Supplemental Table 1. Available Omics Data of Eucalyptus

Organism	Omics	Details	Tissue	Reference
Eucaliptus grandis	Transcriptomics	RNA-seq	Shoot tips, young leaves, mature leaves, floral buds, roots, phloem, immature xylem	https://doi.org/1 0.1038/nature13 308
Eucaliptus grandis	Transcriptomics	RNA-seq	Xylem, immature xylem, phloem, shoot tips, young leaf, mature leaf	https://doi.org/1 0.1186/1471- 2164-11-681
Eucaliptus grandis	Transcriptomics	RNA-seq of E. grandis resistant and susceptible to the pest Leptocybe invasa	Leaf	https://doi.org/1 0.1093/pcp/pcv0 64
Eucaliptus grandis	Transcriptomics	RNA-seq	Xylem	https://doi.org/1 0.1093/database/ bax079
Eucalyptus globulus	Transcriptomics	RNA-seq. 18 libraries were prepared, corresponding to six temperature and CO2 combinations (three temperatures and two CO2 concentrations), using three biological replicates	Stem	https://doi.org/1 0.1007/s11295- 022-01537-y
Eucalyptus grandis	Transcriptomics	RNA-seq. 18 libraries were prepared, corresponding to six temperature and CO2 combinations (three temperatures and two CO2 concentrations), using three biological replicates	Stem	https://doi.org/1 0.1007/s11295- 022-01537-y
Eucalyptus grandis	Transcriptomics	RT-qPCR. Transcriptomic analysis of <i>E. grandis</i> bark	Bark	https://doi.org/1 0.1186/s12870- 016-0839-8

		during summer (wet) and winter (dry)		
Eucalyptus grandis	Proteomics	2-D-LC-MS/MS . Isolation of proteins of Eucalyptus grandis, at three ages of growth (6-month-old seedlings, 3- and 6-year-old trees)	Stem of seedling, xylem and phloem	DOI 10.1002/pmic.20 0600989
Eucalyptus grandis	Proteomics	MS-UPLC. Samples of leaves were collected 0, 6, 12, 18 and 24 hours after inoculation of fungus Austropuccinia psidii in rustresistant and rust-susceptible E. grandis plants	Leaf	https://doi.org/1 0.3389/fpls.2020 .604849
Eucalyptus grandis	Proteomics	MS. Proteome analysis was carried out in the stem of <i>E. grandis</i> after its cultivation at 10 °C (LT), 22 °C (MT) and 32 °C (HT)	Stem	https://doi.org/1 0.1016/j.phytoch em.2017.01.017
Eucalyptus globulus	Proteomics	MS. Proteome analysis was carried out in the stem of <i>E. grandis</i> after its cultivation at 10 °C (LT), 22 °C (MT) and 32 °C (HT)	Stem	https://doi.org/1 0.1016/j.phytoch em.2017.01.017
Eucalyptus grandis	Proteomics	MS. Proteomic analysis of E. grandis plants that were subjected to two acclimatization regimes	Leaf	https://doi.org/1 0.1016/j.plaphy. 2020.05.026
Eucalyptus grandis	Proteomics	2-DE gels and LC-MS/MS . Proteomic analysis of <i>E. grandis</i> bark during summer (wet) and winter (dry)	Bark	https://doi.org/1 0.1186/s12870- 016-0839-8
Eucalyptus grandis	Metabolomics	LC-MS. Samples of leaves were collected 0, 6, 12, 18 and 24 hours after inoculation of fungus	Young leaf	https://doi.org/1 0.3389/fpls.2020 .604849

		Austropuccinia psidii in rust- resistant and rust-susceptible E. grandis plants		
Eucalyptus globulus	Metabolomics	MS-UPLC. Metabolic profiles of both healthy <i>Eucalyptus globulus</i> and those infected with the <i>Mycosphaerella</i> leaf disease	Leaf	DOI 10.1007/s11306- 014-0666-6
Eucalyptus pauciflora	Metabolomics	GC–MS. Metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe water stress	Leaf	DOI 10.1007/s11306- 011-0299-y
Eucalyptus dumosa	Metabolomics	GC–MS. Metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe water stress	Leaf	DOI 10.1007/s11306- 011-0299-y
Eucalyptus grandis	Metabolomics	GC-MS. Metabolomic analysis of <i>E. grandis</i> plants that were subjected to two acclimatization regimes	Leaf	https://doi.org/1 0.1016/j.plaphy. 2020.05.026
Eucalyptus grandis	Metabolomics	GC-MS. Metabolomic analysis of <i>E. grandis</i> bark during summer (wet) and winter (dry)	Bark	https://doi.org/1 0.1186/s12870- 016-0839-8