dont know	know a bit	ОК	good!	mastei	COMS 311 TOPICS			
1	2	3	4	5	BIG-OH	week3	week2	week1
					Basics			Х
					Definitions of big-oh, omega, theta c>0, n>=0 (7 things)			Х
					big-omega			х
					big-theta			Х
					Intuition/understanding (graph)			х
					tighter and weaker bounds		х	Х
					how to prove O/Omega/Theta techniques			Х
					for polynomials choose c >sum of coeff or coeff for omega			Х
					for same type compare exponents			х
					take log			х
					Application to Algorithms			Х
					ram model (vs actual)			Х
					instances and runtime graphs		х	Х
					WCET, BCET, ACET		х	х
					Big-oh of code segments		х	Х
					problem complexity and algorithmic complexity			Х
					code examples of different Os			Х
					Big-oh in real world		х	
					real code times (matrix mult)		х	
					effect of cache/pipelining etc		х	
					choosing algo in real-world vs big-Oh		х	
					constants might matter more in real world than O		х	
					easier implementation might make the diff		Х	
					Dominance Relationships			Х
					logs beat constants			Х
					poly beats all logs			Х
					exp beats all poly			Х
					fact beats all exp			Х
					n^n beats fact			Х
1	2	3	4	5	DATA STRUCTURES			
		<u> </u>	4	J	Basic		Х	Х
					arrays (sorted/unsorted)		х	х
					linked lists (singly/doubly; sorted/unsorted)		х	х
					comparison of arrays and linked lists		х	х
					Basic Abstract Data Types		Х	Х
					Stack, Queue (implementations using array/linkedlists)		х	Х
					comparison of operations of diff impl of stack/queue		Х	Х
					reasons for differences		Х	Х
					Dictionaries	X	Х	

								1
					Hash Tables	X	Х	ļ
					Other ADTs and their Java Implementations	X	Х	
					Binary Search Trees	X	Х	
					Priority Search Queues	X	Х	
					Heap impl	X	Х	
					Storing points, graphs, sets etc	X	Х	
					graphs	X	Х	
					sets	X	Х	
					big-oh of operations on data structures	X	Х	
					algorithms on data structures (BST, HEAP etc)	X	Х	
1	2	3	4	5	P-NP			
					Intro Concepts			х
					the diagram and four classes of problems			х
					informal (solvable, probab intract, provably intract, prov unsolvable)			х
					examples of problems in four classes			х
					Halting Problem			х
					Hamiltonian Cycle Enumeration problem			х
					Hamiltonian Cycle Search problem			х
					Independent Set problem			х
					Search/Sort problems			х
					Classes of problems			
					Undecidable (prove Halting problem is undecidable)			х
					P			х
					NP			х
					prove P is a subset of NP			
					NP-Complete (probably intractable class)			х
					why if a NP-C problem is in P, then P=NP			
					provably intractable classes			х
					NP-Hard problems			
					Reduction			
					optimization, search, decision and reductions			
					definition of polynomial-time reduction & notation			
					conclusions (or implications of) from Y <=p X			
					transitive property (x <=p y, y <=p z => x<=p z)			
					how to prove X <=p Y (the three steps)			
					interval sched <=p IS			
					vector cover <=p IS			
					IS <=p vector cover			
					bipartite matching <=p IS			
_				†	NP-Complete			

			l		Definition and Intuition	1		1
					The first NP-C problem (circuitSAT) & Cook-Levin's theorem			
					how to prove that a problem is NP-C			
					prove 3-SAT is NP-C			
					prove IS is NP-C			1
					prove VC is NP-C			1
					prove ve is ive-e			1
1	2	3	4	5	PROOF TECHNIQUES			
			-		Why is proving important?			х
					Job selection problem			x
					solutions to JS problem			T x
					why is proving so important?			x
					with the proving so important.			<u> </u>
					CALCULUS			PreReq
					propositional logic rules			PreReq
					predicate logic rules			PreReq
					form of deduction proofs			PreReq
								1
					DIFFERENT TECHNIQUES		Х	PreReq
					contradiction (and correct form)	X	Х	PreReq
					induction (form)		Х	PreReq
					direct proof (see form of deduction proofs)		Х	PreReq
					trivial/vacuous		Х	PreReq
					contrapositive		Х	PreReq
					EXAMPLES IN CLASS			PreReq
					contradiction (and correct form)	X		PreReq
					induction (form)			PreReq
					direct proof (see form of deduction proofs)			PreReq
					trivial/vacuous			PreReq
					contrapositive			PreReq
					Proofs in class			
					Halting problem is undecidable		Х	PreReq
					VC <=p IS and IS <=p VC			
					select jobs satisfies greedy choice + opt substructuring			
					Proving Code correct			
					Loop invariants			
					proof of recursive codes			
1	2	3	4	5	ALGORITHMIC TECHNIQUES			
					BRUTE FORCE TECHNIQUES			1
					search space for different problems		Х	X
					recursion tree for brute force approach		Х	X
\longrightarrow					back track algo from text book		Х	Х
					iterative way to generate all subsets			

recursive way to generate all perms recursive way to gen size k subsets DIVIDE AND CONQUER recurrence formula divide and conquer approach mergesort + analysis quicksort + analysis max max sum of sequence counting inversions finding sink in graph Recurrence Formulae	X X X X X X	X	X
pivide and conquer approach divide and conquer approach mergesort + analysis quicksort + analysis max max sum of sequence counting inversions finding sink in graph	X X X	X	X
recurrence formula divide and conquer approach mergesort + analysis quicksort + analysis max max sum of sequence counting inversions finding sink in graph	X X X		
recurrence formula divide and conquer approach mergesort + analysis quicksort + analysis max max sum of sequence counting inversions finding sink in graph	X X X		
divide and conquer approach mergesort + analysis quicksort + analysis max max sum of sequence counting inversions finding sink in graph	X X X		
mergesort + analysis quicksort + analysis max max sum of sequence counting inversions finding sink in graph	X X		
quicksort + analysis max max sum of sequence counting inversions finding sink in graph	X		
max max sum of sequence counting inversions finding sink in graph			
max sum of sequence counting inversions finding sink in graph	X		
counting inversions finding sink in graph			1
finding sink in graph			
Programme Formaniles			
Description of Formaciles			
Recurrence Formulae	x		
general form of recurrence formula & masters theorem	x		
how to derive recurrence tree, term for each level, sum	x		
2T(n/2) + c	X		
T(n/2) + cn	x		
2T(n/2) + cn	x		
3T(n/2) + cn	x		
2T(n/2) + cn^2	x		
5T(n/2) + cn^2	X		
			<u> </u>
proving os property			
	2T(n/2) + cn 3T(n/2) + cn 2T(n/2) + cn^2 5T(n/2) + cn^2 GREEDY TECHNIQUE greedy approach interval scheduling by greedy approach greedy choice property optimal substructuring property proving gc property	2T(n/2) + cn	2T(n/2) + cn