

Shape of the DT Chambers from Track-based Studies

Jim Pivarski Alexei Safonov

Texas A&M University

28 January, 2009

- lacktriangle Linear trends in unbiased $r\phi$ residual vs. ϕ inside each chamber
- Unaffected by local x alignment (as expected)
- ▶ Curious thing: they all seem to have the same slope

- ► What if it's a linear bias in the distribution from the track source, partly absorbed by the alignment?
 - \blacktriangleright impossible: ϕ must have periodic boundary conditions
 - if we realigned chambers to make a continuous line, it could not match at $\pm\pi$ (it would fail a "closure condition")

4/12

- ▶ So it's a real effect related to the chambers, not the track source
 - not fixing it would smear chamber resolution by 5 mm!
- ▶ What rigid body misalignments can cause it?
 - ϕ_{y} (rotation around axis parallel to the beamline)
 - $ightharpoonup \Delta R$ (radial displacements)

The ϕ_v possibility

Jim Pivarski 5/12

- $lack \phi_y$ rotation can make a chamber appear narrower
- but it's a second-order effect:

residual =
$$(L/2)(1 - \cos \phi_y)$$

 $\phi_y \approx 70 \text{ mrad}$

- Could all the chambers be independently misaligned by about 70 mrad?
- Same effect observed in IDEAL and CRAFT_ALL_V4 constants: it would have to be a physical misalignment of real chambers
- I think we can safely say that this is not what's happening
 - the magnitude is too big, and
 - the pattern is too regular

A track sample constrained to pass through the tracker can introduce effects of this sort

$$\Delta R = \frac{R}{(L/2)}$$
 (residual)

 But it has to appear in both types of residuals

- ➤ To see if this is plausible, I expanded the radius of all DT stations by 15 mm in a private test
 - seems to cancel the $r\phi$ residual vs. ϕ trend in the $-\pi < \phi < 0$ range, but overshoot slightly in the $0 < \phi < +\pi$ range

- ► However, look what happens to the *z* residual vs. *z*: clearly both types of residuals can't be satisfied!
- ▶ The open circles are the case of no ΔR shift

So, what could it be?

Jim Pivarski 9/12

- ▶ Process of elimination for all rigid body degrees of freedom
 - ϕ_y : implausible
 - $ightharpoonup \Delta R$ (a local z translation): can't reconcile both $r\phi$ and z residuals
 - local x, y translations: can't introduce any linear trends in residuals, only offsets
 - ϕ_z rotation: introduces a linear trend in $r\phi$ residuals vs. z and z residuals vs. ϕ , but not what we're looking for
 - ϕ_x rotation: also would have to be implausibly large, and only affects z residuals (the opposite of what we're looking for)
- Non-rigid degree of freedom

- some kind of stretching would easily explain it
- ▶ an error in the geometry description, duplicated by CMSSW, would account for its regularity (with outliers due to small individual ΔR misalignments)

- Distribution of slopes in $r\phi$ residuals vs. ϕ (wheels -1, 0, +1) peaks at roughly 10 mm/radian
- 0 underflows, 1 overflow
- \triangleright Small individual $\triangle R$ misalignments can smear this

Analogy with CSC case

Jim Pivarski 11/12

- Last year, a similar track-based technique uncovered a 0.8 mm error in CSC widths
- ► For the same reasons, chamber stretching was degenerate with increasing the distance from the beamline
- ▶ Degeneracy was resolved with photogrammetry of alignment pins
 - \blacktriangleright track-based procedure reproduced $r\phi$ positions of alignment pins with 270 $\mu\mathrm{m}$ accuracy
 - ► *R* positions of pins were therefore directly comparable, and constrained distance from the beamline
- ▶ CSC geometry experts investigated and quickly found a 10 μ m strip pitch angle error, which, compounded over 80 strips, changed the width by 0.8 mm, explaining the observation with tracks
- ▶ DTs have an advantage over CSCs in that they precisely measure z residuals in addition to $r\phi$ residuals, so we can already break degeneracy between ΔR and stretching
- ▶ In the CSC case, we predicted the magnitude but made a mistake in guessing the sign: we'd follow up on any effect of this magnitude

- I would like to ask DT geometry experts to look for a chamber description error on the order of 5 mm across the local x dimension
- We have shown that it is a real chamber-level effect and ruled out the possibility of it being caused by any rigid chamber misalignment
- "Stretching/squashing" can be interpreted loosely
 - only distortions which affect active elements matter
 - a bulging layer can look narrow (though that's a second-order effect, like ϕ_{v})
 - a $\phi_{\rm v} \sim 70$ mrad rotation built into the chamber?
 - ightharpoonup a ΔR misalignment for superlayers 1 and 3 and not superlayer 2 could explain the incompatibility of $r\phi$ and z residuals
 - ▶ it's hard to imagine timing effects playing a role, since leftand right-hand sides of each wire would be affected oppositely
- \triangleright Since it's causing ± 2.5 mm unbiased residuals errors at the ends of the chambers, it's as important for resolution as alignment