Álgebra Folha 2

- 1. Verifique quais dos grupóides seguintes são grupos:
 - (a) $(\mathbb{N}, *)$ onde $a * b = 2^{ab}$
 - (b) $(\mathbb{R} \setminus \{-1\}, *)$ onde a * b = a + b + ab
 - (c) $(\mathbb{Q}, *)$ onde a * b = ab + a + b + 1
- 2. Mostre que existe no máximo uma estrutura de grupo no conjunto $V = \{e, a, b, c\}$ tal que e é o elemento neutro e $a^2 = b^2 = e$. Se existir, será um grupo abeliano? Nota-se que existe um tal grupo, é chamado qrupo de Klein.
- 3. Diga quais das aplicações seguintes são homomorfismos de grupos e, nesses casos, classifiqueos.
 - (a) $f: (\mathbb{Z}, +) \to (\mathbb{Z}, +), f(x) = x + 3$
 - (b) $g: (\mathbb{Z}, +) \to (\mathbb{Z}, +), g(x) = 4x$
 - (c) $h: (\mathbb{R}, +) \to (\mathbb{R}, +), h(x) = x^2$
 - (d) $\ln: (]0, +\infty[,\cdot) \to (\mathbb{R}, +)$
 - (e) det : $(GL_n(\mathbb{R}), \cdot) \to (\mathbb{R} \setminus \{0\}, \cdot)$
- **4.** Considere a operação binária * definida em \mathbb{Z} por x*y=x+y-3. Mostre que:
 - (a) $(\mathbb{Z},*)$ é um grupo
 - (b) A aplicação $f: (\mathbb{Z}, +) \to (\mathbb{Z}, *)$ definida por f(x) = x + 3 é um isomorfismo.
- 5. Sejam G um grupo e $n \in \mathbb{Z}$. Considere a aplicação $f: G \to G$ definida por $f(x) = x^n$. Mostre que, se G é abeliano, então a aplicação f é um endomorfismo de G.
- 6. Quais dos seguintes conjuntos é um subgrupo do grupo $(GL_2(\mathbb{R}),\cdot)$?
 - (a) $C = \left\{ \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix} : a \in \mathbb{R} \setminus \{-1, +1\} \right\}.$
 - (b) $C = \{ \begin{pmatrix} a & b \\ 0 & \frac{1}{a} \end{pmatrix} : a \neq 0, b \in \mathbb{R} \}.$
 - (c) $O(2) = \{ A \in \mathcal{M}_{2 \times 2}(\mathbb{R}) : A \cdot A^T = A^T \cdot A = I_2 \}.$
- 7. Sejam G um grupo e $a \in G$. Mostre que o conjunto $C(a) = \{x \in G \mid xa = ax\}$ é um subgrupo de G. O conjunto C(a) é chamado centralizador de a.
- 8. Seja G um grupo. Seja $H \neq \emptyset$ um subconjunto finito de G tal que para quaisquer $x, y \in H$, tem-se $xy \in H$.
 - (a) Justifique que H é um semi-grupo.
 - (b) Justifique que H é subgrupo de G.
- 9. Considere o grupo simétrico S_3 . Seja H o subgrupo gerado pela permutação σ dada por $\sigma(1) = 2$, $\sigma(2) = 1$ e $\sigma(3) = 3$ e seja K o subgrupo gerado pela permutação τ dada por $\tau(1) = 1$, $\tau(2) = 3$ e $\tau(3) = 2$. Determine HK. É um subgrupo de S_3 ?
- 10. Sejam G um grupo e H e K subgrupos de G. Mostre que HK é um subgrupo de G se e só se HK = KH.