Siddharth Bhat

##harmless Category Theory in Context

Sun 20, June 2021

■ Consider $F : \mathsf{Set}_{\mathfrak{d}} \to \mathsf{Set}_*$.

- Consider $F : Set_{\partial} \rightarrow Set_*$.
- Send a set X to the set $(X \cup \{X\}, X)$ where we view X as the new basepoint.

- Consider $F : \mathsf{Set}_{\mathfrak{d}} \to \mathsf{Set}_*$.
- Send a set X to the set $(X \cup \{X\}, X)$ where we view X as the new basepoint. (Why X? It's a nice trick, as math lacks gensym).

- Consider $F : Set_{\partial} \rightarrow Set_*$.
- Send a set X to the set $(X \cup \{X\}, X)$ where we view X as the new basepoint. (Why X? It's a nice trick, as math lacks gensym).
- Send a partial function $f: S \xrightarrow{\partial} T$ to a total function which maps to the basepoint where undefined.

- Consider $F : Set_{\partial} \rightarrow Set_*$.
- Send a set X to the set $(X \cup \{X\}, X)$ where we view X as the new basepoint. (Why X? It's a nice trick, as math lacks gensym).
- Send a partial function $f: S \xrightarrow{\partial} T$ to a total function which maps to the basepoint where undefined.

$$\begin{split} F: \mathsf{Set}_{\mathfrak{d}} \to \mathsf{Set}_{\mathfrak{d}} & \quad Ff: FX \to FY = X \cup \{X\} \to Y \cup \{Y\} \\ Ff & \equiv \lambda x. \begin{cases} f(x) & f \text{ is defined at } x \\ Y & \text{otherwise} \end{cases} \end{split}$$

■ Want an inverse to $F : \mathsf{Set}_{\mathfrak{d}} \to \mathsf{Set}_*$ (called $G : \mathsf{Set}_* \to \mathsf{Set}_{\mathfrak{d}}$).

- Consider $F : Set_{\partial} \rightarrow Set_*$.
- Send a set X to the set $(X \cup \{X\}, X)$ where we view X as the new basepoint. (Why X? It's a nice trick, as math lacks gensym).
- Send a partial function $f: S \xrightarrow{\partial} T$ to a total function which maps to the basepoint where undefined.

$$\begin{split} F: \mathsf{Set}_{\mathfrak{d}} \to \mathsf{Set}_{\mathfrak{d}} &\quad Ff: FX \to FY = X \cup \{X\} \to Y \cup \{Y\} \\ Ff &\equiv \lambda x. \begin{cases} f(x) & f \text{ is defined at } x \\ Y & \text{otherwise} \end{cases} \end{split}$$

■ Want an inverse to $F : \mathsf{Set}_{\partial} \to \mathsf{Set}_{*}$ (called $G : \mathsf{Set}_{*} \to \mathsf{Set}_{\partial}$). We should probably forget the basepoint (since we added it ourselves).

- Consider $F : Set_{\partial} \rightarrow Set_*$.
- Send a set X to the set $(X \cup \{X\}, X)$ where we view X as the new basepoint. (Why X? It's a nice trick, as math lacks gensym).
- Send a partial function $f: S \xrightarrow{\partial} T$ to a total function which maps to the basepoint where undefined.

$$\begin{split} F: \mathsf{Set}_{\eth} \to \mathsf{Set}_{\eth} &\quad Ff: FX \to FY = X \cup \{X\} \to Y \cup \{Y\} \\ Ff &\equiv \lambda x. \begin{cases} f(x) & f \text{ is defined at } x \\ Y & \text{otherwise} \end{cases} \end{split}$$

- Want an inverse to $F : \mathsf{Set}_{\partial} \to \mathsf{Set}_*$ (called $G : \mathsf{Set}_* \to \mathsf{Set}_{\partial}$). We should probably forget the basepoint (since we added it ourselves).
- Send a set $(X, x) \in Set_*$ to $X \{x\} \in Set_{\partial}$.

- Consider $F : Set_{\partial} \rightarrow Set_*$.
- Send a set X to the set $(X \cup \{X\}, X)$ where we view X as the new basepoint. (Why X? It's a nice trick, as math lacks gensym).
- Send a partial function $f: S \xrightarrow{\partial} T$ to a total function which maps to the basepoint where undefined.

$$\begin{split} F: \mathsf{Set}_{\eth} \to \mathsf{Set}_{\eth} &\quad Ff: FX \to FY = X \cup \{X\} \to Y \cup \{Y\} \\ Ff &\equiv \lambda x. \begin{cases} f(x) & f \text{ is defined at } x \\ Y & \text{otherwise} \end{cases} \end{split}$$

- Want an inverse to $F : \mathsf{Set}_{\partial} \to \mathsf{Set}_*$ (called $G : \mathsf{Set}_* \to \mathsf{Set}_{\partial}$). We should probably forget the basepoint (since we added it ourselves).
- Send a set $(X,x) \in \mathsf{Set}_*$ to $X \{x\} \in \mathsf{Set}_{\mathfrak{d}}$. Define $G(X,x) \equiv X \{x\}$.

- Consider $F : Set_{\partial} \rightarrow Set_{*}$.
- Send a set X to the set $(X \cup \{X\}, X)$ where we view X as the new basepoint. (Why X? It's a nice trick, as math lacks gensym).
- Send a partial function $f: S \xrightarrow{\partial} T$ to a total function which maps to the basepoint where undefined.

$$\begin{split} F: \mathsf{Set}_{\eth} \to \mathsf{Set}_{\eth} &\quad Ff: FX \to FY = X \cup \{X\} \to Y \cup \{Y\} \\ Ff &\equiv \lambda x. \begin{cases} f(x) & f \text{ is defined at } x \\ Y & \text{otherwise} \end{cases} \end{split}$$

- Want an inverse to $F : \mathsf{Set}_{\partial} \to \mathsf{Set}_*$ (called $G : \mathsf{Set}_* \to \mathsf{Set}_{\partial}$). We should probably forget the basepoint (since we added it ourselves).
- Send a set $(X,x) \in \text{Set}_*$ to $X \{x\} \in \text{Set}_{\mathfrak{d}}$. Define $G(X,x) \equiv X \{x\}$.

$$\begin{split} f: (\mathcal{S}, s) &\to (\mathcal{T}, t) \quad \textit{Gf}: \textit{GS} \to \textit{GT} = (\mathcal{S} - \{s\}) \xrightarrow{\partial} (\mathcal{T} - \{t\}) \\ \mathcal{G}(f) &\equiv \lambda x. \begin{cases} \text{undefined} & \textit{f}(x) = t \\ \textit{f}(x) & \text{otherwise} \end{cases} \end{split}$$

$$\begin{split} F: & \mathsf{Set}_{\mathfrak{d}} \to \mathsf{Set}_{*}; \quad f: X \xrightarrow{\mathfrak{d}} Y; \quad Ff: FX \to FY = X \cup \{X\} \to Y \cup \{Y\} \\ & Ff \equiv \lambda x. \begin{cases} f(x) & f \text{ is defined at } x \\ Y & \text{otherwise} \end{cases} \\ & G: \mathsf{Set}_{*} \to \mathsf{Set}_{\mathfrak{d}}; \quad f: (S,s) \to (T,t); \quad Gf: (S-\{s\}) \xrightarrow{\mathfrak{d}} (T-\{t\}) \\ & G(f) \equiv \lambda x. \begin{cases} \mathsf{undefined} & \mathsf{f}(\mathsf{x}) = \mathsf{t} \\ f(\mathsf{x}) & \text{otherwise} \end{cases} \end{split}$$

$$F: \mathsf{Set}_{\eth} \to \mathsf{Set}_{\ast}; \quad f: X \xrightarrow{\eth} Y; \quad Ff: FX \to FY = X \cup \{X\} \to Y \cup \{Y\}$$

$$Ff \equiv \lambda x. \begin{cases} f(x) & f \text{ is defined at } x \\ Y & \text{otherwise} \end{cases}$$

$$G: \mathsf{Set}_{\ast} \to \mathsf{Set}_{\eth}; \quad f: (S,s) \to (T,t); \quad Gf: (S-\{s\}) \xrightarrow{\eth} (T-\{t\})$$

$$G(f) \equiv \lambda x. \begin{cases} \mathsf{undefined} & \mathsf{f}(x) = \mathsf{t} \\ f(x) & \text{otherwise} \end{cases}$$

■ Let $X \equiv (\{1,2\},1) \in \mathsf{Set}_*$; $Y \equiv (\{a,b\},a) \in \mathsf{Set}_*$; $f:X \to Y \in \mathit{Hom}_*(X,Y)$; $f(1) \equiv a, f(2) \equiv b.$

$$\begin{split} F: & \mathsf{Set}_{\partial} \to \mathsf{Set}_{*}; \quad f: X \xrightarrow{\partial} Y; \quad Ff: FX \to FY = X \cup \{X\} \to Y \cup \{Y\} \\ Ff & \equiv \lambda x. \begin{cases} f(x) & f \text{ is defined at } x \\ Y & \text{otherwise} \end{cases} \\ G: & \mathsf{Set}_{*} \to \mathsf{Set}_{\partial}; \quad f: (S,s) \to (T,t); \quad Gf: (S-\{s\}) \xrightarrow{\partial} (T-\{t\}) \\ G(f) & \equiv \lambda x. \begin{cases} \mathsf{undefined} & \mathsf{f}(\mathsf{x}) = \mathsf{t} \\ f(\mathsf{x}) & \text{otherwise} \end{cases} \end{split}$$

■ Let $X \equiv (\{1,2\},1) \in \mathsf{Set}_*; \ Y \equiv (\{a,b\},a) \in \mathsf{Set}_*; \ f:X \to Y \in Hom_*(X,Y); f(1) \equiv a, \ f(2) \equiv b.$ (Basepoint-preserving).

$$\begin{split} F: & \mathsf{Set}_{\eth} \to \mathsf{Set}_{\$}; \quad f: X \xrightarrow{\eth} Y; \quad Ff: FX \to FY = X \cup \{X\} \to Y \cup \{Y\} \\ & Ff \equiv \lambda x. \begin{cases} f(x) & f \text{ is defined at } x \\ Y & \text{otherwise} \end{cases} \\ & G: \mathsf{Set}_{\$} \to \mathsf{Set}_{\eth}; \quad f: (S,s) \to (T,t); \quad Gf: (S-\{s\}) \xrightarrow{\eth} (T-\{t\}) \\ & G(f) \equiv \lambda x. \begin{cases} \mathsf{undefined} & \mathsf{f}(x) = \mathsf{t} \\ f(x) & \text{otherwise} \end{cases} \end{split}$$

- Let $X \equiv (\{1,2\},1) \in \mathsf{Set}_*; \ Y \equiv (\{a,b\},a) \in \mathsf{Set}_*; \ f:X \to Y \in Hom_*(X,Y); \ f(1) \equiv a, \ f(2) \equiv b.$ (Basepoint-preserving).
- $GX = \{1\}, GY = \{a\}, Gf \equiv 1 \mapsto a.$

$$\begin{split} F: & \mathsf{Set}_{\partial} \to \mathsf{Set}_{\$}; \quad f: X \xrightarrow{\partial} Y; \quad Ff: FX \to FY = X \cup \{X\} \to Y \cup \{Y\} \\ Ff & \equiv \lambda x. \begin{cases} f(x) & f \text{ is defined at } x \\ Y & \text{otherwise} \end{cases} \\ G: & \mathsf{Set}_{\$} \to \mathsf{Set}_{\partial}; \quad f: (S,s) \to (T,t); \quad Gf: (S-\{s\}) \xrightarrow{\partial} (T-\{t\}) \\ G(f) & \equiv \lambda x. \begin{cases} \mathsf{undefined} & \mathsf{f}(\mathsf{x}) = \mathsf{t} \\ f(x) & \text{otherwise} \end{cases} \end{split}$$

- Let $X \equiv (\{1,2\},1) \in \mathsf{Set}_*; \ Y \equiv (\{a,b\},a) \in \mathsf{Set}_*; \ f:X \to Y \in Hom_*(X,Y); f(1) \equiv a, f(2) \equiv b.$ (Basepoint-preserving).
- $GX = \{1\}$, $GY = \{a\}$, $Gf \equiv 1 \mapsto a$. $FGX = (\{1, \{1\}\}, \{1\})$, $FGY = (\{a, \{a\}\}, \{a\})$, $FGf \equiv 1 \mapsto a, \{1\} \mapsto \{a\}$.

$$F: \mathsf{Set}_{\partial} \to \mathsf{Set}_{*}; \quad f: X \xrightarrow{\partial} Y; \quad Ff: FX \to FY = X \cup \{X\} \to Y \cup \{Y\}$$

$$Ff \equiv \lambda x. \begin{cases} f(x) & f \text{ is defined at } x \\ Y & \text{otherwise} \end{cases}$$

$$G: \mathsf{Set}_{*} \to \mathsf{Set}_{\partial}; \quad f: (S,s) \to (T,t); \quad Gf: (S-\{s\}) \xrightarrow{\partial} (T-\{t\})$$

$$G(f) \equiv \lambda x. \begin{cases} \mathsf{undefined} & \mathsf{f}(x) = \mathsf{t} \\ f(x) & \text{otherwise} \end{cases}$$

- Let $X \equiv (\{1,2\},1) \in \mathsf{Set}_*; \ Y \equiv (\{a,b\},a) \in \mathsf{Set}_*; \ f:X \to Y \in Hom_*(X,Y); f(1) \equiv a, f(2) \equiv b.$ (Basepoint-preserving).
- $GX = \{1\}$, $GY = \{a\}$, $Gf \equiv 1 \mapsto a$. $FGX = (\{1, \{1\}\}, \{1\})$, $FGY = (\{a, \{a\}\}, \{a\})$, $FGf \equiv 1 \mapsto a, \{1\} \mapsto \{a\}$.
- Define $\eta: Id_{\mathsf{Set}*} \to \mathit{GF}$; $\eta((X,x)) \equiv (X,\{X\})$;

$$\begin{split} F: & \mathsf{Set}_{\partial} \to \mathsf{Set}_{\$}; \quad f: X \xrightarrow{\partial} Y; \quad Ff: FX \to FY = X \cup \{X\} \to Y \cup \{Y\} \\ Ff & \equiv \lambda x. \begin{cases} f(x) & f \text{ is defined at } x \\ Y & \text{otherwise} \end{cases} \\ G: & \mathsf{Set}_{\$} \to \mathsf{Set}_{\partial}; \quad f: (S,s) \to (T,t); \quad Gf: (S-\{s\}) \xrightarrow{\partial} (T-\{t\}) \\ G(f) & \equiv \lambda x. \begin{cases} \mathsf{undefined} & \mathsf{f}(\mathsf{x}) = \mathsf{t} \\ f(\mathsf{x}) & \text{otherwise} \end{cases} \end{split}$$

- Let $X \equiv (\{1,2\},1) \in \mathsf{Set}_*; \ Y \equiv (\{a,b\},a) \in \mathsf{Set}_*; \ f:X \to Y \in Hom_*(X,Y);$ $f(1) \equiv a, \ f(2) \equiv b.$ (Basepoint-preserving).
- $GX = \{1\}$, $GY = \{a\}$, $Gf \equiv 1 \mapsto a$. $FGX = (\{1, \{1\}\}, \{1\})$, $FGY = (\{a, \{a\}\}, \{a\})$, $FGf \equiv 1 \mapsto a, \{1\} \mapsto \{a\}$.
- Define $\eta: Id_{\mathsf{Set}*} \to GF$; $\eta((X,x)) \equiv (X,\{X\})$; Remap the basepoint.
- Let $S \equiv \{c, d\} \in \mathsf{Set}_{\partial}$; $T \equiv \{3, 4\} \in \mathsf{Set}_{\partial}$; $g \in Hom_{\partial}(S, T)$; $g(c) \equiv 3$, $g(d) \not\equiv _$
- $FS \equiv \{1, 2, \{1, 2\}_*\}; FT \equiv \{3, 4, \{3, 4\}_*\}; Fg \equiv c \mapsto 3, d \mapsto \{3, 4\}, \{1, 2\} \mapsto \{3, 4\}.$
- $GFS \equiv \{1, 2\}$; $GFT \equiv \{3, 4\}$; $GFg \equiv c \mapsto 3, d \not\mapsto$.

$$\begin{split} F: & \mathsf{Set}_{\partial} \to \mathsf{Set}_{\$}; \quad f: X \xrightarrow{\partial} Y; \quad Ff: FX \to FY = X \cup \{X\} \to Y \cup \{Y\} \\ Ff & \equiv \lambda x. \begin{cases} f(x) & f \text{ is defined at } x \\ Y & \text{otherwise} \end{cases} \\ G: & \mathsf{Set}_{\$} \to \mathsf{Set}_{\partial}; \quad f: (S,s) \to (T,t); \quad Gf: (S-\{s\}) \xrightarrow{\partial} (T-\{t\}) \\ G(f) & \equiv \lambda x. \begin{cases} \mathsf{undefined} & \mathsf{f}(\mathsf{x}) = \mathsf{t} \\ f(\mathsf{x}) & \text{otherwise} \end{cases} \end{split}$$

- Let $X \equiv (\{1,2\},1) \in \mathsf{Set}_*; \ Y \equiv (\{a,b\},a) \in \mathsf{Set}_*; \ f:X \to Y \in \mathit{Hom}_*(X,Y); f(1) \equiv a, \ f(2) \equiv b.$ (Basepoint-preserving).
- $GX = \{1\}$, $GY = \{a\}$, $Gf \equiv 1 \mapsto a$. $FGX = (\{1, \{1\}\}, \{1\})$, $FGY = (\{a, \{a\}\}, \{a\})$, $FGf \equiv 1 \mapsto a, \{1\} \mapsto \{a\}$.
- Define $\eta: Id_{Set*} \to GF$; $\eta((X,x)) \equiv (X,\{X\})$; Remap the basepoint.
- Let $S \equiv \{c, d\} \in \mathsf{Set}_{\partial}$; $T \equiv \{3, 4\} \in \mathsf{Set}_{\partial}$; $g \in Hom_{\partial}(S, T)$; $g(c) \equiv 3$, $g(d) \not\equiv _$
- $FS \equiv \{1, 2, \{1, 2\}_*\}; FT \equiv \{3, 4, \{3, 4\}_*\}; Fg \equiv c \mapsto 3, d \mapsto \{3, 4\}, \{1, 2\} \mapsto \{3, 4\}.$
- $GFS \equiv \{1, 2\}$: $GFT \equiv \{3, 4\}$: $GFg \equiv c \mapsto 3, d \not\mapsto$.
- lacksquare In general, may have needed a $\epsilon: \textit{FG}
 ightarrow \textit{Id}_{\mathsf{Set}_{\mathfrak{d}}}$

■ Equality is too strong. Equivalence ought to be just right.

- Equality is too strong. Equivalence ought to be just right.
- Two categories, C, D are said to be equivalent iff we have functors $F: C \to D$ and $G: D \to C$ such that there exist natural isomorphisms: $\eta: 1 \simeq GF$ and $\epsilon: FG \simeq 1$.

- Equality is too strong. Equivalence ought to be just right.
- Two categories, C, D are said to be equivalent iff we have functors $F: C \to D$ and $G: D \to C$ such that there exist natural isomorphisms: $\eta: 1 \simeq GF$ and $e: FG \simeq 1$.
- Recall: natural isomorphisms is a natural transformation $\eta: F \Rightarrow G$ where each component $\eta_x: Fx \to Gx$ is an isomorphism.

- Equality is too strong. Equivalence ought to be just right.
- Two categories, C, D are said to be equivalent iff we have functors $F: C \to D$ and $G: D \to C$ such that there exist natural isomorphisms: $\eta: 1 \simeq GF$ and $e: FG \simeq 1$.
- Recall: natural isomorphisms is a natural transformation $\eta: F \Rightarrow G$ where each component $\eta_x: Fx \to Gx$ is an isomorphism.

■ A functor is full, faithful, and essentially surjective iff an equivalence of categories.

- A functor is full, faithful, and essentially surjective iff an equivalence of categories.
- Full: If the map $Hom(x,y) \to Hom(Fx,Fy)$ is surjective for all $x,y \in C$.
- Faithful: If the map $Hom(x,y) \to Hom(Fx,Fy)$ is injective for all $x,y \in C$.
- Essentially surjective: For any object $d \in D$, there is some object $y \in Im(F)$ such that y is isomorphic to d $(y \simeq d)$.

- A functor is full, faithful, and essentially surjective iff an equivalence of categories.
- Full: If the map $Hom(x,y) \to Hom(Fx,Fy)$ is surjective for all $x,y \in C$.
- Faithful: If the map $Hom(x,y) \to Hom(Fx,Fy)$ is injective for all $x,y \in C$.
- Essentially surjective: For any object $d \in D$, there is some object $y \in Im(F)$ such that y is isomorphic to d ($y \simeq d$). functor F is surjective "upto isomorphism".

- A functor is full, faithful, and essentially surjective iff an equivalence of categories.
- Full: If the map $Hom(x, y) \to Hom(Fx, Fy)$ is surjective for all $x, y \in C$.
- Faithful: If the map $Hom(x,y) \to Hom(Fx,Fy)$ is injective for all $x,y \in C$.
- Essentially surjective: For any object $d \in D$, there is some object $y \in Im(F)$ such that y is isomorphic to d ($y \simeq d$). functor F is surjective "upto isomorphism".

■ Let O be a connected groupoid, and let $x \in O$ be some object of the groupoid. Exract out a single object of the groupoid, by considering the subcategory consisting of only the object $x \in O$. Label this subcategory G.

- Let O be a connected groupoid, and let $x \in O$ be some object of the groupoid. Exact out a single object of the groupoid, by considering the subcategory consisting of only the object $x \in O$. Label this subcategory G.
- The embedding functor $F: G \to O$ is full and faithful since its image contains a single object (x) where it preserves all arrows.

- Let O be a connected groupoid, and let $x \in O$ be some object of the groupoid. Exract out a single object of the groupoid, by considering the subcategory consisting of only the object $x \in O$. Label this subcategory G.
- The embedding functor $F: G \rightarrow O$ is full and faithful since its image contains a single object (x) where it preserves all arrows.
- Also see that it is essentially surjective.

- Let O be a connected groupoid, and let $x \in O$ be some object of the groupoid. Exract out a single object of the groupoid, by considering the subcategory consisting of only the object $x \in O$. Label this subcategory G.
- The embedding functor $F: G \to O$ is full and faithful since its image contains a single object (x) where it preserves all arrows.
- Also see that it is essentially surjective. For any other $y \in O$, we have a path $x \stackrel{p}{\rightarrow} y$ (as O is connected).

- Let O be a connected groupoid, and let $x \in O$ be some object of the groupoid. Exract out a single object of the groupoid, by considering the subcategory consisting of only the object $x \in O$. Label this subcategory G.
- The embedding functor $F: G \to O$ is full and faithful since its image contains a single object (x) where it preserves all arrows.
- Also see that it is essentially surjective. For any other $y \in O$, we have a path $x \stackrel{p}{\rightarrow} y$ (as O is connected).

- Let O be a connected groupoid, and let $x \in O$ be some object of the groupoid. Exract out a single object of the groupoid, by considering the subcategory consisting of only the object $x \in O$. Label this subcategory G.
- The embedding functor $F: G \to O$ is full and faithful since its image contains a single object (x) where it preserves all arrows.
- Also see that it is essentially surjective. For any other $y \in O$, we have a path $x \stackrel{p}{\rightarrow} y$ (as O is connected). since it is a groupoid, all morphisms are isos, and thus $y \simeq x$.

- Let O be a connected groupoid, and let $x \in O$ be some object of the groupoid. Exract out a single object of the groupoid, by considering the subcategory consisting of only the object $x \in O$. Label this subcategory G.
- The embedding functor $F: G \to O$ is full and faithful since its image contains a single object (x) where it preserves all arrows.
- Also see that it is essentially surjective. For any other $y \in O$, we have a path $x \stackrel{p}{\rightarrow} y$ (as O is connected). since it is a groupoid, all morphisms are isos, and thus $y \simeq x$.
- Soo, this is an equivalence of categories?!

- Let O be a connected groupoid, and let $x \in O$ be some object of the groupoid. Exact out a single object of the groupoid, by considering the subcategory consisting of only the object $x \in O$. Label this subcategory G.
- The embedding functor $F: G \rightarrow O$ is full and faithful since its image contains a single object (x) where it preserves all arrows.
- Also see that it is essentially surjective. For any other $y \in O$, we have a path $x \stackrel{p}{\rightarrow} y$ (as O is connected). since it is a groupoid, all morphisms are isos, and thus $y \simeq x$.
- Soo, this is an equivalence of categories?!
- Philosophically, equivalence of categories does not need to preserve size.

- Let O be a connected groupoid, and let $x \in O$ be some object of the groupoid. Exact out a single object of the groupoid, by considering the subcategory consisting of only the object $x \in O$. Label this subcategory G.
- The embedding functor $F: G \rightarrow O$ is full and faithful since its image contains a single object (x) where it preserves all arrows.
- Also see that it is essentially surjective. For any other $y \in O$, we have a path $x \stackrel{p}{\rightarrow} y$ (as O is connected). since it is a groupoid, all morphisms are isos, and thus $y \simeq x$.
- Soo, this is an equivalence of categories?!
- Philosophically, equivalence of categories does not need to preserve size. It only needs to preserve a "copy of information".

- Let O be a connected groupoid, and let $x \in O$ be some object of the groupoid. Exact out a single object of the groupoid, by considering the subcategory consisting of only the object $x \in O$. Label this subcategory G.
- The embedding functor $F: G \rightarrow O$ is full and faithful since its image contains a single object (x) where it preserves all arrows.
- Also see that it is essentially surjective. For any other $y \in O$, we have a path $x \stackrel{p}{\rightarrow} y$ (as O is connected). since it is a groupoid, all morphisms are isos, and thus $y \simeq x$.
- Soo, this is an equivalence of categories?!
- Philosophically, equivalence of categories does not need to preserve size. It only needs to preserve a "copy of information". Connected Groupoid contains many copies of the same information.

- Let O be a connected groupoid, and let $x \in O$ be some object of the groupoid. Exract out a single object of the groupoid, by considering the subcategory consisting of only the object $x \in O$. Label this subcategory G.
- The embedding functor $F: G \rightarrow O$ is full and faithful since its image contains a single object (x) where it preserves all arrows.
- Also see that it is essentially surjective. For any other $y \in O$, we have a path $x \stackrel{p}{\rightarrow} y$ (as O is connected). since it is a groupoid, all morphisms are isos, and thus $y \simeq x$.
- Soo, this is an equivalence of categories?!
- Philosophically, equivalence of categories does not need to preserve size. It only needs to preserve a "copy of information". Connected Groupoid contains many copies of the same information. It is safe for forget these.

- Let O be a connected groupoid, and let $x \in O$ be some object of the groupoid. Exract out a single object of the groupoid, by considering the subcategory consisting of only the object $x \in O$. Label this subcategory G.
- The embedding functor $F: G \rightarrow O$ is full and faithful since its image contains a single object (x) where it preserves all arrows.
- Also see that it is essentially surjective. For any other $y \in O$, we have a path $x \stackrel{p}{\rightarrow} y$ (as O is connected). since it is a groupoid, all morphisms are isos, and thus $y \simeq x$.
- Soo, this is an equivalence of categories?!
- Philosophically, equivalence of categories does not need to preserve size. It only needs to preserve a "copy of information". Connected Groupoid contains many copies of the same information. It is safe for forget these.

Skeleta

■ A category is *skeletal* iff each isomorphism class has a single object.

Skeleta

- A category is *skeletal* iff each isomorphism class has a single object.
- Mat, category of numbers and materices is the skeleton of FinVectBasis, category
 of finite vector spaces with bases, and morphisms as matrices encoding linear
 operators relative to the basis.
- Can build sk(C) (Skeleton of C). Crush each isomorphism class into a single object.
- The inclusion $sk(C) \hookrightarrow C$ defines an equivalence of categories.