```
In [287]:
                import pandas as pd
                import numpy as np
                import matplotlib.pyplot as plt
                import seaborn as sns
                %matplotlib inline
                from sklearn.model selection import train test split
                import plotly.express as px
                from sklearn.preprocessing import LabelEncoder
In [203]:
                df = pd.read csv("avocado.csv")
                df
    Out[203]:
                        Unnamed:
                                                           Total
                                                                                              Total
                                                                                                       Sr
                                                                   4046
                                                                              4225
                                                                                     4770
                                   Date AveragePrice
                                                        Volume
                                                                                              Bags
                                                                                                       В
                                  2015-
                     0
                                0
                                                 1.33
                                                       64236.62
                                                                1036.74
                                                                          54454.85
                                                                                    48.16
                                                                                            8696.87
                                                                                                     8603
                                   12-27
                                  2015-
                                                                                                     9408
                     1
                                                 1.35
                                                       54876.98
                                                                  674.28
                                                                          44638.81
                                                                                    58.33
                                                                                            9505.56
                                   12-20
                                  2015-
                     2
                                                 0.93
                                                     118220.22
                                                                  794.70
                                                                         109149.67
                                                                                   130.50
                                                                                            8145.35
                                                                                                     8042
                                   12-13
                                  2015-
                     3
                                                 1.08
                                                       78992.15
                                                                 1132.00
                                                                          71976.41
                                                                                    72.58
                                                                                            5811.16
                                                                                                     5677
                                   12-06
                                  2015-
                                                 1.28
                                                       51039.60
                                                                          43838.39
                                                                                    75.78
                                                                                            6183.95
                                                                                                     5986
                     4
                                                                  941.48
                                   11-29
                                  2018-
                                7
                                                       17074.83 2046.96
                 18244
                                                 1.63
                                                                           1529.20
                                                                                     0.00
                                                                                           13498.67
                                                                                                    1306€
                                  02-04
                                  2018-
                 18245
                                                       13888.04 1191.70
                                                 1.71
                                                                           3431.50
                                                                                     0.00
                                                                                            9264.84
                                                                                                     8940
                                  01-28
                                  2018-
                 18246
                                                 1.87
                                                       13766.76 1191.92
                                                                           2452.79 727.94
                                                                                            9394.11
                                                                                                     9351
                                  01-21
                                  2018-
                 18247
                               10
                                                       16205.22 1527.63
                                                                           2981.04 727.01
                                                                                           10969.54
                                                                                                    10919
                                                 1.93
                                  01-14
                                  2018-
                 18248
                               11
                                                 1.62
                                                       17489.58 2894.77
                                                                           2356.13 224.53 12014.15
                                                                                                    11988
                                  01-07
                18249 rows × 14 columns
In [204]:
               df.shape
    Out[204]: (18249, 14)
             ▶ df.columns.values
In [205]:
    Out[205]: array(['Unnamed: 0', 'Date', 'AveragePrice', 'Total Volume', '4046',
                         '4225', '4770', 'Total Bags', 'Small Bags', 'Large Bags',
                         'XLarge Bags', 'type', 'year', 'region'], dtype=object)
```

```
In [207]:
In [286]:
             df.info()
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 18249 entries, 0 to 18248
             Data columns (total 13 columns):
                               Non-Null Count Dtype
              #
                  Column
                  ____
                               _____
              0
                  Date
                               18249 non-null object
              1
                  AveragePrice 18249 non-null float64
              2
                  Total Volume 18249 non-null float64
              3
                  4046
                               18249 non-null float64
              4
                  4225
                               18249 non-null float64
              5
                  4770
                               18249 non-null float64
              6
                  Total Bags
                               18249 non-null float64
              7
                               18249 non-null float64
                  Small Bags
              8
                  Large Bags
                               18249 non-null float64
              9
                  XLarge Bags
                               18249 non-null float64
              10
                 type
                               18249 non-null int32
                 year
                               18249 non-null int64
              11
                               18249 non-null object
              12 region
             dtypes: float64(9), int32(1), int64(1), object(2)
             memory usage: 1.7+ MB
In [276]:
             pd.set_option('float_format', '{:f}'.format)
             df.describe()
   Out[276]:
```

	AveragePrice	Total Volume	4046	4225	4770	
count	18249.000000	18249.000000	18249.000000	18249.000000	18249.000000	
mean	1.405978	850644.013009	293008.424531	295154.568356	22839.735993	2:
std	0.402677	3453545.355399	1264989.081763	1204120.401135	107464.068435	98
min	0.440000	84.560000	0.000000	0.000000	0.000000	
25%	1.100000	10838.580000	854.070000	3008.780000	0.000000	
50%	1.370000	107376.760000	8645.300000	29061.020000	184.990000	;
75%	1.660000	432962.290000	111020.200000	150206.860000	6243.420000	1
max	3.250000	62505646.520000	22743616.170000	20470572.610000	2546439.110000	193 ⁻
4						•

75% and max values of XLarge Bags has vast difference hence outliers. In XLarge Bags we may find outliers


```
In [282]: ► df.region.unique()
```


	_		
Out[215]:	Detroit	338	
	SanFrancisco	338	
	HarrisburgScranton	338	
	Denver	338	
	GrandRapids	338	
	Nashville	338	
	Midsouth	338	
	Philadelphia	338	
	Charlotte	338	
	Plains	338	
	HartfordSpringfield	338	
	Chicago	338	
	LasVegas	338	
	Jacksonville	338	
	Portland	338	
	Seattle	338	
	Pittsburgh	338	
	RichmondNorfolk	338	
	Spokane	338	
	West	338	
	Boise	338	
	Syracuse	338	
	Northeast	338	
	NewOrleansMobile	338	
	RaleighGreensboro	338	
	Southeast	338	
	StLouis	338	
	California	338	
	Houston	338	
	PhoenixTucson	338	
	Sacramento	338	
	Boston	338	
	Louisville MiamiFtLauderdale	338	
	SouthCentral	338 338	
	LosAngeles	338	
	SanDiego	338	
	BaltimoreWashington	338	
	Columbus	338	
	CincinnatiDayton	338	
	Albany	338	
	NorthernNewEngland	338	
	NewYork	338	
	SouthCarolina	338	
	TotalUS	338	
	DallasFtWorth	338	
	Indianapolis	338	
	BuffaloRochester	338	
	Roanoke	338	
	Orlando	338	
	Tampa	338	
	Atlanta	338	
	GreatLakes	338	

WestTexNewMexico 335 Name: region, dtype: int64

```
In [214]: ▶ df.type.value_counts()
```

Out[214]: conventional 9126 organic 9123 Name: type, dtype: int64

There are almost similar number of types of avocado sold

The data consists of weekly avacado retail prices from the year 2015 to 2018

C:\Users\Nikita\anaconda3\lib\site-packages\seaborn\distributions.py:2557:
FutureWarning:

`distplot` is a deprecated function and will be removed in a future versio n. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

Out[256]: <matplotlib.axes. subplots.AxesSubplot at 0x188113ed788>

Here we are gettin 2 distribution plots for continous and catagorical data for 2 categories (0= conventional type , 1 = organic type)

In [218]: ▶ sns.distplot(df.year)

C:\Users\Nikita\anaconda3\lib\site-packages\seaborn\distributions.py:2557:
FutureWarning:

`distplot` is a deprecated function and will be removed in a future versio n. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

Out[218]: <matplotlib.axes._subplots.AxesSubplot at 0x1879ef850c8>

2018 has compariitively less data than that of other years

counts, bin_edges = np.histogram(df['Total Volume'], bins=10, density= True) plt.xlabel("Total Volume") pdf = counts/sum(counts) print("pdf",pdf) cdf = np.cumsum(pdf) print("cdf", cdf) plt.plot(bin edges[1:], pdf); plt.plot(bin edges[1:], cdf)

```
In [219]: No counts, bin_edges = np.histogram(df['AveragePrice'], bins=10, density= True)
    plt.xlabel("Average Price")
    pdf = counts/sum(counts)
    print("pdf",pdf)
    cdf = np.cumsum(pdf)
    print("cdf", cdf)
    plt.plot(bin_edges[1:], pdf);
    plt.plot(bin_edges[1:], cdf)

ndf [0 01813798 0 14422708 0 26434325 0 24691764 0 18696915 0 09162146
```

pdf [0.01813798 0.14422708 0.26434325 0.24691764 0.18696915 0.09162146 0.03276892 0.00969916 0.00471259 0.00060277] cdf [0.01813798 0.16236506 0.42670831 0.67362595 0.8605951 0.95221656 0.98498548 0.99468464 0.99939723 1.

Out[219]: [<matplotlib.lines.Line2D at 0x1879f045948>]

The average prices of avocados ranges from 0.44 to 3.25 for a single unit. According to the graph, majorly the price per avacado is between 1 to 1.5

In [220]: N sns.kdeplot(df.loc[(df['type']=='conventional'), 'AveragePrice'], color='b', s
sns.kdeplot(df.loc[(df['type']=='organic'), 'AveragePrice'], color='r', shade=

Out[220]: <matplotlib.axes. subplots.AxesSubplot at 0x187d1bea248>

fig = px.histogram(df, x='AveragePrice', color='type', marginal='box', # or violin, rug hover data=df.columns)

fig.show()

In [257]: ▶ sns.barplot(df['year'], df['Total Volume'], palette='hls')

C:\Users\Nikita\anaconda3\lib\site-packages\seaborn_decorators.py:43: Futu
reWarning:

Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

Out[257]: <matplotlib.axes._subplots.AxesSubplot at 0x1881deb0a08>


```
In [258]: ▶ sns.barplot(df['year'], df['Total Bags'], palette='Set3')
```

C:\Users\Nikita\anaconda3\lib\site-packages\seaborn_decorators.py:43: Futu
reWarning:

Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

Out[258]: <matplotlib.axes._subplots.AxesSubplot at 0x1881df7d8c8>


```
In [255]: In sns.lineplot(x=df['year'], y=df['Small Bags'])
sns.lineplot(x=df['year'], y=df['Large Bags'])
sns.lineplot(x=df['year'], y=df['XLarge Bags'])
```

Out[255]: <matplotlib.axes._subplots.AxesSubplot at 0x18811034a88>


```
In [226]: In plt.figure(figsize=(12,6))
    plt.bar(df['year'] + 0.2, df['Small Bags'], 0.4, label = 'Small Bags')
    plt.bar(df['year'] + 0.2, df['Large Bags'], 0.4, label = 'Large Bags')
    plt.bar(df['year'] + 0.2, df['XLarge Bags'], 0.4, label = 'XLarge Bags')
    plt.legend()
```

Out[226]: <matplotlib.legend.Legend at 0x187dfacbe08>


```
In [227]:  plt.figure(figsize=(16,6))
sns.boxplot(x=df['region'], y=df['AveragePrice'])
plt.xticks(rotation=90)
```


In [228]: sns.pairplot(df,hue='type',palette='bright')

Out[228]: <seaborn.axisgrid.PairGrid at 0x18804b01848>

Out[229]:

	Date	AveragePrice	Total Volume	4046	4225	4770	Total Bags	Small Bags	Large Bags
0	2015- 12-27	1.33	64236.62	1036.74	54454.85	48.16	8696.87	8603.62	93.25
1	2015- 12-20	1.35	54876.98	674.28	44638.81	58.33	9505.56	9408.07	97.49
2	2015- 12-13	0.93	118220.22	794.70	109149.67	130.50	8145.35	8042.21	103.14
3	2015- 12-06	1.08	78992.15	1132.00	71976.41	72.58	5811.16	5677.40	133.76
4	2015- 11-29	1.28	51039.60	941.48	43838.39	75.78	6183.95	5986.26	197.69
18244	2018- 02-04	1.63	17074.83	2046.96	1529.20	0.00	13498.67	13066.82	431.85
18245	2018- 01-28	1.71	13888.04	1191.70	3431.50	0.00	9264.84	8940.04	324.80
18246	2018- 01-21	1.87	13766.76	1191.92	2452.79	727.94	9394.11	9351.80	42.31
18247	2018- 01-14	1.93	16205.22	1527.63	2981.04	727.01	10969.54	10919.54	50.00
18248	2018- 01-07	1.62	17489.58	2894.77	2356.13	224.53	12014.15	11988.14	26.01

18249 rows × 13 columns

←

Out[230]:

	Total Volume	4046	4225	4770	Total Bags	Small Bags	Large Bags	XLarge Bags	type
0	64236.62	1036.74	54454.85	48.16	8696.87	8603.62	93.25	0.0	0
1	54876.98	674.28	44638.81	58.33	9505.56	9408.07	97.49	0.0	0
2	118220.22	794.70	109149.67	130.50	8145.35	8042.21	103.14	0.0	0
3	78992.15	1132.00	71976.41	72.58	5811.16	5677.40	133.76	0.0	0
4	51039.60	941.48	43838.39	75.78	6183.95	5986.26	197.69	0.0	0
18244	17074.83	2046.96	1529.20	0.00	13498.67	13066.82	431.85	0.0	1
18245	13888.04	1191.70	3431.50	0.00	9264.84	8940.04	324.80	0.0	1
18246	13766.76	1191.92	2452.79	727.94	9394.11	9351.80	42.31	0.0	1
18247	16205.22	1527.63	2981.04	727.01	10969.54	10919.54	50.00	0.0	1
18248	17489.58	2894.77	2356.13	224.53	12014.15	11988.14	26.01	0.0	1

18249 rows × 9 columns

```
In [231]:  
y=df.iloc[:,1].values
y
```

Out[231]: array([1.33, 1.35, 0.93, ..., 1.87, 1.93, 1.62])

In [232]: N X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, ran

In [233]: ► X_train

Out[233]:

	Total Volume	4046	4225	4770	Total Bags	Small Bags	Large Bags	XLarge Bags	t
3370	173825.82	49586.89	42501.52	35277.07	46460.34	23754.04	17567.37	5138.93	
2541	169118.65	88022.48	33530.37	41.17	47524.63	47493.52	31.11	0.00	
4988	564637.66	104831.87	157896.39	21607.39	280302.01	238110.78	42191.23	0.00	
14684	216330.45	26543.86	55055.64	81.03	134649.92	46628.66	88021.26	0.00	
8636	443295.30	82676.76	65334.67	47721.41	247562.46	178042.93	49942.51	19577.02	
16304	170194.95	8951.42	43472.34	1596.01	116175.18	106878.45	9296.73	0.00	
79	554763.76	449311.47	30231.78	678.40	74542.11	55484.76	19010.81	46.54	
12119	2206.16	5.29	1132.48	0.00	1068.39	473.33	595.06	0.00	
14147	28707.18	1397.86	25119.52	0.00	2189.80	2186.47	3.33	0.00	
5640	102461.61	2468.78	86707.66	2546.08	10739.09	4950.13	4788.96	1000.00	

12226 rows × 9 columns

4

Out[234]: array([0.95, 1.23, 0.85, ..., 1.38, 2.34, 1.39])

In [235]: ► X_test

Out[235]:

	Total Volume	4046	4225	4770	Total Bags	Small Bags	Large Bags
17091	14071.97	225.39	3924.73	86.75	9835.10	9260.43	574.67
9441	91211.53	17839.96	47527.65	1.53	25842.39	25661.06	181.33
15443	21753.60	503.84	3596.40	0.00	17535.94	15555.28	1980.66
10982	29227.44	3334.06	15998.87	48.37	9846.14	8530.66	1315.48
2671	31936856.18	12680252.48	12998327.25	1143364.58	5114911.87	4342839.06	703542.10
13636	10596.57	465.92	2658.75	17.11	7454.79	6054.65	1400.14
7010	176082.45	72427.91	37438.94	93.89	66121.71	56903.06	7881.98
17054	56578.63	1762.76	16113.72	10.69	38691.46	497.52	38193.94
17615	23042.99	590.29	5224.55	0.00	17228.15	16438.54	789.61
10334	1155.28	23.52	1114.66	0.00	17.10	0.00	17.10

6023 rows × 9 columns

In [236]: ▶ y_test

Out[236]: array([2.03, 1.48, 1.75, ..., 1.51, 1.43, 1.87])

In [237]: ▶ from sklearn.linear_model import LinearRegression

```
In [238]:
            regressor = LinearRegression()
               regressor.fit(X_train,y_train)
               y_pred = regressor.predict(X_test)
               df2 = pd.DataFrame({'Actual':y_test, 'Predicted': y_pred})
    Out[238]:
                     Actual Predicted
                       2.03
                             1.652768
                   1
                       1.48
                             1.656110
                   2
                       1.75
                             1.653595
                   3
                       1.90
                             1.653645
                   4
                       1.05
                             0.934288
                        ...
                                 ---
                6018
                       1.95
                             1.652476
                6019
                       1.42
                             1.168163
                6020
                       1.51
                             1.649764
                6021
                       1.43
                             1.653071
                6022
                       1.87
                             1.652353
               6023 rows × 2 columns
In [239]:

    regressor.intercept_

    Out[239]: 1.1684152801987813
In [240]:
            regressor.coef_
    Out[240]: array([ 7.08836302e-06, -7.18483568e-06, -6.98433125e-06, -7.54008510e-06,
                        2.07538227e-02, -2.07608852e-02, -2.07610156e-02, -2.07592414e-02,
                        4.83825774e-01])
In [241]:

    regressor.score(X, y)
```

Out[241]: 0.39797969843237535

```
In [250]:
              rfr = RandomForestRegressor()
               rfr.fit(X_train, y_train)
               C:\Users\Nikita\anaconda3\lib\site-packages\sklearn\ensemble\forest.py:245:
               FutureWarning:
               The default value of n estimators will change from 10 in version 0.20 to 10
               0 in 0.22.
    Out[250]: RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
                                      max features='auto', max leaf nodes=None,
                                      min_impurity_decrease=0.0, min_impurity_split=None,
                                      min_samples_leaf=1, min_samples_split=2,
                                      min weight fraction leaf=0.0, n estimators=10,
                                      n jobs=None, oob score=False, random state=None,
                                      verbose=0, warm_start=False)
In [251]:
            y_pred1 = rfr.predict(X_test)
              df3 = pd.DataFrame({'Actual':y_test, 'Predicted': y_pred})
In [252]:
               df3
    Out[252]:
                     Actual Predicted
                  0
                       2.03
                            1.652768
                  1
                       1.48
                            1.656110
                  2
                       1.75
                            1.653595
                  3
                       1.90
                            1.653645
                  4
                       1.05
                            0.934288
                        ...
                6018
                            1.652476
                       1.95
                6019
                       1.42
                            1.168163
                6020
                       1.51
                            1.649764
                6021
                       1.43
                            1.653071
                6022
                       1.87
                            1.652353
               6023 rows × 2 columns
In [253]:
            rfr.score(X,y)
```

Out[253]: 0.8798264337791556