

Introduction

In 1932, Gödel published a brief note demonstrating that the intuitionistic propositional calculus (IPC) cannot be characterized by finite-valued semantics. Although the argument he employed was brilliant, it was presented in an extremely concise manner (merely two paragraphs!), making it challenging to comprehend. In the subsequent discussion, I will endeavor to present it in a more detailed fashion, addressing any gaps with additional or alternative definitions and arguments. Following Gödel's lead, we will denote the intuitionistic propositional calculus as ${\bf H}$.

Preliminaries

(**Language**) We will use \mathcal{L} to denote the set of every wff induced by the unary connective \neg and the binary connectives \land , \lor , \rightarrow , \leftrightarrow in a countable infinite set of propositional letters $\{p_0, p_1, \ldots\}$.

(**Matrix**) A matrix for \mathcal{L} is a tuple $\mathcal{M} = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$ where $\langle \mathcal{V}, \mathcal{O} \rangle$ is an algebra for \mathcal{L} and $\mathcal{D} \subset \mathcal{V}$ is the set of designated values.

(**Valuation function**) Given a matrix $\mathcal{M} = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$, a valuation in \mathcal{M} is a function $v : \mathcal{L} \to \mathcal{V}$ such that, for every n-ary connective \circ and every $\alpha_1, \ldots, \alpha_n \in \mathcal{L}$,

$$v(\circ(\alpha_1,\ldots,\alpha_n)) = \tilde{\circ}(v(\alpha_1),\ldots,v(\alpha_n))$$

where $\tilde{\ }\circ\in\mathcal{O}$ is the algebraic counterpart of the connective.

(**Valid formula**) We say that a formula $\varphi \in \mathcal{L}$ is valid in a matrix $\mathcal{M} = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$ if, and only if, for every valuation function $v, v(\varphi) \in \mathcal{D}$. We will denote this as $\mathcal{M} \Vdash \varphi$.

The strategy

Suppose there is a matrix for \mathcal{L} which validates those, and only those, formulas that are provable in \mathbf{H} . More formally, we are interested in a finite-valued matrix \mathcal{M} such that,

$$\forall \varphi \in \mathcal{L}, \mathcal{M} \Vdash \varphi \iff \mathbf{H} \vdash \varphi$$

The right-to-left direction ("those") is trivial: just take the usual matrix for classical logic. We are

interested in the left-to-right ("only those") direction, which is equivalent to:

$$eg \exists \varphi \in \mathcal{L}, \mathcal{M} \Vdash \varphi \wedge \mathbf{H} \nvdash \varphi$$

Therefore, if we find a formula φ valid in \mathcal{M} and show that this formula is not provable in \mathbf{H} , we are forced to reject \mathcal{M} as an adequate characterization of \mathbf{H} . The strategy of Gödel's argument will be to show that, given any finite-valued matrix strong enough to validate every formula provable in \mathbf{H} , this matrix will necessarily validate also a formula not provable in \mathbf{H} , implying that no finite-valued matrix can satisfy only the formulas provable in intuitionistic propositional calculus.

The formula F_n

Let n > 1 be a natural number. Consider the following family of formulas:

$$F_n = igvee_{1 \leq i < k \leq n} (p_i \leftrightarrow p_k)$$

where p_i and p_k are propositional letters. Here are some examples.

n	F_n
2	$p_1 \leftrightarrow p_2$
3	$(p_1 \leftrightarrow p_2) \lor (p_1 \leftrightarrow p_3) \lor (p_2 \leftrightarrow p_3)$
4	$(p_1 \leftrightarrow p_2) \lor (p_1 \leftrightarrow p_3) \lor (p_1 \leftrightarrow p_4) \lor (p_2 \leftrightarrow p_3) \lor (p_2 \leftrightarrow p_4) \lor (p_3 \leftrightarrow p_4)$

Lemma 1 Let $n \geq 1$. For every n-valued matrix \mathcal{M} such that $\mathcal{M} \Vdash (p \leftrightarrow p) \lor q$, we have that $\mathcal{M} \Vdash F_{n+1}$.

Proof Let $\mathcal{M}=\langle\mathcal{V},\mathcal{D},\mathcal{O}\rangle$, where $\mathcal{V}=\{1,2,\ldots,n\}$, be a matrix. By definition, a valuation in \mathcal{M} is a function $v:\mathcal{L}\to\mathcal{V}$. Assume that $\mathcal{D}\subset V$ is the set of designated values. We want to show that, for every $v,v(F_{n+1})\in\mathcal{D}$. Let v' be a valuation function. Now, note that F_{n+1} have n+1 propositional letters and, by hypothesis, we have only n truth-values. By the **pigeonhole principle**, we are forced to conclude that there are at least two propositional letters, say p_i and p_j , such that $v'(p_i)=v'(p_j)$ (**A**). Now, let us rearrange the expression in the following way: $F_{n+1}=(p_i\leftrightarrow p_j)\vee\varphi$ and let $\beta=(p\leftrightarrow p_j)$

 $p)\lor q$. By hypothesis, for every valuation v in $\mathcal{M},v(\beta)\in\mathcal{D}$. In particular, $v'(\beta)\in\mathcal{D}$. By uniform substitution, $v'(\beta[p_i/p,\varphi/q])\in\mathcal{D}$ (**B**). Now, by definition of valuation function,

$$v'(F_{n+1}) = \tilde{\vee}(\tilde{\leftrightarrow}(v'(p_i), v'(p_i)), v'(\varphi))$$

Using (**A**) and (**B**), we conclude that $v'(F_{n+1}) \in \mathcal{D}$, as desired.

As a consequence of this lemma, we can conclude, for instance, that in the usual 2-valued matrix for classical logic, the formula $(p \leftrightarrow q) \lor (p \leftrightarrow r) \lor (q \leftrightarrow r)$ is valid. More generally, every F_n with $n \geq 3$ is true in classical logic. As a consequence of the next lemma, we will conclude that the same is not the case on IPC.

F_n is not intuitionistically valid

The algebra S_n

The idea is that, given any index n > 1, we can construct a Heyting algebra, called S_n , on which there is a valuation, called the *canonical valuation* h, where $h(F_n) \notin \mathcal{D}$.

 (S_n) Given some n > 1, define the universe of the algebra as $\{1, 2, \ldots, n\}$, which are ordered in the usual way, and set the designated value as 1. Now, define the operators as:

$$egin{aligned} a ee b &= min(a,b) \ a \wedge b &= max(a,b) \ a
ightarrow b &= 1 ext{ for } a \geq b ext{ and } a
ightarrow b = b ext{ for } a < b \
eg a &= n ext{ for } a
eq n ext{ and }
eg n ext{ and }
eg n ext{ and }
eq n ext{ and }
ext{ and }$$

(**Remark**) To reconstruct the argument using the same algebra as provided by Gödel, we will subtract \leftrightarrow from our language and redefine $\varphi \leftrightarrow \psi$ as a notation for $(\varphi \to \psi) \land (\psi \to \varphi)$.

(Canonical valuation) Let h be a valuation function in S_n , such that, for each propositional letter p_i , $h(p_i) = i$, as illustrated by the following image.

$$p_1$$
 p_2 p_3 p_{n-1} p_n

1 2 3 p_{n-1} p_n

Recursive F_n

We will give an alternative definition of F_n , which we will call as recursive F_n (or rF_n) that will be useful for the next lemma.

 (rF_n) Given n>1, let rF_n be the formula defined as follows:

$$rF_2 = p_1 \leftrightarrow p_2 \ rF_{n+1} = rF_n ee igvee_{1 \leq i < n} (p_i \leftrightarrow p_{n+1})$$

It is not difficulty to see that:

Proposition For every n, $F_n = rF_n$.

Now, using this "new" definition of F_n , we can prove the following lemma by induction.

Lemma 2 For every n > 1, $h(rF_n) = 2$.

Proof Induction on n. (**Base case**) By definition of h, $h(p_1)=1$ and $h(p_2)=2$. Therefore, $h(p_1\leftrightarrow p_2)=max(h(p_1\to p_2),h(p_2\to p_1))=max(2,1)=2$. (**Inductive step**) Assume that $h(rF_n)=2$. By definition of $rF_{n+1},h(rF_{n+1})=min(h(rF_n),h(\bigvee_{1\leq i< n}(p_i\leftrightarrow p_{n+1})))=min(2,h(\bigvee_{1\leq i< n}(p_i\leftrightarrow p_{n+1})))$ (**A**). Note that, for every i,i< n. Therefore, $h(p_i)< h(p_{n+1})$. By definition of $h,h(p_i\leftrightarrow p_{n+1})=max(h(p_i\to p_{n+1}),h(p_{n+1}\to p_i))=max(n+1,1)=n+1$. Therefore, $h(\bigvee_{1\leq i< n}(p_i\leftrightarrow p_{n+1}))=n+1$. Using (**A**), we get that $h(rF_{n+1})=min(2,n+1)=2$.

From this lemma, we can conclude that, for every n>1, $h(rF_n)\neq 1$. Therefore, $h(rF_n)\not\in \mathcal{D}$. Using the Proposition above with Lemma 2, we have that:

Corollary For every n>1, $S_n\nVdash F_n$.

And then, using the completeness of the Heyting algebra S_n with respect to the intuitionistic propositional calculus, we conclude that:

Corollary For every n > 1, $\mathbf{H} \nvdash F_n$.

(**Remark**) Is worth noting that, as another interesting consequence of the pigeonhole principle, we can conclude that, for every n > 1, $S_n \Vdash F_{n+1}$.