MATH 304 HOMEWORK 3

Your name goes here

Due September 21, 2018

In the following theorem, fill in the blank, and then complete the proof.
Theorem E. Let $m, n \in \mathbb{N}$, and let $a \in \mathbb{Z}$. Let $[a]_m$ denote the equivalence class of a under \equiv_m , and $[a]_n$ the equivalence class of a under \equiv_n . Then $[a]_m \subseteq [a]_n$ if and only if
Proof.
A relation \sim on a set S is said to be $circular$ provided that for all $a,b,c\in S,$ if $a\sim b$ and $b\sim c,$ then $c\sim a.$
Theorem F. A relation \sim on a set S is an equivalence relation if and only if \sim is reflexive and circular.
Proof.