Sistemas de numeración posicional (base-b, conversión, costos aritméticos)

Luis Alfredo Alvarado Rodríguez

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA ESCUELA DE CIENCIAS FÍSICAS Y MATEMÁTICAS

24 de julio de 2025

Sumario

- Sistemas numéricos posicionales
 - Idea general
 - Ejemplos en distintas bases
 - Teorema de unicidad
- 2 Bases populares y conversiones
 - Binario, octal, hexadecimal
 - Ejemplos adicionales
- 3 Costos aritméticos
- 4 Ejercicios

Un sistema posicional expresa un entero n como

$$n = \sum_{i=0}^{m} d_i b^i,$$

donde

• b > 1 es la base,

Un sistema posicional expresa un entero n como

$$n = \sum_{i=0}^{m} d_i b^i,$$

donde

- b > 1 es la base,
- cada dígito d_i satisface $0 \le d_i \le b 1$,

Un sistema posicional expresa un entero n como

$$n = \sum_{i=0}^{m} d_i b^i,$$

donde

- b > 1 es la base,
- cada dígito d_i satisface $0 \le d_i \le b 1$,
- lacktriangle el valor de d_i depende de su $posición\ i.$

Un sistema posicional expresa un entero n como

$$n = \sum_{i=0}^{m} d_i b^i,$$

donde

- b > 1 es la base,
- cada dígito d_i satisface $0 \le d_i \le b 1$,
- lacktriangle el valor de d_i depende de su $posición\ i.$

Ejemplos habituales: b = 10 (decimal), b = 2 (binario), b = 8 (octal), b = 16 (hexadecimal).

Ejemplo: decimal

$$237_{10} = 2 \cdot 10^2 + 3 \cdot 10^1 + 7 \cdot 10^0.$$

• 2 centenas, 3 decenas, 7 unidades.

Ejemplo: decimal

$$237_{10} = 2 \cdot 10^2 + 3 \cdot 10^1 + 7 \cdot 10^0.$$

- 2 centenas, 3 decenas, 7 unidades.
- Longitud de la representación: m+1=3 dígitos.

Ejemplo: binario

$$1101_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 13_{10}.$$

 \blacksquare Solo se utilizan los dígitos 0 y 1.

Ejemplo: binario

$$1101_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 13_{10}.$$

- Solo se utilizan los dígitos 0 y 1.
- Cada dígito binario recibe el nombre de bit.

Teorema fundamental

Teorema 1.9

Se
ab>1un entero. Todo entero positivo npuede escribirse de una
y sólo una forma como

$$n = d_0 + d_1 b + d_2 b^2 + \dots, \quad 0 \le d_i \le b - 1.$$

Boceto de prueba.

1. Inducción sobre n.

Teorema fundamental

Teorema 1.9

Sea b > 1 un entero. Todo entero positivo n puede escribirse de una y sólo una forma como

$$n = d_0 + d_1 b + d_2 b^2 + \dots, \quad 0 \le d_i \le b - 1.$$

Boceto de prueba.

- 1. Inducción sobre n.
- 2. Paso inductivo: dividir n entre b y usar el resto d=n mód b.

Teorema fundamental

Teorema 1.9

Sea b>1 un entero. Todo entero positivo n puede escribirse de una y sólo una forma como

$$n = d_0 + d_1 b + d_2 b^2 + \dots, \quad 0 \le d_i \le b - 1.$$

Boceto de prueba.

- 1. Inducción sobre n.
- 2. Paso inductivo: dividir n entre b y usar el resto d=n mód b.
- La unicidad se demuestra suponiendo dos representaciones distintas y llegando a una contradicción con la hipótesis inductiva.

Motivaciones

■ Binario (b = 2): perfecto para hardware (encendido/apagado).

Motivaciones

- Binario (b = 2): perfecto para hardware (encendido/apagado).
- Octal (b = 8): grupos de <u>3 bits</u>; cadena más corta.

Motivaciones

- Binario (b = 2): perfecto para hardware (encendido/apagado).
- Octal (b = 8): grupos de <u>3 bits</u>; cadena más corta.
- Hexadecimal (b = 16): grupos de <u>4 bits</u>; muy usado en programación.

Conversión binario \leftrightarrow octal

Agrupar los bits de tres en tres, empezando por el bit menos significativo.

$$(1101100101)_2 = (1)(101)(100)(101) = (1545)_8.$$

Conversión binario \leftrightarrow hexadecimal

Agrupar los bits de cuatro en cuatro:

$$(1010010100101100)_2 = (1010)_2 (0101)_2 (0010)_2 (1100)_2 = (A52C)_{16}.$$

Ejemplos de conversión

$$(735)_8 = (477)_{10},$$

 $(A52C)_{16} = 10(4096) + 5(256) + 2(16) + 12 = (42284)_{10}.$

Ejemplos de conversión

$$(735)_8 = (477)_{10},$$

 $(A52C)_{16} = 10(4096) + 5(256) + 2(16) + 12 = (42284)_{10}.$

Longitud de la representación

Para un entero n:

dígitos =
$$\lfloor \log_b n \rfloor + 1$$
.

 \blacksquare Bases pequeñas \Rightarrow más dígitos, operaciones sobre vectores más largos.

Longitud de la representación

Para un entero n:

dígitos =
$$\lfloor \log_b n \rfloor + 1$$
.

- \blacksquare Bases pequeñas \Rightarrow más dígitos, operaciones sobre vectores más largos.
- Bases grandes ⇒ menos dígitos, pero cada dígito almacena más información.

Costo de la suma

Dados dos números de m dígitos en base b:

Suma en columna = O(m) operaciones elementales.

• $m \approx \log_b n$.

Costo de la suma

Dados dos números de m dígitos en base b:

Suma en columna = O(m) operaciones elementales.

- $m \approx \log_b n$.
- \blacksquare A menor b, mayor m (más acarreo, pero acarreo más barato).

Costo de la multiplicación (clásica)

Multiplicar dos enteros de m dígitos:

$$O(m^2)$$
 productos y sumas.

 \blacksquare Mejoras algebraicas: Karatsuba $O(m^{\log_2 3}),$ FFT $O(m\log m),$ etc.

Costo de la multiplicación (clásica)

Multiplicar dos enteros de m dígitos:

$$O(m^2)$$
 productos y sumas.

- \blacksquare Mejoras algebraicas: Karatsuba $O(m^{\log_2 3}),$ FFT $O(m\log m),$ etc.
- El factor constante depende de la base elegida.

1. Demuestre que la conversión octal \rightarrow binario se logra convirtiendo cada dígito octal al trío binario correspondiente. Generalice a otras bases.

- 1. Demuestre que la conversión octal \rightarrow binario se logra convirtiendo cada dígito octal al trío binario correspondiente. Generalice a otras bases.
- 2. Convierta:

(a)
$$(737)_{10} = ?_3$$

- 1. Demuestre que la conversión octal \to binario se logra convirtiendo cada dígito octal al trío binario correspondiente. Generalice a otras bases.
- 2. Convierta:
 - (a) $(737)_{10} = ?_3$
 - (b) $(101100)_2 = ?_{16}$

- 1. Demuestre que la conversión octal \rightarrow binario se logra convirtiendo cada dígito octal al trío binario correspondiente. Generalice a otras bases.
- 2. Convierta:
 - (a) $(737)_{10} = ?_3$
 - (b) $(101100)_2 = ?_{16}$
 - (c) $(3377)_8 = ?_{16}$

1. Demuestre que la conversión octal \rightarrow binario se logra convirtiendo cada dígito octal al trío binario correspondiente. Generalice a otras bases.

2. Convierta:

- (a) $(737)_{10} = ?_3$
- (b) $(101100)_2 = ?_{16}$
- (c) $(3377)_8 = ?_{16}$
- (d) $(ABCD)_{16} = ?_{10}$

1. Demuestre que la conversión octal \rightarrow binario se logra convirtiendo cada dígito octal al trío binario correspondiente. Generalice a otras bases.

2. Convierta:

- (a) $(737)_{10} = ?_3$
- (b) $(101100)_2 = ?_{16}$
- (c) $(3377)_8 = ?_{16}$
- (d) $(ABCD)_{16} = ?_{10}$
- (e) $(BEEF)_{16} = ?_8$

- Demuestre que la conversión octal → binario se logra convirtiendo cada dígito octal al trío binario correspondiente. Generalice a otras bases.
- 2. Convierta:
 - (a) $(737)_{10} = ?_3$
 - (b) $(101100)_2 = ?_{16}$
 - (c) $(3377)_8 = ?_{16}$
 - (d) $(ABCD)_{16} = ?_{10}$
 - (e) $(BEEF)_{16} = ?_8$
- 3. Implemente un procedimiento convert(n, b) que devuelva la cadena de dígitos de n en base b.