

CPU Nível Fácil

A unidade de controle da CPU é responsável por buscar, codificar e executar as instruções.

Resposta: falso.

deveria ser decodificar e não codificar

CPU Nível Médio

Qual parte da CPU realiza operações matemáticas e lógicas?

A) Unidade de Controle

B) Unidade Lógica e Aritmética (ULA)

C) Registrador

D) Cache

CPU Nível Médio

O pipeline melhora o desempenho geral do processador ao reduzir o tempo total de execução de instruções.

Resposta: Verdadeiro.

CPU Nível Difícil

Qual etapa do ciclo de instrução é responsável por obter os dados necessários para executar a operação?

A) Decodificação

B) Rusca

C) Execução

D) Armazenamento

MEMÓRIA Nível Fácil

A meméria RAM é volátil, o que significa que seus dados são perdidos quando o computador é desligado. Resposta: Verdadeiro.

MEMÓRIA Nível Médio

Qual técnica permite ao sistema operacional usar o disco rígido como uma extensão da memória principal?

- A) Memória Virtual
- B) Meméria Cache C) Paginação
- D) Memória Volátil

MEMÓRIA Nível Médio

A memória cache é sempre mais rápida que a memória RAM, mas tem menor capacidade.

Resposta: Verdadeiro.

MEMÓRIA Nível Difícil

No contexto de hierarquia de memória, qual nível é o mais próximo da CPU?

- A) Memória Virtual
 - P) Cache L1
 - C) Cache L2 D) RAM

PARTE DA TRÁS

Dispositivos de Entrada e Saída Nível Fácil

O teclado é considerado um dispositivo de saida. Resposta: falso. dispositivo de entrada Dispositivos de Entrada e Saída Nível Médio

Qual dos dispositivos abaixo converte sinais elétricos em informações

visuais?

- A) Scanner
- B) Impressora
- C) Monitor
- D) Alto-falante

Dispositivos de Entrada e Saída Nível Médio

O DMA (Acesso Direto à Memória) permite que dispositivos de E/S transfiram dados diretamente para a memória principal, sem passar pela CPU.

Resposta: Verdadeiro.

Dispositivos de Entrada e Saída Nível Difícil

Qual barramento é usado especificamente para conectar dispositivos de E/S ao processador?

- A) Barramento de Dados
- B) Barramento de Controle
 - C) Barramento de E/S
 - D) Barramento de Endereços

REPRESENTAÇÃO DE DADOS
Nível Fácil

O sistema binário utiliza apenas os dígitos O e 1 para representar números. Resposta: Verdadeiro.

REPRESENTAÇÃO DE DADOS
Nível Médio

Qual é o valor decimal do número binário

11101?

A) 29

B) 27

C) 25

D) 23

REPRESENTAÇÃO DE DADOS
Nível Médio

O complemento de dois é um método utilizado para representar números negativos em binário. Resposta: Verdadeiro. REPRESENTAÇÃO DE DADOS
Nível Difícil

Qual é o padrão utilizado para representar números de ponto flutuante?

A) ASCII

B) IEEE 754

C) Unicode

D) ISO 9001

PARTE DA TRÁS

MODOS DE ENDEREÇAMENTO Nível Fácil

No modo de endereçamento imediato, o valor do operando está especificado diretamente na instrução. Resposta: Verdadeiro.

MODOS DE ENDEREÇAMENTO Nível Médio

Qual dos modos de endereçamento utiliza um registrador para armazenar o endereço do operando?

- A) Direto
- B) Indireto
- C) Baseado em Registrador
 - D) Relativo

MODOS DE ENDEREÇAMENTO Nível Médio

No modo de endereçamento indireto, o operando é acessado através de um endereço armazenado em outro endereço.

Resposta: Verdadeiro.

MODOS DE ENDEREÇAMENTO Nível Difícil

No modo de endereçamento relativo, como é calculado o endereço efetivo do operando?

- A) Um deslocamento somado a um registrador base.
- B) Um deslocamento fixo na memória.
- C) O endereço direto do operando.
- D) Um valor imediato armazenado na instrução.

CONJUNTO DE INSTRUÇÕES Nível Fácil

Conjuntos de instruções RISC possuem instruções simples e rápidas, ao contrário das CISC. Resposta: Verdadeiro.

CONJUNTO DE INSTRUÇÕES Nível Médio

Qual instrução pertence ao grupo das aritméticas?

- A) JMP
- B) ADD
- C) NOP
- D) CALL

CONJUNTO DE INSTRUÇÕES Nível Médio

A ISA define como o hardware de um processador interpreta e executa as instruções.

Resposta: Verdadeiro.

CONJUNTO DE INSTRUÇÕES Nível Difícil

Uma das características das arquiteturas CISC é:

- A) Conjunto limitado de instruções.
- P) Instruções complexas que realizam várias operações.
 - C) Simplicidade de decodificação.
- D) Uso exclusivo de pipeline.

PARTE DA TRÁS

BARRAMENTO Nível Fácil

O barramento de dados é responsável por transportar informações entre os diversos componentes de um computador.

Resposta: Verdadeiro.

BARRAMENTO Nível Médio

Qual é o principal objetivo do barramento de controle?

- A) Armazenar dados temporariamente
- B) Coordenar a execução das instruções
- C) Conectar dispositivos externos
- D) Sincronizar sinais entre componentes

BARRAMENTO Nível Médio

Parramentos síncronos operam com base em um relégio comum para todos os dispositivos conectados. Resposta: Verdadeiro.

BARRAMENTO Nível Difícil

Entre as características dos barramentos PCIe, qual é a principal diferença em relação aos barramentos paralelos?

- A) Comunicação assíncrona
 - B) Alta largura de banda e comunicação serial
- C) Uso de meméria compartilhada
- D) Suporte exclusivo para dispositivos de armazenamento

SISTEMAS MULTIPROCESS ADORES E MULTICORES Nível Fácil

Processadores multicore possuem mais de um núcleo em um único chip, permitindo maior eficiência em tarefas paralelas.

paralelas. Resposta: Verdadeiro.

SISTEMAS MULTIPROCESSADORES E MULTICORES Nível Médio

Qual é uma vantagem do uso de sistemas multiprocessadores?

- A) Aumento da capacidade de processamento paralelo
- B) Menor consumo de energia
- C) Eliminação da necessidade de memória cache
- D) Redução de hardware físico

SISTEMAS MULTIPROCESSADORES E MULTICORES Nível Médio

A coerência de cache é um desafio em sistemas multiprocessadores.
Resposta: Verdadeiro.

SISTEMAS MULTIPROCESSADORES E MULTICORES Nível Difícil

Qual técnica é usada para melhorar a eficiência da comunicação entre processadores em um sistema multiprocessador? A) Paginação

- B) Barramento síncrono
- C) Meméria compartilhada
 - D) Pré-fetching

PARTE DA TRÁS

INTERCONEXÃO ENTRE COMPONENTES Nível Fácil

O barramento é responsável por conectar os componentes do computador, como processador, meméria e dispositivos de E/S.
Resposta: Verdadeiro.

INTERCONEXÃO ENTRE COMPONENTES Nível Médio

Qual topologia de interconexão conecta todos os dispositivos a um único canal comum?

- A) Anel
- B) Estrela
- C) Malha
- D) Barramento

INTERCONEXÃO ENTRE COMPONENTES Nível Médio

Redes de interconexão são utilizadas principalmente em sistemas distribuídos.
Resposta: Verdadeiro.

INTERCONEXÃO ENTRE COMPONENTES Nível Difícil

Qual é uma característica da topologia de malha em sistemas interconectados?

- A) Todos os dispositivos compartilham um único ponto de falha
- B) Cada dispositivo está conectado diretamente a todos os outros
- C) Os dispositivos estão conectados em sequência linear D) Cada dispositivo está conectado apenas ao anterior e ao préximo

SISTEMAS MULTIPROCESSADORES E MULTICORES Nivel Fácil

Processadores multicore possuem um núcleo em um único chip, permitindo maior eficiência em tarefas paralelas. Resposta: falso. possuem mais núcleos SISTEMAS
MULTIPROCESSADORES E
MULTICORES
Nível Médio

Qual é uma vantagem do uso de sistemas multiprocessadores?

- A) Aumento da capacidade de processamento paralelo
- B) Menor consumo de energia
- C) Eliminação da necessidade de memória cache
- D) Redução de hardware físico

SISTEMAS
MULTIPROCESSADORES E
MULTICORES
Nível Médio

A coerência de cache não é um desafio em sistemas multiprocessadores.

Resposta: falso.

Kesposta: falso. é um desafio sim

SISTEMAS MULTIPROCESSADORES E MULTICORES Nível Difícil

Qual técnica é usada para melhorar a eficiência da comunicação entre processadores em um sistema multiprocessador?

- A) Paginação
- B) Barramento síncrono
- C) Memória compartilhada
 - D) Pré-fetching

PARTE DA TRÁS

CACHE Nível Fácil

A memória cache ajuda a reduzir o tempo de acesso à memória principal.
Resposta: Verdadeiro.

CACHE Nível Médio

O que significa "localidade temporal" em relação à memória cache?

- A) Acesso frequente aos mesmos dados
- B) Uso de dados que estão préximos uns dos outros na meméria
- C) Uso de memória virtual
- D) Acesso assíncrono a dados

CACHE Nível Médio

A meméria cache L1 é
mais rápida, mas possui
maior capacidade do
que L2.
Resposta: falso.
possuem menor
capacidade q L2

CACHE Nível Difícil

Em um sistema com mapeamento direto, qual é o principal problema potencial?

- A) Complexidade de gerenciamento
- B) Conflito de cache
- C) Baixa largura de banda
- D) Alta latência de acesso

ARMAZENAMENTO SSD Nível Fácil

SSDs são mais rápidos e consomem menos energia do que discos rígidos tradicionais.

Resposta: Verdadeiro.

ARMAZENAMENTO SSD Nível Médio

O que significa SSD?

A) Secure Storage Device

B) Solid State Drive

C) Systematic Storage Disk

D) Sequential System Device

ARMAZENAMENTO SSD Nível Médio

SSDs usam discos magnéticos para armazenar dados. Resposta: falso. usam memória flash

ARMAZENAMENTO SSD Nível Difícil

Qual é uma limitação comum dos SSDs em comparação aos HDDs?

- A) Menor velocidade de leitura/escrita
- B) Menor capacidade de armazenamento por preço
 - C) Maior consumo de energia
 - D) Maior peso físico

PARTE DA TRÁS

TOLERÂNCIA A FALHAS E CONFIABILIDADE Nível Fácil

O barramento é responsável por conectar os componentes do computador, como processador, meméria e dispositivos de E/S.
Resposta: Verdadeiro.

INTERCONEXÃO ENTRE COMPONENTES Nível Médio

Qual topologia de interconexão conecta todos os dispositivos a um único canal comum?

- A) Anel
- B) Estrela
- C) Malha
- D) Barramento

INTERCONEXÃO ENTRE COMPONENTES Nível Médio

Redes de interconexão são utilizadas principalmente em sistemas distribuídos.
Resposta: Verdadeiro.

INTERCONEXÃO ENTRE COMPONENTES Nível Difícil

Qual é uma característica da topologia de malha em sistemas interconectados?

- A) Todos os dispositivos compartilham um único ponto de falha
- B) Cada dispositivo está conectado diretamente a todos os outros
- C) Os dispositivos estão conectados em sequência linear
- D) Cada dispositivo está conectado apenas ao anterior e ao préximo

SISTEMAS MULTIPROCESSADORES E MULTICORES Nível Fácil

Processadores multicore possuem mais de um núcleo em um único chip, permitindo maior eficiência em tarefas paralelas.

Resposta: Verdadeiro.

SISTEMAS MULTIPROCESSADORES E MULTICORES Nível Médio

Qual é uma vantagem do uso de sistemas multiprocessadores?

- A) Aumento da capacidade de processamento paralelo
- B) Menor consumo de energia
- C) Eliminação da necessidade de memória cache
- D) Redução de hardware físico

SISTEMAS MULTIPROCESSADORES E MULTICORES Nível Médio

A coerência de cache não é um desafio em sistemas multiprocessadores.

Resposta: falso. é desafio sim

SISTEMAS MULTIPROCESSADORES E MULTICORES Nível Difícil

Qual técnica é usada para melhorar a eficiência da comunicação entre processadores em um sistema multiprocessador?

- A) Paginação
- B) Barramento síncrono
- C) Memória compartilhada
 - D) Pré-fetching

PARTE DA TRÁS

TOLERÂNCIA A FALHAS E CONFIABILIDADE Nível Fácil

RAID é uma técnica utilizada para aumentar a tolerância a falhas em sistemas de armazenamento. Resposta: Verdadeiro.

TOLERÂNCIA A FALHAS E CONFIABILIDADE Nível Médio

Qual técnica permite a detecção de erros em transmissões de dados?

A) RAID

- B) Cédigos de Hamming
- C) Backup Incremental
 D) Segmentação

TOLERÂNCIA A FALHAS E CONFIABILIDADE Nível Médio

Um sistema redundante tem sempre menor desempenho em comparação a um não redundante.

Resposta: Falso.

TOLERÂNCIA A FALHAS E CONFIABILIDADE

Nível Difícil No RAID 5, qual é a principal vantagem em comparação ao RAID 1?

- A) Melhor desempenho de escrita
- B) Uso mais eficiente do espaço de armazenamento
- C) Maior capacidade de tolerância a falhas
- D) Recuperação de dados mais rápida

PLACA-MÃE Nível Fácil

A placa-mãe é o componente principal que conecta e permite a comunicação entre todos os outros componentes de software em um computador.

Resposta: falso.

deveria ser hardware

PLACA-MÃE Nível Médio

Qual das opções abaixo não é

um componente integrado em uma placa-mãe moderna?

A) Slots para meméria RAM

B) Unidade de processamento gráfico (GPU) dedicada

C) Chipset

D) Conectores de E/S

PLACA-MÃE Nível Médio

Os chipsets das placas-mãe determinam quais processadores e tecnologias são compatíveis com o sistema.

Resposta: Verdadeiro.

PLACA-MÃE Nível Difícil

Em placas-mãe modernas, qual tecnologia é responsável por gerenciar a comunicação entre o processador e os dispositivos conectados?

A) BIOS
B) PCI Express

') PCI Expres C) Chipset D) SATA

PARTE DA TRÁS

PARTE DA TRÁS

Erro de Pipeline:

Sua CPU encontrou um erro no pipeline! Perca 1KB de MIPSCoins.

Conflito de Cache:

Dados importantes foram substituídos na meméria cache. Volte 2 casas. Deadlock Detectado:

Seu sistema travou! Perca uma rodada. Perda de Dados:

Seu SSD sofreu um erro. Pague 1KB de MIPSCoins para restaurar os dados

Memória Insuficiente:

A meméria RAM está cheia!
Pague 1KB de
MIPSCoins para aumentar sua capacidade.

Erro de Entrada/Saída:

Um dispositivo de E/S falhou. Volte 1 casa e pague 2 KB de MIPSCoins. Falha de RAID:

"Seu sistema RAID perdeu a redundância. Pague 3KB de MIPSCoins para corrigir." **Barramento Saturado:**

"Muitos dados estão tentando passar Fique 1 rodada sem jogar."

CACHE MISS	CACHE MISS	CACHE MISS	CACHE MISS
CACHE MISS	CACHE MISS	CACHE MISS	CACHE MISS

Processador Sobrecarregado:

A CPU está superaquecendo.
Pague 2KB de MIPSCoins para instalar um novo cooler.

Erro de Disco:

Seu SSD atingiu o limite de ciclos de gravação. Perca 4KB de MIPSCoins. Corrupção de Dados:

Arquivos críticos foram corrompidos.
Volte 3 casas.

Interrupção de Energia:

Uma queda de energia desligou seu sistema! Pague 5KB de MIPSCoins para reativá-lo.

Memória Otimizada:

A meméria cache está funcionando perfeitamente. Ganhe 2KB de MIPSCoins. Melhoria de Processador:

Seu processador foi atualizado. Ganhe 4Kb de MIPSCoins. Dados Recuperados:

Você recuperou arquivos importantes!
Avance 2 casas

Parramento Eficiente:

Seu barramento
está funcionando
sem gargalos.
Avance 1 casa e
ganhe 500 bytes

CACHE MISS	CACHE MISS	CACHE MISS	CACHE MISS
CACHE HIT	CACHE HIT	CACHE HIT	CACHE HIT

Cache Acelerado:

Sua memória cache está em pleno desempenho. Ganhe 2 KB Melhoria de Armazenamento:

Seu SSD foi otimizado. Ganhe 3 KB. Sistema Estável:

Nenhum erro encontrado. Avance 3 casas.

Alinhamento Perfeito:

O pipeline foi executado sem interrupções! Ganhe 2 KB

Redundância Ativada:

Seu RAID evitou perda de dados. Avance 1 casa. Componentes Compativeis:

Você instalou componentes novos. Ganhe 2 KB Upgrade Sucesso:

Seu sistema foi atualizado com sucesso! Ganhe 5 KB Interconexão Estável:

Os componentes
estão
perfeitamente
conectados.
Avance 2 casas

Delete/Remove the red cards to uncover a challenge.

Delete/Remove the red cards to uncover a challenge.

1 NIBBLE

COMPUTAR: Manual do Jogador

O JOGO DA ORGANIZAÇÃO DE COMPUTADORES

ENTENDIMENTO GERAL

• Recomendações: o jogo foi desenvolvido para ser 1) Decidir entre os jogadores quem será o moderador jogado de 3 a 6 jogadores. Entender alguns conceitos previamente é necessário para evoluir durante o jogo. A proposta do jogo é errar aprendendo, não tenha medo de cometer erros!

ORJETIVO DO JOGO

Acumule o major poder computacional adquirindo componentes de hardware e respondendo perguntas.

MATERIAIS

Acompanham e fazem parte do jogo os seguinte materiais:

- 1 Tabuleiro
- 1 Manual do Jogador (este!)
- 2 Dados
- 6 peões
- 18 Cartas de Compra de Componente
- 60 Cartas Perguntas 4 por componente
- 20 Cartas Pergunta adicionais em branco
- 30 Cartas Cache Hit ou Cache Miss
- 256 MIPS Coins:
 - o 32 MIPSCoins de 1 bit
 - o 16 MIPS Coins de 1 nibble (4 bits)
 - o 64 MIPS Coins de 1 byte (8 bits)
 - o 8 MIPSCoins de 1 word (2 bytes ou 16 bits)
 - o 32 MIPSCoins de 1 kilobit kb (128 bytes ou 1024 bits)
 - o 128 MIPSCoins de 1 kilobyte KB (1.000 bytes ou 8.000 bits)
 - o 8 MIPS Coins de 1 megabyte MP (1.000.000 bytes ou 8.000.000 bits)

PREPARATIVOS INICIAIS

O moderador é extremamente necessário para a jogabilidade do jogo. O moderador é o responsável por controlar o fluxo de MIPSCoins no caixa, ler as cartas de Cache Hit e Cache Miss, distribuir as Cartas de Compra de Componente e os pinos de melhoria dos componentes. Converse entre seus amigos e decida que ficará com a função.

2) Distribuir as MIPS Coins:

Antes do jogo começar, são distribuídas as seguintes cartas por jogador:

- 3 MIPSCoins de 1 bit
- . 8 MIPS Coins de 1 byte
- 1 MTPSCoims de 1 word
- 4 MIPSCoins de 1 kilobit kb
- 15 MIPS Coins de 1 kilobyte KP
- 1 MTPSCoins de 1 megabyte MR

COMO JOGAR?

É hora de comecar! Os pinos dos jogadores se posicionam na casa de início. Todos os jogadores devem sortear os dados. Quem obtiver a maior combinação dos dados deverá iniciar o jogo.

O primeiro jogador comeca lancando os dados. O jogador joga o dado e move a peca pelo número de casas que tirou. Caso o jogador obtenha o mesmo valor nos dois dados durante o lancamento, o mesmo ganha uma jogada extra logo em seguida.

Após jogar os dados, o jogador deve reparar na casa em que caiu. Dependendo da casa em que o jogador estiver caído ele possui algumas opcões:

- Início: Todas as vezes que o jogador passa pela casa de início, mesmo que sem parar nela, ele tem direito a receber 2 MIPSCoins de 1 kilobyte (KR). Se você passou pela casa de início, pegue já o seu bônus de início
- Casa Componente:
 - o Se o componente ainda não foi adquirido por nenhum outro jogador: Sinta-se à vontade para comprá-lo com suas MIPSCoins.
 - o Se a case do componente já foi adquirida por outro jogador: Em caso de componentes já adquiridos, é obrigação do jogador responder a uma pergunta referente a aquele componente. caso responda errado, deverá pagar o valor de aluguel.
 - o Aluguel para pergunta fácil: 2 KP
 - Aluguel para pergunta média: 1KB
 - Aluguel para pergunta difícil: 130 bytes (1 kb e

- Cache Hit/Cache Miss: Sorteie uma carta do bolo de cartas Cache Hit ou Cache Miss e tire sua sorte. Faça o que lhe for estabelecido.
- Deadlock (Detenção): Responda corretamente uma pergunta contida em uma das cartas sorteadas ou seja obrigado a pagar a fiança e ficar duas rodadas sem jogar.
- Branching: Ao cair na casa Branching, o jogador pode escolher qualquer outra casa no tabuleiro para mover seu peão, realizando a ação correspondente ao chegar. Se nessa movimentação o jogador passar pela casa de início, ele não tem direito a receber o bênus de início.

 7 ona Livre: Nessa casa, o jogador pode adquirir componentes já comprados por outros, pagando ao banco 50% a mais do valor original. O proprietário original recebe uma indenização equivalente a metade do valor inicial do componente, paga pelo banco. A compra sé é válida se o jogador tiver MIPSCoins suficientes para cobrir o custo total.

FALÊNCIA E VENCEDOR

Falência

A falência ocorre quando um jogador não possui MIPSCoins suficientes para pagar suas dividas durante o jogo, seja para outros jogadores, seja para o banco.

Se o jogador cair em uma casa que exige pagamento (como uma casa pertencente a outro jogador ou uma casa cache miss) e não puder cobrir o valor, ele será declarado falido.

Em caso de falência, o jogador deve tentar vender parte de seus componentes ao banco, por metade do valor pago. Caso mesmo assim não se ja possível pagar a dívida, o jogador deve:

Devolver todos os seus componentes ao banco.

Sair do jogo imediatamente.

O jogo continua com os jogadores restantes até que um vencedor seja determinado.

Vencedor

O poder computacional é a medida que determina o vencedor do jogo. Ele é calculado somando os pontos dos componentes adquiridos por cada jogador e o total de MIPS Coins restantes ao final da partida.

Cada componente que o jogador possui vale 2 pontos. O número de pontos referente às MIPS Coins é calculado comparando quantas moedas cada jogador possui. O jogador que possuir o maior valor ganha 14 pontos, o segundo maior 12, o terceiro 10 e assim por

O jogador com o maior poder computacional ao término do jogo é declarado vencedor!

Avalie o jogo através desse formulário!