Concours Mines/ Ponts – 2018 – PC/PSI Maths 1

Un corrigé

A Coefficients binomiaux

1. • L'application φ : $\begin{cases} 0, ..., n \end{cases} \to \mathbb{R}$ $k \mapsto \binom{n}{k}$ est à valeurs strictement positives. Pour tout $k \in \left\{0, ..., \left\lfloor \frac{n}{2} \right\rfloor - 1\right\}$:

$$\varphi(k+1) = \frac{n!}{(k+1)!(n-k-1)!} = \frac{n!}{k!(n-k)!} \frac{n-k}{k+1} = \varphi(k) \frac{n-k}{k+1}.$$

Or
$$\frac{n-k}{k+1} \ge \frac{n-\left(\left\lfloor \frac{n}{2} \right\rfloor - 1\right)}{\left\lfloor \frac{n}{2} \right\rfloor} > \frac{n-\left\lfloor \frac{n}{2} \right\rfloor}{\left\lfloor \frac{n}{2} \right\rfloor} \ge 1$$
, par conséquent ϕ est (strictement) croissante sur $\left\{0, ..., \left\lfloor \frac{n}{2} \right\rfloor\right\}$.

• Il est alors immédiat que pour tout $k \in \left\{0, ..., \left\lfloor \frac{n}{2} \right\rfloor\right\} : \binom{n}{k} \le \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}$. Lorsque $k \in \left\{\left\lfloor \frac{n}{2} \right\rfloor + 1, ..., n\right\}$,

n-k est inférieur ou égal à $n-\lfloor \frac{n}{2} \rfloor -1$, donc inférieur ou égal à $\lfloor \frac{n}{2} \rfloor$. Comme $\binom{n}{k} = \binom{n}{n-k}$, il s'ensuit que

$$\text{l'on a encore } \binom{n}{k} \le \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor} : \quad \text{pour tout } k \in \left\{0, ..., n\right\}, \, \binom{n}{k} \le \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor} .$$

- **2.** Le plus simple est de discuter suivant la parité de n:
 - Si n est pair, on pose n = 2k, et l'on a $\binom{n}{\lfloor \frac{n}{2} \rfloor} = \binom{2k}{k} = \frac{(2k)!}{(k!)^2} \sim \frac{(2k)^{2k} e^{-2k} \sqrt{4\pi k}}{(k^k e^{-k} \sqrt{2\pi k})^2}$

D'après la formule de Stirling, $\frac{\left(\begin{array}{cc}2\ k\end{array}\right)!}{\left(\begin{array}{cc}k\ !\end{array}\right)^2} \underset{k \to +\infty}{\sim} \frac{\left(\begin{array}{cc}2k\end{array}\right)^{2\,k}}{\left(\begin{array}{cc}k\ e^{-2\,k}\end{array}\sqrt{4\,\pi\,k}\end{array}} = \frac{2^{\,2\,k}}{\sqrt{\pi\,k}}, \text{d'où}:$

$$\left(\begin{array}{c|c} n \\ \hline \frac{n}{2} \end{array}\right) \xrightarrow[\substack{n \to +\infty \\ n \text{ pair}}]{\sim} \frac{2^n \sqrt{2}}{\sqrt{\pi n}}.$$

• Pour n impair, n = 2k + 1: $\begin{pmatrix} n \\ \frac{n}{2} \end{pmatrix} = \begin{pmatrix} 2k + 1 \\ k \end{pmatrix} = \begin{pmatrix} 2k \\ k \end{pmatrix} \frac{2k + 1}{k + 1}$, donc d'après ce qui précède,

$$\left(\left\lfloor \frac{n}{2} \right\rfloor \right) \sim \frac{2^{2k}}{\sqrt{\pi \, k}} \cdot 2, \text{ soit } \left(\left\lfloor \frac{n}{2} \right\rfloor \right) \sim \frac{2^n}{\sqrt{\pi \, \frac{n-1}{2}}}, \text{ on a donc également } \left(\left\lfloor \frac{n}{2} \right\rfloor \right) \sim \frac{2^n \sqrt{2}}{\sqrt{\pi \, n}}.$$

Finalement:

$$\left[\left[\frac{n}{2} \right] \right] \sim \sqrt{\frac{2}{\pi}} \cdot \frac{2^n}{\sqrt{n}}.$$

Comme $\sqrt{\frac{2}{\pi}} < 1$, on en déduit que $\binom{n}{\left|\frac{n}{2}\right|}$ est inférieur à $\frac{2^n}{\sqrt{n}}$ à partir d'un certain rang :

il existe un entier
$$n_0$$
 tel que pour tout $n \ge n_0$, $\begin{pmatrix} n \\ \left| \frac{n}{2} \right| \end{pmatrix} \le \frac{2^n}{\sqrt{n}}$ (1)

3. Soient $n \in \mathbb{N}^*$ et $k \in \{0, ..., n\}$. Si k = 0, $\binom{n}{k} 2^{k-1} \le n^k$ est l'évidence : $\frac{1}{2} \le 1$. Si $k \ge 1$, on a :

$$\left[\binom{n}{k} 2^{k-1} = \frac{n}{1} \frac{n-1}{2} \dots \frac{n-k+1}{k} 2^{k-1} \le n \cdot \left(\frac{n}{2} \right)^{k-1} 2^{k-1} = n^k \right].$$

- **4.** Il est immédiat que, pour tout $i \in \{1, ..., n\}$: $e_i = \frac{1}{2} (v (v 2 e_i))$.
 - Le vecteur v appartient à $\Omega_{1,n}$, puisque toutes ses coordonnées valent 1. Toutes les coordonnées de v-2 e i sont égales à 1, sauf celle d'indice i, qui vaut -1, ainsi v-2 e i appartient lui aussi à $\Omega_{1,n}$; il découle alors de ce qui précède que pour tout $i \in \{1,...,n\}$, e i $\in \operatorname{Vect}(\Omega_{1,n})$. On en déduit que

 $\operatorname{Vect}\left(\mathbf{e}_{i},\ i\in\left\{ 1,...,n\right\} \right)\subset\operatorname{Vect}\left(\Omega_{1,n}\right),$ soit : $\mathbb{R}^{n}\subset\operatorname{Vect}\left(\Omega_{1,n}\right).$ L'inclusion réciproque étant évidente :

$$\boxed{\operatorname{Vect}\left(\Omega_{1,n}\right) = \mathbb{R}^n}.$$

B Dimension 2

5. On a det $(M^{(2)}) = M_{1,1} M_{2,2} - M_{1,2} M_{2,1}$, d'où par linéarité de l'espérance, $\mathbf{E}\left(\det\left(M^{(2)}\right)\right) = \mathbf{E}\left(M_{1,1} M_{2,2}\right) - \mathbf{E}\left(M_{1,2} M_{2,1}\right)$, puis, par indépendance des variables aléatoires $M_{i,j}$, $\mathbf{E}\left(\det\left(M^{(2)}\right)\right) = \mathbf{E}\left(M_{1,1}\right)\mathbf{E}\left(M_{2,2}\right) - \mathbf{E}\left(M_{1,2}\right)\mathbf{E}\left(M_{2,1}\right).$ Mais pour tout $i, j, \mathbf{E}\left(M_{i,j}\right) = 1 \cdot \mathbf{P}\left(M_{i,j} = 1\right) + (-1)\mathbf{P}\left(M_{i,j} = -1\right) = \frac{1}{2} - \frac{1}{2} = 0$. On en conclut que

$$\boxed{\mathbf{E}\left(\det\left(M^{(2)}\right)\right) = 0}.$$

6. La variance de $\det \left(M^{(2)}\right)$ est donnée par : $\mathbf{V}\left(\det \left(M^{(2)}\right)\right) = \mathbf{E}\left(\det \left(M^{(2)}\right) - \mathbf{E}\left(\det \left(M^{(2)}\right)\right)\right)^2\right)$, d'où d'après Q5., $\mathbf{V}\left(\det \left(M^{(2)}\right)\right) = \mathbf{E}\left(\det \left(M^{(2)}\right)\right)^2\right)$.

On a $\left(\det\left(M^{\left(2\right)}\right)\right)^{2}=M_{1,1}^{2}M_{2,2}^{2}+M_{1,2}^{2}M_{2,1}^{2}-2M_{1,1}M_{2,2}M_{1,2}M_{2,1}$. Les variables aléatoires $M_{i,j}$ étant à valeurs dans $\left\{-1,1\right\}$, leurs carrés sont des des variables certaines égales à 1, donc

$$\left(\det\left(M^{(2)}\right)\right)^2 = 2 - 2 M_{1,1} M_{2,2} M_{1,2} M_{2,1}$$
. Il en résulte que

 $\mathbf{V}\left(\det\left(M^{(2)}\right)\right) = 2 - 2\mathbf{E}\left(M_{1,1}M_{2,2}M_{1,2}M_{2,1}\right)$, puis, à nouveau par indépendance, que

$$\mathbf{V}\left(\det\left(M^{\left(2\right)}\right)\right) = 2 - 2\underbrace{\mathbf{E}\left(M_{1,1}\right)}_{=0}\mathbf{E}\left(M_{2,2}\right)\mathbf{E}\left(M_{2,1}\right)\mathbf{E}\left(M_{1,2}\right).$$

On obtient comme désiré : $V(\det(M^{(2)})) = 2$.

Remarque

Il n'est pas très difficile de montrer que de manière générale : $\mathbf{E}\left(\det\left(M^{(n)}\right)\right) = 0$ et $\mathbf{V}\left(\det\left(M^{(n)}\right)\right) = n$!.

7. Le déterminant de $M^{(2)}$ est égal à 0 si et seulement si ses deux lignes $L_1^{(2)}$ et $L_2^{(2)}$ sont liées, donc, puisque tout le monde est à coefficients dans $\{-1,1\}$, si et seulement si $L_1^{(2)}$ et $L_2^{(2)}$ sont égales ou opposées :

$$\mathbf{P}\left(\det\left(M^{\left(2\right)}\right)=0\right)=\mathbf{P}\left(\left(L_{2}^{\left(n\right)}=L_{1}^{\left(n\right)}\right)\cup\left(L_{2}^{\left(n\right)}=-L_{1}^{\left(n\right)}\right)\right),\text{ et par incompatibilit\'e}:$$

$$\mathbf{P}\left(\det\left(M^{\left(2\right)}\right)=0\right)=\mathbf{P}\left(L_{2}^{\left(n\right)}=L_{1}^{\left(n\right)}\right)+\mathbf{P}\left(L_{2}^{\left(n\right)}=-L_{1}^{\left(n\right)}\right),\text{ ou encore, puisque }L_{2}^{\left(n\right)}\text{ et }-L_{2}^{\left(n\right)}\text{ suivent la }L_{2}^{\left(n\right)}$$

même loi et sont indépendantes de $L_1^{(n)}$: $\mathbf{P}\left(\det\left(M^{(2)}\right) = 0\right) = 2\,\mathbf{P}\left(L_2^{(n)} = L_1^{(n)}\right)$.

On a donc $\mathbf{P}\left(\det\left(M^{(2)}\right)=0\right)=2$ $\mathbf{P}\left(\left(M_{2,1}=M_{1,1}\right)\cap\left(M_{2,2}=M_{1,2}\right)\right)$, puis par indépendance :

$$\mathbf{P}\left(\det\left(M^{(2)}\right) = 0\right) = 2\ \mathbf{P}\left(M_{2,1} = M_{1,1}\right)\mathbf{P}\left(M_{2,2} = M_{1,2}\right).$$

Il est relativement immédiat que $\mathbf{P}\left(M_{2,1}=M_{1,1}\right)=\mathbf{P}\left(M_{2,2}=M_{1,2}\right)=\frac{1}{2}$, d'où finalement

$$\boxed{\mathbf{P}\left(\det\left(M^{(2)}\right)=0\right)=\frac{1}{2}}.$$

C Quelques bornes

8. Notons E_n l'événement : « $L_2^{(n)} = \pm L_1^{(n)}$ ». Comme en Q7., on a $\mathbf{P}(E_n) = 2\mathbf{P}(L_2^{(n)} = L_1^{(n)})$, d'où :

$$\mathbf{P}\left(E_{n}\right) = 2 \mathbf{P}\left(\bigcap_{j=1}^{n} \left(M_{2,j} = M_{1,j}\right)\right) = 2 \prod_{j=1}^{n} \mathbf{P}\left(M_{2,j} = M_{1,j}\right) \text{ (par indépendance)}.$$

A nouveau, $\mathbf{P}\left(M_{2,j}=M_{1,j}\right)=\frac{1}{2}$ pour tout $j\in\left\{1,...,n\right\}$. Donc $\boxed{\mathbf{P}\left(E_{n}\right)=\frac{1}{2^{n-1}}}$.

Si les deux premières lignes de $M^{(n)}$ sont égales ou opposées, son déterminant est nul : $E_n \subset \left(\det\left(M^{(n)}\right) = 0\right)$,

d'où
$$\mathbf{P}\left(\det\left(M^{(n)}\right)=0\right) \geq \mathbf{P}\left(E_n\right)=2^{1-n}$$
 (si $n \geq 2$).

9. S'il existe $j \in \{1, ..., n-1\}$ tel que $l_{j+1} \in \text{Vect}\left(\left\{l_1, ..., l_j\right\}\right)$, les vecteurs $l_1, ..., l_n$ sont évidemment liés.

Réciproquement, supposons la famille $(l_1,...,l_n)$ liée. Il existe alors n réels $\alpha_1,...,\alpha_n$ non tous nuls et tels que

$$\sum_{k=1}^{n} \alpha_k l_k = 0$$
. Soit j le plus grand entier de $\{0, ..., n-1\}$ tel que $\alpha_{j+1} \neq 0$ (un tel j existe!). On a

$$\sum_{k=1}^{j+1} \alpha_k l_k = 0$$
; de plus, j n'est pas égal à 0 (sinon, on aurait $\alpha_1 l_1 = 0$ avec $\alpha_1 \neq 0$ et $l_1 \neq 0$, bizarre).

 $\begin{aligned} &\text{Donc } j \in \left\{1,...,n-1\right\}, \text{ et, comme } \alpha_{j+1} \neq 0, \text{l'égalité } \sum_{k=1}^{j+1} \alpha_k \ l_k = 0 \text{ peut s'écrire } l_{j+1} = \sum_{k=1}^{j+1} -\frac{\alpha_k}{\alpha_{j+1}} \ l_k \ . \end{aligned}$ Ceci assure que $l_{j+1} \in \text{Vect} \left(\left\{l_1,...,l_j\right\}\right), \text{ et achève d'établir l'équivalence demandée.}$

Les vecteurs aléatoires $L_1^{(n)}$, ..., $L_n^{(n)}$ ne s'annulant pas, on peut appliquer ce qui précède, et en déduire que

$$\mathbf{P}\left(\det\left(M^{\,\left(n\right)}\,\right)=\,0\,\right)=\,\mathbf{P}\left(\left(\left(\,L_{\,1}^{\,\left(n\right)}\,,...,\,L_{\,j}^{\,\left(n\right)}\,\right)\ \text{ est une famille liée}\,\right)\right)=\,\mathbf{P}\left(\,\bigcup_{\,j\,=\,1}^{\,n\,-\,1}\left(\,L_{\,j\,+\,1}^{\,\left(n\right)}\,\in\,\mathrm{Vect}\left(\,L_{\,1}^{\,\left(n\right)}\,,...,\,L_{\,j}^{\,\left(n\right)}\,\right)\right)\right),$$

d'où par propriété de sous-additivité (ou inégalité de Boole) :

$$\mathbf{P}\left(\det\left(M^{(n)}\right) = 0\right) \le \sum_{j=1}^{n-1} \mathbf{P}\left(L_{j+1}^{(n)} \in \operatorname{Vect}\left(L_{1}^{(n)}, ..., L_{j}^{(n)}\right)\right) \tag{2}$$

10. Soit $(\epsilon_1, ..., \epsilon_{n-d})$ une base de \mathcal{H}^{\perp} . Pour tout $i \in \{1, ..., n-d\}$, on écrit ϵ_i dans la base canonique $(e_j)_{1 \le j \le n}$ de \mathbb{R}^n , sous la forme : $\epsilon_i = \sum_{j=1}^n \alpha_{i,j} e_j = (\alpha_{i,1}, ..., \alpha_{i,n})$.

soit $x = (x_1, ..., x_n)$ un vecteur de \mathbb{R}^n . Le vecteur x appartient à \mathcal{H} si et seulement si il appartient à $(\mathcal{H}^\perp)^\perp$, donc

si et seulement si : $\forall i \in \{1,..., n-d\}, \langle x, \varepsilon_i \rangle = 0$. Or $\langle x, \varepsilon_i \rangle = \sum_{j=1}^n \alpha_{i,j} x_j = (\alpha_{i,1} \cdots \alpha_{i,n}) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Il en résulte que $x \in \mathcal{H} \text{ si et seulement si : } \begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{1,n} \\ \vdots & \ddots & \vdots \\ \alpha_{n-d,1} & \cdots & \alpha_{n-d,n} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}.$

11. La famille $\left(\varepsilon_{1},...,\varepsilon_{n-d}\right)$, base de \mathcal{H}^{\perp} , est de rang n-d. La matrice $\left(\begin{array}{ccc} \alpha_{1,1} & \cdots & \alpha_{1,n} \\ \vdots & \ddots & \vdots \\ \alpha_{n-d,1} & \cdots & \alpha_{n-d,n} \end{array}\right)$ est donc elle aussi

de rang n-d (c'est la transposée de la matrice des coordonnées de la famille $\left(\epsilon_{1},...,\epsilon_{n-d}\right)$ dans la base canonique

de \mathbb{R}^n). On sait alors que le système $\begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{1,n} \\ \vdots & \ddots & \vdots \\ \alpha_{n-d,1} & \cdots & \alpha_{n-d,n} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ est équivalent (par lignes) à un système

 $R \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$, où $R \in \mathcal{M}_{n-d,n} (\mathbb{R})$ est échelonnée, réduite par lignes et de rang n-d. La matrice R possède

donc exactement d colonnes, d'indices $1 \le i_1 < ... < i_d \le n$, sur lesquelles ne se trouve pas de coefficient pivot. $x_{i_1}, ..., x_{i_d}$ sont les inconnues secondaires du système ; on sait alors que, pour tout $(y_1, ..., y_d) \in \mathbb{R}^d$, il existe une unique solution $x = (x_1, ..., x_n)$ vérifiant $x_{i_1} = y_1, ..., x_{i_d} = y_d$. Etre solution du système, c'est appartenir à \mathcal{H} , par conséquent :

Pour tout $(y_1, ..., y_d) \in \mathbb{R}^d$, il existe un unique $x = (x_1, ..., x_n) \in \mathcal{H}$ tel que $x_{i_k} = y_k$ pour k = 1, ..., d

D'après Q11.: il existe des indices $1 \leq i_1 < ... < i_d \leq n$ vérifiant: $\text{pour tout } y \in \Omega_{1,d} \text{, il existe } x \in \mathbb{R}^n \text{ tel que } \left\{ L_1^{(n)} \in \mathcal{H}, L_{1,i_1}^{(n)} = y_1, ..., L_{1,i_d}^{(n)} = y_d \right\} = \left\{ L_1^{(n)} = x \right\}.$ Cet évènement a pour probabilité 2^{-n} si $x \in \Omega_{1,n}$, et 0 sinon. Par sommation sur les 2^d éléments du système complet d'événements : $\left(\left\{ L_1^{(n)} \in \mathcal{H}, L_{1,i_1}^{(n)} = y_1, ..., L_{1,i_d}^{(n)} = y_d \right\} \right)_{y \in \Omega_{1,d}}$, on en déduit que : $\boxed{\mathbf{P} \left(L_1^{(n)} \in \mathcal{H} \right) \leq 2^{d-n}}.$

• Ce qui est vrai pour $L_1^{(n)}$ est également vrai pour tout $L_{j+1}^{(n)}$, j=1,...,n-1: $\mathbf{P}\left(L_{j+1}^{(n)} \in \mathcal{H}\right) \leq 2^{d-n}$. En utilisant la formule des probabilités totales indiquée par l'énoncé :

$$\begin{split} & \mathbf{P}\left(L_{j+1}^{(n)} \in \operatorname{Vect}\left(L_{1}^{(n)},...,L_{j}^{(n)}\right)\right) \\ & = \sum_{l_{1},...,l_{j} \in \Omega_{1,n}} \mathbf{P}\left(L_{j+1}^{(n)} \in \operatorname{Vect}\left(L_{1}^{(n)},...,L_{j}^{(n)}\right) | L_{1}^{(n)} = l_{1},...,L_{j}^{(n)} = l_{j}\right) \times \mathbf{P}\left(L_{1}^{(n)} = l_{1},...,L_{j}^{(n)} = l_{j}\right) \\ & = \sum_{l_{1},...,l_{j} \in \Omega_{1,n}} \mathbf{P}\left(L_{j+1}^{(n)} \in \operatorname{Vect}\left(l_{1},...,l_{j}\right)\right) \times 2^{-nj} \;, \end{split}$$

et, comme $\operatorname{Vect}\left(l_1,...,l_j\right)$ est de dimension inférieure ou égale à j, on obtient :

$$\boxed{\mathbf{P}\left(\,L_{\,\,j\,+\,1}^{\,(\,n\,)}\,\in\,\operatorname{Vect}\left(\,L_{\,1}^{\,(\,n\,)}\,,\,...,\,L_{\,\,j}^{\,(\,n\,)}\,\,\right)\,\right)\,\leq\,\sum_{l_{\,1},\,...,\,l_{\,\,j}\,\in\,\Omega_{\,1,\,n}}\,\,2^{\,\,j\,-\,n}\,\times\,2^{\,\,-\,n\,\,j}\,=\,2^{\,\,j\,-\,n}}\,\,.$$

13. On a $\dim \left(\left(\operatorname{Vect} \left(l_i , 1 \le i \le q \right) \right)^{\perp} \right) = n - \dim \left(\operatorname{Vect} \left(l_i , 1 \le i \le q \right) \right) \ge n - q > 0$, il existe donc déjà des vecteurs non nuls appartenant à $\left(\operatorname{Vect} \left(l_i , 1 \le i \le q \right) \right)^{\perp}$. Pour $i \in \{1, ..., q\}$, notons $l_i = \left(l_{i,1}, ..., l_{i,n} \right)$. Pour tout $x = \left(x_1, ..., x_n \right) \in \mathbb{R}^n$:

$$x \in \left(\, \operatorname{Vect} \left(\, l_{\,i} \,\,,\,\, 1 \, \leq \, i \, \leq \, q \, \right) \, \right)^{\perp} \iff \forall \ i \, \in \, \left\{ \, 1, \, ..., \, q \, \right\} \,,\,\, \left\langle \, x, \, l_{\,i} \, = \, 0 \, \right\rangle \iff \forall \ i \, \in \, \left\{ \, 1, \, ..., \, q \, \right\} \,,\,\, \sum_{j \, = \, 1}^{n} \, x_{\,j} \,\, l_{\,i,\,j} \, = \, 0 \,\,.$$

Ce système est à coefficients dans $\{-1,1\}\subset\mathbb{Q}$; il est équivalent à un système échelonné et réduit par lignes à coefficients dans \mathbb{Q} . Si l'on choisit les inconnues secondaires dans \mathbb{Q} et non toutes nulles, on obtient donc une solution $x=\left(x_1,...,x_n\right)$ de ce système (donc un élément de $\left(\operatorname{Vect}\left(l_i,1\leq i\leq q\right)\right)^{\perp}$), non nul et à coordonnées dans \mathbb{Q} .

Posons pour tout $i \in \{1, ..., n\}$, $x_i = \frac{p_i}{q_i}$, avec $p_i \in \mathbb{Z}$ et $q_i \in \mathbb{N}^*$. Alors le vecteur $\left(\prod_{i=1}^n q_i\right)x$ est non nul, à coordonnées dans \mathbb{Z} , et c'est un élément de $\left(\operatorname{Vect}\left(l_i, 1 \le i \le q\right)\right)^{\perp}$:

Il existe un vecteur non nul, orthogonal à Vect $(l_i, 1 \le i \le q)$, et qui est à coordonnées dans \mathbb{Z}

D Théorème de Erdös-Littlewood-Offord

12.

14. On sait que, si l'on considère deux ensembles finis de même cardinal, dire que l'un de ces deux ensembles est inclus dans l'autre, revient à dire que ces deux ensembles sont égaux. Tous les éléments de A_k étant de même cardinal k, deux éléments distincts quelconques de A_k sont donc incomparables : A_k est une anti-chaîne.

De plus, le cardinal de \mathcal{A}_k est égal à $\binom{n}{k}$, d'où d'après $\mathbf{Q1.}$: $\left| \mathcal{A}_k \right| \leq \left(\begin{array}{c} n \\ \left| \begin{array}{c} n \\ 2 \end{array} \right| \right)$, et d'après $\mathbf{Q2.}$: il existe un entier n_0

tel que si
$$n \ge n_0$$
, $\left| \mathcal{A}_k \right| \le \left(\frac{n}{2} \right) \le \frac{2^n}{\sqrt{n}}$.

- 15. Les ensembles $\{1, ..., |A|\}$ et A étant de même cardinal |A|, il existe (|A|)! bijections de $\{1, ..., |A|\}$ dans A. De même, il existe (n |A|)! bijections de $\{|A| + 1, ..., n\}$ dans A^c . Construire un élément σ de S_A revient à choisir une bijection de $\{1, ..., |A|\}$ dans A et une bijection de $\{|A| + 1, ..., n\}$ dans A^c , donc : le cardinal de S_A est égal à (|A|)!(n |A|)!.
- 16. Quitte à échanger les rôles de A et B, on peut supposer que $|A| \le |B|$. Raisonnons par l'absurde, en supposant que $S_A \cap S_B$ est non vide. Soit σ un élément de cette intersection. σ appartient à S_B , donc réalise une bijection de $\{1,...,|B|\}$ dans $B:B=\{\sigma(1),...,\sigma(|B|)\}$. De même, $A=\{\sigma(1),...,\sigma(|A|)\}$, et comme $|A| \le |B|$, on a finalement $A=\{\sigma(1),...,\sigma(|A|)\}\subset \{\sigma(1),...,\sigma(|B|)\}=B:A$ et B sont comparables. Ceci est absurde, puisque A et B sont distincts, et que A est une anti-chaîne. Ceci prouve que $S_A \cap S_B=\emptyset$.
- 17. Les ensembles S_A , $A \in \mathcal{A}$, sont deux à deux disjoints, donc : $\left| \bigcup_{A \in \mathcal{A}} S_A \right| = \sum_{A \in \mathcal{A}} \left| S_A \right|$, ce que l'on peut également écrire sous la forme : $\left| \bigcup_{A \in \mathcal{A}} S_A \right| = \sum_{k=0}^n \sum_{\substack{A \in \mathcal{A} \\ |A| = k}} \left| S_A \right|$. On a donc, en utilisant le résultat de **Q.15.** :

$$\left| \bigcup_{A \in \mathcal{A}} \mathcal{S}_A \right| = \sum_{k=0}^n \sum_{\substack{A \in \mathcal{A} \\ |A|=k}} \left(\left| A \right| \right)! \left(n - \left| A \right| \right)! = \sum_{k=0}^n \sum_{\substack{A \in \mathcal{A} \\ |A|=k}} k! \left(n - k \right)! = \sum_{k=0}^n \alpha_k k! \left(n - k \right)!.$$

Or $\bigcup_{A \in \mathcal{A}} S_A$ est un sous-ensemble de l'ensemble des bijections de $\{1, ..., n\}$ dans lui-même, qui est de cardinal n!. Ainsi

$$\left| \bigcup_{A \in \mathcal{A}} S_A \right| \le n!, \text{ d'où } \sum_{k=0}^n \alpha_k \ k! (n-k)! \le n!, \text{ et, en divisant par } n!, \text{ on obtient } : \left| \sum_{k=0}^n \frac{\alpha_k}{\binom{n}{k}} \le 1 \right|.$$

18. On a $\left| \mathcal{A} \right| = \sum_{k=0}^{n} \alpha_k$, donc $\frac{\left| \mathcal{A} \right|}{\left(\left| \frac{n}{2} \right| \right)} = \sum_{k=0}^{n} \frac{\alpha_k}{\left(\left| \frac{n}{2} \right| \right)}$, d'où d'après **Q1.**, $\frac{\left| \mathcal{A} \right|}{\left(\left| \frac{n}{2} \right| \right)} \le \sum_{k=0}^{n} \frac{\alpha_k}{\left(\left| \frac{n}{k} \right| \right)}$. On déduit alors du

résultat de **Q17.** que
$$\frac{\left|\mathcal{A}\right|}{\left(\left|\frac{n}{2}\right|\right)} \le \sum_{k=0}^{n} \frac{\alpha_{k}}{\left(\frac{n}{k}\right)} \le 1$$
, d'où $\left|\left|\mathcal{A}\right| \le \left(\left|\frac{n}{2}\right|\right)\right|$.

19. Par hypothèse, l'ensemble A est strictement inclus dans l'ensemble B. On peut donc noter $A = \{i_1, ..., i_p\}$ et

 $B = \{i_1, ..., i_q\}$, avec p < q, et des i_j deux à deux distincts. Alors :

$$s_B = \sum_{k=1}^q v_{i_k} - \sum_{\substack{j=1 \ j \notin \{i_1, \dots, i_q\}}}^n v_j = 2\sum_{k=1}^q v_{i_k} - \sum_{j=1}^n v_j$$
. de même, $s_A = 2\sum_{k=1}^p v_{i_k} - \sum_{j=1}^n v_j$. On a donc

$$s_B - s_A = 2 \sum_{k=p+1}^{q} v_{i_k} \ge 2$$
, car $\{p+1, ..., q\}$ est non vide, et pour tout $k \in \{p+1, ..., q\}, v_{i_k} \ge 1$.

20. On lira avec intérêt le rapport du jury, pour savoir combien de candidats ont répondu correctement à cette question !

Posons
$$\Theta_{J,n} = \left\{ \omega \in \Omega_{1,n}, \left\langle \omega, v \right\rangle \in J \right\} = \left\{ \omega \in \Omega_{1,n}, \sum_{\substack{i=1 \ \omega_i = 1}}^n v_i - \sum_{\substack{i=1 \ \omega_i = -1}}^n v_i \in J \right\}.$$
 Soit

$$\varphi: \left| \begin{array}{ccc} \Omega_{1,n} & \to & \mathcal{P}\left(\left\{1,...,n\right\}\right) \\ \omega = \left(\left.\omega_{1},...,\omega_{n}\right) \mapsto \left\{i \in \left\{1,...,n\right\}, \, \omega_{i} \, = 1\right\} \end{array} \right.$$

Il est clair que φ est une bijection : sa bijection réciproque est

$$\Psi: \left| \begin{array}{c} \mathcal{P}\left(\left\{1,...,n\right\}\right) \ \to \ \Omega_{1,\,n} \\ \\ A \subset \left\{1,...,n\right\} \ \mapsto \ \omega = \left(\,\omega_{\,1},...,\,\omega_{\,n}\,\right) \ \text{d\'efini par} \ \omega_{\,i} \, = \, \left\{ \begin{array}{c} 1 \ \text{si} \ i \in A \\ \\ -1 \ \text{sinon} \end{array} \right. \right. .$$

Posons ensuite $\mathcal{A} = \left\{ A \in \mathcal{P} \left(\left\{ 1, ..., n \right\} \right), \ \psi \left(A \right) \in \Theta_{J, n} \right\} ; \text{ on a donc} :$

$$\mathcal{A} = \left\{ A \in \mathcal{P}\left(\left\{1,...,n\right\}\right), \ \sum_{\substack{i=1\\i \in A}}^{n} v_i - \sum_{\substack{i=1\\i \notin A}}^{n} v_i \in J \right\}, \text{soit} : \mathcal{A} = \left\{ A \in \mathcal{P}\left(\left\{1,...,n\right\}\right), \, s_A \in J \right\}.$$

Montrons que \mathcal{A} est une anti-chaîne. Soient A et B deux éléments de \mathcal{A} distincts. Puisque s_A et s_B sont dans J, intervalle ouvert de longueur $2: \left|s_A - s_B\right| < 2$. D'après **Q19.**, A n'est pas inclus dans B et B n'est pas inclus dans $A: \mathcal{A}$ est bien une anti-chaîne.

Puisque $\Omega_{1,n}$ est muni de la mesure de probabilité uniforme, $\mathbf{P}\left(\left\langle L_{1}^{(n)},v\right\rangle \in J\right)=\frac{\left|\Theta_{J,n}\right|}{\left|\Omega_{1,n}\right|}=2^{-n}\left|\Theta_{J,n}\right|$, d'où par

bijectivité de φ , $\mathbf{P}\left(\left\langle L_1^{(n)}, v \right\rangle \in J\right) = 2^{-n} \left| \mathcal{A} \right|$. Comme \mathcal{A} est une anti-chaîne, d'après $\mathbf{Q18.:} \left| \mathcal{A} \right| \leq \left(\frac{n}{2} \right)$, et,

d'après **Q.2.**,
$$\left(\begin{bmatrix} n \\ \lfloor \frac{n}{2} \end{bmatrix}\right) \le \frac{2^n}{\sqrt{n}}$$
 pour n assez grand. Par suite, $\mathbf{P}\left(\left\langle L_1^{(n)}, v \right\rangle \in J\right) = 2^{-n} \left(\begin{bmatrix} n \\ \lfloor \frac{n}{2} \end{bmatrix}\right) \le \frac{1}{\sqrt{n}}$, la

deuxième inégalité ayant lieu pour n assez grand.

Si l'on suppose seulement que pour tout $j \in \{1, ..., n\}$, $\left|v_{j}\right| \geq 1$, on considère le vecteur aléatoire $L = \left(L_{1}, ..., L_{n}\right)$, où pour tout $j \in \{1, ..., n\}$, $L_{j} = \begin{cases} M_{1,j} & \text{si } v_{j} \geq 0 \\ -M_{1,j} & \text{sinon} \end{cases}$. On pose également $w = \left(\left|v_{1}\right|, ..., \left|v_{n}\right|\right)$.

L suit la même loi que $L_1^{(n)}$ et toutes les coordonnées de w sont supérieures ou égales à 1, donc d'après ce qui précède,

$$\mathbf{P}\left(\left\langle L,w\right\rangle \in J\right) \leq \frac{1}{\sqrt{n}}$$
 pour n assez grand. Les produits scalaires $\left\langle L,w\right\rangle$ et $\left\langle L_{1}^{\left(n\right)},v\right\rangle$ étant égaux,

l'inégalité
$$\mathbf{P}\left(\left\langle L_1^{(n)}, v \right\rangle \in J\right) \leq \frac{1}{\sqrt{n}}$$
 reste vraie pour n assez grand.

E Universalité

Il est curieux que l'énoncé se mette à noter $\left(\omega_{1,1},...,\omega_{1,n}\right)$ l'élément ω de $\Omega_{1,n}$ (qui, rappelons-le, a été identifié à un sous-ensemble de \mathbb{R}^n). On continuera dans ce corrigé à utiliser plus simplement la notation $\left(\omega_1,...,\omega_n\right)$.

21. L'énoncé semble également confondre $\Omega_{1,k}$ et $\Omega_{1,n}$. On suppose qu'il s'agit de montrer que :

$$\left\{\left\{L_{1}^{\left(n\right)},...,L_{d}^{\left(n\right)}\right\} \text{ non } k-\text{universel}\right\} \subset \bigcup_{\left(j_{1},...,j_{k}\right) \in \left\{1,...,n\right\}^{k}} \bigcup_{\omega \in \Omega_{1,k}} \bigcap_{i=1}^{d} \bigcup_{m=1}^{k} \left\{M_{i,j_{m}} \neq \omega_{m}\right\}.$$

On va prouver qu'il y a en fait égalité. En passant à la négation de la définition d'un ensemble k – universel : le sous-ensemble \mathbf{V} de $\Omega_{1,n}$ est non k – universel si et seulement si il existe un k – uplet $1 \le j_1 < j_2 < ... < j_k \le n$, et il existe $\theta \in \Omega_{1,n}$, tels que pour tout $v \in \mathbf{V}$: il existe $m \in \{1,...,k\}$ tel que $v_{j_m} \ne \theta_{j_m}$.

Autrement dit, en posant $\omega = \left(\theta_{j_1}, ..., \theta_{j_k}\right) \in \Omega_{1,k}$:

V est non k – universel si et seulement si il existe un k – uplet $1 \le j_1 < j_2 < ... < j_k \le n$, et il existe $\omega \in \Omega_{1,d}$, tels que pour tout $v \in V$: il existe $m \in \{1,...,k\}$ tel que $v_{j_m} \ne \omega_m$.

On prend $V = \{L_1^{(n)}, ..., L_d^{(n)}\}$. La traduction ensembliste de « pour tout » est une intersection, celle de « il existe » une réunion, et l'on obtient :

$$\left\{\left\{L_{1}^{\left(n\right)},...,L_{d}^{\left(n\right)}\right\} \text{ non } k-\text{universel}\right\} = \bigcup_{\substack{\left(j_{1},...,j_{k}\right) \in \left\{1,...,n\right\}^{k} \\ j_{1} < ... < j_{k}}} \bigcup_{\omega \in \Omega_{1,k}} \bigcap_{i=1}^{d} \bigcup_{m=1}^{k} \left\{M_{i,j_{m}} \neq \omega_{m}\right\}.$$

22. Par propriété de sous-additivité, d'après le résultat de la question précédente :

$$\mathbf{P}\left(\left\{L_{1}^{\left(n\right)},...,L_{d}^{\left(n\right)}\right\} \text{ non } k-\text{universel}\right) \leq \sum_{\left(j_{1},...,j_{k}\right) \in \left\{1,...,n\right\}^{k}} \sum_{\omega \in \Omega_{1,k}} \mathbf{P}\left(\bigcap_{i=1}^{d} \bigcup_{m=1}^{k} \left\{M_{i,j_{m}} \neq \omega_{m}\right\}\right).$$

Or, dans cette inégalité: $\mathbf{P}\left(\bigcap_{i=1}^{d}\bigcup_{m=1}^{k}\left\{M_{i,j_{m}}\neq\omega_{m}\right\}\right)=\prod_{i=1}^{d}\mathbf{P}\left(\bigcup_{m=1}^{k}\left\{M_{i,j_{m}}\neq\omega_{m}\right\}\right)$ (par indépendance),

d'où
$$\mathbf{P}\left(\bigcap_{i=1}^{d}\bigcup_{m=1}^{k}\left\{M_{i,j_{m}}\neq\omega_{m}\right\}\right)=\prod_{i=1}^{d}\left(1-\mathbf{P}\left(\bigcap_{m=1}^{k}\left\{M_{i,j_{m}}=\omega_{m}\right\}\right)\right)$$
, puis, à nouveau par indépendance :

$$\mathbf{P}\left(\bigcap_{i=1}^{d}\bigcup_{m=1}^{k}\left\{M_{i,j_{m}}\neq\omega_{m}\right\}\right)=\prod_{i=1}^{d}\left(1-\prod_{m=1}^{k}\mathbf{P}\left(M_{i,j_{m}}=\omega_{m}\right)\right). \text{ Pour tout } i \text{ et pour tout } m,$$

$$\mathbf{P}\left(M_{i,j_{m}} = \omega_{m}\right) \text{ vaut } \frac{1}{2}, \text{ ainsi } \mathbf{P}\left(\bigcap_{i=1}^{d} \bigcup_{m=1}^{k} \left\{M_{i,j_{m}} \neq \omega_{m}\right\}\right) = \prod_{i=1}^{d} \left(1 - \prod_{m=1}^{k} \frac{1}{2}\right) = \left(1 - 2^{-k}\right)^{d}, \text{ et :}$$

$$\mathbf{P}\left(\left\{L_{1}^{(n)},...,L_{d}^{(n)}\right\} \text{ non } k-\text{universel}\right) \leq \left(1-2^{-k}\right)^{d} \sum_{\substack{\left(j_{1},...,j_{k}\right) \in \left\{1,...,n\right\}^{k} \\ j_{1} \leq ... \leq j_{k}}} \sum_{\omega \in \Omega_{1,k}} 1.$$

On a
$$\sum_{\substack{\left(j_{1},...,j_{k}\right) \in \left\{1,...,n\right\}^{k} \text{ os } \in \Omega_{1,k} \\ j_{1} < ... < j_{k}}} \sum_{\substack{\omega \in \Omega_{1,k} \\ 1}} 1 = \left|\left(j_{1},...,j_{k}\right) \in \left\{1,...,n\right\}^{k}, \ j_{1} < ... < j_{k}\right| \times \left|\Omega_{1,k}\right|. \text{ Or } \left|\Omega_{1,k}\right| = 2^{k};$$

d'autre part, choisir $(j_1, ..., j_k) \in \{1, ..., n\}^k$ tel que $j_1 < ... < j_k$ revient à choisir k éléments distincts parmi $\{1, ..., n\}$ (il y a ensuite une seule façon de les ranger dans l'ordre croissant):

$$\left|\left(j_{1},...,j_{k}\right)\in\left\{ 1,...,n\right\} ^{k},\ j_{1}<...< j_{k}\right|=\binom{n}{k},$$

et l'on en conclut que $\left[\mathbf{P} \left(\left\{ L_1^{(n)}, ..., L_d^{(n)} \right\} \text{ non } k - \text{universel} \right) \le {n \choose k} 2^k \left(1 - 2^{-k} \right)^d \right]$.

23. Une question technique comme on les aime...

D'après (4):
$$\mathbf{P}\left(\left\{\left\{L_1^{(n)},...,L_d^{(n)}\right\} \text{ non } k-\text{universel}\right\}\right) \leq \binom{n}{k} 2^k \left(1-2^{-k}\right)^d$$
. Si l'on choisit $d \geq \frac{n}{2}$ et

$$k \le \ln n$$
, on a donc $\mathbf{P}\left(\left\{\left\{L_1^{(n)}, ..., L_d^{(n)}\right\} \text{ non } k - \text{universel}\right\}\right) \le \binom{n}{k} 2^k \left(1 - 2^{-\ln (n)}\right)^{\frac{n}{2}}$ (les inégalités sont bien

dans le bons sens). La majoration $\binom{n}{k} 2^k \le 2 n^k \le 2 n^{\ln(n)}$ (obtenue en utilisant **Q3.**), donne déjà :

$$\mathbf{P}\left(\left\{\left\{L_{1}^{\left(n\right)},...,L_{d}^{\left(n\right)}\right\} \text{ non } k-\text{universel}\right\}\right) \leq 2 n^{\ln\left(n\right)} 2^{\ln\left(n\right)} \left(1-2^{-\ln\left(n\right)}\right)^{\frac{n}{2}}.$$

On va montrer que $\mathbf{P}\left(\left\{\left\{L_1^{(n)},...,L_d^{(n)}\right\} \text{ non } k-\text{universel}\right\}\right) = o\left(\frac{1}{n}\right)$ (on aura alors

 $\mathbf{P}\left(\left\{\left\{L_1^{(n)},...,L_d^{(n)}\right\} \text{ non } k-\text{universel}\right\}\right) \leq \frac{1}{n} \text{ pour } n \text{ assez grand}. \text{ Pour cela, il suffit de prouver que :}$

$$\lim_{n \to +\infty} n \left(n^{\ln(n)} 2^{\ln(n)} \left(1 - 2^{-\ln(n)} \right)^{\frac{n}{2}} \right) = 0.$$

On pose donc $a_n = n \left(n^{\ln(n)} 2^{\ln(n)} \left(1 - 2^{-\ln(n)} \right)^{\frac{n}{2}} \right)$, et l'on étudie la limite de $\ln(a_n)$: on a

$$\ln a_n = \ln (n) + \ln^2 (n) + \ln (2) \ln (n) + \frac{n}{2} \ln \left(1 - \underbrace{2^{-\ln (n)}}_{\to 0} \right)$$

$$= \ln (n) + \ln^2 (n) + \ln (2) \ln (n) - \frac{n}{2} 2^{-\ln (n)} + o \left(n 2^{-\ln (n)} \right).$$

Or $2^{-\ln(n)} = e^{-\ln(2)\ln(n)} = n^{-\ln(2)}$. Par conséquent,

$$\ln a_n = \ln (n) + \ln^2 (n) + \ln (2) \ln (n) - \frac{n^{1-\ln(2)}}{2} + o(n^{1-\ln(2)}),$$

et $1 - \ln(2) > 0$, d'où, par croissances comparées, $\ln a_n \sim -\frac{n^{1-\ln(2)}}{2}$, et $\lim_{n \to +\infty} \ln a_n = -\infty$.

On a donc bien $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} n \left(n^{\ln(n)} 2^{\ln(n)} \left(1 - 2^{-\ln(n)} \right)^{\frac{n}{2}} \right) = 0$, et l'on peut conclure :

si
$$d \ge \frac{n}{2}$$
 et $k \le \ln n$, alors, pour n assez grand, $\mathbf{P}\left(\left\{\left\{L_1^{(n)}, ..., L_d^{(n)}\right\} \text{ non } k - \text{universel}\right\}\right) \le \frac{1}{n}$. (4)

24. Raisonnons par l'absurde : on suppose que v admet au plus k coordonnées non nulles ; il existe donc $1 \le i_1 < ... < i_k \le n$ tels que pour tout $i \in \{1, ..., n\}$, $i \notin \{i_1, ..., i_k\}$: $v_i = 0$.

Soit $\omega = \left(\omega_1, ..., \omega_n\right) \in \Omega_{1,n}$ défini par : $\forall j \in \{1, ..., k\}$, $\omega_{i_j} = \left\{ \begin{array}{l} 1 \text{ si } v_{i_j} \geq 0 \\ -1 \text{ sinon} \end{array} \right.$, et par exemple pour tout $i \notin \left\{i_1, ..., i_k\right\}$, $\omega_i = 1$. Par propriété de k- universalité, il existe $u = \left(u_1, ..., u_n\right) \in \mathbb{V}$ tel que pour tout $j \in \{1, ..., k\}$, $u_{i,j} = \omega_{i_j}$. Alors $\langle u, v \rangle = \sum_{j=1}^k u_{i_j} v_{i_j}$, puisque les autres coordonnées de v sont nulles. Dans

cette somme, tous les termes sont positifs ; l'un au moins est non nul (car v est non nul, et car toutes les coordonnées de u sont non nulles). Ainsi $\langle u, v \rangle > 0$, ce qui est absurde puisque v est orthogonal à u.

Par conséquent, v possède au moins k+1 coordonnées non nulles.

25. Si $L_1^{(n)} \in \text{Vect}(\mathbf{V})$, alors $L_1^{(n)}$ est orthogonal à tout élément de \mathbf{V}^{\perp} , donc en particulier à v; ceci prouve déjà que $\mathbf{P}\left(L_1^{(n)} \in \text{Vect}(\mathbf{V})\right) \leq \mathbf{P}\left(\left\langle L_1^{(n)}, v \right\rangle = 0\right).$

Notons v_{i_1} , ..., v_{i_p} les coordonnées non nulles de v (avec $1 \le i_1 < ... < i_p \le n$, et, d'après Q24., $p \ge k+1$)

Posons $L = \left(M_{1,i_1}, ..., M_{1,i_p}\right) \in \Omega_{1,p}$, et $w = \left(v_{i_1}, ..., v_{i_p}\right)$. Alors $\left\{\left\langle L_1^{(n)}, v \right\rangle = 0\right\} = \left\{\left\langle L, w \right\rangle = 0\right\}$, d'où $\mathbf{P}\left(\left\langle L_1^{(n)}, v \right\rangle = 0\right) = \mathbf{P}\left(\left\langle L, w \right\rangle = 0\right)$. On pose $J = \left]-1, 1\right[$, intervalle ouvert de longueur 2; L et w étant à coordonnées entières, $\mathbf{P}\left(\left\langle L, w \right\rangle = 0\right) = \mathbf{P}\left(\left\langle L, w \right\rangle \in J\right)$. Or d'après Q24. (les hypothèses nécessaires sont bien réunies): pour p assez grand, $\mathbf{P}\left(\left\langle L, w \right\rangle \in J\right) \le \frac{1}{\sqrt{p}}$. On a fait le tour : si k est assez grand, p l'est aussi, et :

$$\mathbf{P}\left(L_{1}^{(n)} \in \operatorname{Vect}\left(\mathbf{V}\right)\right) \leq \mathbf{P}\left(\left\langle L_{1}^{(n)}, \mathbf{v} \right\rangle = 0\right) = \mathbf{P}\left(\left\langle L, \mathbf{w} \right\rangle \in J\right) \leq p^{-\frac{1}{2}} \leq k^{-\frac{1}{2}}.$$
 (5)

26. • Par hypothèse, $\frac{t_n}{n} \to 0$, donc : $\forall \epsilon > 0$, $\exists n_0 \in \mathbb{N}^*$, $\forall n \geq n_0$, $\frac{t_n}{n} \leq \epsilon$.

En particulier, avec $\varepsilon = \frac{1}{2}$: $\exists n_0 \in \mathbb{N}^*$, $\forall n \ge n_0$, $\frac{t_n}{n} \le \frac{1}{2}$. Alors, pour tout $n \ge n_0$:

 $n - t_n = n \left(1 - \frac{t_n}{n} \right) \ge n \left(1 - \frac{1}{2} \right) = \frac{n}{2}$. On suppose désormais n assez grand pour que cette condition soit réalisée.

L'indication proposée n'est pas tout à fait correcte, la notion de k – universalité n'ayant été définie que pour un sous – ensemble de $\Omega_{1,n}$.

On prend, comme conseillé, $k = \lfloor \ln n \rfloor$. Notons, pour $j \in \{1, ..., n-1\}$, E_j l'événement « $\{L_1^{\binom{n}{j}}, ..., L_j^{\binom{n}{j}}\}$

est k – universel », et $\overline{E_j}$ son événement contraire. $\left(E_j, \overline{E_j}\right)$ est évidemment un système complet d'événements, donc :

$$\begin{split} \mathbf{P}\left(\left.L_{j+1}^{\left(n\right)} \in \operatorname{Vect}\left(\left.L_{1}^{\left(n\right)},...,L_{j}^{\left(n\right)}\right.\right)\right) &= \left.\mathbf{P}_{E_{j}}\left(\left.L_{j+1}^{\left(n\right)} \in \operatorname{Vect}\left(\left.L_{1}^{\left(n\right)},...,L_{j}^{\left(n\right)}\right.\right)\right)\mathbf{P}\left(\left.E_{j}\right.\right) \\ &+ \left.\mathbf{P}_{\overline{E_{j}}}\left(\left.L_{j+1}^{\left(n\right)} \in \operatorname{Vect}\left(\left.L_{1}^{\left(n\right)},...,L_{j}^{\left(n\right)}\right.\right)\right)\mathbf{P}\left(\left.\overline{E_{j}}\right.\right), \end{split}$$

 $\text{d'où a fortiori}: \ \mathbf{P}\left(\left.L_{\left.j\right.+\left.1\right.}^{\left(\left.n\right)}\right. \in \operatorname{Vect}\left(\left.L_{\left.1\right.}^{\left(\left.n\right)}\right.,...,\left.L_{\left.j\right.}^{\left(\left.n\right)}\right.\right)\right) \leq \mathbf{P}_{E_{\left.j\right.}}\left(\left.L_{\left.j\right.+\left.1\right.}^{\left(\left.n\right)}\right. \in \operatorname{Vect}\left(\left.L_{\left.1\right.}^{\left(\left.n\right)}\right.,...,\left.L_{\left.j\right.}^{\left(\left.n\right)}\right.\right)\right) + \left.\mathbf{P}\left(\left.\overline{E_{\left.j\right.}}\right.\right).$

Supposons maintenant que $j \in \{n - t_n + 1, ..., n - 1\}$.

- On a $j \ge \frac{n}{2}$, et $k \le \ln(n)$; on peut donc utiliser le résultat de **Q23.**, qui assure que, pour n suffisamment grand, $\mathbf{P}\left(\overline{E_j}\right) \le \frac{1}{n}$.
- Remarquons que $\operatorname{Vect}\left(L_1^{\binom{n}{1}},...,L_j^{\binom{n}{n}}\right)\neq\mathbb{R}^n$ (car j< n): $\left\{L_1^{\binom{n}{1}},...,L_j^{\binom{n}{n}}\right\}^{\perp}$ contient donc un vecteur non null. On peut donc utiliser le résultat de **Q25.**: en choisissant n suffisamment grand, k est lui aussi suffisamment grand, et l'on a $\mathbf{P}_{E_j}\left(L_{j+1}^{\binom{n}{n}}\in\operatorname{Vect}\left(L_1^{\binom{n}{n}},...,L_j^{\binom{n}{n}}\right)\right)\leq\frac{1}{\sqrt{k}}$. Ainsi (pour n assez grand):

$$\sum_{j=n-t_{n}+1}^{n-1} \mathbf{P}\left(L_{j+1}^{(n)} \in \operatorname{Vect}\left(L_{1}^{(n)}, ..., L_{j}^{(n)}\right)\right) \leq \sum_{j=n-t_{n}+1}^{n-1} \left(\frac{1}{\sqrt{k}} + \frac{1}{n}\right)$$

$$\leq \sum_{j=n-t_{n}+1}^{n-1} \frac{2}{\sqrt{k}} = \frac{2\left(t_{n}-1\right)}{\sqrt{\ln n}} \leq \frac{2t_{n}}{\sqrt{\ln (n)-1}}$$

Cela suffirait pour établir le théorème de Komlós, mais n'est pas tout à fait ce qui était demandé. Si l'on tient absolument à la majoration par $\frac{2 t_n}{\sqrt{\ln n}}$, il faut affiner, et écrire par exemple que

$$\sum_{j=n-t_{n}+1}^{n-1} \mathbf{P}\left(L_{j+1}^{(n)} \in \text{Vect}\left(L_{1}^{(n)}, ..., L_{j}^{(n)}\right)\right) \leq \sum_{j=n-t_{n}+1}^{n-1} \left(\frac{1}{\sqrt{k}} + \frac{1}{n}\right) = \frac{t_{n}-1}{\sqrt{k}} + \frac{t_{n}-1}{n}, \text{d'où}$$

$$\sum_{j=n-t_{n}+1}^{n-1} \mathbf{P}\left(L_{j+1}^{(n)} \in \text{Vect}\left(L_{1}^{(n)}, ..., L_{j}^{(n)}\right)\right) \leq t_{n} \left(\frac{1}{\sqrt{\ln\left(n\right)-1}} + \frac{1}{n}\right). \text{Comme}$$

$$\frac{1}{\sqrt{\ln\left(n\right)-1}} + \frac{1}{n} = \frac{1}{n \to +\infty} \frac{1}{\sqrt{\ln n}} + o\left(\frac{1}{\sqrt{\ln n}}\right) : \text{pour } n \text{ assez grand, } \frac{1}{\sqrt{\ln\left(n\right)-1}} + \frac{1}{n} \leq \frac{2}{\sqrt{\ln n}}, \text{ et}$$

$$\sum_{j=n-t_{n}+1}^{n-1} \mathbf{P}\left(L_{j+1}^{(n)} \in \text{Vect}\left(L_{1}^{(n)}, ..., L_{j}^{(n)}\right)\right) \leq \frac{2t_{n}}{\sqrt{\ln n}} \qquad (6) \text{ ouf.}$$

F Théorème de Komlós

27. D'après (2), $0 \le \mathbf{P}\left(\det\left(M^{(n)}\right) = 0\right) \le \sum_{j=1}^{n-1} \mathbf{P}\left(L_{j+1}^{(n)} \in \operatorname{Vect}\left(L_{1}^{(n)}, ..., L_{j}^{(n)}\right)\right)$. Donc d'après (6), pour toute suite croissante d'entiers $(t_n)_{n \ge 1}$ telle que $\frac{t_n}{n} \to 0$, on a pour n assez grand:

$$0 \le \mathbf{P} \left(\det \left(M^{(n)} \right) = 0 \right) \le \sum_{j=1}^{n-t_n} \mathbf{P} \left(L_{j+1}^{(n)} \in \operatorname{Vect} \left(L_1^{(n)}, ..., L_j^{(n)} \right) \right) + \frac{2 t_n}{\sqrt{\ln n}},$$

d'où, en utilisant l'inégalité (3):

$$0 \le \mathbf{P} \left(\det \left(M^{(n)} \right) = 0 \right) \le \sum_{j=1}^{n-t_n} 2^{j-n} + \frac{2t_n}{\sqrt{\ln n}} = 2^{1-t_n} - 2^{1-n} - \frac{2t_n}{\sqrt{\ln n}}.$$

On choisit la suite $(t_n)_{n \ge 1}$ telle que $t_n \to +\infty$ et $\frac{t_n}{\sqrt{\ln n}} \to 0$: par exemple, $t_1 = t_2 = 0$ et pour tout $n \ge 3$,

 $t_n = \lfloor \ln \left(\ln \left(n \right) \right) \rfloor$ (c'est bien une suite croissante d'entiers, vérifiant aussi $\frac{t_n}{n} \to 0$).

Alors $\lim_{n \to +\infty} 2^{1-t_n} - 2^{1-n} - \frac{2t_n}{\sqrt{\ln n}} = 0$. Par encadrement, on en déduit le théorème de Komlós:

$$\lim_{n \to +\infty} \mathbf{P} \left(\det \left(M^{(n)} \right) = 0 \right) = 0 .$$