First, the tape symbols are

 $^{TM}(q_0, a) \rightarrow (q_1, Xaabbb, R)$

 $^{\text{TM}}(q_1, a) \rightarrow (q_1, Xaabbb, R)$

 $^{\text{TM}}(q_1,\,a) \rightarrow (q_1,\,Xaabbb,\,R)$

 $^{\text{TM}}(q_1, b) \rightarrow (q_2, XaaYbb, L)$

 $^{\text{TM}}(q_2, a) \rightarrow (q_2, XaaYbb, L)$

 $^{\text{TM}}(q_2, a) \rightarrow (q_2, XaaYbb, L)$

 $^{\text{TM}}(q_2, X) \rightarrow (q_0, XaaYbb, R)$

 $^{TM}(q_0, a) \rightarrow (q_1, XXaYbb, R)$

 $^{\text{TM}}(q_1,\,a) \to (q_1,\, XXaYbb,\, R)$

 $^{\text{TM}}(q_1,\,Y) \to (q_1,\,XXaYbb,\,R)$

B a a a b b b B

B | X | a | a | b | b | B

B X a a b b b B

B X a a b b b B

| B | X | a | a | Y | b | b | B

| B | X | a | a | Y | b | b | B |

| B | X | a | a | Y | b | b | B

| B | X | a | a | Y | b | b | B

| B | X | X | a | Y | b | b | B

| B | X | X | a | Y | b | b | B |

B X X a Y b b B

 $^{\text{TM}}(q_1,\,b) \rightarrow (q_2,\,XXaYYb,\,L)$

B X X a Y Y b B

 $^{TM}(q_2, Y) \rightarrow (q_2, XXaYYb, L)$

B X X a Y Y b B

 $^{\text{TM}}(q_2, a) \rightarrow (q_2, XXaYYb, L)$

B X X a Y Y b B

 $^{\text{TM}}(q_2, X) \rightarrow (q_0, XXaYYb, R)$

B X X a Y Y b B

 $^{\text{TM}}(q_0, a) \rightarrow (q_1, XXXYYb, R)$

| B | X | X | X | Y | Y | b | B |

 $^{\text{TM}}(q_1,\,Y) \to (q_1,\,XXXYYb,\,R)$

B X X X Y Y B B

 $^{\text{TM}}(q_1, Y) \rightarrow (q_1, XXXYYb, R)$

| B | X | X | X | Y | Y | b | B

 $^{\text{TM}}(q_1,\,b) \to (q_2,\, XXXYYY,\, L)$

| B | X | X | X | Y | Y | B

 $^{\text{TM}}(q_2,\,Y) \rightarrow (q_2,\,XXXYYY,\,L)$

| B | X | X | X | Y | Y | Y | B

 $^{\text{TM}}(q_2,\,Y) \rightarrow (q_0,\,XXXYYY,\,R)$

BXXXXYYYB

 $^{\text{TM}}(q_0,\,Y) \rightarrow (q_3,\,XXXYYY,\,R)$

B X X X Y Y B

В Χ Χ Υ Υ В Χ Υ $^{TM}(q_3, Y) \rightarrow (q_3, XXXYYY, R)$ В Χ Χ Χ Υ Υ В Υ $^{TM}(q_3, Y) \rightarrow (q_3, XXXYYY, R)$ В Χ Χ Χ В $^{TM}(q_3, Y) \rightarrow (q_3, XXXYYY, R)$ Χ В Χ Χ $^{TM}(q_3, B) \rightarrow (q_3, XXXYYY, H)$

Exampel 8.3 Design a TM to accept the language

$$L = \{WW_R, \text{ where } W \in (a, b)^+\}$$

Show an ID for the string 'abaaaaba' with tape symbols.

Solution: W^R is the reverse of W. If W starts with 'a' or 'b', W^R ends with 'a' or 'b', respectively. If W ends with 'a' or 'b', W^R starts with 'a' or 'b', respectively. The TM can be designed as follows.

If the string W starts with 'a', upon traversal, that 'a' is replaced by X with a state change from q_0 to q_1 , and the head moves to one right. The transitional function is

$$^{\text{TM}}(q_0, a) \rightarrow (q_1, X, R)$$

 W^R ends with 'a' if W starts with 'a'. The machine needs to search the end 'a' of W^R . Before that, the machine needs to traverse the end symbols of W and the beginning symbols of W^R . The transitional functions are

$$^{TM}(q_1, a) \rightarrow (q_1, a, R)$$

$$^{TM}(q_1, b) \rightarrow (q_1, b, R)$$

After the end symbol of $W^{\scriptscriptstyle R}$, there exists the blank symbol B. In the traversal process, if the machine gets a B, it traverses back to the left side and gets the end symbol of $W^{\scriptscriptstyle R}$. The transitional functions are

$$^{\text{TM}}(q_1,\,B) \to (q_2,\,B,\,L)$$

$$^{TM}(q_2, a) \rightarrow (q_3, X, L)$$

Now, the machine needs to search for the second symbol of W. Before that, it has to traverse the beginning symbols of W^{ϵ} and the end symbols of W. The transitional functions are

$$^{TM}(q_3, a) \rightarrow (q_3, a, L)$$

$$TM(q_3, b) \rightarrow (q_3, b, L)$$

When the machine gets the rightmost X, it recognizes that the next symbol of W exists after that 'X'. The transitional function is

$$^{TM}(q_3, X) \rightarrow (q_0, X, R)$$

If the string W starts with 'b', the transitions are the same as the previous one but with some states changed. The transitional functions are

$$\begin{split} & ^{\text{TM}}(q_0, \, a) \to (q_4, \, Y, \, R) \\ & ^{\text{TM}}(q_4, \, a) \to (q_4, \, a, \, R) \\ & ^{\text{TM}}(q_4, \, b) \to (q_4, \, b, \, R) \\ & ^{\text{TM}}(q_4, \, B) \to (q_5, \, B, \, L) \\ & ^{\text{TM}}(q_5, \, b) \to (q_6, \, Y, \, L) \\ & ^{\text{TM}}(q_6, \, a) \to (q_6, \, a, \, L) \\ & ^{\text{TM}}(q_6, \, b) \to (q_6, \, b, \, L) \\ & ^{\text{TM}}(q_6, \, b) \to (q_0, \, Y, \, R) \end{split}$$

After the fi rst traversal, i.e., from the second traversal onwards, the machine need not traverse up to the end of W^R . In state q_1 (W starts with 'a') or q_4 (W starts with 'b'), if the machine gets X or Y, it traverses back to the left to point the rightmost 'a' or 'b'. The transitional functions are

$$\label{eq:total_total_total_total} \begin{split} & \mbox{\tiny TM}(q_1,\,X) \rightarrow (q_2,\,X,\,L) \\ & \mbox{\tiny TM}(q_1,\,Y) \rightarrow (q_2,\,Y,\,L) \\ & \mbox{\tiny TM}(q_4,\,X) \rightarrow (q_5,\,X,\,L) \\ & \mbox{\tiny TM}(q_4,\,Y) \rightarrow (q_5,\,Y,\,L) \end{split}$$

When all the symbols of W and W^a are traversed, the machine gets an X or Y in the state q_0 . The machine halts if in state q_0 it gets an X or Y. The transitional functions are

$$\label{eq:total_total_total} \begin{split} & \mbox{\tiny TM}(q_0,\,X) \rightarrow (q_f,\,X,\,H) \\ & \mbox{\tiny TM}(q_0,\,Y) \rightarrow (q_f,\,Y,\,H) \end{split}$$

The transitional functions can be given in a tabular format as follows.

state	а	В	В	Х	Υ
\mathbf{q}_0	(q_1, X, R)	(q_4, Y, R)	_	(q _f , X, H)	(q _f , Y, H)
qı	(q ₁ , a, R)	(q ₁ , b, R)	(q_2, B, L)	(q_2, X, L)	(q_2, Y, L)
\mathbf{q}_2	(q ₃ , X, L)	_	_	_	_
q ₃	(q ₃ , a, L)	(q ₃ , b, L)		(q_0, X, R)	_
q ₄	(q4, a, R)	(q ₄ , b, R)	(q5, B, L)	(q_5, X, L)	(q5, Y, L)
q 5	_	(q_6, Y, L)	_	_	_
q ₆	(q6, a, L)	(q_6, b, L)	_	_	(q_0, Y, R)