Computational methods applied to Particle Physics Higgs Boson Machine Learning Challenge

Z. Kassabov

July 2014

Contents

- Introduction
 - Higgs fermionic decay
 - The Higgs Boson Machine Learning Challenge
- Machine Learning
 - Types of learning
 - An example
 - Dimensionality
- Oetection of the Higgs boson decays
 - Data collection at ATLAS
 - Data simulation
 - The target process
- Implementation of a classifier
 - The classification problem
 - Chosen method

Contents

- Introduction
 - Higgs fermionic decay
 - The Higgs Boson Machine Learning Challenge
- Machine Learning
 - Types of learning
 - An example
 - Dimensionality
- Oetection of the Higgs boson decays
 - Data collection at ATLAS
 - Data simulation
 - The target process
- Implementation of a classifier
 - The classification problem
 - Chosen method

- Mass of 125 GeV.
- Spin 0.
- Decays $\gamma\gamma$, ZZ and W^+W^- as predicted by SM.
 - The Brout–Englert–Higgs mechanism is responsible for the mass of the W and Z bosons.

- Mass of 125 GeV.
- Spin 0.
- Decays $\gamma\gamma$, ZZ and W^+W^- as predicted by SM.
 - The Brout–Englert–Higgs mechanism is responsible for the mass of the W and Z bosons.

- Mass of 125 GeV.
- Spin 0.
- Decays $\gamma\gamma$, ZZ and W^+W^- as predicted by SM.
 - The Brout-Englert-Higgs mechanism is responsible for the mass of the W and Z bosons.

- Mass of 125 GeV.
- Spin 0.
- Decays $\gamma\gamma$, ZZ and W^+W^- as predicted by SM.
 - The Brout-Englert-Higgs mechanism is responsible for the mass of the W and Z bosons.

Fermion couplings

The SM Higgs couples to fermions, via Yukawa couplings.

- Branching ratios predicted to scale with the mass squared of the decay products.
 - Most abundant fermionic decay channels:

$$H \to \tau^+ \tau^-$$

$$H \to b \bar b$$

 Some theories predict a different mechanism for the masses of the leptons (eg, more than one Higgs field).

Fermion couplings

The SM Higgs couples to fermions, via Yukawa couplings.

- Branching ratios predicted to scale with the mass squared of the decay products.
 - Most abundant fermionic decay channels:

$$H \to \tau^+ \tau^-$$

$$H \to b \bar b$$

 Some theories predict a different mechanism for the masses of the leptons (eg, more than one Higgs field).

Evidence for fermion couplings

- 2013, ATLAS experiment.
 - Significance of 4.1σ in the $\tau\tau$ channel.
- June 2014, CMS experiment.
 - Significance of 3.4σ in the $\tau\tau$ channel.
 - Significance of 4.0σ combined with the bb channel.

Evidence for fermion couplings

- 2013, ATLAS experiment.
 - Significance of 4.1σ in the $\tau\tau$ channel.
- June 2014, CMS experiment.
 - Significance of 3.4σ in the $\tau\tau$ channel.
 - Significance of 4.0σ combined with the bb channel.

The Higgs Boson Machine Learning Challenge

The goal of the challenge is to explore the use of Machine Learning tools to improve the discovery significance of the experiment.

- Simulated samples of data are provided.
- The task is to classify into signal and background.

Signal au au decay of a Higgs boson. Background W,Z decays, tar t products.

The Higgs Boson Machine Learning Challenge

The goal of the challenge is to explore the use of Machine Learning tools to improve the discovery significance of the experiment.

- Simulated samples of data are provided.
- The task is to classify into signal and background.

Signal au au decay of a Higgs boson. Background W,Z decays, tar t products.

The Higgs Boson Machine Learning Challenge

The goal of the challenge is to explore the use of Machine Learning tools to improve the discovery significance of the experiment.

- Simulated samples of data are provided.
- The task is to classify into signal and background.

Signal au au decay of a Higgs boson. Background W,Z decays, tar t products.

Contents

- Introduction
 - Higgs fermionic decay
 - The Higgs Boson Machine Learning Challenge
- Machine Learning
 - Types of learning
 - An example
 - Dimensionality
- Oetection of the Higgs boson decays
 - Data collection at ATLAS
 - Data simulation
 - The target process
- Implementation of a classifier
 - The classification problem
 - Chosen method

Machine Learning is a field concerned with developing algorithms that can learn from data.

Supervised learning Given a set of datapoints where the desired output is known, predict the output for unseen datapoints (classification, regression): Generalize.

Machine Learning is a field concerned with developing algorithms that can learn from data.

Supervised learning Given a set of datapoints where the desired output is *known*, predict the output for unseen datapoints (classification, regression): *Generalize*.

Machine Learning is a field concerned with developing algorithms that can learn from data.

Supervised learning Given a set of datapoints where the desired output is *known*, predict the output for unseen datapoints (classification, regression): *Generalize*.

Machine Learning is a field concerned with developing algorithms that can learn from data.

Supervised learning Given a set of datapoints where the desired output is *known*, predict the output for unseen datapoints (classification, regression): *Generalize*.

Given the set of data points $\mathcal{D}=\{(x_1,y_1),...,(x_n,y_n)\}$ with $x_i,y_i\in\mathbb{R}$, find a function $f(x)\to\mathbb{R}$ that generalizes them (ie is able to make a good prediction for new points generated by the same underlying model).

Good Maximize some score function

Typically split the known points into a training set and a test set.

Classification The same, but $f(x) \rightarrow \{-1,1\}$

Given the set of data points $\mathcal{D}=\{(x_1,y_1),...,(x_n,y_n)\}$ with $x_i,y_i\in\mathbb{R}$, find a function $f(x)\to\mathbb{R}$ that generalizes them (ie is able to make a good prediction for new points generated by the same underlying model).

Good Maximize some score function.

Typically split the known points into a training set and a test set.

Classification The same, but $f(x) \rightarrow \{-1,1\}$

Given the set of data points $\mathcal{D}=\{(x_1,y_1),...,(x_n,y_n)\}$ with $x_i,y_i\in\mathbb{R}$, find a function $f(x)\to\mathbb{R}$ that generalizes them (ie is able to make a good prediction for new points generated by the same underlying model).

Good Maximize some score function.

Typically split the known points into a training set and a test set.

Classification The same, but $f(x) \rightarrow \{-1, 1\}$

Given the set of data points $\mathcal{D}=\{(x_1,y_1),...,(x_n,y_n)\}$ with $x_i,y_i\in\mathbb{R}$, find a function $f(x)\to\mathbb{R}$ that generalizes them (ie is able to make a good prediction for new points generated by the same underlying model).

Good Maximize some score function.

• Typically split the known points into a training set and a test set.

Classification The same, but $f(x) \rightarrow \{-1, 1\}$

Regression problem:

- Predicting the known data is not enough: We need a prior, knowledge.
- Too strong assumptions about the model will lead to bad predictions.
 - Different ML algorithms propose different solutions to finding an appropriate bias/variance compromise.

Regression problem:

- Predicting the known data is not enough: We need a priori knowledge.
- Too strong assumptions about the model will lead to bad predictions.
- Different ML algorithms propose different solutions to finding an appropriate bias/variance compromise.

Regression problem:

- Predicting the known data is not enough: We need a priora knowledge.
- Too strong assumptions about the model will lead to bad predictions.
- Different ML algorithms propose different solutions to finding an appropriate bias/variance compromise.

11 / 26

Regression problem:

- Predicting the known data is not enough: We need a priora knowledge.
- Too strong assumptions about the model will lead to bad predictions.
- Different ML algorithms propose different solutions to finding an appropriate bias/variance compromise.

- ullet Number of points required to sample the space $\sim 10^d$.
- ullet Computational efficiency of some algorithms scales badly with d.
- Feature extraction or feature reduction are frequently used.

- ullet Number of points required to sample the space $\sim 10^d.$
- ullet Computational efficiency of some algorithms scales badly with d
- Feature extraction or feature reduction are frequently used.

- ullet Number of points required to sample the space $\sim 10^d.$
- ullet Computational efficiency of some algorithms scales badly with d.
- Feature extraction or feature reduction are frequently used

- ullet Number of points required to sample the space $\sim 10^d.$
- ullet Computational efficiency of some algorithms scales badly with d.
- Feature extraction or feature reduction are frequently used.

Contents

- Introduction
 - Higgs fermionic decay
 - The Higgs Boson Machine Learning Challenge
- Machine Learning
 - Types of learning
 - An example
 - Dimensionality
- Oetection of the Higgs boson decays
 - Data collection at ATLAS
 - Data simulation
 - The target process
- Implementation of a classifier
 - The classification problem
 - Chosen method

- Inner tracking detector:
 Momenta of charged particles.
- Electromagnetic calorimeter: Energy of photons and electrons.
- LAr calorimeter: Energy of hadrons and absorber.
- Muon spectrometer: Detects energy/momentum of muons.

- Inner tracking detector:
 Momenta of charged particles.
- Electromagnetic calorimeter: Energy of photons and electrons.
- LAr calorimeter: Energy of hadrons and absorber.
- Muon spectrometer: Detects energy/momentum of muons.

- Inner tracking detector:
 Momenta of charged particles.
- Electromagnetic calorimeter: Energy of photons and electrons.
- LAr calorimeter: Energy of hadrons and absorber.
- Muon spectrometer: Detects energy/momentum of muons.

- Inner tracking detector:
 Momenta of charged particles.
- Electromagnetic calorimeter: Energy of photons and electrons.
- LAr calorimeter: Energy of hadrons and absorber.
- Muon spectrometer: Detects energy/momentum of muons.

The detectors of ATLAS

- Particle energy and momentum over 98% of the solid angle.
- Identification of electrons, muons and photons.
- Transverse momentum balance: neutrinos inferred.

The detectors of ATLAS

- Particle energy and momentum over 98% of the solid angle.
- Identification of electrons, muons and photons.
- Transverse momentum balance: neutrinos inferred.

The detectors of ATLAS

- Particle energy and momentum over 98% of the solid angle.
- Identification of electrons, muons and photons.
- Transverse momentum balance: neutrinos inferred.

- Random proton-proton collisions are simulated using Monte Carlo Event generators.
- ② Cross sections are estimated from QCD theoretical calculations
- The resulting particles are tracked trough a virtual model of the detectors.
- 30 physical observables are provided for the challenge

- Random proton-proton collisions are simulated using Monte Carlo Event generators.
- 2 Cross sections are estimated from QCD theoretical calculations.
- The resulting particles are tracked trough a virtual model of the detectors.
- 30 physical observables are provided for the challenge

- Random proton-proton collisions are simulated using Monte Carlo Event generators.
- 2 Cross sections are estimated from QCD theoretical calculations.
- The resulting particles are tracked trough a virtual model of the detectors.
- 30 physical observables are provided for the challenge

- Random proton-proton collisions are simulated using Monte Carlo Event generators.
- 2 Cross sections are estimated from QCD theoretical calculations.
- The resulting particles are tracked trough a virtual model of the detectors.
- 30 physical observables are provided for the challenge.

Higgs fermionic decay

In the challenge, we are interested in the process (signal):

$$\begin{split} H &\longrightarrow \tau^- \tau^+ \longrightarrow (l+2\nu) + (\mathsf{hadrons} + \nu) \\ l &\in \{e^\pm, \mu^\pm), \nu \in \{\nu_e, \nu_\mu, \nu_\tau, \overline{\nu_e}, \overline{\nu_\mu}, \overline{\nu_\tau}\} \end{split}$$

There are background events from:

$$Z \longrightarrow \tau^- \tau^+$$

$$t\bar{t} \rightarrow b\bar{b} + W^+W^- \rightarrow \tau^+\tau^- + \text{hadrons} + 2\nu$$

 $W \rightarrow (wrong identification)$

Higgs fermionic decay

In the challenge, we are interested in the process (signal):

$$\begin{split} H &\longrightarrow \tau^- \tau^+ \longrightarrow (l+2\nu) + (\mathsf{hadrons} + \nu) \\ l &\in \{e^\pm, \mu^\pm), \nu \in \{\nu_e, \nu_\mu, \nu_\tau, \overline{\nu_e}, \overline{\nu_\mu}, \overline{\nu_\tau}\} \end{split}$$

There are background events from:

$$Z\longrightarrow \tau^-\tau^+$$

$$t\bar t\to b\bar b+W^+W^-\to \tau^+\tau^-+{\rm hadrons}+2\nu$$

$$W\to ({\rm wrong\ identification})$$

Contents

- Introduction
 - Higgs fermionic decay
 - The Higgs Boson Machine Learning Challenge
- Machine Learning
 - Types of learning
 - An example
 - Dimensionality
- 3 Detection of the Higgs boson decays
 - Data collection at ATLAS
 - Data simulation
 - The target process
- 4 Implementation of a classifier
 - The classification problem
 - Chosen method

The classification problem

Let \mathcal{D} be the training sample:

$$\mathcal{D} = \{(x_1, y_1, w_1), ..., (x_n, y_n, w_n)\}$$

where

 $ullet x_i \in \mathbb{R}^d$: Feature vector

• $y_i \in \{b \equiv "background", s \equiv "signal"\}$: Label

 $ullet w_i \in \mathbb{R}^+$: Weight

Find a classifier $g: \mathbb{R}^d \to \{b, s\}$ that maximizes the Approximate Median Significance.

The classification problem

Let \mathcal{D} be the training sample:

$$\mathcal{D} = \{(x_1, y_1, w_1), ..., (x_n, y_n, w_n)\}$$

where:

- $x_i \in \mathbb{R}^d$: Feature vector.
- $y_i \in \{b \equiv "background", s \equiv "signal"\}$: Label
- $w_i \in \mathbb{R}^+$: Weight.

Find a classifier $g:\mathbb{R}^d \to \{b,s\}$ that maximizes the *Approximate Median Significance*.

The classification problem

Let \mathcal{D} be the training sample:

$$\mathcal{D} = \{(x_1, y_1, w_1), ..., (x_n, y_n, w_n)\}$$

where:

- $x_i \in \mathbb{R}^d$: Feature vector.
- $y_i \in \{b \equiv "background", s \equiv "signal"\}$: Label
- $w_i \in \mathbb{R}^+$: Weight.

Find a classifier $g:\mathbb{R}^d \to \{b,s\}$ that maximizes the Approximate Median Significance.

Chosen method

The first submission uses a **Gradient Boosting** Classifier:

- Use many weak algorithms to produce a strong prediction.
- Similar to the ATLAS analysis strategy.
- Train different classifiers for different numbers of jets and for the case of mass not provided.

Chosen method

The first submission uses a Gradient Boosting Classifier:

- Use many weak algorithms to produce a strong prediction.
- Similar to the ATLAS analysis strategy.
- Train different classifiers for different numbers of jets and for the case of mass not provided.

Chosen method

The first submission uses a Gradient Boosting Classifier:

- Use many weak algorithms to produce a strong prediction.
- Similar to the ATLAS analysis strategy.
- Train different classifiers for different numbers of jets and for the case of mass not provided.

Gradient Boosting Classifier Formulation

$$g(x) = \sum_{m=1}^{M} \gamma_m h_m(x)$$

- h_m weak learners (decision trees).
- ullet h_m chosen to minimize some loss function $L(y_i,x_i)$ at each iteration:

$$g_m(x) = g_{m-1}(x) + \arg\min_{h} \sum_{i=1}^{n} L(y_i, g_{m-1}(x_i) - h(x))$$

• The minimization is performed by the steepest descent method:

$$g_m(x) = g_{m-1}(x) + \gamma_m \sum_{i=1}^n \nabla_g L(y_i, g_{m-1}(x_i))$$

$$\gamma_m = \arg\min_{\gamma} \sum_{i=1}^{n} L\left(y_i, g_{m-1}(x_i) - \gamma \frac{\partial L(y_i, F_{m-1}(x_i))}{\partial F_{m-1}(x_i)}\right)$$

Gradient Boosting Classifier Formulation

$$g(x) = \sum_{m=1}^{M} \gamma_m h_m(x)$$

- h_m weak learners (decision trees).
- ullet h_m chosen to minimize some loss function $L(y_i,x_i)$ at each iteration:

$$g_m(x) = g_{m-1}(x) + \arg\min_{h} \sum_{i=1}^n L(y_i, g_{m-1}(x_i) - h(x))$$

• The minimization is performed by the steepest descent method:

$$g_m(x) = g_{m-1}(x) + \gamma_m \sum_{i=1} \nabla_g L(y_i, g_{m-1}(x_i))$$

$$\gamma_m = \arg\min_{\gamma} \sum_{i=1}^n L\left(y_i, g_{m-1}(x_i) - \gamma \frac{\partial L(y_i, F_{m-1}(x_i))}{\partial F_{m-1}(x_i)}\right)$$

Gradient Boosting Classifier Formulation

$$g(x) = \sum_{m=1}^{M} \gamma_m h_m(x)$$

- h_m weak learners (decision trees).
- ullet h_m chosen to minimize some loss function $L(y_i,x_i)$ at each iteration:

$$g_m(x) = g_{m-1}(x) + \arg\min_{h} \sum_{i=1}^{n} L(y_i, g_{m-1}(x_i) - h(x))$$

• The minimization is performed by the steepest descent method:

$$g_m(x) = g_{m-1}(x) + \gamma_m \sum_{i=1}^n \nabla_g L(y_i, g_{m-1}(x_i))$$

$$\underline{\gamma_m} = \arg\min_{\gamma} \sum_{i=1}^n L\left(y_i, g_{m-1}(x_i) - \gamma \frac{\partial L(y_i, F_{m-1}(x_i))}{\partial F_{m-1}(x_i)}\right)$$

Results

The first submission obtained an AMS score of 3.376.

	Score
Random Submission	0.58
Simple Window	1.54
Naive Bayes	2.06
Simple Boosted Trees	3.25
(Ada Boost)	3.34
My submission	3.38
Best submission	3.81
ATLAS (real significance)	4.1

Next steps

- Reduce overfitting.
- Tweak parameters.
- Explore other methods.

Next steps

- Reduce overfitting.
- Tweak parameters.
- Explore other methods.

Next steps

- Reduce overfitting.
- Tweak parameters.
- Explore other methods.

Sources 1

Cécile Germain Isabelle Guyon Balázs Kégl David Rousseau Claire Adam-Bourdarios, Glen Cowan.

Learning to discover: the Higgs boson machine learning challenge, 2014.

URL http://higgsml.lal.in2p3.fr/documentation/.

ATLAS collaboration et al.

Evidence for Higgs boson decays to the τ^+ τ^- final state with the ATLAS detector.

ATLAS-CONF-2013-108, 2013.

Georges Aad, T Abajyan, B Abbott, J Abdallah, S Abdel Khalek, AA Abdelalim, O Abdinov, R Aben, B Abi, M Abolins, et al.

A particle consistent with the Higgs boson observed with the ATLAS detector at the Large Hadron Collider.

Science, 338(6114):1576-1582, 2012.

Sources II

陯 The CMS Collaboration.

Evidence for the direct decay of the 125 GeV Higgs boson to fermions.

Nat Phys, advance online publication, Jun 2014.

ISSN 1745-2481.

URL http://dx.doi.org/10.1038/nphys3005.

Letter.

🍆 P K Sinervo.

Signal Significance in Particle Physics.

(hep-ex/0208005. CDF-PUB-STATISTICS-PUBLIC-6031), Aug 2002.

P F Harrison.

Blind analysis.

Journal of Physics G: Nuclear and Particle Physics, 28(10):2679, 2002. URL http://stacks.iop.org/0954-3899/28/i=10/a=312.

Sources III

🐚 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.

Scikit-learn: Machine learning in Python.

The Journal of Machine Learning Research, 12:2825–2830, 2011.