機器學習 專案作業四

組員

M11221004 侯郡凌

M11223040 邱琳恩

中華民國一一三年六月二十四日

摘要

本研究旨在透過多維尺度分析(MDS)以及 t-Distributed Stochastic Neighbor(t-SNE)方法實現資料集的降維任務,並搭配 Dash 技術進行互動式操作,以處理兩個不同的資料集。第一個資料集包含各火車站的經緯度資料,這些資料通過Google Map 獲取,此資料集本研究使用 MDS 方法進行實作。第二個資料集為Drink dataset,則是使用 t-SNE 方法進行操作,該資料集包含名目資料,因此進行了兩種不同的處理:One-hot encoding 和屬性相似度處理(Word2Vec)。結果顯示,MDS 以及 t-SNE 方法皆可實現降維任務,使用獨熱編碼時,數據點呈現較為分散的分布;而採用 Word2Vec 編碼則更有效地保留了資料的相似性特徵,即相似度高的數據點會聚集在一起。未來的研究中,期望加入更多資料集的應用,以及不同的降維技術,並增加 Dash 技術的互動功能,提供更多自定義選項和分析工具,以提升數據探索過程中的體驗和效率。

關鍵字:多維尺度分析 (MDS)、t-Distributed Stochastic Neighbor (t-SNE)、 One-hot encoding、Word2Vec、Dash

一、 緒論

1.1 動機

在現代資料科學領域,如何有效地將高維度數據進行降維處理,並在低維度空間中保留其結構特徵,是一個重要的研究課題。面對高維度資料集時,儲存和運算的需求增加,使得資料的可視化、分析和解釋變得困難。有效的降維技術能在保留資料主要特徵的同時,減少維度,提升分析的效率和準確性。

MDS 和 t-SNE 是兩種常用的降維技術,分別在距離和相似度維度上有廣泛應用。本研究旨在透過兩個不同的資料集,並探討如何在降維過程中有效處理 名目型 (Categorical) 和數值型 (Numerical) 屬性,並在 2D 平面上可視化數據,以便更直觀地理解數據內在結構。

本研究的主要動機包括:

- 1. 探討不同降維技術的效能:評估 MDS 和 t-SNE 在資料集維度縮減中的 效果,了解其在高維資料處理中的表現。
- 減少高維度資料的複雜性:透過降維技術減少資料維度,提升分析效率 和準確性,並使資料更易於理解和解釋。
- 3. 提升資料可視化:利用圖像呈現資料點分布,提升資料的易讀性,幫助 使用者更直觀地理解資料結構。

1.2 目的

本研究的主要目的是透過 MDS 和 t-SNE,探討如何有效地將高維度資料進行降維處理,並在 2D 平面上進行可視化展示,具體目的包括:

- 探討地理位置數據的可視化方法:使用 MDS 方法計算並比較台北、新竹、台中、斗六、高雄、花蓮玉里、台東知本火車站的實際距離,並在 2D 平面上進行可視化展示。通過 Google 地圖標記車站位置,驗證 MDS 在地理數據可視化中的應用效果。
- 2. 探討名目型和數值型屬性在降維過程中的處理方法:使用 Drink Dataset 隨機生成數據,並對數值型屬性進行常態分配及亂數分配處理。採用 t-SNE 方法,在 2D 平面上展示包含名目型和數值型屬性的數據,探討其降維效果。

- 3. 比較不同名目型屬性處理方法的效果:比較 One-hot encoding 和屬性值相似度兩種名目型屬性處理方法在 t-SNE 降維可視化中的效果。
- 4. 提供數據可視化和降維技術的應用參考:透過案例研究展示 MDS 和 t-SNE 在地理位置數據和混合屬性數據中的應用效果。
- 5. 資料集縮減:使用 MDS 和 t-SNE 方法對高維資料進行降維,保留數據 的主要結構和特徵,以便進行後續分析和可視化。
- 6. 比較與評估:比較 MDS 和 t-SNE 兩種降維方法在不同資料集上的表現,包括維度縮減後的數據分佈。

二、 方法

本研究將透過兩種方法分別使用採用火車站經緯度資料及 Drink Dataset 來探討高維數據的降維處理和可視化方法,具體研究方法如下:

針對 MDS 方法:

首先,使用 Google 地圖 API 獲取台北火車站、新竹火車站、台中火車站、 斗六火車站、高雄火車站、花蓮玉里站、台東知本站的經緯度資訊。接著,利 用 Haversine 公式計算這些火車站之間的實際地理距離,形成距離矩陣。然後, 採用多維尺度分析(MDS)方法將距離矩陣轉換為 2D 平面坐標。最後,使用 Dash 框架繪製互動式圖表,展示 MDS 降維結果。圖表中標記各火車站的位 置,並添加互動功能,使使用者可以放大、縮小和移動圖表,便於詳細觀察和 分析。

針對 t-SNE 方法:

首先,根據 Drink Dataset,以 DataFrame 形式隨機生成指定數量的數據,包含四個特徵欄位 (Drink, Rank, Amount, Quantity) 和一個類別欄位 (Class)。對名目型欄位 Drink 進行 One-hot encoding 編碼和屬性值相似度處理。在進行距離計算之前,對所有特徵進行正規化,以確保不同特徵的值處於相同的尺度上。接著,利用 t-SNE 方法將處理後的高維數據降至 2D 平面,分別展示 One-hot encoding 和屬性值相似度處理後的數據在 t-SNE 降維後的可視化效果。最後,通過比較兩種處理方法在 t-SNE 降維可視化中的表現,分析它們對最終結果的影響及其優劣。所有可視化結果將透過 Dash 框架呈現,提供互動式展示。

三、 實驗

3.1 資料集

本研究使用兩個不同的資料集進行降維處理:火車站經緯度資料集和 Drink Dataset。火車站經緯度資料集包含了台北火車站、新竹火車站、台中火車站、 斗六火車站、高雄火車站、花蓮玉里、台東知本的具體經緯度訊息,如表1所 示。另一方面,Drink Dataset 包含7種不同品牌的飲料,其中包含 Class、 Drink、Rank、Amount、Quantiy 等特徵,如表 2 所示。

表 1、火車站經緯度 dataset

火車站	經度	緯度
Taipei	121.5170416140462	25.048144340471694
Hsinchu	120.97218465041708	24.803620504236306
Taichung	120.68502265782085	24.136965842698647
Douliu	120.54100869869137	23.71194174320373
Kaohsiung	120.30263663949066	22.63967061761657
Hualien	121.31177017259222	23.331693127455807
Taitung	121.06074805573594	22.710408169564232

表 2、Drink dataset

Class	Drink	Rank	Amount $(N(\mu, \sigma))$	Quantity	Count
A	7Up	7	(100, 200)	Random(500, 1000)	100
В	Sprite	6	(200, 10)	Random(500, 1000)	200
С	Pepsi	5	(200, 10)	Random(500, 1000)	100
D	Coke	4	(400, 100)	Random(500, 1000)	400
Е	Cappuccino	3	(800, 10)	Random(1, 500)	400
F	Espresso	2	(800, 10)	Random(1, 500)	200
G	Latte	1	(900, 400)	Random(1, 500)	100

3.2 前置處理

本研究在 MDS、t-SNE 方法上進行了不同的前置處理,以下將針對兩種方法進行說明。

針對 MDS 方法:

首先,定義車站的經緯度資訊後,將城市名稱和經緯度分別存儲在 cities 和 coords 中,接著透過 Haversine 方法計算城市之間的地理距離,並建構距離 矩陣以供後續的 MDS 方法以及 Dash 應用,如表 3 所示。

針對 t-SNE 方法:

在 t-SNE 方法中,採用了兩種不同的名目屬性處理方式,分別使用 One-hot encoding (獨熱編碼) 及 Word2Vec 處理。

在 One-hot encoding 處理部分,首先,定義了一個生成單個數據點的函數 generate_single_data_point,用於生成具有特定 Class、Drink、Rank、Amount 的 平均值和標準差、Quantiy 的範圍。接著,將 Amount 及 Quantiy 這兩列拆分成 單獨的特徵列,進行獨立處理。隨後,使用 One-hot encoding 方法對 Drink 欄位 進行編碼,且將其轉換為二進制(0 或 1)。最後,將獨熱編碼後的各個特徵合併,編碼結果如表 4 所示。

在 Word2Vec 處理部分,首先,設置隨機數種子並定義 Drink dataset,接著計算每種飲料的平均值數據,並針對 Rank、Amount、Quantity, Count 欄位進正規化處理,最後透過 Word2Vec 轉換飲料名稱為向量,並計算飲料之間的距離矩陣,以利於後續的 t-SNE 方法以及 Dash 應用,如表 5 所示。

	Taipei	Hsinchu	Taichung	Douliu	Kaohsiung	Hualien	Taitung
Taipei	0.00	61.30	131.69	178.46	294.91	191.99	264.05
Hsinchu	61.30	0.00	79.62	129.02	250.09	167.26	232.93
Taichung	131.69	79.62	0.00	49.48	171.00	109.94	163.19
Douliu	178.46	129.02	49.48	0.00	121.70	89.24	123.38
Kaohsiung	294.91	250.09	171.00	121.70	0.00	128.81	78.18
Hualien	191.99	167.25	109.94	89.24	128.81	0.00	73.71
Taitung	264.05	232.93	163.19	123.38	78.18	73.71	0.00

表 3、火車站經緯度之距離矩陣

表 4、應用獨熱編碼於 Drink dataset 結果

	7Up	Sprite	Pepsi	Coke	Cappuccino	Espresso	Latte
0	1	0	0	0	0	0	0
1	0	0	0	0	0	0	1
2	0	0	0	0	0	1	0
3	0	0	1	0	0	0	0
4	0	1	0	0	0	0	0
5	0	0	0	1	0	0	0
6	0	0	0	0	1	0	0

表 5、應用 Word2Vec 於 Drink Dataset 之距離矩陣

	7Up	Sprite	Pepsi	Coke	Cappuccino	Espresso	Latte
7Up	0.000000	1.017510	1.071149e+00	3.007474	4.336312	3.974350	4.514016
Sprite	1.017510	0.000000	9.728307e-01	2.003688	3.555650	3.425595	4.097352
Pepsi	1.071149	0.972831	4.214685e-08	2.547805	3.745725	3.168252	3.644110
Coke	3.007474	2.003688	2.547805e+00	0.000000	2.404297	3.007392	3.887165
Cappuccino	4.336312	3.555650	3.745725e+00	2.404297	0.000000	1.713040	2.660979
Espresso	3.974350	3.425595	3.168252e+00	3.007392	1.713040	0.000000	1.082886
Latte	4.514016	4.097352	3.644110e+00	3.887165	2.660979	1.082886	0.000000

3.3 實驗設計

本研究採用 MDS 以及 t-SNE 方法實現資料集維度縮減任務,並搭配 Dash 技術進行互動式操作。

針對 MDS 方法:

首先,蒐集目標的七個火車站經緯度資訊並進行定義,以 cities、coords 變

數儲存城市名稱和經緯度,接著引入 sklearn.manifold.MDS、Dash、plotly.graph_objs、json 等函式庫來進行後續操作,透過 Haversine 計算出城市之間的地理距離,並構建距離矩陣,並使用 MDS 將距離矩陣轉換為二維坐標,以便可視化,且為了增加互動式操作,使用 Dash 技術建立網頁應用,並定義回調函數,呈現在圖表上移動、點擊、選擇時顯示的數據,提升與資料點的互動性。

針對 t-SNE 方法:

首先,分為兩種不同的名目屬性處理方式進行:在 One-hot encoding 處理部分,首先,使用不同類別的飲料特徵值及數值範圍生成了一組虛擬的資料集,且使用隨機種子確保每次生成資料一致,以便之後的分析。接著,使用One-hot encoding 將飲料類別進行編碼,並將編碼後的特徵與其他數值特徵結合。然後,應用 t-SNE 演算法將多維特徵降維到二維,以便後續的可視化。最後,在 Dash 應用的設置方面,包含一個散布圖用於顯示 t-SNE 降維後的結果,以及三個用於顯示懸停、點擊和選擇互動數據的區域。

在 Word2Vec 處理部分,先針對 Drink Dataset 進行定義,且為了確保結果相同,設置固定隨機數種子為 40。接著進行 Amount 和 Quantity 數據計算,並針對 Rank、Amount、Quantity,Count 欄位進正規化處理,最後透過 Word2Vec轉換飲料名稱為向量,並計算飲料之間的距離矩陣,接著使用 t-SNE 方法,降維到二維空間,並將 perplexity 超參數值設為 2,更好地捕捉每種飲料之間的局部相似性。在 Dash 應用部分,定義回調函數包含,圖像上移動、點擊、選擇,提升與資料點的互動性和資料易讀性。

3.4 實驗結果

針對 MDS 方法:

如圖 1 所示,在圖像上進行移動、點擊、選擇,皆可與圖像產生互動,且根據本研究比對發現,資料點的位置與 Google Map 上實際的車站位置相同,因此在火車站經緯度 dataset 上,成功實現 MDS 降緯度任務以及 Dash 的應用。

針對 t-SNE 方法:

在 One-hot encoding 的名目資料處理部分,如表 6 所示為最終結果座標, 及圖 2 所示,最終結果顯示了降維後的數據分布情況,由圖可知,各數據點的 分布相對較為鬆散,表示使用獨熱編碼進行降維的效果並不理想,因為它未能 很好地捕捉和保留數據點之間的關係。

在 Word2Vec 名目屬性處理部分,如圖 3 所示,可以發現相似度高的品項 會聚集在附近,成功實現 t-SNE 降緯度任務,且因為同樣使用了 Dash 方法,因 此在圖像上進行移動、點擊、選擇,皆可與圖像產生互動。

在表 7 部分以選擇為例,使用 Box Select 工具進行框選動作,被框選的資料點情報會呈現在下方的 Selection Data 資訊中,包含資料點的名稱、顏色、(x,y)等。

圖 1、Dash 圖像:火車站經緯度 dataset

Drink	T-SNE1	T-SNE2
7Up	-29.594	60.112
Sprite	-45.997	11.892
Pepsi	20.369	70.019
Coke	53.929	31.704
Cappuccino	-12.437	-26.423
Espresso	3.966	21.798
Latte	37.524	-16.518

圖 2、應用獨熱編碼與 t-SNE 降維的結果可視化

圖 3、應用 Word2Vec 編碼與 t-SNE 降維的結果可視化

框選 Sprite、Coke:

Selection Data 資訊:

```
Selection Data Choose the lasso or rectangle tool in the graph's menu bar and then select points in the graph.

{
    "points": [
        "curveNumben": 0,
        "pointIndew": 1,
        "pointIndew": 3,
        "y": 31.78538131713867,
        "text": "Sprite*,
        "marker.color": "green"
    }
    {
        "curveNumben": 0,
        "pointIndew": 3,
        "pointSumben": 3,
        "pointIndew": 3,
        "pointSumben": 3,
        "pointSumben": 9,
        "pointSumben": 9,
```

四、結論

本研究透過 MDS 以及 t-SNE 方法進行資料集維度縮減任務,皆將火車站經緯度 dataset、Drink dataset 降至二維,且在 t-SNE 方法部分,進行了不同名目屬性處理方式的比較,分別使用 One-hot encoding 以及 Word2Vec。

在 One-hot encoding 部分,從圖 2 中可以得出結論,獨熱編碼在某些情況下可能並不是最佳的特徵表示方法,尤其是在需要保持數據點之間關係的降維和可視化任務中。因此,使用獨熱編碼處理名目資料,會使各數據點的資料分布更分散。隨著數據量的增加,獨熱編碼的高維度特性可能會導致處理時間顯著延長,進一步降低了其在大規模數據集上的效率和實用性。

在 Word2Vec 部分則是呈現相似度高的品項聚在附近的現象,能夠有效地 捕捉屬性之間的語義相似度,從而使 t-SNE 在降維後能夠更好地保持這些語義 關係。

透過不同的處理方式比較,對 t-SNE 方法有了更多的認識,發現不同的名 目屬性處理方式對結果有顯著影響。且本研究搭配 Dash 技術,進行互動式操 作,如圖像上移動、點擊、選擇,使得使用者能夠更直觀地理解和探索數據。

使用者可以通過互動界面放大、縮小圖像,點擊特定點以查看其具體資訊,或框選多個點進行資訊比較,這樣的互動操作提升了數據分析的可視化效果,在未來的研究中,期望加入更多資料集的應用,以及嘗試不同的降緯度技術,並提升 Dash 技術的互動功能,加入更多自定義選項和分析工具,提升在數據探索過程中的體驗和效率。

參考文獻

chwang. (2024, January 13). *Data Visualization 資料視覺化-Python -Plotly 進階* 視覺化 — *Dash 教學(一)*. Medium. https://chwang12341.medium.com/data-visualization%E8%B3%87%E6%96%99%E8%A6%96%E8%A6%BA%E5%8C%96-python-plotly%E9%80%B2%E9%9A%8E%E8%A6%96%E8%A6%BA%E5%8C%96-dash%E6%95%99%E5%AD%B8-%E4%B8%80-c087c0008b78

hustqb. (2018, June 9). *T-SNE 实践——Sklearn 教程*. CSDN 博客. https://blog.csdn.net/hustqb/article/details/80628721

lyn5284767. (2018, August 8). 机器学习-降维算法(MDS 算法). CSDN 博客. https://blog.csdn.net/hustqb/article/details/80628721

Python: How to Get Data from Linked Brushes in Mlpd3, Bokeh, Plotly? (n.d.).

Stack Overflow. https://stackoverflow.com/questions/44531241/python-how-to-get-data-from-linked-brushes-in-mlpd3-bokeh-plotly

Stack Overflow. (n.d.). *Python: How to get data from linked brushes in mlpd3*,

**Bokeh, Plotly? Retrieved June 12, 2024, from

https://stackoverflow.com/questions/44531241/python-how-to-get-data-from-linked-brushes-in-mlpd3-bokeh-plotly