ZALG cv 7

Stavový prostor a jeho procházení

Typické příklady úloh:

hlavolamy a hry (nejen) pro jednoho hráče (sudoku, šachy, aj.)

Úloha:

- Zadání: je dán počáteční stav světa (např. zadání sudoku) a množina cílových stavů (přípustná řešení problému)
- Cíl: pomocí nějakých akcí / tahů se potřebujeme dostat ze startu (počátečního stavu) do cíle (jednoho z cílových stavů)

Stavový prostor úlohy

- speciální typ grafu:
 - vrcholy = stavy (situace)
 - hrany = přechody mezi stavy (akce, tahy)
 - → stavový strom (nebo obecnější graf) úlohy

Procházení stavovým prostorem (grafem)

- Metody
 - 1) Do hloubky metoda prohledávání s návratem (backtracking)
 - 2) Do šířky metoda vlny (pohyb po vrstevnicích)
- Algoritmy jsou hodně podobné algoritmům na grafech. U
 backtrackingu ovšem máme rozdíl s tím, že procházíme prostor
 potencionálních řešení. V případě, že v dané větvi řešení neexistuje,
 vracíme se zpět. U výpisu stromu (metodou inorder) jsme procházeli
 větev do hloubky až k listu a po jeho vypsání jsme se vraceli zpět.

Backtracking

- Motivační příklad Vlk, koza a zelí
- Úloha:
 - Na začátku je zahradník, vlk, koza a zelí na jednom břehu
 - Cílem zahradníka je převézt všechny 3 na druhý břeh
 - Zahradník má loďku a v jednu chvíli smí převážet pouze jednu věc/zvíře

• Pravidla:

- Loď nesmí plout bez zahradníka
- Pokud zůstane vlk bez dozoru s kozou, vlk kozu sežere
- Pokud zůstane koza bez dozoru se zelím, koza zelí sežere

Backtracking – jeden krok rekurze

- Jsme v aktuálním stavu u
- Pokud je to cílový stav, zaznamenáme řešení
- Jinak vyzkoušíme postupně všechny přípustné tahy z u
 - Pomocí tahu t přejdeme do stavu v (krok vpřed)
 - Zavoláme rekurzivně metodu na stav v
 - Po návratu z rekurze vrátíme tah t (krok zpět) BACKTRACKING

Problém n dam

• Úloha:

- Vstup: n rozměr šachovnice/počet dam
- Cíl: rozmístit na šachovnici typu n x n celkem n dam tak, aby se žádné dvě neohrožovaly

Naivní řešení

- Generuje postupně všechny stavy a každý stav testujeme
- Časová složitost $\binom{n^2}{n}$

Problém n dam

- Lepší řešení Backtracking
 - Postupujeme po sloupcích šachovnice zleva doprava
 - V aktuálním sloupci se pokusíme na nějaký řádek umístit dámu
 - Procházíme jednotlivé řádky shora dolu a zkoušíme umístit dámu
 - Pokud se nám to podaří, přejdeme na další sloupec
 - Pokud ne, tak se vrátíme k předchozímu sloupci
- Časová složitost shora omezená O(n!)

Backtracking – rekurze pseudokód

```
vyřeš(index sloupce j, bool jenJedno)
  if j \geq n ... hotovo
    zaznamenej řešení (matici sachovnice)
    return jenJedno
  endif
   for i = 1 to n do... projdeme pozice ve sloupci
    if [i,j] je bezpečná pozice
        sachovnice[i][j] = true ... krok DOPŘEDU
        if vyřeš(j + 1, jenJedno)
          return true
        endif
        sachovnice[i][j] = false ... krok ZPĚT
    endif
  enddo
   return false
```

Procházka koněm

- Vstup: šachovnice *n x n*, počáteční pozice koně
- Cíl: Nalézt procházku koněm po šachovnici tak, aby navštívil každé pole šachovnice

Problém reprezentace šachovnice

 Máme koně a na políčku [x][y] a chceme skočit na pole [z][w], abychom ovšem na políčko mohli vstoupit musíme zjistit, jestli tah není mimo šachovnici nebo, jestli jsme dané pole již nenavštívili

- Tedy políčko je přístupné, pokud:
 - $z \ge 0 \&\& z < n \&\& w \ge 0 \&\& w < n \&\& w_nenavštíveno$
 - → tedy v každém tahu musíme ověřit minimálně hned 5 podmínek

10 x 12 šachovnice

- Datová struktura používaná pro reprezentaci šachovnic 8x8 ve starých šachových motorech.
- Datová struktura je v angličtině nazývaná mailbox
- Šachovnice je uložena v jednorozměrným poli velikosti 10x12.
- Šachovnice kromě 64 polí obsahuje 56 zarážkových polí
- Mailbox je těmito poli ohraničen tak, že obsahuje 2 zarážkové sloupce a 4 zarážkové řádky.
- Důvod: jednoduché odhalení tahu mimo šachovnici
- Zmodifikujeme datovou strukturu pro použití na obecné n x n šachovnici

$_{n}(n+2)x(n+4)$ mailbox"

Indexy

```
98
    59
    49
    39
```

Zarážky

```
84 85 86 87 88 -1
71 72 73 74 75 76 77 78 -1
61 62 63 64 65 66 67 68
51 52 53 54 55 56 57 58 -1
21 22 23 24 25 26 27 28 -1
```

Tahy jezdcem

• new_square = square + move

2(n+2) - 2	2(n+2) - 1	2(n+2)	2(n+2) + 1	2(n+2) + 2
1(n+2) - 2	1(n+2) - 1	1(n+2)	1(n+2) + 1	1(n+2) + 2
-2	-1	0	1	2
-1(n+2) - 2	-1(n+2) - 1	-1(n+2)	-1(n+2) + 1	-1(n+2) + 2
-2(n+2) - 2	-2(n+2) - 1	-2(n+2)	-2(n+2) + 1	-2(n+2) + 2

Tahy dámou

• new_square = square + move

2(n+2) - 2	2(n+2) - 1	2(n+2)	2(n+2) + 2	2(n+2) + 2
1(n+2) - 2	1(n+2) - 1	1(n+2)	1(n+2) + 1	1(n+2) + 2
-2	-1	0	1	2
-1(n+2) - 2	-1(n+2) - 1	-1(n+2)	-1(n+2) + 1	-1(n+2) + 2
-2(n+2) - 2	-2(n+2) - 1	-2(n+2)	-2(n+2) + 1	-2(n+2) + 2

Přepočty mezi 2D a 1D souřadnicemi

• Z 2D [x][y]

$$\rightarrow$$
 square = 2 · (n + 2) + 1 + x · (n + 2) + y = (2 + x)(n + 2) + y + 1

• Z 1D sq

$$x = \left| \frac{sq}{n+2} \right| = \frac{sq}{n+2}$$
 $y = sq \% (n+2) - 1$

Warnsdorffovo pravidlo

Heuristické pravidlo, které se snaží zabránit odříznutí nějakého políčka

• Pravidlo: vždy volíme tah na pole, s nejmenším stupněm. (Pole, z kterého máme nejmenší

Procházka koněm metodou Rozděl a panuj

- 1) ROZDĚL rozděl šachovnici na 4 podšachovnice
- 2) VYŘEŠ Najdi v každé podšachovnici Hamiltonův cyklus
- 3) SPOJ spoj podšachovnice

 Hamiltonův cyklus – cyklus, který navštíví každé pole (vrchol grafu) končí v místě kde začíná

Fig. 1. Required moves for a structured knight's tour.

Fig. 2. Structured knight's tours for (in row-major order) 6×6 , 6×8 , 8×8 , 8×10 , 10×10 , and 10×12 boards.

Fig. 3. How to combine four structured knight's tours into one: (a) the moves at the inside corners, (b) the edges A, B, C, D to be deleted, and (c) the replacement edges E, F, G, H.

Fig. 4. A 16×16 knight's tour constructed from the 8×8 knight's tour in Fig. 2 using the technique of Theorem 2.1.

Dobrovolný domácí úkol

- Nejkratší cesta jezdcem
- Nalezněte nejkratší cestu jezdcem z pole [x][y] do [z][w] a cestu vypište.

• Metoda – procházení do šířky (metoda vlny). (Vhodné použít frontu)