

Digital Logic Design

Title	Digital Logic Design
Code	CS -
Credit hours	3+1
Prerequisite	None
Follow Up	CS-, CS-
Objective	The course aims at providing knowledge of various logic gates and flip flops and their characteristic truth tables to enable students to design and analyze combinational and sequential circuits. The important combinational circuits e.g., encoders, decoders, multiplexer, de-multiplexer and their applications are discussed in length. Students should be able to design a simple ALU using these standard circuits. In sequential circuits, construction and design of various registers, counters, memories and their applications are discussed.
Text Book	Digital Logic and Computer Design M. Morris Mano Eleventh Impresion,2009 Pearson Prentice Hall
Reference Book/s	Digital Fundamentals T. L. Floyd Prentice Hall, 8th Edition, 2002

Lecture #	TOPICS	Remarks
1	Introduction of Digital Computer. Binary, Octal, Decimal and Hexadecimal Number Systems. Conversion among various Number Systems.	
2	r's and r-1's Complements Subtractions using r's and r-1's Complements	
3	Binary Codes. (BCD, Excess-3, Biquinary, 84-2-1, 2421, Gray and ASCII. Introduction to Error Detection Codes. Binary storage and Registers	
4	Binary logic Switching circuits and binary signals Behavior of standard digital Gates and their pin configurations. (NOT, AND, OR, XOR, NAND, NOR, XNOR). Representing input and output of Digital Logic Gates using wave forms. Introduction to Integrated circuits	Assignment 1
5	Introduction to Boolean Algebra Basic theorems and properties of Boolean Algebra Boolean Functions	Quiz 1
6	Complement of a Function Concept of Minterms and Maxterms Representation of Function in Sum of Minterms or Product of Maxterms	
7	Conversion between Canonical Forms Standard Forms	
8	Introduction to Karnaugh Map Two-,Three- and Four- variable Maps Sum of Products Simplification	

9	Product of Sum Simplification	
	NAND and NOR Implementation	
10	Don't care Conditions	
10	The Tabulation Method	
11	Determination of Prime-Implicants	Assignment 2
1.1	Selection of Prime Implicants	
12	Introduction to Combinational Logic	Quiz 2
	Design of Adders	
	Design of Subtractors	
13	Code Convertors	Assignment 3
14	Analysis Procedure of Combinational Circuits	2
15	Multilevel NAND Circuits	
10	Multilevel NOR Circuits	
16	Revision	
17	Binary Parallel Adders	
	Decimal Adders	
18	Magnitude Comparator	
19	Decoders	Assignment 4
	Implementation of Boolean Functions using Decoders	8
	Decoder Expansion	
20	Multiplexers	
	Implementation of Boolean Functions using Multiplexers	
	Demultiplexers	
	Encoders	
21	ROM	
21	Implementation of Boolean Functions using ROM	
	implementation of Boolean Lanctions using No.	
22	Programmable Logic Array (PLA)	
	Implementation of Boolean Functions using PLA	
23	Introduction to Sequential Circuits	Quiz 3
	Basic Flip Flop	
24	Clocked RS Flip Flop	
	Clocked D Flip Flop	
	Clocked JK Flip Flop	
	Clocked T Flip Flop	
25	Analysis of Clocked Sequential Circuits	
26	State Reduction and Assignment	Assignment 5
_0	Flip Flop Excitation tables	
	Design Procedure	
27	Introduction to Registers	
	Representation of Unsigned numbers and Range of n-bit register	
	Representation of signed numbers. (sign magnitude, 2's comp and 1's complement)	
	and range of n-bit registers	
	Design of a Register with parallel load	
28	Shift Registers	Quiz 4
28	Bidirectional Shift register with parallel load	
28	Bidirectional Shift register with paramer toad	
28		
	Ripple Counters	
29 30	Ripple Counters Synchronous Counters	
29	Ripple Counters	