Math 222: Conservative fields etc

Asa Royal (ajr74)

April 12, 2024

Definition 1 (conservative vector field). Let \vec{F} be a C^1 vector field. \vec{F} is conservative if it is the gradient of a continuously differentiable function f. I.e.

 \vec{F} is conservative $\iff F = \nabla f$

for some "potential" function f.

Theorem 2. Let $W \subset \mathbb{R}^3$ and \vec{F} be a vector field on W. TFAE:

- 1. \vec{F} is conservative
- 2. For any closed $C \subset W$,

 $\oint \vec{F} \cdot d\vec{s} = 0$ by Fundamental theorem of line integrals

3. For any two oriented simple curves C_1 , C_2 with the same endpoints:

$$\oint_{C_1} \vec{F} \cdot d\vec{s} = \oint_{C_2} \vec{F} \cdot d\vec{s}$$

Theorem 3 (Conservative fields <-> curl-free field?). Relationship between curl and conservative fields:

- 1. If \vec{F} is conservative, it is the gradient of some potential function f, so it must be curl-free.
- 2. If \vec{F} is curl-free and W is "simply connected", then \vec{F} is a conservative field.

Definition 4 (Divergence free field). \vec{F} is a divergence free field if $\vec{\nabla} \cdot \vec{F} = 0$.

Theorem 5 (divergence free field <-> curl field>). Relationship between curl and conservative fields:

- 1. If \vec{F} is a curl field, it is divergence free since $\vec{\nabla} \cdot \nabla f = 0$
- 2. If \vec{F} is divergence free and and every surface in W is the boundary of a bounded solid in W, \vec{F} is a curl field.

Theorem 6 (curl field stuff). TFAE:

- 1. G is a curl field
- 2. For any closed surface $S \subset W$, $\oint \vec{G} \cdot d\vec{s} = 0$
- 3. For any $S_1, S_2 \subset W$ with $\partial S_1 = \partial S_2$,

$$\int \int_{S_1} \vec{G} \cdot d\vec{S_1} = \int \int_{S_2} \vec{G} \cdot d\vec{S_2}$$

1