

IN THE CLAIMS

Please amend claim 23 as follows:

1. (Original) A recordable disk, comprising:
 - a first plurality of S_1 servo sample wedges in a first servo zone at an outermost position on the disk;
 - a second plurality of S_2 servo sample wedges in a second servo zone which is radially adjacent the first servo zone, where $S_2 = S_1/N_1$ and S_1 , S_2 , and N_1 are integers ≥ 2 ; and
 - the S_2 servo sample wedges of the second plurality being in radial alignment with every N_1 th wedge of the S_1 servo sample wedges of the first plurality.
2. (Original) The recordable disk of claim 1, further comprising:
 - the S_1 servo sample wedges of the first plurality being equally spaced apart circumferentially around the disk by a first angle θ_1 ; and
 - the S_2 servo sample wedges of the second plurality being equally spaced apart circumferentially around the disk by a second angle $\theta_2 = \theta_1 * N_1$.
3. (Original) The recordable disk of claim 2, wherein $N_1 = 2$.
4. (Original) The recordable disk of claim 2, further comprising:
 - a third plurality of S_3 servo sample wedges in a third servo zone which is radially adjacent the second servo zone, where $S_3 = S_2/N_2$ and S_3 and N_2 are integers ≥ 2 ; and
 - the S_3 servo sample wedges of the third plurality being in radial alignment with a every N_2 th wedge of the S_2 servo sample wedges of the second plurality.
5. (Original) The recordable disk of claim 4, further comprising:
 - the S_3 servo sample wedges of the third plurality being equally spaced apart

circumferentially around the disk by a third angle $\theta_3 = \theta_2 * N_2$.

6. (Original) The recordable disk of claim 5, wherein $N_2 = 2$.

7. (Original) The recordable disk of claim 1, further comprising:
a third plurality of S_3 servo sample wedges in a third servo zone which is radially adjacent the second servo zone, where $S_3 = S_2/N_2$, and S_3 and N_2 are integers ≥ 2 ;
the S_3 servo sample wedges of the third plurality being in radial alignment with every N_2 th wedge of the S_2 servo sample wedges of the second plurality;
the S_1 servo sample wedges of the first plurality being equally spaced apart circumferentially around the disk by a first angle θ_1 ;
the S_2 servo sample wedges of the second plurality being equally spaced apart circumferentially around the disk by a second angle $\theta_2 = \theta_1 * N_1$; and
the S_3 servo sample wedges of the third plurality being equally spaced apart circumferentially around the disk by a third angle $\theta_3 = \theta_2 * N_2$.

8. (Original) A recordable disk, comprising:
a first plurality of S_1 servo sample wedges in a first servo zone at an outermost position on the disk;
the S_1 servo sample wedges of the first plurality being equally spaced apart circumferentially around the disk by a first angle θ_1 ;
a second plurality of S_2 servo sample wedges in a second servo zone which is radially adjacent the first servo zone, where $S_2 = S_1/N_1$ and S_1, S_2 and N_1 are integers ≥ 2 ;
the S_2 servo sample wedges of the second plurality being equally spaced apart circumferentially around the disk by a second angle $\theta_2 = \theta_1 * N_1$; and
the S_2 servo sample wedges of the second plurality being in radial alignment with every N_1 th wedge of the S_1 servo sample wedges of the first plurality.

9. (Original) A recording device, comprising:
at least one recordable disk;
a spindle supporting the at least one recordable disk;
a motor for rotating the at least one recordable disk;
a recording head for recording data to the at least one recordable disk;
the at least one recordable disk further including:
 a first plurality of S_1 servo sample wedges in a first servo zone at an outermost position on the recordable disk;
 a second plurality of S_2 servo sample wedges in a second servo zone which is radially adjacent the first servo zone, where $S_2 = S_1/N_1$ and S_1 , S_2 , and N_1 are integers ≥ 2 ; and
 the S_2 servo sample wedges of the second plurality being in radial alignment with every N_1 th wedge of the S_1 servo sample wedges of the first plurality.

10. (Original) The recording device of claim 9, further comprising:
the S_1 servo sample wedges of the first plurality being equally spaced apart circumferentially around the disk by a first angle θ_1 ; and
the S_2 servo sample wedges of the second plurality being equally spaced apart circumferentially around the disk by a second angle $\theta_2 = \theta_1 * N_1$.

11. (Original) The recording device of claim 10, wherein $N_1 = 2$.

12. (Original) The recording device of claim 10, further comprising:
a third plurality of S_3 servo sample wedges in a third servo zone which is radially adjacent the second servo zone, where $S_3 = S_2/N_2$ and S_3 and N_2 are integers ≥ 2 ; and
the S_3 servo sample wedges of the third plurality being in radial alignment with every N_2 th one of the S_2 servo sample wedges of the second plurality.

13. (Original) The recording device of claim 12, further comprising:
the S_3 servo sample wedges of the third plurality being equally spaced apart circumferentially around the disk by a third angle $\theta_3 = \theta_2 * N_2$.
14. (Original) The recording device of claim 13, wherein $N_2 = 2$.
15. (Original) The recording device of claim 9, further comprising:
a third plurality of S_3 servo sample wedges in a third servo zone which is radially adjacent the second servo zone, where $S_3 = S_2/N_2$ and S_3 and N_2 are integers ≥ 2 ;
the S_3 servo sample wedges of the third plurality being in radial alignment with every other one of the S_2 servo sample wedges of the second plurality;
the S_1 servo sample wedges of the first plurality being equally spaced apart circumferentially around the disk by a first angle θ_1 ;
the S_2 servo sample wedges of the second plurality being equally spaced apart circumferentially around the disk by a second angle $\theta_2 = \theta_1 * N_1$; and
the S_3 servo sample wedges of the third plurality being equally spaced apart circumferentially around the disk by a third angle $\theta_3 = \theta_2 * N_2$.
16. (Original) A method of writing servo samples on a recordable disk, the method comprising the acts of:
writing a first plurality of S_1 servo sample wedges in a first servo zone at an outermost position on the recording disk; and
writing a second plurality of S_2 servo sample wedges in a second servo zone which is radially adjacent the first servo zone, such that the S_2 servo sample wedges of the second plurality are in radial alignment with every N_1 th wedge of the S_1 servo sample wedges of the first plurality, where $S_2 = S_1/N_1$ and S_1 , S_2 , and N_1 are integers ≥ 2 .
17. (Original) The method of claim 16, further comprising:
wherein writing the first plurality of S_1 servo sample wedges further includes

writing such that the S_1 servo sample wedges of the first plurality are equally spaced apart circumferentially by a first angle θ_1 ; and

wherein writing the second plurality of S_2 servo sample wedges further includes writing such that the S_2 servo sample wedges of the second plurality are equally spaced apart circumferentially by a second angle $\theta_2 = \theta_1 * N_1$.

18. (Original) The method of claim 17, wherein $N_1 = 2$.

19. (Original) The method of claim 16, further comprising:

writing a third plurality of S_3 servo sample wedges in a third servo zone which is radially adjacent the second servo zone, such that the S_3 servo sample wedges of the third plurality are in radial alignment with every N_2 th wedge of the S_2 servo sample wedges of the second plurality, where S_3 is an integer and $S_3 = S_2/N_2$.

20. (Original) The method of claim 16, further comprising:

wherein writing the third plurality of S_3 servo sample wedges further includes writing such that the S_3 servo sample wedges of the third plurality are equally spaced apart circumferentially by a third angle $\theta_3 = \theta_2 * N_2$.

21. (Original) The method of claim 16, wherein $N_2 = 2$.

22. (Original) The method of claim 16, further comprising:

writing a third plurality of S_3 servo sample wedges in a third servo zone which is radially adjacent the second servo zone, where $S_3 = S_2/N_2$ and S_3 and N_2 are integers ≥ 2 ;

wherein writing the third plurality of S_3 servo sample wedges further includes writing such that the S_3 servo sample wedges of the third plurality are in radial alignment with every N_2 th wedge of the S_2 servo sample wedges of the second plurality;

wherein writing the first plurality of S_1 servo sample wedges further includes writing such that the S_1 servo sample wedges of the first plurality are equally spaced

apart circumferentially by a first angle θ_1 ;

wherein writing the second plurality of S_2 servo sample wedges further includes writing such that the S_2 servo sample wedges of the second plurality are equally spaced apart circumferentially by a second angle $\theta_2 = \theta_1 * N_1$; and

wherein writing the third plurality of S_3 servo sample wedges further includes writing such that the S_3 servo sample wedges of the third plurality are equally spaced apart circumferentially by a third angle $\theta_3 = \theta_2 * N_2$.

23. (Currently Amended) A recordable disk, comprising:

a first plurality of S_1 servo sample wedges which are equally spaced apart circumferentially around the disk;

each wedge of the first plurality of S_1 servo sample wedges contiguously radially extending from an outermost position on the disk to an innermost position on the disk;

a second plurality of S_2 servo sample wedges which are ~~equally spaced apart circumferentially around the disk and interleaved with the first plurality of S_1 servo sample wedges such that the S_1 and S_2 servo sample wedges are equally spaced apart circumferentially along the outermost position on the disk~~; and

each wedge of the second plurality of S_2 servo sample wedges contiguously radially extending from the outermost position on the disk to a first intermediate position on the disk in between the outermost and innermost positions.

24. (Original) The recordable disk of claim 23, wherein $S_1 = S_2$.

25. (Original) The recordable disk of claim 23, further comprising:

a third plurality of S_3 servo sample wedges which are equally spaced apart circumferentially around the disk and interleaved with the second plurality of S_2 servo sample wedges; and

each wedge of the third plurality of S_3 servo sample wedges contiguously radially extending from the outermost position on the disk to a second intermediate position on

the disk in between the outermost position and the first intermediate position.

26. (Original) The recordable disk of claim 25, wherein $S_3 = S_1 + S_2$.

27. (Original) A method of track following on a recordable disk having a first plurality of S_1 servo sample wedges in a first servo zone and a second plurality of S_2 servo sample wedges in a second servo zone, wherein the S_1 servo sample wedges of the first plurality are equally spaced apart circumferentially around the disk by a first angle θ_1 and the S_2 servo sample wedges of the second plurality are equally spaced apart circumferentially around the disk by a second angle θ_2 , the method comprising the acts of:

performing a track following operation based on detecting S_1 servo samples per disk revolution in the first servo zone; and

performing a track following operation based on detecting $S_2 = S_1/N_1$ servo samples per disk revolution in the second servo zone, where S_1 , S_2 , and N_1 are integers ≥ 2 .

28. (Original) The method of claim 27, wherein the S_2 servo samples are in radial alignment with every N_1 th sample of the S_1 servo samples.

29. (Original) The method of claim 28, wherein $N_1 = 2$.

30. (Original) The method of claim 27, further comprising:

performing a track following operation based on detecting $S_3 = S_2/N_2$ servo samples per disk revolution in a third servo zone, where S_3 and N_2 are integers ≥ 2 .

31. (Original) The method of claim 30, wherein the S_3 servo samples are in radial alignment with every N_2 th sample of the S_1 servo samples.

32. (Original) The method of claim 30, wherein $N_2 = 2$.