Quicksort

- Quicksort uses a divide and conquer strategy, but does not require the O(N) extra space that MergeSort does
 - Partition array into left and right sub-arrays
 - Choose an element of the array, called pivot
 - the elements in left sub-array are all less than pivot
 - elements in right sub-array are all greater than pivot
 - Recursively sort left and right sub-arrays
 - Concatenate left and right sub-arrays in O(1) time

"Four easy steps"

- To sort an array S
 - 1. If the number of elements in **S** is 0 or 1, then return. The array is sorted.
 - 2. Pick an element v in S. This is the pivot value.
 - 3. Partition **S**-{v} into two disjoint subsets, **S**₁ = {all values $x \le v$ }, and **S**₂ = {all values $x \ge v$ }.
 - 4. Return QuickSort(**S**₁), v, QuickSort(**S**₂)

The steps of QuickSort

Details, details

- Implementing the actual partitioning
- Picking the pivot
 - want a value that will cause $|S_1|$ and $|S_2|$ to be non-zero, and close to equal in size if possible
- Dealing with cases where the element equals the pivot

Quicksort Partitioning

- Need to partition the array into left and right subarrays
 - the elements in left sub-array are ≤ pivot
 - elements in right sub-array are ≥ pivot
- How do the elements get to the correct partition?
 - Choose an element from the array as the pivot
 - Make one pass through the rest of the array and swap as needed to put elements in partitions

Partitioning Algorithm Illustrated

Partitioning: Choosing the pivot

- One implementation (there are others)
 - median3 finds pivot and sorts left, center, right
 - Median3 takes the median of leftmost, middle, and rightmost elements
 - An alternative is to choose the pivot randomly (need a random number generator; "expensive")
 - Another alternative is to choose the first element (but can be very bad. Why?)
 - Swap pivot with next to last element

Partitioning in-place

- Set pointers i and j to start and end of array
- Increment i until you hit element A[i] > pivot
- Decrement j until you hit elmt A[j] < pivot
- Swap A[i] and A[j]
- Repeat until i and j cross
- Swap pivot (at A[N-2]) with A[i]

Example

Choose the pivot as the median of three

Median of 0, 6, 8 is 6. Pivot is 6

Place the largest at the right and the smallest at the left.
Swap pivot with next to last element.

Example

Move i to the right up to A[i] larger than pivot. Move j to the left up to A[j] smaller than pivot. Swap

Example

Recursive Quicksort

```
Quicksort(A[]: integer array, left,right : integer): {
pivotindex : integer;
if left + CUTOFF \le right then
   pivot := median3(A, left, right);
   pivotindex := Partition(A, left, right-1, pivot);
   Quicksort(A, left, pivotindex - 1);
   Quicksort(A, pivotindex + 1, right);
else
   Insertionsort(A, left, right);
}
```

Don't use quicksort for small arrays. CUTOFF = 10 is reasonable.

Properties of Quicksort

- Not stable because of long distance swapping.
- No iterative version
- Pure quicksort not good for small arrays.
- "In-place", but uses auxiliary storage because of recursive call (O(logn) space).
- O(n log n) average case performance, but O(n²) worst case performance.

Time complexity of Sorting

- Several sorting algorithms have been discussed and the best ones, so far:
 - Heap sort and Merge sort: O(n log n)
 - Quick sort (best one in practice): O(n log n) on average, O(n²) worst case
- Can we do better than O(n log n)?
 - No.
 - It can be proven that any comparison-based sorting algorithm will need to carry out at least O(n log n) operations