Low-Level Design (LLD) Report for Fraud Transaction Detection

Author: Sandeep Sharma

Email: s_sharma@ce.iitr.ac.in

GitHub: https://github.com/sandeeps9119

Table of Contents

- 1. Introduction
- 2. Objective
- 3. Architecture Overview
- 4. Data Flow
- 5. Detailed Component Design
 - o Data Ingestion
 - o Data Pre-processing
 - o Exploratory Data Analysis
 - o Feature Engineering
 - Data Balancing
 - Model Training
 - Model Evaluation
- 6. Classes and Functions
- 7. Libraries and Dependencies
- 8. Testing Strategy
- 9. Conclusion

1. Introduction

This document details the Low-Level Design (LLD) for a Fraud Transaction Detection system, aimed at identifying fraudulent transactions using machine learning techniques. It covers the design and implementation aspects, including data processing, feature engineering, model training, and evaluation.

2. Objective

The primary goal is to develop a robust machine learning model capable of accurately detecting fraudulent transactions. The model will be trained on historical transaction data and evaluated using a range of performance metrics to ensure reliability and accuracy.

3. Architecture Overview

The architecture for the Fraud Transaction Detection system is composed of the following components:

- 1. Data Ingestion
- 2. Data Pre-processing
- 3. Exploratory Data Analysis (EDA)
- Feature Engineering
- 5. Data Balancing
- 6. Model Training
- 7. Model Evaluation

Each of these components is crucial for building an effective and accurate fraud detection model.

4. Data Flow

- 1. **Data Ingestion:** Load the datasets for training and testing from CSV files.
- 2. **Data Pre-processing:** Clean and preprocess the data, handle missing values, encode categorical variables, and extract relevant features.
- 3. **Exploratory Data Analysis (EDA):** Analyze data distributions and relationships between features.
- 4. **Feature Engineering:** Generate new features from the existing data to improve model performance.

- 5. **Data Balancing:** Apply techniques to balance the class distribution, addressing class imbalance issues.
- 6. **Model Training:** Train various machine learning models using the processed data.
- 7. **Model Evaluation:** Assess the performance of the trained models and select the best-performing model based on predefined metrics.

5. Detailed Component Design

Data Ingestion

Description: Load the datasets for training and

```
from google.colab import drive
import pandas as pd

drive.mount('/content/drive')
file_path1 = '/content/drive/My Drive/Colab/fraudTrain.csv'
file_path2 = '/content/drive/My Drive/Colab/fraudTest.csv'
train_df = pd.read_csv(file_path1, index_col='Unnamed: 0')
test_df = pd.read_csv(file_path2, index_col='Unnamed: 0')
```

Description:

- 1. Convert transaction dates to datetime objects.
- Extract hour and month from transaction dates.
- 3. Remove unnecessary columns.
- 4. Encode categorical features using Weight of Evidence (WOE).

```
train_df['trans_date_trans_time'] = pd.to_datetime(train_df['trans_date_trans_time'],
    format='mixed')
test_df['trans_date_trans_time'] = pd.to_datetime(test_df['trans_date_trans_time'],
   format='mixed')
train_df['hour'] = train_df['trans_date_trans_time'].dt.hour
test_df['hour'] = test_df['trans_date_trans_time'].dt.hour
train_df['month'] = train_df['trans_date_trans_time'].dt.month
test_df['month'] = test_df['trans_date_trans_time'].dt.month
columns_to_drop = ['first', 'unix_time', 'dob', 'cc_num', 'zip', 'city', 'street',
   'state', 'trans_num', 'trans_date_trans_time']
train_df = train_df.drop(columns_to_drop, axis=1)
test_df = test_df.drop(columns_to_drop, axis=1)
train_df['merchant'] = train_df['merchant'].apply(lambda x: x.replace('fraud_', ''))
from category encoders import WOEEncoder
train_df['gender'] = train_df['gender'].map({'F': 0, 'M': 1})
for col in ['job', 'merchant', 'category', 'lat', 'last']:
  train_df[col] = WOEEncoder().fit_transform(train_df[col], train_df['is_fraud'])
```

Description: Perform EDA to understand the data distribution and relationships between features.

```
import matplotlib.pyplot as plt
import seaborn as sns
fig, axb = plt.subplots(ncols=2, nrows=1, figsize=(15, 8))
explode = [0.1, 0.1]
train_df.groupby('gender')['is_fraud'].count().plot.pie(explode=explode, autopct="%1.1f%%"
    , ax=axb[0])
ax = sns.countplot(x="gender", hue="is_fraud", data=train_df, ax=axb[1])
for p in ax.patches:
    ax.annotate(f'{p.get_height()}', (p.get_x() + p.get_width() / 2., p.get_height()), ha
        ='center', va='center', xytext=(0, 10), textcoords='offset points')
plt.title("Distribution of Gender with Fraud Status")
plt.xlabel("Gender")
plt.ylabel("Count")
plt.show()
is_fraud = train_df["is_fraud"].value_counts()
plt.figure(figsize=(10, 6))
plt.pie(is_fraud, labels=["No", "YES"], autopct="%0.0f%%")
plt.title("is_fraud Counts")
plt.tight layout()
plt.show()
```

Feature Engineering

Description: Create new features from the transaction dates.

```
# Extract hour and month from transaction date
train_df['hour'] = train_df['trans_date_trans_time'].dt.hour
test_df['hour'] = test_df['trans_date_trans_time'].dt.hour
train_df['month'] = train_df['trans_date_trans_time'].dt.month
test_df['month'] = test_df['trans_date_trans_time'].dt.month
```

Description: Down-sample the majority class to address class imbalance.

```
from sklearn.utils import resample
# Down-sample the majority class
No_class = train_df[train_df["is_fraud"] == 0]
yes_class = train_df[train_df["is_fraud"] == 1]
No_class = resample(No_class, replace=False, n_samples=len(yes_class))
down_samples = pd.concat([yes_class, No_class], axis=0)
```

Model Training

Description: Train various machine learning models on the preprocessed data.

```
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
from sklearn.svm import LinearSVC
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
X = down_samples.drop("is_fraud", axis=1)
y = down_samples["is_fraud"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=65
scaler = StandardScaler()
X train = scaler.fit transform(X train)
X_test = scaler.transform(X_test)
models = {
    "Logistic Regression": LogisticRegression(),
    "Decision Tree": DecisionTreeClassifier(),
    "Random Forest": RandomForestClassifier(),
    "XGBoost": XGBClassifier(),
    "SVM": LinearSVC(),
    "Naive Bayes": GaussianNB()
```

```
# Train and evaluate each model
for name, model in models.items():
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    report = classification_report(y_test, y_pred)
    matrix = confusion_matrix(y_test, y_pred)
    print(f"Model: {name}")
    print(f"Accuracy: {accuracy}")
    print(f"Classification Report:\n{report}")
    print(f"Confusion Matrix:\n{matrix}\n")
```

Model Evaluation

Description: Evaluate the trained models using appropriate metrics and select the best model.

- **Accuracy:** Proportion of correctly classified instances among the total instances.
- **Precision:** Proportion of true positive instances among the instances predicted as positive.
- **Recall (Sensitivity):** Proportion of true positive instances among the actual positive instances.
- **F1-Score:** Harmonic mean of precision and recall.
- **Confusion Matrix:** A table showing the counts of true positives, true negatives, false positives, and false negatives.

6. Classes and Functions

- 1. Data Ingestion:
 - o load_data(file_path): Load data from the specified file path.
- 2. Data Pre-processing:
 - preprocess_data(df): Preprocess the data including datetime conversion, feature extraction, and encoding.
- 3. **EDA**:
 - plot_gender_distribution(df): Plot gender distribution.
 - o plot_fraud_distribution(df): Plot fraud vs non-fraud distribution.
- 4. Feature Engineering:
 - extract_features(df): Extract new features from existing data.

5. **Data Balancing:**

 balance_data(df): Down-sample the majority class to address class imbalance.

6. **Model Training:**

- train_models(X_train, y_train): Train various machine learning models.
- evaluate_models(X_test, y_test, models): Evaluate trained models using appropriate metrics.

7. Libraries and Dependencies

- pandas: For data manipulation and analysis.
- numpy: For numerical operations.
- sklearn: For machine learning algorithms and evaluation metrics.
- xgboost: For the XGBoost model.
- imblearn: For handling class imbalance.
- matplotlib and seaborn: For data visualization.

8. Testing Strategy

- Unit Testing: Test individual functions such as load_data, preprocess_data, and extract_features to ensure they work as expected.
- **Integration Testing:** Test the entire pipeline from data ingestion to model evaluation to ensure all components work together seamlessly.
- **Performance Testing:** Evaluate the performance of different models using metrics such as accuracy, precision, recall, F1-score, and confusion matrix.

9. Conclusion

This Low-Level Design (LLD) report provides a comprehensive guide for implementing a fraud transaction detection system. The system includes data ingestion, pre-processing, feature engineering, data balancing, model training, and evaluation. The detailed component design, code snippets, and testing strategy ensure the robustness and accuracy of the fraud detection model.