Linear Systems Control

Solutions to problems

Problem 3.13

a)

$$\dot{x} = \begin{bmatrix} -1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & -2 & 3 \end{bmatrix} x + \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} u \qquad \qquad y = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix} x$$

$$\begin{vmatrix} \lambda + 1 & -1 & -1 \\ 0 & \lambda & -1 \\ 0 & 2 & \lambda + 3 \end{vmatrix} = \lambda(\lambda + 1)(\lambda + 3) + 2(\lambda + 1) = 0$$

Eigenvalues:

$$\lambda = \begin{cases} -1 \\ -1 \\ -2 \end{cases}$$

$$Av_i = \lambda_i v_i \quad , \quad \lambda = -1$$

$$\begin{bmatrix} -1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{12} \\ v_{13} \end{bmatrix} \Rightarrow = -1 \begin{bmatrix} v_{11} \\ v_{12} \\ v_{13} \end{bmatrix} \Rightarrow \begin{cases} -v_{11} + v_{12} + v_{13} = -v_{11} \\ v_{13} = -v_{12} \\ -2v_{12} - 3v_{13} = -v_{13} \end{cases}$$

For $v_{11} = 1$ we can choose $v_{12} = 0$, $v_{13} = 0$

$$\Rightarrow v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Similarly:

$$v_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$
 , $v_3 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$

Linear Systems Control

Solutions to problems

Problem 3.13

b)

$$M = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & -2 \end{bmatrix}$$
 $, M^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & -1 & -1 \end{bmatrix}$

$$\Lambda = M^{-1}AM = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

$$B_{\Lambda} = M^{-1}B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}$$
 , $C_{\Lambda} = CM = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix}$

c)

$$\dot{x}_1 = -x_1 + x_2 + x_3 + u_1
\dot{x}_2 = x_3
\dot{x}_3 = -2x_2 - 3x_3 + u_2
y_1 = x_1
y_2 = 2x_2$$

Linear Systems Control

Solutions to problems

Problem 3.13

The diagonal form:

$$G(s) = C(sI - A)^{-1}B$$

$$(sI - A)^{-1} = \begin{bmatrix} s+1 & -1 & -1 \\ 0 & s & -1 \\ 0 & z & s+3 \end{bmatrix}^{-1} = \frac{1}{|sI - A|} \begin{bmatrix} s(s+3) + 2 & 0 & 0 \\ s+1 & (s+1)(s+3) & -2(s+1) \\ s+1 & s+1 & s+1 & s(s+1) \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{s+1} & \frac{s+1}{(s+1)(s^2+3s+2)} & \frac{1}{s^2+3s+2} \\ 0 & \frac{s+3}{s^2+3s+2} & \frac{1}{s^2+3s+2} \\ 0 & \frac{-2}{s^2+3s+2} & \frac{s}{s^2+3s+2} \end{bmatrix}$$

Linear Systems Control

Solutions to problems

Problem 3.13

$$G(s) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix} (sI - A)^{-1} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} \frac{1}{s+1} & \frac{1}{s^2 3s + 2} \\ 0 & \frac{2}{s^2 + 3s + 2} \end{bmatrix}$$

Diagnonal form:

$$(sI - \Lambda)^{-1} = \begin{bmatrix} (s+1)^{-1} & 0 & 0 \\ 0 & (s+1)^{-1} & 0 \\ 0 & 0 & (s+2)^{-1} \end{bmatrix}$$

$$G(s) = C_{\Lambda}(sI - \Lambda)^{-1}B_{\Lambda}$$

$$= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix} (sI - \Lambda)^{-1} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} \frac{1}{s+1} & \frac{1}{s^2 + 3s + 2} \\ 0 & \frac{2}{s^2 + 3s + 2} \end{bmatrix}$$

e)

Left eigenvectors are easiest found by taking the w_i^T vectors as the rows of M^{-1} (see equation (3.245):

Linear Systems Control

Solutions to problems

Problem 3.13

$$w_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad \text{for} \quad \lambda_{1} = -1$$

$$w_{2} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \quad \text{for} \quad \lambda_{2} = -1$$

$$w_{3} = \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix} \quad \text{for} \quad \lambda_{3} = -2$$

If we find w_i from the definition (3.342)

$$w_i^T A = \lambda_i w_i^T$$
 or $A^T w_i = \lambda_i w_i$

it is important to norm the w_i 's such that the condition

$$\begin{bmatrix} w_1^T \\ w_2^T \\ w_3^T \end{bmatrix} [v_1 \quad v_2 \quad v_3] = I$$
(see (3.245))

is fulfilled. If we let

$$w_1^T = [p \ p \ p]$$
 , $w_2^T = [0 \ 2q \ q]$ and $w_3^T = [0 \ r \ r]$

we can find from 1 that

$$p = 1$$
 , $q = 1$, $r = -1$

Linear Systems Control

Solutions to problems

Problem 3.13

f)

$$M_C = [B \ AB \ A^2B] = \begin{bmatrix} 1 & 0 & -1 & 1 & 1 & -3 \\ 0 & 0 & 0 & 1 & 0 & -3 \\ 0 & 1 & 0 & 3 & 0 & 7 \end{bmatrix}$$

 $\Rightarrow rank(M_C) = 3 \Rightarrow$ The system is controllable

$$M_{0} = \begin{bmatrix} C \\ CA \\ CA^{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ -1 & 1 & 1 \\ 0 & 0 & 2 \\ 1 & -3 & -3 \\ 0 & -4 & -6 \end{bmatrix} \quad \text{rank}(M_{0}) = 3$$

⇒ The system is observable

g) PHS-test:

The system is controllable if $w_i^T B \neq 0$ for all i

$$w_1^T B = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} \neq 0$$

 $w_2^T B = \begin{bmatrix} 0 & 1 \end{bmatrix} \neq 0, \qquad w_3^T B = \begin{bmatrix} 0 & -1 \end{bmatrix} \neq 0 =$
 \Rightarrow The system is controllable

Similarly, the system is observable if $w_i^T B \neq 0$ for all *i*

$$Cv_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad Cv_2 = \begin{bmatrix} 0 \\ 4 \end{bmatrix}, \qquad Cv_3 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

 \Rightarrow The system is observable