## Gaël Le Godais<sup>1,2</sup>, Tal Linzen<sup>1,3</sup> and Emmanuel Dupoux<sup>1</sup>

<sup>1</sup>LSCP & IJN, ENS Paris <sup>2</sup>ENSIMAG <sup>3</sup>Johns Hopkins University

Comparing Character-level
Neural Language Models
Using a Lexical Decision Task



#### Character-level Convolutional Networks for Text Classification\*

Xiang Zhang Junbo Zhao Yann LeCun
Courant Institute of Mathematical Sciences, New York University
719 Broadway, 12th Floor, New York, NY 10003
{xiang, junbo.zhao, yann}@cs.nyu.edu



#### PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

#### **PANDARUS:**

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.





#### Contributions

#### Contributions

 We introduce a psycholinguistic task that evaluates the lexicon implicit in a character-level language model

#### Contributions

- We introduce a psycholinguistic task that evaluates the lexicon implicit in a character-level language model
- As a first use of the task, we evaluate how the size and depth of the network affect its lexical capacity

#### Lexical decision

(Rubenstein et al., 1970)

### Lexical decision

(Rubenstein et al., 1970)



# Lexical decision (Rubenstein et al., 1970)

# plurb

## Lexical decision (Rubenstein et al., 1970)

### **NONWORD**

### Lexical decision

(Rubenstein et al., 1970)



# Lexical decision (Rubenstein et al., 1970)

## bowl

# Lexical decision (Rubenstein et al., 1970)

**WORD** 

$$P(\mathsf{bowl}) = P(\mathsf{b}) + P(\mathsf{o}|\mathsf{b}) + P(\mathsf{w}|\mathsf{bo}) + P(\mathsf{I}|\mathsf{bow})$$

$$P(\mathsf{bowl}) = P(\mathsf{b}) + P(\mathsf{o}|\mathsf{b}) + P(\mathsf{w}|\mathsf{bo}) + P(\mathsf{I}|\mathsf{bow})$$

Words "should" have a higher probability than nonwords...

$$P(\mathsf{bowl}) > \epsilon$$

$$P(\mathsf{bowl}) = P(\mathsf{b}) + P(\mathsf{o}|\mathsf{b}) + P(\mathsf{w}|\mathsf{bo}) + P(\mathsf{I}|\mathsf{bow})$$

Words "should" have a higher probability than nonwords...

$$P(\mathsf{bowl}) > \epsilon$$

$$P(\mathsf{plurb}) < \epsilon$$

### LM negative log-probabilities

(Balota et al., 2007)



#### LM negative log-probabilities

(Balota et al., 2007)



 $\bullet$  Every character has probability <1  $\rightarrow$  long words may have lower probability than short nonwords

- $\bullet$  Every character has probability <1  $\rightarrow$  long words may have lower probability than short nonwords
- Rare characters (q, z) have lower probability than frequent ones (b)

- $\bullet$  Every character has probability <1  $\rightarrow$  long words may have lower probability than short nonwords
- Rare characters (q, z) have lower probability than frequent ones (b)
- Rare transitions (zk) have lower probability than frequent ones (ba)

- $\bullet$  Every character has probability <1  $\rightarrow$  long words may have lower probability than short nonwords
- Rare characters (q, z) have lower probability than frequent ones (b)
- Rare transitions (zk) have lower probability than frequent ones (ba)
- Can try to normalize for these factors (Berg-Kirkpatrick et al., 2012; Lau et al., 2016)

- $\bullet$  Every character has probability <1  $\longrightarrow$  long words may have lower probability than short nonwords
- Rare characters (q, z) have lower probability than frequent ones (b)
- Rare transitions (zk) have lower probability than frequent ones (ba)
- Can try to normalize for these factors (Berg-Kirkpatrick et al., 2012; Lau et al., 2016)
- Alternative: matching (Linzen et al., 2016)

### Spot-the-word (2AFC lexical decision)

(Baddeley et al., 1993)

Spot-the-word (2AFC lexical decision) (Baddeley et al., 1993)

### bowl vowl

Spot-the-word (2AFC lexical decision)
(Baddeley et al., 1993)

bowl vowl

# Spot-the-word (2AFC lexical decision) (Baddeley et al., 1993)

Spot-the-word (2AFC lexical decision)
(Baddeley et al., 1993)

poat moat

Spot-the-word (2AFC lexical decision)
(Baddeley et al., 1993)

poat moat

# Spot-the-word (2AFC lexical decision) (Baddeley et al., 1993)

Spot-the-word (2AFC lexical decision)
(Baddeley et al., 1993)

enacity emacity

Spot-the-word (2AFC lexical decision)
(Baddeley et al., 1993)

enacity emacity

$$P('\mathsf{bat'}) > P('\mathsf{bap'})$$
?

$$P('\mathsf{bat'}) > P('\mathsf{bap'})$$
?

battery, wombat, debate

$$P('\mathsf{bat'}) > P('\mathsf{bap'})$$
?

battery, wombat, debate

$$P(\text{'bat'}) > P(\text{'bap'})$$
?

battery, wombat, debate

$$P(' \text{ bat } ') > P(' \text{ bap } ')$$
?

#### Contributions

- We introduce a psycholinguistic task that evaluates the lexicon implicit in a character-level language model
- As a first use of the task, we evaluate how the size and depth of the network affect its lexical capacity

Architecture: SRN vs. LSTM

- Architecture: SRN vs. LSTM
- Number of layers: 1, 2 or 3

- Architecture: SRN vs. LSTM
- Number of layers: 1, 2 or 3
- Number of units per layer: 16, 32, 64 or 128

- Architecture: SRN vs. LSTM
- Number of layers: 1, 2 or 3
- Number of units per layer: 16, 32, 64 or 128
- Six random seeds for each combination

- Architecture: SRN vs. LSTM
- Number of layers: 1, 2 or 3
- Number of units per layer: 16, 32, 64 or 128
- Six random seeds for each combination
- Trained on 10M words (50M characters) from the movie/book corpus (Zhu et al., 2015)

 Nonwords matched for length and bigram probability (respecting position and syllable structure) using Wuggy (Keuleers & Brysbaert, 2010):

 Nonwords matched for length and bigram probability (respecting position and syllable structure) using Wuggy (Keuleers & Brysbaert, 2010):

travel chavel

 Nonwords matched for length and bigram probability (respecting position and syllable structure) using Wuggy (Keuleers & Brysbaert, 2010):

travel chavel assimilated

 Nonwords matched for length and bigram probability (respecting position and syllable structure) using Wuggy (Keuleers & Brysbaert, 2010):

travel chavel assimilated copious conious

 Nonwords matched for length and bigram probability (respecting position and syllable structure) using Wuggy (Keuleers & Brysbaert, 2010):

travel chavel assimilated copious conious fib wib

 Nonwords matched for length and bigram probability (respecting position and syllable structure) using Wuggy (Keuleers & Brysbaert, 2010):

travel chavel
assimilated assitilated
copious conious
fib wib
needed nooded

#### Baselines

• Chance: 50% accuracy

#### **Baselines**

- Chance: 50% accuracy
- Character unigram language model: 49.6% accuracy

#### **Baselines**

- Chance: 50% accuracy
- Character unigram language model: 49.6% accuracy
- Character bigram language model: 52.1% accuracy













SRN:

$$\mathbf{s_i} = \!\! (\mathbf{x_i} \textcolor{red}{\mathbf{W^X}} + \mathbf{s_{i-1}} \textcolor{red}{\mathbf{W^S}} + \mathbf{b})$$

SRN:

$$s_i = \!\! (x_i \textcolor{red}{W^x} + s_{i-1} \textcolor{red}{W^s} + b)$$

LSTM:

$$\begin{split} &c_j = &c_{j-1} \odot f + g \odot i \\ &h_j = tanh(c_j) \odot o \\ &i = &\sigma(x_j W^{xi} + h_{j-1} W^{hi}) \\ &f = &\sigma(x_j W^{xf} + h_{j-1} W^{hf}) \\ &o = &\sigma(x_j W^{xo} + h_{j-1} W^{ho}) \\ &g = tanh(x_j W^{xg} + h_{j-1} W^{hg}) \end{split}$$

SRN:

$$s_i = \!\! (x_i \textcolor{red}{W^x} + s_{i-1} \textcolor{red}{W^s} + b)$$

LSTM:

$$\begin{split} &c_j = &c_{j-1} \odot f + g \odot i \\ &h_j = tanh(c_j) \odot o \\ &i = &\sigma(x_j W^{xi} + h_{j-1} W^{hi}) \\ &f = &\sigma(x_j W^{xf} + h_{j-1} W^{hf}) \\ &o = &\sigma(x_j W^{xo} + h_{j-1} W^{ho}) \\ &g = tanh(x_j W^{xg} + h_{j-1} W^{hg}) \end{split}$$

100% -

Accuracy

60% -

80% -

2<sup>14</sup> 2<sup>15</sup> 2<sup>16</sup> 2<sup>17</sup> 2<sup>18</sup>

Number of parameters



#### **Future work**

 Memorization vs. generalization: what does the network learn about productive word-formation rules (neural → neuralize)?

#### **Future work**

- Memorization vs. generalization: what does the network learn about productive word-formation rules (neural → neuralize)?
  - Preliminary results: a lot

- Memorization vs. generalization: what does the network learn about productive word-formation rules (neural → neuralize)?
  - Preliminary results: a lot
- Frequency effects

- Memorization vs. generalization: what does the network learn about productive word-formation rules (neural → neuralize)?
  - Preliminary results: a lot
- Frequency effects
  - Preliminary results: there are

- Memorization vs. generalization: what does the network learn about productive word-formation rules (neural → neuralize)?
  - Preliminary results: a lot
- Frequency effects
  - Preliminary results: there are
  - Lexical decision accuracy and perplexity will diverge the most on rare words

- Memorization vs. generalization: what does the network learn about productive word-formation rules (neural → neuralize)?
  - Preliminary results: a lot
- Frequency effects
  - Preliminary results: there are
  - Lexical decision accuracy and perplexity will diverge the most on rare words
- To compare to humans datasets (Balota et al., 2007), we need more research on doing the yes/no version of the task

- Memorization vs. generalization: what does the network learn about productive word-formation rules (neural → neuralize)?
  - Preliminary results: a lot
- Frequency effects
  - Preliminary results: there are
  - Lexical decision accuracy and perplexity will diverge the most on rare words
- To compare to humans datasets (Balota et al., 2007), we need more research on doing the yes/no version of the task
  - Map language model probabilities to a lexicality judgment

- Memorization vs. generalization: what does the network learn about productive word-formation rules (neural → neuralize)?
  - Preliminary results: a lot
- Frequency effects
  - Preliminary results: there are
  - Lexical decision accuracy and perplexity will diverge the most on rare words
- To compare to humans datasets (Balota et al., 2007), we need more research on doing the yes/no version of the task
  - Map language model probabilities to a lexicality judgment
  - Train classifier to predict lexicality from the state of the RNN

- Memorization vs. generalization: what does the network learn about productive word-formation rules (neural → neuralize)?
  - Preliminary results: a lot
- Frequency effects
  - Preliminary results: there are
  - Lexical decision accuracy and perplexity will diverge the most on rare words
- To compare to humans datasets (Balota et al., 2007), we need more research on doing the yes/no version of the task
  - Map language model probabilities to a lexicality judgment
  - Train classifier to predict lexicality from the state of the RNN
  - Run humans on the spot-the-word task

 We have proposed a tool for studying lexical learning in character-level RNNs

- We have proposed a tool for studying lexical learning in character-level RNNs
- Our first study using this tool showed that large enough networks can perform the task well, despite not being trained on it

- We have proposed a tool for studying lexical learning in character-level RNNs
- Our first study using this tool showed that large enough networks can perform the task well, despite not being trained on it
- The number of parameters is by far the most important determinant of performance: depth isn't useful

 The human mind is at least as much of a black box as neural networks

- The human mind is at least as much of a black box as neural networks
- Tasks from psycholinguistics can be used to better understand neural networks

- The human mind is at least as much of a black box as neural networks
- Tasks from psycholinguistics can be used to better understand neural networks
- Our code is available at https://github.com/bootphon/ char\_rnn\_lexical\_decision

# Acknowledgements

- European Research Council (grant ERC-2011-AdG 295810 BOOTPHON)
- Agence Nationale pour la Recherche (grants ANR-10-IDEX-0001-02 PSL and ANR-10-LABX-0087 IEC)

# Thank you!



- Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K. A., Kessler, B., Loftis, B., ... Treiman, R. (2007). The English lexicon project. *Behavior Research Methods*, *39*(3), 445–459.
- Berg-Kirkpatrick, T., Burkett, D., & Klein, D. (2012). An empirical investigation of statistical significance in nlp. In *Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning* (pp. 995–1005).
- Karpathy, A., Johnson, J., & Li, F.-F. (2016). Visualizing and understanding recurrent networks. In *Proceedings of international conference on learning representations*.
- Keuleers, E., & Brysbaert, M. (2010). Wuggy: A multilingual pseudoword generator. *Behavior Research Methods*, 42(3), 627–633. Retrieved from http://dx.doi.org/10.3758/BRM.42.3.627 doi: 10.3758/BRM.42.3.627
- Lau, J. H., Clark, A., & Lappin, S. (2016). Grammaticality, acceptability, and probability: A probabilistic view of linguistic knowledge. *Cognitive Science*.

Linzen, T., Dupoux, E., & Goldberg, Y. (2016). Assessing the ability of LSTMs to learn syntax-sensitive dependencies. *Transactions of the Association for Computational Linguistics*, 4, 521–535.