Familienname:	1	2	3	4	5	6	7	$ \sum$	
Vorname:									
Matrikelnummer:									
Studienkennzahl(en):				Note:					

Reelle Analysis in mehreren und komplexe Analysis in einer Variable für LAK

Roland Steinbauer, Sommersemester 2013

5. Prüfungstermin (16.5.2014)

Gruppe A

- 1. Funktionenfolgen.
 - (a) Für Funktionenfolgen $f_n : \mathbb{R} \supseteq A \to \mathbb{R}$ vergleiche die Begriffe punktweise und gleichmäßige Konvergenz. (2 Punkte)
 - (b) Der gleichmäßige Limes stetiger Funktionenfolgen ist stetig. Formuliere den entsprechenden Satz ausführlich, beweise ihn und beschreibe den Beweisgang in Worten. (5 Punkte)
 - (c) Diskutiere explizit ein Beispiel dafür, dass der punktweise Limes stetiger Funktionenfolgen im allgemeinen nicht wieder stetig ist. Fertige eine Skizze an. (2 Punkte)
- 2. Potenz- und Taylorreihen.
 - (a) Diskutiere das Konvergenzverhalten von Potenzreihen mit Konvergenzradius $0 < R < \infty$. (Wo konvergiert die Reihe, wo konvergiert sie gleichmäßig und wo divergiert sie? Kann man in allen Punkten eine allgemeine Aussage über Konvergenz bzw. Divergenz treffen?) (3 Punkte)
 - (b) Beweise: Ist $f: \mathbb{R} \to \mathbb{R}$ eine (n+1)-mal differenzierbare Funktion mit $f^{(n+1)}(x) = 0$ für alle $x \in \mathbb{R}$, dann ist f ein Polynom vom Grad höchstens n. (2 Punkte)
 - (c) Bestimme das Taylorpolynom $T_3[f,0]$ von

$$f(x) = e^x \sin(x)$$
 $(x \in \mathbb{R})$

an der Stelle $x_0 = 0$. Bestimme die Lagrange-Form des Restglieds $R_4(x)$ und gib eine Abschätzung für $|R_4(x)|$ auf [-1,1] an. (4 Punkte)

- 3. Topologie des \mathbb{R}^n .
 - (a) Definiere den Begriff einer Umgebung eines Punktes $x \in \mathbb{R}^n$ und gib eine abgeschlossene Umgebung für $x = (0,0) \in \mathbb{R}^2$ an. (2 Punkte)
 - (b) Gib je eine offene und abgeschlossene und eine weder offene noch abgeschlossene Teilmenge des \mathbb{R}^2 an. (2 Punkte)

Bitte umblättern

- 4. Differentialrechnung. Sei $G \subseteq \mathbb{R}^n$ offen.
 - (a) Definiere den Begriff der Differenzierbarkeit für $f:G\to\mathbb{R}^m$ in einem Punkt $\xi\in G.$ (2 Punkte)
 - (b) Diskutiere folgende Aussage für differenzierbare $f: G \to \mathbb{R}$: Der Gradient gibt die Richtung des größten Anstiegs an. (3 Punkte)
 - (c) Berechne die Jacobi-Matrix der Funktion $f:D:=\{(x,y,z)\in\mathbb{R}^3:x>0\}\to\mathbb{R}^2$

$$f(x, y, z) = (x^y e^z, \sin(x)\cos(yz)) \qquad ((x, y, z) \in \mathbb{R}^3).$$

Ist f auf ganz D differenzierbar? Warum (nicht)? (3 Punkte)

- 5. Integralrechnung.
 - (a) Definiere den Begriff eines Gradientenfelds auf \mathbb{R}^n . (1 Punkt)
 - (b) Sei v ein stetiges Gradientenfeld auf dem Gebiet $G \subseteq \mathbb{R}^n$ mit Stammfunktion φ . Beweise, dass v wegunabhängige Integrale hat, d.h. dass für alle $p, q \in G$ und alle \mathcal{C}^1 -Wege γ von p nach q, die ganz in G liegen gilt, dass

$$\int_{\gamma} v = \varphi(q) - \varphi(p).$$

Begründe jeden deiner Beweisschritte! (3 Punkte)

- (c) Formuliere das Prinzip von Cavalieri und diskutiere die zugrundeliegenden Idee. Fertige eine Skizze an! (2 Punkte)
- 6. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib jeweils eine kurze Begründung oder ein Gegenbeispiel an. (Je 2 Punkte)

- (a) Der Durchschnitt beliebig vieler offener Teilmengen des \mathbb{R}^n ist offen.
- (b) Eine Funktion $f: \mathbb{R}^n \to \mathbb{R}^m$ (n, m > 1) ist genau dann stetig, falls alle ihre Komponentenfunktionen stetig sind.