PARTE A

1. Dato $\alpha \geq 0,$ la serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{\left(1 + \frac{\alpha}{n}\right)^n}{n^{e}}$$

converge per

A: $\alpha > \pi$ B: $0 < \alpha < 1$ C: $\alpha \ge e$ D: $\alpha > 0$ E: N.A.

2. Data $f(x) = \sqrt{e^{\cos(x)}}$. Allora $f'(\frac{\pi}{2})$ è uguale a A: \sqrt{e} B: $\frac{1}{2}$ C: $-\frac{1}{2}$ D: 1 E: N.A.

3. Il limite

$$\lim_{x \to +\infty} (x^2 + 2) (\log (x^2 + 1) - \log x^2)$$

vale

B: 0 C: $+\infty$ D: 1 E: N.A. A: N.E.

4. L'integrale

$$\int_{-1}^{1} |1 - x| \, dx$$

vale

A: N.A. B: 3/2 C: 5/2 D: 0 E: $\sqrt{2}$

5. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sqrt{|x|}$ è

A: convessa B: derivabile ovunque C: N.A. D: iniettiva E: surgettiva

6. La funzione $f(x) = \begin{cases} \frac{x \pi}{3.14} & \text{per } x < 0 \\ \vdots & \end{cases}$

A: è derivabile, ma non continua. B: non è né continua né derivabile. C: N.A. D: è continua, ma non derivabile. E: è continua e derivabile.

7. Inf, min, sup e max dell'insieme

$$A = \{ x \in \mathbb{R} : e^x - 1 < 0 \}$$

valgono

A: $\{-\infty, N.E., 0, N.E.\}$ B: N.A. C: $\{-\infty, N.E., 0, 0\}$ D: $\{-\infty, N.E., 1, 1\}$ E: $\{-\infty, N.E., 2\pi, 2\pi\}$

8. Per t > 0 le soluzioni dell'equazione differenziale $x'(t) = te^t$ sono

A:
$$t^2e^{t^2}+c$$
 B: $e^t(t-1)+c$ C: N.E. D: $t\log(t)+c$ E: N.A.

9. Il numero complesso $z = \overline{1+i} \mathrm{e}^{-i\frac{\pi}{2}}$ vale

A: N.A. B: 1 C:
$$i$$
 D: $1+i$ E: $-1-i$

10. La retta tangente al grafico di $y(x) = \cos(3x)$ nel punto $x_0 = \frac{\pi}{18}$ vale

La retta tangente al grafico di
$$y(x) = \cos(3x)$$
 nel punto $x_0 = \frac{\pi}{18}$ vale

A: $3x + \frac{\pi}{18}$ B: N.A. C: $+\frac{1}{3} + 3\cos(3x)\left(x - \frac{\pi}{18}\right)$ D: $\frac{1}{2}\left(-3x + \frac{\pi}{6} + \sqrt{3}\right)$ E: $1 + \cos(3x)\left(x - \frac{\pi}{6}\right)$

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

15 settembre 2014

(Cognome)											(Nome)										(Numero di matricola)										

ABCDE

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

15 settembre 2014

PARTE B

1. Studiare, il grafico della funzione

$$f(x) = \sqrt{\left|\frac{x^3 - x^2}{x - 2}\right|}$$

2. Risolvere l'equazione complessa

$$z^2 = -4\overline{z}$$

3. Studiare il limite

$$\lim_{x \to +\infty} \frac{\log^3(\log(x))}{2\log(x)}$$

4. Sia $f(x): \mathbb{R} \to \mathbb{R}$ una funzione continua in tale che f(x) < 0. Si studino le seguenti affermazioni:

$$\mathcal{F}(x) = \int_0^{x^2} f(\tau) d\tau$$
 è crescente

$$\mathcal{F}(x) = \int_0^x \frac{f(\tau)}{\tau} d\tau$$
 è limitata per $x > \frac{1}{2}$