Ejercicio Paracaidista con Euler Explícito

1 Ecuación diferencial

La velocidad de caída de un paracaidista en función del tiempo viene dada por la siguiente ecuación:

$$\frac{dv}{dt} = g - \frac{c}{m}v$$

Siendo g la constante gravitacional, m la masa y c el coeficiente de arrastre.

2 Análisis y dibujo

Analizar ecuación (módulo) y dibujar los vectores principales del escenario. Incluir las condiciones iniciales (p.ej. una persona de 80 Kg de peso que saltó de una cabina a 36 Km de altura, dió un pequeño paso adelante, vel (1,0) m/s).

3 Iteración con método de Euler

Iterar con el método de Euler para ir obteniendo la velocidad en los 10 primeros segundos (dt = 1).

Parámetros	Ecuación diferencial (aceleración)
dt	0.1
g	9.8
m	60
c (coef. arrastre)	80

4 Aceleración del paracaidista

Para sacar la aceleración del paracaidista hay que tener en cuenta que

$$\vec{a}_{paracaidista} = \frac{d\vec{v}}{dt} = \vec{g} - \frac{c}{m} \times \vec{v}$$

5 Velocidad de Euler

Para sacar la velocidad de Euler se obtiene con

$$\vec{v}_{i+1} = \vec{v}_i + \vec{a}_i \times dt$$

6 Velocidad analítica

Para sacar la velocidad analítica se obtiene con

$$v = \frac{gm}{c}(1 - e^{-(c/m)t})$$

7 Error de Euler

Y para obtener el **Error de Euler** se hace el valor absoluto de la diferencia entre el resultado de Euler y el analítico.

$$|v_{euler} - v_{analitica}|$$

Figure 1: Gráfico de la solución analítica y numérica.

8 Resultados

Los resultados en una tabla quedarían así:

t	$A = \frac{dv}{dt}$	V_{Euler}	$V_{analitica}$	Error(Euler_exp)
0,00	9,80	0,00	0,00	0,06
0,10	8,49	0,98	0,92	0,11
0,20	7,36	1,83	1,72	0,14
0,30	6,38	2,57	2,42	0,17
0,40	5,53	3,20	3,04	0,18
0,50	4,79	3,76	3,58	0,19
0,60	4,15	4,24	4,05	0,19
0,70	3,60	4,65	4,46	0,19
0,80	3,12	5,01	4,82	0,19
0,90	2,70	5,32	5,14	0,18
1,00	2,34	5,59	5,41	0,17
1,10	2,03	5,83	$5,\!65$	0,16
1,20	1,76	6,03	5,87	0,15
1,30	1,53	6,21	6,05	0,15
1,40	1,32	6,36	6,21	0,00

Figure 2: Comparación entre la solución numérica (Euler) y analítica.