Math 110B (Algebra) *University of California, Los Angeles*

Aaron Chao

Winter 2022

These are my lecture notes for Math 110B (Algebra), which is the second course in Algebra taught by Nicolle Gonzales. The textbook for this class is *Abstract Algebra: An Introduction*, 3rd edition by Hungerford.

Contents		
1	Jan 3, 2022 1.1 Groups	2 2
2	Jan 5, 2022	4

1 Jan 3, 2022

1.1 Groups

- Algebra \rightarrow study of mathematical structure.
- Rings \leftrightarrow "numbers" e.g. $\mathbb{R}, \mathbb{Z}, \mathbb{C}, \mathbb{Z}_p$ 2 operations $(+, \cdot)$

Question 1.1: What happens if we have only 1 operation (either \cdot or + but not both)? What kind of structure is this more basic setup?

Answer: Groups! It turns out groups encode the mathematical structures of the $\underline{\text{symmetries}}$ in nature.

Definition 1.2 (Group)

A group (G,*) is a nonempty set with a binary operation $*: G \times G \to G$ that satisfies

- 1. (Closure): $a * b \in G \quad \forall a, b \in G$
- 2. (Associativity): $(a * b) * c = a * (b * c) \quad \forall a, b, c \in G$
- 3. (Identity): $\exists e \in G$ such that $e * a = a = a * e \quad \forall a \in G$
- 4. (Inverse): $\forall a \in G, \exists d \in G \text{ such that } d * a = e = a * d$

Note:

• If * is addition, we just divide * by the usual + sign. In this case

$$e = 0$$
 and $d = -a$

• If the operation * is multiplication, we just divide * by the usual · sign. In this case

$$e = 1$$
 and $d = a^{-1}$

• Be aware that sometimes * is neither.

Definition 1.3 (Abelian)

If the * operation is commutative, i.e. a*b = b*a, then we say that G is <u>abelian</u> (named after the mathematician N.H. Abel)

Definition 1.4 (Order, Finite Group vs. Infinite Group)

The <u>order</u> of a group G, denoted |G|, is the number of elements it contains (as a set). Thus, G is a <u>finite group</u> if $|G| < \infty$ and G is an infinite group if $|G| = \infty$

Examples 1.5 (Examples of a group)

1. Rings where you "forget" multiplication. $\rightarrow (\mathbb{Z}, +)$ integers with $* = +, (\mathbb{R}[X], +)$, etc. Note: $(\mathbb{Z}, *)$ with $* = \cdot$ is not a group. Why?

Theorem 1.6

Every ring is an abelian group under addition.

Proof. e = 0, inverse = -a for each $a \in R$.

<u>Fact:</u> If $R \neq 0$ then (R, \cdot) is <u>never</u> a group since 0 has no multiplicative inverse.

Examples 1.7 (More examples of a group)

2. Fields without zero.

Theorem 1.8

Let \mathbb{F}^* denote the nonzero elements of a field \mathbb{F} . Then (\mathbb{F}^*,\cdot) is an abelian group.

<u>Recall:</u> A unit in a ring R is an element $a \in R$ with a multiplicative inverse $a^{-1} \in R$ such that $aa^{-1} = 1 = a^{-1}a$.

Theorem 1.9

The set of units \mathcal{U} inside a ring R is a group under multiplication.

Examples 1.10 (More examples of a group cont.)

3. $\mathcal{U}_n = \{m | (m, n) = 1\} \subseteq \mathbb{Z}_n$ is also a group, but under multiplication, $\underline{n = 4} \quad \mathbb{Z}_4 = \{0, 1, 2, 3\}, \quad \mathcal{U}_4 = \{1, 3\}$ $(\mathbb{Z}_4, +)$ and (\mathcal{U}_4, \cdot) are groups with different binary operation!

 $\underline{n=6}$ $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}, \quad \mathcal{U}_6 = \{1, 5\}$ (\mathcal{U}_6, \cdot) is a group

- $1 \cdot 5 = 5 \pmod{6} \in \mathcal{U}_6$ (closure)
- 1 = e (identity)
- $1 \cdot 1 = 1$, $5 \cdot 5 = 25 \equiv 1 \pmod{6}$ (inverse)

2 Jan 5, 2022