books
French (FRA)

Livres Anciens (Ancient Books)

La ville de Téhéran abrite la bibliothèque nationale d'Iran. Le joyau de cette bibliothèque est situé dans une longue salle, sur une rangée de n tables numérotées de 0 à n-1 (de gauche à droite). Sur chaque table est exposé un manuscrit ancien. Ces livres sont triés par ordre chronologique, ce qui rend difficile pour les visiteurs la recherche d'un livre à partir de son titre. Le gestionnaire de la bibliothèque a donc décidé de trier les livres dans l'ordre alphabétique de leur titre.

Aryan, un bibliothécaire, a hérité de cette tâche. Il a créé une liste p de longueur n, contenant tous les nombres entiers entre 0 et n-1. Cette liste décrit les changements nécessaires pour réorganiser les livres par ordre alphabétique : pour tout $0 \le i \le n$, le livre initialement sur la table i doit être déplacé vers la table p[i].

Aryan commence à trier les livres à la table s. Il veut revenir à cette même table après avoir réorganisé tous les livres. Comme les livres sont très précieux, il ne peut en transporter qu'un seul à la fois. Lors du tri des livres, Aryan va effectuer une série d'actions. Chacune d'entre elles sera de l'un des types suivants :

- S'il ne transporte pas de livre et qu'il y a un livre sur la table devant lui, il peut prendre ce livre.
- S'il transporte un livre et qu'il y a un autre livre sur la table devant lui, il peut échanger son livre avec celui sur la table.
- S'il transporte un livre et qu'il est devant une table vide, il peut déposer le livre sur la table.
- Il peut marcher jusqu'à la table de son choix. Il peut en profiter pour transporter un livre.

Pour tout $0 \le i, j \le n-1$, la distance entre les tables i et j est exactement |i-j| mètres. Votre tâche est d'aider Aryan à trier les livres de manière à ce que la distance totale parcourue soit minimisée.

Détails d'implémentation

Vous devez implémenter la fonction suivante :

```
int64 minimum_walk(int[] p, int s)
```

- p est un tableau de taille n. Le livre initialement sur la table i doit être déposé par Aryan sur la table p[i] (pour tout $0 \le i < n$).
- s est le numéro de la table devant laquelle est Aryan au début, et où il doit être après avoir trié les livres.
- Cette fonction doit renvoyer la distance totale minimale (en mètres) qu'Aryan doit parcourir afin de trier les livres.

Exemple

minimum walk(
$$[0, 2, 3, 1], 0$$
)

Dans cet exemple, n=4 et Aryan commence à la table 0. Il trie les livres de la manière suivante :

- Il marche jusqu'à la table 1 et prend le livre qui y est exposé. Ce livre doit être déposé sur la table 2.
- Ensuite, il marche jusqu'à la table 2 et échange son livre avec celui présent sur la table. Le nouveau livre qu'il transporte doit être déposé sur la table 3.
- Ensuite, il marche jusqu'à la table 3 et échange son livre avec celui présent sur la table. Le nouveau livre qu'il transporte doit être déposé sur la table 1.
- Ensuite, il marche jusqu'à la table 1 et dépose le livre qu'il transporte.
- Enfin, il retourne à table 0.

Notez que le livre sur la table 0 est déjà au bon endroit, donc Aryan n'a pas à le déplacer. Dans cette solution, la distance totale parcourue est de 6 mètres. C'est la solution optimale ; par conséquent la fonction doit renvoyer 6.

Contraintes

- 1 < n < 1000000
- $0 \le s \le n-1$
- Le tableau p contient n entiers distincts entre 0 et n-1 (inclus).

Sous-tâches

- 1. (12 points) $n \leq 4$ et s=0
- 2. (10 points) $n \le 1000$ et s = 0
- 3. (28 points) s = 0
- 4. (20 points) $n \le 1000$
- 5. (30 points) Aucune contrainte supplémentaire.

Évaluateur d'exemple

L'évaluateur d'exemple lit les entrées dans le format suivant :

• ligne 1: $n \ s$

ullet ligne 2: p[0] p[1] \dots p[n-1]

L'évaluateur d'exemple écrit une seule ligne sur la sortie standard, qui contient la valeur renvoyée par la fonction minimum_walk.