Problem 1

Answer: 4

This value was computed in one of the lectures. The order is r = 4, since $7^4 \mod 15 = 1$.

Problem 2

Answer:

 $> 7^{20} \mod 55 = 1$

 $\,\vartriangleright\,7^{10}\,\mathrm{mod}\,55
eq 1$

 \triangleright $(7^{10}+1) \mod 55 \neq 0$, and it has a common factor with 55.

 $ightharpoonup (7^{10}-1) \mod 55$ has a common factor with 55 since $(7^{10}+1) \mod 55 \neq 0$.

Since r = 20 is the order, the following must hold:

$$7^{20} \bmod 55 = 1. \tag{1}$$

Next, consider the options related to 7¹⁰ mod 55. It's straightforward to show that

$$7^{10} \bmod 55 = 34. \tag{2}$$

Clearly, we have $7^{10} \mod 55 \neq 1$. Moreover, 34 has no factor in common with 55. After all, the corresponding prime factorizations are $34 = 2 \cdot 17$ and $55 = 5 \cdot 11$.

With the aid of our last result, we can analyze the remaining options. First notice that

$$(7^{10} + 1) \mod 55 = 35,$$

 $(7^{10} - 1) \mod 55 = 33.$ (3)

The first equation tells us that 55 does not divide $7^{10} + 1$. In this case, these numbers have a common factor given by

$$d = \gcd(7^{10} + 1,55)$$

$$= \gcd(55, (7^{10} + 1) \mod 55)$$

$$= \gcd(55,35)$$

$$= 5.$$
(4)

This result allows us to find another non-trivial factor of N = 55:

$$\frac{N}{d} = \frac{55}{5} = 11. ag{5}$$

This is one of the prime factors of 33. Therefore, $(7^{10} - 1) \mod 55$ has a common factor with 55. The last remaining option is **wrong**. $(a^{r/2} - 1) \mod 55$ has a common factor with 55 only when this number does not divide $a^{r/2} + 1$.

Problem 3

Answer:

 $\triangleright p$

 $\triangleright q$

The problem statement describes the case in which n and $a^{r/2} + 1$ have a non-trivial common factor. This factor is given by $gcd(a^{r/2} + 1, n)$. Since n has only two factors, p and q, these are the only possible results for the GCD.

Problem 4

Answer: $O(m^3)$: 2m multiplications of m bit numbers and 2m modulo operations.

For every bit in the exponent k, we need to perform at most 2 multiplication + modulo operations. In total, we perform at most 2m such operations. Since the time cost of a single operation is $O(m^2)$, the complexity of modular exponentiation is $O(m^3)$.

Problem 5

Answer:

- \triangleright Modular exponentiation is about computing $a^k \mod n$ once for a given k. However, order finding repeatedly needs to compute $a^k \mod n$ for various k until the result is 1.
- Repeated squaring yields $a \mod n$, $a^2 \mod n$, $a^4 \mod n$, ..., $a^{2^k} \mod n$. However the actual order r such that $a^r \mod n = 1$ need not be a power of 2.