

МИРЭА – Российский технологический университет Кафедра вычислительной техники

Теория автоматов

Практическая работа №2:

Проектирование синхронных цифровых автоматов

Задача на вычисление свертки числа по заданному модулю

Старший преподаватель: Боронников Антон Сергеевич antboronnikov@mail.ru

Спроектировать автомат, который вычисляет свертку по mod 3 для положительного числа, поступающего последовательно по одному разряду, начиная с младшего. Текущее значение свертки присутствует на двухразрядном выходе.

Признак деления числа на 3 без остатка в десятичной системе счисления: если сумма всех его цифр делится на 3, то и само число также делится на три.

123₁₀: 1+2+3 = 6, 6:3=2 => 123 делится на 3 без остатка

457₁₀: 4+5+7 = 16, 16:3=5 (ост. 1) => 457 не делится на 3 без остатка

Теоретический минимум

То же самое правило действует и для остатков от деления:

$$457_{10}$$
: $4+5+7=16$, $16:3=5$ (oct. 1) => $457:3=152$ (oct. 1)

$$857_{10}$$
: $8+5+7=20$, $20:3=6$ (oct. 2) => $857:3=285$ (oct. 2)

Теоретический минимум

Для числа в степени:

 10^{1}_{10} : 10 mod 3 = 1

 10^{2}_{10} : 100 mod 3 = 1

•••

 10^{5}_{10} : 100000 mod 3 = 1

•••

 10^{x}_{10} : 10^{x}_{10} mod 3 = 1

Для нахождения остатка от деления на число X в двоичной системе счисления необходимо разложить число на группы, длина которых соответствует S в выражении:

$$(2^s)^k mod X = 1$$

Для mod 3 **s=2**:

$$(2^2)^k mod \ 3 = 1$$

$$(... + 4^{3}d_{3} + 4^{2}d_{2} + 4d_{1} + d_{0})mod3 = (... + d_{3} + d_{2} + d_{1} + d_{0})mod3 = (... + (d_{3} + (d_{2} + (d_{1} + (d_{0})mod3)mod3)mod3)mod3)mod3$$

Решение

Для определения разряда в группе, в проектируемом автомате дополнительно следует поставить на вход счетчик st по модулю s.

Количество состояний – кол-во вариантов выражения *X mod 3* (3: 0, 1, 2).

Если на вход **in** поступает (0) - свертка не изменяется — +0.

Если на вход **in** поступает «1»:

- Если очередной разряд на нулевом разряде группы (st = 0), то свертка увеличивается на вес разряда $+1\cdot2^{0}(+1)$;
- Если очередной разряд на первом разряде группы (st = 1), то свертка увеличивается на вес разряда $+1\cdot2^1(+2)$;

in	0	1	1
Q	+0	+1	+2
0	0	1	2
1	1	2	0
2	2	0	1

вх: 1<mark>01</mark>11<mark>01</mark> <-мл.разр.

вых: 0221211 <-мл.разр.

Решение. Автоматная таблица

Автоматная таблица:

in Q	0 +0	1 +1	1 +2
0	0	1	2
1	1	2	0
2	2	0	1

	Q in,st	0 0	0 1	1 0	1 1
	0	0	0	1	2
•	1	1	1	2	0
	2	2	2	0	1

Кодирование состояний по значению свертки, чтобы не вычислять дополнительно выходную логику:

0 - 00

1 - 01

2 – 10

Решение. Схема автомата

Тест:

вх: 1011101 <-мл.разр.

вых: 0221211 <-мл.разр.