

৯ম - ১০ম শ্রেণি পদার্থবিজ্ঞান

আলোচ্য বিষয়

অধ্যায় ১: ভৌত রাশি এবং পরিমাপ

অনলাইন ব্যাচ সম্পর্কিত যেকোনো জিজ্ঞাসায়,

ব্যবহারবিধি

দেখে নাও এই অধ্যায় থেকে কোথায় কোথায় প্রশ্ন এসেছে এবং সৃজনশীল ও বহুনির্বাচনীর গুরুত্ব।

🖈 কুইক টিপস

সহজে মনে রাখার এবং দ্রুত ক্যালকুলেশন করতে সহায়ক হবে।

? বহুনির্বাচনী (MCQ)

বিগত বছর গুলোতে বোর্ড, স্কুল, কলেজ এবং বিশ্ববিদ্যালয়ে আসা বহুনির্বাচনী দেখে নাও উত্তরসহ।

🡼 সৃজনশীল (CQ)

পরীক্ষায় আসার মতো গুরুত্বপূর্ণ সৃজনশীল দেখে নাও উত্তরসহ।

厚 প্র্যাকটিস

পরীক্ষায় আসার মতো গুরুত্বপূর্ণ সমস্যাগুলো প্র্যাকটিস করে নিজেকে যাচাই করে নাও।

🤪 উত্তরমালা

প্র্যাকটিস সমস্যাগুলোর উত্তরগুলো মিলিয়ে নাও।

🛨 উদাহরণ

টপিক সংক্রান্ত উদাহরণসমূহ।

ᢧ সূত্রের আলোচনা

সূত্রের ব্যাপারে বিস্তারিত জেনে নাও।

🝊 টাইপ ভিত্তিক সমস্যাবলী

সম্পূর্ণ অধ্যায়ের সুসজ্জিত আলোচনা।

বিজ্ঞানের যে শাখায় পদার্থ আর শক্তি এবং এ দুইয়ের মাঝে যে অন্তঃক্রিয়া তা বোঝার চেষ্টা করে সেটা হচ্ছে পদার্থবিজ্ঞান। বর্তমান সভ্যতার নানাভাবে বিজ্ঞানের এই প্রাচীনতম ও মৌলিক শাখা অর্থাৎ পদার্থবিজ্ঞান অবদান রেখেছে এবং রাখবে। পদার্থবিজ্ঞানকে ভিত্তি করে সভ্যতার অগ্রযাত্রার জন্য বিজ্ঞানীদের ল্যাবরেটরীতে করতে হয়েছে নানা ধরনের গবেষণা। গবেষণা করতে গিয়ে প্রয়োজন পরেছে নানা রাশির সূচক পরিমাপ, পরিমাপ করার জন্য কিভাবে একক গুলো গড়ে উঠেছে, সেগুলো কিভাবে পরিমাণ করতে হয় ইত্যাদি বিষয় নিয়ে এর অধ্যায়ে আলোচনা করব।

আলোচ্য বিষয়:

পদার্থ বিজ্ঞানের পরিসর ও ক্রমবিকাশ। পদার্থ বিজ্ঞানের উদ্দেশ্য। ভৌত রাশি এবং তার পরিমাপ। পরিমাপের যন্ত্রপাতি সম্বন্ধে। পরিমাপের যথার্থতা, নির্ভুলতা বজায় রাখার কৌশল।

পদার্থ বিজ্ঞানের পরিসর (Scope of Physics)

পদার্থবিজ্ঞানের অবদানের কথা শুরু করলে আর শেষ হবে না। সামান্য ক্লোরিন টুথপেস্ট থেকে শুরু করে যুদ্ধের তাণ্ডবলীলা তে ব্যবহৃত যুদ্ধাস্ত্র উদ্ভাবনে পদার্থবিজ্ঞানের ভূমিকা অপরিসীম। পদার্থবিজ্ঞানের সূত্র ব্যবহার করে গড়ে উঠেছে নানা প্রযুক্তি। বিজ্ঞানের অন্যান্য শাখা ও পদার্থবিজ্ঞান মিলে গড়ে উঠেছে Astrophysics (জ্যোতিপদার্থবিদ্যা), Chemical Physics (রসায়ন পদার্থবিজ্ঞান), Bio Physics (জৈব পদার্থ বিজ্ঞান), Geophysics (ভূপ্রকৃতিবিদ্যা) ইত্যাদি।

পঠন এবং পাঠনের সুবিধার জন্য পদার্থবিজ্ঞান কে দুটি ভাগে ভাগ করা যায়। যথা: ক্লাসিকাল পদার্থবিজ্ঞান: বলবিজ্ঞান, শব্দবিজ্ঞান, বিদ্যুৎ ও চৌম্বক বিজ্ঞান এবং আলোকবিজ্ঞান এর আলোচিত বিষয় সমূহ।

আধুনিক পদার্থবিজ্ঞান: কোয়ান্টাম বলবিজ্ঞান এবং আপেক্ষিক তত্ত্ব ব্যবহার করে যে আধুনিক পদার্থবিজ্ঞান গড়ে উঠেছে সেগুলো হচ্ছে আণবিক ও পারমাণবিক পদার্থবিজ্ঞান, নিউক্লিয়ার পদার্থবিজ্ঞান, কঠিন অবস্থার পদার্থবিজ্ঞান এবং পার্টিকেল পদার্থবিজ্ঞান ইত্যাদি আলোচ্য বিষয়।

সনাতন পদার্থ বিজ্ঞান (Classical Physics): বলবিজ্ঞান (Mechanies), শব্দবিজ্ঞান (Lexicology), বিদ্যুৎ ও চৌম্বক বিজ্ঞান (Electromagnetism) এবং আলোকবিজ্ঞান এর আলোচিত বিষয় সমূহ।

আধুনিক পদার্থবিজ্ঞান (Modern Physics): কোয়ান্টাম বলবিজ্ঞান এবং আপেক্ষিক তত্ত্ব ব্যবহার করে যে আধুনিক পদার্থবিজ্ঞান গড়ে উঠেছে সেগুলো হচ্ছে আণবিক ও পারমাণবিক পদার্থবিজ্ঞান, নিউক্লিয়ার পদার্থবিজ্ঞান, কঠিন অবস্থার পদার্থবিজ্ঞান এবং পার্টিকেল পদার্থবিজ্ঞান ইত্যাদি আলোচ্য বিষয়।

পদার্থবিজ্ঞানের ক্রমবিকাশ (Development of Physics)

পদার্থবিজ্ঞানের ক্রমবিকাশ ইতিহাসকে তিনটি পর্বে বিভক্ত করা যায়। যথা:

আদিপর্ব

উত্থানপর্ব

আধুনিক পদার্থবিজ্ঞানের সূচনা

আদি পর্ব (গ্রিক, ভারতবর্ষ, চীন এবং মুসলিম সভ্যতার অবদান)

প্রাচীনকালে জ্যোতির্বিদ্যা, আলোকবিদ্যা, গতিবিদ্যা এবং গণিতের গুরুত্বপূর্ণ শাখা জ্যামিতির সম্বন্ধয়ে পদার্থবিজ্ঞানের যাত্রা শুরু হয়। পদার্থবিজ্ঞানের ইতিহাস উন্মোচন করলেন আদিপর্বে যেসব বিজ্ঞানীদের নাম পাওয়া যায় তাদের অবদান নিম্নরূপ:

ছবি	নাম	জন্ম স্থান	আবিষ্কার / কার্যবিবরন/অবদান
	থেলিস (Thales খ্রি:পূ: ৬২৪-৫৬৯)	1	সূর্যগ্রহণ এর ভবিষ্যদ্বাণী করেছেন। তিনি বলেছেন বৃত্তের ব্যাস বৃত্তকে সমদ্বিখণ্ডিত করে। লোডস্টোনের চৌম্বক ধর্ম সম্পর্কে জানতেন। বিজ্ঞান গণিত ও সংগীতজ্যোতি বিজ্ঞান ও বিশ্বতত্ত্ব শরীর মন ও আত্মার সবকিছু সূত্রের সাহায্যে প্রকাশ করতে চেয়েছেন।
	পিথাগোরাস (Pythagorus খ্রি:পূ: ৫২৭-৮৯৭)		 আগুন, মাটি, পানি, বায়ু এই চারটি মৌলের ধারণা দিয়েছেন। কম্পমান তারের উপর তার অধিক স্থায়ী অবদান আছে। তারের কম্পমান বিষয়়ক বাদ্যয়ন্ত্র ও সংগীতের য়ে স্কেল আছে সেখানে তার অবদান বিদ্যমান।
Aug .	ডেমোক্রিটাস (Democritus খ্রি:পূ: ৪৬০-৩৭০)	গ্রিস	তিনি ধারণা দেন পরমাণু অবিভাজ্য একক রয়েছে যার নাম পরমাণু। সবকিছুই মাটি পানি বাতাস ও আগুন দিয়ে তৈরি এই
	অ্যারিস্টোটল (Aristotle খ্রি:পূ: ৩১০-২০০)		মতামত দেন।

আরিস্টার্কাস (Aristrachus খ্রি:পূ: ৩১০-২৩০) আর্কিমিডিস (Archimedes খ্রি:পূ: ২৮৭-২১২)	গ্রিস	 সূর্যকেন্দ্রিক সৌরজগতের কথা বলেছেন যা সেলেউকাসক (খ্রি:পূ: ৩৫৮-২৮১) যুক্তি-তর্ক দিয়ে প্রমাণ করেছিলেন। লিভারের নীতি আবিষ্কার করেন। তরলে নিমজ্জিত বস্তুর উপর ক্রিয়াশীল উর্ধ্বমুখী বলের সূত্র আবিষ্কার করে ধাতুর ভেজাল নির্ণয় করেন। গোলীয় দর্পণে সূর্য রশ্মিকে কেন্দ্রীভূত করে আগুন ধরানোর কৌশল জানতেন।
ইরাতোস্থিনিস (Enatosthenes খ্রি:পূ: ২৭৬-১৯৮)		 সেই সময়ে সঠিকভাবে পৃথিবীর ব্যাসার্ধ বের করেছিলেন।

এরপর কয়েক শতাব্দি কাল বৈজ্ঞানিক আবিষ্কার মন্থর গতিতে চলে। এ সময় পশ্চিম ইউরোপীয় সভ্যতা গ্রহণ করেছিল বাইজানটাইন (পূর্ব রোমান সাম্রাজ্য ও মুসলিম সভ্যতার) জ্ঞানের ধারা। এসময় আরবের বিজ্ঞানীরা যে অবদান রাখেন তা নিম্নরূপ এ আলোচনা করা হলো:

ছবি	নাম	জন্মস্থান	আবিষ্কার / কার্যবিবরন / অবদান
	জাবির ইবনে হাইয়ান (Jabir ibn Hayyanখ্রিস্টাব্দ: ৭২১- ৮১৩)	ইরান	আলকেমি'র উন্নতি সাধন করেন। 'আলকেমি' একদিকে ছিল ধর্ম ও আধ্যাত্মিক যোগ তেমনি আবার রাসায়নিক শিল্প কৌশল ও কুশলতার সাথে সম্পর্কযুক্ত ছিল। আলকেমি থেকে বর্তমান কেমিস্ট্রির উদ্ভব।
	ইবনে সিনা (Ali al-Husayn ibn Sina খ্রিস্টাব্দ: ৯৮০- ১০৩৭)		 আলকেমি এর উন্নতি সাধন করেন। গ্রিক চিকিৎসাবিদ গ্যালেন (Galen জন্ম-১২৯) তত্ত্বের উন্নতি সাধন করেন।

ছবি	নাম	জন্মস্থান	আবিষ্কার / কার্যবিবরন / অবদান
	আবু আব্দুল্লাহ ইবনে আল খোয়ারিজমি (Abu Abdullah Ibn Al-Khwazriz খ্রিস্টাব্দ: ৭৮৩-৮৫০)		 বীজগণিত ও ত্রিকোণমিতির ভীত প্রতিষ্ঠা করেন। তাঁর বিখ্যাত গ্রন্থ আল জিবাল মুকাবিলা থেকে আলজেবরা শব্দের উৎপত্তি।
	ইবনে আল হাইয়াম (Ibn-Al-Haitham খ্রিস্টাব্দ: ৯৬৫-১০৩৯)		আলোক বিজ্ঞানের স্থপতি হিসেবে বিবেচনা করা হয় যেখানে আল হাজেন এর উল্লেখযোগ্য অবদান ছিল।
	ইবনে ইউনুস (Ibn Yunus খ্রিস্টাব্দ: ৯৫ <mark>০-১</mark> ০০৯)	মিশর	তার পূর্ববর্তী 200 বছরের জ্যোতির্বিদ্যা সংক্রান্ত পর্যবেক্ষণের রেকর্ড জমা করে 'হাকেমাইট অ্যাস্ট্রোনমিক্যাল টেবিল' নামক সারণি তৈরি করেন। 995 সালে House of Science বিজ্ঞানাগার নির্মাণ করেন।
	আল মাসুদী (Al-Masudi খ্রিস্টাব্দ: ৮৯৬-৯৫৬)	ইরাক	প্রকৃতির ইতিহাস নিয়ে একটি এনসাইক্লোপিডিয়া লেখেন যেখানে বায়ুকলের উল্লেখ পাওয়া যায়।

তাছাড়া বিজ্ঞানের অগ্রযাত্রায় বিখ্যাত কবি ওমর খৈয়াম (Omar Khaiyam, ১০১৯-১১৩৫), আল-বাত্তানী (Al Battani, ৮৫৮-৯২৯), আল-ফরাজী (Al Fargzi, মৃত্যু-৭৭) প্রভৃতি জ্যোতির্বিদ, গণিতবিদ ও বিজ্ঞানীদের ভূমিকা ছিল। তোমরা শুনে অবাক হবে যে গ্রিক ধারার জ্ঞানচর্চা ধারাকে বাঁচিয়ে রাখার জন্য অবদান রেখেছেন অনেক ভারতীয় চীনা বিজ্ঞানীরাও। নিম্নে তাদের অবদান উল্লেখ করা হলো:

ছবি	নাম	জন্মস্থান	আবিষ্কার / কার্যবিবরন / অবদান
	সেন কুয়ো (Shen Kuo, ১০৩১-১০৯৫)	চীন	চুম্বকের কাজে তার অবদান রয়েছে।

ছবি	নাম	জন্মস্থান	আবিষ্কার / কার্যবিবরন / অবদান
	আর্য ভট্ট (Anya Bhatt, ৪৭৬-৫৫০)	ভারত	গাণিতিক প্রমাণের যোগফল পর্যালোচনা করেন। দ্বিঘাত সমীকরণ সমাধানের প্রচেষ্টা নেন। শূণ্যকে সত্যিকার অর্থে ব্যবহার করেন।
The state of the s	বরাহ মিহির (Varahainihira ,৫০৫-৫৮৭)		সিদ্ধান্ত নামক গ্রন্থে ভারতীয় জ্যোতির্বিদ্যা তুলে ধরেন। যোগ, বিয়োগ, গুন, ভাগ এর কাজ ও শূণ্যের কাজ আলোচনা করেন।
	ভাস্করাচার্য (Abu Abdullah Ibn Al- Khwazriz খ্রিস্টাব্দ: ৭৮৩- ৮৫০)	4 I P	 প্রাচীন ভারতের অন্যতম এই জ্যোতির্বিদ পৃথিবীর ব্যাস বের করতে সক্ষম হন যা হলো 7182 মাইল বর্তমানে তারা তাদের 926 মাইল। পাই (π) এর মান নির্ণয় করেন।

তাছাড়া ভারতীয় জ্যোতির্বিদ ব্রহ্মগুপ্ত বিজ্ঞানী কণাদ এর বিশেষ ভূমিকা ছিল।

এখানেই থেমে থাকেনি বিজ্ঞানের শুভযাত্রা। এরপর শুরু হয় প্রাকৃতিক ঘটনার যথার্থ কারণের অনুসন্ধান। মধ্যযুগের ব্রয়োদশ শতকের সবচেয়ে বড় পন্ডিত ছিলেন অ্যালবার্টাস ম্যাগনাস (Albertas Magnus, 193-1280) যার বৈজ্ঞানিক মানসিকতা ছিল লক্ষ্য করার মতো। বিজ্ঞানের ইতিহাসে উল্লেখযোগ্য অবদান রেখেছেন রজার বেকন (Roger Bacon,1220-1292) যিনি ছিলেন পরীক্ষামূলক বৈজ্ঞানিক পদ্ধতির প্রবক্তা। পনেরো শতকের শেষ দিকে চিত্র শিল্পী লিওনার্দো দা ভিঞ্চি (Leonardo Da Vinci,1452-1219) যার বলবিদ্যা সম্পর্কে জ্ঞান ছিল এবং পাখির ওড়া পর্যবেক্ষণ করে উড়োজাহাজ মড়েল তৈরি করেন।

Roger Bacon

Leonardo Da Vinci

🍫 বিজ্ঞানের উত্থানপর্ব

তোমরা শুনে অবাক হবে যে ইউরোপের রেনেসাঁ যুগ অর্থাৎ ষোড়শ এবং সপ্তদশ শতাব্দীতে ইউরোপে একটি বিস্ময়কর বিপ্লবের শুরু হয়। তোমাদের পঠনের সুবিধার্থে ছক আকারে তাদের অবদান বিশ্লেষণ করা হলো:

ছবি	নাম	জন্মস্থান	আবিষ্কার / কার্যবিবরন / অবদান
	ডা: গিলবার্ট (Gilbert, ১৫৪০- ১৬০৩)		চৌম্বকত্ব নিয়ে বিস্তারিত গবেষণা ও তত্ত্ব প্রদান করেন।
STORE	মেল (Snell, ১৫৯১- ১৬২৬)		• আলোর প্রতিসরণের সূত্র আবিষ্কার করেন।
	হাইগেন (Huygen, ১৬২৬- ১৬৯৫)		পেন্ডুলামের গতি পর্যালোচনা করেন, ঘড়ির যান্ত্রিক কৌশলের বিকাশ ঘটান, আলোর তরঙ্গ তত্ত্ব উদ্ভাবন করেন।
	রবার্ট হুক (Robert Hooke, ১৬৩৫-১৭০৩)	ইউরোপ	• বিকৃতকরণ বল (Distornig Force) এর ক্রিয়ার সংস্থাপক বস্তুর ধর্ম অনুসন্ধান করেন।
-5	রবার্ট বয়েল (Robert Boyle, ১৬২৭-১৬৯১)		 বিভিন্ন চাপে গ্যাসের ধর্ম বের করার জন্য পরীক্ষা-নিরীক্ষা চালান।
	<mark>ভন গুয়েরিক</mark> (Von Gueriche)		• বায়ুপাম্প আবিষ্কার করেন।
	রোমার (Romer, ১৬৪৪- ১৭১০)		বৃহস্পতির একটি উপগ্রহের গ্রহণ পর্যবেক্ষণ করে আলোর বেগ পরিমাণ করেন।

ছবি	নাম	জন্মস্থান	আবিষ্কার / কার্যবিবরন / অবদান
	কোপারনিকাস (Nicolaus Copernicus, ১৪৭৩-১৫৪৩)	ইউরোপ	তার একটি বইয়ের সূর্যকেন্দ্রিক সৌরজগতের ব্যাখ্যা দেন।
	কেপলার (Johannes Kepler, ১৫৭১- ১৬৩০)		উপবৃত্তাকার কক্ষপথের পরিকল্পনা করেন। তার গুরু ট্রাইকোব্রাহের পর্যবেক্ষণ লব্ধ তত্ত্ব দ্বারা গ্রহদের গতিপথ সম্পর্কে তার সূত্র যাচাই করেন। কোপার্নিকাসের তত্ত্ব প্রমাণ করেন।
	গ্যালিলিও (Galileo Galilei, ১৫৬৪-১৬৪২)	418	বৈজ্ঞানিক পদ্ধতিতে প্রমাণ এর উদ্ভাবক।
	নিউটন (Isaac Newton, ১৬৪৩-১৭২৭)	ÉĞ	 বলবিদ্যা ও মহাকর্ষ সূত্রের আবিষ্কারক। বিজ্ঞানী লিভনিজ এর সাথে মিলে ক্যালকুলাস আবিষ্কার করেন।
	ভাউন্ট রামফোর্ড (Sir Benjamin Thomson Count Ramford, ১৭৫৩- ১৮১৪)		 1798 সালে দেখান তাপ এক ধরনের শক্তি ও যান্ত্রিক শক্তিকে তাপ শক্তিতে রূপান্তর করা যায়।
	লর্ড কেলবিন (1 st Baron kelvin, ১৮২৪- ১৯০৭)		তাপগতিবিজ্ঞানের (Thrmo Dynamics)এর দুটি সূত্র দিয়েছেন 1850 সালে।
	কুলম্ব (Charles- Augustin de Coulomb, ১৭৩৬- ১৮০৬)		1778 সালে বৈদ্যুতিক চার্জের ভেতরকার বলের জন্য সূত্র আবিষ্কার করেন।

ছবি	নাম	জন্মস্থান	আবিষ্কার / কার্যবিবরন / অবদান
	ভোল্টা (Alessandro Volta, ১৭৪৫- ১৮২৭)		1800 সালে বৈদ্যুতিক মোটর আবিষ্কার করেন।
	অরস্টেড (Hans Christian Oersted, ১৭৭৭- ১৮৫১		1820 সালে দেখান বিদ্যুৎপ্রবাহ দিয়ে চুম্বক তৈরি করা যায়।
	ফ্যারাডে ও হেনরি (Michael Farady, ১৭৯১- ১৮৬৭) (Henry Cavendish, ১৭৩১-১৮১০)		1831 সালে দেখান চুম্বক দিয়ে বিদ্যুৎ তৈরি করা যায়।
	ম্যাক্সওয়েল (James Clerk Maxwell, ১৮০১- ১৮৭৯)		তার বিখ্যাত ম্যাক্সওয়েল সমীকরণ দিয়ে পরিবর্তনশীল বিদ্যুৎ ও চৌম্বকক্ষেত্রকে একই সূত্র নিয়ে দেখান আলো আসলে একটি বিদ্যুৎচৌম্বকীয় তরঙ্গ।

তবে ম্যাক্সওয়েলের আবিষ্কার সময়োপযোগী ছিলো। কারণ 1801 সালে **ইয়ং** পরীক্ষার মাধ্যমে আলোর তরঙ্গ ধর্মের প্রমাণ করে রেখেছিলেন।

আধুনিক পদার্থবিজ্ঞানের সূচনা:

উনবিংশ শতাব্দীর শুরু থেকেই বিজ্ঞানীরা দেখতে লাগলেন প্রচলিত পদার্থবিজ্ঞান দিয়ে অনেক কিছুই প্রমাণ করা যাচ্ছে না। তারপর 1900 সালে **ম্যাক্স প্ল্যাঙ্ক কোয়ান্টাম তত্ত্ব** আবিস্কার করেন যা ব্যবহার করে **পরমাণুর স্থিতিশীলতা** ব্যাখ্যা করা সম্ভব হয়েছিল।এরপর ভারতের প্রফেসর সত্যেন্দ্রনাথ বসু বিকিরণ সংক্রান্ত কোয়ান্টাম সংখ্যায়ন তত্ত্বের সঠিক গাণিতিক ব্যাখ্যা দিয়েছিলেন, যারা স্বীকৃতিস্বরূপ একশ্রেণীর মৌলিক কণিকার নাম বোজন রাখা হয়। 1900 থেকে 1930 সালের এই সময়টিতে অনেক বড় বড় বিজ্ঞানী মিলে কোয়ান্টাম তত্ত্ব আবিষ্কার করেন।

- 1887 সালে মাইকেলসন ও মোরলি দেখান আলোর বেগ স্থির কিংবা গতিশীল সব মাধ্যমে সমান।
- 1931 সালে ডিরাক প্রতি পদার্থের অস্তিত্ব ঘোষণা দেন।
- 1895 সালে রন্টজেন **X-Ray** আবিষ্কার করেন।
- 1896 সালে বেকেরেল দেখান পরমাণুর কেন্দ্র থেকে তেজস্ক্রিয় রশ্মি বিকিরণ হয়।
- 1899 সালে পিয়ারে ও মেরি কুরি **রেডিয়াম** আবিষ্কার করেন।

অ্যালবার্ট আইনস্টাইন (1879-1955)

মেরি কুরি (1867-1934)

🍄 সাম্প্রতিক পদার্থবিজ্ঞান:

ইলেকট্রনিক্স এবং আধুনিক প্রযুক্তির আবিষ্কার এর কারণে তৈরিকৃত এক্সেলেরেটর দিয়ে অনেক বেশি শক্তি এক্সেলেরেট করা সম্ভব হয় যা দিয়ে নতুন নতুন কণা আবিষ্কৃত করা হয় যেগুলো তাত্ত্বিক **Standard Model** দিয়ে সুবিন্যাস্ত করা সম্ভব হয়। কয়েকটি কণা দিয়ে সকল কণার গঠন ব্যাখ্যা করা সম্ভব হলেও ভর ব্যাখ্যা করা সম্ভব হচ্ছিল না যার জন্য **হিগস বোজন** নামে কণিকার ভবিষ্যদ্বাণী করা হয় যা **2013** সালে পরীক্ষাগারে সনাক্ত করা সম্ভব হয়।

1924 সালে হাবল দেখিয়েছিলেন সবগুলো গ্যালাক্সি একে অন্যের থেকে দূরে সরে যায় যা প্রদর্শন করে বিশ্বব্রহ্মাণ্ড প্রসারণশীল যা 14 বিলিয়ন বছর আগের **"বিগ ব্যাং"** নামক বিস্ফোরণ থেকে সৃষ্ট।

পদার্থ বিজ্ঞানের উদ্দেশ্য:

বিশাল বিশ্বব্রহ্মাণ্ডের রহস্য উদঘাটন <mark>করা</mark>ই হচ্ছে পদার্থ বিজ্ঞানের উদ্দেশ্য যাকে তিনটি মূল ভাগে ভাগ করা যায়: প্রগতি রহস্য উদঘাটন প্রকৃতির নিয়ম গুলো জানা প্রকৃতির নিয়ম ব্যবহার করে প্রযুক্তি বিকাশ

প্রগতি রহস্য উদঘাটন:

প্রাচীনকালে চীনে এক টুকরো লোডস্টোন অন্য এক টুকরোকে অদৃশ্য শক্তি দিয়ে আকর্ষণ থেকে চুম্বকত্ব, গ্রিসে আম্বর নামক পদার্থের পক্ষম দিয়ে ঘষার পর লোডস্টোন দুটিকে আকর্ষণ থেকে বিদ্যুৎ চৌম্বকীয় বল (Electromagnetism), দুর্বল নিউক্লিয় বল (Electro weak force), এভাবে একের পর এক রহস্যের উন্মোচন করেছেন পদার্থবিদরা। পরবর্তীতে দেখা যায় নিউট্রন ও প্রোটন কোয়ার্ক নামক মৌলিক কণা দিয়ে তৈরি।

💠 প্রকৃতির নিয়ম গুলো জানা:

মাধ্যাকর্ষণ বলের অস্তিত্ব থেকে নিউটনের মহাকর্ষ সূত্র ব্যাখ্যা দেন যা দিয়ে যেরকম একটি পড়ন্ত বস্তুর গতি ব্যাখ্যা করা যায়, তেমনি সূর্যকে ঘিরে পৃথিবীর প্রদক্ষিণকেও ব্যাখ্যা করা যায়। পদার্থবিজ্ঞানের বিস্ময়কর সাফল্যের পেছনে তাত্ত্বিক গবেষণার পাশাপাশি রয়েছে পরীক্ষা-নিরীক্ষা যার মাধ্যমে প্রকৃতির নিয়ম গুলো জানা যায় এবং এটাই পদার্থবিজ্ঞানের মূল উদ্দেশ্য।

প্রকৃতির নিয়ম ব্যবহার করে প্রযুক্তি বিকাশ:

1938 সালে অটোহান এবং স্ট্রেসম্যান দেখান নিউক্লিয়াসকে ভাঙলে যতটুকু ভর কমে তা শক্তি হিসেবে বের হয়, যেই সূত্র দিয়ে 'নিউক্লিয়ার বোমা' এর মতো মরণাস্ত্র ও মানুষের উপকারে 'নিউক্লিয়ার বৈদ্যুতিক কেন্দ্র' (Nuclear Plant) তৈরি করা হয়।

অর্ধপরিবাহীর সাথে বহির্জাত মৌল মিশিয়ে তৈরিকৃত ট্রানজিস্টর ও ডায়োড দিয়ে যা বর্তমান সভ্যতার ইলেকট্রনিক্সে অনেক বড় অবদান রেখেছে।

ভৌত রাশি এবং তার পরিমাপ:

(Physical Quantities and Their Measurments)

রাশি: এই জগতে যা কিছু পরিমাপ করতে পারি, একে আমরা রাশি বলি।

তোমরা শুনে অবাক হবে যে রাশিমালার শেষহীন এই ভৌত জগতের সকল রাশির সংজ্ঞা, মাত্রা, একক মনে রাখা সম্ভব মাত্র সাতটি মৌলিক রাশি দিয়ে।

SI একক (The International System of Units):

দৈর্ঘ্য, ভর, সময়, বৈদ্যুতিক প্রবাহ, তাপমাত্রা, পদার্থের পরিমাণ এবং দীপন তীব্রতা এই সাতটি মৌলিক রাশি গুলো আন্তর্জাতিকভাবে স্বীকৃত সাতটি একককে এসআই একক বলে।

(SI এসেছে ফরাসি ভাষার System International d'Units থেকে)

রাশি	Unit	একক	Symbol of Unit
দৈর্ঘ্য	metre	মিটার	m
ভর	kilogram	কিলোগ্রাম	kg
সময়	second	সেকেন্ড	S
বৈদ্যুতিক প্রবাহ	ampere	অ্যাম্পিয়ার	A
তাপমাত্রা	Kelvin	কেলভিন	K
পদার্থের পরিমাণ	mole	মোল	mol
দীপন তীব্ৰতা	candela	ক্যান্ডেলা	cd

পরিমাপের একক (Units of measurements):

সুনির্দিষ্টভাবে	বাস্তবিক ধারণা
(i) এক মিটার: শূন্য মাধ্যমে এক সেকেন্ডের ভাগের এক ভাগ সময় আলো যে দূরত্ব অতিক্রম করে সেটা হচ্ছে এক মিটার।	(i) এক মিটার: স্বাভাবিক উচ্চতা একজন মানুষের মাটি থেকে পেট পর্যন্ত দূরত্ব টা মোটামুটি এক মিটার।
(ii)এক কিলোগ্রাম: ফ্রান্সের একটা নির্দিষ্ট ভবনের রাখা প্লাটিনাম ইরিডিয়াম দিয়ে তৈরি 3.9 সেন্টিমিটার উচ্চতা ও ব্যাসের ভর হচ্ছে এক কেজি।	(ii) এক কিলোগ্রাম: 1 লিটার পানির বোতল বা চার গ্লাসে যতটুকু পানি থাকে তারপর হচ্ছে এক কেজি।
(iii) এক সেকেন্ড: সিজিয়াম 133 পরমাণুর 919 263 17703 টি স্পন্দন সম্পন্ন করতে যে সময় লাগে তা এক সেকেন্ড।	(iii) এক সেকেন্ড: 1001 এই তিনটি শব্দ বলতে যে সময় লাগে, তা হচ্ছে এক সেকেন্ড।
(iv) এক কেলভিন: পানির ত্রৈধ বিন্দুর তাপমাত্রাকে 27 3.16 দিয়ে ভাগ করলে যে তাপমাত্রা পাওয়া যায় সেটি হচ্ছে এক কেলভিন।	(iv) এক কেলভিন: হাত দিয়ে কারো জল অনুভব করলে বলা যেতে পারে তার তাপমাত্রা 1 কেলভিন বেড়েছে।

সুনির্দিষ্টভাবে	বাস্তবিক ধারণা
(v) এক অ্যাম্পিয়ার: যে পরিমাণ বিদ্যুৎ প্রবাহ হলে 1 মিটার দূরত্বে রাখা দুটি তার প্রতি মিটার দৈর্ঘ্য 2 × 10 নিউটন বলে পরস্পরকে।আকর্ষণ করে সেটা হচ্ছে এক এম্পিয়ার।	(v) এক অ্যাম্পিয়ার: তিনটি মোবাইল ফোন একসাথেই চার্জ করা হলে এক এমপি বিদ্যুৎ ব্যবহার করা হয়।
(vi) এক মোল: 0.12 কেজিতে যে কয়টি কার্বন 12 পরমাণু থাকে সেই সংখ্যক মৌলিক কণা এর সমান পদার্থ হচ্ছে এক মোল।	(vi) এক মোল: এক বড় চামচ পানিতে যত মোল পানির অনু থাকে, তা হচ্ছে এক মোল।
(vii) এক ক্যান্ডেলা: 1 সেকেন্ডে 540 বার কম্পনরত কোন আলোর উৎস থেকে যদি এক স্টেরেডিয়ান ঘনকোণে এক ওয়াটের 683 ভাগের একভাগ বিকিরণ বিব্রত পৌঁছায়, তাহলে সেই আলোর তীব্রতা হচ্ছে এক ক্যান্ডেলা।	(vii) এক ক্যান্ডেলা: একটি মোমবাতির আলোকে মোটামুটি ভাবে এক ক্যান্ডেলা ধরা যায়।

• অনেক বড় থেকে অনেক ছোট দূরত্ব

দূরত্ব	m
নিকটতম গ্যালাক্সি	6 × 10 ¹⁹
নিকটতম নক্ষত্র	4×10^{16}
সৌরজগতের ব্যাসার্ধ	6×10^{12}
পৃথিবীর ব্যাসার্ধ	6 × 10 ⁶
এভারেস্টের উচ্চতা	9×10^{3}
ভাইরাসের দৈর্ঘ্য	1×10^{-8}
হাইড্রোজেন পরমাণুর ব্যাসার্ধ	5×10^{-11}
প্রোটনের ব্যাসার্ধ	1×10^{-5}

• অনেক বড় থেকে অনেক ছোট সময়

সময়	
বিগ ব্যাংয়ের সময়	4×10^{17}
ডাইনোসরের সময়	2×10^{14}
মানুষের জন্ম	8×10^{12}
একদিন	9×10^{4}
মানুষের হৃৎস্পন্দন	1
মিউওন এর আয়ু	2×10^{-6}
স্পন্দনকাল: সবুজ আলো	2×10^{-15}
স্পন্দনকাল: এক MeV গামা রে	4×10^{-21}

• অনেক বড় থেকে অনেক ছোট ভর:

	T .
ভর	kg
আমাদের গ্যালাক্সি	2×10^{41}
সূৰ্য	2×10^{30}
পৃথিবী	6×10^{24}
জাহাজ	7×10^7

ভর	kg
হাতি	5×10^3
মানুষ	6×10^{1}
ধূলিকণা	7×10^{-7}
ইলেকট্ৰন	9 × 10 ⁻³¹

উপসৰ্গ বা গুণিতক (Prefix):

পদার্থবিজ্ঞানে উপসর্গ বলতে একটি প্রতীককে বোঝানো হয় যা বড় বড় আকৃতির সংখ্যাগুলোকে সংক্ষেপে লিখতে সাহায্য করে। যেমন: কখনো আমাদের গ্যালাক্সির ভর আবার কখনো ইলেকট্রনের ভর মাপতে হয়। ভরের মাঝে এই বিশাল পার্থক্য মাপার জন্য একটা এককেই সম্ভব নয়। তাই আন্তর্জাতিকভাবে কিছু উপসর্গ বা গুণিতক (Prefix) তৈরি করে নেওয়া হয়েছে যা আমরা আমাদের দৈনন্দিন জীবনে ব্যবহার করে থাকি।

মাত্রা (Dimension):

একটা রাশিতে বিভিন্ন মৌলিক রাশি কোন সূচকে বা কোন পাওয়ারে আছে সেটাকে তার মাত্রা বলে। আমাদের চারপাশে অসংখ্য রাশি রয়েছে যেগুলো কোন কোন মৌলিক রাশি দৈর্ঘ্য L,সময় T, ভর M,ইত্যাদি দিয়ে কিভাবে তৈরি হলো হয়েছে সেটা জানতে হয়।

বেগের মাত্রা:দূরত্ব/সময় $L/T=LT^{-1}$

ত্বরণের সময়: দূরত্ব/সময় $^{>}$ $L/T^2 = LT^{-2}$

বলের মাত্রা: ত্বরন/ভর= MLT^{-2}

 $\therefore [F] = MLT^{-2}$

একটা রাশিতে মাত্রা বোঝাতে হলে সেটিকে তৃতীয় ব্রাকেটের এর সাহায্যে দেখানো হয়।

বৈজ্ঞানিক প্রতীক ও সংকেত (Scientific Symbols and Notations):

এককের সংকেত লেখার জন্য নিচের পদ্ধতিগুলো অনুসরণ করা হয়ে থাকে:

1. কোনো রাশির মান প্রকাশ করার জন্য এমন একটি সংখ্যা লিখে তারপর ফাকা জায়গা (space) রেখে এককের সংকেতটি লিখতে হয়। যেমন 2.2kg, $7.3 \times 10^2~m$ কিংবা 22 K শতকরা।চিহ্নও (%) এই নিয়ম মেনে চলে।তবে ডিগ্রী (°) মিনিট (′) এবং সেকেন্ড (″) লেখার সময় সংখ্যার পর কোনো ফাঁকা জায়গা বা Space রাখতে হয় না।

- 2. গুন করে পাওয়া লব্ধ রাশি লেখার সময় দুটি এককের মাঝখানে একটি ফাঁকা জায়গা বা Space দিতে হয়। যেমন: 2.35Nm
- 3. ভাগ করে পাওয়া লব্ধ এককের বেলায় ঋণাত্মক সূচক বা '/' যেমন $(ms^{-1}$ কিংবা m/s_-) দিয়ে প্রকাশ করা হয়।
- 4. প্রতীকগুলোও যেহেতু গানিতিক প্রকাশ,কোনো কিছুর সংক্ষিপ্ত রুপ নয়,তাই তাদের সাথে কোনো যতিচিহ্ন (.)বা full stop ব্যবহার হয় না
- 5. এককের সংকেত লেখার সময় সোজা অক্ষরে যেমন মিটারের জন্য m,সেকেন্ডের জন্য s ইত্যাদি।তবে রাশির সংকেত লেখা হয় italic বা বাকা অক্ষরে। যেমন ভরের জন্য m, বেগের জন্য v ইত্যাদি
- 6. এককের সংকেত ছোট হাতের অক্ষরে লেখা হয় যেমন, *cm*, *s*, *mol* ইত্যাদি।তবে যেগুলো কোনো বিজ্ঞানী নাম থেকে নেওয়া হয়েছে সেখানে বড় হাতের অক্ষর (নিউটনের নাম অনুসারে N) একাধিক অক্ষর হলে শুধু প্রথম অক্ষর বড় হাতের অক্ষর হবে(প্যাস্কেলের নামানুসারে গৃহীত একক Pa)
- 7. এককের উপসর্গ (K,G,M) এককের (m,W,Hz)সাথে কোনো ফাক ছাড়া যুক্ত হবে যেমন km,GW,MHz
- 8. কিলো (10^3) থেকে সব বড় উপসর্গ হতে হবে (M, G, T)
- 9. এককের সংকেতগুলো কখনো বহুবচন হবে না (25kgs নয় সব সময় 25kg)
- কোনো সংখ্যা বা যৌগিক একক এক লাইনে লেখার চেষ্টা করতে হবে। খুব প্রয়োজন হলে সংখ্যা এবং এককের মাঝখানে line break দেওয়া যেতে পারে।

পরিমাপের যন্ত্রপাতি (Measuring Instruments):

স্ক্রেল

100 cm বা 1 m লম্বা স্কেলকে মিটার স্কেল বলে। এটাকে মিলিমিটার পর্যন্ত দাগ টানা থাকে ও অন্যপাশে ইঞ্চি দাগ কাটা থাকে।

ভার্নিয়ার স্কেল (Vernier Scale):

অত্যন্ত সূক্ষ্ম কাজে আমাদের সূক্ষ্মভাবে মাপার প্রয়োজন হয়, তখন ভার্নিয়ার স্কেল ব্যবহার করতে হয়।

Jaws(for measuring outer dimensions)

এখানে ভার্নিয়ার স্কেল কে মূল স্কেলের পাশে লাগানো থাকে এবং সামনে-পেছনে সরানো যায়। মূল স্কেলের 9mm দৈর্ঘ্যকে ভার্নিয়ার স্কেলের দশভাগ বলা হয়েছে।

সুতরাং,প্রত্যেকটা ভাগ হচ্ছে $rac{9}{10}mm$ যা, 1mm থেকে $rac{1}{10}mm$ কম

পরিমাপ:

ভার্নিয়ার সমপাতন: ভার্নিয়ার স্কেলের যে দাগটি মূল স্কেলের দাগের সাথে মিলে যায়, সেটাই হলো ভার্নিয়ার সমপাতন। ভার্নিয়ার ধ্রুবক: ভার্নিয়ার স্কেল দিয়ে সর্বনিম্ন যতটুকু দৈর্ঘ্য নির্ভুলভাবে মাপা যায় তাকে ভার্নিয়ার ধ্রুবক (Vernier Constant) বলে।

(মূল স্কেলের ছোট ভাগের দূরত্বকে ভার্নিয়ার স্কেলের ভাগসংখ্যা দিয়ে ভাগ দিলেই ভার্নিয়ার সমপাতন পাওয়া যায়)

$$\therefore VC = \frac{1mm}{10} = 0.01mm = 0.0001m$$

💠 স্লাইড ক্যালিপার্সের ভার্নিয়ার স্কেল দিয়ে পরিমাপের পদ্ধতি:

প্রথমে মিলিমিটারের সর্বশেষ দাগ পর্যন্ত মেপে ভার্নিয়ার স্কেলের দিকে তাকাতে হয়।

- তারপর ভার্নিয়ার স্কেলের সমপাতন (V) দিয়ে ভার্নিয়ার ধ্রুবক (VC=0.0001m) গুন করতে হয়
- 🕨 প্রাপ্ত মান মূল স্কেলের পাঠের (M) এর সাথে যোগ করলেই নিখুঁত পরিমাণ পাওয়া যাবে।
- \therefore পাঠ = $M + (V \times VC)$

❖ স্লাইড ক্যালিপার্স/ভার্নিয়ার স্কেলের ব্যবহার:

- 🗲 কোন জিনিসের দৈর্ঘ্য মাপার জন্য।
- গোলক বা সিলিন্ডারের ব্যাস মাপার জন্য।
- 🕨 ফাঁপা টিউবের ভেতর ও বাইরের ব্যাস মাপার জন্য।

স্কু গজ (Screw Gauge): স্ক্রুগজ এক ধরনের ডিভাইস যা বিভিন্ন যন্ত্রপাতি খুব ছোট দৈর্ঘ্য, তারের ব্যাস, পাতলা পাতের পুরুত্ব ইত্যাদি অতি সূক্ষ্ম ভাবে মাপার জন্য ব্যবহৃত হয়।

স্ক্রু এর পিচ: বৃত্তাকার স্কেল একবার ঘোরালে রৈখিক স্কেল বরারর যে দূরত্ব যায় তাকে পিচ (Pitch) বলে।

স্কু গজের ন্যূনাঙ্ক: যে বৃত্তাকার অংশটি ঘুরিয়ে স্কেল স্কেলটিকে সামনে-পেছনে নেওয়া হয় সেটিকে 100 ভাগে ভাগ করা হলে প্রতি এক ঘর ঘূর্ণনের জন্য স্কেলটি পিচের 1/100 ভাগের এক ভাগ অগ্রসর হয় যাকে স্কু গজের ন্যূনাঙ্ক/ লঘিষ্ট গনন (Least Count) বলে।

ব্যালান্স (ভর মাপার যন্ত্র):ভর সরাসরি মাপা যায় না তাই সাধারণত ওজন মেপে সেখান থেকে ভরটি বের করা হয়। আজকাল ইলেকট্রনিক ব্যালেন্সের ব্যবহার অনেক বেড়ে গেছে। ব্যালেন্সের ওপর নির্দিষ্ট বস্তু রাখা হলেই ব্যালেন্সের সেন্সর সেখান থেকে নিখুঁতভাবে ওজনটি বের করে দিতে পারে।

চিত্র: ডিজিটাল ওজন মাপার যন্ত্র

থামা ঘড়ি (Stop Watch): সময় মাপার জন্য স্টপ ওয়াচ ব্যবহার করা হয়। স্টপ ওয়াচে যেকোনো একটি মুহূর্ত থেকে সময় মাপা শুরু করা হয় এবং নির্দিষ্ট সময় পার হওয়ার পর সময় মাপা বন্ধ করে কতখানি সময় অতিক্রান্ত হয়েছে সেটি বের করে ফেলা যায়। মজার ব্যাপার হচ্ছে, স্টপ ওয়াচ যত নিখুঁতভাবে সময় মাপতে পারে আমরা হাত দিয়ে কখনোই তত নিখুঁতভাবে এটা শুরু করতে বা থামাতে পারি না।

চিত্র: থামা ঘড়ি বা স্টপ ওয়াচ।

Error নামটি দেখেই বোঝা যাচ্ছে এটি হচ্ছে প্রকৃত মানের তুলনায় পরিমাপ করা মাপের পার্থক্যটুকু। তোমরা নিশ্চয়ই বুঝতে পারছ আমরা যখন পরিমাপ করি তখন প্রকৃত মানটি আসলে জানি না। তাই চূড়ান্ত ত্রুটি হিসেবে আমরা সবচেয়ে বেশি সম্ভাব্য ত্রুটিকেই ব্যবহার করি। অর্থাৎ আমাদের আগের উদাহরণে চূড়ান্ত ত্রুটি হচ্ছে:

$$|\pm 0.5mm| = 0.5mm$$

চুড়ান্ত ত্রুটির পর আমরা Relative error বা আপেক্ষিক ত্রুটির বিষয়টি দেখতে পারি। ধরা যাক কোনো দৈর্ঘ্য মাপতে গিয়ে $\pm 0.5mm$ ত্রুটি হয়। বস্তুটির দৈর্ঘ্য যদি 1mm হয় তাহলের এই ত্রুটিটি খুবই গুরুতর কিন্তু দৈর্ঘ্যটি যদি 1m হয় তাহলে পরিমাপটি যথেষ্ট নির্ভুল। এই বিষয়টুকু বোঝানোর জন্য আপেক্ষিক ত্রুটি বা Relative error এর ধারণা আনা হয়েছে।

অর্থাৎ.

আপেক্ষিক ত্রুটি= চূড়ান্ত ত্রুটি/পরিমাপ করা মান

কাজেই আমাদের আগের উদাহরণ:

আপেক্ষিক ত্ৰুটি হচ্ছে: 0.5mm /9mm =0.056

শতাংশের হিসাবে এটি হচ্ছে $0.056 \times 100 = 5.6\%$

Example-01: ধরা যাক বর্গাকৃতি একটি বইয়ের দৈর্ঘ্য পরিমাপ করে তুমি 10cm পেয়েছ। ধরা যাক পরিমাপে 10% আপেক্ষিক ত্রুটি রয়েছে। বস্তুটির আপেক্ষিক ত্রুটি কত?

সমাধান: বস্তুটির পরিমাপ করা ক্ষেত্রফল $10 \times 10 = 100 cm^2$

যেহেতু আপেক্ষিক ত্রুটি 10% কাজেই তার দৈর্ঘ্য পরিমাপ করা হলে সবচেয়ে কম 9cm এবং সবচেয়ে বেশি 11cm হতে পারে।

কাজেই ক্ষেত্রফল, A_{min} 9 $cm imes 9cm = 81cm^2$ এবং

 A_{max} $11cm \times 11cm = 121cm^2$

কাজেই চূড়ান্ত ত্রুটি: $|100cm^2 - 81cm^2| = 19cm^2$

অথবা, $|121cm^2 - 100cm^2| = 21cm^2$

যেহেতু দুটি সমান নয় আমরা বড়টি নেই অর্থাৎ চূড়ান্ত ত্রুটি $21cm^2$

আপেক্ষিক ত্রুটি, $\frac{21cm^2}{100cm^2} = 0.21$

 $= 0.21 \times 100 = 21\%$

অর্থাৎ দৈর্ঘ্যের পরিমাপএ 10% ত্রুটি হলে ক্ষেত্রফলের বেলায় সেটি হবে প্রায় দ্বিগুণ।একইভাবে তুমি দেখাতে পারবে আয়তন মাপা হলে তার ত্রুটি হবে তিন গুণ।

Example-02: তুমি একটি বাক্স একটি রুলার দিয়ে মেপেছ যেখানে শুধু cm দিয়ে দাগ।তুমি বাক্সটির দৈর্ঘ্য,প্রস্থ এবং উচ্চতা হিসেবে পেয়েছ, 10cm, 5cm, 4cm তোমার মাপে কত শতাংশ ত্রুটি আছে

সমাধান: যেহেতু রুলারে শুধু cm দেওয়া আছে কাজেই ত্রুটি $\pm 0.5cm$

দৈর্ঘ্য 10 ± 0.5cm

প্রস্থ 5 ± 0.5cm

উচ্চতা 4 ± 0.5cm

পরিমাপকৃত আয়তন: $10cm \times 5cm \times 4cm = 200cm^3$

সম্ভাব্য সবচেয়ে ছোট আয়তন:

 $(10 - 0.5)cm \times (5 - 0.5)cm \times (4 - 0.5)cm = 149.625cm^3$

সম্ভাব্য সবচেয়ে বড় আয়তন:

 $(10 + 0.5)cm \times (5 + 0.5)cm \times (4 + 0.5)cm = 259.875cm^3$

কাজেই আয়তন, $149.625cm^3 < V < 259.875cm^3$

চূড়ান্ত ত্ৰুটি:

 $149.625cm^3$ থেকে $200cm^3$ হচ্ছে $200cm^3 - 149.625cm^3 = 50.375cm^3$

 $200cm^3$ থেকে $259.875cm^3$ হচ্ছে $259.875cm^3 - 200cm^3 = 59.875cm^3$

আমরা বড়টি নেই, $59.875cm^3$

আপেক্ষিক ত্রুটি: $59.875cm^3/200cm^3=29.9375\%=30\%$

সূত্ৰ	সংকেত পরিচিতি	একক (SI)
ভার্নিয়ার ধ্রুবক, $VC = \frac{S}{T}$	VC = (Verner Constant) ভার্নিয়ার ধ্রুবক	m(মিটার $)$
n	S = প্রধান স্কেলের ক্ষুদ্রতম এক ভাগের দৈর্ঘ্য	m(মিটার $)$
	n= ভার্নিয়ার স্কেলের ভাগ সংখ্যা	একক নেই
ন্যূনাঙ্ক, $L.C = \frac{P}{n}$	$n \ = \ $ বৃত্তাকার স্কেলের ঘর সংখ্যা	একক নেই
n	$p \ = \ exttt{যন্ত্রের পিচ}$	m(মিটার)
	L. C(least Count) = নূনাঙ্ক	m(মিটার $)$
দন্ডের দৈর্ঘ্য, $L = M + V \times VC$	L = দন্ডের দৈর্ঘ্য	m(মিটার $)$
	M= প্রধান স্কেলের পাঠ	একক নেই
	V= ভার্নিয়ার সমপাতন	<i>m</i> (মিটার)
আপেক্ষিক ত্রুটি = চূড়ান্ত ত্রুটি পরীক্ষাকৃতমান	VC = (Verner Constant)ভার্নিয়ার ধ্রুবক	শতকরা (%)

নিম্নোক্ত সূত্রগুলো পাঠ্যবইয়ে না থাকলেও বেশ গুরুত্বপূর্ণ

সুত্র	সংকেত পরিচিতি	একক(<i>SI</i>)
ব্যাস, $D = L + C \times L.C$	D = ব্যাস	<i>m</i> (মিটার)
	L = রৈখিক স্কেল পাঠ	<i>m</i> (মিটার)
	C = বৃত্তাকার স্কেলের পাঠ	একক নেই
	L.C = न्यृनाङ्क	<i>m</i> (মিটার)
প্রস্থচ্ছেদের ক্ষেত্রফল, $A=\pi r^2=rac{1}{4}\pi d^2$	A = প্রস্থচ্ছেদের ক্ষেত্রফল	m^2
-	d = ব্যাস	m(মিটার)
	r= ব্যাসার্ধ	m(মিটার $)$
সিলিন্ডারের আয়তন, $V=\pi r^2 h=rac{1}{4}\pi d^2 h$	V = সিলিন্ডারের আয়তন	m^3
4	r= ব্যাসার্ধ	m(মিটার $)$
	h = সিলিন্ডারের উচ্চতা	m(মিটার $)$
	d = ব্যাস	m(মিটার $)$
আয়তাকার বস্তুর আয়তন, $V=L imes B imes H$	V = আয়তাকার বস্তুর আয়তন	m^3
	L = দৈৰ্ঘ্য	<i>m</i> (মিটার)
	B = প্রস্থ	<i>m</i> (মিটার)
	H = উচ্চতা	<i>m</i> (মিটার)

সৃজনশীল-১: একটি স্লাইড ক্যালির্পাসের দুই চোয়াল একত্রিত অবস্থায় দেখা গেল ভার্নিয়ারের শূন্য দাগ মূল স্কেলের শূন্য দাগের ডানে আছে এবং এ অবস্থায় ভার্নিয়ারের ২ নম্বর দাগটি রৈখিক স্কেলের সাথে মিলেছে। একটি তারকে দুই চোয়ালের মাঝে স্থাপন করে নিম্নোক্ত উপাত্ত পাওয়া যায়। ভার্নিয়ারের মোট ভাগ সংখ্যা 10

পরীক্ষণীয় বিষয়	মূল স্কেল পাঠ (mm)	ভার্নিয়ার সমপাতন
ব্যাস	8	2
উচ্চতা	10	2

- (ক) পিচ কি?
- (খ) কোন যন্ত্রের ভার্নিয়ার ধ্রুবক 0.3mm বলতে কি বুঝায়? ব্যাখ্যা কর।
- (গ) তারটি বক্রপৃষ্ঠের ক্ষেত্রফল নির্ণয় কর।
- (ঘ) তারটি আয়তন নির্ণয় সম্ভব কি? গাণিতিক যুক্তি দাও।

সমাধান:

- (ক) স্ক্রু গজের বৃত্তাকার স্কেল একবার সম্পূর্ণ ঘুরালে এর মূল স্কেল বরাবর যতটুকু সরণ ঘটে এবং রৈখিক স্কেল বরাবর যে দৈর্ঘ্য অতিক্রম করে তাকে বলা হয় পিচ।
- (খ) স্লাইড ক্যালিপার্স এর প্রধান স্কেলের ক্ষুদ্রতম এক ভাগের চেয়ে ভার্ণিয়ার স্কেলের এক ভাগ যতটুকু ছোট তার পরিমাণই হলো ভার্ণিয়ার ধ্রুবক। অর্থাৎ ভার্ণিয়ার ধ্রুবক 0.03mm বলতে বুঝায়, প্রধান স্কেলের ক্ষুদ্রতম এক ভাগের চেয়ে ভার্ণিয়ার স্কেলের একভাগ 0.03mm ছোট।

(গ) এখানে, ভার্নিয়ার ধ্রুবক,
$$VC = \frac{1}{10} mm = 0.01 mm$$

সুতরাং,যান্ত্রিক ত্রুটি,
$$e=(2\times 0.01)mm$$

= 0.02mm

এখন তারের ব্যাস নির্ণয়ের ক্ষেত্রে,

প্রধান স্কেলের পাঠ , $M_D=8mm$

ভার্নিয়ার সমপাতন, $V_D=2$

সুতরাং,তারের ব্যাস, $D=M_D+V_D imes VC-e$

$$= 8mm + 2 \times 0.01mm - 0.02mm$$

=8mm

আবার, তারের উচ্চতা নির্ণয়ের ক্ষেত্রে,

মূল স্কেলের পাঠ, $M_H=10mm$

ভার্নিয়ার সমপাতন, $V_H=2$

সুতরাং, তারের উচ্চতা, $h=M_H+V_H imes VC-e$

$$= 10mm + 2 \times 0.001mm - 0.02mm$$

= 10mm

সুতরাং, তারের বক্রপৃষ্ঠের ক্ষেত্রফল $= 2\pi rh$ বর্গ একক

$$=2\pi \times \frac{D}{2} \times h$$
 বৰ্গ একক

= πDh বর্গ একক

 $=\pi \times 810mm^2$

 $= 251.328mm^2$

(ঘ) 'গ' হতে পাই,

তারের ব্যাস , D=8mm

তারের উচ্চতা , h=10mm

সুতরাং তারের আয়তন,
$$=\pi r^2 h$$
 ঘন একক

$$= \frac{1}{4} \times \pi \times 8^2 \times 10 mm^3$$

 $= 502.656mm^3$ (প্রায়)

সৃজনশীল-২: উদ্দীপকটি লক্ষ্য কর এবং নিম্নলিখিত প্রশ্নগুলোর উত্তর দাও: স্লাইড ক্যালিপার্সের সাহায্যে সিলিন্ডারের আয়তন নির্ণয়ের পাঠ:

সিলিন্ডারের	প্রধান স্কেলের পাঠ (সে.মি)	সমপাতন
ব্যাস	5	20
উচ্চতা	6	12

ভার্নিয়ার ধ্রুবক, 0.001 সেমি.

- (ক) মাত্রা কাকে বলে?
- (খ) পরিমাপের একক বলতে কী বুঝায়?
- (গ) উদ্দীপকের ভার্নিয়ার স্কেলের ভাগ সংখ্যা নির্ণয় কর।
- (ঘ) উদ্দীপকের তথ্য থেকে সিলিন্ডারের আয়তন নির্ণয় করা যাবে কী? গাণিতিকভাবে ব্যাখ্যা কর।

সমাধান

- (ক) কোনো ভৌত রাশিতে উপস্থিত মৌলিক রাশি গুলোর সূচককে রাশির মাত্রা বলে।
- (খ) যে কোন কিছুর পরিমাপের জন্য প্রয়োজন একটি আদর্শ পরিমাণ যার সাথে তুলনা করে অন্য বস্তুর পরিমাপ করা যায়। পরিমাপের এই আদর্শ মানকেই বলা হয় পরিমাপের একক। ধরা যাক কোন লাঠির দৈর্ঘ্য বলা হলো 4। তাহলে আমাদের পক্ষে 4 দ্বারা কিছু বোঝা সম্ভব নয়। মিটার, সেমি., কেজি, সেকেন্ড নাকি অন্যকিছু। তাই এটি সুনির্দিষ্ট করে বোঝার জন্য একটি একক ব্যবহার করতে হবে যাতে সবাই বুঝতে পারবে।

(গ) দেওয়া আছে,ভার্ণিয়ার ধ্রবক,
$$= 0.001cm$$
 $= 0.01mm$ $= 502.656mm^3$

প্রধান স্কেলের ক্ষুদ্রতম 1 ভাগের দৈর্ঘ্য 1মিমি. আমরা জানি.

বা,
$$0.01 = \frac{1}{\text{ভার্নিয়ার স্কেলের ভাগ সংখ্যা}}$$

বা, ভার্নিয়ার স্কেলের ভাগ সংখ্যা
$$=$$
 $\frac{1}{0.01}$ $=$ 100

(ঘ) সিলিন্ডারের ব্যাস,
$$(d)=$$
 প্রধান স্কেলের পাঠ $(cm)+$ ভার্নিয়ার সমপাতন $imes$ ভার্নিয়ার ধ্রুবক $=(5+20 imes0.001)cm=5.02cm$

সিলিন্ডারের উচ্চতা,
$$(h) =$$
 প্রধান স্কেলের পাঠ $(cm) +$ ভার্নিয়ার সমপাতন \times ভার্নিয়ার ধ্রুবক $= (6 + 12 \times 0.001)cm$ $= 6.012 \ cm$

আমরা জানি, সিলিন্ডারের আয়তন,
$$=\frac{1}{4}\times\pi\times D^2\times h$$
 ঘন একক
$$=\frac{1}{4}\times\pi\times(5.02)^2\times6,012~cm^3$$

$$=118.991~cm^3$$

সৃজনশীল-০৩: একটি স্লাইড ক্যালিপার্সের প্রধান স্কেলের ক্ষুদ্রতম ভাগের দৈর্ঘ্য 1mm এবং ভার্নিয়ার স্কেলের মোট ভাগ সংখ্যা 10 টি। স্লাইড ক্যালিপার্সটির সাহায্যে একটি ফাঁপা সিলিন্ডারের ভিতরের গ্যাস ও গভীরতা নির্ণয়ের পাঠ নিম্নরুপ পাওয়া গেল।

পাঠের স্থান	প্রধান স্কেল পাঠ (m)	ভার্নিয়ার সমপাতন
ব্যাস বরাবর (d)	3	10
গভীরতা বরাবর(h)	5	6

- (ক) পরিমাপ কাকে বলে?
- (খ) পরিমাপের ক্ষেত্রে এককের ভূমিকা ব্যাখ্যা কর।
- (গ) স্লাইড ক্যালিপার্সটির ভার্নিয়ার ধ্রুবক cm এককে নির্ণয় কর
- (ঘ) সিলিন্ডারটিতে $40cm^3$ পানি রাখা হলে তা পূর্ণ হবে, না কিছু অংশ খালি থাকবে? গাণিতিকভাবে তোমার মতামত উপস্থাপন কর।

সমাধান:

- (ক) কোন কিছুর পরিমাণ নির্ণয় করাকেই পরিমাপ বলে।
- (খ) পরিমাপের ক্ষেত্রে এককের ভুমিকা অপরিসীম। কোন বস্তুর পরিমাপের একক উল্লেখ না থাকলে তবে বস্তুটির পরিমাপ সম্পর্কে প্রকৃত ধারনা পাওয়া যায় না। যেমন: কোনো বস্তুর দৈর্ঘ্য 10 বললে বস্তুটির দৈর্ঘ্য সম্পর্কে প্রকৃত ধারণা পাওয়া যায় না। যদি একক উল্লেখ থাকে, যেমন: 10 মিটার; তবে বস্তুটির দৈর্ঘ্য সম্পর্কে ধারণা পাওয়া যায়।
- (গ) উদ্দীপকে, মূল স্কেলের ক্ষুদ্রতম 1 ভাগের দৈর্ঘ্য, S=1mm=0.1cm এবং ভার্নিয়ার স্কেলের ভাগ সংখ্যা, n=10

আমরা জানি, ভার্নিয়ার ধ্রুবক, $VC=rac{s}{n}$ $=rac{0.1cm}{10}=0.01cm$

যেহেতু সিলিন্ডারের আয়তন সেহেতু সিলিন্ডারটি চিত্রে পানি ধারণ রাখা হলে তা পূর্ণ হবেনা বরং সিলিন্ডারের কিন্তু অংশ কিছু অংশ খালি থাকবে

(ঘ) মনে করি, সিলিন্ডারের ব্যাস,dউদ্দীপক হতে,

প্রধান স্কেলের পাঠ, M=3cm

ভার্নিয়ার সমপাতন,V=10

'গ' হতে পাই, ভার্নিয়ার ধ্রুবক, VC = 0.01cmআমরা জানি, ব্যাস, $d = M + V \times VC$

$$=3cm+10\times0.01cm$$

$$= 3.1cm$$

সুতরাং, সিলিন্ডারটির ব্যাস,d=3.1cm

আবার মনে করি, সিলিন্ডারটির উচ্চতা,h

উদ্দীপক হতে,

প্রধান স্কেলের পাঠ, M=5

ভার্নিয়ার সমপাতন,V=6

'গ' হতে পাই, ভার্নিয়ার ধ্রুবক, VC=0.01cm

আমরা জানি, উচ্চতা, $h = M + V \times VC$

$$= 5 + 6 \times 0.01$$
cm

= 5.06cm

সুতরাং, সিলিন্ডারটির উচ্চতা, h = 5.06cm

সুতরাং, সিলিন্ডারটির আয়তন, $V=rac{1}{4} imes\pi\times d^2 imes h$ ঘন একক $=38.191 {
m cm}^3$

যেহেতু সিলিন্ডারের আয়তন সেহেতু সিলিন্ডারটিতে পানি রাখা হলে তা পূর্ণ হবে না কিছু অংশ খালি থাকবে।

সৃজনশীল-৪:

স্লাইড ক্যালিপার্সের সাহায্যে দৈর্ঘ্য AB ও স্ক্রু-গজের সাহায্যে দন্ডটির ব্যাস নির্ণয় করা হলো। স্লাইড ক্যালিপার্সে প্রধান স্কেল পাঠ 50cm, ভার্ণিয়ার সমপাতন 6 এবং স্ক্রু গজে রৈখিক স্কেল পাঠ 4mm এবং বৃত্তাকার স্কেলের ভাগ সংখ্যা 10 পাওয়া গেল। ভার্ণিয়ার ধ্রুবক 0.01cm এবং ন্যূনাঙ্ক 0.01mm

- (ক) লব্ধ রাশি কাকে বলে?
- (খ) স্ক্রু গজের ন্যূনাঙ্ক 0.01mm বলতে কী বুঝায়?
- (গ) AB দন্ডটির আয়তন নির্ণয় কর।
- (ঘ) সূক্ষ্ম পরিমাপের ক্ষেত্রে যন্ত্র দুটির ভূমিকা আলোচনা কর।

সমাধান:

- (ক) **লব্ধ রাশি:** একাধিক মৌলিক রাশি হতে উদ্ভুত রাশিসমূহকে লব্ধ রাশি বলে।
- (খ) ন্যূণাঙ্ক: স্ক্রুগজের ন্যূণাঙ্ক 0.01mm বলতে বোঝায় স্ক্রুগজটি দ্বারা সর্বনিম্ন 0.01mm পর্যন্ত নির্ভুলভাবে মাপা যাবে। স্ক্রু গজের পিচ 1mm ও বৃত্তাকার স্কেলের ভাগ সংখ্যা 100 হলে

ন্যুণাঙ্ক =
$$\frac{1}{100}mm = 0.01mm$$

অর্থাৎ বৃত্তাকার স্কেল ঘুরালে রৈখিক স্কেলে সরন ঘটবে।

(গ) স্লাইড ক্যালিপার্সের সাহায্যে,

দৈর্ঘ্য,h= প্রধান স্কেলের পাঠ + ভার্নিয়ার সমপাতন imes ভার্ণিয়ার ধ্রবক

$$=5cm+(6\times0.01)cm$$

$$= 5.06cm = 0.0506m$$

স্ক্রু গজের সাহায্যে,

ব্যাস, d= রৈখিক স্কেলের পাঠ + বৃত্তাকার স্কেলের পাঠ imes ন্যূণাঙ্ক

$$=4mm+(10\times0.01)mm$$

$$= 4.1mm = 0.0041m$$

সুতরাং, ব্যাসার্ধ,
$$r=rac{d}{2}=\left(rac{0.0041}{2}
ight)m=0.00205m$$

সুতরাং,আয়তন, $v=\pi r^2 h$ ঘন একক

$$= 3.1416 \times (0.00205m)^2 \times 0.0506$$

$$= 6.680 \times 10^{-7} m^3$$

সুতরাং, AB দন্ডটির আয়তন, $v=6.680 imes 10^{-7} m^3$

(ঘ) উদ্দীপকের পরিমাপ যন্ত্র দুটি হল স্লাইড ক্যালিপার্স এবং স্ক্রু-গজ। সূক্ষ্ম পরিমাপের ক্ষেত্রে যন্ত্রটির ভূমিকা অপরিসীম।

স্লাইড ক্যালিপার্সের গুরুত্ব: আমরা সাধারণত স্কেলে সর্বোচ্চ মিলিমিটার পর্যন্ত মাপতে পারি। কিন্তু মিলিমিটারের ভগ্নাংশ পরিমাপ করা যায় না, অন্য কথায় 1mm এর কম দৈর্ঘ্য পরিমাপ করা যায় না। মিলিমিটারের ভগ্নাংশ পরিমাপের ক্ষেত্রে স্লাইড ক্যালিপার্স ব্যবহৃত হয় স্লাইড ক্যালিপার্স দিয়ে 1mm এর কম দৈর্ঘ্য অত্যন্ত সূক্ষ্মভাবে পরিমাপ করা যায়। ক্ষুগজ এর গুরুত্ব: সাধারণ সরল স্কেলের সাহায্যে সাধারণ কোন বস্তুর দৈর্ঘ্য, প্রস্থ, উচ্চতা মাপা গেলেও কোনো বৃত্তাকার

স্ক্রুগজ এর গুরুত্ব: সাধারণ সরল স্কেলের সাহায্যে সাধারণ কোন বস্তুর দৈর্ঘ্য, প্রস্থ, উচ্চতা মাপা গেলেও কোনো বৃত্তাকার বস্তুর ব্যাসার্ধ পরিমাপ করা যায় না। যেমন: সাধারণ স্ক্রেল ব্যবহার করে কোন তার বা সরু চোঙের ব্যাসার্ধ পরিমাপ করা যায় না। বৃত্তাকার বস্তুর ব্যাসার্ধ পরিমাপে স্ক্রু-গজ ব্যবহৃত হয়। এর সাহায্যে তার বা সরু চোঙের ও ছোট দৈর্ঘ্য সঠিকভাবে পরিমাপ করা যায়।

সৃজনশীল-৫:

রুপার ছোট বোন আলিয়া নবম শ্রেণির ছাত্রী। আলিয়ার তার আংটির ব্যাসার্ধ জানা প্রয়োজন। এজন্য সে একটি যন্ত্র ব্যবহার করল। যন্ত্রটির মূল স্কেলের ক্ষুদ্রতম এক ভাগের দৈর্ঘ্য 1 মিমি. এবং ভার্নিয়ারের ভাগ সংখ্যা 10. যন্ত্রটির সাহায্যে ব্যাস পরিমাপের সময় সে প্রধান স্কেলের পাঠ পেল 9 মিমি. এবং ভার্নিয়ার সমপাতন পেল 6.

- (ক) পিচ কাকে বলে?
- (খ) মাত্রা বলতে কি বুঝ? ব্যাখ্যা কর।
- (গ) আলিয়ার আংটির ব্যাসার্ধ কত?
- (ঘ) অন্য কোন যন্ত্রের সাহায্যে আলিয়া তার আংটির ব্যাসার্ধ মাপতে পারবে কি? ব্যাখ্যা কর। সেই যন্ত্রটি দিয়ে আলিয়া আংটির বদলে চুড়ির ব্যাসার্ধ মাপতে পারবে কি?

সমাধান:

- (ক) পিচ: বৃত্তাকার স্কেলের এক বার ঘূর্ণনে মূল স্কেল বরাবর অতিক্রান্ত দূরত্বকে পিচ বলে।
- (খ) কোন ভৌত রাশি এক বা একাধিক মৌলিক রাশির সমন্বয়ে গঠিত সুতরাং যে কোন ভৌত রাশিকে বিভিন্ন সূচকের (power) এক বা একাধিক মৌলিক রাশির গুণফল হিসেবে প্রকাশ করা যায়। একটি রাশিতে বিভিন্ন মৌলিক রাশি কোন সূচকে বা কোনো পাওয়ারে আছে তাকে তার মাত্রা বলে।

যেমন: বল= ভর imes ত্বরণ = ভর $imes rac{বেগ}{সময়}$ = ভর $imes rac{দৈর্ঘ্য}{(সময়)^2}$ । এখানে, দৈর্ঘ্যের মাত্রা L, ভরের মাত্রা M, সময়ের মাত্রা T, বসালে মাত্রা পাওয়া যাবে, $rac{ML}{T^2}$ = MLT^{-2}

(গ) ভার্নিয়ার ধ্রুবক,
$$VC = \frac{মূল স্কেলের ক্ষুদ্রতম $_1$ ভাগের দৈর্ঘ্য ভার্নিয়ার স্কেলের ভাগ সংখ্যা $= \frac{1}{10} \; \mathrm{mm}$$$

 $= 9.6 \, \text{mm}$

= 0.1 mm এখানে

সুতরাং আংটির ব্যাস, $d=M+V\times VC$ M, প্রধান স্কেলের পাথ =9mm V, ভার্নিয়ার সমপাতন =6 $=(9~mm+6\times0.1~mm)$

সুতরাং আংটির ব্যাসার্ধ = $\frac{9.6}{2}$ mm

 $= 4.8 \, \text{mm}$

(ঘ) স্লাইড ক্যালিপার্স ছাড়াও স্ক্রুগজ এর সাহায্যে তারের ব্যাসার্ধ নির্ণয় করা যায়। স্ক্রুগজে দুই প্রকার স্কেল থাকে। একটি রৈখিক স্কেল আর একটি বৃত্তাকার স্কেল। এই যন্ত্রের সাহায্যে আংটির ব্যাসার্ধ নির্ণয় করার আগে যন্ত্রটি পরীক্ষা করে নেওয়া হয় যে এতে কোন ত্রুটি আছে কিনা। বৃত্তাকার স্কেলের শূন্য দাগ যদি রৈখিক স্কেলের মূল দাগের সাথে মিলে যায় তাহলে বুঝতে হবে যন্ত্রে কোন ত্রুটি নেই। তারপর যন্ত্রের নূানাঙ্ক নির্ণয় করা হয়। এজন্য পিচকে বৃত্তাকার স্কেলের ভাগ সংখ্যা দ্বারা ভাগ করা হয় এরপর আংটিকে স্ক্রুগজ এর মাঝখানে আটকে রৈখিক স্কেলের পাঠ ও বৃত্তাকার স্কেলের ভাগ সংখ্যা নির্ণয় করা যায় তারপর নিচের সূত্রের সাহায্যে আংটির ব্যাসার্ধ নির্ণয় করা হয়। তারপর আংটির ব্যাস= (রৈখিক স্কেলের পাঠ + বৃত্তাকার স্কেলের পাঠ × ন্যূনাঙ্ক) দিয়ে নির্ণয় করা হয়। আবার আলিয়ার কেনা জিনিসটি আংটি না হয়ে সাধারণ চুড়ি হলে চুড়ির ব্যাসার্ধ শুধুমাত্র স্লাইড ক্যালিপার্স দিয়ে মারতে পারত। সাধারণ স্ক্রু গজ দিয়ে মাপতে পারত না। কারণ সাধারণ স্ক্রু গজ দিয়ে শুধুমাত্র ছোট ব্যাস মাপা যায়। এক্ষেত্রে চুড়িটি অপেক্ষাকৃত বড় হওয়ায় একে স্ক্রু গজের দুই প্রান্তের মাঝে স্থাপন করা যাবে না। তাই ব্যাসও মাপা যাবে না।

সৃজনশীল-৬:

প্রত্যেক রাশির নির্দিষ্ট একক ও মাত্রা আছে। আবার একই লব্ধ রাশি কে বিভিন্ন ভাবে প্রকাশ করা যায়। যেমন:

- (i) W = FS
- (ii) W = mgh এবং
- (iii) $E_k = \frac{1}{2}mv^2$

তবে সবক্ষেত্রেই 'W' এর একক ও মাত্রা অবশ্যই সমান হবে। এক্ষেত্রে রাশিগুলো তাদের প্রচলিত অর্থ বহন করে ।

- (ক) মাত্রা কাকে বলে ?
- (খ) মৌলিক রাশির এককসমূহের কি কি বৈশিষ্ট্য থাকা দরকার?
- (গ) (i) নং থেকে W এর মান নির্ণয় করে, (ii) নং থেকে 'g' এর মান নির্ণয় কর
- (ঘ) মাত্রা বিশ্লেষণের মাধ্যমে দেখাও যে, উল্লেখিত তিনটি সমীকরণের W এর মাত্রা একই।

সমাধান:

- (ক) **মাত্রা:** একটি রাশিতে বিভিন্ন মৌলিক রাশি কোন সূচকে বা কোন ঘাতে আছে, তাকে তার মাত্রা বলে।
- (খ) **মৌলিক রাশির একক সমূহের বৈশিষ্ট্য:** মৌলিক রাশির একক সমূহ যেহেতু অন্য একক গুলোর উপর নির্ভর করে না, তাই মৌলিক একক ইচ্ছেমতো নির্বাচন করা যায়। কিন্তু সেই নির্বাচনের আন্তর্জাতিক স্বীকৃতি পেতে হবে। এর কয়েকটি বৈশিষ্ট্যও থাকতে হবে-

এটি হতে হবে অপরিবর্তী- স্থান, কাল, পাত্র কোন কিছুর উপর নির্ভর করে না। কালের বিবর্তন বা অন্য কোন প্রকৃতির পরিবর্তনের ফলে এর কোনো পরিবর্তন হবে না। সহজে এটি পুনরুৎপাদন করা যাবে।

(গ) ১ নং সমীকরণ অনুসারে,

কাজ ,
$$W=FS$$

$$= mas$$

$$= m \frac{\Delta v}{\Delta t} \cdot s$$

$$= m \frac{\frac{\Delta s}{\Delta t}}{\Delta t} \cdot s$$

$$= m \frac{\Delta v}{\Delta t^2} \cdot s$$

সুতরাং কাজের মাত্রা, $[W] = \frac{ML^2}{T^2} = ML^2T^{-2}$

- (i) নং সমীকরণ থেকে কাজের মাত্রা, $[W] = ML^2T^{-2}$
- (ii) নং সমীকরণ থেকে পাই কাজ, W=mgh

সুতরাং,
$$g = \frac{W}{mh}$$

অর্থাৎ অভিকর্ষজ ত্বরণ, $g=rac{$ বিভবশক্তি}{ভর $_{ extsf{x}}$ উচ্চতা

$$g$$
 এর মাত্রা = $\frac{$ বিভবশক্তি মাত্রা} $= \frac{}{}$ ভর মাত্রা \times উচ্চতা মাত্রা

 $= \frac{ML^2T^{-2}}{ML} = LT^{(-2)}$

(ঘ)
$$W = FS(i)$$

$$[W] = ML^2T^{-2}$$
 [গ হতে]

$$W = mgh \dots (ii)$$

বিভব শক্তি = ভর × অভিকর্ষজ ত্বরণ × উচ্চতা

$$=$$
 ভর $\times \frac{\overline{\text{সরণ}}}{(\overline{\text{সময়}})^{5}} \times \overline{\text{উচ্চতা}}$

মাত্রা:[W] = $M\frac{L^2}{T^2}$

[সরন ও উচ্চতা উভয়েরই মাত্রা L]

$$= ML^2T^{-2}$$

$$W = \frac{1}{2}mv^2 \cdots \cdots \text{(iii)}$$

$$=\frac{1}{2} \times$$
 ভর $\times \frac{(সরণ)^{2}}{(সময়)^{2}}$

$$[W] = M \frac{L^2}{T^2}$$

$$= ML^2T^{-2}$$

সুতরাং, উল্লেখিত তিনটি সমীকরণের W এর মাত্রা একই।

সুজনশীল-৭:

ইঞ্জিনিয়ার রুপা অটোমোবাইল কোম্পানিতে কর্মরত। তিনি গাড়ির গতির উপর গবেষণা করেন। তিনি সমত্বরণে গতিশীল একটি গাড়ির অতিক্রান্ত দূরত্ব নির্ণয়ের জন্য $S=ut+rac{1}{2}at^2$ সমীকরণটি ব্যবহার করেন। গাড়িটির এই দূরত্ব অতিক্রম করতে গাড়িটির উপর কত বল প্রযুক্ত হয়েছে তা নির্ণয়ে তিনি দ্বিতীয় আরেকটি সমীকরণ, F=ma ব্যবহার করেন। এভাবে তিনি গাড়ির গতির ওপর গবেষণার বিভিন্ন সমীকরণ ব্যবহার করেন।

[বিভব শক্তি ও কাজের মাত্রা একই]

- (ক) মৌলিক রাশি কাকে বলে?
- (খ) এককের গুণিতক ও উপগুণিতক ব্যবহার হয় কেন?
- (গ) ইঞ্জিনিয়ার খালিদের ব্যবহৃত দ্বিতীয় সমীকরণ থেকে বলের মাত্রা নির্ণয় কর।
- (ঘ) অতিক্রান্ত দূরত্ব নির্ণয়ে ব্যবহৃত সমীকরণটি সঠিক কিনা মাত্রা সমীকরণ ব্যবহার করে যাচাই কর।

সমাধান

- (ক) যে সকল রাশি অন্য রাশির ওপর নির্ভর করে না বরং অন্যান্য রাশি এদের ওপর নির্ভর করে তাদেরকে মৌলিক রাশি বলে।
- (খ) অনেক সময় মৌলিক একে গুলোর ভগ্নাংশ বা গুণিতক ব্যবহার করা সুবিধাজনক হয়। যখন একটি রাশির মান খুব বড় বা ছোট হয় তখন একেকটি গুণিতক বা উপগুণিতক ব্যবহার খুবই প্রয়োজনীয় হয়। উদাহরণস্বরুপ আমরা যদি বাতাসের দুইটি অণুর মধ্যকার দূরত্ব বিবেচনা করি তাহলে দেখি যে ওই দূরত্ব খুবই ছোট। এই দূরত্ব হচ্ছে (0.00000001m) এক মিটার। আমরা যদি বারবার এই সংখ্যা ব্যবহার করে তাহলে আমাদের সাবধানে থাকতে হবে, প্রতিক্ষেত্রে শুন্যের সংখঅ্যা ঠিকমতো উল্লেখ করে হয়েছে কি না। কিন্তু এই সংখ্যাকে যদি আমরা একটি উপসর্গ ব্যবহার করি তাহলে 0.00000001m কে হয়তো লিখব $0.1\mu m, '\mu'$ (মাইক্রো) উপসর্গটি 10^{-6} হবে, সেক্ষেত্রে ভুল হওয়ার সম্ভাবনা কম।
- (গ) উদ্দীপকে ব্যবহৃত ২ নং সমীকরন ব্যবহার করে পাই, F=ma

বল= ভর
$$\times$$
 ত্বরণ
$$= ভর \times \frac{বেগ}{সময়}$$

$$= ভর \times \frac{\overline{y}}{\overline{y}}$$

$$= \overline{y}$$

সুতরাং, বল = $\frac{ভর<math>\times$ সরণ}{(সময়)^{২}}

ভরের মাত্রা,M

সরণের মাত্রা, L

সময়ের মাত্রা, T

(i) নং সমীকরণ হতে,

[বল] =
$$[M] \times \frac{[L]}{[T]^2} = [ML^2T^{-2}]$$

সুতরাং, বলের মাত্রা = $[ML^2T^{-2}]$

(ঘ) অতিক্রান্ত দূরত্ব নির্নয়েও ব্যবহৃত সমীকরণটি হলো: $S=ut+rac{1}{2}at^2$

সমীকরণ, S হলো সরণ,এর মাত্রা = L

U হলো আদিবেগ, এর মাত্রা = $\frac{L}{T} = LT^{-1}$

a হলো ত্বরণ, এর মাত্রা = $\frac{L}{T^2} = LT^{-2}$

t হলো সময়, এর মাত্রা = T

ডান দিকের ১ম পদ, ut এর মাত্রা হলো: $LT^{-1} \times T = L$

ডানদিকের ২য় পদ, at^2 এর মাত্রা হলো: $LT^{-2} \times T^2 = L$

দেখা যাচ্ছে যে, উপরোক্ত সমীকরণের বামদিকের পদটির মাত্রা এবং ডানদিকের দুইটি পদের মাত্রাও L

্র সমীকরণটি সিদ্ধ সুতরাং অতিক্রান্ত দূরত্ব নির্ণয় ক্ষেত্রে উপরে সমীকরণটি সঠিক।

সুজনশীল-৮:

রাফা স্কুলে আয়তন নির্ণয়ের সূত্র শিখে এসে ঠিক করলে সে তার বক্সের আয়তন নির্ণয় করবে। এ জন্য সে cm স্কেল বেছে নিল, পরিমাপ করে সে দৈর্ঘ্য পেল 10cm, প্রস্থ 9cm, এবং উচ্চতা 8cm, কিন্তু তার বড় ভাই রাফি বললো তার পরিমাপে আপেক্ষিক ত্রুটি রয়েছে।

- (ক) মাত্রা কি?
- (খ) ভর ও ওজন এক নয় কেন?
- (গ) রাফার পরিমাপকৃত সম্ভাব্য সবচেয়ে বড় আয়তন কত?
- (ঘ) রাফার বড় ভাইয়ের দাবির যথার্থতা ব্যাখ্যা করো। সমাধান:
- (ক) (ক) একটি রাশিতে যেসব মৌলিক রাশি ব্যবহৃত হয়েছে তাদের ঘাতগুলোকে মাত্রা বলে।

(খ)

নং	ভর	ওজন
٥	ভর হলো কোনো বস্তুতে বিদ্যমান পদার্থের সংখ্যা	ওজন হলো বস্তুর উপর পৃথিবী দ্বারা বল
২	ভর স্কেলার রাশি	ওজন ভেক্টর রাশি
٥	ভর মৌলিক রাশি	ওজন লব্ধ রাশি

গ) যেহেতু রাফা পরিমাপের জন্য cm সেন্টিমিটার স্কেল ব্যবহার করেছে সুতরাং ত্রুটি $\pm 0.5cm$

প্রস্থ =
$$9 \pm 0.5cm$$

সম্ভাব্য সবচেয়ে বড় আয়তন,
$$V_{max}=(10+0.5)\times(9+0.5)\times(8+0.5)cm^3$$

= $847.875cm^3$

(ঘ) রাফার ভাই দাবি করেছে, রাফার পরিমাপে আপেক্ষিক ত্রুটি আছে। নিম্নেন এর যথার্থতা যাচাই করা হলো:-'গ' হতে পাই,

$$V_{max} = 847.875cm^3$$

সম্ভাব্য সবচেয়ে কম আয়তন,
$$V_{min}=(10-0.5)\times(9-0.5)\times(8-0.5)cm^3$$

= $605.625cm^3$

সূতরাং ত্রুটি:-

$$(i) \dots |847.875 - 720|cm^3 = 127.825cm^3$$

$$(ii) \dots |720 - 605.625| cm^3 = 114.375 cm^3$$

: চৃড়ান্ত ত্রুটি হিসেবে বড়টিকে বিবেচনা করে পাই,

সুতরাং আপেক্ষিক ত্রুটি,
$$\frac{\overline{p}$$
ড়ান্ত ত্রুটি \overline{q} রিমাপকৃত মান $=\frac{127.825}{720}=17.825\%$ রাফার বড ভাইয়ের উক্তিটি যথার্থ।

সৃজনশীল-৯: স্লাইড ক্যালিপার্সের সাহায্যে একটি গোলক ও বেলুন পরিমাপ করে নিম্নোক্ত পাঠ দেওয়া হলো:

বস্তুর আকৃতি	বৈশিষ্ট্য	প্রধান স্কেল	ভার্নিয়ার সমপাতন	ভার্নিয়ার ধ্রুবক
গোলক	ব্যাস	6	7	0.01 mm
বেলন	ব্যাস	6	8	
	উচ্চতা	10	6	

- (ক) বৈদ্যুতিক ব্যাটারি আবিষ্কার করেন কে?
- (খ) ভার্নিয়ার ধ্রুবক 0.01cm বলতে কি বুঝ?
- (গ) বেলনের ব্যাসার্ধ নির্ণয় করো।
- (ঘ) বেলনের আয়তন গোলকের আয়তনের কত গুণ হবে- তোমার মতামত গাণিতিক ভাবে উপস্থাপন করো।

সমাধান:

- (ক) বৈদ্যুতিক ব্যাটারি আবিষ্কার করেন আলেসান্দ্রো ভোল্টা।
- (খ) স্লাইড ক্যালিপার্স এর প্রধান স্কেলের ক্ষুদ্রতম এক ভাগের চেয়ে ভার্নিয়ার স্কেলের একভাগ যতটুকু ছোট তার পরিমাণ হল ভার্নিয়ার ধ্রুবক অর্থাৎ ভার্নিয়ার ধ্রুবক 0.01cm বলতে বোঝায় প্রধান স্কেলের ক্ষুদ্রতম এক ভাগের চেয়ে ভার্নিয়ার স্কেলের 0.1mm পরিমাণ ক্ষুদ্রতর।এক্ষেত্রে ভার্নিয়ার স্কেল মোট 10 টি ভাগ রয়েছে এবং 10 টি ভাগের মোট দৈর্ঘ্য = মূল স্কেলের ক্ষুদ্রতম 9 ভাগের দৈর্ঘ্য = 9mm
- (গ) এখানে,

প্রধান স্কেলের পাঠ = 6mm

ভার্নিয়ার সমপাতন = 8

ভার্নিয়ার ধ্রুবক = 0.1mm

সুতরাং বেলনের ব্যাস = প্রধান স্কেলের পাঠ + ভার্নিয়ার সমপাতন × ভার্নিয়ার ধ্রুবক

$$= 6mm + 8 \times 0.1mm = 6.8mm$$

সুতরাং, বেলনের ব্যাসার্ধ $= \frac{6.8}{2} mm = 3.4 mm$

ঘ) গোলকের ব্যাস = প্রধান স্কেলের পাঠ + ভার্নিয়ার সমপাতন × ভার্নিয়ার ধ্রুবক

$$= 6mm + 7 \times 0.1mm = 6.7mm$$

সুতরাং , গোলকের ব্যাসার্ধ = $\frac{6.7}{2}mm = 3.35mm$

সুতরাং, গোলকের আয়তন, $V_1=rac{4}{3}\pi r^3=rac{4}{3}\pi (3.35)^3=157.48mm^3$

গ হতে পাই, বেলনের ব্যাসার্ধ, $r_1=3.4mm$

∴ বেলনের উচ্চতা, h = প্রধান স্কেলের পাঠ + ভার্নিয়ার সমপাতন × ভার্নিয়ার ধ্রুবক

$$= 10 + 6 \times 0.1 = 10.6mm$$

 \therefore বেলনের আয়তন, $V_2=\pi r_2^2 h$

$$= \pi (3.4)^2 \times 10.6 = 384.96 mm^3$$

অতএব, $\frac{V_2}{V_1} = \frac{384.96mm^3}{157.48mm^3}$

সুতরাং, $V_2 = 2.44V_1$

সুতরাং, বেলনের আয়তন, গোলকের আয়তন এর 2.44 গুণ হবে।

সৃজনশীল-১০:

একটি স্লাইড ক্যালিপার্স দিয়ে একটি বেলনাকার লোহার দন্ডের ব্যাস পরিমাপ করতে গিয়ে দেখা গেল, প্রধান স্কেল পাঠ 4cm এবং ভার্নিয়ার সমপাতন 6। ভার্নিয়ার স্কেলের 20 ভাগ, প্রধান স্কেলের 19 ভাগের সমান। প্রধান স্কেলের ক্ষুদ্রতম এক ভাগের দৈর্ঘ্য 1mm.

- (ক) পিচ কী?
- (খ)ভার্নিয়ার ধ্রুবক 0.01cm বলতে কি বুঝ?
- (গ) লোহার দণ্ডটির ব্যাসার্ধ নির্ণয় কর।
- (ঘ) দণ্ডটির দৈর্ঘ্য 10 cm হলে সেটি কত আয়তনের পানি অপসারিত করবে? গাণিতিকভাবে নির্ণয় কর।

সমাধান

- (ক) স্ক্রুগজের টুপি একবার ঘুরালে এর যতটুকু সরণ ঘটে এবং রৈখিক স্কেল বরাবর যে দৈর্ঘ্য এটি অতিক্রম করে, তাকে স্ক্রুগজের পিচ বলে।
- (খ) স্লাইড ক্যালিপার্স এর প্রধান স্কেলের ক্ষুদ্রতম এক ভাগের চেয়ে ভার্নিয়ার স্কেলের একভাগ যতটুকু ছোট তার পরিমাণ হল ভার্নিয়ার ধ্রুবক অর্থাৎ ভার্নিয়ার ধ্রুবক 0.01cm বলতে বোঝায় প্রধান স্কেলের ক্ষুদ্রতম এক ভাগের চেয়ে ভার্নিয়ার স্কেলের 0.1mm পরিমাণ ক্ষুদ্রতর।এক্ষেত্রে ভার্নিয়ার স্কেল মোট 10 টি ভাগ রয়েছে এবং 10 টি ভাগের মোট দৈর্ঘ্য = মূল স্কেলের ক্ষুদ্রতম 9 ভাগের দৈর্ঘ্য = 9mm
- গ) দন্ডের ব্যাস d হলে,

$$d = M + V \times VC$$

= $d = 40 + 6 \times 0.05$
= $40.3mm = 4.03cm$

দেওয়া আছে,

প্রধান স্কেলের পাঠ,M=4cm=40mm

ভার্নিয়ার সমপাতন,V=6

ভার্নিয়ার স্কেলের ভাগ সংখ্যা = 20

ভার্নিয়ার ধ্রুবক, $VC = \frac{1}{26} = 0.05mm$

লোহাটির দণ্ডের ব্যাসার্ধ,

$$r = \frac{d}{2} = \frac{4.03}{2} - 2.016cm$$

(ঘ) গ হতে পাই,

দন্ডটির ব্যাসার্ধ, r=2.016cm=0.02015m

দন্ডটির আয়তন, $v = \pi r^2 l$

$$= 3.1416 \times (0.02015)^2 \times 0.1$$

 $= 1.275 \times 10^{-4} m^3$

উদ্দীপক অনুসারে, দন্ডটি লোহার। দন্ডটির ঘনত্ব $(7800 kgm^{-3})$ পানির ঘনত্বের চেয়ে বেশি হওয়ায় এটি পানিতে ডুবে যাবে

সুতরাং দন্ডটি পানিতে সম্পূর্ণ নিমজ্জিত হলে এর সমআয়তনের অর্থাৎ $1.275 \times 10^{-4} m^3$ আয়তনের পানি অপসারণ করবে।

নিচের উদ্দীপকের অবলম্বনে ০১-০৩ নং প্রশ্নের উত্তর দাও:

একটি স্লাইড ক্যালিপার্স এর প্রধান স্কেলের 19 ঘর ভার্নিয়ার স্কেলের 20 ঘরের সমান। একটি ছোট্ট দন্ডের দৈর্ঘ্য এর দুই চোয়ালের মধ্যে স্থাপন করলে দেখা গেল যে, ভার্নিয়ার স্কেলের শূন্য দাগ প্রধান স্কেলের 5.2 cm দাগকে অতিক্রম করেছে। আবার প্রধান স্কেলের একটি দাগের সাথে ভার্নিয়ার স্কেলের 14 নং দাগ মিলে গেছে

- (০১) এই ক্যালিপার্সটির ভার্নিয়ার ধ্রুবক কত?
- (ক) 0.1cm
- (খ) 0.05cm
- (গ) 0.005cm
- (ঘ) 0.001cm

উত্তর (গ)

ব্যাখ্যা: ভার্নিয়ার ধ্রুবক $= rac{ প্রধান স্কেলের <math>1 ext{ ঘরের মান}}{ ভার্নিয়ার মোট ভাগসংখ্যা} = rac{0.1}{20} cm = 0.005 cm$

- (০২) ভার্নিয়ার সমপাতন কত ?
- (ক) 0

- (খ) 5.2
- (গ) 5.9
- (ঘ) 14

উত্তর (ঘ)

ব্যাখ্যা: ভার্নিয়ার স্কেলের যে দাগটি প্রধান রোগের সাথে মিলে যায় , ভার্নিয়ার স্কেলের সেই দাগটিকে ভার্নিয়ার সমপাতন বলে

- (০৩) দন্ডটির দৈর্ঘ্য কত?
- (ক) 5.57 cm
- (খ) 5.2295 cm
- (গ) 5.3295 cm
- (되) 5.27cm

উত্তর (ঘ)

ব্যাখ্যা: দৈর্ঘ্য = প্রধান স্কেলের পাঠ + (ভার্নিয়ার ধ্রুবক × ভার্নিয়ার সমপাতন)

নিচের উদ্দীপকের অবলম্বনে ০৪-০৫ নং প্রশ্নের উত্তর দাও:

মূল স্কেল ও ভার্নিয়ার স্কেলের সমন্বিত ব্যবহারে মোট পাঠ পাওয়া গেল 12.6mm

- (০৪) এখানে ভার্নিয়ার পাঠ এর মান কত?
- (**क**) 0.1mm
- (খ) 0.2mm
- (গ) 0.4mm
- (ঘ) 0.6mm

উত্তর (ঘ)

ব্যাখ্যা: আমরা জানি, মূল স্কেল ব্যবহার করে সর্বাধিক 1 মিলিমিটার পর্যন্ত সঠিক পাঠ পাওয়া যায়। অর্থাৎ মুল স্কেল ব্যবহারে উদ্দীপক অনুসারে প্রাপ্ত পাঠ 12 mm ভার্নিয়ার পাঠ এর মান = (12.6 - 12 mm) = 0.6 mm

- (০৫) ভার্নিয়ার সমপাতন 6 হলে উপরোক্ত ক্ষেত্রে ভার্নিয়ার ধ্রুবক কত ?
- (**本**) 5.57 cm
- (খ) 5.2295 cm
- (গ) 5.3295 cm
- (되) 5.27cm

উত্তর (ঘ

ব্যাখ্যা: দৈর্ঘ্য = প্রধান স্কেলের পাঠ + (ভার্নিয়ার ধ্রুবক × ভার্নিয়ার সমপাতন)

নিচের অনুচ্ছেদটি পড় এবং ০৬ ও ০৭ নং প্রশ্নের উত্তর দাও-

ল্যাবরেটরীতে একটি নতুন স্লাইড ক্যালিপার্স তৈরি করা হলো যার মূল স্কেলের 15 ভাগ ভার্নিয়ারের 16 ভাগের সমান। মূল স্কেলের ক্ষুদ্রতম এক ভাগের দৈর্ঘ্য 1mm. এই স্কেলের সাহায্যে একটি এক টাকা মূল্যের পয়সার ব্যাস মাপা হল। তাতে মূল স্কেলপাঠ পাওয়া গেল 15 মিমি. এবং ভার্নিয়ার সমপাতন পাওয়া গেল 7.

- (০৬) ভার্নিয়ার ধ্রুবক এর মান কত ?
- (**す**) 0.065mm
- (খ) 0.525mm
- (গ) 0.0625mm
- (ঘ) 0.625 mm

উত্তর (ঘ)

ব্যাখ্যা: ভার্নিয়ার ধ্রুবক =
$$\frac{প্রধান স্কেলের 1 ঘরের মান}{ভার্নিয়ার মোট ভাগসংখ্যা} = \frac{s}{n}$$

উপরোক্ত প্রশ্নে, $\frac{s}{n} = \frac{1}{16} = 0.0625mm$

(০৭) ভার্নিয়ার স্কেলের পাঠের মান কত?

(ক) 0.435mm

(খ) 0.4357mm

(গ) 0.425mm

(ঘ) 0.415mm

উত্তর (খ)

ব্যাখ্যা: আমরা জানি,

ভার্নিয়ার পাঠ = ভার্নিয়ার ধ্রুবক × ভার্নিয়ার সমপাতন

 $=7\times0.0625mm$

= 0.4375mm

নিচের অনুচ্ছেদটি পড় এবং ০৮ ও ০৯ নং প্রশ্নের উত্তর দাও:

ত্রুটিমুক্ত স্লাইড ক্যালিপার্সের সাহায্যে একটি দন্ডের দৈর্ঘ্য মাপার সময় মূল স্কেলের পাঠ 5 এবং ভার্নিয়ার সমপাতন 16 পাওয়া গেল । মূল স্কেলের ক্ষুদ্রতর এক ঘরের দৈর্ঘ্য 0.5mm এবং মূল স্কেলের 19 ঘর ভার্নিয়ার স্কেলের 20 ঘরের সমান

(০৮) ভার্নিয়ার ধ্রুবক কত ?

(ক) 0.1mm

(খ) 0.025mm

(গ) 0.026mm

(되) 0.25mm

উত্তর (খ)

ব্যাখ্যা: ভার্নিয়ার ধ্রুবক =
$$\frac{প্রধান স্কেলের $_1$ ঘরের মান ভার্নিয়ার মোট ভাগসংখ্যা = $\frac{0.5mm}{20} = 0.025mm$$$

- (০৯) উদ্দীপকের যন্ত্রটির সাহায্যে-
- (i) দন্ডটির দৈর্ঘ্য 5.4mm হয়
- (ii) দন্ডটির দৈর্ঘ্য 2.9mm হয়
- (iii) সর্বনিম্ন 0.025 mm দৈর্ঘ্য মাপা হয়

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ)i ,ii ও iii

উত্তর (খ)

ব্যাখ্যা: দন্ডের দৈর্ঘ্য = প্রধান স্কেলের পাঠ+ ভার্নিয়ার পাঠ (ভার্নিয়ার সমপাতন) × ভার্নিয়ার ধ্রুবক

$$= 5 + 16 \times 0.025mm = 5.4mm$$

যেহেতু ভার্নিয়ার স্কেলটির ভার্নিয়ার ধ্রবক 0.025mm; সেহেতু ভার্নিয়ার স্কেলের সাহায্যে 0.025 mm পর্যন্ত মাপা যাবে

(১০) একটি দন্ডকে স্লাইড ক্যালিপার্সের দুই চোয়ালের মাঝে স্থাপনের পর যে কাঠ পাওয়া গেল তা হচ্ছে প্রধান স্কেলের পাঠ 4cm, ভার্নিয়ার স্কেল সমাপতন 7, এবং ভার্নিয়ার ধ্রুবক ও 0.1mm দন্ডটির দৈর্ঘ্য কত ?

(**क**) 0.47cm

(খ) 4.07cm

(গ) 4.7mm

(ঘ) 4.07mm

উত্তর (খ)

ব্যাখ্যা: স্লাইড ক্যালিপার্সের সাহায্যে দৈর্ঘ্য নির্ণয়: স্লাইড ক্যালিপার্সের সাহায্যে দন্ডের দৈর্ঘ্য নির্ণয়ের

দন্ডের দৈর্ঘ্য = প্রধান স্কেলের পাঠ + ভার্নিয়ার পাঠ (ভার্নিয়ার সমপাতন) × ভার্নিয়ার ধ্রুবক

- $= (4 \times 10)mm + 7 \times 0.1mm$
- = 40mm + 0.7mm
- = 40.7mm = 4.07cm

(১১) at^2 এর মাত্রা কোনটি ?

(ক) L

- (খ) LT⁻¹
- (গ) LT^{-2}
- (ঘ) LT²
- উত্তর (ক)

ব্যাখ্যা: $at^2 = \Im \operatorname{sq} \times (\Im \operatorname{NR})^{2}$

$$=\frac{\operatorname{বেগ}}{\operatorname{সময়}} \times (\operatorname{সময়})^{2}$$

$$=\frac{\overline{\mathrm{সa}}}{(\overline{\mathrm{NA}})^{2}}\times(\overline{\mathrm{NA}})^{2}=\overline{\mathrm{Na}}=L$$

(১২) $S=ut+rac{1}{2}at^2$ সমীকরণে ut এর মাত্রা কোনটি?

(ক) L

- (খ) LT⁻¹
- (গ) LT^{-2}
- (ঘ) LT⁻³
- উত্তর (ক)

ব্যাখ্যা: u দ্বারা বেগ ও t দ্বারা সময়কে প্রকাশ করা হয়

বেগের মাত্রা $= LT^{-1}$

সময়ের মাত্রা = T

ut এর মাত্রা = LT^{-1} .T = L

(১৩) একটি স্লাইড ক্যালিপার্স এর প্রধান স্কেলের 19 ভাগ ভার্নিয়ার স্কেলের 20 ভাগের সমান। প্রধান স্কেলের এক ভাগের দৈর্ঘ্য 1 মিমি. হলে ভার্নিয়ার ধ্রুবক কত ?

- (**す**) 0.5mm
- (খ) 0.05mm
- (গ) 0.005mm
- (되) 0.0 563 cm
- উত্তর (ক)

ব্যাখ্যা: আমরা জানি,

ভার্নিয়ার ধ্রুবক, $\frac{s}{n} = \frac{1}{20} = 0.5$ মিমি.

সুতরাং ভার্নিয়ার ধ্রুবক 0.5 মিমি.

(১৪) একটি স্লাইড ক্যালিপার্স এর প্রধান স্কেলের 19 ভাগ ভার্নিয়ার স্কেলের 20 ভাগের সমান। প্রধান স্কেলের এক ভাগের দৈর্ঘ্য 1 মিমি. হলে ভার্নিয়ার ধ্রুবক কত ?

- (**す**) 0.5mm
- (খ) 0.05mm
- (গ) 0.005mm
- (되) 0.0 563 cm
- উত্তর (ক)

- (১৫) "বোজন" কার নাম থেকে এসেছে?
- (ক) জগদীশ চন্দ্ৰ বসু
- (খ) সুভাষ চন্দ্ৰ বসু
- (গ) সত্যেন্দ্রনাথ বসু
- (ঘ) শরৎ চন্দ্র বসু
- উত্তর (গ)

ব্যাখ্যা: "বোজন" শব্দটি সত্যেন্দ্রনাথ বসুর নাম থেকে নেয়া হয়েছে।

সত্যেন্দ্রনাথ বসু: ঢাকা বিশ্ববিদ্যালয়ের পদার্থবিজ্ঞানের প্রফেসর সত্যেন্দ্রনাথ বসু (১৮৯৪-১৯৭৪) তাত্ত্বিক পদার্থবিজ্ঞানে গুরুত্বপূর্ণ অবদান রাখেন। বিকিরণ সংক্রান্ত কোয়ান্টাম সংখ্যায়ন তত্ত্বের সঠিক গাণিতিক ব্যাখ্যা দিয়ে প্রফেসর সত্যেন্দ্রনাথ বসু পদার্থবিজ্ঞানের জগতে যে অবদান রেখেছিলেন, তার স্বীকৃতস্বরূপ একশ্রেণির মৌলিক কণাকে বোজন নাম দেওয়া হয়। ১৯০০ থেকে ১৯৩০ সালের এই সময়টিতে অনেক বড় বড় বিজ্ঞানী মিলে কোয়ান্টাম তত্ত্বটিকে প্রতিষ্ঠিত করে।

1				
(১৬) রসায়নের উপর ভি	ত্তি করে বিজ্ঞানের কোন শ	াখা দাড়িয়ে আছে?		
(ক) গণিত	(খ) জীববিজ্ঞান	(গ) পদার্থবিজ্ঞান	(ঘ) চিকিৎসা বিজ্ঞান	উত্তর (খ)
(১৭) সর্বপ্রথম কে কার্যব	চরণ ও যুক্তি ছাড়া শুধু ধর্ম,	অতিন্দ্রীয় ও পৌরাণিক কাহি	ইনী গ্রহণে অসম্মত হন?	
(ক) আরিস্তারাকস	(খ) থেলিস।	(গ) পিথাগোরাস	(ঘ) ইরাতেস্থিনিস	উত্তর (খ)
ব্যাখ্যা: সর্বপ্রথম থেলি	স কার্যকরণ ও যুক্তি ছাড়া ৰ	শুধু ধর্ম, অতিন্দ্রীয় ও পৌরাণি	ীক কাহিনী গ্রহণে অসম্মত	হন।
(১৮) কে সূর্যগ্রহণ সম্পবি	কঁত ভবিষ্যদ্বাণীর জন্য বিখ	্যাত?		
(ক) থেলিস	(খ) আইনস্টাইন	(গ) রোমার	(ঘ) বেকেরেল	উত্তর (ক)
(১৯) সূর্যকেন্দ্রিক সৌরও	নগতের ধারণা দেন কে?			
(ক) থেলিস	(খ) কো <mark>পার্নি</mark> কাস	(গ) আরিস্তাৱাকস	(ঘ) পিথাগোরাস	উত্তর (গ)
ব্যাখ্যা: আরিস্তারাকস	প্রথমে সূর্যকেন্দ্রিক সৌরজ	গতের ধারণা দিয়েছেন।		
(২০) আরিস্তারাক এর ত	<u> </u>			
(ক) থেলিস	(খ) সেলেউকাস	(গ) ইরাতেস্থিনিস	(ঘ) কোপার্নিকাস	উত্তর (খ)
(২১) পরমাণুর প্রাথমিক	ধারণা দেন কে?			
(ক) পিথাগোরাস	(খ) ডেমোক্রিটাস	(গ) ইবনে সিনা	(ঘ) আল হাজেন	উত্তর (খ)
ব্যাখ্যা: পরমাণুর প্রার্থ	মিক ধারণা দেন ডেমোক্রিট	াস।		
(২২) বৰ্তমানে বাদ্যযন্ত্ৰ ৩	3 সঙ্গীত বিষয়ক যে স্কেল র	য়েছে সেটি কোন বিজ্ঞানীর ত	অনুসন্ধানের আংশিক অবদ	ান?
(ক) ডেমোক্রিটাস	(খ) আর্কিমিডিস	(গ) থেলিস	(ঘ) পিথাগোরাস	উত্তর (ঘ)
উপপাদ্য ছাড়াও কম্পম	য়ান তারের উপর তার ক <u>া</u> জ	ধাগোরাস (খ্রি:৫২৭-৪৯৭) এ অধিক স্থায়ী অবদান রাখতে পন বিষয়ক'' তার অনুসন্ধা	ত সক্ষম হয়েছিল। বর্তমানে	
(২৩) পৃথিবীর সঠিক ব্যা	সার্ধ সর্বপ্রথম কে নির্ণয় করে	রন?		
(ক) থেলিস	(খ) পিথাগোরাস	(গ) ইরাতেস্থিনিস	(ঘ) আরিস্তারাকস	উত্তর (গ)
ব্যাখ্যা: পথিবীর সঠিক	ব্যাসার্ধ সর্বপ্রথম নির্ণয় করে	রন ইরাতেস্থিনিস।		

(২৪) শূণ্যকে সত্যিকার অগ	র্থ ব্যবহার করা হয় কোথায়?					
(ক) চীনে	(খ) ইউরোপে	(গ) ভারতবর্ষে	(ঘ) মুসলিম বিশ্বে	উত্তর (গ)		
ব্যাখ্যা: শূণ্যকে সত্যিকার করেন।	া অর্থে ব্যবহার করা হয় ভা	রতবর্ষে। উল্লেখ্য, ভারতীয়	গণিতবিদ আর্যভট্ট শূণ্য	আবিষ্কার		
(২৫) আল জাবির বইটি কা	ার লেখা?					
(ক) ইবনে হাইয়াম	(খ) পিথাগোরাস	(গ) আল খোয়ারিজমি	(ঘ) শেন কুয়ো	উত্তর (গ)		
	ট আল খোয়ারিজমির লেখা। ক্রানীদের ভেতর আল খোয় এসেছে।		। তার লেখা আল জাবির	বই থেকে		
(২৬) আলোকবিজ্ঞানের স্থ	পতি কাকে বিবেচনা করা হয়	?				
(ক) আল খোয়ারিজমি	(খ) শেন কুয়ো	(গ) ইবনে আল হাইয়াম	(ঘ) টলেমি।	উত্তর (গ)		
ব্যাখ্যা: আলোকবিজ্ঞানের	া স্থপতি বিবেচনা করা হয় ইন	বনে আল হাইয়াম কে।				
(২৭) গোলীয় দর্পণের সাহা	য্যে সূর্যরশ্মিকে কেন্দ্রীভূত ক	রে আগুন ধরানোর কৌশল	জানতেন কে?			
(ক) আল ফারাজী	(খ) ইবনে সিনা	(গ) থেলিস	(ঘ) আর্কিমিডিস	উত্তর (ঘ)		
(২৮) কে প্রকৃতির ইতিহাস	সম্পর্কে এ <mark>কটি</mark> এনসাইক্লোগি	পৈডিয়া লেখেন?				
(ক) হাইগেন	(খ) আল-মাসুদী	(গ) টলেমি	(ঘ) আল্ হাজেন	উত্তর (খ)		
ব্যাখ্যা: আল-মাসুদীর অবদান: আল-মাসুদী (৮৯৬-৯৫৬) প্রকৃতির ইতিহাস সম্পর্কে ৩০ খণ্ডের একটি এনসাইক্লোপিডিয়া লেখেন। উল্লেখ্য, এই বইয়ে বায়ুকলের উল্লেখ পাওয়া যায়। বর্তমানে পৃথিবীর অনেক দেশে এই বায়ুকলের সাহায্যে তড়িৎশক্তি উৎপাদন করা হচ্ছে।						
(২৯) আল মাসুদী রচিত এ	নসাইক্লোপিডিয়া কত খন্ডে?					
(ক) ২৮	(খ) ২৯	(গ) ৩০	(ঘ) ৩১	উত্তর (গ)		
•	৬-৯৫৬) প্রকৃতির ইতিহাস					
(৩০) উইন্ডমিল বা বায়ুকলে	ার উল্লেখ পাওয়া যায় কোন	মুসলিম বিজ্ঞানীর গ্রন্থে?				
(ক) গ্যালিলিও	(খ) আল মাসুদী	(গ) আল হাজেন	(ঘ) নিউটন	উত্তর (খ)		
•	৬-৯৫৬) প্রকৃতির ইতিহাস স ল্লেখ পাওয়া যায়। বর্তমানে					
(৩১) কে প্রমাণ করেন যে তাপ এক ধরনের শক্তি?						
(ক) জুল	(খ) নিউটন	(গ) কাউন্ট রামফোর্ড	(ঘ) রাদারফোর্ড	উত্তর (গ)		

মোবাইলে, থামাঘড়ি ব্যবহৃত হয়।

ব্যাখ্যা: অষ্টাদশ শতাব্দীর আগে তাপকে ভরহীন এক ধরনের তরল হিসেবে বিবেচনা করা হতো। ১৭৯৮ সালে কাউন্ট রামফোর্ড দেখান, তাপ এক ধরনের শক্তি এবং যান্ত্রিক শক্তিকে তাপশক্তিতে রূপান্তর করা যায়। উল্লেখ্য আরও অনেক বিজ্ঞানীর গবেষণার ওপর ভিত্তি করে লর্ড কেলভিন ১৮৫০ সালে তাপ গতিবিজ্ঞানের (থার্মোডিনামিজের) দুটি গুরুত্বপূর্ণ সূত্র দিয়েছিলেন।

(৩২) লর্ড কেলভিন তাপ গ (ক) ২	াতিবিজ্ঞানের কয়টি সূত্র প্রদ (খ) ৩	ান করেন? (গ) ৪	(ঘ) ১	উত্তর (ক)		
		. ,				
	নীর গবেষণার ওপর ভির্ গুরুত্বপূর্ণ সূত্র দিয়েছিলেন।	ত্তি করে লর্ড কেলভিন	১৮৫০ সালে তাপ র্গা	তবিজ্ঞানের		
(৩৩) কে দেখান যে, বিদ্যুৎ	. প্রবাহ দিয়ে চুম্বক তৈরি কর	া যায়?				
(ক) অরস্টেড	(খ) ফ্যারাডে	(গ) ইয়ং	(ঘ) হেনরি	উত্তর (ক)		
(৩৪) ক্যালকুলাস কার আ	বিষ্কার?					
(ক) আর্কিমিডিস	(খ) নিউটন	(গ) আল-হাজেন	(ঘ) রজার বেকন	উত্তর (খ)		
ব্যাখ্যা: ক্যালকুলাসের ত	যাবিষ্কারক : নিউটন ক্যালকু	লাস আবিষ্কার করেন।				
(৩৫) আপেক্ষিকতা তত্ত্ব দে	ওয়া হয় কোন শতাব্দীতে?					
•	(খ) অষ্টাদশ শতাব্দীতে	(গ) উনবিংশ শতাব্দীতে	(ঘ) বিংশ শতাব্দীতে	উত্তর (ঘ)		
আপেক্ষিক তত্ত্ব : আইন	ত্ত্ব দেওয়া হয় বিংশ শতাব্দীতে স্টোইন বলেন যে, কাল ও চ বলা হয় আপেক্ষিক তত্ত্ব।		কিছু নয়। এগুলো আ	পেক্ষিক।		
(৩৬) 1 গিগাবাইট = ?						
	(খ) 10 ⁶ বাইট	(গ) 10 ⁻⁹ বাইট	(ঘ) 10 ⁹ বাইট	উত্তর: (ঘ)		
(৩৭) সিজিয়াম -133 পরম	য়াণুর সেকেন্ডে কতটি পূর্ণ স্ <u>রু</u>	শন্দন সম্পন্ন করে ?				
(ক) 133Hz		(খ) 9192631770Hz				
(গ) 9192831770Hz		(되) $540 \times 10^{12} Hz$		উত্তর: (খ		
(৩৮) ক্যান্ডেলা'র সংজ্ঞায়	বিকিরণ তীব্রতা কত?					
(ক) 1 স্টেরেডিয়ান ঘণকে	াণে <u>1</u> ওয়াট	(খ) 1 স্টেরেডিয়ান ঘণকে	গণে <u>1</u> _{276.16} ওয়াট			
(গ) 1 স্টেরেডিয়ান ঘণকো	বেণ $540 \times 10^{12} Hz$	(ঘ) 1 স্টেরেডিয়ান ঘণকে	নবে $\frac{1}{299792458}Hz$	উত্তর: (গ)		
(৩৯) থামাঘড়ি ব্যবহৃত হয়	I-					
(i) ক্ষুদ্র সময় ব্যবধণ পরি	মাপের জন্য					
(ii) মোবাইল ফোন						
(iii) ডিজিটাল ঘড়িতে						
নিচের কোনটি সঠিক?	(ut) : .a :::	(et) :: .a :::	(T): :: .o :::	7		
(ক) i ও ii	(খ) i ও iii	(গ) ii ও iii	(ঘ)i ,ii ও iii	উত্তর (ঘ)		
ব্যাখ্যা: থামা ঘড়ির ব্যবহার : ক্ষুদ্র সময় ব্যবধান পরিমাপের জন্য থামাঘড়ি ব্যবহৃত হয়। আজকাল ডিজিটাল ঘড়ি ও						

- (৪০) শেন কুয়ো-
- (i)চুম্বক নিয়ে কাজ করেছেন
- (ii) কম্পাস ব্যবহার করে দিক নির্ধারণ করেন
- (iii) এনসাইক্লোপিডিয়া রচনা

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ) i ,ii ও iii

উত্তর (ক)

ব্যাখ্যা: শেন কুয়ো চুম্বক নিয়ে কাজ করেছেন। ভ্রমণের সময় কম্পাস ব্যবহার করে দিক নির্ধারণ করার বিষয়টি উল্লেখ করেছিলেন।

- আল মাসুদি এনসাইক্লোপিডিয়া রচনা করেন।
- (৪১) নিউটন আবিষ্কার করেন-
- (i) মহাকর্ষ সুত্র
- (ii) ক্যালকুলাস
- (iii) পড়ন্ত বস্তুর সুত্র

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ)i ,ii ও iii

উত্তর (ক)

ব্যাখ্যা:• নিউটন তার বিস্ময়কর প্রতিভার দ্বারা আবিষ্কার করেন বলবিদ্যা ও বলবিদ্যার বিখ্যাত তিনটি সূত্র এবং বিশ্বজনীন মহাকর্ষ সূত্র। আলোক, তাপ ও শব্দবিজ্ঞানেও তার অবদান আছে। গণিতের নতুন শাখা ক্যালকুলাসও তার আবিষ্কার।

- পড়ন্ত বস্তুর সূত্র আবিষ্কার করেন গ্যালিলিও।
- (৪২) মৌলিক রাশি -
- (i) অন্য রাশির উপর নির্ভর করে না
- (ii) কালের বিবর্তনে পরিবর্তন হবে না
- (iii) মৌলিক রাশি আটটি

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ)i ,ii ও iii

উত্তর (ক)

ব্যাখ্যাঃ মৌলিক রাশি:

- স্বাধীন ও নিরপেক্ষ।
- অন্যরাশির ওপর নির্ভর করে না।
- অন্যান্য রাশি এদের ওপর নির্ভর করে।
- মৌলিক রাশি সাতটি। দৈর্ঘ্য, ভর, সময়, তাপমাত্রা, তড়িৎ প্রবাহ, দীপন তীব্রতা, পদার্থের পরিমাণ হলো মৌলিক বাশি।
- কালের বিবর্তনে পরিবর্তিত হবে না।
- (৪৩) পদার্থবিজ্ঞান-
- (i) সবচেয়ে প্রাচীন শাখা
- (ii)সবচেয়ে মৌলিক শাখা
- (iii) পদার্থ ও শক্তির মাঝে অন্তঃক্রিয়া বোঝার চেষ্টা করে

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ)i ,ii ও iii

উত্তর (ঘ)

ব্যাখ্যাঃ বিজ্ঞানের প্রাচীনতম শাখা হচ্ছে পদার্থবিজ্ঞান।

পদার্থবিজ্ঞান বিজ্ঞানের যে শাখা পদার্থ আর শক্তি এবং এ দুইয়ের মাঝে যে অন্তঃক্রিয়া (Interaction) তাকে বোঝার চেষ্টা করে সেটা হচ্ছে পদার্থবিজ্ঞান।

উল্লেখ্য, পদার্থবিজ্ঞানকে একদিকে যেমন প্রাচীনতম শাখা, ঠিক সেভাবে বলা যেতে পারে এটা সবচেয়ে মৌলিক Fundamental) শাখা। এর ওপর ভিত্তি করে রসায়ন দাড়িয়েছে, রসায়নের ওপর ভিত্তি করে জীববিজ্ঞান দাঁড়িয়েছে।

- (৪৪) নিচের কোনটি সঠিক-
- (i) Astronomy ও পদার্থবিজ্ঞান মিলে Astrophysics
- (ii) Biology ও পদার্থবিজ্ঞান মিলে Biophysics
- (iii) Chemistry ও পদার্থবিজ্ঞান মিলে Chemphysics নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ)i .ii ও iii

উত্তর (ক)

ব্যাখ্যাঃ

- Astronomy ও পদার্থবিজ্ঞান মিলে Astrophysics
- Biology ও পদার্থবিজ্ঞান মিলে Biophysics
- Chemistry ও পদার্থবিজ্ঞান মিলে Chemical physics
- (৪৫) ক্লাসিকাল পদার্থবিজ্ঞানে রয়েছে-
- (i) শব্দবিজ্ঞান
- (ii) তাপ ও তাপগতিবিজ্ঞান
- (iii) কঠিন অবস্থার পদার্থবিজ্ঞান

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ)i ,ii ও iii

উত্তর (ক)

ব্যাখ্যাঃ

ক্লাসিক্যাল পদার্থবিজ্ঞান: এর মাঝে রয়েছে বলবিজ্ঞান, শব্দবিজ্ঞান এবং তাপগতি বিজ্ঞান, বিদুৎ ও চৌম্বক বিজ্ঞান এবং আলোক বিজ্ঞান।

আধুনিক পদার্থবিজ্ঞান: কোয়ান্টাম বলবিজ্ঞান এবং আপেক্ষিকতা ব্যবহার করে যে আধুনিক পদার্থবিজ্ঞান গড়ে ওঠেছে, সেগুলো হচ্ছে আণবিক ও পারমাণবিক পদার্থবিজ্ঞান, নিউক্লিয় পদার্থবিজ্ঞান, কঠিন অবস্থার পদার্থবিজ্ঞান এবং পার্টিকেল ফিজিক্স।

- (৪৬) নিচের কোনটি সঠিক-
- (i) Astronomy ও পদার্থবিজ্ঞান মিলে Astrophysics
- (ii) Biology ও পদার্থবিজ্ঞান মিলে Biophysics
- (iii) Chemistry ও পদার্থবিজ্ঞান মিলে Chemphysics

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ)i ,ii ও iii

উত্তর (ক)

ব্যাখ্যাঃ

- Astronomy ও পদার্থবিজ্ঞান মিলে Astrophysics
- Biology ও পদার্থবিজ্ঞান মিলে Biophysics
- Chemistry ও পদার্থবিজ্ঞান মিলে Chemical physics
- (৪৭) আধুনিক পদার্থবিজ্ঞানে রয়েছে-
- (i) নিউক্লিয় পদার্থবিজ্ঞান
- (ii) তাপ ও তাপগতি বিজ্ঞান
- (iii) পার্টিকেল ফিজিক্স

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ)i ,ii ও iii

উত্তর (গ)

ব্যাখ্যাঃ আধুনিক পদার্থবিজ্ঞান: কোয়ান্টাম বলবিজ্ঞান এবং আপেক্ষিকতা ব্যবহার করে যে আধুনিক পদার্থবিজ্ঞান গড়ে ওঠেছে, সেগুলো হচ্ছে আণবিক ও পারমাণবিক পদার্থবিজ্ঞান, নিউক্লিয় পদার্থবিজ্ঞান, কঠিন অবস্থার পদার্থবিজ্ঞান এবং পার্টিকেল ফিজিক্স।

ক্লাসিক্যাল পদার্থবিজ্ঞান: এর মাঝে রয়েছে বলবিজ্ঞান, শব্দবিজ্ঞান এবং তাপগতি বিজ্ঞান, বিদুৎ ও চৌম্বক বিজ্ঞান এবং আলোক বিজ্ঞান।

- (৪৮) ওমর খৈয়াম ছিলেন-
- (i) গণিতবিদ
- (ii) জ্যোতির্বিদ
- (iii) দার্শনিক

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ)i ,ii ও iii

উত্তর (ঘ)

ব্যাখ্যাঃ ওমর খৈয়ামের (১০৪৮-১১৩১ খ্রিষ্টাব্দ) নাম সবাই কবি হিসেবে জানে কিন্তু তিনি তিনি ছিলেন উচুমাপের গণিতবিদ, জ্যোতির্বিদ এবং দার্শনিক।

ওমর খৈয়ামের অসাধারণ প্রতিভা

- ওমর খৈয়াম ৩০ বছর মহাকাশ পর্যবেক্ষণ করে নিখুঁতভাবে বছরে ব্যাপ্তি নির্ণয় করেন। যা পরবর্তীতে ১০০০ বছর পরে আবিষ্কৃত মানের সাথে অবিস্মরণীয় ভাবে মিলে যায় ।
- জ্যামিতি ছাড়া তিনি সর্ব প্রথম ত্রিঘাত সমীকরণ সমাধান করেন। কনিক ব্যবচ্ছেদ নিয়ে তার উল্লেখযোগ্য কাজ রয়েছে।
- (৪৯) নিচের তথ্যগুলো লক্ষ কর-
- (i) μ (মাইক্রো) উপসর্গটি 10^{-6} নির্দেশ করে
- (ii) M (মেগা) উপসর্গটি 106 নির্দেশ করে
- (iii) 2000000000W = 200mW

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ)i ,ii ও iii

উত্তর (ঘ)

- (৫০) থেলিসের সাথে সম্পর্কিত করা যায়-
- (i) সূর্যগ্রহণ
- (ii) লোডস্টোনের চৌম্বক ধর্ম
- (iii) জ্যামিতিক উপপাদ্য

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ)i ,ii ও iii

উত্তর (ক)

ব্যাখ্যাঃ

- থেলিস (খ্রিস্টপূর্ব ৬২৪-৫৬৯) সূর্যগ্রহণ সম্পর্কিত ভবিষ্যদ্বাণীর জন্য বিখ্যাত। তিনি লোডস্টোনের চৌম্বক ধর্ম সম্পর্কেও জানতেন।
- অন্যদিকে জ্যামিতিক উপপাদ্য পিথাগোরাসের সাথে সম্পর্কিত থেলিসের সাথে নয়।
- (৫১) এককের ক্ষেত্রে-
- (i)SI পদ্ধতিতে দৈর্ঘ্য, ভর ও সময়ের একক যথাক্রমে মিটার,গ্রাম, ও সেকেন্ড
- (ii)1 ন্যানোসেকেন্ড = 10^{-9} সেকেন্ড
- (iii) দৈর্ঘ্য,ভর ও সময়ের মাত্রা যথাক্রমে L,M ও T

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ)i ,ii ও iii

উত্তর (খ)

ব্যাখ্যাঃ

SI পদ্ধতিতে দৈর্ঘ্য, ভর ও সময়ের একক যথাক্রমে মিটার,কিলোগ্রাম, ও সেকেন্ড

1 ন্যানোসেকেন্ড = 10^{-9} সেকেন্ড

দৈর্ঘ্য,ভর ও সময়ের মাত্রা যথাক্রমে L,M ও T

- (৫২) লব্ধ রাশি-
- (i) সরণ
- (ii) দ্রুতি
- (iii) বেগ

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ)i ,ii ও iii

উত্তর (ঘ)

ব্যাখ্যা:

সাতটি মৌলিক রাশি তথা দৈর্ঘ্য, ভর, সময়, বৈদ্যুতিক প্রবাহ, তাপমাত্রা, পদার্থের পরিমাণ, দীপন তীব্রতা ব্যতীত বস্তুজগতের বাকি সকল রাশি লব্ধ রাশি। এখানে, সরণ, দ্রুতি ও বেগ তিনটি লব্ধ রাশি। কেননা এরা প্রত্যেকেই মৌলিক রাশি হতে প্রাপ্ত।

🧠 সম্ভাব্য প্রশ্ন

০১। যুক্তিতর্ক, পরীক্ষা–নিরীক্ষা এবং পর্যবেক্ষণ এই তিনটি পদ্ধতির জানা কোনটিকে তুমি বিজ্ঞান গবেষণার জন্য সবচেয়ে গুরুত্বপূর্ণ মনে করো? কেন?

সমাধান: যুক্তিতর্ক, পরীক্ষা–নিরীক্ষা এবং পর্যবেক্ষণ এই তিনটি পদ্ধতির মধ্যে আমি পর্যবেক্ষণকে সবচেয়ে গুরুত্বপূর্ণ মনে করি।

বিজ্ঞানের আসল বিষয় হচ্ছে দৃষ্টিভঙ্গি। আর মানুষের দৃষ্টিভঙ্গির উৎকর্ষ সাধিত হয় পর্যবেক্ষণের মাধ্যমে। দীর্ঘদিন পাখির উড়া পর্যবেক্ষণ করেই লিউনার্দো দ্যা ভিঞ্চি উড়োজাহাজের মডেল তৈরী করেন। ওমর খৈয়াম দীর্ঘ ৩০ বছর মহাকাশ পর্যবেক্ষণ করে নিখুঁতভাবে বছরের ব্যাপ্তি নির্ণয় পৃথিবী করেন। বিজ্ঞানের বড় বড় আবিষ্কারের সূচনাই ঘটে পর্যবেক্ষণের মধ্য দিয়ে। পরবর্তীতে যুক্তিতর্ক ও পরীক্ষা–নিরীক্ষার মধ্য দিয়ে তাকে প্রতিষ্ঠিত করা হয়। পরীক্ষা–নিরীক্ষার একটি অংশও পর্যবেক্ষণ। তাই, আমি মনে করি পর্যবেক্ষণ যুক্তিতর্ক ও পরীক্ষা–নিরীক্ষা থেকে গুরুত্বপূর্ণ

০২। সাতটি SI এককের একটি অন্যগুলো থেকে একটু অন্য রকম। কোনটি এবং কেন বলতে পারবে?

সমাধান: সাতটি SI এককের মধ্যে পদার্থের পরিমাণের একক মোল একটু অন্য রকম।
মৌলিক রাশি ৭টি। যথা– সময়, তড়িৎপ্রবাহ /বৈদ্যুতিক প্রবাহ, তাপমাত্রা, ভর, দীপন তীব্রতা, পদার্থের পরিমাণ ও দৈর্ঘ্য।
মৌলিক পদার্থের পরিমাণের SI একক মোল এবং এটি একটি মৌলিক একক। এটি অন্য ৭টি SI একক থেকে একটু
ভিন্ন। অন্য ৬টি SI একক স্থান, কাল বা পদার্থ ভেদে পরিবর্তিত হয় না। যেমন– বিশ্বের যেকোনো স্থানে, যেকোনো সময়ে, যেকোনো বস্তুর এক মিটারের দৈর্ঘ্য একই হবে। কিন্তু, মোল স্থান, কাল ভেদে পরিবর্তিত না হলেও পদার্থ ভেদে পরিবর্তিত হয়। যেমন, (বর্তমানে এক মোল কার্বন = 12g কার্বন। কিন্তু ১ মোল কপার = 63.5g কপার। তাই, মোল এককটি ৭টি SI এককের মধ্যে একটু ভিন্নতর।

০৩। তুমি কি পৃথিবীর ব্যাসার্ধ মাপতে মারবে ?

সমাধান: একটি ভূ–গোলকের সাহায্যে আমি সহজেই পৃথিবীর ব্যাসার্ধ নির্ণয় করতে পারবো ।

প্রথমে একটি ভূ–গোলকের অক্ষরেখা বা বিষুবরেখা বরাবর দুটি দ্রাঘিমারেখার মধ্যবর্তী দূরত্ব কাটা কম্পাস দিয়ে পরিমাপ করবো। ভূ–গোলকে উল্লেখিত পরিমাপের সাথে তুলনা করে পাই বিষুবরেখা বরাবর দুটি দ্রাঘিমারেখার মধ্যবর্তী দূরত্ব $110.8967~km \approx 111~km$.

জানা আছে, মোট দ্রাঘিমারেখার সংখ্যা ৩৬০ টি ।

$$\therefore$$
 পৃথিবীর পরিধি = 111 \times 360 km = 39960 km

$$\therefore$$
 পরিধি, $2\pi r=39960\ km \to r=rac{39960}{2\pi}=6359.82\ km$ পৃথিবী যেহেতু সম্পূর্ণ গোলাকার নয়, কিছুটা চ্যাপ্টা তাই পৃথিবীর ব্যাসার্ধ $6371\ km$ হতে নির্ণিত মান কিছুটা ভিন্ন ।

আরো অনেক উপায়েই পৃথিবীর ব্যাসার্ধ নির্ণয় করা যায়। সর্বপ্রথম ইরাতোস্থিনিস পৃথিবীর ব্যাসার্ধ নির্ণয় করেন। নিচে তোমাদের জন্য তাঁর পদ্ধতিটি উল্লেখ করা হলো।

ইরাতোস্থিনিস লক্ষ করেন বছরের নির্দিষ্ট দিনে নির্দিষ্ট সময়ে সিয়েনে (বর্তমানে আসওয়ান, মিশর) লম্বভাবে বা সোজাভাবে পোতা দণ্ড ছায়া ফেলে না। কিন্তু ঐ সময়ে আলেকজান্দ্রিয়াতে (মিশরের একটি প্রাচীন শহর) পোতা দণ্ড ছায়া ফেলে। তিনি দুই স্থানের মধ্যবর্তী দূরত্ব পরিমাপ করেন ৮০০ কিলোমিটার।

পরবর্তীতে তিনি হিসেব করে দেখেন এই দুই স্থান হতে পৃথিবীর কেন্দ্রের সংযোজক সরলরেখাদ্বয় পৃথিবীর কেন্দ্রে 7.2° কোণ উৎপন্ন করে। 7.2° ব্যবধানের জন্য মধ্যবর্তী দূরত্ব হয় = 800 কিলোমিটার।

অতএব, 360° ব্যবধানের জন্য মধ্যবর্তী দূরত্ব হয়
$$= \frac{360 \times 800}{7.2} \; km$$
 = $40,000 \; km$

সুতরাং, পৃথিবীর পরিধি $2\pi r=4000$ কিলোমিটার অতএব, ব্যাসার্ধ $r={}^{4000}/_{2\pi}=6366.18\,km$ যা প্রায় সঠিক । উপরোক্তভাবে ইরাতোস্থিনিস সর্বপ্রথম পৃথিবীর ব্যাসার্ধ নির্ণয় করেন ।

০৪। মাত্রা বলতে কি বুঝ ? ব্যাখ্যা কর ।

সমাধান: কোনো ভৌত রাশি এক বা একাধিক মৌলিক রাশির সমন্বয়ে গঠিত। সুতরাং যেকোনো ভৌত রাশিকে বিভিন্ন সূচকের (Power) এক বা একাধিক মৌলিক রাশির গুণফল হিসেবে প্রকাশ করা যায়। একটি রাশিতে বিভিন্ন মৌলিক রাশি কোন সূচকে বা কোন পাওয়ারে আছে, তাকে তার মাত্রা বলে। যেমন,

বল = ভর
$$\times$$
 ত্বরণ = ভর \times $\frac{$ বেগ}{সময় = ভর \times $\frac{$ দৈর্ঘ্য $}{সময় >$

এখানে দৈর্ঘ্যের মাত্রা L, ভরের মাত্রা M, সময়ের মাত্রা T বসালে বলের মাত্রা পাওয়া যাবে। $\frac{ML}{T^2}$ বা MLT^{-2} অর্থাৎ, বলের রয়েছে ভরের মাত্রা– সূচক (1), দৈর্ঘ্যের মাত্রা–সূচক (1) এবং সময়ের মাত্রা–সূচক (–2)।

🡼 সৃজনশীল (CQ)

প্রশ্ন ১।

একটি ঘনক আকৃতির বস্তুর দৈর্ঘ্য স্লাইড ক্যালিপার্সের সাহায্যে পরিমাপ করে পাওয়া গেল 8.876 cm. স্লাইড ক্যালিপার্সের প্রধান স্কেলের ক্ষুদ্রতম ঘরের দৈর্ঘ্য 1mm এবং ভার্নিয়ার ধ্রুবক 0.002cm.

- (ক) স্ক্রুগজের ন্যূনাঙ্ক কাকে বলে?
- (খ) স্লাইড ক্যালিপার্সের সাহায্যে ভার্নিয়ার ধ্রুবক নির্ণয়ের সূত্রটি ব্যাখ্যা কর।
- (গ) ব্যবহৃত প্লাইড ক্যালিপার্সে ভার্নিয়ার স্কেলের কত ভাগ মূল স্কেলের কত ভাগের সমান নির্ণয় কর।
- (ঘ) এই স্লাইড ক্যালিপার্স দিয়ে বস্তুটির দৈর্ঘ্য পরিমাপে আপেক্ষিক ত্রুটির তুলনায় ক্ষেত্রফল পরিমাপে আপেক্ষিক ক্রটি বেশি হয় কেন? তোমার উত্তরের সাপেক্ষে গাণিতিক বিশ্লেষণ দাও।

সমাধান:

- (ক) স্ক্রুগজের ন্যূনাঙ্ক: স্ক্রুগজের ক্ষেত্রে, বৃত্তাকার স্কেলের মাত্র এক ভাগ ঘুরালে এর প্রান্ত বা ত্রুটি যতটুকু সরে আসে তাকে বলা হয় স্ক্রুগজের ন্যূনাঙ্ক ।
- (খ) স্লাইড ক্যালিপার্সের সাহায্যে ভার্নিয়ার ধ্রুবক নির্ণয়:

স্লাইড ক্যালিপার্সের সাহায্যে ভার্নিয়ার ধ্রুবক নির্ণয়ে প্রধান স্কেলের ক্ষুদ্রতম কত ভাগ ভার্নিয়ার স্কেলের কত ভাগের সমান তা দেখতে হয়। তারপর প্রধান স্কেলের ক্ষুদ্রতম এক ভাগের দৈর্ঘ্য থেকে ভার্নিয়ার স্কেলের এক ভাগের দৈর্ঘ্য বিয়োগ করতে হয়। অর্থাৎ, ভার্নিয়ার ধ্রুবক = প্রধান স্কেলের ক্ষুদ্রতম ১ভাগ – ভার্নিয়ার স্কেলের ক্ষুদ্রতম ১ ভাগ। অন্যভাবেও ভার্নিয়ার ধ্রুবক সহজে নির্ণয় করা যায়। এক্ষেত্রে সূত্র হলো:

ভার্নিয়ার ধ্রুবক,
$$VC = \frac{S}{n}$$

এখানে, S = প্রধান স্কেলের ক্ষুদ্রতম ১ ভাগ (সাধারণত ১mm)

n = ভার্নিয়ার স্কেলের ভাগের সংখ্যা।

(গ) আমরা জানি,

$$VC = \frac{s}{n} \to n = \frac{s}{VC} \to n = \frac{0.1 \text{ cm}}{0.002 \text{ cm}}$$

\(\therefore\) n = 50

ভার্নিয়ার স্কেলের ১ ভাগ মূল স্কেলের ক্ষুদ্রতম ১ ভাগ থেকে 0.002 cm ছোট অতএব, ভার্নিয়ার স্কেলের 50 ভাগ মূল স্কেলের ক্ষুদ্রতম 50 ভাগ থেকে (0.002 x 50) cm বা, 0.1 cm ছোট । এখানে, মূল স্কেলের ক্ষুদ্রতম ১ ঘরের দৈর্ঘ্য, $s=1mm=0.1\ cm$ ভার্নিয়ার ধ্রুবক, $VC=0.002\ cm$

সুতরাং, মূল স্কেলের 0.1 cm = মূল স্কেলের ১ ভাগ।

অতএব, ভার্নিয়ার স্কেলের ভাগ সংখ্যা 50 হলে মূল স্কেলের ক্ষুদ্রতম ভাগ সংখ্যা হবে (50 – 1) = 49 । তাই বলা যায় যে, ভার্নিয়ার স্কেলের 50 ভাগ মূল স্কেলের ক্ষুদ্রতম 49 ভাগের সমান।

(ঘ) উদ্দীপকে উল্লিখিত স্লাইড ক্যালিপার্স দিয়ে ঘনক আকৃতির বস্তুটির দৈর্ঘ্য পরিমাপে আপেক্ষিক ত্রুটির পরিমাণের তুলনায় ক্ষেত্রফল পরিমাপে আপেক্ষিক ত্রুটির পরিমাণ বেশি হয়। কারণ ক্ষেত্রফল পরিমাপে দৈর্ঘ্যের গুণ হয়; ত্রুটিও তাই গুণিতক হয় অর্থাৎ বেশি হয়।

প্রধান স্কেলের ক্ষুদ্রতম ১ ঘরের দৈর্ঘ্য, 1 mm এব্ং স্লাইড ক্যালিপার্সে mm এর ভগ্নাংশ অধিকতর সঠিকভাবে নির্ণয় করা যায় ।

তাই দৈর্ঘ্যের চূড়ান্ত ত্রুটি = $\frac{1}{2}$ mm=0.5 mm=0.05 cm এখানে, পরিমাপ করা মান = 8.876 cm

সুতরাং, দৈর্ঘ্য পরিমাপে আপেক্ষিক ত্রুটি = $\frac{5}{6}$ ভূড়ান্ত ত্রুটি $\frac{5}{6}$ = $\frac{6.05}{6.876}$ = $\frac{1}{6.876}$

শতাংশের হিসাবে আপেক্ষিক ত্রুটি $= 0.056 \times 100 = 0.56\%$

এখন, ঘনক আকৃতির বস্তুটির সমগ্র পৃষ্ঠের ক্ষেত্রফল = $6 \times$ দৈর্ঘ্য $^2=6 \times (8.876~cm)^2$

$$=472.7~cm^2$$
; যা পরিমাপ করা মান।

আবার, দৈর্ঘ্য পরিমাপে ত্রুটি বিবেচনায় আমরা পাই, দৈর্ঘ্য= $(8.876 \pm 0.05)cm$

$$\therefore$$
 সম্ভাব্য সবচেয়ে বড় ক্ষেত্রফল $= (8.876 + 0.05)^2 \ cm^2$

$$= 6 \times (8.926)^2 cm^2 = 478 cm^2$$

এবং সম্ভাব্য সবচেয়ে ছোট ক্ষেত্রফল $= 6 \times (8.876 - 0.05)^2$

$$= 6 \times 8.826^2 \ cm^2 = 467.39cm^2$$

সুতরাং ত্রুটি–

I.
$$|478.04 - 472.7| \text{ cm}^2 = 5.43 \text{ cm}^2$$

II.
$$|472.7 - 467.39| \text{ cm}^2 = 5.31 \text{ cm}^2$$

চূড়ান্ত ত্রুটি হিসেবে বড়টিকে বিবেচনা করে,

শতাংশের হিসাবে আপেক্ষিক ত্রুটি = $0.0113 \times 100 = 1.13\% > 0.56\%$

অতএব, ক্ষেত্রফল পরিমাপে আপেক্ষিক ত্রুটির পরিমাণ বেশি হয়।

প্রশ্ন ২।

রাতুল স্লাইড ক্যালিপার্সের সাহায্যে বর্গাকার একটি বই এর দৈর্ঘ্য পরিমাপ করার সময় প্রধান স্কেল পাঠ 12cm এবং ভার্নিয়ার সমপাতন 6 পেল। দৈর্ঘ্য পরিমাপে যন্ত্রটির ± 0.5 cm ত্রুটি থাকতে পারে। ভার্নিয়ার ধ্রুবক 0.01cm। বইটির ক্ষেত্রফল নির্ণয়ে 10% ত্রুটি গ্রহণযোগ্য।

- (ক) ভার্নিয়ার ধ্রুবক কাকে বলে?
- (খ) স্ক্রুগজের পিচ 1mm বলতে কী বোঝায় ?
- (গ) বইটির পরিমাপকৃত দৈর্ঘ্য কত নির্ণয় কর।
- (ঘ) রাতুলের জন্য উল্লিখিত যন্ত্র দ্বারা পরিমাপকৃত ক্ষেত্রফল গ্রহণযোগ্য কিনা গাণিতিকভাবে মতামত দাও।

সমাধান:

- (**ক**) প্রধান স্কেলের ক্ষুদ্রতম এক ভাগের চেয়ে ভার্নিয়ার স্কেলের একভাগ যতটুকু ছোট তার পরিমাণকে ভার্নিয়ার ধ্রুবক বলা হয়।
- (খ) স্ক্রুগজের পিচ 1mm বলতে যা বোঝায়: স্ক্রুগজের বৃত্তাকার স্কেলকে পূর্ণ এক পাক ঘুরালে স্ক্রুটি যতটুকু দূরত্ব অতিক্রম করে তা−ই স্ক্রুর পিচ।

স্ক্রুর পিচ 1mm বলতে বুঝায় যন্ত্রটির বৃত্তাকার স্কেল এক পাক ঘুরালে স্ক্রুগজের স্ক্রুটি 1mm রৈখিক দূরত্ব অতিক্রম করে।

(গ) আমরা জানি,

$$L = M + V \times VC$$


```
এখানে,
```

প্রধান স্কেল পাঠ, M = 12 cm

ভার্নিয়ার সমপাতন, V = 6

ভার্নিয়ার ধ্রুবক, VC = 0.01 cm

দৈর্ঘ্য, L = ?

L= 12.06 cm

 $= 12 \text{ cm} + (6 \times 0.01) \text{ cm}$

= 12 cm + 0.06.cm =12.06 cm

যান্ত্রিক ত্রুটি বিবেচনা না করলে বইটির পরিমাপকৃত দৈর্ঘ্য 12.06 cm

(ঘ) 'গ' হতে পাই,

বইটির দৈর্ঘ্য = 12.06 cm

্র বইটির পরিমাপকৃত ক্ষেত্রফল = (দৈর্ঘ্য)² [বইটি বর্গাকার]

$$=(12.06)$$
 cm² = 145.4436 cm²

দেওয়া আছে, দৈর্ঘ্য পরিমাপে যন্ত্রটির ত্রুটি \pm 0.5 cm

ত্রুটি বিবেচনায় দৈর্ঘ্য = (12,06 ±0.5) cm

সম্ভাব্য সবচেয়ে বড় ক্ষেত্ৰফল = (12.06 + 0.5)2cm2

 $= (12.56)^2 \text{ cm}^2$

=157.7536 cm²

এবং সম্ভাব্য সবচেয়ে ছোট ক্ষেত্ৰফল =(12.06 - 0.5)2cm2

 $= (11.56)^2 \text{ cm}^2$

=133.6336 cm²

সূতরাং, ত্রুটি:

(i) (157.7536 - 145.4436) cm² = 12.31 cm²

(ii) (145.4436 - 133.6336) cm² = 11.81 cm²

চূড়ান্ত ত্রুটি হিসেবে বড়টিকে বিবেচনা করে,

ক্ষেত্রফল পরিমাপে আপেক্ষিক ত্রুটি =
$$\frac{\overline{p}$$
ড়ান্ত ত্রুটি $}{$ পরিমাপ করা মান = $\frac{12.31 \text{ cm}^2}{145.4436 \text{ cm}}$ = 0.0846

শতাংশের হিসাবে আপেক্ষিক ত্রুটি = 0.0846 × 100 = 8.46%

দেওয়া আছে, বইটির ক্ষেত্রফল নির্ণয়ে গ্রহণযোগ্য ত্রুটি 10% যা 8.46% থেকে বেশি। অতএব, রাতুলের জন্য উল্লিখিত যন্ত্র দ্বারা পরিমাপকৃত ক্ষেত্রফল গ্রহণযোগ্য ।

প্রশ্ন ৩।

একটি স্লাইড ক্যালিপার্সের প্রধান স্কেলের ক্ষুদ্রতম 1 ঘরের মান 1mm এবং প্রধান স্কেলের 19 ঘরের সমান ভার্নিয়ার স্কেলের 20 ঘর। উক্ত স্কেল দ্বারা বর্গাকার একটি বস্তুর দৈর্ঘ্যের পরিমাপ করা হলো। মূল স্কেলের পাঠ 15mm, ভার্নিয়ার সমপাতন 16 এবং পরিমাপে ত্রুটি 5%।

- (ক) স্ক্রগজের ন্যুনাঙ্ক কাকে বলে?
- (খ) ভিন্ন ভিন্ন দৈর্ঘ্যের পরিমাপে একই চূড়ান্ত ত্রুটি হলে যেটির দৈর্ঘ্য বেশি সেটির পরিমাপের সঠিকতা বেশি— ব্যাখ্যা করো।
- (গ) বর্গাকার বস্তুটির দৈর্ঘ্য নির্ণয় করো।
- (ঘ) বর্গাকার বস্তুটির ক্ষেত্রফল নির্ণয়ে কত শতাংশ ত্রুটি হতে পারে? গাণিতিকভাবে বিশ্লেষণ করো।

সমাধান:

- (**ক)** স্ক্রুগজের ক্ষেত্রে, বৃত্তাকার ক্ষেলের মাত্র এক ভাগ ঘুরালে এর প্রান্ত বা স্ক্রুটি যতটুকু সরে আসে তাকে বলা হয় স্ক্রুগজের ন্যূনাঙ্ক।
- (খ) পরিমাপের সঠিকতাঃ যে বস্তু পরিমাপে আপেক্ষিক ত্রুটি কম, সেটি পরিমাপের সঠিকতা বেশি।

আমরা জানি, আপেক্ষিক ত্রুটি = চূড়ান্ত ত্রুটি পরিমাপ করা মান

বস্তুর দৈর্ঘ্য বেশি হলে পরিমাপ করা মান বেশি হবে। তখন চূড়ান্ত ত্রুটি একই থাকলেও উক্ত সূত্রমতে আপেক্ষিক ত্রুটি কম হবে। তাই বস্তুটির দৈর্ঘ্য পরিমাপে সঠিকতা বেশি হবে।

(গ) আমরা জানি,

ভার্নিয়ার ধ্রুবক, VC =
$$\frac{s}{n} = \frac{0.1cm}{20} = 0.005cm$$

আবার, L = M + V×VC
=1.5cm + (16× 0.005) cm
= 1.5 cm + 0.08 cm

অতএব, বর্গাকার বস্তুটির দৈর্ঘ্য 1.58 cm।

এখানে,

মূল স্কেলের পাঠ, M = 15mm=1,5 cm ভার্নিয়ার সমপাতন, V = 16 প্রধান স্কেলের ক্ষুদ্রতম 1 ঘরের দৈর্ঘ্য, S = 1 mm = 0.1 cm ভার্নিয়ার স্কেলের ভাগ সংখ্যা n = 20 ভার্নিয়ার ধ্রুবক, VC = ?

(ঘ) 'গ' হতে পাই,

বর্গাকার বস্তুটির দৈর্ঘ্য = 1.58 cm.

= 1.58 cm

∴বর্গাকার বস্তুটির ক্ষেত্রফল = (দৈর্ঘ্য) 2 বর্গ একক= $(1.58)^2$ cm 2 = 2.4964 cm 2 উদ্দীপক হতে পাই, পরিমাপে ত্রুটি = 5% = 0.05

এখন, দৈর্ঘ্য পরিমাপে ত্রুটি বিবেচনায় আমরা পাই, দৈর্ঘ্য= (1.58±0.05)cm

সম্ভাব্য সবচেয়ে বড় ক্ষেত্রফল= $(1.58+0.05)^2 cm^2$

$$=(1.63)^2cm^2$$

$$= 2.6569 cm^2$$

সম্ভাব্য সবচেয়ে ছোট ক্ষেত্ৰফল= $(1.58 - 0.05)^2 cm^2$

$$=(1.53)^2cm^2$$

$$= 2.3409 cm^2$$

সূতরাং ত্রুটি ;

- I. $|2.6569 2.4964| \text{ cm}^2 = 0.1605\text{ cm}^2$
- II. $|2.4964 2.3409| \text{ cm}^2 = 0.1555\text{ cm}^2$

চূড়ান্ত ত্রুটি হিসেবে বড়টিকে বিবেচনা করে,

ক্ষেত্রফল পরিমাপে আপেক্ষিক ত্রুটি = $\frac{5 \sqrt{9}}{9}$ স্থান ত্রুটি = $\frac{0.1605 cm^2}{2.4964 \ cm^2}$ = 0.0643 শতাংশের হিসাবে আপেক্ষিক ত্রুটি = $0.0643 \times 100 = 6.43\%$ সুতরাং, বর্গাকার বস্তুটির ক্ষেত্রফল নির্ণয়ে 6.43% ত্রুটি হতে পারে।

প্রশ্ন ৪।

- (ক) ভার্নিয়ার ধ্রুবক কাকে বলে?
- (খ) স্লাইড ক্যালিপার্সে ভার্নিয়ার স্কেল কেন ব্যবহার করা হয়?
- (গ) উদ্দীপকের নিরেট বলটিকে ঘনবস্তুটির ভেতর প্রবিষ্ট করানো হলে ঘনবস্তুটির ভেতরের খালি অংশের আয়তন কত হবে?
- (ঘ) উদ্দীপকের উভয় চিত্রের বস্তুগুলোকে মিটার স্কেলের সাহায্যে পরিমাপ করা যাবে কিনা– যুক্তিসহকারে ব্যাখ্যা করো।

সমাধান:

- (ক) ভার্নিয়ার ধ্রুবক: প্রধান স্কেলের ক্ষুদ্রতম এক ভাগের চেয়ে ভার্নিয়ার স্কেলের একভাগ যতটুকু ছোট তার পরিমাণকে ভার্নিয়ার ধ্রুবক বলা হয়।
- (খ) স্লাইড ক্যালিপার্সে ভার্নিয়ার স্কেল ব্যবহার করার কারণ: অধিকতর সঠিক পরিমাপের জন্য অর্থাৎ মিলিমিটারের ভগ্নাংশ পর্যন্ত দৈর্ঘ্য সঠিকভাবে পরিমাপের জন্য স্লাইড ক্যালিপার্সে ভার্নিয়ার স্কেল ব্যবহার করা হয়। স্লাইড ক্যালিপার্সে দু'ধরনের স্কেল ব্যবহার করা হয়; যথা: মিটার স্কেল ও ভার্নিয়ার স্কেল। মিটার স্কেলে মিলিমিটার পর্যন্ত সঠিকভাবে মাপা যায়, এর ভগ্নাংশ সঠিকভাবে মাপতে হলে এর সাথে ভার্নিয়ার স্কেলকে সমন্বয় কর হয়। ভার্নিয়ার স্কেল মূল স্কেলের পাশে লাগানো থাকে এবং সামনে–পেছনে সরানো যায়।
- (গ) এখন, নিরেট বলটির আয়তন

$$=rac{4}{3}\pi r^3=rac{4}{3} imes 3.1416 imes (2.5cm)^3$$
 এখানে, $=65.45\ cm^3$ নিরেট বলের ব্যাসার্ধ, $r=2.5\ cm$ ঘনবস্তুটির আয়তন $=a^3$ ঘনবস্তুটির প্রত্যেক ধারের দৈর্ঘ্য, $a=6.55\ cm$ $=(6.55cm)^3$ $=281.01\ cm^3$

অতএব, ঘনবস্তুটির ভিতরের খালি অংশের আয়তন= ঘনবস্তুটির আয়তন–নিরেট বলটির আয়তন

= $281.01 \ cm^3 - 65.45 \ cm^3$ = $215.56 \ cm^3$

(ঘ) উদ্দীপকে দুটি বস্তুর চিত্র দেখানো হয়েছে। একটি ঘনকাকৃতির ঘনবস্তু এবং অন্যটি 'গোলকাকৃতির বল। মিটার স্কেল দিয়ে ঘনবস্তুটি পরিমাপ কর যাবে, কারণ এতে ফেলটি স্থাপন করা সম্ভব। কিন্তু এ ক্ষেল গোলকের ব্যাসার্ধ পরিমাপে স্থাপন করা যাবে না। তাই পরিমাপ করা যাবে না।

এখন ঘনকটির ধারের দৈর্ঘ্য 6.55 cm বা 65.5mm। এটি সঠিকভাবে পরিমাপ করতে হলে মিলিমিটারের ভগ্নাংশ সঠিকভাবে পরিমাপ করতে হবে, যা মিটার স্কেল দিয়ে সম্ভব নয়। কারণ এ স্কেলের ক্ষুদ্রতম ঘরের দৈর্ঘ্য সাধারণত 1mm হয়। আবার, বলটির ব্যাসার্ধ 2.5 cm বা 25mm। এ পরিমাণ দৈর্ঘ্য মিটার স্কেলে সঠিকভাবে পরিমাপ করা সম্ভব; কিন্তু এক্ষেত্রে মিটার স্কেলের ব্যবহার অসুবিধাজনক।

অতএব উভয় চিত্রের বস্তুগুলোকে মিটার স্কেল দিয়ে পরিমাপ করা যাবে না। কেবল ঘনবস্তুটি (ঘনকাকার) পরিমাপ করা যাবে। তবে পরিমাপ সঠিক হবে না।

প্রশ্ন ৫।

স্লাইড ক্যালিপার্সের সাহায্যে একটি দণ্ডের দৈর্ঘ্য পরিমাপ করে প্রধান স্কেল পাঠ 9.9cm এবং ভার্নিয়ার সমপাতন 12 পাওয়া গেল। অপর একটি ঘনকের ধারের দৈর্ঘ্য 5cm পাওয়া গেল। যন্ত্রটির ভার্নিয়ার ধ্রুবক 0.05 mm.

- (ক) ন্যুনাঙ্ক কাকে বলে?
- (খ) দৈর্ঘ্যের সূক্ষ্ম ও নির্ভুল পরিমাপের জন্য কী ধরনের স্কেল ব্যবহার করা হয়? ব্যাখ্যা কর।
- (গ) উদ্দীপকের আলোকে দন্ডটির প্রকৃত দৈর্ঘ্য নির্ণয় কর।
- ্ঘ) ঘনকের দৈর্ঘ্য পরিমাপে 5% আপেক্ষিক ত্রুটি থাকলে ঘনকের এক পৃষ্ঠের ক্ষেত্রফল পরিমাপে শতকরা কী পরিমাণ আপেক্ষিক ত্রুটি বিদ্যমান থাকবে? – গাণিতিকভাবে ব্যাখ্যা কর ।

সমাধান:

- (**ক**) স্ক্রুগজের ক্ষেত্রে, বৃত্তাকার স্কেলের মাত্র এক ভাগ ঘুরালে এর প্রান্ত বা স্ক্রুটি যতটুকু সরে আসে তাকে বলা হয় যন্ত্রের ন্যূনাঙ্ক।
- (খ) দৈর্ঘ্যে সূক্ষ্ম ও নির্ভুল পরিমাপের জন্য ব্যবহৃত স্কেলের ধরন: দৈর্ঘ্যের সূক্ষ্ম ও নির্ভুল পরিমাপের জন্য এমন ধরনের স্কেল ব্যবহার করা হয় যাতে দুটি স্কেলের সমন্বয়ে সঠিক দৈর্ঘ্য নির্ণয় করা যায়। উপযুক্ত ধরণের স্কেলের ক্ষেত্রে স্লাইড ক্যালিপার্সে মিটার স্কেল ও ভার্নিয়ার স্কেল এবং স্ক্রুগজে একটি রৈখিক স্কেল ও

10 MINUTE SCHOOL

একটি বৃত্তাকার স্কেলের সমন্বয় ঘটানো হয়।

(গ) আমরা জানি,

আবার, L = M + V×VC

 $=9.9cm + (12 \times 0.005) cm$

= 9.9 cm + 0.06 cm

= 9.96 cm

অতএব, বর্গাকার বস্তুটির দৈর্ঘ্য 9.96 cm।

এখানে,

দন্ডটির ক্ষেত্রে প্রধান স্কেলের পাঠ, M = 9.9 cm

ভার্নিয়ার সমপাতন, V = 12

ভার্নিয়ার ধ্রুবক, VC = 0.05mm = 0.005cm

দন্ডটির প্রকৃত দৈর্ঘ্য, L=?

(ঘ) আমরা জানি,

আপেক্ষিক ত্রুটি =
$$\frac{5}{9}$$
 ভূড়ান্ত ত্রুটি $\frac{1}{8.876} = 0.0056$

বা,
$$0.05 = \frac{\overline{p}$$
ড়ান্ত ত্রুটি $5 cm$

বা, চূড়ান্ত ত্রুটি =5cm imes 0.05

সুতরাং ত্রুটি বিবেচনায় আমরা পাই, দৈর্ঘ্য= (5±0.25)cm

এখন, ঘনকের এক পৃষ্ঠের ক্ষেত্রফলের পরিমাপ করা মান =(দৈর্ঘ্য $)^2=(5)^2cm^2=25cm^2$ আবার, ত্রুটি বিবেচনা করে,

সম্ভাব্য সবচেয়ে বড় ক্ষেত্রফল= $(5+0.25)^2 cm^2$

$$=(5.25)^2cm^2$$

$$= 27.5625 cm^2$$

সম্ভাব্য সবচেয়ে ছোট ক্ষেত্রফল= $(5-0.25)^2 cm^2$

$$= (4.75)^2 cm^2$$

$$= 22.5625 cm^2$$

সুতরাং ত্রুটি ;

I.
$$|27.5625 - 25| \text{ cm}^2 = 2.5625 \text{ cm}^2$$

II.
$$|25 - 22.5625| \text{ cm}^2 = 2.4375\text{ cm}^2$$

চড়ান্ত ত্রুটি হিসেবে বড়টিকে বিবেচনা করে,

আপেক্ষিক ত্রুটি
$$=$$
 $\frac{5 \text{ চূড়ান্ত ত্রুটি}}{\text{পরিমাপ করা মান}} = \frac{2.5625 cm^2}{25 cm^2} = 0.1025$

শতাংশের হিসাবে আপেক্ষিক ত্রুটি $= 0.1025 \times 100 = 10.25\%$

সুতরাং, ঘনকের দৈর্ঘ্য পরিমাপে 5% আপেক্ষিক ত্রুটি থাকলে ঘনকের এক পৃষ্ঠের ক্ষেত্রফল পরিমাপে 10.25% আপেক্ষিক ত্রুটি বিদ্যমান থাকবে।

প্রশ্ন ৬।

স্লাইড ক্যালিপার্সের দ্বারা একটি বস্তুর দৈর্ঘ্য নির্ণয়ের সময় ভার্নিয়ার স্কেলের 3.5 cm অতিক্রম করে এবং ভার্নিয়ার স্কেলের ৪ তম ভাগ প্রধান স্কেলের 4.2 cm দাগ অতিক্রম করে। প্রধান স্কেলের প্রতিটি ক্ষুদ্রতম ঘরের দৈর্ঘ্য 1 mm এবং ভার্নিয়ার স্কেলে মোট 10টি ভাগ আছে।

- (ক) লঘিষ্ঠ গণন কী?
- (খ) যান্ত্রিক ত্রুটি বলতে কী বোঝ?
- (গ) প্রদত্ত বস্তুটির দৈর্ঘ্য নির্ণয় কর।
- (ঘ) প্রদত্ত ভার্নিয়ার স্কেলকে ভিন্ন ভাগসম্পন্ন অপর একটি ভার্নিয়ার স্কেল দ্বারা পরিবর্তন করা হলে পরিমাপের কোনো পরিবর্তন হবে কি? তোমার উত্তরের স্বপক্ষে গাণিতিক যুক্তি প্রদান কর।

সমাধান:

- (ক) স্ক্রুগজের বৃত্তাকার স্কেলের এক ভাগ ঘোরালে স্ক্রুটি যতটুকু সরে আসে তাকে লঘিষ্ঠ গণন বলে।
- (খ) স্লাইড ক্যালিপার্সের ক্ষেত্রে, মূল স্কেলের চোয়াল ও ভার্নিয়ার স্কেলের চোয়াল লেগে থাকে তখন সাধারণত ভার্নিয়ার স্কেলের শূন্য দাগ প্রধান স্কেলের শূন্য দাগের সাথে মিলে যায়। যদি ভার্নিয়ার স্কেলের ও মূল স্কেলের শূন্য দাগ না মিলে তবে যন্ত্রে যান্ত্রিক ত্রুটি রয়েছে বলে মনে করা হয়। আবার স্ক্রুগজের ক্ষেত্রে, বৃত্তাকার স্কেলের শূন্য দাগ যখন রৈখিক স্কেলের শূন্য দাগের সাথে না মিলে তবে ধরে নিতে হবে যন্ত্রে ত্রুটি রয়েছে। এই ত্রুটিকেই যান্ত্রিক ত্রুটি বলে।
- (গ) এখানে, প্রধান স্কেলের প্রতিটি ক্ষুদ্রতম ধারের দৈর্ঘ্য = ভার্নিয়ার স্কেলের ভাগসংখ্যা= তাহলে ভার্নিয়ার ধ্রুবক= বস্তুটির দৈর্ঘ্য,

 L= প্রধান স্কেল পাঠ + ভার্নিয়ার সমপাতন x ভার্নিয়ার ধ্রুবক বা, L= M + V×VC
 বা, L = 3.5 + 8 × 0.01

এখানে, প্রধান স্কেলের পাঠ, M=3.5 cm ভার্নিয়ার সমপাতন = 8 ভার্নিয়ার ধ্রুবক, VC = 0.01

(ঘ) উদ্দীপক হতে, প্রদত্ত ভার্নিয়ার স্কেলের মোট ড্রাগসংখ্যা 10টি। প্রধান স্কেলের প্রতিটি ক্ষুদ্রতম ঘরের দৈর্ঘ্য = 1 mm

এক্ষেত্রে ভার্নিয়ার ধ্রুবক = $\frac{1}{10}$ mm = 0.1mm = 0.01cm.

প্রদত্ত ভার্নিয়ার স্কেলটি ভিন্ন ভাগসম্পন্ন অপর একটি ভার্নিয়ার স্কেল দ্বারা পরিবর্তন করি।

ধরি, ভার্নিয়ারের ভাগসংখ্যা ৫টি

অন্তর, বস্তুটির দৈর্ঘ্য 3.58 cm

বা, L = 3.58 cm

প্রধান স্কেলের ক্ষুদ্রতম ঘরের দৈর্ঘ্য 1 mm হলে,

ভার্নিয়ার ধ্রুবক $=\frac{1}{5}$ mm = 0.2 mm = 0.02 cm

আবার, ভাগসংখ্যা 20টি হলে ভার্নিয়ার ধ্রুবক $rac{1}{20}$ mm= 0.05 mm = 0.005 cm

(গ) এর উত্তর হতে পাই, ১ম ক্ষেত্রে বস্তুর দৈর্ঘ্য= 3.58 cm

২য় ক্ষেত্রে বস্তুর দৈর্ঘ্য হবে, , L = 3.5 + 8 × 0.02= 3.66 cm

৩য় ক্ষেত্রে বস্তুর দৈর্ঘ্য হবে, L = 3.5 + 8 × 0.005= 3.54 cm

সুতরাং দেখা যায়, ভার্নিয়ার স্কেলের ভাগসংখ্যা পরিবর্তন করলে ভার্নিয়ার ধ্রুবকের মান হ্রাস-বৃদ্ধি ঘটে। ভার্নিয়ার ধ্রুবকের মান বেশি হলে পরিমাপে সূক্ষ্ম মান নির্ণয় করা যায় না। ধ্রুবকের মান যত ক্ষুদ্র হবে পরিমাপে প্রাপ্ত মানও তত সুক্ষ্ম হবে।

প্রশ্ন ৭।

একটি স্লাইড ক্যালিপার্সের প্রধান স্কেলের ক্ষুদ্রতম ১ ভাগের দৈর্ঘ্য 1mm এবং ভার্নিয়ার স্কেলের মোট ভাগসংখ্যা 20টি। স্লাইড ক্যালিপার্সটির সাহায্যে একটি ফাঁপা সিলিন্ডারের ভেতরের ব্যাস ও গভীরতা নির্ণয়ের পাঠ নিম্নরূপ পাওয়া যায়:

পাঠের স্থান	প্রধান স্কেল পাঠ(cm)	ভার্নিয়ার স্কেল পাঠ	
ব্যাস বরাবর	4	15	
গভীরতা বরাবর	5.2	20	

(সিলিন্ডারের ভেতরের অংশের আয়তন $=\pi r^2 h$, যেখানে r হলো ব্যাসার্ধ এবং h হলো গভীরতা)

- (ক) লব্ধ রাশি কী?
- (খ) এস.আই (S.I.) পদ্ধতিতে মৌলিক রাশিগুলোর নাম ও তাদের একক লেখ।
- (গ) স্লাইড ক্যালিপার্সটির অর্নিয়ার ধ্রুবক c.g.s. এককে নির্ণয় কর।
- (ঘ) সিলিন্ডারটিতে 60cm³ পানি রাখার পর তা পূর্ণ করার জন্য আরো কত আয়তন পানি যোগ করতে হবে, বিশ্লেষণ কর।

সমাধান:

- (क) লব্ধ রাশি: যে সকল রাশি মৌলিক রাশির ওপর নির্ভরশীল বা মৌলিক রাশি হতে পাওয়া যায় তাদের লব্ধ রাশি বলে।
- (খ) এস.আই. পদ্ধতিতে মৌলিক রাশিগুলোর নাম ও তাদের একক নিচে দেওয়া হলো-

রাশি	একক	রাশি	একক
দৈর্ঘ্য	m	তড়িৎ প্রবাহ	А
ভর	kg	দীপন তীব্ৰতা	Cd
সময়	S	পদার্থের পরিমাণ	mol
তাপমাত্রা	К		

- (গ) প্রদত্ত উদ্দীপকে, প্রধান স্কেলের ক্ষুদ্রতম এক ভাগের দৈর্ঘ্য, s=1mm এবং ভার্নিয়ার স্কেলের ভাগসংখ্যা, n=20 ভার্নিয়ার ধ্রুবক, $VC=\frac{s}{n}=\frac{1mm}{20}=\frac{1}{20\times 10}\,cm=0.005cm$ সুতরাং স্লাইড ক্যালিপার্সটির ভার্নিয়ার ধ্রুবক c.g.s. এককে 0.005cm
- (ঘ) সিলিন্ডারটিতে $60cm^3$ পানি রাখা হলে তা পূর্ণ হবে না কিছু অংশ খালি থাকবে তা বোঝার জন্য প্রথমে সিলিন্ডারের আয়তন নির্ণয় করতে হবে।

'গ' হতে, ভার্নিয়ার ধ্রুবক = 0.005cm

এখানে, সিলিন্ডারের ব্যাস, d= প্রধান স্কেল পাঠ+ ভার্নিয়ার সমপাতনimes ভার্নিয়ার ধ্রুবক

$$= 4 + 15 \times 0.005 = 4.075cm$$

$$\therefore$$
 ব্যাসার্ধ, $r = \frac{4.075}{2}cm = 2.0375cm$

আবার, সিলিন্ডারটির গভীরতা, $h=M+V \times VC=5.2+10 \times 0.005=5.35cm$

সুতরাং সিলিন্ডারটির আয়তন, $V=\pi r^2 h=3.1416 imes (2.0375)^2 imes 5.25=68.44 \ cm^3$

এখানে, $68.44cm^3 > 60cm^3$

যেহেতু, সিলিন্ডারটির আয়তন পানির আয়তন থেকে কিছু বেশি,তাই সিলিন্ডারটি পূর্ণ হবে না। কিছু অংশ খালি থাকবে। সিলিন্ডারটিতে পানি রাখলে ফাঁকা থাকে $(68.44-60)cm^3=8.44cm^3$

∴ সিলিন্ডারটি পূর্ণ করতে আরো 8.44cm³ পানি যোগ করতে হবে।

প্রশ্ন ৮।

নাজিম সিলিন্ডার আকৃতির একটি দন্ডের আয়তন নির্ণয় করতে গিয়ে দেখল, ব্যাসের ক্ষেত্রে ভার্নিয়ার স্কেলের প্রধান স্কেল পাঠ 1.2 cm, ভার্নিয়ার সমপাতন 3। দৈর্ঘ্যের ক্ষেত্রে প্রধান স্কেল পাঠ 5 cm, ভার্নিয়ার সমপাতন 4। স্কেলটিতে ক্ষুদ্র ভাগের সংখ্যা 10 এবং এতে কোনো যান্ত্রিক ত্রুটি ছিল না।

- (ক) ভার্নিয়ার স্কেল কী?
- (খ) স্লাইড ক্যালিপার্সের যান্ত্রিক ত্রুটি কী? ইহা কীভাবে নির্ণয় করা হয়?
- (গ) নাজিমের পর্যবেক্ষণকৃত দণ্ডটির আয়তন নির্ণয় কর।
- (ঘ) বৈজ্ঞানিক গবেষণার ক্ষেত্রে নাজিমের ব্যবহৃত স্কেলটি ব্যবহারের প্রয়োজনীয়তা ব্যাখ্যা কর।

সমাধান:

- (क) ভার্নিয়ার স্কেল: যে যন্ত্রের সাহায্যে মিলিমিটারের ভগ্নাংশ পর্যন্ত দৈর্ঘ্য সূক্ষ্মভাবে মাপা যায় তাকে ভার্নিয়ার স্কেল বলে।
- (খ) যদি স্লাইড ক্যালিপার্সে প্রধান স্কেলের শূন্য দাগ আর ভার্নিয়ার স্কেলের শূন্য দাগ মিলে না যায় তাহলে প্রাপ্ত পরিমাপ সঠিক হবে না। এটা এক ধরনের যান্ত্রিক ত্রুটি। পরীক্ষণ শুরুর আগে এই যান্ত্রিক ত্রুটি নির্ণয় করে নিতে হয়। তারপর প্রাপ্ত পাঠ থেকে এই পাঠ বিয়োগ করে প্রকৃত পাঠ বের করতে হয়।
- (গ) ব্যাস এর ক্ষেত্রে, ব্যাস, d = প্রধান স্কেল পাঠ + ভার্নিয়ার সমপাতন x ভার্নিয়ার ধ্রুবক

= 1.2 cm + 3 x 0.01 cm = 1.23 cm

দৈর্ঘ্যের ক্ষেত্রে,

দৈর্ঘ্য h =প্রধান স্কেল পাঠ + ভার্নিয়ার সমপাতন x ভার্নিয়ার ধ্রুবক = 5 cm + 4 × 0.01 cm = 5.04 cm.

আবার, নাজিমের পর্যবেক্ষনকৃত দণ্ডটির আয়তন,

$$V = \pi r^2 h = \pi (\frac{d}{2})^2 h = 3.14 \times \left(\frac{1.23}{2}\right)^2 \times 5.04$$
$$= 5.99 cm^3 \approx 6 cm^3$$

সুতরাং, দন্ডটির আয়তন $6cm^3$ ।

এখানে, ব্যাসের ক্ষেত্রে, প্রধান স্কেল পাঠ = 1.2 cm ভার্নিয়ার সমপাতন = 3 দৈর্ঘ্যের ক্ষেত্রে, প্রধান স্কেল পাঠ = 5 cm ভার্নিয়ার সমপাতন= 4

(ঘ) নাজিমের ব্যবহৃত স্কেলটি ছিল স্লাইড ক্যালিপার্স। সূক্ষ্ম পরিমাপের জন্য এবং বৈজ্ঞানিক গবেষণার ক্ষেত্রে স্লাইড ক্যালিপার্স যন্ত্রটি বেশ কার্যকরী একটি যন্ত্র। মিটার স্কেলের সাহায্যে মিলিমিটারের চেয়ে ক্ষুদ্রতর দৈর্ঘ্য সূক্ষ্মভাবে পরিমাপ করা যায়। মিলিমিটারের চেয়ে ক্ষুদ্রতর দৈর্ঘ্য সূক্ষ্মভাবে পরিমাপ করতে ব্যবহার করা হয় ভার্নিয়ার স্কেল। এ স্কেলের সাহায্যে যেমন কোনো বস্তুর দৈর্ঘ্য, প্রস্থ ও উচ্চতা সুক্ষ্মভাবে পরিমাপ করা যায়, তেমনি বাস্তব জীবনে ব্যবহৃত চোঙ বা সিলিন্ডারের উচ্চতা, আয়তন, ফাঁপা নলে অন্তর্ব্যাস ও বহির্ব্যাস, আয়তাকার বস্তুর আয়তন, গোলকের আয়তন ইত্যাদি নির্ণয়ের জন্য ভার্নিয়ার স্কেলের প্রয়োজন। তাই বলা যায়, বৈজ্ঞানিক গবেষণার ক্ষেত্রে নাজিমের ব্যবহৃত স্কেলটি ব্যবহারের প্রয়োজনীয়তা অপরিসীম।

প্রশ্ন ৯।

লিগ্যান্ড ও ত্বকী একই বস্তুর পুরুত্ব পরিমাপের জন্য দুটি পৃথক স্লাইড ক্যালিপার্স ব্যবহার করল। লিগ্যান্ডের স্লাইড ক্যালিপার্সের প্রধান স্কেলের 19 ঘর, ভার্নিয়ার ক্ষেলের 20 ঘরের সমান। ত্বকীর স্লাইড ক্যালিপার্সের প্রধান স্কেলের 9 ঘর, ভার্নিয়ারের 10 ঘরের সমান। উভয় ক্ষেত্রেই ক্ষুদ্রতম ঘরের দৈর্ঘ্য 1 mm। লিগ্যান্ড ও ত্বকী উভয়ের ক্ষেত্রে প্রাপ্ত পাঠ নিম্বরূপ:

	প্রধান স্কেল পাঠ(cm)	ভার্নিয়ার সমপাতন
ত্বকীর প্রাপ্ত পাঠ	3	6
লিগ্যান্ডের প্রাপ্ত পাঠ	3	13

- (ক) যান্ত্ৰিক ত্ৰুটি কাকে বলে?
- (খ) 'নিউটন' একটি লব্ধ একক ব্যাখ্যা কর।
- (গ) উভয় স্কেলের ভার্নিয়ার ধ্রুবক বের কর।
- (ঘ) কোন স্কেলটি দ্বারা প্রাপ্ত পুরুত্ব অধিকতর নির্ভুল হবে? যুক্তিসহ ব্যাখ্যা কর।

সমাধান:

(**ক**) যান্ত্রিক ত্রুটি: স্ক্রু-নাট ইত্যাদির দ্বারা তৈরিকৃত যন্ত্রে ক্ষয়জনিত বা ব্যবহারজনিত যে ধরনের ত্রুটি হয় তাকে যান্ত্রিক ত্রুটি বলে।

(খ) নিউটন হলো বলের একক।বল = ভর x ত্বরণ = ভর x
$$\frac{বেগ}{সময়}$$
 = ভর x $\frac{সরণ}{NN}$ = ভর x $\frac{N}{NN}$ = ভর x $\frac{N}{N}$ = ভর x $\frac{N}{N}$ = ভর x $\frac{N}{N}$ = $\frac{N}{N$

(গ) উদ্দীপক হতে, উভয় ক্ষেলের 1 ক্ষুদ্রতম ঘরের দৈর্ঘ্য 1mm লিগ্যান্ডের স্লাইড ক্যালিপার্সের 19 ঘর ভার্নিয়ারের 20 ঘরের সমান।

∴ভার্নিয়ার ধ্রুবক =
$$\frac{প্রধান স্কেলের ক্ষুদ্রতম $_1$ ঘর $\overline{}$ ভার্নিয়ার স্কেলের ভাগসংখ্যা = $\frac{1mm}{20}$ = 0.05mm$$

ত্বকীর স্লাইড ক্যালিপার্সের 9 ঘর ভার্নিয়ার স্কেলের 10 ঘরের সমান।

ভার্নিয়ার ধ্রুবক =
$$\frac{$$
প্রধান স্কেলের ক্ষুদ্রতম 1 ঘর $}{}=\frac{1mm}{10}$ = 0.1mm

(ঘ) 'গ' হতে পাই,

লিগ্যান্ডের ব্যবহৃত স্কেলের ভার্নিয়ার ধ্রুবক = 0.05mm এবং ত্বকীর ব্যবহৃত ক্ষেলের ভার্নিয়ার ধ্রুবক = 0.1mm এখানে লক্ষণীয় যে, 0.05mm < 0.1mm

আমরা জানি, যে স্কেলের ভার্নিয়ার ধ্রুবক যত ক্ষুদ্র হবে সেই স্লাইড ক্যালিপার্স দিয়ে তত সূক্ষ্মভাবে পরিমাপ করা যাবে। এখানে লিগ্যান্ডের ব্যবহৃত স্কেল দিয়ে ক্ষুদ্রতম 0.05mm পর্যন্ত পুরুত্ব সূক্ষ্মভাবে পরিমাপ করা সম্ভব হবে। অপরদিকে ত্বকীর ব্যবহৃত ফেল দিয়ে ক্ষুদ্রতম 0.1mm পর্যন্ত পুরুত্ব সূক্ষ্মভাবে পরিমাপ করা সম্ভব হবে। যেহেতু লিগ্যান্ডের ক্ষেলের ভার্নিয়ার ধ্রুবক ত্বকীর-স্কেলের ভার্নিয়ার ধ্রুবক অপেক্ষা বেশি ক্ষুদ্রতম, সেহেতু লিগ্যান্ডের স্কেলটি দ্বারা প্রাপ্ত পুরুত্ব অধিকতর নির্ভুল হবে।

প্রশ্ন ১০।

ওপরের চিত্রে একটি ফাঁপা সিলিন্ডারের ভেতরের ও বাহিরের ব্যাস যথাক্রমে d_1 ও d_2 একটি স্লাইড ক্যালিপার্স যার ভার্নিয়ার স্কেলের 20 দাগ মূল স্কেলের 19mm দাগের সমান এবং এটি দিয়ে d_1 ও d_2 পরিমাপের ক্ষেত্রে প্রধান সমপাতন যথাক্রমে 12mm ও 15mm ও ভার্নিয়ার সমপাতন যথাক্রমে 10 ও 13 হয়.

(ক) ভার্নিয়ার স্কেল কি?

- (খ) স্ক্রু গজের পিচ 1mm বলতে কি বোঝায়?
- (গ) স্লাইড ক্যালিপার্সটির ভার্নিয়ার ধ্রুবক নির্ণয় কর।
- (घ) সিলিন্ডারটির আয়তন নির্ণয় কর।
- (**ক**) ভার্নিয়ার স্কেল হচ্ছে একটি সাহায্যকারী স্কেল, যা মূল স্কেলের সাথে ব্যবহার করা হয় এবং যার সাহায্যে মূল স্কেলের ক্ষুদ্রতম ঘরের ভগ্নাংশ পরিমাপ করা হয়।
- খে) স্ক্রু গজের পিচ 1mm বলতে বোঝায় স্ক্রু গজের টুপি একবার ঘোরালে এর 1mm সরণ ঘটে অর্থাৎ রৈখিক স্কেল বরাবর এটি 1mm দৈর্ঘ্য অতিক্রম করে।
- (গ) উদ্দীপক অনুযায়ী, ভার্নিয়ার স্কেলের 20 ঘর = মূল স্কেলের 19 ঘর
- ∴ ভার্নিয়ার স্কেলের 1 ঘর = মূল স্কেলের $\frac{19}{20}$ ঘর প্রধান স্কেলের 1 ঘর = 1mm

 \therefore ভার্নিয়ার স্কেলের 1 ঘর = $\frac{19}{20} \times 1mm = \frac{19}{20}$ mm

 \therefore ভার্নিয়ার ধ্রুবক= প্রধান স্কেলের ঘরের দৈর্ঘ্য-ভার্নিয়ার স্কেলের ঘরের দৈর্ঘ্য $=1mm-rac{19}{20}mm=0.05~mm$

(ঘ) দেওয়া আছে,

ফাঁপা সিলিন্ডারের ভেতরের ব্যাস, d_1 এবং বাইরের ব্যাস, d_2

সিলিন্ডারের উচ্চতা, h= 3cm= 30mm

'গ' অংশ হতে পাই, ভার্নিয়ার ধ্রুবক=0.05mm

 d_1 পরিমাপের ক্ষেত্রে প্রধান স্কেল পাঠ $12 \mathrm{mm}$ এবং ভার্নিয়ার সমপাতন= 10

$$d_1 = 12mm + 10 \times 0.05mm = 12.5mm$$

 d_2 পরিমাপের ক্ষেত্রে প্রধান স্কেল পাঠ 15mm এবং ভার্নিয়ার সমপাতন= 13

$$d_2 = 15mm + 13 \times 0.05mm = 15.65mm$$

$$\therefore$$
 সিলিন্ডারটির আয়তন
$$= \frac{\pi}{4} (\ d_2\ ^2 - d_1\ ^2) h$$

$$= \frac{\pi}{4} \times (15.65^2 - 12.5^2) \times 30\ \mathrm{mm}^3$$

$$= 2089.3\ \mathrm{mm}^3 = 2.089\ \mathrm{cm}^3 = 2.089\ \mathrm{cm}^3$$

অতএব, সিলিন্ডারটির আয়তন 2.089cc

প্রশ্ন ১১।

দশম শ্রেণির একজন শিক্ষার্থী ব্যবহারিক শ্রেণিতে সিলিন্ডারের আয়তন নির্ণয়ের জন্য স্লাইড ক্যালিপার্স ব্যবহার করে নিম্নোক্ত পাঠসমূহ পেল-

বৈশিষ্ট্য	প্রধান স্কেল পাঠ	ভার্নিয়ার সমপাতন	যান্ত্ৰিক ত্ৰুটি
ব্যাস	45 mm	23	−2 ঘর
উচ্চতা	98 mm	2	

- (ক) মৌলিক রাশি কাকে বলে?
- (খ) $s=ut+rac{1}{2}at^2$ মাত্রা সমীকরণের সাহায্যে সত্যতা যাচাই কর।
- (গ) ভার্নিয়ার ধ্রুবক 0.02cm হলে ভার্নিয়ার স্কেলের ভাগ সংখ্যা বের কর।
- (**ঘ)** উদ্দীপকের তথ্য অনুযায়ী সিলিন্ডারের আয়তন কত cc নির্ণয় কর।
- (**ক**) যেসব রাশি স্বাধীন বা নিরপেক্ষ অর্থাৎ যেসব রাশি অন্য রাশির উপর নির্ভর করে না বরং অন্য রাশি এদের ওপর নির্ভর করে তাদেরকে মৌলিক রাশি বলে।
- (খ) কোনো সমীকরণের বাম পাশের রাশির মাত্রা ডান পাশের রাশির মাত্রার সমান হলে সমীকরণের নির্ভুলতা যাচাই হয়। উল্লিখিত সমীকরণটি হলো $s=ut+rac{1}{2}at^2$ । এ সমীকরণে তিনটি পদ আছে, বামপক্ষে একটি এবং ডানপক্ষে দুটি। বামপক্ষে, s হলো সরণ, এর মাত্রাs=t

ডানপক্ষে, u হলো আদিবেগ, এর মাত্রা $= \frac{L}{T} = L T^{-1}$

$$a$$
 হলো ত্বরণ, এর মাত্রা= $rac{L}{T^2}=LT^{-2}$

t হলো সময়, এর মাত্রা=T

অতএব ut এর মাত্রা হলো, LT^{-1}

$$at^2$$
এর মাত্রা হলো $LT^{-2} \times T^2 = L$

তাহলে দেখা যাচ্ছে যে, সমীকরণটির ডান পাশের দুটি পদের মাত্রা = L

এবং বামপাশের পদের মাত্রা = L

সুতরাং সমীকরণটি সঠিক। অতএব, মাত্রার সাহায্যে উল্লিখিত সমীকরণটির সত্যতা যাচাই করা হলো।

(গ) আমরা জানি,

$$V.C = \frac{s}{n}$$

বা,
$$n = \frac{s}{VC}$$

$$\therefore n = 5$$

এখানে,

ভার্নিয়ার ধ্রুবক, V.C = 0.02 cm

প্রধান স্কেলের ক্ষুদ্রতম 1 ভাগের দৈর্ঘ্য, s=1mm=0.1cm

ভার্নিয়ারের ভাগসংখ্যা, n=?

ব্যাসের জন্য মূল স্কেলের পাঠ = 45mm = 4.5cm

ভার্নিয়ার সমপাতন= 23 ; যান্ত্রিক ত্রুটি= -2

উচ্চতার জন্য মূল স্কেল পাঠ=98mm=9.8cm; সমপাতন=2

সিলিন্ডারের ব্যাস = মূল স্কেল পাঠ + (ভার্নিয়ার সমপাতন × ভার্নিয়ার ধ্রুবক) – যান্ত্রিক ত্রুটি

$$\exists 1, d = 4.5 + (23 \times 0.02) - 0 = 9.8 + 0.04 = 9.84cm$$

সিলিন্ডারের আয়তন = $\pi(\frac{d}{2})^2 \times h = 3.14 \times (\frac{5}{2})^2 \times 9.84 = 193.11 cm^3 = 193.11 cc \ [1cm^3 = 1 cc]$

সুতরাং উদ্দীপকের তথ্যানুযায়ী সিলিন্ডারটির আয়তন 193.11 cc

প্রশ্ন ১২।

এক ছাত্রী একটি স্লাইড ক্যালিপার্সের সাহায্যে একটি আয়তাকার বস্তুর বিভিন্ন পাঠ নিল। তার ব্যবহৃত স্লাইড ক্যালিপার্সের প্রধান স্কেলের ক্ষুদ্রতম ধরের দৈর্ঘ্য ছিল 1 mm। প্রাপ্ত পাঠসমূহ নিম্নরূপ-

বৈশিষ্ট্য	প্রধান স্কেল পাঠ (mm)	ভার্নিয়ার পাঠ (mm)	ভার্নিয়ার সমপাতন
দৈৰ্ঘ্য	30 mm	0.15 mm	3
প্রস্থ	20 mm	0.10 mm	2

- (ক) ভার্নিয়ার ধ্রুবক কাকে বলে?
- (খ) স্লাইড ক্যালিপার্সের যান্ত্রিক ত্রুটি কিভাবে বোঝা যায়?
- (গ) আয়তাকার বস্তুটির ক্ষেত্রফল কত?
- (ঘ) ব্যবহৃত ভার্নিয়ার স্কেলের কয়ভাগ প্রধান স্কেলের কত ভাগের সমান- তা নির্ণয় কর।

সমাধান:

- (ক) প্রধান স্কেলের ক্ষুদ্রতম এক ভাগের চেয়ে ভার্নিয়ার স্কেলের একভাগ যতটুকু ছোট তার পরিমাণকে ভার্নিয়ার ধ্রুবক বলা হয়।
- (খ) স্লাইড ক্যালিপার্স পরীক্ষা শুরুর আগে যদি স্লাইড ক্যালিপার্সে প্রধান স্কেলের শূন্য দাগ আর ভার্নিয়ার স্কেলের শূন্য দাগ মিলে না যায় তাহলে প্রাপ্ত পরিমাপ সঠিক হবে না। এটিই স্লাইড ক্যালিপার্সের যান্ত্রিক ত্রুটি এবং এ থেকেই স্লাইড ক্যালিপার্সের যান্ত্রিক ত্রুটি বোঝা যায়।

(গ) উদ্দীপক হতে পাই,

দৈর্ঘ্যের ক্ষেত্রে, প্রধান স্কেল পাঠ, M=30mm=0.03m এবং ভার্নিয়ার পাঠ, $V_p=0.15mm=0.00015m$ প্রস্থের ক্ষেত্রে, প্রধান স্কেল পাঠ, M'=20mm=0.02m এবং ভার্নিয়ার পাঠ, $V_p{'}=0.10mm=0.0001m$ এখন, আয়তাকার বস্তুর দৈর্ঘ্য, L= প্রধান স্কেল পাঠ + ভার্নিয়ার পাঠ $=M+V_p=0.03+0.00015=0.03015m$ আবার, আয়তাকার বস্তুর প্রস্থ, B= প্রধান স্কেল পাঠ + ভার্নিয়ার পাঠ $=M'+V_p'=0.02+0.0001=0.0201m$ আমরা জানি, আয়তাকার বস্তুর ক্ষেত্রফল, = দৈর্ঘ্য \times প্রস্থ $=L\times B=0.03015\times 0.0201=0.000606 m^2$ অতএব, আয়তাকার বস্তুটির ক্ষেত্রফল $0.000606m^2$ ।

(ঘ) উদ্দীপক হতে পাই,

দৈর্ঘ্যের ক্ষেত্রে, প্রধান স্কেল পাঠ, M=30mm, ভার্নিয়ার সমপাতন, V=3 এবং ভার্নিয়ার পাঠ, $V_p=0.15mm$ প্রস্থের ক্ষেত্রে, প্রধান স্কেল পাঠ, M'=20mm, ভার্নিয়ার সমপাতন, V'=2 এবং ভার্নিয়ার পাঠ, $V_p'=0.10mm$ এখন, দৈর্ঘ্যের ক্ষেত্রে ভার্নিয়ার ধ্রুবক VC_1 হলে, আমরা জানি, ভার্নিয়ার পাঠ= ভার্নিয়ার সমপাতন+ভার্নিয়ার ধ্রুবক

$$: V_p = V \times VC_1$$

$$\therefore VC_1 = \frac{V_p}{V} = \frac{0.15mm}{3} = 0.05mm$$

আবার, প্রস্থের ক্ষেত্রে ভার্নিয়ার ধ্রুবক VC_2 হলে, ভার্নিয়ার পাঠ = ভার্নিয়ার সমপাতন imes ভার্নিয়ার ধ্রুবক

$$\therefore V_p' = V' \times VC_2$$

$$\therefore VC_2 = \frac{V_{p'}}{V_I} = \frac{0.10mm}{2} = 0.05mm$$

মনে করি, দৈর্ঘ্যের ক্ষেত্রে ভার্নিয়ার স্কেলের ভাগসংখ্যা n_1 এবং প্রস্থের ক্ষেত্রে ভার্নিয়ার স্কেলের ভাগসংখ্যা n_2 এখন, দৈর্ঘ্যের ক্ষেত্রে ভার্নিয়ার ধ্রুবক, $VC_1=rac{s}{n_1}$

বা,
$$n_1 = \frac{s}{VC_1} = \frac{1mm}{0.05mm} = 20$$

আবার প্রস্থের ক্ষেত্রে ভার্নিয়ার ধ্রুবক, $VC_2 = \frac{s}{n_2}$

বা,
$$n_2 = \frac{s}{VC_2} = \frac{1mm}{0.05mm} = 20$$

ধরি, প্রধান স্কেলের n ভাগ ভার্নিয়ার স্কেলের 20 ভাগের সমান।

আমরা জানি, ভার্নিয়ার ধ্রুবক= প্রধান স্কেলের 1 ভাগের দৈর্ঘ্য-ভার্নিয়ার স্কেলের 1 ভাগের দৈর্ঘ্য

এখন, ভার্নিয়ার ধ্রুবক=
$$1 - \frac{n}{20} = 0.05$$

বা,
$$\frac{n}{20} = 1 - 0.05 = 0.95mm$$

বা, $n=(0.95 \times 20)mm=19 \times 1mm=19 \times$ প্রধান স্কেলের ক্ষুদ্রতম 1 ভাগের দৈর্ঘ্য সুতরাং, উদ্দীপকে ব্যবহৃত ভার্নিয়ার স্কেলের 20 ভাগ প্রধান স্কেলের 19 ভাগের সমান।

প্রশ্ন ১২।

উপরের চিত্রে একটি পয়সার ব্যাস বরাবর ভার্নিয়ার স্কেল পাঠ দেখানো হলো

- (ক) ভার্নিয়ার ধ্রুবক কাকে বলে?
- (খ) বল একটি লব্ধ রাশি কেন- ব্যাখা করো।
- (গ) পয়সাটির পরিধি নির্ণয় কর।
- (ঘ) পয়সাটির পৃষ্ঠের ক্ষেত্রফল পরিমাপে আপেক্ষিক ত্রুটির শতকরা পরিমাণ নির্ণয় কর।

সমাধান:

(**ক**) প্রধান স্কেলের ক্ষুদ্রতম এক ভাগের চেয়ে ভার্নিয়ার স্কেলের একভাগ যতটুকু ছোট তার পরিমাণকে ভার্নিয়ার ধ্রুবক বলা হয়।

(খ)

প্রশ্ন ১২। জিম একটি বাক্স রুলার দিয়ে মেপেছে, যেখানে শুধু cm দিয়ে দাগ। জিম বাক্সটির দৈর্ঘ্য, প্রস্থ ও উচ্চতা হিসেবে 10 cm, 5 cm, 4 cm পেয়েছে। অপরদিকে জিমের ভাই জোয়া বর্গাকৃতি একটা বইয়ের দৈর্ঘ্য পরিমাপ করে 10 cm পেয়েছে।

- (ক) সময় মাপার জন্য কী ব্যবহার করা হয়?
- (খ) ঘনত্বের একক মৌলিক, না লব্ধ?
- (গ) জিমের মাপে কত শতাংশ ত্রুটি আছে?
- (ঘ) "জোয়ার পরিমাপে 10% আপেক্ষিক ত্রুটি হলে, ক্ষেত্রফলের বেলায় সেটি হবে প্রায় দ্বিগুণ"- উক্তিটি বিশ্লেষণ কর।

সমাধান:

- (ক) সময় মাপার জন্য স্টপওয়াচ ব্যবহার করা হয়।
- (খ) আমরা জানি, ঘনত্ব=<u>ভর</u> <u>আয়তন</u>

 \therefore ঘনত্বের একক = $\frac{\mbox{ভরের একক}}{\mbox{আয়তনের একক}} = \frac{kg}{m} = kgm^{-3}$

এখানে, ঘনত্বের একক দুটি মৌলিক রাশি ভর ও দৈর্ঘ্যের এককের উপর নির্ভরশীল। সুতরাং, ঘনত্বের এককটি লব্ধ একক।

(গ) যেহেতু জিমের রুলারে শুধু cm দাগ দেওয়া কাজেই জিমের ত্রুটি $\pm 0.5~cm$. জিমের মাপের ত্রুটি:

দৈর্ঘ্য, 10 ± 0.5 cm; প্রস্থ, 5 ± 0.5 cm; উচ্চতা, 4 ± 0.5 cm

জিমের মাপা আয়তন: $10 cm \times 5 cm \times 4 cm = 200 cm^3$

সম্ভাব্য সবচেয়ে ছোট আয়তন: (10-0.5) $cm \times (5-0.5)$ $cm \times (4-0.5)$ cm = 149.625 cm^3

সম্ভাব্য সবচেয়ে বড় আয়তন: (10+0.5) $cm \times (5+0.5)$ $cm \times (4+0.5)$ cm = 259.875 cm^3

কাজেই আয়তন $149.625 \ cm^3 < V < 259.875 \ cm^3$

চুড়ান্ত ত্রুটি: 149.625 cm³ থেকে 200 cm³ হচ্ছে 200 cm³ — 149.625 cm³=50.375 cm³

 $200 cm^3$ থেকে $259.875 cm^3$ হচ্ছে $259.875 cm^3 - 200 cm^3 = 59.875 cm^3$

আমরা বড়টিই নিই: অর্থাৎ চূড়ান্ত ত্রুটি 59.875cm³

আপেক্ষিক ত্রুটি: $59.875cm^3/200cm^3 \times 100 = 29.9375\% = 30\%$

সুতরাং জিমের মাপে ত্রুটি 30%

(ঘ) জোয়ার ক্ষেত্রে, বস্তুটির পরিমাপ করা ক্ষেত্রফল $10 \times 10 = 100cm^2$ । যেহেতু বস্তুটির আপেক্ষিক ক্রটি 10% কাজেই তার দৈর্ঘ্য পরিমাপ করা হলে সবচেয়ে কম $9~{\rm cm}$ এবং সবচেয়ে বেশি $11~{\rm cm}$ হতে পারে। কাজেই ক্ষেত্রফল, সবচেয়ে কম $9cm \times 9cm = 81cm^2$ এবং সবচেয়ে বেশি $11cm \times 11cm = 121cm^2$ হতে পারে। কাজেই চূড়ান্ত ক্রটি $|100cm^2 - 81cm^2| = 19cm^2$ অথবা $|121cm^2 - 100cm^2| = 21cm^2$ যেহেতু দুটি সমান নয় আমরা বড়টি নিই অর্থাৎ চূড়ান্ত ক্রটি $21cm^2$

কাজেই আপেক্ষিক ত্রুটি $\frac{21cm^2}{100cm^2}=0.21$ শতাংশের হিসাবে $0.21\times 100=21\%$

অর্থাৎ দৈর্ঘ্যের পরিমাপে 10% ত্রুটি হলে ক্ষেত্রফলের বেলায় সেটি হবে প্রায় দ্বিগুণ।

সুতরাং উপরোক্ত গাণিতিক বিশ্লেষণ হতে বলা যায়, জোয়ার পরিমাপে 10% আপেক্ষিক ত্রুটি হলে, ক্ষেত্রফলের বেলায় সেটি হবে প্রায় দ্বিগুণ।

প্রশ্ন ১। স্লাইড ক্যালিপার্সের প্রধান স্কেলের ক্ষুদ্রতম ঘরের দৈর্ঘ্য এবং ভার্নিয়ার ধ্রুবক স্লাইড ক্যালিপার্সে ভার্নিয়ার স্কেলের কত ভাগ মূল স্কেলের কত ভাগের সমান নির্ণয় কর।

সমাধান: আমরা জানি,

$$VC = \frac{s}{n}$$

বা,
$$n = \frac{s}{VC} = \frac{0.1 cm}{0.002 cm} = 50$$

এখানে,

মূল স্কেলের ক্ষুদ্রতম 1 ঘরের দৈর্ঘ্য, S=1mm=0.1cm ভার্নিয়ার ধ্রুবক, VC=0.002cm

ভার্নিয়ার স্কেলের 1 ভাগ মূল স্কেলের ক্ষুদ্রতম 1 ভাগ থেকে $0.002\ cm$ ছোট

 \therefore ভার্নিয়ার স্কেলের 50 ভাগ মূল স্কেলের ক্ষুদ্রতম 50 ভাগ থেকে (0.002 imes 50)cm বা, 0.1~cm ছোট।

 \therefore মূল স্কেলের $0.1 \ cm =$ মূল স্কেলের $1 \ ভাগ।$

 \therefore ভার্নিয়ার স্কেলের ভাগ সংখ্যা 50 হলে মূল স্কেলের ক্ষুদ্রতম ভাগ সংখ্যা হবে (50-1)=49 অতএব ভার্নিয়ার স্কেলের 50 ভাগ মূল স্কেলের ক্ষুদ্রতম 49 ভাগের সমান।

প্রশ্ন ২। পদার্থবিজ্ঞানের শিক্ষক পরীক্ষাগারে ছাত্রদের নিয়ে যান্ত্রিক ত্রুটিহীন স্লাইড ক্যালিপার্সের সাহায্যে একটি তারের ব্যাস নির্ণয় করতে গিয়ে মূল স্কেলের পাঠ পেলেন 1.6 cm; তারের ব্যাস পেলেন 1.65 cm। ভার্নিয়ার ভাগসংখ্যা 10, ভার্নিয়ার সমপাতন নির্ণয় কর।

সমাধান: আমরা জানি,

$$VC = \frac{S}{n} = \frac{1 mm}{10} = 0.1 mm = 0.01 cm$$

আবার, $L = M + V \times VC$

বা,
$$V = \frac{L-M}{VC} = \frac{1.65 \ cm - 1.6 \ cm}{0.01 \ cm} = \frac{0.05}{0.01}$$

$$\therefore V = 5$$

অতএব, ভার্নিয়ার সমপাতন 5।

এখানে, মূল স্কেলের ক্ষুদ্রতম 1 ঘরের দৈর্ঘ্য, S=1mm=0.1cmভার্নিয়ার ধ্রুবক, VC=0.002cm

প্রশ্ন ৩। একটি স্লাইড ক্যালিপার্সের ভার্নিয়ার ভাগ সংখ্যা 10 ও প্রধান স্কেলের ক্ষুদ্রতম ভাগের মান 1mm। যন্ত্রটি দ্বারা পরিমাপে প্রাপ্ত দন্ডের দৈর্ঘ্য 3.27 cm, প্রধান স্কেল পাঠ 3.2 cm। ভার্নিয়ার সমপাতন নির্ণয় কর।

সমাধান: আমরা জানি,

$$VC = \frac{S}{n} = \frac{1 mm}{10} = 0.1 mm = 0.01 cm$$

এখানে,

দন্ডের দৈর্ঘ্য = প্রধান স্কেল পাঠ + সমপাতন × VC

বা, সমপাতন $\times VC =$ দন্ডের দৈর্ঘ্য - প্রধান স্কেল পাঠ

ক্ষুদ্রতম ভাগ, S = 1mm

এখানে,

ভার্নিয়ার ভাগ সংখ্য, n=10দন্ডের দৈর্ঘ্য = $3.27\ cm$

প্রধান স্কেল পাঠ = 3.2

বা, সমপাতন=
$$\frac{\text{দন্ডের দৈর্ঘ্য-প্রধান স্কেল পাঠ}}{vc} = \frac{3.27-3.20}{0.01} = \frac{0.07}{0.01} = 7$$

 \therefore ভার্নিয়ার সমপাতন = 7 (Ans)

উদ্দীপকের নিরেট বলটিকে ঘনবস্তুটির ভেতর প্রবিষ্ট করানো হলে ঘনবস্তুটির ভেতরের খালি অংশের আয়তন কত হবে?

সমাধান: এখন, নিরেট বলটির আয়তন

$$=rac{4}{3}\pi r^3=rac{4}{3} imes 3.1416 imes (2.5cm)^3$$
 $=65.45\ cm^3$
আবার, ঘনবস্তুটির আয়তন $=a^3$
 $=(6.55cm)^3$
 $=281.01\ cm^3$

অতএব, ঘনবস্তুটির ভিতরের খালি অংশের আয়তন= ঘনবস্তুটির আয়তন–নিরেট বলটির আয়তন = $281.01\ cm^3-65.45\ cm^3$

$$= 215.56 cm^3$$
 (Ans)

প্রশ্ন ৫। রাতুল স্লাইড ক্যালিপার্সের সাহায্যে বর্গাকার একটি বই এর দৈর্ঘ্য পরিমাপ করার সময় প্রধান স্কেল পাঠ 12cm এবং ভার্নিয়ার সমপাতন 6 পেল। দৈর্ঘ্য পরিমাপে যন্ত্রটির ± 0.5 cm ত্রুটি থাকতে পারে। ভার্নিয়ার ধ্রুবক 0.01cm। বইটির ক্ষেত্রফল নির্ণয়ে 10% ত্রুটি গ্রহণযোগ্য। রাতুলের জন্য উল্লিখিত যন্ত্র দ্বারা পরিমাপকৃত ক্ষেত্রফল গ্রহণযোগ্য কিনা গাণিতিকভাবে মতামত দাও।

সমাধান: আমরা জানি,

$$L = M + V \times VC$$

এখানে,

প্রধান স্কেল পাঠ, M = 12 cm; ভার্নিয়ার সমপাতন, V = 6; ভার্নিয়ার ধ্রুবক, VC = 0.01 cm দৈর্ঘ্য, L = ?

L= 12.06 cm = 12 cm + (6 × 0.01) cm = 12 cm + 0.06.cm =12.06 cm যান্ত্রিক ত্রুটি বিবেচনা না করলে বইটির পরিমাপকৃত দৈর্ঘ্য 12.06 cm।

 \therefore বইটির পরিমাপকৃত ক্ষেত্রফল = (দৈর্ঘ্য) 2 $[\because$ বইটি বর্গাকার] =(12.06) cm 2 = 145.4436 cm^2

দেওয়া আছে, দৈর্ঘ্য পরিমাপে যন্ত্রটির ত্রুটি ± 0.5 cm

ত্ৰুটি বিবেচনায় দৈৰ্ঘ্য = (12.06 ±0.5) cm

সম্ভাব্য সবচেয়ে বড় ক্ষেত্রফল = $(12.06 + 0.5)^2$ cm²

 $= (12.56)^2 \text{ cm}^2$

=157.7536 cm²

এবং সম্ভাব্য সবচেয়ে ছোট ক্ষেত্রফল =(12.06 – 0.5)2cm2

 $= (11.56)^2 \text{ cm}^2$

=133.6336 cm²

সুতরাং, ত্রুটি:

(i) (157.7536 - 145.4436) cm² = 12.31 cm²

(ii) (145.4436 - 133.6336) cm² = 11.81 cm²

চূড়ান্ত ত্রুটি হিসেবে বড়টিকে বিবেচনা করে,

ক্ষেত্রফল পরিমাপে আপেক্ষিক ত্রুটি = $\frac{\overline{p}$ ছান্ত ত্রুটি $}{\text{পরিমাপ করা মান}} = \frac{12.31 \text{ cm}^2}{145.4436 \text{ cm}} = 0.0846$

শতাংশের হিসাবে আপেক্ষিক ত্রুটি = 0.0846 × 100 = 8.46%

দেওয়া আছে, বইটির ক্ষেত্রফল নির্ণয়ে গ্রহণযোগ্য ত্রুটি 10% যা 8.46% থেকে বেশি। অতএব, রাতুলের জন্য উল্লিখিত যন্ত্র দ্বারা পরিমাপকৃত ক্ষেত্রফল গ্রহণযোগ্য ।

প্রশ্ন ৬। একটি স্লাইড ক্যালিপার্সের প্রধান স্কেলের ক্ষুদ্রতম 1 ঘরের মান 1mm এবং প্রধান স্কেলের 19 ঘরের সমান ভার্নিয়ার স্কেলের 20 ঘর। উক্ত স্কেল দ্বারা বর্গাকার একটি বস্তুর দৈর্ঘ্যের পরিমাপ করা হলো। মূল স্কেলের পাঠ 15mm, ভার্নিয়ার সমপাতন 16 এবং পরিমাপে ত্রুটি 5%। বর্গাকার বস্তুটির ক্ষেত্রফল নির্ণয়ে কত শতাংশ ত্রুটি হতে পারে? গাণিতিকভাবে বিশ্লেষণ করো।

সমাধান: আমরা জানি,

ভার্নিয়ার ধ্রুবক, VC = $\frac{s}{n} = \frac{0.1cm}{20} = 0.005cm$

আবার, L = M + VxVC

=1.5cm + (16×0.005) cm

= 1.5 cm + 0.08 cm

= 1.58 cm

অতএব, বর্গাকার বস্তুটির দৈর্ঘ্য 1.58 cm।

এখানে,

মূল স্কেলের পাঠ, M = 15mm=1,5 cm

ভার্নিয়ার সমপাতন, V = 16

প্রধান স্কেলের ক্ষুদ্রতম 1 ঘরের দৈর্ঘ্য, S = 1 mm = 0.1 cm

ভার্নিয়ার স্কেলের ভাগ সংখ্যা n = 20

ভার্নিয়ার ধ্রুবক, VC = ?

দৈর্ঘ্য, L=?

∴বর্গাকার বস্তুটির ক্ষেত্রফল = (দৈর্ঘ্য) 2 বর্গ একক= $(1.58)^2$ cm 2 = 2.4964 cm 2

উদ্দীপক হতে পাই, পরিমাপে ত্রুটি = 5% = 0.05

এখন, দৈর্ঘ্য পরিমাপে ত্রুটি বিবেচনায় আমরা পাই, দৈর্ঘ্য= (1.58±0.05)cm

সম্ভাব্য সবচেয়ে বড় ক্ষেত্রফল= $(1.58 + 0.05)^2 cm^2$

$$=(1.63)^2cm^2$$

$$= 2.6569 cm^2$$

সম্ভাব্য সবচেয়ে ছোট ক্ষেত্রফল= $(1.58-0.05)^2 cm^2$

$$=(1.53)^2cm^2$$

$$= 2.3409 cm^2$$

সুতরাং ত্রুটি ;

I.
$$|2.6569 - 2.4964| \text{ cm}^2 = 0.1605 \text{ cm}^2$$

II.
$$|2.4964 - 2.3409| \text{ cm}^2 = 0.1555\text{ cm}^2$$

চূড়ান্ত ত্রুটি হিসেবে বড়টিকে বিবেচনা করে,

ক্ষেত্রফল পরিমাপে আপেক্ষিক ত্রুটি
$$=$$
 $\frac{5 \text{ ছূড়ান্ত ত্রুটি}}{\text{পরিমাপ করা মান}} = \frac{0.1605 cm^2}{2.4964 cm^2} = 0.0643$

শতাংশের হিসাবে আপেক্ষিক ত্রুটি $= 0.0643 \times 100 = 6.43\%$

সুতরাং, বর্গাকার বস্তুটির ক্ষেত্রফল নির্ণয়ে 6.43% ত্রুটি হতে পারে।

প্রশ্ন ৭। স্লাইড ক্যালিপার্সের সাহায্যে একটি ঘনকের ধারের দৈর্ঘ্য 5cm পাওয়া গেল। ঘনকের দৈর্ঘ্য পরিমাপে 5% আপেক্ষিক ত্রুটি থাকলে ঘনকের এক পৃষ্ঠের ক্ষেত্রফল পরিমাপে শতকরা কী পরিমাণ আপেক্ষিক ত্রুটি বিদ্যমান থাকবে? – গাণিতিকভাবে ব্যাখ্যা কর।

সমাধান: আমরা জানি.

আপেক্ষিক ত্রুটি =
$$\frac{5$$
ূড়ান্ত ত্রুটি $\frac{1}{8.876}$ = $\frac{0.05}{8.876}$ = $\frac{0.05}{8.876}$

বা,
$$0.05 = \frac{\overline{p}$$
ড়ান্ত ত্রুটি $5 cm$

বা, চূড়ান্ত ত্রুটি $=5cm \times 0.05$

সুতরাং ত্রুটি বিবেচনায় আমরা পাই, দৈর্ঘ্য= (5±0.25)cm

এখন, ঘনকের এক পৃষ্ঠের ক্ষেত্রফলের পরিমাপ করা মান =(দৈর্ঘ্য $)^2=(5)^2cm^2=25cm^2$ আবার, ত্রুটি বিবেচনা করে,

সম্ভাব্য সবচেয়ে বড় ক্ষেত্রফল= $(5+0.25)^2 cm^2$

$$=(5.25)^2cm^2$$

$$= 27.5625 cm^2$$

সম্ভাব্য সবচেয়ে ছোট ক্ষেত্রফল= $(5-0.25)^2 cm^2$

$$= (4.75)^2 cm^2$$

$$= 22.5625 cm^2$$

সুতরাং ত্রুটি ;

I.
$$|27.5625 - 25| \text{ cm}^2 = 2.5625 \text{ cm}^2$$

II. $|25 - 22.5625| \text{ cm}^2 = 2.4375\text{ cm}^2$

চূড়ান্ত ত্রুটি হিসেবে বড়টিকে বিবেচনা করে,

আপেক্ষিক ত্রুটি =
$$\frac{5 \text{ b. b. }}{9 \text{ b. b. }} = \frac{2.5625 \text{ cm}^2}{25 \text{ cm}^2} = 0.1025$$

শতাংশের হিসাবে আপেক্ষিক ত্রুটি $= 0.1025 \times 100 = 10.25\%$

সুতরাং, ঘনকের দৈর্ঘ্য পরিমাপে 5% আপেক্ষিক ত্রুটি থাকলে ঘনকের এক পৃষ্ঠের ক্ষেত্রফল পরিমাপে 10.25% আপেক্ষিক ত্রুটি বিদ্যমান থাকবে।

প্রশ্ন ৮। একটি বর্গাকার বইয়ের দৈর্ঘ্য 92~cm। ক্ষেত্রফল পরিমাপে আপেক্ষিক ত্রুটি কত? মনে কর তুমি যে রুলার দিয়ে মেপেছ তার ক্ষুদ্রতম একঘর =1~cm

সমাধান: যেহেতু রুলারে শুধু cm দাগ দেওয়া কাজেই ত্রুটি $\pm 0.5~cm$.

সুতরাং, দৈর্ঘ্য = $92 \pm 0.5 \, cm$; প্রস্থ = $92 \pm 0.5 \, cm$

পরিমাপকৃত ক্ষেত্রফল, $A = 92 cm \times 92 cm = 8464 cm^2$

সম্ভাব্য সবচেয়ে ছোট ক্ষেত্রফল = (92-0.5) $cm \times (92-0.5)$ $cm = 91.5 \times 91.5$ $cm^2 = 8372.25$ cm^2

সম্ভাব্য সবচেয়ে বড় ক্ষেত্রফল = (92 + 0.5) $cm \times (92 + 0.5)$ $cm = 92.5 \times 92.5$ $cm^2 = 8556.25$ cm^2

কাজেই ক্ষেত্রফল $8372.25 \ cm^2 < A < 8556.25 \ cm^2$

সূতরাং, ত্রুটি:

I.
$$|8464 - 8372.25| = 91.75 \text{ cm}^2$$

II.
$$|8556.25 - 8464| = 92.25 cm^2$$

যেহেতু দুটি ত্রুটির মান সমান নয় সেহেতু বড় ত্রুটিটি নিয়ে পাই,

আপেক্ষিক ত্রুটি =
$$\frac{\overline{p}$$
ড়ান্ত ত্রুটি $}{\overline{\gamma}$ রিমাপকত মান = $\frac{92.25}{8464} \times 100 = 1.089\%$ (Ans)

প্রশ্ন ৯। একটি বর্গাকার ঘরের দৈর্ঘ্য 92 m। দৈর্ঘ্য পরিমাপে আপেক্ষিক ত্রুটি 7%। ক্ষেত্রফল পরিমাপে আপেক্ষিক ত্রুটি কত?

সমাধান: বস্তুটির পরিমাপ করা ক্ষেত্রফল, $(92 \times 92)m^2 = 8464m^2$

যেহেতু বস্তুটির দৈর্ঘ্য পরিমাপে আপেক্ষিক ত্রুটি 7%। কাজেই, তার দৈর্ঘ্য পরিমাপ করা হলে,

সম্ভাব্য সবচেয়ে কম দৈর্ঘ্য = $92 imes rac{(100-7)}{100} m = 92 imes 0.93 \ m = 85.56 \ m$ এবং

সম্ভাব্য সবচেয়ে বেশি দৈর্ধ্য = $92 imes rac{(100+7)}{100} m = 92 imes 1.07 m = 98.44 m$ হতে পারে।

কাজেই ক্ষেত্ৰফল,

সবচেয়ে কম = $85.56 \times 85.56 \, m^2 = 7320.5136 \, m^2$ এবং

সবচেয়ে বেশি = $98.44 \times 98.44 \, m^2 = 9690.4336 \, m^2$ হতে পারে।

সুতরাং ত্রুটি: $|8464 - 7320.5136| = 1143.4864 m^2$

অথবা, $|9690.4336 - 8464| = 1226.4336 m^2$

অতএব, আপেক্ষিক ত্রুটি=
$$\frac{\overline{p}$$
ড়ান্ত ত্রুটি $}{$ পরিমাপকৃত মান = $\frac{11226.4336}{8464} \times 100 = 14.49\%$ (Ans)

প্রশ্ন ১০। এক আয়তাকার বাক্সকে স্কেল দ্বারা পরিমাপ করা হচ্ছে। পরিমাপে দৈর্ঘ্য , প্রস্থ এবং উচ্চতা পাওয়া গেল। আয়তন নির্ণয়ে আপেক্ষিক ত্রুটি কত?

সমাধান: যেহেতু পরিমাপের জন্য cm স্কেল ব্যবহার করা হয়েছে, সুতরাং ত্রুটি $\pm 0.5 \ cm$.

কাজেই, দৈর্ঘ্য =
$$10 \pm 0.5~cm$$
; প্রস্থ = $9 \pm 0.5~cm$; উচ্চতা = $8 \pm 0.5~cm$

সম্ভাব্য সবচেয়ে বড় আয়তন:
$$(10+0.5)$$
 $cm \times (9+0.5)$ $cm \times (8+0.5)$ $cm = (10.5 \times 9.5 \times 8.5)$ cm^3

$$= 847.875cm^3$$

সম্ভাব্য সবচেয়ে ছোট আয়তন:(10-0.5) $cm \times (9-0.5)$ $cm \times (8-0.5)$ $cm = (9.5 \times 8.5 \times 7.5)$ cm^3

$$= 605.625 cm^3$$

পরিমাপকৃত আয়তন $(10 \times 9 \times 8)$ $cm^3 = 720cm^3$

সুতরাং, ত্রুটি:

$$I. \quad |847.875 - 720| = 127.875 \, cm^2$$

II.
$$|720 - 605.625| = 114.375 cm^2$$

যেহেতু দুটি ত্রুটির মান সমান নয় সেহেতু বড় ত্রুটিটি বিবেচনা করে পাই,

আপেক্ষিক ত্রুটি =
$$\frac{\overline{p}$$
ভূড়ান্ত ত্রুটি $\overline{\gamma}$ রিমাপকৃত মান = $\frac{127.875}{720} \times 100 = 17.76\%$ (Ans)

🕜 বহুনির্বাচনী (MCQ)

অর্থাৎ ওজনের মাত্রা = MLT^{-2}

	য আলো একটি তাড়িত চৌ (খ) নিউটন		(11) (222) (221)	উত্তর: গ
(ক) গ্যালিলিও	(খ) ানডটন	(গ) ম্যাক্সওয়েল	(ঘ) জেমস ওয়াট	ଓଓଶ: ୩
		মস ক্লার্ক ম্যাক্সওয়েল (১৮৩) ক্ষেত্রকে একীভূত করে তাড়ি		
(2)এক্স-রে আবিষ্কার ব	চরেন কে?			
(ক) ম্যাক্সওয়েল	(খ) গ্যালিলিও	(গ) অ্যারিস্টটল	(ঘ) রন্টজেন	উত্তর: ঘ
ব্যাখ্যা : এক্স-রে আবি	ষ্কার: ১৮৯৫ সালে বিজ্ঞানী ^হ	উইল হেলম রন্টজেন এক্স-রে	া (X-Ray) আবিষ্কার করেন	
(3) কে কোয়ান্টাম তত্ত্ব	প্রদান করেন?			
(ক) নিউটন (4) কে দেখিয়েছিলেন,	(খ) আইনস্টাইন বিশ্বব্রহ্মাণ্ডের সবগুলো গ্যা	(গ) সত্যেন্দ্রনাথ বসু লাক্সি এক অন্য থেকে দূরে স		উত্তর: ঘ
(ক) ডিরাক	(খ) হাবল	(গ) বেকেরেল	(ঘ) রন্টজেন	উত্তর: খ
প্রদর্শন করে যে বিশ্বর	ব্রহ্মাণ্ড ধীরে ধীরে প্রসারিত ান প্রায় চৌদ্দ বিলিয়ন বচন	হ্মাণ্ডের সবগুলো গ্যালাক্সি হচ্ছে। যার অর্থ অতীতে এ ল আগে 'বিগ ব্যাং' নামে এব	কসময় পুরো বিশ্বব্রহ্মাণ্ড এ	ক জায়গায়
(5)বিগ ব্যাং কত বছর	আগে ঘটে?			
(ক) ১২ বিলিয়ন (6) বিজ্ঞানীরা গ্রহ নক্ষ	(খ) ১৩ বিলিয়ন ত্র গ্যালাক্সির কত শতাংশ ব		(ঘ) ১৫ বিলিয়ন	উত্তর: গ
(ক) 5%	(খ) 4%	(গ) 3%	(ঘ) 2%	উত্তর: খ
	•	গ্রহ নক্ষত্র গ্যালাক্সির মাত্র । র্জর ধারণা মেনে নিতে হয়। য		
(7) দীপন তীব্রতার এক	ত্ক কোনটি?			
(ক) A	(খ) K	(গ) J	(ঘ) Cd	উত্তর: ঘ
(৪) ভর পরিমাপের আ	দর্শ 'কিলোগ্রাম' নির্ধারণে বে	য সিলিন্ডার ব্যবহার হয়েছে উ	টহার ব্যাসার্ধ কত সে.মি?	
(ক) 1	(খ) 1.95	(গ) 3.3	(ঘ) 3.9	উত্তর: খ
(9) কোনটি সবচেয়ে ছে				
(ক) মাইক্রোমিটার		(গ) পিকোমিটার	(ঘ) ফেমটোমিটার	উত্তর: ঘ
(10) ওজনের মাত্রা কে		(,) 2- 2	() 1 2	_
(ক) MLT ⁻²	(뉙) MLT ⁻¹	(গ) $ML^{-2}T^{-2}$	(되) $M^{-1}LT^{-2}$	উত্তর: ক
	ত্রা এবং বলের মাত্রা একই। বল = ভর × ত্বরণ	বলের মাত্রা হল= MLT ⁻²		
	= ভর × <u>বেগ</u> সময় = ভর	$1 \times \frac{\text{বেগ}}{(\text{সময়)^2}} = MLT^{-2}$		

(11) প্রধান স্কেল ও ভার্নিয়ার স্কেলের দাগকাটার বৈশিষ্ট্যের ওপর নির্ভর করে নীচের কোনটি? (ক) ভার্নিয়ার ধ্রুবক (খ) ভার্নিয়ার সমপাতন (গ) পিচ (ঘ) লঘিষ্ঠ গনন উত্তর: ক **ব্যাখ্যা**: ভার্নিয়ার ধ্রুবক: প্রধান স্কেল ও ভার্নিয়ার স্কেলের দাগ কাটার বৈশিষ্টের উপর ভার্নিয়ার ধ্রুবক নির্ভর করে। ভার্নিয়ার ধ্রুবক= প্রধান স্কেলের ক্ষুদ্রতম 1 ভাগের দৈর্ঘ্য ভার্নিয়ার স্কেলের ভাগ সংখ্যা (12) ভার্নিয়ার স্কেলের সাহায্যে সর্বনিম্ন কত দৈর্ঘ্য পর্যন্ত মাপা যায় যখন ভার্নিয়ার ভাগ সংখ্যা 10। (খ) 0.01m (গ) 0.001m (ক) 0.1m (ঘ) 0.0001m উত্তর: ঘ ব্যাখ্যা: আমরা জানি, এখানে, $VC = \frac{S}{n} = \frac{1mm}{10}$ মূল স্কেলের ক্ষুদ্রতম 1 ঘরের দৈর্ঘ্য, = 0.1 mms=1 mm $= 0.0001 \, \text{m}$ ভার্নিয়ার ভাগ সংখ্যা, n = 10 সতরাং, ভার্নিয়ার স্কেলের সাহায্যে সর্বনিম্ন 0.0001 m ভার্নিয়ার ধ্রুবক, VC পর্যন্ত মাপা যায়। (13) ভার্নিয়ার স্কেলের 3নং দাগটি মূল স্কেলের 13 নং দাগের সাথে মিলে যায়, ভার্নিয়ার সমপাতন কত হবে? (ক) 3 (খ) 10 (গ) 13 (ঘ) 16 উত্তর: গ ব্যাখ্যা: ভার্নিয়ার সমপাতন: মূল স্কেলের কোনো দাগ ভার্নিয়ার স্কেলের যে দাগের সাথে মিলে যায় তাকে ভার্নিয়ার সমপাতন বলে। (14) একটি স্ক্রুগজের বৃত্তাকার স্কেলের ভাগসংখ্যা a, ন্যূনাঙ্ক b এবং স্ক্রুর পিচ c হলে নিচের কোনটি সঠিক? (খ) c=ab (ক) abc=1 (গ) a=bc (ঘ) b=ac উত্তর: খ ব্যাখ্যা: আমরা জানি, এখানে. ন্যূনাঙ্ক = পিচ বৃত্তাকার স্কেলের ভাগ সংখ্যা রৈখিক স্কেল পাঠ= 4mm বা, b= $\frac{c}{a}$ বৃত্তাকার স্কেলের ভাগ সংখ্যা= 50 \therefore c = ab লঘিষ্ট গণন = 0.1 mm তারের ব্যাস = ? (15) একটি দন্ডকে স্লাইড ক্যালিপার্সের সাহায্যে পরিমাপ করতে গিয়ে তার প্রধান স্কেল পাঠ 6cm, ভার্নিয়ার সমপাতন 7 এবং ভার্নিয়ার ধ্রুবক 0.1 mm, দণ্ডটির দৈর্ঘ্য কত? (**क**) 6.7 cm (খ) 6.7 mm (গ) 6.07 mm (ঘ) 6.07 cm উত্তর: গ ব্যাখ্যা: স্লাইড ক্যালিপার্সের ক্ষেত্রে, = প্রধান স্কেল পাঠ + ভার্নিয়ার সমপাতন × ভার্নিয়ার ধ্রুবক দের্ঘ্য $= 6 \text{ cm} + (7 \times 0.1) \text{ mm}$ = 6 cm + 0.7 mm= 6 cm + (0.07×10) cm $\{\because 1 \text{ cm} = 10 \text{ mm}\}$ = 6 cm + 0.07 cm = 6.07 cm

- (16) প্রধান স্কেলে 1 ক্ষুদ্রতম ভাগের দৈর্ঘ্য S এবং ভার্নিয়ার ভাগের সংখ্যা n হলে ভার্নিয়ার ধ্রুবক নির্ণয়ের সঠিক সূত্র কোনটি?
- $(\overline{\Phi})^{\frac{n}{c}}$
- (খ) ^s

- (গ) sn
- (ঘ) $\frac{s-n}{n}$

উত্তর: খ

ব্যাখ্যা: ভার্নিয়ার স্কেলের ভাগসংখ্যা n এবং প্রধান স্কেলের ক্ষুদ্রতম 1 ভাগের দৈর্ঘ্য S হলে ভার্নিয়ার ধ্রুবক = $\frac{s}{n}$

- (17) একটি স্লাইড ক্যালিপার্সের ভার্নিয়ার ধ্রুবক 5×10^{-3} cm. এর ভার্নিয়ার স্কেলের ঘরের সংখ্যা কত?
- (ক) 10 টি
- (খ) 20 টি
- (গ) 30 টি
- (ঘ) 50 টি

উত্তর: খ

ব্যাখ্যা: VC = $\frac{S}{n}$

এখানে,

বা, n = $\frac{S}{VC}$

প্রধান স্কেলের ক্ষুদ্রতম 1 ভাগের দৈর্ঘ্য,

বা, n = $\frac{0.1 \, cm}{5 \times 10^{-3}}$

 $S = 1 \text{ mm} = \frac{1}{10} \text{ cm} [1 \text{ cm} = 10 \text{mm}] = = 0.1 \text{ cm}$

বা. n= 20

ভার্নিয়ার ধ্রুবক, VC = 5×10^{-3} cm ভার্নিয়ার স্কেলের ভাগ সংখ্যা. n = ?

- (18) স্লাইড ক্যালিপার্সের সাহায্যে একটি দণ্ডের দৈর্ঘ্য নির্ণয়ের ক্ষেত্রে, প্রধান স্কেল পাঠ M, ভার্নিয়ার ধ্রুবক VC এবং ভার্নিয়ার সমপাতন V হলে দণ্ডের দৈর্ঘ্য (L) নির্ণয়ের সূত্র নিচের কোনটি?
- (ক) L= M-V×VC
- (খ) L= M+V×VC
- (গ) L= M-V÷VC
- (ঘ) L= M+V÷VC

উত্তর: খ

ব্যাখ্যা: স্লাইড ক্যালিপার্সের সাহায্যে দৈর্ঘ্য নির্ণয়ের ক্ষেত্রে.

দৈর্ঘ্য= প্রধান স্কেল পাঠ + ভার্নিয়ার সমপাতন × ভার্নিয়ার ধ্রুবক

 \therefore L= M+V×VC

- (19) প্রধান স্কেলের পাঠ ১২ mm, ভার্নিয়ার সমপাতন 7 এবং ভার্নিয়ার ধ্রুবক 0.10mm হলে পাঠ কত?
- (**क**) 1.27 mm
- (খ) 12.7 cm
- (গ) 1.27 cm
- (ঘ)1.29mm

উত্তর: গ

ব্যাখ্যা: আমরা জানি,

L= M+V×VC

এখানে.

 $= 12 \text{ mm} + (7 \times 0.10) \text{ mm}$

প্রধান স্কেল পাঠ, M = 12 mm ভার্নিয়ার সমপাতন, V = 7

ভার্নিয়ার ধ্রুবক, VC = 0.10 mm

 $=\frac{12.7}{10}$ cm [:: 1 cm= 10m]

পাঠ, L= ?

 $= 12.7 \, \text{mm}$

= 1.27 cm

- (20) স্লাইড ক্যালিপার্সের সাহায্যে একটি আয়তাকার কাচ ফলকের পুরুত্ব নির্ণয় প্রধান স্কেলের পাঠ 18 mm এবং ভার্নিয়ার সমপাতন ৪ পাওয়া গেল। যন্ত্রটির ভার্নিয়ার ধ্রুবক 0.01 cm হলে পুরুত্ব কত?
- (**क**) 8.1 mm
- (খ) 8.18 mm
- (গ) 18.08 mm
- (ঘ)18.8 mm

উত্তর: ঘ

ব্যাখ্যা: আমরা জানি,

L= M+V×VC

এখানে, প্রধান স্কেল পাঠ, M = 18 mm

 $= 18 \text{ mm} + (8 \times 0.1) \text{ mm}$

ভার্নিয়ার সমপাতন, V = 8

= 18 mm+ 0.8 mm

 $= 18.8 \, \text{mm}$

ভার্নিয়ার ধ্রুবক, VC = 0.01 cm = (0.01×10)mm

 $= 0.1 \, \text{mm}$

পুরুত্ব, L= ?

- (21) ভার্নিয়ার স্কেলের 50 ঘর সমান প্রধান স্কেলের 49 ঘর। প্রধান স্কেলের ক্ষুদ্রতম 1 ঘর = 1 mm হলে, ভার্নিয়ার ধ্রুবক কত?
- (**क**) 0.2 cm
- (খ) 0.02 cm
- (গ) 0.002 cm
- (ঘ) 0.0001 cm
- উত্তর: গ

ব্যাখ্যা: আমরা জানি,

ভার্নিয়ার ধ্রুবক, VC= $\frac{S}{n}$

 $=\frac{1}{50}$

 $= 0.02 \, \text{mm}$

 $=\frac{0.02}{10}$ cm = 0.002 cm

এখানে,

প্রধান স্কেলের ক্ষুদ্রতম 1 ভাগের দৈর্ঘ্য, S = 1 mm

ভার্নিয়ার স্কেলের ভাগসংখ্যা, n = 50

ভার্নিয়ার ধ্রুবক, VC = ?

- (22) মূল স্কেল ও ভার্নিয়ার স্কেল এর সমন্বিত ব্যবহারে নিট পাঠ পাওয়া গেল 12.66 cm ভার্নিয়ার সমপাতনে 6 হলে ভার্নিয়ার ধ্রুবক কত (দেওয়া আছে প্রধান স্কেলের পাঠ 12.6 cm) ?
- (ক) 0.1 mm
- (খ) 0.01 mm
- (গ) 0.5 mm
- (ঘ) 0.05 mm
- উত্তর: ক

ব্যাখ্যা: আমরা জানি,

নীট পাঠ= প্রধান স্কেল পাঠ + ভার্নিয়ার সমপাতন × ভার্নিয়ার ধ্রুবক

বা, 12.66 = 12.6+6 × ভার্নিয়ার ধ্রুবক

বা, 6 × ভার্নিয়ার ধ্রুবক = 12.66-12.6

বা, $6 \times$ ভার্নিয়ার ধ্রুবক = $\frac{0.06}{6}$

: ভার্নিয়ার ধ্রুবক = 0.01 cm

= (0.01 × 10) mm [:: 1 cm=10 mm]

 $= 0.1 \, \text{mm}$

- (23) d ব্যাস ও h উচ্চতা বিশিষ্ট কোনো সিলিন্ডারের আয়তন নির্ণয়ের সূত্র কোনটি?
- $(\Phi) \frac{1}{6} \pi d^2 h$
- (খ) $\pi d^2 h$
- (গ) $\frac{1}{4}\pi d^2h$
- (ঘ) $\frac{1}{4}\pi dh$
- উত্তর: গ

ব্যাখ্যা: d ব্যাস ও h উচ্চতা বিশিষ্ট কোনো সিলিন্ডারের আয়তন = $\frac{1}{4}\pi d^2 h$

সিলিন্ডার বা বেলনের আয়তন:

কোনো বেলনের আয়তন V হলে,

আমার জানি. $V = \pi d^2 h$

$$= \pi \left(\frac{d}{2}\right)^2 h \left[\because r = \frac{d}{2}\right]$$
$$= \frac{1}{4} \pi d^2 h$$

- (24) $\frac{22}{7}$ m দৈর্ঘ্য বিশিষ্ট একটি সিলিন্ডারের ব্যাস কত হলে এর আয়তন $4m^3$ হবে?
- (**क**) 2m
- (খ) 4m
- (গ) 7m
- (ঘ) 1m
- উত্তর: খ

ব্যাখ্যা: আমার জানি, $V=\frac{1}{4}\pi d^2h$

বা, $V = \frac{1}{4} \pi \times d^2 \times \frac{22}{7}$ বা, $d^2 = \frac{4 \times 4 \times 22}{7 \pi}$

বা . $d^2 = 16$

 $\therefore d = \sqrt{16} = 4m$

এখানে,

সিলিন্ডারের দৈর্ঘ্য/উচ্চাতা, $h = \frac{22}{7}m$

সিলিন্ডারের আয়তন, $V=4m^3$

সিলিন্ডারের ব্যাস, d=?

(25)একটি স্কেলে সর্বনিম্ন 1 mm মাপা যায়। এর পরিমাপের চূড়ান্ত ত্রুটি কত হবে?

(ক) 0.1 mm

(খ) 1 mm

(গ) 0.05 cm

(ঘ) 0.5 cm

উত্তর: গ

ব্যাখ্যা: চূড়ান্ত ত্ৰুটি = পরিমাপযোগ্য সর্বনিম্ন দৈর্ঘ্য
=
$$\frac{1 \, mm}{2}$$
 = 0.5 mm = (0.5×10) cm [:: 1 cm= 10 mm]
= 0.05 cm

(26) চূড়ান্ত ত্রুটি $8m^2$ । পরিমাপ করা মান 120 m^2 হলে ক্ষেত্রফর নির্ণয়ে আপেক্ষিক ত্রুটি কত?

(ক) 3.33%

(খ) 6.33%

(গ) 6.67%

(ঘ) 3.67%

উত্তর: গ

ব্যাখ্যা: আপেক্ষিক ত্রুটি =
$$\frac{\overline{p}$$
 ড়ান্ত ত্রুটি \overline{q} পরিমাপ করা মান = $\frac{8}{120}$ = 0.0667

∴ শতকার হিসেবে আপেক্ষিক ত্রুটি = 0.0667 × 100 = 6.67%

(27) বর্গাকৃতি বইয়ের দৈর্ঘ্য 100 cm। আপেক্ষিক ত্রুটি 10%। ক্ষেত্রফল নির্ণয়ে আপেক্ষিক ত্রুটি কত?

(本) 20%

(খ) 21%

(গ) 22%

(ঘ) 19%

উত্তর: খ

ব্যাখ্যা: এখানে, বর্গাকৃতি বইয়েল =

দৈর্ঘ্য 100 cm

 \therefore বস্তুটির পরিমাপ করা ক্ষেত্রফল $100 imes 100 = 10000 \ cm^2$

যেহেতু বস্তুটির আপেক্ষিক ত্রুটি 10% কাজেই তার দৈঘ্য পরিমাপ করা হলে সবচেয়ে কম 90 cm এবং সবচেয়ে বেশি 110 cm হতে পারে।

কাজেই ক্ষেত্ৰফল.

সবচেয়ে কম 90 cm imes 90 cm = 8100 cm^2 এবং সবচেয়ে বেশি 110 cm imes 110 cm = 12100 cm^2

কাজেই চৃড়ান্ত ত্রুটি: (i) $|10000cm^2 - 8100cm^2| = 1900 \ cm^2$

(ii) $|12100cm^2 - 10000cm^2| = 2100 cm^2$

যেহেতু দুটি ত্রুটি সমান নয়, তাই আমরা বড়টি নিই। অর্থাৎ চূড়ান্ত ত্রুটি $2100cm^2$ ।

জানা আছে, আপেক্ষিক ত্রুটি =
$$\frac{5}{9}$$
 জান আছে, আপেক্ষিক ত্রুটি = $\frac{2100}{10000}$ = 0.21 \therefore শতকার হিসেবে আপেক্ষিক ত্রুটি = 0.21 \times 100 = 21%

- (28) নিচের কোনটি সঠিক?
- (i) Astronomy ও পদার্থবিজ্ঞান মিলে Astrophysics
- (ii) Biology ও পদার্থবিজ্ঞান মিলে Biophysics
- (iii) Chemisty ও পদার্থবিজ্ঞান মিলে Chemphysics

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) ii ও iii

(গ) i ও iii

(ঘ) i, ii ও iii

উত্তর: ক

ব্যাখ্যা: Astronomy ও পদার্থবিজ্ঞান মিলে Astrophysics

Biology ও পদার্থবিজ্ঞান মিলে Biophysics

Chemisty ও পদার্থবিজ্ঞান মিলে Chemphysics

ব্যাখ্যা: 1. ভূ-তত্ত্বে ব্যবহার করার জন্য পদার্থবিজ্ঞান ব্যবহার করে তৈরি হয়েছে Geophysics

2. চিকিৎসাবিজ্ঞানে পদার্থবিজ্ঞানে ব্যবহার করে গড়ে ওঠেছে Medical Phycis

(29) আধুনিক পদার্থবিজ্ঞানে রয়েছে-

(i) নিউক্লিয পদার্থবিজ্ঞান

(ii) তাপ ও তাপগতি বিজ্ঞান

(iii) পার্টিকেল ফিজিক্স

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) ii ও iii

(গ) i ও iii

(ঘ) i, ii ও iii

উত্তর: গ

(30) থেলিসের সাথে সম্পর্কিত করা যায়-

(i) সূর্যগ্রহণ

(ii) লোডস্টোনের চৌম্বক ধর্ম

(iii) জ্যামিতিক উপপাদ্য

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) ii ও iii

(গ) i ও iii

(ঘ) i, ii ও iii

উত্তর: ক

ব্যাখ্যা: 1. থেলিস (খ্রিস্টপূর্ব ৬২৪-৫৬৯) সূর্যগ্রহণ সম্পর্কিত ভবিষ্যদ্বাণীর জন্য বিখ্যাত। তিনি লোডস্টোনের চৌম্বক ধর্ম সম্পর্কে জানতেন।

2. অন্যদিকে জ্যামিতিক উপপাদ্য পিথাগোরাসের সাথে সম্পর্কিত, থেলিসের সাথে নয়।

(31) নিচের তথ্যগুলো লক্ষ কর-

- (i) $'\mu'$ (মাইক্রো) উপসর্গটি 10^{-6} নির্দেশ করে
- (ii) M (মেগা) উপসর্গটি 106 নির্দেশ করে
- (iii) 2000 000 000 W = 2000MW

নিচের কোনটি সঠিক?

(ক) i

(খ) ii ও iii

(গ) i ও ii

(ঘ) i, iii

উত্তর: ঘ

ব্যাখ্যা: 1. ' μ ' (মাইক্রো) উপসর্গটি 10^{-6} নির্দেশ করে। যেমন: 0.000 001 m = 1 μ m

2. বিদ্যুৎ উৎপাদন কেন্দ্রের ক্ষমতা 2000 000 000 W। এটাকে 2000imes 10^6 w = 2000imes হিসেবে প্রকাশ করা যায়। অর্থাৎ M উপসর্গটি 10^6 নির্দেশ করে।

নিচের উদ্দীপকের আলোকে 32 ও 33 নং প্রশ্নের উত্তার দাও:

পিচ 0.5 mm এবং লঘিষ্ঠ গণন 0.01 mm বিশিষ্ট একটি স্ক্রু-গজের সাহায্যে তারের ব্যাস 7.28 mm পাওয়া গেল। (32) বৃত্তাকার স্কেলের ঘরের সংখ্যা কত?

(ক) 100

(খ) 50

(গ) 20

(ঘ) 10

উত্তর: খ

ব্যাখ্যা: স্কু গজের ক্ষেত্রে,

বা, বৃত্তাকার স্কেলের ঘরের সংখ্যা = পিচ লঘিষ্ঠ গণন

বা, বৃত্তাকার স্কেলের ঘরের সংখ্যা= $\frac{0.5 \, mm}{0.01 \, mm}$

: বৃত্তাকার স্কেলের ঘর সংখ্যা = 50

(33) তারের ব্যাস মাপার জন্য-

- (i) বৃত্তাকার স্কেলকে 7 বার ঘুরাতে হবে
- (ii) বৃত্তাকার স্কেলকে 14 বার ঘুরাতে হবে
- (iii) বৃত্তাকার স্কেলের অতিক্রান্ত ঘরের সংখ্যা 728

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ) i, ii ও iii

উত্তর: গ

ব্যাখ্যা: স্কু-গজের ক্ষেত্রে, বৃত্তাকার স্কেল একবার ঘোরানোর পর স্কেলে লাগানো স্কুটি 1mm অগ্রসর হয়। স্ক্রুয়ের এই সরণকে স্ক্রুয়ের পিচ বলে। অর্থাৎ পিচ 1 mm হলে স্কেলটি একবার ঘুরবে।

দেওয়া আছে, পিচ 0.5 mm

0.5 mm পরিমাপের জন্য স্কেলটি ঘুরবে 1 বার

 \therefore 7.28 mm পরিমাপের জন্য স্কেলটি ঘুরবে $\frac{7.28}{0.5}$ বার = 14.56

অর্থাৎ বৃত্তাকার স্কেলকে 14 বার ঘুরাতে হবে। সুতরাং, (ii) নং সঠিক। (গ) বৃত্তাকার স্কেলকে মাত্র এক ভাগ ঘুরালে এর প্রান্তটি যতটুকু সরে আসে সেটিই লঘিষ্ঠ গণন। উদ্দীপকের স্ক্রু-গজটির লঘিষ্ঠ গণন 0.01 mm হওয়ায় বৃত্তাকার স্ক্রেল একবার ঘুরালে প্রান্ত 0.01 mm সরে আসবে।

 \therefore বৃত্তাকার স্কেলের অতিক্রান্ত সংখ্যা = $\frac{7.28}{0.01}$ = 728

নিচের উদ্দীপকের আলোকে 34 ও 35 নং প্রশ্নের উত্তার দাও:

একটি তারের প্রস্থচ্ছেদের ক্ষেত্রফল নির্ণয়ে স্ক্রুগজের রৈখিক স্কেলের পাঠ পাওয়া যায় 2 mm, বৃত্তাকার স্কেলের পাঠ 0.4 mm, বৃত্তাকার স্কেলটির মোট ভাগসংখ্যা 100 এবং যন্ত্রটির পিচ 1 mm।

(34) বৃত্তাকার স্কেলের কত নম্বর দাগ রৈখিক স্কেলের সাথে হুবহু মিলে যাবে?

(ক) 2

(খ) 4

(গ) 40

(ঘ) 100

উত্তর: গ

ব্যাখ্যা: আমরা জানি,

ন্যূনাঙ্ক =
$$\frac{$$
 পিচ $}{$ বৃত্তাকার স্কেলের ভাগ সংখ্যা $} = \frac{1 \ mm}{100} = 0.01 \ mm$

আবার, বৃত্তাকার স্কেলের দাগ নম্বর = $\frac{0.4 \ mm}{0.01 \ mm}$ = 40

(35) তারটির প্রস্থচ্ছেদের ক্ষেত্রফল-

(ক) 3.77 mm²

(খ) 4.524 mm²

(গ) 9.048 mm²

(되) 18.096 mm²

উত্তর: খ

ব্যাখ্যা: তারটির ব্যাস, d= রৈখিক স্কেল পাঠ + বৃত্তাকার স্কেল পাঠ

∴ ব্যাসার্ধ,
$$r = \frac{d}{2} = \frac{2.4}{2}$$
 mm = 1.2 mm

আমরা জানি, তারের প্রস্থচ্ছেদের ক্ষেত্রফল= $\pi r^2 = 3.1416 imes 1.2 \mathrm{mm}^2 = 4.524 \ mm^2$

নিচের উদ্দীপকের আলোকে 36 ও 37 নং প্রশ্নের উত্তার দাও:

ত্রুটিমুক্ত স্লাইড ক্যালিপার্সের সাহায্যে একটি দণ্ডের দৈর্ঘ্য মাপার সময় মূল স্কেলের পাঠ 5 mm এবং ভার্নিয়ার সমপাতন 16 পাওয়া গেল। মূল স্কেলের ক্ষদ্রতম এক ঘরের দৈর্ঘ্য 0.5 mm এবং স্কেলের 19 ঘর ভার্নিয়ার স্কেলের 20 ঘরের সমান। 36) ভার্নিয়ার ধ্রুবক কত?

(**क**) 0.1 mm

(খ) 0.025mm

(গ) 0.026 mm

(ঘ) 0.25 mm

উত্তর: খ

ব্যাখ্যা: ভার্নিয়ার ধ্রুবক = $\frac{$ প্রধান স্কেলের ক্ষ্রদ্রতম $_1$ ভার্গের দৈর্ঘ্য $_{(S)}$ = $\frac{0.5\ mm}{20}$ = 0.025 mm

37) উদ্দীপকের যন্ত্রটির সাহায্যে

(i) দণ্ডটির দৈর্ঘ্য 5.4 mm হয়

(ii) দণ্ডটির দৈর্ঘ্য 2.9 mm হয়

(iii) সর্বনিম্ন 0.025 mm দৈর্ঘ্য মাপা যায়

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ) i, ii ও iii

উত্তর: খ

ব্যাখ্যা: দণ্ডের দৈর্ঘ্য = প্রধান স্কেল পাঠ + ভার্নিয়ার সমপাতন × ভার্নিয়ার ধ্রুবক

 $= 5 \text{ mm} + (16 \times 0.025) \text{ mm}$

= 5 mm + 0.4 mm = 5.4 mm

যেহেতু ভার্নিয়ার স্কেলটির ভার্নিয়ার ধ্রুবক 0.025 mm; সেহেতু ভার্নিয়ার স্কেলটির সাহায্যে সর্বনিম্ন 0.025 mm পর্যন্ত পরিমাপ করা যাবে ।

নিচের উদ্দীপকের আলোকে 38 ও 39 নং প্রশ্নের উত্তার দাও:

ল্যাবরেটরিতে একটি নতুন স্লাইড ক্যালিপার্স তৈরী করা হলো। যার মূলস্কেলের 15 ভাগ ভার্নিয়ারের 16 ভাগের সমান। মূলস্কেলের ক্ষুদ্রতম একভাগের দৈর্ঘ্য 1 mm। এই স্কেলের সাহায্যে একটি এক টাকা মূল্যের পয়সার ব্যাস মাপা হল। তাতে মূল স্কেলপাঠ পাওয়া গেল 15 মিলিমিটার এবং ভার্নিয়ার সমপাতন পাওয়া গেল 7।

(38) ভার্নিয়ার ধ্রুবকের মান কত?

(ক) 0.065 mm

(খ) 0.525 mm

(গ) 0.0625 mm

(ঘ) 0.625 mm

উত্তর: গ

ব্যাখ্যা: আমরা জানি, ভার্নিয়ার ধ্রুবক = $\frac{\Delta M}{\pi}$ ভার্নিয়ার স্ক্রেলের ভাগ সংখ্যা = $\frac{S}{n}$

উপরোক্ত প্রশ্নে, $\frac{s}{n} = \frac{1}{16}$ mm = 0.0625 mm

(39) ভার্নিয়ার স্কেলের পাঠের মান -

(**す**) 0.435 mm

(খ) 0.4375 mm

(গ) 0.425 mm

(ঘ) 0.415 mm

উত্তর: খ

ব্যাখ্যা: আমরা জানি.

ভার্নিয়ার পাঠ= ভার্নিয়ার সমপাতন × ভার্নিয়ার ধ্রুবক

 $= 7 \times 0.0625$

= 0.4375 mm