Chapitre 4 Diviser pour régner

HLIN401 : Algorithmique et complexité

L2 Informatique Université de Montpellier 2020 – 2021

1. Premier exemple : tri fusion

2. Qu'est-ce que « diviser pour régner »?

3. Deuxième exemple : multiplication d'entiers

4. Exemple spécial : Calcul de rang

MERGE SÖRT

idea-instructions.com/merge-sort/ v1.1, CC by-nc-sa 4.0


```
\begin{array}{l} \textbf{Algorithme}: \mathsf{TRIFUSION}(T) \\ n \leftarrow \mathsf{taille}(T) \\ \textbf{si} \ n \leq 1: \mathbf{renvoyer} \ T \\ \textbf{sinon}: \\ & \boxed{T_1 \leftarrow \mathsf{TRIFUSION}(T_{[0,\lfloor n/2\rfloor,n[)}) \\ T_2 \leftarrow \mathsf{TRIFUSION}(T_{[\lfloor n/2\rfloor,n[)}) \\ \mathbf{renvoyer} \ \mathsf{FUSION}(T_1,T_2) \end{array}}
```

```
10 5 2 4 3 7 6 4
```


Lemme

Soit t(n) la complexité de TriFusion et F(n) la complexité de Fusion. Alors

$$t(n) = egin{cases} O(1) & ext{si } n \leq 1 \ t(\lfloor n/2
floor) + t(\lceil n/2
ceil) + F(n) + O(1) & ext{sinon} \end{cases}$$

renvoyer S

```
Algorithme: FUSION(T_1, T_2)
n_1 \leftarrow \mathsf{taille}(T_1) \; ; \; n_2 \leftarrow \mathsf{taille}(T_2)
S \leftarrow \text{tableau de taille } n_1 + n_2
i_1 \leftarrow 0: i_2 \leftarrow 0
pour i_5 = 0 à n_1 + n_2 - 1:
     si i_2 \geq n_2 ou (i_1 < n_1 et T_{1[i_1]} \leq T_{2[i_2]}):
           S_{[is]} \leftarrow T_{1[i_1]}
           i_1 \leftarrow i_1 + 1
     sinon: // i_1 \ge n_1 ou T_{1[i_1]} > T_{2[i_2]}
           S_{[is]} \leftarrow T_{2[is]}
          i_2 \leftarrow i_2 + 1
```

Idée de l'algorithme

- $ightharpoonup T_1$ et T_2 vus comme des **piles**
- ► *S* vu comme une file
- À chaque itération,
 - on dépile la plus petite des deux têtes
 - ightharpoonup on l'ajoute à S
- Quand une des piles est vide, on dépile l'autre

```
Algorithme: FUSION(T_1, T_2)
n_1 \leftarrow \mathsf{taille}(T_1); n_2 \leftarrow \mathsf{taille}(T_2)
S \leftarrow \text{tableau de taille } n_1 + n_2
i_1 \leftarrow 0: i_2 \leftarrow 0
pour i_S = 0 à n_1 + n_2 - 1:
     si i_2 \ge n_2 ou (i_1 < n_1 \text{ et } T_{1[i_1]} \le T_{2[i_2]}):
           S_{[is]} \leftarrow T_{1[i_1]}
           i_1 \leftarrow i_1 + 1
     sinon: // i_1 \ge n_1 ou T_{1[i_1]} > T_{2[i_2]}
          S_{[i_S]} \leftarrow T_{2[i_2]}
          i_2 \leftarrow i_2 + 1
renvoyer S
```



```
Algorithme: FUSION(T_1, T_2)
n_1 \leftarrow \mathsf{taille}(T_1); n_2 \leftarrow \mathsf{taille}(T_2)
S \leftarrow \text{tableau de taille } n_1 + n_2
i_1 \leftarrow 0: i_2 \leftarrow 0
pour i_S = 0 à n_1 + n_2 - 1:
     si i_2 \ge n_2 ou (i_1 < n_1 \text{ et } T_{1[i_1]} \le T_{2[i_2]}):
           S_{[is]} \leftarrow T_{1[i_1]}
           i_1 \leftarrow i_1 + 1
     sinon: // i_1 \ge n_1 ou T_{1[i_1]} > T_{2[i_2]}
          S_{[i_S]} \leftarrow T_{2[i_2]}
          i_2 \leftarrow i_2 + 1
renvoyer S
```



```
Algorithme: FUSION(T_1, T_2)
n_1 \leftarrow \mathsf{taille}(T_1); n_2 \leftarrow \mathsf{taille}(T_2)
S \leftarrow \text{tableau de taille } n_1 + n_2
i_1 \leftarrow 0: i_2 \leftarrow 0
pour i_S = 0 à n_1 + n_2 - 1:
     si i_2 \ge n_2 ou (i_1 < n_1 \text{ et } T_{1[i_1]} \le T_{2[i_2]}):
           S_{[is]} \leftarrow T_{1[i_1]}
           i_1 \leftarrow i_1 + 1
     sinon: // i_1 \ge n_1 ou T_{1[i_1]} > T_{2[i_2]}
          S_{[i_S]} \leftarrow T_{2[i_2]}
          i_2 \leftarrow i_2 + 1
renvoyer S
```



```
Algorithme: FUSION(T_1, T_2)
n_1 \leftarrow \mathsf{taille}(T_1); n_2 \leftarrow \mathsf{taille}(T_2)
S \leftarrow \text{tableau de taille } n_1 + n_2
i_1 \leftarrow 0: i_2 \leftarrow 0
pour i_S = 0 à n_1 + n_2 - 1:
     si i_2 \ge n_2 ou (i_1 < n_1 \text{ et } T_{1[i_1]} \le T_{2[i_2]}):
           S_{[is]} \leftarrow T_{1[i_1]}
           i_1 \leftarrow i_1 + 1
     sinon: // i_1 \ge n_1 ou T_{1[i_1]} > T_{2[i_2]}
          S_{[i_S]} \leftarrow T_{2[i_2]}
          i_2 \leftarrow i_2 + 1
renvoyer S
```



```
Algorithme: FUSION(T_1, T_2)
n_1 \leftarrow \mathsf{taille}(T_1); n_2 \leftarrow \mathsf{taille}(T_2)
S \leftarrow \text{tableau de taille } n_1 + n_2
i_1 \leftarrow 0: i_2 \leftarrow 0
pour i_S = 0 à n_1 + n_2 - 1:
     si i_2 \ge n_2 ou (i_1 < n_1 \text{ et } T_{1[i_1]} \le T_{2[i_2]}):
           S_{[is]} \leftarrow T_{1[i_1]}
           i_1 \leftarrow i_1 + 1
     sinon: // i_1 \ge n_1 ou T_{1[i_1]} > T_{2[i_2]}
          S_{[i_S]} \leftarrow T_{2[i_2]}
          i_2 \leftarrow i_2 + 1
renvoyer S
```



```
Algorithme: FUSION(T_1, T_2)
n_1 \leftarrow \mathsf{taille}(T_1); n_2 \leftarrow \mathsf{taille}(T_2)
S \leftarrow \text{tableau de taille } n_1 + n_2
i_1 \leftarrow 0: i_2 \leftarrow 0
pour i_S = 0 à n_1 + n_2 - 1:
     si i_2 \ge n_2 ou (i_1 < n_1 \text{ et } T_{1[i_1]} \le T_{2[i_2]}):
           S_{[is]} \leftarrow T_{1[i_1]}
           i_1 \leftarrow i_1 + 1
     sinon: // i_1 \ge n_1 ou T_{1[i_1]} > T_{2[i_2]}
          S_{[i_S]} \leftarrow T_{2[i_2]}
          i_2 \leftarrow i_2 + 1
renvoyer S
```



```
Algorithme: FUSION(T_1, T_2)
n_1 \leftarrow \mathsf{taille}(T_1); n_2 \leftarrow \mathsf{taille}(T_2)
S \leftarrow \text{tableau de taille } n_1 + n_2
i_1 \leftarrow 0: i_2 \leftarrow 0
pour i_S = 0 à n_1 + n_2 - 1:
     si i_2 \ge n_2 ou (i_1 < n_1 \text{ et } T_{1[i_1]} \le T_{2[i_2]}):
           S_{[is]} \leftarrow T_{1[i_1]}
           i_1 \leftarrow i_1 + 1
     sinon: // i_1 \ge n_1 ou T_{1[i_1]} > T_{2[i_2]}
          S_{[i_S]} \leftarrow T_{2[i_2]}
          i_2 \leftarrow i_2 + 1
renvoyer S
```



```
Algorithme: FUSION(T_1, T_2)
n_1 \leftarrow \mathsf{taille}(T_1); n_2 \leftarrow \mathsf{taille}(T_2)
S \leftarrow \text{tableau de taille } n_1 + n_2
i_1 \leftarrow 0: i_2 \leftarrow 0
pour i_S = 0 à n_1 + n_2 - 1:
     si i_2 \ge n_2 ou (i_1 < n_1 \text{ et } T_{1[i_1]} \le T_{2[i_2]}):
           S_{[is]} \leftarrow T_{1[i_1]}
           i_1 \leftarrow i_1 + 1
     sinon: // i_1 \ge n_1 ou T_{1[i_1]} > T_{2[i_2]}
          S_{[i_S]} \leftarrow T_{2[i_2]}
          i_2 \leftarrow i_2 + 1
renvoyer S
```



```
Algorithme: FUSION(T_1, T_2)
n_1 \leftarrow \mathsf{taille}(T_1); n_2 \leftarrow \mathsf{taille}(T_2)
S \leftarrow \text{tableau de taille } n_1 + n_2
i_1 \leftarrow 0: i_2 \leftarrow 0
pour i_S = 0 à n_1 + n_2 - 1:
     si i_2 \ge n_2 ou (i_1 < n_1 \text{ et } T_{1[i_1]} \le T_{2[i_2]}):
           S_{[is]} \leftarrow T_{1[i_1]}
           i_1 \leftarrow i_1 + 1
     sinon: // i_1 \ge n_1 ou T_{1[i_1]} > T_{2[i_2]}
          S_{[i_S]} \leftarrow T_{2[i_2]}
          i_2 \leftarrow i_2 + 1
renvoyer S
```



```
Algorithme: FUSION(T_1, T_2)
n_1 \leftarrow \mathsf{taille}(T_1); n_2 \leftarrow \mathsf{taille}(T_2)
S \leftarrow \text{tableau de taille } n_1 + n_2
i_1 \leftarrow 0: i_2 \leftarrow 0
pour i_S = 0 à n_1 + n_2 - 1:
     si i_2 \ge n_2 ou (i_1 < n_1 \text{ et } T_{1[i_1]} \le T_{2[i_2]}):
           S_{[is]} \leftarrow T_{1[i_1]}
           i_1 \leftarrow i_1 + 1
     sinon: // i_1 \ge n_1 ou T_{1[i_1]} > T_{2[i_2]}
          S_{[i_S]} \leftarrow T_{2[i_2]}
          i_2 \leftarrow i_2 + 1
renvoyer S
```



```
Algorithme: FUSION(T_1, T_2)
n_1 \leftarrow \mathsf{taille}(T_1) \; ; \; n_2 \leftarrow \mathsf{taille}(T_2)
S \leftarrow \text{tableau de taille } n_1 + n_2
i_1 \leftarrow 0: i_2 \leftarrow 0
pour i_5 = 0 à n_1 + n_2 - 1:
     si i_2 \ge n_2 ou (i_1 < n_1 \text{ et } T_{1[i_1]} \le T_{2[i_2]}):
           S_{[is]} \leftarrow T_{1[i_1]}
           i_1 \leftarrow i_1 + 1
     sinon: // i_1 \ge n_1 ou T_{1[i_1]} > T_{2[i_2]}
          S_{[is]} \leftarrow T_{2[is]}
          i_2 \leftarrow i_2 + 1
renvoyer S
```

Lemme

La complexité F(n) de FUSION est $O(n_1 + n_2)$. Preuve facile...

renvoyer S

```
Algorithme: FUSION(T_1, T_2)
n_1 \leftarrow \mathsf{taille}(T_1) \; ; \; n_2 \leftarrow \mathsf{taille}(T_2)
S \leftarrow \text{tableau de taille } n_1 + n_2
i_1 \leftarrow 0: i_2 \leftarrow 0
pour i_5 = 0 à n_1 + n_2 - 1:
     si i_2 \geq n_2 ou (i_1 < n_1 et T_{1[i_1]} \leq T_{2[i_2]}):
           S_{[is]} \leftarrow T_{1[i_1]}
           i_1 \leftarrow i_1 + 1
     sinon: // i_1 \ge n_1 ou T_{1[i_1]} > T_{2[i_2]}
           S_{[is]} \leftarrow T_{2[is]}
          i_2 \leftarrow i_2 + 1
```

Lemme

Si T_1 et T_2 sont deux tableaux triés (par ordre croissant), FUSION (T_1, T_2) renvoie un tableau trié contenant l'union des éléments de T_1 et T_2 .

```
Algorithme: FUSION(T_1, T_2)
n_1 \leftarrow \mathsf{taille}(T_1) \; ; \; n_2 \leftarrow \mathsf{taille}(T_2)
S \leftarrow \text{tableau de taille } n_1 + n_2
i_1 \leftarrow 0: i_2 \leftarrow 0
pour i_5 = 0 à n_1 + n_2 - 1:
     si i_2 \ge n_2 ou (i_1 < n_1 \text{ et } T_{1[i_1]} \le T_{2[i_2]}):
            S_{[is]} \leftarrow T_{1[i_1]}
            i_1 \leftarrow i_1 + 1
      sinon: // i_1 \ge n_1 ou T_{1[i_1]} > T_{2[i_2]}
           S_{[is]} \leftarrow T_{2[is]}
           i_2 \leftarrow i_2 + 1
```

renvoyer S

Lemme

Si T_1 et T_2 sont deux tableaux triés (par ordre croissant), FUSION(T_1 , T_2) renvoie un tableau trié contenant l'union des éléments de T_1 et T_2 .

Preuve rapide. Invariant \mathcal{P}_{is} : à l'entrée de l'itération is de la boucle,

- 1. $S_{[0,i_S[}$ contient les i_S plus petits éléments de $T_1 \cup T_2$ en ordre croissant
- 2. i_1 est l'indice du plus petit élément de T_1 non présent dans S
- 3. i_2 est l'indice du plus petit élément de T_2 non présent dans S

Retour sur le TRIFUSION

Théorème

L'algorithme TRIFUSION trie tout tableau de taille n en temps $O(n \log n)$.

Retour sur le TRIFUSION

Théorème

L'algorithme TRIFUSION trie tout tableau de taille n en temps $O(n \log n)$.

Preuve de correction par récurrence (facile!)

- ▶ Si $n \le 1$, OK
- ▶ Si n > 1, $\lfloor n/2 \rfloor \le \lceil n/2 \rceil < n$, donc T_1 et T_2 triés après appels récursifs. La correction de FUSION suffit à conclure.

```
\begin{aligned} & \textbf{Algorithme}: \mathsf{TRIFUSION}(T) \\ & n \leftarrow \mathsf{taille}(T) \\ & \textbf{si} \; n \leq 1: \mathbf{renvoyer} \; T \\ & \textbf{sinon}: \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &
```

Retour sur le TRIFUSION

Théorème

L'algorithme TRIFUSION trie tout tableau de taille n en temps $O(n \log n)$.

Preuve de correction par récurrence (facile!)

- ▶ Si $n \le 1$, OK
- ▶ Si n > 1, $\lfloor n/2 \rfloor \leq \lceil n/2 \rceil < n$, donc T_1 et T_2 triés après appels récursifs. La correction de FUSION suffit à conclure.

Preuve de complexité (étapes)

- **Équation de récurrence** : $t(n) \le 2t(\lceil n/2 \rceil) + O(n)$
- ► Arbre de récursion → estimation du temps de calcul
- Preuve par récurrence de l'estimation

```
\begin{aligned} & \textbf{Algorithme}: \mathsf{TRiFUSION}(T) \\ & n \leftarrow \mathsf{taille}(T) \\ & \textbf{si} \; n \leq 1: \mathsf{renvoyer} \; T \\ & \textbf{sinon}: \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &
```

TRIFUSION : idée de la complexité, arbre de récursion

▶ Soit c une constante telle que $F(n) \le cn$ (FUSION) Temps (approximatif) < cn Hauteur: log n $(1) \cdots \rightarrow \leq n \times c(1) = cn$

TRIFUSION : idée de la complexité, arbre de récursion

log n

Soit c une constante telle que $F(n) \le cn$ (FUSION)

Temps (approximatif) $\le cn$ $\le 2 \times c(n/2) = cn$ Hauteur:

▶ En tout, l'algo a une complexité approximative de $cn \log n$, c'est-à-dire $O(n \log n)$

----- < 4 × c(n/4) = cn

- ▶ On note $F(n) \le cn$
- ightharpoonup On note t(n) le nombre total d'opérations élémentaires effectuées par TRIFUSION appelé sur un tableau de taille n.

- ▶ On note $F(n) \le cn$
- On note t(n) le nombre total d'opérations élémentaires effectuées par TRIFUSION appelé sur un tableau de taille n.
- **Étape 1**: on démontre la propriété $\mathcal{P}_k = \ll t(2^k) \le c(k+1)2^k \gg \text{pour } k \ge 0$

- ▶ On note $F(n) \le cn$
- On note t(n) le nombre total d'opérations élémentaires effectuées par TRIFUSION appelé sur un tableau de taille n.
- **Étape 1**: on démontre la propriété $\mathcal{P}_k = \ll t(2^k) \le c(k+1)2^k \gg \text{pour } k \ge 0$
 - $ightharpoonup \mathcal{P}_0$ est vraie.
 - ▶ Supposons \mathcal{P}_{k-1} vraie, alors pour k on a :

$$t(2^k) \le c2^k + 2t(2^{k-1})$$
 (éq. de réc.)

- ▶ On note $F(n) \le cn$
- On note t(n) le nombre total d'opérations élémentaires effectuées par TRIFUSION appelé sur un tableau de taille n.
- **Étape 1**: on démontre la propriété $\mathcal{P}_k = \ll t(2^k) \le c(k+1)2^k \gg \text{pour } k \ge 0$
 - $ightharpoonup \mathcal{P}_0$ est vraie.
 - Supposons \mathcal{P}_{k-1} vraie, alors pour k on a :

$$t(2^k) \le c2^k + 2t(2^{k-1})$$
 (éq. de réc.)
 $\le c2^k + 2(ck2^{k-1})$ (hyp. de réc.)

- ▶ On note $F(n) \le cn$
- On note t(n) le nombre total d'opérations élémentaires effectuées par TRIFUSION appelé sur un tableau de taille n.
- **Étape 1**: on démontre la propriété $\mathcal{P}_k = \ll t(2^k) \le c(k+1)2^k \gg \text{pour } k \ge 0$
 - $ightharpoonup \mathcal{P}_0$ est vraie.
 - ▶ Supposons \mathcal{P}_{k-1} vraie, alors pour k on a :

$$t(2^k) \le c2^k + 2t(2^{k-1})$$
 (éq. de réc.)
 $\le c2^k + 2(ck2^{k-1})$ (hyp. de réc.)
 $\le c2^k + ck2^k$
 $< c(k+1)2^k$

- ▶ On note $F(n) \le cn$
- On note t(n) le nombre total d'opérations élémentaires effectuées par TRIFUSION appelé sur un tableau de taille n.
- **Étape 1**: on démontre la propriété $\mathcal{P}_k = \ll t(2^k) \le c(k+1)2^k \gg \text{pour } k \ge 0$
- **Étape 2**: on démontre la propriété $Q_n = \ll t(n) \le 4cn \log(2n) \gg \text{pour } n \ge 1$

- ▶ On note $F(n) \le cn$
- On note t(n) le nombre total d'opérations élémentaires effectuées par TRIFUSION appelé sur un tableau de taille n.
- **Étape 1**: on démontre la propriété $\mathcal{P}_k = \ll t(2^k) \le c(k+1)2^k \gg \text{pour } k \ge 0$
- **Étape 2** : on démontre la propriété $Q_n = \ll t(n) \le 4cn \log(2n) \gg \text{pour } n \ge 1$
 - Pour *n* quelconque, il existe *k* tel que $n \le 2^k < 2n$
 - ▶ Donc $t(n) \le t(2^k) \le c(k+1)2^k$ par l'étape 1

- ▶ On note $F(n) \le cn$
- On note t(n) le nombre total d'opérations élémentaires effectuées par TRIFUSION appelé sur un tableau de taille n.
- **Étape 1** : on démontre la propriété $\mathcal{P}_k = \ll t(2^k) \le c(k+1)2^k \gg \mathsf{pour}\ k \ge 0$
- **Étape 2** : on démontre la propriété $Q_n = \ll t(n) \le 4cn \log(2n) \gg \text{pour } n \ge 1$
 - Pour *n* quelconque, il existe *k* tel que $n \le 2^k < 2n$
 - ▶ Donc $t(n) \le t(2^k) \le c(k+1)2^k$ par l'étape 1
 - Or $k+1 = \log(2^{k+1}) \le \log(2 \times 2n) = \log(2n) + 1$

- ▶ On note $F(n) \le cn$
- On note t(n) le nombre total d'opérations élémentaires effectuées par TRIFUSION appelé sur un tableau de taille n.
- **Étape 1** : on démontre la propriété $\mathcal{P}_k = \ll t(2^k) \le c(k+1)2^k \gg \mathsf{pour}\ k \ge 0$
- **Étape 2** : on démontre la propriété $Q_n = \ll t(n) \le 4cn\log(2n) \gg \text{pour } n \ge 1$
 - ▶ Pour *n* quelconque, il existe *k* tel que $n \le 2^k < 2n$
 - ▶ Donc $t(n) \le t(2^k) \le c(k+1)2^k$ par l'étape 1
 - Or $k+1 = \log(2^{k+1}) \le \log(2 \times 2n) = \log(2n) + 1$
 - D'où $c(k+1)2^k \le c(\log(2n)+1)(2n) = 2cn(\log(2n)+1)$

- ▶ On note $F(n) \le cn$
- On note t(n) le nombre total d'opérations élémentaires effectuées par TRIFUSION appelé sur un tableau de taille n.
- **Étape 1** : on démontre la propriété $\mathcal{P}_k = \ll t(2^k) \le c(k+1)2^k \gg \mathsf{pour} \ k \ge 0$
- **Étape 2** : on démontre la propriété $Q_n = \ll t(n) \le 4cn\log(2n) \gg \text{pour } n \ge 1$
 - ▶ Pour *n* quelconque, il existe *k* tel que $n \le 2^k < 2n$
 - lacksquare Donc $t(n) \leq t(2^k) \leq c(k+1)2^k$ par l'étape 1
 - Or $k+1 = \log(2^{k+1}) \le \log(2 \times 2n) = \log(2n) + 1$
 - D'où $c(k+1)2^k \le c(\log(2n)+1)(2n) = 2cn(\log(2n)+1)$

- ▶ On note $F(n) \le cn$
- On note t(n) le nombre total d'opérations élémentaires effectuées par TRIFUSION appelé sur un tableau de taille n.
- **Étape 1** : on démontre la propriété $\mathcal{P}_k = \ll t(2^k) \le c(k+1)2^k \gg \mathsf{pour}\ k \ge 0$
- **Étape 2** : on démontre la propriété $Q_n = \ll t(n) \le 4cn\log(2n) \gg \text{pour } n \ge 1$
 - ▶ Pour *n* quelconque, il existe *k* tel que $n \le 2^k < 2n$
 - lacksquare Donc $t(n) \leq t(2^k) \leq c(k+1)2^k$ par l'étape 1
 - Or $k+1 = \log(2^{k+1}) \le \log(2 \times 2n) = \log(2n) + 1$
 - D'où $c(k+1)2^k \le c(\log(2n)+1)(2n) = 2cn(\log(2n)+1)$
- Arg... C'est un peu fastidieux...

- ▶ On note $F(n) \le cn$
- On note t(n) le nombre total d'opérations élémentaires effectuées par TRIFUSION appelé sur un tableau de taille n.
- **Étape 1** : on démontre la propriété $\mathcal{P}_k = \ll t(2^k) \le c(k+1)2^k \gg \mathsf{pour}\ k \ge 0$
- **Étape 2** : on démontre la propriété $Q_n = \ll t(n) \le 4cn\log(2n) \gg \text{pour } n \ge 1$
 - ▶ Pour *n* quelconque, il existe *k* tel que $n \le 2^k < 2n$
 - lacksquare Donc $t(n) \leq t(2^k) \leq c(k+1)2^k$ par l'étape 1
 - Or $k+1 = \log(2^{k+1}) \le \log(2 \times 2n) = \log(2n) + 1$
 - D'où $c(k+1)2^k \le c(\log(2n)+1)(2n) = 2cn(\log(2n)+1)$
 - ▶ Donc $t(n) \le 2cn(\log(2n) + 1) \le 4cn\log(2n)$
- ► Arg... C'est un peu fastidieux...
- ▶ Remarque : on a utilisé $t(n) \le t(m)$ pour $n \le m$.

1. Premier exemple: tri fusion

2. Qu'est-ce que « diviser pour régner »?

3. Deuxième exemple : multiplication d'entiers

4. Exemple spécial : Calcul de rang

- 1. **Diviser** le problème en sous-problèmes
- 2. Résoudre récursivement ces sous-problèmes
- 3. Combiner les solutions pour reconstruire la solution du problème original.

- 1. Diviser le problème en sous-problèmes
- 2. Résoudre récursivement ces sous-problèmes
- 3. Combiner les solutions pour reconstruire la solution du problème original.
- Stratégie principalement utilisée pour obtenir de meilleures complexités que celles données par un algorithme moins évolué.

- 1. Diviser le problème en sous-problèmes
- 2. Résoudre récursivement ces sous-problèmes
- 3. Combiner les solutions pour reconstruire la solution du problème original.
- Stratégie principalement utilisée pour obtenir de meilleures complexités que celles données par un algorithme moins évolué.
- Exemple : la recherche dichotomique

- 1. Diviser le problème en sous-problèmes
- 2. Résoudre récursivement ces sous-problèmes
- 3. Combiner les solutions pour reconstruire la solution du problème original.
- Stratégie principalement utilisée pour obtenir de meilleures complexités que celles données par un algorithme moins évolué.
- Exemple : la recherche dichotomique

- 1. Diviser le tableau en 2 sous-tableaux de tailles environ égales
- 2. Trier récursivement chaque sous-tableau
- 3. Fusionner les sous-tableaux triés

Récurrence(s) sur la taille du problème

Récurrence(s) sur la taille du problème

► Preuve de correction

Récurrence(s) sur la taille du problème

- Preuve de correction
- Complexité :
 - 1. Établir l'équation de récurrence
 - 2. Estimer le résultat (arbre de récursion, déroulement de la récurrence, habitude, ...)
 - 3. Preuve par récurrence

Récurrence(s) sur la taille du problème

- Preuve de correction
- Complexité :
 - 1. Établir l'équation de récurrence
 - 2. Estimer le résultat (arbre de récursion, déroulement de la récurrence, habitude, ...)
 - 3. Preuve par récurrence

ou

2-3. Utiliser le *master theorem*!

Théorème

S'il existe trois entiers $a \ge 0$, b > 1, $d \ge 0$ et $n_0 > 0$ tels que pour tout $n \ge n_0$,

$$T(n) \leq aT(\lceil n/b \rceil) + O(n^d)$$

Alors

$$T(n) = \begin{cases} O(n^d) & \text{si } b^d > a \\ O(n^d \log n) & \text{si } b^d = a \\ O(n^{\frac{\log a}{\log b}}) & \text{si } b^d < a \end{cases}$$

Théorème

S'il existe trois entiers $a \ge 0$, b > 1, $d \ge 0$ et $n_0 > 0$ tels que pour tout $n \ge n_0$,

$$T(n) \leq aT(\lceil n/b \rceil) + O(n^d)$$

Alors

$$T(n) = \begin{cases} O(n^d) & \text{si } b^d > a \\ O(n^d \log n) & \text{si } b^d = a \\ O(n^{\frac{\log a}{\log b}}) & \text{si } b^d < a \end{cases}$$

$$ightharpoonup T(n) \leq 2T(\lceil n/2 \rceil]) + O(n)$$

Théorème

S'il existe trois entiers $a \ge 0$, b > 1, $d \ge 0$ et $n_0 > 0$ tels que pour tout $n \ge n_0$,

$$T(n) \leq aT(\lceil n/b \rceil) + O(n^d)$$

Alors

$$T(n) = \begin{cases} O(n^d) & \text{si } b^d > a \\ O(n^d \log n) & \text{si } b^d = a \\ O(n^{\frac{\log a}{\log b}}) & \text{si } b^d < a \end{cases}$$

$$T(n) \le 2T(\lceil n/2 \rceil]) + O(n) : a = 2, b = 2, d = 1$$

Théorème

S'il existe trois entiers $a \ge 0$, b > 1, $d \ge 0$ et $n_0 > 0$ tels que pour tout $n \ge n_0$,

$$T(n) \leq aT(\lceil n/b \rceil) + O(n^d)$$

Alors

$$T(n) = \begin{cases} O(n^d) & \text{si } b^d > a \\ O(n^d \log n) & \text{si } b^d = a \\ O(n^{\frac{\log a}{\log b}}) & \text{si } b^d < a \end{cases}$$

- $T(n) \le 2T(\lceil n/2 \rceil] + O(n) : a = 2, b = 2, d = 1$
- $b^d = a \rightsquigarrow T(n) = O(n^d \log n) = O(n \log n)$

Preuve graphique

Preuve graphique

En pratique

- ► Versions plus générales du « master theorem »
 - ► Récurrences plus générales
 - ► Constantes des « grands O »
 - ► Termes de plus bas degré

En pratique

- ► Versions plus générales du « master theorem »
 - Récurrences plus générales
 - ► Constantes des « grands O »
 - Termes de plus bas degré
- ▶ Dans ce cours : étude de plusieurs exemples
 - ► Utilisation autorisée du « master theorem »
 - ... donc à apprendre!

En pratique

- Versions plus générales du « master theorem »
 - Récurrences plus générales
 - Constantes des « grands O »
 - ► Termes de plus bas degré
- ▶ Dans ce cours : étude de plusieurs exemples
 - ► Utilisation autorisée du « master theorem »
 - ... donc à apprendre!

Objectifs:

- Savoir tenter un « diviser pour régner »
- Savoir analyser sa complexité
- ► Reconnaître un algo. « diviser pour régner »

1. Premier exemple: tri fusion

2. Qu'est-ce que « diviser pour régner »?

3. Deuxième exemple : multiplication d'entiers

4. Exemple spécial : Calcul de rang

⚠ On se place dans le modèle RAM

Multiplication d'entiers

Entrée Deux entiers A et B écrits en base 10

Sortie L'entier $C = A \times B$, en base 10

⚠On se place dans le modèle RAM

Multiplication d'entiers

Entrée Deux entiers A et B écrits en base 10 Sortie L'entier $C = A \times B$, en base 10

				1	3	8	2	
×				7	6	3	4	
				5	5	2	8	
+			4	1	4	6		
+		8	2	9	2			
+	Ç	6	7	4				
	1 (5	5	0	1	8	8	

⚠ On se place dans le modèle RAM

Multiplication d'entiers

Entrée Deux entiers A et B écrits en base 10

Sortie L'entier $C = A \times B$, en base 10

Question

- Combien de multiplications chiffre à chiffre sont effectuées?
- Combien d'additions chiffre à chiffre sont effectuées ?

	1382
×	7634
	5528
+	4146
+	8292
+	9674
1	0550188

⚠ On se place dans le modèle RAM

Multiplication d'entiers

Entrée Deux entiers A et B écrits en base 10

Sortie L'entier $C = A \times B$, en base 10

Question

- Combien de multiplications chiffre à chiffre sont effectuées?
- ► Combien d'additions chiffre à chiffre sont effectuées ?

 $\rightsquigarrow O(n^2)$ multiplications et additions

1382	
\times 7634	
5528	
+ 4146	
+ 8292	
+ 9674	
10550188	

Multiplication d'entiers

Entrée Deux entiers A et B écrits en base 10

Sortie L'entier $C = A \times B$, en base 10

Question

- Combien de multiplications chiffre à chiffre sont effectuées?
- ► Combien d'additions chiffre à chiffre sont effectuées ?

 $\rightsquigarrow O(n^2)$ multiplications et additions

			`
Peut-on	faire	mieux ?	,

Entrée
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$

$$A = 1382, B = 7634$$

Entrée
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$
Diviser $A = A_0 + 10^{\lfloor n/2 \rfloor} A_1$
 $B = B_0 + 10^{\lfloor n/2 \rfloor} B_1$

$$A = 1382, B = 7634$$

 $A_1 = 13, A_0 = 82$
 $B_1 = 76, B_0 = 34$

Entrée
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$
Diviser $A = A_0 + 10^{\lfloor n/2 \rfloor} A_1$
 $B = B_0 + 10^{\lfloor n/2 \rfloor} B_1$
Récursion $C_{00} = A_0 \times B_0$, $C_{01} = A_0 \times B_1$
 $C_{10} = A_1 \times B_0$, $C_{11} = A_1 \times B_1$

$$A = 1382, B = 7634$$

 $A_1 = 13, A_0 = 82$
 $B_1 = 76, B_0 = 34$
 $C_{00} = 2788, C_{01} = 6232$
 $C_{10} = 442, C_{11} = 988$

Entrée
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$
Diviser $A = A_0 + 10^{\lfloor n/2 \rfloor} A_1$
 $B = B_0 + 10^{\lfloor n/2 \rfloor} B_1$
Récursion $C_{00} = A_0 \times B_0$, $C_{01} = A_0 \times B_1$
 $C_{10} = A_1 \times B_0$, $C_{11} = A_1 \times B_1$
Combiner $C = C_{00} + 10^{\lfloor n/2 \rfloor} (C_{01} + C_{10}) + 10^{2\lfloor n/2 \rfloor} C_{11}$

```
A = 1382, B = 7634
A_1 = 13, A_0 = 82
B_1 = 76, B_0 = 34
C_{00} = 2788, C_{01} = 6232
C_{10} = 442, C_{11} = 988
C = 2788 + 100 \cdot (6232 + 442) + 10000 \cdot 988
= 10550188
```

Entrée
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$
Diviser $A = A_0 + 10^{\lfloor n/2 \rfloor} A_1$
 $B = B_0 + 10^{\lfloor n/2 \rfloor} B_1$
Récursion $C_{00} = A_0 \times B_0$, $C_{01} = A_0 \times B_1$
 $C_{10} = A_1 \times B_0$, $C_{11} = A_1 \times B_1$

Combiner $C = C_{00} + 10^{\lfloor n/2 \rfloor} (C_{01} + C_{10}) + 10^{2 \lfloor n/2 \rfloor} C_{11}$

$$A = 1382, B = 7634$$
 $A_1 = 13, A_0 = 82$
 $B_1 = 76, B_0 = 34$
 $C_{00} = 2788, C_{01} = 6232$
 $C_{10} = 442, C_{11} = 988$
 $C = 2788 + 100 \cdot (6232 + 442) + 10000 \cdot 988$
 $= 10550188$

Preuve de correction :
$$AB = A_0B_0 + 10^{\lfloor n/2 \rfloor}(A_0B_1 + A_1B_0) + 10^{2\lfloor n/2 \rfloor}A_1B_1$$

Première tentative

Entrée
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$
Diviser $A = A_0 + 10^{\lfloor n/2 \rfloor} A_1$
 $B = B_0 + 10^{\lfloor n/2 \rfloor} B_1$
Récursion $C_{00} = A_0 \times B_0$, $C_{01} = A_0 \times B_1$
 $C_{10} = A_1 \times B_0$, $C_{11} = A_1 \times B_1$

Combiner $C = C_{00} + 10^{\lfloor n/2 \rfloor} (C_{01} + C_{10}) + 10^{2 \lfloor n/2 \rfloor} C_{11}$

$$A = 1382, B = 7634$$
 $A_1 = 13, A_0 = 82$
 $B_1 = 76, B_0 = 34$
 $C_{00} = 2788, C_{01} = 6232$
 $C_{10} = 442, C_{11} = 988$
 $C = 2788 + 100 \cdot (6232 + 442) + 10000 \cdot 988$
 $= 10550188$

Preuve de correction :
$$AB = A_0B_0 + 10^{\lfloor n/2 \rfloor}(A_0B_1 + A_1B_0) + 10^{2\lfloor n/2 \rfloor}A_1B_1$$

Preuve de complexité : $T(n) \le 4T(\lceil n/2 \rceil) + O(n)$

$$ightharpoonup a = 4, b = 2, d = 1 : b^d < a$$

$$T(n) = O(n^{\log a/\log b}) = O(n^{\log 4/\log 2}) = O(n^2)...$$

Idée de Karatsuba 1 (version Knuth)

$$A_0B_1 + A_1B_0 = A_0B_0 + A_1B_1 - (A_0 - A_1)(B_0 - B_1)$$

^{1.} Voir http://fr.wikipedia.org/wiki/Algorithme_de_Karatsuba a p + d p +

Idée de Karatsuba ¹ (version Knuth)

$$A_0B_1 + A_1B_0 = A_0B_0 + A_1B_1 - (A_0 - A_1)(B_0 - B_1)$$

▶ A_0B_0 et A_1B_1 sont calculés de toute façon \rightsquigarrow un seul produit en plus!

Idée de Karatsuba 1 (version Knuth)

$$A_0B_1 + A_1B_0 = A_0B_0 + A_1B_1 - (A_0 - A_1)(B_0 - B_1)$$

- ▶ A_0B_0 et A_1B_1 sont calculés de toute façon \leftrightarrow un seul produit en plus!
- ▶ $A_0 A_1$ possède (env.) n/2 chiffres... mais peut être négatif \rightsquigarrow règle des signes

Entrée
$$A=\sum_{i=0}^{n-1}a_i10^i$$
 et $B=\sum_{i=0}^{n-1}b_i10^i$

A = 1382, B = 7634

Entrée
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$
Diviser $A = A_0 + 10^{\lfloor n/2 \rfloor} A_1$
 $B = B_0 + 10^{\lfloor n/2 \rfloor} B_1$

$$A = 1382, B = 7634$$

 $A_1 = 13, A_0 = 82$
 $B_1 = 76, B_0 = 34$

Entrée
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$
Diviser $A = A_0 + 10^{\lfloor n/2 \rfloor} A_1$
 $B = B_0 + 10^{\lfloor n/2 \rfloor} B_1$
Récursion $C_{00} = A_0 \times B_0$, $C_{11} = A_1 \times B_1$

 $D = (A_0 - A_1) \times (B_0 - B_1)$

$$A = 1382, B = 7634$$

 $A_1 = 13, A_0 = 82$
 $B_1 = 76, B_0 = 34$
 $C_{00} = 2788, C_{11} = 988$
 $D = 69 \times (-42) = -2898$

Entrée
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$
Diviser $A = A_0 + 10^{\lfloor n/2 \rfloor} A_1$
 $B = B_0 + 10^{\lfloor n/2 \rfloor} B_1$
Récursion $C_{00} = A_0 \times B_0$, $C_{11} = A_1 \times B_1$
 $D = (A_0 - A_1) \times (B_0 - B_1)$
Combiner $C = C_{00} + 10^{\lfloor n/2 \rfloor} (C_{00} + C_{11} - D) + 10^{2\lfloor n/2 \rfloor} C_{11}$

```
A = 1382, B = 7634

A_1 = 13, A_0 = 82

B_1 = 76, B_0 = 34

C_{00} = 2788, C_{11} = 988

D = 69 \times (-42) = -2898

C = 2788 + 100 \cdot (2788 + 988 + 2898) + 10000 \cdot 988

= 10550188
```

Entrée
$$A = \sum_{i=0}^{n-1} a_i 10^i$$
 et $B = \sum_{i=0}^{n-1} b_i 10^i$
Diviser $A = A_0 + 10^{\lfloor n/2 \rfloor} A_1$
 $B = B_0 + 10^{\lfloor n/2 \rfloor} B_1$
Récursion $C_{00} = A_0 \times B_0$, $C_{11} = A_1 \times B_1$
 $D = (A_0 - A_1) \times (B_0 - B_1)$

Combiner $C = C_{00} + 10^{\lfloor n/2 \rfloor} (C_{00} + C_{11} - D) + 10^{2 \lfloor n/2 \rfloor} C_{11}$

$$A = 1382, B = 7634$$
 $A_1 = 13, A_0 = 82$
 $B_1 = 76, B_0 = 34$
 $C_{00} = 2788, C_{11} = 988$
 $D = 69 \times (-42) = -2898$
 $C = 2788 + 100 \cdot (2788 + 988 + 2898) + 10000 \cdot 988$
 $= 10550188$

Algorithme: KARATSUBA(A, B)

```
si A et B n'ont qu'un chiffre : renvoyer a_0b_0

Écrire A sous la forme A_0 + 10^{\lfloor n/2 \rfloor}A_1

Écrire B sous la forme B_0 + 10^{\lfloor n/2 \rfloor}B_1

C_{00} \leftarrow \mathsf{KARATSUBA}(A_0, B_0)

C_{11} \leftarrow \mathsf{KARATSUBA}(A_1, B_1)

D \leftarrow \mathsf{KARATSUBA}(|A_0 - A_1|, |B_0 - B_1|)

s \leftarrow \mathsf{signe}(A_0 - A_1) \times \mathsf{signe}(B_0 - B_1)

renvoyer C_{00} + 10^{\lfloor n/2 \rfloor}(C_{00} + C_{11} - sD) + 10^{2\lfloor n/2 \rfloor}C_{11}
```

Propriétés de l'algorithme de Karatsuba

Algorithme: Karatsuba(A, B)

si A et B n' ont qu' un chiffre: renvoyer a_0b_0 Écrire A sous la forme $A_0 + 10^{\lfloor n/2 \rfloor}A_1$ Écrire B sous la forme $B_0 + 10^{\lfloor n/2 \rfloor}B_1$ $C_{00} \leftarrow \text{Karatsuba}(A_0, B_0)$ $C_{11} \leftarrow \text{Karatsuba}(A_1, B_1)$ $D \leftarrow \text{Karatsuba}(|A_0 - A_1|, |B_0 - B_1|)$ $s \leftarrow \text{signe}(A_0 - A_1) \times \text{signe}(B_0 - B_1)$ renvoyer $C_{00} + 10^{\lfloor n/2 \rfloor}(C_{00} + C_{11} - sD) + 10^{2\lfloor n/2 \rfloor}C_{11}$

Lemme (correction)

$$A \times B = C_{00} + 10^{\lfloor n/2 \rfloor} (C_{00} + C_{11} - sD) + 10^{2\lfloor n/2 \rfloor} C_{11}$$

Preuve :
$$C_{00} + C_{11} - sD = A_0B_1 + A_1B_0$$

Corollaire

L'algorithme KARATSUBA est correct.

Propriétés de l'algorithme de Karatsuba

```
Algorithme: Karatsuba(A, B)

si A et B n' ont qu' un chiffre: renvoyer a_0b_0

Écrire A sous la forme A_0 + 10^{\lfloor n/2 \rfloor}A_1

Écrire B sous la forme B_0 + 10^{\lfloor n/2 \rfloor}B_1

C_{00} \leftarrow \text{Karatsuba}(A_0, B_0)

C_{11} \leftarrow \text{Karatsuba}(A_1, B_1)

D \leftarrow \text{Karatsuba}(|A_0 - A_1|, |B_0 - B_1|)

s \leftarrow \text{signe}(A_0 - A_1) \times \text{signe}(B_0 - B_1)

renvoyer C_{00} + 10^{\lfloor n/2 \rfloor}(C_{00} + C_{11} - sD) + 10^{2\lfloor n/2 \rfloor}C_{11}
```

Lemme (terminaison)

Pour n > 1, $|A_0 - A_1|$ et $|B_0 - B_1|$ ont < n chiffres.

Preuve: $-10^{\lceil n/2 \rceil} \le A_0 - A_1 \le 10^{\lfloor n/2 \rfloor}$ et $\lceil n/2 \rceil < n$ pour n > 1.

Corollaire

L'algorithme KARATSUBA termine.

Preuve : appels récursifs sur des entiers strictement plus petits

Propriétés de l'algorithme de Karatsuba

```
Algorithme: Karatsuba(A, B)

si A et B n'ont qu'un chiffre: renvoyer a_0b_0

Écrire A sous la forme A_0 + 10^{\lfloor n/2 \rfloor}A_1

Écrire B sous la forme B_0 + 10^{\lfloor n/2 \rfloor}B_1

C_{00} \leftarrow \text{Karatsuba}(A_0, B_0)

C_{11} \leftarrow \text{Karatsuba}(A_1, B_1)

D \leftarrow \text{Karatsuba}(|A_0 - A_1|, |B_0 - B_1|)

s \leftarrow \text{signe}(A_0 - A_1) \times \text{signe}(B_0 - B_1)

renvoyer C_{00} + 10^{\lfloor n/2 \rfloor}(C_{00} + C_{11} - sD) + 10^{2\lfloor n/2 \rfloor}C_{11}
```

Lemme (complexité)

Soit K(n) le temps de calcul de KARATSUBA pour des entrées de taille n. Alors $K(n) \leq 3K(\lceil n/2 \rceil) + O(n)$

Corollaire (master theorem)

$$K(n) = O(n^{\log 3/\log 2}) = O(n^{\log 3}) \simeq O(n^{1.58})$$

- ▶ Base $10 \rightsquigarrow \text{bases } 2^{32}, 2^{64}, \dots$
 - ▶ Grands entiers représentés comme liste d'entiers de taille k bits \iff entiers écrits en base 2^k !
 - ightharpoonup Exemple : gmp (C/C++), BigInteger (Java), int (Python)

- ▶ Base $10 \rightsquigarrow \text{bases } 2^{32}, 2^{64}, \dots$
 - ▶ Grands entiers représentés comme liste d'entiers de taille k bits \iff entiers écrits en base 2^k !
 - ightharpoonup Exemple : gmp (C/C++), BigInteger (Java), int (Python)

- ▶ Base $10 \rightsquigarrow \text{bases } 2^{32}, 2^{64}, \dots$
 - ▶ Grands entiers représentés comme liste d'entiers de taille k bits \iff entiers écrits en base 2^k !
 - ightharpoonup Exemple : gmp (C/C++), BigInteger (Java), int (Python)

- ▶ Base $10 \rightsquigarrow \text{bases } 2^{32}, 2^{64}, \dots$
 - ▶ Grands entiers représentés comme liste d'entiers de taille k bits \iff entiers écrits en base 2^k !
 - ightharpoonup Exemple : gmp (C/C++), BigInteger (Java), int (Python)

- ▶ Base $10 \rightsquigarrow \text{bases } 2^{32}, 2^{64}, \dots$
 - ▶ Grands entiers représentés comme liste d'entiers de taille k bits \iff entiers écrits en base 2^k !
 - ► Exemple : gmp (C/C++), BigInteger (Java), int (Python)
- ► Remarque par rapport au modèle
 - Modèle du cours (word RAM) : multiplication en temps O(1)
 - Irréaliste pour de grands entiers
 - Modèle souvent utilisé : taille d'un registre = $O(\log n)$

- ▶ Base $10 \rightsquigarrow \text{bases } 2^{32}, 2^{64}, \dots$
 - ▶ Grands entiers représentés comme liste d'entiers de taille k bits \iff entiers écrits en base 2^k !
 - ► Exemple : gmp (C/C++), BigInteger (Java), int (Python)
- ► Remarque par rapport au modèle
 - Modèle du cours (word RAM) : multiplication en temps O(1)
 - Irréaliste pour de grands entiers
 - Modèle souvent utilisé : taille d'un registre = $O(\log n)$
- Autre utilisation : polynômes

- ▶ Base $10 \rightsquigarrow \text{bases } 2^{32}, 2^{64}, \dots$
 - ▶ Grands entiers représentés comme liste d'entiers de taille k bits \iff entiers écrits en base 2^k !
 - ► Exemple : gmp (C/C++), BigInteger (Java), int (Python)
- Remarque par rapport au modèle
 - Modèle du cours (word RAM) : multiplication en temps O(1)
 - Irréaliste pour de grands entiers
 - ▶ Modèle souvent utilisé : taille d'un registre = $O(\log n)$
- Autre utilisation : polynômes
- ► Algorithmes plus rapides (1960's)
 - ► Toom-3 : découpe en 3 morceaux
 - ► Toom-Cook : découpe en *r* morceaux
 - Algorithmes basés sur la FFT

$$O(n^{1,465})$$
 $O(n^{1+\epsilon})$

 $O(n \log n \log \log n)$

- ▶ Base $10 \rightsquigarrow \text{bases } 2^{32}, 2^{64}, \dots$
 - ▶ Grands entiers représentés comme liste d'entiers de taille k bits \iff entiers écrits en base 2^k !
 - ► Exemple : gmp (C/C++), BigInteger (Java), int (Python)
- ► Remarque par rapport au modèle
 - Modèle du cours (word RAM) : multiplication en temps O(1)
 - Irréaliste pour de grands entiers
 - Modèle souvent utilisé : taille d'un registre = $O(\log n)$
- Autre utilisation : polynômes
- ► Algorithmes plus rapides (1960's)
 - ► Toom-3 : découpe en 3 morceaux
 - ► Toom-Cook : découpe en *r* morceaux
 - Algorithmes basés sur la FFT
 - ▶ 2021 : dernier mot ? (utilise la FFT)

$$O(n^{1,465})$$

$$O(n^{1+\epsilon})$$

$$O(n \log n \log \log n)$$

$$O(n \log n)$$

1. Premier exemple: tri fusion

2. Qu'est-ce que « diviser pour régner »?

3. Deuxième exemple : multiplication d'entiers

4. Exemple spécial : Calcul de rang

Définition et algorithmes \pm na $\ddot{\text{ifs}}$

Entrée Un tableau T de n nombres, et un entier $k \in \{1, ..., n\}$ Sortie le $k^{\text{ème}}$ plus petit élément de T, noté $\operatorname{rang}(k, T)$

Ex. : $k = 1 \rightsquigarrow \min$, $k = n \rightsquigarrow \max$, $k = n/2 \rightsquigarrow \text{m\'ediane}$

Définition et algorithmes \pm na $\ddot{\text{ifs}}$

```
Entrée Un tableau T de n nombres, et un entier k \in \{1, \ldots, n\}
Sortie le k^{\text{ème}} plus petit élément de T, noté \operatorname{rang}(k, T)
Ex. : k = 1 \rightsquigarrow \min, k = n \rightsquigarrow \max, k = n/2 \rightsquigarrow \text{médiane}
```

Algorithme en $O(n^2)$:

```
\begin{array}{c|c} \mathbf{pour} \ i = 0 \ \grave{a} \ n - 1 : \\ \hline c = 0 \\ \mathbf{pour} \ j = 0 \ \grave{a} \ n - 1 : \\ \hline \ \mathbf{si} \ T_{[j]} \leq T_{[i]} : c \leftarrow c + 1 \\ \hline \ \mathbf{si} \ c = k : \mathbf{renvoyer} \ T_{[i]} \end{array}
```

Définition et algorithmes \pm na \ddot{i} fs

Entrée Un tableau T de n nombres, et un entier $k \in \{1, ..., n\}$ Sortie le $k^{\text{ème}}$ plus petit élément de T, noté $\operatorname{rang}(k, T)$ Ex. : $k = 1 \rightsquigarrow \min$, $k = n \rightsquigarrow \max$, $k = n/2 \rightsquigarrow \text{médiane}$

Algorithme en $O(n^2)$:

Algorithme en $O(n \log n)$:

```
Trier T renvoyer T_{[k-1]}
```

Définition et algorithmes \pm na \ddot{i} fs

Entrée Un tableau T de n nombres, et un entier $k \in \{1, ..., n\}$ Sortie le $k^{\text{ème}}$ plus petit élément de T, noté $\operatorname{rang}(k, T)$ Ex. : $k = 1 \rightsquigarrow \min, k = n \rightsquigarrow \max, k = n/2 \rightsquigarrow \text{médiane}$

Algorithme en $O(n^2)$:

```
\begin{array}{l} \mathbf{pour} \ i = 0 \ \grave{a} \ n - 1 : \\ c = 0 \\ \mathbf{pour} \ j = 0 \ \grave{a} \ n - 1 : \\ \  \  \, \lfloor \ \mathbf{si} \ T_{[j]} \le T_{[i]} : c \leftarrow c + 1 \\ \  \  \, \mathbf{si} \ c = k : \mathbf{renvoyer} \ T_{[i]} \end{array}
```

Algorithme en $O(n \log n)$:

```
Trier T
renvoyer T_{[k-1]}
```

Algorithme en O(n)?

Diviser Choisir un **pivot** $p \in T$ pour séparer T en trois :

- ▶ T_{inf} contient les éléments x de T vérifiant x < p,
- ▶ T_{eq} contient les éléments x de T vérifiant x = p,
- ▶ T_{sup} contient les éléments x de T vérifiant x > p,

$$egin{aligned} oldsymbol{n}_{\mathsf{inf}} &= |T_{\mathsf{inf}}| \ oldsymbol{n}_{\mathsf{eq}} &= |T_{\mathsf{eq}}| \ oldsymbol{n}_{\mathsf{sup}} &= |T_{\mathsf{sup}}| \end{aligned}$$

Diviser Choisir un **pivot** $p \in T$ pour séparer T en trois :

- $ightharpoonup T_{inf}$ contient les éléments x de T vérifiant x < p,
- ▶ T_{eq} contient les éléments x de T vérifiant x = p,
- $ightharpoonup T_{\text{sup}}$ contient les éléments x de T vérifiant x > p,

$$egin{aligned} oldsymbol{n}_{\mathsf{inf}} &= |T_{\mathsf{inf}}| \ oldsymbol{n}_{\mathsf{eq}} &= |T_{\mathsf{eq}}| \ oldsymbol{n}_{\mathsf{sup}} &= |T_{\mathsf{sup}}| \end{aligned}$$

Exemple

$$pivot: T_{[1]} = 7$$

Diviser Choisir un **pivot** $p \in T$ pour séparer T en trois :

- ▶ T_{inf} contient les éléments x de T vérifiant x < p,
- ightharpoonup contient les éléments x de T vérifiant x=p,
- ightharpoonup contient les éléments x de T vérifiant x > p,

$$egin{aligned} oldsymbol{n}_{\mathsf{inf}} &= |\mathcal{T}_{\mathsf{inf}}| \ oldsymbol{n}_{\mathsf{eq}} &= |\mathcal{T}_{\mathsf{eq}}| \ oldsymbol{n}_{\mathsf{sup}} &= |\mathcal{T}_{\mathsf{sup}}| \end{aligned}$$

Exemple

$$T = [3 | 7 | 21 | 9 | 12 | 16 | 7 | 4 | 1 | 2]$$

$$pivot: T_{[1]} = 7$$

Diviser Choisir un **pivot** $p \in T$ pour séparer T en trois :

- ightharpoonup contient les éléments x de T vérifiant x < p,
- ightharpoonup contient les éléments x de T vérifiant x=p,
- ightharpoonup contient les éléments x de T vérifiant x > p,

$egin{aligned} oldsymbol{n}_{\mathsf{inf}} &= |T_{\mathsf{inf}}| \ oldsymbol{n}_{\mathsf{eq}} &= |T_{\mathsf{eq}}| \ oldsymbol{n}_{\mathsf{sup}} &= |T_{\mathsf{sup}}| \end{aligned}$

Exemple

$$T = \begin{bmatrix} 3 & 7 & 21 & 9 & 12 & 16 & 7 & 4 & 1 & 2 \end{bmatrix}$$

- $ightharpoonup T_{inf} = \boxed{3} \boxed{4} \boxed{1} \boxed{2}$
- $ightharpoonup T_{eq} = \boxed{7} \boxed{7}$
- $T_{\mathsf{sup}} = \boxed{21 \mid 9 \mid 12 \mid 16}$

$pivot: T_{[1]} = 7$

- $n_{\rm inf}=4$
- $n_{\rm eq}=2$
- $n_{\mathsf{sup}} = 4$

Du coup:

- $ightharpoonup rang(2, T) = rang(2, T_{inf})$
- ightharpoonup rang $(5, T) = T_{[1]}$ (pivot)
- $ightharpoonup rang(9, T) = rang(3, T_{sup})$

Diviser Choisir un **pivot** $p \in T$ pour séparer T en trois :

- ▶ T_{inf} contient les éléments x de T vérifiant x < p,
- $ightharpoonup T_{eq}$ contient les éléments x de T vérifiant x = p,
- T_{sup} contient les éléments x de T vérifiant x > p,

$$egin{aligned} oldsymbol{n}_{\mathsf{inf}} &= |T_{\mathsf{inf}}| \ oldsymbol{n}_{\mathsf{eq}} &= |T_{\mathsf{eq}}| \ oldsymbol{n}_{\mathsf{sup}} &= |T_{\mathsf{sup}}| \end{aligned}$$

Récursion Trouver rang(k, T) dans T_{inf} , T_{eq} ou T_{sup}

$$\operatorname{rang}(k,T) = \begin{cases} \operatorname{rang}(k,T_{\operatorname{inf}}) & \text{si } k \leq n_{\operatorname{inf}} \\ p & \text{si } n_{\operatorname{inf}} < k \leq n_{\operatorname{inf}} + n_{\operatorname{eq}} \\ \operatorname{rang}(k-n_{\operatorname{inf}}-n_{\operatorname{eq}},T_{\operatorname{sup}}) & \text{si } n_{\operatorname{inf}}+n_{\operatorname{eq}} < k \end{cases}$$

Combiner Rien à faire...

Diviser Choisir un **pivot** $p \in T$ pour séparer T en trois :

- $ightharpoonup T_{inf}$ contient les éléments x de T vérifiant x < p,
- ightharpoonup contient les éléments x de T vérifiant x = p,
- ightharpoonup contient les éléments x de T vérifiant x > p,

$$egin{aligned} oldsymbol{n}_{\mathsf{inf}} &= |T_{\mathsf{inf}}| \ oldsymbol{n}_{\mathsf{eq}} &= |T_{\mathsf{eq}}| \ oldsymbol{n}_{\mathsf{sup}} &= |T_{\mathsf{sup}}| \end{aligned}$$

Récursion Trouver rang(k, T) dans T_{inf} , T_{eq} ou T_{sup}

$$\operatorname{rang}(k,T) = \begin{cases} \operatorname{rang}(k,T_{\operatorname{inf}}) & \text{si } k \leq n_{\operatorname{inf}} \\ p & \text{si } n_{\operatorname{inf}} < k \leq n_{\operatorname{inf}} + n_{\operatorname{eq}} \\ \operatorname{rang}(k-n_{\operatorname{inf}}-n_{\operatorname{eq}},T_{\operatorname{sup}}) & \text{si } n_{\operatorname{inf}}+n_{\operatorname{eq}} < k \end{cases}$$

Combiner Rien à faire...

Question importante : quel choix pour le pivot?

L'algorithme

```
Algorithme: RANG(T, k)
si |T|=1: renvoyer T_{[0]}
p \leftarrow \mathsf{CHOIxPIVOT}(T)
n_{\rm inf} \leftarrow 0, \; n_{\rm eq} \leftarrow 0
pour i = 0 à n - 1:
                                                                               // Calcul de n_{\rm inf} et n_{\rm eq}
    \mathsf{si} \ T_{[i]} 
    sinon si T_{[i]} = p : n_{\mathsf{eq}} \leftarrow n_{\mathsf{eq}} + 1
si k < n_{inf}: Calculer T_{inf} et renvoyer RANG(T_{inf}, k)
sinon si n_{inf} < k \le n_{inf} + n_{eq}: renvoyer p
sinon: Calculer T_{\text{sup}} et renvoyer RANG(T_{\text{sup}}, k - n_{inf} - n_{eq})
```

Lemme

Lemme
$$\operatorname{rang}(k,T) = \begin{cases} \operatorname{rang}(k,T_{inf}) & \text{si } k \leq n_{inf} \\ p & \text{si } n_{inf} < k \leq n_{inf} + n_{eq} \\ \operatorname{rang}(k-n_{inf}-n_{eq},T_{sup}) & \text{si } n_{inf}+n_{eq} < k \end{cases}$$

Lemme

$$\operatorname{rang}(k,T) = \begin{cases} \operatorname{rang}(k,T_{inf}) & \text{si } k \leq n_{inf} \\ p & \text{si } n_{inf} < k \leq n_{inf} + n_{eq} \\ \operatorname{rang}(k-n_{inf}-n_{eq},T_{sup}) & \text{si } n_{inf}+n_{eq} < k \end{cases}$$

Preuve

```
Cas 1 (k \le n_{\inf}): soit r = \operatorname{rang}(k, T_{\inf})
Si x \in T_{eq} \cup T_{\sup}, x > r; et il y a k éléments \le r dans T_{\inf}; donc il y a k éléments \le r dans T
```

Lemme

$$\operatorname{rang}(k,T) = \begin{cases} \operatorname{rang}(k,T_{inf}) & \text{si } k \leq n_{inf} \\ p & \text{si } n_{inf} < k \leq n_{inf} + n_{eq} \\ \operatorname{rang}(k-n_{inf}-n_{eq},T_{sup}) & \text{si } n_{inf}+n_{eq} < k \end{cases}$$

Preuve

- Cas 1 $(k \le n_{\inf})$: soit $r = \operatorname{rang}(k, T_{\inf})$ Si $x \in T_{eq} \cup T_{\sup}$, x > r; et il y a k éléments $\le r$ dans T_{\inf} ; donc il y a k éléments $\le r$ dans T
- Cas 2 $(n_{\inf} < k \le n_{\inf} + n_{eq})$: soit r = pSi $x \in T_{\sup}$, x > r; et il y a $n_{\inf} < k$ éléments < r dans T_{\inf} , et n_{eq} éléments égaux à r dans T_{eq} ; donc $\operatorname{rang}(k, T) \in T_{eq}$

Lemme

$$\operatorname{rang}(k,T) = \begin{cases} \operatorname{rang}(k,T_{inf}) & \text{si } k \leq n_{inf} \\ p & \text{si } n_{inf} < k \leq n_{inf} + n_{eq} \\ \operatorname{rang}(k-n_{inf}-n_{eq},T_{sup}) & \text{si } n_{inf}+n_{eq} < k \end{cases}$$

Preuve

- Cas 1 $(k \le n_{\inf})$: soit $r = \operatorname{rang}(k, T_{\inf})$ Si $x \in T_{eq} \cup T_{\sup}$, x > r; et il y a k éléments $\le r$ dans T_{\inf} ; donc il y a k éléments $\le r$ dans T
- Cas 2 $(n_{\inf} < k \le n_{\inf} + n_{eq})$: soit r = pSi $x \in T_{\sup}$, x > r; et il y a $n_{\inf} < k$ éléments < r dans T_{\inf} , et n_{eq} éléments égaux à r dans T_{eq} ; donc $\operatorname{rang}(k, T) \in T_{eq}$
- Cas 3 $(n_{\inf} + n_{eq} < k)$ soit $r = \text{rang}(k n_{\inf} n_{eq}, T_{\sup})$ il y a $n_{\inf} + n_{eq} < k$ éléments < r dans $T_{\inf} \cup T_{eq}$; il y a $k - n_{\inf} - n_{eq}$ éléments $\le r$ dans T_{\sup} ; donc $k - n_{\inf} - n_{eq} + (n_{\inf} + n_{eq}) = k$ éléments $\le r$ au total

```
 \begin{aligned} &\textbf{Algorithme}: \ \mathsf{RANG}(T,k) \\ &\textbf{si} \ k = 1: \mathbf{renvoyer} \ T_{[0]} \\ &p \leftarrow \mathsf{CHOIXPIVOT}(T) \\ &\mathsf{Calculer} \ n_{\mathsf{inf}} \ \textbf{et} \ n_{\mathsf{eq}} \\ &\textbf{si} \ k \leq n_{\mathsf{inf}}: \ \mathbf{renvoyer} \ \mathsf{RANG}(T_{\mathsf{inf}},k) \\ &\textbf{si} \ n_{\mathsf{inf}} < k \leq n_{\mathsf{inf}} + n_{\mathsf{eq}}: \mathbf{renvoyer} \ p \\ &\textbf{sinon}: \ \mathbf{renvoyer} \ \mathsf{RANG}(T_{\mathsf{sup}},k-n_{\mathsf{inf}}-n_{\mathsf{eq}}) \end{aligned}
```

```
Algorithme: RANG(T, k)

si k = 1: renvoyer T_{[0]}

p \leftarrow \text{CHOIXPIVOT}(T)

Calculer n_{\text{inf}} et n_{\text{eq}}

si k \leq n_{\text{inf}}: renvoyer RANG(T_{\text{inf}}, k)

si n_{\text{inf}} < k \leq n_{\text{inf}} + n_{\text{eq}}: renvoyer p

sinon: renvoyer RANG(T_{\text{sup}}, k - n_{\text{inf}} - n_{\text{eq}})
```

► Calculer n_{inf} , n_{eq} , T_{inf} , T_{sup} : O(n)

```
Algorithme: RANG(T, k)

si \ k = 1 : renvoyer \ T_{[0]}

p \leftarrow CHOIXPIVOT(T)

Calculer n_{inf} et n_{eq}

si \ k \leq n_{inf} : renvoyer \ RANG(T_{inf}, k)

si \ n_{inf} < k \leq n_{inf} + n_{eq} : renvoyer \ p

sinon : renvoyer \ RANG(T_{sup}, k - n_{inf} - n_{eq})
```

- ► Calculer n_{inf} , n_{eq} , T_{inf} , T_{sup} : O(n)
- ▶ Un appel récursif (au pire) sur T_{inf} ou T_{sup} , de taille n':

$$t(n) = t(n') + O(n)$$

```
Algorithme: RANG(T, k)

si k = 1: renvoyer T_{[0]}

p \leftarrow \text{CHOIXPIVOT}(T)

Calculer n_{\text{inf}} et n_{\text{eq}}

si k \leq n_{\text{inf}}: renvoyer RANG(T_{\text{inf}}, k)

si n_{\text{inf}} < k \leq n_{\text{inf}} + n_{\text{eq}}: renvoyer p

sinon: renvoyer RANG(T_{sup}, k - n_{\text{inf}} - n_{\text{eq}})
```

- ► Calculer n_{inf} , n_{eq} , T_{inf} , T_{sup} : O(n)
- ▶ Un appel récursif (au pire) sur T_{inf} ou T_{sup} , de taille n':

$$t(n) = t(n') + O(n)$$

► Cas idéal : $n' = n/2 \rightsquigarrow t(n) = O(n)$

(master theorem)

Pire cas : $n' = n - 1 \rightsquigarrow t(n) = O(n^2)$

(à la main)

```
Algorithme: Rang(T, k)

si k = 1: renvoyer T_{[0]}

p \leftarrow \text{ChoixPivot}(T)

Calculer n_{\text{inf}} et n_{\text{eq}}

si k \leq n_{\text{inf}}: renvoyer Rang(T_{\text{inf}}, k)

si n_{\text{inf}} < k \leq n_{\text{inf}} + n_{\text{eq}}: renvoyer p

sinon: renvoyer Rang(T_{\text{sup}}, k - n_{\text{inf}} - n_{\text{eq}})
```

- ► Calculer n_{inf} , n_{eq} , T_{inf} , T_{sup} : O(n)
- ▶ Un appel récursif (au pire) sur T_{inf} ou T_{sup} , de taille n':

$$t(n)=t(n')+O(n)$$

Cas idéal : $n' = n/2 \rightsquigarrow t(n) = O(n)$

(master theorem)

Pire cas : $n' = n - 1 \rightsquigarrow t(n) = O(n^2)$

(à la main)

But : choix de pivot pour minimiser n'!

Algorithme : CHOIXPIVOT(T)

renvoyer $T_{[0]}$

 $\textbf{Algorithme}: \mathsf{CHOIXPIVOT}(T)$

renvoyer $T_{[0]}$

Complexité

► Cas le pire : tableau initialement trié

$$\rightarrow$$
 $n' = n - 1$, donc $t(n) = O(n^2)$

 $\textbf{Algorithme}: \mathsf{CHOIXPIVOT}(T)$

renvoyer $T_{[0]}$

Complexité

► Cas le pire : tableau initialement trié

$$\rightarrow$$
 $n' = n - 1$, donc $t(n) = O(n^2)$

- ▶ Si tableau aléatoire : on peut montrer que $\mathbb{E}[n'] = n/2$
- \rightarrow $t(n) = O(n) \ll \text{en moyenne} \gg$

 $\textbf{Algorithme}: \mathsf{CHOIXPIVOT}(T)$

renvoyer $T_{[0]}$

Complexité

► Cas le pire : tableau initialement trié

$$\rightarrow$$
 $n' = n - 1$, donc $t(n) = O(n^2)$

▶ Si tableau aléatoire : on peut montrer que $\mathbb{E}[n'] = n/2$

$$\rightarrow$$
 $t(n) = O(n) \ll \text{en moyenne} \gg$

Choix correct si les tableaux sont aléatoires, mais en pratique ce n'est rarement le cas!

```
Algorithme : ChoixPivot(T) j \leftarrow entier aléatoire entre 0 et n-1 renvoyer T_{[j]}
```

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

https://xkcd.com/221/

```
Algorithme : CHOIXPIVOT(T)
j \leftarrow entier aléatoire entre 0 et n-1
renvoyer T_{[j]}
```

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

https://xkcd.com/221/

Complexité

Cas le pire : si on manque de chance

$$\rightarrow$$
 $n' = n - 1$, donc $t(n) = O(n^2)$

```
Algorithme : CHOIXPIVOT(T)

j \leftarrow entier aléatoire entre 0 et n-1

renvoyer T_{[j]}
```

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

https://xkcd.com/221/

Complexité

► Cas le pire : si on manque de chance

$$\rightarrow$$
 $n' = n - 1$, donc $t(n) = O(n^2)$

- ▶ Mais avec probabilité $1/2: n' \ge n/4$
- \rightarrow t(n) = O(n) avec « bonne probabilité »

```
Algorithme : CHOIXPIVOT(T)

j \leftarrow entier aléatoire entre 0 et n-1

renvoyer T_{[j]}
```

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // gvaranteed to be random.
}
```

https://xkcd.com/221/

Complexité

- ► Cas le pire : si on manque de chance
- \rightarrow n' = n 1, donc $t(n) = O(n^2)$
- ▶ Mais avec probabilité $1/2: n' \ge n/4$
- \rightarrow t(n) = O(n) avec « bonne probabilité »

Bon choix, quelque soit le tableau, mais difficile à analyser

```
Algorithme: CHOIXPIVOT(T)

j \leftarrow entier aléatoire entre 0 et n-1

Calculer n_{\text{inf}} et n_{\text{sup}} avec pivot T_{[j]}

si n_{inf} \leq 3n/4 et n_{\text{sup}} \leq 3n/4: renvoyer T_{[j]}

sinon: renvoyer CHOIXPIVOT(T)
```

```
Algorithme : ChoixPivot(T)
j \leftarrow \text{entier al\'eatoire entre } 0 \text{ et } n-1
Calculer n_{\text{inf}} et n_{\text{sup}} avec pivot T_{[j]}
si n_{inf} \leq 3n/4 et n_{\text{sup}} \leq 3n/4 : renvoyer T_{[j]}
sinon : renvoyer ChoixPivot(T)
```

Complexité

- ightharpoonup Cas le pire : n' = 3n/4
- ightharpoonup Coût de ChoixPivot : O(n) fois le nombre d'essais
- ightharpoonup En moyenne 2 tentatives pour j car réussite avec proba. 1/2

```
Algorithme : ChoixPivot(T)
j \leftarrow \text{entier al\'eatoire entre 0 et } n-1
Calculer n_{\text{inf}} et n_{\text{sup}} avec pivot T_{[j]}
si n_{inf} \leq 3n/4 et n_{\text{sup}} \leq 3n/4 : renvoyer T_{[j]}
sinon : renvoyer ChoixPivot(T)
```

Complexité

- ightharpoonup Cas le pire : n' = 3n/4
- ightharpoonup Coût de ChoixPivot : O(n) fois le nombre d'essais
- \blacktriangleright En moyenne 2 tentatives pour j car réussite avec proba. 1/2
- $t(n) \le t(3n/4) + O(n) \rightsquigarrow t(n) = O(n)$

(master thm)

Algorithme : CHOIXPIVOT(T)

 $j \leftarrow$ entier aléatoire entre 0 et n-1

Calculer n_{inf} et n_{sup} avec pivot $T_{[j]}$

si $n_{inf} \le 3n/4$ et $n_{sup} \le 3n/4$: renvoyer $T_{[j]}$

sinon : renvoyer CHOIXPIVOT(T)

Complexité

- ightharpoonup Cas le pire : n' = 3n/4
- ▶ Coût de CHOIXPIVOT : O(n) fois le nombre d'essais
- En moyenne 2 tentatives pour j car réussite avec proba. 1/2
- $t(n) \le t(3n/4) + O(n) \leadsto t(n) = O(n)$ (master thm)

Bon choix en théorie, facile à analyser. En pratique, préférer le précédent!

```
Algorithme: ChoixPivot(T)

pour i = 0 à \lceil n/5 \rceil - 1:

\lfloor m_i \leftarrow \mathsf{MEDIANE}(T_{[5i,5i+5[}))

renvoyer \mathsf{MEDIANE}([m_0, \dots, m_{\lceil n/5 \rceil - 1}])

(\mathsf{MEDIANE}(T) = \mathsf{RANG}(T, \lfloor n/2 \rfloor))
```

Complexité

- ▶ Cas le pire : on peut montrer que $n' \le 7n/10 + 6$
- ▶ Coût de CHOIXPIVOT : $O(n) + t(\lceil n/5 \rceil)$

(pas si facile!)

(WEBIARE(r) = RARG(r, [n]

Complexité

► Cas le pire : on peut montrer que $n' \le 7n/10 + 6$

(pas si facile!)

- Coût de CHOIXPIVOT : $O(n) + t(\lceil n/5 \rceil)$
- lacksquare $t(n) \le t(7n/10+6) + t(\lceil n/5 \rceil) + O(n) \leadsto t(n) = O(n)$ (récurrence pas si facile!)

Complexité

- ► Cas le pire : on peut montrer que $n' \le 7n/10 + 6$ (pas si facile!)
- Coût de CHOIXPIVOT : $O(n) + t(\lceil n/5 \rceil)$

 $lacktriangledown t(n) \le t(7n/10+6) + t(\lceil n/5 \rceil) + O(n) \leadsto t(n) = O(n)$ (récurrence pas si facile!)

Algorithme déterministe : optimal en théorie, moins bien en pratique!

Récapitulatif

Théorème

RANG(T, k) retourne le $k^{\text{ème}}$ élément de T.

En fonction de CHOIXPIVOT, sa complexité peut être

- ▶ $O(n^2)$ dans le pire des cas mais O(n) « en moyenne »
- O(n) avec bonne probabilité, pour tout tableau
- ► O(n) de manière déterministe, pour tout tableau

Récapitulatif

Théorème

RANG(T, k) retourne le k^{eme} élément de T.

En fonction de CHOIXPIVOT, sa complexité peut être

- $ightharpoonup O(n^2)$ dans le pire des cas mais O(n) « en moyenne »
- O(n) avec bonne probabilité, pour tout tableau
- ► O(n) de manière déterministe, pour tout tableau

Remarques

- Le choix de pivot $T_{[0]}$ fonctionne avec bonne probabilité si on mélange aléatoirement T au début
- Version plus complexe de cet algorithme : tri rapide (QUICKSORT)

Conclusion

Diviser-pour-régner

- ► Trois étapes : diviser, résoudre, combiner
- ► Analyse de complexité : équation de récurrence + master theorem
- ► Très nombreux algorithmes! tableaux, nombres, arbres, géométrie, ...

Conclusion

Diviser-pour-régner

- ► Trois étapes : diviser, résoudre, combiner
- ► Analyse de complexité : équation de récurrence + master theorem
- tableaux, nombres, arbres, géométrie. ... Très nombreux algorithmes!

Apercu dans ce cours

- ► Analyse en moyenne d'algorithmes
- Algorithme probabiliste
 - Voir le cours d'algorithmique de L3

- → comportement sur une entrée aléatoire