UNIT - III

Transport Layer Protocols

TCP (Transmission Control Protcol)

The transmission Control Protocol (TCP) is one of the most important protocols of Internet Protocols suite. It is most widely used protocol for data transmission in communication network such as internet.

Features

- TCP is reliable protocol. That is, the receiver always sends either positive or negative
 acknowledgement about the data packet to the sender, so that the sender always has
 bright clue about whether the data packet is reached the destination or it needs to
 resend it.
- TCP ensures that the data reaches intended destination in the same order it was sent.
- TCP is connection oriented. TCP requires that connection between two remote points be established before sending actual data.
- TCP provides error-checking and recovery mechanism.
- TCP provides end-to-end communication.
- TCP provides flow control and quality of service.
- TCP operates in Client/Server point-to-point mode.
- TCP provides full duplex server, i.e. it can perform roles of both receiver and sender.

Header

The length of TCP header is minimum 20 bytes long and maximum 60 bytes.

• **Source Port (16-bits)** - It identifies source port of the application process on the sending device.

- **Destination Port** (**16-bits**) It identifies destination port of the application process on the receiving device.
- **Sequence Number** (32-bits) Sequence number of data bytes of a segment in a session.
- Acknowledgement Number (32-bits) When ACK flag is set, this number contains the next sequence number of the data byte expected and works as acknowledgement of the previous data received.
- **Data Offset (4-bits)** This field implies both, the size of TCP header (32-bit words) and the offset of data in current packet in the whole TCP segment.
- **Reserved** (3-bits) Reserved for future use and all are set zero by default.
- Flags (1-bit each)
 - NS Nonce Sum bit is used by Explicit Congestion Notification signaling process.
 - CWR When a host receives packet with ECE bit set, it sets Congestion Windows Reduced to acknowledge that ECE received.
 - o **ECE** -It has two meanings:
 - If SYN bit is clear to 0, then ECE means that the IP packet has its CE (congestion experience) bit set.
 - If SYN bit is set to 1, ECE means that the device is ECT capable.
 - URG It indicates that Urgent Pointer field has significant data and should be processed.
 - o **ACK** It indicates that Acknowledgement field has significance. If ACK is cleared to 0, it indicates that packet does not contain any acknowledgement.
 - PSH When set, it is a request to the receiving station to PUSH data (as soon as it comes) to the receiving application without buffering it.
 - o **RST** Reset flag has the following features:
 - It is used to refuse an incoming connection.
 - It is used to reject a segment.
 - It is used to restart a connection.
 - o **SYN** This flag is used to set up a connection between hosts.

- FIN This flag is used to release a connection and no more data is exchanged thereafter. Because packets with SYN and FIN flags have sequence numbers, they are processed in correct order.
- **Windows Size** This field is used for flow control between two stations and indicates the amount of buffer (in bytes) the receiver has allocated for a segment, i.e. how much data is the receiver expecting.
- Checksum This field contains the checksum of Header, Data and Pseudo Headers.
- **Urgent Pointer** It points to the urgent data byte if URG flag is set to 1.
- **Options** It facilitates additional options which are not covered by the regular header. Option field is always described in 32-bit words. If this field contains data less than 32-bit, padding is used to cover the remaining bits to reach 32-bit boundary.

Addressing

TCP communication between two remote hosts is done by means of port numbers (TSAPs). Ports numbers can range from 0 - 65535 which are divided as:

- System Ports (0 1023)
- User Ports (1024 49151)
- Private/Dynamic Ports (49152 65535)

Connection Management

TCP communication works in Server/Client model. The client initiates the connection and the server either accepts or rejects it. Three-way handshaking is used for connection management.

Establishment

Client initiates the connection and sends the segment with a Sequence number. Server acknowledges it back with its own Sequence number and ACK of client's segment which is one more than client's Sequence number. Client after receiving ACK of its segment sends an acknowledgement of Server's response.

Release

Either of server and client can send TCP segment with FIN flag set to 1. When the receiving end responds it back by ACKnowledging FIN, that direction of TCP communication is closed and connection is released.

Bandwidth Management

TCP uses the concept of window size to accommodate the need of Bandwidth management. Window size tells the sender at the remote end, the number of data byte segments the receiver at this end can receive. TCP uses slow start phase by using window size 1 and increases the window size exponentially after each successful communication.

For example, the client uses windows size 2 and sends 2 bytes of data. When the acknowledgement of this segment received the windows size is doubled to 4 and next sent the segment sent will be 4 data bytes long. When the acknowledgement of 4-byte data segment is received, the client sets windows size to 8 and so on.

If an acknowledgement is missed, i.e. data lost in transit network or it received NACK, then the window size is reduced to half and slow start phase starts again.

Error Control & and Flow Control

TCP uses port numbers to know what application process it needs to handover the data segment. Along with that, it uses sequence numbers to synchronize itself with the remote host. All data segments are sent and received with sequence numbers. The Sender knows which last data segment was received by the Receiver when it gets ACK. The Receiver knows about the last segment sent by the Sender by referring to the sequence number of recently received packet.

If the sequence number of a segment recently received does not match with the sequence number the receiver was expecting, then it is discarded and NACK is sent back. If two segments arrive with the same sequence number, the TCP timestamp value is compared to make a decision.

Multiplexing

The technique to combine two or more data streams in one session is called Multiplexing. When a TCP client initializes a connection with Server, it always refers to a well-defined port

number which indicates the application process. The client itself uses a randomly generated port number from private port number pools.

Using TCP Multiplexing, a client can communicate with a number of different application process in a single session. For example, a client requests a web page which in turn contains different types of data (HTTP, SMTP, FTP etc.) the TCP session timeout is increased and the session is kept open for longer time so that the three-way handshake overhead can be avoided.

This enables the client system to receive multiple connection over single virtual connection. These virtual connections are not good for Servers if the timeout is too long.

Congestion Control

When large amount of data is fed to system which is not capable of handling it, congestion occurs. TCP controls congestion by means of Window mechanism. TCP sets a window size telling the other end how much data segment to send. TCP may use three algorithms for congestion control:

- Additive increase, Multiplicative Decrease
- Slow Start
- Timeout React

UDP protocol

In computer networking, the UDP stands for User Datagram Protocol. The David P. Reed developed the UDP protocol in 1980. It is defined in RFC 768, and it is a part of the TCP/IP protocol, so it is a standard protocol over the internet. The UDP protocol allows the computer applications to send the messages in the form of datagrams from one machine to another machine over the Internet Protocol (IP) network. The UDP is an alternative communication protocol to the TCP protocol (transmission control protocol). Like TCP, UDP provides a set of rules that governs how the data should be exchanged over the internet. The UDP works by encapsulating the data into the packet and providing its own header information to the packet. Then, this UDP packet is encapsulated to the IP packet and sent off to its destination. Both the TCP and UDP protocols send the data over the internet protocol network, so it is also known as TCP/IP and UDP/IP. There are many differences between these two protocols. UDP enables the process to process communication, whereas the TCP provides host to host communication. Since UDP sends the messages in the form of datagrams, it is considered the best-effort mode of communication. TCP sends the individual packets, so it is a reliable transport medium. Another difference is that the TCP is a connectionoriented protocol whereas, the UDP is a connectionless protocol as it does not require any virtual circuit to transfer the data.

UDP also provides a different port number to distinguish different user requests and also provides the checksum capability to verify whether the complete data has arrived or not; the IP layer does not provide these two services.

Features of UDP protocol

The following are the features of the UDP protocol:

Transport layer protocol

<u>UDP</u> is the simplest <u>transport layer communication protocol</u>. It contains a minimum amount of communication mechanisms. It is considered an unreliable protocol, and it is based on best-effort delivery services. UDP provides no acknowledgment mechanism, which means that the receiver does not send the acknowledgment for the received packet, and the sender also does not wait for the acknowledgment for the packet that it has sent.

Connectionless

The UDP is a connectionless protocol as it does not create a virtual path to transfer the data. It does not use the virtual path, so packets are sent in different paths between the sender and the receiver, which leads to the loss of packets or received out of order.

Ordered delivery of data is not guaranteed.

In the case of UDP, the datagrams are sent in some order will be received in the same order is not guaranteed as the datagrams are not numbered.

Ports

The UDP protocol uses different port numbers so that the data can be sent to the correct destination. The port numbers are defined between 0 and 1023.

Faster transmission

UDP enables faster transmission as it is a connectionless protocol, i.e., no virtual path is required to transfer the data. But there is a chance that the individual packet is lost, which affects the transmission quality. On the other hand, if the packet is lost in TCP connection, that packet will be resent, so it guarantees the delivery of the data packets.

Acknowledgment mechanism

The UDP does have any acknowledgment mechanism, i.e., there is no handshaking between the UDP sender and UDP receiver. If the message is sent in TCP, then the receiver acknowledges that I am ready, then the sender sends the data. In the case of TCP, the handshaking occurs between the sender and the receiver, whereas in UDP, there is no handshaking between the sender and the receiver.

Segments are handled independently.

Each UDP segment is handled individually of others as each segment takes different path to reach the destination. The UDP segments can be lost or delivered out of order to reach the destination as there is no connection setup between the sender and the receiver.

Stateless

It is a stateless protocol that means that the sender does not get the acknowledgement for the packet which has been sent.

Why do we require the UDP protocol?

As we know that the UDP is an unreliable protocol, but we still require a UDP protocol in some cases. The UDP is deployed where the packets require a large amount of bandwidth along with the actual data. For example, in video streaming, acknowledging thousands of packets is troublesome and wastes a lot of bandwidth. In the case of video streaming, the loss of some packets couldn't create a problem, and it can also be ignored.

UDP Header Format

UDP Header Format

In UDP, the header size is 8 bytes, and the packet size is upto 65,535 bytes. But this packet size is not possible as the data needs to be encapsulated in the IP datagram, and an IP packet, the header size can be 20 bytes; therefore, the maximum of UDP would be 65,535 minus 20. The size of the data that the UDP packet can carry would be 65,535 minus 28 as 8 bytes for the header of the UDP packet and 20 bytes for IP header.

The UDP header contains four fields:

- Source port number: It is 16-bit information that identifies which port is going t send the packet.
- Destination port number: It identifies which port is going to accept the information.
 It is 16-bit information which is used to identify application-level service on the destination machine.
- Length: It is 16-bit field that specifies the entire length of the UDP packet that includes the header also. The minimum value would be 8-byte as the size of the header is 8 bytes.
- Checksum: It is a 16-bits field, and it is an optional field. This checksum field checks whether the information is accurate or not as there is the possibility that the information can be corrupted while transmission. It is an optional field, which means that it depends upon the application, whether it wants to write the checksum or not. If it does not want to write the checksum, then all the 16 bits are zero; otherwise, it writes the checksum. In UDP, the checksum field is applied to the entire packet, i.e., header as well as data part whereas, in IP, the checksum field is applied to only the header field.

Concept of Queuing in UDP protocol

Concept of Queuing in UPD protocol

In UDP protocol, numbers are used to distinguish the different processes on a server and client. We know that UDP provides a process to process communication. The client generates the processes that need services while the server generates the processes that provide services. The queues are available for both the processes, i.e., two queues for each process. The first queue is the incoming queue that receives the messages, and the second one is the outgoing queue that sends the messages. The queue functions when the process is running. If the process is terminated then the queue will also get destroyed.

UDP handles the sending and receiving of the UDP packets with the help of the following components:

- o **Input queue:** The UDP packets uses a set of queues for each process.
- o **Input module:** This module takes the user datagram from the IP, and then it finds the information from the control block table of the same port. If it finds the entry in the control block table with the same port as the user datagram, it enqueues the data.
- o **Control Block Module:** It manages the control block table.
- o **Control Block Table:** The control block table contains the entry of open ports.
- Output module: The output module creates and sends the user datagram.

Several processes want to use the services of UDP. The UDP multiplexes and demultiplexes the processes so that the multiple processes can run on a single host.

Limitations

- It provides an unreliable connection delivery service. It does not provide any services of IP except that it provides process-to-process communication.
- o The UDP message can be lost, delayed, duplicated, or can be out of order.
- It does not provide a reliable transport delivery service. It does not provide any acknowledgment or flow control mechanism. However, it does provide error control to some extent.

Advantages

o It produces a minimal number of overheads.

HTTP

- HTTP stands for HyperText Transfer Protocol.
- o It is a protocol used to access the data on the World Wide Web (www).
- The HTTP protocol can be used to transfer the data in the form of plain text, hypertext, audio, video, and so on.
- This protocol is known as HyperText Transfer Protocol because of its efficiency that allows us to use in a hypertext environment where there are rapid jumps from one document to another document.
- O HTTP is similar to the FTP as it also transfers the files from one host to another host. But, HTTP is simpler than FTP as HTTP uses only one connection, i.e., no control connection to transfer the files.
- o HTTP is used to carry the data in the form of MIME-like format.
- o HTTP is similar to SMTP as the data is transferred between client and server. The HTTP differs from the SMTP in the way the messages are sent from the client to the server and from server to the client. SMTP messages are stored and forwarded while HTTP messages are delivered immediately.

Features of HTTP:

Connectionless protocol: HTTP is a connectionless protocol. HTTP client initiates a
request and waits for a response from the server. When the server receives the request,
the server processes the request and sends back the response to the HTTP client after

- which the client disconnects the connection. The connection between client and server exist only during the current request and response time only.
- Media independent: HTTP protocol is a media independent as data can be sent as long as both the client and server know how to handle the data content. It is required for both the client and server to specify the content type in MIME-type header.
- Stateless: HTTP is a stateless protocol as both the client and server know each other
 only during the current request. Due to this nature of the protocol, both the client and
 server do not retain the information between various requests of the web pages.

The above figure shows the HTTP transaction between client and server. The client initiates a transaction by sending a request message to the server. The server replies to the request message by sending a response message.

Messages

HTTP messages are of two types: request and response. Both the message types follow the same message format.

Request Message: The request message is sent by the client that consists of a request line, headers, and sometimes a body.

Response Message: The response message is sent by the server to the client that consists of a status line, headers, and sometimes a body.

Uniform Resource Locator (URL)

 A client that wants to access the document in an internet needs an address and to facilitate the access of documents, the HTTP uses the concept of Uniform Resource Locator (URL).

- o The Uniform Resource Locator (URL) is a standard way of specifying any kind of information on the internet.
- o The URL defines four parts: method, host computer, port, and path.

- Method: The method is the protocol used to retrieve the document from a server. For example, HTTP.
- Host: The host is the computer where the information is stored, and the computer is given an alias name. Web pages are mainly stored in the computers and the computers are given an alias name that begins with the characters "www". This field is not mandatory.
- Port: The URL can also contain the port number of the server, but it's an optional field.
 If the port number is included, then it must come between the host and path and it should be separated from the host by a colon.
- Path: Path is the pathname of the file where the information is stored. The path itself contain slashes that separate the directories from the subdirectories and files.

Domain Name System

- Domain Name System is an Internet service that translates domain names into IP addresses.
- The DNS has a distributed database that resides on multiple machines on the Internet.
- DNS has some protocols that allow the client and servers to communicate with each other.
- When the Internet was small, mapping was done by using hosts.txt file.
- The host file was located at host's disk and updated periodically from a master host file.
- When any program or any user wanted to map domain name to an address, the host consulted the host file and found the mapping.

- Now Internet is not small, it is impossible to have only one host file to relate every address with a name and vice versa.
- The solution used today is to divide the host file into smaller parts and store each part on a different computer.
- In this method, the host that needs mapping can call the closest computer holding the needed information.
- This method is used in Domain Name System (DNS).

Name space

- The names assigned to the machines must be carefully selected from a name space with complete control over the binding between the names and IP addresses.
- There are two types of name spaces: Flat name spaces and Hierarchical names.

Flat name spaces

- In a flat name space, a name is a sequence of characters without structure.
- A name in this space is assigned to an address.
- The names were convenient and short.
- A flat name space cannot be used in a large system such as the internet because it must be centrally controlled to avoid ambiguity and duplication.

Hierarchical Name Space

- In hierarchical name space, each name consists of several parts.
- First part defines the nature of the organization, second part defines the name of an organization, third part defines department of the organization, and so on.
- In hierarchical name space, the authority to assign and control the name spaces can be decentralized.
- Authority for names in each partition is passed to each designated agent.

Fig: Hierarchy of DNS

DNS in the Internet

- DNS is a protocol that can be used in different platform.
- Domain Name Space is divided into different sections in the Internet: Generic domain, country domain and inverse domain.

Fig. : DNS in the Internet

Generic Domains

The generic domains define registered hosts according to their generic behavior.

Generic domain labels are as stated below:

1. Country Domains

- Country domain uses two character country abbreviations.
- Second labels can be more specific, national designation.
- For example, for Australia the country domain is "au", Inida is .in, UK is .uk etc.

Fig: Country domains

2. Inverse Domains

- Inverse domain is used to map an address to a name.
- For example, a client send a request to the server for performing a particular task, server finds a list of authorized client. The list contains only IP addresses of the client.
- The server sends a query to the DNS server to map an address to a name to determine if the client is on the authorized list.
- This query is called an inverse query.
- This query is handled by first level node called arpa.

Root level

Fig. Inverse domain

SMTP

- o SMTP stands for Simple Mail Transfer Protocol.
- SMTP is a set of communication guidelines that allow software to transmit an electronic mail over the internet is called **Simple Mail Transfer Protocol**.
- It is a program used for sending messages to other computer users based on e-mail addresses.
- It provides a mail exchange between users on the same or different computers, and it also supports:
 - o It can send a single message to one or more recipients.
 - Sending message can include text, voice, video or graphics.
 - It can also send the messages on networks outside the internet.
- The main purpose of SMTP is used to set up communication rules between servers. The servers have a way of identifying themselves and announcing what kind of communication they are trying to perform. They also have a way of handling the errors such as incorrect email address. For example, if the recipient address is wrong, then receiving server reply with an error message of some kind.

Components of SMTP

First, we will break the SMTP client and SMTP server into two components such as user agent (UA) and mail transfer agent (MTA). The user agent (UA) prepares the message, creates the envelope and then puts the message in the envelope. The mail transfer agent (MTA) transfers this mail across the internet.

 SMTP allows a more complex system by adding a relaying system. Instead of just having one MTA at sending side and one at receiving side, more MTAs can be added, acting either as a client or server to relay the email.

 The relaying system without TCP/IP protocol can also be used to send the emails to users, and this is achieved by the use of the mail gateway. The mail gateway is a relay MTA that can be used to receive an email.

Working of SMTP

1. **Composition of Mail:** A user sends an e-mail by composing an electronic mail message using a Mail User Agent (MUA). Mail User Agent is a program which is used to send and receive mail. The message contains two parts: body and

header. The body is the main part of the message while the header includes information such as the sender and recipient address. The header also includes descriptive information such as the subject of the message. In this case, the message body is like a letter and header is like an envelope that contains the recipient's address.

- 2. **Submission of Mail:** After composing an email, the mail client then submits the completed e-mail to the SMTP server by using SMTP on TCP port 25.
- 3. Delivery of Mail: E-mail addresses contain two parts: username of the recipient and domain name. For example, vivek@gmail.com, where "vivek" is the username of the recipient and "gmail.com" is the domain name.

 If the domain name of the recipient's email address is different from the sender's domain name, then MSA will send the mail to the Mail Transfer Agent (MTA). To relay the email, the MTA will find the target domain. It checks the MX record from Domain Name System to obtain the target domain. The MX record contains the domain name and IP address of the recipient's domain.

 Once the record is located, MTA connects to the exchange server to relay the message.
- 4. Receipt and Processing of Mail: Once the incoming message is received, the exchange server delivers it to the incoming server (Mail Delivery Agent) which stores the e-mail where it waits for the user to retrieve it.
- Access and Retrieval of Mail: The stored email in MDA can be retrieved by using MUA (Mail User Agent). MUA can be accessed by using login and password.

SNMP

- SNMP stands for Simple Network Management Protocol.
- o SNMP is a framework used for managing devices on the internet.
- o It provides a set of operations for monitoring and managing the internet.

SNMP Concept

- SNMP has two components Manager and agent.
- o The manager is a host that controls and monitors a set of agents such as routers.
- It is an application layer protocol in which a few manager stations can handle a set of agents.
- The protocol designed at the application level can monitor the devices made by different manufacturers and installed on different physical networks.
- It is used in a heterogeneous network made of different LANs and WANs connected by routers or gateways.

Managers & Agents

- A manager is a host that runs the SNMP client program while the agent is a router that runs the SNMP server program.
- Management of the internet is achieved through simple interaction between a manager and agent.
- The agent is used to keep the information in a database while the manager is used to access the values in the database. For example, a router can store the appropriate variables such as a number of packets received and forwarded while the manager can compare these variables to determine whether the router is congested or not.
- Agents can also contribute to the management process. A server program on the agent checks the environment, if something goes wrong, the agent sends a warning message to the manager.

Management with SNMP has three basic ideas:

- A manager checks the agent by requesting the information that reflects the behavior of the agent.
- A manager also forces the agent to perform a certain function by resetting values in the agent database.
- An agent also contributes to the management process by warning the manager regarding an unusual condition.

Management Components

- Management is not achieved only through the SNMP protocol but also the use of other protocols that can cooperate with the SNMP protocol. Management is achieved through the use of the other two protocols: SMI (Structure of management information) and MIB(management information base).
- Management is a combination of SMI, MIB, and SNMP. All these three protocols such as abstract syntax notation 1 (ASN.1) and basic encoding rules (BER).

The SMI (Structure of management information) is a component used in network management. Its main function is to define the type of data that can be stored in an object and to show how to encode the data for the transmission over a network.

MIB

- The MIB (Management information base) is a second component for the network management.
- Each agent has its own MIB, which is a collection of all the objects that the manager can manage. MIB is categorized into eight groups: system, interface, address translation, ip, icmp, tcp, udp, and egp. These groups are under the mib object.

SNMP

SNMP defines five types of messages: GetRequest, GetNextRequest, SetRequest, GetResponse, and Trap.

GetRequest: The GetRequest message is sent from a manager (client) to the agent (server) to retrieve the value of a variable.

GetNextRequest: The GetNextRequest message is sent from the manager to agent to retrieve the value of a variable. This type of message is used to retrieve the values of the entries in a table. If the manager does not know the indexes of the entries, then it

will not be able to retrieve the values. In such situations, GetNextRequest message is used to define an object.

GetResponse: The GetResponse message is sent from an agent to the manager in response to the GetRequest and GetNextRequest message. This message contains the value of a variable requested by the manager.

SetRequest: The SetRequest message is sent from a manager to the agent to set a value in a variable.

Trap: The Trap message is sent from an agent to the manager to report an event. For example, if the agent is rebooted, then it informs the manager as well as sends the time of rebooting.

FTP

- o FTP stands for File transfer protocol.
- FTP is a standard internet protocol provided by TCP/IP used for transmitting the files from one host to another.
- It is mainly used for transferring the web page files from their creator to the computer that acts as a server for other computers on the internet.
- o It is also used for downloading the files to computer from other servers.

Objectives of FTP

- It provides the sharing of files.
- o It is used to encourage the use of remote computers.
- It transfers the data more reliably and efficiently.

Why FTP?

Although transferring files from one system to another is very simple and straightforward, but sometimes it can cause problems. For example, two systems may have different file conventions. Two systems may have different ways to represent text and data. Two systems may have different directory structures. FTP protocol overcomes these problems by establishing two connections between hosts. One connection is used for data transfer, and another connection is used for the control connection.

Mechanism of FTP

The above figure shows the basic model of the FTP. The FTP client has three components: the user interface, control process, and data transfer process. The server has two components: the server control process and the server data transfer process.

There are two types of connections in FTP:

- Control Connection: The control connection uses very simple rules for communication. Through control connection, we can transfer a line of command or line of response at a time. The control connection is made between the control processes. The control connection remains connected during the entire interactive FTP session.
- Data Connection: The Data Connection uses very complex rules as data types may vary. The data connection is made between data transfer processes. The data connection opens when a command comes for transferring the files and closes when the file is transferred.

FTP Clients

- FTP client is a program that implements a file transfer protocol which allows you to transfer files between two hosts on the internet.
- o It allows a user to connect to a remote host and upload or download the files.
- It has a set of commands that we can use to connect to a host, transfer the files between you and your host and close the connection.
- The FTP program is also available as a built-in component in a Web browser. This GUI based FTP client makes the file transfer very easy and also does not require to remember the FTP commands.

Advantages of FTP:

- Speed: One of the biggest advantages of FTP is speed. The FTP is one of the fastest
 way to transfer the files from one computer to another computer.
- **Efficient:** It is more efficient as we do not need to complete all the operations to get the entire file.
- Security: To access the FTP server, we need to login with the username and password.
 Therefore, we can say that FTP is more secure.
- Back & forth movement: FTP allows us to transfer the files back and forth. Suppose you are a manager of the company, you send some information to all the employees, and they all send information back on the same server.

Disadvantages of FTP:

- The standard requirement of the industry is that all the FTP transmissions should be encrypted. However, not all the FTP providers are equal and not all the providers offer encryption. So, we will have to look out for the FTP providers that provides encryption.
- FTP serves two operations, i.e., to send and receive large files on a network. However, the size limit of the file is 2GB that can be sent. It also doesn't allow you to run simultaneous transfers to multiple receivers.
- Passwords and file contents are sent in clear text that allows unwanted eavesdropping.
 So, it is quite possible that attackers can carry out the brute force attack by trying to guess the FTP password.
- o It is not compatible with every system.

TFTP

FTP and **TFTP** are application layer protocols that aid in transferring files from a server to a client and from a client to a server. FTP is far more complicated than TFTP. There are some important distinctions between FTP and TFTP. TFTP uses a single connection when transferring files between the client and the server, whereas FTP uses two connections. The connections utilized in FTP are TCP ports **20** and **21** for the control connection. In contrast, the TFTP makes use of **UDP** port **69**.

In this article, you will learn about the difference between **FTP** and **TFTP**. But before discussing the differences, you must know about FTP and TFTP and their advantages and disadvantages.

What is TFTP?

TFTP is an abbreviation for "**Trivial File Transfer Protocol**". It is a sample protocol that is commonly used for file transmission. TFTP employs the **User Datagram Protocol (UDP)** to transport data from one end to the other. In comparison to the FTP, it is very simple in design and has limited functionalities (FTP). TFTP doesn't provide authentication or security while transferring data. As a result, boot data or configuration files are typically shared between computer systems in a local setup. It aids in booting devices and systems that lack storage devices or hard disk drives because utilizing a small amount of memory may be easily installed. It is primarily used for booting systems that store configuration on a remote TFTP server. It operates on Port number 69, and its service is given by UDP.

Advantages and Disadvantages of TFTP

There are various advantages and disadvantages of TFTP. Some main advantages and disadvantages of TFTP are as follows:

Advantages

- 1. It utilizes the User Datagram Protocol (UDP) protocol.
- 2. It is very easy to use and implement.
- 3. It needs minimum coding.
- 4. It needs minimum memory utilization.
- 5. It is a faster file transfer protocol.

Disadvantages

- 1. It doesn't offer file security as compared to FTP.
- 2. It doesn't list the directory's contents.

- 3. It is an unsecured FTP.
- 4. There is no encryption or authentication mechanism.

Main Differences between FTP and TFTP

Here, you will learn the main differences between **FTP** and **TFTP**. Some main differences between FTP and TFTP are as follows:

- 1. FTP is an abbreviation for File Transfer Protocol. In contrast, TFTP is an abbreviation for Trivial File Transfer Protocol.
- 2. FTP uses two connections to establish an FTP connection: the first is a control connection on port number 20, and the second is a data connection on port number 21. In contrast, TFTP only uses one connection established at port 69 for file transfer.
- 3. FTP allows user authentication. In contrast, TFTP doesn't allow user authentication.
- 4. Remote users utilize the FTP protocol to download and upload files. In contrast, TFTP is mainly used to transfer configurations to network devices.
- 5. FTP protocol is a connection-oriented service. In contrast, the TFTP protocol is a connection-less service.
- 6. FTP protocol utilizes a lot of commands to perform tasks. In contrast, the TFTP protocol utilizes five messages to perform tasks.
- 7. FTP protocol uses robust control commands. In contrast, the TFTP protocol uses simple commands.
- 8. FTP protocol uses robust control commands. In contrast, the TFTP protocol uses simple commands.
- 9. FTP protocol needs large memory and programming efforts. In contrast, the TFTP protocol needs less memory and programming efforts.
- 10. FTP protocol specified in RFC959 document. In contrast, the TFTP protocol is specified in the RFC783 document.

DHCP Protocol

Dynamic Host Configuration Protocol (DHCP) is a network management protocol used to dynamically assign an IP address to nay device, or node, on a network so they can communicate using IP (Internet Protocol). DHCP automates and centrally manages these configurations. There is no need to manually assign IP addresses to new devices.

Therefore, there is no requirement for any user configuration to connect to a DHCP based network.

DHCP can be implemented on local networks as well as large enterprise networks. DHCP is the default protocol used by the most routers and networking equipment. DHCP is also called RFC (Request for comments) 2131.

DHCP does the following:

- DHCP manages the provision of all the nodes or devices added or dropped from the network.
- o DHCP maintains the unique IP address of the host using a DHCP server.
- It sends a request to the DHCP server whenever a client/node/device, which is configured to work with DHCP, connects to a network. The server acknowledges by providing an IP address to the client/node/device.

DHCP is also used to configure the proper subnet mask, default gateway and DNS server information on the node or device.

There are many versions of DCHP are available for use in IPV4 (Internet Protocol Version 4) and IPV6 (Internet Protocol Version 6).

How DHCP works

DHCP runs at the application layer of the TCP/IP protocol stack to dynamically assign IP addresses to DHCP clients/nodes and to allocate TCP/IP configuration information to the DHCP clients. Information includes subnet mask information, default gateway, IP addresses and domain name system addresses.

DHCP is based on client-server protocol in which servers manage a pool of unique IP addresses, as well as information about client configuration parameters, and assign addresses out of those address pools.

The DHCP lease process works as follows:

- o First of all, a client (network device) must be connected to the internet.
- DHCP clients request an IP address. Typically, client broadcasts a query for this information.
- DHCP server responds to the client request by providing IP server address and other configuration information. This configuration information also includes time period, called a lease, for which the allocation is valid.

 When refreshing an assignment, a DHCP clients request the same parameters, but the DHCP server may assign a new IP address. This is based on the policies set by the administrator.

Components of DHCP

When working with DHCP, it is important to understand all of the components. Following are the list of components:

- DHCP Server: DHCP server is a networked device running the DCHP service that holds IP addresses and related configuration information. This is typically a server or a router but could be anything that acts as a host, such as an SD-WAN appliance.
- o DHCP client: DHCP client is the endpoint that receives configuration information from a DHCP server. This can be any device like computer, laptop, IoT endpoint or anything else that requires connectivity to the network. Most of the devices are configured to receive DHCP information by default.
- IP address pool: IP address pool is the range of addresses that are available to DHCP clients. IP addresses are typically handed out sequentially from lowest to the highest.
- Subnet: Subnet is the partitioned segments of the IP networks. Subnet is used to keep networks manageable.
- Lease: Lease is the length of time for which a DHCP client holds the IP address information. When a lease expires, the client has to renew it.
- o **DHCP relay:** A host or router that listens for client messages being broadcast on that network and then forwards them to a configured server. The server then sends responses back to the relay agent that passes them along to the client. DHCP relay can be used to centralize DHCP servers instead of having a server on each subnet.

Benefits of DHCP

There are following benefits of DHCP:

Centralized administration of IP configuration: DHCP IP configuration information can be stored in a single location and enables that administrator to centrally manage all IP address configuration information.

Dynamic host configuration: DHCP automates the host configuration process and eliminates the need to manually configure individual host. When TCP/IP (Transmission control protocol/Internet protocol) is first deployed or when IP infrastructure changes are required.

Seamless IP host configuration: The use of DHCP ensures that DHCP clients get accurate and timely IP configuration IP configuration parameter such as IP address, subnet mask, default gateway, IP address of DND server and so on without user intervention.

Flexibility and scalability: Using DHCP gives the administrator increased flexibility, allowing the administrator to move easily change IP configuration when the infrastructure changes.