Covid-19 South India application of statistical methods for a predictive model

Azza M. N. Abdalghani Milton Nicolás Plasencia Palacios Anna Spagnolo

Department of Mathematics and Geosciences, University of Trieste

Statistical Methods for Data Science course Final Project \sim July 2020

Table of Contents

- Problem Statement
- Data Overview
- Models
- 4 Results

Goal of Our Project

- Building a model to predict the daily affected cases of COVID-19 on the upcoming 12 days for each state in South of India.
- Foucsing on South states : Tamil Nadu, Kerala, Karantaka, Telangana, Andhra Pradesh, Puducherry and Andaman and Nicobar Islands.

Table of Contents

- Data Overview

COVID-19 In India

- Reported on 30 January 2020, originated from China.
- Largest number of confirmed cases in Asia, and third highest number of confirmed cases in the world.
- Breaching 1,000,000 confirmed cases on 17 July 2020.
- 4 phases of lockdown.

Data Description

• Data Source : COVID-19 in India dataset from Kaggle.

```
COVID-19 in India
   AgeGroupDetails.csv
  HospitalBedsIndia.csv
  ICMRTTestingLabs.csv
   IndividualDetails.csv
  StatewiseTestingDetails.csv
  covid_19_india.csv
 _population_india_census2011.csv
```

 Contain statewise information, personal data for the affected people and medical facilities at each state.

* Population density per each state in South India.

* Urban Ratio per each state in South India.

* Total Public Health Facilities per each state in South India.

* Gender Ratio per each state in South India.

* Total Confirmed Cases per each state in South India until 24/7/2020.

* Daily Confirmed Cases per each state in South India until 24/7/2020.

* Total Death Cases per each state in South India until 24/7/2020.

* Total Cured Cases per each state in South India until 24/7/2020.

Female ratio in Confirmed cases.

* Age distribution among Confirmed cases for each state.

Data Preprocessing

- Dealing with **NA** values at (sex, age, daily_swabs) columns :
 - sex : 57% of values are NA, instead we used the given ratio of infected females to infected males.
 - age : around 70% of values are NA, instead we used the median age for each state of south India.
 - daily_swabs : drop NA values.
- * Merge columns of interest [times, Date, daily_confirmed, age, sex, rural, lock_down, daily_swabs] to new dataset.
- * Splitting dataset into 80%train set and 20%test datasets.

Table of Contents

- Problem Statement
- 2 Data Overview
- Models
- 4 Results

Methodology

- We decided to use 3 different types of model (GLM, RF and GAM) and we tried not to overfit the models (only meaningful covariates)
- Bottom up strategy
- We used a train/test split: we divided the dataset in a training set to build the model on, and a test set to be used for predictions
- For what concerns the errors, we used both the MAE and the RMSE

Generalized Linear Models (GLM)

- Extension of linear models
- Mean and linear predictor related by the link function

$$g(E(Y_i)) = g(\mu_i) = \eta_i = x_i^T \beta$$

Importance of the exponential family

$$f(Y; \theta, \phi) = \exp\{\frac{Y\theta - b(\theta)}{\phi} + c(Y, \phi)\}$$

Our choices

A quasi-likelihood model is a semi-parametric model with the following released assumptions:

- $g(\mu_i) = g(E(Y_i)) = \eta_i, i = 1, ..., n,$
- $var(Y_i) = \phi V(\mu_i), i = 1, ..., n,$
- $cov(Y_i, Y_j) = 0$, if $i \neq j$.

Using the **quasipoisson** family, we have the same variance function of a Poisson and the canonical link of a Poisson.

We also use the **negative binomial**, which is a more flexible alternative to Poisson model. It is not a proper GLM, since it does not belong to the exponential family.

Generalized Additive Models (GAM)

They belong to a class of nonlinear models: semi-parametric regression models

$$y_i = \beta_0 + \sum_{k=1}^K b_k B_k(z_i) + \text{other variables} + \varepsilon_i$$
.

- They can have more than one nonlinear term, which enter the specification in an additive way
- The response is generalized (binary or count responses are handled by a link function)

Random Forest (RF, Breiman)

- Ensemble learning method for classification
- Used to combine a multitude of trees
- At each split only some features are considered, in order to de-correlate the trees
- Refinement of bagging: de-correlate trees and reduce variance

Quasipoisson

```
call:
glm(formula = Confirmed ~ daily_swabs + I(times * daily_swabs) +
    rural + sex + Density + median_age, family = quasipoisson(link = log),
    data = train)
Deviance Residuals:
             10 Median
    Min
                               3Q
                                      Max
-19, 936 -3, 302 -1, 636
                         1.116
                                   26, 237
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
(Intercept)
                       1.162e+01 4.782e+00 2.430 0.01575 *
dailv_swabs
                      1.397e-04 7.851e-05 1.780 0.07619 .
I(times * dailv_swabs) 4.350e-07 6.017e-07 0.723 0.47032
                      -1.248e+01 2.710e+00 -4.606 6.29e-06 ***
rural
                      -3.314e+01 7.411e+00 -4.471 1.14e-05 ***
Sex
                     -4.505e-03 1.684e-03 -2.674 0.00794 **
Density
                      3.541e-01 1.548e-01 2.287 0.02295 *
median ade
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for quasipoisson family taken to be 47.21917)
    Null deviance: 33683 on 282 degrees of freedom
Residual deviance: 11870 on 276 degrees of freedom
AIC: NA
Number of Fisher Scoring iterations: 6
```

Negative Binomial

```
call:
glm.nb(formula = Confirmed ~ daily_swabs + sex + rural + Density,
    data = train, link = log, init.theta = 0.7904871713)
Deviance Residuals:
             10 Median
    Min
                              3Q
                                      Max
-2.6069 -1.2077 -0.4472 0.0976 3.6628
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.868e+01 2.661e+00 7.020 2.22e-12 ***
daily_swabs 1.895e-04 2.157e-05 8.788 < 2e-16 ***
          -2.898e+01 4.026e+00 -7.199 6.08e-13 ***
sex
rural -1.174e+01 2.068e+00 -5.675 1.39e-08 ***
Density -1.906e-03 5.589e-04 -3.410 0.000649 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Negative Binomial(0.7905) family taken to be 1)
    Null deviance: 785.40 on 282 degrees of freedom
Residual deviance: 317.99 on 278 degrees of freedom
ATC: 2200.2
Number of Fisher Scoring iterations: 1
             Theta: 0.7905
         Std. Err.: 0.0747
 2 x log-likelihood: -2188.2150
```

GAM

```
Family: quasipoisson
Link function: log
Formula:
Confirmed ~ s(laa_conf) + s(times) + te(hosp_facilities, dailv_swabs)
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.7456 0.1943 14.13 <2e-16 ***
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                                edf Ref.df F p-value
s(lag_conf)
                              3.224 3.954 2.523 0.0442 *
s(times)
                              3.963 4.913 2.931 0.0128 *
te(hosp_facilities.dailv_swabs) 6.144 6.636 25.549 <2e-16 ***
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.47 Deviance explained = 68.9\%
-REML = 671.87 Scale est. = 42.467 n = 283
```

GLM predictions

GAM predictions

RF predictions

Telangana (Summary GLM)

The lack of observations of the variable "Daily swabs" did not allow us to build a model that includes all the states.

```
Call:
glm.nb(formula = Confirmed ~ times, data = train_tel, init.theta = 0.5106836629,
    link = loa)
Deviance Residuals:
             10 Median
-2.0260 -1.3248 -0.5613 0.2129 2.9676
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.25423 0.52997 -0.480
times
            0.03619 0.00678 5.338 9.39e-08 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
(Dispersion parameter for Negative Binomial(0.5107) family taken to be 1)
    Null deviance: 109.062 on 81 degrees of freedom
Residual deviance: 93.154 on 80 degrees of freedom
ATC: 557.53
Number of Fisher Scoring iterations: 1
             Theta: 0.5107
         Std. Err.: 0.0882
 2 x log-likelihood: -551.5330
```

Telangana (Summary GAM)

The lack of observations of the variable "Daily swabs" did not allow us to build a model that includes all the states.

```
Family: quasipoisson
Link function: loa
Formula:
Confirmed ~ s(times)
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.910
                        0.283 6.75 2.58e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
          edf Ref.df F p-value
s(times) 5.004 6.06 4.581 0.000495 ***
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sa.(adi) = 0.283 Deviance explained = 46.7%
-REMI = 149 07 Scale est = 12 137 n = 82
```

Telangana (Plots)

The lack of observations of the variable "Daily swabs" did not allow us to build a model that includes all the states.

Table of Contents

- Problem Statement
- Data Overview
- Models
- 4 Results

Summary

Summary of the models we have used to make our predictions.

GLM	Confirmed \sim daily swabs $+$ sex $+$ rural $+$ density			
RF	Confirmed \sim times $+$ daily swabs $+$ sex $+$			
	$median \; age \; + \; rural \; + \; date \; + \; lockdown \; + \; hosp \; facilities \; + \;$			
	$lag\ conf + density\ ,$			
	ntree = 750, mtry = 5			
GAM	Confirmed \sim s(times) $+$ te(hosp facilities, daily swabs) $+$			
	s(lag conf)			

Mean Absolute Error

States	mae_glm	mae_rf	mae_gam
Andaman and Nicobar Islands	0.47	6.42	1.02
Andhra Pradesh	67.93	68.77	52.8
Karnataka	86.47	54.22	77.71
Kerala	34.81	40.51	38.68
Puducherry	7.13	14.17	7.1
Tamil Nadu	457.91	328.38	385.95
Telangana	38.58	46.65	49.98
Total*	117.09	91.06	100.61

^{*}Total MAE has been calculated without Telangana

Rooted Mean Squared Error

States	rmse_glm	rmse_rf	rmse_gam
Andaman and Nicobar Islands	0.96	6.51	1.11
Andhra Pradesh	80.62	80.85	67.74
Karnataka	114.22	69.32	108.03
Kerala	47.72	44.49	50.57
Puducherry	12.28	15.85	12.4
Tamil Nadu	540.66	518.41	484.3
Telangana	47.84	65.46	72.52
Total*	239.24	226.95	214.83

^{*}Total RMSE has been calculated without Telangana

36/38

Comparison & Improvements

- There's not a huge difference if we look at the error metrics.
- Random Forest has the best MAE but it is an unstable method and lack in interpretability.
- By using semiparametric regression we get the best RMSE thank to the addition of nonlinear terms.

Improvements: mainly related data collection.

Greetings

Thank you for your attention ©