# **COVID-19 US County JHU Data & Demographics**

## Introduction:

The United States of America has recently, had the most reported COVID-19 cases and this dataset that I have taken gives a piece of detailed information about the country, state, male, female, age group, and demographics information such as latitude and longitude. To perform this research, I used this dataset.

### **DATASET LINK:**

https://drive.google.com/drive/folders/1RfLhJVOK45x9oGBmOKyZEpBAaHuITYaw

## **US COUNTY.CSV**

The main objective of this analysis is to find out the patterns within the dataset to get a further understanding of the data. I also wanted to leverage it to choose a machine algorithm for predicting the survival rate of patients during the period of COVID-19.



The dataset consists of demographic information population information (Such as male and female rates) and age information.

Data attributes: Fips, County, State, State code, male, female, median age, population, female percentage, lat, long.

So totally my dataset has 3220 rows \* 11 columns with no null values. The columns have a title/heading, which makes them readable.



# **Observations of dataset:**

- It has all the states in the United States of America.
- The data includes patients whose ages range from 30 to 60.
- The data also contains fips code, latitude, and longitude details for easy understanding of the location details.

# **Dataset and Code Description:**

This data contains the total population, male and female.

**Explanation:** This code helps us to know the total count of males from different states.

```
[10] print(data_frame["male"].value_counts)
    <bound method IndexOpsMixin.value_counts of 0</pre>
                                                             26874
             101188
    2
              13697
              12152
    3
              28434
    3215
              25580
    3216
              4332
              11169
    3217
    3218
              16541
    3219
              17475
    Name: male, Length: 3220, dtype: int64>
```

**Explanation**: This code helps us to know the total count of females from different states.

```
[11] print(data_frame["female"].value_counts)
   <bound method IndexOpsMixin.value_counts of 0</pre>
                                                          28326
           106919
    1
    2
            12085
    3
             10375
             29211
    3215
             27791
    3216
              4439
    3217
             11824
    3218
             17608
    3219
             18964
    Name: female, Length: 3220, dtype: int64>
```

Explanation: This code helps us to know the total count of population from different state

```
print(data_frame['population'].value_counts)
<bound method IndexOpsMixin.value_counts of 0</pre>
                                                      55200
        208107
2
         25782
3
         22527
4
         57645
3215
         53371
3216
          8771
3217
         22993
3218
         34149
         36439
3219
Name: population, Length: 3220, dtype: int64>
```

# **Important note:**

Before performing this code, we need to down the dataset and upload it in the Google Colab environment.



Code: This code helps me to read a CSV or Excel file in order to due EDA



### **Output:**



# **Boxplot Graph:**

This graph shows a clear understanding of the male and female ratio





# ${\bf Scatterplot}_{:}$

This graph shows a clear understanding of the male and female ratio.



# Histogram:

This graph shows a clear understanding of the male and female ratio







### **Important Links:**

#### **Dataset Link:**

https://drive.google.com/drive/folders/1RfLhJVOK45x9oGBmOKyZEpBAaHuITYaw

 $\frac{https://docs.google.com/spreadsheets/d/1OVgcN0T2npE5nRc9RTND8tUP9znStHVZJwMrOthtqDo/edit\#gid=1650272371}{}$ 

#### GitHub Link:

https://github.com/santhiya-hds5210/ORES-5160-EDA

#### **Drive Link:**

https://drive.google.com/drive/folders/1W8AiXxbgTYK-HOXSPKjee9qGdj Ari1O

### **Appendix**:

- <a href="https://www.kaggle.com/datasets/headsortails/covid19-us-county-jhu-data-demographics?select=us">https://www.kaggle.com/datasets/headsortails/covid19-us-county-jhu-data-demographics?select=us</a> county.csv
- <a href="https://stackoverflow.com/questions/18039057/pandas-parser-cparsererror-error-tokenizing-data">https://stackoverflow.com/questions/18039057/pandas-parser-cparsererror-error-tokenizing-data</a>
- <a href="https://chat.openai.com/c/8da6a9dc-bee7-4983-9bf9-7530b2178d31">https://chat.openai.com/c/8da6a9dc-bee7-4983-9bf9-7530b2178d31</a>
- <a href="https://www.kaggle.com/code/masoudfaramarzi/basics-of-accesing-data-from-urls-using-pandas">https://www.kaggle.com/code/masoudfaramarzi/basics-of-accesing-data-from-urls-using-pandas</a>
- https://www.forefront.ai/app/chat/new
- https://www.numbeo.com/quality-of-life/rankings by country.jsp
- <a href="https://www.analyticsvidhya.com/blog/2022/03/exploratory-data-analysis-with-an-example/">https://www.analyticsvidhya.com/blog/2022/03/exploratory-data-analysis-with-an-example/</a>
- https://docs.google.com/spreadsheets/d/10VgcN0T2npE5nRc9RTND8tUP9znStHVZJwMrOth tqDo/edit#gid=1650272371
- https://canvas.slu.edu/courses/45377/assignments/343230
- <a href="https://colab.research.google.com/drive/1Yr">https://colab.research.google.com/drive/1Yr</a> FH rjTCW7741e1rArixu4ZWL02FGC#scrollTo=Z flbVsMyiqOI
- https://github.com/santhiya-hds5210/ORES-5160-EDA
- https://www.google.com/search?q=scatter+plot&oq=scatter&gs\_lcrp=EgZjaHJvbWUqDQgBE\_AAYgwEYsQMYgAQyDwgAEEUYORiDARixAxiABDINCAEQABiDARixAxiABDIKCAIQABixAxiABDINCAQABiDARixAxiABDINCAQQABiDARixAxiABDIKCAUQABixAxiABDINCAYQABiDARixAxiABDI HCAcQABiABDIKCAgQABixAxiABDINCAkQABiDARixAxiABNIBCDMzOTdqMGo3qAlAsAlA&sourceid=chrome&ie=UTF-8
- https://www.google.com/search?q=boxplot&oq=boxpl&gs lcrp=EgZjaHJvbWUqDAgBEAAYQx ixAxiKBTIGCAAQRRg5MgwIARAAGEMYsQMYigUyDwgCEAAYQxiDARixAxiKBTIKCAMQABixAxiA BDIJCAQQABhDGIoFMgcIBRAAGIAEMgkIBhAAGEMYigUyCQgHEAAYQxiKBTIJCAgQABhDGIoF MgcICRAAGIAE0gEIMzEwNmowajeoAgCwAgA&sourceid=chrome&ie=UTF-8