

DIPLOMADO EN CIENCIA DE DATOS: APLICACIONES CON MACHINE LEARNING

MODALIDAD VIRTUAL

Escuela de Posgrados Facultad de Ciencias

INTRODUCCIÓN

En las últimas dos décadas, las empresas han invertido en tecnología para recopilar información, crucial para la toma de decisiones operativas y estratégicas. Las estrategias tradicionales de informes se han vuelto obsoletas, siendo reemplazadas por modelos descriptivos, predictivos y prescriptivos. Estos modelos extraen patrones de datos, proporcionando una visión completa de la empresa en su estado pasado, presente y futuro, y asegurando su crecimiento continuo.

La Facultad de Ciencias de la UPTC, con el apoyo del CIEC, ofrece el diplomado en Ciencia de Datos: Aplicaciones con Machine está Este programa de 16 semanas diriaido profesionales y estudiantes que desean adquirir habilidades avanzadas en análisis de datos y machine learning. El curso abarca metodologías aplicaciones prácticas, teoría. У clasificación, regresión, clustering y redes neuronales. En un contexto donde los datos son esenciales para la innovación y competitividad, este diplomado busca capacitar a los participantes en la aplicación de algoritmos para descubrir patrones, optimizar procesos y predecir comportamientos futuros.

Al finalizar el diplomado, los participantes estarán capacitados para implementar soluciones de ciencia de datos y machine learning, mejorando la eficiencia y efectividad en sus industrias. El programa ofrece una experiencia intensiva que combina teoría y práctica con casos de estudio reales, preparando a los profesionales para los desafíos de la revolución industrial 4.0 y aumentando la competitividad y desempeño de sus organizaciones.

OBJETIVOS

- Comprensión del área: Adquirir una comprensión sólida y detallada de los principios y algoritmos fundamentales de la ciencia de datos y el machine learning.
- Aplicación práctica: Aplicar técnicas de machine learning para resolver problemas complejos y reales, mejorando la capacidad de análisis y predicción en diversas industrias.
- Habilidades técnicas: Desarrollar habilidades prácticas en el manejo de lenguajes de programación como Python y SQL, y plataformas de desarrollo de machine learning, tales como TensorFlow, Keras, y Scikit-learn, esenciales para la implementación de modelos de ciencia de datos.
- Decisiones basadas en datos: Capacitar a los participantes para tomar decisiones estratégicas basadas en datos, utilizando insights derivados del análisis de datos para mejorar la eficiencia y efectividad organizacional.
- Innovación y competitividad: Fomentar la innovación y competitividad en los participantes, permitiéndoles integrar soluciones de machine learning en sus respectivos campos profesionales, potenciando su capacidad para liderar proyectos tecnológicos y de análisis avanzado.

Recursos:

- Repositorio oficial de GitHub
- Acceso a grabaciones
- Acceso a aula Moodle y carpeta de Google Drive

INFORMACIÓN ADICIONAL

Duración: 16 semanas

Intensidad: 7.5 horas semanales

Horarios: Martes (07:00 p.m. - 09:00 p.m.)

Jueves (06:00 p.m. - 08:30 p.m.)

Viernes (06:00 p.m. - 09:00 p.m.)

Modalidad: Virtual

Dirigido a profesionales y/o estudiantes de:

- Ingenierías
- Ciencias Básicas
- Economía
- · Ciencias de la Salud
- Administración de Empresas

Requisitos:

- Conocimientos básicos de programación y matemáticas
- Nivel de inglés básico
- Disponibilidad de tiempo horaria

Certificación:

Asistencia mínima del 75% emitida por CIEC

ESTRUCTURA GENERAL

Fase 1: Fundamentos de la Ciencia de Datos

Sección dedicada a la Introducción de los conceptos referentes en la ciencia de datos en un contexto organizacional, así como las herramientas computacionales a utilizar a lo largo del diplomado.

Fase 2: Matemáticas para Ciencia de Datos

Sección dedicada a la fundamentación matemática necesaria para trabajar en problemas de machine learning.

Fase 3: Analítica de datos

Sección dedicada a la Introducción al manejo de bases de datos relacionales, lenguaje de consulta SQL, análisis exploratorio de datos y las librerías fundamentales de visualización en lenguaje de programación Python y en la plataforma de Business Intelligence, PowerBI

Fase 4: Machine Learning: Aplicaciones en la Ciencia de Datos

Sección dedicada al enfoque en desarrollo de modelos de Machine Learning: supervisados y no supervisados a partir de datos preparados. Así como el uso de modelos de ensamble para acoplar los modelos y optimizar los resultados.

Fase 5: Redes Neuronales y Deep Learning

Sección dedicada a la introducción de las redes neuronales y sus aplicaciones en modelos predictivos, con extensión a aplicaciones de la inteligencia artificial.

Fase 6: Proyecto Final

Sección dedicada al desarrollo del proyecto final de aplicación basado en la fundamentación vista a lo largo del programa

Fase 1: Fundamentos de la Ciencia de Datos (10 horas)

- Datos, Machine Learning e Inteligencia Artificial
- · Tendencias en datos e IA
- Riesgos, consideraciones legales y normativa nacional
- Entornos de Desarrollo: Jupyter Notebooks, Google Colab y VSCode
- · Software y frameworks comunes
- Versionamiento de código con Git/GitHub
- · Introducción a Python
 - o Sintaxis Básica: Variables, operadores y estructuras de control
 - o Funciones: Definición, argumentos, y retorno de valores
 - Manejo de Errores: Try-except y manejo de excepciones
 - o Control de flujo
 - Listas, tuplas y diccionarios
 - NumPy: Arrays
 - Pandas: Procesamiento de estructuras de datos
- Aplicaciones Prácticas: Casos de uso en diversas industrias 4.0
- Database, Datalake y Data warehouse

Fase 2: Matemáticas para Ciencia de Datos (25 horas)

Álgebra Lineal

- Vectores, matrices y tensores: Definiciones, operaciones básicas, y propiedades
- Descomposición de Matrices: Eigenvalores, eigenvectores, y descomposición en valores singulares (SVD)
- Soluciones de sistemas de ecuaciones lineales

Cálculo Diferencial

- o Derivadas: Conceptos básicos y reglas de derivación
- Gradiente y optimización: Gradiente descendente y técnicas de optimización para entrenamiento de modelos

· Estadística Descriptiva

- o Medidas de Tendencia Central: Media, mediana, y moda
- o Medidas de Dispersión: Varianza, desviación estándar y cuantiles
- Análisis multivariado
- Covarianza
- Correlación
- Visualización de datos
- Matplotlib y Seaborn
- Visualizaciones más comunes:
 - Barplot
 - Histograma
 - Boxplot
 - Scatterplot
 - Mapa de calor

Teoría de Probabilidades

- Conceptos Básicos: Probabilidad, eventos, y espacio muestral
- Reglas de Probabilidad: Ley de la suma, ley del producto, Teorema de Bayes y Naive-Bayes
- Variables Aleatorias y Distribuciones: Variables discretas y continuas, esperanza matemática, y varianza
- o Distribuciones de Probabilidad: Binomial, Normal, Poisson y T-Student

Estadística Inferencial

- o Distribuciones de muestra y Teorema de Límite Central
- Estimación de parámetros
- Pruebas de hipótesis
- · Regresión y correlación
- Análisis de varianza (ANOVA)

Fase 3: Analítica de Datos (25 horas)

- Bases de datos relacionales y visualización de datos
 - Bases de datos relacionales
 - Lenguaje SQL
 - Visualización mediante PowerBI
- Análisis Exploratorio de Datos y Preprocesamiento
 - Importación y exploración de datos:
 - Carga y transformación de datos desde archivos CSV
 - Resumen estadístico: datasets y tipos de características
 - Análisis descriptivo y diagnóstico
 - Ingeniería de características:
 - Limpieza de Datos:
 - Manejo de datos faltantes: Imputación y detección
 - · Detección y tratamiento de Outliers
 - Corrección de errores
 - Agrupación de características
 - Transformación de Datos
 - Normalización y estandarización
 - Codificación de variables categóricas: One-hot encoding
 - Generación de nuevas variables
 - Preparación de Datos para modelado
 - Separación en conjuntos de entrenamiento, validación y prueba
 - Balanceo de conjuntos de datos
 - Iteración de procesos

Fase 4: Machine Learning: Aplicaciones en la Ciencia de Datos (36 horas)

- Introducción al Machine Learning
- Modelos Supervisados
 - Regresión Lineal (3 horas)
 - Fundamentos, implementación y ajuste del modelo
 - Regularización: L1 (Lasso) y L2 (Ridge)
 - Validación cruzada y K-Fold Cross Validation
 - Métodos de validación: Leave-One-Out, Bootstrap
 - Ajuste de Hiperparámetros: Grid Search y Random Search
 - Evaluación de desempeño: R², error cuadrático medio (MSE), Error Absoluto Medio (MAE)
 - Regresión Logística (3 horas)
 - Fundamentos y aplicación en clasificación binaria
 - Implementación y ajuste del modelo
 - Evaluación de desempeño: matriz de confusión, AUC-ROC curve
 - Árboles de Decisión (3 horas)
 - Fundamentos y algoritmos de construcción
 - Poda de árboles y prevención de sobreajuste
 - Evaluación de desempeño: Accuracy, precisión-recall, F1-score
 - Overfitting y Underfitting
 - Matriz de Confusión
 - Support Vector Machines (SVM) (3 horas)
 - Conceptos básicos y teoría de márgenes
 - Implementación de SVM lineal y no lineal
 - Ajuste de hiperparámetros y evaluación
 - K-Nearest Neighbors (KNN) (3 horas)
 - Fundamentos y teoría
 - Implementación y ajuste de K
 - Evaluación de desempeño
 - o Modelos de Ensamble (6 horas)
 - Teoría de ensambles y beneficios de los modelos de ensamble
 - Métodos de combinación: votación y promedio ponderado
 - Grid Search
 - Bagging: Random Forest
 - Fundamentos y construcción de bosques aleatorios
 - Evaluación de importancia de características
 - Ajuste de hiperparámetros

- Boosting (AdaBoost, Gradient Boosting, XGBoost)
 - Fundamentos y diferencias entre técnicas de boosting
 - Implementación y ajuste de hiperparámetros
 - · Stacking y Blending

Modelos No Supervisados

- Clustering (5 horas)
 - K-means: teoría, implementación y selección de K.
 - Clustering jerárquico: algoritmos aglomerativos y divisivos.
 - Evaluación de resultados: Elbow Method, coeficiente de silhouette, índice de Dunn
 - Medidas de cohesión y separación
 - Basados en densidad: DBSCAN
- Reducción de Dimensionalidad (5 horas)
 - PCA (Análisis de Componentes Principales)
 - Fundamentos y matemáticas detrás de PCA
 - Implementación y análisis de componentes principales.
 - t-SNE, UMap, TriMap y PacMap
- Modelos de Mezcla Gaussianos (5 horas)
 - Fundamentos y teoría de distribuciones gaussianas.
 - Implementación y ajuste de parámetros.
 - Evaluación de resultados

Fase 5: Redes Neuronales y Deep Learning (14 horas)

Introducción a Redes Neuronales (2 horas)

- Fundamentos de las Redes Neuronales Artificiales (ANN)
- o Estructura y funcionamiento de una neurona artificial
- o Arquitectura de una red neuronal: capas de entrada, ocultas y salida

Perceptrón y Perceptrón Multicapa (2 horas)

- Perceptrón: Teoría, implementación y aplicaciones
- Perceptrón Multicapa (MLP): Algoritmos de entrenamiento
- o Funciones de activación: Sigmoide, ReLU, Tanh

Entrenamiento y Optimización de Redes Neuronales (3 horas)

- Proceso de entrenamiento: Forward y Backward Propagation
- Algoritmos de optimización: GD, GD Estocástico y Adam
- Regularización, Dropout, Early Stopping

Redes Neuronales Convolucionales (CNN) (3 horas)

- o Fundamentos y arquitectura de las CNN
- Capas convolucionales y de pooling
- Aplicaciones en visión por computadora: Clasificación de imágenes y detección de objetos

Redes Neuronales Recurrentes (RNN) (4 horas)

- Arquitectura y entrenamiento de RNN
- Aplicaciones en series temporales
- LSTM

Fase 6: Proyecto Final (10 horas)

Definición del proyecto y alcance (1 hora)

- Selección del problema a resolver
- Justificación del problema
- Definición de objetivos y metas del proyecto
- o Delimitación del alcance y expectativas

• Recolección y preparación de datos (2 horas)

- o Recolección de datos necesarios para el proyecto
- Limpieza y preprocesamiento de datos
- Exploración y análisis inicial de los datos

Desarrollo y entrenamiento de modelos (2 horas)

- Selección de algoritmos y modelos adecuados
- o Implementación y entrenamiento de modelos
- · Ajuste de hiperparámetros y optimización

Evaluación y validación de modelos (1 hora)

- Aplicación de técnicas de validación cruzada
- Evaluación de desempeño utilizando métricas adecuadas
- Ajustes y mejoras basadas en resultados de validación

• Implementación y despliegue del modelo (1 hora)

- o Implementación final del modelo en un entorno de producción
- Consideraciones para el despliegue y mantenimiento del modelo
- Documentación del proceso y resultados

Presentación y defensa del proyecto (3 horas)

- Preparación de la presentación del proyecto
- Estructura y contenido de la presentación
- Defensa del proyecto frente a un comité evaluador o audiencia

RECURSOS Y CONTACTO

Costo: \$1.750.000 por persona

Costo Anticipado: \$1.550.000 por persona

Realiza el proceso de inscripción mediante el **Centro de Gestión de Investigación y Extensión de la Facultad de Ciencias**

Contacto: ciec@uptc.edu.co

Escuela de Posgrados Facultad de Ciencias

