

# Algorithmen II Vorlesung am 21.11.2013

Randomisierte Algorithmen



## **Definition**



**Definition 8.1:** Ein Algorithmus, der im Laufe seiner Ausführung zufällige Entscheidungen trifft, heißt *randomisierter Algorithmus*.

Bekanntes Beispiel: Quicksort



Unsortierte Liste



Wähle Element zufällig.



**2. Schritt:** Umsortieren



3. Schritt:
Rekursives Vorgehen auf
Teilmengen

### Laufzeit:

- Schlimmster Fall:  $\Theta(n^2)$ .
- **Z**u erwartende Laufzeit:  $\mathcal{O}(n \cdot \log n)$

Bemerkung: Algorithmus liefert immer korrektes Ergebnis.

## Arten von randomisierten Algorithmen



### LAS VEGAS ALGORITHMUS

- Liefert immer korrektes Ergebnis.
- Laufzeit variiert.
- Beispiel: Quicksort









## MONTE CARLO ALGORITHMUS (Eselsbrücke: mostly correct)

- Kann auch falsches Ergebnis liefern.
- Betrachte Wahrscheinlichkeit für Fehler.
- Für Entscheidungsproblem, d.h. nur *JA/NEIN*-Antwort möglich, gibt es zwei Arten:
  - **beidseitig**: Für beide möglichen Antworten gibt es Wahrscheinlichkeit > 0, dass Antwort falsch ist.
  - einseitig: Für eine der beiden Antworten ist Wahrscheinlichkeit gleich Null, dass Antwort fehlerbehaftet ist.
    - Beispiel: Die Antwort JA ist immer richtig, die Antwort NEIN kann auch falsch sein.

## Wahrscheinlichkeitsklassen



Die Klasse  $\mathcal{RP}$  (randomisiert polynomial) enthält alle Entscheidungsprobleme  $\Pi$ , für die es einen polynomialen, randomisierten Algorithmus A gibt, so dass für alle Instanzen I von  $\Pi$  gilt:

$$\begin{cases} I \in Y_{\Pi} \longrightarrow \Pr[A(I) \text{ ist "JA"}] \geq \frac{1}{2} \\ I \notin Y_{\Pi} \longrightarrow \Pr[A(I) \text{ ist "JA"}] = 0 \end{cases}$$

Die Klasse PP (probabilistic polynomial) enthält alle Entscheidungsprobleme  $\Pi$ , für die es einen polynomialen, randomisierten Algorithmus A gibt, so dass für alle Instanzen I gilt:

$$\begin{cases} I \in Y_{\Pi} \longrightarrow \Pr[A(I) \text{ ist "JA"}] > \frac{1}{2} \\ I \notin Y_{\Pi} \longrightarrow \Pr[A(I) \text{ ist "JA"}] < \frac{1}{2} \end{cases}$$

Die Klasse  $\mathcal{BPP}$  (bounded error  $\mathcal{PP}$ ) ist die Klasse der Entscheidungsprobleme  $\Pi$ , für die es einen polynomialen, randomisierten Algorithmus A gibt, so dass für alle Instanzen I gilt:

$$\begin{cases} I \in Y_{\Pi} \longrightarrow \Pr[A(I) \text{ ist "JA"}] \geq \frac{3}{4} \\ I \notin Y_{\Pi} \longrightarrow \Pr[A(I) \text{ ist "JA"}] \leq \frac{1}{4} \end{cases}$$

- $Y_{\Pi}$  ist die Menge der sogenannten "JA-Beispiele" von  $\Pi$ .
- Dabei entspricht Pr[A(I)] ist "JA"] der Wahrscheinlichkeit, dass die Antwort, die A bei der Eingabe von I gibt, "JA" ist.

## Wahrscheinlichkeitsklassen



einen polynomialen, randomisierten Algorithmus A gibt, so dass für alle Instanzen Algorithmus  $\int I \in Y_{\Pi} \longrightarrow \Pr[A(I) \text{ ist "JA"}] \geq \frac{1}{2}$ 

$$\begin{cases} I \in Y_{\Pi} \longrightarrow \Pr[A(I) \text{ ist "JA"}] \geq \frac{1}{2} \\ I \notin Y_{\Pi} \longrightarrow \Pr[A(I) \text{ ist "JA"}] = 0 \end{cases}$$

$$\begin{cases} I \in Y_{\Pi} \longrightarrow \Pr[A(I) \text{ ist "JA"}] > \frac{1}{2} \\ I \notin Y_{\Pi} \longrightarrow \Pr[A(I) \text{ ist "JA"}] < \frac{1}{2} \end{cases}$$

Die Klasse  $\mathcal{BPP}$  (bounded error  $\mathcal{PP}$ ) ist die Klasse der Entscheidungsprobleme  $\Pi$ , für die einen polynomialen, randomisierten Algorithmus A gibt, so dass für alle Instanzen I

$$\begin{cases} I \in Y_{\Pi} \longrightarrow \Pr[A(I) \text{ ist "JA"}] \geq \frac{3}{4} \\ I \notin Y_{\Pi} \longrightarrow \Pr[A(I) \text{ ist "JA"}] \leq \frac{1}{4} \end{cases}$$

- $Y_{\Pi}$  ist die Menge der sogenannten "JA-Beispiele" von  $\Pi$ .
- Dabei entspricht Pr[A(I)] ist "JA"] der Wahrscheinlichkeit, dass die Antwort, die A bei der Eingabe von / gibt, "JA" ist.



# Monte Carlo Algorithmus für MinCut

## Problemdefinition



Fasse G = (V, E) mit Kantengewichtsfunktion  $c : E \to \mathbb{N}$  als Multigraph auf, d.h. für  $\{u, v\} \in E$  gibt es  $c(\{u, v\})$  Kanten:



**Problem MINCUT:** Sei G = (V, E) mit  $c : E \to \mathbb{N}$  ein solcher Multigraph. Gesucht ist eine Partition  $V_1$  und  $V_2$  von V, sodass

cutsize(
$$V_1, V_2$$
) :=  $|\{\{u, v\} \in E \mid u \in V_1 \text{ und } v \in V_2\}|$ 

minimal ist.



### RANDOM MINCUT

**Eingabe**: Multigraph G = (V, E)

Ausgabe: Schnitt in Form eines Graphen mit zwei Superknoten

solange |V| > 2 tue

 $e \leftarrow$  zufällige Kante in E





### RANDOM MINCUT

**Eingabe**: Multigraph G = (V, E)

Ausgabe: Schnitt in Form eines Graphen mit zwei Superknoten

solange |V| > 2 tue

 $e \leftarrow$  zufällige Kante in E





### RANDOM MINCUT

**Eingabe**: Multigraph G = (V, E)

Ausgabe: Schnitt in Form eines Graphen mit zwei Superknoten

solange |V| > 2 tue

 $e \leftarrow$  zufällige Kante in E





### RANDOM MINCUT

**Eingabe**: Multigraph G = (V, E)

Ausgabe: Schnitt in Form eines Graphen mit zwei Superknoten

solange |V| > 2 tue

 $e \leftarrow$  zufällige Kante in E





### RANDOM MINCUT

**Eingabe**: Multigraph G = (V, E)

Ausgabe: Schnitt in Form eines Graphen mit zwei Superknoten

solange |V| > 2 tue

 $e \leftarrow$  zufällige Kante in E





### RANDOM MINCUT

**Eingabe**: Multigraph G = (V, E)

Ausgabe: Schnitt in Form eines Graphen mit zwei Superknoten

solange |V| > 2 tue

 $e \leftarrow$  zufällige Kante in E





### RANDOM MINCUT

**Eingabe**: Multigraph G = (V, E)

Ausgabe: Schnitt in Form eines Graphen mit zwei Superknoten

solange |V| > 2 tue

 $e \leftarrow$  zufällige Kante in E





### RANDOM MINCUT

**Eingabe**: Multigraph G = (V, E)

Ausgabe: Schnitt in Form eines Graphen mit zwei Superknoten

solange |V| > 2 tue

 $e \leftarrow$  zufällige Kante in E

Bilde neuen Graph G = (V, E), der entsteht, wenn die Endknoten von e verschmolzen werden und alle Kanten zwischen Endknoten von e entfernt werden Gebe V zurück.

2 7 7 6



**Satz 8.7.** Wenn jede Kante mit gleicher Wahrscheinlichkeit gewählt wird, dann ist die Wahrscheinlichkeit das RandomMinCut einen bestimmten minimalen Schnitt  $(V_1, V_2 = V \setminus V_1)$  findet größer  $\frac{2}{n^2}$ , wobei |V| = n.





**Satz 8.7.** Wenn jede Kante mit gleicher Wahrscheinlichkeit gewählt wird, dann ist die Wahrscheinlichkeit das RandomMinCut einen bestimmten minimalen Schnitt  $(V_1, V_2 = V \setminus V_1)$  findet größer  $\frac{2}{n^2}$ , wobei |V| = n.

### **Beweis:**

Sei  $(V_1, V_2)$  beliebiger minimaler Schnitt mit k Kanten.

- → Jeder Knoten bestizt mind. Grad k.
- $\longrightarrow$  G hat mind.  $\frac{k \cdot n}{2}$  Kanten.





**Satz 8.7.** Wenn jede Kante mit gleicher Wahrscheinlichkeit gewählt wird, dann ist die Wahrscheinlichkeit das RandomMinCut einen bestimmten minimalen Schnitt  $(V_1, V_2 = V \setminus V_1)$  findet größer  $\frac{2}{n^2}$ , wobei |V| = n.

### **Beweis:**

Sei  $(V_1, V_2)$  beliebiger minimaler Schnitt mit k Kanten.

→ Jeder Knoten bestizt mind. Grad k.

 $\longrightarrow$  G hat mind.  $\frac{k \cdot n}{2}$  Kanten.



**Idee:** Schätze Wahrscheinlichkeit ab, dass keine Kante aus  $(V_1, V_2)$  gewählt wird.

**Ereignis:**  $A_i = \text{im } i\text{-ten Schritt wird keine Kante aus } (V_1, V_2)$  gewählt.



**Satz 8.7.** Wenn jede Kante mit gleicher Wahrscheinlichkeit gewählt wird, dann ist die Wahrscheinlichkeit das RandomMinCut einen bestimmten minimalen Schnitt  $(V_1, V_2 = V \setminus V_1)$  findet größer  $\frac{2}{n^2}$ , wobei |V| = n.

### **Beweis:**

Sei  $(V_1, V_2)$  beliebiger minimaler Schnitt mit k Kanten.

- → Jeder Knoten bestizt mind. Grad k.
- $\longrightarrow$  G hat mind.  $\frac{k \cdot n}{2}$  Kanten.



**Idee:** Schätze Wahrscheinlichkeit ab, dass keine Kante aus  $(V_1, V_2)$  gewählt wird.

**Ereignis:**  $A_i = \text{im } i\text{-ten Schritt wird keine Kante aus } (V_1, V_2) \text{ gewählt.}$ 

$$\Pr[A_1] \qquad \qquad \geq 1 - \frac{2}{n} = \frac{n-2}{n}$$

#### Denn:

Wahrscheinlichkeit, dass im ersten Schritt Kante aus  $(V_1, V_2)$  gewählt wird:  $\leq \frac{k}{\frac{k \cdot n}{2}}$ 



Satz 8.7. Wenn jede Kante mit gleicher Wahrscheinlichkeit gewählt wird, dann ist die Wahrscheinlichkeit das RandomMinCut einen bestimmten minimalen Schnitt ( $V_1$ ,  $V_2 = V \setminus V_1$ ) findet größer  $\frac{2}{n^2}$ , wobei |V| = n.

### **Beweis:**

Sei  $(V_1, V_2)$  beliebiger minimaler Schnitt mit k Kanten.

- Jeder Knoten bestizt mind. Grad k.
- $\longrightarrow$  G hat mind.  $\frac{k \cdot n}{2}$  Kanten.



**Idee:** Schätze Wahrscheinlichkeit ab, dass keine Kante aus  $(V_1, V_2)$  gewählt wird.

**Ereignis:**  $A_i = \text{im } i\text{-ten Schritt wird keine Kante aus } (V_1, V_2) \text{ gewählt.}$ 

$$\Pr[A_1] \qquad \qquad \geq 1 - \frac{2}{n} = \frac{n-2}{n}$$

$$\begin{array}{ccc}
\Pr[A_1] & \geq 1 - \frac{2}{n} = \frac{n-2}{n} \\
\Pr[A_2 \mid A_1] & \geq 1 - \frac{2}{n-1} = \frac{n-3}{n-1}
\end{array}$$

Es verbleiben mindestens  $\frac{k \cdot (n-1)}{2}$  Kanten.

Pr[Im zweiten Schritt wird Kante aus ( $V_1$ ,  $V_2$ ) gewählt, nachdem  $A_1$  eingetreten ist]  $\leq \frac{k}{k \cdot (n-1)}$ 



Satz 8.7. Wenn jede Kante mit gleicher Wahrscheinlichkeit gewählt wird, dann ist die Wahrscheinlichkeit das RandomMinCut einen bestimmten minimalen Schnitt ( $V_1$ ,  $V_2 = V \setminus V_1$ ) findet größer  $\frac{2}{n^2}$ , wobei |V| = n.

### **Beweis:**

Sei  $(V_1, V_2)$  beliebiger minimaler Schnitt mit k Kanten.

- ▶ Jeder Knoten bestizt mind. Grad k.
- $\longrightarrow$  G hat mind.  $\frac{k \cdot n}{2}$  Kanten.



**Idee:** Schätze Wahrscheinlichkeit ab, dass keine Kante aus  $(V_1, V_2)$  gewählt wird.

**Ereignis:**  $A_i = \text{im } i\text{-ten Schritt wird keine Kante aus } (V_1, V_2) \text{ gewählt.}$ 

$$\Pr[A_1] \qquad \geq 1 - \frac{2}{n} = \frac{n-2}{n}$$

$$\begin{array}{ccc}
\Pr[A_1] & \geq 1 - \frac{2}{n} = \frac{n-2}{n} \\
\Pr[A_2 \mid A_1] & \geq 1 - \frac{2}{n-1} = \frac{n-3}{n-1}
\end{array}$$

$$\Pr[A_i \mid \bigcup_{i=1}^{i-1} A_j] \ge 1 - \frac{2}{n-i+1} = \frac{n-i-1}{n-i+1}$$

Es verbleiben mindestens  $\frac{k \cdot (n-i+1)}{2}$  Kanten.

 $\Pr[A_1,\ldots,A_{i-1}]$  sind eingetreten und *i*-ter Schritt wählt Kante aus  $(V_1,V_2)] \leq \frac{\kappa}{\kappa \cdot (n-i+1)}$ 



**Satz 8.7.** Wenn jede Kante mit gleicher Wahrscheinlichkeit gewählt wird, dann ist die Wahrscheinlichkeit das RandomMinCut einen bestimmten minimalen Schnitt ( $V_1$ ,  $V_2 = V \setminus V_1$ ) findet größer  $\frac{2}{n^2}$ , wobei |V| = n.

### **Beweis:**

Sei  $(V_1, V_2)$  beliebiger minimaler Schnitt mit k Kanten.

- → Jeder Knoten bestizt mind. Grad k.
- $\longrightarrow$  G hat mind.  $\frac{k \cdot n}{2}$  Kanten.



**Idee:** Schätze Wahrscheinlichkeit ab, dass keine Kante aus  $(V_1, V_2)$  gewählt wird.

**Ereignis:**  $A_i = \text{im } i\text{-ten Schritt wird keine Kante aus } (V_1, V_2) \text{ gewählt.}$ 

$$\begin{aligned} &\Pr[A_1] & \geq 1 - \frac{2}{n} = \frac{n-2}{n} \\ &\Pr[A_2 \mid A_1] & \geq 1 - \frac{2}{n-1} = \frac{n-3}{n-1} \\ &\Pr[A_i \mid \bigcup_{j=1}^{i-1} A_j] & \geq 1 - \frac{2}{n-i+1} = \frac{n-i-1}{n-i+1} \end{aligned}$$

$$\Pr\left[\bigcap_{i=1}^{n-2} A_i\right] \ge \prod_{i=1}^{n-2} \left(\frac{n-i-1}{n-i+1}\right) = \frac{(n-2)\cdot(n-3)\cdot(n-4)\cdot(n-5)\cdot\ldots\cdot2\cdot1}{(n-0)\cdot(n-1)\cdot(n-2)\cdot(n-3)\cdot\ldots\cdot4\cdot3} = \frac{2}{n\cdot(n-1)}$$



**Satz 8.7.** Wenn jede Kante mit gleicher Wahrscheinlichkeit gewählt wird, dann ist die Wahrscheinlichkeit das RandomMinCut einen bestimmten minimalen Schnitt  $(V_1, V_2 = V \setminus V_1)$  findet größer  $\frac{2}{n^2}$ , wobei |V| = n.

### Folgerung 8.8.

Wendet man RANDOM MINCUT nur  $n-\ell$  Schritte lang an, d.h. man stoppt, wenn  $\ell$  Knoten übrig sind, so ist die Wahrscheinlichkeit, dass bis dahin keine Kante eines bestimmten minimalen Schnitts  $(V_1, V_2)$  gewählt wurde, mindestens

$$\frac{\binom{\ell}{2}}{\binom{n}{2}}$$
, d.h. in  $\Omega\left(\left(\frac{\ell}{n}\right)^2\right)$ .

$$\Pr\left[\bigcap_{i=1}^{n-\ell} A_i\right] \ge \prod_{i=1}^{n-\ell} \left(\frac{n-i-1}{n-i+1}\right) = \frac{(n-2)\cdot(n-3)\cdot(n-4)\cdot\ldots\cdot\ell\cdot(\ell-1)}{(n-0)\cdot(n-1)\cdot(n-2)\cdot\ldots\cdot(l+2)\cdot(l+1)} = \frac{\binom{\ell}{2}}{\binom{n}{2}}$$

## Zusammenfassung



- Wenn Wahl einer zufälligen Kante in  $\mathcal{O}(n)$  realisierbar, dann hat der Algorithmus eine Laufzeit von  $\mathcal{O}(n^2)$ .
- $\Rightarrow$  Bessere Laufzeit als deterministische Variante ( $\mathcal{O}(n^2 \log n + n \cdot m)$ ), siehe Skript.
- Wendet man RANDOM MINCUT  $\frac{n^2}{2}$  mal unabhängig voneinander an, so ergibt sich:

$$Pr[\text{Bestimmter Schnitt nicht gefunden}] = \left(1 - \frac{2}{n^2}\right)^{\frac{n^2}{2}} < \frac{1}{e}$$

- Allerdings  $\mathcal{O}(n^4)$ -Algorithmus
- ⇒ Schlechter als deterministische Variante.

Eulersche Zahl



# Ein effizienterer randomisierter MinCut-Algorithmus

## Fast Random MinCut



**Eingabe**: Graph G = (V, E) als Multigraph, |V| = n

Ausgabe: Schnitt

wenn n < 6 dann

berechne direkt deterministisch einen MINCUT

#### sonst

$$\ell \leftarrow \left\lceil \frac{n}{\sqrt{2}} \right\rceil$$

 $G_1 \leftarrow \mathsf{RANDOM}\;\mathsf{MINCUT}(\mathsf{bis}\;\ell\;\mathsf{Knoten}\;\mathsf{\ddot{u}brig})$ 

 $G_2 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT} (\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig})$ 

 $C_1 \leftarrow \mathsf{FAST} \; \mathsf{RANDOM} \; \mathsf{MINCUT}(G_1) \; (\mathsf{rekursiv})$ 

 $C_2 \leftarrow \text{FAST RANDOM MINCUT}(G_2)$  (rekursiv)

## Fast Random MinCut



**Eingabe**: Graph G = (V, E) als Multigraph, |V| = n

Ausgabe: Schnitt

wenn n < 6 dann

berechne direkt deterministisch einen MINCUT

#### sonst

$$\ell \leftarrow \left\lceil \frac{n}{\sqrt{2}} \right\rceil$$

 $G_1 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT}(\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig})$ 

 $G_2 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT}(\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig}) \; A$ 

 $C_1 \leftarrow \text{FAST RANDOM MINCUT}(G_1) \text{ (rekursiv)} B$ 

 $C_2 \leftarrow \mathsf{FAST} \; \mathsf{RANDOM} \; \mathsf{MINCUT}(G_2) \; (\mathsf{rekursiv})^T$ 

Gib den kleineren der beiden Schnitte  $C_1$  und  $C_2$  aus.

**Satz 8.9:** FAST RANDOM MINCUT hat eine Laufzeit  $\mathcal{O}(n^2 \log n)$ .

**Beweis:** Laufzeit T(n) ergibt sich aus folgender Rekursionsabschätzung:

$$T(n) = 2 \cdot T\left(\left\lceil \frac{n}{\sqrt{2}} \right\rceil\right) + \underbrace{c \cdot n^2}_{A}$$

Kann mithilfe des Master-Theorems gelöst werden.

wobei c eine Konstante ist.



**Satz 8.10:** Wahrscheinlichkeit, dass FRMC einen minimalen Schnitt findet, ist in  $\Omega\left(\frac{1}{\log n}\right)$ 

#### wenn n < 6 dann

berechne direkt deterministisch einen MINCUT

#### sonst

$$\ell \leftarrow \left\lceil \frac{n}{\sqrt{2}} \right\rceil$$

 $G_1 \leftarrow \mathsf{RANDOM}\ \mathsf{MINCUT}(\mathsf{bis}\ \ell\ \mathsf{Knoten}\ \mathsf{\ddot{u}brig})$ 

 $G_2 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT}(\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig})$ 

 $C_1 \leftarrow \mathsf{FAST} \; \mathsf{RANDOM} \; \mathsf{MINCUT}(G_1) \; (\mathsf{rekursiv})$ 

 $C_2 \leftarrow \mathsf{FAST} \; \mathsf{RANDOM} \; \mathsf{MINCUT}(G_2) \; (\mathsf{rekursiv})$ 



Satz 8.10: Wahrscheinlichkeit, dass FRMC einen minimalen Schnitt findet, ist in  $\Omega$ 

**Beweisskizze:** Sei k Größe eines minimalen Schnitts in G.

**Annahme:** Es gibt Graph G', der  $\ell$  Knoten besitzt, aus G durch Verschmelzung von Knoten hervorgegangen ist und einen Schnitt mit *k* Kanten besitzt.

#### wenn n < 6 dann

berechne direkt deterministisch einen MINCUT

#### sonst

$$\ell \leftarrow \left\lceil \frac{n}{\sqrt{2}} \right\rceil$$

 $G_1 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT}(\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig})$ 

 $G_2 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT}(\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig})$ 

 $C_1 \leftarrow \text{FAST RANDOM MINCUT}(G_1) \text{ (rekursiv)}$ 

 $C_2 \leftarrow \mathsf{FAST} \; \mathsf{RANDOM} \; \mathsf{MINCUT}(G_2) \; (\mathsf{rekursiv})$ 



Satz 8.10: Wahrscheinlichkeit, dass FRMC einen minimalen Schnitt findet, ist in  $\Omega$ 

**Beweisskizze:** Sei k Größe eines minimalen Schnitts in G.

**Annahme:** Es gibt Graph G', der  $\ell$  Knoten besitzt, aus G durch Verschmelzung von Knoten hervorgegangen ist und einen Schnitt mit *k* Kanten besitzt.

FRMC liefert minimalen Schnitt für  $G' \Leftrightarrow \text{Rekursion liefert Schnitt der Größe } k \text{ für } G_1 \text{ oder } G_2$ ► Ebenfalls minimaler Schnitt für G.

#### wenn n < 6 dann

berechne direkt deterministisch einen MINCUT

#### sonst

$$\ell \leftarrow \left\lceil \frac{n}{\sqrt{2}} \right\rceil$$

 $G_1 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT}(\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig})$ 

 $G_2 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT}(\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig})$ 

 $C_1 \leftarrow \text{FAST RANDOM MINCUT}(G_1) \text{ (rekursiv)}$ 

 $C_2 \leftarrow \mathsf{FAST} \; \mathsf{RANDOM} \; \mathsf{MINCUT}(G_2) \; (\mathsf{rekursiv})$ 



Satz 8.10: Wahrscheinlichkeit, dass FRMC einen minimalen Schnitt findet, ist in  $\Omega$ 

**Beweisskizze:** Sei k Größe eines minimalen Schnitts in G.

**Annahme:** Es gibt Graph G', der  $\ell$  Knoten besitzt, aus G durch Verschmelzung von Knoten hervorgegangen ist und einen Schnitt mit *k* Kanten besitzt.

### Nach Folgerung 8.8:

Pr[Berechnung von G' wählt 0 Kanten eines bestimmten Schnitts]  $\geq \left\lceil \frac{\ell}{\sqrt{2}} \right\rceil \cdot \frac{\left| \frac{\ell}{\sqrt{2}} \right| - 1}{\ell \cdot (\ell - 1)} \geq \frac{1}{2}$ 

#### wenn n < 6 dann

berechne direkt deterministisch einen MINCUT

#### sonst

$$\ell \leftarrow \left\lceil \frac{n}{\sqrt{2}} \right\rceil$$

 $G_1 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT}(\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig})$ 

 $G_2 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT}(\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig})$ 

 $C_1 \leftarrow \mathsf{FAST} \; \mathsf{RANDOM} \; \mathsf{MINCUT}(G_1) \; (\mathsf{rekursiv})$ 

 $C_2 \leftarrow \mathsf{FAST} \; \mathsf{RANDOM} \; \mathsf{MINCUT}(G_2) \; (\mathsf{rekursiv})$ 



**Satz 8.10:** Wahrscheinlichkeit, dass FRMC einen minimalen Schnitt findet, ist in  $\Omega\left(\frac{1}{\log n}\right)$ .

Beweisskizze: Sei k Größe eines minimalen Schnitts in G.

**Annahme:** Es gibt Graph G', der  $\ell$  Knoten besitzt, aus G durch Verschmelzung von Knoten hervorgegangen ist und einen Schnitt mit k Kanten besitzt.

### Nach Folgerung 8.8:

Pr[Berechnung von G' wählt 0 Kanten eines bestimmten Schnitts]  $\geq \left\lceil \frac{\ell}{\sqrt{2}} \right\rceil \cdot \frac{\left| \frac{\ell}{\sqrt{2}} \right| - 1}{\ell \cdot (\ell - 1)} \geq \frac{1}{2}$ 

 $P(\ell) := \Pr[FRMC \text{ findet minimalen Schnitt in Graphen mit } \ell \text{ Knoten}]$ 

$$P(\ell) \ge 1 - \left(1 - \frac{1}{2} \cdot P\left(\left\lceil \frac{\ell}{\sqrt{2}} \right\rceil\right)\right) \cdot \left(1 - \frac{1}{2} \cdot P\left(\left\lceil \frac{\ell}{\sqrt{2}} \right\rceil\right)\right) \text{ für } \ell \ge 7 \text{ (für } \ell \le 6 \text{ gilt } P(\ell)) = 1)$$

#### wenn n < 6 dann

berechne direkt deterministisch einen MINCUT

#### sonst

$$\ell \leftarrow \left\lceil \frac{n}{\sqrt{2}} \right\rceil$$

 $G_1 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT}(\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig})$ 

 $G_2 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT}(\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig})$ 

 $C_1 \leftarrow \mathsf{FAST} \; \mathsf{RANDOM} \; \mathsf{MINCUT}(G_1) \; (\mathsf{rekursiv})$ 

 $C_2 \leftarrow \mathsf{FAST} \; \mathsf{RANDOM} \; \mathsf{MINCUT}(G_2) \; (\mathsf{rekursiv})$ 



**Satz 8.10:** Wahrscheinlichkeit, dass FRMC einen minimalen Schnitt findet, ist in  $\Omega\left(\frac{1}{\log n}\right)$ .

**Beweisskizze:** Sei k Größe eines minimalen Schnitts in G.

**Annahme:** Es gibt Graph G', der  $\ell$  Knoten besitzt, aus G durch Verschmelzung von Knoten hervorgegangen ist und einen Schnitt mit k Kanten besitzt.

### Nach Folgerung 8.8:

Pr[Berechnung von G' wählt 0 Kanten eines bestimmten Schnitts]  $\geq \left\lceil \frac{\ell}{\sqrt{2}} \right\rceil \cdot \frac{\left| \frac{\ell}{\sqrt{2}} \right| - 1}{\ell \cdot (\ell - 1)} \geq \frac{1}{2}$ 

 $P(\ell) := \Pr[FRMC \text{ findet minimalen Schnitt in Graphen mit } \ell \text{ Knoten}]$ 

$$P(\ell) \ge 1 - \left(1 - \frac{1}{2} \cdot P\left(\left\lceil \frac{\ell}{\sqrt{2}} \right\rceil\right)\right) \cdot \left(1 - \frac{1}{2} \cdot P\left(\left\lceil \frac{\ell}{\sqrt{2}} \right\rceil\right)\right) \text{ für } \ell \ge 7 \text{ (für } \ell \le 6 \text{ gilt } P(\ell)) = 1)$$

Pr[G' enthält alle Kanten von min. Schnitt in G]

 $Pr[FRMC findet min. Schnitt C_1 in G_1]$ 

#### wenn n < 6 dann

berechne direkt deterministisch einen MINCUT

#### sonst

$$\ell \leftarrow \left\lceil \frac{n}{\sqrt{2}} \right\rceil$$

 $G_1 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT}(\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig})$ 

 $G_2 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT}(\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig})$ 

 $C_1 \leftarrow \text{FAST RANDOM MINCUT}(G_1) \text{ (rekursiv)}$ 

 $C_2 \leftarrow \mathsf{FAST} \; \mathsf{RANDOM} \; \mathsf{MINCUT}(G_2) \; (\mathsf{rekursiv})$ 



**Satz 8.10:** Wahrscheinlichkeit, dass FRMC einen minimalen Schnitt findet, ist in  $\Omega\left(\frac{1}{\log n}\right)$ .

Beweisskizze: Sei k Größe eines minimalen Schnitts in G.

**Annahme:** Es gibt Graph G', der  $\ell$  Knoten besitzt, aus G durch Verschmelzung von Knoten hervorgegangen ist und einen Schnitt mit k Kanten besitzt.

### Nach Folgerung 8.8:

Pr[Berechnung von G' wählt 0 Kanten eines bestimmten Schnitts]  $\geq \left\lceil \frac{\ell}{\sqrt{2}} \right\rceil \cdot \frac{\left| \frac{\ell}{\sqrt{2}} \right| - 1}{\ell \cdot (\ell - 1)} \geq \frac{1}{2}$ 

 $P(\ell) := \Pr[FRMC \text{ findet minimalen Schnitt in Graphen mit } \ell \text{ Knoten}]$ 

$$P(\ell) \ge 1 - \left(1 - \frac{1}{2} \cdot P\left(\left\lceil \frac{\ell}{\sqrt{2}} \right\rceil\right)\right) \cdot \left(1 - \frac{1}{2} \cdot P\left(\left\lceil \frac{\ell}{\sqrt{2}} \right\rceil\right)\right) \text{ für } \ell \ge 7 \text{ (für } \ell \le 6 \text{ gilt } P(\ell)) = 1)$$

Pr[G' enthält alle Kanten von min. Schnitt in G]

 $Pr[FRMC findet min. Schnitt C_1 in G_1]$ 

 $Pr[C_1 \text{ ist min. Schnitt in } G]$ 

#### wenn n < 6 dann

berechne direkt deterministisch einen MINCUT

#### sonst

$$\ell \leftarrow \left\lceil \frac{n}{\sqrt{2}} \right\rceil$$

 $G_1 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT}(\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig})$ 

 $G_2 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT}(\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig})$ 

 $C_1 \leftarrow \text{FAST RANDOM MINCUT}(G_1) \text{ (rekursiv)}$ 

 $C_2 \leftarrow \mathsf{FAST} \; \mathsf{RANDOM} \; \mathsf{MINCUT}(G_2) \; (\mathsf{rekursiv})$ 



**Satz 8.10:** Wahrscheinlichkeit, dass FRMC einen minimalen Schnitt findet, ist in  $\Omega\left(\frac{1}{\log n}\right)$ .

Beweisskizze: Sei k Größe eines minimalen Schnitts in G.

**Annahme:** Es gibt Graph G', der  $\ell$  Knoten besitzt, aus G durch Verschmelzung von Knoten hervorgegangen ist und einen Schnitt mit k Kanten besitzt.

### Nach Folgerung 8.8:

Pr[Berechnung von G' wählt 0 Kanten eines bestimmten Schnitts]  $\geq \left\lceil \frac{\ell}{\sqrt{2}} \right\rceil \cdot \frac{\left\lceil \frac{\ell}{\sqrt{2}} \right\rceil - 1}{\ell \cdot (\ell - 1)} \geq \frac{1}{2}$ 

 $P(\ell) := \Pr[FRMC \text{ findet minimalen Schnitt in Graphen mit } \ell \text{ Knoten}]$ 

$$P(\ell) \ge 1 - \left(1 - \frac{1}{2} \cdot P\left(\left\lceil \frac{\ell}{\sqrt{2}} \right\rceil\right)\right) \cdot \left(1 - \frac{1}{2} \cdot P\left(\left\lceil \frac{\ell}{\sqrt{2}} \right\rceil\right)\right) \text{ für } \ell \ge 7 \text{ (für } \ell \le 6 \text{ gilt } P(\ell)) = 1)$$

Pr[G' enthält alle Kanten von min. Schnitt in G]

 $Pr[FRMC findet min. Schnitt C_1 in G_1]$ 

 $Pr[C_1 \text{ ist min. Schnitt in } G]$ 

 $Pr[C_1 \text{ ist nicht min. Schnitt in } G]$ 

 $Pr[C_2 \text{ ist nicht min. Schnitt in } G]$  (Analog wie  $C_1$ )

#### wenn n < 6 dann

berechne direkt deterministisch einen MINCUT

#### sonst

$$\ell \leftarrow \left\lceil \frac{n}{\sqrt{2}} \right\rceil$$

 $G_1 \leftarrow \mathsf{RANDOM}\ \mathsf{MINCUT}(\mathsf{bis}\ \ell\ \mathsf{Knoten}\ \mathsf{\ddot{u}brig})$ 

 $G_2 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT}(\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig})$ 

 $C_1 \leftarrow \mathsf{FAST} \; \mathsf{RANDOM} \; \mathsf{MINCUT}(G_1) \; (\mathsf{rekursiv})$ 

 $C_2 \leftarrow \mathsf{FAST} \; \mathsf{RANDOM} \; \mathsf{MINCUT}(G_2) \; (\mathsf{rekursiv})$ 



**Satz 8.10:** Wahrscheinlichkeit, dass FRMC einen minimalen Schnitt findet, ist in  $\Omega\left(\frac{1}{\log n}\right)$ .

Beweisskizze: Sei k Größe eines minimalen Schnitts in G.

**Annahme:** Es gibt Graph G', der  $\ell$  Knoten besitzt, aus G durch Verschmelzung von Knoten hervorgegangen ist und einen Schnitt mit k Kanten besitzt.

### Nach Folgerung 8.8:

Pr[Berechnung von G' wählt 0 Kanten eines bestimmten Schnitts]  $\geq \left\lceil \frac{\ell}{\sqrt{2}} \right\rceil \cdot \frac{\left| \frac{\ell}{\sqrt{2}} \right| - 1}{\ell \cdot (\ell - 1)} \geq \frac{1}{2}$ 

 $P(\ell) := \Pr[FRMC \text{ findet minimalen Schnitt in Graphen mit } \ell \text{ Knoten}]$ 

$$P(\ell) \ge 1 - \left(1 - \frac{1}{2} \cdot P\left(\left\lceil \frac{\ell}{\sqrt{2}} \right\rceil\right)\right) \cdot \left(1 - \frac{1}{2} \cdot P\left(\left\lceil \frac{\ell}{\sqrt{2}} \right\rceil\right)\right) \text{ für } \ell \ge 7 \text{ (für } \ell \le 6 \text{ gilt } P(\ell)) = 1)$$

Pr[G' enthält alle Kanten von min. Schnitt in G]

 $Pr[FRMC findet min. Schnitt C_1 in G_1]$ 

 $Pr[C_1 \text{ ist min. Schnitt in } G]$ 

 $Pr[C_1 \text{ ist nicht min. Schnitt in } G]$ 

 $Pr[C_2 \text{ ist nicht min. Schnitt in } G]$  (Analog wie  $C_1$ )

 $Pr[C_1 \text{ oder } C_2 \text{ ist min. Schnitt in } G]$ 

#### wenn n < 6 dann

berechne direkt deterministisch einen MINCUT

#### sonst

$$\ell \leftarrow \left\lceil \frac{n}{\sqrt{2}} \right\rceil$$

 $G_1 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT}(\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig})$ 

 $G_2 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT}(\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig})$ 

 $C_1 \leftarrow \text{FAST RANDOM MINCUT}(G_1) \text{ (rekursiv)}$ 

 $C_2 \leftarrow \text{FAST RANDOM MINCUT}(G_2)$  (rekursiv)



**Satz 8.10:** Wahrscheinlichkeit, dass FRMC einen minimalen Schnitt findet, ist in  $\Omega\left(\frac{1}{\log n}\right)$ .

**Beweisskizze:** Sei k Größe eines minimalen Schnitts in G.

**Annahme:** Es gibt Graph G', der  $\ell$  Knoten besitzt, aus G durch Verschmelzung von Knoten hervorgegangen ist und einen Schnitt mit k Kanten besitzt.

### Nach Folgerung 8.8:

Pr[Berechnung von G' wählt 0 Kanten eines bestimmten Schnitts]  $\geq \left\lceil \frac{\ell}{\sqrt{2}} \right\rceil \cdot \frac{\left| \frac{\ell}{\sqrt{2}} \right| - 1}{\ell \cdot (\ell - 1)} \geq \frac{1}{2}$ 

 $P(\ell) := \Pr[FRMC \text{ findet minimalen Schnitt in Graphen mit } \ell \text{ Knoten}]$ 

$$P(\ell) \geq 1 - \left(1 - \frac{1}{2} \cdot P\left(\left\lceil \frac{\ell}{\sqrt{2}} \right\rceil\right)\right)^2 = P\left(\left\lceil \frac{\ell}{\sqrt{2}} \right\rceil\right) - \frac{1}{4} \cdot P\left(\left\lceil \frac{\ell}{\sqrt{2}} \right\rceil\right)^2$$

#### wenn n < 6 dann

berechne direkt deterministisch einen MINCUT

#### sonst

$$\ell \leftarrow \left\lceil \frac{n}{\sqrt{2}} \right\rceil$$

 $G_1 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT}(\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig})$ 

 $G_2 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT}(\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig})$ 

 $C_1 \leftarrow \mathsf{FAST} \; \mathsf{RANDOM} \; \mathsf{MINCUT}(G_1) \; (\mathsf{rekursiv})$ 

 $C_2 \leftarrow \mathsf{FAST} \; \mathsf{RANDOM} \; \mathsf{MINCUT}(G_2) \; (\mathsf{rekursiv})$ 



**Satz 8.10:** Wahrscheinlichkeit, dass FRMC einen minimalen Schnitt findet, ist in  $\Omega\left(\frac{1}{\log n}\right)$ .

Beweisskizze: Sei k Größe eines minimalen Schnitts in G.

**Annahme:** Es gibt Graph G', der  $\ell$  Knoten besitzt, aus G durch Verschmelzung von Knoten hervorgegangen ist und einen Schnitt mit *k* Kanten besitzt.

### Nach Folgerung 8.8:

Pr[Berechnung von G' wählt 0 Kanten eines bestimmten Schnitts]  $\geq \left\lceil \frac{\ell}{\sqrt{2}} \right\rceil \cdot \frac{\left| \frac{\ell}{\sqrt{2}} \right| - 1}{\ell \cdot (\ell - 1)} \geq \frac{1}{2}$ 

 $P(\ell) := \Pr[FRMC \text{ findet minimalen Schnitt in Graphen mit } \ell \text{ Knoten}]$ 

$$P(\ell) \geq 1 - \left(1 - \frac{1}{2} \cdot P\left(\left\lceil \frac{\ell}{\sqrt{2}} \right\rceil\right)\right)^2 = P\left(\left\lceil \frac{\ell}{\sqrt{2}} \right\rceil\right) - \frac{1}{4} \cdot P\left(\left\lceil \frac{\ell}{\sqrt{2}} \right\rceil\right)^2$$

Für  $\ell = \sqrt{2^{k+1}}$  folgt

$$P\left(\sqrt{2^{k+1}}\right) \ge P\left(\left(\sqrt{2}\right)^k\right) - \frac{1}{4} \cdot P\left(\left(\sqrt{2}\right)^k\right)^2$$

#### wenn n < 6 dann

berechne direkt deterministisch einen MINCUT

#### sonst

$$\ell \leftarrow \left\lceil \frac{n}{\sqrt{2}} \right\rceil$$

 $G_1 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT}(\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig})$ 

 $G_2 \leftarrow \mathsf{RANDOM} \; \mathsf{MINCUT}(\mathsf{bis} \; \ell \; \mathsf{Knoten} \; \mathsf{\ddot{u}brig})$ 

 $C_1 \leftarrow \text{FAST RANDOM MINCUT}(G_1) \text{ (rekursiv)}$ 

 $C_2 \leftarrow \mathsf{FAST} \; \mathsf{RANDOM} \; \mathsf{MINCUT}(G_2) \; (\mathsf{rekursiv})$ 



**Satz 8.10:** Wahrscheinlichkeit, dass FRMC einen minimalen Schnitt findet, ist in  $\Omega\left(\frac{1}{\log n}\right)$ .

**Beweisskizze:** Sei k Größe eines minimalen Schnitts in G.

**Annahme:** Es gibt Graph G', der  $\ell$  Knoten besitzt, aus G durch Verschmelzung von Knoten hervorgegangen ist und einen Schnitt mit k Kanten besitzt.

### Nach Folgerung 8.8:

Pr[Berechnung von G' wählt 0 Kanten eines bestimmten Schnitts]  $\geq \left\lceil \frac{\ell}{\sqrt{2}} \right\rceil \cdot \frac{\left| \frac{\ell}{\sqrt{2}} \right| - 1}{\ell \cdot (\ell - 1)} \geq \frac{1}{2}$ 

 $P(\ell) := \Pr[FRMC \text{ findet minimalen Schnitt in Graphen mit } \ell \text{ Knoten}]$ 

$$P(\ell) \geq 1 - \left(1 - \frac{1}{2} \cdot P\left(\left\lceil \frac{\ell}{\sqrt{2}} \right\rceil\right)\right)^2 = P\left(\left\lceil \frac{\ell}{\sqrt{2}} \right\rceil\right) - \frac{1}{4} \cdot P\left(\left\lceil \frac{\ell}{\sqrt{2}} \right\rceil\right)^2$$

Für 
$$\ell = \sqrt{2^{k+1}}$$
 folgt

$$P\left(\sqrt{2^{k+1}}\right) \ge P\left(\left(\sqrt{2}\right)^k\right) - \frac{1}{4} \cdot P\left(\left(\sqrt{2}\right)^k\right)^2$$

Man kann zeigen, dass

$$P\left(\left(\sqrt{2}\right)^k\right)\in\Omega\left(\frac{1}{k}\right)$$
 und damit  $P(\ell)\in\Omega\left(\frac{1}{\log\ell}\right)$ 





# Maximum Satisfiability Problem

## Problemdefinition



Problem MAXIMUM SATISFIABILITY (MAXSAT):

**Gegeben:** Menge von *m* Klauseln über *n* Variablen.

Gesucht: Wahrheitsbelegung, die eine maximale Anzahl von Klauseln erfüllt.

Bereits  $\mathcal{NP}$ -schwer, wenn Anzahl der Literale auf zwei pro Klausel beschränkt.



Beispiel:

1. Klausel:  $X_1 \lor \overline{X_2}$  2. Klausel:  $\overline{X_1} \lor \overline{X_2}$ 

3. Klausel:  $X_1 \lor X_2$  4. Klausel:  $\overline{X_1} \lor X_3$ 

5. Klausel:  $X_2 \vee \overline{X_3}$ 

Nicht alle Klauseln sind gleichzeitig erfüllbar:

Für  $X_1 = falsch$  kann 1. Klausel nicht mit 3. Klausel gleichzeitig erfüllt sein.

Für  $X_1 = wahr$  kann 5. Klausel nicht mit 2. und 4. Klausel gleichzeitig erfüllt sein.

Optimale Belegung:  $X_1 = wahr$ ,  $X_2 = falsch$ ,  $X_3 = wahr$ 

## Algorithmus Random Sat



**Vorgehen:** Für jede Variable  $x \in V$  setze x := wahr mit der Wahrscheinlichkeit  $\frac{1}{2}$ .

### Satz 8.16.

Für eine Instanz I von Max Sat mit m Klauseln, in der jede Klausel mindestens k Literale enthält, erfüllt der erwartete Wert der Lösung von RANDOM SAT:

$$E[X_{RS}(I)] \geq \left(1 - \frac{1}{2^k}\right) \cdot m,$$

wobei  $X_{RS}(I)$  die Zufallsvariable bezeichnet, die den Wert der Lösung von RANDOM SAT bei der Eingabe von I angibt.

#### **Beweis:**

- Wahrscheinlichkeit, dass Klausel mit k Literalen nicht erfüllt wird, ist  $\frac{1}{2^k}$ .
- Entsprechend ist Wahrscheinlichkeit, dass Klausel mit mindestens k Literalen erfüllt wird mindestens  $1 \frac{1}{2^k}$ .
- Damit ist der erwartete Beitrag einer Klausel zu  $E[X_{RS}(I)]$  mindestens 1  $-\frac{1}{2^k}$ .
- Es folgt die Behauptung.

## Algorithmus Random Sat



**Vorgehen:** Für jede Variable  $x \in V$  setze x := wahr mit der Wahrscheinlichkeit  $\frac{1}{2}$ .

### Satz 8.16.

Für eine Instanz I von Max Sat mit m Klauseln, in der jede Klausel mindestens k Literale enthält, erfüllt der erwartete Wert der Lösung von RANDOM SAT:

$$E[X_{RS}(I)] \geq \left(1 - \frac{1}{2^k}\right) \cdot m,$$

wobei  $X_{RS}(I)$  die Zufallsvariable bezeichnet, die den Wert der Lösung von RANDOM SAT bei der Eingabe von I angibt.

Korollar 8.17: RANDOM SAT ist 2-approximativ, d.h.

$$\frac{OPT(I)}{E[X_{\mathsf{RS}(I)}]} \le 2$$