Intervals, Transformations, and Slope Solution (version 68)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-10, -9) \cup (0, 4)$
Negative	$(-9,0) \cup (4,10)$
Increasing	$(-6,3) \cup (6,10)$
Decreasing	$(-10, -6) \cup (3, 6)$
Domain	(-10, 10)
Range	(-6,3)

Intervals, Transformations, and Slope Solution (version 68)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=32$ and $x_2=56$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 32 & 96 \\ 56 & 87 \\ 87 & 32 \\ 96 & 56 \\ \hline \end{array}$$

$$\frac{g(56) - g(32)}{56 - 32} = \frac{87 - 96}{56 - 32} = \frac{-9}{24}$$

The greatest common factor of -9 and 24 is 3. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-3}{8}$$

2