Group 1

Directions: This is an open book, open class notes exam. You may not use internet resources or other materials besides the class notes and textbook. You may use a calculator. You have 75 minutes to work the exam. Write your numbered solutions to the **four problems** on paper, scan your solutions to a pdf file, and send the scanned solutions to me via email (mrb@ecn.purdue.edu) or Purdue Filelocker. (See "Exam 3 Instructions(Group 1).pdf", sent via email, for complete details.)

1. (25 pts.) Let X and Y be two jointly distributed random variables with joint pdf

$$f_{\mathbf{XY}}(x,y) = kx^2y \cdot 1_{[0,y]}(x)1_{[0,1]}(y).$$

- (a) Find the constant k that makes $f_{XY}(x,y)$ a valid joint pdf.
- (b) Find the marginal pdf $f_{\mathbf{Y}}(y)$.
- (c) Find the conditional pdf $f_{\mathbf{X}}(x|\{\mathbf{Y}=y\})$.
- (d) Find the minimum mean-square error (MMS) estimator $\hat{x}_{MMS}(y)$ of **X** given $\{\mathbf{Y} = y\}$.
- (e) Find the maximum aposteriori probability (MAP) estimator $\hat{x}_{MMS}(y)$ of **X** given $\{\mathbf{Y} = y\}$.
- 2. **(25 pts.)** Let **X** and **Y** be two jointly distributed random variables with joint characteristic function

$$\Phi_{\mathbf{XY}}(\omega_1, \omega_2) = \frac{1}{(1 - i\omega_1)(1 - i2\omega_2)}.$$

- (a) Calculate the value of E[X].
- (b) Calculate the value of E[Y].
- (c) Calculate the value of E[XY].
- (d) Calculate the value of $E[\mathbf{X}^j\mathbf{Y}^k]$ if j and k are positive integers.
- (e) Calculate the correlation coefficient between **X** and **Y**.
- 3. (25 pts.) The number of cars N that pass a point on a highway in one hour is a Poisson random variable with mean λ . The probability that any car is exceeding the speed limit is p, independent of the other cars. Let M be the number of cars exceeding the speed limit during this one hour period. In this problem, you will find the pmf of M using characteristic functions and iterated expectation, using the following procedure:
 - (a) Compute the characteristic function of the Poisson random variable **N**.
 - (b) Using iterated expectation, compute the chracteristic function of **M**, using the fact that

$$\Phi_{\mathbf{M}}(\omega) = \mathrm{E}[e^{i\omega\mathbf{M}}] = \mathrm{E}_{\mathbf{N}}[\mathrm{E}_{\mathbf{M}}[e^{i\omega\mathbf{M}}|\mathbf{N}]] = \sum_{n=0}^{\infty} p_{\mathbf{N}}(n) \cdot \mathrm{E}_{\mathbf{M}}[e^{i\omega\mathbf{M}}|\{\mathbf{N}=n\}].$$

- (c) Based on your answer in part (b), write down the pmf of the random variable M.
- (d) What are the mean and variance of **M**?ional mean of **X** conditioned on $\{X > a\}$, where 0 < a < 1.

4. (25 pts.) Let $X_1, X_2, ..., X_n, ...$ be a sequence of independent, identically distributed, exponential random variables, each having mean μ . Define a new random sequence $Y_1, Y_2, ..., Y_n, ...$, where

$$Y_n = \min \{X_1, X_2, \dots, X_n\}, \quad n = 1, 2, 3, \dots,$$

(i.e., \mathbf{Y}_n takes on the minimum value of the first n random variables $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$ in the initial random sequence.)

- (a) Find the probability density function of \mathbf{Y}_n .
- (b) Does the random sequence $\{\mathbf{Y}_n\}$ converge in probability as $n \to \infty$? Justify your answer.
- (c) Does the random sequence $\{\mathbf{Y}_n\}$ converge in the mean-square sense as $n \to \infty$? Justify your answer.