Sumário

- Introdução
- 2 Problema I: Object Recognition
- Viabilidade
- 4 Referências
- 5 Problema II: Folow me

Introdução I

- Robocup@HOME
 - Estimular o desenvolvimento de robôs de serviço doméstico.

- Desafios / Tarefas (LARC 2014)
 - Poster Session
 - Robot Zoo
 - Voice Recognition
 - Object Recognition
 - Follow-me
 - Final Challenge

Introdução II

Cenário

• Casa (sala e cozinha)

Figura: Arena

Introdução III

Habilidades do Robô

• Navegação autônoma em ambiente dinâmico

• Reconhecimento de objetos / pessoas

• Reconhecimento de voz

Introdução IV

• Robôs: Larc 2014

Figura: Robôs LARC 2014

Introdução V

• Robôs : Robocup@home

Figura: Robôs Robocup@home

Problema I: Object Recognition

• Localizar os objetos na arena

Navegar até os objetos

Reconhecer os objetos

Proposta de Título

Titulo

Localização e Navegação Autonomas de um Robô de Serviços Domésticos com Base na Otimização da Assinatura Digital de Objetos

Objetivo

Com base na otimização da assinadura digital de objetos característicos, identificar os cômodos (sala ou cozinha) para agilizar o processo de navegação e localização dos objetos solicitados.

Problema específico

Extrair a assinadura digital dos objetos característicos.

• Utililizar Point Clouds (kinect) - PCL

- ISS Intrinsic Shape Signatures (?)
 - Otimizar o vetor de características invariantes utilizando DE (Diferencial Evolution - ?)

Problema específico

Extrair a assinadura digital dos objetos característicos.

• Utililizar Point Clouds (kinect) - PCL

- ISS Intrinsic Shape Signatures (?)
 - Otimizar o vetor de características invariantes utilizando DE (Diferencial Evolution - ?)
 - Desenvolver o método ODS (Optimized Digital Signature)

ODS - Optimized Digital Signature

Figura: Visão Geral em relação ao SLAM (Vidal)

ODS - Optimized Digital Signature

Figura: Contribuição em relação ao SLAM (Vidal)

Cronograma

Tabela: Cronograma de atividades

Atividade	Dez/2014	2015/1	2015/2	2015/3	2016/1	2016/2	2016/3
Revisão Bibliográfica							
Instalação Aprendizagem do ROS							
Kinect + PCL + ROS							
Montagem do Robô							
ROS - Implantação do SLAM							
Extração Assinatura Digital							
Otimização (Evolução Diferencial)							
ROS - Implantação nó ODS							
Navegação e Localização por Wayp							
Artigos - Periódicos							
Redação da Tese							
Testes e Correções							
Defesa							

Viabilidade

- 1 Pioneer 3DS
- 1 kinect
- (Laser / ultrason)
- Softwares Open Source
 - - ROS: Robotic Operanting System
 - - PCL: Point Cloud Library

Referências I

Problema II: Folow me

Reconhecimento de um operador (humado)

Traking do operador

Proposta de Título : Problema II

Titulo

Navegação pervasiva autonoma de um robô de serviços domésticos em um cenário desestruturado considerando a presença de humanos

Objetivo

Realizar um planejamento de movimentação baseado na interação humano-robô em um ambiente desestruturado de uma casa, com base em técnicas de detecção de humanos e predição de sua "intenção" de movimentação.

Problema específico

Mapear situações de movimentação.

• Pedestres cruzando o caminho do robô

• Pedestre caminhando em direção ao robô (sentidos inversos)

• Pedestre caminhando na mesma direção que o robô (mesmo sentido)

Perguntas?

angonesealberto@gmail.com

