Parameter control in the presence of uncertainties

- **k**: calibration parameter → epistemic uncertainty
- *U*: environmental/uncertain parameter → aleatoric uncertainty

The misfit between some observations and the output of the model is $J(\mathbf{k}, \mathbf{U})$, that needs to be minimized with respect to \mathbf{k} .

Robustness under parametric model misspecification

How to be get an estimate \hat{k} that is robust with respect to the inherent variability of U ?

Relative regret

Main idea: For each $u \sim U$, compare the value of the cost function to its optimal value $J^*(u)$ and define $k^*(u) = \arg\min_{k \in \mathbb{K}} J(k, u)$:

• Either set $\alpha \geq 1$, and define the probability of being α -optimal

$$\Gamma_{\alpha}(\mathbf{k}) = \mathbb{P}_{U}[J(\mathbf{k}, \mathbf{U}) \le \alpha J^{*}(\mathbf{U})]$$
 (1)

and maximize it

• or for a given 0 , find the quantile of order <math>p of the r.v. $J(\mathbf{k}, \mathbf{U})/J^*(\mathbf{U})$ and minimize it

Puts more importance in the estimation in the region where good performances are possible (small $J^*(u)$)

Numerical methods

- Computer code is expensive to run
- Even for for a given u, getting $J^*(u)$ can be tricky
- ightarrow Need for specific methods to
 - gather information on J(k, u) prior to the evaluation
 - gather information on $J^*(u)$ prior to the optimization
 - improve precision on the estimation of the probability of coverage Γ_{α}
 - ullet improve precision on the estimation of the quantiles of J/J^{st}

Application: estimation of the bottom friction in the Atlantic Ocean

- High-dimensional problem: $\mathbf{k} \in \mathbb{R}^{\sim 20000}$: need to reduce dimension
- Sensitivity to the number of number of tides components added