Aprendizaje Supervisado en Machine Learning

Double-click or double-tap this to edit

El aprendizaje supervisado es una técnica de *machine learning* en la que un modelo aprende a partir de datos etiquetados para hacer predicciones. Se subdivide en dos categorías principales: algoritmos de regresión y algoritmos de clasificación.

Algoritmos de Regresión

Los algoritmos de regresión son utilizados para predecir valores continuos. Los más comunes incluyen:

- Regresión lineal: Ajusta una línea a los datos minimizando el error.
- **Árboles de decisión**: Modelos basados en estructuras jerárquicas que dividen el espacio de entrada en regiones homogéneas.
- **Random Forest**: Conjunto de múltiples árboles de decisión para mejorar la precisión y reducir la varianza.
- **Máquinas de soporte vectorial (SVM)**: Utilizan hiperplanos para separar los datos y pueden usarse para regresión mediante la técnica SVR.

Algoritmos de Clasificación

Estos algoritmos asignan datos a categorías específicas:

- **Regresión logística**: Se usa para problemas binarios al modelar la probabilidad de una clase.
- **Árboles de decisión**: Similares a los de regresión, pero usados para clasificación.
- Random Forest: Variante de los árboles de decisión con mejor generalización.
- **SVM**: Encuentra el mejor hiperplano que separa las clases en el espacio de entrada.
- KNN (K-Nearest Neighbors): Clasifica una instancia según la mayoría de sus vecinos más cercanos.

Principales Parámetros

Para ajustar estos algoritmos en Python, se pueden modificar varios parámetros, como:

- Regresión Lineal: fit intercept, normalize
- Árboles de Decisión: max_depth, min_samples_split, min_samples_leaf

Random Forest: n_estimators, max_features

SVM: C, kernel, gammaKNN: n_neighbors, weights

Como científicas de datos

Hiperparámetros: Configuraciones previas al entrenamiento, como el número de árboles
en Random Forest o el valor de C en SVM para tratar de encontrar los mejores modelos
para nuestros datasets.
Validación cruzada: Técnica para evaluar el modelo dividiendo los datos en múltiples
conjuntos de entrenamiento y prueba.
Underfitting: Cuando el modelo es demasiado simple y no captura la estructura de los
datos.
Overfitting: Cuando el modelo se ajusta demasiado a los datos de entrenamiento y tiene
bajo rendimiento en datos nuevos.

Estrategias para Evitar el Overfitting

Para evitar el overfitting en modelos de machine learning, podemos aplicar varias estrategias:

1. Regularización

Agrega una penalización a los coeficientes del modelo para evitar que se ajusten demasiado a los datos de entrenamiento. Algunas técnicas incluyen:

- o L1 (Lasso) y L2 (Ridge) en regresión lineal.
- o Parámetro C en SVM, que controla la tolerancia al error.

2. Limitación de la Complejidad del Modelo

Reduce la capacidad del modelo para aprender patrones irrelevantes:

- o En árboles de decisión: ajusta max_depth, min_samples_split y min_samples_leaf.
- En Random Forest: usa max_features para limitar el número de características analizadas por cada árbol.

3. Aumento de Datos (Data Augmentation)

Si el conjunto de datos es pequeño, puedes expandirlo aplicando transformaciones como rotaciones, recortes o modificaciones en imágenes o texto.

4. Uso de Validación Cruzada

Divide los datos en varios subconjuntos y entrena el modelo varias veces para evaluar su desempeño en diferentes combinaciones de datos.

5. Eliminación de Características Irrelevantes

Reducir la cantidad de variables evita que el modelo aprenda ruido innecesario:

 Usa Análisis de Componentes Principales (PCA) o algoritmos de selección de características.

6. Uso de Dropout (para Redes Neuronales)

En redes neuronales profundas, Dropout desconecta aleatoriamente neuronas durante el entrenamiento para evitar la sobredependencia en ciertos patrones.

7. Aumento del Conjunto de Datos

Si es posible, recolectar más datos de entrenamiento ayuda al modelo a aprender de manera más generalizada.

La clave es encontrar el equilibrio adecuado entre sesgo y varianza,	para que el modelo			
generalice bien en datos nuevos sin perder precisión.				