Lec 11/28

Monday, November 28, 2016 7:59 AM

Recall: If XI, XI,..., Xn are a vandom sample from a population W/ man u and variance or them

$$E(\overline{X}) = E(X_i) = M$$

 $Var(\overline{X}) = Var(X_i) = \frac{\sigma^2}{n}$

If
$$\chi_i \sim N(\mu, \sigma^2)$$
 then $\chi \sim N(\mu, \frac{\sigma^2}{n})$

As
$$n \rightarrow \infty$$
, $Var(\bar{\lambda}) = \frac{\sigma^2}{n} \rightarrow 0$

$$\text{As } n \rightarrow \infty \qquad \overline{\chi}_n \xrightarrow{P} M$$

Let
$$\varepsilon > 0$$
. Then $\lim_{n \to \infty} P(|\overline{X}_n - \mu| > \varepsilon)$ (cheby shew's lneq: $P(|\overline{Y}_n - \mu| > \kappa \sigma) \le \frac{1}{k^2}$)
$$= \lim_{n \to \infty} \left(P(|\overline{X}_n - \mu| > \kappa \sigma) \le \frac{\sigma^2}{\varepsilon^2 n} \right) = 0 \qquad \text{if } \varepsilon = \frac{\kappa \sigma}{\sigma}$$

$$= \lim_{n \to \infty} \left(P(|\overline{X}_n - \mu| > \kappa \sigma) \le \frac{\sigma^2}{\varepsilon^2 n} \right) = 0 \qquad \text{if } \kappa = \frac{\kappa \sigma}{\sigma}$$

$$= 0.$$

X is consistent for M (as n > 20, it converges in probability to the parameter).

For logy
$$n$$
, $\chi \sim N(u, \frac{\sigma^2}{n})$ (Central Limit Theorem). (p 234-235).

$$05 \text{ n} \rightarrow \infty, \quad \overline{\chi} \sim N(m, \frac{\sigma^2}{n})$$

for any
$$\varepsilon$$
, $\iint_{\mathbb{R}} \left(\chi \right) - \int_{\mathbb{R}} \left(\chi \right) - \int_{\mathbb{R}} \left(\chi \right) \left| J \chi \right| < \varepsilon$ for $n > some M$.