

Рис. 10.1 Образцы (a) и диаграммы их нагружения (δ)

Рис. 10.2

Временные зависимости суммарного количества N_{Σ} сигналов АЭ, зарегистрированные с начала равномерного нагружения металлополимерных образцов адгезионной пары полиамид — сталь

Временные зависимости логарифма суммарной АЭ, зарегистрированной с начала равномерного нагружения образцов:

a — полимерных покрытий; б — гранита; в — углепластиков; г — асфальтобетона (1), жгутового углепластика (2), гибридного углепластика.

Изм.	Лист	№ докум.	Подпись	Дат

Рис. 10.4 Корреляция расчетных σ^* и действительных $\sigma^*_{_{\mathcal{I}}}$ значений предела прочности образцов

Рис. 10.5 Корреляция действительных $au_{cr}^{\mathtt{д}}$ и расчетных $au_{cr}^{\mathtt{p}}$ значений долговечности образцов

Рис. 10.6
Кривые накопления суммарного счета N сигналов АЭ при равномерном нагружении образцов горных пород с различной деформацией разрушения ε_c:

1 — мрамор, $\varepsilon c = 0,27\%$; 2 — мрамор, $\varepsilon c = 0,24\%$; 3 — железная руда, $\varepsilon c = 0,52\%$; 4 — железная руда, $\varepsilon c = 0,62\%$. Taблица~10.1

εc=0,62%. Таблица 10.1

Время, с	Нагрузка, кН	Число имп. АЭ, N	$\ln N$
8,543	0,022	0	<u> </u>
18,529	0,635	1	0
28,537	1,265	6	1,7917595
38,532	1,826	43	3,7612001
48,528	2,227	220	5,3936275
58,524	2,5	446	6,100319
68,998	2,754	813	6,7007311
78,994	2,998	1250	7,1308988
88,991	3,301	1933	7,5668285
98,986	3,623	3090	8,0359264
108,982	3,935	4725	8,4606228
118,978	4,297	7413	8,9109905
128,974	4,658	11467	9,3472286
138,969	4,99	16892	9,7345954
148,945	5,293	24116	10,090631

 $\begin{array}{c} {\bf Puc.\,10.7} \\ {\bf Графическое} \ {\bf изображениe} \ {\bf результатов} \ {\bf регистрациu} \ {\bf во} \ {\bf временu} \ t \\ {\bf нагрузкu} \ {\bf P} \ {\bf u} \ {\bf количествa} \ {\bf N} \ {\bf cuгнaлos} \ {\bf A} {\bf \partial}\text{-oбразцa} \end{array}$

Изм.	Лист	№ докум.	Подпись	Дата

Рис. 10.8 Временна́я зависимость логарифма числа импульсов АЭ

$$\frac{d\ln N_{\Sigma}(t)}{dt} = X_{AE} = \frac{\gamma \cdot \dot{\sigma}}{k_{\rm B}T}, \ X_{AE} = 0,116\,{\rm c}^{-1}. \label{eq:XAE}$$

Таблица 10.2

Время t, c	Число импульсов N_{Σ}	$\ln(N_{\Sigma})$
12,8	6	1,791759
15,36	8	2,079442
17,92	82	4,406719
20,48	212	5,356586
23,04	471	6,154858
25,6	2521	7,832411
28,16	3244	8,084562
30,72	4425	8,395026
33,28	6125	8,720134

T аблица 10.3 Значения параметров микромеханической модели процесса разрушения для образцов с различным типом разрушения

	Tu	п разрушени	я
	адгезионное	смешанное	когези- онное
Структурно-чувствительный параметр γ , м 3 /моль	6,28 · 10-4	11,6 · 10-4	6,54 · 10-4
Энергия активации U_0 , кДж/моль	118	113	100,6
Y_{AE}	1,52	0,293	0,262

Таблица 10.4

150

150

300

Тип разрушения

адгезионное смещанное когезионное

	адгезионное	смешанное	K
Для 16 секунды наб	людения за с <mark>і</mark>	ігналами АЭ	
Среднее значение амплитуды, мкВ	329	150	Ì
Среднее квадратичное отклонение, мкВ	498	0	
Максимальное значение ам- плитуды, мкВ	5390	150	
Коэффициент вариации амплитуды	1,5	0	
Максимальное значение про- изведения числа импульсов на амплитуду, мкВ	30900	2550	
33	Тип разј	рушения	
	смешанное	когезионное	
Для 26 секунды наблюден	ия за сигнала	ми АЭ	
Среднее значение амплитуды, мкВ	278	368	
Среднее квадратичное отклонение, мкВ	376	522	
Максимальное значение ам- плитуды, мкВ	4350	5292	
Коэффициент вариации амплитуды	1,35	1,42	Î
Максимальное значение про- изведения числа импульсов на амплитуду, мкВ	18300	156750	
Для 29 секунды наблюден	ия за сигнала	ми АЭ	
Среднее значение амплитуды, мкВ	248	352	
Среднее квадратичное отклонение, мкВ	100	539	Ì
Максимальное значение ам- плитуды, мкВ	1672	5390	
Коэффициент вариации ампли- туды	0,4	1,53	
Максимальное значение про- изведения числа импульсов на амплитуду, мкВ	101 250	53 100	

Рис. 10.9 Временны́е зависимости средней амплитуды сигналов АЭ при различных видах разрушения (a) и виды амплитудных распределений (δ)

Изм.	Лист	№ докум.	Подпись	Дата