1 Calibration 1					
Sample Name: Vial Number:	Calibration 1	Injection Volume: Channel:	25.0 ECD_1		
Sample Type:	standard	Wavelength:	n.a.		
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.		
Quantif. Method:	7_anion	Dilution Factor:	1.0000		
Recording Time:	20/11/2023 8:46	Sample Weight:	1.0000		
Run Time (min):	14.00	Sample Amount:	1.0000		

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		μS	μS*min	%		
1	3.67	Chloride	0.780	0.358	100.00	1.328	BMB
Total:			0.780	0.358	100.00	1.328	

1 Calibration 1					
Sample Name: Vial Number:	Calibration 1 99	Injection Volume: Channel:	25.0 ECD_1		
Sample Type:	standard	Wavelength:	n.a.		
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.		
Quantif. Method:	7_anion	Dilution Factor:	1.0000		
Recording Time: Run Time (min):	20/11/2023 8:46 14.00	Sample Weight: Sample Amount:	1.0000 1.0000		

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
Average:					98.4377	0.0961	0.1968	0.0000

1 Calibration 1						
Sample Name: Vial Number:	Calibration 1 99	Injection Volume: Channel:	25.0 ECD_1			
Sample Type:	standard	Wavelength:	n.a.			
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.			
Quantif. Method:	7_anion	Dilution Factor:	1.0000			
Recording Time:	20/11/2023 8:46	Sample Weight:	1.0000			
Run Time (min):	14.00	Sample Amount:	1.0000			

S	System Suitability Test Results:							
	No.	Test Name	Sample Condition	Peak Condition	Test Result			
		Number of executed single tests:	n.a.	Total test result:	n.a.			

Sample	Sample Name	Ret.Time	Area	Height	Amount	Туре	Plates
No.		min	μS*min	μS			(EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
- '-	Average:	n.a.	n.a.	n.a.	n.a.	α.	n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

1 Calibration 1		Audit Trail		
Sample Name: Vial Number:	Calibration 1	Injection Volume: Channel:	25.0 ECD_1	
Sample Type:	standard	Wavelength:	n.a.	
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.	
Quantif. Method:	7_anion	Dilution Factor:	1.0000	
Recording Time:	20/11/2023 8:46	Sample Weight:	1.0000	
Run Time (min):	14.00	Sample Amount:	1.0000	

_1	Day Time	Ret.Time	Command/Message
C	8:46:03		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
C	8:46:03		Start of sample 1 "Calibration 1", using program "ICS1100_Anion_Prog".
C	8:46:03	0.000	Pump_InjectValve.State = LoadPosition
C	8:46:03	0.000	Data_Collection_Rate = 5.0
C	8:46:03	0.000	CellTemperature.Nominal = 35.0
C	8:46:03	0.000	ColumnTemperature.Nominal = 30.0
C	8:46:03	0.000	Suppressor_Type = ASRS_4mm
C	8:46:03	0.000	Suppressor_Current = 34
C	8:46:03	0.000	ECD_Total.Step = 0.20
C	8:46:03	0.000	ECD_Total.Average = Off
C	8:46:03	0.000	Channel_Pressure.Step = 0.20
C	8:46:03	0.000	Channel_Pressure.Average = Off
C	8:46:03	0.000	Pressure.LowerLimit = 0
C	8:46:03	0.000	Pressure.UpperLimit = 3000
C	8:46:03	0.000	%A.Equate = "%A"
C	8:46:03	0.000	Flow = 1.20
C	8:46:03	0.000	Manually inject the sample and press OK to continue.
C	8:46:23	0.000	Autozero
C	8:46:23	0.000	ECD_1.AcqOn
C	8:46:23	0.000	ECD_Total.AcqOn
C	8:46:23	0.000	Channel_Pressure.AcqOn
C	8:46:23	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
C	8:46:53	0.500	Log Pressure: 1909.87 [psi]
C	8:46:53	0.500	Log Background: 20.73 [μS]
C	9:00:23	14.000	ECD_1.AcqOff
C	9:00:23	14.000	ECD_Total.AcqOff
C	9:00:23	14.000	Channel_Pressure.AcqOff
	9:00:30		End of sample "Calibration 1".

2 Calibrat	ion 2		
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	Calibration 2 100 standard ICS1100_Anion_Prog 7_anion 20/11/2023 9:00 10.00	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 ECD_1 n.a. n.a. 1.0000 1.0000

No.	Ret.Time min	Peak Name	Height µS	Area μS*min	Rel.Area %	Amount	Туре
1	2.93	Fluoride	0.119	0.045	6.26	-0.080	BMB
2	3.67	Chloride	1.350	0.163	22.56	0.341	bM
3	4.18	Nitrite	0.509	0.072	9.91	1.304	MB
4	4.75	Bromide	0.442	0.061	8.47	0.984	BMB
5	5.18	Nitrate	1.336	0.207	28.56	1.760	BMB
6	6.45	Phosphate	0.249	0.059	8.18	2.645	BM
7	7.16	Sulfate	0.499	0.116	16.06	1.065	MB
Total:			4.503	0.724	100.00	8.020	

2 Calibr	ation 2		
Sample Name: Vial Number:	Calibration 2 100	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	standard	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 9:00	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	2.93	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
3	4.18	Nitrite	LOff	5	99.8858	-0.0802	0.1165	0.0000
4	4.75	Bromide	LOff	5	99.9607	-0.0183	0.0809	0.0000
5	5.18	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
6	6.45	Phosphate	LOff	5	99.8607	-0.0607	0.0454	0.0000
7	7.16	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.7198	-0.0063	0.1193	0.0000

2 Calibrat	ion 2		
Sample Name: Vial Number:	Calibration 2 100	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	standard	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time: Run Time (min):	20/11/2023 9:00 10.00	Sample Weight: Sample Amount:	1.0000 1.0000

System Suitability Test Results:						
No.	Test Name	Sample Condition	Peak Condition	Test Result		
	Number of executed single tests:	n.a.	Total test result:	n.a.		

Sample	Sample Name	Ret.Time	Area	Height	Amount	Туре	Plates
No.		min	μS*min	μS			(EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
- '-	Average:	n.a.	n.a.	n.a.	n.a.	α.	n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

2 Calibr	ation 2	Audit Trail		
Sample Name: Vial Number:	Calibration 2 100	Injection Volume: Channel:	25.0 ECD_1	
Sample Type:	standard	Wavelength:	n.a.	
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.	
Quantif. Method:	7_anion	Dilution Factor:	1.0000	
Recording Time:	20/11/2023 9:00	Sample Weight:	1.0000	
Run Time (min):	10.00	Sample Amount:	1.0000	

Day Time	Ret.Time	Command/Message
09:00:30		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
09:00:30		Start of sample 2 "Calibration 2", using program "ICS1100_Anion_Prog".
09:00:30	0.000	Pump_InjectValve.State = LoadPosition
09:00:30	0.000	Data_Collection_Rate = 5.0
09:00:30	0.000	CellTemperature.Nominal = 35.0
09:00:30	0.000	ColumnTemperature.Nominal = 30.0
09:00:30	0.000	Suppressor_Type = ASRS_4mm
09:00:30	0.000	Suppressor_Current = 34
09:00:30	0.000	ECD_Total.Step = 0.20
09:00:30	0.000	ECD_Total.Average = Off
09:00:30	0.000	Channel_Pressure.Step = 0.20
09:00:30	0.000	Channel_Pressure.Average = Off
09:00:30	0.000	Pressure.LowerLimit = 0
09:00:30	0.000	Pressure.UpperLimit = 3000
09:00:30	0.000	%A.Equate = "%A"
09:00:30	0.000	Flow = 1.20
09:00:30	0.000	Manually inject the sample and press OK to continue.
09:00:48	0.000	Autozero
09:00:48	0.000	ECD_1.AcqOn
09:00:48	0.000	ECD_Total.AcqOn
09:00:48	0.000	Channel_Pressure.AcqOn
09:00:48	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
09:01:18	0.500	Log Pressure: 1908.39 [psi]
09:01:18	0.500	Log Background: 20.78 [μS]
09:10:48	10.000	ECD_1.AcqOff
09:10:48	10.000	ECD_Total.AcqOff
09:10:48	10.000	Channel_Pressure.AcqOff
09:10:54		End of sample "Calibration 2".

3 Calibrat	tion 3		
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	Calibration 3 101 standard ICS1100_Anion_Prog 7_anion 20/11/2023 9:10 10.00	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 ECD_1 n.a. n.a. 1.0000 1.0000

No.	Ret.Time min	Peak Name	Height µS	Area μS*min	Rel.Area %	Amount	Туре
1	2.93	Fluoride	0.222	0.113	7.85	0.426	BM
2	3.67	Chloride	3.316	0.436	30.22	1.727	M
3	4.18	Nitrite	0.842	0.159	11.02	2.054	M
4	4.75	Bromide	0.989	0.159	11.01	2.190	M
5	5.18	Nitrate	1.148	0.214	14.81	1.819	MB
6	6.44	Phosphate	0.536	0.124	8.57	4.067	bM
7	7.16	Sulfate	1.019	0.238	16.51	1.918	MB
Total:			8.071	1.443	100.00	14.200	

3 Calibration 3						
Sample Name: Vial Number:	Calibration 3	Injection Volume: Channel:	25.0 ECD_1			
Sample Type:	standard	Wavelength:	n.a.			
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.			
Quantif. Method:	7_anion	Dilution Factor:	1.0000			
Recording Time:	20/11/2023 9:10	Sample Weight:	1.0000			
Run Time (min):	10.00	Sample Amount:	1.0000			

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	2.93	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
3	4.18	Nitrite	LOff	5	99.8858	-0.0802	0.1165	0.0000
4	4.75	Bromide	LOff	5	99.9607	-0.0183	0.0809	0.0000
5	5.18	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
6	6.44	Phosphate	LOff	5	99.8607	-0.0607	0.0454	0.0000
7	7.16	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.7198	-0.0063	0.1193	0.0000

3 Calibration 3						
Sample Name: Vial Number:	Calibration 3 101	Injection Volume: Channel:	25.0 ECD_1			
Sample Type:	standard	Wavelength:	n.a.			
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.			
Quantif. Method:	7_anion	Dilution Factor:	1.0000			
Recording Time:	20/11/2023 9:10	Sample Weight:	1.0000			
Run Time (min):	10.00	Sample Amount:	1.0000			

System Suitability Test Results:							
No.	Test Name	Sample Condition	Peak Condition	Test Result			
	Number of executed single tests:	n.a.	Total test result:	n.a.			

Sample	Sample Name	Ret.Time	Area	Height	Amount	Туре	Plates
No.		min	μS*min	μS			(EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
- '-	Average:	n.a.	n.a.	n.a.	n.a.	α.	n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

3 Calibration 3		Audit Trail		
Sample Name: Vial Number:	Calibration 3 101	Injection Volume: Channel:	25.0 ECD_1	
Sample Type:	standard	Wavelength:	n.a.	
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.	
Quantif. Method:	7_anion	Dilution Factor:	1.0000	
Recording Time: Run Time (min):	20/11/2023 9:10 10.00	Sample Weight: Sample Amount:	1.0000 1.0000	

_	Day Time	Ret.Time	Command/Message
0	9:10:54		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
0	9:10:54		Start of sample 3 "Calibration 3", using program "ICS1100_Anion_Prog".
0	9:10:54	0.000	Pump_InjectValve.State = LoadPosition
0	9:10:54	0.000	Data_Collection_Rate = 5.0
0	9:10:54	0.000	CellTemperature.Nominal = 35.0
0	9:10:54	0.000	ColumnTemperature.Nominal = 30.0
0	9:10:54	0.000	Suppressor_Type = ASRS_4mm
0	9:10:54	0.000	Suppressor_Current = 34
0	9:10:54	0.000	ECD_Total.Step = 0.20
0	9:10:54	0.000	ECD_Total.Average = Off
0	9:10:54	0.000	Channel_Pressure.Step = 0.20
0	9:10:54	0.000	Channel_Pressure.Average = Off
0	9:10:54	0.000	Pressure.LowerLimit = 0
0	9:10:54	0.000	Pressure.UpperLimit = 3000
	9:10:54	0.000	%A.Equate = "%A"
		0.000	Flow = 1.20
		0.000	Manually inject the sample and press OK to continue.
0	9:11:12	0.000	Autozero
	9:11:12	0.000	ECD_1.AcqOn
0		0.000	ECD_Total.AcqOn
0	9:11:12	0.000	Channel_Pressure.AcqOn
0	9:11:12	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
0	9:11:42	0.500	Log Pressure: 1909.36 [psi]
		0.500	Log Background: 20.81 [μS]
0	9:21:12	10.000	ECD_1.AcqOff
0	9:21:12	10.000	ECD_Total.AcqOff
0	9:21:12	10.000	Channel_Pressure.AcqOff
0	9:21:19		End of sample "Calibration 3".

4 Calibration 4					
Sample Name: Vial Number:	Calibration 4 102	Injection Volume: Channel:	25.0 ECD_1		
Sample Type:	standard	Wavelength:	n.a.		
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.		
Quantif. Method:	7_anion	Dilution Factor:	1.0000		
Recording Time: Run Time (min):	20/11/2023 9:21 10.00	Sample Weight: Sample Amount:	1.0000 1.0000		

No.	Ret.Time min	Peak Name	Height µS	Area µS*min	Rel.Area %	Amount	Туре
1	2.92	Fluoride	0.411	0.189	5.22	0.990	BM
2	3.67	Chloride	7.416	0.935	25.85	4.261	М
3	4.18	Nitrite	2.830	0.455	12.59	4.598	М
4	4.75	Bromide	2.458	0.381	10.53	4.931	М
5	5.18	Nitrate	3.248	0.593	16.39	5.029	М
6	6.44	Phosphate	1.556	0.375	10.37	9.611	М
7	7.17	Sulfate	2.666	0.689	19.04	5.065	MB
Total:			20.584	3.616	100.00	34.484	

4 Calibration 4						
Sample Name: Vial Number:	Calibration 4 102	Injection Volume: Channel:	25.0 ECD_1			
Sample Type:	standard	Wavelength:	n.a.			
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.			
Quantif. Method:	7_anion	Dilution Factor:	1.0000			
Recording Time:	20/11/2023 9:21	Sample Weight:	1.0000			
Run Time (min):	10.00	Sample Amount:	1.0000			

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	2.92	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
3	4.18	Nitrite	LOff	5	99.8858	-0.0802	0.1165	0.0000
4	4.75	Bromide	LOff	5	99.9607	-0.0183	0.0809	0.0000
5	5.18	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
6	6.44	Phosphate	LOff	5	99.8607	-0.0607	0.0454	0.0000
7	7.17	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.7198	-0.0063	0.1193	0.0000

4 Calibrat	ion 4		
Sample Name: Vial Number:	Calibration 4 102	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	standard	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time: Run Time (min):	20/11/2023 9:21 10.00	Sample Weight: Sample Amount:	1.0000 1.0000

ĺ	System Suitability Test Results:							
l	No.	Test Name	Sample Condition	Peak Condition	Test Result			
		Number of executed single tests:	n.a.	Total test result:	n.a.			

Sample	Sample Name	Ret.Time	Area	Height	Amount	Туре	Plates
No.		min	μS*min	μS			(EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
- '-	Average:	n.a.	n.a.	n.a.	n.a.	α.	n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

4 Calibration 4		Audit Trail		
Sample Name: Vial Number:	Calibration 4 102	Injection Volume: Channel:	25.0 ECD_1	
Sample Type:	standard	Wavelength:	n.a.	
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.	
Quantif. Method:	7_anion	Dilution Factor:	1.0000	
Recording Time:	20/11/2023 9:21	Sample Weight:	1.0000	
Run Time (min):	10.00	Sample Amount:	1.0000	

Day Time	Ret.Time	Command/Message
09:21:19		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
09:21:19		Start of sample 4 "Calibration 4", using program "ICS1100_Anion_Prog".
09:21:19	0.000	Pump_InjectValve.State = LoadPosition
09:21:19	0.000	Data_Collection_Rate = 5.0
09:21:19	0.000	CellTemperature.Nominal = 35.0
09:21:19	0.000	ColumnTemperature.Nominal = 30.0
09:21:19	0.000	Suppressor_Type = ASRS_4mm
09:21:19	0.000	Suppressor_Current = 34
09:21:19	0.000	ECD_Total.Step = 0.20
09:21:19	0.000	ECD_Total.Average = Off
09:21:19	0.000	Channel_Pressure.Step = 0.20
09:21:19	0.000	Channel_Pressure.Average = Off
09:21:19	0.000	Pressure.LowerLimit = 0
09:21:19	0.000	Pressure.UpperLimit = 3000
09:21:19	0.000	%A.Equate = "%A"
09:21:19	0.000	Flow = 1.20
09:21:19	0.000	Manually inject the sample and press OK to continue.
09:21:37	0.000	Autozero
09:21:37	0.000	ECD_1.AcqOn
	0.000	ECD_Total.AcqOn
09:21:37	0.000	Channel_Pressure.AcqOn
09:21:37	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
09:22:07	0.500	Log Pressure: 1909.70 [psi]
09:22:07	0.500	Log Background: 20.85 [μS]
09:31:37	10.000	ECD_1.AcqOff
09:31:37	10.000	ECD_Total.AcqOff
09:31:37	10.000	Channel_Pressure.AcqOff
09:31:44		End of sample "Calibration 4".

5 Calibrat	ion 5		
Sample Name: Vial Number:	Calibration 5 103	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	standard	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time: Run Time (min):	20/11/2023 9:31 10.00	Sample Weight: Sample Amount:	1.0000 1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		μS	μS*min	%		
1	2.92	Fluoride	0.791	0.320	4.31	1.968	BM
2	3.67	Chloride	15.279	1.857	24.97	8.943	M
3	4.18	Nitrite	7.226	1.076	14.47	9.928	М
4	4.75	Bromide	5.253	0.774	10.41	9.793	М
5	5.18	Nitrate	7.255	1.213	16.31	10.283	M
6	6.44	Phosphate	3.578	0.812	10.92	19.238	М
7	7.18	Sulfate	5.740	1.384	18.61	9.927	MB
Total:			45.122	7.436	100.00	70.080	

5 Calibr	ation 5		
Sample Name:	Calibration 5	Injection Volume:	25.0
Vial Number:	103	Channel:	ECD_1
Sample Type:	standard	Wavelength:	n.a.
Control Program: Quantif. Method: Recording Time: Run Time (min):	ICS1100_Anion_Prog	Bandwidth:	n.a.
	7_anion	Dilution Factor:	1.0000
	20/11/2023 9:31	Sample Weight:	1.0000
	10.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	2.92	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
3	4.18	Nitrite	LOff	5	99.8858	-0.0802	0.1165	0.0000
4	4.75	Bromide	LOff	5	99.9607	-0.0183	0.0809	0.0000
5	5.18	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
6	6.44	Phosphate	LOff	5	99.8607	-0.0607	0.0454	0.0000
7	7.18	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.7198	-0.0063	0.1193	0.0000

5 Calibrat	ion 5		
Sample Name: Vial Number:	Calibration 5 103	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	standard	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time: Run Time (min):	20/11/2023 9:31 10.00	Sample Weight: Sample Amount:	1.0000 1.0000

ĺ	Syster	n Suitability Test Results:			
l	No.	Test Name	Sample Condition	Peak Condition	Test Result
		Number of executed single tests:	n.a.	Total test result:	n.a.

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

5 Calibration 5		Audit Trail			
Sample Name: Vial Number:	Calibration 5 103	Injection Volume: Channel:	25.0 ECD_1		
Sample Type:	standard	Wavelength:	n.a.		
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.		
Quantif. Method:	7_anion	Dilution Factor:	1.0000		
Recording Time: Run Time (min):	20/11/2023 9:31 10.00	Sample Weight: Sample Amount:	1.0000 1.0000		

D	ay Time	Ret.Time	Command/Message
09	9:31:44		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
09	9:31:44		Start of sample 5 "Calibration 5", using program "ICS1100_Anion_Prog".
08	9:31:44	0.000	Pump_InjectValve.State = LoadPosition
08	9:31:44	0.000	Data_Collection_Rate = 5.0
08	9:31:44	0.000	CellTemperature.Nominal = 35.0
08	9:31:44	0.000	ColumnTemperature.Nominal = 30.0
08	9:31:44	0.000	Suppressor_Type = ASRS_4mm
08	9:31:44	0.000	Suppressor_Current = 34
08	9:31:44	0.000	ECD_Total.Step = 0.20
08	9:31:44	0.000	ECD_Total.Average = Off
08	9:31:44	0.000	Channel_Pressure.Step = 0.20
08	9:31:44	0.000	Channel_Pressure.Average = Off
08	9:31:44	0.000	Pressure.LowerLimit = 0
08	9:31:44	0.000	Pressure.UpperLimit = 3000
08	9:31:44	0.000	%A.Equate = "%A"
08	9:31:44	0.000	Flow = 1.20
08	9:31:44	0.000	Manually inject the sample and press OK to continue.
08	9:32:04	0.000	Autozero
08	9:32:04	0.000	ECD_1.AcqOn
08	9:32:04	0.000	ECD_Total.AcqOn
09	9:32:04	0.000	Channel_Pressure.AcqOn
09	9:32:04	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
08	9:32:34	0.500	Log Pressure: 1908.65 [psi]
08	9:32:34	0.500	Log Background: 20.88 [μS]
08	9:42:04	10.000	ECD_1.AcqOff
08	9:42:04	10.000	ECD_Total.AcqOff
08	9:42:04	10.000	Channel_Pressure.AcqOff
08	9:42:10		End of sample "Calibration 5".

6 Calibration 6				
Sample Name:	Calibration 6 104 standard ICS1100_Anion_Prog 7_anion	Injection Volume:	25.0	
Vial Number:		Channel:	ECD_1	
Sample Type:		Wavelength:	n.a.	
Control Program:		Bandwidth:	n.a.	
Quantif. Method:		Dilution Factor:	1.0000	
Recording Time:	20/11/2023 9:42	Sample Weight:	1.0000	
Run Time (min):	10.00	Sample Amount:	1.0000	

No.	Ret.Time min	Peak Name	Height µS	Area μS*min	Rel.Area %	Amount	Туре
1	2.92	Fluoride	1.618	0.595	3.82	4.016	BM
2	3.67	Chloride	35.333	4.179	26.80	20.740	M
3	4.19	Nitrite	15.555	2.263	14.51	20.116	M
4	4.75	Bromide	11.273	1.608	10.31	20.103	M
5	5.18	Nitrate	14.671	2.345	15.04	19.869	M
6	6.43	Phosphate	8.007	1.773	11.37	40.439	M
7	7.19	Sulfate	12.142	2.829	18.14	20.025	MB
Total:			98.599	15.592	100.00	145.309	

6 Calibration 6						
Sample Name: Vial Number:	Calibration 6 104	Injection Volume: Channel:	25.0 ECD_1			
Sample Type:	standard	Wavelength:	n.a.			
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.			
Quantif. Method:	7_anion	Dilution Factor:	1.0000			
Recording Time:	20/11/2023 9:42	Sample Weight:	1.0000			
Run Time (min):	10.00	Sample Amount:	1.0000			

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	2.92	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
3	4.19	Nitrite	LOff	5	99.8858	-0.0802	0.1165	0.0000
4	4.75	Bromide	LOff	5	99.9607	-0.0183	0.0809	0.0000
5	5.18	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
6	6.43	Phosphate	LOff	5	99.8607	-0.0607	0.0454	0.0000
7	7.19	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.7198	-0.0063	0.1193	0.0000

6 Calibr	ration 6		
Sample Name: Vial Number:	Calibration 6 104	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	standard	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time: Run Time (min):	20/11/2023 9:42 10.00	Sample Weight: Sample Amount:	1.0000 1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	2.92	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
3	4.19	Nitrite	LOff	5	99.8858	-0.0802	0.1165	0.0000
4	4.75	Bromide	LOff	5	99.9607	-0.0183	0.0809	0.0000
5	5.18	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
6	6.43	Phosphate	LOff	5	99.8607	-0.0607	0.0454	0.0000
7	7.19	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.7198	-0.0063	0.1193	0.0000

6 Calibrat	ion 6		
Sample Name: Vial Number:	Calibration 6 104	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	standard	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time: Run Time (min):	20/11/2023 9:42 10.00	Sample Weight: Sample Amount:	1.0000 1.0000

System Suitability Test Results:						
No.	Test Name	Sample Condition	Peak Condition	Test Result		
	Number of executed single tests:	n.a.	Total test result:	n.a.		

Sample	Sample Name	Ret.Time	Area	Height	Amount	Туре	Plates
No.		min	μS*min	μS			(EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
- '-	Average:	n.a.	n.a.	n.a.	n.a.	α.	n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

6 Calibration 6		Audit Trail		
Sample Name: Vial Number:	Calibration 6 104	Injection Volume: Channel:	25.0 ECD_1	
Sample Type:	standard	Wavelength:	n.a.	
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.	
Quantif. Method:	7_anion	Dilution Factor:	1.0000	
Recording Time: Run Time (min):	20/11/2023 9:42 10.00	Sample Weight: Sample Amount:	1.0000 1.0000	

Day Time	Ret.Time	Command/Message
09:42:10		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
09:42:10		Start of sample 6 "Calibration 6", using program "ICS1100_Anion_Prog".
09:42:10	0.000	Pump_InjectValve.State = LoadPosition
09:42:10	0.000	Data_Collection_Rate = 5.0
09:42:10	0.000	CellTemperature.Nominal = 35.0
09:42:10	0.000	ColumnTemperature.Nominal = 30.0
09:42:10	0.000	Suppressor_Type = ASRS_4mm
09:42:10	0.000	Suppressor_Current = 34
09:42:10	0.000	ECD_Total.Step = 0.20
09:42:10	0.000	ECD_Total.Average = Off
09:42:10	0.000	Channel_Pressure.Step = 0.20
09:42:10	0.000	Channel_Pressure.Average = Off
09:42:10	0.000	Pressure.LowerLimit = 0
09:42:10	0.000	Pressure.UpperLimit = 3000
09:42:10	0.000	%A.Equate = "%A"
09:42:10	0.000	Flow = 1.20
09:42:10	0.000	Manually inject the sample and press OK to continue.
09:42:27	0.000	Autozero
09:42:27	0.000	ECD_1.AcqOn
09:42:27	0.000	ECD_Total.AcqOn
09:42:27	0.000	Channel_Pressure.AcqOn
09:42:27	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
09:42:57	0.500	Log Pressure: 1908.05 [psi]
09:42:57	0.500	Log Background: 20.91 [μS]
09:52:27	10.000	ECD_1.AcqOff
09:52:27	10.000	ECD_Total.AcqOff
09:52:27	10.000	Channel_Pressure.AcqOff
09:52:34		End of sample "Calibration 6".

7 1			
Sample Name: Vial Number:	1 1	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 9:52	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height μS	Area μS*min	Rel.Area %	Amount	Туре
1	3.67	Chloride	0.806	0.103	81.32	0.037	BM
2	4.18	Nitrite	0.050	0.011	8.69	0.783	MB
3	6.51	Phosphate	0.038	0.013	9.99	1.620	BMB
Total:			0.894	0.127	100.00	2.440	

7 1			
Sample Name: Vial Number:	1 1	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 9:52	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
2	4.18	Nitrite	LOff	5	99.8858	-0.0802	0.1165	0.0000
3	6.51	Phosphate	LOff	5	99.8607	-0.0607	0.0454	0.0000
Average:					99.3947	-0.0149	0.1196	0.0000

7 1			
Sample Name: Vial Number:	1 1	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 9:52	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

System Suitability Test Results:						
No.	Test Name	Sample Condition	Peak Condition	Test Result		
	Number of executed single tests:	n.a.	Total test result:	n.a.		

Sample	Sample Name	Ret.Time	Area	Height	Amount	Туре	Plates
No.		min	μS*min	μS			(EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
- '-	Average:	n.a.	n.a.	n.a.	n.a.	α.	n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

7 1 Au			dit Trail		
Sample Name: Vial Number:	1 1	Injection Volume: Channel:	25.0 ECD_1		
Sample Type:	unknown	Wavelength:	n.a.		
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.		
Quantif. Method:	7_anion	Dilution Factor:	1.0000		
Recording Time:	20/11/2023 9:52	Sample Weight:	1.0000		
Run Time (min):	10.00	Sample Amount:	1.0000		

Day Time	Ret.Time	Command/Message
09:52:34		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
09:52:34		Start of sample 7 "1", using program "ICS1100_Anion_Prog".
09:52:34	0.000	Pump_InjectValve.State = LoadPosition
09:52:34	0.000	Data_Collection_Rate = 5.0
09:52:34	0.000	CellTemperature.Nominal = 35.0
09:52:34	0.000	ColumnTemperature.Nominal = 30.0
09:52:34	0.000	Suppressor_Type = ASRS_4mm
09:52:34	0.000	Suppressor_Current = 34
09:52:34	0.000	ECD_Total.Step = 0.20
09:52:34	0.000	ECD_Total.Average = Off
09:52:34	0.000	Channel_Pressure.Step = 0.20
09:52:34	0.000	Channel_Pressure.Average = Off
09:52:34	0.000	Pressure.LowerLimit = 0
09:52:34	0.000	Pressure.UpperLimit = 3000
09:52:34	0.000	%A.Equate = "%A"
09:52:34	0.000	Flow = 1.20
09:52:34	0.000	Manually inject the sample and press OK to continue.
09:52:44	0.000	Autozero
09:52:44	0.000	ECD_1.AcqOn
09:52:44	0.000	ECD_Total.AcqOn
09:52:44	0.000	Channel_Pressure.AcqOn
09:52:44	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
09:53:14	0.500	Log Pressure: 1909.11 [psi]
09:53:14	0.500	Log Background: 20.95 [μS]
10:02:44	10.000	ECD_1.AcqOff
10:02:44	10.000	ECD_Total.AcqOff
10:02:44	10.000	Channel_Pressure.AcqOff
10:02:50		End of sample "1".

8 2			
Sample Name: Vial Number:	2 2	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 10:02	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height μS	Area μS*min	Rel.Area %	Amount	Туре
1	2.92	Fluoride	0.478	0.213	4.70	1.168	ВМ
2	3.67	Chloride	10.003	1.236	27.28	5.789	M
3	4.18	Nitrite	3.202	0.517	11.42	5.128	M
4	4.75	Bromide	2.837	0.436	9.63	5.617	M
5	5.18	Nitrate	5.149	0.892	19.70	7.568	M
6	6.44	Phosphate	1.885	0.450	9.93	11.252	M
7	7.17	Sulfate	3.063	0.786	17.35	5.747	MB
Total:		•	26.616	4.530	100.00	42.269	

8 2			
Sample Name:	2	Injection Volume:	25.0
Vial Number:	2	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	###############	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	2.92	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
3	4.18	Nitrite	LOff	5	99.8858	-0.0802	0.1165	0.0000
4	4.75	Bromide	LOff	5	99.9607	-0.0183	0.0809	0.0000
5	5.18	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
6	6.44	Phosphate	LOff	5	99.8607	-0.0607	0.0454	0.0000
7	7.17	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.7198	-0.0063	0.1193	0.0000

8 2			
Sample Name: Vial Number:	2 2	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time: Run Time (min):	20/11/2023 10:02 10.00	Sample Weight: Sample Amount:	1.0000 1.0000

System Suitability Test Results:							
No.	Test Name	Sample Condition	Peak Condition	Test Result			
	Number of executed single tests:	n.a.	Total test result:	n.a.			

Sample	Sample Name	Ret.Time	Area	Height	Amount	Туре	Plates
No.		min	μS*min	μS			(EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
- '-	Average:	n.a.	n.a.	n.a.	n.a.	α.	n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

8 2 Audit Trail			
Sample Name: Vial Number:	2 2	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 10:02	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

_	ay Time	Ret.Time	Command/Message
1	0:02:50		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
1	0:02:50		Start of sample 8 "2", using program "ICS1100_Anion_Prog".
1	0:02:50	0.000	Pump_InjectValve.State = LoadPosition
1	0:02:50	0.000	Data_Collection_Rate = 5.0
1	0:02:50	0.000	CellTemperature.Nominal = 35.0
1	0:02:50	0.000	ColumnTemperature.Nominal = 30.0
1	0:02:50	0.000	Suppressor_Type = ASRS_4mm
1	0:02:50	0.000	Suppressor_Current = 34
1	0:02:50	0.000	ECD_Total.Step = 0.20
1	0:02:50	0.000	ECD_Total.Average = Off
1	0:02:50	0.000	Channel_Pressure.Step = 0.20
1	0:02:50	0.000	Channel_Pressure.Average = Off
1	0:02:50	0.000	Pressure.LowerLimit = 0
1	0:02:50	0.000	Pressure.UpperLimit = 3000
	0:02:50	0.000	%A.Equate = "%A"
	0:02:50	0.000	Flow = 1.20
	0:02:50	0.000	Manually inject the sample and press OK to continue.
	0:03:00	0.000	Autozero
	0:03:00	0.000	ECD_1.AcqOn
	0:03:00	0.000	ECD_Total.AcqOn
	0:03:00	0.000	Channel_Pressure.AcqOn
	0:03:00	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
	0:03:30	0.500	Log Pressure: 1907.00 [psi]
	0:03:30	0.500	Log Background: 20.95 [μS]
1	0:13:00	10.000	ECD_1.AcqOff
1	0:13:00	10.000	ECD_Total.AcqOff
1	0:13:00	10.000	Channel_Pressure.AcqOff
_1	0:13:06		End of sample "2".

9 3			
Sample Name: Vial Number: Sample Type:	3 3 unknown	Injection Volume: Channel: Wavelength:	25.0 ECD_1
Control Program:	ICS1100 Anion Prog	vvaveierigiri. Bandwidth:	n.a. n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time: Run Time (min):	20/11/2023 10:13 10.00	Sample Weight: Sample Amount:	1.0000 1.0000

No.	Ret.Time min	Peak Name	Height μS	Area μS*min	Rel.Area %	Amount	Туре
1	3.67	Chloride	2.115	0.252	72.66	0.789	BMB
2	7.16	Sulfate	0.437	0.095	27.34	0.914	BMB
Total:			2.551	0.346	100.00	1.703	

9 3			
Sample Name: Vial Number:	3 3	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	############	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
2	7.16	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.2144	0.0300	0.1700	0.0000

9 3			
Sample Name: Vial Number:	3 3	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 10:13	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

•	System Suitability Test Results:							
L	No.	Test Name	Sample Condition	Peak Condition	Test Result			
		Number of executed single tests:	n.a.	Total test result:	n.a.			

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

	Audit Trail		
3 3	Injection Volume: Channel:	25.0 ECD_1	
unknown	Wavelength:	n.a.	
ICS1100_Anion_Prog	Bandwidth:	n.a.	
7_anion	Dilution Factor:	1.0000	
20/11/2023 10:13 10.00	Sample Weight: Sample Amount	1.0000 1.0000	
	3 unknown ICS1100_Anion_Prog 7_anion	3 Injection Volume: 3 Channel: unknown Wavelength: ICS1100_Anion_Prog Bandwidth: 7_anion Dilution Factor: 20/11/2023 10:13 Sample Weight:	

_	Day Time	Ret.Time	Command/Message
1	0:13:06		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
1	0:13:06		Start of sample 9 "3", using program "ICS1100_Anion_Prog".
1	0:13:06	0.000	Pump_InjectValve.State = LoadPosition
1	0:13:06	0.000	Data_Collection_Rate = 5.0
1	0:13:06	0.000	CellTemperature.Nominal = 35.0
1	0:13:06	0.000	ColumnTemperature.Nominal = 30.0
1	0:13:06	0.000	Suppressor_Type = ASRS_4mm
1	0:13:06	0.000	Suppressor_Current = 34
1	0:13:06	0.000	ECD_Total.Step = 0.20
1	0:13:06	0.000	ECD_Total.Average = Off
1	0:13:06	0.000	Channel_Pressure.Step = 0.20
1	0:13:06	0.000	Channel_Pressure.Average = Off
1	0:13:06	0.000	Pressure.LowerLimit = 0
1	0:13:06	0.000	Pressure.UpperLimit = 3000
1	0:13:06	0.000	%A.Equate = "%A"
1	0:13:06	0.000	Flow = 1.20
1	0:13:06	0.000	Manually inject the sample and press OK to continue.
1	0:13:17	0.000	Autozero
1	0:13:17	0.000	ECD_1.AcqOn
1	0:13:17	0.000	ECD_Total.AcqOn
1	0:13:17	0.000	Channel_Pressure.AcqOn
1	0:13:17	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
1	0:13:47	0.500	Log Pressure: 1908.60 [psi]
1	0:13:47	0.500	Log Background: 20.96 [μS]
1	0:23:17	10.000	ECD_1.AcqOff
1	0:23:17	10.000	ECD_Total.AcqOff
1	0:23:17	10.000	Channel_Pressure.AcqOff
_1	0:23:23		End of sample "3".

10 4			
Sample Name: Vial Number:	4 4	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 10:23	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height μS	Area μS*min	Rel.Area %	Amount	Туре
1	3.67	Chloride	2.273	0.271	61.52	0.890	BMB
2	5.19	Nitrate	0.896	0.136	30.88	1.163	BMB
3	7.16	Sulfate	0.160	0.034	7.60	0.487	BMB
Total:			3.328	0.441	100.00	2.540	

10 4			
Sample Name: Vial Number:	4 4	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time: Run Time (min):	############# 10.00	Sample Weight: Sample Amount:	1.0000 1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
2	5.19	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
3	7.16	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.4530	0.0196	0.1527	0.0000

10 4			
Sample Name: Vial Number:	4 4	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 10:23	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

Syste	System Suitability Test Results:					
No.	Test Name	Sample Condition	Peak Condition	Test Result		
	Number of executed single tests:	n.a.	Total test result:	n.a.		

Sample	Sample Name	Ret.Time	Area	Height	Amount	Туре	Plates
No.		min	μS*min	μS			(EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
- '-	Average:	n.a.	n.a.	n.a.	n.a.	α.	n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

10 4		Audit Trail			
Sample Name: Vial Number:	4 4	Injection Volume: Channel:	25.0 ECD_1		
Sample Type:	unknown	Wavelength:	n.a.		
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.		
Quantif. Method:	7_anion	Dilution Factor:	1.0000		
Recording Time: Run Time (min):	20/11/2023 10:23 10.00	Sample Weight: Sample Amount:	1.0000 1.0000		

Day Time	Ret.Time Command/Message		
10:23:23 Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_2			
10:23:23		Start of sample 10 "4", using program "ICS1100_Anion_Prog".	
10:23:23	0.000	Pump_InjectValve.State = LoadPosition	
10:23:23	0.000	Data_Collection_Rate = 5.0	
10:23:23	0.000	CellTemperature.Nominal = 35.0	
10:23:23	0.000	ColumnTemperature.Nominal = 30.0	
10:23:23	0.000	Suppressor_Type = ASRS_4mm	
10:23:23	0.000	Suppressor_Current = 34	
10:23:23	0.000	ECD_Total.Step = 0.20	
10:23:23	0.000	ECD_Total.Average = Off	
10:23:23	0.000	Channel_Pressure.Step = 0.20	
10:23:23	0.000	Channel_Pressure.Average = Off	
10:23:23	0.000	Pressure.LowerLimit = 0	
10:23:23	0.000	Pressure.UpperLimit = 3000	
10:23:23	0.000	%A.Equate = "%A"	
10:23:23	0.000	Flow = 1.20	
10:23:23	0.000	Manually inject the sample and press OK to continue.	
10:23:43	0.000	Autozero	
10:23:43	0.000	ECD_1.AcqOn	
10:23:43	0.000	ECD_Total.AcqOn	
10:23:43	0.000	Channel_Pressure.AcqOn	
10:23:43	0.000	Pump_InjectValve.InjectPosition Duration = 30.00	
10:24:13	0.500	Log Pressure: 1908.31 [psi]	
10:24:13	0.500	Log Background: 20.97 [μS]	
10:33:43	10.000	ECD_1.AcqOff	
10:33:43	10.000	ECD_Total.AcqOff	
10:33:43	10.000	Channel_Pressure.AcqOff	
10:33:50		End of sample "4".	

11 5			
Sample Name:	5	Injection Volume:	25.0
Vial Number:	5	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 10:33	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		μS	μS*min	%		
1	2.95	Fluoride	0.101	0.041	5.09	-0.113	BM
2	3.67	Chloride	3.539	0.488	60.79	1.989	MB
3	5.18	Nitrate	1.287	0.229	28.49	1.945	bMB
4	7.16	Sulfate	0.214	0.045	5.62	0.568	BMB
Total:			5.140	0.802	100.00	4.389	

11 5			
Sample Name: Vial Number:	5 5	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	############	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	2.95	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
3	5.18	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
4	7.16	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.5829	0.0287	0.1481	0.0000

11 5			
Sample Name: Vial Number:	5 5	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 10:33	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

System Suitability Test Results:						
No.	Test Name	Sample Condition	Peak Condition	Test Result		
	Number of executed single tests:	n.a.	Total test result:	n.a.		

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

11 5		Audit Trail			
Sample Name: Vial Number:	5 5	Injection Volume: Channel:	25.0 ECD_1		
Sample Type:	unknown	Wavelength:	n.a.		
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.		
Quantif. Method:	7_anion	Dilution Factor:	1.0000		
Recording Time: Run Time (min):	20/11/2023 10:33 10.00	Sample Weight: Sample Amount:	1.0000 1.0000		

Day Ti	me Ret.Time	Command/Message
10:33:5	0	Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
10:33:5	0	Start of sample 11 "5", using program "ICS1100_Anion_Prog".
10:33:5	0.000	Pump_InjectValve.State = LoadPosition
10:33:5	0.000	Data_Collection_Rate = 5.0
10:33:5	0.000	CellTemperature.Nominal = 35.0
10:33:5	0.000	ColumnTemperature.Nominal = 30.0
10:33:5	0.000	Suppressor_Type = ASRS_4mm
10:33:5	0.000	Suppressor_Current = 34
10:33:5	0.000	ECD_Total.Step = 0.20
10:33:5	0.000	ECD_Total.Average = Off
10:33:5	0.000	Channel_Pressure.Step = 0.20
10:33:5	0.000	Channel_Pressure.Average = Off
10:33:5		Pressure.LowerLimit = 0
10:33:5		Pressure.UpperLimit = 3000
10:33:5		%A.Equate = "%A"
10:33:5		Flow = 1.20
10:33:5		Manually inject the sample and press OK to continue.
10:34:0		Autozero
10:34:0		ECD_1.AcqOn
10:34:0		ECD_Total.AcqOn
10:34:0	9 0.000	Channel_Pressure.AcqOn
10:34:0		Pump_InjectValve.InjectPosition Duration = 30.00
10:34:3		Log Pressure: 1905.35 [psi]
10:34:3		Log Background: 20.97 [μS]
10:44:0		ECD_1.AcqOff
10:44:0	9 10.000	ECD_Total.AcqOff
10:44:0		Channel_Pressure.AcqOff
10:44:1	6	End of sample "5".

12 6			
Sample Name: Vial Number:	6	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 10:44	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height µS	Area μS*min	Rel.Area %	Amount	Туре
1	2.97	Fluoride	0.106	0.045	6.16	-0.084	BM
2	3.67	Chloride	2.604	0.403	55.33	1.559	MB
3	5.19	Nitrate	1.548	0.234	32.14	1.991	bMB
4	7.16	Sulfate	0.220	0.046	6.37	0.576	BMB
Total:			4.479	0.728	100.00	4.043	

12 6			
Sample Name: Vial Number:	6	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time: Run Time (min):	######################################	Sample Weight: Sample Amount:	1.0000 1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	2.97	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
3	5.19	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
4	7.16	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.5829	0.0287	0.1481	0.0000

12 6			
Sample Name: Vial Number:	6 6	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 10:44	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

System Suitability Test Results:							
No.	Test Name	Sample Condition	Peak Condition	Test Result			
	Number of executed single tests:	n.a.	Total test result:	n.a.			

Sample	Sample Name	Ret.Time	Area	Height	Amount	Туре	Plates
No.		min	μS*min	μS			(EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
- '-	Average:	n.a.	n.a.	n.a.	n.a.	α.	n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

12 6 Au			dit Trail	
Sample Name: Vial Number:	6 6	Injection Volume: Channel:	25.0 ECD_1	
Sample Type:	unknown	Wavelength:	n.a.	
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.	
Quantif. Method:	7_anion	Dilution Factor:	1.0000	
Recording Time:	20/11/2023 10:44	Sample Weight:	1.0000	
Run Time (min):	10.00	Sample Amount:	1.0000	

_[Day Time	Ret.Time	Command/Message
1	0:44:16		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
1	0:44:16		Start of sample 12 "6", using program "ICS1100_Anion_Prog".
1	0:44:16	0.000	Pump_InjectValve.State = LoadPosition
1	0:44:16	0.000	Data_Collection_Rate = 5.0
1	0:44:16	0.000	CellTemperature.Nominal = 35.0
1	0:44:16	0.000	ColumnTemperature.Nominal = 30.0
1	0:44:16	0.000	Suppressor_Type = ASRS_4mm
1	0:44:16	0.000	Suppressor_Current = 34
1	0:44:16	0.000	ECD_Total.Step = 0.20
1	0:44:16	0.000	ECD_Total.Average = Off
1	0:44:16	0.000	Channel_Pressure.Step = 0.20
1	0:44:16	0.000	Channel_Pressure.Average = Off
1	0:44:16	0.000	Pressure.LowerLimit = 0
1	0:44:16	0.000	Pressure.UpperLimit = 3000
1	0:44:16	0.000	%A.Equate = "%A"
1	0:44:16	0.000	Flow = 1.20
1	0:44:16	0.000	Manually inject the sample and press OK to continue.
1	0:44:32	0.000	Autozero
1	0:44:32	0.000	ECD_1.AcqOn
1	0:44:32	0.000	ECD_Total.AcqOn
1	0:44:32	0.000	Channel_Pressure.AcqOn
1	0:44:32	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
1	0:45:02	0.500	Log Pressure: 1907.33 [psi]
1	0:45:02	0.500	Log Background: 20.98 [μS]
1	0:54:32	10.000	ECD_1.AcqOff
1	0:54:32	10.000	ECD_Total.AcqOff
1	0:54:32	10.000	Channel_Pressure.AcqOff
_1	0:54:39		End of sample "6".

13 7			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	7 7 unknown ICS1100_Anion_Prog 7_anion 20/11/2023 10:54 10.00	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 ECD_1 n.a. n.a. 1.0000 1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		μS	μS*min	%		
1	2.93	Fluoride	0.119	0.038	3.58	-0.132	BM
2	3.67	Chloride	5.947	0.711	66.30	3.124	MB
3	5.19	Nitrate	1.603	0.272	25.37	2.314	BMB
4	7.16	Sulfate	0.241	0.051	4.75	0.608	BMB
Total:			7.910	1.072	100.00	5.914	

13 7			
Sample Name: Vial Number:	7 7	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time: Run Time (min):	############ 10.00	Sample Weight: Sample Amount:	1.0000 1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	2.93	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
3	5.19	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
4	7.16	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.5829	0.0287	0.1481	0.0000

13 7			
Sample Name: Vial Number:	7 7	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 10:54	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

System Suitability Test Results:							
No.	Test Name	Sample Condition	Peak Condition	Test Result			
	Number of executed single tests:	n.a.	Total test result:	n.a.			

Sample	Sample Name	Ret.Time	Area	Height	Amount	Туре	Plates
No.		min	μS*min	μS			(EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
- '-	Average:	n.a.	n.a.	n.a.	n.a.	α.	n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

	Audit Trail		
7 7	Injection Volume: Channel:	25.0 ECD_1	
unknown	Wavelength:	n.a.	
ICS1100_Anion_Prog	Bandwidth:	n.a.	
7_anion	Dilution Factor:	1.0000	
20/11/2023 10:54 10.00	Sample Weight: Sample Amount:	1.0000 1.0000	
	ICS1100_Anion_Prog 7_anion 20/11/2023 10:54	7 Injection Volume: 7 Channel: unknown Wavelength: ICS1100_Anion_Prog Bandwidth: 7_anion Dilution Factor: 20/11/2023 10:54 Sample Weight:	

Day Time	Ret.Time	Command/Message
10:54:39		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
10:54:39		Start of sample 13 "7", using program "ICS1100_Anion_Prog".
10:54:39	0.000	Pump_InjectValve.State = LoadPosition
10:54:39	0.000	Data_Collection_Rate = 5.0
10:54:39	0.000	CellTemperature.Nominal = 35.0
10:54:39	0.000	ColumnTemperature.Nominal = 30.0
10:54:39	0.000	Suppressor_Type = ASRS_4mm
10:54:39	0.000	Suppressor_Current = 34
10:54:39	0.000	ECD_Total.Step = 0.20
10:54:39	0.000	ECD_Total.Average = Off
10:54:39	0.000	Channel_Pressure.Step = 0.20
10:54:39	0.000	Channel_Pressure.Average = Off
10:54:39	0.000	Pressure.LowerLimit = 0
10:54:39	0.000	Pressure.UpperLimit = 3000
10:54:39	0.000	%A.Equate = "%A"
10:54:39	0.000	Flow = 1.20
10:54:39	0.000	Manually inject the sample and press OK to continue.
10:54:54	0.000	Autozero
10:54:54	0.000	ECD_1.AcqOn
10:54:54	0.000	ECD_Total.AcqOn
10:54:54	0.000	Channel_Pressure.AcqOn
10:54:54	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
10:55:24	0.500	Log Pressure: 1909.11 [psi]
10:55:24	0.500	Log Background: 20.98 [μS]
11:04:54	10.000	ECD_1.AcqOff
11:04:54	10.000	ECD_Total.AcqOff
11:04:54	10.000	Channel_Pressure.AcqOff
11:05:00		End of sample "7".

14 8			
Sample Name: Vial Number:	8 8	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 11:05	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		μS	μS*min	%		
1	2.95	Fluoride	0.109	0.045	5.87	-0.083	BM
2	3.67	Chloride	2.518	0.390	50.97	1.495	MB
3	5.19	Nitrate	1.966	0.297	38.73	2.522	bMB
4	7.16	Sulfate	0.161	0.034	4.43	0.489	BMB
Total:			4.755	0.766	100.00	4.422	

14 8			
Sample Name: Vial Number:	8 8	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	############	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	2.95	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
3	5.19	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
4	7.16	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.5829	0.0287	0.1481	0.0000

14 8			
Sample Name: Vial Number:	8 8	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 11:05	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

ĺ	Syster	n Suitability Test Results:			
l	No.	Test Name	Sample Condition	Peak Condition	Test Result
		Number of executed single tests:	n.a.	Total test result:	n.a.

Sample	Sample Name	Ret.Time	Area	Height	Amount	Туре	Plates
No.		min	μS*min	μS			(EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
- '-	Average:	n.a.	n.a.	n.a.	n.a.	α.	n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

14 8		Audit T	rail
Sample Name: Vial Number:	8 8	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 11:05	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

Day Time	Ret.Time	Command/Message
11:05:00		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
11:05:00		Start of sample 14 "8", using program "ICS1100_Anion_Prog".
11:05:00	0.000	Pump_InjectValve.State = LoadPosition
11:05:00	0.000	Data_Collection_Rate = 5.0
11:05:00	0.000	CellTemperature.Nominal = 35.0
11:05:00	0.000	ColumnTemperature.Nominal = 30.0
11:05:00	0.000	Suppressor_Type = ASRS_4mm
11:05:00	0.000	Suppressor_Current = 34
11:05:00	0.000	ECD_Total.Step = 0.20
11:05:00	0.000	ECD_Total.Average = Off
11:05:00	0.000	Channel_Pressure.Step = 0.20
11:05:00	0.000	Channel_Pressure.Average = Off
11:05:00	0.000	Pressure.LowerLimit = 0
11:05:00	0.000	Pressure.UpperLimit = 3000
11:05:00	0.000	%A.Equate = "%A"
11:05:00	0.000	Flow = 1.20
11:05:00	0.000	Manually inject the sample and press OK to continue.
11:05:16	0.000	Autozero
11:05:16	0.000	ECD_1.AcqOn
11:05:16	0.000	ECD_Total.AcqOn
11:05:16	0.000	Channel_Pressure.AcqOn
11:05:16	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
11:05:46	0.500	Log Pressure: 1908.90 [psi]
11:05:46	0.500	Log Background: 20.99 [μS]
11:15:16	10.000	ECD_1.AcqOff
11:15:16	10.000	ECD_Total.AcqOff
11:15:16	10.000	Channel_Pressure.AcqOff
11:15:22		End of sample "8".

15 9			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	9 9 unknown ICS1100_Anion_Prog 7_anion 20/11/2023 11:15 10.00	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 ECD_1 n.a. n.a. 1.0000 1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		μS	μS*min	%		
1	2.97	Fluoride	0.109	0.045	6.00	-0.084	BM
2	3.67	Chloride	2.662	0.409	54.76	1.592	MB
3	5.19	Nitrate	0.941	0.143	19.10	1.219	bMB
4	7.16	Sulfate	0.700	0.151	20.14	1.305	BMB
Total:			4.412	0.748	100.00	4.032	

15 9			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	9 9 unknown ICS1100_Anion_Prog 7_anion ###################################	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 ECD_1 n.a. n.a. 1.0000 1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	2.97	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
3	5.19	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
4	7.16	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.5829	0.0287	0.1481	0.0000

15 9			
Sample Name: Vial Number:	9	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 11:15	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

System Suitability Test Results:				
No.	Test Name	Sample Condition	Peak Condition	Test Result
	Number of executed single tests:	n.a.	Total test result:	n.a.

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

15 9		Audit T	rail
Sample Name: Vial Number:	9	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 11:15	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

Day Time	Ret.Time	Command/Message
11:15:22		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
11:15:22		Start of sample 15 "9", using program "ICS1100_Anion_Prog".
11:15:22	0.000	Pump_InjectValve.State = LoadPosition
11:15:22	0.000	Data_Collection_Rate = 5.0
11:15:22	0.000	CellTemperature.Nominal = 35.0
11:15:22	0.000	ColumnTemperature.Nominal = 30.0
11:15:22	0.000	Suppressor_Type = ASRS_4mm
11:15:22	0.000	Suppressor_Current = 34
11:15:22	0.000	ECD_Total.Step = 0.20
11:15:22	0.000	ECD_Total.Average = Off
11:15:22	0.000	Channel_Pressure.Step = 0.20
11:15:22	0.000	Channel_Pressure.Average = Off
11:15:22	0.000	Pressure.LowerLimit = 0
	0.000	Pressure.UpperLimit = 3000
11:15:22	0.000	%A.Equate = "%A"
11:15:22	0.000	Flow = 1.20
11:15:22	0.000	Manually inject the sample and press OK to continue.
11:15:41	0.000	Autozero
11:15:41	0.000	ECD_1.AcqOn
	0.000	ECD_Total.AcqOn
11:15:41	0.000	Channel_Pressure.AcqOn
11:15:41	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
11:16:11	0.500	Log Pressure: 1909.45 [psi]
11:16:11	0.500	Log Background: 21.00 [μS]
11:25:41	10.000	ECD_1.AcqOff
11:25:41	10.000	ECD_Total.AcqOff
11:25:41	10.000	Channel_Pressure.AcqOff
11:25:48		End of sample "9".

16 10			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	10 10 unknown ICS1100_Anion_Prog 7_anion 20/11/2023 11:25 10.00	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 ECD_1 n.a. n.a. 1.0000 1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		μS	μS*min	%		
1	2.96	Fluoride	0.088	0.036	5.19	-0.153	BM
2	3.67	Chloride	3.270	0.407	59.52	1.581	MB
3	5.19	Nitrate	1.054	0.160	23.31	1.361	BMB
4	7.16	Sulfate	0.384	0.082	11.98	0.826	BMB
Total:			4.797	0.684	100.00	3.614	

16 10			
Sample Name: Vial Number:	10 10	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time: Run Time (min):	############# 10.00	Sample Weight: Sample Amount:	1.0000 1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	2.96	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
3	5.19	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
4	7.16	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.5829	0.0287	0.1481	0.0000

16 10			
Sample Name: Vial Number:	10 10	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 11:25	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

System Suitability Test Results:							
No.	Test Name	Sample Condition	Peak Condition	Test Result			
	Number of executed single tests:	n.a.	Total test result:	n.a.			

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

16 10		Audit Trail		
Sample Name: Vial Number:	10 10	Injection Volume: Channel:	25.0 ECD_1	
Sample Type:	unknown	Wavelength:	n.a.	
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.	
Quantif. Method:	7_anion	Dilution Factor:	1.0000	
Recording Time:	20/11/2023 11:25	Sample Weight:	1.0000	
Run Time (min):	10.00	Sample Amount:	1.0000	

Day Time	Ret.Time	Command/Message
11:25:48		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
11:25:48		Start of sample 16 "10", using program "ICS1100_Anion_Prog".
11:25:48	0.000	Pump_InjectValve.State = LoadPosition
11:25:48	0.000	Data_Collection_Rate = 5.0
11:25:48	0.000	CellTemperature.Nominal = 35.0
11:25:48	0.000	ColumnTemperature.Nominal = 30.0
11:25:48	0.000	Suppressor_Type = ASRS_4mm
11:25:48	0.000	Suppressor_Current = 34
11:25:48	0.000	ECD_Total.Step = 0.20
11:25:48	0.000	ECD_Total.Average = Off
11:25:48	0.000	Channel_Pressure.Step = 0.20
11:25:48	0.000	Channel_Pressure.Average = Off
11:25:48	0.000	Pressure.LowerLimit = 0
	0.000	Pressure.UpperLimit = 3000
11:25:48	0.000	%A.Equate = "%A"
11:25:48	0.000	Flow = 1.20
11:25:48	0.000	Manually inject the sample and press OK to continue.
11:26:03	0.000	Autozero
11:26:03	0.000	ECD_1.AcqOn
11:26:03	0.000	ECD_Total.AcqOn
11:26:03	0.000	Channel_Pressure.AcqOn
11:26:03	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
11:26:33	0.500	Log Pressure: 1911.99 [psi]
11:26:33	0.500	Log Background: 21.02 [μS]
11:36:03	10.000	ECD_1.AcqOff
11:36:03	10.000	ECD_Total.AcqOff
11:36:03	10.000	Channel_Pressure.AcqOff
11:36:09		End of sample "10".

17 11			
Sample Name: Vial Number:	11 11	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 11:36	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height µS	Area μS*min	Rel.Area %	Amount	Туре
1	2.99	Fluoride	0.104	0.045	5.93	-0.086	ВМ
2	3.67	Chloride	2.582	0.398	53.05	1.534	MB
3	5.19	Nitrate	1.636	0.254	33.92	2.165	bMB
4	7.16	Sulfate	0.248	0.053	7.09	0.624	BMB
Total:			4.570	0.750	100.00	4.237	

17 11			
Sample Name: Vial Number:	11 11	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time: Run Time (min):	######################################	Sample Weight: Sample Amount:	1.0000 1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	2.99	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
3	5.19	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
4	7.16	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.5829	0.0287	0.1481	0.0000

17 11			
Sample Name: Vial Number:	11 11	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 11:36	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

System Suitability Test Results:							
No.	Test Name	Sample Condition	Peak Condition	Test Result			
	Number of executed single tests:	n.a.	Total test result:	n.a.			

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

17 11		Audit Trail			
Sample Name: Vial Number:	11 11	Injection Volume: Channel:	25.0 ECD_1		
Sample Type:	unknown	Wavelength:	n.a.		
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.		
Quantif. Method:	7_anion	Dilution Factor:	1.0000		
Recording Time:	20/11/2023 11:36	Sample Weight:	1.0000		
Run Time (min):	10.00	Sample Amount:	1.0000		

Day Time	Ret.Time	Command/Message
11:36:09		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
11:36:09		Start of sample 17 "11", using program "ICS1100_Anion_Prog".
11:36:09	0.000	Pump_InjectValve.State = LoadPosition
11:36:09	0.000	Data_Collection_Rate = 5.0
11:36:09	0.000	CellTemperature.Nominal = 35.0
11:36:09	0.000	ColumnTemperature.Nominal = 30.0
11:36:09	0.000	Suppressor_Type = ASRS_4mm
11:36:09	0.000	Suppressor_Current = 34
11:36:09	0.000	ECD_Total.Step = 0.20
11:36:09	0.000	ECD_Total.Average = Off
11:36:09	0.000	Channel_Pressure.Step = 0.20
11:36:09	0.000	Channel_Pressure.Average = Off
11:36:09	0.000	Pressure.LowerLimit = 0
11:36:09	0.000	Pressure.UpperLimit = 3000
11:36:09	0.000	%A.Equate = "%A"
11:36:09	0.000	Flow = 1.20
11:36:09	0.000	Manually inject the sample and press OK to continue.
11:36:21	0.000	Autozero
11:36:21	0.000	ECD_1.AcqOn
11:36:21	0.000	ECD_Total.AcqOn
11:36:21	0.000	Channel_Pressure.AcqOn
11:36:21	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
11:36:51	0.500	Log Pressure: 1910.25 [psi]
11:36:51	0.500	Log Background: 21.03 [μS]
11:46:21	10.000	ECD_1.AcqOff
11:46:21	10.000	ECD_Total.AcqOff
11:46:21	10.000	Channel_Pressure.AcqOff
11:46:28		End of sample "11".

18 12			
Sample Name:	12	Injection Volume:	25.0
Vial Number:	12	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100 Anion Prog	Bandwidth:	n.a.
Quantif. Method:	7 anion	Dilution Factor:	1.0000
Recording Time: Run Time (min):	20/11/2023 11:46	Sample Weight:	1.0000
	10.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		μS	μS*min	%		
1	3.67	Chloride	13.212	1.542	81.77	7.343	BM
2	4.11	Nitrite	0.134	0.054	2.88	1.155	M
3	5.19	Nitrate	1.281	0.194	10.31	1.656	MB
4	7.17	Sulfate	0.441	0.095	5.03	0.916	BMB
Total:			15.068	1.885	100.00	11.069	

18 12			
Sample Name: Vial Number:	12 12	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	############	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
2	4.11	Nitrite	LOff	5	99.8858	-0.0802	0.1165	0.0000
3	5.19	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
4	7.17	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.5612	-0.0053	0.1436	0.0000

18 12			
Sample Name: Vial Number:	12 12	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 11:46	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

Syste	System Suitability Test Results:				
No.	Test Name	Sample Condition	Peak Condition	Test Result	
	Number of executed single tests:	n.a.	Total test result:	n.a.	

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

18 12		Audit T	rail
Sample Name: Vial Number:	12 12	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time: Run Time (min):	20/11/2023 11:46 10.00	Sample Weight: Sample Amount:	1.0000 1.0000

Day Time	Ret.Time	Command/Message
11:46:28		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
11:46:28		Start of sample 18 "12", using program "ICS1100_Anion_Prog".
11:46:28	0.000	Pump_InjectValve.State = LoadPosition
11:46:28	0.000	Data_Collection_Rate = 5.0
11:46:28	0.000	CellTemperature.Nominal = 35.0
11:46:28	0.000	ColumnTemperature.Nominal = 30.0
11:46:28	0.000	Suppressor_Type = ASRS_4mm
11:46:28	0.000	Suppressor_Current = 34
11:46:28	0.000	ECD_Total.Step = 0.20
11:46:28	0.000	ECD_Total.Average = Off
11:46:28	0.000	Channel_Pressure.Step = 0.20
11:46:28	0.000	Channel_Pressure.Average = Off
11:46:28	0.000	Pressure.LowerLimit = 0
	0.000	Pressure.UpperLimit = 3000
11:46:28	0.000	%A.Equate = "%A"
11:46:28	0.000	Flow = 1.20
11:46:28	0.000	Manually inject the sample and press OK to continue.
11:46:46	0.000	Autozero
11:46:46	0.000	ECD_1.AcqOn
	0.000	ECD_Total.AcqOn
11:46:46	0.000	Channel_Pressure.AcqOn
11:46:46	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
11:47:16	0.500	Log Pressure: 1910.72 [psi]
11:47:16	0.500	Log Background: 21.04 [μS]
	10.000	ECD_1.AcqOff
11:56:46	10.000	ECD_Total.AcqOff
11:56:46	10.000	Channel_Pressure.AcqOff
11:56:52		End of sample "12".

19 13			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	13 13 unknown ICS1100_Anion_Prog 7_anion 20/11/2023 11:56 10.00	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 ECD_1 n.a. n.a. 1.0000 1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		μS	μS*min	%		
1	3.67	Chloride	1.621	0.194	40.91	0.499	BMB
2	5.19	Nitrate	1.254	0.220	46.35	1.875	BMB
3	7.16	Sulfate	0.283	0.061	12.74	0.676	BMB
Total:			3.158	0.475	100.00	3.050	

19 13			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	13 13 unknown ICS1100_Anion_Prog 7_anion ###################################	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 ECD_1 n.a. n.a. 1.0000 1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
2	5.19	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
3	7.16	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.4530	0.0196	0.1527	0.0000

19 13			
Sample Name: Vial Number:	13 13	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 11:56	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

System Suitability Test Results:				
No.	Test Name	Sample Condition	Peak Condition	Test Result
	Number of executed single tests:	n.a.	Total test result:	n.a.

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

19 13		Audit T	rail
Sample Name: Vial Number:	13 13	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time: Run Time (min):	20/11/2023 11:56 10.00	Sample Weight: Sample Amount:	1.0000 1.0000

Day Time	Ret.Time	Command/Message
11:56:52		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
11:56:52		Start of sample 19 "13", using program "ICS1100_Anion_Prog".
11:56:52	0.000	Pump_InjectValve.State = LoadPosition
11:56:52	0.000	Data_Collection_Rate = 5.0
11:56:52	0.000	CellTemperature.Nominal = 35.0
11:56:52	0.000	ColumnTemperature.Nominal = 30.0
11:56:52	0.000	Suppressor_Type = ASRS_4mm
11:56:52	0.000	Suppressor_Current = 34
11:56:52	0.000	ECD_Total.Step = 0.20
11:56:52	0.000	ECD_Total.Average = Off
11:56:52	0.000	Channel_Pressure.Step = 0.20
11:56:52	0.000	Channel_Pressure.Average = Off
11:56:52	0.000	Pressure.LowerLimit = 0
11:56:52	0.000	Pressure.UpperLimit = 3000
11:56:52	0.000	%A.Equate = "%A"
11:56:52	0.000	Flow = 1.20
11:56:52	0.000	Manually inject the sample and press OK to continue.
11:57:06	0.000	Autozero
11:57:06	0.000	ECD_1.AcqOn
11:57:06	0.000	ECD_Total.AcqOn
11:57:06	0.000	Channel_Pressure.AcqOn
11:57:06	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
11:57:36	0.500	Log Pressure: 1911.90 [psi]
11:57:36	0.500	Log Background: 21.05 [μS]
12:07:06	10.000	ECD_1.AcqOff
12:07:06	10.000	ECD_Total.AcqOff
12:07:06	10.000	Channel_Pressure.AcqOff
12:07:13		End of sample "13".

20 14			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	14 14 unknown ICS1100_Anion_Prog 7_anion 20/11/2023 12:07 10.00	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 ECD_1 n.a. n.a. 1.0000 1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		μS	μS*min	%		
1	3.15	Fluoride	0.113	0.053	8.02	-0.023	ВМ
2	3.67	Chloride	2.676	0.411	62.17	1.601	MB
3	5.19	Nitrate	0.912	0.139	20.97	1.185	bMB
4	7.16	Sulfate	0.275	0.058	8.84	0.661	BMB
Total:			3.976	0.662	100.00	3.425	

20 14			
Sample Name: Vial Number:	14 14	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	############	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	3.15	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
3	5.19	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
4	7.16	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.5829	0.0287	0.1481	0.0000

20 14			
Sample Name: Vial Number:	14 14	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 12:07	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

System Suitability Test Results:						
No.	Test Name	Sample Condition	Peak Condition	Test Result		
	Number of executed single tests:	n.a.	Total test result:	n.a.		

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

20 14		Audit Trail		
Sample Name: Vial Number:	14 14	Injection Volume: Channel:	25.0 ECD_1	
Sample Type:	unknown	Wavelength:	n.a.	
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.	
Quantif. Method:	7_anion	Dilution Factor:	1.0000	
Recording Time:	20/11/2023 12:07	Sample Weight:	1.0000	
Run Time (min):	10.00	Sample Amount:	1.0000	

Day Time	Ret.Time	Command/Message
12:07:13		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
12:07:13		Start of sample 20 "14", using program "ICS1100_Anion_Prog".
12:07:13	0.000	Pump_InjectValve.State = LoadPosition
12:07:13	0.000	Data_Collection_Rate = 5.0
12:07:13	0.000	CellTemperature.Nominal = 35.0
12:07:13	0.000	ColumnTemperature.Nominal = 30.0
12:07:13	0.000	Suppressor_Type = ASRS_4mm
12:07:13	0.000	Suppressor_Current = 34
12:07:13	0.000	ECD_Total.Step = 0.20
12:07:13	0.000	ECD_Total.Average = Off
12:07:13	0.000	Channel_Pressure.Step = 0.20
12:07:13	0.000	Channel_Pressure.Average = Off
12:07:13	0.000	Pressure.LowerLimit = 0
12:07:13	0.000	Pressure.UpperLimit = 3000
12:07:13	0.000	%A.Equate = "%A"
12:07:13	0.000	Flow = 1.20
12:07:13	0.000	Manually inject the sample and press OK to continue.
12:07:31	0.000	Autozero
12:07:31	0.000	ECD_1.AcqOn
12:07:31	0.000	ECD_Total.AcqOn
12:07:31	0.000	Channel_Pressure.AcqOn
12:07:31	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
12:08:01	0.500	Log Pressure: 1911.61 [psi]
12:08:01	0.500	Log Background: 21.05 [μS]
12:17:31	10.000	ECD_1.AcqOff
12:17:31	10.000	ECD_Total.AcqOff
12:17:31	10.000	Channel_Pressure.AcqOff
12:17:37		End of sample "14".

21 15			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	15 15 unknown ICS1100_Anion_Prog 7_anion 20/11/2023 12:17 10.00	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 ECD_1 n.a. n.a. 1.0000 1.0000

No.	Ret.Time min	Peak Name	Height µS	Area μS*min	Rel.Area %	Amount	Туре
1	2.93	Fluoride	0.104	0.028	10.16	-0.208	Ru
2	3.67	Chloride	1.055	0.249	89.84	0.778	BMB
Total:			1.159	0.278	100.00	0.571	

21 15			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	15 15 unknown ICS1100_Anion_Prog 7_anion ###################################	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 ECD_1 n.a. n.a. 1.0000 1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	2.93	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
Average:					99.2051	0.0761	0.1655	0.0000

21 15			
Sample Name: Vial Number:	15 15	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 12:17	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

System Suitability Test Results:							
No.	Test Name	Sample Condition	Peak Condition	Test Result			
	Number of executed single tests:	n.a.	Total test result:	n.a.			

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

21 15	15 Audit Trail		
Sample Name: Vial Number:	15 15	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 12:17	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

Day Time	Ret.Time	Command/Message
12:17:37		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
12:17:37		Start of sample 21 "15", using program "ICS1100_Anion_Prog".
12:17:37	0.000	Pump_InjectValve.State = LoadPosition
12:17:37	0.000	Data_Collection_Rate = 5.0
12:17:37	0.000	CellTemperature.Nominal = 35.0
12:17:37	0.000	ColumnTemperature.Nominal = 30.0
12:17:37	0.000	Suppressor_Type = ASRS_4mm
12:17:37	0.000	Suppressor_Current = 34
12:17:37	0.000	ECD_Total.Step = 0.20
12:17:37	0.000	ECD_Total.Average = Off
12:17:37	0.000	Channel_Pressure.Step = 0.20
12:17:37	0.000	Channel_Pressure.Average = Off
12:17:37	0.000	Pressure.LowerLimit = 0
12:17:37	0.000	Pressure.UpperLimit = 3000
12:17:37	0.000	%A.Equate = "%A"
12:17:37	0.000	Flow = 1.20
12:17:37	0.000	Manually inject the sample and press OK to continue.
12:17:59	0.000	Autozero
12:17:59	0.000	ECD_1.AcqOn
12:17:59	0.000	ECD_Total.AcqOn
12:17:59	0.000	Channel_Pressure.AcqOn
12:17:59	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
12:18:29	0.500	Log Pressure: 1913.30 [psi]
12:18:29	0.500	Log Background: 21.05 [μS]
12:27:59	10.000	ECD_1.AcqOff
12:27:59	10.000	ECD_Total.AcqOff
12:27:59	10.000	Channel_Pressure.AcqOff
12:28:05		End of sample "15".

22 16			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	16 16 unknown ICS1100_Anion_Prog 7_anion 20/11/2023 12:28 10.00	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 ECD_1 n.a. n.a. 1.0000 1.0000

No.	Ret.Time min	Peak Name	Height µS	Area µS*min	Rel.Area %	Amount	Туре
1	2.92	Fluoride	0.539	0.219	5.14	1.210	BM
2	3.67	Chloride	10.144	1.241	29.18	5.814	М
3	4.18	Nitrite	3.176	0.484	11.39	4.845	M
4	4.75	Bromide	2.790	0.400	9.42	5.175	M
5	5.19	Nitrate	5.137	0.774	18.21	6.567	MB
6	6.44	Phosphate	1.964	0.435	10.24	10.938	BM
7	7.18	Sulfate	3.087	0.698	16.41	5.128	MB
Total:			26.837	4.251	100.00	39.678	·

22 16			
Sample Name:	16	Injection Volume:	25.0
Vial Number:	16	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7 anion	Dilution Factor:	1.0000
Recording Time:	######################################	Sample Weight:	1.0000
Run Time (min):		Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	2.92	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
3	4.18	Nitrite	LOff	5	99.8858	-0.0802	0.1165	0.0000
4	4.75	Bromide	LOff	5	99.9607	-0.0183	0.0809	0.0000
5	5.19	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
6	6.44	Phosphate	LOff	5	99.8607	-0.0607	0.0454	0.0000
7	7.18	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.7198	-0.0063	0.1193	0.0000

22 16			
Sample Name: Vial Number:	16 16	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 12:28	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

Syste	System Suitability Test Results:				
No.	Test Name	Sample Condition	Peak Condition	Test Result	
	Number of executed single tests:	n.a.	Total test result:	n.a.	

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

	Audit T	rail
16 16	Injection Volume: Channel:	25.0 ECD_1
unknown	Wavelength:	n.a.
ICS1100_Anion_Prog	Bandwidth:	n.a.
7_anion	Dilution Factor:	1.0000
20/11/2023 12:28 10.00	Sample Weight: Sample Amount	1.0000 1.0000
	16 unknown ICS1100_Anion_Prog 7_anion	16 Injection Volume: 16 Channel: unknown Wavelength: ICS1100_Anion_Prog Bandwidth: 7_anion Dilution Factor: 20/11/2023 12:28 Sample Weight:

Day Time	Ret.Time	Command/Message
12:28:05		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
12:28:05		Start of sample 22 "16", using program "ICS1100_Anion_Prog".
12:28:05	0.000	Pump_InjectValve.State = LoadPosition
12:28:05	0.000	Data_Collection_Rate = 5.0
12:28:05	0.000	CellTemperature.Nominal = 35.0
12:28:05	0.000	ColumnTemperature.Nominal = 30.0
12:28:05	0.000	Suppressor_Type = ASRS_4mm
12:28:05	0.000	Suppressor_Current = 34
12:28:05	0.000	ECD_Total.Step = 0.20
12:28:05	0.000	ECD_Total.Average = Off
12:28:05	0.000	Channel_Pressure.Step = 0.20
12:28:05	0.000	Channel_Pressure.Average = Off
12:28:05	0.000	Pressure.LowerLimit = 0
12:28:05	0.000	Pressure.UpperLimit = 3000
12:28:05	0.000	%A.Equate = "%A"
12:28:05	0.000	Flow = 1.20
12:28:05	0.000	Manually inject the sample and press OK to continue.
12:28:15	0.000	Autozero
12:28:15	0.000	ECD_1.AcqOn
12:28:15	0.000	ECD_Total.AcqOn
12:28:15	0.000	Channel_Pressure.AcqOn
12:28:15	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
12:28:45	0.500	Log Pressure: 1911.99 [psi]
12:28:45	0.500	Log Background: 21.06 [μS]
12:38:15	10.000	ECD_1.AcqOff
12:38:15	10.000	ECD_Total.AcqOff
12:38:15	10.000	Channel_Pressure.AcqOff
12:38:21		End of sample "16".

23 17			
Sample Name: Vial Number:	17 17	Injection Volume: Channel:	25.0 ECD 1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 12:38	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height μS	Area μS*min	Rel.Area %	Amount	Туре
1	3.73	Chloride	0.143	0.020	38.87	-0.386	BMB
2	5.27	Nitrate	0.082	0.020	37.73	0.176	BMB
3	7.23	Sulfate	0.045	0.012	23.41	0.338	BMB
Total:			0.270	0.052	100.00	0.127	

23 17			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	17 17 unknown ICS1100_Anion_Prog 7_anion ###################################	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 ECD_1 n.a. n.a. 1.0000 1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	3.73	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
2	5.27	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
3	7.23	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.4530	0.0196	0.1527	0.0000

23 17			
Sample Name: Vial Number:	17 17	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 12:38	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

System Suitability Test Results:				
No.	Test Name	Sample Condition	Peak Condition	Test Result
	Number of executed single tests:	n.a.	Total test result:	n.a.

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

23 17		Audit T	rail
Sample Name: Vial Number:	17 17	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 12:38	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

Day Time	Ret.Time	Command/Message
12:38:21		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
12:38:21		Start of sample 23 "17", using program "ICS1100_Anion_Prog".
12:38:21	0.000	Pump_InjectValve.State = LoadPosition
12:38:21	0.000	Data_Collection_Rate = 5.0
12:38:21	0.000	CellTemperature.Nominal = 35.0
12:38:21	0.000	ColumnTemperature.Nominal = 30.0
12:38:21	0.000	Suppressor_Type = ASRS_4mm
12:38:21	0.000	Suppressor_Current = 34
12:38:21	0.000	ECD_Total.Step = 0.20
12:38:21	0.000	ECD_Total.Average = Off
12:38:21	0.000	Channel_Pressure.Step = 0.20
12:38:21	0.000	Channel_Pressure.Average = Off
12:38:21	0.000	Pressure.LowerLimit = 0
12:38:21	0.000	Pressure.UpperLimit = 3000
12:38:21	0.000	%A.Equate = "%A"
12:38:21	0.000	Flow = 1.20
12:38:21	0.000	Manually inject the sample and press OK to continue.
13:07:26	0.000	Autozero
13:07:26	0.000	ECD_1.AcqOn
13:07:26	0.000	ECD_Total.AcqOn
13:07:26	0.000	Channel_Pressure.AcqOn
13:07:26	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
13:07:56	0.500	Log Pressure: 1911.73 [psi]
13:07:56	0.500	Log Background: 21.08 [μS]
13:08:02	0.599	Running batch intercepted by user Dionex.
13:08:02	0.599	StopFlow
13:08:13	0.599	Suppressor stop for zero flow rate.
13:08:17	0.599	Error cleared: Suppressor stop for zero flow rate.
13:08:37	0.599	Running batch intercepted by user Dionex.
13:08:37	0.599	Continue
13:18:01	10.000	ECD_1.AcqOff
13:18:01	10.000	ECD_Total.AcqOff
13:18:01	10.000	Channel_Pressure.AcqOff
13:18:07		End of sample "17".

Injection Volume: Channel: Wavelength:	25.0 ECD_1 n.a.
Bandwidth:	n.a.
Dilution Factor: Sample Weight:	1.0000 1.0000 1.0000
	Channel: Wavelength: Bandwidth: Dilution Factor:

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		μS	μS*min	%		
1	3.69	Chloride	1.031	0.152	34.92	0.286	BM
2	6.17	n.a.	0.071	0.240	54.96	n.a.	M
3	7.16	Sulfate	0.043	0.044	10.13	0.561	MB
Total:			1.145	0.437	100.00	0.847	

24 18			
Sample Name: Vial Number:	18 18	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time: Run Time (min):	############ 10.00	Sample Weight: Sample Amount:	1.0000 1.0000
nuii Tiille (Iliili).	10.00	Sample Amount.	1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	3.69	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
2	6.17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	7.16	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.2144	0.0300	0.1700	0.0000

24 18			
Sample Name: Vial Number:	18 18	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 13:18	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

System Suitability Test Results:							
No.	Test Name	Sample Condition	Peak Condition	Test Result			
	Number of executed single tests:	n.a.	Total test result:	n.a.			

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

24 18		Audit Trail		
Sample Name: Vial Number:	18 18	Injection Volume: Channel:	25.0 ECD_1	
Sample Type:	unknown	Wavelength:	n.a.	
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.	
Quantif. Method:	7_anion	Dilution Factor:	1.0000	
Recording Time:	20/11/2023 13:18	Sample Weight:	1.0000	
Run Time (min):	10.00	Sample Amount:	1.0000	

Day Time	Ret.Time	Command/Message
13:18:07		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
13:18:07		Start of sample 24 "18", using program "ICS1100_Anion_Prog".
13:18:07	0.000	Pump_InjectValve.State = LoadPosition
13:18:07	0.000	Data_Collection_Rate = 5.0
13:18:07	0.000	CellTemperature.Nominal = 35.0
13:18:07	0.000	ColumnTemperature.Nominal = 30.0
13:18:07	0.000	Suppressor_Type = ASRS_4mm
13:18:07	0.000	Suppressor_Current = 34
13:18:07	0.000	ECD_Total.Step = 0.20
13:18:07	0.000	ECD_Total.Average = Off
13:18:07	0.000	Channel_Pressure.Step = 0.20
13:18:07	0.000	Channel_Pressure.Average = Off
13:18:07	0.000	Pressure.LowerLimit = 0
13:18:07	0.000	Pressure.UpperLimit = 3000
13:18:07	0.000	%A.Equate = "%A"
13:18:07	0.000	Flow = 1.20
13:18:07	0.000	Manually inject the sample and press OK to continue.
13:18:18	0.000	Autozero
13:18:18	0.000	ECD_1.AcqOn
13:18:18	0.000	ECD_Total.AcqOn
13:18:18	0.000	Channel_Pressure.AcqOn
13:18:18	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
13:18:48	0.500	Log Pressure: 1899.97 [psi]
13:18:48	0.500	Log Background: 20.40 [μS]
13:28:18	10.000	ECD_1.AcqOff
13:28:18	10.000	ECD_Total.AcqOff
13:28:18	10.000	Channel_Pressure.AcqOff
13:28:24		End of sample "18".

25 19			
Sample Name: Vial Number: Sample Type:	19 19 unknown	Injection Volume: Channel: Wavelength:	25.0 ECD_1 n.a.
Control Program:	ICS1100 Anion Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time: Run Time (min):	20/11/2023 13:28 10.00	Sample Weight: Sample Amount:	1.0000 1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		μS	μS*min	%		
1	2.93	Fluoride	0.106	0.027	9.59	-0.219	Ru
2	3.67	Chloride	1.116	0.252	90.41	0.791	BMB
Total:			1.222	0.279	100.00	0.572	

25 19			
Sample Name: Vial Number:	19 19	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time: Run Time (min):	################# 10.00	Sample Weight: Sample Amount:	1.0000 1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	2.93	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.67	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
Average:					99.2051	0.0761	0.1655	0.0000

25 19			
Sample Name: Vial Number:	19 19	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 13:28	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

System Suitability Test Results:						
No.	Test Name	Sample Condition	Peak Condition	Test Result		
	Number of executed single tests:	n.a.	Total test result:	n.a.		

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

25 19		Audit Trail			
Sample Name: Vial Number:	19 19	Injection Volume: Channel:	25.0 ECD_1		
Sample Type:	unknown	Wavelength:	n.a.		
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.		
Quantif. Method:	7_anion	Dilution Factor:	1.0000		
Recording Time: Run Time (min):	20/11/2023 13:28 10.00	Sample Weight: Sample Amount:	1.0000 1.0000		

Day Time	Ret.Time	Command/Message
13:28:24		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
13:28:24		Start of sample 25 "19", using program "ICS1100_Anion_Prog".
13:28:24	0.000	Pump_InjectValve.State = LoadPosition
13:28:24	0.000	Data_Collection_Rate = 5.0
13:28:24	0.000	CellTemperature.Nominal = 35.0
13:28:24	0.000	ColumnTemperature.Nominal = 30.0
13:28:24	0.000	Suppressor_Type = ASRS_4mm
13:28:24	0.000	Suppressor_Current = 34
13:28:24	0.000	ECD_Total.Step = 0.20
13:28:24	0.000	ECD_Total.Average = Off
13:28:24	0.000	Channel_Pressure.Step = 0.20
13:28:24	0.000	Channel_Pressure.Average = Off
	0.000	Pressure.LowerLimit = 0
	0.000	Pressure.UpperLimit = 3000
13:28:24	0.000	%A.Equate = "%A"
	0.000	Flow = 1.20
	0.000	Manually inject the sample and press OK to continue.
	0.000	Autozero
13:28:54	0.000	ECD_1.AcqOn
	0.000	ECD_Total.AcqOn
13:28:54	0.000	Channel_Pressure.AcqOn
13:28:54	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
13:29:24	0.500	Log Pressure: 1911.90 [psi]
13:29:24	0.500	Log Background: 20.99 [μS]
	10.000	ECD_1.AcqOff
13:38:54	10.000	ECD_Total.AcqOff
13:38:54	10.000	Channel_Pressure.AcqOff
13:39:00		End of sample "19".

26 20			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	20 20 unknown ICS1100_Anion_Prog 7_anion 20/11/2023 13:39 10.00	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 ECD_1 n.a. n.a. 1.0000 1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		μS	μS*min	%		
1	2.93	Fluoride	0.134	0.048	7.02	-0.057	BM
2	3.66	Chloride	2.593	0.397	57.56	1.528	MB
3	5.18	Nitrate	1.221	0.182	26.44	1.554	bMB
4	7.15	Sulfate	0.297	0.062	8.98	0.685	BMB
Total:			4.245	0.690	100.00	3.710	

26 20			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	20 20 unknown ICS1100_Anion_Prog 7_anion ###################################	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 ECD_1 n.a. n.a. 1.0000 1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	2.93	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.66	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
3	5.18	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
4	7.15	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.5829	0.0287	0.1481	0.0000

26 20			
Sample Name: Vial Number:	20 20	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 13:39	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

System Suitability Test Results:						
No.	Test Name	Sample Condition	Peak Condition	Test Result		
	Number of executed single tests:	n.a.	Total test result:	n.a.		

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

26 20		Audit T	rail
Sample Name: Vial Number:	20 20	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 13:39	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

Day Time	Ret.Time	Command/Message
13:39:00		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
13:39:00		Start of sample 26 "20", using program "ICS1100_Anion_Prog".
13:39:00	0.000	Pump_InjectValve.State = LoadPosition
13:39:00	0.000	Data_Collection_Rate = 5.0
13:39:00	0.000	CellTemperature.Nominal = 35.0
13:39:00	0.000	ColumnTemperature.Nominal = 30.0
13:39:00	0.000	Suppressor_Type = ASRS_4mm
13:39:00	0.000	Suppressor_Current = 34
13:39:00	0.000	ECD_Total.Step = 0.20
13:39:00	0.000	ECD_Total.Average = Off
13:39:00	0.000	Channel_Pressure.Step = 0.20
13:39:00	0.000	Channel_Pressure.Average = Off
13:39:00	0.000	Pressure.LowerLimit = 0
13:39:00	0.000	Pressure.UpperLimit = 3000
13:39:00	0.000	%A.Equate = "%A"
13:39:00	0.000	Flow = 1.20
13:39:00	0.000	Manually inject the sample and press OK to continue.
13:39:11	0.000	Autozero
13:39:11	0.000	ECD_1.AcqOn
13:39:11	0.000	ECD_Total.AcqOn
13:39:11	0.000	Channel_Pressure.AcqOn
13:39:11	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
13:39:41	0.500	Log Pressure: 1915.54 [psi]
13:39:41	0.500	Log Background: 21.01 [μS]
13:49:11	10.000	ECD_1.AcqOff
13:49:11	10.000	ECD_Total.AcqOff
13:49:11	10.000	Channel_Pressure.AcqOff
13:49:17		End of sample "20".

27 21			
Sample Name: Vial Number:	21 21	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 13:49	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height μS	Area μS*min	Rel.Area %	Amount	Туре
1	3.66	Chloride	3.254	0.390	56.15	1.490	BM
2	4.14	Nitrite	0.052	0.025	3.57	0.901	М
3	5.18	Nitrate	0.996	0.149	21.50	1.272	MB
4	7.16	Sulfate	0.605	0.130	18.78	1.163	BMB
Total:			4.907	0.694	100.00	4.827	

27 21			
Sample Name: Vial Number:	21 21	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	############	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	3.66	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
2	4.14	Nitrite	LOff	5	99.8858	-0.0802	0.1165	0.0000
3	5.18	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
4	7.16	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.5612	-0.0053	0.1436	0.0000

27 21			
Sample Name: Vial Number:	21 21	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 13:49	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

Syste	System Suitability Test Results:					
No.	Test Name	Sample Condition	Peak Condition	Test Result		
	Number of executed single tests:	n.a.	Total test result:	n.a.		

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

27 21		Audit T	rail
Sample Name: Vial Number:	21 21	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 13:49	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

Day Time	Ret.Time	Command/Message
13:49:17		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
13:49:17		Start of sample 27 "21", using program "ICS1100_Anion_Prog".
13:49:17	0.000	Pump_InjectValve.State = LoadPosition
13:49:17	0.000	Data_Collection_Rate = 5.0
13:49:17	0.000	CellTemperature.Nominal = 35.0
13:49:17	0.000	ColumnTemperature.Nominal = 30.0
13:49:17	0.000	Suppressor_Type = ASRS_4mm
13:49:17	0.000	Suppressor_Current = 34
13:49:17	0.000	ECD_Total.Step = 0.20
13:49:17	0.000	ECD_Total.Average = Off
13:49:17	0.000	Channel_Pressure.Step = 0.20
13:49:17	0.000	Channel_Pressure.Average = Off
13:49:17	0.000	Pressure.LowerLimit = 0
13:49:17	0.000	Pressure.UpperLimit = 3000
13:49:17	0.000	%A.Equate = "%A"
13:49:17	0.000	Flow = 1.20
13:49:17	0.000	Manually inject the sample and press OK to continue.
13:49:37	0.000	Autozero
13:49:37	0.000	ECD_1.AcqOn
13:49:37	0.000	ECD_Total.AcqOn
13:49:37	0.000	Channel_Pressure.AcqOn
13:49:37	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
13:50:07	0.500	Log Pressure: 1915.08 [psi]
13:50:07	0.500	Log Background: 21.02 [μS]
13:59:37	10.000	ECD_1.AcqOff
13:59:37	10.000	ECD_Total.AcqOff
13:59:37	10.000	Channel_Pressure.AcqOff
13:59:43		End of sample "21".

28 22			
Sample Name: Vial Number:	22 22	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 13:59	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height μS	Area μS*min	Rel.Area %	Amount	Туре
1	3.66	Chloride	3.046	0.356	60.70	1.321	BMB
2	5.18	Nitrate	0.941	0.141	23.98	1.201	BMB
3	7.15	Sulfate	0.421	0.090	15.31	0.881	BMB
Total:			4.408	0.587	100.00	3.403	

28 22			
Sample Name: Vial Number:	22 22	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	############	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
1	3.66	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
2	5.18	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
3	7.15	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.4530	0.0196	0.1527	0.0000

28 22			
Sample Name: Vial Number:	22 22	Injection Volume: Channel:	25.0 ECD 1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 13:59	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

System Suitability Test Results:				
No.	Test Name	Sample Condition	Peak Condition	Test Result
	Number of executed single tests:	n.a.	Total test result:	n.a.

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

28 22		Audit T	rail
Sample Name: Vial Number:	22 22	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time: Run Time (min):	20/11/2023 13:59 10.00	Sample Weight: Sample Amount:	1.0000 1.0000

Day Time	Ret.Time	Command/Message
13:59:43		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
13:59:43		Start of sample 28 "22", using program "ICS1100_Anion_Prog".
13:59:43	0.000	Pump_InjectValve.State = LoadPosition
13:59:43	0.000	Data_Collection_Rate = 5.0
13:59:43	0.000	CellTemperature.Nominal = 35.0
13:59:43	0.000	ColumnTemperature.Nominal = 30.0
13:59:43	0.000	Suppressor_Type = ASRS_4mm
13:59:43	0.000	Suppressor_Current = 34
13:59:43	0.000	ECD_Total.Step = 0.20
13:59:43	0.000	ECD_Total.Average = Off
13:59:43	0.000	Channel_Pressure.Step = 0.20
13:59:43	0.000	Channel_Pressure.Average = Off
13:59:43	0.000	Pressure.LowerLimit = 0
13:59:43	0.000	Pressure.UpperLimit = 3000
13:59:43	0.000	%A.Equate = "%A"
13:59:43	0.000	Flow = 1.20
13:59:43	0.000	Manually inject the sample and press OK to continue.
14:00:00	0.000	Autozero
14:00:00	0.000	ECD_1.AcqOn
14:00:00	0.000	ECD_Total.AcqOn
14:00:00	0.000	Channel_Pressure.AcqOn
14:00:00	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
14:00:30	0.500	Log Pressure: 1916.43 [psi]
14:00:30	0.500	Log Background: 21.02 [μS]
14:10:00	10.000	ECD_1.AcqOff
14:10:00	10.000	ECD_Total.AcqOff
14:10:00	10.000	Channel_Pressure.AcqOff
14:10:07		End of sample "22".

29 23			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time:	23 23 unknown ICS1100_Anion_Prog 7_anion 20/11/2023 14:10	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight:	25.0 ECD_1 n.a. n.a. 1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		μS	μS*min	%		
1	3.66	Chloride	1.974	0.233	41.36	0.697	BMB
2	5.17	Nitrate	1.283	0.224	39.74	1.909	BMB
3	7.14	Sulfate	0.505	0.107	18.91	0.998	BMB
Total:			3.761	0.564	100.00	3.604	

29 23			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	23 23 unknown ICS1100_Anion_Prog 7_anion ###################################	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 ECD_1 n.a. n.a. 1.0000 1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	3.66	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
2	5.17	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
3	7.14	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.4530	0.0196	0.1527	0.0000

29 23			
Sample Name: Vial Number:	23 23	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 14:10	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

System Suitability Test Results:						
No.	Test Name	Sample Condition	Peak Condition	Test Result		
	Number of executed single tests:	n.a.	Total test result:	n.a.		

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

29 23		Audit Trail		
Sample Name: Vial Number:	23 23	Injection Volume: Channel:	25.0 ECD_1	
Sample Type:	unknown	Wavelength:	n.a.	
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.	
Quantif. Method:	7_anion	Dilution Factor:	1.0000	
Recording Time:	20/11/2023 14:10	Sample Weight:	1.0000	
Run Time (min):	10.00	Sample Amount:	1.0000	

D	ay Time	Ret.Time	Command/Message
14	4:10:07		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
14	4:10:07		Start of sample 29 "23", using program "ICS1100_Anion_Prog".
14	4:10:07	0.000	Pump_InjectValve.State = LoadPosition
14	4:10:07	0.000	Data_Collection_Rate = 5.0
14	4:10:07	0.000	CellTemperature.Nominal = 35.0
14	4:10:07	0.000	ColumnTemperature.Nominal = 30.0
14	4:10:07	0.000	Suppressor_Type = ASRS_4mm
14	4:10:07	0.000	Suppressor_Current = 34
14	4:10:07	0.000	ECD_Total.Step = 0.20
14	4:10:07	0.000	ECD_Total.Average = Off
14	4:10:07	0.000	Channel_Pressure.Step = 0.20
14	4:10:07	0.000	Channel_Pressure.Average = Off
14	4:10:07	0.000	Pressure.LowerLimit = 0
		0.000	Pressure.UpperLimit = 3000
	4:10:07	0.000	%A.Equate = "%A"
	4:10:07	0.000	Flow = 1.20
14		0.000	Manually inject the sample and press OK to continue.
14	4:10:22	0.000	Autozero
	4:10:22	0.000	ECD_1.AcqOn
14	4:10:22	0.000	ECD_Total.AcqOn
14	4:10:22	0.000	Channel_Pressure.AcqOn
	4:10:22	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
14	4:10:52	0.500	Log Pressure: 1920.15 [psi]
		0.500	Log Background: 21.02 [μS]
14	4:20:22	10.000	ECD_1.AcqOff
14	4:20:22	10.000	ECD_Total.AcqOff
14	4:20:22	10.000	Channel_Pressure.AcqOff
14	4:20:28		End of sample "23".

30 24			
Sample Name:	24	Injection Volume:	25.0
Vial Number:	24	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100 Anion Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 14:20	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		μS	μS*min	%		
1	2.94	Fluoride	0.109	0.044	10.61	-0.088	BM
2	3.66	Chloride	2.053	0.329	78.95	1.184	MB
3	5.17	Nitrate	0.136	0.021	4.94	0.184	bMB
4	7.14	Sulfate	0.130	0.023	5.50	0.413	BMB
Total:			2.427	0.417	100.00	1.692	

30 24			
Sample Name: Vial Number:	24 24	Injection Volume: Channel:	25.0 ECD 1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	############	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	2.94	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.66	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
3	5.17	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
4	7.14	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.5829	0.0287	0.1481	0.0000

30 24			
Sample Name: Vial Number:	24 24	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 14:20	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

System Suitability Test Results:						
No.	Test Name	Sample Condition	Peak Condition	Test Result		
	Number of executed single tests:	n.a.	Total test result:	n.a.		

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

30 24		Audit Trail			
Sample Name: Vial Number:	24 24	Injection Volume: Channel:	25.0 ECD_1		
Sample Type:	unknown	Wavelength:	n.a.		
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.		
Quantif. Method:	7_anion	Dilution Factor:	1.0000		
Recording Time: Run Time (min):	20/11/2023 14:20 10.00	Sample Weight: Sample Amount:	1.0000 1.0000		

Day Time	Ret.Time	Command/Message
14:20:28		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
14:20:28		Start of sample 30 "24", using program "ICS1100_Anion_Prog".
14:20:28	0.000	Pump_InjectValve.State = LoadPosition
14:20:28	0.000	Data_Collection_Rate = 5.0
14:20:28	0.000	CellTemperature.Nominal = 35.0
14:20:28	0.000	ColumnTemperature.Nominal = 30.0
14:20:28	0.000	Suppressor_Type = ASRS_4mm
14:20:28	0.000	Suppressor_Current = 34
14:20:28	0.000	ECD_Total.Step = 0.20
14:20:28	0.000	ECD_Total.Average = Off
14:20:28	0.000	Channel_Pressure.Step = 0.20
14:20:28	0.000	Channel_Pressure.Average = Off
14:20:28	0.000	Pressure.LowerLimit = 0
	0.000	Pressure.UpperLimit = 3000
14:20:28	0.000	%A.Equate = "%A"
14:20:28	0.000	Flow = 1.20
14:20:28	0.000	Manually inject the sample and press OK to continue.
14:20:47	0.000	Autozero
14:20:47	0.000	ECD_1.AcqOn
	0.000	ECD_Total.AcqOn
	0.000	Channel_Pressure.AcqOn
14:20:47	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
14:21:17	0.500	Log Pressure: 1926.83 [psi]
	0.500	Log Background: 21.02 [μS]
	10.000	ECD_1.AcqOff
14:30:47	10.000	ECD_Total.AcqOff
14:30:47	10.000	Channel_Pressure.AcqOff
14:30:54		End of sample "24".

31 25			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	25 25 unknown ICS1100_Anion_Prog 7_anion 20/11/2023 14:30 10.00	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 ECD_1 n.a. n.a. 1.0000 1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		μS	μS*min	%		
1	2.97	Fluoride	0.121	0.043	2.30	-0.096	BM
2	3.66	Chloride	13.693	1.630	86.80	7.791	M
3	4.10	Nitrite	0.140	0.064	3.41	1.237	MB
4	5.17	Nitrate	0.233	0.035	1.87	0.307	bMB
5	7.14	Sulfate	0.496	0.106	5.62	0.990	BMB
Total:			14.683	1.878	100.00	10.229	

31 25			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method:	25 25 unknown ICS1100_Anion_Prog 7 anion	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor:	25.0 ECD_1 n.a. n.a.
Recording Time: Run Time (min):	############### 10.00	Sample Weight: Sample Amount:	1.0000 1.0000

No.	Ret.Time min	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
1	2.97	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.66	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
3	4.10	Nitrite	LOff	5	99.8858	-0.0802	0.1165	0.0000
4	5.17	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
5	7.14	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.6435	0.0070	0.1417	0.0000

31 25			
Sample Name: Vial Number:	25 25	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 14:30	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

System Suitability Test Results:							
No.	Test Name	Sample Condition	Peak Condition	Test Result			
	Number of executed single tests:	n.a.	Total test result:	n.a.			

Sample	Sample Name	Ret.Time	Area	Height	Amount	Туре	Plates
No.		min	μS*min	μS			(EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
·-	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

31 25	Audit Trail		
Sample Name: Vial Number:	25 25	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 14:30	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

Day Time	Ret.Time	Command/Message
14:30:54		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
14:30:54		Start of sample 31 "25", using program "ICS1100_Anion_Prog".
14:30:54	0.000	Pump_InjectValve.State = LoadPosition
14:30:54	0.000	Data_Collection_Rate = 5.0
14:30:54	0.000	CellTemperature.Nominal = 35.0
14:30:54	0.000	ColumnTemperature.Nominal = 30.0
14:30:54	0.000	Suppressor_Type = ASRS_4mm
14:30:54	0.000	Suppressor_Current = 34
14:30:54	0.000	ECD_Total.Step = 0.20
14:30:54	0.000	ECD_Total.Average = Off
14:30:54	0.000	Channel_Pressure.Step = 0.20
14:30:54	0.000	Channel_Pressure.Average = Off
14:30:54	0.000	Pressure.LowerLimit = 0
14:30:54	0.000	Pressure.UpperLimit = 3000
14:30:54	0.000	%A.Equate = "%A"
14:30:54	0.000	Flow = 1.20
14:30:54	0.000	Manually inject the sample and press OK to continue.
14:31:09	0.000	Autozero
14:31:09	0.000	ECD_1.AcqOn
14:31:09	0.000	ECD_Total.AcqOn
14:31:09	0.000	Channel_Pressure.AcqOn
14:31:09	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
14:31:39	0.500	Log Pressure: 1923.62 [psi]
14:31:39	0.500	Log Background: 21.01 [μS]
14:41:09	10.000	ECD_1.AcqOff
14:41:09	10.000	ECD_Total.AcqOff
14:41:09	10.000	Channel_Pressure.AcqOff
14:41:15		End of sample "25".

32 26			
Sample Name: Vial Number: Sample Type:	26 26 unknown	Injection Volume: Channel: Wavelength:	25.0 ECD_1 n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time: Run Time (min):	20/11/2023 14:41 10.00	Sample Weight: Sample Amount:	1.0000 1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		μS	μS*min	%		
1	2.95	Fluoride	0.137	0.051	2.90	-0.038	BM
2	3.66	Chloride	10.747	1.318	74.84	6.208	М
3	4.09	Nitrite	0.173	0.117	6.64	1.693	M
4	5.17	Nitrate	0.151	0.085	4.82	0.729	MB
5	7.14	Sulfate	0.890	0.190	10.80	1.582	BMB
Total:			12.097	1.761	100.00	10.174	

32 26			
Sample Name: Vial Number:	26 26	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	############	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
1	2.95	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.66	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
3	4.09	Nitrite	LOff	5	99.8858	-0.0802	0.1165	0.0000
4	5.17	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
5	7.14	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.6435	0.0070	0.1417	0.0000

32 26			
Sample Name: Vial Number:	26 26	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 14:41	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

System Suitability Test Results:						
No.	Test Name	Sample Condition	Peak Condition	Test Result		
	Number of executed single tests:	n.a.	Total test result:	n.a.		

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

32 26		Audit Trail		
Sample Name: Vial Number:	26 26	Injection Volume: Channel:	25.0 ECD_1	
Sample Type:	unknown	Wavelength:	n.a.	
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.	
Quantif. Method:	7_anion	Dilution Factor:	1.0000	
Recording Time:	20/11/2023 14:41	Sample Weight:	1.0000	
Run Time (min):	10.00	Sample Amount:	1.0000	

Day Time	Ret.Time	Command/Message
14:41:15		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
14:41:15		Start of sample 32 "26", using program "ICS1100_Anion_Prog".
14:41:15	0.000	Pump_InjectValve.State = LoadPosition
14:41:15	0.000	Data_Collection_Rate = 5.0
14:41:15	0.000	CellTemperature.Nominal = 35.0
14:41:15	0.000	ColumnTemperature.Nominal = 30.0
14:41:15	0.000	Suppressor_Type = ASRS_4mm
14:41:15	0.000	Suppressor_Current = 34
14:41:15	0.000	ECD_Total.Step = 0.20
14:41:15	0.000	ECD_Total.Average = Off
14:41:15	0.000	Channel_Pressure.Step = 0.20
14:41:15	0.000	Channel_Pressure.Average = Off
14:41:15	0.000	Pressure.LowerLimit = 0
14:41:15	0.000	Pressure.UpperLimit = 3000
14:41:15	0.000	%A.Equate = "%A"
14:41:15	0.000	Flow = 1.20
14:41:15	0.000	Manually inject the sample and press OK to continue.
14:41:32	0.000	Autozero
14:41:32	0.000	ECD_1.AcqOn
14:41:32	0.000	ECD_Total.AcqOn
14:41:32	0.000	Channel_Pressure.AcqOn
14:41:32	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
14:42:02	0.500	Log Pressure: 1929.75 [psi]
14:42:02	0.500	Log Background: 21.02 [μS]
14:51:32	10.000	ECD_1.AcqOff
14:51:32	10.000	ECD_Total.AcqOff
14:51:32	10.000	Channel_Pressure.AcqOff
14:51:38		End of sample "26".

33 27			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	27 27 unknown ICS1100_Anion_Prog 7_anion 20/11/2023 14:51 10.00	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 ECD_1 n.a. n.a. 1.0000 1.0000

No.	Ret.Time min	Peak Name	Height µS	Area μS*min	Rel.Area %	Amount	Туре
1	2.89	n.a.	0.784	0.273	5.77	n.a.	BM
2	3.66	Chloride	10.601	1.301	27.51	6.121	M
3	4.17	Nitrite	3.225	0.509	10.76	5.059	M
4	4.74	Bromide	2.885	0.439	9.27	5.647	M
5	5.17	Nitrate	5.259	0.896	18.95	7.602	М
6	6.41	Phosphate	2.326	0.530	11.21	13.030	M
7	7.15	Sulfate	3.135	0.781	16.52	5.714	MB
Total:			28.215	4.730	100.00	43.173	·

33 27			
Sample Name: Vial Number:	27 27	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	############	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	2.89	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	3.66	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
3	4.17	Nitrite	LOff	5	99.8858	-0.0802	0.1165	0.0000
4	4.74	Bromide	LOff	5	99.9607	-0.0183	0.0809	0.0000
5	5.17	Nitrate	LOff	4	99.9301	-0.0011	0.1181	0.0000
6	6.41	Phosphate	LOff	5	99.8607	-0.0607	0.0454	0.0000
7	7.15	Sulfate	LOff	5	99.9912	-0.0361	0.1431	0.0000
Average:					99.6777	-0.0167	0.1168	0.0000

33 27						
Sample Name: Vial Number:	27 27	Injection Volume: Channel:	25.0 ECD_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.			
Quantif. Method:	7_anion	Dilution Factor:	1.0000			
Recording Time:	20/11/2023 14:51	Sample Weight:	1.0000			
Run Time (min):	10.00	Sample Amount:	1.0000			

Syste	System Suitability Test Results:							
No.	Test Name	Sample Condition	Peak Condition	Test Result				
	Number of executed single tests:	n.a.	Total test result:	n.a.				

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

33 27		Audit Trail		
Sample Name: Vial Number:	27 27	Injection Volume: Channel:	25.0 ECD_1	
Sample Type:	unknown	Wavelength:	n.a.	
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.	
Quantif. Method:	7_anion	Dilution Factor:	1.0000	
Recording Time:	20/11/2023 14:51	Sample Weight:	1.0000	
Run Time (min):	10.00	Sample Amount:	1.0000	

Day Time	Ret.Time	Command/Message
14:51:38		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
14:51:38		Start of sample 33 "27", using program "ICS1100_Anion_Prog".
14:51:38	0.000	Pump_InjectValve.State = LoadPosition
14:51:38	0.000	Data_Collection_Rate = 5.0
14:51:38	0.000	CellTemperature.Nominal = 35.0
14:51:38	0.000	ColumnTemperature.Nominal = 30.0
14:51:38	0.000	Suppressor_Type = ASRS_4mm
14:51:38	0.000	Suppressor_Current = 34
14:51:38	0.000	ECD_Total.Step = 0.20
14:51:38	0.000	ECD_Total.Average = Off
14:51:38	0.000	Channel_Pressure.Step = 0.20
14:51:38	0.000	Channel_Pressure.Average = Off
14:51:38	0.000	Pressure.LowerLimit = 0
14:51:38	0.000	Pressure.UpperLimit = 3000
14:51:38	0.000	%A.Equate = "%A"
14:51:38	0.000	Flow = 1.20
14:51:38	0.000	Manually inject the sample and press OK to continue.
14:51:51	0.000	Autozero
14:51:51	0.000	ECD_1.AcqOn
14:51:51	0.000	ECD_Total.AcqOn
14:51:51	0.000	Channel_Pressure.AcqOn
14:51:51	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
14:52:21	0.500	Log Pressure: 1924.85 [psi]
14:52:21	0.500	Log Background: 21.01 [μS]
15:01:51	10.000	ECD_1.AcqOff
15:01:51	10.000	ECD_Total.AcqOff
15:01:51	10.000	Channel_Pressure.AcqOff
15:01:57		End of sample "27".

34 28			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	28 28 unknown ICS1100_Anion_Prog 7_anion 20/11/2023 15:01 10.00	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 ECD_1 n.a. n.a. 1.0000 1.0000

No.	Ret.Time min	Peak Name	Height μS	Area μS*min	Rel.Area %	Amount	Туре
1	2.92	Fluoride	0.114	0.028	11.13	-0.211	Ru
2	3.66	Chloride	1.176	0.221	88.87	0.636	BMB
Total:			1.289	0.249	100.00	0.425	

34 28			
Sample Name: Vial Number:	28 28	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	############	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
1	2.92	Fluoride	LOff	4	99.9725	0.0561	0.1342	0.0000
2	3.66	Chloride	LOff	5	98.4377	0.0961	0.1968	0.0000
Average:					99.2051	0.0761	0.1655	0.0000

34 28			
Sample Name: Vial Number:	28 28	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 15:01	Sample Weight:	1.0000
Run Time (min):	10.00	Sample Amount:	1.0000

System Suitability Test Results:								
No.	Test Name	Sample Condition	Peak Condition	Test Result				
	Number of executed single tests:	n.a.	Total test result:	n.a.				

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

Audit Trail			
28 28	Injection Volume: Channel:	25.0 ECD_1	
unknown	Wavelength:	n.a.	
ICS1100_Anion_Prog	Bandwidth:	n.a.	
7_anion	Dilution Factor:	1.0000	
20/11/2023 15:01 10.00	Sample Weight: Sample Amount:	1.0000 1.0000	
	28 unknown ICS1100_Anion_Prog 7_anion 20/11/2023 15:01	28 28 Channel: unknown Wavelength: ICS1100_Anion_Prog Bandwidth: 7_anion Dilution Factor: 20/11/2023 15:01 Sample Weight:	

	Day Time	Ret.Time	Command/Message
	15:01:57		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
	15:01:57		Start of sample 34 "28", using program "ICS1100_Anion_Prog".
	15:01:57	0.000	Pump_InjectValve.State = LoadPosition
	15:01:57	0.000	Data_Collection_Rate = 5.0
	15:01:57	0.000	CellTemperature.Nominal = 35.0
	15:01:57	0.000	ColumnTemperature.Nominal = 30.0
	15:01:57	0.000	Suppressor_Type = ASRS_4mm
	15:01:57	0.000	Suppressor_Current = 34
	15:01:57	0.000	ECD_Total.Step = 0.20
	15:01:57	0.000	ECD_Total.Average = Off
	15:01:57	0.000	Channel_Pressure.Step = 0.20
	15:01:57	0.000	Channel_Pressure.Average = Off
	15:01:57	0.000	Pressure.LowerLimit = 0
	15:01:57	0.000	Pressure.UpperLimit = 3000
	15:01:57	0.000	%A.Equate = "%A"
	15:01:57	0.000	Flow = 1.20
	15:01:57	0.000	Manually inject the sample and press OK to continue.
	15:02:06	0.000	Autozero
	15:02:06	0.000	ECD_1.AcqOn
	15:02:06	0.000	ECD_Total.AcqOn
	15:02:06	0.000	Channel_Pressure.AcqOn
	15:02:06	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
	15:02:36	0.500	Log Pressure: 1925.10 [psi]
	15:02:36	0.500	Log Background: 21.02 [μS]
	15:12:06	10.000	ECD_1.AcqOff
	15:12:06	10.000	ECD_Total.AcqOff
	15:12:06	10.000	Channel_Pressure.AcqOff
_	15:12:12		End of sample "28".

35 29			
Sample Name:	29	Injection Volume:	25.0
Vial Number:	29	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 15:12	Sample Weight:	1.0000
Run Time (min):	0.02	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height µS	Area μS*min	Rel.Area %	Amount	Туре
Total:			0.000	0.000	0.00	0.000	

35 29			
Sample Name: Vial Number:	29 29	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	############	Sample Weight:	1.0000
Run Time (min):	0.02	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Cal.Type	Points	Coeff.Det.	Offset	Slope	Curve
	min				%			
Average:					n.a.	n.a.	n.a.	n.a.

35 29			
Sample Name: Vial Number:	29 29	Injection Volume: Channel:	25.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	20/11/2023 15:12	Sample Weight:	1.0000
Run Time (min):	0.02	Sample Amount:	1.0000

System Suitability Test Results:					
No.	Test Name	Sample Condition	Peak Condition	Test Result	
	Number of executed single tests:	n.a.	Total test result:	n.a.	

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

35 29		Audit Trail		
Sample Name: Vial Number:	29 29	Injection Volume: Channel:	25.0 ECD_1	
Sample Type:	unknown	Wavelength:	n.a.	
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.	
Quantif. Method:	7_anion	Dilution Factor:	1.0000	
Recording Time:	20/11/2023 15:12	Sample Weight:	1.0000	
Run Time (min):	0.02	Sample Amount:	1.0000	

Day Tim	e Ret.Time	Command/Message
15:12:12		Audit trail of sample SMP::\SCE-CHEM-C00759_local\ICS1100\2_Data\AK_201123.S
15:12:12		Start of sample 35 "29", using program "ICS1100_Anion_Prog".
15:12:12	0.000	Pump_InjectValve.State = LoadPosition
15:12:12	0.000	Data_Collection_Rate = 5.0
15:12:12	0.000	CellTemperature.Nominal = 35.0
15:12:12	0.000	ColumnTemperature.Nominal = 30.0
15:12:12	0.000	Suppressor_Type = ASRS_4mm
15:12:12	0.000	Suppressor_Current = 34
15:12:12	0.000	ECD_Total.Step = 0.20
15:12:12	0.000	ECD_Total.Average = Off
15:12:12	0.000	Channel_Pressure.Step = 0.20
15:12:12	0.000	Channel_Pressure.Average = Off
15:12:12	0.000	Pressure.LowerLimit = 0
15:12:12	0.000	Pressure.UpperLimit = 3000
15:12:12	0.000	%A.Equate = "%A"
15:12:12	0.000	Flow = 1.20
15:12:12	0.000	Manually inject the sample and press OK to continue.
15:12:19	0.000	Autozero
15:12:19	0.000	ECD_1.AcqOn
15:12:19	0.000	ECD_Total.AcqOn
15:12:19	0.000	Channel_Pressure.AcqOn
15:12:19	0.000	Pump_InjectValve.InjectPosition Duration = 30.00
15:12:25	0.107	Running batch intercepted by user Dionex.
15:12:25	0.107	StopFlow
15:12:30	0.107	Running batch intercepted by user Dionex.
15:12:30	0.107	Pump_ECD.Off
15:12:30	0.107	Suppressor_Mode = Off
15:12:38	0.107	Running batch intercepted by user Dionex.
15:12:38	0.107	Pump_ECD.Off
15:12:38	0.107	Suppressor_Mode = Off
15:12:53	0.107	User (Dionex) from SCE-CHEM-C00759 has released control over timebase ICS1100
15:13:06	0.107	User (Dionex) from SCE-CHEM-C00759 has acquired control over timebase ICS1100
15:13:09	0.107	{Dionex} Stopping the batch (immediately)
15:13:09	0.107	User (Dionex) from SCE-CHEM-C00759 has released control over timebase ICS1100
15:13:09	0.107	End of sample "29".

36 30			
Sample Name:	30	Injection Volume:	25.0
Vial Number:	30	Channel:	n.a.
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100 Anion Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	n.a.	Sample Weight:	1.0000
Run Time (min):	n.a.	Sample Amount:	1.0000

AK_201123 #36	30	ECD_1
Can't open raw data file	"C:\Chromel\data\ICS1100\2_Data\AK_201123.S The system cannot find the file specified.	SEQ\ECD_1.CHL\36.acd".

n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	n.a.		n.a.	n.a.	n.a.	n.a.	
Total:			0.000	0.000	0.00	0.000	

36 30			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	30 30 unknown ICS1100_Anion_Prog 7_anion n.a. n.a.	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 n.a. n.a. n.a. 1.0000 1.0000

Can't open raw data file "C:\Chromel\data\ICS1100\2_Data\AK_201123.SEQ\ECD_1.CHL\36.acd".

The system cannot find the file specified.

n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Average:					n.a.	n.a.	n.a.	n.a.

36 30			
Sample Name: Vial Number:	30 30	Injection Volume: Channel:	25.0 n.a.
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	n.a.	Sample Weight:	1.0000
Run Time (min):	n.a.	Sample Amount:	1.0000

AK_201123 #36	30	ECD_1				
Can't open raw data file "C:\Chromel\data\ICS1100\2_Data\AK_201123.SEQ\ECD_1.CHL\36.acd".						
The system cannot find the file specified.						

System Suitability Test Results:					
No.	Test Name	Sample Condition	Peak Condition	Test Result	
	Number of executed single tests:	n.a.	Total test result:	n.a.	

Sample	Sample Name	Ret.Time	Area	Height	Amount	Туре	Plates
No.		min	μS*min	μS			(EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
·-	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

36 30		Audit Trail			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method:	30 30 unknown ICS1100_Anion_Prog 7_anion	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor:	25.0 n.a. n.a. n.a.		
Recording Time: Run Time (min):	n.a. n.a.	Sample Weight: Sample Amount:	1.0000 1.0000		

AK_201123 #36	30	ECD_1
Can't open raw data file "C	30 :\Chromel\data\ICS1100\2_Data\AK_201123.SEQ\ECD_1.CHL\3 The system cannot find the file specified.	6.acd".
	The system cannot find the file specified.	

37 31			
Sample Name: Vial Number:	31 31	Injection Volume: Channel:	25.0 n.a.
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	n.a.	Sample Weight:	1.0000
Run Time (min):	n.a.	Sample Amount:	1.0000

AK_201123 #37	31	ECD_1
Can't open raw data file "C:\Chror Th	mel\data\ICS1100\2_Data\AK_20112 ee system cannot find the file specified	3.SEQ\ECD_1.CHL\26500.acd". d.

n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	n.a.		n.a.	n.a.	n.a.	n.a.	
Total:			0.000	0.000	0.00	0.000	

37 31			
Sample Name: Vial Number:	31 31	Injection Volume: Channel:	25.0 n.a.
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	n.a.	Sample Weight:	1.0000
Run Time (min):	n.a.	Sample Amount:	1.0000

Can't open raw data file "C:\Chromel\data\ICS1100\2_Data\AK_201123.SEQ\ECD_1.CHL\26500.acd".

The system cannot find the file specified.

n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Average:					n.a.	n.a.	n.a.	n.a.

37 31			
Sample Name: Vial Number:	31 31	Injection Volume: Channel:	25.0 n.a.
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	n.a.	Sample Weight:	1.0000
Run Time (min):	n.a.	Sample Amount:	1.0000

AK_20112	3 #37	31		ECD_1
Can	ı't open raw data file	"C:\Chromel\data\ICS1100\2_ The system cannot find	_Data\AK_201123.SEQ\ECD_1. d the file specified.	CHL\26500.acd".

,	System Suitability Test Results:						
	No.	Test Name	Sample Condition	Peak Condition	Test Result		
		Number of executed single tests:	n.a.	Total test result:	n.a.		

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

37 31 Audit Trail				
Sample Name:	31	Injection Volume:	25.0	
Vial Number:	31	Channel:	n.a.	
Sample Type:	unknown	Wavelength:	n.a.	
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.	
Quantif. Method:	7_anion	Dilution Factor:	1.0000	
Recording Time:	n.a.	Sample Weight:	1.0000	
Run Time (min):	n.a.	Sample Amount:	1.0000	

AK	<u>(</u> 201123 #37	ECD_1
	Can't open raw data file "C:\Chromel\data\ICS1100\2 Data\AK 201123.SEQ\ECD 1.CHL\26500.	acd".
	(_201123 #37 31	-
	the system cannot and the specimen.	

38 32			
Sample Name: Vial Number:	32 32	Injection Volume: Channel:	25.0 n.a.
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	n.a.	Sample Weight:	1.0000
Run Time (min):	n.a.	Sample Amount:	1.0000

AK_201123 #38	32	ECD 1
Can't open raw data file	e "C:\Chromel\data\ICS1100\2_Data\AK_201123 The system cannot find the file specified	3.SEQ\ECD_1.CHL\26962.acd".

n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	n.a.		n.a.	n.a.	n.a.	n.a.	
Total:			0.000	0.000	0.00	0.000	

38 32			
Sample Name: Vial Number:	32 32	Injection Volume: Channel:	25.0 n.a.
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	n.a.	Sample Weight:	1.0000
Run Time (min):	n.a.	Sample Amount:	1.0000

Can't open raw data file "C:\Chromel\data\ICS1100\2_Data\AK_201123.SEQ\ECD_1.CHL\26962.acd".

The system cannot find the file specified.

n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Average:					n.a.	n.a.	n.a.	n.a.

38 32			
Sample Name: Vial Number:	32 32	Injection Volume: Channel:	25.0 n.a.
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	n.a.	Sample Weight:	1.0000
Run Time (min):	n.a.	Sample Amount:	1.0000

AK_20	01123 #38	32	ECD_1
	Can't open	en raw data file "C:\Chromel\data\ICS1100\2_Data\AK_201123.SEQ\ECD_1.C	HL\26962.acd".
		The system cannot find the file specified.	

System Suitability Test Results:						
No.	Test Name	Sample Condition	Peak Condition	Test Result		
	Number of executed single tests:	n.a.	Total test result:	n.a.		

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

38 32	3 32 Audit Trail				
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	32 32 unknown ICS1100_Anion_Prog 7_anion n.a.	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 n.a. n.a. n.a. 1.0000 1.0000		

ΑK	_201123 #38 32	ECD_1
	Can't open raw data file "C:\Chromel\data\ICS1100\2_Data\AK_201123.SEQ\ECD_1.CHL\26962.a The system cannot find the file specified.	acd".
	The system cannot find the file specified	
	The system cannot and the me specified.	

39 33			
Sample Name: Vial Number:	33 33	Injection Volume: Channel:	25.0 n.a.
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	n.a.	Sample Weight:	1.0000
Run Time (min):	n.a.	Sample Amount:	1.0000

<u>_</u> 201123 #39	33	ECD
Can't open raw data file "C:\C	hromel\data\ICS1100\2_Data\AK_201123.SEQ The system cannot find the file specified.	\ECD_1.CHL\29358.acd".

n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	n.a.		n.a.	n.a.	n.a.	n.a.	
Total:			0.000	0.000	0.00	0.000	

39 33			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	33 33 unknown ICS1100_Anion_Prog 7_anion n.a. n.a.	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 n.a. n.a. n.a. 1.0000 1.0000

Can't open raw data file "C:\Chromel\data\ICS1100\2_Data\AK_201123.SEQ\ECD_1.CHL\29358.acd".

The system cannot find the file specified.

n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Average:					n.a.	n.a.	n.a.	n.a.

39 33			
Sample Name: Vial Number:	33 33	Injection Volume: Channel:	25.0 n.a.
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	n.a.	Sample Weight:	1.0000
Run Time (min):	n.a.	Sample Amount:	1.0000

AK_2	201123 #39			33			ECD_1
	Can't open ra	aw data file "C	Chromel\data\IC:	S1100\2_Data\ annot find the fi	AK_201123.SEQ\E	ECD_1.CHL\29358.a	cd".
			The system ca	uniot iina trie ii	ne specified.		

System Suitability Test Results:							
No.	Test Name	Sample Condition	Peak Condition	Test Result			
	Number of executed single tests:	n.a.	Total test result:	n.a.			

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

39 33	39 33 Audit Trail				
Sample Name: Vial Number: Sample Type:	33 33 unknown	Injection Volume: Channel: Wavelength:	25.0 n.a. n.a.		
Control Program: Quantif. Method: Recording Time: Run Time (min):	ICS1100_Anion_Prog 7_anion n.a. n.a.	Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	n.a. 1.0000 1.0000 1.0000		

AK_	201123 #39 33 EC	D_1
(201123 #39 33 EC Can't open raw data file "C:\Chromel\data\ICS1100\2_Data\AK_201123.SEQ\ECD_1.CHL\29358.acd" The system cannot find the file specified.	
	The system cannot find the file specified.	

40 34			
Sample Name: Vial Number:	34 34	Injection Volume: Channel:	25.0 n.a.
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	n.a.	Sample Weight:	1.0000
Run Time (min):	n.a.	Sample Amount:	1.0000

AK_201123 #40	34	ECD 1
Can't open raw data fil	le "C:\Chromel\data\ICS1100\2_Data\AK_201123.SEC The system cannot find the file specified.	\\ECD_1.CHL\11478.acd".
ı [

n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	n.a.		n.a.	n.a.	n.a.	n.a.	
Total:			0.000	0.000	0.00	0.000	

40 34			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	34 34 unknown ICS1100_Anion_Prog 7_anion n.a. n.a.	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	25.0 n.a. n.a. n.a. 1.0000 1.0000

Can't open raw data file "C:\Chromel\data\ICS1100\2_Data\AK_201123.SEQ\ECD_1.CHL\11478.acd".

The system cannot find the file specified.

n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Average:					n.a.	n.a.	n.a.	n.a.

40 34			
Sample Name: Vial Number:	34 34	Injection Volume: Channel:	25.0 n.a.
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	n.a.	Sample Weight:	1.0000
Run Time (min):	n.a.	Sample Amount:	1.0000

AK_201	123 #40			34			ECD_1
C	an't open r	aw data file "C:\Cl	nromel\data\ICS1 The system cann	100\2_Data\AK	_201123.SEQ\ECE	D_1.CHL\11478.ac	d".
			The system cam	of find the file s	specified.		

System Suitability Test Results:							
No.	Test Name	Sample Condition	Peak Condition	Test Result			
	Number of executed single tests:	n.a.	Total test result:	n.a.			

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

40 34	Audit Trail				
Sample Name:	34	Injection Volume:	25.0		
Vial Number:	34	Channel:	n.a.		
Sample Type:	unknown	Wavelength:	n.a.		
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.		
Quantif. Method:	7_anion	Dilution Factor:	1.0000		
Recording Time:	n.a.	Sample Weight:	1.0000		
Run Time (min):	n.a.	Sample Amount:	1.0000		

AK_201	123 #40	34	ECD_1
Can	't open raw data file "C:\C	34 Chromel\data\ICS1100\2_Data\AK_201123.SEQ\ECD_1.CHL\114 The system cannot find the file specified.	78.acd".
		The system cannot find the file specified.	

41 35			
Sample Name: Vial Number: Sample Type:	35 35 unknown	Injection Volume: Channel: Wavelength:	25.0 n.a. n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	n.a.	Sample Weight:	1.0000
Run Time (min):	n.a.	Sample Amount:	1.0000

AK_201123 #41	35	ECD_1
Can't open raw data file	"C:\Chromel\data\ICS1100\2_Data\AK_201123	.SEQ\ECD_1.CHL\15724.acd".
	The system cannot find the file specified.	

n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	n.a.		n.a.	n.a.	n.a.	n.a.	
Total:			0.000	0.000	0.00	0.000	

41 35			
Sample Name: Vial Number:	35 35	Injection Volume: Channel:	25.0 n.a.
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	n.a.	Sample Weight:	1.0000
Run Time (min):	n.a.	Sample Amount:	1.0000

Can't open raw data file "C:\Chromel\data\ICS1100\2_Data\AK_201123.SEQ\ECD_1.CHL\15724.acd".

The system cannot find the file specified.

n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Average:					n.a.	n.a.	n.a.	n.a.

41 35			
Sample Name: Vial Number:	35 35	Injection Volume: Channel:	25.0 n.a.
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	n.a.	Sample Weight:	1.0000
Run Time (min):	n.a.	Sample Amount:	1.0000

AK_201123 #41	35	ECD_1
Can't open raw data file	"C:\Chromel\data\ICS1100\2_Data\AK_201123. The system cannot find the file specified.	.SEQ\ECD_1.CHL\15724.acd".

System Suitability Test Results:						
No.	Test Name	Sample Condition	Peak Condition	Test Result		
	Number of executed single tests:	n.a.	Total test result:	n.a.		

Sample	Sample Name	Ret.Time	Area	Height	Amount	Туре	Plates
No.		min	μS*min	μS			(EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
- '-	Average:	n.a.	n.a.	n.a.	n.a.	α.	n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

41 35 Audit Trail				
Sample Name:	35	Injection Volume:	25.0	
Vial Number:	35	Channel:	n.a.	
Sample Type:	unknown	Wavelength:	n.a.	
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.	
Quantif. Method:	7_anion	Dilution Factor:	1.0000	
Recording Time:	n.a.	Sample Weight:	1.0000	
Run Time (min):	n.a.	Sample Amount:	1.0000	

ΑK	201123 #41 35	ECD_1
	_201123 #41 35 Can't open raw data file "C:\Chromel\data\ICS1100\2_Data\AK_201123.SEQ\ECD_1.CHL\15724. The system cannot find the file specified.	acd".
	The system cannot find the file specified	
	the system cannot and the me specified.	

42 36			
Sample Name: Vial Number:	36 36	Injection Volume: Channel:	25.0 n.a.
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	n.a.	Sample Weight:	1.0000
Run Time (min):	n.a.	Sample Amount:	1.0000

K_201123 #42	36	ECD_
Can't open raw data file "C:	Chromel\data\ICS1100\2_Data\AK_201123.S The system cannot find the file specified.	EQ\ECD_1.CHL\19169.acd".

n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	n.a.		n.a.	n.a.	n.a.	n.a.	
Total:			0.000	0.000	0.00	0.000	

42 36			
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time:	36 36 unknown ICS1100_Anion_Prog 7_anion n.a.	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight:	25.0 n.a. n.a. n.a. 1.0000
Run Time (min):	n.a.	Sample Amount:	1.0000

Can't open raw data file "C:\Chromel\data\ICS1100\2_Data\AK_201123.SEQ\ECD_1.CHL\19169.acd".

The system cannot find the file specified.

n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Average:					n.a.	n.a.	n.a.	n.a.

42 36			
Sample Name: Vial Number:	36 36	Injection Volume: Channel:	25.0 n.a.
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	n.a.	Sample Weight:	1.0000
Run Time (min):	n.a.	Sample Amount:	1.0000

AK_2011	23 #42	36		ECD_1
Ca	an't open raw data file	"C:\Chromel\data\ICS1100\2_ The system cannot find	_Data\AK_201123.SEQ\ECD_1.C d the file specified.	HL\19169.acd".

Sy	System Suitability Test Results:						
1	No.	Test Name	Sample Condition	Peak Condition	Test Result		
		Number of executed single tests:	n.a.	Total test result:	n.a.		

Sample No.	Sample Name	Ret.Time min	Area μS*min	Height μS	Amount	Туре	Plates (EP)
		ECD_1	ECD_1	ECD_1	ECD_1	ECD_1	ECD_1
1	Calibration 1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	Calibration 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	Calibration 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	Calibration 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	Calibration 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6	Calibration 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
7	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
8	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
10	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
11	5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
12	6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
13	7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
14	8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
15	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
16	10	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
17	11	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
18	12	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
19	13	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
20	14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
21	15	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
22	16	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
23	17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
24	18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
25	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
26	20	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
27	21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
28	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
29	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
30	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
31	25	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
32	26	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
33	27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
34	28	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
35	29	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
36	30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
37	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
38	32	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
39	33	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
40	34	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
41	35	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
42	36	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Average:	n.a.	n.a.	n.a.	n.a.		n.a.
	Rel.Std.Dev:	n.a.	n.a.	n.a.	n.a.		n.a.

Sequence Name:	Application Templates
Sample Number:	1
Sample Name:	Vial 1

42 36		Audit T	rail
Sample Name:	36	Injection Volume:	25.0
Vial Number:	36	Channel:	n.a.
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	ICS1100_Anion_Prog	Bandwidth:	n.a.
Quantif. Method:	7_anion	Dilution Factor:	1.0000
Recording Time:	n.a.	Sample Weight:	1.0000
Run Time (min):	n.a.	Sample Amount:	1.0000

Αŀ	\(\sum_{201123 #42} \) \(\text{San't open raw data file "C:\Chromel\data\ICS1100\2_Data\AK_201123.SEQ\ECD_1.CHL\19169.ac} \) \(\text{The system cannot find the file specified.} \) \(\text{San't open raw data file "C:\Chromel\data\ICS1100\2_Data\AK_201123.SEQ\ECD_1.CHL\19169.ac} \) \(\text{The system cannot find the file specified.} \) \(\text{The system cannot find the file specified.} \) \(\text{The system cannot find the file specified.} \) \(\text{The system cannot find the file specified.} \) \(\text{The system cannot find the file specified.} \) \(\text{The system cannot find the file specified.} \) \(\text{The system cannot find the file specified.} \) \(\text{The system cannot find the file specified.} \) \(\text{The system cannot find the file specified.} \) \(\text{The system cannot find the file specified.} \) \(\text{The system cannot find the file specified.} \) \(\text{The system cannot find the file specified.} \) \(\text{The system cannot find the file specified.} \) \(\text{The system cannot find the file specified.} \) \(\text{The system cannot find the file specified.} \) \(\text{The system cannot find the file specified.} \) \(\text{The system cannot find the file specified.} \) \(\text{The system cannot find the file specified.} \) \(\text{The system cannot find the file specified.} \) \(The system cannot find the file specified file specif	ECD_1	
	Can't open raw data file "C:\Chromel\data\ICS1100\2_Data\AK_201123.SEQ\ECD_1.CHL\19169.ad	od".	
	The system cannot find the file specified.		
			Ш
			Ш
			Ш
			Ш
			Ш
			Ш
			Ш
			Ш
L			J