Graph Distances

Floyd-Warshall

Given a weighted graph, determine all sources shortest path. This means you determine the shortest distance from any vertex to any other vertex on the graph.

Let n be the number of vertices and m be the number of edges of the graph.

- 1. Create an adjascency matrix $D[n \times n]$ where the initial values in the table are the weights of the edges, and the missing values are all infinity.
- 2. Iterate k over all n vertices of the graph.
- 3. Iterate i over all n vertices of the graph.
- 4. Iterate j over all n vertices of the graph.
- 5. For each (i, j)

$$D[i, j] = min(D[i, j], D[i, k] + D[k, j])$$

6. If at the end one of the diagonal values is negative, then the graph has a negative cycle.

Note: to also save the vertices of the path instead of just the distances, create a second $P[n \times n]$ matrix. If the value of D[i, j] is updated, also update P[i, j] = P[k, j]

The progress of the algorithm is shown below. Note: due to the number of steps, outputs are only shown when a value is changed in the matrix.

Initial Table

b inf 0 inf 1 7

c inf 4 0 inf inf

d 2 inf -5 0 inf

e inf inf inf 6 0

Begin evaluating 'a' on path i = d, k = a, j = b

b inf 0 inf 1 7

c inf 4 0 inf inf

d 2 5 -5 0 inf

e inf inf inf 6 0

i = d, k = a, j = e


```
abcde
```

- **a** 0 3 8 inf -4
- **b** inf 0 inf 1 7
- c inf 4 0 inf inf
- **d** 2 5 -5 0 -2
- e inf inf inf 6 0

Table after evaluating 'a' on path

a b c d e

- **a** 0 3 8 inf -4
- **b** inf 0 inf 1 7
- c inf 4 0 inf inf
- **d** 2 5 -5 0 -2
- e inf inf inf 6 0

Begin evaluating 'b' on path

$$i = a, k = b, j = d$$

- a b c d e
- **a** 0 3 8 4 --
- **b** inf 0 inf 1 7
- c inf 4 0 inf inf
- **d** 2 5 -5 0 -2
- e inf inf inf 6 0
- i = c, k = b, j = d

	а	b	С	d	е
а	0	3	8	4	-4
b	inf	0	inf	1	7
c	inf	4	0	5	inf
d	2	5	-5	0	-2
e	inf	inf	inf	6	0

$$i = c, k = b, j = e$$

	а	b	c	d	е
a	0	3	8	4	-4
b	inf	0	inf	1	7
c	inf	4	0	5	11
d	2	5	-5	0	-2
e	inf	inf	inf	6	0

Table after evaluating 'b' on path

a b c d e

a 0 3 8 4 -4

b inf 0 inf 1 7

c inf 4 0 5 11

d 2 5 -5 0 -2

e inf inf inf 6 0

Begin evaluating 'c' on path

$$i = d, k = c, j = b$$

a b c d e

b inf 0 inf 1 7

c inf 4 0 5 11

d 2 -1 -5 0 -2

e inf inf inf 6 0

Table after evaluating 'c' on path

a b c d e a 0 3 8 4 -4

b inf 0 inf 1 7

c inf 4 0 5 11

d 2 -1 -5 0 -2

e inf inf inf 6 0

Begin evaluating 'd' on path

i = a, k = d, j = c

- a b c d e
- **a** 0 3 <mark>-1</mark> 4 -4
- **b** inf 0 inf 1 7
- **c** inf 4 0 5 11
- **d** 2 -1 -5 0 -2
- e inf inf inf 6 0
- i = b, k = d, j = a

- a b c d e
- **a** 0 3 -1 4 -4
- **b** 3 0 inf 1 7
- **c** inf 4 0 5 11
- **d** 2 -1 -5 0 -2
- e inf inf inf 6 0
- i = b, k = d, j = c

- a b c d e
- **a** 0 3 -1 4 -4
- **b** 3 0 -4 1 7
- **c** inf 4 0 5 11
- **d** 2 -1 -5 0 -2
- e inf inf inf 6 0
- i = b, k = d, j = e

- a b c d e
- **a** 0 3 -1 4 -4
- **b** 3 0 -4 1 -1
- **c** inf 4 0 5 11
- **d** 2 -1 -5 0 -2
- e inf inf inf 6 0
- i = c, k = d, j = a

- a b c d e
- **a** 0 3 -1 4 -4
- **b** 3 0 -4 1 -1
- **c** 7 4 0 5 11
- **d** 2 -1 -5 0 -2
- e inf inf inf 6 0
- i = c, k = d, j = e

- a b c d e
- **a** 0 3 -1 4 -4
- **b** 3 0 -4 1 -1
- **c** 7 4 0 5 3
- **d** 2 -1 -5 0 -2
- e inf inf inf 6 0
- i = e, k = d, j = a

- abcde
- **a** 0 3 -1 4 -4
- **b** 3 0 -4 1 -1
- **c** 7 4 0 5 3
- **d** 2 -1 -5 0 -2
- **e** 8 inf inf 6 0
- i = e, k = d, j = b

- a b c d e
- **a** 0 3 -1 4 -4
- **b** 3 0 -4 1 -1
- **c** 7 4 0 5 3
- **d** 2 -1 -5 0 -2
- **e** 8 **5** inf 6 0
- i = e, k = d, j = c

- a b c d e
- **a** 0 3 -1 4 -4
- **b** 3 0 -4 1 -1
- **c** 7 4 0 5 3
- **d** 2 -1 -5 0 -2
- **e** 8 5 1 6 0

Table after evaluating 'd' on path

- a b c d e
- **a** 0 3 -1 4 -4
- **b** 3 0 -4 1 -1
- **c** 7 4 0 5 3
- **d** 2 -1 -5 0 -2
- **e** 8 5 1 6 0

Begin evaluating 'e' on path i = a, k = e, j = b


```
a b c d e
```

- **a** 0 1 -1 4 -4
- **b** 3 0 -4 1 -1
- **c** 7 4 0 5 3
- **d** 2 -1 -5 0 -2
- **e** 8 5 1 6 0

$$i = a, k = e, j = c$$

- abcde
- **a** 0 1 -3 4 -4
- **b** 3 0 -4 1 -1
- **c** 7 4 0 5 3
- **d** 2 -1 -5 0 -2
- **e** 8 5 1 6 0

$$i = a, k = e, j = d$$


```
a b c d e
```

- **a** 0 1 -3 2 -4
- **b** 3 0 -4 1 -1
- **c** 7 4 0 5 3
- **d** 2 -1 -5 0 -2
- **e** 8 5 1 6 0

Table after evaluating 'e' on path

a b c d e

- **a** 0 1 -3 2 -4
- **b** 3 0 -4 1 -1
- **c** 7 4 0 5 3
- **d** 2 -1 -5 0 -2
- **e** 8 5 1 6 0

Final Table

abcde

- **a** 0 1 -3 2 -4
- **b** 3 0 -4 1 -1
- **c** 7 4 0 5 3
- **d** 2 -1 -5 0 -2
- **e** 8 5 1 6 0

Backtrace Matrix:

- abcde
- **a** c d e a
- **b** d d b a
- **c** d c b a
- ddcd-a
- edcde-

To get the vertices of the shortest path between any two vertices i and j from the backtrace matrix P:

- 1. Let i and j be the first and last vertices of the path respectively: $v_1 = i$, $v_n = j$
- 2. Find the value of $\mathrm{P}[v_1,\,v_n]$ in the path matrix: v_{n-1} = $\mathrm{P}[v_1,\,v_n]$
- 3. Find the value of P[v_1 , v_{n-1}] in the path matrix: v_{n-2} = P[v_1 , v_{n-1}]
- 4. Continue building the path until $P[v_1, v_{n-k}] = v_1$

For the matrix above, the path from a to c is as follows:

P[a, c] = d

P[a, d] = e

P[a, e] = a

Final path = a, e, d, c

Complexity

Time complexity: $O(n^3)$ where n is the number of vertices

Space complexity: $O(n^2)$ where n is the number of vertices