HW7

1) a) # multiplications = 0 + 1 + 2 + 3 + ... + n
$$= \frac{n(n+1)}{2} \quad [\text{see Workshop 12}]$$

additions = n

so the time complexity is
$$n + \frac{n(n+1)}{2} = \Theta(n^2)$$
.

The for loop executes n times, and each iteration uses only $\Theta(1)$ operations (and only $\Theta(1)$ operations before lafter the loop).

So the time complexity is $\Theta(n)$.

2) a)
$$n \cdot (\Theta(n) + \Theta(n \log n)) = n \cdot \Theta(n \log n) - \Theta(n^2 \log n)$$

For loop
runs n
times, each iteration runs
both wibble & blave

b)
$$n \cdot \theta(n) = \theta(n^2)$$

this time bloog is
never called

c)
$$log_5(n) \cdot (\Theta(n) + \Theta(nlog n))$$

+ $(n-log_5n) \cdot \Theta(n)$
= $\Theta(log n) \cdot \Theta(nlog n) + \Theta(n) \cdot \Theta(n)$
= $\Theta(nlog^2n) + \Theta(n^2)$
= $\Theta(n^2)$.

- 3) No; for example, p=4 and a=b=2 is a counterexample.
- 4) We need to show: $\forall a,b \in \mathbb{Z}p$, if ab=0, then a=0 or b=0.

 [actually, "if and only if," but "if a=0 or b=0, then ab=0" is obvious]

 Direct proof. Let $a,b \in \mathbb{Z}p$ and suppose a.b=0. ab=0 in $\mathbb{Z}p$ means ab mod p=0i.e. p|(ab).

The fact in #3 implies pla or plb,
but a,bEZp implies 0=a;b≤p-1, so a=0 or b=0.

- 5) Let n be composite. Then $n=a\cdot b$ for some $a,b\in\mathbb{Z}$, $1\leq a\leq b\leq n$.

 Then in \mathbb{Z}_n , $a\neq 0$ and $b\neq 0$ but $a\cdot b$ mod n = n mod n = 0,

 so the Zero Product Property fails.
- - b) y mod 15=4 means y = 15q + 4 for some $q \in \mathbb{Z}$. 50 10y = 10(15q + 4) = 3(50q) + 40 = 3(50q) + 3.9 + 1 = 3(50q + 13) + 1, so 10y mod 3 = 1.