```
import pandas as pd
In [1]:
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.model selection import train test split, cross val score
         from sklearn.svm import SVC
         from sklearn.metrics import accuracy score
         from sklearn.neighbors import KNeighborsClassifier
         %matplotlib inline
        df=pd.read csv('D:/OASIS/1.IRSI FLOWER TASK/archive/Iris.csv')
        df.head(5)
            Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
Out[3]:
                                                                           Species
         0 1
                          5.1
                                         3.5
                                                       1.4
                                                                     0.2 Iris-setosa
         1 2
                          4.9
                                         3.0
                                                       1.4
                                                                     0.2 Iris-setosa
         2 3
                                         3.2
                                                       1.3
                          4.7
                                                                     0.2 Iris-setosa
         3 4
                                        3.1
                                                       1.5
                                                                     0.2 Iris-setosa
                          4.6
         4 5
                          5.0
                                         3.6
                                                       1.4
                                                                     0.2 Iris-setosa
In [4]: df=df.drop(columns=['Id']) #Delete Columns "Id''
         df.head()
            SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
Out[4]:
                                                                       Species
         0
                       5.1
                                     3.5
                                                    1.4
                                                                  0.2 Iris-setosa
                                                                  0.2 Iris-setosa
         1
                      4.9
                                     3.0
                                                    1.4
         2
                       4.7
                                     3.2
                                                                  0.2 Iris-setosa
                                                    1.3
         3
                       4.6
                                     3.1
                                                    1.5
                                                                  0.2 Iris-setosa
         4
                       5.0
                                     3.6
                                                    1.4
                                                                  0.2 Iris-setosa
```

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [6]: #Checking for null values
 print(df.isna().sum())

SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
Species 0

dtype: int64

In [7]: df.head(150)

Out[7]: Sepa

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
•••					
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

In [8]: df.tail(150)

ut[8]:		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa
	•••					
	145	6.7	3.0	5.2	2.3	Iris-virginica
	146	6.3	2.5	5.0	1.9	Iris-virginica
	147	6.5	3.0	5.2	2.0	Iris-virginica
	148	6.2	3.4	5.4	2.3	Iris-virginica
	149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

```
In [9]: n = len(df[df['Species'] == 'versicolor'])
            n1 = len(df[df['Species'] == 'virginica'])
            n2 = len(df[df['Species'] == 'setosa'])
            print("No of Versicolor in Dataset:",n)
            print("No of Virginica in Dataset:",n1)
            print("No of Setosa in Dataset:",n2)
            No of Versicolor in Dataset: 0
            No of Virginica in Dataset: 0
            No of Setosa in Dataset: 0
  In [10]: #pai chart
            fig = plt.figure()
            ax = fig.add_axes([0,0,1,1])
            ax.axis('equal')
            1 = ['Versicolor', 'Setosa', 'Virginica']
            c - [E0 E0 E0]
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```

```
ax.pie(s, labels = 1,autopct='%1.2f%%')
plt.show()
```



```
In [11]: df.hist()
   plt.show()
```



```
In [12]: #Pairplot
sns.pairplot(df,hue='Species');
```



```
In [13]: df.head()
Out[13]:
            SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                      Species
         0
                       5.1
                                     3.5
                                                   1.4
                                                                 0.2 Iris-setosa
                                     3.0
                                                                 0.2 Iris-setosa
                       4.9
                                                   1.4
         2
                       4.7
                                     3.2
                                                   1.3
                                                                0.2 Iris-setosa
         3
                       4.6
                                     3.1
                                                   1.5
                                                                0.2 Iris-setosa
          4
                       5.0
                                     3.6
                                                   1.4
                                                                 0.2 Iris-setosa
In [14]: ##Target Variable and feture variable
         X = df[['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm']]
In [15]:
         y= df['Species']
In [16]: from sklearn.model_selection import train_test split
         X_train,X_test, y_train, y_test= train_test_split(X,y,test_size=0.2,random_state=4)
         print('Train set:', X train.shape, y train.shape)
In [17]:
         Train set: (120, 4) (120,)
In [18]: print('Train set:', X_test.shape, y_test.shape)
         Train set: (30, 4) (30,)
         SVM
         svm_model = SVC()
In [19]:
          svm model.fit(X train, y train)
          y pred = svm model.predict(X test)
          accuracy = accuracy score(y test, y pred)
          print("Accuracy:", accuracy)
```

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

Accuracy: 0.966666666666667

SVM Cross Validation

Score Variance: 0.05

```
In [20]: scores = cross_val_score(svm_model, X_train, y_train, cv=5) # 5-fold cross-validation

# Print the average score and its variance
print("Mean Accuracy: {:.2f}".format(scores.mean()))
print("Score Variance: {:.2f}".format(scores.std()))
Mean Accuracy: 0.97
```

K Nearest Neighbor (KNN) Classification

```
In [21]: KNN_model = KNeighborsClassifier()
   KNN_model.fit(X_train, y_train)
   y_pred_knn = KNN_model.predict(X_test)
   knn_accuracy = accuracy_score(y_test, y_pred_knn)
   print(knn_accuracy)

0.96666666666666

C:\Users\Hp\anaconda3\lib\site-packages\sklearn\neighbors\_classification.py:228: FutureWarning: Unlike other reduction
   functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In Scip
   y 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the stati
   stic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avo
   id this warning.
        mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
```

KNN Cross Validation

```
In [22]: knn_scores = cross_val_score(KNN_model, X_train, y_train, cv=5)
    print("Mean Accuracy: {:.2f}".format(scores.mean()))
    print("Score Variance: {:.2f}".format(scores.std()))

Mean Accuracy: 0.97
    Score Variance: 0.05
```

```
C:\Users\Hp\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228: FutureWarning: Unlike other reduction
functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciP
v 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the stati
stic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avo
id this warning.
  mode, = stats.mode( y[neigh ind, k], axis=1)
C:\Users\Hp\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228: FutureWarning: Unlike other reduction
functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciP
y 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the stati
stic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avo
id this warning.
  mode, = stats.mode( y[neigh ind, k], axis=1)
C:\Users\Hp\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228: FutureWarning: Unlike other reduction
functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciP
v 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the stati
stic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avo
id this warning.
 mode, = stats.mode( y[neigh ind, k], axis=1)
C:\Users\Hp\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228: FutureWarning: Unlike other reduction
functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciP
y 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the stati
stic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avo
id this warning.
  mode, = stats.mode( y[neigh ind, k], axis=1)
C:\Users\Hp\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228: FutureWarning: Unlike other reduction
functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciP
v 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the stati
stic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avo
id this warning.
  mode, = stats.mode( y[neigh ind, k], axis=1)
```

Decision Tree Classifier

```
In [23]: from sklearn.tree import DecisionTreeClassifier
    d_t = DecisionTreeClassifier()
    d_t.fit(X_train,y_train)
    y_pred = d_t.predict(X_test)
    accuracy = accuracy_score(y_test,y_pred)
    print("Accuracy:", accuracy)
```

Accuracy: 0.966666666666667

Decision Tree Cross Validation

```
In [24]: d_t_scores = cross_val_score(d_t, X_train, y_train, cv=5)
    print("Mean Accuracy: {:.2f}".format(scores.mean()))
    print("Score Variance: {:.2f}".format(scores.std()))

Mean Accuracy: 0.97
    Score Variance: 0.05
```

Thank you

Md Sadiul Haque

```
In []:
```