Part III – Functional Analysis (Incomplete)

Based on lectures by Dr András Zsák Notes taken by Yaël Dillies

Michaelmas 2023

Contents

0	Introduction	2
_	Hahn-Banach extension theorems	3
	1.1 Bidual	6

0 Introduction

Prerequisites

- some basic functional analysis
- a bit of measure theory
- \bullet a bit of complex analysis

Books

Books relevant to the course are:

- Bollobás, Linear Analysis
- Murphy, C^* -algebras
- Rudin
- Graham-Allan

Notation

We will use \mathbb{K} to mean "either \mathbb{R} or \mathbb{C} ". For X a normed space, we define

$$B_X = \{x \in X | ||x|| \le 1\}$$

$$S_X = \{ x \in X | \|x\| = 1 \}$$

For X,Y normed spaces, we write $X\sim Y$ if X,Y are isomorphic, ie there exists a linear bijection $T:X\to Y$ such that T and T^{-1} are continuous. We write $X\cong Y$ if X,Y are isometrically isomorphic, ie there exists a surjective linear map $T:X\to Y$ such that $\|Tx\|=\|x\|$ for all x.

1 Hahn-Banach extension theorems

Lecture 1

Let X be a normed space. The **dual space** of X is the space X^* of bounded linear functionals on X. X^* is always a Banach space in the operator norm: for $f \in X^*$,

$$||f|| = \sup_{x \in B_X} |f(x)|$$

Example. For $1 < p, q < \infty, p^{-1} + q^{-1} = 1, \ell_p^* \cong \ell_q$.

We also have $\ell_1^* \cong \ell_\infty$, $c_0^* \cong \ell_1$.

If H is a Hilbert space, then $H^* \cong H$ (the isomorphism is conjugate-linear in the complex case).

For $x \in X, f \in X^*$, we write $\langle x, f \rangle = f(x)$. Note that

$$\langle x, f \rangle = |f(x)| \le ||f|| \, ||x||$$

Definition. Let X be a *real* vector space. A functional $p: X \to \mathbb{R}$ is

- positive homogeneous if p(tx) = tp(x) for all $x \in X$, $t \ge 0$
- subadditive if $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$

Definition. Let P be a preorder, $A \subseteq P, x \in P$. We say

- x is an **upper bound** for A if $\forall a \in A, a \leq x$.
- A is a **chain** if $\forall a, b \in A, a \leq b \lor b \leq a$.
- x is a maximal element if $\forall y \in P, x \not< y$

Fact (Zorn's lemma). A nonempty preorder in which all nonempty chains have an upper bound has a maximal element.

Theorem (Hahn-Banach, positive homogeneous version). Let X be a real vector space and $p: X \to \mathbb{R}$ be positive homogeneous and subadditive. Let Y be a subspace of X and $g: Y \to \mathbb{R}$ be linear such that $\forall y \in Y, g(y) \leq p(y)$. Then there exists $f: X \to \mathbb{R}$ linear such that $f \upharpoonright_Y = g$ and $\forall x \in X, f(x) \leq p(x)$.

Proof. Let P be the set of pairs (Z,h) where Z is a subspace of X with $Y \subseteq Z$ and $h: Z \to \mathbb{R}$ linear, $h \upharpoonright_Y = g$ and $\forall z \in Z, h(z) \leq p(z)$. P is nonempty since $(Y,g) \in P$, and is partially ordered by

$$(Z_1, h_1) \leq (Z_2, h_2) \iff Z_1 \subseteq Z_2 \wedge h_2 \upharpoonright_{Z_1} = h_1$$

If $\{(Z_i, h_i)|i \in I\}$ is a chain with I nonempty, then we can define

$$Z := \bigcup_{i \in I} Z_i, h \upharpoonright_{Z_i} = h_i$$

The definition of h makes sense thanks to the chain assumption. $(Z, h) \in P$ is therefore an upper bound for the chain.

Hence find by Zorn a maximal element (Z, h) of P. If Z = X, we won. So assume there is some $x \in X$ Z. Let $W = \operatorname{Span}(Z \cup \{x\})$ and define $f : W \to \mathbb{R}$ by

$$f(z + \lambda x) = h(z) + \lambda \alpha$$

for some $\alpha \in \mathbb{R}$. Then f is linear and $f \upharpoonright_{Z} = h$. We now look for α such that $\forall w \in W, f(w) \leq p(w)$. We would then have $(W, f) \in P$ and (Z, h) < (W, f), contradicting maximality of (Z, h).

We need

$$h(z) + \lambda \alpha \le p(z + \lambda x) \forall z \in Z, \lambda \in \mathbb{R}$$

Since p is positive homogeneous, this becomes

$$h(z) + \alpha \le p(z+x)h(z) - \alpha \le p(z-x) \tag{1}$$

ie

$$h(z) - p(z - x) \le \alpha \le p(z + x) - h(z) \forall z \in Z$$

The existence of α now amounts to

$$h(z_1) - p(z_1 - x) \le \alpha \le p(z_2 + x) - h(z_2) \forall z_1, z_2 \in Z$$

But indeed

$$h(z_1) + h(z_2) = h(z_1 + z_2) \le p(z_1 + z_2) \le p(z_1 - x) + p(z_2 + x)$$

Definition. Let X be a \mathbb{K} -vector space. A **seminorm** on X is a functional $p: X \to \mathbb{R}$ such that

- $\forall x \in X, p(x) \ge 0$
- $\forall x \in X, \lambda \in \mathbb{K}, p(\lambda x) = |\lambda| p(x)$
- $\forall x, y \in X, p(x+y) \le p(x) + p(y)$

Remark.

 $norm \implies seminorm \implies positive homogeneous$

Lecture 2

Theorem (Hahn-Banach, absolute homogeneous version). Let X be a real of complex vector space and p a seminorm on X. Let Y be a subspace of X, g a linear functional on Y such that $\forall y \in Y, |g(y)| \leq p(y)$. Then there exists a linear functional f on X such that $f \upharpoonright_Y = g$ and $\forall x \in X, |f(x)| \leq p(x)$.

Proof.

Real case

$$\forall y \in Y, g(y) \le |g(y)| \le p(y)$$

By Theorem 1, there exists $f: X \to \mathbb{R}$ such that $f \upharpoonright_Y = g$ and $\forall x \in X, f(x) \leq p(x)$. We also have

$$\forall x \in X, -f(x) = f(-x) \le p(-x) = p(x)$$

Hence $|f(x)| \le p(x)$

Complex case

 $\operatorname{Re} g: Y \to \mathbb{R}$ is real-linear.

$$\forall y \in Y, |\operatorname{Re} g(y)| \le |g(y)| \le p(y)$$

By the real case, find $h: X \to \mathbb{R}$ real-linear such that $h \upharpoonright_Y = \operatorname{Re} g$

Claim. There exists a unique complex-linear $f: X \to \mathbb{C}$ such that $h = \operatorname{Re} f$.

Incomplete

4

Proof.

Uniqueness

If we have such f, then

$$f(x) = \operatorname{Re} f(x) + i \operatorname{Im} f(x)$$
$$= \operatorname{Re} f(x) - i \operatorname{Re} f(ix)$$
$$= h(x) - ih(ix)$$

Existence

Define f(x) = h(x) - ih(ix). Then f is real-linear and f(ix) = if(x), so f is complex-linear with Re f = h.

We now have $f: X \to \mathbb{C}$ such that $\operatorname{Re} f = h$.

$$\operatorname{Re} f \upharpoonright_Y = h \upharpoonright_Y = \operatorname{Re} g$$

So, by uniqueness, $f \upharpoonright_Y = g$. Given $x \in X$, find λ with $|\lambda| = 1$ such that

$$|f(x)| = \lambda f(x)$$

$$= f(\lambda x)$$

$$= \operatorname{Re} f(\lambda x)$$

$$= h(\lambda x)$$

$$\leq p(\lambda x)$$

$$= p(x)$$

Remark. For a complex vector space X, if we write $X_{\mathbb{R}}$ for X considered as a real vector space, the above proof shows that

$$\operatorname{Re}:(X^*)_{\mathbb{R}}\to X_{\mathbb{R}}^*$$

is an isometric isomorphism.

Corollary. Let X be a \mathbb{K} -vector space, p a seminorm on X, $x_0 \in X$. Then there exists a linear functional f on X such that $f(x_0) = p(x_0)$ and $\forall x \in X, |f(x)| \leq p(x)$.

Proof. Let $Y = \operatorname{Span}(x_0)$,

$$g: Y \to \mathbb{K}$$
$$\lambda x_0 \mapsto \lambda p(x_0)$$

We see that $\forall y \in Y, g(y) \leq p(y)$. Hence find by Theorem 1 a linear functional f on X such that $f \upharpoonright_Y = g$ and $\forall x \in X, |f(x)| \leq p(x)$. We check that $f(x_0) = g(x_0) = p(x_0)$. \square

Theorem (Hahn-Banach, existence of support functionals). Let X be a real or complex normed space. Then

- 1. If Y is a subspace of X and $g \in Y^*$, then there exists $f \in X^*$ such that $f \upharpoonright_Y = g$ and ||f|| = ||g||.
- 2. Given $x_0 \neq 0$, there exists $f \in S_{X^*}$ such that $f(x_0) = ||x_0||$.

Proof.

1. Let p(x) = ||g|| ||x||. Then p is a seminorm on X and

$$\forall y \in Y, |g(y)| \le ||g|| \, ||y|| = p(y)$$

Find by Theorem 1 a linear functional f on X such that $f \upharpoonright_Y = g$ and $\forall x \in X, |f(x)| \le p(x) = \|g\| \|x\|$. So $\|f\| \le \|g\|$. Since $f \upharpoonright_Y = g$, we also have $\|g\| \le \|f\|$. Hence $\|f\| = \|g\|$.

2. Apply Corollary 1 with p(x) = ||x|| to get $f \in X^*$ such that

$$\forall x \in X, |f(x)| \le ||x|| \text{ and } f(x_0) = ||x_0||$$

It follows that ||f|| = 1.

Remarks.

- Part 1 is a sort of linear version of Tietze's extension theorem: Given K compact Hausdorff, $L \subseteq K$ closed, $g: L \to \mathbb{K}$ continuous, there exists $f: K \to \mathbb{K}$ such that $f \upharpoonright_{L} = g$ and $\|f\|_{\infty} = \|g\|_{\infty}$.
- Part 2 shows that for all $x \neq y$ in X there exists $f \in X^*$ such that $f(x) \neq f(y)$, namely X^* separates points of X. This is a sort of linear version of Urysohn: C(K) separates points of K.
- The f in part 2 is called a **norming functional**, aka **support functional**, for x_0 . The existence of support functionals shows that

$$x_0 = \max_{g \in B_{X^*}} \langle x_0, g \rangle$$

Assuming X is a real normed space and $||x_0|| = 1$, we have $B_X \subseteq \{x \in X | f(x) \le 1\}$. Visually, TODO: insert tangency diagram

1.1 Bidual

Let X be a normed space. Then X^{**} is called the **bidual** or **second dual** of X.

For $x \in X$, define $\hat{x}: X^* \to \mathbb{K}$, the **evaluation at** x, by $\hat{x}(f) = f(x)$. \hat{x} is linear and $|\hat{x}(f)| = |f(x)| \le ||f|| \, ||x||$, so $\hat{x} \in X^{**}$ and $||\hat{x}|| \le ||x||$.

The map $x \mapsto \hat{x}: X \to X^{**}$ is called the **canonical embedding** of X into X^{**} .

Theorem. The canonical embedding is an isometric embedding.

Proof.

Linearity

$$\widehat{\lambda x}(f) = f(x+y) = f(x) + f(y) = \widehat{x}(f) + \widehat{y}(f)$$

$$\widehat{\lambda x}(f) = f(\lambda x) = \lambda f(x) = \lambda \widehat{x}(f)$$

Isometry

If $x \neq 0$, there exists a support functional f for x. Then

$$\|\hat{x}\| \ge |\hat{x}(f)| = |f(x)| = \|x\|$$

Remarks.

Incomplete 6 Updated online

- In bracket notation, $\langle f, \hat{x} \rangle = \langle x, f \rangle$
- Let \hat{X} be the image of X in X^{**} . Theorem 1.1 says

$$X\cong \hat{X} \subseteq X^{**}$$

We often identify \hat{X} with X and think of X as living isometrically inside X^{**} . Note that

$$X$$
 complete $\iff \hat{X}$ closed in X^{**}

• More generally, \bar{X} is a Banach space containing an isometric copy of X as a dense subspace. We proved that normed spaces have completions!

Definition. A normed space X is **reflexive** if the canonical embedding $X \to X^{**}$ is surjective.

Example.

- Some reflexive spaces are Hilbert spaces, finite-dimensional spaces, ℓ_p and $L_p(\mu)$ for 1 .
- Some non-reflexive spaces are $c_0, \ell_1, \ell_\infty, L_1[0, 1]$.

Remarks.

- If X is reflexive, then $X \cong X^{**}$, so X is complete.
- There are Banach spaces X such that $X \cong X^{**}$ but X is not reflexive, eg **James'** space. Any isomorphism to the bidual is then necessarily not the canonical embedding.

Lecture 3