Lab 06: HW 5

Hunjun Lee hunjunlee@hanyang.ac.kr

Overview

 You will upgrade your single cycle CPU into a pipelined CPU

- What to do?
 - Implement a five-stage pipelined CPU
 - We need a basic pipeline that does not support branch prediction and data forwarding
 - Predict not-taken and flush on misprediction
 - Stall upon detecting a data hazard

Target CPU Microarchitecture

- Implement a basic pipelined architecture following the CPU architecture you learned in the class
 - Add hazard detection module ...

What to implement

- #1) Divide the computation into five stages and execute multiple instructions in parallel
- #2) Properly set the control signals over the five pipeline stages (whichever way you want)
- #3) Predict not-taken during instruction fetch
 - If the branch is taken, flush the mis-predicted instructions
 - You are allowed to perform early branch resolution @ ID stage if you want
- #4) Detect data hazard and stall
 - If the CPU detects a data hazard, stall the pipeline and reexecute the ID stage (do not support data forwarding for now)

Assignment

Files:

- MEM.cpp/h + MEM.v (HW3)
 - Use the MEM files from HW3 again (You cannot share resources between IF and MEM stage)
- Modify everything else if you need
 - Use the files from previous HWs and modify them if you need
- You are allowed to add your own HW module and files if you want
 - I personally added HAZARD.v/cpp/h for hazard detection and stall

Submission

- Submission (Zip all the files)
 - For a two-people team: lab5_student_id1_student_id2.zip
 - For a one-person team: lab5_student_id.zip
 - You must follow the format (-10% for wrong file format)
 - Example:
 - lab5_2020102030.zip
 - lab5_2020102030_2022103040.zip
 - The zip file should contain:
 - every cpp/h/v files
 - lab5_report.pdf

Submission

- You need to write a 4+-page report
 - Explain the overall structure and how you implemented each program
 - Draw the hardware modules if needed ...
 - How did you implement the hazard detection unit, and stall logic ...
- Due: Fri. May 30th
 - 1 week delay: -20%
 - 2 week delay: -50%
 - Further delay: 0 point
- You can submit HW4 by May 30th with only 20% deduction
 - I do not accept additional delay