Propiedades complementarias de Espacios Vectoriales

Teorema

Si Ves un espacio vectorial con \bigoplus y \bigcirc , entonces

- a) $0 \odot u = \overline{\mathbf{0}} \quad \forall u \in V$.
- b) $c \odot \overline{\mathbf{0}} = \overline{\mathbf{0}} \quad \forall \text{ escalar } c$
- c) Si $c \odot u = \overline{\mathbf{0}} \Rightarrow c = 0$ ó $u = \overline{\mathbf{0}}$, $\forall u \in V$
- d) $(-1) \odot u = -u$ para cada u en V

Demostración:

a) Tenemos que

$$\overline{\mathbf{0}} = (0 \odot u) \oplus (-(0 \odot u)) =$$
 se aplica propiedad Ad)
$$= ((0+0) \odot u) \oplus (-(0 \odot u)) =$$
 propiedad de los reales para el cero
$$= (0 \odot u \oplus 0 \odot u) \oplus (-(0 \odot u)) =$$
 se aplica Bb)
$$= 0 \odot u \oplus (0 \odot u \oplus (-0 \odot u)) =$$
 se aplica Ab)
$$= (0 \odot u) \oplus \overline{\mathbf{0}} = 0 \odot u$$
 por la propidad Ad) y Ac)

a') Tenemos que $0 + 0 = 0 \Rightarrow$

$$0 \odot u = (0+0) \odot u$$
$$= 0 \odot u \oplus 0 \odot u,$$

Por lo tanto, $0 \odot u = 0 \odot u \oplus 0 \odot u$

sumando de ambos lados $(-0 \odot u)$

tenemos

$$0 \odot u \oplus (-0 \odot u) = 0 \odot u \oplus (0 \odot u \oplus (-0 \odot u))$$
$$\overline{\mathbf{0}} = 0 \odot u \oplus \overline{\mathbf{0}} = 0 \odot u$$

a")
$$(0 \odot u) \oplus u = 0 \odot u \oplus 1 \odot u = (0+1) \odot u = 1 \odot u = u$$

por lo tanto $(0 \odot u) \oplus u = u$
si se suma de ambos lados $-u$, entonces se tiene que
 $(0 \odot u) \oplus (u \oplus -u) = u \oplus -u$

$$0 \odot u \oplus \overline{\mathbf{0}} = \overline{\mathbf{0}}$$
, pero $0 \odot u \oplus \overline{\mathbf{0}} = 0 \odot u$
por lo tanto $0 \odot u = \overline{\mathbf{0}}$

b) Como $\overline{\mathbf{0}} = \overline{\mathbf{0}} \oplus \overline{\mathbf{0}}$, entonces si multiplicamos por el escalar c tenemos esto

$$c \odot \overline{\mathbf{0}} = c \odot (\overline{\mathbf{0}} + \overline{\mathbf{0}}) = c \odot \overline{\mathbf{0}} \oplus c \odot \overline{\mathbf{0}},$$

por lo tanto $c \odot \overline{\mathbf{0}} = c \odot \overline{\mathbf{0}} \oplus c \odot \overline{\mathbf{0}}$,

si restamos de ambos lados $-c \odot \overline{\mathbf{0}}$, entonces

$$c \odot \overline{\mathbf{0}} \oplus (-c \odot \overline{\mathbf{0}}) = c \odot \overline{\mathbf{0}} \oplus (c \odot \overline{\mathbf{0}} \oplus (-c \odot \overline{\mathbf{0}}))$$
$$\overline{\mathbf{0}} = c \odot \overline{\mathbf{0}} \oplus \overline{\mathbf{0}} = c \odot \overline{\mathbf{0}}.$$
$$c \odot \overline{\mathbf{0}} = \overline{\mathbf{0}}.$$

Por lo tanto

c) Suponemos que $c \odot u = \overline{\mathbf{0}}$ donde $c \neq 0$, ya que si $c \in 0$ \Rightarrow tenemos el caso a) que ya se vio que sí cumple. Entonces, como suponemos que $c \neq 0$, ahora tenemos que demostrar $u = \overline{\mathbf{0}}$.

$$u = 1 \odot u = \left(\frac{1}{c}c\right) \odot u = \frac{1}{c} \odot (c \odot u) = \frac{1}{c} \odot \overline{\mathbf{0}} = \overline{\mathbf{0}}.$$

d) P. d. $-1 \odot u = -u$, $\forall u \text{ en } V$

Tenemos que

$$((-1) \odot u) \oplus u = ((-1) \odot u) \oplus (1 \odot u) = (-1+1) \odot u = 0 \odot u = \overline{\mathbf{0}}$$
$$\Rightarrow ((-1) \odot u) \oplus u = \overline{\mathbf{0}},$$

entonces el inverso aditivo de u tiene que ser $(-1) \odot u$,

por lo tanto
$$(-1) \odot u = -u$$

Subespacios vectoriales

Definición

Sea V un espacio vectorial y W un subconjunto no vacío de V. Si W es un espacio vectorial con respecto de las operaciones \bigoplus y \bigcirc de V, entonces W es un subespacio de V.

Para identificar subespacios tenemos el siguiente criterio

Teorema

Supongamos que W es un subconjunto no vacío de un espacio vectorial V. Entonces W es un subespacio de V si y sólo si se cumple lo siguiente:

- i) $\overline{\mathbf{0}} \in W$
- ii) W es cerrado bajo la suma, es decir, si u y v está en W, por lo tanto u + v está en W
- iii) W es cerrado bajo el producto por un escalar, es decir, si u está en W y c es un escalar, por lo tanto $c \odot u$ está en W.

Demostración

Para la clase