

Patient responses to chemotherapies are highly variable

Ugurel et al., Eur. J. Cancer (2016), 53; 125-34

Colon carcinoma

- ⇒ Unmet need for improvement of care of cancer patients
- ⇒ Nearly all biomarkers are genomic (BCR-ABL, EGFR, etc.)
- ⇒ Goal: develop predictors of drug response across omic types

Ulanja et al., J. Oncol. (2019):4315032

CCLE dataset: a large-scale screening effort provides multi-omic data

1000+ cell lines with near-complete multi-omics:
Genomics / Transcriptomics / Metabolomics / miRNA / RPPA and others
Dose-responses for 23 drugs

CCLE dataset: Activity Area as a proxy for cell line sensitivity

☐ FACULTY OF SCIENCE, TECHNOLOGY AND MEDICINE

Distribution of normalized ActArea

Pipeline: Ensemble of omic-specific models and their predictions

Omic	Algorithm					
	Random Forest					
Genomic	AdaBoost					
Transcriptomic	XGBoost					
Metabolomic	Extra-Trees					
Proteomic	SVM					
Pathway Analysis	Logistic					
Tumor origin	Ridge					
	Elastic-Net					

Pipeline: Ensemble of omic-specific models and their predictions

Pipeline: Ensemble of omic-specific models and their predictions

Validation procedure: nested cross-validation generates predictions for every sample while avoiding data leakage

Validation procedure: nested cross-validation generates predictions for every sample while avoiding data leakage

Validation procedure: nested cross-validation generates predictions for every sample while avoiding data leakage

Mixed performance across 23 metaclassifiers

$\ \ \square$ faculty of science, technology and medicine

Accuracy varies across cell type and drugs

☐ FACULTY OF SCIENCE, TECHNOLOGY AND MEDICINE

	Lapatinib_ActArea	Panobinostat_ActArea	Paclitaxel_ActArea	lrinotecan_ActArea	PD-0325901_ActArea	AZD6244_ActArea	Nilotinib_ActArea	AEW541_ActArea	17-AAG_ActArea	PHA-665752_ActArea	Nutlin-3_ActArea	AZD0530_ActArea	PF2341066_ActArea	L-685458_ActArea	ZD-6474_ActArea	Sorafenib_ActArea	LBW242_ActArea	PD-0332991_ActArea	PLX4720_ActArea	RAF265_ActArea	TAE684_ActArea	TKI258_ActArea	Erlotinib_ActArea
STOMACH	0.78	0.80	0.67	0.00	0.86	0.78	0.86	0.20	0.90	0.75	0.50	0.44	0.50	0.50	0.73	0.75	0.20	0.71	0.22	0.71	0.43	0.60	0.75
NERVOUS (1.00	1.00	0.50	0.91	0.88	0.85	0.73	0.75	0.57	0.71	0.69	0.55	0.54	0.67	0.83	0.53	0.64	0.67	0.58	0.57	0.33	0.57	1.00
OVARY	0.75	0.54	0.92	1.00	0.64	0.73	0.64	0.71	0.86	0.89	0.67	0.54	0.69	0.45	0.40	0.50	0.29	0.77	0.78	0.64	0.50	0.80	0.75
HAEMATOPOIETIC	0.63	0.94	0.81	0.96	0.93	0.70	0.88	0.62	0.61	0.85	0.63	0.53	0.83	0.86	0.61	0.78	0.52	0.91	0.66	0.67	0.74	0.67	0.67
SKIN	0.93	0.55	0.80	0.50	0.88	0.94	0.38	0.58	0.71	0.67	0.54	1.00	0.64	0.78	0.64	0.60	0.69	0.67	0.94	0.69	1.00	0.64	0.91
LUNG	0.71	0.78	0.82	0.73	0.81	0.81	0.53	0.60	0.74	0.45	0.45	0.45	0.61	0.42	0.59	0.66	0.68	0.58	0.63	0.69	0.52	0.60	0.76
BREAST	0.71	0.69	0.71	0.60	0.93	0.92	0.33	0.58	0.50	0.45	0.71	0.73	0.73	0.54	0.86	0.64	0.67	0.54	0.73	0.58	0.87	0.65	0.87
PANCREAS	0.58	0.80	1.00	1.00	0.88	0.80	0.62	0.43	0.67	0.40	0.64	0.64	0.56	0.67	0.79	0.67	0.63	0.78	0.50	0.83	0.67	0.89	0.54
LARGE_INTESTINE	0.85	0.55	0.71	0.75	1.00	1.00	0.78	0.80	0.64	0.44	0.60	0.78	0.33	0.40	0.83	0.42	0.11	0.40	0.44	0.58	1.00	0.89	0.83
OESOPHAGUS	0.82	0.89	0.60	0.33	0.57	1.00	0.00	0.50	0.56	0.30	0.67	0.82	0.75	0.67	0.50	0.67	0.40	0.67	0.20	0.75	0.89	0.33	0.92
LIVER	0.45	1.00	0.63	0.50	0.71	1.00	0.80	0.78	0.60	0.82	0.33	0.67	0.63	0.67	0.56	0.50	0.67	0.80	0.25	0.88	0.67	0.78	0.75

Italics: N < 10

Model analysis points to specific markers of sensitivity 1: Selumetinib (MEK inhibitor)

Model analysis points to specific markers of sensitivity 2: Irinotecan (Topoisomerase I inhibitor)

Comparing single-omic predictors for PD-0325901 (Mirdametinib, MEK inhibitor)

Example of evaluation of diagnostic utility: PD-0325901 (Mirdametinib, MEK inhibitor)

	Sens	itive	Resi	stant	PPV	NPV
	correct	wrong	correct	wrong		
Lung	13	3	23	2	0.81	0.92
Colon	13	0	1	0	1.00	1.00
Skin	15	2	0	0	0.88	
Hemato	14	0	13	2	1.00	0.87

Conclusions and perspectives

- Performance of predictors of sensitivity:
 - High (>75% ROCAUC): 7 drugs
 - Intermediate (>65% ROCAUC): 8 drugs
 - Low (<65% ROCAUC): 8 drugs
- High accuracy for specific cancer types
- Models point to both known and putative novel markers and/or targets
- Analysis of the contribution of specific omic types -> model shrinking
- => deeper analysis to lead to fully explainable models
- => experimental validation: causality of markers
- => clinical evaluation on patient data (organoids)

