Relacje

Definicja 1.1: Relacja

Dane są dwa zbiory A i B. **Relacją (dwuargumentową)** R między elementami zbioru A a elementami zbioru B nazywamy dowolny podzbiór iloczynu kartezjańskiego $A \times B$ ($R \subset A \times B$).

Mówimy, że elementy $a \in A$ oraz $b \in B$ są ze sobą w relacji R (ozn. $a \sim b$ lub aRb), jeśli $\langle a, b \rangle \in R$.

Niech *R* będzie relacją na niepustym zbiorze *A*. Mówimy, że:

- (1) R jest **zwrotna** \Leftrightarrow $(\forall a \in A) aRa$.
- (2) R jest **przeciwzwrotna** \Leftrightarrow $(\forall a \in A) \neg aRa$.
- (3) R jest **przechodnia** \Leftrightarrow $(\forall a, b, c \in A)(aRb \land bRc \Rightarrow aRc)$.
- (4) R jest symetryczna $\Leftrightarrow (\forall a, b \in A)(aRb \Rightarrow bRa)$.
- (5) R jest słabo antysymetryczna $\Leftrightarrow (\forall a, b \in A)(aRb \land bRa \Rightarrow a = b)$.
- (6) R jest silnie antysymetryczna \Leftrightarrow $(\forall a, b \in A) \neg (aRb \land bRa) \Leftrightarrow (\forall a, b \in A)(aRb \Rightarrow \neg bRa)$.
- (7) R jest **spójna** \Leftrightarrow $(\forall a, b \in A)(aRb \lor bRa)$.

Relację silnie antysymetryczną nazywamy również relacją asymetryczną bądź to przeciwsymetryczną.

Definicja 1.2: Relacja równoważności

Niech $R \subset A \times A$. Gdy relacja R jest **zwrotna**, **symetryczna** i **przechodnia**, to mówimy, że jest **relacją równoważności**.

Definicja 1.3: Klasa równoważności

Niech R będzie relacją równoważności na zbiorze A. Klasą równoważności (abstrakcji) elementu $a \in A$ względem relacji R nazywamy zbiór

$$[a]_R = \{x \in A : xRa\}.$$

Definicja 1.4: Zbiór ilorazowy

Zbiór wszystkich klas abstrakcji (względem) relacji równoważności R, czyli zbiór

$$A/_R = \{ [a]_R : a \in A \},$$

nazywamy **zbiorem ilorazowym** relacji R.

Twierdzenia o klasach równoważności 1.1

Niech R będzie relacją równoważności na zbiorze A. Wówczas mamy:

- (i) $(∀a ∈ A) a ∈ [a]_R ← ze zwrotności R$
- (ii) $(\forall a, b \in A)(a \in [b]_R \Leftrightarrow b \in [a]_R) \leftarrow z$ symetryczności R
- (iii) $(\forall a, b \in A)(a \in [b]_R \Leftrightarrow [a]_R = [b]_R)$

Definicja 1.5: Relacje porządku częściowego

Relację \leq na zbiorze A nazywamy **porządkiem częściowym słabym (nieostrym)** na zbiorze A, jeśli jest **zwrotna**, **przechodnia** i **słabo antysymetryczna**.

Relację < na zbiorze A nazywamy **porządkiem częściowym ostrym** na zbiorze A, jeśli jest **przeciwzwrotna** i **przechodnia**.

Na wykładzie stwierdzono, iż ostry porządek częściowy jest również asymetryczny. Jednak fakt ten wynika już z przeciwzwrotności i przechodniości porządku, co można prosto wykazać.

Dowód. Załóżmy, że relacja < na zbiorze A jest przeciwzwrotna i przechodnia. Weżmy $a,b\in A$, wówczas z przechodniości

$$a < b \land b < a \Rightarrow a < a \Leftrightarrow \neg(a < b \land b < a) \lor a < a$$
.

Jednak z przeciwzwrotności < wiemy, iż zdanie a < a jest fałszywe dla dowolnego a ze zbioru A, dlatego też

$$\neg (a < b \land b < a) \lor a < a \Rightarrow \neg (a < b \land b < a) \Leftrightarrow \neg (a < b) \lor \neg (b < a) \Leftrightarrow (a < b \Rightarrow \neg (b < a)).$$

Definicja 1.6: Liniowy porządek

Porządek częściowy \leq (lub \prec) na zbiorze A nazywamy **porządkiem liniowym (pełnym)** na zbiorze A, jeżeli jest **spójny**.

Spójność dla porządku ostrego formułujemy następująco: $(\forall a, b \in A)(a \neq b \Rightarrow a < b \lor b < a)$.

Definicja 1.7: Elementy wyróżnione

Dany jest zbiór A z porządkiem częściowym \leq . Niech $B \subset A$ i $c \in A$. Mówimy, że:

- I. c jest ograniczeniem górnym zbioru B, jeśli $(\forall b \in B)$ $b \le c$.
- II. c jest **ograniczeniem dolnym** zbioru B, jeśli $(\forall b \in B)$ $c \le b$.
- III. c jest **kresem górnym** (ozn. sup A) zbioru B, jeśli:
 - (a) jest ograniczeniem górnym.
 - (b) dla dowolnie innego ograniczenia górnego c' zbioru B zachodzi $c \le c'$.
- IV. c jest **kresem dolnym** (ozn. inf A) zbioru B, jeśli:
 - (a) jest ograniczeniem dolnym.
 - (b) dla dowolnie innego ograniczenia dolnego c' zbioru B zachodzi $c' \le c$.
- V. *c* jest elementem **maksymalnym** zbioru *B*, jeśli $c \in B \land \neg(\exists b \in B) c < b$.
- VI. c jest elementem **największym** zbioru B, jeśli $c \in B \land (\forall b \in B)$ $b \le c$.
- VII. c jest elementem **minimalnym** zbioru B, jeśli $c \in B \land \neg (\exists b \in B) \ b < c$.
- VIII. c jest elementem **najmniejszym** zbioru B, jeśli $c \in B \land (\forall b \in B) c \leq b$.

Powyższe pojęcia¹ na wykładzie zostały zdefiniowane tylko dla liniowo uporządkowanego zbioru *A*, ale można je bez problemu uogólnić na zbiór z porządkiem częściowym, co też zrobiłem. Warto dodać, iż dla porządków liniowych element największy i maksymalny znaczą to samo. Analogicznie jest z elementem najmniejszym i minimalnym. Sprawy mają się inaczej w przypadku porządków częściowych. Oczywiście, element największy jest również i maksymalny. Jednak implikacja w drugą stronę już nie zawsze zachodzi. Obrazem tego stanu rzeczy są podane diagramy Hassego.

Twierdzenie 1.2

Dane są dwie relacje \leq i < w zbiorze A. Jeśli spełniają one następujące warunki:

- (a) $(\forall a, b \in A)(a \le b \Leftrightarrow a < b \lor a = b)$
- (b) $(\forall a, b \in A)(a < b \Leftrightarrow a \le b \land a \ne b)$,

wówczas ≤ jest porządkiem słabym, wtedy i tylko wtedy gdy < jest porządkiem ostrym.

Definicja 1.8: Relacja odwrotna

Niech $R \subset A \times B$. **Relacją odwrotną** R^{-1} do relacji R nazywamy zbiór

$$R^{-1} := \{ \langle a, b \rangle \in A \times B : \langle a, b \rangle \in R \}.$$

Innymi słowy $(\forall a \in A)(\forall b \in B)(bR^{-1}a \Leftrightarrow aRb)$.

¹Na wykładzie pojawiły się wszystkie wymienione terminy, z wyjątkiem elementu najmniejszego i największego. Zapewne dlatego, że dla porządku liniowego, który został przyjęty, nie ma rozróżnienia między elementem największym a maksymalnym.

Funkcje

Definicja 2.1: Funkcja

Relację f między elementami zbioru A i elementami zbioru B nazywamy funkcją, jeżeli

$$(\forall x \in A)(\exists ! y \in B) \langle x, y \rangle \in f.$$

Powyższe zdanie można zapisać równoważnie jako

$$(\forall x \in A)(\exists y \in B) \ \langle x, y \rangle \in f \ \land \ ((\forall x \in A)(\forall y_1, y_2 \in B)(\langle x, y_1 \rangle \in f \land \langle x, y_2 \rangle \in f \Rightarrow y_1 = y_2)).$$

- **Dziedziną** (ozn. dom(f) lub D_f) funkcji f nazywamy zbiór A.
- **Przeciwdziedziną** (ozn. Q_f) funkcji f nazywamy zbiór B.
- **Zbiorem wartości** (ozn. rng(f) lub R_f) funkcji f nazywamy zbiór $R_f = \{y \in B : (\exists x \in A) \ \langle x, y \rangle \in f\} \subset B$.

Definicja 2.2: Obraz i przeciwobraz

Niech $f: A \rightarrow B$ oraz $C \subset A$ i $D \subset B$.

(1) **Obrazem** zbioru C względem funkcji f nazywamy zbiór

$$f[C] = \{y \in B : (\exists x \in C) \ y = f(x)\} = \{f(x) : x \in C\}.$$

(2) **Przeciwobrazem** zbioru *D* względem funkcji *f* nazywamy zbiór

$$f^{-1}[D] = \{x \in A : f(x) \in D\}.$$

Supremum funkcji f na zbiorze $C \sup_{x \in C} f(x)$ jest kresem górnym obrazu zbioru C względem niej. Analogicznie definiujemy $\inf_{x \in C} f(x)$, $\max_{x \in C} f(x)$ i $\min_{x \in C} f(x)$.

Definicja 2.3: Injekcja

Relację funkcyjną $f \subset A \times B$ nazywamy **injekcją** (różnowartościową), jeżeli

$$(\forall x_1, x_2 \in A)(f(x_1) = f(x_2) \Rightarrow x_1 = x_2)$$
, czyli równoważnie $(\forall x_1, x_2 \in A)(\forall y \in B)(\langle x_1, y \rangle \in f \land \langle x_2, y \rangle \in f \Rightarrow x_1 = x_2)$.

Definicja 2.4: Surjekcja

Mówimy, że relacja funkcyjna $f \subset A \times B$ jest ze zbioru A **na** zbiór B, jeśli

$$(\forall y \in B)(\exists x \in A) \ y = f(x), \text{ czyli } (\forall y \in B)(\exists x \in A) \ \langle x, y \rangle \in f.$$

Funkcję taką nazywamy też surjekcją.

Definicja 2.5: Bijekcja

Relację funkcyjną, która jest zarówno injekcją jak i surjekcją nazywamy bijekcją.

Definicja 2.6: Funkcja odwrotna

Jeśli $f:A\to B$ jest bijekcją, to **funkcją odwrotną** do f jest funkcja $f^{-1}:B\to A$, taka że

$$(\forall x \in A)(\forall y \in B)(\langle y, x \rangle \in f^{-1} \Leftrightarrow \langle x, y \rangle \in f)$$

Twierdzenie 2.1

- (1) Jeżeli funkcja jest bijekcją, to posiada funkcję odwrotną, która również jest bijekcją
- (2) Jeżeli funkcja jest odwracalna, to oznacza, że jest bijekcją.

Definicja 2.7: Złożenie Funkcji

Niech $f:A\to B$, $g:B\to C$ i $x\in A$. **Złożeniem funkcji** f z funkcją g nazywamy funkcję $g\circ f:A\to C$, określoną wzorem $(g\circ f)(x)=g(f(x))$.

Wyrażenie $(g \circ f)(x) = g(f(x))$ można zapisać alternatywnie jako:

$$(\forall x \in A)(\forall z \in C) \ \langle x, z \rangle \in g \circ f \Leftrightarrow (\exists y \in B)(\langle x, y \rangle \in f \land \langle y, z \rangle \in g).$$

Twierdzenie 2.2

Dla dowolnych funkcji f, g, h zachodzi równość $(f \circ g) \circ h = f \circ (g \circ h)$.

Definicja 2.8: Funkcja identycznościowa

Dla dowolnego niepustego zbioru A możemy określić **funkcję identycznościową** na zbiorze A (identyczność na zbiorze A) następująco:

$$id_A: A \to A$$
, $(\forall x \in A) id_A(x) = x$.

Twierdzenie 2.3

Jeśli $f:A\to B$ i $f^{-1}:B\to A$, to $f^{-1}\circ f:A\to A$ jest identycznością na zbiorze A.

Równoliczność

Definicja 3.1: Równoliczność

Mówimy, że zbiory A i B są **równoliczne** (ozn. |A| = |B|, $A \sim B$), gdy istnieje bijekcja $f : A \rightarrow B$.

Równoliczność *ma własności relacji równoważności* (jest zwrotna, symetryczna i przechodnia) i faktycznie nią jest, gdy ograniczymy relację równoliczności do zbioru $\mathcal{P}(U)^2$. Jeśli $A, B \in \mathcal{P}(U)$ i R będzie symbolizować relację równoliczności, to możemy przyjąć, iż |A| = |B| oznacza, że $[A]_R = [B]_R$.

Definicja 3.2: Zbiór skończony i nieskończony

O zbiorze A mówimy, że jest **skończony**, jeżeli jest pusty lub równoliczny jakiemuś zbiorowi postaci $\{1,\ldots,n\}_{n\in\mathbb{N}}$. Piszemy wówczas, że |A|=n. Zbiór, który nie jest skończony nazywamy **nieskończonym**.

Definicja 3.3: Zbiór przeliczalny

Mówimy, że zbiór A jest **przeliczalny**, jeżeli jest równoliczny zbiorowi \mathbb{N} . Piszemy wówczas, że $|A| = \aleph_0$.

Zbiór nazywamy co najwyżej przeliczalnym, jeśli jest on skończony lub przeliczalny.

Definicja 3.4: Zbiór nieprzeliczalny

Mówimy, że zbiór *A* jest **nieprzeliczalny**, jeżeli nie jest przeliczalny, ani skończony.

Zbiór liczb rzeczywistych jest zbiorem nieprzeliczalnym. $|\mathbb{R}|$ oznaczamy jako \mathfrak{c} lub 2^{\aleph_0} i nazywamy *continuum*. Continuum jest większe od mocy \mathbb{N} .

 $^{^2\}mathcal{P}(U)$ to zbiór potęgowy pewnego zbioru U, czyli zbiór wszystkich podzbiorów U. Równoliczność ograniczamy do jakiegoś zbioru potęgowego, bo jej dziedzina i obraz nie są normalnie zbiorami, więc nie byłaby ona relacją równoważności w ścisłym sensie.

Liczby rzeczywiste