Note

Feng-Yang Hsieh

1 SPANet2

Version 2 of SPANet. call it SPANet2.

1.1 Defining event topology

Defining the event topology in .ymal file. The structure of the .yaml file follows this format:

INPUTS:

SEQUENTIAL:

1.2 Creating training dataset

.hdf5

1.3 Training options

1.4 Training

Training:

python -m spanet.train -of <OPTIONS_FILE> --log_dir <LOG_DIR> --name <NAME>
<OPTIONS_FILE>: JSON file with options. <LOG_DIR>: output directory. <NAME>: subdirectory name

Evaluation:

python -m spanet.test <log_directory> -tf <TEST_FILE>

<log_directory>: directory containing the checkpoint and options file. <TEST_FILE> will
replace the test file in the option file.

Prediction:

python predict.py <log_directory> <output name> -tf <TEST_FILE> --gpu ????

2 Test SPANet2

2.1 SM SPANet

Generate the correct format $\kappa_{\lambda} = 1$ training data for SPANet2 training.

• Training sample:

- Total sample size: 76,131

- 1h sample size: 14,527

- 2h sample size: 60,122

- 5% used on validation

• Testing sample:

- Total sample size: 8,460

- 1h sample size: 1,577

- 2h sample size: 6,744

The training results are presented in Table 1.

Table 1: SPA-NET2 training results on the SM di-Higgs samples.

$N_{ m Jet}$	Event Fraction	Event Efficiency	Higgs Efficiency
= 4	0.280	0.907	0.907
=5	0.287	0.806	0.847
≥ 6	0.229	0.679	0.753
Total	0.797	0.805	0.841

2.2 $\kappa 5$ SPANet

Generate the $\kappa_{\lambda} = 5$ training data for SPANet2 training.

- Training sample:
 - Total sample size: 78,388

- 1h sample size: 16,013

- 2h sample size: 59,180

- 5% used on validation

• Testing sample:

- Total sample size: 8,710

- 1h sample size: 1,846

- 2h sample size: 6,486

The training results are presented in Table 2.

Table 2: SPA-NET2 training results on the di-Higgs $\kappa_{\lambda} = 5$ samples.

$N_{ m Jet}$	Event Fraction	Event Efficiency	Higgs Efficiency
= 4	0.315	0.689	0.689
=5	0.255	0.617	0.639
≥ 6	0.174	0.499	0.544
Total	0.745	0.620	0.638

Resonant SPANet

Generate the correct format resonant training data for SPANet2 training.

• Training sample:

- Total sample size: 51,145

- 1h sample size: 9,320

- 2h sample size: 40,991

- 5% used on validation

• Testing sample:

- Total sample size: 5,683

- 1h sample size: 1,011

- 2h sample size: 4,582

The training results are presented in Table 3.

Table 3: SPA-NET2 training results on the resonant di-Higgs samples.

$N_{ m Jet}$	Event Fraction	Event Efficiency	Higgs Efficiency
= 4	0.316	0.930	0.930
=5	0.282	0.808	0.839
≥ 6	0.208	0.660	0.727
Total	0.806	0.818	0.846

2.4 Mixing κ_{λ} SPANet

Generate the correct format mixing κ_{λ} training data for SPANet2 training.

• Training sample:

- Total sample size: 51,145

- 1h sample size: 9,320

- 2h sample size: 40,991

- 5% used on validation

• Testing sample:

- Total sample size: 5,683

- 1h sample size: 1,011

- 2h sample size: 4,582

The training results are presented in Table 4.

Table 4: SPA-NET2 training results on the resonant di-Higgs samples.

$N_{ m Jet}$	Event Fraction	Event Efficiency	Higgs Efficiency
=4	0.316	0.930	0.930
=5	0.282	0.808	0.839
≥ 6	0.208	0.660	0.727
Total	0.806	0.818	0.846

2.5 Summary

In most cases, the performance of SPANet2 is worse than the old one. Some default options are different between the two versions. But even if the options are set as identical, the training results also cannot be better.

The training results of old and new versions SPANet have been summarized in Table 5.

Table 5: SPA-NET2 training results on the resonant di-Higgs samples.

	Event efficiency			
	SPANet SPANet2			
SM	SM 0.868 0			
kappa 5	0.725	0.620		
Resonant	0.903	0.818		
Mixing κ_{λ}	0.833	0.830		

3 Combine jet assignment and event classification

This section trains the SPANet2 on the jet assignment and event classification task at the same time. This is the new feature of SPANet2.

3.1 $\kappa_{\lambda} = 5$ sample

For the jet assignment part, use the same sample as in Sec. 2.2.

• Training sample:

- Total sample size: 168,125

- Signal sample size: 78,388

- Background sample size: 89,737

- 5% used on validation

• Testing sample:

- Total sample size: 18,681

- Signal sample size: 8,710

- Background sample size: 9,971

The training results are presented in Table 6.

Table 6: SPA-NET2 training results on the $\kappa_{\lambda} = 5$ samples.

$N_{ m Jet}$	Event Fraction	Event Efficiency	Higgs Efficiency
= 4	0.316	0.930	0.930
=5	0.282	0.808	0.839
≥ 6	0.208	0.660	0.727
Total	0.806	0.818	0.846

3.2 Mixing κ_{λ}

3.2.1 Training samples

For signal, set $\kappa_{\lambda} = [-5, -3, -1, 1, 2, 3, 5, 7, 9, 12]$ and generate 9,000 samples on each κ_{λ} point for training. The training samples are required to pass the "Four tag cut", i.e., there are at least four b-tagged jets with $p_{\rm T} > 40$ GeV and $|\eta| < 2.5$.

Note that the κ_{λ} value is an input feature. For the background sample, the input κ_{λ} value is randomly chosen from the above values.

For the jet assignment part,

• Training sample:

- Total sample size: 90,000

- 1h sample size: 18,020

- 2h sample size: 69,267

- 5% used on validation

• Testing sample:

- Total sample size: 9,000

- 1h sample size: 1,802

- 2h sample size: 6,899

For event classification,

• Training sample:

- Total sample size: 179,737

- Signal sample size: 90,000

- Background sample size: 89,737

- 5% used on validation

• Testing sample:

- Total sample size: 18,971

- Signal sample size: 9,000

- Background sample size: 9,971

3.2.2 Hyperparameters setting

Some options are different between SPANet and SPANet2. List the different options below

• hidden_dim: $128 \rightarrow 64$

• learning_rate: $0.0007 \rightarrow 0.0015$

• num_attention_heads: $8 \rightarrow 4$

The total loss function consists of assignment loss and classification loss. The same weights are assigned to these losses.

• assignment_loss_scale: 1.0

• classification_loss_scale: 1.0

3.2.3 Training results

The jet assignment training results are presented in Table 7.

Table 7: SPANet2 training results on the mixing κ_{λ} samples.

$N_{ m Jet}$	Event Fraction	Event Efficiency	Higgs Efficiency
= 4	0.139	0.866	0.866
=5	0.130	0.806	0.834
≥ 6	0.095	0.704	0.766
Total	0.364	0.802	0.829

The classification training results are presented in Table 8.

Table 8: The SPANet2 classification training results with mixing κ_{λ} sample.

Training sample	ACC	AUC
Mixing κ_{λ}	0.828	0.911

4 κ_{λ} constraints on SPANet2

4.1 SPANet2 classification

Use the SPANet2 to do the signal background classification task.

When an event is put in SPANet2, SPANet2 will return a signal score p_{signal} which represents the confidence of this event is a signal event. The requirement of $p_{\text{signal}} > p_{\text{th}}$ is imposed for event selection, where $p_{\text{th}} = 0.90$. In where do not choose the value which can maximize the S/\sqrt{B} . Because the value is too close to 1, then very few events can pass this selection. Thus we can not do further analysis.

Set the κ_{λ} limits by the profile likelihood method and CLs method. Table 9 results from κ_{λ} constraints.

Table 9: The κ_{λ} constraints of SPANet2.

	Expected Constraint			
	Profile likelihood CLs			
Selection method	Lower	Upper	Lower	Upper
SPANet2	-3.48	9.18	-3.41	9.09

5 Comparision with previous results

This section summary the results among the "min- ΔR DNN", " $\kappa 5$ SPANet DNN", "mixing κ SPANet2".

5.1 Pairing performance

Figure 1 is the pairing efficiency of different pairing methods. Where the mixing κ SPANet2 has the best performance.

5.2 Classification performance

The classification training results are presented in Table 8.

Figure 1: The pairing performance for different κ_λ samples.

Table 10: The classification performance of different selection methods.

Selection method	ACC	AUC
\min - ΔR DNN	0.783	0.864
$\kappa 5$ SPANet DNN	0.792	0.875
mixing κ SPANet2	0.828	0.911

5.3 κ_{λ} constraints

Table 11 is the κ_{λ} constraints of the different selection methods.

Table 11: The κ_{λ} constraints of different selection methods.

		Expected Constraints		īs.	
		Profile likelihood CLs		Ls	
Pairing method	Selection method	Lower	Upper	Lower	Upper
$-$ min- ΔR	DNN	-3.81	11.16	-3.73	11.15
κ 5 SPANet	DNN	-4.08	11.65	-4.02	11.68
Mixing κ SPANet2	SPANet2	-3.48	9.18	-3.41	9.09

5.4 Mass distribution plot

Figure 2 and 3 show the Higgs mass distribution for signal and background events with different pairing methods. The selection does not apply. The mass planes for the signal process all look similar for all pairing methods. For background, the results of min- ΔR are very different from others.

Figure 4 are the m_{HH} distributions after the selection.

Figure 2: The mass plane and distribution of Higgs candidate for signal events with different pairing methods. The top one is mixing κ SPANet2 pairing, the middle one is $\kappa 5$ SPANet pairing, bottom one is min- ΔR pairing.

Figure 3: The mass plane and distribution of Higgs candidate for background events with different pairing methods. The top one is mixing κ SPANet2 pairing, the middle one is $\kappa 5$ SPANet pairing, bottom one is min- ΔR pairing.

Figure 4: The m_{HH} distributions after selection. The DNNs are trained with different pairing method samples.