本题考察了数论的相关知识。

30pts

暴力枚举每次洗牌的情况,时间复杂度为 $O(n^2)$ 。

60pts

首先卡牌 1 和 2n 一直不动,可以不用考虑这两张牌。

将位置和剩下的牌上的数字全减 1, 那么数字为 k 的牌操作一次后就会到 $2k \mod (2n-1)$ 的位置。

那么问题相当于找最小的 k 使得 $\forall t, t \times 2^k \equiv t \pmod{(2n-1)}$,显然只需要考虑 $2^k \equiv 1 \pmod{(2n-1)}$ 就行了,O(n) 暴力检验即可。

100pts

根据欧拉定理,k 必然是 $\varphi(2n-1)$ 的因数,而 10^{18} 范围内的正整数的约数个数大约只有 10^6 级别,直接暴力快速幂判定就能过了。

本题考察了图论的相关知识。

30pts

直接爆搜每次的情况**并进行去重**,时间复杂度为O(n!),后续会给出具体证明。

+30pts

令初始的异或和为 x,拿在手中,相当于每次用手中的数把 a 中的一个值顶掉,然后把原来的值拿在手里,这也间接说明了状态数是 n! 量级的。

此档分会发现 a_i 和所有 a_i 异或后的权值两两不同,我们考虑一个过程,用 x 替换了 a_p ,然后用 a_p 替换了 a_q ,循环下去。

其实最终一定是要用 b_i 替换 a_i 的,而上面的过程又是从 x 出发走了一条路,按如上方式建图找出环的个数即可统计答案。

100pts

我们从 b_i 向 a_i 连边(不同位置上相同的数值对应同一个点),然后尝试从 x 出发遍历每条边。

注意如果图是一个包含 x 的连通块,则一定可以找到一条欧拉路径(不一定是回路)覆盖所有边。

如果图不连通,或 x 不在连通块内(x 是孤立点),则答案就是边数再加上连通块数再减去 1(如果 x 是孤立点就不用减 1)。

时间复杂度为O(n)。

本题考察了树的直径, 二分图的相关知识。

10pts

爆搜所有 2^n 种情况,求最远点对距离即可。

40pts

考虑把 $O(n^2)$ 对点对依次取出排好序,考虑如果答案 < x,意味着所有点对距离 $\ge x$ 的点对颜色必须两两不同,把这些约束取出,相当于一个二分图染色的问题,于是我们可以很方便的算出 < x 的答案,利用差分即可算出 = x 的答案。

100pts

先求出一条直径,若直径的两个端点颜色相同,则最长距离一定为直径。否则,令两个端点分别为 x,y,并钦定 x,y 不同色。 枚举答案 d,所有到 x 距离 > d 的点颜色必须与 y 一样,所有到 y 距离 > d 的点颜色必须和 x 一样。由于 x,y 是直径的两个端点,可以发现,若一个点 z 到 x,y 的距离都不超过 d,则其到任何一个点的距离不超过 d,所以 z 的颜色并不会对答案产生影响。

所以,定义 cnt_i 表示到直径两端的距离不超过 i 的点数。定义 f_d 表示答案不超过 d 的树的形态数, g_d 表示答案为 d 的树的形态数, $dis_{1/2}$ 表示从直径的两端点出发到其他点的距离。定义 $L=\max(\min(dis_{1i},dis_{2i}))$ 。此处 L 的意义为,在所有形态的树中,最小的答案(同色点对最大距离)。对于每个点取到直径两端点近的那个颜色即可。

最终的总权值为 $\sum_{i=L}^{S} g_i \times i$.

容易得到 $f_d=2^{cnt_d}$ 。但是我们想要答案等于 d 的树的形态数 g_i 。很明显,只需要容斥减去 f_{d-1} 即可,也就是 $g_d=f_d-f_{d-1}$ 。

注意 x, y 共有 2 种颜色分配方案。

本题考察了贪心的相关知识。

40pts

显然最终经过了 2k + dis(1, n) 条边, 因此 $n \equiv dis(1, n) \pmod{2}$ 就合法, 否则不合法。

先考虑最小值,即只经过path(1,n)的方案。

那么对于路径上第 i 个点 c_i ,设他在路径外的子树大小为 $siz(c_i)$ 。

我们发现很多操作都要在折返中抵消,那么我们只要钦定链上哪些操作最终有用,剩下的操作形成若干 跨子树的匹配,那么我们一定能构造一个合法的 p。

根据经典结论,那么我们要求剩下的操作中不存在绝对众数。

找到最大的 $siz(c_i)$, 那么我们至多在他的子树里钦定 i 个没被抵消。

因此这种情况的充要条件就是 $siz(c_i)-i\leq 2n-dis(1,n)$,显然这样的 i 至多一个,因此我们能构造出一个合法的匹配。

否则找到不合法的这棵子树,枚举一个连通块 S,记每个连通块内节点 u 在连通块外的子树大小为 siz(u)。

那么我们依然要求 $siz(u) - i \leq 2n - dis(1, n)$, 证明大致同上。

那么我们要在这个基础上保留尽可能少的节点是的所有 siz(u) 不超过 k=2n-dis(1,n)+i。

问题就变成:给一棵n顶点的树,可以断掉若干的边,要求断掉的边连通且连通块包含1节点。要求剩下每个连通块大小不超过k,求最小分割数,可以进行树形DP求解这个值,时间复杂度为 $O(n^2)$ 。

+10pts

考虑整张图为菊花图,所以除了 1 号点以外的地位相同,可以把除 n 号点的以外的点两两抵消,按照 n 的奇偶性进行分类讨论即可。

100pts

注意到 $siz(c_i) \leq n - dis(1,n) \leq 2k$,因此不合法的所有点构成一条链,对于每个点贪心地割掉若干个最大的子树即可。

时间复杂度 $O(n \log n)$,如果利用桶排序,时间复杂度为 O(n)。