Database (principi teorici)

Classi quarte Scientifico - opzione scienze applicate
Bassano del Grappa, Febbraio 2023
Prof. Giovanni Mazzocchin

Cos'è un database

- 1) Tutti interagiamo con i database quotidianamente: operazioni quali visualizzare il proprio estratto conto tramite un sistema home banking, o prenotare un biglietto aereo, o fare acquisti online richiedono sicuramente degli accessi ad uno o più database. Un esempio più «scolastico» potrebbe essere il registro elettronico
- 2) L'evoluzione dei database ha costituito una parte fondamentale nel progresso dell'informatica: immaginate quanto potesse essere difficile e scomodo gestire i dati anagrafici di un comune in forma cartacea...
- 3) Gli esempi elencati sopra possono essere considerati **applicazioni tradizionali** dei database, in quanto l'informazione memorizzata nei database è prevalentemente testuale o numerica
- 4) Ci sono altri esempi di applicazioni più moderne dei database: la gestione dei **big data**, i **sistemi informativi geografici**, le **data warehouse** ... li vedrete all'università

Cos'è un database

- 1. Un database è una raccolta di dati logicamente correlati
- 2. Esempio: una rubrica telefonica.
- 3. Al giorno d'oggi, una rubrica telefonica può essere memorizzata dal database interno al telefono, su un computer tramite un foglio di calcolo *Excel*, oppure tramite *Microsoft Access* etc...
- 4. Un database, per essere considerato tale, deve avere queste proprietà:
 - 1. non deve essere una raccolta di dati casuali privi di significato
 - 2. deve rappresentare un aspetto della **realtà**: ad esempio, i dati relativi alle analisi del sangue effettuate in un determinato ospedale
 - 3. deve essere progettato per un utilizzo da parte di qualcuno (persona) o qualcosa (applicazione software)
 - 4. i cambiamenti che avvengono nella realtà devono riflettersi nel database: ad esempio, l'arrivo di un nuovo dipendente in un'azienda deve riflettersi nell'inserimento dei dati relativi al dipendente all'interno di un database aziendale

Cos'è un database

1. La dimensione di un database può andare dai pochi *kilobyte* di una rubrica telefonica al numero di byte inimmaginabile necessario per la gestione di tutti i dati di *Amazon*

- 2. Chiaramente, i dati di *Google, Facebook* o *Amazon* sono memorizzati su centinaia/migliaia di computer (*server*) sparsi nei loro *data center* in giro per il mondo
- 3. I database che ci interessano non sono gestiti manualmente, ma da *applicazioni software* particolari

DBMS

- Un **DBMS** è un sistema software estremamente complesso e *general-purpose*, che permette la creazione e la manutenzione di uno o più database. È general-purpose perché permette di creare qualsiasi tipo di database
- Un DBMS permette:
 - la **definizione** del database, che consiste nello stabilire quali sono le strutture impiegate per memorizzare i dati e i vincoli che intercorrono tra di essi
 - la costruzione del database, ossia l'inserimento dei dati
 - la manipolazione del database, ossia la modifica dei dati precedentemente memorizzati
 - la condivisione del database tra diversi utenti e programmi
- I programmi interagiscono con un database tramite:
 - **query**: permettono di leggere i dati in base ad alcuni criteri
 - transazioni: permettono di scrivere su un database, ossia di modificarne alcuni dati

Modellazione di alcune realtà

- Un database per la gestione delle informazioni relative alla realtà «Liceo Brocchi» necessita sicuramente, tra le altre cose, di:
 - informazioni anagrafiche degli studenti
 - informazioni anagrafiche dei docenti e del personale ATA
 - informazioni relative ai dipartimenti e agli indirizzi
 - l'orario
 - la composizione dei consigli di classe: se, ad esempio il 02/12/2023 è previsto un consiglio straordinario per la classe 3B, la notifica dovrebbe arrivare soltanto ai docenti del consiglio della 3B
 - informazioni relative ai libri di testo adottati nella scuola per materia, per indirizzo, per anno, etc...

Modellazione di alcune realtà

- Possiamo già iniziare a descrivere le «cose» della realtà «scuola». Queste cose sono chiamate **entità**: in questo caso potremmo avere a che fare con le entità **studente**, **docente**, **classe**, **libro di testo**, **compito in classe**
- E se la realtà fosse un ospedale? Allora, molto probabilmente, le entità sarebbero: paziente, personale medico, reparto, visita medica, referto
- È evidente che le entità non saranno oggetti isolati, ma collegati
- Si dice che tra le entità sussistono delle **relazioni**, che vedremo in seguito

Operazioni su un database

- Quali operazioni potremmo effettuare sul database del Liceo Brocchi?
 - cercare tutti gli studenti di cognome Rossi
 - cercare tutti gli studenti di una determinata classe
 - inserire un nuovo studente in una classe
 - cercare le anagrafiche di tutti i docenti di una determinata classe
 - cercare i compiti in classe di Matematica di una classe il cui voto è superiore alla media della classe
 - calcolare il numero di insufficienze in tutte le materie umanistiche allo Scientifico
 - calcolare il numero di insufficienze in tutte le materie scientifiche al Classico
 - estrarre i dati anagrafici dei docenti che insegnano sia allo Scientifico sia al Classico
 - calcolare il numero di studenti per comune di residenza
 - calcolare il numero di docenti per comune di residenza
 - trovare il comune di residenza con più studenti frequentanti
 - eliminare le informazioni relative ai docenti appena andati in pensione
 - cercare la classe con la media voti di Informatica più alta di tutta la scuola
 - aggiornare il numero di telefono di un docente

Alternative ai database

- Prima della nascita e dello sviluppo della scienza dei database, le informazioni relative ad una realtà venivano gestite da programmi specifici che manipolavano direttamente dei file (https://github.com/Cyofanni/high-school-cs-class/blob/main/C/file IO/hospital/hospital_management.c)
- Probabilmente succedeva una cosa del genere:
 - l'ufficio «didattica» utilizzava un programma che scriveva e leggeva dei file contenenti le informazioni relative ai risultati scolastici degli studenti e ai docenti
 - l'ufficio «statistiche» utilizzava un programma che calcolava statistiche di vario tipo
 - chiaramente, entrambi gli uffici necessitavano delle informazioni relative agli studenti
 - quindi, l'ufficio didattica e l'ufficio statistiche avevano entrambi un file *studenti* contenente le stesse cose
- Questo approccio spreca risorse di *storage* e può portare a inconsistenze molto gravi. C'è infatti il rischio che l'ufficio didattica cambi un dato di uno studente e l'altro ufficio si dimentichi di effettuare la stessa modifica!
- Inoltre, la struttura dei file veniva specificata nel codice del programma. Per cambiare la struttura del file era dunque necessario cambiare il programma

Diagrammi ER - Entità

- Possiamo descrivere una realtà utilizzando un diagramma **ER** (*Entity-Relationship*)
- Le entità sono le «cose» della realtà, mentre le associazioni (relationship) sono dei collegamenti logici tra le entità
- La progettazione dei diagrammi ER è chiamata progettazione concettuale
- Ecco degli esempi di entità per la realtà «azienda». Le proprietà delle entità sono dette «attributi»

19/05/2023

Diagrammi ER – associazione di cardinalità 1:1

- Entità: EMPLOYEE e DEPARTMENT
- Chiamiamo l'associazione con un verbo inglese alla terza persona singolare
- Intuitivamente: un impiegato «dirige» (manages) al più 1 dipartimento, e un dipartimento è diretto da minimo 1 impiegato e massimo 1 impiegato
- Questo tipo di associazione viene chiamato 1 a 1

Diagrammi ER – associazione di cardinalità 1:n

- Entità: CITY, REGION
- Intuitivamente: una città fa parte di una regione, e una regione può contenere diverse città
- Questo tipo di associazione viene chiamato 1 a molti

Diagrammi ER – associazione di cardinalità n:n

- Entità: DOCTOR, PATIENT
- Intuitivamente: un medico può seguire più pazienti, un paziente può essere seguito da più medici
- Questo tipo di associazione viene chiamato molti a molti

