Analysis 2B

Luc Veldhuis

4 mei 2017

Herhaling

- Definitie van **meetbaar** voor een begrensde $A \subseteq \mathbb{R}^n$
- $A \subseteq \mathbb{R}^n$ is meetbaar dan en slechts dan als $V(\partial A) = 0$
- Definitie van **integreerbaar** voor een begrensde functie $f: \mathbb{R}^n \to \mathbb{R}$ met begrensde drager.
- Voldoende voorwaarde voor integreerbaarheid van een begrensde functie met begrensde drager: f is continu behalve op een nulverzameling (Stelling 2.2) Zo'n functie heet toelaatbaar ('admissable' in het boek) Als f toelaatbaar is, dan is f integreerbaar en $\int f = V(O_{f^+}) + V(O_{f^-})$
- $A \subseteq \mathbb{R}^n$ begrensd: $\int_A f = \int f \phi_A \mod \phi_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$

Grafiek van toelaatbare functie is een nulverzameling

 $A \subseteq \mathbb{R}^n$ meetbaar en $f: A \to \mathbb{R}$ toelaatbaar

$$G_f = \{(x_1, \dots, x_n, y) \in \mathbb{R}^{n+1} | (x_1, \dots, x_n) \in A, y = f(x_1, \dots, x_n) \}$$

Claim: G_f is een nulverzameling van \mathbb{R}^{n+1}

$$\tilde{f}(x) = \begin{cases} f(x) & x \in A \\ 0 & x \notin A \end{cases}$$

- $oldsymbol{ ilde{f}}$ heeft een begrensde drager
- \bullet \tilde{f} is begrensd
- ullet $ilde{f}$ is continu behalve op deelverzameling van ∂A
- $V(\partial A) = 0$

Hieruit volgt \tilde{f} is toelaatbaar \Rightarrow \tilde{f} integreerbaar \Rightarrow $O_{\tilde{f}}$ is meetbaar \Rightarrow $\partial O_{\tilde{f}}$ is een nulverzameling.

Propositie 2.4

 $f:\mathbb{R}^n o \mathbb{R}$ toelaatbaar, $A\subseteq \mathbb{R}^n$ meetbaar.

Dan is $f\phi_A$ integreerbaar $\Leftrightarrow \int_A f$ is gedefinieerd.

Eigenschappen van \int_A

- $f,g:\mathbb{R}^n \to \mathbb{R}$ toelaatbaar, $f \leq g$ op \mathbb{R}^n , $A \subseteq \mathbb{R}^n$ meetbaar. $\int\limits_A f \leq \int\limits_A g$
- $f: \mathbb{R}^n \to \mathbb{R}$ toelaatbaar, $A \subseteq \mathbb{R}^n$ meetbaar, $|f(x)| \le M \ \forall x \in \mathbb{R}^n$ dan is $|\int\limits_A f| \le MV(A)$ In het bijzonder: als V(A) = 0 dan $\int\limits_A f = 0$
- $A,B\subseteq \mathbb{R}^n$ meetbaar, $V(A\cap B)=0$ dan $\int\limits_{A\cup B}f=\int\limits_Af+\int\limits_Bf$
- f=g behalve op een nulverzameling. Dan is $\int\limits_A f=\int\limits_B g$ (nulverzamelingen tellen er niks bij!)

Bewijs

We gaan nu bewijzen dat $A,B\subseteq\mathbb{R}^n$ meetbaar, $V(A\cap B)=0$ dan $\int_{\mathbb{R}^n} f=\int_{\mathbb{R}^n} f+\int_{\mathbb{R}^n} f$

Eerst het geval $A \cap B = \emptyset$:

Dan is $\phi_{A \cup B} = \phi_A + \phi_B$

$$\int_{A \cup B} = \int f \phi_{A \cup B} = \int f (\phi_A + \phi_B) = \int f \phi_A + \int f \phi_B = \int_A f + \int_B f$$

Als $A \cap B \neq \emptyset$:

Gebruik het eerste geval om te splitsen.

$$\int\limits_{A\cup B}f=\int\limits_{A\setminus B}f+\int\limits_{A\cup B}f+\int\limits_{B\setminus A}f \text{ met } \int\limits_{A\cap B}f=0 \text{ (aanname)}$$

Voorbeeld

[-1,1] meetbaar in \mathbb{R} .

 $f: \mathbb{R} \to \mathbb{R} \text{ met } f(x) = \sqrt{1-x^2} \text{ is continu op } [-1,1].$

 G_f is een nulverzameling van \mathbb{R}^2

Hetzelfde geldt voor $g(x) = -\sqrt{1-x^2}$

De samenstelling van nulverzamelingen is weer een nulverzameling. Dus de eenheidscirkel is een nulverzameling van \mathbb{R}^2 .

Dus de schijf $D^2 = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$ is meetbaar.

Kies nu de functie $f(x, y) = \sqrt{1 - x^2 - y^2}$ (bovenste hemisfeer).

f is continu, D^2 is meetbaar, dus de grafiek is een nulverzameling van \mathbb{R}^3 .

Zelfde geldt voor $g(x) = -\sqrt{1 - x^2 - y^2}$.

Dus $S^2 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}$ is een nulverzameling van \mathbb{R}^3

Stapfuncties

- $h: \mathbb{R}^2 \to \mathbb{R}$ heet een **stapfunctie** als $h = \sum_{i=1}^r a_i \phi_i$, $a_i \in \mathbb{R}$, $\phi_i = \phi_{Q_i}$ voor $\{Q_1, \dots Q_r\}$ n-dimentionale rechthoeken met niet overlappend inwendig
- Stapfuncties zijn integreerbaar en als $h=\sum_{i=1}^r a_i\phi_i$, dan is $\int h=\sum_{i=1}^r a_i V(Q_i)$

Stelling 3.3

 $f:\mathbb{R}^n \to \mathbb{R}$ begrensde functie met begrensde drager, dan is f integreerbaar dan en slechts dan als $\forall \epsilon > 0 \; \exists h, k$ stapfuncties zodanig dat $h \leq f \leq k$ en $\int (k-h) < \epsilon \int (k-h)$ berekent het volume van een gebied waar $\operatorname{graf}(f)$ ingesloten zit.

Gebruik

Deze karakterisatie wordt gebruikt om te bewijzen dat de ruimte van integreerbare functies een vector ruimte is.

Dat wil zeggen, als f_1 , f_2 integreerbaar zijn, $a_1, a_2 \in \mathbb{R}$, dan is $a_1f_1 + a_2f_2$ integreerbaar en $\int (a_1f_1 + a_2f_2) = a_1 \int f_1 + a_2 \int f_2$

Riemann sommen

R een n-dimentionale rechthoek $P = \{Q_1, \ldots, Q_k\}$ een partitie van R, een verzameling rechthoeken met nietoverlappende inwendig, zodat $\bigcup_{i=1}^k Q_i = R$ $S = \{x - 1, \ldots, x_n\}$ een 'selectie' punten van R met $x_i \in Q_i \forall i$ $f : \mathbb{R}^n \to \mathbb{R}$, $f \equiv 0$ buiten R $R(f, P, S) = \sum_{i=1}^k f(x_i)V(Q_i) = \int_{-\infty}^k f(x_i)\phi_{Q_i} de$ integraal van een

 $R(f,P,S) = \sum_{i=1}^k f(x_i)V(Q_i) = \int \sum_{i=1}^k f(x_i)\phi_{Q_i}$, de integraal van een stapfunctie!

Stelling 3.4

f begrensd, f=0 buiten R. Dan is f integreerbaar met $\int f=I$ dan en slechts dan als $\forall \epsilon>0$, $\exists \delta>0$ zodat $|I-R(f,P,S)|<\epsilon$ voor alle P partities met $\max_{1\leq i\leq k} diam(Q_i)<\delta$ en alle S selecties voor P.

Vragen

Welke deelverzamelingen van \mathbb{R}^2 en \mathbb{R}^3 zijn meetbaar? Hoe is de integraal van een continue functie over een meetbare verzameling uit te rekenen?

Voorbeeld

In \mathbb{R}^2 alle rechthoeken, maar ook alle gebieden in de vorm: $A = \{(x,y) \in \mathbb{R}^2 | a \le x \le b, h_1(x) \le y \le h_2(x)\}$ en h_1, h_2 continu. $\int_A f \stackrel{def}{=} \int_a^b (\int_{h_1(x)}^{h_2(x)} f \ dy) dx$