Série N° 2

Exercice 1

Soit une sphère de rayon R et de centre O uniformément chargée avec une densité volumique positive uniforme ρ . Un point M de l'espace est repéré par la distance OM=r.

En utilisant le théorème de Gauss, déterminer le champ électrostatique \vec{E} créé en ce point M.

Exercice 2

Soit un cylindre de révolution l'axe OZ, de rayon R, infiniment long et portant une charge surfacique positive uniforme σ . A l'aide du théorème de Gauss, déterminer le champ électrique en tout point de l'espace.

Exercice 3

Soit un plan infini d'épaisseur négligeable chargé avec une densité de charge surfacique positive et uniforme σ . En utilisant le théorème de Gauss, déterminer le champ électrique créé en un point d'un axe perpendiculaire au plan.

Exercice 4

Dans un repère orthonormé (OXY), on place aux points A(-d,0), B(d,0) et C(0,-d), respectivement, trois charges $(q_A>0)$, $(q_B=q_A)$ et $(q_C<0)$. Déterminer le potentiel électrique V(y) créé en un point M de l'axe OY $(\overrightarrow{OM}=y\overrightarrow{i})$.

Exercice 5

Soit un disque de rayon R et de centre O chargé avec une densité de charges surfacique uniforme et positive σ . Déterminer le potentiel électrostatique V(z) créé par ce système en un point M de son axe de révolution (OM=z).

Exercice 6

Une sphère de rayon R est uniformément chargée avec une densité surfacique positive σ .

- 1°- Montrer qu'en tout point extérieur à la sphère, le champ électrostatique est radial et identique à celui que créerait la charge totale de la sphère placée en son centre.
- 2°- Déterminer la valeur du champ à l'intérieur de la sphère et tracer le graphe E(r).
- 3°- En déduire le potentiel électrostatique en tout point de l'espace et tracer son graphe V(r).