Homework 5

Problem 1. Show that X is Hausdorff if and only if the diagonal $\Delta = \{x \times x \mid x \in X\}$ is closed in $X \times X$.

Proof. Suppose X is Hausdorff and let $A = (X \times X) \setminus \Delta$. Pick a point $(x, y) \in A$. Since X is Hausdorff, we can find disjoint open neighborhoods U and V of x and y respectively. Then $U \times V$ is an open set in $X \times X$ which contains (x, y). Note that since $U \cap V = \emptyset$ we also have $(U \times V) \cap \Delta = \emptyset$. That is, there are no points in U that are also in V and vice-versa, so there are no points of the form (z, z) in $U \times V$. This shows that A is open and Δ is closed.

Conversely, suppose that Δ is closed in $X \times X$. Then $A = (X \times X) \setminus \Delta$ is open. Pick two distinct points $x, y \in X$ and consider the element $(x, y) \in A$. Since A is open there exists some basis element $U \times V \subseteq A$ such that $(x, y) \in U \times V$. But then $x \in U$ and $y \in V$ and since $(U \times V) \cap \Delta = \emptyset$, we have that U and V are disjoint. Thus X is Hausdorff.

Problem 2. Consider the five topologies on \mathbb{R} given in Exercise 7 of §13.

- (a) Determine the closure of the set $K = \{1/n \mid n \in \mathbb{Z}_+\}$ under each of these topologies.
- (b) Which of these topologies satisfy the Hausdorff axiom? The T_1 axiom?

Proof. (a) Consider K in \mathcal{T}_1 . Pick any $x \neq 0$ in $\mathbb{R} \setminus K$ and note that we can always find a neighborhood around x disjoint from x. Namely, if x < 0, then (x - 1, 0) works and if x > 1 then (1, x + 1) works. If 0 < x < 1 then 1/(n + 1) < x < 1/n for some $n \in \mathbb{Z}_+ +$ so $x \in (1/(n + 1), 1/n)$ which is disjoint from K. Thus $x \notin \overline{K}$. Now if x = 0 then any open neighborhood of x will necessarily contain some positive point and choosing 1/n less than this point ensures that $x \in \overline{K}$. Thus $\overline{K} = K \cup \{0\}$.

Now consider K in \mathcal{T}_2 . A similar argument as above holds. Since intervals are open in \mathcal{T}_2 , any $x \neq 0$ is still not in \overline{K} for the same reasons. Now if x = 0 then the open set $(-1, 1) \setminus K$ contains 0 and is disjoint from K, so $0 \notin \overline{K}$ either. Thus $K = \overline{K}$.

Suppose now K is put in the \mathcal{T}_3 topology. Since K is an infinite set, every open set must intersect it, as an open set can only not contain finitely many points. Thus, for any point $x \in \mathbb{R}$ we have $x \in \overline{K}$ since every open set containing x intersects K. Therefore $\overline{K} = \mathbb{R}$.

Now consider K in \mathcal{T}_4 . Suppose $x \in \mathbb{R} \setminus K$. If $x \neq 0$ and x < 0 then (x - 1, 0] contains x and doesn't intersect K. Likewise if x > 1 then (1, x + 1] will work. If 0 < x < 1 then 1/(n + 1) < x < 1/n for some n so choose some point y such that x < y < 1/n so that $x \in (1/(n + 1), y]$ and this set is disjoint from K. Finally, if x = 0 then any open set containing x will contain an interval of the form (a, b] where x = 0 < b. Thus there exists some n such that $1/n \leq b$ and so (a, b] intersects K. Therefore $x \in \overline{K}$ and $\overline{K} = K \cup \{0\}$.

Finally, consider K in \mathcal{T}_5 . Suppose $x \in \mathbb{R} \backslash K$. If x < 0 then $(-\infty, 0)$ contains x and is disjoint from K. If $x \ge 0$ then any basis element containing x will necessarily contain some positive value which means this basis element contains everything less than this value. It thus intersects K and so $x \in \overline{K}$. Therefore $\overline{K} = [0, \infty)$.

(b) We know \mathcal{T}_1 is Hausdorff, as can be demonstrated by taking balls of radius half the distance between two points. It is also T_1 as can be seen by looking at the complement of the open set $\bigcup_{i=1}^{\infty}(x,x+i) \cup \bigcup_{i=1}^{\infty}(x-i,x) = \mathbb{R}\setminus\{x\}$.

The same proof as for \mathcal{T}_1 shows that \mathcal{T}_2 is both Hausdorff and \mathcal{T}_1 .

The \mathcal{T}_3 topology is not Hausdorff since any two open sets intersect. Incidentally, a single point $\{x\}$ is the complement of the open set $\mathbb{R}\setminus\{x\}$ so \mathcal{T}_3 is T_1 .

In \mathcal{T}_4 , if $x \neq y$ then without loss of generality x < y and the open sets (x-1,(x+y)/2] and ((x+y)/2,y] are disjoint neighborhoods of x and y. Note that open intervals (a,b) are part of \mathcal{T}_4 so the same set used to show \mathcal{T}_1 is \mathcal{T}_1 shows that \mathcal{T}_4 is \mathcal{T}_1 .

Finally suppose that $x \neq y$ in the \mathcal{T}_5 topology. Without loss of generality suppose that x < y and note that any basis element containing y will necessarily contain x. Therefore \mathcal{T}_5 is not Hausdorff. Now consider

some point $x \in \mathbb{R}$ and $y \neq x$. If x < y then we've already seen that every open set containing y will necessarily contain x since it will contain a basis element containing y and everything less than y. Thus $y \in \overline{\{x\}}$ and $\overline{\{x\}} = [x, -\infty)$. Therefore \mathcal{T}_5 is not T_1 either.

Problem 3. Let $A \subseteq X$; let $f: A \to Y$ be continuous; let Y be Hausdorff. Show that if f may be extended to a continuous function $g: \overline{A} \to Y$, then g is uniquely determined by f.

Proof. Let g and g' be two continuous extensions of f on \overline{A} . Suppose that for some $x \in \overline{A} \setminus A$ we have $g(x) \neq g'(x)$. Since Y is Hausdorff, we can find two disjoint neighborhoods U and U' such that $g(x) \in U$ and $g'(x) \in U'$. Both g and g' are continuous so $g^{-1}(U)$ and $g'^{-1}(U)$ are open sets containing x and so also is $g^{-1}(U) \cap g'^{-1}(U)$. But since $x \in \overline{A}$, this intersection contains some point $y \in A$. Since g and g' both agree with f on A, we have g(y) = g'(y). Now $g(y) \in U$ and $g'(y) \in U'$ so U and U' can't be disjoint, a contradiction. Therefore g = g' so all continuous extensions of f are uniquely determined by f.

Problem 4. Show that $(X_1 \times \cdots \times X_{n-1}) \times X_n$ is homeomorphic with $X_1 \times \cdots \times X_n$.

Proof. Let $f: (X_1 \times \cdots \times X_{n-1}) \times X_n \to X_1 \times \cdots \times X_n$ be given by $f((a_1, \dots, a_{n-1}), a_n) = (a_1, \dots, a_n)$. Note that f is essentially an identity function and it's clear that f is a bijection. Namely, if two elements are distinct in the domain, then they are distinct in the image for the same reason and for a given point (a_1, \dots, a_n) in the codomain, the point $((a_1, \dots, a_{n-1}), a_n)$ maps to it. Let U be a basis element of $X_1 \times \cdots \times X_n$ so that $U = U_1 \times \cdots \times U_n$. Then $f^{-1}(U) = (U_1 \times \cdots \times U_{n-1}) \times U_n$ which is a basis element of $(X_1 \times \cdots \times X_{n-1}) \times X_n$. The fact that f takes open sets to open sets follows similarly, so f is a homeomorphism. \square

Problem 5. Given sequences $(a_1, a_2, ...)$ and $(b_1, b_2, ...)$ of real numbers with $a_i > 0$ for all i, define $f : \mathbb{R}^{\omega} \to \mathbb{R}^{\omega}$ by the equation

$$h((x_1, x_2, \dots)) = (a_1x_1 + b_1, a_2x_2 + b_2, \dots).$$

Show that if \mathbb{R}^{ω} is given the product topology, h is a homeomorphism of \mathbb{R}^{ω} with itself. What happens if \mathbb{R}^{ω} is given the box topology?

Proof. Let $\mathbf{x} = (x_1, x_2, \dots)$ and $\mathbf{y} = (y_1, y_2, \dots)$ be two distinct sequences such that $x_i \neq y_i$ for some i. Then $a_i x_i + b_i \neq a_i y_i + b_i$ so $h(\mathbf{x}) \neq h(\mathbf{y})$ and h is injective. Furthermore, the point $\mathbf{z} = ((x_1 - b_1)/a_1, (x_2 - b_2)/a_2, \dots)$ is mapped to \mathbf{x} by h, so h is surjective and a bijection.

Now let $U = \prod U_i$ be a basis element of \mathbb{R}^{ω} . Let $h^{-1}(U) = V = \prod V_i$ and suppose that $\mathbf{x} \in V$. Then $h(\mathbf{x}) \in U$ and for each i there's some basis element of \mathbb{R} , $(p_i, q_i) \subseteq U_i$ containing $h(\mathbf{x})_i = a_i x_i + b_i$. That is, $p_i < a_i x_i + b_i < q_i$ which means $(p_i - b_i)/a_i < x_i < (q_i - b_i)/a_i$ and it follows that any point in this interval is in V_i . Thus $((p_i - b_i)/a_i, (q_i - b_i)/a_i) \subseteq V_i$ for each i and \mathbf{x} is contained in some basis element contained in V so V is open. We therefore have that h is continuous.

Suppose now that $W = h(U) = \prod W_i$ and $h(\mathbf{y}) \in W$. Since h is injective, we know $\mathbf{y} \in U$ so for each i there exists a basis element of \mathbb{R} , $(r_i, s_i) \subseteq U_i$ containing y_i . Then $r_i < y_i < s_i$ and $a_i r_i + b_i < a_i y_i + b_i < a_i s_i + b_i$ and it follows that any element of (r_i, s_i) is in this image interval. Thus $(a_i r_i + b_i, a_i s_i + b_i) \subseteq W_i$ for each i and $h(\mathbf{y})$ is contained in some open set contained in W. Therefore W is open and h is an open map. Since h is also continuous, we see that h must be a homeomorphism.

If \mathbb{R}^{ω} is given the box topology, the same result follows since we in no way used the fact that U had only finitely many components different from \mathbb{R} .

Problem 6. Consider the map $h : \mathbb{R}^{\omega} \to \mathbb{R}^{\omega}$ defined in Exercise 8 of §19; give \mathbb{R}^{ω} the uniform topology. Under what conditions on the numbers a_i and b_i is h continuous? A homeomorphism?

Proof. Let U be an open set in \mathbb{R}^{ω} with the uniform topology and let $\mathbf{x} \in h^{-1}(U)$. We wish to find some δ such that for each \mathbf{x}' with $\overline{\rho}(\mathbf{x}, \mathbf{x}') < \delta$ or equivalently, that for each coordinate i we have $\overline{d}(x_i, x_i') < \delta$, it happens that $\mathbf{x}' \in h^{-1}(U)$.

Let $\mathbf{y} = h(\mathbf{x}) \in U$ so there exists some ε -ball around \mathbf{y} such that $B = B_{\overline{\rho}}(\mathbf{y}, \varepsilon) \subseteq U$. This means that for each $\mathbf{z} \in B$ and for each coordinate i, we have $\overline{d}(y_i, z_i) < \varepsilon$. We've already shown in Problem 5

that h is bijective and $h^{-1}(\mathbf{y}) = ((y_1 - b_1)/a_1, (y_2 - b_2)/a_2, \dots) = (x_1, x_2, \dots)$. Thus if $h(\mathbf{x}') = \mathbf{y}'$ then $h^{-1}(\mathbf{y}) = \mathbf{x}' = ((y_1' - b_1)/a_1, (y_2' - b_2)/a_2, \dots)$. If $\mathbf{y}' \in U$ then $\overline{d}(y_i, y_i') = \overline{d}(y_i - b_i, y_i' - b_i) < \varepsilon$ for each i and $\overline{d}(x_i, x_i') = \overline{d}((y_i - b_i)/a_i, (y_i' - b_i)/a_i) < \varepsilon/a_i$. So to find a small enough δ , we need the sequence $(a_i)_{i \in \mathbb{N}}$ to be bounded above. Then choose δ to be ε/a where $a = \sup\{a_i \mid i \in \mathbb{N}\}$. Now if $\overline{\rho}(\mathbf{x}, \mathbf{x}') < \delta$, then for each i we have $\overline{d}((y_i - b_i)/a_i, (y_i' - b_i)/a_i) = \overline{d}(x_i, x_i') < \delta = \varepsilon/a$. Then $\overline{d}(y_i, y_i') = \overline{d}(y_i - b_i, y_i' - b_i) < \varepsilon a_i/a < \varepsilon$ since $a_i/a < 1$. Thus $\overline{\rho}(\mathbf{y}, \mathbf{y}') < \varepsilon$ and $\mathbf{x}' \in h^{-1}(U)$.

For h to be a homeomorphism we need h to be an open mapping. Thus, suppose $\mathbf{x} \in U$ and draw an ε -ball B around \mathbf{x} . Then for each $\mathbf{x}' \in B$ and each coordinate i we have $\overline{d}(x_i, x_i') < \varepsilon$. Now note that if $h(\mathbf{x}) = \mathbf{y}$ and $h(\mathbf{x}') = \mathbf{y}'$ then $\overline{d}(y_i, y_i') = \overline{d}(a_i x_i + b_i, a_i x_i' + b_i) = \overline{d}(a_i x_i, a_i x_i') < a_i \varepsilon$. So now we need $(a_i)_{i \in \mathbb{N}}$ to be bounded below by $a' \neq 0$. Then choose $\delta = \varepsilon a'$ so that if $\overline{\rho}(\mathbf{y}, \mathbf{y}') < \delta$ then for each i we have $\overline{d}(a_i x_i, a_i x_i') = \overline{d}(a_i x_i + b_i, a_i x_i' + b_i) = \overline{d}(y_i, y_i') < \delta$ so $\overline{d}(x_i, x_i') < \delta/a_i = \varepsilon a'/a_i < \varepsilon$ since $a'/a_i < 1$. This means $\mathbf{x}' \in U$ so h(U) is open. Therefore, for h to be a homeomorphism we need the sequence $(a_i)_{i \in \mathbb{N}}$ to be bounded with a lower bound greater than 0.

Problem 7. Let X be the subset of \mathbb{R}^{ω} consisting of all sequences \mathbf{x} such that $\sum x_i^2$ converges. Then the formula

$$d(\mathbf{x}, \mathbf{y}) = \left[\sum_{i=1}^{\infty} (x_i - y_i)^2\right]^{1/2}$$

defines a metric on X. On X we have the three topologies it inherits from the box, uniform and product topologies on \mathbb{R}^{ω} . We have also the topology given by the metric d, which we call the ℓ^2 -topology.

(a) Show that on X, we have the inclusions

 $box\ topology\supseteq \ell^2$ -topology $\supseteq uniform\ topology.$

(b) The set \mathbb{R}^{∞} of all sequences that are eventually zero is contained in X. Show that the four topologies that \mathbb{R}^{∞} inherits has a subspace of X are all distinct.

(c) The set

$$H = \prod_{n \in \mathbb{Z}_+} [0, 1/n]$$

is contained in X; it is called the Hilbert cube. Compare the four topologies that H inherits as a subspace of X.

Proof. (a) Let $\mathbf{x} \in \mathbb{R}^{\omega}$ and let $B = B_{\overline{\rho}}(\mathbf{x}, \varepsilon) \subseteq X$ be an ε -ball containing x. We wish to find some $\delta > 0$ such that if $d(\mathbf{x}, \mathbf{y}) < \delta$ then $\overline{\rho}(\mathbf{x}, \mathbf{y}) < \varepsilon$, that is $\mathbf{y} \in B$. Choose $\delta = \varepsilon$ and let $\mathbf{y} \in C$ where $C = B_{\ell^2}(\mathbf{x}, \delta)$. Then

$$d(\mathbf{x}, \mathbf{y})^2 = \sum_{i=1}^{\infty} (x_i - y_i)^2 < \delta^2$$

In particular, each term $(x_i - y_i)^2 < \delta^2$ and $|x_i - y_i| < \delta = \varepsilon$. Thus $\overline{\rho}(\mathbf{x}, \mathbf{y}) < \varepsilon$ and $\mathbf{y} \in B$. Hence $C \subseteq B$ and contains \mathbf{x} so the ℓ^2 topology is finer than the uniform topology.

Now let $B = B_{\ell^2}(\mathbf{x}, \varepsilon)$ be an ε -ball around \mathbf{x} . Choose an arbitrary point $\mathbf{y} \in B$. For each i pick $\delta_i < |x_i - y_i|$ and let $U = \prod_{i=1}^{\infty} (x_i - \delta_i, x_i + \delta_i)$. Now if $\mathbf{z} \in U$ then for each i we have $|x_i - z_i| < \delta_i < |x_i - y_i|$. In particular,

$$\left(\sum_{i=1}^{\infty} (x_i - z_i)^2\right)^{\frac{1}{2}} < \left(\sum_{i=1}^{\infty} (x_i - y_i)^2\right)^{\frac{1}{2}} < \varepsilon.$$

Thus $\mathbf{z} \in B$ and $U \subseteq B$ and contains \mathbf{x} . Therefore the box topology is finer than the ℓ^2 topology.

(b) Let \mathcal{T}_1 , \mathcal{T}_2 , \mathcal{T}_3 and \mathcal{T}_4 be the topologies \mathbb{R}^{∞} inherits as a subspace of X with the product, uniform, ℓ^2 and box topologies respectively. Since $\mathbb{R}^{\infty} \subseteq X$, we know that these topologies are the same as the ones \mathbb{R}^{∞} inherits from \mathbb{R}^{ω} . We will consider them as such. We know that on \mathbb{R}^{ω} the uniform topology is finer than the product topology. Thus, given a basis element $U \in \mathcal{T}_1$ with $U = \mathbb{R}^{\infty} \cap V$ for an open set $V \subseteq \mathbb{R}^{\omega}$

in the product topology, V is also open in the uniform topology and we have $U \in \mathcal{T}_2$. Therefore $\mathcal{T}_1 \subseteq \mathcal{T}_2$. Using part (a) and a similar method as above, we also see that $\mathcal{T}_2 \subseteq \mathcal{T}_3 \subseteq \mathcal{T}_4$.

Now consider the 0 sequence and the set $U = \mathbb{R}^{\infty} \cap \prod_{i=1}^{\infty} (-i, i)$ as a basis element of \mathcal{T}_4 . Note that for each $\varepsilon > 0$ we can find some n such that $1/n < \varepsilon/2$. Then consider the sequence $\mathbf{x} = (0, 0, \dots, 0, \varepsilon/2, 0, \dots)$ where $\varepsilon/2$ is in the n^{th} coordinate. Then $\mathbf{x} \notin U$, but it's in a ε -ball around 0. Therefore for each ε we can find a ball containing the 0 sequence which isn't contained in U. Thus $\mathcal{T}_4 \nsubseteq \mathcal{T}_3$ which also implies $\mathcal{T}_4 \nsubseteq \mathcal{T}_2$ and $\mathcal{T}_4 \nsubseteq \mathcal{T}_1$.

Next let $\varepsilon > 0$ and consider the ε -ball around the 0 sequence in \mathcal{T}_3 . Let $\delta > 0$ and consider the sequence $\delta = (\delta, \delta, \dots, \delta, 0, 0, \dots)$ which has δ in the first n places with $\sqrt{n} > \varepsilon/\delta$. Then the distance between the 0 sequence and δ in the ℓ^2 metric is $\sqrt{n}\delta > \varepsilon$. Thus, for each δ -ball in \mathcal{T}_2 we can find a point not in the ε -ball in \mathcal{T}_3 . Therefore $\mathcal{T}_3 \nsubseteq \mathcal{T}_2$ and as above we also have $\mathcal{T}_3 \nsubseteq \mathcal{T}_1$.

Finally, note that if we choose an arbitrary ε -ball in \mathcal{T}_2 , we can find a basis element of \mathcal{T}_1 which isn't contained in it because all but finitely many coordinates of this basis element will be the entire space. Thus $\mathcal{T}_2 \nsubseteq \mathcal{T}_1$. We have now shown $\mathcal{T}_1 \subsetneq \mathcal{T}_2 \subsetneq \mathcal{T}_3 \subsetneq \mathcal{T}_4$.

(c) Let \mathcal{T}_i with $1 \leq i \leq 4$ be defined as they were in part (b) where H takes the place of \mathbb{R}^{∞} . Note that the inclusions $\mathcal{T}_1 \subseteq \mathcal{T}_2 \subseteq \mathcal{T}_3 \subseteq \mathcal{T}_4$ follow from a similar proof to the one in the first part of part (b).

Consider the open set $U = \prod_{i=1}^{\infty} [0, 1/(2i)]$ in \mathcal{T}_4 . Let $\varepsilon > 0$ and let n be the first positive integer such that $1/(2n) < \varepsilon/2$. Then the sequence $(0, 0, \ldots, 0, \varepsilon/2, 0, \ldots)$ where $\varepsilon/2$ is in the n^{th} coordinate is not contained in U. Note that this sequence is contained in H since $1/(2n) < \varepsilon/2 < 1/n$. Thus this sequence is contained in an ε -ball in \mathcal{T}_3 containing the 0 sequence which is not contained in U. Therefore $\mathcal{T}_4 \nsubseteq \mathcal{T}_3$. By the above inclusions we also have $\mathcal{T}_4 \nsubseteq \mathcal{T}_2$ and $\mathcal{T}_4 \nsubseteq \mathcal{T}_1$.

Let $\varepsilon > 0$ and consider B an ε -ball in \mathcal{T}_3 containing \mathbf{x} . Note that $\sum_{i=1}^{\infty} 1/i^2 = k$ for some finite number k. This means there exists a partial sum, $\sum_{i=1}^{j} 1/i^2$ such that this sum is less than ε away from k. Moreover, the remaining sum $\sum_{i=j+1}^{\infty} 1/i^2 < \varepsilon$. So after some j^{th} coordinate, B contains all values from the intervals [0,1/i]. Said another way, B contains only finitely many coordinates which are not the entire space. Since the remaining coordinates are intersections of \mathbb{R}^{ω} with some interval, we see that $B \in \mathcal{T}_1$ and so we have $\mathcal{T}_3 \subseteq \mathcal{T}_1$. Note that this also implies $\mathcal{T}_3 \subseteq \mathcal{T}_2$ and $\mathcal{T}_2 \subseteq \mathcal{T}_1$. Therefore, we have $\mathcal{T}_1 = \mathcal{T}_2 = \mathcal{T}_3 \subsetneq \mathcal{T}_4$.

Problem 8. Show that 2^{ω} and the Cantor middle thirds set (as a subspace of the reals) are homeomorphic.

Proof. Let C be the Cantor middle thirds set. Consider the elements of [0,1] in ternary notation. Note that 1/3 = 0.1 = 0.0222... and 2/3 = 0.2 = 0.1222... and every element of (1/3, 2/3) has the form $0.1d_1d_2d_3...$ Thus, the remaining elements in [0,1] after the first middle third is removed are of the form $0.0d_1d_2d_2...$ or $0.2d_1d_2d_3...$ where 1/3 = 0.0222... and 2/3 = 0.2. In particular, the first digit is not 1. After removing the second set of middle thirds, the points remaining only have 0 or 2 for their second digit as well as their first digit. Continuing in this way, it follows that C only contains points in [0,1] which can be expressed without using 1s in ternary notation. Moreover, it contains every number of this form, for if $x = 0.d_1d_2d_3...$ where $d_i \neq 1$ then d_i determines which third x belongs to in the ith iteration of the construction of C. Since $d_i \neq 1$ for all i, x is never in the middle third at any point in the construction, and so $x \in C$.

Now let $f: C \to 2^{\omega}$ be defined by taking an element of C and replacing the digits which equal 2 with 1. Then f takes elements of C to infinite sequences of 0s and 1. By the above argument, f is surjective since any element of 2^{ω} can be seen as an element of C by replacing 1s with 2s. Also, f is injective since if $x \neq y$ in C then they differ at some digit d_i which means they get mapped to sequences in 2^{ω} which different at the ith coordinate. Thus, f is a bijection.

Let U be basis element in 2^{ω} . Then U consists of all extensions of some finite sequence $d_1d_2...d_n$ where d_i is 0 or 1. We have $f^{-1}(U)$ is the corresponding set of extensions of $d'_1d'_2...d'_n$ where $d'_i=2$ if $d_i=1$ and $d'_i=0$ otherwise. Consider some $x=d'_1d'_2...d'_n...$ in $f^{-1}(U)$. Choose $\varepsilon<.00...01$ where there are n 0s. Suppose y is a point which is less than ε away from x. Then |x-y|<.00...01 so x and y must agree on their first n digits. Thus $y \in f^{-1}(U)$ and this shows that $f^{-1}(U)$ is open. Thus, f is continuous.

Now let U be an open set in C and choose $f(x) \in f(U)$. Note that since f is a bijection, all inverse images of a single point are a single point. Since U is open, there exists some $\varepsilon > 0$ such that for all y with $|x-y| < \varepsilon$ we have $y \in U$. This means that x and y must agree on some finite number of digits, namely, the

number of leading 0s in the ternary expansion of ε . Suppose this number of 0s is n. Now consider the open set V of 2^{ω} consisting of all extensions of $d_1d_2\ldots d_n$ where d_i is 0 or 1 depending on the i^{th} digit of x. Pick some $z\in V$ and note that f(x) and z by definition agree on the first n terms so their inverses in C must also agree on their first n digits. This means $|f(x)-f^{-1}(z)|<\varepsilon$ so $f^{-1}(z)\in U$ and $z\in f(U)$. Therefore $V\subseteq f(U)$ and f(U) is open. Thus f is an open map and a homeomorphism.