

ASPECTS AFFECTING DIFFRACTION EXPERIMENTS

RELATED TO DIFFRACTOMETERS, I.E. INSTRUMENT'S SETUP

RECORDING ARCHITECTURES

RELATED TO DETECTORS

RADIATION SOURCES

CONVENTIONAL SOURCES versus LARGE SCALE FACILITIES (synchrotron & neutrons)

FUNDAMENTAL PHOTON-EMISSION QUANTITIES

WHAT IS A DETECTOR? Some detector features/parameters

Sensitivity=efficacy to convert radiation into pulse

<u>Dead time</u>=time interval between two events during which a detector is not able to work

Response function = realtionship between counted photons and output signal intensity. For instance: linear response

Some detector parameters

Energy resolution= $\Delta E, \Delta E/E$; Capacity to discriminate between photons with a ΔE difference

Intrinsic efficiency=it is related to the incident phtons' energy and detecting mechanism

MONOCHROMATOR

(constructive inteference between waves)

SINGLE CRYSTAL DIFFRACTION

RADIATION COLLECTION ARCHITECTURES SINGLE CRYSTAL

OLD APPROACH:

POINT DETECTORS

ONE DIFFRACTED
BEAM AT A TIME

NOWADAYS: POSITION SENSITIVE/AREA DETECTORS

MANY DIFFRACTED BEAMS AT A TIME

X-RAY SINGLE CRYSTAL EXPERIMENTAL PHENOMENOLOGY

BRAGG DIFFUSION & hkl-PLANES

FOUR AXES PRINCIPLE FOR SINGLE CRYSTAL DIFFRACTION

SINGLE CRYSTAL DIFFRACTOMETER

4 ROTATION AXES THAT ALLOW ONE TO ORIENT A CRYSTAL IN ANY POSSIBLE WAY WITH RESPECT TO A DETECTOR

SINGLE CRYSTAL X-RAY DIFFRACTOMETERS

K-GEOMETRY

POSITION SENSITIVE/AREA DETECTOR, CHARGE COUPLED DEVICE (CCD)

2D-DETECTOR

POWDER DIFFRACTION

POWDER DIFFRACTION

EXPERIMENTAL GEOMETRIESFOR POWDER DIFFRACTION

DEBYE-SCHERRER

POWDER DIFFRACTION INTENSITY DISTRIBUTION

ON EACH CONE SURFACE LIE THE DIFFRACTED BEAMS CHARACTERISED BY THE SAME $|\mathbf{H}|$, I.E. SUCH AS TO FULFIL THE BRAGG LAW AT THE SAME 29 ANGLE

$$\frac{2}{|\mathbf{H}|}sin(\theta_{hkl}) = \lambda$$

THE RESULTING PATTERN DEPENDS ON HOW A DETECTOR INTERSECTS THE DIFFRACTION CONES

BRAGG-BRENTANO

BRAGG-BRENTANO GEOMETRY D Detector Tube Detector Α Detector slit X-ray tube 2q focusing-circle Sample Receiving Soller Soller slit slit Divergence Secondary Monochromator measurement circle Anti-scatter Sample-Detector (3) X-ray source Sample Razor blade or glass slide (1) (2)C В Excess powder

POWDER DIFFRACTION-POINT DETECTOR versus MULTI-STRIP DETECTORS

BRAGG-BRENTANO GEOMETRY

DIFFRACTION PATTERN COLLECTED BY A BRAGG-BRENTANO GEOMETRY

DIFFRACTION RINGS CAN BE TURNED INTO STANDARD BRAGG-BRENTANO PROFILE

Every phase has its own diffraction pattern. In a mixture, the diffraction patterns of the occurring phases sum up, proportionally to the amount of each phase

DIFFERENCES BETWEEN POWDER DIFFRACTION PATTERNS

DEBYE-SCHERRER

BRAGG-BRENTANO

THE DEBYE-SCHERRER-LIKE OUTPUT (**DIFFRACTION RINGS**) CAN BE TURNED INTO BRAGG-BRENTANO LIKE OUTPUT (**PROFILE PATTERN**)

CONVERSION FROM DIFFRACTION RINGS TO 20-1 PATTERN

PHYSICAL MEANING OF BRAGG PEAK IN POWDER DIFFRACTION

RESOLUTION

R=detector-sample distance

YOU NEED A COMPROMISE!

THE LARGER THE SAMPLE-DETECTOR DISTANCE, THE BETTER THE ANGULAR RESOLUTION

THE LARGER THE SAMPLE-DETECTOR DISTANCE, THE WORSE THE TOTAL EFFICIENCY BECAUSE OF A REDUCTION OF PHOTON IRRADIANCE

TRY TO COMPENSATE THROUGH AN ENHANCEMENT OF INTRINSIC EFFICIENCY

COUNTING UNCERTAINTY

$$\sigma(N) \sim \sqrt{N}$$

$$\frac{\sigma}{N} \sim \frac{1}{\sqrt{N}}$$

END OF THE GENERAL PART

NEUTRON RADIATION

NEUTRONS

Mass=1.67492729(28)×10⁻²⁷ kg

De Broglie relationship

$$h = p \times \lambda$$

h = Planck constant = $6.62606896(33) \times 10^{-34} \text{ J} \cdot \text{S}$

p

Particle-like

λ

Wave-like

NEUTRON PRODUCTION

Fast neutrons: energy greater than 1 eV, up to 0.1 MeV or approximately 1 MeV, depending on the definition.

Slow neutrons: energy less than or equal to 0.4 eV.

Epithermal neutrons: energy from 1 eV to 10 keV.

Hot neutrons: energy of about 0.2 eV.

Thermal neutrons: energy of about 0.025 eV

Cold neutrons: energy from 5x10-5 eV to 0.025 eV.

Very cold neutrons: energy from 3x10-7 eV to 5x10-5 eV.

NUCLEAR FISSION

SPALLATION

A spallation reaction consists of sending a high energy particle, often a proton, into a nucleus which then ejects different sorts of particles. Among these are many neutrons. These are then fired at the nuclei which we wish to transform and transmute. During transmutation, the excited nucleus effectively captures neutrons and then either it fissions or is evaporated by losing the most energetic particles.

SPALLATION YIELD versus TARGET

PROTON ENERGY AND ENUTRON PRODUCTION BY SPALLATION: SATURATION

(50-cm-diam × 200-cm-long targets bombarded on axis by ~1-GeV protons)

Water as coolant <u>and</u> moderator flows between fuel rods.

FLUX AS A FUNCTION OF MODERATOR

Maxwell-Boltzmann Molecular Speed Distribution for Noble Gases

MAXWELL VELOCITY DISTRIBUTION

LAYOUT OF A SPALLATION SOURCE

REACTOR CORE OF SPALLATION

LAYOUT OF ILL: STEADY SOURCE

NEUTRON DETECTION

•IONIZATION BY COLLISION

•CAUSING NUCLEAR REACTIOS WHICH PRODUCE DETECTABLE ENERGY

THE COMMONEST NUCLEAR REACTIONS FOR NEUTRON DETECTION

$$n + {}^{3}He \rightarrow p + {}^{3}H + 765 \text{ keV}$$

$$n + {}^{10}_{5}B \rightarrow \begin{cases} \alpha + {}^{7}_{3}Li + 2.310 \text{ MeV (94\%)} \\ \alpha + {}^{7}_{5}Li + 2.792 \text{ MeV (6\%)} \end{cases}$$

DETECTORS

- •GAS FILLED (GAS)
- •SCINTILLATORS (SOLID STATE)
- •SEMI-CONDUCTORS (SOLID STATE)

GAS-FILLED DETECTORS

GAS-FILLED DETECTORS LAYOUT

³He − BF₃ − NEUTRON REACTIONS (THERMAL NEUTRONS) ⁴He − CH₄ − RECOIL MECHANISM (FAST NEUTRONS)

Fig. 13.1 Typical setup for gas-filled neutron detectors.

Fig. 13.4 ³He(n,p), ¹⁰B(n,a), and ⁶Li(n,a) cross sections as a function of incident neutron energy (Ref. 7).

SCINTILLATOR DETECTOR LAYOUT

ORGANIC SCINTILLATORS

CRYSTALS:

ANTHRACENE, STILBENE, NAPHTHALENE (C_nH_m)

LIQUIDS:

P-TERPHENYL

PLASTIC:

ORGANIC SCINTILLATOR IS EMBEDDED INTO A POLYMER MATRIX

And more.....

INORGANIC SCINTILLATORS

CRYSTALS:

ZnS(Ag), BaF_2 , $CaF_2(Eu)$

GLASSES:

Boron silicates

EXPERIMENTAL NEUTRON SCATTERING ARCHITECTURES

<u>TIME OF FLIGHT (TOF) GEOMETRY</u>

Figure 2 Behaviour of the polycromatic neutron pulse. At time T_0 the pulse leaves the moderator surface. It contains all wavelengths. After a short time T_1 the λ_2 -neutrons arrive at the point x_1 . The λ_3 -neutrons have passed it already, the λ_1 neutrons are slower. Passing a long flight path x_2 (long time T_2) the three different wavelength pulses are separated completely.

- •NEUTRONS WITH DIFFERENT WAVELENGTHS HAVE DIFFERENT ARRIVAL TIMES AS A FUNCTION OF THEIR DIVERSE VELOCITIES!
- •DETECTORS DISCRIMINATE ON THE BASIS OF A CLOCK REGISTERING NEUTRONS ARRIVAL AND SYNCHRONIZED WITH THE PULSE FROM THE SOURCE

RESOLUTION

Where Δd is obtained by differentiating the Bragg Law:

$$2 \times \frac{d}{d} \times \frac{\sin(\theta)}{\sin(\theta_0)m_N} = \frac{\lambda}{(L_0 + L_1)} \text{ (TOF)}$$

RESOLUTION WITH TIME OF FLIGHT

$$R = \frac{\Delta d}{d} \approx \frac{\Delta L(flight)}{L(flight)}$$

RESOLUTION WITH STEADY SOURCES

$$R = \frac{\Delta d}{d} \approx ctg(\mathcal{G})\Delta\mathcal{G}$$

NUCLEAR SCATTERING

STRUCTURE FACTOR (DIFFRACTION of CRYSTALS) X-RAY VERSUS NEUTRONS

$$F_{hkl} = \sum f\left(\frac{\sin \theta}{\lambda}\right)_{j} \times \exp\left(-B_{j} \times \left(\frac{\sin \theta}{\lambda}\right)^{2}\right) \times \exp\left[2\pi \times \left(h \cdot x_{j} + k \cdot y_{j} + l \cdot z_{j}\right)\right]$$

X-ray structure factor

X-ra scattering power is a function of sin(9)/λ, whereas Neutron scattering length is a constant Dependent on the chemical species only

$$F_{hkl} = \sum_{j} b_{j} \times \exp\left(-B_{j} \times \left(\frac{\sin \theta}{\lambda}\right)^{2}\right) \times \exp\left[2\pi \times \left(h \cdot x_{j} + k \cdot y_{j} + l \cdot z_{j}\right)\right]$$

neutron structure factor (nuclear contribution)

NEUTRON SCATTERING LENGTH

$$b = b_{coherent} & b_{incoherent}$$

CONTRIBUTES TO THE BRAGG PEAKS

CONTRIBUTES TO THE BACKGROUND

ORIGIN OF COEHERENT SCATTERING AND INCOHERENT SCATTERING

$$I(Q) \propto \sum\nolimits_{j=1}^{Natoms\,in\,Cry} b_j e^{-B_j Q^2} \, e^{2\pi i \vec{Q} \cdot \vec{X}_j} \times \sum\nolimits_{k=1}^{Natoms\,in\,Cry} b_k e^{-B_k Q^2} \, e^{-2\pi i \vec{Q} \cdot \vec{X}_k}$$

$$\sum\nolimits_{j,k=1}^{Natoms\,in\,Cry}b_jb_ke^{-B_jQ^2}e^{-B_kQ^2}e^{2\pi i\vec{Q}\cdot\left(\vec{X}_j-\vec{X}_k\right)}$$

$$b_j = \langle b_{species in j} \rangle + \varphi_j \sigma_{species in j}$$
 $\langle \varphi_j \rangle = 0$

$$\sum\nolimits_{j,k=1}^{Natoms\,in\,Cry} b_{j,coe}b_{k,coe}e^{-B_{j}Q^{2}}e^{-B_{k}Q^{2}}e^{2\pi i\vec{Q}\cdot\left(\vec{X}_{j}-\vec{X}_{k}\right)}+\sum\nolimits_{k=1}^{Natoms\,in\,Cry} \varphi_{k}^{2}\sigma_{k}^{2}e^{-2B_{k}Q^{2}}$$

$$\sum\nolimits_{j,k=1}^{Natoms\,in\,EC} b_{j,coe}b_{k,coe}e^{-B_{j}Q^{2}}\,e^{-B_{k}Q^{2}}e^{2\pi i\vec{Q}\cdot\left(\vec{X}_{j}-\vec{X}_{k}\right)} + \sum\nolimits_{k=1}^{Natoms\,in\,EC} b_{k,inc}^{2}e^{-2B_{k}Q^{2}}$$

BRAGG COHERENT CONTRIBUTION

INCOHERENT CONTRIBUTION

MAGNETIC SCATTERING

MAGNETIC SCATTERING ALLOWS US TO INVESTIGATE MAGNETIC PROPERTIES OF MATTER, WHICH ARE RELATED TO THE MAGNETIC MOMENTS OF THE ATOMS

MAGNETIC SCATTERING IS DUE TO INTERACTIONS BETWEEN

- NEUTRON MAGNETIC MOMENT and
- MAGNETIC FIELD GENERATED BY ATOMIC ELECTRONS

ARRAYS OF MAGNETIC MOMENTS OF ATOMS

AND MORE....

MAGNETIC
VERSUS
CHEMICAL
STRUCTURE

ATOMS ARE EQUIVALENT AS A FUNCTION OF THEIR CHEMICAL SPECIES AND MAGNETIC MOMENTS

Figure 2. Crystal and magnetic structure for $YBa_2Fe_3O_8$ deduced from the data of Figure 1 (Huang et al., 1992).

MAGNETIC STRUCTURES

 Fe_2O_3 948 K Fe_3O_4 858 K Fe 1043 K

ANTIFERROMAGNETIC

MnO 116 K FeO 198 K CoO 291 K

FIG. 2. Dependence of Curie temperature, T_C , on the average number, N_{WEP} of the bonds near one magnetic cation, at which WEPs can be found.

Weiss electron pair (WEP)

Published in: W. H. Qi; Z. Z. Li; L. Ma; G. D. Tang; G. H. Wu; AIP Advances 8, 065105 (2018)

DOI: 10.1063/1.5035142 Copyright © 2018 Author(s)

MAGNETIC STRUCTURE FACTOR

Magnetic Elementary Cell = MEC

$$F(\vec{Q})_{Magnetic} \propto \sum_{j=1}^{Natoms\ in\ MEC} \vec{\tau} \times \left[\vec{M}(\vec{\tau})_j \times \vec{\tau} \right] e^{-B_j Q^2} e^{2\pi i \vec{Q} \cdot \vec{X}_j}$$

 $ec{ au}$ Versor parallel to **Q**

 $\overrightarrow{M}(\overrightarrow{\tau})_i$ Vector form factor of the jth-atom

$$I(\vec{Q})_{Magnetic} \propto \left| F(\vec{Q})_{Magnetic} \right|^2$$

MAGNETIC STRUCTURE FACTOR

$$\vec{F}(\vec{Q})_{Magnetic} = \sum_{j=1}^{atoms in magnetic cell} \vec{\tau} \times [\vec{M}(\vec{Q})_j \times \vec{\tau}] e^{2\pi i \vec{Q} \vec{X}_j} e^{-Q^2 B_j}$$

 $ec{ au}$ Versor parallel to ${m Q}$

 $\vec{M}(\vec{Q})_j \times \vec{\tau}$ Vector form factor of the jth-atom

$$I(\vec{Q})_{Magnetic} \propto |\vec{F}(\vec{Q})_{Magnetic}|^2$$

Magnetic Elementary Cell = MEC

- · General scattering equation and its origin
- Lattice translation invariance: implications on scattering (metric-component and physical-chemical component full derivation not required)
- Reciprocal lattrice: what is it?
- Structure factor (thermal vibrations; anomalous scattering; atomic scattering power);
- Occupancy factors; «practical expression» for F_{hkl})
- Relations between structure factor and experiments: i) structure refinements;
- ii) structure solving (direct methods; charge flipping; MEM)
- X-ray Powder diffraction: experimental geometries (Debye-Scherre/Bragg-Brentano)
 - Rietveld method: what is it? How does it work? What information can we obtain from XRPD using the Rietveld method?
- Neutron scattering: nuclear contribution