Segmenting and Clustering Neighborhoods of Boroughs in Toronto

Introduction

Description & Discussion of the Background

The demographics of Toronto, Ontario, Canada make Toronto one of the most multicultural and multiracial cities in the world. In 2016, 51.5% of the residents of the city proper belonged to a visible minority group, compared with 49.1% in 2011 and 13.6% in 1981. The 2016 census by Statistics Canada estimated there were 2,731,571 living in Toronto, making it the largest city in Canada, and the fourth most populous municipality in North America. [1]

Toronto's population grew by 4.3% from 2011 to 2016, wirth an annual growth rate of 0.86%. The population of Toronto in 2019 is 6,139,000, a 0.94% increase from 2018. Toronto gas 6 boroughs (districts) are East York, Etobicoke, North York, Old Toronto, Scarborough and York.

This work segmented and clustered two of these boroughs and compared the results from this analysis.

I am an admirer of Canada as a whole, and I look forward for my PhD someday, therefore, I decided to use Toronto in my project. The city is divided into 39 districts in total.

Toronto, the capital of the province of Ontario, is a major Canadian city along Lake Ontario's northwestern shore. It's a dynamic metropolis with a core of soaring skyscrapers, all dwarfed by the iconic, free-standing CN Tower. Toronto also has many green spaces, from the orderly oval of Queen's Park to 400-arce High Park and its trails, sport facilities and zoo. [2]

As you can see from the figures, Toronto is a city with a high population and population density. Being such a crowded city leads the owners of shops and social sharing places in the city where the population is dense.

When we think of it by the investor, we expect from them to prefer the districts where the type of business they want to install is less intense or how as investors they will enter the market in a neighborhood.

If we think of the city residents, they may want to choose the district according to the social places density. However, it is difficult to obtain information that will guide investors in this direction, nowadays. When we consider all these problems, we can create maps and information charts where each district is clustered according to the venue density and the business in these areas.

Data Description

To consider the problem we can list the data as below:

- The Toronto dataset exists for free on the web, and here is the link to the dataset: https://en.wikipedia.org/wiki/List of postal codes of Canada: M. The .json file has postal codes, boroughs and neighborhoods of Toronto. I cleaned the data, removed the boroughs that were not assigned. I also joined neighborhoods with the same postal code.
- To get the latitude and longitudes, here is a link to a csv file that has the geographical coordinates of each postal code: http://cocl.us/Geospatial_data. Afterwards I joined the latitude and longitude to the data frame.
- I used the Foursquare API to explore neighborhoods in Toronto. I used the explore function to get the most common venue categories in each neighborhood, and then use this feature to group the neighborhoods into clusters.

Methodology

As a database, I used GitHub repository in my study. As seen from below, my master data which has the main components *Postal Code*, *Borough*, *neighborhood Latitude* and *Longitude* information of Toronto.

```
In [21]: # Viewing the first five rows of the data
geo_data_new.head()
```

Out[21]:

	PostalCode	Borough	Neighborhood	Latitude	Longitude
0	M1B	Scarborough	Rouge,Malvern	43.806686	-79.194353
1	M1C	Scarborough	Highland Creek,Rouge Hill,Port Union	43.784535	-79.160497
2	M1E	Scarborough	Guildwood,Morningside,West Hill	43.763573	-79.188711
3	M1G	Scarborough	Woburn	43.770992	-79.216917
4	M1H	Scarborough	Cedarbrae	43.773136	-79.239476

I used python **folium** library to visualize geographic details of Toronto and its boroughs and I created a map of Toronto with boroughs and neighborhoods superimposed on top. I used latitude and longitude values to get the visual as below:

Since I want to compare venues in two of the boroughs, Scarborough and Etobicoke.

Clustering Scarborough:

First, using python **folium** library to visualize geographic details of Scarborough and its neighborhoods. I created a map of Scarborough with neighborhoods superimposed on top. I used latitude and longitude values to get the visual as below:

In [25]:		ar_data = { ar_data.hea		w[geo_data_new[' <mark>Borough</mark> '] ==	: 'Scarbor	rough'].re
t[25]:		PostalCode	Borough	Neighborhood	Latitude	Longitude
	0	M1B	Scarborough	Rouge,Malvern	43.806686	-79.194353
	1	M1C	Scarborough	Highland Creek,Rouge Hill,Port Union	43.784535	-79.160497
	2	M1E	Scarborough	Guildwood,Morningside,West Hill	43.763573	-79.188711
	3	M1G	Scarborough	Woburn	43.770992	-79.216917
	4	M1H	Scarborough	Cedarbrae	43.773136	-79.239476

The map is produced forth:

I utilized the Foursquare API to explore Scarborough and segment them. I designed the limit as **100 venues** and the radius **5000 meters** from each borough from their given latitude and longitude information. Here is a head of the list Venues name, category, latitude and longitude information from Foursquare API.

Out[34]:

	name	categories	lat	Ing
0	Toronto Pan Am Sports Centre	Athletics & Sports	43.790623	-79.193869
1	African Rainforest Pavilion	Zoo Exhibit	43.817725	-79.183433
2	Toronto Zoo	Zoo	43.820582	-79.181551
3	Polar Bear Exhibit	Zoo	43.823372	-79.185145
4	Australasia Pavillion	Zoo Exhibit	43.822563	-79.183286

In summary of this data 100 venues were returned by Foursquare. Here is a merged table of neighborhoods and venues.

	scar_venues.groupby('Neighborhood').count()	<i>'</i>						
Out[38]:		Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category	
	Neighborhood							
	Agincourt	100	100	100	,	100	100	1
	Agincourt North, L'Amoreaux East, Milliken, Steeles East	100	100	100		100	100	1
	Birch Cliff, Cliffside West	100	100	100		100	100	1
	Cedarbrae	100	100	100		100	100	1
	Clairlea, Golden Mile, Oakridge	100	100	100		100	100	1
	Clarks Corners, Sullivan, Tam O'Shanter	100	100	100		100	100	1
	Cliffcrest,Cliffside,Scarborough Village West	100	100	100		100	100	1
	Dorset Park, Scarborough Town Centre, Wexford Heights	100	100	100	,	100	100	1
	East Birchmount Park, Ionview, Kennedy Park	100	100	100		100	100	1
	Guildwood, Morningside, West Hill	100	100	100		100	100	1
	Highland Creek,Rouge Hill,Port Union	82	82	82		82	82	
	L'Amoreaux West	100	100	100		100	100	1
	Maryvale,Wexford	100	100	100		100	100	1
	Rouge,Malvern	100	100	100		100	100	1
	Scarborough Village	100	100	100		100	100	1
	Upper Rouge	100	100	100		100	100	1
	Woburn	100	100	100		100	100	1

We can see that all neighborhoods how reached the **100** limit of venues. On the other hand; Highland Creek, Rouge Hill and Port Union neighborhoods have **82** venues in our given coordinates with Latitude and Longitude from the table above.

In summary of this table **139** unique categories were returned by Foursquare, then I created a table which shows list of top 10 venue category for scarborough in below table.

	neighborhoods_venues_sorted.head()														
t[46]:		Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue			
	0	Agincourt	Chinese Restaurant	Indian Restaurant	Caribbean Restaurant	Coffee Shop	Bakery	Park	Sushi Restaurant	Noodle House	Hakka Restaurant	Supermarket			
	1	Agincourt North,L'Amoreaux East,Milliken,Steel	Chinese Restaurant	Bakery	Caribbean Restaurant	Indian Restaurant	Japanese Restaurant	Vietnamese Restaurant	Bubble Tea Shop	Noodle House	Breakfast Spot	Supermarket			
	2	Birch Cliff,Cliffside West	Beach	Coffee Shop	Park	Breakfast Spot	Bakery	Café	BBQ Joint	Gastropub	Ice Cream Shop	Fish & Chips Shop			
	3	Cedarbrae	Coffee Shop	Indian Restaurant	Sandwich Place	Fast Food Restaurant	Pizza Place	Caribbean Restaurant	Breakfast Spot	Pharmacy	Park	Chinese Restaurant			
	4	Clairlea, Golden Mile, Oakridge	Park	Coffee Shop	Beach	Middle Eastern Restaurant	Café	American Restaurant	Thai Restaurant	Skating Rink	Breakfast Spot	Gym / Fitness Center			

We have some common venue categories in Scarborough. For this reason, I used unsupervised learning **K-means algorithm** to cluster Scarborough. K-Means algorithm is one of the most common cluster methods of unsupervised learning.

First, I will K-Means to cluster the boroughs into **5** clusters because when I analyze the K-Means with elbow method it ensured me the 5 degree for optimum k of the K-Means.

Here is my merged table with cluster labels for Scarborough.

[48]:														
		PostalCode	Borough	Neighborhood	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	
	0	M1B	Scarborough	Rouge,Malvern	43.806686	-79.194353	0	Zoo Exhibit	Coffee Shop	Pharmacy	Sandwich Place	Gas Station	Fast Food Restaurant	Pi Pi
	1	M1C	Scarborough	Highland Creek,Rouge Hill,Port Union	43.784535	-79.160497	0	Zoo Exhibit	Park	Coffee Shop	Pharmacy	Pizza Place	Beer Store	Break §
	2	M1E	Scarborough	Guildwood,Morningside,West Hill	43.763573	-79.188711	2	Coffee Shop	Pharmacy	Sandwich Place	Bank	Fast Food Restaurant	Indian Restaurant	F
	3	M1G	Scarborough	Woburn	43.770992	-79.216917	2	Coffee Shop	Fast Food Restaurant	Pizza Place	Pharmacy	Indian Restaurant	Breakfast Spot	Bu J
	4	M1H	Scarborough	Cedarbrae	43.773136	-79.239476	2	Coffee Shop	Indian Restaurant	Sandwich Place	Fast Food Restaurant	Pizza Place	Caribbean Restaurant	Break §

Clustering Etobicoke:

Following the same approach as above, using python **folium** library to visualize geographic details of Etobicoke and its neighborhoods. I created a map of Etobicoke with neighborhoods superimposed on top. I used latitude and longitude values to get the visual as below:

The map is produced forth:

I utilized the Foursquare API to explore Etobicoke and segment them. I designed the limit as **100 venues** and the radius **10000 meters** from each borough from their given latitude and longitude information. Here is a head of the list Venues name, category, latitude and longitude information from Foursquare API.

Out[64]:

	name	categories	lat	Ing
0	Huevos Gourmet	Mexican Restaurant	43.601188	-79.503717
1	LCBO	Liquor Store	43.602281	-79.499302
2	Sweet Olenka's	Dessert Shop	43.601099	-79.500325
3	Kitchen on 6th	Breakfast Spot	43.601396	-79.504563
4	SanRemo Bakery	Bakery	43.618542	-79.499485

In summary of this data 100 venues were returned by Foursquare. Here is a merged table of neighborhoods and venues.

	# Checking how many venues were returned for each neighborho eto_venues.groupby('Neighborhood').count()	od					
ut[69]:		Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
	Neighborhood						
	Albion Gardens,Beaumond Heights,Humbergate,Jamestown,Mount Olive,Silverstone,South Steeles,Thistletown	100	100	100	100	100	100
	Alderwood,Long Branch	100	100	100	100	100	100
	Bloordale Gardens, Eringate, Markland Wood, Old Burnhamthorpe	100	100	100	100	100	100
	Cloverdale,Islington,Martin Grove,Princess Gardens,West Deane Park	100	100	100	100	100	100
	Humber Bay Shores, Mimico South, New Toronto	100	100	100	100	100	100
	Humber Bay,King's Mill Park,Kingsway Park South East,Mimico NE,Old Mill South,The Queensway East,Royal York South East,Sunnylea	100	100	100	100	100	100
	Kingsview Village, Martin Grove Gardens, Richview Gardens, St. Phillips	100	100	100	100	100	100
	Kingsway Park South West,Mimico NW,The Queensway West,Royal York South West,South of Bloor	100	100	100	100	100	100
	Northwest	100	100	100	100	100	100
	The Kingsway, Montgomery Road, Old Mill North	100	100	100	100	100	100
	Westmount	100	100	100	100	100	100

We can see that all neighborhoods how reached the 100 limit of venues in our given coordinates with Latitude and Longitude from the table above.

In summary of this table 116 unique categories were returned by Foursquare, then I created a table which shows list of top 10 venue category for Etobicoke in below table.

	nei	ghborhoods_venues_sorte	ed.head()									
Out[77]:		Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
	0	Albion Gardens,Beaumond Heights,Humbergate,Jam	Hotel	Steakhouse	Restaurant	Bakery	Italian Restaurant	Sushi Restaurant	Chinese Restaurant	Liquor Store	Pizza Place	Coffee Shop
	1	Alderwood,Long Branch	Coffee Shop	Park	Burger Joint	Seafood Restaurant	Bakery	Furniture / Home Store	Pizza Place	Breakfast Spot	Liquor Store	Grocery Store
	2	Bloordale Gardens,Eringate,Markland Wood,Old B	Bakery	Grocery Store	Seafood Restaurant	Coffee Shop	Burger Joint	Furniture / Home Store	Japanese Restaurant	Café	Middle Eastern Restaurant	Burrito Place
	3	Cloverdale, Islington, Martin Grove, Princess Gar	Café	Park	Seafood Restaurant	Grocery Store	Coffee Shop	Bakery	Furniture / Home Store	Ice Cream Shop	Steakhouse	Burger Joint
	4	Humber Bay Shores, Mimico South, New Toronto	Park	Ice Cream Shop	Café	Restaurant	Seafood Restaurant	Bakery	Pizza Place	Burger Joint	Coffee Shop	Italian Restaurant

We have some common venue categories in Etobicoke. For this reason, I used unsupervised learning **K-means algorithm** to cluster Etobicoke. K-Means algorithm is one of the most common cluster methods of unsupervised learning.

First, I used K-Means to cluster the boroughs into **5** clusters because when I analyze the K-Means with elbow method it ensured me the 5 degree for optimum k of the K-Means.

Here is my merged table with cluster labels for Etobicoke.

et	o_merged.he	ead() # c	heck the last col	umns!										
79]:	PostalCode	Borough	Neighborhood	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Co
0	M8V	Etobicoke	Humber Bay Shores,Mimico South,New Toronto	43.605647	-79.501321	2	Park	Ice Cream Shop	Café	Restaurant	Seafood Restaurant	Bakery	Pizza Place	I
1	M8W	Etobicoke	Alderwood,Long Branch	43.602414	-79.543484	4	Coffee Shop	Park	Burger Joint	Seafood Restaurant	Bakery	Furniture / Home Store	Pizza Place	Bre
2	M8X	Etobicoke	The Kingsway,Montgomery Road,Old Mill North	43.653654	-79.506944	0	Park	Café	Cocktail Bar	Coffee Shop	Bar	Ice Cream Shop	Brewery	G
3	M8Y	Etobicoke	Humber Bay,King's Mill Park,Kingsway Park Sout	43.636258	-79.498509	0	Café	Cocktail Bar	Park	Bakery	Restaurant	Bar	Ice Cream Shop	Se Resta
4	M8Z	Etobicoke	Kingsway Park South West,Mimico NW,The Queensw	43.628841	-79.520999	2	Park	Café	Coffee Shop	Pizza Place	Seafood Restaurant	Italian Restaurant	Grocery Store	Resta

Results

For Scarborough

This produces the clustered map of Scarborough:

When we examine above map, we can label each cluster as follows:

Cluster One:

Cluster 1

In [50]: scar_merged.loc[scar_merged['Cluster Labels'] == 0, scar_merged.columns[[1] + list(range(5, scar_merged.shape[1]))]] Out[50]: 1st Most 2nd Most 3rd Most 4th Most 5th Most 6th Most 7th Most 8th Most 9th Most 10th Most Cluster Borough Common Venue O Scarborough Sandwich Fast Food Fried 0 Zoo Exhibit Coffee Shop Gas Station Pizza Place Bank Pharmacy Burger Joint Chicken Joint Place Breakfast Smoothie Shop Fast Food Restaurant Scarborough Zoo Exhibit Coffee Shop Beer Store Gas Station Spot Fast Food Hakka 16 Scarborough Sandwich Place Grocery 0 Zoo Exhibit Coffee Shop Pizza Place Pharmacy Gas Station Burger Joint Restaurant

Cluster Two:

Cluster 2

In [51]: scar_merged.loc[scar_merged['Cluster Labels'] == 1, scar_merged.columns[[1] + list(range(5, scar_merged.shape[1]))]] 1st Most Common Venue 2nd Most Common Venue 3rd Most Common Venue 5th Most Common Venue 6th Most Common Venue 8th Most Common Venue 4th Most Common 7th Most 9th Most 10th Most Cluster Labels Common Venue Common Borough Common Venue Venue Middle Gym / Breakfast Scarborough Coffee Shop Eastern Café Skating Rink Fitness Restaurant Restaurant Restaurant Center 9 Scarborough Breakfast Ice Cream Fish & Chins Beach Coffee Shop Park Bakery Café BBQ Joint Gastropub

Cluster Three:

Cluster 3

In [52]: scar_merged.loc[scar_merged['Cluster Labels'] == 2, scar_merged.columns[[1] + list(range(5, scar_merged.shape[1]))]] Out[52]: 1st Most 2nd Most 3rd Most 4th Most 5th Most 6th Most 8th Most 10th Most Cluster Borough Common Venue Common Common Venue Common Common Common Common Common Labels Venue Venue Venue Venue Venue Venue Venue Venue 2 Scarborough Fast Food Indian 2 Coffee Shop Pharmacy Bank Park Pizza Place Gym Gas Station Restaurant Place Fast Food 3 Scarborough Indian Breakfast Sandwich Caribbean Grocery 2 Coffee Shop Pizza Place Burger Joint Pharmacv Spot Restaurant 4 Scarborough Indian Caribbean Chinese 2 Coffee Shop Pizza Place Park Pharmacy Restaurant Restaurant Place Restaurant Restaurant Spot 8 Scarborough Sandwich Place Grocery Store Fast Food Restaurant 2 Coffee Shop Pharmacy Burger Joint Bank Pizza Place Park Gym

Cluster Four:

Cluster 4

In [53]: scar_merged.loc[scar_merged['Cluster Labels'] == 3, scar_merged.columns[[1] + list(range(5, scar_merged.shape[1]))]] Out[53]: 1st Most Common 2nd Most Common 6th Most Common 9th Most Common 10th Most 3rd Most 4th Most 5th Most 7th Most 8th Most Cluster Borough Common Common Common Venue Chinese Restaurant Caribbean Restaurant 12 Scarborough Indian Noodle Coffee Shop Bakery Park Supermarket Restaurant Restaurant Restaurant House Middle Scarborough Chinese Caribbean Indian Breakfast Noodle Korean Bakery Eastern Supermarket Coffee Shop Restaurant 14 Scarborough Chinese Caribbean Indian Vietnamese Bubble Tea Breakfast Noodle Japanese Bakery Supermarket Restaurant Restaurant 15 Scarborough Middle Bubble Tea Shop Chinese Restaurant Caribbean Japanese Restaurant Noodle House Cantonese Eastern Restaurant Pharmacy Supermarket

Cluster Five:

	Clu	ster 5														
In [54]:	sca	scar_merged.loc[scar_merged['Cluster Labels'] == 4, scar_merged.columns[[1] + list(range(5, scar_merged.shape[1]))]]														
Out[54]:		Borough	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue			
	5	Scarborough	4	Coffee Shop	Park	Indian Restaurant	Burger Joint	Pharmacy	Fast Food Restaurant	Supermarket	Chinese Restaurant	Pet Store	Burrito Place			
	6	Scarborough	4	Coffee Shop	Park	Middle Eastern Restaurant	Burger Joint	Indian Restaurant	Gym	Chinese Restaurant	Bakery	Pharmacy	Pet Store			
	10	Scarborough	4	Coffee Shop	Middle Eastern Restaurant	Indian Restaurant	Caribbean Restaurant	Supermarket	Chinese Restaurant	Pizza Place	Pharmacy	Burger Joint	Bookstore			
	11	Scarborough	4	Middle Eastern Restaurant	Coffee Shop	Supermarket	Restaurant	Mediterranean Restaurant	Chinese Restaurant	Burrito Place	Caribbean Restaurant	Indian Restaurant	Burger Joint			

For Etobicoke:

When we examine above map, we can label each cluster as follows:

Cluster One:

Cluster Two:

In [82]: eto_merged.loc(eto_merged('Cluster Labels') == 1, eto_merged.columns[[1] + list(range(5, eto_merged.shape[1]))]] Out[82]: 1st Most Common Venue 2nd Most Common Venue 3rd Most Common Venue 4th Most Common Venue 5th Most Common Venue 7th Most Common Venue 8th Most Common Venue 9th Most Common Venue Cluster Labels Borough Common Common 9 Etobicoke Italian Restaurant Sushi Restaurant Chinese Restaurant Hotel Liquor Store Steakhouse Restaurant Pizza Place Coffee Shop Middle Coffee Shop Grocery Store Chinese Restaurant Indian Restaurant Etobicoke Sushi Eastern Restaurant Café Steakhouse Hotel Bakery Restaurant

Cluster Three:

Cluster 3

In [83]:	et	o_merged.	loc[eto_m	erged[' <mark>Clu</mark>	ster Label	.s'] == 2, e	to_merged.c	olumns[[1] +	list(rang	e(5, eto_me	erged.shape[1]))]]	
Out[83]:		Borough	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
	0	Etobicoke	2	Park	Ice Cream Shop	Café	Restaurant	Seafood Restaurant	Bakery	Pizza Place	Burger Joint	Coffee Shop	Italian Restaurant
	4	Etobicoke	2	Park	Café	Coffee Shop	Pizza Place	Seafood Restaurant	Italian Restaurant	Grocery Store	Restaurant	Bakery	Burger Joint
	5	Etobicoke	2	Café	Park	Seafood Restaurant	Grocery Store	Coffee Shop	Bakery	Furniture / Home Store	Ice Cream Shop	Steakhouse	Burger Joint

Cluster Four

Cluster 4

In [84]:	eto_merged.loc[eto_merged['Cluster Labels'] == 3, eto_merged.columns[[1] + list(range(5, eto_merged.shape[1]))]]												
Out[84]:		Borough	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
	7	Etobicoke	3	Park	Hotel	Steakhouse	Coffee Shop	Grocery Store	Japanese Restaurant	Café	Eastern European Restaurant	Chinese Restaurant	Restaurant
	8	Etobicoke	3	Hotel	Coffee Shop	Japanese Restaurant	Grocery Store	Park	Café	Steakhouse	Chinese Restaurant	Middle Eastern	Seafood Restaurant

Cluster Five:

Cluster 5

n [85]:	et	to_merged.loc[eto_merged['Cluster Labels'] == 4, eto_merged.columns[[1] + list(range(5, eto_merged.shape[1]))]]											
ut[85]:		Borough	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
	1	Etobicoke	4	Coffee Shop	Park	Burger Joint	Seafood Restaurant	Bakery	Furniture / Home Store	Pizza Place	Breakfast Spot	Liquor Store	Grocery Store
	6	Etobicoke	4	Bakery	Grocery Store	Seafood Restaurant	Coffee Shop	Burger Joint	Furniture / Home Store	Japanese Restaurant	Café	Middle Eastern Restaurant	Burrito Place

In the final section, I created to examine each cluster and determine the discriminating venue categories that distinguish each cluster. Based on the defining categories, one can then assign a name to each cluster from the table which also has the below information for each borough:

- · Borough name,
- Cluster name,
- Top 10 number of venues

Discussion

As I mentioned before, Toronto is a big city with a high population density in a narrow area. The total number of measurements and population densities of the 6 boroughs in total can vary.

As there is such a complexity, very different approaches can be tried in clustering and classification studies. Moreover, it is obvious that not every classification method can yield the same high-quality results for this metropolis.

I used the Kmeans algorithm as part of this clustering study. When I tested the Elbow method, I set the optimum k value to 5. However, neighbourhoods of two boroughs were compared. For more detailed and accurate guidance, the data set was expanded and the details of the neighborhoods were drilled and the venues in certain radius were produced and clustered for informed decisions.

I also performed data analysis through this information by adding the coordinates of boroughs on GitHub. In future studies, these data can also be accessed dynamically from specific platforms or packages.

I ended the study by visualizing the data and clustering information on the Toronto map. In future studies, web or telephone applications can be carried out to direct investors. In addition, more boroughs could be compared to see how their neighborhoods look like.

There were several observations from comparing the neighborhoods of these two boroughs, that is Scarborough and Etobicoke.

Clearly, Scarborough is more populated than Etobicoke, in that Foursquare returned 139 unique categories for Scarborough within a radius of 5000m, while for Etobicoke, it returned 116 unique categories within 10000m radius.

This agrees with a Wikipedia source on the demographics of Toronto [1], that says the neighborhoods in the city of Toronto that experienced the highest increase in population from 2001 to 2011 (higher than 15%). It was noticed that neighborhoods

of Scarborough such as Rouge (59.6%), Clairlea-Birchmount (24.0%), and Bendale (21.4%) were higher than the neighborhood of Etobicoke like Islington-City Centre West (20.9%).

Another interesting discovery from these results is the ethnic diversity. According to 2016 census [4], Scarborough had a population of 623,135: White: 26.5%, South Asian: 25.4%, Chinese: 19.0%, Black: 10.8%, Filipino: 8.4% while Etobicoke York had a population of 583,395: White: 48.9%, Black: 15.7%, South Asian: 11.9%, Latin American: 5.6%.

This agrees with the results from the clusters made for Scarborough and Etobicoke. One will notice that there were lots Chinese restaurants venues in the neighborhoods of Scarborough, that is because neighborhoods of Scarborough have the highest number of Chinese in Toronto. One will also notice that there was no one Chinese restaurant in Etobicoke, this is because Chinese do not live in the neighborhoods of Etobicoke.

Conclusion

As a result, people are turning to big cities to start a business or work. For this reason, people can achieve better outcomes through their access to the platforms where such information is provided.

Not only for investors but also city managers can manage the city more regularly by using similar data analysis types or platforms.

Arimoro, Olayinka

References:

- [1] <u>Demographics of Toronto</u> <u>Wikipedia</u>
- [2] About Toronto Canada. Google search
- [3] Foursquare API
- [4] Toronto, City of (November 14, 2017). <u>Community Council</u> <u>Area Profiles</u>. *City of Toronto*, Retrieved August 21, 2018