Математический анализ Модуль 1. Элементарные функции и пределы числовых последовательностей

Лекция 1.1

Аннотация

Логические символы. Виды чисел. Прямая и обратная теоремы. Необходимое и достаточное условия. Расширенное множество действительных чисел. Типы промежутков. Ограниченное и неограниченное множества. Точная верхняя и точная нижняя грани.

1 Логические символы

1. ∀ - любой, для любого

 $\forall x > 0$ - любое положительное число x

2. ∃ - существует

 $\exists x > 1$ - существует число x, большее одного

 $3. \Rightarrow$ - следует, следовательно, тогда, то

$$x = 2 \Rightarrow x^2 = 4$$

 $4. \Leftrightarrow$ - равносильно, эквивалентно, тогда и только тогда

$$x+3 < 0 \Leftrightarrow x < -3$$

5. ∈ - принадлежит

 $x \in A$ - число x принадлежит множеству A

$$1 \in \{1, 2, 3\}$$

6. ⊂ - включено

 $A\subset B$ - множество A включено в множество B, т.е. все элементы множества A являются также и элементами множества B

$$\{1,2\} \subset \{1,2,3\}$$

2 Множества чисел

 $N = \{1, 2, ...\}$ - множество натуральных чисел

 $Z = \{0, \pm 1, \pm 2, ...\}$ - множество целых чисел

Q - множество рациональных чисел. Рациональное число - это число, которое можно представить в виде дроби $\frac{m}{n}$, где m и n целые числа. Пример: $\frac{1}{3}, \frac{2}{5}$ I - множество иррациональных чисел. Иррациональное число -

это число, которое не является рациональным. Пример: $\sqrt{2}$, π .

R - множество действительных чисел - это множество всех рациональных и иррациональных чисел

Прямая и обратная теоремы 3

Определение

Математические утверждения, в правильности которых убеждаются путем рассуждений или доказательств, называются теорема-МИ.

Каждая теорема состоит из двух частей: из условия и заключения. Условие обыкновенно начинается со слова "если", а заключение — со слова "то". Условие — это то, что дано; заключение — это то, что надо доказать.

Если в теореме условие сделать заключением, а заключение условием, то исходная теорема будет называться прямой, получившаяся - обратной, а обе теоремы вместе - взаимно обратными.

Пусть X и Y - некоторые утверждения. Тогда

 $X \Rightarrow Y$ - прямая теорема,

 $Y \Rightarrow X$ - обратная теорема.

4 Необходимое и достаточное условия

Определение

Необходимым условием называется условие, без соблюдения которого данное утверждение не может быть истинным.

Определение

Достаточным условием называется такое условие, при выполнении которого данное утверждение является истинным.

Пусть дано математическое выражение $X\Rightarrow Y$. Тогда Y является необходимым условием для X, а X является достаточным условием для Y.

$$\Pi$$
ример: $x = 2 \Rightarrow x^2 = 4$.

Здесь выполнение условия x=2 является достаточным для истинности равенства $x^2=4$, а выполнение условия $x^2=4$ является лишь необходимым для справедливости равенства x=2.

5 Расширенное множество действительных чисел

Определение

Дополним множество действительных чисел R двумя элементами $+\infty$ и $-\infty$. Полученное множество называется расширенным множеством действительных чисел и обозначается \overline{R} .

$$a \in \overline{R} \to a$$
 - конечное число, $+\infty$ или $-\infty$.

Определение

Элементы $+\infty$ и $-\infty$ называются **бесконечными числами**.

Свойства бесконечных чисел

$$1) -\infty < +\infty$$

$$2) (+\infty) + (+\infty) = +\infty$$

3)
$$(-\infty) + (-\infty) = -\infty$$

4)
$$(+\infty) \cdot (+\infty) = (-\infty) \cdot (-\infty) = +\infty$$

5)
$$(+\infty) \cdot (-\infty) = (-\infty) \cdot (+\infty) = -\infty$$

Для любого конечного числа а справедливы свойства

1)
$$-\infty < a < +\infty$$

2)
$$a + (+\infty) = +\infty$$

3)
$$a + (-\infty) = -\infty$$

4) если
$$a>0$$
, то $a\cdot (+\infty)=+\infty, a\cdot (-\infty)=-\infty$

5) если
$$a < 0$$
, то $a \cdot (+\infty) = -\infty$, $a \cdot (-\infty) = +\infty$

Выражения $(+\infty) + (-\infty)$, $(+\infty) - (+\infty)$, $\frac{\pm \infty}{\pm \infty}$, $(\pm \infty)^0$, $(\pm \infty) \cdot 0$, $1^{\pm \infty}$ неопределены и называются **неопределенностями**.

Если знак бесконечного числа неизвестен, то это число называется **бесконечностью без знака** и обозначается ∞ .

6 Промежутки

1) Отрезок

 $[a,b] = \{x | a \leq x \leq b\}$ - множество действительных чисел x, удовлетворяющих неравенству $a \leq x \leq b$

2) Интервал

$$(a,b) = \{x | a < x < b\}$$

3) Полуинтервал

$$[a,b) = \{x | a \le x < b\}$$

$$(a, b] = \{x | a < x \le b\}$$

7 Свойства числовых множеств

Промежутки - частный случай числового множества, т.е. множества, содержащего некоторый набор чисел. Примерами числовых множеств выступают: [1,3] - отрезок, (1,4) - интервал, $\{1,3,5\}$ - числовое множество, состоящее из элементов 1,3,5.

Определение

Числовое множество E называется **ограниченным сверху (сни- зу)**, если $\exists b \in R \ \forall x \in E : x \leq b \ (x \geq b)$.

Расшифровка математических символов:

 $\exists b \in R$ - существует такое действительное число b, что

 $\forall x \in E$ - для любого числа x из множества E

: - выполняется

 $x \leq b$ - x меньше или равен b

 $x \ge b$ - x больше или равен b

Определение

Числовое множество E называется **неограниченным сверху** (снизу), если $\forall b \in R \ \exists x \in E : x > b \ (x < b)$.

Расшифровка математических символов:

 $\forall b \in R$ - для любого действительного числа b

 $\exists x \in E$ - существуе такое число x из множества E, что

: - выполняется

x > b - x больше b

x < b - x меньше b

Определение

Множество E называется **ограниченным**, если

$$\exists b > 0 \ \forall x \in E \colon |x| \le b.$$

Примеры:

- $1. \ (-\infty, 3]$ числовое множество, ограниченое сверху, но неограниченое снизу.
 - 2. [-3, 2] ограниченное множество.

Определение

Наименьшее из всех чисел, ограничивающих множество E сверху, называется его **точной верхней гранью** и обозначается supE (читается "супремум Е").

Определение

Наибольшее среди всех чисел, ограничивающих множество E снизу, называется его **точной нижней гранью** и обозначается infE (читается "инфимум Е").

Примеры:

$$\sup[-3,2]=2$$

$$inf[-3,2] = -3$$

$$sup(-3,2) = 2$$

$$inf(-3,2) = -3$$