Apellido y nombre:

N° de libreta:

N° hojas entregadas:

Álgebra Lineal Computacional .UBA EXACTAS					
1	2	3	4	5	Calificación

Examen final – 21 de julio de 2025

Ejercicio 1. Sea A una matriz con coeficientes reales de $n \times 2$. Sean U, Σ y V las matrices que dan su descomposición SVD, con u_i la columna i-ésima de U, $\Sigma_{ii} = \sigma_i$ (con $\sigma_i \neq \sigma_j$ si $i \neq j$), y v_i la columna i-ésima de V. Sea $\tilde{A} = \sigma_1 u_1 v_1^t$ una aproximación de rango 1 de A.

- a) Si $x \in \mathbb{R}^2$ es un vector perteneciente al círculo unitario, mostrar que el error cometido al calcular Ax como $\tilde{A}x$ está acotado por σ_2 .
- b) Sea $B = A^t A$ y $x \in \mathbb{R}^2$ elegido al azar. Mostrar que el siguiente algoritmo converge al vector v_1 cuando $N \to \infty$:
 - Para $k \in 1, \ldots, N$:

$$-x = Bx$$

$$-x = x/\|x\|$$

c) Escriba una rutina que calcule la mejor aproximación de rango 1 de una matriz real de $n \times 2$ en el sentido de la norma 2. Toda función que involucre operaciones más complejas que el producto matricial debe ser definida explícitamente.

Ejercicio 2. Sea una matriz $A \in \mathbb{R}^{n \times n}$ con n autovalores mayores a cero y distintos entre sí. Sean $\lambda_1, \ldots, \lambda_n$ sus autovalores y v_1, \ldots, v_n los autovectores asociados. Mostrar que:

- a) $\{v_1, \ldots, v_n\}$ forma una base de \mathbb{R}^n . Justificar.
- b) La matriz $C \in \mathbb{R}^{n \times n}$ cuyas columnas están dadas por los vectores v_1, \ldots, v_n es inversible y cumple que AC = CS, con S una matriz diagonal con $\lambda_1, \ldots, \lambda_n$ en la diagonal.
- c) La matriz A es diagonalizable.

Ejercicio 3. Sea $A \in \mathbb{R}^{n \times n}$ una matriz tal que $A^t = A = A^{-1}$.

- a) ¿Cuánto vale el determinante de A? ¿Es A diagonalizable?
- b) ¿Cuáles son sus posibles autovalores?
- c) Calcular la matriz Σ de la factorización SVD de A. Justificar.
- d) Calcular los autovalores de la siguiente matriz.

$$B = \begin{pmatrix} 5/10 & -5/10 & -1/10 & -7/10 \\ -5/10 & 5/10 & -1/10 & -7/10 \\ -1/10 & -1/10 & 98/100 & -14/100 \\ -7/10 & -7/10 & -14/100 & 2/100 \end{pmatrix}$$

Sugerencia: usar los items anteriores.

Ejercicio 4. Sea $\{q_1, q_2, q_3, q_4, q_5\}$ una base ortonormal de \mathbb{R}^5 , A una matriz de 5×3 con columnas q_1, q_2, q_3 y el vector $b = q_1 + 2q_2 + 3q_3 + 4q_4 + 5q_5$.

- a) Mostrar que el sistema Ax = b no tiene solución. Plantear las ecuaciones normales y hallar la solución \hat{x} de cuadrados mínimos para dicho sistema.
- b) Calcular el error cometido en la aproximación.
- c) Mostrar que $A^{\dagger}=A^{t},$ siendo A^{\dagger} la pseudoinversa de A.

Ejercicio 5. Probar la desigualdad de Cauchy-Schwartz: $|x^*y| \leq ||x||_2 ||y||_2$.

Justifique todas sus respuestas.