Lineární prostor (1, 2, 4)

- **Def.:** Těleso je množina \mathbb{F} spolu s funkcemi +: $\mathbb{F} \times \mathbb{F} \to \mathbb{F}$, •: $\mathbb{F} \times \mathbb{F} \to \mathbb{F}$
 - o je to kolekce jakýchkoliv objektů, které mezi sebou můžeme sčítat a násobit a chovají se stejně, jako jsme zvyklí
 - vlastnosti stejné jako níže, ale:
 - násobení je navíc komutativní
 - pro $a \in \mathbb{F}$ platí: $a \neq 0$ iff existuje inverze a^{-1} (aka test invertibility)
 - o tělesy jsou ℕ₀, kde p je prvočíslo (kvůli testu invertibility)
- **Def.**: Lineární prostor nad tělesem ℙ je množina L (vektorů) spolu s funkcemi sčítání (+) a násobení skalárem (•)
 - Vlastnosti sčítání (+: L × L → L)
 - 1. existence nulového prvku (vektoru): x+o = o+x = x
 - 2. asociativita sčítání (vektorů): (x+y)+z=x+(y+z)
 - 3. komutativita sčítání (vektorů): x+y=y+x
 - 4. existence opačného prvku (vektoru): x+y=o (pro každé x ex. právě jedno y)
 - Vlastnosti násobení skalárem (•: $\mathbb{F} \square L \rightarrow L$)
 - 1. existence neutrálního prvku ("jedničky"): 1•x=x
 - 2. asociativita násobení skalárem: a•(b•x)=(a•b)•x
 - Distributivní zákony (jak se k sobě chovají navzájem)
 - 1. distributivita součtu skalárů: (a+b)•x=a•x+b•x
 - 2. distributivita součtu vektorů: a•(x+y)=a•x+a•y
 - Důsledky
 - o nulový vektor je jednoznačně určen (kdo si hraje na nulu, je nula)
 - o pro vš. x∈L platí: 0•x=o
 - o opačný vektor k x je (-1)•x
 - o pro vš. a∈ F platí: a•o=o
 - a•x=o iff a=0 nebo x=o
- **Def.:** Seznam vektorů je buď prázdná posloupnost () nebo konečná posloupnost $(x_1,...,x_n)$.
- **Def.**: (lineární kombinace konečného seznamu vektorů):
 - o Pro prázdný seznam je o jeho jedinou možnou lineární kombinací (s prázdným seznamem koeficientů).
 - Pro $(x_1,...,x_n)$ je vektor $\sum_{i=1}^n a_i \mathbf{x}_i$ jeho lineární kombinace (se seznamem koeficientů $(a_1,...,a_n)$).
 - je to rovný kus prostoru
- lineární kombinace je triviální, pokud a₁=a₂=...=a_n=0
- **Def.:** Seznam vektorů S je lineárně nezávislý, pokud je prázdný nebo kdykoliv $a_1x_1+a_2x_2+...a_nx_n=0$, pak $a_1=a_2=...=a_n=0$

- o prázdný seznam () je vždy lineárně nezávislý, (o) je vždy lineárně závislý
- **Def.:** Množina vektorů M je lineárně nezávislá, pokud platí jedna z podmínek:
 - o M je prázdná
 - o M je neprázdná konečná a navíc platí: $a_1x_1+a_2x_2+...a_nx_n=0$, pak $a_1=a_2=...=a_n=0$
 - o M je nekonečná a každá její konečná podmnožina je lineárně nezávislá.

Lineární obal a lineární podprostor (3)

- množina M je konečná, když má přesně n prvků, kde n∈
 \((tady platí 0∈
 \((tady platí 0∈
- množina M je nekonečná, pokud není konečná (N, Q, R, C)
- **Def.:** Ať M je jakákoliv množina vektorů lineárního prostoru L. Lineární obal množiny vektorů M je množina span(M), definovaná:

$$\operatorname{span}(M) = \left\{ \begin{array}{l} \{\vec{o}\}, \ \operatorname{pokud} \ M = \emptyset, \\ \\ \bigcup_{n \in \mathbb{N}} \left\{ \sum_{i=1}^{n} a_i \cdot \vec{x_i} \mid a_1, \dots, a_n \in \mathbb{F}, \vec{x_1}, \dots, \vec{x_n} \in M \right\}, \\ \operatorname{pokud} \ M \neq \emptyset. \end{array} \right.$$

0

- o množina všech linárních kombinací, které lze z M utvořit
- o span(M) je "zabalení" množiny M tak, aby výsledkem byl "co nejmenší rovný kus", který obsahuje M
- Uzávěrové vlastnosti lineárního obalu
 - je-li M⊆N, potom span(M)⊆span(N)
 - o pro vš. M platí: M⊆span(M)
 - o pro vš. M platí: span(span(M))⊆span(M) (další zabalení už tam nic nepřidá)
- **Def.:** At' W je podmnožina lineárního prostoru L. Řekneme, že W je lineární podprostor lineárního prostoru L, když platí span(W)⊆W
 - o je to "dobrá" podmnožina prostoru, ze které nejde žádnou lineární kombinací "utéct"
- span(M) je vždy lineární podprostor a jde zároveň o nejmenší podprostor, který obsahuje M
- M je lineární podprostor iff span(M) = M
- Jak odhalit podprostor
 - o je prvkem W (uzavřenost na nulový vektor)
 - x+y je prvkem W pro každé x, y ∈ W (uzavřenost na součet vektorů)
 - o ax je prvkem W pro každé a∈ F a x∈W (uzavřenost na skalární násobek)
- Ať W je lineární podprostor L. Potom W je sám o sobě lineárním prostorem, pokud sčítání a násobení ve W definujeme stejně jako v L. Naopak to ale neplatí když mám jinak definované násobení a sčítání, že to je prostor nad \mathbb{R} , tak to ještě nemusí být podprostorem \mathbb{R}^2 nad \mathbb{R} (02A:10)
- průnik systému podprostorů je také lineárním podprostorem
- sjednocení systému podprostorů nemusí být lineárním podprostorem

- o definujeme spojení podprostorů W₁ v W₂ = (span(W₁ ∪ W₂))
- Hrajeme si se závislostí
 - Ať M je lineárně nezávislá množina v L. Každá N⊆M je také lineárně nezávislá.
 - Když ubereme vektory z linerárně nezávislé množiny, bude výsledná množina stále nezávislá.
 - o Ať M je lineárně závislá v L. Každá N tak, že M⊆N je také lineárně závislá.
 - Když přidáme něco do lineárně závislé množiny, bude pořád závislá.
 - Množina M je lineárně nezávislá iff pro všechny x∉span(M) je množina M∪{x} lineárně nezávislá.
 - Množina M je lineárně závislá iff existuje N⊆M, N≠M taková že span(N)=span(M).

Báze a dimense (5, 6)

- Def.: At' W je lineární podprostor prostoru L. Řekneme, že množina G generuje W (G je množina generátorů W), pokud platí span(G)=W.
- Def.: Řekneme, že lineární prostor W je konečně generovaný, pokud existuje konečná množina jeho generátorů.
- Def.: Lineárně nezávislé množině B, která generuje prostor L, říkáme báze L. Je-li B konečná, pak seznamu prvků B říkáme uspořádaná báze.
 - o Pozn.: Ø i **o** jsou konečné množiny generátorů triviálního prostoru, ale jen jedna z nich je lineárně nezávislá.
 - Každý lineární prostor L má bázi.
 - báze je výběr systému souřadnicových os či také "nejúspornější" množina generátorů
- **Def.:** Označme $K_n = (e_1, ..., e_n)$ seznam vektorů v \mathbb{F}^n , n > = 1, kde e_i má jedničku na i-té pozici, všude jinde nuly. Tuto bázi zoveme kanonická báze \mathbb{F}^n
- každý konečně generovaný prostor L má konečnou bázi, všechny možné báze L mají stejný počet prvků
- **Def.:** Lineární prostor má dimensi n (dim(L)=n), když existuje báze B prostoru L, která má n prvků, n∈ℕ.
- Ať M, N jsou konečné množiny vektorů. Potom span(M)=span(N) iff dim(span(M))=dim(span(N))=dim(span(N))=dim(span(M∪N).
- Ať L je lineární prostor konečné dimense. Potom pro podprostory W₁, W₂ platí: dim(W₁ ∨ W₂) + dim(W₁ ∩ W₂) = dim(W₁) + dim(W₂)
 - o princip inkluse a exkluse
- Ať seznam B = $(\mathbf{b_1}, ..., \mathbf{b_n})$ tvoří bázi L. Pro každý vektor \mathbf{x} v L existuje jediný seznam A= $(a_1, ..., a_n)$ tak, že $\mathbf{x} = a_1 \mathbf{b_1} + ... + a_n + \mathbf{b_n}$
- Def.: Seznamu A říkáme souřadnice vektoru x vzhledem k uspořádané bázi B. Značíme coord_B(x).
 - o $coord_{B}(\mathbf{x}+\mathbf{y}) = coord_{B}(\mathbf{x}) + coord_{B}(\mathbf{y})$
 - \circ coord_R(a•x)=a•coord_R(x)
 - je to vlastně lineární zobrazení

Lineární zobrazení (6, 7, 8, 9, 10)

- **Def.:** Zobrazení (funkce) f: A→B je podmnožina A×B taková, že pro všechna a∈A existuje právě jedno b∈B tak, že (a, b) ∈ f.
 - pro libovolnou množinu B existuje právě jedno zobrazení f : ∅ → B
 - o pro libovolnou množinu A existuje právě jedno zobrazení f : A → {b} (B jednoprvková množina)
 - o je-li A neprázdná, pak B musí být také neprázdná

- Typy zobrazení
 - Zobrazení f : X → Y je prosté (také: injektivní nebo injekce), když z rovnosti $f(x_1) = f(x_2)$ plyne $x_1 = x_2$. Pro lineární zobrazení monomorfismus.
 - Zobrazení f: X → Y je na (také: surjektivní nebo surjekce), když pro každé y ∈ Y existuje x tak, že f(x)=y. Pro lineární zobrazení epimorfismus.
 - Zobrazení f : X → Y je bijekce (také: vzájemně jednoznačné), když f je injekce a surjekce současně. Pro lineární zobrazení isomorfismus.
 - identita je bijekce
 - funkce je bijekce iff existuje jednoznačně určená inverze
 - o složení injekcí je injekce, složení surjekcí je surjekce, složení bijekcí je bijekce
- Def.: Ať L₁, L₂ jsou lineární prostory nad F. Zobrazení f: L₁→ L₂, pro které platí f(x + x²) = f(x) + f(x²) a f(a·x) = a·f(x) pro vš. a, x, x² říkáme lineární zobrazení z L₁ do L₂.
 - o $f(\sum_{i=1}^{n} a_i x_i) = \sum_{i=1}^{n} a_i f(x_i)$ princip superpozice vyplývá z podmínek
- složení, součet lineárních zobrazení a skalární násobek lineárního zobrazení je lineární
 - o množina lineárních zobrazení L₁, L₂ se značí Lin(L₁, L₂)
- Ať B je báze lineárního prostoru L₁, ať L₂ je libovolný lineární prostor. Pak zadat h: B→L₂ je totéž jako zadat f: L₁→L₂
 - → abychom znali zobrazení, stačí znát kde skončí prvky báze
- - Matici A ztotožňujeme s lineárním zobrazením A: F^s→F^r, které je zadáno takto: A: e_i → a_i, j=1,..., s
 - o protože je Lin(L₁, L₂) sám o sobě lineárním prostorem, platí pro matice všechny podmínky pro součty a sk. násobky výše
- skládání zobrazení (aka násobení matic) je asociativní, ale obecně ne komutativní
- **Def.:** Ať f: L₁→L₂ je lineární zobrazení. Množině ker(f)={x|f(x)=o} říkáme jádro, množině im(f)={y|f(x)=y pro nějaké x} říkáme obraz f.
 - o jádro f říká, jak moc je f monomorfismus, obraz zase, jak moc je to epimorfismus
- Ať f: L₁→L₂ je lineární zobrazení. Pak ker(f) je podprostor L₁, im(f) je podprostor L₂
- Def.: Ať f: L₁→L₂ je lineární zobrazení. Ať L₁ má konečnou dimensi. Číslo def(f)=dim(ker(f)) říkáme defekt lineárního zobrazení f, číslo rank(f)=dim(im(f)) říkáme hodnost (rank) lineárního zobrazení f.
 - Věta o dimenzi jádra a obrazu: def(f)+rank(f)=dim(L₁)
- Charakterisace lineárních zobrazení
 - o f je monomorfismus (TFAE)
 - def(f)=0
 - f respektuje lineární nezávislost (obraz lineárně nezávislé množiny je opět lineárně nezávislá množina)
 - soustava Ax=o má pouze triviální řešení
 - o f je isomorfismus (TFAE)
 - f je monomorfismus a epimorfismus současně
 - \blacksquare def(f)=0 a im(f)=L₂
 - $\bullet \quad def(f) = 0 \text{ a dim}(L_1) = dim(L_2)$

- f respektuje lineární nezávislost a každá rovnice f(x)=b má alespoň jedno řešení pro b z L₂
- A: $\mathbb{F}^s \to \mathbb{F}^r$, s=r a každá rovnice f(x)=b má alespoň jedno řešení pro b z L₂
- **Def.:** Matice A je regulární (invertibilní/isomorfismus), pokud existuje jednoznačně určená matice A⁻¹ taková, že A⁻¹A=E_n.
 - o jinak je matice singulární
- At $\dim(L_1) = \dim(L_2) = n$. Potom je, pro lineární zobrazení f: $L_1 \rightarrow L_2$, ekvivalentní:
 - o f je monomorfismus
 - o f je epimorfismus
 - o f je isomorfismus
- Ať B = (b₁, ..., bₙ) je uspořádanou bází prostoru L. Potom výpočet souřadnice v bázi B coordョ: L→ Fⁿ, x→coordョ(x) je isomorfismus.
- Ať f: L₁→L₂ je lineární zobrazení, ať B= (b₁, ..., b₅) a C=(c₁, ..., cr) jsou uspořádané báze prostorů L₁ a L₂. Matie zobrazení f (vzhledem k B a C) je taková matice A₅, pro kterou platí A₅·coord₂(x)=coord₂(f(x)) pro každý vektor x
 - o Matice A_r má r řádků a s sloupců. Navíc j-tý sloupec matice A_r je tvořen souřadnicemi coord_c(f(b_i)) zapsanými do sloupce.
 - o můžeme lepit diagramy k sobě, jak se nám hodí, když najdeme "švy"
- matice isomorfismu A_f⁻¹: platí A_f⁻¹·A=E_n
- jakoukoliv čtvercovou regulární matici T typu n×n můžeme považovat za matici transformace souřadnic
- Def.: Matice A, B typu n×n jsou si podobné (A≈B), pokud B=T⁻¹·A·T pro nějakou regulární matici T
 - o jedná se o matice stejného zobrazení, ale v jiné bázi

GEM a soustavy lineárních rovnic (11, 12)

- **Def.:** Matice (A | b), kde A je matice soustavy, b je pravá strana rovnice kóduje soustavu lineárních rovnic A·x=b, kde x je vektor neznámých. Nazývá se rozšířená matice soustavy.
- **Def.:** Matice M je v horním blokovém tvaru, jsou-li splněny následující dvě podmínky:
 - a. Každý nenulový řádek matice M je nad jakýmkoliv řádkem samých nul.
 - b. Každý pivot (tj. nenulová položka první zleva) jakéhokoliv nenulového řádku matice M je vždy více napravo než pivot předchozího řádku.
- ullet Jakoukoliv matici M nad ${\mathbb F}$ lze konečným počtem řádkových elementárních úprav převést na horní blokový tvar.
 - I. Přičtení skalárního násobku řádku matice k jinému řádku matice
 - II. Prohození dvou řádků v matici.
 - III. Vynásobení řádku matice nenulovým skalárem.
- **Def.:** Řekneme, že soustavy (A | b) a (A' | b') r rovnic o s neznámých jsou ekvivalentní ((A | b) ~ (A' | b')), když pro každý vektor x z ℙ platí: A·x=b iff A'·x=b'
 - o ekvivalentní soustavy stejných rozměrů mají stejná řešení
- Vlastnosti ekvivalence soustav
 - reflexivita: (A | b) ~ (A | b)
 - symetrie: pokud (A | b) ~ (A' | b'), pak (A' | b') ~ (A | b)

- transitivita: pokud (A | b) ~ (A' | b') a (A' | b') ~ (A" | b"), pak (A | b) ~ (A" | b")
- o Ať P: $\mathbb{F}^r \to \mathbb{F}^r$ je jakýkoliv isomorfismus. Potom platí:
 - (A | b) ~ (PA | Pb)
 - rank((A | b))=rank((PA | Pb))
- rank(M)=rank(M^T)
- hodnost matice M je rovna počtu nenulových řádků v horním blokovém tvaru po skončení GEM (defekt je s-rank)
- Frobeniova věta
 - Soustava (A | b) má řešení iff platí rovnost rank(A) = rank(A | b)
 - jinak věci typu 0x+0y+0z=6... to asi těžko člověk vyřeší
 - o Pokud (A | b) má řešení, potom lze říci následující:
 - Zvolme jakékoliv p, splňující rovnost Ap=b. Potom Ax_0 =b platí právě tehdy, když x_0 =p+ x_0 pro nějaké x_0 ∈ ker(A)
- **Def.:** Jakékoliv bázi prostoru ker(A) říkáme fundamentální systém soustavy s maticí A.
- **Def.:** Soustavě (A | o) budeme říkat homogenní soustava příslušná k matici A.
- jakékoliv řešení soustavy lze vyjádřit ve tvaru p+x_h, kde p nazýváme partikulární řešení
- GEM je universální, ale numericky nestabilní → počítače používají jiné metody

Determinant (13, 14)

Permutace

0

- **Def.:** Permutace množiny $\{1,2,...,n\}$ je jakákoliv bijekce $\pi: \{1,2,...,n\} \rightarrow \{1,2,...,n\}$.
- dají se zapsat výčtem, tabulkou nebo strunovým diagramem

- \circ množině všech permutací množiny {1,2,...,n} říkáme symetrická grupa permutací, značíme S_n
 - skládání je v S_n asociativní, má neutrální prvek (triviální permutace), každá permutace má inversi
- ο **Def.**: Inverse v permutaci π je výskyt situace i<j a zároveň π (i)> π (j)
- \circ **Def.:** Známénko permutace π je číslo signπ, které je definováno:

- signπ=+1 pokud π obsahuje sudý počet inversí, signπ=-1 pokud obsahuje lichý počet inversí
- inverse v permutaci je jedno překřížení strun v diagramu
- pro identickou permutaci id_n v S_n platí: sign(id_n)=1
- pro libovolné permutace σ a π v S_n platí: sign(σ · π) = (sign σ) · (sign π)
- \blacksquare sign π = sign(π^{-1})
- **■** Ať π je permutace v S_n . Permutace vzniklá z π prohozením dvou hodnot má opačné znaménko.
- **Def.:** Pro matici A typu n × n nad F definujeme determinant jako skalár det(A) = $\sum_{\pi \in S_n}$ sign $\pi \cdot a_{\pi(1),1} \cdot a_{\pi(2),2} \cdot \ldots \cdot a_{\pi(n),n}$
 - o šachová interpretace: vybíráme políčka z determinantu, aby se na nich umístěné věže neohrožovaly a vezmeme součet těch rozestavění
- determinant určuje orientovaný n-dimensionální objem rovnoběžnostěnu určeného danými vektory
- Hrátky s determinanty
 - \circ det(A)=det(A^T)
 - $\circ \quad \det(\mathsf{B} \cdot \mathsf{A}) = \det(\mathsf{B}) \cdot \det(\mathsf{A})$
 - o pro regulární A je det(A⁻¹) = (det(A))⁻¹
 - o $det(a \cdot A) = a^{n} \cdot det(A)$, kde a je libovolný skalár
 - o prohození dvou řádků mění znaménko determinantu
 - o vynásobení řádku skalárem a změní determinant a-krát
 - o přičtení lineární kombinace ostatních řádků k řádku nezmění hodnotu determinantu

$$P(\mathbf{a}, \mathbf{b}) = P(\mathbf{a}, \mathbf{b} - 2\mathbf{a})$$

- Ať A je horní trojúhelníková matice. Potom det(A) = součin prvků na hlavní diagonále.
 - → lze počítat "opatrným" GEMem
- A je regulární iff det(A)≠0
- determinant je lineární v každém sloupci, speciálně z $\mathbf{a}_j = \sum_{i=1}^n a_{ij} \mathbf{e}_i$ (kde a_j je j-tý sloupec matice A) vychází rovnost:

$$\det(\mathbf{A}) = \sum_{i=1}^{n} a_{ij} \cdot \underbrace{\det(\mathbf{a}_{1}, \dots, \mathbf{a}_{j-1}, \mathbf{e}_{i}, \mathbf{a}_{j+1}, \dots, \mathbf{a}_{n})}_{\text{Značení: } A_{ij}.}$$

- Laplaceův rozvoj determinantu podle sloupce

- **Def.:** Determinantu A_{ii} říkáme algebraický doplněk pozice (i,j) v matici A.
- Ať A je matice typu n × n nad F, n ≥ 2. Označme jako A, matici typu (n − 1) × (n − 1) vzniklou z matice A vynecháním i-tého řádku a j-tého sloupce. Potom $A_{ii} = (-1)^{i+j} \cdot det(A_{ii})$.
 - umožní rekurzivní výpočet determinantu, ale složitost n! hodí se hlavně pro řídké matice (s hodně nulami)
- **Def.:** Pro matici A typu n × n je její adjungovaná matice adj(A) transponovaná matice algebraických doplňků posic v matici A.
 - o A · adj(A) = det(A) · E_n = adj(A) · A \rightarrow A⁻¹ = det(A)⁻¹ · adj(A).
- **Def.:** Rovnici A·x=b, kde A je matice typu n × n nad F, říkáme soustava se čtvercovou maticí.
 - tato soustava má jediné řešení iff A je regulární (důkaz vychází z isomorfismu)
- Cramerova věta

0

Ať A·x=b je soustava se čtvercovou regulární maticí nad F.

Potom j-tá položka jediného řešení $x=A^{-1}$ b je tvaru $x_i=det(A)^{-1}\cdot det(a_1,...,a_{i-1},b,a_{i+1}...,a_n)$

matice musí být regulární!

libovolným tělesem (musíme ovšem kreslit rovnoběžnostěny).

Vlastní čísla a diagonalizace (15, 16, 17, 18)

- Def.: Pro lineární zobrazení f: L→L je λ z F vlastní hodnotou (vlastním číslem, eigenvalue), pokud existuje nenulový vektor x, splňující f(x)=λx
 - Každému takovému nenulovému vektoru x říkáme vlastní vektor (eigenvector) příslušný hodnotě λ.
 - \circ {x | f(x) = $\lambda \cdot x$ } = ker(f $\lambda \cdot id$), nazýváme to vlastní podprostor (eigenspace) eigen(λ , f)
 - pokud není triviální, je λ vlastní číslo
- Ať f: L→L je lineární zobrazení, dim(L)=n. Označme A_f matici f vzhledem k jakékoliv bázi prostoru L. Potom λ je v F vlastní hodnotou f iff det(A_f-λE_n)=0.
 - Dk.: Defekt musí být >0, aby nebyl eigenspace netriviální.
- **Def.:** At' A je matice typu n×n nad F, n>=1. Výrazu det(A-xE_n) říkáme charakteristický polynom matice A (značení: char_A(x)).
 - ∘ jestliže A ≈ B, potom char_A(x) = char_B(x) (pozor naopak to neplatí)
 - o polynom nemusí mít v daném tělese žádný kořen
- Pro matici A typu n x n nad \mathbb{F} jsou následující podmínky ekvivalentní:
 - A je diagonalisovatelná, tj. A ≈ D pro nějakou diagonální D
 - o char_A(x) lze v F rozložit na součin a platí: násobnost λ jako kořene charakteristického polynomu je rovna dimensi eigenprostoru
 - algebraická násobnost = geometrická násobnost
 - jde to, když umím najít dost kořenů a vystačí mi to na bázi
- regulární transformace roviny bez 2-násobných vlastních hodnot jsou pouze dvou typů:
 - o změny měřítka
 - o rotace následované změnou měřítka stejnou na obou souřadnicových osách
- direktní rozklad: když se dá prostor rozsekat na invariantní podprostory na dané zobrazení, značíme: ⊕
 - o diagonální matice už rozsekaná je po eigenprostorech
 - $\circ \quad \mathbb{F}^n = W_1 \vee W_2 \vee \dots \vee W_n \text{ a } W_i \cap (V_{i \neq i} W_i) = \{o\}, \text{ pak značíme } \mathbb{F}^n = W_1 \oplus W_2 \oplus \dots \oplus W_n$

Direktní rozklad lineárního prostoru a lineárního zobrazení

Pro $\mathbf{f}: L_1 \to L_2$, kde $L_1 = W_1 \oplus \ldots \oplus W_k$, $L_2 = V_1 \oplus \ldots \oplus V_k$ a $\mathbf{f}(\vec{x})$ je z V_i , jakmile \vec{x} je z W_i , píšeme

- To znamená: $f(\vec{x}) = f_1(\vec{x}_1) + ... + f_k(\vec{x}_k)$, kde $\vec{x} = \vec{x}_1 + ... + \vec{x}_k$.
- Def.: Lineárnímu zobrazení f: L→L, pro které existuje k tak, že f^k=o, říkáme nilpotentní. Nejmenšímu takovému k říkáme index nilpotence, k=nil(f).
 Pro M≈N: M nilpotentní iff N nilpotentní, nil(N)=nil(M)
- **Def.:** Ať f: L→L je lineární zobrazení. Seznamu f^{k-1}(v),f^{k-2}(v), . . . , f¹(v),f⁰(v)), kde f^k(v) = o, říkáme f-řetězec délky k vytvořený vektorem v.
- Ať n: L→L je nilpotentní linární zobrazení, dim(L)=n. Potom existuje báze B=(b₁,...,b_n) prostoru L, která vznikla zřetězením n-řetězců. Počet a délka n-řetězců v bázi B jsou určeny jednoznačně.

Příklad (Jordanova báze Jordanovy buňky)

Pro Jordanovu buňku

$$\begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix} = (\mathbf{o}, \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_{n-1})$$

je příslušný řetězec $\mathbf{e}_n\mapsto\mathbf{e}_{n-1}\mapsto\cdots\mapsto\mathbf{e}_1\mapsto\mathbf{o}$ a to znamená, že kanonická báze

$$(\mathbf{e}_1,\ldots,\mathbf{e}_n)$$

je Jordanova báze Jordanovy buňky.

0

- Předpokládejme, že platí char_M(x) = $a \cdot (x \lambda_1)^{m1} \cdot ... \cdot (x \lambda_n)^{mp}$. Pak M $\approx B_1(\lambda_1) \oplus ... \oplus B_p(\lambda_p)$, kde:
 - \circ $B_1(\lambda_1)$ má rozměry $m_1 \times m_1, \ldots, B_n(\lambda_n)$ má rozměry $m_n \times m_n$, těm budeme říkat Jordanovy segmenty.
 - Platí $B_1(\lambda_1) = N_1 + \lambda_1 E_{m1}, ..., B_p(\lambda_p) = N_p + \lambda_p E_{mp}$, kde $N_1, ..., N_p$ jsou nilpotentní matice
 - $\circ \quad \text{Přičtením matic } \lambda_1 E_{m1}, ..., \lambda_p E_{mp} \text{ k Jordanovu tvaru matic } N_1 ..., \ N_p \text{získáme výsledný Jordanův tvar.}$
 - **2** Tabulka pro vlastní hodnotu 2, tj. pro $\mathbf{N} = \mathbf{M} 2 \cdot \mathbf{E}_6$

<i>i</i>	$d_i = \operatorname{def}(\mathbf{N}^i)$	počet buněk rozměrů $i imes i$ je: $2d_i - d_{i-1} - d_{i+1}$
0	0	_
1	2	1
2	3	0
3	4	1
4	4	

To znamená, že $\mathbf{B}_1(2)$ má tvar

$$\mathbf{B}_{1}(2) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ \hline 0 & 0 & 0 & 2 \end{pmatrix}$$

0

•
$$f_{diag} \cdot f_{nil} = f_{nil} \cdot f_{diag} - komutuji : o$$

Skalární součin (19, 20, 21, 22)

- **Def.:** Ať L je lineární skalární prostor nad ℝ. Funkci <--|--> : L x L → ℝ říkáme skalární součin, pokud platí následující, pro libovolné x, y:
 - o komutativita: <x | y> = <y | x>
 - o linearita v druhé souřadnici: zobrazení <x | -->: L→ ℝ je lineární
 - o positivní definitnost: $\langle x \mid x \rangle \geq 0$, $\langle x \mid x \rangle = 0$ iff $x = \mathbf{0}$
- nerovnost Cauchy-Schwarz-Bunyakovski (C-S-B) (TA nerovnost)

$$|\langle \vec{x} \mid \vec{y} \rangle| \leqslant \sqrt{\langle \vec{x} \mid \vec{x} \rangle} \cdot \sqrt{\langle \vec{y} \mid \vec{y} \rangle}$$

$$-1 \leqslant \frac{\langle \vec{x} \mid \vec{y} \rangle}{\sqrt{\langle \vec{x} \mid \vec{x} \rangle} \cdot \sqrt{\langle \vec{y} \mid \vec{y} \rangle}} \leqslant 1$$

$$= \cos \varphi \text{ pro jediné } \varphi \in [0; \pi]$$

- o má za důsledek úhel mezi vektory:
- **Def.:** Normu vektoru x definujeme jako ||x||=sqrt(<x | x>)
 - C-S-B tedy též <x | y> ≤ ||x||·||y||
 - o Platí:

 - $\|\mathbf{a} \cdot \mathbf{x}\| = \|\mathbf{a} \cdot \|\mathbf{x}\|$
 - IIx+y||<= ||x||+||y|| (trojúhelníková nerovnost)
 - o důsledek: $\langle x | y \rangle = ||x|| \cdot ||y|| \cdot \cos \varphi$
 - vektor x je normovaný, pokud ||x||=1
- **Def.:** Pokud <x | y> = 0, mluvíme o ortogonálních (kolmých) vektorech.
 - o nulový vektor je kolmý na všechny vektory, protože sk. součin je lineární v druhé souřadnici a musí poslat nulu na nulu
 - naopak: když je x kolmý na každý vektor, musí jít o nulový vektor
 - x je kolmé na všechna v∈span(M) iff je kolmé na všechna m∈M
 - Dk.: v je lineární kombinací vektorů m z M
- metrika/distance d: $L \times L \rightarrow \mathbb{R}$: d(x,y)=||x-y||
 - d(x,y)>=0, rovnost nastává, když x=y
 - \circ d(x,y)=d(y,x)
 - $\circ \quad \mathsf{d}(\mathsf{x},\mathsf{y}) <= \mathsf{d}(\mathsf{x},\mathsf{z}) + \mathsf{d}(\mathsf{z},\mathsf{y})$
- Pro matici A: ℝⁿ→ ℝⁿ jsou následující podmínky ekvivalentní:
 - A zachovává standardní skalární součin v Rⁿ
 - A je regulární a platí A^T = A⁻¹

- **Def.:** Řekneme, že matice G typu n×n nad R je positivně definitní, když existuje matice R s lineárně nezávislými sloupci tak, že G=R^T·R
 - o každá positivně definitní matice G je symetrická
 - o matice R je v určitém smyslu druhá odmocnina z G
- Charakterisace positivně definitních matic (TFAE)
 - o G je positivně definitní
 - o G je symetrická a determinanty všech podmatic jsou kladné
 - o G je symetrická a nerovnost $x^T \cdot G \cdot x > = 0$ platí pro všechna x z \mathbb{R}^n (rovnost platí pouze pro x=0)
 - o G je symetrická a char_G(x) má všechny kořeny reálné a kladné
 - o existuje regulární R tak, že G=R^T⋅R
- Ať G je positivně definitní matice typu n×n nad $\mathbb R$ Potom maticový součin x^T·G·y definuje skalární součin v $\mathbb R^n$
 - \circ Každý skalární součin v \mathbb{R}^n definuje positivně definitní matici $G = (g_{ij})_{i=1,\dots,n,="1,\dots,n}$, kde $g_{ij} = \langle e_i \mid e_i \rangle$
 - o matici G říkáme metrický tensor skalárního součinu
- **Def.:** Báze B je ortonormální, pokud $\langle b_i | b_i \rangle = \delta_{ii}$
 - Existuje jediný skalární součin takový, že $\langle b_i | b_i \rangle = \delta_{ii}$, metrický tensor G = $(B^{-1})^T B^{-1}$
 - Dk. existence: B⁻¹ pošle b_i na e_i
 - Dk. jednoznačnosti: hrajeme si s tou rovností :)
- Ať M je jakákoliv množina nenulových vektorů s vlastností <x | y> = 0 pro jakékoliv různé vektory x, y z M. Pak M je lineárně nezávislá množina.
 - Dk.: začíná 0 = <x_{i0} | o>, nulu zapíšeme jako lin. kombinaci a hrajeme si s tím
- v prostoru dimense n může existovat maximálně n navzájem na sebe kolmých nenulových vektorů
- každou bázi jde normalizovat prvky báze vydělíme jejich normou
- At' $B = (b_1, ..., b_n)$ je ortonormální báze prostoru se skalárním součinem. Pak:

$$\vec{x} = \sum_{i=1}^{n} \langle \vec{b}_i \mid \vec{x} \rangle \cdot \vec{b}_i$$
, čili $\mathbf{coord}_B(\vec{x}) = \begin{pmatrix} \langle \vec{b}_1 \mid \vec{x} \rangle \\ \vdots \\ \langle \vec{b}_n \mid \vec{x} \rangle \end{pmatrix}$ (Fourierova řada)

- Dk.: Chyba je nula, tak vložím tu chybu s nějakým prvkem báze do skalárního součinu a využiju kroneckerovo delta.
- o Důsledky

$$\langle \vec{x} \mid \vec{y} \rangle = \sum_{i=1}^{n} \langle \vec{b}_i \mid \vec{x} \rangle \cdot \langle \vec{b}_i \mid \vec{y} \rangle$$

• tzn. počítá se to stejně jako standardní skalární součin - bez tensoru :)

$$\cos \varphi_{i_0} = \frac{\langle \vec{b}_{i_0} \mid \vec{x} \rangle}{\|\vec{x}\|}$$

$$\sum_{i=1}^n \cos^2 arphi_i = 1$$
 (Eulerova věta)

• projekce a rejekce

0

0

- o rtogonální rejekce je "nejkratší" ze všech rejekcí (dk. z Pythagorovy věty)
- o projekce na podprostor s ortogonální bází, kde M={u₁,...,u_n} a W=span(M)

$$\operatorname{proj}_{W}(\vec{x}) = \sum_{i=1}^{n} \frac{\langle \vec{u_i} \mid \vec{x} \rangle}{\langle \vec{u_i} \mid \vec{u_i} \rangle} \cdot \vec{u_i}$$

- ortogonalisační proces (Gram-Schmidt)
 - o každou bázi prostoru se skalárním součinem lze převést na ortonormální bázi s vlastností:

pro každé k∈{1,...n} platí: span{
$$\mathbf{b_1}$$
, ..., $\mathbf{b_k}$ } = span{ $\mathbf{c_1}$..., $\mathbf{c_k}$ }

$$ec{c}_1 := ec{b}_1, \quad ec{c}_{k+1} := \underbrace{ec{b}_{k+1} - \mathrm{proj}_{\mathsf{span}\{ec{c}_1, \dots, ec{c}_k\}}(ec{b}_{k+1})}_{}$$

rejekce vektoru
$$\vec{b}_{k+1}$$
 podprostorem span $\{\vec{c}_1,\ldots,\vec{c}_k\}$

- posléze normujeme
- $proj_W(x)=A\cdot (A^T\cdot G\cdot A)^{-1}\cdot A^T\cdot G\cdot x$

SVD (23)

- Věta o hlavních osách: Pro každou symetrickou reálnou matici A: $\mathbb{R}^n \to \mathbb{R}^n$ existuje ortonormální báze \mathbb{R}^n složená z vlastních vektorů matice A. Navíc matice A má pouze reálné vlastní hodnoty.
 - o A vlastně zobrazuje jednotkovou kouli na (degenerovaný elipsoid)
- libovolnou matici M: $\mathbb{R}^s \to \mathbb{R}^r$ lze zapsat ve tvaru USV^T, kde:
 - V: $\mathbb{R}^s \to \mathbb{R}^s$ a U: $\mathbb{R}^r \to \mathbb{R}^r$ jsou ortogonální, tj. $V^T = V^{-1}$ a $U^T = U^{-1}$

- to btw. znamená, že zobrazení zachová úhly
- S: $\mathbb{R}^s \to \mathbb{R}^r$ má na hlavní diagonále kladná čísla $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_h$ (tzv. singulární hodnoty matice M), kde h=rank(M). Všude jinde má S nuly.
- asi si to projdeme spolu

Vektorový součin (25)

- **Def.:** At matice A: $\mathbb{R}^k \to \mathbb{R}^n$ má sloupcový zápis $(a_1,...,a_k)$, kde k<=n.
 - Matici $A^T \cdot A : \mathbb{R}^k \to \mathbb{R}^k$ budeme říkat Gramova matice seznamu vektorů $(a_1, ..., a_k)$
 - gramova matice je druhá mocina matice A
 - o Determinantu det($A^T \cdot A$) budeme říkat Gramův determinant seznamu ($a_1, ..., a_k$) a značit jej Gram($a_1, ..., a_k$)
 - gramův determinant je druhá mocnina "determinantu" A ten ale není definován, takže fakt jen jako
 - \circ v j-tém sloupci a i-tém řádku je hodnota standardního skalárního součinu $\langle a_i | a_i \rangle = a_i^T a_i$
- At' (a₁,...,a₂) je seznam vektoru v ℝ¹, 1 <= k <= n. Potom platí:
 - \circ Gram($a_1,...,a_k$)>=0
 - o Gram $(a_1,...,a_k)$ >0 iff $(a_1,...,a_k)$ je lineárně nezávislý
 - o sqrt(Gram(a₁,...,a₂)) udává k-dimensionální objem rovnoběžnostěnu v ℝ², určeného seznamem (a₁,...,a₂)
- **Def.:** Vektorový součin: $\langle x(x_1,...,x_{n-1}) | x \rangle = \det(x_1,...,x_{n-1},x)$ pro všechna x z \mathbb{R}^n
 - \circ vektor $\times (x_1, ..., x_{n-1})$
- $\times (x_1,...,x_{n-1}) = \sum_{i=1}^n \langle \times (x_1,...,x_{n-1}) \mid e_j \rangle e_j = \sum_{i=1}^n \det((x_1,...,x_{n-1},e_i) \cdot e_i)$
 - o plyne to z Fourierových řad (aspoň myslím)

$$\begin{pmatrix} x_{11} \\ x_{21} \\ x_{31} \end{pmatrix} \times \begin{pmatrix} x_{12} \\ x_{22} \\ x_{32} \end{pmatrix} = \begin{vmatrix} x_{11} & x_{12} & \mathbf{e}_1 \\ x_{21} & x_{22} & \mathbf{e}_2 \\ x_{31} & x_{32} & \mathbf{e}_3 \end{vmatrix}$$

- mnemotechincká pomůcka můžeme používat, ale vědět, že to vychází z toho nadtím
- Vlastnosti vektorového součinu (plynou z vlastností determinantu a definice vektorového součinu)
 - (x₁,..., x_{n,1}) \mapsto ×(x₁,..., x_{n,1}) je lineární v každé položce
 - $\times (x_{\pi(1)},..., x_{\pi(n-1)}) = sign(\pi) \cdot \times (x_1,..., x_{n-1})$ pro $\pi \in S_{n-1}$
 - $\circ \quad \times (e_{\pi(1)}, ..., \ e_{\pi(n-1)}) = sign(\pi) \cdot e_{\pi(n)} \ pro \ \pi \in S_n$
 - $||x(x_1,...,x_{n-1})||^2 = \det(x_1,...,x_{n-1},x(x_1,...,x_{n-1}))$
 - \circ $\times (x_1, ..., x_{n-1}) = \mathbf{o}$, když se seznam lineárně závislý
 - $\circ \quad || | (x_1, ..., x_{n-1}) || = sqrt(Gram(x_1, ..., x_{n-1}))$
 - norma je rovna (n-1)-dimensionálnímu objemu rovnoběžnostěnu určeného vektory (x₁,..., xₙ-₁)

Vzájemná poloha a vzdálenost afinních podprostorů (24, 26)

- **Def.**: Množině p+W = {p+x|x∈W}, kde W je lineární podprostor prostoru ℝⁿ a p je bod z ℝⁿ říkáme afinní podprostor prostoru ℝⁿ
 - dimense p+W je dim(W)
 - o lineárnímu prostoru W říkáme směr afinního podprostoru
 - o dim0 body, dim1 přímky, dim2 roviny
- **Def.:** Mějme afinní podprostory π=p+W a π'=p'+W' v ℝⁿ. Řekneme, že:
 - π a π' jsou rovnoběžné, pokud W ⊆ W' nebo W' ⊆ W
 - ο π a π' jsou různoběžné, pokud nejsou rovnoběžné a mají alespoň jeden společný bod
 - o π a π' jsou mimoběžné, pokud nejsou rovnoběžné a nemají žádný společný bod
 - dimensi W∩W' říkáme stupeň rovnoběžnosti π a π'

- Charakterisace rovnoběžných disjunktních afinních podprostorů (TFAE)
 - π a π' jsou disjunktní
 - pro jakýkoliv vektor x v π a x' v π' vektor x-x' neleží ve W
 - o vektor p-p' neleží ve W
 - existuje vektor x v π a vektor x' v π' tak, že vektor x-x' neleží ve W
- Charakterisace různoběžných afinních podprostorů (TFAE)
 - ο π a π' jsou různoběžné
 - o pro jakýkoliv vektor x v π a x' v π' vektor x-x' leží ve W v W'
 - o vektor p-p' leží ve W v W'
 - existuje vektor x v π a vektor x' v π' tak, že vektor x-x' leží ve W v W'
- Charakterisace mimoběžných afinních podprostorů
 - π a π' jsou mimoběžné
 - o vektor p-p' neleží ve W v W'
- At' $\pi = p + W$ je d-dimensionální afinní podprostor prostoru \mathbb{R}^n . Potom existují dvě matice S: $\mathbb{R}^d \to \mathbb{R}^n$ a N^T : $\mathbb{R}^n \to \mathbb{R}^{n-d}$ tak, že platí:
 - \circ im(S)=W=ker(N^T), rank(N^T)=n-d a rank(S)=d
 - vektor x leží v π iff x = p+S·t pro nějaké t: parametrický zápis
 - o vektor x leží v π iff $N^T(x-p)=0$: rovnicový zápis
 - sloupce matice N si lze představit jako seznam lineárně nezávislých normál příslušného afinního podprostoru

- Charakterisace rovnoběžných disjunktních afinních podprostorů, x=p+St
 - o TFAE:
 - W' ⊆ W
 - span($s'_1,...,s'_d$) ⊆ span($s_1,...,s_d$), kde S'=($s'_1,...,s'_d$) a S=($s_1,...,s_d$)
 - simultánní soustava (S|S') má řešení
 - o At' W' ⊆ W, TFAE:
 - π a π' jsou disjunktní
 - pro x z π a x' z π' soustava (S|x-x') nemá řešení
 - soustava (S|p-p') nemá řešení
 - existuje vektor x v π a x' v π' tak, že soustava (S|x-x') nemá řešení
- Charakterisace různoběžných afinních podprostorů (TFAE)
 - ο π a π' jsou různoběžné
 - o pro jakýkoliv vektor x v π a x' v π' soustava (S', S|x-x') má řešení
 - o soustava (S', S | p-p') má řešení
 - o existuje vektor x v π a vektor x' v π' tak, že soustava (S', S|x-x') má řešení
- Charakterisace mimoběžných afinních podprostorů
 - π a π' jsou mimoběžné
 - o soustava (S', S|p-p') nemá řešení
- **Def.:** π a π ' jsou dva afinní podprostory prostoru \mathbb{R}^n . Reálnému číslu $\omega(\pi,\pi') = \inf\{||x x'|| \mid x \in \pi, x' \in \pi'\}$ říkáme **vzájemná vzdálenost** π a π '.
 - o ta množina je neprázdná a zdola omezená infimum existuje
 - o pro n=0: \mathbb{R}^0 ={o}, tedy $\omega(\pi,\pi')$ =0
 - o pro n=1: \mathbb{R}^1 má afinní prostory body nebo celé \mathbb{R}^1 , takže $\omega(\pi,\pi')=||p-p'||$, nebo $\omega(p,\mathbb{R})=\omega(\mathbb{R},\mathbb{R})=0$
- At' $\pi=p+W$ a $\pi'=p'+W'$ jsou dva afinní podprostory v \mathbb{R}^n . Potom platí: $\omega(\pi,\pi')=||rej_{w\vee w'}(p-p')||$
 - o myšlenky důkazu (máme mít představu):

- vzdálenost by měla být délka kolmé příčky mezi prostory (analogicky s dvěma rovnoběžkami v R²)
- kolmá příčka by měla mít směr V, kde V={v | <w | v> = 0 pro všechna w z W V W'} množina všech vektorů kolmých na W V W'
 - je to podprostor? ano je
- najdeme body x_0 v π a x_0 ' v π ' tak, že platí: x_0 - x_0 =rej_{w∨w}(p p'), tedy x_0 - x_0 je kolmá příčka mezi π , π ' procházející body x_0 - x_0
 - podle definice též x₀-x'₀=proj_v(p p')

$$\mathbf{x}' - \mathbf{x} = \underbrace{(\mathbf{x}'_0 - \mathbf{x}_0)}_{\in V} + \underbrace{(\mathbf{x}' - \mathbf{x}'_0) + (\mathbf{x}_0 - \mathbf{x})}_{\in W \lor W'}$$

Proto podle Pythagorovy věty^a platí

$$\begin{split} \|\mathbf{x}' - \mathbf{x}\|^2 &= \|\mathbf{x}_0' - \mathbf{x}_0\|^2 + \|(\mathbf{x}' - \mathbf{x}_0') + (\mathbf{x}_0 - \mathbf{x})\|^2 \\ \text{a tedy } \|\mathbf{x}' - \mathbf{x}\|^2 &\geq \|\mathbf{x}_0' - \mathbf{x}_0\|^2, \text{ neboli} \\ \|\mathbf{x}' - \mathbf{x}\| &\geq \|\mathbf{x}_0' - \mathbf{x}_0\| = \|\mathrm{rej}_{W \vee W'}(\mathbf{p}' - \mathbf{p})\| = \|\mathrm{rej}_{W \vee W'}(\mathbf{p} - \mathbf{p}')\| \end{split}$$

- To znamená, že platí b $\omega(\boldsymbol{\pi},\boldsymbol{\pi}') = \|\mathrm{rej}_{W \vee W'}(\mathbf{p} \mathbf{p}')\|.$
 - ^aZ definice V platí $\langle \mathbf{x}'_0 \mathbf{x}_0 \mid (\mathbf{x}' \mathbf{x}'_0) + (\mathbf{x}_0 \mathbf{x}) \rangle = 0$. ^bPodle definice V platí také $\omega(\boldsymbol{\pi}, \boldsymbol{\pi}') = \|\text{proj}_V(\mathbf{p} - \mathbf{p}')\|$
- tipy a triky pro výpočty (dají se odvodit)
 - o bod od přímky: n=x(s) a přímka ve tvaru $n^{T}(x-p)=0$