Andrew et al. Autoencoder (+ CBAM)

Adding a **CBAM** attention module didn't make the generated images better, as we can see by logging the **Channel** and **Spatial Attention Masks**:

Channel Attention Min-Max: 0.496 - 0.503 Spatial Attention Min-Max: 0.374 - 0.377

Which means that all the channel and attention weights are very close to each other, so there aren't any features the attention module favours over the others.

Spatial Attention mask from training image '9022.jpg'

SR results from the Autoencoder

Generated Image

Hi-Res 9022.jpg

SR results from the Autoencoder

The model would produce a lot of **negative values in the generated image**, this would result in a very **noisy image**, since the negative pixels were displayed as pure white by the to_pil_images() method.

By removing the negative values with

clamp (0, 1) or by using another display function, like matplotlib the noise would go away, but it would leave a **grid-like texture** all over the image.

Detail of one of the debris after removing the negative values

Noise generated by the negative values

Autoencoder with YOLO detection and CBAM

To get better results from the images, and to simultaneously perform **Object Detection** I implemented some **modification** to the original Autoencoder model:

The **Object Detection module** is inspired by *Joseph Redmon's et al. 'You Only Look Once: Unified, Real-Time Object Detection'.*

The **deeper network** allows a better extraction of the image's features, resulting in a **more accurate reconstruction** of the high-definition image and the prediction of the **bounding boxes** for Object Detection.

The **three CBAM modules** allow the model to focus on the **important parts** of the image needed **for each of the tasks**.

Training the YOLO-Autoencoder

To test the efficacy of the model I trained it for 20 epochs, using as loss function the sum of the Yolo loss for SR and the MSE loss for OD:

loss = YoloLoss() + lambdaSR * MseLoss()

Generated Image and bounding boxes from **Epoch 2**

Generated Image and bounding boxes from **Epoch 6**

Training and Validation Loss over the Epochs

Results of the YOLO-Autoencoder

Reconstruction of test image '1998.jpg' with predicted bBoxes

Reconstruction of test image '1998.jpg'

Test image '1998.jpg'

After only 20 epochs the model is **reliably identifying the debris** in the images, both in the images containing a couple of debris and in the images containing more.

While the model is accurately reconstructing the background, the debris themselves are blurry.

Results of the YOLO-Autoencoder – CBAM

Contrary to the original Autoencoder model, the **CBAM** modules are **selecting** some **relevant features** from the different layers of the network:

1st Module:

```
Channel Attention Min-Max: 0.005 - 0.998
Spatial Attention Min-Max: ~0.00 - 0.609

2nd Module (Detection):
Channel Attention Min-Max: ~0.00 - 0.999
Spatial Attention Min-Max: 0.468 - 0.955

3rd Module (SR):
Channel Attention Min-Max: / - /
Spatial Attention Min-Max: / - /
```

All the attention masks have values in a **large range**, so they are selecting different features.

Most notably, the **attention mask** of the first module is **sharp**, and it is picking out the debris.

The **assigned values**, though, are **opposite** to what we would expect: The **debris are given the least importance** and the background the most!

This explains why in the reconstruction just the debris are blurry.

Spatial Attention mask from the **first CBAM** module 1998.jpg