Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claim 1 (currently amended): A compound of formula I

$$(CR_1R_1)_n - Y$$
 R_2
 R_3
 $R_$

wherein

A, D and T, independently of one another, are each N, CH or CR₄, with the proviso that at least one of A and D is CR₄ when T is N;

R₄ is lower alkyl, lower alkenyl, lower alkylthio, mercapto, free, etherified or esterified hydroxy, unsubstituted, mono- or disubstituted amino or halogen;

B and E, independently of one another, are each N or CH;

G is $\underline{-CH_{2^-}}$ G_4 - G_6 -alkylene, G_2 - G_6 -alkenylene, acyloxy- or hydroxy-substituted G_4 - G_6 -alkylene or G_3 - G_6 -alkylene, G_4 - G_2 -alkyleneoxy, G_4 - G_2 -alkylenethio, G_4 - G_2 -alkyleneimino, G_4 - G_2 -alkyleneimino, G_4 - G_4 - G_4 - G_4 - G_4 - G_5 -alkyleneimino, G_4 - G_5 - G_5 -alkyleneimino, G_4 - G_5 - G_5 -alkyleneimino, G_4 - G_5 - G_5 -alkyleneimino, G_5 - G_5 -G

n is 0 to 2;

Q is lower alkyl, whereby A, D and T are not substituted by Q if they represent CR₄; r is 0 to 5;

R₁ und and R₁ independently of one another are each hydrogen or lower alkyl;

R₂ and R₃

- a) independently of one another, are each lower alkyl; or
- b) together form a bridge of the part formula I*,

wherein the ring members T₁, T₂, T₃ and T₄, independently of one another, are each nitrogen or CH, and binding is achieved via the atoms T₁ and T₄, the bonds characterised represented by a wavy line, independently of one another, are each either single or double bonds, m is 0 to 4 and Z is a substituent of one or more carbon atoms, whereby Z is unsubstituted, mono- or disubstituted amino, halogen, unsubstituted or substituted alkyl, free, etherified or esterified hydroxy, nitro, cyano, free or esterified carboxy, alkanoyl, unsubstituted, N-mono- or N,N-disubstituted carbamoyl, amidino, guanidino, mercapto, sulfo, phenylthio, phenyl lower alkylthio, alkylphenylthio, phenylsulfinyl, phenyl lower alkylsulfinyl, alkylphenylsulfinyl, phenylsulfonyl, phenyl lower alkylsulfonyl or alkylphenylsulfonyl, whereby if more than 1 radical Z is present (m ≥ 2), the substituents Z are identical or different; W is hydrogen, unsubstituted, mono- or disubstituted amino, halogen, unsubstituted or substituted alkyl, free, etherified or esterified hydroxy, nitro, cyano, free or esterified carboxy, alkanoyl, unsubstituted, N-mono- or N,N-disubstituted carbamoyl, amidino, guanidino, mercapto, sulfo, phenylthio, phenyl lower alkylthio, alkylphenylthio, phenylsulfinyl, phenyl lower alkylsulfinyl, alkylphenylsulfinyl, phenylsulfonyl, phenyl lower alkylsulfonyl or alkylphenylsulfonyl;

X is NH -N(R₅)-, oxa, or thia; and

R_s is H or lower alkyl;

and Y is hydrogen, heterocyclyl or unsubstituted or substituted cycloalkyl; or a tautomer of the said compound;

or an N-oxide of the said compound or tautomers thereof, whereby one or more N atoms carry an oxygen atom;

or a salt of the said compounds.

Claim 2 (original): A compound of formula I according to claim 1, wherein A, D and T, independently of one another, are each N, CH or CR₄, with the proviso that A or D is CR₄ when T is N;

Y is hydrogen, aryl, heteroaryl or unsubstituted or substituted cycloalkyl; and the remaining substituents and symbols are defined as in claim 1; or a tautomer of the said compound;

or an N-oxide of the said compound or tautomers thereof, whereby one or more N atoms carry an oxygen atom;

or a salt of the said compounds.

Claim 3 (currently amended): A compound of formula I according to claim 1, wherein A, D and T, independently of one another, are each N, CH or CR_4 , with the proviso that A or D is CR_4 when T is N;

R₄ is lower alkyl, lower alkenyl, lower alkylthio, mercapto, hydroxy, lower alkoxy, phenyl lower alkoxy, phenyloxy, halogen lower alkoxy, lower alkanoyloxy, lower alkoxycarbonyloxy, phenyl lower alkoxycarbonyloxy, amino, N-lower alkylamino, hydroxy lower alkylamino, lower alkanoylamino, phenyl lower alkylamino, N,N-di- lower alkylamino oder halogen;
B and E, independently of one another, are each N or CH;

G is $\underline{\text{-CH}_{2^-}}$ G₁-C₆-alkylene, G₂-C₆-alkenylene; C₁-C₆-alkylene or C₃-C₆-alkenylene substituted by hydroxy or by lower alkanoyloxy; G₁-G₂-alkyleneoxy, C₁-C₂-alkylenethio, G₁-G₂-alkyleneimino, CH₂-O-CH₂-, -CH₂-S-CH₂-, -CH₂-NH-CH₂-, oxa, thia or imino, with the proviso that if G is a bivalent group G₁-G₂-alkyleneoxy, G₁-G₂-alkylenethio or G₁-G₂-alkyleneimino, the alkylene group is bended to the ring with the ring members A, B, D, E and T, while the hetero atom is bended to the ring with the substituents R₂, R₃, W and X; n is 0 to 2;

Q is lower alkyl, whereby A, D and T are not substituted by Q if they represent CR₄; r is 0 to 5;

 R_1 und and R_1 independently of one another are each hydrogen or lower alkyl; R_2 and R_3

- a) independently of one another, are each lower alkyl; or
- b) together form a bridge of part formula I*, wherein at most two of the ring members T_1 , T_2 , T_3 and T_4 are nitrogen, and the others are CH, and binding is achieved via the atoms T_1 and T_4 , the bonds characterised represented by a wavy line, independently of one another, are each either single or double bonds, m is 0 to 4 and Z is a substituent of one or more carbon atoms, whereby Z is lower alkyl, amino, N-lower alkylamino, hydroxy lower alkylamino, lower alkanoylamino, N,N-di- lower alkylamino, halogen, halogen lower alkyl, hydroxy, lower alkoxy, halogen lower alkoxy, lower alkanoyloxy, lower alkoxycarbonyloxy, nitro, cyano, carboxy, lower alkoxycarbonyl, lower alkanoyl, carbamoyl; carbamoyl substituted on nitrogen by one or two substituents selected independently of one another from the group consisting of lower alkyl and hydroxy lower alkyl; amidino, guanidine, mercapto or sulfo, whereby if more than one radical Z is present ($m \ge 2$), the substituents Z are identical or different;

W is hydrogen, lower alkyl, amino, N-lower alkylamino, hydroxy lower alkylamino, lower alkanoylamino, N,N-di-lower alkylamino, halogen, halogen lower alkyl, hydroxy, lower alkoxy, halogen lower alkoxy, lower alkanoyloxy, lower alkoxycarbonyloxy, nitro, cyano, carboxy, lower alkoxycarbonyl, lower alkanoyl, carbamoyl; carbamoyl substituted on nitrogen by one or two substituents selected independently of one another from the group consisting of lower alkyl and hydroxy lower alkyl; amidino, guanidino, mercapto or sulfo;

X is -NH- -N(R₆)-, oxa, or thia; and

R₅ is H or lower alkyl;

and Y is unsubstituted or substituted cyclohexyl, isoquinolyl or unsubstituted or substituted phenyl, whereby substituted cyclohexyl and substituted phenyl are substituted by one or more substituents selected independently of one another from the group consisting of lower alkyl, lower alkoxy, halogen and halogen lower alkyl;

or a tautomer of the said compound;

or an N-oxide of the said compound or tautomers thereof, whereby one or more N atoms carry an oxygen atom;

or a salt of the said compounds.

Claim 4 (currently amended): A compound of formula I according to claim 1, wherein A or D is N, while the other is CH, and T is CH or CR₄; or

A or D is CH, while the other is CR4, and T is N;

R₄ is lower alkyl, lower alkenyl, lower alkylthio, mercapto, hydroxy, lower alkoxy, halogen lower alkoxy, lower alkanoyloxy, lower alkoxycarbonyloxy, amino, N-lower alkylamino, hydroxy lower alkylamino, lower alkanoylamino, N,N-di- lower alkylamino oder halogen; B and E are CH;

G is $\underline{-CH_{2^-}}$ G_4 - G_6 -alkylene, G_2 - G_6 -alkenylene; G_4 - G_6 -alkylene or G_3 - G_6 -alkenylene substituted by hydroxy or by lower alkanoyloxy; G_4 - G_2 -alkyleneoxy, G_4 - G_2 -alkylenethio, G_4 - G_2 -alkyleneimino, G_4 - G_4 -

Q is lower alkyl, whereby A, D and T are not substituted by Q if they represent CR₄; r is 0 or 1;

 R_1 und and R_1 independently of one another are each hydrogen or lower alkyl; R_2 and R_3 together form a bridge of part formula I*, wherein the ring members T_1 , T_2 , T_3 and T_4 are CH, and binding is achieved via the atoms T_1 and T_4 , the bonds characterised

represented by a wavy line are double bonds, m is 0 to 2 and Z is a substituent of one or more carbon atoms, whereby Z is lower alkyl, amino, N-lower alkylamino, hydroxy lower alkylamino, lower alkanoylamino, N,N-di-lower alkylamino, halogen, halogen lower alkyl, hydroxy, lower alkoxy, halogen lower alkoxy, lower alkanoyloxy, lower alkoxycarbonyloxy, nitro, cyano, carboxy, lower alkoxycarbonyl, lower alkanoyl, carbamoyl; carbamoyl substituted on nitrogen by one or two substituents selected independently of one another from the group consisting of lower alkyl and hydroxy lower alkyl; amidino, guanidino, mercapto or sulfo, whereby if more than one radical Z is present (m = 2), the substituents Z are identical or different;

W is hydrogen, lower alkyl, amino, N-lower alkylamino, hydroxy lower alkylamino, lower alkanoylamino, N,N-di-lower alkylamino, halogen, halogen lower alkyl, hydroxy, lower alkoxy, halogen lower alkoxy, lower alkanoyloxy, lower alkoxycarbonyloxy, nitro, cyano, carboxy, lower alkoxycarbonyl, lower alkanoyl, carbamoyl; carbamoyl substituted on nitrogen by one or two substituents selected independently of one another from the group consisting of lower alkyl and hydroxy lower alkyl; amidino, guanidino, mercapto or sulfo;

X is $\underline{-NH}$ - $\frac{-N(R_5)}{-}$, oxa, or thia; and

R₅ is H or lower alkyl;

and Y is unsubstituted or substituted cyclohexyl, isoquinolyl or unsubstituted or substituted phenyl, whereby substituted cyclohexyl and substituted phenyl are substituted by one or more substituents selected independently of one another from the group consisting of lower alkyl, lower alkoxy, halogen and halogen lower alkyl;

or a tautomer of the said compound;

or an N-oxide of the said compound or tautomers thereof, whereby one or more N atoms carry an oxygen atom;

or a salt of the said compounds.

Claim 5 (currently amended): A compound of formula I according to claim 1, wherein

A or D is N, while the other is CH, and T is CH or CR4; or

A or D is CH, while the other is CR₄, and T is N;

R₄ is lower alkyl, hydroxy, lower alkoxy or halogen;

B and E are CH;

G is $\underline{-CH_{2^-}}C_1-C_6$ -alkylene, C_2-C_6 -alkenylene; C_1-C_6 -alkylene or C_3-C_6 -alkenylene substituted by hydroxy or by lower alkanoylexy; C_1-C_2 -alkyleneoxy, C_1-C_2 -alkyleneimine, C_1-C_2 -alkyleneimine, C_1-C_2 -alkyleneimine, with the provise that if G is a bivalent group C_1-C_2 -alkyleneoxy, C_1-C_2 -alkylenethio or C_1-C_2 -

alkyleneimino, the alkylene group is bonded to the ring with the ring members A, B, D, E and T, while the hetero atom is bonded to the ring with the substituents R_2 , R_3 , W and X; n is 0 to 2;

r is 0;

R₁ und and R₁ independently of one another are each hydrogen or lower alkyl;

 R_2 and R_3 together form a bridge of part formula I*, in which the ring members T_1 , T_2 , T_3 and T_4 are CH and binding is achieved via the atoms T_1 and T_4 , the bonds characterised represented by a wavy line are double bonds, and m is 0;

W stands for hydrogen or lower alkyl;

X is -NH- -N(R₆)-, oxa, or thia; and

R₅ is H or lower alkyl;

and Y is substituted cyclohexyl, isoquinolyl or unsubstituted or substituted phenyl, whereby substituted cyclohexyl and substituted phenyl are substituted by one to three substituents selected independently of one another from the group consisting of lower alkyl, lower alkoxy, halogen and halogen lower alkyl;

or a tautomer of the said compound;

or an N-oxide of the said compound or tautomers thereof, whereby one or more N atoms carry an oxygen atom;

or a salt of the said compounds.

Claim 6 (currently amended): A compound of formula I according to claim 1, wherein

A or D is N, while the other is CH, and T is CH or CR4; or

A or D is CH, while the other is CR₄, and T is N;

R₄ is lower alkyl, hydroxy, lower alkoxy or halogen;

B and E are CH;

G is -CH₂- C₄-C₆-alkylene or C₂-C₆-alkenylene;

n is 0 or 1;

r is 0;

R₁ und and R₁ independently of one another are each hydrogen or lower alkyl;

 R_2 and R_3 together form a bridge of part formula I*, in which the ring members T_1 , T_2 , T_3 and T_4 are CH and binding is achieved via the atoms T_1 and T_4 , the bonds characterised represented by a wavy line are double bonds, and m is 0;

W stands for hydrogen or lower alkyl;

X is <u>-NH-</u> -N(R₅)- ; and

R₅ is H or lower alkyl;

and Y is substituted cyclohexyl, isoquinolyl or unsubstituted or substituted phenyl, whereby substituted cyclohexyl and substituted phenyl are substituted by one to three substituents selected independently of one another from the group consisting of lower alkyl, halogen and halogen lower alkyl;

or a tautomer of the said compound;

or an N-oxide of the said compound or tautomers thereof, whereby one or more N atoms carry an oxygen atom;

or a salt of the said compounds.

Claim 7 (currently amended): A compound of formula I according to claim 1, wherein A or D is N, while the other is CH, and T is CH or CR₄; or

A or D is CH, while the other is CR₄, and T is N;

R₄ is methyl, hydroxy or methoxy;

B and E are CH;

G is methylene, ethylene or ethenylene;

n is 0;

r is 0;

 R_2 and R_3 together form a bridge of part formula I*, in which the ring members T_1 , T_2 , T_3 and T_4 are CH and binding is achieved via the atoms T_1 and T_4 , the bonds characterised represented by a wavy line are double bonds, and m is 0;

W is hydrogen;

X is -N(R₅)-; and

R₅ is H;

and Y is substituted cyclohexyl, isoquinolyl or unsubstituted or substituted phenyl, whereby substituted cyclohexyl and substituted phenyl are substituted by one or two substituents selected independently of one another from the group consisting of lower alkyl, halogen and halogen lower alkyl;

or a tautomer of the said compound;

or an N-oxide of the said compound or tautomers thereof, whereby one or more N atoms carry an oxygen atom;

or a salt of the said compounds.

Claim 8 (currently amended): A compound of formula I according to claim 1, wherein A or D is N, while the other is CH, and T is CH or CR₄; or

A or D is CH, while the other is CR₄, and T is N;

R₄ is methyl, hydroxy or methoxy;

B and E are CH;

G is methylene, ethylene or ethenylene;

n is 0;

r is 0;

 R_2 and R_3 together form a bridge of part formula I*, in which the ring members T_1 , T_2 , T_3 and T_4 are CH and binding is achieved via the atoms T_1 and T_4 , the bonds characterised represented by a wavy line are double bonds, and m is 0;

W is hydrogen;

X is-N(R₅)-; and

R₅ is H;

and Y is substituted cyclohexyl, isoquinolyl or unsubstituted or substituted phenyl, whereby substituted cyclohexyl is substituted by one or two independent substituents lower alkyl and substituted phenyl is substituted by one or two substituents selected independently of one another from the group consisting of lower alkyl, halogen and halogen lower alkyl; or a tautomer of the said compound;

or an N-oxide of the said compound or tautomers thereof, whereby one or more N atoms carry an oxygen atom;

or a salt of the said compounds.

Claim 9 (currently amended): A compound of formula I according to claim 1, wherein A or D is N, while the other is CH, and T is CH or CR₄;

R₄ is methyl, hydroxy, methoxy or halogen;

B and E are CH;

G is methylene, ethylene or ethenylene;

n is 0;

r is 0;

 R_2 and R_3 together form a bridge of part formula I*, in which 0 to 2 of the ring members T_1 , T_2 , T_3 and T_4 are nitrogen and the remaining ring members are CH, and binding is achieved via the atoms T_1 and T_4 , the bonds characterised represented by a wavy line are double bonds, and m is 0;

W stands for hydrogen or lower alkyl;

X is $-N(R_5)$ -; and

R₅ is H;

and Y is substituted cyclohexyl, isoquinolyl or unsubstituted or substituted phenyl, whereby substituted cyclohexyl and substituted phenyl are substituted by one or two substituents

selected independently of one another from the group consisting of lower alkyl, halogen and halogen lower alkyl;

or a tautomer of the said compound;

or an N-oxide of the said compound or tautomers thereof, whereby one or more N atoms carry an oxygen atom;

or a salt of the said compounds.

Claim 10 (currently amended): A compound of formula I according to claim $\underline{9}$, wherein R_4 is methyl, hydroxy or methoxy;

 R_2 and R_3 together form a bridge of part formula I*, in which the ring members T_1 , T_2 , T_3 and T_4 are CH and binding is achieved via the atoms T_1 and T_4 , the bonds characterised represented by a wavy line are double bonds, and m is 0;

W is hydrogen;

and the remaining substituents and symbols are defined as in claim 9;

or a tautomer of the said compound;

or an N-oxide of the said compound or tautomers thereof, whereby one or more N atoms carry an oxygen atom;

or a salt of the said compounds.

Claim 11 (currently amended): A compound of formula I according to claim 1, wherein A or D is CH, while the other is CR₄, and T is N;

R₄ is methyl, hydroxy, methoxy or halogen;

B and E are CH;

G is methylene, ethylene or ethenylene;

n is 0;

r is 0;

 R_2 and R_3 together form a bridge of part formula I*, in which the ring members T_1 , T_2 , T_3 and T_4 are CH and binding is achieved via the atoms T_1 and T_4 , the bonds characterised represented by a wavy line are double bonds, and m is 0;

W is hydrogen;

X is $-N(R_5)$ -; and

R₅ is H;

and Y is substituted cyclohexyl, isoquinolyl or unsubstituted or substituted phenyl, whereby substituted cyclohexyl and substituted phenyl are substituted by one or two substituents selected independently of one another from the group consisting of lower alkyl, halogen and halogen lower alkyl;

or a tautomer of the said compound;

or an N-oxide of the said compound or tautomers thereof, whereby one or more N atoms carry an oxygen atom;

or a salt of the said compounds.

Claim 12 (previously presented): A compound of formula I according to claim11, wherein R₄ is methyl, hydroxy or methoxy;

and the remaining substituents and symbols are defined as in claim 11;

or a tautomer of the said compound;

or an N-oxide of the said compound or tautomers thereof, whereby one or more N atoms carry an oxygen atom;

or a salt of the said compounds.

Claim 13 (previously presented): A compound of formula I according to claim 1, selected from the group consisting of

1-(4-chloroanilino)-4-[2-(pyridin-3-yl)-ethyl]-isoquinoline;

(Z)-1-(3-bromo-4-methylanilino)-4-[2-(pyridin-3-yl)-vinyl]-isoquinoline;

(E)-1-(3-bromo-4-methylanilino)-4-[2-(pyridin-3-yl)-vinyl]-isoquinoline;

1-(3-bromo-4-methylanilino)-4-[2-(pyridin-3-yl)-ethyl]-isoquinoline;

1-[4-(tert-butyl)-anilino]-4-[2-(pyridin-3-yl)-ethyl]-isoquinoline;

1-(3-trifluoromethylanilino)-4-[2-(pyridin-3-yl)-ethyl]-isoquinoline;

1-(3-chloro-5-trifluoromethylanilino)-4-[2-(pyridin-3-yl)-ethyl]-isoquinoline;

1-(4-isopropyl-3-methylanilino)-4-[2-(pyridin-3-yl)-ethyl]-isoquinoline;

1-(3-bromo-4-ethylanilino)-4-[2-(pyridin-3-yl)-ethyl]-isoquinoline;

1-[3-(tert-butyl)-anilino]-4-[2-(pyridin-3-yl)-ethyl]-isoquinoline;

1-[3,4-bis(trifluoromethyl)-anilino]-4-[2-(pyridin-3-yl)-ethyl]-isoquinoline;

1-[3,5-bis(trifluoromethyl)-anilino]-4-[2-(pyridin-3-yl)-ethyl]-isoquinoline;

1-(4-chloro-3-trifluoromethylanilino)-4-[2-(pyridin-3-yl)-ethyl]-isoquinoline;

1-(3-bromo-5-trifluoromethylanilino)-4-[2-(pyridin-3-yl)-ethyl]-isoquinoline;

1-anilino-4-[2-(pyridin-3-yl)-ethyl]-isoquinoline;

cis 1-[4-(tert-butyl)-cyclohexylamino]-4-[2-(pyridin-3-yl)-ethyl]-isoquinoline;

trans 1-[4-(tert-butyl)-cyclohexylamino]-4-[2-(pyridin-3-yl)-ethyl]-isoquinoline;

cis 1-[4-isopropyl-cyclohexylamino]-4-[2-(pyridin-3-yl)-ethyl]-isoquinoline;

trans 1-[4-isopropyl-cyclohexylamino]-4-[2-(pyridin-3-yl)-ethyl]-isoquinoline;

cis 1-(4-ethyl-cyclohexylamino)-4-[2-(pyridin-3-yl)-ethyl]-isoquinoline;

trans 1-(4-ethyl-cyclohexylamino)-4-[2-(pyridin-3-yl)-ethyl]-isoquinoline;

```
trans 1-(4-isopropyl-cyclohexylamino)-4-[2-(6-methyl-pyridin-3-yl)-ethyl]-isoquinoline;
1-(4-isopropyl-3-methylanilino)-4-[2-(6-methyl-pyridin-3-yl)-ethyl]-isoquinoline;
1-(3-bromo-4-ethylanilino)-4-[2-(6-methyl-pyridin-3-yl)-ethyl]-isoquinoline;
1-(3-chloro-5-trifluoromethylanilino)-4-[2-(6-methyl-pyridin-3-yl)-ethyl]-isoquinoline;
1-(4-propylanilino)-4-[2-(6-methyl-pyridin-3-yl)-ethyl]-isoquinoline;
1-(3-trifluoromethyl-4-propylanilino)-4-[2-(6-methyl-pyridin-3-yl)-ethyl]-isoquinoline;
1-(3-trifluoromethylanilino)-4-[2-(6-methyl-pyridin-3-yl)-ethyl]-isoquinoline;
trans 1-(4-isopropyl-cyclohexylamino)-4-[2-(2-methoxy-pyridin-4-yl)-ethyl]-isoquinoline;
trans 1-(4-isopropyl-cyclohexylamino)-4-[2-(2-hydroxy-pyridin-4-yl)-ethyl]-isoquinoline;
trans 1-(4-isopropyl-cyclohexylamino)-4-[(6-methoxy-pyridin-3-yl)-methyl]-isoquinoline;
trans 1-(4-isopropyl-cyclohexylamino)-4-[(6-hydroxy-pyridin-3-yl)-methyl]-isoquinoline;
1-(4-isopropyl-3-methylcyclohexyl-amino)-4-[(6-methoxy-pyridin-3-yl)-methyl]-isoquinoline;
1-(4-isopropyl-3-methylcyclohexyl-amino)-4-[(6-hydroxy-pyridin-3-yl)-methyl]-isoquinoline;
1-(isoquinolin-3-yl)-4-[2-(6-methoxy-pyridin-3-yl)-ethyl]-isoquinoline;
1-(isoquinolin-3-yl)-4-[2-(6-hydroxy-pyridin-3-yl)-ethyl]-isoquinoline;
1-(3-bromo-4-ethylanilino)-4-[2-(2-methoxy-pyridin-4-yl)-ethyl]-isoquinoline;
1-(4-isopropyl-3-methylanilino)-4-[2-(2-methoxy-pyridin-4-yl)-ethyl]-isoquinoline;
1-(3-chloro-5-trifluoromethylanilino)-4-[2-(2-methoxy-pyridin-4-yl)-ethyl]-isoquinoline;
1-(3-trifluoromethylanilino)-4-[2-(2-methoxy-pyridin-4-yl)-ethyl]-isoquinoline;
1-(3-bromo-4-ethylanilino)-4-[2-(2-hydroxy-pyridin-4-yl)-ethyl]-isoquinoline;
1-(4-isopropyl-3-methylanilino)-4-[2-(2-hydroxy-pyridin-4-yl)-ethyl]-isoquinoline;
1-(3-chloro-5-trifluoromethylanilino)-4-[2-(2-hydroxy-pyridin-4-yl)-ethyl]-isoquinoline;
1-(3-trifluoromethylanilino)-4-[2-(2-hydroxy-pyridin-4-yl)-ethyl]-isoquinoline;
1-(3-bromo-4-methylanilino)-4-[(6-methoxy-pyridin-3-yl)-methyl]-isoquinoline;
1-[3-bromo-4-(tert-butyl)-anilino]-4-[(6-methoxy-pyridin-3-yl)-methyl]-isoquinoline;
1-(3-fluoro-5-trifluoromethylanilino)-4-[(6-methoxy-pyridin-3-yl)-methyl]-isoquinoline;
1-[3,4-bis(trifluoromethyl)-anilino]-4-[(6-methoxy-pyridin-3-yl)-methyl]-isoquinoline;
1-(3-bromo-4-methylanilino)-4-[(6-hydroxy-pyridin-3-yl)-methyl]-isoquinoline;
1-[3-bromo-4-(tert-butyl)-anilino]-4-[(6-hydroxy-pyridin-3-yl)-methyl]-isoquinoline;
1-(3-fluoro-5-trifluoromethylanilino)-4-[(6-hydroxy-pyridin-3-yl)-methyl]-isoquinoline;
1-[3,4-bis(trifluoromethyl)-anilino]-4-[(6-hydroxy-pyridin-3-yl)-methyl]-isoquinoline;
and pharmaceutically acceptable salts thereof.
```

Claim 14 (previously presented): 1-[4-(tert-butyl)-anilino]-4-[2-(pyridin-3-yl)-ethyl]-isoquinoline of formula I according to claim 1, or a pharmaceutically acceptable salt thereof.

Claim 15 (previously presented): 1-[4-isopropyl-3-methylanilino]-4-[2-(pyridin-3-yl)-ethyl]-isoguinoline of formula I according to claim 1, or a pharmaceutically acceptable salt thereof.

Claim 16 (previously presented): A compound of formula I according to claim 1, selected from the group consisting of

1-[4-(tert-butyl)-anilino]-4-[(6-hydroxy-pyridin-3-yl)-methyl]-isoquinoline;

5-[4-(tert-butyl)-anilino]-8-[(6-hydroxy-pyridin-3-yl)-methyl]-[1,6]naphthyridine;

1-[4-(tert-butyl)-anilino]-4-[(6-methoxy-pyridin-3-yl)-methyl]-isoquinoline;

1-(3-bromo-4-ethylanilino]-4-[(6-hydroxy-pyridin-3-yl)-methyl]-isoquinoline;

5-[4-(*tert*-butyl)-anilino]-8-[(6-methoxy-pyridin-3-yl)-methyl]-[1,6]naphthyridine; and pharmaceutically acceptable salts thereof.

Claim 17 (currently amended): A <u>method for the diagnostic or therapeutic treatment of the human or animal body comprising administering a</u> compound of formula I, or a pharmaceutically acceptable salt thereof, according to claim 1 for use in a method for the diagnostic or therapeutic treatment of the human or animal body.

Claim 18 (previously presented): A pharmaceutical composition comprising a compound of formula I or a pharmaceutically acceptable salt thereof according to claim 1, together with at least one pharmaceutically acceptable carrier.

Claim 19 (canceled)

Claim 20 (canceled)

Claim 21 (currently amended): A process for the preparation of a compound of formula I according to claim 1, or a tautomer of such a compound, or a N-oxide of such a compound or the tautomers thereof, whereby one or more N-atoms carry an oxygen atom, or a salt of the said compounds, in which process

a) in order to prepare a compound of formula I, in which G is C_4 - C_2 -alkyleneoxy, C_4 - C_2 -alkyleneimine, C_4 - C_2 -alkyleneimine, C_3 - C_4 - C_4 -alkyleneimine, C_4 - C_4

wherein r, A, B, D, E, T, W, Q, R_2 and R_3 have the significances given for a compound of formula I, G is C_4 - C_2 -alkyleneoxy, C_4 - C_2 -alkylenethio, C_4 - C_2 -alkyleneimino, -O-, -S-, or -NH-and L signifies a nucleofugal leaving group, is reacted with a compound of formula III,

wherein n, R₁, R₂, X and Y are defined as for a compound of formula I, or

b) in order to prepare a compound of formula I, in which G has the significance C_2 - C_6 -alkylene, C_2 - C_6 -alkenylene; or C_2 - C_6 -alkylene or C_3 - C_6 -alkenylene substituted by acyloxy or hydroxy; a compound of formula IV,

$$N = X-(CR_1R_1)_n- Y$$

$$N = R_2$$

$$R_6 = R_3$$

$$R_1 = R_2$$

$$R_3 = R_3$$

wherein n, R_4 , R_4 , R_4 , R_5 , R_6 and R_8 are as described for a compound of formula I, and R_6 is H or C_4 -alkyl, is reacted in the presence of a base with a compound of formula V

wherein r, A, B, D, E, T and Q are defined as for a compound of formula I, R_Z , R_B and R_B independently of one another are H or C_4 - C_4 -alkyl, j is an integer between 0 and 4, Hal⁻ is a halide and Ph signifies phenyl,

and the compound of formula I thus obtained, with $G = -CR_6 = CR_9 - (CR_2R_8)_j$ is converted, if desired, into another compound of formula I, for example by hydrogenation under catalysis with a secondary group metal or by addition of water and optional subsequent acylation, or

c) in order to prepare a compound of formula I, wherein G is CH₂-O CH₂-, a compound of formula IV*,

wherein n, R₁, R₁, X, Y, W, R₂ and R₃ are as described for a compound of formula I, is reacted in the presence of a base with a compound of formula VI,

$$\begin{array}{ccc}
A = B & Q)_r & (VI) \\
T & & & & \\
D - E & & & \\
\end{array}$$

wherein r, A, B, D, E, T and Q are defined as for a compound of formula I, and Hal is halogen, or

d) in order to prepare a compound of formula I, wherein G is CH₂-S-CH₂-, a compound of formula IV**,

wherein n, R₁, R₁, X, Y, W, R₂ and R₃ are as described for a compound of formula I, and R₁₀ is alkyl for example methyl, or alkylaryl for example tolyl, is reacted with a compound of formula VI*,

wherein r, A, B, D, E, T and Q are defined as for a compound of formula I, and M* is a singly charged metal cation, for example a sodium or a potassium cation, or

e) in order to prepare a compound of formula I, wherein G is -CH₂-NH-CH₂-, a compound of formula IV***,

$$\begin{array}{c}
X-(CR_1R_1)_n-Y \\
W \longrightarrow R_2 \\
R_3
\end{array}$$

wherein n, R_4 , R_4 , X, Y, W, R_2 and R_3 are as described for a compound of formula I, is reacted with a compound of formula VI^{**} ,

wherein r, A, B, D, E, T and Q are defined as for a compound of formula I, in the presence of hydrogen and a catalyst, or

f) in order to prepare a compound of formula I, wherein G is methylene (-CH₂-), a compound of formula VII,

$$R_3$$
 $A = B$
 X^*
 $CH = CH$
 $CH = CH$
 $V = CH$

wherein r, A, B, D, E, T, W, Q, R₂ and R₃ are defined as for a compound of formula I, X* is bromine, iodine or trifluoromethylsulfonyloxy, preferably iodine, and the double bond -CH=CH- is present in *cis*- or in *trans*-form, is reacted with palladium diacetate, and the compound of formula II* thus obtained,

in which G is methylene, is reacted by introducing a nucleofugal group to form a compound of formula II, in which G is methylene, whereby the further reaction to form a compound of formula I is carried out as described above under a);

whereby functional groups which are present in the starting compounds of processes a to f and are not intended to take part in the reaction, are present in protected form if necessary, and protecting groups that are present are cleaved, whereby the said starting compounds may also exist in the form of salts provided that a salt-forming group is present and a reaction in salt form is possible;

and, if so desired, an obtainable compound of formula I or an N-oxide thereof is converted into another compound of formula I or an N-oxide thereof, a free compound of formula I or an N-oxide thereof is converted into a salt, an obtainable salt of a compound of formula I or

an N-oxide thereof is converted into the free compound or another salt, and/or a mixture of isomeric compounds of formula I or N-oxides thereof is separated into the individual isomers.