Database Internals

Leanne Wu

lewu@ucalgary.ca

Department of Computer Science

The DBMS as a black box

Tracing a query through the system

Consider the following query

```
SELECT library, postal code FROM library_locations WHERE Monday_Close > '6:00';
```

What happens to this query once the database management system receives it?

Inside the black box

Query Processing

Parsing

• Takes the text of the query and ensures that it is consistent with syntax and existing objects in the system

Rewrite

Uses preset rules to rewrite queries so that they can be more easily executed

Optimization

- Creates a plan to access each unit of data required to execute the query
- Queries are broken into separate operations

Execution

Each
operation
identified
by the
optimizer is
performed.

Storage Management

Transaction Services

Responsible for ensuring that data remains consistent despite multiple concurrent operations

Buffer Manager

Manages memory allocated for buffering data retrieved from disk

Storage Manager

Manages the retrieval and writing of data from disk

Recovery Services

Maintains the transaction log and commits data as necessary

Utilities

Depend on the specific platform, but might include utilities for rapid loading of data, creating backups, others

Where is the data?

 The simplest format for storing data is to keep each table in its own file

- Tables are logically organized into *tablespaces*, which organize disk storage for all space used by a database
 - determines the physical location of the data
 - may determine the physical format of the data
 - may determine the size of each individual block of data
 - may determine how the operating system participates in managing physical storage

The physical organization of individual tables

- Each table is split into small blocks or pages
 - common default size of these blocks is 8 kB (but this can be changed)
 - transactional systems prefer smaller blocks
 - analytics-heavy systems may prefer larger blocks
- Data is usually not stored in any specified order
 - Indexes are a physical structure which may be built on specified keys to allow traversal of data in a particular order
 - Indexes are typically based on B+-trees but this varies by platform
 - Clustered indexes can be built to guarantee physical ordering of data
 - The creation of indexes takes processing time when records are inserted or modified and additional physical storage

Buffering

- More important on platforms other than MySQL
- Large areas of memory (commonly called: buffer, buffer cache, bufferpool) caches data which is retrieved from disk to minimize I/O
 - Cache hit ratio: ratio of read operations (i.e. how many pages or blocks) satisfied by an element in the buffer vs those which must be read by disk
 - Most platforms allow multiple buffer areas per database and can be assigned to a set of tables

Storage and Queries

- The optimizer must decide where to pull data from, how much, and at what point
 - There may be more than one possible combination of operations that can be used to retrieve data
 - Typical operations:
 - table scan: scan through entire table to retrieve values
 - index scan: use index to traverse entire table to retrieve values
 - Goal is to minimize I/O, keep cardinality (the number of rows) small, do as much work in parallel as possible

A note on NoSQL databases

- Architecture varies very much by platform
- For example: MySQL document store
 - Each collection is a table
 - Each document in a collection is its own row in the collection's table
 - Two attributes: JSON and a unique ID
- Some design rules may help to improve query performance
 - keep JSON objects relatively flat
 - put similar documents together (the semantics of collections might help to improve usability & query performance)