Ejercitario 1: Conjuntos Difusos y sus Operaciones

Responde a las preguntas de abajo utilizando este mismo notebook. Recuerda de seguir las instrucciones de envío que están en la plataforma Educa.

Ejercicio 1. Definimos un poset (\mathbb{R}^n,\leq) donde para todo x tenemos que $x\leq y$ si y solo si $x_i\leq y_i$ $=(x_i)_{i=1}^n,$ y $=(y_i)_{i=1}^n$ $\in\mathbb{R}$

para todo i=1, . Demuestra que (\mathbb{R}^n,\leq) es de hecho un poset. \dots,n

Ejercicio 2. Sea $\mathbb{Q}[x]$ el conjunto de todos los polinomios de una sola variable x con coeficientes en los números racionales \mathbb{Q} . Un polinomio de la forma $a_{n-1}x^{n-1}+\cdots$ puede representarse como una tupla (a_{n-1},\dots,a_0) . $+a_0$

Considera el conjunto de polinomios de una sola variable con coeficientes racionales no negativos $\mathbb{Q}^{+0}[x]$. Decimos que para dos polinomios $p,q\in\mathbb{Q}^{+0}[x]$ se tiene que $p\leq q$ si los vectores correspondientes de p y q denotados v_p y v_q se cumple que $v_p\leq v_q$ en el poset (\mathbb{R},\leq) del Ejercicio 1. (i) ¿Cuál es el ínfimo de $(\mathbb{Q}^{+0}[x],\leq)$? ¿Porqué?. (ii) ¿Cuál es el supremo de $(\mathbb{Q}^{+0}[x],\leq)$? ¿Porqué?. (iii) ¿Tiene $(\mathbb{Q}^{+0}[x],\leq)$ elementos mínimos o máximos? Explica porque si o porque no, y en caso positivo escribe explícitamente el mínimo o el máximo.

Ejercicio 3. Demostrar que $([0,1],\leq)$ es un retículo completo y distributivo.

Ejercicio 4. Considera los conjuntos difusos $A,B:\{1,2,\dots$ definidos como

$$egin{aligned} \dots,10\} & o [0,\ 1] \ A(x) &= 0.2/2 \ &+ 0.7/3 + 1/4 \ &+ 0.7/5 + 0.2 \ &/6 \end{aligned}$$

У

$$B(x) = 0.3/4 + 0.5/5 + 0.8 /6 + 1/7 + 0.5 /8 + 0.2/9.$$

1. Escribe utilizando la notación de Zadeh (i) $A \cup B$, (ii) $A \cap B$, (iii) \overline{A} , (iv) \overline{B} , (v) $A \cup \overline{A}$, (vi) $\overline{A} \cap \overline{A}$, (vii) $\overline{A \cap B}$, (viii) $\overline{A \cup B}$.

- 2. Dibuja los conjuntos (i) $A \cup B$, (ii) $A \cap B$, (iii) \overline{A} , (iv) \overline{B} , (v) $A \cup \overline{A}$, (vi) $A \cap \overline{A}$, (vii) $\overline{A \cap B}$, (viii) $\overline{A \cup B}$.
- 3. Escribe formalmente el soporte ($\mathit{support}$), núcleo (core) y altura (height) de A y B .

Ejercicio 5. Considera los conjuntos difusos $A,B:\mathbb{R}^+$ definidos como $A(x)=\frac{1}{1+x^2}$ y $B(x)=\frac{1}{10^x}$. $\to [0,1]$

- 1. Escribe utilizando la notación de Zadeh (i) $A \cup B$, (ii) $A \cap B$, (iii) \overline{A} , (iv) \overline{B} , (v) $A \cup \overline{A}$, (vi) $\overline{A \cap A}$, (vii) $\overline{A \cap B}$, (viii) $\overline{A \cup B}$
- 2. Escribe las funciones de membresía de (i) $A \cup B$, (ii) $A \cap B$, (iii) \overline{A} , (iv) \overline{B} , (v) $A \cup \overline{A}$, (vi) $\overline{A} \cap \overline{A}$, (vii) $\overline{A \cap B}$, (viii) $\overline{A \cup B}$.
- 3. Escribe formalmente el soporte ($\mathit{support}$), núcleo (core) y altura (height) de A y B .

Ejercicio 6. Considera los conjuntos difusos A,B definidos como

$$A(x)$$
 $=$
 $\begin{cases} 0 & ext{si } x < 1 \\ rac{x-1}{6} & ext{si } 1 \leq x < 7 \\ rac{10-x}{3} & ext{si } 7 \leq x < 10 \\ 0 & ext{si } 10 \leq x, \end{cases}$

У

$$B(x) = 0 \ ext{si } x < 2 \ x - 2 \ ext{si } 2 \leq x < 3 \ 1 \ ext{si } 3 \leq x < 4 \ rac{6 - x}{2} \ ext{si } 4 \leq x < 6 \ 0 \ ext{si } 6 < x,$$

- 1. Escribe las funciones de membresía de (i) $A \cup B$, (ii) $\overline{A} \cap B$, (iii) \overline{A} , (iv) \overline{B} , (v) $A \cup \overline{A}$, (vi) $\overline{A} \cap \overline{A}$, (vii) $\overline{A \cap B}$, (viii) $\overline{A \cup B}$.
- 2. Dibuja los conjuntos (i) $A \cup B$, (ii) $A \cap B$, (iii) \overline{A} , (iv) \overline{B} , (v) $A \cup \overline{A}$, (vi) $A \cap \overline{A}$, (vii) $\overline{A \cap B}$, (viii) $\overline{A \cup B}$.
- 3. Escribe formalmente el soporte ($\emph{support}$), núcleo (\emph{core}) y altura (\emph{height}) de A y B.

Ejercicio 7. Demuestra las propiedades 1 al 5, 7 y 8 en la Proposición 1.15 de libro de Bede (2013).

Ejercicio 8. Demostrar que para cualquier conjunto difuso A:X se cumple que para todo $x\in X$ (i) A(x) y o [0,1]

 ≥ 0.5

(ii)
$$A(x)$$

Ejercicio 9. Demostrar que para cualquier par de conjuntos difusos A:X y B:X se cumple que $\to [0,1]$ $\to [0,1]$

- 1. (A y)
 - $\cap \overline{B}$)
 - \cup (\overline{A}
 - $\cap B$)
 - $\supseteq 0.5$
 - \cap (A
 - $\cup B)$
 - \cap (\overline{A}
 - $\cup \, \overline{B})$
- **2.** (A .
 - $\cup \, \overline{B})$
 - \cap (\overline{A}
 - $\cup B)$
 - $\subseteq 0.5$
 - \cup (A
 - $\cap B)$
 - \cup (\overline{A}
 - $\cap \overline{B}$)

Ejercicio 10. Denotamos por T_L y S_L la t-norma y t-conomar de Łukasiewicz y están definidas como

$$xT_Ly=(x+y) \ -1)\lor 0$$

У

$$xS_L y \ = (x+y) \wedge 1.$$

Demostrar que T_L y S_L es una t-norma y t-conorma, respectivamente.

Ejercicio 11. Considera los conjuntos difusos $A,B:\mathbb{R}^+$ definidos como A(x)=1 y B(x)=1 . Escribe o [0,1] $o (1+x^2)$ $o 10^x$

formalmente como funciones AT_LB , AS_LB , AT_GB , AS_GB , donde T_L y S_L son la t-norma y t-conorma de Łukasiewicz y T_G y S_G son la t-norma y t-conorma de Goguen. Presenta una gráfica de cada uno.