Prédiction des décès dus au Covid19 à l'aide de machine learning

De Carvalho, Enzo

numéro d'inscription : 29448

2020-2021

Sommaire

- 1 Première approche : simple regression
 - Principe
 - Regression Linéaire
 - Optimisation d'hyperparamètres
 - Résultats avec SVR
 - Cross-validation
- 2 Approche multivariées
 - Multiregresseur : 'RegressorChain'
 - Réseau neuronal

Principe de la demarche

Entraînement supervisé :

 \hookrightarrow le modèle \hat{g} généralise les données connues Y fournies.

Première approche : Regression linéaire

En utilisant le modèle ElasticNet du module scikit-learn.

Modèle:

$$\hat{\mathbf{g}}_{deces}(\omega,t) = \omega t$$

t les données (le temps) ω un paramètre à déterminer

Première approche : Regression linéaire

En utilisant le modèle ElasticNet du module scikit-learn.

Modèle:

$$\hat{g}_{deces}(\omega,t) = \omega t$$
 t les données (le temps) ω un paramètre à déterminer

Pour trouver ω le modèle ElasticNet résout :

$$\min_{\omega} \frac{1}{2n_{deces}} ||t\omega - f(t)||_2^2 + \alpha \rho |\omega| + \frac{\alpha(1-\rho)}{2} ||\omega||_2^2$$

 α et ρ les hyperparamètres définissant le modèle, f la courbe réelle des décès.

Première application

Figure: Résultats peu satisfaisant... (ici 11_ratio est ρ)

SVR; Premier résultat

Modèle SVR du module scikit-learn. Hyperparamètres :

C le paramètre de régularisation ϵ la taille du tube de "non-pénalité" γ paramètre du noyeau (rbf ici)

SVR ; Premier résultat

Modèle SVR du module scikit-learn. Hyperparamètres :

C le paramètre de régularisation ϵ la taille du tube de "non-pénalité" γ paramètre du noyeau (rbf ici)

Figure: SVR avec C = 100 puis C = 100000

Cross-Validation

Stratégie pour la CV

Sample index

Application avec SVR

 \Rightarrow Échec de géneralisation.

Prophet

Approche avec le module Prophet de Facebook

RegressorChain SVR

Approche multivariés avec RegressorChain

Réseau neuronal

Approche avec un réseau de neurone

Application avec réseau neuronal

Neural network avec 7 jour de décalage; max_iter=100k; prédit à partir du 11

{'nlpregressor_max_iter': 90000, 'nlpregressor_m.iter_no_change': 3, 'nlpregressor_tot': 0.0001}
NN: décès prédits 30 jours avec les données de 15 jours avant

Neural network avec 7 jour de décalage; max_iter=90k

Application avec réseau neuronal

```
        total_cas_confirmes
        total_deces_hopital

        total_deces_hopital
        1.000000

        total_deces_hopital
        0.977939

        total_deces_hopital
        0.977939
```


Figure: échec du modèle sans la courbe des cas confirmés