

Quicksort

Quicksort & Sorting Properties — Exam Notes

Desirable Properties of Sorting Algorithmslecture03_quicksort

Optimal:

- From decision tree proof: any comparison-based sort needs Ω (n log n).
- Algorithms with Θ(n log n) are called *optimal*.
- Merge sort & heapsort are always optimal; quicksort is optimal in expected case.

In-place:

- Uses only O(1)–O(log n) extra memory.

Stable:

- Preserves relative order of equal elements.

Properties Recap Table

Algorithm	Optimal (Θ(n log n))	In-Place	Stable
Insertion	X (O(n²) worst)	✓	✓
Merge	V	×	~
Неар	V	~	×
Quicksort	(expected case)	▼	×

Quicksort — Overview

- Divide & Conquer like merge sort, but the work is done in a different phase.
- Partition step:
 - Choose a pivot.
 - Rearrange array so all ≤ pivot are left, all > pivot are right.
 - This removes all **cross-pivot inversions** in one step.
- Recursively sort left and right parts until trivial.
- No merge needed subarrays end up sorted in place.

Why It Workslecture03_quicksort

- Sorting = removing inversions.
- Partitioning guarantees no inversions between left & right of pivot.
- By induction: recursive sorts remove inversions within each half.
- Eventually arrays shrink to size 1 → trivially sorted.

Implementation Sketch

```
def partition(xs, lwr, upr):
   pivot = xs[upr-1]
   mid = lwr
   for i in range(lwr, upr):
      if xs[i] <= pivot:</pre>
```

```
xs[mid], xs[i] = xs[i], xs[mid]
mid += 1
return mid - 1 # pivot's final index

def quicksort(xs, lwr=0, upr=None):
  if upr is None: upr = len(xs)
  if upr - lwr > 1:
    mid = partition(xs, lwr, upr)
    quicksort(xs, lwr, mid) # sort left
    quicksort(xs, mid+1, upr) # sort right
```

Complexity Analysis

- Partition step: O(n) (linear scan + swaps).
- Worst Case (pivot = smallest or largest each time, e.g. sorted/reversed input):
 - Partition leaves one side empty, other side size n-1.
 - Recurrence: $n + (n-1) + ... + 1 = O(n^2)$.
- Best Case (pivot always median):
 - Balanced split each time → recursion depth log n.
 - Each level processes n elements.
 - Total O(n log n).
 - But: finding true median is expensive, so not guaranteed.
- Expected Case (random inputs, random pivot):
 - "Good split" means pivot lands not too skewed (e.g. 1:3 3:1 ratio).
 - This happens with constant probability ($\approx \frac{1}{2}$).
 - $\circ~$ If we got our desired split every time, the recursion would have depth $\approx~$ log4/3 N
 - ≈ 2log4/3N

- Expected recursion depth still O(log n).
- Total expected complexity = O(n log n).
- ⇒ Quicksort is optimal on average.

Memory Usage

- In-place by CLRS definition (swaps inside array).
- Recursion stack:
 - Avg = $O(\log n)$.
 - Worst = O(n) if recursion very unbalanced.
 - But if we always recurse on the smaller half first, stack depth = O(log n).

Stability

- Quicksort is not stable.
- During partition, swapping x ≤ p with some y > p can leapfrog y over equal elements.
- Relative order of equal values can be broken.

Practical Notes

- Quicksort is often faster in practice than merge/heap sort due to cache efficiency and low overhead.
- Pivot choice matters:
 - Fixed pivot (like last element) → adversarial worst case on sorted/reversed input.
 - Random pivot or "median-of-3/5" pivot choice greatly improves chance of balanced splits.
- Real-world: many libraries use Introsort (quicksort but fallback to heapsort if recursion too deep) to guarantee O(n log n) worst caselecture03_quicksort.

▼ Quick Quicksort Cheat Notes

- Divide & conquer but partition first.
- Removes cross-pivot inversions in bulk.
- Worst = O(n²) (bad pivot choices).
- Expected = O(n log n) (random pivot → balanced on average).
- In-place, not stable, optimal on average.