316 EDHEC

4. a) Montrer par récurrence que, pour tout entier naturel n, il existe un réel u_n tel que l'on ait :

$$A^n = \begin{pmatrix} 1 & \frac{n}{2} & u_n \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$$

Donner u_0 et établir que : $\forall n \in \mathbb{N}, \ u_{n+1} = u_n + \frac{1}{6}(3n+2).$

Démonstration.

Démontrons par récurrence : $\forall n \in \mathbb{N}, \mathcal{P}(n)$

où $\mathcal{P}(n)$: il existe un réel u_n tel que $A^n = \begin{pmatrix} 1 & \frac{n}{2} & u_n \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$.

- ▶ Initialisation :
 - Tout d'abord : $A^0 = I_3$.
 - Par ailleurs : $\begin{pmatrix} 1 & \frac{0}{2} & u_0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & u_0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Notons alors $u_0 = 0$. On a bien démontré l'existence d'un réel u_0 tel que : $A^0 = \begin{pmatrix} 1 & \frac{0}{2} & u_0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. D'où $\mathcal{P}(0)$.

▶ **Hérédité** : soit $n \in \mathbb{N}$.

Supposons $\mathcal{P}(n)$ et démontrons $\mathcal{P}(n+1)$ (il existe $u_{n+1} \in \mathbb{R}$ tel que $A^{n+1} = \begin{pmatrix} 1 & \frac{n+1}{2} & u_{n+1} \\ 0 & 1 & n+1 \\ 0 & 0 & 1 \end{pmatrix}$).

• Par hypothèse de récurrence, il existe $u_n \in \mathbb{R}$ tel que :

$$A^n = \begin{pmatrix} 1 & \frac{n}{2} & u_n \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$$

On en déduit :

$$A^{n+1} = A A^{n}$$

$$= \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{n}{2} & u_{n} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & \frac{n}{2} + \frac{1}{2} & u_{n} + \frac{n}{2} + \frac{1}{3} \\ 0 & 1 & n+1 \\ 0 & 0 & 1 \end{pmatrix}$$

Notons alors $u_{n+1} = u_n + \frac{n}{2} + \frac{1}{3}$.

On a bien démontré l'existence d'un réel u_{n+1} tel que : $A^{n+1} = \begin{pmatrix} 1 & \frac{n+1}{2} & u_{n+1} \\ 0 & 1 & n+1 \\ 0 & 0 & 1 \end{pmatrix}$. D'où $\mathcal{P}(n+1)$.

Par principe de récurrence : $\forall n \in \mathbb{N}, \mathcal{P}(n)$.

En particulier : $u_0 = 0$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + \frac{n}{2} + \frac{1}{3} = u_n + \frac{1}{6} (3n + 2)$.

CORRIGÉ 317

b) En déduire, par sommation, l'expression de u_n pour tout entier n.

 $D\'{e}monstration.$

• D'après la question précédente, pour tout $k \in \mathbb{N}$:

$$u_{k+1} - u_k = \frac{1}{6} (3k+2)$$

• On en déduit que pour tout $n \in \mathbb{N}^*$:

$$\sum_{k=0}^{n-1} (u_{k+1} - u_k) = \sum_{k=0}^{n-1} \frac{1}{6} (3k+2)$$

$$= \frac{1}{6} \sum_{k=0}^{n-1} (3k+2)$$

$$= \frac{1}{6} \left(3 \sum_{k=0}^{n-1} k + \sum_{k=0}^{n-1} 2 \right)$$

$$= \frac{1}{6} \left(3 \frac{n(n-1)}{2} + 2n \right)$$

$$= \frac{1}{12} \left(3 n(n-1) + 4n \right)$$

$$= \frac{1}{12} \left(n \left(3 (n-1) + 4 \right) \right)$$

$$= \frac{n (3n+1)}{12}$$

• Par ailleurs:

$$\sum_{k=0}^{n-1} (u_{k+1} - u_k) = u_n - u_0 = u_n$$

• On en déduit :

$$\forall n \in \mathbb{N}^*, \ u_n = \frac{n \ (3n+1)}{12}$$

Cette relation est aussi vraie pour n = 0. En effet :

 \times d'une part : $u_0 = 0$,

× d'autre part : $\frac{0 (3 \times 0 + 1)}{12} = 0.$

Ainsi :
$$\forall n \in \mathbb{N}, u_n = \frac{n(3n+1)}{12}.$$

318 EDHEC

c) Écrire A^n sous forme de tableau matriciel.

 $D\'{e}monstration.$

D'après les questions précédentes :
$$A^n = \begin{pmatrix} 1 & \frac{n}{2} & \frac{n(3n+1)}{12} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$$
.

Commentaire

Cette question peut dérouter puisque le terme « tableau matriciel » n'est pas habituel. C'est simplement l'occasion, pour les candidats ayant réussi la question précédente, de prendre des points supplémentaires.

CORRIGÉ 319

Exercice 3

Soit V une variable aléatoire suivant la loi exponentielle de paramètre 1, dont la fonction de répartition est la fonction F_V définie par : $F_V(x) = \left\{ \begin{array}{cc} 0 & \text{si } x \leqslant 0 \\ 1 - \mathrm{e}^{-x} & \text{si } x > 0 \end{array} \right.$

On pose $W = -\ln(V)$ et on admet que W est aussi une variable aléatoire dont le fonction de répartition est notée F_W . On dit que W suit une loi de Gumbel.

1. a) Montrer que : $\forall x \in \mathbb{R}, F_W(x) = e^{-e^{-x}}$.

 $D\'{e}monstration.$

• Notons $h: x \mapsto -\ln(x)$, de sorte que W = h(V). Comme $V \hookrightarrow \mathcal{E}(1)$, alors $V(\Omega) =]0, +\infty[$. On en déduit :

$$\begin{split} W(\Omega) &= h(V) \, (\Omega) \, = \, h \big(V(\Omega) \big) \\ &= h \big(]0, + \infty [\big) \\ &= \lim_{x \to + \infty} h(x), \lim_{x \to 0} h(x) [\qquad \begin{array}{c} (\operatorname{car} \, h \, \operatorname{est} \, \operatorname{continue} \, \operatorname{et} \, \operatorname{strictement} \\ \operatorname{d\'{e}croissante} \, \operatorname{sur} \,]0, + \infty [\big) \\ &= \lim_{x \to + \infty} - \ln(x) = -\infty \\ \operatorname{et} \, \lim_{x \to 0} - \ln(x) = +\infty \big) \end{split}$$

Ainsi,
$$W(\Omega) = \mathbb{R}$$
.

• Déterminons la fonction de répartition de W. Soit $x \in \mathbb{R}$.

$$F_W(x) = \mathbb{P}([W \leqslant x]) = \mathbb{P}([-\ln(V) \leqslant x])$$

$$= \mathbb{P}([\ln(V) \geqslant -x])$$

$$= \mathbb{P}([V \geqslant e^{-x}]) \qquad (car \ la \ fonction \ exp \ est \ strictement \ croissante \ sur \ \mathbb{R})$$

$$= 1 - \mathbb{P}([V < e^{-x}])$$

$$= 1 - F_V(e^{-x}) \qquad (car \ V \ est \ une \ v.a.r. \ \grave{a} \ densit\acute{e})$$

$$= 1 - \mathbb{E}([V < e^{-x}]) \qquad (car \ V \ est \ une \ v.a.r. \ \grave{a} \ densit\acute{e})$$

$$= 1 - \mathbb{E}([V < e^{-x}]) \qquad (car \ V \ est \ une \ v.a.r. \ \grave{a} \ densit\acute{e})$$

$$= 1 - \mathbb{E}([V < e^{-x}]) \qquad (car \ V \ est \ une \ v.a.r. \ \grave{a} \ densit\acute{e})$$

$$= 1 - \mathbb{E}([V < e^{-x}]) \qquad (car \ e^{-x} > 0)$$

$$= 1 - \mathbb{E}([V < e^{-x}]) \qquad (car \ e^{-x} > 0)$$

Commentaire

• Commencer par déterminer l'ensemble image $V(\Omega)$ est un bon réflexe : cela peut guider l'étude de la fonction de répartition F_V . Plus précisément, cela fournit la disjonction de cas à effectuer. Typiquement, si l'on démontre que $V(\Omega)$ est de la forme [a,b] (où a et b sont deux réels tels que a < b), on peut rédiger comme suit :

$$\begin{array}{l} \times \ \text{si} \ \underline{x} < \underline{a} \ \text{alors} \ [V \leqslant x] = \varnothing. \\ \overline{\text{Ainsi}}, \ \overline{F_V(x)} = \mathbb{P}([V \leqslant x]) = \mathbb{P}(\varnothing) = 0. \\ \times \ \text{si} \ \underline{x} \in [\underline{a}, \underline{b}] \ \text{alors} \ [\dots \text{démo à produire} \dots] \\ \times \ \text{si} \ \underline{x} > \underline{b} \ \text{alors} \ [X \leqslant x] = \Omega. \\ \overline{\text{Ainsi}}, \ \overline{F_V(x)} = \mathbb{P}([V \leqslant x]) = \mathbb{P}(\Omega) = 1. \end{array}$$

• Les ensembles images $V(\Omega)$ de types différents (essentiellement $]-\infty,b]$ et $[a,+\infty[)$ amènent des disjonctions de cas analogues.

320 EDHEC

b) En déduire que W est une variable à densité.

Démonstration.

La fonction de répartition F_W est :

- \times continue sur \mathbb{R} (car elle est la composée de fonctions continues sur \mathbb{R}).
- \times de classe \mathcal{C}^1 sur \mathbb{R} (car elle est la composée de fonctions de classe \mathcal{C}^1 sur \mathbb{R}).

Ainsi,
$$W$$
 est une variable à densité. \Box

- On désigne par n un entier naturel non nul et par X_1, \ldots, X_n des variables aléatoires définies sur le même espace probabilisé, indépendantes et suivant la même loi que V, c'est à dire la loi $\mathcal{E}(1)$.
- On considère la variable aléatoire Y_n définie par $Y_n = \max(X_1, X_2, \dots, X_n)$, c'est à dire que pour tout ω de Ω , on a : $Y_n(\omega) = \max(X_1(\omega), X_2(\omega), \dots, X_n(\omega))$. On admet que Y_n est une variable aléatoire à densité.
- ${\it 2.~a)}$ Montrer que la fonction de répartition F_{Y_n} de Y_n est définie par :

$$F_{Y_n}(x) = \begin{cases} 0 & \text{si } x < 0\\ (1 - e^{-x})^n & \text{si } x \ge 0 \end{cases}$$

Démonstration.

• Déterminons tout d'abord $Y_n(\Omega)$. Pour tout $i \in [1, n]$, la v.a.r. X_i suit la loi $\mathcal{E}(1)$, et donc $X_i(\Omega) = [0, +\infty[$. On rappelle que $Y_n = \max(X_1, \dots, X_n)$.

Ainsi,
$$Y_n(\Omega) \subset [0, +\infty[$$
.

- Soit $x \in \mathbb{R}$. Deux cas se présentent.
 - Si x < 0: alors $[Y_n \leqslant x] = \emptyset$. Ainsi:

$$F_{Y_n}(x) = \mathbb{P}([Y_n \leqslant x]) = \mathbb{P}(\varnothing) = 0$$

 $- \operatorname{Si} x \geqslant 0$:

$$F_{Y_n}(x) = \mathbb{P}([Y_n \leqslant x])$$

$$= \mathbb{P}([\max(X_1, \dots, X_n) \leqslant x])$$

$$= \mathbb{P}([X_1 \leqslant x] \cap \dots \cap [X_n \leqslant x])$$

$$= \mathbb{P}([X_1 \leqslant x]) \times \dots \times \mathbb{P}([X_n \leqslant x]) \qquad \begin{array}{c} (car \ les \ v.a.r. \ X_i \\ sont \ indépendantes) \end{array}$$

$$= (\mathbb{P}([X_1 \leqslant x])^n \qquad \qquad \begin{array}{c} (car \ les \ v.a.r. \ X_i \\ sont \ même \ loi) \end{array}$$

$$= (1 - e^{-x})^n \qquad \qquad (car \ X_1 \hookrightarrow \mathcal{E}(1))$$

$$\forall x \in \mathbb{R}, F_{Y_n}(x) = \begin{cases} 0 & \text{si } x < 0 \\ (1 - e^{-x})^n & \text{si } x \geqslant 0 \end{cases}$$

Commentaire

- Cette question permet d'illustrer l'intérêt de la détermination de $Y_n(\Omega)$: cela nous fournit la disjonction de cas servant à déterminer la fonction de répartition F_{Y_n} .
- On notera au passage que démontrer l'inclusion $Y_n(\Omega) \subset [0, +\infty[$ est suffisant pour mettre en place cette disjonction de cas.

CORRIGÉ 321

b) En déduire une densité f_{Y_n} de Y_n .

Démonstration.

- Y_n est une variable à densité car :
 - $\times F_{Y_n}$ est continue sur \mathbb{R} .
 - $\times F_{Y_n}$ est de classe \mathcal{C}^1 sur \mathbb{R} , sauf éventuellement en 0.

En effet, sur $]-\infty,0[$, F_{Y_n} est de classe \mathcal{C}^1 car elle est constante sur cet intervalle. Sur $]0,+\infty[$, F_{Y_n} est de classe \mathcal{C}^1 car elle est la composée de fonctions de classe \mathcal{C}^1 sur \mathbb{R} .

- Pour déterminer une densité de Y_n , on dérive F_{Y_n} sur les **intervalles ouverts**. Soit $x \in \mathbb{R}$.
 - Si $x \in]-\infty, 0[:$

$$f_{Y_n}(x) = F'_{Y_n}(x) = 0$$

- Si $x \in]0, +\infty[$:

$$f_{Y_n}(x) = F'_{Y_n}(x) = ne^{-x}(1 - e^{-x})^{n-1}$$

- Si x = 0: on pose $f_{Y_n}(0) = 0$.

$$\forall x \in \mathbb{R}, \, f_{Y_n}(x) = \begin{cases} 0 & \text{si } x \leq 0 \\ ne^{-x} (1 - e^{-x})^{n-1} & \text{si } x > 0 \end{cases}$$

Commentaire

Il faut bien comprendre qu'on peut prendre n'importe quelle valeur positive pour f_n en 0. On peut ainsi construire une infinité de densités de Y_n .

C'est pourquoi on parle d'une densité.

3. a) Donner un équivalent de $1 - F_{Y_n}(t)$ lorsque t est au voisinage de $+\infty$, puis montrer que l'intégrale $\int_0^{+\infty} (1 - F_{Y_n}(t)) dt$ est convergente.

Démonstration.

On commence par déterminer un équivalent de $1 - F_{Y_n}(t)$ quand $t \to +\infty$.

• Soit $t \ge 0$.

$$F_{Y_n}(t) = (1 - e^{-t})^n$$

• On reconnaît une expression de la forme $(1+x)^{\alpha}$ dont on connaît un développement limité en 0. Plus précisément, il existe une fonction ε définie dans un voisinage de 0 et qui vérifie $\lim_{x\to 0} \varepsilon(x) = 0$, telle que, au voisinage de 0 :

$$(1+x)^n = 1 + n x + x \varepsilon(x)$$

• Comme $-e^{-t} \xrightarrow[t \to +\infty]{} 0$, on peut appliquer l'égalité précédente à $x = -e^{-t}$ pour t dans un voisinage de $+\infty$. On obtient :

$$(1 - e^{-t})^n = 1 - n e^{-t} - e^{-t} \varepsilon (-e^{-t})$$

ainsi
$$1 - (1 - e^{-t})^n = n e^{-t} + e^{-t} \varepsilon (-e^{-t})$$

• On constate alors : $e^{-t} \varepsilon (-e^{-t}) = o(e^{-t})$. En effet :

$$\frac{e^{-t} \varepsilon \left(-e^{-t}\right)}{e^{-t}} = \varepsilon \left(-e^{-t}\right) \underset{t \to +\infty}{\longrightarrow} 0$$

par théorème de composition des limites.