ALGORITHMS AND DATA STRUCTURES SULEYMAN SULEYMAN

GRAPHS: DFS AND BFS BASED ALGORITHMS

GRAPHS DATA STRUCTURE AND ALGORITHMS

DFS and BFS based Algorithms

- **Connected Components**
- Cycle finding
 - For Directed
 - Undirected
- Connected Component
- Topological sorting
- All paths finding
- Shortest path (not weighted graph)
- Bipartite graph finding
- **Edges Classification**
- Articulation points finding
- **Bridges Finding**

WANNA PLAY?

SCISSORS LIZARD

ROCK CRUSHES LIZARD SCISSORS DECAPITATE LIZARD LIZARD EATS PAPER LIZARD POISONS SPOCK PAPER DISPROVES SPOCK SPOCK VAPORIZES ROCK SPOCK BENDS SCISSORS

CONNECTED COMPONENTS

ALGORITHMS AND DATA STRUCTURES SULEYMAN SULEYMAN

CONNECTED COMPONENTS

Definition

Connected component of an undirected graph is a subarray in which any two vertices are connected to each other by paths

restart DFS (or BFS) from one of the remaining unvisited vertices to find the next connected component. This process is repeated until all vertices have been visited and has an overall time complexity of O(V + E).

```
int cc_num = 0; //connected components
visited.assign(N, false);
for (int i = 0; i < N; i++){
    if(!visited[i]){
        cout<<"connected component "<<
++cc_num<<":";
        dfs(i);
        cout<<endl;
    }
}</pre>
```


Output

```
connected component 1: 0 1 3 2 connected component 2: 4 5 connected component 3: 6 7 8
```

CYCLE FINDING ALGORITHM

CYCLE FINDING IN DIRECTED GRAPH

```
vector<vector<int>> graph;
vector<bool> visited;
bool dfs(int u){
   visited[u] = true;
   for (int i = 0; i < graph[u].size(); i++){</pre>
      int v = graph[u][i];
      if(visited[v])
          return true;
      else
          dfs(v);
   return false;
```


CYCLE FINDING IN UNDIRECTED GRAPH

```
vector<vector<int>> graph;
vector<bool> visited;
bool dfs(int u, int p = -1){
  visited[u] = true;
  for (int i = 0; i < graph[u].size(); i++){</pre>
     int v = graph[u][i];
     if(visited[v] && p != u)
        return true;
     else
        dfs(v, u);
  return false;
```

TOPOLOGICAL SORTING

17/18

TOPOLOGICAL SORTING

Definition

Topological sorting problem: given digraph G = (V, E), find a linear ordering of vertices such that: for any edge (v, w) in E, v precedes w in the ordering

TOPOLOGICAL SORTING

Algorithm

A topological sorting is possible if and only if the graph has no directed cycles i.e., it is a Directed Acyclic Graph (DAG). It is always possible to find a topological order for a DAG and this can be done in linear time.

Topological sorting of a DAG can be found with DFS. During the depth-first traversal of the graph, just when a vertex finishes expanding (i.e., all its outlinks have been visited), add it to a stack. The order of vertices in the stack represents the topological order of the DAG. Let L be an empty list

Let all vertices be initially unmarked

while there are unmarked vertices: select an unmarked vertex u dfs(u)

```
dfs(vertex u):
   mark u
   foreach edge u -> v
     if v is unmarked:
       dfs(v)
   add u to head of L
```

L represents the topological order of the DAG

TOPOLOGICAL SORTING IMPLEMENTATION

```
#include<iostream>
#include<vector>
using namespace std;
vector<vector<int>> g;
vector<bool> visited;
vector<int> ans;
void dfs(int v){
  visited[v] = true;
  for (int i=0; i<g[v].size(); ++i) {</pre>
     int to = g[v][i];
     if (!visited[to])
        dfs (to);
  ans.push_back (v); // reverse path
```

```
void topological sort(){
  for (int i=0; i<visited.size(); ++i)</pre>
    visited[i] = false;
  ans.clear();
  for (int i=0; i<visited.size(); ++i)</pre>
     if (!visited[i])
          dfs (i);
  reverse (ans.begin(), ans.end());
```

ALL PATHS FINDING

DFS

DFS ALL PATHS FINDING

Algorithm

- Additional parameter for storing the path
- Use the DFS with two additional parts
 - Source Destination producing (printing or storing)
 - Backtracking

dfs(curr, dest)

If curr == dest print path from curr to dest

backtrack the path.

DFS ALL PATHS FINDING

```
#include<iostream>
#include<vector>
using namespace std;
int n,m, a,b;
vector <vector<int>> adj;
vector <int> visited, path;
void dfs(int curr, int dest){
    if(curr == dest) {
      for(int i = 0; i < path.size(); i++) {</pre>
        cout << path[i] << ' ';</pre>
    cout << dest << '\n';</pre>
    return;
  path.push back(curr);
  visited[curr] = true;
  for (int i = 0; i < adj[curr].size(); ++i) {</pre>
    int now = adj[curr][i];
    if(!visited[now])
      dfs(now, dest);
  path.pop back();
  visited[curr] = false;
```

```
int main(){
    cin >> n >> m;
    adj = vector <vector <int>>(n);
    visited = vector <int> (n, 0);
    for (int i = 0; i < m; ++i) {
        cin >> a >> b;
        adj[a].push_back(b);
        adj[b].push_back(a);
    }
    cout<<endl;
    dfs(0, 4);
    system("pause");
    return 0;
}</pre>
```


EDGES CLASSIFICATION

EDGES CLASSIFICATION

Definition

- If v is visited for the first time as we traverse the edge (u, v), then the edge is a tree edge
- Else, v has been visited
 - If v is an ancestor of u, then edge (u, v) is a back edge
 - Else, if v is a descendant of u, then edge (u, v) is a forward edge
 - Else, if v is neither an ancestor or descendant of u, then edge (u, v) is a cross edge

Notation

Tree edge

Bidirectional edge

Back Edge

Forward Edge

Cross Edge

EDGES CLASSIFICATION

```
#include<iostream>
                                 void dfs(int curr){
#include<vector>
#define white 0
#define gray 1
                                   color[curr] = gray;
#define black 2
                                   for (int i = 0; i < adj[curr].size(); ++i) {</pre>
using namespace std;
                                     int now = adj[curr][i];
int n,m, a,b;
                                     if(color[now] == white){
vector <vector<int>> adj;
                                        parent[now] = curr;
vector <int> color;
                                        cout<<curr<<"--"<<now<<":treedge\n";</pre>
vector<int> parent;
                                        dfs(now);
void dfs(int curr);
                                     else if(color[now] == gray){
int main(){
 cin >> n >> m;
                                         if(now == parent[now])
 adi = vector < vector <int> > (n);
                                            cout<<curr<<"--"<<now<<":Bidirectional\n";</pre>
 color = vector <int> (n, 0);
                                          else
 parent = vector<int> (n, -1);
                                            cout<<curr<<"--"<<now<<":Back Edge\n";</pre>
 for (int i = 0; i < m; ++i) {
   cin >> a >> b;
                                     else if(color[now] == black)
   adj[a].push back(b);
                                         cout<<curr<<"--"<<now<<":Forward/Cross edge\n";</pre>
 cout<<endl;</pre>
 dfs(0);
                                     color[curr] = black;
 system("pause");
 return 0;
```

```
c:\users\sul\documen...
 --2:treedge
 --3:treedge
 --1:Back Edge
0--4:treedge
  --5:treedge
  -2:Forward/Cross edge
 5--6:treedge
 5--7:treedge
 --5:Back Edge
0--6:Forward/Cross edge
Press any key to continue . . .
```

BIPARTED GRAPH FINDING

ALGORITHMS AND DATA STRUCTURES SULEYMAN SULEYMAN

BIPARTED GRAPH IMPLEMENTATION

vector<vector<int>> graph;
vector<int> color;


```
bool bfs(int s){
  fill(color.begin(), color.end(), -1);
  color[s] = 1;
  queue<int> q;
 q.push(s);
  while (!q.empty()){
     int u = q.front(); q.pop();
     for (int i = 0; i < graph[u].size(); i++){</pre>
       int v = graph[u][i];
       if(v == u) // self loop
           return false;
       if(color[v] == -1){
            color[v] = 1 - color[u];
            q.push(v);
       }else if(color[v] == color[u])
                  return false;
  return true;
```

ARTICULATION POINT FINDING

ARTICULATION POINT

Definition

A vertex in an undirected connected graph is an articulation point iff removing it disconnects the graph

ARTICULATION POINT

Algorithm

- u is root of DFS tree and it has more than one children
- u is not the root
 - If it has a child v such that no vertex in subtree rooted with v has a back edge to one of the ancestors in of u

$$low[u] = \begin{cases} u \to v \text{ tree edge: } \min(low[u], low[v]) \\ u \to v \text{ back edge: } \min(low[u], tin[v]) \end{cases}$$

ALGORITHMS AND DATA STRUCTURES SULEYMAN SULEYMAN

ARTICULATION POINT IMPLEMENTATION

```
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
vector<vector<int>> graph;
vector<bool> visited;
vector<int> tin, low;
int timer;
```



```
void dfs(int u, int p = -1){
    low[u] = tin[u] = timer++;
    visited[u] = true;
    int child = 0;
    for (int i = 0; i < graph[u].size(); i++)</pre>
             int v = graph[u][i];
             if(v == p)
                 continue;
             if(visited[v])
                 low[u] = min(low[u], tin[v]); // back edge
             else{
                 dfs(v, u);
                 low[u] = min(low[u], low[v]); // tree edge
                 if( low[v] >= tin[u] && p != -1)
                      cout<<"art point: "<<u<<endl;</pre>
                 child++;
    if(child > 1 && p == -1)
    cout<<"art point: "<<u<<endl;</pre>
```

BRIDGES FINDING

Remove {0, 2}

BRIDGES

Definition

An edge in an undirected connected graph is the bridge iff removing it disconnects the graph

BRIDGE FINDING IMPLEMENTATION

```
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
vector<vector<int>> graph;
vector<bool> visited;
vector<int> tin, low;
int timer;
```



```
void dfs(int u, int p = -1){
    low[u] = tin[u] = timer++;
   visited[u] = true;
   for (int i = 0; i < graph[u].size(); i++)</pre>
       int v = graph[u][i];
       if(v == p)
           continue;
        if(visited[v])
           low[u] = min(low[u], tin[v]); // back edge
       else{
           dfs(v, u);
           low[u] = min(low[u], low[v]); // tree edge
           if( low[v] > tin[u] && p != -1)
               cout<<u<<"---"<<v<<endl;</pre>
```

ALGORITHMS AND DATA STRUCTURES SULEYMAN SULEYMAN

LITERATURE

Stieven Skienna Algorithms design manual Chapter 5: Graph Traversal Page 145

Thomas H. Cormen
Introduction to Algorithms
Chapter VI Graph Algorithms
Page 587.

Adam Drozdek
Data structures and Algorithms in C++
Chapter 8: Graphs
Page 391