

الصفحة

تمارين: اتصال دالة عددية

I. النهایات (تذکیر)

نشاط 1:

- أذكر بالأشكال الغير المحددة.
- 2) أذكر ببعض خاصيات النهايات و الترتيب.

جو اب :

الأشكال الغير المحددة هي:

.
$$1^{\infty}$$
 (6 0^{0} (5 $\frac{0}{0}$ (4 $\frac{\pm \infty}{\pm \infty}$ (3 $0 \times (\pm \infty)$ (2 $(-\infty) + (+\infty)$; $(+\infty) + (-\infty)$ (1

2) نذكر بعض خاصيات النهايات و الترتيب.

f و h دوال عددية حيث:

- . $\lim_{x \to ?} f(x) = -\infty$ نان $\lim_{x \to ?} g(x) = -\infty$ باذا کان $\lim_{x \to ?} g(x) = -\infty$ باذا کان $\lim_{x \to ?} f(x) = -\infty$
- $? = (x \to x_0^{\pm} \ y) \ x \to x_0^{\pm} \ y \to \pm \infty$). $\lim_{x \to ?} h(x) = \ell$ فين $\lim_{x \to ?} f(x) = \lim_{x \to ?} g(x) = \ell$ و $f(x) \le h(x) \le g(x)$ الحال الحال

نشاط 2 :

<u>1.</u> تمرین 1:

== الرسم التالي يمثل منحنى دالة f.

 $\underline{\underline{b}}_{\underline{t}}$ حدد مبيانيا $D_{\underline{t}}$ مجموعة تعريف الدالة \underline{t}

 $\underline{p}_{\mathrm{c}}$ استنتج مبیانیا نهایات f عند محدات D_{f} و کذلك في 1.

<u>2.</u> تمرین 2:

$$\lim_{x \to -\infty} \left(-2x^5 + 1 \right)^3 \left(3x + 2 \right)$$
 و أحسب النهايات التالية :

$$\lim_{x\to +\infty}2x-\sqrt{4x^2-8x} \quad \text{i} \quad \lim_{x\to -\infty}\frac{x-1}{|4-2x|} \quad \text{i} \quad \lim_{x\to -\infty}x+\left|x+2\right|$$

3. تمرین 3:

حدد a علما أن f لها نهاية في 3 حيث f معرفة كما يلي:

$$\begin{cases} f(x) = \frac{x-3}{2-\sqrt{x+1}} ; x > 3 \\ f(x) = \frac{a}{x-1} ; x \le 3 \end{cases}$$

<u>4.</u> تمرین 4:

$$\lim_{x \to -\infty} \frac{x^2 + \cos x}{1 + x^2}$$
 و $\lim_{x \to 1} \frac{\sin \pi x}{x - 1}$:

<u>5.</u> تمرین 5

$$\mathbf{f}(\mathbf{x}) = \frac{\sqrt{\mathbf{x}}}{1 - |\mathbf{x} - \mathbf{1}|}$$
: لتكن f الدالة العددية المعرفة بما يلي

 $\underline{\underline{l}}_f$ مجموعة تعريف الدالة \underline{l}_f

 D_f عند محدات D_f أحسب نهايات D_f

تمارين: اتصال دالة عددية

الصفحة

II. اتصال دالة عددية في نقطة X0

.01 نشاط 1

. $i \in \left\{1, 2, 3, 4, 5, 6, 7\right\}$ مع f_i المنحنيات التالية تمثل الدوال

- انأخذ النقطة التي أفصولها $x_0 = 1$ ماذا تلاحظ $x_0 = 1$
- $i \in \{1,2,3,4,5,6,7\}$ مع $\lim_{x \to 1} f_i(x)$ استنتج مبیانیا (2
- $X_0 = 1$ الرسم 1 و 7 يمثلان دالتين متصلتين في النقطة $X_0 = 1$ و في الحالات الأخرى غير متصلة في النقطة $X_0 = 1$
 - 4) أعط تعريف لاتصال دالة في نقطة X₀

02.تعریف :

و من $I_{X_0} = x_0 - x_0 + x_0$ معرفة على مجال مفتوح $I_{X_0} = x_0 - x_0 + x_0 + x_0$ (معرفة على مجال مفتوح $I_{X_0} = x_0 + x_0 + x_0$ متصلة في $I_{X_0} = I_{X_0} + x_0 + x_0 + x_0 + x_0 + x_0$ متصلة في $I_{X_0} = I_{X_0} + x_0 +$

 \mathbf{x}_0 الاتصال على اليمين والاتصال على اليسار في نقطة ا \mathbf{x}_0

.2 - 1 تعریف 1

- $\lim_{x \to x_0^+} f(x) = f(x_0)$ یکافئ : $I_d = [x_0, x_0 + r]$ دالة عددیة معرفة علی $I_d = [x_0, x_0 + r]$ حیث و دالة عددیة معرفة علی $I_d = [x_0, x_0 + r]$
- $\lim_{ ext{x} o ext{x}_0} f(ext{x}) = f(ext{x}_0)$ دالة عددية معرفة على $ext{I}_{ ext{g}} = \left[ext{x}_0 ext{r}, ext{x}_0
 ight]$ حيث $ext{f}$ متصل على يسار $ext{x}_0$ يكافئ

تمارين: اتصال دالة عددية درس رقم

 $i \in \{1,2,3,4,5,6,7\}$ مع $\mathbf{x}_0 = 1$ مع $\mathbf{x}_0 = \mathbf{1}$ على يمين و يسار النقطة $\mathbf{x}_0 = \mathbf{1}$ مع النشاط السابق أدرس مبيانيا اتصال بعض من \mathbf{f}_i

ا داله f متصله في f یکافئ f متصل علی یسار و علی یمین f داله f متصله فی f یکافئ f

le prolongement par continuité \mathbf{x}_0 التمديد بالاتصال في النقطة . \mathbf{IV}

[0. تذكير :

g:F
ightarrow G و g:E
ightarrow G:E و g:G و g:F و g:G

. $\forall x \in F : f(x) = g(x)$ وإذا كان $F \subset E$

• g = f_{/F} : على F (restriction) ل g - g . g تسمى قصور (prolongement) على f •

01. تعريف و خاصية :

دالة عددية يحتوي حيز تعريفها على مجال من نوع $\{x_0\}$ من $\{x_0\}$ مع $\{x_0\}$ مع $\{x_0\}$ دالة عددية يحتوي حيز تعريفها على مجال من نوع

- \mathbf{x}_0 غير معرفة في \mathbf{f}
- $\cdot \lim_{x \to x_0} f(x) = \ell \in \mathbb{R} \quad \bullet$

.
$$X_0$$
 ين متصلة $g(x)=f(x)\;;\;x\in D_f$, $x\neq x_0$ الدالة g المعرفة ب : $g(x_0)=\ell$

 X_0 الدالة f في النقطة الدالة و تسمى تمديد بالاتصال للدالة

.
$$\mathbf{D}_{\mathrm{f}} = \mathbb{R} \setminus \left\{-1,1\right\}$$
: لاينا $\mathbf{f}\left(\mathbf{x}\right) = \frac{\mathbf{x}^2 - |\mathbf{x}|}{|\mathbf{x}| - 1}$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{|x|(|x|-1)}{|x|-1} \lim_{x \to 1} |x| = 1$$

$$X_0 = 1$$
 في النقطة f في تمديد بالاتصال للدالة g المعرفة ب: $g(x) = \frac{x^2 - |x|}{|x| - 1}$; $x \in \mathbb{R} \setminus \{-1, 1\}$ في النقطة g النقطة g المعرفة ب: $g(1) = 1$

$$X_0 = -1$$
 هي تمديد بالاتصال للدالة f في النقطة $h(x) = rac{x^2 - |x|}{|x| - 1}$; $x \in \mathbb{R} \setminus \{-1, 1\}$ هي تمديد بالاتصال للدالة h المعرفة ب: $h(-1) = 1$

تمارين: اتصال دالة عددية

الصفحة

$$X_0=1$$
 و في $X_0=-1$ و في $X_0=-1$ هي تمديد بالاتصال للدالة $X_0=\frac{x^2-|x|}{|x|-1}$; $x\in\mathbb{R}\setminus\{-1,1\}$ و في $X_0=1$ كذلك الدالة $X_0=1$ المعرفة ب: $X_0=1$ و في $X_0=1$

 $\mathbf{k}(\mathbf{x}) = |\mathbf{x}|$: يمكن كتابة الدالة \mathbf{k} على الشكل التالي

V. اتصال دالة على مجال

01. تعاریف:

- . I دالة متصلة على مجال مفتوح [I=a;b] يكافئ f متصلة في كل نقطة X_0 من I
- دالة متصلة على مجال I = [a,b] يكافئ: f متصلة على [a,b] و متصلة على يمين [a,b] و متصلة على يسار [a,b]
- . a دالة متصلة على مجال a متصلة a يكافئ a متصلة في كل نقطة a من a دالة متصلة على يمين في a دالة متصلة على مجال a على يمين في a دالة متصلة على مجال a دالة متصلة على يمين في a دالة متصلة على يمين في a

02 مثال:

 $f(x) = x^2 + 3x$ النعتبر الدالة:

I = [1;5] بين أن f : f متصلة على المجال المفتوح

VI. اتصال الدوال الاعتيادية:

01. خاصية:

- $\mathbf{D}_{\mathrm{f}}=\mathbb{R}$ كل دالة حدودية فهي متصلة على مجموعة تعريفها
 - . $D_{\rm f}$ کل دالة جذرية فهي متصلة على مجموعة تعريفها
- $\mathbf{D}_{\mathbf{f}} = \mathbb{R}$ متصلتین علی $\mathbf{f}(\mathbf{x}) = \cos \mathbf{x}$ و $\mathbf{f}(\mathbf{x}) = \sin \mathbf{x}$
- $\mathbf{D}_{\mathrm{f}} = \mathbb{R} \setminus \left\{ rac{\pi}{2} + \mathbf{k}\pi; \mathbf{k} \in \mathbb{Z}
 ight\}$ متصلة على $\mathbf{f}(\mathbf{x}) = an \mathbf{x}$
 - . $\mathbf{D}_{\mathrm{f}}=\mathbb{R}^{+}=igl[0,+\inftyigl]$ الدالة: $\mathbf{f}(\mathbf{x})=\sqrt{\mathbf{x}}$ متصلة على مجموعة تعريفها
 - . $\mathbf{D}_{\mathrm{f}} = \mathbb{R}$ الدالة: $\mathbf{f}(\mathbf{x}) = |\mathbf{x}|$ متصلة على مجموعة تعريفها

VII. العمليات على الدوال المتصلة:

10. خاصية: (تقبل)

 $(I \subset \mathbb{R})$ مجال ضمن المجموعة \mathbb{R}

- ا إذا كانت f و g دالتين متصلتين على المجال I فإن الدوال: g و f imes g و متصلة على I متصلة على g
- . I و $\frac{f}{g}$ دالتين متصلتين على المجال g و g لا تنعدم على المجال g فإن الدوال: $\frac{f}{g}$ و متصلة على g

.02مثال

 $g(x) = (x^2 + 3x - 2) \times \sqrt{x}$ (2. $f(x) = \frac{2x+1}{x-1} + \cos(x)$ (1 :نعتبر الدوال التالية المعرفة ب: 1) حدد مجموعة تعريف واتصال كل دالة من الدوال السابقة.

تمارين: اتصال دالة عددية درس رقم

الصفحة

آ) نحدد مجموعة تعريف:

الدالة $x \to \cos x$ معرفة و متصلة على \mathbb{R} . الدالة $\frac{2x+1}{x-1}$ معرفة و متصلة على (1)

$$\mathbf{D}_{\mathrm{f}} = \mathbb{R} \cap \left(\mathbb{R} \setminus \{1\}\right) = \mathbb{R} \setminus \{1\}$$
 إذن الدالة $\mathbf{x} \to \frac{2\mathbf{x}+1}{\mathbf{x}-1} + \cos \mathbf{x}$

 $(0,+\infty)=\mathbb{R}^+$ معرفة و متصلة على \mathbb{R} . الدالة $x \to \sqrt{x}$ معرفة و متصلة على $x \to x^2+3x-2$

 $\mathbf{D}_{g}=\mathbb{R}\cap\mathbb{R}^{+}=\mathbb{R}^{+}$ إذن الدالة \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}

اتصال مركبة دالتين متصلتين: .VIII

 $f(I)\subset J$ و $J\stackrel{g}{\longrightarrow}\mathbb{R}$ و $I\stackrel{f}{\longrightarrow}f(I)$

$$g \circ f: I \xrightarrow{f} f(I) \subset J \xrightarrow{g} \mathbb{R}$$
$$x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x))$$

01. خاصية:

01. تذكير:

لتكن f و g دالتين عدديتين.

- . x_0 و الدالة $g \circ f$ متصلة في $f\left(x_0\right)$ فإن الدالة $g \circ f$ متصلة في x_0 متصلة في الدالة و الد
- $g \circ f$ متصلة على مجال $g \circ g$ متصلة على مجال $g \circ g \circ f$ فإن الدالة $g \circ g \circ f$ متصلة على $g \circ f$
 - $f(x) = \sin(2x+1)$ مثال: أدرس اتصال الدالة. 02

 \mathbb{R} الدالة $x \to 2x+1$ متصلة على

الدالة $x \to \sin(2x+1)$ متصلة على \mathbb{R} و $\mathbb{R} \subset \mathbb{R}$ إذن الدالة: (1+1) الدالة $x \to \sin(2x+1)$ متصلة على الدالة الدالة $x \to \sin(2x+1)$

03.نتائج:

- \mathbb{R} دانتان متصلتان على $g(x) = \cos(ax + b)$ و $f(x) = \sin(ax + b)$
- $\cdot ax + b \neq \frac{\pi}{2} + k\pi$ الدالة h(x) = tan(ax + b) الدالة
 - . I دالة موجبة و متصلة على المجال I فإن الدالة $(x) \rightarrow \sqrt{f(x)}$ متصلة على f

IX. دالة الجزء الصحيح:

01. تعریف: (تذکیر)

الدالة f التي تربط كل عنصر $_{
m x}$ من $_{
m x}$ بالعدد الصحيح النسبي الوحيد $_{
m x}$ الذي يحقق تسمى الدالة الجزء الصحيح $p \le x < p+1$

 $\mathbf{f}\left(\mathbf{x}
ight)\!=\!\mathbf{E}(\mathbf{x})\!=\!\mathbf{p}$ او $\mathbf{f}\left(\mathbf{x}
ight)\!=\!\mathbf{p}$ اکتب $\mathbf{f}\left(\mathbf{x}
ight)\!=\!\mathbf{f}\left(\mathbf{x}
ight)$

02.نشاط:

- f(x) = E(x) أنشئ منحنى الدالة (1
- $m{2}$ هل f متصلة على يمين في g و g و g و g و g

الصفحة تمارين: اتصال دالة عددية درس رقم

- 3) هل f متصلة على يسار في 0 و 1 و 2 و 3 و 1 و 2 .
 - 4) هل f متصلة في 0 و 1 و 2 و 3 و 1- و 2-
 -[2;3] و [1;2[و [0;1[متصلة على [5]
 - 6) أعط الخاصية.

.03خاصية:

- دالة الجزء الصحيح متصلة على اليمين p وغير متصلة على اليسار p (إذن هي غير متصلة في p).
 - ($p \in \mathbb{Z}$ مع [p,p+1] دالة الجزء الصحيح متصلة على كل المجالات التي هي على شكل:

X صورة مجال بدالة متصلة:

01. نشاط:

 $f(x) = x^2$: نأخذ النشاط أول الدرس و الرسم رقم 1 الذي يمثل الدالة

- [0,2] استنتج مبيانيا صور جميع الأعداد التي تنتمي إلى القطعة ا
 - استنتج مبيانيا : f([-1,0]) و f([-1,0]) . أعط الخاصية.

02 خاصية:

- صورة قطعة $\begin{bmatrix} a,b \end{bmatrix}$ بدالة متصلة f هي قطعة f تكون على شكل f مع f هي القيمة الدنيا والقيمة القصوى على التوالي ل f على المجال f). (أو أيضا و f) التوالي ل f على المجال f على المجال f).
 - J = f(I) هي مجال ا بدالة متصلة f هي مجال ا
 - f([a,b]) = [m,M] ملاحظة :

$$f([1,2]) = [1,3]$$
: لدينا مبيانيا $f(x) = 2x - 1$ 2: مثال

$$.M = \max_{a \le x \le b} f(x) \quad \mathfrak{I} = \min_{a \le x \le b} f(x) \quad 1 : \mathbf{03}$$

f([1,2[)=[1,3[

 $\exists (\alpha,\beta) \in I^2 / m = f(\alpha)$ و $M = f(\beta)$:

théorème des valeurs intermédiaires:مبرهنة القيم الوسيطية. XI

0. نشاط:

الصفحة تمارين: اتصال دالة عددية درس رقم

- a=1 في الرسم a=0 و a=0 (الرسم a=0
 - (1 استنتج مبيانيا (f(b) و (f(b). (الرسم 1)
 - الأقل و f(b) و f(a) محصور بين k محصور بين (2) نأخذ عدد
- (الرسم 1) . f(c) = k : حيث [a,b] = [-2,1] عنصر c
 - 3) أعط الخاصية:

02.خاصية:

- f دالة متصلة على القطعة [a,b] .
- f(c)=k: عيث a,b عنصر a من a عنصر b عيث b

03.نتائج

- . f([a,b]) = [m,M] إذن [a,b] = [m,M] بدالة متصلة هي القطعة [a,b] إذن [a,b]
- ومنه يوجد $\mathbf{k} = 0 \in \mathbf{f}\left(\left[\mathbf{a},\mathbf{b}\right]\right) = \left[\mathbf{m};\mathbf{M}\right]$ و الآخر سالب) ومنه : $\mathbf{f}\left(\mathbf{b}\right) \in \mathbf{f}\left(\mathbf{a}\right)$ ومنه يوجد عنصر \mathbf{c} من $\mathbf{f}\left(\mathbf{c}\right) = \mathbf{0}$. $\mathbf{f}\left(\mathbf{c}\right) = \mathbf{0}$
 - . [a,b] : المعادلة $x \in [a,b]/f(x) = 0$: المعادلة : $(f(a) \times f(b) < 0)$: نتيجة ل

XII. دالة متصلة و رتيبة قطعا:

1 دالة متصلة و رتيبة قطعا. لدينا صور المجالات الآتية

f متصلة وتناقصية قطعا	f متصلة و تزايدية قطعا	المجال I	f متصلة وتناقصية قطعا	f متصلة و تزايدية قطعا	المجال I
نحدد: المجال f(I)	نحدد: المجال (f(I		نحدد: المجال (f(I	نحدد : المجال (f(I	
$\lim_{x\to +\infty} f(x), \lim_{x\to a^+} f(x)$	$\left[\lim_{x\to a^+} f(x), \lim_{x\to +\infty} f(x)\right]$]a,+∞[[f(b),f(a)]	[f(a),f(b)]	[a,b]
$\left[f(a), \lim_{x\to -\infty}f(x)\right[$	$\lim_{x\to-\infty}f(x),f(a)$]–∞,a]	$\lim_{x\to b^-}f(x),f(a)$	$\left[f(a), \lim_{x\to b^-}f(x)\right[$	[a,b[
$\lim_{x\to a^-} f(x), \lim_{x\to -\infty} f(x)$	$\lim_{x\to-\infty} f(x), \lim_{x\to a^{-}} f(x)$]–∞,a[$\left[f(b), \lim_{x\to a^+} f(x)\right[$	$\lim_{x\to a^+} f(x), f(b)$]a,b]
$\lim_{x\to+\infty} f(x), \lim_{x\to-\infty} f(x)$	$\lim_{x\to-\infty} f(x), \lim_{x\to+\infty} f(x)$]-∞,+∞[$ \lim_{x\to b^-} f(x), \lim_{x\to a^+} f(x) [$	$\lim_{x\to a^+} f(x), \lim_{x\to b^-} f(x) \bigg[$]a,b[
		>	$\lim_{x\to+\infty}f(x),f(a)$	$\left[f(a), \lim_{x\to +\infty}f(x)\right[$	[a,+∞[

الدالة العكسية لدالة متصلة و رتيبة على قطعا على مجال:

نقابل دالة عددية - التقابل العكسي لدالة : $\underline{\mathbf{A}}$

01. تعریف:

- f:I
 ightarrow J دالة عددية من I نحو f:I
 ightarrow J .
- I تسمى دالة تقابل من I نحو I يعني كل عنصر I من I له صورة وحيدة I من I و كل عنصر I من I له سابقا وحيدا I
 - الدالة g من f(x) = y تسمى الدالة العكسية ل f بالعنصر الوحيد g من f(x) = y تسمى الدالة العكسية ل g الدالة g

 $(f^{-1}: J \to I)$ و يرمز له ب $g = f^{-1}$. (أي

لصفحة تمارين: اتصال دالة عددية درس رقم

. مثال : 02

 \mathbb{R} المن \mathbb{R} المن الدالة تقابل من $\mathbf{f}(\mathbf{x}) = \mathbf{x}$ المي النعتبر الدالة العددية

- ه هل كل عنصر $_{\mathbf{X}}$ من مجموعة الانطلاق $_{\mathbb{R}}$ له صورة وحيدة من مجموعة الوصول $_{\mathbb{R}}$.
- هل كل عنصر y من مجموعة الوصول $\mathbb R$ له سابق وحيد من مجموعة الانطلاق $\mathbb R$.
 - ماذا نستنتج ؟

03.ملحوظة:

• الدالة العكسى f⁻¹ تكتب على الشكل التالى:

y بدل من x يدل من x و ذلك باستعمال المتغير $x\mapsto f^{-1}(x)$: $y\mapsto f^{-1}(y)$

- y لكي نبر هن على أن دالة f معرفة من I نحو J بأنها تقابل من I إلى J نبين أن المعادلة f(x)=y لها حل وحيد مع f من J.

. مثال : 04

 $I = [0; +\infty]$ على $f(x) = x^2$ لنعتبر الدالة العددية

- استنتج مبيانيا $\mathbf{J} = \mathbf{f} \left(\mathbf{I}
 ight)$ ا أي صورة المجال $\mathbf{I} + \mathbf{I}$).
- f fله سابق وحيد f c من f J=fig(Iig) له سابق وحيد f c من استنتج طبيعة التطبيق f J
 - . J مع y معلوم من $(E): x \in I = [0,+\infty[/f(x)=y]]$ معاوم من رائعتبر المعادلة . 3
 - (E) أوجد عدد حلول المعادلة
 - . f ل f^{-1} استنتج الدالة العكسية

_____ **05.**خاصية ⊗

 $y \in f\left(I\right)$ و I دالة عددية متصلة و رتيبة قطعا على مجال I

- الدالة f هي تقابل من I إلى f
- .I المعادلة : $x \in I / f(x) = y$ المعادلة : f(I) من y تقبل حل وحيد على .

.02نتجة

[a,b] دالة متصلة و رتيبة قطعا على المجال [a,b] .

- $\mathbf{f}(\mathbf{c}) = \mathbf{k}$ عيث: \mathbf{a}, \mathbf{b} عد محصور بين $\mathbf{f}(\mathbf{a})$ و $\mathbf{f}(\mathbf{b})$ يوجد عدد وحيد \mathbf{c} من \mathbf{c}
 - المعادلة $x \in [a;b]/f(x) = 0$ المعادلة $f(a) \times f(b) < 0$ تقبل حل وحيد .

06. ملاحظة:

$$f^{-1}:J=f(I) o I$$
 للدالة f معرفة كما يلي:
$$f:I o J=f(I) \ x o f(x)=y$$
 الدالة f معرفة كما يلي: $x o f(x)=y$

الصفحة

تمارين: اتصال دالة عددية

 $\begin{cases} f(x) = y \\ x \in I \end{cases} \Leftrightarrow \begin{cases} f^{-1}(y) = x \\ y \in J \end{cases}$

- $\forall y \in J : f \circ f^{-1}(y) = y \ \forall x \in I : f^{-1} \circ f(x) = x$
- $\forall x \in J: f \circ f^{-1}(x) = x$: کذلك على الشكل التالى $\forall y \in J: f \circ f^{-1}(y) = y$

.07 خاصيات الدالة العكسية: (تقبل)

. f الدالة العكسية ل f^{-1} . $J=f\left(I\right)$ و الدالة العكسية ل f

- الدالة f^{-1} متصلة على المجال J = f(I) الدالة أ
- . I على الدالة f^{-1} رتيبة قطعا على المجال f و لها نفس رتابة
- منحنى الدالة f^{-1} و f^{-1} منحنى الدالة f متماثلان بالنسبة للمستقيم f^{-1} الذي معادلته f^{-1} في معلم متعامد f^{-1}

ممنظم (المستقيم (D) يسمى المنصف الأول)

 $f(x) = x^2$ مثال: لنعتبر الدالة f المعرفة ب: 0

 $I = [0; +\infty]$ مبیانیا هل fمتصلهٔ علی ا

ب - استنتج رتابة f على I.

. J=f(I): حدد

د _ هل f تقبل دالة عكسية معرفة على مجال يجب تحديده.

 \mathbf{f}^{-1} منحنی الدالة $\left(\mathbf{C}_{_{\mathbf{f}}-1}
ight).\mathbf{f}^{-1}$ منحنی الدالة کار ($\mathbf{C}_{_{\mathbf{f}}}$) منحنی الدالة

80.مفردات:

 $f^{-1} = \sqrt{}$ المحصل عليها تسمى كذلك الجذر من الرتبة 2 . و نرمز لها ب: $f^{-1} = 2$ أو باختصار : $f^{-1} = 1$

xiv. دالة الجذر من الرتبة n

01. نشاط:

. $I = \begin{bmatrix} 0; +\infty \end{bmatrix}$ على المجال $f(x) = x^n$ الدالة $n \in \mathbb{N}^*$

بين أن الدالة f تقبل دالة عكسية f^{-1} على المجال f حدده .

20.مفردات:

- الدالة العكسية f^{-1} تسمى الدالة الجذر من الرتبة n
 - الدالة العكسية f^{-1} يرمز لها ب: $f^{-1} = f^{-1}$.
- $f^{-1}(x) = \sqrt[n]{x} = x^{\frac{1}{n}}$ او أيضا $f^{-1}(x) = \sqrt[n]{x}$
- حالة: n = 1 لدينا $n = \sqrt{x} = x$ حالة: n = 1
- حالة : n=2 لدينا $x=x^{\frac{1}{2}}=\sqrt{x}$ حالة x=1 (الدالة تسمى باختصار الجذر المربع)

درس رقم

تمارين: اتصال دالة عددية

• حالة: n=3 لدينا $x=x^{\frac{1}{3}}$ الدالة تسمى باختصار الجذر المكعب أو الجذر الثالث).

03. تعریف وخاصیة:

n عدد صحیح طبیعی غیر منعدم.

- . $I = [0; +\infty]$ متصلة و تزايدية قطعا على متصلة و $f(x) = x^n$
- $\mathbf{f}^{-1}=\sqrt[n]{}$ و دالتها العكسية \mathbf{f}^{-1} تسمى الدالة الجذر من الرتبة $\mathbf{g}^{-1}=\mathbf{f}$ و دالتها العكسية $\mathbf{f}^{-1}=\mathbf{g}$
 - $f^{-1}(x) = \sqrt[n]{x} = x^{\frac{1}{n}}$: أو أيضا $f^{-1}(x) = \sqrt[n]{x}$: نكتب
 - . a العدد: $\sqrt[n]{a}$ يسمى الجذر من الرتبة a للعدد الحقيقي الموجب a .

<u>04.</u>خاصية

- $\lim_{x\to +\infty} \sqrt[n]{x} = +\infty \quad . \ \forall x\geq 0 \quad ; \quad \left(\sqrt[n]{x}\right)^n = x \quad \text{.} \quad \sqrt[n]{x^n} = x \quad . \ \sqrt[n]{1} = 1 \quad ; \quad \sqrt[n]{0} = 0 \quad \blacksquare$
- منحنى $(C_{f^{-1}})$ لدالة $f(x) = x^n$ هو مماثل (C_f) منحنى الدالة $f(x) = x^n$ بالنسبة للمنصف الأول في معلم متعامد ممنظم (C_f) الذي معادلته (D): y = x المنصف الأول هو المستقيم (D) الذي معادلته (D): y = x

05. نتائج:

- $. \forall a \in \mathbb{R}^+ ; \forall b \in \mathbb{R}^+ ; \sqrt[n]{a} = \sqrt[n]{b} \Leftrightarrow a = b$
- $. \forall a \in \mathbb{R}^+ ; \forall b \in \mathbb{R}^+; \sqrt[n]{a} \le \sqrt[n]{b} \Leftrightarrow a \le b$

XV. العمليات على الجذور من الرتبة n.

01. خاصیات:

 \mathbb{N}^* و $\mathbf{b} \geq \mathbf{0}$ و $\mathbf{a} \geq \mathbf{0}$

- $.\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{a \times b}$
- (b>0); $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ $\ni (b>0)$; $\sqrt[n]{\frac{1}{b}} = \frac{1}{\sqrt[n]{b}}$

. مثال . 02

. $\sqrt[5]{\sqrt[3]{81}} \times \sqrt[15]{3^{11}}$: بسط:

 $\sqrt[5]{\sqrt[3]{81}} \times \sqrt[15]{3^{11}} = \sqrt[3x]{81} \times \sqrt[15]{3^{11}}$: لدينا

تمارین: اتصال دالة عددیة

 $= \sqrt[15]{3^4 \times 3^{11}}$ $= \sqrt[15]{3^{15}} = 3$

 $\sqrt[5]{\sqrt[3]{81}} \times \sqrt[15]{3^{11}} = 3$: فلاصة

 $g(x) = \sqrt[n]{f(x)}$ بعض خاصيات الدوال التي هي على شكل: XVI.

10. خاصیات 🕾 (تقبل)

دالة عددية موجبة على مجال \mathbf{n} .I من *

- . I متصلة على $g(x) = \sqrt[n]{f(x)}$ متصلة على f(x) متصلة على .
 - $\lim_{x \to x_0} \sqrt[n]{f(x)} = \sqrt[n]{\ell} : \text{فإن} : 0 \le \lim_{x \to x_0} f(x) = \ell$ $\text{إذا كان } 0 = \lim_{x \to x_0} f(x) = 0$
 - . $\lim_{x \to x_0} \sqrt[n]{f(x)} = +\infty$: فإن $\lim_{x \to x_0} f(x) = +\infty$ إذا كان $\lim_{x \to x_0} f(x) = +\infty$
- ${
 m x}
 ightarrow {
 m x}_0^-$; ${
 m x}
 ightarrow {
 m x}_0^+$; ${
 m x}
 ightarrow \pm \infty$: تبقى الخاصيات صحيحة إذا كان

20. تمرین تطبیقی:

 $f(x) = \sqrt[4]{x+1}$ المعرفة ب: f(x) الدالة

- $_{\rm f}$ مجموعة تعريف ا
- f(-1); f(15); f(0) :أحسب (2
 - $\lim_{x\to +\infty} f(x)$ أحسب: (3

XVII. القوى الجذرية لعدد حقيقي موجب قطعا:

01. تعریف :

$$. x \in \mathbb{R}^{+^*} (m \in \mathbb{Z} n \in \mathbb{N}^*) r = \frac{m}{n} \in \mathbb{Q}^*$$

 $_{1}^{n}$ الكتابة $_{2}^{n}$ نرمز لها ب $_{3}^{n}$ الكتابة $_{3}^{n}$ الكتابة $_{4}^{n}$ الكتابة $_{4}^{n}$ الكتابة $_{4}^{n}$ الكتابة من القوة الجذرية للعدد $_{4}^{n}$ الكتابة الأس الكتابة من القوة الجذرية للعدد $_{4}^{n}$

 $\mathbf{x}^{\mathrm{r}} = \mathbf{x}^{\frac{\mathrm{m}}{\mathrm{n}}} = \left(\sqrt[n]{\mathbf{x}}\right)^{\mathrm{m}} = \sqrt[n]{\mathbf{x}^{\mathrm{m}}}$

22. أمثلة

- $\left(\sqrt[5]{3}\right)^{-32}$ و $\sqrt[9]{21}\right)^{-11}$ و $\sqrt[8]{3^5}$ و $\sqrt[9]{21}\right)^{-12}$ و $\sqrt[8]{3^5}$ و $\sqrt[8]{3^5}$ و $\sqrt[8]{3^5}$ و $\sqrt[8]{3^5}$
 - . $\sqrt[3]{8}$; $\sqrt[5]{11}$; $\sqrt{7^3}$; $\sqrt[4]{3^{-5}}$; $\sqrt[4]{3^5}$; الأعداد التالية: $\sqrt[3]{2}$

.ملاحظة:

- تعريف الأس في $\mathbb Q$ هو تمديد لتعريف الأس في $\mathbb Z$.
- $0^{\frac{1}{n}}=0$: يمكن أن نصطلح أن : $0^{\frac{1}{n}}=0$. يمكن أن نصطلح أن : $0^{\frac{1}{n}}=0$. لدينا : $0^{\frac{1}{n}}=0$.

درس رقم

تمارين: اتصال دالة عددية

الصفحة

$$(x) = \frac{\sqrt[4]{x+1}-1}{x}$$
: المعرفة كما يلي والدالة العددية

- $_{\mathrm{f}}$ حدد $_{\mathrm{f}}$ مجموعة تعريف الدالة
- 2 بين أنه يمكن تمديد بالاتصال الدالة f في 0 .
 - $\lim_{x\to+\infty}f(x): \frac{3}{2}$

. خاصيات القوى الجذرية:

ی و \mathbf{y} من \mathbf{x}^* و \mathbf{r} و \mathbf{r} من \mathbf{y} . لدینا:

- $\mathbf{x}^{\mathbf{r}} \rangle \mathbf{0} =$
- $\mathbf{x}^{\mathbf{r}} = \mathbf{x}^{\mathbf{r}'} \Leftrightarrow \mathbf{r} = \mathbf{r'}$
- $x^r \times y^r = (x \times y)^r$ \mathfrak{g} $x^r \times x^{r'} = x^{r+r'}$

$$\frac{x^{r}}{x^{r'}} = x^{r-r'}$$
 9 $(x^{r})^{r'} = x^{r \times r'}$ 9 $x^{-r} = \frac{1}{x^{r}}$ 9 $(\frac{x}{y})^{r} = \frac{x^{r}}{y^{r}}$

05 مثال: بسط ما يلي.

$$\mathbf{A} = \left(2^{-\frac{1}{3}}\right)^5 \times \left(4^{-\frac{1}{2}}\right) \times \left(8^{\frac{2}{3}}\right) \quad (\mathbf{1}$$

$$B = \frac{\sqrt[3]{7} \times 7^{\frac{2}{3}}}{7^{-\frac{1}{4}}} \quad (2)$$

جواب:

$$\mathbf{A} = \left(2^{-\frac{1}{3}}\right)^{5} \times \left(4^{-\frac{1}{2}}\right) \times \left(8^{\frac{2}{3}}\right) = \left(2\right)^{\frac{-5}{3}} \times \left(2^{2}\right)^{\frac{-1}{2}} \times \left(2^{3}\right)^{\frac{2}{3}} = \left(2\right)^{\frac{-5}{3}} \times \left(2^{-1}\right) \times \left(2^{2}\right) = \left(2\right)^{\frac{-5}{3}-1+2} = 2^{-\frac{2}{3}}$$

$$\mathbf{B} = \frac{\sqrt[3]{7} \times 7^{\frac{2}{3}}}{7^{-\frac{1}{4}}} = \frac{7^{\frac{1}{3}} \times 7^{\frac{2}{3}}}{7^{\frac{-1}{4}}} = \frac{7^{\frac{1}{3} + \frac{2}{3}}}{7^{\frac{-1}{4}}} = 7^{1 + \frac{1}{4}} = 7^{\frac{5}{4}}$$