- 19 Potassium chloride may be used to flavour food. Potassium chloride contains trace amounts of a radioactive isotope of potassium (K). This decays into an isotope of calcium (Ca) by beta decay.
 - (a) (i) Complete the nuclear equation for this decay:

40
K \rightarrow $^{-20}$ Ca + $^{-0}\overline{\nu}_{e}$

(2)

(ii) Calculate the energy, in MeV, released when a nucleus of potassium-40 decays into a nucleus of calcium.

	Mass/u
Potassium nucleus	39.963998
Calcium nucleus	39.962591
Electron	0.00054858
Electron neutrino (\overline{v}_e)	negligible

(5)

E	Energy released =	MeV
(iii) Explain why there is a range of energies for th		. MeV
		. MeV
(iii) Explain why there is a range of energies for th		. MeV
(iii) Explain why there is a range of energies for th		. MeV

(b) A sample of potassium chloride initially contains 1.10×10^{22} atoms of potassium-40.

half-life of potassium- $40 = 1.25 \times 10^9$ years 1 year = 3.15×10^7 s

(i) Show that the activity of this sample is about 1.9×10^5 Bq.

(3)

(ii) It is claimed that after a period of 50 years, the activity of the sample would be less than the activity of a typical school source.

Assess the validity of this claim. Your answer should include a calculation.

activity of a school source = $1.85 \times 10^5 \text{Bq}$

(2)