Lecture 10

Relational Algebra

Week 5

Overview

- Relational algebra as a query language
- Selection, projection, cross product
- Union / intersection / set difference
- Attribute renaming
- Join
 - join
 - equijoin and natural join
- Division
- Simplifying relational algebra expressions

Relational algebra as a query language

- *Objects*: relations (sets of tuples)
- Operations on relations result relations
- Relational algebra expressions can be evaluated, and the result is always a relation
- We can assign the result to a temporary relation

Selection

 $\sigma_{c}R$

select tuples from relation R where each tuple satisfies condition C

Example

or salary >70000 Employee

Evaluates to a relation which is a subset of Employee, those employees who earn >70,000

Properties of selection

• number of tuples:

 $|\sigma_{C}R| \leq |R|$

• number of attributes:

degree $(\sigma_C R) = \text{degree}(R)$

• commutative

$$\sigma_{C} \sigma_{D} R = \sigma_{D} \sigma_{C} R (= \sigma_{C \text{ and } D} R)$$

Projection

$\Pi_L R$

take a subset of the attributes of a relation R, where $L \subseteq R$; and then eliminate duplicates

Example:

 $\prod_{\text{name, salary}}$ Employee

Evaluates to a relation with Employee names and salaries in it

2010 Griffith Universi

Properties of projection

• number of tuples:

 $|\Pi_L R| \le |R|$

• number of attributes: degree $(\Pi_L R) \le$ degree (R)

• not commutative

 $\Pi_L \Pi_S R \neq \Pi_S \Pi_L R \qquad \text{(Note: $L \subseteq S$, but $S \not\subseteq L$)}$

• $\Pi_L \Pi_S R = \Pi_L R$ if $L \subseteq S$

© 2010 Griffith Univer

Note on constraint notation

• Remember the notation we used to describe foreign key constraints, e.g.

E(<u>k</u>,c)

 $A(\overline{k},a)$ fk: k is k in E

meaning that every k-value in A must be an actual k-value in E.

• We could have used relational algebra and logic to represent this constraint, i.e.

k is k in E

could have been written as

 $\Pi_{\,k}A\!\subseteq\!\Pi_{\,k}E$

2010 Griffith Univers

Set operations

A∪B Union

A ∩ B Intersection

A \ B Difference

A × B Cartesian product

10 Griffith University

For union, intersection, and difference relations A and B must be union compatible:

- degree(A) = degree(B)operands have the same degree
- domain $(A_i) = domain (B_i)$ (i.e. corresponding attributes must have the same value domain)

Example

"Employees who work for department 5 and have salary >70000"

 $\sigma_{\text{DNO}=5}$ Employee $\cap \sigma_{\text{SALARY}>70000}$ Employee

Properties of union, intersection, difference

- number of tuples in intersection: $|A \cap B| \leq Min(|A|, |B|)$
- number of tuples in union: $|A \cup B| \le |A| + |B|$
- number of tuples in difference: $|A \setminus B| \le |A|$
- degree (A op B) = degree (A) = degree (B)

• Note that not all operations are necessary: $A \cap B = A \setminus (A \setminus B)$ • I.e. \cup and \setminus is enough (or \cap and \setminus)

Cartesian product

 $A \times B$

concatenate the attributes of all tuples in A and B in every possible way

Properties of cartesian product

• number of tuples in product:

$$|A \times B| = |A| * |B|$$

I.e. every possible combination is produced

• degree ($A \times B$) = degree (A) + degree (B)

Unary and binary operations

• Unary operations bind more strongly than binary ones, hence paratheses can be omitted

$$(\sigma_{dno=5} \, Employee \,) \cap (\sigma_{salary>70000} \, R) = \\ \sigma_{dno=5} \, Employee \, \cap \, \sigma_{salary>70000} \, R$$

2010 Griffith Univers

Attribute renaming

• Sometimes we need to store the result of an expression and give the attributes a different name

Result(sssn, sname) $\leftarrow \Pi_{ssn, name}$ Employee

2010 Griffith University

The end

2010 Griffith University