Syntese af methylsalicylat OSCAR 2.BX

Introduktion

Formål

At syntesere esteren methylsalicylat.

Teori

Methylsalicylat kan dannes ved kondensering af salicylsyre (2-hydroxy-benzoesyre) og methanol, som på reaktionsskema .

$$C_{6}H_{6}OHCOOH\left(aq\right)+CH_{3}OH\left(aq\right) \Longleftrightarrow C_{6}H_{6}OHCOOCH_{3}\left(aq\right)+H_{2}O\left(l\right)$$

Figure 1: Kondensation of methylsalicylat

Reaktionsskema kan også ses på strukturformel i figur

Figure 2: Kondensation af methylsalicylat

Del 1

Udførelse

Først hentede vi en frisk fremstillet 0,1 M ascorbinsyre opløsning, og så fremstilte vi en 0,01 M ascorbinsyre opløsning ved at fortynde 1 mL af 0,1 M ascorbinsyre med 9 mL demineraliseret vand. Bagefter gentog vi fortyndingen, hvor vi tog 1 mL af vores 0,01 M ascorbinsyre, som vi så fortyndede med 9 mL demineraliseret vand, så resultatet var 0,001 M ascorbinsyre.

Så skulle vi kalibrere pH-elektroden vha. pufferopløsningerne, som vi brugte til at måle pH-værdierne for vores tre opløsninger.

Målinger

Alle pH-målinger er indskrevet i nedenstående tabel.

$c_s(\mathrm{C_6H_8O_6})/\mathrm{M}$	0,1	0,01	0,001
рН	2,64	3,1	3,45

Databehandling

For at beregne K_s og pK_s vil vi opskrive reaktionsbrøker for hver af vores opløsninger. Dette kræver, at vi kender koncentrationerne af reaktanterne og produkterne med undtagelse af vand. Først beregner vi koncentrationen af H_3O^+ , hvilket vi gør ved at vende pH om:

$$pH = -\log_{10}[\mathrm{H_3O}^+]$$

$$\updownarrow$$

$$[\mathrm{H_3O}^+] = 10^{-pH}$$

Dernæst finder vi mængden af $C_6H_7O_6^-$, som må være lig koncentrationen af H_3O^+ , eftersom der bliver dannet lige mange for hver reaktion.

Til sidst må koncentrationen af $C_6H_8O_6$ være sin start koncentration $[C_6H_8O_6]_{start}$, hvor vi trækker $[C_6H_7O_6^{-}]$ fra, da det er den mængde, der er blevet omdannet, derfor:

$c_s(\mathrm{C_6H_8O_6})/\mathrm{M}$	0,1	0,01	0,001
pН	2,64	3,1	3,45
$[\mathrm{H_3O}^+]/\mathrm{M}$	0,00229	0,000794	0,000345
$[{\rm C_6H_7O_6}^-]/{\rm M}$	0,00229	0,000794	0,000345
$[C_6H_8O_6]/M$	0,097	0,0092	0,00065

Nu kan vi opstille reaktionsbrøken fra teori afsnittet for hver enkel koncentration:

$c_s(\mathrm{C_6H_8O_6})/\mathrm{M}$	0,1	0,01	0,001
K_s/M	0,000054	0,000069	0,00018

Vi vælger at se bort fra K_s for 0,001 M ascorbinsyre, da K_s for 0,1 M og 0,01 M er relativt meget tættere på hinanden.

For at afslutte vores estimering af K_s , så tager vi gennemsnittet af de 2 værdier:

$$K_{s,gennemsnit} = \frac{0{,}000054~\mathrm{M} + 0{,}000069~\mathrm{M}}{2} = 0{,}0000615~\mathrm{M}$$

Nu kan vi forholdsvist let beregne pKs ved at tage $-\log_{10}(K_s)$:

$$pK_s = -\log_{10}(0,0000615) = 4,21$$

Hvilket virker fornuftigt ift. databogens $pK_s=4,\!17,$ hvilket vi
 vender tilbage til.