Logic Gates and Circuits

- Drawing Logic Circuit
- Analysing Logic Circuit
- Universal Gates: NAND and NOR
 - NAND Gate
 - NOR Gate
- Implementation using NAND Gates
- Implementation using NOR Gates
- Implementation of SOP Expressions
- Implementation of POS Expressions
- Positive and Negative Logic
- Integrated Circuit Logic Families

Drawing Logic Circuit (1/2)

- When a Boolean expression is provided, we can easily draw the logic circuit.
- Examples:
 - (i) F1 = x.y.z' (note the use of a 3-input AND gate)

Drawing Logic Circuit (2/2)

(ii) F2 = x + y'.z (if we assume that variables and their complements are available)

Analysing Logic Circuit

- When a logic circuit is provided, we can analyse the circuit to obtain the logic expression.
- Example: What is the Boolean expression of F4?

$$F4 = (A'.B'+C)' = (A+B).C'$$

Universal Gates: NAND and NOR

- AND/OR/NOT gates are sufficient for building any Boolean functions.
- We call the set {AND, OR, NOT} a complete set of logic.
- However, other gates are also used because:
 - (i) usefulness
 - (ii) economical on transistors
 - (iii) self-sufficient

NAND/NOR: economical, self-sufficient

XOR: useful (e.g. parity bit generation)

NAND Gate (1/2)

- NAND gate is self-sufficient (can build any logic circuit with it).
- Therefore, {NAND} is also a complete set of logic.
- Can be used to implement AND/OR/NOT.
- IC 7400 (4 NAND Gates)
- Implementing an inverter using NAND gate:

(x.x)' = x' (T1: idempotency)

NAND Gate (2/2)

Implementing AND using NAND gates:

$$((x.y)'(x.y)')' = ((x.y)')'$$
 idempotency
= $(x.y)'$ involution

Implementing OR using NAND gates:

NOR Gate (1/2)

- NOR gate is also self-sufficient.
- Therefore, {NOR} is also a complete set of logic
- Can be used to implement AND/OR/NOT.
- Implementing an inverter using NOR gate:

(x+x)' = x' (T1: idempotency)

NOR Gate (2/2)

Implementing AND using NOR gates:

Implementing OR using NOR gates:

Implementation using NAND gates (1/2)

 Possible to implement any Boolean expression using NAND gates.

Procedure:

- (i) Obtain sum-of-products Boolean expression:
 - e.g. F3 = x.y'+x'.z
- (ii) Use DeMorgan theorem to obtain expression using 2-level NAND gates

e.g.
$$F3 = x.y'+x'.z$$

= $(x.y'+x'.z)''$ involution
= $((x.y')'.(x'.z)')'$ DeMorgan

Implementation using NAND gates (2/2)

$$F3 = ((x . y')'. (x'.z)')' = x . y' + x'.z$$

Implementation using NOR gates (1/2)

Possible to implement any Boolean expression using NOR gates.

Procedure:

(i) Obtain product-of-sums Boolean expression:

e.g.
$$F6 = (x+y').(x'+z)$$

(ii) Use DeMorgan theorem to obtain expression using 2-level NOR gates.

e.g. F6 =
$$(x+y').(x'+z)$$

= $((x+y').(x'+z))'$ involution
= $((x+y')'+(x'+z)')'$ DeMorgan

Implementation using NOR gates (2/2)

$$F6 = ((x+y')'+(x'+z)')' = (x+y').(x'+z)$$

Implementation of SOP Expressions (1/2)

- Sum-of-Products expressions can be implemented using:
 - 2-level AND-OR logic circuits
 - 2-level NAND logic circuits

Implementation of SOP Expressions (2/2)

- NAND-NAND circuit (by circuit transformation)
 - a) add double bubbles
 - b) change OR-with-inverted-inputs to NAND & bubbles at inputs to their complements

Implementation of POS Expressions (1/2)

- Product-of-Sums expressions can be implemented using:
 - 2-level OR-AND logic circuits
 - 2-level NOR logic circuits
- OR-AND logic circuit

Implementation of POS Expressions (2/2)

- NOR-NOR circuit (by circuit transformation):
 - a) add double bubbles
 - b) changed AND-with- inverted-inputs to NOR& bubbles at inputs to their complements

XOR Gate(Exclusive-OR Gate)

Output is HIGH whenever two inputs are at opposite levels.

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

(b) The truth table.

Logic circuit of XOR Gate

XNOR Gate(Exclusive-NOR Gate)

$$\begin{array}{c}
A \circ \\
B \circ \\
\end{array}$$

$$Y = \overline{A \oplus B} = AB + \overline{AB}$$

Output is HIGH whenever two inputs are at same level.

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

(b) The truth table.

Logic circuit of XNOR Gate

Positive & Negative Logic (1/2)

- In logic gates, usually:
 - ❖ H (high voltage, 5V) = 1
 - ightharpoonup L (low voltage, 0V) = 0
- This convention is known as positive logic.
- However, the reverse convention, negative logic possible:
 - ❖ H (high voltage) = 0
 - ❖ L (low voltage) = 1
- Depending on convention, same gate may denote different Boolean function.

Positive & Negative Logic (2/2)

- A signal that is set to logic 1 is said to be asserted, or active, or true.
- A signal that is set to logic 0 is said to be deasserted, or negated, or false.
- Active-high signal names are usually written in uncomplemented form.
- Active-low signal names are usually written in complemented form.

Summary

