

RESEARCH AND IMPLEMENTATION OF AUTOMATIC IMAGE LABELING ALGORITHMS

< ORA PROJECT _ IT-ENGLISH PROJECT >

Academic tutors: Jean-Yves Ramel Tifaine Bachet Student: GUO Xiaoqing

TOP TECHNOLOGY TRENDS FOR 2020

NLP (Natural Language Processing)

Conversational AI

CV (Computer Vision)

RL (Reinforcement Learning)

PROJECT DESCRIPTION AND GOALS

- A continuation of exercise 6 of TP3 image analysis
- Study and implement (in *python* + *opencv*) a software prototype associating keywords with images or photos
- The keywords must describe the content (*color*, *content*, *quality*, *etc*.) of the images.
- Generate a new tags *txt* file
- Compare two tags *txt* files and Assess the accuracy of detection

ENVIRONMENT SETUP

- System (*Windows 10*), Graphics driver (*NVIDIA GeForce 930MX* , *Inter*® *HD Graphics 620*), Processor (*Inter*® *Core*TM *i5-7200U CPU* @ 2.50GHz 2.71 GHz)
- OpenCV
- Python
- Other necessary packages

OBTAIN THE MAIN COLORS OF THE IMAGE

Method:

- 1. Convert the image color mode from RGB to HSV
- 2. Use cv2.inRange() function for background color filtering
- 3. Binarize the filtered colors
- 4. Use cv2.dilate() to make dilation and erosion
- 5. Statistics white area

	black	gray	white	red		orange	yellow	green	cyan	blue	purple
hmin	0	0	0	0	156	11	26	35	78	100	125
hmax	180	180	180	10	180	25	34	77	99	124	155
smin	0	0	0	43		43	43	43	43	43	43
smax	255	43	30	255		255	255	255	255	255	255
vmin	0	46	221	46		46	46	46	46	46	46
vmax	46	220	255	255		255	255	255	255	255	255

Note: H: 0 - 180, S: 0 - 255, V: 0 - 255

OBTAIN THE SCENES OF THE IMAGE

Method:

- Call the pre-trained model *PlacesCNN* trained on dataset *Places365*.
- Label the scene attributes which is from dataset *SUNattribute*.
- Generate *Heatmap* with the *CAMtechnique*.

Fig. 1. Image samples from various categories of the Places Database (two samples per category). The dataset contains three macro-classes: Indoor, Nature, and Urban.

OBTAIN THE MAIN OBJECTS OF THE IMAGE

- 1. Call *Mask_Rcnn Tensorflow* pre-trained model trained on the dataset *MSCOCO*
- 2. Download the models
- 3. Initialize the parameters
- 4. Load the model and classes -
- 5. Read the input
- 6. Process each frame
- 7. Post-processing the network's output
- 8. Draw the predicted boxes

- File: *mscoco_labels.names* objects labels
- File: *colors.txt* mask colors
- File: *frozen_inference_graph.pb* network ==> the pre-trained weights
- File: mask_rcnn_inception_v2_coco_2018_01_28.pbtxt The text graph file to make network to be loaded by using OpenCV

DETECT THE SHARPNESS AND THE BRIGHTNESS OF THE IMAGE

SHARPNESS

Method:

- 1. Make a *convolution* operation on a channel in the image through a *Laplace mask* [*edge detection*]
- 2. Then calculate the standard deviation / variance,
- 3. If the image has a higher variance, then it has a wider frequency response range, representing a normal, accurately focused image, the image is very clear.
- 4. Set the appropriate threshold

BRIGHTNESS

Method:

- 1. Obtain the *grayscale histogram* of the image → Judge according to the distribution of grayscale values
- 2. Dark image gray value: concentrated in the front, such as around 0-30
- 3. Bright image gray value: concentrated in the back
- 4. Need to count the number of dark pixels, and then divide by the total number of image pixels to get the percentage p
- 5. Set the threshold of p

COMPARE TWO TAGS TXT FILES AND ASSESS THE ACCURACY OF DETECTION

```
■ Log.TXT - 记事本
文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)
Log file:
blue, outside, plane, sky, light >> blue, white, sky, plane, outside - Score:[1, 1]
orange, inside, face, fuzzy, light >> yellow, orange, face, inside - Score:[1, 2]
gray, green, inside, animal >> gray, animal - Score:[0, 2]
black, orange, gray, outside, nature, human, sky, sea >> black, orange, gray, sun, outside, nature, sky -
Score:[1, 2]
orange, white, outside, face, light >> white, face - Score:[0, 3]
blue, white, outside, nature, sky, fuzzy, light >> blue, white, sky, sun, outside - Score:[1, 3]
white, gray, inside, human, light >> white, inside, human - Score:[0, 2]
 >> gray, inside, human, face - Score:[4, 0]
 >> blue, green, gray, outside, animal, sky - Score:[6, 0]
 >> - Score:[0, 0]
 >> red, outside, car, gray - Score:[4, 0]
 >> green, outside, car, gray - Score:[4, 0]
Final score : [262, 15] on 66 images
```

*** OPERATION DEMO ***

THANKS FOR YOUR ATTENTION

< ORA PROJECT _ IT-ENGLISH PROJECT >