

AIMS

- Use machine learning to produce accurate predictions of demand and nodal prices two hours in advance.
- Base price predictions on aggregated North and South Island offer stacks as per WITS.

 Temporal cross-validation with folds of one year was used to evaluate the model

ACHIEVING SATISFACTION AT LEAST COST

 $\min \bar{c}_t^N + \bar{c}_t^S$

subject to: $S\left(\bar{d}_t^N, \bar{d}_t^S, G_t^N(\bar{c}_t^N), G_t^S(\bar{c}_t^S)\right) \geq 0.5$

where:

- ullet $ar{c}_t^N$ and $ar{c}_t^S$ are the cost of procuring generation in the North and South Island respectively
- $ar{d}_t^N$ and $ar{d}_t^S$ are our demand estimates for time period t

MODEL

- Neural networks (NNs) are a flexible machine learning model which can approximate many functions well.
- I used a neural network model with 6 hidden layers.
- The training objective was to minimise the mean absolute error (MAE) of the demand predictions.

HOW WELL DOES IT WORK?

- Suppose that for each time period t, we know d_t^N, d_t^S and g_t^S , and we want to recover g_t^N .
- Find $\bar{g}_t^N = \min\{g \colon S\left(d_t^N, d_t^S, g, g_t^S\right) \ge 0.5\}$
- ullet We expect S to be increasing with g^N , so it is easy to find this minimum.
- $ar{g}_t^N$ estimates g_t^N with an MAE of ~0.5%

- Convert categorical features to a set of binary features, one for each possible value, e.g. 7 binary features for day of week
- Scale numerical features to have values between 0 and 1

- Each training example consists of a set of features and a target
- In an electricity market context, each example might correspond to a trading period, the target the aggregate demand in that period, and the features relevant data such as the time of day or the demand in the previous period.

DETERMINING PRICES

- Given c_t^N and c_t^S , it is easy to recover the marginal costs \hat{p}_t^N and \hat{p}_t^S of generation in the North and South Island.
- Unfortunately tranches are not always dispatched strictly in order of price
- Does not take account of reserve generation

LEARNING THE "SATISFIABILITY" FUNCTION

- Machine learning classification techniques allow us to learn a function such as
 S if we can provide a dataset of examples where S = 0 and S = 1.
- Let $d_t^N, d_t^S, g_t^N, g_t^S$ denote the true demand/generation in trading period t.
- In reality, just enough electricity is generated to meet demand (notionally, S=0.5), so we can generate examples as follows:
 - $S(d_t^N, d_t^S, 0.995g_t^N, 0.995g_t^S) \approx 0$ for all t
 - $S(d_t^N, d_t^S, 1.005g_t^N, 1.005g_t^S) \approx 1$ for all t

THE "SATISFIABILITY" FUNCTION

- Define a "satisfiability" function $S(d^N, d^S, g^N, g^S) \rightarrow [0, 1]$ where:
 - d^N is the aggregate North Island demand
 - $lacktriangledown d^S$ is the aggregate South Island demand
 - lacksquare g^N is the aggregate North Island generation
 - $lacksquare{S}$ is the aggregate South Island generation
- The value of the function represents a level of confidence that the generation can meet the demand, where 1 denotes certainty of meeting demand and 0 denotes certainty of not meeting demand.

ACHIEVING SATISFACTION AT LEAST COST

- The objective of the market is to satisfy demand at least cost.
- Let $G_t^N(c)$ and $G_t^S(c)$ be the generation in MW we can procure at a cost of \$c\$ in the North and South Island respectively during time period t.
- We want to solve the following optimisation problem for each time period:

- Train a machine learning model for nodal price given features such as \hat{p}_t^N and \hat{p}_t^S , d_t^N and d_t^S , g_t^N and g_t^S .
- This allows us to estimate p_t^{HAY} and p_t^{BEN} with an MAE of ~\$4.50 given the true generation quantities

PREDICTING PRICES

 How can we predict nodal prices given aggregate offer stacks and predicted demands?

RESULTS

Error of predictions against EMI final prices, Jan 14 - June 17

	MAE (\$/MWh)	MAE (% of mean)
Benmore	8.99	14.6%
Haywards	9.64	14.8%
Otahuhu	10.30	14.9%

PYTHON PROGRAM FOR DAYS SMPEP2 ON ELECTRICITY PRICE PREDICTION:

import pandas as pd

Load the dataset data = pd.read_csv('electricity_price_prediction.csv')

Calculate the SMPEP2 SMPEP2 = data['SMPEP2'].sum()

print("Total SMPEP2:", SMPEP2)

Output:

Total SMPEP2: <sum of values in the 'SMPEP2' column>

PYTHON PROGRAM FOR SYSTEM LOAD EP2 ON ELECTRICITY PRICE PREDICTION:

import pandas as pd

Load the dataset data = pd.read_csv('electricity_price_prediction.csv')

Calculate the system load EP2 system_load_EP2 = data['SystemLoadEP2'].sum()

print("Total system load EP2:", system_load_EP2)

Output:

Total system load EP2: <sum_of_system_load_EP2>

PYTHON PROGRAM FOR WEEK OF YEAR ON ELECTRICITY PRICE PREDICTION:

import datetime

Get current date current_date = datetime.datetime.now()

Get week number of the year week_number = current_date.isocalendar()[1]

print("Week number:", week_number)

Output:

Week number :42

PYTHON PROGRAM FOR DAY OF WEEK ON ELECTRICITY PRICE PREDICTION:

import datetime

```
def get_day_of_week(date_string):
    date = datetime.datetime.strptime(date_string,
"%Y-%m-%d")
    day_of_week = date.strftime("%A")
    return day_of_week
# Example usage
```

Example usage date_string = "2022-01-01" day_of_week = get_day_of_week(date_string) print(day_of_week)

Output: Saturday

