CERTIFICAT D'ANALYSE

Compte : **Gghouibi**

Identifiant:

Titre: Fiche-de-lecture.pdf Dossier: Dossier par défaut

Commentaires : Non renseigné Chargé le :15/06/2020 21:17 Similitudes document:

INFORMATIONS DÉTAILLÉES

Titre: fiche-de-lecture.pdf

Description:

Analysé le: 16/06/2020 01:18

Identifiant: q4kfur3m

Chargé le : 15/06/2020 21:17

Type de chargement : Remise manuelle des travaux

Nom du fichier : fiche-de-lecture.pdf

Type de fichier : pdf Nombre de mots: 2219 Nombre de caractères : 13162

Taille originale du fichier (kb): 1536.43

TOP DES SOURCES PROBABLES PARMI 1 SOURCE PROBABLE

SIMILITUDES TROUVÉES DANS CE DOCUMENT/CETTE PARTIE

Similitudes à l'identique : <1 % 👽

Similitudes supposées : <1 % 0

Similitudes accidentelles : 0 % 0

Sources très probables - 0 Sources peu probables - 0 Sources accidentelles- 12 Sources

Sources ignorées - O Sources

SOURCES TRÈS PROBABLES

0 Source Similitude

SOURCES PEU PROBABLES

0 Source Similitude

SOURCES ACCIDENTELLES

12 Sources	Similituo
1. Document: gu72wzh8 - appartient à un autre utilisateur	<1%
2. Source Compilatio.net ws9z15yv	<1%
3. Source Compilatio.net arxz25	<1%
4. Source Compilatio.net 42xbpafq	<1%
5. Source Compilatio.net blivrm6y	<1%
6. Source Compilatio.net t5ge2hls	<1%
7. Source Compilatio.net hucdrs6g	<1%
8. Source Compilatio.net oq9k5vwt	<1%
9. Source Compilatio.net 1cnhp8zw	<1%
10. Source Compilatio.net u4qict28	<1%
11. Source Compilatio.net gne938f7	<1%
12. Source Compilatio.net ggetkauv	<1%

SOURCES IGNORÉES

0 Source Similitude

SIMILITUDES TROUVÉES DANS CE DOCUMENT/CETTE PARTIE

Similitudes à l'identique : <1 % 🕡

Similitudes supposées : <1 % 🕡

Similitudes accidentelles : <1 % 👽

Légende : Textes entre guillemets

TEXTE EXTRAIT DU DOCUMENT

Fiche de lecture
Les r'seaux de neurones convolutifs dans le monde des
е
cylindr´es
е
Auteur
GHOUIBI Ghassen
Encadr´e
e
Mr.Jean Jacques Mariage
Table des mati`res
e
I Introduction
I .1 Probl´matique
е
I .2 Contexte
II R´seaux de neurones convolutifs
е
Couche de convolution .
Couche de pooling
Couche de correction
Couche FC
Couche de perte
2
2
2

•		
•		
•		
•		
•		
•		
•		

2
3
3
4
4
4
III Solution CNN
III .1 Reconnaissance de signalisation en temps r'el
е
Impl´mentation proposer
е
Conclusion
III .2 D´tection de collision
е
Impl'mentation proposer
e
Conclusion
•
•
•
·

.

.

. . . .

.

.

. . . .

.

4 4 4

> 5 6

6 7 IV Mon avis

8
V Conclusion
8
1
I
Introduction
Le mixage entre l'informatique et la m'canique se fait en toute douceur
е
si on prend comme exemple les voitures.
Dans certaines t^ches les humaines sont plus rapides puisqu'ils ont acquis un
a
point de vue humain qu'une machine n'a pas. C'est pour ¸el` par exemple
ca
qu'on vous demande de prouvez votre humanit´` traves un formulaire faea
cile, CAPTCHA ou autre o` le but est par exemple der trouve les images
u
qui contiennent des voitures.
Pour les ordinateurs c'est un peu plus compliqu´ d'identier dans des images
е
qui contiennent des panneaux par exemple vu qu'il doivent absorber une
quantit' de donn'es importantes et se d'ter de performance de calcul.
е
е
o
Les entreprises sp´cialis´es comme GAFA et Tesla investissent des millions
е
е
de dollar dans le domaine du Big Data qui est en explosition continu. Dans
notre rapport on va se focaliser sur les voitures autonomes.
En eet, la reconnaisance de millions d'images ou de vid'os pour identie
er un contenu pr'cis est co^teux et demande une d'marche particuli`re
е
u
е
е
et pourtant il existe tr`s peu de techniques pour analyser ces donn'es de
е
е
mani`re automatis´e et ecace.

e
e
I .1 Probl´matique
e
Les solutions de classication d'image pr'sentent actuellement dans les
e
voitures intelligentes vont-elles permettre de r'duire les accidents de la route ?
e
I .2 Contexte
Dans ce rapport on peut d'nir notre contexte comme un probl`me de
e
е
classication, d'o` on va pr'senter quelque variante des r'seaux de neurones
u
е
е
convolutifs qui est une approche tr's populaire pour r'soudre des probl'mes
е
е
е
de reconnaissance de formes.
II
R´seaux de neurones convolutifs
e
Les r'seaux de neurones convolutifs sont des m'thodes d'apprentissage
e
e
supervis', ils suivent ce cycle ci-dessous :
e
Images
Classif ieur
Detection
2
Plus en d'tails la r'ception des images en entr'es ensuite les r'seaux de
e
e
e
e

neurones convolutifs d'tectent les features de chaque image puis entra^
e
nent
un classieur dessus.
Comme d'taill' auparavant on s'int'resse au probl`me de classication,
e
е
e
е
Le r´seau va donc calculer a partir de nos entr´es un score pour chaque
е
e
classe, Finalement la classe sera aect´e ` l'objet d'entr´e qui ` le meilleur
e a
e
a
score.
Une architecture de r'seau de neurones se composent ` traves un empie
a
lement de couches de traitement :
1. couche de convolution qui traite les donn´es d'un champ r´cepteur.
e
e
2. couche de pooling qui permet de compresser l'information.
3. couche de correction en r'f'rence ` la fonction d'activation.
ee
a
4. couche enti`rement connect´e qui est une couche de type perceptron.
e
e
5. couche de perte (LOSS).
Couche de convolution
La couche convolution est un bloc de construction indispensable d'un
CNN.
Elle contient trois param`tres qui sont :
е
— La Profondeur
— Le Pas

— La marge
L'entr´e d'une couche convolution est soit une image soit la sortie d'une
е
autre couche de convolution. Pour calculer le nombre de neurones de sortie
voici la formule :
W K + 2P
W =
0
_
_
_
i
S
+1
(1)
Wi volume d'entr´e
е
K nombre de champs r'cepteurs
е
S le pas
P taille de la marge
Couche de pooling
Cette partie permet de d'coup'r une image en entr'e en petite s'rie de
е
е
е
е
rectangles de n pixels.
3
Couche de correction
Pour am'liorer le traitement entre les couches une fonction math'matique
е
е
appel'e fonction d'activation de neuronnes sur les sorties par exemple la core
rection Unit´ Lin´aire Rectifi´e , la correction par tangente hyperbolique
е
е

, fonction sigmoide.
Couche FC
Les neurones d'une couche enti`rement connect'e sont connect's avec
e
e
e
toutes les sorties de la couche pr'c'dente.
e e
Couche de perte
La couche de perte montre la mani`re o` l'entra^
е
u
nement du r´seau p´nalise
е
е
l'´cart entre le signal pr´vu et r´el, en eet plusiseurs fonctions de pertes
e
e
e
peuvent ^tre utilis ´es par exemple Softmax ,Euclidienne et Entropie crois´e
е
е
е
sigmoide.
III
Solution CNN
III .1 Reconnaissance de signalisation en temps r'el
е
Dans cette partie on se base sur l'article
de Alexander Shustanov et Pavel
Yakimov, qui expliquent l'impl'mentation de reconnaissance de signalisation
е
a
`traves un r'seau de neuronnes convolutifs.
е

La reconnaissance d'une signalisation se fait sur deux 'tapes, d'abord la

е
localisation ensuite la classication.
La solution propos´e dans l'article montre que l'utilisation de l'algorithme
е
GHT `donn' un r'sultat nal de 97.3% de pr'cision test' sur le dataset
а
е
е
е
е
GTSRB 1
Impl´mentation proposer
е
Comme d'taill' auparavant l'article utilise la biblioth`que Deep Leare
е
е
ning de TensoFlow sur le dataset GTSRB avec l'architecture nale suivante :
Convolutional, stride 2, kernel 3x3x16
Convolutional, stride 2, kernel 3x3x32
Convolutional, stride 2, kernel 3x3x64
Fully connected-512
SoftMax
Le test sur d'autres achritecture `donn' un r'sultat de 0.9 d'occurance de
а
е
e
classication, en revanche on a decid´ de r´duire le nombre de layers. Cette
e
е
1. http://benchmark.ini.rub.de/?section=gtsrb&subsection=news
4
architecture montre qu'un seul layer n'est pas susant pour avoir l'occurance souhait'e
e
M´thode
е
Occurance FPS
Sliding window + SVN
100%

1

Modied GHT with preprocessing + CNN
99.94%
50
ConvNet
99.55%
38
Modied GHT with preprocessing
97.3%
43
Modied GHT without preprocessing
89.3%
25
Viola-Jones
90.81%
15
HOG
70.33%
20
Les algorithmes d'velopp's dans cet article ont 't' test' sur des vid'os
е
е
ee
е
е
prises avec un Anroid Nvidia Shield Tablet install dans une voiture voici
е
un exemple :
Finalement pour l'´valution du temps d'ex´cution pour la classication
e
e
voici les ressouces utilis'es :
е
Hardware
Training Clasication d'une image (64x64)
Nvidia GeForce GTX 650
7 min
0.05 ms
Nvidia GeForce GTX 650M 12 min

0.14 ms
Intel Core i7
16 min
0.37 ms
Conclusion
Dans cet article l'impl'mentation d'algorithme de classication pour la
e
reconnaissance de trac montre un tr's bon resulat avec 99.94% d'image
e
class'e correctement.
e
5
III .2 D'tection de collision
е
Dana catta nartia an ua ca hacen aur
Dans cette partie on va se baser sur l'article ´crit par XIAOHUI HUANG,PAN
e HE de l'universit´ de Floride aux ´tats-unis.
e
e
De nos jours les cam´ras de surveillance submergent les rues des grandes
e
villes pour des raisons des s'curit' par exemple. En eet, utiliser ces cam'ras
e
e
e
pour d'tecter en temps r'el les collisions pr'sentent un d' vu que les
e
e
e
e
sc'narios de conduite sont trop vari's. Par exemple chaque conducteur aura
е
e
е
e un reexe di'rent par rapport` une situation de danger.

En g´n´ral un outil de surveillance vid´o devrait r´pondre ` plusieurs
e e
е
е
a
exigences:
 D'tecter tous les v'hicules (arrît's ou en mouvement)
e
e
ee
 Classier les v'hicules d'tect's en cat'gories (bus,voitures,moto,v'lo)
е
е
е
е
е
Extraire des caract´ristiques spatiales (mouvement, vitesse, trajece
toire),d´tection d'anomalies
е
D'tection de condition de circulation (vitesses variables entre les
е
voies,trac l'ger), condition d''clairage (ensoleill',couvert,nuit,pluvieux)
е
е
е
2 qui contient trois types de donn'es vid'os des inL'article utilise TNAD
е
е
tersections de trac qui sont utilis's pour d'tection d'accident et aussi pour
е
e
des t^ches de surveillance.
a
Les m'thodes de d'tection d'objets sont g'n'ralement des approches
e
е
e e
bas´es sur l'apprentissage automatique ou l'apprentissage appronfondi sur

е

е
des propositions r'gionales (zones ou partitions) ou des approches d'apprene
tissage appronfondi de bout en bout.
Au d´but` l'aide R-CNN on va r´soudre le probl`me de s´lection d'un
е
а
е
е
е
grand nombre de r'gions pour g'n'rer un certain nombre de propositions
е
e e
r´gionales et ensuite classer ces r´gions` l'aide de SVM.
е
е
a
L'algorithme de recherche s'lective est ensuite utilis' pour les propoe
е
sitions de r'gion et pour g'n'rer une sous-segmentation initiale ainsi que
е
e e
de nombreuses r'gions candidates. Ensuite il va permettre de combiner
е
r´cursivement les r´gions similaires en plus grandes, et nalement utiliser
е
е
les r'gions g'n'r'es pour produire la version nale de proposition de r'gion
е
e ee
е
candidate.
2. Trac Near Accident Dataset
6
Ces propositions de r'gions candidates sont transform'es en carr' et alie
е
е
ment'es en r'seau de neurones convolutionnels qui prennent le rîle d'un
е

e
0
extracteur de fonctionnalit's.
e
La couche en sortie sert ` alimenter un SVM pour classer la pr'sence de
a
e
l'objet dans cette proposition de r´gion candidate.
e
L'apprentissage appronfondi de bout en bout YOLO 3 utilise un seul
r'seau convolutionnel pour pr'dire ce qu'on appelle bounding-box, des boî
e
e
tes
englobantes, ainsi que les probabilit's corresspondantes.
e
Il prend d'abord l'image et la divise en une grille S x S, dans chacune des
parties de la grille, nous prenons m bo^
tes englobantes. Pour chacune des
bo [^]
tes englobantes ` 'chelle multiple. Le r'seau g'n`re une probabilit' de
a e
e
e e
e
classe et des valeurs de d'calage pour le cadre de s'lection.
e
e
Ensuite, il s'lectionne les bo [^] englobantes qui ont la probabilit de classe
e
tes
е
au-dessus d'une valeur seuil et les utilise pour localiser l'objet dans l'image.
Voici une image qui nous permet de mieux comprendre :
Conclusion
Les exp´riences dans cet article ont montr´ l'avantage du mod`le propos´
e
e
e

e
par rapport ` d'autres mod`les avec des performances quantitatives ` des
a
e
a
fr'quences d'images 'lev'es.
e
e e
3. un algorithme de d'tection d'object qui consid`re la d'tection comme un probl`me
e
e
e
e
de r´gression de bout en bout
e
7
IV
Mon avis
Pour minimiser les accidents de la route il sera indispensable d'utiliser
la technologie. En eet ceci pourra ^tre r'solu avec des voitures autonomes
e
e
sachant qu'il existe quelques prototypes de voitures inteligentes. Cependant
la passation du mod`le classic de voitures aux voitures 'lectriques se fait
е
е
de mani`re tr´s lente, les recherches actuelles ne font que prouver la stabie
е
lit´ et l'´cacit´ des algorithmes comme CNN. Au nal la transition vers
е
е
е
l'automatisation des voitures peut donc ^tre longue. De plus, ces voitures
e
permettront peut ^tre de prot´ger les humains et r´duire de beaucoup le
e
e
e

nombre d'accidents mais il faudra s'attendre ` d'autres probl`mes de la part
a
e
des voitures autonomes.
V
Conclusion
Les travaux eectu's dans les articles sont tr's int'ressants, en approne
e
e
dissant dans ces articles on constate que chaque probl`me de classication
e
ou autre demande certain pr´-requis, il faudrait donc ´tudier d'autres algoe
e
rithmes an d'avoir une connaissance large et pouvoir mettre en concurance
ces derniers.
Tesla d'passent de loin toutes les concurences dans le monde des cylindr'es
e
e
mais est-ce-qu'on arrivera ` avoir des voitures compl`tement autonomes dans
a
e
le futur proche ouvert au public avec des prix abordables.

8