

Infraestrutura para Sistemas de Software

Prof. Dr. Carlos Alberto da Silva

Módulo 3 - Roteamento e segurança de redes

Unidade 2 - Os princípios e mecanismos de segurança nas redes

Mapa da aula

Os princípios e mecanismos de segurança nas redes

- Princípios de segurança da informação
- Criptografia
- Mecanismos de segurança
- Firewall

Princípios de segurança da informação

Princípios de segurança

Devemos garantir os princípios de segurança para:

- Confidencialidade;
- Integridade;
- Disponibilidade;
- Autenticidade;
- Não-repúdio.

- Segurança computacional
 - são políticas, mecanismos e ferramentas que visam proteger e garantir os princípios de segurança para as informações.

- Cyber Security
 - é prática de proteger os dispositivos das redes contra ameaças do tipo:
 - crime virtual;
 - ataque cibernético;
 - terrorismo cibernético.

Ataques podem ser do tipo:

- Malware (Software malicioso)
 - Vírus, Cavalos de Troia, Spyware, Ransomware, Adware e Botnets.
- Injeção de SQL
- Phishing
- Ataques "man-in-the-middle"
- Ataque de negação de serviço (Denial-of-service, DoS/DDoS)

- Dicas de cibersegurança para proteger-se contra ataques cibernéticos:
 - Atualize seus softwares e os sistemas operacionais;
 - Evite usar redes Wi-Fi não seguras em locais públicos;
 - Não abra anexos de e-mail de remetentes desconhecidos;

- Não clique em *links* ou e-mails de remetentes desconhecidos ou em sites não familiares;
- Use um software antivírus;
- Use senhas fortes.

Criptografia

Criptografia

A criptografia tem o objetivo de garantir os princípios de segurança por meio de:

- algoritmos de encriptação e desencriptação;
- algoritmos de assinatura digital;
- algoritmos de certificado digital;
- algoritmos de hash.

Criptografia deve proteger as informações:

- em repouso;
- em trânsito;
- ou em uso.

Criptografia

Os algoritmos de encriptação podem ser agrupados em:

- Encriptação simétrica: utilizada para ocultar o conteúdo dos blocos ou fluxos contínuos de dados de qualquer tamanho:
 - Utilizando uma única chave.

- Encriptação assimétrica: usada para ocultar pequenos blocos de dados:
 - Utilizando uma chave pública e uma chave privada.

Modelo OSI específica serviços de segurança para:

- Certificado digital;
- Assinatura digital;
- Controle de acesso;
- Autenticação;
- Autorização;
- Auditoria;
- Detecção de eventos relevantes à segurança;
- Recuperação de segurança.

Técnica de encriptação simétrica

Uma **única chave K** é utilizada para:

- encriptar / cifrar os dados;
- em seguida, para decripatação / decifrar os dados.

Técnica de encriptação simétrica

Exemplo

Fonte: Stallings, 2015, p. 21 (plataforma de leitura).

Técnica de encriptação simétrica

Canal seguro

 Deve haver um canal seguro para o transporte da <u>chave K</u> para utilizada no destino.

Fonte: Stallings, 2015, p. 22 (plataforma de leitura).

Técnica de encriptação assimétrica (pública)

Os algoritmos assimétricos contam:

- Chave Pública para encriptação;
- Chave Privada (uma chave diferente) para a decriptação:
 - Diferente da pública, porém relacionada;
 - Exemplo:
 - números primos;
 - curvas elípticas.

Criptossistemas de chaves assimétricas (pública)

 Qualquer uma das duas chaves relacionadas pode ser usada para encriptação com a outra para a decriptação.

- Estabelecendo um canal seguro de comunicação entre um cliente-servidor, exemplos:
 - Aplicativos bancários na Web;
 - Comércio eletrônico.

Técnica de encriptação assimétrica

Criptossistemas de chaves assimétricas (pública)

Fonte: Comer, 2016, p. 496.

Assinaturas digitais

A assinatura digital precisa garantir as características:

- verificar o autor, a data e hora da assinatura;
- autenticar o conteúdo no momento da assinatura;
- ser verificável por terceiros para resolver disputas.

Função HASH criptográficas

Fonte: Kurose, 2020, p. 507.

Enviando um documento assinado digitalmente

Fonte: Kurose, 2020, p. 512.

Verificando um documento assinado digitalmente

Fonte: Kurose, 2020, p. 512.

Requisitos de assinatura digital

- Deve impedir falsificação e negação.
- É preciso ser relativamente fácil para produzir a assinatura digital, reconhecer e verificar a assinatura digital.
- É preciso ser computacionalmente inviável falsificar uma assinatura digital.

Assinatura digital direta

Refere-se a técnica de assinatura digital que envolve apenas as partes em comunicação (origem, destino).

Esta técnica utiliza encriptação de chaves assimétrica.

Assinatura digital direta

Fonte: Tanembaum, 2021, p. 502.

Princípios de Autenticação de usuário remoto

A autenticação do usuário é a base para:

- Controle de acesso;
- Irretratabilidade do usuário (não repúdio).

Definida pela RFC 4949.

Autenticidade

Princípios de Autenticação de usuário remoto

Autenticação é o processo de verificar uma identidade alegada por ou para uma entidade do sistema.

Um processo de autenticação consiste em duas etapas:

- Etapa de identificação;
- Etapa de verificação.

Autenticidade

Princípios de Autenticação de usuário remoto

As formas de autenticação da identidade de um usuário podem ser:

- Algo que o indivíduo sabe (senha, PIN);
- Algo que o indivíduo possui (token);
- Algo que o indivíduo é (biometria estática);
- Algo que o indivíduo faz (biometria dinâmica).

Firewall

A **segurança lógica** se preocupa com os dados que trafegam na rede e provê sistemas de segurança para:

- Firewall;
- Sistemas de Detecção de Intrusos (IDS);
- Sistemas de Prevenção de Intrusos (IPS).

Firewall

Tem a função de autenticar e de autorizar o tráfego da rede:

- Isola a rede interna (intranet) da rede externa (internet).
 - Basicamente filtrando o tráfego TCP/IP.
 - Por meio regras de entrada (*In*) e de saída (*Out*).

Firewall

Pode ser um dispositivo do tipo:

- um servidor com função de roteador com duas placas de rede:
 - isolando uma rede da outra;
 - ou um roteador com Firewall.

Fonte: Souza, 2020, p. 63

Firewall

Analisa os cabeçalhos dos pacotes IP:

- IP de origem;
- IP de destino;
- Portas de origem;
- Porta de destino;
- Tráfego de Entrada;
- Tráfego de Saída.

Fonte: Souza, 2020, p. 64

Firewall

Não analisa o conteúdo dos pacotes (dados).

Dir	Tipo de quadro	IP de origem	IP de destino	Tipo	Porta de origem	Porta de destino
In	0x0800	*	192.5.48.1	TCP	*	80
In	0x0800	*	192.5.48.2	TCP	*	25
In	0x0800	*	192.5.48.3	TCP	*	53
In	0x0800	*	192.5.48.3	UDP	*	53
Out	0x0800	192.5.48.1	*	TCP	80	*
Out	0x0800	192.5.48.2	*	TCP	25	*
Out	0x0800	192.5.48.3	*	TCP	53	*
Out	0x0800	192.5.48.3	*	UDP	53	*

Fonte: Comer, 2016, p. 457

Firewalls de nível de aplicação (proxy servers)

- Intercepta a solicitação de informação (tráfego recebido) e envia as respostas às aplicações correspondentes;
 - permite a auditoria do controle do tráfego que passa por ele.

Fonte: Souza, 2020, p. 64

Sistemas de Prevenção de Intrusos (IPS)

- É um sistema passivo;
- Monitorar uma rede em busca de eventos que possam violar as regras de segurança dessa rede.

Sistemas de Detecção de Intrusos (IDS)

- É sistema ativo;
- Projetado com o objetivo de bloquear automaticamente a atividade maliciosa.

⇒ como encerramento de conexão via envio de pacotes *reset*.

Referências

COMER, Douglas E. **Redes de computadores e internet**. Editora Bookman, 2016. **p. 444-464**. ISBN 9788582603734. <u>Disponível na Biblioteca Digital da UFMS</u>.

KUROSE, Jim; ROSS, Keith W. **Redes de Computadores e a Internet:** uma Abordagem Top-down, 8 Edição. Editora Pearson, 2021. ISBN: 9788582605592. **p. 493-546**. <u>Disponível na Biblioteca Digital da UFMS</u>.

SOUZA, Lindeberg Barros de. **Administração de redes locai**s. 2. São Paulo: Érica, 2020. 1 recurso online. (Eixos). **p. 63-64.** ISBN 9788536533698. <u>Disponível na Biblioteca Digital da UFMS</u>.

TANENBAUM, Andrew S.; FEAMSTER, Nicholas; WETHERALL, David J.; **Redes de Computadores,** 6ª Edição. Editora Pearson, 2021. ISBN: 9788582605615. **p. 502**. <u>Disponível na Biblioteca Digital da UFMS</u>.

Licenciamento

Respeitadas as formas de citação formal de autores de acordo com as normas da ABNT NBR 6023 (2018), a não ser que esteja indicado de outra forma, todo material desta apresentação está licenciado sob uma <u>Licença Creative Commons</u> - <u>Atribuição 4.0 Internacional.</u>