ПРИМЕР РАСЧЕТА РЦФ

Проектируется РЦФ нижних частот на основе аналогово-цифровой трансформации по заданным требованиям к неравномерности АЧХ $\varepsilon_n = 0.015$ в полосе пропускания с частотами от 0 до $f_n = 4.8$ кГц, отклонению от нуля $\varepsilon_n = 0.01$ в полосе задерживания (от граничной частоты $f_3 = 9.6$ кГц до $f = \infty$). Частота дискретизации $f_0 = 48$ кГц.

Коэффициенты фильтра должны быть квантованы до m=24 разрядов (предполагается, что фильтр будет реализован (после испытания на ПЭВМ) на базе микропроцессора DSP-56000). Разрядность входного сигнала ЦФ должна быть 16 (что соответствует использованию 16-ти разрядного АЦП на входе сигнального микропроцессора DSP-56000).

Определить порядок фильтра и системную функцию H(z); рассчитать и построить графики амплитудно-частотной (AЧX), фазо-частотной (ФЧX) и импульсной (ИX) характеристик РЦФ.

Решение. 1. Расчёт нормированных "цифровых" граничных частот:

$$w_n = f_n / f_0 = 4.8 / 48 = 0.1 \text{ M}$$
 $w_3 = f_3 / f_0 = 9.6 / 48 = 0.2.$

2. Расчёт значений коэффициентов затухания:

$$\begin{split} \alpha_{max} &= -20\lg[(1-\varepsilon_n)] = -20\lg[1-0.015] \approx 0.1313 \ \text{дБ}; \\ \alpha_{min} &= -20\lg\varepsilon_3 = -20\lg0.01 = 40 \ \text{дБ}. \end{split}$$

- 3. Расчёт коэффициента γ билинейного преобразования: $\gamma = \text{ctg}(\pi w_n) = \text{ctg}(\pi \cdot 0.1) = 3.077684$.
- 4. Определение граничной "аналоговой" частоты Ω_3 полосы задерживания АФ-прототипа:

$$\Omega_3 = \gamma \cdot \text{tg}(\pi w_3) = 3,077684 \cdot \text{tg}(\pi \cdot 0,2) = 2,236.$$

- 5. Определение передаточной функции H(p) аналогового нормированного фильтра-прототипа нижних частот требуемого типа.
- а) Выбираем фильтр Чебышева типа T с равноволновыми колебаниями A ч в полосе пропускания и равномерным затуханием в полосе задерживания.
- б) Расчёт модуля коэффициента отражения |p|% по заданной величине α_{max} : $|p|\%=100\sqrt{1-e^{-0.23026\cdot0.1313}}\approx 17.26\%$.

При |p| % \approx 17,26% выбираем (см. табл. 1) ближайший меньший модуль коэффициента отражения, т. е. |p| % = 15%. Отметим, что величине |p|% = 15% соответствует α_{max} = 0,0988 дБ, т. е. неравномерность затухания в полосе пропускания рассчитываемого фильтра будет несколько лучше, чем требуется. Такой запас необходим, поскольку представление коэффициентов ЦФ с помощью конечного числа разрядов приводит к изменению характеристики затухания.

в) Определение вспомогательного параметра L по общей номограмме (рис. 12).

Для величин |p|%=15% ($\alpha_{max}=0.0988$ дБ) и $\alpha_{min}=40$ дБ вспомогательный параметр $L\approx0.04$.

- г) Определение порядка N передаточной функции АФ-прототипа по номограммам (рис. 13, a и δ) для фильтра Чебышева типа T. Для величин $L \approx 0.04$ и $\Omega_3 = 2.236$ из номограмм порядок 4 < N < 5. Принимаем N = 5.
 - д) Запись передаточной функции H(p) в общем виде (см. (22)):

$$H(p) = 1/[C(p-a_0)\prod_{i=1}^{2}(p^2-2a_ip+a_i^2+b_i^2)], N = 5.$$

е) Определение численных значений коэффициентов передаточной функции H(p) из таблиц с учётом величин N и |p|%.

Для Т05 (фильтр Чебышева типа T 5-го порядка) и |p|% = 15% (см. табл. 2) (с округлением шестого знака после запятой):

$$C = 2,427464$$
; - $a_0 = 0,540249$; - $a_1 = 0,437071$; $\pm b_1 = 0,668079$; - $a_2 = 0,166946$; $\pm b_2 = 1,080975$.

ж) Запись передаточной функции H(p) аналогового нормированного ФНЧ с численными значениями коэффициентов.

Передаточная функция H(p) аналогового нормированного Φ НЧ

$$H(p) = \frac{1}{2,427464 (p+0,540249)} \cdot \frac{1}{[p^2 + 2 \cdot 0,437071 p + (0,437071^2 + 0,668079^2)]} \times \frac{1}{[p^2 + 2 \cdot 0,166946 p + (0,166946^2 + 1,080975^2)]} = 0,411953 \frac{1}{(p+0,540249)} \times \frac{1}{[p^2 + 0,874142 p + 0,637361]} \cdot \frac{1}{[p^2 + 0,333948 p + 1,196378]} \cdot \frac{1}{[p^2 + 0,874142 p + 0,637361]} \cdot \frac{1}{[p^2 + 0,333948 p + 1,196378]} \cdot \frac{1}{[p^2 + 0,874142 p + 0,637361]} \cdot \frac{1}{[p^2 + 0,333948 p + 1,196378]} \cdot \frac{1}{[p^2 + 0,874142 p + 0,637361]} \cdot \frac{1}{[p^2 + 0,333948 p + 1,196378]} \cdot \frac{1}{[p^2 + 0,874142 p + 0,637361]} \cdot \frac{1}{[p^2 + 0,333948 p + 1,196378]} \cdot \frac{1}{[p^2 + 0,874142 p + 0,637361]} \cdot \frac{1}{[p^2 + 0,333948 p + 1,196378]} \cdot \frac{1}{[p^2 + 0,874142 p + 0,637361]} \cdot \frac{1}{[p^2 + 0,333948 p + 1,196378]} \cdot \frac{1}{[p^2 + 0,874142 p + 0,637361]} \cdot \frac{1}{[p^2 + 0,874142 p + 0,637361]} \cdot \frac{1}{[p^2 + 0,333948 p + 1,196378]} \cdot \frac{1}{[p^2 + 0,874142 p + 0,637361]} \cdot \frac{1}{[p^2 + 0,874142 p + 0,6374142 p + 0,6374$$

6. Расчёт и построение АЧХ $H(\Omega)$ и коэффициента затухания $\alpha(\Omega)$ АФ-прототипа.

Расчёт и построение АЧХ $H(\Omega)$ и коэффициента затухания $\alpha(\Omega)$ (после замены $p=j\Omega$ и вычисления модуля $|H(j\Omega)|$) АФ-прототипа выполняется на ПЭВМ в K (41...81) точках с шагом по частоте DF=(0,05...0,1). Пользователь (после запуска программы DRF.exe и щелчка левой клавишей мыши на кнопке "Новый" на полосе инструментов, см. рис.14, вверху) последовательно вводит значения исходных данных: C; γ , N; a_0 ; a_i ; b_i и щёлкает на кнопке "Запомнить" в окне "Параметры РЦФ" (рис. 14, a). При щелчке мышью на соответствующей кнопке ("АЧХА" и "ЛАЧХА") на экран дисплея выводятся графики функций $H(\Omega)$ и $\alpha(\Omega)$ (рис. 14, δ и ϵ). Если значение коэффициента $\alpha(\Omega)$ равно бесконечности (значение АЧХ равно нулю), то принимается значение $\alpha(\Omega)=200$ дБ.

Рис 15

50

100.

Системная функция H(z) цифрового фильтра нижних частот определяется с помощью подстановки

$$p = \gamma(1-z^{-1})/(1+z^{-1}) = 3,077684 (1-z^{-1})/(1+z^{-1})$$
в выражение $H(p)$:

$$H(z) = 0,411953 \frac{1}{1+z^{-1}} + 0,54024^{\frac{1}{2}} \left[\left(\gamma \frac{1-z^{-1}}{1+z^{-1}} \right)^{2} + 0,874142 \cdot \gamma \frac{1-z^{-1}}{1+z^{-1}} + 0,637361 \right]^{\times}$$

$$\times \frac{1}{\left[\left(\gamma \frac{1-z^{-1}}{1+z^{-1}} \right)^{2} + 0,333948 \cdot \gamma \frac{1-z^{-1}}{1+z^{-1}} + 1,196378 \right]} \cdot H(z) = 0,411953 \frac{1+z^{-1}}{3,617933 \cdot 2,537435^{-1}} \times \frac{\left(1+z^{-1} \right)^{2}}{12,799833 \cdot 17,669556z^{-1} + 7,419167z^{-2}} \times \frac{\left(1+z^{-1} \right)^{2}}{11,696303 - 16,551522z^{-1} + 9,640731z^{-2}} = 0,000076 \frac{1+z^{-1}}{1-0,701349z^{-1}} \times \frac{1+2z^{-1}+z^{-2}}{1-1,380452z^{-1} + 0.579630z^{-2}} \times \frac{1+2z^{-1}+z^{-2}}{1-1,415107z^{-1} + 0.824255z^{-2}} \cdot \frac{1+2z^{-1}+z^{-1}+z^{-1}}{1-1,415107z^{-1} + 0.824255z^{-2}} \cdot \frac{1+2z^{-1}+z^{-1}$$

8. Контрольная проверка устойчивости рассчитанного РЦФ.

Полюсы функции H(z) устойчивого РЦФ должны располагаться внутри единичного круга z-плоскости с центром z=0, т. е. модули полюсов функции H(z) должны быть меньше единицы:

$$z_1 \approx 0.701 < 1; \ |z_{2,3}| \approx |0.69 \pm j0.332| \approx 0.76 < 1; \ |z_{4,5}| \approx |0.708 \pm j0.57| \approx 0.91 < 1.$$

Итак, спроектированный цифровой фильтр устойчив.

Условие устойчивости РЦФ накладывает **ограничения** на коэффициенты b_1 и b_2 знаменателя функции H(z) звеньев 1-го и 2-го порядка:

- для РЦФ 1-го порядка $H(z)=(a_0+a_1z^{-1})/(1+b_1z^{-1}),\ \left|b_1\right|<1;$ - для РЦФ 2-го порядка $H(z)=(a_0+a_1z^{-1}+a_2z^{-2})/(1+b_1z^{-1}+b_2z^{-2}),\ \left|b_1\right|<2\sqrt{b_2}<2$ и $0< b_2<1$.

9. Для вычисления АЧХ и ФЧХ РЦФ классическим методом переходят от системной функции H(z) к комплексному коэффициенту передачи $H(e^{j2\pi w})$, подставляя $z=e^{j\omega\Delta t}=e^{j2\pi w}$,

$$H(e^{j2\pi w}) = \sum_{n=0}^{N-1} a_n e^{-j2\pi wn} \left/ \left(\sum_{m=0}^{M-1} b_m z^{-j2\pi wm} \right) = H(w) e^{\Psi(w)}, \text{ где } b_0 = 1.$$

Здесь a_n и b_m - коэффициенты фильтра; H(w) - АЧХ РЦФ; $\Psi(w)$ - его ФЧХ. Для последовательной каскадной структуры РЦФ коэффициент

$$H(e^{j2\pi w}) = \prod_{i=1}^{M} \frac{a_{0i} + a_{1i}e^{-j2\pi w} + a_{2i}e^{-j4\pi w}}{1 + b_{1i}e^{-j2\pi w} + b_{2i}e^{-j4\pi w}}.$$

В соответствии с формулой Эйлера для комплексных чисел $e^{\pm j2\pi w}=\cos 2\pi w\pm j\sin 2\pi w$

преобразуем комплексный коэффициент передачи РЦФ

$$H(e^{j2\pi w}) = \prod_{i=1}^{M} \frac{a_{0i} + a_{1i}\cos 2\pi w - ja_{1i}\sin 2\pi w + a_{2i}\cos 4\pi w - ja_{2i}\sin 4\pi w}{1 + b_{1i}\cos 2\pi w - jb_{1i}\sin 2\pi w + b_{2i}\cos 4\pi w - jb_{2i}\sin 4\pi w}.$$

Откуда

$$H(w) = \prod_{i=1}^{M} \sqrt{\frac{(a_{0i} + a_{1i} \cos 2\pi w a_{2i} \cos 4\pi w)^2 + (a_{1i} \sin 2\pi w + a_{2i} \sin 4\pi w)^2}{(1 + b_{1i} \cos 2\pi w + b_{2i} \cos 4\pi w)^2 + (b_{1i} \sin 2\pi w + b_{2i} \sin 4\pi w)^2}};$$

$$\Psi(w)=$$

$$= \sum_{i=1}^{M} \left[-\arctan \frac{a_{1i} \sin 2\pi w + a_{2i} \sin 4\pi w}{a_{0i} + a_{1i} \cos 2\pi w + a_{2i} \cos 4\pi w} + \arctan \frac{b_{1i} \sin 2\pi w + b_{2i} \sin 4\pi w}{1 + b_{1i} \cos 2\pi w + b_{2i} \cos 4\pi w} \right].$$

Расчёт и построение АЧХ H(w), ФЧХ $\Psi(w)$ и коэффициента затухания $\alpha(w)$ = $-20 \log[H(w)]$ РЦФ выполняется на ПЭВМ (программы "АЧХЦ", "ФЧХЦ" и "ЛАЧХЦ"). Расчёт осуществляется в K (41...81) точках в диапазоне нормированных частот $w \in [0; 0,5]$. Если значение коэффициента затухания равно бесконечности (значение АЧХ равно нулю), то выводится значение $\alpha(w) = 200$.

После щелчка мышью на соответствующей кнопке панели инструментов на экран дисплея выводятся значения нормированной частоты w и графики АЧХЦ H(w), ФЧХЦ $\Psi(w)$, коэффициента затухания $\alpha(w)$ (см. рис.14, ε , ε и δ).

- 10. Расчёт и построение импульсной характеристики РЦФ (см. рис. 14, ж) осуществляется с помощью программы "ИХЦ".
- 11. Анализ качественных характеристик программной реализации РЦФ выполняется с помощью программы "Тесты". В качестве входных сигналов были выбраны: единичный импульс $\overline{\delta}(k)$ (на выходе импульсная функция g(k) фильтра, рис. 17, δ); единичная последовательность $\overline{1}(k)$

рис. 17, ε (на выходе - переходная функция h(k) фильтра, рис. 17, ε); дискретизированные синусоидальный и косинусоидальный сигналы (рис. 16), вещественный полигармонический сигнал

$$x(k) = \sum_{i=1}^{3} A_i \sin(2\pi w_i k \Delta t),$$

где $A_i = 1$ - амплитуды; w_i нормированные частоты гармонических составляющих, вводимые с клавиатуры в окне "Параметры тест-сигнала" (рис. 15, слева).

На рис.15 (справа) показаны графики полигармонических входного (кнопка "ВхС") и выходного (кнопка "ВыхС") сигналов РЦФ. Анализ графиков показывает, что амплитуды и фазы гармонических составляющих на выходе фильтра изменились в соответствии с АЧХ и ФЧХ фильтра.