■ Report: Diabetic Retinopathy Detection

Hackathon Submission - 2025

Team Name: [Maya Khurshid Anwar]

Date: [9th of March,25]

Introduction

Diabetic Retinopathy (DR) is a **serious eye disease** that occurs due to **diabetes** and can lead to blindness if not detected early. This project aims to **automate DR detection using AI** by classifying retinal images into **five categories**:

- 1. No_DR → No Diabetic Retinopathy
- 2. Mild → Early-stage DR
- 3. Moderate → Medium severity
- 4. **Severe** → High risk of vision loss
- 5. Proliferative_DR → Advanced stage, can cause blindness

Problem Statement

- Current medical diagnosis of DR is time-consuming & expensive.
- A large number of people lack access to specialized doctors.
- Automated detection using AI can help in early diagnosis and treatment.

This project develops a **deep learning model** to analyze retinal images and classify them into **DR** severity levels.

3 Dataset Used

- Source: Kaggle "Diabetic Retinopathy Balanced" Dataset
- Total Images: 35,000+ Fundus Retinal Images
- Classes: 5 (No_DR, Mild, Moderate, Severe, Proliferative_DR)
- Preprocessing: Images were resized to 224x224, normalized, and augmented for better accuracy.

Model Architecture

The project uses a **Pre-trained Deep Learning Model (ResNet-50)** to improve accuracy while reducing training time.

Model Details

Component	Details
Base Model	ResNet-50 (Pre-trained on ImageNet)
Custom Layers	Flatten, Dense(128, ReLU), Dense(5, Softmax)
Optimizer	Adam
Loss Function	Sparse Categorical Cross-Entropy
Batch Size	32
Image Input Size	224x224

5 Model Training

Parameter	Value
Training Epochs	3
Training Dataset Split	80% Train, 20% Validation
Training Time per Epoch	~ 2 Hours
GPU Used (Colab Free Version)	Tesla T4

Results & Accuracy

Metric	Value
Final Validation Accuracy	37.35%
Final Validation Loss	1.3542
Best Performing Class	No_DR
Worst Performing Class	Proliferative_DR

Model Prediction Example

Test Image Input:

★ Sample Test Image: "dataset/test/4.png"

Model Output:

Actual Label	Predicted Label
Moderate_DR	Mild

(Error due to class imbalance & fewer training epochs.)

Model Explainability - Grad-CAM

To understand how the model makes decisions, we used Grad-CAM (Gradient-weighted Class Activation Mapping) to visualize important regions in the images.

- Example Grad-CAM Output:
- Heatmap overlaid on Test Image

(Insert Grad-CAM visualization screenshot here)

✓ This helps explain which parts of the retina influenced the Al's decision.

Challenges Faced

- 1 Low Accuracy (37.35%) → Needs more training epochs
- **2** Imbalanced Dataset → Some classes have fewer images
- 3 Colab Training Time Issues → Free version has limited GPU access
- Model Explainability → AI decisions need medical validation