EEE-2103: Electronic Devices and Circuits

Dept. of Computer Science and Engineering University of Dhaka

Prof. Sazzad M.S. Imran, PhD
Dept. of Electrical and Electronic Engineering
sazzadmsi.webnode.com

Transistor Construction

Transistor \rightarrow

three-layer semiconductor device pnp = two p - and one n -type layers npn = two n - and one p -type layers E = emitter, C = collector, E = base

emitter layer is heavily doped, base and collector are lightly doped

total width: center layer = 150:1

sandwiched layer doping : outer layers doping <= 1:10

BJT = bipolar junction transistor bipolar = both holes and electrons participate in injection process

Transistor Operation

One p-n junction is reverse-biased Another p-n junction is forward-biased.

Large number of majority carriers diffuse across forward biased p-n junction into n-type material.

Sandwiched n-type material is very thin and has low conductivity. very small number of majority carriers \rightarrow base terminal.

For reverse-biased junction →

injected majority carriers = minority carriers in n-type base region. Larger number of majority carriers + all minority carriers in depletion region \rightarrow diffuse across reverse-biased junction into p-type.

 $I_B \approx$ microamperes, $I_E \approx$ milliamperes.

Transistor Operation

Applying Kirchhoff's current law

$$I_E = I_C + I_B$$

Collector current = majority + minority carriers Minority-current component = I_{CO} = leakage current I_{CO} = I_{C} current with emitter terminal Open

$$I_C = I_{C majority} + I_{C O minority}$$

 $I_C \approx \text{milliamperes}$ $I_{CO} \approx \text{microamperes}$ or nanoamperes

 $I_B \approx$ microamperes, $I_E \approx$ milliamperes.

Common-base terminology →

base is common to both input and output base is closest to, or at, ground potential.

$$I_E = I_C + I_B$$

biasing voltage sources establish current such that

$$V_{EE} \rightarrow \text{direction of } I_E$$

$$V_{CC} \rightarrow \text{direction of } I_C$$

Two sets of characteristics \rightarrow

- i) driving point or input parameters
- ii) output side.

Input set for CB configuration \rightarrow input current (I_E) to input voltage (V_{BE}) various levels of output voltage (V_{CB})

Output set for CB configuration \rightarrow output current (I_C) to output voltage (V_{CB}) various levels of input current (I_E)

↓ *I_C* (mA) Three basic regions of interest \rightarrow active, cutoff, and saturation Active region (unshaded area) 6 mA 5 mA Saturation region 4 mA 3 mA 2 mA $I_E = 1 \text{ mA}$ $I_{CO} = I_{CBO}$ $I_E = 0 \text{ mA}$ $V_{CB}(V)$ 10 20 30 BV_{CBO} Cutoff region

Active region \rightarrow

base-emitter junction is forward-biased collector-base junction is reverse-biased.

$$I_E = 0$$
, $I_C = I_{CO} = microamperes$

 $I_{CO} = I_{CBO} = \text{collector-to-base current }$ emitter leg open

$$I_{C} \approx I_{E}$$

effect of V_{CB} is negligible.

Cutoff region \rightarrow

base-emitter and collector-base junctions are both reverse-biased.

$$I_C = 0$$

Saturation region \rightarrow

base-emitter and collector-base junctions are forward-biased.

