Epreuve Finale (Durée: 1h30mn)

Exercice n°1: (8 points)

Une sphère conductrice A, de rayon R_A, est reliée à un générateur qui délivre une tension V variable (voir figure1).

I- La sphère **A** est éloignée de toute autre influence.

- 1. Pour une valeur de V donnée, représenter qualitativement la distribution de charge sur la sphère.
- 2. On fait varier la tension V, la figure 2 représente l'évolution de la charge Q du conducteur en fonction de V. Déduire à partir de la figure 2 le rayon $\mathbf{R}_{\mathbf{A}}$ de cette sphère.
- 3. Pour V=10⁴ V, calculer l'énergie électrostatique emmagasinée par la sphère.
- **4.** Toujours pour $V=10^4$ V, le conducteur A porte la charge Q_A . On l'isole du générateur et on le relie, à l'aide d'un fil conducteur très fin, à une autre sphère conductrice $\bf B$ de rayon $\bf R_B$, initialement neutre et isolée. Dans l'hypothèse où les deux sphères sont suffisamment éloignées pour négliger toute influence mutuelle et en négligeant les charges superficielles sur le fil :
 - a. Calculer à l'équilibre et en fonction de Q_A les charges portées par chacune des deux sphères.
 - **b.** Calculer le rapport des densités surfaciques de charge σ_A de A et σ_B de B (σ_A/σ_B).

On donne: $R_B=R_A/2$

- II- La sphère conductrice A est portée à un potentiel V quelconque, comme il est illustré sur la figure 3 cidessous. On entoure cette sphère par une autre sphère conductrice creuse C initialement neutre, concentrique à A et de rayons intérieur R_{C1} et extérieur R_{C2} .
 - 1. Représenter qualitativement les charges électriques portées par les deux sphères.
 - 2. On relie la sphère C à la terre, comme il est indiqué sur la figure 4 ci-dessous.
 - a. Représenter la nouvelle distribution des charges sur les deux sphères.
 - b. Donner l'expression du vecteur champ électrique dans la région comprise entre les deux
 - c. Trouver l'expression donnant la différence de potentiel V_A-V_C, entre les deux sphères, en fonction de la charge de la sphère A et des rayons RA et RC1
 - **d.** En déduire l'expression et la valeur de la capacité du condensateur ainsi obtenu.

On donne : $K = 1/4\pi\epsilon_0 = 9 \cdot 10^9 \text{ (SI)}, R_{C1} = 18 \text{mm}.$

Figure 4

1/2 Figure 3

Exercice n°2: (4 points)

Soient deux charges ponctuelles négatives $\mathbf{q_A} = \mathbf{q_B} = \mathbf{q}$ situées sur l'axe \mathbf{OX} aux points $\mathbf{A(a,0)}$ et $\mathbf{B(-a,0)}$. On considère un point $\mathbf{N(0,y)}$ tel que $\mathbf{y>0}$ sur l'axe \mathbf{OY} (voir figure 5).

- 1- Déterminer l'expression du potentiel électrique V_N créé par ces deux charges au point N en fonction de K, q, y et a. On supposera le potentiel nul à l'infini.
- 2- En déduire l'expression du vecteur champ électrique $\stackrel{\longrightarrow}{E_N}$ créé par ces deux charges au point $\stackrel{\longrightarrow}{\bf N}$. Représenter qualitativement le vecteur $\stackrel{\longrightarrow}{E_N}$.
- 3- On place au point N un dipôle électrique de moment dipolaire électrique $\stackrel{\rightarrow}{P}$ comme indiqué sur la figure 5.
 - a- Déterminer l'expression du moment du $\overset{\rightarrow}{}$ couple $\overset{\rightarrow}{\tau}$ qui s'applique à ce dipôle. Représenter qualitativement $\overset{\rightarrow}{\tau}$.
 - b- Représenter qualitativement la position d'équilibre stable de ce dipôle. Justifier votre réponse.

Exercice n°3: (8 points)

On considère le circuit électrique de la figure 6, comprenant deux générateurs réversibles de f.e.m E_1 et E_2 et de résistances internes \mathbf{r}_1 et \mathbf{r}_2 , respectivement, de deux résistances \mathbf{R}_1 et \mathbf{R}_2 , et de trois condensateurs \mathbf{C}_1 , \mathbf{C}_2 , et \mathbf{C}_3 . On considère que le régime permanent est atteint (les trois condensateurs sont complètement chargés).

Figure 6

On donne: $E_1=53V$, $E_2=21V$, $r_1=r_2=1\Omega$, $R_1=10\Omega$, $R_2=5\Omega$, $C_1=6\mu F$, $C_2=2\mu F$, $C_3=1\mu F$.

- 1. Calculer les valeurs des courants I₁, I₂, I₃, et I₄.
- 2. Le générateur E₂ fonctionne t-il en mode récepteur ou générateur. Justifier.
- **3.** Calculer la ddp V_C - V_D .
- 4. Calculer la capacité équivalente entre les points A et B.
- 5. Calculer les charges Q_1 , Q_2 , et Q_3 portées par les condensateurs C_1 , C_2 , et C_3 , respectivement.
- 6. Calculer les énergies U₁, U₂, et U₃ emmagasinées par les condensateurs C₁, C₂, et C₃, respectivement.

Corrigé de l'Epreuve Finale

Exercice 1: (8 points)

I.

1.

2. Le potentiel de la sphère est lié à sa charge électrique par : $V = \frac{KQ}{R_A}$

Par conséquent : $\frac{R_A}{K}$ = pente de la courbe Q(V) = $\frac{\Delta Q}{\Delta V}$ = $10^{-12}(SI)$, $R_A = 9mm$ **0.5**

0,5

3. L'énergie emmagasinée : $U_{em} = \frac{1}{2}QV$ **0.5** A.N. : $U_{em} = 5 \times 10^{-5} J$ **0.25**

4. a. Avant contact : $Q_A = 10^{-8} C$, $Q_B = 0 C$, Après contact : Q_A , et Q_B sont inconnues. Par le principe de la conservation de la charge totale : $Q_A + Q_B = Q_A + Q_B$

Les deux sphères sont au même potentiel après contact : $V_A = V_B \Rightarrow \frac{KQ_A}{R_A} = \frac{KQ_B}{R_B}$ (0,25)

La résolution des deux équation précédentes donne :

$$Q_{A}^{'} = \frac{R_{A}}{R_{A} + R_{B}} Q_{A} = \frac{2}{3} Q_{A}$$
 (0,25), $Q_{B}^{'} = \frac{R_{B}}{R_{A} + R_{B}} Q_{A} = \frac{1}{3} Q_{A}$ (0,25)

b. $\sigma_A = \frac{Q_A^{'}}{S_A} = \frac{2}{3} \frac{Q_A}{4\pi R_A^2}$ **(0,25)** $\sigma_B = \frac{Q_B^{'}}{S_B} = \frac{1}{3} \frac{Q_A}{4\pi R_B^2}$ **(0,25)** $\frac{\sigma_A}{\sigma_B} = \frac{1}{2}$ **(0,5)**

II.

1.

2. a

b. Pour raison de symétrie, \overrightarrow{E} est radial. (0,25) $\overrightarrow{E} = \frac{KQ_A}{r^2} \overrightarrow{U_r}$, pour $R_A < r < R_{C1}$ (0,5)

c.
$$dV = -\overrightarrow{E} \cdot \overrightarrow{d\ell}$$
 , $\overrightarrow{E} \cdot \overrightarrow{d\ell} = E \cdot dr$ car : $\overrightarrow{E} = E \overrightarrow{U_r}$ **0,25**

$$V_A - V_C = -\int_{R_{C1}}^{R_A} E.dr$$
, $V_A - V_C = KQ_A (\frac{1}{R_A} - \frac{1}{R_{C1}})$ (0.75)

d. La capacité est donnée par : $C = \frac{Q}{\Delta V} = \frac{Q_A}{V_A - V_C}$, on trouve : $C = \frac{R_A R_{C1}}{K(R_{C1} - R_A)}$

Exercice 2: (4 points)

1-
$$V_N = 2K\frac{q}{r} = \frac{2Kq}{\sqrt{y^2 + a^2}}$$
 (0,75)

2-
$$\overrightarrow{E} = -\overrightarrow{\nabla}V$$
 $\Rightarrow \overrightarrow{E} = -\frac{dV}{dy}\overrightarrow{j}$ **0.25** $\Rightarrow \overrightarrow{E}_N = 2Kq \frac{y}{(y^2 + a^2)^{3/2}}\overrightarrow{j}$ **0.75**

3-a-
$$\overrightarrow{p} = \overrightarrow{p} \stackrel{\rightarrow}{i} \stackrel{\rightarrow}{0,25}$$
 et $\overrightarrow{\tau} = \overrightarrow{p} \wedge \overrightarrow{E}_N = \frac{2Kqpy}{\left(y^2 + a^2\right)^{3/2}} \overrightarrow{k} \stackrel{\rightarrow}{0,75}$

b- Dans la position d'équilibre stable, qui correspond au minimum d'énergie potentielle, $p \parallel E_N$ et dans le même sens. (0,25

Exercice 3: (8 points)

1. C1, C2, et C3, chargés $\Longrightarrow I_4=0A$ \bigcirc 1.

 $E_1 - R_1I_1 - E_2 + r_2I_2 - r_1I_1 = 0$ Maille I: $11I_1 - I_2 = 32 \dots \text{éq.} 1$

 $E_2 - R_2 I_3 - r_2 I_2 = 0$ Maille II: $I_2 + 5I_3 = 21 \dots \text{éq.} 2 \text{ (0,5)}$

 $I_1 + I_2 - I_3 = 0 \dots \text{éq.} 3$ **0.5** Noeud C:

- La résolution du système d'équations (1), (2), et (3) donne : $I_1 = 3A$, (0,5) $I_2 = 1A$, (0,5) $I_3 = 4A$
- **2.** Le générateur E_2 fonctionne en mode générateur car il débite un courant positif $(I_2>0)$. (0,5)
- **3.** $V_C V_D = E_2 r_2 I_2$, on trouve : $V_C V_D = 20V$ Ou: $V_C - V_D = R_2 I_3 = 20V$ **0,5**
- **4.** Ceq = $(C_2 \text{ en parallèle avec } C_3)$ en série avec C_1 .

$$\frac{1}{C_{eq}} = \frac{1}{C_2 + C_3} + \frac{1}{C_1}$$
 A.N.: $C_{eq} = 2\mu F$ **0.5**

5.
$$Q_{eq} = C_{eq} \cdot (V_C - V_D) = 40 \mu C$$
, $Q_{eq} = Q_1 = Q_2 + Q_3 = 40 \mu C$ 0,5
$$\Delta V_{C2} = \Delta V_{C3} = (V_C - V_D) - \Delta V_{C1}$$
, $\Delta V_{C1} = \frac{Q_1}{C_1} = \frac{20}{3} V$, $\Delta V_{C2} = \Delta V_{C3} = \frac{40}{3} V$

$$Q_2 = C_2 \Delta V_2 = \frac{80}{3} \mu C$$
, $Q_3 = C_3 \Delta V_3 = \frac{40}{3} \mu C$ 0.5

6.
$$U = \frac{1}{2}Q.\Delta V = \frac{1}{2}\frac{Q^2}{C}$$
, $U_1 = \frac{4}{3}10^{-4}J$, $U_2 = \frac{16}{9}10^{-4}J$, $U_3 = \frac{8}{9}10^{-4}J$