CHEM 145 Honors General Chemistry I Equations

Organized by Teng-Jui Lin

Warning

- WARNING: These equations are hand-typed and for personal reference use, so it is guaranteed to have some mistakes, both innocent and unforgivable. Therefore, use with caution!
- By using this equation sheet, you accept the risk associated with potential mistakes.
- If you find any mistakes, I welcome you to raise an issue.
- Updated: 6 February 2021

Table of Contents

- CHEM 145 Honors General Chemistry I Equations
 - Warning
 - Table of Contents
 - o Gas
 - Kinetic Theory of Gas
 - Molecular Collisions and Rate Processes
 - Intermolecular Interactions
 - Thermodynamics
 - First law of thermodynamics
 - Second law of thermodynamics
 - Equilibrium

Gas

Kinetic Theory of Gas

Quantity	Unit	Definition
Pressure	$ m N/m^2$	$P=rac{F}{A}$
Mole fraction of a	-	$X_a = rac{n_a}{n_{ m total}}$
Partial pressure of a	$ m N/m^2$	$P_a = X_a P_{ m total}$
Pressure-volume work	J	$W=-P\Delta V$
Compressibility of gas	-	$z=rac{PV}{nRT}$

Description	Equations
Ideal gas law	PV = nRT
Ideal gas constant and Boltzmann constant	$R=N_Ak_B$
Average kinetic energy of one gas molecule	$arepsilon=rac{3}{2}k_BT$
Root mean square speed gas	$v_{ m RMS} = \sqrt{rac{3RT}{\mathcal{M}}} = \sqrt{rac{3k_BT}{m}}$
Mean speed of gas	$ar{v} = \sqrt{rac{8RT}{\pi \mathcal{M}}} = \sqrt{rac{8k_BT}{\pi m}}$
Most probable speed of gas	$v_{ m mp} = \sqrt{rac{2RT}{\mathcal{M}}} = \sqrt{rac{2k_BT}{m}}$
Maxwell-Boltzmann speed distribution	$f(v)=4\pi(rac{m}{2\pi k_BT})v^2\exp(rac{-mv^2}{2k_BT})$
Van der Waals equation of state	$(P+arac{n^2}{V^2})(V-bn)=nRT$
Lennard-Jones potential	$V_{ m LJ} = 4arepsilon \left(\left(rac{\sigma}{R} ight)^{12} - \left(rac{\sigma}{R} ight)^6 ight)$

Molecular Collisions and Rate Processes

Description	Equations
Molecule collision rate with wall	$Z_w \propto rac{1}{4}rac{N}{V}ar{v}A = rac{1}{4}rac{N}{V}\sqrt{rac{8RT}{\pi\mathcal{M}}}A$
Graham's law of effusion	$rac{ ext{rate of effusion of A}}{ ext{rate of effusion of B}} = rac{N_{ ext{A}}}{N_{ ext{B}}} \sqrt{rac{\mathcal{M}_{ ext{B}}}{\mathcal{M}_{ ext{A}}}}$
Molecule-molecule collision rate	$Z_1 = 4rac{N}{V}d^2\sqrt{rac{\pi RT}{\mathcal{M}}}$
Mean free path	$\lambda = rac{ar{v}}{Z_1} = rac{V}{\sqrt{2}\pi d^2 N}$
Mean square displacement of diffusion in 3D	$\overline{\Delta r}^2 = 6Dt$
Gas diffusion constant	$D=rac{3}{8}\sqrt{rac{RT}{\pi\mathcal{M}}}rac{V}{Nd^2}$

Intermolecular Interactions

Quantity	Unit	Definition	
Electrostatic force	N	$F=rac{q_1q_2}{4\piarepsilon r^2}$	
Electrostatic potential energy	N	$V=rac{q_1q_2}{4\piarepsilon r}$	
Dipole moment	$\mathbf{C}\cdot\mathbf{m}$	$\mu = qd$	
Polarizability	$\mathrm{C}\cdot\mathrm{m}^2/\mathrm{V}$	$lpha=rac{\mu}{E}$	
Induced dipole moment	$\mathbf{C}\cdot\mathbf{m}$	$\mu^*=lpha E$	

Equations
$E \propto rac{q_1q_2}{r}$
$E \propto -rac{q\mu}{r^2}$
$E \propto -rac{\mu_1 \mu_2}{r^3}$
$E \propto -rac{lpha_1lpha_2}{r^6}$
$E \propto -rac{\mu_1^2 lpha_2}{r^6}$
$E \propto -rac{\mu_1^2\mu_2^2}{r^6}$

Thermodynamics

First law of thermodynamics

Quantity	Unit	Definition
Specific heat capacities	$ m J \cdot kg^{-1} \cdot K^{-1}$	$q=mc_s\Delta T=nar{c}\Delta T$
Heat capacity	$\mathrm{J/K}$	$q=C\Delta T$
Molar heat capacities	$J \cdot mol^{-1} \cdot K^{-1}$	$q_V = n c_V \Delta T \ q_P = n c_P \Delta T$
Enthalpy	J	H=U+PV

Description	Equations
First law of thermodynamics	$egin{aligned} \Delta U &= q + w \ dU &= \not\! A q + \not\! A w \ \Delta U_{ ext{univ}} &= \Delta U_{ ext{sys}} + \Delta U_{ ext{surr}} = 0 \end{aligned}$
Enthalpy change	$q_P = \Delta(U+PV) = \Delta H$
Molar heat capacity of monoatomic ideal gas at constant volume	$c_V=rac{3}{2}R$
Molar heat capacity of any ideal gas at constant pressure	$c_P=c_V+R=rac{5}{2}R$
Internal energy change of any ideal gas	$\Delta U = n c_V \Delta T$
Enthalpy change of any ideal gas	$egin{aligned} \Delta H &= n c_P \Delta T \ &= \Delta U + \Delta (PV) \ &= n c_V \Delta T + n R \Delta T \end{aligned}$
Hess's law	$\Delta H^\circ = \sum\limits_i^{ m prod} n_i \Delta H_i^\circ - \sum\limits_j^{ m react} n_j \Delta H_j^\circ$
Molality	$b = rac{n_{ m solute}}{m_{ m solvent}}$
Boiling point elevation (i is vant's Hoff dissociation factor)	$\Delta T_{ m boil} = i b K_{ m boil}$
Freezing point depression (i is vant's Hoff dissociation factor)	$\Delta T_{ m freeze} = ibK_{ m freeze}$
Reversible isothermal process of ideal gas	$egin{aligned} \Delta T &= 0 \ \Delta U &= 0 \ \Delta H &= 0 \ w &= -\int_{V_1}^{V_2} P \ dV &= -nRT \ln rac{V_2}{V_1} \ q &= -w \end{aligned}$
Reversible adiabatic process of ideal gas	$egin{aligned} q &= 0 \ \Delta U &= nc_V \Delta T = w \ \Delta H &= nc_P \Delta T \ \gamma &= rac{c_P}{c_V} \ T_1 V_1^{\gamma-1} &= T_2 V_2^{\gamma-1} \ P_1 V_1^{\gamma} &= P_2 V_2^{\gamma} \end{aligned}$

Second law of thermodynamics

Description	Equations
Entropy	$S=k_B \ln \Omega$
Entropy change	$\Delta S = \int_i^f rac{dq_{ m rev}}{T}$
$\Delta S_{ m sys}$ for reversible isothermal process	$\Delta S = \int_i^f rac{dq_{ m rev}}{T} = rac{1}{T} \int_i^f dq_{ m rev} = rac{q_{ m rev}}{T}$
$\Delta S_{ m sys}$ for reversible isothermal process - compression/expansion of ideal gas	$egin{aligned} q_{ ext{rev}} &= nRT \ln \left(rac{V_2}{V_1} ight) \ \Delta S &= nR \ln \left(rac{V_2}{V_1} ight) \end{aligned}$
$\Delta S_{ m sys}$ for reversible isothermal process - phase transitions	$egin{aligned} q_{ ext{rev}} &= \Delta H_{ ext{fus}} \ \Delta S_{ ext{fus}} &= rac{q_{ ext{rev}}}{T_{ ext{fus}}} &= rac{\Delta H_{ ext{fus}}}{T_{ ext{fus}}} \end{aligned}$
$\Delta S_{ m sys}$ for reversible adiabatic process	$egin{aligned} q &= 0 \ \Delta S &= 0 \end{aligned}$
$\Delta S_{ m sys}$ for reversible isochoric process	$egin{aligned} \Delta V &= 0 \ dq_{ ext{rev}} &= nc_V dT \ \Delta S &= nc_V \int_{T_1}^{T_2} rac{dT}{T} = nc_V \ln \left(rac{T_2}{T_1} ight) \end{aligned}$

Description	Equations
$\Delta S_{ m sys}$ for reversible isobaric process	$egin{aligned} \Delta P &= 0 \ dq_{ ext{rev}} &= nc_P dT \ \Delta S &= nc_P \int_{T_1}^{T_2} rac{dT}{T} = nc_P \ln \left(rac{T_2}{T_1} ight) \end{aligned}$
Entropy change of surrounding	$\Delta S_{ m surr} = rac{-\Delta H_{ m sys}}{T_{ m surr}}$
Second law of thermodynamics	$\Delta S \geq rac{q_{ m rev}}{T}$
Enthalpy of spontaneous process	$\Delta S_{ m total} = \Delta S_{ m sys} + \Delta S_{ m surr} > 0$
Standard molar entropy	$S^{\circ} = \int_{0K}^{298.15 ext{K}} rac{c_P}{T} dT + \ \Delta S ext{(phase changes between 0K and 298.15K)}$
Gibbs free energy for reaction at constant temperature	$\Delta G = \Delta H - T \Delta S$
Efficiency of Carnot engines	$egin{aligned} \epsilon &= rac{ ext{work on surrounding}}{ ext{heat into system}} \ &= rac{T_{ ext{high}} - T_{ ext{low}}}{T_{ ext{high}}} = 1 - rac{T_{ ext{low}}}{T_{ ext{high}}} \end{aligned}$
Relationship between heat and temperature in Carnot cycle	$rac{q_{ m high}}{T_{ m high}} + rac{q_{ m low}}{T_{ m low}} = 0$
Work done by Carnot cycle in one cycle	$w_{ m cycle} = -nR(T_{ m hot}-T_{ m cold}) \ln rac{V_B}{V_A}$

Equilibrium

Description	Equations
Law of mass action - partial pressure	$K = rac{\prod\limits_{j}(P_{ ext{product }j}/P_{ ext{ref}})_{eq}^{b_{j}}}{\prod\limits_{i}(P_{ ext{reactant }i}/P_{ ext{ref}})_{eq}^{a_{i}}}$
Law of mass action - concentration	$K = rac{\prod\limits_{j}(c_{ ext{product }j}/c_{ ext{ref}})_{eq}^{b_{j}}}{\prod\limits_{i}(c_{ ext{reactant }i}/c_{ ext{ref}})_{eq}^{a_{i}}}$
Gibbs free energy of isothermal reactions	$\Delta G = -T\Delta S = nRT\lnrac{P_2}{P_1}$
Equilibrium expression: relationship between Gibbs free energy and equilibrium constant (gas phase reaction)	$\Delta G^\circ = -RT \ln K$
Equilibrium expression: alternative form	$\ln K = -rac{\Delta G^{\circ}}{RT} = -rac{\Delta H^{\circ}}{RT} + rac{\Delta S}{R}$
Change in Gibbs free energy at non- standard conditions	$\Delta G = \Delta G^{\circ} + RT \ln Q = RT \ln rac{Q}{K}$
Reaction quotient - partial pressure	$Q = rac{\prod\limits_{j}(P_{ ext{product}j}/P_{ ext{ref}})^{b_{j}}}{\prod\limits_{i}(P_{ ext{reactant}i}/P_{ ext{ref}})^{a_{i}}}$
Reaction quotient - concentration	$Q = rac{\prod\limits_{j} (c_{ ext{product }j}/c_{ ext{ref}})^{b_{j}}}{\prod\limits_{i} (c_{ ext{reactant }i}/c_{ ext{ref}})^{a_{i}}}$
vant's Hoff equation temperature dependence of equilibrium constant of a reaction	$\ln rac{K_2}{K_1} = -rac{\Delta H^\circ}{R} \left(rac{1}{T_2} - rac{1}{T_1} ight)$
Clapeyron equation	(JD) AC AH

for two phase in equilibrium, construct phase diagram by finding change of pressure as a function of temperature

$$\left(\frac{dP}{dT}\right)_{eq} = \frac{\Delta S}{\Delta V} = \frac{\Delta H}{T\Delta V}$$

Clausius-Clapeyron equation

temperature dependence of vapor pressure for condensed phase and gas phase in equilibrium

$$\lnrac{P_2}{P_1} = -rac{\Delta H_{
m vap}}{nR}\left(rac{1}{T_2} - rac{1}{T_1}
ight)$$

for
$$P_1=P^\circ; \Delta S^\circ=rac{\Delta H}{T^\circ}$$

$$\begin{array}{ll} \textbf{Clausius-Clapeyron equation} \\ \text{for } P_1 = P^\circ; \Delta S^\circ = \frac{\Delta H^\circ}{T^\circ} & \ln \frac{P_2}{P^\circ} = -\frac{\Delta H_{\text{vap}}}{nRT_2} + \frac{\Delta S_{\text{vap}}^\circ}{nR} \end{array}$$