Analysis 3

Lev Leontev

February 2, 2023

Contents

1. Measure		1	
	1.1	Introduction	1
	1.2	Lebesgue Outer Measure	2

Analysis 3 Measure

1. Measure

1.1 Introduction

We want to generalize the notion of the *length* towards all the subsets of \mathbb{R} . Such a generalized function is usually called *measure*. But, unfortunately, such a function does not exist.

Theorem 1.1. There exist no such function $\mu: 2^{[0,1]} \to [0,+\infty)$ that satisfies the following properties:

- 1. The function is non-negative;
- 2. It's countably additive;
- 3. It's monotonic: the measure of a subset is not greater than the entire set;
- 4. Translation does not change the measure;
- 5. The length of the unit interval is 1.

Proof. First, several definitions:

- Step 1. Let's define the following equivalence relation: if x, y are from the unit interval, we'll say that $x \sim y$ if $x y \in \mathbb{Q}$.
- Step 2. Let's choose $N \subset [0, 1/3]$ such that it contains *precisely one* element from each equivalence class. (Such an N exists if the axiom of choice holds true).
- Step 3. For all $r \in \mathbb{Q}$ define $N_r = N + r$.
- Claim 1. The sets N_R are congruent to N and are pairwise disjoint.
 - Proof. The sets are congruent by definition. Let's prove that they are pairwise disjoint.

Assume that $x \in N_{r_1} \cap N_{r_2}$ for some $r_1, r_2 \in \mathbb{Q}$. Then $x - r_1 \in N$, $x - r_2 \in N$, but $(x - r_1) \sim (x - r_2) \implies r_1 = r_2$.

Claim 2.

$$\left[\frac{1}{3}, \frac{2}{3}\right] \in \bigcup_{r \in \mathbb{Q} \cap [0, 2/3]} N_r$$

Proof. If $x \in [1/3, 2/3]$, then $\exists ! y \in N$ such that x = y + q for some $q \in \mathbb{Q}$, as N contains exactly one representative from each of the equivalence classes. It is easy to see that such $q \in [0, 2/3]$.

We arrive at the following conclusion:

$$\frac{1}{3} = \mu([1/3, 2/3]) \leqslant \mu(\bigcup_{r \in \mathbb{O} \cap [0, 2/3]} N_r) = \sum_{r \in \mathbb{O} \cap [0, 2/3]} \mu(N_r) \leqslant 1$$

What is $\mu(N)$ then? If $\mu(N) = 0$, then

$$\mu\Big(\bigcup_{r\in\mathbb{Q}\cap[0,2/3]} N_r\Big) = \sum_{r} 0 = 0$$

If $\mu(N) = \varepsilon > 0$, then the sum is $+\infty$. But it's supposed to be in [1/3, 2/3]?!

Consequence. We cannot generalize the notion of length to all subsets of real numbers.

Analysis 3 Measure

1.2 Lebesgue Outer Measure

Definition 1.1. If $I \subset \mathbb{R}$ is an interval, then l(I) = the length of I. If I is unbounded, then $l(I) = \infty$.

Definition 1.2 (Outer Measure).

$$m^*: 2^{\mathbb{R}} \to [0, +\infty]$$

$$m^*(A) = \inf \left\{ \sum_{j=1}^{\infty} l(I_j) \mid I_j \text{ — open intervals, } A \subseteq \bigcup_{j=1}^{\infty} I_j \right\}$$

In words, it's the infimum of all countable covers of A. (A countable sum either converges or diverges to infinity).

Remark. This is certainly not a measure — otherwise, it would contradict Theorem 1.1.

Example. If A is countable, then $m^*(A) = 0$.

Proof. Let's choose an arbitrary $\varepsilon > 0$ and prove that $m^*(A) \leq 2\varepsilon$. Let's choose a cover of the points with segments of lengths ε , $\varepsilon/2$, $\varepsilon/2^2$, and so on. Then

$$m^*(A) = \inf\{\dots\} \leqslant \varepsilon + \frac{\varepsilon}{2} + \frac{\varepsilon}{2^2} + \dots = 2\varepsilon$$

Proposition 1.2. If A is an interval, then $m^*(A) = l(A)$.

Proof. a) A is a closed interval, A = [a, b].

1. $m^*(A) \leq b - a$. To prove this, we can cover A with a single interval:

$$(a-\varepsilon,b+\varepsilon) \implies \sum l(I_j) = b-a+2\varepsilon$$

. Now take $\varepsilon \to 0$.

- 2. $m^*(A) \ge b a$. Suppose we an infinite cover of A by open intervals. Since A is a compact set, we can choose a finite subcover. The case of a finite cover with open intervals is obvious.
- b) If A is an open or semiclosed interval, we can approximate it from both sides by closed intervals.
- c) If A is unbounded, then all of the covers would have infinite sum, and thus the infimum will be infinite as well.

Chapter #1 2 of 2 Author: Lev Leontev