

# Data Structures and Algorithms

Tutorial 1. Asymptotic notation

### Today's topic is covered in details in...

T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein.

Introduction to Algorithms, Fourth Edition. The MIT Press 2022





**Problem.** Given a positive integer number **n**, find all possible non-negative integer values for variables **a**, **b**, **c** such that

$$a + b + c = n$$
.

**Problem.** Given a positive integer number **n**, find all possible non-negative integer values for variables **a**, **b**, **c** such that

$$a + b + c = n$$
.

#### Solution A:

```
for a from 0 to n
  for b from 0 to n
  for c from 0 to n
    if (a + b + c = n) then
       print (a, b, c)
```

**Problem.** Given a positive integer number **n**, find all possible non-negative integer values for variables **a**, **b**, **c** such that

$$a + b + c = n$$
.

#### Solution A:

for a from 0 to n
 for b from 0 to n
 for c from 0 to n
 if (a + b + c = n) then
 print (a, b, c)

#### Solution B:

for a from 0 to n
 for b from 0 to n
 c := n - b - a
 print (a, b, c)

#### Solution A:

```
for a from 0 to n
  for b from 0 to n
  for c from 0 to n
    if (a + b + c = n) then
       print (a, b, c)
```

#### Solution B:

```
for a from 0 to n
  for b from 0 to n
        c := n - b - a
        print (a, b, c)
```

Which solution is better? Why? How do we prove it?

Idea #1: run on a computer and see which one is faster.

Idea #1: run on a computer and see which one is faster.

| Solution A |       |  |
|------------|-------|--|
| N          | Time  |  |
| 100        | 0.09s |  |

Idea #1: run on a computer and see which one is faster.

| Solution A |       |  |
|------------|-------|--|
| N          | Time  |  |
| 100        | 0.09s |  |
| 200        | 0.54s |  |
| 300        | 1.82s |  |
| 400        | 4.42s |  |
| 500        | 8.96s |  |

Idea #1: run on a computer and see which one is faster.

| Solution A |       |  |
|------------|-------|--|
| N          | Time  |  |
| 100        | 0.09s |  |
| 200        | 0.54s |  |
| 300        | 1.82s |  |
| 400        | 4.42s |  |
| 500        | 8.96s |  |

| Solution B |       |  |
|------------|-------|--|
| N          | Time  |  |
| 100        | 0.02s |  |
| 200        | 0.05s |  |
| 300        | 0.10s |  |
| 400        | 0.17s |  |
| 500        | 0.25s |  |

Idea #1: run on a computer and see which one is faster.

### Some issues with this approach:

- 1. Requires actual implementation (easy for this example, but can be hard for complicated algorithms)
- 2. Requires multiple runs on a computer (takes resources)
- 3. Hard to test on large inputs (a "fast" algorithm can be slow on small inputs)
- 4. Hard to replicate, requires testing under the same environment (same computer, same OS, same compiler, etc.)
- 5. Anything else?

Idea #2: compute running time as a function of n, based off the pseudocode.

#### Solution A:

```
for a from 0 to n
  for b from 0 to n
  for c from 0 to n
    if (a + b + c = n) then
       print (a, b, c)
```

How many times is this condition checked (in terms of **n**)?

Idea #2: compute running time as a function of n, based off the pseudocode.

#### Solution A:

```
for a from 0 to n
  for b from 0 to n
  for c from 0 to n
    if (a + b + c = n) then
       print (a, b, c)
```

How many times is this condition checked (in terms of **n**)?

$$(n+1)^3$$

**Idea #2:** compute running time as a function of **n**, based off the pseudocode.

#### Solution B:



How many times is statement executed (in terms of **n**)?

**Idea #2:** compute running time as a function of **n**, based off the pseudocode.

Solution B:

How many times is statement executed (in terms of **n**)?

$$(n+1)^2$$

**Idea #2:** compute running time as a function of **n**, based off the pseudocode.

Solution A:

for a from 0 to n
 for b from 0 to n
 for c from 0 to n
 if (a + b + c = n) then
 print (a, b, c)

 $(n+1)^3$ 

Solution B:

$$(n+1)^2$$

**Idea #2:** compute running time as a function of **n**, based off the pseudocode.

Solution A:

for a from 0 to n
 for b from 0 to n
 for c from 0 to n
 if (a + b + c = n) then
 print (a, b, c)

 $(n+1)^3$ 

Solution B:

$$(n+1)^2$$

**Idea #2:** compute running time as a function of **n**, based off the pseudocode.

Some issues with this approach:

- 1. Some formulae cannot be compared uniformly for all n.
- 2. We do not actually care about precise running time, only its growth rate.

$$(n+1)^3$$

$$\geqslant$$

$$(n+1)^2$$

$$(n+1)^3 = n^3 + 3n^2 + 3n + 1$$

$$(n+1)^3 = n^3 + 3n^2 + 3n + 1$$
This term grows fastest!

**Idea #3:** compute asymptotic complexity as a function of **n**.

$$(n+1)^3 = n^3 + 3n^2 + 3n + 1$$

This term grows fastest! So for sufficiently large n, other terms do not matter!

$$(n+1)^3 = n^3 + 3n^2 + 3n + 1$$
This term grows fastest!

$$n^3 + 3n^2 + 3n + 1 = O(n^3)$$

## Asymptotic upper and lower bounds



**Definition.** Let f(n) and g(n) be functions from positive integers to positive reals. Then we write

$$f(n) = O(g(n))$$

if and only if there exist constants c and  $n_0$  such that for all  $n \ge n_0$  we have  $f(n) \le c \cdot g(n)$ 

**Definition.** Let f(n) and g(n) be functions from positive integers to positive reals. Then we write

$$f(n) = O(g(n))$$

if and only if there exist constants c and  $n_0$  such that for all  $n \ge n_0$  we have  $f(n) \le c \cdot g(n)$ 

Eventually (for large enough n)

**Definition.** Let f(n) and g(n) be functions from positive integers to positive reals. Then we write

$$f(n) = O(g(n))$$

if and only if there exist constants c and  $n_0$  such that for all  $n \ge n_0$  we have  $f(n) \le c \cdot g(n)$ 

Eventually (for large enough n)

**Definition.** Let f(n) and g(n) be functions from positive integers to positive reals. Then we write

$$f(n) = O(g(n))$$

if and only if there exist constants c and  $n_0$  such that for all  $n \ge n_0$  we have  $f(n) \le c \cdot g(n)$ 

Constant factors do not matter

**Example 1.** Prove that  $n^2 + 3n = O(n^3)$ 

**Example 1.** Prove that  $n^2 + 3n = O(n^3)$  **Proof.** 

**Example 1.** Prove that  $n^2 + 3n = O(n^3)$  **Proof.** 

We need to find constants c and  $n_0$ , such that for all  $n \ge n_0$   $n^2 + 3n < c \cdot n^3$ 

**Example 1.** Prove that  $n^2 + 3n = O(n^3)$  **Proof.** 

We need to find constants c and  $n_0$ , such that for all  $n \ge n_0$   $n^2 + 3n < c \cdot n^3$ 

Reformulating inequality (dividing by  $n^3$ ):  $1/n + 3/n^2 \le c$ 

**Example 1.** Prove that  $n^2 + 3n = O(n^3)$  **Proof.** 

We need to find constants c and  $n_0$ , such that for all  $n \ge n_0$   $n^2 + 3n \le c \cdot n^3$ 

Reformulating inequality (dividing by  $n^3$ ):  $1/n + 3/n^2 \le c$ Let  $n_0 = 10$  and c = 1.

**Example 1.** Prove that  $n^2 + 3n = O(n^3)$  **Proof.** 

We need to find constants c and  $n_0$ , such that for all  $n \ge n_0$   $n^2 + 3n < c \cdot n^3$ 

Reformulating inequality (dividing by  $n^3$ ):  $1/n + 3/n^2 \leq c$  Let  $n_0 = 10$  and c = 1.

Then  $1/n + 3/n^2 < 1 = c$  for any  $n \ge n_0$ .

**Example 1.** Prove that  $n^2 + 3n = O(n^3)$  **Proof.** 

We need to find constants c and  $n_0$ , such that for all  $n \ge n_0$   $n^2 + 3n < c \cdot n^3$ 

Reformulating inequality (dividing by  $n^3$ ):  $1/n + 3/n^2 \le c$ Let  $n_0 = 10$  and c = 1.

Then  $1/n + 3/n^2 < 1 = c$  for any  $n \ge n_0$ .

And so the required inequality is satisfied.

**Example 1.** Prove that  $n^2 + 3n = O(n^3)$  **Proof.** 

We need to find constants c and  $n_0$ , such that for all  $n \ge n_0$   $n^2 + 3n < c \cdot n^3$ 

Reformulating inequality (dividing by  $n^3$ ):  $1/n + 3/n^2 \le c$ Let  $n_0 = 10$  and c = 1.

Then  $1/n + 3/n^2 < 1 = c$  for any  $n \ge n_0$ .

And so the required inequality is satisfied.

QED.

Remark. Note that all of the following statements are correct:

- $n^2 + 3n = O(n!)$
- $n^2 + 3n = O(2^n)$
- $n^2 + 3n = O(n^3)$
- $n^2 + 3n = O(n^2)$

But only the last one provides a **tight** upper bound, since it cannot be improved any further.

**Example 2.** Prove that  $\sin n = O(1)$ 

**Example 2.** Prove that  $\sin n = O(1)$  **Proof.** 

We need to find constants c and  $n_0$ , such that for all  $n \ge n_0$   $\sin n \le c \cdot 1$ 

Let  $n_0 = 1$  and c = 1. Then  $\sin n \le 1 = c$  for any n. QED.

**Remark.** Obviously, big-Oh notation is abusing the equality symbol, since it is not symmetric. To be more formally correct, some people (mostly mathematicians, as opposed to computer scientists) prefer to define O(g(x)) as a set-valued function, whose value is all functions that do not grow faster than g(x), and use set membership notation to indicate that a specific function is a member of the set thus defined. Both forms are in common use, but the sloppier equality notation is more common at present.

https://web.mit.edu/16.070/www/lecture/big\_o.pdf 40

**Example 3.** Explain why this statement does not make sense?

"The running time of this algorithm is at least O(n<sup>2</sup>)"

Example 3. Explain why this statement does not make sense?

«The running time of this algorithm is at least O(n<sup>2</sup>)»

**Explanation**. Big-Oh notation is used to provide upper bound, but «at least» implies a lower bound.

**Example 4.** Is it true that  $2^{n+1} = O(2^n)$ ?

**Example 4.** Is it true that  $2^{n+1} = O(2^n)$ ?

**Answer**: Yes,  $2^{n+1} = O(2^n)$ .

**Example 4.** Is it true that  $2^{n+1} = O(2^n)$ ?

**Answer**: Yes,  $2^{n+1} = O(2^n)$ .

**Proof.** We need to find constants c and  $n_0$  such that  $2^{n+1} \le c \cdot 2^n$ 

Let c = 2 and  $n_0 = 1$ . Then  $2^{n+1} = 2 \cdot 2^n = c \cdot 2^n$ . QED.

**Example 5.** Is it true that  $2^{2n} = O(2^n)$ ?

**Example 5.** Is it true that  $2^{2n} = O(2^n)$ ?

Answer: No,  $2^{2n} \neq O(2^n)$ .

**Example 5.** Is it true that  $2^{2n} = O(2^n)$ ?

Answer: No,  $2^{2n} \neq O(2^n)$ .

**Proof.** We need to show that for any constants c and  $n_0$ , there exists some  $n \ge n_0$ , such that  $2^{2n} > c \cdot 2^n$ . We simply need to find n such that  $2^n > c$ . Since c is a constant that does not depend on n, we can always find such n. More precisely,  $n = 1 + \lceil \log_2 c \rceil$ . QED.

**Definition (big-Oh notation).** Let f(n) and g(n) be functions from positive integers to positive reals. Then we write

$$f(n) = O(g(n))$$

if and only if there exist constants c and  $n_0$  such that for all  $n \ge n_0$  we have  $f(n) \le c \cdot g(n)$ 

**Definition (big-Omega notation).** Let f(n) and g(n) be functions from positive integers to positive reals. Then we write

$$f(n) = \Omega(g(n))$$

if and only if there exist constants c and  $n_0$  such that for all  $n \ge n_0$  we have  $f(n) \ge c \cdot g(n)$ 

**Definition (big-Omega notation).** Let f(n) and g(n) be functions from positive integers to positive reals. Then we write

$$f(n) = \Omega(g(n))$$

if and only if there exist constants c and  $n_0$  such that for all  $n \ge n_0$  we have  $f(n) \ge c \cdot g(n)$ 

**Equivalently.**  $f(n) = \Omega(g(n))$  if and only if g(n) = O(f(n)).

#### Asymptotic notation. Theta notation

**Definition (Theta notation).** Let f(n) and g(n) be functions from positive integers to positive reals. Then we write

$$f(n) = \Theta(g(n))$$

if and only if there exist constants  $c_1$ ,  $c_2$  and  $n_0$  such that for all  $n \ge n_0$  we have  $c_1 \cdot g(n) \ge f(n) \ge c_2 \cdot g(n)$ .

#### Asymptotic notation. Theta notation

**Definition (Theta notation).** Let f(n) and g(n) be functions from positive integers to positive reals. Then we write

$$f(n) = \Theta(g(n))$$

if and only if there exist constants  $c_1$ ,  $c_2$  and  $n_0$  such that for all  $n \ge n_0$  we have  $c_1 \cdot g(n) \ge f(n) \ge c_2 \cdot g(n)$ .

**Equivalently.** 
$$f(n) = \Theta(g(n))$$
 if and only if  $f(n) = O(g(n))$  and  $f(n) = \Omega(g(n))$ .

**Definition (little-Oh notation).** Let f(n) and g(n) be functions from positive integers to positive reals. Then we write

$$f(n) = o(g(n))$$

if and only if for any constant c there exists constant  $n_0$  such that for all  $n \ge n_0$  we have  $f(n) < c \cdot g(n)$ .

# Asymptotic notation. Little-Omega notation

**Definition (little-Omega notation).** Let f(n) and g(n) be functions from positive integers to positive reals. Then we write

$$f(n) = \omega(g(n))$$

if and only if for any constant c there exists constant  $n_0$  such that for all  $n \ge n_0$  we have  $f(n) > c \cdot g(n)$ .

**Equivalently.** f(n) = o(g(n)) if and only if g(n) = o(f(n)).

#### Asymptotic notation. Summary

$$f(n) = O(g(n))$$
 is like  $a \le b$ ,  
 $f(n) = \Omega(g(n))$  is like  $a \ge b$ ,  
 $f(n) = \Theta(g(n))$  is like  $a = b$ ,  
 $f(n) = o(g(n))$  is like  $a < b$ ,  
 $f(n) = \omega(g(n))$  is like  $a > b$ .

Cormen, Section 3.2

Asymptotic notation. Big-Oh vs Theta

Remark. A common error is to confuse big-Oh and theta.

For example, one might say "heapsort is  $O(n \log n)$ " when the intended meaning was "heapsort is  $\Theta(n \log n)$ ".

Both statements are true, but the latter is a stronger claim.

# Asymptotic notation. Exercises

**Exercise 6.** Let f(n) and g(n) be asymptotically non-negative functions. Prove that

$$\max(f(n), g(n)) = \Theta(f(n) + g(n))$$

**Exercise 7.** Show that for any real constants a and b, where b > 0, we have

$$(n+a)^b = \Theta(n^b)$$

(1)

#### Solution to Exercise 6

**Proof.** We need to show that there exist constants  $c_1$ ,  $c_2$  and  $n_0$ , such that for all  $n \ge n_0$  we have

$$c_1 \cdot (f(n) + g(n)) \ge \max(f(n), g(n)) \ge c_2 \cdot (f(n) + g(n))$$

Let  $c_1=1$ ,  $c_2=1$ , and  $n_0=1$ . Let  $n\geq n_0$ . Consider two cases:

 $\operatorname{And} \operatorname{And} \operatorname{And}$ 

$$((\mathbf{n})\mathbf{g} + (\mathbf{n})\mathbf{f}) \cdot \mathbf{g}(\mathbf{n}) = \mathbf{f}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) + \mathbf{f}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) + \mathbf{f}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) + \mathbf{f}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) = \mathbf{f}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) + \mathbf{g}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) = \mathbf{g}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) + \mathbf{g}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) + \mathbf{g}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) = \mathbf{g}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) + \mathbf{g}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) + \mathbf{g}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) = \mathbf{g}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) + \mathbf{g}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) + \mathbf{g}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) + \mathbf{g}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) + \mathbf{g}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) = \mathbf{g}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) + \mathbf{g}(\mathbf{n}) + \mathbf{g}(\mathbf{n}) \cdot \mathbf{g}(\mathbf{n}) + \mathbf$$

(2) 
$$\max(f(n), g(n)) = g(n)$$
. Analogous to case (1), since the problem is symmetric with respect to exchanging  $f(n)$  and  $g(n)$ .

Thus, in both cases we have shown the inequality holds for all  $n \ge n_0$ . QED.

#### Solution to Exercise 7

**Proof.** We need to show that there exist constants  $c_1$ ,  $c_2$  and  $n_0$ , such that for all  $n \ge n_0$  we have

$$c_1 \cdot n^b \ge (n+a)^b \ge c_2 \cdot n^b$$

We make two observations:

(1) For sufficiently large n, we have a < n, since a is a constant. More precisely, this is true for any n > a.

(2) We make  $t \le 0$  then for sufficiently large n and have a n since n is a constant. More precisely, this is true for any n > a.

(2) If a < 0, then for sufficiently large n, we have  $(4s \cdot n + a) > 0$ . More precisely, this is true for any n > 2|a|.

Let 
$$c_1 = 2^b$$
,  $c_2 = (1/2)^b$  and  $n_0 = 2|a|$ . The for any  $n \ge n_0$  we have:

$$Q_0 \cdot Q_1 = Q_1 \cdot Q_2 = Q_1 \cdot Q_1 \cdot Q_2 = Q_1 \cdot Q_1 \cdot Q_2 \cdot Q_2 \cdot Q_1 \cdot Q_2 \cdot Q_2 \cdot Q_2 \cdot Q_1 \cdot Q_2 \cdot Q_2$$

Thus, we have shown the inequality holds for all  $n \ge n_0$ . QED.

#### Asymptotic notation. More exercises

#### Exercise 8. Assume

$$f(n) = O(n^2)$$
$$g(n) = O(\log n)$$

Prove that

$$f(n) \cdot g(n) = O(n^2 \cdot \log n)$$

#### Solution to Exercise 8

Proof. First, we unfold the assumptions:

means that there exist constants  $c_1$ ,  $n_1$  such that for all  $n \ge n_1$  we have  $f(n) \le c_1 \cdot n^2$  $f(n) = O(n^2)$ 

means that there exist constants  $c_2$ ,  $n_2$  such that for all  $n \ge n_2$  we have  $g(n) \le c_2 \cdot \log n$  $(n \operatorname{gol}) O = (n) \operatorname{g}$ 

We need to show that there exist constants c and n<sub>0</sub>, such that for all n  $\geq$  n<sub>0</sub> we have

$$f(n) \cdot g(n) \le c \cdot n^{2} \cdot \log n$$

Let  $c = c_1 \cdot c_2$  and  $n_0 = \max(n_1, n_2)$ . Then for any  $n \ge n_0$ , we have

$$\operatorname{I}(\operatorname{U}) \cdot \operatorname{\mathbb{E}}(\operatorname{U}) \leq \operatorname{c}^{\scriptscriptstyle \operatorname{T}} \cdot \operatorname{U}_{\scriptscriptstyle \operatorname{S}} \cdot \operatorname{\mathbb{E}}(\operatorname{U}) \leq (\operatorname{c}^{\scriptscriptstyle \operatorname{T}} \cdot \operatorname{U}_{\scriptscriptstyle \operatorname{S}}) \cdot (\operatorname{c}^{\scriptscriptstyle \operatorname{S}} \cdot \operatorname{Jok} \operatorname{U}) = (\operatorname{c}^{\scriptscriptstyle \operatorname{T}} \cdot \operatorname{c}^{\scriptscriptstyle \operatorname{S}}) \cdot \operatorname{U}_{\scriptscriptstyle \operatorname{S}} \cdot \operatorname{Jok} \operatorname{U}$$

Thus, we have shown the inequality holds for all  $n \ge n_0$ . (LED.

# Asymptotic notation. More exercises

#### Exercise 9. Assume

$$f(n) = O(g(n))$$

$$g(n) = O(h(n))$$

Prove that

$$f(n) = O(h(n))$$

Proof. First, we unfold the assumptions:

means that there exist constants  $c_1$ ,  $n_1$  such that for all  $n \ge n_1$  we have  $f(n) \le c_1 \cdot g(n)$ f(n) = O(g(n))

means that there exist constants  $c_2$ ,  $n_2$  such that for all  $n \ge n_2$  we have  $g(n) \le c_2 \cdot h(n)$ g(n) = O(h(n))(z)

We need to show that there exist constants c and n<sub>0</sub>, such that for all n  $\geq$  n<sub>0</sub> we have

$$f(n) \le e \cdot h(n)$$

Let 
$$c=c_1 \cdot c_2$$
 and  $n_0=\max(n_1,n_2)$ . Then for any  $n \geq n_0$ , we have

Let  $c = c_1 \cdot c_2$  and  $n_0 = \max(n_1, n_2)$ . Then for any  $n \ge n_0$ , we have

$$f(n) \leq c_1 \cdot g(n) \leq c_1 \cdot (c_2 \cdot h(n)) = (c_1 \cdot c_2) \cdot h(n)$$

Thus, we have shown the inequality holds for all 
$$n \ge n_0$$
. QED.

- Asymptotic notation
  - Can you write definition of  $\omega(g(n))$  from memory?
  - How are O,  $\Omega$ ,  $\Theta$ ,  $\omega$ , o related to each other?
- Comparing some functions
  - Is true that  $3^n = O(2^n)$ ?
- Properties of asymptotics
  - Is it true that f(n) = O(f(n) + f(n)) for any function f?
- One more thing...

- Asymptotic notation
  - $\circ$  Can you write definition of  $\omega(g(n))$  from memory?
  - How are O,  $\Omega$ ,  $\Theta$ ,  $\omega$ , o related to each other?
- Comparing some functions
  - Is true that  $3^n = O(2^n)$ ?
- Properties of asymptotics
  - Is it true that f(n) = O(f(n) + f(n)) for any function f?
- One more thing...

- Asymptotic notation
  - Can you write definition of  $\omega(g(n))$  from memory?
  - How are O,  $\Omega$ ,  $\Theta$ ,  $\omega$ , o related to each other?
- Comparing some functions
  - Is true that  $3^n = O(2^n)$ ?
- Properties of asymptotics
  - Is it true that f(n) = O(f(n) + f(n)) for any function f?
- One more thing...

- Asymptotic notation
  - Can you write definition of  $\omega(g(n))$  from memory?
  - How are O,  $\Omega$ ,  $\Theta$ ,  $\omega$ , o related to each other?
- Comparing some functions
  - Is true that  $3^n = O(2^n)$ ?
- Properties of asymptotics
  - Is it true that f(n) = O(f(n) + f(n)) for any function f?
- One more thing...

# Feedback Lecture and Tutorial 1

forms.gle/jPBfkYRgJaqQAmAE9

