Advance DataFrame Considerations

Operations and optimizations

User Defined Function (UDF)

UDF

- UDF runs on each row of a DataFrame/SQL table
- Row is serialized & sent to worker (JVM) process
 - Added overhead of Python process for PySpark UDF
 - Process can fail because of memory, etc.
- For production systems, write UDF in Java or Scala

Python objects serialized and deserialized to Java (over pipe), which is slow (for UDFs)

Example PySpark native vs UDF

Split text, by space, into words and put into vector

Native API split is fast

UDF split (mySplitUDF) is slow

```
from pyspark.sql.functions import udf,col
   def splitUDF(col):
     if col is not None:
       return col.split(' ')
   mySplitUDF = udf(splitUDF)
   df2 = df.select(mySplitUDF(col('Description')))
   display(df2)
▶ (1) Spark Jobs
    df2: pyspark.sql.dataframe.DataFrame = [splitUDF(
      splitUDF(Description)
      [WHITE, HANGING, HEART, T-LIGHT, HOLDER]
```

UDF try-catch

 Because PySpark UDF runs in its own process, good practice to catch error

```
def splitUDF(col):
    try:
    if col is not None:
       return(col.split(' '))
    except:
    return(None)
```


UDF for SQL

1 %sal

- UDF is for DataFrame
- Can be registered to work in SQL context

```
Register UDF in SQL context

from pyspark.sql.types import StringType
sqlContext.udf.register("splitUDF", splitUDF, StringType())
```

2	<pre>select *,splitUDF(Description) from retail</pre>								44			
▶ ((1) Spark Jobs									00		
	Description	_	Quantity	InvoiceDate	UnitPrice _	CustomerID _	Country	splitUDF(Desc	and the second		公	-
	1 WHITE HANGING HEART T-LIGHT HOLDER		6	2010-12-01 08:26:00	2.55	17850	United Kingdom	[WHITE, HANG		· ·	2	

17850

United Kingdom

[WHITE, META

2010-12-01 08:26:00

Complex types in columns

DataFrame supports complex column types

- Array
 - Functions for size, split, and find in arrays
- Structure
 - Defined
 - with Struct
 - Read from JSON
 - Functions to expand into new columns (col.*)
- Maps
 - Functions to create a map from columns, explode a map to

DataFrame supports array column types

- Array
 - Functions to split, find in arrays

```
# in Python
from pyspark.sql.functions import array_contains
df.select(array_contains(split(col("Description"), " "), "WHITE")).show(2)
-- in SQL
SELECT array_contains(split(Description, ' '), 'WHITE') FROM dfTable
```

```
+-----+
|array_contains(split(Description, ), WHITE)|
+-----+
| true|
| true|
+-----+
```

Collect into a list

```
# in Python

from pyspark.sql.functions import collect_set, collect_list

df.agg(collect_set("Country"), collect_list("Country")).show()
```


DataFrame supports structure column types

- Structure
 - Defined
 - with Struct
 - Read from JSON
 - Functions to expand into new columns (col.*)

```
complexDF.select("complex.*")
```

-- in SQL

SELECT complex.* **FROM** complexDF

Expanding column structure with *

Id and name attributes within Json in column

	department
1	▶ {"id": "123456", "name": "Computer Science"}
2	▶ {"id": "789012", "name": "Mechanical Engineering"}
3	▶ {"id": "345678", "name": "Theater and Drama"}
4	▶ {"id": "901234", "name": "Indoor Recreation"}

Expanding embedded rows with explode

Multiple employees in column

Joins

Try to reduce the amount of data transmitted over netv

Join types

- Inner joins
 - keep rows with keys that exist in the left and right datasets
- Outer joins
 - keep rows with keys in either the left or right datasets
- Left outer joins
 - keep rows with keys in the left dataset
- Right outer joins
 - keep rows with keys in the right dataset
- Left semi joins
 - keep the rows in the left, and only the left, dataset where the key appears in the rig
- Left anti joins
 - keep the rows in the left, and only the left, dataset where they do not appear in the

Joins are slow

- Data is distributed over cluster
- To join, each row from each table is compared
- So, each row has to be sent to each node
- Consequently, joins move lots of data over the network
- Network bandwidth becomes a bottleneck
- Improve join by transmitting less data
 - Send small tables to nodes with large tables
 - Filter data (push down predicated) before transmitting

Joining large tables transmits all data

- Each node receives data from all other nodes
- Each partition is sent to all other nodes

Optimize when there is a smaller table

- Broadcast the small table to improve the join
- When one of the join tables is small enough to fit into memory, then broadcast that table to the nodes
 - Reduces the total data transmitted
 - Can offer a hint to the Catalyst optimizer, but generally it optimizes OK

Broadcasting a table to join

- 1. Table is sent to Driver
- 2. Special broadcast variable makes the data in the Driver accessible to all nodes
- Only transmitting the smaller table reduces data transmitted

Reading data and partitions

Partition the data during read for subsequent parallel processing

- Data may already be distributed over the nodes, where each node contains a partition
- Data that is not partitioned, can be partitioned during the read
 - From a file or SQL table

sqlContext.setConf("spark.sql.shuffle.partitions", "200")

```
# in Python
dbDataFrame = spark.read.format("jdbc")\
.option("url", url).option("dbtable", tablename).option("driver", driver)\
.option("numPartitions", 10).load()
```

 Such partitions distribute the data over the nodes, allows for subsequent parallel processing

Important to remember

- PySpark UDF runs slowly in a separate Python process
 - Catch errors
- DataFrame support complex types
 - Arrays or structures as a column data type
 - Explode pulls multipe rows in a cell into rows
- DataFrame supports a variety of joins
 - Joins are slow because the tables must be copied to a nodes