Presentación "Gestión del Almacenamiento"

INDICE:

- O. Gparted.
- 1. Creación de 4 unidades de Almacenamiento.
- 2. Uso De Gparted En Kali Linux.
- 3. Montar todas y cada una de las unidades
- 4. Explicación del montaje y desmontaje.
- 5. Uso de Sudo fdisk -l.

 Antes de elaborar esta práctica debemos comprobar si tenemos esta herramienta en nuestra máquina virtual, en el caso de que no esté implementada en la máquina virtual, lo podremos descargar fácilmente desde la terminal o simplemente desde la tienda de aplicaciones de la misma máquina virtual.

• Gparted, es un Software que se utiliza para dividir almacenamiento, agregar nuevos dispositivos y darles volumen.

1. Creación de 4 unidades de Almacenamiento.

Para este paso nos tendremos que ir a las opciones de nuestra máquina virtual en el Virtual Vox y de ahí acceder a la sección de Almacenamiento, ahí podremos agregar nuestros diferentes tipos de almacenamiento, como se puede ver en la captura de pantalla.

2. Uso De Gparted En Kali Linux.

Una vez agregado ese almacenamiento a nuestra maquina virtual, debemos entrar en la maquina virtual y darle

sus particiones correspondientes mediante Gparted.

autofs	hidraw0	mem	sdb2	tty	tty24	tty40	tty57	userfaultfd	vcsu3
olock	hpet	mqueue	sdb5	tty0	tty25	tty41	tty58	vcs	vcsu4
osg	hugepages	net	sdc	tty1	tty26	tty42	tty59	vcs1	vcsu5
otrfs-control	hwrng	null	sdc1	tty10	tty27	tty43	tty6	vcs2	vcsu6
ous	initctl	nvram	sdd	tty11	tty28	tty44	tty60	vcs3	vfio
cdrom	input	port	sdd1	tty12	tty29	tty45	tty61	vcs4	vga_arbiter
char	kmsg	ррр	sg0	tty13	tty3	tty46	tty62	vcs5	vhci
console	log	psaux	sg1	tty14	tty30	tty47	tty63	vcs6	vhost-net
core	loop0	ptmx	sg2	tty15	tty31	tty48	tty7	vcsa	vhost-vsock
сри	loop1	pts	sg3	tty16	tty32	tty49	tty8	vcsa1	zero
cpu_dma_latency	loop2	random	sg4	tty17	tty33	tty5	tty9	vcsa2	
cuse	loop3	rfkill	shm	tty18	tty34	tty50	ttyS0	vcsa3	
disk	loop4	rtc	snapshot	tty19	tty35	tty51	ttyS1	vcsa4	
dri	loop5	rtc0	snd	tty2	tty36	tty52	ttyS2	vcsa5	
fb0	loop6	sda	sr0	tty20	tty37	tty53	ttyS3	vcsa6	
fd	loop7	sda1	stderr	tty21	tty38	tty54	uhid	vcsu	
full	loop-control	sdb	stdin	tty22	tty39	tty55	uinput	vcsu1	
fuse	mapper	sdb1	stdout	tty23	tty4	tty56	urandom	vcsu2	

A continuación, dividiré un dispositivo en dos particiones para que sirva de ejemplo.

3. Montar todas y cada una de las unidades.

 Para montar todas las particiones mediante la terminar y en un solo comando usaremos el comando: mkdir-p Practica4/{ua1, ua2, ua3, ua4}/{particion1, particion2,particion3,particion4}

```
____(flosky® kali)-[~]
$ cd Practica_SIS

____(flosky® kali)-[~/Practica_SIS]
$ mkdir -p Practica4/{ua1,ua2,ua3,ua4}/{particion1,particion2,particion3,particion4}
```

```
(flosky⊕ kali)-[~/Practica_SIS]

$ ls -la
total 12
drwxr-xr-x 3 flosky flosky 4096 feb 20 16:08 .
drwxr-xr-x 6 flosky flosky 4096 feb 20 16:08 .
drwxr-xr-x 6 flosky flosky 4096 feb 20 16:08 Practica4

— (flosky⊕ kali)-[~/Practica_SIS]

$ tree Practica4

Practica4

— ua1

— particion2
— particion3
— particion4
— ua2

— particion4
— ua3

— particion4
— ua4

— particion1
— particion2
— particion3
— particion4
— ua4

— particion1
— particion2
— particion3
— particion4
— ua4

— particion1
— particion2
— particion3
— particion3
— particion4
— ua4

— particion1
— particion2
— particion3
— particion3
— particion4
```

4. Explicación del montaje y desmontaje.

Para montarlo en la terminar usaremos el comando:

·sudo mount /dev/sdb1 ./particion1

Para desmontarlo usaremos el comando:

·sudo unmount /dev/sdb1

```
__(flosky⊕ kali)-[~/Practica_SIS]

$\frac{\sudo}{\sudo} \text{ umount } /\dev/\sdb \text{ Practica4/ua1/particion1} \text{ umount: } /\dev/\sdb: \text{ not mounted.} \text{ umount: } \text{ Practica4/ua1/particion1: not mounted.}
```

5. Uso de Sudo fdisk -l.

Este comando en Linux lo que nos muestra es todas las características que definen a nuestros dispositivos que hemos agregado recientemente una vez acabado el trabajo ©

```
—(flosky⊛kali)-[~]

$\frac{\sudo}{\sudo} \text{fdisk -l}
```



```
(flosky⊛kali)-[~
  -$ <u>sudo</u> fdisk -l
 isk /dev/sda: 25 GiB, 26843545600 bytes, 52428800 sectors
 nits: sectors of 1 * 512 = 512 bytes
 ector size (logical/physical): 512 bytes / 512 bytes
 /O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x2dae0583
                              End Sectors Size Id Type
                    2048 50427903 50425856 24G 83 Linux
                50429952 52426751 1996800 975M 82 Linux swap / Solaris
Disk /dev/sdb: 9,6 GiB, 10312015872 bytes, 20140656 sectors
Units: sectors of 1 * 512 = 512 bytes
 ector size (logical/physical): 512 bytes / 512 bytes
 //O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: gpt
Disk identifier: 6B6D8E41-694C-499D-8BD4-625093AAD2D6
                     End Sectors Size Type
 dev/sdb1 2048 20140031 20137984 9,6G Linux filesystem
Disk /dev/sdc: 2,15 GiB, 2308544512 bytes, 4508876 sectors
Disk model: HARDDISK
 Units: sectors of 1 * 512 = 512 bytes
 Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: gpt
Disk identifier: 14E06B84-6635-4349-AC4F-1E7EA6B6ABEA
                      End Sectors Size Type
             2048 2299903 2297856 1,1G Linux filesystem
 dev/sdc2 2299904 4507647 2207744 1,1G Linux filesystem
```