Linear Algebra II

Trong

December 25, 2018

Contents

1 Orthogonal Matrix

2

1 Orthogonal Matrix

Definition 1. A matrix Q is orthogonal iff its columns are orthonormal, IOW,

$$Q^TQ = I.$$

Corollary 2. If Q is an orthogonal matrix, then its inverse is its transpose.

Corollary 3. If Q is an orthogonal matrix, then

$$\det Q = \pm 1.$$

Proof.

$$1 = \det I$$

$$= \det(Q^{T}Q)$$

$$= \det Q^{T} \det Q$$

$$= \det Q \det Q$$

$$= (\det Q)^{2}$$

Therefore $\det Q = \pm 1$.

Note 4. This is why people like orthogonal matrices, because they're easy to invert.

Theorem 5. If Q is orthogonal, then

$$Q^T Q = Q Q^T = I.$$

Proof. Recall that $Q^T = Q^{-1}$, and inverses commute with each other, i.e.

$$Q^T Q = Q Q^T.$$

Theorem 6. If the columns of a square matrix are orthonormal, then its rows are also orthonormal, and vice versa.

Problem 7 (Ex. 6.5.11.). Find an orthogonal matrix whose first row is $(\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$.

Solution. Find two other independent vectors by trial and error, then use Gram-Schmidt to orthogonalize the set, then normalize to get orthonormal set. \Box

Normal Matrix

Theorem 8. A matrix is normal iff it is unitarily diagonalizable.

Exercise 9 (Ex. 6.5.12.). Let A be an $n \times n$ real symmetric or complex normal matrix. Prove that

$$\det A = \prod_{i=1}^n \lambda_i,$$

where the $\lambda_i s$ are the [not necessarily distinct] eigenvalues of A.

Proof. Recall that a symmetric / normal matrix is diagonalizable, i.e. it is similar to a diagonal matrix. IOW there are matrices P and P^* s.t.

$$PAP^* = D.$$

Then

$$\det A = \det(PAP^*) = \det D = \prod \lambda_i.$$

Exercise 10 (Ex. 6.5.13.). Suppose that A and B are diagonalizable matrices. Prove or disprove that A is similar to B iff A and B are unitarily equivalent.

Proof. The converse is true: if A and B are unitarily equivalent, then immediately they are similar. The forward direction is false: e.g. the two matrices

$$\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$$

and

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

are similar, but they are not unitarily equivalent, because one is symmetric and the other is not. The conclusion follows from the following Proposition:

Proposition 11. If A and B are orthogonally equivalent on a vector space over R, then either they are both symmetric or neither is. IOW, orthogonal equivalence preserves symmetry.

Proof. Let $A = W^t B W = W^{-1} B W$ with $W^t = W^{-1}$. Suppose A is symmetric: $A = A^t$. Then

$$B = WAW^{-1}$$

$$B^{t} = (WAW^{-1})^{t}$$

$$= (W^{-1})^{t}A^{t}W^{t}$$

$$= WAW^{-1}$$

$$= B.$$

Proposition 12. If A and B are unitarily equivalent, then either they are both self-adjoint or neither is. IOW, unitary equivalence preserves self-adjointness.

Exercise 13 (Ex. 6.5.14. Unitary equivalence preserves positive semi/definiteness). Prove that if A and B are Hermitian matrices and unitarily equivalent, then A is positive semi/definite iff B is.

Proof. Recall that a Hermitian matrix is positive semi/definite iff all its eigenvalues are positive/nonnegative; also recall that similar matrices have the same eigenvalues. Since A and B are unitarily equivalent, they are similar: there exists a matrix P with $P^{-1} = P^*$ s.t.

$$A = P^{-1}BP.$$

Therefore A and B have the same eigenvalues, so they are either both positive semi/definite or neither is. \square

Proposition 14 (Ex. 6.5.15.). Let U be a unitary operator on an inner product space V, and let W be a finite-dimensional U-invariant subspace of V. Then:

- 1. U(W) = W.
- 2. W^{\perp} is also U-invariant.

Proof. (1) follows immediately from the facts that U is invertible and W has finite dimension, and the Rank-Nullity Theorem. Note that this means W is also U^{-1} -invariant:

$$W = U^{-1}(W). \tag{*}$$

To prove (2), let $v \in W^{\perp}$; we want to show that $U(v) \in W^{\perp}$, i.e. that U(v) is perpendicular to vectors in W. Let w be any vector in W. Then

$$\langle U(v), w \rangle = \langle v, U^*(w) \rangle = \langle v, U^{-1}(w) \rangle = \langle v, x \rangle$$

for some $x \in W$, since by (*) we know that W is U^{-1} -invariant. Finally

$$\langle U(v), w \rangle = \langle v, x \rangle = 0$$

since $v \in W^{\perp}$ and $x \in W$, therefore U(v) and w are perpendicular.

Proposition 15 (Ex. 6.5.21. Negative unitary equivalence test). Let A and B be unitarily equivalent $n \times n$ matrices. Then

$$\operatorname{tr}(A^*A) = \operatorname{tr}(B^*B).$$

Note that this may alternatively be written as

$$\sum_{ij} |A_{ij}|^2 = \sum_{ij} |B_{ij}|^2$$
.

Proof. Since A and B are unitarily equivalent, there is a unitary matrix P s.t. $A = P^*BP$ and $P^* = P^{-1}$. Then

$$tr(A^*A) = tr((P^*BP)^*(P^*BP))$$

 $= tr(P^*B^*PP^*BP)$
 $= tr(P^*B^*BP)$
 $= tr(B^*BPP^*)$ (*)
 $= tr(B^*B).$

(*) follows by the cyclic permutation property of the trace operator. $\hfill\Box$

This provides a negative test of unitary equivalence given two matrices. E.g. the following two matrices are not unitarily equivalent since their entries don't add up:

$$\left| egin{array}{c|c} 1 & 2 \\ 2 & i \end{array} \right| \quad ext{and} \quad \left| egin{array}{c|c} i & 4 \\ 1 & 1 \end{array} \right|.$$