Study guide: Analysis of exponential decay models

Hans Petter Langtangen 1,2

Center for Biomedical Computing, Simula Research Laboratory 1 Department of Informatics, University of Oslo 2

Sep 13, 2016

Model:

$$u'(t) = -au(t), \quad u(0) = l$$
 (1)

Meth od:

$$u^{n+1} = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t} u^n \tag{2}$$

Problem setting

How good is this method? Is it safe to use it?

Summary of observations

The characteristics of the displayed curves can be summarized as follows:

- The Backward Euler scheme *always* gives a monotone solution, lying above the exact solution.
- ullet The Crank-Nicolson scheme gives the most accurate results, but for $\Delta t=1.25$ the solution oscillates.
- The Forward Euler scheme gives a growing, oscillating solution for $\Delta t=1.25$; a decaying, oscillating solution for $\Delta t=0.75$; a strange solution $u^n=0$ for $n\geq 1$ when $\Delta t=0.5$; and a solution seemingly as accurate as the one by the Backward Euler scheme for $\Delta t=0.1$, but the curve lies below the exact solution.

Problem setting

Goal

We ask the question

• Under what circumstances, i.e., values of the input data l, a, and Δt will the Forward Euler and Crank-Nicolson schemes result in undesired oscillatory solutions?

Techniques of investigation:

- Numerical experiments
- Mathematical analysis

Another question to be raised is

ullet How does Δt impact the error in the numerical solution?

Experimental investigation of oscillatory solutions

The solution is oscillatory if

$$u^{n} > u^{n-1}$$

("Safe choices" of Δt , when lying under the following curve as a function of a, ensure $u^n \leq u^{n-1}$.)

Exact numerical solution

Starting with $u^0=l$, the simple recursion (2) can be applied repeatedly n times, with the result that

$$u^{n} = IA^{n}, \quad A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$$
 (3)

Such a formula for the exact discrete solution is unusual to obtain in practice, but very handy for our analysis here.

Note: An exact dicrete solution fulfills a discrete equation (without round-off errors), whereas an exact solution fulfills the original mathematical equation.

Stability

Since $u^n = IA^n$,

- A < 0 gives a factor $(-1)^n$ and oscillatory solutions
- ullet |A|>1 gives growing solutions
- Recall: the exact solution is monotone and decaying
- If these qualitative properties are not met, we say that the numerical solution is unstable

Computation of stability in this problem

A < 0 if

$$\frac{1-(1-\theta)a\Delta t}{1+\theta a\Delta t}<0$$

To avoid oscillatory solutions we must have A > 0 and

$$\Delta t < \frac{1}{(1-\theta)a} \tag{4}$$

- Always fulfilled for Backward Euler
- ullet $\Delta t \leq 1/a$ for Forward Euler
- \bullet $\Delta t \leq 2/a$ for Crank-Nicolson

Computation of stability in this problem

 $|A| \leq 1$ means $-1 \leq A \leq 1$

$$-1 \le \frac{1 - (1 - \theta) a \Delta t}{1 + \theta a \Delta t} \le 1 \tag{5}$$

-1 is the critical limit (because $A \le 1$ is always satisfied):

$$\Delta t \leq rac{2}{(1-2 heta)a}, \quad ext{when } heta < rac{1}{2}$$

- Always fulfilled for Backward Euler and Crank-Nicolson
- ullet $\Delta t \leq 2/a$ for Forward Euler

Summary of stability

- Forward Euler is conditionally stable
 - ullet $\Delta t < 2/a$ for avoiding growth
 - ullet $\Delta t \leq 1/a$ for avoiding oscillations
- The Crank-Nicolson is unconditionally stable wrt growth and conditionally stable wrt oscillations
 - $\Delta t < 2/a$ for avoiding oscillations
- Backward Euler is unconditionally stable

Comparing amplification factors

 u^{n+1} is an amplification A of u^n :

$$u^{n+1} = Au^n, \quad A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$$

The exact solution is also an amplification:

$$u(t_{n+1}) = A_e u(t_n), \quad A_e = e^{-a\Delta t}$$

A possible measure of accuracy: $A_{\rm e}-A$

$p=a\Delta t$ is the important parameter for numerical performance

- $p = a\Delta t$ is a dimensionless parameter
- all expressions for stability and accuracy involve p
- Note that Δt alone is not so important, it is the combination with a through $p=a\Delta t$ that matters

Another "proof" why $p = a\Delta t$ is key

If we scale the model by $\overline{t}=at,\ \overline{u}=u/l,\ \text{we get}\ d\,\overline{u}/d\,\overline{t}=-\overline{u},\ \overline{u}(0)=1$ (no physical parameters!). The analysis show that $\Delta\overline{t}$ is key, corresponding to $a\Delta t$ in the unscaled model.

Series expansion of amplification factors

To investigate $A_{\rm e}-A$ mathematically, we can Taylor expand the expression, using $p=a\Delta t$ as variable.

```
>>> from sympy impor *
>>> f Create p as a mathematical symbol with name 'p'
>>> p = Symbol('p')
>>> f Create p as a mathematical symbol with name 'p'
>>> p = Symbol('p')
>>> f Create a mathematical expression with p
>>> A_e. = exp(-p)
>>> f Find the first $\delta$ terms of the Taylor series of $I_e$
>>> A_e. series(p, 0, 6)
>>> f Find the first $\delta$ terms of the Taylor series of $I_e$
>>> f Find the first $\delta$ terms of the Taylor series of $I_e$
>>> f Find the first $\delta$ terms of the Taylor series of $I_e$
>>> f Find the first $\delta$ terms of the Taylor series of $I_e$
>>> f Find the first $\delta$ terms of the Taylor series of $I_e$
>>> theta = Symbol('theta')
>>> f F = A_e. series(p, 0, 4) - A. subs(theta, 0). series(p, 0, 4)
>>> half = Rational(1, 2) f exact fraction $I/2$
>>> CM = A_e. series(p, 0, 4) - A. subs(theta, 1). series(p, 0, 4)
>>> FE
(1/2)*p**2 - 1/6*p**3 + 0(p**4)
>>> CM
(1/12)*p**2 + 1/6*p**3 + 0(p**4)
>>> CM
(1/12)*p**3 + 0(p**4)
```

Error in amplification factors

Focus: the error measure $A-A_{\rm e}$ as function of Δt (recall that $p=a\Delta t$):

$$A-A_{\rm e}=\left\{ egin{array}{ll} \mathcal{O}(\Delta t^2), & {\sf Forward\ and\ Backward\ Euler}, \ \mathcal{O}(\Delta t^3), & {\sf Crank-Nicolson} \end{array}
ight.
ight.$$

The fraction of numerical and exact amplification factors

Focus: the error measure $1 - A/A_e$ as function of $p = a\Delta t$:

```
>>> FE = 1 - (A.subs(theta, 0)/A_e).series(p, 0, 4)
>>> BE = 1 - (A.subs(theta, 1)/A_e).series(p, 0, 4)
>>> CN = 1 - (A.subs(theta, half)/A_e).series(p, 0, 4)
>>> FE
(1/2)*p**2 + (1/3)*p**3 + 0(p**4)
>>> BE
-1/2*p**2 + (1/3)*p**3 + 0(p**4)
>>> CN
(1/12)*p**3 + 0(p**4)
```

Same leading-order terms as for the error measure $A - A_e$.

The true/global error at a point

- The error in A reflects the local (amplification) error when going from one time step to the next
- What is the global (true) error at t_n ? $e^n = u_e(t_n) - u^n = le^{-at_n} - lA^n$
- \bullet Taylor series expansions of e^n simplify the expression

Computing the global error at a point

```
>>> n = Symbol('n')
>>> u_e = exp(-p*n)  # I=1
>>> u_n = A**n  # I=1
>>> E = u_e.series(p, 0, 4) - u_n.subs(theta, 0).series(p, 0, 4)
>>> EE = u_e.series(p, 0, 4) - u_n.subs(theta, 1).series(p, 0, 4)
>>> CH = u_e.series(p, 0, 4) - u_n.subs(theta, 1).series(p, 0, 4)
>>> CH = u_e.series(p, 0, 4) - u_n.subs(theta, half).series(p, 0, 4)
>>> FE
(1/2)*n*p**2 - 1/2*n***2*p**3 + (1/3)*n*p**3 + 0(p**4)
>>> BE
(1/2)*n**2*p**3 - 1/2*n*p**2 + (1/3)*n*p**3 + 0(p**4)
>>> CM
(1/12)*n**2*p**3 + 0(p**4)
```

Substitute n by $t/\Delta t$:

- Forward and Backward Euler: leading order term $\frac{1}{2}ta^2\Delta t$
- Crank-Nicolson: leading order term $\frac{1}{12}ta^3\Delta t^2$

Convergence

The numerical scheme is convergent if the global error $e^n \to 0$ as $\Delta t \to 0$. If the error has a leading order term $\Delta t'$, the convergence rate is of order r.

Integrated errors

Focus: norm of the numerical error

$$||e^n||_{\ell^2} = \sqrt{\Delta t \sum_{n=0}^{N_t} (u_e(t_n) - u^n)^2}$$

Forward and Backward Euler:

$$||e^n||_{\ell^2} = \frac{1}{4} \sqrt{\frac{T^3}{3}} a^2 \Delta t$$

Crank-Nicolson:

$$||e^n||_{\ell^2} = \frac{1}{12} \sqrt{\frac{T^3}{3}} a^3 \Delta t^2$$

Summary of errors

Analysis of both the pointwise and the time-integrated true errors:

Computation of the truncation error

- ullet The residual \mathbb{R}^n is the truncation error.
- How does R^n vary with Δt ?

Tool: Taylor expand $u_{\rm e}$ around the point where the ODE is sampled (here t_n)

$$u_{e}(t_{n+1}) = u_{e}(t_{n}) + u'_{e}(t_{n})\Delta t + \frac{1}{2}u''_{e}(t_{n})\Delta t^{2} + \cdots$$

Inserting this Taylor series in (7) gives

$$R^n = u'_{\mathsf{e}}(t_n) + \frac{1}{2}u''_{\mathsf{e}}(t_n)\Delta t + \ldots + au_{\mathsf{e}}(t_n)$$

Now, $u_{
m e}$ solves the ODE $u_{
m e}'=-au_{
m e}$, and then

$$R^n pprox rac{1}{2} u''_{
m e}(t_n) \Delta t$$

This is a mathematical expression for the truncation error.

Consistency, stability, and convergence

- Truncation error measures the residual in the difference equations. The scheme is *consistent* if the truncation error goes to 0 as $\Delta t \rightarrow 0$. Importance: the difference equations approaches the differential equation as $\Delta t \rightarrow 0$.
- Stability means that the numerical solution exhibits the same qualitative properties as the exact solution. Here: monotone, decaying function.
- Convergence implies that the true (global) error $e^n=u_{\rm e}(t_n)-u^n\to 0$ as $\Delta t\to 0$. This is really what we want!

The Lax equivalence theorem for *linear* differential equations: consistency + stability is equivalent with convergence.

(Consistency and stability is in most problems much easier to establish than convergence.)

Truncation error

- How good is the discrete equation?
- ullet Possible answer: see how well $u_{\rm e}$ fits the discrete equation

$$[D_t^+ u = -au]^n$$

i.e.,

$$\frac{u^{n+1}-u^n}{\Delta t}=-at$$

Insert u_e (which does not in general fulfill this discrete equation):

$$\frac{u_{\mathsf{e}}(t_{n+1}) - u_{\mathsf{e}}(t_n)}{\Delta t} + au_{\mathsf{e}}(t_n) = R^n \neq 0 \tag{7}$$

The truncation error for other schemes

Backward Euler:

$$R^n \approx -\frac{1}{2}u''_{\rm e}(t_n)\Delta t$$

Crank-Nicolson:

$$R^{n+\frac{1}{2}} pprox \frac{1}{24} u_{\rm e}^{\prime\prime\prime}(t_{n+\frac{1}{2}}) \Delta t^2$$