Pseudo-Prova de Análise de Algoritmos Unirio

Aluno:

Professor: Guilherme Dias da Fonseca Data da prova de verdade: 18/04/2011

Tempo de prova: 2 horas

Permitida a consulta somente a uma folha de papel A4.

1. (20 pontos) Para cada par de expressões A,B na tabela abaixo, marque Verdadeiro ou Falso para A ser O, o, Ω , ω e Θ de B. Considere que log representa o logaritmo base 2. Uma linha da tabela será considerada errada caso algum dos itens da linha estiver errado.

	A	B	O	0	Ω	ω	Θ
(a)	100n	$n \log n$					
(b)	$n^{3/2}$						
(c)	$e^{\log n}$	$ \begin{vmatrix} n\sqrt{n} \\ e^{\ln n} \end{vmatrix} $					
(d)	$\log n$	$\ln n$					
(e)	$\log^{100} n$	$n^{1/100}$					
(f)	$\log n / \log \log n$	$\log_{\log n} n$					
(g)	n^n	$\mid n! \mid$					
(h)	$n \log n$	$\log(n!)$					

2. (10 pontos) Um algoritmo de divisão e conquista resolve problemas de tamanho n dividindo-os em 5 subproblemas de tamanho n/2, solucionando cada problema recursivamente e, então, combinando as soluções em tempo $O(n\sqrt{n})$. Qual a complexidade deste algoritmo?

Aluno:

3. (10 pontos) Qual a complexidade do algoritmo abaixo que recebe como entrada um vetor v com n elementos?

```
x = 0
c = n
enquanto c >= 1:
    para i de 1 até c:
        x = x + v[i]
    c = c / 2
```

4. (20 pontos) Dada uma sequência ordenada de inteiros distintos a_1, a_2, \ldots, a_n , descreva um algoritmo que determina se existe um índice i tal que $a_i = i$. Analise a complexidade do seu algoritmo. O algoritmo será considerado **tão melhor quanto menor** for sua complexidade!

Λ 1	
Alui	no:

5. (20 pontos) Descreva em português o algoritmo determinístico para selecionar o k-ésimo menor elemento de um conjunto em tempo linear. Não é necessário apresentar a análise de complexidade do algoritmo, mas apenas uma descrição precisa dele.

6. (20 pontos) Forneça um algoritmo de tempo linear que tome como entrada um grafo e determine se ele é bipartido. Lembrando que um grafo é bipartido se seus vértices podem ser particionados em dois conjuntos V_1, V_2 de modo que toda aresta tenha um extremo em V_1 e o outro extremo em V_2 .