ANALIZA III - LISTA 6

Zadania bez gwiazdek na tej liście są za 3 punkty.

1. Mówimy, że przekształcenie $f: \mathbb{R}^n \to \mathbb{R}^m$ jest ciągłe jeśli dla każdego ciągu x_n zbieżnego do x, $f(x_n)$ zbiega do f(x). Pokaż, że jeśli f jest ciągłe, a $D \subset \mathbb{R}^m$ jest domknięty, to $f^{-1}(D)$ jest domknięty w \mathbb{R}^n oraz $V \subset \mathbb{R}^m$ jest otwarty, to $f^{-1}(V)$ jest otwarty w \mathbb{R}^n .

To nie wymaga kursu topologii. Robi się z definicji zbioru domkniętego i ciągłości f. Proszę spróbować. Zbieżność rozumiemy w normie euklidesowej.

- 2. Niech $T: \mathbb{R}^n \to \mathbb{R}^n$ będzie przekształceniem liniowym. Pokaż jakąkolwiek metodą, że jeśli $v_n \to 0$, to $Tv_n \to 0$. Wskazówka: można zacząć od n=2 i napisać wszystko wzorami.
- 3. Pokaż, że jeśli f i f^{-1} są ciągłe, to dla każdego zbioru otwartego U, f(U) jest zbiorem otwartym. Zastosuj to do przekształcenia liniowego $T: \mathbb{R}^n \to \mathbb{R}^n$ takiego, że, det $T \neq 0$. Pokaż, że jeśli U jest otwarty, to T(U) jest otwarty.
- 4. Niech $\phi: \mathbb{R}^n \mapsto \mathbb{R}^n$ bedzie takie, że

$$\lim_{\|h\| \to 0} \frac{\|\phi(h)\|}{\|h\|} = 0.$$

Niech $T: \mathbb{R}^n \mapsto \mathbb{R}^n$ będzie przekształceniem liniowym. Pokaż, że

$$\lim_{\|h\| \to 0} \frac{\|T(\phi(h)\|}{\|h\|} = 0.$$

 $Wsk.\ Można\ zacząć\ od\ n=2,\ a\ nawet\ n=1,\ żeby\ zrozumieć,\ o\ co\ chodzi.$

5. Niech $f: \mathbb{R}^n \to \mathbb{R}^m$ będzie różniczkowalna, a wszystkie pochodne cząstkowe $\frac{\partial f_i}{\partial x_j}$ będą ograniczone na \mathbb{R}^n . Pokaż, że istnieje stała C taka,że dla każdych $x,y \in \mathbb{R}^n$

$$(0.1) ||f(x) - f(y)|| \le C||x - y||$$

 $Wskaz \acute{o}wka: Zaczq \acute{c} od f: \mathbb{R}^n \mapsto \mathbb{R}.$

- 6. Funkcję spełniającą (0.1) nazywamy lipschitzowską lub Lipschitza. Pokaż, że złożenie dwóch funkcji lipschitzowskich jest funkcją lipschitzowską. Pokaż, że funkcja lipschitzowska jest jednostajnie ciągła. Napisz definicję jednostajnej ciągłości dla funkcji $f: \mathbb{R}^n \mapsto \mathbb{R}^m$. Jest kompletnie analogiczna jak w \mathbb{R} tylko używamy normy euklidesowej, a nie modułu.
- 7^* . Niech $f: \mathbb{R}^n \to \mathbb{R}^n$ będzie przekształceniem klasy C^1 takim, że det $Df(x) \neq 0$, $x \in \mathbb{R}^n$, a $T: \mathbb{R}^n \to \mathbb{R}^n$ przekształceniem liniowym, det $T \neq 0$. Załóżmy, że umiemy pokazać, że dla f zachodzi konkluzja twierdzenia 2.21 o funkcji odwrotnej. Pokaż nie

korzystając z tw. 2.21, że to samo zachodzi dla $T \circ f$. Tzn., że dla każdego $x \in \mathbb{R}^n$ istnieją otoczenia $U \ni x, W \ni f(x)$ takie, że $T \circ f$ jest 1-1 i C^1 na $U, f(U) = W, (T \circ f)^{-1}$ istnieje na W i jest C^1 .

Wsk. Tu trzeba korzystać ze specyficznych własności przekształcenia liniowego. To zadanie jest raczej żmudne niż trudne, ale pozwala dobrze przećwiczyć rozumienie twierdzenia o funkcji odwrotnej.

8*. Niech W(x) będzie wielomianem stopnia 3 jednej zmiennej. Załóżmy, że $x^{-3}W(x) \rightarrow 0$, gdy $x \rightarrow 0$. Pokaż, że współczynniki wielomianu są zerami.

Niech W(x,y) będzie wielomianem stopnia 3 dwóch zmiennych. Załóżmy, że $\|(x,y)\|^{-3}W(x,y) \to 0$, gdy $(x,y) \to 0$. Pokaż, że współczynniki wielomianu są zerami.

**9. Niech W(x) będzie wielomianem stopnia d, $x \in \mathbb{R}^n$. Załóżmy, że $||x||^{-d}W(x) \to 0$, gdy $x \to 0$, $x \in \mathbb{R}^n$. Pokaż, że współczynniki wielomianu są zerami.