• Transmission lines

- 1. Reflection coefficient
- 2. Standing wave
- 3. Input impedence
- 4. Short-circuit Tx line
- 5. Open-circuit Tx Line
- 6. Matched Tx line
- 7. Quarter Wavelength transformer
- 8. Power Flow on transmission lines
- 9. Transients in Transmission Line

• Voltage reflection coefficient :

$$\overset{\sim}{\mathbf{V}}_{L} = \overset{\sim}{\mathbf{V}}_{(z)} \Big|_{z=0} = \overset{\sim}{\mathbf{V}_{0}^{+}} + \overset{\sim}{\mathbf{V}_{0}}$$

$$\overset{\sim}{iL} = \overset{\sim}{i(z)} \Big|_{z=0} = \frac{\overset{\sim}{\mathbf{V}_{0}^{+}}}{Z_{0}} - \frac{\overset{\sim}{\mathbf{V}_{0}}}{Z_{0}}$$

$$ZL = \frac{\vec{V}_L}{\vec{i}_L} = \frac{\vec{V}_0^+ + \vec{V}_0^-}{\vec{V}_0^+ - \vec{V}_0^-} \longrightarrow \frac{\vec{V}_0^+}{\vec{V}_0^-} = \frac{ZL - Z_0}{Z_L + Z_0}$$

• <u>Voltage reflection coefficient :</u>

$$\Gamma \equiv \frac{\bar{V_0}}{V_0^+} = \frac{ZL - Z_0}{ZL + Z_0}$$

• <u>Current reflection coefficient :</u>

$$\Gamma_{i} \equiv \frac{i_{0}}{i_{0}^{+}} = -\frac{V_{0}}{V_{0}^{+}} = -\Gamma$$

- <u>Note</u>:
 - 1. $|\Gamma| \le 1$
 - 2. If $Z_L = Z_0$, $\Gamma = 0$. Impedance match, no reflection from the load Z_L .

Standing wave

$$\begin{cases} \widetilde{V}(z) = V_0^+ e^{-j\beta z} + V_0^- e^{j\beta z} \\ \widetilde{i}(z) = \frac{V_0^+}{Z_0} e^{-j\beta z} - \frac{V_0^-}{Z_0} e^{j\beta z} \end{cases} \text{ with } \Gamma = \frac{V_0^-}{V_0^+} \\ \widetilde{i}(z) = V_0^+ (e^{-j\beta z} + \Gamma e^{j\beta z}) \\ \widetilde{i}(z) = \frac{V_0^+}{Z_0} (e^{j\beta z} - \Gamma e^{j\beta z}) \\ |\widetilde{V}(z)| = |V_0^+| |e^{-j\beta z} + |\Gamma |e^{j\theta r} e^{j\beta z}| \\ = |V_0^+| |1 + |\Gamma |^2 + 2|\Gamma |\cos(2\beta z + \theta r)|^{1/2} \\ |\widetilde{i}(z)| = |V_0^+| |Z_0^-| |1 + |\Gamma |^2 - 2|\Gamma |\cos(2\beta z + \theta r)|^{1/2} \end{cases}$$

Special cases

1.
$$ZL=Z_0, \Gamma=0$$

$$|\tilde{V}(z)| = |V_0^+|$$

2. ZL= 0, short circuit, $\Gamma = -1$

$$\stackrel{\sim}{|V(z)|} = |V_0^+| [2 + 2cos(2\beta z + \pi)]^{1/2}$$

Special cases

3. $ZL=\infty$, open circuit, $\Gamma=1$

$$\stackrel{\sim}{|V(z)|} = |V_0^+| [2 + 2\cos(2\beta z)]^{1/2}$$

Voltage maximum

$$\stackrel{\sim}{|V(z)|} = |V_0^+| \left[1 + |\Gamma|^2 + 2 |\Gamma| cos(2\beta z + \theta_r) \right]^{1/2}$$

$$|\tilde{V}(z)|_{max} = |V^{+}_{0}|[1+|\Gamma|], \text{ when } 2\beta z + \theta r = 2n\pi.$$

$$-z = \lambda \theta_r / 4\pi + n\lambda / 2$$

$$n = 1, 2, 3, ..., if \theta_r < 0$$

$$n = 1, 2, 3, ..., \text{ if } \theta_r < 0$$

 $n = 0, 1, 2, 3, ..., \text{ if } \theta_r > = 0$

• <u>Voltage minimum</u>

$$|\tilde{V}(z)| = |V^{+}_{0}| \left[1 + |\Gamma|^{2} + 2|\Gamma|\cos(2\beta z + \theta_{r})\right]^{1/2}$$

$$|\tilde{V}(z)|_{min} = |V^{+}_{0}| \left[1 - |\Gamma|\right], \text{ when } 2\beta z + \theta_{r} = (2n+1)\pi.$$

$$-z = \lambda \theta_{r}/4\pi + n\lambda/2 + \lambda/4$$

Note:

voltage minimums occur $\lambda/4$ away from voltage maximum, because of the $2\beta z$, the **spatial frequency doubled**.

Voltage standing-wave ratio VSWR or SWR

$$S = \frac{|\tilde{V}(z)|_{max}}{\overset{\sim}{|V(z)|_{min}}} = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$

$$S = 1$$
, when $\Gamma = 0$,

$$S = \infty$$
, when $|\Gamma| = 1$,

• Practical example of measurement of unknown load impedance

$$S = 3$$
, $Z_0 = 50\Omega$, $\Delta l_{min} = 30cm$, $l_{min} = 12cm$, $Z_L = ?$

Solution:

$$\Delta l_{min} = 30cm, \Rightarrow \lambda = 0.6m,$$

$$S = 3$$
, $\Rightarrow |\Gamma| = 0.5$,

$$-2\beta lmin + \theta r = -\pi, \Rightarrow \theta r = -36^{\circ},$$

$$\Rightarrow \Gamma$$
, and ZL.

• <u>Input impedance</u>

An example

A 1.05-GHz generator circuit with series impedance $Zg = 10-\Omega$ and voltage source given by $Vg(t) = 10 \sin(\omega t + 30^{\circ})$ is connected to a load $ZL = 100 + j5-\Omega$ through a 50- Ω , 67-cm long lossless transmission line. The phase velocity is 0.7c. Find V(z,t) and i(z,t) on the line.

Solution:

Since,
$$Vp = f\lambda$$
, $\lambda = Vp/f = 0.7c/1.05GHz = 0.2m$.

$$\beta = 2\pi/\lambda$$
, $\beta = 10 \pi$.

$$\Gamma = (ZL-Z_0)/(ZL+Z_0), \Gamma = 0.45 \exp(j26.6^\circ)$$

$$Z_{in}(-l) = \frac{(1+\Gamma e^{-j2\beta l})}{(1-\Gamma e^{-j2\beta l})}Z_{0} = 21.9 + j17.4 \Omega$$

$$V_0^+[\exp(-j\beta l) + \Gamma\exp(j\beta l)] = \frac{Z_{in}(-l)}{Z_{in}(-l) + Z_g} \widetilde{V}g$$

To find out the forward wave

short circuit line

$$ZL=0, \Gamma=-1, S=\infty$$

$$\begin{cases} \widetilde{V}(z) = V_0(e^{-j\beta Z} - e^{j\beta Z}) = -2jV_0^{\dagger}\sin(\beta z) \\ \widetilde{i}(z) = \frac{V_0^{\dagger}}{Z_0}(e^{-j\beta Z} + e^{j\beta Z}) = 2V_0^{\dagger}\cos(\beta z)/Z_0 \end{cases}$$

$$Z_{\text{in}} = \frac{\widetilde{V}(-l)}{\widetilde{i}(-l)} = jZ_0 \tan(\beta l)$$

short circuit line

$$Z_{in} = \frac{\widetilde{V}(-l)}{\widetilde{i}(-l)} = jZ_{0}tan(\beta l)$$

- If $tan(\beta l) >= 0$, the line appears inductive, $j\omega L_{eq} = jZ_0 tan(\beta l)$,
- If $tan(\beta l) \le 0$, the line appears capacitive, $1/j\omega C_{eq} = jZ_0 tan(\beta l)$,
- The minimum length results in transmission line as a capacitor:

$$l = 1/\beta[\pi - \tan^{1}(1/\omega \text{CeqZ0})],$$

Reactance as a function of normalized frequency for a shorted line

An example:

Choose the length of a shorted 50- Ω lossless line such that its input impedance at 2.25 GHz is equivalent to the reactance of a capacitor with capacitance Ceq = 4pF. The wave phase velocity on the line is 0.75c.

Solution:

Vp =
$$\lambda f$$
, $\Rightarrow \beta = 2\pi/\lambda = 2\pi f/Vp = 62.8$ (rad/m)
tan (βl) = - 1/ωCeqZ0 = -0.354,
 $\beta l = \tan^{-1}(-0.354) + n\pi$,
= -0.34 + nπ,

open circuit line

ZL=
$$0, \Gamma = 1, S = \infty$$

$$\begin{cases} \tilde{V}(z) = V_0(e^{j\beta Z} + e^{j\beta Z}) = 2V_0^{\dagger}\cos(\beta z) \\ \tilde{i}(z) = \frac{\overset{\sim}{V_0^{\dagger}}}{Z_0}(e^{j\beta Z} - e^{j\beta Z}) = 2jV_0^{\dagger}\sin(\beta z)/Z_0 \end{cases}$$

$$Z_{in}^{oc} = \frac{\tilde{V}(-l)}{\tilde{i}(-l)} = -jZ_0\cot(\beta l)$$

Application for short-circuit and open-circuit

Network analyzer

- Measure Tx line parameters
- Measure Z_{in} and Z_{in} or
- Calculate Z₀

$$Z_{in}^{sc} = jZ_{0tan}(\beta l)$$

$$Z_{in}^{oc} = -jZ_{0}cot(\beta l)$$

$$Z_0 = \sqrt{Z_{in}^{sc}Z_{in}^{oc}}$$

• Calculate βl using

$$\tan(\beta l) = -j\sqrt{\frac{Z_{\text{in}}^{\text{sc}}}{Z_{\text{in}}^{\text{oc}}}}$$

Line of length $l = n\lambda/2$

$$\tan(\beta l) = \tan((2\pi/\lambda)(n\lambda/2)) = 0,$$

$$Z_{in}(-l) = \frac{(1+\Gamma e^{-j2\beta l})}{(1-\Gamma e^{-j2\beta l})}Z_{0} = Z_{L}$$

Any multiple of half-wavelength line doesn't modify the load impedance.

Quarter-wave transformer $l = \lambda/4 + n\lambda/2$

$$\beta l = (2\pi/\lambda)(\lambda/4 + n\lambda/2) = \pi/2$$
,

$$Z_{in}(-l) = \frac{(1+\Gamma e^{-j2\beta l})}{(1-\Gamma e^{-j2\beta l})} Z_{0} = \frac{(1+\Gamma e^{-j\pi})}{(1-\Gamma e^{-j\pi})} Z_{0} = \frac{(1-\Gamma)}{(1+\Gamma)} Z_{0}$$
$$= Z_{0}^{2}/Z_{L}$$

Quarter-Wave Impedance Matching Section

$$Z_o = \sqrt{Z_o^a R_L}$$

An example:

A 50- Ω lossless tarnsmission is to be matched to a resistive load impedance with ZL = 100 Ω via a quarter-wave section, thereby eliminating reflections along the feed line. Find the characteristic impedance of the quarter-wave tarnsformer.

$$Z_{in} = Z_0^2/Z_L = 50 \Omega$$

$$Z_0 = (Z_{in}Z_L)^{1/2} = (50*100)^{1/2}$$

Matched transmission line:

- 1. $ZL = Z_0$
- 2. $\Gamma = 0$
- 3. All incident power is delivered to the load.

- Instantaneous power
- Time-average power

$$\begin{cases} \widetilde{V}(z) = V_0^+ (e^{-j\beta Z} + \Gamma e^{j\beta Z}) \\ \widetilde{i}(z) = \frac{V_0^+}{Z_0} (e^{-j\beta Z} - \Gamma e^{j\beta Z}) \end{cases}$$

At load z = 0, the incident and reflected voltages and currents:

$$\tilde{V} = V \overset{i}{0} \qquad \qquad \tilde{i} \overset{i}{i} = \frac{V \overset{i}{0}}{Z 0}
\tilde{V} = V \overset{i}{0} \qquad \qquad \tilde{i} \overset{r}{i} = \frac{V \overset{i}{0}}{Z 0}$$

• Instantaneous power

$$\begin{split} \overset{i}{P(t)} &= v(t) \ \emph{i}(t) = \text{Re}[\tilde{V}^{i} \exp(j\omega t)] \ \text{Re}[\tilde{i}^{i} \exp(j\omega t)] \\ &= \text{Re}[|V_{0}^{\dagger}| \exp(j\phi^{\dagger}) \exp(j\omega t)] \ \text{Re}[|V_{0}^{\dagger}| Z_{0} \exp(j\phi^{\dagger}) \exp(j\omega t)] \\ &= (|\tilde{V}_{0}|^{2}/Z_{0}) \cos^{2}(\omega t + \overset{\leftarrow}{\Phi}) \\ \\ \overset{\Gamma}{P(t)} &= v(t) \ \emph{i}(t) = \text{Re}[\tilde{V}^{r} \exp(j\omega t)] \ \text{Re}[\tilde{i}^{r} \exp(j\omega t)] \\ &= \text{Re}[|V_{0}| \exp(j\phi^{\dagger}) \exp(j\omega t)] \ \text{Re}[|V_{0}| Z_{0} \exp(j\phi^{\dagger}) \exp(j\omega t)] \\ &= - |\Gamma|^{2}(|\overset{\leftarrow}{V}_{0}|^{2}/Z_{0}) \cos^{2}(\omega t + \overset{\leftarrow}{\Phi} + \varphi_{r}) \end{split}$$

• Time-average

Time-domain approach:

$$\begin{split} P_{av}^{i} &= \frac{1}{T} \int_{0}^{T} P^{i}(t) dt = \frac{\omega}{2\pi} \int_{0}^{T} (|V_{0}^{\dagger}|^{2}/Z_{0}) \cos^{2}(\omega t + \phi^{\dagger}) dt \\ &= (|V_{0}^{\dagger}|^{2}/2Z_{0}) \end{split}$$

$$P_{av}^{r} = -|\Gamma|^{2} (|V_{0}^{+}|^{2}/2Z_{0})$$

Net average power:

$$P_{av} \equiv P_{av}^{i} + P_{av}^{r}$$

$$= (1-|\Gamma|^{2}) (|V_{0}^{+}|^{2}/2Z_{0})$$

• impedance matching

$$Z_{in} = Z_0$$

• single-stub impedance matching network

TRANSIENTS in Tx Lines

LAUNCH of Forward Wave in Tx Lines

$$V_1^+ = \frac{Z_0}{Z_0 + R_S} V_0$$

LAUNCH of Backward Wave from the load end

$$\overline{\Gamma_L} = \frac{v_1^-(l,t)}{v_1^+(l,t)} = \frac{R_L - Z_0}{R_L + Z_0} \quad \text{Load voltage}$$
reflection coefficient

known.

LAUNCH of 2nd Forward Wave from the source end

At
$$t = 2t_d$$

$$\Gamma_{S} = \frac{v_{2}^{+}(l,t)}{v_{1}^{-}(l,t)} = \frac{R_{S} - Z_{0}}{R_{S} + Z_{0}}$$
 Source voltage reflection coefficient

At
$$t = 2t_d$$

$$v_{S}(2t_{d}) = v_{1}^{+}(0,2t_{d}) + v_{1}^{-}(0,2t_{d}) + v_{2}^{+}(0,2t_{d}) = v_{1}^{+}(0,2t_{d})(1 + \Gamma_{L} + \Gamma_{L}\Gamma_{S})$$

STEADY STATE PICTURE

At
$$t \to \infty$$

$$\begin{split} \lim_{t \to \infty} v_S(t) &= V_1^+ \cdot \left[\left(1 + \Gamma_L \right) + \Gamma_L \Gamma_S \left(1 + \Gamma_L \right) + \Gamma_L^2 \Gamma_S^2 \left(1 + \Gamma_L \right) + \dots \right] \\ &= \frac{R_L}{R_S + R_L} V_0 \end{split}$$

Steady state response is as if there were no line.

BOUNCE DIAGRAM

$$\Gamma_S = \frac{R_S - Z_0}{R_S + Z_0}$$

$$\Gamma_L = \frac{R_L - Z_0}{R_L + Z_0}$$

SPATIO-TEMPORAL Voltage Distribution at location z_0 time t_0

Transients in Open-ended Tx line

$$\Gamma_{L} = \frac{R_{L} - Z_{0}}{R_{L} + Z_{0}} = 1$$

$$R_{s} = 0.25Z_{0}$$

$$R_{s} = 0.25Z_{0}$$

$$V_{s}(t)$$

$$V_{s}(t)$$

$$Z_{0}, t_{d} = l/v_{p}$$

$$V_{L}(t) > R_{L}$$

$$R_{L} = \infty$$

$$\Gamma_{S} = \frac{R_{S} - Z_{0}}{R_{S} + Z_{0}} = -0.6$$

Transient at SOURCE end

Transient at LOAD end

Transients in MATCHED Tx line

Transients at SOURCE & LOAD end

Pulses Measured with the Reels of RG58/U Cable

50 Ohm source

50 Ohm line terminated in 50 Ohms load

Improperly terminated cable connecting input to scope

Properly terminated cable connecting input to scope

Step input Measured for open ended line

