1.3 New functions from old functions

- 1. number system 數系
- 2. essential functions 基本函數
- 3. shifting, stretching and reflecting of functions 函數平移伸縮與反射
- 4. combination of functions 函數組合

0.1 Number system

ℕ: *Natural* number 自然數, positive integer 正整數: 1, 2, 3,

 \mathbb{Z} : *Integer* 整數, Zahlen[德] "number": $0, \pm 1, \pm 2, \ldots$

♦: Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk.

God made the integers, all else is the work of man.

整數神造, 其餘人爲。 — L. Kronecker

 \mathbb{Q} : Rational number 有理數, Quoziente[義] "quotient": $\frac{p}{q}$, $p,q(\neq 0) \in \mathbb{Z}$.

(含有限小數 $3.14 = \frac{314}{100}$ 與循環小數 $0.\overline{9} = 0.999 \dots = 1.$)

 \mathbb{R} : **Real** number 實數, 分成有理數與無理數 (**irrational** numbers). (無理數含 $\sqrt{2}, \pi, e, \cdots$, 不循環小數.)

- √2 Hippasus Pythagoras ♦: 第一次衝擊 500 B.C.: 無理數爆誕 — 希帕索斯 v.s. 畢達哥拉斯.
- ♦: 實數又可分成代數 (algebraic) 數/超越 (transcendental) 數:

是/否爲整係數多項式的根. 有理數 $\frac{p}{a}$, $\sqrt{2} \in$ 代數數; π , $e \in$ 超越數.

 \mathbb{C} : Complex number 複數, 實數 \cup 虛數 $(b \neq 0)$: $a+bi, a,b \in \mathbb{R}$, $i:=\sqrt{-1}$ imaginary unit 虛數單位.

- ♦: $|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| \ll |\mathbb{R}|$, 但是存在無窮多的有理數逼近到任何實數.
- $3, 3.1, 3.14, 3.141, 3.1415, 3.14159, 3.141592, 3.1415926, \ldots, \pi.$
 - ♦: 無限大的等級 阿列夫 (Aleph) 數 $\aleph_0 < \aleph_1 < \aleph_2 < \dots$

 $\aleph_0(\text{aleph-naught/zero/null}[德])$: (最小的) 可數 (countable) 無限大, $|\mathbb{N}| = \aleph_0$. $\aleph_1(\text{aleph-one})$: 第二小的無限大.

連續統假設 (Continuum hypothesis): $\aleph_1 = 2^{\aleph_0} \iff |\mathbb{R}| = \aleph_1$.

0.2 Essential functions

Function 函數 f(x) and the graph 圖形 $\{(x,y): y=f(x)\}$ of y=f(x).

- 1. Constant function 常數函數 f(x) = c. (圖形是水平線 y = c.)
- 2. Linear function 線性函數 f(x) = mx + b. m: slope 斜率, b: y-intercept y-軸截距. (垂直線 x = a 不是函數圖形.)

3. (n-th degree) Polynomial (n次) 多項式

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0.$$

 a_i : coefficient 係數, n: degree 次數.

linear(n = 1), quadratic(n = 2), and cubic(n = 3) function.

- 4. Power function 冪次函數 $f(x) = x^n$.
 - polynomial $n = 1, 2, 3, \ldots$
 - root function 開根函數 $x^{1/n} = \sqrt[n]{x}$.
 - reciprocal function 倒數函數 $x^{-1} = \frac{1}{x}$.

- 5. Algebraic function 代數函數 $+, -, \times, \div, \sqrt{}$ 組成
- 6. Exponential function 指數函數 (§1.4) a^x , a > 0.
- 7. Logarithmic function 對數函數 (§1.5) $\log_a x$, a > 0, $a \neq 1$.
- 8. Trigonometric function 三角函數 (§1.5) $\sin x$, $\cos x$, $\tan x$, $\cot x$, $\sec x$, $\csc x$.
- 9. Inverse trigonometric function 反三角函數 (§1.5) $\sin^{-1} x, \cos^{-1} x, \tan^{-1} x, \cot^{-1} x, \sec^{-1} x, \csc^{-1} x$.
- 10. Hyperbolic trigonometric function 雙曲三角函數 (\spadesuit §3.11) $\sinh x$, $\cosh x$, $\tanh x$, $\coth x$, $\operatorname{sech} x$, $\operatorname{csch} x$.
- 11. Inverse hyperbolic trigonometric function 反雙曲三角函數 (\diamondsuit §3.11) $\sinh^{-1} x, \cosh^{-1} x, \tanh^{-1} x, \coth^{-1} x, \operatorname{sech}^{-1} x, \operatorname{csch}^{-1} x$.

0.3 Shifting, stretching and reflecting of functions

Let y = f(x) and c > 1.

- 1. Shift y = f(x a), y = f(x + a), y = f(x) a, y = f(x) + a. 怎麼知道是往哪移? 代數字比較!
- 2. Stretch y = f(cx), y = f(x/c), y = cf(x), y = f(x)/c.
- 3. Reflect (y-axis) y = f(-x), (x-axis) y = -f(x), (origin) y = -f(-x).

0.4 Combination of functions

1. Add, subtract, multiply and divide. 加減乘除

$$(f+g)(x) = f(x) + g(x),$$

$$(f-g)(x) = f(x) - g(x),$$

$$(fg)(x) = (f \cdot g)(x) = f(x) \times g(x) = f(x)g(x),$$

$$(f/g)(x) = \left(\frac{f}{g}\right)(x) = f(x) \div g(x) = \frac{f(x)}{g(x)}.$$

Rational function 有理函數 $\frac{P(x)}{Q(x)}$, P(x), Q(x) are polynomials.

2. Composite function 合成函數 $(f \circ g)(x) = f(g(x))$. **Note:** In general, $f \circ g \neq g \circ f$.

Example 0.1 $f(x) = \sin 2x$, $g(x) = x^2$; $(f \circ g)(x) = f(g(x)) = \sin 2(x^2) = \sin 2x^2$, $(g \circ f)(x) = g(f(x)) = (\sin 2x)^2 = \sin^2 2x$.

