MATLAB / Simulink Lab Course Physical Modeling

Outline

- Motivation
 - Reasons for Physical Modeling
- 2. Introduction
 - What is Physical Modeling?
 - Simscape Toolbox
- 3. Multibody Simulation with Simscape Multibody Modeling
 - Basics of Multibody Simulation
 - Defining Bodies, Joints and Coordinate Frames
 - Assembling Mechanisms
 - Visualization
- 4. Configure Joint Settings
 - Sensing and Logging Joint Quantities
 - Actuating Joints (Force / Torque or Motion)
- 5. Combining Simscape Multibody and Simulink Models
- 6. CAD Import

Introduction – Reasons for Physical Modeling

- Reasons for Physical Modeling
 - Easy and intuitive modeling of even complex and multi-domain physical systems
 - Timesaving and cost-saving modeling → faster modeling and insight into the system
 - Virtual prototypes in early stage of development
 - Observing variables without changing the model

1. Introduction

Example 1: How to model this electric circuit using ordinary methods?

Goal: Calculate current over time

Equations describing the system behaviour

$$I = \frac{U}{R}$$

$$I_L(t) = I \cdot \left(1 - e^{-\frac{R}{L}t}\right)$$

Implementing a Simulink diagram

Note: A Simulink diagram represents a **chain of mathematical operations**. The graph is a **directed graph** and the "lines" are representing **numerical signals**.

How to model the same system using Physical Modeling (Simscape):

A Simscape graph represents differential algebraic equations (DAEs). These graphs are undirected graphs and "lines" are physical signals (PS) that link equations.

Example 2: This diagram represents what mechanical system?

The physical model of the same system offers a lot more information.

- This model containts:
 - Body
 - Revolute Joint
 - Coordinate Frame

How to model this pendulum using ordinary methods?

Goal: Calculate angle over time

Differential equation describing system behaviour:

$$\ddot{\phi}(t) + \frac{g}{L} \cdot \sin(\phi(t)) = 0$$

Implementing a Simulink diagram

How to model the same system using Physical Modeling (Simscape Multibody):

Comparing both models

 Simscape Toolbox is useful for modeling and simulating physical systems within the Simulink environment.

Predefined blocksets in the Foundation Library for several physical domains: electrical,

mechanical, thermal, ...

- Multi-domain physical modeling
- Further libraries with predefined blocksets fitted for certain physical domains:
 - Simscape Driveline
 - Simscape Electronics
 - Simscape Fluids
 - Simscape Multibody
 - Simscape Power Systems

Use toolboxes that suit your problem and it's physical domain.

Combine models that were built with different toolboxes:

Find the Simscape Library and it's toolboxes:

Generally stiff solvers (ending with a s) are performing much better at physical problems.
 To set solver settings press CTRL+E in diagram window:

2. Multibody Simulation using Simscape Multibody

Multibody Simulation using SimMechanics

- What is Multibody-Simulation (MBS)?
 - Numerical simulation
 - Composition of rigid bodies that are interconnected via joints (kinematic constraints)
 - Perform motion analysis and calculate forces
- Market Overview:
 - SimMechanics (Simscape Multibody) (MathWorks)
 - SIMPACK (Dassault Systèmes)
 - Multiphysics (COMSOL)
 - Multibody Dynamics

Multibody Simulation using Simscape Multibody

- What is Simscape Multibody
 - Toolbox of Simscape that provides a multibody simulation environment for 3D mechanical systems
 - Model-Based Design of MBS models
 - First & Second Generation
- Advantages of Simscape Multibody
 - MBS-Tool inside of the MathWorks world
 - Use Simscape Multibody blocks in the Simulink diagram environment
 - Add electrical, hydraulic and pneumatic components to your mechanical model (Simscape)
 - Easy 3D visualization of the system dynamics via Mechanics Explorer

Multibody Simulation using Simscape Multibody

Components of a classical MBS model:

- Solids with a defined mass, inertia, center of gravity, ...
- Joints to constrain relative motion
- Coordinate Frames for positions and orientations

Multibody Simulation using Simscape Multibody - Preparing the Model

- Any Simscape Multibody model requires the following blocks:
 - Solver Configuration
 One block per physical network is needed.

 Simulink Library Simscape Utilities
 - World Frame

Fixed reference frame for the mechanism
Simulink Library – Simscape – Multibody – Frames and Transforms

Mechanism Configuration
 Mainly for setting direction and units of gravity
 Simulink Library – Simscape – Simscape Multibody - Utilities

Multibody Simulation using Simscape Multibody - Preparing the Model

Or use the smnew command to open a prepared Simscape Multibody model:

>> smnew

Multibody Simulation using Simscape Multibody - Defining Solids

- Solid blocks represent rigid bodies with a specific mass, inertia and geometry in a multibody simulation.
- Find the Solid block: Simscape > Multibody > Body Elements
- Drag and drop a Solid block for each body in your mechanical system to the Simulink diagram.
- Each Solid block contains one coordinate frame:

Multibody Simulation using SimMechanics - Defining Solids

There are various ways to define solids:

- Geometry:
 - Predefined Shapes:
 - Simple geometries using predefined shapes (Brick, Cylinder, Sphere, ...).
 - Only parameters regarding dimensions must be entered.
 - Advantage: Inertia can be calculated from geometry.
 - From File:
 - Shapes can be easily defined using STL or STEP files.
 - Advantage: Very simple import of complex shapes.
- Inertia:
 - Calculated from Geometry:
 - Only available if a predefined Geometry Shape is used.
 - Inertia is calculated automatically based on a given density.
 - Point Mass:
 - Entered mass is positioned in the part's origin.
 - Custom:
 - Besides the mass itself, information about the CG or inertia tensor is required.

kg*m^2

Mass

Center of Mass

Moments of Inertia

Products of Inertia

[0 0 0]

[1 1 1]

From Geometro

Multibody Simulation using Simscape Multibody – Defining Joints

- Joint blocks are used to connect solids, respectively their coordinate frames to each other. They enable translational and / or rotational degrees of freedom to these connections.
- Joints represent frictionless connections!
- Find joints:
 Simscape > Multibody > Joints
 Drag and drop a Joint block for each connection in your mechanical system to the Simulink diagram.
- Each Joint block contains two coordinate frames. The z-axis plays an important role!

Multibody Simulation using Simscape Multibody – Defining Coordinate Frames

- Coordinate frames can be copied, moved and rotated using the Rigid Transform block.
 This is required for positioning joints and solids.
- Find Rigid Transform blocks:
 Simscape > Multibody > Frames and Transforms

Example: Pendulum

- 1. World frame is copied and translated.
- A revolute joint creates a rotational degree of freedom by creating another coordinate frame.
- 3. This coordinate frame is copied, translated and rotated.
- 4. A solid block is created at this coordinate frame.

Multibody Simulation using Simscape Multibody – Assembling Mechanisms

Assembling a mechanism means primarily to position all components to each other and link certain solids via joints.

Multibody Simulation using Simscape Multibody – Assembling Mechanisms

Multibody Simulation using Simscape Multibody – Assembling Mechanisms

Multibody Simulation using Simscape Multibody - Visualization

After updating the diagram (CTRL+D) or running the simulation, the mechanism is visualized via the *Mechanics Explorer*.

3. Configure Joint Settings

Configure Joint Settings – Sensing Joint Quantities

- Joints allow to:
 - measure physical values
 - actuate their degrees of freedom
- Input values as well as output values, such as velocities or forces, are physical signals.
- Converter blocks the PS-Simulink Converter and the Simulink-PS Converter are used to convert signals to the correct format: Simscape > Utilities

Select variables to measure.

Possible measurement variables (referred to dof):
 Position, Velocity, Acceleration, Actuator Force

Configure Joint Settings – Sensing Joint Quantities

 An additional port (PS) appears for every chosen measurement variable:

 Use PS-Simulink Converter blocks to process measurements with e.g. Simulink blocks:

Configure Joint Settings – Actuating Joints

- Acuating modes:
 - Force / Torque driven: A force / torque is given, corresponding motion is calculated
 - Motion driven: A motion signal is given, corresponding force / torque is calculated
- Force / Torque driven actuation:
 - Input: Force / torque
 - Automatically computed: Motion
 - Example:

Configure Joint Settings – Actuating Joints

- Motion driven actuation:

 - Automatically computed: Force / torque
 - S-PS block needs specific setting:

Example:

Cancel Help Apply

4. Combining Simscape Multibody and Simulink Models

Combining Simscape Multibody and Simulink Models

- Interface to Simulink: PS-Simulink and Simulink-PS blocks
- Use toolboxes that suit your problem, e.g. Stateflow for logics, Simulink for controllers etc.
- Example: Use PID Controller to actuate joint

Combining Simscape Multibody and Simulink Models

Example: PID Controller block used to actuate joint

5. CAD Import

Simscape Multibody Interfaces

Advantages of Interfaces:

- Fast translation of even complex CAD models to Simscape Multibody models
- Reduction of error sources
- Intercommunication of CAD software and Simscape Multibody

Simscape Multibody Link

- MathWorks offers Simscape Multibody Link to export CAD data to Simscape Multibody
- Supported CAD tools: SolidWorks, PTC Creo, Autodesk Inventor
- Steps:
 - Creation of a xml and stl files
 - Generate a Simscape Multibody model from a xml import file using the smimport command

```
>> [H,dataFileName] = smimport(xmlFileName)
```

- Missing functionality:
 - Interface is not bidirectional
 - No support for Dassault Systèmes CATIA
 - No direct connection Indirect way over xml file

TUM-FSD Interface

- TUM-FSD developed an interface (ProSys) between CAD tools and Simscape Multibody
- Advantages:
 - Bidirectionality: MATLAB can change CAD Parameters
 - Apply MATLAB methods on CAD model (optimization algorithms, sensitivity analysis, ...)
 - Direct communication (no route over external file)
 - Support of CATIA V5

