T.C

CUKUROVA UNIVERSITY

FACULTY OF ECONOMICS AND ADMINISTRATIVE SCIENCES

ECONOMETRICS

APPLIED ECONOMETRICS II HOMEWORK

Yasin Orçun AKTAŞ

2017197004

SERA ŞANLI

ADANA

2022

ABSTRACT

Analysis that I made includes three variables, total production level as dependent and computer and high technology product productions I wanted to study these two variables change in time how is going to affect the total production. The data is taken from TCMB website with period of first month of 2010 to second month of 2022 so we can say that the data is up to date. Study investigates the stationary of the series with unit roots test, correlograms VAR analysis, Cointegration tests and impulse response analysis.

Introduction

With the rapid advancement of technology, a new industrial production field formed and this affected countries characteristics of production in this study I chose 2 dependent variables which are the production of High technology and Computer components because world becoming more industrialized over the years and Turkey's characteristics of production changed with it. As the study states the increase in the total production has a positive effect on production of computer parts on the other hand high technology products has a negative relationship so we can say that Turkey's produces other goods as our production level increases and it is found that three of the variables tends to increase together in last 12 years.

Analysis

In my research, I wanted to see the overall impact of high technology products and computers' electronic and optic components on aggregate production level in Turkey. The data is downloaded from EVDS website, and it is real and up to date with 146 observations. The interval of the data is 2010M01 and 2022M02. Before I started to make an analysis on EViews first, I turned the data in logarithmic form and seasonally adjusted it.

Dependent Variable: LN_TOTAL_SA Method: Least Squares Date: 04/30/22 Time: 23:13 Sample: 2010M01 2022M02 Included observations: 146

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LN_HIGHTECH_SA LN_COMPUTER_SA	2.454371 0.326668 0.138278	0.063059 0.044631 0.042786	38.92151 7.319324 3.231865	0.0000 0.0000 0.0015
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.890777 0.889250 0.064829 0.600996 193.8074 583.1264 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	4.597906 0.194803 -2.613800 -2.552493 -2.588890 1.136645

Our first regression equation output is shown above. Adjusted R-squared value tells us approximately 0.889% of the dependent variable is explained by the independent variables which is production of high technology goods and computer components. Probability levels are smaller than 0.05 so we can conclude that our model is significant at 5% significancy level. Durbin Watson statistics with 1.136645 tells us that there might be a positive autocorrelation problem because the value is closer the 1.

Spurious Regression

R-squared value is smaller than Durbin Watson statistics.

0.89 < 1.14

As we see above main direction of total production high technology goods and computer components are upwards sometimes, we observe fluctuations and impacts of unexpected factors like pandemics in 2020 but after all a steady increment can be spotted.

Correlograms

Date: 04/30/22 Time: 23:1 Sample: 2010M01 2022M0 Included observations: 146	02						Date: 04/30/22 Tim Sample: 2010M01 2 Included observation	022M02						Date: 04/30/22 Tim Sample: 2010M01 2 Included observation	022M02					
Autocorrelation Part	tial Correlation	AC	PA	IC I	Q-Stat	Prob	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
Autocorrelation Part		1 0.8 4 0.7 0.6 0.7 0.6 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.6 0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6 68 0.8.6	868 868 112 133 1559 152 1077 1077 1077 1089 1072 1089 1072 1089 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097	112.29 222.04 319.00 410.78 496.36 578.93 652.46 907.12 1006.1 1053.0 906.62 1006.1 1171.9 1286.2 1295.1 1321.8 1353.9 1380.9 1380.9 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 1408.7 14	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0	Autocorrelation	Partial Correlation	1 1 2 3 4 4 5 6 6 7 8 9 10 11 11 12 20 11 12 22 12 12 23 12 12 12 12 12 12 13 13 11 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13	0.853 0.845 0.803 0.779 0.783 0.738 0.738 0.738 0.738 0.636 0.636 0.636 0.636 0.636 0.415 0.452 0.499 0.454 0.499 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.495	0.853 0.432 0.115 0.063 0.079 0.079 0.077 0.020 0.017 0.031 -0.064 0.031 -0.057 -0.071 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.0	108 42 215.65 313.20 499.69 499.69 499.69 667.18 499.69 667.18 499.69 77.24 1044.6 1136.25 1136.5 690.66 134.6 667.5 1696.1 176.5 690.66 167.1 176.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Autocorrelation	Partial Correlation	2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132	0.881 0.887 0.859 0.839 0.798 0.763 0.762 0.660 0.658 0.653 0.576 0.555 0.529 0.515 0.522 0.546 0.448 0.448 0.448 0.448	0.881 0.496 0.163 0.012 0.002 0.002 0.002 0.002 0.006 0.006 0.006 0.097 0.014 0.134 0.128 0.029 0.097 0.014 0.134 0.128 0.023 0.006 0.097 0.014 0.134 0.128 0.023 0.006 0.097 0.014 0.097 0.014 0.097 0.014 0.097 0.014 0.014 0.014 0.014 0.014 0.014 0.015 0.014 0.015 0.016 0.016 0.017 0.017 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	115.72 233.89 345.30 465.25 55.50 653.33 89.57 748.38 839.57 748.38 839.57 1231.9 226.34 1009.0 1086.3 11231.9 326.8 1541.7 1785.5 1827.5 1827.5 1910.4 1984.9 2018.8	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00
	3	4 0.2 5 0.2	59 0.0 82 0.0	000 041	1582.2	0.000			34 35 36		0.003 0.032 -0.140				· · · · · · · · · · · · · · · · · · ·	35	0.324			0.000

Interpretation of Correlograms

 H_0 : The series has no unit root (The series is stationry)

Autocorrelation coefficient is not significant

 H_A : The series has a unit root (The series is non – stationary)

Autocorrelation coefficient is significant

To determine whether the series has a unit root or not we check probability values. For 5% significancy level all dependent and independent variables' probability values are smaller than 0.05 so we reject the null hypothesis. Our series are non-stationary in order to make series stationary we apply first difference rule.

First Difference Procedure

Autocorrelation	Partial Correlation	2 0.359	PAC 7 -0.747	Q-Stat	Prob	Autocorrelation	D-#-10											
		2 0.359		04.000			Partial Correlation		AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		4 0.098 5 -0.090 6 0.1080 7 -0.094 8 0.055 9 -0.045 10 0.101 11 -0.204 12 0.288 13 -0.302 14 0.207 15 -0.060 18 -0.052 17 0.040 18 -0.052 20 -0.116 22 -0.356 22 -0.356 22 -0.356 22 -0.218 25 0.218 26 -0.118 27 0.056 28 -0.032 29 0.055 29 0.055	2 -0.340 3 -0.242 5 -0.242 6 -0.206 6 -0.170 6 -0.212 6 -0.212 7 -0.106 9 -0.058 1 -0.058 1 -0.058 1 -0.042 5 -0.022 5 -0.022 6 -0.031 1 -0.104 6 -0.234 1 -0.153 1 -0.153 1 -0.154 1 -0.058 1 -0.038 1 -0.056 1 -0.056	101.01 105.44 106.89 108.11 109.88 111.24 111.76 112.07 113.69 120.28 133.55 148.17 155.10 155.68 156.15 156.15 156.15 156.16 158.44 170.71 192.92 216.81 234.56 243.00 245.48 245.95 246.14 246.64	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.			1 - 1 - 2 - 3 - 4 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 12 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	0.624 0.174 0.026 0.004 0.006 0.004 0.005 0.004 0.015 0.049 0.015 0.049 0.032 0.015 0.049 0.032 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.036	-0.624 -0.352 -0.213 -0.102 -0.109 -0.141 -0.031 -0.059 -0.077 -0.030 -0.121 -0.058 -0.072 -0.024 -0.168 -0.089 -0.076 -0.030 -0.076 -0.030 -0.076 -0.030 -0.015 -0	57.579 62.081 62.331 62.739 62.742 64.089 64.281 64.285 64.584 64.987 64.285 64.584 64.973 69.330 77.1326 73.748 69.330 77.1326 73.748 72.209 123.48	0.000 0.000			1 -0.711 2 0.26 3 -0.02 4 -0.11 5 0.21 6 0-20 7 0.13 8 -0.08 9 0.05 10 -0.02 11 0.03 12 -0.01 13 -0.07 14 0.13 15 -0.08 16 0.02 17 -0.03 18 0.05 19 -0.05 21 0.11 22 -0.18 23 0.29 24 -0.35 25 0.26 26 -0.07 27 -0.11 28 0.23	3 -0.718 3 -0.516 3 -	75.882 86.411 86.524 88.348 95.046 101.68 104.40 105.39 105.84 105.97 106.11 106.13 107.06 111.09 111.39 111.85 111.87 111.87 112.44 114.65 120.47 135.33 157.25 169.84 173.24 183.34	0.000 0.000
	. B	30 -0.092 31 0.135 32 -0.175 33 0.241 34 -0.356 35 0.439 36 -0.390	5 0.033 5 0.042 1 0.070 3 -0.099 9 -0.021	251.62 257.35 268.33 292.79 329.96	0.000 0.000 0.000 0.000 0.000			31 32 - 33 34 - 35	0.127 -0.063 0.060 -0.124 0.221	-0.008 -0.017 0.096 -0.093 0.122	126.16 129.19 129.93 130.62 133.58 143.08 153.74	0.000 0.000 0.000 0.000 0.000			30 0.22 31 -0.10 32 -0.02 33 0.09 34 -0.16 35 0.21 36 -0.19	0 0.035 4 0.030 5 0.109 4 -0.122 9 0.023	207.95 208.06 209.77 214.90 224.16	0.000 0.000 0.000 0.000 0.000

After applying to first difference procedure series are still non-stationary in 5% significancy level. So, we reject the null hypothesis. After that I checked the second order difference procedure still series are non-stationary.

Dickey-Fuller Unit Root Test

 H_0 : Series is non stationary (It icludes unit root)

 H_1 : Series is stationary (It does not include a unit root)

Null Hypothesis: LN_TO Exogenous: Constant Lag Length: 1 (Automatic	_		3)		Null Hypothesis: LN_HIGHT Exogenous: Constant Lag Length: 3 (Automatic - I	Null Hypothesis: LN_COMPUTER_SA has a unit root Exogenous: Constant _ Lag Length: 4 (Automatic - based on SIC, maxiag=13)								
			t-Statistic	Prob.*				t-Statistic	Prob.*				t-Statistic	Prob.*
Augmented Dickey-Fulle Test critical values:	r test statistic 1% level 5% level 10% level		-1.769188 -3.476143 -2.881541 -2.577514	0.3945	Augmented Dickey-Fuller te Test critical values:	st statistic 1% level 5% level 10% level		-0.731578 -3.476805 -2.881830 -2.577668	0.8343	Augmented Dickey-Fuller tes Test critical values:	t statistic 1% level 5% level 10% level		-0.362231 -3.477144 -2.881978 -2.577747	0.9112
*MacKinnon (1996) one-	sided p-value	S.			*MacKinnon (1996) one-sid	ed p-values.				*MacKinnon (1996) one-side	d p-values.			
Augmented Dickey-Fuller Dependent Variable: D(L Method: Least Squares Date: 05/01/22 Time: 15 Sample (adjusted): 2010 Included observations: 1	.N_TOTAL_S/ 5:29 0M03 2022M0	2			Augmented Dickey-Fuller T- Dependent Variable: D(LN_ Method: Least Squares Date: 05/01/22 Time: 15:3! Sample (adjusted): 2010MC Included observations: 142	HIGHTECH_ 5 05 2022M02				Augmented Dickey-Fuller Tei Dependent Variable: D(LN_C Method: Least Squares Date: 05/01/22 Time: 15:36 Sample (adjusted): 2010M06 Included observations: 141 a	2022M02	,		
					Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
Variable LN_TOTAL_SA(-1) D(LN_TOTAL_SA(-1)) C	-0.056268 -0.551202 0.267531	0.031805 0.069709 0.146290	-1.769188 -7.907187 1.828776	0.0790 0.0000 0.0695	LN_HIGHTECH_SA(-1) D(LN_HIGHTECH_SA(-1)) D(LN_HIGHTECH_SA(-2)) D(LN_HIGHTECH_SA(-3)) C	-0.020773 -0.934432 -0.564429 -0.226581 0.119339	0.028395 0.086886 0.107395 0.084122 0.130880	-0.731578 -10.75467 -5.255614 -2.693465 0.911821	0.4657 0.0000 0.0000 0.0080 0.3635	LN_COMPUTER_SA(-1) D(LN_COMPUTER_SA(-1)) D(LN_COMPUTER_SA(-2)) D(LN_COMPUTER_SA(-3)) D(LN_COMPUTER_SA(-4)) C	-0.013246 -0.790631 -0.481212 -0.341887 -0.248868 0.088690	0.036569 0.088619 0.106247 0.105568 0.084085 0.169909	-0.362231 -8.921714 -4.529192 -3.238561 -2.959715 0.521983	0.0000 0.0000 0.0015 0.0036
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.345773 0.336493 0.070488 0.700566 179.1218 37.26071 0.000000	Mean depend S.D. depende Akaike info co Schwarz crite Hannan-Quir Durbin-Wats	ent var riterion erion nn criter.	0.005756 0.086535 -2.446136 -2.384265 -2.420996 2.187521	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.507822 0.493452 0.124895 2.137038 96.45558 35.33862 0.000000	Mean depend S.D. dependo Akaike info co Schwarz crite Hannan-Quir Durbin-Wats	ent var riterion rion nn criter.	0.008468 0.175483 -1.288107 -1.184028 -1.245814 2.034841	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.425141 0.403850 0.161383 3.515989 60.17611 19.96807 0.000000	Mean depend S.D. dependo Akaike info co Schwarz crite Hannan-Quir Durbin-Wats	ent var riterion rion nn criter.	0.008894 0.209016 -0.768456 -0.642976 -0.717465 1.972807

For 5% significancy level for ln_total_sa probability values are greater than 0.05 so we cannot reject the null hypothesis that series has a unit root.

For 5% significancy level for ln_hightech_sa probability values are greater than 0.05 so we cannot reject the null hypothesis that series has a unit root.

For 5% significancy level for ln_computer_sa probability values are greater than 0.05 so we cannot reject the null hypothesis that series has a unit root.

Total Production

For 5% significancy level since the calculated value is doesn't fall in rejection area, we accept H_0 : Series is non stationary (It icludes unit root).

Dickey-Fuller Test with Trend and Intercept

Null Hypothesis: LN_TOTAL_SA has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=13)

		t-Statistic	Prob.*
Augmented Dickey-Ful	-4.996470	0.0004	
Test critical values:	1% level	-4.023042	
	5% level	-3.441330	
	10% level	-3.145211	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LN_TOTAL_SA) Method: Least Squares Date: 05/01/22 Time: 16:12 Sample (adjusted): 2010M03 2022M02 Included observations: 144 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LN_TOTAL_SA(-1) D(LN_TOTAL_SA(-1)) C @TREND("2010M01")	-0.451596 -0.356430 1.947602 0.001860	0.090383 0.077539 0.387655 0.000402	-4.996470 -4.596757 5.024061 4.631503	0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.432695 0.420539 0.065873 0.607487 189.3860 35.59364 0.000000	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	0.005756 0.086535 -2.574806 -2.492311 -2.541284 2.040073

Probability level is smaller than 0.05 for 5% significancy level we reject the null hypothesis and conclude that series is stationary.

Null Hypothesis: LN_HIGHTECH_SA has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 1 (Automatic - based on SIC, maxlag=13)

		t-Statistic	Prob.*
Augmented Dickey-Fulle	-6.600840	0.0000	
Test critical values:	1% level	-4.023042	
	5% level	-3.441330	
	10% level	-3.145211	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LN_HIGHTECH_SA) Method: Least Squares Date: 05/01/22 Time: 16:18 Sample (adjusted): 2010M03 2022M02 Included observations: 144 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LN_HIGHTECH_SA(-1) D(LN_HIGHTECH_SA(-1)) C @TREND("2010M01")	-0.770435 -0.240083 3.058378 0.006750	0.116718 0.081870 0.460608 0.001064	-6.600840 -2.932476 6.639878 6.341814	0.0000 0.0039 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.534840 0.524872 0.121295 2.059744 101.4735 53.65727 0.000000	Mean depend S.D. depende Akaike info cri Schwarz critei Hannan-Quin Durbin-Wats c	ent var iterion rion in criter.	0.008597 0.175970 -1.353799 -1.271304 -1.320278 2.046753

Null Hypothesis: LN_COMPUTER_SA has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=13)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-11.84586	0.0000
Test critical values:	1% level	-4.022586	
	5% level	-3.441111	
	10% level	-3.145082	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LN_COMPUTER_SA) Method: Least Squares Date: 05/01/22 Time: 16:19 Sample (adjusted): 2010M02 2022M02 Included observations: 145 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LN_COMPUTER_SA(-1) C @TREND("2010M01")	-0.996533 3.966544 0.009063	0.084125 0.335113 0.000817	-11.84586 11.83645 11.09833	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.497055 0.489971 0.147584 3.092923 73.20616 70.16854 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.009989 0.206654 -0.968361 -0.906773 -0.943336 1.996051

The independent variables with Dickey-Fuller test with trend and intercept for both probability level is smaller than 0.05 for 5% significancy level we reject the null hypothesis and conclude that series are stationary.

Augmented Dickey-Fuller Test with First Difference (Intercept)

Null Hypothesis: LN_TC Exogenous: Constant, L Lag Length: 1 (Automati	inear Trend				Null Hypothesis: LN_COI Exogenous: Constant, Li Lag Length: 0 (Automatic	near Trend			Null Hypothesis: LN_HIGHT Exogenous: Constant, Line Lag Length: 1 (Automatic - I					
			t-Statistic	Prob.*				t-Statistic	Prob.*				t-Statistic	Prob.*
Augmented Dickey-Fulle Test critical values:	er test statistic 1% level 5% level 10% level		-4.996470 -4.023042 -3.441330 -3.145211	0.0004	Augmented Dickey-Fuller Test critical values:	test statistic 1% level 5% level 10% level		-11.84586 -4.022586 -3.441111 -3.145082	0.0000	Augmented Dickey-Fuller te Test critical values:	st statistic 1% level 5% level 10% level		-6.600840 -4.023042 -3.441330 -3.145211	0.0000
*MacKinnon (1996) one	-sided p-value	S.			*MacKinnon (1996) one-s	sided p-value	s.			*MacKinnon (1996) one-sid	ed p-values.			
Augmented Dickey-Fulle Dependent Variable: D(Method: Least Squares Date: 05/01/22 Time: 1 Sample (adjusted): 201 Included observations:	LN_TOTAL_SA 6:12 0M03 2022M0	A) 2			Augmented Dickey-Fuller Dependent Variable: D(L Method: Least Squares Date: 05/01/22 Time: 16 Sample (adjusted): 2010 Included observations: 1-	N_COMPUTE :19 M02 2022M0	ER_SA) 2			Augmented Dickey-Fuller Tr Dependent Variable: D(LN_ Method: Least Squares Date: 05/01/22 Time: 16:11 Sample (adjusted): 2010M0 Included observations: 144	HIGHTECH_ 3 3 2022M02			
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
LN_TOTAL_SA(-1) D(LN_TOTAL_SA(-1)) C @TREND("2010M01")	-0.451596 -0.356430 1.947602 0.001860	0.090383 0.077539 0.387655 0.000402	-4.996470 -4.596757 5.024061 4.631503	0.0000 0.0000 0.0000 0.0000	LN_COMPUTER_SA(-1) C @TREND("2010M01")	-0.996533 3.966544 0.009063	0.084125 0.335113 0.000817	-11.84586 11.83645 11.09833	0.0000	LN_HIGHTECH_SA(-1) D(LN_HIGHTECH_SA(-1)) C @TREND("2010M01")	-0.770435 -0.240083 3.058378 0.006750	0.116718 0.081870 0.460608 0.001064	-6.600840 -2.932476 6.639878 6.341814	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.432695 0.420539 0.065873 0.607487 189.3860 35.59364 0.000000	Mean depen S.D. depend Akaike info c Schwarz crite Hannan-Quir Durbin-Wats	ent var riterion erion nn criter.	0.005756 0.086535 -2.574806 -2.492311 -2.541284 2.040073	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.497055 0.489971 0.147584 3.092923 73.20616 70.16854 0.000000	Mean depen S.D. depend Akaike info o Schwarz crite Hannan-Qui Durbin-Wats	ent var riterion erion nn criter.	0.009989 0.206654 -0.968361 -0.906773 -0.943336 1.996051	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.534840 0.524872 0.121295 2.059744 101.4735 53.65727 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watse	ent var riterion erion nn criter.	0.008597 0.175970 -1.353799 -1.271304 -1.320278 2.046753

For 5% significancy level for ln_total_sa probability values are smaller than 0.05 so we can reject the null hypothesis that series has a unit root.

For 5% significancy level for ln_hightech_sa probability values are smaller than 0.05 so we can reject the null hypothesis that series has a unit root.

For 5% significancy level for ln_computer_sa probability values are smaller than 0.05 so we can reject the null hypothesis that series has a unit root.

To conclude, we can say that our series are stationary with the Dickey-Fuller test with first difference(Intercept)

For 5% significancy level since the calculated value is falls in rejection area, we reject the null hypothesis. (LN_TOTAL_SA)

5%	LN_TO	TAL_SA
ADF	Level	First Difference
Constant	0.3495	0.000*
Constant + Trend	0.0004*	0.000*
None	0.9766	0.000*
Result		I (1)
PP	Level	First Difference
Constant	0.1847	0.0001*
Constant + Trend	0.0000*	0.0001*
None	0.9990	0.0000*
Result		I (1)
KPSS	Level	First Difference
Constant	1.492988*(Nonsta.)	0.139(Stationary)
Constant + Trend	0.17397 (Stationary)	0.1337(Stationary)
Result		I (1)

As we can see on the summary table for Augmented Dickey-Fuller Phillips-Peron and KPSS test for LN_TOTAL_SA it can be seen that when we check for unit root with constant and trend series become stationary for all test and when we apply the first order difference process series become I(1).

5%	LN_HIGHTECH_SA		
ADF	Level	First Difference	
Constant	0.8343	0.000*	
Constant + Trend	0.0000*	0.000*	
None	0.9928	0.000*	
Result		I (1)	
PP	Level	First Difference	
Constant	0.1897	0.0001*	
Constant + Trend	0.0000*	0.0001*	
None	0.9961	0.0000*	
Result		I(1)	
KPSS	Level	First Difference	
Constant	1.419(non-stationary)	0.19(stationary)	
Constant + Trend	0.173(non-stationary)	0.0779(stationary)	
Result		I(1)	

As we can see on the summary table for Augmented Dickey-Fuller Phillips-Peron and KPSS test for LN_HIGHTECG_SA it can be seen that when we check for unit root with constant and trend series become stationary for all test and when we apply the first order difference process series become I(1).

5%	LN_COMPUTER_SA		
ADF	Level	First Difference	
Constant	0.9112	0.000*	
Constant + Trend	0.0000*	0.000*	
None	0.9874	0.000*	
Result		I (1)	
PP	Level	First Difference	
Constant	0.1776	0.0001*	
Constant + Trend	0.0000*	0.0001*	
None	0.9983	0.0000*	
Result		I (1)	
KPSS	Level	First Difference	
Constant	1.55 (non-stationary)	0.127(stationary)	
Constant + Trend	0.046(stationary)	0.115(stationary)	
Result		I (1)	

As we can see on the summary table for Augmented Dickey-Fuller Phillips-Peron and KPSS test for LN_COMPUTER_SA it can be seen that when we check for unit root with constant and trend series become stationary for all test and when we apply the first order difference process series become I(1).

VAR Analysis

Vector Autoregression Estimates
Date: 05/01/22 Time: 18:01
Sample (adjusted): 2010M04 2022M02
Included observations: 143 after adjustments
Standard errors in () & t-statistics in []

	DLN_COMPU	DLN_HIGHT	DLN_TOTAL_
DLN_COMPUTER_SA(-1)	-0.570442	-0.029735	0.027726
	(0.10341)	(0.08022)	(0.04418)
	[-5.51605]	[-0.37069]	[0.62751]
DLN_COMPUTER_SA(-2)	-0.281279	0.128757	0.062844
	(0.10356)	(0.08033)	(0.04425)
	[-2.71618]	[1.60294]	[1.42035]
DLN_HIGHTECH_SA(-1)	-0.242588	-0.834293	-0.093412
	(0.14065)	(0.10910)	(0.06009)
	[-1.72473]	[-7.64708]	[-1.55441]
	,		
DLN_HIGHTECH_SA(-2)	0.115150	-0.457110	-0.079997
	(0.14476)	(0.11229)	(0.06185)
	[0.79544]	[-4.07092]	[-1.29340]
DLN_TOTAL_SA(-1)	-0.027399	-0.001729	-0.606320
DEN_TOTAL_GA(1)	(0.25254)	(0.19589)	(0.10790)
	[-0.10849]	[-0.00883]	[-5.61926]
	[0.100 10]	[0.00000]	[0.0 .020]
DLN_TOTAL_SA(-2)	-0.378853	-0.079336	-0.172053
	(0.25338)	(0.19654)	(0.10826)
	[-1.49517]	[-0.40366]	[-1.58926]
С	0.022378	0.019141	0.010539
•	(0.01388)	(0.01077)	(0.00593)
	[1.61182]	[1.77742]	[1.77671]
B	0.404745	0.407050	0.075740
R-squared Adj. R-squared	0.404715 0.378453	0.497658 0.475496	0.375712 0.348170
Sum sq. resids	3.657747	2.200704	0.667713
S.E. equation	0.163998	0.127207	0.007713
F-statistic	15.41034	22.45534	13.64136
Log likelihood	59.21060	95.53761	180.8138
Akaike AIC	-0.730218	-1.238288	-2.430963
Schwarz SC	-0.585184	-1.093254	-2.285929
Mean dependent	0.010437	0.007084	0.005508
S.D. dependent	0.208018	0.175645	0.086788
S.D. dependent	0.200010	0.173043	0.000700
Determinant resid covarian	ice (dof adj.)	7.55E-07	
Determinant resid covarian	ice	6.50E-07	
Log likelihood		409.9360	
Akaike information criterion	1	-5.439665	
Schwarz criterion		-5.004561	
Number of coefficients		21	

Since the data's frequency is monthly, I chose lag length criteria as 24.

VAR Lag Order Selection Criteria

Endogenous variables: DLN_COMPUTER_SA DLN_HIGHTECH_SA DLN_TOTAL_SA

Exogenous variables: C Date: 05/01/22 Time: 18:03 Sample: 2010M01 2022M02 Included observations: 121

Lag	LogL	LR	FPE	AIC	SC	HQ
0	261.2571	NA	2.81e-06	-4.268713	-4.199396	-4.240561
1	321.6424	116.7780	1.20e-06	-5.118055	-4.840787	-5.005446
2	345.5976	45.13873	9.39e-07	-5.365249	-4.880029*	-5.168183*
3	358.3669	23.42809	8.83e-07*	-5.427552	-4.734381	-5.146029
4	364.3864	10.74557	9.29e-07	-5.378288	-4.477165	-5.012308
5	371.1893	11.80667	9.65e-07	-5.341972	-4.232898	-4.891535
6	377.8282	11.19279	1.01e-06	-5.302945	-3.985920	-4.768051
7	385.6962	12.87498	1.03e-06	-5.284235	-3.759258	-4.664884
8	389.5365	6.093734	1.13e-06	-5.198951	-3.466023	-4.495143
9	396.0149	9.958471	1.19e-06	-5.157271	-3.216392	-4.369006
10	402.5092	9.660863	1.25e-06	-5.115854	-2.967023	-4.243132
11	416.0286	19.44116	1.17e-06	-5.190555	-2.833773	-4.233376
12	430.9307	20.69055*	1.08e-06	-5.288111	-2.723377	-4.246475
13	439.3714	11.30080	1.11e-06	-5.278867	-2.506182	-4.152774
14	448.8258	12.18917	1.12e-06	-5.286378	-2.305741	-4.075828
15	451.8898	3.798319	1.26e-06	-5.188262	-1.999674	-3.893255
16	460.0139	9.668303	1.32e-06	-5.173783	-1.777244	-3.794319
17	464.7037	5.348742	1.46e-06	-5.102541	-1.498051	-3.638620
18	470.6035	6.436135	1.59e-06	-5.051298	-1.238856	-3.502920
19	481.3458	11.18619	1.61e-06	-5.080096	-1.059703	-3.447261
20	490.7230	9.299671	1.68e-06	-5.086330	-0.857986	-3.369038
21	504.0210	12.52875	1.65e-06	-5.157372	-0.721077	-3.355624
22	514.1709	9.059411	1.73e-06	-5.176379	-0.532132	-3.290173
23	529.5707	12.98163	1.67e-06	-5.282160	-0.429962	-3.311498
24	548.0409	14.65403	1.54e-06	-5.438692*	-0.378542	-3.383572

^{*} indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error AIC: Akaike information criterion SC: Schwarz information criterion HQ: Hannan-Quinn information criterion

We can detect that for Hannah-Quin information criterion and Schwarz information criterion on the second lag is selected.

System: UNTITLED

Estimation Method: Least Squares Date: 05/02/22 Time: 15:46 Sample: 2010M04 2022M02 Included observations: 143

Total system (balanced) observations 429

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	-0.109489	0.061185	-1.789484	0.0743
C(2)	-0.549990	0.111570	-4.929559	0.0000
C(3)	-0.157476	0.107702	-1.462143	0.1445
C(4)	-0.045181	0.065424	-0.690597	0.4902
C(5)	-0.050636	0.063512	-0.797266	0.4258
C(6)	-0.052888	0.062853	-0.841445	0.4006
C(7)	0.019059	0.050251	0.379285	0.7047
C(8)	0.010675	0.005885	1.813933	0.0704
C(9)	-0.051105	0.112302	-0.455065	0.6493
C(10)	0.024563	0.204781	0.119947	0.9046
C(11)	-0.072532	0.197683	-0.366911	0.7139
C(12)	-0.811781	0.120082	-6.760208	0.0000
C(13)	-0.443405	0.116573	-3.803684	0.0002
C(14)	-0.067362	0.115365	-0.583906	0.5596
C(15)	0.108320	0.092233	1.174419	0.2409
C(16)	0.019204	0.010801	1.777943	0.0762
C(17)	0.316124	0.142315	2.221303	0.0269
C(18)	-0.190038	0.259510	-0.732296	0.4644
C(19)	-0.420940	0.250514	-1.680303	0.0937
C(20)	-0.381843	0.152175	-2.509238	0.0125
C(21)	0.030376	0.147727	0.205620	0.8372
C(22)	-0.337687	0.146197	-2.309816	0.0214
C(23)	-0.154861	0.116882	-1.324933	0.1859
C(24)	0.021986	0.013688	1.606231	0.1090
Determinant residual c	ovariance	5.62E-07		

Equation: D(LN_TOTAL_SA) = C(1)*(LN_TOTAL_SA(-1) + 0.678771983088

*LN_HIGHTECH_SA(-1) - 1.12371519707*LN_COMPUTER_SA(-1) 2.50903444962) + C(2)*D(LN_TOTAL_SA(-1)) + C(3)

*D(LN_TOTAL_SA(-2)) + C(4)*D(LN_HIGHTECH_SA(-1)) + C(5)

*D(LN_HIGHTECH_SA(-2)) + C(6)*D(LN_COMPUTER_SA(-1)) + C(7)

*D(LN_COMPUTER_SA(-2)) + C(8)

Observations: 143

Equation: D(LN_HIGHTECH_SA) = C(9)*(LN_TOTAL_SA(-1) + 0.678771983088*LN_HIGHTECH_SA(-1) - 1.12371519707 *LN_COMPUTER_SA(-1) - 2.50903444962) + C(10)

*D(LN_TOTAL_SA(-1)) + C(11)*D(LN_TOTAL_SA(-2)) + C(12)
*D(LN_HIGHTECH_SA(-1)) + C(13)*D(LN_HIGHTECH_SA(-2)) + C(14)
*D(LN_COMPUTER_SA(-1)) + C(15)*D(LN_COMPUTER_SA(-2)) +

C(16) Observations: 143

 R-squared
 0.498428
 Mean dependent var
 0.007084

 Adjusted R-squared
 0.472420
 S.D. dependent var
 0.175645

 S.E. of regression
 0.127580
 Sum squared resid
 2.197333

 Durbin-Watson stat
 2.194141

Equation: D(LN_COMPUTER_SA) = C(17)*(LN_TOTAL_SA(-1) + 0.678771983088*LN_HIGHTECH_SA(-1) - 1.12371519707 *LN_COMPUTER_SA(-1) - 2.50903444962) + C(18) *D(LN_TOTAL_SA(-1)) + C(19)*D(LN_TOTAL_SA(-2)) + C(20) *D(LN_HIGHTECH_SA(-1)) + C(21)*D(LN_HIGHTECH_SA(-2)) + C(22) *D(LN_COMPUTER_SA(-1)) + C(23)*D(LN_COMPUTER_SA(-2)) + C(24)

Observations: 143			
R-squared	0.425705	Mean dependent var	0.010437
Adjusted R-squared	0.395927	S.D. dependent var	0.208018
S.E. of regression	0.161676	Sum squared resid	3.528772
Durbin-Watson stat	2.055783		

Inverse Roots of AR Characteristic Polynomial

Since are inverse roots are taking place withing the unit circle. Our VAR system is stable we can use this data.

Autocorrelation LM Test

VAR Residual Serial Correlation LM Tests

Date: 05/01/22 Time: 18:15 Sample: 2010M01 2022M02 Included observations: 143

Null hypothesis: No serial correlation at lag h

Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.
1	25.49367	9	0.0025	2.915617	(9, 319.0)	0.0025
2	18.45283	9	0.0303	2.087209	(9, 319.0)	0.0303
3	28.16886	9	0.0009	3.235146	(9, 319.0)	0.0009
4	8.184262	9	0.5157	0.911004	(9, 319.0)	0.5157
5	8.419099	9	0.4925	0.937487	(9, 319.0)	0.4926
6	7.285282	9	0.6074	0.809803	(9, 319.0)	0.6075
7	16.33552	9	0.0602	1.841610	(9, 319.0)	0.0602
8	14.12899	9	0.1178	1.587370	(9, 319.0)	0.1178
9	3.738652	9	0.9278	0.413288	(9, 319.0)	0.9278
10	20.51452	9	0.0150	2.327914	(9, 319.0)	0.0150
11	12.88339	9	0.1680	1.444616	(9, 319.0)	0.1680
12	19.73901	9	0.0196	2.237191	(9, 319.0)	0.0196

 H_0 : No serial correlation at lags 1 to h

 $\mathit{H}_{A} : Serial \ Correlation \ exists \ at \ lags \ 1 \ to \ h$

Until the fourth lag we can easily detect that we have a autocorrelation problem and tenth and twelfth lag on the other hand we can focus on other lags without the autocorrelation problem.

Cointegration Tests

Engle Granger Test

Null Hypothesis: RESID01 has a unit root

Exogenous: None Lag Length: 1 (Automatic - based on SIC, maxlag=13)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-4.541965	0.0000
Test critical values:	1% level	-2.581120	
	5% level	-1.943058	
	10% level	-1.615241	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID01) Method: Least Squares

Date: 05/01/22 Time: 19:08 Sample (adjusted): 2010M03 2022M02 Included observations: 144 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID01(-1) D(RESID01(-1))	-0.382303 -0.367566	0.084171 0.077557	-4.541965 -4.739320	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.393274 0.389001 0.054011 0.414247 216.9524 1 992323	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin	ent var iterion rion	0.001573 0.069098 -2.985450 -2.944203 -2.968690

I applied Dicky-Fuller unit root test with none option for 5% significancy level our t-statistic value is falling in rejection area and the probability value is smaller than 0.05 so it is significant we are rejecting null hypothesis that residual has a unit root. So, residuals are stationary total production, high technology and computer components productions are cointegrated which means they have a long run relationship among them they move together.

Johansen Cointegration Test

In Johansen Cointegration test we check the probability values at None* and At most 1* we can easily spot that our probability value is smaller than 0.05 for 5% significancy level we reject the null hypothesis, on the other hand At most 2 our probability value is 0.3285 which is grater than 0.05 so we accept the null hypothesis.

Unrestricted Cointegration Rank Test(Maximum Eigen Value)

We reject null hypothesis at most 1* with probability value of 0.0127 in other two cases None and At most 2 we reject the null hypothesis.

Normalized Vector

Normalized cointegrating coefficients (standard error in parentheses) LN_HIGHTECH_ LN_COMPUTER_

LN_TOTAL_SA SA SA 1.000000 0.678772 -1.123715 (0.25588) (0.24973)

Adjustment coefficients (standard error in parentheses)

 $D(LN_TOTAL_S$

A) -0.109489

(0.06118)

D(LN_HIGHTEC

H_SA) -0.051105

(0.11230)

D(LN_COMPUTE

R_SA) 0.316124 (0.14231)

 $LN_TOTAL_SA + 0.678772 - 1.123715 = 0$

$LN_TOTAL_SA = -0.678772 + 1.123715$

Under the ceteris paribus conditions when 1% increase in Total production on average 0.68% decrease on high technology production and 1.12% increase in computer parts production. Total production and Computer production parts are positively related but high technology products are negatively.

Date: 05/02/22 Time: 00:38
Sample (adjusted): 2010M04 2022M02
Included observations: 143 after adjustments
Trend assumption: Linear deterministic trend
Series: LN_TOTAL_SA LN_HIGHTECH_SA LN_COMPUTER_SA
Lags interval (in first differences): 1 to 2

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None * At most 1 * At most 2	0.134915	39.58534	29.79707	0.0027
	0.117695	18.86077	15.49471	0.0149
	0.006654	0.954692	3.841466	0.3285

Trace test indicates 2 cointegrating eqn(s) at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None	0.134915	20.72457	21.13162	0.0569
At most 1 *	0.117695	17.90608	14.26460	0.0127
At most 2	0.006654	0.954692	3.841466	0.3285

Max-eigenvalue test indicates no cointegration at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):

LN_TOTAL_SA	LN_HIGHTEC	LN_COMPUTER_SA
10.52622	7.144905	-11.82848
17.01571	-11.70312	3.739985
0.493255	-1.912590	-0.993586

Unrestricted Adjustment Coefficients (alpha):

D(LN_TOTAL_	-0.010402	-0.009980	0.004484
D(LN_HIGHTE	-0.004855	0.018109	0.009094
D(LN_COMPU	0.030032	-0.006761	0.011096

1 Cointegrating Equation(s): Log likelihood 420.2983

Normalized cointegrating coefficients (standard error in parentheses)
LN_TOTAL_SA LN_HIGHTEC LN_COMPUTER_SA
1.000000 0.678772 -1.123715
(0.25588) (0.24973)

Adjustment coefficients (standard error in parentheses) D(LN_TOTAL_ -0.109489

	(0.06118)
D(LN_HIGHTE	-0.051105
	(0.11230)
D(LN_COMPU	0.316124
	(0.14231)

2 Cointegrating Equation(s):	Log likelihood	429.2513
------------------------------	----------------	----------

Adjustment coeffic	ients (standard	d error in parentheses)
D(LN_TOTAL_	-0.279305	0.042479
	(0.11502)	(0.07883)
D(LN_HIGHTE	0.257034	-0.246621
	(0.21117)	(0.14472)
D(LN_COMPU	0.201073	0.293706
	(0.27026)	(0.18521)

ECM
Long Run Equation

Cointegrating Eq:	CointEq1	
LN_TOTAL_SA(-1)	1.000000	
LN_HIGHTECH_SA(-1)	0.678772 (0.25588) [2.65265]	
LN_COMPUTER_SA(-1)	-1.123715 (0.24973) [-4.49968]	
С	-2.509034	

$ECT_{t\text{-}1} = LN_TOTAL_{t\text{-}1} + 0.679LN_HIGHTECH_{t\text{-}1} - 1.123LN_COMPUTER_{t\text{-}1} - 2.509$

Error Correction:	D(LN_TOTAL_	D(LN_HIGHTE	D(LN_COMPUT
	SA)	CH_SA)	ER_SA)
CointEq1	-0.109489	-0.051105	0.316124
	(0.06118)	(0.11230)	(0.14231)
	[-1.78948]	[-0.45507]	[2.22130]

Speed of Adjustment Coefficient: -0.109489

It is negative and not significant at 10% significancy level.

According to the Johansen Significancy test this error mechanism doesn't work. Since our error mechanism doesn't work our cointegration relationship is not significant

System: UNTITLED

Estimation Method: Least Squares Date: 05/02/22 Time: 15:46 Sample: 2010M04 2022M02 Included observations: 143

Total system (balanced) observations 429

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	-0.109489	0.061185	-1.789484	0.0743
C(2)	-0.549990	0.111570	-4.929559	0.0000
C(3)	-0.157476	0.107702	-1.462143	0.1445
C(4)	-0.045181	0.065424	-0.690597	0.4902
C(5)	-0.050636	0.063512	-0.797266	0.4258
C(6)	-0.052888	0.062853	-0.841445	0.4006
C(7)	0.019059	0.050251	0.379285	0.7047
C(8)	0.010675	0.005885	1.813933	0.0704
C(9)	-0.051105	0.112302	-0.455065	0.6493
C(10)	0.024563	0.204781	0.119947	0.9046
C(11)	-0.072532	0.197683	-0.366911	0.7139
C(12)	-0.811781	0.120082	-6.760208	0.0000
C(13)	-0.443405	0.116573	-3.803684	0.0002
C(14)	-0.067362	0.115365	-0.583906	0.5596
C(15)	0.108320	0.092233	1.174419	0.2409
C(16)	0.019204	0.010801	1.777943	0.0762
C(17)	0.316124	0.142315	2.221303	0.0269
C(18)	-0.190038	0.259510	-0.732296	0.4644
C(19)	-0.420940	0.250514	-1.680303	0.0937
C(20)	-0.381843	0.152175	-2.509238	0.0125
C(21)	0.030376	0.147727	0.205620	0.8372
C(22)	-0.337687	0.146197	-2.309816	0.0214
C(23)	-0.154861	0.116882	-1.324933	0.1859
C(24)	0.021986	0.013688	1.606231	0.1090
Determinant residual o	5.62E-07			

Equation: D(LN_TOTAL_SA) = C(1)*(LN_TOTAL_SA(-1) + 0.678771983088

*LN_HIGHTECH_SA(-1) - 1.12371519707*LN_COMPUTER_SA(-1) 2.50903444962) + C(2)*D(LN_TOTAL_SA(-1)) + C(3)

*D(LN_TOTAL_SA(-2)) + C(4)*D(LN_HIGHTECH_SA(-1)) + C(5)

*D(LN_HIGHTECH_SA(-2)) + C(6)*D(LN_COMPUTER_SA(-1)) + C(7)

*D(LN_COMPUTER_SA(-2)) + C(8)

Observations: 143

Equation: D(LN_HIGHTECH_SA) = C(9)*(LN_TOTAL_SA(-1) + 0.678771983088*LN_HIGHTECH_SA(-1) - 1.12371519707 *LN_COMPUTER_SA(-1) - 2.50903444962) + C(10)

*D(LN_TOTAL_SA(-1)) + C(11)*D(LN_TOTAL_SA(-2)) + C(12)
*D(LN_HIGHTECH_SA(-1)) + C(13)*D(LN_HIGHTECH_SA(-2)) + C(14)
*D(LN_COMPUTER_SA(-1)) + C(15)*D(LN_COMPUTER_SA(-2)) +

C(16) Observations: 143

 R-squared
 0.498428
 Mean dependent var
 0.007084

 Adjusted R-squared
 0.472420
 S.D. dependent var
 0.175645

 S.E. of regression
 0.127580
 Sum squared resid
 2.197333

 Durbin-Watson stat
 2.194141

Equation: D(LN_COMPUTER_SA) = C(17)*(LN_TOTAL_SA(-1) + 0.678771983088*LN_HIGHTECH_SA(-1) - 1.12371519707 *LN_COMPUTER_SA(-1) - 2.50903444962) + C(18) *D(LN_TOTAL_SA(-1)) + C(19)*D(LN_TOTAL_SA(-2)) + C(20) *D(LN_HIGHTECH_SA(-1)) + C(21)*D(LN_HIGHTECH_SA(-2)) + C(22) *D(LN_COMPUTER_SA(-1)) + C(23)*D(LN_COMPUTER_SA(-2)) + C(24)

Observations: 143			
R-squared	0.425705	Mean dependent var	0.010437
Adjusted R-squared	0.395927	S.D. dependent var	0.208018
S.E. of regression	0.161676	Sum squared resid	3.528772
Durbin-Watson stat	2.055783		

Granger Causality

H₀: X does not Granger Cause Y and Z

H_A: X Granger Causes Y and Z

VAR Granger Causality/Block Exogeneity Wald Tests Date: 05/02/22 Time: 16:09 Sample: 2010M01 2022M02 Included observations: 143

Dependent variable: DLN_TOTAL_SA					
Excluded	Chi-sq	df	Prob.		
DLN_HIGHTECH_SA DLN_COMPUTER_SA	2.785910 2.018787	2 2	0.2483 0.3644		
All	4.314733	4	0.3651		
Dependent variable: DLN_HIGHTECH_SA					
Excluded	Chi-sq	df	Prob.		
DLN_TOTAL_SA DLN_COMPUTER_SA	0.225753 3.881531	2 2	0.8933 0.1436		
All	3.919348	4	0.4170		
Dependent variable: DLN_COMPUTER_SA					
Excluded	Chi-sq	df	Prob.		
DLN_TOTAL_SA DLN_HIGHTECH_SA	2.937867 6.533288	2 2	0.2302 0.0381		
All	8.374649	4	0.0788		

We investigate that whether there is causality running from dependent variable to independent variable. For both 5% and 10% significancy level our probability values are not significant so we accept the null hypothesis that total production is granger causes both high technology good production and computer components production.

Impulse Response

Response	of DLN_TOTAL	_SA:	
Period	DLN_TOTAL	DLN_HIGHT	DLN_COMP
1	0.070069	0.000000	0.000000
2	-0.047060	-0.007666	0.003335
3	0.020067	0.007270	0.003969
4	-0.005416	-0.002241	-0.008754
5	-0.001175	-0.000416	0.005931
6	0.003282	-2.05E-05	-0.000607
7	-0.002726	0.000846	-0.002035
8	0.001223	-0.000612	0.001555
9	-0.000106	-0.000141	-0.000193
10	-0.000247	0.000516	-0.000422
Pacpanca	of DLN. HICHT	ECH 6V:	
Period	of DLN_HIGHT	DLN_HIGHT	DLN COMP
reliou	DLN_TOTAL	DLIV_HIGHT	DEIN_COMP
1	0.074527	0.103089	0.000000
2	-0.064857	-0.088113	-0.003577
3	0.027701	0.037467	0.020508
4	0.000915	-0.000320	-0.024763
5	-0.013599	-0.010079	0.011499
6	0.013709	0.005154	0.003572
7	-0.007610	0.000435	-0.008524
8	0.001421	-0.001278	0.004833
9	0.001644	-0.000351	5.99E-05
10	-0.001776	0.001237	-0.001808
	of DLN_COMP		
Period	DLN_TOTAL	DLN_HIGHT	DLN_COMP
1	0.086061	0.070831	0.120298
2	-0.069092	-0.065413	-0.068623
3	0.014265	0.050847	0.006084
4	0.014388	-0.027136	0.009072
5	-0.016706	0.002877	0.000218
6	0.010971	0.009260	-0.005163
7	-0.006096	-0.008344	0.001111
8	0.002647	0.002628	0.003583
9	-1.72E-05	0.000905	-0.003782
10	-0.001430	-0.001081	0.003702

Cholesky Ordering: DLN_TOTAL_SA DLN_HIGHTECH_SA DLN_COMPUTER_SA When we apply one standard deviation shock to total production series the response of the variable itself will be 0.07 unit in the first period. As we can see responses are becoming lower and lower

