Assignment 5: Data Visualization

Student Name

OVERVIEW

This exercise accompanies the lessons in Environmental Data Analytics (ENV872L) on data wrangling.

Directions

- 1. Change "Student Name" on line 3 (above) with your name.
- 2. Use the lesson as a guide. It contains code that can be modified to complete the assignment.
- 3. Work through the steps, **creating code and output** that fulfill each instruction.
- 4. Be sure to **answer the questions** in this assignment document. Space for your answers is provided in this document and is indicated by the ">" character. If you need a second paragraph be sure to start the first line with ">". You should notice that the answer is highlighted in green by RStudio.
- 5. When you have completed the assignment, **Knit** the text and code into a single PDF file. You will need to have the correct software installed to do this (see Software Installation Guide) Press the **Knit** button in the RStudio scripting panel. This will save the PDF output in your Assignments folder.
- 6. After Knitting, please submit the completed exercise (PDF file) to the dropbox in Sakai. Please add your last name into the file name (e.g., "Salk_A04_DataWrangling.pdf") prior to submission.

The completed exercise is due on Thursday, 14 February, 2019 before class begins.

Set up your session

- 1. Set up your session. Upload the NTL-LTER processed data files for chemistry/physics for Peter and Paul Lakes (tidy and gathered), the USGS stream gauge dataset, and the EPA Ecotox dataset for Neonicotinoids.
- 2. Make sure R is reading dates as date format, not something else (hint: remember that dates were an issue for the USGS gauge data).

#1

#2

Define your theme

3. Build a theme and set it as your default theme.

#3

Create graphs

For numbers 4-7, create graphs that follow best practices for data visualization. To make your graphs "pretty," ensure your theme, color palettes, axes, and legends are edited to your liking.

Hint: a good way to build graphs is to make them ugly first and then create more code to make them pretty.

4. [NTL-LTER] Plot total phosphorus by phosphate, with separate aesthetics for Peter and Paul lakes. Add a line of best fit and color it black.

#4

5. [NTL-LTER] Plot nutrients by date for Peter Lake, with separate colors for each depth. Facet your graph by the nutrient type.

#5

6. [USGS gauge] Plot discharge by date. Create two plots, one with the points connected with geom_line and one with the points connected with geom_smooth (hint: do not use method = "lm").

#6

Question: How do these two types of lines affect your interpretation of the data?

Answer:

7. [ECOTOX Neonicotinoids] Plot the concentration, divided by chemical name. Choose a geom that accurately portrays the distribution of data points.

#7