Machine learning

Presented by: Dr. Hanaa Bayomi

overview

- SVM for linearly separable binary set
- Main Goal to design a hyper plane that classify all training vectors into two classes
- The best model that leaves the maximum margin from both classes
- the two classes labels +1 (positive examples and -1 (negative examples)

This is a constrained optimization problem

Intuition behind SVM

- Points (instances) are like vectors $p = (x_1, x_2,...,x_n)$
- SVM finds the closest two points from the two classes (see figure), that support (define) the best separating line|plane
- Then SVM draws a line connecting them (the orange line in the figure)
- After that, SVM decides that the best separating line is the line that bisects, and is perpendicular to, the connecting line

SVM more formally

- We can define a separating (decision) hyperplane in terms of an intercept term b and a normal vector which is perpendicular to the hyperplane (commonly referred to as the weight vector)
- To choose among all the hyperplanes that are perpendicular to the normal vector, we specify the intercept term b
- All points \vec{x} on the hyperplane satisfy $\vec{w}^T \vec{x} = -b$ as the hyperplane is perpendicular to the normal vector
- We represent the training dataset as $\mathbb{D} = \{(\vec{x}_i, y_i)\}$ as a pair of a point and a class label corresponding to it
- Now the linear classifier becomes:

$$f(\vec{x}) = \operatorname{sign}(\vec{w}^T \vec{x} + b)$$

Margin in terms of W

Support Vector Machine

SVM as a minimization problem

- Maximizing 2/|w| is the same as minimizing |w|/2
- Hence SVM becomes a minimization problem:

- We are now optimizing a quadratic function subject to linear constraints
- Quadratic optimization problems are a standard, wellknown class of mathematical optimization problems, and many algorithms exist for solving them

$$\min \frac{1}{2} \|\mathbf{w}\|^2$$
 s.t. $y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1 \ge 0 \ \forall_i$

In order to cater for the constraints in this minimization, we need to allocate them Lagrange multipliers α , where $\alpha_i \geq 0 \ \forall_i$:

$$L_P \equiv \frac{1}{2} \|\mathbf{w}\|^2 - \alpha \left[y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1 \ \forall_i \right]$$

$$\equiv \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^L \alpha_i \left[y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1 \right]$$

$$\equiv \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^L \alpha_i y_i(\mathbf{x}_i \cdot \mathbf{w} + b) + \sum_{i=1}^L \alpha_i$$

We wish to find the $\underline{\mathbf{w}}$ and $\underline{\mathbf{b}}$ which minimizes, and the $\underline{\mathbf{\alpha}}$ which maximizes LP(whilst keeping $\alpha i \geq 0 \ \forall i$). We can do this by differentiating LP with respect to \mathbf{w} and \mathbf{b} and setting the derivatives to zero:

$$\frac{\partial L_P}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^L \alpha_i y_i \mathbf{x}_i$$
$$\frac{\partial L_P}{\partial b} = 0 \Rightarrow \sum_{i=1}^L \alpha_i y_i = 0$$

Characteristics of the Solution

- Many of the α_i are zero (see next page for example)
 - w is a linear combination of a small number of data points
 - This "sparse" representation can be viewed as data compression as in the construction of knn classifier
- \mathbf{x}_i with non-zero α_i are called support vectors (SV)
 - The decision boundary is determined only by the SV
 - Let t_j (j=1, ..., s) be the indices of the s support vectors. We can write

$$\mathbf{w} = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \mathbf{x}_{t_j}$$

- For testing with a new data z
 - Compute $\mathbf{w}^T \mathbf{z} + b = \sum_{j=1}^s \alpha_{t_j} y_{t_j} (\mathbf{x}_{t_j}^T \mathbf{z}) + b$ and classify \mathbf{z} as class 1 if the sum is positive, and class 2 otherwise
 - Note: w need not be formed explicitly

A Geometrical Interpretation

Example

- Here we select 3 Support Vectors to start with.
- They are S₁, S₂ and S₃.

Example

 Here we will use vectors augmented with a 1 as a bias input, and for clarity we will differentiate these with an over-tilde.

That is:

$$S_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$S_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$S_3 = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$

$$\widetilde{S_1} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

$$\widetilde{S_2} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

$$\widetilde{S_3} = \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}$$

 Now we need to find 3 parameters α₁, α₂, and α₃ based on the following 3 linear equations:

$$\alpha_1 \widetilde{S_1} \cdot \widetilde{S_1} + \alpha_2 \widetilde{S_2} \cdot \widetilde{S_1} + \alpha_3 \widetilde{S_3} \cdot \widetilde{S_1} = -1 \ (-ve \ class)$$

$$\alpha_1 \widetilde{S_1} \cdot \widetilde{S_2} + \alpha_2 \widetilde{S_2} \cdot \widetilde{S_2} + \alpha_3 \widetilde{S_3} \cdot \widetilde{S_2} = -1 \ (-ve \ class)$$

$$\alpha_1\widetilde{S_1}.\widetilde{S_3} + \alpha_2\widetilde{S_2}.\widetilde{S_3} + \alpha_3\widetilde{S_3}.\widetilde{S_3} = +1 \ (+ve\ class)$$

$$\alpha_1 \widetilde{S_1} \cdot \widetilde{S_1} + \alpha_2 \widetilde{S_2} \cdot \widetilde{S_1} + \alpha_3 \widetilde{S_3} \cdot \widetilde{S_1} = -1 \ (-ve \ class)$$

$$\alpha_1 \widetilde{S_1} \cdot \widetilde{S_2} + \alpha_2 \widetilde{S_2} \cdot \widetilde{S_2} + \alpha_3 \widetilde{S_3} \cdot \widetilde{S_2} = -1 \ (-ve \ class)$$

$$\alpha_1\widetilde{S_1}.\widetilde{S_3} + \alpha_2\widetilde{S_2}.\widetilde{S_3} + \alpha_3\widetilde{S_3}.\widetilde{S_3} = +1 \ (+ve\ class)$$

• Let's substitute the values for $\widetilde{S_1}$, $\widetilde{S_2}$ and $\widetilde{S_3}$ in the above equations. (2)

$$\widetilde{S_1} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$
 $\widetilde{S_2} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ $\widetilde{S_3} = \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}$

$$\alpha_1 \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \alpha_3 \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = -1$$

$$(2) \quad (2) \quad (2) \quad (4) \quad (2)$$

$$\alpha_1 \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \alpha_3 \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = -1$$

$$\alpha_1 \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 2 \\ -\frac{1}{2} \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} + \alpha_3 \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} = +1$$

$$\alpha_{1} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \alpha_{2} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \alpha_{3} \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = -1$$

$$\alpha_{1} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \alpha_{2} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \alpha_{3} \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = -1$$

$$\alpha_{1} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} + \alpha_{2} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} + \alpha_{3} \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} = +1$$

After simplification we get:

$$6\alpha_1 + 4\alpha_2 + 9\alpha_3 = -1$$

$$4\alpha_1 + 6\alpha_2 + 9\alpha_3 = -1$$

$$9\alpha_1 + 9\alpha_2 + 17\alpha_3 = +1$$

• Simplifying the above 3 simultaneous equations we get: $\alpha_1 = \alpha_2 = -3.25$ and $\alpha_3 = 3.5$.

$$\alpha_1 = \alpha_2 = -3.25$$
 and $\alpha_3 = 3.5$

 $\widetilde{S_1} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ $\widetilde{S_2} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ $\widetilde{S_2} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$

 The hyper plane that discriminates the positive class from the negative class is give by:

$$\widetilde{w} = \sum_{i} \alpha_{i} \widetilde{S}_{i}$$

Substituting the values we get:

$$\widetilde{w} = \alpha_1 \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \alpha_3 \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}$$

$$\widetilde{w} = (-3.25). \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + (-3.25). \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + (3.5). \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}$$

$$\widetilde{w} = (-3.25). \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + (-3.25). \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + (3.5). \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}$$

- Our vectors are augmented with a bias.
- Hence we can equate the entry in \widetilde{w} as the hyper plane with an offset b.
- Therefore the separating hyper plane equation

$$y = wx + b$$
 with $w = {1 \choose 0}$ and offset $b = -3$.

Support Vector Machines

• y = wx + b with $w = {1 \choose 0}$ and offset b = -3.

This is the expected decision surface of the LSVM.

Kernel trick

SVM Algorithm

- 1- Define an optimal hyperplane: maximize margin
- 2- Extend the above definition for non-linearly separable problems: have a penalty term for misclassifications
- 3- Map data to high dimensional space where it is easier to classify with linear decision surfaces: reformulate problem so that data is mapped implicitly to this space

Suppose we're in 1-dimension

Not a big surprise

Harder 1-dimensional dataset

That's wiped the smirk off SVM's face.

What can be done about this?

Harder 1-dimensional dataset

Remember how permitting non-linear basis functions made linear regression so much nicer?

Let's permit them here too

$$\mathbf{z}_k = (x_k, x_k^2)$$

Harder 1-dimensional dataset

Remember how permitting nonlinear basis functions made linear regression so much nicer?

Let's permit them here too

$$\mathbf{z}_k = (x_k, x_k^2)$$

Non-linear SVMs: Feature spaces

• General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

Input Space

Feature Space

SVM for nonlinear reparability

- The simplest way to separate two groups of data is with a straight line, flat plane an N-dimensional hyperplane
- However, there are situations where a nonlinear region can separate the groups more efficiently
- SVM handles this by using a kernel function (nonlinear) to map the data into a <u>different space</u> where a hyperplane (linear) cannot be used to do the separation
- It means a non-linear function is learned by a linear learning machine in a high-dimensional feature space while the capacity of the system is controlled by a parameter that does not depend on the dimensionality of the space
- This is called kernel trick which means the kernel function transform the data into a higher dimensional feature space to make it possible to perform the linear separation

Kernels

- Why use kernels?
 - Make non-separable problem separable.
 - Map data into better representational space
- Common kernels
 - Linear
 - Polynomial $K(x,z) = (1+x^Tz)^d$
 - Gives feature conjunctions
 - Radial basis function (infinite dimensional space)

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\|\mathbf{X}_i - \mathbf{X}_j\|^2 / 2\sigma^2}$$

Haven't been very useful in text classification