

STM32G4 Technique Training

- General-purpose input/output interface
- DMA/DMAMUX
- GPTIMER

STM32G4 - GPIO

Same as F3/L4 with a one difference:

• In F3/L4, when the GPIO is configured in analog mode, the pull up/pull down are

disabled by hardware.

MODE(i) [1:0]	OTYPE(i)		EED(i) 1:0]		PD(i) :0]	I/O co	nfiguration
	0			0	0	GP output	PP
	0				1	GP output	PP + PU
	0			1	0	GP output	PP + PD
01	0	SP	EED	1	1	Reserved	•
UI	1	[1:0]	0	0	GP output	OD
	1	Ī		0	1	GP output	OD + PU
	1	Ī		1	0	GP output	OD + PD
	1	Ī		1	1	Reserved (GP	output OD)
	0			0	0	AF	PP
	0			0	1	AF	PP + PU
	0	Ī		1	0	AF	PP + PD
10	0	SP	EED	1	1	Reserved	
10	1	[1:0]		0	0	AF	OD
	1	Ī		0	1	AF	OD + PU
	1	Ī		1	0	AF	OD + PD
	1			1	1	Reserved	
	х	х	х	0	0	Input	Floating
00	х	x	X	0	1	Input	PU
00	Х	х	X	1	0	Input	PD
	х	х	х	1	1	Reserved (inpu	it floating)
	Х	х	Х	0	0	Input/output	Analog
11	х	х	х	0	1	Reserved	
"	х	x	х	1	0	Input/output	Analog, PD
	х	x	х	1	1	Reserved	•

• In G4, it becomes possible to enable/disable the pull down, so the combination PUPD = 10 is no more reserved. The pull up remains disabled by hardware.

Special considerations for I/O pins

Only debug pins remain in AF mode under reset

- During and after reset, the alternate functions are not active
 - I/O ports default to analog mode
 - Saves current consumption during and after reset (Schmitt trigger is off)
- Only JTAG/SWD debug pins remain in AF pull-up/pull-down configuration
 - PA13: JTMS/SWDIO
 - PA14: JTCK/SWCLK
 - PA15: JTDI
 - PB3: JTDO
 - PB4: NJTRST

Special considerations for I/O pins

+ one I/O if boot0 is based on option bit

- PB8 pin can be used as:
 - Boot0 pin
 - Or as standard GPIO

Depending of the nSWBOOT0 option bit

- nSWBOOT0 = $0 \rightarrow$ Boot0 taken from an option bit nBOOT0, so PB8 is available.
- nSWBOOT0 = 1 \rightarrow Boot0 taken from pin, so PB8 is not available.
- The nSWBOOT0 option bit production value will be "0" so that having PB8 available by default.

Special considerations for I/O pins

NRST shared with PG10

- PG10 pin can be used as:
 - NRST
 - Or as standard GPIO

Depending on the NRST_MODE option bits

 The NRST_MODE option bits production value will be "11" corresponding to Input/Output reset pin NRST (Legacy) → PG10 is not available.

STM32G4 - DMA/DMAMUX

- ➤ Direct memory access controller (DMA)
- ➤ DMA request multiplexer (DMAMUX)

Main Differences with STM32F3

 The DMA Controller is similar to the one implemented in the STM32F3, but with additional DMAMUX

	STM32F3	STM32G4
DMA	2 DMAs DMA1: 7 channels DMA2: 5 channels	2 DMAs DMA1: up to 8 channels DMA2: up to 8 channels
DMA Features	Sa	me
DMAMUX	No	Yes

- DMAMUX is a DMA request multiplexer/router
- DMAMUX provides a programmable routing of any of the 16 DMA (hardware) requests from any peripheral request
- Additionally, there are 4 request generators
 - Software can configure a DMA request to be generated by the DMAMUX itself, upon a trigger input. The following are programmable:
 - The trigger selection: EXTIO...EXTI15, LPTIM1OUT, or any of the 4 generated DMAMUX events
 - The trigger event: rising edge, falling edge or either edge
 - The number of generated DMA requests upon the trigger event
 - There is a trigger overrun flag & interrupt in order to alert the software when the number of generated DMA requests have not been completed before a next trigger event

STM32G4 DMA & DMAMUX implementation 10

DMAMUX features	DMAMUX
Number of peripheral requests	115
Number of request generators	4
Number of triggers	21
Number of synchronizations	21
Number of output DMA requests	16 (12 ln G431)

DMA features	DMA1
Number of channels	8 (6 in G431)

DMA features	DMA2
Number of channels	8 (6 in G431)

DMAMUX Interrupt 11

Interrupt event	Description				
Request generator trigger overrun	Set when there is a detected trigger input overrun before that the programmed number of DMA requests created by the DMAMUX request generator has been completed				
Request multiplexer synchronization overrun	Set when there is a detected synchronization input overrun before that a programmed number of transmitted DMA requests or generated DMAMUX events has been completed				

GPTIMER v4.0

➤ New features

Summary 13

Motor Control + Digital potentiometers

- Better management of incremental encoder sensors
 - 2 new protocols supported
 - Hardware management of the Index (Z) input

Power conversion

- Improvements on deadtime generator
- Higher (average) resolution using hardware dithering

General purpose

- Higher (average) resolution using hardware dithering
- New slave mode (gated+reset)

SoC level

- Higher flexibility interconnect
- Bidirectional break

New quadrature encoder counting modes

- x1 encoding mode added (x2 and x4 mode already supported today)
 - CPU burden decreased for high RPM applications

Slave mode selection preload allows run-time encoder mode update

2 new encoder modes 15

Clock plus direction

Directional clock

Can be incremental or absolute for motor drives

 Incremental encoders are cheaper, but do not provide a reference position at power-up

Encoder index 17

 In addition to the two channels A and B, an Index (also-called zero) pulse is available, which occurs once per revolution and is usually used for the reference run (zero point calibration) of a machine

 So far possible this was possible using external interrupts and software, this additional CPU burden

Hardware support of encoder's Index 18

Supports all encode modes (quadrature mode below)

The index resets the counter (with any gating option)

Index detection 19

- 2 bits (IPOS[1:0]) are defining on which state is the index detected
- The Index detection is done differently depending on counting direction to ensure symmetrical operation during speed reversal:
 - The counter is reset during up-counting (DIR bit = 0).
 - The counter is set to TIMx ARR when down counting.

Encoder Error detection 20

- Quadrature phase error detection
 - In case of forbidden transition (e.g. 01 to 10)

- Position counter error detection
 - If the counter value is incremented from TIMx_ARR to 0 or decremented from 0 to TIMxARR value without any index event, this will be reported as an Index position error
 - Indicates some pulses were added / missed due to external noise, wiring issues, dusty sensor,...

Other encoder related functions 21

- Position compare sync event (e.g. generate a pulse when rotor position = 90°)
 - An output compare channel generates a pulse on match (Width programmable, as well as polarity)

- Direction change interrupt added
 - When the DIR status bit is toggling

Higher resolution with hardware dithering

- Basic idea is to have additional 4-bits to go from 6.66ns (@170MHz) down to the sub-ns range (6.66/16 ns = 367ps average)
- Applicable to both period and duty cycle, adding +0/+1 clock cycle depending on programming

See AN4507 and the X-CUBE-PWM-DITHR for software implementation

16-cycles dithering pattern 23

Dithering mode, practically 24

The 12.4 format

• The integer part ranges from 0 to 4095, the fractional from 0 to 0.9375 (with 15) steps of 0.0625)

b15 b0 Register format in LSB: 4-bits MSB: 12-bits, integer part dithering mode fractional part b15 b0 326 Example 20 6 Base compare value is 20 during 16 periods Additional 6 cycles are spread over the 16 periods MSv45753V1

Figure 297. Data format and register coding in dithering mode

Combined gated + reset mode 25

- Useful to detect a duty cycle above a given threshold, without having interrupts systematically
 - The timer counts during the high level and is reset on the falling edge. If the counter exceeds a compare value, an interrupt is issued
- Use case: when monitoring a fly-back controller, issues an interrupt in case of control out of expected conditions (indicating a imminent power failure)
 - When the mains disappears, the SMPS controller will increase the duty cycle to compensate the input voltage drop. Detecting an out-of-bound duty cycle condition will allow an early power failure detection.

Deadtime 26

- Asymmetrical: new register with enable bit for supporting both legacy mode (symmetrical) and the new mode
 - For applications having asymmetrical gate driver / optocouplers propagation delays
- Shadow register for on-the fly deadtime update (adaptive deadtime) schemes)

Functionality

 The break input can be disarmed only in bidirectional mode, when MOE is reset:

MOE	BKxDIR	BKxDSRM (DiSaRMed)	State
0	0	X	Armed
0	1	0	Armed
0	1	1	Disarmed
1	Χ	X	Armed

 The purpose is to be able to have the input voltage back to high-state, whatever the time constant on the output (depending on pull-up resistor and potential filtering capacitor

Orthogonality in timer interconnect 29

	TIM1	TIM2	TIM3	TIM4	TIM5	TIM8	TIM15	TIM20
ITR0		TIM1 TRGO						
ITR1	TIM2_TRGO		TIM2 TRGO					
ITR2	TIM3 TRGO	TIM3 TRGO		TIM3 TRGO				
ITR3	TIM4 TRGO	TIM4 TRGO	TIM4 TRGO		TIM4 TRGO	TIM4 TRGO	TIM4 TRGO	TIM4 TRGO
ITR4	TIM5 TRGO	TIM5 TRGO	TIM5 TRGO	TIM5 TRGO		TIM5 TRGO	TIM5 TRGO	TIM5 TRGO
ITR5	TIM8 TRGO		TIM8 TRGO	TIM8 TRGO				
ITR6	TIM15 TRGO		TIM15 TRGO					
ITR7	TIM16 OC							
ITR8	TIM17 OC							
ITR9	TIM20 TRGO							

	TIM1	TIM2	TIM3	TIM4	TIM5	TIM8	TIM20
ETR1	Input pins						
ETR2	COMP1						
ETR3	COMP2						
ETR4	COMP3						
ETR5	COMP4						
ETR6	COMP5						
ETR7	COMP6						
ETR8	COMP7						

	TIM1	TIM2	TIM3	TIM8	TIM15	TIM16	TIM17	TIM20	
Ocref_clr0	COMP1								
Ocref_clr1	COMP2								
Ocref_clr2	COMP3								
Ocref_clr3	COMP4								
Ocref_clr4	COMP5								
Ocref_clr5	COMP6								
Ocref_clr6	COMP7								
Ocref_clr7									

4th complementary pair in TIM1/TIM8/TIM20

- A 4th complementary pair is now available, with the TIMx_CH4N pin
 - The programming is identical to the other TIMx_CHyN pins
- This allows to control 2 full-bridges with a single advanced timer

Summary, by application fields 31

- Motor Control + Digital potentiometers
 - Better management of incremental encoder sensors
 - 2 new protocols supported
 - Hardware management of the Index (Z) input
- Power conversion
 - Improvements on deadtime generator
 - Higher (average) resolution using hardware dithering
 - Finer regulation capability
- General purpose
 - Higher (average) resolution using hardware dithering
 - Typically for DAC emulation
 - New slave mode (gated+reset)

Releasing Your Creativity

