Universidad Nacional Experimental del Táchira Departamento de Ingeniería electrónica Automatización

Jesús Reyes C.I 24.152.665

Maribal Zambrano C.I 24.819.737

Loreana Zambrano C.I 24.356.109

Informe Técnico del Proyecto

Descripción

Se pretende controlar el llenado y vaciado de un tanque de agua de capacidad finita utilizando para tal fin la teoría de autómatas. Se procedió en primera instancia a identificar las variables involucradas en el proceso y a asociarlas con un determinado símbolo que posee un rango de valores posible, con dichos símbolos construyó un lenguaje formal que representa el funcionamiento del sistema para luego implementarlo junto a un autómata finito determinista sobre la plataforma NodeMCU.

Identificación de variables

El sistema de llenado/vaciado del tanque de agua fue simplificado a la siguiente figura:

En este caso, la Válvula 1 permite el paso del agua hacia el depósito cuando se encuentra activa. Por otra parte, la Válvula 2 es la encargada de vaciar el tanque de agua. Teniendo en cuenta esta información, podemos extraer del sistema 3 símbolos desde 3 variables dicotómicas (2 estados posibles):

- V1 que hospeda el estado de la válvula 1 (abierta = 1, cerrada = 0).
- V2 que muestra el estado de la válvula 2 (abierta = 1, cerrada = 0).
- T que indica el estado del depósito de agua (vacío = 0, lleno = 1).

El siguiente diagrama describe el cambio de transición entre los estados de las variables antes mencionadas.

Lenguaje Formal

El lenguaje formal fue construido seleccionando las posibles combinaciones (palabras) válidas para nuestro sistema:

Combinaciones entre los posibles estados de los símbolos (Lenguaje generado)			
V1	V2	Т	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

En la siguiente tabla se presenta el lenguaje marcado y el orden secuencial de las combinaciones (palabras) en el que se presentan los estados dentro del sistema

Combinaciones de estados válidas para el sistema (Lenguaje marcado)				
#	V1	V2	Т	
1	0	0	0	
2	1	0	0	
3	1	0	1	
4	0	0	1	
5	0	1	1	
6	0	1	0	

Implementación del autómata

Teniendo el orden secuencial de los posibles estados del autómata se procedió a implementarlo dentro de una aplicación web asentado sobre la plataforma NodeMCU. La aplicación web consta de 2 partes: la parte de control de las válvulas (llaves) compuesta por 2 botones para vaciar/llenar el depósito de agua y la parte de visualización del estado del tanque.

La página web está escrita en HTLM + Javascript + AJAX y se despliega desde el NodeMCU creando un endpoint WiFi utilizando el siguiente código fuente escrito para ser compilado en Arduino IDE:

```
#include <ESP8266WiFi.h>
 2 #include <WiFiClient.h>
 3 #include <ESP8266WebServer.h>
6 const char *ssid = "ESPap";
     const char *password = "picolinajllm1";
     /* Just a little test message. Go to http://192.168.4.1 in a web browser
11
       * connected to this access point to see it.
12
13
14
        String form;
15
16
       int ledPin = 2:
18
      void ini_vaciar(){
        digitalWrite(D1, HIGH);
21
        Serial.println("entrooco");
22
        void fin_vaciar(){
23
         digitalWrite(ledPin, HIGH);
24
25
          digitalWrite(D1, LOW);
26
        void ini llenar(){
       digitalWrite(ledPin, LOW);
28
29
        digitalWrite(D2, HIGH);
       void fin_llenar(){
31
         digitalWrite(D2, LOW);
33
35 void setup() {
36
      delav(1000);
37
      Serial.begin(9600);
      Serial.println();
38
39
      Serial.print("Configuring access point...");
40
41
42
       form="<!DOCTYPE html>";
      form+="<html><head><meta charset='UTF-8'><script type='text/javascript'>";
45
46
              form+=" function ajaxLoad(method ,URL,displayElementId,sendData){";
47
                form+=" var ajax; ";
form+=" if (window.XML
48
            ionm== if (window.XMLHttpRequest) { ";
form== ajax=new XMLHttpRequest();";
form== }";
form== if(!ajax){alert('No existe');return;}";
form== ajax.open(method,URL,true);";
49
51
              form+=" ajax.send();}";
              form+=" function Enviar(state){ajaxLoad('GET','/'+state+'.html',null,null);}";
```

En esta parte podemos apreciar que se crea un servidor web en el puerto 80 usando el objeto ESP8266WebServer. Luego se declaran las funciones encargadas de encender y apagar los LEDs físicos asociados a las válvulas que se conectaron al NodeMCU cuando se está llenando o vaciando el tanque. Por otra parte, se creó un String llamado **form** que es el encargado de alojar el código HTML de la página web y los scripts de AJAX que ejecuta cuando se presiona cada uno de los botones de la interfaz de usuario.

```
58
                form+=" function functionProgress2(i,x) {";
                 form+=" barra1=document.getElementById('barra');";
61
62
                form+=" if(x==-1){";
                          msj=document.getElementById('mensaje');";
63
                form+=
                form+="
64
                           barra = document.getElementById('barra');";
                          l1 = document.getElementById('ll1');";
65
               form+="
               form+="
66
                          12 = document.getElementById('112');";
               form+="
                           max = 169;":
67
              form+=" TIME = 80;";
 68
 69
               form+="
                            if (barra1.style.height=='0px' || barra1.style.height=='') { ";
              form+="
              form+="
                                  vaciar_b=document.getElementById('v1');llenar_b=document.getElementById('ll');";
                               llenar_b.disabled = true;vaciar_b.disabled= true;";
73
               form+="
                                 msj.innerText='';";
               form+="
                                Enviar('inivaciar');";
74
              form+=" }else{";
75
               form+="
76
                                   ban=1;";
               form+="
                                   msj.innerText='El tanque esta vacio! ';}}";
78
 79
              form+=" if (i > max){"};
               form+=" ban=1; llenar_b.disabled = false;vaciar_b.disabled=false;";
              form+=" 12.setAttribute('style', 'height: 10px; background-color: #808896;');";
81
82
               form+="
                                Enviar('finvaciar');}";
83
              form+=" if(ban==0){";
form+=" i=i+2;";
84
85
               form+=" barra.setAttribute('style', 'height:'+i+'px; width: 150px; background: #D003D4;');";
86
               form+=" l1.setAttribute('style', 'height: 10px; background-color: #808896;');";
87
88
               form+=" l2.setAttribute('style', 'height: 10px; background-color: #CB4335;');";
89
                \label{eq:form+--} form+=" setTimeout('functionProgress2(' + (i) +','+ (0) + ')', TIME); \} \}";
         form+=" function functionProgress1(i,x) {";
91
           form+="
                      barra1=document.getElementById('barra');";
92
93
           form+="
                         if(x==-1){";
94
           form+="
                             barra = document.getElementById('barra');";
           form+="
95
                              msj=document.getElementById('mensaje');";
96
           form+="
                              max = 0;";
                             TIME1 = 80;";
if (barra1.style.height=='170px') { ";
97
           form+="
98
           form+="
                               ban=0;";
99
           form+="
100
           form+="
                                 vaciar_b=document.getElementById('v1');llenar_b=document.getElementById('ll');";
                               llenar_b.disabled = true; vaciar_b.disabled= true; ";
           form+="
101
                               msj.innerText='';";
Enviar('inillenar');";
102
           form+="
103
           form+="
           form+="
104
                             }else{";
                               ban=1;";
105
           form+="
                                   msj.innerText='El tanque esta lleno! ';}";
186
           form+="
                             l1 = document.getElementById('ll1');l2 = document.getElementById('ll2');}";
107
           form+="
108
                        if (i < max){ban=1; llenar_b.disabled = false;vaciar_b.disabled=false;";</pre>
109
           form+="
           form+="
                           l1.setAttribute('style', 'height: 10px; background-color: #808896;');";
                            Enviar('finllenar');}";
           form+="
           form+="
                         if(ban==0){ i=i-2;";
           form+="
                             barra.setAttribute('style', 'height:'+i+'px; width: 150px; background: #D0D3D4;');";
```

Continúa la adición de líneas a la variable form.

```
setTimeout('functionProgress1(' + (i) +','+ (0) + ')', TIME1);}}";
           form+=" </script> </head>";
118
119 formw=" <body style='overflow: hidden; height: 100%; display: -webkit-flex; display: -ms-flexbox; display: flex; -webkit-justify-content: center;
120
     form+=" <div id='llave1' style='position: absolute; top: 60px; left: 40%; font: 120% monospace;'>Llave 1 &nbsp;<HR id='ll1' width=60% align=
               <div id='etiquetas' style='position: absolute; top: 260px; left: 40%; font: 120% monospace;'>Limite</div>";
     form+=" <div id='contenedor' style='width: 150px; height: 200px; background: #5DADE2; position: absolute; top: 100px;left: 45%;'>";
      form+=" <div id='barra' style='height:@px; width: 15@px; background: #D@D3D4;'>";
                 <p
126
      form+=" <div id='llave2' style='position: absolute; top: 262px; left: 56%; font: 120% monospace;'> &nbsp; Llave 2 <HR id='ll2' width=56% align=
128
                 </div> <form name='form1' action='' method='post' style='position:relative;right: 300px;top:150px; font-family:verdana,arial; font-s
129
130
                    <legend id='eti' style=' font-size:14px; font-family:'Tahoma', 'Geneva', sans-serif; font-weight:bold; color:#C0392B; text-align:</pre>
        form+= " <br/> <fieldset><input id='v1' type='button' name='boton1' value='Vaciar' onclick='functionProgress2(0,-1);'/>";
                       <input id='ll' type='button' name='boton' value='Llenar' onclick='functionProgress1(169,-1);'/>";
           form+= " </fieldset> <label id='mensaje'> </label> </form> </body> </html> ";
135
136
137
       pinMode(ledPin, OUTPUT); // tanque
138
       digitalWrite(ledPin, LOW);
139
140
      pinMode(D2, OUTPUT); // llenar
      digitalWrite(D2, LOW);
142
       pinMode(D1, OUTPUT); // vaciar
144
       digitalWrite(D1, LOW);
         * You can remove the password parameter if you want the AP to be open. */
147
      WiFi.softAP(ssid, password);
148
149
      IPAddress myIP = WiFi.softAPIP();
150
       Serial.print("AP IP address: "):
151
       Serial.println(mvIP):
      server.on("/", [](){
154
      server.send(200, "text/html", form);
      Serial.println("Pagina....");
      server.on("/inivaciar.html", ini_vaciar);
158
      server.on("/finvaciar.html", fin_vaciar);
      server.on("/inillenar.html", ini llenar);
159
169
      server.on("/finllenar.html", fin_llenar);
161
      server.begin();
162
163
164 void loop() {
       server.handleClient();
```

Luego de terminar la inicialización de la variable **form** se procede a definir los pines de salida de los LEDs como pines digitales de salida usando la función **pinMode()**; con el segundo parámetro en OUTPUT. Asimismo, se crea un IP Access Point usando la función **softAP()** del objeto WiFi; luego se llama al **server.on()** que se encarga de definir los manejadores de las peticiones hechas a la página con diferentes URI utilizando diferentes funciones (las que se codificaron al inicio del .ino). La página presenta diferentes URI para poder usar AJAX como método de envío y recepción de información entre el NodeMCU y el back-end de la página web.

Por último, se inicia la recepción en el servidor con **server.begin()** para comenzar a servir las páginas web a través del punto de acceso usando el puerto 80 (ahí fue declarado al principio del código), y se esperan los posibles clientes a conectarse usando **server.handleClient()**.

