Université d'Évry Val d'Essonne 2011-2012

M63 algèbre et géométrie

Examen

Cours autorisé; durée: 3h

Exercice 1. 1. On considère la forme quadratique sur \mathbb{R}^3 définie par

$$q_1(x) = x_1^2 + 5x_2^2 + 4x_3^2 + 4x_1x_2 + 4x_2x_3$$
.

Donner la forme polaire φ_1 de q_1 puis en faire l'étude complète :

- (a) donner sa matrice dans la base canonique, son rang, son noyau, sa signature, la forme de son cône isotrope;
- (b) dire si la forme est dégénérée, positive, négative, définie, un produit scalaire;
- (c) donner une base orthogonale pour cette forme, sa matrice dans la base obtenue et écrire la formule de changement de base.
- 2. On considère la forme bilinéaire symétrique sur \mathbb{R}^3 définie par

$$\varphi_2(x,y) = x_1y_1 + x_3y_3 - x_1y_2 - x_2y_1 + x_1y_3 + x_3y_1.$$

Donner l'expression de la forme quadratique q_2 associée et en faire l'étude complète comme à la question précédente.

Exercice 2. Dans l'espace euclidien \mathbb{R}^3 muni du produit scalaire usuel, on considère un vecteur non nul $u = \begin{pmatrix} a \\ b \end{pmatrix}$, la droite $D = \mathbb{R}u$ et le plan $P = D^{\perp}$. On note s_D la symétrie orthogonale par rapport à D et s_P celle par rapport à P.

- 1. Soit $v=\begin{pmatrix} x\\y\\z\end{pmatrix}$ un vecteur quelconque. Donner l'expression du projeté orthogonal v' de v sur D.
- 2. Montrer que $s_D(v) = 2v' v$.
- 3. En déduire la matrice M_D de s_D dans la base canonique.
- 4. Sans calcul, donner la matrice M_P de s_P dans la base canonique. (Indication : quel est la relation entre s_D et s_P ?)

Exercice 3. Soit $A \in M_n(\mathbf{R})$ une matrice symétrique. On suppose qu'il existe un entier positif p tel que $A^p = I$. Montrer qu'alors $A^2 = I$. (Indication : diagonalisation.)

Exercice 4. Sur l'espace $E = M_n(\mathbf{R})$, on considère la forme $\varphi(A, B) = \operatorname{tr}(AB)$.

- 1. Justifier brièvement que c'est une forme bilinéaire symétrique et donner l'expression de la forme quadratique associée.
- 2. Montrer que si A est symétrique et B est antisymétrique et que ces deux matrices sont non nulles, on a

```
- \varphi(A,A) > 0;
```

- $\varphi(B,B) < 0;$
- $\varphi(A, B) = 0.$
- 3. On note S l'espace des matrices symétriques et T celui des matrices antisymétriques. Déduire de la question précédente que $S\subset T^{\perp}$.
- 4. Montrer que $E = S \oplus T$.
- 5. Montrer que dim S = n(n+1)/2 et dim T = n(n-1)/2.
- 6. Déduire des questions précédentes qu'il existe une base de E dans laquelle la matrice de φ est diagonale avec n(n+1)/2 fois 1 et n(n-1)/2 fois -1 sur la diagonale.
- 7. En déduire le rang et la signature de φ .
- 8. La forme φ est-elle dégénérée? Est-elle définie?
- 9. Montrer que $S = T^{\perp}$.

Exercice 5. Soit $A \in M_n(\mathbf{R})$ une matrice dont on note X_1, \ldots, X_n les colonnes. Le but de l'exercice est de prouver l'inégalité d'Hadamard :

$$|\det A| \leqslant ||X_1|| \cdots ||X_n||$$

où $\|\cdot\|$ désigne la norme euclidienne usuelle.

- 1. Expliquer pourquoi on peut supposer que (X_1, \ldots, X_n) forme une base de \mathbb{R}^n .
- 2. On note (Y_1, \ldots, Y_n) la famille obtenue en appliquant le procédé d'orthogonalisation (sans normalisation!) de Gram-Schmidt à la famille (X_1, \ldots, X_n) et B la matrice dont les colonnes sont Y_1, \ldots, Y_n . Montrer que det $B = \det A$.
- 3. Montrer que tBB est la matrice diagonale avec les $\|Y_i\|^2$ sur la diagonale et en déduire l'expression de det A en fonction de ces normes.
- 4. Montrer que $||Y_i|| \leq ||X_i||$ pour tout i.
- 5. En déduire l'inégalité annoncée.

Exercice 6. Soit E un espace vectoriel sur un corps K. On considère une famille de formes linéaires $\varphi_1, \ldots, \varphi_p$ sur E et l'application $\psi \colon E \to K^p$ définie par

$$\psi(x) = (\varphi_1(x), \dots, \varphi_n(x)) .$$

- 1. Montrer que ψ est injective si et seulement si la famille $(\varphi_1, \ldots, \varphi_p)$ engendre E^* .
- 2. Montrer que ψ est surjective si et seulement si la famille $(\varphi_1, \dots, \varphi_p)$ est libre.