Assignment_1: Asymptotic Notations

Name: Omar Bahaa Abd El Moneim Sayed El Ahl

ID: 1200180027

1. We shall evaluate $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ to determine which case is corresponding to each problem, where if limit evaluates to ∞ , then $f(n)\in\Omega(g(n))$, if it evaluates to 0, then $f(n)\in O(g(n))$, and if it evaluates to n where $n\in R$, then $f(n)\in\Theta(g(n))$.

1.

$$f(n) = 100n + \log n, g(n) = n + (\log n)^2$$
 $\lim_{n o \infty} rac{f(n)}{g(n)} = \lim_{n o \infty} rac{100n + \log n}{n + (\log n)^2} = \lim_{n o \infty} rac{100 + rac{1}{n}}{1 + rac{2*\log n}{n}} = 100$
 $\therefore \lim_{n o \infty} rac{f(n)}{g(n)} \in R$
 $\therefore f(n) \in \Theta(g(n))$

2.

$$egin{aligned} f(n) &= \log n, g(n) = \log n^2 \ \lim_{n o \infty} rac{f(n)}{g(n)} &= \lim_{n o \infty} rac{\log n}{\log n^2} = \lim_{n o \infty} rac{\log n}{2 \log n} = \lim_{n o \infty} rac{1}{2} = rac{1}{2} \ dots &: \lim_{n o \infty} rac{f(n)}{g(n)} = rac{1}{2} \in R \ dots &: f(n) \in \Theta(g(n)) \end{aligned}$$

3.

$$f(n) = \frac{n^2}{\log n}, g(n) = n(\log n)^2$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\frac{n^2}{\log n}}{n(\log n)^2} = \lim_{n \to \infty} \frac{n}{(\log n)^3} = \lim_{n \to \infty} \frac{1}{\frac{3(\log n)^2}{n}} = \lim_{n \to \infty} \frac{n}{\frac{6\log n}{n}} = \lim_{n \to \infty} \frac{n^2}{\frac{6}{n}} = \infty$$

$$\therefore \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

$$\therefore f(n) \in \Omega(g(n))$$

$$f(n) = (\log n)^{\log n}, g(n) = \frac{n}{\log n}$$

Substituting $m=\log n$, we can compare $f_2(m)=m^m$, with $g_2(m)=rac{2^m}{m}$ as following

$$egin{aligned} \lim_{m o \infty} rac{f_2(n)}{g_2(n)} &= \lim_{m o \infty} rac{m^m}{rac{2^m}{m}} = \lim_{m o \infty} rac{m \cdot m^m}{2^m} = \lim_{m o \infty} m \cdot (rac{m}{2})^m = \infty \ &dots \cdot \lim_{m o \infty} rac{f_2(m)}{g_2(m)} = \infty \ &dots \cdot f(n) \in \Omega(g(n)) \end{aligned}$$

5.

$$f(n) = \sqrt{n}, g(n) = (\log n)^5$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\sqrt{n}}{(\log n)^5} = \lim_{n \to \infty} \frac{\frac{1}{2\sqrt{n}}}{\frac{5(\log n)^4}{5(\log n)^4}} = \lim_{n \to \infty} \frac{n}{10\sqrt{n}(\log n)^4} = \lim_{n \to \infty} \frac{\sqrt{n}}{10(\log n)^4}$$

$$= \lim_{n \to \infty} \frac{n}{2\sqrt{n} \cdot 40(\log n)^3} = \lim_{n \to \infty} \frac{\sqrt{n}}{80(\log n)^3} = \lim_{n \to \infty} \frac{\sqrt{n}}{480(\log n)^2} = \lim_{n \to \infty} \frac{\sqrt{n}}{1920 \log n}$$

$$= \lim_{n \to \infty} \frac{n}{3840\sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{n}}{3840} = \infty$$

$$\therefore \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

$$\therefore f(n) \in \Omega(g(n))$$

6.

$$f(n) = n2^n, g(n) = 3^n$$

Proving that $f(n) \leq g(n)$ by induction to decide whether $f(n) \in \mathrm{O}(g(n))$:

· Base case:

$$n_o=2$$
 , we have $f(2)=8, g(2)=9$, we have $f(n)\leq g(n)$

• Induction hypothesis:

Assume $f(k) \leq g(k)$, we need to show that

$$f(k) \le g(k) \implies f(k+1) \le g(k+1)$$

Since we have $k2^k \leq 3^k$, in order to reach f(k+1) and g(k+1) from f(k) and g(k), respectively, we multiply the former by $\frac{2(k+1)}{k}$ and the latter by 3. And for all $k \geq 2$, where $k \in Z$, we have $\frac{2(k+1)}{k} < 3$.

Thus
$$f(k) \leq g(k) \implies f(k+1) \leq g(k+1)$$
 $f(n) \leq g(n)$, thus $f(n) \in \mathrm{O}(g(n))$

$$f(x) = 2^{\sqrt{\log n}}, g(n) = \sqrt{n}$$

$$\therefore \sqrt{n} \in \Omega(2^{\sqrt{\log n}})$$

 $\therefore f(x) \in \mathrm{O}(g(n))$

2.

Unit cost:

Algorithm runs through a loop of $\log m = n$ times, each time we do $\mathrm{O}(1)$, thus unit cost is $\mathrm{O}(n)$

Bit cost

Algorithm runs through a loop of $\log m = n$ times, each time we do $O(l^2)$ where l is the number of bits and l^2 is the bit cost of multiplication in an iteration.

The value of y in each iteration is 2^{2^i} where i is iteration number, thus each iteration require $O((\log y)^2) = O((\log 2^{2^i})^2) = O(2^{2i})$. Summing along the iterations:

$$\sum_{i=1}^{\log m} c2^{2i} = c\sum_{i=1}^{\log m} 4^i = 4c\sum_{i=0}^{\log m-1} 4^i = 4c\frac{4^{\log m}-1}{4-1} \in \mathrm{O}(4^{\log m}) = \mathrm{O}(4^n)$$

3. Given a graph, G, with set of nodes and vertices N and V, respectively.

```
for all v in V: set v.group = 0
function isBipartite(G, s):
    group <- 1
    q <- Queue(s)
    while q:
        u <- q.dequeue()
        for v in u.neighbors():
            if v.group == 0:
                 v.group <- group
                 q.enqueue(v)
            elif v.group == u.group:
                 return False
    group <- group * -1
return True</pre>
```

Expression	Dominant term(x)	O()
$5 + 0.001n^3 + 0.025n$	$0.001n^3$	$\mathrm{O}(n^3)$
$500n + 100n^{1.5} + 50n\log_{10}n$	$100n^{1.5}$	$\mathrm{O}(n^{1.5})$
$0.3n + 5n^{1.5} + 2.5n^{1.75}$	$2.5n^{1.75}$	$\mathrm{O}(n^{1.75})$
$n^2 \log_2 n + n (\log_2 n)^2$	$n^2 \log_2 n$	$\mathrm{O}(n^2 \log n)$
$n\log_3 n + n\log_2 n$	$n\log_2 n$	$O(n \log n)$
$3\log_8 n + \log_2 \log_2 \log_2 n$	$3\log_8 n$	$O(\log n)$

Expression	Dominant term(x)	O()
$100n + 0.01n^2$	$0.01n^2$	$\mathrm{O}(n^2)$
$0.01n+100n^2$	$100n^{2}$	$\mathrm{O}(n^2)$
$2n + n^{0.5} + 0.5n^{1.25}$	$0.5n^{1.25}$	$\mathrm{O}(n^{1.25})$
$0.01n\log_2 n + n(\log_2 n)^2$	$n(\log_2 n)^2$	$\mathrm{O}(n(\log n)^2)$
$100n \log_3 n + n^3 + 100n$	n^3	$O(n^3)$
$0.003\log_4 n + \log_2\log_2 n$	$0.003\log_4 n$	$O(\log n)$

5.

Statement	True/False	correct formula, if false
Rule of sums: $\mathrm{O}(f+g)=\mathrm{O}(f)+O(g)$	False	$\mathrm{O}(f+g)=\mathrm{O}(\max(f,g))$
Rule of products: $\mathrm{O}(f\cdot g)=\mathrm{O}(f)\cdot\mathrm{O}(g)$	True	
Transitivity: if $g=\mathrm{O}(f)$ and $h=\mathrm{O}(f)$ then $g=\mathrm{O}(h)$	False	if $g=\mathrm{O}(f)$ and $f=\mathrm{O}(h)$ then $g=\mathrm{O}(h)$
$5n + 8n^2 + 100n^3 = \mathrm{O}(n^4)$	True	
$5n + 8n^2 + 100n^3 = \mathrm{O}(n^2 \log n)$	False	$5n + 8n^2 + 100n^3 = \mathrm{O}(n^3)$

1.
$$\mathrm{O}(f_4) > \mathrm{O}(f_1) = \mathrm{O}(f_2) = \mathrm{O}(f_3)$$

2.
$$O(f_2) > O(f_3) > O(f_4) > O(f_1)$$

3. $O(f_2) > O(f_3) > O(f_1) > O(f_4)$

3.
$$O(f_2) > O(f_3) > O(f_1) > O(f_4)$$