Chemical and genetic interference

Summer School 2017

Silke Robatzek lab

Gildas Bourdais

Monitoring of the GFP-tagged protein of interest in a cell

Norambuena L, Tejos R. 2017. Annu. Rev. Plant Biol. 68:197–224

Monitoring of the GFP-tagged protein of interest in a cell

Monitoring of the GFP-tagged protein of interest in a cell

Specific alteration of the pathway using chemicals and genetic

Table 1	l Summary	of compounds	affecting	endomembrane	trafficking
---------	-----------	--------------	-----------	--------------	-------------

Compounds	Organisms	Target	Mode of action	Source
BFA	Plant/animal	ARF-GEFs	Block exocytosis/endomembrane recycling	Dinter and Berger (1998), Robinson et al. (2008)
Wortmannin	Plant/animal	PI3Ks and PI4Ks	Block vacuolar trafficking, MVBs and endocytosis	Robinson et al. (2008), Takáč et al. (2012)
Tyrphostin A23	Plant/animal	Cargo recognition (YXX Φ) by μ subunit of AP complex	Blocks cargo recruitment into CCVs from PM, TGN	Ortiz-Zaoater et al. (2006), Robinson et al. (2008)
Concanamycin A	Plant/animal	V ATPase	Block trafficking at TGN, endosome acidification	Robinson et al. (2008)
Dynasore	Animal	GTPase activity of dynamin	Blocks endocytosis	Macia et al. (2006)
Sortin 1	Yeast/plant	Unknown	Affects vacuole biogenesis	Zouhar et al. (2004)
Sortin 2	Yeast/plant	Unknown	Interference with ESCRT complex components	Zouhar et al. (2004), Norambuena et al. (2008)
Sortin 3	Yeast	Unknown	Possibly target late endosomal compartments	Chanda et al. (2009)
Endosidin 1	Plant	Unknown (stablizes actin)	Blocks trafficking at the TGN	Robert et al. (2008), Toth et al. (2012)
Endosidin 3	Plant	Unknown	Blocks protein trafficking from the PM by affecting TGN/EE compartment	Drakakaki et al. (2011)
Endosidin 5	Plant/animal	Unknown	Blocks recycling	Drakakaki et al. (2011)
Endosidin 7	Plant	Unknown	Disturbs cell plate formation, cell wall maturation and expansion through the perturbation of secretory pathways	Drakakaki et al. (2011)
Gravicin	Plant	PGP19 and other unknown target	Inhibition of auxin transport and trafficking to the vacuole	Surpin et al. (2005), Rojas- Pierce et al. (2007)
LY294002	Plant/animal	PI3Ks	Blocks MVBs, endocytosis	Lee et al. (2008)

Li et al., 2012

Table 1	Summary	of	com	pounds	affecting	end	lomembrane	trafficking

Compounds	Organisms	Target	Mode of action	Source
BFA	Plant/animal	ARF-GEFs	Block exocytosis/endomembrane recycling	Dinter and Berger (1998), Robinson et al. (2008)
Wortmannin	Plant/animal	PI3Ks and PI4Ks	Block vacuolar trafficking, MVBs and endocytosis	Robinson et al. (2008), Takáč et al. (2012)
Tyrphostin A23	Plant/animal	Cargo recognition (YXX Φ) by μ subunit of AP complex	Blocks cargo recruitment into CCVs from PM, TGN	Ortiz-Zaoater et al. (2006), Robinson et al. (2008)
Concanamycin A	Plant/animal	V ATPase	Block trafficking at TGN, endosome acidification	Robinson et al. (2008)
Dynasore	Animal	GTPase activity of dynamin	Blocks endocytosis	Macia et al. (2006)
Sortin 1	Yeast/plant	Unknown	Affects vacuole biogenesis	Zouhar et al. (2004)
Sortin 2	Yeast/plant	Unknown	Interference with ESCRT complex components	Zouhar et al. (2004), Norambuena et al. (2008)
Sortin 3	Yeast	Unknown	Possibly target late endosomal compartments	Chanda et al. (2009)
Endosidin 1	Plant	Unknown (stablizes actin)	Blocks trafficking at the TGN	Robert et al. (2008), Toth et al. (2012)
Endosidin 3	Plant	Unknown	Blocks protein trafficking from the PM by affecting TGN/EE compartment	Drakakaki et al. (2011)
Endosidin 5	Plant/animal	Unknown	Blocks recycling	Drakakaki et al. (2011)
Endosidin 7	Plant	Unknown	Disturbs cell plate formation, cell wall maturation and expansion through the perturbation of secretory pathways	Drakakaki et al. (2011)
Gravicin	Plant	PGP19 and other unknown target	Inhibition of auxin transport and trafficking to the vacuole	Surpin et al. (2005), Rojas- Pierce et al. (2007)
LY294002	Plant/animal	PI3Ks	Blocks MVBs, endocytosis	Lee et al. (2008)

Li et al., 2012

Table 1 (continued)

Compounds	Organisms	Target	Mode of action	Source	
Bafilomycin A Plant/animal		V ATPase	Blocks trafficking at the TGN, causes endosome acidification	Robinson et al. (2008)	
Sulfonamide 16D10	Animal	V ATPase	Blocks endocytosis and exocytosis, causes endosome acidification	Nieland et al. (2004)	
Monensin	Plant/animal	Ionophore	Blocks exocytosis, disrupts trafficking at Golgi	Diner et al. (1998)	
Cantharidin	Plant/animal	PP2A-specific inhibitor	Blocks FLS2 endocytic trafficking	Serrano et al. (2007)	
Triclosan	Plant	Enoyl-acyl carrier protein (acp) reductases (ENRs)	Blocks FLS2 endocytic trafficking, flg22-induced oxidative burst; inhibitor of fatty-acid synthesis		
Fluazinam	Plant	Unknown	Blocks FLS2 endocytic trafficking, flg22-induced oxidative burst	Serrano et al. (2007)	
Exo1and Exo2	Animal	Unknown	Block exocytosis, ER to Golgi transport	Nieland et al. (2004)	
Cobtorin	Plant	Unknown	Affects cortical microtubule alignment	Yoneda et al. (2007)	
Triclosan, Fluazinam and Cantharidin	Plant	PP2A (cantharidin)	Affect flg22-mediated FLS2 endocytosis	Serrano et al. (2007)	
Morlin	Plant	Unknown	Affects cytoskeletal organization/ interaction with cellulose synthase	DeBolt et al. (2007)	

Li et al., 2012 Norambuena & Tejos 2017

Inhibitors of the endocytic pathway

EE/TGN: Early Endosome/ Trans-Golgi

Network

RE: Recycling Endosome

LE/MVB: Late Endosome/ Mulivesicular

Body

Wortmannin (Wm)

 A phosphatidylphosphate-3-kinase inhibitor that interferes with vesicle formation from the plasma membrane and the maturation of late endosomes (LEs) and multivesicular bodies (MVBs), resulting in their enlargement.

An effect of Wm on intracellular trafficking

An effect of Wm on BRI1 trafficking

Endosidin 1 (ES1)

• A chemical compound, which selectively blocks specifically the endocytic trafficking of BRI1, PIN2, and AUX1 but not PIN1 and PIN7 at the TGN/EE. In *Arabidopsis* roots, treatment of ES1 leads to the formation of a TGN/EE aggregate.

An effect of ES1 on cytoskeleton

GFP-ACTIN BINDING DOMAIN

Beck et al., 2012

An impact of ES1 on different PM proteins

Brefeldin A (BFA)

• A fungal macrocyclic lactone, which targets (guanine nucleotide exchange factors for ARF GTPases) ARF-GEFs, thus inhibiting the function of ARF GTPases, which leads to the formation of heterogeneous aggregations (so called BFA compartments) of early endosomal membranes in plants.

Klausner et al., 1992; Gaynor et al., 1998; Nebenführ et al., 2002

BFA resistance or sensitivity may vary from tissue to tissue within the same plant

BFA sensitivity of FLS2 endocytic compartments

Conclusion

Viktor Žársky in 2016: "recent work show that there is no clear evidence for a recycling system of non-activated receptors".

Ortiz-Morea *et al.*, 2016 work demonstrate that the population of the PEPR1–GFP receptor captured in BFA bodies is coming from *de novo* biosynthetic anterograde membrane transport.

Jásik et al., 2016 work show that PIN-FORMED2 (PIN2)-containing BFA bodies are also mostly coming from de novo biosynthetic anterograde PIN2 membrane transport.

Specificity vs pleiotropic effect

Chemicals of the future

Small Molecules for Dissecting Endomembrane Trafficking: A Cross-Systems View Kiril Mishev et al., 2013

Plant Chemical Genetics
Wim Dejonghe and Eugenia Russinova 2017

An automated quantitative image analysis tool for the identification of microtubule patterns in plants

Genetic interference

T-DNA

EMS

Dominant negative mutation

Genome editing (CRISPR site-specific double strand DNA breaks were restricted to zinc finger nucleases (ZFNs) and TAL effector nucleases (TALENs)

RNAi (microRNA and siRNA)

T-DNA

tair Home Help Contact About Us Subscribe Login Register Institution: Norwich Bioscience Institutes (subscribed) Search Browse Tools Portals Download Submit News ABRC Stocks

EMS

Home > Portals > Mutant and Mapping Resources > Stock Centers

Stock Centers

Worldwide Resources

Find Mutants

ABRC/TAIR Germ plasm and Stock Search

ABRC Catalog

NASC Germplasm Search and Browse

AtEnsembl - NASC Genome Browser

AtIDB - A. thaliana Integrated DB

SeqViewer - TAIR Genome Browser

SIGn AL T- DNA Express

RARGE - RIKEN Arabidopsis Genome

Ency clope dia TAIR BLAST

NASC Insert Watch

Request TILLING (Col) Request TILLer (Ler)

Analyze Mutants

Map-based Cloning Mutation Identification and Confirmation

Arabidopsis Stock Centers

You can order many seed stocks from the various stock centers listed below. If none of them have the stocks you are interested in, contact the corresponding author of the paper which describes your plants of interest.

Arabidopsis Biological Resource Center (ABRC)

ABRC stock catalog

Browse through the catalog of seed stocks.

TAIR polymorphism search

Search for polymorphisms based on many different attributes. If the allele you are searching for has a seed stock available from ABRC, just click to order it.

TAIR germplasm search

Search through the germplasms in the TAIR database, most are available as seed stocks from ABRC.

TAIR ecotype search

A more specific search for Arabidopsis ecotypes/natural variants and relatives of Arabidopsis, most are available as seed stock from ABRC.

Nottingham Arabidopsis Stock Center (NASC)

NASC stock catalog

Browse through the catalog of seed stocks.

NASC germplasm search

Search through the NASC germplasm database using several different criteria.

NASC photograph collection

Browse through the NASC collection of photographs of ecotypes and mutants.

NASC ecotype search

A more specific search for Arabidopsis ecotypes/natural variants.

RIKEN Bioresource Center (BRC)/ SENDAI Arabidopsis Seed Stock Center (SASSC)

SASSC stock catalog

Browse through the catalog of seed stocks.

SASSC germplasm search

Search through the SASSC germplasm database using several different criteria.

RIKEN BRC stock catalogue

Browse through the catalogue of seed stocks.

INRA-Versailles Genomic Resource Center

Provides: (1) seed stocks for T-DNA insertion mutant lines; (2) lines obtained from a worldwide collection of natural populations, specifically a core set that represents a maximum of genetic diversity within this collection; (3) different Recombinant Inbred Line populations will be soon available for ordering.

Lehle Seeds

Private company selling Arabidopsis seeds and growing systems.

- Huge Arabidopsis database
- Exist for other crops (Tomato, Tobacco...) (Gidoni et al., 2003; The Tobacco mutant Resources)
- Stable transformation

- Require selection, genotyping and several lines (Copy number)
- Crosses required for multiple genes targeting
- Ds transposons can jump

EMS

EMS

Double mutant is lethal

Dominant negative mutation

Dominant negative mutation

Dominant negative mutation

https://www.quora.com/What-makes-a-gene-dominant-co-dominant-or-recessive

Conditionally overexpressing the C-terminal part of clathrin heavy chain (termed HUB1) that exerts a dominant negative effect on clathrin function by binding and consequently depleting clathrin light chains (Liu et al., 1995). Estradiol inducible construct.

Genetic interference

T-DNA

EMS

Dominant negative mutation

Genome editing (CRISPR site-specific double strand DNA breaks were restricted to zinc finger nucleases (ZFNs) and TAL effector nucleases (TALENs)

RNAi (microRNA and siRNA)

Genome editing

Genome editing

- Take advantage of error prone eukaryote DNA repair system
- Genome sequence known
- Off-target effects
- Very specific
- Target multiple genes
- Stable transformation
- Applicable to non eukaryotic

RNAi

- RNAi offers the possibility of gene knockdown instead of gene knockout
- Transient and stable transformation possible
- No problem with chromatin structure
- Off-target effects
- Target only expressed genes (not non-coding sequences)
- Needs siRNA machinery

Nature Reviews | Genetics

RNAi

WMD3 - Web MicroRNA Designer Home Target Search Designer Oligo Hybridize Blast Downloads About Help

WMD3 - Web app for the automated design of artificial microRNAs.

Artificial microRNAs (amiRNAs) are 21mer small RNAs, which can be genetically engineered and function to specifically silence single or multiple genes of interest in more than 90 plants, according to the previously determined parameters of target gene selection. It uses your favorite gene(s), which you want to silence, and designs 21mer amiRNA sequences. You will retrieve oligo sequences to express the small RNA from endogenous miRNA precursors. Please read the <u>Procedure</u> before you use WMD3 for the first time! More information about miRNAs, design and application of amiRNAs and several guides on all the tools on this page can be found in the <u>Help</u> section. Cloning protocols are available in the <u>Download</u> section.

The artificial miRNA vectors pRS300 and pNW55 are available from Addgene. On their website, search for plasmids associated with the keyword "weigel".

Proof of concept studies and other related publications:

The systematic design of amiRNAs has first been described in:

Rebecca Schwab, Stephan Ossowski, Markus Riester, Norman Warthmann, and Detlef Weigel. (2006) **Highly Specific Gene Silencing by Artificial MicroRNAs in** *Arabidopsis* Plant Cell 18: 1121-1133. <u>Link to PubMed</u>

Detailed overview of WMD:

Stephan Ossowski, Rebecca Schwab, Detlef Weigel (2008) **Gene silencing in plants using artificial microRNAs and other small RNAs**The Plant Journal 53 (4), 674-690 <u>Link to PubMed</u>

Oryza sativa:

Warthmann N, Chen H, Ossowski S, Weigel D, Hervé P. (2008) **Highly Specific Gene Silencing by Artificial miRNAs in Rice** PLoS ONE 3(3): e1829. <u>Link to PLoS ONE</u>

- (A) Ethanol-induced ubiquitous expression of amiR-white-1 3 and 5 d after induction. After 3 d, young leaves are all yellow; after 5 d, the youngest leaves are green again.
- **(B)** Ethanol-induced ubiquitous expression of amiR-trichome (right) 3 d after induction. Clustered trichomes appear as white covering of youngest leaves (arrowhead).
- (C) Inflorescences of plants expressing amiR-white-1 from the AP1 promoter (middle) are pale yellow. Strong lines expressing amiR-mads-2 from the AP1 promoter (right) resemble ap1 cal double mutants.
- **(D)** Expression of amiR-lfy-1 from the *LFY* promoter (1) results in flowers resembling *lfy* mutants. amiR-mads-2 expressed from *AG* regulatory elements in the center of the flower (2) produces organ transformations in the central two whorls. Outer whorls remained unaffected. An opposite phenotype was seen after expression of amiR-mads-2 from the *AP1* promoter (3; weaker line), which didn't affect inner whorls but resulted in secondary flowers, resembling *ap1* mutants.
- (E) Epidermal expression of amiR-white-1 from the MERISTEM LAYER1 (ML1) promoter resulted in pale plants.

2 CLATHRIN HEAVY CHAIN genes in *Arabidopsis thaliana*Double mutant is lethal

6 CLATHRIN HEAVY CHAIN genes in *Nicotiana benthamiana*

RNAi

VIGS

- Whole plant silencing
- Can be applied to other crops (tomato, eggplants,...)
- Not 100% and not uniform

RNAi in the future

Induction of Silencing in Plants by High-Pressure Spraying of *In vitro*-Synthesized Small RNAs

PERSPECTIVE

published: 30 August 2016 doi: 10.3389/fpls.2016.01327

Athanasios Dalakouras^{1†}, Michèle Wassenegger^{1†}, John N. McMillan², Vinitha Cardoza², Ira Maegele¹, Elena Dadami¹, Miriam Runne¹, Gabi Krczal¹ and Michael Wassenegger^{1,3*}

ARTICLES

PUBLISHED: 9 JANUARY 2017 | VOLUME: 3 | ARTICLE NUMBER: 16207

Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses

Neena Mitter^{1*}, Elizabeth A. Worrall¹, Karl E. Robinson¹, Peng Li², Ritesh G. Jain¹, Christelle Taochy^{1,3}, Stephen J. Fletcher^{1,3}, Bernard J. Carroll³, G. Q. (Max) Lu^{2,4} and Zhi Ping Xu^{2*}

No perfect technique

Controls controls

Combined approaches