Thomas M. Gowan

tom.gowan@gmail.com ♦ (508) 341-3785 ♦ LinkedIn ♦ personal website

Education

Ph.D., Atmospheric Sciences, University of Utah2017 – 2021M.S., Atmospheric Sciences, University of Utah2015 – 2017B.S., Meteorology, The Pennsylvania State University2011 – 2015

- Schreyer Honors College Scholar Graduated with High Distinction; GPA: 3.93
- *Minor*: Energy Business and Finance (EBF)

Technical Skills

Areas numerical weather prediction, machine learning, ensemble modeling, large-eddy simulations, verification, distributed computing, visualization, uncertainty quantification, statistical post-processing, precipitation and cloud microphysics, boundary layer and mountain meteorology

LanguagesSkilled: Python [GitHub] | Competent: Fortran | Familiar with: R, C-Shell, BASH, SQL, MATLABToolsWRF, UFS/FV3, MPAS, CM1 modeling | Keras, scikit-learn, xarray, Dask | HPC, Slurm, MPI

Professional Experience

Weather Modeler/NWP Scientist, Spire Global

2021 - Present

- Regional and global weather model development, verification, and operational deployment
- Developed and operationally deployed software (Python) and NWP model components (Fortran) that improve the skill and increase the capabilities of Spire's forecast and analysis products

Graduate Research Assistant, University of Utah

2015 - 2021

- Idealized modeling of lake-effect and orographic precipitation systems in large-eddy simulations [presentation]
- Deep learning (CNNs and GANs) to downscale and enhance spatial lake-effect forecasts from the HRRR
- Verification of high-resolution ensemble and deterministic precipitation forecasts [paper]
- Co-Founder and Co-President, Python Users' Group, University of Utah Atmospheric Sciences Department

Visiting Scientist, The National Center for Atmospheric Research (NCAR), Boulder CO

nmer 2017 – 2019

• Three summers of collaboration with NCAR scientists on using ML to improve HRRR lake-effect forecasts, running idealized large-eddy simulations of lake-effect, and probabilistic verification of the 3-km NCAR Ensemble

President, *Utah Ski Weather* [forecast blog]

2017 - 2018

- Organized and led team of 9 graduate students in producing daily weather forecasts for the mountains of Utah
- Implemented a focus on public outreach in forecasts and gained a large following [twitter]

Intern, NCAR Computational and Information Science Laboratory, Boulder CO

Summer 2014

• Evaluated the computational performance of a climate model (CESM) on NCAR's supercomputer [presentation]

Undergraduate Researcher, The Pennsylvania State University

2013 - 2015

• Performed WRF sensitivity analysis on the effects of wind shear and sea-surface temp. on hurricanes [honor's thesis]

Awards

•	Edward J. Zipser Award for Excellence in Graduate Research (The University of Utah)	2021
•	2 nd Place Oral Presentation, 19 th AMS Conference on Mountain Meteorology, (virtual)	2020
•	Outstanding Oral Presentation, 30th AMS Conference on Weather Analysis and Forecasting, Boston, MA	2020
•	1st Place Oral Presentation, 18th AMS Conference on Mesoscale Processes, Savannah, GA	2019
•	1st Place Poster Presentation, 18th AMS Conference on Mountain Meteorology, Santa Fe, NM	2018
•	1st Place Poster Presentation, 24th AMS Conference on Numerical Weather Prediction, Seattle, WA	2017
•	The John A. Dutton Award in Atmospheric Dynamics (The Pennsylvania State University)	2015

Publications

Gowan, T. M., W. J. Steenburgh, D. J. Gagne, and R. J. Chase, 2023: Improving Spatial Lake-Effect Precipitation Forecasts Using Deep Learning. (in prep)

Gowan, T. M., W. J. Steenburgh, and J. R. Minder, 2022: Orographic Effects on Landfalling Lake-Effect Systems. *Mon. Wea. Rev.* 150, 2013-2031, https://doi.org/10.1175/MWR-D-21-0314.1.

Gowan, T. M., W.J. Steenburgh, and J.R. Minder, 2021: Downstream Evolution and Coastal-to-Inland Transition of Landfalling Lake-Effect Systems. *Mon. Wea. Rev.* 149, 1023-1040, https://doi.org/10.1175/MWR-D-20-0253.1.

Gowan, T. M., W. J. Steenburgh, and C. S. Schwartz, 2018: Validation of Mountain Precipitation Forecasts from the Convection-Permitting NCAR Ensemble and Operational Forecast Systems over the Western United States. *Wea. Forecasting*, **33**, 739-765, https://doi.org/10.1175/WAF-D-17-0144.1.

Updated: January 19, 2023