Федеральное государственное автономное образовательное учреждение высшего образования

Университет ИТМО

Факультет программной инженерии и компьютерной техники

Дисциплина: Компьютерные сети

Лабораторная работа №1

Часть 2

Выполнил: Кузнецов Максим Александрович

Группа: Р33131

Преподаватель: Тропченко Андрей Александрович

Этап 1. Формирование сообщения

Исходное сообщение: Кузнецов М. А.

Первые 4 байта в 16-коде: <u>CA F3 E7 ED</u>

Сообщение для передачи в программу: <u>\EDE7F3CA</u>

Этап 2. Пример работы программы

Network Fourier 2.0: frame time = 3.41

Этап 3. Результаты исследований

Шестнадцатеричный код сообщения:			Методы кодирования				
CA F3 E7 ED			NRZ	RZ	M-	4B/5B	Scrambling
					II		
Полоса	Номера	min	5	5	34	0	2
пропускания	гармоник	max	30	30	56	20	24
идеального	Частоты,	min	0.8	0.8	5.3	0	0.3
канала связи	МΓц	max	4.7	4.7	8.8	3.1	5.0
Минимальная полоса пропускания			3.5	4.0	3.9	3.1	4.0
идеального канала связи							
Уровень шума тах		- L	0.03	0.02	0.19	0.01	0.01
Уровень	max		0.15	0.55	0.30	0.24	0.24
рассинхронизаци	ссинхронизации						
Уровень граничного max			0.17	0.17	0.8	0.12	0.18
напряжения							
Процент ошибок при тах уровнях и			3.89	5.04	0.07	3.45	7.23
минимальной полосе пропускания							
Уровень шума	cp		0.052				
Уровень	ср		0.296				
рассинхронизации	_						
Уровень	ср		0,224				
граничного							
напряжения							
Полоса	Гармоники	min	0	0	6	2	4
пропускания		max	33	33	56	38	40
реального канала	Частоты,	min	0.0	0.0	0.9	0.3	0.6
связи	МГц	max	5.2	5.2	8.8	5.0	6.3
Требуемая полоса пропускания			5.2	5.2	7.9	4.7	5.7
реального канала связи							

Этап анализа:

Как мне показалось, то самым оптимальным будет выбор NRZ и 4B/5B. Они имеют наименьшие показатели ошибок и минимальной полосы пропускания.

- NRZ без 4B/5B имеет на 0.44% больше ошибок, чем с 4B/5B
- NRZ и Scrambing имеет самый высокий процент ошибок (7.23%)
- RZ при схожих параметрах имеет процент ошибки выше на 1.15%
- М-ІІ несмотря на гораздо меньший процент ошибок требует большую полосу пропускания.

Вывод:

В ходе работы я:

- Я исследовал свойства канала связи и их влияние на качество передачи сигналов
- Поэкспериментировал с различными методами физического и логического кодирования