How to measure γ from $B_s \to D_s K \pi \pi$ decays ? Group Meeting Heidelberg

P. d'Argent¹, E. Gersabeck¹, M. Kecke¹, M. Schiller²

¹Physikalisches Institut Heidelberg

 2 University of Glasgow

26.06.2017

Status: $B_s \rightarrow D_s K \pi \pi$

- Have selected 1500 signal events (Run1 data)
- Acceptance/Resolution studies ongoing (see Matthieu's last talk)
- Today: Sensitivity studies

$$B_s^0 \xrightarrow{\stackrel{\mathbf{1}}{\longrightarrow}} B_s^0 \xrightarrow{A(x)} D_s^- K^+ \pi^+ \pi^-$$

$$B_s^0 \xrightarrow{e^{-i2\beta_s}} \bar{B}_s^0 \xrightarrow{\bar{A}(x)} \bar{B}_s^0 \xrightarrow{\bar{A}(x)} B_s^0 \xrightarrow{\bar{A}(x)} D_s^+ K^- \pi^+ \pi^-$$

$$\bar{B}_s^0 \xrightarrow{e^{-i2\beta_s}} \bar{B}_s^0 \xrightarrow{\bar{A}(x)} \bar{A}_s^0 \xrightarrow{\bar{A}(x)} \bar{B}_s^0 \xrightarrow$$

Full time-dependent amplitude PDF:

$$\begin{split} P(x,t,q_t,q_f) &\propto \left[\left(|A(x)|^2 + |\bar{A}(x)|^2 \right) \, \cosh \left(\frac{\Delta \Gamma \, t}{2} \right) \right. \\ &+ q_t q_f \, \left(|A(x)|^2 - |\bar{A}(x)|^2 \right) \, \cos \left(\Delta m_s \, t \right) \\ &- 2 \text{Re} \left(A(x)^* \bar{A}(x) \, e^{-iq_f \left(\gamma - 2\beta_s \right)} \right) \, \sinh \left(\frac{\Delta \Gamma \, t}{2} \right) \\ &- 2 q_t q_f \text{Im} \left(A(x)^* \bar{A}(x) \, e^{-iq_f \left(\gamma - 2\beta_s \right)} \right) \, \sin \left(\Delta m_s \, t \right) \right] e^{-\Gamma t} \end{split}$$

$$q_t=+1,0,-1$$
 for a $B_s^0,$ no-, (\bar{B}_s^0) tag $q_f=+1$ (-1) for $D_s^-K^+\pi\pi$ ($D_s^+K^-\pi\pi$) final states.

Amplitude Analysis

Phasespace-integrated PDF:

$$\begin{split} \int P(x,t,q_t,q_f) \mathrm{d}x &\propto \left[\cosh\left(\frac{\Delta\Gamma\,t}{2}\right)\right. \\ &+ q_t q_f \left(\frac{1-r^2}{1+r^2}\right) \cos\left(m_s\,t\right) \\ &- 2 \left(\frac{\kappa\,r \cos(\delta - q_f (\gamma - 2\beta_s))}{1+r^2}\right) \sinh\left(\frac{\Delta\Gamma\,t}{2}\right) \\ &- 2q_t q_f \left(\frac{\kappa\,r \sin(\delta - q_f (\gamma - 2\beta_s))}{1+r^2}\right) \sin\left(m_s\,t\right) \right] \mathrm{e}^{-\Gamma t} \\ &= \left[\cosh\left(\frac{\Delta\Gamma\,t}{2}\right) + q_t q_f \,\mathbf{C} \cos\left(m_s\,t\right) \right. \\ &- \kappa\,\mathbf{D}_{q_f} \sinh\left(\frac{\Delta\Gamma\,t}{2}\right) - q_t \,\kappa\,\mathbf{S}_{q_f} \sin\left(m_s\,t\right) \right] \mathrm{e}^{-\Gamma t} \end{split}$$

$$r \equiv \frac{\sqrt{\int |\bar{A}(x)|^2 \mathrm{d}x}}{\sqrt{\int |A(x)|^2 \mathrm{d}x}}, \; \kappa \; \mathrm{e}^{i\delta} \equiv \frac{\int A(x)^* \bar{A}(x) \mathrm{d}x}{\sqrt{\int |A(x)|^2 \mathrm{d}x} \sqrt{\int |\bar{A}(x)|^2 \mathrm{d}x}}$$

◆ロト ◆部 ト ◆ 差 ト ◆ 差 ・ 釣 へ ○

d'Argent B_s —

Amplitude Analysis

Time-integrated, flavor averaged PDF:

$$\int P(x,t,q_t,q_f) \,\mathrm{d}t \,\mathrm{d}q_t \,\mathrm{d}q_f \propto \left(|A(x)|^2 + |ar{A}(x)|^2
ight) \equiv |A^{\mathit{eff}}(x)|^2$$

- lacktriangle No sensitivity to γ
- Useful to identify contributing amplitude components

Time-integrated, flavor averaged fit

- ullet MINT2 fitter, used for $D
 ightarrow 4\pi$ [JHEP05(2017)143]
- Amplitude for $eg\ B_s \to Ds^-(K_1(1270)^+ \to K^+\ \rho)$: $A_i^{eff}(x) = BW_{K_1}(m_{K\pi\pi}^2)\,BW_{\rho}(m_{\pi\pi}^2)\,S_f$
- Sum over intermediate state amplitudes: $A^{eff}(x) = \sum_{i} a_i^{eff} A_i^{eff}(x)$

Very preliminary fit

- Signal region data, assuming $f_{Bkg} = 0$
- Assuming flat efficiency $(\epsilon(x) = 1)$
- Just for illustration, don't take it too seriously!

Amplitude Fit: $B_s \rightarrow D_s K \pi \pi$

Fit fractions

$$F_i^{eff} = rac{\int |a_i^{eff} A_i^{eff}(x)|^2 \, \mathrm{d}x}{\int |A^{eff}(x)|^2 \, \mathrm{d}x}$$

- (1) Bs0-K(1)(1270)+(-K(0)*(1430)0(-K+,pi-),pi+),Ds- = 0.0520926 +/- 0.0145326
- (2) BsO->K(1)(1270)+(->K*(892)0(->K+,pi-),pi+),Ds- = 0.090921 +/- 0.0214
- (3) $Bs0 \rightarrow K(1)(1400) + (->K*(892)0(->K+,pi-),pi+),Ds- = 0.315657 +/- 0.0320033$
- (4) BsO->K*(1410)+(->K*(892)0(->K+,pi-),pi+),Ds- = 0.127998 +/- 0.0175661
- (5) Bs0-NonResS0(-Ds-,pi+),K*(892)0(-K+,pi-) = 0.0265594 +/- 0.0114541
- (6) Bs0[D]->NonResV0(->Ds-,pi+),K*(892)0(->K+,pi-) = 0.0108669 +/- 0.0069929
- (7) BsO->NonResAO(->sigma1O(->pi+,pi-),Ds-),K+ = 0.0715845 +/- 0.0247102
- (8) BsO->NonResVO(->Ds-,K+), sigma10(->pi+,pi-) = 0.139525 +/- 0.0321404
- (9) Bs0->K(1)(1270)+(->rho(770)0(->pi+,pi-),K+),Ds-=0.16488+/-0.0379784
- (10) Bs0->K(1)(1400)+(->rho(770)0(->pi+,pi-),K+),Ds- = 0.071005 +/- 0.0218139
- (10) BS0-2K(1)(1400)+(-2110(170)0(-2p1+,p1-),k+),DS- = 0.071005 +/- 0.021015
- (11) Bs0->K*(1410)+(->rho(770)0(->pi+,pi-),K+),Ds-=0.0766048 +/-0.014699
- (12) Bs0->NonResA0(->rho(770)0(->pi+,pi-),Ds-),K+ = 0.0210193 +/- 0.0104696 sum = 1.16871 +/- 0.0595647(fit)

Sensitivity Studies

- Developed time-dependent MINT extension
- ullet Generate toys with different values for κ
- Compare sensitivity to γ fitting with full PDF and with phasespace-integrated PDF

Assumptions

- Use amplitudes from flavor-averaged, time-integrated fit
- r = 0.4 (ratio of CKM elements)
- PDG values for: τ , Δm_s , $\Delta \Gamma$, β_s
- $\epsilon(x, t) = const.$, perfect resolution
- $\epsilon_{Tag} = 0.66, <\omega> = 0.4$
- $N_{signal} = 3000 \text{ (Run1+15/16 data)}$

Example Toy-Fit: $B_s \rightarrow D_s K \pi \pi$

Example Toy-Fit: $B_s \to D_s K \pi \pi$

- $B_s(\bar{B}_s) \rightarrow D_s^- K^+ \pi \pi$
- $B_s(\bar{B}_s) \rightarrow D_s^+ K^- \pi \pi$
- Untagged $\rightarrow D_s^- K^+ \pi \pi (D_s^+ K^- \pi \pi)$

11 / 15

Likelihood Scan

d'Argent

 $B_s \rightarrow D_s K \pi \pi$

Fit Validation

	Generated	Full PDF	Phasespace integrated
r	0.4	0.38 ± 0.06	unstable
κ	0.2	0.23 ± 0.13	0.2 (fixed)
δ	100	99 ± 22	unstable
γ	70	70 ± 17	unstable

	Generated	Full PDF	Phasespace integrated
r	0.4	0.44 ± 0.07	0.43 ± 0.11
κ	0.4	$\textbf{0.41} \pm \textbf{0.14}$	0.4 (fixed)
δ	100	101 ± 19	$95\pm41^{'}$
γ	70	69 ± 16	66 ± 40

	Generated	Full PDF	Phasespace integrated
r	0.4	0.41 ± 0.08	0.39 ± 0.11
κ	0.6	0.60 ± 0.13	0.6 (fixed)
δ	100	98 ± 17	92 ± 25
γ	70	68 ± 17	65 ± 28

	Generated	Full PDF	Phasespace integrated
r	0.4	0.42 ± 0.09	0.39 ± 0.09
κ	1.0	$\boldsymbol{0.96 \pm 0.03}$	1.0 (fixed)
δ	100	100 ± 17	100 ± 17
γ	70	66 ± 17	67 + 17

Conclusion

$B_s \rightarrow D_s K \pi \pi$

- Estimated sensitivity to γ :

 17° independent of κ using TD-amplitude fit

 17° (40°) for $\kappa = 1$ ($\kappa = 0.4$) using phasespace integrates
 - 17° (40°) for $\kappa=1$ ($\kappa=0.4$) using phasespace-integrated fit
- ToDo: Reimplement time-acceptance/resolution from B2DX-Fitter in MINT

