北京思灵机器人科技有限责任公司

Diana API 说明文档 (Python 语言)

此页为空白页

目录

1	initSrv	1
2	destroySrv	2
3	setPushPeriod	2
4	moveTCP	3
5	rotationTCP	4
6	moveJoint	4
7	moveJToTarget	5
8	moveJToPose	6
9	moveJ	6
10	moveL	7
11	moveLToTarget	8
12	moveLToPose	8
13	speedJ	9
14	speedL	10
15	freeDriving	10
16	stop	11
17	forward	11
18	inverse	12
19	getJointPos	12
20	getJointAngularVel	13
21	getJointCurrent	13
22	getJointTorque	14
23	getTcpPos	14
24	getTcpExternalForce	15
25	releaseBrake	15
26	holdBrake	16
27	changeControlMode	16
28	getLibraryVersion	16
29	formatError	17
30	getLastError	17
31	setLastError	18
32	setDefaultActiveTcp	18
33	getLinkState	19
34	getTcpForce	19
35	getJointForce	20
36	isCollision	20
37	initDHCali	20
38	getDHCaliResult	21
39	setDH	22
40	setWrd2BasRT	23
41	setFla2TcpRT	23

42	getRobotState	24
43	resume	25
44	setJointCollision	25
45	setCartCollision	26
46	enterForceMode	26
47	leaveForceMode	27
48	setDefaultActiveTcpPose	27
49	setResultantCollision	28
50	setJointImpedance	28
51	getJointImpedance	29
52	setCartImpedance	29
53	getCartImpedance	30
54	zeroSpaceFreeDriving	30
55	createPath	31
56	addMoveL	32
57	addMoveJ	32
58	runPath	33
59	destroyPath	34
60	rpy2Axis	34
61	axis2RPY	35
62	homogeneous2Pose	35
63	pose2Homogeneous	35
64	enableTorqueReceiver	36
65	sendTorque_rt	36
66	enableCollisionDetection	37
67	setActiveTcpPayload	37
68	servoJ	38
69	servoL	39
70	servoJ_ex	40
71	servoL_ex	41
72	speedJ_ex	42
73	speedL_ex	42
74	dumpToUDisk	43
75	inverse_ext	44
76	getJointLinkPos	44
77	createComplexPath	45
78	addMoveLSegmentByTarget	46
79	addMoveLSegmentByPose	
80	addMoveJSegmentByTarget	48
81	addMoveJSegmentByPose	
82	addMoveCSegmentByTarget	
83	addMoveCSegmentByPose	51
84	runComplexPath	
85	destroyComplexPath	53

86	saveEnvironment	.53
87	dumpToUDiskEx	.53
88	enterForceMode_ex	.54
89	readDI	.55
90	readAI	.56
91	setAIMode	.56
92	writeDO	.57
93	writeAO	.57
94	readBusCurrent	.58
95	readBusVoltage	.59
96	getDH	.59
97	getOriginalJointTorque	.60
98	getJacobiMatrix	.60
99	resetDH	61
100	runProgram	.61
101	stopProgram	62
102	getVariableValue	62
103	setVariableValue	.63
104	isTaskRunning	.63
105	pauseProgram	.63
106	resumeProgram	64
107	stopAllProgram	64
108	isAnyTaskRunning	.65
109	cleanErrorInfo	65
110	setCollisionLevel	.65
111	getJointCount	66
112	getWayPoint	.66
113	setWayPoint	.67
114	addWayPoint	.68
115	deleteWayPoint	.68
116	getDefaultActiveTcp	69
117	getDefaultActiveTcpPose	.69
118	getActiveTcpPayload	.70
119	zeroSpaceManualMove	.70
120	moveTcp_ex	.71
121	setExternalAppendTorCutoffFreq	.72
122	poseTransform	.72
123	updateForce	.73
124	updateForce_ex	.74
125	inverseClosedFull	.75
126	getInverseClosedResultSize	.77
127	getInverseClosedJoints	.77
128	destoryInverseClosedItems	.78
129	getGravInfo	78

130 setGravInfo	78
131 getGravAxis	
132 setGravAxis	
133 speedLOnTcp	80
134 getTcpForceInToolCoordinate	
135 calculateJacobi	
136 calculateJacobiTF	82
137 附件 A.	84

修订历史

版本	修改内容	修订人	修订时间
V1.0	创建	石国庆	12 14 14
V2.0	1. 实 现 接 口 forward、inverse、speedJ、speedL、enterForceMode 、leaveForceMode、freeDriving、holdBrake、release Brake、stop、getRobotState、 initSrv、destroySrv、getJointPos、getTcpPos、getJoin tAngularVel、getTcpForce、getJointForce、createPath 、addMoveL、addMoveJ、runPath、destroyPath、mo veJToTarget、moveJToPose、moveLToTarget、moveL ToPose、getJointCurrent、getJointTorque、setDefault ActiveTcp、setDefaultActiveTcpPose	石国庆	2020-09-09
V2.1	1. 修订前版本大部分函数无返回值的情况,返回值改为True:成功,False:失败 2. 新增接口MoveTCP、rotationTCP、moveJoint、getTcpExternal Force、changeControlMode、getLibraryVersion、form atError、getLastError、setLastError、getLinkState、is Collision、resume、setJointCollision、setCartCollision、setResultantCollision、setJointImpedance、getJointImpedance、setCartImpedance、getCartImpedance、zer oSpaceFreeDriving、rpy2Axis、axis2RPY、homogene ous2Pose、pose2Homogeneous 3. 修改 initSrv 函数,使其兼容支持回调函数作为传参	石国庆	2020-09-18
V2.2	1. 修改文档版式 2. 新 增 接 口 servoJ、servoL、speedJ_ex、speedL_ex、servoJ_ex、 servoL_ex、enableCollisionDetection、createComplex Path、addMoveLSegmentByPose、addMoveLSegment ByTarget、addMoveJSegmentByPose、addMoveJSegm entByTarget、addMoveCSegmentByPose、addMoveC SegmentByTarget、runComplexPath、destroyComplex Path、saveEnvironment	石国庆	2020-11-04
V2.3	 新增接口 getDH、getOriginalJointTorque、getJacobiMatrix 修改函数 getJointTorque 含义 	石国庆	2020-11-27
V2.4	1. 新增 resetDH	孟庆婷	2020-12-10
V2.5	1. 新 增 setPushPeriod、initDHCali、getDHCaliResult、setDH 、setWrd2BasRT、setFla2TcpRT、enableTorqueRecei ver、sendTorque_rt、dumpToUDisk、dumpToUDiskE x、enterForceMode_ex	石国庆	2020-12-17

V2.6	1.	调整 python 的 API 顺序与已有 C 库一致		
	2.	新 增 接 口		
		setWayPoint、getWayPoint、addWayPoint、deleteWa	石国庆	2021-06-01
		yPoint、getDafaultActiveTcp、getDafaultActiveTcpPo		
		$se \mathrel{\backprime} getActiveTcpPose \mathrel{\backprime} zeroSpaceManualMove \mathrel{\backprime} mov$		
		eTcp_ex		
v2.7	1.	支持同时控制多台机械臂	ア国庁	2021-07-15
	2.	调整 API 顺序与 C 语言一致	石国庆	2021-07-15
v2.8	1.	限制 leaveForceMode 输入参数	石国庆	2021-07-20
v2.9	1.	调整 API 顺序与 C 语言一致	プ国庁:	2021-09-17
	2.	补齐 API	石国庆	2021-09-1/

该操作库函数的所有输入输出参数,均采用国际量纲,即力(N),扭矩(Nm),电流(A),长度(m),线速度(m/s),线加速度(m/s²),角度(rad),角速度(rad/s²),时间(s)。

1 initSrv

def initSrv(srv net st, fnError = None,fnState = None)

初始化API,完成其他功能函数使用前的初始化准备工作。

参数:

pinfo: srv_net_st 为元组,用于配置本地连接服务器、心跳服务和状态反馈服务的端口号信息及服务器 IP, 其中 IP 地址需要传入字符串,端口号如果传 0 则由系统自动分配。

fnError:可选参数,错误处理回调函数。其中e为int类型的错误码(包含通信错误例如版本不匹配,链路错误例如网络断开,硬件故障例如编码器错误等),可调用formatError获取字符串提示信息。fnError函数会用于多线程中实时反馈,所以尽量不要在函数实现中使用 sleep函数之类会阻塞线程的操作。

fnState:可选参数,robot state 回调函数。回调函数参数为类 StrRobotStateInfo 的 POINTER,包含以下数据:

- 关节角度元组(jointPos)
- 关节角速度元组(jointAngularVel)
- 关节角电流当前值元组(jointCurrent)
- 关节角扭矩元组(jointTorque)
- TCP 位姿向量(tcpPos)
- TCP 外部力(tcpExternalForce)
- 是否发生碰撞标志(bCollision)
- TCP 外部力是否有效标志(bTcpForceValid)
- TCP 六维力元组(tcpForce)
- 軸空间力元组(jointForce)

返回值:

True: 成功 False: 失败

调用示例 1(含回调函数):

import DianaApi

def errorCallback(e):

print("error code" + str(e))

def robotStateCallback(stateInfo):

for i in range(0,7):

print(stateInfo.contents.jointPos[i])

for i in range(0,7):

print(stateInfo.contents. jointAngularVel [i])

fnError = DianaApi.FNCERRORCALLBACK(errorCallback)

fnState = DianaApi.FNCSTATECALLBACK(robotStateCallback)

netInfo=('192.168.10.75', 0, 0, 0, 0, 0)

DianaApi.initSrv(netInfo, fnError ,fnState)

DianaApi.destroySrv()

调用示例 2(不含回调函数):

netInfo=('192.168.10.75', 0, 0, 0, 0, 0)

netInfo1=('192.168.10.70', 0, 0, 0, 0, 0)

DianaApi.initSrv(netInfo)

DianaApi.initSrv(netInfo1)

DianaApi.destroySrv()

2 destroySrv

def destroySrv(ipAddress="')

结束调用 API,用于结束时释放指定 IP 地址机械臂的资源。如果该函数未被调用就退出系统(例如客户端程序在运行期间崩溃),服务端将因为检测不到心跳而认为客户端异常掉线,直至客户端再次运行,重新连接。除此之外不会引起严重后果。

参数:

ipAddress: 可选参数,需要释放服务资源的机械臂的 IP 地址字符串,如果为空,则会释放全部已经成功 initSrv 的机械臂的资源。

返回值:

True: 成功

False: 失败

调用示例:

netInfo=('192.168.10.75', 0, 0, 0)

netInfo1=('192.168.10.70', 0, 0, 0)

DianaApi.initSrv(netInfo)

DianaApi.initSrv(netInfo1)

DianaApi.destroySrv('192.168.10.75')

DianaApi.destroySrv('192.168.10.70')

3 setPushPeriod

def setPushPeriod(period,ipAddress = ")

设置指定IP地址机械臂的数据推送周期

参数:

period: 输入参数。推送周期,单位为ms。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

0: 成功。

-1: 失败。

调用示例:

ipAddress = '192.168.10.75'

setPushPeriod(10, ipAddress)

4 moveTCP

def moveTCP(d, v, a, ipAddress=")

手动移动指定 IP 地址的机械臂末端中心点。该函数会立即返回,停止运动需要调用 stop 函数。

参数:

- d: 表示移动方向的枚举类型。DianaApi 中存在枚举 tcp_direction_e, 以下为枚举值及其含义:
- T_MOVE_X_UP 表示沿 x 轴正向
- T_MOVE_X_DOWN 表示沿 x 轴负向
- T_MOVE_Y_UP 表示沿 y 轴正向
- T_MOVE_Y_DOWN 表示沿 y 轴负向
- T_MOVE_Z_UP 表示沿 z 轴正向
- T_MOVE_Z_DOWN 表示沿 z 轴负向
- v: 速度, 单位: m/s
- a: 加速度, 单位: m/s²

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

0: 成功。

-1: 失败。

调用示例:

import DianaApi

import time

dtype = DianaApi.tcp_direction_e .T_MOVE_X_UP

vel = 0.1

acc = 0.2

ipAddress = '192.168.10.75'

DianaApi .moveTCP(dtype, vel, acc, ipAddress)

time.sleep(1)

DianaApi .stop('192.168.10.75')

5 rotationTCP

def rotationTCP(d, v, a, ipAddress=")

使指定的 IP 地址的机械臂绕末端中心点变换位姿。该函数会立即返回,停止运动需要调用 stop 函数。

参数:

- d:表示移动方向的枚举类型。具体介绍参见 MoveTcp 第一个参数。
- v: 速度,单位: rad/s。
- a: 加速度, 单位: rad/s²。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

返回值:

生效。

True: 成功。

False: 失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

DianaApi.initSrv((ipAddress,0,0,0))

type = DianaApi.tcp_direction_e.T_MOVE_X_UP

vel = 0.1

acc = 0.2

DianaApi.rotationTCP(type, vel, acc, ipAddress)

time.sleep(1)

DianaApi.stop(ipAddress)

DianaApi.destroySrv()

6 **moveJoint**

def moveJoint(d, i, v, a, ipAddress=")

手动控制指定 IP 地址的机械臂关节移动。该函数会立即返回,停止运动需要调用 stop 函数。

参数:

- d:表示关节移动方向的枚举类型。DianaApi 中存在枚举 joint_direction_e
- ,以下为枚举值及其含义:
- T_MOVE_ UP 表示关节沿正向旋转
- T_MOVE_DOWN 表示关节沿负向旋转。
- i: 关节索引号。
- v: 速度,单位: rad/s。
- a: 加速度, 单位: rad/s²。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

type = DianaApi.joint_direction_e.MOVE_UP

index = 3

vel = 0.8

acc = 0.8

ipAddress = '192.168.10.75'

DianaApi.moveJoint(type, index, vel, acc, ipAddress)

time.sleep(3)

DianaApi.stop(ipAddress)

7 moveJToTarget

def moveJToTarget(joints, v, a, ipAddress=")

控制指定 IP 地址的机械臂以七个关节角度为终点的 moveJ。该函数会立即返回,停止运动需要调用 stop 函数。

参数:

joints:包含7个终点关节角度的元组

v: 速度,单位: rad/s。

a: 加速度, 单位: rad/s²。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

import time

DianaApi.joints= (0.0,0.0,0.0,0.0,0.0,0.0,0.0)

vel = 0.2

acc = 0.4

ipAddress = '192.168.10.75'

DianaApi.moveJToTarget(joints, vel, acc, ipAddress)

time.sleep(1)

DianaApi.stop(ipAddress)

8 moveJToPose

def moveJToPose(pose, v, a, ipAddress=")

控制指定 IP 地址的机械臂以工具中心点位姿为终点的 moveJ。该函数会立即返回,停止运动需要调用 stop 函数。

参数:

pose: 终点位姿元组,长度为 6。保存 TCP 坐标(x, y, z)和轴角(rx, ry, rz)组合的矢量数据。

v: 速度,单位: rad/s。

a: 加速度, 单位: rad/s²。

返回值:

True: 成功。 False: 失败。

调用示例:

import DianaApi

import time

poses = (0.087, 0.0, 1.0827, 0.0, 0.0, 0.0)

vel = 0.2

acc = 0.4

ipAddress = '192.168.10.75'

DianaApi .moveJToPose(poses, vel, acc, ipAddress)

time.sleep(1)

DianaApi.stop(ipAddress)

9 moveJ

def moveJ (joints, v, a, ipAddress=")

同 moveJToTarget

参数:

joints:包含7个终点关节角度的元组

v: 速度,单位: rad/s。

a: 加速度, 单位: rad/s²。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

import time

DianaApi.joints= (0.0,0.0,0.0,0.0,0.0,0.0,0.0)

vel = 0.2

acc = 0.4

ipAddress = '192.168.10.75'

DianaApi.moveJ (joints, vel, acc, ipAddress)

time.sleep(1)

DianaApi.stop(ipAddress)

10 moveL

def moveL(pose, v, a, ipAddress=")

同 moveLToPose

参数:

pose: 包含 6 个终点位姿的元组,保存 TCP 坐标(x, y, z)和轴角(rx, ry, rz)组合数据。

v: 速度,单位: m/s。

a: 加速度, 单位: m/s²。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

import time

poses= (0.087,0.0,1.0827,0.0,0.0,0.0)

vel = 0.2

acc = 0.4

ipAddress = '192.168.10.75'

DianaApi moveL (poses, vel, acc, ipAddress)

time.sleep(1)

DianaApi.stop(ipAddress)

11 moveLToTarget

def moveLToTarget(joints, v, a, ipAddress=")

控制指定 IP 地址的机械臂以七个关节角度为终点的 moveL。该函数会立即返回,停止运动需要调用 stop 函数。

参数:

joints:包含7个终点关节角度的元组。

v: 速度, 单位: m/s。

a: 加速度, 单位: m/s²。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。

False: 失败。

调用示例:

import DianaApi

import time

joints = (0,0.0,0.0,0.0,0.0,0.0,0.0)

vel = 0.2

acc = 0.4

ipAddress = '192.168.10.75'

DianaApi.moveLToTarget(joints, vel, acc, ipAddress)

time.sleep(1)

DianaApi.stop(ipAddress)

12 moveLToPose

def moveLToPose(pose, v, a, ipAddress=")

以工具中心点位姿为终点的 moveL。该函数会立即返回,停止运动需要调用 stop 函数。

参数:

pose: 包含6个终点位姿的元组,保存TCP坐标(x,y,z)和轴角(rx,ry,rz)组合数据。

v: 速度,单位: m/s。

a: 加速度, 单位: m/s²。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时 生效。

返回值:

True: 成功。 False: 失败。

调用示例:

import DianaApi

import time

poses= (0.087,0.0,1.0827,0.0,0.0,0.0)

vel = 0.2

acc = 0.4

ipAddress = '192.168.10.75'

DianaApi moveLToPose(poses, vel, acc, ipAddress)

time.sleep(1)

DianaApi.stop(ipAddress)

13 **speedJ**

def speedJ(speed, a, t, ipAddress=")

参数:

speed: 包含7个轴关节角速度的元组。单位: rad/s。

a: 加速度, 单位: rad/s²。

t: 时间,单位: s。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

True: 成功。 False: 失败。

调用示例:

import DianaApi

import time

speeds= (0.0,0.0,0.0,0.0,0.0,0.0,0.5)

acc = 0.4

ipAddress = '192.168.10.75'

DianaApi speedJ(speeds, acc, 0, ipAddress)

time.sleep(1)

DianaApi.stop(ipAddress)

14 **speedL**

def speedL(speed, a, t, ipAddress=")

控制指定 IP 地址的机械臂进入速度模式,笛卡尔空间下直线运动。时间 t 是可选项,如果提供了 t 值,函数将在 t 时间后返回不管目标速度是否已经达到。如果没有提供时间 t 值,函数将在达到目标速度时返回。停止运动需要调用 stop 函数。

参数:

speed: 工具空间速度元组,长度为6,其中前3个单位为m/s,后3个单位为rad/s。

a: 加速度的元组,长度为2,单位: m/s²。

t: 时间,单位: s。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时 生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

import time

speeds = (0.1,0.0,0.0,0.0,0.0,0.0)

acc = (30, 0.50)

ipAddress = '192.168.10.75'

DianaApi speedL(speeds, acc, 0, ipAddress)

time.sleep(1)

DianaApi.stop(ipAddress)

15 freeDriving

def freeDriving(enable, ipAddress=")

实现控制指定IP地址的机械臂正常模式与零力驱动模式之间的切换。

参数:

enable: bool 变量,是否进入零力驱动模式,True 表明进入零力驱动,False 为退出零力驱动进入正常模式。只有在正常模式下,才可以控制机器人运动。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

import time

ipAddress = '192.168.10.75'

DianaApi freeDriving(True, ipAddress)

time.sleep(10)

DianaApi.freeDriving(False, ipAddress)

16 stop

def stop(ipAddress=")

控制指定 IP 地址的机械臂停止当前执行的任务。将会以最大加速度停止。对应于 UR 的 stopL, stopJ 指令。

参数:

无。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

DianaApi.stop(ipAddress)

17 forward

def forward(joints, pose, ipAddress="')

正解函数,针对指定 IP 地址机器人,由传入的关节角都计算出的正解 TCP 位姿。

参数:

joints: 传入参数,7个轴关节角度的元组。单位:rad。

pose: 输入输出参数,位姿列表,长度为 6。数据为包含默认的工具坐标系坐标(x, y, z)和旋转矢量(轴角坐标)组合。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

netInfo=(ipAddress, 0, 0, 0)

DianaApi.initSrv(netInfo)

DianaApi.releaseBrake(ipAddress)

tool1 = (0, 0, 0.1, 0, 0, 0)

tcpTestJointPosition = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

tcp1Position = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

DianaApi.setDefaultActiveTcpPose(tool1, ipAddress)

DianaApi.forward(tcpTestJointPosition, tcp1Position, ipAddress)

DianaApi.holdBrake(ipAddress)

DianaApi.destroySrv()

18 inverse

def inverse(pose, joints, ipAddress='')

逆解函数,针对指定 IP 地址机器人,通过 TCP 位姿计算出最佳逆解关节角度。

参数:

pose: 输入参数,位姿元组,长度为 6,数据为包含 active_tcp 坐标(x, y, z) 和旋转矢量(轴角坐标)组合。

joints:输入输出参数,关节角度的列表,长度为7。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。

False: 失败。

调用示例:

import DianaApi

pose= (0.64221, 0.0, 0.9403, 0.0, 0.0)

joints= [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

ipAddress = '192.168.10.75'

DianaApi.inverse(pose, joints, ipAddress)

19 getJointPos

def getJointPos(joints, ipAddress=")

获取指定 IP 地址机械臂各个关节角度的位置,库初始化后,后台会自动同步机器人状态信息,因此所有的监测函数都是从本地缓存取数。

参数:

joints:输入输出参数,关节角的列表,元组大小为7。用于传递获取到的结果。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

joints =[0, 0, 0, 0, 0, 0, 0]

ipAddress='192.168.10.75'

DianaApi.getJointPos(joints, ipAddress)

20 **getJointAngularVel**

def getJointAngularVel(vels, ipAddress=")

获取指定IP地址机械臂当前各关节的角速度。

参数:

vels: 输入输出参数, 传入空的列表, 输出关节角速度, 长度为 7。用于传递获取到的结果。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

dianaJointAngularVel = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

ipAddress='192.168.10.75'

DianaApi.getJointAngularVel(dianaJointAngularVel, ipAddress)

21 getJointCurrent

def getJointCurrent(current, ipAddress=")

获取当前关节电流。

参数:

current:输入输出参数,传入空的列表,输出关节电流,长度为7。用于传递转获取到的结果。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

jointsCurrent = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

ipAddress='192.168.10.75'

DianaApi .getJointCurrent(jointsCurrent, ipAddress)

22 getJointTorque

def getJointTorque(torques, ipAddress=")

获取指定 IP 地址机械臂各关节真实扭矩数据,即减去零偏的扭矩值。

参数:

torques:输入输出参数,传入空的列表,输出真实的关节扭矩,长度为 7。用于传递获取到的结果。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

dianaJointTorques = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

ipAddress = '192.168.10.75'

DianaApi .getJointTorque(dianaJointTorques, ipAddress)

23 **getTcpPos**

def getTcpPos(pose, ipAddress=")

获取指定 IP 地址机械臂当前 TCP 位姿数据,末端可被 setDefaultActiveTcp 函数改变。

参数:

pose:输入输出参数,传入空的列表,输出关节 TCP 位姿元组,元组大小为 6。用于传递获取到的结果。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

poses = [0.0] * 6

ipAddress = '192.168.10.75'

DianaApi .getTcpPos(poses, ipAddress)

24 getTcpExternalForce

def getTcpExternalForce(ipAddress=")

获取指定 IP 地址机械臂末端实际感受到的力大小,末端可被 setDefaultActiveTcp 函数改变。

参数:

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

返回力的大小。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

force = DianaApi .getTcpExternalForce(ipAddress)

25 releaseBrake

def releaseBrake(ipAddress=")

打开指定 IP 地址机械臂的抱闸,启动机械臂。调用该接口后,需要调用者延时 2s 后再做其他操作。

参数:

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

DianaApi.releaseBrake(ipAddress)

DianaApi.holdBrake(ipAddress)

26 holdBrake

def holdBrake(ipAddress=")

关闭指定 IP 地址机械臂的抱闸, 停止机械臂。

参数:

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

True: 成功。

False: 失败。

调用示例:

见 releaseBrake()用例

27 changeControlMode

def changeControlMode(m, ipAddress=")

控制指定IP地址机械臂的模式切换。

参数:

m: 枚举类型 mode_e。枚举及其含义如下

- T_MODE_INVALID 无意义
- T_MODE_POSITION 位置模式
- T_MODE_JOINT_IMPEDANCE 关节空间阻抗模式
- T_MODE_CART_IMPEDANCE 笛卡尔空间阻抗模式

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

DianaApi.changeControlMode(DianaApi.mode_e.T_MODE_POSITION, ipAddress)

28 getLibraryVersion

def getLibraryVersion()

获取当前库的版本号。

参数:

无。

返回值:

当前版本号,高8位为主版本号,低8位为次版本号。

调用示例:

import DianaApi

uVersion = DianaApi.getLibraryVersion()

29 **formatError**

def formatError(e, ipAddress=")

获取指定 IP 地址机械臂的错误码 e 的字符串描述,该错误码在初始化指定的回调函数中会作为形参传入,也可以在函数调用失败后查询得到。对于错误码为-2001 的硬件错误,会延时回馈,一般建议对此类错误延时 100 毫秒后调用 formatError 函数获取具体硬件错误提示信息,否则将提示"refresh later ..."而看不到具体内容。

参数:

e: 错误码。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

错误描述信息。

调用示例:

import DianaApi

e = -1003

ipAddress = '192.168.10.75'

print(DianaApi.formatError(e, ipAddress))

30 getLastError

def getLastError(ipAddress=")

返回指定 IP 地址机械臂最近发生的错误码。该错误码会一直保存,确保可以查询得到,直至库卸载,因此,当库函数调用失败后,如果想知道具体的错误原因,应该调用该函数获取错误码。

参数:

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

0:没有错误。

其它值:具体错误码。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

e = DianaApi.getLastError(ipAddress)

print(e)

31 setLastError

def setLastError(e, ipAddress=")

重置指定 IP 地址机械臂错误码。将系统中记录的错误码重置为 e,通常用于清除错误。

参数:

e: 错误码。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

错误码。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

e = DianaApi .setLastError(0, ipAddress)

32 **setDefaultActiveTcp**

def setDefaultActiveTcp(default tcp, ipAddress=")

设置指定 IP 地址字符串的默认工具坐标系。在没有调用该函数时,默认工具中心点为法 兰盘中心,调用该函数后,默认的工具坐标系将被改变。该函数将会改变 moveTCP,rotationTCP,moveJToPos,moveLToPose,speedJ,speedL,forward,inverse,getTcpPos,getTcpExternalForce的默认行为。

参数:

default_tcp: 输入参数,TCP相对于末端法兰盘的4*4齐次变换矩阵的元组,元组大小为16。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

True:成功

False:失败

调用示例:

import DianaApi

matrix = (1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1)

DianaApi.setDefaultActiveTcp (matrix,' 192.168.10.75')

33 getLinkState

def getLinkState(ipAddress=")

获取与指定 IP 地址机械臂间的链路状态。

参数:

无。

返回值:

True:链路正常。 False:链路断开。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

DianaApi.getLinkState(ipAddress)

34 getTcpForce

def getTcpForce(forces, ipAddress=")

获取指定 IP 地址机械臂的 TCP 末端六维力,末端可被 setDefaultActiveTcp 函数改变。

参数:

forces: 输入输出参数,传入空列表,输出工具中心点处六维力,长度为 6。用于传递获取到的结果。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

tcpForce = [0.0] * 6

DianaApi.getTcpForce(tcpForce, ipAddress)

print('tcpForce={%f, %f, %f, %f, %f, %f, %f}'%(tcpForce [0], tcpForce [1], \

tcpForce [2], tcpForce [3], tcpForce [4], tcpForce [5]))

35 getJointForce

def getJointForce(forces, ipAddress=")

获取指定IP地址机械臂的轴空间七个关节所受力矩。

参数:

forces:输入输出参数,传入空列表,输出七关节轴力矩,长度为 7。用于传递获取到的

结果。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

forces = [0.0] * 7

ipAddress = '192.168.10.75'

DianaApi getJointForce (forces, ipAddress)

36 isCollision

def isCollision(ipAddress=")

从轴空间判断指定 IP 地址机械臂是否发生碰撞。

参数:

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

返回值:

生效。

True: 机器人发生碰撞。

False: 机器人未发生碰撞。

调用示例:

import DianApi

ipAddress = '192.168.10.75'

Diana Api. is Collision (ip Address)

37 initDHCali

def initDHCali(tcpMeas, jntPosMeas, nrSets, ipAddress=")

根据输入的关节角以及末端位置元组计算指定 IP 地址机械臂的 DH 参数。

参数:

tcpMeas:输入参数。TCP位置数据元组,元组大小为3*nrSets。每组数据为[x,y,z],共nrSets组。单位:米。

jntPosMeas:输入参数。关节角位置元组,,元组大小为7*nrSets,每组数据为各关节角位置信息[q1~q7],共nrSets组。单位:弧度。

nrSets:输入参数。测量样本数量,最少32组,至少保证大于或等于需要辨识的参数。ipAddress:可选参数,需要控制机械臂的IP地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

0: 正常。

-1: 失败。

调用示例:

import DianaApi

#以下参数仅供 API 展示, 无实际含义

 $rowNo_refData = 32$

tcpMeas = [0.0] * 96

jntMeas = [0.0] * 224

ipAddress = '192.168.10.75'

DianaApi.initDHCali(tcpMeas, jntMeas, rowNo_refData, ipAddress)

38 **getDHCaliResult**

def getDHCaliResult(rDH, wRT, tRT, confid, ipAddress=")

获取指定 IP 地址机械臂 DH 参数的计算结果。

参数:

rDH:输出参数。机器人各关节 DH 参数元组的元组,元组大小为 28。每七个数为一组,共四组数据[a, alpha, d, theta]。单位: rad、m。

wRT:输出参数。机器人基坐标系相对于世界坐标系下的位姿元组的元组,元组大小为 6。位姿数据[x, y, z, Rx, Ry, Rz]。单位:rad、m。

tRT: 输出参数。靶球在法兰坐标系下的位置描述元组的元组,元组大小为3。元组为靶球位置坐标[x,y,z]。单位: m。

confid:输出参数。绝对定位精度参考值元组的元组,元组大小为 2。其中,第一个值为标定前绝对定位精度,第二个值为标定后绝对定位精度。单位:m。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

- 0: 获取成功。
- 1: 获取结果精度可能够较低。
- -1: 获取失败,发生异常。

调用示例:

import DianaApi

#以下参数仅供 API 展示, 无实际含义

rDH = [0.0] * 28

wRT[0.0] * 6

tRT[0.0] * 3

ipAddress = '192.168.10.75'

DianaApi.getDHCaliResult(rDH, wRT, tRT, ipAddress)

39 **setDH**

def setDH(a, alpha, d, theta, ipAddress=")

设置指定 IP 地址机械臂当前 DH 参数。特别注意,错误的参数设置可能引起机器人损坏,需谨慎设置!

参数:

a: 输入参数。各关节的 a 参数元组的元组,元组大小为 7。

alpha:输入参数。各关节的 alpha 参数元组的元组,元组大小为 7。

d: 输入参数。各关节的 d 参数元组的元组,元组大小为 7。

theta: 输入参数。各关节的 theta 参数元组的元组,元组大小为 7。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时 生效。

返回值:

- 0: 成功。
- -1: 失败。

调用示例:

import DianaApi

#以下参数仅供 API 展示, 无实际含义

a=[0.0]*7

alpha=[0.0]*7

d=[0.0]*7

theta=[0.0] * 7

ipAddress = '192.168.10.75'

DianaApi.setDH(a, alpha, d, theta, ipAddress)

40 setWrd2BasRT

def setWrd2BasRT(RTw2b, ipAddress=")

初始化世界坐标系到指定 IP 地址机械臂坐标系的平移和旋转位姿。用于 DH 参数标定前设置,若用户不能提供此参数,DH 参数标定功能依旧可以使用。如果调用此函数则使用用户自定义的位姿。特别注意,此功能每次移动机器人与激光跟踪仪都需要重新计算,使用错误的参数可能引起 DH 参数计算不准确或标定异常。

参数:

RTw2b:输入参数。世界坐标系到机器人坐标系的平移和旋转位姿元组的元组,元组大小为6。单位:米和弧度。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

0: 成功。

-1: 失败。

调用示例:

import DianaApi

#以下参数仅供 API 展示, 无实际含义

wRT = [0.0] * 6

ipAddress = '192.168.10.75'

DianaApi.setWrd2BasRT(wRT, ipAddress)

41 setFla2TcpRT

def setFla2TcpRT(RTf2t, ipAddress=")

初始化指定 IP 地址机械臂法兰坐标系到工具坐标系的平移位置。用于 DH 参数标定前设

置,若用户不能提供此参数,DH参数标定功能依旧可以使用。如果调用此函数则使用用户自定义的位姿。特别注意,此功能每次移动机器人与激光跟踪仪都需要重新计算,使用错误的参数可能引起 DH 参数计算不准确或标定异常。

参数:

RTf2t:输入参数。初始化法兰坐标系到工具坐标系的平移位置元组,元组大小为 3,位置信息数据[x,y,z]。单位:米。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

- 0: 成功。
- -1: 失败。

调用示例:

import DianaApi

#以下参数仅供 API 展示, 无实际含义

Fla = [0.0] * 3

ipAddress = '192.168.10.75'

DianaApi.setFla2TcpRT(Fla, ipAddress)

42 getRobotState

def getRobotState(ipAddress=")

获取指定 IP 地址机械臂当前工作状态。

参数:

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

- 0: running.
- 1: paused_o
- 2: idle。
- 3: free-driving.
- 4: zero-space-free-driving.

调用示例:

import DianaApi

```
ipAddress = '192.168.10.75'
state = DianaApi .getRobotState(ipAddress)
if state == 0:
    print("\t[robot state]:running\n")
elif state == 1:
    print("\t[robot state]:paused\n")
elif state == 2:
    print("\t[robot state]:idle\n")
elif state = 3:
    print("\t[robot state]: free-driving \n")
elif state = 4:
    print("\t[robot state]: zero-space-free-driving \n")
else:
    print("\t[robot state]: unknown state \n")
```

43 resume

```
def resume(ipAddress=")
```

当指定 IP 地址机械臂发生碰撞或其他原因暂停后,恢复运行时使用。

参数:

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

True:成功。 False:失败。

调用示例:

import DianApi

import time

target =[0,0,0,3.141592653/2,0,0,0]

vel = 0.2

acc = 0.2

ipAddress = '192.168.10.75'

DianaApi.moveJToTarget(target,vel,acc, ipAddress)

```
while True:
    state = DianaApi.getRobotState(ipAddress)
    if state == 0:
        time.sleep(0.01)
    elif state == 1 and DianaApi.isCollision(ipAddress):
        DianaApi.resume(ipAddress)
        time.sleep(1)
    else:
        break
DianaApi.stop(ipAddress)
```

44 setJointCollision

def setJointCollision(collision,ipAddress=")

设置指定IP地址机械臂关节空间碰撞检测的力矩阈值。

参数:

collision:输入参数。七关节轴力矩阈值元组,元组大小为7,单位 N·M

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:设置成功。 False:设置失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

collision = (200, 200, 200, 200, 200, 200, 200)

DianaApi.setJointCollision(collision, ipAddress)

45 setCartCollision

def setCartCollision(collision,ipAddress=")

设置指定IP地址机械臂笛卡尔空间碰撞检测的力矩阈值。

参数:

collision:输入参数。六维力元组,长度为6,前三维单位N,后三维单位N·M

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。 False:失败。

调用示例:

collision = (200, 200, 200, 200, 200, 200)

ipAddress = '192.168.10.75'

DianaApi.setCartCollision (collision, ipAddress)

46 enterForceMode

def enterForceMode(frame_type, frame_matrix, force_direction, force_value,

max_approach_velocity, max_allow_tcp_offset,ipAddress=")

使指定 IP 地址机械臂进入力控模式。

参数:

frame_type:参考坐标系类型。0:基坐标系;1:工具坐标系;2:自定义坐标系(暂不支持)。

frame_matrix: 自定义坐标系矩阵(暂不支持),使用时传单位矩阵对应的元组即可。

force_direction: 表达力的方向的元组,大小为3。

force_value: 力大小,长度为3的元组。单位: N。

max_approach_velocity: 最大接近速度。单位: m/s。

max_allow_tcp_offset: 允许的最大偏移。单位: m。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功

False: 失败

调用示例:

import DianaApi

frame_type = 1

frame_matrix = (1,0,0,0,0,1,0,0,0,1,0,0,0,0,1)

force_direction =(0,0,-1)

force_value = 2.0

 $max_approach_velocity = 0.1$

max_allow_tcp_offset = 0.2

ipAddress = '192.168.10.75'

DianaApi.enterForceMode(frame_type, frame_matrix, force_direction, force_value, max_appro ach velocity, max_allow_tcp_offset,ipAddress)

47 leaveForceMode

def leaveForceMode (mode,ipAddress=")

设置指定 IP 地址机械臂退出力控模式,并设置退出后机械臂的工作模式。

参数:

mode: 控制模式。为 mode_e 类型的枚举。枚举声明及其含义如下:

- T_MODE_INVALID: 代表无效模式
- T_MODE_POSITION: 代表位置模式
- T_MODE_JOINT_IMPEDANCE: 代表关节空间阻抗模式
- T MODE CART IMPEDANCE: 代表笛卡尔空间阻抗模式

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

DianaApi.leaveForceMode(mode_e. T_MODE_POSITION, ipAddress)

48 setDefaultActiveTcpPose

def setDefaultActiveTcpPose (arrPose,ipAddress=")

设置指定 IP 地址机械臂默认的工具坐标系。在没有调用该函数时,默认工具中心点为法 兰 盘 中 心 , 调 用 该 函 数 后 , 默 认 的 工 具 坐 标 系 将 被 改 变 。 该 函 数 将 会 改 变 moveTCP,rotationTCP,moveJToPos,moveLToPose,speedJ,speedL,forward,inverse , getTcpPos,getTcpExternalForce 的默认行为。

参数:

arrPose:输入参数。TCP相对于末端法兰盘的位姿向量的元组,元组大小为6

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

0: 成功。

-1: 失败。

调用示例:

import DianaApi

pose = (0.1,0.1,0.1,0,0,0)

ipAddress = '192.168.10.75'

DianaApi.setDefaultActiveTcpPose (pose,ipAddress)

49 setResultantCollision

def setResultantCollision (force,ipAddress=")

设置指定 IP 地址机械臂笛卡尔空间碰撞检测 TCP 的合力矩阈值。

参数:

force: 合力值。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

0: 成功。

-1: 失败。

调用示例:

import DianaApi

force = 8.9

ipAddress = '192.168.10.75'

DianaApi.setResultantCollision (force, ipAddress)

50 **setJointImpedance**

def setJointImpedance (arrStiff, arrDamp, ipAddress=")

设置指定 IP 地址机械臂各关节阻抗参数,包含钢度 Stiffiness 和阻尼 Damping 的数据。

参数:

arrStiff:表示各关节钢度 Stiffiness 的元组,长度为7。

arrDamp: 表示各关节阻尼 Damping 的元组,长度为7。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

arrStiff = (3000, 3000, 1000, 500, 1000, 1000)

arrDamp= (50, 40, 15, 30, 9.88, 3.4, 1.0)

ipAddress = '192.168.10.75'

DianaApi.setJointImpedance (arrStiff, arrDamp, ipAddress)

51 **getJointImpedance**

def getJointImpedance (arrStiff, arrDamp,ipAddress=")

获取指定 IP 地址机械臂各关节阻抗参数,包含钢度 Stiffiness 和阻尼 Damping 的数据。

参数:

arrStiff:表示各关节钢度 Stiffiness 的列表,长度为7,用于接收获取到的值。

arrDamp: 表示各关节阻尼 Damping 的列表,长度为7,用于接收获取到的值。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

#以下参数仅供 API 展示使用, 无实际含义

arrStiff = [0] * 7

arrDamp = [0] * 7

ipAddress = '192.168.10.75'

DianaApi.getJointImpedance (arrStiff, arrDamp, ipAddress)

52 **setCartImpedance**

def setCartImpedance (arrStiff, arrDamp, ipAddress=")

设置指定IP地址机械臂笛卡尔空间阻抗参数。

参数:

arrStiff:表示笛卡尔空间,各维度钢度 Stiffiness 的元组,长度为6。

arrDamp: 表示笛卡尔空间,各维度阻尼 Damping 的元组,长度为 6。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

arrStiff = (1000, 1000, 1000, 500, 500, 500)

arrDamp = (10, 10, 10, 5, 5, 5)

ipAddress = '192.168.10.75'

DianaApi.setCartImpedance(arrStiff, arrDamp, ipAddress)

53 getCartImpedance

def getCartImpedance (arrStiff, arrDamp, ipAddress=")

获取指定 IP 地址机械臂笛卡尔空间各维度阻抗参数,包含钢度 Stiffiness 和阻尼 Damping 的数据。

参数:

arrStiff:表示笛卡尔空间,各维度钢度 Stiffiness 的列表,长度为 6,用于接收获取到的值。

arrDamp: 表示笛卡尔空间,各维度阻尼 Damping 的列表,长度为 6,用于接收获取到的值。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

arrStiff = [0] * 6

arrDamp = [0] * 6

ipAddress = '192.168.10.75'

DianaApi.getCartImpedance (arrStiff, arrDamp, ipAddress)

54 zeroSpaceFreeDriving

def zeroSpaceFreeDriving (enable, ipAddress=")

控制指定IP地址机械臂进入或退出零空间自由驱动模式。

参数:

enable:输入参数。True 为进入零空间自由驱动模式;False 为退出零空间自由驱动模式。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

True: 成功。 False: 失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

if DianaApi.zeroSpaceFreeDriving (True, ipAddress):

time.sleep(10)

DianaApi.zeroSpaceFreeDriving(False, ipAddress)

55 createPath

def createPath (type, ipAddress=")

为指定 IP 地址机械臂创建一个路段。

参数:

type: 输入参数。1:表示 moveJ, 2:表示 moveL。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械 臂时生效。

返回值:

返回带两个参数的元组

参数 0:

0: 成功。

-1: 失败。

参数1:

```
id_path:输出参数。用于保存新创建 Path 的 ID。
调用示例:
import DianaApi
import time
def to_rad(x):
  return x*math.pi / 180.0
firstPosition = (to_rad(0), to_rad(20), to_rad(0), to_rad(90), \
to_rad(0), to_rad(120), to_rad(0))
secondPosition = (to\_rad(0), to\_rad(-20), to\_rad(0), to\_rad(45), \
to_rad(0), to_rad(-120), to_rad(0))
thirdPosition = (to_rad(0), to_rad(0), to_rad(0), to_rad(0), \
to_rad(0), to_rad(0), to_rad(0))
print('start test moveJ path.')
ipAddress = '192.168.10.75'
path_id=DianaApi.createPath(1,ipAddress)[1]
DianaApi.addMoveJ(path_id, firstPosition, 0.2, 0.2, 0.3,ipAddress)
DianaApi.addMoveJ(path_id, secondPosition, 0.2, 0.2, 0.3,ipAddress)
DianaApi.addMoveJ(path_id, thirdPosition, 0.2, 0.2, 0.3,ipAddress)
DianaApi.runPath(path_id,ipAddress)
DianaApi.destroyPath(path_id,ipAddress)
time.sleep(10)
```

56 addMoveL

```
def addMoveL (id_path, joints, vel, acc, blendradius, ipAddress=")
```

向指定 IP 地址机械臂已创建的路段添加 MoveL 路点。

参数:

id_path: 输入参数。要添加路点的路径 ID。

joints:输入参数。要添加的路点,即该路点的各关节角度的元组,长度为7。单位:

 $rad\,{\scriptstyle_{\circ}}$

vel: moveL 移动到目标路点的速度。单位: m/s。

acc: moveL 移动到目标路点的加速度。单位: m/s²。

blendradius:交融半径。单位:m。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。 False:失败。

调用示例:

见 createPath 例子

57 addMoveJ

def addMoveJ (id_path, joints, vel_percent, acc_percent, blendradius_percent, ipAddress=")

向指定 IP 地址机械臂已创建的路段添加 MoveJ 路点。

参数:

id_path: 输入参数。要添加路点的路径 ID。

joints:输入参数。要添加的路点,即该路点的各关节角度的元组,长度为7。单位:rad

vel_percent: moveJ 移动到目标路点的速度百分比。

acc_percent: moveJ 移动到目标路点的加速度百分比。

blendradius _percent: 交融半径百分比。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

import time

def to_rad(x):

return x*math.pi / 180.0

firstPosition = (to_rad(0), to_rad(20), to_rad(0), to_rad(90), \

to_rad(0), to_rad(120), to_rad(0))

secondPosition = (to_rad(0), to_rad(-20), to_rad(0), to_rad(45), \

to_rad(0), to_rad(-120), to_rad(0))

thirdPosition = (to_rad(0), to_rad(0), to_rad(0), to_rad(0), \
to_rad(0), to_rad(0), to_rad(0))

print('start test moveJ path.')

print('start test moveJ path.')

ipAddress = '192.168.10.75'

path_id=DianaApi.createPath(1, ipAddress)[1]

DianaApi.addMoveJ(path_id, firstPosition, 0.2, 0.2, 0.3, ipAddress)

DianaApi.addMoveJ(path_id, secondPosition, 0.2, 0.2, 0.3, ipAddress)

DianaApi.addMoveJ(path_id, thirdPosition, 0.2, 0.2, 0.3, ipAddress)

DianaApi.runPath(path_id, ipAddress)

DianaApi.destroyPath(path_id, ipAddress)

58 runPath

time.sleep(10)

def runPath (id_path, ipAddress=")

指定 IP 地址机械臂启动运行设置好的路段。

参数:

id_path:输入参数。要运行的路径ID。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。

False: 失败。

调用示例:

详见 addMoveJ 或 addMoveL 调用示例。

59 destroyPath

def destroyPath (id_path, ipAddress="')

销毁指定 IP 地址机械臂某个路段。

参数:

id_path: 输入参数。要销毁的路径 ID。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。

False: 失败。

调用示例:

详见 addMoveJ 或 addMoveL 调用示例。

60 rpy2Axis

def rpy2Axis (arr)

欧拉角转轴角。

参数:

arr: 输入输出参数。rpy角的列表,长度为3

返回值:

True: 成功。

False: 失败。

调用示例:

arr = [0.5, 0.6, 0.7]

DianaApi.rpy2Axis(arr)

print(arr)

DianaApi.axis2RPY(arr)

print(arr)

61 axis2RPY

def axis2RPY (arr)

轴角转欧拉角

参数:

arr: 输入输出参数。轴角的列表, 长度为3

返回值:

True: 成功。

False: 失败。

调用示例:

见 rpy2Axis

62 homogeneous2Pose

def homogeneous2Pose (matrix, pose)

位姿矩阵转位姿向量

参数:

matrix:输入参数。位姿矩阵对应的元组,长度为16

pose:输出参数,位姿向量对应的列表,长度为6

返回值:

True: 成功。 False: 失败。

调用示例:

import DianaApi

matrix = (0.433013, 0.250000, -0.866025, 0.000000, 0.500000, -0.866025, -0.000000,

0.000000, -0.750000, -0.433013, -0.500000, 0.000000, -0.231000, 0.155000, 0.934000,

1.000000)

pose = [0] * 6

DianaApi.homogeneous2Pose(matrix,pose)

63 pose2Homogeneous

def pose2Homogeneous (pose, matrix)

位姿向量转位姿矩阵

参数:

pose:输入参数,位姿向量对应的元组,长度为6

matrix:输出参数。位姿矩阵对应的列表,长度为16

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

pose = (-0.231, 0.155, 0.934, PI, PI/3, PI/6)

matrix = [0] * 16

DianaApi. pose2Homogeneous(pose, matrix)

64 enableTorqueReceiver

def enableTorqueReceiver(bEnable, ipAddress=")

使指定 IP 地址机械臂开启实时扭矩接收

参数:

bEnable: 输入参数。是否开启扭矩实时接收

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

ipAddress='192.168.10.75'

DianaApi.initSrv((ipAddress,0,0,0))

DianaApi.enableTorqueReceiver(True, ipAddress)

DianaApi.destroySrv()

65 sendTorque_rt

def sendTorque_rt(torque,t, ipAddress='')

对指定 IP 地址机械臂,用户发送实时扭矩

参数:

torque:输入参数。用户传入的扭矩值,大小为6的元组。

t:持续时间,单位 ms

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

ipAddress='192.168.10.75'

DianaApi.initSrv((ipAddress,0,0,0))

torque =(0,0,0,0,0,0)

t = 1000

DianaApi.sendTorque_rt(torque,t, ipAddress)

DianaApi.destroySrv()

66 enableCollisionDetection

def enableCollisionDetection (enable, ipAddress=")

开启指定 IP 地址机械臂碰撞检测

参数:

enable: bool 变量,是否开启碰撞检测模式,True 表明开启碰撞检测,False 为关闭碰撞检测。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

ipAddress='192.168.10.75'

DianaApi.enableCollisionDetection (True, ipAddress)

67 setActiveTcpPayload

def setActiveTcpPayload(payload,ipAddress = '')

设置指定IP地址机械臂的负载信息

参数:

payload:负载信息,第1位为质量,2~4位为质心,5~10位为张量,大小为10的数组 ipAddress:可选参数,需要控制机械臂的IP地址字符串,不填仅当只连接一台机械臂时 生效。

返回值:

0: 成功。

-1: 失败。

调用示例:

ipAddress = '192.168.10.75'

payload = [0] * 10

ret = setActiveTcpPayload (payload, ipAddress)

if ret < 0:

print('setActiveTcpPayload failed! Return value = %d' %(ret))

68 servoJ

```
def servoJ(joints_pos, t=0.01, ah_t=0.03, gain=300, ipAddress=")
```

关节空间内,伺服指定 IP 地址机械臂到指定关节角位置。 servoJ 函数用于在线控制机器人,ah_t 时间和 gain 能够调整轨迹是否平滑或尖锐。 注意:太高的 gain 或太短的 ah_t 时间可能会导致不稳定。由于该函数主要用于以较短位移为目标点的多次频繁调用,建议在实时系统环境下使用。

参数:

joints_pos: 目标关节角位置元组,大小为7

t: 运动时间

ah_t: 时间(s), 范围(0.03-0.2)用这个参数使轨迹更平滑

gain: 目标位置的比例放大器,范围(100,2000)

返回值:

True: 成功。 False: 失败。

调用示例:

import DianaApi

import time

ipAddress='192.168.10.75'

DianaApi.initSrv((ipAddress,0,0,0))

DianaApi.releaseBrake(ipAddress)

PI=3.141592653

target=[0, PI/6, 0, PI/2, 0, -PI/2, 0]

for i in range(10):

target[3] = target[3] + PI/20

ret = DianaApi.servoJ(target, 0.01, 0.1, 300,ipAddress)

if ret < 0:

break

time.sleep(0.1)

DianaApi.stop(ipAddress)

DianaApi.holdBrake(ipAddress)

DianaApi.destroySrv()

69 **servoL**

def servoL(tcp_pose, t=0.01, ah_t=0.03, gain=300, scale=1, ipAddress=")

笛卡尔空间内,伺服指定 IP 地址机械臂到指定位姿。由于该函数主要用于以较短位移为目标点的多次频繁调用,建议在实时系统环境下使用。

参数:

tcp_pose:目标位姿列表,元组大小为6。前三个元素单位:m;后三个元素单位:rad,

注意,角度需要用轴角表示

t: 运动时间。单位: s。

time:运动时间。单位:s。

ah_t: 时间(s),范围(0.03-0.2)用这个参数使轨迹更平滑。

gain: 目标位置的比例放大器,范围(100,2000)。

scale: 平滑比例系数。范围(0.0~1.0)。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

import time

ipAddress='192.168.10.75'

DianaApi.initSrv((ipAddress,0,0,0))

DianaApi.releaseBrake(ipAddress)

pi=3.141592653

target = [0.319912,0,0.867999,0,pi/4,0]

for i in range(10):

target[3] = target[3] + 0.005

ret = DianaApi.servoL(target, ipAddress)

if ret < 0:

break

time.sleep(0.1)

DianaApi.stop(ipAddress)

DianaApi.holdBrake(ipAddress)

DianaApi.destroySrv(ipAddress)

70 **servoJ_ex**

def servoJ_ex (joints_pos, t=0.01, ah_t=0.03, gain=300, realiable = False, ipAddress=")

关节空间内,伺服指定 IP 地址机械臂到指定关节角位置优化版。 servoJ_ex 函数用于在线控制机器人,ah_t 时间和 gain 能够调整轨迹是否平滑或尖锐。 注意:太高的 gain 或太短的 ah_t 时间可能会导致不稳定。由于该函数主要用于以较短位移为目标点的多次频繁调用,建议在实时系统环境下使用。

参数:

joints: 目标关节角列表,长度为7。单位: rad。

t: 运动时间。单位: s。

ah_t: 时间,范围(0.03-0.2)用这个参数使轨迹更平滑。单位: s。

gain: 目标位置的比例放大器,范围(100,2000)。

realiable: bool 型变量,值为 True 需要 socket 反馈通信状态,行为等同 servoJ; 值为 False 则无需反馈直接返回。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

import time

ipAddress = '192.168.10.75'

DianaApi.initSrv((ipAddress,0,0,0))

DianaApi.releaseBrake(ipAddress)

PI=3.141592653

target=[0, PI/6, 0, PI/2, 0, -PI/2, 0]

for i in range(10):

```
target[3] = target[3]+PI/20

ret = DianaApi.servoJ_ex(target, ipAddress)

if ret < 0:
    break

time.sleep(0.1)

DianaApi.stop(ipAddress)

DianaApi.holdBrake(ipAddress)

DianaApi.destroySrv()</pre>
```

71 servoL_ex

def servoL_ex(tcp_pose, t=0.01, ah_t=0.03, gain=300, scale = 1, realiable = False,
ipAddress=")

笛卡尔空间内,伺服指定 IP 地址机械臂到指定位姿优化版。由于该函数主要用于以较短位移为目标点的多次频繁调用,建议在实时系统环境下使用。

参数:

pose: 目标位姿列表,长度为 6。前三个元素单位: m;后三个元素单位: rad,注意,角度需要用轴角表示

t: 运动时间。单位: s。

ah_t: 范围(0.03-0.2)用这个参数使轨迹更平滑。单位: s。

gain: 目标位置的比例放大器,范围(100,2000)。

scale: 平滑比例系数。范围(0.0~1.0)。

realiable: bool 型变量,值为 True 需要 socket 反馈通信状态,行为等同 servoJ; 值为 False 则无需反馈直接返回。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时 生效。

返回值:

True: 成功。 False: 失败。

调用示例:

import DianaApi

import time

ipAddress = '192.168.10.75'

```
DianaApi.initSrv((ipAddress,0,0,0))

DianaApi.releaseBrake(ipAddress)

pi=3.141592653

target = [0.319912,0,0.867999,0,pi/4,0]

for i in range(10):

   target[3] = target[3]+0.005

   ret = DianaApi.servoL_ex(target,ipAddress)

   if ret < 0:

        break

   time.sleep(0.1)

DianaApi.stop(ipAddress)

DianaApi.holdBrake(ipAddress)

DianaApi.destroySrv(ipAddress)
```

72 speedJ_ex

def speedJ_ex(speed, acc, t=0.0, realiable=False, ipAddress=")

速度模式优化版,使指定 IP 地址机械臂进行关节空间运动。时间 t 为可选项,时间 t 是可选项,如果提供了 t 值,机器人将在 t 时间后减速。如果没有提供时间 t 值,机器人将在达到目标速度时减速。该函数调用后立即返回。停止运动需要调用 stop 函数。

参数:

speed: 关节角速度列表,长度为7。单位: rad/s。

a: 加速度, 单位: rad/s²。

t: 时间,单位: s。

realiable: bool 型变量,值为 True 需要 socket 反馈通信状态,行为等同 speedJ; 值为 False 则无需反馈直接返回。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

DianaApi.initSrv(('192.168.10.75',0,0,0))

DianaApi.releaseBrake()

speeds = [0.0,0.0,0.0,0.0,0.0,0.0,0.5]

acc = 0.40

ret = DianaApi.speedJ_ex(speeds, acc, 0, True)

if ret == False:

print('speedJ_ex failed! Return value =' + str(ret))

DianaApi.holdBrake()

DianaApi.destroySrv()

73 **speedL_ex**

def speedL_ex(speed, acc, t=0.0, realiable=False, ipAddress=")

速度模式优化版,使指定 IP 地址机械臂笛卡尔空间下直线运动。时间 t 为可选项,时间 t 是可选项,如果提供了 t 值,机器人将在 t 时间后减速。如果没有提供时间 t 值,机器人将在达到目标速度时减速。该函数调用后立即返回。停止运动需要调用 stop 函数。

参数:

speed: 工具空间速度,元组大小为6,其中前3个单位为m/s,后3个单位为rad/s。

a: 加速度, 单位: m/s²。

t: 时间,单位: s。

realiable: bool 型变量,值为 true 需要 socket 反馈通信状态,行为等同 speedL; 值为 false 则无需反馈直接返回。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时 生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

DianaApi.initSrv((ipAddress,0,0,0))

DianaApi.releaseBrake(ipAddress)

import DianaApi

speeds = [0.1,0.0,0.0,0.0,0.0,0.0]

acc = [0.30, 0.50]

DianaApi.speedL_ex(speeds, acc, 0, True, ipAddress)

DianaApi.holdBrake(ipAddress)

DianaApi.destroySrv()

74 dumpToUDisk

def dumpToUDisk(ipAddress='')

导出指定 IP 地址机械臂的日志文件到 u 盘。控制箱中的系统日志文件(主要包含 ControllerLog.txt 和 DianaServerLog.txt)会自动复制到 u 盘。需要注意的是目前控制箱仅 支持 FAT32 格式 u 盘,调用 dumpToUDiskEx 函数前需先插好 u 盘,如果系统日志拷贝失败将不会提示。

参数:

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时 生效。

返回值:

True: 成功。 False: 失败。

调用示例:

- 1. 系统开机
- 2. 插入u盘到控制箱
- 3. 调用 Api 函数 dumpToUDisk('192.168.10.75')
- 4. 拔下 u 盘查看

75 inverse_ext

def inverse_ext(ref_joints, pose,joints, ipAddress = '')

针对指定 IP 地址机器人, 逆解函数, 给定一组参考关节角, 算出欧式距离最近的逆解。

参数:

ref_joints:参考的关节角,大小为7的列表

pose: 输入参数,位姿列表,数据为包含坐标(x,y,z)和旋转矢量(轴角坐标)组合。

joints: 输出参数, 关节角度列表。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

0: 成功。

-1: 失败。

调用示例:

import DianaApi

 $ref_{joints} = [0.0] * 7$

pose = [0.64221, 0.0, 0.9403, 0.0, 0.0, 0.0]

joints = [0.0] * 7

ipAddress = "192.168.10.75"

ret = DianaApi.inverse_ext(ref_joints,pose, joints, ipAddress)

if ret < 0:

print("inverse_ext failed! Return value = %d\n" %(ret))

76 getJointLinkPos

def getJointLinkPos(joints, ipAddress="')

获取指定 IP 地址机械臂当前低速侧关节角

参数:

joints:输出参数。低速侧关节角,大小为7列表

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

ipAddress='192.168.10.75'

DianaApi.initSrv((ipAddress,0,0,0))

DianaApi.releaseBrake(ipAddress)

joints = [0,0,0,0,0,0,0]

Diana Api.get Joint Link Pos(joints, ip Address)

print(joints)

DianaApi.holdBrake(ipAddress)

DianaApi.destroySrv()

77 createComplexPath

def createComplexPath (path_type, ipAddress='')

在指定 IP 地址机械臂上创建一个复杂路段,包括 MoveL、MoveJ、MoveC、MoveP 类型。

参数:

path_type: 枚举类型 complex_path_type。枚举及其含义如下

- NORMAL JOINT PATH: 创建 MoveJ、MoveL、MoveC 路段,传入关节角
- MOVEP_JOINT_PATH: 创建 MoveP 路段,传入关节角
- NORMAL POSE PATH: 创建 MoveJ、MoveL、MoveC 路段, 传入 TCP 位姿
- MOVEP_POSE_PATH: 创建 MoveP 路段, 传入 TCP 位姿

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

返回带两个参数的元组

参数 0:

- 0: 成功。
- -1: 失败。

参数1:

id_path:输出参数。用于保存新创建 Path 的 ID。

调用示例: (MoveP 直线运动)

import DianaApi

import time

ipAddress = '192.168.10.75'

DianaApi.initSrv((ipAddress,0,0,0))

DianaApi.releaseBrake()

time.sleep(2)

ret = DianaApi.createComplexPath(DianaApi.complex_path_type.MOVEP_POSE_PATH,

ipAddress)

if ret[0] == 0:

pose1 = [0.402863,0,0.871044,0,0,0]

pose2 = [0.402863, 0, 0.571044, 0, 0, 0]

Diana Api. add Move L Segment By Pose (ret[1], pose 1, 0.2, 0.2, 0.1, ip Address)

DianaApi.addMoveLSegmentByPose(ret[1],pose2,0.2,0.2,0.1, ipAddress)

DianaApi.runComplexPath(ret[1], ipAddress)

time.sleep(15)

DianaApi.destroyComplexPath(ret[1], ipAddress)

DianaApi.holdBrake(ipAddress)

DianaApi.destroySrv()

78 addMoveLSegmentByTarget

def addMoveLSegmentByTarget(complex_path_id, joints, vel, acc, blendradius, ipAddress=")在指定 IP 地址机械臂上,往已经创建的路径中插入一段直线,支持 MoveL 或 MoveP,需要传入点的关节角

参数:

complex_path_id:输入参数。要添加路点的路段 ID,通过 createComplexPath 传入 NORMAL_JOINT_PATH 枚举生成 MOVEL 类型 id,而传入 MOVEP_JOINT_PATH 枚举生成 MOVEP 类型 id

joints:输入参数。要添加的路点,即该路点的各关节角的列表,长度为7

vel: 移动到目标路点的速度。单位: m/s

acc: 移动到目标路点的加速度。单位: m/s²

blendradius:交融半径。单位:米

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

import time

pi = 3.141592653

def to_rad(deg):

return deg/180*pi

ipAddress = '192.168.10.75'

DianaApi.initSrv((ipAddress,0,0,0))

DianaApi.releaseBrake(ipAddress)

time.sleep(2)

 $ret = Diana Api.create Complex Path (Diana Api.complex_path_type.NORMAL_JOINT_PATH,$

ipAddress)

if ret[0] == 0:

joint1 = [0,to_rad(-17.193),0,to_rad(83.132),0,to_rad(65.939),0]

joint2 = [0,to_rad(-25.992),0,to_rad(128.898),0,to_rad(102.906),0]

Diana Api. add MoveL Segment By Target (ret[1], joint 1, 0.2, 0.2, 0.1, ip Address)

Diana Api. add Move L Segment By Target (ret[1], joint 2, 0.2, 0.2, 0.1, ip Address)

DianaApi.runComplexPath(ret[1], ipAddress)

time.sleep(15)

DianaApi.destroyComplexPath(ret[1], ipAddress)

DianaApi.holdBrake(ipAddress)

DianaApi.destroySrv()

79 addMoveLSegmentByPose

def addMoveLSegmentByPose(complex_path_id, pose, vel, acc, blendradius, ipAddress="")

在指定 IP 地址机械臂上,往路径中插入一段直线段,支持 MoveL 或 MoveP,需要传入 TCP 位姿。

参数:

complex_path_id:输入参数。要添加路点的路段 ID,通过 createComplexPath 传入

NORMAL POSE PATH 枚举生成 MOVEL 类型 id, 而传入 MOVEP POSE PATH 枚举生

成 MOVEP 类型 id

pose: 输入参数。要添加的路点,为该路点的的TCP位姿列表,长度为6

vel: 移动到目标路点的速度。单位: m/s

acc: 移动到目标路点的加速度。单位: m/s²

blendradius:交融半径。单位:米

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。

False: 失败。

调用示例: (MoveL 直线运动)

import DianaApi

```
import time
ipAddress = '192.168.10.75'
DianaApi.initSrv((ipAddress,0,0,0))
DianaApi.releaseBrake(ipAddress)
time.sleep(2)
ret = DianaApi.createComplexPath(DianaApi.complex_path_type.NORMAL_POSE_PATH,
ipAddress)
if ret[0] == 0:
    pose1 = [0.402863, 0, 0.871044, 0, 0, 0]
    pose2 = [0.402863, 0, 0.571044, 0, 0, 0]
    DianaApi.addMoveLSegmentByPose(ret[1],pose1,0.2,0.2,0.1, ipAddress)
    DianaApi.addMoveLSegmentByPose(ret[1],pose2,0.2,0.2,0.1, ipAddress)
    DianaApi.runComplexPath(ret[1], ipAddress)
    time.sleep(15)
    DianaApi.destroyComplexPath(ret[1], ipAddress)
DianaApi.holdBrake(ipAddress)
DianaApi.destroySrv()
```

80 addMoveJSegmentByTarget

def addMoveJSegmentByTarget(complex_path_id,joints, vel_percent, acc_percent
, blendradius_percent, ipAddress="")

在指定 IP 地址机械臂上,往已经创建的路径中插入一段直线,支持 MoveJ,需要传入点的关节角

参数:

complex_path_id: 输入参数。要添加路点的路段 ID

joints: 输入参数。要添加的路点,即该路点的各关节角度的列表,长度为7

vel_percent: 移动到目标路点的速度百分比

acc_percent: 移动到目标路点的加速度百分比

blendradius_percent: 交融半径百分比

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

```
True: 成功。
False: 失败。
调用示例:
import DianaApi
import time
pi = 3.141592653
def to_rad(degree):
  return degree/180 * pi
ret=[False,-1]
ipAddress = '192.168.10.75'
ret=DianaApi.createComplexPath(DianaApi.complex_path_type.NORMAL_JOINT_PATH,
ipAddress)
if ret[0] == True:
joint1 = [0,0,0,0,0,0,0]
joint2 = [0,0,0,to\_rad(90),0,0,0]
DianaApi. addMoveJSegmentByTarget(ret[1],joint1,0.2,0.2,0.1, ipAddress)
DianaApi. addMoveJSegmentByTarget(ret[1],joint2,0.2,0.2,0.1, ipAddress)
DianaApi.runComplexPath(ret[1], ipAddress)
time.sleep(5)
DianaApi.destoryComplexPath(ret[1], ipAddress)
```

81 addMoveJSegmentByPose

```
def addMoveJSegmentByPose(complex_path_id,pose, vel_percent, acc_percent
, blendradius_percent, ipAddress=")
```

在指定 IP 地址机械臂上,往路径中插入一段直线段,支持 MoveJ,需要传入 TCP 位姿。

参数:

complex_path_id:输入参数。要添加路点的路段 ID,通过 createComplexPath 传入

NORMAL_POSE_PATH 枚举生成 MOVEL 类型 id,

pose: 输入参数。要添加的路点,为该路点的TCP位姿列表,长度为6。

vel_percent: 移动到目标路点的速度百分比。

acc_percent: 移动到目标路点的加速度百分比。

blendradius_percent: 交融半径百分比。

```
ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时
生效。
返回值:
True: 成功。
False: 失败。
调用示例:
import DianaApi
import time
pi = 3.141592653
def to_rad(deg):
  return deg/180*pi
ipAddress = '192.168.10.75'
DianaApi.initSrv((ipAddress,0,0,0))
DianaApi.releaseBrake(ipAddress)
time.sleep(2)
ret = DianaApi.createComplexPath(DianaApi.complex_path_type.NORMAL_POSE_PATH,
ipAddress)
if ret[0] == 0:
    pose1 = [0.40286,0,0.871044,0,0,0]
    pose2 = [0.40286, 0, 0.571044, 0, 0, 0]
    DianaApi.addMoveJSegmentByPose(ret[1],pose1,0.2,0.2,0.1, ipAddress)
    DianaApi.addMoveJSegmentByPose(ret[1],pose2,0.2,0.2,0.1, ipAddress)
    DianaApi.runComplexPath(ret[1], ipAddress)
    time.sleep(15)
    DianaApi.destroyComplexPath(ret[1],ipAddress)
DianaApi.holdBrake(ipAddress)
DianaApi.destroySrv()
```

82 addMoveCSegmentByTarget

def addMoveCSegmentByPose(complex_path_id,pass_joints,target_joints,vel,acc, blendradius, ignore_rotation, ipAddress='')

在指定 IP 地址机械臂上,往路径中插入一段圆弧,支持 MoveC 或 MoveP,需要传入关

节角。

参数:

complex_path_id: 要添加路点的路段 ID。通过 createComplexPath 传入MOVEP_POSE_PATH 枚举生成 MOVEP 类型,传入 NORMAL_POSE_PATH 枚举生成MOVEC 类型

pass_joints: 输入参数。圆弧经过的路点,传入该点关节角的列表

target_joints: 输入参数。圆弧的终点,传入该点关节角的列表

vel: 移动到目标路点的速度。单位: m/s

acc: 移动到目标路点的加速度。单位: m/s²

blendradius:交融半径。单位:米

ignore_rotation: 是否为固定姿态

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

import time

pi = 3.141592653

def to_rad(deg):

return deg/180*pi

ipAddress = '192.168.10.75'

DianaApi.initSrv((ipAddress,0,0,0))

DianaApi.releaseBrake(ipAddress)

ret = DianaApi.createComplexPath(DianaApi.complex_path_type.MOVEP_JOINT_PATH,

ipAddress)

if ret[0] == 0:

joint0 = [to_rad(6.666),to_rad(-25.508),to_rad(-13.723),to_rad(116.906),to_rad(-

10.561),to_rad(43.197),to_rad(12.617)]

joint1 = [to_rad(18.021),to_rad(-

20.483),to_rad(15.462),to_rad(141.904),to_rad(32.691),to_rad(68.061),to_rad(25.780)]

joint2 = [to_rad(11.94),to_rad(-15.738),to_rad(-41.365),to_rad(136.998),to_rad(-30.748),

to_rad(72.927),to_rad(-17.738)]

DianaApi.addMoveLSegmentByTarget(ret[1],joint0,0.2,0.2,0.1, ipAddress)

DianaApi.addMoveCSegmentByTarget(ret[1],joint1,joint2,0.2,0.4,0,True, ipAddress)

DianaApi.runComplexPath(ret[1], ipAddress)

time.sleep(15)

DianaApi.destroyComplexPath(ret[1] , ipAddress)

DianaApi.holdBrake(ipAddress)

DianaApi.destroySrv()

83 addMoveCSegmentByPose

def addMoveCSegmentByPose(complex_path_id, pass_pose, target_pose,vel, acc, blendradius, ignore_rotation,ipAddress='')

在指定 IP 地址机械臂上,往路径中插入一段圆弧,支持 MoveC 或 MoveP,需要传入 TCP 位姿。

参数:

complex_path_id : 要添加路点的路段 ID 。通过 createComplexPath 传入MOVEP_POSE_PATH 枚举生成 MOVEP 类型,传入 NORMAL_POSE_PATH 枚举生成

MOVEC 类型

pass_pose:输入参数。圆弧经过的路点,传入该点 TCP 位姿的列表

target_pose:输入参数。圆弧的终点,传入该点TCP位姿的列表

vel: 移动到目标路点的速度。单位: m/s

acc: 移动到目标路点的加速度。单位: m/s²

blendradius:交融半径。单位:米

ignore_rotation: 是否为固定姿态。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。

False: 失败。

调用示例:

```
import DianaApi
import time
pi = 3.141592653
def to rad(deg):
  return deg/180*pi
ipAddress = '192.168.10.75'
DianaApi.initSrv((ipAddress,0,0,0))
DianaApi.releaseBrake()
ret = DianaApi.createComplexPath(DianaApi.complex_path_type.MOVEP_POSE_PATH,
ipAddress)
if ret[0] == 0:
    pose0 = [0.285369,0.088991,0.633264,to_rad(20.379),to_rad(9.576),to_rad(28.775)]
    pose1 = [0.20282,-0.227599,0.423234,to_rad(-0.282),to_rad(59.506),to_rad(-0.952)]
    pose2 = [0.267353,0.241704,0.399786,to_rad(1.057),to_rad(54.307),to_rad(0.907)]
    DianaApi.addMoveLSegmentByPose(ret[1],pose0,0.2,0.2,0.1, ipAddress)
    DianaApi.addMoveCSegmentByPose(ret[1],pose1,pose2,0.05,0.05,0,False,ipAddress)
    DianaApi.runComplexPath(ret[1],ipAddress)
    print(DianaApi.getLastError(ipAddress))
    time.sleep(10)
    DianaApi.destroyComplexPath(ret[1], ipAddress)
DianaApi.holdBrake(ipAddress)
DianaApi.destroySrv()
```

84 runComplexPath

```
def runComplexPath(complex_path_id, ipAddress='')
在指定 IP 地址机械臂上,运行 id 的路段
参数:
complex_path_id: 输入参数。要运行路段 ID。
ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。
返回值:
True: 成功。
```

False: 失败。

调用示例:

见 createComplexPath 示例

85 destroyComplexPath

def destroyComplexPath(complex_path_id, ipAddress="')

在指定 IP 地址机械臂上, 销毁 id 的路段

参数:

complex_path_id:输入参数。要销毁路段的ID。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。 False:失败。

调用示例:

见 createComplexPath 示例

86 saveEnvironment

def saveEnvironment(ipAddress="')

将指定 IP 地址机械臂的控制器当前参数数据写入配置文件,用于重启机器人时初始化设置各参数,包括碰撞检测阈值、阻抗参数、DH 参数等所用可通过 API 设置的参数数据。

参数:

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

DianaApi. SaveEnvironment(ipAddress)

87 dumpToUDiskEx

def dumpToUDiskEx(time_out, ipAddress="')

导出指定 IP 地址机械臂的日志文件到 u 盘。控制箱中的系统日志文件(主要包含 ControllerLog.txt 和 DianaServerLog.txt)会自动复制到 u 盘。需要注意的是目前控制箱仅 支持 FAT32 格式 u 盘,调用 dumpToUDiskEx 函数前需先插好 u 盘,如果系统日志拷贝失败将不会提示。

参数:

time_out:单位 秒,设置超时时间,一般需要大于3秒,-1表示设置超时时间无穷大。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。 False:失败。

调用示例:

- 1. 系统开机
- 2. 插入u盘到控制箱
- 3. 调用 Api 函数 dumpToUDiskEx(-1,'192.168.10.75')
- 4. 拔下u盘查看

88 enterForceMode_ex

 $def\ enterForceMode_ex(forceDirection,forceValue,maxApproachVelocity,maxAllowTcpOffset, active_tcp, ipAddress=``)$

使指定 IP 地址机械臂进入力控模式,支持用户自定义的坐标系

参数:

forceDirection: 表达力的方向的元组,大小为3。

forceValue: 力大小,长度为3的元组。单位: N。

maxApproachVelocity: 最大接近速度。单位: m/s。

maxAllowTcpOffset: 允许的最大偏移。单位: m。

active_tcp:用户设定的坐标系的元组,大小为6,不传则默认为基坐标系。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。 False: 失败。

调用示例:

import DianaApi

force_direction =(0,0,-1)

force value = 2.0

 $max_approach_velocity = 0.1$

 $max_allow_tcp_offset = 0.2$

active_tcp=[0,0,0,0,0,0]

ipAddress='192.168.10.75'

DianaApi.enterForceModeEx(force_direction, force_value, max_approach_velocity, max_allo

w_tcp_offset,active_tcp, ipAddress)

89 readDI

def readDI (group_name,di_name, ipAddress='')

读取指定IP地址机械臂一个数字输入的值。

参数:

group_name:数字输入的分组,例如,'board','plc';

name: 数字输入的信号名,例如,'di0';

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

元组,共计两个元素,第一个元素表示函数调用是否成功:

True: 成功。

False: 失败。

第二个元素表示读取的数字输入的值。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

ret = DianaApi.readDI('board','di0', ipAddress)

if ret[0] == True:

print(ret[1])

else:

print("cannot read di")

90 readAI

def readAI (group_name,name, ipAddress='')

读取指定IP地址机械臂一个模拟输入的值和模式。

参数:

group_name: 模拟输入的分组,例如,'board','plc';

name:模拟输入的信号名,例如,'ai0';

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

元组,共计两个元素,第一个元素表示函数调用是否成功:

True: 成功。

False: 失败。

第二个元素表示读取的模拟输入的值。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

ret = DianaApi.readAI('board','ai0', ipAddress)

if ret[0] == True:

print(ret[1])

else:

print("cannot read ai")

91 setAIMode

def setAIMode (group name,name,mode, ipAddress=")

设置指定IP地址机械臂模拟输入的模式。

参数:

group_name:模拟输入的分组,例如,'board','plc';

name:模拟输入的信号名,例如,'ai0';

mode: 模拟输入模式, 1代表电流, 2代表电压。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

```
返回值:
True: 成功。
False: 失败。
调用示例:
import DianaApi
mode = 1
ipAddress = '192.168.10.75'
ret = DianaApi.setAIMode('board','ai0',mode, ipAddress)
if ret[0] == True:
    print(ret[1])
else:
    print("cannot set ai mode")
```

92 writeDO

```
def writeDO (group_name,name,value, ipAddress=")
```

设置指定 IP 地址机械臂一个数字输出的值。可用于改变模拟信号的模式,将信号名替换为 "aimode"或 "aomode"。

参数:

group_name: 数字输出的分组,例如,'board','plc';

name: 数字输出的信号名,例如,'do0';

value: 设置的值。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效

返回值:

True: 成功。 False: 失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

ret = DianaApi.writeDO('board','do0',value, ipAddress)

if ret[0] == True:

print(ret[1])

else:

print("cannot write DO")

93 writeAO

def writeAO (group_name,name,value, ipAddress="')

设置指定IP地址机械臂一个模拟输出的值和模式。

参数:

group_name: 模拟输出的分组,例如,'board','plc';

name: 模拟输出的信号名, 例如: 'ao0';

mode: 当前模拟输出模式,1代表电流,2代表电压。

value: 设置输出的值。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

mode=1

value=8.8

ipAddress = '192.168.10.75'

ret = DianaApi.writeAO('board','do0',mode,value, ipAddress)

if ret[0] == True:

print(ret[1])

else:

print("cannot write AO")

94 readBusCurrent

def readBusCurrent(ipAddress='')

读取指定IP地址机械臂总线电流。

参数:

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

元组,共计两个元素,第一个元素表示函数调用是否成功:

True: 成功。

False: 失败。

第二个元素表示读取的总线电流的值。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

ret = DianaApi.readBusCurrent(ipAddress)

if ret[0] == True:

print(ret[1])

else:

print("cannot read bus current")

95 readBusVoltage

def readBusVoltage(ipAddress="')

读取指定 IP 地址机械臂总线电压。

参数:

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

元组,共计两个元素,第一个元素表示函数调用是否成功:

True: 成功。

False: 失败。

第二个元素表示读取的总线电压的值。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

ret = DianaApi.readBusVoltage(ipAddress)

if ret == True:

print(ret[1])

else:

print("cannot read bus voltage")

96 **getDH**

def getDH (aDH,alphaDH,dDH,thetaDH, ipAddress='')

获取指定 IP 地址机械臂的 DH 参数。

参数:

aDH: 输入输出参数。连杆长度,长度为7的列表

alphaDH:输入输出参数,连杆转角,长度为7的列表

dDH:输入输出参数,连杆偏距,长度为7的列表

thetaDH:输入输出参数,连杆的关节角,长度为7的列表

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

a = [0] * 7

alpha = [0] * 7

d = [0] * 7

theta = [0] * 7

ipAddress = '192.168.10.75'

DianaApi.initSrv((ipAddress,0,0,0))

DianaApi. getDH(a,alpha,d,theta, ipAddress)

DianaApi.destroySrv()

97 **getOriginalJointTorque**

def getOriginalJointTorque (torques, ipAddress="')

获取指定 IP 地址机械臂传感器反馈的扭矩值,未减去零偏。

参数:

torques: 输入输出参数。反馈的扭矩值,长度为7列表

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

torques = [0] * 7

ipAddress = '192.168.10.75'

DianaApi.initSrv((ipAddress,0,0,0))

DianaApi. getOriginalJointTorque(torques,ipAddress)

DianaApi.destroySrv()

98 getJacobiMatrix

def getJacobiMatrix (matrix_jacobi, ipAddress=")

获取指定IP地址机械臂的雅各比矩阵。

参数:

matrix_jacobi: 输入输出参数。雅可比矩阵,长度为42列表

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

matrix_jacobi =[0] * 42

ipAddress = '192.168.10.75'

DianaApi.initSrv((ipAddress,0,0,0))

DianaApi. getJacobiMatrix (matrix_jacobi,ipAddress)

DianaApi.destroySrv()

99 resetDH

def resetDH(ipAddress="')

重置指定 IP 地址机械臂用户自定义 DH 参数。

参数:

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。 False: 失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

DianaApi.initSrv((ipAddress,0,0,0))

DianaApi. resetDH(ipAddress)

DianaApi.destroySrv()

100 runProgram

def runProgram(name, ipAddress='')

运行指定 IP 地址机械臂某个程序。

参数:

name: 程序的名字。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。 False: 失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

ret = DianaApi.runProgram('AgileRobots', ipAddress)

if ret == False:

print('run Program failed!')

101 **stopProgram**

def stopProgram(name, ipAddress="')

停止指定 IP 地址机械臂某个程序。

参数:

name:程序的名字。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

ret = DianaApi.stopProgram('AgileRobots', ipAddress)

if ret == False:

print('stop Program failed!')

102 getVariableValue

def getVariableValue(name, ipAddress='')

获取指定 IP 地址机械臂某个全局变量的值。

参数:

name: 全局变量的名字

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

元组,共计两个元素,第一个元素表示函数调用是否成功:

True: 成功。

False: 失败。

第二个元素表示读取的全局变量的值。

True:成功。 False:失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

DianaApi.getVariableValue('GLOBAL',value, ipAddress)

103 **setVariableValue**

def setVariableValue(name,value, ipAddress="')

设置指定IP地址机械臂某个全局变量的值。

参数:

name: 全局变量的名字

value: 设置的全局变量的值

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。 False: 失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

DianaApi.setVariableValue('GLOBAL',1, ipAddress)

104 isTaskRunning

def isTaskRunning(name, ipAddress='')

判断指定 IP 地址机械臂某个程序是否在运行。

参数:

name: 程序名称

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

DianaApi.isTaskRunning('AgileRobots', ipAddress)

105 pauseProgram

def pauseProgram(ipAddress='')

暂停指定 IP 地址机械臂所有程序。

返回值:

True: 成功。

False: 失败。

参数:

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

Diana Api.pause Program (ip Address)

106 resumeProgram

def resumeProgram(ipAddress='')

恢复运行指定IP地址机械臂已经暂停的程序。

参数:

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。

False: 失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

Diana Api.resume Program (ip Address)

107 **stopAllProgram**

def stopAllProgram(ipAddress='')

停止指定 IP 地址机械臂所有程序。

参数:

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

DianaApi.stopAllProgram(ipAddress)

108 isAnyTaskRunning

def isAnyTaskRunning(ipAddress='')

判断指定 IP 地址机械臂是否有程序在运行。

参数:

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。 False: 失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

DianaApi.isAnyTaskRunng(ipAddress)

109 cleanErrorInfo

def cleanErrorInfo(ipAddress='')

清除指定 IP 地址机械臂的错误信息。

参数:

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。 False: 失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

DianaApi.cleanErrorInfo(ipAddress)

110 setCollisionLevel

def setCollisionLevel(level, ipAddress=")

设置指定IP地址机械臂的碰撞检测类型

参数:

level:碰撞等级,必须是枚举类型: collision_level,否则报错。各枚举与其对应含义:

E_NO_COLLISION_DETECTION:无碰撞检测

E_JOINT_SPACE_DETECTION:关节空间碰撞检测

E_CART_SPACE_DETECTION:笛卡尔空间碰撞检测

E_TCP_RESULTANT_DETECTION: Tcp 合力检测

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

DianaApi.setCollisionLevel(collision_level.E_NO_COLLISION_DETECTION, ipAddress)

111 **getJointCount**

def getJointCount(ipAddress = '')

在指定 IP 地址机械臂上, 获取其机械臂的关节数目

参数:

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

0: 成功。

-1: 失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

count = DianaApi.getJointCount(ipAddress)

print("Joint Count = %d" %(count))

112 **getWayPoint**

def setWayPoint(waypointName, tcppos, joints, ipAddress="")

获取指定 IP 地址机械臂上路点变量信息。

参数:

waypointName: 路点变量名称。

tcppos:输出参数,位姿信息,大小为6的列表,注意,角度需要用轴角表示

joints: 输出参数, 关节角信息

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。 False: 失败。

调用示例:

import DianaApi

wayPointName = 'point'

Tcppos=[0]*6

Joint=[0] * 7

ipAddress = '192.168.10.75'

DianaApi.getWayPoint(wayPointName,Tcppos,Joint,ipAddress)

if ret == True:

print(pos)

print(joints)

else:

print('cannot get waypoint')

113 setWayPoint

def setWayPoint(waypointName, tcppos, joints, ipAddress=")

修改指定 IP 地址机械臂上路点变量的值

参数:

strWayPointName: 路点变量名称 。

tcppos: 位姿信息,大小为6的列表,注意,角度需要用轴角表示

joints: 关节角信息,大小为7的列表。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

pos = [-0.087, 0, 1.316, 0, 3.142, 0]

joints = [-1.518, 0, 22.977, 3.142, 0, 3.142, 0.0]

ipAddress = '192.168.10.75'

ret = DianaApi.setWayPoint('test', pos, joints, ipAddress)

if ret == True:

print(pos)

print(joints)

else:

print('cannot set waypoint')

114 addWayPoint

def addWayPoint(waypointName, tcppos, joints, ipAddress=")

在指定 IP 地址机械臂上新增路点变量。

参数:

wayPointName: 输入参数,路点变量名称。

tcppos: 输入参数,位姿信息。 大小为6的列表,注意,角度需要用轴角表示

joints:输入参数,关节角信息,大小为7的列表。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。 False: 失败。

调用示例:

import DianaApi

```
pos = [-0.087, 0, 1.316, 0, 3.142, 0]

joints = [-1.518, 0, 22.977, 3.142, 0, 3.142, 0.0]

ipAddress = '192.168.10.75'

ret = DianaApi.addWayPoint('test', pos, joints, ipAddress)

if ret == True:

print(pos)

print(joints)

else:

print('cannot add waypoint')
```

115 deleteWayPoint

def deleteWayPoint(waypointName, ipAddress=")

在指定 IP 地址机械臂上删除路点变量。

参数:

wayPointName: 路点变量名称 。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

wayPointName = 'point'

ipAddress = '192.168.10.75'

DianaApi.deleteWayPoint(wayPointName, ipAddress)

116 **getDefaultActiveTcp**

def getDefaultActiveTcp(default_tcp, ipAddress="')

获取指定 IP 地址机械臂当前的工具坐标系

参数:

default_tcp: 当前工具坐标系的矩阵,为一个长度 16 的列表。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

tcp=[0] * 16

ipAddress='192.168.10.75'

DianaApi.getDefaultActiveTcp(tcp, ipAddress)

print(tcp)

117 getDefaultActiveTcpPose

def getDefaultActiveTcpPose(arrPose, ipAddress="')

获取指定 IP 地址机械臂末端工具的位姿

参数:

arrPose:末端工具的位姿,为一个长度6的列表,注意,角度需要用轴角表示

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

pose=[0,0,0,0,0,0]

ipAddress='192.168.10.75'

Diana Api.get Default Active Tcp Pose (pose, ip Address)

print(pose)

118 **getActiveTcpPayload**

def getActiveTcpPayload(payLoad, ipAddress="')

获取指定 IP 地址机械臂的负载信息

参数:

arrPose: 负载信息,第1位为质量,2~4位为质心,5~10位为张量

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True:成功。 False:失败。

调用示例:

import DianaApi

load=[0] * 10

ipAddress='192.168.10.75'

DianaApi.getActiveTcpPayload(load, ipAddress)

print(load)

119 zeroSpaceManualMove

def zeroSpaceManualMove(direction,jointsVel,jointAcc, ipAddress=")

使指定 IP 地址机械臂启动零空间手动移动

参数:

direction:零空间的方向,为 zero_space_move_direction类型的枚举,枚举及其含义如下:

- E FORWARD:正向移动
- E_BACKWARD:反向移动

jointsVel:各关节的速度,大小为7的列表

jointAcc:各关节的加速度,大小为7的列表

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

jointVel=[0.1] * 7

jointAcc=[0.1] * 7

ipAddress='192.168.10.75'

DianaApi.zeroSpaceManualMove (zero_space_move_direction. E_FORWARD, jointVel,

jointAcc, ipAddress)

120 moveTcp_ex

def moveTcp_ex(coordinate,direction,velocity,accleration, ipAddress="")

使指定 IP 地址机械臂进行多种坐标系下的直线移动

参数:

coordinate:坐标系类型,应当为枚举类型 coordinate_e,枚举与其含义如下:

- E_BASE_COORDINATE:基坐标系
- E_TOOL_COORDINATE:工具坐标系
- E_WORK_PIECE_COORDINATE:工件坐标系
- E VIEW COORDINATE:视角坐标系

direction:移动方向, 需要为tcp direction e 的枚举类型。枚举值及其含义为:

- T_MOVE_X_UP表示沿x轴正向
- T MOVE X DOWN 表示沿 x 轴负向
- T MOVE Y UP表示沿 y 轴正向
- T_MOVE_Y_DOWN 表示沿 y 轴负向
- T_MOVE_Z_UP 表示沿 z 轴正向
- T_MOVE_Z_DOWN 表示沿 z 轴负向

velocity: 速度, 单位: m/s

accleration:加速度,单位:m/s²

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

ipAddress='192.168.10.75'

 $Diana Api. move Tcp_ex (coordinate_e. E_BASE_COORDINATE, tcp_direction_e.$

T_MOVE_X_UP,0.1,0.2, ipAddress)

time.sleep(2)

DianaApi.stop(ipAddress)

121 setExternalAppendTorCutoffFreq

def setExternalAppendTorCutoffFreq(dblFreq, ipAddress = ")

针对指定 IP 地址机械臂,设置其附加力矩的滤波截止频率

参数:

dblFreq: 输入参数,附加力矩的滤波截止频率,需要提供一个正值。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

0: 成功。

-1: 失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

ret = DianaApi.setExternalAppendTorCutoffFreq(1.0,ipAddress)

if ret < 0:

print("setExternalAppendTorCutoffFreq failed! Return value = %d" %(ret))

122 **poseTransform**

def poseTransform(srcPose,srcMatrixPose,dstMatrixPose,dstPose)

把源坐标系下机械臂位姿转换成目的坐标系下位姿

参数:

srcPose:输入参数,源坐标系下的位姿,大小为6的元组,均为国际单位制(m和rad),

注意,角度需要用轴角表示

srcMatrixPose: 输入参数,源坐标系对应的位姿向量,大小为6的列表

dstMatrixPose: 输入参数,目标坐标系对应的位姿向量,大小为6的列表

dstPose:输出参数,机械臂在目标坐标系下的位姿,大小为6的列表,均为国际单位制

(m和rad),注意,角度用轴角表示

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

PI = 3.141592653

srcPose = [-0.087, 0, 1.3165, PI, 0, PI]

srcMatrixPose = [0] * 6

dstMatrixPose = [-0.087, 0, 1.3165, PI, 0, PI]

dstPose = [0] * 6

DianaApi.poseTransform(srcPose,srcMatrixPose,dstMatrixPose,dstPose)

print(dstPose)

123 updateForce

def updateForce(forceDirection,forceValue, ipAddress=")

针对指定 IP 地址机械臂上,在力控模式下,实时改变力指令的大小与方向

参数:

forceDirection: 输入参数,力的方向,大小为三的数组,分别表示下x,y,z方向的分量

forceValue: 输入参数,力的大小,需要是一个大于0的数

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

import time

PI=3.141592653

ipAddress = '192.168.10.75'

Diana Api.init Srv ((ip Address, 0, 0, 0, 0, 0))

DianaApi.releaseBrake(ipAddress)

frameType = DianaApi.coordinate_e.E_BASE_COORDINATE.value

frameMatrix = [1,0,0,0,0,1,0,0,0,1,0,0,0,0,1]

forceDirection=[0,0,-1]

forceValue = 1.0

maxVel = 0.1

maxOffset = 0.2

joints = [0,PI/6,0,PI/2,0,-PI/3,0]

DianaApi.moveJ(joints,0.2,0.2,ipAddress)

DianaApi.wait_move(ipAddress)

```
if
     DianaApi.enterForceMode(frameType,
                                             frameMatrix,
                                                              forceDirection,
                                                                                forceValue,
maxVel,maxOffset,ipAddress) < 0:
    print("Diana API enterForceMode failed!\n")
else:
    print("Diana API enterForceMode succeeded!\n")
count = 0
while count < 3000:
    forceValue = forceValue - 0.001
    if forceValue < 0:
         forceDirection[2] = 1
    else:
         forceDirection[2] = -1
    DianaApi.updateForce(forceDirection,abs(forceValue),ipAddress)
    time.sleep(0.001)
    count = count + 1
if DianaApi.leaveForceMode(DianaApi.mode_e.T_MODE_POSITION,ipAddress) < 0:
    print("Diana API leaveForceMode failed!\n")
else:
    print("Diana API leaveForceMode succeeded!\n")
DianaApi.holdBrake(ipAddress)
DianaApi.destroySrv(ipAddress)
```

124 updateForce_ex

```
def updateForce(forceDirection,forceValue,active_tcp, ipAddress='') 
针对指定 IP 地址机械臂,在力控模式下,实时改变力指令的大小与方向,相比于
```

针对指定 IP 地址机械臂,在力控模式下,实时改变力指令的大小与万同,相比于 updateForce 增加了对工具坐标系支持

参数:

forceDirection:输入参数,力的方向,为一个长度为3的列表,分别表示下x,y,z方向的分量

forceValue:输入参数,力的大小,单位 N

active_tcp: 可选参数,坐标系对应的位姿向量,大小为6的列表,不传则默认为基坐标

系

```
ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时
生效。
返回值:
True: 成功。
False: 失败。
调用示例:
import DianaApi
import time
PI=3.141592653
ipAddress = '192.168.10.75'
DianaApi.initSrv((ipAddress,0,0,0,0,0))
DianaApi.releaseBrake(ipAddress)
frameType = DianaApi.coordinate_e.E_BASE_COORDINATE.value
frameMatrix = [1,0,0,0,0,1,0,0,0,1,0,0,0,0,1]
forceDirection=[0,0,-1]
forceValue = 1.0
maxVel = 0.1
maxOffset = 0.2
joints = [0,PI/6,0,PI/2,0,-PI/3,0]
DianaApi.moveJ(joints,0.2,0.2,ipAddress)
DianaApi.wait_move(ipAddress)
    DianaApi.enterForceMode(frameType,
                                                         forceDirection,
                                                                          forceValue,
                                          frameMatrix,
maxVel,maxOffset,ipAddress) < 0:
    print("Diana API enterForceMode failed!\n")
else:
    print("Diana API enterForceMode succeeded!\n")
count = 0
active_tcp=[0]*6
while count < 3000:
    forceValue = forceValue - 0.001
    if forceValue < 0:
```

forceDirection[2] = 1

else:

forceDirection[2] = -1

DianaApi.updateForce_ex(forceDirection,abs(forceValue),active_tcp,ipAddress)

time.sleep(0.001)

count = count + 1

if DianaApi.leaveForceMode(DianaApi.mode_e.T_MODE_POSITION,ipAddress) < 0:

print("Diana API leaveForceMode failed!\n")

else:

print("Diana API leaveForceMode succeeded!\n")

DianaApi.holdBrake(ipAddress)

DianaApi.destroySrv(ipAddress)

125 inverseClosedFull

在指定 IP 地址机械臂上,基于工具坐标系,给定一个参考关节角,约束单轴求逆解,注意,工业臂只能锁定七轴。

参数:

pose:输入参数,位姿列表,数据为包含 active_tcp 坐标(x, y, z)和旋转矢量(轴角坐标)组合,注意,角度需要用轴角表示。当 active_tcp 不为空时,pose 描述工具中心点在基座标系下的位姿,否则 active_tcp 描述法兰中心点在基座标系下的位姿。

lock_joint_index: 输入参数,被约束的关节号。

lock_joint_position: 输入参数,被约束关节的角度,单位为弧度。

ref joints:参考的关节角,大小为7的列表。

active_tcp: 当前工具坐标系对应的位姿向量,大小为6的列表。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

非负数: 生成逆解对应的 ID。

-1: 失败。

调用示例:

```
import DianaApi
import time
def to_rad(deg):
    return deg * PI / 180
PI=3.141592653
ipAddress = '192.168.10.75'
start_point= [to_rad(0), 0.523599, to_rad(0), 1.570796,to_rad(0), 0.174533, to_rad(0)]
pose = [0] * 6
lock_joint_index = 6
lock_joint_position = 0
active_tcp=[0] * 6
DianaApi.initSrv((ipAddress,0,0,0,0,0))
DianaApi.forward(start_point, pose, ipAddress);
id=Diana Api. inverse Closed Full (pose, lock\_joint\_index, lock\_joint\_position, start\_point, active\_tc
p,ipAddress)
if id == -1:
    print("inverseClosedFull failed! Return value = %d\n" %(id))
else:
    size = DianaApi.getInverseClosedResultSize(id)
if size > 0:
    joints=[0] * 7
     for i in range(0,size):
          ret = DianaApi.getInverseClosedJoints(id, i, joints, ipAddress)
          if ret!= -1:
                                                 print("%.6f,%.6f,%.6f,%.6f,%.6f,%.6f,%.6f"%
(joints[0],joints[1],joints[2],joints[3],joints[4],joints[5],joints[6]))
     DianaApi.destoryInverseClosedItems(id)
else:
    print("cannot inverse.\n")
DianaApi.destroySrv(ipAddress)
```

126 **getInverseClosedResultSize**

def getInverseClosedResultSize(id,ipAddress = ")

在指定 IP 地址的机械臂上,根据 ID 获取约束单轴求逆解结果的组数。

参数:

id:输入参数,所求逆解对应的ID。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

非负数: ID 对应逆解的组数。

-1: 失败。

调用示例:

见 inverseClosedFull 示例。

127 getInverseClosedJoints

def getInverseClosedJoints(id,index,joints,ipAddress = '')

在指定 IP 地址机械臂上,根据 ID 按索引获取对应关节角。

参数:

id:输入参数,所求逆解对应的ID。

index: 输入参数,对应的多组逆解中的编号。

joints:输出参数,需要求的多组逆解中编号对应的逆解值。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

0: 成功。

-1: 失败。

调用示例:

见 inverseClosedFull 示例。

${\bf 128} \quad {\bf destory Inverse Closed Items}$

def destoryInverseClosedItems(id,ipAddress = '')

在指定 IP 地址机械臂上,根据 ID 删除约束单轴求逆解的结果数据集。

参数:

id:输入参数,逆解对应的ID。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

0: 成功。

-1: 失败。

调用示例:

见 inverseClosedFull 示例。

129 getGravInfo

def getGravInfo(grav,ipAddress = '')

针对指定 IP 地址的机械臂, 获取其安装信息的重力矢量。

参数:

grav:输出参数,重力矢量,大小为3的列表。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

0: 成功。

-1: 失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

grav = [0.0]*3

ret = DianaApi.getGravInfo(grav,ipAddress)

if ret < 0:

print("getGravInfo failed! Return value = %d\n"%(ret))

130 setGravInfo

def setGravInfo(grav,ipAddress = '')

针对指定 IP 地址的机械臂,设置其重力矢量。

参数:

grav: 输入参数,重力矢量,大小为3的元组。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

0: 成功。

-1: 失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

grav = (0.0)*3

ret = DianaApi.setGravInfo(grav,ipAddress)

if ret < 0:

print("setGravInfo failed! Return value = %d\n"%(ret))

131 getGravAxis

def getGravAxis(grav_axis,ipAddress = '')

针对指定 IP 地址的机械臂, 获取其安装信息的轴角。

参数:

grav_axis:输出参数,安装时的轴角,单位为rad,大小为3的列表。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

0: 成功。

-1: 失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

 $grav_axis = [0.0]*3$

ret = DianaApi.getGravAxis(grav,ipAddress)

if ret < 0:

print("getGravAxis failed! Return value = %d\n"%(ret))

132 **setGravAxis**

def setGravAxis(grav_axis,ipAddress = '')

针对指定 IP 地址的机械臂,设置其安装信息的轴角。

参数:

grav_axis:输入参数,安装轴角,单位 rad,大小为 3 的元组。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

0: 成功。

-1: 失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

 $grav_axis = (0.0)*3$

ret = DianaApi.setGravAxis(grav,ipAddress)

if ret < 0:

print("setGravAxis failed! Return value = %d\n"%(ret))

133 speedLOnTcp

def speedLOnTcp(speed, acc, t=0.0, ipAddress=")

速度模式优化版,使指定 IP 地址机械臂笛卡尔空间下直线运动。时间 t 为可选项,时间 t 是可选项,如果提供了 t 值,机器人将在 t 时间后减速。如果没有提供时间 t 值,机器人将在达到目标速度时减速。该函数调用后立即返回。停止运动需要调用 stop 函数。

参数:

speed: 工具空间速度,元组大小为6,其中前3个单位为m/s,后3个单位为rad/s。

- a: 加速度, 单位: m/s²。
- t: 时间,单位: s。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时生效。

返回值:

True: 成功。

False: 失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

DianaApi.initSrv((ipAddress,0,0,0))

DianaApi.releaseBrake(ipAddress)

speeds = [0.1,0.0,0.0,0.0,0.0,0.0]

acc = [0.30, 0.50]

DianaApi.speedLOnTcp(speeds, acc, 0, ipAddress)

DianaApi.holdBrake(ipAddress)

DianaApi.destroySrv()

134 **getTcpForceInToolCoordinate**

def getTcpForceInToolCoordinate(forces,ipAddress = ")

在指定 IP 地址机械臂上,获取工具坐标系的 Tcp 外力值。

参数:

forces:输出参数,Tcp外力,大小为6。

ipAddress: 可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

0: 成功。

-1: 失败。

调用示例:

import DianaApi

ipAddress = '192.168.10.75'

forces = [0.0]*6

ret = DianaApi.getTcpForceInToolCoordinate(forces,ipAddress)

if ret < 0:

print("getTcpForceInToolCoordinate failed! Return value = %d"%(ret))

else:

print(forces)

135 calculateJacobi

def calculateJacobi(matrixJacobi,joints,ipAddress = ")

在指定 IP 地址机械臂上,求解末端法兰中心点坐标系相对于基坐标系的雅各比矩阵。

参数:

matrixJacobi:输出参数,雅各比矩阵,大小为6*7的列表。

joints:输入参数,用于计算雅各比矩阵的关节角,大小为7的列表。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

```
生效。
返回值:
0: 成功。
-1: 失败。
调用示例:
import DianaApi
ipAddress = '192.168.10.75'
jointCount = 7
tcpCount = 6
jacobiMatrix = [0.0] *(jointCount*tcpCount)
jointPosition = [0.0] * jointCount
ret = DianaApi.calculateJacobi(jacobiMatrix,jointPosition,ipAddress)
if ret == -1:
    print("cannot get jacobi matrix")
else:
    for i in range(0,jointCount):
         for j in range(0,tcpCount):
              print("%lf "%(jacobiMatrix[i* tcpCount + j]))
         print("/n")
```

136 calculateJacobiTF

def calculateJacobiTF(matrixJacobi,joints,toolMatrix ,ipAddress = '')

在指定 IP 地址机械臂上, 求解工具中心点坐标系相对于基坐标系的雅各比矩阵。

参数:

matrixJacobi:输出参数,雅各比矩阵,大小为6*7的列表。

joints:输入参数,用于计算雅各比矩阵的关节角,大小为7的列表。

toolMatrix: 当前工具坐标系对应的位姿向量,大小为6的列表。

ipAddress:可选参数,需要控制机械臂的 IP 地址字符串,不填仅当只连接一台机械臂时

生效。

返回值:

0: 成功。

-1: 失败。

```
调用示例:
import DianaApi
ipAddress = '192.168.10.75'
jointCount = 7
tcpCount = 6
jacobiMatrix = [0.0] *(jointCount*tcpCount)
jointPosition = [0.0] * jointCount
toolMatrix=[0.0] * 6
ret = DianaApi.calculateJacobiTF(jacobiMatrix,jointPosition,toolMatrix,ipAddress)
if ret == -1:
     print("cannot get jacobi matrix")
else:
     for i in range(0,jointCount):
          for j in range(0,tcpCount):
              print("%lf "%(jacobiMatrix[i* tcpCount + j]))
          print("/n")
```

137 附件 A:

表 1: Diana API 接口错误码表

系统错误宏定义	错误	说明
	码	
ERROR_CODE_WSASTART_FAIL	-1001	加载 windows 系统 socket
		库失败
ERROR_CODE_CREATE_SOCKET_FAIL	-1002	创建 socket 对象失败
ERROR_CODE_BIND_PORT_FAIL	-1003	socket 绑定端口失败
ERROR_CODE_SOCKET_READ_FAIL	-1004	socket 的 select 调用失败
ERROR_CODE_SOCKET_TIMEOUT	-1005	socket 的 select 调用超时
ERROR_CODE_RECVFROM_FAIL	-1006	socket 接收数据失败
ERROR_CODE_SENDTO_FAIL	-1007	socket 发送数据失败
ERROR_CODE_LOST_HEARTBEAT	-1008	服务端的心跳连接丢失
ERROR_CODE_LOST_ROBOTSTATE	-1009	服务端信息反馈丢失
ERROR_CODE_GET_DH_FAILED	-1010	获取 DH 信息失败
ERROR_CODE_JOINT_REGIST_ERROR	-2001	硬件错误
ERROR_CODE_COMMUNICATE_ERROR	-2101	底层通信失败(ln)
ERROR_CODE_CALLING_CONFLICT_ERROR	-2201	暂停状态执行操作失败
ERROR_CODE_COLLISION_ERROR	-2202	发生碰撞
ERROR_CODE_NOT_FOLLOW_POSITION_CMD	-2203	力控模式关节位置与指
		令发生滞后
ERROR_CODE_NOT_FOLLOW_TCP_CMD	-2204	力控模式 TCP 位置与指
		 令发生滞后
ERROR_CODE_NOT_ALL_AT_OP_STATE	-2205	有关节未进入正常状态
ECODE_OUT_RANGE_FEEDBACK	-2206	关节角反馈超软限位
ECODE_EMERGENCY_STOP	-2207	急停已拍下
ECODE_NO_INIT_PARAMETER	-2208	找不到关节初始参数
ECODE_NOT_MATCH_LOAD	-2209	负载与理论值不匹配
ERROR_CODE_PLAN_ERROR	-2301	路径规划失败
ERROR_CODE_INTERPOLATE_POSITION_ERRO	-2302	位置模式插补失败
R		
ERROR_CODE_INTERPOLATE_TORQUE_ERROR	-2303	阻抗模式插补失败
ERROR_CODE_SINGULAR_VALUE_ERROR	-2304	奇异位置
ERROR_CODE_RESOURCE_UNAVAILABLE	-3001	参数错误

注: 表 1 中 ERROR_CODE_JOINT_REGIST_ERROR (-2001) 硬件错误和 ERROR_CODE_NOT_ALL_AT_OP_STATE (-2205) 的 OP 状态错误需要通过调用 holdBrake()合抱闸函数或重启硬件来清除错误。