Conception & Fabrication Assistées par Ordinateur

Xavier Lebreton
Cours Robotique 2022/2023

Debout!

• Logiciel de conception 3D utilisés?

• La dernière modélisation que vous avez fait ?

Objectif du cours

Modélisation 3D

Quel usage?

Usinage

Impression 3D

Tôlerie

Mais aussi...

- Simulation
- Animation
- Rendu
- PCB

Fusion 360

Fusion 360

Fusion 360

Modeleur 3D paramétrique

La **conception paramétrique** est un mode de fonctionnement des logiciels de conception assistée par ordinateur actuels. Il s'agit de définir une entité par des paramètres qui peuvent être modifiés facilement. De cette façon, on change aisément la définition de la pièce.*

*source : wikipedia.fr

https://www.autodesk.fr/products/fusion-360/education

Ressources

Outils professionnels, accès à l'enseignement

Fusion 360 est l'outil de prédilection des professionnels de l'industrie manufacturière, de l'usinage, de l'ingénierie et de la conception industrielle. Des clients commerciaux de premier plan utilisent Fusion 360 pour donner vie à l'innovation.

Télécharger Fusion 360 pour l'enseignement

Conseils basiques pour la CAO

Savoir ce qu'on veut modéliser

Rigueur

Pratique

Construire un objet

Conception d'une vis M6

d1 = diamètre nominal	M 3	M 4	M 5	M 6	M 8	M 10	M12	M14	M16	M20
d2 = diamètre de tête	5,5	7	8,5	10	13	16	18	21	24	30
s = surplats	2,5	3	4	5	6	8	10	12	14	17
k = hauteur de tête	3	4	5	6	8	10	12	14	16	20
t = profondeur de six pans	1.3	2	2,5	3	4	5	6	7	8	10
b = longueur filetée	18	20	22	24	28	32	36	40	44	52

Crédits

• https://grabcad.com/library/electric-motor-83