Topic Review

TOPIC ESSENTIAL QUESTION

1. How can you use matrices to help you solve problems?

Vocabulary Review

Choose the correct term to complete each sentence.

- 2. The _____ has one column that represents all the variables in the system of equations.
- 3. The ______ is a square matrix with ones on the main diagonal and zeros for all other elements.
- **4.** _____ means the multiplication of each element of a matrix by a single real number.
- **5.** The _____ is the length of the vector.
- **6.** The product of a matrix and its ______ is the identity matrix.
- _____ has one column that contains the constants from the right-hand side of the system of equations.
- **8.** A(n) _____ is a matrix that has the same number of rows as columns.

- constant matrix
- identity matrix
- inverse matrix
- magnitude
- scalar multiplication
- square matrix
- variable matrix
- vector
- zero matrix

Concepts & Skills Review

LESSON 10-1

Operations With Matrices

Quick Review

To multiply a matrix by a scalar, multiply each element in the matrix by the scalar.

To add (or subtract) matrices, add (or subtract) the corresponding elements.

Example

Add matrices A and B.

$$A = \begin{bmatrix} 9 & 2 & 11 \\ -3 & 5 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & -1 & 7 \\ 8 & 12 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -1 & 7 \\ 8 & 12 & 0 \end{bmatrix}$$

Add corresponding elements of the two matrices.

$$A + B = \begin{bmatrix} 9 & 2 & 11 \\ -3 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 4 & -1 & 7 \\ 8 & 12 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 9 + 4 & 2 + (-1) & 11 + 7 \\ -3 + 8 & 5 + 12 & 6 + 0 \end{bmatrix}$$
$$= \begin{bmatrix} 13 & 1 & 18 \\ 5 & 17 & 6 \end{bmatrix}$$

Practice & Problem Solving

Given matrices $C = \begin{bmatrix} 9 & -5 \\ 3 & 6 \end{bmatrix}$ and $D = \begin{bmatrix} -7 & 1 \\ 8 & 2 \end{bmatrix}$, calculate each of the following.

- **11.** A segment has endpoints A(5, -3) and B(2, 4). Use matrices to represent a translation of AB to \overline{YZ} by 3 units right and 7 units down. What are the coordinates of Y and Z?
- 12. Communicate Precisely Suppose N is a 3×3 matrix. Explain how to find matrix *P* so that N + P is the zero matrix.
- 13. Make Sense and Persevere A seminar has 6 women and 8 men register early. Then 18 women and 12 men register in class. Use matrix addition to find the total number of men and women in the seminar.

LESSON 10-2

Matrix Multiplication

Quick Review

The product of two matrices is a new matrix with the sums of the products of corresponding row and column elements.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} w & x \\ y & z \end{bmatrix} = \begin{bmatrix} aw + by & ax + bz \\ cw + dy & cx + dz \end{bmatrix}$$

For an $n \times n$ matrix A, the multiplicative identity **matrix** I is an $n \times n$ square matrix with 1s on the main diagonal and 0s for all other elements: AI = IA = A.

Example

Multiply matrices A and B.

$$A = \begin{bmatrix} 3 & -2 \\ 1 & -4 \end{bmatrix} \quad B = \begin{bmatrix} -1 & 6 \\ 0 & 5 \end{bmatrix}$$

Find the sums of products of corresponding row and column elements.

$$AB = \begin{bmatrix} 3 & -2 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} -1 & 6 \\ 0 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} (3)(-1) + (-2)(0) & (3)(6) + (-2)(5) \\ (1)(-1) + (-4)(0) & (1)(6) + (-4)(5) \end{bmatrix}$$

$$= \begin{bmatrix} -3 & 8 \\ -1 & -14 \end{bmatrix}$$

Practice & Problem Solving

Given matrices $A = \begin{bmatrix} 4 & -3 \\ 0 & 9 \end{bmatrix}$, $B = \begin{bmatrix} -7 & 8 \\ -5 & 1 \end{bmatrix}$, and $C = \begin{bmatrix} 6 & -1 \\ 2 & -2 \end{bmatrix}$, find each of the following.

- **14.** AB
- **15**. *AC*

- **17.** BA
- **18.** CA
- **19**. *CB*
- 20. Represent the coordinates of the triangle as a matrix. Then multiply by $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ to find the coordinates of the image of triangle

ABC after a reflection across the x-axis.

- 21. Look for Relationships Explain how to determine whether two matrices can be multiplied.
- 22. Make Sense and Persevere At Store X, Television A costs \$800 and Television B costs \$500. At Store Y, Television A costs \$750 and Television B costs \$550. Last month, each store sold 25 of Television A and 20 of Television B. Write and solve a matrix equation to find the total amount in sales at each store.

LESSON 10-3

Vectors

Quick Review

For vectors $\vec{u} = \langle a, b \rangle$ and $\vec{v} = \langle c, d \rangle$, the magnitude of \vec{u} is $|\vec{u}| = \sqrt{a^2 + b^2}$, and the direction of \vec{u} is $\theta = \tan^{-1}(\frac{b}{2})$.

For a scalar k, $k \cdot \vec{u} = \langle k \cdot a, k \cdot b \rangle$, $|k \cdot \vec{u}| = |k| \cdot |\vec{u}|$. $\vec{u} + \vec{v} = \langle a + c, b + d \rangle$ and $\vec{u} - \vec{v} = \vec{u} + (-\vec{v}) = \langle a - c, b - d \rangle.$

Example

Add vectors $\overrightarrow{AB} = \langle 6, -2 \rangle$ and $\overrightarrow{CD} = \langle 3, 7 \rangle$. $\overrightarrow{AB} + \overrightarrow{CD} = \langle 6, -2 \rangle + \langle 3, 7 \rangle$ = (6 + 3, -2 + 7) $=\langle 9,5\rangle$

Practice & Problem Solving

Add and subtract each vector pair.

23.
$$\overrightarrow{AB} = \langle 8, 10 \rangle$$
 and $\overrightarrow{CD} = \langle -3, 2 \rangle$

24.
$$\overrightarrow{RS} = \langle -7, 9 \rangle$$
 and $\overrightarrow{TU} = \langle 11, -5 \rangle$

- **25.** Multiply the vector $\vec{t} = \langle 13, -3 \rangle$ by the scalar 4.
- 26. Communicate Precisely Describe how $\overline{MN} = \langle -2, 9 \rangle$ is transformed when it is multiplied by the matrix $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$.
- 27. Reason A blimp flying due north is pushed off course by a crosswind blowing west. By how many degrees did the crosswind change the blimp's original course?

TOPIC 10 REVIEW

Quick Review

The determinant of a 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is denoted det A and is equal to ad - bc.

The inverse matrix is $A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

Example

Find the inverse of matrix $A = \begin{bmatrix} 4 & 8 \\ 2 & 6 \end{bmatrix}$.

$$\det A = ad - bc = (4)(6) - (2)(8) = 24 - 16 = 8$$

Because the determinant does not equal 0, there is an inverse.

$$A^{-1} = \frac{1}{8} \begin{bmatrix} 6 & -8 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} \frac{3}{4} & -1 \\ -\frac{1}{4} & \frac{1}{2} \end{bmatrix}$$

Practice & Problem Solving

Find the determinant of each matrix.

28.
$$\begin{bmatrix} 12 & -6 \\ 8 & -3 \end{bmatrix}$$

29.
$$\begin{bmatrix} 14 & -3 \\ 2 & 0 \end{bmatrix}$$

Does each given matrix have an inverse? If so,

30.
$$A = \begin{bmatrix} 2 & -1 \\ 4 & 1 \end{bmatrix}$$

30.
$$A = \begin{bmatrix} 2 & -1 \\ 4 & 1 \end{bmatrix}$$
 31. $B = \begin{bmatrix} 1 & 3 & 2 \\ -2 & -4 & 0 \\ -1 & -3 & 5 \end{bmatrix}$

32. Error Analysis Carla said the inverse of

matrix
$$A = \begin{bmatrix} 8 & 2 \\ 2 & 1 \end{bmatrix}$$
 is $\begin{bmatrix} 2 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{4} \end{bmatrix}$. Describe and

correct Carla's error.

33. Use Structure Find the area of the triangle defined by vectors $\langle 8, 6 \rangle$ and $\langle 2, -4 \rangle$.

LESSON 10-5

Inverse Matrices and Systems of Equations

Ouick Review

Matrices can be used to solve systems of equations.

The coefficient matrix has rows which contain the coefficients from a single equation. Each column contains all coefficients of a single variable.

The variable matrix has one column that represents all the variables in the system of equations.

The constant values from the right-hand side of the equations are used to make the constant matrix.

$$\begin{array}{l} ax + by + cz = k \\ dx + ey + fz = m \\ gx + hy + jz = n \end{array} \Longrightarrow \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & j \end{array} \right] \bullet \left[\begin{array}{c} x \\ y \\ z \end{array} \right] = \left[\begin{array}{c} k \\ m \\ n \end{array} \right]$$

Solve the system of equations $\begin{cases} 3x + 6y = 0 \\ -2x + 3y = -7 \end{cases}$ using matrices.

$$\begin{array}{c}
3x + 6y = 0 \\
-2x + 3y = -7
\end{array} \Rightarrow \begin{bmatrix} 3 & 6 \\ -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ -7 \end{bmatrix} \\
\begin{bmatrix} 3 & 6 \\ -2 & 3 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 3 & 6 \\ -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ -2 & 3 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 0 \\ -7 \end{bmatrix} \\
\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{1}{7} & -\frac{2}{7} \\ \frac{2}{21} & \frac{1}{7} \end{bmatrix} \cdot \begin{bmatrix} 0 \\ -7 \end{bmatrix} \\
\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

Practice & Problem Solving

Solve the following systems of equations using

34.
$$\begin{cases} 2x + 4y = 4 \\ -3x - 7y = -4 \end{cases}$$
 35.
$$\begin{cases} -2x + 3y + 3z = 6 \\ 6x - 8y - 2z = -4 \\ 2x - 2y - 3z = -13 \end{cases}$$

36. Communicate Precisely Explain how to write a system of equations given the matrix

equation
$$\begin{bmatrix} 4 & 9 & 1 \\ 8 & -2 & 0 \\ -7 & 3 & 2 \end{bmatrix} \bullet \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 10 \\ 6 \end{bmatrix}.$$

37. Reason Two students visited the school store to buy supplies for the school year. One student purchased 8 folders and 6 notebooks for a total price of \$38. The other student purchased 2 folders and 9 notebooks for a total of \$47. If each folder is the same price and each notebook is the same price, how much does each folder and each notebook cost?