

Batch: A3 Roll No.: 1911034

Experiment / assignment / tutorial No.___

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date

TITLE: Scientific Calculator using Tkinter

AIM: To understand the concepts of Tkinter

Expected OUTCOME of Experiment:

CO-

Books/ Journals/ Websites referred:

1. W3Schools.com

- 2. Geeksforgeeks.com
- 3. tutorialspoint
- 4. powerpoints

Pre Lab/Prior Concepts:

Python provides various options for developing graphical user interfaces (GUIs). Most important are listed below.

- **Tkinter** Tkinter is the Python interface to the Tk GUI toolkit shipped with Python. We would look this option in this chapter.
- wxPython This is an open-source Python interface for wxWindows http://wxpython.org.
- JPython JPython is a Python port for Java which gives Python scripts seamless access to Java class libraries on the local machine http://www.jython.org.

There are many other interfaces available, which you can find them on the net.

Tkinter Programming

Tkinter is the standard GUI library for Python. Python when combined with Tkinter provides a fast and easy way to create GUI applications. Tkinter provides a powerful object-oriented interface to the Tk GUI toolkit.

Creating a GUI application using Tkinter is an easy task. All you need to do is perform the following steps –

- Import the *Tkinter* module.
- Create the GUI application main window.
- Add one or more of the above-mentioned widgets to the GUI application.
- Enter the main event loop to take action against each event triggered by the user.

Example

```
#!/usr/bin/python
import Tkinter
```

top = Tkinter.Tk()
Code to add widgets will go here...
top.mainloop()

This would create a following window -

Tkinter Widgets

Tkinter provides various controls, such as buttons, labels and text boxes used in a GUI application. These controls are commonly called widgets.

There are currently 15 types of widgets in Tkinter. We present these widgets as well as a brief description in the following table –

Sr.No.	Operator & Description
1	<u>Button</u>
	The Button widget is used to display buttons in your application.
2	<u>Canvas</u>
	The Canvas widget is used to draw shapes, such as lines, ovals, polygons and rectangles, in your application.
3	Checkbutton
	The Checkbutton widget is used to display a number of options as checkboxes. The user can select multiple options at a time.
4	<u>Entry</u>
	The Entry widget is used to display a single-line text field for accepting values from a user.
5	<u>Frame</u>
	The Frame widget is used as a container widget to organize other widgets.
6	<u>Label</u>
	The Label widget is used to provide a single-line caption for other widgets. It can also contain images.
7	<u>Listbox</u>
	The Listbox widget is used to provide a list of options to a user.
8	<u>Menubutton</u>
	The Menubutton widget is used to display menus in your application.

9	<u>Menu</u>
	The Menu widget is used to provide various commands to a user. These commands are contained inside Menubutton.
10	Message
	The Message widget is used to display multiline text fields for accepting values from a user.
11	Radiobutton
	The Radiobutton widget is used to display a number of options as radio buttons. The user can select only one option at a time.
12	Scale
	The Scale widget is used to provide a slider widget.
13	Scrollbar
	The Scrollbar widget is used to add scrolling capability to various widgets, such as list boxes.
14	<u>Text</u>
	The Text widget is used to display text in multiple lines.
15	<u>Toplevel</u>
	The Toplevel widget is used to provide a separate window container.
16	Spinbox
	The Spinbox widget is a variant of the standard Tkinter Entry widget, which can be used to select from a fixed number of values.
17	<u>PanedWindow</u>
	A PanedWindow is a container widget that may contain any number of panes, arranged horizontally or vertically.

18	<u>LabelFrame</u>
	A labelframe is a simple container widget. Its primary purpose is to act as a spacer or container for complex window layouts.
19	<u>tkMessageBox</u>
	This module is used to display message boxes in your applications.

Problem statement:

Demonstrate the use of GUI Widgets to create Scientific Calculator (Min. 10 functionalities).

Program (with comments) (Write comments to your program to explain the implementation)

```
import tkinter
from tkinter import *
                                          #functions: addition, sutraction,
multiplication, division, exp, tan, sin, cos, cot, log2, x^y, modulo
import math
import time
top = Tk()
top.title("Scientific Calculator")
num1=0
def get_input(choice):
    global inputBox
    global num1
    if choice==1: #choice=1 represents enter button
        num= number.get()
        num1 = int(num)
    elif choice==2: #addition function
```

```
num2 = number.get()
   num3=int(num2)
    num4=num1+num3
   ans= str(num1)+"+"+str(num3)+" ""="" "+str(num4)
   answer.config(text=ans) #the answer label is configured with the
elif choice==3: #for displaying result of subtraction
   num2 = number.get()
   num3=int(num2)
   num4=num1-num3
   ans= str(num1)+"-"+str(num3)+" ""="" "+str(num4)
   answer.config(text=ans)
elif choice==4: #for displaying result of multiplication
   num2 = number.get()
   num3=int(num2)
   num4=num1*num3
   ans= str(num1)+"*"+str(num3)+" ""="" "+str(num4)
    answer.config(text=ans)
elif choice==5: #for displaying result of division
   num2 = number.get()
   num3=int(num2)
   num4=num1/num3
   ans= str(num1)+"/"+str(num3)+" ""="" "+str(num4)
   answer.config(text=ans)
elif choice==6: #for displaying result of exponentiation
   n1 = number.get()
   ans= "e^("+str(n1)+")="+" "+str(math.exp(n1))
    answer.config(text=ans)
elif choice==7: #for displaying result of modulus operator
   num2 = number.get()
   num3=int(num2)
   num4=num1%num3
   ans= str(num1)+"%"+str(num3)+" ""="" "+str(num4)
    answer.config(text=ans)
elif choice ==8: #for displaying result of sine theta
```

```
n2 = number.get()
        rad1 = math.radians(n2)
        ans= "sin("+str(n2)+")="+" "+str(math.sin(rad1))
        answer.config(text=ans)
    elif choice ==10: #for displaying result of tan theta
        n2 = number.get()
        rad1 = math.radians(n2)
        ans= "tan("+str(n2)+")="+" "+str(math.tan(rad1))
        answer.config(text=ans)
    elif choice ==9: #for displaying result of cos theta
        n2 = number.get()
        rad1 = math.radians(n2)
        ans= "cos("+str(n2)+")="+" "+str(math.cos(rad1))
        answer.config(text=ans)
    elif choice ==11: #for displaying result of cot theta
        n2 = number.get()
        rad1= math.radians(n2)
        tanx = math.tan(rad1)
        ans= "cot("+str(n2)+")="+" "+str(1/tanx)
        answer.config(text=ans)
    elif choice ==12: #for displaying result of log to the base e
        n2 = number.get()
        ans= "log("+str(n2)+")="+" "+str(math.log(n2))
        answer.config(text=ans)
    elif choice==13: #for displaying result of power
        num2 = number.get()
        num3=int(num2)
        num4=math.pow(num1,num3)
        ans= str(num1)+"^"+str(num3)+" ""="" "+str(num4)
        answer.config(text=ans)
    else:
        print("do nothing")
#we have created buttons in each widget that corresponds to a mathematica
 function and that function
# is used to call the above method using the command attribute that uses
the lambda function.
number = IntVar()
```

```
number1 = IntVar()
labelBox= Label(top, text="Input Box",bg="pink")
labelBox.grid(row=0,columnspan=4,column=0)
inputBox = Entry(top,textvariable=number)
inputBox.grid(row=0,columnspan=4,column=4)
enterBox= Button(top, text="Enter value", bg="pink",command=lambda: get_i
nput(1))
enterBox.grid(row=0,columnspan=4,column=8)
addBox= Button(top,text="+",bg="yellow",width=10,command =lambda:get_inpu
t(2))
addBox.grid(row=1,columnspan=3,column=0)
subtractBox= Button(top,text="-
',bg="yellow",width=10,command =lambda:get_input(3))
subtractBox.grid(row=1,columnspan=3,column=3)
multiplyBox= Button(top,text="*",bg="yellow",width=10,command =lambda:get
_input(4))
multiplyBox.grid(row=1,columnspan=3,column=6)
divideBox= Button(top,text="/",bg="yellow",width=10,command =lambda:get_i
nput(5))
divideBox.grid(row=1,columnspan=3,column=9)
expBox= Button(top,text="e^x",bg="yellow",width=10,command =lambda:get_in
expBox.grid(row=2,columnspan=3,column=0)
moduloBox= Button(top,text="%",bg="yellow",width=10,command =lambda:get_i
nput(7))
moduloBox.grid(row=2,columnspan=3,column=3)
sineBox= Button(top,text="sin(x)",bg="yellow",width=10,command =lambda:ge
t input(8))
sineBox.grid(row=2,columnspan=3,column=6)
cosBox= Button(top,text="cos(x)",bg="yellow",width=10,command =lambda:get
input(9))
cosBox.grid(row=2,columnspan=3,column=9)
tanBox= Button(top,text="tan(x)",bg="yellow",width=10,command =lambda:get
_input(10))
tanBox.grid(row=3,columnspan=3,column=0)
cotBox= Button(top,text="cot(x)",bg="yellow",width=10,command =lambda:get
_input(11))
cotBox.grid(row=3,columnspan=3,column=3)
logBox= Button(top,text="log(x)",bg="yellow",width=10,command =lambda:get
_input(12))
logBox.grid(row=3,columnspan=3,column=6)
powerBox= Button(top,text="x^y",bg="yellow",width=10,command =lambda:get_
input(13))
powerBox.grid(row=3,columnspan=3,column=9)
```

```
answerBox= Label(top, text="Answer",bg="pink",width=20)
answerBox.grid(row=4,columnspan=6,column=0)
answer = Label(top,bg="pink",width=22)
answer.grid(row=4,columnspan=6,column=6)

top.mainloop()
```

Output Screenshots

1. Addition

2. Subtraction

Scientific (Calculator	_	
Input Box	30		Enter value
+	-	*	/
e^x	%	sin(x)	cos(x)
tan(x)	cot(x)	log(x)	x^y
Ans	wer	55-30) = 25

3. Multiplication

4. Division:

Scientific (Calculator	_	□ ×
Input Box	15		Enter value
+	-	*	/
e^x	%	sin(x)	cos(x)
tan(x)	cot(x)	log(x)	x^y
Ans	wer	45/15	= 3.0

5. Exponentiation:

Scientific (Calculator	_	
Input Box	5		Enter value
+	-	*	/
e^x	%	sin(x)	cos(x)
tan(x)	cot(x)	log(x)	х^у
Ans	wer	e^(5)= 148.4	131591025766

6. Modulus

Scientific (Calculator	_	
Input Box	13		Enter value
+	-	*	/
e^x	%	sin(x)	cos(x)
tan(x)	cot(x)	log(x)	x^y
Ans	wer	45%1	3 = 6

7. Sin(x)

8. Cos(x)

9. Tan(x)

	Times Nam Da	11 /	4 // // 2
Scientific (Calculator	_	\square \times
Input Box	30		Enter value
+	-	*	/
e^x	%	sin(x)	cos(x)
tan(x)	cot(x)	log(x)	x^y
Ans	wer	tan(30)= 0.577	3502691896257

10. Log(x)

11. x^y (x to the power y)

Oate:	Signature of faculty in-charge