Calculation of hydrogen-air mixtures detonation parameters using EDL Shock & Detonation Toolbox

Łukasz Osiński October 9, 2017

Abstract

The aim of this report was to calculate detonation cell size using ZND in SD Toolbox for Cantera 2.1 and detonation parameters as a function of variable initial temperature.

1 Detonation theory

The one-dimensional detonation model developed independently by Zeldovich, von Neumann and Doring (called ZND for short) during World War II assumes that a detonation wave consist of a planar shock wave, which raises the density above the ignition value, followed by a reaction zone in which reaction proceeds. Experiments data confirms the model only qualitatively, because one-dimensional detonation waves are unstable.[1]. The model is simple to implement computationally.

It was proposed by Schelkin and Torshin in 1963 that detonation cell size can be related to reaction zone length Δ calculated using the ZND model [2] via simple equation: $\lambda = A * \Delta$ (where $\Delta = (V_{CJ} - u) * t_{ind}$, V_{CJ} is C-J speed and u is the particle velocity behind the shock wave). However experiments prove that constant A ratio cannot be accurate. Instead, it was proposed that A should be a function of initial conditions. Shepherd in 1986 proposed, that $A = f(\Phi)$, because large variations of this parameter with equivalence ratio are observed [3].

2 Part 1 - ZND calculations

2.1 Model

The computation was made in Matlab for hydrogen – air mixture (file: ZNDCJ.m) with equivalence ratio ranging from 0.4875 to 3.57 in points taken from experiments performed by Guirao et al.[4]. (Not all points were tested). The initial conditions were: pressure = 101300 Pa , temperature= 293 K.Then knowing that cell size is proportional to reaction zone length , and that the constant of proportionality A was determined to be equal to 51 by Ciccarellili et al.[2]. Cell size can be calculated based on induction zone length, which is a output data for ZND program in SD Toolbox.

2.2 Results

Figure 1 shows the output data, and Figure 2 compares the acquired cell size with experimental data taken from work of Guirao et al.[4] [5]. The error was ranging from 7.35% to 68.88% with mean error for all points of 46%.

Figure 1: Induction time and ind. length as a function of equivalence ratio

Figure 2: Calculated detonation cell size as a function of equivalence ratio

Plotting the A factor, which was calculated basing on actual cell size from experiment ([4]) and computed induction lengths as a function of equivalence ratio yields Figure 3. As can be observed the A factor varies to the greatest extent below $\Phi = 1.12$ and above $\Phi = 2.38$. Between those points the average A factor is equal to 119.1, which is two times higher than the value obtained in experiment by Ciccarelili et al.[2].

Figure 3: Calculated factor of proportionality A as a function of equivalence ratio

3 Part 2 - Detonation parameters as a function of initial temperature

3.1 Model

The second task was to determine detonation parameters with variable initial temperature. This was done using SD Toolbox in Matlab, using modified example code (file: $Temperature_Series.m$) The temperature was ranging from 300K to 1000K with a step of 50K. Pressure was set to 100000Pa. The equivalence ratio was constant and equal to 1.

3.2 Results

Results are shown on Figures 4 to 8.

Figure 4: Calculated effective activation energy for CV explosion as a function of temperature

Figure 5: Calculated exothermic time as a function of temperature

Figure 6: Calculated frozen shock temperature as a function of temperature

Figure 7: Calculated as a function of temperature

Figure 8: Calculated induction time as a function of temperature

4 Conclusions

Calculations from the first part of the report prove that using constant A factor, independent from Φ will not accurately predict real cell sizes.

In the second part of the report we can see that effective activation energy is dropping non-linearly with rising temperature and exothermic time is rising non-linearly. Frozen shock Temperature is linearly related to initial temperature by equation $T_S = 0.679 * T_1 + 1324$. Induction time for CV explosion and post CJ state temperature rise with the rise of initial temperature. Rise of post CJ state temperature is linear and governed by equation: $T_2 = 0.155 * T_1 + 2891$. Post CJ pressure and density declines with the rise of initial temperature. The drop of CJ speed with rising temperature is linear and can be described as $V_{CJ} = -0.121 * T_1 + 2004$.

References

[1] C.M. Guirao, R. Knystautas, and J. Lee. A summary of hydrogen-air detonation experiments. page 1, 1987.

- [2] G. Ciccarelli, T. Ginsberg, J. Boccio, C. Economos, K. Sato, and M. Kinoshita. Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures. *Combust. Flame*, 99(2):212–220, 1994.
- [3] Rémy Mével, Fabien Lafosse, Laurent Catoire, Nabiha Chaumeix, Gabrielle Dupré, and Claude-Etienne Paillard. Induction delay times and detonation cell size prediction of hydrogen-nitrous oxide-diluent mixtures. *Combustion Science and Technology*, 180:10-11:1858–1875, 2008.
- [4] C.M. Guirao, R. Knystautas, J. Lee, W. Benedick, and M. Berman. Hydrogen-air detonations. 19th Symp. Int. Combust. Proc., pages 583–590, 1982.
- [5] Caltech. Detonation database Cell width H2 fuel, 2002.