SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGE BASED ON A JOINT ATTENTION NETWORK

Erting Pan¹, Yong Ma^{1,2}, Xiaoguang Mei^{1,2}, Xiaobing Dai^{1,2}, Fan Fan^{1,2}, and Jiayi Ma^{1,2}

¹Electronic Information School, Wuhan University, Wuhan 430072,China ² Institute of Aerospace Science and Technology, Wuhan university, Wuhan, 430072, China

Motivations

Attention Mechanism

- Focus on key pieces of feature space
- Differentiate irrelevant information
- Apply in language translation
- ★ Heighten the most valuable information

Attention Mechanism in Hyperspectral Image

- Spectral dimension —— Inner spectral correlations
- Spatial domain——Spatial dependence and saliency features

3

Proposed Method

Overall Architecture

Strengthen the spectral correlation between the spectrum channels

Spectral Attention

Spectral Attention

- $g_i = \operatorname{concat}(\vec{h}_i + \vec{h}_i)$
- $e_i = \tanh(W_i g_i + b_i)$
- $\alpha_i = \operatorname{softmax}(W_i'e_i + b_i')$

Spatial Attention

Capture inner-spatial relationship

Spatial Attention

8

Experimental settings

- Compared Methods: KNN, SVM, CNN, RNN, ACNN, ARNN
- Training & Testing Set: Pavia University & Pavia Center
- ●Evaluate Criteria : OA, AA, kappa

Performance

Table 1: Classification performance of different methods for the Pavia University dataset. Bold indicates the best result.

Label	KNN	SVM	RNN	CNN	ARNN	ACNN	SSAN
OA	84.48	84.43	91.2	89.20	96.54	92.61	99.54
AA	84.88	88.59	88.6	93.20	86.52	97.51	98.41
Kappa	83.0	79.94	89.3	85.91	90.90	82.01	99.12

Table 2: Classification performance of different methods for the Pavia Center dataset. Bold indicates the best result.

Label	KNN	SVM	RNN	CNN	ARNN	ACNN	SSAN
OA	92.5	93.05	92.3	86.20	99.47	96.38	99.64
AA	92.5	85.89	89.5	91.20	91.31	93.37	98.06
Kappa	91.6	90.18	91.4	68.91	98.41	94.83	98.92

Conclusion

- Propose a joint attention network.
- Introduce the attention mechanism for spectral features and spatial features.
- Outperform better, extract more homogeneous discriminative feature.

THANKS FOR YOUR ATTENTION

Erting Pan
Electronic Information School
Wuhan University
panerting@whu.edu.cn