IT 468- Introduction to Natural Computation

Home Work 1

Due date: August 17, 2014

(1) Let $A = (Q, \Sigma, \delta, q_0, F)$ be the DFA, where $Q = \{q_0, q_1, q_2, q_3\}, \Sigma = \{0, 1\}, F = \{q_1, q_2\}$ and the transition function δ is defined by the following table:

$$egin{array}{c|cccc} \delta & 0 & 1 \\ \hline q_0 & q_1 & q_3 \\ q_1 & q_2 & q_3 \\ q_2 & q_2 & q_2 \\ q_3 & q_3 & q_3 \\ \hline \end{array}$$

Give the state digram of this machine. Also determine if A accepts the strings 000 and 010?

(2) Give state diagrams of *DFAs* recognizing the following languages. In all cases the alphabet $\Sigma = \{0, 1\}$.

- (i) $\{w \mid \text{ every odd position of } w \text{ is } 1\}.$
- (ii) $\{w \mid w \text{ has } 010 \text{ as a substring } \}$.
- (iii) $\{w \mid w \text{ has odd number of } 0's \text{ and even number of } 1's \}$.
- (iv) $\{w \mid \text{ the length of } w \text{ is at most } 5\}.$
- (v) $\{w \mid w \text{ does not contain the substring } 110\}$.
- (vi) $\{w \mid w \text{ is any string except } 11 \text{ and } 111\}.$
- (vii) $\{\epsilon, 0\}$.
- (viii) The empty set.
- (ix) All strings except the empty string.

(3) Give NFAs (or ϵ -NFAs) with the specified number of states recognizing each of the following languages. Convert the NFAs (or ϵ -NFAs) to DFAs.

- (i) The language {0} with two states.
- (ii) The language $\{0\}^*$ with one state.

(4) An ϵ -NFA is given by $A=(Q,\Sigma,\delta,q_0,F)$, where $Q=\{q_0,q_1,q_2,q_3,q_4,q_5\},\Sigma=\{0,1\},F=\{q_3,q_4\}$ and the transition function δ is defined by the following table:

δ	0	1	ϵ
$\overline{q_0}$	$\{q_0\}$	$\{q_0, q_2\}$	$\{q_1\}$
q_1	$\{q_5\}$	$\{q_2\}$	ϕ
q_2	$\{q_3\}$	ϕ	ϕ .
q_3	ϕ	ϕ	$\{q_4\}$
q_4	$\{q_3\}$	ϕ	ϕ
q_5	ϕ	$\{q_4\}$	ϕ

Find a *DFA* equivalent to the ϵ -NFA A.