

Mc= 110=14 (1+2M/5) (1+5)/5 = (1+5)18 We = 1 (9/L $\frac{2}{\sqrt{1+7}} = \frac{2}{\sqrt{1+7}} = \frac{2}$ 9777 off = 下性能指标: K = 16, Y₀ = 45'. (15 外) 10 = 180- 90- arcton Wei -20dB/dec -40dB/dec 0001 001 1+SI - 25 = 1517 -40dB/dec (N1000+1) OZ - (M 10.0+1) 205 + W 2012-Xolox

呈7并三7篇

3M

3 -------

12

参先短緊及评分标准 自动控制原理期末考试试卷A 200801

(有几题答案未给出)

解:对零初始条件下的单位阶跃响应作拉氏变换,

$$C(s) = \frac{1}{s} - \frac{1.8}{s + 4} + \frac{0.8}{s + 9} = \frac{36}{s(s + 4)(s + 9)}$$

0

回账架的布施图數为 R(s) = -因系统的输入信号为单位阶跃信号,故

信号为单位阶跃信号,故
$$R(s) = \frac{1}{s}$$
,则系统的传递函数 $\Phi(s) = \frac{C(s)}{R(s)} = \frac{36}{(s+4)(s+9)}$

系统的频率特性为 所以,

$$G(j\omega) = \frac{36}{(j\omega + 4)(j\omega + 9)}$$

(

0

幅频特性为

$$A(\omega) = |G(j\omega)| = \frac{36}{\sqrt{\omega^2 + 16\sqrt{\omega^2 + 81}}}$$

0

柏频特性

$$\varphi(\omega) = \angle G(j\omega) = -\arcsin\frac{\omega}{4} -\arctan\frac{\omega}{9}$$

0

7、其中K>0,T,>0,T,>0,T,>0,T>0。这两个系统的乃氏图 (开环幅相曲线)如下图所示。试画出完整的乃氏图,并用乃氏判据判断闭环系统的稳定性。如果系统不稳定,确定其 s 右半平面的闭环极点数。((a)10 分,(b)5 分,共 15 分)

解:

$$\omega = 0$$

$$-1$$

$$0$$

$$x(\omega)$$

$$x(\omega)$$

7

0 \bigcirc 0

$$N = P - Z$$

$$P = 0 N = -2$$

$$Z = Z = Z = P - N$$

$$-Z$$
 $Z = P - N$
 $N = -2$ $Z = 0 - (-2) = 2$

(b) 图(a)
$$N = P - Z$$
 $Z = P - N$ $P = 1$ $N = 1$ $Z = 1 - N$ 所以闭环系统稳定。

Z = 1 - 1 = 0

8.
$$\[\hat{\pi}_{\overline{z}}: G(s)H(s) = \frac{K}{s^2} \frac{\tau s + 1}{Ts + 1} = \frac{K}{s^2} \frac{\frac{1}{100}s + 1}{\frac{1}{1000}} = \frac{K(0.01s + 1)}{s^2(0.001s + 1)}$$

$$G(s)H(s) = \frac{100(0.01s + 1)}{s^2(0.001s + 1)}$$

 $\omega = 10 \, \mathrm{F}\mathrm{f}$, $20 \, \mathrm{Ig} \, K = L(\omega) = 40 \mathrm{dB}$, K = 100

44年	动态指标稳态误差√	根轨迹~	乃氏图乃氏判据人	伯德图求 G(s)	不设计, 求校正前后的相角裕度	极限环蝠值和频率	二阶离散系统稳定性	
批	ന	7	ഗ	വ	9	7	∞	
分值	15	ic.	15	15	10	15	10	
iii 此.		7	ಬ	4	വ	9	7	

设单位反馈系统的开环传递函数为

25mms (4+0+59-0+25gro $\overline{\lambda}$

War

Ĥ. $G(s) = \frac{1}{(0.2s+1)(0.4s+1)}$ X

= 7时系统的自然振荡频率、阻尼比、调节时间、超调量和单位阶跃输入下的稳态误差。

據	
4110	\$
派	10
1/3	-
ČIII)	\sim
15	
下的總格派	
1	
~	
御	
K.	
14:0	
55	
包	
-100	
□.	
H	\sim
981	粉
哩	180
되	ボ
、超调量和单位阶跃输、	277
m'	11-
于	帐
4m	1
†I	15
. 酒节时间	חו
图尼比、	:1,3时的上述各值已列于表中
立	坦
呵	M
四	*
/	山
Bil-	10
KEK	-CCI
#5/	后
115	m
糕	· pour
然	11
4111	X
42	
时系统的自然振荡频率	
411,	п
11/2	-M-
冶	抚
[-	、版格中。
11	2
M	并填入
长	北
ΝĄ	1

K		m	
自然频率 の, (1/5)	9	7.07	0)
開記比ぐ	0.75	0.53	2750
调节时间 t_{s} (s)	1.17	1.17	[1]
討る量の。	2.8%	14%	28%
稳态误差を	0.5 = 0.0	0.25	251.0
		Sa	

设单位负反馈系统的开环传递函数如下,试概略绘出其闭环根轨迹(要求确定分离 (15 分) D(S1= 5(2541) 点坐标)

(14 Jes (28)

0 = 0 7:-1 $G(s) = \frac{K(s+1)}{S(s+1)}$ s(2s+1)

买统的开环传递函数为

 \bigcirc 1 G(s)H(s) = -

(15 少)

并用乃氏稳定判据判断闭环系统的稳定性。 绘出乃乐图,

且 G(j∞)的 已知单位负反馈系统的开环传递函数 G(s) 无右半平面的琴点和极点,

对数幅频渐进特性如下图所示,试写出 G(s)的表达式,并求出相角裕度、判断闭环系统的

物品在。

(15 分)

设 I 型单位反馈系统开环传递函数为 $G(s)=rac{200}{s(0.1s+1)}$,求出其截至频率 ω_e 和相 角裕度 γ ;若设计串联超前校正装置为 $G_{c}(s)=rac{0.036s+1}{0.009s+1}$,求校正后系统的截至频率 ω_{c_2} 和 200

(15分) Щ 设非线性系统如下图所示,已知非线性环节的描述函数 $N = \frac{4M}{\pi X}$, $K>0,T_1>0,T_2>0$,试求极限环对应的振幅和频率。

(15 分)

相角裕度 72。

(10分) 并判断闭 试求闭环系统的传递函数, 已知采祥系统如下图所示, 采祥周期了=13, 环系统的稳定在。

(提示:
$$Z[\delta(t)]=1$$
, $Z\left[\frac{1}{s}\right]=\frac{z}{z-1}$, $Z[(1-e^{-r_3})]=1-z^{-1}Z\left[\frac{1}{s+a}\right]=\frac{z}{z-e^{-c\tau}}$)

$$R(s) + \sum_{s=1}^{\infty} \frac{1 + \frac{1}{s}}{s}$$

$$1 \le X - \frac{t X \pi}{t} \cdot \left(\frac{1}{X} \right) - 1 \sqrt{\frac{t}{X \pi}} = N$$

(4951)

) 蕃冠等主掌掌大技铎于 即 州震

				改獎面題對科科的說話數因的单限与 . 1					
	亚		;	海山		(弘 B) 長堂		客數主养	
京親凶	1, 京李镇		客事	任课教师		各单雄		告計劃	
	影为	日	Ħ	字 0102	队日为李	11 世間	到版自	手品课证	

$$\frac{01}{(1+2c.0)(1+2l.0)z} = (z)0.$$

。基對透射的的說系來這。12.0+2=(1)+代學問人顧

2、英國商計科刊的認達問烈兒母单,5

$$\frac{(1+s)\lambda}{(\xi+s)(\zeta+s)s} = (s)\mathcal{D}$$

(15 51)

3、基底的月科中低流速速 7.8 ((0,74.2-) 改科垫点离食:示罪) 预虑贴利利因初期其出经历

 $\frac{\partial}{(\xi+z)(1+z)z} = (z)H(z)\mathcal{D}$

(46.07)

(45.02)

(507)

00)

。 許景劇的發達起因彻底期應景劇の八田氏「周カ八田意

05

