# МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра САУ

#### ОТЧЕТ

## по практической работе №6 по дисциплине «МОПСУ»

ТЕМА: Разработка и исследование систем цифрового управления непрерывными объектами. Непрерывный и дискретный ПИД-регулятор Вариант №9

| Студент гр. 9492 | <br>Викторов А.Д.  |
|------------------|--------------------|
| Преподаватель    | <br>Игнатович Ю.В. |

Санкт-Петербург

2024

#### Задание

На основе методик, изложенных в лекции 6 и результатов предыдущих практических работ, выполнить разработку дискретных ПИД-регуляторов для своего варианта следящей системы управления с ДПТ независимого возбуждения. При этом должны быть выполнены все рассмотренные варианты построения регуляторов. ПИД-регулятор использовать для настройки скоростного контура привода вашего варианта следящей системы.

Сравнить результаты работы аналоговых и цифровых моделей системы управления в том числе с результатами, полученными в предыдущих практических работах.

#### Цель работы

Цель данной работы заключается в изучении разработки и исследовании систем цифрового управления непрерывными объектами

#### Исходные данные

Паспортные данные двигателя постоянного тока приведены в таблице 1: Таблица 1

| Марка    | $P_{\scriptscriptstyle \mathrm{H}}$ , | ω <sub>н</sub> , | $U_{\scriptscriptstyle \mathrm{H}},$ | $I_{\scriptscriptstyle \mathrm{H}},$ | $M_{\scriptscriptstyle  m H}$ , | $J_{\rm дB} \cdot 10^{-4}$ , | $R_{\mathfrak{A}}$ , | $L_{\scriptscriptstyle \mathrm{H}},$ |
|----------|---------------------------------------|------------------|--------------------------------------|--------------------------------------|---------------------------------|------------------------------|----------------------|--------------------------------------|
| двигател | Вт                                    | рад/с            | В                                    | A                                    | Н∙м                             | кг·м <sup>2</sup>            | Ом                   | мГн                                  |
| СЛ-121   | 77                                    | 315              | 110                                  | 1,07                                 | 0,245                           | 1,67                         | 8,5                  | 58                                   |

#### Содержание практической работы

1. При помощи листинга 1 построим передаточную функцию:

#### Листинг 1

```
clc;
clear;
close all;
%CЛ-121 Вариант 9
Pn = 77; %Номинальная мощность, Вт
wn = 315; % Номинальная скорость вращения, рад/с
Un = 110; % Номинальное напряжение, В
In = 1.07; % Номинальный ток якоря, А
Mn = 0.245; % Номинальный момент, Н*м
```

```
Jd=10^{-4}*1.67; % Момент инерции двигателя, кг*м^2 R = 8.5; % Сопротивление якоря, Ом L = 10^{-3}*58; % Индуктивность якоря, Гн Jn=2*Jd; % Приведенный момент инерции на валу двигателя km=Mn/In; % Коэффициент между током и моментом ke=(Un-R*In)/wn; % Коэффициент противо-ЭДС Te=L/R; % Постоянная времени якорной цепи k1=1/R; k2=km/Jn; % k1, k2 вспомогательные коэффициенты ku=20; % Коэффициент усиления усилителя numdv=ku*1/ke; % Числитель ПФ dendv=[Te/(k1*k2*ke) 1/(k1*k2*ke) 1]; % Знаменатель ПФ Wdpt=tf(numdv,dendv)% Передаточная функция ДПТ по скорости
```

Результат:

Произведем в среде Simulink синтез ПИД-регулятора, обеспечивающего следующие показатели качества: время переходного процесса  $t_{\text{пп}}$  =0.4 с, перерегулирование  $\sigma$ < 5%.

Система управления с непрерывным PID регулятором представлена на рисунке 1:



Рисунок 1 – Система управления с непрерывным PID регулятором

До настройки коэффициентов переходный процесс имеет вид, продемонстрированный на рисунке 2:



Рисунок 2 — Переходный процесс до настройки При помощи Tune настроим коэффициенты ПИД регулятора:



Рисунок 3 — Настройка ПИД регулятора

### Параметры регулятора представлены на рисунке 4:

|                                                                 | Tuned                                                        | Block                                              |
|-----------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|
| P                                                               | 0.31921                                                      | 1                                                  |
| I                                                               | 32.5138                                                      | 0.1                                                |
| D                                                               | 0.0070691                                                    | 0.1                                                |
| N                                                               | 60779.5057                                                   | 0.1                                                |
| erformance and Robus                                            |                                                              | Dit-                                               |
| erformance and Robus                                            | Tuned                                                        | Block                                              |
|                                                                 |                                                              | Block<br>0.00241 seconds                           |
| Rise time                                                       | Tuned                                                        |                                                    |
| Rise time<br>Settling time                                      | Tuned<br>0.00413 seconds                                     | 0.00241 seconds                                    |
| Rise time<br>Settling time<br>Overshoot                         | Tuned<br>0.00413 seconds<br>0.00735 seconds                  | 0.00241 seconds<br>0.0667 seconds                  |
| Rise time<br>Settling time<br>Overshoot<br>Peak                 | Tuned<br>0.00413 seconds<br>0.00735 seconds<br>0.8 %         | 0.00241 seconds<br>0.0667 seconds<br>59.6 %        |
| Rise time Settling time Overshoot Peak Gain margin Phase margin | Tuned<br>0.00413 seconds<br>0.00735 seconds<br>0.8 %<br>1.01 | 0.00241 seconds<br>0.0667 seconds<br>59.6 %<br>1.6 |

Рисунок 4 – Параметры ПИД регулятора

После завершения настройки ПИД-регулятора следует произвести симуляцию системы управления и убедиться в том, что она работает требуемым образом (рисунок 5):



Рисунок 5 – Результат моделирования непрерывной системы



Рисунок 6 – Структурная схема с дискретным ПИД регулятором



Рисунок 7 – Результат моделирования

На рис. 8 приведена схема модели полученной непрерывно-дискретной системы и результат моделирования:



Рисунок 8 – Схема модели полученной непрерывно-дискретной системы



Рисунок 9 – Результат моделирования

Можно перейти к полностью дискретной модели системы управления, пример такой модели приведен на рисунке 10:



Рисунок 10 – Полностью дискретная модель



Рисунок 10 – Результат моделирования для дискретной модели

Если точные значения параметров объекта управления неизвестны, или эти значения могут изменяться в процессе работы системы, то назовем такие параметры неопределенными.

Для подготовки к синтезу, введем в рабочее пространство MATLAB исходные данные для объекта управления и ПИД-регулятора с помощью скрипта, представленного в Листинге 2.

#### Листинг 2:

```
K=ku*1/ke;
T1=Te;
T2=1/(k1*k2*ke);
num=K;
den=[T1*T2 T2 1];
Wdpt=tf(num,den);
Kp=0.319;
Ki=32.51;
Kd=0.007;
N=90780;
Ts = 1e-6;
```

Используемая модель представлена на рисунке 11:



Рисунок 11 – Модель системы

Добавим в модель блок Check Step Response Characteristics и выполним настройку:

- максимальное перерегулирование < 5%;
- максимальное время нарастания 0.01 секунд;
- максимальное время успокоения 0.04 секунд.

На рисунке 12 показан процесс оптимизации параметров ПИД регулятора



Рисунок 12 – Оптимизация коэффициентов ПИД регулятора

На рисунке 13 показан график переходного процесса итоговой системы



Рисунок 13 – График ПП системы с оптимизированными параметрами

#### Вывод

Во время данной практической работы были созданы дискретные ПИД-регуляторы для следящей системы управления с двигателем постоянного тока независимого возбуждения. Было выполнено сравнение результатов работы аналоговых и цифровых моделей системы управления. Применение ПИД-регулятора позволило улучшить точность и скорость регулирования. Изученный способ оптимизации параметров ПИД-регуляторов можно применять для оптимизации параметров регуляторов в дальнейшей работе.