Задача 1.1. Объем цилиндра V рассчитывается по формуле:

$$V = \frac{\pi * d^2}{4} h, \tag{1}$$

где d – диаметр, h – высота сосуда.

1) Записать разложение функции $f(\pi, d, h)$ в ряд Тейлора; 2) получить строгое выражение для оценки СКО величины V в предположении возможности линеаризации исходной функции, 3) указать коэффициенты корреляции между параметрами, которые необходимо оценить.

Задача 1.2 Оценить случайную (S) составляющую погрешности объема V и границу неисключенной систематической погрешности Θ , если объем V, см³ определяется по формуле (1):

$$V = \frac{\pi * d^2}{4} h,$$

где d — диаметр, h — высота сосуда.

Диаметр и высота получены в ходе прямых многократных измерений, результаты которых приведены в таблице:

	1	2	3	4	5	6	7
d,cm	9,5	9,6	9,7	9,4	9,5	9,6	9,5
<i>h</i> , см	10,0	10,1	10,0	10,1	10,0	10,1	10,0

Инструментальная погрешность определения d и h: $\Delta d = \Delta h = \Delta_{\text{CM}} = 0.05$ см.

Число π при расчетах принято равным 3,140 \pm 0.002.

Замечание: рекомендуется оценивать относительную погрешность V.

При выполнении расчетов учесть, что величины Δd и Δh коррелированы между собой, так как измерения выполняются одним СИ.

Задача 2.1. Количество тепла Q, рассчитывается по формуле:

$$Q = mC(T_2 - T_1), \tag{1}$$

где m – масса, C – теплоемкость, T_1 и T_2 – температуры тела до и после нагрева.

1) Записать разложение функции $f(m, C, T_2, T_1)$ в ряд Тейлора; 2) получить строгое выражение для оценки СКО величины Q в предположении возможности линеаризации исходной функции, 3) указать коэффициенты корреляции между параметрами, которые необходимо оценить.

Задача 2.2 Оценить случайную (S) составляющую погрешности количества тепла Q и границу неисключенной систематической погрешности Θ , если количество тепла Q, Дж рассчитывается по формуле (1):

$$Q = mC(T_2 - T_1),$$

где m – масса, C – теплоемкость, T_1 и T_2 – температуры тела до и после нагрева.

m= 100 грамм,

$$C=4,18\pm0,01$$
 кДж/(кг $^{*\circ}$ С),

 T_1 и T_2 получены в ходе прямых многократных измерений, результаты которых приведены в таблице:

	1	2	3	4	5	6	7
T_1 , °C	21,5	22,0	21,5	21,0	22,0	21,5	22,0
T_2 , °C	100,5	99,5	100,0	99,5	101,0	100,5	99,5

Инструментальная погрешность определения массы: $\Delta m = 1$ грамм.

Инструментальная погрешность определения температуры: ΔT =1 °C.

При выполнении расчетов учесть, что величины ΔT_1 и ΔT_2 коррелированы между собой, так как измерения выполняются одним СИ.

Задача 3.1. Расчет плотности теплового потока q, $Bт/м^2$ выполняется по формуле:

$$q = \alpha (T_c - T_{\mathcal{K}}), \tag{1}$$

где α – коэффициент теплоотдачи, Вт/(м²*К); $T_{\rm C}$ и $T_{\rm Ж}$ – температуры стенки и жидкости, °C.

1) Записать разложение функции $f(\alpha, T_C, T_X)$ в ряд Тейлора; 2) получить строгое выражение для оценки СКО величины q в предположении возможности линеаризации исходной функции; 3) указать коэффициенты корреляции между параметрами, которые необходимо оценить.

Задача 3.2 Оценить случайную (*S*) составляющую погрешности плотности теплового потока q, $Bт/м^2$ и границу неисключенной систематической погрешности θ если расчет плотности теплового потока q, $Bт/м^2$ выполняется по формуле (1):

$$q=\alpha(T_c-T_{\mathsf{K}}),$$

где α – коэффициент теплоотдачи, Вт/(м²*К); $T_{\rm C}$ и $T_{\rm Ж}$ – температуры стенки и жидкости, °C.

 $\alpha = 320 \pm 5 \text{ BT/(м}^2 * \text{K})$ (табличная величина);

 $T_{\rm C}$ =250 °C (измеряется термопарой);

 $T_{\rm W}$ измеряется термопарой, расположенной в потоке жидкости, в ходе прямых многократных измерений, результаты которых приведены в таблице:

	1	2	3	4	5	6	7
T _ж , °C	27	28	27	28	27	27	28

Инструментальная погрешность определения температуры стенки $\Delta T_{\rm C}$ = 2 °C. Инструментальная погрешность определения температуры жидкости $\Delta T_{\rm W}$ =0,5°C.

При выполнении расчетов учесть, что величины $\Delta T_{\rm C}$ и $\Delta T_{\rm W}$ коррелированы между собой, так как измерения термо-эдс термопар выполняются в одинаковых условиях и одним СИ.

Задача 4.1. Давление p рассчитывается по формуле:

$$p = \frac{(m_1 + m_2)g}{S},\tag{1}$$

где g — ускорение свободного падения, м/c²; S — площадь поршня, м², m_1 и m_2 — массы гирь и дисков поршневого манометра, кг.

1) Записать разложение функции $f(m_1, m_2, g, S)$ в ряд Тейлора, 2) получить строгое выражение для оценки СКО величины p в предположении возможности линеаризации исходной функции, 3) указать коэффициенты корреляции между параметрами, которые необходимо оценить.

Задача 4.2 Оценить случайную (S) составляющую погрешности давления p и границу неисключенной систематической погрешности Θ если давление p, Па рассчитывается по формуле (1):

$$p = \frac{(m_1 + m_2)g}{S},$$

где g — ускорение свободного падения, м/с²; S — площадь поршня, м², m_1 и m_2 — массы гирь и дисков поршневого манометра, кг.

$$g=9.807\pm0.001$$
 m/c²; $S=0.5$ cm², $\delta S=2\%$ $m_2=1000$ г, $\delta m_2=0.01\%$

 δS , δm_2 — относительные погрешности определения площади поршня и массы разновесов, %.

 m_1 получена в ходе прямых многократных измерений:

	1	2	3	4	5
m_1 , Γ	125	127	125	126	127

Инструментальная погрешность определения m_1 : $\delta m_1 = 0.01\%$.

При выполнении расчетов учесть, что величины δm_2 и δm_1 коррелированы между собой, так как поверка гирь выполнена одной лабораторией.

Задача 5.1. Температура T термометра расширения определяется по формуле:

$$T = k(l + l_0), \tag{1}$$

где k — чувствительность термометра; l_0 — начальная длина столбика ртути; l — измеренная длина столбика ртути.

1) Записать разложение функции $f(k, l, l_0)$ в ряд Тейлора; 2) получить строгое выражение для оценки СКО величины T в предположении возможности линеаризации исходной функции; 3) указать коэффициенты корреляции между параметрами, которые необходимо оценить.

Задача 5.2 Оценить случайную (S) составляющую погрешности измерения температуры T и границу неисключенной систематической погрешности Θ если температура T, ${}^{\circ}$ С термометра расширения определяется по формуле (1):

$$T = k(l + l_0),$$

где k — чувствительность термометра, $(1,50\pm0,05)$ °C/мм; l_0 — начальная длина столбика ртути, $(3,0\pm0,5)$ мм; l — длина столбика ртути, мм.

Длина столбика ртути l получена в ходе прямых многократных измерений, результаты которых приведены в таблице:

	1	2	3	4	5	6	7
l, MM	10,5	10,0	10,0	9,5	9,5	10,0	10,5

Инструментальная погрешность определения l: Δl = $\Delta_{\rm CH}$ =0,5 мм.

При выполнении расчетов учесть, что величины Δl и Δl_0 коррелированы между собой, так как измерения выполняются одним СИ.

Задача 6.1. Напряжение источника E определяется по формуле:

$$E = U_1 + U_2 + \frac{U_2 \cdot R_c}{R_2}, \tag{1}$$

где U_1 и U_2 – напряжения, измеренные вольтметром, B; R_2 – сопротивление образцового резистора, O_m ; R_c – внутреннее сопротивление источника, O_m .

1) Записать разложение функции $f(U_1, U_2, R_C, R_2)$ в ряд Тейлора; 2) получить строгое выражение для оценки СКО величины E в предположении возможности линеаризации исходной функции; 3) указать коэффициенты корреляции между параметрами, которые необходимо оценить.

Задача 6.2 Оценить случайную (S) составляющую погрешности измерения напряжения источника E и границу неисключенной систематической погрешности Θ если напряжение источника E, B определяется по формуле (1):

$$E = U_1 + U_2 + \frac{U_2 \cdot R_c}{R_2},$$

где U_1 и U_2 – напряжения, измеренные вольтметром, B; R_2 – сопротивление образцового резистора, O_m ; R_c – внутреннее сопротивление источника, O_m .

Схема измерения приведена на Рисунке 1. R_2 =(100.0±0.1) Ом; R_c =(2,0±0,1) Ом.

 U_1 и U_2 получены в ходе прямых многократных измерений, результаты которых приведены в таблице:

	1	2	3	4	5	6	7
U_1 , B	100	102	105	103	100	98	102
U_2 , B	53	50	51	52	49	50	50

Инструментальная погрешность определения $U: \Delta U_1 = \Delta U_2 = \Delta_{\text{CM}} = 1,0 \text{ B}.$

При выполнении расчетов учесть, что величины ΔU_1 и ΔU_2 коррелированы между собой, так как измерения выполняются одним СИ.

Задача 7.1. Сопротивление R, Ом тензометрического преобразователя определяется по формуле (1):

$$R = 2\frac{l - l_0}{l_0} R_0 + R_0, \tag{1}$$

где l — длина преобразователя, мм; l_0 — начальная длина преобразователя, мм; R_0 — начальное сопротивление преобразователя, Ом.

1) Записать разложение функции $f(l, l_0, R_0)$ в ряд Тейлора; 2) получить строгое выражение для оценки СКО величины R в предположении возможности линеаризации исходной функции; 5) указать коэффициенты корреляции между параметрами, которые необходимо оценить.

Задача 7.2 Оценить случайную (S) составляющую погрешности измерения сопротивления R тензометрического преобразователя и границу неисключенной систематической погрешности Θ если сопротивления R тензометрического преобразователя определяется по формуле (1):

$$R = 2\frac{l - l_0}{l_0} R_0 + R_0,$$

где l — длина преобразователя, мм; l_0 — начальная длина преобразователя, (15.0 ± 0,5) мм; R_0 — начальное сопротивление преобразователя, 90.0±0,5 Ом.

Длина преобразователя l получена в ходе прямых многократных измерений, результаты которых приведены в таблице:

	1	2	3	4	5	6	7
l, mm	16,5	17,0	17,0	16,5	16,5	17,5	17,0

Инструментальная погрешность определения $l: \Delta l = \Delta_{\text{CM}} = 0,5$ мм.

При выполнении расчетов учесть, что величины Δl и Δl_0 коррелированы между собой, так как измерения выполняются одним СИ.

Задача 8.1. Метод определения массовой доли золы W (%) в образце основан на минерализации (сжигании) навески пробы массой m_0 в тигле при температуре (825±25) °C. Количество массовой доли золы W (%) определяется по формуле (1):

$$W = \frac{m_1 - m_2}{m_0} * 100, \tag{1}$$

где m_1 — масса тигля с золой, г; m_2 - масса пустого тигля, г; m_0 — исходная масса образца, г.

1) Записать разложение функции $f(m_1, m_2, m_0)$ в ряд Тейлора; 2) получить строгое выражение для оценки СКО величины W в предположении возможности линеаризации исходной функции; 3) указать коэффициенты корреляции между параметрами, которые необходимо оценить.

Задача 8.2 Оценить случайную (S) составляющую погрешности измерения массовой доли золы W (%) и границу неисключенной систематической погрешности Θ если количество массовой доли золы W (%) определяется по формуле (1):

$$W = \frac{m_1 - m_2}{m_0} * 100,$$

где m_1 — масса тигля с золой, г; m_2 - масса пустого тигля, г; m_0 — исходная масса образца, г; m_0 =5, 00 ± 0.05 г.

Массы m_1 и m_2 получены в ходе прямых многократных измерений, результаты которых приведены в таблице:

	1	2	3	4	5	6	7
m_1 , Γ	26,38	26,27	26,42	26,40	26,35	26,42	26,38
m_2 , Γ	23,30	23,29	23,29	23,29	23,30	23,29	23,31

Инструментальная погрешность определения m: $\Delta m_1 = \Delta m_2 = \Delta_{\text{CM}} = 0,01$ г.

При выполнении расчетов учесть, что величины Δm_1 и Δm_2 коррелированы между собой, так как измерения выполняются одним СИ.

Задача 9.1. Плотность образца прямоугольной формы ρ , кг/м³ определяется по формуле (1):

$$\rho = M/(a \cdot b \cdot c), \tag{1}$$

где M – масса образца, кг; a, b, c –длина, высота и ширина образца, мм.

1) Записать разложение функции f(M, a, b, c) в ряд Тейлора; 2) получить строгое выражение для оценки СКО величины ρ в предположении возможности линеаризации исходной функции; 3) указать коэффициенты корреляции между параметрами, которые необходимо оценить.

Задача 9.2 Оценить случайную (S) составляющую погрешности измерения плотности материала ρ , кг/м³ и границу неисключенной систематической погрешности Θ если плотность образца прямоугольной формы ρ определяется по формуле (1):

$$\rho = M/(a \cdot b \cdot c),$$

где M – масса образца, кг; a, b, c –длина, высота и ширина образца, мм.

Масса образца M получена в ходе прямых многократных измерений, результаты которых приведены в таблице:

	1	2	3	4	5	6	7
M, кг	23,29	23,29	23,30	23,31	23,29	23,32	23,29

Погрешность взвешивания $\Delta M = \pm 20$ г.

Значения a, b и c: a=340 мм; b=240 мм; c=140 мм. Инструментальная погрешность определения линейных размеров a, b и c: Δl = Δ_{CM} =1 мм.

Замечание: рекомендуется оценивать относительную погрешность р.

При выполнении расчетов учесть, что величины $\Delta a, \Delta b$ и Δc коррелированы между собой, так как измерения выполняются одним СИ.

Задача 10.1. Вязкость η жидких сред (сгущенное молоко, машинное масло и т.п.) определяется вискозиметром Геплера путем измерения времени падения τ шарика и последующего вычисления η по формуле (1):

$$\eta = \kappa \cdot \tau \cdot (\rho_0 - \rho_1), \Pi a \cdot c \tag{1}$$

где ρ_0 – плотность шарика, кг/м³; ρ_1 – плотность исследуемого материала, кг/м³; k – постоянная шарика, k = 0,07.

1) Записать разложение функции $f(\tau, \rho_l, \rho_0)$ в ряд Тейлора; 2) получить строгое выражение для оценки СКО величины η в предположении возможности линеаризации исходной функции; 3) указать коэффициенты корреляции между параметрами, которые необходимо оценить.

Задача 10.2 Оценить случайную (S) составляющую погрешности измерения вязкости среды η , Па·с и границу неисключенной систематической погрешности θ если вязкость η жидких сред определяется по формуле (1):

$$\eta = \kappa \cdot \tau \cdot (\rho_0 - \rho_1),$$

где ρ_0 – плотность шарика, кг/м³; ρ_1 – плотность исследуемого материала, кг/м³; k – постоянная шарика, k = 0,07.

$$ρ_0$$
= (2210±10) κΓ/м³; $ρ_1$ = (1240±8) κΓ/м³.

Время падения τ , с получено в ходе прямых многократных измерений, результаты которых приведены в таблице:

	1	2	3	4	5	6	7
τ, c	34,5	35,0	35,3	34,8	35,6	34,6	35,2

Инструментальная погрешность определения τ : $\Delta \tau = \Delta_{CM} = 0,5$ с.

При выполнении расчетов учесть, что величины $\Delta \rho_0$ и $\Delta \rho_1$ коррелированы между собой, так как измерения плотности были выполнены в одной лаборатории одним методом.

Задача 11.1. Плотность образца прямоугольной формы ρ , кг/м³ определяется по формуле (1):

$$\rho = M/(a^2 \cdot b), \tag{1}$$

где M – масса образца, кг; a, b – сторона квадратного основания и высота образца, мм.

1) Записать разложение функции f(M, a, b) в ряд Тейлора; 2) получить строгое выражение для оценки СКО величины ρ в предположении возможности линеаризации исходной функции; 3) указать коэффициенты корреляции между параметрами, которые необходимо оценить.

Задача 11.2 Оценить случайную (S) составляющую погрешности измерения плотности материала ρ , кг/м³ и границу неисключенной систематической погрешности Θ если плотность образца прямоугольной формы ρ определяется по формуле (1):

$$\rho = M/(a^2 \cdot b),$$

где M – масса образца, кг; a, b – сторона квадратного основания и высота образца, мм.

Масса образца M получена в ходе прямых многократных измерений, результаты которых приведены в таблице:

	1	2	3	4	5	6	7
M, кг	15,12	15,13	15,13	15,11	15,12	15,11	15,12

Погрешность взвешивания $\Delta M = \pm 20$ г.

Значения a и b: a=340 мм; b=240 мм. Инструментальная погрешность определения линейных размеров a, b и c: Δl = Δ_{CM} =1 мм.

Замечание: рекомендуется оценивать относительную погрешность р.

При выполнении расчетов учесть, что величины Δa и Δb коррелированы между собой, так как измерения выполняются одним СИ.