runSvanbergSLP.m script to run SLP for Svanberg's 5-segment beam.

Svanberg, Krister, "The Method of Moving Asymptotes--A New Method for Structural Optimization," Intl. J. Num. Meth. Vol. 24, 1987, pp. 359-373.

Contents

- Initialize Variables & options
- SLP
- Plot iteration history
- SQP
- Linear Objective function, Nonlinear constraints, 5-DV

Initialize Variables & options

```
clear; clc; close all
Nsegments=5;
Xinitial=5;
X0=repmat(Xinitial,Nsegments,1); vlb=zeros(Nsegments,1);
options.Display='iter';
options.MaxIter=30;
options.TolX=0.1;
options.TolFun=0.001;
options.TolCon=0.0001;
%options.MoveLimit=1; % relative to X0; absolute, if options.TypicalX=1
%options.MoveReduction=0.8;
%options.TrustRegion='off';
```

SLP

```
[x,f,exitflag,output]=slp_trust(@fSvanbergBeam,X0,options,vlb,[],@gSvanbergBeam);
disp(' ')
disp('Final Design Variables, X')
disp(x)
```

Sequential Linear Programming Iteration History

Iteration	Objective	MaxConstraint	Index	Step-size	Merit	MoveLimit	TrustRatio
0	1.56	0	1	0	1.56		
1	1.3779	0.2486	1	1	1.56	0.2	0
2	1.3708	0.07887	1	0.5	1.429	0.1	0.6946
3	1.3513	0.0663	1	0.5	1.4	0.1	0.3718
4	1.3238	0.08129	1	0.5	1.4	0.1	0
5	1.3377	0.02069	1	0.25	1.357	0.05	0.6884
6	1.3341	0.02085	1	0.25	1.357	0.05	0
7	1.3378	0.005535	1	0.125	1.344	0.025	0.6832
8	1.3387	0.00491	1	0.125	1.344	0.025	-0.04444
9	1.3395	0.001203	1	0.0625	1.341	0.0125	0.7145
10	1.3397	0.001125	1	0.0625	1.341	0.0125	-0.06297
11	1.3399	0.0002886	1	0.03125	1.34	0.00625	0.6985

```
12
                   1.3399
                              0.0003026
                                              1
                                                     0.03125
                                                                     1.34
                                                                             0.00625
                                                                                          -0.3026
Rejected
       13
                     1.34
                              7.551e-05
                                              1
                                                     0.01562
                                                                    1.34
                                                                            0.003125
                                                                                           0.6255
Bound
                    0.001
                                  0.0001
    Criteria
                                                         0.1
SLP converged. Final objective function value = 1.34
               Lagrangian gradient
                                       2-norm = 0.0023432
               Lagrangian gradient inf-norm = 0.001821
Final Design Variables, X
    6.0009
    5.3084
    4.5030
    3.5206
    2.1406
```

Plot iteration history

```
iter=(0:output.iterations);
[AX,H1,H2]=plotyy(iter,output.f,iter,abs(max(output.g,[],1)),'plot','semilogy');
set(get(AX(1),'Ylabel'),'String','Objective, f(X)');
set(get(AX(2),'Ylabel'),'String','Constraint, g(X)');
set(H1,'LineStyle','--','LineWidth',1,'Marker','o');
set(H2,'LineStyle','--','LineWidth',1,'Marker','x');
xlabel('Iteration #');
title('Svanberg Beam SLP Iteration History');
```


[x,output]=sqp(@fSvanbergBeam,X0,options,vlb,[],@gSvanbergBeam) %#ok<*NOPTS>

				Termi	nation Criteria				
				0.0001		0.001	0.1		
f-CNT	FUNC	STEP	NAC	max{g}		KTO	max(S)		
1	1.56	0	6	0	1	0.00841	0.061		
2	1.5516	1	6	0.000166	1	0.041	0.304		
3	1.5106	1	6	0.00414	1	0.165	1.31		
4	1.3483	1	6	0.1	1	0.13	0.207		
5	1.3934	1	6	0.00827	1	0.0331	0.457		
6	1.364	1	6	0.0116	1	0.0507	0.99		
7	1.3186	1	6	0.0873	1	0.0538	0.355		
8	1.3377	1	6	0.025	1	0.0194	0.0605		
9	1.3463	1	6	0.000845	1	0.00222	0.096		
10	1.3444	1	6	0.000941	1	0.00496	0.169		
11	1.3398	1	6	0.00507	1	0.0024	0.0999		
12	1.3401	1	6	0.00126	1	0.000801	0.0874		
13	1.3398	1	6	0.000882	1	0.000753	0.00428		
14	1.3402	1	6	3.48e-06	1	0.000148	0.0203		
Optimizat	ion Terminate	ed Succe	essfu	ally from sq	[P				
x =									
6.071	19								
5.258	5.2585								
4.4547									
3.543	37								
2.148	35								
output =									
fval: 1.3402									
funcCount: 14									
runccount. IT									

Linear Objective function, Nonlinear constraints, 5-DV

```
type fSvanbergBeam
```

gradCount: 14
iterations: 13

options: [1x18 double]

```
function [f,g] = fSvanbergBeam( x )
% Function evaluation of Svanberg's 5-segment beam
%
%--Input
```

```
% x..... Design variable vector = beam cros-sectional dimensions % %--Output % f..... Objective function value f(x)=weight % g..... Constraint function value g(x)=tip deflection constraint<=0 C1 = 0.0624; C2 = 1; f = C1*sum(x); g = sum( [61 37 19 7 1]'./x(:).^3) - C2;
```

Published with MATLAB® R2015b