1. Résoudre l'équation $e^z + e^{-z} = 0$ d'inconnue $z \in \mathbb{C}$.

2. Justifier la dérivabilité de $f: x \mapsto \ln\left(1+\sqrt{1-x^2}\right)$ sur un ensemble à déterminer et calculer sa dérivée.

3. Déterminer en détaillant $\lim_{x\to +\infty} xe^{-\sqrt{\ln x}}$.

4.	Compléter en précisan	it l'ensemble de définition e	t l'image, le domaine	de dérivabilité et l'expression de la dérivée.
----	-----------------------	-------------------------------	-----------------------	--

La fonction $\arcsin:\ldots\ldots\to$ est dérivable \sup et $\arcsin'(x)=\ldots\ldots\ldots$

La fonction arccos: \rightarrow est dérivable sur et arccos'(x) =

La fonction arctan: \rightarrow est dérivable sur et arctan'(x) =

5. Soit $f: \left\{ \begin{array}{ccc} \mathbb{R}^* & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{1}{x} \end{array} \right.$ On admet que f est de classe \mathcal{C}^{∞} sur \mathbb{R}^* . Donner une expression de $f^{(n)}(x)$ pour $x \in \mathbb{R}^*$ et $n \in \mathbb{N}$. On exige une démonstration.

6. Déterminer les limites en $-\infty$ et $+\infty$ de la fonction th. On exige une démonstration.