Université Paris-Sud - Topologie et Calcul Différentiel Année 2022-2023

CORRIGÉ du Test du mardi 7 Février 2023

Durée: 30 minutes

Exercice 1.

On note (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 . On considère l'application linéaire $L : \mathbb{R}^3 \to \mathbb{R}^3$ définie par $L(e_1) = 1$, $L(e_2) = 2$, et $L(e_3) = 3$.

- 1. Calculer L(x) en fonction des coordonnées x_1, x_2, x_3 de x. Jusifiez un peu votre réponse.
- 2. Ecrire L(x) sous forme de produit scalaire, et en déduire que $|L(x)| \le \sqrt{14} ||x||$, où ||x|| est la norme euclidienne de x.

Réponses. Pour 1, on utilise la linéarité de L en disant que si $x = x_1e_1 + x_2e_2 + x_3e_3$, alors $L(x) = L(\sum_i x_ie_i) = \sum_i L(x_ie_i) = \sum_i x_iL(e_i) = x_1 + 2x_2 + 3x_3$ (à cause des valeurs qu'on a données).

Pour 2, on note que $x_1 + 2x_2 + 3x_3$ est le produit scalaire de x avec le vecteur v de coordonnées (1,2,3). Du coup, par Cauchy-Schwarz, $|L(x)| = |x_1 + 2x_2 + 3x_3| = |\langle x,v \rangle| \le ||v|| \, ||x|| = \sqrt{14} \, ||x||$.

Exercice 2. On se donne une suite $\{x_k\}$ à valeurs dans l'intervalle $[0,1] \subset \mathbb{R}$ et une suite $\{y_k\}$ à valeurs dans l'intervalle $[9,10] \subset \mathbb{R}$. Montrer qu'il existe une fonction $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante telle que les deux suites $\{x_{\varphi(k)}\}$ et $\{y_{\varphi(k)}\}$ convergent.

Un exercice sur l'extraction de suites. Qui ne va pas jusqu'au sommets du procédé diagonal, mais qui est amusant quand même. Triste que ça ne vous ait pas plu. Donc, puisque $\{x_k\}$ à valeurs dans l'intervalle [0,1] qui est compact (fermé borné dans \mathbb{R}), Bolzano-Weierstrass dit qu'on peut extraire une sous-suite $\{x_{\varphi(k)}\}$, où $\varphi: \mathbb{N} \to \mathbb{N}$ est strictement croissante, telle que la suite $\{x_{\varphi(k)}\}$ converge vers une limite ℓ (qui est donc dans [0,1] puisque [0,1] est fermé.

On pourrait faire pareil avec $\{y_k\}$, mais ca serait maladroit parce que l'on trouverait une autre sous-suite, qui convient pour les y, mais pas forcément pour les x. Donc on ré-extrait une sous suite. Je veux dire, la suite $k\mapsto w_k=y_{\varphi(k)}$ est une suite à valeyr dans [9,10], qui est compact, donc par Bolzano-Weierstrass on peut en extraire une sous-suite qui converge. Autrement dit, il existe une application $\psi:\mathbb{N}\to\mathbb{N}$, strictement croissante, telle que la suite $\ell\mapsto w_{\psi(\ell)}$ converge. En remplaçant $w_{\psi(\ell)}$ par sa valeur, c'est la suite $\ell\mapsto y_{\varphi(\psi(\ell))}$ qui converge. Notre nouvelle application sirtctement croissante de \mathbb{N} dans \mathbb{N} est $\gamma=\varphi\circ\psi$, et on vient de dire que $\{y_{\gamma(\ell)}\}$ est convergente.

Il ne reste plus qu'à vérifier qu'on n'a rien détruit en remplaçant la suite $\{x_{\varphi(k)}\}$, qui converge par définition, par la sous-suite $\{x_{\gamma(\ell)}\}$. C'est assez facile, je crois bien qu'on a dit ça dans le cours, et aussi quand vous avez vu les suites de Cauchy, et donc je vous laisse faire si vous avez oublié : si une suite converge, toute sous-suite de cette suite converge aussi, vers la même limite.

Exercice 3. On pose, pour $x = (x_1, x_2, x_3) \in \mathbb{R}^3$, $N(x) = |x_1| + |x_1 + x_2| + |x_1 + x_2 + x_3|$

- 1. Rappeler la définition d'une norme sur une espace vectoriel E.
- 2. Montrer que N est une norme sur \mathbb{R}^3 .
- 3. Est-ce que N_0 , donnée par $N_0(x) = |x_1| + |x_1 + x_2|$ pour $x \in \mathbb{R}^3$, est une norme sur \mathbb{R}^3 ?
- 4. Est-ce que N_2 , donnée par $N_2(x) = N(x) + |x_1 + x_3|$, est une norme sur \mathbb{R}^3 ?

On note N_1 la norme sur \mathbb{R}^3 donnée par $N_1(x) = |x_1| + |x_2| + |x_3|$ (admettez que c'est une norme).

- 5. Démonter que $N(x) \leq 3N_1(x)$ pour tout $x \in \mathbb{R}^3$.
- 6. Démonter également que $N_1(x) \leq 2N(x)$ pour tout $x \in \mathbb{R}^3$.

Pour 1, rappelez les trois propriétés de positivité, d'homogénéité, et d'inégalité triangulaire (vues en cours et en TD)

Pour 2. Les propriétés d'homogénéité et d'inégalité triangulaire sont faciles (ou en tout cas sans problème). Je le fais pour $x \mapsto |x_1|$, ç serait vrai pour les autres morceaux $|x_1 + x_2|$ et $|x_1 + x_2 + x_3|$ de la même manière, et encore pour la somme en additionnant les trois preuves. Et pour $x \mapsto |x_1|$, on dit juste que pour $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ et $y = (y_1, y_2, y_3) \in \mathbb{R}^3$, $|(x + y)_1| = |x_1 + y_1| \le |x_1| + |y_1|$, par l'inégalité triangulaire sur \mathbb{R} ; il resterait à faire pareil pour les deux autres termes de N et additionner.

Pareil pour l'homogénéité. D'ailleurs kje crois que tout le monde qui a essayé l'a fait.

Le fait que $N(x) \ge 0$ pour tout x est clair. Donc il ne reste plus qu'à vérifier que si N(x) = 0, alors x = 0. Mais c'est facile : si $N(x) = |x_1| + |x_1 + x_2| + |x_1 + x_2 + x_3| = 0$, alors comme les trois termes sont positifs, chacun est nul. Donc $x_1 = x_1 + x_2 = x_1 + x_2 + x_3 = 0$. On trouve $x_1 = 0$, puis $x_2 = 0$, puis $x_3 = 0$ comme souhaité.

Pour 3, non, et c'est la propriéré de positivité qui rate : on n'a pas mis assez de formes linéaires dans la formule pour contrôler tout x. Et de fait, $N_0(e_3) = 0$ alors que $e_3 \neq 0$. Par contre les deux autres propriétés sont vraies, comme pour N.

Pour 4, oui. Les propriétés d'homogénéité et d'inégalité triangulaire sont vraies comme plus haut, juste avec un terme de plus. On a encore $N_2(x) \ge 0$ pour tout x, et enfin si $N_2(x) = 0$, comme $N_2(x) = N(x)$ plus un terme positif, il vient N(x) = 0, donc x = 0 par la question 2.

Pour 5 c'est assez facile par inégalité triangulaire : pour $x \in \mathbb{R}$ $|x_1 + x_2| \le |x_1| + |x_2|$ et $|x_1 + x_2 + x_3| \le |x_1| + |x_2| + |x_3|$, donc en additionnant tout, $N(x) = |x_1| + |x_1 + x_2| + |x_1 + x_2 + x_3| \le |x_1| + |x_2| + |x_3| + |x_2| + |x_3| \le 3|x_1| + |x_2| + |x_3| + |$

Pour 6, ça a l'air subitement plus dur (d'où la position en dernière question), mais c'est un leurre. On a vu pour 5 qu'il suffisait d'écrire les formes linéaires qui composent N à partir des formes linéaires qui composent N_1 , puis d'utiliser l'inégalité triangulaire et d'additionner. Maintenant il faut exprimer les formes linéaires qui composent N_1 à partir de celles qui composent N. Donc, $x_1 = x_1$, puis $x_2 = (x_1 + x_2) - x_1$, puis $x_3 = (x_1 + x_2 + x_3) - (x_1 + x_2)$. Et ainsi,

$$N_1(x) = |x_1| + |x_2| + |x_3| = |x_1| + |(x_1 + x_2) - x_1| + |(x_1 + x_2 + x_3) - (x_1 + x_2)|$$

$$\leq |x_1| + |x_1 + x_2| + |x_1| + |x_1 + x_2 + x_3| + |x_1 + x_2| = 2N(x).$$
(1)