Vector Spaces

Madiba Hudson-Quansah

CONTENTS

CHAPIER I	VECTOR SPACES AND SUBSPACES	PAGE 2	
1.1	Introduction	2	
1.2	Subspaces	2	
	Subspace Spanned by a Set − 2		
CHAPTER 2	Null Space, Column Space, and Linear Transformations	Page 3	
2.1	The Null Space of a Matrix	3	
	An Explicit Description of the Null Space of a Matrix = 3		

Chapter 1

Vector Spaces and Subspaces

1.1 Introduction

Definition 1.1.1: Vector Space

A *vector space* is a non empty set V of objects, called vectors, on which are defined two operations, addition and multiplication by scalars, e.g. real numbers, subject to the following axioms which must hold for all vectors \mathbf{u} , \mathbf{v} and \mathbf{w} in V and for all scalars c and d.

- 1. The sum of **u** and **v**, denoted by $\mathbf{u} + \mathbf{v}$, is in V.
- $2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 3. (u + v) + w = u + (v + w)
- 4. There is a zero vector $\mathbf{0}$ in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$
- 5. For each **u** in *V*, there is a vector $-\mathbf{u}$ in *V* such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- 6. The scalar multiple of \mathbf{u} by c, denoted by $c\mathbf{u}$, is in V.
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$
- 10. $1\mathbf{u} = \mathbf{u}$

1.2 Subspaces

Definition 1.2.1: Subspace

A subset H of the vector space V, where:

- 1. The zero vector of V is in H.
- 2. H is closed under vector addition. That is for each \mathbf{u} and \mathbf{v} in H, the sum of $\mathbf{u} + \mathbf{v}$ is in H.
- 3. H is closed under scalar multiplication. That is for each \mathbf{u} in H and each scalar c, the scalar multiple $c\mathbf{u}$ is in H.

1.2.1 Subspace Spanned by a Set

Theorem 1.2.1

If $\mathbf{v}_1, \dots, \mathbf{v}_p$ are in vector space V, then $\mathrm{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a subspace of V.

Chapter 2

Null Space, Column Space, and Linear Transformations

2.1 The Null Space of a Matrix

Definition 2.1.1: Null Space

The *null space* of an $m \times n$ matrix A, denoted by Nul A, is the set of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. In set notation:

Nul $A = \{ \mathbf{x} : \mathbf{x} \text{ is in } \mathbb{R}^n \text{ and } A\mathbf{x} = \mathbf{0} \}$

Example 2.1.1

Question 1

Let A be the matrix $\begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix}$, and let $\mathbf{u} = \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}$. Determine if \mathbf{u} belongs to the null space of A.

Solution: This is basically asking us to verify if **u** satisfies the equation $A\mathbf{u} = \mathbf{0}$

$$\begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 5 - 9 + 4 \\ -25 + 27 - 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

 \therefore **u** is in the null space of *A*.

Theorem 2.1.1

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n , equivalently, the set of all solutions to a system $A\mathbf{x} = \mathbf{0}$ of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^n .

2.1.1 An Explicit Description of the Null Space of a Matrix