Correction

d'après ESC Lyon 1994

1.a f est définie sur \mathbb{R}^+ .

Par opérations, f est continue sur \mathbb{R}^+ et dérivable sur \mathbb{R}^+* avec $f'(x) = \frac{1-x}{2\sqrt{x}}e^{-x/2}$.

Quand $x \to 0^+$, $f'(x) \to +\infty$. Par suite f n'est pas dérivable en 0 mais f y présente une tangente verticale.

1.b Puisque f'(x) est du signe de 1-x:

\boldsymbol{x}	0		1	$+\infty$	
			1/√e		
f(x)		/			ľ
	0			0	

1.c f est deux fois dérivable sur \mathbb{R}^{+*} et $f''(x) = \frac{x^2 - 2x - 1}{4x\sqrt{x}} e^{-x/2}$ du signe de $x^2 - 2x - 1$.

x	0		$1+\sqrt{2}$		$+\infty$
$x^2 - 2x - 1$		_	0	+	

donc f présente un point d'inflexion en $\alpha = 1 + \sqrt{2}$.

1.d L'équation de la tangente à f en α est $y = f'(\alpha)(x - \alpha) + f(\alpha)$.

Celle-ci intercepte l'axe des abscisses en $x = \alpha - \frac{f(\alpha)}{f'(\alpha)} = \alpha + \frac{2\alpha}{\alpha - 1} = 1 + \sqrt{2} + 2\frac{1 + \sqrt{2}}{\sqrt{2}} = 3 + 2\sqrt{2}$.

- 1.e Ci-contre
- 2.a f est continue et strictement croissante sur [0,1] (car f'(x) > 0 sur [0,1[) donc f réalise une bijection de [0,1] vers $[f(0),f(1)] = \left[0,1/\sqrt{e}\right]$. De plus, par théorème, sont application réciproque est continue.
- 2.b φ a même monotonie que f et est donc strictement croissante. De plus f(0) = 0 et $f(1) = 1/\sqrt{e}$ donne $\varphi(0) = 0$ et $\varphi(1/\sqrt{e}) = 1$.

Par suite
$$\begin{vmatrix} x & 0 & 1/\sqrt{e} \\ \varphi(x) & 1 \\ 0 & 0 \end{vmatrix}$$

- 2.c f est dérivable sur]0,1[et $\forall x \in]0,1[,f'(x) \neq 0$ donc φ est dérivable sur $f(]0,1[) = [0,1/\sqrt{e}]$.
- 2.d Etude en 0 : $\frac{1}{h}(\varphi(h) \varphi(0)) = \frac{x}{x = \varphi(h)} \frac{x}{f(x)} = \sqrt{x}e^{x/2}$.

Quand $h \to 0$, on a $x = \varphi(h) \to \varphi(0) = 0$ puis $\sqrt{x} e^{x/2} \to 0$. Ainsi φ est dérivable en 0 et $\varphi'(0) = 0$.

Etude en $\beta = 1/\sqrt{e}$: $\frac{1}{h}(\varphi(\beta+h)-\varphi(\beta)) = \frac{x-1}{\sup_{x=\varphi(\beta+h)} f(x)-f(1)}$

Quand $h \to 0$, $x = \varphi(\beta + h) \to \varphi(\beta) = 1$, donc $\frac{f(x) - f(1)}{x - 1} \to f'(1) = 0$ et puisque f est strictement

croissante, on peut même dire $\frac{f(x)-f(1)}{x-1} \to 0^+$ d'où $\frac{x-1}{f(x)-f(1)} \to +\infty$.

Finalement φ n'est pas dérivable en $1/\sqrt{e}$ mais y présente une tangente verticale.

- 2.e On a $f(\varphi(x)) = x$ donc $2\sqrt{\varphi(x)} \mathrm{e}^{-\varphi(x)/2} = x$. Quand $x \to 0$, on a $\varphi(x) \to \varphi(0) = 0$ donc $\mathrm{e}^{-\varphi(x)/2} \to 1$. Par suite $2\sqrt{\varphi(x)} \sim x$ puis après élévation au carré : $\varphi(x) \sim \frac{x^2}{4}$.
- 3.a f est continue et strictement décroissante sur $[1,+\infty[$, elle réalise donc une bijection de $[1,+\infty[$ vers $\left|\lim_{+\infty}f,f(1)\right|=\left|0,1/\sqrt{e}\right|$.
- 3.c Quand $x \to 0$, on a $\psi(x) \to +\infty$. $f(\psi(x)) = x \ \text{donne} \ \sqrt{\psi(x)} \mathrm{e}^{-\psi(x)/2} = x \ \mathrm{d'où} \ \frac{1}{2} \ln \psi(x) \frac{1}{2} \psi(x) = \ln x \ .$ Puisque $\psi(x) \to +\infty$, on a $\ln \psi(x) = o(\psi(x)) \ \mathrm{donc} \ \frac{1}{2} \ln \psi(x) \frac{1}{2} \psi(x) \sim -\frac{1}{2} \psi(x) \ .$ Par suite $\psi(x) \sim -2 \ln x$.
- 4. φ est croissante et ψ^{-1} décroissante donc g est décroissante. $g(1) = \varphi \circ \psi^{-1}(1) = \varphi(1/\sqrt{e}) = 1$. $\lim_{t \to \infty} \psi^{-1} = \lim_{t \to \infty} f = 0 \text{ et } \lim_{t \to \infty} \varphi = 0 \text{ donc par composition} : \lim_{t \to \infty} g = 0 \text{ . On résume} : \begin{bmatrix} x & 1 & +\infty \\ & 1 & \\ & & 1 \end{bmatrix}$