matplot-1

August 12, 2024

Data visualization = to represent data graphically

```
[2]: import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
```

1 Linechart

When data of both axis is numerical there use Linechart

```
[3]: ls=[41,52,65,60]
plt.plot(ls)
```

[3]: [<matplotlib.lines.Line2D at 0x23af50ad9d0>]


```
[4]: ls1=[41,52,65,60]
ls2=[25,63,45,75]
plt.plot(ls,ls2)
```

[4]: [<matplotlib.lines.Line2D at 0x23af52d8050>]


```
[5]: ls1=[41,52,65,60]
ls2=[25,63,45,75]
plt.plot(ls,ls2)
plt.xlabel("LS-1")
plt.ylabel("LS-2")
```

[5]: Text(0, 0.5, 'LS-2')


```
[6]: ls1=[41,52,65,60]
ls2=[25,63,45,75]
plt.plot(ls1,ls2,marker ="*",ms=10)
```

[6]: [<matplotlib.lines.Line2D at 0x23af74e01d0>]


```
[7]: arr=np.random.randint(1,200,200)
plt.plot(arr)
```

[7]: [<matplotlib.lines.Line2D at 0x23af7497110>]

2 Bar plot

If one data is categorical(alphabet) and second is numerical then use Bar plot

```
[8]: country_name=["Japan","India","Itli","Bangladesh"]
country_population=[400,900,466,370]

plt.xlabel("Country")
plt.ylabel("popolation in crore")
plt.bar(country_name,country_population)
```

[8]: <BarContainer object of 4 artists>

Working on real data

4 First Owner

3.0

150.0

```
[9]: df=pd.read_csv("Used_Bikes.csv")
    df.head()
```

```
[9]:
                                    bike_name
                                                                     kms_driven
                                                  price
                                                               city
          TVS Star City Plus Dual Tone 110cc
                                                                        17654.0
     0
                                                35000.0
                                                          Ahmedabad
     1
                 Royal Enfield Classic 350cc
                                               119900.0
                                                              Delhi
                                                                        11000.0
     2
                        Triumph Daytona 675R
                                               600000.0
                                                              Delhi
                                                                          110.0
     3
                        TVS Apache RTR 180cc
                                                65000.0
                                                         Bangalore
                                                                        16329.0
        Yamaha FZ S V 2.0 150cc-Ltd. Edition
                                                0.00008
                                                         Bangalore
                                                                        10000.0
                                          brand
              owner
                          power
                     age
       First Owner
                     3.0
                          110.0
                                            TVS
     1 First Owner
                     4.0
                          350.0
                                 Royal Enfield
     2 First Owner
                     8.0
                          675.0
                                        Triumph
                                            TVS
     3 First Owner
                     4.0
                          180.0
```

Yamaha

```
[10]: df.drop_duplicates(inplace=True)
```

```
[11]: df["owner"].value_counts()
[11]: owner
     First Owner
                              6642
      Second Owner
                               588
      Third Owner
                                84
      Fourth Owner Or More
                                10
      Name: count, dtype: int64
[12]: df["owner"].value_counts().keys()
[12]: Index(['First Owner', 'Second Owner', 'Third Owner', 'Fourth Owner Or More'],
      dtype='object', name='owner')
[13]: ownership=(df["owner"].value_counts().keys())
      ownership
[13]: Index(['First Owner', 'Second Owner', 'Third Owner', 'Fourth Owner Or More'],
      dtype='object', name='owner')
[14]: no_of_bikes=list(df["owner"].value_counts().values)
      no_of_bikes
[14]: [np.int64(6642), np.int64(588), np.int64(84), np.int64(10)]
[15]: plt.bar(ownership,no_of_bikes)
      plt.xlabel("ownership")
      plt.ylabel("no of bikes")
      plt.title("Ownership chart")
[15]: Text(0.5, 1.0, 'Ownership chart')
```


[16]: df["brand"].value_counts() [16]: brand Bajaj 2081 Royal Enfield 1346 Hero 1142 Honda 676 Yamaha 651 TVS 481 KTM 375 Suzuki 203 Harley-Davidson 91 Kawasaki 61 Hyosung 53 Mahindra 50 Benelli 46 21 Triumph Ducati 20 BMW 10 Jawa 7

```
Indian
                             3
      MV
                             3
      Rajdoot
                             1
      LML
      Yezdi
                             1
      Ideal
      Name: count, dtype: int64
[17]: brand_names=list(df["brand"].value_counts().keys())
      brand_names
[17]: ['Bajaj',
       'Royal Enfield',
       'Hero',
       'Honda',
       'Yamaha',
       'TVS',
       'KTM',
       'Suzuki',
       'Harley-Davidson',
       'Kawasaki',
       'Hyosung',
       'Mahindra',
       'Benelli',
       'Triumph',
       'Ducati',
       'BMW',
       'Jawa',
       'Indian',
       'MV',
       'Rajdoot',
       'LML',
       'Yezdi',
       'Ideal']
[21]: brand_count=list(df["brand"].value_counts().values)
[22]: plt.bar(brand_names,brand_count,color="red",ec="k") # ec = edge color and__
       \hookrightarrow b = blue, k = black, lw = line width
      plt.xlabel("Brnads")
      plt.ylabel("store of bikes")
      plt.xticks(rotation=90)
      plt.yticks(rotation=60)
      plt.title("Brands available")
[22]: Text(0.5, 1.0, 'Brands available')
```


[]: Text(0.5, 1.0, 'Brands available')

3 pie plot

```
[]: print(country_name)
  print(country_population)
  plt.pie(country_population,labels=country_name)
  plt.show()
```

['Japan', 'India', 'Itli', 'Bangladesh'] [400, 900, 466, 370]

<Figure size 800x800 with 0 Axes>

['Japan', 'India', 'Itli', 'Bangladesh'] [400, 900, 466, 370] [0, 0, 0.2, 0]

matplot-2

August 12, 2024

```
[1]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
[2]: df=pd.read_csv("Used_Bikes.csv")
     df.head()
[2]:
                                   bike_name
                                                                    kms_driven
                                                 price
                                                              city
          TVS Star City Plus Dual Tone 110cc
     0
                                                35000.0
                                                         Ahmedabad
                                                                       17654.0
     1
                 Royal Enfield Classic 350cc
                                                             Delhi
                                               119900.0
                                                                       11000.0
     2
                        Triumph Daytona 675R
                                               600000.0
                                                             Delhi
                                                                         110.0
     3
                        TVS Apache RTR 180cc
                                                        Bangalore
                                                65000.0
                                                                       16329.0
       Yamaha FZ S V 2.0 150cc-Ltd. Edition
                                                        Bangalore
                                                0.0008
                                                                       10000.0
              owner
                                         brand
                     age power
     O First Owner
                     3.0
                          110.0
                                           TVS
     1 First Owner 4.0
                          350.0 Royal Enfield
```

Triumph

Yamaha

TVS

0.1 scatter plot

2 First Owner

4 First Owner

3 First Owner 4.0

it shows the bullet points . a single point represent as (x,y)

675.0

180.0

150.0

8.0

3.0

```
[3]: ls1=[25,35,68,24,61]
ls2=[96,45,12,36,45]
plt.scatter(ls1,ls2)
plt.xlabel("Ls1")
plt.ylabel("Ls2")
plt.title("Scatter plot")
plt.show
```

[3]: <function matplotlib.pyplot.show(close=None, block=None)>

[4]: plt.scatter(ls1,ls2,marker="*",s=600) # s for size of marker

[4]: <matplotlib.collections.PathCollection at 0x162038027e0>


```
[5]: plt.scatter(ls1,ls2,marker="v",color="red",s=600) plt.show
```

[5]: <function matplotlib.pyplot.show(close=None, block=None)>

[6]:	df								
[6]:					bike_name	price	city	kms_driven	\
	0	TVS Star C	ity Pl	us Dual	Tone 110cc	35000.0	Ahmedabad	17654.0	
	1	Royal Enfield Classic 350cc				119900.0	Delhi	11000.0	
	2	Triumph Daytona 675R TVS Apache RTR 180cc Yamaha FZ S V 2.0 150cc-Ltd. Edition				600000.0	Delhi	110.0	
	3					65000.0	Bangalore	16329.0	
	4					80000.0	Bangalore	10000.0	
	•••				•••	•••	•••	•••	
	32643 Hero Passion Pro 100cc				39000.0	Delhi	22000.0		
	32644	TVS Apache RTR 180cc Bajaj Avenger Street 220				30000.0	Karnal	6639.0	
	32645					60000.0	Delhi	20373.0	
	32646	H	Hero Super Splendor 125cc				Jaipur	84186.0	
	32647			Bajaj P	ulsar 150cc	22000.0	Pune	60857.0	
			owner age power			and			
	0	First Owner	3.0	110.0		rvs			
	1	First Owner	4.0	350.0	Royal Enfi				
	2	First Owner	8.0	675.0	Triur	nph			
	3	First Owner	4.0	180.0	-	rvs			
	4	First Owner	3.0	150.0	Yama	aha			
	•••	•••	•••		•••				

```
32643 First Owner
                          4.0 100.0
                                               Hero
                                                TVS
     32644 First Owner
                          9.0 180.0
     32645 First Owner
                          6.0 220.0
                                              Bajaj
     32646 First Owner
                         16.0 125.0
                                               Hero
     32647 First Owner
                         13.0 150.0
                                              Bajaj
     [32648 rows x 8 columns]
[7]: df.drop_duplicates(inplace=True)
     df["price"]
[7]: 0
              35000.0
             119900.0
     2
            600000.0
     3
              65000.0
     4
              80000.0
    9362
              25000.0
    9369
              35000.0
    9370
            450000.0
    9371
            139000.0
    9372
              80000.0
    Name: price, Length: 7324, dtype: float64
[8]: plt.scatter(x=df["kms_driven"],y=df["price"])
     plt.xlabel("kms drivens")
     plt.ylabel("price")
    plt.show()
```


also used to check density is +ve or -ve

```
[9]: arr=np.random.randint(1,200,500)
arr2=arr*50

[10]: plt.scatter(arr,arr2)
   plt.xlabel(" arr1")
   plt.ylabel("arr2")
   plt.show()
```


0.2 HISOGRAM

It gives information about the distribution of data

```
[23]: age=np.random.randint(1,100,1000)

[24]: plt.hist(age,ec="k")
    plt.show()
```



```
[25]: boxex_dist=[0,18,30,50,70,90,110] # By using this bins we can create a_ 

range like here 0-18,18-30,30-50,50-70,70-90,90-110

plt.hist(age,bins=boxex_dist,ec="k")

plt.show()
```



```
[62]: intervels=[0,5000,20000,50000,75000,100000,150000]
    plt.hist(df["price"],bins=intervels,ec="k")
    plt.xticks([5000,20000,50000,75000,100000,150000])
    plt.show()
```


0.3 BOX chart

[65]: plt.boxplot(age)
plt.show()

It shows 5 values 1. min() 2. max() 3. median()

here these small balls are called as outliers.

```
[76]: plt.boxplot(df[df["brand"]=="Bajaj"]["price"])
plt.show
```

[76]: <function matplotlib.pyplot.show(close=None, block=None)>

