

Mecánica Estadística de no Equilibrio Tarea 7 — Entrega 8 de mayo de 2025

Profesor: Rodrigo Soto

Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile

[P1] Dinámicas A y B con ruido. Cerca del equilibrio, en los modelos A y B se hace relevante incluir el ruido para describir las fluctuaciones en el parámetro de orden. Si $F[\psi]$ es la energía libre, para el modelo A se propone

$$\frac{\partial \psi}{\partial t} = -\lambda \frac{\delta F}{\delta \psi} + \xi(\vec{r}, t) \tag{1}$$

donde ξ es un ruido blanco de correlación $\langle \xi(\vec{r},t)\xi(\vec{r}',t') = \Gamma\delta(\vec{r}-\vec{r}')\delta(t-t')$.

Por otro lado, en el modelo B, se tiene que cumplir la conservación exactamente y no solo en promedio, por lo que corresponde hacer es

$$\frac{\partial \psi}{\partial t} = -\nabla \cdot \vec{J} \tag{2}$$

$$\vec{J} = -\lambda \nabla \frac{\delta F}{\delta \psi} + \vec{\eta}(\vec{r}, t) \tag{3}$$

donde ahora η , que corresponde a las fluctuaciones del flujo, es una ruido blanco vectorial de correlación $\langle \eta_{\alpha}(\vec{r},t)\eta_{\beta}(\vec{r}',t') = \Gamma \delta_{\alpha\beta}\delta(\vec{r}-\vec{r}')\delta(t-t'), \cos\alpha, \beta = x,y,z.$

Se busca que demuestren que en ambos casos, la distribución de equilibrio para el parámetro de orden es

$$P[\psi] = Z^{-1} e^{-F[\psi]/kT}$$
 (4)

En principio deberíamos trabajar sobre espacios funcionales y definir precisamente qué se entiende por una densidad de probabilidad de una función $\psi(\vec{r})$. Además, habría que definir una forma de integración que permita calcular la función partición $Z=\int [\mathcal{D}\psi]e^{-F[\psi]/kT}$. Para esta tarea vamos a proceder de una forma simple, trabajando en espacio real. Además, vamos a considerar funcionales de energía libre de la forma

$$F[\psi] = \int \left[f(\psi(\vec{r})) + \frac{\gamma}{2} (\nabla \psi)^2 \right] dr \tag{5}$$

(a) Considere el caso unidimensional con $\psi(x,t)$. Discretice el espacio, con un espaciado h, de manera que se tienen los puntos discretos $x_i = hi$, con $i \in \mathbb{Z}$. Con eso, $\psi(x,t)$ pasa a ser $\psi_i(t) \equiv \psi(x_i,t)$ y lo mismos para los ruidos. Escriba la

energía libre como una suma discreta. Para la derivada use una discretización simétrica.

(b) Discretice la ecuación de movimiento del modelo A, es decir, obtenga

$$\frac{d\psi_i}{dt} = \dots$$
(6)

lo que va a resultar en un sistema de ecuaciones de Langevin acopladas.

- (c) Escriba la ecuación de Fokker–Planck asociada para $P(\psi_1, \psi_2, \dots; t)$ y muestre que la distribución de equilibrio es la de Gibbs si Γ toma el valor adecuado.
- (d) Repita el procedimiento, ahora para el modelo B.
- **[P2] Ondas capilares.** Una superficie razonablemente plana en d dimensiones puede describirse por su altura h, como una función de las d-1 coordenadas restantes $h(\mathbf{x})$, donde $\mathbf{x}=(x_1,\ldots,x_{d-1})$. El "área" generalizada de la superficie está dada por

$$A = \int d^{d-1}x \sqrt{1 + (\nabla h)^2}$$

Si hay una tensión superficial σ , el hamiltoniano es simplemente $H=\sigma A$.

- (a) A temperaturas suficientemente bajas, solo hay variaciones suaves en h. Expanda la energía a orden cuadrático en h.
- **(b)** El campo *h* no es conservado, por lo que su dinámica es de tipo A. Obtenga la ecuación de movimiento.
- (c) La ecuación que resulta tiene modos lentos para vectores de onda tendientes a cero. ¿Qué ruptura de simetría continua es la responsable de la aparición de estos modos de Goldstone?
- [P3] ***** Modelo Active B. Lea y comente el artículo Scalar ϕ^4 field theory for active-particle phase separation por R. Wittkowski et al., Nature communications 5, 4351 (2014), donde se presenta el modelo de campos Active B.