

	CISC	RISC
价格	硬件复杂,芯片成 本高	硬件较简单,芯片 成本低
性能	减少代码尺寸,增 加指令的执行周期 数	使用流水线降低指 令的执行周期数, 增加代码尺寸
指令集	大量的混杂型指令 集,有专用指令完 成特殊功能	简单的单周期指令 ,不常用的功能由 组合指令完成
应用范围	通用机	专用机
功耗与面 积	含有丰富的电路单 元,功能强、面积 大、功耗大	处理器结构简单, 面积小, 功耗小
设计周期	Ł	短

CPU, Go-Go-Go

- 取指令: 当程序已在存储器中时,首先根据程序入口地址取出一条程序,为此要发出指令地址及控制信号。
- 分析指令:即指令译码。是对当前取得的指令进行分析,指出它要求什么操作,并产生相应的操作控制命令
- 执行指令:操作控制信号序列,通过运算器,存储器及输入/输出设备的执行,实现每条指令的功能,其中包括对运算结果的处理以及下条指令地址的形成。

	CISC	RISC
内核结构	冯.诺依曼	哈弗
指令系统	不等长指令集, 指令功能强	等长精简指令集,效 率高
难点	实现复杂性	编译器复杂性
微处理器体系	微码	流水线
操作数	任意	寄存器中
典型用途	通用计算机	专用、嵌入式
		5

CPU的作用

- 1) 能对指令进行译码并执行规定的动作
- 2) 可以进行算术和逻辑运算
- 3) 能与存储器/外设交换数据
- 4) 提供整个系统所需要的控制

RISC

- Reduced Instruction Set Computer
- 复杂指令集计算机CISC(Complex Instruction Set Computer)
- ▶ 有限的简单的指令集
- > 大量寄存器
- ▶ 指令流水线

1

RISC的特点及设计思想

RISC机的设计应当遵循以下五个原则:

- ① 指令条数少,格式简单,易于译码;
- ② 提供足够的寄存器,只允许load和store指令访问内存;
- ③ 指令由硬件直接执行,在单个周期内完成;
- ④ 充分利用流水线;
- ⑤ 强调优化编译器的作用;

最简的CPU内核

- 时钟发生器: 分频生成系列时钟信号
- 指令寄存器: 指令存入寄存器
- 累加器: 存放当前的运算结果
- 算术逻辑运算单元: 加、与、异或、跳转
- 数据控制器: 控制累加器的数据输出
- 状态控制器、程序控制器: 有限状态机
- 程序计数器: 提供指令地址
- 地址多路器:程序计数器地址/数据/端口地址

10

RISC状态机其实很简单

- 严格时钟节拍,每个节拍做固定的任务 取指H、取指L、空、PC+、读数、写数、空、PC+
- 所谓固定的任务: 按OPCODE写case语句
- 复位就是全部清零

19

仅有CPU,仅能发热

- 存储测试程序的ROM
- 装载数据的RAM
- 地址译码器

地址译码器产生选通信号

13' b1_1x

13' b1_1xxx_xxxx_xxxx: {rom_sel, ram_sel} <=2' b01; 13' b0_xxxx_xxxx_xxxx: {rom_sel, ram_sel} <=2' b10;

13' b1_0xxx_xxxx_xxxx: {rom_se1, ram_se1} <=2' b10;

default: {rom_se1, ram_se1} <=2'b00;

关键技术:流水线技术

多个功能部件并行工作来缩短程序执行时间

25

关键技术: 分页设计

- ▶ 具有共享区的寄存器堆的分页设计
- ▶ 程序空间的分页设计

分段、分页的设计出发点: 将存储器的线性地址分解成二维或多维地址

28

关键技术: 低功耗设计

- ▶ 优化指令集,简化系统的译码单元和执行单元
- ▶ 硬件并行以及功能单元的流水执行实现低功耗结构
- ▶ 确定存储器、寄存器的容量,减少总线数目
- ▶ 硬件的各个子模块划分、软件设置不同工作状态

29

关键技术: 指令集的选取

- ▶ 权衡指令的长度
- ▶ 指令字节格式
- ▶ 寄存器数量
- ▶ 指令字节格式分配
- ▶ 存储器、寄存器、I/O口是否统一寻址

Software Radio Controller

Receiver

RISC CPU

SDRAM SRAM, DPRAM, IRC, Flash - Limer, UART (9, SDRAM)
Fisch Controller

Channel(s) Channel(s) Equalizer

Channel Processing Module

Channel Processing Module

Cyclone Series FPGAs

Non-Altera Solution

Software Radio Controller

RISC CPU

Automotive Systems

Systems

Decoder

Module

Cyclone Series FPGAs

Non-Altera Solution

27