První cvičení

Miroslav Kovář

October 15, 2017

Ortogonální pole

Zadání

Softwarový produkt určený k CAD technickému kreslení podporuje automatické propojování komponent a jejich funkcí. K dispozici jsou tři druhy dveří Prum, Sherlock, nebo SAPELI, skladba stěn se předpokládá v provedení tvárnice YTONG nebo tvárnice Betong a to ve dvou tloušťkách 50cm nebo 60cm nebo 70. Fasádu je možné zateplit 50 mm polystyrénem. Omítka může být buď silikonová škrábaná P436/K nebo akrylátová strukturální omítka D11. Je potřeba ověřit, zda výpočet tepelných ztrát, cenové kalkulace a grafického napojení prvků proběhne bez problémů. Vytvořte testovací plán zajišťující otestování všech binárních vztahů optimalizovaný pomocí ortogonálních polí. Nalezněte a zvolte vhodné ortogonální pole.

Identifikace faktorů a jejich úrovní

Identifikovane' faktory jsou následující:

druh dveří: Prum, Sherlock nebo SAPELI,

použitá tvárnice skladby stěn: YTONG nebo Betong,

tlouška stěn: 50 cm, 60 cm, nebo 70 cm,

druh omítky: silikonová škrábaná P486/K nebo akrylátová strukturální D11,

zateplení fasády: implementováno (50 mm polystyren) nebo neimplementováno.

Máme tedy 5 faktorů, 3 se 2 úrovněmi a 2 se 3 úrovněmi (symbolicky $2^3 \times 3^2$), tedy 72 možných kombinací.

Volba ortogonálního čtverce a jeho vytvoření

Ortogonální čtverec byl převzat z tohoto katalogu.

Jde o ortogonální čtverec $L_{18}(3^7)$ se silou 2 (testování binárních vztahů). Použijeme pouze prvních 5 sloupců. Pro sílu 3 bychom mohli použít $L_{54}(3^5)$, čímž bychom si ušetřili pouze 25 % testů, namísto 75 %.

Kódování faktorů a úrovní

	typ dveří	tvárnice	tlouštka stěn	omítka	zateplení
0	Prum	YTONG	50 cm	silikonová	ano
1	Sherlock	Betong	60 cm	akrylátová	ne
2	SAPELI	*	$70~\mathrm{cm}$	*	*

Faktorům, ktere' mají me'ně než tři úrovně, doplníme úrovně na tři cyklickým opakováním hodnot předchozích úrovní - ze zadání není možne' vyčíst, ktere' kombinace jsou náchylnější na chybu.

Tabulka testovacích případů

Prum	YTONG	$50~\mathrm{cm}$	silikónová	ano
Sherlock	Betong	$60~\mathrm{cm}$	akrylátová	ne
SAPELI	YTONG	$70~\mathrm{cm}$	silikónová	ano
Prum	YTONG	$60~\mathrm{cm}$	silikónová	ne
Sherlock	Betong	$70~\mathrm{cm}$	silikónová	ano
SAPELI	YTONG	$50~\mathrm{cm}$	akrylátová	ano
Prum	Betong	$50~\mathrm{cm}$	silikónová	ano
Sherlock	YTONG	$60~\mathrm{cm}$	silikónová	ano
SAPELI	YTONG	$70~\mathrm{cm}$	akrylátová	ne
Prum	YTONG	$70~\mathrm{cm}$	silikónová	ne
Sherlock	YTONG	$50~\mathrm{cm}$	akrylátová	ano
SAPELI	Betong	$60~\mathrm{cm}$	silikónová	ano
Prum	Betong	$70~\mathrm{cm}$	akrylátová	ano
Sherlock	YTONG	$50~\mathrm{cm}$	silikónová	ne
SAPELI	YTONG	$60~\mathrm{cm}$	silikónová	ano
Prum	YTONG	$60~\mathrm{cm}$	akrylátová	ano
Sherlock	YTONG	$70~\mathrm{cm}$	silikónová	ano
SAPELI	Betong	50 cm	silikónová	ne

Slovní interpretace testovacího případu

Předposlední testovací případ:

- 1. s druhem dveří Sherlock,
- 2. se skladbou stěn v provedení tvárnice typu YTONG,
- 3. s tloušťkou stěn 70 cm,
- 4. se silikónovou škrábanou omítkou P436/K,
- 5. s fasádou zateplenou 50 mm polystyrenem.

Srovnání s výstupem AllPairs

```
0: ['Prum', 'YTONG', '50 cm', 'silikonova', 'ano']
1: ['Sherlock', 'Betong', '60 cm', 'akrylatova', 'ano']
2: ['SAPELI', 'Betong', '70 cm', 'silikonova', 'ne']
3: ['SAPELI', 'YTONG', '60 cm', 'akrylatova', 'ne']
4: ['Sherlock', 'YTONG', '70 cm', 'silikonova', 'ano']
5: ['Prum', 'Betong', '50 cm', 'akrylatova', 'ne']
6: ['Prum', 'Betong', '70 cm', 'akrylatova', 'ne']
7: ['Sherlock', 'Betong', '50 cm', 'akrylatova', 'ne']
8: ['SAPELI', 'Betong', '50 cm', 'akrylatova', 'ano']
9: ['Prum', 'Betong', '60 cm', 'silikonova', 'ne']
```

Vidíme, že AllPairs vygeneroval menší množství testovacích případů, neboť jeho sofistikovanější metodologie generování testovacích případů nevyžaduje umělou duplikaci úrovní.

Latinske' čtverce

Zadání

Vytvořte databázi dat, která kombinuje různé varianty hodnot ve vybrané tabulce. Jednotlivé sloupce tabulky mohou mít následující hodnoty:

Státní příslušnost: CZ, UK, US

Pohlaví: muž, žena

Zaměstnání: student, technik, důchodce

Stav: svobodný, rozvedený Bydliště: venkov, město

Byt: garsonka, chata, kolej.

Vytvořte testovací plán zajišťující otestování všech binárních vztahů optimalizovaný pomocí latinských čtverců. Zvolte a vypočítejte vhodnou sadu latinských čtverců.

Identifikace faktorů a jejich úrovní

Identifikovane' faktory jsou následující:

Státní příslušnost: CZ, UK, nebo US,

Pohlaví: muž nebo žena,

Zaměstnání: student, technik nebo důchodce,

 ${\bf Stav:}\quad {\rm svobodn}\circ {\rm nebo\ rozveden}\circ,$

Bydliště: venkov nebo město,

Byt: garsonka, chata nebo kolej.

Máme tedy 6 faktorů, 3 se 2 úrovněmi a 3 se 3 úrovněmi (symbolicky $2^3 \times 3^3$), tedy 216 možných kombinací.

Volba latinske'ho čtverce a jeho vytvoření

Sada vzájemně ortogonálních latinských čtverců byla vygenerována pomocí matematicke'ho software SageMath. Jde o 4 latinske' čtverce 5×5 , dostáváme tedy 25 šestičlenných kombinací o pěti úrovních.

Kódování faktorů a úrovní

	státní příslušnost	pohlaví	zaměstnání	stav	bydliště	byt
0	CZ	muž	student/ka	svobodný/á	venkov	garsonka
1	UK	žena	$\operatorname{technik}$	rozvedený/á	město	chata
2	US	*	důchodce/kyně	*	*	kolej
3	*	*	*	*	*	*
4	*	*	*	*	*	*

Faktorům, ktere' mají me'ně než pět úrovní, doplníme úrovně na pět cyklickým opakováním hodnot předchozích úrovní. Předpokládáme, že kolej na venkově a chata ve městě jsou validní kombinace.

4

Tabulka testovacích případů

CZ	muž	student/ka	svobodbný/á	venkov	garsonka
$\overline{\mathrm{CZ}}$	žena	důchodce/kyně	rozvedený/á	venkov	chata
$\overline{\mathrm{CZ}}$	muž	technik	rozvedený/á	město	kolej
$\overline{\mathrm{CZ}}$	žena	technik	svobodbný/á	venkov	garsonka
CZ	muž	student/ka	svobodný/á	město	chata
UK	muž	technik	rozvedený/á	venkov	chata
UK	žena	technik	rozvedený/á	město	garsonka
UK	muž	student/ka	svobodbný/á	venkov	chata
UK	žena	student/ka	svobodný/á	venkov	kolej
UK	muž	důchodce/kyně	svobodbný/á	město	garsonka
US	muž	student/ka	rozvedený/á	venkov	garsonka
US	žena	student/ka	svobodbný/á	město	chata
US	muž	důchodce/kyně	svobodný/á	venkov	garsonka
US	žena	technik	svobodbný/á	město	chata
US	muž	technik	rozvedený/á	venkov	kolej
CZ	muž	důchodce/kyně	svobodbný/á	město	kolej
CZ	žena	technik	svobodný/á	venkov	garsonka
CZ	muž	technik	svobodbný/á	venkov	chata
CZ	žena	student/ka	rozvedený/á	město	garsonka
CZ	muž	student/ka	rozvedený/á	venkov	chata
UK	muž	$\operatorname{technik}$	svobodný/á	město	chata
UK	žena	student/ka	svobodbný/á	venkov	kolej
UK	muž	student/ka	rozvedený/á	město	garsonka
UK	žena	důchodce/kyně	rozvedený/á	venkov	chata
UK	muž	$\operatorname{technik}$	svobodbný/á	venkov	garsonka

Slovní interpretace testovacího případu

Předposlední testovací případ:

- 1. s britskou státní příslušností UK,
- 2. žena.
- 3. bez zaměstnání důchodce,
- 4. s rodinným stavem rozvedená,
- 5. s bydlištěm na venkově,
- 6. s bytem typu chata,

tedy s anglickou rozvedenou důchodkyní bydlící na chatě na venkově.

Srovnání s výstupem AllPairs

```
['CZ', 'muz', 'student/ka', 'svobodbny/a', 'venkov', 'garsonka']
['UK', 'zena', 'technik', 'rozvedeny/a', 'mesto', 'garsonka']
['US', 'zena', 'duchodce/kyne', 'svobodbny/a', 'mesto', 'chata']
0:
1:
               'US', 'muz', 'technik', 'rozvedeny/a', 'venkov', 'kolej']
'UK', 'muz', 'duchodce/kyne', 'svobodbny/a', 'venkov', 'k
3:
                         'muz', 'duchodce/kyne', 'svobodbny/a', 'venkov', 'kolej']
4:
                         'zena', 'student/ka', 'rozvedeny/a', 'mesto', 'kolej']
5:
                         'muz', 'duchodce/kyne', 'rozvedeny/a', 'mesto', 'chata']
6:
                        'zena', 'student/ka', 'rozvedeny/a', 'venkov', 'chata']
'zena', 'student/ka', 'rozvedeny/a', 'venkov', 'garsonka']
'zena', 'technik', 'svobodbny/a', 'venkov', 'chata']
7:
8:
9:
10:
             ['CZ', 'zena', 'duchodce/kyne', 'rozvedeny/a', 'venkov', 'garsonka']
```

Opět vidíme, že AllPairs vygeneroval menší množství testovacích případů. Velikost naší sady testovacích případů není optimální vzhledem k duplikaci hodnot úrovní.