

Machine Learning and Intelligent Systems

Principal Components Analysis

Maria A. Zuluaga

Jan 26, 2023

EURECOM - Data Science Department

Table of contents

Preliminaries

Principal Component Analysis

Reconstruction Error

Variance

Principal Components Analysis

Estimating the eigenvectors and eigenvalues

Wrap-up

Preliminaries

• Latent Variable: Variables that can only be inferred indirectly through a model from other observable variables that can be directly observed or measured.

- Latent Variable: Variables that can only be inferred indirectly through a model from other observable variables that can be directly observed or measured.
- Clustering techniques allowed us to find a *discrete* latent variable z.
- How? We wanted to cluster our data into different groups, where z told us what group a data point x should go in.

- Latent Variable: Variables that can only be inferred indirectly through a model from other observable variables that can be directly observed or measured.
- Clustering techniques allowed us to find a *discrete* latent variable z.
- How? We wanted to cluster our data into different groups, where z told us what group a
 data point x should go in.

In this slide deck:

• We switch to a *continuous* latent variable z

- Latent Variable: Variables that can only be inferred indirectly through a model from other observable variables that can be directly observed or measured.
- Clustering techniques allowed us to find a *discrete* latent variable z.
- How? We wanted to cluster our data into different groups, where z told us what group a
 data point x should go in.

In this slide deck:

- We switch to a *continuous* latent variable z
- Global idea: Instead of grouping things into *k* discrete clusters, we try to summarize the data into *k* continuous dimensions

Intuition: An example

Intuition: An example

Can we find a vector that approximates this 2D space?

Yes. How can we identify this hidden axis?

Principal Component Analysis

Intuition: First principal component

The green line can be more formally denoted as the **first principal component** (PC1).

PC1 is the line in the D-dimensional variable space (D=2) that best approximates the data in the least squares sense.

Intuition: First principal component

The green line can be more formally denoted as the **first principal component** (PC1).

PC1 is the line in the D-dimensional variable space (D=2) that best approximates the data in the least squares sense.

Question: What does it mean to best approximate the data in the least squares sense?

Intuition: First principal component

The green line can be more formally denoted as the **first principal component** (PC1).

PC1 is the line in the D-dimensional variable space (D=2) that best approximates the data in the least squares sense.

Question: What does it mean to best approximate the data in the least squares sense?

Each observation may now be *projected* onto this line in order to get a coordinate value along the PC-line

Linear Algebra: Projections

Let us recap the concept of projection already seen in the course (perceptron, ${\sf SVM}$)

Linear Algebra: Projections

Let us recap the concept of projection already seen in the course (perceptron, $\ensuremath{\mathsf{SVM}})$

Length of projection of \vec{x} onto \vec{v} :

$$a = \vec{\mathbf{v}}^T \vec{\mathbf{x}}$$

if
$$\|\mathbf{x}\|_2 = 1$$
 and $\|\mathbf{v}\|_2 = 1$

Linear Algebra: Projections

Let us recap the concept of projection already seen in the course (perceptron, $\ensuremath{\mathsf{SVM}})$

Length of projection of \vec{x} onto \vec{v} :

$$a = \vec{\mathbf{v}}^T \vec{\mathbf{x}}$$

if
$$\|\boldsymbol{x}\|_2=1$$
 and $\|\boldsymbol{v}\|_2=1$

Vector representing that projection:

$$a\vec{\mathbf{v}} = (\vec{\mathbf{v}}^T\vec{\mathbf{x}})\vec{\mathbf{v}}$$

Minimizing the Reconstruction Error

Let us denote $\hat{\mathbf{v}}$ the vector that we want to find, i.e. PC1.

Approximating the data in the least squares sense, accounts to minimizing the difference between a given **x** and its approximation (projection).

Minimizing the Reconstruction Error

Let us denote $\boldsymbol{\hat{v}}$ the vector that we want to find, i.e. PC1.

Approximating the data in the least squares sense, accounts to minimizing the difference between a given **x** and its approximation (projection).

$$\begin{aligned} \hat{\mathbf{v}} &= \arg\min_{\vec{\mathbf{v}}} \ \frac{1}{N} \sum_{i=1}^{N} \|\mathbf{x}_i - (\text{projection of } \mathbf{x}_i)\|_2^2 \\ &= \arg\min_{\vec{\mathbf{v}}} \ \frac{1}{N} \sum_{i=1}^{N} \|\mathbf{x}_i - (\vec{\mathbf{v}}^T \mathbf{x}_i) \vec{\mathbf{v}}\|_2^2 \end{aligned}$$

with $\|{\bf v}\|_2 = 1$

7

An alternative view: Maximizing the Variance

We can alternatively think about the problem as variance preservation

We want the vectors that capture the most variance in the data x.

An alternative view: Maximizing the Variance

We can alternatively think about the problem as variance preservation

We want the vectors that capture the most variance in the data **x**.

$$\hat{\mathbf{v}} = \arg \max_{\vec{\mathbf{v}}} \frac{1}{N} \sum_{i=1}^{N} (\text{projection length of } \mathbf{x}_i))^2$$

$$= \arg \max_{\vec{\mathbf{v}}} \frac{1}{N} \sum_{i=1}^{N} (\vec{\mathbf{v}}^T \mathbf{x}_i)^2$$

with $\|\mathbf{v}\|_{2} = 1$

8

Equivalence: Reconstruction error vs. Variance

By Pythagoras theorem, minimizing the green is equivalent to maximizing the red

Principal Components Analysis

Choosing a subspace to maximize the projected variance, or minimize the reconstruction error, is called **principal component analysis** (PCA)

Principal Components Analysis

Choosing a subspace to maximize the projected variance, or minimize the reconstruction error, is called **principal component analysis** (PCA)

Theorem:

The vector that maximizes the variance is the variance is the variance of variance matrix, with variance variance is the variance of variance variance matrix, with variance v

Linear Algebra: Quick refresher

Reminder 1:

 $\vec{\mathbf{v}}$ is an **eigenvector** of $\mathbf{\Sigma}$ if $\mathbf{\Sigma}\vec{\mathbf{v}} = \lambda\vec{\mathbf{v}}$ for some **eigenvalue** $\lambda \in \mathbb{R}$.

Reminder 2:

The eigenvectors of a symmetric matrix are orthogonal to each other

Reminder 3:

Covariance matrices (Σ) are symmetric and positive semidefinite.

Principal Component Analysis

The optimal PCA subspace is spanned by the top $K \ll D$ eigenvectors of Σ .

More precisely, choose the first K of any orthonormal eigenbasis for Σ .

Projection:

$$U_i = \begin{bmatrix} \vec{\mathbf{v}}_1^T \mathbf{x}_i \\ \vec{\mathbf{v}}_2^T \mathbf{x}_i \\ \dots \\ \vec{\mathbf{v}}_K^T \mathbf{x}_i \end{bmatrix}$$

 \vec{v}_1 is the eigenvector of Σ with largest eigenvalue

 $\vec{\mathbf{v}}_2$ is the eigenvector of Σ with the 2nd largest eigenvalue

 $\vec{\mathbf{v}}_K$ is the eigenvector of Σ with Kth largest eigenvalue

Collectively, we obtain a set of vectors $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_K$ that minimize the reconstruction error and that are orthogonal to each other

Computing the PCA eigenvectors and eigenvalues

- Covariance method
 - Simplest way of doing PCA
 - Based on eigenvectors interpretation
 - It can be very slow for high dimensions
- Singular Value Decomposition (SVD)
 - Faster for high dimensions
 - Numerically stable
 - Truncated SVD allows to compute only top PCs, making it even faster

Generally, SVD is the preferred method

- 1. Center the data, i.e. $\mathbf{x}_i \boldsymbol{\mu} \quad \forall i$, where $\boldsymbol{\mu}$ denotes the mean
- 2. It is also a good idea to have unit variance along each feature dimension

- 1. Center the data, i.e. $\mathbf{x}_i \boldsymbol{\mu} \quad \forall i$, where $\boldsymbol{\mu}$ denotes the mean
- 2. It is also a good idea to have unit variance along each feature dimension
- 3. Collect all the data into an $N \times D$ matrix X

- 1. Center the data, i.e. $\mathbf{x}_i \boldsymbol{\mu} \quad \forall i$, where $\boldsymbol{\mu}$ denotes the mean
- 2. It is also a good idea to have unit variance along each feature dimension
- 3. Collect all the data into an $N \times D$ matrix X
- 4. Estimate the covariance matrix

$$\mathbf{\Sigma} = \frac{1}{N-1} \mathbf{X}^T \mathbf{X}$$

- 1. Center the data, i.e. $\mathbf{x}_i \boldsymbol{\mu} \quad \forall i$, where $\boldsymbol{\mu}$ denotes the mean
- 2. It is also a good idea to have unit variance along each feature dimension
- 3. Collect all the data into an $N \times D$ matrix X
- 4. Estimate the covariance matrix

$$\mathbf{\Sigma} = \frac{1}{N-1} \mathbf{X}^T \mathbf{X}$$

5. Compute the eigendecomposition $\mathbf{\Sigma} = \mathbf{V} \Lambda \mathbf{V}^T$

- 1. Center the data, i.e. $\mathbf{x}_i \boldsymbol{\mu} \quad \forall i$, where $\boldsymbol{\mu}$ denotes the mean
- 2. It is also a good idea to have unit variance along each feature dimension
- 3. Collect all the data into an $N \times D$ matrix X
- 4. Estimate the covariance matrix

$$\mathbf{\Sigma} = \frac{1}{N-1} \mathbf{X}^T \mathbf{X}$$

5. Compute the eigendecomposition $\Sigma = \mathbf{V} \Lambda \mathbf{V}^T$

- $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_D)$ where $(\lambda_1 \ge \dots \ge \lambda_D)$ are the eigenvalues of Σ .
- ullet V is orthogonal and its k^{th} column is the k^{th} eigenvector of $oldsymbol{\Sigma}$

Variance vs. PCs

Application Example: Facial recognition

Wrap-up

Wrap-up

- We introduced principal component analysis, a technique for dimensionality reduction
- We reviewed the intuition behind the concept under two perspectives: minimizing the reconstruction error and maximizing the variance
- We covered the covariance method to obtain the principal components

Key Concepts

- Eigenvalues
- Eigenvectors
- Covariance matrix
- Singular value decomposition

Further Reading and Useful Material

Source	Notes
The Elements of Statistical Learning	Section 14.5