

Clube do Código 13

Um modelo SARIMA para a inflação medida pelo IPCA

Vítor Wilher Mestre em Economia analisemacro.com.br

Pacotes e Scripts Externos

```
library(forecast)
library(ggplot2)
library(ggthemes)
library(easyGgplot2)
library(xtable)
library(TStools)
library(png)
```

1 Introdução

Na edição anterior do Clube do Código, evidenciamos que a desancoragem das expectativas de inflação tem sobrecarregado o hiato do produto. Em outras palavras, dado que a inflação passada tem ganhado maior peso para explicar a inflação presente, a desinflação atual exigirá uma abertura do hiato bem maior do que seria necessário há alguns anos.

Hoje, vamos começar a entender essa desinflação. Para tal, vamos utilizar a inflação mensal medida pelo IPCA, o índice oficial do regime de metas para a inflação. Ela é obtida diretamente do Sistema de Séries Temporais do Banco Central e posto abaixo.

```
autoplot(ipca) +
  geom_line(colour="darkblue", size=1.5) +
  xlab('') + ylab('% a.m.') +
  scale_x_discrete(limits=2007:2017)+
  ggtitle('Inflação mensal medida pelo IPCA') +
  theme_economist()
```


Figura 1: Vamos trabalhar com a inflação mensal nesse exercício.

Uma característica que salta aos olhos quando olhamos para a inflação é a sua sazonalidade. No primeiro semestre, a inflação tende a cair, aumentando no segundo semestre. O gráfico abaixo deixa esse comportamento mais nítido.

Figura 2: Sazonalidade do IPCA

2 Exercício

Dado a nítida sazonalidade da inflação, optamos nesse primeiro exercício de previsão da série por construir um modelo univariado com sazonalidade, ou simplesmente um SARIMA.¹ Para determinar os termos AR e MA das partes com e sem sazonalidade, vamos dar uma olhada primeiramente nas funções de autocorrelação.

Observe na figura 3 que a FAC mostra uma alternância, enquanto a PFAC mostra uma significância no primeiro termo. Isso nos levará a estimar um modelo SARIMA (1,0,0)(0,0,1). Ademais, vamos utilizar também a função auto.arima do pacote forecast, de modo a escolher um modelo que minimize algum critério de informação.

Estamos supondo, ademais, que o IPCA é uma série estacionária, a despeito do resultado que vamos encontrar no modelo escolhido na função auto.arima.

```
### Funções de Autocorrelação
a1 <- ggAcf(ipca, lag.max = 24, main='ACF')+theme_economist()
a2 <- ggPacf(ipca, lag.max = 24, main='PACF')+theme_economist()
ggplot2.multiplot(a1, a2, cols=1)</pre>
```

¹Maiores detalhes sobre esse tipo de modelo, veja aqui.

Figura 3: Funções de Autocorrelação

2.1 Modelagem

Abaixo construímos os modelos com a função Arima e a função auto.arima, ambas do pacote forecast.

```
### Modelos
auto <- auto.arima(ipca, max.p=5, max.q=5, max.P=5, max.Q=5)
sarima <- Arima(ipca, order=c(1,0,0), seasonal = c(0,0,1))</pre>
```

Abaixo, comparamos o IPCA com os modelos estimados.

Figura 4: Os modelos captam a tendência da série ao longo do tempo.

2.2 Previsão

De posse dos modelos, podemos passar para a previsão propriamente dita. A fazemos usando a função forecast do pacote de mesmo nome, como abaixo.

```
### Forecast
fauto <- forecast(auto, h=18, level=c(50, 75, 95))
fsarima <- forecast(sarima, h=18, level=c(50, 75, 95))</pre>
```

Um gráfico com as previsões geradas é posto abaixo.

```
g1 <- autoplot(fauto)+
    ggtitle('Forecast do Auto Arima')+
    theme_economist()

g2 <- autoplot(fsarima)+
    ggtitle('Forecast do SARIMA')+
    theme_economist()

ggplot2.multiplot(g1, g2, cols=2)</pre>
```


Figura 5: Previsões dos modelos SARIMA.

As tabelas com as previsões geradas pelos modelos podem ser vistos no apêdince A.

2.3 Projeções do IPCA acumuladas em 12 meses

Por fim, apresentamos as projeções do modelo SARIMA acumuladas em 12 meses.

Figura 6: A área hachurada é a previsão do modelo.

3 Discussões Finais

Os modelos SARIMA conseguem captar, de forma razoável, a dinâmica da inflação medida pelo IPCA. Por se tratar de um modelo univariado, obviamente, excluem efeitos de outras variáveis ou de choques eventuais que podem ocorrer sobre a inflação mensal.

Nesse contexto, para tornar a previsão da inflação mais acurada é preciso incorporar à modelagem outras variáveis, como, por exemplo, o hiato do produto, as expectativas de inflação e movimentos da taxa de câmbio. Faremos isso em edições futuras do Clube.

Por aqui, esperamos que o exercício tenha contribuído para melhorar a compreensão dos nossos membros desse tipo de modelagem. Um *plus* dessa edição do Clube, por fim, foi o uso dos pacotes ggplot2, easyGgplot2 e ggthemes para a parte gráfica.²

²Veja mais sobre a associação do ggplot2 com o forecast aqui.

A Previsões geradas pelos Modelos

	Lower	Mean	Upper
2016 Jul	0.31	0.44	0.57
2016 Aug	0.21	0.36	0.52
2016 Sep	0.31	0.48	0.64
2016 Oct	0.46	0.63	0.80
2016 Nov	0.53	0.70	0.87
2016 Dec	0.50	0.67	0.84
2017 Jan	0.54	0.72	0.89
2017 Feb	0.43	0.61	0.78
2017 Mar	0.27	0.45	0.62
2017 Apr	0.40	0.57	0.74
2017 May	0.45	0.62	0.79
2017 Jun	0.29	0.47	0.64
2017 Jul	0.33	0.51	0.69
2017 Aug	0.35	0.53	0.72
2017 Sep	0.36	0.55	0.73
2017 Oct	0.37	0.56	0.74
2017 Nov	0.37	0.56	0.75
2017 Dec	0.38	0.57	0.75

Tabela 1: Previsões geradas pelo Auto Arima

	Lower	Mean	Upper
2016 Jul	0.29	0.42	0.55
2016 Aug	0.18	0.33	0.48
2016 Sep	0.28	0.44	0.60
2016 Oct	0.42	0.58	0.75
2016 Nov	0.49	0.65	0.82
2016 Dec	0.46	0.63	0.79
2017 Jan	0.50	0.67	0.83
2017 Feb	0.39	0.56	0.72
2017 Mar	0.23	0.40	0.57
2017 Apr	0.36	0.52	0.69
2017 May	0.40	0.57	0.74
2017 Jun	0.25	0.42	0.58
2017 Jul	0.28	0.45	0.62
2017 Aug	0.30	0.47	0.65
2017 Sep	0.31	0.49	0.66
2017 Oct	0.32	0.49	0.67
2017 Nov	0.32	0.50	0.67
2017 Dec	0.33	0.50	0.68

Tabela 2: Previsões geradas pelo SARIMA