Partially Optimal Cubic Subspace Clustering

Research Project Machine Learning

Volodymyr Drobitko

Technische Universität Dresden

21.07.2025

Introduction

2 Partial Optimality for Cubic Clique Partition Problem

3 Cubic Subspace Instance Construction

Experiments and Evaluation

Research Results

Finite sample set S, cost function $c: \binom{S}{3} \to \mathbb{R}$. Instance of the **Cubic Clique Partition Problem**:

$$\max_{\mathsf{y}:\;\binom{S}{2}\to\{0,1\}}\sum_{\{a,b,c\}\in\binom{S}{3}}\mathsf{c}_{\{a,b,c\}}\,\mathsf{y}_{\{a,b\}}\,\mathsf{y}_{\{b,c\}}\,\mathsf{y}_{\{a,c\}}$$

subject to $\mathbf{y}_{\{a,b\}} + \mathbf{y}_{\{b,c\}} - 1 \leq \mathbf{y}_{\{a,c\}}$ for all distinct $a,b,c \in \mathcal{S}$.

Finite sample set S, cost function $c: \binom{S}{3} \to \mathbb{R}$. Instance of the **Cubic Clique Partition Problem**:

$$\max_{\mathtt{y} \colon \binom{S}{2} \to \{0,1\}} \sum_{\{a,b,c\} \in \binom{S}{3}} \mathsf{c}_{\{a,b,c\}} \, \mathtt{y}_{\{a,b\}} \, \mathtt{y}_{\{b,c\}} \, \mathtt{y}_{\{a,c\}}$$

subject to $\mathbf{y}_{\{a,b\}} + \mathbf{y}_{\{b,c\}} - 1 \leq \mathbf{y}_{\{a,c\}}$ for all distinct $a,b,c \in \mathcal{S}$.

Find a **partially optimal solution**, i.e. fix some labels $y_{\{a,b\}}$ for distinct $a,b\in S$

$$\begin{cases} y_{\{a,b\}} = 1 & \text{join } a, b \\ y_{\{a,b\}} = 0 & \text{cut } a, b \\ y_{\{a,b\}} = ? & \text{unknown} \end{cases}$$

in such way that there still exists an optimal solution.

Subspace Instances of the Cubic Clique Partition Problem

Samples S: points $S \subset \mathbb{R}^3$

Subspace Instances of the Cubic Clique Partition Problem

Samples S: points $S \subset \mathbb{R}^3$

Point generation: 3 distinct planes containing the origin, noise σ

Subspace Instances of the Cubic Clique Partition Problem

Samples S: points $S \subset \mathbb{R}^3$

Point generation: 3 distinct planes containing the origin, noise σ

Optimal clustering y*: original planes

Subspace Instances of the Cubic Clique Partition Problem

Samples S: points $S \subset \mathbb{R}^3$

Point generation: 3 distinct planes containing the origin, noise σ

Optimal clustering y*: original planes

Cost function c? (no concrete plane info given)

Task	Solution
read 'Partial Optimality in Cubic Correlation Clustering' [?]; implement the algorithm for establishing partial optimality to the cubic clique partition problem;	Solution

Task	Solution
read 'Partial Optimality in Cubic	my own implementation in
Correlation Clustering' [?]; imple-	$C{++}$ of the suggested al-
ment the algorithm for establish-	gorithm with some adjust-
ing partial optimality to the cubic	ments
clique partition problem;	

Task	Solution
read 'Partial Optimality in Cubic Correlation Clustering' [?]; implement the algorithm for establishing partial optimality to the cubic clique partition problem;	my own implementation in $C++$ of the suggested algorithm with some adjustments
construct subspace instances of increasing difficulty by generating the sample points and by defining a suitable cost function for the point triples	

Task	Solution
read 'Partial Optimality in Cubic Correlation Clustering' [?]; implement the algorithm for establishing partial optimality to the cubic clique partition problem;	my own implementation in $C++$ of the suggested algorithm with some adjustments
construct subspace instances of increasing difficulty by generating the sample points and by defining a suitable cost function for the point triples	point generation using the linear algebra methods; ex- perimentally determined ge- ometric cost function with a significant noise tolerance;

Task	Solution
read 'Partial Optimality in Cubic Correlation Clustering' [?]; implement the algorithm for establishing partial optimality to the cubic clique partition problem;	my own implementation in $C++$ of the suggested algorithm with some adjustments
construct subspace instances of increasing difficulty by generating the sample points and by defining a suitable cost function for the point triples	point generation using the linear algebra methods; ex- perimentally determined ge- ometric cost function with a significant noise tolerance;
apply the algorithm to the constructed subspace instances, assess partial optimality, accuracy with respect to truth, and computation time	

Task	Solution
read 'Partial Optimality in Cubic Correlation Clustering' [?]; implement the algorithm for establishing partial optimality to the cubic clique partition problem;	my own implementation in $C++$ of the suggested algorithm with some adjustments
construct subspace instances of increasing difficulty by generating the sample points and by defining a suitable cost function for the point triples	point generation using the linear algebra methods; ex- perimentally determined ge- ometric cost function with a significant noise tolerance;
apply the algorithm to the con- structed subspace instances, as- sess partial optimality, accuracy with respect to truth, and com- putation time	systematic empirical assess- ment of the algorithm appli- cation the the problem sub- space instances with my cost function proving its quality