

FIT2004 - Algorithms and Data Structures

Seminar 8 - Network Flow

Rafael Dowsley 28 April 2025

Agenda

Divide-and-Conquer (W1-3) Greedy Algorithms (W4-5) Dynamic Programming (W6-7) Network Flow (W8-9)

Data Structures (W10-11)

- Maximum Flow Problem
- 2 Ford-Fulkerson method
- 3 Min-cut Max-flow Theorem

Maximum Flow Problem

Flow networks

- A flow network is a connected directed graph where:
 - There is a single source vertex, often denoted by s, which only has outgoing edges.
 - ► There is a single sink/target vertex, often denoted by t, which only has incoming edges.
 - ► Each edge has a given non-negative capacity (usually integers) giving the maximum amount/rate of flow that the edge can carry.

What are flow networks used for?

- Flow networks can model many real-world problems, such as:
 - ▶ Water flowing through an assembly of pipes.
 - ▶ Electric current flowing through electrical circuits.
 - ▶ Information flowing through communication networks.
- Can be applied to solve a large range of other combinatorial problems unrelated to physical flows.

Flow

- For an edge e, its flow f(e) is an assignment of how much material is flowing through it in the flow network given its capacity c(e).
- All vertices (except source and sink) conserve their flow:
 - ▶ Let $E_{in}(v)$ denote the set of all incoming edges to a vertex v, and similarly $E_{out}(v)$ denote its set of outgoing edges.
 - ▶ The total amount flowing into any vertex (through incoming edges) is equal to the total amount flowing out of that vertex (through outgoing edges).

Quiz time!

Properties of a flow network

A flow network must satisfy the following properties:

Capacity constraint

For every edge e, its flow is bounded by its capacity: $0 \le f(e) \le c(e)$.

Flow conservation

For every vertex $v \in V \setminus \{s,t\}$, it holds that

$$\sum_{e_{in} \in E_{in}(v)} f(e_{in}) = \sum_{e_{out} \in E_{out}(v)} f(e_{out})$$

We only consider integer capacities.

Flow of the network

- Given that the flow network satisfies the capacity constraint and flow conservation properties, the flow of the network is the total flow out of the source vertex.
 - ▶ Equivalently, this is the same as the total flow into sink vertex.
 - ▶ What is the flow value in the left flow network? 5
 - ▶ What is the flow value in the right flow network? 19

Maximum-flow problem

Maximum-flow problem

Given a flow network, determine the maximum value of the flow that can be sent from source s to sink t without violating the capacity constraint and flow conservation properties.

Ford-Fulkerson is a method for solving max-flow problems.

Lester Ford Jr.

Delbert Fulkerson

How can we increase the flow in the above network?

Quiz time!

How can we increase the flow in the above network?

- 1. Choose a path from source to sink.
- 2. Increase flow along it as much as possible.

Seems easy enough!

Can we increase the flow in the above network?

Quiz time!

Can we increase the flow in the above network?

We can! But there is no path from source to sink with spare capacity...

- There is no path from s to t with spare capacity.
- Redirect the 3 units on the edge $c \rightarrow b$ to go to edge $c \rightarrow t$.
- **Problem:** The flow through *b* is not conserved anymore.

- There is no path from s to t with spare capacity.
- Redirect the 3 units on the edge $c \rightarrow b$ to go to edge $c \rightarrow t$.
- **Problem:** The flow through *b* is not conserved anymore.
- **Solution:** Send 3 more units along $s \rightarrow b$.

What actually happened here?

- We increased the total flow by 3.
- We sent 3 additional units along $s \rightarrow b$, $c \rightarrow t$.
- We removed 3 units of flow from $c \rightarrow b$.
- ullet Our path was s o b o c o t, but we had a backwards edge...

Residual network

- Residual network has the same vertices as the original network.
- For every directed edge $u \rightarrow v$ in flow network, we add two edges in the residual network:
 - ▶ Forward edge/residual edge: an edge in the same direction as $u \rightarrow v$ with the residual/remaining capacity in the flow network.
 - ▶ Backward edge/reversible flow edge: an edge in the direction $v \to u$ with weight equal to the current flow of $u \to v$ in the flow network.

Augmenting path

- Augmenting path is any simple path (a path without repeating vertices) from source s to target t along edges with positive weight in the residual network.
 - ▶ We can omit edges with weight 0 from the residual network.
- Residual capacity is the minimum edge weight in the residual along this augmenting path (e.g., 2 in the example).

Ford-Fulkerson method

- 1: **function** MAX_FLOW(G = (V, E), s, t)
- 2: set initial flow f to 0 on all edges
 - **while** there exists an augmenting path p in the residual network G_f do
- 4: augment the flow f along the augmenting path p as much as possible
- 5: return f

3.

Ford-Fulkerson method

- 1: function MAX_FLOW(G = (V, E), s, t)
- 2: set initial flow f to 0 on all edges
- 3: while there exists an augmenting path p in the residual network G_f do
- 4: augment the flow f along the augmenting path p as much as possible
- 5: **return** *f*

Ford-Fulkerson method

- 1: **function** MAX_FLOW(G = (V, E), s, t)
- 2: set initial flow f to 0 on all edges
- 3: **while** there exists an augmenting path p in the residual network G_f do
- 4: augment the flow f along the augmenting path p as much as possible
- 5: return f

Ford-Fulkerson method

- 1: **function** MAX_FLOW(G = (V, E), s, t)
- 2: set initial flow f to 0 on all edges
- 3: **while** there exists an augmenting path p in the residual network G_f **do**
- 4: augment the flow f along the augmenting path p as much as possible
- 5: return f

Flow of the network = 3

Residual needs to be updated!

Ford-Fulkerson method

- 1: **function** MAX_FLOW(G = (V, E), s, t)
- 2: set initial flow f to 0 on all edges
- 3: while there exists an augmenting path p in the residual network G_f do
- 4: augment the flow f along the augmenting path p as much as possible
- 5: return f

Ford-Fulkerson method

- 1: function MAX_FLOW(G = (V, E), s, t)
- 2: set initial flow f to 0 on all edges
- 3: **while** there exists an augmenting path p in the residual network G_f do
- 4: augment the flow f along the augmenting path p as much as possible
- 5: return f

Ford-Fulkerson method

- 1: function MAX_FLOW(G = (V, E), s, t)
- 2: set initial flow f to 0 on all edges
- 3: **while** there exists an augmenting path p in the residual network G_f do
- 4: augment the flow f along the augmenting path p as much as possible
- 5: **return** *f*

Flow of the network = 6

Residual needs to be updated!

Ford-Fulkerson method

- 1: function MAX_FLOW(G = (V, E), s, t)
- 2: set initial flow f to 0 on all edges
- 3: **while** there exists an augmenting path p in the residual network G_f do
- 4: augment the flow f along the augmenting path p as much as possible
- 5: **return** *f*

Flow of the network = 6

Solve of the network = 6 3/3Solve of the network = 6 3/3Solve of the network = 6 3/3Solve of the network = 6

Ford-Fulkerson method

- 1: **function** MAX_FLOW(G = (V, E), s, t)
- 2: set initial flow f to 0 on all edges
- 3. **while** there exists an augmenting path p in the residual network G_f do
- 4: augment the flow f along the augmenting path p as much as possible
- 5: return f

2

Ford-Fulkerson method

- 1: function MAX_FLOW(G = (V, E), s, t)
- 2: set initial flow f to 0 on all edges
- 3: **while** there exists an augmenting path p in the residual network G_f do
- 4: augment the flow f along the augmenting path p as much as possible
- 5: return f

Flow of the network = 8

Residual needs to be updated!

Ford-Fulkerson method

- 1: **function** MAX_FLOW(G = (V, E), s, t)
- 2: set initial flow f to 0 on all edges
- 3: **while** there exists an augmenting path p in the residual network G_f do
- 4: augment the flow f along the augmenting path p as much as possible
- 5: **return** *f*

Flow of the network = 8

No further augmenting paths!

Implementation details

- Edge "type" in the residual does not matter as we can send flow along any of them.
 - Forward edges can have flow sent along them because they have spare capacity.
 - ▶ Backward edges can have flow sent along them because reducing a flow in one direction is the same as increasing the flow in the opposite direction.
- If a pair of vertices in the flow network have edges in both directions, then in the residual network there are only 2 edges (not 4).

Quiz time!

Implementation details

- The amount of flow we can send from x to y consists of:
 - ▶ The spare capacity (b a).
 - ▶ The existing flow from y to x which can be reversed (c units).

Time complexity

- 1: function MAX_FLOW(G = (V, E), s, t)
- 2: set initial flow f to 0 on all edges
- 3: **while** there exists an augmenting path p in the residual network G_f do
- 4: augment the flow f along the augmenting path p as much as possible
- 5: **return** *f*
 - Cost of finding an augmenting path: O(|V| + |E|) using BFS/DFS.
 - Augmenting flow along a path: length of path $\leq |V| 1$, so O(|V|).
 - ullet Updating the residual: two edges per edge of the augmenting path, so O(|V|).
 - Total work in one iteration of the loop: O(|V| + |E|) = O(|E|) as the graph is connected.

Time complexity

- 1: function MAX_FLOW(G = (V, E), s, t)
- 2: set initial flow f to 0 on all edges
- 3: **while** there exists an augmenting path p in the residual network G_f do
- 4: augment the flow f along the augmenting path p as much as possible
- 5: **return** *f*
 - Total work in one iteration of the loop: O(|E|).
 - How many iterations?

Quiz time!

Time complexity

- 1: **function** MAX_FLOW(G = (V, E), s, t)
- 2: set initial flow f to 0 on all edges
- 3: while there exists an augmenting path p in the residual network G_f do
- 4: augment the flow f along the augmenting path p as much as possible
- 5: return f
 - Total work in one iteration of the loop: O(|E|).
 - How many iterations?
 - Assuming integer capacities, Ford-Fulkerson flows are always integer-valued, so flow grows by at least 1 in each iteration.
 - ▶ If maximum flow in the network is F, then at most F iterations.
 - Total work: O(|E| ⋅ F).

Time complexity

- 1: **function** MAX_FLOW(G = (V, E), s, t)
- 2: set initial flow f to 0 on all edges
- 3: **while** there exists an augmenting path p in the residual network G_f do
- 4: augment the flow f along the augmenting path p as much as possible
- 5: return f
- Total work: $O(|E| \cdot F)$.
 - ► This looks polynomial.
 - ▶ But it isn't because F is a number, so its value is exponential in the space required to store it.
- It can be proven that the complexity is $O(|V| \cdot |E|^2)$ when using BFS to find augmenting paths, which is polynomial.
 - These two bounds are incomparable.

Correctness

- 1: **function** MAX_FLOW(G = (V, E), s, t)
- 2: set initial flow f to 0 on all edges
- 3: **while** there exists an augmenting path p in the residual network G_f do
- 4: augment the flow f along the augmenting path p as much as possible
- 5: **return** *f*
- Does the algorithm terminate?
 - Yes, assuming all capacities are integers.
 - ► The flow always increases by at least 1 per iteration and there cannot be any augmenting path if all source's outgoing edges (similarly, if all sink's incoming edges) are saturated.
- In order to show that the algorithm terminates exactly once it finds a flow whose value is the maximum possible value among all feasible flows, we will need to study the Min-cut Max-flow Theorem.

Min-cut Max-flow Theorem

- A cut (S,T) of a flow network partitions the vertices into two disjoint sets S and T such that s ∈ S and t ∈ T.
- The cut-set of a cut (S,T) is the set of edges that "cross" the cut, i.e., each edge connects one vertex in S with another in T.
 - \blacktriangleright Outgoing edges of the cut: from a vertex in \ref{S} to a vertex in \ref{T} .
 - ▶ Incoming edges of the cut: from a vertex in *T* to a vertex in *S*.

Flow and capacity of a cut

- Capacity of a cut (S, T) is the total capacity of its outgoing edges.
- Flow of a cut (S,T) is equal to total flow of outgoing edges total flow of incoming edges.
- Note that the flow of a cut is always \leq to the capacity of the cut.
 - ightharpoonup Flow of an edge \leq capacity of an edge.
 - ► Capacity of a cut does not subtract capacities for incoming edges.

Flow and capacity of a cut

- Capacity of a cut (S,T) is the total capacity of its outgoing edges.
 - ▶ What is the capacity of this cut?
 - ▶ 26
- Flow of a cut (S,T) is equal to total flow of outgoing edges total flow of incoming edges.
 - ▶ What is the flow of this cut?
 - **▶** 19

Another cut

- Capacity of a cut (S,T) is the total capacity of its outgoing edges.
 - ▶ What is the capacity of this cut?
 - ▶ 29
- Flow of a cut (S,T) is equal to total flow of outgoing edges total flow of incoming edges.
 - ▶ What is the flow of this cut?
 - ▶ 19

Yet another cut

- Capacity of a cut (S, T) is the total capacity of its outgoing edges.
 - ▶ What is the capacity of this cut?
 - **▶** 31
- Flow of a cut (S,T) is equal to total flow of outgoing edges total flow of incoming edges.
 - ▶ What is the flow of this cut?
 - ▶ 19

Are the flows of every cut the same?

- It seems that the flow of every cut is the same, let's prove this!
- Let $F_{out}(v)$ denote the total flow going out of vertex v and $F_{in}(v)$ denote the total flow coming into vertex v.
- Flow conservation property: $F_{out}(v) F_{in}(v) = 0$ for every vertex $v \in V \setminus \{s, t\}$.
- Flow of the network = $F_{out}(s)$.

Flow of every cut is the same

$$F_{out}(s) = F_{out}(s) + \sum_{v \in S \setminus s} (F_{out}(v) - F_{in}(v))$$

$$= \sum_{v \in S} (F_{out}(v) - F_{in}(v))$$

$$= \sum_{v \in S} (F_{out}(v) + F_{out}(v) - F_{in}(v) - F_{in}(v))$$

1st equation: by flow conservation, 2nd equation: as source has no incoming edges and so $F_{in}(s) = 0$, 3rd equation: just separates the flow through red and green arrows.

Flow of every cut is the same

$$F_{out}(s) = \sum_{v \in S} (F_{out}(v) + F_{out}(v) - F_{in}(v) - F_{in}(v))$$

$$= \sum_{v \in S} (F_{out}(v) - F_{in}(v)) + \sum_{v \in S} (F_{out}(v) - F_{in}(v))$$

$$= \sum_{v \in S} (F_{out}(v) - F_{in}(v))$$

The last equation follows from the fact that each red edge appears once as an incoming edge and once as an outgoing edge.

Flow of every cut is the same

$$F_{out}(s) = \sum_{v \in S} (F_{out}(v) - F_{in}(v))$$

We conclude that the flow of any cut is equal to the flow of the network.

Min-cut

- Min-cut of a flow network is the cut with the minimum capacity.
- Flow of the network = flow of any cut ≤ capacity of that cut.
- Maximum possible flow of the network ≤ capacity of min-cut.
- What if we can find a pair of flow and cut such that the flow of the network = capacity of the cut?
 - ► The flow value cannot be increased any further as it would violate the capacity of that cut, so it is the maximum flow.
 - ▶ The cut is a min-cut of the flow network.

Min-cut Max-flow Theorem

Min-cut Max-flow Theorem

Maximum possible flow of a network = capacity of the min-cut.

We will show that the Ford-Fulkerson method always terminates and outputs a flow with value equal to the capacity of the min-cut.

Proof of correctness

- Suppose the Ford-Fulkerson method has terminated (i.e., there does not exist any augmenting path in the residual network).
- We define a cut (S, T) such that:
 - \triangleright S contains every vertex v that is reachable from s in the residual network.
 - ► T contains every other vertex. Note t cannot be in S because it is not reachable from s (there is no further augmenting paths).

Proof of correctness

- The flow of this cut equals to the capacity of this cut:
 - ▶ For each outgoing edge, e.g., $a \rightarrow c$, its flow is equal to the capacity of the edge. Otherwise, edge $a \rightarrow c$ would be in the residual network and c would be reachable from s (but we know this is not the case as $c \notin S$).
 - ▶ For each incoming edge, e.g., $c \to b$, its flow is zero. Otherwise, there would be an edge $b \to c$ in the residual network implying c is reachable from s (but we know this is not the case as $c \not\in S$).

Min-cut max-flow connection used in practice

Original application: US Air Force wanted to identify targets for air strikes to effectively cut off Soviet supply chains in Eastern Europe in case of a conflict during the Cold War.

Min-cut max-flow connection used in practice

- Manage traffic flow and preventing bottlenecks on roads.
- Identifying parts that can lead to catastrophic failures in the power grid.
- Businesses use it to analyse critical parts of their supply chain and operational networks.
- Social networks use it to analyse and optimise flow of information.
- It can help identifying potential vulnerabilities in complex systems and planning to increase their resilience.

Reading

- Course Notes: Chapter 9
- You can also check algorithms' textbooks for contents related to this lecture, e.g.:
 - ▶ CLRS: Sections 26.1 and 26.2
 - ► KT: Sections 7.1, 7.2 and 7.3

Concluding remarks

- Take home message: maximum flow of a network is equal to the capacity of its min-cut and both can be found using Ford-Fulkerson.
- Things to do: make sure you understand Ford-Fulkerson algorithm, why it is correct, and how to use it to find max-flows and min-cuts.
- Coming up next: Circulation with demands, applications of network flow to combinatorial problems.