

FARO90

Ethanol Blending in Gasoline - Argentina

June, 2023

Ethanol Blending in Latin America

There are important fuel quality and environmental impact of vehicle emission challanges in the Region.

- The use of ethanol improves gasoline quality and creates flexibility in gasoline production.
- Ethanol use is a cost-effective way to increase gasoline octane and to replace more expensive gasoline components.
- Ethanol contributes to transport decarbonization and air quality improvement.
- There are opportunities across Latin America to increase the ethanol blend level and implement new policies on the use of gasoline-ethanol blends.

Sixteen countries with potential and additional use of ethanol were studied: 1) gasoline market profiles; 2) Optimization of gasoline blends with ethanol and 3) Environmental impact of gasolines blended with ethanol.

Ethanol Blending in Gasoline - Argentina

La demanda de gasolinas en Argentina fue poco más de 2,500 millones de galones en 2022 (9,000 millones de litros). Se cuenta con la siguiente participación por tipo de gasolina: 75% como Nafta Súper / Grado 2 (RON 93 – AKI 87) y 25% restante como Nafta Ultra / Grado 3 (RON 97 – AKI 92). Argentina produce casi la totalidad de la gasolina, las importaciones son menos de 250 millones de litros por año.

Argentina's policy is self-sufficiency and production and supply of ethanol for gasoline blend. Ethanol concentration varies according to local production. Currently, the concentration limit is 12% v/v. Ethanol production is almost equal to consumption.

Source: Ministerio de Economía, 2023

Gasoline Demand in Argentina

Gasoline Production in Argentina

Gasoline Imports in Argentina

Ethanol Balance in Argentina

Production and Consumption of Ethanol in Argentina

Source: Ministerio de Economía, 2023

Gasoline Quality in Argentina

Name	Resolution 576/2019							EN 228:2012 + A1:2017 (Euro 6 enabling)					
Implementation Date			2	2017 All countries									
Applicability	North Zone		Central Zone						South Zone				
Selected Grade	Gasoline Grade 2	Gasoline Grade 3	Gasoline Grade 2	Gasoline Grade 3	Gasoline Grade 2	Gasoline Grade 3	RON 95 E5	RON 95 E10	RON 98 E5	RON 98 E10			
Benzene Content	< 1 %v/v	< 1 %v/v	< 1 %v/v	< 1 %v/v									
Aromatics	< 40 %v/v	< 35 %v/v	< 35 %v/v	< 35 %V/v	< 35 %v/v								
Olefins	-	-	-	-	-	-	< 18 %v/v	< 18 %v/v	< 18 %v/v	< 18 %v/v			
Lead Content	< 5 mg/l	< 5 mg/l	< 5 mg/l	< 5 mg/l									
Manganese	< 2.5 mg/l	< 2,0 mg/l	< 2,0 mg/l	< 2,0 mg/l	< 2,0 mg/l								
RON	> 93	> 97	> 93	> 97	> 93	> 97	> 95	> 95	> 98	> 98			
MON	> 83	> 85	> 83	> 85	> 83	> 85	> 85	> 88	> 85	> 88			
AKI													
Sulfur Content	< 150 mg/kg	< 10 mg/kg	< 150 mg/kg	< 10 mg/kg	< 150 mg/kg	< 10 mg/kg	< 10 mg/kg	< 10 mg/kg	< 10 mg/kg	< 10 mg/kg			
Oxygen Content	< 4.5 %m/m	<2,7 % m/m	<3,7 % m/m	<2,7 % m/m	<3,7 % m/m								
Ethanol (EtOH)	<> 12 - 14 %√∨	<> 12 - 14 %v/v	<> 12 - 14 %v/v	<> 12 - 14 %√∨	<> 12 - 14 %v/v	<> 12 - 14 %v/v	<5 %v/v	<10 %v/v	<5 %√v	<10 %v/v			
RVP 37.8°C (Summer)	<> 35 - 70 kPa	<> 45 - 80 kPa	<> 45 - 80 kPa	<> 60 - 70 kPa *De	•	e country, RVP is reg ality Directive	gulated in the						
RVP 37.8 °C(Winter)	<> 45 - 80 kPa	<> 45 - 80 kPa	<> 55 - 90 kPa										
RVP 37.8°C (Transition)			<> 45 - 80 kPa	<> 45 - 80 kPa									
MTBE	< 15 %v/v	-	-	-	-								
Ehters 5 or more C Atoms	< 22 %\/v	< 22 %√v	< 22 %\/v	< 22 %\/v	< 22 %√v	< 22 %\/v	Based on oxygen content	<22 %V/V	Based on oxygen content	<22 %V/v			

Source: Ministerio de Hacienda, 2019

Gasoline Component Blending in Latin America

Gasoline is a blend of a base gasoline and other components. This blending is usually done at blending terminals as only 30% of the world's finished gasoline is distributed directly from refineries. Each component provides different properties to the final blend, for example, isomerates, alkylates and butanes increase the octane. The components commonly used in Latin America are:

Gasoline Blending Optimization

In some parts of the world, ethanol is added to gasoline as a blending component. The advantages of ethanol include that it is a renewable fuel made of biomass; that it is an octane booster that helps to dilute sulfur; and that it allows the fulfillment of environmental objectives. To determine the optimal components to be blended with ethanol, a **blending model** was used. This model selects the components to add in the gasoline/ethanol blend based on:

- Components prices,
- Properties each component affects,
- Quality parameters by country, and
- Component availability by country.

Through iterations, the model obtains the %v/v of the components to be blended with 10%, 15%, 20%, 25% and 30% of ethanol, in such a way that the final blend complies with the required properties of a finished gasoline by country.

The blending model uses gasoline component spot average prices January 2022 – February 2023 and provides fuel prices that do not include country distribution costs, local taxes and subsidies and import or gas station margins.

Available Blending Components

Source: Faro90

Argentina – Regular – Z. Norte y Centro – Constant Octane

Ethanol
Alkylate
Raffinate
Reformate
Isomerate
Catalytic Gasoline
Coker Naphtha
Heavy Primary Naphtha
Aromatics
Hydrocracked Gasoline

Argentina – Premium – Z. Norte y Centro – Constan Octane

Ethanol
Alkylate
Raffinate
Reformate
Isomerate
Catalytic Gasoline
Coker Naphtha
Heavy Primary Naphtha
Aromatics
Hydrocracked Gasoline

Octane (RON)	97.0	97.0	97.0	97.0	97.0	97.0	
Price (USD/gal	\$ 2.465	\$ 2.385	\$ 2.352	\$ 2.318	\$ 2.281	\$ 2.243	

Argentina – Regular – Z. Sur – Constant Octane

Ethanol
Alkylate
Raffinate
Reformate
Isomerate
Catalytic Gasoline
Coker Naphtha
Heavy Primary Naphtha
Aromatics
Hydrocracked Gasoline

Argentina – Premium – Z. Sur – Constant Octane

Ethanol
Alkylate
Raffinate
Reformate
Isomerate
Catalytic Gasoline
Coker Naphtha
Heavy Primary Naphtha
Aromatics
Hydrocracked Gasoline

Argentina – Regular – Z. Norte y Centro – Octane Increment

Ethanol
Alkylate
Raffinate
Reformate
Isomerate
Catalytic Gasoline
Coker Naphtha
Heavy Primary Naphtha
Aromatics
Hydrocracked Gasoline

Argentina – Premium – Z. Norte y Centro – Octane Increment

Ethanol
Alkylate
Raffinate
Reformate
Isomerate
Catalytic Gasoline
Coker Naphtha
Heavy Primary Naphtha
Aromatics
Hydrocracked Gasoline

Octane (RON)	97.0	98.2	99.2	100.7	101.2	103.4	
Price (USD/gal)	\$ 2.402	\$ 2.402	\$ 2.402	\$ 2.402	\$ 2.402	\$ 2.402	

Argentina – Regular – Z. Sur – Octane Increment

Ethanol
Alkylate
Raffinate
Reformate
Isomerate
Catalytic Gasoline
Coker Naphtha
Heavy Primary Naphtha
Aromatics
Hydrocracked Gasoline

Octane (RON)	93.0	95.3	96.5	97.8	99.3	100.7	
Price (USD/gal)	\$ 2.338	\$ 2.338	\$ 2.338	\$ 2.338	\$ 2.338	\$ 2.338	

Argentina – Premium – Z. Sur – Octane Increment

Ethanol
Alkylate
Raffinate
Reformate
Isomerate
Catalytic Gasoline
Coker Naphtha
Heavy Primary Naphtha
Aromatics
Hydrocracked Gasoline

Vehicle Emission Impact for Ethanol Gasoline Blending

The model used in this analysis takes as a reference the **International Vehicle Emissions Model (IVE).**

The model uses the Base Emission Rates from IVE model, as well as its Adjustment Factors based on:

- Vehicle technology (cars, trucks, buses, motorcycles),
- Vehicle fleet average age,
- Average traveled distance per vehicle by country, as well as
- Geographical and climatic conditions (altitude, humidity, temperature).

Emissions of criteria pollutants, toxic pollutants, and greenhouse gases (GHG) were calculated and calibrated with emission inventories, using real gasoline quality data. The reduction rates for gasoline/ethanol blends were obtained from various sources (IPCC, US Grains, among others).

Emission estimations for different pollutants for gasoline and gasoline/ethanol blends (10%, 15%, 20%, 25% and 30% ethanol) were determined using the IVE Model. A comparison between the results and the European (Euro 6) requirements is made. Results are also compared with real emissions of the United States vehicle fleet*.

Main Results

^{*}Source: Bureau of transportation statistics.

Gasoline Vehicle Fleet - Argentina

Vehicular Fleet: **33,702,039**

Average age: 12 year

Argentina – Gasoline Vehicle Emissions

Emissions	E0 g/km	E10 g/km	E15 g/km	E20 g/km	E25 g/km	E30 g/km	E10 - E0	E20 - E0	E30 - E0	Euro 6	TIER USA
СО	5.82	4.88	4.49	4.10	3.80	3.47	-16%	-30%	-40%	1	3.5
VOC	0.81	0.69	0.65	0.61	0.57	0.53	-14%	-25%	-35%	95	255
VOCevap	0.39	0.39	0.40	0.41	0.42	0.42	0%	4%	7%	0.1	0.273
NOx	0.34	0.24	0.22	0.21	0.20	0.18	-30%	-38%	-46%	0.06	0.203
SOx	0.00	0.00	0.00	0.00	0.00	0.00	-15%	-28%	-41%		
NH3	0.07	0.07	0.07	0.07	0.07	0.08	-2%	0%	1%		
Butadiene	0.01	0.01	0.01	0.01	0.01	0.00	-11%	-19%	-26%		
Acetaldehyde	0.02	0.03	0.05	0.06	0.07	0.08	68%	249%	372%		
Formaldehyde	0.07	0.08	0.09	0.09	0.11	0.11	13%	39%	68%		
Benzene	0.03	0.03	0.03	0.03	0.03	0.03	-9%	-11%	-18%		
CO2	191.99	182.39	178.72	176.91	175.12	171.89	-5%	-8%	-10%		
N2O	0.00	0.00	0.00	0.00	0.00	0.00	-1%	2%	4%		
CH4	0.18	0.18	0.18	0.19	0.19	0.20	0%	4%	7%		
PM 2.5	0.01	0.01	0.01	0.01	0.01	0.00	-22%	-43%	-65%		
PM10	0.04	0.03	0.02	0.02	0.02	0.01	-22%	-43%	-65%	0.005	0.007
тнс	0.31	0.32	0.35	0.38	0.40	0.42	-4%	-5%	-6%		