SUPPLEMENTARY MATERIAL

A. Proof of Proposition III.1 on temporal integration At a discrete rate τ^{-1} , the Fourier transform of ϕ_T is

$$\widehat{\phi_T}(\omega) = \mathscr{Z}\{\phi_T\}(e^{j\omega}) = \frac{se^{j\omega}}{e^{j\omega} - (1-s)}.$$
 (1)

The squared magnitude of the denominator simplifies as

$$|e^{j\omega} - (1-s)|^2 = (\cos\omega - (1-s))^2 + (\sin\omega)^2$$

$$= 1 + (1-s)^2 - 2(1-s)\cos\omega$$

$$= (1 - (1-s))^2 + 2(1-s)(1-\cos\omega)$$

$$= s^2 + 2(1-s)(1-\cos\omega). \tag{2}$$

Let $\omega_0 = \frac{s}{\sqrt{1-s}}$. The equivalent $(1-\cos\omega) \sim \frac{\omega^2}{2}$ at the limit $\omega \to 0$ indicates a quadratic decay in the lowest frequencies, i.e. a sidelobe falloff of 10dB per decade. On one hand, the double inequality $-1 \le \cos\omega \le 1$ leads to

$$\frac{\omega_0^2}{\omega_0^2 + 2} \le |\widehat{\phi_T}|^2(\omega) \le 1. \tag{3}$$

The upper (resp. lower) bound is attained if and only if $\omega=0$ (resp. $\omega=\pi$). Consequently, ϕ_T has a DC gain of 0dB at 0Hz, and a gain of $10\log_{10}\frac{\omega_0^2}{2+\omega_0^2}$ (in dB) at the Nyquist frequency. On the other hand, the cutoff frequency at 3dB ω_c is defined by $|\widehat{\phi_T}|^2(\omega_c)=\frac{1}{2}$, which can be reformulated as

$$1 - \cos \omega_{\rm c} = \frac{s^2}{2(1-s)} = \frac{\omega_0^2}{2}.$$
 (4)

Solving Equation 4 with $\omega_c > 0$ completes the proof.

Remark. For large T, we can approximate ω_c by ω_0 , which is polynomial in s. Indeed, applying Taylor's theorem to the cosine function yields the inequality $|1 - \cos \omega - \frac{\omega^2}{2}| \le \frac{\omega^4}{24}$, of which we deduce

$$\omega_0 \le \omega_c \le \frac{\omega_0}{\sqrt{1 - \frac{\omega_c^2}{12}}} \le \omega_0 + \frac{\omega_0^2}{12} + \frac{\omega_0^3}{12}.$$
(5)

B. Proof of Proposition III.2 on adaptive gain control

First, applying Taylor's theorem to $x\mapsto (1+x)^{-\alpha}$ gives $|(\mathbf{M}+\varepsilon)^{-\alpha}-\varepsilon^{-\alpha}|\leq \alpha\frac{\mathbf{M}}{\varepsilon^{1+\alpha}}$, from which we deduce (i) with a relative error of at most $\alpha\frac{\mathbf{M}}{\varepsilon}$. Symmetrically, we have $|(\mathbf{M}+\varepsilon)^{-\alpha}-\mathbf{M}^{-\alpha}|\leq \alpha\frac{\varepsilon}{\mathbf{M}^{1+\alpha}}$ from which we deduce (ii) with a relative error of at most $\alpha\frac{\varepsilon}{\mathbf{M}}$.

C. Proof of Proposition III.4 on dynamic range compression

First, applying Taylor's theorem to $x \mapsto (1+x)^r$ gives $|\mathbf{PCEN} - r\delta^{(r-1)}\mathbf{G}| \leq \frac{1-r}{2}r\delta^{(r-1)}\mathbf{G}^2$, of which we deduce (i) with a relative error of at most $\frac{1-r}{2}\mathbf{G}$. Secondly, we have $\left|\left(1+\frac{1}{\mathbf{G}^r}\right)^r-\left(r+\frac{r}{\mathbf{G}^r}\right)\right|\leq \frac{r(1-r)}{2\mathbf{G}^{2r}}$, which, after adding the constant (1-r), leads to (ii) with a relative error of at most $\frac{1-r}{\mathbf{G}^r}(1+\frac{r}{2\mathbf{G}^r})$ by application of the triangular inequality. \blacksquare *Remark.* In both cases, the relative error is null if and only if r=1, i.e. if there is no root compression.

D. Proof of Proposition IV.1 on the link between T and s

Let $\omega_0^2=2\left(1-\cos\frac{2\pi\tau}{T}\right)$. Proposition III.1 yields $\omega_0^2=\frac{s^2}{(1-s)}$, and thus the quadratic equation $s^2+\omega_0^2s-\omega_0^2=0$. Its discriminant is $\Delta=\omega_0^4+4\times\omega_0^2=\omega_0^2(\omega_0^2+4)>0$, and its two real-valued roots are

$$s = \frac{-\omega_0^2 \pm \omega_0 \sqrt{\omega_0^2 + 4}}{2} = \frac{\omega_0}{2} \left(\pm \sqrt{\omega_0^2 + 4} - \omega_0 \right)$$
 (6)

We retain the positive root s > 0. Replacing ω_0 by its definition in the above completes the proof.

E. Proof of Proposition III.3 on invariance to impedance curve

Proposition. Let $\mathbf{s}(t)$ a realization of AWGN with null mean and unit variance. Let $\mathbf{a}(t) > 0$ a deterministic amplitude envelope $\mathbf{h}(t)$ a filter. Let $\mathbf{E}_{\mathbf{x}}(t,f)$ the mel-frequency spectrogram associated to the source-filter model $\mathbf{x}(t) = \mathbf{a}(t) \times (\mathbf{s} * \mathbf{h})(t)$. If

1)
$$\forall t_0, \frac{d \log \mathbf{a}}{dt}(t_0) \ll \frac{1}{T},$$

2) $\forall t_0, \int_{t_0}^{t_0+\tau} \mathbf{h}(t) dt \ll \frac{1}{\tau}, and$
3) $\forall f_0, \frac{d \log |\widehat{\mathbf{h}}|}{df}(f_0) \ll \frac{1}{\Delta f_0},$

where Δf_0 is the frequency interval between f_0 and its adjacent subbands on the mel scale, then $\mathbf{PCEN_x}(t, f) \approx \mathbf{PCEN_s}(t, f)$.

Proof. We adapt a result from [25]. The mel-frequency spectrogram $\mathbf{E}_{\mathbf{x}}(t,f)$ can be defined as the complex modulus of the convolution between the signal $\mathbf{x}(t)$ and a filterbank $\psi_f(t)$ of N whose center frequencies f are tuned to the mel scale, ranging between f_{\min} and f_{\max} . For a given f, the first hypothesis allows to factorize the amplitude envelope $\mathbf{a}(t)$ out of the convolution $(\mathbf{s} * \mathbf{h} * \psi_f)(t)$ Furthermore, one has:

$$\mathbf{E}_{(\mathbf{s}*\mathbf{h})}(t,f) = |\mathbf{s}*\mathbf{h}*\psi_f|(t)$$

$$= \frac{1}{2\pi} \left| \int_{\mathbb{R}} \widehat{\mathbf{s}}(\omega) \widehat{\mathbf{h}}(\omega) \widehat{\psi_f}(\omega) \exp(2\pi i \omega t) \, dt \right|. \quad (7)$$

The second and third hypotheses allow to approximate $\hat{\mathbf{h}}(\omega)$ by $\hat{\mathbf{h}}(f)$ in the equation above. This approximation leads to $\mathbf{E}_{(\mathbf{s}*\mathbf{h})}(t,f)\approx |\hat{\mathbf{h}}|(f)\mathbf{E}_{\mathbf{s}}(t,f)$. Combining the factorization of the amplitude term $\mathbf{a}(t)$ with the factorization of the filter $|\mathbf{h}|(\omega)$ leads to an approximation of the form:

$$\left|\mathbf{E}_{\mathbf{x}}(t,f) - \mathbf{a}(t)\right| \widehat{\mathbf{h}}|(f)\mathbf{E}_{\mathbf{s}}(t,f)| = \eta(t,f). \tag{8}$$

An upper bound on the expectation of the stochastic residual η is given in [25, Appendix]. Likewise, the first hypothesis allows to approximate $\mathbf{M}_{\mathbf{x}}(t,f)$ by $\mathbf{a}(t)|\widehat{\mathbf{h}}(f)|\mathbf{M}_{s}(t,f)$ with a stochastic residual term v(t,f) of bounded expectation. In the active regime $(\mathbf{M}\gg\epsilon)$, AGC cancels $\mathbf{a}(t)$ and $|\widehat{h}(f)|$ in Equation 3. Thus, Proposition III.2 leads to the inequality

$$|\mathbf{G}_{x} - \mathbf{G}_{s}|(t, f) \le \frac{\eta(t, f)}{(\varepsilon + \mathbf{M}_{s}(t, f))^{\alpha}} + \frac{\alpha v(t, f)}{(\varepsilon + \mathbf{M}_{s}(t, f))^{1+\alpha}}.$$
(9)

Because $\delta > 1$ and $r \le 1$, DRC is nonexpansive (see Proposition III.4). Therefore, it maps each member of the approximate equality $\mathbf{G}_{\mathbf{x}}(t,f) \approx \mathbf{G}_{\mathbf{s}}(t,f)$ to $\mathbf{PCEN}_{\mathbf{x}}(t,f) \approx \mathbf{PCEN}_{\mathbf{s}}(t,f)$ while reducing the expectation of the residual (right-hand side of Equation 9), which completes the proof.