Agentes Inteligentes

Universidad Autónoma de Baja California

Inteligencia Artificial

Grupo 561

Alcaraz Delgado Jesús Mauricio

ÍNDICE

- 03. Definición de Agente
- 04. Componentes
- 05. Tipos
- 07. Entorno
- 08. Definición formal
- 09. Especificaciones
- 10. Propiedades
- 12. Importancia
- 13. Conclusión
- 14. Referencias

DEFINICIÓN

Es una entidad capaz de percibir su entorno, procesar tales percepciones y responder o actuar en dicho entorno de manera racional, es decir, logrando objetivos, tendiendo a maximizar un resultado esperado y adquiriendo conocimiento con su desempeño.

Es capaz de percibir su medio ambiente con la ayuda de sensores y actuar en ese medio utilizando actuadores (elementos que reaccionan a un estímulo realizando una acción).

Componentes de los Agentes

Sensores

Una de las partes más importantes, y que permiten que el agente pueda analizar e interpretar sus alrededores.

Procesador, sistema de control

Son los procesadores y sistemas que le permiten a la IA procesar la información y decidir la acción que debe realizar.

Actuadores

Son los componentes que permiten que el agente interactúe con el mundo.

Sistemas de conocimiento y Aprendizaje

Algunos agentes de lA también necesitan almacenar datos para poder realizar su tarea.

Tipos de Agentes

٦

De Reflejos Simples

Es el tipo de agente más sencillo. Seleccionan las acciones sobre la base de las percepciones actuales, ignorando el resto de las percepciones históricas.

2

Basados en Modelos

El agente debe mantener un estado interno que dependa de la historia percibida y que refleje alguno de los aspectos no observables del estado actual.

3

De Aprendizaje

Pueden utilizar el historial de su experiencia o eventos pasados para aprender de ella y mejorar su rendimiento a lo largo del tiempo.

Tipos de Agentes

4

En La Utilidad

Las metas no bastan para generar comportamientos de calidad en la mayoría de los entornos. El agente selecciona un estado del mundo basado en la utilidad.

5

Basados Objetivos

Además de la descripción del estado actual, el agente requiere información sobre su meta. El programa del agente puede combinar con información sobre los resultados de las acciones posibles.

6

Jerárquicos

Es una combinación de múltiples agentes que trabajan de forma conjunta para lugrar un objetivo común. Vamos, que las "decisiones" que toman unos sirven para que otros tomen otras, y así entre todos realizar una tarea.

¿QUÉ ES EL ENTORNO?

Es el "mundo" en el que el agente opera, y puede ser físico (como un robot en una fábrica) o virtual (como un programa en una computadora). El entorno proporciona al agente la información que necesita para tomar decisiones y es el espacio donde el agente ejecuta sus acciones.

DEFINICIÓN FORMAL

En términos técnicos, el entorno es el conjunto de estados, acciones, percepciones y reglas que definen cómo el agente interactúa con él. Un entorno puede ser modelado como un sistema que:

PROPORCIONA PERCEPCIONES

CAMBIA DE ESTADO

2 RECIBE ACCIONES

ESPECIFICACIONES DEL ENTORNO

ESTADOS

Representan las posibles configuraciones del entorno. Por ejemplo, en un juego de ajedrez, cada estado es una disposición específica de las piezas en el tablero.

PERCEPCIONES

La información que el agente recibe del entorno a través de sus sensores o entradas de datos.

ACCIONES

Son las operaciones que el agente puede realizar para influir en el entorno. Por ejemplo, un robot aspiradora puede "avanzar", "girar" o "aspirar".

recibe el agente por sus

que

FUNCIÓN DE

Especifica

accioneS.

RECOMPENSA

retroalimentación

FUNCIÓN DE TRANSICIÓN

Define cómo el entorno cambia de un estado a otro en respuesta a las acciones del agente. En un entorno determinista, esta función es predecible; en estocástico, uno es probabilística.

PROPIEDADES DEL ENTORNO

OBSERVABILIDAD

- TOTALMENTE OBSERVABLE
 - El agente tiene acceso a toda la información necesaria para tomar decisiones
- PARCIALMENTE OBSERVABLE
 - El agente solo tiene información limitada

DETERMINISMO

- DETERMINISTA
 - Las acciones del agente tienen resultados predecibles
- ESTOCÁSTICO
 - Hay incertidumbre en los resultados

DINAMICIDAD

- ESTÁTICO
 - El entorno no cambia mientras el agente actúa
- · DINÁMICO
 - El entorno cambia independientemente del agente

PROPIEDADES DEL ENTORNO

DISCRETIZACIÓN

- DISCRETO
 - Estados y acciones finitos
- CONTINUO
 - Estados y acciones infinitos

AGENTES INDIVIDUALES/MULTIAGENTE

- AGENTES INDIVIDUALES
 - No hay interacción con otros agentes
- MULTIAGENTE
 - Hay cooperación o competencia

TEMPORALIDAD

- EPISÓDICO
 - La experiencia del agente se divide en episodios atómicos
- SECUENCIAL
 - La decisión presente puede afectar decisiones futuras

IMPORTANCIA DEL ENTORNO

El entorno en lA es el "mundo" en el que un agente inteligente opera. Puede ser físico o virtual, y sus propiedades (como observabilidad, determinismo y dinamicidad) influyen en cómo se diseña y evalúa un agente.

DEFINE LOS LÍMITES

DETERMINA EL DESEMPEÑO

2 INFLUENCIA EL DISEÑO

CONCLUSIÓN

Los agentes inteligentes no son solo programas que toman decisiones; son la base de una nueva era de automatización, adaptabilidad y autonomía.

Sin embargo, la verdadera pregunta no es qué pueden hacer los agentes inteligentes hoy, sino qué serán capaces de hacer mañana. ¿Podrán anticiparse a nuestras necesidades antes de que las expresemos? ¿Serán colaboradores indispensables en la toma de decisiones críticas? ¿Llegarán a cuestionar su propio propósito?

REFERENCIAS

- Russell, S., & Norvig, P. (2021). Artificial Intelligence: A Modern Approach (4th ed.).
 Pearson.
- Poole, D., & Mackworth, A. (2017). Artificial Intelligence: Foundations of Computational Agents (2nd ed.). Cambridge University Press.
- Wooldridge, M. (2020). An Introduction to MultiAgent Systems (2nd ed.). Wiley.
- Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd ed.). MIT Press.