacteria and a production strain showing an

improved productivity of a target product makes it possible to efficiently identify a mutation protein which is useful in breeding for improving the productivity of a target product or a protein of which expression amount is fluctuated.

Specifically, a wild type strain of coryneform bacteria and a lysine-producing strain thereof are each subjected to the proteome analysis. Then, a spot increased in the lysine-producing strain, compared with the wild type strain, is found and a data base is searched so that a polypeptide showing an increase in yield in accordance with an increase in the lysine productivity can be identified. For example, as a result of the proteome analysis on a wild type strain and a lysine-producing strain, the productivity of the catalase having the amino acid sequence represented by SEQ ID NO:3785 is increased in the lysine-producing mutant.

As a result that a protein having a high expression level is identified by proteome analysis using the nucleotide sequence information and the amino acid sequence information, of the genome of the coryneform bacteria of the present invention, and a recording medium storing the sequences, the nucleotide sequence of the gene encoding this protein and the nucleotide sequence in the upstream thereof can be searched at the same time, and thus, a

nucleotide sequence having a high expression promoter can be efficiently selected.

In the proteome analysis, a spot on the two-dimentional electrophoresis gel showing a fluctuation is sometimes derived from a modified protein. However, the modified protein can be efficiently identified using the recording medium storing the nucleotide sequence information, the amino acid sequence information, of the genome of coryneform bacteria, and the recording medium storing the sequences, according to the present invention.

Moreover, a useful mutation point in a useful mutant can be easily specified by searching a nucleotide sequence (nucleotide sequence of promoters, ORF, or the like) relating to the thus identified protein using a nucleotide sequence the storing medium recording information and the amino acid sequence information, of the genome of coryneform bacteria of the present invention, and a recording medium storing the sequences and using a primer designed on the basis of the detected nucleotide sequence. As a result that the useful mutation point is specified, an industrially useful mutant having the useful mutation or other useful mutation derived therefrom can be easily bred.

The present invention will be explained in detail below based on Examples. However, the present invention is not limited thereto.

Example 1

Determination of the full nucleotide sequence of genome of Corynebacterium glutamicum

The full nucleotide sequence of the genome of Corynebacterium glutamicum was determined based on the whole genome shotgun method (Science, 269: 496-512 (1995)). In this method, a genome library was prepared and the terminal sequences were determined at random. Subsequently, these sequences were ligated on a computer to cover the full genome. Specifically, the following procedure was carried out.

(1) Preparation of genome DNA of Corynebacterium glutamicum ATCC 13032

Corynebacterium glutamicum ATCC 13032 was cultured in BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine at 30°C overnight and the cells were collected by centrifugation. After washing with STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l EDTA, pH 8.0), the cells were suspended in 10 ml of STE buffer containing 10 mg/ml lysozyme, followed by gently shaking at 37°C for 1 hour. Then, 2 ml of 10% SDS was added thereto to lyse the cells, and the resultant mixture was maintained at 65°C for 10 minutes and then cooled to room temperature.

Then, 10 ml of Tris-neutralized phenol was added thereto, followed by gently shaking at room temperature for 30 minutes and centrifugation (15,000 \times g, 20 minutes, 20°C). The aqueous layer was separated and subjected to extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner. To the aqueous layer, 3 mol/1 sodium acetate solution (pH 5.2) and isopropanol were added at 1/10 times volume and twice volume, respectively, followed by gently stirring to precipitate the genome DNA. The genome DNA was dissolved again in 3 ml of TE buffer (10 hydrochloride, 1 mmol/l EDTA, mmol/1containing 0.02 mg/ml of RNase and maintained at 37°C for 45 minutes. The extractions with phenol, phenol/chloroform and chloroform were carried out successively in the same The genome DNA was subjected to manner as the above. The thus formed genome DNA isopropanol precipitation. precipitate was washed with 70% ethanol three times, followed by air-drying, and dissolved in 1.25 ml of TE buffer to give a genome DNA solution (concentration: 0.1 mg/ml).

(2) Construction of a shotgun library

TE buffer was added to 0.01 mg of the thus prepared genome DNA of Corynebacterium glutamicum ATCC 13032 to give a total volume of 0.4 ml, and the mixture was treated with a sonicator (Yamato Powersonic Model 150) at an output of

20 continuously for 5 seconds to obtain fragments of 1 to The genome fragments were blunt-ended using a DNA blunting kit (manufactured by Takara Shuzo) and fractionated by 6% polyacrylamide gel electrophoresis. Genome fragments of 1 to 2 kb were cut out from the gel, and 0.3 ml MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) was added thereto, followed by shaking at 37°C overnight to eluate The DNA treated elute DNA. was phenol/chloroform, and then precipitated with ethanol to obtain a genome library insert. The total insert and 500 ng of pUC18 SmaI/BAP (manufactured by Amersham Pharmacia Biotech) were ligated at 16°C for 40 hours.

The ligation product was precipitated with ethanol and dissolved in 0.01 ml of TE buffer. The ligation solution (0.001 ml) was introduced into 0.04 ml of $E.\ coli$ ELECTRO MAX DH10B (manufactured by Life Technologies) by the electroporation under conditions according to the manufacture's instructions. The mixture was spread on LB plate medium (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) containing 0.1 mg/ml ampicillin, 0.1 mg/ml X-gal and 1 mmol/l isopropyl- β -D-thiogalactopyranoside (IPTG) and cultured at 37°C overnight.

The transformant obtained from colonies formed on the plate medium was stationarily cultured in a 96-well

titer plate having 0.05 ml of LB medium containing 0.1 mg/ml ampicillin at 37°C overnight. Then, 0.05 ml of LB medium containing 20% glycerol was added thereto, followed by stirring to obtain a glycerol stock.

(3) Construction of cosmid library

About 0.1 mg of the genome DNA of Corynebacterium glutamicum ATCC 13032 was partially digested with Sau3AI (manufactured by Takara Shuzo) and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under 10 to 40% sucrose density gradient obtained using 10% and 40% sucrose buffers (1 mol/1 NaCl, 20 mmol/1 Tris hydrochloride, 5 mmol/1 EDTA, 10% or 40% sucrose, pH 8.0). After the centrifugation, the solution thus separated was fractionated into tubes at 1 ml in each tube. After confirming the DNA fragment length of each fraction by agarose gel electrophoresis, a fraction containing a large amount of DNA fragment of about 40 kb was precipitated with ethanol.

The DNA fragment was ligated to the BamHI site of superCosl (manufactured by Stratagene) in accordance with The ligation product was the manufacture's instructions. incorporated into Escherichia coli XL-1-BlueMR strain (manufactured by Stratagene) using Gigapack III Gold (manufactured by Stratagene) in Packaging Extract accordance with the manufacture's instructions. The Escherichia coli was spread on LB plate medium containing

0.1 mg/ml ampicillin and cultured therein at 37°C overnight to isolate colonies. The resulting colonies were stationarily cultured at 37°C overnight in a 96-well titer plate containing 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin in each well. LB medium containing 20% glycerol (0.05 ml) was added thereto, followed by stirring to obtain a glycerol stock.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

The full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 was determined mainly based on the whole genome shotgun method. The template used in the whole genome shotgun method was prepared by the PCR method using the library prepared in the above (2).

Specifically, the clone derived from the whole genome shotgun library was inoculated using a replicator (manufactured by GENETIX) into each well of a 96-well plate containing the LB medium containing 0.1 mg/ml of ampicillin at 0.08 ml per each well and then stationarily cultured at 37°C overnight.

Next, the culturing solution was transported using a copy plate (manufactured by Tokken) into a 96-well reaction plate (manufactured by PE Biosystems) containing a PCR reaction solution (TaKaRa Ex Taq (manufactured by Takara Shuzo)) at 0.08 ml per each well. Then, PCR was

carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragment.

The excessive primers and nucleotides were eliminated using a kit for purifying a PCR production (manufactured by Amersham Pharmacia Biotech) and the residue was used as the template in the sequencing reaction.

Some nucleotide sequences were determined using a double-stranded DNA plasmid as a template.

The double-stranded DNA plasmid as the template was obtained by the following method.

The clone derived from the whole genome shotgun library was inoculated into a 24- or 96-well plate containing a 2× YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin at 1.5 ml per each well and then cultured under shaking at 37°C overnight.

The double-stranded DNA plasmid was prepared from the culturing solution using an automatic plasmid preparing machine, KURABO PI-50 (manufactured by Kurabo Industries) or a multiscreen (manufactured by Millipore) in accordance with the protocol provided by the manufacturer.

To purify the double-stranded DNA plasmid using the multiscreen, Biomek 2000 (manufactured by Beckman Coulter) or the like was employed.

The thus obtained double-stranded DNA plasmid was dissolved in water to give a concentration of about 0.1 mg/ml and used as the template in sequencing.

(4-2) Sequencing reaction

To 6 μ l of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (DNA Research, 5: 1-9 (1998) and the template prepared in the above (4-1) (the PCR product or the plasmid) were added to give 10 μ l of a sequencing reaction solution. The primers and the templates were used in an amount of 1.6 pmol and an amount of 50 to 200 ng, respectively.

Dye terminator sequencing reaction of 45 cycles was carried out with GeneAmp PCR System 9700 (manufactured by PE Biosystems) using the reaction solution. The cycle with in accordance the parameter was determined manufacturer's instruction accompanying ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sample was purified using MultiScreen HV plate (manufactured by Millipore) according to the manufacture's instructions. The thus purified reaction product was precipitated with ethanol, followed by drying, and then stored in the dark at -30°C.

The dry reaction product was analyzed by ABI PRISM 377 DNA Sequencer and ABI PRISM 3700 DNA Analyzer (both manufactured by PE Biosystems) each in accordance with the manufacture's instructions.

The data of about 50,000 sequences in total (i.e., about 42,000 sequences obtained using 377 DNA Sequencer and about 8,000 reactions obtained by 3700 DNA Analyser) were transferred to a server (Alpha Server 4100: manufactured by COMPAQ) and stored. The data of these about 50,000 sequences corresponded to 6 times as much as the genome size.

(5) Assembly

All operations were carried out on the basis of The analytical data were output UNIX platform. Macintosh platform using X Window System. The base call was carried out using phred (The University of Washington). The vector sequence data was deleted using SPS Cross_Match (manufactured by Southwest Parallel Software). assembly was carried out using SPS phrap (manufactured by Southwest Parallel Software; a high-speed version of phrap (The University of Washington)). The contig obtained by the assembly was analyzed using a graphical editor, consed (The University of Washington). A series of the operations from the base call to the assembly were carried out simultaneously using a script phredPhrap attached to consed.

(6) Determination of nucleotide sequence in gap part

Each cosmid in the cosmid library constructed in the above (3) was prepared by a method similar to the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the inserted fragment of the cosmid was determined by using ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

About 800 cosmid clones were sequenced at both ends to search a nucleotide sequence in the contig derived from the shotgun sequencing obtained in the above (5) coincident with the sequence. Thus, the linkage between respective cosmid clones and respective contigs were determined and mutual alignment was carried out. Furthermore, the results were compared with the physical map of Corynebacterium glutamicum ATCC 13032 (Mol. Gen. Genet., 252: 255-265 (1996) to carrying out mapping between the cosmids and the contigs.

The sequence in the region which was not covered with the contigs was determined by the following method.

Clones containing sequences positioned at the ends of contigs were selected. Among these clones, about 1,000 clones wherein only one end of the inserted fragment had been determined were selected and the sequence at the

opposite end of the inserted fragment was determined. shotqun library clone or a cosmid clone containing the sequences at the respective ends of the inserted fragment in two contigs was identified, the full nucleotide sequence of the inserted fragment of this clone was determined, and thus the nucleotide sequence of the gap part was determined. When no shotgun library clone or cosmid clone covering the gap part was available, primers complementary to the end sequences at the two contigs were prepared and the DNA fragment in the gap part was amplified by PCR. sequencing was performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment was determined. Thus, the nucleotide sequence of the domain was determined.

In a region showing a low sequence precision, primers were synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington) and the sequence was determined by the primer walking method to improve the sequence precision. The thus determined full nucleotide sequence of the genome of Corynebacterium glutamicum ATCC 13032 strain is shown in SEQ ID NO:1.

(7) Identification of ORF and presumption of its function

ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified according to the following method. First, the ORF regions were determined using software for identifying ORF, i.e., Glimmer, GeneMark and GeneMark.hmm on UNIX platform according to the respective manual attached to the software.

Based on the data thus obtained, ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified.

The putative function of an ORF was determined by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, Frame Search (manufactured by Compugen), or by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, BLAST. The nucleotide sequences of the thus determined ORFs are shown in SEQ ID NOS:2 to 3501, and the amino acid sequences encoded by these ORFs are shown in SEQ ID NOS:3502 to 7001.

In some cases of the sequence listings in the present invention, nucleotide sequences, such as TTG, TGT, GGT, and the like, other than ATG, are read as an initiating codon encoding Met.

Also, the preferred nucleotide sequences are SEQ ID NOS:2 to 355 and 357 to 3501, and the preferred amino acid sequences are shown in SEQ ID NOS:3502 to 3855 and 3857 to 7001

Table 1 shows the registration numbers in the above-described databases of sequences which were judged as having the highest homology with the nucleotide sequences of the ORFs as the results of the homology search in the amino acid sequences using the homology-searching software Frame Search (manufactured by Compugen), names of the genes of these sequences, the functions of the genes, and the matched length, identities and analogies compared with publicly known amino acid-translation sequences. Moreover, the corresponding positions were confirmed via the alignment of the nucleotide sequence of an arbitrary ORF with the nucleotide sequence of SEQ ID NO:1. Also, the positions of nucleotide sequences other than the ORFs (for example, ribosomal RNA genes, transfer RNA genes, IS sequences, and the like) on the genome were determined.

Fig. 1 shows the positions of typical genes of the Corynebacterium glutamicum ATCC 13032 on the genome.

↽
Φ
죠
L

Г		1	_				П		T^{-}	T		1			T	T			T		_[_			
	Function	replication initiation protein DnaA		DNA polymerase III beta chain	DNA replication protein (recF	protein)	hypothetical protein	DNA topoisomerase (ATP-	nyarotyzing)					NAGC/XYLR repressor			DNA gyrase subunit A	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, LysK type		cytochrome c biogenesis protein	hypothetical protein	repressor
	Matched length (a.a.)	524		390		392	174	704						422			854	112	329	268		265	155	117
	Similarity (%)	96.8		81.8		79.9	58.1	88.9						50.7			88.1	9.69	63.5	62.3		57.4	64.5	70.1
	Identify (%)	99.8		50.5		53.3	35.1	71.9	2:					29.4			70.4	29.5	33.7	27.6		29.1	31.6	36.8
. 0122	Homologous gene	Brevibacterium flavum dnaA		Nend stamped and make the Nend State Change	Mycopactelluli sineginara ana.	Mycobacterium smegmatis recF	Streptomyces coelicolor yreG	Mycobacterium tuberculosis	H37Rv gyrB					Mycobacterium tuberculosis H37Rv			Mycobacterium tuberculosis H37Rv Rv0006 gyrA	Mycobacterium tuberculosis H37Rv Rv0007	Escherichia coli K12 yeiH	Hydrogenophilus thermoluteolus TH-1 cbbR		Rhodobacter capsulatus ccdA	Coxiella burnetii com1	Mycobacterium tuberculosis H37Rv Rv1846c
	db Match	qsp:R98523		100000	Sp:UP3B_MYCSM	sp:RECF_MYCSM	sn.YRFG STRCO		pir.S44198					sp:YV11_MYCTU			sp:GYRA_MYCTU	pir.E70698	SD:YEIH ECOLI			qp:AF156103_2	pir.A49232	pir.F70664
	ORF (bp)	1572 (1182	1182	534		2133	996	699	510	441	1071	261	246		342	1035	894	420	870	762	369
	Terminal (nt)	1572	1 0 1	-	3473	4766	5200	0200	7486	8795	8228	1001	9474	10107	11263	11523	14398	14746	15209	17207	17670	17860	18736	20073
	Initial (nt)	-	- 1	1920	2292	3585	4766	4/ 00	5354	7830	9466	9562	9914	11177	11523	11768	11831	14405	16243	16314	17251	18729	19497	19705
	SEQ NO.	(a.a.)	7007	3503	3504	3505	000	3200	3507	3508	3509	3510	3511	3512	3513	3514	3515	3516	3517	3518	3519	3520	3521	3522
		2	T	m	4	5	1	٥	7	8	တ	5	1	12	13	14	15	16	17	18	6,	2 2	2 2	22

_						-т							—т		\neg	_		Γ.	$-\top$	7
	Function	hypothetical membrane protein	2,5-diketo-D-gluconic acid reductase	5'-nucleotidase precursor	5'-nucleotidase family protein	transposase	organic hydroperoxide detoxication enzyme	ATP-dependent DNA helicase		glucan 1,4-alpha-glucosidase	lipoprotein	ABC 3 transport family or integral membrane protein	iron(III) dicitrate transport ATP- biding protein	sugar ABC transporter, periplasmic sugar-binding protein	high affinity ribose transport protein	ribose transport ATP-binding protein	neurofilament subunit NF-180		peptidyi-prolyl cis-trans isomerase A	hypothetical membrane protein
	Matched length (a.a.)	321	26	196	270	51	139	217		449	311	266	222	283	312	236	347		169	226
	Similarity (%)	50.8	88.5	56.1	56.7	72.6	79.9	60.8		54.1	63.7	74.1	70.3	56.5	68.3	76.7	44.4		89.9	53.1
	Identity (%)	24.9	65.4	27.0	27.0	52.9	51.8	32.7		26.7	28.9	34.6	39.2	25.8	30.5	32.2	23.6	5.0	79.9	29.2
ומסום ו (בפוונייים בי)	Homologous gene	Mycobacterium leprae MLCB1788.18	Corynebacterium sp. ATCC 31090	Vibrio parahaemolyticus nutA	Deinococcus radiodurans DR0505	Corynebacterium striatum ORF1	Xanthomonas campestris	Thiobacillus ferrooxidans recG		Saccharomyces cerevisiae S288C YIR019C sta1	Erysipelothrix rhusiopathiae	Streptococcus pyogenes SF370	Escherichia coli K12 fecE	Thermotoga maritima MSB8	Escherichia coli K12 rbsC	Bacillus subtilis 168 rbsA		Petromyzon mannas	Mycobacterium leprae H37 KV RV0009 ppiA	Bacillus subtilis 168 yqgP
	db Match	gp:MLCB1788_6	pir:140838	sp:5NTD_VIBPA	gp:AE001909_7	prf:2513302C	prf.2413353A	sp:RECG_THIFE		sp:AMYH_YEAST	gp:ERU52850_1	gp:AF180520_3	sp:FECE_ECOLI	pir.A72417		_	אסיאם אסיאין א	pir.151116	sp:CYPA_MYCTU	sp:YQGP_BACSU
	ORF (bp)	993	180	528		165		1413	438	1278	954	849	657	981	4002	270	80	816	561	687
	Terminal (nt)	21065	21074	22124	23399	23615	24729	24885	26775	26822	28164	29117	30651	31677	00000	32033	3345/	33465	34899	35668
	Initial (nt)	20073	21253	21597	22164	23779	24295	26297	26338	28099	29117	29965	29995	30697	10.0	3.101.1	32699	34280	34339	34982
	SEQ NO.	3523	3524	3525	3526	3527	3528	3529	3530	3531	3532	3533	3534	3535	0	3530	3537	3538	3539	3540
	SEQ.			25	26	27	28	90	8	31	32	33	3 8	35	3 3	36	37	38	39	40

		system				-	lein	ase	ase		Ш	ě												
	Function	ferric enterobactin transport system permease protein		ATPase	vulnibactin utilization protein		hypothetical membrane protein	serine/threonine protein kinase	serine/threonine protein kinase	penicillin-binding protein	stage V sporulation protein E	phosphoprotein phosphatase		hypothetical protein	hypothetical protein						phenol 2-monooxygenase	succinate-semialdehyde dehydrogenase (NAD(P)+)	hypothetical protein	
	Matched length (a.a.)	332		253	260	T	92		486	492	375	469	2	155	526						117	490	242	
	Similarity (%)	70.5		81.8	52.7		72.6	68.7	59.1	66.7	65.6	a 02	0.0	66.5	38.8						63.3	78.2	57.0	
	Identity (%)	40.4		51.8	262	70.5	40.0	40.6	31.7	33.5	31.2	7 7 7	44. 1	38.7	23.6						29.9	46.7	27.3	<u>,</u>
ומסום ו (בסווווומסת)	Homologous gene	Escherichia coli K12 fepG		Vibrio cholerae viuC	Albita Citation of MORAL Albita	VIBILO VUINITICUS IMOO-24 VIUD	Mycobacterium tuberculosis H37Rv Rv0011c	Mycobacterium leprae pknB	Streptomyces coelicolor pksC	Streptomyces ariseus pbpA	Bacillie subtilis 168 spoVE	Mycobacterium tuberculosis	H37Rv ppp	Mycobacterium tuberculosis H37Rv Rv0019c	Mycobacterium tuberculosis H37Rv Rv0020c						Trichosporon cutaneum ATCC 46490	Escherichia coli K12 gabD	-	Bacillus subrills yi kin
	db Match	sp:FEPG_ECOLI		2007 1504 EO 0	gp:vcOpziba_9	sp:VIUB_VIBVU	sp:YO11_MYCTU	SD: PKNB MYCLE	an. AF094711 1	3p. AEO44575 1	gp. Ar 24.01.9	sp. sr.sr_paced	pir.H70699	pir:A70700	pir:B70700						sp:PH2M_TRICU	Sp.GABD ECOLI		STANKE BACSO
	ORF (bp)		900			822	270	1938				1143	1353	462	864	1,1	14/	720	219	471	954	1470		1467
	Terminal (nt)	38198	77000	30247	38978	39799	40189	40576	40543	01024	43920	4534/	46669	48024	48505	4 4 4	49455	49897	50754	50966	54008	7.18.2B	01050	55546
	Initial	37221	0,000	3/242	38202	38978	40458	42513	2000	45818	4534/	46489	48021	48485	49368		49601	50616	50972	51436	53055	52005		מטעט
	SEQ.	(a.a.)		3542	3543	3544	3545	25.46	00.40	3547	3548	3549	3550	3551	3552		3553	3554	3555	3556	3557	2000	3220	2550
	å Ö.		-+		43	44	 		+		48	49	50	51	52		23	54	55	56	57	1	ည္က	20

ed)
<u>n</u>
onti
<u>ප</u>
<u>e</u>
Tab
•

_	- 1			_	 	-		_		Т	\neg	$\neg \Gamma$	Т		$\neg \vdash$	\top	Ţ		—т			Γ	T	
	Function	hypothetical protein	hypothetical protein		hypothetical protein	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	nypotnetical protein		to account the state of the sta	magnesium and cobait dalisport		chloride channel protein	required for NMN transport	phosphate starvation-induced	protein-like protein			And the second s	Mg(2+)/citrate complex secoridary transporter	two-component system sensor histidine kinase		transcriptional regulator	Discomer specific 2-hydroxyacid	dehydrogenase
	Matched length (a.a.)	74	179		62		310			390		400	241	07.0	340				497	563		220	272	293
	Similarity (%)	74.3	70.4		83.9		50.7			59.5		64.8	53.1	0	0.00				68.8	9.09		623	2.50	73.7
	Identify (%)	40.5	363		53.2		26.8			29.5		30.0	24.1		29.1				42.3	27.2		200	33.2	43.3
lable I (commaca)	Homologous gene	Bacillus subtilis yrkF	Synechocystis sp. PCC6803	slr1261	Mycobacterium tuberculosis H37Rv Rv1766		Leishmania major L4768.11			Mycobacterium tuberculosis H37Rv Rv1239c corA		Zymomonas mobilis ZM4 clcb	Salmonella tvohimurium pnuC	Mucobacterium fuberculosis	H37Rv RV2368C				Bacillus subtilis citM	Escherichia coli K12 dpiB			Escherichia coll K12 crlK	Corynebacterium glutamicum unkdh
	db Match	SN-YRKF BACSU	Sp. VC64 SVNY3	sp. 1001.01	pir:G70988		gp:LMFL4768_11			pir:F70952		dn. AF179611 12	YT IAS OLING'93	sp.rivoc_corr.	sp:PHOL_MYCTU				sp:CITM_BACSU	Sp.DPIB ECOLI			sp:DPIA_ECOLI	gp:AF134895_1
	ORF (bp)	201		_	174	855	840	711	1653	1119	447	1260	202	080	1122	132	384	765	1467	1653	3	570	654	912
	Terminal (nt)	56386		00000	57651	58941	59930	60662	62321	62390	63594	GEAGE	00100	80669	67972	68301	68251	69824	68720	72158	2017/	71474	72814	72817
	Initial (nt)	07000	0/000	9/5/6	57478	58087	59091	59952	69909	63508	84040	0000	04190	66197	66851	68170						72043	72161	73728
	SEQ.	(a.a.)	1005	3562	3563	3564	3565	3566	3567	3568	2560	2000	35/0	3571	3572	3573	3574	3575	3576	2577	//00	3578	3579	3580
		2	+-	62	63	64	1	1		68	o o	8 6	2	71	72	73	7.4	75	9/	1	-	78	79	8

									otein			1	ormation					urease		
	Function	hypothetical protein	biotin synthase	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	integral membrane efflux protein	creatinine deaminase			SIR2 gene family (silent information regulator)	triacylglycerol lipase	triacylglycerol lipase		transcriptional regulator	urease gammma subunit or urease structural protein	urease beta subunit	urease alpha subunit
	Matched length (a.a.)	127	334	43	85		42	84	202	394			279	251	262		171	100	162	920
	Similarity (%)	76.4	99.7	79.1	63.5		75.0	0.99	59.0	8.66			50.2	29.0	56.1		94.7	100.0	100.0	100.0
	Identity (%)	38.6	99.4	72.1	34.1		71.0	61.0	25.6	97.2			26.2	30.7	29.4		90.6	100.0	100.0	100.0
lanc (commac)	Homologous gene	Streptomyces coelicolor A3(2) SCM2.03	Corynebacterium glutamicum bioB	Mycobacterium tuberculosis H37Rv Rv1590	Saccharomyces cerevisiae YKL084w		Chlamydia muridarum Nigg TC0129	Chlamydia pneumoniae	Streptomyces virginiae varS	Bacillus sp.			Saccharomyces cerevisiae hst2	Probionibacterium acnes	Propionibacterium acnes		Corynebacterium glutamicum ureR	Corynebacterium glutamicum ureA	Corynebacterium glutamicum ATCC 13032 ureB	Corynebacterium glutamicum ATCC 13032 ureC
	db Match	gp:SCM2_3	sp:BIOB_CORGL	pir:H70542	sp:YKI4_YEAST		PIR:F81737	GSD-Y35814	nf2512333A	qp:D38505_1			sp:HST2_YEAST	nf-2316378A	pr. 23163784	pi:.co	gp:AB029154_1	gp:AB029154_2	gp:CGL251883_2	gp:CGL251883_3
	ORF (bp)	429 [1002	237	339	117		273	-			615	924	070	2 00	888	513	300	486	1710
	Terminal (nt)	74272	75491	75742	76035	76469	80613	0000	00100	83691	85098	85663	87241	07564	100/00	90045	90461	91473	91988	93701
	Initial (nt)	73844	74490	75506	75697	76353	80753	77070	812/4	83508	85403	86277	86318	000	76699	89444	90973	91174	91503	91992
	SEQ NO.	3581	3582	3583	3584	3585	3586	100	7805	3588	3590	3501	3592	r G	3593	3594	3596	3597	3598	3599
	SEQ.		1	83	84	25	+-	十	28	88	8 6	2	92	3	93	94	96	26	86	66

				T						<u>\$</u>			init									_		
	Function	urease accessory protein	urease accessory protein	urease accessory protein	urease accessory protein	epoxide hydrolase	valanimization resistant profein	Valailligailligaille		heat shock protein (hsp90-family)	TICAL STOCK PLOCES	AMP nucleosidase	Till derel Cachture at the till	acetolactate synthase large subunit		proline denyarogenaser 50 dehydrogenase		aryl-alconol denydlogeriase (NADP+)	pump protein (transport)	indole-3-acetyl-Asp hydrolase		hynothetical membrane protein	J (
	Matcned length (a.a.)	157	226	205	283	279	777	949		099	900	481	3	196		1297		338	513	352		406	2	
	Similarity (%)	100.0	100.0	100.0	100.0	48.4	1	28.7		7.00	27.7	68.2		58.7		50.4		60.7	71.4	49.2		40.7 8 0.7	2	
	Identity (%)	100.0	100.0	100.0	100.0	21.2		26.5		0	23.8	41.0		29.6		25.8		30.2	36.5	23.0		0 110	9.00	
lable i (commetce)	Homologous gene	Corynebacterium glutamicum ATCC 13032 ureE	Corynebacterium glutamicum ATCC 13032 ureF	Corynebacterium glutamicum ATCC 13032 ureG	Corynebacterium glutamicum ATCC 13032 ureD	Agrobacterium radiobacter echA		Streptomyces viridifaciens vImF			Escherichia coli K12 htpG	Escherichia coli K12 amn		Aeropyrum pernix K1 APE2509		Salmonella typhimurium putA		Phanerochaete chrysosporium	Escherichia coli K12 ydaH	Supergraphic reportant	Enteropaciei aggiornerans		Escherichia coli K12 yidh	
	db Match	gp:CGL251883_4	gp:CGL251883_5	gp:CGL251883_6	gp:CGL251883_7	prf.2318326B		gp:AF148322_1			sp:HTPG_ECOLI	sp:AMN_ECOLI		pir.E72483		sp:PUTA_SALTY		sp:AAD_PHACH	LICOH HOUN		prf:2422424A		sp:YIDH_ECOLI	
	ORF (bp)		678	615	849	777	699	1152	675	2775	1824	1416	579	552	099	10	114	945	7 1 3	10	1332	669	366	315
	Terminal (nt)	တ	94879	95513	96365	96368	98189	97319	100493	98808	101612	104909	105173	105841	106630	110890	111274	112318	74,4000	1.4003	115478	114564	115943	116263
	Initial (nt)	93729	94202	94899	95517	97144	97521	98470	99819	101582	103435				1		111161		1.	_	114147	115262	115578	115949
	SEQ No.	(a.a.) 3600	3601	3602	3603	3804	3605	3606	3607	3608	3609	3610	3611	3612	3613	3614	3615	+	-	361/	3618	3619	3620	3621
		(DNA)			103	70,	105	106	107	108	907	110	77	- 5	7	411	7	2 2	2	117	118	119	120	121

_
Ö
e
_
=
_
둗
=
\sim
8
O
$\overline{}$
$\overline{}$
<u>0</u>
$\overline{}$
~
Tab

	Function			transcriptional repressor	methylglyoxalase	hypothetical protein	mannitol dehydrogenase	D-arabinitol transporter		galactitol utilization operon repressor	xylulose kinase		pantoatebeta-alanine ligase	3-methyl-2-oxobutanoate hydroxymethyltransferase		DNA_3-methyladenine glycosylase			esterase		carbonate dehydratase	xylose operon repressor protein	macrolide efflux protein			
London A	Matched length (a.a.)			258	126	162	497	435		260	451		279	271		1 88			270		201	357	418	!		
	Similarity (%)			59.7	78.6	64.8	704	68.3		64.6	68.1		100.0	100.0		979	07.0		69.3		53.2	49.3	61.2	1		
	Identity (%)			29 5	57.9	37.0	43.5	30.3		27.3	45.0		100.0	100.0		0	47.U		39.3		30.9	24.1	21.1	7.1.7		
(application)	Homologous gene			Agrobacterium tumeraciens accR	Bacillus subtilis yurT	Mycobacterium tuberculosis H37Rv Rv1276c	Pseudomonas fluorescens mtlD	Klebsiella pneumoniae dalT		Escherichia coli K12 gatR	Streptomyces rubiginosus xylB		Corynebacterium glutamicum ATCC 13032 panC	Corynebacterium glutamicum	ALCC 13032 parte		Arabidopsis thallana mag		Petroleum-degrading bacterium HD-1 hde		Methanosarcina thermophila	Bacillus subtilis W23 xvIR	A Commenter	Lactococcus lactis meiz 14		
	db Match			sp:AccR_AGRTU	pir.C70019	sp:YC76_MYCTU	nrf-2309180A	prf:2321326A		SD:GATR ECOLI	sp:XYLB_STRRU		gp:CGPAN_2	dp.CGPAN 1	1		sp:3MG_ARATH		gp:AB029896_1		SP.CAH METTE			gp:LLLPK214_12		
	ORF (bp)	0000	7007	780	390	510	1509			\top	-	822	837	813		951	630	654	924	627	7.7.8	3 5	5	1272	804	444
	Terminal (nt)	07.107.	116548	118810	120410	120413	120051	122507	124030	124966	126350	127992	126353	127192	201	128099	129489	130798	130815	132424	132081	102.00	1329/1	134207	135518	136122
	Initial (nt)		118599	119589	120021	120922	422450	123841	123842	124130	124932	127171	127189	10004	10007	129049	130118	130145		131798			134113	135478	136321	136565
	SEQ NO.		3622	3623	3624		9090	3627	3628	2620	3630	3631	3632	000	2000	3634	3635	3636	3637	3638	2000	3038	3640	3641	3642	3643
		\Rightarrow	122	123	124	125	,	127	128	120	130	134	133		2	134	135	136	137	120	2 3	138	140	141	142	143

Table 1 (continued)

			, -																					
Function				cellulose synthase	hypothetical membrane protein				chloramphenicol sensitive protein	hypothetical membrane protein			transport protein	hypothetical membrane protein			ATP-dependent helicase		nodulation protein	DNA repair system specific for alkylated DNA	DNA-3-methyladenine glycosylase	threonine efflux protein	hypothetical protein	doxorubicin biosynthesis enzyme
Matched length (a.a.)				420	593				303	198			361	248			829		188	219	166	217	55	284
Similarity (%)				51.2	51.8				60.7	59.1			62.3	70.2			64.3		0.99	60.7	65.1	61.3	72.7	52.1
Identity (%)				24.3	25.1				34.7	30.3			32.4	34.7			33.8		40.4	34.7	39.8	34.1	50.9	31.0
Homologous gene				Agrobacterium tumefaciens celA	Saccharomyces cerevisiae YDR420W hkr1				Pseudomonas aeruginosa rarD	Escherichia coli K12 yadS			Escherichia coli K12 abrB	Escherichia coli K12 yfcA			Escherichia coli K12 hrpB	:	Rhizobium leguminosarum bv. viciae plasmid pRL1J1 nodL	Escherichia coli o373#1 alkB	Escherichia coli K12 tag	Escherichia coli K12 rhtC	Bacillus subtilis yaaA	Streptomyces peucetius dnrV
db Match				pir.139714	sp:HKR1_YEAST				Sp:RARD_PSEAE	sp:YADS_ECOLI			sp: ABRB_ECOLI	sp:YFCA_ECOLI			Sp:HRPB_ECOLI		sp:NODL_RHILV	sp:ALKB_ECOLI	sp:3MG1_ECOLI	sp:RHTC_ECOLI	sp:YAAA_BACSU	prf.2510326B
ORF (bp)	1941	1539	989	1461	1731	621	1065	756	879	717	333	1659	1137	798	624	405	2388	315	675	069	525	678	291	852
Terminal (nt)	138744	140329	139226	141789	143526	143075	144639	145480	145518	147238	147570	149780	149794	152369	150966	152814	153226	156167	156147	157537	158138	158831	159159	160013
Initial (nt)	136804	138791	139861	140329	141796	142455	143575	144725	146396	146522	147238	148122	150930	151572	151589	152410	155613	155853	156821	156848	157614	158154	158869	159162
SEQ NO. (a.a.)	3644	3645	3646	3647	3648	3649	3650	3651	3652	3653	3654	3655	3656	3657	3658	3659	3660	3661	3662	3663	3664	3665	3666	3667
SEQ NO. (DNA)	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167

EQ SEQ Initial Terminal ORF db Match Homologous gene (%) NO. (nt) (nt) <th></th> <th></th>		
3668 160029 160370 342 gp:SPAC1250_3 Schizosaccharomyces pombe 3 3669 160431 161360 930 SPAC1250_04c SPAC1250.04c 3670 161896 162352 657 SPAC1250_04c Ausisseria meningitidis MC58 4 3671 162285 16363 933 Nabisseria meningitidis MC58 4 3673 162867 405 gp.AE102420_13 Nabisseria meningitidis MC58 4 3673 162867 405 gp.AE176569_1 Namb0662 4 3674 165747 166457 741 Mus musculus nl1 2 3675 165765 163699 2067 gp.AE176569_1 Mus musculus nl1 2 3676 166457 741 963 Augustis musculus nl1 2 3677 168595 167837 759 sp.FARR_ECOLI Escherichia coli K12 farR 2 3678 168996 170916 921 pp.SC8F11_3 Streptomyces coelicolor A3(2) 3	tity Similarity Matched (%) (e.a.)	ed Function
3659 160431 161360 930 Anisearia Anisearia	.6 56.7 104	methyltransferase
3670 161696 162352 657 Neisseria meningitidis MC58 4 3672 162295 161363 933 Neisseria meningitidis MC58 4 3672 162463 162867 405 gp:AE002420_13 Neisseria meningitidis MC58 4 3673 162463 163603 639 A 4 A 3674 165717 166457 741 Mus musculus nl1 2 3675 165755 163689 2067 gp:AF176569_1 Mus musculus nl1 2 3676 166457 741 963 A A A 3677 168956 167837 759 sp:FARR_ECOLI Escherichia coli K12 farR 2 3678 168976 169991 1017 pir.T14544 Beta vulgaris 2 3678 168996 170916 921 gp:SC8F11_3 Streptomyces coelicolor M3(2) 4 3680 172444 1512 prt.2204281A Streptomyces coelicolor M3(2) 4		
162295 161363 933 Neisseria meningitidis MC58 4 162463 162867 405 gp:AE002420_13 NkBo662 4 162965 163603 639 NMB0662 4 4 165717 166457 741 Mus musculus nl1 2 166457 167419 963 Escherichia coli K12 farR 2 168595 167837 759 sp:FARR_ECOLI Escherichia coli K12 farR 2 168996 170916 921 gp:SC8F11_3 Streptomyces coelicolor A3(2) 2 170933 172444 1512 prt.2204281A Streptomyces coelicolor msdA 3 177346 175275 1728 sp:IOLB_BACSU Bacillus subtilis iolB 3 175349 176272 954 sp:IOLB_BACSU Bacillus subtilis iolH 3 177334 178203 870 sp:IOLH_BACSU Bacillus subtilis iolH 3 177835 177828 177828 St:IOLH_BACSU Bacillus subtilis iolH 3		
162463 162867 405 gp:AE002420_13 Neisseria meningitidis MC58 4 162965 163603 639 NMB0662 4 165717 166457 741 Mus musculus nl1 2 165755 163689 2067 gp:AF176569_1 Mus musculus nl1 2 166457 167419 963 Mus musculus nl1 2 168595 167837 759 sp:FARR_ECOLI Escherichia coli K12 farR 168975 169991 1017 pir.T14544 Beta vulgaris 2 168976 170916 921 gp:SC8F11_3 Streptomyces coelicolor A3(2) 2 172468 17244 1512 prf.2204281A Streptomyces coelicolor msdA 1 172468 173355 888 sp:IOLB_BACSU Bacillus subtilis iolD 17348 175275 1728 sp:IOLD_BACSU Bacillus subtilis iolD 175319 176272 954 sp:MOCC_RHIME Rhizobium mellioti mocC 177334 178203 870 sp:IOLH_BA		
162965 163603 639 165717 166457 741 165755 163689 2067 166457 167419 963 166457 167419 963 168595 167837 759 168975 167837 759 168976 167991 1017 168976 169991 1017 168977 169996 170916 172468 172444 1512 172468 173355 888 172468 175275 1728 175349 176275 1728 175349 176275 1728 176308 177318 1011 176309 177334 178203 17734 178203 870 177334 178203 870 177885 177834 177885 17784A 177334 1778203 177734 1778204 177734 177836 1	.5 76.3 118	ribonuclease
165717 166457 741 Mus musculus nl1 2 165755 163689 2067 gp:AF176569_1 Mus musculus nl1 2 166457 167419 963 Echerichia coli K12 farR 2 2 168595 167837 759 sp:FARR_ECOLI Escherichia coli K12 farR 2 168975 169991 1017 pir.T14544 Beta vulgaris 2 169996 170916 921 gp:SC8F11_3 Streptomyces coelicolor A3(2) 4 172468 172444 1512 prf.2204281A Streptomyces coelicolor msdA 6 172468 173355 888 sp:IOLB_BACSU Bacillus subtilis iolB 3 175348 176272 954 sp:IOLB_BACSU Bacillus subtilis idh or iolG 176308 177318 1011 sp:IOLB_BACSU Bacillus subtilis iolH 177334 178203 870 sp:IOLH_BACSU Bacillus subtilis iolH 177334 1778285 179658 1374 sp:ICMA_STRGA Streptomyces glaucescens tcmA		
165755 163689 2067 gp:AF176569_1 Mus musculus nl1 2 166457 167419 963 Mus musculus nl1 2 168595 167837 759 sp:FARR_ECOLI Escherichia coli K12 farR 168975 169991 1017 pir.T14544 Beta vulgaris 2 169996 170916 921 gp:SC8F11_3 Streptomyces coelicolor A3(2) 2 172468 172444 1512 prf:2204281A Streptomyces coelicolor msdA 2 172468 173355 888 sp:IOLB_BACSU Bacillus subtilis iolB 3 175319 176275 1728 sp:IOLB_BACSU Bacillus subtilis idh or iolG 176308 177318 1011 sp:MOCC_RHIME Rhizobium mellioti mocC 177334 178203 870 sp:IOLH_BACSU Bacillus subtilis idh or iolG 177334 178203 870 sp:IOLH_BACSU Bacillus subtilis iolH 177835 1778285 177878 Racillus subtilis iolH		┪
166457 167419 963 168595 167837 759 sp:FARR_ECOLI Escherichia coli K12 farR 168975 169991 1017 pir.T14544 Beta vulgaris 16996 170916 921 gp:SC8F11_3 Streptomyces coelicolor A3(2) 2000 170933 172444 1512 prf.2204281A Streptomyces coelicolor msdA 3000 172468 173355 888 sp:IOLB_BACSU Bacillus subtilis iolB 3000 175319 176276 1728 sp:IOLB_BACSU Bacillus subtilis idh or iolG 175319 176272 954 sp:IOLB_BACSU Bacillus subtilis idh or iolG 175319 176272 954 sp:IOLB_BACSU Bacillus subtilis idh or iolG 175319 176272 954 sp:IOLB_BACSU Bacillus subtilis idh or iolG 175334 178203 870 sp:IOLH_BACSU Bacillus subtilis iolH 177334 178203 870 sp:IOLH_BACSU Bacillus subtilis iolH 1778285 1778285 1374 sp:IOLM_STRGA <td>3.5 57.2 (22</td> <td>neprijysin-like Hetaliopeptidase</td>	3.5 57.2 (22	neprijysin-like Hetaliopeptidase
168955 167837 759 sp:FARR_ECOLI Escherichia coli K12 farR 168975 169991 1017 pir.T14544 Beta vulgaris 169996 170916 921 gp:SC8F11_3 Streptomyces coelicolor A3(2) 170933 172444 1512 prf.2204281A Streptomyces coelicolor msdA 172468 173355 888 sp:IOLB_BACSU Bacillus subtilis iolB 175348 175275 1728 sp:IOLB_BACSU Bacillus subtilis iolD 175309 177318 1011 sp:IOLH_BACSU Bacillus subtilis iolH 176308 177318 1011 sp:IOLH_BACSU Bacillus subtilis iolH 177334 178203 870 sp:IOLH_BACSU Bacillus subtilis iolH 177334 178203 870 sp:IOLH_BACSU Bacillus subtilis iolH 177835 1778585 1374 sp:ICMA_STRGA Streptomyces glaucescens tcmA		The state of the s
169975 169991 1017 pir.T14544 Beta vulgaris 169996 170916 921 gp:SC8F11_3 Streptomyces coelicolor A3(2) \$C8F11.03c 170933 172444 1512 prf:2204281A Streptomyces coelicolor msdA \$C8F11.03c 172468 173355 888 sp:IOLB_BACSU Bacillus subtilis iolB \$Bacillus subtilis iolD 175319 176272 954 sp:IOLB_BACSU Bacillus subtilis idh or iolG 177334 178203 870 sp:IOLH_BACSU Bacillus subtilis iolH 177334 178203 870 sp:IOLH_BACSU Bacillus subtilis iolH 178285 179658 1374 sp:ICMA_STRGA Streptomyces glaucescens tcmA	9.8 65.6 238	
169996 170916 921 gp:SC8F11_3 Streptomyces coelicolor A3(2) 170933 172444 1512 prf:2204281A Streptomyces coelicolor msdA 172468 173355 888 sp:IOLB_BACSU Bacillus subtilis iolB 175348 176275 1728 sp:IOLB_BACSU Bacillus subtilis iolD 175319 176272 954 sp:IOLB_BACSU Bacillus subtilis idh or iolG 177334 178203 870 sp:IOLH_BACSU Bacillus subtilis iolH 177835 178658 1374 sp:ICMA_STRGA Streptomyces glaucescens tcmA	8.6 63.0 332	fructokinase or carbohydrate kinase
170933 172444 1512 prf.2204281A Streptomyces coelicolor msdA 172468 173355 888 sp.IOLB_BACSU Bacillus subtilis iolB 173548 175275 1728 sp.IOLD_BACSU Bacillus subtilis iolD 175319 176272 954 sp.IOLD_BACSU Bacillus subtilis idh or iolG 177334 177318 1011 sp.IOLH_BACSU Bacillus subtilis iolH 177334 178203 870 sp.IOLH_BACSU Bacillus subtilis iolH 178285 179658 1374 sp.TCMA_STRGA Streptomyces glaucescens tcmA	2.7 80.7 296	s hypothetical protein
170933 172444 1512 prf.2204281A Streptomyces coeliculor insurances 172468 173355 888 sp.IOLB_BACSU Bacillus subtilis iolB 173548 175275 1728 sp.IOLD_BACSU Bacillus subtilis iolD 175319 176272 954 sp.MOCC_RHIME Rhizobium meliloti mocC 176308 177318 1011 sp.MI2D_BACSU Bacillus subtilis idh or iolG 177334 178203 870 sp:IOLH_BACSU Bacillus subtilis iolH 178285 1374 sp:ICMA_STRGA Streptomyces glaucescens tcmA	10 A61 498	methylmalonic acid semialdehyde
172468 173355 888 sp:IOLB_BACSU Bacillus subtilis iolB 173548 175275 1728 sp:IOLD_BACSU Bacillus subtilis iolD 175319 176272 954 sp:IOLD_BACSU Bacillus subtilis idh or iolG 176308 177318 1011 sp:IOLH_BACSU Bacillus subtilis iolH 177334 178203 870 sp:IOLH_BACSU Bacillus subtilis iolH 178285 179658 1374 sp:TCMA_STRGA Streptomyces glaucescens tcmA	3	
173548 175275 1728 sp:IOLD_BACSU Bacillus subtilis iolD 175319 176272 954 sp:MOCC_RHIME Rhizobium mellioti mocC 176308 177318 1011 sp:MI2D_BACSU Bacillus subtilis idh or iolG 177334 178203 870 sp:IOLH_BACSU Bacillus subtilis iolH 178285 179658 1374 sp:TCMA_STRGA Streptomyces glaucescens tcmA	58.2	
175319 176272 954 sp:MOCC_RHIME Rhizobium meliloti mocC 176308 177318 1011 sp:MI2D_BACSU Bacillus subtilis idh or iolG 177334 178203 870 sp:IOLH_BACSU Bacillus subtilis iolH 178285 179658 1374 sp:TCMA_STRGA Streptomyces glaucescens tcmA	1.0 69.8 586	
176308 177318 1011 sp.MI2D_BACSU Bacillus subtilis idh or iolG 177334 178203 870 sp:IOLH_BACSU Bacillus subtilis idh or iolG 178285 179658 1374 sp:ICMA_STRGA Streptomyces glaucescens tcmA	9.7 51.0 290	
177334 178203 870 sp:IOLH_BACSU Bacillus subtilis iolH 178285 179658 1374 sp:TCMA_STRGA Streptomyces glaucescens tcmA	9.1 72.2 335	
178285 179658 1374 sp:TCMA_STRGA Streptomyces glaucescens tcmA	4.6 72.1 287	7 myo-inositol catabolism
	10.9 61.5 457	metabolite export pump of tetracenomycin C resistance
2507 170081 178461 621		
179689 180711	65.5	354 oxidoreductase
180842 181297 456		

	Function		regulatory protein	oxidoreductase	hypothetical protein			cold shock protein		aseral Con 2 C mathyltransferase		Carlinga canalis	glucose-resistance arriylase regulator regulator			D-xylose proton symporter			transposase (ISCg2)	signal-transducing histidine Kinase	glutamine 2-oxoglutarate aminotransferase large subunit	glutamine 2-oxoglutarate aminotransferase small subunit		aiotora locito atomo	nypornetical protein	
Matched	length (a.a.)		331 reç	442 ox	T			64 00		1	134	-	338 gl			458 D	\top		401 tr	145 s	1510 g	506			490	
	Similarity (%)		61.9	52.5	5. V S	7		92.2			58.2		62.1			70.5	2		100.0	60.7	100.0	8.66		0	/2.8	
	Identity S (%)		32.0	24.4	2007	33.7		70.3			30.6		28.7			0 80	30.0		100.0	27.6	6.66	99.4			44.6	_
	Homologous gene		Strantomyces reticuli cebB	Still epitolity des residents	Khizobium sp. NGK234 y4111vi	Bacillus subtills yttH	The state of the s	Streptomyces coelicolor A3(2) csp			Stellaria longipes		Bacillus subtilis ccpA				Lactobacillus brevis xyi i		Corynebacterium glutamicum ATCC 13032 tnp	Rhizobium meliloti fixL	Corynebacterium glutamicum	Corynebacterium glutamicum		sisoling diff militated	Mycobacterium tubercurosis H37Rv Rv3698	
	db Match		1	\top	_	sp:YFIH_BACSU		sp:CSP_ARTGO			prf.2113413A		sp:ccPA_BAcsU				sp:XYLT_LACBR		gp:AF189147_1	SD:FIXL RHIME					pir:C70793	
	ORF (bp)	6			1233	1011	429	201	534	306	414	426	066	402	100	240	1473	300	1203	435	4530	1518	240	247	1485	369
	Terminal (nt)	1, 0,	18164/		184051	185087	185642	186708	187302	187607	188100	188300	188747	100321	120061	190389	190703	192949	194464	194604	199769	201289	176700	201341	201760	205956
	Initial (nt)	.	181264	182679	182819	184077	185214	186508	186769	187302	187687	188725	189736	100000	108870	190628	192175	193248		105038	· I			201580	203244	205588
	SEQ		3690	3691	3692	3693	3694	3695	3696	3697	3698	3699	3700	2010	3/01	3702	3703	3704	3705	2708	3707		-	3/08	3710	3711
	SEQ No.		190	191	192	193		195	196	197	198	100	200	300	207	202	203	204	205	000	207	208		508	210	211

(pan	
contin	
ole 1 (
Table	

	Function		arabinosyl transferase		hypothetical membrane protein	acetoacetyl CoA reductase	oxidoreductase				proteophosphoglycan		hypothetical protein		anothotical protein	nypotnetical protein	rhamnosyl transferase		hypothetical protein	TV STATE	O-antigen export system ATF- binding protein	O-antigen export system permease	protein	hypothetical protein	NADPH quinone oxidoreductase
	Matched length (a.a.)		1122 a	┪		223	464				350	丅	124		000	907	302		214		236	262		416	302
	Similarity (%)		70.6	2	66.1	56.5	85.1				67.4	4.70	83.9		6	73.8	79.1		7.7.7		78.4	75.6		63.0	71.5
	Identity (%)		30.8	0.00	35.0	31.4	66.0				2,40	24.3	60.5			43.2	63.6		21.2	5	47.0	24	2	36.5	41.1
Table 1 (confinded)	Homologous gene			Mycobacterium avium embb	Mycobacterium tuberculosis H37Rv Rv3792	Pseudomonas sp. phbB	Mycobacterium tuberculosis H37Rv Rv3790					Leishmania major ppg1	Mycobacterium tuberculosis H37Rv Rv3789		sison broading the boronia si	Mycobacterium tuberculosis H37Rv Rv1864c	Mycobacterium tuberculosis H37Rv Rv3782 rfbE		Agrobacterium tumefaciens	plasmid pTi-SAKURA tiorf100	Yersinia enterocolitica rfbE	dh collifornation	Yersinia enteroconica noo	Mycobacterium tuberculosis	Homo sapiens pig3
	db Match			prf2224383C	pir.D70697	prf;2504279B	397					gp:LMA243459_1	SN_MYCTU			pir: H70666	pir: B70696			gp:AB016260_100	sp:RFBE_YEREN	1	sp:RFBD_YEREN	pir.F70695	
	ORF (bp)	1	318	3471	1983	759	+	234	507	700	453	1002	396	5	404	633	939	272	7	284	789		804	1173	954
	Terminal (nt)		206385	203541	207007	209210	209992	211535	00000	507717	212735	213657	214107	0.034.40	776517	215159	215162	300000	2 1000	216116	217141		217943	220151	220154
	Initial (nt)		206068	207011	208989	200000	211455	24476B	20111	211///	212283	212656	213712	, 0, ,	214121	214527	216100		710204	216712	217929	-	218746	218979	l
	SEQ	(a.a.)	3712	3713			37.16	27.47	5	3718	3719	3720	3721		3722	3723	3724		37.75	3726	2707	3121	3728	3729	
		(DNA)	212	╁	+		216	7,70	+	218	219	220	221		222	223	224		225	226	700	777	228	220	230

	(manual)	
7		
	Table 1 (continued)	ਲ

	т—	,		Т					Τ_	\neg			T	$\neg \neg$									
Function			probable electron transfer protein	amino acid carrier protein		molybdopterin biosynthesis protein moeB (sulfurylase)	molybdopterin synthase, large subunit	molybdenum cofactor biosynthesis	Dioteil Co	co-factor synthesis protein	molybdopterin co-factor synthesis protein	himsthatical membrane protein	nypouneucal meninamo processione	molybdate-binding periplasmic protein	molybdopterin converting factor	subunit 1	maltose transport protein	hypothetical membrane protein	histidinol-phosphate aminotransferase				
Matched length	(a.a.)		78	475		368	150	158		154	377	000	727	256		95	365	121	330				
Similarity (%)			51.0	75.8		70.1	75.3	63.3		84.4	58.6	1	70.5	68.0		70.8	8.09	76.9	65.8				
Identity 8	·		35.0	46.7		43.8	44.7	33.5	2:3	61.7	34.5		44.1	34.0		37.5	34.3	36.4	37.3		-		
Homologous gene			Mycobacterium tuberculosis H37Rv Rv3571	Bacillus subtilis alsT		Synechococcus sp. PCC 7942	Arthrobacter nicotinovorans	Model Synechococcus sp. PCC 7942	moaCB	Arthrobacter nicotinovorans	Arthrobacter nicotinovorans	moeA	Arthrobacter nicotinovorans modB	Arthrobacter nicotinovorans	ModA	Mycobacterium tuberculosis H37Rv moaD2	Thermococcus litoralis malk	Streptomyces coelicolor A3(2)	OKF-3 Zymomonas mobilis hisC				
db Match			PIR:A70606	SD.ALST BACSU		gp:SYPCCMOEB_	1 nf 2403296D		sp.MOCB_SYNP7	prf.2403296C			prf.2403296F	nf 2403296F	T0250575.11d	pir.D70816	prf.2518354A	Sn. YPT3 STRCO	- 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>.</u>			
ORF	(dq)	582	297	1476			756		471	468	1 X X	3	723	200	100	321	912	420	1007	1023	906	294	120
Terminal		221131	222207	222210	225244	225244	1 222	210022	226760	227218	277703	501177	228891	0000	11/677	230928	230931	2018	23 1040	732260	234818	234910	235409
		221712	221911	223685	222002	224330	720027	75/077	227230	227685	227.000	7588877	229613		230514	230608				233282	233913	235203	035000
SEQ	NO. (a.a.)	┼			0100	3/34	37.33	3/30	3737	3738	37.30	3739	3740		3741	3742		_		3745	3746	3747	27/19
SEQ				700	233	234	232	236	237	020	730	739	240		241	242		243	244	245	246	247	0,00

ed)
ontinı
(con
<u>e</u> 1
Table

		T		_					1		$ \top$																
	Function	transcription factor	0.0000000000000000000000000000000000000	alconol denydrogeriase	putrescine oxidase	magnesium ion transporter		No /dicarboxylate cotransporter	ואמ/ מוכמו מכא) ומנס סכינים ובל	oxidoreductase	hypothetical protein	nitrogen fixation protein				membrane transport protein	queuine tRNA-ribosyltransferase	hypothetical membrane protein			ABC transporter	distanvi-tRNA synthetase	State of the state		transposase		
	Matched length (a.a.)	252		335	451	444		700	/00	317	160	144				997	400	203			5.7R	346	2		360		
	Similarity (%)	57.1		66.0	38.1	68.5		4	28.0	69.1	73.8	70.1				45.7	68.0	62.1			907	0.60	02.0		55.0		
	Identity (%)	29.4		34.0	21.5	30.9			33.2	46.1	48.8	45.1				20.7	41.3	28.1	70.		2	24.3	34.8		34.2		
lable 1 (continued)	Homologous gene	Bringella abodiis oxvR	Diuceila abolitat oxys.	Bacillus stearothermophilus DSM 2334 adh	Micrococcus rubens puo	Dorrolla huradorfari motE	חסוו פוומ חתו מיכור ביו היינו		Xenopus laevis	Mycobacterium tuberculosis H37Rv tyrA	Mycobacterium tuberculosis H37Rv Rv3753c	Bradyrhizobium japonicum				Mycobacterium tuberculosis H37Rv Rv0507 mmpL2	Zymomonas mobilis	Cylliotical and an	Bacillus subtilis ypur			Streptomyces glaucescens strvv	Bacillus subtilis gltX		- Pseudomonas syringae tnpA		
	db Match	7 900 700 140	gp:BAU81280_1	sp:ADH2_BACST	MICRI)	50000000000000000000000000000000000000	prt:2305239A		prf:2320140A	pir:C70800	pir:B70800	an RHBNEXP 1	-			sp:YV34_MYCTU	CMANA TOT	Sp: G Z TiviliviO	sp:YPDP_BACSU			pir:S65588	sp:SYE_BACSU		gp:PSESTBCBAD_1		
	ORF (bp)		762 (1017	004	-	1350	174	1530	1020	522	417	T	201	351	2403	000,	1263	738	1080	648	1437	879	066	1110	303	138
	Terminal (nt)		235451	237342	27.7000	738145	239525	239945	241515	241883	243431	043040	016647	244215	244816	247304		248572	248557	250507	249722	251939	252830	252830	254329	255492	-
	Initial	(31.1)	236212	236326	1 0	23/345	238176	239772	239986	242902	242910	707070	243434	244015	244466	1		247310	249294	249428	250369	250503	251952	253819	255438	255794	1
	SEQ NO.		3749	3750		3751	3752	3753	3754	3755	3756	0 1	3/2/	3758	3759	3760		3761	3762	3763	3764	3765	3766	3767	3768	3769	
		(DNA)	249	250		251	252	253	254	255	256		75/	258	259	260		261	262	263	264	265	266	267	268	289	270

	Function	aspartate transaminase	DNA polymerase III holoenzyme tau	subunit		nypotrietical protein	recombination protein	cobyric acid synthase	UDP-N-acetylmuramyl tripeptide	Sylittetase	DNA polymerase III epsilon chain	hypothetical membrane protein	contate kinase alpha chain	aspanate ni iasa aipira di ai		avtracytoplasmic function alternative	sigma factor	vegetative catalase			leucine-responsive regulatory	protein	branched-chain amino acid transport
-	Matched length (a.a.)	432		642	100	101	214	248	444		346	270	2	421			189	492				143	203
	Similarity (%)	100.0		53.1		74.3	72.4	61.7	60.6		55.2	100.0		99.8			63.5	76.4				72.0	68.0
	Identity (%)	98.6		31.6		41.6	42.5	38.3	313	2	25.7	100.0		99.5			31.2	52.9				37.1	30.5
Table 1 (continued)	Homologous gene	Brevibacterium lactofermentum aspC		Thermus thermophilus dnaX		Bacillus subtilis yaaK	Bacillus subtilis recR	Heliobacillus mobilis cobQ		Hellobaciilus mobilis iriui	Mycobacterium tuberculosis H37Rv dnaQ	Corynebacterium glutamicum (Brevibacterium flavum) ATCC	minimum minimum alitamina	Corynebacterium giutalilicui i lysC-alpha			Mycobacterium smegmatis sigE	Racillus subtilis katA				Klebsiella pneumoniae Irp	Bacillus subtilis 1A1 azlC
	db Match	gsp:W69554		gp:AF025391_1		Sn.YAAK BACSU	1_	2000	prt.2503462B	prf:2503462C	pir:H70794	sp:YLEU_CORGL		sp:AKAB_CORGL			prf:2312309A	\rightarrow	Sp:C			sp:LRP_KLEPN	sp:AZLC_BACSU
	ORF (bp)		630	2325 g	717	300	+		_	1269	1080	867		1263	1053	1434	579		1500	342	291	462	753
	Terminal (nt)		258529	260875	258596	261205	20.02	cc0797	262546	263298	264599	268258		270633	269524	273194	273542		275871	276232	275957	276302	
	Initial	6	257900	258551	259312	7,0000	708007	261402	263295	264566	265678	269124		269371	270576	271761	074120		274366	275891	276247	276763	
	SEO.	(a.a.)			, 4776			3776	3777	3778	3779	3780		3781	3787	3783	2787	0/04	3785	3786	3787	3788	3789
		(DNA) (+-		, ,,,	-		276	277	278	976	_		281	500	283	200	704	285	286	287	288	289

Table 1 (continued)

SEQ NO. (DNA)	SEQ NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	identity (%)	Similarity (%)	Matched length (a.a.)	Function
290	3790	277581	277904	324						
291	3791	278301	277987	315						
292	3792	278732	278388	345	gp:AF178758_1	Sinorhizobium sp. As4 arsR	34.4	68.9	06	metalloregulatory protein
293	3793	278814	279893	1080	gp:AF178758_2	Sinorhizobium sp. As4 arsB	52.2	84.2	341	arsenic oxyanion-translocation pump membrane subunit
294	3794	279893	280279	387	SP.ARSC_STAXY	Staphylococcus xylosus arsC	31.1	68.9	119	arsenate reductase
295	3795	280666	280349	318						
296	3796	280939	280670	270						
297	3797	281401	280949	453						
298	3798	282933	281404	1530	gp:AF097740_4	Bacillus firmus OF4 mrpD	32.4	70.4	503	Na+/H+ antiporter or multiple resistance and pH regulation related protein D
299	3799	283317	282937	381	prf.2504285D	Staphylococcus aureus mnhC	37.0	9.02	119	Na+/H+ antiporter
300	3800	286202	283317	2886	gp:AF097740_1	Bacillus firmus OF4 mrpA	34.1	64.3	824	Na+/H+ antiporter or multiple resistance and pH regulation related protein A
301	3801	286373	287857	1485						
302	3802	287661	287059	603						
303	3803	288829	287966	864						
304	3804	289796	289131	999	sp:CZCR_ALCEU	Alcaligenes eutrophus CH34 czcR	38.6	70.4	223	transcriptional activator
305	3805	291243	289777	1467	prf:2214304B	Mycobacterium tuberculosis mtrB	26.7	56.8	521	two-component system sensor histidine kinase
306	3806	291815	292417	603	sp:APL_LACLA	Lactococcus lactis MG1363 apl	28.3	0.09	180	alkaline phosphatase
307	3807	291833	291273	561						
308	3808	293511	292597	915	pir: B69865	Bacillus subtilis ykuE	26.1	54.7	307	phosphoesterase
309	3809	293539	293991	453	sp:YQEY_BACSU	Bacillus subtilis yqeY	37.6	71.8	149	hypothetical protein

	Function	class A penicillin-binding protein(PBP1)	regulatory protein		hypothetical protein	transcriptional regulator	shikimate transport protein		long-chain-fatty-acidCoA ligase	transcriptional regulator	3-oxoacyl-(acyl-carrier-protein) reductase	glutamine synthetase	short-chain acyl CoA oxidase	nodulation protein		hydrolase			cAMP receptor protein		ultraviolet N-glycosylase/AP lyase	cytochrome c biogenesis protein
	Matched length (a.a.)	782	7.1		50	149	440		534	127	251	254	394	153		272			207		240	211
	Similarity 1 (%)	77.1	63.4		96.0	89.9	68.9		59.9	65.4	72.5	52.0	66.5	72.6	ì	72.4			65.7		77.1	58.3
	Identity 8	48.3	40.9		84.0	65.1	37.3		31.1	33.9	41.0	27.2	38.8	45.8	2.2	41.2			30.9		57.5	34.6
ומחופ ו (כסווווומכת)	Homologous gene	Mycobacterium leprae pon1	Streptomyces coelicolor A3(2) whiB		Streptomyces coelicolor A3(2) SCH17.10c	Mycobacterium tuberculosis H37Rv Rv3678c	Escherichia coli K12 shiA		Bacillus subtilis IcfA	Streptomyces coelicolor A3(2) SCJ4.28c	Bacillus subtilis fabG	Emericella nidulans fluG	Arahidonsis thaliana atd6	Noon minesonimino minesing	Knizobium leguminosai um noaix	Mycobacterium tuberculosis H37Rv Rv3677c			Vibrio cholerae crp		Micrococcus luteus pdg	Mycobacterium tuberculosis H37Rv Rv3673c
	db Match	prf:2209359A	pir:S20912		gp:SCH17_10	pir:G70790	sp:SHIA_ECOLI		sp:LCFA_BACSU	gp:SCJ4_28	sp:FABG_BACSU	INEME CITES	24: EOC_EE	7 11 12 14 POLZ 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	sp:NOUN_KHILV	pir.F70790			prf.2323349A		sp:UVEN_MICLU	pir.B70790
	ORF (bp)	2385	339	192	153	459	1353	609	1536	525	933	CVO	210	181	471	843	1173	705	681	192	780	558
	Terminal (nt)	294004	297402	297622	297783	298250	298332	300695	299726	301512	303099	170100	504074	305203	305758	306700	305195	307504	306782	307727	308734	309302
	Initial (nt)	296388	297064	297431	297631	297792	299684	300087	301261	302036	302167	20,400	303133	3040/0	305288	305858	306367	306800	1	307918	1	
	SEQ No.	(a.a.) 3810	3811	3812	3813	3814	3815	3816	3817	3818	3819	0	3820	3821	3822	3823	3824	3825	3826	3827	3828	3829
		(DNA)	311	312	313	314	315	316	317	318	319	000	370	321	322	323	324	325	326	327	328	329

$\overline{}$
ed
⋽
⊑
=
₹
Ö
\circ
_
$\overline{}$
Φ
\overline{a}
37.
-

г	— т				T		- T	\neg	Т				\neg		Т	П		T		
	Function	hypothetical protein	serine proteinase	epoxide hydrolase	hypothetical membrane protein	phosphoserine phosphatase	hypothetical protein	conjugal transfer region protein		hypothetical membrane protein	hypothetical protein	hypothetical protein			- 1	ATP-dependent RNA helicase	cold shock protein		DNA topoisomerase I	
	Matched length (a.a.)	192	396	280	156	287	349	319		262	201	59				764	67		977	
	Similarity (%)	56.3	71.0	52.1	77.6	65.5	60.2	66.5		63.7	64.2	84.8				66.1	88.1		81.6	
	Identify (%)	30.7	38.6	29.6	46.8	29.6	35.0	32.9		30.5	33.8	47.5				33.8	68.7		61.7	
ומחופ ו (בסוונווומכמ)	Homologous gene	Escherichia coli K12 yeaB	Mycobacterium tuberculosis H37Rv Rv3671c	Corynebacterium sp. C12 cEH	Mycobacterium tuberculosis H37Rv Rv3669	Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv3660c	Escherichia coli trbB		Mycobacterium tuberculosis H37Rv Rv3658c	Mycobacterium tuberculosis H37Rv Rv3657c	Mycobacterium tuberculosis H37Rv Rv3656c				Bacillus subtilis yprA	Arthrobacter globiformis SI55 csp		Mycobacterium tuberculosis H37Rv Rv3646c topA	
	db Match	sp:YEAB_ECOLI	pir:H70789	prf:2411250A	pir.F70789	pir:S72914	pir:E70788	pir.C44020		pir.C70788	pir:B70788	pir:A70788				sp:YPRA_BACSU	sp:CSP_ARTGO		pir.G70563	
	ORF (bp)	699	1191	993	549	996	1023	1023	615	816	546	198	318	414	345	2355	201	225	2988	711
	Terminal (nt)	310038	311325	311899	312909	313625	316002	317132	316350	317893	318465	318689	319013	318545	319335	319336	322207	321992	325897	326614
	Initial (nt)	309370	310135	312891	313457	314590	314980	316110	316964	317078	317920	318492	318696	318958	318991	321690		322216	322910	325904
	SEQ	3830	3831	3832	3833	3834	3835	3836	3837	3838	3839	3840	3841	3842	3843	3844	3845	3846	3847	3848
	SEQ NO.		_	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348

Table 1 (continued)

																		_				
	Function	adenylate cyclase	DNA polymerase III subunit tau/gamma		hypothetical protein	hypothetical protein	ribosomal large subunit pseudouridine synthase C	beta-glucosidase/xylosidase	beta-glucosidase	NAD/mycothiol-dependent formaldehyde dehydrogenase		metallo-beta-lactamase superfamily	3-oxoacyl-(acyl-carrier-protein) reductase	valanimycin resistant protein	dTDP-glucose 4,6-dehydratase	hypothetical protein	dolichol phosphate mannose synthase		nucleotide sugar synthetase	UDP-sugar hydrolase		
	Matched length (aa)	263	423		144	172	314	558	101	362		160	251	415	320	108	230		260	586		
	Similarity (%)	62.4	52.7		59.0	63.4	65.0	60.2	61.4	86.5		47.5	55.8	56.4	66.3	88.9	66.5		57.3	54.4		
	Identity (%)	32.7	25.3		32.6	39.0	43.6	34.8	38.6	9.99		32.5	25.9	26.3	33.8	59.3	33.9		25.8	26.1		
(505:1100) 0105	Homologous gene	Stigmatella aurantiaca B17R20 cyaB	Bacillus subtilis dnaX		Ureaplasma urealyticum uu033	Deinococcus radiodurans DR0202	Escherichia coli K12 rluC	Erwinia chrysanthemi D1 bgxA	Azospirillum irakense salB	Amycolatopsis methanolica		Rhodococcus erythropolis orf5	Escherichia coli K12 fabG	Streptomyces viridifaciens vlmF	Actinoplanes sp. acbB	Mycobacterium tuberculosis H37Rv Rv3632	Methanococcus jannaschii JAL- 1 MJ1222		Escherichia coli K12 yefJ	Salmonella typhimurium ushA		
	db Match	sp:CYAB_STIAU	sp:DP3X_BACSU		gp:AE002103_3	gp:AE001882_8	sp:RLUC_ECOLI	Sp.BGLX ERWCH	qp:AF090429 2	sp:FADH_AMYME		sp:YTH5_RHOSN	sp:FABG_ECOLI	gp:AF148322 1	prf:2512357B	pir.A70562	sp:YC22_METJA		sp:YEFJ_ECOLI	sp:USHA_SALTY		
	ORF (bp)	1041	1257	162	444	561	882	1644	1989	1104	621	537	699	1230	933	375	759	1029	1035	2082	162	
	Terminal (nt)	326695	329539	329909	330376	331533	332433	334562	334953	336112	335185	336748	337449	338768	339725	340195	340569	342375	343451	345717	345814	
	Initial (nt)	327735	328283	329748	329933	330973	331552	332919	332965	335009	335805	336212	336781	337539	338793	340569	341327	341347	342417	343636	345975	
	SEQ NO (a.a.)	3849	3850	3851	3852	3853	3854	3855	3856	3857	3858	3859	3860	3861	3862	3863	3864	3865	3866	3867	3868	
	SEQ NO.	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	

(continued)
S
~
9
q
Table

Г		\neg	-			\neg	Т		Т	T											
	Function		NADP-dependent alcohol dehydrogenase	glucose-1-phosphate thymidylyltransferase	dTDP-4-keto-L-rhamnose reductase	dTDP-glucose 4,6-dehydratase	NADH dehydrogenase	Fe-regulated protein		hypothetical membrane protein	metallopeptidase	prolyl endopeptidase		hypothetical membrane protein	cell surface layer protein	autophosphorylating protein Tyr kinase	protein phosphatase		capsular polysaccharide biosynthesis	ORF 3	lipopolysaccharide biosynthesis / aminotransferase
	Matched length (a.a.)		343	285	192	343	206	325		423	461	708		258	363	453	102		613	90	394
	Similarity (%)		74.9	84.9	74.0	83.4	61.2	66.5		68.3	62.5	56.4		46.0	76.6	57.2	68.6		65.7	51.0	68.3
	Identity (%)		52.2	62.8	49.5	61.8	35.4	33.2		37.4	34.1	28.4		26.0	50.7	28.5	39.2		33.0	41.0	37.1
(Homologous gene		Mycobacterium tuberculosis H37Rv adhC	Salmonella anatum M32 rfbA	Streptococcus mutans mlC	Streptococcus mutans XC rmlB	Thermus aquaticus HB8 nox	Staphylococcus aureus sirA		Mycobacterium tuberculosis H37Rv Rv3630	Streptomyces coelicolor SC5F2A,19c	Sphingomonas capsulata		Streptomyces coelicolor A3(2)	Corynebacterium ammoniagenes ATCC 6872	Acinetobacter johnsonii ptk	Acinetobacter johnsonii ptp		Staphylococcus aureus M capD	Vibrio cholerae	Campylobacter jejuni wlaK
	db Match		sp:ADH_MYCTU	sp:RFBA_SALAN	gp:D78182_5	SP:RMLB STRMU	sp:NOX_THETH	prf:2510361A		sp:Y17M_MYCTU	gp:SC5F2A_19	prf:2502226A		gp:SCF43_2	gsp:W56155	prf.2404346B	prf:2404346A		sp:CAPD_STAAU	PRF:2109288X	prf.2423410L
	ORF (bp)	351	1059	855	1359	1131	1	945	639	1308	1380	2118	573	1092	1095	1434	603	984	1812	942	1155
	Terminal (nt)	346110	346961	348098	348952	350313	351370	353637	353749	354599	355849	357237	359762	360814	362057	365257	365852	366838	368643	367701	369801
	Initial (nt)	346460	348019	348952	350310	351443	351948	352693	354387	355906	357228	359354	360334	361905	363151	363824	365250	365855		368642	
	SEQ NO. (a.a.)	3869	3870	3871	3872	3873	3874	3875	3876	3877	3878	3879	3880	3881	3882	3883	3884	3885	3886	3887	3888
	SEQ NO. (DNA)	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388

Table 1 (continued)

_																		-		
	Function	pilin glycosylation protein	capsular polysaccharide biosynthesis	lipopolysaccharide biosynthesis / export protein	UDP-N-acetylglucosamine 1- carboxyvinyltransferase	UDP-N- acetylenolpyruvoylglucosamine reductase	sugar transferase	transposase		transposase (insertion sequence IS31831)		hypothetical protein	acetyltransferase	hypothetical protein B	UDP-glucose 6-dehydrogenase			glycosyl transferase	acetyltransferase	
	Matched length (a.a.)	196	380	504	427	273	356	53		70		404	354	65	388			243	221	
	Similarity (%)	75.0	69.2	69.8	64.6	68.5	57.3	79.3		94.3		57.4	60.2	53.0	89.7			65.0	62.0	
	Identity (%)	54.6	33.4	34.3	31.4	34.8	32.0	60.4		75.7		28.0	34.5	44.0	63.7			32.1	33.0	
ומסוס ו (ספווניוומסמ)	Homologous gene	Neisseria meningitidis pgIB	Staphylococcus aureus M capM	Xanthomonas campestris gumJ	Enterobacter cloacae murA	Bacillus subtilis murB	Vibrio cholerae ORF39x2	Corynebacterium glutamicum		Corynebacterium glutamicum ATCC 31831		Mycobacterium tuberculosis H37Rv Rv1565c	Pseudomonas aeruginosa PAO1 psbC	Corynebacterium glutamicum	Escherichia coli ugd			Escherichia coli wbnA	Escherichia coli 0157 wbhH	
	db Match	gp:AF014804_1	sp:CAPM_STAAU	pir:S67859	sp:MURA_ENTCL	sp:MURB_BACSU	gp:VCLPSS_9	prf:2211295A		pir.S43613		pir:G70539	gsp:W37352	PIR:S60890	sp:UDG8_ECOLI			gp:AF172324_3	gp:AB008676_13	
	ORF (bp)	612	1161	1491	1314	1005	1035	150	135	327	276	1170	993	231	1161	273	1209	822	645	195
	Terminal (nt)	370405	371773	373419	374813	375837	376876	377832	378227	378511	378287	378668	379850	381495	383108	383496	383982	385374	387200	387463
	Initial (nt)	369794	370613	371929	373500	374833	375842	377683	378093	378185	378562	379837	380842	381265	381948	383768	385190	386195	386556	387657
	SEQ NO.	3889	3890	3891	3892	3893	3894	3895	3896	3897	3898	3899	3900	3901	3902	3903	3904	3905	3906	3907
	SEQ NO.		+	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407

Function	dihydrolipoamide dehydrogenase	UTPglucose-1-phosphate uridylyltransferase	regulatory protein	transcriptional regulator	cytochrome b subunit	succinate dehydrogenase flavoprotein	succinate dehydrogenase subunit B						hypothetical protein	hypothetical protein			tetracenomycin C transcription repressor		transporter
Matched length (a.a.)	469	295	153	477	230	809	258						259	431			197		499
Similarity (%)	100.0	68.1	71.9	81.3	67.4	61.2	56.2						49.8	64.3			53.8		74.6
Identity (%)	98.6	41.7	43.8	57.0	34.8	32.4	27.5						26.3	32.7			26.4		36.1
Homologous gene	Corynebacterium glutamicum ATCC 13032 lpd	Xanthomonas campestris	Pseudomonas aeruginosa PAO1 orfX	Mycobacterium tuberculosis H37Rv Rv0465c	Streptomyces coelicolor A3(2) SCM10.12c	Bacillus subtilis sdhA	Paenibacillus macerans sdhB						Streptomyces coelicolor SCC78.05	Escherichia coli K12 yjiN			Streptomyces glaucescens GLA.0 tcmR		Streptomyces fradiae T#2717 urdJ
db Match	gp:CGLPD_1	pir.JC4985	gp:PAU49666_2	pir.E70828	gp:SCM10_12	pir: A27763	gp:BMSDHCAB_4						gp:SCC78_5	sp:YJIN_ECOLI			sp:TCMR_STRGA		gp:AF164961_8
ORF (bp)	1407	921	498	1422	771	1875	837	336	261	630	96	339	975	1251	420	303	878	204	1647
Terminal (nt)	389098	390168	390730	390787	393475	395513	396262	396650	396932	396411	397825	398222	397232	399579	400017	400341	401150	401253	402796
Initial (nt)	387692	389248	390233	392208	392705	393639	395426	396315	396672	397040	397730	397884	398206	398329	399598	400039	400473	401050	401150
SEQ NO (a.a.)	3908	3909	3910	3911	3912	3913	3914	3915	3916	3917	3918	3919	3920	3921	3922	3923	3924	3925	3926
SEQ NO. (DNA)	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426

_
ned)
\tilde{x}
$\underline{\underline{\mathbf{w}}}$
≝
Ξ
.=
(conti
_
a
ನ
=
$\overline{}$
Φ
_
Table
Œ
_

						(50000000) 1 01000				
SEQ NO.	SEQ NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
427	3927	402799	404430	1632	gp:AF164961_8	Streptomyces fradiae T#2717 urdJ	39.6	74.6	508	transporter
428	3928	405419	404508	912	sp:PURU_CORSP	Corynebacterium sp. P-1 purU	40.9	72.7	286	formyltetrahydrofolate deformylase
429	3929		406145	999	sp.DEOC_BACSU	Bacillus subtilis deoC	38.5	74.0	208	deoxyribose-phosphate aldolase
430	3930	406310	406161	150						
431	3931	406417	405521	897						
432	3932	406550	407416	867	prf:2413441K	Mycobacterium avium GIR10 mav346	26.8	53.6	280	hypothetical protein
433	3933	407708	407409	300	pir.A70907	Mycobacterium tuberculosis H37Rv Rv0190	58.7	85.9	92	hypothetical protein
434	3934	408546	409145	009						
435	3935	409975	407711	2265	sp:CTPB_MYCLE	Mycobacterium leprae ctpB	45.7	75.3	748	cation-transporting P-type ATPase B
436	3936	410476	410027	450						
437	3937	410683	412545	1863	sp:AMYH_YEAST	Saccharomyces cerevisiae S288C YIR019C sta1	27.3	56.1	626	glucan 1,4-alpha-glucosidase
438	3938	412557	413633	1077	gp:AF109162_1	Corynebacterium diphtheriae hmuT	57.2	83.6	348	hemin-binding periplasmic protein
439	3939	413643	414710	1068	gp:AF109162_2	Corynebacterium diphtheriae hmuU	65.2	90.3	330	ABC transporter
440	3940	414714	415526	813	gp:AF109162_3	Corynebacterium diphtheriae hmuV	63.8	85.0	254	ABC transporter ATP-binding protein
441	3941	415643	416599	957	gp:SCC75A_17	Streptomyces coelicolor C75A SCC75A.17c	28.6	56.4	266	hypothetical protein
442	3942	416603	417439	837	gp:SCC75A_17	Streptomyces coelicolor C75A SCC75A.17c	32.6	61.6	258	hypothetical protein
443	3943	418354	417545	810						
444	3944	419253	418441	813						
445	3945	419757	419257	501						

Table 1 (continued)

_														$\overline{}$			$\neg \neg$		
	Function	UDP-N-acetylpyruvoylglucosamine reductase				long-chain-fatty-acidCoA ligase	transferase	phosphoglycerate mutase	two-component system sensor histidine kinase	two-component response regulator		ABC transporter ATP-binding protein	cytochrome P450	exopolyphosphatase	hypothetical membrane protein	pyrroline-5-carboxylate reductase	membrane glycoprotein	hypothetical protein	
	Matched length (a.a.)	356				558	416	246	417	231		921	269	306	302	269	394	55	
	Similarity (%)	58.4				68.1	58.7	84.2	74.8	6.06		60.7	6.99	8.73	57.3	100.0	52.0	94.6	
	Identity (%)	30.1				35.5	33.9	7.07	49.2	75.8		31.3	45.0	28.8	28.8	100.0	25.4	76.4	
ומחום ו (פסוונווומפת)	Homologous gene	Escherichia coli RDD012 murB				Bacillus subtilis IcfA	Streptomyces coelicolor SC2G5.06	Streptomyces coelicolor A3(2) gpm	Mycobacterium bovis senX3	Mycobacterium bovis BCG regX3		Streptomyces coelicolor A3(2) SCE25.30	Mycobacterium tuberculosis H37Rv RV3121	Pseudomonas aeruginosa ppx	Mycobacterium tuberculosis H37Rv Rv0497	Corynebacterium glutamicum ATCC 17965 proC	Equine herpesvirus 1 ORF71	Mycobacterium leprae B2168_C1_172	
	db Match	gp:ECOMURBA_1				sp:LCFA_BACSU	gp:SC2G5_6	sp:PMGY_STRCO	prf:2404434A	prf:2404434B		gp:SCE25_30	sp:YV21_MYCTU	prf:2512277A	sp:YV23_MYCTU	sp:PRoc_coRGL	gp:D88733_1	pir.S72921	
	ORF (bp)	1101	651	735	174	1704	1254	744	1239	969	879	2586	903	927	813	810	1122	198	219
	Terminal (nt)	420885	421516	420309	422031	422090	425131	425920	427172	427867	429439	429438	432126	433988	434822	435695	433865	436137	436103
	Initial (nt)	419785	420866	421043	421858	423793	423878	425177	425934	427172	428561	432023	433028	433062	434010	434886	434986	435940	436321
	SEQ NO.	3946	3947	3948	3949	3950	3951	3952	3953	3954	3955	3956	3957	3958	3959	3960	3961	3962	3963
	SEQ NO.		447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463

Table 1 (continued)

																					_
Function	hypothetical protein			phosphoserine phosphatase	hypothetical protein		glutamyl-tRNA reductase	hydroxymethylbilane synthase		cat operon transcriptional regulator	shikimate transport protein	3-dehydroshikimate dehydratase	shikimate dehydrogenase		putrescine transport protein		iron(III)-transport system permease protein		periplasmic-iron-binding protein	uroporphyrin-III C-methyltransferase	
Matched length (a.a.)	29			296	74		455	308		321	417	309	282		363		578		347	486	
Similarity (%)	100.0			77.4	66.2		74.3	75.3		57.6	72.2	57.9	98.6		68.6		55.2		59.9	71.6	
Identity (%)	89.7			51.0	40.5		44.4	50.7		27.1	35.5	28.2	98.2		34.7		25.1		25.1	46.5	
Homologous gene	Streptomyces coelicolor SCE68.25c			Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv0508		Mycobacterium leprae hemA	Mycobacterium leprae hem3b		Acinetobacter calcoaceticus catM	Escherichia coli K12 shiA	Neurospora crassa qa4	Corynebacterium glutamicum ASO19 aroE		Escherichia coli K12 potG		Serratia marcescens sfuB		Brachyspira hyodysenteriae bitA	Mycobacterium leprae cysG	
db Match	gp:SCE68_25			pir:S72914	sp:YV35_MYCTU		sp:HEM1_MYCLE	pir:S72887		sp:CATM_ACICA	sp:SHIA ECOLI	sp:3SHD_NEUCR	gp:AF124518_2		sp:POTG_ECOLI		sp:SFUB_SERMA		gp:SHU75349_1	pir:S72909	
ORF (bp)	66	192	618	1065	246	258	1389	906	372	882	1401	1854	849	273	1050	615	1644	1113	1059	1770	426
Terminal (nt)	436561	436764	437850	436980	438424	438037	439904	440814	441591	441601	444158	446038	447386	447398	448130	449100	449183	451961	450837	454430	454875
Initial (nt)	436463	436573	437233	438044	438179	438294	438516	439909	441220	442482	442758		446538	447670	449179	449714	450826	450849	451895	452661	454450
SEQ NO. (a.a.)	3964	3965	3966	3967	3968	3969	3970	3971	3972	3973	3974	3975	3976	3977	3978	3979	3980	3981	3982	3983	3984
SEQ NO. (DNA)	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484

Table 1 (continued)

	Function	delta-aminolevulinic acid dehydratase			cation-transporting P-type ATPase B		uroporphyrinogen decarboxylase	protoporphyrinogen IX oxidase	glutamate-1-semialdehyde 2,1- aminomutase	phosphoglycerate mutase	hypothetical protein	cytochrome c-type biogenesis protein	hypothetical membrane protein	cytochrome c biogenesis protein	100000000000000000000000000000000000000	transcriptional regulator	Zn/Co transport repressor		hypothetical membrane protein	1,4-dihydroxy-2-naphthoate octaprenyltransferase
	Matched length (a.a.)	337			858		364	464	425	161	208	245	533	338		144	06		82	301
	Similarity (%)	83.1			56.5		76.7	59.9	83.5	62.7	71.2	85.3	76.0	8.77		69.4	72.2		78.1	61.5
	Identity (%)	60.8			27.4		55.0	28.0	61.7	28.0	44.7	53.5	50.7	44.1		38.9	31.1		39.0	33.6
(Homologous gene	Streptomyces coelicolor A3(2) hemB			Mycobacterium leprae ctpB		Streptomyces coelicolor A3(2) hemE	Bacillus subtilis hemY	Mycobacterium leprae hemL	Escherichia coli K12 gpmB	Mycobacterium tuberculosis H37Rv Rv0526	Mycobacterium tuberculosis H37Rv ccsA	Mycobacterium tuberculosis H37Rv Rv0528	Mycobacterium tuberculosis H37Rv ccsB		Mycobacterium tuberculosis H37Rv Rv3678c pb5	Staphylococcus aureus zntR		Mycobacterium tuberculosis H37Rv Rv0531	Escherichia coli K12 menA
	db Match	sp:HEM2_STRCO			sp:CTPB_MYCLE		sp:DCUP_STRCO	sp:PPOX_BACSU	sp:GSA_MYCLE	sp:PMG2_ECOLI	pir:A70545	pir.B70545	pir.C70545	pir:D70545		pir:G70790	prf:2420312A		pir:F70545	sp:MENA_ECOLI
	ORF (bp)	1017	582	510	2544	843	1074	1344	1311	909	621	792	1623	1011	801	471	357	300	333	894
	Terminal (nt)	455983	456597	457150	459900	458583	461093	462455	463867	464472	465102	465909	467571	468658	470170	470654	470657	471121	471847	471915
	Initial (nt)	454967	456016	456641	457357	459425	460020	461112	462557	463867	464482	465118	465949	467648	469370	470184	471013	471420	471515	472808
	SEQ NO. (a.a.)	3985	3986	3987	3988	3989	3990	3991	3992	3993	3994	3995	3996	3997	3998	3999	4000	4001	4002	4003
	SEQ NO. (DNA)	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503

Table 1 (continued)

Function	2-oxoglutarate decarboxylase and 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylatesynthase	hypothetical membrane protein	alpha-D-mannose-alpha(1- 6)phosphatidyl myo-inositol monomannoside transferase	D-serine/D-alanine/glycine transporter	ubiquinone/menaquinone biosynthesis methyltransferase		oxidoreductase	heptaprenyl diphosphate synthase component II	preprotein translocase SecE subunit	transcriptional antiterminator protein	50S ribosomal protein L11	50S ribosomal protein L1	regulatory protein	4-aminobutyrate aminotransferase
Matched length (a.a.)	909	148	408	447	237		412	316	111	318	145	236	564	443
Similarity (%)	54.0	64.9	54.2	89.9	66.7		76.7	67.1	100.0	100.0	100.0	100.0	50.2	82.4
Identity (%)	29.4	37.2	22.8	66.2	37.1		49.0	39.2	100.0	100.0	100.0	100.0	23.1	60.5
Homologous gene	Bacillus subtilis menD	Mycobacterium tuberculosis H37Rv Rv0556	Mycobacterium tuberculosis H37Rv pimB	Escherichia coli K12 cycA	Escherichia coli K12 ubiE		Mycobacterium tuberculosis H37Rv Rv0561c	Bacillus stearothermophilus ATCC 10149 hepT	Corynebacterium glutamicum ATCC 13032 secE	Corynebacterium glutamicum ATCC 13032 nusG	Corynebacterium glutamicum ATCC 13032 rplK	Corynebacterium glutamicum ATCC 13032 rplA	Streptomyces coelicolor SC5H4.02	Mycobacterium tuberculosis H37Rv RV2589 gabT
db Match	sp:MEND_BACSU	pir:G70548	pir.H70548	sp:CYCA_ECOLI	sp:UBIE_ECOLI		pir.D70549	sp:HEP2_BACST	gp:AF130462_2	gp:AF130462_3	gp:AF130462_4	gp:AF130462_5	gp:SC5H4_2	sp:GABT_MYCTU
ORF (bp)	1629	441	1239	1359	069	699	1272	1050	333	954	435	708	1512	1344
Terminal (nt)	488656	489100	490447	491938	492655	493583	492645	495110	497142	498327	499032	499869	499925	502920
Initial (nt)	487028	488660	489209	490580	491966	492915	493916	494061	496810	497374	498598	499162	501436	501577
SEQ NO.	4023	4024	4025	4026	4027	4028	4029	4030	4031	4032	4033	4034	4035	4036
SEQ NO.	523	524	525	526	527	528	529	530	531	532	533	534	535	536

Table 1 (continued)

_															— т		
	Function	succinate-semialdehyde dehydrogenase (NAD(P)+)	novel two-component regulatory system	tyrosine-specific transport protein	cation-transporting ATPase G	hypothetical protein or dehydrogenase		50S ribosomal protein L10	50S ribosomal protein L7/L12		hypothetical membrane protein	DNA-directed RNA polymerase beta chain	DNA-directed RNA polymerase beta chain	hypothetical protein		DNA-binding protein	hypothetical protein
	Matched length (a.a.)	461	150	447	615	468		170	130		283	1180	1332	169		232	215
	Similarity (%)	71.8	38.0	49.9	64.4	66.2		84.7	89.2		55.5	90.4	88.7	52.0		63.8	57.7
	Identity (%)	40.8	32.0	25.5	33.2	40.2		52.9	72.3		25.8	75.4	72.9	39.0		39.2	29.3
ומחוכ ו (כסוונווומכם)	Homologous gene	Escherichia coli K12 gabD	Azospirillum brasilense carR	Escherichia coli K12 o341#7 tyrP	Mycobacterium tuberculosis H37Rv RV1992C ctpG	Streptomyces lividans P49	A A A Report of the Late of th	Streptomyces griseus N2-3-11 rplJ	Mycobacterium tuberculosis H37Rv RV0652 rplL		Mycobacterium tuberculosis H37Rv Rv0227c	Mycobacterium tuberculosis H37Rv RV0667 rpoB	Mycobacterium tuberculosis H37Rv RV0668 rpoC	Mycobacterium tuberculosis H37Rv Jv0166c		Streptomyces coelicolor A3(2) SCJ9A, 15c	Mycobacterium tuberculosis H37Rv RV2908C
	db Match	sp:GABD_ECOLI	GP:ABCARRA_2	sp.TYRP_ECOLI	sp:CTPG_MYCTU	sp:P49_STRLI		sp:RL10_STRGR	sp:RL7_MYCTU		pir:A70962	sp:RPOB_MYCTU	sp:RPOC_MYCTU	GP:AF121004_1		gp:SCJ9A_15	sp:YT08_MYCTU
	ORF (bp)	1359	468	1191	1950	1413	603	513	384	138	972	3495	3999	582	180	780	798
	Terminal (nt)	504283	503272	505569	507647	509081	509696	510510	510974	510989	512507	516407	520492	518696	520850	521644	521679
	Initial (nt)	502925	503739	504379	505698	507669	509094	509998	510591	511126	511536	512913	516494	519277	520671	520865	522476
	SEQ NO. (a.a.)	4037	4038	4039	4040	4041	4042	4043	4044	4045	4046	4047	4048	4049	4050	4051	4052
	SEQ NO. (DNA)	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552

Table 1 (continued)

_																		т				
	Function	30S ribosomal protein S12	30S ribosomal protein S7	elongation factor G			lipoprotein			ferric enterobactin transport ATP-binding protein	ferric enterobactin transport protein	ferric enterobactin transport protein	butyryl-CoA:acetate coenzyme A transferase	30S ribosomal protein S10	50S ribosomal protein L3		50S ribosomal protein L4	50S ribosomal protein L23		50S ribosomal protein L2	30S ribosomal protein S19	
	Matched length (a.a.)	121	154	709			44			258	329	335	145	101	212		212	96		280	92	
	Similarity (%)	97.5	94.8	88.9			78.0			83.7	77.8	80.6	79.3	0.99	89.6		90.1	90.6		92.9	98.9	
	identity (%)	6.06	81.8	71.7			26 0			56.2	45.6	48.1	56.6	84.2	66.5		71.2	74.0		80.7	87.0	
(555,) . 5125.	Homologous gene	Mycobacterium intracellulare rpsL	Mycobacterium smegmatis LR222 rpsG	Micrococcus luteus fusA			Chlamydia trachomatis			Escherichia coli K12 fepC	Escherichia coli K12 fepG	Escherichia coli K12 fepD	Thermoanaerobacterium thermosaccharolyticum actA	Planobispora rosea ATCC 53733 rpsJ	Mycobacterium bovis BCG rplC		Mycobacterium bovis BCG rpID	Mycobacterium bovis BCG rplW		Mycobacterium bovis BCG rplB	Mycobacterium tuberculosis H37Rv Rv0705 rpsS	
	db Match	sp:RS12_MYCIT	sp:RS7_MYCSM	sp:EFG_MICLU			GSP:Y37841			sp:FEPC_ECOLI	sp:FEPG_ECOLI	sp:FEPD_ECOLI	gp:CTACTAGEN_1	sp:RS10_PLARO	sp:RL3_MYCBO		sp:RL4_MYCBO	sp:RL23_MYCBO		sp:RL2_MYCLE	sp:RS19_MYCTU	
	ORF (bp)	366	465	2115	2160	144	228	153	729	792	1035	1035	516	303	654	687	654	303	327	840	276	285
	Terminal (nt)	523059	523533	526010	523911	526013	526894	527607	528768	528779	529592	530748	532523	533401	534090	533401	534743	535048	534746	535915	536210	535899
	Initial (nt)	522694	523069	523896	526070	526156	527121	527759	528040	529570	530626	531782	532008	533099	533437	534087	534090	534746	535072	535076	535935	536183
	SEQ NO. (a.a.)	4053	4054	4055	4056	4057	4058	4059	4060	4061	4062	4063	4064	4065	4066	4067	4068	4069	4070	4071	4072	4073
	SEQ NO (DNA)	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573

Table 1 (continued)

_															- 1							1	\neg
	Function	50S ribosomal protein L22	30S ribosomal protein S3	50S ribosomal protein L16	50S ribosomal protein L29	30S ribosomal protein S17				50S ribosomal protein L14	50S ribosomal protein L24	50S ribosomal protein L5		2,5-diketo-D-gluconic acid reductase		formate dehydrogenase chain D	molybdopterin-guanine dinucleotide biosynthesis protein	formate dehydrogenase H or alpha chain			ABC transporter ATP-binding protein		
	Matched length (a.a.)	109	239	137	67	82				122	105	183		260		298	94	756			624		
	Similarity (%)	91.7	91.2	88.3	88.1	89.0				95.1	91.4	92.3		74.2		59.7	68.1	53.4			52.6		
	Identity (%)	74.3	77.4	69.3	65.7	69.5				83.6	76.2	73.6		52.3		28.9	37.2	24.3		٠	26.9		
(======================================	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0706 rplV	Mycobacterium bovis BCG rpsC	Mycobacterium bovis BCG rpIP	Mycobacterium bovis BCG rpmC	Mycobacterium bovis BCG rpsQ				Mycobacterium tuberculosis H37Rv Rv0714 rplN	Mycobacterium tuberculosis H37Rv Rv0715 rplX	Micrococcus luteus rpIE		Corynebacterium sp.		Wolinella succinogenes fdhD	Streptomyces coelicolor A3(2) SCGD3.29c	Escherichia coli fdfF			Mycobacterium tuberculosis H37Rv Rv1281c oppD		
	db Match	sp:RL22_MYCTU	sp:RS3_MYCBO	sp:RL16_MYCBO	sp:RL29_MYCBO	sp:RS17_MYCBO				sp:RL14_MYCTU	sp:RL24_MYCTU	sp:RL5_MICLU		sp:2DKG_CORSP		sp:FDHD_WOLSU	gp:SCGD3_29	sp:FDHF_ECOLI			sp:YC81_MYCTU		
	ORF (bp)	360	744	414	228	276	294	318	969	366	312	573	1032	807	492	915	336	2133	756	804	1662	1146	1074
	Terminal (nt)	536576	537322	537741	537971	538252	537974	538381	538718	540106	540423	540998	542079	542090	542921	543415	544335	544757	548084	548187	548990	550699	551854
	Initial (nt)	536217	536579	537328	537744	537977	538267	538698	539413	539741	540112	540426	541048	542896	543412	544329	544670	546889	547329	548990	550651	551844	552927
	SEQ NO. (a a.)	4074	4075	4076	4077	4078	4079	4080	4081	4082	4083	4084	4085	4086	4087	4088	4089	4090	4091	4092	4093	4094	4095
	SEQ NO. (DNA)	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595

Table 1 (continued)

 														\neg		- 1		- 1				
Function	hypothetical protein	hypothetical protein	30S ribosomal protein S8	50S ribosomal protein L6	50S ribosomal protein L18	30S ribosomal protein S5	50S ribosomal protein L30	50S ribosomal protein L15		methylmalonic acid semialdehyde dehydrogenase		novel two-component regulatory system	aldehyde dehydrogenase or betaine aldehyde dehydrogenase			reductase	2Fe2S ferredoxin	p-cumic alcohol dehydrogenase	hypothetical protein	phosphoenolpyruvate synthetase	phosphoenolpyruvate synthetase	cytochrome P450
Matched length (a.a.)	405	150	132	179	110	171	55	143		128		125	487			409	107	257	20	629	378	422
Similarity (%)	50.4	66.7	97.7	87.7	90.9	88.3	76.4	87.4		68.8		52.0	71.5			71.6	66.4	70.8	56.0	45.0	66.7	65.2
Identity (%)	24.7	42.7	75.8	59.2	67.3	8.79	54.6	66.4		46.9		47.0	41.7			41.1	47.7	35.8	50.0	22.9	38.6	34.8
Homologous gene	Archaeoglobus fulgidus AF1398	Deinococcus radiodurans DR0763	Micrococcus Iuteus	Micrococcus Iuteus	Micrococcus luteus rpIR	Micrococcus luteus rpsE	Escherichia coli K12 rpmJ	Micrococcus Iuteus rplO		Streptomyces coelicolor msdA		Azospirillum brasilense carR	Rhodococcus rhodochrous plasmid pRTL1 orf5			Sphingomonas sp. redA2	Rhodobacter capsulatus fdxE	Pseudomonas putida cymB	Aeropyrum pernix K1 APE0029	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Rhodococcus erythropolis thcB
db Match	pir:E69424	gp:AE001931_13	pir:S29885	pir:S29886	sp:RL18_MICLU	sp:RS5_MICLU	sp:RL30_ECOLI	sp:RL15_MICLU		prf.2204281A		GP:ABCARRA_2	prf.2516398E			prf:2411257B	prf:2313248B	gp:PPU24215_2	PIR:H72754	pir.JC4176	pir.JC4176	prf.2104333G
ORF (bp)	1182	468	396	534	402	633	183	444	729	321	363	456	1491	735	306	1266	318	744	213	1740	1080	1290
Terminal (nt)	552948	554452	555726	556282	556690	557366	557555	558008	556860	558197	558607	560260	559144	560634	562937	561368	562646	562993	564083	563732	565680	566799
Initial (nt)	554129	554919	555331	555749	556289	556734	557373	557565	557588	558517	558969	559805	560634	561368	562632	562633	562963	563736	563871	565471	566759	568088
SEQ NO. (a.a.)	4096	4097	4098	4099	4100	4101	4102	4103	4104	4105	4106	4107	4108	4109	4110	4111	4112	4113	4114	4115	4116	4117
SEQ NO. (DNA)	596	265	598	599	900	601	602	603	604	605	909	607	809	609	610	611	612	613	614	615	616	617

Table 1 (continued)

	Function	transcriptional repressor	adenylate kinase		methionine aminopeptidase		translation initiation factor IF-1	30S ribosomal protein S13	30S ribosomal protein S11	30S ribosomal protein S4	RNA polymerase alpha subunit		50S ribosomal protein L17	pseudouridylate synthase A	hypothetical membrane protein			hypothetical protein	cell elongation protein	cyclopropane-fatty-acyl-phospholipid synthase	hypothetical membrane protein
	Matched length (a.a.)	256	184		253		72	122	134	132	311		122	265	786			485	505	423	100
	Similarity (%)	0.99	81.0		74.7		86.0	91.0	93.3	93.9	77.8		77.1	61.1	51.2			53.8	6'09	56.0	29.0
	Identity (%)	28.5	48.9		43.1		77.0	66.4	81.3	82.6	51.1		51.6	37.0	24.8			27.4	22.8	30.7	28.0
lable i (commaca)	Homologous gene	Erwinia carotovora carotovora kdgR	Micrococcus luteus adk		Bacillus subtilis 168 map		Bacillus subtilis infA	Thermus thermophilus HB8 rps13	Streptomyces coelicolor A3(2) SC6G4.06. rpsK	Mycobacterium tuberculosis H37Rv RV3458C rpsD	Bacillus subtilis 168 rpoA		Escherichia coli K12 rplQ	Escherichia coli K12 truA	Mycobacterium tuberculosis H37Rv Rv3779			Mycobacterium tuberculosis H37Rv Rv0283	Arabidopsis thaliana CV DIM	Escherichia coli K12 cfa	Streptomyces coelicolor A3(2) SCL2.30c
	db Match	prf:2512309A	sp:KAD_MICLU		sp:AMPM_BACSU		pir.F69644	prf:2505353B	sp:RS11_STRCO	prf:2211287F	sp:RPOA_BACSU		sp:RL17_ECOLI	sp:TRUA_ECOLI	pir:G70695			pir:A70836	sp:DIM_ARATH	sp:CFA_ECOLI	gp:SCL2_30
	ORF (bp)	804	543	612	792	828	216	366	402	603	1014	156	489	867	2397	456	303	1257	1545	1353	426
	Terminal (nt)	568272	571316	570756	572267	573176	573622	574181	574588	575217	576351	575211	576898	577923	580429	580436	580919	582662	584228	585620	586248
	Initial (nt)	569075	570774	571367	571476	572349	573407	573816	574187	574615	575338	575366	576410	577057	578033	580891	581221	581406	582684		585823
	SEQ NO.	4118	4119	4120	4121	4122	4123	4124	4125	4126	4127	4128	4129	4130	4131	4132	4133	4134	4135	4136	4137
	SEQ NO DNA)		619	620	621	622	623	624	625	626	627	628	629	630	631	632	633	634	635	989	637

$\overline{}$
~
$\mathbf{\circ}$
a
~
_
$\overline{}$
.=
-
$\overline{}$
$\overline{}$
Ö
ပ
Ū
$\overline{}$
•
(I)
죠
಼ೲ
_

	Function	high-alkaline serine proteinase	hypothetical membrane protein	hypothetical membrane protein				al protein	early secretory antigen target ESAT- 6 protein	50S ribosomal protein L13	30S ribosomal protein S9	phosphoglucosamine mutase		hypothetical protein			hypothetical protein	ıcemase	hypothetical protein
		high-alkali	hypothetic	hypothetic				hypothetical protein	early secr 6 protein	50S ribos	30S ribos	phosphog		hypothetic			hypotheti	alanine racemase	hypotheti
1 1 1 1	length (a.a.)	273	516	1260				103	80	145	181	450		318			259	368	154
	Similarity (%)	58.0	50.6	38.4				6.69	81.3	82.1	72.4	76.4		45.6			72.2	68.5	78.6
	Identity (%)	31.3	24.0	65.0				31.1	36.3	58.6	49.2	48.9		29.3			44.0	41.6	48.7
	Homologous gene	Bacillus alcalophilus	Streptomyces coelicolor A3(2) SC3C3.21	Mycobacterium tuberculosis H37Rv Rv3447c			A september of the sept	Mycobacterium tuberculosis H37Rv Rv3445c	Mycobacterium tuberculosis	Streptomyces coelicolor A3(2) SC6G4.12. rplM	Streptomyces coelicolor A3(2) SC6G4.13. rpsl	Staphylococcus aureus femR315		Synechocystis sp. PCC6803 sIr1753			Mycobacterium leprae B229_F1_20	Mycobacterium tuberculosis H37Rv RV3423C alr	Mycobacterium tuberculosis H37Rv Rv3422c
	db Match	sp:ELYA_BACAO	pir.T10930	pir.E70977				pir.C70977	prf:2111376A	sp:RL13_STRC0	sp:RS9_STRCO	prf.2320260A		pir.S75138	1		pir:S73000	sp:ALR_MYCTU	sp:Y097_MYCTU
	ORF (bp)	1359	1371	3567	822	663	006	324	288	441	546	1341	303	1509	573	234	855	1083	495
	Terminal (nt)	586399	587645	592862	589590	589898	593761	594258	594580	595379	595927	597449	598194	599702	598778	599932	600022	602053	602574
	Initial (nt)	587757	589015	589296	590411	590560	592862	593935	594293	594939	595382	596109	597892	598194	599350	599699	600876	600971	602080
	SEQ NO.	4138	4139	4140	4141	4142	4143	4144	4145	4146	4147	4148	4149	4150	4151	4152	4153	4154	4155
	SEQ NO.			640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655

	מי	ne protein	e.		ınine N-	ndopeptidase				roES	roEL				ma factor				
	Function	hypothetical membrane protein	proline iminopeptidase	hypothetical protein	ribosomal-protein-alanine N- acetyltransferase	O-sialoglycoprotein endopeptidase	hypothetical protein			heat shock protein groES	heat shock protein groEL	hypothetical protein	hypothetical protein	regulatory protein	RNA polymerase sigma factor		hypothetical protein	IMP dehydrogenase	hypothetical profein
	Matched length (a.a.)	550	411	207	132	319	571			100	537	76	138	94	174		116	504	146
	Similarity (%)	66.2	77.6	75.4	59.9	75.2	59.4			94.0	85.1	56.0	45.0	88.3	81.6		69.8	93.9	52.0
	Identity (%)	28.9	51.3	52.2	30.3	46.1	38.4			76.0	63.3	50.0	34.0	64.9	55.2		41.4	80.8	30.0
ומחום ו (כסוווווומכת)	Homologous gene	Escherichia coli K12 yidE	Propionibacterium shermanii pip	Mycobacterium tuberculosis H37Rv Rv3421c	Escherichia coli K12 riml	Pasteurella haemolytica SEROTYPE A1 gcp	Mycobacterium tuberculosis H37Rv Rv3433c			Mycobacterium tuberculosis H37Rv RV3418C mopB	Mycobacterium leprae B229_C3_248 groE1	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Mycobacterium smegmatis whiB3	Mycobacterium tuberculosis H37Rv Rv3414c sigD		Mycobacterium leprae B1620_F3_131	Corynebacterium ammoniagenes ATCC 6872 guaB	D D Laritachii DLIA308
	db Match	sp:YIDE_ECOLI	gp.PSJ00161_1	sp:Y098_MYCTU	sp:RIMI_ECOLI	sp:GCP_PASHA	sp:Y115_MYCTU			sp:CH10_MYCTU	sp:CH61_MYCLE	GP:MSGTCWPA_1	GP:MSGTCWPA_3	gp:AF073300_1	sp:Y09F_MYCTU		sp:Y09H_MYCLE	gp:AB003154_1	777 770
	ORF (bp)	1599	1239	675	507	1032	1722	429	453	297	1614	255	1158	297	564	1026	378	1518	1
	Terminal (nt)	604409	605708	606392	606898	607936	609679	610175	609816	610644	612272	610946	611109	612418	613719	614747	614803	616853	7007
	Initial (nt)	602811	604470	605718	606392	606905	607958	609747	610268	610348	610659	611200	612266	612714	613156	613722	615180	615336	, 000, 0
	SEQ NO. (a.a.)	4156	4157	4158	4159	4160	4161	4162	4163	4164	4165	4166	4167	4168	4169	4170	4171	4172	,,,,
	SEQ NO.		657	658	629	099	661	662	663	664	665	999	667	899	699	029	671	672	213

																			7	\neg
	Function	IMP dehydrogenase	hypothetical membrane protein	glutamate synthetase positive regulator	GMP synthetase				hypothetical membrane protein	two-component system sensor histidine kinase	transcriptional regulator or extracellular proteinase response regulator				hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	
	Matched length (a.a.)	381	274	262	517				513	411	218				201	563		275	288	
	Similarity (%)	86.1	67.5	58.4	92.8				39.6	48.7	65.1				64.2	64.1		62.9	58.3	
	Identity (%)	70.9	38.0	29.0	81.6				20.5	26.8	33.5				30.9	37.5		33.8	27.8	
lable I (commace)	Homologous gene	Corynebacterium ammoniagenes ATCC 6872	Escherichia coli K12 ybiF	Bacillus subtilis gltC	Corynebacterium ammoniagenes guaA				Streptomyces coelicolor A3(2)	Streptomyces coelicolor A3(2) SC6E10.15c	Bacillus subtilis 168 deg∪				Mycobacterium tuberculosis H37Rv Rv3395c	Mycobacterium tuberculosis H37Rv Rv3394c		Streptomyces coelicolor A3(2) SC5B8.20c	Deinococcus radiodurans DR0809	
	db Match	gp:AB003154_2	SD:YBIF ECOLI	prf:1516239A	sp:GUAA_CORAM				gp:SCD63_22	gp:SC6E10_15	sp:DEGU_BACSU				pir:B70975	pir.A70975		gp:SC5B8_20	gp:AE001935_7	
	ORF (bp)	1122	921	606	1569	663	441	189	1176	1140	069	324	489	963	825	1590	099	861	861	390
	Terminal (nt)	618094	618093	619994	621572	620264	622157	622457	622460	624939	625674	626000	626070	626577	628551	630140	630151	631809	631824	632690
	Initial (nt)	616973	619013	619086	620004	620926	621717	622269	623635		624985	625677	626558	627239	627727	628551	630810	630949	632684	633079
	SEQ NO. (a.a.)	4174	4175	4176	4177	4178	4179	4180	4181	4182	4183	4184	4185	4186	4187	4188	4189	4190	4191	4192
	SEQ NO. (DNA)		875		677	678	679	680	681	682	683	684	685	989	687	688	689	069	691	692

	Function	hypothetical membrane protein	phytoene desaturase	phytoene synthase	transmembrane transport protein	geranyigeranyi pyrophosphate (GGPP) synthase	transcriptional regulator (MarR family)	outer membrane lipoprotein	hypothetical protein	DNA photolyase	glycosyl transferase	ABC transporter	ABC transporter		ABC transporter		ABC transporter	lipoprotein	DNA polymerase III	hypothetical protein
Matched	length (a.a.)	95	524	288	722	367	188	145	462	497	205	897	223		206		346	268	1101	159
	Similarity (%)	67.4	76.2	71.2	75.6	63.8	68.1	62.1	74.2	63.2	53.7	54.9	72.2		75.2		75.4	67.2	57.5	62.3
-	Identity (%)	36.8	50.4	42.0	48.6	32.7	38.3	33.1	48.7	40.0	25.9	24.3	35.4		35.9		43.6	28.7	30.2	41.5
	Homologous gene	Mycobacterium marinum	Brevibacterium linens ATCC 9175 ctl	Brevibacterium linens ATCC 9175 crtB	Streptomyces coelicolor A3(2) SCF43A. 29c	Brevibacterium linens crtE	Brevibacterium linens	Citrobacter freundii blc OS60 blc	Brevibacterium linens	Brevibacterium linens ATCC 9175 cpd1	Streptococcus suis cps1K	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Helicobacter pylori abcD		Escherichia coli TAP90 abc	Haemophilus influenzae SEROTYPE B hlpA	Thermus aquaticus dnaE	Streptomyces coelicolor A3(2) SCE126.11
	db Match	ap:MMU92075 3	gp:AF139916_3	gp.AF139916_2	gp:SCF43A_29	gp.AF139916_11	gp:AF139916_14	SD:BLC CITFR	qp:AF139916_1	gp:AF139916_5	gp:AF155804_7		prf:2420410P		prf:2320284D		sp:ABC_ECOLI	sp:HLPA_HAEIN	prf:2517386A	gp:SCE126_11
	ORF (bp)	396		912	2190	1146	585	648	1425	1404	753	2415	717	153	999	846	1080	897	3012	447
	Terminal (nt)	633079	633532	635178	636089	638317	640208	640232	642557	642556	644778	645176	647593	648315	648440	650187	649114	650392	654612	655122
	Initial (nt)	633474	635175	636089	638278	639462	639624	640879	641133	643959	644026		648309			649342	650193		651601	_
	SEQ NO.	(3.3.)	4194	4195	4196	4197	4198	1100	4200	4201	4202	4203	4204	4205	4206	4207	4208	4209	4210	4211
		(DNA)	 	695	969	697	698	800	700	701	707	703	704	705	706	707	708	709	710	711

		in					tamily)		ecursor			ein			rase	Irylase			
	Function	hypothetical membrane protein		transcriptional repressor	hypothetical protein		transcriptional regulator (Sir2 family)	hypothetical protein	iron-regulated lipoprotein precursor	rRNA methylase	methylenetetrahydrofolate dehydrogenase	hypothetical membrane protein	hypothetical protein		homoserine O-acetyltransferase	O-acetylhomoserine sulfhydrylase	carbon starvation protein	1 1 1 1	nvoctnetical protein
	Matched length (a.a.)	468		203	264		245	157	357	151	278	80	489		379	429	069		20
	Similarity (%)	56.0		76.4	61.7		71.8	78.3	62.2	86.1	87.4	76.3	63.2		99.5	76.2	78.4		0.99
	Identity (%)	26.1		50.3	34.9		42.5	45.2	31.1	62.9	70.9	31.3	34.0		99.5	49.7	53.9		40.0
lable I (collillined)	Homologous gene	Streptomyces coelicolor A3(2) SCE9.01		Mycobacterium tuberculosis H37Rv Rv2788 sirR	Streptomyces coelicolor A3(2) SCGBA.05c		Archaeoglobus fulgidus AF1676	Streptomyces coelicolor A3(2) SC5H1.34	Corynebacterium diphtheriae irp1	Mycobacterium tuberculosis H37Rv Rv3366 spoU	Mycobacterium tuberculosis H37Rv Rv3356c folD	Mycobacterium leprae MLCB1779.16c	Streptomyces coelicolor A3(2) SC66T3.18c		Corynebacterium glutamicum metA	Leptospira meyeri metY	Escherichia coli K12 cstA		Recharichia coli K10 viiX
	db Match	gp:SCE9_1		pir.C70884	gp.SCG8A_5		pir.C69459	gp:SC5H1_34	gp:CDU02617_1	pir.E70971	pir:C70970	gp:MLCB1779_8	gp:SC66T3_18		gp:AF052652_1	prf.2317335A			- IOOL >= >:-
	ORF (bp)	1413	738	699	798	138	774	492	966	471	852	255	1380	963	1131	1311	-	609	3
	Terminal (nt)	656534	655097	657215	657205	658142	658928	659424	660538	660650	662017	662374	662382	664126	665183	666460	670465	669445	010010
	Initial (nt)	655122	655834	656547	658002	658005	658155		659543	661120	661166	662120	663761	665088		667770	_		
	SEQ NO.	4212	4213	4214	4215	4216	4217	4218	4219	4220	4221	4222	4223	4224	4225	422E	_	1	1
	SEQ.	712	713	714	715	716	717	718	719	720	721	722	723	724	725	7.28	727	728	100

_
-
ਨ
-
eg
_
continued
+
_
=
$^{\circ}$
٠,
_
$\overline{}$
$\overline{}$
a
<u>a</u>
ole
ble
able
Fable
Table
Table

	Function	hypothetical protein	carboxy phosphoenolpyruvate mutase	citrate synthase		nypothetical protein	,	L-malate dehydrogenase	regulatory protein		vibriobactin utilization protein	ABC transporter ATP-binding protein	ABC transporter	ABC transporter	iron-regulated lipoprotein precursor	chloramphenicol resistance protein	catabolite repression control protein	hypothetical protein	
	Matched length (a.a.)	317	281	380		53		338	226		284	269	339	330	356	395	303	219	
	Similarity (%)	86.4	76.2	81.3		62.3		67.5	62.8		54.2	85.1	86.4	88.2	82.3	9.69	58.1	85.8	
	Identity (%)	71.0	41.6	56.1		34.0		37.6	26.1		25.4	55.4	56.3	63.0	53.1	32.2	30.4	56.2	
lable I (commace)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1130	Streptomyces hygroscopicus	Mycobacterium smegmatis ATCC 607 gltA		Escherichia coli K12 yneC		Methanothermus fervidus V24S mdh	Bacillus stearothermophilus T-6 uxuR		Vibrio cholerae OGAWA 395 viuB	Corynebacterium diphtheriae irp1D	Corynebacterium diphtheriae irp1C	Corynebacterium diphtheriae irp18	Corynebacterium diphtheriae irp1	Streptomyces venezuelae cmlv	Pseudomonas aeruginosa crc	Haemophilus influenzae Rd H11240	
	db Match	pir.C70539	prf: 1902224A	sp:CISY_MYCSM		sp:YNEC_ECOLI		sp:MDH_METFE	prf.2514353L		sp:VIUB_VIBCH	gp:AF176902_3	gp:AF176902_2	gp:AF176902_1	gp:CDU02617_1	prf:2202262A			
	ORF (bp)	954	912	1149	930	192	672	1041	720	702	897	807	1059	966	1050	1272	912	657	195
	Terminal (nt)	672653	673576	674756	672710	674799	675846	675082	676218	677047	680131	681040	681846	682871	683876	686380	687346	688007	688335
	Initial (nt)	671700	672665	673608	673639	674990	675175	676122	676937	677748		681846	682904	683866	684925	685109			688141
	SEQ NO.	4231	4232	4233	4234	4235	4236	4237	4238	4239	4240	4241	4242	4243	4244	4245	4246	4247	4248
	SEQ No.	731	732	733	734	735	736	737	738	730	740	741	742	743	744	745	746	747	748

	Function		Ctransporter		9	NA synthetase	otein		o protein 6B	ה ה	otein	otein			uracii phosphoribosyltransferase	bacterial regulatory protein, lacl		N-acyl-L-amino acid amidonydrolase or peptidase	lomutase	dihydrolipoamide dehydrogenase	oxylase	rotein	rotein
			ferrichrome ARC transporter		hemin permease	tryptophanyl-tRNA synthetase	hypothetical protein		panicillin-hinding protein 6B	precursor	hypothetical protein	hypothetical protein			uracil phospho	hacterial regul	family	N-acyl-L-amin or peptidase	phosphomannomutase	dihydrolipoam	pyruvate carboxylase	hypothetical protein	hypothetical protein
A de Land	Matched length (a.a.)		777	447	346	331	278			301	417	323			209		77	385	561	468	1140	263	127
	Similarity (%)		7.0 0	73.8	69.1	79.8	72.3			57.5	70.7	52.6			72.3		66.2	80.5	53.8	65.0	100.0	60.1	6.99
	Identity (%)			451	38.7	54.4	37.1			30.9	34.1	29.4			46.4		41.6	51.4	22.1	31.6	100.0	26.2	30.7
, and a second	Homologous gene		Cannahacterium dinhtheriae	hmuV	Yersinia enterocolitica hemU	Escherichia coli K12 trpS	Escherichia coli K12 vhiD			Salmonella typhimurium LT2 dacD	Mycobacterium tuberculosis H37Rv Rv3311	Streptomyces coelicolor A3(2) SC6G10.08c			I sopposed a local a l	Lactococcus lacks upp	Streptomyces coelicolor A3(2)	Mycobacterium tuberculosis H37Rv Rv3305c amiA	Mycoplasma pirum BER manB	Halobacterium volcanii ATCC 29605 lpd	Corynebacterium glutamicum strain21253 pyc	Mycobacterium tuberculosis H37Rv Rv1324	Streptomyces coelicolor A3(2) SCF11.30
	db Match			gp:AF109162_3	pir.S54438	sp.SYW ECOLI		Sp. YHJU_ECOLI		sp:DACD_SALTY	pir: F70842	gp:SC6G10_8			< - C	SP:UPP_LACLA	gp:SC1A2_11	pir:H70841	Sp:MANB_MYCPI		prf:2415454A	sp:YD24_MYCTU	gp:SCF11_30
	ORF (bp)	075	2/2	780	1017		200	_	903	1137	1227	858	195	351		633	384	1182	1725	1407	3420	870	486
	Terminal (nt)	+	01,6990	689917	690706	802016	016260	694110	695074	695077	696769	698065	699266	608022	030022	699913	700381	703262	700384	704811	708630	709708	710278
	Initial (nt)	0000	068689	969069	601700	00100	700 60	693028	694172	696213	697995	698922	699072	600070	033717	699281	866669	702081	702108		705211	708839	709793
	SEQ.	(a.a.)	4249	4250	1051	1423	7574	4253	4254	4255	4256	4257	4258	7 2 2	4238	4260	4261	4262	1063	4264	4265	4266	4267
		_	749	750	\dashv	_	一	753	754	755	756	757	758	1 20	66/	760	761	762	763	764	765	766	767

Table 1 (continued)

	Function	hypothetical protein	thioredoxin reductase	PrnD protein for probionate	catabolism	carboxy phosphoenolpyruvate mutase	hypothetical protein	citrate synthase		hypothetical protein			thiosulfate sulfurtransferase	hypothetical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	hypothetical protein	detergent sensitivity rescuer or carboxyl transferase	detergent sensitivity rescuer or carboxyl transferase
	e e c																			
	Matched length (a.a.)	381	305		521	278	96	383		456			225	352	133	718	192	63	537	543
	Similarity (%)	0.69	59.3		49.5	74.5	47.0	78.9		72.6			100.0	79.8	76.7	63.4	66.2	69.8	100.0	100.0
	Identity (%)	44.6	24.6		24.0	42.5	39.0	54.6		40.8			100.0	61.1	51.1	35.1	31.8	33.3	96.8	9.66
(Homologous gene	Bacillus subtilis 168 yciC	Bacillus subtilis 1858 txB		Salmonella typhimurium L12 prpD	Streptomyces hygroscopicus	Aeropyrum pernix K1 APE0223	Mycobacterium smegmatis ATCC 607 gltA		Mycobacterium tuberculosis H37Rv Rv1129c			Corynebacterium glutamicum ATCC 13032 thtR	Campylobacter jejuni Cj0069	Mycobacterium leprae MLCB4.27c	Mycobacterium tuberculosis H37Rv Rv1565c	Escherichia coli K12 yceF	Mycobacterium leprae B1308- C3-211	Corynebacterium glutamicum AJ11060 dtsR2	Corynebacterium glutamicum AJ11060 dtsR1
	db Match	nir B69760	LIBOVE BACK!	sp. I RAD BACCO	sp:PRPD_SALTY	prf.1902224A	PIR:E72779	sp:CISY_MYCSM		pir.B70539			sp:THTR_CORGL	gp:CJ11168X1_62	gp:MLCB4_16	pir:G70539	SD:YCEF ECOLI	prf.2323363CF	gp:AB018531_2	pir.JC4991
	ORF (bp)	1086		924	1494	888	378		375	1323	246	1359		1065	414	2148	591	246	1611	1629
	Terminal (nt)	740520	120027	/1204/	714231	715145	714380	716283	716286	716687	718350	720016	720547	722841	722925	725559	725872	726470	726742	728696
	Initial (nt)	711805	2001	/11/24	712738	714258	714757	715102	716660	1	718105	1		721777		723412	726462		728352	730324
	SEQ.	(4.4.)		4269	4270	4271	4070	4273	4274	4275	4276	4277	4278	4279	4280	4281	4282	4283	4284	4285
	SEQ NO.	(DINA)	00/	769	770	77.1	277	773	774	775	776	777	778	779	780	781	787	783	784	785

_
~
\simeq
a
_
_
_
-=
-
_
_
\sim
\approx
ပ
$\overline{}$
4
ดว
$\overline{}$
_
,,,,
_

															$ \Gamma$		$\overline{}$	
	Function	bifunctional protein (biotin synthesis repressor and biotin acetyl-CoA carboxylase ligase)	hypothetical membrane protein	5'-phosphoribosyl-5-amino-4- imidasol carboxylase	K+-uptake protein			5'-phosphoribosyl-5-amino-4- imidasol carboxylase	hypothetical protein	hypothetical protein	nitrilotriacetate monooxygenase	transposase (ISA0963-5)	glucose 1-dehydrogenase	hypothetical membrane protein		hypothetical protein	hypothetical protein	
	Matched length (a.a.)	293	165	394	628			147	152	255	426	303	256	96		175	142	
	Similarity (%)	61.8	58.8	83.8	73.6			93.2	60.5	70.6	73.0	52.5	64.8	68.8		66.3	76.8	
	Identity (%)	28.7	23.0	0.69	41.1			85.7	36.2	42.8	43.2	23.4	31.3	29.2		28.6	35.9	
ומחום ו (בסוותוומבת)	Homologous gene	Escherichia coli K12 birA	Mycobacterium tuberculosis H37Rv Rv3278c	Corynebacterium ammoniagenes ATCC 6872 purk	Escherichia coli K12 kup			Corynebacterium ammoniagenes ATCC 6872 purE	Actinosynnema pretiosum	Streptomyces coelicolor A3(2) SCF43A.36	Chelatobacter heintzii ATCC 29600 ntaA	Archaeoglobus fulgidus	Bacillus megaterium IAM 1030 gdhll	Thermotoga maritima MSB8 TM1408		Bacillus subtilis 168 ywjB	Streptomyces coelicolor A3(2) SCJ9A.21	
	db Match	sp:BIRA_ECOLI	pir.G70979	sp:PURK_CORAM	sp:KUP_ECOLI			sp:PUR6_CORAM	ap:APU33059 5	gp.SCF43A_36	sp:NTAA_CHEHE	pir.A69426	sp:DHG2_BACME	pir.A72258		sp:YWJB_BACSU	gp:SCJ9A_21	
	ORF (bp)	864	486	1161	1872	615	357	495	453		1314	1500	789	369	342	567	420	222
	Terminal (nt)	731299	731797	733017	734943	733183	735340	735896	736351	737204	737216	738673	740228	741765	742195	741818	742828	742831
	Initial (nt)	730436	731312	731857	733072	733797	734984	735402	735899		738529	740172		741397	741854	742384		743052
	SEQ No.	4286	4287	4288	4289	4290	4291	4292	1203	4294	4295	4296	4297	4298	4299	4300	4301	4302
	SEQ NO.		787	788	789	790	791	792	703	794	795	796	797	798	799	800	801	802

Table 1 (continued)

		əin	əin		ain		orotein ein)														rotein
	Function	trehalose/maltose-binding protein	trehalose/maltose-binding protein		trehalose/maltose-binding protein		ABC transporter ATP-binding protein (ABC-type sugar transport protein) or cellobiose/maltose transport protein		RNA helicase			hypothetical protein	hypothetical protein	DNA helicase II					RNA helicase	hypothetical protein	RNA polymerase associated protein
	Matched length (a.a.)	271	306		417		332		1783			240	720	701	_				2033	698	873
	Similarity (%)	75.3	70.3		62.4		73.9		49.9			59.2	62.5	41.1					45.8	53.2	48.6
	Identity (%)	42.4	37.3		30.9		57.2		25.1			31.7	30.0	20.7					22.4	24.4	23.1
lanie i (collillacu)	Homologous gene	Thermococcus litoralis malG	Thermococcus litoralis malF		Thermococcus litoralis malE		Streptomyces reticuli msiK		Deinococcus radiodurans R1 DRB0135			Mycobacterium tuberculosis H37Rv Rv3268	Helicobacter pylori J99 jhp0462	Escherichia coli K12 uvrD		!			Streptomyces coelicolor SCH5.13	Halobacterium sp. NRC-1 plasmid pNRC100 H1130	Escherichia coli K12 hepA
	db Match	prf:2406355C	prf:2406355B		prf: 2406355A		pf.2308356A		pir:B75633			pir:E70978	pir:C71929	sp:UVRD_ECOLI		:			pir.T36671	pir:T08313	SD:HEPA ECOLI
	ORF (bp)	834	1032	468	1272	423	966	369	4800	372	3699	633	2433	1563	357	393	396	825	6207	4596	2886
	Terminal (nt)	743067	743900	745046	745622	748442	747031	748814	748886	757434	753697	757630	758364	760906	762853	763122	762582	767367	763237	769547	774150
	Initial (nt)	743900	744931	745513	746893	748020	748026	748446	753685	757063	757395	758262	760796	762468	762497	762730	762977	768191	769443	774142	777035
	SEQ NO. (a a.)	4303	4304	4305	4306	4307	4308	4309	4310	4311	4312	4313	4314	4315	4316	4317	4318	4319	4320	4321	4322
	SEQ NO. (DNA)	803	804	805	908	807	808	809	810	811	812	813	814	815	816	817	818	819	820	821	822

ned)	
contin	
_	
ble	
100	

_					— т					\neg	\neg	T		1		\top		
	Function	hypothetical protein	dTDP-Rha:a-D-GlcNAc- diphosphoryl polyprenol, a-3-L- rhamnosyl transferase	mannose-1-phosphate guanylyltransferase	regulatory protein	hypothetical protein	hypothetical protein	phosphomannomutase	hypothetical protein	mannose-6-phosphate isomerase			pheromone-responsive protein		S-adenosyl-L-homocysteine hydrolase			thymidylate kinase
	Matched length (a.a.)	527	289	353	94	139	136	460	327	420			180		476			209
	Similarity (%)	71.4	77.9	6.99	81.9	74.8	71.3	66.3	56.3	66.2			57.8		83.0			56.0
	Identity (%)	45.5	56.4	29.8	73.4	48.9	51.5	38.0	31.2	36.9			35.6		59.0			25.8
ומחום ו (כסווווומכת)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3267	Mycobacterium smegmatis mc2155 wbbL	Saccharomyces cerevisiae YDL055C MPG1	Mycobacterium smegmatis whmD	Mycobacterium tuberculosis H37Rv Rv3259	Streptomyces coelicolor A3(2) SCE34.11c	Salmonella montevideo M40 manB	Mycobacterium tuberculosis H37Rv Rv3256c	Escherichia coli K12 manA			Enterococcus faecalis plasmid pCF10 prgC		Trichomonas vaginalis WAA38			Archaeoglobus fulgidus VC-16 AF0061
	db Match	pir:D70978	gp:AF187550_1	sp:MPG1_YEAST	gp:AF164439_1	pir:B70847	gp:SCE34_11	sp:MANB_SALMO	pir:B70594	sp:MANA_ECOLI			prf. 1804279K		sp:SAHH_TRIVA			sp:KTHY_ARCFU
	ORF (bp)	1554 p	897	1044	408	456	390	1374	1005	1182	150	360	564	351	1422	708	720	609
	Terminal (nt)	777158	779910	781171	781875	782162	783101	784557	785639	786824	787045	787983	787170	788546	790093	788719	789002	790704
	Initial (nt)	778711	779014	780128	781468	782617	782712	783184	784635	785643	786896	787624		788196		789426	789721	790096
	SEQ.			4325	4326	4327	4328	4329	4330	4331	4332	4333	4334	4335	4336	4337	4338	4339
		(DNA) 823		825	826	827	828	829	830	831	832	833	834	835	836	837	838	839

$\overline{}$
믕
⋛
₻
8
٧
·
흦
늄
-

	Function	two-component system response regulator		two-component system sensor histidine kinase	lipoprotein	hypothetical protein	7-1-	30S ribosomal protein or chloropiast precursor	preprotein translocase SecA subunit		hypothetical protein	hypothetical protein	5-enolpyruvylshikimate 3-phosphate synthase	hypothetical protein	5-enolpyruvylshikimate 3-phosphate synthase	hypothetical protein	RNA polymerase sigma factor
	Matched length (a.a.)	224		484	595	213		203	845		170	322	461	180	23	380	188
	Similarity (%)	90.6		78.9	65.6	72.8		61.6	9.66		78.8	82.9	0.66	63.9	100.0	42.4	87.2
	Identify (%)	73.7		53.1	29.6	38.0		34.5	99.1		47.1	64.6	99.0	38.3	100.0	21.6	61.2
land (command)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3246c mtrA		Mycobacterium tuberculosis H37Rv Rv3245c mtrB	Mycobacterium tuberculosis H37Rv Rv3244c lpqB	Mycobacterium tuberculosis H37Rv Rv3242c		Spinacia oleracea CV rps22	Brevibacterium flavum (Corynebacterium glutamicum) MJ-233 secA		Mycobacterium tuberculosis H37Rv Rv3231c	Mycobacterium tuberculosis H37Rv Rv3228	Corynebacterium glutamicum ASO19 aroA	Mycobacterium tuberculosis H37Rv Rv3226c	Corynebacterium glutamicum	Mycobacterium tuberculosis H37Rv Rv0336	Mycobacterium tuberculosis sigH
	db Match	prf:2214304A		prf:2214304B	pir:F70592	pir:D70592		sp:RR30_SPIOL	gsp:R74093		pir.A70591	pir.F70590	gp:AF114233_1	pir:D70590	GP:AF114233_1	pir.G70506	prf.2515333D
	ORF (bp)		684		1704	588	156	663	2535	672	504	987	1413	480	123	1110	618
	Terminal (nt)	791409	790738	793008	794711	795301	795292	796110	798784	700601	800200	800208	801190	803128	802565	803131	805025
	Initial (nt)	790732	791421	791512	793008	794714	795447	795448	796250	00000		801194	802602	802649		804240	804408
	SEO No.	(a.a) 4340	1341	4342	4343	4344	4345	4346	4347	0,00	4349	4350	4351	4352	4353	4354	4355
		(DNA) 840			843	844	845	846	847	9	849	850	851	852	853	854	855

_
ס
inued)
=
=
.=
conti
=
ب
့ပ
_
~
മ
=
\mathbf{p}
Table

	Function	regulatory protein	hypothetical protein	hypothetical protein	DEAD box ATP-dependent RNA helicase		hypothetical protein	hypothetical protein	ATP-dependent DNA helicase		ATP-dependent DNA helicase			potassium channel	hypothetical protein	DNA helicase II		hypothetical protein	
Matchod	length (a.a.)	84	129	415	458		291	249	1155		1126			302	230	099		280	
	Similarity (%)	96.4	65.1	62.2	64.0		69.8	629	48.9		65.7			64.2	58.3	58.8		49.3	
	Identity (%)	78.6	33.3	29.6	37.3		46.4	37.0	23.9		41.4			26.2	30.4	32.6		26.8	
(Homologous gene	Mycobacterium tuberculosis H37Rv Rv3219 whiB1	Mycobacterium tuberculosis H37Rv Rv3217c	Mycobacterium tuberculosis H37Rv Rv3212	Klebsiella pneumoniae CG43 deaD		Mycobacterium tuberculosis H37Rv Rv3207c	Mycobacterium tuberculosis H37Rv Rv3205c	Mycobacterium tuberculosis H37Rv Rv3201c		Mycobacterium tuberculosis	H3/KV KV3ZU1c		Methanococcus jannaschii JAL-1 MJ0138.1.	Mycobacterium tuberculosis H37Rv Rv3199c	Escherichia coli K12 uvrD		Mycobacterium tuberculosis H37Rv Rv3196	
	db Match	pir:D70596	pir.B70596	pir:E70595	sp:DEAD_KLEPN		pir:H70594	pir:F70594	pir:G70951		nir.G70951	5		sp:Y13B_METJA	pir.E70951	sp:UVRD_ECOLI		pir:B70951	
	ORF (bp)	258	420	1200	1272	225	846	759	3048	780	3210	25	1332	1005	714	2034	591	816	603
	Terminal (nt)	805535	806737	806740	807946	809510	810394	811163	814217	811386	047400	774110	814210	818523	819236	821287	822669	821290	823391
	Initial (nt)	805792	806318	807939	809217	809286	809549	810405	811170	812165	044004	8 14204	815541	817519	818523	819254			822789
	SEQ NO.	4356	4357	4358	4359	4360	4361	4362	4363	1361	1001	4305	4366	4367	4368	4369	4370	4371	4372
		(DINA) 856	857	858	859	860	861	862	863	790	900	C98	866	867	868	869	870	871	872

			T	\top			T								rie l					
Function	hypothetical protein	hypothetical protein			hypothetical protein	regulatory protein	ethylene-inducible protein	hypothetical protein	hypothetical protein		alpha-lytic proteinase precursor		DNA-directed DNA polymerase		major secreted protein PS1 protein precursor					monophosphalase
Matched length (a.a.)	474	350			1023	463	301	81	201		408		208		363				1	255
Similarity (%)	76.4	74.9			73.5	57.7	89.0	53.0	73.6		44.4		51.4		51.5					74.9
Identity (%)	42.8	43.4			47.2	34.3	67.4	49.0	40.8		26.7		25.0	22	27.0					51.8
Homologous gene	Mycobacterium tuberculosis H37Rv Rv3195	Mycobacterium tuberculosis H37Rv Rv3194			Mycobacterium tuberculosis H37Rv Rv3193c	Deinococcus radiodurans DR0840	Hevea brasiliensis laticifer er1	Aeropyrum pernix K1 APE0247	Bacillus subtilis 168 yaaE		Lysobacter enzymogenes ATCC 29487		Neurospora intermedia LaBelle-	1b mitochondrion plasmid	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1					Streptomyces alboniger pur3
db Match	1446 pir.A70951	pir:H70950			pir.G70950	gp:AE001938_5	SN:FR1 HFVBR	DID-E72782	SD:YAAE BACSU		pir.TRYXB4			pir. S03 722	sp:CSP1_CORGL					prf:2207273H
ORF (bp)	1446	1050	675	522	2955	1359	05.1			363	1062	504	5	582	1581	429	510	222	309	780
Terminal (nt)	822680	825239	825242	825996	829570	829627	024074	02137	832570	822795	834633	000000	933390	835837	838892	839353	840139	840210	840437	841517
Initial (nt)	824125	824190	825916	826517	826616	830985	700700	831021	831922	000151	833572	0000	834888	835253	837312	838925				
SEQ.	(a.a.) 4373	4374	4375	4376	4377	4378	100	4379	4380	000	4383		4384	4385	4386	4387	4388	4389	4390	4391
1	(DNA) 873	874	875	876	877	878		6/8	880	- 0	883	3	884	882	886	887	288	880	890	891

_											_r-			- т	—			
	Function	myo-inositol monophosphatase	peptide chain release factor 2	cell division ATP-binding protein	hypothetical protein	cell division protein	small protein B (SSRA-binding protein)	hypothetical protein				vibriobactin utilization protein	Fe-regulated protein	hypothetical membrane protein	ferric anguibactin-binding protein precursor	ferrichrome ABC transporter (permease)	ferrichrome ABC transporter (permease)	ferrichrome ABC transporter (ATP-binding protein)
	Matched length (a.a)	243	359	226	72	301	145	116				272	319	191	325	313	312	250
	Similarity (%)	59.3	88.6	91.2	54.0	74.8	75.9	73.3				52.9	58.3	71.2	61.5	80.8	76.0	82.0
	Identity (%)	33.7	68.0	70.4	43.0	40.5	43.5	44.0				26.8	29.5	36.1	27.7	39.3	35.6	48.4
ומסוכ ו (בפוונווומבם)	Homologous gene	Streptomyces flavopersicus spcA	Streptomyces coelicolor A3(2) prfB	Mycobacterium tuberculosis H37Rv Rv3102c ftsE	Aeropyrum pernix K1 APE2061	Mycobacterium tuberculosis H37Rv Rv3101c ftsX	Escherichia coli K12 smpB	Escherichia coli K12 yeaO				Vibrio cholerae OGAWA 395 viuB	Staphylococcus aureus sirA	Mycobacterium leprae MLCB1243.07	Vibrio anguillarum 775 fatB	Bacillus subtilis 168 yclN	Bacillus subtilis 168 yolO	Bacillus subtilis 168 yclP
	db Match	gp:U70376_9	sp:RF2_STRCO	pir:E70919	PIR:G72510	pir:D70919	sp:SMPB_ECOLI	sp:YEAO_ECOLI	in the state of th			sp:VIUB_VIBCH	prf:2510361A	gp:MLCB1243_5	sp:FATB_VIBAN	pir:B69763	pir.C69763	pir.D69763
	ORF (bp)	819	1104	687	264	900	492	351	537	300	405	825	918	588	1014	666	942	753
	Terminal (nt)	842306	844360	845181	844842	846097	846628	846982	846269	848026	847718	848499	849326	850412	852364	853616	854724	855476
	Initial (nt)	843124	843257	844495	845105	845198	846137	846632	846805	847727	848122	849323	850243		851351	852618	853783	
	SEQ NO.	4392	4393	4394	4395	4396	4397	4398	4399	4400	4401	4402	4403	4404	4405	4406	4407	4408
	SEQ.		893	894	895	968	897	898	899	006	901	902	903	904	905	906	907	806

	Function	hypothetical protein	hypothetical protein	kynurenine aminotransferase/glutamine transaminase K		DNA repair helicase	hypothetical protein	hypothetical protein		resuscitation-promoting factor	cold shock protein	hypothetical protein	glutamine cyclotransferase			permease		rRNA(adenosine-2'-0-)- methyltransferase	
	Matched length (a.a.)	48	84	442		613	764	57		198	61	159	273			477		319	
	Similarity (%)	72.0	0.99	64.9		62.3	65.2	62.0		64.7	75.4	58.5	67.8			79.3		51.7	
	Identity (%)	0.99	61.0	33.5		30.7	36.1	44.0		39.4	42.6	28.3	41.8			43.6		27.9	
lable (commaca)	Homologous gene	Chlamydia muridarum Nigg TC0129	Chlamydia pneumoniae	Rattus norvegicus (Rat)		Saccharomyces cerevisiae S288C YIL143C RAD25	Mycobacterium tuberculosis H37Rv Rv0862c	Mycobacterium tuberculosis H37Rv Rv0863		Micrococcus luteus rpf	Lactococcus lactis cspB	Mycobacterium leprae MLCB57.27c	Deinococcus radiodurans DR0112			Streptomyces coelicolor A3(2) SC6C5.09		Streptomyces azureus tsnR	
	db Match	PIR:F81737	GSP:Y35814	pir.S66270		sp:RA25_YEAST	pir:F70815	pir:G70815		prf:2420502A	prf:2320271A	gp:MLCB57_11	gp:AE001874_1			gp:SC6C5_9		sp:TSNR_STRAZ	
	ORF (bp)	147	273 (639	1	2199	219	843	597	+	525	774	669	138	1473	912	828	876
	Terminal (nt)	860078	860473	862752	862753	863396	865119	867571	868630	867803	869318	869379	869918	870721	871660	873210	872016	874040	874069
	Initial (nt)	860224	860745	861544	863391	865066	867317	867353	867788	868399	868938	869903	870691	871419	871523	871738	872927	873213	874944
	SEQ NO.	4409	7770	4410	4412	4413	4414	4415	4416	4417	4418	4419	4420	4421	4422	4423	4424	4425	4426
	SEQ NO.			911	912	913	914	915	916	917	918	919	920	921	922	923	924	925	926

	Function	hypothetical protein	phosphoserine transaminase	acetyl-coenzyme A carboxylase	carboxy transferase subunit beta	hypothetical protein	sodium/proline symporter		hypothetical protein	fatty-acid synthase			homoserine O-acetyltransferase				glutaredoxin	dihydrofolate reductase	thymidylate synthase	ammonium transporter	ATP dependent DNA helicase	formamidopyrimidine-DNA glycosidase
4-4-4-4	Matched length (a.a.)	316	374	000	236	103	549		243	3026			335				62	171	261	202	1715	298
	Similarity (%)	55.1	52.9		69.5	80.6	58.1		77.4	83.4			59.7				72.6	62.0	88.9	56.4	68.1	51.0
	Identity (%)	32.6	21.9		36.0	51.5	26.4		49.0	63.1			29.0				43.6	38.0	64.8	32.2	47.4	29.2
(Sommer) (Sommer)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0883c	Bacillus circulans ATCC 21783		Escherichia coli K12 accD	Streptomyces coelicolor A3(2) SCI8.08c	Pseudomonas fluorescens		Mycobacterium tuberculosis H37Rv Rv2525c	Corynebacterium ammoniagenes fas			I entospira meveri metX				Deinococcus radiodurans DR2085	Mycobacterium avium folA	Escherichia coli K12 thyA	Escherichia coli K12 cysQ	Streptomyces coelicolor A3(2)	Synechococcus elongatus naegeli mutM
	db Match	sp:YZ11_MYCTU	C74.430	pll.57 1453	sp.AccD_ECOLI	gp:SCI8_8	pir.JC2382		pir.A70657	pir.S55505			n.f. 024 723 5B	pii.z317330p			gp:AE002044_8	prf: 2408256A	SD:TYSY ECOLI	SD.CYSQ ECOLI		sp:FPG_SYNEN
	ORF (bp)	933	47.00	1178	1473	339	1653	816	840	8907	489	186	1047	1047	426	267	237	456	798	756	4560	768
	Terminal (nt)	874951	7007	8/5985	879642	881985	883647	884541	884549	894578	895191	805503	00000	895580	896719	89768	897727	897979	898434	899253	904602	905382
	Initial (nt)	875883		877712	881114	881647	881995	883726	885388	885672	894703	805408	004080		897144	897423	897963	898434				
	SEQ.	(a.a.) 4427		4428	4429	4430	4431	4432	4433	4434	4435	30,4	4430	4437	4438	4439	4440	4441	CVVV	1444	4444	4445
		(DNA) 927		928	929	930	931	932	933	934	035		830	937	938	939	940	041	5 5	242	944	945

=
ĕ
큳
≢
sont
ပ
$\overline{}$
<u>a</u>
[ab]
۳

															_			$\neg \tau$			
	Function	hypothetical protein	alkaline phosphatase	integral membrane transporter		dilicose-6-phosphate isomease		hypothetical protein		hypothetical protein	ATP-dependent helicase	ABC transporter	ABC transporter			peptidase	hypothetical protein		5-phosphoribosylglycinamide formyltransferase	5-phosphoribosyl-5-aminoimidazole-4-carboxamide formyltransferase	citrate lyase (subunit)
	Matched length (a.a.)	128	196	403		557	\top	195		78	763	885	217			236	434		189	525	217
	Similarity (%)	86.7	71.9	67.0		0.77	0.77	52.3		85.9	73.1	48.6	71.4			73.3	8.09		86.2	87.8	100.0
	Identity (%)	55.5	38.8	33.8			52.4	24.6		59.0	46.1	21.8	43.8			43.6	31.1		64.6	74.5	100.0
lable I (continued)	Homologous gene	Mycobacterium tuberculosis	Lactococcus lactis MG1363 apl	Streptomyces coelicolor A3(2)	30129.000		Escherichia coli JM101 pgi	Mycobacterium tuberculosis H37Rv Rv0336		Mycobacterium tuberculosis H37Rv Rv0948c	Bacillus stearothermophilus NCA 1503 pcrA	Streptomyces coelicolor A3(2)	Racillus subtilis 168 vvrO		-	Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv0955		Corynebacterium ammoniagenes purN	Corynebacterium ammoniagenes purH	Corynebacterium glutamicum ATCC 13032 citE
	db Match	pir:F70816	Sp. API ACI A	nir T36776			pir:NUEC	pir:G70506		sp:YT26_MYCTU	sp:PCRA_BACST	gp:SCE25_30	A-F-0420410D	p11.44204 101		pir.D70716	sp:YT19_MYCTU		gp:AB003159_2	gp:AB003159_3	gp:CGL133719_3
	ORF (bp)		008			717	1620	1176	381	309	2289	2223	900	000	207	711	1425	228	627	1560	819
	Terminal (nt)	98	005700	9007 92		909328	907759	909521	911223	910855	913514	913477	000	8.12088	916368	916970	919352	917827	919956	921526	922412
	Initial (nt)	905389	70000	900391	000	908612	909378	910696	910843	911163	911226	915699			916874	917680	917928	918054			921594
	SEQ No.	(a.a.) 4446		4447	4440	4449	4450	4451	4452	4453	4454	4455		4456	4457	4458	4459	4460	4461	4462	4463
		(DNA)			940	949	950	1	952	953	954	955		956	957	958	959	090	96.1	962	963

<u>e</u> q
tinu
So
-
음
Tak

	Function	repressor of the high-affinity (methyl) ammonium uptake system	hypothetical protein		30S ribosomal protein S18	30S ribosomal protein S14	50S ribosomal protein L33	50S ribosomal protein L28	transporter (sulfate transporter)	Tail of transport represent	TI/O II aliapoir leprosasi	50S ribosomai proteili L3 i	50S ribosomal protein L32		copper-inducible two-component	regulator	two-component system sensor	proteinase DO precursor	molybdopterin biosynthesis cnx1	protein (molybdenum cofactor biosynthesis enzyme cnx1)		large-conductance	mechanosensitive channel	hypothetical protein	5-formyltetrahydrofolate cyclo-ligase	
	Matched length (a.a.)	222 re	109 h		67 3		49 5	77 5				78	55		207		484	406	\top	188		70,7	131	210	191	
	Similarity 1 (%)	100.0	100.0		76.1	80.0	83.7	α τα	2.5		(7.5	65.4	78.2		1	73.0	60.1	59.9		54.3			۲.//	0.09	59.7	
	Identity (%)	100.0	100.0		500	54.0	55.1		02.0	34.4	37.5	37.2	60.0			48.0	24.4	22.3	3	27.7			50.4	28.6	25.1	
lable 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 amtR	Corynebacterium glutamicum ATCC 13032 vicC		0 T C C C C C C C C C C C C C C C C C C	Cyanophora paradoxa 1ps 10	Eschericila coli M12 i parv	Escherichia con Nizipino	Escherichia coll K12 rpmB	Bacillus subtilis 168 yvdB	Staphylococcus aureus zntR	Haemophilus ducreyi rpmE	Streptomyces coelicolor A3(2) SCF51A,14			Pseudomonas syringae copR	Escharichia coli K12 baeS		Escherichia coil N. Z. IIII.	Arabidopsis thaliana CV cnx1		Signification of the state of t	Mycobacterium tubercurosis H37Rv Rv0985c mscL	Mycobacterium tuberculosis	Homo sabiens MTHFS	
	db Match	gp:CGL133719_2	gp:CGL133719_1		- -	4	114_ECOLI	sp:RL33_ECOLI	pir.R5EC28	pir:B70033	prf:2420312A	Sp.RL31 HAEDU	gp:SC51A_14			sp:COPR_PSESM		Sp.BAES	pir:S45229	sp:CNX1_ARATH			sp:MSCL_MYCTU	pir.A70601	rir 10.4380	DIT.304508
	ORF (bp)		327		-+			162	234	1611	312	_			447	969	100	1365	1239	585	- 5	38	405	651	27.9	2/0
	Terminal (nt)	922396	923138		923981	924159	924425	924734	924901	925325	926931	927737	927922		927339	928812		930248	931648	932290		932487	932570	933060	00000	933/33
	Initial	923061	923464		923661	924407	924727	924895	925134	926935	927242	777770	927752		927785	928117		928884	930410	931706	_	932290	932974	033710	i_	934302
	SEQ.			- 1	4466	4467	4468	4469	4470	4471	4472	1473	4474		4475	4476		4477	4478	4479		4480	4481	7,0	4407	4483
		(DNA)		_	996	296	968	696	970	971	07.0	210	973	;	975	976	5	817	978	979		980	981	6	7 0 S	983

$\widehat{\Rightarrow}$
ĕ
\supset
.⊆
⇇
8
ည
_
_
<u>Ф</u>
₽
<u>.a</u>
•

		·										T		\top				
	Function	UTPglucose-1-phosphate uridylyltransferase	molybdopterin biosynthesis protein	ribosomal-protein-alanine N- acetyltransferase	hypothetical membrane protein	cyanate transport protein		hypothetical membrane protein	hypothetical membrane protein	cyclomaltodextrinase	hypothetical membrane protein	hypothetical protein	methionyl-tRNA synthetase	ATP-dependent DNA helicase	hypothetical protein	hypothetical protein		transposase
Matched	length (a.a.)	296	390	193	367	380		137	225	444	488	272	615	741	210	363		94
	Similarity (%)	68.9	62.6	54.9	54.8	62.4		9.09	59.6	53.6	75.2	78.3	66.7	49.0	53.3	59.0		59.6
-	Identity (%)	42.2	31.8	29.0	30.3	26.6		32.1	25.3	26.8	43.0	54.0	33.8	26.2	27.6	30.0		33.0
	Homologous gene	Xanthomonas campestris	Arthrobacter nicotinovorans moeA	Escherichia coli K12 rimJ	Mycobacterium tuberculosis H37Rv Rv0996	Escherichia coli K12 cynX		Haemophilus influenzae Rd H11602	Mycobacterium tuberculosis H37Rv Rv0093c	Bacillus sphaericus E-244 CDase	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv1003	Methanobacterium thermoautotrophicum Delta H MTH587 metG	Escherichia coli recQ	Methanobacterium thermoautotrophicum Delta H MTH796	Bacillus subtilis 168 yxaG		Enterococcus faecium
	db Match	pir.JC4985	prf.2403296B	sp:RIMJ_ECOLI	pir:G70601	sp:CYNX_ECOL!		sp:YG02_HAEIN	sp:Y05C_MYCTU	sp:CDAS_BACSH	pir.E70602	sp:Y19J_MYCTU	sp:SYM_METTH	prf: 1306383A	pir: B69206	sp:YXAG_BACSU		gp:AF029727_1
	ORF (bp)		1257	099	1020	1200	1419	405	714	1167	1560	825	1830	2049	633	1158	531	294
	Terminal (nt)	6	936607	937274	938401	939626	937799	940090	940754	941925	942381	944833	948669	950839	950828	951834	953043	954266
	Initial (nt)	934423	935351	936615	937382	938427	939217	939686	940041	940759	943940	944009	946840	948791		952991		953973
-	SEQ.	(a a.) 4484	4485	4486	4487	4488	4489	4490	4491	4492	4493	4494	4495	4496	4497	4498	4499	
		(DNA)	985		987	988	686	066	991	992	993	994	995	900	266	900	666	1000

Table 1 (continued)

	Function	transposase	transposase subunit		D-lactate dehydrogenase	6 (site-specific DNA-methyltransferase		transposase	transposase	transcriptional regulator	cadmium resistance protein		hypothetical protein	hypothetical protein	dimethyladenosine transferase	isopentenyl monophosphate kinase		ABC transporter	pyridoxine kinase	hypothetical protein	hypothetical protein
Matched	length (a.a.)	139 tr	112 tr		565	+	231 s		94 tı	139 tı	91 tı	205 0		263	362	265	315 i		478	242	159	108
	Similarity (%)	9.79	88.4		75.6	200	62.8		59.6	67.6	84.6	66.8		70.7	63.5	65.3	67.0		85.8	67.4	58.5	78.7
	Identity (%)	41.7	73.2		787	40.4	30.8		33.0	41.7	62.6	31.7		46.4	34.8	34.3	42.5		65.5	40.1	27.0	45.4
	Homologous gene	Escherichia coli K12	Brevibacterium linens tnpA			Escherichia coli did	Klebsiella pneumoniae OK8 kpnIM		Enterococcus faecium	Escherichia coli K12	Mycobacterium tuberculosis H37Rv Rv1994c	Staphylococcus aureus cadD		Mycobacterium tuberculosis H37Rv Rv1008	Mycobacterium tuberculosis H37Rv Rv1009 rpf	Escherichia coli K12 ksgA	Mycobacterium tuberculosis H37Rv Rv1011		Saccharopolyspora erythraea ertX	Escherichia coli K12 pdxK	Mycobacterium tuberculosis H37Rv Rv2874	Streptomyces coelicolor A3(2) SCF1.02
	db Match	nir TOEC13	55 1	1		prf.2014253AE	sp:MTK1_KLEPN		ap:AF029727 1	pir.TQEC13	sp:YJ94_MYCTU	prf.2514367A		pir.C70603	pir.D70603	sp:KSGA_ECOLI	pir.F70603		pir:S47441	Sp:PDXK_ECOLI	sp:YX05_MYCTU	gp:SCF1_2
	ORF (bp)	477	1	T'		1713	840	219	294	1	357	621	342	831	1071	879	933	642	1833	792	480	321
	Terminal (nt)	054753	054354	20000	920//4	922686	957844	959185	960374	960861	961653	962249	961321	963639	964934	965852	966784	965950	968660	969458	969461	970349
	Initial (nt)	054277	054044	1010	955911	957398	958683	959403	960081	960385	961297	961629	961662	962809	963864	964974	965852	966591	966828	968667		970029
	SEQ No.	(a.a.)	1001	4302	4503	4504	4505	4506	4507	4508		4510	4511	4512	4513	4514		4516		4518		4520
	SEQ NO.	(100.4)			1003	1004		1006			1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020

_			 -			Т-	Т	Т			T						T	
	Function	hypothetical protein	regulator	hypothetical protein	enoyl-CoA hydratase				major secreted protein PS1 protein precursor	transcriptional regulator (tetR family)	membrane transport protein	S-adenosylmethionine:2- demethylmenaquinone methyltransferase		hypothetical protein	hypothetical protein		peptide-chain-release factor 3	amide-urea transport protein
	Matched length (a.a.)	107	261	276	337				440	100	802	157		121	482		546	404
	Similarity (%)	69.2	88.1	59.1	70.9				56.8	70.0	70.0	75.8		63.6	48.3		0.89	72.8
	Identity (%)	35.5	64.8	27.2	35.6				27.7	44.0	42.6	38.2		29.8	24.9		39.2	42.8
lable i (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCF1.02	Streptomyces coelicolor A3(2) SCJ1.15	Bacillus subtilis 168 yxeH	Mycobacterium tuberculosis H37Rv echA9				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Streptomyces coelicolor A3(2) SCF56.06	Streptomyces coelicolor A3(2) SCF87.17c	Haemophilus influenzae Rd H10508 menG		Neisseria meningitidis NMA1953	Mycobacterium tuberculosis H37Rv Rv1128c		Escherichia coli K12 prfC	Methylophilus methylotrophus fmdD
	db Match	gp:SCF1_2	gp:SCJ1_15	sp:YXEH_BACSU	893				sp:cSP1_cORGL	gp:SCF56_6	gp:SCE87_17	sp:MENG_HAEIN		gp:NMA6Z2491_21 4	pir.A70539		nir.150305	
	ORF (bp)	321 g	096	792 8	1017	654	777	1212	1386	579	2373	498	999	381	1551	936	1617	1269
	Terminal (nt)	970738	971823	972244		973304	974962	974965	977734	977800	978368	981490	982287	982294	984650	985845	790700	984007
	Initial (nt)		970864	973035	973139	973957	974186	976176	976349	978378	980740		981622		983100	084910		986739
	SEQ.	(a.a)	4522	4523	4524	4525	4526	4527	4528	4529	4530		4532		4534	4535		4536
		(DNA)	1022			1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1005	200	1036

nued)	
continu	
<u>ප</u>	
<u>l</u> e 1	
Tabl	

																$\neg op$		
	Function	amide-urea transport protein	amide-urea transport protein	high-affinity branched-chain amino acid transport ATP-binding protein	high-affinity branched-chain amino acid transport ATP-binding protein	peptidyl-tRNA hydrolase	2-nitropropane dioxygenase	glyceraldehyde-3-phosphate dehydrogenase	polypeptides predicted to be useful antigens for vaccines and diagnostics	peptidyl-tRNA hydrolase	50S ribosomal protein L25	lactoylgiutathione lyase	DNA alkylation repair enzyme	ribose-phosphate pyrophosphokinase	UDP-N-acetylglucosamine pyrophosphorylase		sufl protein precursor	nodulation ATP-binding protein l
Matched	length (a.a.)	77	234	253	236	187	361	342	51	174	194	143	208	316	452		909	310
-	Similarity (%)	61.0	68.0	70.0	69.1	70.6	54.0	72.8	61.0	63.2	65.0	54.6	62.5	79.1	71.9		61.7	64.8
	Identity (%)	40.8	34.6	37.9	35.2	39.0	25.2	39.5	54.0	38.5	47.0	28.7	38.9	44.0	45.0		30.8	35.8
(2020) - 2005	Homologous gene	Methylophilus methylotrophus fmdE	Methylophilus methylotrophus fmdF	Pseudomonas aeruginosa PAO braF	Pseudomonas aeruginosa PAO braG	Escherichia coli K12 pth	Williansis mrakii IFO 0895	Streptomyces roseofulvus gap	Neisseria meningitidis	Escherichia coli K12 pth	Mycobacterium tuberculosis	Salmonella typhimurium D21	Bacillus cereus ATCC 10987	Bacillus subtilis prs	Bacillus subtilis gcaD		Escherichia coli K12 sufi	Rhizobium sp. N33 nodl
	db Match	prf.2406311B	prf:2406311C	sp:BRAF_PSEAE	G_PSEAE	PTH ECOI I	Sp. 111 LCCCC	Sp. CAP ZYMMO	GSP:Y75094	LICOT HTG:	pir:B70622	sp:LGUL_SALTY	prf:2516401BW	sp:KPRS_BACCL	pir:S6		1000111110	sp. oc.
	ORF (bp)	882	1077	726	669	643	710	1065	369	101	000	429	624	975	1455	1227	1221	918
	Terminal (nt)	988904	989980	990705	991414	7777	99.1417	993080	994106	200404	994645	996830	996833	997466	998455	_		1002864
	Initial (nt)	988023	988904	989980	990716	0000	82028	992058			995375							1053 4553 1001332 1054 4554 1003013
	SEQ NO.	(a.a.)	4539	4540	4541	1	4542	4543	4545		4546	4548	4549					4553
		(DNA)	1039			-	_	1043			1046	1048	1049	2 0	1051		1052	1053

$\overline{}$
ဥ္က
ned
Ξ
=
Ξ
8
٣
~
Φ
ᅙ
ā

	Function	hypothetical membrane protein	two-component system sensor	two component transcriptional	regulator (luxik lalliliy)		hypothetical membrane protein	ABC transporter		ABC transporte	gamma-glutamyltranspeptidase precursor						transposase protein fragment	transposase (IS1628 TnpB)			Total	transcriptional regulator (1 cm. family)	transcription/repair-coupling protein	
Matchad	length (a.a.)	272	459	202			349	535		5/3	999						37	236				183	1217	
	Similarity (%)	63.2	48.4	67.3	9		64.5	57.0		74.0	58.6						72.0	100.0				59.6	65.1	
	Identity 8 (%)	30.2	24.6	u u	2		31.5	28.6		44.0	32.4						64.0	9.66				23.0	36.2	
	Homologous gene	Strantomyces lividans ORF2	Escherichia coli K12 uhpB		Streptomyces peucetius units		Streptomyces coelicolor A3(2) SCF15.07	Streptomyces glaucescens strV		Mycobacterium smegmatis exiT	Escherichia coli K12 ggt						Corynebacterium glutamicum TnpNC	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB				Escherichia coli tetR	Escherichia coli mfd	
	db Match	0300141		sp.onre_ecor.	prf.2107255A		gp:SCF15_7	pir.S65587		pir.T14180	sp:GGT_ECOL!						GPU:AF164956_23	gp:AF121000_8				sp:TETC_ECOLI	-	
	ORF (bp)	_	_	/671	609	204	1155	1440	153	1734	1965	Ç	248	519	192	606	243	708	462	597	312	651	3627	+
	Terminal (nt)		1004/83	1006085	1006697	1006734	1008152	1010061	1008534	1011790	1011797	7 007 707	1014204	1014343	1015116	1016560	1015450	1015145	1017018	1017274	1018393	1019066	1022716	
	Initial (nt)	,	1003953	1004829	1006089	1006937	1006998	1008622	1008686	4040057	1013761	0,0	1014016	1014861	1014925	1015652	1	1015852	1016557		_1			1020613
	SEQ NO.		1	4556	4557	4558		4560	4561	75.67	_	-	4564	4565	4566	4567		4569	4570	+	-			
				1056	1057	1058	1059	1060	1061	200	1063		1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	4074	1075

| | | | | | $\neg \Gamma$ |

 |

 | | | Γ | |
 | | - 1
 | - 1 | |
 | |
|-----------------------------|---|--|---|--|---
--
--
--
--
--
--|--|--|---|---
--
--|--|---
---|---|
| Function | Neisserial polypeptides predicted to
be useful antigens for vaccines and | diagnostics | multidrug resistance-like ATP-
binding protein, ABC-type transport
protein | ABC transporter | | hypothetical membrane protein

 |

 | hypothetical protein | | | | IpqU protein
 | enolase (2-phosphoglycerate | glycerate hydro-lyase)
 | hypothetical protein | | nypotnetical protein
 | |
| Matched
length
(a.a.) | 9/ | | 632 | 574 | t /o | 368

 |

 | 183 | | | | 241
 | 777 | 774
 | 41 | ; | 191
 | |
| Similarity
(%) | 0 69 | | 62.7 | 2 | 8.1.8 | 100.0

 |

 | 57.4 | | | | 6.89
 | 9 | 0.00
0.00
 | 58.0 | | 55.0
 | |
| (%) | 78.0 |)
j | 31.3 | 0 | 20.5 | 100.0

 |

 | 22.4 | 200 | | | 46.5
 | 2 | 64.0
 | 089 | | 31.9
 | |
| Homologous gene | | Neisseria gonormoeae | Escherichia coli mdlB | Mycobacterium tuberculosis | H37Rv Rv1273c | Corynebacterium glutamicum

 |

 | | Bacilius subtilis yabin | | | Mycobacterium tuberculosis
 H37Rv Rv1022 lpqU
 | | Bacillus subtilis eno
 | A A A DE 2459 | Aeropylum permitting | Mycobacterium tuberculosis
H37Rv Rv1024
 | |
| db Match | | Y75301 | OLB_ECOL! | | 373_MYCTU | sp:YLI3_CORGL

 |

 | | sp.YABN_BACSU | | | pir.A70623
 | | sp:ENO_BACSU
 | | PIR:B/24// | pir.C70623
 | |
| ORF
(bp) | -+- | 228 | 1968 | | 1731 |

 |

 | 297 | 585 | 426 | 378 | 786
 | | 1275
 | | 144 |
 | |
| Jal | | 1021078 | 1022699 | | 1024666 | 1026505

 |

 | 1032181 | 1032780 | 1032760 | 1033269 | 1034739
 | | 1036223
 | | 1036016 |
 | |
| = | | | 1024666 | | 1026396 | 102888

 | 2000

 | 1031885 | 1032196 | 1033185 | 1033646 | 1033954
 | | 1034949
 | | 1036159 | 1036316
 | |
| SEQ
NO. | (a.a.) | 4576 | 4577 | | |

 |

 | 4580 | 4581 | 4582 | 4583 | 4584
 | |
 | | |
 | |
| ~ | | 1076 | 1077 | | 1078 |

 |

 | 1080 | 1081 | 1082 | + |
 | 5 | 1085
 | | 1086 | 1087
 | |
| | SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (a.a.) | SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (a.a.) (a.a.) (nt) (nt) (bp) (a.a.) | SEQ (a.a.) Initial (a.a.) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity length (a.a.) Matched (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) 76 | SEQ (a.a.) Initial (nt) Terminal (bp) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) (a.a.) (nt) (nt) | SEQ Initial No. (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Matched | SEQ
(a.a.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) <td>SEQ (a.a.) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%)<td>SEQ
NO.
(a.a.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%</td><td>SEQ
NO.
(a.a.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%</td><td>SEQ
NO.
(nt) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene Identity
(%) Similarity
(%) Matched
(%) Matched
(%)</td><td>SEQ
NO.
(nt) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene Identity
(%) Similarity
(%) Matched
(%) 76 4576 1021305 1022699 1968 sp:MDLB_ECOLI Escherichia coli mdiB 31.3 62.7 632 4579 1026396 1024666 1731 sp:YC73_MYCTU Mycobacterium tuberculosis 50.2 81.9 574 4579 1028886 1026505 2382 sp:YLI3_CORGL ATCC 13032 orf3 100.0 368 4580 1032186 1032780 585 sp.YABN_BACSU Bacillus subtilis yabN 33.4 57.4 183 4581 1033185 1032760 426 426 467 467 467 467 467 467 467</td><td>SEQ
(n.t.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene Identity
(%) Similarity
(%) Matched
(%) Matched
(%)</td><td>SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) NO. (nt) (nt) (nt) (hp) db Match Homologous gene (%) (%)<td>SEQ
(nt) Initial
(nt) Terminal
(nt) ORF
(nt) db Match
(nt) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)</td><td>SEQ
(a.a.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) 4576 (nt) (nt) (nt) (nt) (nt) (nt) (pp) (pp)</td><td>SEQ
(a.a.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<td>SEQ
(aa.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<td>SEQ
(a.a.) Initial
(int) Terminal
(int) ORF
(int) db Match
(bp) Homologous gene
(%) Identity
(%) Smilarity
(%) Matched
(%) Matched</td></td></td></td></td> | SEQ (a.a.) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) <td>SEQ
NO.
(a.a.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%</td> <td>SEQ
NO.
(a.a.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%</td> <td>SEQ
NO.
(nt) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene Identity
(%) Similarity
(%) Matched
(%) Matched
(%)</td> <td>SEQ
NO.
(nt) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene Identity
(%) Similarity
(%) Matched
(%) 76 4576 1021305 1022699 1968 sp:MDLB_ECOLI Escherichia coli mdiB 31.3 62.7 632 4579 1026396 1024666 1731 sp:YC73_MYCTU Mycobacterium tuberculosis 50.2 81.9 574 4579 1028886 1026505 2382 sp:YLI3_CORGL ATCC 13032 orf3 100.0 368 4580 1032186 1032780 585 sp.YABN_BACSU Bacillus subtilis yabN 33.4 57.4 183 4581 1033185 1032760 426 426 467 467 467 467 467 467 467</td> <td>SEQ
(n.t.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene Identity
(%) Similarity
(%) Matched
(%) Matched
(%)</td> <td>SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) NO. (nt) (nt) (nt) (hp) db Match Homologous gene (%) (%)<td>SEQ
(nt) Initial
(nt) Terminal
(nt) ORF
(nt) db Match
(nt) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)</td><td>SEQ
(a.a.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) 4576 (nt) (nt) (nt) (nt) (nt) (nt) (pp) (pp)</td><td>SEQ
(a.a.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<td>SEQ
(aa.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<td>SEQ
(a.a.) Initial
(int) Terminal
(int) ORF
(int) db Match
(bp) Homologous gene
(%) Identity
(%) Smilarity
(%) Matched
(%) Matched</td></td></td></td> | SEQ
NO.
(a.a.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(% | SEQ
NO.
(a.a.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(% | SEQ
NO.
(nt) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene Identity
(%) Similarity
(%) Matched
(%) Matched
(%) | SEQ
NO.
(nt) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene Identity
(%) Similarity
(%) Matched
(%) 76 4576 1021305 1022699 1968 sp:MDLB_ECOLI Escherichia coli mdiB 31.3 62.7 632 4579 1026396 1024666 1731 sp:YC73_MYCTU Mycobacterium tuberculosis 50.2 81.9 574 4579 1028886 1026505 2382 sp:YLI3_CORGL ATCC 13032 orf3 100.0 368 4580 1032186 1032780 585 sp.YABN_BACSU Bacillus subtilis yabN 33.4 57.4 183 4581 1033185 1032760 426 426 467 467 467 467 467 467 467 | SEQ
(n.t.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene Identity
(%) Similarity
(%) Matched
(%) Matched
(%) | SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) NO. (nt) (nt) (nt) (hp) db Match Homologous gene (%) (%) <td>SEQ
(nt) Initial
(nt) Terminal
(nt) ORF
(nt) db Match
(nt) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)</td> <td>SEQ
(a.a.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) 4576 (nt) (nt) (nt) (nt) (nt) (nt) (pp) (pp)</td> <td>SEQ
(a.a.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<td>SEQ
(aa.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<td>SEQ
(a.a.) Initial
(int) Terminal
(int) ORF
(int) db Match
(bp) Homologous gene
(%) Identity
(%) Smilarity
(%) Matched
(%) Matched</td></td></td> | SEQ
(nt) Initial
(nt) Terminal
(nt) ORF
(nt) db Match
(nt) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) | SEQ
(a.a.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) 4576 (nt) (nt) (nt) (nt) (nt) (nt) (pp) (pp) | SEQ
(a.a.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) <td>SEQ
(aa.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<td>SEQ
(a.a.) Initial
(int) Terminal
(int) ORF
(int) db Match
(bp) Homologous gene
(%) Identity
(%) Smilarity
(%) Matched
(%) Matched</td></td> | SEQ
(aa.) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) <td>SEQ
(a.a.) Initial
(int) Terminal
(int) ORF
(int) db Match
(bp) Homologous gene
(%) Identity
(%) Smilarity
(%) Matched
(%) Matched</td> | SEQ
(a.a.) Initial
(int) Terminal
(int) ORF
(int) db Match
(bp) Homologous gene
(%) Identity
(%) Smilarity
(%) Matched
(%) Matched |

guanosine pentaphosphatase or exopolyphosphatase

329

55.0

25.2

Escherichia coli gppA

sp:GPPA_ECOLI

963 984

1038410

4589 1037448

1089

hypothetical protein

153

77.8

59.5

Mycobacterium tuberculosis H37Rv Rv1025

pir.D70623

546

1037445

4588 | 1036900 |

1088

threonine dehydratase

314

64.7

30.3

Escherichia coli tdcB

sp:THD2_ECOLI

930 195

ন
ĕ
ਵ
Έ
8
$\stackrel{\smile}{-}$
e 1
ap
Tab

				L-rhamnose					factor			-	tulosonate-7-			undecaprenyl	ase					ransferase	ynthase	
	Function		hypothetical protein	transcription activator of L-rhamnose	operon	hypothetical protein		hypothetical protein	transcription elongation factor	hypothetical protein	lincomycin-production		3-deoxv-D-arabino-heptulosonate-7-	phosphate synthase		hypothetical protein or undecaprenyl	pyrophosphate syntnetase	hypothetical protein		aseniy atonothataa	paritotifeliate nilase	serine hydroxymethyl transferase	p-aminobenzoic acid synthase	
	Matched length (a.a.)		56	T	242	282		140	143	140	300			367		26	5	28		000	308	434	969	
	Similarity (%)		74.1		55.8	80.1		57.1	60.1	72.1	56.3			99.5		97.3	5.6	100.0			79.9	100.0	70.1	
	Identity (%)		46.3	2	24.8	57.8		30.0	35.0	34.3	31.7			99.2		90	90.0	100.0			53.9	99.5	47.6	
I able 1 (continued)	Homologous gene		o Clay V	I hermotoga manunia ivises	Escherichia coli rhaR	Mycobacterium tuberculosis H37Rv Rv1072		Streptomyces coelicolor A3(2) SCF55.39	Escherichia coli greA	Mycobacterium tuberculosis H37Rv Rv1081c	Strentomyces lincolnensis ImbE	of chicago	-	Corynebacterium glutamicum aroG		Corvnebacterium glutamicum	CCRC18310	Corynebacterium glutamicum (Brevibacterium flavum)			Escherichia coli coaA	Brevibacterium flavum MJ-233 alvA	Streptomyces griseus pabS	
	db Match			pir:B72287	sp:RHAR_ECOLI E	pir.F70893		gp:SCF55_39	Sp.GREA ECOLI		1050			sp:AROG_CORGL			sp:YARF_CORGL	SP:YARF_CORGL			sp:COAA_ECOLI	gsb:	sp:PABS_STRGR	
	ORF (bp)			189	863	816	387	+	522		_	3/3	318	1098	623	3	675	174	519	318	936	+	1860	723
	Terminal (nt)		1040325	1040682	1041917	1042842	1042850	1043298	1043774	1044477	0000	1046030	1046390	1047707	000000	1040020	1048501	1048529	1049043	1049068	1049427		1053880	4—
	Initial (nt)		1039996	1040494	1040925	1042027	1043236	1043747	4044205	1044959		1045158	1046073	1046610	0.14.7.0	104/452	1047827	1048356	1048525	1049385				
	SEQ NO.	(a.a.)	4593	4594	4595	4596	4507		- 1	4533		4601	4602	4603	_	4604	4605	4606	4607	4608				
		(DNA)	1093	1094	1095	1096	4007	1098	0	11000	3	1101	1102	1103		1104	1105	1106	1107	1108	1700	1110	7	1112

$\overline{}$
$\boldsymbol{\sigma}$
as.
≅
=
=
Ħ
=
Ö
0
\sim
$\overline{}$
Θ
$\overline{\mathbf{Q}}$
=
ā
\vdash

	Function			phosphinothricin resistance protin	hypothetical protein	1970	niction lacitority	nypotnetical process	lactam utilization protein	hypothetical membrane protein			transcriptional regulator		TO STILL CONTACT OF THE STILL O	rumarate nyulatase precursor	NADH-dependent FMIN oxydoreductase				reductase	dibenzothiophene desulfurization enzyme A	dibenzothiophene desulfurization enzyme C (DBT sulfur dioxygenase)	dibenzothiophene desulfurization	enzyme C (DB1 suitur dioxygenase)		
Matched	length (a.a.)			165	300	200	100	272	276	165			204	24		456	159				184	443	372	394	3		
	Similarity (%)			28.2	0.00	0.60		57.8	52.2	81.2			63.2	7.00		79.4	65.4				81.0	67.7	51.3	2	2:		
_	Identify (%)			6 06	5.00	30.3		37.8	30.8	40.6			0 80	70.07		52.0	32.7				55.4	39.1	25.8	å	20.3		
ומחום ו (פסויוויומפת)	Homologous gene			-	Alcaligenes taecalls ptck	Escherichia coli ybgK		Escherichia coli ybgJ	Emericella nidulans lamB	Bacillus subtilis ycsH				Bacillus subtills ydnC		Rattus norvegicus (Rat) fumH	Rhodococcus erythropolis				Streptomyces coelicolor A3(2) StAH10.16	Rhodococcus sp. IGTS8 soxA	Rhodococcus sp. IGTS8 soxC	(+ ()	Rhodococcus sp. 161 38 soxC		
	db Match				gp:A01504_1	sp:YBGK_ECOLI		Sp:YBGJ ECOLI	_	SH BACSU	1			sp:YDHC_BACSU		SD: FUMH RAT	gp:Al				gp:SCAH10_16	sp:SOXA_RHOSO	S.as		sp:SOXC_RHOSO		
	ORF (bp)	100	864	393	537	879	1056	699	-	-	+	7 .	603	681	1278	1419	489	;	261	447	564	1488	1080	3	1197	780	069
	Terminal (nt)		1055722	1054640	1056319	1056322	1058628	1057200	1057843	1058624	105080	200001	1059962	1060792	1062146	1082211	1064424		1064478	1064754	1065304	1067570	1068649	25000	1069845	1068913	1069119
	Initial (nt)	-	1054859	4614 1055032	1055783	1057200	1057573	1057868	0000000	1050230	0 40000	1038210	1059360	1060112	1060869	1063670	1063936		1064738	1065200	1065867	1066083			1068649	1069692	1069808
	SEQ NO.	- 1	4613	4614	4615	4616	4617			4019		1704	4622	4623	4624	1000	4626		4627	4628	4629			4031	4632	4633	4634
		(DNA)	1113	1114	1115	1116	1117	_	-	91.11		1121	1122	1123	1124	1 2 2	1126		1127	1128	1129	1130	00 7	1131	1132	1133	1134

Name	1					<u> </u>				
1072474 1776 gp.ECO237696_3 Escherichia coli K12 ssuD 45.3 73.1 387 1072471 1071479 963 sp.GLPX_ECOL1 Escherichia coli K12 glpx 44.3 75.7 325 1072674 1073245 570 pir.B70897 Mycobacterium tuberculosis 27.5 56.4 271 1075357 1075641 285 pir.H70062 Bacillus subtilis ywmD 31.3 66.1 227 1075367 1075641 286 pir.H70062 Bacillus subtilis ywmD 31.3 66.1 227 1075563 1075641 286 pir.H70062 Bacillus subtilis ywmD 31.3 66.1 227 1075563 1075641 286 pir.H70062 Bacillus subtilis ywmD 31.0 36.1 227 1075560 1075641 286 gp.SCH24_37 Streptomyces coelicolor A3(2) 38.6 78.1 82 1077297 1075662 1075647 Sp.LYTB_ECOL1 Escherichia coli K12 MG1655 30.0 37.6 47.0 131 1077297 1077297<		Initial (nt)	Terminal (nt)	ORF (bp)		Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
1072441 1071479 963 sp.GLPX_ECOLI Escherichia coli K12 glpX 44.3 75.7 326 1072676 1073245 570 pir.B70897 Mycobacterium tuberculosis 27.5 56.4 211 1075374 1075340 1902 pir.H70062 Bacillus subtilis ywmD 31.3 66.1 227 1075367 1075369 225 gp.SCH24_37 Streptomyces coelicolor A3(2) 36.6 78.1 82 1075590 1075697 243 sp.EX78_ECOLI Escherichia coli K12 MG1655 40.3 67.7 62 1077297 1077297 1078271 97.5 sp.LYTB_ECOLI Escherichia coli K12 MG1655 30.0 56.6 466 1077297 1077297 1078271 97.5 sp.LYTB_ECOLI Escherichia coli K12 MG1655 30.0 56.6 466 1077297 1077297 1078271 97.5 sp.LYTB_ECOLI Escherichia coli K12 MG1655 30.0 56.6 466 1077297 1078271 97.5 sp.LYTB_ECOLI Escherich	T	1069959	1071134	1176	gp:E	Escherichia coli K12 ssuD	45.3	73.1	397	FMNH2-dependent aliphatic sulfonate monooxygenase
1075241 1073245 570 pir.B70897 Mycobacterium tuberculosis 27.5 56.4 211 1075241 1073340 1802 pir.H70062 Bacillus subtilis ywmD 31.3 66.1 227 1075357 107563 1075641 285 17.8 8.6 78.1 82 1075563 107563 225 gp:SCH24_37 Streptomyces coelicolor A3(2) 36.6 78.1 82 1075909 1075687 243 sp:EX72_ECOLI Escherichia coli K12 MG1655 40.3 67.7 62 1077297 1077287 1078271 975 sp:EX72_ECOLI Escherichia coli K12 MG1655 30.0 55.6 466 1077297 1077287 1078271 975 sp:LYTB_ECOLI Escherichia coli K12 MG1655 30.0 55.6 466 1077297 1077287 1078271 975 sp:LYTB_ECOLI Escherichia coli K12 MG1655 30.0 55.6 466 1080596 108098 1800 sp:LYTB_ECOLI Escherichia coli K12 MG1656 <td< td=""><td></td><td></td><td>1071479</td><td>963</td><td>_</td><td>Escherichía coli K12 glpX</td><td>44.3</td><td>75.7</td><td>325</td><td>glycerol metabolism</td></td<>			1071479	963	_	Escherichía coli K12 glpX	44.3	75.7	325	glycerol metabolism
1075541 1073340 1902 pir.H70062 Bacillus subtilis ywmD 31.3 66.1 227 1075557 1075641 286 Fireptomyces coelicolor A3(2) 36.6 78.1 82 1075563 1075667 243 sp:SCH24_37 Streptomyces coelicolor A3(2) 36.6 78.1 82 1077590 1075667 243 sp:EX7L_ECOLI Escherichia coli K12 MG1655 30.0 55.6 466 1077183 1077897 1077827 1078271 975 sp:LYTB_ECOLI Escherichia coli K12 MG1655 30.0 55.6 466 1077734 1077827 1078271 975 sp:LYTB_ECOLI Escherichia coli K12 perM 26.3 63.9 33.8 1080540 1077827 1078276 429 GSP:Y75421 Neisseria gonorrhoeae 33.0 47.0 131 1080565 1080786 180 A29 GSP:Y75421 Raftus norvegicus (K12 perM 26.3 63.9 33.8 1080786 1080787 173 sp:NTPR_RAT Raft	١.		1073245	570		Mycobacterium tuberculosis H37Rv Rv1100	27.5	56.4	211	hypothetical protein
1075557 1075641 285 Streptomyces coelicolor A3(2) 36.6 78.1 82 1075553 1075329 225 gp:SCH24_37 Streptomyces coelicolor A3(2) 36.6 78.1 82 1075909 1075667 243 sp:EXT2_ECOLJ Escherichia coli K12 MG1655 40.3 67.7 62 1077297 1078271 975 sp:LYTB_ECOLJ Escherichia coli K12 MG1655 30.0 56.6 466 1077297 1078271 975 sp:LYTB_ECOLJ Escherichia coli K12 lytB 50.2 78.8 311 1077297 1078271 975 sp:LYTB_ECOLJ Escherichia coli K12 lytB 50.2 78.8 311 1080540 1078221 1320 sp:LYTB_ECOLJ Escherichia coli K12 perM 26.3 63.9 338 1080564 108078 180 Sp:LYTB_ECOLJ Rattus norvegicus (Rat) SLC6A7 30.3 61.4 552 1080565 108078 1737 sp:NAPE_BACSU Bacillus subtilis yyaf 70.1 88.6 36.9 36	1	L	1073340	1902		Bacillus subtilis ywmD	31.3	66.1	227	hypothetical protein
1075553 1075329 225 gp.:SCH24_37 Streptomyces coelicolor A3(2) 36.6 78.1 82 1075909 1075667 243 sp.EX7S_ECOLJ Escherichia coli K12 MG1655 40.3 67.7 62 1077183 1075671 375 sp.EX7L_ECOLJ Escherichia coli K12 MG1655 30.0 55.6 466 1077297 1078271 375 sp.LYTB_ECOLJ Escherichia coli K12 IyIB 50.2 78.8 311 1077734 1077306 429 GSP:Y75421 Neisseria gonorrhoeae 33.0 47.0 131 1080540 1079221 1320 sp.PERM_ECOLI Escherichia coli K12 perM 26.3 63.9 33.8 1080540 1079221 1320 sp.PERM_ECOLI Escherichia coli K12 perM 26.3 63.9 33.8 1080541 1080786 180 Anne	-		1075641	285						
1075909 1075667 243 sp:EX7S_ECOLJ Escherichia coli K12 MG1655 40.3 67.7 62 1077183 1075933 1251 sp:EX7L_ECOLJ Escherichia coli K12 MG1655 30.0 55.6 466 1077297 1078271 975 sp:LY7B_ECOLJ Escherichia coli K12 JytB 50.2 78.8 311 1077734 1077306 429 GSP:Y75421 Neisseria gonorrhoeae 33.0 47.0 131 1079146 1078319 828 GSP:Y75421 Neisseria gonorrhoeae 33.0 47.0 131 10805540 1078018 130 47.0 131 1080655 1080786 180 5p:PERM_ECOLJ Escherichia coli K12 perM 26.3 63.9 338 1082708 1080786 180 AmpR			1075329	225	S:db	Streptomyces coelicolor A3(2) SCH24.37	36.6	78.1	82	transmembrane efflux protein
1077183 1075933 1251 sp:EX7L_ECOLI Escherichia coli K12 MG1655 30.0 55.6 466 1077297 1078271 975 sp:LYTB_ECOLI Escherichia coli K12 lytB 50.2 78.8 311 1077734 1077306 429 GSP:Y75421 Neisseria gonorrhoeae 33.0 47.0 131 1080540 107821 1320 sp:PERM_ECOLI Escherichia coli K12 perM 26.3 63.9 338 1080540 1078221 1320 sp:PERM_ECOLI Escherichia coli K12 perM 26.3 63.9 338 1080540 1078221 1320 sp:NTPR_RAT Rattus norvegicus (Rat) SLC6A7 30.3 61.4 552 1082708 1080972 1737 sp:NTPR_RAT Rattus norvegicus (Rat) SLC6A7 30.3 60.0 412 1084380 1085462 1083 sp:YYAF_BACSU Bacillus subtilis yaF 70.1 88.6 36.1 1085791 1086097 82 sp:VAPI_BACSU Dichelobacter nodosus intA 57.3 80.0 <td< td=""><td></td><td></td><td>1075667</td><td>243</td><td></td><td>Escherichia coli K12 MG1655 xseB</td><td>40.3</td><td>2.78</td><td>29</td><td>exodeoxyribonuclease small subunit</td></td<>			1075667	243		Escherichia coli K12 MG1655 xseB	40.3	2.78	29	exodeoxyribonuclease small subunit
1077297 1078271 975 sp.LYTB_ECOL1 Escherichia coli K12 lytB 50.2 78.8 311 1077734 1077306 429 GSP:Y75421 Neisseria gonorrhoeae 33.0 47.0 131 1080540 1079221 1320 sp.PERM_ECOL1 Escherichia coli K12 perM 26.3 63.9 338 1080540 1079221 1320 sp.PERM_ECOL1 Escherichia coli K12 perM 26.3 63.9 338 1080540 1079221 1320 sp.NTPR_RAT Rattus norvegicus (Rat) SLC6A7 30.3 61.4 552 1082708 1080972 1737 sp.NTPR_RAT Rattus norvegicus (Rat) SLC6A7 30.3 61.4 552 1084380 1082951 1233 sp.CSP1_CORGL (Brevibacterium flavum) ATCC 29.9 60.0 412 1084380 1086987 327 327 361 361 361 1086096 1086097 327 327 328 301 361 1086096 1086097 327		1077183	1075933	1251		Escherichia coli K12 MG1655 xseA	30.0	55.6	466	exodeoxyribonuclease large subunit
1077734 1077306 429 GSP:Y75421 Neisseria gonorrhoeae 33.0 47.0 131 1079146 1078319 828 Sp.PERM_ECOLI Escherichia coli K12 perM 26.3 63.9 338 1080540 1079221 1320 sp.PERM_ECOLI Escherichia coli K12 perM 26.3 63.9 338 1080565 1080786 180 ntpR Rattus norvegicus (Rat) SLC6A7 30.3 61.4 552 1082708 1080972 1737 sp.NTPR_RAT Rattus norvegicus (Rat) SLC6A7 30.3 61.4 552 1084183 1082951 1233 sp.CSP1_CORGL (Brevibacterium flavum) ATCC 29.9 60.0 412 1084380 1085462 1083 sp.YYAF_BACSU Bacillus subtilis yyaF 70.1 88.6 36.1 1086096 1086997 82 sp.VAPI_BACNO Dichelobacter nodosus intA 57.3 80.0 75 1086096 1086997 82 sp.OTCA_PSEAE Pseudomonas aeruginosa argF 29.6 58.8 30.1<		1	1078271	975	sp:LYTB_	Escherichia coli K12 lytB	50.2	78.8	311	penicillin tolerance
1079146 1078319 828 63.9 338 1080540 1079221 1320 sp:PERM_ECOLI Escherichia coli K12 perM 26.3 63.9 338 1080565 1080786 180 monoregicus (Ratius norvegicus (Rat) SLC6A7 30.3 61.4 552 1082708 1080972 1737 sp:NTPR_RAT Rattus norvegicus (Rat) SLC6A7 30.3 61.4 552 1084183 1082951 1233 sp:CSP1_CORGL (Brevibacterium flavum) ATCC 29.9 60.0 412 1084380 1085462 1083 sp:YYAF_BACSU Bacillus subtilis yyaF 70.1 88.6 361 1086591 1086087 297 sp:VAPI_BACNO Dichelobacter nodosus intA 57.3 80.0 75 1086096 1086917 822 sp:OTCA_PSEAE Pseudomonas aeruginosa argF 29.6 58.8 30.1 10867544 1087044 50.1 sp:YKKB_BACSU Bacillus subtilis 168 ykkB 39.2 69.9 143				429		Neisseria gonorrhoeae	33.0	47.0	131	polypeptides predicted to be useful antigens for vaccines and diagnostics
1080540 1079221 1320 sp:PERM_ECOLI Escherichia coli K12 perM 26.3 63.9 338 1080965 1080786 180 180 Rattus norvegicus (Rat) SLC6A7 30.3 61.4 552 1082708 1080972 1737 sp:NTPR_RAT Rattus norvegicus (Rat) SLC6A7 30.3 61.4 552 1084183 1082951 1233 sp:CSP1_CORGL (Brevibacterium flavum) ATCC 29.9 60.0 412 1084380 1085462 1083 sp:YYAF_BACSU Bacillus subtilis yyaF 70.1 88.6 361 1086591 1086087 297 sp:VAPI_BACNO Dichelobacter nodosus intA 57.3 80.0 75 1086096 1086917 822 sp:OTCA_PSEAE Pseudomonas aeruginosa argF 29.6 58.8 30.1 1087544 1087044 50.1 sp:YKKB_BACSU Bacillus subtilis 168 ykkB 39.2 69.9 143			1078319	828						
1082708 1080786 180 Rattus norvegicus (Rat) SLC6A7 30.3 61.4 552 1082708 1082951 1737 sp:NTPR_RAT Rattus norvegicus (Rat) SLC6A7 30.3 61.4 552 1084183 1082951 1233 sp:CSP1_CORGL (Brevibacterium flavum) ATCC 29.9 60.0 412 1084380 1085462 1083 sp:YYAF_BACSU Bacillus subtilis yyaF 70.1 88.6 361 1086096 1086917 822 sp:VAPI_BACNO Dichelobacter nodosus intA 57.3 80.0 75 1086096 1086917 822 sp:OTCA_PSEAE Pseudomonas aeruginosa argF 29.6 58.8 301 1087544 1087044 501 sp:YKKB_BACSU Bacillus subtilis 168 ykkB 39.2 69.9 143		L	1079221	132C	sp:P	Escherichia coli K12 perM	26.3	63.9	338	permease
1082708 1080972 1737 sp:NTPR_RAT Rattus norvegicus (Rat) SLC6A7 30.3 61.4 552 1084183 1082951 1233 sp:CSP1_CORGL (Brevibacterium flavum) ATCC 29.9 60.0 412 1084380 1085462 1083 sp:YYAF_BACSU Bacillus subtilis yaF 70.1 88.6 361 1086791 1086087 297 sp:VAPI_BACNO Dichelobacter nodosus intA 57.3 80.0 75 1086096 1086917 822 sp:OTCA_PSEAE Pseudomonas aeruginosa argF 29.6 58.8 301 1087544 1087044 501 sp:YKKB_BACSU Bacillus subtilis 168 ykkB 39.2 69.9 143			1080786	180						
1084183 1082951 1233 sp:CSP1_CORGL (Brevibacterium flavum) ATCC 29.9 60.0 412 1084380 1085462 1083 sp:YYAF_BACSU Bacillus subtilis yyaF 70.1 88.6 361 1086096 1086917 822 sp:OTCA_PSEAE Pseudomonas aeruginosa argF 29.6 58.8 301 1087544 1087044 501 sp:YKKB_BACSU Bacillus subtilis 168 ykkB 39.2 69.9 143			1080972	1737	N:ds	Rattus norvegicus (Rat) SLC6A7 ntpR	30.3	61.4	552	sodium-dependent proline transporter
1084380 1085462 1083 sp:YYAF_BACSU Bacillus subtilis yyaF 70.1 88.6 361 1085791 1086087 297 sp:VAPI_BACNO Dichelobacter nodosus intA 57.3 80.0 75 1086096 1086917 822 sp:OTCA_PSEAE Pseudomonas aeruginosa argF 29.6 58.8 301 1087544 1087044 501 sp:YKKB_BACSU Bacillus subtilis 168 ykkB 39.2 69.9 143		1084183		1233	sp:C	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	29.9	60.0	412	major secreted protein PS1 protein precursor
1086791 1086087 297 sp:VAPI_BACNO Dichelobacter nodosus intA 57.3 80.0 75 1086096 1086917 822 sp:OTCA_PSEAE Pseudomonas aeruginosa argF 29.6 58.8 301 1087544 1087044 501 sp:YKKB_BACSU Bacillus subtilis 168 ykkB 39.2 69.9 143			1085462	1083		Bacillus subtilis yyaF	70.1	88.6	361	GTP-binding protein
1086096 1086917 822 sp:OTCA_PSEAE Pseudomonas aeruginosa argF 29.6 58.8 301 1087544 1087044 501 sp:YKKB_BACSU Bacillus subtilis 168 ykkB 39.2 69.9 143		<u> </u>	1086087	297	sp:VAPI_BACNO	Dichelobacter nodosus intA	57.3	80.0	75	virulence-associated protein
1087544 1087044 501 sp.YKKB_BACSU Bacillus subtilis 168 ykkB 39.2 69.9 143		-	1086917	822		Pseudomonas aeruginosa argF	29.6	58.8	301	ornithine carbamoyltransferase
		1087544	1087044	501	sp:YKKB_BACSU	Bacillus subtilis 168 ykkB	39.2	69.6	143	hypothetical protein

$\overline{}$
g
₩
=
≔
⇇
0
Ċ
\sim
٣-
Ð
ā
ם
=
•

				Т			Γ.	Τ													o
	Function	9-cis retinol dehydrogenase or oxidoreductase	transposase/integrase (IS110)	hypothetical membrane protein	N-acetylglucosaminyltransferase			transpasse (insertion seguence	IS31831)	transposase	transposase				oxidoreductase or morpyine-6-	dehydrogenase (naloxone reductase)	4-carboxymuconolactone decarboxlyase			franclicin dene cluster protein	involved in frenolicin biosynthetic
	Matched length (a.a.)	198	396	1153	259				97	125	48					264	108				146
	Similarity (%)	9.09	73.0	52.2	47.1				93.8	94.4	95.8					66.3	63.9				66.4
	Identity (%)	33.8	42.2	23.0	22.8	2.4.0			82.5	79.2	87.5					37.5	33.3				34.9
lable I (colleged)	Homologous gene	Mus musculus RDH4	Streptomyces coelicolor	Scoon 10		Khizobium melilou nodo			Corynebacterium glutamicum ATCC 31831	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869					Pseudomonas putida M10 norA	Acinetobacter calcoaceticus				Streptomyces roseofulvus frnS
	db Match	gp:AF013288_1	SD: YIS1 STRCO	1 1 1	Sp: YEGE_ECOLI	sp:NODC_RHIME			pir:S43613	pir:JC4742	pir.JC4742					sp:MORA_PSEPU	sp:DC4C_ACICA				gp:AF058302_19
	ORF (bp)					765	219	333	291	375	144	1	141	366	498	843	321		663	195	654
	Terminal (nt)	64			1093216	1094693	1094911	1095384	1095387	1095719	1096188		1096331	1096746	1097726	1098592	1098929		1099750	1099015	1099115
	Initial	23			1090175	1093929	1094693	1095052	1095677	1096093	4662 1096331		1096471	1097111	1097229	1097750	1098609		1099088	1099209	1099768
	SEQ NO.	(a.a.)		4000	4656	4657	4658	4659		4661	4662		4663	4664	4665	4666	4667	2	4668	4669	4670
	SEQ NO.	(DNA) (1155	1156	1157	1158	1159		1161	1162		1163	1164	1165	1166	1167	5	1168	1169	1170

	Matche length	
	Identity Similarity length	5
	Identity	-
Table 1 (continued)	Homologis gene	>:: \r \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
		001000
	Ш	

_		——- ₁			1	τ-	Τ-	$\overline{}$					1		T					
	Function	biotin carboxylase							hypothetical protein	magnesium chelatase subunit	2,3-PDG dependent phosphoglycerate mutase	hypothetical protein	carboxyphosphonoenolpyruvate phosphonomutase	tyrosin resistance ATP-binding	proveri	hypothetical protein	alkylphosphonate uptake protein	transcriptional regulator	multi-drug resistance efflux pump	transposase (insertion sequence IS31831)
Matched	length (a.a.)	563							655	329	160	262	248	593		136	17	134	367	436
	Similarity (%)	78.5							80.3	52.6	62.5	60.7	59.3	54.1		6.99	82.0	62.7	59.4	99.8
	Identity (%)	48.1							57.9	27.7	33.8	38.2	29.4	31.7		29.4	55.0	32.1	22.6	99.5
	Homologous gene	Synechococcus sp. PCC 7942	acco						Mycobacterium tuberculosis H37Rv Rv0959	Rhodobacter sphaeroides ATCC 17023 bchl	Amycolatopsis methanolica pgm	Mycobacterium tuberculosis	Streptomyces hygroscopicus	SF1283 BCDA	Streptornyces madae m.c.	Mycobacterium tuberculosis H37Rv Rv2923c	Escherichia coli K12 MG1655 phnA	Bacillus subtilis 168 yxaD	Streptococcus pneumoniae	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 31831
	db Match	ap:SPU59234 3	1						sp:YT15_MYCTU	sp:BCHI_RHOSH	gp:AMU73808_1	pir.A70577	on:STMBCPA 1	<u>.</u>	Sp:TLRC_SIRFR	sp:Y06C_MYCTU	sp:PHNA_ECOLI	SD: YXAD BACSU	gp:S	pir.S43613
	ORF (bp)			597	498	345	153	639	1956	1296	642	705	767	5	1641	396	342	474	┾÷	1308
	Terminal (nt)	1101653	200	1102639	1103192	1103524	1104103	1105561	1104103	1106086	1108201	1108905	1100754	500	1111432	1111425	1112230	1112484	1114319	1115793
	Initial (nt)	1		1102043	1102695	1103180	1103951	1104923	1106058	1107381	1107560	1108201	4400000	200001	1109792	1111820	1111889	1117057		1114486
	SEQ.	(a a.)	407	4672	4673	4674	1	1		4678	4679	Og 87	500	4081	4682	4683	4684		\rightarrow	
			71/11	1172	1173	1174	1175	1176		1178		7	20 3	1181	1182	1183	1184	4.4.0	1186	1187

												n or	-4)			rotein						
	Function	cysteine desulphurase	nicotinate-nucleotide pyrophosphorylase	quinolinate synthetase A		DNA hydrolase	hypothetical membrane protein	hypothetical protein	hypothetical protein	lipoate-protein ligase A	alkylphosphonate uptake protein and C-P lyase activity	transmembrane transport protein or 4-hydroxybenzoate transporter	p-hydroxybenzoate hydroxylase (4-	hydroxybenzoate 3- monooxygenase)	hypothetical membrane protein	ABC transporter ATP-binding protein	hypothetical membrane protein		C22±/H± antinorter ChaA	Cazilli allaboro	hypothetical protein	hypothetical membrane protein
Matched	length (a.a)	376	283	361	3	235	192	214	108	216	148	420		395	191	532	250	3	000	800	236	221
	Similarity (%)	73.4	68.9	77.6	2	6.09	54.7	66.4	74.1	60.7	8.09	64.3		68.6	69.6	47.6	2	5	3	0.69	57.6	61.1
	Identity (%)	43.9	42.1	40.2	48.0	37.0	23.4	36.0	41.7	30.1	29.7	28.8		40.8	36.7	24.8	9 11 0	0.62		33.3	28.4	27.6
lable I (continued)	Homologous gene	Ruminococcus flavefaciens	Mycobacterium tuberculosis		Bacillus subtilis nadA	Streptomyces coelicolor SC5B8.07	Deinococcus radiodurans R1 DR1112	Streptomyces coelicolor SC3A7.08	Escherichia coli K12 MG1655 vhdF	Fscherichia coli K12 lpIA	Escherichia coli K12 phnB	Pseudomonas putida pcaK		Pseudomonas aeruginosa phhy	Dooillie enthille 168 vkoF	Dacillus subtilio col yilk	Escribina con Alla	Bacillus subtilis 168 ykoC		Escherichia coli chaA	Pyrococcus abyssi Orsay	Bacillus subtilis ywaF
	db Match	qp:RFAJ3152_2	I LLUXW .		pir.E69663	gp:SC5B8_7	gp:AE001961_5	gp:SC3A7_8	sp:YBDF_ECOLI	1 0V24CVVV	gp://www.ing.			sp:PHHY_PSEAE			_	pir.G69858		sp:CHAA_ECOLI	-	
	ORF (bp)			93/	1182	642	009	009	342	100	69 77	- 		1185	\dashv		1338	753	531	1050	708	-
	Terminal (nt)	1115832		1116908	1117751	1119086	1120804	1120833	1121468		1121818	1040211 4030014	1123334	1124836			1128350	1129102	1129632	1130704		
	Initial (nt)	<u> </u>		1117744	1118932	1119727	1120205	1121432	1121809				1124820	1126020			1127013	1128350	1129102			1132123
	SEQ NO.			4689	4690		4692	4693	7697	2			4697	4698		4699	4700	4701	4702	_		
			1188	1189	1190			1193	707	<u> </u>	1195	1196	1197	1198		1199	1200	1201	1202	1203	200	1205

Γ		_		_					\top					E .	2						-				
	Function	excinuclease ABC subunit A		thioredoxin peroxidase			hypothetical membrane protein	oxidoreductase or thiamin	biosynthesis protein				ohymotrynsin Bll	Cityling years of the second o	arsenate reductase (arsenicar pump modifier)	hypothetical membrane protein		hypothetical protein	hypothetical protein	GTP-binding protein (tyrosine phsphorylated protein A)	hypothetical protein		hypothetical protein	(A)	Terredoxin [4re-40]
	Matched length (a.a.)	946		164			318		787				17.0	- /7	111	340		147	221	614	506		315		103
	Similarity (%)	58.7		81.7			72.0		49.0				3	51.3	72.1	62.4		71.4	62.9	76.7	54.9		61.9		91.3
	Identity (%)	35.5		57.3			3.0	233	34.0					28.8	43.2	23.5	20.5	43.5	35.8	46.3	27.9		38.7		78.6
lable 1 (confined)	Homologous gene	Aramonhillis inrA	nermus meninopiiinas ama	Mycobacterium tuberculosis H37Rv tpx			1	Escherichia coli yeur	Streptomyces coelicolor A3(2)					Penaeus vannamei	Escherichia coli		Bacillus subtills yyau	Mycobacterium tuberculosis H37Rv Rv1632c	Mycobacterium tuberculosis	Escherichia coli K12 typA	Mycobacterium tuberculosis	H37Rv Rv1166	Mycobacterium tuberculosis H37Rv Rv1170		Streptomyces griseus fer
	db Match	\top	sp:UVRA_IHEIM	sp:TPX_MYCTU				sp:YEDI_ECOLI	gp:SCF76_2					sp:CTR2 PENVA	sp. ARC2 ECOLI		sp:YYAD_BACSU	pir.F70559	pir.F70555			pir.r./	pir.B70875		sp:FER_STRGR
	ORF (bb)		2340	495	216	2 1	1776	954	006	366	297	261	387	834	345	5	1200	537	714	- `		1506	870	438	
	Terminal (nt)		1132133	1135055	1135601		1135058	1136938	1138859	1139245	1139492	1139617	1139635	1140028	140001	140301	1142472	1142479	1143026			1147602	1148461	1148882	
	Initial		1134472	1134561	_	_	1136833	1137891	1137960	1138880	4713 1139196	1139357	1140021	1440861	140001	1141245	1141273	1143015	11/13739	22 10 1 1 20 1 1 20 20 1 20 20 20 20 20 20 20 20 20 20 20 20 20		4722 1146097	1147592	1118445	
	SEQ NO	(a.a.)	4706 1	4707	_	4/08	4709	4710	4711	4712	4713	4714		4746	0 1	4/1/	4718		4720	4724	4/4		4723	47774	4725
	SEQ		1206			1208	1209	1210	1211	1212	1213	1214	_		9121	1217	1218	1219	000	1220	771	1222	1223	0,	1225

						Table 1 (continued)				
S S O S	SEQ NO.	Initial	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
(DNA)	- 1	(m)	(111)	(ala)		Dooillus en strain VM-2 aat	25.9	52.9	397	aspartate aminotransferase
1226	4726	1149279	1150379	1101	sp:AAI_BACSP	Dacillus ap. stail the car				
1227	4727	1150408	1151028	621						
1228	4728	1151186	1152370	1185						tetrahydrodipicolinate succinylase or
1229	4729	1153263	1152373	891	gp:CGAJ4934_1	Corynebacterium glutamicum ATCC 13032 dapD	100.0	100.0	229	succinylation of piperidine-2,6- dicarboxylate
0	000	4456537	1155875	663						
1230	4731			768	pir.S60064	Corynebacterium glutamicum ATCC 13032 orf2	100.0	100.0	211	hypothetical protein
- 64				83.1	dp:SCP8 4	Streptomyces coelicolor A3(2)	59.0	0.69	273	dihydropteroate synthase
1232			_	3 6	5	Mycobacterium lebrae u1756l	45.7	73.1	245	hypothetical protein
1233	4733	1158524		+	9p. v	Mycobacterium tuberculosis	31.3	67.7	66	hypothetical protein
1234	4734	1159267	1159572	306	pir:G70609	H37Rv Rv1209				The AMK useful in vaccines
1235	4735	1159635	1159799	165	gsp:W32443	Mycobacterium tuberculosis	72.3	91.5	47	angel I brown; account for prevention or treatment of tuberculosis
				_		Micromonospora griseorubida	30.2	67.8	286	mycinamicin-resistance gene
1236	4736	1159865	1160728	864	sp:MYRA_MICGR	myrA	33.5	2		on the property of the propert
		-+-	4160738	1494	4 SURSCRB PEDPE	Pediococcus pentosaceus scrB	23.5	51.0	524	Suci Ose-o-pilospilaro il paratioli
1237	4738	1163605			Sp:G	Escherichia coli K12 MG1655	24.7	51.3	433	ADP glucosestarcn(pactenal glycogen) glucosyltransferase
120						Streptomyces coelicolor A3(2)	61.0	81.8	400	glucose-1-phosphate adenylyltransferase
1239	9 4739	9 1163702	2 1164916	0171	5. 5.	glgC				
1240	4740	0 1165612	2 1164974	4 639	9 Sp:MDMC_STRMY	Streptomyces mycarofaciens MdmC	25.8	62.4	693	methyltransferase
1241				4 639	sp:R		27.3	57.2	194	RNA polymerase sigma factor (sigma-24); heat shock and oxidative stress
				+						
1242	2 4742	11166576	6 116/06/	492	7					

	Function	l protein		ıl protein	al protein	al protein			2-oxoglutarate dehydrogenase	ABC transporter or multidrug resistance protein 2 (P-glycoprotein 2)	al protein	shikimate dehydrogenase	para-nitrobenzyl esterase					tetracycline resistance protein	metabolite export pump of tetracenomycin C resistance	
		hypothetical protein	ATPase	hypothetical protein	hypothetical protein	hypothetical protein			2-oxogluta	ABC trans resistance 2)	hypothetical protein	shikimate	para-nitrok					tetracyclin	metabolite tetracenor	
	Matched length (a.a.)	112	257	154	434	140			1257	1288	240	255	501	3				409	444	
	Similarity (%)	73.2	72.0	83.8	77.0	87.1			8.66	60.4	72.1	61.2	R4 7	5				61.4	64.2	
	Identity (%)	45.5	43.6	60.4	49.8	57.9			99.4	28.8	31.7	25.5	35.7	2.00				27.1	32.4	
וממות ו (התווויים-)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1224	Escherichia coli mrp	Mycobacterium tuberculosis H37Rv Rv1231c	Mycobacterium tuberculosis H37Rv Rv1232c	Mycobacterium tuberculosis H37Rv Rv1234			Corynebacterium glutamicum AJ12036 odhA	Cricetulus griseus (Chinese hamster) MDR2	Mycobacterium tuberculosis	Escherichia coli aroE	V-1	Bacillus subtilis phbA				Escherichia coli transposon Tn1721 tetA	Streptomyces glaucescens tcmA	
	db Match	pir:C70508	SP:MRP ECOLI		pir:C70509	pir.A70952			prf:2306367A	sp:MDR2_CRIGR	pir.H70953		SP.ANOL_LOOP	sp:PNBA_BACSU				sp:TCR1_ECOLI	sp:TCMA_STRGA	
	ORF (bp)	468	1125		1290	516	999	594	3771	3741	717	30	904	1611	651	876	525	1215	1347	705
	Terminal (nt)	1167577	1167587	1168747	1169321	1171187	1171871	1171869	1172501	1176308	1180121	0100	11808/2	1183603	1184257	1185155	1185218	1187039	1188389	1190526
	Initial (nt)	1167110	1168711	1169325	1170610	1170672	1171206	1172462		1180048	1180837		11816/5	1181993	1183607	1184280	1185742	1185825	1187043	1189822
	SEQ No.	(a.a.) 4743	4744		4746	4747	4748	4749	4750	4751	7752	-+	4753	4754	4755	4756	4757	+	4759	4760
		(DNA) 1243	_	1245	1246	1247	1248	12/0	1250	1251	1050	12021	1253	1254	1255	1256	1257	1258	1259	1260

	Function	5- methyltetrahydropteroyltriglutamate- -homocysteine S-methyltransferase		thiophene biotransformation protein						sporter	sporter	cytochrome bd-type menaquinol oxidase subunit II	cytochrome bd-type menaquinol oxidase subunit I			mutator mutT protein ((',b-dinydro- 8-oxoguanine-triphosphatase)(8- oxo-dGTPase)(dGTP pyrophosphohydrolase)	o 300 miles o Giro	proline-specific perimense
		5- methyltetr -homocys		thiophene						ABC transporter	ABC transporter	cytochrol oxidase (cytochrome bd-ty oxidase subunit l	helicase		mutator 8-oxogu oxo-dGT pyropho		proline
	Matched length (a.a.)	774		444						526	551	333	512	402		86		433
	Similarity (%)	72.2		79.5						63.5	58.4	93.0	0.66	55.0		65.6		85.0
	Identity (%)	45.2		55.2						28.7	29.4	92.0	93.6	26.4		36.9		51.3
lable I (continued)	Homologous gene	Catharanthus roseus metE		Nocardia asteroides strain KGB1						Escherichia coli K12 MG1655 cydC	Escherichia coli K12 MG1655 cydD	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydB	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydA	Escherichia coli K12 MG1655 yejH		Proteus vulgaris mutT		Salmonella typhimurium proY
	db Match	pir.S57636		qsp:Y29930						sp:cYDC_ECOLI	sp:cYDD_ECOLI	gp:AB035086_2	gp:AB035086_1	sp:YEJH_ECOLI		sp:MUTT_PROVU		sp:PROY_SALTY
	ORF (bp)		456	+	324	945	792	1647	192	1554	1533	666	1539	2265	342	393	765	1404
	Terminal (nt)	1188388	1191542	1193807	1194190	1195109	1195125	1197620	1197815	1197990	1199543	1201090	1202094	1203916	1206657	1206831	1208138	1208212
	Initial (nt)	1190622	1191087	1192410	1193867	1194165	1195916	1195974	1197624	1199543	1201075	1202088	4772 1203632	1206180	1206316		1207374	1209615
	SEQ NO.		, CA7.N	-							4770	4771	4772	4773	4774		4776	
		(DNA) (1261	1282	_					\neg		1270	1271	1272	1273	1274	1275	1276	1277

Γ			$ \top$		\neg		T			T								
	Function	DEAD box ATP-dependent RNA helicase	bacterial regulatory protein, tetR family	pentachlorophenol 4- monooxygenase	maleylacetate reductase	catechol 1,2-dioxygenase		hypothetical protein	transcriptional regulator		hypothetical protein	phosphoesterase	hypothetical protein			esterase or lipase		
	Matched length (a.a.)	643	247	595	354	278		185	878		203	395	915			220		
	Similarity (%)	74.3	47.4	47.7	72.0	59.4		58.4	55.4		56.2	67.3	59.6			64.6		
	Identity (%)	48.1	24.7	24.5	40.4	30.6		31.9	24.9		29.6	39.2	29.7			37.3		
ומחום ו (בסווווומבם)	Homologous gene	Klebsiella pneumoniae CG43 DEAD box ATP-dependent RNA helicase deaD	Mycobacterium leprae B1308 C2 181	Sphingomonas flava pcpB	Pseudomonas sp. B13 clcE	Acinetobacter calcoaceticus catA		Mycobacterium tuberculosis H37Rv Rv2972c	Saccharomyces cerevisiae SNF2		Streptomyces coelicolor A3(2) orf2	Mycobacterium tuberculosis H37Rv Rv1277	Mycobacterium tuberculosis H37Rv Rv1278			Petroleum-degrading bacterium HD-1 hde		
	db Match	sp:DEAD_KLEPN	prf:2323363BT	sp:PCPB_FLAS3	SP:CLCE PSESB			pir.A70672	sp:SNF2_YEAST		gp:SCO007731_6	pir.E70755	sp:Y084_MYCTU			gp:AB029896_1		
	ORF (bp)	2196	687	1590	1068		471	540	3102	1065	858	1173	2628	306	318	774	378	786
	Terminal (nt)	1212129	1212429	1214858	1215938	1216836	1216904	1217443	1222996	1221841	1223843	1225059	1227693	1227282	1227340	1228636	1229095	1229935
	Initial (nt)	1209934	1213115	1213269	1214871	1215952	1217374		1219895	1222905	1222986	1223887	1225066	1227587	_		1228718	4794 1229150
	SEQ NO.		4779	4780	4781	4782	4783	4784	4785	4786	4787	4788	4789	4790			4793	+
	SEQ NO.		1279			1282	1283	1284	1285	1086	1287	1288	1289	1290	1291	1292	1293	1294

Table 1 (continued)

		sporter				uction	periplasmic	Zn(II)- ise	(ATP:GTP e) (ppGpp	0			esi			cnain	ain	ain			hain	
	Function	short-chain fatty acids transporter	regulatory protein			fumarate (and nitrate) reduction regulatory protein	mercuric transort protein periplasmic component precursor	zinc-transporting ATPase Zn(II)- translocating P-type ATPase	GTP pyrophosphokinase (ATP:GTP 3'-pyrophosphotransferase) (ppGpp synthetase I)	tripeptidyl aminopeptidase			homoserine dehydrogenase			nitrate reductase gamma chain	nitrate reductase delta chain	nitrate reductase beta chain	hypothetical protein	hypothetical protein	nitrate reductase alpha chain	nitrate extrusion protein
	Matched length (a.a.)	122	166			228	81	909	137	601			24			220	175	505	137	83	1271	461
	Similarity (%)	69.7	56.6			67.9	66.7	70.6	58.4	49.3			98.0			9.69	63.4	83.4	48.0	55.0	73.8	67.9
	Identity (%)	37.7	24.7			25.0	33.3	38.0	32.9	26.6			95.0			45.0	30.3	9.99	36.0	36.0	46.9	32.8
lable I (collinacy)	Homologous gene	Streptomyces coelicolor SC1C2.14c atoE	Erwinia chrysanthemi recS			Escherichia coli K12 MG1655 fnr	Shewanella putrefaciens merP	Escherichia coli K12 MG1655 atzN	Vibrio sp. S14 relA	Streptomyces lividans tap			Corynebacterium glutamicum			Bacillus subtilis narl	Bacillus subtilis narJ	Bacillus subtilis narH	Aeropyrum pernix K1 APE1291	Aeropyrum pernix K1 APE1289	Bacillus subtilis narG	Escherichia coli K12 narK
	db Match	sp:ATOE_ECOLI	Sp:PECS_ERWCH			sp:FNR_ECOLI	sp:MERP_SHEPU	sp:ATZN_ECOLI	sp:RELA_VIBSS	qsp:R80504			GSP:P61449			sp:NARI_BACSU	sp:NARJ_BACSU			PIR:B72603		
	ORF (bp)	537	486	222	519	750	234	1875	630	1581	603	120	108	1260	069	777	732	1593	+	+	+	
	Terminal (nt)	1229180	1230480	1230831	1230914	1232479	1232836	1234881	1235612	1236545	1241554	1242156	1243728	1243942	1244843	1245720	1246508	\bot			\perp	
	Initial (nt)	1229716	1229995	1230610	1231432		1232603	1233007	1234983	1238125			1243621	1245201	1245532	1246496				1251545		
	SEQ NO.	4795	4796	_	4798		4800	4801	4802	4803				4807	4808	4809		_			_	
	SEQ NO.	1295	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1313	2 2 2	1315

Function	molybdopterin biosynthesis cnx1 protein (molybdenum cofactor biosynthesis enzyme cnx1)	extracellular serine protease precurosor		hypothetical membrane protein	hypothetical membrane protein	molybdopterin guanine dinucleotide synthase	molybdoptein biosynthesis protein	molybdopterin biosynthsisi protein Moybdenume (mosybdenum cofastor biosythesis enzyme)	edium-chain fatty acidCoA ligase	Rho factor				peptide chain release factor 1	protoporphyrinogen oxidase		hypothetical protein	undecaprenyl-phosphate alpha-N- acetylglucosaminyltransferase
Matched length (a.a.)	157	738		334	472	178	366	354	572	753				363	280		215	322
Similarity (%)	65.0	45.9		62.6	60.2	52.3	58.2	73.7	65.7	73.8				71.9	57.9		86.0	58.4
Identity (%)	32.5	21.1		30.8	31.6	27.5	32.8	51.4	36.7	50.7				41.9	31.1		62.3	31.1
Homologous gene	Arabidopsis thaliana CV cnx1	Serratia marcescens strain IFO- 3046 prtS		Mycobacterium tuberculosis H37Rv Rv1841c	Mycobacterium tuberculosis H37Rv Rv1842c	Pseudomonas putida mobA	Mycobacterium tuberculosis H37Rv Rv0438c moeA	Arabidopsis thaliana cnx2	Pseudomonas oleovorans	Micrococcus luteus rho				Escherichia coli K12 RF-1	Escherichia coli K12		Mycobacterium tuberculosis H37Rv Rv1301	Escherichia coli K12 rfe
db Match	sp:CNX1_ARATH	sp:PRTS_SERMA		sp:Y0D3_MYCTU	sp:Y0D2_MYCTU	gp: PPU242952_2	sp:MOEA_ECOL!	sp:CNX2_ARATH	Sp. ALKK PSEOL					sp:RF1_ECOLI	sp:HEMK_ECOLI		sp:YD01_MYCTU	sp:RFE_ECOLI
ORF (bp)	489	1866	684	1008	1401	561	1209	1131	1725	2286	603	969	1023	1074	837	774	648	1146
Terminal (nt)	1254634	1254737	1257750	1256851	1257865	1259429	1259993	1261688	1262886	1267427	1266267	1265611	1265427	1268503	1269343	1268267	1270043	1271192
Initial (nt)	1254146	1256602	1257067	1257858	1259265	1259989	1261201	1262818	1264610		1265665	1266306	1266449	1267430	1268507	1269040	1269396	1270047
SEQ NO.		4817	4818	4819	4820	4821	4822	4823	4824	4825	4826	4827	4828	4829	4830	4831		4833
SEQ NO.		1317	1318		1320	1321	1322	1323	1324		1326	1327	1328	1329	1330	1331	1332	1333

$\overline{}$
ŏ
≝
Ĕ
ō
Ö
_
_
<u>=</u>
뎦
<u>a</u>
•

Function		hypothetical protein	ATP synthase chain a (protein 6)	H+-transporting ATP synthase lipid- binding protein. ATP synthase C chane	H+-transporting ATP synthase chain b	H+-transporting ATP synthase delta chain	H+-transporting ATP synthase alpha chain	H+-transporting ATP synthase gamma chain	H+-transporting ATP synthase beta chain	H+-transporting ATP synthase epsilon chain	hypothetical protein	hypothetical protein	putative ATP/GTP-binding protein	hypothetical protein	hypothetical protein	thioredoxin
Matched length (a.a.)		80	245	7.1	151	274	516	320	483	122	132	230	95	134	101	301
Similarity (%)		0.66	56.7	85.9	6.99	67.2	88.4	76.6	100.0	73.0	67.4	85.7	56.0	68.7	79.2	71.4
Identity (%)		98.0	24.1	54.9	27.8	34.3	6.99	46.3	8.66	41.0	38.6	70.0	45.0	35.8	54.5	37.9
Homologous gene		Corynebacterium glutamicum atpl	Escherichia coli K12 atpB	Streptomyces lividans atpL	Streptomyces lividans atpF	Streptomyces lividans atpD	Streptomyces lividans atpA	Streptomyces lividans atpG	Corynebacterium glutamicum AS019 at0B	Streptomyces lividans atpE	Mycobacterium tuberculosis H37Rv Rv1312	Mycobacterium tuberculosis H37Rv Rv1321	Streptomyces coelicolor A3(2)	Bacillus subtilis yajC	Mycobacterium tuberculosis H37Rv Rv1898	Mycobacterium tuberculosis H37Rv Rv1324
db Match		GPU:AB046112_1	Sp.ATP6 ECOLI	sp:ATPL_STRLI	sp:ATPF_STRLI	sp:ATPD_STRLI	sp:ATPA_STRL!	sp:ATPG_STRL	sp:ATPB_CORGL	sp:ATPE_STRLI	sp:Y02W_MYCTU	sp:Y036_MYCTU	GP:SC26G5 35	sp:YQJC_BACSU	sp:YC20_MYCTU	sp:YD24_MYCTU
ORF (bp)	486	249	810		564	813	1674	975	1449	372	47.1	069	285	453	312	921
Terminal (nt)	1271698	1272119	1273149	1273525	1274122	1274943	1276648	1277682	1279136	1279522	1280240	1280959	1281251	1281262		1283114
Initial (nt)	1271213	1271871	1272340	1273286	1273559	1274131	1274975	1276708	1277688	1279151	1279770	1280270	1280967			1282194
SEQ NO.			4836	1	4838	4839	4840	4841	4842	4843	4844	4845	4846		$\overline{}$	4849
L	1334		1336		1338	1339	1340	1341	1342	1343	1344	1345	1346	1347	1348	1349

ල
ned
Ξ.
cont
_
9
Table
H

																	Т.	
	Function	FMNH2-dependent aliphatic sulfonate monooxygenase	alphatic sulfonates transport permease protein	alphatic sulfonates transport permease protein	sulfonate binding protein precursor	1,4-alpha-glucan branching enzyme (glycogen branching enzyme)	alpha-amylase		ferric enterobactin transport ATP- binding protein or ABC transport ATP-binding protein	hypothetical protein	hypothetical protein		electron transfer flavoprotein beta- subunit	electron transfer flavoprotein alpha subunit for various dehydrogenases		nitrogenase cofactor sythesis protein		hypothetical protein
	Matched length (a.a.)	366	240	228	311	710	467		211	260	367		244	335		375		397
	Similarity (%)	74.3	75.8	72.8	62.1	72.7	50.5		87.6	68.5	70.0		64.8	61.8		67.7		55.7
	Identity (%)	50.3	40.8	50.4	35.1	46.1	22.9		31.8	39.6	43.1		31.2	33.1		35.2		29.5
lable i (continued)	Homologous gene	Escherichia coli K12 ssuD	Escherichia coli K12 ssuC	Escherichia coli K12 ssuB	Escherichia coli K12 ssuA	Mycobacterium tuberculosis H37Rv Rv1326c glgB	Dictyoglomus thermophilum amyC		Escherichia coli K12 fepC	Mycobacterium tuberculosis H37Rv Rv3040c	Mycobacterium tuberculosis H37Rv Rv3037c		Rhizobium meliloti fixA	Rhizobium meliloti fixB		Azotobacter vinelandii nifS		Rhizobium sp. NGR234 plasmid pNGR234a y4mE
	db Match	gp:ECO237695_3	sp.SSUC_ECOLI	sp:SSUB_ECOLI	sp.SSUA ECOLI	sp:GLGB_ECOLI	sp:AMY3_DICTH		sp:FEPC_ECOLI	pir.C70860	pir:H70859		sp:FIXA_RHIME	sp:FIXB_RHIME		sp:NIFS AZOVI		sp:Y4ME_RHISN
	ORF (bp)	1143 g	768	729	957		1494	378		804	1056	612	Т.	951	615	1128	312	
	Terminal (nt)	1284466	1285284	1286030	1286999	1287281	1289514	4204373	1292577	1294025	1295206	1294436	1296220	1297203	1207093	_		
	Initial (nt)	1283324	1284517	1285302	1006013	1	1291007		1291699	1293222	1294151	1295047		1	1206470			
	SEQ.	(a.a.) 4850	i		4052	4653	4855	0.0	4857	4858	4859	1860			1062	-	\rightarrow	
		(DNA)			7 27	1354	1355	010,	1350	1358	1359	1360	1361	1362	4.00.0	1364	1365	1366

=
$\boldsymbol{\sigma}$
<i>T</i>
u
\neg
_
=
==
=
_
0
$^{\circ}$
ェ
~
•
d)
~
$\overline{}$
-=
σ.
-

										5	į	186				-נוסח		96
	Function	transcriptional regulator	acetyltransferase				tRNA (5-methylaminomethyl-2- thiouridylate)-methyltransferase		hypothetical protein	tetracenomycin C resistance and export protin		DNA ligase (polydeoxyribonucleotide synthase [NAD+]	hypothetical protein	glutamyl-tRNA(GIn) amidotransferase subunit C	glutamyl-tRNA(GIn) amidotransferase subunit A	vibriobactin utilization protein / iron- chelator utilization protein	hypothetical membrane protein	pyrophosphatefructose 6- phosphate 1-phosphotransrefase
Matchad	length (a.a.)	59	181				361		332	500		229	220	67	484	263	96	358
	Similarity (%)	76.3	55.3				80.9		0.99	65.8		70.6	70.9	64.0	83.0	54.0	79.2	77.9
	Identity (%)	47.5	34.8				61.8		33.7	30.2		42.8	40.0	53.0	74.0	28.1	46.9	54.8
	Homologous gene	Rhizobium sp. NGR234 plasmid pNGR234a Y4mF	Escherichia coli K12 MG1655 yhbS				Mycobacterium tuberculosis H37Rv Rv3024c		Mycobacterium tuberculosis H37Rv Rv3015c	Streptomyces glaucescens tcmA		Rhodothermus marinus dnlJ	Mycobacterium tuberculosis H37Rv Rv3013	Streptomyces coelicolor A3(2) gatC	Mycobacterium tuberculosis H37Rv gatA	Vibrio vulnificus viuB	Streptomyces coelicolor A3(2) SCE6.24	Amycolatopsis methanolica pfp
	db Match	sp.Y4MF_RHISN	sp:YHBS_ECOLI				pir:C70858		pir.B70857	sp:TCMA_STRGA		sp:DNLJ_RHOMR	pir:H70856	sp:GATC_STRCO	sp:GATA_MYCTU	sp:VIUB_VIBVU	gp:SCE6_24	sp:PFP_AMYME
	ORF (bp)	225	504	942	1149	396	1095	654	066	1461	735	2040	663	297	1491	849	306	1071
	Terminal (nt)	1300145	1301055	1300988	1301975	1303694	1304923	1303883	1305921	1305924	1307462	1310369	1310435	1311616	1313115	1314118	1314470	1316083
	Initial (nt)	1300369	1300552	1301929	1303123	1303299	1303829	1304536	1304932	1307384	1308108		1311097	1311320	1311625	1313270	1314775	1315013
	SEQ NO. (a.a.)	+	4868	4869	4870	4871	4872	4873	4874	4875	4076	4877	4878	4879	4880	4881	4882	4883
	SEQ NO.		1368	1369	1370	1371	1372	1373	1374	1375	1276	1377	1378	1379	1380	1381	1382	1383

$\overline{}$
ntinued
50
-
<u>•</u>
Ω
Tab

Function		glucose-resistance amylase regulator (catabolite control protein)	ripose transport ATP-binding protein		high affinity ribose transport protein	periplasmic ribose-binding protein	high affinity ribose transport protein	hypothetical protein	iron-siderophore binding lipoprotein	Na-dependent bile acid transporter	RNA-dependent amidotransferase B	putative F420-dependent NADH reductase	hypothetical protein	hypothetical protein	hypothetical membrane protein		dihydroxy-acid dehydratase	hypothetical protein
Matched length (a.a.)		328	499		329	305	139	200	354	268	485	172	317	234	325		613	105
Similarity (%)		31.4	76.2		76.9	77.7	68.4	58.0	60.2	61.9	71.8	61.1	6.99	62.4	52.6		99.4	68.6
Identity (%)		31.4	44.7		45.6	45.9	41.7	31.0	31.4	35.8	43.1	32.6	39.8	39.3	27.4		99.2	33.3
Homologous gene		Bacillus megaterium ccpA	Escherichia coli K12 rbsA	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Escherichia coli K12 MG 1955 rbsC	Escherichia coli K12 MG1655 rbsB	Escherichia coli K12 MG1655 rbsD	Saccharomyces cerevisiae YIR042c	Streptomyces coelicolor SCF34.13c	Rattus norvegicus (Rat) NTCI	Staphylococcus aureus WHU 29 ratB	Methanococcus jannaschii MJ1501 f4re	Escherichia coli K12 yajG	Mycobacterium tuberculosis H37Rv Rv2972c	Mycobacterium tuberculosis H37Rv Rv3005c		Corynebacterium glutamicum ATCC 13032 ilvD	Mycobacterium tuberculosis H37Rv Rv3004
db Match		sp.CCPA BACME	E PER ECOLI	יייייייייייייייייייייייייייייייייייייי	sp:RBSC_ECOLI	sp:RBSB_ECOLI	sp:RBSD_ECOLI	sp:YIW2_YEAST	gp:SCF34_13	sp:NTCI_RAT	gsp:W61467	sp:F4RE_METJA	sp:YQJG_ECOLI	pir.A70672	pir.H70855		gp:AJ012293_1	pir:G70855
ORF (bp)	630			-	972	942	369	636	1014	1005	1479	672	1077	774	1056	237	1839	564
Terminal (nt)	1215275			1318000	1319976	1320942	1321320	1322111	1323406	1324537	1326256	1327049	1329891	1331875	1333008	1333188	1333442	1335412
Initial (nt)	1245054	1316338		131/434	1319005	1320001	1320952	1321476	1322393	1323533		1326378	1330967		1331953	1333424	1335280	1335975
SEQ NO.		4884		4886	4887	4888	4889	4890	4891	4892		4894	4895		4897	4898		4900
SEQ NO.		1384		1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398	1399	1400

															τ	_			-	\neg	$ \tau$	\neg
	Function	hypothetical membrane protein	hypothetical protein		nitrate transport ATP-billuing potein	maitose/maitodexirin iransport ATF-	nitrate transporter protein			actinorhodin polyketide dimerase	cobalt-zinc-cadimium resistance protein			hypothetical protein		C 3 absenbod voerate	dehydrogenase	hypothetical serine-rich protein			hypothetical protein	
	Matched length (a.a.)	62	99	1	167	87	324			142	304			642	,		530	105			620	
	Similarity (%)	100.0	55.0		80.8	78.2	56.8			73.2	72.7			53.7			100.0	52.0			63.1	
	Identity (%)	100.0	45.0		50.9	46.0	28.1			39.4	39.1			22.0	24.3		8.66	29.0			32.9	
lable i (confined)	Homologous gene	Corynebacterium glutamicum ATCC 13032 yilV	Sulfolobus solfataricus		Synechococcus sp. nrtD	Enterobacter aerogenes (Aerobacter aerogenes) malK	Anabaena sp. strain PCC 7120 nrtA			Streptomyces coelicolor	Ralstonia eutropha czcD				Methanococcus janinascini		Brevibacterium flavum serA	Schizosaccharomyces pombe SPAC11G7.01			Rhodobacter capsulatus strain SB1003	
	db Match	sp:YILV_CORGL	GP:SSU18930_26 3		sp:NRTD_SYNP7	sp:MALK_ENTAE	sp:NRTA_ANASP			sp:DIM6 STRCO	sp:czcD_ALCEU				sp:Y686_METJA		gsp:Y22646	SP:YEN1_SCHPO) pir.T03476	
	ORF (bp)	1473	231	909	498	267	882	447	369	486	954	153	000	280	1815	1743	1590	327	867	1062	1866	402
	Terminal (nt)	1336095	1338379	1342677	1341960	1342461	1342794	1344464	1344808	1345420	1346439	1345335	200101	1345642	1348272	1350076	1352444	1351727	1353451	1354540	 	1356853
	Initial (nt)	1337567	1338609	1342072	1342457	1342727	1343675	1344018				12/5/87		1346331	1346458	1348334	1350855	1352053	1352585			1356452
	SEQ NO.	(a.a.)	4902	4903	4904		4906	4907		4909	4910	107	1 D	4912	4913	4914	4915	4916	4917	-		4920
		(DNA) 1401	1402	1403			1406	1407	1408	7 7 2	1410	7 7 7	4	1412	1413	1414	1415	1416	1417	1418	1419	1420

r citoria	Lancaon		homoprotocatechiuate catabolism bifunctional isomerase/decarboxylase [includes: 2-hydroxyhepta-2,4-diene-1,7-dioate isomerase(hhdd isomerase); 5-carboxymethyl-2-oxo-hex-3-ene-1,7-dioate decarboxylase(opet decarboxylase)]	methyltransferase or 3- demethylubiquinone-9 3-O- methyltransferase	isochorismate synthase	glutamyl-tRNA synthetase	transcriptional regulator													thiamin biosynthesis protein
Matched	(a.a.)		228	192	371	485	29													299
Similarity	(%)		59.2	55.7	70.4	69.7	90.0													81.0
Identity			33.3	23.4	38.0	37.3	77.0													65.1
	Homologous gene		Escherichia coli C hpcE	Escherichia coli K12	Bacillus subtilis dhbC	Bacillus subtilis altX	Streptomyces coelicolor A3(2)													Bacillus subtilis thiA or thiC
	db Match		sp:HPCE_ECOLI	sp:UBIG_ECOLI	Sn.DHBC BACSU	1488 sn.SYF BACSU	op:SC.133 10	2.1												sp:THIC_BACSU
L C	는 (함 (함	654	804	618	1128	1488	213	516	522	342	621	303	180	330	213	183	318	1152	324	1761
	Terminal (nt)	1358210	1359062	1359669	136016B	136784B	1362926	1363142	1363732	1365256	1364340	1364878	1365217	1366137	1367505	1367888	1368395	1369551	1369874	1369877
	Initial (nt)	1357557		1359052	1361205	1001200	1363138		1364253	1364915	1364960	1365180	4932 1365396	1365808	1367293	1368070	1368078	1368400	1369551	
C II	(a,a.)	+		4923	7007	1264	4923	4920	4928	4929	4930	4931		4933	4934	4935	4936	4937	4938	
C II				1423	7077		_	1420	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439

	Function			lipoprotein		givcogen phosphorylase			1 - 11 - 11 - 11 - 11	hypothetical protein	hypothetical membrane protein		guanosine 3',5'-bis(diphosphate) 3'- pyrophosphatase	acetate repressor protein	3 isopropylmalate dehydratase large	subunit	3-isopropylmalate dehydratase small subunit		mutator mutT protein ((7,8-dihydro-8-oxoguanine-triphosphatase)(8-oxo-dGTPase)(dGTP	the state of the s	NAD/ONE dependent	dihydroxyacetone phosphate	D-alanine-D-alanine ligase
	Matched length (a.a.)			44		797				299	256		178	257		473	195		294			331	374
	Similarity (%)			74.0		74.0	2		1	52.8	64.8		60.1	60.7		87.5	89.2		71.4			72.2	67.4
	identity (%)			61.0		44.2	77.1			25.4	25.4		29.8	26.1		68.1	67.7		45.9			45.0	40.4
ומחום ו (בסוונוומבת)	Homologous gene			Chlamydia trachomatis		(+00) 010121111111111111111111111111111111	Rattus norvegicus (Rat)			Bacillus subtilis yrkH	Methanococcus jannaschii Y441		Escherichia coli K12 spoT	Ecohorichia coli K10 iclR		Actinoplanes teichomyceticus leu2	Salmonella typhimurium		Mycobacterium tuberculosis H37Rv MLCB637.35c			Bacillus subtilis gpdA	Escherichia coli K12 MG1655 ddIA
	db Match			GSP:Y37857		1	sp:PHS1_RA1			sp:YRKH_BACSU	sp:Y441_METJA		sp:SPOT_ECOLI		Sp:ICLK_ECOLI	sp:LEU2_ACTTI	sp:LEUD_SALTY		gp:MLCB637_35			sp:GPDA_BACSU	sp:DDLA_ECOLI
	ORF (bp)	348	531	+			2427	183	156	1407	750	477	564	101	S	1443	591	318	954		156	966	1080
	Terminal (nt)	1371979	1373131	1373929	707 1107	13/5491	1373350	1375805	1375933	1376149	1377666	1378466	1379566	1	13/9555	1381882	1382492	1382502	1382845		1384085	1385125	1386232
	Initial (nt)	1372326	1372801	1373798	2010	13/4556	1375776	1375987	1376088	1377555		1378942			1380259	1380440	1381902	1282810			1383930	1384130	1385153
	SEQ NO.					4943	4944	4945	4946	4947	+	4949	4950		4951	4952	4953	4054			4956	4957	4958
	SEQ NO.			- 444		1443	1444	1445	1446	1447		1440	1450		1451	1452	1453	4 45 4	1455		1456	1457	1458

		\neg					, E			esis		말으	ပ		Sor				
	Function		thiamin-phosphate kinase	uracil-DNA glycosylase precursor	hypothetical protein	ATP-dependent DNA helicase	polypeptides predicted to be useful antigens for vaccines and diagnostics	biotin carboxyl carrier protein	methylase	lipopolysaccharide core biosynthesis protein		Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	ABC transporter or glutamine ABC transporter, ATP-binding protein	nopaline transport protein	glutamine-binding protein precursor		hypothetical membrane protein		phage integrase
	Matched length (a.a.)		335	245	568	693	108	29	167	155		65	252	220	234		322		223
	Similarity (%)		57.6	59.6	56.3	0.09	48.0	67.2	63.5	78.7		74.0	78.6	75.0	59.0		60.3		52.5
	Identity (%)		32.2	38.8	23.1	35.4	31.0	38.8	37.1	42.6		67.0	56.4	32.7	27.4		28.6		26.9
lane i (commaca)	Homologous gene		Escherichia coli K12 thiL	Mus musculus ung	Mycoplasma genitalium (SGC3) MG369	Escherichia coli K12 recG	Neisseria meningitidis	Propionibacterium freudenreichii subsp. Shermanii	Escherichia coli K12 yhhF	Escherichia coli K12 MG1655 kdtB		Neisseria gonorrhoeae	Bacillus stearothermophilus glnQ	Agrobacterium tumefaciens nocM	Escherichia coli K12 MG1655 gInH		Methanobacterium thermoautotrophicum MTH465		Bacteriophage L54a vinT
	db Match		Sp:THIL_ECOLI	sp:UNG_MOUSE	sp:Y369_MYCGE	sp:RECG_ECOLI	GSP:Y75303	sp:BCCP_PROFR	Sp:YHHF_ECOLI	sp:KDTB_ECOLI		GSP:Y75358	sp:GLNQ_BACST	sp:NOCM_AGRT5	sp:GLNH_ECOLI		pir:H69160		sp:VINT_BPL54
	ORF (bp)	978	993	762	1581	2121	324	213	582	480	1080	204	750	843	861	807	978	408	756
	Terminal (nt)	1386293	1388324	1389073	1390788	1392916	1391638	1393151	1393735	1394221	1395933	1395097	1394800	1395568	1396561	1398468	1398557	1401333	1400185
	Initial (nt)	1387270	1387332	1388312	1389208	1390796	1391961	1392939	1393154	1393742	1394854		1395549	1396410	1397421	1397662	1399534	1400926	1400940
	SEQ NO. (a.a.)	4959	4960	4961	4962	4963	4964	4965	4966	4967	4968	4969	4970	4971	4972	4973	4974	4975	4976
	SEQ NO.	1459	1460		1462	1463	1464	1465	1466	1467	1468	1469	1470	1471	1472	1473	1474	1475	1476

Table 1 (continued)

			\Box													T							
Function							insertion element (IS3 related)		hypothetical protein										DNA polymerase I	cephamycin export protein	DNA-binding protein	morphine-6-dehydrogenase	
Matched length (a.a.)							26		37										988	456	283	284	
Similarity (%)							96.2		97.0										80.8	8.79	65.4	76.1	
Identity (%)							88.5		89.0										56.3	33.8	41.3	46.5	
Homologous gene							Corynebacterium glutamicum orf2		Corynebacterium glutamicum					And the second s					Mycobacterium tuberculosis polA	Streptomyces lactamdurans cmcT	Streptomyces coelicolor A3(2) SCJ9A.15c	Pseudomonas putida morA	
db Match							pir:S60890		PIR:S60890										sp:DPO1_MYCTU	sp:CMCT_NOCLA	gp:SCJ9A_15	sp:MORA_PSEPU	
ORF (bp)		744	432	507	864	219	192	855	111	369	315	321	375	948	306	564	222	291	2715	1422	606	873	159
Terminal (nt)		1402076	1402703	1402368	1403991	1404215	1404694	1405320	1406999	1407167	1407559	1408703	1409428	1410064	1411119	1411437	1412572	1412626	1416459	1416462	1418870	1419748	1419878
Initial (nt)	,	1401333	1402272	1402874	1403128	1403997	1404885	1406174	1407109	1407535	1407873	1409023	1409802	1411011	1411424	1412000	1412351	1412916	1413745	1417883	1417962	1418876	1420036
SEQ.	(a.a.)	4977	4978	4979	4980	4981	4982	4983	4984	4985	4986	4987	4988	4989	4990	4991	4992	4993	4994	4995	4996	4997	4998
	_	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498

Function	hypothetical protein	30S ribosomal protein S1		hypothetical protein					inosine-uridine preferring nucleoside hypolase (purine nucleosidase)	aniseptic resistance protein	ribose kinase	criptic asc operon repressor, ranscription regulator		excinuclease ABC subunit B	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	hydrolase
D ₀ C	hypo	308														hyp					
Matched length (a.a.)	163	451		195					310	517	293	337		671	152	121	279		839	150	214
Similarity (%)	58.3	71.4		93.9					81.0	53.8	67.6	65.6		83.3	59.2	80.2	77.1		47.2	68.0	58.4
identity (%)	31.9	39.5		80.5					61.9	23.6	35.5	30.0		57.4	33.6	38.8	53.8		23.2	32.7	30.4
Homologous gene	Streptomyces coelicolor SCH5.13 yafE	Escherichia coli K12 rpsA		Brevibacterium lactofermentum ATCC 13869 yacE					Crithidia fasciculata iunH	Staphylococcus aureus	Escherichia coli K12 rbsK	Escherichia coli K12 ascG		Streptococcus pneumoniae plasmid pSB470 uvrB	Methanococcus jannaschii MJ0531	Escherichia coli K12 ytfH	Escherichia coli K12 ytfG		Bacillus subtilis yvgS	Streptomyces coelicolor A3(2) SC9H11.26c	Escherichia coli K12 ycbL
db Match	sp:YAFE_ECOLI	sp:RS1_ECOLI		sp:YACE_BRELA					sp:IUNH_CRIFA	Sp. QACA STAAU	SD: RBSK ECOLI	sp:ASCG_ECOLI		sp:UVRB_STRPN	sp:Y531_METJA	sp:YTFH_ECOLI	sp:YTFG_ECOLI		pir:H70040	gp:SC9H11_26	sp:YCBL_ECOLI
ORF (bp)	654	1458	1476	009	1098	582	246	957	936	1449	921		798	2097	441	381	846	684	2349	912	009
Terminal (nt)	1420071	1422556	1421096	1425878	1427354	1427376	1427804	1429246	1428224	1429194	1430659	1431575	1433547	1436201	1436775	1436869	1438201	1440026	1438212	1440675	1441793
Initial (nt)	1420724	1421099	1422571	1425279	1426257	1427957	1428049	1428290	1429159	1430642	1431579	1432612	1432750	1434105	1436335	1437249	1437356	1439343	1440560	1441586	1442392
SEQ NO.	+	2000	5001	5005	5003	5004	5005	5006	5007	5008	_		5011	5012	5013	5014	5015	5016	5017	5018	5019
SEQ NO.		1500	1501	1502	1503	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519

									г	- 1					т				
	Function	excinuclease ABC subunit A	hypothetical protein 1246 (uvrA region)	hypothetical protein 1246 (uvrA region)			translation initiation factor IF-3	50S ribosomal protein L35	50S ribosomal protein L20			sn-glycerol-3-phosphate transport system permease protein	sn-glycerol-3-phosphate transport system protein	sn-glycerol-3-phosphate transport system permease proein	sn-glycerol-3-phosphate transport ATP-binding protein	hypothetical protein	glycerophosphoryl diester phosphodiesterase	tRNA(guanosine-2'-0-)- methlytransferase	phenylalanyl-tRNA synthetase alpha chain
Matched	length (a.a.)	952	100	142			179	09	117			292	270	436	393	74	244	153	
1	Similarity (%)	80.6	57.0	47.0			78.2	76.7	92.7			71.6	70.4	9'.29	71.3	56.0	50.0	71.2	
_	identity (%)	56.2	40.0	31.0			52.5	41.7	75.0			33.2	33.3	26.6	44.0	47.0	26.2	34.0	
•	Homologous gene	Escherichia coli K12 uvrA	Micrococcus luteus	Micrococcus luteus			Rhodobacter sphaeroides infC	Mycoplasma fermentans	Pseudomonas syringae pv. syringae			Escherichia coli K12 MG1655 ugpA	Escherichia coli K12 MG1655 upgE	Escherichia coli K12 MG1655 ugpB	Escherichia coli K12 MG1655 ugpC	Aeropyrum pernix K1 APE0042	Bacillus subtilis glpQ	Escherichia coli K12 MG1655 trmH	Bacillus subtilis 168 syfA
	db Match	sp.UVRA_ECOLI	PIR: JQ0406	PIR:JQ0406			sp:IF3_RHOSH	sp:RL35_MYCFE	sp:RL20_PSESY			sp:UGPA_ECOLI	sp:UGPE_ECOLI	sp:UGPB_ECOLI	sp:UGPC_ECOLI	PIR:E72756	sp:GLPQ_BACSU	sp:TRMH_ECOLI	sp:SYFA_BACSU
	ORF (bp)	2847	306	450	717	2124	267	192	381	822	267	903	834	1314	1224	249	717	594	1020
	Terminal (nt)	1445333	1443810	1444944	1446874	1445323	1448358	1448581	1449025	1449119	1450692	1451820	1452653	1454071	1455338	1454102	1455350	1456948	1458066
	Initial (nt)	1442487	1444115	1445393	1446158	1447446	1447792	1448390	1448645	1449940	1450126	1450918	1451820	1452758	1454115	1454350	1	1456355	1457047
CHO	(a.a.)	5020		5022	5023	5024	5025	5026	5027	5028	5029	5030	5031	5032	5033	5034	5035	5036	5037
CLU	NO.	1520	1521	1522	1523	1524	1525	1526	1527	1528	1529	1530	1531	1532	1533	1534	1535	1536	1537

	Function	phenylalanyl-tRNA synthetase beta chain		esterase	macrolide 3-0-acyltransferase		N-acetylglutamate-5-semialdehyde dehydrogenase	glutamate N-acetyltransferase	acetylornithine aminotransferase	argininosuccinate synthetase		argininosuccinate lyase				hypothetical protein	tyrosyl-tRNA synthase (tyrosinetRNA ligase)	hypothetical protein		hypothetical protein
	Matched length (a.a.)	343		363	423		347	388	391	401		478				20	417	149		42
	Similarity (%)	71.7		55.1	56.3		99.1	99.7	99.2	99.5		0.06				72.0	79.6	64.4		75.0
	Identity (%)	42.6		26.5	30.0		98.3	99.5	0.66	99.5		83.3				48.0	48.4	26.9		71.0
lable I (collinaca)	Homologous gene	Escherichia coli K12 MG1655 syfB		Streptomyces scabies estA	Streptomyces mycarofaciens mdmB		Corynebacterium glutamicum ASO19 argC	Corynebacterium glutamicum ATCC 13032 argJ	Corynebacterium glutamicum ATCC 13032 argD	Corynebacterium glutamicum ASO19 argG		Corynebacterium glutamicum ASO19 argH				Escherichia coli K12 ycaR	Bacillus subtilis syy1	Methanococcus jannaschii MJ0531		Chlamydia muridarum Nigg TC0129
	db Match	sp:SYFB_ECOLI		sp:ESTA_STRSC	sp:MDMB_STRMY		gp:AF005242_1	sp:ARGJ_CORGL	sp:ARGD_CORGL	sp:ASSY_CORGL		gp:AF048764_1				Sp:YCAR_ECOLI	sp:SYY1_BACSU	sp:Y531_METJA		PIR:F81737
	ORF (bp)	2484 8	771	972	1383	402	1041	1164	1173	1203	1209		1143	1575	612	177	1260	465	390	141
	Terminal (nt)	1460616	1458196	1462128	1463516	1463934	1465123	1466373	1468548	1471413	1470154		1474119	1475693	1476294	1476519	1477809	1477929	1478503	1483335
	Initial (nt)	1458133	1458966	1461157	1462134	1463533	1464083	1465210	1467376	1470211	1471362	1471477	1472977	1474119	1475683	1476343		1478393	1478892	1483475
	SEQ NO		5039		5041	5042		5044	5045	5046	5047		5049	5050	5051	5052	-	5054	5055	5056
	SEQ NO.	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551	1552	1553	1554	1555	1556

Table 1 (continued)

Function	hypothetical protein	translation initiation factor IF-2	hypothetical protein		hypothetical protein	hypothetical protein	DNA repair protein	hypothetical protein	hypothetical protein	CTP synthase (UTP-ammonia ligase)	hypothetical protein	tyrosine recombinase	tyrosin resistance ATP-binding protein	chromosome partitioning protein or ATPase involved in active partitioning of diverse bacterial plasmids	hypothetical protein		thiosulfate sulfurtransferase	hypothetical protein	ribosomal large subunit pseudouridine synthase B
Matched length (a.a.)	84	182	311		260	225	574	394	313	549	157	300	551	258	251		270	172	229
Similarity (%)	0.99	67.0	60.1		9.69	31.6	63.4	73.1	68.1	76.7	71.3	71.7	59.7	73.6	64.5		0.79	65.7	72.5
Identity (%)	61.0	36.3	29.6		38.5	31.6	31.4	41.9	30.4	92.0	36.3	39.7	30.5	44.6	28.3		35.6	33.1	45.9
Homologous gene	Chlamydia pneumoniae	Borrelia burgdorferi IF2	Bacillus subtilis yzgD		Bacillus subtilis yqxC	Mycobacterium tuberculosis H37Rv Rv1695	Escherichia coli K12 recN	Mycobacterium tuberculosis H37Rv Rv1697	Mycobacterium tuberculosis H37Rv Rv1698	Escherichia coli K12 pyrG	Bacillus subtilis yqkG	Staphylococcus aureus xerD	Streptomyces fradiae tIrC	Caulobacter crescentus parA	Bacillus subtilis ypuG		Datisca glomerata tst	Bacillus subtilis ypuH	Bacillus subtilis rluB
db Match	GSP:Y35814	sp:IF2_BORBU	sp:YZGD_BACSU		sp:YQXC_BACSU	sp:YFJB_HAEIN	sp:RECN_ECOLI	pir.H70502	pir.A70503	sp:PYRG_ECOLI	sp:YQKG_BACSU	gp:AF093548_1		gp:CCU87804_4	sp:YPUG_BACSU		gp:AF109156_1	sp:YPUH_BACSU	sp:RLUB_BACSU
ORF (bp)	273	1353	984	162	819	873	1779	1191	963	1662	657	912	1530	783	765	561	867	543	756
Terminal (nt)	1483724	1486027	1487025	1487193	1488056	1489018	1490881	1492134	1493109	1495174	1495861	1496772	1496795	1499645	1500695	1500911	1502576	1503176	1504238
Initial (nt)	1483996	1484675	1486042	1487032	1487238	1488146	1489103	1490944	1492147	1493513	1495205		1498324	1498863	1499931	1501471	1501710	1502634	1503483
SEQ NO.	5057	5058		5060	5061	5062	5063	5064	5065	5066	5067	5068	5069	5070	5071	5072	5073	5074	5075
SEQ NO.	1557	1558	1559	1560	1561	1562	1563	1564	1565	1566	1567	1568	1569	1570	1571	1572	1573	1574	1575

	Function	cytidylate kinase	GTP binding protein			methyltransferase	ABC transporter	ABC transporter		hypothetical membrane protein		Na+/H+ antiporter			hypothetical protein	2-hydroxy-6-oxohepta-2, 4-dienoate hydrolase	preprotein translocase SecA subunit	signal transduction protein	hypothetical protein	hypothetical protein
	Matched length (a.a.)	220	435			232	499	602		257		499			130	210	805	132	234	133
	Similarity (%)	73.6	74.0			67.2	60.1	56.3		73.2		61.5			57.7	63.8	61.7	93.2	74.4	63.2
	Identity (%)	38.6	42.8			36.2	29.7	31.2		39.7		25.7			36.9	25.2	35.2	75.8	41.9	30.8
lable I (continued)	Homologous gene	Bacillus subtilis cmk	Bacillus subtilis yphC			Mycobacterium tuberculosis Rv3342	Corynebacterium striatum M82B tetA	Corynebacterium striatum M82B tetB		Escherichia coli K12 ygiE		Bacillus subtilis ATCC 9372 nhaG			Escherichia coli K12 o249#9 ychJ	Archaeoglobus fulgidus AF0675	Bacillus subtilis secA	Mycobacterium smegmatis garA	Mycobacterium tuberculosis H37Rv Rv1828	Mycobacterium tuberculosis H37Rv Rv1828
Table	db Match	sp:KCY_BACSU	sp:YPHC_BACSU			sp:YX42_MYCTU	prf:2513302B	prf:2513302A		sp:YGIE_ECOLI		gp:AB029555_1			sp:YCHJ_ECOLI	pir.C69334	sp:SECA_BACSU	gp:AF173844_2	sp:Y0DF_MYCTU	sp:Y0DE_MYCTU
	ORF (bp)	069	1557	999	498	813	1554	1767	825	789	189	1548	186	420	375	1164	2289	429	756	633
	Terminal (nt)	1504945	1506573	1506662	1507405	1507917	1510366	1512132	1510843	1512977	1514693	1512980	1514974	1515815	1515408	1515799	1519458	1520029	1520945	1521589
	Initial (nt)	1504256	1505017	1507327	1507902	1508729	1508813	1510366	1511667	5084 1512189	1514505	1514527	1515159	1515396	1515782	1516962	1517170	1519601	1520190	1520957
	SEQ NO. (a.a.)	5076	5077	5078	5079	5080	5081	5082	5083	5084	5085	5086	5087	5088	5089	5090	5091	5092	5093	5094
	SEQ NO. (DNA)	1576	1577	1578	1579	1580	1581	1582	1583	1584	1585	1586	1587	1588	1589	1590	1591	1592	1593	1594

Table 1 (continued)

ſ											tein	ase								ding		•
	Function	hypothetical protein					hemolysin	hemolysin		DEAD box RNA helicase	ABC transporter ATP-binding protein	6-phosphogluconate dehydrogenase	thioesterase	the state of the s	nodulation ATP-binding protein I	hypothetical membrane protein	transcriptional regulator	phosphonates transport system permease protein	phosphonates transport system permease protein	phosphonates transport ATP-binding protein		
	Matched length (a.a.)	178					342	65		374	245	492	121		235	232	277	281	268	250		
	Similarity (%)	84.3					69.0	65.5		69.5	66.1	99.2	8.79		68.1	76.3	63.9	63.4	62.3	72.0		
	Identity (%)	71.4					33.9	31.4		41.2	34.3	99.0	39.7		39.6	43.1	26.7	29.9	27.2	44.8		L
(Homologous gene	Mycobacterium tuberculosis H37Rv Rv1828					Bacillus subtilis yhdP	Bacillus subtilis yhdT		Thermus thermophilus herA	Mycobacterium tuberculosis H37Rv Rv1348	Brevibacterium flavum	Mycobacterium tuberculosis H37Rv Rv1847		Rhizobium sp. N33 nodl	Mycobacterium tuberculosis H37Rv Rv1686c	Escherichia coli K12 yfhH	Escherichia coli K12 phnE	Escherichia coli K12 phnE	Escherichia coli K12 phnC		
	db Match	sp:Y0DE_MYCTU					sp:YHDP_BACSU	sp:YHDT_BACSU		gp:TTHERAGEN_1	sp:YD48_MYCTU	gsp:W27613	pir:G70664		sp:NODI_RHIS3	pir:E70501	Sp:YFHH_ECOLI	sp:PHNE_ECOLI	sp:PHNE_ECOLI	sp:PHNC_ECOLI		
	ORF (bp)	573	510	1449	900	930	1062	1380	219	1344	735	1476	462	675	741	741	873	846	804	804	210	
	Terminal (nt)	1522343	1522432	1523052	1525973	1524568	1525473	1526534	1528186	1527987	1530220	1530341	1532394	1532996	1533781	1534521	1534529	1535382	1536227	1537030	1538968	
	Initial (nt)	1521771	1522941	1524500	1525374	1525497	1526534	1527913	1527968	1529330	1529486	1531816	1531933	1532322	1533041	1533781	1535401	1536227	1537030	1537833	1538759	
	SEQ NO. (a.a.)	5095	5096	2097	5098	5099	5100	5101	5102	5103	5104	5105	5106	5107	5108	5109	5110	5111	5112	5113	5114	
	SEQ NO. (DNA)	1595	1596	1597	1598	1599	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	

Table 1 (continued)

Laitia		[t	Terminal	ORF			Identity	Similarity	Matched	14
(nt) (bp)	(nt) (bp)	(dq)) 	db Match	Homologous gene	(%)	(%)	(a.a.)	Function
5116 1539664 1538963 702	1538963		702							
5117 1541403 1539820 1584 sp.THI	1539820 1584	1584		sp:TH	D_SALTY	Salmonella typhimurium thiD	47.3	70.2	262	phosphomethylpyrimidine kinase
5118 1542922 1542119 804 sp.THIN	1542119 804 sp:TH	804 sp:TH	sp:TH	sp:THI	IM_SALTY	Salmonella typhimurium LT2 thiM	46.6	77.5	249	hydoxyethylthiazole kinase
5119 1544976 1546289 1314 pir.H70	1546289 1314 pir.H7	1314 pir.H7	pir.H7	pir.H70	0830	Mycobacterium tuberculosis H37Rv ufaA1	28.6	55.0	451	cyclopropane-fatty-acyl-phospholipid synthase
5120 1547692 1546307 1386 prf.22233	1546307 1386 prf.22:	1386 prf:22	prf: 22;	prf: 22;	23339B	Burkholderia cepacia Pc701 mopB	32.5	6.99	468	sugar transporter or 4-methyl-o- phthalate/phthalate permease
5121 1548440 1547967 474 prf.2120352B	1547967 474	474		prf:2120	352B	Thermus flavus AT-62 gpt	36.5	9.69	156	purine phosphoribosyltransferase
5122 1548651 1549349 699 sp:YEBN	1549349 699 sp:YE	699 sp:YE	sp:YE	sp:YEBN	BN_ECOLI	Escherichia coli K12 yebN	39.8	68.5	206	hypothetical protein
5123 1549403 1550398 996 gp:AF178758_2	1550398 996	966		gp:AF178	3758_2	Sinorhizobium sp. As4 arsB	23.3	54.6	361	arsenic oxyanion-translocation pump membrane subunit
5124 1550469 1550951 483	1550469 1550951		483				-			
5125 1551545 1552237 693 gp:SCI7_33	1551545 1552237 693	693		gp:SCI7_3	33	Streptomyces coelicolor A3(2) SCI7.33	62.2	83.8	222	hypothetical protein
5126 1552518 1553972 1455 gp:PSTRTETC1_6	1553972 1455	1455	_	gp:PSTRT	ETC1_6	Pseudomonas sp. R9 ORFA	51.8	83.6	469	sulfate permease
5127 1553722 1553297 426 GP:PSTRTETC1	1553297 426	426		GP:PSTR	TETC1_7	Pseudomonas sp. R9 ORFG	39.0	50.0	97	hypothetical protein
5128 1554684 1554070 615	1554070		615							
5129 1554861 1555067 207	1555067		207							
5130 1555079 1554891 189	1554891		189							
5131 1555835 1555086 750	1555086		750							
5132 1556376 1556771 396 pir.A70945	1556771 396 pir.A7	396 pir.A7	pir:A7	pir:A7094	rŏ	Mycobacterium tuberculosis H37Rv Rv2050	71.8	87.3	110	hypothetical protein
5133 1557823 1557014 810 prf.2317	1557014 810 prf:23	810 prf:23	prf:23	prf:2317	17468A	Schizosaccharomyces pombe dpm1	39.2	71.0	217	dolichol phosphate mannose synthase
5134 1559493 1557859 1635 sp:LNT_	1559493 1557859 1635 sp:LN	1635 sp:LN	sp:LN	sp:LNT	IT_ECOL!	Escherichia coli K12 Int	25.1	55.6	527	apolipoprotein N-acyltransferase
5135 1560237 1559497 741	1559497 741	741								
5136 1561660 1560437 1224 gp:AF188894_1	1561660 1560437 1224	1224		gp:AF18	8894_1	Candida albicans lip1	23.7	55.6	392	secretory lipase

Table 1 (continued)

_																		
	Function	precorrin 2 methyltransferase	precorrin-6Y C5, 15- methyltransferase			oxidoreductase	dipeptidase or X-Pro dipeptidase		ATP-dependent RNA helicase	sec-independent protein translocase protein	hypothetical protein	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	hypothetical protein
	Matched length (a.a.)	291	411			244	382		1030	268	85	317	324	467		61	516	159
	Similarity (%)	56.7	80.8			75.4	61.3		55.7	62.7	69.4	61.2	64.8	77.3		80.3	74.2	50.0
	Identity (%)	31.3	32.4			54.1	36.1		26.5	28.7	44.7	31.9	32.4	53.1		54.1	48.6	42.0
	Homologous gene	Mycobacterium tuberculosis H37Rv cobG	Pseudomonas denitrificans SC510 cobL			Mycobacterium tuberculosis H37Rv RV3412	Streptococcus mutans LT11 pepQ		Saccharomyces cerevisiae YJL050W dob1	Escherichia coli K12 tatC	Mycobacterium leprae MLCB2533.27	Mycobacterium tuberculosis H37Rv Rv2095c	Mycobacterium leprae MLCB2533.25	Mycobacterium tuberculosis H37Rv Rv2097c		Mycobacterium tuberculosis H37Rv Rv2111c	Mycobacterium tuberculosis H37Rv Rv2112c	Aeropyrum pernix K1 APE2014
	db Match	pir:C70764	sp:COBL_PSEDE			sp:YY12_MYCTU	gp:AF014460_1		sp:MTR4_YEAST	sp:TATC_ECOL!	sp:YY34_MYCLE	sp:YY35_MYCTU	sp:YY36_MYCLE	sp:YY37_MYCTU		pir:B70512	pir.C70512	PIR:H72504
	ORF (bp)	774	1278	366	246	738	1137	639	2787	1002	315	981	972	1425	249	192	1542	480
	Terminal (nt)	1562553	1562525	1564237	1564482	1564565	1565302	1567106	1567117	1569932	1571068	1571506	1572492	1573491	1575205	1574945	1575406	1577806
	Initial (nt)	1561780	1563802	1563872	1564237	1565302	1566438	1566468	1569903	1570933	1571382	1572486	1573463	1574915	1574957	1575136	1576947	1577327
	SEQ NO. (a.a.)	5137	5138	5139	5140	5141	5142	5143	5144	5145	5146	5147	5148	5149	5150	5151	5152	5153
	SEQ NO. (DNA)	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647	1648	1649	1650	1651	1652	1653

Table 1 (continued)

	e e																
Function	AAA family ATPase (chaperone-like function)	protein-beta-aspartate methyltransferase	aspartyl aminopeptidase	hypothetical protein	virulence-associated protein	quinolon resistance protein	aspartate ammonia-lyase	ATP phosphoribosyltransferase	beta-phosphoglucomutase	5-methyltetrahydrofolate homocysteine methyltransferase		alkyl hydroperoxide reductase subunit F	arsenical-resistance protein	arsenate reductase	arsenate reductase		cysteinyl-tRNA synthetase
Matched length (a.a.)	545	281	436	269	69	385	526	281	195	1254		366	388	129	123		387
Similarity (%)	78.5	79.0	67.2	71.4	72.5	61.0	8.66	97.5	63.1	62.4		49.5	63.9	64.3	75.6		64.3
identity (%)	51.6	57.3	38.1	45.4	40.6	21.8	8.66	96.8	30.8	31.6		22.4	33.0	32.6	47.2		35.9
Homologous gene	Rhodococcus erythropolis arc	Mycobacterium leprae pimT	Homo sapiens	Mycobacterium tuberculosis H37Rv Rv2119	Dichelobacter nodosus A198 vapl	Staphylococcus aureus norA23	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 aspA	Corynebacterium glutamicum ASO19 hisG	Thermotoga maritima MSB8 TM1254	Escherichia coli K12 metH		Xanthomonas campestris ahpF	Saccharomyces cerevisiae S288C YPR201W acr3	Staphylococcus aureus plasmid pl258 arsC	Mycobacterium tuberculosis H37Rv arsC		Escherichia coli K12 cysS
db Match	prf:2422382Q	pir:S72844	gp:AF005050_1	pir:B70513	sp:VAPI_BACNO	prf:2513299A	sp:ASPA_CORGL	gp:AF050166_1	pir:H72277	sp:METH_ECOLI		sp:AHPF_XANCH	sp:ACR3_YEAST	sp:ARSC_STAAU	pir:G70964		sp:SYC_ECOLI
ORF (bp)	1581	834	1323	834	264	1209	1578	843	693	3663	570	1026	1176	420	639	378	1212
Terminal (nt)	1576951	1578567	1579449	1581640	1582114	1582273	1583913	1585603	1586812	1587573	1591912	1591941	1594512	1594951	1595668	1595844	1596249
Initial (nt)	1578531	1579400	1580771	1580807	1581851	1583481	1585490	1586445	1587504	1591235	1591343	1592966	1593337	1594532	1595030	1596221	1597460
SEQ NO.	5154	5155	5156	5157	5158	5159	5160	5161	5162	5163	5164	5165	5166	5167	5168	5169	5170
SEQ NO.	1654	1655	1656	1657	1658	1659	1660	1661	1662	1663	1664	1665	1666	1667	1668	1669	1670

					o					/nthetic	sted to				-		Ð	ase	lpha
1	Function	bacitracin resistance protein	oxidoreductase	lipoprotein	dihydroorotate dehydrogenase			transposase		bio operon ORF I (biotin biosynthetic enzyme)	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics		ABC transporter		ABC transporter		puromycin N-acetyltransferase	LAO(lysine, arginine, and ornithine)/AO (arginine and ornithine)transport system kinase	methylmalonyl-CoA mutase alpha
Matched	ength (a.a.)	255	326	359	334			360		152	198		265		535		99	339	741
Similarity	(%)	69.4	62.6	53.5	67.1			55.3		75.0	33.0		68.7		67.1		56.4	72.3	87.5
Identity	(%)	37.3	33.4	27.0	44.0			34.7		44.1	26.0		43.6		36.8		32.4	43.1	72.2
	Homologous gene	Escherichia coli K12 bacA	Agrobacterium tumefaciens mocA	Mycobacterium tuberculosis H37Rv lppL	Agrocybe aegerita ura1			Pseudomonas syringae tnpA		Escherichia coli K12 ybhB	Neisseria meningitidis		Corynebacterium striatum M82B tetB		Corynebacterium striatum M82B tetA		Streptomyces anulatus pac	Escherichia coli K12 argK	Streptomyces cinnamonensis
	db Match	sp:BACA_ECOLI	prf.2214302F	pir.F70577	sp:PYRD_AGRAE			gp:PSESTBCBAD_		sp:YBHB_ECOLI	GSP·Y74829		prf.2513302A		prf.2513302B		pir.JU0052	sp:ARGK_ECOLI	sp:MUTB_STRCM
ORF	(dq)	879	948	666	1113	351	807	1110	486	531	729	603	1797	249	1587	351	609	1089	2211
Terminal	(nt)	1597745	1599614	1600677	1601804	1601931	1603466	1604629	1604830	1605281	1606689	1608248	1605861	1609335	1607661	1609842	1610844	1611150	1612234
Initial	(rt)	1598623	1598667	1599679	1600692	1602281	1602660	1603520	1605315	1605811	1605961	1607646	1607657	1609087	1609247	1610192	1610236	1612238	1614444
SEQ	NO. (a.a.)	5171	5172	5173	5174	5175	5176	5177	5178	5179	5180	5181	5182	5183	5184	5185	5186	5187	5188
SEQ	NO. (DNA)	1671	1672	1673	1674	1675	1676	1677	1678	1679	1680	1681	1682	1683	1684	1685	1686	1687	1688

_
-
$\boldsymbol{\tau}$
\approx
æ
_
~
-=
=
Ħ
-
\circ
8
\circ
\sim
_
•
ď
<u>e</u>
ᅙ
Table

Function	methylmalonyl-CoA mutase beta subunit	hypothetical membrane protein		hypothetical membrane protein	hypothetical membrane protein	hypothetical protein		ferrochelatase	invasin		aconitate hydratase	transcriptional regulator	GMP synthetase	hypothetical protein	hypothetical protein		hypothetical protein
Matched length (a.a.)	610	224		370	141	261		364	611		959	174	235	221	86		446
Similarity (%)	68.2	70.1		87.0	78.7	72.8		65.7	56.5		85.9	81.6	51.9	62.0	80.2		86.1
Identity (%)	41.6	39.7		64.1	44.7	51.0		36.8	25.5		6.69	54.6	21.3	32.6	37.2		61.2
Homologous gene	Streptomyces cinnamonensis A3823.5 mutA	Mycobacterium tuberculosis H37Rv Rv1491c		Mycobacterium tuberculosis H37Rv Rv1488	Mycobacterium tuberculosis H37Rv Rv1487	Streptomyces coelicolor A3(2) SCC77.24		Propionibacterium freudenreichii subsp. Shermanii hemH	Streptococcus faecium		Mycobacterium tuberculosis H37Rv acn	Mycobacterium tuberculosis H37Rv Rv1474c	Methanococcus jannaschii MJ1575 guaA	Streptomyces coelicolor A3(2) SCD82.04c	Methanococcus jannaschii MJ1558		Neisseria meningitidis MC58 NMB1652
db Match	sp:MUTA_STRCM	sp:YS13_MYCTU		sp:YS09_MYCTU	pir:B70711	gp:SCC77_24		sp:HEMZ_PROFR	sp:P54_ENTFC		pir:F70873	pir:E70873	pir.F64496	gp:SCD82_4	pir:E64494		gp:AE002515_9
ORF (bp)	1848	723	282	1296	435	843	783	1110	1800	498	2829	564	756	699	267	393	1392
Terminal (nt)	1614451	1617300	1617994	1618321	1619672	1620167	1621838	1621841	1623027	1625428	1629107	1629861	1630668	1630667	1631926	1631353	1633324
Initial (nt)	1616298	1616578	1617398	1619616	1620106	1621009	1621056	1622950	1624826	1625925	1626279	1629298	1629913	1631329	1631660	1631745	1631933
SEQ NO. (a.a.)	5189	5190	5191	5192	5193	5194	5195	5196	5197	5198	5199	5200	5201	5202	5203	5204	5205
SEQ NO (DNA)	1689	1690	1691	1692	1693	1694	1695	1696	1697	1698	1699	1700	1701	1702	1703	1704	1705

Table 1 (continued)

_																					
	Function	antigenic protein	antigenic protein	cation-transporting ATPase P		hypothetical protein					host cell surface-exposed lipoprotein	integrase	ABC transporter ATP-binding protein		sialidase	transposase (IS1628)	transposase protein fragment	hypothetical protein		dTDP-4-keto-L-rhamnose reductase	nitrogen fixation protein
	Matched length (a.a.)	113	152	883		120					107	154	497		387	236	37	88		107	149
	Similarity (%)	0.09	0.69	73.2		58.3					73.8	60.4	64.4		72.4	100.0	72.0	43.0		70.1	85.2
	Identity (%)	54.0	59.0	42.6		35.8					43.0	34.4	32.8		51.9	96.6	64.0	32.0		32.7	63.8
(Homologous gene	Neisseria gonorrhoeae ORF24	Neisseria gonorrhoeae	Synechocystis sp. PCC6803 sll1614 pma1		Streptomyces coelicolor A3(2) SC3D11.02c					Streptococcus thermophilus phage TP-J34	Corynephage 304L int	Escherichia coli K12 yjjK		Micromonospora viridifaciens ATCC 31146 nedA	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Corynebacterium glutamicum TnpNC	Plasmid NTP16		Pyrococcus abyssi Orsay PAB1087	Mycobacterium leprae MLCL536.24c nifU7
	db Match	GSP:Y38838	GSP:Y38838	sp:ATA1_SYNY3		gp:SC3D11_2					prf.2408488H	prf:2510491A	sp:YJJK_ECOLI		sp:NANH_MICVI	gp:AF121000_8	GPU:AF164956_23	GP:NT1TNIS_5		pir:B75015	pir:S72754
	ORF (bp)	480	456	2676	783	489	1362	357	156	162	375	456	1629	1476	1182	802	243	261	585	423	447
	Terminal (nt)	1632109	1632682	1636241	1633781	1636244	1638442	1638776	1639520	1639817	1640155	1641001	1641046	1642743	1644318	1646368	1646063	1645601	1647133	1647212	1647651
	Initial (nt)	1632588	1633137	1633566	1634563	1636732	1637081	1639132	1639365	1639656	1639781	1640546	1642674	1644218	1645499	1645661	1645821	1645861	1646549	1647634	1648097
	SEQ NO. (a.a.)	5206	5207	5208	5209	5210	5211	5212	5213	5214	5215	5216	5217	5218	5219	5220	5221	5222	5223	5224	5225
	SEQ NO. (DNA)	1706	1707	1708	1709	1710	1711	1712	1713	1714	1715	1716	1717	1718	1719	1720	1721	1722	1723	1724	1725

Table 1 (continued)

																		_
	Function	hypothetical protein	nitrogen fixation protein	ABC transporter ATP-binding protein	hypothetical protein	ABC transporter	DNA-binding protein	hypothetical membrane protein	ABC transporter	hypothetical protein	hypothetical protein		helicase	quinone oxidoreductase	cytochrome o ubiquinol oxidase assembly factor /heme O synthase	transketolase	transaldolase	
	Matched length (a.a.)	52	411	252	377	493	217	518	317	266	291		418	323	295	675	358	
	Similarity (%)	57.0	84.4	89.3	83.0	73.0	71.4	67.8	77.3	74.8	74.6		51.0	70.9	66.8	100.0	85.2	
	Identity (%)	48.0	64.7	70.2	55.2	41.0	46.1	36.3	50.2	41.0	43.0		23.4	37.5	37.6	100.0	62.0	
ומסוכ ו (ססווווומכת)	Homologous gene	Aeropyrum pernix K1 APE2025	Mycobacterium leprae nifS	Streptomyces coelicolor A3(2) SCC22.04c	Mycobacterium tuberculosis H37Rv Rv1462	Synechocystis sp. PCC6803 slr0074	Streptomyces coelicolor A3(2) SCC22.08c	Mycobacterium tuberculosis H37Rv Rv1459c	Mycobacterium leprae MLCL536.31 abc2	Mycobacterium leprae MLCL536.32	Mycobacterium tuberculosis H37Rv Rv1456c		Pyrococcus horikoshii PH0450	Escherichia coli K12 qor	Nitrobacter winogradskyi coxC	Corynebacterium glutamicum ATCC 31833 tkt	Mycobacterium leprae MLCL536.39 tal	
	db Match	PIR:C72506	pir.S72761	gp:SCC22_4	pir:A70872	sp:Y074_SYNY3	gp:SCC22_8	pir.F70871	pir:S72783	pir:S72778	pir:C70871		pir.C71156	sp:QOR_ECOLI	gp:NWCOXABC_3	gp:AB023377_1	sp:TAL_MYCLE	
	ORF (bp)	162	1263	756	1176	1443	693	1629	1020	804	666	357	1629	975	696	2100	1080	1164
	Terminal (nt)	1648709	1648100	1649367	1650249	1651433	1652894	1655671	1656700	1657515	1658675	1659140	1661136	1662552	1662630	1666502	1667752	1666601
	Initial (nt)	1648548	1649362	1650122	1651424	1652875	1653586	1654043	1655681	1656712	1657677	1659496	1659508	1661578	1663598	1664403	1666673	1667764
	SEQ NO (a.a.)	5226	5227	5228	5229	5230	5231	5232	5233	5234	5235	5236	5237	5238	5239	5240	5241	5242
	SEQ NO. (DNA)	1726	1727	1728	1729	1730	1731	1732	1733	1734	1735	1736	1737	1738	1739	1740	1741	1742

_
Jed
9
⊒
<u>=</u>
≓
con
್ರರ
$\overline{}$
7
മ
മ

Function	glucose-6-phosphate dehydrogenase	oxppcycle protein (glucose 6- phosphate dehydrogenase assembly protein)	6-phosphogluconolactonase	sarcosine oxidase	transposase (IS1676)	sarcosine oxidase		And the second s		triose-phosphate isomerase	probable membrane protein	phosphoglycerate kinase	glyceraldehyde-3-phosphate dehydrogenase	hypothetical protein	hypothetical protein	hypothetical protein	excinuclease ABC subunit C
Matched length (a.a.)	484	318	258	128	500	205				259	128	405	333	324	309	281	701
Similarity (%)	100.0	71.7	58.1	57.8	46.6	100.0				9.66	51.0	98.5	2.66	87.4	82.5	76.2	61.5
Identity (%)	99.8	40.6	28.7	35.2	24.6	100.0				99.2	37.0	98.0	99.1	63.9	56.3	52.0	34.4
Homologous gene	Brevibacterium flavum	Mycobacterium tuberculosis H37Rv Rv1446c opcA	Saccharomyces cerevisiae S288C YHR163W sol3	Bacillus sp. NS-129	Rhodococcus erythropolis	Corynebacterium glutamicum ATCC 13032 soxA				Corynebacterium glutamicum AS019 ATCC 13059 tpiA	Saccharomyces cerevisiae YCR013c	Corynebacterium glutamicum AS019 ATCC 13059 pgk	Corynebacterium glutamicum AS019 ATCC 13059 gap	Mycobacterium tuberculosis H37Rv Rv1423	Mycobacterium tuberculosis H37Rv Rv1422	Mycobacterium tuberculosis H37Rv Rv1421	Synechocystis sp. PCC6803 uvrC
db Match	gsp:W27612	pir:A70917	sp:SOL3_YEAST	sp:SAOX_BACSN	gp:AF126281_1	gp:CGL007732_5				sp:TPIS_CORGL	SP.YCQ3_YEAST	sp:PGK_CORGL	sp:G3P_CORGL	pir.D70903	sp:YR40_MYCTU	sp:YR39_MYCTU	sp:UVRC_PSEFL
ORF (bp)	1452	957	705	405	1401	840	174	687	981	777	408	1215	1002	981	1023	927	2088
Terminal (nt)	1669401	1670375	1671099	1671273	1673123	1673266	1677384	1678070	1680128	1680332	1681670	1681190	1682624	1684117	1685110	1686152	1687103
Initial (nt)	1667950	1669419	1670395	1671677	1671723	1674105	1677211	1678756	1679148	1681108	1681263	1682404	1683625	1685097	1686132	1687078	1689190
SEQ NO. (a a.)	5243	5244	5245	5246	5247	5248	5249	5250	5251	5252	5253	5254	5255	5256	5257	5258	5259
SEQ NO. (DNA)	1743	1744	1745	1746	1747	1748	1749	1750	1751	1752	1753	1754	1755	1756	1757	1758	1759

~	
യ	
ö	
┯-	
o.	
\sim	
CO	
1 -	
_	
•	

Function	hypothetical protein	6,7-dimethyl-8-ribityllumazine synthase	polypeptide encoded by rib operon	riboflavin biosynthetic protein	polypeptide encoded by rib operon	GTP cyclohydrolase II and 3, 4-dihydroxy-2-butanone 4-phosphate synthase (riboflavin synthesis)	riboflavin synthase alpha chain	riboflavin-specific deaminase	ribulose-phosphate 3-epimerase	nucleolar protein NOL1/NOP2 (eukaryotes) family	methionyl-tRNA formyltransferase	polypeptide deformylase	primosomal protein n`	S-adenosylmethionine synthetase	DNA/pantothenate metabolism flavoprotein	hypothetical protein	guanylate kinase	integration host factor
Matched length (a.a.)	150	154	72	217	106	404	211	365	234	448	308	150	725	407	409	81	186	103
Identity Similarity (%)	68.7	72.1	68.0	48.0	52.0	84.7	79.2	62.7	73.1	60.7	67.9	72.7	46.3	99.5	80.9	87.7	7.4.7	90.3
Identity (%)	32.7	43.5	59.0	26.0	44.0	65.6	47.4	37.3	43.6	30.8	41.6	44.7	22.9	99.3	58.0	70.4	39.8	80.6
Homologous gene	Mycobacterium tuberculosis H37Rv Rv1417	Escherichia coli K12	Bacillus subtilis	Bacillus subtilis	Bacillus subtilis	Mycobacterium tuberculosis ribA	Actinobacillus pleuropneumoniae ISU-178 ribE	Escherichia coli K12 ribD	Saccharomyces cerevisiae S288C YJL121C rpe1	Escherichia coli K12 sun	Pseudomonas aeruginosa fmt	Bacillus subtilis 168 def	Escherichia coli priA	Brevibacterium flavum MJ-233	Mycobacterium tuberculosis H37Rv RV1391 dfp	Mycobacterium tuberculosis H37Rv Rv1390	Saccharomyces cerevisiae guk1	Mycobacterium tuberculosis H37Rv Rv1388 mIHF
db Match	sp:YR35_MYCTU	sp:RISB_ECOLI	GSP:Y83273	GSP:Y83272	GSP:Y83273	gp:AF001929_1	sp:RISA_ACTPL	sp:RIBD_ECOLI	sp:RPE_YEAST	sp:SUN_ECOLI	sp:FMT_PSEAE	sp:DEF_BACSU	sp:PRIA_ECOLI	gsp:R80060	sp:DFP_MYCTU	sp:YD90_MYCTU	pir.KIBYGU	pir.B70899
ORF (bp)	579	477	228	714	336	1266	633	984	657	1332	945	507	2064	1221	1260	291	627	318
Terminal (nt)	1689201	1689869	1690921	1691421	1691347	1690360	1691639	1692275	1693262	1693967	1695499	1696466	1697084	1699177	1700508	. 1702032	1702411	1702991
Initial (nt)	1689779	1690345	1690694	1690708	1691012	1691625	1692271	1693258	1693918	1695298	1696443	1696972	1699147	1700397	1701767	1702322	1703037	1703308
SEQ NO (a.a.)	5260	5261	5262	5263	5264	5265	5266	5267	5268	5269	5270	5271	5272	5273	5274	5275	5276	5277
SEQ NO.	1760	1761	1762	1763	1764	1765	1766	1767	1768	1769	1770	1771	1772	1773	1774	1775	1776	1777

_	
_	_
~)
- 7	٦,
ų	,
Date	7
-	•
	_
.=	
-	-
÷	7
- 5	3
- 0	כ
7	5
	•
-	•
$\overline{}$	-
-	۱
0	u
-	=
7	_
Tob!	М
٠,٠	v
-	_
•	

Function	orotidine-5'-phosphate decarboxylase	carbamoyl-phosphate synthase large chain	carbamoyl-phosphate synthase small chain	otase	aspartate carbamoyltransferase	phosphoribosyl transferase or pyrimidine operon regulatory protein	cell division inhibitor				N utilization substance protein B (regulation of rRNA biosynthesis by transcriptional antitermination)	elongation factor P	cytoplasmic peptidase	3-dehydroquinate synthase	e kinase	type IV prepilin-like protein specific leader peptidase
	orotidine-5'-pho decarboxylase	carbamoyl- large chain	carbamoyl-ı small chain	dihydroorotase	aspartate	phosphor pyrimidin	cell divisi				N utilizati (regulatic transcript	elongatic	cytoplasr	3-dehydr	shikimate kinase	type IV prepilin-li leader peptidase
Matched length (a.a.)	276	1122	381	402	311	176	297				137	187	217	361	166	142
Similarity (%)	73.6	77.5	70.1	67.7	79.7	80.1	73.4				69.3	98.4	100.0	99.7	100.0	54.9
Identity (%)	51.8	53.1	45.4	42.8	48.6	54.0	39.7				33.6	97.9	99.5	98.6	100.0	35.2
Homologous gene	Mycobacterium tuberculosis H37Rv uraA	Escherichia coli carB	Pseudomonas aeruginosa ATCC 15692 carA	Bacillus caldolyticus DSM 405 pyrC	Pseudomonas aeruginosa ATCC 15692	Bacillus caldolyticus DSM 405 pyrR	Mycobacterium tuberculosis H37Rv Rv2216				Bacillus subtilis nusB	Brevibacterium lactofermentum ATCC 13869 efp	Corynebacterium glutamicum AS019 pepQ	Corynebacterium glutamicum AS019 aroB	Corynebacterium glutamicum AS019 aroK	Aeromonas hydrophila tapD
db Match	sp:DCOP_MYCTU	pirSYECCP	sp:CARA_PSEAE	sp:PYRC_BACCL	sp.PYRB_PSEAE	sp:PYRR_BACCL	sp:Y00R_MYCTU				sp:NUSB_BACSU	sp:EFP_BRELA	gp:AF124600_4	gp:AF124600_3	gp:AF124600_2	sp:LEP3_AERHY
ORF (bp)	834	3339	1179	1341	936	576	1164	477	462	210	681	561	1089	1095	492	411
Terminal (nt)	1703517	1704359	1707706	1709017	1710413	1711352	1713759	1714306	1714760	1714950	1715382	1716132	1716780	1717938	1719107	1720971
Initial (nt)	1704350	1707697	1708884	1710357	1711348	1711927	1712596	1713830	1714299	1714741	1716062	1716692	1717868	1719032	1719598	1721381
SEQ NO.	5278	5279	5280	5281	5282	5283	5284	5285	5286	5287	5288	5289	5290	5291	5292	5293
SEQ.	1778	1779	1780	1781	1782	1783	1784	1785	1786	1787	1788	1789	1790	1791	1792	1793

:	Continue	
•	٢	2
•	_	-
	۵	>
	C	2
ł	σ	3

			,		,	,						_					
Function	bacterial regulatory protein, arsR family	ABC transporter		iron(III) ABC transporter, periplasmic-binding protein	ferrichrome transport ATP-binding protein	shikimate 5-dehydrogenase	hypothetical protein	hypothetical protein	alanyi-tRNA synthetase	hypothetical protein		aspartyl-tRNA synthetase	hypothetical protein	glucan 1,4-alpha-glucosidase	phage infection protein		transcriptional regulator
Matched length (a.a.)	83	340		373	230	259	395	161	894	454		591	297	839	742		192
Similarity (%)	68.7	73.2		50.7	71.7	0.09	70.1	69.6	71.8	84.8		89.2	74.1	53.6	54.0		62.0
Identity (%)	45.8	35.9		23.6	38.3	50.0	41.8	52.8	43.3	65.4		71.1	46.1	26.1	23.1		29.2
Homologous gene	Streptomyces coelicolor A3(2) SC1A2.22	Corynebacterium diphtheriae hmuU		Pyrococcus abyssi Orsay PAB0349	Bacillus subtilis 168 fhuC	Mycobacterium tuberculosis H37Rv aroE	Mycobacterium tuberculosis H37Rv Rv2553c	Mycobacterium tuberculosis H37Rv Rv2554c	Thiobacillus ferrooxidans ATCC 33020 alaS	Mycobacterium tuberculosis H37Rv Rv2559c		Mycobacterium leprae aspS	Mycobacterium tuberculosis H37Rv Rv2575	Saccharomyces cerevisiae S288C YIR019C sta1	Bacillus subtilis yhgE		Streptomyces coelicolor A3(2) SCE68.13
db Match	gp:SC1A2_22	gp:AF109162_2		pir.A75169	sp:FHUC_BACSU	pir:D70660	pir:E70660	pir:F70660	sp:SYA_THIFE	sp:Y0A9_MYCTU		sp:SYD_MYCLE	sp:Y0BQ_MYCTU	sp:AMYH_YEAST	sp:YHGE_BACSU		gp:SCE68_13
ORF (bp)	303	1074	909	126	753	828	1167	546	2664	1377	1224	1824	891	2676	1857	648	594
Terminal (nt)	1721423	1722853	1722202	1723826	1724578	1724612	1725459	1726625	1727385	1730166	1731599	1732988	1735946	1736004	1738713	1740572	1741906
Initial (nt)	1721725	1721780	1722807	1722870	1723826	1725439	1726625	1727170	1730048	1731542	1732822	1734811	1735056	1738679	1740569	1741219	1741313
SEQ NO. (a.a.)	5294	5295	5296	5297	5298	5299	5300	5301	5302	5303	5304	5305	5306	5307	5308	5309	5310
SEQ NO. (DNA)	1794	1795	1796	1797	1798	1799	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810

Table 1 (continued)

_																	- 1		\neg	\neg
	Function		oxidoreductase		NADH-dependent FMN reductase	L-serine dehydratase		alpha-glycerolphosphate oxidase	histidyl-tRNA synthetase	hydrolase	cyclophilin		hypothetical protein		GTP pyrophosphokinase	adenine phosphoribosyltransferase	dipeptide transport system	hypothetical protein	protein-export membrane protein	
	Matched length (a.a.)		371		116	462		598	421	211	175		128		760	185	49	558	332	
	Similarity (%)		88.1		77.6	71.4		53.9	72.2	62.1	61.1		100.0		6.66	100.0	98.8	60.9	57.2	
	Identity (%)		72.8		37.1	46.8		28.4	43.2	40.3	35.4		98.4		6.66	99.5	0.86	30.7	25.9	
(5-5-1111)	Homologous gene		Streptomyces coelicolor A3(2) SCE15.13c		Pseudomonas aeruginosa PAO1 sIfA	Escherichia coli K12 sdaA		Enterococcus casseliflavus glpO	Staphylococcus aureus SR17238 hisS	Campylobacter jejuni NCTC11168 Cj0809c	Streptomyces chrysomallus sccypB		Corynebacterium glutamicum ATCC 13032 orf4		Corynebacterium glutamicum ATCC 13032 rel	Corynebacterium glutamicum ATCC 13032 apt	Corynebacterium glutamicum ATCC 13032 dciAE	Mycobacterium tuberculosis H37Rv Rv2585c	Escherichia coli K12 secF	
	db Match		gp:SCE15_13		sp:SLFA_PSEAE	sp:SDHL_ECOLI		prf:2423362A	sp:SYH_STAAU	gp:CJ11168X3_12 7	prf:2313309A		gp:AF038651_4		gp:AF038651_3	gp:AF038651_2	gp:AF038651_1	sp:Y0BG_MYCTU	sp:SECF_ECOLI	
	ORF (bp)	714	1113	126	495	1347	861	1686	1287	639	507	237	555	342	2280	555	150	1743	1209	630
	Terminal (nt)	1742606	1743813	1743968	1744519	1746230	1747588	1746233	1747990	1749325	1750933	1751200	1752051	1752527	1752615	1754925	1755599	1755486	1757589	1760336
	Initial (nt)	1741893	1742701	1743843	1744025	1744884	1746728	1747918	1749276	1749963	1750427	1750964	1751497	1752186	1754894	1755479	1755748	1757228	1758797	1759707
	SEQ NO. (a.a.)	5311	5312	5313	5314	5315	5316	5317	5318	5319	5320	5321	5322	5323	5324	5325	5326	5327	5328	5329
	SEQ NO. (DNA)	1811	1812	1813	1814	1815	1816	1817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828	1829

Table 1 (continued)

		_		T		1.		T						,	, -				
	Function	protein-export membrane protein	hypothetical protein	holliday junction DNA helicase	holliday junction DNA helicase	crossover junction endodeoxyribonuclease	hypothetical protein	acyl-CoA thiolesterase	hypothetical protein	hypothetical protein	hexosyltransferase or N-acetylglucosaminyl-phosphatidylinositol biosynthetic protein	acyltransferase	CDP-diacylglycerolglycerol-3- phosphate phosphatidyltransferase	histidine triad (HIT) family protein	threonyl-tRNA synthetase	hypothetical protein			
	Matched length (a.a.)	616	106	331	210	180	250	283	111	170	414	295	78	194	647	400			
	Similarity (%)	52.0	66.0	81.9	74.3	63.3	78.4	68.6	61.3	61.2	49.3	67.8	78.0	78.4	68.9	61.8			
	Identity (%)	24.4	39.6	55.3	45.2	35.6	49.2	38.5	31.5	38.2	21.7	46.4	48.2	54.6	42.0	34.3			
(505)	Homologous gene	Rhodobacter capsulatus secD	Mycobacterium leprae MLCB1259.04	Escherichia coli K12 ruvB	Mycobacterium leprae ruvA	Escherichia coli K12 ruvC	Escherichia coli K12 ORF246 yebC	Escherichia coli K12 tesB	Streptomyces coelicolor A3(2) SC10A5.09c	Mycobacterium tuberculosis H37Rv Rv2609c	Saccharomyces cerevisiae S288C spt14	Streptomyces coelicolor A3(2) SCL2.16c	Mycobacterium tuberculosis H37Rv Rv2612c pgsA	Mycobacterium tuberculosis H37Rv Rv2613c	Bacillus subtilis thrZ	Bacillus subtilis ywbN			
	db Match	prf:2313285A	sp:Y0BD_MYCLE	sp:RUVB_ECOLI	sp:RUVA_MYCLE	sp:RUVC_ECOLI	sp.YEBC_ECOLI	sp:TESB_ECOLI	gp:SC10A5_9	pir:H70570	sp:GPl3_YEAST	gp:SCL2_16	pir:C70571	pir:D70571	sp:SYT2_BACSU	sp:YWBN_BACSU			
	ORF (bp)	1932	363	1080	618	663	753	846	474	462	1083	963	657	099	2058	1206	564	546	735
	Terminal (nt)	1758803	1761005	1761419	1762517	1763177	1763990	1765015	1766442	1766487	1766948	1768034	1769022	1769681	1770327	1772658	1774444	1773893	1774457
	Initial (nt)	1760734	1761367	1762498	1763134	1763839	1764742	1765860	1765969	1766948	1768030	1768996	1769678	1770340	1772384	1773863	1773881	1774438	1775191
	SEQ NO. (a.a.)	5330	5331	5332	5333	5334	5335	5336	5337	5338	5339	5340	5341	5342	5343	5344	5345	5346	5347
	SEQ NO. (DNA)	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839	1840	1841	1842	1843	1844	1845	1846	1847
				_							·								

Table 1 (continued)

Function						puromycin N-acetyltransferase											ferric transport ATP-binding protein					pantothenate metabolism flavoprotein		
Matched length (a.a.)						190											202					129		
Similarity (%)						64.2											28.7					66.7		
Identity (%)						36.3											28.7					27.1		
Homologous gene						Streptomyces anulatus pac											Actinobacillus pleuropneumoniae afuC					Zymomonas mobilis dfp		
db Match						sp:PUAC_STRLP											sp:AFUC_ACTPL					gp:AF088896_20		
ORF (bp)	378	594	1407	615	399	267	1086	1101	669	2580	1113	1923	483	189	312	429	597	666	159	1107	420	591	864	420
Terminal (nt)	1777646	1778037	1778102	1779554	1780507	1781019	1782790	1784381	1783382	1782894	1785732	1786907	1789562	1789768	1790057	1790461	1792438	1793426	1793496	1794820	1795621	1796181	1797049	1797769
Initial (nt)	1777269	1777444	1779508	1780168	1780905	1781585	1781705	1783281	1784080	1785473	1786844	1788829	1789080	1789580	1789746	1790889	1791842	1792428	1793654	1793714	1795202	1795591	1796186	1797350
SEQ NO. (a.a.)	5348	5349	5350	5351	5352	5353	5354	5355	5356	5357	5358	5359	5360	5361	5362	5363	5364	5365	5366	5367	5368	5369	5370	5371
SEQ NO.	1848	1849	1850	1851	1852	1853	1854	1855	1856	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	1868	1869	1870	1871

Table 1 (continued)

		Γ_				Γ		Ι	ĺ	1		Γ.	Γ	Γ	1	Γ'''	Ι		Γ		1	Ι	1	
Function																			transposon TN21 resolvase			protein-tyrosine phosphatase		
Matched length (a.a.)																			186			164		
Similarity (%)																			78.0			51.8		
Identity (%)																			51.1			29.3		
Homologous gene																			Escherichia coli tnpR			Saccharomyces cerevisiae S288C YIR026C yvh1		
db Match																			sp:TNP2_ECOLI			sp:PVH1_YEAST		
ORF (bp)	120	735	225	894	156	474	753	423	687	429	465	237	681	960	480	681	285	375	612	1005	375	477	726	423
Terminal (nt)	1797850	1798023	1799406	1800366	1800449	1801307	1802096	1802155	1803419	1803893	1804598	1804865	1805599	1806686	1807396	1808113	1808421	1808832	1810372	1811545	1811938	1812691	1813606	1812460
Initial (nt)	1797969	1798757	1799182	1799473	1800604	1800834	1801344	1802577	1802733	1803465	1804134	1804629	1804919	1805727	1806917	1807433	1808137	1808458	1809761	1810541	1811564	1812215	1812881	1812882
SEQ NO. (a a.)	5372	5373	5374	5375	5376	5377	5378	5379	5380	5381	5382	5383	5384	5385	5386	5387	5388	5389	5390	5391	5392	5393	5394	5395
SEQ NO. (DNA)	1872	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895

Table 1 (continued)

Function	sporulation transcription factor									hypothetical protein					hypothetical protein	insertion element (IS3 related)	insertion element (IS3 related)			single-stranded-DNA _r specific exonuclease		primase
Matched length (a.a.)	216									545					166	298	101			622		381
Similarity (%)	65.7									55.2					75.0	92.6	84.2			9.09		64.3
Identity (%)	34.3									22.6					63.0	87.9	72.3			24.0		31.8
Homologous gene	Streptomyces coelicolor A3(2) whiH									Thermotoga maritima MSB8 TM1189					Corynebacterium glutamicum	Corynebacterium glutamicum orf2	Corynebacterium glutamicum orf1			Erwinia chrysanthemi recJ		Streptococcus phage phi-01205 ORF13
db Match	gp:SCA32WHIH_6									pir:C72285					PIR:S60891	pir:S60890	pir:S60889			sp:RECJ_ERWCH		pir:T13302
ORF (bp)	738	789	456	186	672	417	315	369	207	2202	1746	219	144	429	534	894	294	213	1299	1878	780	1650
Terminal (nt)	1814517	1815651	1816128	1816636	1817803	1818219	1818774	1819166	1819748	1820181	1824322	1824589	1824927	1825178	1826557	1825751	1826644	1829688	1832063	1834044	1834149	1838324
Initial (nt)	1813780	1814863	1815673	1816451	1817132	1817803	1818460	1818798	1819954	1822382	1822577	1824371	1824784	1825606	1826024	1826644	1826937	1829900	1830765	1832167	1834928	1836675
SEQ NO (a.a.)	5396	5397	5398	5399	5400	5401	5402	5403	5404	5405	5406	5407	5408	5409	5410	5411	5412	5413	5414	5415	5416	5417
SEQ NO.		1897	1898	1899	1900	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917

Function				helicase		phage N15 protein gp57										actin binding protein with SH3 domains					ATP/GTP binding protein		ATP-dependent Clp proteinase ATP-binding subunit
Matched length (a.a.)				620		109										422					347		630
Similarity (%)				44.7		64.2										49.8					52.5		61.0
Identity (%)				22.1		36.7										28.7					23.6		30.2
Homologous gene				Mycoplasma pneumoniae ATCC 29342 yb95		Bacteriophage N15 gene57										Schizosaccharomyces pombe SPAPJ760.02c					Streptomyces coelicolor SC5C7.14		Escherichia coli K12 clpA
db Match				sp:Y018_MYCPN		pir T13144										gp:SPAPJ760_2					gp:SC5C7_14		sp:CLPA_ECOLI
ORF (bp)	3789	447	534	1839	375	336	366	618	537	528	798	186	372	438	576	1221	852	1395	594	180	1257	1854	1965
Terminal (nt)	1842137	1842681	1843337	1845356	1845857	1846207	1846333	1847932	1848474	1849036	1849785	1849966	1850406	1849978	1850474	1852440	1852324	1853873	1854854	1855237	1856788	1858738	1860727
Initial (nt)	1838349	1842235	1842804	1843518	1845483	1845872	1846698	1847315	1847938	1848509	1848988	1849781	1850035	1850415	1851049	1851220	1851473	1852479	1854261	1855058	1855532	1856885	1858763
SEQ NO. (a.a.)	5418	5419	5420	5421	5422	5423	5424	5425	5426	5427	5428	5429	5430	5431	5432	5433	5434	5435	5436	5437	5438	5439	5440
SEQ NO. (DNA)	1918	1919	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940

Table 1 (continued)

_													$\overline{}$						—т	-		
	Function					ATP-dependent helicase					hypothetical protein	deoxynucleotide monophosphate kinase					type II 5-cytosoine methyltransferase	type II restriction endonuclease			hypothetical protein	
	Matched length (a.a.)					693					224	208					363	358			504	
	Similarity (%)					45.9					47.8	61.5					99.7	2.66			45.8	
	Identity (%)					21.4					25.9	31.7					99.2	99.7			24.6	
()	Homologous gene					Staphylococcus aureus SA20 pcrA					Streptomyces coelicolor A3(2) SCH17.07c	Bacteriophage phi-C31 gp52					Corynebacterium glutamicum ATCC 13032 cgllM	Corynebacterium glutamicum ATCC 13032 cgllR			Streptomyces coelicolor A3(2) SC1A2.16c	
	db Match					sp:PCRA_STAAU					gp:SCH17_7	prf.2514444Y					prf:2403350A	pir.A55225			gp:SC1A2_16	
	ORF (bp)	474	156	324	312	2355	558	378	465	264	777	702	225	2166	273	6507	1089	1074	1521	717	1818	186
	Terminal (nt)	1861225	1861475	1861519	1862399	1865299	1865822	1866219	1866792	1867095	1867874	1868587	1868671	1868927	1871101	1871380	1879400	1880485	1882470	1884220	1887047	1887590
	Initial (nt)	1860752	1861320	1861842	1862088	1862945	1865265	1865842	1866328	1866832	1867098	1867886	1868895	1871092	1871373	1877886	1878312	1879412	1883990	1884936	1885230	1887405
	SEQ NO (a.a.)	5441	5442	5443	5444	5445	5446	5447	5448	5449	5450	5451	5452	5453	5454	5455	5456	5457	5458	5459	5460	5461
	SEQ NO (DNA)	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961

Table 1 (continued)

				_	\neg	T	\neg								П	T								
Function	SNF2/Rad54 helicase-related protein	hypothetical protein	A de l'anneau d	hypothetical protein				endopeptidase Clp ATP-binding chain B							nuclear mitotic apparatus protein					the many of a single date and a second				
Matched length (a.a.)	90	163		537				724							1004									
Similarity (%)	70.0	56.4		47.9				52.5							49.1									
Identity (%)	46.7	33.1		20.7				25.3							20.1									
Homologous gene	Deinococcus radiodurans DR1258	Lactobacillus phage phi-gle Rorf232		Bacillus anthracis pXO2-16				Escherichia coli clpB							Homo sapiens numA									
db Match	gp:AE001973_4	pir.T13226		gp:AF188935_16				sp:CLPB_ECOLI			:				pir:S23647									
ORF (bp)	351	864	330	1680	1206	1293	2493	1785	621	1113	846	981	879	198	2766	009	1251	969	714	1008	1659	1488	399	1509
Terminal (nt)	1887688	1888231	1889859	1890028	1891832	1893388	1894739	1897374	1899233	1899804	1901066	1902955	1902005	1903225	1903113	1905973	1906664	1907965	1908785	1909501	1910642	1912333	1913973	1914725
Initial (nt)	1888038	1889094	1889530	1891707	1893037	1894680	1897231	1899158	1899853	1900916	1901911	1901975	1902883	1903028	1905878	1906572	1907914	1908660	1909498	1910508	1912300	1913820	1914371	1916233
SEQ NO. (a.a.)	5462	5463	5464	5465	5466	5467	5468	5469	5470	5471	5472	5473	5474	5475	5476	5477	5478	5479	5480	5481	5482	5483	5484	5485
SEQ NO. (DNA)	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985

Table 1 (continued)

																					-			
Function	The second secon									submaxillary apomucin			modification methylase					hypothetical protein			hypothetical protein			
Matched length (a.a.)										1408			61					114			328			
Similarity (%)										49.2			65.6					58.8			54.6			
Identity (%)										23.2			42.6					38.6			27.1			
Homologous gene										Sus scrofa domestica			Escherichia coli ecoR1					Mycobacterium tuberculosis H37Rv Rv1956			Methanococcus jannaschii MJ0137			
db Match										pir:T03099			sp:MTE1_ECOLI					pir:H70638			sp:Y137_METJA			
ORF (bp)	360	222	312	645	759	549	930	306	357	4464	579	945	171	375	1821	201	468	381	507	837	942	624	210	534
Terminal (nt)	1916733	1917165	1917329	1917564	1918703	1919646	1920347	1925695	1926038	1921547	1926259	1927245	1928381	1928908	1929059	1930990	1931421	1931935	1932373	1933522	1934971	1936849	1937411	1937486
Initial (nt)	1916374	1916944	1917640	1918208	1919461	1920194	1921276	1925390	1925682	1926010	1926837	1928189	1928211	1928534	1930879	1931190	1931888	1932315	1932879	1934358	1935912	1936226	1937202	1938019
SEQ NO. (a.a.)	5486	5487	5488	5489	5490	5491	5492	5493	5494	5495	5496	5497	5498	5499	5500	5501	5502	5503	5504	5205	5506	5507	5508	5509
SEQ NO.	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

Table 1 (continued)

Function										surface protein				major secreted protein PS1 protein precursor			DNA topoisomerase III					major secreted protein PS1 protein precursor	
Matched length (a.a.)										304				270			265					344	
Similarity (%)										44.1				54.4			50.9					54.7	
Identity (%)										23.0				30.7			23.8					29.7	
Homologous gene										Enterococcus faecalis esp				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			Escherichia coli topB					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	
db Match										prf:2509434A				sp:CSP1_CORGL			sp:TOP3_ECOLI					sp:CSP1_CORGL	
ORF (bp)	1191	534	588	444	253	303	216	309	885	828	297	381	429	1581	2430	867	2277	2085	891	432	744	1887	291
Terminal (nt)	1940135	1938531	1940844	1941550	1941732	1942812	1943310	1943653	1944564	1944608	1945595	1945952	1946609	1947070	1949021	1951619	1952546	1956203	1958450	1959765	1960371	1961114	1963139
Initial (nt)	1938945	1939064	1940257	1941107	1942484	1942510	1943095	1943345	1943680	1945435	1945891	1946332	1947037	1948650	1951450	1952485	1954822	1958287	1959340	1960196	1961114	1963000	1963429
SEQ NO. (a.a.)	5510	5511	5512	5513	5514	5515	5516	5517	5518	5519	5520	5521	5522	5523	5524	5525	5526	5527	5528	5529	5530	5531	5532
SEQ NO. (DNA)	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032

Table 1 (continued)

_
\mathbf{c}
Ō
_
_
_
_
_
_
•
\sim
\sim
(1
. ~
\smile
$\overline{}$
4
Ψ
\sim
_
~~
<u></u>
⊷
•

	Function								ntegrase	transposase (divided)	transposase (divided)		transposition repressor	insertion element (IS3 related)	transposase					major secreted protein PS1 protein precursor	integrase
	ا م								_				traı	ins							
	Matched length (a.a.)								406	124	117		31	43	270					153	223
	Similarity (%)								55.9	94.4	84.6		96.8	88.4	53.7					37.0	56.1
	Identity (%)								29.6	83.9	70.9		80.7	74.4	31.1					25.0	28.7
(Homologous gene								Mycobacterium phage L5 int	Brevibacterium lactofermentum CGL2005 ISaB1	Brevibacterium lactofermentum CGL2005 ISaB1		Brevibacterium lactofermentum CGL2005 ISaB1	Corynebacterium glutamicum orf1	Streptomyces coelicolor A3(2) SCJ11.12					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Mycobacterium phage L5 int
	db Match	•							sp:VINT_BPML5	gsp:R23011	gsp:R23011		gsp:R21601	pir.S60889	gp:SCJ11_12					sp:CSP1_CORGL	sp:VINT_BPML5
	ORF (bp)	363	273	264	234	342	273	303	1149	390	417	207	114	135	828	354	891	432	744	1584	687
	Terminal (nt)	1983548	1983883	1984181	1984450	1984728	1985364	1985071	1985442	1987507	1987887	1988589	1988370	1988530	1988778	1991020	1989874	1991189	1991795	1992538	1994608
	Initial (nt)	1983186	1983611	1983918	1984217	1984387	1985092	1985373	1986590	1987896	1988303	1988383	1988483	1988664	1989605	1990667	1990764	1991620	1992538	1994121	1995294
	SEQ NO. (a.a.)	5559	5560	5561	5562	5563	5564	5999	5566	5567	5568	5569	5570	5571	5572	5573	5574	5275	5576	5577	5578
	SEQ NO. (DNA)	2059	2060	2061	2062	2063	2064	2065	2066	2067	2068	2069	2070	2071	2072	2073	2074	2075	2076	2077	2078

_
~
\simeq
Φ
=
=
⋰
-
\Box
$\overline{}$
\sim
·
$\overline{}$
$\overline{}$
0
$\overline{}$
⋍
w.
⊢

_												- 1							_
	Function	sodium-dependent transporter	hypothetical protein			riboflavin biosynthesis protein	potential membrane protein	methionine sulfoxide reductase		hypothetical protein	hypothetical protein	ribonuclease D	1-deoxy-D-xylulose-5-phosphate synthase	RNA methyltransferase		hypothetical protein	deoxyuridine 5'-triphosphate nucleotidohydrolase	hypothetical protein	
	Matched length (a.a.)	88	92			233	384	126		232	201	371	618	472		268	140	150	
	Similarity (%)	76.1	81.5			64.4	71.9	67.5		77.2	78.6	52.8	78.5	52.3		62.7	82.1	70.7	
	Identity (%)	39.8	48.9			33.5	42.5	41.3		55.2	55.7	25.9	55.3	25.4		38.1	55.0	46.0	
idalo (cominaca)	Homologous gene	Helicobacter pylori 26695 HP0214	Bacillus subtilis yxaA			Mycobacterium tuberculosis H37Rv Rv2671 ribD	Mycobacterium tuberculosis H37Rv Rv2673	Streptococcus gordonii msrA		Mycobacterium tuberculosis H37Rv Rv2676c	Mycobacterium tuberculosis H37Rv Rv2680	Haemophilus influenzae Rd KW20 HI0390 md	Streptomyces sp. CL190 dxs	Thermotoga maritima MSB8 TM1094		Mycobacterium tuberculosis H37Rv Rv2696c	Streptomyces coelicolor A3(2) SC2E9.09 dut	Mycobacterium tuberculosis H37Rv Rv2698	
	db Match	pir.F64546	sp.YXAA_BACSU			pir.C70968	pir.E70968	gp.AF128264_2		pir:H70968	pir:C70528	sp:RND_HAEIN	gp:AB026631_1	pir.E72298		pir.C70530	sp:DUT_STRCO	pir:E70530	
	ORF (bp)	306	432	345	336	969	1254	408	426	969	624	1263	1908	1236	282	861	447	549	207
	Terminal (nt)	1995783	1996537	1997112	1997503	1998240	1999542	1999949	1999707	2000521	2002112	2003334	2003402	2005462	2006979	2006777	2007738	2008798	2008876
	Initial (nt)	1996088	1996106	1996768	1997168	1997545	1998289	1999542	2000132	2001216	2001489	2002072	2005309	2006697	2006698	2007637	2008184	2008250	2009082
	SEQ NO. (a.a.)	5579	5580	5581	5582	5583	5584	5885	5586	5587	5588	5589	5590	5591	5592	5593	5594	5595	5596
	SEQ NO. (DNA)	2079	2080	2081	2082	2083	2084	2085	2086	2087	2088	2089	2090	2091	2092	2093	2094	2095	2096

Table 1 (continued)

			-															
	Function	hypothetical protein	extragenic suppressor protein	polyphosphate glucokinase	sigma factor or RNA polymerase transcription factor	hypothetical membrane protein		hypothetical protein	hypothetical membrane protein	hypothetical protein	transferase	hypothetical protein	iron dependent repressor or diphtheria toxin repressor	putative sporulation protein	UDP-glucose 4-epimerase		hypothetical protein	ATP-dependent RNA helicase
	Matched length (a.a.)	100	198	248	500	422		578	127	92	523	144	228	2.2	329		305	661
	Similarity (%)	81.0	68.2	80.2	98.6	51.4		80.8	59.1	85.5	61.2	100.0	9.66	64.0	99.1		79.0	50.7
	Identity (%)	58.0	38.4	54.4	98.0	23.9		61.3	32.3	65.8	33.5	97.2	98.7	62.0	99.1		45.3	24.4
	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2699c	Escherichia coli K12 suhB	Mycobacterium tuberculosis H37Rv RV2702 ppgK	Corynebacterium glutamicum sigA	Bacillus subtilis yrkO		Mycobacterium tuberculosis H37Rv Rv2917	Mycobacterium tuberculosis H37Rv Rv2709	Mycobacterium tuberculosis H37Rv Rv2708c	Streptomyces coelicolor A3(2) SCH5.08c	Corynebacterium glutamicum ATCC 13869 ORF1	Corynebacterium glutamicum ATCC 13869 dbxR	Streptomyces aureofaciens	Corynebacterium glutamicum ATCC 13869 (Brevibacterium lactofermentum) galE		Mycobacterium tuberculosis H37Rv Rv2714	Saccharomyces cerevisiae YJL050W dob1
	db Match	pir.F70530	sp:SUHB_ECOLI	sp:PPGK_MYCTU	prf:2204286A	sp:YRKO_BACSU		sp:Y065_MYCTU	pir:H70531	pir.G70531	gp:SCH5_8	prf.2204286C	pir.140339	GP:AF010134_1	sp:GALE_BRELA		pir:E70532	sp:MTR4_YEAST
	ORF (bp)	291	816	828	1494	1335	537	1710	636	237	1533	432	684	234	987	1323	957	2550
	Terminal (nt)	2009280	2009724	2011382	2013356	2014162	2015585	2016257	2018754	2017966	2020276	2020724	2022949	2022313	2023945	2023948	2026379	2029043
and the second	Initial (nt)	2009570	2010539	2010555	2011863	2015496	2016121	2017966	2018119	2018202	2018744	2020293	2022266	2022546	2022959	2025270	2025423	2026494
	SEQ NO. (a.a.)	5597	5598	5599	5600	5601	5602	5603	5604	5605	5606	5607	5608	5609	5610	5611	5612	5613
	SEQ NO. (DNA)	2097	2098	2099	2100	2101	2102	2103	2104	2105	2106	2107	2108	2109	2110	2111	2112	2113

Table 1 (continued)

_																				
and the second s	Function	hydrogen peroxide-inducible genes activator		ATP-dependent helicase	regulatory protein		SOS regulatory protein	galactitol utilization operon repressor	phosphofructokinase (fructose 1- phosphate kinase)	phosphoenolpyruvate-protein phosphotransferase	glycerol-3-phosphate regulon repressor	1-phosphofructokinase or 6- phosphofructokinase	PTS system, fructose-specific IIBC component	phosphocarrier protein		uracil permease	ATP/GTP-binding protein			diaminopimelate epimerase
	Matched length (a.a.)	299		1298	145		222	245	320	592	262	345	549	81		407	419			269
	Similarity (%)	65.6		76.2	86.2		71.6	67.8	55.6	64.0	62.6	55.7	69.6	71.6		70.5	80.0			64.7
	Identity (%)	35.8		49.2	61.4		46.9	33.9	27.2	34.3	26.7	33.0	43.0	37.0		39.1	54.4			33.5
	Homologous gene	Escherichia coli oxyR		Escherichia coli hrpA	Streptomyces clavuligerus nrdR		Bacillus subtilis dinR	Escherichia coli K12 gatR	Streptomyces coelicolor A3(2) SCE22.14c	Bacillus stearothermophilus ptsl	Escherichia coli K12 glpR	Rhodobacter capsulatus fruK	Escherichia coli K12 fruA	Bacillus stearothermophilus XL- 65-6 ptsH		Bacillus caldolyticus pyrP	Streptomyces fradiae orf11*			Haemophilus influenzae Rd KW20 HI0750 dapF
	db Match	sp:OXYR_ECOLI		sp:HRPA_ECOLI	gp:SCAJ4870_3		sp:LEXA_BACSU	sp:GATR_ECOLI	gp:SCE22_14	sp:PT1_BACST	sp:GLPR_ECOLI	sp:K1PF_RHOCA	sp:PTFB_ECOLI	sp:PTHP_BACST		sp:PYRP_BACCL	gp:AF145049_8			sp:DAPF_HAEIN
	ORF (bp)	981	1089	3906	450	420	969	777	096	1704	792	066	1836	267	582	1287	1458	786	537	831
	Terminal (nt)	2030157	2030277	2035383	2035431	2035990	2037507	2038591	2039550	2039618	2042519	2043508	2045571	2046028	2046714	2047320	2048650	2051106	2051842	2051845
	Initial (nt)	2029177	2031365	2031478	2035880	2036409	2036812	2037815	2038591	2041321	2041728	2042519	2043736	2045762	2047295	2048606	2050107	2050321	2051306	2052675
	SEQ NO. (a.a.)	5614	5615	5616	5617	5618	5619	5620	5621	5622	5623	5624	5625	5626	5627	5628	5629	5630	5631	5632
	SEQ NO.	2114	2115	2116	2117	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	2132

$\overline{}$
_
$^{\circ}$
ã
_
=
_
_
_
⊏
0
\sim
<i>د</i> ۲
. •
$\overline{}$
┯
as
_
=
يد
~
'nω
$\overline{}$

Firstion		tRNA delta-2- isopentenylpyrophosphate transferase		hypothetical protein			hypothetical membrane protein	hypothetical protein	glutamate transport ATP-binding protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	glutamate transport system permease protein	glutamate transport system permease protein	regulatory protein	hypothetical protein		biotin synthase	putrescine transport ATP-binding protein	hypothetical membrane protein
Matched	(a.a.)	300		445			190	494	242	7.1	225	273	142	29		197	223	228
Similarity	(%)	68.7		75.7			63.7	86.4	9.66	73.0	100.0	9.66	6.99	71.6		61.4	69.5	58.8
Identity	(%)	40.0		48.5			29.0	68.4	9.66	66.0	100.0	99.3	34.5	40.3		33.0	33.2	24.6
	Homologous gene	Escherichia coli K12 miaA		Mycobacterium tuberculosis H37Rv Rv2731			Mycobacterium tuberculosis H37Rv Rv2732c	Mycobacterium leprae B2235_C2_195	Corynebacterium glutamicum ATCC 13032 gluA	Neisseria gonorrhoeae	Corynebacterium glutamicum ATCC 13032 gluC	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 gluD	Mycobacterium leprae recX	Mycobacterium tuberculosis H37Rv Rv2738c		Bacillus sphaericus bioY	Escherichia coli K12 potG	Bacillus subtilis ybaF
	db Match	sp:MIAA_ECOLI		pir.B70506			pir.C70506	sp:Y195_MYCLE	sp:GLUA_CORGL	GSP:Y75358	sp:GLUC_CORGL	sp:GLUD_CORGL	sp:RECX_MYCLE	pir:A70878		Sp:BIOY BACSH	sp:POTG_ECOLI	pir:F69742
ORF.	(dq)	903	675	1359	1020	1023	699	1566	726	219	684	819	597	234	738	576	669	609
Terminal	(nt)	2052684	2053609	2055761	2054724	2056787	2057120	2057855	2060499	2060196	2062312	2063259	2063298	2065394	2065667	2067141	2067866	2068474
i ci i i	(nt)	2053586	2054283	2054403	2055743	2055765	2057788	2059420	2059774	2060414	2061629	2062441	2063894		2066404			2067866
SEQ	NO. (a.a.)		5634	5635	5636	5637	5638	5639	5640	5641	5642	5643	5644	5645	5646	5647		5649
SEQ	DN G.		2134		2136	2137	2138	2139	2140	2141	2142	2143	2144	2145	2146	2147	2148	2149

Table 1 (continued)

_					-									 1	7	\neg		$\neg \tau$	\neg
	Function	hypothetical protein	hypothetical protein (35kD protein)	regulator (DNA-binding protein)	competence damage induced proteins	phosphotidylglycerophosphate synthase	hypothetical protein	surface protein (Peumococcal surface protein A)		tellurite resistance protein	stage III sporulation protein E	hypothetical protein	hypothetical protein	hypothetical protein			guanosine pentaphosphate synthetase	30S ribosomal protein S15	nucleoside hydrolase
	Matched length (a.a.)	228	269	83	165	160	117	30		358	845	216	645	250			742	89	319
	Similarity (%)	78.5	89.6	78.3	68.5	72.5	52.1	70.0		59.8	64.6	61.0	99.4	9.66			85.3	88.8	63.3
	Identity (%)	41.7	72.5	54.2	41.8	38.8	24.8	60.0		31.0	38.0	33.3	99.1	99.2			65.4	64.0	35.1
lable I (collisinaea)	Homologous gene	Mycobacterium tuberculosis	Mycobacterium tuberculosis H37Rv RV2744C	Mycobacterium tuberculosis H37Rv Rv2745c	Streptococcus pneumoniae R6X cinA	Streptococcus pyogenes pgsA	Arabidopsis thaliana ATSP:T16118.20	Streptococcus pneumoniae DBL5 pspA		Escherichia coli terC	Bacillus subtilis 168 spollIE	Streptomyces coelicolor A3(2) SC4G6.14	Corynebacterium glufamicum ATCC 13032 orf4	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 orf2			Streptomyces antibioticus gpsl	Bacillus subtilis rpsO	Leishmania major
	db Match	pir.B60176	sp:35KD_MYCTU	pir:H70878	sp:CINA_STRPN	prf:2421334D	pir:T10688	gp:AF071810_1		prf:2119295D	sp:SP3E_BACSU	gp:SC4G6_14	sp:YOR4_CORGL	sp:YDAP_BRELA			prf.2217311A	pir:F69700	prf:2518365A
	ORF (bp)	069	828	321	516	603	285	117	813	1107	2763	633	2154	750	669	264	2259	267	948
	Terminal (nt)	2069392	2068556	2069616	2069997	2070519	2071599	2071740	2072878	2071799	2073294	2076392	2077122	2080387	2082813	2082105	2082932	2085436	2085879
	Initial (nt)	2068703	2069383	2069936	2070512	2071121	2071315	2071624	2072066	2072905	2076056		2079275	2081136	2082115	2082368		2085702	2086826
	SEQ NO (a.a.)	5650	5651	5652	5653	5654	5655	5656	5657	5658	5659	5660	5661	5662	5663	5664		5666	2999
	SEQ NO.		-	2152	2153	2154	2155	2156	2157	2158	2159	2160	2161	2162	2163	2164	2165	2166	2167

Table 1 (continued)

																····		
	Function	bifunctional protein (riboflavin kinase and FAD synthetase)	tRNA pseudouridine synthase B	hypothetical protein	hypothetical protein	phosphoesterase	DNA damaged inducible protein f	hypothetical protein	ribosome-binding factor A	translation initiation factor IF-2	hypothetical protein	n-utilization substance protein (transcriptional termination/antitermination factor)		hypothetical protein	peptide-binding protein	peptidetransport system permease	oligopeptide permease	peptidetransport system ABC- transporter ATP-binding protein
	Matched length (a.a.)	329	303	47	237	273	433	308	108	1103	83	352		165	534	337	292	552
	Similarity (%)	79.0	61.7	73.0	62.5	68.9	78.8	70.8	70.4	62.9	66.3	71.0		65.5	6.09	69.4	69.2	81.3
	Identity (%)	56.2	32.7	65.0	42.2	46.9	51.0	36.7	32.4	37.7	44.6	42.3		34.6	25.3	37.7	38.4	57.6
lable I (commaca)	Homologous gene	Corynebacterium ammoniagenes ATCC 6872 ribF	Bacillus subtilis 168 truB	Corynebacterium ammoniagenes	Streptomyces coelicolor A3(2) SC5A7.23	Mycobacterium tuberculosis H37Rv Rv2795c	Mycobacterium tuberculosis H37Rv Rv2836c dinF	Mycobacterium tuberculosis H37Rv Rv2837c	Bacillus subtilis 168 rbfA	Stigmatella aurantiaca DW4 infB	Streptomyces coelicolor A3(2) SC5H4.29	Bacillus subtilis 168 nusA		Mycobacterium tuberculosis H37Rv Rv2842c	Bacillus subtilis 168 dppE	Escherichia coli K12 dppB	Bacillus subtilis spo0KC	Mycobacterium tuberculosis H37Rv Rv3663c dppD
	db Match	sp:RIBF_CORAM	sp:TRUB_BACSU	PIR:PC4007	gp:SC5A7_23	pir:B70885	pir.G70693	pir:H70693	Sp:RBFA_BACSU	sp:IF2_STIAU	gp:SC5H4_29	sp:NUSA_BACSU		pir:E70588	sp:DPPE_BACSU	Sp:DPPB_ECOLI	prf:1709239C	pir:H70788
	ORF (bp)	1023	891	228	651	804	1305	966	447	3012	336	966	1254	534	1602	924	666	1731
	Terminal (nt)	2086919	2088863	2087954	2089218	2089861	2090751	2092051	2093055	2093712	2096844	2097380	2099815	2098412	2101841	2102946	2103973	2105703
	Initial (nt)	2087941	2087973	2088181	2089868	2090664	2092055	2093046	2093501	1	2097179	2098375	2098562	2098945	2100240	2102023		
	SEQ NO.	5668	5669	5670	5671	5672	5673	5674	5675	5676	5677	5678	5679	5680	5681	5682	5683	
	SEQ NO.	2168	2169	2170	2171	2172	2173	2174	2175	2176	2177	2178	2179	2180	2181	2182	2183	2184

Table 1 (continued)

												-	$\overline{}$					
Function	prolyl-tRNA synthetase	hypothetical protein	magnesium-chelatase subunit	magnesium-chelatase subunit	uroporphyrinogen III methyltransferase	hypothetical protein	hypothetical protein	hypothetical protein	glutathione reductase					methionine aminopeptidase	penicillin binding protein	response regulator (two-component system response regulator)	two-component system sensor histidine kinase	hypothetical membrane protein
Matched length (a.a.)	578	243	37	342	237	488	151	338	466					252	630	216	424	360
Similarity (%)	84.6	65.0	60.7	69.6	73.8	68.7	62.3	65.7	76.6					75.8	56.5	72.2	56.8	58.1
Identity (%)	0.79	39.5	32.4	46.5	49.0	41.2	35.1	37.6	53.0					47.2	27.3	44.0	29.5	24.4
Homologous gene	Mycobacterium tuberculosis H37Rv Rv2845c proS	Streptomyces coelicolor A3(2) SCC30.05	Rhodobacter sphaeroides ATCC 17023 bchD	Heliobacillus mobilis bchl	Propionibacterium freudenreichii cobA	Clostridium perfringens NCIB 10662 ORF2	Streptomyces coelicolor A3(2) SC5H1.10c	Mycobacterium tuberculosis H37Rv Rv2854	Burkholderia cepacia AC1100 gor					Escherichia coli K12 map	Streptomyces clavuligerus pcbR	Corynebacterium diphtheriae chrA	Corynebacterium diphtheriae chrS	Deinococcus radiodurans DRA0279
db Match	sp:SYP_MYCTU	gp:Scc30_5	sp.BCHD_RHOSH	prf:2503462AA	prf:2108318B	sp:YPLC_CLOPE	gp:SC5H1_10	pir.A70590	sp:GSHR_BURCE					Sp:AMPM_ECOLI	prf:2224268A	prf:2518330B	prf:2518330A	gp:AE001863_70
ORF (bp)	1764	735	759	1101	750	1422	006	1014	1395	942	474	357	729	789	1866	630	1149	957
Terminal (nt)	2105801	2108386	2108389	2109155	2110434	2112659	2112717	2116774	2118310	2117015	2119080	2119495	2120356	2120359	2121296		2123848	2126045
Initial (nt)	2107564	2107652	2109147	2110255		2111238	2113616	2115761	2116916	2117956	2118607	2119139	2119628	2121147			2124996	2125089
SEQ NO. (a.a.)	5685	5686	5687	5688	5689	2690	5691	5692	5693	5694	5695	9699	5697	5698	+	+	5701	5702
SEQ NO DNA)	2185	2186	2187	2188	2189	2190	2191	2192	2193	2194	2195	2196	2197	2198	2199	2200	2201	2202

Г					Τ	Т		T		$\neg \top$	$\neg \Gamma$	Т	ے.				$\neg \top$	\top	\top		
	Function	ABC transporter		hypothetical protein (gcpE protein)			hypothetical membrane protein	polypeptides can be used as vaccines against Chlamydia trachomatis	1-deoxy-D-xylulose-5-phosphate reductoisomerase				ABC transporter ATP-binding protein	pyruvate formate-lyase 1 activating enzyme	hypothetical membrane protein	phosphatidate cytidylyltransferase	ribosome recycling factor	uridylate kinase		elongation factor Ts	30S ribosomal protein S2
	Matched length (a.a.)	225		359	3		405	147	312				245	356	94	294	185	109		280	254
	Similarity (%)	71.1		73.8	2		73.6	43.0	42.0				75.1	78.0	74.5	56.5	84.3	43.1		76.8	83.5
	Identity (%)	37.3		44.3	7		43.0	36.0	22.8				37.1	0.99	41.5	33.3	47.0	28.4		49.6	54.7
lable I (commaca)	Homologous gene	Bacillus subtilis 168 yvrO		1 2 C C L X 1 C C C L X C C C C C C C C C C C C C C C	Escherichia coli N 12 gcpc		Mycobacterium tuberculosis H37Rv Rv2869c	Chlamydia trachomatis	Escherichia coli K12 dxr				Thermotoga maritima MSB8 TM0793	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv3760	Pseudomonas aeruginosa ATCC 15692 cdsA	Bacillus subtilis 168 frr	Pseudomonas aeruginosa pyrH		Streptomyces coelicolor A3(2) SC2E1.42 tsf	Bacillus subtilis rpsB
	db Match	prf:2420410P		ļ	sp:GCPE_ECOLI		pir.G70886	GSP: Y37145	sp:DXR_ECOLI				pir.B72334	sp:YS80_MYCTU	pir.A70801	sp:CDSA_PSEAE	sp:RRF_BACSU	prf:2510355C		sp:EFTS_STRCO	pir:A69699
	ORF (bp)	069	+-		1134	612	1212	645	1176	441	480	1578	855	1098	258	855	555	729	861	825	816
	Terminal (nt)	2126753	24.080.08	0760717	2127350	2129461	2128669	2130950	2129903	2131762	2131247	2131825	2133406	2134454	2136141	2136235	2137286		2139854	2139003	2140071
	Initial (nt)	2126064	7007070	700/717	2128483	2128850	2129880	2130306	2131078	2131322	2131726	2133402		2135551	2135884	2137089	2137840		2138994		2140886
	SEQ.	+:		5/04	5205	5706		5708	5709	5710	5711	5712	5713	5714	5715	5716	5717	-	-		5721
		(DINA)		5204	2205	2206		2208	2209	2210	2211	2212	2213	2214	2215	2216	2217	2218	2219	2220	2221

Γ	Т		_		T				T			abla	\top			(0)	(n)	ے.
	Function	hypothetical protein	site-specific recombinase	hypothetical protein	Mg(2+) chelatase family protein	hypothetical protein	hypothetical protein	ribonuclease HII		signal peptidase	Fe-regulated protein		50S ribosomal protein L19	thiamine phosphate pyrophosphorylase	oxidoreductase	thiamine biosynthetic enzyme thiS (thiG1) protein	thiamine biosynthetic enzyme thiG protein	molybdopterin biosynthesis protein
	Matched length (a.a.)	120	297	395	504	119	101	190		285	323		111	225	376	62	251	437
	Similarity (%)	58.0	68.7	66.8	75.8	72.3	0.96	69.5		61.1	59.1		88.3	6.09	64.1	74.2	76.9	56.8
	Identity (%)	46.0	40.1	39.8	46.6	40.3	68.3	42.6		32.3	25.4		70.3	28.4	34.0	37.1	48.2	30.2
Table 1 (columned)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2891	Proteus mirabilis xerD	Mycobacterium tuberculosis H37Rv Rv2896c	Mycobacterium tuberculosis H37Rv Rv2897c	Mycobacterium tuberculosis H37Rv Rv2898c	Mycobacterium tuberculosis H37Rv Rv2901c	Haemophilus influenzae Rd H11059 rnhB		Streptomyces lividans TK21 sipY	Staphylococcus aureus sirA		Bacillus stearothermophilus rplS	Bacillus subtilis 168 thiE	Streptomyces coelicolor A3(2) SC6E10.01	Escherichia coli K12 thiS	Escherichia coli K12 thiG	Emericella nidulans cnxF
	db Match	sp:YS91_MYCTU	prf:2417318A	sp:YX27_MYCTU	1521 sp:YX28_MYCTU	sp:YX29_MYCTU	sp:YT01_MYCTU	sp:RNH2_HAEIN		prf.2514288H	prf:2510361A		sp:RL19_BACST	sp:THIE_BACSU	gp:SC6E10_1	sp:THIS_ECOLI	sp:THIG_ECOLI	
	ORF (bp)	504	924	1182	1521	366	303	627	792	786	936	213	339	663	1080	195	780	1134
	Terminal (nt)	2141760	2141763	2142885	2144066	2145576	2146264	2146566	2148022	2147261	2149166	2149359	2149634	2150997	2152118	2152329	2153113	2154191
	Initial (nt)	2141257	2142686	2144066	2145586	2145941	2146566	2147192	2147231	2148046	2148231				2151039	2152135	2152334	
	SEQ No.	(a.a) 5722	5773		5725	5726	5727	5728	5720	5730	5731	5732			5735			
		(UNA) 2222	2223		2225	2226	2227	2228	2000	2230	2234	2232	2233	2234	2235	2236	2237	2238

Table 1 (continued)

				\Box			T			T						T					
Function	transcriptional accessory protein	sporulation-specific degradation regulator protein	dicarboxylase translocator	2-oxoglutarate/malate translocator	3-carboxy-cis, cis-muconate cycloisomerase				tRNA (guanine-N1)- methyltransferase	hypothetical protein	16S rRNA processing protein	hypothetical protein	30S ribosomal protein S16	inversin	ABC transporter	ABC transporter	signal recognition particle protein				cell division protein
Matched length (a.a.)	776	334	456	65	350				273	210	172	69	83	196	256	318	559				505
Similarity (%)	78.7	65.3	78.3	80.0	66.3				64.8	57.6	72.1	66.7	79.5	61.7	69.1	63.8	78.2				66.1
Identity (%)	56.6	27.0	45.8	40.0	39.1				34.8	30.5	52.3	29.0	47.0	32.1	26.6	35.5	58.7				37.0
Homologous gene	Bordetella pertussis TOHAMA I tex	Bacillus subtilis 168 degA	Chlamydophila pneumoniae CWL029 ybhl	Spinacia oleracea chloroplast	Pseudomonas putida pcaB				Escherichia coli K12 trmD	Streptomyces coelicolor A3(2) SCF81.27	Mycobacterium leprae MLCB250.34. rimM	Helicobacter pylori J99 jhp0839	Bacillus subtilis 168 rpsP	Mus musculus inv	Streptococcus agalactiae cylB	Pyrococcus horikoshii OT3 mtrA	Bacillus subtilis 168 ffh				Escherichia coli K12 ftsY
db Match	sp:TEX_BORPE	pir.A36940	pir.H72105	prf.2108268A	sp:PCAB_PSEPU				sp:TRMD_ECOLI	gp:SCF81_27	sp:RIMM_MYCLE	pir:B71881	pir.C47154	pir.T14151	prf:2512328G	prf:2220349C	sp:SR54_BACSU				sp:FTSY_ECOL
ORF (bp)	2274	975	1428	219	1	66	393	069	819	648	513	348	495	576	867	876	1641	633	417	699	1530
Terminal (nt)	2154460	2156747	2157754	2159019	2159287	2160768	2161111	2161507	2162196	2163745	2163748	2164737	2164815	2166098	2166124			2171058	2172131	2172877	2173759
Initial (nt)	2156733	2157721	2159181	2159237	2160537	2160670	2161503	2162196		2163098	2164260	2164390				1			2171715	2172209	2175288
SEQ NO.	62.23	5740	5741	5742	5743	5744	5745	5746	5747	5748	5749	5750		5752	5753		-	+	5757	5758	5759
SEQ NO.		2240	2241	2242	2243	2244	2245	2246	2247	2248	2249	2250	2251	2252	2253	2254	2255	2256	2257	2258	2259

w
_
_
-
_
_
_
\sim
_
8
$\overline{}$
$\overline{}$
-
Э
~
_
_
~
ap
,
\mathbf{I}

			1			T		T	T			\top				T	1				
Function			TO Cockiocoula refula A A Transfer	glucan 1,4-aipna-glucosidase ol glucoamylase S1/S2 precursor		chromosome segregation protein	acylphosphatase		transcriptional regulator	hypothetical membrane protein			cation efflux system protein	formamidopyrimidine-DNA glycosylase	ribonuclease III	hypothetical protein	hypothetical protein	transport protein	ABC transporter	hypothetical protein	
Matched length (a.a.)				1144		1206	92		305	257			188	285	221	176	238	559	541	388	
Similarity (%)				46.2		72.6	73.9		60.0	73.5			9.92	66.7	76.5	62.5	76.9	55.6	58.8	62.6	
Identity (%)				22.4		48.3	51.1		23.9	39.3			46.8	36.1	40.3	35.8	20.0	28.3	26.6	35.3	
Homologous gene				Saccharomyces cerevisiae S288C YIR019C sta1		Mycobacterium tuberculosis H37Rv Rv2922c smc	Mycobacterium tuberculosis H37Rv RV2922.1C		Escherichia coli K12 yfeR	Mycobacterium leprae MLCL581.28c			Dichelobacter nodosus gep	Escherichia coli K12 mutM or fpg	Bacillus subtilis 168 rncS	Mycobacterium tuberculosis H37Rv Rv2926c	Mycobacterium tuberculosis H37Rv Rv2927c	Streptomyces verticillus	Escherichia coli K12 cydC	Streptomyces coelicolor A3(2) SC9C7.02	
db Match				sp:AMYH_YEAST		sp:Y06B_MYCTU	sp:ACYP_MYCTU		sp:YFER_ECOLI	pir.S72748			gp:DNINTREG_3	sp:FPG_ECOLI	pir.B69693	sp:Y06F_MYCTU	sp:Y06G_MYCTU	prf.2104260G		gp:SC	
ORF (bp)	4 50	5	702	3393	963	3465	282	1854	858	831	183	447	615	858	741	534	789	1644	1530	1122	441
Terminal (nt)	0475000	21/3000	2177103	2176110	2181880	2179628	2183110	2183405	2185351	2187129	2187342	2187233	2187692	2188313	2189166	2189906	2190540	2193165	2194694		2198007
Initial (nt)	07000	21/0040	2176402	2179502	2180918	2183092	2183391	2185258	2186208	2186299	2187160	2187679			2189906		2191328	2191522			2198447
SEQ.		2/60	5761	5762	5763		5765	5766	5767	5768	5769	5770	5771	5772	5773	5774	5775	5778			5779
	-	2260	2261	2262	2263	2264	2265	2266	2267	2268	2269	2270	2271	2272	2273	2274	2275	2276	2277	2278	2279

Table 1 (continued)

Function	hypothetical protein	peptidase	sucrose transport protein			maltodextrin phosphorylase / glycogen phosphorylase	hypothetical protein	prolipoprotein diacylglyceryl transferase	indole-3-glycerol-phosphate synthase / anthranilate synthase component II	hypothetical membrane protein	phosphoribosyl-AMP cyclohydrolase	cyclase	inositol monophosphate phosphatase	phosphoribosylformimino-5- aminoimidazole carboxamide ribotide isomerase	glutamine amidotransferase	chloramphenicol resistance protein or transmembrane transport protein
Matched length (a.a.)	405	353	133			814	295	264	169	228	88	258	241	245	210	402
Similarity (%)	43.7	64.3	51.9			67.4	66.4	65.5	62.1	58.8	79.8	97.7	94.0	97.6	92.4	54.0
Identity (%)	21.0	32.9	27.1			36.1	33.9	31.4	29.6	29.4	52.8	97.3	94.0	95.9	86.7	25.6
Homologous gene	Thermotoga maritima MSB8 TM0896	Campylobacter jejuni ATCC 43431 hipO	Arabidopsis thaliana SUC1			Thermococcus litoralis malP	Bacillus subtilis 168 yfiE	Staphylococcus aureus FDA 485	Emericella nidulans trpC	Mycobacterium tuberculosis H37Rv Rv1610	Rhodobacter sphaeroides ATCC 17023 hisl	Corynebacterium glutamicum AS019 hisF	Corynebacterium glutamicum AS019 impA	Corynebacterium glutamicum AS019 hisA	Corynebacterium glutamicum AS019 hisH	Streptomyces lividans 66 cmlR
db Match	pir.A72322	sp:HIPO_CAMJE	pir.S38197			prf:2513410A	Sp:YFIE BACSU	sp:LGT_STAAU	sp.TRPG_EMENI	pir:H70556	sp:HIS3_RHOSH	sp:HIS6_CORG	prf:2419176B	gp:AF051846_1	gp:AF060558_1	sp:CMLR_STRLI
ORF (bp)	1284	1263	336	135	276	2550	900	1	801	657	354	774	825	738	633	1266
Terminal (nt)	2199758	2201070	2201073	2201450	2201594	2201992	2204591	2207302	2208367	2209232	2209920	2210273	2211051	2211882	2212641	2214321
Initial (nt)	2198475	2199808	2201408	2201584	2201869	2204541	2205490	2208249	2209167	2209888	2210273	2211046	2211875	2212619	2213273	2215586
SEQ NO.		5781	5782	5783	5784	5785	5786	5787	5788	5789	5790	5791	5792	5793	5794	5795
SEQ NO.		2281	2282		2284		2286	2287	2288	2289	2290	2291	2292	2293	2294	2295

			ate			.E.			nosphatase		zyme			nase	n repressor	2-binding				
	Function		imidazoleglycerol-phosphate dehydratase	histidinol-phosphate aminotransferase	histidinol dehydrogenase	serine-rich secreted protein			histidine secretory acid phosphatase	tet repressor protein	glycogen debranching enzyme	hypothetical protein	oxidoreductase	myo-inositol 2-dehydrogenase	galactitol utilization operon repressor	ferrichrome transport ATP-binding protein or ferrichrome ABC transporter	hemin permease	iron-binding protein	iron-binding protein	hypothetical protein
	Matched length (a.a.)		198	362	439	342			211	204	722	258	268	343	329	246	332	103	182	113
	Similarity (%)		81.8	79.3	85.7	54.4			59.7	60.8	75.5	76.0	55.2	6.09	64.4	68.3	71.1	68.0	9.79	73.5
	Identity (%)		52.5	57.2	63.8	27.2			29.4	28.9	47.4	50.0	29.9	35.0	30.4	32.9	36.8	30.1	34.6	38.1
(Homologous gene		Streptomyces coelicolor A3(2) hisB	Streptomyces coelicolor A3(2) hisC	Mycobacterium smegmatis ATCC 607 hisD	Schizosaccharomyces pombe SPBC215.13			Leishmania donovani SAcP-1	Escherichia coli plasmid RP1 tetR	Sulfolobus acidocaldarius treX	Mycobacterium tuberculosis H37Rv Rv2622	Streptomyces coelicolor A3(2) SC2G5.27c gip	Sinorhizobium meliloti idhA	Escherichia coli K12 galR	Bacillus subtilis 168 fhuC	Vibrio cholerae hutC	Bacillus subtilis 168 yvrC	Bacillus subtilis 168 yvrC	Escherichia coli K12 ytfH
	db Match		sp:HIS7_STRCO	sp.HIS8_STRCO	sp:HISX_MYCSM	gp:SPBC215_13			prf:2321269A	pir:RPECR1	prf:2307203B	pir.E70572	gp.SC2G5_27	prf:2503399A	SD:GALR ECOLI	sp:FHUC_BACSU	prf 2423441E	nir.G	pir.G70046	sp:YTFH_ECOLI
	ORF (bp)	225		1098	1326	1200	651	309	642	561	2508	801	774	1011	966	798	1038	348	594	441
	Terminal (nt)	2215639	2215869	2216494	2217600	2220358	2220459	2221919	2221187	2222518	2225035	2225949	2225990	2226769	2228901	2229099	2229900	+	+	
	Initial (nt)	2215RG3	2216474	2217591	2218925	2219159	2221109	2221611			2222528		2226763	9777700	- 1		720027			
	SEQ NO.	-		5798	5799	5800	5801	5802			5805	5806	5807	580B	\rightarrow		7,07	\rightarrow		
	SEQ NO.			2298	2299	2300	2301			2304	2305	2306	2307	230B	2200	2310	224.4	107	2312	2314

	Function	DNA polymerase III epsilon chain		maltooligosyl trehalose synthase	riedinal protein	hypometical process				chain chain	alkana monovy gonzo – r	hypothetical protein		maltooligosyltrehalose	trenalony diorase		threonine dehydratase			Corynebacterium glutamicum AS019	ONA polymerase III	_	chloramphenicol sensitive protein	histidine-binding protein precursor	hypothetical membrane protein	
podotok	length (a.a.)	355		814		322				1	3/5	120	Ļ	568	770	17	436			415	4402		279	149	198	
	Similarity (%)	50.1		0 00	2	52.8				ļ .	54.4	79.2		A C7	1 6	/2.4	99.3			49.6	-	80.5	73.8	55.7	64.7	-
	Identity (%)	23.4		Ç	44.0	27.6					20.5	58.3		6 97	5.0	36.5	99.3		-	22.7		53.3 	37.6	J 21.5	8 22.7	-
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2)	SC18.12		Arthrobacter sp. Q36 treY	Deinococcus radiodurans DR1631				-	Photorhabdus luminescens ATCC 29999 luxA	Streptomyces coelicolor A3(2)	30/112.00		Arthrobacter sp. Q36 tre2	Bacillus subtilis 168	Corvnebacterium glutamicum	ATCC 13032 ilvA		Ham silvacy civili.	Catharanthus Toseus Incit.	Streptomyces coelicolol Av(z)	respectively coli K10 rarD	Campulohacter leiuni DZ72 hisJ	Campy Constitution of Linding AF23	Archaeoglobus luigidus Al 2000
	db Match		gp:SCI8_12		pir.S65769	gp:AE002006_4					sp:LXA1_PHOLU				5 pir.S65770	SP. VVYE BACSU	- ide	8 sp:THD1_CORGL	2		13 pir: S57636	32 prf.2508371A	-	sp:R/	Sp:H	8 pir.D69548
	ORF (bb)		1143	3 606	2433	3 1023	399	5 198	8 189	8 1056	1044	378		29 231	19 1785	200	-+-	64 1308	92 507	95 156	1203	3582		-+	659 468	642 918
	Terminal	Gui)	2234070	2234763	2237284	2238353	2238694	2239845	2240058	2239508	2241724	0044728	V/1 477	2242129	2244819		2247383	2244864	2246892	2246295	3 2247006	2248358			2 2253659	5 2254642
		-+ (nu)	2232928	2234158	_		2239092	2240042	2240246	5822 2240563	2240681	1000177	2242115	2242359	2243035		2243043	2246171	2246386	2246450	2248208		7521827	3 2252017	4 2253192	5835 2253725
	SEQ	(a.a)	5815 2	7 8 1 8 1 C			5819		5821	-		3023	5824	5825	5826		5827	3 5828	5829				2 5832	3 5833	4 5834	
	Q S S		2315	_	2317		2210	2320	2321	0300	2362	7323	2324	2325	2326		2327	2328	2329	2330	2331	3	2332	2333	2334	2335

$\overline{}$
8
₹
Ξ
5
ၟၓ
$\overline{}$
Ф
Ճ
ū

		seor				۵	ase		protein				protein P	protein				esi		
	Function	short chain dehydrogenase or general stress protein	diaminopimelate (DAP) decarboxylase	cysteine synthase		ribosomal large subunit pseudouridine synthase	lipoprotein signal peptidase		oleandomycin resistance protein		hypothetical protein	L-asparaginase	DNA-damage-inducible protein P	hypothetical membrane protein	transcriptional regulator		hypothetical protein	isoleucyl-tRNA synthetase		
	Matched length (a.a.)	280	445	314		326	154		550		158	321	371	286	334		212	1066		
	Similarity (%)	80.0	47.6	64.3		61.0	61.7		64.0		57.6	62.0	60.7	61.5	73.1		67.0	65.4		
	Identity (%)	48.2	22.9	32.8		36.5	33.8		36.4		36.7	31.2	31.8	31.5	44.3		42.0	38.5		
lable I (confined)	Homologous gene	Bacillus subtilis 168 ydaD	Pseudomonas aeruginosa lysA	Alcaligenes eutrophus CH34 ovsM		Escherichia coli K12 rluD	Pseudomonas fluorescens NCIB 10586 lspA		Streptomyces antibioticus oleB		Rhodococcus erythropolis orf17	Bacillus licheniformis	Escherichia coli K12 dinP	Escherichia coli K12 ybiF	Streptomyces coelicolor A3(2) SCF51.06		Streptomyces coelicolor A3(2) SCF51.05	Saccharomyces cerevisiae A364A YBL076C ILS1		
	db Match	sp:GS39_BACSU	sp:DCDA_PSEAE	sp:cYSM_ALCEU		sp:RLUD_ECOLI	sp:LSPA_PSEFL		pir.S67863		prf:2422382P	Sp. ASPG BACLI	SP.DIND FCOLL	sp:YBIF_ECOLI	gp:SCF51_6		gp:SCF51_5	sp:SYIC_YEAST		
	ORF (bp)	876	1287	951	579		534	1002		303	009	+-			1002	132	627	3162	216	4005
	Terminal (nt)	2254683	2255738	2258362	2259421	2260002	2260934	2262689	2264499	2265298	2264509		_1_	2268388	2269260	2270435	2270258	2270988	2274473	7977707
	Initial (nt)	2255558	2257024	2259312	2250000	2260931	2261467	226168B			226510B	2262120	700000	2200231	2270261	2270304		2274149	2274688	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	SEQ.	(a.a.) 5836				5840	5841	SBAD	_	5844	587E		0040	5848		5850		5852	5853	┰
		(DNA)		2338	0000	2340	2341	2342	2343	2344	2345	25.04.0	2340	2347	2349	2350	2351	2352	2353	

_
ਠ
·
_
=
_
-
_
_
_
1
_
\sim
~
•
മാ
_
_
ap
~
- 50
Tak
_
•

	T	<u>T</u>			T		T	\neg				y- ne		<u> </u>	T		T		, ,	
	Function	hypothetical membrane protein	hypothetical protein (putative YAK 1 protein)	hamothatical profein	nypoureucar process	hypothetical protein	hypothetical protein	cell division protein	cell division initiation protein or cell division protein	UDP-N-acetylmuramatealanine ligase	N-enimesoculabilities M-Cit	UDF-N-acetyglucosarimicovacetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine pyrophosphoryl-undecaprenol N-acetylglucosamine	cell division protein	I IOP N acetylmiramovialanine-D-	glutamate ligase		- Now Called the first the	phospho-n-acetyimurariioyi- pentapeptide	UDP-N-acetylmuramoylalanyl-D-	glutamyi-z, o-diaminopinieraco alanyi-D-alanyi ligase
	Matched length (a.a.)	82	152	700	177	246	117	442	222	486		372	490		110			365		494
	Similarity (%)	73.2	99.3	0	9.66	100.0	51.0	98.6	100.0	99.8		99.5	96.6		99.1			63.8		64.2
	Identity (%)	46.3	99.3		97.7	99.2	39.0	98.6	9.66	99.4		6.86	99.4		99.1			38.6		35.0
lable I (continued)	Homologous gene	Mycobacterium tuberculosis	Brevibacterium lactofermentum	orf6	Corynebacterium glutamicum	Brevibacterium lactofermentum vfih	Mus musculus P4(21)n	Brevibacterium lactofermentum	Corynebacterium glutamicum	Corynebacterium glutamicum	murc	Brevibacterium lactofermentum ATCC 13869 murG	Brevibacterium lactofermentum	ATCC 13869 ftsW	Brevibacterium lactofermentum ATCC 13869 murD			Escherichia coli K12 mraY		Escherichia coli K12 murF
	db Match	pir.F70578	0 101	gp: BLF 32_0	sp:YFZ1_CORGL	prf:2420425C	GP:AB028868 1	SD:FTSZ BRELA			gp.AD	gp:BLA242646_3	, i	gp.pr.Az+zv-v_z	gp:BLA242646_1			Sp:MRAY ECOLI		1542 sp:MURF_ECOLI
	ORF (bp)			456	663	738	486	1326		274	1458	1116	0	Oco I	468	384	333	1098		
	Terminal (nt)	53	2000	2276881	2277416	2278122	2279640	0578890	0280470	0110077	2281166	2282661		2283/82	2285437	2286655	2286831	2286862	7000077	2287969
	Initial	1		2277336 2	2278078		22704 55			0011077	2282623	2283776		2285431	2285904	2286272				2289510
	SEQ NO.		2835	5856 2	5857		_ ! _	2000			2985	5863		5864	5865	5866	_			5869
	SEQ NO.		2355 5	2356	2357		-				2362	2363		2364	2365	2366	7967	7360	7308	2369

					Τ-		— <u> </u>	$\neg \top$											
Function	-C-Ivnelelvomeriimhytese iv acii	UDF-N-acetyllitra illoylarariy-D glutamyl-2,6-diaminopimelate-D- alanyl-D-alanyl ligase	penicillin binding protein	penicillin-binding protein		hypothetical protein	hypothetical membrane protein	hypothetical protein		hypothetical protein	5, 10-methylenetetrahydrofolate reductase	dimethylallyltranstransferase	hypothetical membrane protein			hypothetical protein	eukaryotic-type protain kinase		hypothetical membrane protein
Matched length	(a.a.)	491	57	650		323	143	137		190	303	329	484			125	684		411
Similarity	(o/)	67.6	100.0	58.8		79.3	88.8	69.3		65.3	9.07	62.0	69.6			68.8	62.4		58.4
Identity (%)	(0%)	37.7	100.0	28.2		55.1	72.0	39.4		36.3	42.6	30.1	35.7			43.2	34.2		30.7
Homologous gene		Bacillus subtilis 168 murE	Brevibacterium lactofermentum ORF2 pbp	Pseudomonas aeruginosa pbpB		Mycobacterium tuberculosis H37Rv Rv2165c	Mycobacterium leprae MLCB268.11c	Mycobacterium tuberculosis H37Rv Rv2169c		Mycobacterium leprae MLCB268.13	Streptomyces lividans 1326 metF	Myxococcus xanthus DK1050	Mycobacterium leprae	MLCB206.17		Mycobacterium tuberculosis H37Rv Rv2175c	Streptomyces coelicolor A3(2) pkaF		Mycobacterium leprae MLCB268.23
Ab Match	do Marci	sp:MURE_BACSU	GSP:Y33117	pir.S54872		pir.A70581	gp:MLCB268_11	pir.C70935		gp:MLCB268_13	Sp:METF_STRU			ก		pir.A70936	gp:AB019394_1		3 gp:MLCB268_21
ORF	(dq)	1551	225	1953	795	1011	429	387	423	573	978	1113	1470		204	369	2148	651	1236
Terminal		2289523	2290973	2291212	2293323	2294117	2295376	2296512	2297231	2298438	2298451	2300636	7200475	2002	2302685	2302251	2304980	2303040	2306218
	(nt)	2291073	2291197	2293164	_		2295804	2296898	2207853	2297866	2299428	2200524	302000		2302179	2302619	2302833	2303690	
SEQ	NO. (a.a.)	 	5871		-		5875	5876	5077	5878	5879			288	5882	5883	5884	5885	
-	Ö. S S S S		2371		 -		2375	2376	2227	7378	2379	0 0	2360	7381	2382	2383	2384	2385	2386

$\overline{}$
ڝ
\approx
=
_
⊏
=
ᆮ
$\overline{}$
8
ಀ
$\overline{}$
45
a
ᅙ
Tab
100

		 -					$\neg T$	1	_	$\neg \top$					\top			
	Function	hypothetical membrane protein	3-deoxy-D-arabino-heptulosonate-7- phosphate synthase	hypothetical protein	hypothetical membrane protein	major secreted protein PS1 protein precursor			111111111111111111111111111111111111111	hypothetical membrane protein	acyltransferase	glycosyl transferase	protein P60 precursor (invasion-associated-protein)	protein P60 precursor (invasion-	associated-protein)	ubiquinol-cytochrome c reductase cytochrome b subunit	ubiquinol-cytochrome c reductase iron-sulfur subunit (Rieske [eFe-2S] iron-sulfur protein cyoB	ubiquinol-cytochrome c reductase cytochrome c
Lo determ	length (a.a.)	434	462	166	428	440				249	245	383	296	197	2	201	203	278
	Similarity (%)	62.0	87.9	7.77	64.5	57.1				100.0	100.0	7.5.7	80.8	2,7	5.	64.7	57.1	83.1
	Identity (%)	30.4	6.99	58.4	35.1	28.2				100.0	100.0	50.1	26.4	000	33.U	34.3	37.9	58.6
(apple 1 (apple 1)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv7181	Amycolatopsis mediterranei	Mycobacterium leprae MLCB268 21c	Mycobacterium tuberculosis H37Rv Rv2181	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1				Corynebacterium glutamicum ATCC 13032	Corynebacterium glutamicum ATCC 13032	Streptomyces coelicolor A3(2)	listeria ivanovii iap		Listeria grayi lap	Heliobacillus mobilis petB	Streptomyces lividans qcrA	Mycobacterium tuberculosis H37Rv Rv2194 qcrC
	db Match	pir:G70936	qp:AF260581_2	gp:MLCB268_20	pir.G70936	sp:CSP1_CORGL				gp:AF096280_3	gp:AF096280_2	gp:SC6G10_5			sp:P60_LISGR	prf:2503462K	gp:A	sp:Y005_MYCTU
	ORF (bp)		1386		2418	1449	200	107	177	1188	735	1143	40.47	5	627	1602	672	885
	Terminal (nt)	7.7	<u> </u>		2312252	2313808	9007760	23 14030	2313916	2314236	2315678	2317633		73 18004	2319968	2321472	2323088	2324311
	Initial 7	4				2312360	0000	2313833	2314092	2315423	2316412	1		2319850	2320594			2325195
	SEQ.	(a.a.)				5891	3	2885	5893	5894	5895	2808		2897	5898			5901
		(DNA)				2391		2392	2393	2394	2395	9000	7,000	2397	2398	0380	2400	2401

																					$\overline{}$			\top	7
	Function	cytochrome c oxidase subunit III			hypothetical membrane protein	cytochrome c oxidase subunit II	glutamine-dependent	amidotransferase or asparagine synthetase (lysozyme insensitivity protein)	hypothetical protein	hypothetical membrane protein		cobinamide kinase	nicotinate-nucleotide	dimethylbenzimidazole phosphoribosyltransferase	cobalamin (5'-phosphate) synthase		agetoliber obudoble o et	ciavulanate-s-aldeliyue reducidad	branched-chain arnino acid aminotransferase	leucyl aminopeptidase	hypothetical protein	dihydrolipoamide acetyltransferase		linovitransferase	and the state of t
	Matched length (a.a.)	188			145	317		640	114	246		172		341	305	3		241	364	493	26	691		0,70	217
	Similarity (%)	707			71.0	53.9		96.8	100.0	602	100	64.0		6.99	401	o.		68.5	70.3	62.9	67.0	68.5		7 20	000.7
-	Identity (%)	36.7	3		38.6	28.7		29.7	100.0	35.0	5.	43.0		37.8	25.2	23.3		38.6	40.1	36.3	40.2	48.9		7	30.7
lable (comment)	Homologous gene		Synechococcus vuicalius		Mycobacterium tuberculosis H37Rv Rv2199c	Rhodohacter sphaeroides ctaC		Corynebacterium glutamicum KY9611 ItsA	Corynebacterium glutamicum KY9611 orf1	Mycobacterium leprae	MLCB22.07	Rhodobacter capsulatus cobP		Pseudomonas denitrificans cobU	\(\frac{1}{2} = \frac{1}{2} =	Pseudomonas denitriicans cobv		Streptomyces clavuligerus car	Mus musculus BCAT1	Pseudomonas putida ATCC	Saccharopolyspora erythraea	Ottonton occupancia publica	Streptoniyes securing parie		Arabidopsis thaliana
	db Match		sp:cox3_synvu		sp:Y00A_MYCTU	HUCHO CX	+	gp:AB029550_1	gp:AB029550_2		gp:MLCB22_2	nir.852220		Sp:COBU_PSEDE		sp:COBV_PSEDE		prf:2414335A	sp:ILVE_MYCTU	gp:PPU010261_1	prf.2110282A		gp:AF04/034_2		gp:AB020975_1
	ORF (bp)	_	615	153	429	1077	2	1920	342		768	522	325	1089		921	237	714	1137	1500	393		2025	1365	753
	Terminal (nt)		2325273	2326121	2326472		7359871	2330435	2330586		2331967	2332/05	C017490	2333600		2334535	2334481	2335028	2335915	2338734	2338748		2341293	2339440	2342164
	Initial (nt)	(11.1)	2325887	2326273	2326900		2327997	2328516	2330927		2331200		2331974	2332512		2333615	2334717			2337235			2339269	3 2340804	3 2341412
	SEQ NO.	(a.a.)	5902	5903			5905	5906	5907		5908		5808	5910		5911	5912			5915			5917	5918	5919
	SEQ.	(DNA)	2402	2403	_	_	2405	2406	2407		2408	0	2409	2410		2411	2412	2413	2414	2415	2416	01 1.7	2417	2418	2419

	:	Function	linoic acid synthetase		hypothetical membrane protein	Typodical and the second secon	hypothetical membrane protein		transposase (ISCg2)			hypothetical membrane protein	liypouloused in the second in		mutator mutT domain protein		niestosiosi protein	nypoureucal protein	
	Matched	length (a.a.)	ኃጸዳ	202	757	/67	559		401			757	(2)		145	2	-	128	
	Matched	(%)	70.0	9.0/	1	/0./	R7 8	2	100.0			7	63.7		0 8 8	44.0	!	65.6	
	7.7	(%)		44.6	1	45.5	200	32.3	100.0				41.4		3	31.0		36.7	
Table 1 (continued)		Homologous gene	GRA BD	7 lipA	Sisolitorodit minimate	Mycobacterium tubercurosis H37Rv Rv2219	LT	Escherichia coli K12 yide	Corynebacterium glutamicum	ATCC 13032 tnp		(C)EV Jorgiospie V3(2)	Streptomyces coefficial A3(2) SC5F7.04c				OCION THE	Thermotoga maritima MS50	
		db Match		sp:LIPA_PELCA		Sp:Y00U_MYCTU		Sp: YIDE_ECOLI	7774	gp.Ar 10914/			gp:SC5F7_34					pir:B72308	_
		ORF (bp)	L.	1044		780		1617	900	1203	6	ğ	471		213	0.75	-	399	
		Terminal	(111)	2343347		2344258		2346047		2346289		234/804	2348078		2350408	1.	2321880	2350912	1
			(111)	2342304		9742479	0 110107	2344431	1011107	5923 2347491		2347505	5925 2348548		5926 2350620		2351022	2351310	2
		SEQ NO.	(a.a.)	5920		1001	1 780	2000	3366	5923		5924	5925	}	5926		5927	500A	2000
		SEQ	(DNA)	2420	1		1 747	-	7747	2423		2424			2426		2427	0.4.0	0747

	e alpha chain	sha chain)	itor	hibitor)				te permease		riotora t	oor protein		oort protein					
	alkanal monooxygenase alpha chain	(bacterial luciferase alpha chain)	protein synthesis inhibitor	(translation initiation inhibitor)				A hydroxynhenylacetate permease	4-II y all Oxy principles		transmembrane transport protein		4.49 transmembrane transport protein					
	0	220	*	=				733	554		128		7,0	2				
_		6.09	1	73.0				7 02	53.4		72.8			- 0 0				
		25.0		40.5					21.9		42.4		;	31.4				
		849 sp:LUXA_VIBHA Vibrio harveyi luxA	MSB8	TM0215					Techonichia coli huaX	Lacing and a second a second and a second an	Streptomyces coelicolor A3(2)	SCGD3.10c	State of the A3(2)	Streptomyces coefficient (1972)	90,000			
		sp:LUXA_VIBHA		393 pir.A72404					1 124 00000	2356843 1323 pri: 2203345FI	000	gp:SCGD3_10		722 2257264 2357707 444 qp:SCGD3 10	1			
	900	849		393		243	-1	261		1323	;	561		444	· ·	195	-+	405
	2351310	2352828		1 2353225		235539B	20007	2355180		2356843		2357354		2257707	2007	2357290	2001 200	2358130
	5929 2351909	7420 E030 2351980	2007	2431 5931 2352833		2255156	7432 2837 7333 130	5033 2355440	70007	5934 2355521		2435 5935 2356794		A307300	402/667	7077700	593/ 233/404 233/230	C020 0257728 0358130
	5929	5030	2000	5931		000	2827	5033		5934		5935		0	2830			000
	2429	0.40	2430	2431	1	0,0	2432	2422	7100	2434		2435	1	9	2436		243/	0

										Т	7				T			\top			
	Function			heme oxygenase	glutamate-ammonia-ligase adenylyltransferase	glutamine synthetase	hypothetical protein	hypothetical protein	hypothetical protein	galactokinase	virulence-associated protein		Harational protein (riboniclease H	and phosphoglycerate mutase)		hypothetical protein	hypothetical protein	phosphoglycolate phosphatase	low molecular weight protein- tyrosine-phosphatase	hypothetical protein	insertion element (1S402)
Podotok	length (a.a.)			214	808	441	392	601	54	374	358			382		249	378	204	156	281	129
	Similarity (%)			78.0	67.0	73.0	54.1	58.2	55.6	53.7	54.5			75.1		58.6	76.2	54.4	63.5	65.5	56.6
	Identity (%)			57.9	43.4	43.5	26.8	33.4	38.9	24.9	27.1			54.7		26.5	49.2	26.0	46.2	40.9	32.6
	Homologous gene			Corynebacterium diphtheriae C/ hmuO	Streptomyces coelicolor A3(2) gInE	Thermotoga maritima MSB8 glnA	Streptomyces coelicolor A3(2) SCE9.39c	Mycobacterium tuberculosis H37Rv Rv2226	Streptomyces coelicolor A3(2) SCC75A.11c.	Homo sabiens dalK1	a contract of the contract of	Brucella abolius vace		Mycobacterium tuberculosis H37Rv Rv2228c		Mycobacterium tuberculosis H37Rv Rv2229c	Mycobacterium tuberculosis H37Rv Rv2230c	Escherichia coli K12 gph	Streptomyces coelicolor A3(2) SCQ11.04c ptpA	Mycobacterium tuberculosis	Burkholderia cepacia
	db Match			sp:HMUO_CORDI	gp:SCY17736_4	sp:GLNA_THEMA	gp:SCE9_39	sp:Y017_MYCTU	gp:SCC75A_11	NAMINAN	op. On 1	gp:AF174645_1		sp:Y019_MYCTU		sp:Y01A_MYCTU	sp:Y01B_MYCTU	Sn.GPH ECOL	sp:PTPA_STRCO	sp:Y01G_MYCTU	
	ORF (bp)		543	645	3135	1338	1104	1827	180	4004	267	1266	486	1146	729	717	1140	654	471	954	393
	Terminal (nt)	+	2358153	2358772	2359614	2362818	2365455	2367413	2367473	00000	2308003	2369116	2370908	2371412	2373289	2372573	2373323	2375107		2376720	
	Initial (nt)		2358695	2359416	2362748	2364155	2364352	2365587	2367652	1		2370381	2370423		2372561		2374462	7777		2375767	
	SEQ.	(a.a.)	5939	5940	5941	5942	5943	5944	5945	1	5946	5947	5948	5949	5950	5951	5952		5954	5055	
		(DNA)	2439			2442	2443	2444	2445		2446	2447	2448	2449	0450	2451	2452	1,0	2453	2455	2456

						lable (collulaco)				
SEQ No.	SEQ.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
(DNA)	(a.a.)		1011100	24.5						
2457	5957	23///26	73//484	243		(0)00 1 1-				
2458	5958	2377899	2378276	378	gp:SC8F4_22	Streptomyces coelicolor A3(2) SC8F4.22c	30.4	57.8	135	transcriptional regulator
2459	5959	2378292	2378489	198						
2460			2378884	429	sp:Y01K_MYCTU	Mycobacterium tuberculosis H37Rv RV2239c	55.2	77.6	134	hypothetical protein
2464	5061	237942R	2379770	345						-
240 1		2280033		2712	ap:AF047034 4	Streptomyces seoulensis pdhA	55.9	78.9	910	pyruvate dehydrogenase component
2402		220000		1476	5					
2403	5080			789	SD:GLNQ ECOLI	Escherichia coli K12 glnQ	33.7	62.8	261	ABC transporter or glutamine transport ATP-binding protein
2404		010007			•					
2465	5965	2384464	2385426	963						ribose transport system permease
2466	5966	2384509	2383622	888	sp:RBSC_BACSU	Bacillus subtilis 168 rbsC	25.4	58.7	283	protein
2467	5967	7 2385447	2384509	939	pir:H71693	Rickettsia prowazekii Madrid E RP367	26.2	67.9	286	hypothetical protein
1	_		-							
2468	3 5968	3 2385771	2386580	810	sp:CBPA_DICDI	Dictyostelium discoideum AX2 cbpA	41.6	55.2	125	calcium binding protein
2469	5969	7386284	2385913	372						
2470	_		 	1014	gp:SC6G4_24	Streptomyces coelicolor A3(2) SC6G4.24	29.6	55.7	352	lipase or hydrolase
2471	1 5971	1 2387667	7 2387957	291	sp:ACP_MYXXA	Myxococcus xanthus ATCC 25232 acpP	42.7	80.0	75	acyl carier protein
2472	_ —		7 2388821	825		Escherichia coli K12 nagD	43.9	75.5	253	N-acetylglucosamine-6-phosphate deacetylase
2473	3 5973	3 2388838	3 2389869	1032	gp:AE001968_4	Deinococcus radiodurans DR1192	33.6	65.7	289	hypothetical protein
2474	4 5974	4 2390904	4 2390434	1 471				_		

Table 1 (continued)

_																					
	Function	hypothetical protein						alkaline phosphatase D precursor	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	hypothetical protein	hypothetical protein		DNA primase	ribonuclease Sa			L-glutamine: D-fructose-6-phosphate amidotransferase			deoxyguanosinetriphosphate triphosphohydrolase	hypothetical protein
	Matched length (a.a.)	271						530		594	68		633	98			989			414	171
	Similarity (%)	75.3						64.7		73.1	72.1		82.9	67.4			82.2			76.3	59.7
	Identity (%)	52.4						34.2	·	44.4	41.2		59.1	49.0			59.1			54.6	30.4
table i (commada)	Homologous gene	Streptomyces coelicolor A3(2) SC4A7.08						Bacillus subtilis 168 phoD		Streptomyces coelicolor A3(2) SCI51.17	Mycobacterium tuberculosis H37Rv Rv2342		Mycobacterium smegmatis dnaG	Streptomyces aureofaciens BMK			Mycobacterium smegmatis mc2155 glmS			Mycobacterium smegmatis dgt	Neisseria meningitidis NMA0251
	db Match	gp:SC4A7_8						sp:PPBD_BACSU		gp:SCI51_17	pir:G70661		prf:2413330B	gp:XXU39467_1			gp:AF058788_1			prf:2413330A	gp:NMA1Z2491_23 5
	ORF (bp)	825	492	171	546	465	342	1560	714	1836	240	675	1899	462	243	929	1869	324	1152	1272	675
	Terminal (nt)	2391184	2392075	2392579	2393970	2393973	2394935	2396763	2395273	2399099	2399397	2399668	2399405	2401834	2402080	2402530	2402144	2404846	2406822	2404987	2406262
	Initial (nt)	2392008	2392566	5977 2393349	2393425	2394437	2394594	2395204	2395986	2397264	2399158	2400342	2401303	2401373	2401838	2403165	2404012	2404523	2405671	2406258	2406936
	SEQ NO. (a.a.)	5975	5976	5977	5978	5979	5980	5981	5982	5983	5984	5985	5986	5987	5988	5989	5990	5991	5992	5993	5994
	SEQ NO (DNA)	2475	2476	2477	2478	2479	2480	2481	2482	2483	2484	2485	2486	2487	2488	2489	2490	2491	2492	2493	2494

Γ		T		Т	T	1				, je					0 9			
	Function	hypothetical protein	hypothetical protein		glycyl-tRNA synthetase	bacterial regulatory protein, arsR family	ferric uptake regulation protein	hypothetical protein (conserved in C.glutamicum?)	hypothetical membrane protein	undecaprenyl diphosphate synthase	hypothetical protein	Era-like GTP-binding protein	hypothetical membrane protein	hypothetical protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	phosphate starvation inducible protein	hypothetical protein	
	Matched length (a.a.)	692	138		508	89	132	529	224	233	245	296	432	157	85	344	248	
	Similarity (%)	63.6	54.4		69.9	73.0	70.5	46.7	0.79	71.2	74.3	20.3	82.4	86.0	50.0	84.6	75.4	
	Identity (%)	31.1	24.6		46.1	49.4	34.9	24.8	40.6	43.4	45.7	39.5	52.8	65.0	45.0	61.1	44.0	
(Homologous gene	Mycobacterium tuberculosis H37Rv Rv2345	Drosophila melanogaster CG10592		Thermus aquaticus HB8	Mycobacterium tuberculosis H37Rv Rv2358 furB	Escherichia coli K12 fur	Mycobacterium tuberculosis H37Rv Rv1128c	Streptomyces coelicolor A3(2) h3u	Micrococcus luteus B-P 26 uppS	Mycobacterium tuberculosis H37Rv Rv2362c	Streptococcus pneumoniae era	Mycobacterium tuberculosis H37Rv Rv2366	Mycobacterium tuberculosis H37Rv Rv2367c	Neisseria meningitidis	Mycobacterium tuberculosis H37Rv Rv2368c phoH	Streptomyces coelicolor A3(2) SCC77.19c.	
	db Match	pir.B70662	gp:AE003565_26		pir. S58522	pir:E70585	sp:FUR_ECOLI	pir.A70539	gp:AF162938_1	sp:UPPS_MICLU	pir:A70586	gp:AF072811_1	sp:Y1DE_MYCTU	sp:YN67_MYCTU	GSP:Y75650	sp:PHOL_MYCTU	gp:SCC77_19	
	ORF (bp)	2037	486	582	1383	369	432	1551	792	729	726	915	1320	588	264	1050	723	942
	Terminal (nt)	2409029	2409779	2410280	2410956	2412948	2413423	2415118	2415298	2416371	2417222	2417969	2418990	2420313	2421236	2420900	2421975	2423791
	Initial (nt)	2406993	2410264	2410861	2412338	2412580	2412992	2413568	2416089	2417099	2417947	2418883	2420309	2420900	2420973	2421949	2422697	2422850
	SEQ NO. (a.a.)	5995	5996	5997	5998	5999	0009	6001	6002	6003	6004	6005	9009	6007	8009	6009	6010	6011
	SEQ NO. (DNA)	2495	2496	2497	2498	2499	2500	2501	2502	2503	2504	2505	2506	2507	2508	2509	2510	2511

:	Function	heat shock protein dnaJ	heat-inducible transcriptional repressor (groEL repressor)	oxygen-independent coproporphyrinogen III oxidase	agglutinin attachment subunit precursor			long-chain-fatty-acidCoA ligase	4-alpha-glucanotransferase	ABC transporter, Hop-Resistance protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	polypeptides predicted to be useful antigens for vaccines and diagnostics			peptidyl-dipeptidase	carboxylesterase	glycosyl hydrolase or trehalose synthase	hypothetical protein
Matched	length (a.a.)	380	334	320	134			611	738	604	89	107			069	453	594	449
Similarity	(%)	77.4	79.6	64.1	64.9			75.1	55.4	64.4	51.0	53.0			68.3	45.7	84.9	58.8
Identify		47.1	48.2	33.1	36.6			48.0	28.3	29.5	44.0	47.0			40.3	24.1	65.2	32.1
	Homologous gene	Streptomyces albus dnaJ2	Streptomyces albus hrcA	Bacillus stearothermophilus hemN	Saccharomyces cerevisiae YNR044W AGA1			Streptomyces coelicolor A3(2) SC6G10.04	Escherichia coli K12 malQ	Lactobacillus brevis plasmid horA	Neisseria gonorrhoeae	Neisseria meningitidis			Salmonella typhimurium dcp	Anisopteromalus calandrae	Mycobacterium tuberculosis H37Rv Rv0126	Mycobacterium tuberculosis H37Rv Rv0127
	db Match	prf.2421342B	prf.2421342A	prf:2318256A	sp:AGA1_YEAST			gp:SC6G10_4	sp:MALQ_ECOLI	gp:AB005752_1	GSP:Y74827	GSP:Y74829			sp:DCP_SALTY	gp:AF064523_1	pir:G70983	pir.H70983
000	(pp)	1146	1023	066	519	693	378	1845	2118	1863	255	333	180	204	2034	1179	1794	1089
Louimor	(nt)	2422700	2423915	2424965	2426699	2426776	2427807	2428184	2432413	2434370	2433614	2433875	2434440	2434573	2434805	2438049	2439906	2440994
	(nt)	2423845	2424937	2425954	2426181	2427468	2428184	2430028	2430296	2432508	6021 2433868	2434207	2434619	2434776	2436838	2436871	2438113	2439906
SEQ	NO. (a.a.)	6012	6013	6014	6015	6016	6017	6018	6019	6020	6021	6022	6023	6024	6025	6026	6027	6028
SEQ	NO.	2512	2513	2514	2515	2516	2517	2518	2519	2520	2521	2522	2523	2524	2525	2526	2527	2528

Table 1 (continued)

SEQ NO (DNA)	SEQ NO. (a a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
2529	6029	2441589	2441005	585	pir.T07979	Chlamydomonas reinhardtii ipi1	31.8	57.7	189	isopentenyl-diphosphate Delta- isomerase
2530	6030	2441669	2441890	222						
2531	6031	2442355	2442792	438						
2532	6032	2443356	2441602	1755						
2533	6033	2444015	2443356	999						
2534	6034	2444551	2444033	519						
2535	6035	2444735	2445709	975	gp:CORCSLYS_1	Corynebacterium glutamicum ATCC 13032 aecD	99.4	100.0	325	beta C-S lyase (degradation of aminoethylcysteine)
2536	9809	2445716	2446993	1278	sp.BRNQ_CORGL	Corynebacterium glutamicum ATCC 13032 brnQ	8.66	100.0	426	branched-chain amino acid transport system carrier protein (isoleucine uptake)
2537	6037	2447021	2447998	978	sp:LUXA_VIBHA	Vibrio harveyi luxA	21.6	49.0	343	alkanal monooxygenase alpha chain
2538	6038	2450844	2450323	522						
2539	6039	2451785	2450859	927	gp:AF155772_2	Sinorhizobium meliloti mdcF	25.9	60.5	324	malonate transporter
2540	6040	2454637	2451794	2844	2844 sp:GLCD_ECOLI	Escherichia coli K12 glcD	27.7	55.1	483	glycolate oxidase subunit
2541	6041	2454725	2455435	711	sp.YDFH_ECOLI	Escherichia coli K12 ydfH	25.6	65.0	203	transcriptional regulator
2542	6042	2455733	2455452	282						
2543	6043	2457066	2455720	1347	sp:YGIK_SALTY	Salmonella typhimurium ygiK	22.5	57.6	467	hypothetical protein
2544	6044	2457759	2457337	423						
2545	6045	2457863	2459371	1509	sp.HBPA_HAEIN	Haemophilus influenzae Rd H10853 hbpA	27.5	55.5	546	heme-binding protein A precursor (hemin-binding lipoprotein)
2546	6046	2459371	2460336	996	sp:APPB_BACSU	Bacillus subtilis 168 appB	40.0	73.3	315	oligopeptide ABC transporter (permease)
2547	6047	2460340	2461167	828	sp:DPPC_ECOLI	Escherichia coli K12 dppC	43.2	74.5	271	dipeptide transport system permease protein
2548	6048	2461163	2462599	1437	prf:2306258MR	Escherichia coli K12 oppD	37.4	66.4	372	oligopeptide transport ATP-binding protein

Table 1 (continued)

ſ			-						-		_									
	Function	hypothetical protein	hypothetical protein	ribose kinase	hypothetical membrane protein		sodium-dependent transporter or odium Bile acid symporter family	apospory-associated protein C		thiamine biosynthesis protein x	hypothetical protein	glycine betaine transporter				large integral C4-dicarboxylate membrane transport protein	small integral C4-dicarboxylate membrane transport protein	C4-dicarboxylate-binding periplasmic protein precursor	extensin l	GTP-binding protein
	Matched length (a.a.)	106	157	300	466		284	295		133	197	601			•	448	118	227	46	603
	Similarity (%)	44.0	58.0	65.0	64.6		61.6	51.2		100.0	65.5	71.7				71.9	73.7	59.0	73.0	83.6
	Identity (%)	35.0	29.3	41.0	6.68		31.3	28.5		100.0	42.6	39.8				34.6	33.9	28.2	63.0	58.7
	Homologous gene	Aeropyrum pernix K1 APE1580	Aquifex aeolicus VF5 aq_768	Rhizobium etli rbsK	Streptomyces coelicolor A3(2) SCM2.16c		Homo sapiens	Chlamydomonas reinhardtii		Corynebacterium glutamicum ATCC 13032 thiX	Mycobacteriophage D29 66	Corynebacterium glutamicum ATCC 13032 betP				Rhodobacter capsulatus dctM	Klebsiella pneumoniae dctQ	Rhodobacter capsulatus B10 dctP	Lycopersicon esculentum (tomato)	Bacillus subtilis 168 lepA
	db Match	PIR:G72536	pir.D70367	prf:2514301A	gp:SCM2_16		sp:NTCI_HUMAN	gp:AF195243_1		sp:THIX_CORGL	sp:VG66_BPMD	sp:BETP_CORGL				prf:2320266C	gp:AF186091_1	sp:DCTP_RHOCA	PRF:1806416A	sp:LEPA_BACSU
	ORF (bp)	202	549	903	1425	303	972	846	366	570	588	1890	966	1608	384	1311	480	747	243	1845
	Terminal (nt)	2461543	2462602	2464143	2465768	2465465	2466038	2467922	2470678	2472819	2472893	2475542	2477492	2479251	2479762	2479898	2481213	2481734	2484087	2482548
	Initial (nt)	2462049	2463150	2463241	2464344	2465767	2467009	2467077	2470313	2472250	2473480	2473653	2476497	2477644	2479379	2481208	2481692	2482480	2483845	2484392
	SEQ NO. (a.a.)	6049	6050	6051	6052	6053	6054	6055	6056	6057	6058	6909	0909	6061	6062	6063	6064	6065	9909	6067
	SEQ NO. (DNA)	2549	2550	2551	2552	2553	2554	2555	2556	2557	2558	2559	2560	2561	2562	2563	2564	2565	2566	2567

_	
-	٠
٠.	2
	ī
u	J
_	٠
-	×
_	
١.	
	-
+	_
_	
-	•
Conti	٦
- 7	ï
٠.	J
`	
$\overline{}$	•
0	۹
•	,
-	
-	1
=	3
Tah	1
L	
_	-

	Function	hypothetical protein	30S ribosomal protein S20	thrreonine efflux protein	ankyrin-like protein	hypothetical protein	late competence operon required for DNA binding and uptake	late competence operon required for DNA binding and uptake		hypothetical protein	phosphoglycerate mutase	hypothetical protein	hypothetical protein		gamma-glutamyl phosphate reductase or glutamate-5- semialdehyde dehydrogenase	D-isomer specific 2-hydroxyacid dehydrogenase		GTP-binding protein
	Matched length (a.a.)	185	85	210	129	313	527	195		273	235	117	197		432	304		487
	Similarity (%)	69.7	72.9	67.1	80.6	74.1	49.7	63.6		66.3	66.4	86.3	85.3		8.66	100.0		78.2
	Identity (%)	41.6	48.2	30.0	61.2	46.0	21.4	30.8		34.8	46.8	55.6	68.0		99.1	99.3		58.9
(505.1111.05) . 5125.	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2405	Escherichia coli K12 rpsT	Escherichia coli K12 rhtC	Streptomyces coelicolor A3(2) SC6D7.25.	Mycobacterium tuberculosis H37Rv Rv2413c	Bacillus subtilis 168 comEC	Bacillus subtilis 168 comEA		Streptomyces coelicolor A3(2) SCC123.07c.	Mycobacterium tuberculosis H37Rv Rv2419c	Mycobacterium tuberculosis H37Rv Rv2420c	Streptomyces coelicolor A3(2) SCC123.17c.		Corynebacterium glutamicum ATCC 17965 proA	Corynebacterium glutamicum ATCC 17965 unkdh		Streptomyces coelicolor A3(2) obg
	db Match	pir.H70683	sp:RS20_ECOLI	sp.RHTC_ECOLI	gp:SC6D7_25	pir:H70684	sp:CME3_BACSU	sp:CME1_BACSU		gp:SCC123_7	pir.F70685	pir:G70685	gp:SCC123_17		sp:PROA_CORGL	sp:YPRA_CORGL		gp:D87915_1
	ORF (bp)	609	261	699	405	975	1539	582	822	822	708	471	678	1023	1296	912	711	1503
	Terminal (nt)	2485269	2485733	2485801	2486477	2486910	2487912	2489573	2491732	2490290	2491151	2491873	2492501	2493215	2494339	2495696	2497513	2498009
	Initial (nt)	2484661	2485473	2486469	2486881	2487884	2489450	2490154	2490911	2491111	2491858	2492343	2493178	2494237	2495634	2496607	2496803	2499511
	SEQ NO. (a.a.)	8909	6909	0209	6071	6072	6073	6074	6075	6076	6077	8078	6209	6080	6081	6082	6083	6084
	SEQ NO. (DNA)	2568	2569	2570	2571	2572	2573	2574	2575	2576	2577	2578	2579	2580	2581	2582	2583	2584

Table 1 (continued)

																_ ~			
Function	xanthine permease	2,5-diketo-D-gluconic acid reductase			50S ribosomal protein L27	50S ribosomal protein L21	ribonuclease E				hypothetical protein	transposase (insertion sequence IS31831)	hypothetical protein	hypothetical protein	nucleoside diphosphate kinase		hypothetical protein	hypothetical protein	hypothetical protein
Matched length (a.a.)	422	276			81	101	886				195	436	117	143	134		92	112	118
Similarity (%)	77.3	81.9			92.6	82.2	56.6				82.6	100.0	76.9	67.8	89.6		67.4	64.3	68.6
Identity (%)	39.1	61.2			80.3	56.4	30.1				61.0	99.1	51.3	37.8	6.07		34.8	36.6	33.9
Homologous gene	Bacillus subtilis 168 pbuX	Corynebacterium sp. ATCC 31090			Streptomyces griseus IFO13189 rpmA	Streptomyces griseus IFO13189 obg	Escherichia coli K12 me				Streptomyces coelicolor A3(2) SCF76.08c	Corynebacterium glutamicum ATCC 31831	Streptomyces coelicolor A3(2) SCF76.08c	Streptomyces coelicolor A3(2) SCF76.09	Mycobacterium smegmatis ndk		Deinococcus radiodurans R1 DR1844	Mycobacterium tuberculosis H37Rv Rv1883c	Mycobacterium tuberculosis H37Rv Rv2446c
db Match	sp:PBUX_BACSU	pir:140838			sp:RL27_STRGR	prf:2304263A	sp.RNE_ECOLI				gp:SCF76_8	pir.S43613	gp:SCF76_8	gp:SCF76_9	gp:AF069544_1		gp:AE002024_10	pir:H70515	pir.E70863
ORF (bp)	1887	843	621	396	264	303	2268	549	573	747	609	1308	378	450	408	360	342	465	423
Terminal (nt)	2501669	2501735	2503355	2504265	2503984	2504300	2504831	2507663	2507710	2508840	2509530	2509523	2511423	2511876	2511949	2512409	2513144	2513154	2513692
Initial (nt)	2499783	2502577	2502735	2503870	2504247	2504602	2507098	2507115	2507138	2508094	2508922	2510830	2511046	2511427	2512356	2512768	2512803	2513618	2514114
SEQ NO. (a.a.)		9809	6087	6088	6089	0609	6091	6092	6093	6094	6095	9609	6097	8609	6609	6100	6101	6102	6103
SEQ NO. (DNA)	2585	2586	2587	2588	2589	2590	2591	2592	2593	2594	2595	2596	2597	2598	2599	2600	2601	2602	2603

Table 1 (continued)

	Function	folyl-polyglutamate synthetase				valyl-tRNA synthetase	oligopeptide ABC transport system substrate-binding protein	heat shock protein dnaK	lysine decarboxylase	malate dehydrogenase	transcriptional regulator	hypothetical protein	vanillate demethylase (oxygenase)	pentachlorophenol 4- monooxygenase reductase	transport protein	malonate transporter	class-III heat-shock protein or ATP-dependent protease	hypothetical protein	succinyl CoA;3-oxoadipate CoA transferase beta subunit	succinyl CoA:3-oxoadipate CoA transferase alpha subunit
	Matched length (a.a.)	451				915	521	508	170	319	207	208	357	338	444	286	430	366	210	251
	Similarity (%)	79.6				72.1	58.5	54.9	71.2	76.5	56.5	51.4	9.89	59.2	76.8	58.4	85.8	73.0	85.7	84.5
	Identity (%)	55.4				45.5	24.2	26.2	42.9	56.4	24.6	26.0	39.5	32.8	40.8	28.0	59.8	45.6	63.3	60.2
Table 1 (Seminaes)	Homologous gene	Streptomyces coelicolor A3(2) folC				Bacillus subtilis 168 balS	Bacillus subtilis 168 oppA	Bacillus subtilis 168 dnaK	Eikenella corrodens ATCC 23824	Thermus aquaticus ATCC 33923 mdh	Streptomyces coelicolor A3(2) SC4A10.33	Vibrio cholerae aphA	Acinetobacter sp. vanA	Sphingomonas flava ATCC 39723 pcpD	Acinetobacter sp. vanK	Klebsiella pneumoniae mdcF	Bacillus subtilis clpX	Streptomyces coelicolor A3(2) SCF55.28c	Streptomyces sp. 2065 pcaJ	Streptomyces sp. 2065 pcal
	db Match	prf:2410252B				sp:SYV_BACSU	pir.A38447	sp:DNAK_BACSU	gp:ECU89166_1	sp:MDH_THEFL	gp:SC4A10_33	gp:AF065442_1			prf:2513416G	gp: KPU95087_7		gp:SCF55_28	gp:AF109386_2	gp:AF109386_1
	ORF (bp)	1374	612	714	663	2700	1575	1452	585	984	777	576	1128	975	1425	930	1278	1086	633	750
	Terminal (nt)	2514114	2516273	2516956	2517751	2515637	2518398	2521660	2521667	2522265	2524337	2524340	2526226	2527207	2528559	2528551	2529484	2531976	2531969	2532604
	Initial (nt)	2515487	2515662	2516243	2517089	2518336	2519972	2520209	2522251	2523248	2523561	2524915	2525099	2526233	2527135			2530891	2532601	2533353
	SEQ NO. (a.a.)		6105	6106	6107	6108		6110	6111	6112	6113	6114	6115	6116	6117	6118	+	6120	6121	6122
	SEQ NO. (DNA)	2604	2605	2606	2607	2608	2609	2610	2611	2612	2613	2614	2615	2616	2617	2618	2619	2620	2621	2622

	Function	protocatechuate catabolic protein	beta-ketothiolase		3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase	transcriptional regulator	3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase		3-carboxy-cis, cis-muconate cycloisomerase	protocatechuate dioxygenase alpha subunit	protocatechuate dioxygenase beta subunit	hypothetical protein	muconolactone isomerase		muconate cycloisomerase		catechol 1,2-dioxygenase		toluate 1,2 dioxygenase subunit
	Matched length (a.a.)	251	406		256	825	115		437	214	217	273	92		372		285		437
	Similarity (%)	82.5	71.9		76.6	43.0	89.6		63.4	70.6	91.2	48.7	81.5		84.7		88.4		85.6
	Identity (%)	58.2	44.8		50.8	23.6	78.3		39.8	49.5	74.7	26.4	54.4		60.8		72.3		62.2
(action)	Homologous gene	Rhodococcus opacus 1CP pcaR	Ralstonia eutropha bktB		Rhodococcus opacus pcaL	Streptomyces coelicolor A3(2) SCM1.10	Rhodococcus opacus pcaL		Rhodococcus opacus pcaB	Rhodococcus opacus pcaG	Rhodococcus opacus pcaH	Mycobacterium tuberculosis H37Rv Rv0336	Mycobacterium tuberculosis catC		Rhodococcus opacus 1CP catB		Rhodococcus rhodochrous catA		Pseudomonas putida plasmid pDK1 xylX
	db Match	prf:2408324F	prf:2411305D		prf.2408324E	gp:SCM1_10	prf.2408324E		prf.2408324D	prf:2408324C	prf:2408324B	pir:G70506	prf:2515333B		sp:CATB_RHOOP		prf:2503218A		gp.AF134348_1
	ORF (bp)	792	1224	912	753	2061	366	678	1116	612	069	1164	291	771	1119	909	855	141	1470
	Terminal (nt)	2534182	2535424	2534257	2536182	2538256	2538248	2540230	2538616	2539709	2540335	2541187	2542512	2543813	2542818	2544867	2544022	2544928	2546784
	Initial (nt)	2533391	2534201	2535168	2535430	2536196	2538613	2539553	2539731	2540320	2541024	2542350	2542802	2543043	2543936	2544262	2544876	2545068	2545315
	SEQ NO. (a.a.)	6123	6124	6125	6126	6127	6128	6129	6130	6131	6132	6133	6134	6135	6136	6137	6138	6139	6140
	SEQ NO.	2623	2624	2625		2627	2628	2629	2630	2631	2632	2633	2634	2635	2636	2637	2638	2639	2640

Г	1		·1	I	r	—— r	Ι				Т					$\neg \tau$		$\neg \top$	
	Function	toluate 1,2 dioxygenase subunit	toluate 1,2 dioxygenase subunit	1,2-dihydroxycyclohexa-3,5-diene carboxylate dehydrogenase	regulator of LuxR family with ATP-binding site	transmembrane transport protein or 4-hydroxybenzoate transporter	benzoate membrane transport protein	ATP-dependent Clp protease proteolytic subunit 2	ATP-dependent Clp protease proteolytic subunit 1	hypothetical protein	trigger factor (prolyl isomerase) (chaperone protein)	hypothetical protein	penicillin-binding protein	hypothetical protein		transposase		hypothetical protein	transposase
	Matched length (a.a.)	161	342	277	979	435	388	197	198	42	417	160	336	115		142		35	75
	Similarity (%)	83.2	81.0	61.4	48.6	64.4	66.2	88.3	85.9	71.4	66.4	63.1	50.9	58.3		73.2		82.9	78.7
	Identity (%)	60.3	51.5	30.7	23.3	31.3	29.9	69.5	62.1	42.9	32.1	32.5	25.3	27.8		54.2		57.1	50.7
	Homologous gene	Pseudomonas putida plasmid pDK1 xylY	Pseudomonas putida plasmid pDK1 xylZ	Pseudomonas putida plasmid pDK1 xyIL	Rhodococcus erythropolis thcG	Acinetobacter calcoaceticus pcaK	Acinetobacter calcoaceticus benE	Streptomyces coelicolor M145 clpP2	Streptomyces coelicolor M145 clpP1	Sulfolobus islandicus ORF154	Bacillus subtilis 168 tig	Streptomyces coelicolor A3(2) SCD25.17	Nocardia lactamdurans LC411 pbp	Mus musculus Moa1		Corynebacterium striatum ORF1		Corynebacterium striatum ORF1	Corynebacterium striatum ORF1
	db Match	gp:AF134348_2	gp:AF134348_3	gp:AF134348_4	gp:REU95170_1	sp:PCAK_ACICA	sp:BENE_ACICA	gp:AF071885_2	gp:AF071885_1	gp:SIS243537_4	sp:TIG_BACSU	gp:SCD25_17	sp:PBP4_NOCLA	prf.2301342A		prf:2513302C		prf:2513302C	prf:2513302C
	ORF (bp)	492	1536	828	2685	1380	1242	624	603	150	1347	495	975	456	249	438	150	126	264
	Terminal (nt)	2547318	2548868	2549695	2552455	2553942	2555267	2555317	2555978	2556748	2556760	2559103	2560131	2560586	2561363	2561483	2562242	2561990	2562078
	Initial (nt)	2546827	2547333	2548868	2549771	2552563	2554026	2555940	2556580	2556599	2558106	2558609	2559157	2560131	2561115		2562093	2562115	2562341
	SEQ NO. (a.a.)	6141	6142	6143	6144	6145	6146	6147	6148	6149	6150	6151	6152	6153	6154	6155	6156	6157	6158
	SEQ NO. (DNA)	2641	2642	2643	2644	2645	2646	2647	2648	2649	2650	2651	2652	2653	2654	2655	2656	2657	2658

Table 1 (continued)

	Function			galactose-6-phosphate isomerase	hypothetical protein	hypothetical protein	aminopeptidase N	hypothetical protein				phytoene desaturase			phytoene dehydrogenase	phytoene synthase	multidrug resistance transporter		ABC transporter ATP-binding protein	dipeptide transport system permease protein	nickel transport system permease protein	
	Matched length (a.a.)			140 ga	248 hy	199 hy	890 an	358 hy				104 ph			381 pt	290 pł	392 m		538 AI	286 di	316 ni	
	Similarity N			71.4	58.1	80.9	70.5	58.1				81.7	_		63.8	58.6	47.7		71.6	73.8	62.0	
	Identity (%)			40.0	26.2	56.8	47.5	25.1			-	61.5			31.2	31.4	25.8		41.3	38.8	33.2	
ומחוכן (פסווווומפת)	Homologous gene			Staphylococcus aureus NCTC 8325-4 lacB	Bacillus acidopullulyticus ORF2	Mycobacterium tuberculosis H37Rv Rv2466c	Streptomyces lividans pepN	Borrelia burgdorferi BB0852				Brevibacterium linens ATCC 9175 crtl			Myxococcus xanthus DK1050 carA2	Streptomyces griseus JA3933 crtB	Listeria monocytogenes lltB		Synechococcus elongatus	Bacillus firmus OF4 dppC	Escherichia coli K12 nikB	
	db Match			sp:LACB_STAAU	sp:YAMY_BACAD	pir.A70866	sp:AMPN_STRLI	pir.B70206				gp:AF139916_3			sp:CRTJ_MYXXA	sp:CRTB_STRGR	gp:LMAJ9627_3		gp:SYOATPBP_2	sp:DPPC_BACFI	pir.S47696	
	ORF (bp)	390	885	471	969	609	2601	1083	1152	999	156	327	171	378	1206	876	1119	1233	1641	882	939	1707
	Terminal (nt)	2562387	2563847	2563932	2564550	2565623	2568945	2570293	2570309	2572175	2572348	2572351	2572807	2573393	2572659	2573843	2574780	2575981	2577232		2579769	2580711
	Initial (nt)	2562776	2562963	2564402	2565245	2566231	2566345		2571460	2571510	2572193	2572677	2572977			2574718	2575898	2577213			2580707	2582417
	SEQ NO. (a.a.)	6159	6160	6161	6162	6163	6164	6165	6166	6167	6168	6169	6170		6172	6173	6174	6175	-		6178	6179
	SEQ NO.	2659	2660	2661	2662	2663	2664	2665	2666	2667	2668	2669	2670	2671	2672	2673	2674	2675	2676	2677	2678	2679

_	_
7	i
(confining)	Ś
=	3
2	=
÷	Ξ
5	Ξ
ç	₹
۲	2
₹	
Table	٥
7	7
÷	ä
£	~

							<u>آڇ</u>	=	tein							tein			
land the second	Function		acetylornithine aminotransferase	hypothetical protein	hypothetical membrane protein	acetoacetyl CoA reductase	transcriptional regulator, TetR family	polypeptides predicted to be useful antigens for vaccines and diagnostics	ABC transporter ATP-binding protein	globin	chromate transport protein	hypothetical protein	hypothetical protein		hypothetical protein	ABC transporter ATP-binding protein	hypothetical protein	hypothetical membrane protein	alkaline phosphatase
	Matched length (a.a.)		411	482	218	235	240	94	238	126	396	196	127		55	563	172	700	536
	Similarity (%)		63.5	47.9	79.4	60.0	55.0	47.0	65.1	77.0	60.4	68.9	61.4		0.09	9.67	62.2	56.7	52.6
	Identity (%)		31.4	25.1	49.1	28.1	26.7	38.0	31.1	53.2	27.3	37.8	36.2		36.4	52.8	31.4	28.0	28.0
iano (cominaca)	Homologous gene		Corynebacterium glutamicum ATCC 13032 argD	Mycobacterium tuberculosis H37Rv Rv1128c	Mycobacterium tuberculosis H37Rv Rv0364	Chromatium vinosum D phbB	Streptomyces coelicolor actll	Neisseria meningitidis	Pseudomonas putida GM73 ttg2A	Mycobacterium leprae MLCB1610.14c	Pseudomonas aeruginosa Plasmid pUM505 chrA	Mycobacterium tuberculosis H37Rv Rv2474c	Streptomyces coelicolor A3(2) SC6D10.19c		Aeropyrum pernix K1 APE1182	Escherichia coli K12 yjjK	Mycobacterium tuberculosis H37Rv Rv2478c	Mycobacterium leprae o659	Bacillus subtilis phoB
	db Match		sp:ARGD_CORGL	pir.A70539	sp:YA26_MYCTU	Sp.PHBB_CHRVI	pir.A40046	GSP:Y74375	gp:AF106002_1	gp:MLCB1610_9	sp:CHRA_PSEAE	pir.A70867	gp:SC6D10_19		pir.B72589	sp:YJJK_ECOLI	pir:E70867	sp: Y05L_MYCLE	pir.C
	ORF (bp)	1941	1314	1584	747	708	738	441	792	393	1128	627	465	621	162	1668	615	2103	1419
	Terminal (nt)	2584504	2585926	2587763	2588722	2588725	2590302	2591137	2591574	2592794	2593965	2593968	2594597	2595188	2595822	2596048	2597869	2598662	2602879
	Initial (nt)	2582564	2584613	2586180	2587976	2589432	2589565	2590697	2592365	2592402	2592838	2594594	2595061	2595808	2595983		2598483	2600764	
	SEQ NO. (a.a.)	6180	6181	6182	6183	6184	6185	6186	6187	6188	6189	6190	6191	6192	6193	6194	6195	6196	6197
	SEQ NO.	2680	2681	2682	2683	2684	2685	2686	2687	2688	2689	2690	2691	2692	2693	2694	2695	2696	2697

$\overline{}$
g
\equiv
늘
Š
<u>0</u>
_
Φ
☲
ā

																	-		
	Function			multiple sugar-binding transport system permease protein	multiple sugar-binding transport system permease protein		maltose-binding protein		ABC transporter ATP-binding protein (ABC-type sugar transport protein) or cellobiose/maltose transport protein		dolichol phosphate mannose synthase		aldehyde dehydrogenase	circadian phase modifier		hypothetical membrane protein	glyoxylate-induced protein	ketoacyl reductase	oligoribonuclease
	Matched length (a.a.)			279	292		462		386		154		207	183		412	255	258	179
	Similarity (%)			76.3	67.5		63.2		79.8		72.7		89.4	73.8		64.6	69.4	57.0	78.8
	Identity (%)			39.1	27.4		28.8		59.1		37.7		67.2	48.6		35.0	41.2	40.0	48.0
(Homologous gene			Streptococus mutans INGBRITT msmG	Streptococcus mutans INGBRITT msmF		Thermoanaerobacterium thermosul amyE		Streptomyces reticuli msiK		Schizosaccharomyces pombe dpm1		Rhodococcus rhodochrous plasmid pRTL1 orf5	Synechococcus sp. PCC7942 cpmA		Thermotoga maritima MSB8 TM0964	Escherichia coli K12 gip	Mycobacterium tuberculosis H37Rv Rv1544	Escherichia coli K12 orn
	db Match			sp:MSMG_STRMU	sp:MSMF_STRMU		prf.2206392C		prf.2308356A		prf.2317468A		prf.2516398E	prf:2513418A		pir.A72312	sp:GIP_ECOLI	pir.E70761	sp:ORN_ECOLI
	ORF (bp)	930	639	912	843	1674	1329	1242	1128	750	684	069	789	762	345	1182	750	798	657
	Terminal (nt)	2605502	2603945	2604609	2605527	2608117	2606561	2608185	2609512	2612272	2610848	2613151	2614500	2615410	2615795	2615939	2617995	2618869	2619538
	initial (nt)	2604573	2604583	2605520	2606369	2606444	2607889	2609426		2611523	2611531	2612462	2613712	2614649	2615451	2617120	2617246	1	2618882
	SEQ NO. (a.a.)	6198	6199		6201	6202	6203	6204	6205	6206	6207	6208	6209	6210	6211	6212	6213	6214	6215
	SEQ NO.	2698	2699	2700	2701	2702	2703	2704	2705	2706	2707	2708	2709	2710	2711	27.12	2713	2714	2715

_												-	-						$-\tau$	
	Function	ferric enterochelin esterase	lipoprotein				transposase (IS1207)			transcriptional regulator	glutaminase	sporulation-specific degradation regulator protein		uronate isomerase		hypothetical protein	pyrazinamidase/nicotinamidase	hypothetical protein	bacterioferritin comigratory protein	bacterial regulatory protein, tetR family
	Matched length (a.a.)	454	398				436			131	358	97		335		291	185	75	141	114
	Similarity (%)	50.9	71.9				99.8			63.4	69.3	72.2		6.09		45.0	74.6	80.0	73.8	61.4
	Identity (%)	26.0	48.5				99.5			32.8	35.2	42.3		29.0		32.0	48.1	42.7	46.8	32.5
וממוכ ו (פסוותוומפת)	Homologous gene	Salmonella enterica iroD	Mycobacterium tuberculosis H37Rv RV2518c IppS				Corynebacterium glutamicum ATCC 21086			Salmonella typhimurium KP1001 cytR	Rattus norvegicus SPRAGUE- DAWLEY KIDNEY	Bacillus subtilis 168 degA		Escherichia coli K12 uxaC		Zea diploperennis perennial teosinte	Mycobacterium avium pncA	Mycobacterium tuberculosis H37Rv Rv2520c	Escherichia coli K12 bcp	Streptomyces coelicolor A3(2) SC111.01c
	db Match	prf:2409378A	pir:C70870				gp:SCU53587_1			gp:AF085239_1	sp:GLSK_RAT	pir.A36940		sp:UXAC_ECOLI		prf.1814452C	prf.2324444A	pir:E70870	SP.BCP ECOLI	gp:SCI11_1
	ORF (bp)	1188	1209	645	150	246	1308	207	639	453	1629	477	555	1554	501	1197	558	273	465	636
	Terminal (nt)	2619541	2620973	2623605	2623621	2624048	2624051	2625806	2625809	2628376	2626493	2628852	2628324	2630479	2631136	2632466	2633100	2633146	2634064	
	Initial (nt)	2620728	2622181	2622961	2623770	2623803	2625358	2625600	2626447		2628121	2628376	2628878		2630636	2631270	2632543		2633600	2634116
	SEQ No.			6218	6219	6220	6221	6222	6223		6225	6226	6227	$\overline{}$	6229		6231		6733	
	SEQ NO.	(DINA) 2716		2718	2719	2720	2721	2722	2723	2724	2725	2726	7.777	2728	2729	2730	2731	2732	2733	2734

Γ														T					
	Function	phosphopantethiene protein transferase	lincomycin resistance protein	hypothetical membrane protein		fatty-acid synthase	hypothetical protein	peptidase	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	ribonuclease PH				hypothetical membrane protein	transposase (IS1628)		aryisulfatase
	Matched length (a.a.)	145	473	113		3029	404	230	112	113	202	236				428	175		250
	Similarity (%)	75.9	85.6	54.0		83.6	55.2	6.09	67.9	0.69	76.7	81.4				58.2	97.2		74.4
	Identity (%)	56.6	52.4	30.1		62.3	25.3	40.4	40.2	37.2	55.0	60.2				29.0	92.1		46.0
lable I (collulaca)	Homologous gene	Corynebacterium ammoniagenes ATCC 6871 ppt1	Corynebacterium glutamicum ImrB	Synechocystis sp. PCC6803		Corynebacterium ammoniagenes fas	Streptomyces coelicolor A3(2) SC4A7.14	Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv1343c	Mycobacterium leprae B1549_F2_59	Mycobacterium tuberculosis H37Rv Rv1341	Pseudomonas aeruginosa ATCC 15692 rph				Mycobacterium tuberculosis H37Rv SC8A6.09c	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB		Mycobacterium leprae ats
	db Match	gp:BAY15081_1	gp:AF237667_1	pir:S76537		pir:S2047	gp:SC4A7_14	pir:D70716	sp:Y077_MYCT	sp:Y076_MYCLE	sp:Y03Q_MYCTU	sp:RNPH_PSEAE				sp:Y029_MYCTU	gp:AF121000_8		sp:Y03O_MYCLE
	ORF (bp)	405	1425	324	414	8979	1182	615	462	354	618	735	246	693	582	1362	534	999	765
	Terminal (nt)	2634747	2635165	2637168	2637240	2638649	2648235	2650164	2650902	2651339	2651420	2652067	2653009	2653326	2654079	↓	2656985	2656974	
	Initial (nt)	2635151	2636589	2636845	2637653	2647627	2649416	2649550	2650441	2650986	2652037	2652801	2653254	2654018	2654660		2656452	2657633	
	SEQ No.	(a.a.) 6235	6236	6237		6239	6240	6241	6242	6243	6244	6245	6246	6247			6250	6251	
		(DNA) 2735	2736	2737	_		2740	2741	2742	2743	2744	2745	2746	2747	2748	2749	2750	2751	2752

_
<u>e</u>
三
8

p e
ם
_

						lable i (colinined)				
SEQ NO.	SEQ NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
(DNA)	(a.a.)				nrf 2516259A	Corynebacterium glutamicum	99.3	99.3	284	D-glutamate racemase
2753	6253	7028407	2000002	-		AICC 19909 Hall				
2754	6254	2659496	2660131	929		(C)CV ==1:			ļ	bacterial regulatory protein, marR
2755	6255	2660638	2660147	492	gp:SCE22_22	Streptomyces coelicolor A3(2) SCE22.22	44.2	70.8	14/	family
2756	6256	2661417	2660671	747	sp:Y03M_MYCTU	Mycobacterium tuberculosis H37Rv Rv1337	38.2	69.3	225	hypothetical membrane protein
2757	6257	2661565	2662455	891						ando-tyne 6-aminohexanoate
2758	_	1	2661417	960	pir:A47039	Flavobacterium sp. nylC	30.2	58.3	321	oligomer hydrolase
2759	6259	2662867	2662331	537	sp:Y03H_MYCTU	Mycobacterium tuberculosis H37Rv Rv1332	35.0	58.5	200	hypothetical protein
0070			2662883	300	Sp:Y03G MYCTU	Mycobacterium tuberculosis	57.1	77.1	105	hypothetical protein
7/00				700						
2761	6261	2663437	7004000	170		Mycobacterium tuberculosis	61.0	808	428	hypothetical protein
2762	6262	2664060	2665397	1338	sp:Y03F_MYCTU	H37Rv Rv1330c	2		!	
2763	6263	2665687	2665992	306			1	5	277	ATD_denendent helicase
2764			2667854	1740	prf:1816252A	Escherichia coli dinG	72.7	93.3	5	
2765				891	sp:Y0A8_MYCTU	Mycobacterium tuberculosis H37Rv Rv2560	29.7	60.1	313	hypothetical membrane protein
2766	9 6266	3 2669561	2668839	723	pir:T34684	Streptomyces coelicolor A3(2) SC1B5.06c	39.0	52.0	222	hypothetical protein
7767				1017		Escherichia coli K12 serB	38.7	61.0	310	phosphoserine phosphatase
2768				1596	_					
2769				1743	pir.D45335	Mycobacterium tuberculosis H37Rv Rv3043c	46.8	74.4	575	cytochrome c oxidase chain I
2770		6270 2672950	0 2673255	306				_		

	Function	ribonucleotide reductase beta-chain	Lavellin	Terrium		iron dependent repressor or diptheria toxin repressor	cold shock protein TIR2 precursor	hypothetical membrane protein			001	50S ribosomal protein L30				1		hypothetical protein		Bacillus subtilis mmg (for mother cell metabolic genes)	4 hypothetical protein		556 phosphoglucomutase	
	Matched length (a.a.)	334	15	159	256	225	124	202	3	707		41	279			-	722	96	337	459	284		-	
	Similarity (%)	99.7		64.2	60.2	60.4	62.1	0 80	0.00	100.0		79.0	78.1				56.4	68.8	52.8	56.0	66.2		80.6	-
	Identity (%)	99.7		31.5	32.8	27.6	24.2	5	20.0	99.9		58.0	2000	2		_	30.7	41.7	26.1	27.0	33.8		617	
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum	ATCC 13032 nrdF	Escherichia coli K12 ftnA	Streptomyces coelicolor A3(2)	Corynebacterium glutamicum ATCC 13869 dtxR	Saccharomyces cerevisiae	YPH148 YOR010C 11R2	Archaeoglobus fulgidus AF0251	Corynebacterium glutamicum ATCC 13032 nrdE		ideterment : H	Rickettsia prowazekii	Bacillus subtilis 108 nauc			Synechocystis sp. PCC0803 sir1563	Mycobacterium tuberculosis H37Rv Rv3129	Bacillus stearothermophilus	Bacillus subtilis 168 mmgE	Arahidopsis thaliana T6K22.50		mp c C N ilon min :	Escherichia con N12 pgili
	db Match		gp:AF112536_1	SD:FTNA ECOLI	A32WHIH_4	339	+ a v D V C C C + C C C C C C C C C C C C C C C	sp.iikz_i=ko	pir.C69281	gp:AF112535_3			SP:RL36_RICPR	sp:NADE_BACSU			pir.S76790	pir:G70922	sp:ADH2_BACST	. ds	_		\neg	2 sp:PGMU_ECOLI
	ORF (bb)		1002	486		1	9	438	276	2121	315	2	141	831	93	498	747	288	1020			-+	792	9 1662
	Terminal (nt)	(211)	2673338	0875789	2676240	2676243		2677377	2676918	2677478	407000	70907	2681223	2682376	2681464	2683616	2682379	2683131	2683627				2687449	2688389
	Initial	(IIII)	2674339	7087790		-+-		2676940	2677193	2679598		2680470	6279 2681363	2681546	2681556	2683119	2683125	2683418	JEBARAR			2686315	2688240	6289 2690050
	SEQ.	(a a.)	6271 2		6273 2			6275 2	6276			6278	6279	6280	6281	6282	+	6284				6287	6288	-
	SEQ 8		2771			2776		2775	2776	2777		2778	2779	2780	2781	2782	2783	2784	01	C8/7	2786	2787	2788	2789

	Function	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	transposase (IS1676)	niatora DS1 protein	major secreted process or process precursor				transposase (1S1676)		proton/sodium-glutamate symport	protein	yatronount COA	Aboualspare	ABC transporter ATP-binding protein		hypothetical protein	hypothetical protein		oxidoreductase or dehydrogenase	
A detail	Matched length (a.a.)	84	122	254	496	3	355				200		7.20	5	0	8/3	218	2	84	42		196	3
	Similarity (%)	64.3	61.5	79.1	8 0 7	0.0	49.6				46.6		0	7.00		0.69	700	9.6	67.0	75.0		+-	
	Identity (%)	41.7	25.4	512	1 0	24.2	24.8				24 G	2.14		30.8		33.0	-	40.4	0.09	71.0		+-	78.1
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	HS/RV RVS003	Helicobacter pylori 300 july 1 100	Bacillus subtilis 108 yesi	Rhodococcus erythropolis	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1				\$110 m 1 m 1 m	Rhodococcus erytiriopuits		Bacillus subtilis 168	70,00	Streptomyces coelicolor A3(2) SCE25.30		Staphylococcus aureus	Chlamydophila pneumoniae AR39 CP0987	Chlamydia muridarum Nigg	TC0129	7897 II T all dillon 2001 marks	ansG
	db Match	nir E70650		pir:D71843	sp:YCSI_BACSU		sp.csP1_coRGL				- 1	gp:AF126281_1		sp:GLTT_BACCA		1 gp:SCE25_30		gp:SAU18641_2		1	1 PIK:F81/3/	8	2 prf:2509388L
	ORF (bp)	aac	2007	324	792	1365	1620	25.4	5	165	447	1401	768	1338	693	2541	891	708	3 273	-+-	5 141	5 678	8 672
	Terminal (nt)	707000	2080437	2690760	2691564	2693053	2694918	0703000	6/70607	2695718	2695320	2697212	2697383	2698194	2701612	2699926	2703356				2704975	2710555	2711308
	Initial (nt)		2690150	2690437	2690773			0	2694920	2695554	2695766	6298 2695812	2698150	2699531	2700920		2702466				2704835	2709878	2710637
	SEQ NO.		6290 2	6291	+		6294		6295	6296	6297			6300	6301				\rightarrow		9089	7 6307	8 6308
			2790	2791	1	_			2795	2796	2797	2798	2799	2800	2801	2802	000	2007	2805	202	2806	2807	2808

_
(continued)
1 (00
Table
•

						T											2								
	Function	methyltransferase	hypothetical protein		hypothetical protein	- Caimonoulabita	UDP-N-acetylglucosariille 1- carboxyvinyltransferase		hypothetical protein	transcriptional regulator	cysteine synthase	O-acetylserine synthase		hypothetical protein	succinyl-CoA synthetase alpha	Citation of the citation of th	hypothetical protein	succinyl-CoA synthetase pera citalii		frenolicin gene E product		succinyl-CoA coenzyme A	transferase	transcriptional regulator	
1.4.6	length (a.a.)	205	84	!	42		417		190	281	305	172		83	291		75	400		213			501	321	
	Similarity (%)	51.2	0.99		75.0		75.3		84.2	69.0	84.6	797	5	65.1	79.4		43.0	73.0		71.8			77.8	68.5	
	Identity S	25.9	61.0		71.0		44.8		66.3	45.9	57.1	7	-	36.1	52.9		42.0	39.8		38.5			47.9	38.6	
lable I (collinaca)	Homologous gene	Mycobacterium tuberculosis	TOTAN TAYOUTO	Chiamyula pheaman	Chlamydia muridarum Nigg TC0129		Acinetobacter calcoaceticus	אכום סכסם בוסא	Mycobacterium tuberculosis H37Rv Rv1314c	Streptomyces coelicolor A3(2) SC2G5.15c	Marco 00 F - 2077	Bacillus subtilis 100 cysis	Azotobacter vinelandii cystz	Deinococcus radiodurans R1	Coxiella burnetii Nine Mile Ph I	sucD	Aeropyrum pernix K1 APE1069	Bacillus subtilis 168 succ		Turis from	Streptomyces loseolulyus min		Clostridium kluyveri cat1 cat1	Azospirillum brasilense ATCC	281421111
	db Match	Sp. Y089 MYCTU	1	GSP:Y35814	PIR:F81737		sp.MURA ACICA		sp:Y02Y_MYCTU	gp:SC2G5_15		sp:CYSK_BACSU	prf:2417357C	gp:AE002024_10		sp:SUCD_COXBU	DIR-E72706		sp.socc_paneds		gp:AF058302_5		Sp:CAT1_CLOKL	N:ds	
	ORF (bp)			273 (141	195		2	570	843	 408	924	546	288		882	205	277	1194	380	735	819	1539	1143	
	Terminal (nt)	7.4	107117	2713453	2713842	2717993			2720319	2720385	2721295	2722857	2723609	2723770		2724478	2705072	2123043	2725384	2726786	2727399	2728207	2729378		
	Initial T			2713181 3	2713702	70740707		5/ 19089	2719750	2721227	2721702	2721934	2723064	2724057		2725359	0,010	61.007/7	2726577	6323 2727145	2728133	2729025			
	SEQ NO.		6309 2	6310 2		-		6313	6314	6315	 6316	6317	6318	6310	2	6320		6321	6322		6324	6325			032/
			2809	2810		_		2813	2814	2815	2816	2817	2818	2870	6107	2820		2821	2822	2823	2824	2825	28.28	7000	282/

_
-
T
w
Jed)
≓
Ξ
_
0
္မ
_
_
$\overline{}$
e
_
_
Ω
_
E
_
1.

	Function		phosphate transport system regulatory protein	phosphate-specific transport component	phosphate ABC transport system permease protein	phosphate ABC transport system permease protein	phosphate-binding protein S-3 precursor	acetyltransferase		hypothetical protein	hypothetical protein	branched-chain amino acid aminotransferase	hypothetical protein	hypothetical protein	5'-phosphoribosyl-5-aminoimidazole synthetase	amidophosphoribosyl transferase
	Matched length (a.a.)		213	255	292	325	369	315		344	225	259	352	58	347	482
	Similarity (%)		81.7	82.8	82.2	78.5	56.0	0.09		55.2	74.2	56.0	79.0	81.0	94.2	89.0
	Identity (%)		46.5	58.8	51.4	50.2	40.0	34.3		24.7	44.9	28.6	58.5	58.6	81.0	70.3
(Homologous gene		Mycobacterium tuberculosis H37Rv Rv0821c phoY-2	Pseudomonas aeruginosa pstB	Mycobacterium tuberculosis H37Rv Rv0830 pstA1	Mycobacterium tuberculosis H37Rv Rv0829 pstC2	Mycobacterium tuberculosis H37Rv phoS2	Streptomyces coelicolor A3(2) SCD84.18c		Bacillus subtilis 168 bmrU	Mycobacterium tuberculosis H37Rv Rv0813c	Solanum tuberosum BCAT2	Corynebacterium ammoniagenes ATCC 6872 ORF4	Mycobacterium tuberculosis H37Rv Rv0810c	Corynebacterium ammoniagenes ATCC 6872 purM	Corynebacterium ammoniagenes ATCC 6872 purF
	db Match		pir:E70810	pir.S68595	gp:MTPSTA1_1	pir.A70584	pir:H70583	gp:SCD84_18		sp:BMRU_BACSU	pir.E70809	gp:AF193846_1	gp:AB003158_6	pir:B70809	gp:AB003158_5	gp:AB003158_4
	ORF (bp)	807		897	921	1014	1125	876	783	1095	687	942	1101	213	1074	1482
	Terminal (nt)	2731424	2733367	2733455	2734264	2735202	2736414	2737836	2739553	2739556	2741356	2741636	2743785	2744222	2744881	2746083
	Initial (nt)	0720020	2732636	2734351	2735184	2736215	2737538	2738711	2738771			2742577	2742685	2744010	6341 2745954	6342 2747564
	SEQ NO.		6329		6331	6332	6333	6334	6335		6337	6338	6339	6340	6341	
	SEQ NO.		2828		2831	2832	2833	2834	2835	2836	2837	2838	2839	2840	2841	2842

																\neg
	Function	hypothetical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	5'-phosphoribosyl-N- formylglycinamidine synthetase		5'-phosphoribosyl-N- formylglycinamidine synthetase	hypothetical protein		gluthatione peroxidase	extracellular nuclease		hypothetical protein	C4-dicarboxylate transporter	dipeptidyl aminopeptidase
	Matched length (a.a.)	124	315	217	42	763		223	79		158	965		211	414	697
	Similarity (%)	75.8	94.0	87.1	71.0	89.5		93.3	93.7		77.9	51.5		68.7	81.6	70.6
	Identity (%)	57.3	75.9	67.7	64.0	77.6		80.3	81.0		46.2	28.0		37.4	49.0	41.8
lable I (collenaed)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0807	Corynebacterium ammoniagenes ATCC 6872 ORF2	Corynebacterium ammoniagenes ATCC 6872 ORF1	Sulfolobus solfataricus	Corynebacterium ammoniagenes ATCC 6872 purL		Corynebacterium ammoniagenes ATCC 6872 purQ	Corynebacterium ammoniagenes ATCC 6872 purorf		Lactococcus lactis gpo	Aeromonas hydrophila JMP636 nucH		Mycobacterium tuberculosis H37Rv Rv0784	Salmonella typhimurium LT2 dctA	Pseudomonas sp. WO24 dapb1
	db Match	pir:H70536	gp:AB003158_2	gp:AB003158_1	GP:SSU18930_21 4	gp:AB003162_3		gp:AB003162_2	gp:AB003162_1		prf:2420329A	prf:2216389A		pir:C70709	sp:DCTA_SALTY	prf:2408266A
	ORF (bp)	375	1017	741	186	2286	720	699	243	522	477	2748	276	687	1338	2118
	Terminal (nt)	2747683	2749111	2749162	2752103	2750027	2753121	2752327	2752995	2753819	2753328	2756739	2757126	2757129	2757863	2759532
	Initial (nt)	2748057	2748095	2749902	2751918	2752312	2752402	2752995	2753237	2753298	2753804	2753992	2756851	2757815	2759200	2761649
	SEQ NO		6344	6345	6346	6347	6348		6350	6351	6352		6354	6355	6356	6357
	SEQ NO.		2844	2845	2846	2847	2848	2849	2850	2851	2852	2853	2854	2855	2856	2857

	Function		5'-phosphoribosyl-4-N- succinocarboxamide-5-amino imidazole synthetase	adenylosuccino lyase	aspartate aminotransferase	5'-phosphoribosylglycinamide synthetase	histidine triad (HIT) family protein		hypothetical protein	di-/tripeptide transpoter	adenosylmethionine-8-amino-7- oxononanoate aminotransferase or 7,8-diaminopelargonic acid aminotransferase	dethiobiotin synthetase	two-component system sensor histidine kinase	two-component system regulatory protein	transcriptional activator	metal-activated pyridoxal enzyme or low specificity D-Thr aldolase
hed	ength (a.a.)		5'-p 294 suci	477 ade	395 asp	425 5'-p syn	136 hist	\exists	243 hyp	469 di-/	ade 0xc 7,8	224 det	335 two	231 twc	249 tra	382 me
Matched	length (a.a.)		56	47	38	4.	¥		5	4	4	2	<u>د</u>	- 2	2	
	Similarity (%)		89.1	95.0	62.3	86.4	80.2		56.4	9'.29	98.8	9.66	70.5	72.7	69.5	53.9
_	identity (%)		70.1	85.3	28.1	71.1	53.7		26.8	30.1	95.7	98.7	31.3	42.0	37.4	30.9
	Homologous gene		Corynebacterium ammoniagenes ATCC 6872 purC	Corynebacterium ammoniagenes ATCC 6872 purB	Sulfolobus solfataricus ATCC 49255	Corynebacterium ammoniagenes ATCC 6872 purD	Mycobacterium leprae u296a		Methanosarcina barkeri orf3	Lactococcus lactis subsp. lactis	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioA	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioD	Lactococcus lactis M71plasmid pND306	Thermotoga maritima drrA	Streptomyces lividans tipA	Arthrobacter sp. DK-38
	db Match		gp:AB003161_3	gp:AB003161_2	sp:AAT_SULSO	gp:AB003161_1	Sp:YHIT_MYCLE		pir: S62195	sp:DTPT_LACLA	sp:BIOA_CORGL	sp:BIOD_CORGL	gp:AF049873_3	prf:2222216A	Sp. TIPA STRLI	
	ORF (bp)	624		1428	1158	1263	414	435	753	1356	1269	672	1455	705	753	1140
	Terminal (nt)	2761829	2761785	2763504	2764978	2766158	2767993	2767703	2768343	2769156	2771982	2772660	2772644	2774110	2774937	2775740
	Initial (nt)	2762452		2764931	2766135	2767420	2767580	2768137	2769095	·	2770714	2771989	2774098	2774814	2775689	
	SEQ NO.	+		6360	6361	6362	6363	6364	6365	9989	6367	6368	6369	6370	8374	
	SEQ NO.	+		2860	2861	2862	2863	2864	\neg	2866	2867	2868	2869	2870	2074	2872

	Function	pyruvate oxidase		multidrug efflux protein	transcriptional regulator	hypothetical membrane protein		3-ketosteroid dehydrogenase	transcriptional regulator, LysR family		hypothetical protein	hypothetical protein			hypothetical protein	hypothetical membrane protein	transcription initiation factor sigma	trehalose-6-phosphate synthase		trehalose-phosphatase	glucose-resistance amylase	regulator	high-affinity zinc uptake system protein
hotohod	length (a.a.)	574		504	92	421		303	232		278	288			140	464	155	487		245	344	5	353
	Similarity (%)	75.8		68.9	68.5	78.4		62.1	0.09	2	52.9	55.6			50.7	64.0	50.3	66.7		57.6	0	7.00	46.7
	(%)	46.3		33.3	30.4	45.6		34.3	27.1	1.70	28.4	26.7			28.6	36.0	32.3	38.8		27.4	1	7.4.7	22.4
Table 1 (continued)	Homologous gene	Escherichia coli K12 poxB		Staphylococcus aureus plasmid pSK23 qacB	Escherichia coli K12 ycdC	Mycobacterium tuberculosis H37Rv Rv2508c		Rhodococcus erythropolis SQ1	nasi oo mi	Bacillus subtilis 168 alsK	Mycobacterium tuberculosis H37Rv Rv3298c lpqC	Bacillus subtilis 168 ykrA			Oryctolagus cuniculus kidney cortex rBAT	Mycobacterium tuberculosis	Streptomyces griseus hrdB	Schizosaccharomyces pombe tps1		Coborichia coli K10 otsB	באכוופו וכווומ מכוי בר כנכו	Bacillus megaterium ccpA	Haemophilus influenzae Rd Hl0119 znuA
	db Match	gp:ECOPOXB8G_		prf.2212334B	Sp:YCDC ECOLI	pir:D70551		dp. AF096929 2		sp.ALSR_BACSU	pir:C70982	nir C69862			pir.A45264	pir:B70798	pir:S41307			100	sp:013B_ECOLI	sp:ccPA_BACME	sp:ZNUA_HAEIN
	ORF (bp)		5	1482	531		2142			705	813	813	5	459	399	1503	327	 `	713	\dashv	/98	1074	942
	Terminal (nt)	0776768	00/0//7	2780446	2780969	2782315	2782340	2784656		2785651	2788594	7788587	71 00001	2789477	2790550	2792448	7792857		0704040	-	2795637	2795676	2797806
	Initial (nt)		2778504	2778965	2780439	2780996	704404	2705615	0100017	2786355	2787782		2108038	2789935	2790152	2790946	1			-+	2794870	2796749	2796865
	SEQ.		6373	6374	R375	_1	2011	03/7	0 / 50	6379	6380	300	0381	6382		6384	-			638/	6388	6389	
			2873	2874	37.00	2876	1	1/87	9/97	2879	2880		2881	2882	2883	2884	2000	2886		2887	2888	2889	2890

	Function	ABC transporter	hypothetical membrane protein	transposase (ISA0963-5)		3-ketosteroid dehydrogenase		lipopolysaccharide biosynthesis protein or oxidoreductase or dehydrogenase	dehydrogenase or myo-inositol 2- dehydrogenase	shikimate transport protein	shikimate transport protein	transcriptional regulator	ribosomal RNA ribose methylase or	tRNA/rRNA methyltransferase	cysteinyl-tRNA synthetase	PTS system, enzyme II sucrose protein (sucrose-specific IIABC component)	sucrose 6-phosphate hydrolase or sucrase	glucosamine-6-phosphate isomerase	N-acetylglucosamine-6-phosphate deacetylase
Matchad	length (a.a.)	223	135	303		561		204	128	292	130	212	334	5	464	899	473	248	368
	Similarity (%)	63.2	87.4	52.5		62.0		56.4	69.5	67.5	80.8	55.7	47.3	?	68.8	77.0	56.9	69.4	60.3
	Identity (%)	31.4	0.09	23.4		32.1		34.3	35.2	30.5	43.1	32.6	, c	0.22	42.2	47.0	35.3	38.3	30.2
	Homologous gene	Staphylococcus aureus 8325-4 mreA	Mycobacterium tuberculosis H37Rv Rv2060	Archaeoglobus fulgidus		Rhodococcus erythropolis SQ1 kstD1		Thermotoga maritima MSB8 bpIA	Bacillus subtilis 168 idh or iolG	Escherichia coli K12 shiA	Descharichia coli K12 shiA	Streptomyces coelicolor A3(2)	Saccharomyces cerevisiae	YOR201C PET56	Escherichia coli K12 cysS	Lactococcus lactis sacB	Clostridium acetobutylicum ATCC 824 scrB	Escherichia coli K12 nagB	Vibrio furnissii SR1514 manD
	db Match	gp:AF121672_2	pir.E70507	pir.A69426		gp:AF096929_2		pir.B72359	sp:MI2D_BACSU	SHIA FCOLL		gp:SC5A7_19		sp:PT56_YEAS1	sp:SYC_ECOLI	prf.25	gp:AF205034_4	sp:NAGB_ECOLI	sp:NAGA_VIBFU
Ì	ORF (bp)	069	555	1500	201	1689	747	618	435	ጸዳዳ		654		939	1380	1983	1299	759	1152
	Terminal (nt)	2798509	2799391	2801034	2801313	2801558	2803250	2804074	2804676	2805113	2002	2806599		2807426	2808399	2809824	2811960	2813279	2814081
	Initial (nt)	2797820	2798837	2799535	2801113	2803246	2803996	2804691	2805110	7905067		2807252		2808364	2809778		2813258	2814037	2815232
	SEQ NO. (a.a.)	+	6392	6393	6394		9689	6397	6398	0000		6400		6402	6403		6405	6406	6407
	SEQ NO.	2891	2892	2893	+-		2896	2897	2898	0	2833	2900		2902	2903	2904	2905	2906	2907

_
_
77
===
u
_
_
_
_
ᆂ
_
_
$^{\circ}$
Ō
Ö
<u> </u>
1
0
e 1 (c
le 1 (c
ole 1 (c
ble 1 (c
ಹ

	Function	dihydrodipicolinate synthase	glucokinase	N-acetylmannosamine-6-phosphate epimerase		sialidase precursor	L-asparagine permease operon repressor	dipeptide transporter protein or heme-binding protein	dipeptide transport system permease protein	oligopeptide transport ATP-binding protein	oligopeptide transport ATP-binding protein	homoserine/homoserin lactone efflux protein or lysE type translocator	leucine-responsive regulatory protein		hypothetical protein	hypothetical protein	transcription factor
	Matched length (a.a.)	298	321	220		439	222	560	342	314	258	193	142		152	235	157
	Similarity (%)	62.1	57.6	68.6		50.3	57.2	51.4	64.3	78.3	78.7	62.7	66.2		86.2	71.5	91.1
	Identity (%)	28.2	28.7	36.4		24.8	26.6	22.5	31.9	46.5	43.4	28.5	31.0		55.9	46.4	73.3
(Homologous gene	Escherichia coli K12 dapA	Streptomyces coelicolor A3(2) SC6E10.20c glk	Clostridium perfringens NCTC 8798 nanE		Micromonospora viridifaciens ATCC 31146 nadA	Rhizobium etli ansR	Bacillus firmus OF4 dppA	Bacillus firmus OF4 dappB	Bacillus subtilis 168 oppD	Lactococcus lactis oppF	Escherichia coli K12 rhtB	Bradyrhizobium japonicum Irp		Mycobacterium tuberculosis H37Rv Rv3581c	Mycobacterium tuberculosis H37Rv Rv3582c	Mycobacterium tuberculosis H37Rv Rv3583c
	db Match	sp:DAPA_ECOLI	sp:GLK_STRCO	prf:2516292A		sp:NANH_MICVI	gp:AF181498_1	gp:BFU64514_1	sp:DPPB_BACFI	sp:OPPD_BACSU	sp:OPPF_LACLA	sp:RHTB_ECOLI	prf:2309303A		pir:C70607	sp:Y18T_MYCTU	pir.H70803
	ORF (bp)	936	606	969	177	1215	729	1608	951	1068	816	621	483	360	480	768	594
	Terminal (nt)	2816393	2817317	2818058	2818137	2818350	2819557	2822191	2823337	2825341	2826156	2826215	2827404	2827458	2827904	2828379	2829156
	Initial (nt)	2815458	2816409	2817363	2818313	2819564	2820285	2820584	2822387	2824274	2825341	2826835	2826922	2827817		2829146	2829749
	SEQ NO.	6408		6410	6411	6412	6413	6414	6415	6416	6417	6418	6419	6420	6421	6422	6423
	SEQ NO.			2910	2911	2912	2913	2914	2915	2916	2917	2918	2919	2920	2921	2922	2923

Table 1 (continued)

																		—		
	Function	two-component system response regulator	two-component system sensor histidine kinase		DNA repair protein RadA	hypothetical protein	hypothetical protein	p-hydroxybenzaldehyde dehydrogenase		mitochondrial carbonate dehydratase beta	A/G-specific adenine glycosylase			L-2.3-butanediol dehydrogenase				hypothetical protein	virulence factor	virulence factor
A Actoboa	length (a.a.)	223	341		463	345	231	471		210	283			258				26	66	72
	Similarity (%)	70.0	67.7		74.3	73.3	53.3	85.1		66.2	7.07			9.66				69.1	63.0	55.0
	Identity (%)	43.5	29.3		41.5	40.3	29.4	59.5		36.7	48.4			99.2				48.5	57.0	54.0
	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3246c mtrA	Escherichia coli K12 baeS		Escherichia coli K12 radA	Bacillus subtilis 168 yacK	Mycobacterium tuberculosis H37Rv Rv3587c	Pseudomonas putida NCIMB 9866 plasmid pRA4000		Chlamydomonas reinhardtii ca1	Streptomyces antibioticus IMRU 3720 mutY			Brevibacterium saccharolyticum				Mycobacterium tuberculosis H37Rv Rv3592	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF25110
	db Match	prf:2214304A	sp:BAES_ECOLI		SD:RADA ECOLI	sp:YACK_BACSU	pir:D70804	gp:PPU96338_1		pir. T08204	gp:AF121797_1			gp:AB009078_1				pir.E70552	GSP: Y29188	GSP:Y29193
	ORF (bp)	723	1116	582	1392	1098	687	1452	147	621	879	1155	306	774	324	741	312	291	420	213
	Terminal (nt)	2830779	2831894	2832666	2834181	2835285	2835283	2836048	2837591	2837956	2839521	2840716	2840758	2841848	2842453	2843233	2843716	2843432	2845558	2846101
	Initial (nt)	2830057	2830779	2832085	2832790	2834188		2837499	2837737		2838643	2839562			2842130	2842493	2843405	2843722	2845139	2845889
	SEQ NO.		6425	6426			6429	6430	6431		6433	6434	6435		6437	6438	6439	6440	6441	6442
	SEQ NO.		2925	2926				2930	2931	2932	2933	2934	2935	2936	2937	2938	2939	2940	2941	2942

Table 1 (continued)

Г		— т	1	T		T		\top	\top	Т					$\neg \top$	\neg				\neg
	Function	virulence factor	CIpC adenosine triphosphatase / ATP-binding proteinase	inosine monophosphate dehydrogenase	transcription factor	phenol 2-monooxygenase					lincomycin resistance protein	hypothetical protein	lysyl-tRNA synthetase	pantoatebeta-alanine ligase			hypothetical membrane protein	2-amino-4-hydroxy-6- hydroxymethyldihydropteridine pyrophosphokinase	dihydroneopterin aldolase	dihydropteroate synthase
	Matched length (a.a.)	55	832	469	316	680					481	240	511	268			138	158	118	268
	Similarity (%)	75.0	86.2	70.2	62.7	6.09					100.0	55.8	71.2	52.6			9.69	69.0	69.5	75.0
	Identity (%)	74.0	58.5	37.1	24.7	33.5					100.0	26.7	41.7	29.9			29.0	42.4	38.1	51.5
lable (commacd)	Homologous gene	Pseudomonas aeruginosa ORF25110	Bacillus subtilis 168 mecB	Bacillus cereus ts-4 impdh	Rhodococcus rhodochrous nitR	Trichosporon cutaneum ATCC 46490					Corynebacterium glutamicum ImrB	Mycobacterium tuberculosis H37Rv Rv3517	Bacillus stearothermophilus lysS	Corynebacterium glutamicum ATCC 13032 panC			Mycobacterium leprae MLCB2548.04c	Methylobacterium extorquens AM1 folK	Bacillus subtilis 168 folB	Mycobacterium leprae folP
	db Match	GSP:Y29193	sp:MECB_BACSU	gp:AB035643_1	pir.JC6117	sp:PHZM_TRICU					gp:AF237667_1	pir:G70807	gp:AB012100_1	gp:CGPAN_2			gp:MLCB2548_4	sp:HPPK_METEX	sp:FOLB_BACSU	gp:AB028656_1
	ORF (bp)	321	2775	1431	1011	1785	1716	1941	1722	162	1443	951	1578	798	693	798	465	477	390	837
	Terminal (nt)	2846506	2844166	2848659	2849779	2851815	2853732	2855709	2857516	2859205	2857613	2859195	2860505	2862132	2862929	2863624	2864384	2864867	2865346	2865731
	Initial (nt)	2846186	2846940	2847229	2848769	2850031	2852017	2853769	2855795	2859044	2859055	2860145	2862082	2862929	2863621	2864421	2864848	2865343	2865735	6461 2866567
	SEQ NO. (a.a.)	6443	6444	6445	6446	6447	6448	6449	6450	6451	6452	6453	6454	6455	6456	6457	6458	6459	6460	
	SEQ NO.	2943	2944	2945	2946	2947	2948	2949	2950	2951	2952	2953	2954	2955	2956	2957	2958	2959	2960	2961

Table 1 (continued)

Function	GTP cyclohydrolase I		cell division protein FtsH	hypoxanthine phosphoribosyltransferase	cell cycle protein MesJ or cytosine deaminase-related protein	D-alanyl-D-alanine carboxypeptidase	inorganic pyrophosphatase		spermidine synthase	hypothetical membrane protein	hypothetical protein	hypothetical protein	hypothetical protein	PTS system, beta-glucosides- permease II ABC component		ferredoxin reductase	hypothetical protein	bacterial regulatory protein, marR family
Matched length (a.a.)	188		782	165	310	459	159		202	132	144	173	202	68		411	97	135
Similarity (%)	86.2		69.0	83.0	66.8	51.4	73.6		80.7	86.4	63.2	60.1	72.3	59.6		9.69	73.2	59.3
Identity (%)	60.6		56.0	51.5	41.0	27.2	49.7		56.0	38.6	36.8	36.4	44.6	30.3		38.0	46.4	26.7
Homologous gene	Bacillus subtilis 168 mtrA			Salmonella typhimurium GP660 hprt	Mycobacterium tuberculosis H37Rv Rv3625c	Actinomadura sp. R39 dac	Escherichia coli K12 ppa		Mycobacterium tuberculosis H37Rv speE	Mycobacterium tuberculosis H37Rv Rv2600	Mycobacterium tuberculosis H37Rv Rv2599	Mycobacterium tuberculosis H37Rv Rv2598	Mycobacterium tuberculosis H37Rv Rv2597	Bacillus subtilis 168 bgIP		Nocardioides sp. KP7 phdD	Streptomyces coelicolor A3(2) SCH69.09c	Burkholderia pseudomallei ORF E
db Match	sp:GCH1_BACSU			gp:AF008931_1	sp:YZC5_MYCTU	sp:DAC_ACTSP	sp:IPYR_ECOLI		pir:H70886	sp:Y0B1_MYCTU	sp:Y0B2_MYCTU	sp:Y0B3_MYCTU	sp:Y0B4_MYCTU	sp:PTBA_BACSU		gp:AB017795_2	gp:SCH69_9	prf.2516298U
ORF (bp)	588	915	2580		891	1233	474	219	1539	399	411	498	609	249	264	1233	288	444
Terminal (nt)	2866586	2868385	2867169	2869863	2870499	2871445	2873399	2873393	2873905	2875434	2875870	2876280	2876777	2877455	2877595	2878478	2880252	2880987
Initial (nt)	2867173	2867471	2869748	2870444	2871389	2872677	2872926	2873611		2875832	2876280	2876777	2877385	2877703	2877858		. 1	2880544
SEQ NO.		_			6466	6467	6468		6470	6471	6472	6473	6474	6475	6476	6477		6479
SEQ NO.		_	_		2966	2967	2968	2969	2970	2971	2972	2973	2974	2975	2976	7977	2978	2979

Table 1 (continued)

- 1								Matched	
Initial Te (nt)	 	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	length (a.a.)	Function
6480 2880998 2	12	2884882	3885	prf:2413335A	Streptomyces roseosporus cpsB	28.4	51.6	1241	peptide synthase
6481 2883304	L	2881844	1461						
6482 2886497		2884935	1563	prf:2310295A	Escherichia coli K12 padA	35.0	63.7	488	phenylacetaldehyde dehydrogenase
6483 2887833		2886916	918	gp:CJ11168X2_25 4	Campylobacter jejuni Cj0604	57.3	79.7	241	hypothetical protein
6484 2890185		2890346	162	GP: MSGTCWPA_1	SGTCWPA_1 Mycobacterium tuberculosis	62.0	63.0	54	hypothetical protein
		2890553	177	GP: MSGTCWPA_1	SGTCWPA_1 Mycobacterium tuberculosis	74.0	80.0	31	hypothetical protein
6486 2890540		2888897	1644	gsp:F	Brevibacterium flavum MJ-233	99.5	100.0	548	heat shock protein or chaperon or groEL protein
6487 2890930	1	2890751	180						
6488 2892138	I	2890930	1209						
6489 2893100	I ~	2892138	963						
6490 2895085	l in	2893100	1986						
2897525	l LO	2895072	2454						
6492 2900326	9	2897528	2799						
6493 2903920	0	2900330	3591	prf:2309326A	Homo sapiens MUC5B	21.7	42.3	1236	hypothetical protein
6494 2906738	ω .	2903964	2775						
6495 2907250	0	2906639	612						
6496 2907515	5	2908885	1371	pir:G70870	Mycobacterium tuberculosis H37Rv Rv2522c	37.1	68.0	447	peptidase
6497 2909210	0	2909788	579						
6498 2909830	0	2909231	909						
6499 2910172	1 0	2913228	3057	prf.2504285B	Staphylococcus aureus mnhA	35.6	68.3	762	Na+/H+ antiporter or multiple resistance and pH regulation related protein A or NADH dehydrogenase
_									

Table 1 (continued)

Function	Na+/H+ antiporter or multiple resistance and pH regulation related protein C or cation transport system protein	Na+/H+ antiporter or multiple resistance and pH regulation related protein D	Na+/H+ antiporter or multiple resistance and pH regulation related protein E	K+ efflux system or multiple resistance and pH regulation related protein F	Na+/H+ antiporter or multiple resistance and pH regulation related protein G	rotein	rotein		eformylase	rotein	acetyltransferase (GNAT) family or N terminal acetylating enzyme			exodeoxyribonuclease III or exonuclease	nthase
	Na+/H+ antipo resistance and protein C or ca protein	Na+/H+ antipo resistance and protein D	Na+/H+ antipo resistance and protein E	K+ efflux system or multiple resistance and pH regulation protein F	Na+/H+ antipo resistance and protein G	hypothetical protein	hypothetical protein		polypeptide deformylase	hypothetical protein	acetyltransfer N terminal ace			exodeoxyribo exonuclease	cardiolipin synthase
Matched length (a.a.)	104	523	161	7.2	121	178	334		184	7.1	339			31	513
Similarity (%)	81.7	72.1	6.09	66.2	63.6	54.5	61.7		6.09	70.4	54.2			59.9	62.0
Identity (%)	44.2	35.2	26.7	32.5	25.6	24.7	27.0		37.5	47.9	31.3			30.8	27.9
Homologous gene	Bacillus firmus OF4 mrpC	Bacillus firmus OF4 mrpD	Bacillus firmus OF4 mrpE	Rhizobium meliloti phaF	Staphylococcus aureus mnhG	Mycobacterium tuberculosis H37Rv lipV	Escherichia coli K12 ybdK		Bacillus subtilis 168 def	Mycobacterium tuberculosis H37Rv Rv0430	Mycobacterium tuberculosis H37Rv Rv0428c			Salmonella typhimurium LT2 xthA	Bacillus firmus OF4 cls
db Match	gp:AF097740_3	gp:AF097740_4	gp:AF097740_5	prf:2416476G	prf.2504285H	pir:D70594	sp:YBDK_ECOLI		sp:DEF_BACSU	pir.D70631	pir:B70631			gp:AF108767_1	gp:BFU88888_2
ORF (bp)	489	1668	441	273	378	594	1128	663	579	252	1005	699	630	789	1500
Terminal (nt)	2913723	2915416	2915922	2916201	2916582	2917024	2917630	2918819	2920293	2919490	2921290	2919808	2920220	2922108	2923617
Initial (nt)	2913235	2913749	2915482	2915929	2916205	2917617	2918757	2919481	2919715	2919741	2920286	2920476	2920849	_1	2922118
SEQ NO.	6500	6501	6502	6503	6504	6505	6506	6507	6508	6209	6510	6511	6512	6513	6514
SEQ NO.	3000	3001	3002	3003	3004	3005	3006	3007	3008	3009	3010	3011	3012	3013	3014

Table 1 (continued)

				dwn		T		rotein			ursor				<u>}</u>					
	Function		membrane transport protein or bicyclomycin resistance protein	sodium dependent phosphate pump	phenazine biosynthesis protein		ABC transporter	ABC transporter ATP-binding protein	mutator mutT protein	hypothetical membrane protein	glutamine-binding protein precursor	serine/threonine kinase		ferredoxin/ferredoxin-NADP reductase	acetyltransferase (GNAT) family				phosphoribosylglycinamide formyltransferase	
	Matched length (a.a.)		393	382	289		255	309	168	423	270	805		457	156				379	
	Similarity (%)		67.2	68.9	56.4		80.8	66.3	68.5	70.2	64.8	63.5		67.8	60.3				82.6	
	Identity (%)		31.6	28.5	38.8		24.3	36.9	47.6	35.0	31.5	41.2		37.2	34.0				59.1	
iable I (consulace)	Homologous gene		Escherichia coli K12 bcr	Vibrio cholerae JS1569 nptA	Pseudomonas aureofaciens 30-84 phzC		Streptomyces coelicolor A3(2) SCE8.16c	Bacillus licheniformis ATCC 9945A bcrA	Mycobacterium tuberculosis H37Rv Rv0413	Mycobacterium tuberculosis H37Rv Rv0412c	Bacillus stearothermophilus NUB36 glnH	Mycobacterium tuberculosis H37Rv Rv0410c pknG		Bos taurus	Escherichia coli K12 elaA				Bacillus subtilis 168 purT	
	db Match		Sp:BCR ECOLI	dn:VCAJ10968 1	sp:PHZC_PSEAR		gp:SCE8_16	sp:BCRA_BACLI	pir:C70629	pir:B70629	sp:GLNH_BACST	pir:H70628		sp:ADRO_BOVIN	SD:ELAA ECOLI	-			sp:PURT_BACSU	
	ORF (bp)	854				633	768	936	501	1386	1032	2253	747	1365	546	1062	1029	399	1194	6
	Terminal (nt)	//a/coc	2924044	2078704	2926707	2927651	2927551	2928302	2929256	2931336	2932371	2934829	2932652	2939767	2940452			2942609		0000
	Initial (nt)	70,7700	2924191	11 1222	2927546	2928283	2928318	2929237	2929756	2929951	2931340	2932577	2933398		2030007					
	SEQ NO.		6515 6516			6219	6520	6521	6522	6523	6524	6525	8526	_	_			$\overline{}$	1	
		-	3015	2 2	3018	3019	3020	3021	3022	3023	3024	3025	3008	3027	8008	3020	3030	3031	3032	

	Function	insertion element (IS3 related)	insertion element (IS3 related)	two-component system sensor histidine kinase	transcriptional regulator		adenylosuccinate synthetase	hypothetical protein		hypothetical membrane protein	fructose-bisphosphate aldolase	hypothetical protein	methyltransferase	orotate phosphoribosyltransferase	hypothetical protein	3-mercaptopyruvate sulfurtransferase			
	Matched length (a.a.)	295	89	349	218		427	204		359	344	304	182	174	250	294			
	Similarity (%)	90.9	84.3	51.3	65.6		95.3	59.3		100.0	100.0	100.0	91.2	65.5	0.09	56.1			
	Identity (%)	9'22	67.4	22.4	31.7		89.7	34.3		100.0	99.7	100.0	76.9	39.1	27.6	29.6			
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum orf2	Corynebacterium glutamicum orf1	Streptomyces thermoviolaceus opc-520 chiS	Bacillus brevis ALK36 degU		Corynebacterium ammoniagenes purA	Mycobacterium tuberculosis H37Rv Rv0358		Corynebacterium glutamicum AS019 ATCC 13059 ORF3	Corynebacterium glutamicum ASO19 ATCC 13059 fda	Corynebacterium glutamicum ASO19 ATCC 13059 ORF1	Mycobacterium tuberculosis H37Rv Rv0380c	Pyrococcus abyssi pyrE	Mycobacterium tuberculosis H37Rv Rv0383c	Homo sapiens mpsT			
	db Match	pir.S60890	pir.S60889	gp:AB016841_1	sp:DEGU_BACBR		gp:AB003160_1	pir.G70575		sp:YFDA_CORGL	pir:S09283	gp:CGFDA_1	pir:G70833	qp:AF058713_1	B70834	sp:THTM_HUMAN			
	ORF (bp)	894	267	1140	618	225	1290	759	264	1167	1032	951	618	552	972	852	720	279	399
	Terminal (nt)	2946698	2947620	2948049	2949265	2950431	2950434	2952691	2952972	2952975	2954241	2955523	2956830	2957485		2959520	2960468	2962730	2963198
	Initial (nt)	2947591	2947886	2949188	2949882	2950207	2951723	2951933	2952709		2955272	2956473	2957447	2958036			2961187		2963596
	SEQ NO.	+-	6535		6537		6239	6540	6541	6542	6543	6544	6545				6549	1	
	SEQ.		3035		3037	3038	3039	3040	3041	3042	3043	3044	3045	3078	3047	3048	3049	3050	3051

	Function	virulence factor	virulence factor	virulence factor	sodium/glutamate sympolt caliter protein	cadmium resistance protein	cation efflux system protein (zinc/cadmium)	monooxygenase or oxidoreductase or steroid monooxygenase	alkanal monooxygenase alpha chain		cystathionine gamma-lyase	hacterial regulatory protein, lacl	family	rifampin ADP-ribosyl transferase	rifampin ADP-ribosyl transferase	hypothetical protein	hypothetical protein	oxidoreductase
	Matched length (a.a.)	59	200	132	489	108	283	476	399		375		184	89	26	361	204	386
	Similarity (%)	82.0	55.0	63.0	54.8	71.3	63.3	45.4	47.4		62.4	- i	67.9	65.2	87.5	56.2	64.7	60.6
	Identify (%)	76.0	38.0	62.0	24.7	37.0	23.7	22.5	21.1		36.5	2.00	40.2	49.4	73.2	30.5	33.8	31.9
Table 1 (continued)	Homologous gene	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF23228	Pseudomonas aeruginosa ORF25110	Synechocystis sp. PCC6803	Stanhylococcus aureus cadC	Pyrococcus abyssi Orsay	Rhodococcus rhodochrous	Kryptophanaron alfredi symbiont	, 25	C ***	Escherichia coll K12 metb	Streptomyces coelicolor A3(2) SC1A2.11	Streptomyces coelicolor A3(2) SCE20.34c arr	Streptomyces coelicolor A3(2) SCE20.34c arr	Mycobacterium tuberculosis H37Rv Rv0837c	Mycobacterium tuberculosis	Mycobacterium tuberculosis H37Rv Rv0385
	db Match	GSP:Y29188	GSP:Y29182	GSP:Y29193	pir.S76683		ap. 070 080			_		sp:METB_ECOLI	gp:SC1A2_11	gp:SCE20_34	gp:SCE20_34	5 pir:E70812	pir.D70812	9 pir:D70834
	ORF (bp)	177	762	396	1347	700	30. 85.8		1041	- 1	762	1146	567	240	183	1 1125	732	4 1179
	Terminal (nt)	2964434	2965837	2965583	2966458		2969769	2971003	7972057		2971338	2972060	2973230	2974200	2974382	2975591	7976360	
	Initial (nt)	80	2965076	2965188	2967804		2968403	2969834	2071017	2	2972099	2973205		2973961	2974200	2974467		
	SEQ.	(a.a.) 6552 2				· _ l_		6557 8558		200	6560	6561			6564	6565		
		(DNA)			-+-	-+	3056	305/		6000	3060	3061	3062	3063	3064	3065	9000	3067

	Function	N-carbamoyl-D-amino acid amidohydrolase		hypothetical protein	novel two-component regulatory system	aldehyde dehydrogenase	heat shock transcription regulator	heat shock protein dnaJ		nucleotide exchange factor gipes protein bound to the ATPase domain of the molecular chaperone DnaK	heat shock protein dnaK		hypothetical membrane protein	5'-methylthioadenosine nucleosidase adenosylhomocysteine nucleosidase			chromosome segregation protein				alcohol dehydrogenase
	Matched length (a.a.)	275		289	108	207	135	30.7	9	212	618		338	195			1211	2			334
	Similarity (%)	67.3		55.4	44.0	90.3	70.4	5	g0. –	66.5	99.8		79.0	0.09			0,	48.4			81.7
	Identity (%)	32.0		28.0	38.0	9.69	47.4		26.7	38.7	99.8		42.6	27.2			,	18.9			50.0
Table 1 (continued)	Homologous gene	Methanobacterium thermoautotrophicum Delta H MTH1811		Streptomyces coelicolor A3(2) SC4A7.03	Azospirillum brasilense carR	Dhadacalls erythropolis theA	Superior Change	Streptornyces albus o hapiy	H37Rv RV0352 dnaJ	Streptomyces coelicolor grpE	Brevibacterium flavum MJ-233	dnaK	Streptomyces coelicolor A3(2) SCF6.09	Helicobacter pylori HP0089 mtn			polymorphy and polymo	schizosaccial dinyces points cut3			Bacillus stearothermophilus DSM 2334 adh
	db Match	pir.B69109 t		gp:SC4A7_3	A 2	1 00000	pn.2104333D	gp:SAU43299_2	sp:DNAJ_MYCTU	sp:GRPE_STRCO		gsp.Re4507	gp:SCF6_8	sp:PFS_HELPY				sp:CUT3_SCHPO			sp:ADH2_BACST
	ORF (bp)	798	243		330			438	1185	929		1854	1332	633	1000		88	3333	636	1485	1035
	Terminal (nt)	2977847	2078070	2980115	208121B	0171007	2980181	2982023	2982495	2983887		2984544	2988164		000000		2992602	2989954	2993286	2993921	2995747
	Initial .	4	7679700			7990987	2981698	2982460	2983679			2986397	2986833			_	2991718	2993286	2993921		1 2996781
	SEQ.	(a.a.) 6568		6570		1/00	6572	6573	6574			9229	6577				6580	6581	6582		
		(DNA)	000	3070		3071	3072	3073	3074	3075		3076	3077	3078		3079	3080	3081	3082	3083	3084

	Function					hypothetical membrane protein	dictory local at	nypothetical protein	sufate adenvivitransferase, subunit		sulfate adenylyltransferase small chain	phosphoadenosine phosphosulfate	reductase	ferredoxin-nitrate reductase	ferredoxin/ferredoxin-NADP	reductase	huntingtin interactor			alkylphosphonate uptake protein	and C-P lyase activity	hypothetical protein	ammonia monooxygenase			
100	Matched length (a.a.)					301		252		414	308		212	502	707	0	144			142	-	80	161			
	Similarity (%)					70.1	2	53.2		78.3	70.1		64.2	65.5	2	4. To	59.7			o cu	6.69	66.3	76.4		-	
	Identity (%)					13 E	43.3	32.5		47.3	46.1		39.2	34.5		30.8	32.6			6	70.0	50.0	39.1			
Table 1 (continued)	Homologous gene						Bacillus subtilis ytnM	Streptomyces coelicolor A3(2) SC7A8.10c		Escherichia coli K12 cysN	Tookorichia coli K12 evsD		Bacillus subtilis cysH	CA97 7.79 42 2112222	Synechococcus sp.: 1 co. 1 co.	Saccharomyces cerevisiae	Have accided	חסוווס פשופווס וואשר			Escherichia coli K12 phnB	Streptomyces coelicolor A3(2)	Pseudomonas putida DSMZ ID	201-00 00-00		
	db Match						pir.F69997	gp:SC7A8_10		LOSE NSVO.42		sp:CYSU_ECUEI	sn.CYH1 BACSU		sp:NIR_SYNP7	SD: ADRO YEAST		prf:2420294J			sp:PHNB_ECOLI	qp:SCE68_10	$\neg \vdash \neg$			
	ORF (bp)	216	217	207	189	261	927	723	915			912	603	3	1683	1371		1083	237	534	414	366	+-	-	9 321	1 486
	Terminal (nt)	9967000	2887 300	2997481	2997876	2997963	2998528	2999478	3002426	1 000	300024	3001542	2000453	3002433	3003480	3006915		3008376	3008453	3009303	3008749	3009607			3010979	3010441
	Initial (nt)	+	299/151	2997687	2997688	2998223	2999454	3000200	0004510	71000	3001539	3002453		3003145	3005162	2005575		3007294	3008689	3008770	3009162	200000	-	30.1023	3 3010659	4 3010926
	SEQ NO.	1_	6585	6586	6587	6588		6590		600	6592	6293		6594	6595		0800	7 6597	3 6598	9 6599	0099 0			2 6602	3 6603	94 6604
	L		3085	3086	3087	3088	3080	3090		308	3092	3093		3094	3095		9608	3097	3098	3099	3100	9	200	3102	3103	3104

	Function	hypothetical protein		hypothetical protein	Typomoral Car	ABC transporter	ABC transporter	metabolite transport protein homolog			succinyl-diaminopimelate	desuccinylase					dehydrin-like protein	maltose/maltodextrin transport ATP-	binding protein	-	cobalt transport protein	NADPH-flavin oxidoreductase			hypothetical membrane protein	DNA-3-methyladenine glycosylase	flavohemoprotein	7
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Matched length (a.a.)	68		337	5	199	211	416			1	466					114	0.00	3/3	<u> </u>	179	231	247	2	276	179	406	_
	Similarity (%)	58.0		1	8.70	64.8	73.0	67.8				48.5					46.0		50.1		67.6	71.4	6	38.3	59.4	78.8	+	-
	Identity (%)	410			26.1	35.7	39.3	30.8				21.5					33.0		24.9		30.2	37.2		28.4	31.2	503	22.5	33.3
Table 1 (continued)	Homologous gene		Agrobacterium vius ON 25	11 Superior 11 Sup	Alcaligenes eutroprius mio ORF7	Haemophilus influenzae hmcB	Hadmonhilus influenzae hmcB	Saby silitans sullican	Bacillus subulis y co			Escherichia coli K12 msgB					Daucus carota		Escherichia coli K12 malK		Lactococcus lactis Plasmid	With the second MAV from	Vibilo flatveyi vib	Crithidia fasciculata iunH	Streptomyces coelicolor A3(2)	SCEZU. God	Escherichia coli N12 tag	Alcaligenes eutrophus H16 inp
	db Match		SP:YTZ3_AGRVI /		sp:YGB7_ALCEU			gp:HIO00389	pir.A69778			s sp.DAPE_ECOLI	_	.0			GPU:DCA297422_		8 sp:MALK_ECOLI	2	B qp;AF036485_6		6 sp:FRP_VIBHA	3 sp:IUNH_CRIFA	27.CE20 8			58 sp:HMPA_ALCEU
	ORF (hn)	(dg)	3 285	564	3 1002		-		4 1209	8 822	4 687	7 1323	-	1905	174	20 762	-	23 854	42 1068	61 642	∔ -	\dashv	13 816	96 86	0.76		139 588	142 1158
	Terminal	(mt)	3011273	3011242	3011808		3013106	3013837	3015824	3014648	3016924	3015827		3019220	3018312	3017420		3018123	3019542	3020561			3022113	3022998		30,23333	2 3026139	9 3026142
	Initial	(m)	3010989	3011805	3012809		3013798	3014550	3014616	3015469	3016238	3017149		3017316	3017539	3018181		3019076	3020609	2021202			3022928	3023900		3024379	3025552	3027299
	SEQ	(a.a.)	6605 3	9099	6607	_	8099	6099	6610	6611	6612	6613	2	6614	6615	+-	-+-	6617	6618	00700		0200	1 6621	2 6622		3 6623	4 6624	
	SEQ	(DNA)	_	+	3107		3108	3109	3110	3111	3112	2443	2	3114	3115	24.0	2	3117	3118	7.70	5 5	3120	3121	3122	5	3123	3124	3125

						Table 1 (continued)				
	1		-	1			>	Similarity	Matched length	Function
SEQ	SEQ No.	Initial (nt)	Terminal (nt)	유 (학 (학	db Match	Homologous gene	(%)	(%)	(a.a.)	
	1.00	7007700	3042437	444						
3145	6645	3041994	2017100	100						
3146	6646	3042503	3042703	201		Avenhacterium lebrae	20.6	49.4	1416	hypothetical protein
3147	6647	3042660	3045788	3129	gp:MLCB1883_7	MLCB1883.13c	2.64			
3118	6648	3043642	3043022	621						
0140		ı	2045000	195						
3149	6649	3045/96	3040890	2		Avcobacterium leprae	24.8	47.1	363	hypothetical membrane protein
3150	6650	3047146	3048048	603	gp:MLCB1883_4	MLCB1883.05c	1	1	907	acyltransferase or macrolide 3-0-
3151	6651	3047189	3046122	1068	pir.JC4001	Streptomyces sp. acyA	27.7	51.0	400	acyltransferase
1		7007	3047197	708						rietora cacal
3152	7000					Mycobacterium leprae	31.2	54.8	529	hypothetical mernol alle protein
3153	6653	3048058	3049479	1422	gp:MLCB1883_3	MLCB1883.04c				
7 7 7	8854	3050522	3051190	699			+			00000
50.0	-+-	_		1137	pir.G70961	Mycobacterium tuberculosis	53.4	79.1	369	nexosylitatisticase
3155	6655	3020287				Mycobacterium tuberculosis	200	73.3	251	methyl transferase
3156	9599 9	3051194	3051964	771	pir:F70961	H37Rv Rv0224c				phosphoenolpyruvate carboxykinase
			2052062	1830	Sp. PPCK NEOFR	Neocallimastix frontalis pepck	54.7	78.5	601	(GTP)
3157	/ 999 /	3053881				Pyrococcus abyssi Orsay	24.4	52.7	332	C4-dicarboxylate transporter
3158	8 6658	8 3054759	9 3055769	1011	1 pir:E75125	PAB2393		1	24.0	hynothetical protein
5	-		2056631	765	SD:YGGH ECOLI	Escherichia coli K12 yggH	35.7	67.2	147	Ilybonicase Programme
3159	699 69	3022801	+	+	-	Mycobacterium tuberculosis	69.1	85.0	207	hypothetical protein
3160	0999 00	0 3056613	3 3057317	7 705	pir:E/0959	H37Rv Rv0207c		+	-	mohrane transport protein
3161	31 6661	3057328	8 3059643	3 2316	6 pir.C70839	Mycobacterium tuberculosis H37Rv Rv0206c mmpL3	42.3	72.3	00)	
100	SO GEES	3059517	7 3058096	6 1422	2		-			
3162			-	┑						

						Table 1 (continued)				
	SEQ	Initial	<u></u>	ORF (hp)	db Match	Homologous gene	Identify (%)	Similarity (%)	Matched length (a.a.)	Function
(DNA)	(a.a.)	(nt)		(dn)		Mycobacterium tuberculosis	29.1	67.9	364	hypothetical membrane protein
3163	6663 3	3059651	3060733	1083	pir.A70839	H37Rv Rv0204c		3	108	hynothetical membrane protein
3164	6664	3060733	3061095	363	pir:H70633	Mycobacterium tuber curosis H37Rv Rv0401	34.3	68.4	001	Transport Cod carboxviase complex
		000	084380	1548	an. AF113605 1	Streptomyces coelicolor A3(2)	49.7	76.9	523	B subunit
3165	9999	3062927	300 1300	2	מבו	otrostomyres erythraeus eryA	30.2	54.2	1747	polyketide synthase
3166	9999	3067780	3062951	4830	sp:ER	Musebacterium hovis BCG	33.5	62.3	592	acyl-CoA synthase
3167	2999	3069930	3068143	1788	prf;2310345A	Mycobacterium tuberculosis	30.8	67.4	319	hypothetical protein
3168	8999	3071140	3070214	927	pir.F70887	H37Rv Rv3802c	2			
0000	0889	3071644	3071147	498						DS4 profein
2 2 2	6670		-	1971	sp:CSP1_CORGL	Corynebacterium glutamicum (Brevibacterium flavum) ATCC	98.6	99.5	657	major secreteu protein ou protein
-	}					1 400 006 / 1				
3171	6671	3074047	3075447	1401			-			
3172		3074075	3073857	219				1 0		C. S. C.
2173			3075540	1023	sp:A85C_MYCTU	Mycobacterium tuberculosis ERDMANN RV0129C fbpC	36.3	62.5	25	
0			-+-	-		Mycobacterium tuberculosis	37.5	61.2	199	hypothetical membrane protein
3174	6674	3078772	3076715	2058	3 pir:A70888	H37Rv Rv3805c	!			Si C Para
3175	6675	3079848	3078853	966	sp:NOEC_AZOCA	Azorhizobium caulinodans ORS571 noeC	27.1	51.5	295	nodulation protein
2 7 6		1	3079848	3 504	t pir:C70888	Mycobacterium tuberculosis H37Rv Rv3807c	51.2	75.0	168	hypothetical protein
0						Mycobacterium tuberculosis	55.6	74.7	656	hypothetical protein
3177	7 6677	, 3082311	1 3080344	1968	8 pir: D / 0888	H37Rv Rv3808c	-	-		
3178	8 6678	3 3082467	7 3083960	0 1494	14	ATCC	9	n an	170	phosphatidic acid phosphatase
3179	6 6679	9 3084411	1 3083935	5 477	7 sp.BCRC_BACLI	9945A bcrC	7.97		_	
						1				

g
ne
₽
ont
ق
_
음
12

	Function			dimethylaniline monooxygenase (N-	oxide-forming)		UDP-galactopyranose mutase		hypothetical protein	glycerol kinase	hypothetical protein	acyltransferase	Cooperation Alexander	seryl-tKNA syntnetase	transcriptional regulator, GntR family	of land actifications	hypothetical protein	hypothetical protein		2,3-PDG dependent phosphoglycerate mutase		nicotinamidase or pyrazinamidase		
Matched	length (a.a.)				377		377		629	499	279	261	:	419	235		356	113		218		460	2	_
					50.4		72.9		47.8	78.8	70.3	72.0		87.6	61.7		61.2	79.7		62.8		0 0	2.00	
	Identity Similarity (%)				24.4		43.2	1	29.6	51.7	41.6	46.7		70.2	27.7		32.6	46.0		37.2		27.7	_	
	Homologous gene				Sus scrofa fmo1		1	Escherichia coli N 12 gii	Mycobacterium tuberculosis H37Rv Rv3811 csp	Pseudomonas aeruginosa ATCC 15692 glpK	Mycobacterium tuberculosis	Mycobacterium tuberculosis	75/ TV NV30 100	Mycobacterium tuberculosis H37Rv	Tochorlobio coli K10 farR		Mycobacterium tuberculosis H37Rv Rv3835	Mycobacterium tuberculosis H37Rv Rv3836		Amycolatopsis methanolica pgm			Mycobacterium smegmatis pzak	
	db Match				sp:FMO1_PIG			sp:GLF_ECOLI	pir:G70520	sp:GLPK_PSEAE	pir.A70521	nir D70521		gsp:W26465	1	SP:FAKK_ECOL	pir.H70652	pir.A70653		gp:AMU73808_1	$\overline{}$		3 prf:2501285A	
-	ORF (bp)		111	510	1302	610	710	1203	2049	1527	834	876	5	1266		714	1113	342	66	+-	+	930	1143	729
	Terminal (nt)		3084424	3085218	3087048	2700000	30002/0	3087101	3090664	3090760	3092342	3003175		3094078		3096287	3097423	3097764	3097780		-	3099454	3100698	3 3101426
	Initial (nt)		3085200	3085727	3085747	1007	308/805	3088303	3088616	3092286	3093175			3095343		3095574	3096311	3097423	2007R7R			3098825	3099556	3100698
	SEQ NO.	(a.a)	0899	6681	6682	1	6683	6684	6685	6686		_	0000	6899		0699	6691	6692	6603			9699	9699	7 6697
		(DNA)	3180	3181	3182		3183	3184	3185	3186	2187		3188	3189	8	3190	3191	3192	5	3193	5	3195	3196	3197

	Function	transcriptional regulator				hypothetical protein	Cooperation	glucan 1,4-alpna-glucosiuase	diester diester	glycerophosphory dieses	assemble of concentrations of	giuconate permease			pyruvate kinase	I Jactate dehydrogenase	ב-ומכומים מכוי) מיי פ	hypothetical protein	hydrolase or haloacid	dehalogenase-like hydrolase	efflux protein	transcription activator or	transcriptional regulator Guth lanning	phosphoesterase	shikimate transport protein	
	Matched length (a.a.)	380				107	5	432		259		456			491	250	4 0	526		224	188	224	77	255	422	
	Similarity (%)	57.1				07	<u>.</u>	55.3		54.1		71.9			47.7	1	99.7	64.8	-	58.5	67.6	1	-	68.6	74.4	-
	Identity (%)	31.6				9	43.9	28.7		29.0	25	37.3		_	л п	2.07	99.7	33.5		32.1	39.9	1	27.6	47.8	37.9	
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2)	sc6G4.33			ae hueye 2000; c	Streptonnyces ravendance ORF372	Saccharomyces cerevisiae S288C YIR019C sta1			Bacillus subtills gipd	Bacillus subtilis gntP			Corvo ebacterium dutamicum	AS019 pyk	Brevibacterium flavum lctA	Mycobacterium tuberculosis	H37Rv Rv1069c	Streptomyces coelicolor A3(2) SC1C2.30	Brevibacterium linens ORF1	tmpA	Escherichia coll N. 2 MO 1950 glcC	Mycobacterium tuberculosis	H3/KV KV2/800	Escherichia coll NIZ Silla
	db Match		gp scoc4_ss				pir: B26872	sp:AMYH_YEAST			sp:GLPQ_BACSU	SP.GNTP BACSU	<u>i</u>		_	sp:KPYK_CORGL	usn.Y25997		5 pir.C70893	s gp:SC1C2_30		-	3 sp:GLCC_ECOLI	e nir B70885		1299 sp:SHIA_ECOLI
	ORF (bp)		1035	120	552	870	327	1314	018	+	1 819	1200	1	3 642	3 159	4 1617	042		1776	12 636	27.0		32 693	706		
	Terminal		3102768	3101744	3102079	3103763	3104252	3105719	24.00.63	37 0003,	3106951	77.00.10	3109018	3108823	3110003	3110464	0110110	_	3115394	3116042		3116621	3117332		3118121	4 3119582
	Initial		3101734	3101863	3102630	3102894	3103926	3104406	0000	3106970	3107769		3108131	3109464	3109845	3112080		3113390	3113619	3115407		3116079	3116640		3117336	3118284
	SEQ NO.	_	8699	6699	6700 3		6702 3	6703		6704	6705		90/9	6707	6708	60/9	_	6710	6711	6712		6713	6714		6715	6716
	SEQ		3198 6	3199 6			3202			3204	3205		3206	3207	+	3209		3210	3211	3010	25 26	3213	3214		3215	3216

	Function	L-lactate dehydrogenase or FMN-	dependent derlydiogeriase	immunity repressor protein			phosphatase or reverse	transcriptase (RNA-dependent)	peptidase or IAA-amino acid	hydrolase	antide methionine sulfoxide	reductase	(Fe/Mn)	super oxide aging and a	transcriptional regulator	multidrug resistance transporter				100000000000000000000000000000000000000	hypothetical protein	membrane transport protein	transcriptional regulator	two-component system response	regulator
	Matched length (a.a.)	376	5	55			C	BOC C		122		210	1	164	292	384	5				216	447	137	212	1
	Similarity (%)	0 89	5.	80.0				51.3		63.1		69.1		92.7	65.8	0,0	2.0.				64.8	59.3	65.0	75.5	_
	Identity (%)		40.4	7.7	2.0			29.5		36.9		47.6		82.3	32.5	0	23.4				33.8	27.3	37.2		00.00
Table 1 (continued)	Homologous gene	V	Neisseria meningitidis IIdA	200 000	Bacillus phage pni-103 ORF I			Caenorhabditis elegaris Y51B11A.1		Arabidopsis thaliana ill1		Escherichia coli B msrA		Corynebacterium nseudodiphtheriticum sod	Desiling embtilis alf.	Bacillus subulis giro	tetA				Mycobacterium tuberculosis H37Rv Rv3850	Strentomyces cyanogenus land	Constitution of the second	Bacillus subulis 100 yvan	chrA
	db Match		prf:2219306A		sp:RPC_BPPH1			gp:CELY51B11A_1		sp:ILL1_ARATH		I IOOH Walker	Sp. Pivion_Foot	pir.140858	-	sp:GLTC_BACSU	gp:AF121000_10				pir:G70654	_	-	sp:YXAD_BACSU	prf.2518330B
	ORF	(da)	1215	405	312	138	711	1617	546	402	150		င္သ	009	\dashv	924	1134	1611	111	3 1521	7 633		8 1491	2 456	6 636
	Terminal	(nt)	3120879	3121313	3121909	3121992	3123932	3122556	3124341	3124897	2125492	10000	3125495	3126991		3127494	3129739	3131395	3133030	3131508			3133778	3135752	3135856
	Initial	(nt)	3119665	3120909	3121598	3122129	3123222	3124172	3124886	3125298	2425242	3 20040	3126145	3126392	2000210	3128417	3128606	3129785	3132920	3133028			3135268	3135297	3136491
	SEO	(a.a.)	6717 3	6718					6723		0.10	67/9	6726	7072	0/2/	6728	6729	6730	_	6732			6734	6735	6736
	SEQ		3217	3218		_	_		2003	3224	0	3225	3226	7000	3221	3228	3229	3230	3231	3232	3233	320	3234	3235	3236

	Function			two-component system sensor	histidine kinase	hypothetical protein	hypothetical protein	stage III sporulation protein	transcriptional repressor		transglycosylase-associated protein	hypothetical protein	in Post Care	hypothetical protein	DAIA pegindolindvlate synthase	AIAA pagadanaying taganaying taga	hypothetical protein	hypothetical protein		hacterial regulatory protein, gntR	family or glc operon transcriptional activator		hypothetical protein	hypothetical protein	
Codotaka	length (a.a.)			807	001	48	277	265	192	20.	87	900	067	314	130	334	84	5	1		109	-	488	267	
	Similarity (%)			7	04.0	79.2	59.2	53.6	0	90.90	71.3	6	0.89 08.0	73.9		51.2	0.99	75.0	0.00	-	56.0		48.2	78.7	
	Identity (%)				30.2	45.8	30.0	26.0	8	32.3	34.5	:	41.2	38.5		28.4	61.0	1	0.17		30.3	-	26.0	48.3	
Table 1 (continued)	Homologous gene			olinhtheriae	Corynebacterium ulprimeriae chrS	Streptomyces coelicolor A3(2) SCH69.22c	Streptomyces coelicolor A3(2)	ocillos subtilis snolli.	bacillus subsition cremitality	Mycobacterium tuberoment H37Rv Rv3173c	Escherichia coli K12 MG1655	aisolitorodist and	Mycobacterium tubercurosis H37Rv Rv2005c	Escherichia coli K12 MG1655	yhbW	Chlorobium vibrioforme ybc5	Chlamydia pneumoniae	Orleaning muridanim Nigo	TC0129		Escherichia coli K12 MG1655)	Streptomyces coelicolor SC4G6.31c	Mycobacterium tuberculosis	H3/KV KV2/446
	db Match				prf.2518330A	gp.SCH69_22	an.SCH69 20		sp:SP37_BACSU	pir:C70948	sp:TAG1_ECOLI		sp:YW12_MYCTU		Sp:YHBW_ECOLI	SN VRC5 CHLVI	-	Gar. 1330 14	PIR:F81737		surgicc Ecoli		16 gp:SC4G6_31		sp. de
	ORF (bp)	639	3	588	1311	150	822	- +	1302	639	261	-+	t 903	- -	3 987	980		1 2/3	0 141	9 207	+		1416	873	1
	Terminal (nt)	212755B	0101000	3138471	3136593	3138481	7120634	0.000	3140952	3140885	3141709		3142454		3143496	9747676	314302	3146841	3147230	3151369			3153828		3153894
	Initial (nt)	+	3130920	3137884	3137903	3138630	77	3138455	3139651	3141523	3141969	200	3143356		3144482	100	3144001	3146569	3147090	3151575		3152204	3152413		3154766
	SEQ.	-	6/3/ 3	6738 3	6739	6740		6/41	6742	6743		44/0	6745		6746	-+	6747	6748	6749	6750		16/9	6752	-+-	8 6753
			3237 6	3238	+			3241	3242	3243		3244	2245	25	3246		3247	3248	3249	000	3230	3251	0.00	35.02	3253

Table 1 (continued)

Г	1	П	$\neg T$	П	T	П		T														
	Function						methyltransferase	nodulin 21-related protein				transposon tn501 resolvase		ferredoxin precursor	hypothetical protein	transposase	transposase protein fragment TnpNC		glyceraldehyde-3-phosphate dehydrogenase (pseudogene)	lipoprotein	copper/potassium-transporting ATPase B or cation transporting ATPase (E1-E2 family)	
Matchad	length (a.a.)						217	241				56		62	55	27	46		38	180	717	
	Similarity (%)						58.1	55.2				92.9		98.4	85.5	84.0	90.0		84.2	59.4	73.4	
	Identity (%)						32.3	26.1				48.2		90.3	47.3	81.0	84.0		63.2	32.2	45.8	
	Homologous gene						Streptomyces coelicolor A3(2) SCD35.11c	soybean NO21				Pseudomonas aeruginosa TNP5		Saccharopolyspora erythraea fer	Streptomyces coelicolor A3(2)	Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum		Pyrococcus woesei gap	Synechocystis sp. PCC6803 sll0788	Archaeoglobus fulgidus AF0152	
	db Match						gp:SCD35_11	sp:NO21_SOYBN				sp:TNP5_PSEAE		sp:FER_SACER	gp:SCD31_14	GPU:AF164956_8	GPU:AF164956_23		sp:G3P_PYRWO	pir.S77018	pir:H69268	79444
	ORF (bp)	153	1452	1068	249	309	711	720	204	378	186	216	483	321	333	111	162	1038	126	099	2217	171
	Terminal (nt)	3154969	3155246	3156306	3157223	3157479	3158834	3159081	3160419	3161065	3161001	3160723	3161701	3161087	3161682	3162804	3162871	3163889	3162858	3163074	3163789	3166267
	Initial (nt)	3154817	3156697	3157373	3157471	3157787	3158124	3159800	3160216	3160688	3160816	3160938	3161219	3161407	3162014	3162694	3162710	3162852	3162983	3163733	3166005	3166437
	SEQ NO. (a.a.)	6754	6755	6756	6757	6758	6759	6760	6761	6762	6763	6764	6765	99/9	6767	6768	6929	6770	6771	6772	6773	6774
	SEQ NO. (DNA)	3254	3255	3256	3257	3258	3259	3260	3261	3262	3263	3264	3265	3266	3267	3268	3269	3270	3271	3272	3273	3274

Table 1 (continued)

Function		two-component system sensor histidine kinase		two-component response regulator or alkaline phosphatase synthesis transcriptional regulatory protein		laccase or copper resistance protein precursor A	thiol: disulfide interchange protein (cytochrome c biogenesis protein)	quinone oxidoreductase (NADPH:quinone reductase)(seta- crystallin)		zinc-transporting ATPase (Zn(II)- translocating p-type ATPase	***************************************		zinc-transporting ATPase (Zn(II)- translocating p-type ATPase	hypothetical protein		transposase	transposase
Matched length (a.a.)		301 tv		233 o		630 la	101	322 ((78 t _t			606 t _t	72 h		73 t	70 t
Similarity (%)		71.4		72.1		47.9	63.4	60.9		66.7			68.5	54.0		73.0	77.0
Identity (%)		37.5		43.4		26.7	31.7	31.4		37.2			39.8	45.0		58.0	75.0
Homologous gene		Escherichia coli K12 baeS		Bacillus subtilis phoP		Pseudomonas syringae pv. tomato copA	Bradyrhizobium japonicum tlpA	Mus musculus qor		Synechocystis sp. PCC6803 atzN			Escherichia coli K12 MG1655 atzN	Aeropyrum pernix K1 APE2572		Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum Tnp1673
db Match		sp:BAES_ECOLI		sp:PHOP_BACSU		sp:COPA_PSESM	sp:TLPA_BRAJA	sp:QOR_MOUSE		sp:ATZN_SYNY3			sp:ATZN_ECOLI	PIR:E72491		GPU:AF164956_8	GPU:AF164956_8
ORF (bp)	192	1197	828	756	672	1479	363	918	471	234	315	207	1875	390	309	216	258
Terminal (nt)	3167169	3166450	3168566	3167646	3169340	3170892	3171616	3171619	3173465	3173857	3174380	3174784	3176901	3175254	3177482	3177089	3177308
Initial (nt)	3166978	3167646	3167739	3168401	3168669	3169414	3171254	3172536	3172995	3173624	3174066	3174990	3175027	3175643	3177174	3177304	3177565
SEQ NO.	6775	6776	6777	6778	6779	6780	6781	6782	6783	6784	6785	6786	6787	6788	62.89	6790	6791
SEQ NO.	3275	3276	3277	3278	3279	3280	3281	3282	3283	3284	3285	3286	3287	3288	3289	3290	3291

Table 1 (continued)

									_		- 1				$\overline{}$		- 1						
	Function	transposase (IS1628)	thioredoxin		transmembrane transport protein or 4-hydroxybenzoate transporter		hypothetical protein	replicative DNA helicase		50S ribosomal protein L9	single-strand DNA binding protein	30S ribosomal protein S6		hypothetical protein		penicillin-binding protein	hypothetical protein	bacterial regulatory protein, marR family	hypothetical protein		hypothetical protein	hypothetical protein	ABC transporter ATP-binding protein
Matched	length (aa.)	53	100		421		208	461		154	229	92		480		647	107	137	296		7.1	298	433
-	Similarity (%)	96.2	74.0		60.1		62.5	73.1		71.4	51.5	78.3		68.3		60.1	72.0	65.0	61.8		70.4	63.8	64.0
	Identity (%)	92.5	39.0		27.1		35.1	37.7		42.2	30.6	28.3		41.5		29.1	41.1	35.1	29.7		32.4	30.2	31.2
	Homologous gene	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Escherichia coli K12 thi2		Pseudomonas putida pcaK		Escherichia coli K12 yqil	Escherichia coli K12 dnaB		Escherichia coli K12 RL9	Escherichia coli K12 ssb	Escherichia coli K12 RS6		Mycobacterium smegmatis mc(2)155		Bacillus subtilis ponA	Mycobacterium tuberculosis H37Rv Rv0049	Mycobacterium tuberculosis H37Rv Rv0042c	Mycobacterium tuberculosis H37Rv Rv2319c yofF		Bacillus subtilis yhgC	Escherichia coli K12 yceA	Escherichia coli K12 ybjZ
	db Match	gp:AF121000_8	sp:THI2_ECOLI		sp:PCAK_PSEPU		sp:YQJI_ECOLI	sp:DNAB_ECOLI		sp:RL9_ECOLI	Sp:SSB_ECOLI	sp:RS6_ECOLI		gp:AF187306_1		sp:PBPA_BACSU	sp:Y0HC_MYCTU	pir.B70912	sp:Y0FF_MYCTU		sp:YHGC_BACSU	sp:YCEA_ECOLI	sp:YBJZ_ECOLI
	ORF (bp)	159	447	264	1344	159	576	1530	516	450	675	285	189	1458	882	2160	357	471	942	495	321	936	1263
	Terminal (nt)	3177525	3178112	3178872	3180392	3180946	3180551	3181337	3183984	3183478	3183987	3184701	3185348	3185536	3188793	3187042	3189296	3190347	3191319	3191848	3191922	3192266	3193252
	Initial (nt)	3177683	3178558	3178609	3179049	3181104	3181126	3182866	3183469	3183927	3184661	3184985	3185536	3186993	3187912	3189201	3189652	3189877	3190378	3191354	3192242	3193201	3194514
010	SEQ NO. (a.a.)	6792	6793	6794	6795	9629	6797	6798	6229	6800	6801	6802	6803	6804	6805	9089	6807	6808	6809	6810	6811	6812	6813
0 1	SEQ NO. (DNA)	3292	3293	3294	3295	3296	3297	3298	3299	3300	3301	3302	3303	3304	3305	3306	3307	3308	3309	3310	3311	3312	3313

Table 1 (continued)

_										_							$\neg \neg$		
	Function	ABC transporter ATP-binding protein	hypothetical protein	hypothetical protein			DNA protection during starvation protein	formamidopyrimidine-DNA glycosylase	hypothetical protein			methylated-DNAprotein-cysteine S-methyltransferase	zinc-binding dehydrogenase or quinone oxidoreductase (NADPH:quinone reductase) or alginate lyase		membrane transport protein	malate oxidoreductase [NAD] (malic enzyme)	gluconokinase or gluconate kinase	teicoplanin resistance protein	teicoplanin resistance protein
	Matched length (a.a.)	221	237	360			154	268	404			166	231		398	392	486	169	159
	Similarity (%)	80.1	42.0	90.0			64.9	55.6	9.99			63.3	63.6		66.3	99.5	53.7	60.4	159.0
	Identity (%)	48.9	18.0	77.8			37.7	28.4	47.5			38.0	33.3		26.4	99.7	24.5	27.8	27.0
(Homologous gene	Escherichia coli K12 MG1655 ybjZ	Campylobacter jejuni Cj0606	Mycobacterium tuberculosis H37Rv Rv0046c			Escherichia coli K12 dps	Escherichia coli K12 mutM or fpg	Escherichia coli K12 rtcB			GMT_HUMAN Homo sapiens mgmT	Cavia porcellus (Guinea pig) qor		Mycobacterium tuberculosis H37Rv Rv0191 ydeA	Corynebacterium melassecola (Corynebacterium glutamicum) ATCC 17965 maIE	Bacillus subtilis gntK	Enterococcus faecium vanZ	Enterococcus faecium vanZ
	db Match	sp:YBJZ_ECOLI	pir:E81408	pir.F70912			sp:DPS_ECOLI	sp:FPG_ECOLI	sp:RTCB_ECOLI			sp:MGMT_HUMAN	sp:QOR_CAVPO		sp:YDEA_ECOLI	gp:AF234535_1	sp:GNTK_BACSU	sp:VANZ_ENTFC	sp:VANZ_ENTFC
	ORF (bp)	069	1977	1089	909	1485	495	813	1149	1089	573	474	1011	111	1176	1176	1482	591	525
	Terminal (nt)	3194514	3195210	3198500	3198582	3199202	3201260	3202712	3204100	3202979	3204728	3204731	3205222	3206756	3208024	3209454	3209705	3211246	3211904
	Initial (nt)	3195203	3197186	3197412	3199187	3200686	3201754	3201900	3202952	3204067	3204156	3205204	3206232	3206646	3206849	3208279	3211186	3211836	3212428
	SEQ NO. (a.a.)	6814	6815	6816	6817	6818	6819	6820	6821	6822	6823	6824	6825	6826	6827	6828	6829	6830	6831
	SEQ NO. (DNA)	3314	3315	3316	3317	3318	3319	3320	3321	3322	3323	3324	3325	3326	3327	3328	3329	3330	3331

Table 1 (continued)

Function	mercury(I) reductase		D-amino acid denydrogenase smail subunit				NAD(P)H nitroreductase			leucyl-tRNA synthetase	hypothetical membrane protein	virulence-associated protein		hypothetical protein	bifunctional protein (homoprotocatechuate catabolism bifunctional isomerase/decarboxylase) (2- hydroxyhepta-2,4-diene-1,7-dioate isomerase and 5-carboxymethyl-2- oxo-hex-3-ene-1,7dioate decarboxylase)	gentisate 1,2-dioxygenase or 1- hydroxy-2-naphthoate dioxygenase	bacterial regulatory protein, lacl family or pectin degradation repressor protein	transmembrane transport protein or 4-hydroxybenzoate transporter
Matched length	(a.a.)	110	444				194			943	104	86		247	298	339	229	454
Similarity (%)	85.6	0.50	54.5				55.2			68.1	40.4	81.4		53.8	50.3	64.3	60.7	8.09
Identity (%)	000	29.9	27.3				25.8			47.7	40.4	55.8		31.6	28.5	34.2	25.3	27.5
Homologous gene	Vaccon Circuits	Staphylococcus aureus merA	Escherichia coli K12 dadA				Thermus thermophilus nox			Bacillus subtilis syl	Escherichia coli K12	Dichelobacter nodosus vapl		Streptomyces coelicolor SCC54.19	Escherichia coli K12 hpcE	Pseudomonas alcaligenes xlnE	Pectobacterium chrysanthemi kdgR	Pseudomonas putida pcaK
db Match		sp:MERA_STAAU	sp:DADA_ECOLI				sp:NOX_THETH			sp:SYL_BACSU	sp:YBAN_ECOLI	sp:VAPI_BACNO		gp:SCC54_19	sp:HPCE_ECOLI	gp:AF173167_1	sp:KDGR_ERWCH	sp:PCAK_PSEPU
ORF (hn)	(20)	1344	1230	1503	330	321	609	924	1452	2856	429	357	774	723	837	1125	780	1356
Terminal (rt)	\neg	3213931	3213934	3215257	3216886	3217457	3218601	3219700	3222495	3219778	3223150	3223089	3225374	3223992	3224718	3225563	3226910	3229079
Initial	(m)	3212588	3215163	3216759	3217215	3217777	3217993	3218777	3221044	3222633			3224601		3225554	3226687	3227689	3227724
SEQ NO.	(a.a.)	6832	6833	6834	6835	6836	6837	6838	6839	6840	6841	6842	6843		6845	6846	6847	6848
SEQ.		3332	3333	3334	3335	3336	3337	3338	3339	3340	3341	3342	3343	3344	3345	3346	3347	3348

ð
Φ
\neg
==
Ξ
0
်ဌ
\sim
~
۵
_
9
100

															- $-$	
	Function	salicylate hydroxylase	proton/glutamate symporter or excitatory amino acid transporter2	tryptophan-specific permease	anthranilate synthase component l		anthranilate synthase component II	anthranilate phosphoribosyltransferase	indole-3-glycerol phosphate synthase (IGPS) and N-(5'- phosphoribosyl) anthranilate isomerase(PRAI)		tryptophan synthase beta chain	tryptophan synthase alpha chain	hypothetical membrane protein	PTS system, IIA component or unknown pentitol phosphotransferase enzyme II, A component	ABC transporter ATP-binding protein	ABC transporter
	Matched length (a.a.)	476	507	170	515		208	348	474		417	283	521	152	305	547
	Similarity (%)	49.4	54.4	99.4	8.66		100.0	99.4	98.3		97.9	96.5	86.8	71.7	63.6	57.2
	Identity (%)	28.2	25.4	99.4	99.2		99.0	99.4	97.3		97.6	95.4	9.09	30.3	32.5	25.2
(namuna) i alahi	Homologous gene	Pseudomonas putida	Homo sapiens eat2	Corynebacterium glutamicum AS019 ORF1	Brevibacterium lactofermentum trpE		Brevibacterium lactofermentum trpG	Corynebacterium glutamicum ATCC 21850 trpD	Brevibacterium lactofermentum trpC		Brevibacterium lactofermentum trpB	Brevibacterium lactofermentum trpA	Streptomyces coelicolor A3(2) SCJ21.17c	Escherichia coli Κ12 ρtxA	Pseudomonas stutzeri	Streptomyces coelicolor A3(2) SCH10.12
	db Match	prf:1706191A	sp:EAT2_HUMAN	pir.JC2326	sp:TRPE_BRELA		TRPG_BRELA	sp:TRPD_CORGL	sp:TRPC_BRELA		sp:TRPB_BRELA	sp:TRPA_BRELA	gp:SCJ21_17	sp:PTXA_ECOLI	sp:NOSF_PSEST	
	ORF (bp)	1326		510	1554	171	624	1044	1422	969	1251	840	1539	810	906	1584
	Terminal (nt)	3230444		3233105	3234956	3233250	3235579	3236645	3238062	3236518	3239332	3240171	3240313	3241879	3243759	
	initial (nt)	3229119	3232304	3232596	3233403	3233420	3234956	3235602	3236641	3237213		3239332	3241851	3242688	3242854	1
	SEQ NO.	6849	6850	6851	6852	6853	6854	6855	6856	6857	6858	6829	6860	6861	6862	
	SEQ NO.	_		3351	3352	3353	3354	3355	3356	3357	3358	3359	3360	3361	3362	3363

Table 1 (continued)

										$\overline{}$		\neg				т		_
	Function	cytchrome b6-F complex iron-sulfur subunit (Rieske iron-sulfur protein)	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, arsR family or methylenomycin A resistance protein	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical protein					acetoin(diacetyl) reductase (acetoin dehydrogenase)	hypothetical protein	di-∕tripeptide transpoter		bacterial regulatory protein, tetR family	hydroxyquinol 1,2-dioxygenase
	Matched length (a.a.)	305	336	328	262	102	347	226					238	58	469		188	246
	Similarity (%)	63.6	64.3	74.7	54.6	79.4	64.3	69.5					52.9	84.5	71.6		50.5	62.2
	dentity (%)	32.5	33.3	43.6	34.0	45.1	33.4	31.4					26.9	53.5	34.5		26.1	31.7
ומסום ו (ספוויוומסק)	Homologous gene	Chlorobium limicola petC	Thermoanaerobacter brockii nadO	Escherichia coli K12 yfeH	Streptomyces coelicolor A3(2) SCI11.36c	Streptomyces coelicolor Plasmid SCP1 mmr	Thermoanaerobacter brockii nadO	Saccharomyces cerevisiae ymyO					Klebsiella terrigena budC	Mycobacterium tuberculosis H37Rv Rv2094c	Lactococcus lactis subsp. lactis dtpT		Escherichia coli K12 acrR	Acinetobacter calcoaceticus catA
	db Match	sp:UCRI_CHLLT	sp:NADO_THEBR	SD:YFEH ECOLI	gp:SCI11_36	pir.A29606	sp:NADO_THEBR	sp:YMY0_YEAST					sp:BUDC_KLETE	sp:YY34_MYCTU	sp:DTPT_LACLA		sp:ACRR_ECOLI	sp:CATA_ACICA
	ORF (bp)	450	1110	972		348	1092	648	153	192	168	321	753	180	1359	171	555	903
	Terminal (nt)	3245766	3245822	3248205	3249165	3249187	3250742	3251405	3251466	3251743	3252133	3252316	3253480	3253739	3253824	3255719		3256471
	Initial (nt)	3245317	3246931	3247234	3248392	3249534	3249651	3250758	3251618		3252300	3252636		3253560	3255182	3255549		3257373
	SEQ No.	(a.a.) 6864		6866		6868	6989	6870	6871	6872		6874		6876	6877	6878		6880
	SEQ.	(DNA) 3364		3366	3367	3368	3369	3370	3371	3372	3373	3374	3375	3376	3377	3378	3379	3380

_	
-	
_	
Õ	
ued	
⊏	
conti	
Ξ.	
~	
٧	
Ţ	
-	
ď	
_	١
2	
12P	

	Function	maleylacetate reductase	sugar transporter or D-xylose-proton symporter (D-xylose transporter)	bacterial transcriptional regulator or acetate operon repressor	oxidoreductase	diagnostic fragment protein	and	myo-inositoi z-deriyarogeriase	denydrogenase of inyo-mostror dehydrogenase or streptomycin biosynthesis protein	phosphoesterase				111111111111111111111111111111111111111	Stornaun		DEAD box RNA helicase family	hypothetical membrane protein		phosphomethylpyrimidine Kinase	mercuric ion-binding protein or heavy-metal-associated domain containing protein	ectoine/proline uptake protein
	Matched length (a.a.)	351	513	280	357	270	000	332	343	1242				000	200		1660	141		125	67	297
	Similarity (%)	75.5	58.3	60.7	55.7	58.2		59.6	62.4	62.7					57.3		80.2	61.0		76.8	70.1	62.3
	Identity 8 (%)	43.0	31.4	25.7	27.2	25.9		26.5	34.1	33.3					28.6		58.4	34.8		50.4	46.3	29.9
(acimina)	Homologous gene	Pseudomonas sp. P51	Escherichia coli K12 xylE	Salmonella typhimurium icIR	Escharichia coli K12 vdaJ	Listeria innocua strain 4450		Sinorhizobium meliloti idhA	Streptomyces griseus strl	Bacillus subtilis vvnB					Caenorhabditis elegans unc1		Mycobacterium bovis BCG RvD1-Rv2024c	Mycobacterium leprae u2266k		Bacillus subtilis thiD	Bacillus subtilis yvgY	Corynebacterium glutamicum proP
	db Match	CREAT DRESO	Sp: XYLE ECOLI	sp:ICLR_SALTY	- 00	sp. 1003	gsp.vvol.col	sp:MI2D_BACSU	sp:STRI_STRGR	nir. C 7 0 0 4 4	1.00.00.110				sp:UNC1_CAEEL		gp:MBO18605_3	prf:2323363AAM		SD:THID BACSU	pir.F70041	prf:2501295A
	ORF (bp)						8	1005	1083	1020	4032	645	618	1086	744	696	4929	507	360	900	243	837
	Terminal (nt)		3258561		700000	3203221	3204115	3265146	3266266	2074700	3271093	3267913	3268618	3272477	3274488	3275602	3276671	3281666	3283101	3282347	3283383	3283473
	Initial (nt)		3258491	3261129		3262145	3263237	3264142	3265184			3268557	3269235	3271392	3275231	3276570	3281599	3282172	3282742			3284309
	SEQ NO.		6881				6885	6886		0	9889	6889	0689	6891	6892	6893	6894	6895				6899
			3381				3385	3386		1	3388	3389	3390	3391	3392	3393	3394	3395	3396	2207	3398	3399

	Function	iron(III) dicitrate-binding periplasmic protein precursor or iron(III) dicitrate transport system permease protein	mitochondrial respiratory function protein or zinc-binding dehydrogenase or NADPH quinone oxidoreductase			phosphometnylpyrimidine kinase		mercuric ion-binding protein or heavy-metal-associated domain containing protein	branched-chain amino acid transport	branched-chain amino acid transport	hypothetical protein	A	tKNA nucleoudylualisielase	mutator mutT protein		hypothetical membrane protein	hypothetical membrane protein		RNA polymerase sigma-H factor or	sigma-70 factor (ECF subfamily)	thioredoxin reductase
	Matched length (a.a.)	iron 279 pro	324 pro oxio		寸	249 pho		67 he	102 bra	212 bra	T		4/1 tR	234 mi		858 hy	1201 hy		A PO	\dashv	308 th
	Similarity N	60.6	58.0			75.5		70.1	65.7	67.0	F. 9.7	200.7	51.8	69.2		54.3	60.1		6	90.9	82.5
	Identity 8 (%)	29.4	27.2			46.2		41.8	36.3	32.1	22.7	23.7	26.8	43.6		25.8	35.7		0	30.2	60.4
lable i (collined)	Homologous gene	Escherichia coli K12 fecB	Schizosaccharomyces pombe mrf1			Bacillus subtilis thiD		Bacillus subtilis yvgY	Bacillus subtilis azID		Bacillus subtills azita	Escherichia coli K12 yqgt	Escherichia coli K12 cca	Mycobacterium tuberculosis H37Rv Rv3908		Mycobacterium tuberculosis H37Rv Rv3909	Mycobacterium tuberculosis H37Rv Rv3910			Pseudomonas aeruginosa algU	Streptomyces clavuligerus trxB
	db Match	sp:FECB_ECOLI	sp:MRF1_SCHPO			sp:THID_BACSU		pir.F70041	110000 0120	Sp. AZLD_DACOO	sp:AZLC_BACSU	sp:YQGE_ECOLI	sp:CCA_ECOLI	pir.E70600		pir:F70600	pir:G70600			sp:RPSH_PSEAE	sp:TRXB_STRCL
	ORF (bp)		1122	384	219	798	345		2,40	343	711	267	1320	996	273	2511	3249	703	3	603	951
	Terminal (nt)	66	3286576	3287005	3287079	3287393	3288609	3288885	10000	328897	3289311	3290025	3290623	3293497	3292610		3299404	900000	_	3300263	3301321
	Initial (nt)	3285355	3285455	3286622							3290021	3290591	3291942		3292882		3296156		3291100	3299661	3300371
	SEQ.	(a.a.)	6901	2008			2002			6907	8069	6069			6912		6914	$\overline{}$	6915	6916	6917
		(DNA)	3401	2402	3403	3404	3406	3406		3407	3408	3409	3410	3411	3412	3413	3414		3415	3416	3417

g g
ĭ
-=
(cont
~
<u>ම</u>
apl
$\overline{}$

	Function		thioredoxin ch2, M-type	N-acetylmuramovi-I -alanine	amidase			hypothetical protein	hypothetical protein	partitioning or sporulation protein	glucose inhibited division protein B	hypothetical membrane protein	ribonuclease P protein component	50S ribosomal protein L34			L-aspartate-alpha-decarboxylase precursor	2-isopropyimalate synthase	hypothetical protein	aspartate-semialdehyde dehydrogenase	3-dehydroquinase
	Matched length (a.a.)		119		196			212	367	272	153	313	123	47			136	616	85	344	149
	Similarity (%)		76.5		75.4			58.5	60.5	78.0	64.7	75.4	59.4	93.6			100.0	100.0	100.0	100.0	100.0
	Identity (%)		42.0	2 .	51.0			34.4	37.6	65.0	36.0	44.7	26.8	83.0			100.0	100.0	100.0	100.0	100.0
lable I (columnaca)	Homologous gene		Citting and reinherdtii thic	Chiamiyaomonas Tenniai da ana	Bacillus subtilis cwlB			Mycobacterium tuberculosis H37Rv Rv3916c	Pseudomonas putida ygi2	Mycobacterium tuberculosis H37Rv parB	Escherichia coli K12 gidB	Mycobacterium tuberculosis H37Rv Rv3921c	Bacillus subtilis rnpA	Mycobacterium avium rpmH			Corynebacterium glutamicum panD	Corynebacterium glutamicum ATCC 13032 leuA	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glutamicum asd	Corynebacterium glutamicum ASO19 aroD
	db Match		1000	SP:1HIZ_CHLRE	sp:CWLB_BACSU			pir:D70851	sp:YGI2_PSEPU	sp:YGI1_PSEPU	Sp:GIDB_ECOLI	pir.A70852	SP. RNPA BACSU	qp:MAU19185_1			gp:AF116184_1	sp:LEU1_CORGL	sp:YLEU_CORGL	sp:DHAS_CORGL	gp:AF124518_1
	ORF (bp)	1185		372	1242	777	1041	618	1152	837	699	951	300	336	294	222	408	1848	255	1032	447
	Terminal (nt)	2200410	3200118	3301729	3302996	3301989	3304475	3302999	3303636	3304835	3305864	3306682	1707050	3308412	3309321	3308822	147573	266154	268814	271691	446521
	Initial (nt)	00000	3301303	3301358	3301755	3302765	3303435	3303616	3304787		3306532		0900000	3308747	3309028			268001	269068	270660	446075
	SEQ No.	+	6918	6919	6920	6921	+	6923	6924	6925	8926			0250			6932	6933	6934	6935	9269
			3418	3419	3420	3421	3422	3423	3424	3425	3476	3427	0	3428	3/30	5 5	3432	3433	3434	3435	3436

	Function	elongation factor Tu	preprotein translocase secY subuit	isocitrate dehydrogenase (oxalosuccinatedecarboxylase)	acyl-CoA carboxylase or biotin- binding protein	citrate synthase	putative binding protein or peptidyl- prolyl cis-trans isomerase	glycine betaine transporter	hypothetical membrane protein	L-lysine permease	aromatic amino acid permease	hypothetical protein	succinyl diaminopimelate desuccinylase	proline transport system	arginyl-tRNA synthetase	
	Matched length (a.a.)	396	440	738	591	437	118	595	426	501	463	316	369	524	550	
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
	Identify (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13059 tuf	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 secY	Corynebacterium glutamicum ATCC 13032 icd	Corynebacterium glutamicum ATCC 13032 accBC	Corynebacterium glutamicum ATCC 13032 gltA	Corynebacterium glutamicum ATCC 13032 fkbA	Corynebacterium glutamicum ATCC 13032 betP	Corynebacterium glutamicum ATCC 13032 orf2	Corynebacterium glutamicum ATCC 13032 lysl	Corynebacterium glutamicum ATCC 13032 aroP	Corynebacterium glutamicum ATCC 13032 orf3	Corynebacterium glutamicum ATCC 13032 dapE	Corynebacterium glutamicum ATCC 13032 putP	Corynebacterium glutamicum AS019 ATCC 13059 argS	
	db Match	sp:EFTU_CORGL	sp:SECY_CORGL	sp:IDH_CORGL	prf.2223173A	sp:CISY_CORGL	sp:FKBP_CORGL	sp:BETP_CORGL	sp:YLI2_CORGL	sp:LYSI_CORGL	sp:AROP_CORGL	pir.S52753	pf.2106301A	gp:CGPUTP_1	sp:SYR_CORGL	
	ORF (bp)	1188	1320	2214	1773	1311	354	1785	1278	1503	1389	948	1107	1572	1650	_
	Terminal (nt)	527563	570771	677831	718580	879148	879629	946780	1029006	1030369	1153295	1154729	1156837	1218031	1239923	
	Initial (nt)	526376	569452	680044	720352	877838	879276	944996	1030283	1031871	1154683	1155676	1155731	1219602	1238274	
	SEQ NO.	(a.a.) 6937		6633	6940	6941	6942	6943	6944	6945	6946	6947	6948	6949	6950	
		(DNA) (3439		3441	3442	3443	3444	3445	3446	3447	3448	3449	3450	

_
_
τ
~
(continued)
_
_
_
.=
-
_
_
\sim
~
u
$\overline{}$
•
ก
_=
_
_
Table

										ase		te			
	Function	diaminopimelate (DAP) decarboxylase (meso- diaminopimelate decarboxylase)	homoserine dehydrogenase	homoserine kinase	ion channel subunit	lysine exporter protein	lysine export regulator protein	acetohydroxy acid synthase, large subunit	acetohydroxy acid synthase, small subunit	acetohydroxy acid isomeroreductase	3-isopropylmalate dehydrogenase	PTS system, phosphoenolpyruvate sugar phosphotransferase (mannose and glucose transport)	acetylglutamate kinase	ornithine carbamoyltransferase	arginine repressor
Matched	length (a.a.)	445	445	309	216	236	290	626	172	338	340	683	294	319	171
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Homologous gene	Corynebacterium glutamicum AS019 ATCC 13059 lysA	Corynebacterium glutamicum AS019 ATCC 13059 hom	Corynebacterium glutamicum AS019 ATCC 13059 thrB	Corynebacterium glutamicum R127 orf3	Corynebacterium glutamicum R127 lysE	Corynebacterium glutamicum R127 lysG	Corynebacterium glutamicum ATCC 13032 ilvB	Corynebacterium glutamicum ATCC 13032 ilvN	Corynebacterium glutamicum ATCC 13032 ilvC	Corynebacterium glutamicum	Corynebacterium glutamicum KCTC1445 ptsM	Corynebacterium glutamicum ATCC 13032 argB	Corynebacterium glutamicum ATCC 13032 argF	Corynebacterium glutamicum ASO19 argR
	db Match	sp:DCDA_CORGL	sp:DHOM_CORGL	sp:KHSE_CORGL	gsp:W37716	sp:LYSE_CORGL	sp:LYSG_CORGL	sp:ILVB_CORGL	pir.B48648		sp:LEU3_CORGL		sp:ARGB_CORGL	sp:OTCA_CORGL	gp:AF041436_1
	ORF (bp)		1335	927	627	708	870	1878	516	1014	1020	2049	882	957	513
	Terminal (63	1243841	1244781	1328243	1328246	1329884	1340008	1340540	1341737	1354508	1425265	1467372	1469521	1470040
	Initial (nt)	29	1242507	1243855	1327617	1328953	1329015	1338131					1466491		1469528
	SEQ.	<u> </u>	6952	6953	6954	6955	6956	6957	6958	6929			6962		
	SEQ.	(DNA)	3452		3454	3455	3456	3457	3458	3459	3460	3461	3462	3463	3464

$\overline{}$
ē
<u>⊒</u>
뒫
္ပင္ပ
$\overline{}$
<u>0</u>
ge
13

			_												
	Function	NADH dehydrogenase	phosphoribosyl-ATP- pyrophosphohydrolase	ornithine-cyclodecarboxylase	ammonium uptake protein, high affinity	protein-export membrane protein secG	phosphoenolpyruvate carboxylase	chorismate synthase (5- enolpyruvylshikimate-3-phosphate phospholyase)	restriction endonuclease	sigma factor or RNA polymerase transcription factor	glutamate-binding protein	recA protein	dihydrodipicolinate synthase	dihydrodipicolinate reductase	L-malate dehydrogenase (acceptor)
	Matched length (a.a.)	467	87	362	452	77	919	410	632	331	295	376	301	248	200
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
lable (colleged)	Homologous gene	Corynebacterium glutamicum ATCC 13032 ndh	Corynebacterium glutamicum ASO19 hisE	Corynebacterium glutamicum ATCC 13032 ocd	Corynebacterium glutamicum ATCC 13032 amt	Corynebacterium glutamicum ATCC 13032 secG	Corynebacterium glutamicum ATCC 13032 ppc	Corynebacterium glutamicum AS019 aroC	Corynebacterium glutamicum	Corynebacterium glutamicum	Corynebacterium glutamicum ATCC 13032 gluB	Corynebacterium glutamicum AS019 recA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapB	Corynebacterium glutamicum R127 mgo
	db Match	gp:CGL238250_1		gp:CGL007732_4	gp:CGL007732_3	gp:CGL007732_2	prf:1509267A	gp:AF124600_1	pir.B55225		sp:GLUB_CORGL		sp:DAPA_BRELA	sp:DAPB_CORGL	gp:CGA224946_1
	ORF (bp)	1401	261	1086	1356	231	2757	1230	1896			1128	603	744	1500
	Terminal (nt)	1543154	1586465	1674123	1675268	1677049	1677387	1719669	1882385	2021846	2061504	2063989	2079281	2081191	2113864
	Initial (nt)	54		1675208	1676623	1677279	1680143	1720898	1880490	2020854			2080183	2081934	2115363
	SEQ.	(a a.) 6965		. 2969			6970		6972	6072			6976	7769	8 6978
		(DNA)		3467	3468	3469	3470	3471	3177	2472	3473	3475	3476	3477	3478

~	
ē	
(continued)	
Ħ	
ಶ	
_	
<u>e</u>	
Table	
1	

_					Ţ										Ì		
	Function	uridilylyltransferase, uridilylyl- removing enzyme	nitrogen regulatory protein P-II	ammonium transporter	glutamate dehydrogenase (NADP+)	pyruvate kinase	glucokinase	glutamine synthetase	threonine synthase	ectoine/proline/glycine betaine carrier	molate cynthase	ווומומוס סאוווומסס	isocitrate lyase	glutamate 5-kinase	cystathionine gamma-synthase	ribonucleotide reductase	glutaredoxin
1000	Matched length (a.a.)	692	112	438	447	475	323	477	481	615	7.00	85	432	369	386	148	77
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		100.0	100.0	100.0	100.0	100.0	100.0
lable I (commer-)	Homologous gene	Corynebacterium glutamicum ATCC 13032 glnD	Corynebacterium glutamicum ATCC 13032 glnB	Corynebacterium glutamicum ATCC 13032 amtP	Corynebacterium glutamicum ATCC 17965 gdhA	Corynebacterium glutamicum AS019 pyk	Corynebacterium glutamicum ATCC 13032 glk	Corynebacterium glutamicum ATCC 13032 glnA	Corynebacterium glutamicum	Corynebacterium glutamicum	ATCC 13032 ectr	Corynepacterium glucamicum ATCC 13032 aceB	Corynebacterium glutamicum ATCC 13032 aceA	Corynebacterium glutamicum ATCC 17965 proB	Corynebacterium glutamicum ASO19 metB	Corynebacterium glutamicum ATCC 13032 nrdl	Corynebacterium glutamicum ATCC 13032 nrdH
	db Match	gp:CAJ10319_4		gp:CAJ10319_2	pir: S32227	sp:KPYK_CORGL	gp:AF096280_1	prf:2322244A	SD:THRC CORGL		-	pir:140715	pir:140713	sp:PROB_CORGL	gp:AF126953_1		gp:AF112535_1
	ORF (bp)		336	1314	1341	1425	696	1431	1443		240	2217	1296	1107	1158	444	231
	Terminal (nt)	99	2171751	2172154	2194742	2205668	2316582	2350259	2353600	20000	2448320	2467925	2472035	2496670	2590312	2679684	2680419
	Initial	=======================================		2173467	2196082	2207092	2317550	2348829	2255042	250002	24501 /2	2470141	2470740	2497776			
	SEQ NO.	(a.a.)		6981	6982	6983	6984	6985	9000	0000	6987	6988	6869	6990			
	SEQ.	2 0				3483	3484	3485	0	3480	3487	3488	3489	3490	3491	3492	3493

	Function		meso-diaminopimelate D- dehydrogenase	porin or cell wall channel forming	protein	acetate kinase		phosphate acetyltransferase	multidrug resistance protein or	macrolide-efflux pump or drug:proton antiporter	ATP_dependent protease regulatory	subunit	prephenate dehydratase		ectoine/proline uptake protein		
		(a.a.)	320		45	397		329		459		852	315	2	504	3	
	Identity Similarity	(%)	100.0		100.0	100.0		100.0		100.0		100.0	0	0.00	007	2.00	
	Identity (%)		100.0	100.0		100 0		100.0	100.0			100.0	100.0		9	100.0	
Table 1 (continued)	Homologous gene		Corynebacterium glutamicum	KY10755 ddn	Corynebacterium glutamicum MH20-22B porA	Corynebacterium glutamicum	ATĆC 13032 ackA	Corynebacterium glutamicum	ALCC 13032 pra	Corynebacterium glutamicum ATCC 13032 cmr		Corynebacterium glutamicum ATCC 13032 clpB		Corynebacterium glutamicum pheA		ATCC 13032 proP	
	db Match		10000	sp.non-conce	gp:CGL238703_1		1191 sp:ACKA_CORGL	nrf2516394A		1377 prf.2309322A		sp:CLPB_CORGL		prf:1210266A		1512 prf.2501295A	
		ORF (bp)		096			1191	987				2556		945			
	- 1	Terminal (nt)		2786756 2887944			2935315	2028508				2963606		3098578		3272563	
				6994 2787715	2888078		6996 2936505	404	782/484	2961342		2966161		7000 3099522		7001 3274074	
		SEQ NO.		5994		6995		1	7869	8008)		6669			7001	
		SEQ.	(DNA)	3494	3405		3496		3497			2400	3499		2000	3501	

Example 2

Determination of effective mutation site

(1) Identification of mutation site based on the comparison of the gene nucleotide sequence of lysine-producing B-6 strain with that of wild type strain ATCC 13032

Corynebacterium glutamicum B-6, which is resistant to S-(2-aminoethyl) cysteine (AEC), rifampicin, streptomycin and 6-azauracil, is a lysine-producing mutant having been mutated and bred by subjecting the wild type ATCC 13032 strain to multiple rounds of random mutagenesis with a N-methyl-N'-nitro-N-nitrosoguanidine (NTG) mutagen, Biotechnol., screening (Appl. Microbiol. *32*: 269-273 (1989)). First, the nucleotide sequences of genes derived from the B-6 strain and considered to relate to the lysine production were determined by a method similar to the above. The genes relating to the lysine production include lysE and lysG which are lysine-excreting genes; ddh, dapA, hom diaminopimelate dehydrogenase, lysC (encoding and dihydropicolinate synthase, homoserine dehydrogenase and aspartokinase, respectively) which are lysine-biosynthetic genes; and pyc and zwf (encoding pyruvate carboxylase and glucose-6-phosphate dehydrogenase, respectively) which are glucose-metabolizing genes. The nucleotide sequences of the genes derived from the production strain were compared with the corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and

analyzed. As a result, mutation points were observed in many genes. For example, no mutation site was observed in lyse, lyse, ddh, dapA, and the like, whereas amino acid replacement mutations were found in hom, lyse, pyc, zwf, and the like. Among these mutation points, those which are considered to contribute to the production were extracted on the basis of known biochemical or genetic information. Among the mutation points thus extracted, a mutation, Val59Ala, in hom and a mutation, Pro458Ser, in pyc were evaluated whether or not the mutations were effective according to the following method.

(2) Evaluation of mutation, Val59Ala, in hom and mutation, Pro458Ser, in pyc

It is known that a mutation in hom inducing requirement or partial requirement for homoserine imparts lysine productivity to a wild type strain (Amino Acid Fermentation, ed. by Hiroshi Aida et al., Japan Scientific Societies Press). However, the relationship between the mutation, Val59Ala, in hom and lysine production is not known. It can be examined whether or not the mutation, Val59Ala, in hom is an effective mutation by introducing the mutation to the wild type strain and examining the lysine productivity of the resulting strain. On the other hand, it can be examined whether or not the mutation, Pro458Ser, in pyc is effective by introducing this mutation

into a lysine-producing strain which has a deregulated lysine-bioxynthetic pathway and is free from the pyc mutation, and comparing the lysine productivity of the resulting strain with the parent strain. As such a lysineproducing bacterium, No. 58 strain (FERM BP-7134) selected (hereinafter referred to the "lysine-producing No. 58 strain" or the "No. 58 strain"). Based on the above, it was determined that the mutation, Val59Ala, in hom and the mutation, Pro458Ser, in pyc were introduced into the wild type strain of Corynebacterium glutamicum ATCC 13032 (hereinafter referred to as the "wild type ATCC 13032 strain" or the "ATCC 13032 strain") and the lysineproducing No. 58 strain, respectively, using the gene replacement method. A plasmid vector pCES30 for the gene replacement for the introduction was constructed by the following method.

A plasmid vector pCE53 having a kanamycin-resistant gene and being capable of autonomously replicating in Coryneform bacteria (Mol. Gen. Genet., 196: 175-178 (1984)) and a plasmid pMOB3 (ATCC 77282) containing a levansucrase gene (sacB) of Bacillus subtilis (Molecular Microbiology, 6: 1195-1204 (1992)) were each digested with PstI. Then, after agarose gel electrophoresis, a pCE53 fragment and a 2.6 kb DNA fragment containing sacB were each extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The pCE53 fragment and the 2.6 kb DNA fragment were ligated

using Ligation Kit ver. 2 (manufactured by Takara Shuzo), the ATCC 13032 strain by the introduced into electroporation method (FEMS Microbiology Letters, 65: 299 (1989)), and cultured on BYG agar medium (medium prepared by adding 10 g of glucose, 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to l liter of water, and adjusting its pH to 7.2) containing 25 μ g/ml kanamycin at 30°C for 2 days to obtain a transformant acquiring kanamycin-resistance. As a result of digestion analysis with restriction enzymes, it was confirmed that a plasmid extracted from the resulting transformant by the alkali SDS method had a structure in which the 2.6 kb DNA fragment had been inserted into the PstI site of pCE53. This plasmid was named pCES30.

Next, two genes having a mutation point, hom and pyc, were amplified by PCR, and inserted into pCES30 cloning method (Bio Experiment the TA according to Illustrated vol. 3, published by Shujunsha). Specifically, pCES30 was digested with BamHI (manufactured by Takara Shuzo), subjected to an agarose gel electrophoresis, and extracted and purified using GENECLEAN Kit (manufactured by The both ends of the resulting pCES30 fragment BIO 101). were blunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended concentrated by extraction with fragment was pCES30

phenol/chloroform and precipitation with ethanol, and allowed to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dTTP at 70°C for 2 hours so that a nucleotide, thymine (T), was added to the 3'-end to prepare a T vector of pCES30.

Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the method of Saito et al. (Biochem. Biophys. Acta, 72: 619 (1963)). Using the chromosomal DNA as a template, PCR was carried turbo DNA polymelase (manufactured Pfu out with Stratagene). In the mutated hom gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. In the mutated pyc gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The subjected to agarose resulting PCR product was electrophoresis, and extracted and purified using GENEGLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

The above pCES30 T vector fragment and the mutated hom gene (1.7 kb) or mutated pyc gene (3.6 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and

precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 µg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.7 kb or 3.6 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pChom59 and pCpyc458.

The introduction of the mutations to the wild type ATCC 13032 strain and the lysine-producing No. 58 strain according to the gene replacement method was carried out according to the following method. Specifically, pChom59 and pCpyc458 were introduced to the ATCC 13032 strain and the No. 58 strain, respectively, and strains in which the chromosomal by into the is integrated homologous recombination were selected using the method of Ikeda et al. (Microbiology 144: 1863 (1998)). Then, the stains in which the second homologous recombination was carried out were selected by a selection method, making use of the fact that the Bacillus subtilis levansucrase encoded by pCES30 produced a suicidal substance (*J. of Bacteriol.*, 174: 5462 (1992)). Among the selected strains, strains in which the wild type hom and pyc genes possessed by the ATCC 13032 strain and the No. 58 strain were replaced with the mutated hom and pyc genes, respectively, were isolated. The method is specifically explained below.

One strain was selected from the transformants containing the plasmid, pChom59 or pCpyc458, and the selected strain was cultured in BYG medium containing 20 μg/ml kanamycin, and pCG11 (Japanese Published Examined Patent Application No. 91827/94) was introduced thereinto by the electroporation method. pCG11 is a plasmid vector having a spectinomycin-resistant gene and a replication origin which is the same as pCE53. After introduction of the pCG11, the strain was cultured on BYG agar medium containing 20 µg/ml kanamycin and 100 µg/ml spectinomycin at 30°C for 2 days to obtain both the kanamycin- and spectinomycin-resistant transformant. The chromosome of one strain of these transformants was examined by the Southern blotting hybridization according to the method reported by Ikeda et al. (Microbiology, 144: 1863 (1998)). As a result, it was confirmed that pChom59 or pCpyc458 had been integrated into the chromosome by the homologous recombination of the Cambell type. In such a strain, the wild type and mutated hom or pyc genes are present closely

on the chromosome, and the second homologous recombination is liable to arise therebetween.

Each of these transformants (having been recombined once) was spread on Suc agar medium (medium prepared by adding 100 g of sucrose, 7 g of meat extract, 10 g of peptone, 3 g of sodium chloride, 5 g of yeast extract (manufactured by Difco), and 18 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH 7.2) and cultured at 30°C for a day. colonies thus growing were selected in each case. strain in which the sacB gene is present converts sucrose into a suicide substrate, it cannot grow in this medium (J.Bacteriol., 174: 5462 (1992)). On the other hand, a strain in which the sacB gene was deleted due to the second homologous recombination between the wild type and the mutated hom or pyc genes positioned closely to each other forms no suicide substrate and, therefore, can grow in this In the homologous recombination, either the wild medium. type gene or the mutated gene is deleted together with the sacB gene. When the wild type is deleted together with the sacB gene, the gene replacement into the mutated type arises.

Chromosomal DNA of each the thus obtained second recombinants was prepared by the above method of Saito et al. PCR was carried out using Pfu turbo DNA polymerase (manufactured by Stratagene) and the attached buffer. In

the hom gene, DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. Also, in the pyc gene was used, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The nucleotide sequences of the PCR products were determined by the conventional method so that it was judged whether the hom or pyc gene of the second recombinant was a wild type or a mutant. As a result, the second recombinant which were called HD-1 and No. 58pyc were target strains having the mutated hom gene and pyc gene, respectively.

(3) Lysine production test of HD-1 and No. 58pyc strains

The HD-1 strain (strain obtained by incorporating the mutation, Val59Ala, in the hom gene into the ATCC 13032 strain) and the No. 58pyc strain (strain obtained by incorporating the mutation, Pro458Ser, in the pyc gene into the lysine-producing No. 58 strain) were subjected to a culture test in a 5 l jar fermenter by using the ATCC 13032 strain and the lysine-producing No. 58 strain respectively as a control. Thus lysine production was examined.

After culturing on BYG agar medium at 30°C for 24 hours, each strain was inoculated into 250 ml of a seed medium (medium prepared by adding 50 g of sucrose, 40 g of corn steep liquor, 8.3 g of ammonium sulfate, 1 g of urea, 2 g of potassium dihydrogenphosphate, 0.83 g of magnesium

sulfate heptahydrate, 10 mg of iron sulfate heptahydrate, 1 mg of copper sulfate pentahydrate, 10 mg of zinc sulfate heptahydrate, 10 mg of β -alanine, 5 mg of nicotinic acid, 1.5 mg of thiamin hydrochloride, and 0.5 mg of biotin to 1 liter of water, and adjusting its pH to 7.2, then to which 30 g of calcium carbonate had been added) contained in a 2 1 buffle-attached Erlenmeyer flask and cultured therein at A total amount of the seed 30°C for 12 to 16 hours. culturing medium was inoculated into 1,400 ml of a main culture medium (medium prepared by adding 60 g of glucose, 20 g of corn steep liquor, 25 g of ammonium chloride, 2.5 g of potassium dihydrogenphosphate, 0.75 g of sulfate heptahydrate, 50 mg of iron sulfate heptahydrate, 13 mg of manganese sulfate pentahydrate, 50 mg of calcium chloride, 6.3 mg of copper sulfate pentahydrate, 1.3 mg of zinc sulfate heptahydrate, 5 mg of nickel chloride hexahydrate, 1.3 mg of cobalt chloride hexahydrate, 1.3 mg of ammonium molybdenate tetrahydrate, 14 mg of nicotinic acid, 23 mg of β -alanine, 7 mg of thiamin hydrochloride, and 0.42 mg of biotin to 1 liter of water) contained in a 5 1 jar fermenter and cultured therein at 32°C, 1 vvm and 800 rpm while controlling the pH to 7.0 with aqueous ammonia. When glucose in the medium had been consumed, a glucose feeding solution (medium prepared by adding 400 g glucose and 45 g of ammonium chloride to 1 liter of water) was continuously added. The addition of feeding solution was carried out at a controlled speed so as to maintain the dissolved oxygen concentration within a range of 0.5 to 3 ppm. After culturing for 29 hours, the culture was terminated. The cells were separated from the culture medium by centrifugation and then L-lysine hydrochloride in the supernatant was quantified by high performance liquid chromatography (HPLC). The results are shown in Table 2 below.

Table 2

Strain	L-Lysine hydrochloride yield (g/l)
ATCC 13032	0
HD-1	8
No. 58	45
No. 58pyc	51

As is apparent from the results shown in Table 2, the lysine productivity was improved by introducing the mutation, Val59Ala, in the hom gene or the mutation, Pro458Ser, in the pyc gene. Accordingly, it was found that the mutations are both effective mutations relating to the production of lysine. Strain, AHP-3, in which the mutation, Val59Ala, in the hom gene and the mutation, Pro458Ser, in the pyc gene have been introduced into the wild type ATCC 13032 strain together with the mutation, Thr331Ile in the lysC gene has been deposited on December 5, 2000, in National Institute of Bioscience and Human Technology,

Agency of Industrial Science and Technology (Higashi 1-1-3, Tsukuba-shi, Ibaraki, Japan) as FERM BP-7382.

Example 3

Reconstruction of lysine-producing strain based on genome information

lysine-producing mutant B-6 strain (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)), which has been constructed by multiple round random mutagenesis with NTG and screening from the wild type ATCC 13032 strain, produces a remarkably large amount of lysine hydrochloride when cultured in a jar at 32°C using glucose as a carbon However, since the fermentation period is long, source. the production rate is less than 2.1 g/l/h. Breeding to reconstitute only effective mutations relating to the production of lysine among the estimated at least 300 mutations introduced into the B-6 strain in the wild type ATCC 13032 strain was performed.

(1) Identification of mutation point and effective mutation by comparing the gene nucleotide sequence of the B-6 strain with that of the ATCC 13032 strain

As described above, the nucleotide sequences of genes derived from the B-6 strain were compared with the corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed to

identify many mutation points accumulated in the chromosome of the B-6 strain. Among these, a mutation, Val591Ala, in hom, a mutation, Thr311Ile, in lysC, a mutation, Pro458Ser, in pyc and a mutation, Ala213Thr, in zwf were specified as effective mutations relating to the production of lysine. Breeding to reconstitute the 4 mutations in the wild type strain and for constructing of an industrially important lysine-producing strain was carried out according to the method shown below.

(2) Construction of plasmid for gene replacement having mutated gene

The plasmid for gene replacement, pChom59, having the mutated hom gene and the plasmid for gene replacement, pCpyc458, having the mutated pyc gene were prepared in the above Example 2(2). Plasmids for gene replacement having the mutated lysC and zwf were produced as described below.

The *lysC* and *zwf* having mutation points were amplified by PCR, and inserted into a plasmid for gene replacement, pCES30, according to the TA cloning method described in Example 2(2) (Bio Experiment Illustrated, Vol. 3).

Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the above method of Saito et al. Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymerase

(manufactured by Stratagene). In the mutated *lysC* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 were used as the primer set. In the mutated *zwf* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7008 and 7009 as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENEGLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq DNA polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

The above pCES30 T vector fragment and the mutated lysC gene (1.5 kb) or mutated zwf gene (2.3 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 $\mu g/ml$ kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 $\mu g/ml$ kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it

was confirmed that the plasmid had a structure in which the 1.5 kb or 2.3 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pClysC311 and pCzwf213.

(3) Introduction of mutation, Thr311Ile, in *lysC* into one point mutant HD-1

Since the one mutation point mutant HD-1 in which the mutation, Val59Ala, in hom was introduced into the wild type ATCC 13032 strain had been obtained in Example 2(2), the mutation, Thr311Ile, in lysC was introduced into the HD-1 strain using pClysC311 produced in the above (2) according to the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-2 was a two point mutant having the mutated lysC gene in addition to the mutated hom gene.

(4) Introduction of mutation, Pro458Ser, in pyc into two point mutant AHD-2

The mutation, Pro458Ser, in pyc was introduced into the AHD-2 strain using the pCpyc458 produced in Example 2(2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-3 was a three point mutant having the mutated pyc gene in addition to the mutated hom gene and lysC gene.

(5) Introduction of mutation, Ala213Thr, in zwf into three point mutant AHP-3

The mutation, Ala213Thr, in zwf was introduced into the AHP-3 strain using the pCzwf458 produced in the above (2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7008 and 7009 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that

the strain which was named APZ-4 was a four point mutant having the mutated zwf gene in addition to the mutated hom gene, lysC gene and pyc gene.

(6) Lysine production test on HD-1, AHD-2, AHP-3 and APZ-4 strains

The HD-1, AHD-2, AHP-3 and APZ-4 strains obtained above were subjected to a culture test in a 5 l jar fermenter in accordance with the method of Example 2(3).

Table 3 shows the results.

Table 3

Strain	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
HD-1	8	0.3
AHD-2	73	2.5
AHP-3	80	2.8
APZ-4	86	3.0

Since the lysine-producing mutant B-6 strain which has been bred based on the random mutation and selection shows a productivity of less than 2.1 g/l/h, the APZ-4 strain showing a high productivity of 3.0 g/l/h is useful in industry.

(7) Lysine fermentation by APZ-4 strain at high temperature

The APZ-4 strain, which had been reconstructed by introducing 4 effective mutations into the wild type strain,

was subjected to the culturing test in a 5 1 jar fermenter in the same manner as in Example 2(3), except that the culturing temperature was changed to 40° C.

The results are shown in Table 4.

Table 4

Temperature (°C)	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
32	86	3.0
40	95	3.3

As is apparent from the results shown in Table 4, lysine hydrochloride titer and productivity culturing at a high temperature of 40°C comparable to those at 32°C were obtained. In the mutated and bred lysineproducing B-6 strain constructed by repeating random the selection, the growth and mutation and productivity are lowered at temperatures exceeding 34°C so that lysine fermentation cannot be carried out, whereas lysine fermentation can be carried out using the APZ-4 strain at a high temperature of 40°C so that the load of cooling is greatly reduced and it is industrially useful. The lysine fermentation at high temperatures can achieved by reflecting the high temperature adaptability inherently possessed by the wild type strain on the APZ-4 strain.

the reconstruction of in demonstrated As lysine-producing strain, the present invention provides a breeding method effective for eliminating novel the conventional mutants and acquiring problems in industrially advantageous strains. This methodology which reconstitutes the production strain by reconstituting the effective mutation is an approach which is efficiently carried out using the nucleotide sequence information of the genome disclosed in the present invention, and its effectiveness was found for the first time in the present invention.

Example 4

Production of DNA microarray and use thereof

A DNA microarray was produced based on the nucleotide sequence information of the ORF deduced from the full nucleotide sequences of *Corynebacterium glutamicum* ATCC 13032 using software, and genes of which expression is fluctuated depending on the carbon source during culturing were searched.

(1) Production of DNA microarray

Chromosomal DNA was prepared from Corynebacterium glutamicum ATCC 13032 by the method of Saito et al. (Biochem. Biophys. Acta, 72: 619 (1963)). Based on 24 genes having the nucleotide sequences represented by SEQ ID

NOS:207, 3433, 281, 3435, 3439, 765, 3445, 1226, 1229, 3448, 3451, 3453, 3455, 1743, 3470, 2132, 3476, 3477, 3485, 3488, 3489, 3494, 3496, and 3497 from the ORFs shown in Table 1 deduced from the full genome nucleotide sequence of Corynebacterium glutamicum ATCC 13032 using software and the nucleotide sequence of rabbit globin gene (GenBank Accession No. V00882) used as an internal standard, oligo DNA primers for PCR amplification represented by SEQ ID NOS:7010 to 7059 targeting the nucleotide sequences of the genes were synthesized in a usual manner.

As the oligo DNA primers used for the PCR,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7010 and 7011 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:207,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7012 and 7013 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3433,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7014 and 7015 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:281,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7016 and 7017 were used for the amplification of

the DNA having the nucleotide sequence represented by SEQ ID NO:3435,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7018 and 7019 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3439,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7020 and 7021 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:765,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7022 and 7023 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3445,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7024 and 7025 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1226,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7026 and 7027 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1229,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7028 and 7029 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3448,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7030 and 7031 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3451,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7032 and 7033 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3453,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7034 and 7035 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3455,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7036 and 7037 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1743,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7038 and 7039 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3470,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7040 and 7041 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:2132,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7042 and 7043 were used for the amplification of

the DNA having the nucleotide sequence represented by SEQ ID NO:3476,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7044 and 7045 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3477,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7046 and 7047 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3485,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7048 and 7049 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3488,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7050 and 7051 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3489,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7052 and 7053 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3494,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7054 and 7055 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3496,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7056 and 7057 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3497, and

DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNA having the nucleotide sequence of the rabbit globin gene,

as the respective primer set.

The PCR was carried for 30 cycles with each cycle consisting of 15 seconds at 95°C and 3 minutes at 68°C thermal (GeneAmp PCR system cycler using manufactured by Perkin Elmer), TaKaRa EX-Taq (manufactured by Takara Shuzo), 100 ng of the chromosomal DNA and the buffer attached to the TaKaRa Ex-Taq reagent. In the case of the rabbit globin gene, a single-stranded cDNA which had been synthesized from rabbit globin mRNA (manufactured by manufacture's according to the Life Technologies) transcriptase RAV-2 instructions using а reverse The PCR product of each (manufactured by Takara Shuzo). subjected to agarose amplified was thus electrophoresis and extracted and purified using QIAquick Gel Extraction Kit (manufactured by QIAGEN). The purified PCR product was concentrated by precipitating it with ethanol and adjusted to a concentration of 200 ng/µl. Each glass plate product spotted on a slide PCR was

(manufactured by Matsunami Glass) having MAS coating in 2 runs using GTMASS SYSTEM (manufactured by Nippon Laser & Electronics Lab.) according to the manufacture's instructions.

(2) Synthesis of fluorescence labeled cDNA

The ATCC 13032 strain was spread on BY agar medium (medium prepared by adding 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to in 1 liter of water and adjusting its pH to 7.2) and cultured at 30°C for 2 days. Then, the cultured strain was further inoculated into 5 ml of BY liquid medium and cultured at 30°C overnight. Then, the cultured strain was further inoculated into 30 ml of a minimum medium (medium prepared by adding 5 g of ammonium sulfate, 5 g of urea, 0.5 g of monopotassium dihydrogenphosphate, 0.5 g 20.9 q monohydrogenphosphate, of dipotassium morpholinopropanesulfonic acid, 0.25 g of magnesium sulfate heptahydrate, 10 mg of calcium chloride dihydrate, 10 mg of manganese sulfate monohydrate, 10 mg of ferrous sulfate heptahydrate, 1 mg of zinc sulfate heptahydrate, 0.2 mg copper sulfate, and 0.2 mg biotin to 1 liter of water, and adjusting its pH to 6.5) containing 110 mmol/l glucose or 200 mmol/l ammonium acetate, and cultured in an Erlenmyer flask at 30° to give 1.0 of absorbance at 660 nm.

the cells were prepared by centrifuging at 4°C and 5,000 rpm for 10 minutes, total RNA was prepared from the resulting cells according to the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)). To avoid contamination with DNA, the RNA was treated with DnaseI (manufactured by Takara Shuzo) at 37°C for 30 minutes and further purified using Qiagen RNeasy (manufactured by QIAGEN) according to the manufacture's instructions. To 30 μg of the resulting total RNA, 0.6 μl of rabbit globin mRNA (50 ng/µl, manufactured by Life Technologies) and 1 μ l of a random 6 mer primer (500 ng/ μ l, manufactured by Takara Shuzo) were added for denaturing at 65°C for 10 minutes, followed by quenching on ice. of buffer attached resulting solution, 6 μ 1 а SuperScript II (manufactured by Lifetechnologies), 3 μ l of 0.1 mol/l DTT, 1.5 μ l of dNTPs (25 mmol/l dATP, 25 mmol/l dCTP, 25 mmol/l dGTP, 10 mmol/l dTTP), 1.5 μ l of Cy5-dUTP or Cy3-dUTP (manufactured by NEN) and 2 µl of SuperScript II were added, and allowed to stand at 25°C for 10 minutes and then at 42°C for 110 minutes. The RNA extracted from the cells using glucose as the carbon source and the RNA extracted from the cells using ammonium acetate were labeled with Cy5-dUTP and Cy3-dUTP, respectively. the fluorescence labeling reaction, the RNA was digested by adding 1.5 μ l of 1 mol/l sodium hydroxide-20 mmol/l EDTA solution and 3.0 μl of 10% SDS solution, and allowed to stand at 65°C for 10 minutes. The two cDNA solutions after the labeling were mixed and purified using Qiagen PCR purification Kit (manufactured by QIAGEN) according to the manufacture's instructions to give a volume of 10 μ l.

(3) Hybridization

UltraHyb (110 μ l) (manufactured by Ambion) and the fluorescence-labeled cDNA solution (10 μ l) were mixed and subjected to hybridization and the subsequent washing of slide glass using GeneTAC Hybridization Station (manufactured by Genomic Solutions) according to the manufacture's instructions. The hybridization was carried out at 50°C, and the washing was carried out at 25°C.

(4) Fluorescence analysis

The fluorescence amount of each DNA array having the fluorescent cDNA hybridized therewith was measured using ScanArray 4000 (manufactured by GSI Lumonics).

Table 5 shows the Cy3 and Cy5 signal intensities of the genes having been corrected on the basis of the data of the rabbit globin used as the internal standard and the Cy3/Cy5 ratios.

Table 5

SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5			
207	5248	3240	1.62			
3433	2239	2694	0.83			
281	2370	2595	0.91			
3435	2566	2515	1.02			
3439	5597	6944	0.81			
765	6134	4943	1.24			
3455	1169	1284	0.91			
1226	1301	1493	0.87			
1229	1168	1131	1.03			
3448	1187	1594	0.74			
3451	2845	3859	0.74			
3453	3498	1705	2.05			
3455	1491	1144	1.30			
1743	1972	1841	1.07			
3470	4752	3764	1.26			
2132	1173	1085	1.08			
3476	1847	1420	1.30			
3477	1284	1164	1.10			
3485	4539	8014	0.57			
3488	34289	1398	24.52			
3489	43645	1497	29.16			
3494	3199	2503	1.28			
3496	3428	2364	1.45			
3497	3848	3358	1.15			

The ORF function data estimated by using software were searched for SEQ ID NOS:3488 and 3489 showing remarkably strong Cy3 signals. As a result, it was found that SEQ ID NOS:3488 and 3489 are a maleate synthase gene and an isocitrate lyase gene, respectively. It is known that these genes are transcriptionally induced by acetic

acid in Corynebacterium glutamicum (Archives of Microbiology, 168: 262-269 (1997)).

As described above, a gene of which expression is fluctuates could be discovered by synthesizing appropriate oligo DNA primers based on the ORF nucleotide sequence information deduced from the full genomic nucleotide sequence information of Corynebacterium glutamicum ATCC 13032 using software, amplifying the nucleotide sequences of the gene using the genome DNA of Corynebacterium glutamicum as a template in the PCR reaction, and thus producing and using a DNA microarray.

This Example shows that the expression amount can be analyzed using a DNA microarray in the 24 genes. On the other hand, the present DNA microarray techniques make it possible to prepare DNA microarrays having thereon several thousand gene probes at once. Accordingly, it is also possible to prepare DNA microarrays having thereon all of deduced from the full genomic gene probes ORF nucleotide sequence of Corynebacterium glutamicum ATCC 13032 determined by the present invention, and analyze the level of total gene expression profile at the Corynebacterium glutamicum using these arrays.

Example 5

Homology search using Corynebacterium glutamicum genome sequence

(1) Search of adenosine deaminase

The amino acid sequence (ADD_ECOLI) of Escherichia coli adenosine deaminase was obtained from Swiss-prot Database as the amino acid sequence of the protein of which function had been confirmed as adenosine deaminase (EC3.5.4.4). By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the amino acids in the ORF region deduced from the genome sequence using FASTA program (Proc. Natl. Acad. Sci. ISA, 85: 2444-2448 (1988)). A case where E-value was le-10 or less was judged As a result, as being significantly homologous. sequence significantly homologous with the Escherichia coli adenosine deaminase was found in the nucleotide sequence of the genome sequence of Corynebacterium database glutamicum or the database of the amino acid sequences in the ORF region deduced from the genome sequence. Based on that Corynebacterium results, it is assumed glutamicum contains no ORF having adenosine deaminase activity and thus has no activity of converting adenosine into inosine.

(2) Search of glycine cleavage enzyme

The sequences (GCSP_ECOLI, GCST_ECOLI and GCSH_ECOLI) of glycine decarboxylase, aminomethyl transferase and an aminomethyl group carrier each of which is a component of Escherichia coli glycine cleavage enzyme as the amino acid sequence of the protein, of which function had been confirmed as glycine cleavage enzyme (EC2.1.2.10), were obtained from Swiss-prot Database.

By using these full-length amino acid sequences as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the ORF amino acid sequences deduced from the genome sequence using FASTA program. case where E-value was le-10 or less was judged as being result, no sequence significantly homologous. As a significantly homologous with the glycine decarboxylase, aminomethyl transferase or the aminomethyl group the carrier each of which is a component of Escherichia coli glycine cleavage enzyme, was found in the nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or the database of the ORF amino acid sequences estimated from the genome sequence. Based on these results, it is assumed that Corynebacterium glutamicum contains no glycine decarboxylase, activity of having the aminomethyl transferase or the aminomethyl group carrier and thus has no activity of the glycine cleavage enzyme.

(3) Search of IMP dehydrogenase

The amino acid sequence (IMDH ECOLI) of Escherichia coli IMP dehydrogenase as the amino acid sequence of the protein, of which function had been confirmed as IMP dehydrogenase (EC1.1.1.205), was obtained from Swiss-prot By using the full length of this amino acid Database. sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the ORF amino acid sequences predicted from the genome sequence using FASTA program. A case where E-value was le^{-10} or less was judged as being significantly homologous. As a result, the amino acid sequences encoded by two ORFs, namely, an ORF positioned in the region of the nucleotide sequence No. 615336 to 616853 (or ORF having the nucleotide sequence represented by SEQ ID NO:672) and another ORF positioned in the region of the nucleotide sequence No. 616973 to 618094 (or ORF having the nucleotide sequence represented by SEQ ID NO:674) were significantly homologous with the ORFs of Escherichia coli IMP dehydrogenase. By using the abovedescribed predicted amino acid sequence as a query in order to examine the similarity of the amino acid sequences encoded by the ORFs with IMP dehydrogenases of other organisms in greater detail, a search was carried out on (http://www.ncbi.nlm.nih.gov/) nr-aa database GenBank

(amino acid sequence database constructed on the basis of GenBankCDS translation products, PDB database, Swiss-Prot database by eliminating PRF database, PIR database, duplicated registrations) using BLAST program. As a result, both of the two amino acid sequences showed significant homologies with IMP dehdyrogenases of other organisms and clearly higher homologies with IMP dehdyrogenases than with amino acid sequences of other proteins, and thus, it was ORFs would function two that the Based on these results, it was therefore dehydrogenase. assumed that Corynebacterium glutamicum has two ORFs having the IMP dehydrogenase activity.

Example 6

Proteome analysis of proteins derived from Corynebacterium glutamicum

(1) Preparations of proteins derived from Corynebacterium glutamicum ATCC 13032, FERM BP-7134 and FERM BP-158

Culturing tests of Corynebacterium glutamicum ATCC 13032 (wild type strain), Corynebacterium glutamicum FERM BP-7134 (lysine-producing strain) and Corynebacterium glutamicum (FERM BP-158, lysine-highly producing strain) were carried out in a 5 l jar fermenter according to the method in Example 2(3). The results are shown in Table 6.

Table 6

Strain	L-Lysine yield (g/l)
ATCC 13032	0
FERM BP-7134	45
FERM BP-158	60

After culturing, cells of each strain were recovered by centrifugation. These cells were washed with Tris-HCl buffer (10 mmol/l Tris-HCl, pH 6.5, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim)) three times to give washed cells which could be stored under freezing at -80°C. The freeze-stored cells were thawed before use, and used as washed cells.

The washed cells described above were suspended in a disruption buffer (10 mmol/l Tris-HCl, pH 7.4, 5 mmol/l magnesium chloride, 50 mg/l RNase, 1.6 mg/ml protease inhibitor (COMPLETE: manufactured by Boehringer Mannheim)), and disrupted with a disruptor (manufactured by Brown) under cooling. To the resulting disruption solution, DNase was added to give a concentration of 50 mg/l, and allowed to stand on ice for 10 minutes. The solution was centrifuged (5,000 \times g, 15 minutes, 4°C) to remove the undisrupted cells as the precipitate, and the supernatant was recovered.

To the supernatant, urea was added to give a concentration of 9 mol/1, and an equivalent amount of a lysis buffer (9.5 mol/1 urea, 2% NP-40, 2% Ampholine, 5%

mercaptoethanol, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim) was added thereto, followed by thoroughly stirring at room temperature for dissolving.

After being dissolved, the solution was centrifuged at $12,000 \times g$ for 15 minutes, and the supernatant was recovered.

To the supernatant, ammonium sulfate was added to the extent of 80% saturation, followed by thoroughly stirring for dissolving.

After being dissolved, the solution was centrifuged $(16,000 \times g, 20 \text{ minutes}, 4^{\circ}\text{C})$, and the precipitate was recovered. This precipitate was dissolved in the lysis buffer again and used in the subsequent procedures as a protein sample. The protein concentration of this sample was determined by the method for quantifying protein of Bradford.

(2) Separation of protein by two dimensional electrophoresis

The first dimensional electrophoresis was carried out as described below by the isoelectric electrophoresis method.

A molded dry IPG strip gel (pH 4-7, 13 cm, Immobiline DryStrips; manufactured by Amersham Pharmacia Biotech) was set in an electrophoretic apparatus (Multiphor

II or IPGphor; manufactured by Amersham Pharmacia Biotech) and a swelling solution (8 mol/l urea, 0.5% Triton X-100, 0.6% dithiothreitol, 0.5% Ampholine, pH 3-10) was packed therein, and the gel was allowed to stand for swelling 12 to 16 hours.

The protein sample prepared above was dissolved in a sample solution (9 mol/l urea, 2% CHAPS, 1% dithiothreitol, 2% Ampholine, pH 3-10), and then about 100 to 500 µg (in terms of protein) portions thereof were taken and added to the swollen IPG strip gel.

The electrophoresis was carried out in the 4 steps as defined below under controlling the temperature to 20°C: step 1: 1 hour under a gradient mode of 0 to 500V; step 2: 1 hour under a gradient mode of 500 to 1,000 V; step 3: 4 hours under a gradient mode of 1,000 to 8,000 V; and

step 4: 1 hour at a constant voltage of 8,000 V.

After the isoelectric electrophoresis, the IPG strip gel was put off from the holder and soaked in an equilibration buffer A (50 mmol/l Tris-HCl, pH 6.8, 30% glycerol, 1% SDS, 0.25% dithiothreitol) for 15 minutes and another equilibration buffer B (50 mmol/l Tris-HCl, pH 6.8, 6 mol/l urea, 30% glycerol, 1% SDS, 0.45% iodo acetamide) for 15 minutes to sufficiently equilibrate the gel.

After the equilibrium, the IPG strip gel was lightly rinsed in an SDS electrophoresis buffer (1.4%

glycine, 0.1% SDS, 0.3% Tris-HCl, pH 8.5), and the second dimensional electrophoresis depending on molecular weight was carried out as described below to separate the proteins.

Specifically, the above IPG strip gel was closely placed on 14% polyacrylamide slub gel (14% polyacrylamide, 0.37% bisacrylamide, 37.5 mmol/l Tris-HCl, pH 8.8, 0.1% SDS, 0.1% TEMED, 0.1% ammonium persulfate) and subjected to electrophoresis under a constant voltage of 30 mA at 20°C for 3 hours to separate the proteins.

(3) Detection of protein spot

Coomassie staining was performed by the method of Gorg et al. (Electrophoresis, 9: 531-546 (1988)) for the slub gel after the second dimensional electrophoresis. Specifically, the slub gel was stained under shaking at 25°C for about 3 hours, the excessive coloration was removed with a decoloring solution, and the gel was thoroughly washed with distilled water.

The results are shown in Fig. 2. The proteins derived from the ATCC 13032 strain (Fig. 2A), FERM BP-7134 strain (Fig. 2B) and FERM BP-158 strain (Fig. 2C) could be separated and detected as spots.

(4) In-gel digestion of detected protein spot

The detected spots were each cut out from the gel and transferred into siliconized tube, and 400 μl of 100 $\,$

mmol/1 ammonium bicarbonate : acetonitrile solution (1:1, v/v) was added thereto, followed by shaking overnight and freeze-dried as such. To the dried gel, 10 μ l of a lysylendopeptidase (LysC) solution (manufactured by WAKO, SDS-containing 50 mmol/l ammonium prepared with 0.1% bicarbonate to give a concentration of 100 ng/µl) was added and the gel was allowed to stand for swelling at 0°C for 45 minutes, and then allowed to stand at 37°C for 16 hours. After removing the LysC solution, 20 µl of an extracting solution (a mixture of 60% acetonitrile and 5% formic acid) was added, followed by ultrasonication at room temperature for 5 minutes to disrupt the gel. After the disruption, the extract was recovered by centrifugation (12,000 rpm, 5 minutes, room temperature). This operation was repeated twice to recover the whole extract. The recovered extract was concentrated by centrifugation in vacuo to halve the the concentrate, 20 μl of 0.1% To liquid volume. trifluoroacetic acid was added, followed by thoroughly stirring, and the mixture was subjected to desalting using ZipTip (manufactured by Millipore). The protein absorbed on the carriers of ZipTip was eluted with 5 μ l of α -cyano-4-hydroxycinnamic acid for use as a sample solution for analysis.

(5) Mass spectrometry and amino acid sequence analysis of protein spot with matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI-TOFMS)

The sample solution for analysis was mixed in the equivalent amount with a solution of a peptide mixture for mass calibration (300 nmol/l Angiotensin II, 300 nmol/l Neurotensin, 150 nmol/l ACTHclip 18-39, 2.3 μ mol/l bovine insulin B chain), and 1 μ l of the obtained solution was spotted on a stainless probe and crystallized by spontaneously drying.

As measurement instruments, REFLEX MALDI-TOF mass spectrometer (manufactured by Bruker) and an N2 laser (337 nm) were used in combination.

The analysis by PMF (peptide-mass finger printing) was carried out using integration spectra data obtained by measuring 30 times at an accelerated voltage of 19.0 kV and a detector voltage of 1.50 kV under reflector mode conditions. Mass calibration was carried out by the internal standard method.

The PSD (post-source decay) analysis was carried out using integration spectra obtained by successively altering the reflection voltage and the detector voltage at an accelerated voltage of 27.5 kV.

The masses and amino acid sequences of the peptide fragments derived from the protein spot after digestion were thus determined.

(6) Identification of protein spot

From the amino acid sequence information of the digested peptide fragments derived from the protein spot obtained in the above (5), ORFs corresponding to the protein were searched on the genome sequence database of Corynebacterium glutamicum ATCC 13032 as constructed in Example 1 to identify the protein.

The identification of the protein was carried out using MS-Fit program and MS-Tag program of intranet protein prospector.

(a) Search and identification of gene encoding highexpression protein

In the proteins derived from *Corynebacterium* glutamicum ATCC 13032 showing high expression amounts in CBB-staining shown in Fig. 2A, the proteins corresponding to Spots-1, 2, 3, 4 and 5 were identified by the above method.

As a result, it was found that Spot-1 corresponded to enolase which was a protein having the amino acid sequence of SEQ ID NO:4585; Spot-2 corresponded to phosphoglycelate kinase which was a protein having the amino acid sequence of SEQ ID NO:5254; Spot-3 corresponded to glyceraldehyde-3-phosphate dehydrogenase which was a protein having the amino acid sequence represented by SEQ

ID NO:5255; Spot-4 corresponded to fructose bis-phosphate aldolase Which was a protein having the amino acid sequence represented by SEQ ID NO:6543; and Spot-5 corresponded to triose phosphate isomerase which was a protein having the amino acid sequence represented by SEQ ID NO:5252.

These genes, represented by SEQ ID NOS:1085, 1754, 1775, 3043 and 1752 encoding the proteins corresponding to Spots-1, 2, 3, 4 and 5, respectively, encoding the known proteins are important in the central metabolic pathway for maintaining the life of the microorganism. Particularly, it is suggested that the genes of Spots-2, 3 and 5 form an operon and a high-expression promoter is encoded in the upstream thereof (J. of Bacteriol., 174: 6067-6086 (1992)).

Also, the protein corresponding to Spot-9 in Fig. 2 was identified in the same manner as described above, and it was found that Spot-9 was an elongation factor Tu which was a protein having the amino acid sequence represented by SEQ ID NO:6937, and that the protein was encoded by DNA having the nucleotide sequence represented by SEQ ID NO:3437.

Based on these results, the proteins having high expression level were identified by proteome analysis using the genome sequence database of Corynebacterium glutamicum constructed in Example 1. Thus, the nucleotide sequences of the genes encoding the proteins and the nucleotide sequences upstream thereof could be searched simultaneously.

Accordingly, it is shown that nucleotide sequences having a function as a high-expression promoter can be efficiently selected.

(b) Search and identification of modified protein

Among the proteins derived from *Corynebacterium* glutamicum FERM BP-7134 shown in Fig. 2B, Spots-6, 7 and 8 were identified by the above method. As a result, these three spots all corresponded to catalase which was a protein having the amino acid sequence represented by SEQ ID NO:3785.

Accordingly, all of Spots-6, 7 and 8 detected as spots differing in isoelectric mobility were all products derived from a catalase gene having the nucleotide sequence represented by SEQ ID NO:285. Accordingly, it is shown that the catalase derived from Corynebacterium glutamicum FERM BP-7134 was modified after the translation.

Based on these results, it is confirmed that various modified proteins can be efficiently searched by proteome analysis using the genome sequence database of Corynebacterium glutamicum constructed in Example 1.

(c) Search and identification of expressed protein effective in lysine production

It was found out that in Fig. 2A (ATCC 13032: wild type strain), Fig. 2B '(FERM BP-7134: 'lysine-producing

strain) and Fig. 2C (FERM BP-158: Lysine-highly producing strain), the catalase corresponding to Spot-8 and the elongation factor Tu corresponding to Spot-9 as identified above showed the higher expression level with an increase in the lysine productivity.

٠.

Based on these results, it was found that hopeful mutated proteins can be efficiently searched and identified in breeding aiming at strengthening the productivity of a target product by the proteome analysis using the genome sequence database of Corynebacterium glutamicum constructed in Example 1.

Moreover, useful mutation points of useful mutants can be easily specified by searching the nucleotide sequences (nucleotide sequences of promoter, ORF, or the like) relating to the identified proteins using the above database and using primers designed on the basis of the sequences. As a result of the fact that the mutation points are specified, industrially useful mutants which have the useful mutations or other useful mutations derived therefrom can be easily bred.

While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one of skill in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. All references cited herein are incorporated in their entirety.