## CBD 3335 6 [B123]

# **Data Mining and Analysis**

## **Assignment-1**

## **Submitted To - Mohammad Islam**

Sai Srikanth Raju C0846551

Shweta Yadav C0854479

Thakshak Revanth C846100

Sandra Nicolas C0851356

## Collecting tweets related to the stock market

\*Note: Sub-titles are not captured in Xplore and should not be used

line 1: 1st Given Name Surname line 2: dept. name of organization (of Affiliation) line 3: name of organization (of Affiliation) line 4: City, Country

line 5: email address or ORCID

line 1: 2<sup>nd</sup> Given Name Surname line 2: dept. name of organization (of Affiliation) line 3: name of organization (of

Affiliation) line 4: City, Country

line 5: email address or ORCID

line 1: 3rd Given Name Surname line 2: dept. name of organization (of Affiliation)

line 3: name of organization (of Affiliation)

line 4: City, Country

line 5: email address or ORCID

line 1: 4th Given Name Surname line 2: dept. name of organization (of Affiliation) line 3: name of organization (of

Affiliation) line 4: City, Country

line 5: email address or ORCID

line 1: 5th Given Name Surname line 2: dept. name of organization (of Affiliation) line 3: name of organization (of Affiliation) line 4: City, Country line 5: email address or ORCID

line 1: 6th Given Name Surname line 2: dept. name of organization (of Affiliation) line 3: name of organization (of Affiliation) line 4: City, Country

line 5: email address or ORCID

Abstract—This assignment is based on Twitter data analysis. We are downloading tweets of some specific keywords.

- 1. Collecting data: In this assignment, we are collecting data related to the stock market from Twitter for one week. On Twitter, ticker symbols are used for stocks and companies. We are using keywords Altcoin, Bitcoin, Coindesk, Cryptocurrency, Gold, APPL, GOOG YHOO
- 2. Saving data: You need to save the requested data into csv format of 8 files where data related to each keyword is saved. Each file consist of four columns: tweet id, time of tweet, user id, and text.
- 3. Cleaning data: remove duplication, remove punctuations, remove numbers in tweets, and remove words with lengths less than 2.
- 4. Visualizing data: You need to present the daily number of tweets for each keyword as well as the daily number of users. Use Clustering of similar tweets if feasible and applicable

## I. INTRODUCTION

Python is our preferred programming language, which we use for various purposes (API connections, Modelling, Data engineering). We are creating a Twitter API call in Python to download stock market keywords as a hashtag. We downloaded data and cleaned it with Python (library functions). In addition, we have included a basic visualization of the cleaned data. For twitter analysis, Information is collected by either the user, the access point, what's in the post, and how users view or use your post. Using this information, we can understand demographics, total view on your profile or how many people have seen a person's Tweet.

#### II. FETCHING DATA FROM TWITTER

### A. Importing libraries

```
import datetime
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from nltk.sentiment.vader import SentimentIntensitvAnalyze
import nltk
import tweepy
import configparser
```

Fig. 1. Importing libraries

Tweepy: Tweepy is an open-source, user-friendly Python library for interacting with the Twitter API.

Time: This module offers a variety of time-related functions.

Pandas: Pandas is an open-source data analysis and manipulation tool that is fast, powerful, flexible, and straightforward. It is built on top of the Python programming language.

Textblob: Textblob is a text processing library. It provides a straightforward API for delving into standard natural language processing (NLP) tasks like part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation, and more.

Wordcloud: a data visualization technique for representing text data in which the size of each word indicates the frequency or importance of that word.

Numpy: Numpy is a Python programming language opensource library. It is used in scientific computing and array manipulation.

Re: The re module provides a set of powerful regular expression facilities that allow you to quickly check whether a given string matches or contains a given pattern (via the match function) (using the search function).

## B. Using key essentials

Using Keys from the Twitter developer account,we can download tweets related to our keywords.

```
api_key = "APEDNnbf8c064u182UB6YXuEx"

api_key_secret = "MXX318xd0aaQspDDhfNSXdYQoBZoqnHgsCKT6yyNFlxgV6xTUW"

access_token = "1526337285337282689-aMQw7o5LYmx8lo1szlJ9w0U2JHsV9q"

access_token_secret = "lkxwrDw8K928c8H6rJSponlHAmwhirELXyp8Nbuprq9L"

# authentication
auth = theepy.0AuthHandler(api_key, api_key_secret)
auth.set_access_token(access_token, access_token_secret)

api = tweepy.API(auth, wait_on_rate_limit=True,wait_on_rate_limit_notify=True)
```

Fig. 2. Using keys for fetching tweets

We are creating the access token and access token secret and making the API object while passing in the auth information.

## C.Fetch market data

We are mining stock market data here by creating a function fetch\_data (). We obtain tweets for all eight tickers by storing them in a list and iterating over it. We get the tweets' creation date, username, tweet and location, and keywords, i.e., Tickers.

```
In [7]: def fetch_data():

# Tichers on what we saroch the tweets
tickers = ("Britcoin," sepide", "allocain", "#Condeak", "#Cryptocurrency", "aAPPL", "800005", "BRIDO"]
# Present the Limit is set to 10 to sove the computational time
limit-10

# Creating a distifferm in which the tweets extracted one stored
df = ptd.DetaTrame(columns = ["Created &t", "User", "Tweet", "Location", "Tickers"])
data = []
# Specifying the distriction of time span in which the tweets are extracted
data. [int-[282-87-81], "282-87-89", "2822-87-89", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "282-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "282-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "2822-87-85", "282-87-85", "282-87-85", "282-87-85", "282-87-85", "282-87-85", "282-87-85", "282-87-85", "282-87-85", "282-87-85", "282-87-85", "282-87-85", "282-87-85", "282-87-85", "282-87-85", "282-87-85", "282-87-85", "282-87-85", "282-87-85", "282-87-85", "282-87-85", "282-87-85", "282-87-85",
```

Fig. 3. Fetching tweets for specific keywords

#### III. DATA CLEANING

Data is cleaned by removing duplicates, punctuation marks, and words of length less than 2.

```
# Create a function to clean the tweets

def cleanTxt(text):
    text - re.sub("A[-Ze-20-9]*," text) # Removing Wenetions
    text - re.sub("A[-Ze-20-9]*,", text) # Removing '*' hash tag
    text - re.sub("A[-Ze-2]*,", text) # Removing wordts less than Length of 2
    text - re.sub("A[-Ze-2]*,", text) # Removing wordts less than Length of 2
    text - re.sub("A[-Ze-2]*,", text) # Removing hyperlish
    return text

df3["Tweet"] = df3["Tweet"].apply(cleanTxt)

df3

tickers = ['#bitcoin', '#gold', '#Altcoin', '#Coindesk', '#Cryptocurrency', '#APPL', '#GOOG', '#YMOO']

df3['Created At'] = pd.to_datetime(df3['Created At'])

start_date='2022-07-09'

tweets_in_past_day = []

for ticker in tickers:

mast_* (df3['Created At'] > start_date) & (df3['Created At'] <= end_date> & (df3['Tickers'] == ticker)
    num_tweets_len(df3.loc_mast)
    tweets_in_past_day_append(num_tweets)

C:\Ulbers'thskuppdestallocalineps/inylenenl_Sf6/2577241891.py:2: SettingbithCopyblarning:
    A value is trying to be set on a copy of a slike from a DateFrame.

Try using .loc[row_indexer_oc_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
    df3['Created At'] = pd.to_datetime(df3['Created At'])
```

Fig. 4. Data cleaning

### IV. DATA VISUALIZATION

## A. The number of tweets in the past day

```
tweets_in_past_day
[60, 120, 180, 240, 295, 325, 381, 381]
visualization_df = pd.DataFrame({'Tickers':tickers, 'Number of'tweets':tweets_in_past_day})
ax = visualization_df.plot.bar(x='Tickers', y='Number of tweets', rot=90)
```



Fig. 5. Number of tweets in the past days

B.Number of users tweeting in a day/hour for ticker symbol

```
start_date='2022-07-01'
end_date='2022-07-01'

distinct_users_in_past_day = []

for ticker in tickers:
    mask = (df3['Created At'] > start_date) & (df3['Created At'] <= end_date) & (df3['Tickers'] == ticker)
    num_users = df3.loc[mask]
    n = len(f0.unique(num_users['User']))
    distinct_users_in_past_day.append(n)</pre>
```



Fig. 6. Number of users tweeting a day

## V. DOWNLOADING INDIVIDUAL DATA FRAME

Now, we are going to download individual dataset files for each and every keyword by converting it into CSV files.

### A. Individual Bitcoin Dataset



Fig. 7. Bitcoin dataset

## B.Individual dataset for Gold

|     | Created At                | User            | Tweet                                           | Location            | Tickers | Created_Date |
|-----|---------------------------|-----------------|-------------------------------------------------|---------------------|---------|--------------|
| 0   | 2022-06-30 23:59:59+00:00 | EngleFord       | RT @IncomeSharks: From July 1st to November 1s  |                     | #gold   | 2022-06-30   |
| 1   | 2022-06-30 23:59:59+00:00 | DeepStar22      | RT @OfficialTravlad: What tf is this #Bitcoin   | New Delhi, India    | #gold   | 2022-06-30   |
| 2   | 2022-06-30 23:59:57+00:00 | nerivansouza01  | RT @milkshake_io: MicroStrategy chief executiv  |                     | #gold   | 2022-06-30   |
| 3   | 2022-06-30 23:59:56+00:00 | EngleFord       | RT @CedYoungelman: Your home is not worth more  |                     | #gold   | 2022-06-3    |
| 4   | 2022-06-30 23:59:56+00:00 | AndersTintin    | RT @OfficialTravlad: What tf is this #Bitcoin   | New Norway, Alberta | #gold   | 2022-06-3    |
|     |                           |                 | 216                                             |                     |         |              |
| 135 | 2022-07-06 23:55:56+00:00 | wojtekcrypto08  | #Gold: Barrick Gold Corp (GOLD) closed today a  |                     | #gold   | 2022-07-0    |
| 136 | 2022-07-06 23:55:44+00:00 | muzzleloaderman | RT @roxiewin7: Excited to share this item from  | Oregon, USA         | #gold   | 2022-07-0    |
| 137 | 2022-07-06 23:55:03+00:00 | TalkMarkets     | Rare #Gold-#Silver Crystal Sighting $GLD$ SLV   |                     | #gold   | 2022-07-0    |
| 138 | 2022-07-06 23:54:05+00:00 | BHC_Valentine   | #Hopping into some #hydroneer #earlyaccess #Ga  |                     | #gold   | 2022-07-0    |
| 139 | 2022-07-06 23:53:01+00:00 | SalvadorMaurice | \$STK \n\nMULTIPLE NEW #GOLD ZONES AND HIGH-GRA | Bali Indonesia      | #gold   | 2022-07-0    |

Fig. 8. Gold dataset

## C.Altcoin



Fig. 9. Altcoin dataset

## D.Coindesk



Fig. 10. Coindesk dataset

### D.APPL

|     | Created At                | User           | Tweet                                          | Location            | Tickers | Created_Date |
|-----|---------------------------|----------------|------------------------------------------------|---------------------|---------|--------------|
| 0   | 2022-06-30 23:59:59+00:00 | EngleFord      | RT @IncomeSharks: From July 1st to November 1s |                     | #APPL   | 2022-06-30   |
| 1   | 2022-06-30 23:59:59+00:00 | DeepStar22     | RT @OfficialTravlad: What tf is this #Bitcoin  | New Delhi, India    | #APPL   | 2022-06-30   |
| 2   | 2022-06-30 23:59:57+00:00 | nerivansouza01 | RT @milkshake_io: MicroStrategy chief executiv |                     | #APPL   | 2022-06-30   |
| 3   | 2022-06-30 23:59:56+00:00 | EngleFord      | RT @CedYoungelman: Your home is not worth more |                     | #APPL   | 2022-06-30   |
| 4   | 2022-06-30 23:59:56+00:00 | AndersTintin   | RT @OfficialTravlad: What tf is this #Bitcoin  | New Norway, Alberta | #APPL   | 2022-06-30   |
| *** |                           |                |                                                | ***                 | 141     | ***          |
| 409 | 2022-07-06 06:07:27+00:00 | im_ba1tazar    | @gandalfcryptto Love 💗 #AITX #ai #APPL #MSFT   |                     | #APPL   | 2022-07-06   |
| 410 | 2022-07-06 05:06:15+00:00 | PyScaleLLC     | RT @im_ba1tazar: @BabyCatCoin @cz_binance Love | Miami, FL           | #APPL   | 2022-07-06   |
| 411 | 2022-07-06 05:06:14+00:00 | PyScaleLLC     | RT @im_ba1tazar: Love 💗 #AITX #ai #APPL #MSFT  | Miami, FL           | WAPPL   | 2022-07-06   |
| 412 | 2022-07-06 05:08:00+00:00 | PyScaleLLC     | RT @im_ba1tazar: @jesmotril @Cheemslnu Same! L | Miami, FL           | #APPL   | 2022-07-06   |
| 413 | 2022-07-06 05:01:38+00:00 | lm_ba1tazar    | @jesmotril @CheemsInu Same! Love * #AITX #ai   |                     | #APPL   | 2022-07-06   |

Fig. 11. APPL dataset

## E.Cryptocurrency



Fig. 12. Cryptocurrency dataset

## F.GOOG



Fig. 13. GOOG dataset

## G.YAHOO



Fig. 14. YAHOO dataset

### References

- [1] <a href="https://dev.twitter.com/overview/documentation">https://dev.twitter.com/overview/documentation</a>
- [2] <a href="https://www.python.org/doc/">https://www.python.org/doc/</a>