定理 4.27 n 個の頂点を持つ連結グラフ G(V,E) に対して , 次の Kruskal のア

ルゴリズムで求めた全域木は Gの最小全域木である。

[ステップ1]:最小重みの辺 e_1 を選択する。i=1とする。

[ステップ2]: i = n - 1 であれば,終わりである。

そうでなければ,[ステップ3]に行く。

[ステップ3]: 選択したi 個の辺 $\{e_1,e_2,...,e_i\}$ を集合S とする。E-S から e_{i+1}

を選択する。ここで e_{i+1} は辺誘導部分グラフ $(S \cup \{e_{i+1}\})_G$ に閉

路がないことを満たす最小重みの辺である。

[ステップ4]: i = i + 1 とする。[ステップ2]に行く。

【証明】

 $T_0(V_0, E_0)$ を上記のアルゴリズムで求めたG の部分グラフとする。ここで, $V_0 = V$ (すなわちG のn 個の頂点), $E_0 = \{e_1, e_2, ..., e_{n-1}\}$ とし,アルゴリズムの 動作より T_0 には閉路がない。定理 4.23 より, T_0 は木であり,G の全域木であ る。 $T_1(V,E_1)$ をGの最小全域木とする。 $E_0=E_1$ のとき, T_0 はGの最小全域木 である。 $E_0 \neq E_1$ のとき, $e_i \notin E_1$ となるもっとも小さいi を j とすると, ある e_j が存在し, T_1 は木であるので, T_1+e_i は閉路rを持つ。閉路rの中には $f \in E_1$, $f \notin E_0$ であるような辺 f が存在する。よって, $T = (T_1 + e_i) - f$ もG の 全域木となる。ここで $C(T) = C(T_1) + C(e_i) - C(f)$ である。 T_1 はG の最小全域木 であるので , $C(T) \ge C(T_1)$ である。よって , $C(e_i) \ge C(f)$ である。 $C(e_i) > C(f)$ であるならば, $j \ge 2$ であり(なぜならば e_1 は最小重みの辺だからである), $\{e_1,e_2,...,e_{j-1},f\}\subseteq E_1$ であるので , 辺誘導部分グラフ $(\{e_1,e_2,...,e_{j-1},f\})_G$ にも閉 路がないので , 上記のアルゴリズムの動作に従うなら e_i よりも先に f を選ぶこ とになり $f \in E_0$ となり矛盾する。従って , $C(e_i) = C(f)$ である。よって , $C(T) = C(T_1)$, すなわち, $T \in G$ の最小全域木であり, $T_0 \succeq T$ はともに辺 $\{e_1,e_2,...,e_j\}$ を持つ。T を T_1 として,上記の議論を繰り返すと, T_0 とG の最小 全域木T はともに辺 $\{e_1,e_2,...,e_{n-1}\}$ を持つことが言える。すなわち, T_0 はG の 最小全域木である。