MODULE 1. LINEAR ALGEBRA AND GRAPH THEORY

Q.No	QUESTION BANK
1.	 a) Define a vector space and a subspace of a vector space. Give an example each. b) Let V be a vector space over the field F. Show that the intersection of any collection of subspaces of V is a subspace of V.
2.	a) Define linearly dependent and linearly independent set. If W_1 and W_2 are finite-dimensional subspaces of a vector space V , then prove that W_1+W_2 is finite-dimensional and $dimW_1+dimW_2=\dim(W_1\cap W_2)+\dim(W_1+W_2)$. b) Express the vector $b=\begin{bmatrix}2\\13\\6\end{bmatrix}$ as a linear combination of the vectors, $v_1=\begin{bmatrix}1\\5\\-1\end{bmatrix}$, $v_2=\begin{bmatrix}1\\2\\1\end{bmatrix}$, $v_3=\begin{bmatrix}1\\4\\3\end{bmatrix}$.
3.	a) Write the vector $\begin{bmatrix} 1\\3\\-1 \end{bmatrix}$ as a linear combination of the vectors, $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 2\\-2\\1 \end{bmatrix}$, $\begin{bmatrix} 2\\0\\4 \end{bmatrix}$. b) Determine whether the following set of vectors is linearly independent or linearly dependent. If the set is linearly dependent, express one vector in the following set as a linear combination of the other: $\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} -1\\-2\\0\\1 \end{bmatrix}, \begin{bmatrix} -2\\-2\\7\\11 \end{bmatrix} \right\}$
4.	a) Let $v_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ a \\ 5 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 4 \\ b \end{bmatrix}$ be vectors in \mathbb{R}^3 . Determine a condition on the scalars a, b so that the set of vectors $\{v_1, v_2, v_3\}$ is linearly dependent. b) Find the value(s) of h for which the following set of vectors $\{v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} h \\ 1 \\ -h \end{bmatrix}, v_3 = \begin{bmatrix} 1 \\ 2h \\ 3h + 1 \end{bmatrix}$ is linearly independent.
5.	a) Define the basis for a vector. Find a basis for span(s), where $S = \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ -2 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 6 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} \right\}$. b) Let $S = \{v_1, v_2, v_3, v_4, v_5\}$ where $v_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \\ -1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 3 \\ 1 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 1 \\ 5 \\ -1 \\ 5 \end{bmatrix}, v_4 = \begin{bmatrix} 1 \\ 1 \\ 4 \\ -1 \end{bmatrix}, v_5 = \begin{bmatrix} 2 \\ 7 \\ 0 \\ 2 \end{bmatrix}$. Find a basis for the span(s).
6.	a) Define the null space $\mathcal{N}(A)$ and the range $\mathcal{R}(A)$ of the matrix A . Find a basis of the null space of the matrix $B = \begin{bmatrix} 1 & 1 & 2 \\ -2 & -2 & -4 \end{bmatrix}$. b) Define the rank and the nullity of a matrix. Let $A = \begin{bmatrix} 1 & 3 & 0 \\ 1 & 3 & 2 \\ 1 & 2 & 3 \end{bmatrix}$. Find a basis for the range $\mathcal{R}(A)$
	of A that consists of columns of A and also find the rank and nullity of the matrix A .

7.	
	a) Let $A = \begin{bmatrix} 1 & 0 & 3 & -2 \\ 0 & 3 & 1 & 1 \\ 1 & 3 & 4 & -1 \end{bmatrix}$. For each of the following vectors, determine whether the vectors are
	in the null space $\mathcal{N}(A)$. (a) $\begin{bmatrix} -3\\0\\1\\0 \end{bmatrix}$ (b) $\begin{bmatrix} -4\\-1\\2\\1 \end{bmatrix}$ (c) $\begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$ (d) $\begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$

Then describe the null space $\mathcal{N}(A)$ of the matrix A.

b) Let
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 6 & 4 \end{bmatrix}$$
 and let $a = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$, $b = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$, $c = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. For each of the vectors

a, b, c, determine whether the vectors are in (i) the null space $\mathcal{N}(A)$ and (ii) for the range $\mathcal{R}(A)$.

- 8. **a)** Define the following:
 - i. linear transformation
 - ii. kernel of a linear transformation
 - iii. range of a linear transformation
 - iv. rank of a linear transformation
 - v. nullity of a linear transformation
 - **b)** Prove that the null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n .

(OR)

Prove that the set of all solutions to a system Ax = 0 of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^n .

- 9. **a)** Let V and W be vector spaces over the field F and let T be a linear transformation from V into W. Suppose that V is finite-dimensional, then prove that rank(T) + nullity(T) = dimV.
 - **b)** Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation. Let $u = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $v = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$ be 2-dimensional vectors. Suppose that $T(u) = T\left(\begin{bmatrix} 1 \\ 2 \end{bmatrix}\right) = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$ and $T(v) = T\left(\begin{bmatrix} 3 \\ 5 \end{bmatrix}\right) = \begin{bmatrix} 7 \\ 1 \end{bmatrix}$. Let $w = \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$. Find the formula for T(w) in terms of x and y.
- a) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation such that $T(e_1) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $T(e_2) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $T(e_3) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, where e_1, e_2, e_3 are the standard basis for \mathbb{R}^3 . Then find the rank and nullity of T.
 - **b)** Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation such that $T\left(\begin{bmatrix} 3 \\ 2 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $T\left(\begin{bmatrix} 4 \\ 3 \end{bmatrix}\right) = \begin{bmatrix} 0 \\ -5 \\ 1 \end{bmatrix}$.
 - i) Find the matrix representation of T (with respect to the standard basis for \mathbb{R}^2).
 - ii) Determine the rank and nullity of T.

11	a)	Define a graph. Draw the diagram of a graph where the degrees of vertices are 1,1,1,2,3,4,5,7.
	b)	Define simple and multi graph with an example.
12	a)	Show that in a graph the number of vertices of odd degree is even.
	b)	Define degree of a vertex. State Handshaking property.
13	a)	Show that every simple graph has at least two vertices of the same degree.
	b)	Indicate the degree of each vertex and verify the handshaking property.

14	a)	Show that every cubic graph has an even number of vertices.
	b)	Explain a Regular graph with an example.
15	a)	Discuss the Konigsberg bridge problem.
	b)	Define with an example: (a) Subgraph of a graph (b) spanning sub graph (c) Complement of
		a graph.
16	a)	Define complete bipartite graph. Find the complement of the complete bipartite graph K _{3,3} .
	b)	Define Bipartite graph. Show that the complement of a bipartite graph need not be a
		bipartite graph.
17	a)	Define Pendant and isolated vertex with an example
	b)	Draw the complete graphs K_2 , K_3 , K_4 , K_5 and K_6 .
18	a)	Define Eulerian trail and Eulerian circuit with an example.
	b)	Define Hamiltonian path and Hamiltonian cycle with an example.
19	a)	Explain Adjacency matrix and incidence matrix with an example.
	b)	Draw the graph represented by the given adjacency matrices:
20	a)	Write the adjancency matrix for the following graphs
20	",	i)
		•
		ii)
	b)	Write the incidence matrix for the above graphs.
	, D)	Title the incidence mutrix for the above graphs.