

P2: Estructura de la programació avançada - Arrays.

1. Les notes del curs

Tens un grup de 5 alumnes i vols guardar les seves notes finals. Declara un array de 5 enters i inicialitza'l amb les notes 8, 7, 9, 6, 10. Mostra totes les notes per pantalla.

Explicació del codi:

Amb aquest codi hem creat un **array** anomenat **notes** amb 5 elements, cadascun representa la nota d'un alumne.

Després hem utilitzat un bucle **for** per imprimir cada nota a la pantalla.

El $\mathbf{i} + \mathbf{1}$ serveix per mostrar el nombre de l'alumne de manera més clara (com "Alumne 1", "Alumne 2", etc.).

2. Els dies de la setmana

Declara un array que contingui els noms dels 7 dies de la setmana. Modifica el valor de "Dimecres" per "Mitjan setmana" i mostra tots els dies per pantalla.

Explicació del codi:

Hem creat un **array** de tipus **String** anomenat **dies**, que conté els noms dels dies de la setmana.

L'índex de "Dimecres" en l'array és 2 ja que els arrays en Java comencen amb l'índex 0. Amb la línia dies[2] = "Mitja Setmana"; substituïm "Dimecres" per "Mitja Setmana".

Per acabar utilitzem un bucle que fa recorrer l'array per imprimir tots els dies, incloent el canvi realitzat.

3. Control d'encès de llums

Tens 4 llums connectades a un sistema automatitzat. Declara un array de tipus boolean per indicar si les llums estan enceses (true) o apagades (false), inicialitzat a [true, false, true, false]. Mostra l'estat actual de cada llum i canvia l'estat de la segona llum.

```
### Processor | Margin Margin
```

Explicació del codi:

Hem creat un array llums de tipus boolean per representar l'estat de 4 llums.

True indica que la llum està encesa i **false** que està apagada.

Els estats inicials són [true, false, true, false].

Amb el seguent bucle fem recorrer tot l'array:

```
for (int i = 0; i < llums.length; <math>i++) {
```

Per a cada llum es mostra el número de la llum (i + 1).

L'estat es representa amb: **Ilums[i] ? "Encesa" : "Apagada"**. Això es tradueix true és "Encesa" i false és "Apagada".

Per canviar l'estat de la segona llum utilitzem:

Aquesta línia utilitza l'operador de negació (!) per invertir l'estat de la segona llum.

Mostrem l'estat actualitzat de les llums igual que abans, recorrent l'array ara actualitzat:

```
for (int i = 0; i < llums.length; i++) {
```

4. Els noms dels companys d'equip

En un equip de 5 jugadors de futbol, vols guardar els seus noms en un array. Demana 5 noms de jugadors/es de l'equip i després mostra tots els noms per pantalla en ordre invers (de l'últim al primer)

```
The fact force of the factor Notice of the factor N
```

Explicació del codi

Creem un **array jugadors** amb un tamany per guardar 5 noms de jugadors.

```
Amb un bucle for demanem els noms dels jugadors: for (int i = 0; i < jugadors.length; i++) {
```

I es guarda dins l'array utilitzant la clase **scanner** prèviament importada:

```
System.out.print("Nom del jugador/a " + (i + 1) + ": "); jugadors[i] = scanner.nextLine();
```

Utilitzem un altre bucle **for** començant per l'últim índex:

(jugadors.length - 1) fins al primer (0), mostrant els noms en ordre invers.for

```
(int i = jugadors.length - 1; i >= 0; i--) {
System.out.println(jugadors[i]);
```

I tanquem l'objecte **Scanner**.

5. Les temperatures de la setmana

Guarda les temperatures d'una setmana en un array de 7 valors. Calcula i mostra la temperatura mitjana de la setmana.

```
## Description | Marginary | M
```

Explicació del codi

Creem un **array** temperatures amb una mida de **7** i tipus de valor **Double** per emmagatzemar les temperatures de cada dia de la setmana:

```
Double[] temperatures = new Double[7];
```

Amb un **bucle for** per demanar a l'usuari les temperatures dels 7 dies:

```
for (int i = 0; i < temperatures.length; <math>i++) {
```

que es guarden a l'array mitjançant la funció del scanner:

System.out.print("Temperatura del dia " + (i + 1) + ": "); temperatures[i] = scanner.nextDouble();

Per calcular la mitjana utilitzem un bucle for each per sumar totes les temperatures: double suma = 0; for (double temperatura : temperatures) { suma += temperatura;

La mitjana es calcula dividint la suma entre el nombre de dies:

double mitjana = suma / temperatures.length;

Es mostra la temperatura mitjana calculada:

System.out.println("\nLa temperatura mitjana de la setmana és: " + mitjana + "°C");

Es tanca l'objecte Scanner.

6. La taula de multiplicar

Crea un programa que generi un array amb els resultats de la taula de multiplicar del 5 (del 5 al 50). Mostra cada element de l'array en format: $5 \times 1 = 5$.

Explicació del codi

```
Creem un array de mida 10 de valors Integer.
int[] taula5 = new int[10];

Omplim l'array amb els valors de la taula del 5
for (int i = 0; i < taula5.length; i++) {
taula5[i] = 5 * (i + 1);

I mostrem els resultats a la consola
for (int i = 0; i < taula5.length; i++) {
System.out.println("5 x " + (i + 1) + " = " + taula5[i]);
```

7. La biblioteca

Tens 10 llibres amb diferents títols i vols saber quins d'ells contenen la paraula "Java" al títol. Declara un array amb els títols dels llibres i mostra per pantalla quins títols contenen aquesta paraula.

Explicació del codi

```
Creem un array de valor tipus String i a continuació el nom dels llibres String[] llibres = {
"Java per a dummies.",
"Introducció a la programació."
"L'home que rapeJava.",
etc
```

Mostrem els resultat per la consola amb un condicional **for** amb el que recorrem cada element de l'array i assignem temporalment el valor actual a la variable **llibre**.

```
System.out.println("Llibres que contenen \"Java\" al títol:"); for (String llibre : llibres) {
```

I un condicional if en el que només mostri els títols que continguin la paraula "Java"

```
if (llibre.contains("Java")) {
   System.out.println(llibre);
```

8. Els gols de la temporada

Guarda els gols marcats per un equip de futbol en els 10 últims partits en un array. Mostra quants partits han tingut més de 2 gols marcats.

Explicació del codi

Creem un **array** de valor tipus **Integer** i a continuació el número de gols dels 10 últims partits.

Creem una variable per comptar els partits amb més de dos gols int partitsMeDeDosGols = 0;

Amb un bucle for assignem temporalment la **variable gol** a cada valor de l'array. **for (int gol : gols) {**

Amb un condicional **if** comprovem si el valor gol és més gran de 2 **if** (**gol** > **2**) {

Si és compleix la condició s'incrementa el valor del comptador de partits amb més de dos gols partitsMesDeDosGols++;

Per acabar mostrant el resultat a la consola System.out.println("Nombre de partits amb més de 2 gols: " + partitsMesDeDosGols);

9. Reorganitzar una llista de notes

Demana per pantalla que entrin 10 notes de forma desordenada.

- 1. Ordena l'array en ordre ascendent (de menor a major) sense utilitzar funcions predefinides de Java.
- 2. Mostra l'array ordenat per pantalla.

```
### Property Seal Control College | Part | P
```

Explicació del codi

Creem un **array** de valor tipus **double** amb un tamany de **10. double[] notes = new double[10]**;

Utilitzant la clase **scanner** demanem al usuari que introdueixi 10 notes que amb un bucle **for** que s'executarà 10 vegades (tamany de l'array) per guardar els valors.

System.out.println("Introdueix 10 notes:");

Per ordenar l'array utilitzem un bucle **for** que s'utilitza per iterar a través dels elements de l'array notes amb la condició de que la variable i sigui menor que **notes.length - 1. for** (**int i** = **0**; **i** < **notes.length - 1**; **i++**) {

Amb un altre bucle **for** dins del bucle anterior comparem l'element **notes[i]** amb els elements que li segueixen a partir de l'índex $\mathbf{i} + \mathbf{1}$.

```
for (int j = i + 1; j < notes.length; j++) {
```

Amb el condicional **if** comparem que l'element de l'array **notes[i] sigui més gran que notes[j]**. Si es compleix la condició aquests dos elements estan en l'ordre incorrecte i s'han d'intercanviar.

```
if (notes[i] > notes[j]) {
  double temp = notes[i];
  notes[i] = notes[j];
  notes[j] = temp;
```

Per acabar mostrem el resultat a la consola utilitzant el bucle **for** per mostrar les notes ordenades en una sola línea i separades per un espai. Tanquem l'objecte **Scanner.**

```
System.out.println("\nNotes ordenades en ordre ascendent:");
for (double nota : notes) {
   System.out.print(nota + " ");
}
scanner.close();
```

10. El ranking dels 3 gamers.

Tens dos arrays unidimensionals:

- 1. Un array amb els noms dels jugadors: {"Anna", "Joan", "Maria", "Pere", "Laia", "Marc", "Júlia", "Oriol", "Pol", "Carla"}.
- 2. Un array amb les puntuacions corresponents: {450, 200, 700, 400, 150, 900, 300, 800, 100, 600}.

El programa ha de fer el següent:

- 1. Troba els tres jugadors amb més puntuació.
- 2. Mostra el nom i la puntuació d'aquests tres jugadors per pantalla.

Exemple de sortida esperada

Jugador amb més puntuació:

Marc: 900 punts

Segon jugador amb més puntuació:

Oriol: 800 punts

Tercer jugador amb més puntuació:

Maria: 700 punts

```
### 20 DESCE

##
```

```
Definim dos arrays en paral·lel, un amb els noms dels jugadors i un altre amb les seves
puntuacions:
String[] noms = {"Anna", "Joan", "Maria", "Pere", "Laia", "Marc", "Júlia", "Oriol",
"Pol", "Carla"};
int[] puntuacions = {450, 200, 700, 400, 150, 900, 300, 800, 100, 600};
Utilitzem un bucle extern que controla quantes vegades es recorrerà l'array puntuacions.
Comença a i = 0 i incrementa fins a puntuacions.length - 2.
for (int i = 0; i < puntuacions.length - 1; <math>i++) {
Amb un bucle for comparem els elements (puntuacions[i]) amb tots els elements següents
(puntuacions[j]).
for (int j = i + 1; j < puntuacions.length; <math>j++) {
Amb el condicional if comprovem si l'element en la posició i té una puntuació menor que
l'element en la posició i. Si és cert, significa que l'element puntuacions[i] ha d'anar després
de puntuacions[i]
if (puntuacions[i] < puntuacions[j]) {</pre>
Es quarda temporalment el valor de puntuacions[i] en una variable auxiliar
(tempPuntuacio). Així quan sobreescrivim el valor de puntuacions[i] no perdem l'original.
Es copia el valor de puntuacions[j] a la posició i.
Es copia el valor de puntuacions[i] quardat prèviament a tempPuntuacio a la posició j
Deixant les dues posicions amb els valors intercanviats.
int tempPuntuacio = puntuacions[i];
puntuacions[i] = puntuacions[j];
puntuacions[j] = tempPuntuacio;
Aquest intercanvi és paral·lel al que es fa amb les puntuacions. Així cada puntuació està
associada amb el seu jugador corresponent després de cada intercanvi.
String tempNom = noms[i];
noms[i] = noms[j];
noms[j] = tempNom;
Amb un bucle for fem que es repeteixi tres vegades, des de i = 0 fins a i = 2
for (int i = 0; i < 3; i++) {
Ara am un switch case podem assignar un String posicio en funció del valor de i. Això
determina la posició del jugador (Primer, Segon, Tercer).
String posicio;
switch (i) {
case 0:
posicio = "Primer";
break;
case 1:
posicio = "Segon ";
break;
case 2:
posicio = "Tercer";
break;
default:
posicio = "";b
reak;
Aquestes línies de codi s'utilitzen per mostrar tota la informació a la consola.
System.out.println(posicio + "Jugador amb puntuació:");
System.out.println(noms[i] + ": " + puntuacions[i] + " punts\n");
```