DATA STRUCTURE & PROGRAMMING II

Queue data structure

Outline

- ☐ A Brief of Outline
- What is Queue?
- What are Queue operations?
- How to implement Queue in C++
- Examples

What is Queue?

Definition

- A queue is a data structure that stores data in such a way that the element stored first will be retrieved first
- This method is also called FIFO (First In First Out)

Real life examples:

- ➤ A queue of vehicles waiting at the petro pump
- ➤ People waiting at the bus store for the bus
- ➤ The first person to enter the queue is the first one to leave the queue
- Last person to join the queue is the last person to leave the queue

Applications of Queue

- Definition
- Queue finds their use in
 - CPU scheduling,
 - Message queuing,
 - Computer networks
 - etc.
- In time sharing system, queue helps in scheduling of jobs

Queue Operations

Operation

- A queue is controlled by two main operations which implement the FIFO method
 - Insertion
 - Add element to the queue.
 - This method is called *enqueue*
 - Deletion
 - Remove element from the queue.
 - This method is called *dequeue*
- Two variables, FRONT and REAR are used
 - FRONT : used for keep track the first element of the queue
 - REAR : used for keep track the last element of the queue

Queue

Queue Operations

☐ More operations

- **enqueue**: Add element to end of queue
- **dequeue**: Remove element from front of queue
- **isEmpty**: Check if queue is empty
- **isFull**: Check if queue is full
- peek: Get the value of the front of queue without removing it

Queue Implementation

Definition

- Queue can be implemented in two ways
 - 1. As an Array

front variable is used to store the index of the first element *rear* variable is used to store the index of the last element

2. As a Linked List

Queue as Linked List

front variable is head of the list *rear* variable is tail of the list

Disadvantage of Queue as Array

Definition

- Implementing queue as an array has one major drawback
 - Since arrays are fixed in size, elements can not be inserted beyond the max size of the array

For example:

This queue is considered as full although there are two empty spaces in the beginning of the queue

Implementing Queue as

Linked List

Queue Implementation

☐ Queue as a Linked List

Queue Implementation: Examples

☐ Queue as a Linked List

How to implement this queue?

Demo coding in class

Queue Implementation

Queue as a Linked List

Implementing queue as a linked list is just like implementing a linked list with some choices

Choice 1

- Element is added to the end of the list (enqueue operation)
- Element can be only removed from the beginning of the list (dequeue operation)

Choice 2

- Element is added to the beginning of the list (enqueue operation)
- Element can be only removed from the end of the list (*dequeue* operation)

Remark: Choice 1 is recommended.

Let's code it!

Practice

Using queue data structure

Create a queue that stores each letter for an English word input by a user. Then add each letter of this word to this queue.

 Ask another user to input a word then test whether a word stored in this queue is the same.

Q and A