Rozwiązywanie równań nieliniowych

Dawid Żak

Szymon Hołysz

2025-05-20

Table of contents

Zadanie 1	1
Zadanie 2.	
Zadanie 3	<i>6</i>
Zadanie 4	

Zadanie 1.

Dla poniższych funkcji i punktów początkowych metoda Newtona zawodzi. Wyjaśnij dlaczego. Następnie znajdź pierwiastki, modyfikując wywołanie funkcji scipy.optimize.newton lub używając innej metody.

a)
$$f(x) = x^3 - 5x$$
, $x_0 = 1$

b)
$$f(x) = x^3 - 3x + 1, x_0 = 1$$

c)
$$f(x) = 2 - x^5$$
, $x_0 = 0.01$

d)
$$f(x) = x^4 - 4.29x^2 - 5.29, x_0 = 0.8$$

Próba metody Newtona i bisection jako zapasowa:

(a)

Newton FAIL: Failed to converge after 50 iterations, value is 1.0. Newton OK z nowym punktem: znaleziono pierwiastek x = 2.23606797749979

(b)

Newton FAIL: Derivative was zero. Failed to converge after 1 iterations, value is 1.0.

Newton OK z nowym punktem: znaleziono pierwiastek x = 1.532088886237956

(c)

Newton FAIL: Failed to converge after 50 iterations, value is 713.6238464957056. Newton OK z nowym punktem: znaleziono pierwiastek x = 1.148698354997035

(d)

Newton FAIL: Failed to converge after 50 iterations, value is 0.7876130494100906. Newton OK z nowym punktem: znaleziono pierwiastek x = 2.3

Zadanie 2.

Dane jest równanie:

$$f(x) = x^2 - 3x + 2 = 0$$

Każda z następujących funkcji definiuje równoważny schemat iteracyjny:

$$\phi_1(x) = (x^2 + 2)/3$$

$$\phi_2(x) = \sqrt{3x - 2}$$

$$\phi_3(x) = 3 - 2/x$$

$$\phi_A(x) = (x^2 - 2)/(2x - 3)$$

- Przeanalizuj zbieżność oraz rząd zbieżności schematów iteracyjnych odpowiadających funkcjom $\phi_i(x)$ dla pierwiastka $\alpha=2$ badając wartość $|\phi_i'(2)|$.
- Potwierdź analizę teoretyczną implementując powyższe schematy iteracyjne i weryfikując ich zbieżność (lub brak). Każdy schemat iteracyjny wykonaj przez 10 iteracji. Wyznacz eksprymentalnie rząd zbieżności każdej metody iteracyjnej ze wzoru \$ r = \$ gdzie błąd bezwzględny ε_k definiujemy jako $\varepsilon_k = |x_k x_*|, x_k$ jest przybliżeniem pierwiastka w k-tej iteracji, a x_* dokładnym położeniem pierwiastka równania.
- Na wspólnym rysynku przedstaw wykresy błędu względnego każdej metody w zależności od numeru iteracji. Użyj skali logarytmicznej na osi y (pomocna będzie funkcja semilogy).
- Stwórz drugi rysunek, przedstawiający wykresy błędu względnego tylko dla metod zbieżnych.

Fixed point iteration results:

	φ_1(x)	φ_2(x)	φ_3(x)	φ_4(x)
Iteration 0	3.000000e+00	3.000000	3.000000	3.000000
Iteration 1	3.666667e+00	2.645751	2.333333	2.333333
Iteration 2	5.148148e+00	2.436648	2.142857	2.066667
Iteration 3	9.501143e+00	2.304332	2.066667	2.003922
Iteration 4	3.075724e+01	2.216528	2.032258	2.000015
Iteration 5	3.160026e+02	2.156289	2.015873	2.000000
Iteration 6	3.328655e+04	2.113970	2.007874	2.000000
Iteration 7	3.693315e+08	2.083725	2.003922	2.000000
Iteration 8	4.546858e+16	2.061838	2.001957	2.000000
Iteration 9	6.891304e+32	2.045853	2.000978	2.000000
Iteration 10	1.583003e+65	2.034099	2.000489	2.000000

Experimental convergence orders:

	φ_1(x)	φ_2(x)	φ_3(x)	φ_4(x)
Iteration 1	1.2450	0.8947	0.7712	1.4650
Iteration 2	1.3652	0.9226	0.8995	1.7604
Iteration 3	1.5478	0.9429	0.9525	1.9586
Iteration 4	1.7789	0.9577	0.9769	1.9986
Iteration 5	1.9508	0.9686	0.9886	NaN
Iteration 6	1.9973	0.9766	0.9943	NaN
Iteration 7	2.0000	0.9826	0.9972	NaN
Iteration 8	2.0000	0.9870	0.9986	NaN
Iteration 9	2.0000	0.9903	0.9993	NaN

Pochodne funkcji definiujących schematy iteracyjne:

$$|\phi_1'(2)| = 4/3$$

$$|{\phi_2}'(2)| = 3/5$$

$$|\phi_3'(2)| = 1/2$$

$$|\phi_4{}'(2)| = 0$$

Powyższe pochodne są mniejsze od 1, oprócz pochodnej ϕ_1 , dlatego pozostałe schematy powinny być zbieżne. I tak jest w istocie. Schemat iteracyjny ϕ_1 jest rozbieżny, natomiast pozostałe są zbieżne do wartości x=2.

Jeśli chodzi o rząd zbieżności, metody 1. i 4. mają rząd zbieżności równy 2, czyli są kwadratowe. Metody 2. i 3. mają empiryczny rząd zbieżności równy 1.

Powyżej przedstawione są wykresy błędów względnych w kolejnych krokach iteracyjnych. Wyraźnie widać, że metoda 4. ma rząd zbieżności większy od liniowego.

Zadanie 3.

Napisz schemat iteracji wg metody Newtona dla każdego z następujących równań nieliniowych:

- a) $x^3 2x 5 = 0$
- b) $e^{-x} = x$
- c) $x \sin(x) = 1$.

Rozwiązania 4bit:

	x0 4bit	Liczba iteracji
f1	2.094568	2
f2	0.567143	2
f3	1.114157	2

Rozwiązania 24bit:

	x0 24bit	Liczba iteracji
f1	2.094551	2
f2	0.567143	2
f3	1.114157	1

Rozwiązania 53bit:

	x0 53bit	Liczba iteracji
f1	2.094551	3
f2	0.567143	3
f3	1.114157	1000

Dla wszystkich schematów iteracyjnych poza f3 dla 53 bitów, bardzo szybko zostały osiągnięte docelowe dokładności, dla f3 53 bity nie została osiągnięta docelowa dokładność w 1000 iteracjach, czyli zapewne nie zostanie ona osiągnięta.

Zadanie 4.

Napisz schemat iteracji wg metody Newtona dla następującego układu równań nieliniowych:

$$x_1^2 + x_2^2 = 1$$

$$x_1^2 - x_2 = 0$$

Korzystając z faktu, że dokładne rozwiązanie powyższego układu równań to:

$$x_1=\pm\sqrt{\frac{\sqrt{5}}{2}-\frac{1}{2}}$$

$$x_2 = \frac{\sqrt{5}}{2} - \frac{1}{2}$$

oblicz błąd względny rozwiązania znalezionego metodą Newtona

```
Wyniki dla rozwiązania z dodatnim x1:
Wartość teoretyczna: x1 = 0.78615138, x2 = 0.61803399
Wartość numeryczna (metoda Newtona): x1 = 0.78615138, x2 = 0.61803399
Błąd względny składowej x1: 0.000000000e+00
Błąd względny składowej x2: 1.79637859e-16

Wyniki dla rozwiązania z ujemnym x1:
Wartość teoretyczna: x1 = -0.78615138, x2 = 0.61803399
Wartość numeryczna (metoda Newtona): x1 = -0.78615138, x2 = 0.61803399
Błąd względny składowej x1: 0.00000000e+00
Błąd względny składowej x2: 1.79637859e-16
```

W obu przypadkach obliczone wartości są prawie identyczne - różnica występuje dopiero na szesnastym miejscu po przecinku. W przypadku pierwiastka x_1 algorytm znalazł pierwiastek dodatni, ponieważ obie podane wartości są prawidłowymi rozwiązaniami.