Определения и формулировки по алгебре Линейная алгебра II семестр

Тамарин Вячеслав

8 июня 2020 г.

Оглавление

1 Линей	ная алгебра	2
Вопрос 1	Аксиоматизация объема параллелепипеда. Полилинейное отображение, кососимметричность.	
	Свойства.	2
Вопрос 2	Определитель как форма объема. Формы объема, связанные с выбором базиса и их свойства.	3
Вопрос 3	Свойства определителя. Примеры вычисления. Ориентация и объем	3
Вопрос 4	Ориентация. Невозможность смены ориентации при непрерывном изменении базиса. Опреде-	
	литель оператора. Сохранение ориентации.	4
Вопрос 5	Разложение определителя по столбцу. Формула Крамера	5
Вопрос 6	Формула для обратной матрицы. Присоединенная матрица. Соотношение для присоединенной	
	матрицы.	5
Вопрос 7	Понятие алгебры над полем. Примеры. Групповая алгебра. Теорема Кэли	5
Вопрос 8	Многочлен от элемента. Минимальный многочлен. Нетривиальность минимального многочле-	
	на для элемента конечномерной алгебры. Дихотомия для элементов конечномерной алгебры	6
Вопрос 9	Матрица линейного оператора. Инвариантные подпространства и как заметить по матрице	
	линейного оператора. Примеры	7
Вопрос 10	Собственные числа и собственные вектора. Характеристический многочлен и его связь с соб-	
	ственными числами. Вычисление характеристического многочлена сопровождающей матрицы.	7
Вопрос 11	След и определитель оператора. Диагонализация. Алгебраическая и геометрическая кратно-	
	сти. Неравенство между ними. Линейная независимость собственных векторов	8
Вопрос 12	Критерий диагонализируемости. Случай отсутствия кратный собственных чисел. Последова-	
	тельности, удовлетворяющие линейному рекурентному соотношению	8
Вопрос 13	Многочлен от оператора. Разложение пространства в прямую сумму ядер многочленов от ис-	
	ходного оператора. Блочная структура матрицы оператора, связанная с подобным расположе-	
	нием.	9
Вопрос 14		
	ходного оператора. Теорема Гамильтона-Кэли.	9
Вопрос 15	Жорданова клетка. Теорема о жордановой форме: единственность	9
Вопрос 16	Теорема о жордановой форме: существование. Лемма про нильпотентный оператор	10
Вопрос 17	Возведение жордановой клетки в степень. Поведение коэффициентов матрицы A^n в зависимо-	
	сти от n . Линейное рекурентное соотношение с постоянными коэффициентами общего вида	10
Вопрос 18	Многочлен от жордановой клетки. Понятие функции, аналитической на диске. Вычисление	
	аналитической функции от матрицы	11
Вопрос 20	Предельное поведение степеней матрицы при ограничениях на СЧ. Теорема о положительных	
	матрицах (Перрон).	11
	Теорема Перрона. Критерий максимальности для собственного числа. Стохастические матри-	
	цы. Деформация для матрицы случайного блуждания и новый подход нахождения весов для	
	поисковой системы.	12
Вопрос 21		40
	Теорема Фробениуса. Следствие для неприводимых матриц.	12
2 Полил	инейная алгебра	13
В опрос 1	Билинейные формы. Матрица билинейной формы. Ранг и нувырожденность билинейной фор-	10
Donpoe 1	мулы. Ортогональное дополнение. Размерность ортогонльного дополнения. Разложение в ор-	
	тогональную сумму	13
	201011111111111111111111111111111111111	

Глава 1

Линейная алгебра

Вопрос 1 Аксиоматизация объема параллелепипеда. Полилинейное отображение, кососимметричность. Свойства.

Определение 1: Параллелепипед

Пусть V — векторное пространство размерности n над полем \mathbb{R} . Тогда для набора $v_1, \ldots v_n \in V$ определим параллелепипед

 $D(v_1, \dots v_n) = \left\{ \sum_{i=1}^n \lambda_i v_i \mid \lambda_i \in [0, 1] \right\}.$

Свойства (Аксиоматизация в \mathbb{R}^n). *Будем записывать векторы в матрицу.*

- θ . Vol $(E_n) = 1$
- 1. $\operatorname{Vol}(\ldots, \lambda v, \ldots) = |\lambda| \operatorname{Vol}(\ldots, v, \ldots)$
- 2. $\operatorname{Vol}(\ldots, v, \ldots, u, \ldots) = \operatorname{Vol}(\ldots, v, \ldots, u + \lambda v, \ldots)$ (исходя из принципа Кавальери)
- 3. Vol(..., v, ..., v, ...) = 0

Свойства (Аксиоматизация в поле K).

- 1. $w(\ldots, \lambda v, \ldots) = \lambda w(\ldots, v, \ldots)$
- 2. w(..., u + v, ...) = w(..., u, ...) + w(..., v, ...)
- 3. w(..., v, ..., v, ...) = 0

Определение 2: Полилинейное отображение

Пусть $U_1, \dots U_l, V$ — векторные пространства над полем K. Отображение $w\colon U_1 \times \dots \times U_l \to V$ называется полилинейным, если

$$w(v_1, \ldots v_i + \lambda u_i, \ldots v_l) = w(v_1, \ldots, v_i, \ldots v_l) + \lambda w(v_1, \ldots, u_i, \ldots v_l).$$

Обозначение. $\text{Ноm}_K(U_1, \dots U_l; V)$ — множество всех полилинейный отображений.

Определение 3: Форма

Полилинейное отображение $w\colon V^l o K$ называется полилинейной формой степени l на V .

Определение 4

Полилинейная форма $w\colon V^l\to K$ на пространстве V над полем K называется

- антисимметричной или кососимметричной, если $w(v_1, \dots v, \dots, v_l) = 0;$
- симметричной, если $w(v_1, \ldots, v_i, \ldots, v_i, \ldots, v_l) = w(v_1, \ldots, v_i, \ldots, v_l)$.

Лемма 1

Пусть V — векторное пространство размерности n. Для полилинейного отображения $w:V^l \to K$ и любого

 $e_1, \ldots e_n$ базиса V выполнено

$$w(v_1,\ldots v_l)=\sum_{1\leqslant i_1,\ldots i_l\leqslant n}w(e_{i_1},\ldots,e_{i_l})\prod_{j=1}^la_{i_j,j},$$
 где $a_{ij}-i$ -ая координата вектора v_j в базисе e .

Лемма 2

Пусть V — векторное пространство размерности n. Для полилинейного отображения $w\colon V^l o K$ выполнено:

- 1. если w кососимметрично, то w(..., u, ..., v, ...) = -w(..., v, ..., u, ...);
- 2. если $\operatorname{char} K \neq 2$, из результата первого свойства следует кососимметричность;
- 3. если w кососимметрично, то для любой перестановки $\sigma \in S_l$ верно $w(v_{\sigma(1)}, \dots v_{\sigma(l)}) = \operatorname{sgn}(\sigma)w(v_1, \dots v_l);$
- 4. если w кососимметрично, $w(...v,...,u,...) = w(...,v,...,u + \lambda v,...);$
- 5. если w кососимметрично и l=n, для набора векторов $v_1, \ldots v_n$ и базиса $e_1, \ldots e_n$ выполнено

$$w(v_1, \dots v_n) = w(e_1, \dots e_n) \sum_{\sigma \in S_n} \operatorname{sgn}(sigma) \prod_{j=1}^n a_{\sigma(j),j} = w(e_1, \dots e_n) \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}.$$

Вопрос 2 Определитель как форма объема. Формы объема, связанные с выбором базиса и их свойства.

Определение 5: Форма объема

Пусть $n = \dim V$. Антисимметричная полилинейная форма $w \colon V^n \to K$ называется формой объема на V. Если такая форма не равна 0, то будем говорить, что она невырожденная.

Определение 6: Определитель

Определителем det называется отображение det: $M_n(K) \to K$ такое, что

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{1 \le i \le n} a_{i\sigma(i)}.$$

Определение 7

Пусть $e_1, \dots e_n$ — базис пространства V. Определим отображение $\operatorname{Vol}_e \colon V^n \to K$ такое, что

$$Vol_e(v_1, \dots, v_n) = \det(e(v_1), \dots, e(v_n)),$$

где $e: V \to K^n$ — отображение сопоставления координат.

Теорема 1: Свойства форм

- 1. Определитель является формой объема на K^n , при этом $\det E = 1$.
- 2. Если V пространство размерности n, то любая форма объема на V имеет вид

$$w = w(e_1, \dots e_n) \operatorname{Vol}_e$$
.

В частности, если e, f — базисы, то $Vol_f = \det(C_{f \to e}) Vol_e$.

- 3. Пространство форм объема одномерно.
- 4. Для любой невырожденной формы объема w верно утверждение:

$$w(v_1, \dots v_n) = 0 \Longleftrightarrow v_1, \dots v_n$$
 линейно зависимы.

Вопрос 3 Свойства определителя. Примеры вычисления. Ориентация и объем.

Лемма 3: Свойства определителей квадратных матриц

1. $\det A = \det A^{\top}$

- 2. (а) При элементарных преобразованиях первого типа для строк и столбцов определитель не меняется.
 - (b) При смене строк местами меняется знак.
 - (c) При домножении строки на λ определитель домножается на λ .
- 3. det(AB) = det(A) det(B).

4.
$$\det \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} = \det(A) \det(C)$$

5.

$$\det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & a_{nn} \end{pmatrix} = \det \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} = \prod_{i=1}^{n} a_{ii}.$$

- 6. $\det(A^{-1}) = (\det A)^{-1}$.
- 7. $\det\colon \mathrm{GL}(V) \to K^*$ гомоморфизм групп.

Пример 1

- 1. $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad bc$.
- 2. Определитель Вандермонда

$$\det\begin{pmatrix} 1 & \dots & 1 \\ \lambda_1 & \dots & \lambda_n \\ \vdots & & \vdots \\ \lambda_1^{n-1} & \dots & \lambda_n^{n-1} \end{pmatrix} = \prod_{i>j} (\lambda_i - \lambda_j).$$

Утверждение. Пусть отображение Volume: $M_n(\mathbb{R}) \to \mathbb{R}$, обладает следующими свойствами:

- 1. Volume $(E_n) = 1$
- 2. Volume $(\ldots, u + \lambda v, \ldots, v, \ldots) = \text{Volume}(\ldots, u, \ldots, v, \ldots)$
- 3. Volume $(\ldots, \lambda v, \ldots) = |\lambda| \text{ Volume}(\ldots, v, \ldots)$

Torдa Volume(A) = |det A|

Вопрос 4 Ориентация. Невозможность смены ориентации при непрерывном изменении базиса. Определитель оператора. Сохранение ориентации.

Определение 8

Будем говорить, что два базиса пространства V над $\mathbb R$ одинаково ориентированы, если матрица перехода между ними имеет положительный определитель.

Определение 9

Выбор одного из классов эквивалентности базисов векторного пространства V называется заданием ориентации.

Утверждение. Пусть есть два базиса $e_1, \ldots e_n$ и $f_1, \ldots f_n$ в пространстве V над \mathbb{R} . Если они имеют разную ориентацию, то их нельзя продеформировать один в другой (внутри пространства базисов).

Определение 10: Линейный оператор

Пусть V — пространство. Тогда линейное отображение $L\colon V\to V$ называется (линейным) оператором на пространстве V. Пусть $e_1,\ldots e_n$ — базис V, тогда матрицей оператора L в базисе e называется матрица $[L]_e^e$.

Определение 11

Пусть $L\colon V\to V$ — линейный оператор. Тогда определим $\det L=\det A$, где A — матрица перехода в каком-то базисе.

Замечание. Определитель корректно определен.

Определение 12

Пусть V — векторное пространство над \mathbb{R} . Будем говорить, что линейный оператор $L\colon V\to V$ сохраняет ориентацию, если $\det L>0$, и не сохраняет, если $\det L<0$.

Лемма 4

Сохраняющее ориентацию отображение переводит одинаково ориентированные базисы в одинаково ориентированные.

Определение 13

Определим группу операторов $SL(V) := \{L \colon V \to V \mid \det L = 1\}$. Если V — вещественное векторное пространство, то это операторы, которые сохраняют понятие объема и выбор ориентации пространства. $SL_n(K)$ называется группой матриц с определителем 1.

Вопрос 5 Разложение определителя по столбцу. Формула Крамера.

Определение 14: Минор

Пусть $A \in M_{m \times n}(K)$, $I \subseteq \{1, \dots m\}$, $J \in \{1, \dots n\}$.

Подматрица $A_{I,J}$ — матрица, составленная из элементов A, стоящих в строках из I и столбцах из J. Минор порядка k матрицы A — определитель квадратной подматрицы $M_{I,J} = \det A_{I,J}$, где |I| = |J| = k. Если $A \in M_n(K)$, то алгебраическим дополнением элемента a_{ij} называется $A^{ij} = (-1)^{i+j} M_{\overline{i},\overline{j}}$.

Лемма 5

При разложении по j-ому столбцу имеет место формула

$$\det(A) = \sum_{i=1}^{n} a_{ij} A^{ij}.$$

Теорема 2: Формула Крамера

Пусть дана система линейных уравнений Ax = b с квадратной матрицей A над полем K. Если A обратима, то единственное решение этой системы имеет вид

$$x_i = \frac{\Delta_i}{\Delta}, \qquad \Delta = \det A, \; \Delta_i = \det \left(\text{матрица } A, \, \text{где вместо } i \text{-го столбца стоит столбец } b \right).$$

Вопрос 6 Формула для обратной матрицы. Присоединенная матрица. Соотношение для присоединенной матрицы.

Определение 15: Присоединенная матрица

Присоединенная матрица к матрице A — матрица $(\mathrm{Adj}\,A)_{ij} = A^{ij}$, где A^{ij} — алгебраическое дополнение элемента a_{ij} .

Теорема 3

Пусть $A \in M_n(K)$. Тогда $\operatorname{Adj} A \cdot A = A \cdot \operatorname{Adj} A = \det(A) \cdot E$.

Вопрос 7 Понятие алгебры над полем. Примеры. Групповая алгебра. Теорема Кэли.

Определение 16: Алгебра над полем

Пусть K — поле. Кольцо S вместе с отображением $K \times S \to S$ называется алгеброй, если

- 1. $\forall k \in K, \ \forall u, v \in S : (ru)v = u(rv)$
- $2. \, S$ является векторным пространством над K относительно указанных операций.

Пример 2

- 1. Поле K есть алгебра над собой.
- 2. Если L расширение поля K, то L алгебра над K.
- 3. \mathbb{C} алгебра над \mathbb{R}
- 4. Кольцо эндоморфизмов $\operatorname{End}_K(V)$ векторного пространства V над полем K является алгеброй над K.
- 5. Кольцо многочленов $K[x_1, \ldots x_n]$ алгебра над K.
- 6. Любой фактор кольца многочленов $K[x_1, \dots x_n]/I$ алгебра над K.
- 7. Пусть V векторное пространство с базисом $e_1, \dots e_n$. Перемножение двух произвольных элементов

$$\left(\sum_{i=1}^{n} \lambda_i e_i\right) \cdot \left(\sum_{j=1}^{n} \mu_j e_j\right) = \sum_{i,j} \lambda_i \mu_j (e_i \cdot e_j).$$

Поэтому произведение достаточно определить только на элементах базиса, что дает структуру кольца. Для ассоциативности кольца достаточно ассоциативности умножения на базисных элементах $(e_i \cdot e_j) \cdot e_k = e_i \cdot (e_j \cdot e_k)$:

$$\left(\left(\sum_{i=1}^{n} \lambda_{i} e_{i}\right) \cdot \left(\sum_{j=1}^{n} \mu_{j} e_{j}\right)\right) \cdot \sum_{k=1}^{n} \nu_{k} e_{k} = \sum_{i,j,k} \lambda_{i} \mu_{j} \nu_{k} (e_{i} \cdot e_{j}) \cdot e_{k} =$$

$$= \sum_{i,j,k} \lambda_{i} \mu_{j} \nu_{k} e_{i} \cdot (e_{j} \cdot e_{k}) = \sum_{i=1}^{n} \lambda_{i} e_{i} \cdot \left(\left(\sum_{j=1}^{n} \mu_{j} e_{j}\right) \cdot \left(\sum_{k=1}^{n} \nu_{k} e_{k}\right)\right)$$

Теперь приведем конкретный пример. Пусть G — группа, |G| = 3.

Определение 17: Групповая алгебра

Групповой алгеброй K[G] над полем K назовем следующую алгебру: возьмем пространство столбцов размера n, занумеруем элементы стандартного базиса элементами группы G; соответствующий $g \in G$ базисный вектор обозначим e_g ; умножение $e_g \cdot e_h = e_{gh}$.

3амечание. K[G] некоммутативна тогда и только тогда, когда G некоммутативна.

Определение 18: Гомоморфизм К-алгебр

Отображение $f: S_1 \to S_2$, где $S_1, S_2 - K$ -алгебры, называется гомоморфизмом K-алгебр, если f — гомоморфизм колец и линейное отображение.

Теорема 4: типа Кэли

Любая конечномерная алгебра A над полем K вкладывается в $\operatorname{End}_k(A)$.

Вопрос 8 Многочлен от элемента. Минимальный многочлен. Нетривиальность минимального многочлена для элемента конечномерной алгебры. Дихотомия для элементов конечномерной алгебры.

Замечание. Пусть K — поле, A — алгебра над K. Заметим, что для $y \in A$ и многочлена $p(x) = a_0 + \ldots + a_n x^n \in K[x]$ можно определить элемент $p(y) = a_0 + \ldots + a_n y^n \in A$. Соответствие $p(x) \to p(y) \in A$ определяет единственный гомоморфизм K-алгебр $\varphi \colon K[x] \to A$, $\varphi(x) = y$.

Замечание. Пусть a, b — два элемента алгебры A, которые не коммутируют между собой. Тогда не существует гомоморфизма $K[t_1, t_2]$, переводящего $t_1 \to a, t_2 \to b$.

Утверждение. Для любого элемента y конечномерной алгебры A существует $p(x) \in K[x], \ p(x) \neq 0$ такой, что p(y) = 0.

Определение 19: Аннуляторы

Ядро гомоморфизма $K[x] \to A$, переводящего $x \to y$, является идеалом $Ann_y \leqslant K[x]$. Его элементы называют аннуляторами для элемента $y \in A$. Если этот идеал не 0 (есть нетривиальные многочлен, аннулирующий y), то образующую этого идеала (со старшим коэффициентом 1) называют минимальным многочленом для

элемента $y \in A$ и обозначают $\mu_y(x)$.

По другому, это многочлен минимальной степени со старшим коэффициентом, аннулирующий у.

Теорема 5

Любой элемент конечной алгебры A над полем K либо обратим, либо делитель нуля (с любой стороны).

Вопрос 9 Матрица линейного оператора. Инвариантные подпространства и как заметить по матрице линейного оператора. Примеры.

Определение 20

Две матрицы $A, B \in M_n(K)$ подобны, если существует матрица $C \in GL_n(K)$, что $A = CBC^{-1}$.

Замечание. Матрицы одного оператора в разных базисах подобны.

Определение 21: Инвариантное подпространство

Пусть V — пространство с опрератором L. Пусть $U \leqslant V$. Тогда U называется инвариантным подпространством, если $L(U) \leqslant V$.

Замечание. Это условие позволяет сузить оператор L с V на U. Наличие инвариантных подпространств не зависит от выбора системы координат.

Лемма 6

Пусть $U\leqslant V$ — подпространство, $L\colon V\to V$ — линейный оператор. Тогда U инвариантно относительно L тогда и только тогда, когда в базисе $e_1,\ldots e_k,e_{k+1},\ldots,e_n$, где $e_1,\ldots e_k$ — базис U, матрица оператора имеет блочно диагональный вид

 $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}.$

Вопрос 10 Собственные числа и собственные вектора. Характеристический многочлен и его связь с собственными числами. Вычисление характеристического многочлена сопровождающей матрицы.

Определение 22: Собсвенные число и вектор

Пусть V — пространство с оператором L. Тогда вектор $0 \neq v \in V$ называется собственным вектором с собственным числом λ относительно оператора L, если $Lv = \lambda v$.

Определение 23: Характеристический многочлен

Характеристический многочлен оператора $L-\chi_L(t)=\det(A-tE_n),$ где A- матрица L некотором базисе.

Замечание. Характеристический многочлен корректно определен.

Утверждение. Элемент $\lambda \in K$ является собственным числом оператора L тогда и только тогда, когда λ — корень $\chi_L(t)$.

Определение 24: Сопровождающая матрица

Пусть $f(x) \in K[x]$ — многочлен степени больше 1. Тогда сопровождающей матрицей к $f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0$ называется

$$\begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \dots & 1 & -a_{n-1} \end{pmatrix}.$$

Утверждение. Характеристический многочлен сопровождающей матрицы равен $(-1)^n f(t)$

Вопрос 11 След и определитель оператора. Диагонализация. Алгебраическая и геометрическая кратности. Неравенство между ними. Линейная независимость собственных векторов.

Определение 25: След

Пусть A — матрица размера n, тогда след матрицы равен $\operatorname{Tr} A = \sum_{i=1}^{n} a_{ii}$.

След оператора L — след его матрицы.

Замечание. Это определение не зависит от выбора базиса.

Замечание. Tr $A = (-1)^{n-1} a_{n-1}$, где $\chi_A(t) = \sum a_i t^i$.

Лемма 7: Свойства следа

- 1. Пусть A квадратная матрица. Тогда $\operatorname{Tr} CAC^{-1} = \operatorname{Tr} A$ для обратимой C.
- 2. Tr AB = Tr BA для $A \in M_{n \times m}(K), B \in M_{m \times n}(A)$.
- 3. След равен сумме собственных чисел с учетом их кратностей, как корней характеристического многочлена.
- 4. Tr $A = \operatorname{Tr} A^{\top}$.
- 5. $\operatorname{Tr}(A + \lambda B) = \operatorname{Tr}(A) + \lambda \operatorname{Tr}(B)$

Определение 26: Диагонализируемость

Оператор называется диагонализируемым, если в некотором базисе его матрица диагональна.

Матрица $A \in M_n(K)$ называется диагонализируемой, если соответствующий оператор $x \to Ax$ диагонализируем. То есть должна существовать обратимая матрица $C \colon CAC^{-1}$ — диагональна.

Лемма 8

Матрица оператора L в базисе $v_1, \ldots v_n$ диагональна тогда и только тогда, когда все v_i — собственные вектора L. В этом случае на диагонали стоят собственные числа оператора L.

Лемма 9

Пусть $v_1, \ldots v_n$ — собственные вектора L с собственными числами $\lambda_1, \ldots \lambda_n$. Пусть λ_i попарно различны. Тогда v_i линейно независимы.

Определение 27: Алгебраическая и геометрическая кратности

Пусть L — оператор на пространстве V.

Алгебраическая кратность собственного числа λ — его кратность как корня $\chi_L(t)$.

Геометрическая кратность λ — размерность $\ker L - \lambda \mathrm{id}$.

Лемма 10: Неравенство

Пусть L — линейный оператор на пространстве V, λ — его собственное число. Тогда алгебраическая кратность λ не менее его геометрической кратности.

Вопрос 12 Критерий диагонализируемости. Случай отсутствия кратный собственных чисел. Последовательности, удовлетворяющие линейному рекурентному соотношению.

Теорема 6: Критерий диагонализируемости

Пусть K — поле и все корни $\chi_L(t)$ лежат в K. Тогда оператор L диагонализуем тогда и только тогда, когда для любого собственного числа алгебраическая и геометрическая кратности равны.

Следствие 1: Случай без кратных корней

Пусть K — алгебраически замкнутое поле. Если $\chi_L(t)$ не имеет кратных корней, то оператор L диагонализируем.

Следствие 2

Пусть дана последовательность $x_n \in \mathbb{C}$, удовлетворяющая линейному рекурентному соотношению

$$x_{n+k} + a_{k-1}x_{n+k-1} + \ldots + a_0x_n = 0,$$

где $a_i \in \mathbb{C}$. Рассмотрим многочлен $f(t) = t^k + a_{k-1}t^{k-1} + \ldots + a_0$. Пусть у f(t) нет кратных корней. Тогда $x_n = c_1\lambda_1^n + \ldots + c_k\lambda_k^n$, где λ_i — корни f(t).

Вопрос 13 Многочлен от оператора. Разложение пространства в прямую сумму ядер многочленов от исходного оператора. Блочная структура матрицы оператора, связанная с подобным расположением.

Лемма 11

Пусть L — оператор на пространстве V, многочлен g(t) = p(t)q(t) аннулирует L (g(L) = 0). Причем (p(t), q(t)) = 1. Тогда пространство V раскладывается в прямую сумму инвариантных подпространств

$$V = \ker p(L) \oplus \ker q(L).$$

Утверждение. Пусть L — оператор на V, пространство $V = U_1 \oplus U_2$, где U_1, U_2 инвариантны. Если $e_1, \dots e_k$ и $f_1, \dots f_l$ — базисы U_1, U_2 , то матрица L в базисе $e_1, \dots e_l, f_1, \dots f_l$ имеет вид $\begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$.

Вопрос 14 Факторизация по подпространству. Оператор на факторпространстве. Блочная структура исходного оператора. Теорема Гамильтона-Кэли.

Определение 28

Пусть U — подпространство V. Определим на факторе V/U структуру векторного пространства так $\lambda \overline{v} = \overline{\lambda v}$.

Определение 29

Пусть V — пространство с оператором L, U — инвариантное подпространство. Тогда определим оператор \overline{L} на V/U так $\overline{L}(\overline{v}) = \overline{L(v)}$.

Замечание. Если p(x) — многочлен, $v \in V$, то $p(\overline{L})\overline{v} = \overline{p(L)v}$.

Замечание. Так как подпространство инвариантно, в подходящем базисе матрица линейного оператора становится блочно-верхнетреугольной и верхний блок — это матрица сужения оператора.

Пусть $e_1, \ldots e_n$ — базис V и $\langle e_1, \ldots e_k \rangle$ — инвариантное подпространство относительно L. Если матрица L в этом базисе имеет вид

$$\begin{pmatrix} A & B \\ 0 & C \end{pmatrix},$$

то C — матрица \overline{L} в базисе $\overline{e_{k+1}i}, \ldots \overline{e_n}$. Следовательно,

$$\chi_L(t) = \chi_{L|_{V'}}(t) \cdot \chi_{\overline{L}}(t).$$

Теорема 7: Гамильтон-Кэли

Пусть L — оператор на V. Пусть многочлен $\chi_L(L)$ раскладывается на линейные множители. Тогда $\chi_L(L)=0$.

Вопрос 15 Жорданова клетка. Теорема о жордановой форме: единственность.

Определение 30: Жорданова клетка

Жорданова клетка размера k с собственным числом λ — матрица вида

$$\begin{pmatrix} \lambda & 1 & & & \\ & \lambda & 1 & & & \\ & & \ddots & \ddots & & \\ & & & \lambda & 1 \\ & & & & \lambda \end{pmatrix}.$$

Теорема 8: О жордановой форме

Пусть $L: V \to V$ — оператор на конечномерном пространстве над алгебраическим замкнутым полем K. Тогда существует базис $e_1, \dots e_n$, в котором матрица L имеет вид

$$A = \begin{pmatrix} J_{k_1(\lambda_1)} & & & \\ & \ddots & & \\ & & J_{k_s(\lambda_s)} \end{pmatrix}.$$

Более того такая матрица единственна с точностью до перестановки блоков.

Эта матрица называется матрицей оператора в форме Жордана. Базис, в котором матрица оператора имеет такой вид называется жордановым базисом.

Вопрос 16 Теорема о жордановой форме: существование. Лемма про нильпотентный оператор.

Теорема 9: про нильпотентный оператор

Для любого нильпотентного оператора N на пространстве V существует базис $e_1, \ldots e_n$ в котором матрица N имеет вид

$$A = \begin{pmatrix} J_{k_1(0)} & & \\ & \ddots & \\ & & J_{k_s(0)} \end{pmatrix}.$$

Вопрос 17 Возведение жордановой клетки в степень. Поведение коэффициентов матрицы A^n в зависимости от n. Линейное рекурентное соотношение с постоянными коэффициентами общего вида.

Лемма 12

$$J_k(\lambda)^n = \begin{pmatrix} \lambda^n & n\lambda^{n-1} & \dots & C_n^{k-1}\lambda^{n-k+1} \\ & \lambda^n & & \vdots \\ & & \ddots & n\lambda^{n-1} \\ & & & \lambda^n \end{pmatrix}.$$

Следствие 3

Пусть $A \in M_n(K)$. Тогда существует такая обратимая матрица C, что $A^n = CJ^nC^{-1}$, где J — жорданова форма A. Причем J^n составлена из блоков из прошлой леммы.

Следствие 4

Для любой матрицы A коэффициент ее степени A^n — сумма последовательностей вида $C_n^s \lambda^{n-s}$ с независящими от n коэффициентами. λ — произвольное СЧ, s менее максимального размера ЖК с этим СЧ.

Следствие 5

Пусть дана последовательность $x_n \in \mathbb{C}$, удовлетворяющая линейному рекурентному соотношению

$$x_{n+k} + a_{k-1}x_{n+k-1} + \ldots + a_0x_n = 0,$$

где $a_i \in \mathbb{C}$. Рассмотрим многочлен $f(t) = t^k + a_{k-1}t^{k-1} + \ldots + a_0$. Тогда x_n равно сумме последовательностей $n^s \lambda$, где λ — корень f(t) и s строго меньше кратности λ как корня f(t).

Вопрос 18 Многочлен от жордановой клетки. Понятие функции, аналитической на диске. Вычисление аналитической функции от матрицы.

Теорема 10

Пусть L — оператор на векторном пространстве V над полем характеристики 0. Тогда матрица оператора p(L) в жордановом базисе L составлена из блоков вида

$$\begin{pmatrix} p(\lambda) & p'(\lambda) & \dots & \frac{p^{(k-1)}(\lambda)}{(k-1)!} \\ & p(\lambda) & & & \\ & & \ddots & \\ & & & p(\lambda) \end{pmatrix},$$

где $\lambda = \lambda_i$ — собственные числа, а число и размер блоков с λ_i равны числу и размеру блоков в жордановой форме.

Следствие 6

Пусть A — матрица, тогда $p(A) = Cp(J)C^{-1}$, где p(J) составлена из блоков, как в прошлой теореме, а C из жорданова базиса для A.

Определение 31: Аналитичная функция

Пусть $D \subseteq K$ — открытый диск с центром в точке z_0 и радиусом r > 0 в $K \in \{\mathbb{C}, \mathbb{R}\}$. Функция $f \colon D \to K$ аналитична, если существует последовательность $a_n \in K$, что $f(z) = a_0 + a_1(z - z_0) + \dots + a_n(z - z_0)^n + \dots$ для любого $z \in D$.

Определение 32

Пусть A — квадратная матрица над полем $K \in \{\mathbb{C}, \mathbb{R}\}$. Пусть f(z) — аналитическая функция в диске D, а все собственные числа A так же лежат в D. Тогда определим

$$f(A) = a_0 + a_1(A - z_0E) + \ldots + a_n(A - z_0E)^n + \ldots,$$

относительно покоэффициентной сходимости на $M_n(K)$.

Замечание. Матрица f(A) корректно определена и ее можно посчитать: $Cf(J)C^{-1}$.

Вопрос 19 Предельное поведение степеней матрицы при ограничениях на СЧ. Теорема о положительных матрицах (Перрон).

Лемма 13

Пусть A — вещественная или комплексная матрица с собственным числом $\lambda_1 = 1$ кратности 1, а все остальные строго меньше 1 по модулю. Если вектор $v = \sum c_i e_i$, где e_i — жорданов базис, то

$$\lim_{n \to \infty} A^n v = c_1 e_1.$$

Пример 3

- 1. Запись графа в виде матрицы. A(G) матрица смежности. Tr(A(G)) количество циклов длины $n.\ P(G)$ матрица случайного блуждания. $P_G^n v$ распределение после n шагов блуждания, если начальное распределение равно v.
- 2. Модель Лесли для распределения пл возрастам в популяции.

Определение 33: Положительная матрица

Назовем матрицу A положительной, если все ее элементы $A_{ij} > 0$.

Определение 34: Неотрицательная матрица

Назовем матрицу A неотрицательной, если $A_{ij} \geqslant 0$.

Обозначение. Если $A \in M_n(\mathbb{C})$, то |A| — матрица из $|a_{ij}|$. Если $A, B \in M_n(\mathbb{R})$, то A > B, если A - B > 0 (аналогично $c \geqslant$).

Теорема 11: Перрон, 1907

Если матрица A>0, то наибольшее по модулю собственное число единственное и является вещественным и положительным. Еще оно не является кратным корнем характеристического многочлена. Собственный вектор для него положителен.

Вопрос 20 Теорема Перрона. Критерий максимальности для собственного числа. Стохастические матрицы. Деформация для матрицы случайного блуждания и новый подход нахождения весов для поисковой системы.

Утверждение (Критерий максимальности). Пусть $A \geqslant 0$, и у A^{\top} есть положительный собственный вектор для собственного числа λ . Тогда λ — наибольшее по модулю собственное число A. Если у матрицы A есть собственный вектор $y \geqslant 0$, то y собственный вектор для числа λ .

Определение 35: Стохастическая матрица

Неотрицательная матрица $A \in M_n(\mathbb{R})$ называется стохастической, если сумма всех коэффициентов в каждом ее столбце равна 1.

Следствие 7

 ${
m Y}$ стохастической матрицы A единица является максимальным по модулю собственным числом.

Вопрос 21 Граф матрицы. Неприводимые и эрогодические (примитивные) матрицы. Связь этих понятий. Теорема Фробениуса. Следствие для неприводимых матриц.

Определение 36: Граф матрицы

Пусть A — неотрицательная вещественная матрица размера n. Вершинами графа этой матрицы будут числа от 1 до n, а ребро между $j \to i$ есть, если коэффициент $A_{ij} \neq 0$.

Определение 37: Неприводимая матрица

Неотрицательная матрица A называется **неприводимой**, если связанный с ней граф сильно связен.

 $\it Замечание.$ Это равносильно тому, что нельзя так перенумеровать координаты, чтобы в новых координатах матрица имела блочно-верхнетреугольный вид $egin{pmatrix} B & C \\ 0 & D \end{pmatrix}$.

Лемма 14

Пусть A — неотрицательная неприводимая матрица размера n. Тогда $\forall \varepsilon > 0$ матрица $A + \varepsilon E$ эрогодическая.

Теорема 12: Фробениус, 1912

Пусть A — эрогодическая матрица. Тогда у A есть единственное максимальное по модулю собственное число λ и оно вещественно и положительно. Кроме того, λ не является кратным для A, этому числу соответствует положительный собственный вектор.

Следствие 8

Пусть A — неприводимая матрица. Тогда у A есть вещественное собственное число $\lambda > 0$, которое не меньше всех остальных собственных чисел по модулю. Оно не кратно и соответствующий собственный вектор можно выбрать положительным.

Глава 2

Полилинейная алгебра

Вопрос 1 Билинейные формы. Матрица билинейной формы. Ранг и нувырожденность билинейной формулы. Ортогональное дополнение. Размерность ортогонльного дополнения. Разложение в ортогональную сумму.

Определение 38: Билинейная форма

Пусть V — векторное пространство над K. Отображение $h\colon V\times V\to K$ называется билинейной формой, если

- 1. $\forall \lambda \in K \ \forall u, v, w \in V$: $h(u + \lambda v, w) = h(u, w) + \lambda h(v, w)$,
- 2. $h(w, u + \lambda v) = h(w, u) = \lambda h(w, v)$

Определение 39: Матрица билинейной формы

Пусть $e_1, \ldots e_n$ — базис V, h — билинейная форма на V. Тогда матрица A, составленная из элементов $h(e_i, e_j)$ называется матрицей билинейной формы.

Лемма 15

Пусть V — пространство с базисом $e_1, \dots e_n$. Тогда имеет место взаимооднозначное соответствие между билинейными формами h на V и матрицами $A \in M_n(K)$.

В частности, если вектор v имеет столбец координат x, а вектор u — столбец y, то $h(u,v) = y^{\top}Ax$.

Лемма 16

Пусть V — пространство с билинейной формой h и базисом $e_1, \dots e_n$. Пусть матрица h в этом базисе — это A. Если выбрать другой базис f с матрицей перехода C, то в новом базисе матрица A будет иметь вид $A' = C^\top A C$.

Определение 40: Ранг

Ранг билинейной формы — это ранг ее матрицы.

Определение 41

Будем говорить, что элемент u ортогонален (слева) элементу v, если h(u,v)=0, и записывать так $u\perp v$.

Определение 42: Невырожденность

Билинейная форма h называется невырожденной, если $\forall v \neq 0$ существует $u \in V \colon h(u,v) \neq 0$.

Утверждение. Билинейная форма невырождена тогда и только тогда, когда ее матрица в некотором базисе невырождена.

Определение 43: Ортогональное дополнение сверху

Пусть h — билинейная форма на V. Если U — подпространство V, то правым ортогональным дополнением к U (внутри v относительно h) будет множество

$$U^{\perp} = \{ v \in V \mid \forall u \in U \ u \perp v \}.$$

3амечание. Аналогично есть левое дополнение $^{\perp}U$

3амечание. Если $e_1, \ldots e_k$ базис U, то условие $v \in U^{\perp}$ равносильно $\forall i \ e_i \perp v$.

Утверждение. Пусть U — подпространство V, h — билинейная форма на V. Тогда $\dim U^{\perp} \geqslant \dim V - \dim U$. Если форма невырождена, то $\dim U^{\perp} = \dim V - \dim U$ и верно, что $\perp (U^{\perp}) = U$

Утверждение. Пусть $U\leqslant V$ и h — билинейная форма на V. Тогда $V=U\oplus U^\perp$ тогда и только тогда, когда $h\mid_U$ невырождена.

Определение 44: Разложение в ортогональную прямую сумму

Если пространство разложилось в виде прямой суммы подпространств $V = U \oplus U'$, таких, что $U' \leqslant U^{\perp}$, то будем говорить, что имеет место разложение в ортогональную прямую сумму подпространств $V = U \oplus^{\perp} U'$.

Замечание. Если h невырождена, то для данного подпространства U может найтись не более одного пространства U', что $V = U \oplus^{\perp} U'$. А именно $U' = U^{\perp}$