

4N25	4N26	4N27	4N28	4N35	4N36
4N37	H11A1	H11A2	H11A3	H11A4	H11A5

DESCRIPTION

The general purpose optocouplers consist of a gallium arsenide infrared emitting diode driving a silicon phototransistor in a 6-pin dual in-line package.

FEATURES

- Also available in white package by specifying -M suffix, eg. 4N25-M
- UL recognized (File # E90700)
- VDE recognized (File # 94766)
 - Add option V for white package (e.g., 4N25V-M)
 - Add option 300 for black package (e.g., 4N25.300)

APPLICATIONS

- Power supply regulators
- Digital logic inputs
- Microprocessor inputs

 4N25
 4N26
 4N27
 4N28
 4N35
 4N36

 4N37
 H11A1
 H11A2
 H11A3
 H11A4
 H11A5

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise specified)						
Parameter	Symbol	Value	Units			
TOTAL DEVICE						
Storage Temperature	T _{STG}	-55 to +150	°C			
Operating Temperature	T _{OPR}	-55 to +100	°C			
Lead Solder Temperature	T _{SOL}	260 for 10 sec	°C			
Total Device Power Dissipation @ T _A = 25°C	P _D	250	mW			
Derate above 25°C	ı D	3.3 (non-M), 2.94 (-M)	IIIVV			
EMITTER						
DC/Average Forward Input Current	I _F	100 (non-M), 60 (-M)	mA			
Reverse Input Voltage	V _R	6	V			
Forward Current - Peak (300µs, 2% Duty Cycle)	I _F (pk)	3	А			
LED Power Dissipation @ T _A = 25°C	P _D	150 (non-M), 120 (-M)	mW			
Derate above 25°C	ם י	2.0 (non-M), 1.41 (-M)	mW/°C			
DETECTOR						
Collector-Emitter Voltage	V _{CEO}	30	V			
Collector-Base Voltage	V _{CBO}	70	V			
Emitter-Collector Voltage	V _{ECO}	7	V			
Detector Power Dissipation @ T _A = 25°C	P _D	150	mW			
Derate above 25°C		2.0 (non-M), 1.76 (-M)	mW/°C			

 4N25
 4N26
 4N27
 4N28
 4N35
 4N36

 4N37
 H11A1
 H11A2
 H11A3
 H11A4
 H11A5

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise specified)

INDIVIDUAL COMPONENT CHARACTERISTICS								
Parameter	Test Conditions	Symbol	Min	Тур*	Max	Unit		
EMITTER								
Input Forward Voltage	(I _F = 10 mA)	V_{F}		1.18	1.50	V		
Reverse Leakage Current	(V _R = 6.0 V)	I _R		0.001	10	μΑ		
DETECTOR								
Collector-Emitter Breakdown Voltage	$(I_C = 1.0 \text{ mA}, I_F = 0)$	BV_CEO	30	100		V		
Collector-Base Breakdown Voltage	$(I_C = 100 \mu A, I_F = 0)$	BV _{CBO}	70	120		V		
Emitter-Collector Breakdown Voltage	$(I_E = 100 \ \mu A, \ I_F = 0)$	BV _{ECO}	7	10		V		
Collector-Emitter Dark Current	$(V_{CE} = 10 \text{ V}, I_F = 0)$	I _{CEO}		1	50	nA		
Collector-Base Dark Current	(V _{CB} = 10 V)	I _{CBO}			20	nA		
Capacitance	(V _{CE} = 0 V, f = 1 MHz)	C _{CE}		8		pF		

ISOLATION CHARACTERISTICS									
Characteristic	Test Conditions	Symbol	Min	Тур*	Max	Units			
Input-Output Isolation Voltage	(Non '-M', Black Package) (f = 60 Hz, t = 1 min)	V	5300			Vac(rms)			
	('-M', White Package) (f = 60 Hz, t = 1 sec)	V _{ISO}	7500			Vac(pk)			
Isolation Resistance	$(V_{I-O} = 500 \text{ VDC})$	R _{ISO}	10 ¹¹			Ω			
Isolation Capacitance	$(V_{I-O} = \&, f = 1 MHz)$	0		0.5		pF			
	('-M' White Package)			0.2	2	pF			

Note

^{*} Typical values at $T_A = 25$ °C

 4N25
 4N26
 4N27
 4N28
 4N35
 4N36

 4N37
 H11A1
 H11A2
 H11A3
 H11A4
 H11A5

TRANSFER CHA	RACTERISTICS (T _A = 25°C Unles	ss otherwis	e specifie	d.)			
DC Characteristic	Test Conditions	Symbol	Device	Min	Тур*	Max	Unit
			4N35 4N36 4N37	100			
			H11A1	50			
			H11A5	30			
	$(I_F = 10 \text{ mA}, V_{CE} = 10 \text{ V})$	CTB	4N25 4N26 H11A2 H11A3	20			%
Current Transfer Ratio, Collector to Emitter		4N27 4N28 10 H11A4				70	
	$(I_F = 10 \text{ mA}, V_{CE} = 10 \text{ V}, T_A = -55^{\circ}\text{C})$		4N35 4N36 4N37	40			
	$(I_F = 10 \text{ mA}, V_{CE} = 10 \text{ V}, T_A = +100^{\circ}\text{C})$		4N35 4N36 4N37	40			
	$(I_C = 2 \text{ mA}, I_F = 50 \text{ mA})$		4N25 4N26 4N27 4N28			0.5	
Collector-Emitter Saturation Voltage	(I _C = 0.5 mA, I _F = 10 mA)	V _{CE (SAT)}	4N35 4N36 4N37			0.3	V
			H11A1 H11A2 H11A3 H11A4 H11A5			0.4	
AC Characteristic Non-Saturated Turn-on Time	$(I_F = 10 \text{ mA}, V_{CC} = 10 \text{ V}, R_L = 100\Omega)$ (Fig.20)	T _{ON}	4N25 4N26 4N27 4N28 H11A1 H11A2 H11A3 H11A4 H11A5		2		μѕ
Non Saturated Turn-on Time	$(I_C = 2 \text{ mA}, V_{CC} = 10 \text{ V}, R_L = 100\Omega)$ (Fig.20)	T _{ON}	4N35 4N36 4N37		2	10	μs

 4N25
 4N26
 4N27
 4N28
 4N35
 4N36

 4N37
 H11A1
 H11A2
 H11A3
 H11A4
 H11A5

AC Characteristic	Test Conditions	Symbol	Device	Min	Тур*	Max	Unit
Turn-off Time	$(I_F = 10 \text{ mA}, V_{CC} = 10 \text{ V}, R_L = 100\Omega)$ (Fig.20)	T _{OFF}	4N25 4N26 4N27 4N28 H11A1 H11A2 H11A3 H11A4 H11A5		2		μs
	$(I_C = 2 \text{ mA}, V_{CC} = 10 \text{ V}, R_L = 100\Omega)$ (Fig.20)		4N35 4N36 4N37		2	10	

^{*} Typical values at $T_A = 25$ °C

 4N25
 4N26
 4N27
 4N28
 4N35
 4N36

 4N37
 H11A1
 H11A2
 H11A3
 H11A4
 H11A5

TYPICAL PERFORMANCE CURVES

Fig. 1 LED Forward Voltage vs. Forward Current (Black Package)

Fig.3 Normalized CTR vs. Forward Current (Black Package)

Fig. 5 Normalized CTR vs. Ambient Temperature (Black Package)

Fig. 2 LED Forward Voltage vs. Forward Current

Fig.4 Normalized CTR vs. Forward Current (White Package)

Fig. 6 Normalized CTR vs. Ambient Temperature (White Package)

4N25 4N37

4N26 H11A1

4N27 H11A2

4N28 H11A3

4N35 H11A4

4N36 H11A5

Fig. 8 CTR vs. RBE (Unsaturated) (White Package) 1.0 NORMALIZED CTR (CTRRBE / CTRRBE(OPEN)) 0.8 0.7 0.5 0.4 0.3 0.2 0.1 10 R_{BE} - BASE RESISTANCE ($k\Omega$)

Fig. 10 CTR vs. RBE (Saturated)

Fig. 11 Collector-Emitter Saturation Voltage vs Collector Current (Black Package)

Fig. 12 Collector-Emitter Saturation Voltage vs Collector Current (White Package)

4N25 4N37 4N26 H11A1 4N27 H11A2 4N28 H11A3 4N35 H11A4 4N36 H11A5

Fig. 13 Switching Speed vs. Load Resistor (Black Package)

Fig. 14 Switching Speed vs. Load Resistor (White Package)

Fig. 15 Normalized t_{on} vs. R_{BE} (Black Package)

Fig. 16 Normalized t_{on} vs. R_{BE} (White Package)

Fig. 17 Normalized toff vs. R_{BE}

Fig. 18 Normalized t_{off} vs. R_{BE} (White Package)

4N25	4N26	4N27	4N28	4N35	4N36
4N37	H11A1	H11A2	H11A3	H11A4	H11A5

Fig. 19 Dark Current vs. Ambient Temperature

T_A - AMBIENT TEMPERATURE (°C)

Figure 20. Switching Time Test Circuit and Waveforms

 4N25
 4N26
 4N27
 4N28
 4N35
 4N36

 4N37
 H11A1
 H11A2
 H11A3
 H11A4
 H11A5

Black Package (No -M Suffix)

NOTE All dimensions are in inches (millimeters)

 4N25
 4N26
 4N27
 4N28
 4N35
 4N36

 4N37
 H11A1
 H11A2
 H11A3
 H11A4
 H11A5

White Package (-M Suffix)

NOTEAll dimensions are in inches (millimeters)

4N25	4N26	4N27	4N28	4N35	4N36
4N37	H11A1	H11A2	H11A3	H11A4	H11A5

ORDERING INFORMATION

Order Entry Identifier						
Black Package (No Suffix)	White Package (-M Suffix)	Option				
.S	S	Surface Mount Lead Bend				
.SD	SR2	Surface Mount; Tape and reel				
.W	Т	0.4" Lead Spacing				
.300	V	VDE 0884				
.300W	TV	VDE 0884, 0.4" Lead Spacing				
.3\$	SV	VDE 0884, Surface Mount				
.3SD	SR2V	VDE 0884, Surface Mount, Tape & Reel				

4N25	4N26	4N27	4N28	4N35	4N36
4N37	H11A1	H11A2	H11A3	H11A4	H11A5

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.