Recall:

Definition 1. An **equivalence relation** \sim on a set X is a relation \sim on X such that

- (1) (reflexivity) For all $x \in X$, $x \sim x$.
- (2) (symmetry) For all $x, y \in X$, if $x \sim y$ then $y \sim x$.
- (3) (transitivity) For all $x, y, z \in X$, if $x \sim y$ and $y \sim z$, then $x \sim z$.
- (1) Let \sim be the relation on \mathbb{R}^2 given by $(x_1, y_1) \sim (x_2, y_2)$ if and only if $y_1 x_1^2 = y_2 x_2^2$. (a) Prove that \sim is an equivalence relation.

(b) What are the equivalence classes of \sim ? Sketch and label the equivalence classes [(0,0)],[(0,1)], and [(0,2)] in \mathbb{R}^2 .

Recall:

Definition 2. An **order relation** on a set X is a relation \prec on X such that

- (a) (comparability) If $x, y \in X$ and $x \neq y$, then x < y or y < x.
- (b) (anti-reflexivity) For all $x \in X$, we have $x \not\prec x$.
- (c) (transitivity) For all $x, y, z \in X$, if x < y and y < z, then x < z.

Definition 3. If $(X, <_X)$ and $(Y, <_Y)$ are ordered sets, the **dictionary order** on $X \times Y$ is the order defined by

$$(x_1, y_1) < (x_2, y_2) \iff x_1 <_X x_2, \text{ or } x_1 = x_2 \text{ and } y_1 <_Y y_2.$$

(2) Prove that the dictionary order is an order relation.

Recall that the **cartesian product** of two sets *X* and *Y* is the set of ordered pairs

$$X \times Y = \{(x, y) \mid x \in X \text{ and } y \in Y\}.$$

To define products of more sets, we need to talk about tuples of more elements than two. We can do this using functions:

Definition 4. Let *m* be a positive integer. Given a set *X*, we define an *m***-tuple** of elements of *X* to be a function

$$\mathbf{x}: \{1, \ldots, m\} \to X.$$

Given an m-tuple \mathbf{x} , we often write x_i rather than $\mathbf{x}(i)$ and call it the ith **coordinate** of \mathbf{x} . We often denote the function \mathbf{x} itself by the symbol

$$(x_1,\ldots,x_m).$$

Definition 5. Given sets A_1, \ldots, A_m , the **cartesian product** $A_1 \times \cdots \times A_m$ is the set of m-tuples

$$A_1 \times \cdots \times A_m = \{(x_1, \dots, x_m) \mid x_i \in A_i \text{ for each } i\}.$$

(We take $X = A_1 \cup \cdots \cup A_m$ so the definition of m-tuple makes sense here.)

These definitions extend easily to arbitrary products of sets.

Definition 6. Let *I* be a set. An *I*-tuple of elements of a set *X* is a function

$$\mathbf{x}: I \to X$$
.

We write x_i rather than $\mathbf{x}(i)$ and call it the ith **coordinate** of \mathbf{x} . We often denote \mathbf{x} itself by $(x_i)_{i \in I}$.

Given sets $\{A_i\}_{i\in I}$ indexed by a set I, the **cartesian product** $\prod_{i\in I} A_i$ is the set of I-tuples

$$\{(x_i)_{i\in I}\mid x_i\in A_i \text{ for each } i\in I\}.$$

(We take $X = \bigcup_{i \in I} A_i$.)

(3) Let $A_1 = \{1\}$, $A_2 = \{2\}$, $B_1 = \{3\}$, and $B_2 = \{4\}$. Compute $(A_1 \times A_2) \cup (B_1 \times B_2)$ and $(A_1 \cup B_1) \times (A_2 \cup B_2)$. How do the sets compare?

(4) Let $A_1 = \{1,2\}$, $A_2 = \{-1,-2\}$, and $A_3 = \{\pi,2\pi\}$. Write out the elements of $A_1 \times A_2 \times A_3$, $A_1 \times (A_2 \times A_3)$, and $A_1 \times (A_3 \times A_2)$. Are these sets the same or different?

The answer to the last problem should feel annoying. Let's work our way towards another perspective on what a cartesian product is.

(5) Let $\pi_1 : \mathbb{Z} \times \mathbb{R} \to \mathbb{Z}$ and $\pi_2 : \mathbb{Z} \times \mathbb{R} \to \mathbb{R}$ be the functions given by $\pi_1(x, y) = x$ and $\pi_2(x, y) = y$.

(a) Let $f: \{1,2,3\} \to \mathbb{Z} \times \mathbb{R}$ be the function defined as in the following table. Complete the rest of the table.

а	f(a)	$(\pi_1 \circ f)(a)$	$(\pi_2 \circ f)(a)$
1	(3,4)		
2	$(1,\pi)$		
3	$(-1, 2\pi)$		

(b) There is a function $g: \{1,2,3\} \to \mathbb{Z} \times \mathbb{R}$, some facts about which are recorded in the following table. Complete the rest of the table.

<u> </u>			
а	g(a)	$(\pi_1 \circ g)(a)$	$(\pi_2 \circ f)(a)$
1		2	$\sqrt{2}$
2		25	$\sqrt{3}$
3		-125	4

You should see that a function $f:\{1,2,3\} \to \mathbb{Z} \times \mathbb{R}$ is "the same" as a pair of functions $(f_1:\{1,2,3\} \to \mathbb{Z}, f_2:\{1,2,3\} \to \mathbb{R})$. That is, you can find such f_1 and f_2 from f and you can construct f from f_1 and f_2 .

We state this property in general as follows.

Theorem 7 (The Universal Property of the Cartesian Product). Let X, Y be sets and let $P = X \times Y$. Write $\pi_1 : P \to X$ for the function $(x, y) \mapsto x$ and $\pi_2 : P \to Y$ for the function $(x, y) \mapsto y$. (These are called the **projection maps**.) Then for any set A and pair of functions $f_1 : A \to X$ and $f_2 : A \to Y$ there exists a unique function $f : A \to P$ so that the diagram

$$X \stackrel{f_1}{\longleftarrow} P \xrightarrow{f_2} Y$$

commutes, i.e., $f_1 = \pi_1 \circ f$ and $f_2 = \pi_2 \circ f$.

(6) Prove the theorem. (Hint: Think about your answers to (5).)

(7) Let X, Y be sets. Suppose that P' is a set and $\pi'_1: P' \to X$ and $\pi'_2: P' \to Y$ are functions that also have the universal property of the product, that is, for any set A and pair of functions $f_1: A \to X$ and $f_2: A \to Y$ there exists a unique function $f: A \to P'$ so that the diagram

commutes, i.e., $f_1 = \pi'_1 \circ f$ and $f_2 = \pi'_2 \circ f$. Prove that there is a bijection $P \to P'$. (Hint: Try A = P and A = P'.) (8) Let $\{X_i\}_{i\in I}$ be an arbitrary collection of sets. Let $P=\prod_{i\in I}A_i$ be the cartesian product. For each $i\in I$, let $\pi_i:P\to X_i$ be the projection map $(x_j)_{j\in I}\mapsto x_i$ taking tuples to their ith coordinate. Show that P has the following "Universal property of the product:"

Given a set A and functions $f_i: A \to X_i$ for each $i \in I$, there exists a unique function $f: A \to P$ so that the diagram

commutes for all i

(9) We have seen in problem (5) that $A_1 \times (A_2 \times A_3)$ is not quite the same set as $A_1 \times A_2 \times A_3$. However, the two sets are related by an easy-to-guess bijective function. See if you can find it and check that it is a bijection.

One perspective on where this function comes from is that both $A_1 \times (A_2 \times A_3)$ and $A_1 \times A_2 \times A_3$ have the universal property of the product of A_1 , A_2 , and A_3 . Reasoning as in problem 7, there is a unique isomorphism between them that respects the projection maps. If you like, you can try to argue this way.