

Blockchain

Nepal

Elliptic Curves Cryptography

October 13, 2017

Elliptic Curves over real numbers

Plain curve with equation

$$y^2 = x^3 + a.x + b$$

(Weierstrass equation)

Elliptic Curves over Finite Field

Elliptic Curve E: $y^2 = x^3 + a.x + b$ over finite field F_p where p is prime

- a,b \in F_p and (x,y) \in F_p represents points on the curve
- There is a distinguished point called infinity ∞
- Set of all points on curve E is denoted by E(F_D)
- Example:
 - Let p = 7 and $y^2 = x^3 + 2x + 4$
 - $E(F_7) = \{ \infty, (0,2), (0,5), (1,0), (2,3), (2,4), (3,3), (3,4), (6,1), (6,6) \}$

Example

Elliptic Curve

$$y^2 = x^3 - x$$
 over F_{61}

Here, a = -1, b = 0

Elliptic Curve Operation - Addition

Elliptic Curve groups

Addition rules

Abelian Group

- Identity: P + inf. = inf + P = P
- Inverse: if P = (x,y), then -P = (x, -y), and P + (-P) = inf.
- Addition: $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ and P != +/- Q, then $P+Q = (x_3, y_3)$

$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2$$
 and $y_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x_1 - x_3) - y_1$

- Doubling: $P = (x_1, y_1)$ and P = -P, then $2P = (x_3, y_3)$

$$x_3 = \left(\frac{3x_1^2 + a}{2y_1}\right)^2 - 2x_1$$
 and $y_3 = \left(\frac{3x_1^2 + a}{2y_1}\right)(x_1 - x_3) - y_1$

Cyclic subgroup of elliptic curve groups

Cyclic subgroup of E(F_p) generated by a point P is

```
\{ \text{ inf, P, 2P, 3P, ..., (n-1)P} \}
```

Such cyclic subgroups can be used to implement discrete logarithm systems

Elliptic Curve Discrete Log Problem (ECDLP)

Given an elliptic curve group $E(F_p)$, a generator P of cyclic subgroup of prime order n of $E(F_p)$, and a point Q in that subgroup, find the integer d, 1<=d<=n-1, such that dP = Q

ElGamal over elliptic curves

Key Generation

- Domain parameters
 - Prime p
 - Elliptic curve: E (eg. $y^2=x^3-x$)
 - Generator point P of cyclic subgroup of E(F_P)
 - Prime order n of the subgroup
- Private Key: random d ∈ [1, n-1]
- Public Key: Q = dP

Encryption

- -- Input: domain params (p, E, P, n)
- -- Public key Q; message m
- -- Represent m as a point M in E(F_p)
- -- Choose random $k \in [1, n-1]$
- -- Compute C_1 =kP and C_2 =M+kQ
- -- Output: (C₁, C₂)

Decryption

- -- Input: domain params (p, E, P, n); Private key d; Ciphertext (C_1 , C_2)
- -- Compute C_2 dC_1 = M + kQ -dkP = M + kdP dkP = M
- -- Output: extract m from M

Why to choose elliptic curve crypto?

- Same level of security for smaller parameters in ECC

	Security level (bits)				
	80 (SKIPJACK)	112 (Triple-DES)	128 (AES-Small)	192 (AES-Medium)	256 (AES-Large)
DL parameter q EC parameter n	100	224	256	384	512
RSA modulus n DL modulus p	1024	2048	3072	8192	15360

- Faster operations
 - → private key operations for ECC many times efficient than RSA & DL private key operations
 - → Public key operations for ECC many times more efficient than those for DL systems

Standardized curves

- NIST (National Institute of Standards and Technology) curves
- SECG (Standards for Efficient Cryptography Group) curves
- ECC Brainpool curves

Popular curves:

- → Secp256k1 (used in Bitcoin & other cryptocurrencies)
- → Curve25519

ECC Example - Java

```
KeyPairGenerator generator = KeyPairGenerator.getInstance(" EC", "BC");
generator.initialize(new ECGenParameterSpec(" secp256r1"));
KeyPair keypair = generator.genKeyPair();
PublicKey pubKey = keyPair.getPublic();
PrivateKey privateKey = keyPair.getPrivate();
```

ECC Example - Java

```
// Encryption
String ALGORITHM = "ECIES";
Cipher cipher = Cipher.getInstance(ALGORITHM, "BC");
cipher.init(Cipher.ENCRYPT_MODE, publicKey);
byte[] cipherText = cipher.doFinal(message.getBytes());
```

```
// Decryption
String ALGORITHM = "ECIES";
Cipher cipher = Cipher.getInstance(ALGORITHM, "BC");
cipher.init(Cipher.DECRYPT_MODE, privateKey);
byte[] plainText = cipher.doFinal(cipherText);
```

https://gist.github.com/anonymous/1c3eedb88b4294e16b451bc53d79f096

Exercise

1. Encrypt the following text with Curve25519 and decrypt the ciphertext to verify the encryption is correct.

"A quick brown fox jumps over the lazy dog"

2. Serialize and store the public & private keys in file.