1

PROPOSITION 3. If $L(s, \rho)$ is entire and is zero-free in the rectangle $[\alpha, 1] \times [-x, x]$, where $x = (\log N)^{\beta}$, $\beta(1 - \alpha) > 2$, and N is the conductor of ρ , then

$$L(1, \rho) = \prod_{p < x} \prod_{i=1}^{d} (1 - \alpha_i p^{-1})^{-1} \left(1 + O\left(\frac{1}{\log x}\right) \right).$$

If $L(1, \rho)$ satisfies GRH, then

$$L(1, \rho) = \prod_{p < x} \prod_{i=1}^{d} (1 - \alpha_i p^{-1})^{-1} \left(1 + O\left(\frac{1}{\log \log N}\right) \right).$$

On C_q setting, where q is a prime, for prime p,

$$\prod_{i=1}^{q-1} (1 - \alpha_i p^{-1})^{-1} = \begin{cases} \prod_{i=1}^{q-1} (1 - p^{-1})^{-(q-1)} & \text{if } p \text{ split completely.} \\ \prod_{i=1}^{q-1} (1 - p^{-1})^{-1} & \text{if } p \text{ inert} \end{cases}$$

Claim) for prime p and q.

$$\frac{(1-p^{-q})^{-1}}{(1-p^{-1})^{-1}} \le (1-p^{-1})^{-(q-1)}$$

equivalently,

$$(1-p^{-q})^{-1} \le (1-p^{-1})^{-q}$$

or

$$(1 - p^{-1})^q \le (1 - p^{-q})$$

this is also equivalent to

$$(p-1)^q \le (p^q - 1)$$

this is true because

$$(p-1)^q < p^q$$

Now, we can say that

$$\prod \frac{(1-p^{-q})^{-1}}{(1-p^{-1})^{-1}} \le \prod (1-\alpha_i p^{-1})^{-1} \le \prod (1-p^{-1})^{-(q-1)}$$
 (2)

for $n \geq 2$,

$$\prod_{n \le y} (1 - p^{-n})^{-1} = \zeta(n)(1 + O(\frac{1}{y \log y})) \tag{3}$$

So, under GRH, prop3 with (3) and the Mertens' theorem to (2) gives

$$\left(\frac{1}{2} + o(1)\right) \frac{\zeta(q)}{e^{\gamma} \log \log N} \le L(1, \rho) \le (2 + o(1))^{(q-1)} (e^{\gamma} \log \log N)^{(q-1)}$$