B-splines

CS 417 Lecture 13 (part 1)

Cornell CS417 Spring 2003 • Lecture 13

© 2003 Steve Marschner • I

B-splines

- We may want more continuity than C¹
- We may not need an interpolating spline
- B-splines are a clean, flexible way of making long splines with arbitrary order of continuity
- Various ways to think of construction
 - a simple one is convolution
 - relationship to sampling and reconstruction

Cornell CS417 Spring 2003 • Lecture 13 © 2003 Steve Marschner • 2

Cubic B-spline basis

Cornell CS417 Spring 2003 • Lecture 13

© 2003 Steve Marschner • 3

Cubic B-spline basis

Construction of B-splines

- · B-splines defined for all orders
 - − order d: degree d − I
 - order d: d points contribute to value
- One definition: Cox-deBoor recurrence

$$b_1 = \begin{cases} 1 & 0 \le u < 1 \\ 0 & \text{otherwise} \end{cases}$$

$$b_d = \frac{t}{d-1} b_{d-1}(t) + \frac{d-t}{d-1} b_{d-1}(t-1)$$

Cornell CS417 Spring 2003 • Lecture 13

© 2003 Steve Marschner • 4

B-spline construction

- Recurrence
 - ramp up/down
- Convolution
 - smoothing of basis fn
 - smoothing of curve

Cornell CS417 Spring 2003 • Lecture 13

© 2003 Steve Marschner •

Cubic B-spline matrix

$$\mathbf{p}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \cdot \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_{k-1} \\ \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \mathbf{p}_{k+2} \end{bmatrix}$$

Cornell CS417 Spring 2003 • Lecture 13

© 2003 Steve Marschner • 6

Other types of B-splines

- Nonuniform B-splines
 - discontinuities not evenly spaced
 - allows control over continuity or interpolation at certain points
 - e.g. interpolate endpoints (commonly used case)
- Nonuniform Rational B-splines (NURBS)
 - ratios of nonuniform B-splines: x(t) / w(t); y(t) / w(t)
 - key properties:
 - invariance under perspective as well as affine
 - · ability to represent conic sections exactly

Cornell CS417 Spring 2003 • Lecture 13

© 2003 Steve Marschner • 7

Converting spline representations

- · All the splines we have seen so far are equivalent
 - all represented by geometry matrices

$$\mathbf{p}_S(t) = T(t)M_S P_S$$

- where S represents the type of spline
- therefore the control points may be transformed from one type to another using matrix multiplication

$$P_1 = M_1^{-1} M_2 P_2$$

$$\mathbf{p}_1(t) = T(t)M_1(M_1^{-1}M_2P_2)$$

= $T(t)M_2P_2 = \mathbf{p}_2(t)$

Cornell CS417 Spring 2003 • Lecture 13

© 2003 Steve Marschner • 8

Evaluating splines for display

- · Need to generate a list of line segments to draw
 - generate efficiently
 - use as few as possible
 - guarantee approximation accuracy
- Approaches
 - reccursive subdivision (easy to do adaptively)
 - uniform sampling (easy to do efficiently)

Cornell CS417 Spring 2003 • Lecture 13

© 2003 Steve Marschner • 9

Evaluating by subdivision

- Recursively split spline
 - stop when polygon is within epsilon of curve
- Termination criteria
 - · distance between control points
 - · distance of control points from line

Cornell CS417 Spring 2003 • Lecture 13

© 2003 Steve Marschner • 10

Evaluating by subdivision

- Recursively split spline
 - stop when polygon is within epsilon of curve
- Termination criteria
 - · distance between control points
 - · distance of control points from line

Cornell CS417 Spring 2003 • Lecture 13

© 2003 Steve Marschner • 10

Evaluating with uniform spacing

- · Forward differencing
 - efficiently generate points for uniformly spaced t values
 - evaluate polynomials using repeated differences

Intro to 3D

CS 417 Lecture 13 (part 2)

Cornell CS417 Spring 2003 • Lecture 13

© 2003 Steve Marschner • I I

Cornell CS417 Spring 2003 • Lecture 13

© 2003 Steve Marschner • 12

Moving from 2D to 3D

- · So far, everything has been 2D
 - ultimately, that is always what goes on the screen...
 - but the most common source of 2D primitives to draw is projections of 3D scenes
- From here on everything is 3D
 - many things generalize easily
 - some things become more complex
 - some completely new issues arise

Cornell CS417 Spring 2003 • Lecture 13 © 2003 Steve Marschner • 13

2D to 3D: geometry

- 2D: represent curves and areas
 - implicit: f(x,y) = 0
 - explicit: f(t)
- 3D: represent curves, surfaces, and volumes
 - implicit surface: f(x, y, z) = 0
 - implicit curve as intersection of surfaces
 - explicit curve: $\mathbf{f}(t)$
 - maps real line into 3-space
 - explicit surface: $\mathbf{f}(t, s)$
 - maps real plane into 3-space

Cornell CS417 Spring 2003 • Lecture 13

© 2003 Steve Marschner • 14

2D to 3D: affine transformations

- · Still linear plus translation
 - but rotations are considerably more complex
- Still use homogeneous coordinatess (now 4x4)
- · Coordinate frame ideas still hold
 - in fact, more important because 3D is more confusing
- Still use hierarchies
 - not really any different than 2D

2D to 3D: viewing

- · 2D: viewing is just selecting a rectangle
- 3D: objects are transformed into the image plane using a virtual camera
 - perspective projection: implement using homogeneous coordinate
- · Hidden surfaces: an entirely new issue
 - need to work out what is occluded by what
 - for alpha blending, need to draw in the right order

Cornell CS417 Spring 2003 • Lecture 13 © 2003 Steve Marschner • 15 Cornell CS417 Spring 2003 • Lecture 13 © 2003 Steve Marschner • 16

2D to 3D: shading

- In 2D we draw the real shape
- In 3D we draw a projection of the real shape
 - so the eye needs additional cues

2D to 3D: rasterization

- Basic task does not change
 - we have a 2D primitive (from projected 3D primitive)
 - need to generate fragments and interpolate values
- Interpolated quantities become 3D
 - normals
 - shading information
- Perspective introduces subtleties

Cornell CS417 Spring 2003 • Lecture 13

© 2003 Steve Marschner • 17

Cornell CS417 Spring 2003 • Lecture 13

© 2003 Steve Marschner • 18

2D to 3D: compositing

- Same operators useful
- · New operator: depth compositing
 - a very effective means to handle occlusion

Cornell CS417 Spring 2003 • Lecture 13

© 2003 Steve Marschner • 19