실무 데이터 분석

기업멤버십 SW 캠프

9시 5분에 시작하겠습니다.

Chapter 0. 데이터 분석의 트랜드 변화

- 0. 외부 전문가
 - -> 통계 + IT
 - -> **모바일 Game** N사 => 분석 Team
 - -> 과금 유도 / <mark>잔존율</mark>
 - -> 보안 / 비용 ...
- 1. 사내 교육
- 2. 채용

0. 데이터 분석의 트랜드 변화

데이터 분석: 정보, 자료들의 집합 (데이터)을 분석하여 Insight 도출

1. 통계학 (전통 통계) 파악하고자 하는 모집단에서 분석 가능한 일부를 추출하여, 통계량을 계산한 다음 , 모집단을 추정하는 형태

2. 데이터 마이닝 (기계학습, Machine Learning) / 식스시그마

```
데이터 + 해답 -> 수식/규칙
```

0. 데이터 분석의 트랜드 변화

데이터 분석: 정보, 자료들의 집합 (데이터)을 분석하여 Insight 도출

3. 빅데이터

- 데이터 크기 : 여러대의 컴퓨터에 나누어 저장/처리/분석 하는 분산/병렬처리 기술

- 데이터 구조 : 정형 데이터 (Excel, CSV, ... / RDBMS) 비정형 데이터 (이미지, 소리, 영상, 자연어 ...)

	이름	나이	주소	
0	홍길동	40	경기	
1	이몽룡	50	서울	

Chapter 1. 통계적 데이터 분석 절차

1. 통계적 데이터 분석 절차

1. 기술적 데이터 분석 (DDA)

- 데이터를 수집 / 불러오는 단계
- 비즈니스 문제 정의
- 데이터의 **구조와 타입**을 확인 (분석의 방법이 달라진다!)
- 목표변수(Y, Output, Label)와 설명변수(X, Feature, Input) 설정
- 기술 통계량 확인 (평균 / 분산 / 최빈값 / 결측값 ...)
- 데이터 전처리

2. 탐색적 데이터 분석 (EDA)

- 목표변수와 설명변수 간 관계/연관성/유사성 트랜드를 파악
- 데이터 시각화 / 데이터의 경향성을 파악하는 단계
- 데이터 시각화 -> 주관적 해석

3. 확증적 데이터 분석 (CDA)

- 앞서 확인한 트랜드을 **가설로 수립 (귀무/대립)** 하여 **객관적인 수치(P.value)로 검증**하는 작업
- 통계적 가설 검정
- 비즈니스 인사이트 도출 (insight) / Y 주당방문횟수 <-> X age / X 주소 ...)

4. 예측적 데이터 분석 (PDA)

- 수식화 작업을 수행 (Y = 100X1 + 200X2 +40)
- 새로운 X (설명변수) 데이터가 들어올 때, Y목표변수를 예측/대응
- 시스템화

1. 통계적 데이터 분석 절차

- 1. 기술적 데이터 분석 (DDA)
- 데이터 수집

특성 요인도 (Fish Bone Chart, 어골도) : 결과 (특성)에 어떤 요인(원인)이 있는지 그래프로 표현

1. 통계적 데이터 분석 절차

- 1. 기술적 데이터 분석 (DDA)
- 데이터 수집

특성 요인도 (Fish Bone Chart , 어골도) : 결과 (특성)에 어떤 요인(원인)이 있는지 그래프로 표현 -> QCD 제조/품질에서 QC7 (품질관리도구) 로 사용

주요인자	수집가능성	중요도
근속연수	3	1
숙련도	1	9
근무시간	9	9
장비종류	9	9
수리일자	9	3
재료두께	3	3

항목명	데이터 타입	설명
근무시간	연속형 (datetime)	작업자의 근무시간 (format)
장비종류	범주형	
수리일자	연속형 (datetime)	
재료두께	연속형	

1-1. 기술적 데이터 분석 (DDA)

DDA (기술적/묘사적 데이터 분석)

- 데이터를 불러오기 -> **데이터의 구조**와 **타입** 확인
- 정형데이터의 데이터 구조
 - 1) Index (순서, 행, row): 데이터의 개수 확인
 - 2) Column (항목, 열): 데이터의 항목 확인 / 각 항목 별 **데이터 타입 (숫자/문자)**
 - 3) Value : 데이터 구성 값

index

	이름	성별	나이	Columns	
0	홍길동	남성	30		2022년9월5
1	이몽룡	남성	50		
2	성춘향	여성	35		2022-06-05
3	허준	남성	40		
•••			Values		

- 데이터의 타입 (데이터 타입에 따라 분석의 방법과 방향성이 달라짐)

- 연속형 : 통계량 계산 (기술 통계량)

- 범주형 : 항목 / 빈도수

- 결측치 (Missing Value) : 데이터의 수집/저장/처리 과정에서 누락된 값

1-1. 기술적 데이터 분석 (DDA)

DDA (기술적/묘사적 데이터 분석)

- 기술 통계량 확인
- 1) 연속형:
 - 대표 값 (중심위치): 해당 숫자 데이터을 대표할 수 있는 값 (평균 mean / 중앙값 median)

A: 2, 4, 1, 3, 5 / 평균: 3

1, 2, 3, 4, 5 / 중앙값: 3

B: 2, 4, 1, 3, 100000 / 평균: 약 20000 (이상치 Outlier: 트랜드에 벗어난 값)

1, 2, 3, 4, 100000 / 중앙값: 3

- 산포: 각 데이터들이 중심위치로 부터 얼마나 떨어져 있는가 척도 (분산 / 표준편차 / ...)

-> 중심위치로부터 얼마나 정확한가 / 신뢰성

Ex) 자동차 생산 -> 신형 G 차량 (품질 보증 기간 5년)

- 타이어 휠 하청 -> A (200,000) / B (200,000) / C (500,000)

- 타이어 휠의 평균 수명 -> A 7년 / B 10년

- 분포의 모양: 정규 분포(분포모양에 따라 분석의 방법이 달라진다!)

2) 범주형: 항목/빈도수

1-1. 기술적 데이터 분석 (DDA)

- 기술 통계량 확인
- 산포의 개념

편차 (Deviation) = 개별값 – 평균 편차 합 (Sum of Deviation) = ∑ (개별값 – 평균) 편차 제곱 합 (Sum of Square Deviation) = ∑ (개별값 – 평균)² 분산 (Variance) = ∑ (개별값 – 평균)² / n 표준편차 (Standard Deviation) = (∑ (개별값 – 평균)² / n)½

사분 범위 (Inter Quantile Range, IQR) 전체 데이터의 50% 분포해있는 구간

-> Box Plot

1-2. 탐색적 데이터 분석 (EDA)

1) 단일 변수

- 연속형 : 연속형 데이터의 분포 확인 (정규분포)

- 범주형 : 항목 / 빈도수 확인

2) 다 변수

- X: 범주형 / Y: 연속형 : 집단 간 통계량 비교

- X: 연속형 / Y: 연속형 : 두 데이터 간 상관성 확인

- X: 순서형(날짜) / Y: 연속형 : 시간(순서)에 따른 데이터의 추이

1-2. 탐색적 데이터 분석 (EDA)

1) 단일 변수

- 연속형 : 연속형 데이터의 분포 확인 (정규분포)

Histogram : 숫자데이터의 분포를 막대 그래프로 표현

(x: 해당 숫자 데이터 / y: 빈도수)

Kernel Density Estimator (확률밀도함수, KDE)

Box Plot: 데이터의 분포를 사분범위(IQR)값을 이용해 표현

- 범주형 : 항목 / 빈도수 확인

Bar Chart

1-2. 탐색적 데이터 분석 (EDA)

2) 다 변수

- X: 범주형 / Y: 연속형 : 집단 간 통계량 비교
 - -> Bar Chart / Box Plot
- X: 연속형 / Y: 연속형 : 두 데이터 간 상관성 확인
 - -> Scatter Plot (산점도)
- X: 순서형(날짜) / Y: 연속형 : 시간(순서)에 따른 데이터의 추이
 - -> Line Plot (선그래프)

1-3. 확증적 데이터 분석 (CDA)

통계적 가설 검정: 규명하고자 하는 바를 가설로 수립하여,

객관적인 통계 값 (P.value)를 이용해, 가설이 참인지 거짓인 판별하는 분석 기법

가설

- 귀무 가설 : 기각 시킬 목적으로 수립하는 가설 (**보통 가설**)
 - (-> 평균의 차이가 없다 / 연관성이 없다 / 독립적이다 / 상관성이 없다 ...)
- 대립 가설 : 채택을 목적으로 수립하는 가설
 - (-> 평균의 차이가 있다 / 연관성이 있다 / 상관성이 있다 ...)
- P value (확률 값) : 귀무 가설이 참일 확률 (0%~100%)
- 유의 수준 (5%, 0.05)
 - -> P . Value > 0.05 : 귀무가설 참 (귀무가설기각실패)
 - -> P . Value < 0.05 : 대립가설 참 (귀무가설기각)
- Ex) 연령대 간의 주당 방문횟수의 차이가 있는가?

귀무 가설 : 10대와 20대의 주당방문횟수의 평균의 차이가 없다.

대립 가설: 10대와 20대의 주당방문횟수의 평균의 차이가 있다. -> T test P. value 0.13 (13%)

1-3. 확증적 데이터 분석 (CDA)

통계적 가설 검정

- 1) 단일 변수
 - 정규성 검정 (연속형) Normal Test
 - 귀무 가설: 해당 숫자데이터의 분포가 정규분포를 따른다. (중심극한정리)
 - 대립 가설 : 해당 숫자데이터의 분포가 정규분포를 따르지 않는다.
 - 정규분포인지 아닌지 따라 분석 방법이 달라지기 때문
- 2) 다 변수
 - X : 범주형 / Y : 연속형 집단 간 평균/분산을 비교하는 경우
 - 정규 분포 :
 - 비정규 분포
 - X: 연속형 / Y: 연속형 두 숫자데이터의 상관성이 있는지 확인하는 경우
 - 정규 분포 : Pearson Test (stats.pearsonr())
 - 비정규 분포 : Spearman Test (stats.spearmanr())
 - X : 범주형 / Y : 범주형 두 항목이 서로 독립/연관 있는지 확인하는 경우
 - Chi² Test / stats.chi2_contingency()

1-3. 확증적 데이터 분석 (CDA)

통계적 가설 검정

2) 다 변수

- X : 범주형 / Y : 연속형 – 집단 간 **평균**을 비교하는 경우


```
- 가설 검정
1) 데이터 타입 -> 숫자 / 문자
2) 숫자가 포함되어 있다 -> 숫자 데이터에 대해 정규성 검정 ( stats.normaltest( ) )
      - 숫자가 없다 (문자 vs 문자 -> 두 항목간 독립성 검정):
             df_c = pd.crosstab(df1[범주형1] , df1[범주형2] )
            stats.chi2_contiengency( df_c )
3) 정규분포가 아닌 경우 (p.value < 0.05)
      -> 집단 간 평균 비교? (나머지 변수가 문자)
             -> 집단 개수 2 : stats.ranksums() / 집단 개수 3 : stats.Kruskal()
      -> 두 숫자의 상관성을 비교? (나머지 변수도 숫자)
             -> stats.spearmanr()
4) 정규분포 (p.value > 0.05)
       -> 집단 간 평균 비교? (나머지 변수가 문자) / 등분산 검정 stats.levene()
             -> 분산이 같을 때 (P.value >0.05) 2 / stats.ttest_ind(, equal_var =True) | 3 / stats.f_oneway()
             -> 두 숫자의 상관성을 비교? (나머지 변수도 숫자)
```

-> stats.pearsonr()

1-4. 예측적 데이터 분석 (PDA)

수식화 (회귀분석 -> 기계학습(데이터마이닝))

- **기계학습**: 데이터 간 연관성/관계/수식등을 컴퓨터가 학습을 통해 도출해내는 작업
- 실무적 Point :
 - 학습 능력: 데이터로부터 적절한 규칙을 찾아내는 능력
 - 일반화 능력: 학습으로부터 얻은 수식에 새로운 데이터가 들어 올 때, 잘 예측 하는 능력

- 기계학습의 핵심 3요소 :
 - 1) 데이터 (교과서): 학습의 목적에 맞게

데이터를 깔끔하게 다듬는 작업

- -> 특성 공학 (Feature Engineering)
- 2) 알고리즘 (선생님): 학습의 목적에 맞게 / 데이터 맞게 적절한 알고리즘을 선택
 - -> 회귀분석 / 결정나무 / SVM / 앙상블 /신경망 ...
- 3) 하드웨어 (학생) : 비용 (Cost)

Chapter 2. 기계학습 (Machine Learninig)

2-1. 기계 학습 개요 (Machine Learning Intro)

- 수식화 (회귀분석 -> 기계학습(데이터마이닝))
- **기계학습**: 데이터 간 연관성/관계/수식등을 컴퓨터가 학습을 통해 도출해내는 작업

기계 학습의 종류

- 1) 지도 학습 : Y(목표변수, Output, Label)와 X(설명변수, Feature, input) 간 관계를 규명하여 수식을 도출, 새로운 X 왔을 때, Y 예측 하는 학습 방식
 - 회귀 (Regression) : Y (연속형)
 - 분류 (Classification): Y (범주형)
- 2) 비지도 학습 : X(설명변수)끼리 연관성/수학적 거리/ 군집화 등 여러 기법을 이용하여 비슷한 데이터를 묶거나 찾는 학습방식
 - 연관분석 : 장바구니 분석 / 추천시스템
 - 군집분석
- 3) 강화 학습: 컴퓨터가 시뮬레이션을 통해 주어진 상황에 대해서 사용자 제공하는 적절한 보상을 획득하는 방향으로 학습하는 방식

2-1. 기계 학습 개요 (Machine Learning Intro)

- 수식화 (회귀분석 -> 기계학습(데이터마이닝))
- 기계학습: 데이터 간 연관성/관계/수식등을 컴퓨터가 학습을 통해 도출해내는 작업

지도학습 (분류모델) 절차

- 1. 데이터 전처리 (파생변수 / 이상치 처리 / 결측값 처리)
- 2. 목표변수 (Y) 와 설명변수 (X)를 선언
- 3. 학습 데이터(Train Set / 학습 능력)와 검증 데이터(Test Set / 일반화 능력)를 분할
- 4. 학습 진행
 - 특성공학 (Feature Engineering)
 - 알고리즘에 의한 학습
- 5. 평가
- 6. 적용

2-1. 기계 학습 개요 (Machine Learning Intro)

- 수식화 (회귀분석 -> 기계학습(데이터마이닝))
- 기계학습: 데이터 간 연관성/관계/수식등을 컴퓨터가 학습을 통해 도출해내는 작업

- **학습 능력 평가 :** Y_train (책에 있는 정답) Y_train_pred (공식으로 푼 정답) 일반화 능력 평가 : Y_test (새로운 책의 정답) Y_test_pred (공식으로 푼 정답)

2-2. 기계 학습 평가 (Model Evaluation)

모델 평가 기법 (Evaluation)

1) 분류에서의 평가

오차 행렬 Confusion Matrix

_	ТР	
재현율 Recall =	FN + TP (Real Positive)	

Confusion Matrix (CM)

	Real Negative	Real Positive
predict Negative	True Negative (TN)	False Negative (FN)
Predict Positive	False Positive (FP)	True Positive (TP)

Ex) 불량 제품을 분류하는 시스템 구축

- -> 불량판별 데이터 1000명 (학습)
- -> 정상 (Negative) : 950 / 불량 (Positive) : 50명
- -> Model : 대부분의 제품을 불량으로 분류

정확도: 950/1000 = 95%

정밀도: 10 / 20 = 50% // 재현율 = 10/50 = 20%

F1 = 28.5%

	실제 정상	실제 불량
예측 정상	940	40
예측 불량	10	10
	950	50

2-2. 기계 학습 평가 (Model Evaluation)

모델 평가 기법 (Evaluation)

- 2) 회귀 모델에서 평가
- R² (결정 계수) : 회귀 식 얼마나 데이터를 잘 대변하는가 (0~1)

R² = 회귀 변동 / 총 변동 = (총 변동 – 오차 변동) / 총변동

총 변동 : ∑ (실제값 - 평균)² = 회귀 변동 + 오차 변동

회귀 변동 : ∑ (예측값 – 평균)²

오차 변동 : 5 (실제값 - 예측값)2

- Mean Square Error (평균 제곱 오차)

∑ (실제값 - 예측값)² / (데이터수)

- Root Mean Square Error
- Mean Absolute Error (평균 절대 오차) ∑ |실제값 – 예측값 | / (데이터수)

Y = a X + b

2-2. 기계 학습 평가 (Model Evaluation)

- **과적합 (Overfitting) :** 학습 데이터의 모델에 의한 평가 결과가 검증 데이터의 평가 결과에 비해 매우 높게 나오는 현상

-> 새로운 데이터가 들어올 때 정확히 예측/분류하지 못하는 결과

-> 해결

- 최대한 학습이 잘 되도록 데이터를 깔끔하게 다듬는다. -> Feature Engineering
- 알고리즘이 학습과정에서 "적당히" 학습할 수 있도록 통제 -> 최적화 (Hyper Parameter Tuning)

수식화 (회귀분석 -> 기계학습(데이터마이닝))

- 특성공학 (Feature Engineering) 학습의 목적에 맞게 데이터를 깔끔하게 다듬는 작업
- 1. Scaling & Encoding: 숫자데이터의 스케일을 맞추거나, 문자데이터를 숫자로 변환하여 학습에 사용
- 2. Imputation : 결측 값 (Missing Value)을 대치하여 학습 새로운 데이터 올 때 결측 값이 있더라도 예측 또는 분류
- 3. Cross Validation: 학습 데이터를 여러 단계로 나누어 분할하여 학습
- 4. Hyper Parameter Tuning: 알고리즘이 내 수학적 구조나 학습에 발생하는 구조, 함수들을 통제
- 5. Imbalanced Data Sampling (분류): 데이터의 비율이 깨진 경우, 한쪽의 데이터를 줄이거나, 다른 한쪽의 데이터를 생성하여 비율을 맞춰주는 작업

수식화 (회귀분석 -> 기계학습(데이터마이닝))

- 특성공학 (Feature Engineering) 학습의 목적에 맞게 데이터를 깔끔하게 다듬는 작업

1. Scaling & Encoding: 숫자데이터의 스케일을 맞추거나, 문자데이터를 숫자로 변환하여 학습에 사용 Scaling: 숫자 데이터의 스케일을 맞춰주는 작업

- Standard Scaler: 평균 0 / 표준편차 1 (선형 회귀 기반 / 연속형 기반의 데이터)

- Min Max Scaler: 최소값 0 / 최대값 1 (범주형 데이터 / 비정형 데이터)

- Robust Scaler: 중앙값 0 / IQR(사분범위) 1

Encoding: 문자 데이터를 숫자 데이터로 변환

- Label Encoding : 각 범주형 항목을 정수형태로 변환

(데이터 간 서열이 발생)

- One Hot Encoding : 각 범주형 항목의 존재여부를 새로운 항목으로 만들어 1,0 값으로 처리 (Dummy)

주소	주소
경기	1
경기	1
제주	2
서울	3
강원	4
경기	1

경기	서울	제주	강원
1	0	0	0
1	0	0	0
0	0	1	0
0	1	0	0
0	0	0	1
1	0	0	0

Model_pipe

- 수식화 (회귀분석 -> 기계학습(데이터마이닝))
- 특성공학 (Feature Engineering)

2. Imputation

- 결측값을 다른 값으로 대치하여 데이터 공백 없이 학습을 수행
- 결측값 (Missing Value): NaN / NA / None / 공백 ...
- 제거 : df1.dropna()
- 대치 : df1['col'].fillna()
- 보간 : df1['col'].interploate(' ')

- from sklearn.impute

- SimpleImputer : 단순 특정 통계량 / 원하는 값으로 대치
- KNNImputer : KNN(K 최근접 이웃)알고리즘을 이용해 결측치를 대치

- 수식화 (회귀분석 -> 기계학습(데이터마이닝))
- 특성공학 (Feature Engineering)
- 3. Cross Validation (교차검증)
 - K Fold : 특정 K 개수 만큼 데이터를 나누어 교차로 모델을 생성해 학습
 - Stratified K Fold: (분류) 특정 클래스의 비율을 유지하며, K 개수 만큼 교차로 모델을 생성해 학습
 - 데이터에서 특정 개수 만큼 검증 데이터를 나누어 교차로 모델을 생성해 학습
 - Train Set > 학습 / 학습 능력 평가 (Train / Validation Set)
 - Test Set -> 일반화 성능 평가

- 수식화 (회귀분석 -> 기계학습(데이터마이닝))
- 특성공학 (Feature Engineering)
- 4. Hyper Parameter Tuning (매개변수튜닝)
- Hyper Parameter : 알고리즘이 학습을 수행하면서 갖는 수학적인 구조 알고리즘 내 구성되어 있는 구조들
- Random Search : 알고리즘 내 있는 파라미터 값을 무작위로 부여하여 가장 적절한 파라미터를 찾는 기법
- Grid Search : 사용자들이 파라미터 값의 범위를 지정하여, 특정 범위에 대해서 파라미터를 부여하여 적절한 모델을 찾는 기법

- 수식화 (회귀분석 -> 기계학습(데이터마이닝))
- 특성공학 (Feature Engineering)
- 5. Imbalanced Data Sampling
 - 비율이 다른 범주형 Y에 대해 분류를 진행 할 때, 데이터의 비율을 맞춰주는 작업
 - 학습하는 과정에서 학습데이터에 적용하여 사용 -> Pipe Line (Sklearn)
- 1) Under Sampling: 데이터의 비율이 적은 쪽으로 데이터를 맞춰주는 작업
 - Random Under Sampling : 데이터의 비율이 많은 쪽에 값을 무작위로 줄이는 방법
 - Tomek's Link: 인접합 Class(서로 다른 범주형 항목)들을 묶어, 밀집되어 있는 부분의 데이터를 제거
 - CNN (Condensed Nearest Neighbor):

비율이 많은 쪽에 데이터에서 밀도가 높은 부분의 데이터를 제거

- One Sided Selection: Tomek' Line + CNN

인접한 데이터 대해서는 Tomek Link 기법으로 데이터를 지우고, 밀집된 다수의 데이터클래스에 데이터를 삭제

◀ Tomek Link 기법

- 수식화 (회귀분석 -> 기계학습(데이터마이닝))
- 특성공학 (Feature Engineering)
- 5. Imbalanced Data Sampling
 - 비율이 다른 범주형 Y에 대해 분류를 진행 할 때, 데이터의 비율을 맞춰주는 작업
 - 학습하는 과정에서 학습데이터에 적용하여 사용 -> Pipe Line (Sklearn)
- 2) Over Sampling: 데이터의 비율이 큰 쪽으로 데이터를 생성
 - Random Over Sampling : 무작위하게 데이터의 비율이 많은 수에 맞춰 생성
 - SMOTE (Synthetic Minority Over Sampling Technique) :

 KNN 기법을 활용해, 비율이 적은 쪽 데이터를 K개의 인접데이터 수 만큼 묶어,
 묶인 데이터 내 중심위치를 찾아 새로운 데이터를 생성
 - ADASYN (Adaptive Synthetic Sampling) :
 - SMOTE 기법을 이용해 데이터를 생성하는 단계에서 임의의 작은 값을(감마 확률 밀도 함수) 더하여 사실적인 데이터로 생성

2-4. 학습 알고리즘

- 수식화 (회귀분석 -> 기계학습(데이터마이닝))
- 최적화 (Optimization): 문제 상황에서 여러 해결방안 중 가장 최적의 해결방안을 찾는 방법
- 기본적으로 머신러닝(기계학습)에서 데이터로부터 학습을 통해 수식화를 진행 할 때, 목표 값을 잘 예측/분류하는 수식을 만드는 과정에서 사용 -> Best 수식을 찾자!

- 수학적 접근:

특정 함수의 값을 **최소화(또는 최대화)**시키는 최적의 수식 값(최적의 파라미터)의 조합을 찾는 문제 최적화 문제는 기본적으로 최소화(Minimization)와 최대화(Maximization)으로 나눠 볼 수 있다.

- 최소화(Minimization) : 함수(수식)의 **목표변수(Y, Label, Output)**를 **최소가** 되게끔 파라미터(계수와 절편, Weight 가중치)값을 찾는 문제

-> 오류 / 오차 / 비용 / 손실 ...

- 최대화(Maximization) : 함수(수식)의 **목표변수(Y, Label, Output)**를 **최대가** 되게끔 파라미터(계수와 절편, Weight 가중치)값을 찾는 문제

-> 이윤 / 점수 / ...

Y(습도) = 100 * X(온도) + 20

2-4. 학습 알고리즘

- 수식화 (회귀분석 -> 기계학습(데이터마이닝))
- 최적화 (Optimization): 문제 상황에서 여러 해결방안 중 가장 최적의 해결방안을 찾는 방법
- 기본적으로 머신러닝(기계학습)에서 데이터로부터 학습을 통해 수식화를 진행 할 때, 목표 값을 잘 예측/분류하는 수식을 만드는 과정에서 사용 -> Best 수식을 찾자!

- 데이터 분석:

- 머신 러닝에서 Model(수식, 함수)를 구축하여 분류/예측을 진행 할 때
- Model을 생성 할 적절한 알고리즘을 선택하는 문제

- Ex) 공장 / Y 온도 <-> X1(두께) / X2(습도) / X3(강도)
- 1) 어떤 알고리즘으로 학습을 수행 해야할지 결정 (회귀분석 / 결정나무 / 앙상블 / 신경망 ...)
- 2) 해당 알고리즘으로 도출해 낼 수 있는 가장 적절한 Model 수식 함수를 도출
- 3) Y 값을 가장 낮게끔 하는 X를 도출

- 수식화 (회귀분석 -> 기계학습(데이터마이닝))
- 최적화 (Optimization): 문제 상황에서 여러 해결방안 중 가장 최적의 해결방안을 찾는 방법
- 기본적으로 머신러닝(기계학습)에서 데이터로부터 학습을 통해 수식화를 진행 할 때, 목표 값을 잘 예측/분류하는 수식을 만드는 과정에서 사용 -> Best 수식을 찾자!

- 데이터 분석:

- Model을 생성 할 적절한 알고리즘을 선택하는 문제 (Y = 100 X + 20)

최적화의 다양한 기법

- Least Square Method (최소제곱법)
- Gradient Decent Method (경사하강법)
- Newton's Method
- Gauss Newton's Method
- Bayesian Method
- Markov Bayesian Method

- 수식화 (회귀분석 -> 기계학습(데이터마이닝))
- Least Square Method (최소 제곱 법, OLS)
- 데이터를 대표하는 회귀선을 찾을 때, 회귀선이 예측한 예측값과 실제 데이터에 있는 실제값의 차이(잔차, Residual, Error) 제곱의 합 또는 평균이 최소화(Minimization)되는 방향으로 파라미터를 결정하는 방법
- 실제 값 : 데이터로 부터 수집된 Y (Y_train, Y_test)
- 예측 값 : 모델에의해 계산된 값 Y' (Y_train_pred, Y_test_pred)
- 잔차 : Y Y'
- RSS (Residual Sum of Square) = ∑ (Y Y') ² -> 최소화 0 = ∑ (Y - (**a** X + **b**)) ²
- -> Y' = a X + b
 - 대수적 기법 : 오차항이 최소가 되는 지점에서의 a,b를 찾기 위해, 오차항을 각각의 a,b에 대해 편미분 연립방정식을 통해 a,b를 찾는 방법

Minimum = ∑ (Y - Y') ² -> 미분 값 0

- 해석학적 기법 : 오차항을 행렬로 표현하여 행렬의 유사역행렬(Pseudo Inverse)을 이용해 계산

- 수식화 (회귀분석 -> 기계학습(데이터마이닝))
- Gradient Descent Method (경사 하강 법)
- 점진적인 반복 계산을 통해 함수가 최소가 되는 파라미터를 찾아주는 방법
- 그래디언트(Gradient): 함수가 증가하는 방향과 크기를 표현 (점진적인 반복)
- Y = a X + b / 적절한 a, b 찾는 것
- 초기에 임의의 a,b값을 세팅 -> Gradient 가 감소하는 방향으로 점진적 반복계산을 통해 a,b를 갱신
- 실제값 예측값 = 최소 가 될 때 까지 반복하여 계산

- Learning Rate (학습율): 얼마나 점진적으로 파라미터(a,b)를 변화해 가면서 계산할 지 곱해주는 값
- 적절한 학습율을 찾아야만 실제값과 예측값이 최소가 되는 a,b 도출

- 수식화 (회귀분석 -> 기계학습(데이터마이닝))
- 회귀 알고리즘
- Linear Regression (선형 회귀 알고리즘) : Y= A X + B / 최소 제곱 법 + 경사 하강 법
 - 회귀: 특정 객체의 값이 집단의 평균과 같은 일정한 값으로 돌아가려는 경향
 - 회귀 계수 (Regression Coefficient) 찾는 것이 목표 (A, B)
 - A -> 회귀 계수 (Coefficient) / B -> 절편 (intercept) -> 가중치 Weight
- 일반 선형 회귀 (Ordinary Linear Regression) : 예측값과 실제값의 차이인 RSS 가 최소가 되는 방향으로 가중치를 찾는 기법 (최소 제곱 법 + 경사 하강 법)
 - 규제선형회귀 (Regularization Regression) : 과적합(Overfitting) 현상을 방지하여 규제 항을 추가해 가중치를 찾는 기법
 - Ridge : 특정 항목의 Weight값을 적절하게 낮추어 규제 (상대적으로 큰 회귀 계수를 통제)
 - Lasso: 예측 영향력이 적은 Weight을 제거하여 규제 (변수 선택법 / Column이 매우 많은 데이터)
 - Elastic Net : 상대적으로 큰 회귀계수는 낮추고, 영향력이 매우 적은 항목은 제거

Y습도 = 100000 x 온도 + 200 x 재료두께 + 150 x 강도 + 0.0001 x 회전수 + ..

- 회귀 알고리즘 종류
- 1) Linear Regression : 연속형 / 정규분포 / 균일하고 일정한 연속형
- 2) Regularization Regression : 연속형 / 정규분포 / 균일하고 일정한 연속형
- 3) Decision Tree Regreesor : 분포 모양에 제약 X / 연속형-범주형 / **과적합**
- **4) Bagging Ensemble** (Random Forest)
 - Ensemble: 여러가지 알고리즘을 결합 모델
- **5)** Boosting Ensemble (GB / AdaB / XGB / LightGB)
- 6) Support Vector Machine Regressor (SVM, SVR): 항목 수 많으나, 데이터 개수가 적은 경우 / 연속형

- 분류 알고리즘 종류
- 1) Decision Tree : 분포 모양에 제약 X / 연속형-범주형 / **과적합**
- **2) Bagging Ensemble** (Random Forest)
- **3) Boosting Ensemble** (GB / AdaB / XGB / LightGB)
- 4) Support Vector Machine (SVM)
- 5) KNN: 분류 / 밀도 기반 / 학습 X
- 6) Voting

Etc) Naïve Bayes / Logistic Regression / DNN ...

- Decision Tree Model (의사결정나무모델)

설명변수(X)들의 규칙,관계,패턴을 파악해 목표변수를 분류하는 나무 구조의 모델을 생성

- 장점:
 - 대용량 데이터 잘 작동
 - 데이터 전처리에 대한 영향이 적다 (이상치가 많거나, 비모수적 데이터에 대해 잘 작동)
 - 결과 해석이 쉽다
- 단점:
 - 과적합 (Overfitting) 잘 발생
 - 분류경계에서 오류가 발생할 가능성이 높다

Ex) 공정 불량 여부 (Y) <-> 온도/습도/두께/ ... (X)

정상 700 / 불량 300 -> 1000개

- Decision Tree Model (의사결정나무모델)

설명변수(X)들의 규칙,관계,패턴을 파악해 목표변수를 분류하는 나무 구조의 모델을 생성

- 분류 기준:

qini : 불순도 지표를 계산하여 해당 값이 낮아지는 방향으로 학습

entropy : 질서정연한 방향으로 학습 (깔끔히 데이터를 분류할 수 있는 방향)

- Tree 구조:

Node: 데이터가 나눠지는 기점

Root Node: 나무구조가 시작되는 기점

Child Node: 상위 노드로부터 파생되어 나온 기점

Parent Node: 자식노도의 상위 노드

Depth : 노드가 분할되어 내려가며 발생한 나무 층

Leaf (Terminal Node): 가장 끝부분에 위치한 기점

Branch: 최상위 기점부터 맨 끝 기점까지 연결된 일련의 노드

Ensemble Model

기존에 존재하는 여러 가지 알고리즘을 결합 또는 조합하여 새로운 강력한 하나의 모델 생성

1) Voting Model: 서로 다른 알고리즘을 결합하는 방법 / 가장 좋은 성능의 알고리즘을 찾아 사용

2) Bagging Model: 학습 데이터에서 서로 다른 복원추출(Sub Sample)된 데이터를 학습하여 결합/투표하여 학습하는 방법 (Random Forest)

Ensemble Model

기존에 존재하는 여러 가지 알고리즘을 결합 또는 조합하여 새로운 강력한 하나의 모델 생성

3) Boosting Model: 알고리즘을 구성할 때 마다 오차를 줄이는 방향으로 복원추출학습을 수행하여 모델을 향상시키는 알고리즘 (Gradient Boosting / Ada / CatBoost ...)

- Ensemble Model

- 3) Boosting Model: 알고리즘을 구성할 때 마다 오차를 줄이는 방향으로 복원추출학습을 수행하여 모델을 향상시키는 알고리즘 (Gradient Boosting / Ada / CatBoost ...)
- 1. Ada Boosting (Adaptive Boosting) : 이전에 학습의 결과에서 잘 반영되지 않은 데이터에 대해 Weight(가중치)를 부여하여 복원 추출을 수행
 - 앞서 분류를 적절히 수행하지 못한 데이터에 대해 계속 가중을 주며 학습의 성능을 향상
 - 데이터에 이상치가 존재하는 경우, 이상치에 대해 계속 Weight(가중치)를 부여하여 모델이 구성 -> 사전에 구성한 데이터가 깔끔하지 않다면, 지속적 학습에 대해 성능이 개선되지 않을 가능성이 높다.
 - 앞서 분류된 결과에 높은 Weight가 부여되는 경우엔 Weight가 낮게 부여된 데이터에 대해 오분류 할 가능성이 높다

- Ensemble Model

- 3) Boosting Model: 알고리즘을 구성할 때 마다 오차를 줄이는 방향으로 복원추출학습을 수행 하여 모델을 향상시키는 알고리즘 (Gradient Boosting / Ada / CatBoost ...)
- 2. Gradient Boosting: Ada boosting 모델에서 이상치가 있거나 너무 높게 부여된 Weight에 대 해 주변데이터가 오분류될 가능성을 극복하고자 분류 결과에 Weight(가중치)를 부여할 때 마다 Weight에 의한 모델의 오차가 최소가되는 방향으로 (Gradient Descent, 경사하강법)을 이용하여 오분류 값을 최소화하는 방식으로 학습

 - 앞서 사용한 Ada Boosting 모델보다 오차에 대해 더욱 민감한 모델을 구성 복원추출된 데이터를 학습한 Model에 오차를 수식으로 계산하여 갱신 -> 시간이 더 많 이 소요
 - 순차적으로 Model이 업데이트 되기 때문에 나중에 학습된 모델에 대해서는 과적합이 발 생가능이 높다

- Ensemble Model

- 3) Boosting Model: 알고리즘을 구성할 때 마다 오차를 줄이는 방향으로 복원추출학습을 수행하여 모델을 향상시키는 알고리즘 (Gradient Boosting / Ada / CatBoost ...)
- 3. XGboosting: Gradient Boosting 모델에서 발생하는 Overfitting 과적합 현상을 방지하기 위해, 규제항(Regularization)을 추가하여 학습을 수행
 - 복원 추출한 데이터의 오차가 줄어들게 끔 학습을 하다보면 각 Tree 모델에 대해 분류 구조가 복잡해 질 수 있음
 - 규제항을 추가하여 과적합 방지
 - 오차를 계산하는 함수를 다양하게 적용 -> 하이퍼 파라미터 튜닝
- 4. Light Boosting : 복원추출된 데이터의 양을 조절하는 알고리즘을 활용해 시간과 자원의 소요를 효과적으로 줄여줌
 - 대용량 데이터에 대해 절약된 시간과 자원으로 학습이 가능
 - 복원 추출된 데이터를 근사치를 이용해 데이터의 양을 조절
 - 자원 절약과 동시에 Overfitting 해결 (하이퍼 파라미터)

- Ensemble Model

- 3) Boosting Model: 알고리즘을 구성할 때 마다 오차를 줄이는 방향으로 복원추출학습을 수행하여 모델을 향상시키는 알고리즘 (Gradient Boosting / Ada / CatBoost ...)
- 5. CatBoosting (Categorical Boosting) : 범주형 데이터를 One Hot Encoding을 통해 변수를 구성하여 처리, 이 One Hot 값을 잘 학습 시켜주기 위해 X데이터들에 대해 clustering 작업을 별도로 수행하며 복원추출 및 학습을 수행

- 회귀 알고리즘
- Linear Regression

회귀: 특정 값이 집단의 평균과 같은 일정한 값으로 돌아가려는 경향 여러 개의 설명변수(X)와 하나의 목표변수(Y, 연속형)간 상관 관계를 모델링 하는 기법 - 적절한 Y를 예측하기 위한 X앞의 **회귀계수(Regression Coefficient**)를 찾는 것

 $Y' = a X1 + b -> minimum \sum (Y - Y')^2$

- 학습에 있어서 차수가 높아지면 Overfitting -> 규제 (Regularization)
- 최소제곱법을 이용해 회귀계수를 계산 (전통 통계)
- 컴퓨터 알고리즘으로는 **경사하강법을 이용해** 회귀 계수(Weight)를 계산

- 회귀 알고리즘
- Regularization Regression

규제 선형 회귀 : 선형 회귀 모델에 규제를 추가하여 회귀 계수를 조절해 과적합을 방지하여

Lasso 회귀: 예측 영향력이 적은 X (Feature)에 대해 회귀 계수를 0으로 만들어 예측 시 해당 X가

선택되지 않게 규제 (변수선택법) Y = 0.00000023 X1 + 123 X2 + 104 X3 + ...

Ridge 회귀: 상대적으로 큰 회귀계수를 조절하여, 회귀계수 값을 줄여, 규제하는 방법 (Overfitting 방지)

Y = 20000 X1 + 123 X2 + 104 X3 + ...

Elastic Net 회귀: X 설명변수가 많은 데이터 셋에 대해, 영향이 적은 설명변수를 줄이며, 회귀 계수 값 통제

- Time Series (시계열 분석)
- 예측의 여러 기법
 - 1. 정성적 기법 (주관적 예측법)
 - 시장조사법: 제품의 서비스 출시 전 소비자의 의견조사/시장의견조사를 통해 수요를 예측하는 방법
 - 한정된 표본 / 통계적인 지표들을 이용해 단기 예측 (기술통계량)
 - 거시적 환경 분석 / 산업 환경 분석 / 기업 환경 분석 / 소비자 환경 분석
 - 델파이법 : 수요예측을 전문가의 직관을 이용해 수행
 - 기존의 자료가 없는 경우 / 매우 주관적 / 장기 예측
 - 비교유추법 : 수요예측을 전문가의 직관을 이용해 수행
 - 기존의 자료를 바탕으로 판단 / 단기 예측

2. 정량적 기법 (객관적 예측법)

- 시계열 모형
- 인과 모형 : 목표 변수에(수요량 / 판매량) 대한 직,간접적인 영향을 미치는 설명변수를 파악하는 모형 (회귀분석 -> 회귀계수 / 시각화 / 가설검정)
- 성장 곡선 모형 : 특정 시간이 지남에 따라 특정 변수의 변화량을 측정한 데이터의 패턴을 분석하는 모형

- Time Series (시계열 분석)

- Time Series (시계열 분석)
- 시간에 따른 연속형 변수의 예측 및 Trend 파악
- 특정 시간 간격을 가진 주기 : Lag
- 각 Lag에서 Data Point를 찾는다
- 시계열 패턴
- 1. 추세 (Trend): 데이터가 장기적으로 증가하거나 감소할 때 발생하는 일정한 패턴 (전체적인 데이터에 걸쳐서 발생)
- 2. 계절성 (Seasonality): 1년 중 특정한 때, 주중 특정 요일에 발생하는 특정 요인이 시계열에 영향을 줄 때 발생하는 패턴
- 3. 주기 (Cycle): 빈도가 정해지지 않은 형태로 데이터가 증가하거나 감소할 때 발생하는 패턴
- 4. **잡음 (Noise) :** 시간에 따라 독립적인 데이터
 White Noise : 통계적, 기술적 분석이 가능한 정도의 Noise

2-6. System 구축

- System 구축
- Dash Library를 활용한 Web Application 구성
- Web Framework : Web 서비스 제작할 때 사용하는 도구
- Python 에서 Web 제작할 때 사용하는 여러가지 Web Framework 을 제공 (라이브러리)
- Web: MVC 패터닝 (Model (Data) / View (UX/) / Control)
- Python 대표적인 Web Framework:
 - 1. Django : 고 수준의 웹을 개발 / 각종 웹을 구성하고 있는 구성요소에 대한 모듈이 함수로 제공
 - 풀 프레임 워크 / 정교하게 웹 제작 / 대규모 프로젝트
 - 2. Flask : 마이크로 웹 프레임워크 / 간단한 Web 개발 할 수 있도록
 - 직관적 / 제작속도가 빠르다
 - 3. FastAPI : 매우 빠르고 간단한 형태로 Web 제작 프레임워크
 - 문서자동생성 / 직관 / 속도가 빠르다
 - 4. Dash: Flask 기반으로 제작 / 데이터 분석에 관련한 웹 프레임워크
 - 데이터 분석과 관련한 대시보드 / 분석 보고서 / 인터렉티브한 형태의 데이터 표현을 쉽고 직관적으로 구성
 - Dash : Plotly + React + Flask 구성 되어 있음
 - Callbcak 기능을 이용해 dynamic

2-6. System 구축

- System 구축
- Dash Library를 활용한 Web Application 구성
- Web Framework : Web 서비스 제작할 때 사용하는 도구
- Python 에서 Web 제작할 때 사용하는 여러가지 Web Framework 을 제공 (라이브러리)
- Web: MVC 패터닝 (Model (Data) / View (UX/) / Control)
- Python 대표적인 Web Framework:
 - 1. Django : 고 수준의 웹을 개발 / 각종 웹을 구성하고 있는 구성요소에 대한 모듈이 함수로 제공
 - 풀 프레임 워크 / 정교하게 웹 제작 / 대규모 프로젝트
 - 2. Flask : 마이크로 웹 프레임워크 / 간단한 Web 개발 할 수 있도록
 - 직관적 / 제작속도가 빠르다
 - 3. FastAPI : 매우 빠르고 간단한 형태로 Web 제작 프레임워크
 - 문서자동생성 / 직관 / 속도가 빠르다
 - 4. Dash: Flask 기반으로 제작 / 데이터 분석에 관련한 웹 프레임워크
 - 데이터 분석과 관련한 대시보드 / 분석 보고서 / 인터렉티브한 형태의 데이터 표현을 쉽고 직관적으로 구성
 - Dash : Plotly + React + Flask 구성 되어 있음
 - Callbcak 기능을 이용해 dynamic

	Α	В	С	D
Α	0	5	10	20
В		0	30	20
C			0	10
D				0

	AB	С	D
AB	0	20	20
C		0	10
D			0

	AB	CD
AB	0	20
CD		0

Chapter 3. Python 프로그래밍 언어

- 변수: 데이터를 담고 다니는 공간 (변수를 선언한다)
- 자료 구조 : 데이터를 들고 다니는 상자들의 종류
 - List []: 데이터의 추가/삭제/변경 가능 / 데이터 순서/중복 허용
 - Tuple (): 데이터의 추가/삭제/변경 불가능 / 데이터 순서/중복 허용
 - Set { } : 데이터의 추가/삭제/변경 가능 / 데이터 순서/중복 불가능
 - Dictionary {key: value}: 키와 값의 매칭형태로 사용 -> 정형데이터 기본 틀이되는 기초 구조

-데이터 타입:

- 연속형(숫자) : int / float
- 범주형(문자) : str / object
- 논리형(참/거짓) : bool (True/ False)

```
구문 (Statement):
    -조건문 :
                if (조건식):
                        (종속문장)
                elif (조건식2) :
                        (종속문장)
                else :
                        (종속문장)
    -반복문 (While / For)
                While (조건):
                        (종속문장)
                For (반복):
                        (종속문장)
```

- 함수: 특정 기능을 수행하는 코드
- 라이브러리: 특정 목적을 달성하기 위한 함수들의 집합

- 라이브러리 종류

Numpy (Numeric + Python): 모든 숫자데이터의 통계/수학/과학 연산에 관련된 함수들의 집합

Pandas (Panel + Data Set): 정형데이터의 통계/처리 관련 함수들의 집합

Matplot (Matlab + Plot) : 모든 숫자데이터의 시각화 관련된 함수들의 집합

Seaborn: 정형데이터의 통계 관련 시각화 함수들의 집합

Scipy (Science + Python): 숫자데이터의 응용 통계 연산 (가설검정)과 관련된 함수들의 집합

Scikit Learn (Science Python Tool Kit Learning):

정형데이터의 기계학습 (Machine Learning)과 관련된 함수들의 집합

데이터 수집: bs4 / selenium / request ...

비정형 데이터 분석: Tensorflow (Tensor) / Keras / Pytorch ...

- Pandas 정형 데이터 처리관련 함수
- 데이터 불러오기 pd.read_csv(' ') / pd.read_excel(' ') / pd.read_csv(' ' ,encoding='cp949')
- **데이터 저장** df1.to_csv(' ') / df1.to_excel(' ')
- 데이터 추출
 - 행단위 추출 df1.head() / df1.tail() / df1.iloc[n:m]
 - 열단위 추출 df1['Col1'] / df1[['Col1', 'Col2']]
- 데이터 정렬 df1.sort_values(by='col1', ascending = True/False)
- 데이터 필터
 - df1.loc[(cond1) & (cond2)] / df1.loc[(cond1) | (cond2)]
- 데이터 요약
 - df1.pivot_table(index='범주형', values='연속형', aggfunc='통계량')
- 데이터 병합
 - df1.merge(df1, df2, on='key col', how = 'inner / outer / left / right')
- 데이터 재구조화
 - df1.melt(id_vars='key col')

- 데이터 병합

.,	<i>-</i>	
이름	나이	성별
홍길동	30	남
이몽룡	36	남
성춘향	24	여

이름	부서	주소
홍길동	Α	서울
이몽룡	В	경기
허준	Α	제주
변사또	Α	경기

Inner Join

이름	나이	성별	부서	주소
홍길동	30	남	Α	서울
이몽룡	36	남	В	경기

Outer Join

이름	나이	성별	부서	주소
홍길동	30	남	Α	서울
이몽룡	36	남	В	경기
성춘향	24	여		
변사또			Α	제주
허준			Α	경기

Left Join

이름	나이	성별	부서	주소
홍길동	30	남	Α	서울
이몽룡	36	남	В	경기
성춘향	24	여		

ID	Α	В
001A	1000	2000
001B	30	10
001C	20	20

	분류	값
001A	Α	1000
	В	2000
001B	Α	30
	В	10
0001C	Α	20
	В	20

- Pandas 정형 데이터 처리관련 함수

-**날짜 데이터 처리:** pd.to_datetime(df1['날짜'], format='%Y%m%d')

연도 추출 : df1['날짜타입'].dt.year

월 추출 : df1['날짜타입'].dt.month

요일 추출 : df1['날짜타입'].dt.day_name()

- 결측치 처리 :

결측치 확인 : df1.isnull().sum()

결측치 제거 : df1.dropna()

결측치 대치 : df1.fillna(특정값)

- 시각화 라이브러리 관련 함수

import seaborn as sns import matplotlib as mpl import matplotlib.pyplot as plt

그래프 옵션

그래프 저장 : plt.savefig('image1.png')

그래프 사이즈 : plt.figure(figsize= [10,5])

그래프 축 설정 : plt.ylim([n : m]) / 축을 n에서 m사이의 범위로 설정

그래프 이름 : plt.title() / 그래프 이름 설정

- 시각화 라이브러리 관련 함수 한글 글꼴 설정

Colab

글꼴 설치 및 설정 !sudo apt-get install -y fonts-nanum !sudo fc-cache -fv !rm ~/.cache/matplotlib -rf # 이후 런타임 재실행 mpl.pyplot.rc('font',family='NanumBarunGothic')

Jupyter

Window: mpl.rc('font', family= 'Malgun Gothic')

Mac : mpl.rc('font', family= 'AppleGothic')

- 시각화 라이브러리 관련 함수

단일변수

```
빈도수 확인: sns.countplot( data= df1, x='Col1' )

분포 확인: sns.histplot( data= df1, x='Col1' )

sns.displot( data= df1, x='Col1' , kde=True)

sns.displot(data=df1, x='Col1', kind='kde')

상자그림 (사분범위): sns.boxplot( data= df1, x='Col1' )
```

다 변수

```
X: 범주형 / Y: 연속형: sns.barplot(data=df1, x='범주형', y='연속형')

X: 연속형 / Y: 연속형: sns.scatterplot(data=df1, x='연속형', y='연속형')

sns.lmplot(data=df1, x='연속형', y='연속형')

sns.pairplor(data=df1)

X: 순서형(시간) / Y: 연속형: sns.lineplot(data=df1, x='순서형', y='연속형')

sns.pointplot(data=df1, x='순서형', y='연속형')
```

scikit Learn

학습 데이터 검증 데이터 분할

from sklearn.model_selection import train_test_split

파이프 라인 구축

from sklearn.pipeline import PipeLine

스케일링

from sklearn.preprocessing import StandardScaler # 평균 0 / 표준편차 1 스케일링 from sklearn.preprocessing import MinMaxScaler # 최소값 0 / 최대값 1 스케일링 from sklearn.preprocessing import RobustScaler # 중앙값 0 / IQR 1 스케일링

결측 대치

from sklearn.impute import SimpleImputer # 평균 대치 from sklearn.impute import KNNImputer # 모델 대치

교차검증 & 하이퍼파라미터 튜닝

from sklearn.model_selection import GridSearchCV

Imbalanced Data Sampling

from imblearn.under_sampling import RandomUnderSampler from imblearn.over_sampling import RandomOverSampler

학습 모델 저장 / 불러오기

import pickle
pickle.dump(best_model, open('model.sav', 'wb'))
pickle.load(open('model.sav', 'rb'))

Chapter 4. 제조 공정/품질 데이터 분석

- 공정 데이터 분석 -> QCD (Quality / Cost / Delivery)
- 품질 (Quality): 제품 생산 및 품질 검사에서 나오는 데이터를 활용해 품질을 향상시키기 위한 개선 작업
- QC7 : 적정수준의 품질을 관리하기 위해 데이터로부터 확인하는 7가지
- 1) 특성요인도 (Fish Bone Chart) : 결과(특성)에 어떤 원인(요인)이 있는지 그래프로 표현 (4M 주 요인 4가지 : Man / Material / Method / Machine)
- 2) 파레토도 (Pareto Plot): 현장에서 발생하는 주 핵심 지표(결점수/불량수/VOC..) 그래프로 표현 / 막대그래프(빈도수) + 선 그래프(누적확률) - 전체 80% 결과는 20% 원인에 의해 발생한다.
- 3) 관리 항목 (Check Sheet): 핵심 지표들을 범주형 항목별로 구분하여 정리한 표 (점검용/기록용)
- 4) 산점도 (Scatter Plot) : 공정에서 발생하는 주요 인자를 좌표평면위에 점 형태로 표현하여 변수 별 상관관계 연관성 등을 파악
- 5) 히스토그램 (Histogram) : 공정작업 / 품질검사 단계에서 발생하는 연속형 자료들의 분포를 확인
- 6) 충별화 (Stratification): 데이터를 특성(범주형)에 따라 분류하여 확인
- 7) 관리도 (Control Chart) : 공정이나 품질에서 발생하는 데이터의 이상치를 확인하고 빠르게 조치하기 위해 사용하는 시각화 기법

- 공정 데이터 분석 -> QCD (Quality / Cost / Delivery)
- 1) 특성요인도 (Fish Bone Chart) : 결과(특성)에 어떤 원인(요인)이 있는지 그래프로 표현 (4M 주 요인 4가지 : Man / Material / Method / Machine)

- 공정 데이터 분석 -> QCD (Quality / Cost / Delivery)
- 1) 특성요인도 (Fish Bone Chart)
- 변수 중요도 (1/3/9 척도로 실무자와 분석가들이 스코어링 -> 종합하여 평가)

주요인자	수집가능성	중요도
근속연수	3	1
숙련도	1	9
근무시간	9	9
장비종류	9	9
수리일자	9	3
재료두께	3	3

- 변수 정의서 (변수 중요도에서 선택된 인자를 정리)

항목명	데이터 타입	설명
근무시간	연속형 (datetime)	작업자의 근무시간 (format)
장비종류	범주형	
수리일자	연속형 (datetime)	
재료두께	연속형	

- 공정 데이터 분석 -> QCD (Quality / Cost / Delivery)
 - 2) **파레토도 (Pareto Plot) :** 막대그래프(빈도수) + 선 그래프(누적확률)

- 공정 데이터 분석 -> QCD (Quality / Cost / Delivery)
 - 7) 관리도 (Control Chart): 공정이나 품질에서 발생하는 데이터의 이상치를 확인하고 빠르게 조치하기 위해 사용하는 시각화 기법
- 품질 변동 원인 (품질 불량 결과에 대해)
 - 우연 원인 : 피치 못할 원인
 - 이상 원인 : 통제 가능한 (피할 수 있는) 원인

통제 가능한 원인들 중, 이상상태 (Out of Control)를 찾아내는 목적

- 관리도의 종류
 - 계량치 관리도 : Xbar -R : 평균과 범위(최소-최대)를 이용하여 시각화 한 관리도
 - Xbar -σ: 평균과 표준편차를 이용하여 시각화 한 관리도

(계량치 : 실수형태로 표현 가능 한 연속형 숫자 / 온도,강도,습도 ...)

- 계수치 관리도 : p 관리도 (불량률 관리도)

pn 관리도 (불량 개수 관리도)

c 관리도 (결점수 관리도)

u 관리도 (단위 당 결점수 관리도)

(계수치: 정수형태로 표현될 수 있는 연속형 데이터 / 불량 개수, 결점 수, ...)

Chapter 5. 데이터 분석 과제 수행

0. Team Building

- 1. 팀장 및 팀 이름 정하기 (응원가, 팀 구호, ...)
- 2. 서로의 MBTI 물어보기 (취미, 좋아하는 음식, ...)
- 3. 팀 채널 구성 (카카오톡 / 슬랙 / 등...)
- 4. 선호 과제 2순위 까지 설정

팀장의 역할:

- 타임 키퍼 (PPT나 과제 제출 시간 엄수)
- 역할 배분 및 회의 의견 조율

유아용품(CRM) / 간편식공정(제조) / 포장회사(유통) / 척추병원(의료)

AE	RE	C딤	D딤
이준엽	김영우	남정윤	이용석
박상범	정연재	구본하	안주강
박태윤	양승호	변지은	정예은
박은영	이다련	김현영	전준우
		기세스	

DEL

A FI

김예슬

OFI

0. Team Building

DNA: 이용석 안주강 정예은 전준우 / 팀장: 정예은

- 과제 : 척추의료

기억해'조': 박상범 이준엽 박태윤 박은영 / 팀장: 박상범

- 과제 : 포장

타코야끼 : 남정윤 구본하 변지은 김현영 김예슬 / 팀장 : 남정윤

- 과제 : 간편식

영우형"해조": 김영우 정연재 양승호 이다련 / 팀장 : 김영우

- 과제 : 유아용품

0. 평가 항목

- 프로젝트 결과물
- 1. 개인 보고서 (프로젝트 흐름에 따른 자유형식)
 - 개인 분석 Code + 정리 PPT (100%)
- 2. 팀 발표 PPT (발표에 사용되는 정형 형식)
 - 분석흐름의 논리성
 - 분석기법의 다양성
 - 개선안 독창성
 - 발표 및 보고서 전달성
 - 팀 협동성
- 3. 팀 활동 (팀 별 활동비 100,000) : 인증 사진
 - 팀 협동성

- 1. "과제명" 설정
- 2. 추진 배경 수립
- 3. 현상 파악 및 목표 설정
- 4. 잠재 인자 도출
- -> 10월 13일 오전 10시 변수정의서 제공
- -> 10월 13일 오후 14:00 발표
- -> 발표 자료는 12:00까지 송부 0001jmp@gmail.com (송부 후 수정가능)
- -> 발표는 15분 이내

1. "과제명" 설정

"대상 + 개선방법 + 효과(구체적 목표)"

【Best 사례】

- ✓ 프레스 속도 실시간 제어기술 개발을 통한 Loss Time Zero화
- ✓ 적조발생 및 확산 예측시스템 구축을 통한 수산피해 최소화
- ✓ 이천시 CCTV 사각지대 실시간 모니터링 및 사전예측을 통한 범죄예방 강화
- ✓ 장애인 콜택시 배차 최적화 알고리즘 구축을 통한 대기시간 단축

【 Worst 사례 】

- ✓ 에너지설비 전력 원가절감
- ✓ 배기시스템 효율 향상 기술 개발
- ✓ 강남구 소매사업 상권분석
- ✓ 대형 컨테이너선용 에너지 절감 기술개발
- ✓ 오피스텔 임대 서비스 현황 분석

2. 추진 배경 수립

- -> 이 과제를 "왜" 수행하는가 에 대한 근거자료
- -> 목표 전략 / 시장 / 고객 니즈 등을 연계하여 작성
- -> 비즈니스 시나리오에 대한 도메인("Domain") 공부

〈추진배경 사례〉

Mass 고객에 대한 무선통신서비스의 경쟁심화 및 정부의 통신요금 인하 의지 등은 우리회사의 성장을 위협하고 있음

당사가 Monopolize 해왔던 XX 시장은 정체기에 들어있으며 이를 대체하여 급성장 중인 XX 시장은 타 업체들과 공유하고 있는 상황임 < 통신 서비스 관련 정부 정책 >

*이동통신 품질을 유지해 IT강국의 면모를 유지하는 동시에 현 정부의 통신요금 20% 인하 공약을 실현하겠다" - XXX 방통위원장 "서민들이 체감할 수 있는 요금인하 정책을 마련하겠다" - XXX 미래기획위원장

"MVNO 도입을 통한 경쟁 활성화, 보조금의 요금인하 전환, 결합상품 활성화, 무선데이터 요금 인하 등을 중심으로 요금인하를 추진하겠다"

- XXX 방통위원장

Source: 방송통신위원회, '유·무선 통신서비스 가입자 현황', 미래기획위원회와 방송통신위원회 공동 주최 '이동통신 요금정책 세미나 '

향후, ~~~~~ 를 통해 ~~ 를 하고 ~~~~~~ 필요성 있음

3. 현상 파악 및 목표 설정

- 과제를 통해 해결 해야 할 현상과 문제를 구체적으로 기술

- 목적과 목표 설정

목적 : 분석의 방향성

목표 : 목적을 달성하기 위한 구체적인 수치

○ 가중치 : 지표가 여러 개일 경우 합이 100%가 되도록 작성

○ 현수준 : 과제 착수 前 12개월 ~ 36개월을 기준으로 산정

○ 목 표:점진적 증가가 아닌, 과거 개선율을 월등하게 뛰어 넘는 도전적인 목표 설정

추저지고 (//pi)	가중치	현수준	목표수준		
측정지표 (KPI)			′18년	′19년	′20년
지역별 분리구매 대비 할인구매율 (%)	40%	2.0	2.7	3.3	3.8
해외법인 본사 통합구매 비율(%)	40%	3	42	46	50
외주운영 선진화 지표(점)	20%	-	85	90	95

〈현상파악 사례〉

○ 출력단 회로 오차 증가 시 시스템 정밀도가 감소하며, 차량 적용 평가 시 고객 불만족 증대 예상

○ 전체 불량률 중 고객불량률 25%를 차지하며 셔틀라인의 불량률이 전체의 68.4%로 집중 개선 필요

201X년 공정별 고객불량 현황

		(<u>20XX. 01 ~ 20XX. 12</u>)		
구 분	불량수량(EA)	점유율(%)	불량개선	• 불량 수량 or 건수 기준 WORST 불량 선정, 집중개선
셔틀라인	201	68.4		
용접라인	38	12.9		E 0, E 0 E
도장라인	7	2.4		
-				• 현장 품질 문제 발생시 대응PROCESS
기 타	48	16.3	품질의식	• 연성 품질 문제 월생시 내등PROCESS 정립 및 품질의식 향상
TOTAL	294	100		영립 关 품글의국 경영

▶ 개선 목표: XXX 출력단 오차 13% → 5% │ 고객불량률 25% → 10%

4. 잠재인자 도출

- 특성 요인도 (Fish Bone Chart)
- 잠재원인 우선순위화
- 변수 정의서

잠재원인	중요도	분석 가능성
X1	9	2
X2	2	2
Х3	7	7
X4	2	7
X5	8	9
X6	3	3

과제명:~ [실습 템플릿]

○ ~~~~~ 핵심 메시지

그래프, 그림, 도형, 표,설명자료 14 pt, 12 pt 그래프, 그림, 도형, 표,설명자료 14 pt, 12 pt

○ ~~~~~ 핵심 메시지

그래프, 그림, 도형, 표,설명자료 14 pt, 12 pt 그래프, 그림, 도형, 표,설명자료 14 pt, 12 pt

추진방향 또는 목적 기술 과제수행의 필요성 강조 *16 pt 볼드체, 컬러 강조

○ ~~~~~ 헤드라인 16 pt

그래프, 그림, 도형, 표,설명자료 14 pt, 12 pt 그래프, 그림, 도형, 표,설명자료 14 pt, 12 pt

○ ~~~~~~ 헤드라인 16 pt

그래프, 그림, 도형, 표,설명자료 14 pt, 12 pt 그래프, 그림, 도형, 표,설명자료 14 pt, 12 pt

지표명과 개선목표를 설정 *16 pt 볼드체, 컬러 강조

잠재원인 도출 [실습 템플릿]

○ ~~~~~ 헤드라인 16 pt

잠재원인우선순위화 [실습 템플릿]

○ ~~~~~ 헤드라인 16 pt

잠재원인	중요도	분석가능성	합계	선정