Collision Kinematics

K.G. Field^{1,a},

a kgfield@umich.edu

¹University of Michigan

Simple knowledge check:

- DPA stands for:
 - 1. Displacements per atom
 - 2. Damage per atom
 - 3. Displacement potential of an atom
 - 4. Down plane acceleration
- The energy transferred to a PKA can be calculated given:
 - 1. The mass and energy of the incident particle
 - 2. The velocity and angle of the particles
 - The mass of the interacting particles, the scattering angle, and the initial energy of the incident particle
 - 4. The mass of the interacting particles, the incident angles, and the initial velocity of the incident particle
- Fluence is a good unit to determine the material damage due to radiation
 - 1. True
 - 2. False

Outline

Interatomic potentials:

- Asymptotic energy
- Collision kinematics
- Scattering integral

Goal:

- 1. Describe a collision between any species
- 2. Develop the relationship between impact parameter and scattering angle
- 3. Find the distance of the closest approach as a function of potential

Radiation Damage: the basics

 All of radiation damage boils down to a common step: collisions between energetic particles and atoms composing a material

What's the difference?

Why is this difference important for radiation damage?

Collision kinematics

Remember for neutron-atom collisions:

$$T = \frac{\gamma}{2} E_i (1 - \cos \phi)$$

For ion-atom collisions, there are several differences
 1.

2.

3.

Simple thought experiment for ion-atom collisions

Collision kinematics (Lab Frame)

In lab frame of reference, it is clear that the resulting energy transferred, $\underline{\mathbf{I}}$, must be a function of the impact parameter, $\underline{\mathbf{b}}$

• Asymptotic kinetic energy:
$$\Sigma = \frac{m_2}{m_1 + m_2} E_i$$

Total angular momentum

$$L = r_1 \sin \alpha \, m_1 v_c + r_2 \sin \alpha \, m_2 v_{CM}$$

- From last lecture:
- Therefore:

• Result:

Total energy of the system:

$$\Sigma = V(r) + \frac{1}{2}m_1v_c^2 + \frac{1}{2}m_2V_c^2$$

• Velocity: $v_c = \sqrt{\dot{r}_1^2 + r_1^2 \dot{\psi}^2}$

Conservation of total energy during the collisions

$$\Sigma = V(r_1 + r_2) + \frac{1}{2}m_1(\dot{r}_1^2 + r_1^2\dot{\psi}^2) + \frac{1}{2}m_2(\dot{r}_2^2 + r_2^2\dot{\psi}^2)$$

• Result:

$$\Sigma = V(r) + \frac{1}{2} \left(\frac{m_1 m_2}{m_1 + m_2} \right) \left(\dot{r}^2 + r^2 \dot{\psi}^2 \right)$$

Change of variables:

$$\dot{r} = \frac{dr}{dt} = \frac{dr}{d\psi}\dot{\psi}$$

$$\Sigma = V(r) + \frac{1}{2} \left(\frac{m_1 m_2}{m_1 + m_2}\right) \left(\left(\frac{dr}{d\psi}\right)^2 + r^2\right)\dot{\psi}^2$$

Angular conservation of momentum

$$L = v_{\ell} \left(\frac{m_1 m_2}{m_1 + m_2} \right) b = m_1 r_1^2 \dot{\psi} + m_2 r_2^2 \dot{\psi} \stackrel{\cdot}{\to} \dot{\psi} = v_{\ell} b / r^2$$

Time-independent orbit equation

$$\Sigma = V(r) + \frac{1}{2} \left(\frac{m_1 m_2}{m_1 + m_2} \right) \left(\left(\frac{dr}{d\psi} \right)^2 + r^2 \right) \left(\frac{v_\ell b}{r^2} \right)^2$$

• Using Σ and $E_i = \frac{1}{2}M_1v_\ell^2$:

$$\frac{d\psi}{dr} = \frac{b}{r^2} \frac{1}{\sqrt{1 - \frac{V(r)}{\Sigma} - \frac{b^2}{r^2}}}$$

$$\int_{\frac{\phi}{2}}^{\frac{\pi}{2}} d\psi = \frac{\pi}{2} - \frac{\phi}{2}$$

$$\phi = \pi - 2 \int_{\infty}^{p} \frac{b}{r^2} \frac{dr}{\sqrt{1 - \frac{V(r)}{\Sigma} - \frac{b^2}{r^2}}}$$

• This relates the impact parameter b to the scattering angle, ϕ , in the COM

$$\phi = \pi - 2 \int_{\infty}^{p} \frac{b}{r^2} \frac{dr}{\sqrt{1 - \frac{V(r)}{\Sigma} - \frac{b^2}{r^2}}}$$

At the distance of closest approach:

$$\frac{dr}{d\psi}\bigg|_{\frac{\pi}{2}} = 0 \Rightarrow 1 - \frac{V(r)}{\Sigma} - \frac{b^2}{r^2} = 0$$

• If V(r) is specified, then p(b) can be found!

Importance of Interatomic Potentials:

- Required to estimate the number of displaced atoms produced by a primary knock-on atom
- Needed to capture the physics of energy loss for a charged particle
- Used to determine the mean free paths for the displacement of atoms
- Used in the determination of focusing and channeling

$$\phi = \pi - 2 \int_{\infty}^{p} \frac{b}{r^2} \frac{dr}{\sqrt{1 - \frac{V(r)}{\Sigma} - \frac{b^2}{r^2}}}$$

There exists no single function that describes all interactions between atoms

Figure 1.8 in Was, pg. 20

A visual of what this looks like...

Fig. 17.5 Composite potential function for interaction NG & ICES

Distance of the closest separation as a function of recoil energy for various ions in copper. Source: M.W. Thompson, "Defects and radiation damage in metals", Cambridge U.P., 1969

P	otential	Equation	Range of Applicability	Definitions	Eqn in text
Hard	d sphere	$0 for r > r_0$ $\infty for r < r_0$	$10^{-1} < T < 10^3 \text{ eV}$	r_0 = size of atom	(1.46)
Born	n-Mayer	$V(r) = A \exp(-r/B)$	$10^{-1} < T < 10^3 \text{ eV}$ $a_0 < r \le r_e$	A,B determined from elastic moduli	(1.47)
Sim Cou	ple llomb	$\frac{Z_1Z_2\varepsilon^2}{r}$	light ions of high energy $r << a_0$		(1.48)
	eened llomb	$\left(\frac{Z_1 Z_2 \varepsilon^2}{r}\right) \exp(-r/a)$	Light ions $r < a_0$	a_o = Bohr radius a = screening radius	(1.49)
Brin	ıkman I	$\frac{Z^2 \varepsilon^2}{r} e^{\left(-\frac{r}{a}\right)} \left(1 - \frac{r}{2a}\right)$	<i>r</i> < <i>a</i>	$a \cong a_0/Z^{1/3}$	(1.51)
Brin	ıkman II	$\frac{AZ_1Z_2\varepsilon^2\exp(-Br)}{1-\exp(-Ar)}$	$Z > 25$ $r < 0.7r_e$	$A = \frac{0.95 \times 10^{-6}}{a_o} Z_{eff}^{7/2}$ $B = Z_{eff}^{1/3} / Ca_o$ $C \cong 1.5$	(1.52)
Firs	ov	$\frac{Z_1 Z_2 \varepsilon^2}{r} \chi \left[\left(Z_1^{1/2} + Z_2^{1/2} \right)^{2/3} \frac{r}{a} \right]$	$r \leq a_0$	χ is screening function	(1.56)
TFI Cen) Two ter	$\frac{Z^2 \varepsilon^2}{r} \chi \left(Z^{1/3} \frac{r}{a} \right) - \alpha Z + \overline{\Lambda}$	$r < r_b (3a_0)$	r_b = radius at which the electron cloud density vanishes	(1.57)
Inve	erse square	$\frac{2E_r}{e} (\mathbf{Z_1}\mathbf{Z_2})^{5/6} \left(\frac{a_{\circ}}{r}\right)^2$	a/2 < r< 5a	E_R = Rydberg energy = 13.6 eV	(1.59)

Summary

- We've accomplished three tasks to get towards a quantification of displacements for a given material system:
 - Task 1: Determine the energy transferred to the PKA:

$$T = \frac{\gamma}{2} E_i (1 - \cos \phi) \text{ to get } \phi = f(T)$$

Task 2: Determine the scattering angle based on the impact parameter:

$$\phi = \pi - 2 \int_{\infty}^{r_0} \frac{b}{r^2} \frac{dr}{\sqrt{1 - \frac{V(r)}{\Sigma} - \frac{b^2}{r^2}}}$$

Task 3: Described V(r) to enable the calculation in Task 2 (simplest is hard sphere)

Next Lecture
$$\sigma_{\scriptscriptstyle S}(E_i,T) = 2\pi b \, \frac{db}{d\phi} \frac{d\phi}{dT}$$

Lecture Break

