

"智慧校园·物联网创新应用设计" 大赛

智能自行车车桩

姓	名	Hollow Man
学	院	信息科学与工程学院
日	期	二〇一八年十一月

目录

一、	需求简介	3
	设计参考模型	
	2.1、分析一:公共自行车车桩	4
	2.2、分析二: 普通车锁	5
三、	初步方案的确定	5
	3.1、以上两种模型的启示	5
	3.2、设计方案的得出	5
	3.2.1、锁的部分	5
	3.2.2、车桩用户终端	7
	3.2.3、用户端 APP	8
四、	使用指南	8
	4.1、停车	8
	4.2、取车	8

一、需求简介

今年10月12日,兰州大学榆中校区保卫科破获了一起多次夜间盗窃自行车的案件。犯罪嫌疑人之所以能够频繁得手,根本原因在于自行车的防盗措施没有做好。

请近期于榆中校区丢失自行车未报案的同学及时与保 卫科或派出所联系。

民警同志需要收集受害人信息,获取更多证据,请各位 支持配合。

现在同学们纷纷购买自行车,经调查发现,主要是为了方便校园出行。校园虽然存在有人值守的自行车棚,但是距离大部分学生宿舍太远,所以安全的自行车棚得不到大部分同学的青睐。同学们大多喜欢把自己的自行车停在宿舍楼下。自行车的安全因此得不到保障。

此外,宿舍楼下常常出现自行车乱停乱放,堵住通道的现象,也能时常看到长时间不用的自行车无人认领,占用场地的现象出现。

所以,拥有安全的,便于管理的智能自行车车桩成为现在的当务之急。

二、设计参考模型

2.1、分析一: 公共自行车车桩

如图是某市公共自行车车 桩示意图。一桩一车,自动锁住。 该市公共自行车桩反应了当前 中国公共自行车车桩的普遍设 计,设计成熟,结构良好,安全 性能高。

但是,该设计是在统一车型的基础上做出的,面对同学们不同大小的车轮,不同型号的自行车,该种模型显然不适用。并且,面对学校相对狭小的道路,与数量众多的自行车,这种设计的空

间利用率不高。

当然,这种模型的许多优点仍值得我们借鉴。这种公共自行车车桩能够将车位剩余数反馈到用户手机 APP上,极大地方便用户的停车。而且,该种车桩采用二维码扫描即开锁的策略,在保障了安全性的前提下,也给予了用户很多便利。

2.2、分析二:普通车锁

普通的车锁,在校园中能看到很多同学经常把它和学校的自行车桩锁在一起。这种锁一把钥匙开一把锁,结构简单,价格便宜,目前被广泛应用于自行车的防盗。

但是,这种车锁并不智能,不能实现 远程系统管理。而且,如果钥匙被窃得, 或者暴力强行开锁,盗窃者便可轻易地将 自行车偷走。

三、初步方案的确定

3.1、以上两种模型的启示

模型一的管理设施,即一桩一车,以及能实现实施车位查询的配套智能 App 值得我们学习。

模型二的车锁形式,如果加以改良,将会符合我们的新要求。

设计方案依据以上两种模型的优点综合设计。

3.2、设计方案的得出

3.2.1、锁的部分

对于模型一中的车型不一致问题,我们可 以参考客车安全带的设计。面对不同体型的乘 客,客车公司使用了自动伸缩式安全带。如图所 示,利用这种形式,我们可以做出带有伸缩功能 的绑带锁,有效保证了车桩对不同型号的自行车的贴合。

锁将在①处以有线的方式和终端连接在一起。

自动弹出装置将集成在①处,在指纹符合的情况下,锁端收到用户终端指令, ①和②将会自动分离。

这种锁的绑带材料值得思考。如果仅仅采用纺织材料,那么这种锁将很容易被剪刀等破坏,安全性得不到保障。如果采用不锈钢锁链,成本会提高。因而,我想到了一种巧妙的结构,采用纺织材料同时锁带内嵌一根电线,将①和②连接在一起。如果锁带被恶意破坏,那么电路将由通路变为断路,此时用户终端将会

发出响声报警,来震慑犯罪嫌疑人,并且自动联系学校保卫处进行情况核实。

同时,如果锁带检测到频繁地伸缩,这说 明车受到移动,有人可能想将车的部分零部 件偷走,此时也会智能报警。

这样设计的锁可以在原有车桩的基础上 加以改造,如图所示,只要将锁绑定在原桩杆 上,就可以方便快捷地进行改造。

3.2.2、车桩用户终端

类似于图示公共自行车车 桩用户终端系统, 我们可以参照 设计我们自己的自行车停放系 统。

车桩用户终端将搭配指纹 解锁模块,同时连接电源与网络 实现远程控制。

用户界面上将显示可用车 位数,并且提供给用户车位占用 功能, 用户可以直接刷校园卡, 输入设定的密码,并且录入指纹, 将车位暂时绑定到自己的名下, 从而实现实名制停车和安全停车。

如果有同学长时间占用车位 (比如一个月停放不动),那么终 端将会将占用的车位和停车人信 息提供给后勤部门, 让后勤部门 决定是否清理此车辆或者和停车 的同学联系。

终端上还将装有摄像头,如 果有人恶意破坏终端,或者破坏 锁与终端的连接,摄像头就会记 录下犯罪现场。并且,如终端检测到异常就会立刻联系保卫处人员前来处理。

3.2.3、用户端 APP

类似于此共享单车 APP, 智能自行车车桩将会 实时把剩余车位信息反馈到用户端 APP 上, 方便用 户利用 GPS 定位功能寻找到离自己最近的停车桩。

APP 将有车位预约功能,在 15 分钟内保留车位。

如果该同学停了车, APP 将会显示停车时间和车辆状态, 并结合实时天气情况, 智能温馨地给用户提供出行小贴士。

如果车辆有异常情况, APP 也会向用户发送通知, 提醒用户保卫自己的爱车。

四、使用指南

4.1、停车

用户需要提前用自己的校园邮箱和密码登录 APP, 然后在 APP 上找到离自己最近的有剩余车位的车桩。在车桩终端上选择自己想要停的车位,刷校园卡,输入密码,并且录入指纹,就可以将车停到指定车位,绑上锁。听到"嘀嘀"声后,并且 APP 显示车辆已经停好,则停车成功。

4.2、取车

用户到车桩对应终端处录入指纹,系统自动匹配指纹,自动弹开对应车位的锁。此时用户将绑在自己车上的锁解下,就可以实现自由骑行了。