# Active Noise Control of Speech in Headphones

using Linear Prediction

22. december 2016

Christian Claumarch, Kasper Kiis Jensen Maxime Démurger, Mikkel Krogh Simonsen Oliver Palmhøj Jokumsen 16gr761@es.aau.dk

> Acoustics and Audio Technology - Fall 2016 Department of Electronic Systems Aalborg University Denmark





Group 761

# Introduction

What is Active No Control (ANC)

Problem of A

# Methods

Feedforward FXL

Multirate Processing

Combined syste

## Simulations Result

Linear Predict

Attenuation Performan

# Discussion

Computational Cos

Introduction

What is Active Noise Control (ANC)

Problem of ANC

# Methods

Feedforward FXLMS

Linear Prediction

Multirate Processing

Combined system

# Simulations Results

Linear Prediction Parameters

Attenuation Performance

# Discussion

Computational Cost

Acoustics and Audio Technology Dept. of Electronic Systems Aalborg University Denmark



# ntroduction

What is Active Noise Control (ANC)

Problem of AN

# Methods

Feedforward FXLMS

Linear Prediction

Combined system

# Simulations Results

Linear Predict

Attenuation Performan

# Discussion

Computational Cos

Acoustics and Audio Technology Dept. of Electronic Systems Aalborg University

20

► The basic theory of ANC

- ▶ 250 Hz
- ▶ 2500 Hz

- Original signal
- - Counterphase signal
- Error





# ntroduction

What is Active Noise Control (ANC)

Problem of All

# ivietnous

Feedforward FXLN

Multirate Processing

Simulations Results

Linear Prediction Parameters

Attenuation Performar

## Discussio

Computational Cos

Acoustics and Audio Technology Dept. of Electronic Systems Aalborg University

- Headphone cups attenuate high frequencies passively
- ► Lower frequencies must be attenuated actively
- ▶ Feedforward system
  - ► 1: Reference microphone
  - ► 2: Headphone loudspeaker
  - ► 3: Error mirophone
  - ► 4: Digital signal Processor (DSP)





oduction

What is Active Noi Control (ANC)

Problem of ANC

### . . . . .

Feedforward FXI

Linear Prediction

Combined syste

Simulations Resu

Linear Prediction
Parameters
Attanuation Borforman

Di-----

Computational Cos

Feedforward problem

- Sampling and reconstruction delay.
  - ► Anti Aliasing filter
  - Reconstructions filter
- ► The measured delay of a Sigma Delta converter TLV320AIC3204
- ► Spacing between microphones

► Min: 75.5 *m*m

► Max: 302 *m*m

| $f_s$ [kHz]     | 48  | 96  | 192 |
|-----------------|-----|-----|-----|
| Delay [μs]      | 900 | 450 | 225 |
| Delay [samples] | 43  | 43  | 43  |

Acoustics and Audio Technology Dept. of Electronic Systems Aalborg University

Group 761

# ntroduction

What is Active No

# Problem of ANC

# Methods

Feedforward FXLMS

Linear Prediction

Combined syste

# Simulations Results

Amplitude

20

Linear Predict

Attenuation Performan

## Discussion

Computational Cos

Acoustics and Audio
Technology
Dept. of Electronic Systems
Aalborg University
Denmark

► Counterphase signal delayed 10 samples

- ▶ 250 Hz
- ► 2500 Hz

- Original signal
- - Counterphase signal
- Error







Group 761

## Introduction

What is Active No

Problem of ANC

### A decide of the

Feedforward FXLN

Linear Prediction

Multirate Processin

Combined syst

### Simulations Result

inear Predictio

Attenuation Performance

## Discussion

Computational Cos

Acoustics and Audio
Technology
Dept. of Electronic Systems
Aalborg University
Denmark

20

► Signal Characteristics

- Periodic Signals
  - ► Strict Sense Stationary (SSS)
- Speech Signals
  - ► Quasiperiodic
  - ► 50 Hz 4000 Hz
  - ► Can be assumed Wide Sense Stationary (WSS) for 20 ms 30 ms
- ► Periodic noise is easy to cancel
- Speech noise is difficult to cancel



Introduction

What is Active Nois Control (ANC)

Problem of ANC

# Methode

Enedforward EVI MS

Linear Prediction

Combined syste

# Simulations Results

Linear Predic Parameters

Attenuation Performar

## Discussion

Computational Co.

Acoustics and Audio
Technology
Dept. of Electronic Systems
Aalborg University
Depmark

20

▶ How well does the consumer headphones attenuate?

► Denon AH-GC20

2.200 kr (2016)

Bose QC25

2.799 kr (2016)

► Bose QC15

2.696 kr (2011)

▶ BeoPlay H8

3.495 kr (2016)





Group 761

Problem of ANC

Acoustics and Audio Technology Dept. of Electronic Systems Aalhorg University Denmark

- ► ANC ideally attenuate infinitely
- Delays are introduced by sampling and reconstruction
- ► Periodic signals can be attenuated infinitely
- ► Speech signals are not attenuated very well



Group 761

# Introduction

What is Active Noise Control (ANC)

Problem of ANC

# Foodlanged EVI MC

Feedforward FXLMS

Multirate Processi

Combined system

# Simulations Results

Linear Prediction

Attenuation Performance

## Discussion

Computational Cos

Acoustics and Audio Technology Dept. of Electronic Systems Aalborg University Combining a feedforward ANC algorithm with a Linear prediction (LP) scheme to compensate for delay.



# Introduction

What is Active No Control (ANC)

Problem of A

### Method

# Feedforward FXLMS

Linear Prediction Multirate Processing

Multirate Processing Combined system

# Simulations Resul

Linear Prediction Parameters

Attenuation Performan

## iscussio

Computational Cos

Acoustics and Audio Technology Dept. of Electronic Systems Aalborg University

20

► Control filter

- ► Transfer function from (1) to (2)
- Adaptive
- Cancelation path
  - ► Transfer function from (2) to (3)
  - ▶ Linear time-invariant
- ► Adaptive FXLMS-Algorithm
  - ► Optimization problem





# ntroductio

What is Active Noi Control (ANC)

Problem of Al

### Methods

Feedforward FXL

# Linear Prediction

Combined eveter

# Simulations Results

Linear Prediction

Attenuation Performan

### Discussion

Computational Co

Acoustics and Audio Technology Dept. of Electronic Systems Aalborg University ► Auto Correlation Function estimation

- ► Framelength N
- ▶ Overlap O
- Wiener-hopf equation:  $\hat{R}\bar{\hat{a}} = -\bar{\hat{r}}$ 
  - ► Inverting matrix
  - ► Levinson-Durbin
- ► Wiener filtering in cascade
  - ► Prediction length P





Multirate Processing

# Simulations Results

Acoustics and Audio Technology Dept. of Electronic Systems Aalborg University

► Multirate Processing for reducing conversion delay

- ► High sample rate
- ► Low processing rate
- ► Smaller prediction length
  - ▶ 10 instead of 43

| $f_s$ [kHz]     | 48  | 96  | 192 |
|-----------------|-----|-----|-----|
| Delay [μs]      | 900 | 450 | 225 |
| Delay [samples] | 43  | 43  | 43  |

Denmark



What is Active Nois Control (ANC)

Problem of Al

# Methods

Feedforward FXLN

Multirate Processir

Combined system

# Simulations Results

Linear Prediction

Attenuation Performan

## Discussion

Computational Co

Acoustics and Audio Technology Dept. of Electronic Systems Aalborg University

20

► Input for control filter and CP

▶ x[n]

 $\rightarrow \hat{x}[n+P]$ 

► CP delayed for compensation of error microphone delay





Combined system

Acoustics and Audio Technology Dept. of Electronic Systems Aalborg University Denmark

Delays are introduced due to sampling and reconstruction

- Delays are reduced using multirate processing
- ► Compensation by Linear Prediction using Wiener filtering
- ► Noise cancelling using a feedforward FXLMS-algorithm



What is Active Noise Control (ANC)

Problem of A

### Method

Feedforward FXLI

Multirate Processing

Combined syste

# Simulations Results

near Prediction arameters

Attenuation Performance

## Discussion

Computational Co

Acoustics and Audio Technology Dept. of Electronic Systems Aalborg University

20

► Simulink

- ► Prediction Gain
- ► Filter banks vs Fourier transform
- ► Not entirely sure what to put here



# Introductio

What is Active Nois Control (ANC)

Problem of All

### Methods

Feedforward FX

Linear Prediction

Multirate Processing

Combined syst

Simulations Results

Linear Prediction Parameters

Attenuation Performa

# Discussion

Computational Co

Acoustics and Audio Technology Dept. of Electronic Systems Aalborg University



- ▶ Optimal parameters
  - ► Framelength N = 1600
  - ► Overlap O = 1500
- ► Prediction Gain PG = 5.4 dB





# Introduction

What is Active Noi Control (ANC)

Problem of All

### Methods

Feedforward FXI

Linear Prediction

Combined syst

# Simulations Results

Linear Prediction Parameters

Attenuation Performan

# Discussion

Computational Co

Acoustics and Audio
Technology
Dept. of Electronic Systems
Aalborg University
Denmark



- ▶ Optimal parameters
  - ► Framelength N = 1200
  - ► Overlap O = 1100
- ► Prediction Gain PG = 10 dB





# Introductio

What is Active No Control (ANC)

Problem of AN

### Methods

Feedforward EXLN

Linear Prediction

Multirate Processing

# Simulations Results

Linear Predic

Attenuation Performance

# Discussion

Computational Co.

 ANC attenuation with varying system delay

- ► Feedforward FXLMS
- ► Feedforward LP FXLMS



Acoustics and Audio
Technology
Dept. of Electronic Systems
Aalborg University
Denmark



Simulations Results

Attenuation Performance

► Frequency response

- ► Feedforward FXLMS
- ► Feedforward LP FXLMS





Group 761

# Introduction

What is Active Noise Control (ANC)

Problem of A

## Methods

Feedforward FXLM

Linear Prediction

Multirate Processin

# Simulations Result

Linear Prediction Parameters

Attenuation Performance

# Discussion

Computational Cost

► Computational cost of System (instructions pr. sample)

► Linear Prediction: 55000

► Feedforward FXLMS: 4000

► Multirate: < 100

▶ Figure missing of different DSP maximum instruction pr sample at 48 kHz

Acoustics and Audio Technology Dept. of Electronic Systems Aalborg University Denmark

# Questions?

