Solutions to Assignment 4

Simon Etter, 2019/2020 Deadline: 17 April 2020, 18.00 Total marks: 10

1 Uniformly distributed points on the disk [5 marks]

1. The probability density functions for Uniform $[-1,1]^2$ and Uniform D are given by

$$p_{[-1,1]^2}(x) = \begin{cases} \frac{1}{4} & \text{if } x \in [-1,1]^2, \\ 0 & \text{otherwise,} \end{cases} \quad \text{and} \quad p_D(x) = \begin{cases} \frac{1}{\pi} & \text{if } x \in D, \\ 0 & \text{otherwise,} \end{cases}$$

respectively; hence we have $p_D(x) \leq M p_{[-1,1]^2}(x)$ for $M = \frac{4}{\pi}$ and the acceptance probability for a given $G \sim \text{Uniform}[-1,1]^2$ is given by

$$\frac{p_D(G)}{M \, p_{[-1,1]^2}(G)} = \begin{cases} \frac{\frac{1}{\pi}}{\frac{4}{\pi} \frac{1}{4}} = 1 & \text{if } G \in D, \\ \frac{0}{\frac{4}{\pi} \frac{1}{4}} = 0 & \text{otherwise.} \end{cases}$$

In this case, rejection sampling thus amounts to generating $G \sim \text{Uniform}[-1,1]^2$ until $G \in D$ and then setting X = G. See code.

2. We observed in Task 1 that $M=\frac{4}{\pi}$. According to Lecture 23, this means that we on average need to generate $M=\frac{4}{\pi}\approx 1.27$ samples of Uniform $[-1,1]^2$ to generate a sample of Uniform D.

A more direct way to see this is to observe that according to Task 1, the number K of samples of Uniform $[-1,1]^2$ per sample of Uniform D is geometrically distributed with success probability $p = P(G \in D) = \frac{\pi}{4}$, and we have $\mathbb{E}[K] = p^{-1} = P(G \in D)^{-1} = \frac{4}{\pi} = M$.

3. The task implicitly asks you to show that $P(X(R, \Phi) \in A) = \frac{\text{area}(A)}{\text{area}(D)} = \frac{1}{\pi} \text{area}(A)$ for all $A \subset D$. To this end, let us introduce the indicator function

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{otherwise,} \end{cases}$$

and let us denote the probability densities of \mathcal{R} and Uniform $[0, 2\pi]$ by

$$p(r) = 2r$$
 and $q(\phi) = \frac{1}{2\pi}$, respectively.

Since R and Φ are independent, we then have that

$$P(X(R,\Phi) \in A) = \int_0^1 \int_0^{2\pi} \chi_A(X(r,\phi)) p(r) q(\phi) d\phi dr$$
$$= \int_0^1 \int_0^{2\pi} \chi_A(X(r,\phi)) \frac{2r}{2\pi} d\phi dr$$
$$= \frac{1}{\pi} \int_D \chi_A(x) dx = \frac{1}{\pi} \operatorname{area}(A)$$

as required.

4. $\Phi \sim \text{Uniform}[0, 2\pi]$ can be sampled using $\Phi(U) = 2\pi U$ where $U \sim \text{Uniform}[0, 1]$, since then we have for all $[a, b] \subset [0, 2\pi]$ that

$$P(\Phi(U) \in [a,b]) = P(U \in \frac{1}{2\pi} [a,b]) = \frac{b-a}{2\pi}$$

as required.

 $R \sim \mathcal{R}$ can be sampled using transformation sampling: the cumulative distribution function of \mathcal{R} is given by

$$F(r) = \int_0^r 2t \, dt = r^2;$$

hence we have for $U \sim \mathrm{Uniform}[0,1]$ that

$$R = F^{-1}(U) = \sqrt{U} \sim \mathcal{R}.$$

See code.

2 Importance sampling for highly concentrated integrals [5 marks]

See code.