Rank

Definition: Nullity and Rank

Let $A \in M_{n,m}$:

• The *null space* of *A* is given by:

$$Null(A) = \{ \vec{x} \in \mathbb{C}^n \mid A\vec{x} = \vec{0} \}$$

• The *nullity* of *A* is given by:

$$\operatorname{nullity}(A) = \dim \operatorname{Null}(A)$$

- The range of A, denoted range(A), is the space spanned by the columns of A.
- The rank of A is given by:

$$rank(A) = dim \, range(A)$$

Theorem: Dimension Theorem

Let $A \in M_{m,n}$:

$$n = \operatorname{rank}(A) + \operatorname{nullity}(A)$$

where rank(A) equals the number of pivots in the REF of A and nullity(A) equals the number of free variables in the REF of A.

Note that the transformation $T:\mathbb{C}^n \to \mathbb{C}^m$ defined by $T(\vec{x}) = A\vec{x}$ is a linear transformation.

Theorem

Let $T: \mathbb{C}^n \to \mathbb{C}^n$ be the linear transformation defined by $T(\vec{x}) = A\vec{x}$ for some $A \in M_{m,n}$:

$$T$$
 is injective $\iff \text{Null}(A)$ is trivial

Proof

 \implies Assume T is injective

Assume
$$T(\vec{x}) = T(\vec{y})$$

$$T(\vec{x}) - T(\vec{y}) = \vec{0}$$

$$T(\vec{x} - \vec{y}) = \vec{0}$$

But T is injective, so $\vec{x} = \vec{y}$

Thus,
$$T(\vec{0}) = \vec{0}$$

Furthermore, since T is injective, no other element in the domain may map to $\vec{0}$

Therefore $\mathrm{Null}(A)$ is trivial.

 \iff Assume Null(A) is trivial

Assume
$$T(\vec{x}) = T(\vec{y})$$

$$T(\vec{x}) - T(\vec{y}) = \vec{0}$$

$$T(\vec{x} - \vec{y}) = \vec{0}$$

But the null space is trivial, and so $\vec{x}-\vec{y}=\vec{0}$ and so $\vec{x}=\vec{y}$

Therefore T is injective.

Theorem

Let $T: \mathbb{C}^n \to \mathbb{C}^n$ be the linear transformation defined by $T(\vec{x}) = A\vec{x}$ for some $A \in M_{m,n}$:

T is injective $\iff T$ is surjective

Proof

T is injective

 \iff the null space is trivial

 \iff nullity(A) = 0

 \iff rank(A) = n - 0 = n

 \iff the column space of A spans C^n

 $\iff T$ is surjective.

Lemma

Let $A \in M_{m,k}$ and $B \in M_{k,n}$:

$$\operatorname{rank}(AB) \leq \operatorname{rank}(A)$$

Proof

$$\operatorname{range}(AB) = \{(AB)\vec{x} | \vec{x} \in \mathbb{C}^n\} = \{A(B\vec{x}) | \vec{x} \in \mathbb{C}^n\} \subseteq \operatorname{range}(A)$$

$$\therefore \operatorname{rank}(AB) \le \operatorname{rank}(A)$$

Theorem

Let $A \in M_{m,n}$:

$$rank(A) = rank(A^T)$$

Thus, the dimension of the column space equals the dimension of the row space.

Proof

Let $\operatorname{rank}(A) = r \leq n$ Thus, only r of the n columns of A are linearly independent So construct $B \in M_{m,r}$ from the linearly independent columns of AAssume A = BX for some $X \in M_{r,n}$ $\operatorname{rank}(A^T) = \operatorname{rank}((BX)^T) = \operatorname{rank}(X^TB^T) \leq \operatorname{rank}(X^T)$ But $X^T \in M_{n,r}$ and so $\operatorname{rank}(X^T) \leq r$ So $\operatorname{rank}(A^T) \leq r = \operatorname{rank}(A)$ But since $(A^T)^T = A$, $\operatorname{rank}(A) \leq \operatorname{rank}(A^T)$ $\therefore \operatorname{rank}(A) = \operatorname{rank}(A^T)$