

GEOMETRÍA Capítulo 3

CUADRILÁTEROS

MOTIVATING | STRATEGY Veamos algunas aplicaciones de los cuadriláteros

<u>Definición</u>: Es aquella figura que cualquier par de ellas no es colineal.

- VÉRTICES: A; B; C y D
- LADOS : AB; BC; CD y
 DA

TEOREM

$$\alpha + \beta + \theta + \phi = 360^{\circ}$$

$$\omega + \gamma + \varphi + \gamma = 360^{\circ}$$

Teorema

Teorema

$$x = \frac{a+b}{2}$$

$$x = \frac{a-b}{2}$$

Clasificación de los cuadriláteros

1. TRAPEZOIDE

Es aquel cuadrilátero convexo que no tiene lados opuestos paralelos.

Es aquel cuadrilátero convexo que solo tiene un par de lados opuestos paralelos, llamados bases.

2.1.-Clasificación de trapecios

Los trapecios se clasifican de acuerdo a la longitud de sus lados no paralelos o laterales

TRAPECIO ISÓSCELES

Es aquel trapecio cuyos lados laterales son de igual longitud.

TRAPECIO ESCALENO

Es aquel trapecio cuyos lados laterales tienen diferente longitud.

2.2.- Teoremas

MN: Base media

AM = BM

CN = DN

$$\overline{AD} // \overline{BC} // \overline{MN}$$

$$x = \frac{a+b}{2}$$

$$BQ = DQ$$

$$\overline{AD} // \overline{BC} // \overline{PQ}$$

$$\chi = \frac{a-b}{2}$$

01

3.

PARAQUELO MARAMO que tiene sus lados opuestos paralelos y congruentes.

- AB //CD ∧ BC //AD
- $AB = CD \wedge BC = AD$

$$\alpha + \beta = 180^{\circ}$$

•
$$AP = PC \land BP = PD$$

Clasificación de paralelogramos

01

ROMBOIDE

RECTÁNGULO

1. En la figura mostrada, halle el valor de x.

Piden: x

$$m \not = \frac{40^\circ + 80^\circ}{2} = 60^\circ$$

△FPE: equilátero

$$\delta = 60^{\circ}$$

$$x = 120^{\circ}$$

2. En un trapecio ABCD (BC || AD), AB=7, BC=3,m<BAD=40° y m<BCD=110°. Halle AD.

Resolución

- Piden: AD = x
- Se traza $\overline{BP} \parallel \overline{CD}$
- □BCDP: paralelogramo
- PD = BC = 3
- ▲ ABP: Isósceles
- AP = AB = 7
- x = 7 + 3

x = 10

3. En el trapecio ABCD, $\overline{BC} \parallel \overline{AD}$. Halle la medida de la base media.

4. En el trapecio ABCD, $\overline{BC} \parallel \overline{AD}$. Halle la longitud del segmento que une los puntos medios de sus diagonales. Resolución

- Piden:
- Se traza $\overline{CP} \parallel \overline{BA}$
- paralele 2ramo

$$x = \frac{16-2}{2} \qquad \boxed{x}$$

5. En un rombo ABCD, en AC se ubica el punto E, tal que m<BEC = 45°, AE = 1 y EC = 7. Halle AB.

Resolución

Piden: AB=x

✓BOC: Notable de 37°y

$$x = 5$$

6. En un rectángulo ABCD, en AC se ubica el punto E, tal que m<AEB= 90°, BE = 3 y ED = 5. Halle m<CED.

Resolución

Piden: m<CED = x

 $x = 37^{\circ}$

7. En el romboide ABCD mostrado, AD = 12 y AB = EF = x. Halle el valor de x.

Resolución

Piden: x

Ángulos alternos internos

ABE y △CDF: Isósceles

$$x + x + x = 12$$

$$3x = 12$$

$$x = 4$$

8. Se tiene una hoja en forma de región rectangular ABCD. Luego se unen los extremos A y C tal que la línea del doblez interseca a BC en P y a AD en Q. Si m<PCQ = 80°, halle

Resolución

Piden: m<PQC=x