

Identifying Trends in Feature Attributions during Training of Neural Networks

Elena Terzieva¹, Maximilian Muschalik¹, Paul Hofman¹, Eyke Hüllermeier¹ (1) LMU Munich, Germany

Layer-wise Relevance Propagation (LRP)

Gradient-weighted Class Activation Mapping (Grad-CAM)

Methodology

- 1. Model training: Train models (simple and complex) on FashionMNIST and CIFAR10
- 2. Compute feature attributions: separate dataset of seen and unseen images
- 3. Summarize: compute summary measures
 - Frobenius norm: $||A||_F =$ $\sum_{i=1}^{m}\sum_{j=1}^{n}\left|a_{ij}^{2}\right|$
 - Shannon entropy: H(X) = $-\sum_{x\in\mathcal{X}}p(x)\log p(x)$
- 4. Analyze: descriptive and correlation analysis
 - Spearman's ρ

Evolution of Summary Measures

Computed Explanations during Training

negative entropy

Results

- evolution of the norm and entropy is independent of the generalization capabilities of the neural network
- stronger correlation between the summary measures and the performance measures if the model is stable
- weak relationship between the summary measures and the test loss if the model is overfitting

(a) FashionMNIST (good fit)

 Grad-CAM values are very volatile und do not yield significant results

dataset		Fashion	MNIST		CIFAR10			
${f model}$ fit	good fit		slight overfit		overfit		strong overfit	
summary	norm	entropy	norm	entropy	norm	entropy	norm	entropy
test loss	-0.875	0.806	0.226	-0.141	-0.363	0.391	0.345	-0.296
train loss	-0.657	0.591	-0.836	0.783	-0.832	0.808	-0.940	0.884

$\overline{\text{dataset}}$	FashionMNIST				CIFAR10			
${f model}$ fit	good fit		slight overfit		overfit		strong overfit	
summary	norm	entropy	norm	entropy	norm	entropy	norm	entropy
test loss	0.040	0.118	0.158	0.022	-0.086	0.055	0.035	-0.022
train loss	0.129	0.075	0.261	0.198	-0.108	0.050	-0.031	-0.020

entropy entropy norm norm

LRP

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K., & Samek, W. (2015). On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance

(b) CIFAR10 (slight overfit)

Propagation. PLOS ONE, 10(7). Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Hüllermeier, E., Waegeman, W. (2021). Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Machine Learning 110(3), 457–506

