Исследование процессов распада интермедиатов (I)

Рис. 1. Зависимость энергии интермедиатов (I) при увеличении дины связи C-N в процессе отщепления азота с образованием производных бензина (F), рассчитанная методом DFT Restricted B3LYP в базисе aug-cc-pVDZ

Таблица 1. Результаты сканирование ППЭ отщепления азота от интермедиатов (I) с образованием бензин-производных (F) при увеличении длины связы C-N, (DFT R-B3LYP aug-cc-pVDZ), энергии приведены относительно соответствующих бензин производных.

N₂	Process	ΔE_0 , kJ/mol / (dC-N, Å)		E _A , kJ/mol			Наблюдаемые процессы в
		Intermediate	TS	Scan ORCA	IRC Gaussian 09	NEB ORCA	MS-ESI эксперименте
1a	$C_6H_4N_2 = C_6H_4 + N_2$	104.4 (1.401 Å)	114.3 (1.602 Å)	9.9	9.9	9.88	Азосочетание с последующей полимеризацией. Полимеризация бензин производного.
1e	$4-MeO-C_6H_3N_2 = 4-MeO-C_6H_3 + N_2$	80.9 (1.381 Å)	99.4 (1.622 Å)	18.5	18.43	18.51	Азосочетание с последующей полимеризацией.
1d, 2, 3	$4-NO_2C_6H_3N_2=$	101.1	108.4	7.3	7.27	7.24	-

	$4-NO_2C_6H_3 + N_2$	(1.411 Å)	(1.602 Å)				
1c (v1)	$3-NO_2C_6H_3N_2 = 3-NO_2C_6H_3 + N_2$	97.4 (1.411 Å)	105.9 (1.602 Å)	8.5	8.45	8.46	-
1c (v2)	$3-NO_2C_6H_3N_2 = 3-NO_2C_6H_3 + N_2$	89.5 (1.411 Å)	97.1 (1.592 Å)	7.6	7.51	7.49	-
1b	$2-NO_{2}C_{6}H_{3}N_{2} = 2-NO_{2}C_{6}H_{3} + N_{2}$	105.4 (1.411 Å)	114.6 (1.632 Å)	9.5	9.27	9.25	-
1h	$4-BrC_6H_3N_2 = 4-BrC_6H_3 + N_2$	90.0 (1.391 Å)	103.0 (1.622 Å)	13.0	12.97	13.0	Только азосочетание.
1g	$4-HCO_{2}C_{6}H_{3}N_{2} = 4-HCO_{2}C_{6}H_{3} + N_{2}$	108.8 (1.401 Å)	116.0 (1.592 Å)	7.2	7.22	7.20	Азосочетание с последующей полимеризацией. Полимеризация бензин производного.
1f	$2-HCO_{2}C_{6}H_{3}N_{2} = 2-HCO_{2}C_{6}H_{3} + N_{2}$	108.7 (1.411 Å)	117.5 (1.612 Å)	8.8	8.85	8.83	Азосочетание с последующей полимеризацией. Полимеризация бензин производного.
1i	$2\text{-HCO}_2\text{-}4\text{-}$ $BrC_6H_2N_2=$ $2\text{-HCO}_2\text{-}4\text{-}$ $BrC_6H_2+N_2$	94.6 (1.401 Å)	106.8 (1.632 Å)	12.2	12.18	12.14	Только азосочетание.

Энергетика распада неплохо согласуется с экспериментом, там где энергетический барьер выше (метокси 1е, бром производные 1h, 1i), наблюдается в основном процессы азосочетания. Там где устойчивость интермедиата низкая (1a, 1g, 1f) наблюдается образование полимерных катионов без начального процесса азосочетания (только бензин производное). Исключение являются нитро-производные, там вероятно идет иное взаимодействие между катионами (неизвестная потеря массы 127) и процесс образования интермедиата (I) затруднен.

Во всех случаях интермедиаты хотя и мало устойчивые соединения, но имеют энергетический барьер в процессе отщепления азота. Высота энергетический барьера определяется устойчивостью самого интермедиата (I), в случае метокси- и бромпроизводных самые низкие значения энергии интермедиата и самые высокий барьер. Переходное состояние отличается в меньшей степени. С этим согласуются и длины связей, самые низкие значения для метокси- и бром- производных.