- 1. For a given amplifier, you are given the following information.
 - The source is a microphone that produces a sine wave with a peak input signal of 0.2 V and 1mA.
 - The output drives a 100 Ω resistor that absorbs 48.4 mW of average power.
 - The DC supplies are ±3V with dc currents of 20mA (assume average quantities).

Find the following:

- a. Voltage gain, Current gain, and Power gain in ratio units and dB units
- b. Amplifier efficiency
- c. Power dissipated by the amplifier
- 2. An amplifier provides linear operation at a gain of 200 V/V. You are given the following information about the clipping levels for given DC supplies.

DC supplies	Input at which Clipping occurs		
± 2V	± 0.00850 V		
± 5V	± 0.02150 V		
± 10V	± 0.0.4250 V		

Find the output voltage range for each power supply level and at what the percentage of the DC supplies does the output clips.

- 3. An amplifier with a gain of 1 V/V has an input resistance of $1M\Omega$ and an output resistance of $40~\Omega$. A source with a peak 2 volt signal and a $200k\Omega$ resistance is utilized as an input to drive a $150~\Omega$ load. Draw the circuit and find the voltage, current and power gains in ratio units and dB.
- 4. You have a 10mV, $100\text{k}\Omega$ source that will drive a $50~\Omega$ load. You are given the following amplifiers to cascade between the source and load. What combination works best? Why?

	Voltage Gain (dB)	Ri (Ω)	$Ro(\Omega)$
Amplifier I	40	10k	10k
Amplifier II	6	100k	20

1. For the following circuits, find the closed loop voltage gain and the input resistance. Assume ideal op-amps.

- 2. Design an ideal inverting amplifier with a closed loop gain of -5V/V. The output voltage is limited to $-10 \text{ V} \le v_0 \le 10\text{V}$, and the maximum current in any resistor is limited to $50\mu\text{A}$.
- 3. Using the standard inverting configuration with an ideal op-amp, design for a closed loop gain of -1000 V/V. The maximum resistor value allowed in 100 k Ω . What is the input resistance? Use the circuit with the T resistor feedback and the same maximum resistor value, design the circuit for the same closed-loop gain of -1000 V/V. What is the input resistance for this circuit?

- 4. Design a weighted summer circuit for the following equations:
 - a. $v_0 = -2v_1 8v_2$
 - b. $v_0 = -12v_1 3v_2 + 2v_3$

Resistors should range between 10k Ω and 1M Ω

5. For the following circuits, find the closed loop voltage gain and the input resistance. Assume ideal op-amps.

- 6. We worked an example where a potentiometer was used to divide the resistance between R1 and R2 for a typical non-inverting amplifier configuration. We found that the range of gain was 1 to infinity. For this problem, consider how you might add a fixed resistor to the circuit to prevent the gain from increasing above 11 V/V. Draw the circuit and show how you calculated the new range of closed loop gain from 1 to 11 V/V.
- 7.7

- 1. Design a difference amplifier such that the differential gain is 50 V/V, the minimum differential input resistance is $50k\Omega$, and the common mode gain is zero.
- 2. For the following circuit, derive and solve for the differential and common mode gain and the CMRR.

3. Design an instrumentation amplifier for a differential gain that is adjustable between 5 and 500 V/V. Assume that the gain of the second stage is 2 V/V.

EE 315 – Module 3 Practice Problems

1. For the following circuit assume that the source voltage is a square wave with a peak voltage of 6 volts and has a zero average value. For the following circuit, sketch the voltage, vo(t) and find the average value. Assume ideal diode.

2. For the following circuit, find the voltage, V_x and the current, I_x . Assume ideal diodes

- 3. For the following circuit, $v_I = 10 \cos(t)$ volts. Assume ideal diodes.
 - a. For what values of v_I is diode 1 on?
 - b. For what values of v_I is diode 2 on?
 - c. What is the peak current value, I (magnitude only required).
 - d. Plot the voltages, v_I and v_O .

4. Consider the following circuit. The voltage, V_S, can be either +3V, 0V, or -3V. The LED lights require +3 volts dropped across them in order to light up. Assume ideal diodes.

- b. What does V_S need to be for the red light (only) to be on?
- c. Can both lights be on simultaneously?

6. Consider the following circuit. The diodes are identical and have a current of 1mA for a voltage of 0.7V. The source current is 100mA. Design the resistor, R, such that the voltage, V is 1.6V.

7. Consider the following circuit where the voltage source is 1V and the resistor is 200 ohms. The diode is known to have 1mA at 0.7V.

- a. What is the current, I_D assuming an ideal diode?
- b. What is the current, I_D assuming a 0.75 constant drop model?
- c. What is the current, I_D using the iterative process using the exponential model?
- 8. Consider the following circuit. Find the current I using (a) the ideal model and (b) using a 0.7V constant drop model of the diode. Hint! Use Thevenin equivalent circuits to simplify the circuit.

9. Consider the following circuit. The diodes are identical with a saturation current of 1X10⁻¹⁶ A. What should the current I_S be to obtain an output voltage of 2.8V? Suppose a load resistor is connected at the output and draws 0.1mA of current from the diodes. What is the change in the output voltage?

10. Consider the following circuit, which contains a 9.1 V zener diode. It is know that when the zener voltage is 9.1V, the zener current is 3mA. The incremental zener resistance is 25Ω . Find the resistor R, if the zener current is 5mA.

EE 315 Module 4 Practice Problems

- 1. An NMOS transistor is characterized as follows: V_{DS} =0.1V, V_t =1.5V, k'_n = 25 μ A/V², and W/L = 10. Find the drain current for V_{GS} =0V, 1V, 2V, and 3V.
- 2. An NMOS transistor is characterized as follows: $V_{DS}=3.3V$, $V_t=1.V$, $k'_n=37.5 \,\mu\text{A/V}^2$, and W/L = 10. Find the drain current for $V_{GS}=0V$, 1V, 2V, and 3V.
- 3. Identify the region of operation and the drain current for an NMOS transistor where the k'_n = 25 μ A/V2, V_t=1Vand W/L = 10.
 - a. V_{GS} =5V and V_{DS} =6V
 - b. V_{GS} =0V and V_{DS} =6V
 - c. $V_{GS}=2V$ and $V_{DS}=-0.5V$
- 4. An NMOS transistor has V_t =0.8V, k'^n = 0.05 mA/ V^2 , and W/L = 2. The device is biased at V^{GS} =2.5 V. Calculate the drain current and the resistance r_0 for V_{DS} =2V and 10V for
 - a. λ=0
 - b. $\lambda = 0.02$
 - c. $V_A=35V$
- 5. A PMOS transistor has $k'_p = 0.1$ mA/V², W/L = 2, $V_t = -2V$ and $V_{SG} = 3V$. Find the region of operation and the drain current for:
 - a. $V_{SD}=0.5V$
 - b. $V_{SD}=2V$
 - c. $V_{SD}=5V$
- 6. Consider the following NMOS circuit where V_t =0.5V, k'_n = 0.4 mA/V2, and W/L = 5. If the circuit operates at the edge of saturation with a drain current of 1mA, find the resistor, R_D .

7. Consider the following PMOS circuit where V_t =-0.6V, k'_p = 250 μ A/V², and L = 0.25 μ m. find the values required for W and R such that the drain current is 0.8mA and the drain voltage is 1.5V.

8. Find the labeled voltages and currents in the following circuit where V_{tn} =+1V, V_{tp} = -1V, k'_{n} = 20 μ A/V², k'_{p} = 8 μ A/V² and W/L = 3 (for both n and p-type transistors).

Practice Problems Module 5

- 1. For an npn BJT, the voltage v_{BE}=0.74 V for i_C=9.5mA. What i_C for v_{BE}=0.714 V?
- 2. For a given BJT, i_B =0.010mA and i_C =0.6mA. What are I_S , β , α , and i_E ?
- 3. A BJT has $I_S=5x10^{-15}$ A and β fall in the range of 50 to 500. If the BJT operates in the active mode with $v_{BE}=0.64V$, find the expected range of the collector, base, and emitter currents.
- 4. For Q_1 and Q_2 below, find the collector, base, and emitter currents for β =50 and $|V_{BE}|$ =0.8V. What is the mode of operation for each circuit?

5. For the pnp transistor circuit below, find I_C and β .

6. For the following transistor, find the collector, base, and emitter currents and the collector and emitter voltages for the case where β =100 and β being very large. Assume V_{BE} =0.7 V. Do this for each of the following base voltages: V_{B} =0 V, V_{B} =1 V, and V_{B} =2 V.

EE 315

1. Consider the following common source amplifier, where V_t = 1.5V, k'_nW/L = .2 mA/V².

- a. Sketch the voltage transfer characteristic, clearly labeling the transition points, A, B and C.
- b. The device is biased for a 0.15 mA drain current. Find the Q-point.
- c. Find the voltage gain at this bias point.
- 2. A common source amplifier uses an NMOS transistor with k'_n =0.4mA/V², W/L = 10, V_t=0.4V, V_{DD}=2.5 Vand V_A=10V. The amplifier Q-point is at I_{DQ}=0.2mA and uses a drain resistor of 6.2kohms.
- a. Find V_{GSQ} and V_{DSQ}.
- b. Draw the small signal model and find g_m, R_{in}, A_{vo}, and R_o.
- c. If a load resistor is connected to the drain where R_L = 15kohms, what is the gain, A_v . Update your small signal model.
- d. If a source signal, v_{sig} in series with a resistance of R_{sig} = 300kohms is connected to the gate, what is the gain, G_v .
- 3. A common gate amplifier uses an NMOS transistor with g_m =4mA/V and a drain resistor of 5kohms and a load resistor of 7.5 kohms. The amplifier is driven by a source, v_{sig} , that has R_{sig} = 500 ohms.
- a. Find the input resistance (R_{in}) and the overall voltage gain, G_{v} . Draw the small signal model.
- b. Suppose we want the input resistance to equal the signal resistance at the Q-point, I_{DQ}. What would the drain current Q-point need to change to for this to happen?

- 4. A common drain amplifier has the following characteristics: $k'_n=0.1$ mA/V² and V_t = 0.6V. The operating point is V_{GSQ}=0.85 V.
 - a. What is the W/L ratio for an output resistance of 300 ohms?
 - b. What is the drain current at the operating point?
 - c. This amplifier is connected to a 10kohm potentiometer as the load. What is the range of possible overall voltage gain?

Practice Problems Module 7

EE 315

- 1. A CE amplifier uses an npn BJT with β =100 and I_{CQ}=0.5 mA. The collector resistor, R_C is 12 k Ω and R_L=12 k Ω . The amplifier is connected to a signal source with a signal resistance of 10 k Ω . Find the input resistance, R_{in}, output resistance R_o, and the gain, G_v. Assume that V_A = 50V. Draw and clearly label the small signal model.
- 2. A CB amplifier uses an npn BJT with R_C is 10 k Ω and R_L =10 k Ω . The signal resistance is 50 Ω . If α is approximated to 1, what should the collector current q-point be such that the input resistance, R_{in} , is equal to the signal resistance? What is G_v ?
- 3. A CC amplifier uses an npn BJT biased at a collector q-point of 2mA. The signal resistamce, R_{sig} is 10 k Ω and R_L = 500 Ω . β is 100. Find R_{in} and G_v .