

快速建立低通滤波器电路

设计目标

输入		输出		电源	
V_{iMin}	V_{iMax}	V_{oMin}	V_{oMax}	V _{cc}	V _{ee}
-12V	12V	-12V	12V	15V	-15V

截止频率 (f _c)	二极管阈值电压 (V _t)
10kHz	20mV

设计 说明

与传统的单极 RC 滤波器相比,该低通滤波器拓扑可显著改善建立时间。这是通过使用二极管 D_1 和 D_2 来实现的,当输入和输出电压之间存在足够大的差异时,这些二极管能够使滤波电容器的充电和放电速度更快。

设计说明

- 1. 观察运算放大器的共模输入限制。
- 2. 将 C₁ 保持为较小的值可确保运算放大器能够轻松地驱动容性负载。
- 3. 要获得最快的建立时间,请使用快速开关二极管。
- 4. 所选的运算放大器应具有足够的输出驱动能力,以便为 C_1 充电。 R_3 可限制最大充电电流。

设计步骤

1. 根据 $f_C = 10kHz$ 为 R_1 和 C_1 选择标准值。

$$R_1 = 10k\Omega$$

$$C_1 = \frac{1}{2\pi \times f_C \times R_1} = \frac{1}{2\pi \times 10 \text{kHz} \times 10 \text{k}\Omega} = 1.6 \text{nF}$$

2. 设置二极管阈值电压 (V_t) 。该阈值是可导致二极管导通的输入和输出之间的最小电压差(快速电容器充电和放电)。

$$V_t = rac{V_f}{1 + rac{R_2}{R_1}} pprox rac{0.6V}{1 + rac{R_2}{R_1}} = 20 mV$$

$$R_2 = (\frac{0.6V}{20mV} - 1) \times R_1 = 290k\Omega \approx 300k\Omega$$
 (standard 5% value)

3. 选择用于进行噪声预过滤的组件。

$$f_{c2}\!=10\times f_c\!=100kHz$$

$$f_{c2} = \frac{1}{2\pi \times R_4 \times C_2}$$

Select
$$R_4 = R_1 = 10k\Omega$$

$$C_3 = \frac{C_1}{10} = 160 pF$$

4. 添加补偿组件,以稳定 U_1 。 R_3 可限制 C_1 的充电电流,并且还用于在二极管导通时将电容与运算放大器输出相隔离。较大的值可以改善稳定性,但会增加 C_1 充电时间。

Select
$$R_3 = 100\Omega$$

5. C_2 可提供局部高频反馈,以抵消输入电容与 R_1 和 R_2 的并联组合之间的相互作用。为了防止与 C_1 发生相互作用,请按以下所示选择 C_2 :

Select
$$C_2 = \frac{C_1}{50} = 32 pF \approx 33 pF$$
 (standard value)

瞬态仿真结果

设计参考资料

请参阅《模拟工程师电路说明书》,了解有关TI综合电路库的信息。

请参阅 TINA-TI™ 电路仿真文件 SBOMAU1。

有关大量运算放大器主题(包括共模范围、输出摆幅、带宽和如何驱动 ADC)的更多信息,请参阅 TI 高精度实验室。

设计采用的运算放大器

OPA827				
V _{ss}	8V 至 36V			
V _{inCM}	V _{ee} +3V 至 V _{cc} -3V			
V _{out}	V_{ee} +3 $V \cong V_{cc}$ -3 V			
V _{os}	75μV			
I _q	4.8mA			
I _b	ЗрА			
UGBW	22MHz			
SR	28V/µs			
通道数	1			
http://www.ti.com.cn/product/cn/opa827				

设计备选运算放大器

TLC072			
V _{ss}	4.5V 至 16V		
V _{inCM}	V _{ee} +0.5V 至 V _{cc} -0.8V		
V _{out}	V_{ee} +350mV 至 V_{cc} -1V		
V _{os}	390µV		
I _q	2.1mA/通道		
I _b	1.5pA		
UGBW	10MHz		
SR	16V/µs		
通道数	1、2、4		
http://www.ti.com.c	http://www.ti.com.cn/product/cn/tlc072		

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任:(1)针对您的应用选择合适的TI产品;(2)设计、验证并测试您的应用;(3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn/上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2019 德州仪器半导体技术(上海)有限公司

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2019 德州仪器半导体技术(上海)有限公司