Skewness and Kurtosis

Skewness

pandas.DataFrame.skew

Skewness

pandas.DataFrame.skew

• -0.5 to $0.5 \rightarrow Symmetric$

Skewness

pandas.DataFrame.skew

• -0.5 to $0.5 \rightarrow Symmetric$

• Less than $-0.5 \rightarrow \text{Negatively skewed}$

Skewness

pandas.DataFrame.skew

- -0.5 to $0.5 \rightarrow Symmetric$
- Less than -0.5 → Negatively skewed
- Greater than $0.5 \rightarrow Positively skewed$

- Skewness
- -0.5 to $0.5 \rightarrow Symmetric$
- Less than -0.5 → Negatively skewed
- Greater than 0.5 → Positively skewed

Kurtosis gives an idea of the tails of a distribution.

- Kurtosis gives an idea of the tails of a distribution.
 - Symmetric

- Kurtosis gives an idea of the tails of a distribution.
 - Symmetric:
 - K=0 (Mesokurtic)
 - Tails similar to normal distribution

- Kurtosis gives an idea of the tails of a distribution.
 - Symmetric:
 - K=0 (Mesokurtic)
 - Tails similar to normal distribution

- Kurtosis gives an idea of the tails of a distribution.
- High Presence of extreme values.

- Kurtosis gives an idea of the tails of a distribution.
- High Presence of extreme values.
 - K>0, (Leptokurtic)
 - Longer distribution, fatter tail

- Kurtosis gives an idea of the tails of a distribution.
- High Presence of extreme values.
 - K>0, (Leptokurtic)
 - Longer distribution, fatter tail

- Kurtosis gives an idea of the tails of a distribution.
- Low Presence of extreme values.

- Kurtosis gives an idea of the tails of a distribution.
- Low Presence of extreme values.
 - K<0, (Platykurtic)
 - Shorter distribution, thinner tail.

- Kurtosis gives an idea of the tails of a distribution.
- Low Presence of extreme values.
 - K<0, (Platykurtic)
 - Shorter distribution, thinner tail.

Transforming Skewed into Normal

Power Transformation

Transforming Skewed into Normal

Power Transformation

Log Transformation

Transforming Skewed into Normal

Power Transformation

Log Transformation

Thank You!

