则称 $< X(t)X(t+\tau)>$ 为随机过程X(t)在区间 $(-\infty,+\infty)$ 上的时间相关函数。

如果 $< X(t) > = m_X(a.s.)$,称随机过程 X(t) 具有数学期望的各态历经性;如果 $< X(t)X(t+\tau) > = R_v(\tau)(a.s.)$,称随机过程 X(t) 具有相关函数的各态历经性。

习题 12

1.设 X 是一个随机变量, $X(t) \equiv X, -\infty < t < +\infty$,

- (1) 如果 X 服从参数为 λ 的泊松分布;
- (2) 如果 X 服从标准柯西分布;
- (3) 如果 X 服从自由度为 2 的 t 分布(见 6.4.1 小节),

试问:随机过程 $|X(t),-\infty< t<+\infty|$ 是否为严平稳过程?是否为(宽)平稳过程?

 Θ 设 A 和 Θ 是两个相互独立的随机变量, $\Theta \sim U[0,2\pi]$,A 服从瑞利分布,其概率密度为

$$f(a) = \begin{cases} \frac{a}{\sigma^2} e^{-\frac{a^2}{2\sigma^2}}, & a > 0, \\ 0, & a \leq 0 \end{cases}$$

令 $X(t) = A\cos(\omega_0 t + \Theta)$, $-\infty < t < +\infty$, 其中 ω_0 为常数, 问此随机过程是否为平稳过程?

- 3. 设 Θ 是随机变量, $\Theta \sim U[-\pi,\pi]$, $X(t) = \sin t\Theta$, 问:
- (1) | X(t),t=1,2,3,… | 是否为平稳随机序列?
- (2) X(t), $-\infty < t < +\infty$ 是否为平稳随机过程?
- 4. 设 A 和 Θ 是相互独立的随机变量, $\Theta \sim U[-\pi,\pi]$,A 的概率密度 f(a) 是偶函数,证明随机过程 $X(t) = \sin(At + \Theta)$, $-\infty < t < +\infty$ 是平稳过程.

5. 设 $X_T = |X(t), t \in T|$ 是平稳随机过程,其均值为 m_X ,自相关函数为 $R_X(\tau)$,试证明下列随机过程仍为平稳过程,并求其均值与自相关函数,

- (1) $Y_r = \{aX(t) + b, t \in T\}$,其中 a, b 为常数;
- (2) $Y_T = \{AX(t) + B, t \in T\}$, 其中 A, B 是与 X_T 独立的随机变量, E(A) = a, E(B) = b, $D(A) = \sigma_1^2$, $D(B) = \sigma_2^2$, $\rho(A, B) = \rho$;
 - (3) $Y_r = |X(t+a) X(t), t \in T|$,其中 a 为常数.

6. 设 $X_T = |X(t), t \in T|$ 与 $Y_T = |Y(t), t \in T|$ 是相互独立的平稳随机过程,证明下列随机过程仍是平稳过程:

- (1) $Z_T = \{X(t) + Y(t), t \in T\}$;
- (2) $Z_T = \{X(t) Y(t), t \in T\}.$

7. 设 h(x) 是周期为 l 的实值连续函数, Θ 是服从[0,l] 上均匀分布的随机变量,证明 $X(t) = h(t+\Theta)$, $-\infty < t < +\infty$ 是平稳随机过程,并求其均值与自相关函数.

. 如果平稳过程 $\{X(t), -\infty < t < +\infty\}$ 的自相关函数为 $R_X(\tau), l > 0$ 是常数,证明下述三个命题是等价的:

- (1) $\{X(t), -\infty < t < +\infty \}$ 是以 l 为周期的周期平稳过程,即对任何 t 都有 $P\{X(t+l) = X(t)\} = 1$;
- (2) $R_{x}(\tau)$ 是以 l 为周期的周期函数;
- (3) $R_{x}(l) = R_{x}(0)$.

9) 设 A,B,Θ 是相互独立的随机变量,E(A)=a,E(B)=b, $D(A)=\sigma_1^2$, $D(B)=\sigma_2^2$, $\Theta \sim U[-\pi,\pi]$, ω_0 为常数, $X(t)=A\sin(\omega_0 t+\Theta)$, $Y(t)=B\cos(\omega_0 t+\Theta)$,试证明 X(t), $-\infty < t < +\infty$ + 与 + Y(t), $-\infty < t < +\infty$ + 是平稳相关的平稳过程.

10. 设
$$|X(n), n=0,\pm 1,\pm 2,\cdots|$$
是白噪声序列, $Y(n)=\sum_{k=0}^{N}a_{k}X(n-k)$,其中 N 为自然数, a_{0} ,

 a_1, \dots, a_n 为常数,求 $X(n), n=0,\pm 1,\pm 2,\dots$ 与 $Y(n), n=0,\pm 1,\pm 2,\dots$ 的互相关函数 $R_{xy}(m)$ 及 $R_{yy}(m)$.

- 11. 设 X(t) 是雷达的发射信号,遇到目标后回波信号是 $aX(t-\tau_1)$, $a\ll 1,\tau_1$ 是信号返回时间, 回波信号必然伴有噪声,记为N(t),于是接收机收到的全信号为 $Y(t) = aX(t-\tau, t) + N(t)$,假定X(t)和 N(t) 平稳相关,
 - (1) 试求互相关函数 $R_{xy}(\tau)$;
 - (2) 若 N(t) 的数学期望为零,且与 X(t) 相互独立,求 $R_{vv}(\tau)$.
- 12. 设 $X_r = |X(t)|, t \in T$ 和 $Y_r = |Y(t)|, t \in T$ 是平稳相关的两个平稳过程,证明其互相关函数 具有如下性质:
 - (1) $R_{yy}(-\tau) = R_{yy}(\tau)$;
 - (2) $R_{xy}(\tau) \leq \sqrt{R_x(0)} \sqrt{R_y(0)}$.
- 13. 设 X 是一随机变量, $E(X) = \mu$, $D(X) = \sigma^2$,证明随机过程 $X(t) \equiv X$, $-\infty < t < +\infty$ 是平稳过 程,并求谱密度.
 - 14. 已知平稳过程 X(t), $-\infty < t < +\infty$ 的自相关函数 $R_v(\tau)$, 求其谱密度 $S_v(\omega)$:
 - (1) $R_{\nu}(\tau) = 4e^{-|\tau|} \cos \pi \tau + \cos 3\pi \tau$;
 - (2) $R_v(\tau) = 4e^{-3|\tau|} \cos^2 2\tau$:

$$(3) \ R_x(\tau) = \begin{cases} 1 - \frac{|\tau|}{10}, & |\tau| \leq 10, \\ 0, & |\tau| > 10; \end{cases}$$

- (4) $R_{\nu}(\tau) = be^{-a|\tau|}(1+a|\tau|)$,其中 a>0, b>0,都是常数;
- (5) $R_{\nu}(\tau) = \sigma^2 e^{-a + \tau} (\cos b\tau ab^{-1} \sin b + \tau)$,其中 a > 0, b > 0 都是常数.
- 15. 设 A 和 Θ 是相互独立的随机变量, E(A) = 2, D(A) = 4, $\Theta \sim U[-\pi,\pi]$, ω_0 为常数, X(t) = $A\cos(\omega_0 t + \Theta)$, $-\infty < t < +\infty$,
 - (1) 证明 X(t) 是平稳过程:
 - (2) 求 X(t)的谱密度.
- 16. 设 ξ 和 Θ 为相互独立的随机变量, $\Theta \sim U[0,2\pi]$, ξ 具有概率密度 $f(x) = \frac{1}{\pi(1+x^2)}$, $X(t) = \frac{1}{\pi(1+x^2)}$ $\cos(\xi t + \Theta)$,
 - (1) 证明 X(t),-∞ <t<+∞ | 是平稳随机过程;
 - (2) 求其自相关函数及谱密度.
 - 17. 设第 5 题中的 X_τ 具有谱密度 $S_x(\omega)$, 求 Y_τ 的谱密度.
- 18. 已知平稳过程 $\{X(t), -\infty < t < +\infty \}$ 的谱密度 $S_{\nu}(\omega)$,试求其自相关函数 $R_{\nu}(\tau)$,下面的 a>0,σ>0 是常数,

$$(1) S_{x}(\omega) = \begin{cases} 1, & |\omega| \leq a, \\ 0, & |\omega| > a; \end{cases}$$

$$\begin{split} &(1)\ S_{\chi}(\omega) = \begin{cases} 1, & \mid \omega \mid \leq a, \\ 0, & \mid \omega \mid > a; \end{cases} \\ &(2)\ S_{\chi}(\omega) = \begin{cases} a^2 - \omega^2, & \mid \omega \mid \leq a, \\ 0, & \mid \omega \mid > a; \end{cases}$$

$$(3) S_{\chi}(\omega) = \begin{cases} 8\delta(\omega) + 2a \left(1 - \frac{|\omega|}{a}\right), & |\omega| \leq a, \\ 0, & |\omega| > a; \end{cases}$$

(4)
$$S_x(\omega) = \frac{1}{\omega^4 + 5\omega^2 + 6};$$

(5)
$$S_{\chi}(\omega) = \frac{\omega^2 + 7}{\omega^4 + 5\omega^2 + 4} + 4;$$

(6)
$$S_{\chi}(\omega) = \begin{cases} \sigma^2, & a \leqslant |\omega| \leqslant 2a, \\ 0, & 其他. \end{cases}$$

- 19. 设 $|X(n), n=0,\pm 1,\pm 2,\cdots|$ 是白噪声序列, $Y(n)=X(n)-\theta X(n-1)$,其中 θ 为常数,证明 $|Y(n), n=0,\pm 1,\pm 2,\cdots|$ 是平稳序列,并求其自相关函数与谱密度.
- 20. 设平稳序列 $|X(n), n=0,\pm 1,\pm 2,\cdots|$ 具有谱密度 $S_x(\omega) = \sigma^2 [1+a_1^2+a_2^2+2(a_1a_2-a_1)\cos \omega 2a_1\cos 2\omega]$, $-\pi \le \omega \le \pi$, 求其自相关函数.
 - 21. 证明第 4 题中 X(t) 的谱密度为 $S_x(\omega) = \pi f(\omega)$.
 - 22. 求第9题中两个平稳过程的自谱密度和互谱密度.
- 23. 设随机变量 $\Theta \sim U[0,2\pi]$,且与平稳过程 $|X(t),-\infty|< t<+\infty|$ 相互独立, ω_0 为常数,记 X(t) 的自相关函数为 $R_X(\tau)$,谱密度为 $S_X(\omega)$,令

$$Y(t) = X(t)\cos(\omega_0 t + \Theta), -\infty < t < +\infty$$

$$Z(t) = X(t)\sin(\omega_0 t + \Theta), -\infty < t < +\infty$$

证明:

(1) Y(t)和 Z(t)都是平稳过程,且自相关函数为

$$R_{y}(\tau) = R_{z}(\tau) = \frac{1}{2}R_{x}(\tau)\cos(\omega_{0}\tau)$$

(2) Y(t)和 Z(t)的自谱密度为

$$S_{\gamma}(\omega) = S_{z}(\omega) = \frac{1}{4} [S_{x}(\omega + \omega_{0}) + S_{x}(\omega - \omega_{0})]$$

(3) Y(t)和 Z(t)是平稳相关的,且其互相关函数为

$$R_{yz}(\tau) = -R_{zy}(\tau) = \frac{1}{2}R_x(\tau)\sin(\omega_0\tau)$$

(4) Y(t)和 Z(t)的互谱密度为

$$S_{yz}(\omega) = -S_{zy}(\omega) = \frac{\mathrm{i}}{4} [S_x(\omega + \omega_0) - S_x(\omega - \omega_0)]$$

24. 设平稳过程 $\{X(t), -\infty < t < +\infty\}$ 和 $\{Y(t), -\infty < t < +\infty\}$ 平稳相关,试证明:

Re[
$$S_{\chi\chi}(\omega)$$
] = Re[$S_{\chi\chi}(\omega)$],
Im[$S_{\chi\chi}(\omega)$] = -Im[$S_{\chi\chi}(\omega)$].

25. 设 $|X(t), -\infty < t < +\infty$ | 和 $|Y(t), -\infty < t < +\infty$ | 是两个不相关的平稳过程, 均值 m_x 和 m_y 都不为零, 定义

$$Z(t) = X(t) + Y(t), -\infty < t < +\infty$$

- (1) 证明 Z(t) 是平稳过程,并求其自相关函数和自谱密度;
- (2) 求互相关函数 $R_{xy}(\tau)$ 和 $R_{xz}(\tau)$;
- (3) 求互谱密度 S_{xy}(ω)和 S_{xz}(ω).
- 26. 设第 14 题中各平稳过程的均值 mx=0,试判断他们是否具有数学期望的各态历经性.
- 27. 设 ξ 是一个随机变量, $X(t) \equiv \xi, -\infty < t < +\infty$,
- (1) 如果 ξ 的二阶矩存在,证明 X(t) 具有数学期望的各态历经性的充要条件是 $D(\xi)=0$;
- (2) 如果 ξ 的四阶矩存在,证明 X(t) 具有相关函数的各态历经性的充要条件是 $E(\xi^4) = (E\xi^2)^2$.
- 28. 判断第 16 题中的平稳过程 X(t) 是否具有数学期望的各态历经性,是否具有相关函数的各态历经性.
 - 29 设 $|X(t), -\infty|$ 是平稳过程, a, b 是常数, 且 $a \neq 0, Y(t) = aX(t) + b, -\infty|$ $< t < +\infty|$

- (1) 证明 Y(t) 具有数学期望的各态历经性的充要条件是 X(t) 具有数学期望的各态历经性;
- (2) 证明 Y(t) 各态历经的充要条件是 X(t) 各态历经.
- 30. 设有随机过程 Z(t) = VX(t)Y(t), $-\infty < t < +\infty$, 其中平稳过程 X(t) 和 Y(t) 及随机变量 V =者相互独立,且 $m_X = 0$, $m_Y = 0$, $R_X(\tau) = 2e^{-2|\tau|}\cos(\omega_0\tau)(\omega_0$ 为常数), $R_Y(\tau) = 9 + e^{-3\tau^2}$, E(V) = 2, D(V) = 9,
 - (1) 证明 Z(t) 是平稳过程,并求其均值、方差和相关函数;
 - (2) 分别判断 X(t), Y(t), Z(t) 是否具有数学期望的各态历经性.

自测题 12

习题 12 参考答案

