Calcolo delle Variazioni

Filippo $\mathcal L$ Troncana dalle lezioni del prof. Marco Bonacini dell'omonimo corso per il corso di laurea in Matematica ${\rm A.A.~2024/2025}$

Indice

I Metodi classici 5

INDICE 3

Introduzione

Il calcolo delle variazioni è quella branca della matematica che affronta il problema di trovare in una data famiglia (di funzioni, superfici, curve...) l'oggetto o gli oggetti che minimizzano una certa grandezza ad essi associata, ad esempio il problema della brachistocrona è uno degli esempi più classici

Esempi introduttivi

Metodi classici: funzioni reali

Supponiamo di avere una funzione $f:[a,b] \to \mathbb{R}$ della quale vogliamo trovare i punti di minimo. Se la nostra funzione è differenziabile su]a,b[possiamo usare il teorema di Fermat che ci dà una condizione **necessaria ma non sufficiente** affinchè un punto $x_0 \in]a,b[$ sia un punto di massimo, ovvero $f'(x_0) = 0$.

Se la nostra funzione è doppiamente differenziabile, possiamo ottenere un'altra condizione necessaria, ovvero che $f'(x_0) = 0$ e che $f''(x_0) \ge 0$; inoltre sempre lavorando sulla derivata seconda otteniamo quella che è una condizione sufficiente ma non necessaria, ovvero che $f'(x_0) = 0$ e $f''(x_0) > 0$.

Scartando l'ipotesi di doppia derivabilità, possiamo sostituirla con l'ipotesi di convessità, rendendo $f'(x_0) = 0$ una condizione sufficiente per la minimalità di x_0 .

I metodi classici (o indiretti) si basano sulla generalizzazione di questo approccio a spazi di funzioni, come vediamo ora.

Metodi classici: integrale di Dirichlet

Sia $\Omega \subset \mathbb{R}^n$ un aperto a chiusura compatta con frontiera $\partial \Omega$ regolare e sia $g:\partial \Omega \to \mathbb{R}$ una funzione continua. Definiamo il nostro spazio X e il nostro funzionale $F:X\to\mathbb{R}$ come:

$$X = \left\{ u \in \mathcal{C}^1(\bar{\Omega}) : u|_{\partial\Omega} = g \right\}, \qquad F(u) = \int\limits_{\Omega} \|\nabla u\|^2 \ \mathrm{d}\mathcal{L}^n, \qquad \text{inoltre assumiamo che esista } u_0 = \arg\min_{u \in X} F(u).$$

Analogamente a quanto visto per le funzioni reali, quali condizioni necessarie o sufficienti possiamo identificare per il nostro punto di minimo u_0 ? Ragionando sull'approccio del teorema di Fermat, possiamo formulare la condizione al primo ordine della nostra funzione reale come

$$0 = f'(x_0) = \lim_{t \to 0} \frac{f(x_0 + t) - f(x_0)}{t}$$

Consideriamo lo spazio $C_c^1(\Omega)$ delle funzioni differenziabili a supporto compatto contenuto in Ω e per una $\varphi \in C_c^1(\Omega)$ e $t \in \mathbb{R}$ definiamo la funzione $u_t := u_0 + t\varphi$, che appartiene a X per ogni $t \in \mathbb{R}^1$. Usiamo la nostra φ a mo' di "vettore della base canonica" come facevamo in \mathbb{R}^n :

$$0 = \lim_{t \to 0} \frac{F(u_t) - F(u_0)}{t} = \lim_{t \to 0} \frac{1}{t} \left(\int_{\Omega} \|\nabla u_t\|^2 d\mathcal{L}^n - \int_{\Omega} \|\nabla u_0\|^2 d\mathcal{L}^n \right)$$

Sviluppando i quadrati e usando la linearità dell'integrale otteniamo

$$\frac{1}{t} \left(\int_{\Omega} \|\nabla u_t\|^2 d\mathcal{L}^n - \int_{\Omega} \|\nabla u_0\|^2 d\mathcal{L}^n \right) = \int_{\Omega} \frac{\|\nabla u_0\|^2}{t} + \frac{2t\nabla u_0 \cdot \nabla \varphi}{t} + \frac{t^{\frac{1}{2}} \|\nabla \varphi\|^2}{t} - \frac{\|\nabla u_0\|^2}{t} d\mathcal{L}^n \xrightarrow{t \to 0} 2 \int_{\Omega} \nabla u_0 \nabla \varphi d\mathcal{L}^n.$$

Battezziamo questa quantità che abbiamo trovato *variazione prima di* F *rispetto a* φ *in* u_0 e la indichiamo con $\delta F(u_0, \varphi)$, sarà analoga alla nostra derivata direzionale; inoltre, se avessimo qualche ragione di assumere che u_0 sia anche $C^2(\bar{\Omega})$ potremmo usare il teorema della divergenza per scrivere anche

$$0 = \delta F(u_0, \varphi) = \int_{\Omega} \nabla u_0 \cdot \nabla \varphi \, d\mathcal{L}^n = \int_{\Omega} (-\Delta u) \varphi \, d\mathcal{L}^n + \int_{\partial \Omega} \varphi \frac{du_0}{d\nu} \, dS = 0$$

Sfruttando il lemma fondamentale del calcolo delle variazioni otteniamo che

$$\int_{\Omega} (-\Delta u_0) \varphi \, d\mathcal{L}^n = 0 \, \forall \varphi \in \mathcal{C}_c^1(\Omega) \Leftrightarrow -\Delta u_0 = 0$$

Perbacco! Assumendo che il nostro punto di minimo esista, abbiamo ottenuto che questo deve soddisfare il problema di Dirichlet

$$\begin{cases} -\Delta u = 0 & \text{su } \Omega \\ u|_{\partial\Omega} = g \end{cases}$$

Ci sono due criticità tuttavia: abbiamo assunto tante cose belle sulla nostra u_0 (in primo luogo, che questa esista) e siamo arrivati a scrivere una PDE, oggetti che in generale non sono di facilissima trattazione e figuriamoci risoluzione. Per questo nel ventesimo secolo si sono sviluppati i cosiddetti metodi diretti.

¹Banalmente, in quanto $\varphi|_{\partial\Omega}\equiv 0$

4 INDICE

Metodi diretti: teorema di Weierstrass

Tornando all'esempio della nostra funzione $f:[a,b]\to\mathbb{R}$, potremmo ricordarci che abbiamo un teorema che ci garantisce l'esistenza del minimo assumendo semplicemente la continuità di f, ovvero il teorema di Weierstrass, la cui dimostrazione si riassume in questi step:

- 1. Sia $(x_n)_{n\in\mathbb{N}}$ una successione minimizzante, ovvero tale che $f(x_n)\to\inf_{[a,b]}f$
- 2. L'intervallo [a,b] è compatto, dunque esiste una sottosuccessione $(x_{n_k})_{k\in\mathbb{N}}$ che converge a $\hat{x}\in[a,b]$.
- 3. Dato che f è continua, $f(\hat{x}) = \inf_{[a,b]} f = \min_{[a,b]} f$.

Notiamo che sarebbe bastata la semicontinuità inferiore di f, e che questo approccio dipende dalla topologia di [a,b]: i metodi diretti si basano proprio su questo, ovvero su una forma più generale del teorema di Weierstrass (sostituendo [a,b] con uno spazio topologico sequenzialmente compatto) e scegliendo sulla nostra famiglia di oggetti la topologia adeguata.

Chiaramente abbiamo un piccolo trade-off: se la nostra topologia è molto fine (= tanti aperti), è facile dimostrare la continuità del nostro funzionale ma è difficile avere la compattezza della nostra famiglia; al contrario, con topologie meno fini abbiamo una compattezza più semplice da dimostrare ma una continuità più difficile, per questo è utile ridurre le ipotesi (ad esempio con la semicontinuità inferiore invece della continuità).

Esercizio 0.0.1: Dimostrare che esiste una successione minimizzante

Sia X un insieme non vuoto e sia $f: X \to \mathbb{R}$ una funzione. Esiste una successione $(x_n)_{n \in \mathbb{N}}$ in X tale che $f(x_n) \to \inf_X f$.

Dimostrazione

Sia $y_0 \in f(X)$. Se $y_0 = \inf_X f$, prendiamo una qualsiasi successione in $f^{-1}(y_0)$; altrimenti, e per ogni $n \in \mathbb{N}_{>0}$ prendiamo $y_{n+1} \in f(X) \cap]-\infty, y_n[$, fermandoci se dovessimo arrivare a $\inf_X f$. Per ogni y_n scegliamo $x_n \in f^{-1}(y_n)$ e abbiamo ottenuto la nostra successione minimizzante.

^aProbabilmente c'è un modo per aggirare l'utilizzo di scelta dipendente ma non ho davvero voglia di pensarci.

 $[^]b$ Idem ma con scelta numerabile.

Parte I Metodi classici

Teorema 0.0.1: Lemma fondamentale del calcolo delle variazioni

Parte II Metodi diretti