Testing the Molecular Mechanisms that Drive Complex Traits Using Transcriptome Studies

Hae Kyung Im

July 21, 2014

Genetic Control of Disease Risk Through Gene Regulation

Additive Genetic Model for Prediction

Predicted expression trait

$$t_i = \sum_{k=1}^M w_k G_{ki}$$

 t_i is predicted effect on gene expression level for individual i G_{ki} number of reference alleles for SNP k and individual i w_k weight for SNP k

Simple Polygenic Model

- w_k = single variant regression coefficient (Matrix eQTL output)
- w_k set to zero if p value > 0.05 for cis SNPs (1Mb TSS)
- w_k set to zero if p value $> 10^{-6}$ for trans SNPs

PrediXcan Flow

- Predict genetic effect on expression
- Test differential predicted expression levels between cases and controls
- ► For quantitative traits, perform regression
- Replicate
 - ▶ independent training set
 - ► independent test set
- Validate with follow up experiments

How Well do we Predict the Transcriptome

Trained with GTEx Whole Blood - Tested on GEUVADIS LCL

16% of predicted genes have correlation >10% 74% of genes sequenced in different labs* have correlation >10%

Sahar Mozaffari

^{*} Lappalainen et al 2013 vs. Pickrell et al 2010

Examples of Observed vs. Predicted Expression Levels Trained with GTEx Whole Blood - Tested on GEUVADIS LCL

PrediXcan Results in WTCCC Rheumatoid Arthritis

Many HLA genes as expected

PrediXcan Results in Crohn's Dis. & Hypertension

Known and novel Cronh's genes are significant No significant Hypertension results Whole blood may not be relevant tissue

Enrichment of Crohn's Disease Genes Among Discoveries

No Enrichment of Hypertension Genes Among Discoveries

Bipolar Disorder Replication

- ► GAIN (n=2000) & WTCCC Bipolar Disorder (n=5000)
- ▶ Whole Blood
- Significant genes
 - ▶ RFNG ($p_{\text{meta}} = 10^{-8}$, $p_{\text{GAIN}} = 2.5 \times 10^{-6}$, $p_{\text{WTCCC}} = 0.00017$) Modulator of Notch signaling Implicated in neurogenesis
 - ▶ LPHN1 ($p_{\text{meta}} = 10^{-6}$, $p_{\text{GAIN}} = 0.36$, $p_{\text{WTCCC}} = 2 \times 10^{-8}$)

 Receptor for TENM2 that mediates heterophilic synaptic cell-cell contact and postsynaptic specialization

 Candidate gene for mental disorder based on mouse model phenotypes

Kaanan P. Shah

Concordance between GAIN and WTCCC

- ** Significant Correlation in T statistics
- ** Higher correlation for cerebellum than whole blood based results

PrediXcan: Gene Discovery Approach

- PrediXcan is a powerful gene based association test
- ► It directly tests the molecular mechanism through which genetic variants affect phenotype
- Reduced multiple testing burden compared to single variant approach
- ▶ Unlike other gene based tests, it provides direction of effects
- Advantages relative to gene expression studies
 - Applicable to any GWAS datasets gene expression levels are predicted from genotype data
 - No reverse causality disease status does not affect germline DNA
 - Multiple Tissues can be evaluated tissue expressions are only needed to build prediction models

Conclusions

- PrediXcan is a promising novel gene discovery approach
- Application to the WTCCC data recapitulates known genes and identifies many novel genome-wide significant ones
- ▶ Bipolar Disorder genes replicated in independent datasets

Acknowledgement

Contributors

Nancy J. Cox Eric R. Gamazon Heather E. Wheeler Kaanan P. Shah Sahar Mozaffari Dan L. Nicolae Keston Aquino-Michaels

GTEx Consortium

Funding Sources

UC CTSA K12 grant

UC DRTC

University of Chicago Diabetes Research and Training Center; P60 DK20595, P30 DK020595

GTEx

R01 MH090937 and R01 MH101820

PAAR

NIH/NIGMS UO1GM61393

Conte Center grant