

# 研究生《深度学习》课程 实验报告

实验名称: 综合实验(大作业)

姓 名: 郑楚彬

学 号: 21140129

上课类型: 专业课

日期: 2021.09.18

# 一、实验内容

题目二:疫情微博情绪分类

# 二、实验设计

整体流程如下:

1. 预处理

过滤停用词:采用正则表达式删除如"//@xx:"此类干扰原始文本的词语分词:使用 JieBa 分词

训练词/字向量: 使用 gensim

构建嵌入层: 使用训练好的词/句向量构建嵌入矩阵

构建训练语料:根据嵌入矩阵矩,对文章内容、标签进行编码

2. 模型构建与训练



3. 模型评估

本任务以**宏精准率(macro\_P)、宏召回率(macro\_R)、宏F1值(macro\_F1)**作为评测指标

$$\begin{aligned} macro\_P &= \frac{1}{n} \sum_{i=1}^{n} P_i \\ \\ macro\_R &= \frac{1}{n} \sum_{i=1}^{n} R_i \\ \\ \\ macro\_F1 &= \frac{2 \times macro\_P \times macro\_R}{macro\_P - macro\_R} \end{aligned}$$

其中, 
$$n=6$$
, 为情绪类别数  $P_i = \frac{TP_i}{TP_i + FP_i}$   $R_i = \frac{TP_i}{TP_i + FN_i}$ 

## 三、实验环境及实验数据集

实验环境:

macOs10.13.6, Pytorch 1.6.0, Jupyter Notebook

#### 数据集:疫情微博情绪分类

- □数据集标签,每条微博被标注为以下六个类别之一: neural(无情绪)、happy(积极)、angry(愤怒)、 sad(悲伤)、fear(恐惧)、surprise(惊奇)
- □数据集规模

疫情微博训练数据集包括 6.606 条微博, 测试数据集包含 5.000 条微博。

□数据集形式

数据集为□格式,包含三个字段:数据编号,文本,情绪标签。

示例: {"id": 11, "content": "武汉加油!中国加油!安徽加油!", "label": "happy"}

□数据集预览

```
# data_dir = Path('/Users/zhengchubin/PycharmProjects/learn/data/疫情微博情感分类数据集/')
data_dir = Path('/root/zhengchubin/data/疫情微博情感分类数据集/')
train_file = data_dir.joinpath('virus_train.txt')
test_file = data_dir.joinpath('virus_eval_labeled.txt')

virus_train = json.load(train_file.open(mode='r'))
virus_train = pd.DataFrame.from_records(virus_train)

virus_eval_labeled = json.load(test_file.open(mode='r'))
virus_eval_labeled = pd.DataFrame.from_records(virus_eval_labeled)

print(virus_train.shape, virus_train.shape)
virus_train.head()
```

(8606, 3) (8606, 3)

|   | id | content                                     | label |
|---|----|---------------------------------------------|-------|
| 0 | 1  | 天使                                          | happy |
| 1 | 2  | 致敬[心][心]小凡也要做好防护措施哦//@Mr_凡先生:致敬[心]大家出门记得戴口罩 | happy |
| 2 | 3  | [中国赞][中国赞]                                  | happy |
| 3 | 4  | 悲壮                                          | sad   |
| 4 | 5  | !!!一定会好起来                                   | happy |
|   |    |                                             |       |

#### □标签对应的文档数量

| 数据集 | 积极   | 无情绪  | 愤怒   | 悲伤  | 恐惧  | 惊奇  | 总数   |
|-----|------|------|------|-----|-----|-----|------|
| 训练集 | 4423 | 1460 | 1322 | 649 | 555 | 197 | 8606 |
| 测试集 | 923  | 476  | 314  | 165 | 75  | 47  | 2000 |

## 四、实验过程

#### 1.1 预处理

#### □ 过滤停用词/分词

通过如上正则表达式对原始文本进行过滤、分词,得到相对干净的文本序列。并且,以词或字为单位统计个数。

|   | id | content                                         | label | tokens                                            | tokens_len | chars                                            | chars_len |
|---|----|-------------------------------------------------|-------|---------------------------------------------------|------------|--------------------------------------------------|-----------|
| 0 | 1  | 天使                                              | happy | [天使]                                              | 1          | [天, 使]                                           | 2         |
| 1 | 2  | 致敬[心][心]小凡也要做好防护措施哦//@Mr_凡先生:致敬[心]大<br>家出门记得戴口罩 | happy | [致敬, 心心, 小凡, 也, 要, 做好, 防护, 措施, 哦, 致敬,<br>心, 大家, 出 | 16         | [致, 敬, 心, 心, 小, 凡, 也, 要, 做, 好, 防, 护,<br>措, 施, 哦, | 27        |
| 2 | 3  | [中国赞][中国赞]                                      | happy | [中国, 赞, 中国, 赞, 中国, 赞]                             | 6          | [中, 国, 赞, 中, 国, 赞, 中, 国, 赞]                      | 9         |
| 3 | 4  | 悲壮                                              | sad   | [悲壮]                                              | 1          | [悲, 壮]                                           | 2         |
| 4 | 5  | !!! 一定会好起来                                      | happy | [一定, 会, 好, 起来]                                    | 4          | [一, 定, 会, 好, 起, 来]                               | 6         |

可以发现,75%的文章都是短文本(词数<100)。因此,为保证75%以上的文章在后续的模型训练中能够完全利用到足够的文本新,设置最长词序列长度为25,最长字序列长度为45。

|       | id          | tokens_len  | chars_len   |
|-------|-------------|-------------|-------------|
| count | 8606.000000 | 8606.000000 | 8606.000000 |
| mean  | 4303.500000 | 19.954567   | 35.156286   |
| std   | 2484.482542 | 35.575516   | 63.224908   |
| min   | 1.000000    | 0.000000    | 0.000000    |
| 25%   | 2152.250000 | 5.000000    | 8.000000    |
| 50%   | 4303.500000 | 11.000000   | 19.000000   |
| 75%   | 6454.750000 | 24.000000   | 42.000000   |
| max   | 8606.000000 | 1613.000000 | 2739.000000 |

#### □ 训练词/字向量

通过 genism 工具包和清洗好的数据,便可以开始训练我们自己的词向量/字向量模型,向量维度设置为 32,注意此处不引进测试集的数据。

```
word #0/17400 is 的
                      word #0/3412 is 的
word #1/17400 is 了
                      word #1/3412 is -
word #2/17400 is 都
                      word #2/3412 is 人
word #3/17400 is 我
                      word #3/3412 is 了
word #4/17400 is 加油
                      word #4/3412 is 我
word #5/17400 is 在
                      word #5/3412 is 不
word #6/17400 is 武汉
                      word #6/3412 is 是
word #7/17400 is 是
                      word #7/3412 is 们
                      word #8/3412 is 有
word #8/17400 is 我们
word #9/17400 is 大家 word #9/3412 is 心
```

词/字向量矩阵形状为: 基于词 [17401, 32]、基于字 [3413, 32]

#### □构建嵌入矩阵、训练语料

为了方便模型能够对文本进行学习,需要把文本序列按照词向量矩阵相对应的索引进行转化,对于不存在词向量矩阵中的字/词,用**零向量**表示;对于长度不足 25 的需进行补足。示例:

#### 1.2 模型构建与训练

```
class MyClassificationModel(nn.Module):
   def __init__(self, vector_matrix, hidden_size, output_size,
                 drop_out_rate=0.3, bidirectional=False):
        super(MyClassificationModel, self).__init__()
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.num_layers = 1
        self.bidirectional = bidirectional
        self.embedding = nn.Embedding.from_pretrained(vector_matrix)
        self.lstm = nn.LSTM(
           input_size=self.embedding.embedding_dim,
            batch_first=True,
            hidden_size=hidden_size,
            bidirectional=self.bidirectional,
            num layers=self.num layers
        if bidirectional:
           hidden_size = 2 * self.num_layers * hidden_size
        else:
            hidden size = self.num layers * hidden size
        self.drop out = nn.Dropout(p=drop out rate)
        self.softmax = nn.Linear(hidden size, output size)
   def forward(self, x: torch.Tensor):
        # 转为词向量 [128, 30, 32]
        output = self.embedding(x)
        # LSTM
        if self.bidirectional:
           # outputs: [128, 30, 2 * 32],
# h_n: [2, 128, 32]
            outputs,(h_n, c_n) = self.lstm(output, None) # (h, c)
            output_fw = h_n[-2, :, :] # 正向最后一次的输出
output_bw = h_n[-1, :, :] # 反向最后一次的输出
            output = torch.cat([output_fw, output_bw], dim=-1) # [128, 30, 64]
        else:
            # [128, 30, 32]
            output, _ = self.lstm(output, None) # h
            # 选取最后一个时刻的输出 [128, 32]
           output = output[:, -1, :]
        output = self.drop_out(output)
        output = self.softmax(output)
        return output
```

### □基于词的单向 LSTM 模型



## □基于词的双向 LSTM 模型



## □基于字的单向 LSTM 模型



## 五、实验结果

## 模型评估 (基于词的双向 LSTM 模型)

□ 精准率、召回率、F1 值

|          | precision | recall | f1-score | support |
|----------|-----------|--------|----------|---------|
| happy    | 0.80      | 0.81   | 0.80     | 923     |
| sad      | 0.44      | 0.20   | 0.28     | 165     |
| neural   | 0.62      | 0.57   | 0.59     | 476     |
| fear     | 0.23      | 0.33   | 0.27     | 75      |
| angry    | 0.52      | 0.72   | 0.60     | 314     |
| surprise | 0.67      | 0.04   | 0.08     | 47      |

- □ 平均准确率: 0.653
- □总结
- (1) 在短文本场景下, RNN 模型可能不太合适。
- (2) 存在部分脏数据
- (3) 不同情感标签的语料不均衡,存在数据倾斜的问题。
- (4) 在情感分析任务中,基于字的分类模型效果远远不如基于词的。

## 六、实验心得体会

本次实验加深了对 RNN 相关模型的理解,从零实现了 NLP 领域的情感分析任务,从预处理、分词、生成词向量、模型训练、评估这一整套流程有了一定的认知。虽然整体的模型分类效果不如预期,并且存在很多细节上的问题,但对我而言,收获满满。人工智能的征途是星辰大海,共勉。

## 七、参考文献

# 八、附录

需要补充说明的内容,如无可略。

# 实验报告编写要求

- 1. 正文要求小四号宋体, 行间距 1.5 倍;
- 2. 英文要求小四号 Times New Roman;
- 3. 在实验内容、实验过程、实验结果三部分需要针对当次实验不同的实验 内容分别填写(模版以实验一为例),实验设计中如有必要也可以分开填写;
- 4. 实验报告配图的每幅图应有编号和标题,编号和标题应位于图下方处,居中,中文用五号宋体;
- 5. 表格应为三线表,每个表格应有编号和标题,编号和标题应写在表格上方正中,距正文段前 0.5 倍行距。表格中量与单位之间用"/"分隔,编号与标题中的中文用五号宋体;
- 6. 图、表、公式、算式等,一律用阿拉伯数字分别依序连续编排序号。其标注形式应便于互相区别,可分别为:图 1、表 2、公式(5)等。