CARRY LOOK AHEAD ADDER

ANUMULA VENKATA SAI SREE SAHITHI 2023112002 IIIT HYDERABAD

sahithi.anumula@research.iiit.ac.in

Abstract— The project involves the design and implementation of a 4-bit Carry Look Ahead (CLA) adder, a high-speed arithmetic circuit used for efficient binary addition. The CLA adder is composed of modular blocks for propagating and generating signal computation, carry look-ahead logic, and the sum generation block. The designs ensures that input bits are provided before the rising edge of the clock, with outputs computed and available at the subsequent rising edge, adhering to a synchronous timing scheme

Keywords—Adder, PTL, TSPC, CLA, Propagator, generator, Flipflop

I. CARRY LOOK AHEAD ADDER

A Carry Look-Ahead (CLA) adder is an advanced type of digital adder designed to improve the speed of binary addition by minimizing the propagation delay associated with ripple-carry adders. In a conventional ripple-carry adder, the carry-out of each bit must wait for the carry-in to be computed from the preceding bit, leading to a delay that grows linearly with the number of bits.

The CLA adder addresses this issue by computing the carry signals in parallel using the concepts of **propagate** (p_i) and **generate** (g_i) functions for each bit. These functions are defined as:

$$p_i = a_i \oplus b_i$$

$$g_i = a_i.b_i$$

The carry out $(c_{(i+1)})$ of the i^{th} bit position can be written as (assuming $c_0 = 0$) follows:

$$c_{(i+1)} = (p_i . c_i) + g_i$$
 where $(i = 1, 2, 3, 4)$

This parallelism significantly enhances the adder's speed, making it a preferred choice in high-performance applications like processors and digital signal processing systems.

1.PROPOSED STRUCTURE OF ADDER

The proposed structure for my Carry Look-Ahead (CLA) adder is a 4-bit design using static CMOS logic. This design relies on carry-generate (G_i)and carry-propagate (P_i) terms to calculate the carry-out. These terms are derived from the input bits (Ai and Bi), enabling faster carry calculation compared to ripple carry adders, which reduces delay. The carry-out signals C1, C2, C3, and C4 are generated from four separate blocks, ensuring efficient carry computation. The design eliminates intermediate logic gates, reducing dynamic power consumption and propagation delay. The carry-out circuits are constructed using simplified Boolean equations, ensuring a symmetric and efficient transistor-level implementation. The sum is calculated using XOR gates, making the design both

effective and reliable. This structure improves speed and power efficiency while maintaining accurate functionality

BASIC MODEL OF THE CLA

$$C_{i+1} = G_i + P_i C_i$$

$$C_1 = G_0 + P_0C_0$$

$$C_1 = G_1 + P_1 C_0$$

 $\overline{C}_1 = (\overline{P_1} + \overline{C_0})\overline{G_1}$

$$C_2 = G_1 + P_1C_1 = G_1 + P_1G_0 + P_1P_0C_0$$

$$C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$$

$$C_3 = G_{13} + P_3 C_2$$

$$\overline{C_3} = \left(\overline{P_3} + \overline{C_2}\right) \overline{G_{13}}$$

 $C_4 = G_3 + P_3C_3 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_0$

2. DESIGN DETAILS

The design of the 4-bit Carry Look-Ahead (CLA) adder consists of several blocks with specific topologies and sizing:

 D-Flip-Flop: The flip-flop is implemented using True Single-Phase Clocked (TSPC) logic. This choice ensures high-speed operation with reduced clock skew, enabling reliable edge-triggered storage of the carry-in signal.

XOR and AND Gates: The XOR and AND gates, used to generate the carry-propagate (Pi) and carry-generate (Gi) terms, are designed using Pass-Transistor Logic (PTL). PTL is chosen for its compact design and efficiency, helping to minimize area and improve speed.

XOR GATE

AND GATE

• Carry Blocks (C1, C2, C3, C4): The carry-out signals C1, C2, C3, C4 are generated using CMOS logic. Each carry block computes its respective carry-out using the carry-in from the previous block, along with the carry-generate (G_i) and carry-propagate (P_i) signals, ensuring a fast and efficient design.

The sizing of Carry blocks is done in accordance with a minimum sized inverter

The sizing of the Carry blocks is done in accordance with a minimum-sized inverter to ensure uniformity and optimal performance. The transistors in the Carry blocks are sized to balance speed and power consumption while maintaining sufficient drive strength to propagate the carry signal efficiently. This sizing ensures that the delay through each

Carry block is minimized, contributing to the overall speed of the design.

$$C_3 = G_{13} + P_3C_2$$

$$\overline{C_3} = \left(\overline{P_3} + \overline{C_2}\right)\overline{G_{13}}$$

C4 BLOCK

All blocks are sized and optimized using TSMC 180nm process parameters. The PMOS and NMOS transistors in the CMOS logic for the carry blocks are carefully sized to minimize delay while maintaining sufficient drive strength. The PTL gates are also optimized for low resistance and fast switching speeds, especially in the XOR and AND careful as a speed and a speed a and AND gates. The overall design combines TSPC flip-flops for high-speed storage, PTL for efficient logic gate design, and CMOS logic for carry generation.

3. STICK DIAGRAMS

FLIPFLOP

4. NGSPICE PRE-LAYOUT

TSPC Positive Edge Flipflop:

Inputs:

Vclk clk gnd pulse 0 1.8 0n 0 0 3n 6n Vd d gnd pulse 1.8 0 0n 0 0 5n 10n

AND GATE (PTL LOGIC)

Inputs:

vin1 a 0 pulse 0 1.8 Ons Ons Ons 3ns 6ns vin2 b 0 pulse 0 1.8 Ons Ons 5ns 10ns

XOR GATE (PTL LOGIC):

Inputs:

vin1 a 0 pulse 0 1.8 0ns 0ns 0ns 3ns 6ns vin2 b 0 pulse 0 1.8 0ns 0ns 0ns 5ns 10ns

Propagate and generate block

CLA BLOCK

Inputs:

vin_a1 p1 0 pulse 0 1.8 Ons Ons Ons 7ns 14ns vin_a2 p2 0 pulse 0 1.8 Ons Ons Ons 8ns 16ns vin_a3 p3 0 pulse 0 1.8 Ons Ons Ons 9ns 20ns vin_a4 p4 0 pulse 0 1.8 Ons Ons Ons 20ns 50ns vin_b1 g1 0 pulse 1.8 0 Ons Ons Ons 3ns 13ns vin_b2 g2 0 pulse 1.8 0 Ons Ons Ons 4ns 23ns vin_b3 g3 0 pulse 1.8 0 Ons Ons Ons 8ns 23ns vin_b4 g4 0 pulse 1.8 0 Ons Ons Ons 9ns 23ns vin_c0 c0 0 pulse (1.8 0 0 0 0 10n 20n)

Sum block

5. FLIP FLOP HOLD TIME AND SET UP TIME

It has the set up time of 0.081 ns

It has hold time of 0.012 ns

Clk to q delay = 6.575678e-11

6. MAGIC LAYOUTS AND POST LAYOUTS

INVERTER LAYOUT

XOR LAYOUT

FLIPFLOP LAYOUT

C1 BLOCK LAYOUT

C2 BLOCK LAYOUT

C3 BLOCK LAYOUT

C4 BLOCK LAYOUT

PG BLOCK LAYOUT

SUM BLOCK LAYOUT

CLA BLOCK LAYOUT

FINAL LAYOUT

TSPC FLIPFLOP: -

XOR GATE: -

AND GATE: -

PG BLOCK

SUM BLOCK:

C1 BLOCK:

C2 BLOCK:

C3 BLOCK:

C4 BLOCK:

The above blocks follow the logic mentioned below

$$C_1 = G_0 + P_0 C_0$$

$$C_2 = G_1 + P_1C_1 = G_1 + P_1G_0 + P_1P_0C_0$$

$$C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$$

$$\begin{array}{l} C_4 = G_3 + P_3 C_3 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + \\ P_3 P_2 P_1 P_0 C_0 \end{array}$$

The final output and values are under part 9

7.NGSPICE FINAL PRELAYOUT

vin al a 1 0 pulse 0 1.8 Ons Ons 7ns 14ns vin_a2 a_2 0 pulse 0 1.8 Ons Ons Ons 8ns 16ns vin_a3 a_3 0 pulse 0 1.8 0ns 0ns 0ns 9ns 20ns vin_a4 a_4 0 pulse 0 1.8 0ns 0ns 0ns 20ns 52ns vin b1 b 1 0 pulse 1.8 0 0ns 0ns 3ns 13ns 0ns vin_b2 b_2 0 pulse 1.8 0 Ons Ons Ons 4ns 23ns vin_b3 b_3 0 pulse 1.8 0 Ons Ons Ons 8ns 23ns vin_b4 b_4 0 pulse 1.8 0 Ons Ons Ons 9ns 23ns vin c0 c0 0 pulse(1.8 0 0 0 0 10n 20n) Vclk clk 0 pulse(0 1.8 0 0 0 10n 20n)

The clock frequency is 2.3GHz

8. FLOOR PLAN VDD (S 18) Figetop Carry a1 Figetop Carry a2 Figetop Sum Figetop S3 b1 Figetop PG C2 Sum Figetop S2 b2 Figetop S2 C4 Sum Figetop S3 C5 Sum Figetop S2 C6 Sum Figetop S2 C7 Sum Figetop S2 C8 Sum Figetop S2 C9 Sum Figetop S1

Vertical Pitch = 1477*lambda (lambda = 0.09) = 132.93n Horizontal Pitch = 3135*lambda (lambda = 0.09) = 282.15n

9. FINAL POST LAYOUT RESULTS

Outputs from flipflop bus

Outputs from propagate and generate block

Outputs from CLA (before final flipflop bus)

FINAL OUTPUT

COMPARISION:

	PRE- LAYOUT	POST- LAYOUT	
SET UP TIME	8.1x10^-11	9.3x10^-11	
HOLD TIME	12x10^-11	16x10^-11	
CLK TO Q DELAY	6.57×10^-11	6.07x10^-11	
DELAY OF ADDER	2.8008x10^- 10	5.0480x10^- 10	
MAX CLK FREQ	2.3GHz	1.51GHz	
MIN CLK	0.4267ns	0.6585ns	

10. CLOCK DELAY AND FREQUENCY

The worst-case delay of CLA Adder is $5.04805 x 10^{-10}$

Talk
$$\geq$$
 tpop of tpd + t
Talk \geq tpop of tpd + t
Talk \geq trop cik max
tpop = 6.04×10^{-10}
tpd = 9.3×10^{-11}
Talk min = 65.85×10^{-11}

The clock frequency is 1.51GHz

11. VERILOG

FLIPFLOP

CLA				
hp@hp-HP-Pavilion hp@hp-HP-Pavilion	n-Laptop-15-eg2xxx:-/w n-Laptop-15-eg2xxx:-/w le carry.vcd opened fo			og -o cla_tb carry.v carry_tb.v o_tb
	x3=0 x4=0 y1=0 y2=0 y		9 77-9 77-9 74-9 cout-	
	x2=0 x3=1 x4=1 v1=1 v2			
	x2=1 x3=1 x4=1 y1=1 y2			
	x2=1 x3=1 x4=0 y1=1 y2			
	x2=0 x3=1 x4=0 y1=1 y2			
	n-Laptop-15-eg2xxx:-/w			
			Control of the Contro	
Signals waves	2/4	3.0	X/n	H m
cin				
x4 x3				
x2				
x1 y4				
y3				
y2				
yl cout				
24				
13				
22				

Final Output:

12. FPGA

The chosen bits for this FPGA application are

 $A = 1 \ 0 \ 0 \ 1$ $B = 1 \ 1 \ 0 \ 1$

Final solution is 1 0 1 1 0

Case 2:

 $A = 1 \ 1 \ 0 \ 0$ $B = 1 \ 1 \ 1 \ 0$

1 1.50W/ 2 5.00W/ 0.0s 200.0s/ Auto 5 2 -2755

According Tourism

Loc mass 1-9211 DO Mass 1-9200, When the second tourism to the second tourism to the second tourism to the second tourism tourism tourism tourism to the second to the s

Final solution is $1\ 1\ 0\ 1\ 0$