CHAPITRE I

ECHANTILLONNAGE

A - Rappels de cours

1. Lois de probabilités

1.1 Définitions et caractérisations

Les principales lois de probabilités, leurs conditions de validité, et leurs paramètres représentatifs sont rappelées dans le tableau ci-dessous:

Loi	Nature	Définition	Caractérisation	E(X)	Var(X)
BERNOULLI	Discrète	Variable indicatrice	Valeurs : {0,1}	р	\overline{q}
		d'un caractère	$\Pr{ob(X=0)}=q$,
		au cours de n	Prob(X=1)=p		
		épreuves de BERNOULLI (*)			
Binomiale	Discrète	Occurrence	Valeurs: $\{0,1,2,n\}$	n.p	n.p.q
B(n,p)		d'un caractère au cours de n épreuves de BERNOULLI indépendantes	$\Pr{ob(X=x)=C_n^x p^x q^{n-x}}$		
Hypergéométrique	Discrète	Occurrence d'un caractère au cours de n épreuves de BERNOULLI dépendantes (à savoir le tirage sans remise d'un échantillon de taille n dans une population de taille N)	Valeurs: $\{0,1,2,n\}$ Prob $(X = x) = \frac{C_{N.p}^{x}.C_{N.q}^{n-x}}{C_{N}^{n}}$	<i>n.p</i>	$\frac{N-n}{N-1}$.npq
POISSON P(a)	Discrète	Occurrence des événements relativement rares	Valeurs: N $Prob(X = x) = e^{-a} \cdot \frac{a^{x}}{x!}$	а	a

^(*) Pour rappel, l'épreuve de BERNOULLI est une épreuve dans laquelle, seuls sont possibles, les résultats C (avec la probabilité p) et \overline{C} (avec la probabilité complémentaire q=l-p).

Loi	Nature	Définition	Caractérisation	E(X)	Var(X)
Géométrique	Discrète	Nombre de tentatives nécessaires jusqu'à l'obtention du caractère C à travers des épreuves de BERNOULLI indépendantes	Valeurs: N^* $Prob(X = x) = q^{x-1}.p$	1 p	$\frac{q}{p^2}$
Binomiale négative	Discrète	Nombre de tentatives jusqu'à l'obtention r fois d'un caractère C à travers des épreuves de BERNOULLI indépendantes	Valeurs: $[r, +\infty[$ $Prob(X = x) = C_{x-1}^{r-1} p^r. q^{x-r}$	$\frac{r}{p}$	$\frac{r.q}{p^2}$
Uniforme $U_{[a,b]}$	Continue	Probabilité uniforme sur $[a,b]$	Valeurs: $[a,b]$ $f(x) = \frac{1}{b-a} \cdot 1_{[a,b]}(x)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponentielle	Continue	Caractéristique des durées de vie des équipements qui ne vieillissent pas (loi « sans mémoire »)	Valeurs: R^+ $f(x) = \lambda . e^{-\lambda . x}$	1 \(\lambda\)	$\frac{1}{\lambda^2}$
Gamma n	Continue	Loi de la somme de n variables aléatoires exponentielles indépendantes	Valeurs: R^+ $f(x) = \frac{\lambda^n e^{-\lambda x} x^{n-1}}{(n-1)!}$	$\frac{n}{\lambda}$	$\frac{n}{\lambda^2}$
Normale $N(m,\sigma)$	Continue	Loi « universelle » vers laquelle convergent une large part des autres lois	Valeurs: R $f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \cdot e^{\frac{(x-m)^2}{2 \cdot \sigma^2}}$ (tables de valeurs en annexes)	m	σ^2

Loi	Nature	Définition	Caractérisation	E(X)	Var(X)
Chi-deux	Continue	Loi de la	Valeurs : R ⁺	n	2n
$\chi^2(n)$		somme $\sum_{i=1}^{j=n} X_i^2$ où les X_i sont des variables normales, centrées, réduites, et indépendantes	$f(x) = \frac{x^{\frac{n}{2}-1} \cdot e^{-\frac{x}{2}}}{2^{\frac{n}{2}} \cdot \Gamma(\frac{n}{2})}$ avec $\Gamma(n) = \int_0^{+\infty} t^{n-1} \cdot e^{-t} \cdot dt$ (tables de valeurs en annexes)		2"
STUDENT	Continue	Loi de	Valeurs: R ⁺	0	n
T(n)		normale centrée réduite et où Y suit la loi du chi -deux $\chi^2(n)$	$f(x) = \frac{\Gamma(\frac{n+1}{2}) \cdot (1 + \frac{x^2}{n})^{\frac{(n+1)}{2}}}{\sqrt{n \cdot \pi} \cdot \Gamma(\frac{n}{2})}$ (tables de valeurs en annexes)	n≻l (indé- termi- née pour n=l)	$n-2$ $n \succ 2$ (infinite pour $n \le 2$)
FISHER SNEDECOR F(n,p)	Continue	Loi de $F = \frac{X}{n} \text{ où } X$ $\text{et Y suivent respectivement les lois}$ $\chi^{2}(n) \text{ et}$ $\chi^{2}(p)$	Valeurs: R^+ $f(x) = \frac{n^{\frac{n}{2}} \cdot p^{\frac{p}{2}} \cdot \Gamma(\frac{n+p}{2}) \cdot x^{\frac{n}{2}-1}}{\Gamma(\frac{n}{2}) \cdot \Gamma(\frac{p}{2}) \cdot (n \cdot x + p)^{\frac{n+p}{2}}}$ (tables de valeurs en annexes)	$\frac{p}{p-2}$ $p \succ 2$	Voir renvoi (*) ci- dessous.

(*) La variance de la loi de FISHER SNEDECOR est égale à $(\frac{p}{p-2})^2 \cdot \frac{2 \cdot (n+p-2)}{n \cdot (p-4)}$ pour p > 4.

1.2 Propriétés de convergence

• Le théorème central limite tient une place fondamentale dans la justification desdites convergences. Pour rappel, son énoncé est le suivant :

Soit $X_n, n \in \mathbb{N}$, une suite de variables aléatoires indépendantes de même loi d'espérance m et de variance σ^2 finies. Alors, la somme $Z = \sum_{i=1}^{j=n} X_i$ converge pour n assez grand (en pratique à partir de n=30) vers la loi normale de moyenne n.m et d'écart-type $\sigma.\sqrt{n}$.