

SEQUENCE LISTING

<110> SONENBERG, Nahum
TREMBLAY, Michel
TSUKIAYAMA-KOHARA, KYOKO

<120> NON-HUMAN TRANSGENIC ANIMAL WHOSE GERM CELLS AND SOMATIC CELLS CONTAIN A KNOCKOUT MUTATION IN DNA ENCODING 4E-BP1

<130> 514012000400

<140> 09/973,473

<141> 2001-10-09

<150> PCT/CA00/00388

<151> 2000-04-07

<150> 60/128,559

<151> 1999-04-09

<150> 60/179,743

<151> 2000-02-02

<160> 27

<170> PatentIn Ver. 2.1

<210> 1

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic oligonucleotide

<400> 1

tgcaggagac atgtcga

16

<210> 2

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic oligonucleotide

<400> 2

acagtttgag atggac

16

<210> 3

<211> 22

<212> DNA

RECEIVED
JUL 12 2002
TECH CENTER 1600/2900

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic oligonucleotide

<400> 3
gggtgagttt caccagttt ga 22

<210> 4
<211> 22
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic oligonucleotide

<400> 4
ccactcatcg cagtactgtt gt 22

<210> 5
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic oligonucleotide

<400> 5
caatatggac aacttcttcg cccc 24

<210> 6
<211> 16
<212> PRT
<213> Homo sapiens

<400> 6
Arg Ile Ile Tyr Asp Arg Lys Phe Leu Met Glu Cys Arg Asn Ser Pro
1 5 10 15

<210> 7
<211> 16
<212> PRT
<213> Homo sapiens

<400> 7
Arg Ile Ile Tyr Asp Arg Lys Phe Leu Leu Asp Arg Arg Asn Ser Pro
1 5 10 15

<210> 8

<211> 16
<212> PRT
<213> Homo sapiens

<400> 8
Arg Ile Ile Tyr Asp Arg Lys Phe Leu Leu Glu Cys Lys Asn Ser Pro
1 5 10 15

<210> 9
<211> 16
<212> PRT
<213> Homo sapiens

<400> 9
Lys Lys Arg Tyr Asp Arg Glu Phe Leu Leu Gly Phe Gln Phe Ile Phe
1 5 10 15

<210> 10
<211> 16
<212> PRT
<213> Homo sapiens

<400> 10
Lys Lys Gln Tyr Asp Arg Glu Phe Leu Leu Asp Phe Gln Phe Met Pro
1 5 10 15

<210> 11
<211> 16
<212> PRT
<213> Danio rerio

<400> 11
Lys Lys Arg Tyr Asp Arg Glu Phe Leu Leu Gly Phe Gln Phe Ile Ser
1 5 10 15

<210> 12
<211> 16
<212> PRT
<213> Drosophila melanogaster

<400> 12
Lys Lys Gln Tyr Asp Arg Glu Gln Leu Leu Gln Leu Arg Glu Val Lys
1 5 10 15

<210> 13
<211> 16
<212> PRT
<213> wheat germ

<400> 13
Arg Val Arg Tyr Ser Arg Asp Gln Leu Leu Asp Leu Arg Lys Ile Thr
1 5 10 15

<210> 14
<211> 16
<212> PRT
<213> *Arabidopsis thaliana*

<400> 14
Arg Val Lys Tyr Thr Arg Glu Gln Leu Leu Glu Leu Lys Glu Val Ile
1 5 10 15

<210> 15
<211> 16
<212> PRT
<213> *Halocynthia roretzi*

<400> 15
Arg Ile Ile Tyr Asp Arg Leu Phe Leu Leu Lys Cys Arg Asp Ser Pro
1 5 10 15

<210> 16
<211> 16
<212> PRT
<213> *Bombyx mori*

<400> 16
Arg Ile Val Tyr Glu Arg Ser Phe Met Leu Ser Leu Arg Gln Ser Pro
1 5 10 15

<210> 17
<211> 16
<212> PRT
<213> *Schistosoma mansoni*

<400> 17
Arg Ile Ile Tyr Glu Arg Asp Phe Ile Leu Ser Cys Arg Asn Ser Pro
1 5 10 15

<210> 18
<211> 16
<212> PRT
<213> *Dictyostelium discoideum*

<400> 18
Lys Ile Val Tyr Asp Arg Asn Ala Leu Leu Gln Tyr Arg Asn Ser Pro
1 5 10 15

<210> 19
<211> 16
<212> PRT
<213> *Saccharomyces cerevisiae*

<400> 19
Lys Tyr Thr Tyr Gly Pro Thr Phe Leu Leu Gln Phe Lys Asp Lys Leu
1 5 10 15

<210> 20
<211> 16
<212> PRT
<213> *Saccharomyces cerevisiae*

<400> 20
Met Ile Lys Tyr Thr Ile Asp Glu Leu Phe Gln Leu Lys Pro Ser Leu
1 5 10 15

<210> 21
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<221> VARIANT
<222> (2)..(5)
<223> x = any amino acid

<220>
<221> VARIANT
<222> (7)
<223> x = hydrophobic amino acid

<400> 21
Tyr Xaa Xaa Xaa Xaa Leu Xaa
1 5

<210> 22
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide

<220>
<221> VARIANT
<222> (1)
<223> x = positively charged amino acid

<220>
<221> VARIANT
<222> (7)
<223> x = positively charged amino acid

<220>
<221> VARIANT
<222> (2)

<221> VARIANT
<222> (9)..(10)
<223> x = hydrophobic amino acid

<220>
<221> VARIANT
<222> (5)
<223> x = negatively charged amino acid

<220>
<221> VARIANT
<222> (7)
<223> x = any amino acid

<220>
<221> VARIANT
<222> (11)..(12)
<223> x = any amino acid

<220>
<221> VARIANT
<222> (14)
<223> x = any amino acid

<220>
<221> VARIANT
<222> (8)
<223> x = Phe or Ala

<400> 23
Xaa Xaa Xaa Tyr Xaa Xaa Xaa Xaa Xaa Xaa Xaa Arg Xaa Ser Pro
1 5 10 15

<210> 24
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide

<220>
<221> VARIANT
<222> (1)
<223> x = positively charged amino acid

<220>
<221> VARIANT
<222> (6)
<223> x = positively charged amino acid

<220>
<221> VARIANT
<222> (2)..(3)
<223> x = hydrophobic amino acid

<220>
<221> VARIANT
<222> (10)
<223> x = hydrophobic amino acid

<220>
<221> VARIANT
<222> (5)
<223> x = negatively charged amino acid

<220>
<221> VARIANT
<222> (7)
<223> x - any amino acid

<220>
<221> VARIANT
<222> (11)..(12)
<223> x = any amino acid

<220>
<221> VARIANT
<222> (14)
<223> x = any amino acid

<400> 24
Xaa Xaa Xaa Tyr Xaa Xaa Xaa Phe Leu Xaa Xaa Xaa Arg Xaa Ser Pro
1 5 10 15

<210> 25
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide

<220>
<221> VARIANT
<222> (1)
<223> x = positively charged amino acid

<220>
<221> VARIANT
<222> (6)
<223> x = positively charged amino acid

<220>
<221> VARIANT
<222> (2)..(3)
<223> x = hydrophobic amino acid

<220>
<221> VARIANT

<222> (10)
<223> x = hydrophobic amino acid

<220>
<221> VARIANT
<222> (5)
<223> x = negatively charged amino acid

<220>
<221> VARIANT
<222> (7) .. (8)
<223> x = any amino acid

<220>
<221> VARIANT
<222> (11) .. (12)
<223> x = any amino acid

<220>
<221> VARIANT
<222> (14)
<223> x = any amino acid

<400> 25
Xaa Xaa Xaa Tyr Xaa Xaa Xaa Xaa Leu Xaa Xaa Xaa Arg Xaa Ser Pro
1 5 10 15

<210> 26
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide

<220>
<221> VARIANT
<222> (1)
<223> x = positively charged amino acid

<220>
<221> VARIANT
<222> (6)
<223> x = positively charged amino acid

<220>
<221> VARIANT
<222> (2)
<223> x = hydrophobic amino acid

<220>
<221> VARIANT
<222> (10)
<223> x = hydrophobic amino acid

<220>
<221> VARIANT
<222> (3)
<223> x = any amino acid

<220>
<221> VARIANT
<222> (5)
<223> x = any amino acid

<220>
<221> VARIANT
<222> (7)
<223> x = any amino acid

<220>
<221> VARIANT
<222> (11)..(16)
<223> x = any amino acid

<400> 26
Xaa Xaa Xaa Tyr Xaa Xaa Xaa Phe Leu Xaa Xaa Xaa Xaa Xaa Xaa
1 5 10 15

<210> 27
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
peptide

<220>
<221> VARIANT
<222> (1)
<223> x = positively charged amino acid

<220>
<221> VARIANT
<222> (6)
<223> x = positively charged amino acid

<220>
<221> VARIANT
<222> (2)
<223> x = hydrophobic amino acid

<220>
<221> VARIANT
<222> (10)
<223> x = hydrophobic amino acid

<220>
<221> VARIANT
<222> (3)

<223> x = any amino acid

<220>

<221> VARIANT

<222> (5)

<223> x = any amino acid

<220>

<221> VARIANT

<222> (7)..(8)

<223> x = any amino acid

<220>

<221> VARIANT

<222> (11)..(16)

<223> x = any amino acid

<400> 27

Xaa Xaa Xaa Tyr Xaa Xaa Xaa Xaa Leu Xaa Xaa Xaa Xaa Xaa Xaa

1

5

10

15