Process Systems Engineering

Degeneracy Hunter A Tool for NLP Diagnostics

Alexander W. Dowling

Carnegie Mellon University

June 5th, 2014

Agenda

- What are degenerate equations?
 - Motivating examples
- Degeneracy Hunter Algorithm
 - MILP formulation to find irreducible sets of degenerate equations

- Case Study: ASU Optimization
 - 30% speed-up by removing degenerate equations

Degenerate Equations

• Definitions:

- Redundant equations
- Linearly dependent equations
- Rank deficient Jacobian for the active set

• Consequences:

- Singular Jacobian → Newton step fails
- Linearly independence constraint qualification
 violated → non-unique KKT multipliers

Separation Example

Specifications

Feed: 1 mol/time

55% A, 45% B

Equilibrium Data:

 $K_A K_B$

U1 1.088 0.9

U2 1.099 0.9

Cost:

U1: \$1.50 / mole feed

U2: \$1.00 / mole feed

Separation Example

Reparation Example Model

Set Definitions $s \in \{Streams\}, \, c \in \{Components\}, \, u \in \{Units\} \\ s^l, s^v \in \{Outlet\}(u)$

Component $\sum_{s \in \{Inlet\}(u)} f_{s,c} = \sum_{s \in \{Outlet\}(u)} f_{s,c}, \quad \forall u, c$ Mole Balance

Overall $\sum_{s \in \{Inlet\}(u)} F_s = \sum_{s \in \{Outlet\}(u)} F_s, \quad \forall u$ Mole Balance

Vapor-liquid $y_{s^v,c} = K_{u,c} \ x_{s^l,c}, \quad \forall u,c$ Equilib.

Summation $\sum_{c} (y_{s^v,c} - x_{s^l,c}) = 0, \quad \forall u$

Component $F_s x_{s,c} = f_{s,c}, \quad \forall s, c$ Flowrate Def.

Separation Example Model

Set Definitions

$$s \in \{Streams\}, c \in \{Components\}, u \in \{Units\}$$

 $s^{l}, s^{v} \in \{Outlet\}(u)$

Objective Function

$$Obj = \sum_{u} Cost_{u} F_{s^{inlet(u)}}$$

Feed Basis

$$F_2 + F_5 = 1$$

Recovery Definition

$$r_A = \frac{\sum_u f_{s^v, A}}{f_{2, A} + f_{5, A}}$$

Purity
Definition

$$p_A \sum_{u} F_{s^v} = \sum_{u} f_{s^v,A}$$

Separation Example Results

minimize Cost

s.t.
$$r_A \ge 60 \%$$

$$p_A \geq 56 \%$$

$$F \ge 0$$

U1: 0.505 mol/time

minimize Cost

s.t.
$$r_A \ge 60 \%$$

$$p_A \ge 55 \%$$

$$F \ge 0$$

U1: 0.000 mol/time

U2: 1.000 mol/time

Obj: 1.000 \$/time

Rank Check

Problem 1: Flows into both units

Size of Jacobian: 28

Rank of Jacobian: 28

Problem 2: No flow into Unit 1

Size of Jacobian: 28

Rank of Jacobian: 27

Rank Deficiency!

Jacobian contains weakly active inequality constraints and no bounds

Proof: Flash Degeneracies

$$F = V + L$$

$$Fz_{i} = Vy_{i} + Lx_{i}, \quad \forall i$$

$$y_{i} = K_{i}x_{i}, \quad \forall i$$

$$\sum_{i} (y_{i} - x_{i}) = 0$$

$$F, z_{i}$$

$$L, x_{i}$$

Jacobian =

	V	y_1	y _n	L	x ₁	X _n	F	\mathbf{z}_1	Z _n	K_1	K _n
Total MB	1			1			-1				
MB 1	\mathbf{y}_1	X		\mathbf{x}_1	1/		\mathbf{z}_1	F			
MB n	y _n		X	X _n		1/	$\mathbf{Z}_{\mathbf{n}}$		- K		
VLE 1		-1			\mathbf{K}_{1}					\mathbf{x}_1	
VLE n			-1			K _n					X _n
Sum.		1	1		-1	-1					

Types of Degeneracies

- "Global" / "structural"
 - Always degenerate
 - Example: over specified system (next one)

- "Local" / "point-wise"
 - Only occur for specific values of variables
 - Example: Flash calculations + no flow

Pressure Example

Over-specified: 7 variables and 8 equations

Common Sources of Degenerate Equations in Flowsheet Problems

- Modeler error
 - Including redundant equations
 - Programming mistake (set specification)

Zero flowrate and equilibrium calculations

Pressure specifications and recycle loops

"On the Fly" Fixes

CONOPT – Active Set Method

- Detect linearly dependent constraints and remove them from the active set
- Determining the active set in combinatorial (i.e. difficult) use heuristics

• IPOPT – Interior Point Method

- Detect linearly dependent constraints using linear algebra routines
- Use structural regularization to "knock out" degenerate equations
- Active IPOPT development by Wei Wan (PhD student)

Alternative: Reformulation

- **Hypothesis**: "On the Fly" fixes...
 - Add significantly computational costs
 - Don't always work

- Alternative: Model Reformulation
 - Remove degenerate equations from the model before optimization
 - Difficult for problems with 1000's of equations

Naive Approach

Idea: Simply delete degenerate equations detected by factorization (linear algebra routines) before solving optimization problem

- 1. Load initial point
- 2. Detect degenerate equations (factorize)
- 3. Remove degenerate equations
- 4. Solve NLP

Naive Approach

Idea: Simply delete degenerate equations detected by factorization (linear algebra routines) before solving optimization problem

Separation Example

- 1. Modify model: $Obj = \sum_{u} Cost_u F_{s^v} 100p_A$
- 2. Consider Problem 2 solution as initial point
- 3. Delete component mole balance for A in U1
- 4. Result: creation of A, destruction of B

Degeneracy Hunter

• Goal:

 Provide modeler with irreducible sets of degenerate equations for a generic NLP

• Workflow:

Pressure Example

Unit outlets are at same pressure

No pressure drop in the splitter Pressure cannot increase in flash vessels

Specification

Irreducible Set of Degenerate Equations:

Pressure Example

Option 1

$$P_1 = P_3$$

$$P_3 = P_5$$

$$P_5 = P_7$$

Option 2

$$P_1 \geq P_3$$

$$P_2 \geq P_5$$

$$P_5 \geq P_7$$

$$P_8 \ge P_3$$

Degeneracy Hunter

• Goal:

 Provide modeler with irreducible sets of degenerate equations for a generic NLP

• Algorithm:

- 1. Import derivative information from GAMS
- 2. Determine active set*
- 3. Factorize active set Jacobian to find non-pivot columns (equations)
- 4. Solve MILP for each non-pivot column to determine irreducible set of degenerate equations

^{*} User specifies if bounds and/or weakly active constraints should be considered

MILP for Irreducible Set

For each j in {non-pivot equations}, solve:

$$\min \sum_{i=1}^{n_{npe}} y_i$$
s.t. $A_{dh}^T x = 0$

$$-My_i \le x_i \le My_i , \quad \forall i = 1, ..., n_{npe}$$

$$x_j = 1$$

 A_{dh} Jacobian of the active set i Equations in the active set y_i Is eqn i in the degenerate set (binary)? x_i Singular vector component for eqn i

Degeneracy Hunter Options

- Use Sparse linear algebra? **Yes**/no
 - -module.sparse
- Threshold for classifying multipliers as weakly active (default: 10^{-10})
 - module.multTol
- Tolerance for rank (dense only, default: 10⁻¹⁰)
 - -module.rankTol
- Verbose output (for debugging)? Yes/no
 - -module.verbose

Degeneracy Hunter Options

- Should weakly active constraints be considered when checking for degeneracies?
 - module.degenHunt.weakAct
- Should variable bounds be considered when checking for degeneracies?
 - module.degenHunt.varBounds
- Use MILP formulation? **Yes/no**
 - module.degenHunt.optimal
- Tolerance for displaying equations in MILP version (default: 10⁻⁶)
 - -module.degenHunt.tol

Separation example with 3 units

Usage:


```
****** Equations ******
Total number: 38
Number of equality constraints: 38
Number of STRONGLY active equality constraints: 10
Number of WEAKLY active equality constraints: 28
Number of inequality constraints: 0
Number of ACTIVE inequality constraints: 0
Number of STRONGLY ACTIVE inequality constraints: 0
Number of WEAKLY ACTIVE inequality constraints: 0
Number of INACTIVE inequality constraints: 0
****** Variables ******
Total number: 43
Number of ACTIVE variable bounds: 19
Number of STRONGLY ACTIVE variable bounds: 5
Number of WEAKLY ACTIVE variable bounds: 18
****** Degrees of Freedom *******
At analyzed point, considering...
   all ACTIVE inequalities and bounds: -14
   only STRONGLY ACTIVE inequalities and bounds: 0
```



```
Rank of analyzed Jacobian: 37
Estimated number of dependent equations (using rank): 1
Estimated number of dependent equations (using dense rank calc.): 2
```

Sparse rank calculation is an approximation

```
********* Suspect Equations (and Bounds) *******

Index Active Type Name

24 Strong Eqlty. EqStrMoleFrac(S4,B)

34 Strong Eqlty. EqStrMoleFrac(S9,B)
```



```
Consider degeneracy with EgStrMoleFrac(S4,B)
Optimal: This equation is part of a degenerate set with 9 equations (total)
-1.000000
                    EqUnitComponentMoleBalance(1,A)
-1.000000
                    EqUnitComponentMoleBalance(1,B)
1.000000
                    EqUnitMoleBalance(1)
-1.000000
                    EqStrMoleFrac(S2,A)
-1.000000
                    EgStrMoleFrac(S2,B)
1.000000
                    EqStrMoleFrac(S3,A)
1.000000
                    EqStrMoleFrac(S3,B)
1.000000
                    EqStrMoleFrac(S4,A)
1.000000
                    EqStrMoleFrac(S4,B)
Consider degeneracy with EgStrMoleFrac(S9,B)
Optimal: This equation is part of a degenerate set with 9 equations (total)
-1.000000
                    EqUnitComponentMoleBalance(3, A)
-1.000000
                    EqUnitComponentMoleBalance(3,B)
1.000000
                    EqUnitMoleBalance(3)
-1.000000
                    EgStrMoleFrac(S4,A)
-1.000000
                    EgStrMoleFrac(S4,B)
1.000000
                    EgStrMoleFrac(S8,A)
1.000000
                    EqStrMoleFrac(S8,B)
1.000000
                    EgStrMoleFrac(S9,A)
1.000000
                    EqStrMoleFrac(S9,B)
```


ASU Case Study

Double-column ASU with multistream heat exchanger

Completely equation based

- Embedded thermo.
- Heat integration
- Non-convex!

15,000+ variables and constraints

Initialization Procedure

Section 0

Section 1

Ideal Thermo & Shortcut Cascade

Section 2
Section 3

CEOS Thermo & Shortcut Cascade

Section 4

CEOS Thermo & MESH Cascade

Section 5
Section 6

Decompose Heat Exchange Units & Reoptimize

Repeat with different combinations of initial values and bounds

Sort local solutions by final obj. function value

ASU Case Study

Multistart procedure:

• 288 initialization points considered for each case

Description	Number of "High Quality" Optimal Solutions	Best Obj.	Avg Time (s)	Time Red.
Based Case	200	0.16821	909.6	

Disclaimer: These results are *preliminary*.

Heat Exchanger Decomposition

Equal ΔT for each subunit of a large heat exchange unit

Heat Exchanger Decomposition

 $u \in \{\text{Heat Exchange Units}\}\$ $s \in \{\text{Heat Exchange Subunits}\}(u)$ n := number of subunits per large unit

Degenerate

$$T_u^{in} - T_u^{out} = \Delta T, \quad \forall u$$

Degenerate

$$T_s^{in} - T_s^{out} = \Delta T/n, \quad \forall s(u), u$$

Feed Air (Vapor)
$$\longrightarrow$$
 Dew Point (2 phase) \longrightarrow Bubble Point (2 phase) \longrightarrow Subcooled Liquid

ASU Case Study

Multistart methods used to good local solutions

• 288 initialization points considered for each case

Description	Number of "High Quality" Optimal Solutions	Best Obj.	Avg Time (s)	Time Red.
Based Case	200	0.16821	909.6	
+ Removed EqCalcDeltaT (modeler error: extra equality constraint)	199	0.16832	788.1	13.4%

Add'n Subunit Equations

 $u \in \{\text{Heat Exchange Units}\}\$ $s \in \{\text{Heat Exchange Subunits}\}(u)$ n := number of subunits per large unit

Cooling Units

$$Q_s^{in} = 0$$

$$Q_s^{out} > 0$$

 $T_s^{in} - T_s^{out} \ge 0$

Occasionally Degenerate

Heating Units

$$Q_s^{in} \geq 0$$

$$Q_s^{out} = 0$$

$$T_s^{out} - T_s^{in} \ge 0$$

Feed Air (Vapor)
$$\longrightarrow$$
 Dew Point (2 phase) \longrightarrow Bubble Point (2 phase) \longrightarrow Subcooled Liquid

ASU Case Study

Multistart methods used to good local solutions

• 288 initialization points considered for each case

Description	Number of "High Quality" Optimal Solutions	Best Obj.	Avg Time (s)	Time Red.
Based Case	200	0.16821	909.6	
+ Removed EqCalcDeltaT (modeler error: extra equality constraint)	199	0.16832	788.1	13.4%
+ Removed EqCoolSHtEx & EqHeatSHtEx (redundant inequality cons.)	199	0.16842	699.1	23.1%

Degeneracy Hunter Output

```
Consider degeneracy with EqPresSHtEx(SHX354, V353, S3)
Elapsed time is 4.007682 seconds.
Optimal: This equation is part of a degenerate set
with 11 equations (total)
1.000000
             EqPRelThrmE (F3, SF1V3, SF1L3)
             EqPRelThrmE (SHX351, V351, L351)
-1.000000
-1.000000
             EqPRelThrmE (SHX352, V352, L352)
-1.000000
             EqPRelThrmE (SHX353, V353, L353)
-1.000000
             EqPRelThrmE (SHX354, S4, S3)
1.000000
             EqPRel1Flsh (F3)
1.000000
             EqPFlashLqc(F3,S4)
1.000000
             EqPresSHtEx (SHX351, SF1L3, L351)
1.000000
             EqPresSHtEx (SHX352, V351, L352)
1.000000
             EqPresSHtEx (SHX353, V352, L353)
             EqPresSHtEx (SHX354, V353, S3)
1.000000
```


Pressure Recycle

$$P_{SF1L3} \leq P_{S4}$$

$$P_{SF1L3} = P_{S3}$$

$$P_{S3} = P_{S4}$$

ASU Case Study

Multistart methods used to good local solutions

• 288 initialization points considered for each case

Description	Number of "High Quality" Optimal Solutions	Best Obj.	Avg Time (s)	Time Red.
Based Case	200	0.16821	909.6	
+ Removed EqCalcDeltaT (modeler error: extra equality constraint)	199	0.16832	788.1	13.4%
+ Removed EqCoolSHtEx & EqHeatSHtEx (redundant inequality cons.)	199	0.16842	699.1	23.1%
+ Removed pressure recycles for condensers & reboilers	208	0.16824	640.2	29.6%

Conclusions

- <u>Degenerate equations</u> are prevalent in process flowsheet models and degrade optimizer performance
- Irreducible sets of <u>degenerate equations</u> help expert modelers with reformulation
- Finding irreducible sets of <u>degenerate equations</u> can be posed as a MILP
- Removing <u>degenerate equations</u> resulting in a **30% reduction** in CPU time in ASU optimization example
 - Disclaimer: <u>Preliminary</u> results