Binary Search Tree

1. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
0. BST tree;
    tree.insert('H');
    tree.insert('A');
    tree.insert('R');
4.    tree.insert('H');
5.    tree.insert('U');
6.    tree.insert('I');
```


H

1.

2.

3.

5.

6.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น HARH IV
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น AHHIRU
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น AIHURU

2. ต่อจากข้อ 1 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
7.delete_node(&(tree.root->left));// A
8.delete_node(&(tree.root->right));
9.delete_node(&(tree.root->right));
```

7.

8.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น HHI.
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น HHI.

3. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
0.
      BST tree2;
1.
      tree2.insert('G');
      tree2.insert('0');
2.
      tree2.insert('I');
3.
      tree2.insert('N');
      tree2.insert('G');
      tree2.insert('M');
      tree2.insert('E');
7.
      tree2.insert('R');
      tree2.insert('T');
9.
      tree2.insert('Y');
10.
```

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น .. 6E0I6 N M R T Y หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น ... £ 6 6 โ M N o < T Y

หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น E6MNT YTR06

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น	
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น	
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น	

4. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
11. delete_node(&(tree2.root->right->left));
12. delete_node(&((tree2.root->right->left)->right));
13. delete_node(&((tree2.root->right->right)->right));
14. delete_node(&((tree2.root->right->right)->right));
```


หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น 🗜 6 6 M 0 R
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น

5. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
BST tree3;
1.
      tree3.insert('A');
2.
      tree3.insert('B');
3.
      tree3.insert('C');
4.
      tree3.insert('D');
5.
     tree3.insert('E');
  tree3.insert('F');
7.
      tree3.insert('G');
      tree3.insert('H');
9.
```

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น A B C D E F 6 H
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น A B C D E F 6 H
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น H G F E D C B A

6. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
10. delete_node(&(tree3.root));
11. delete_node(&(tree3.root));
12. delete_node(&(tree3.root));
13. delete_node(&(tree3.root));
```


หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น	E	F	6	H
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น				
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น				

1.	BST ที่ balance กับ BST ที่ไม่ balance แบบใหนมีลำดับชั้นที่มากกว่ากัน หากจำนวนสมาชิกเท่ากัน เนื่องจากอะไร (ขอสั้นๆ)
	Yม balance ลำลับขึ้นมากกว่า เพางอ่านอนสมาธิกที่ balance จะสลับ ซ้าน-บาว แต่ลำไม่ balance จะกองกับอยู่ มีงเลี้ยว ท่าใน้ ชั้นบากท่า
8.	BST ที่ balance กับ BST ที่ไม่ balance หากต้องการ search แบบใหน ให้เวลาในการค้นหาน้อยกว่ากัน อย่างไร (ขอสั้นๆ)
	palance วิธีเวลาน้องกว่า เพกาะลำลับขึ้นข้อง จะแนกแก้บอนูลย์จะเก้า บ้อนูลมักภาแก้ แล้ง -มากล่า แล้ว
9.	Tree ที่ balance กับ tree ที่ไม่ balance แบบใดโดยทั่วไปจะมีประสิทธิภาพดีกว่ากัน (ขอ1 คำ)
10.	ดังนั้นการคิด algorithm และ data structure เราควรพยายามให้ tree อยู่ในรูปของ balance หรือ unbalance เนื่องจากอะไร (ขอยาวๆ)
	·