Лабораторная работа 4.4.2. Фазовая дифракционная решетка

Норкин Дмитрий

02/19/18

Цель работы

Исследовать спектр ртутной лампы и дисперсию эшелета. Определенить параметры и спектральные характеристики эшелета. Оценить влияние ширины пучка на разрешающую способность.

Теория

Эшелет — отражательная решётка с треугольным профилем штриха, у которой $\Omega \leqslant 20^\circ$, рабочий порядок $m_p \leqslant 10$.

$$arphi_{\mathrm{f}}=\psi+2\Omega$$
 - угол блеска

$$\Delta = d(\sin \varphi_m - \sin \psi) = m\lambda$$
 - условие максимума

$$2d\sin\Omega = m_p \lambda_p$$

Рис. 1: Схема эшелета

Ход работы

Будем считать, что погрешность всех измеряемых углов $\Delta \alpha = 5''$.

Для данного эшелета $m_p=-1;~~\lambda_p=500$ нм. θ — угол наблюдения в зрительную трубу. $\varphi=360^\circ-\psi-\theta$

	$ K_1 $	K_2	1	2	3	4	5	6
λ , hm	690.7	623.4	579.4	577.0	546.1	491.6	435.8	404.7
$ heta,\circ$	297	295	293	293	292	290	288	287
/	59	33	55	51	42	40	32	20
"	22	4	35	0	25	9	55	45
φ, \circ	17	19	21	21	22	24	26	27
,	0	26	4	9	17	19	27	39
"	38	56	25	0	35	51	5	15
$\sin \varphi - \sin \psi$	-0.415	-0.374	-0.348	-0.346	-0.328	-0.295	-0.262	-0.243

Таблица 1: Зависимость угла дисперсии от длины волны в рабочем порядке

Наклон графика $slope=-(0.600\pm0.002)~{\rm мкm}^{-1}.$ Из формулы (4.3) получаем $d=m_p/slope=(1.667\pm0.005)~{\rm мкм}$

Угол скоса $\Omega = \arcsin \frac{m_p \lambda_p}{2d} = -(8.63 \pm 0.03)^\circ$

Рассчитаем теперь разрешающую способность. Угловое расстояние между желтыми линиями:

$$\Delta \varphi = 4'35'' = 275''$$

Для границ одной желтой линии:

$$\theta_1 = 293^{\circ}51'35''; \quad \theta_2 = 293^{\circ}51'4'' \Longrightarrow \Delta\theta = 31''$$

Отсюда:

$$R = \frac{\lambda}{\delta \lambda} = \frac{2\lambda \Delta \varphi}{\Delta \lambda \Delta \theta} = 5100$$

Рис. 2: Схема установки

Рис. 3: Спектр излучения ртутной лампы

$\psi=45^{\circ}$	\mathbf{m}	-1	-2	$\psi = 30^{\circ}$	m	-1	1	$\psi = 60^{\circ}$	\mathbf{m}	-1	-2	-3
θ_1	0	293	313	θ_1	0	320	271	θ_1	0	268	289	309
	,	51	59		/	47	42		,	50	58	54
	"	0	37		//	51	50		"	27	54	55
$ heta_2$	0	293	314	$ heta_2$	0	320	271	θ_2	0	268	290	310
	,	55	18		/	51	34		,	56	7	18
	"	35	5		//	19	35		"	15	45	7
D, "/A		-13.8	-55.4	D, "/A		-10.4	24.8	D, "/A		-17.4	-26.6	-69.6
$D_{th}, ''/A$		-13.3	-24.8	$D_{th}, "/A$		-12.5	23.3	$D_{th}, ''/A$		-14.5	-25.1	-37.7

Таблица 2: Зависимость угловой дисперсии от порядка спектра и угла падения

Рис. 4: Зависимость угла дисперсии от длины волны в рабочем порядке

Выводы

Проведено знакомство с устройством гониометра и спектральных приборов. Рассчитан период дифракционной решетки $d=(1.667\pm0.005)$ мкм. Проведена оценка разрешающей способности гониометра $R\approx 5000$. Измерена зависимость угловой дисперсии от порядка спектра и угла падения. При малых порядках зависимость хорошо согласуется с теоретической.

Рис. 5: Зависимость угловой дисперсии от порядка спектра для угла падения $\psi=60^\circ$