Arquitetura de Computadores

PROF. ISAAC

Exercícios

Exercícios

- 1) Um sistema possui memória com 2G de endereços e cada célula é composta por 2 Bytes.
- a) Qual o tamanho da memória?
- b) Quantos bits são necessários no barramento de endereço para acesso as células dessa memória?

c) Quantos bits são necessários no barramento de dados para acesso aos dados da memória?

Exercícios:

Exercício 2:

Some dois números de 8 bits. Armazene em R0 o resultado da soma de R5 com R6 (R0 \leftarrow R5 + R6).

Exercícios

Exercício 3:

Multiplique dois números de 8 bits. Armazene em [R0 R1] o resultado da multiplicação de R5 por R6. Ou seja, faça [R0 R1] ← R5 x R6.

Exercícios.

Exercício 4:

Divida dois números de 8 bits. Armazene em R0 o quociente e em R1 o resto da divisão de R4 por R5, supondo R4 ≠ 0. Segundo a notação, faça: R0(q) e R1(r) ← R4 / R5.

Exercícios:

Exercício 5:

Coloque em R1 um valor entre 20H e 4Fh.

Coloque em R0 um valor entre 50H e 7Fh.

Some dois valores da memória. Armazene em R3 o resultado da soma do valor armazenado no endereço de memória com o valor armazenado no outro endereço de memória.

(Use endereçamento indireto - @R0 e @R1)

Exemplo:

R3 ← 28h + 52h

Coloque valores nos endereços de memória escolhido para verificar se o calculo está correto.

Exercícios.

Exercício 6:

Some dois números de 16 bits sem ignorar o Carry. Armazene em [R6 R5 R4] o resultado da soma de [R3 R2] com [R1 R0]. Note a indicação de números de 16 bits por: [MSB LSB].

Ou seja, faça [R6 R5 R4] ← [R3 R2] + [R1 R0].

Exercício

Exercício 7:

Monte o OPCODE.

Instrução	OPCODE
MOV A, R1	
ADD A, RO	
MOV R6, A	
CLR A	
ADDC A, #0	
MOV R7, A	

			bytes	MC	Op1	Op2	Ор3
		Rn	1	1	E8+n	-	-
MOV	MOV A,		2	1	E5	end8	-
l			1	1	E6+i	-	-
		#dt8	2	1	74	dt8	-
		Α	1	1	F8+n	-	-
MOV	Rn,	end8	2	2	A8+n	end8	-
			2	1	78+n	dt8	-
		Α	2	1	F5	end8	-
l		Rn	2	2	88+n	end8	-
MOV	end8,	end8	3	2	85	end8 (fonte)	end8 (destino)
l		@Ri	2	2	86+i	end8	-
		#dt8	3	2	75	end8	dt8
		Α	1	1	F6+i	-	-
MOV	@Ri	end8	2	2	A6+i	end8	-
		#dt8	2	1	76+i	dt8	-
MOV	DPTR	#dt16	3	2	90	MSB(dt16)	LSB(dt16)

			Bytes	MC	Op1	Op2
		Rn	1	1	28+n	-
ADD	Α,	end8	2	1	25	end8
		@Ri	1	1	26+i	-
		#dt8	2	1	24	dt8

		Bytes	MC	Ор1	Op2
	Α	1	1	14	-
DEC	Rn	1	1	18+n	-
	end8	2	1	15	end8
	@Ri	1	1	16+i	-

		Bytes	MC	Op1	Op2
	Rn	1	1	38+n	-
ADDC A,	end8	2	1	35	end8
	@Ri	1	1	36+i	-
	#dt8	2	1	34	dt8

		Bytes	MC	Ор1	Op2
	Α	1	1	04	-
INC	Rn	1	1	08+n	-
	end8	2	1	05	end8
	@Ri	1	1	06+i	-

		Bytes	MC	Op1	Op2
	Rn	1	1	98+n	-
SUBB A,	end8	2	1	95	end8
	@Ri	1	1	96+i	-
	#dt8	2	1	94	dt8

		Bytes	MC	Ор
CLR	Α	1	1	E4

	Bytes	MC	Ор
MUL AB	1	4	A4
DIV AB	1	4	84

Bibliografia

Gimenez, Salvador P. Microcontroladores 8051 - Teoria e Prática, Editora Érica, 2010.

ZELENOVSKY, R.; MENDONÇA, A. Microcontroladores Programação e Projeto com a Família 8051. MZ Editora, RJ, 2005.