PARTIEL Analyse des Signaux et des images

Les réponses seront clairement rédigées et il sera tenu compte de la rédaction. Les résultats seront justifiés et encadrés.

Exercice 1:

Pour réaliser une transmission de données à l'aide d'un système sans fil, un ingénieur opte pour un système à base de modulations.

1. L'information à transmettre est en fait un sinus de fréquence 7 kHz et d'amplitude 1 volt.

Pour la transmission, l'ingénieur opte pour une modulation d'amplitude analogique consistant à multiplier l'information ci-dessus par un signal porteur qui sera ici un cosinus d'amplitude 2 volts, à la fréquence 60,5kHz.

Calculer et représenter la transformée de Fourier de ce signal transmis x(t).

- 2. Un autre ingénieur, recevant ce signal x(t), souhaite le traiter de façon numérique.
 - a. Quelles consignes lui donneriez-vous pour numériser ce signal? justifiez vos conclusions
 - b. Représenter précisément le spectre d'amplitude de ce signal numérisé.
- 3. Ce second ingénieur souhaite traiter 3 millisecondes de ce signal reçu et numérisé qu'il va enregistrer. Sous Matlab il souhaite en visualiser la Transformée de Fourier Discrète avec une résolution de 0,2 kHz.
 - a. Son approche pour calculer et représenter une TFD facilement lisible de ce signal vous semble-t-elle judicieuse ? Vous serez exhaustif dans votre explication.
 - b. En supposant qu'il tienne compte de vos remarques, représenter le module de la TFD.
 - c. Hélas, en réalité, l'ingénieur ne peut pas mettre en application vos conseils et doit se contenter de ses premières spécifications.
 - i. Représenter l'allure du module de sa TFD avec un axe fréquentiel en Hertz.
 - ii. Quelle sera la précision de son analyse fréquentielle ?
 - iii. Quelle possibilité reste-t-il pour améliorer la lisibilité de la TFD ? expliquer en détails.
- 4. Dans une autre étape de son analyse, indépendamment de l'analyse spectrale ci-dessus réalisée, ce second ingénieur reprend le signal analogique x(t) qu'il a reçu et le remultiplie par un cosinus d'amplitude 1 volt, à la fréquence 60,5kHz. Il obtient un signal que nous noterons y(t).
 - a. Calculer l'expression temporelle de y(t)
 - b. Représenter le spectre d'amplitude de y(t)
 - c. Expliquer l'intérêt de cette opération.

Exercice 2:

Un phénomène acoustique génère un signal s(t) correspondant à une impulsion de type porte et donc d'amplitude constante valant 9 V.

Ce signal est perturbé lors de sa propagation par un bruit additif blanc et gaussien b(t) de moyenne 5 V et de variance 4.

- 1. Comment peut-on faire pour représenter le spectre de ce mélange signal utile + bruit ?
- 2. Représenter graphiquement précisément les caractéristiques spectrales du bruit b(t).
- 3. Un capteur acoustique enregistre ce phénomène et le numérise. Donner les caractéristiques probabilistes précises d'un échantillon en sortie du capteur.
- 4. Pour détecter la présence ou l'absence de ce phénomène acoustique qui en théorie se produit 1 fois toutes les 3 mesures, on met en place un système de détection à base de comparateur avec un seuil fixé à 11V. Si l'amplitude de l'échantillon dépasse ce seuil, le phénomène est supposé présent. Calculer la probabilité de commettre l'erreur suivante :
 - « On décide que le phénomène n'est pas présent et en réalité il l'est »

Exercice 3:

Expliquer une procédure simple de compression d'images à partir de la Transformée en Cosinus Discret.

INFORMATIONS ET FORMULAIRE

Formules Trigo:

```
cos(a+b) = cos(a).cos(b) - sin(a).sin(b)

cos(a-b) = cos(a).cos(b) + sin(a).sin(b)

sin(a+b) = sin(a).cos(b) + sin(b).cos(a)

sin(a-b) = sin(a).cos(b) - sin(b).cos(a)

cos(a).cos(b) = \frac{1}{2} (cos(a+b) + cos(a-b))

cos(a).sin(b) = \frac{1}{2} (cos(a-b) - cos(a+b))

cos(a).sin(b) = \frac{1}{2} (sin(a+b) - sin(a-b))

sin(a).cos(b) = \frac{1}{2} (sin(a+b) + sin(a-b))
```

Définition de la convolution $y(t)=x(t)^*h(t)$

$$y(t) = \int_{-\infty}^{+\infty} x(u)h(t-u)du = \int_{-\infty}^{+\infty} x(t-u)h(u)du$$

Décomposition en série de Fourier réelle et complexe + Relations entre an, bn et cn

$$x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(2\pi n \frac{t}{T}\right) + b_n \sin\left(2\pi n \frac{t}{T}\right)$$

$$a_0 = \frac{2}{T} \int_T x(t) dt$$

$$a_n = \frac{2}{T} \int_T x(t) \cos\left(2\pi n \frac{t}{T}\right) dt$$

$$bn = \frac{2}{T} \int_{T} x(t) \sin\left(2\pi n \frac{t}{T}\right) dt$$

$$x(t) = \sum_{n=-\infty}^{+\infty} c_n e^{+2\pi i \frac{n}{T}t}$$

$$c_0 = \frac{a_0}{2}$$

avec

$$c_n = \frac{1}{2} (a_n - jb_n)$$

$$c_n = \frac{1}{T} \int_T x(t) e^{-2\pi j \frac{n}{T} t} dt$$

$$c_{-n} = \frac{1}{2} (a_n + jb_n) = c_n^*$$

Quelques propriétés liées aux séries de Fourier

Dérivation:

Soit x(t) un signal périodique de période T et Xk ses coefficients de décomposition en série de Fourier complexe alors les coefficients de décomposition en série de Fourier complexe de la fonction

$$\frac{d^n x(t)}{dt^n}$$

sont:
$$\left(2\pi j k \frac{1}{T}\right)^n X_k$$

Quelques propriétés de la Transformée de Fourier :

Changement d'échelle :

$$x(t) \xrightarrow{TF} X(v)$$

$$x(kt) \xrightarrow{TF} \frac{1}{|k|} X \left(\frac{\upsilon}{k}\right)$$

3

Dualité :

$$x(t) \leftrightarrow X(v)$$

alors
$$X(t) \leftrightarrow x(-v)$$

- Dérivation:
 - Par rapport au temps

Par rapport à la fréquence

Transformée de Fourier d'un peigne de Dirac

$$x(t) = \sum_{n = -\infty}^{+\infty} \delta(t - nT) \qquad \Rightarrow \qquad X(v) = \sum_{n = -\infty}^{+\infty} \frac{1}{T} \delta\left(v - \frac{n}{T}\right)$$

Définition de l'intercorrélation pour x(t) et y(t) d'énergie infinie et de puissance finie

$$C_{xy}(\tau) = \lim_{T \to +\infty} \frac{1}{2T} \int_{-T}^{+T} x(t) y^*(t - \tau) dt$$

Définition de l'intercorrélation pour x(t) et y(t) d'énergie finie

$$C_{xy}(\tau) = \int_{-\infty}^{+\infty} x(t)y^*(t-\tau)dt$$

Définition de la Transformée de Fourier Discrète (TFD) :

$$X(\nu = \frac{k}{NT_e}) = \sum_{n=0}^{N-1} x(n)e^{-\frac{2j\pi nk}{N}} \equiv X(k) \qquad k \in \{0,1,...,N-1\}$$

Périodique de période N en k donc de période v_e en v

Expression matricielle de la TFD :

Expression de la fenêtre de Hanning calculée sur N points :

$$h(n) = 0.5 \left(1 - \cos\left(\frac{2\pi n}{N}\right)\right)$$
 avec n=0,1,...,N-1

Expression de la fenêtre de Hamming calculée sur N points :

$$h(n) = 0.54 - 0.46.\cos\left(\frac{2\pi n}{N}\right)$$
 avec n=0,1,...,N-1

Nom	Représentation temporelle	Représentation fréquentielle	Largeur lob.princ.	Amp. relative lob.princ lob.sec.	
Rectangulaire	3 	, h	$\frac{2}{N}$	-13 dB	
Triangulaire	- N	N2 0	$\frac{4}{N}$	-25 dB	
Hamming			$\frac{4}{N}$	-41 dB	
Blackman			$\frac{6}{N}$	-57 dB	

Table 3 Différents types de fenêtres et leurs caractéristiques

AIRE SOUTENDUE PAR LA COURBE NORMALE CANONIQUE DE -∞ à x

=	0	1	2	3	4	. 5	6	7	8	9
0.0	.5000	,5040	.5080	.5120	.51€0	.5199	.5239	,5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5754
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.5291	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	,6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	,7190	.722
0.5	.7258	:7291	17324	.7357	.7389	.7422	.7454	.7486	.7518	.7549
0.7	.7580	7612	.7642	.7672	.7704	.7734	.7764	.2794	.7823	.7852
0.8	.7881	.7910	,7939	.7967	.7996	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8385
1.0	.8413	.8438	.8461	.3485	.8508	.8531	.8554	.8577	.8599	.862
1.1	.8643	.8665	.8686	.8708	.8729	.8749	3770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	,901
1.3	9032	,9049	.3066	.9082	.9099	.9115	.9131	.9147	.9162	,917
1.4	.9192	.9207	.9222	.9236	.9251	.9265	,9279	9292	.9306	.9315
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.944
1.6	.9452	.9463	.2474	.9484	.9495	.9505	.9515	.9525	.9535	,9543
1.7	.9554	.9564	.9573	.9682	,9591	.9599	.9608	.9616	.9625	,963
1.8	.9641	.9549	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9704
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.976
2.0	.9772	.9778	.9783	.9788	.9793	,9798	.9803	.9806	.9812	.9811
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	,9854	,9851
2.2	.9861	.9864	.9868	,9871	,9875	.9878	.9881	.9884	.9827	,9890
2.3	.9893	.9896	,9898	.9901	.9904	.9906	.9909	,9911	,9913	.9916
2.4	.9918	,9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	,9936
2.5	.9938	.9940	.9941	.9943	.9945	,9946	.9948	.9949	,9951	.9952
1.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.2962	,9963	.9964
2.7	.9965	,9966	.2967	.9968	.9969	.2370	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	,9984	.9984	.9985	.9985	.9986	.9986
0.0	.9987	.9987	.9987	.9988	.3988	.9989	.9989	.9989	.9990	,9990
1.1	.9990	,9991	.9991	,9991	.9992	,9992	.9992	.9992	,9993	,9993
1.2	.9993	.9993	.9994	.9994	.9994	,9994	.9994	.9995	.9995	.9995
1.3	.9995	.9955	.9995	.999€	.9994	.9996	.9996	.9996	.9996	,9991
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	,9998
1.5	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	,9998	.9998
1.6	.9998	.9998	.9999	.9999	2999	.9999	,9999	.9999	.9999	,9991
1.7	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	,9999
.8	.9999	.9999	.9999	.9999	9999	.9999	.9999	.9999	.9999	.9991
.9	2.0000	1,0000	1,0000	1,0000	1.0000	1,0000	1.0000	1.0000 -	1.0000	1.0000