2006—2007 学年第一学期

《复变函数与积分变换》课程考试试卷(A)

(闭卷)

院(系)	专业班级								, 1	
考试日期: 2	2006 年	11月2	25 日	_	-	考试日	付间:	19:00)~21	: 30
3 4 1 1 7 1						<i>y</i> • • • • • • • • • • • • • • • • • • •				,
题号 —	_	Ξ	四	五	六	七	八	九	+	总分
得分										
得分 评卷人 1. $(1+i)^{2i}$ 自 2. $\frac{\pi}{4} < \arg z$,主	· E值为_				是
单连域还是多连域?·										
3. $\oint_{ z =1} \frac{e^z \cdot z^3 \sin z}{(z-2)^4} dz = \underline{\qquad}.$										
 在映射 w = iz 下,集合 D = {z: 1≤ z ≤2,0≤arg z≤π} 的像集为: 										

5 . 阶极点.

$$z = k\pi + 6$$
. $\frac{1}{z(4-3z)}$ 在 $z_0 = 1+i$ 处展开成 Taylor 级数的收敛半径为_____

为 7. $f(t) = \sin t + \delta(t)$ 的频谱密度函数 $F(\omega) =$

 $\tan z$

8. 已知
$$f_1(t) = e^{-t}u(t)$$
, $f_2(t) = u(t)$, 其中 $u(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases}$, 则 $f_1(t) * f_2(t) = _-$

的 ___

得分	
评卷人	

二 二、(6分)设 $a \ b$ 是实数,函数 $f(z) = axy + (bx^2 + y^2)i$ 在复平面解析. 求出 $a \ b$ 的值,并求 f'(z).

得 分	
评卷人	

三、(8分) 验证 $u(x, y) = x^2 - y^2 + 2xy$ 是调和函数,并求以 u(x, y) 为实部的解析函数 f(z), 使 f(i) = -1 + 2i.

得 分	
评卷人	

四、(6×4=24分)计算下列各题:

1.
$$\oint_C \frac{e^z \sin z}{z^2} dz$$
, C为正向圆周 $|z-i|=2$.

2.
$$\oint_C \frac{e^{\frac{1}{z}}}{1-z} dz$$
, C 为正向圆周 $|z| = \frac{1}{2}$.

$$3. \int_0^\pi \frac{2\cos\theta + 1}{5 + 4\cos\theta} d\theta$$

$$4. \int_{-\infty}^{\infty} \frac{\cos x}{(x^2+4)(x^2+1)} dx$$

得分	
评卷人	

五、(10分)将 $f(z) = \frac{1}{z(z-i)}$ 在 $z_0 = 0$ 与 $z_1 = i$ 处展成 Laurent

级数.

得分	
评卷人	

六、(6分)试求z平面的下半平面 $\operatorname{Im} z < 0$ 在分式线性映射

$w = \frac{z - i}{z + i} \top$	的象区域
---------------------------------	------

得分	
评卷人	

七、(8分)求一保形映射,把区域 $\begin{cases} 0 < \text{Re } z < \frac{\pi}{2} \\ \text{Im } z > 0 \end{cases}$

内部|w|<1.

得分 评卷人

八、(8分)用 Laplace 变换求解常微分方程:

$$\begin{cases} y'' - 3y' + 2y = e^{2t} \\ y(0) = 0, \ y'(0) = 1 \end{cases}$$

得分	
评卷人	

九、(6 分)证明题:设f(z)在|z|<1内解析,在|z|≤1上连续

试证: 当 |z| < 1 时, $(1-|z|^2) f(z) = \frac{1}{2\pi i} \oint_{|\xi|=1} f(\xi) \cdot \frac{(1-\bar{z}\xi)}{\xi-z} d\xi$

复变函数与积分变换试题解答

2006.11.

系别 班级	学号	姓名	
-------	----	----	--

题号	1		111	四	五	六	七	八	九	总分
得分										

得分	评卷人

一、填空题(每小题3分,共24分)

- 1. $(1+i)^{2i}$ 的值为 $e^{-(\frac{\pi}{2}+4k\pi)+i\ln 2}$, 主值为 $e^{-\frac{\pi}{2}+i\ln 2}$.
- 2. $\frac{\pi}{4} < \arg z < \frac{\pi}{3}$; 且1 < |z| < 3所表示的平面点集是区域吗? <u>是</u>,单连域还是多连

域? 单连域。

3.
$$\oint_{|C|=1} \frac{e^z \cdot z^3 \sin z}{(z-2)^4} dz = \underline{0}_{\circ}$$

4. 在映射w = iz下,集合 $D = \{z \mid 1 \le |z| \le 2, 0 \le \arg z \le \pi\}$ 的像集为:

$$w = \{w \mid 1 \le |w| \le 2, \frac{\pi}{2} \le \arg w \le \frac{3}{2}\pi\}$$
.

- 5. $z = k\pi + \frac{\pi}{2}(k = 0, \pm 1, \pm 2\cdots)$ 为 $\tan z$ 的 <u>1</u> 阶极点。
- 6. $\frac{1}{z(4-3z)}$ 在 $z_0 = 1+i$ 处展开成 Taylor 级数的收敛半径为 $\frac{\sqrt{10}}{3}$.
- 7. $f(t) = \sin t + \delta(t)$ 的频谱密度函数 $F(\omega) = j\pi[\delta(\omega+1) \delta(\omega-1)] + 1$ 。

8. 已知 $f_1(t) = e^{-t}u(t)$, $f_2(t) = u(t)$, 其中 $u(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases}$, 则 $f_1(t) * f_2(t) = (1 - e^{-t})$

得分	评卷人					

u(t) o

二、(6 分)设 a、b 是实数,函数 $f(z) = axy + (bx^2 + y^2)i$ 在复平面解析,则分别求 a、b 之值,并求 f'(z).

解: : f(z) 是复平面上的解析函数,则 $u(x, y) = axy, v(x, y) = bx^2 + y^2$ 在平面上满

足 C—R 方程, 即:

$$u_x = v_y, \ u_y = -v_x$$

故 ay = 2y ax = -2bx 对 $\forall x, y$ 成立,

$$\Rightarrow a = 2, b = -1, \ f(z) = 2xy + (y^2 - x^2)i$$

$$f'(z) = u_x + iv_x = 2y + i(-2x) = zi(x + iy) = -2iz$$

得分	评卷人

三、(8分) 验证 $u(x, y) = x^2 - y^2 + 2xy$ 是 z 平面上的调和函数, 并求以u(x, y) 为实部的解析函数,使 f(i) = -1 + 2i.

解: (1) $u_{xx} = 2$, $u_{yy} = -2 \Rightarrow u_{xx} + u_{yy} = 0$ 故 u(x, y) 是调和函数。

(2) 利用 C—R 条件,先求出v(x, y) 的两个偏导数。

$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = -2x + 2y \quad \frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = 2x + 2y$$

$$\boxed{\text{III}} \quad v(x, y) = \int_{(0, 0)}^{(x, y)} (2y - 2x) dx + (2x + 2y) dy + C$$

$$= \int_0^x (-2x) dx + \int_0^y (2x + 2y) dy + C$$

$$= -x^2 + 2xy + y^2 + C$$

$$f(z) = (x^2 - y^2 + 2xy) + i(-x^2 + 2xy + y^2 + C)$$

$$f(z) = (x^{2} - y^{2} + 2xy) + i(-x^{2} + 2xy + y^{2} + C)$$

$$= (x + iy)^{2} - i(x + iy)^{2} + iC$$

$$= (1 - i)z^{2} + iC$$

故
$$f(z) = (1-i)z^2 + i$$

得分 评卷人

评卷人 四、(6×4=24分) 计算下列各题:

1.
$$\oint_C \frac{e^z \sin z}{z^2} dz$$
,设 C 为正向圆周 $|z-i|=2$ 。

解: 令 $f(z) = e^z \sin z$,则由高阶求导公式得:

原式=
$$2\pi i \cdot f'(0) = 2\pi i (e^z \sin z + e^z \cos z)|_{z=0} = 2\pi i$$

2.
$$\oint_C \frac{e^{\frac{1}{z}}}{1-z} dz$$
, C为正向圆周 $|z| = \frac{1}{2}$ 。

解: 在
$$C$$
 内, $\frac{e^{\frac{1}{z}}}{1-z}$ 有本性奇点 $z=0$,由留数定理: 原式 $= 2\pi i \{\text{Re } s[\frac{e^{\frac{1}{z}}}{1-z},0]\}$

在
$$0 < |z| < \frac{1}{2}$$
 内将 $\frac{e^{\frac{1}{z}}}{1-z}$ 展为 Laurent 级数:

$$\frac{e^{\frac{1}{z}}}{1-z} = (1+z+z^2+\dots+z^n+\dots)(1+\frac{1}{z}+\frac{1}{2!z^2}+\dots+\frac{1}{n!z^n}+\dots)$$

$$= \dots \frac{1}{z}(1+\frac{1}{2!}+\frac{1}{3!}+\dots+\frac{1}{n!}+\dots)+\dots$$

故: Res
$$\left[\frac{e^{\frac{1}{z}}}{1-z}, 0\right] = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \dots = e-1$$

$$\oint_{|z|=\frac{1}{2}} \frac{e^{\frac{1}{z}}}{1-z} dz = 2\pi i = 2\pi i (e-1)$$

$$3. \int_0^\pi \frac{2\cos\theta + 1}{5 + 4\cos\theta} d\theta$$

解:由于
$$\frac{2\cos\theta+1}{5+4\cos\theta}$$
是偶函数,故 $\int_0^\pi \frac{2\cos\theta+1}{5+4\cos\theta}d\theta = \int_{-\pi}^0 \frac{2\cos\theta+1}{5+4\cos\theta}d\theta$
原式= $\frac{1}{2}\int_{-\pi}^\pi \frac{2\cos\theta+1}{5+4\cos\theta}d\theta$ 令 $e^{i\theta}=z$, $-\pi<\theta\leq\pi$

则定积分可化为复积分

$$\oint_{|z|=1} \frac{z+z^{-1}+1}{5+2(z+z^{-1})} \frac{dz}{iz} \quad (\cos \theta = \frac{z+z^{-1}}{2})$$

$$=-i\oint_{|z|=1}\frac{z^2+z+1}{z(2z+1)(z+2)}dz$$

令
$$f(z) = \frac{(z^2 + z + 1)/2}{z(z + \frac{1}{2})(z + 2)}$$
 则 $f(z)$ 在 $|z| = 1$ 内有 2 个简单极点 $z = 0$ 与 $z = -\frac{1}{2}$

Re
$$s[f(z), 0] = \lim_{z \to 0} \frac{(z^2 + z + 1)/2}{(z + \frac{1}{2})(z + 2)} = \frac{1}{2}$$

Re
$$s[f(z), -\frac{1}{2}] = \lim_{z = -\frac{1}{2}} \frac{(z^2 + z + 1)/2}{z(z+2)} = -\frac{1}{2}$$

由留数定理知: $-i\oint_{|z|=1} f(z)dz = -i \cdot 2\pi i \cdot \left[\frac{1}{2} - \frac{1}{2}\right] = 0$

故原式=
$$\frac{1}{2}\cdot 0=0$$

4.
$$\int_{-\infty}^{\infty} \frac{\cos x}{(x^2 + 4)(x^2 + 1)} dx$$

解: 令
$$f(z) = \frac{e^{iz}}{(z^2 + 4)(z^2 + 1)}$$
 容易验证 $f(z)$ 满足若尔当引理

f(z)在上半平面有两个简单极点 $z_1 = i$, $z_2 = 2i$

得分 评卷人

五、(10 分)将 $f(z) = \frac{1}{z(z-i)}$ 在 $z_0 = 0$ 与 $z_1 = i$ 处展成 Laurent 级

数

解: f(z)在复平面有孤立奇异点 $z_0 = 0$ 与 $z_1 = i$,

(1) 0 < |z| < 1时,

$$f(z) = \frac{1}{z} \underbrace{\sqrt[n-1]{i}}_{1 - \frac{z}{i}} = \frac{1}{z} \underbrace{\sqrt[n]{i}}_{1 - \frac{z}{i}} = \frac{1}{z} \underbrace{\sqrt[n-1]{i}}_{n=0} -iz)^{n} = \underbrace{\sqrt[n-1]{i}}_{n=0} -iz)^{n-1}$$

(2) $1 < |z| < +\infty$ 时

$$f(z) = \frac{1}{z} \cdot \frac{\frac{1}{z}}{1 - \frac{i}{z}} = \frac{1}{z^2} \cdot \frac{1}{1 - \frac{i}{z}} = \frac{1}{z^2} \sum_{n=0}^{\infty} (\frac{i}{z})^n = \sum_{n=0}^{\infty} \frac{i^n}{z^{n+2}}$$

(3) 0 < |z - i| < 1

$$f(z) = \frac{1}{z - i} \cdot \frac{1}{i + z - i} = \frac{1}{z - i} \cdot \frac{-i}{1 + \frac{z - i}{i}} = \frac{1}{z - i} \cdot \frac{-i}{1 - i(z - i)}$$

$$= \frac{-i}{z-i} \cdot \sum_{n=0}^{\infty} (z-i)^n \cdot i^n = \sum_{n=0}^{\infty} (z-i)^{n-1} \cdot i^{n-1}$$

(4) $1 < |z - i| < +\infty$ 时

$$f(z) = \frac{1}{z - i} \cdot \frac{1}{1 + \frac{i}{z - i}} = \frac{1}{z - i} \cdot \sum_{n=0}^{\infty} \left(\frac{-i}{z - i}\right)^n$$

得分	评卷人

一 六、(6分)试求 z 平面的下半平面 Im z < 0 在分式线性映射 $w = \frac{z-i}{z=i}$ 下的象区域.

解: 在实轴上依次取 $z=1, z=0, z=\infty$,

$$z_1 = 1 \rightarrow w_1 = -i$$

$$z_2 = 0 \rightarrow w_2 = -1$$

$$z_3 = \infty \rightarrow w_3 = 1$$

$$w_1, w_2, w_3$$
决定了 $|w|=1$

故 实轴在 $w = \frac{z-i}{z+i}$ 下的象区线为单位圆周,

再由边界对应原理知: $\operatorname{Im} z < 0$ 在 $w = \frac{z-i}{z+i}$ 下的象

区域为|w|>1。

得分	评卷人						

七、(8 分)求一保形映射,把区域 $\begin{cases} 0 < \text{Re } z < \frac{\pi}{2} \\ \text{Im } z > 0 \end{cases}$

部|w| < 1 。

解:
$$z_1 = z \cdot e^{\frac{\pi}{2}i}$$
, $z_2 = e^{z_1}$, $z_3 = z_2^2$, $z_4 = -\frac{z_3 + 1}{z_3 - 1}$, $z_5 = z_4^2$

$$w = \frac{z_5 - i}{z_5 + i} = \frac{\left(\frac{z_3 + 1}{z_3 - 1}\right)^2 - i}{\left(\frac{z_3 + 1}{z_3 - 1}\right)^2 + i} = \frac{\left(e^{2iz} + 1\right)^2 - i\left(e^{2iz} - 1\right)^2}{\left(e^{2iz} + 1\right)^2 + i\left(e^{2iz} - 1\right)^2}$$

得分	评卷人	八、	(8	分)	用	Laplace	变	换	求	解	常	微	分	方	程	:
		$\begin{cases} y'' - 3 \\ y(0) = 0 \end{cases}$	8y' + 2y'	$2y = e^{2t}$ $(0) = 1$												

解: 令 $\mathsf{L}(y(t)) = Y(s)$, 对方程两边求拉氏变换得:

$$S^{2}Y(S) - 1 + (-3SY(S)) + 2Y(S) = \frac{1}{S - 2}$$
$$(S^{2} - 3S + 2)Y(S) = \frac{1}{S - 2} + 1$$

$$Y(S) = \frac{1}{(S-1)(S-2)^2} + \frac{1}{(S-1)(S-2)} = \frac{1}{(S-2)^2}$$

$$\therefore y(t) = te^{2t}$$

得分 评卷人

试证: 当
$$|z|<1$$
时, $(1-|z|^2)f(z)=\frac{1}{2\pi i}\oint_{|\xi|=1}f(\xi)\cdot\frac{(1-\bar{z}\xi)}{\xi-z}d\xi$

证: $\Leftrightarrow F(\xi) = f(\xi) \cdot (1 - \overline{z}\xi)$

因为 $f(\xi)$ 在 $|\xi|<1$ 内解析,在 $|\xi|\square 1$ 上连续,所以 $F(\xi)$ 也在 $|\xi|<1$ 内解析,在 $|\xi|\square 1$ 上连续。根据 Cauchy 积分公式有:

$$\frac{1}{2\pi i} \oint_{|\xi|=1} f(\xi) \cdot \frac{(1-\bar{z}\xi)}{\xi-z} d\xi = \frac{1}{2\pi i} \oint_{|\xi|=1} \frac{F(\xi)}{\xi-z} d\xi = F(z) = f(z) \cdot (1-|z|^2)$$