Selected Exercises §18

Colton Kinstley

June 20, 2018

Question 2

Suppose $f: X \to Y$ is continuous. If x is a limit point of the subset A of X, is it necessarily true that f(x) is a limit point of f(A)?

Solution

Not necessarily. Consider any constant function $f: \mathbb{R} \to \mathbb{R}$, defined by f(x) = a for some $a \in \mathbb{R}$. Then given any $A \neq \emptyset$ we have $f(A) = \{a\}$. But, this set has no limit points. For a counter example to the claim take A = (0,1) this set has limit points A' = [0,1]. In particular f(1) = a, but any neighborhood of f(1) intersects $\{a\}$ only at f(1) = a and thus is not a limit point of f(A).

Question 7a

Claim

Suppose $f: \mathbb{R}_{\ell} \to \mathbb{R}$. Then f is continuous if and only if

$$\lim_{x \to a^+} f(x) = f(a).$$

Proof

Suppose the above limit holds. Then by the definition of this limit we have

$$\begin{aligned} &\forall \epsilon > 0 \text{ and } \forall a \in \mathbb{R}, \ \exists \delta > 0 \text{ s.t.} \\ &a < x < a + \delta \Rightarrow |f(x) - f(a)| < \epsilon. \end{aligned}$$

Given any $a \in \mathbb{R}$ and neighborhood V of a there exists a basis element (c,d) such that $a \in (c,d) \subset V$. Take $\epsilon = \min\{f(a) - c, f(a) + d\}$, and set $V^* = (f(a) - \epsilon, f(a) + \epsilon) \subset V$. Then by hypothesis there exists $U = [a, a + \delta)$ such that $f(U) \subset f(V^*) \subset V$. But, U is

a neighborhood containing a and since a and V were chosen arbitrarily we have satisfied equivalence (4) of theorem 18.1 [Munkres] and may conclude that f is continuous.

Conversely, suppose f is continuous. Given $\epsilon > 0$ and $a \in \mathbb{R}$ note that

$$V = (f(a) - \epsilon, f(a) + \epsilon)$$

is a neighborhood containing f(a). Thus there exists a neighborhood U of a open in \mathbb{R}_{ℓ} such that $a \in U$ and $f(U) \subset V$. Let $[b,c) \subset U$ be a basis element containg a. Then take $\delta = c - a$ to get $[a, a + \delta) \subset [b, c) \subset U$. Since

$$f([a,a+\delta))\subset f(U)\subset V=(f(a)-\epsilon,f(a)+\epsilon)$$

we have that for any $\epsilon > 0$ and $a \in \mathbb{R}$ there is a δ such that $a < x < a + \delta$ implies that $|f(x) - f(a)| < \epsilon$.

Question 9b

Let $\{A_{\alpha}\}$ be a collection of subsets of X such that $X = \bigcup_{\alpha} A_{\alpha}$. Let $f: X \to Y$. Suppose $f|_{A_{\alpha}}$ is continuous for each α . Find an example where the collection $\{A_{\alpha}\}$ is countable and each A_{α} is closed, but f is not continuous.

Solution

Take for example $X = \mathbb{Z}$ under the finite complement topology. Then U is open in \mathbb{Z} if $\mathbb{Z} \setminus U$ is finite or all of \mathbb{Z} . Let $\{A_{\alpha}\} = \{n\}_{n \in \mathbb{Z}}$ then each $\{n\}$ is closed in \mathbb{Z} as $\mathbb{Z} \setminus (\mathbb{Z} \setminus \{n\})$ is open and their union is clearly all of \mathbb{Z} . Let $f : \mathbb{Z} \to \mathbb{R}$ by f(x) = x then the restriction $f|_{\{n\}}$ is continuous because given any open set V containing f(n) = n we have that $U = f|_{\{n\}}^{-1}(n) = n$ and $\{n\} \setminus \{n\} = \emptyset$. So U is open.

On the other hand, given any open set in \mathbb{R} of the form (a,b) where $-\infty < a < b < \infty$ we see that $U = f^{-1}((a,b)) = \{n \in \mathbb{Z} \mid a < n < b\}$. Clearly this set is finite, thus $\mathbb{Z} \setminus U$ is infinite and not open. We conclude that f is not continuous.

Extra Question

Prove that the interval (0,1) is homeomorphic to \mathbb{R} but not to the interval [0,1).

Proof

To show that (0,1) is homeomorphic to \mathbb{R} we exhibit such a homeomorphism. Take $f:(0,1)\to\mathbb{R}$ by $f(x)=\frac{x-1/2}{x(x-1)}$. This is a rational polynomial with nonzero denominator on its domain and is thus continuous. Further $\lim_{x\to\infty}f(x)=\infty$ and $\lim_{x\to-\infty}f(x)=-\infty$, thus f onto. Since f is monotonically decreasing on (0,1), (we have $f'(x)=\frac{-(2x^2-2x+1)}{2(x^2-x)^2}<0$) we know that f is one to one and thus is a bijection. Computing the inverse,

$$f^{-1}(y) = \frac{1+y-\sqrt{1+y^2}}{2y}$$
 for $y \neq 0$, and $f^{-1}(y) = 1/2$ for $y = 0$

we see that it is indeed continuous.

To see that there is no homeomorphism from (0,1) to [0,1) we will show that there can be no continuous bijection from (0,1) to [0,1); this follows from continuity in real analysis. Indeed if there were such a function then there would a unique point $x \in (0,1)$ such that f(x) = 0 since f is continuous we have that closed/open intervals are mapped to closed/open intervals. Consider that there must be intervals $[x, x + \epsilon]$ and $[x - \epsilon, x]$ such that

$$f([x, x + \epsilon]) = [0, a)$$

$$f([x - \epsilon, x]) = [0, b)$$

since f is bijective this implies that at least one of the values in $[0, \min a, b)$ are taken twice by f. Which contradicts the infectivity of f.