

Sparse Dictionary-based Representation and Recognition of Action Attributes

Qiang Qiu, Zhuolin Jiang, Rama Chellappa

Center for Automation Research,
Institute for Advanced Computer Studies
University of Maryland, College Park
qiu@cs.umd.edu, {zhuolin, rama}@umiacs.umd.edu

Action Feature Representation

Action Sparse Representation

Sparse code

$$\begin{pmatrix}
0.43 & 0 \\
0.63 & 0 \\
0 & 0.64 \\
0 & 0.53 \\
-0.33 & -0.40 \\
0 & 0.35 \\
-0.36 & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix}$$

$$= 0.43 \times 10.63 \times 10.33 \times 10.36 \times 10.$$

$$= 0.64 \times 10^{-0.53} \times 10^{-0.40} \times 10^{-0.35} \times 10^{-0.40}$$

K-SVD

Input signals

$$\begin{pmatrix} y_1 & y_2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} d_1 & d_2 & d_3 & \dots \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$Y$$

$$arg_{D,X} min / Y-DX/^2$$
 s.t. $\forall i, |x_i|_0 \leq T$

- K-SVD [1]
 - □ Input: signals Y, dictionary size, sparisty T
 - Output: dictionary D, sparse codes X

[1] M. Aharon and M. Elad and A. Bruckstein, K-SVD: An Algorithm for Designing Overcomplete Dictionries for Sparse Representation, IEEE Trans. on Signal Process, 2006

Objective

Learn a

Dictionary.

Probabilistic Model for Sparse Representation

- A Gaussian Process
- Dictionary Class Distribution

More Views of Sparse Representation

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X ₄ _
9	0.43	0	0	0
	0.63	0	0	0
	0	0.64	0	0
	0	0.53	0	0
	-0.33	-0.40	0	-0.42
	0	0.35	0	0
	-0.36	0	0	0
	0	0	0	0
	0	0	-0.28	0
	0	0	0.698	0.42
	0	0	0.37	<i>0.47</i>
	0	0	0.25	0
	0	0	0	0.32
	\			

7

A Gaussian Process

A Gaussian Process

- Covariance function entry: $K(i,j) = cov(x_{di}, x_{di})$
- $P(X_{d^*}|X_{D^*})$ is a Gaussian with a closed-form conditional variance

Dictionary Class Distribution

Dictionary Class Distribution

- $P(L|d_i), L \in [1, M]$
 - aggregate | x_{di} | based on class labels to obtain a M sized vector
 - $P(L=l_1|d_5) = (0.33+0.40)/(0.33+0.40+0.42) = 0.6348$
 - $P(L=l_2|d_5) = (0+0.42)/(0.33+0.40+0.42) = 0.37$

Dictionary Learning Approaches

- Maximization of Joint Entropy (ME)
- Maximization of Mutual Information (MMI)
 - □ Unsupervised Learning (MMI-1)
 - □ Supervised Learning (MMI-2)

Maximization of Joint Entropy (ME

- Initialize dictionary using k-SVD

- Start with $D^* = \phi$
- Untill $|D^*| = k$, iteratively choose d^* from $D^{\circ} \setminus D^*$,

$$\mathbf{d}^* = \underset{\mathbf{d}}{\operatorname{arg\,max}} \mathbf{H}(\mathbf{d} \mid \mathbf{D}^*)$$
Where
$$H(d^* \mid D^*) = \frac{1}{2} log(2\pi e \mathbb{V}(d^* \mid D^*))$$

-A good approximation to ME criteria arg max H(D)

Maximization of Mutual Information for Unsupervised Learning (MMI-1)

- Initialize dictionary using k-SVD

- Start with $D^* = \phi$
- Untill $|D^*| = k$, iteratively choose d^* from $D^{\circ} \setminus D^*$,

$$d^* = \underset{d}{\operatorname{arg\,max}} \ H(d \,|\, D^*) - H(d \,|\, D^{\circ} \setminus (D^{\circ} \cup d))$$

-A near-optimal approximation to MMI criteria

Within (1-1/e) of the optimum

- $P(L | d_i)$, $L \in [1, M]$
 - aggregate | x_{di} | based on class labels to obtain a M sized vector
 - $P(l_1 | d_5) = (0.33+0.40)/(0.33+0.40+0.42) = 0.6348$
 - $P(l_2 | d_5) = (0+0.42)/(0.33+0.40+0.42) = 0.37$
- $P(L_d) = P(L/d)$
- $P(L_D) = P(L/D)$, where $P(L|D^*) = \frac{1}{|D^*|} \sum_{d_i \in D^*} P(L|d_i)$

Maximization of Mutual Information for Supervised Learning (MMI-2)

- Initialize dictionary using k-SVD

- Start with $D^* = \phi$
- Untill $|D^*| = k$, iteratively choose d^* from $D^{\circ} \setminus D^*$,

$$d^* = \underset{d}{\operatorname{arg max}} \left[H(d \mid D^*) - H(d \mid D^{\circ} \setminus (D^{\circ} \mid d)) \right] + \lambda \left[H(L_d \mid L_{D^*}) - H(L_d \mid L_{D^{\circ} \setminus (D^{\circ} \mid d)}) \right]$$

- MMI-1 is a special case of MMI-2 with λ =0.

Other learning methods

- K-means
- Liu-shah [1]

$$\triangle I(d_1, d_2) = \sum_{L \in [1, M], i = 1, 2} p(d_i) p(L|d_i) \log p(L|d_i)$$
$$-p(d_i) p(L|d_i) \log p(L|d^*)$$

where

$$p(L|d^*) = \frac{p(d_1)}{p(d^*)}p(L|d_1) + \frac{p(d_2)}{p(d^*)}p(L|d_2)$$
$$p(d^*) = p(d_1) + p(d_2)$$

Purity and Compactness

Representation Consistency

Keck gesture dataset

Recognition Accuracy

The recognition accuracy using initial dictionary Do: (a) 0.23 (b) 0.42 (c) 0.71