First-Order Logic Equality

Predicate logic with equality

$\begin{tabular}{ll} \begin{tabular}{ll} \beg$

Semantics: A structure A of predicate logic with equality always maps the predicate symbol = to the identity relation:

$$\mathcal{A}(=) = \{(d,d) \mid d \in U_{\mathcal{A}}\}$$

Expressivity

Fact

A structure is model of $\exists x \forall y \ x=y$ iff its universe is a singleton.

Theorem

Every satisfiable formula of predicate logic has a countably infinite model.

Proof Let *F* be satisfiable.

We assume w.l.o.g. that $F = \forall x_1 \dots \forall x_n F^*$ and the variables occurring in F^* are exactly x_1, \dots, x_n .

(If necessary bring *F* into closed Skolem form).

We consider two cases:

n = 0. Exercise.

n>0. Let $G=\forall x_1\ldots \forall x_nF^*[f(x_1)/x_1]$, where f is a function symbol that does not occur in F^* . G is satisfiable (why?) and T(G) is countably infinite. It follows from the fundamental theorem that G has a countably infinite model.

Modelling equality

Let F be a formula of predicate logic with equality. Let Eq be a predicate symbol that does not occur in F. Let E_F be the conjunction of the following formulas:

$$\forall x \ Eq(x,x)$$

$$\forall x \forall y \ (Eq(x,y) \to Eq(y,x))$$

$$\forall x \forall y \forall z \ ((Eq(x,y) \land Eq(y,z)) \to Eq(x,z))$$
For every function symbol f in F of arity n and every $1 \le i \le n$:
$$\forall x_1 \dots \forall x_n \forall y \ (Eq(x_i,y) \to Eq(f(x_1,\dots,x_i,\dots,x_n),f(x_1,\dots,y,\dots,x_n)))$$

For every predicate symbol P in F of arity n and every $1 \le i \le n$:

$$\forall x_1 \dots \forall x_n \forall y (Eq(x_i, y) \rightarrow (P(x_1, \dots, x_i, \dots, x_n) \leftrightarrow P(x_1, \dots, y, \dots, x_n)))$$

 E_F expresses that Eq is a congruence relation on the symbols in F.

Quotient structure

Definition

Let \mathcal{A} be a structure and \sim an equivalence relation on $U_{\mathcal{A}}$ that is a congruence relation for all the predicate and function symbols defined by $I_{\mathcal{A}}$. The quotient structure $\mathcal{A}/_{\sim}$ is defined as follows:

- For every function symbol f defined by $I_{\mathcal{A}}$: $f^{\mathcal{A}/\sim}([d_1]_\sim,\ldots,[d_n]_\sim)=[f^{\mathcal{A}}(d_1,\ldots,d_n)]_\sim$
- For every predicate symbol P defined by $I_{\mathcal{A}}$: $P^{\mathcal{A}/\sim}([d_1]_{\sim},\ldots,[d_n]_{\sim})=P^{\mathcal{A}}(d_1,\ldots,d_n)$
- ▶ For every variable x defined by I_A : $x^{A/\sim} = [x^A]_{\sim}$

Lemma

$$\mathcal{A}/_{\sim}(t)=[\mathcal{A}(t)]_{\sim}$$

Lemma

$$\mathcal{A}/_{\sim}(F)=\mathcal{A}(F)$$

Theorem

The formulas F and $E_F \wedge F[Eq/=]$ are equisatisfiable.

Proof We show that if $E_F \wedge F[Eq/=]$ is sat., then F is satisfiable.

Assume $A \models E_F \land F[Eq/=]$.

 \Rightarrow $Eq^{\mathcal{A}}$ is an congruence relation.

Let $\mathcal{B} = \mathcal{A}/_{Eq^{\mathcal{A}}}$ (extended with = interpreted as identity).

$$\Rightarrow \mathcal{B} \models F[Eq/=]$$

By construction $Eq^{\mathcal{B}}$ is identity:

$$Eq^{\mathcal{B}}([a],[a']) = Eq^{\mathcal{A}}(a,a') = ([a]_{Eq^{\mathcal{A}}} = [a']_{Eq^{\mathcal{A}}})$$

 $\Rightarrow \mathcal{B}(F[Eq/=]) = \mathcal{B}(F)$

$$\Rightarrow \mathcal{B} \models F$$

Conversely, it is easy to see that any model of F can be turned into a model of $E_F \wedge F[Eq/=]$ by interpreting Eq as equality.