Приложение 2

Исходные данные: La := 0.970 м m1 := 1620 кг д := 9.81
$$\frac{\text{M}}{c^2}$$
 I1 := 498.3 мм L1 := 1470 мм P := 16 МПа $\frac{\text{Cos}\alpha}{c^2}$ I2 := 40.3 мм L2 := 1877 мм I2 := 1877 мм I4 := 193.9 мм

Рисунок 6 - Схема сил для определения усилия на штоке

Построим уравнение момента относительно точки О2

$$\sum_{\bullet} M_{\left(O_2\right)} = N2 \cdot La - F2 \cdot Lb = 0$$

Определим N2

$$N2 = G2$$

Найдем L

$$L := L1 + L2$$

$$L = 3.347 \times 10^3$$
 MM

Определим силу тяжести G

$$G = (m1 + m2)g$$
 $G = 1.913 \times 10^4 \text{ H}$

Изм.	Лист	№ докум.	Подпись	Дата

Найдем G2

$$G2 := \frac{G \!\cdot\! L2}{L}$$

$$G2 = 1.073 \times 10^4 \text{ H}$$

$$N2 := G2 \quad N2 = 1.073 \times 10^4 \text{ H}$$

Определим F2

$$F2 := \frac{\text{N2} \cdot \text{La}}{\text{Lb}} \qquad F2 = 2.76 \times 10^4 \quad \text{H}$$

С учетом двух цилиндров
$$Fшт := \frac{F2}{2}$$
 $Fшт = 13.801 \times 10^3 \, H$

Найдем площадь сечения штока

$$S := \frac{F \coprod T}{P} S = 862.566$$
 MM²

Определим диаметр штока $d = 0.5 \cdot D$

$$S = \frac{\pi \cdot \left(0.75 \cdot D^2\right)}{4}$$

$$D := \sqrt[2]{\frac{4 \cdot S}{0.75 \cdot \pi}}$$
 $D = 38.267 \text{ MM}$

Следовательно диаметр штока равен

$$d := 0.5 \cdot D$$
 $d = 19.133$ MM

Подбираем гидроцилиндр МС 63/30x100

Рисунок 7 - Гидроцилиндр МС 63/30х100

					\mathcal{J}
Изм.	Лист	№ докум.	Подпись	Дата	

Для того чтобы рассчитать гидроцилиндры для параллелограммного механизма, необходимо знать ход штока и усилие на штоке гидроцилиндра. Ход штока гидроцилиндра 225 мм. Определим усилие на штоке.

Рисунок 8 - Схема сил для определения усилия на шток

Определим N1

N1 = G1

Найдем G1

G1 :=
$$\frac{G \cdot L1}{L}$$
 G1 = 8.402×10^3 H

Следовательно

$$N1 := G1 = 8.402 \times 10^3 H$$

$$P2:=\frac{N1\cdot l1}{l2}$$

$$P2 = 1.039 \times 10^5 \text{ H}$$

Определим силу Р3

$$\mathsf{P3} \coloneqq \mathsf{P2} {\cdot} \mathsf{cos} \alpha$$

$$P3 = 8.706 \times 10^4 \text{ H}$$

Определим усилие на шток гидроцилиндра

$$F := \frac{P3 \cdot I3}{I4}$$

$$F = 3.277 \times 10^4 \text{ H}$$

Fut:=
$$F = 3.277 \times 10^4 \text{ H}$$

Изм.	Лист	№ докум.	Подпись	Дата

Определим площадь сечения штока

$$S = 2.048 \times 10^3 \quad \text{mm}^2$$

Найдем диаметр поршня гидроцилиндра

$$\mathbf{D} := \sqrt{\frac{4 \cdot \mathsf{S}}{0.75 \cdot \pi}}$$

D = 58.97 MM

Определим диаметр штока

$$d = 0.5 \cdot D$$

d = 29.485 MM

Подбираем гидроцилиндр МС 75/30х250

Рисунок 9 - Гидроцилиндр MC 75/30x250

Вывод: провели расчет для механизма перевода в транспортное положение и подобрали для него оптимальные гидроцилиндры МС 63/30x100 и МС 75/30x250.

Изм.	Лист	№ докум.	Подпись	Дата