

Lecture 12

PDE and Programming (3)

Jung-II Choi

School of Mathematics and Computing (Computational Science and Engineering)

Contents

Week 11 Week 12

Multi-dimension

- Heat equation
 - → Explicit method
 - → Implicit methods in higher dimensions
 - → Approximate factorization
 - → Stability analysis
 - → Alternating direction implicit methods (ADI)

Poisson equation

- → Iterative solution methods
 - ✓ Point Jacobi method
 - ✓ Gauss-Seidel method
 - ✓ Successive over relaxation method (SOR)
- Non-linear PDEs

Poisson equation

Elliptical Partial Differential Equation

- Characteristics:
 - → Elliptic equations usually arise from steady state or equilibrium physical problems
 - → Boundary value problems where the solution is inter-related at all the points in the domain
 - → A perturbation at one point can affect the solution instantly in the entire domain; information propagates at infinite speed
 - → Boundary conditions should be specified.

Energy 가 점점 사라짐

$$\nabla^2 \phi = 0$$
, Laplace equation

Energy 가 사라지지 않음

$$\nabla^2 \phi = f$$
, Poisson equation

$$\nabla^2 \phi + \alpha^2 \phi = 0$$
, Helmholtz equation

$$c_1\phi + c_2\frac{\partial\phi}{\partial n} = h$$
, Boundary condition

Where n is a normal direction coordinate

Poisson equation

Semi-discretization

Consider the two-dimensional Poisson equation

$$\nabla^2 \phi = f(x, y)$$

$$\frac{\phi_{i+1,j} - 2\phi_{i,j} + \phi_{i-1,j}}{\Delta x^2} + \frac{\phi_{i,j+1} - 2\phi_{i,j} + \phi_{i,j+1}}{\Delta y^2} = f_{i,j}$$

 \rightarrow Let consider the uniform spacing, $\Delta x = \Delta y = \Delta$, then

$$\phi_{i+1,j} - 4\phi_{i,j} + \phi_{i-1,j} + \phi_{i,j+1} + \phi_{i,j-1} = \Delta^2 f_{i,j}$$

- → For $i = 1, 2, \dots, M 1$ and $j = 1, 2, \dots, N 1$
- $\rightarrow i = 0, M$ and j = 0, N are the boundary conditions
- \rightarrow Ex1) For i=1, $\phi_{0,j}$ is prescribed through Dirichlet boundary conditions,

$$\phi_{2,j} - 4\phi_{1,j} + \phi_{1,j+1} + \phi_{1,j-1} = \Delta^2 f_{1,j} - \phi_{0,j}$$

Poisson equation

Semi-discretization

$$\phi_{i+1,j} - 4\phi_{i,j} + \phi_{i-1,j} + \phi_{i,j+1} + \phi_{i,j-1} = \Delta^2 f_{i,j}$$

 \rightarrow EX2) At i=0, is prescribed to be $\partial \phi/\partial x=g(y)$, Neumann boundary conditions,

$$\frac{-3\phi_{0,j} + 4\phi_{1,j} - \phi_{2,j}}{2\Delta} = g_j$$

$$\frac{2}{3}\phi_{2,j} - \frac{8}{3}\phi_{1,j} + \phi_{1,j+1} + \phi_{1,j-1} = \Delta^2 f_{1,j} - \frac{2}{3}\Delta g_j$$

- Consider the matrix equation,
 - **→**

$$A\phi = b$$

- The matrix A is a block-tridiagonal matrix
 - $\qquad \qquad \left[\phi_{1,1}, \phi_{2,1}, \phi_{3,1}, \cdots, \phi_{M-1,1}, \phi_{1,2}, \phi_{2,2}, \phi_{3,2}, \cdots \right]^T$

Basic concepts

$$A\phi = b$$

• Let $A = A_1 - A_2$, then,

$$A_1 \phi = A_2 \phi + b$$

$$A_1 \phi^{(k+1)} = A_2 \phi^{(k)} + b \implies \phi^{(k+1)} = A_1^{-1} (A_2 \phi^{(k)} + b)$$

- \rightarrow For $k=0,1,2,\cdots$, and initial guess for the solution $\phi^{(0)}$.
- Requirements
 - \rightarrow A_1 should be easily "invertible."
 - ightharpoonup Iterations should converge (hopefully rapidly), $\lim_{k \to \infty} \phi^{(k)} = \phi$

Convergence

$$\varepsilon^{(k)} = \phi - \phi^{(k)}$$

$$A_1 \, \varepsilon^{(k+1)} = A_2 \varepsilon^{(k)}$$

$$\varepsilon^{(k+1)} = A_1^{-1} A_2 \varepsilon^{(k)} \Rightarrow \, \varepsilon^{(k)} = (A_1^{-1} A_2) \varepsilon^{(0)}$$

• Let λ_i be the eigenvalues of the matrix, $A_1^{-1}A_2$, then, as $|\lambda_i|_{max} \leq 1$

$$\lim_{k \to \infty} \varepsilon^{(k)} = 0$$

Point Jacobi method

 $\phi^{(k+1)} = A_1^{-1} (A_2 \phi^{(k)} + b)$ $\phi_{i+1,j} - 4\phi_{i,j} + \phi_{i-1,j} + \phi_{i,j+1} + \phi_{i,j-1} = \Delta^2 f_{i,j}$

- Decompose the diagonally dominant matrix A into
- Diagonal(D) and off-diagonal(L + U) components. $\Rightarrow A = A_1 A_2, A_1 = D, A_2 = L + U$

$$\phi^{(k+1)} = -\frac{1}{4} A_2 \phi^{(k)} - \frac{1}{4} \mathbf{R}$$

$$\phi_{i,j}^{(k+1)} = \frac{1}{4} \left[\phi_{i+1,j}^{(k)} + \phi_{i-1,j}^{(k)} + \phi_{i,j+1}^{(k)} + \phi_{i,j-1}^{(k)} \right] - \frac{1}{4} R_{i,j}$$

$$\phi^{(k+1)} = -D^{-1} (L + U) \phi^{(k)} + D^{-1} \mathbf{b}$$

• The eigenvalue is, for $m=1,2,\cdots,M-1$ and for $n=1,2,\cdots,N-1$,

$$\lambda_{mn} = \frac{1}{2} \left[\cos \frac{m\pi}{M} + \cos \frac{n\pi}{N} \right] = 1 - \frac{1}{4} \left[\frac{\pi^2}{M^2} + \frac{\pi^2}{N^2} \right] + \cdots$$

- ightarrow $|\lambda_{mn}| < 1$ for all m and n, and the method converges. শেতিশে ট্রান্থ বর্ষা প্রাথ
- \rightarrow For large M and N, $|\lambda|_{max}$ is only slightly less than 1, the convergence is very slow.

Gauss-Seidel method

- Decompose the diagonally dominant matrix A
- Diagonal-lower-triangle(D-L) and upper-triangle(U). $\Rightarrow A = A_1 A_2$, $A_1 = D L$, $A_2 = U$

$$\phi_{i,j}^{(k+1)} = \frac{1}{4} \left[\phi_{i+1,j}^{(k)} + \phi_{i-1,j}^{(k+1)} + \phi_{i,j+1}^{(k)} + \phi_{i,j-1}^{(k+1)} \right] - \frac{1}{4} R_{i,j}$$

$$(D - L)\phi^{(k+1)} = U\phi^{(k)} + \mathbf{b}$$

• The eigenvalue is, for $m=1,2,\cdots,M-1$ and for $n=1,2,\cdots,N-1$,

$$\lambda_{mn} = \frac{1}{4} \left[\cos \frac{m\pi}{M} + \cos \frac{n\pi}{N} \right]^2$$

- \rightarrow $|\lambda_{mn}| < 1$ for all m and n, and the method converges.
- → Gauss-Seidel method converges twice as fast as the point Jacobi method.

Successive Over Relaxation Scheme (SOR)

To increase the rate of convergence of the Gauss-Seidel method,

$$(D-L)\phi^{(k+1)} = U\phi^{(k)} + \Delta^2 \mathbf{f}$$

• Let define the change in the solution between two successive iterations, d,

$$\mathbf{d} = \phi^{(k+1)} - \phi^{(k)}$$

$$\phi^{(k+1)} = \phi^{(k)} + \mathbf{d}$$

$$\Rightarrow \phi^{(k+1)} = \phi^{(k)} + \omega \mathbf{d}$$

 $\rightarrow \omega > 1$ is the acceleration or "relaxation" parameter.

$$D\tilde{\phi}^{(k+1)} = L\phi^{(k+1)} + U\phi^{(k)} + \mathbf{b}$$

$$\phi^{(k+1)} = \phi^{(k)} + \omega (\tilde{\phi}^{(k+1)} - \phi^{(k)})$$

$$\phi^{(k+1)} = (I - \omega D^{-1}L)^{-1}[(1 - \omega)I + \omega D^{-1}U]\phi^{(k)} + (1 - \omega D^{-1}L)^{-1}\omega D^{-1}\mathbf{b}$$

$$G_{SOR}$$

- Successive Over Relaxation Scheme (SOR)
 - The eigenvalues of the matrix G_{SOR} ,

$$\lambda^{\frac{1}{2}} = \frac{1}{2} (\pm |\mu|\omega \pm \sqrt{\mu^2 \omega^2 - 4(\omega - 1)})$$

- \rightarrow μ is an eigenvalue of the point Jacobi matrix, $G_J = D^{-1}(L+U)$.
- To optimize convergence, one should select the relaxation parameter ω to minimize the largest

eigenvalue λ .

 $\mu_{\text{max}} = 0.9945.$

 $31 \times 31 \text{ mesh}$

$$\omega_{\text{opt}} = \frac{2}{1 + \sqrt{1 - \mu_{\text{max}}^2}}$$

$$\Delta t = 0.05 \text{ and } M = N = 20$$

Method	Iterations
Point Jacobi	749
Gauss–Seidel	375
SOR ($\omega = 1.8$)	45

Non-linear PDEs

Burgers' equation

Consider the one-dimensional Burgers' equation, Crank Nicolson ০ N점이 প্রমান মান্ত মা

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial t} = v \frac{\partial^2 u}{\partial x^2}$$

This equation has a non-linear convection-like term and a linear diffusion term

$$u^{(n+1)} - u^{(n)} = -\frac{\Delta t}{2} \left(3u^{(n)} \frac{\partial u^{(n)}}{\partial x} - u^{(n-1)} \frac{\partial u^{(n-1)}}{\partial x} \right) + \frac{\nu \Delta t}{2} \left(\frac{\partial^2 u^{(n+1)}}{\partial x^2} + \frac{\partial^2 u^{(n)}}{\partial x^2} \right)$$
Adams–Bashforth method

Crank–Nicolson method

$$\frac{\nu}{2} \frac{\partial^2 u^{(n+1)}}{\partial x^2} - \frac{u^{(n+1)}}{\Delta t} = -\frac{u^{(n)}}{\Delta t} + \frac{1}{2} \left(3u^{(n)} \frac{\partial u^{(n)}}{\partial x} - u^{(n-1)} \frac{\partial u^{(n-1)}}{\partial x} \right) - \frac{\nu}{2} \frac{\partial^2 u^{(n)}}{\partial x^2}$$

Q&A Thanks for listening