Lecture 12 TensorFlow

GEOL 4397: Data analytics and machine learning for geoscientists

Jiajia Sun, Ph.D. April. 2nd, 2019

Outline

Computation graph

TensorFlow

Computation Graph

Computation graph

- A graph refers to a set of nodes connected via edges.
- Each node represents an operation.

Each edge allows data to flow from one node to another in a

Aurelien Geron, 2017, Hands-on Machine Learning with Scikit-Learn & TensorFlow, pp 229

Computation graph

Aurelien Geron, 2017, Hands-on Machine Learning with Scikit-Learn & TensorFlow, pp 230

TensorFlow

Table 9-1. Open source Deep Learning libraries (not an exhaustive list)

Library	API	Platforms	Started by	Y e ar
Caffe	Python, C++, Matlab	Linux, macOS, Windows	Y. Jia, UC Berkeley (BVLC)	2013
Deeplearning4j	Java, Scala, Clojure	Linux, macOS, Windows, Android	A. Gibson, J.Patterson	2014
H2O	Python, R	Linux, macOS, Windows	H2O.ai	2014
MXNet	Python, C++, others	Linux, macOS, Windows, iOS, Android	DMLC	2015
TensorFlow	Python, C++	Linux, macOS, Windows, iOS, Android	Google	2015
Theano	Python	Linux, macOS, iOS	University of Montreal	2010
Torch	C++, Lua	Linux, macOS, iOS, Android	R. Collobert, K. Kavukcuoglu, C. Farabet	2002

Aurelien Geron, 2017, Hands-on Machine Learning with Scikit-Learn & TensorFlow, pp 232

network layers in Python.

vision, NLP and more.

flexibility and speed.

by the torch.distributed backend.

TensorFlow

- What is tensor?
- A tensor is <u>a generalization of vectors and matrices</u> to higher dimensions.
- TensorFlow regards all data that flow in a graph as tensor. (Therefore, the name TensorFlow)
- The rank of a tensor is its number of dimensions.

Rank	Math entity	
0	Scalar (magnitude only)	
1	Vector (magnitude and direction)	
2	Matrix (table of numbers)	
3	3-Tensor (cube of numbers)	
n	n-Tensor (you get the idea)	

https://www.tensorflow.org/programmers_guide/tensors

TensorFlow

- Computation graph defines how tensors flow in a graph in order to perform some computational tasks.
- TensorFlow is a powerful open source software library for numerical computation, particularly well suited for large scale machine learning. (Back-end is optimized C++ code)
- Originally developed by Google Brain team
- Open-sourced in Nov. 2015.
- Powers many of Google's large-scale services such as Google Cloud Speech, Google Photos, and Google Search

Distributed computing

- TensorFlow supports distributed computing
- Splitting computations across hundreds of servers
- Can train a network of millions of parameters on a training set composed of billions of instances with millions of features each

To use TensorFlow

- Create a graph
- Execute the graph

Use Jupyter Notebook to illustrate TensorFlow

In-class quiz

```
 \begin{array}{l} x = \text{tf.placeholder}(\text{tf.float32, shape=}(5,10)) \\ w = \text{tf.placeholder}(\text{tf.float32, shape=}(10,1)) \\ b = \text{tf.constant}([[-1],[-1],[-1],[-1]], \text{tf.float32, shape=}(5,1)) \\ xw = \text{tf.matmul}(x,w) \\ xwb = xw + b \\ s = \text{tf.reduce\_max}(xwb) \\ \end{array}
```

Draw the corresponding computation graph