## Kommentar (for den spesielt interesserte)

Matematikk er såkalt *aksiomatisk* oppbygd. Dette betyr at vi erklærer noen<sup>1</sup> påstander for å vere sanne, og disse kaller vi for *aksiom* eller *postulat*. I regning har man omtrent 12 aksiom<sup>2</sup>, men i denne boka har vi holdt oss til å nevne disse 6:

## Aksiom

For tala a, b og c har vi at

$$a + (b + c) = (a + b) + c$$
 (A1)

$$a + b = b + a \tag{A2}$$

$$a(bc) = (ab)c (A3)$$

$$ab = ba$$
 (A4)

$$a(b+c) = ab + ac (A5)$$

$$a \cdot \frac{1}{a} = 1 \qquad (a \neq 0) \qquad (A6)$$

- (A1) Assosiativ lov ved addisjon
- (A2) Kommutativ lov ved addisjon
- (A3) Assosiativ lov ved multiplikasjon
- (A4) Kommutativ lov ved multiplikasjon
- (A5) Distributativ lov
- (A6) Eksistens av multiplikativ identitet

Aksiomene legger selve fundamentet i et matematisk system. Ved hjelp av dem finner vi flere og mer komplekse sannheter som vi kaller teorem. I denne boka har vi valgt å kalle både aksiom, definisjoner og teorem for reglar. Dette fordi aksiom, definisjoner og teorem alle i praksis gir føringer (regler) for handlingsrommet vi har innenfor det matematiske systemet vi opererer i.

<sup>&</sup>lt;sup>1</sup>Helst så få som mulig.

<sup>&</sup>lt;sup>2</sup>Tallet avhenger litt av hvordan man formulerer påstandene.

I  $Del\ I$  har vi forsøkt å presentere motivasjonen bak aksiomene, for de er selvsagt ikke tilfeldig utvalgte. Tankerekken som leder oss fram til de nevnte aksiomene kan da oppsummeres slik:

- 1. Vi definerer positive tall som representasjoner av enten en mengde eller en plassering på en tallinje.
- 2. Vi definerer hva addisjon, subtraksjon, multiplikasjon og divisjon innebærer for positive heltall (og 0).
- 3. Ut ifra punktene over tilsier all fornuft at (A1)-(A6) må gjelde for alle positive heiltal.
- 4. Vi definerer også brøk som representasjoner av en mengde eller som en plassering på en tallinje. Hva de fire regneartane innebærer for brøker bygger vi på det som gjelder for positive heltall.
- 5. Ut ifra punktene over finner vi at (A1)-(A6) gjelder for alle positive, rasjonale tall.
- 6. Vi innfører negative heltall, og utvider tolkningen av addisjon og subtraksjon. Dette gir så en tolkning av multiplikasjon og divisjon med negative heltall.
- 7. (A1)-(A6) gjelder også etter innføringen av negative heltall. Å vise at de også gjelder for negative, rasjonale tall er da en ren formalitet.
- 8. Vi kan aldri skrive verdien til et irrasjonalt tall helt eksakt, men verdien kan tilnærmes ved et rasjonalt tall<sup>1</sup>. Alle utregninger som innebærer irrasjonale tall er derfor i *praksis* utregninger som inneberærer rasjonale tall, og slik kan vi si at<sup>2</sup> (A1) (A6) gjelder også for irrasjonale tall.

En lignende tankerekke kan brukes for å argumentere for potensreglene vi fant i seksjon ??.

 $<sup>^{1} \</sup>text{For eksempel kan man skrive} \ \sqrt{2} = 1.414213562373... \approx \frac{1414213562373}{1000000000000}$ 

<sup>&</sup>lt;sup>2</sup> Obs! Denne forklaringen er god nok for boka sitt formål, men er en ekstrem forenkling. Irrasjonale tall er et komplisert tema som mange bøker for avansert matematikk bruker mange kapittel for å forklare i full dybde.