

- 安全(数据安全 操作安全)
- 运维友好(一键部署脚本)
- 团队协作DevOps(GitLab)
- 支持自动化测试(自动化测试框架)
- 模块高内聚低耦合(分层模块化设计)
- 支持接口扩展
- 精准控制

Architecture Diagram

功能模块设计架构

基于ROS 2的搬运机器人控制系统软件架构设计包括以下几个主 要功怠 模块:

- 1. **硬件抽象层(Hardware Abstraction Layer)**
- **节点(Nodes)**: 负责与硬件设备通信,如电机驱动 器、传感器等。
- **话题(Topics)**: 用于发布硬件状态和接收控制指令。
- 2. **感知模块** - **节点**: 使用传感器数据进行环境感知和货物识别。
- **话题**:发布感知结果,如物体位置、障碍物信息等。 3. **决策模块**
- **节点**: 负责路径规划和动作决策。
- **话题**: 接收感知结果,发布控制指令。
- 4. **执行模块**
- **节点**: 将决策模块的指令转换为电机控制信号。
- * : 题**:接收控制指令,发布电机状态。 5. **通信模块**
- **节点**: 负责与外部系统通信,如仓库管理系统。 - **服务(Services)**:提供RPC调用,如请求任务、报告
- **动作(Actions)**: 用于长时间运行的任务,如导航到指
- 定位置。
- 6. **故障诊断模块**
- **节点**: 监控系统状态,检测故障。
- **话题**:发布故障信息。
- 7. **系统监控模块**
- **节点**: 显示系统状态,记录日志。
- **话题**:发布系统状态信息。
- **节点**:提供图形化界面,供用户操作和监控。
- **话题和服务**:与用户交互,接收命令,显示信息。
- **软件架构图概述**:
- **顶层**: 用户界面,与用户交互。
- **中间层**:决策模块和执行模块,负责规划和执行任务。
- **底层**: 感知模块和硬件抽象层,负责与环境交互和 中件控
- **通信模块**: 贯穿各层,负责数据交换和外部通信。
- **故障诊断和系统监控模块**: 监控整个系统的运行状态。

DragonOS Based on ROS2 and Moveit2

Decision Layer

o /tai t_pose 输入目标位姿

○ /joint_trajectory 输出关节轨迹

。 /collision_map 输入实时障碍物点云

○ /joint_reference 输出目标关节角度

○ /joint_feedback 输出实际关节角度(编

。 /torque_command 输出电机力矩指令

● 运动规划接口

● 运动控制层接口

● 机器人状态机

码器反馈)

。 空闲状态(Idle)

。 休眠状态 (Sleep)

Hard Fault

。 运动控制状态

Fault

Preception Layer

Dragon Service

Install/Deployment Script

LiDar

BSP Layer

CAN Driver Dragon Service

Install/Deployment Script

Devie Tree(LiDAR & Cameras)

。 错误状态

● 任务调度接口

