Q3 Cumulative

- 1. Eliminate the parameter t: $x = t^3$ and $2y = 1 t^2$
- 2. Eliminate the parameter t: $y = 4 \sin t + 1$ and $y = 3 \cos t 2$
- 3. Convert the polar coordinate $(6, -2\pi/3)$ to rectangular coordinates
- 4. Convert this equation to polar coordinates: $x^2 y^2 = 16$
- 5. Convert this equation to rectangular coordinates: $r = 3 \sec \theta$
- 6. Which of the following is the graph of $r = \cos(2\theta)$
- 7. A baseball pitcher throws a baseball with an initial speed of 138 feet per second at an angle of 20° to the horizontal. The ball leaves the pitcher's hand at a height of 4 feet above the ground. Write the equations of motion.
- 8. Let $u = \langle -3, 5 \rangle$ and $\vec{v} = \langle 1, 4 \rangle$ and $\vec{w} = \langle 6, -3 \rangle$ find $\vec{u} + 2\vec{v} \vec{w}$
- 9. Given $\vec{u} = \langle 3\sqrt{3}, -5 \rangle$, find $||\vec{u}||$
- 10. Given $\vec{u} = \langle -10, 9 \rangle$, find a unit vector in the direction of \vec{u}
- 11. Which vector is perpendicular to $\langle \frac{2}{3}, -\frac{17}{2} \rangle$ 12. Which vector is parallel to $\langle \frac{2}{3}, -\frac{17}{2} \rangle$ 13. What is the angle between $\langle 5, 1 \rangle$ and $\langle 2, -3 \rangle$

- 14. If vector \vec{x} has magnitude 9 and makes an angle of $3\pi/4$ with the positive x axis, find the components of x and write as $a\hat{i} + b\hat{j}$.
- 15. Write the complex number -3 + 9i in polar form.
- 16. Divide 10 9i by 2 4i, and express your answer in the form a + bi.
- 17. Simplify the product $\sqrt{7}e^{-i\pi/3} \cdot 3e^{i\pi/5}$.
- 18. Solve the equation $z^2 2z + 5 = 0$ for z and express your answers in rectangular form.
- 19. If z = 2 + i is one root of a quadratic equation $x^2 + bx + c$ with real coefficients, what is bc?
- 20. If $z^4 = 16e^{2\pi i/5}$, find all values of z in polar form.
- 21. Factor $z^2 + 9$ into a product of two binomials.
- 22. (Bonus): By multiplying two complex numbers, prove the addition identities for sin and cos.