GIS Data Management

Today's Agenda

- Issues encountered last week
- GIS Data Management
- GitHub Website
- GIS Data types

Do not use Windows Explorer to manage GIS data

Wrong

Do not use Windows Explorer to manage GIS data

Wrong

Toolbars and windows

The map document (.mxd)

Stores collections of data for viewing and analysis

Contains one or more data frames

Stores visual properties for each layer in the Table of Contents

Stores a page **layout** for printing (Layout View)

Data frames

View Mode

Data frame properties

Import data to data frames

Connect to Folder

GIS data are different

Tips!

- Name your files with a clear description
 - Example: Snailhabitat, not rastercalc1
- Use a system of folders (project name, data type, source, vector, raster, etc)
 - Should make logical sense
 - Must be understandable to others
- Keep folder and file names short
 - Use only letters, numbers, and underscore
 - No spaces or special characters #\$&@!
 - Spaces are a terrible idea

Tips!

- Note file extensions
 - Disable "Hide extensions for known file types" in Windows Explorer – Do this now
- Create and name a folder called GIS in the root folder of your flash drive. Store all your files in it.
 - Not the desktop, not your user folder. It will be erased
- Separate working folders from permanent data
- Be aware of where you are saving and downloading data do (don't click download without knowing where it is downloading to)
 - Default location is not a good place

Tips!

- Never use Windows
 Explorer to save or manage files inside a geodatabase
- Files with .gz, .zip, .tar, .tgz, and .tar.gz are zipped folders and must be extracted

- Folder Connections
 - ☐
 ☐ C:\gisclass
 - Downloads
 - 🗆 🧰 mgisdata
 - Austin

 - MapDocuments

 - 🕀 🚞 Oregon
 - Rapidcity
 - 🕀 🗁 Usa
 - World

 - MJ_Project
 - MJ_Project1

GitHub Pages

Geospatial Data Types

Vectors

- Used for discrete data
- Points, lines, polygons

Points

Lines

Polygons

Vectors

Walmart stores in MA

Vectors

Geographic View

Tables View

Object ID	Shape	Name	LV Code	Management Agency	
1		Shady Pines	20	Private	
2		Pinewood Village	30	Pinewood Village Association	
3	C ²	Sarah Park	80	City Park Board	
4	C	Town Park	99	City Park Poard	

Rasters are commonly used as basemaps

80	74	62	45	45	34	39	56
80	74	74	62	45	34	39	56
74	74	62	62	45	34	39	39
62	62	45	45	34	34	34	39
45	45	45	34	34	30	34	39

Raster

Digital Elevation Model

A DEM has cells or pixels, each of which contains a single elevation.

Regularly spaced array of elevation values.

Raster

Discrete rasters

Discrete rasters essentially store features—but in raster format

Few values that change abruptly from one category to another

Continuous rasters

Continuous rasters store surfaces or fields of variables that change continuously over space

Many potential values. Adjacent cells rarely share the same value.

Scanned images are also rasters!

This is a scanned USGS topo map

Discrete or continuous?

Pictures are also rasters!

Conversion between vector and raster

"Feature To Raster" tool

You can convert data between rasters and vectors but the nature of the data will be very different.

Conversion between vector and raster

"Feature To Raster" tool

Geodatabase

A container for all possible types of GIS data

Feature Dataset

A container for GIS data with similar features

Feature Class

A shapefile that contains points, lines, OR polygons

Feature Classes

States feature class

Rivers feature class

A **feature class** is a collection of similar objects with the same attributes, stored as a single unit.

Stored as spatial features with a table of associated attributes for each feature.

Feature classes may contain only one type of geometry (points or lines or polygons).

Shapefile Files

A single shapefile contains multiple imbedded file types

- .shp is a mandatory Esri file that gives features their geometry.
- .shx is a mandatory Esri that gives a shape its index position.
- **.dbf** is a *mandatory* standard database file used to store attribute data and object IDs.
- .prj is an optional file that contains the metadata associated with the shapefiles coordinate and projection system.
- .xml file types contains the metadata associated with the shapefile.

Rasters

A grid of x and y coordinates on a display space.

Rasters: Impact of resolution

Storage space increases with resolution

Portraying large areas at high precision is problematic

Rasters: Storage of attributes

Roads may have other attributes: ownership, speed limit, number of lanes, etc.

Would need a new raster for each attribute

Only numeric attributes may be stored

Raster contains 1 value indicating a single attribute such as road type

Finding data

Lots of data out there

- ArcGIS Online (not all downloadable)
- State and federal government sites
- GIS Clearinghouses (store metadata)
- University/research organizations
- Some is great, some is worthless

Try some of the clearinghouse sites

http://nationalmap.gov

http://geo.data.gov

<u>https://www.census.gov/</u> - homepage has a lot of GIS examples

https://factfinder.census.gov/faces/nav/jsf/pages/guided_search.xhtml

http://www.cdc.gov/gis/data.htm

http://data.geocomm.com/

http://openstreetmapdata.com/data

https://www.mass.gov/orgs/massgis-bureau-of-geographic-information

<u>http://freegisdata.rtwilson.com/</u> - lists over 300 sites with GIS data by topic – elevation, weather/climate, hydrology, natural disaster, ecology, human geography, crime, natural disasters

- Keep notes when you find a good site
- Many downloaded datasets will need to be unzipped

First steps when starting a GIS project

1. Decide on appropriate coordinate system (Global or Projected)

Set the coordinate system in the Data Frame Properties

2. Find and download data to your working folder

Try some of the clearinghouse sites

http://nationalmap.gov

http://geo.data.gov

https://www.census.gov/ - homepage has a lot of GIS examples

https://factfinder.census.gov/faces/nav/jsf/pages/guided_search.xhtml

http://www.cdc.gov/gis/data.htm

http://data.geocomm.com/

http://openstreetmapdata.com/data

https://www.mass.gov/orgs/massgis-bureau-of-geographic-information

http://freegisdata.rtwilson.com/ topic – elevation, weather/climate, hydrology, natural disaster, ecology, human geography, crime, natural disasters

- Keep notes when you find a good site
- Many downloaded datasets will need to be unzipped

3. Create a geodatabase in your working folder

Right click folder ->New-> **File** Geodatabase

4. Import downloaded datasets into new geodatabase (ArcCatalog or ArcCatalog Pane in ArcMap

6. Project to desired coordinate system if needed

Use the **Project Tool** in the Data
Management
Toolbox

7. Connect to geodatabase (if needed) and add data to ArcMap

Everyone!