



**NMOS** 

https://www.digikey.com/en/products/detail/qorvo/UJ4C075018K3S/13557749

Part number: UJ4C075018K3S

#### DATASHEET

# UJ4C075018K3S



| Part Number    | Package   | Marking        |  |
|----------------|-----------|----------------|--|
| 1114C075018K3S | TO-247-31 | 1114C075018K3S |  |









#### 750V-18mΩ SiC FET

Rev. A, October 2020

### Description

The UJ4C075018K3S is a 750V,  $18m\Omega$  G4 SiC FET. It is based on a unique 'cascode' circuit configuration, in which a normally-on SiC JFET is co-packaged with a Si MOSFET to produce a normally-off SiC FET device. The device's standard gate-drive characteristics allows for a true "drop-in replacement" to Si IGBTs, Si FETs, SiC MOSFETs or Si superjunction devices. Available in the TO-247-3L package, this device exhibits ultra-low gate charge and exceptional reverse recovery characteristics, making it ideal for switching inductive loads and any application requiring standard gate drive.

#### Features

- On-resistance R<sub>DS(on)</sub>: 18mΩ (typ)
- Operating temperature: 175°C (max)
- Excellent reverse recovery: Q<sub>rr</sub> = 102nC
- Low body diode V<sub>FSD</sub>: 1.14V
- Low gate charge: Q<sub>G</sub> = 37.8nC
- Threshold voltage V<sub>G(th)</sub>: 4.8V (typ) allowing 0 to 15V drive
- Low intrinsic capacitance
- ESD protected, HBM class 2

| Typical | app | licatio | 1 |
|---------|-----|---------|---|

- EV charging
- PV inverters
- Switch mode power supplies
- Power factor correction modules
- Motor drives
- Induction heating













### Maximum Ratings

| Parameter                                                            | Symbol                            | Test Conditions               | Value      | Units |
|----------------------------------------------------------------------|-----------------------------------|-------------------------------|------------|-------|
| Drain-source voltage                                                 | V <sub>DS</sub>                   |                               | 750        | V     |
| Gate-source voltage                                                  | V <sub>GS</sub>                   | DC                            | -20 to +20 | V     |
| Continuous drain current <sup>1</sup>                                |                                   | T <sub>C</sub> = 25°C         | 81         | Α     |
|                                                                      | I <sub>D</sub>                    | T <sub>C</sub> = 100°C        | 60         | Α     |
| Pulsed drain current <sup>2</sup>                                    | I <sub>DM</sub>                   | T <sub>C</sub> = 25°C         | 205        | Α     |
| Single pulsed avalanche energy <sup>3</sup>                          | E <sub>AS</sub>                   | L=15mH, I <sub>AS</sub> =3.6A | 97.2       | mJ    |
| Power dissipation                                                    | P <sub>tot</sub>                  | T <sub>C</sub> = 25°C         | 385        | W     |
| Maximum junction temperature                                         | T <sub>J,max</sub>                |                               | 175        | °C    |
| Operating and storage temperature                                    | T <sub>J</sub> , T <sub>STG</sub> |                               | -55 to 175 | °C    |
| Max. lead temperature for soldering,<br>1/8" from case for 5 seconds | T <sub>L</sub>                    |                               | 250        | °C    |

- $\begin{aligned} &1. \text{ Limited by } T_{J,max} \\ &2. \text{ Pulse width } t_p \text{ limited by } T_{J,max} \\ &3. \text{ Starting } T_J = 25 ^{\circ}\text{C} \end{aligned}$

## Schottky diode

## **RBQ10NL45BFHHTL Schottky Diode**

