EE24BTECH11010 - Balaji B

1) If
$$y(x) = \cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right)$$
, $x \in \left(\frac{\pi}{2}, \pi\right)$, then $\frac{dy}{dx}$ at $x = \frac{5\pi}{6}$ is: (August-2021)

a) $-\frac{1}{2}$

b) -1

c) $\frac{1}{2}$

d) 0

2) Two poles, AB of length a meters and CD of length a + b ($b \neq a$) meters are erected at same horizontal level with bases at B and D. If BD = x and $\tan(\angle ABC) = \frac{1}{2}$, then: (August-2021)

a) $x^2 + 2(a+2b)x - b(a+b) = 0$ b) $x^2 + 2(a+2b)x + a(a+b) = 0$

c) $x^2 - 2ax - b(a+b) = 0$ d) $x^2 - 2ax + a(a+b) = 0$

3) If 0 < x < 1 and $y = \frac{1}{2}x^2 + \frac{2}{3}x^3 + \frac{3}{4}x^4 + ...$, then the value of e^{1+y} at $x = \frac{1}{2}$ is (August-2021)

a) $\frac{1}{2}e^{2}$

c) $\frac{1}{2}\sqrt{e}$ d) $2e^2$

4) The value of the integral $\int_0^1 \frac{\sqrt{x} dx}{(1+x)(1+3x)(3+x)}$ is:

(August-2021)

1

a) $\frac{\pi}{8} \left(1 - \frac{\sqrt{3}}{2} \right)$ b) $\frac{\pi}{4} \left(1 - \frac{\sqrt{3}}{6} \right)$ c) $\frac{\pi}{8} \left(1 - \frac{\sqrt{3}}{6} \right)$ d) $\frac{\pi}{4} \left(1 - \frac{\sqrt{3}}{2} \right)$

5) If $\lim_{x\to\infty} \left(\sqrt{x^2 - x + 1} - ax \right) = b$ then the ordered pair (a,b) is: (August-2021)

a) $(1, \frac{1}{2})$ b) $(1, -\frac{1}{2})$

c) $\left(-1, \frac{1}{2}\right)$ d) $\left(-1, -\frac{1}{2}\right)$

6) Let S be the sum of all solutions (in radians) of the equation $\sin^4 \theta + \cos^4 \theta$ $\sin \theta \cos \theta = 0$ in $[0, 4\pi]$. Then $\frac{8S}{\pi}$ is equal to

(August-2021)

7) Let S be the mirror image of the point Q(1,3,4) with respect to the plane 2x - y +z + 3 = 0 and let $R(3, 5, \gamma)$ be point of this plane. Then the square of the length of the segment SR is

(August-2021)

8) The probability distribution of random variable X is given by:

X	1	2	3	4	5
P(X)	K	2 <i>K</i>	2 <i>K</i>	3 <i>K</i>	K

Let p = P(1 < X < 4|X < 3). If $5p = \lambda K$, then λ equal to

(August-2021)

- 9) Let z_1 and z_2 be two complex numbers such that $\arg(z_1 z_2) = \frac{\pi}{4}$ and z_1, z_2 satisfy the equation |z 3| = Re(z). Then the imaginary part of $z_1 + z_2$ is equal to
- (August-2021) 10) Let $S = \{1, 2, 3, 4, 5, 6, 9\}$. Then the number of elements in the set T =
- (August-2021)
- 11) Let $A(\sec \theta, 2\tan \theta)$ and $B(\sec \phi, 2\tan \phi)$, where $\theta + \phi = \frac{\pi}{2}$, be two points on the hyperbola $2x^3 y^2 = 2$. If (α, β) is the point of intersection of the normals to the hyperbola at A and B, then $(2\beta)^2$ is equal to

(August-2021)

12) Two circles each of radius 5 units touch each other at the point (1,2). If the equation of their common tangent is 4x + 3y = 10 and $C_1(\alpha, \beta)$ and $C_2(\gamma, \delta)$, $C_1 \neq C_2$ are their centres, then $|(\alpha + \beta)(\gamma + \delta)|$ is equal to

(August-2021)

13) $3 \times 7^{22} + 2 \times 10^{22} - 44$ when divided by 18 leaves the remainder

(August-2021)

14) An online exam is attempted by 50 candidates out of which 20 are boys. The average marks obtained by boys is 12 with a variance 2. The variance of marks obtained by 30 girls is also 2. The average marks of all 50 candidates is 15. If μ is the average marks of girls and σ^2 is the variance of marks of 50 candidates, then $\mu + \sigma^2$ is equal to

(August-2021)

15) If $\int \frac{2e^x + 3e^{-x}}{4e^x + 7e^{-x}} dx = \frac{1}{14} (ux + v \log_e (4e^x + 7e^{-x})) + C$, where C is a constant of integration then u + v is equal to

(August-2021)