Α	В	С	D	Е	F	G	Н	I	J	K	L	M
00	01	02	03	04	05	06	07	08	09	10	11	12
N	О	Р	Q	R	S	Τ	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

La transcription numérique de sos est 18 14 18.

Pour coder le S, il faut calculer $18^{17} \mod 3233$:

x	reste r	n	$18^{2^n} \mod 3233$	contribution (si $r = 1$)
17	1	0	18	18
8	0	1	$18^2 \equiv 324$	
4	0	2	$324^2 \equiv 1520$	
2	0	3	$1520^2 \equiv -1195$	
1	1	4	$(-1195)^2 \equiv -961$	-961

$$18^{17} \equiv 18 \cdot (-961) \equiv 2100 \mod 3233$$

Le s est donc crypté en 2100.

Pour coder le 0, il faut calculer $14^{17} \mod 3233$:

x	reste r	n	$14^{2^n} \mod 3233$	contribution (si $r = 1$)
17	1	0	14	14
8	0	1	$14^2 \equiv 196$	
4	0	2	$196^2 \equiv -380$	
2	0	3	$(-380)^2 \equiv -1085$	
1	1	4	$(-1085)^2 \equiv 413$	413

$$14^{17} \equiv 14 \cdot 413 \equiv 2549 \mod 3233$$

Le 0 est ainsi crypté en 2549.

On envoie par conséquent le message crypté 2100 2549 2100.

Pour procéder au déchiffrement du message, il faut déterminer la clé de décryptage d. On a $n=3233=53\cdot 61$ et $\varphi(n)=(53-1)\,(61-1)=3120$.

Résolvons l'équation diophantienne 17 x + 3120 y = 1:

$$3120 = 17 \cdot 183 + 9$$
 \Longrightarrow $9 = 3120 - 17 \cdot 183$
 $17 = 9 \cdot 1 + 8$ \Longrightarrow $8 = 17 - 9 \cdot 1$
 $9 = 8 \cdot 1 + 1$ \Longrightarrow $1 = 9 - 8 \cdot 1$
 $1 = 9 - 8 \cdot 1$

$$1 = 9 - 8 \cdot 1$$

= 9 - (17 - 9 \cdot 1) \cdot 1 = 17 \cdot (-1) + 9 \cdot 2
= 17 \cdot (-1) + (3120 - 17 \cdot 183) \cdot 2 = 3120 \cdot 2 + 17 \cdot (-367)

À partir de la solution particulière $x_0 = -367$ et $y_0 = 2$, on déduit la solution générale :

$$\begin{cases} x = -367 + \frac{3120}{1}k = -367 + 3120k \\ y = 2 - \frac{17}{1}k = 2 - 17k \end{cases}$$
 où $k \in \mathbb{Z}$

La condition $1 < x < \varphi(n) = 3120$ implique k = 1. On conclut que d = -367 + 3120 = 2753.

Pour décoder le nombre 2100, il faut calculer $2100^{2753} \mod 3233$:

x	reste r	n	$2100^{2^n} \mod 3233$	contribution (si $r = 1$)
2753	1	0	2100	2100
1376	0	1	$2100^2 \equiv 188$	
688	0	2	$188^2 \equiv -219$	
344	0	3	$(-219)^2 \equiv -534$	
172	0	4	$(-534)^2 \equiv 652$	
86	0	5	$652^2 \equiv 1581$	
43	1	$61581^2 \equiv 452$	452	
21	1	7	$452^2 \equiv 625$	625
10	0	8	$625^2 \equiv -568$	
5	1	9	$(-568)^2 \equiv -676$	-676
2	0	10	$(-676)^2 \equiv 1123$	
1	1	11	$1123^2 \equiv 259$	259

 $1 \quad | \quad 1 \quad | \quad 1123 \equiv 239$ $2100^{2753} \equiv 2100 \cdot 452 \cdot 625 \cdot (-676) \cdot 259 \equiv 18 \mod 3233$

Le nombre 2100 est donc bien décodé en 18.

Pour décoder le nombre 2549, il faut calculer 2549²⁷⁵³ mod 3233 :

x	reste r	n	$2549^{2^n} \mod 3233$	contribution (si $r = 1$)
2753	1	0	2549	2549
1376	0	1	$2549^2 \equiv -929$	
688	0	2	$(-929)^2 \equiv -170$	
344	0	3	$(-170)^2 \equiv -197$	
172	0	4	$(-197)^2 \equiv 13$	
86	0	5	$13^2 \equiv 169$	
43	1	$6169^2 \equiv -536$	-536	
21	1	7	$(-536)^2 \equiv -441$	-441
10	0	8	$(-441)^2 \equiv 501$	
5	1	9	$501^2 \equiv -1173$	-1173
2	0	10	$(-1173)^2 \equiv -1329$	
1	1	11	$(-1329)^2 \equiv 1023$	1023

 $2549^{2753} \equiv 2549 \cdot (-536) \cdot (-441) \cdot (-1173) \cdot 1023 \equiv 14 \mod 3233$ Le nombre 2549 est donc bien décodé en 14.

On a bien vérifié que le message codé 2100 2549 2100 était décodé en 18 14 18, ce qui correspond à la séquence des lettres sos.