In a file called lab3.circ create a subcircuit called full_adder that implements the behaviour of a Full Adder. The subcircuit should have (1-bit) inputs A, B, Cin and (1-bit) outputs S, Cout.

Full adder Example (1011 + 3 = 14)

Carry in Cin	0	1 👡	1 👡	0
Digit 1- A	1	0	1	1
Digit 2 B	0	0	1	1
Sum §	1	1	1	0
Carry Out Cont	0	0	1	1

Truth-Table:

Carryun Cin	+nput+ A	toput 2 B	-corry out Cont	sum 5
0 🖟	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Convert to Truth Table for all cases

Infat tenta table into logisim, and get circuit