ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Кафедра	общей	физики
ташедра	оошеи	шизики

Лабораторная работа 1.3.3

Измерение вязкости воздуха по течению в тонких трубках

Преподаватель: доцент Игуманов А.Ю.

Обучающийся: Глотов А.А

Введение

Аннотация

Данная работа посвящена изучению воздуха по прямой трубе тонкого сечения. Используются следующие методы измерений: анализ графиков зависимости $Q(\Delta P)$, а также линеаризированных графиков зависимостей Q(R). Расход газа измеряется с помощью газового счётчика и секундомера, перепад давления в трубке - с помощью микроманометра.

Цели работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха

Приборы и материалы

- Система подачи воздуха(компрессор, подводящие трубки)
- Набор трубок различного диаметра с выводами для подсоединения микроманометра
- Секундомер: $\Delta_{\text{сек}} = 0.4$ с (удвоенное среднее время реакции человека)
- Газовый счетчик ГСБ-400 Устройство
 - 1. Измерительная шкала (1 оборот = 5 л)
 - 2. Счётно-суммирующее устройство (1 ед. = 1 л)
 - 3. Индикатор горизонтального уровня
 - 4. Водомерное устройство
 - 5. Трубка для подачи газа
 - 6. Трубка для отвода газа
 - 7. Патрубки для подключения внешнего манометра
 - 8. Место установки термометра
 - 9. Регулируемые ножки
 - 10. Сливное отверстие

Рис. 1: Схема газового счетчика

Характеристики

- Класс точности: 1,0
- Пределы измерения расхода: от 20 л/ч до 1000 л/ч
- Цена наименьшего деления: 0,02 л
- Предел измерения стрелочного механизма (1 оборот): 5 л
- Максимально допустимый перепад давления: 600 мм вод. ст. (5885 Па)

• Спиртовой микроманометр ММН-2400 Устройство

- 1. Сосуд с рабочей жидкостью
- 2. Измерительная шкала
- 3. Стойка для регулировки наклона К
- 4. Место крепления измерительных трубок («-» и «+»)
- 5. Переключатель режима работы (металлический рычажок): (0) установка нуля; (+) проведение измерений.
- 6. Поплавок регулировки уровня спирта (для установки нуля)
- 7. Винт, регулирующий глубину погружения поплавка
- 8. Индикаторы горизонтального уровня
- 9. Регулируемые ножки
- Класс точности: 1,0
- Рабочая жидкость: спирт этиловый ректификованный 96(плотность 0,8095 \pm 0,0005 г/см3 при 20°С)

Рис. 2: Схема микроманометра

Экспериментальная установка

Рис. 3: Схема экспериментальной установки

Поток воздуха под давлением, превышающим атмосферное, поступает через газовый счётчик в тонкие металлические трубки под действием компрессора, интенсивность подачи регулируется краном К. Трубки снабжены съёмными заглушками на концах и рядом миллиметровых отверстий, к которым можно подключать микроманометр. В рабочем состоянии открыта заглушка на рабочей трубке, микроманометр подключен к ее двум выводам, а остальные отверстия плотно закрыты.

Перед входом установлен водяной U-образный манометр. При превышении максимального избыточного давления на входе счётчика (30 см.вод.ст) вода выплескивается в баллон Б.

Теоретические сведения

 η - вязкость среды

Q - объемный расход газа; Q зависит от перепада давления ΔP , плотности ρ и вязкости η газа, от радиуса трубы R и её длины l(исследуемой части)

Характер течения в трубе может быть ламинарным либо турбулентным. При ламинарном течении линии тока не смешиваются, скорости вдоль них одинаковы. При турбулентном образовываются вихри, перемешиваются слои течения газа, линии тока; постоянной является только средняя скорость течения газа.

Характер течения определяется числом Рейнольдса:

$$Re = \frac{\rho ua}{\eta} \tag{1}$$

 ρ - плотность среды, и - характерная скорость потока, а - характерный размер системы (для тонкой трубы - радиус R). С ростом Re может быть достигнуто число $Re_{\rm kp}$, при котором характер течения нельзя считать ламинарным.

В условиях данной работы используются следующие данные и приближения: $Re_{\rm kp}\approx 10^3$, $\eta\approx 2*10^{-5}$ газ несжимаемый ($\rho={\rm const}$), перепад давления мал, а число Маха значительно меньше 1

При ламинарном течении объёмый расход газа описывается формулой Пуазейля:

$$Q = \frac{\pi R^4}{8l\eta} \Delta P \tag{2}$$

 ΔP - разность давлений в выбранных сечениях, расстояние между которыми равно l. Необходимо отметить, что формула(1) работает при Re < 1000, т.е. течение ламинарно с запасом. Для

выполнения формулы (2) необходимо, чтобы удельный объём газа существенно не изменялся, т.е. перепад давления должен быть малым по сравнению с внешним (атмосферным) давлением.

Необходимо также отметить, что стационарное течение устанавливается не сразу, а на какой то определенной длине, которое приблизительно можно посчитать по формуле

$$l_{\text{vcT}} = 0.2 * R * Re \tag{3}$$

0.2 - экспериментально установленное значение, справедливое для данной работы. Если $l_{\rm уст} < l$, то течение нельзя считать установившимся, а значит и ламинарным.

Рассмотрим турбулентное течение газа в тонкой трубке. В простейшей модели: предположим, что при больших значениях $\mathrm{Re}\ (Re\gg Re_{\mathrm{kp}})$ можно считать практически идеальной, так что параметры её течения не зависят от коэффициента вязкости. Отсюда получаем:

$$Q = const * R^{5/2} \sqrt{\frac{\Delta P}{\rho l}}$$
 (4)

Результаты измерений и обработка данных

1) Согласно паспорту приборов (газового счётчика и микроманометра) их погрешности составляют $\Delta_V = 0, 2\pi = 0.2$ дм³ для счётчика и 1 деление для микроманометра (конкретное значение давления зависит от набора данных)

2) Проверим работоспособность установки, пронаблюдаем качественно изменения показаний газового счётчика и микроманометра при изменении степени открытия крана.

3) $T_{\rm cp} = 22,6 \pm 0.1 {}^{\circ}C$ - температура окружающей среды

 $\mu = 0.92$ - влажность воздуха

 $p_a = 10^5 \Pi a$ - атмосферное давление

Запишем диаметры трубок:

 $d_1 = 3.95 \pm 0.05$ MM

 $d_2 = 3.00 \pm 0.01$ MM

 $d_3 = 5.30 \pm 0.05$ mm

Тогда значение плотности воздуха можно считать приблизительно равным : $\rho = 1.18 \frac{\mathrm{Kr}}{..3}$

4) Отметим, что Q связана с u - характерной скоростью потока - следующим соотношением: $Q = \pi R^2$. Тогда из (1) получим, что:

$$Q_{\rm kp} = \frac{Re_{\rm kp}\eta\pi R}{\rho} \tag{5}$$

Теперь по формуле Пуазейля (2) возможно рассчитать ΔP_{KD}

№ трубки	$Q_{\mathrm{\kappa p}}, \frac{\mathrm{M}^3}{c}$	l, м	ΔP , Πa	$l_{ m yct},$ M
1	0,105	0.9	316,8	0,395
2	0,080	0.415	333,5	0,3
3	0,141	0.9	131,1	0,53

Таким образом, можно сделать вывод, что каждой из трёх длин достаточно для того, чтобы считать течение на этих участках установившимся

5) Пронаблюдаем за изменением перепада давления с изменением положения крана. Заметим (приблизительно) переход с ламинарного на турбулентное течение.

Для первой трубки искомое давление составило 292,20 Па; для второй - 319,47 Па; для третьей - 138,31 ∏a

Таким образом, можно сказать, что теоретические данный совпадают с полученными на прак-

$$(6)Q = \frac{\Delta V}{\Delta t} \Rightarrow \varepsilon_Q = \frac{\sigma_V}{\Delta V} + \frac{\sigma_t}{\Delta t}$$

 $6)Q = \frac{\Delta V}{\Delta t} \Rightarrow \varepsilon_Q = \frac{\sigma_V}{\Delta V} + \frac{\sigma_t}{\Delta t}$ Таким образом, относительная погрешность измерения расхода складывается из относительных погрешностей времени и объёма. Для необходимой оценки условимся, что каждая из них не должна превышать значения 0.5%. Тогда:

$$V_{min} = \frac{\sigma_V}{0.005} = 4$$
л, $t_{min} = \frac{\sigma_t}{0.005} = 80c$

Отметим также, что т.к. некоторые измерения занимают довольно продолжительное время, в них без потери точности можно использовать меньший временной промежуток.

7)Измерения на 1 трубке

N, дел	ΔV , дм 3	Δt ,c	$Q, \frac{M^3}{c}$	ΔP , Πa	$\frac{\Delta P}{l}$, $\frac{\Pi a}{l}$
8	3.00	251.5	1.19	31.17	34.63
15	2.50	118.7	2.11	58.44	64.93
20	3.00	107.3	2.80	77.92	86.58
30	4.00	101.0	3.96	116.88	129.86
38	5.00	97.7	5.12	148.05	164.50
45	5.00	82.5	6.06	175.32	194.80
54	5.00	69.9	7.15	210.38	233.76
60	5.00	62.3	8.03	233.76	259.73
68	5.00	56.3	8.89	264.93	294.37
75	5.00	52.3	9.56	292.20	324.67
84	5.00	49.5	10.1	327.26	363.62
95	5.00	47.7	10.5	370.12	411.24
106	5.00	46.5	10.8	412.98	458.87
120	5.00	44.9	11.1	467.52	519.47
142	5.00	42.4	11.8	553.23	614.70

 $\Delta P = 9.8067*0.9932*K*N$, где $9{,}8067$ - ускорение свободного падения - и $0{,}9932$ - коэффициент, зависящий от условий окружающей среды - коэффициенты перевода показаний на шкале манометра в давление

 $K{=}0.4$ - коэффициент чувствительности микроманометра

Аналогично проведем эксперимент на 2 и 3 трубках и занесем значения в таблицы (K=0.8 и 0.2 соответственно)

N, дел	V, дм ³	Δt , c	$Q, \frac{M^3}{c} * 10^{-5}$	ΔP , Πa	$\frac{\Delta P}{l}$
7	3.0	129.5	2.32	54.54	131.42
14	3.0	65.9	4.55	109.09	262.87
20	5.0	83.8	5.97	155.84	375.52
25	5.0	72.9	6.86	194.80	469.40
30	5.0	64.4	7.76	233.76	563.28
34	5.0	60.0	8.33	264.93	638.39
41	5.0	54.5	9.17	319.47	769.81
44	5.0	53.4	9.36	342.85	826.14

N, дел	V,дм ³	Δt , c	$Q, \frac{M^3}{c} * 10^{-5}$	ΔP , Πa	$\frac{\Delta P}{l}, \frac{\Pi a}{l}$
16	4,0	96,1	4,16	31,17	34,63
20	5,0	49,8	10,04	38,96	43,29
28	5,0	72,7	6,88	54,54	60,60
37	5,0	57,4	8,71	72,08	80,09
46	5,0	46,5	10,75	89,61	99,57
58	5,0	39,2	12,76	112,98	$125,\!53$
71	5,0	34,9	14,33	138,31	153,68
80	4,0	27,0	14,81	155,84	173,16
93	4,0	26,2	15,27	181,16	201,29
104	4,0	25,6	15,63	202,59	225,10
117	5,0	30,5	16,39	227,92	253,24
129	5,0	29,3	17,06	251,29	279,21
144	5,0	28,3	17,67	280,51	311,68

8)

	1 трубка									
1, м	0,112	0,412	0,812	1,312	0,300	0,700	1,200	0,400	0,900	0,500
N, дел	63	114	132	259	53	124	197	72	145	75
ΔP , Πa	122,72	222,07	257.14	504,53	103,24	241,55	383,76	140,26	282,46	146,10
	2 трубка									
l, м	$0,\!115$	0,415	0,615	0,20	0,500	$0,\!300$	_	-	-	-
N, дел	62	64	145	38	82	33	_	_	-	-
ΔP , Πa	120,78	124,67	282,46	74,02	159,74	$64,\!28$	_	_	_	-
	3 трубка									
l, м	$0,\!115$	0,415	0,815	1,315	0,300	0,700	1,200	0,400	0,900	0,500
N, дел	24	40	59	81	18	37	57	20	44	24
ΔP , Πa	46,75	77,92	114,93	157,79	35,06	72,08	111,04	38,96	85,71	46,75

При расчёте ΔP K=0.2

При расчете ΔP K=0.2 10) Согласно полученным экспериментальным точкам, ламинарность потока на всех труб-ках обеспечивается при значении градиента давления $\frac{\Delta P}{l}=125\frac{\Pi a}{\text{м}}$ Максимальный достижимый градиент давления, обеспечивающий турбулентность течения равен $857\frac{\Pi a}{\text{м}}$ Соответственные значения расхода газа: $3,75*10^{-5},1,44*10^{-5}$ и $12.77*10^{-5}\frac{\text{M}^3}{c}$ для ламинарного течения; $15.89*10^{-5},9.36*10^{-5}$ и $32.59*10^{-5}\frac{\text{M}^3}{c}$ - для турбулентного 11)Построим графики зависимостей $Q(\Delta P)$

Оранжевым цветом выделены точки, для которых течение газа можно считать ламинарным.

Таким образом, $\Delta P_{\rm kp}$ можно считать равным (310 \pm 20) Па для первой трубки, (290 \pm 30) Па - для второй и (125 ± 15) Па - для третьей, что подтверждается теоретическими расчётами. Соответственные им $Q_{\rm кр}$ равны $(9.8\pm0.3)*10^{-5\frac{{\rm M}^3}{c}}, (8.8\pm0.4)*10^{-5\frac{{\rm M}^3}{c}}$ и $(13.5\pm0.8)*10^{-5\frac{{\rm M}^3}{c}}$ Определим угловые коэффициенты для линейных участков наших графиков. $\alpha = \frac{<Q\Delta P>-<\Delta P><Q>}{<Q^2>-<Q>^2}$ $\sigma_{\alpha} = \sqrt{\frac{1}{N-2}(\frac{<Q^2>-<Q>^2}{<\Delta P^2>-<\Delta P>^2}-\alpha^2)}$

$$\alpha = \frac{\langle Q\Delta P \rangle - \langle \Delta P \rangle \langle Q \rangle}{\langle Q^2 \rangle - \langle Q \rangle^2} \qquad \sigma_{\alpha} = \sqrt{\frac{1}{N-2}} \left(\frac{\langle Q^2 \rangle - \langle Q \rangle^2}{\langle \Delta P^2 \rangle - \langle \Delta P \rangle^2} - \alpha^2\right)$$

$$\alpha_1 = 3.27 * 10^{-7} \frac{\text{M}^3}{\text{Па}^*\text{c}} \qquad \sigma_{\alpha_1} = 0.04 * 10^{-7} \frac{\text{M}^3}{\text{Па}^*\text{c}}$$

$$\alpha_2 = 2.8 * 10^{-7} \frac{\text{M}^3}{\text{Па}^*\text{c}} \qquad \sigma_{\alpha_2} = 0.2 * 10^{-7} \frac{\text{M}^3}{\text{Па}^*\text{c}}$$

$$\alpha_3 = 1.06 * 10^{-6} \frac{\text{M}^3}{\text{Па}^*\text{c}} \qquad \sigma_{\alpha_2} = 0.05 * 10^{-6} \frac{\text{M}^3}{\text{Па}^*\text{c}}$$

$$\alpha = \frac{\pi R^4}{8l\eta} \Rightarrow \eta = \frac{\pi R^4}{8l\alpha}$$

$$\sigma_{\eta} = \sqrt{\left(\sigma_{\eta}^{\text{C,IIY}^{\text{H}}}\right)^2 + \left(\sigma_{\eta}^{\text{IIPM}^6}\right)^2}$$

$$\sigma_{\eta}^{\text{IIPM}^6} = \eta \left(\frac{\sigma_R}{R} + \frac{\sigma_l}{l}\right) \qquad \sigma_{\eta}^{\text{C,IIY}^{\text{H}}} = \eta \frac{\sigma_{\alpha}}{\alpha}$$

$$\eta_1 = 2, 0 * 10^{-5} \frac{\text{Kr}}{\text{M}^*\text{c}} \qquad \sigma_{\eta_2} = 0.1 * 10^{-5} \frac{\text{Kr}}{\text{M}^*\text{c}}$$

$$\eta_2 = 1, 7 * 10^{-5} \frac{\text{Kr}}{\text{M}^*\text{c}} \qquad \sigma_{\eta_2} = 0.1 * 10^{-5} \frac{\text{Kr}}{\text{M}^*\text{c}}$$

$$\eta_3 = 2, 0 * 10^{-5} \frac{\text{Kr}}{\text{M}^*\text{c}} \qquad \sigma_{\eta_3} = 0.1 * 10^{-5} \frac{\text{Kr}}{\text{M}^*\text{c}}$$

$$\text{Из формулы (5) выразим значение } Re_{\text{Kp}} : Re_{\text{Kp}} = \frac{Q_{\text{Kp}}\rho}{\eta\pi R}$$

 $(Re_{\text{kp}})_1 = (930 \pm 90)$ $(Re_{\text{kp}})_2 = (1300 \pm 140)$ $(Re_{\text{kp}})_3 = (960 \pm 110)$

12) Построим графики зависимости $\Delta P(x)$

Из графиков можно сделать вывод, что устоявшимся движение можно считать приблизительно на 0.3м, 0.2м и 0.3м, что заметно меньше, чем расчетные показатель. 13)По точкам, полученным в п.10 построим графики $\ln(Q)(\ln(R))$

Посчитав коэффициенты наших графиков, получим значения угловых коэффициентов 3,84 и 2,20. Таким образом, можно считать подтвержденной теоретическую модель, описывающую исследуемую зависимость.

Обсуждение результатов и выводы

В ходе работы был исследован ряд зависимостей величин, характеризующих течение газа в тонкой трубе круглого сечения как друг от друга, так и от различных параметров трубки. При анализе полученных экспериментальных данных было установлено, что формула Пуазейля действительно справедлива в реальных условиях, проверены и доказаны характеры зависимостей объёмного расхода газа (Q) от радиуса трубок (R). Доказано, что действительно существует ламинарное и турбулентные течения и замечен переходный период, когда движение уже точно не является ламинарным, но и однозначно не определяется как турбулентное.

При анализе результатов были получены значения вязкости воздуха и чисел Рейнольдса для каждой из трёх исследуемых трубок. Установлено, что вязкость действительно не зависит от радиуса тонкой трубы круглого сечения и равна $(2,0\pm0,1)*10^{-5}\frac{\mathrm{Kr}}{\mathrm{M*c}}$, что совпадает с табличными при наших условиях (1,9).

С хорошей точностью (не более 6%) были получены значения для вязкости газа. Наибольший вклад внесла случайная погрешность, что говорит о необходимости увеличения количества измерений с целью ее уменьшения, а также, желательно, увеличения точности приборов. Из-за несовершенства измерительных приборов из анализа были вынужденно исключены значения, полученные со второй трубки, т.к. невозможно получить данные выше определенного предела, а также достаточно высокой погрешности измерений. Не возможно достоверно оценить погрешность полученного числа Рейнольдса, т.к. необходимые значения были получены "на глаз"из графика, что говорит о необходимости увеличения количества измерений и точности измерительный приборов, чтобы была возможность точно установить момент смены характера течения.