```
In [14]:
           import pandas as pd
           import matplotlib.pyplot as plt
           %matplotlib inline
           from sklearn.cluster import KMeans
           from sklearn.preprocessing import LabelEncoder
In [15]:
           import warnings
           warnings.filterwarnings('ignore')
In [16]:
           df = pd.read_csv('Dry_Bean_Dataset.csv')
           encoder = LabelEncoder()
           df['Class'] = encoder.fit_transform(df['Class'])
           df.head()
Out[16]:
              Area Perimeter MajorAxisLength MinorAxisLength AspectRation Eccentricity ConvexArea
                                                                                                  Equiv
          0 28395
                      610.291
                                   208.178117
                                                   173.888747
                                                                  1.197191
                                                                              0.549812
                                                                                            28715
                                                                                                      19
          1 28734
                      638.018
                                   200.524796
                                                   182.734419
                                                                  1.097356
                                                                              0.411785
                                                                                            29172
                                                                                                      19
          2 29380
                      624.110
                                   212.826130
                                                   175.931143
                                                                  1.209713
                                                                              0.562727
                                                                                            29690
                                                                                                      19
            30008
                      645.884
                                   210.557999
                                                   182.516516
                                                                  1.153638
                                                                              0.498616
                                                                                            30724
                                                                                                      19
            30140
                      620.134
                                   201.847882
                                                   190.279279
                                                                  1.060798
                                                                              0.333680
                                                                                            30417
                                                                                                      19
In [17]:
           df.columns
          Index(['Area', 'Perimeter', 'MajorAxisLength', 'MinorAxisLength',
Out[17]:
                  'AspectRation', 'Eccentricity', 'ConvexArea', 'EquivDiameter', 'Extent',
                 'Solidity', 'roundness', 'Compactness', 'ShapeFactor1', 'ShapeFactor2',
                 'ShapeFactor3', 'ShapeFactor4', 'Class'],
                dtype='object')
In [18]:
           points = df.iloc[:, 1:14].values
           x = points[:, 0]
           y = points[:, 1]
           inertias = []
           for i in range(1, 10):
               kmeans = KMeans(n clusters=i, random state=0)
               kmeans.fit(points)
               inertias.append(kmeans.inertia_)
           plt.plot(range(1, 10), inertias)
           plt.xlabel('Number of Clusters')
           plt.ylabel('Inertia')
Out[18]: Text(0, 0.5, 'Inertia')
```



```
In [19]:
    kmeans = KMeans(n_clusters=4, random_state=0)
    kmeans.fit(points)
    predicted_cluster_indexes = kmeans.predict(points)
    plt.scatter(x, y, c=predicted_cluster_indexes, s=50, alpha=0.7, cmap='viridis')
    plt.xlabel('X')
    plt.ylabel('Y')
    centers = kmeans.cluster_centers_
    plt.scatter(centers[:, 0], centers[:, 1], c='red', s=100)
```

Out[19]: <matplotlib.collections.PathCollection at 0x2085c3f3ca0>


```
In [20]: kmeans = KMeans(n_clusters=4, random_state=0)
    kmeans.fit(points)
    df['Cluster'] = kmeans.predict(points)
    df.head()
```

Out[20]:		Area	Perimeter	MajorAxisLength	Minor Axis Length	AspectRation	Eccentricity	ConvexArea	Equiv
	0	28395	610.291	208.178117	173.888747	1.197191	0.549812	28715	19
	1	28734	638.018	200.524796	182.734419	1.097356	0.411785	29172	19
	2	29380	624.110	212.826130	175.931143	1.209713	0.562727	29690	19

```
Area Perimeter MajorAxisLength MinorAxisLength AspectRation Eccentricity ConvexArea Equiv
         3 30008
                                                                                          30724
                     645.884
                                  210.557999
                                                  182.516516
                                                                 1.153638
                                                                            0.498616
                                                                                                   19
          4 30140
                     620.134
                                  201.847882
                                                  190.279279
                                                                 1.060798
                                                                            0.333680
                                                                                          30417
                                                                                                   19
In [22]:
           results = pd.DataFrame(columns = ['Cluster', 'Average Area', 'Average Perimeter', 'Aver
                                              'No. of SEKER', 'No. of BARBUNYA', 'No. of BOMBAY',
                                              'No. of HOROZ', 'No. of SIRA', 'No. of DERMASON'])
          for i in range(len(kmeans.cluster_centers_)):
               area = df[df['Cluster'] == i]['Area'].mean()
              perimeter = df[df['Cluster'] == i]['Perimeter'].mean()
              roundness = df[df['Cluster'] == i]['roundness'].mean()
              compactness = df[df['Cluster'] == i]['Compactness'].mean()
              gdf = df[df['Cluster'] == i]
              SEKER = gdf[gdf['Class'] == 5].shape[0]
              BARBUNYA = gdf[gdf['Class'] == 0].shape[0]
              BOMBAY = gdf[gdf['Class'] == 1].shape[0]
              CALI = gdf[gdf['Class'] == 2].shape[0]
              HOROZ = gdf[gdf['Class'] == 4].shape[0]
              SIRA = gdf[gdf['Class'] == 6].shape[0]
              DERMASON = gdf[gdf['Class'] == 3].shape[0]
              results.loc[i] = ([i, area, perimeter, roundness, compactness, SEKER, BARBUNYA, BOM
          results.head()
```

Out[22]:

	Cluster	Average Area	Average Perimeter	Average roundness	Average Compactness	No. of SEKER	No. of BARBUNYA	No. of BOMBAY	No. of CALI
0	0.0	34759.875454	690.084493	0.913375	0.835969	1517.0	2.0	0.0	0.0
1	1.0	173708.005769	1586.822840	0.864298	0.792304	0.0	0.0	520.0	0.0
2	2.0	74879.485610	1069.011704	0.822366	0.769356	0.0	1014.0	2.0	1521.0
3	3.0	50292.596872	863.302043	0.850264	0.769239	510.0	306.0	0.0	109.0
4									>

In []: