The set of all real numbers, \mathbb{R} , is a typical example of a field. There are other fields, like \mathbb{C} and $\{0,1\}$.

The set of all real numbers, \mathbb{R} , is a typical example of a **field**. There are other fields, like \mathbb{C} and $\{0,1\}$. In general, a field \mathbb{F} comprises a set F, a 3-sided relation +, a 3-sided relation \cdot , and inverse operators $+^{-1}$ and \cdot^{-1} , satisfying the following axioms:

The set of all real numbers, \mathbb{R} , is a typical example of a **field**.

(Closure)
$$F \circ \longrightarrow F$$

The set of all real numbers, \mathbb{R} , is a typical example of a **field**.

(Closure)
$$F \circ \longrightarrow F$$
 $F \circ \longrightarrow F$

The set of all real numbers, \mathbb{R} , is a typical example of a **field**.

There are other fields, like \mathbb{C} and $\{0,1\}$. In general, a field \mathbb{F} comprises a set F, a 3-sided relation +, a 3-sided relation \cdot , and inverse operators $+^{-1}$ and \cdot^{-1} , satisfying the following axioms:

The set of all real numbers, \mathbb{R} , is a typical example of a **field**.

("Distributivity")

What this really says is that + (addition) and · (scaling) commute with each other!

These really say that additions commute with other additions, and scalars commute with other scalars!

("Distributivity")

What this really says is that + (addition) and · (scaling) commute with each other!

(Commutativity)

These really say that additions commute with other additions, and scalars commute with other scalars!

(Commutativity)

What this really says is that + (addition) and · (scaling) commute with each other!

