► We reject *H*₀ when the observed value of the test statistic is in the critical region.

Make sure you are familiar with the method of critical region!!!

When the significance level is $\alpha = 0.05$, the critical region can be

	N(0,1)	t _n
2-sided	$(-\infty,-1.96)\cup(1.96,+\infty)$	$(-\infty, -t_{n,0.025}) \cup (t_{n,0.025}, +\infty)$
L-sided	$(-\infty, -1.65)$	$(-\infty, -t_{n,0.05})$
R-sided	$(1.65, +\infty)$	$(t_{n,0.05},+\infty)$

where $t_{n,0.025}$ is the critical value corresponding to the column of P=2.5% in the t distribution table, $t_{n,0.05}$ corresponds to the column of P=5%.

▶ To find the value of $t_{n,0.025}$, we use R:

$$t_{n,0.025} = -qt(0.025, df)$$

 $t_{n,0.05} = -qt(0.05, df)$

ightharpoonup When the significance level lpha is arbitrary, the critical region can be

	$Z \sim N(0,1)$	$T \sim t_n$
2-sided	$(-\infty, -z_{\alpha/2}) \cup (z_{\alpha/2}, +\infty)$	$(-\infty, -t_{n,\alpha/2}) \cup (t_{n,\alpha/2}, +\infty)$
L-sided	$(-\infty, -z_{\alpha})$	$(-\infty, -t_{n,\alpha})$
R-sided	$(z_{lpha},+\infty)$	$(t_{n,\alpha},+\infty)$

where z_{α} is a value such that $P(Z \leq z_{\alpha}) = 1 - \alpha$, $t_{n,\alpha}$ is a value such that $P(T \leq t_{n,\alpha}) = 1 - \alpha$.

▶ To find the value of z_{α} , we use R:

$$z_{\alpha} = -\mathsf{qnorm}(\alpha)$$

▶ To find the value of $t_{n,\alpha}$, we use R:

$$t_{n,\alpha} = -\mathsf{qt}(\alpha, \mathsf{df})$$

p-value

- When the p-value is less than the significant level α , we reject H_0 .
- Suppose that the observed value of the test statistic is δ , the p-value:

	$Z \sim N(0,1)$	$T \sim t_n$
2-sided	$P(Z<- \delta)+P(Z> \delta)$	$P(T < - \delta) + P(T > \delta)$
L-sided	$P(Z < \delta)$	$P(T < \delta)$
R-sided	$P(Z > \delta)$	$P(T > \delta)$

We can use R to calculate the above p-value:

	N(0,1)	t _n
2-sided	$2*pnorm(- \delta)$	$2*pt(- \delta ,df)$
L-sided	$pnorm(-\delta)$	$pt(-\delta,df)$
R-sided	$1-pnorm(\delta)$	$1-pt(\delta,df)$

You must be familiar with the method of critical region when performing the hypothesis testing. In your exam, it is hard to find p-values.