NAME

CUTEST_ushprod_threaded - CUTEst tool to form the matrix-vector product of a vector with the Hessian matrix.

SYNOPSIS

CALL CUTEST_ushprod_threaded(status, n, goth, X, nnz_vector, INDEX_nz_vector, VECTOR, nnz_result, INDEX nz result, RESULT, thread)

For real rather than double precision arguments, instead

CALL CUTEST_ushprod_threaded_s(...)

and for quadruple precision arguments, when available,

CALL CUTEST_ushprod_threaded_q(...)

DESCRIPTION

The CUTEST_ushprod_threaded subroutine forms the product of a sparse vector with the Hessian matrix of the objective function of the problem decoded from a SIF file by the script *sifdecoder* at the point X.

The problem under consideration is to minimize or maximize an objective function f(x) over all $x \in \mathbb{R}^n$ subject to the simple bounds $x^l \le x \le x^u$. The objective function is group-partially separable.

ARGUMENTS

The arguments of CUTEST_ushprod_threaded are as follows

status [out] - integer

the outputr status: 0 for a successful call, 1 for an array allocation/deallocation error, 2 for an array bound error, 3 for an evaluation error,

n [in] - integer

the number of variables for the problem,

goth [in] - logical

a logical variable that specifies whether the first and second derivatives of the groups and elements have already been set (goth = .TRUE.) or if they should be computed (goth = .FALSE.),

X [in] - real/double precision

when goth = .FALSE., the derivatives will be evaluated at X. Otherwise X is not used.

nnz_vector [in] - integer

the number of nonzeros in the vector whose product with the Hessian is required,

INDEX_nz_vector [in] - integer

an array that gives the indiices of the nonzeros of the vector whose product with the Hessian is required,

VECTOR [in] - real/double precision

an array that gives the vector whose product with the Hessian is required; only the nonzeros need be specified,

nnz_result [out] - integer

the number of nonzeros in the result obtained by multiplying the Hessian by VECTOR,

INDEX_nz_result [out] - integer

an array that gives the indiices of the nonzeros in the result obtained by multiplying the Hessian by VECTOR,

RESULT [out] - real/double precision

an array that gives the result of multiplying the Hessian by VECTOR; only the nonzeros will be set,

thread [out] - integer

thread chosen for the evaluation; threads are numbered from 1 to the value threads set when calling CUTEST_usetup_threaded.

NOTE

goth should be set to .TRUE. whenever

- (1) a call has been made to CUTEST_udh_threaded, CUTEST_ush_threaded, CUTEST_ugrdh_threaded or CUTEST_ugrsh_threaded at the current point, or
- (2) a previous call to CUTEST_uhprod_threaded or CUTEST_ushprod_threaded, with goth = .FALSE., at the current point has been made.

Otherwise, it should be set .FALSE.

AUTHORS

I. Bongartz, A.R. Conn, N.I.M. Gould, D. Orban and Ph.L. Toint

SEE ALSO

CUTEst: a Constrained and Unconstrained Testing Environment with safe threads,

N.I.M. Gould, D. Orban and Ph.L. Toint,

Computational Optimization and Applications **60**:3, pp.545-557, 2014.

CUTEr (and SifDec): A Constrained and Unconstrained Testing Environment, revisited,

N.I.M. Gould, D. Orban and Ph.L. Toint,

ACM TOMS, 29:4, pp.373-394, 2003.

CUTE: Constrained and Unconstrained Testing Environment,

I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint,

ACM TOMS, 21:1, pp.123-160, 1995.

 $cutest_uhprod_threaded(3M), \ cutest_cshprod_threaded(3M), \ sifdecoder(1).$