L46 - Group Project

Key Links

- Paper: <u>Fast and scalable in-memory deep multitask learning via neural weight</u> <u>virtualization | Proceedings of the 18th International Conference on Mobile Systems</u>, <u>Applications</u>, and Services
- Author's GitHub repo:
 - https://github.com/learning1234embed/NeuralWeightVirtualization
- <u>TwoLevelWeightPageVirtualization</u>
- Project GitHub repo: https://github.com/K0rnel/NeuralWeightVirtualization
- Colab: TBD
- Overleaf (project report): https://www.overleaf.com/6513862572tscxxqqvrktt
- Report draft Google Doc: here

Remaining tasks

- Check convergence of joint optimisation
- Weight-Page Matching
 - Inference accuracy for various weight-page size
 - → Matching time
- Weight-Page Optimization
 - Joint vs. Sequential Optimization
- Matching Regularizer
- Benchmark 3, 5, 7, 10 networks.

Work Plan

- Project report:
 - o Introduction problem statement and evaluated paper (1 page) K
 - Summary of the paper (1 1.5 pages) S
 - Description of technical implementation (1 page) K
 - Evaluation: (3 pages)
 - Replication of original results K
 - Number of weight pages
 - Regularizer
 - Joint vs sequential optimisation
 - Extension to 10 DNNs S
 - Convergence
 - 3,5,7,9 DNNs accuracy + inference
 - 10 DNNs failure probably due to RAM
 - Memory usage
 - o 3 DNNs vs 10 DNNs
 - Optimisation time

- Discussion and future work (0.5 pages) K
- o Conclusion (0.5 pages) S

• Also mention:

- Discrepancies between the paper and the repo
 - Code not provided for the MCU.
 - How did they fit 4GB on an MCU. Did they have an optimised code version?
 - The code fails at 10 DNNs probably RAM shortage.
 - Different numbers quoted for RAM in paper and README file which one is correct?
 - Mention the increasing optimisation time.
 - The fact that OBS does not perform well different Fisher information graph?

Technical work:

- · Replicate paper's results using authors' code
- → Add additional DNN (us8k):
 - Import DNN model and data
 - **■** Explore the model structure
 - Restore the model graph
 - Freeze the graph and export it to Netron App
 - Modify the model_data.py and pintle.py files
 - Train the model once to create model_weight.npy file
 - Create weight pages
 - Optimize weight pages
 - Test DNN switching
- Add more DNNs (all DNNs included in the Two-Level virtualization repo?) and evaluate network performance
- Check the results from the baseline/in-memory execution scripts. It seems like the baseline starts slowly but then accelerates once it 'warms up'.
- Extend the original repo's documentation? Add some routines/scripts to clean up the .npy files or to automate adding new networks without manually adjusting the code.

How to add a new DNN:

- Add meta, index and data files.
- Add pintle and adjust it.
- If necessary, adjust the number of weight pages in the weight_virtualisation.py script (currently set to 721).
- Add <dnn-name>_data.py file in the root directory.
- Add to the download script.
- Add to the joint optimization script.
- Add to the baseline and in-memory execution script.

Then, in the Colab notebook \rightarrow call the `add` routine to add the new VNN (this will create the .vnn file). And execute joint optimisation (this will create the weight files).

Work Timeline

- 21-27.12:
 - o Kornel:
 - Test DNN switching and inference accuracy of original network vs the one with US8K DNN added
 - Produce US8K network graphs and relevant code
 - Create a shared CitHub repo
 - Clean up the Colab file, create the "master" file to be included in the final report
 - o Samuil:
 - Add remaining 4 DNNs
 - Test DNN switching and inference accuracy of original network vs the network with extra DNNs
- 28.12-03.01:
 - Write up the Problem statement, project methodology, implementation chapters
 - Continue technical experiments
- 04-10.01:
 - Write up the remaining project chapters
 - o Finish all remaining experiments
- 11-17.01:
 - o Proof-read, convert to latex and submit the project report
- 18-20.01:
 - Grab a pint at a pub :)