Package 'makemyprior'

August 23, 2024

Title Intuitive Construction of Joint Priors for Variance Parameters

Version 1.2.2

Description Tool for easy prior construction and visualization. It helps to formulates joint prior distributions for variance parameters in latent Gaussian models. The resulting prior is robust and can be created in an intuitive way. A graphical user interface (GUI) can be used to choose the joint prior, where the user can click through the model and select priors. An extensive guide is available in the GUI. The package allows for direct inference with the specified model and prior. Using a hierarchical variance decomposition, we formulate a joint variance prior that takes the whole model structure into account. In this way, existing knowledge can intuitively be incorporated at the level it applies to. Alternatively, one can use independent variance priors for each model components in the latent Gaussian model. Details can be found in the accompanying scientific paper: Hem, Fuglstad, Riebler (2024, Journal of Statistical Software, <doi:10.18637/jss.v110.i03>).

```
License GPL (>= 2)
```

```
URL https://github.com/ingebogh/makemyprior
```

```
BugReports https://github.com/ingebogh/makemyprior/issues
```

Encoding UTF-8

LazyData true

Imports ggplot2, Matrix, methods, shiny, shinyjs, shinyBS, visNetwork, rlang, MASS

Suggests rstan (>= 2.21.2), INLA (>= 20.03.17), knitr, rmarkdown

Depends R (>= 3.6.0)

Additional_repositories https://inla.r-inla-download.org/R/stable/

VignetteBuilder knitr **RoxygenNote** 7.2.3

NeedsCompilation no

Author Ingeborg Hem [cre, aut] (https://orcid.org/0009-0008-3229-0184), Geir-Arne Fuglstad [aut] (https://orcid.org/0009-0004-3998-2152), Andrea Riebler [aut] (https://orcid.org/0009-0004-3998-4032)

Maintainer Ingeborg Hem <ingeborg.hem@ntnu.no>

2 Contents

Repository CRAN

Date/Publication 2024-08-23 11:10:06 UTC

Contents

Index

compile_stan
create_stan_file
eval_joint_prior
eval_pc_prior
expit
extract_posterior_effect
extract_posterior_parameter
find_pc_prior_param
get_parameter_order
inference_inla
inference_stan
latin_data
logit
makemyprior_example_model
makemyprior_gui
makemyprior_models
makemyprior_plotting
make_prior
mc
neonatal_data
plot.mmp_prior
plot_marginal_prior
plot_posterior_fixed
plot_posterior_stan
plot_posterior_variance
plot_prior
plot_several_posterior_stan
plot_tree_structure
print.mmp_prior
scale_precmat
summary.mmp_prior
typical_variance
wheat_data

36

compile_stan 3

Description

Function that compiles the stan-code for inference that is included in the model. The compiled version is stored in a .rds-file, which is by default stored in tempdir(). Can also be stored in the package (permanent = TRUE), or in a custom directory. In the latter case, this custom directory must be specified every time inference_stan is called. This will also be done by inference_stan, but this way can save some time if it is not already pre-compiled.

Usage

```
compile_stan(save = FALSE, permanent = FALSE, path = NULL)
```

Arguments

save Whether to save stan-file to location in package or not, defaults to FALSE. Must

be in interactive session to save the object to a file.

permanent If TRUE, the file is stored in the package directory. If FALSE (default), the file is

saved in tempdir().

path Only used if file cannot be saved in the package folder. This is a path to a

folder where the file is stored, do not specify a name for the file! (It will be called "full_file.rds", and should not be changed.) This argument makes

the permanent argument being ignored.

Details

Note that you will get a message saying something about integer division. The PC priors on variance proportions are represented by splines, and to evaluate them in Stan we look up values, and use integer division for this. This does not cause problems.

Value

Returns the stan-model invisibly.

```
if (interactive() && requireNamespace("rstan")){
  compile_stan(save = TRUE) # saving in tempdir()
}
```

4 create_stan_file

create_stan_file

Create a "skeleton" for custom Stan code

Description

Makes and saves files with generic code for writing custom Stan code and still use the HD prior.

Usage

```
create_stan_file(save = FALSE, location = "")
```

Arguments

save To confirm that files can be saved (default FALSE).

location Path to location.

Details

Must be in an interactive session to store the code. A folder called "my_stan_code" will be created in location. If the folder already exists in the specified location, you get an error. The folder contains:

main_file.stan Main file. Can put all necessary functions here, but for a cleaner code that is easier to read, we put the functions in separate files.

jacobian.stan Function that automatically computes the Jacobian, needed to transform from weights and total variance parameterization to log-variance parameterization.

prior_distributions.stan Functions for computing the prior distributions.

The provided code is written so a random intercept model with an intercept, a group effect and a residual effect can be fitted:

example_custom_stan.R R script showing how one can fit a random intercept model using the provided code.

The code can be expanded to fit the desired model. This requires some knowledge about Stan. No more documentation is given, as this is merely an offer to users who want to use other models than what are provided in the package already, and will be highly model specific.

Value

Nothing.

```
## Not run:
create_stan_file(TRUE, "")
## End(Not run)
```

eval_joint_prior 5

eval_joint_prior	Evaluate the joint variance prior	

Description

Function for evaluating the joint variance prior stored in prior_obj. To compute the joint prior, the functions needs to know the transformation from the total variance/variance proportion scale to log-variance scale. This is computed before inference, but is not stored in the mmp_prior-object. To avoid having to recompute this for every evaluation and thus improve the speed, we make a condensed data object with the function make eval prior data.

Usage

```
eval_joint_prior(theta, prior_data)
make_eval_prior_data(prior_obj)
```

Arguments

theta	Vector of log variances.	The order of the log variances is the sar	me as specified

in the formula, with the residual variance at the end for a Gaussian likelihood.

To be sure, you can use get_parameter_order to check the order.

prior_data An object from make_eval_prior_data.

prior_obj Object of class mmp_prior, see make_prior.

Details

Note that a Jeffreys' prior is improper and sampling with the prior only will not work when it is used. For sampling from the prior (for example for debugging), use a proper prior for all parameters instead.

The make_eval_prior_data function is used to create a condensed version of the prior object from make_prior, that only contains what is needed to compute the joint prior. Since the HD prior is chosen on total variances and variance proportions, some additional information is needed to compute the Jacobian for the joint prior. To improve the speed, we do this once before evaluating the prior.

Expert option: make_eval_prior_data can also be used to extract the prior to be used with 'regular' INLA. See examples for how this can be done.

Value

Logarithm of the prior density.

6 eval_joint_prior

```
ex_model <- makemyprior_example_model()</pre>
get_parameter_order(ex_model) # a, b, eps
prior_data <- make_eval_prior_data(ex_model)</pre>
eval_joint_prior(c(0, 0, 0), prior_data)
eval_joint_prior(c(-1, 0, 1), prior_data)
# a model with only 2 variance parameters
if (interactive()){
  data <- list(</pre>
    a = rep(1:10, each = 10)
  set.seed(1); data$y <- rnorm(10, 0, 0.4)[data$a] + rnorm(100, 0, 1)
  # random intercept model
  ex_model2 <- make_prior(y ~ mc(a), data, family = "gaussian",</pre>
                           prior = list(tree = "s2 = (a, eps)",
                                        w = list(s2 = list(prior = "pc0", param = 0.25)),
                                   V = list(s2 = list(prior = "pc", param = c(3, 0.05))),
                           intercept\_prior = c(0, 1000)
  prior_data2 <- make_eval_prior_data(ex_model2)</pre>
  # evaluating the prior in a grid
  theta_a <- seq(-8, 4, 0.1)
  theta_eps <- seq(-8, 4, 0.1)
  res <- matrix(nrow = 0, ncol = 3)
  for (ind in 1:length(theta_a)){
    for (jnd in 1:length(theta_eps)){
      res <- rbind(res, c(theta_a[ind], theta_eps[jnd],</pre>
                         eval_joint_prior(c(theta_a[ind], theta_eps[jnd]), prior_data2)))
  }
  # graph showing the prior
  if (requireNamespace("ggplot2")){
    res2 <- as.data.frame(res)</pre>
    names(res2) <- c("x", "y", "z")
   # Note from the "exp(z)" that we use the posterior, and not log posterior, in this plot
    ggplot(res2, aes(x = x, y = y, z = exp(z), fill = exp(z))) +
      geom_raster() +
      geom_contour(color = "black") +
      scale_fill_viridis_c(option = "E") +
      xlab("Log variance of 'a'") +
      ylab("Log residual variance") +
      labs(fill = "Density") +
      theme_bw()
  }
}
## Not run:
```

eval_pc_prior 7

```
# How an HD prior can be computed with \code{makemyprior}, and then sent to regular INLA
# (expert option).
# Note the use of the hidden \code{make_jpr}-function.
# Also note that the order of the parameters must be the same as in the call to \code{make_prior}.
# The residual variance is put in the correct place by \code{make_jpr}.
data <- list(</pre>
 a = rep(1:10, each = 100),
 b = rep(1:100, times = 10)
)
set.seed(1); data$y <- rnorm(100, 0, 0.4)[data$a] + rnorm(100, 0, 0.6)[data$b] + rnorm(1000, 0, 1)
prior <- make_prior(y ~ mc(a) + mc(b), data, family = "gaussian",</pre>
                     prior = list(tree = "s1 = (a, b); s2 = (s1, eps)",
                                  w = list(s2 = list(prior = "pc0", param = 0.25)),
                                  V = list(s2 = list(prior = "pc", param = c(3, 0.05)))),
                     intercept\_prior = c(0, 1000))
jpr_dat <- make_eval_prior_data(prior)</pre>
res <- inla(y \sim f(a) + f(b),
            data = data,
            control.fixed = list(prec.intercept = 1/1000^2),
            control.expert = list(jp = makemyprior:::make_jpr(jpr_dat)))
## End(Not run)
```

eval_pc_prior

Evaluate PC prior for variance proportion

Description

Evaluate PC prior for a variance proportion.

Usage

```
eval_pc_prior(x, obj, param, logitscale = FALSE)
```

Arguments

Х	Values to evaluate prior in.
obj	Prior object from make_prior
param	Which weight to plot, indicated using syntax shown when printing (do not need to include the w[] part to indicate that it is a variance proportion, but can be included). Print the prior object to see syntax for each weight.
logitscale	Is the input x on logit-scale? (default FALSE).

Value

Returns density for the given variance proportion.

Examples

```
ex_prior <- makemyprior_example_model()
eval_pc_prior(seq(0, 1, 0.01), ex_prior, "eps/eps_a_b")
# or:
eval_pc_prior(seq(0, 1, 0.01), ex_prior, "w[eps/eps_a_b]")</pre>
```

expit

expit

Description

Calculates inverse logit, $\exp(x)/(1+\exp(x)) = 1/(1+\exp(-x))$

Usage

```
expit(x)
```

Arguments

Χ

Real number, or vector of reals

Value

expit value

Examples

```
expit(2)
expit(seq(-5, 5, 1))
```

extract_posterior_effect

Extract the posterior of a random effect

Description

Extract the posterior of a random effect in the model for inference done with Stan

Usage

```
extract_posterior_effect(obj, effname)
```

Arguments

obj An object from inference_stan.

effname Name of the random effect, same name as in the data.

Value

Returns a matrix with the posterior samples of the chosen effect

Examples

```
if (interactive() && requireNamespace("rstan")){
    ex_prior <- makemyprior_example_model()
    res_stan <- inference_stan(ex_prior, iter = 100)
    # Note: For reliable results, increase the number of iterations (e.g., 'iter = 2000')
    extract_posterior_effect(res_stan, "a")
}</pre>
```

extract_posterior_parameter

Extract the posterior parameter estimate

Description

Extract the posterior parameter estimate of a random effect variance or fixed effect coefficient when inference is done with Stan

Usage

```
extract_posterior_parameter(obj, param)
```

Arguments

obj An object from inference_stan.

param Name of the variance parameter, which is the same as the name of the corre-

sponding fixed or random effect in the data. Intercept is denoted 'intercept', and

residual variance is denoted 'eps'.

Value

Returns a vector with the posterior samples of the chosen parameter, on variance scale for variances parameters and original (the common) scale for fixed effect coefficients

10 find_pc_prior_param

Examples

```
if (interactive() && requireNamespace("rstan")){
    ex_prior <- makemyprior_example_model()
    res_stan <- inference_stan(ex_prior, iter = 100)
    # Note: For reliable results, increase the number of iterations (e.g., 'iter = 2000')
    extract_posterior_parameter(res_stan, "intercept")
    extract_posterior_parameter(res_stan, "a")
}</pre>
```

find_pc_prior_param

Find suitable PC prior parameters

Description

Returns the U value in P(U > sigma) = alpha for a PC prior on standard deviation given an equaltailed credible interval P(lower < func(x) < upper) = prob where x is a Gaussian variable withzero mean standard deviation sigma. Note that this function uses sampling.

Usage

```
find_pc_prior_param(
  lower,
  upper,
  alpha = 0.05,
  func = exp,
  N = 10000,
  prob = 0.95
)
```

Arguments

lower end of credible interval upper upper end of credible interval alpha tail probability of the PC prior (default = 0.05) func function to scale Gaussian variables to match desired credible interval scale, default is the exponential function

N number of samples to use when sampling sigma and x, default is 1e4

amount of mass to put in the credible interval, default is 0.95

Value

prob

The U-value to pass to the PC prior. NB! Store result to avoid rerunning this function, as it uses sampling. The function also prints (sampled) quantiles for the U-value that is returned.

get_parameter_order 11

Examples

```
find_pc_prior_param(0.1, 10)
```

get_parameter_order

Internal variance parameter order

Description

Returns the internal order of the variance parameters related to each random effect in the model.

Usage

```
get_parameter_order(prior_obj)
```

Arguments

prior_obj

Object of class mmp_prior, see make_prior.

Value

Names of the random effects in the model in the order the prior object reads them.

Examples

```
ex_model <- makemyprior_example_model()
get_parameter_order(ex_model)</pre>
```

inference_inla

Run inference

Description

This function helps you run inference with INLA using a prior object from make_prior. You must have INLA installed to run this. INLA can be installed with: install.packages("INLA", repos = c(getOption("repos"), INLA = "https://inla.r-inla-download.org/R/stable"), dep = TRUE). Also see r-inla.org.

Usage

```
inference_inla(prior_obj, use_likelihood = TRUE, print_prior = TRUE, ...)
```

12 inference_stan

Arguments

An object from make_prior, from makemyprior_gui, from inference_stan, or from inference_inla (for refitting model)

use_likelihood Whether to sample from the prior only (FALSE, can be used for e.g. debugging or to look at the priors on variance parameters when using an HD prior, see also Details), or to use the likelihood and data to get the posterior (TRUE, default).

print_prior Whether to print a text with the chosen prior or not (default TRUE)

Other values to be sent to INLA. Useful arguments include Ntrials for the binomial likelihood and E (mean E_i in E_i*exp(eta_i)) for the Poisson likelihood. We set the default value of num. threads to 1 (this can however be changed). See inla for details. Can be anything sent to inla except for control.expert and arguments that specify priors.

Details

Jeffreys' prior is improper. If use_likelihood = FALSE and Jeffreys' prior is used for the total variance, the prior will be changed to a Gaussian(0,1) prior on the log total variance. This means that it does not make sense to look at the variances/standard deviations/precisions, but the variance proportions will be correct. Note that this is only an issue when sampling from the prior (i.e., not using the likelihood).

Value

A named list with a prior object (prior), an inla-object (inla) and some data inla requires (inla_data).

Examples

```
## Not run:
vignette("make_prior", package = "makemyprior")
## End(Not run)
ex_prior <- makemyprior_example_model()
if (interactive() && requireNamespace("INLA")){
   posterior <- inference_inla(ex_prior)
   plot(posterior)
}</pre>
```

inference_stan

Run inference

Description

This function helps you run inference with rstan using a prior object from make_prior. Note that you must install Stan: install.packages("rstan"), see mc-stan.org.

inference_stan 13

Usage

```
inference_stan(
 prior_obj,
  use_likelihood = TRUE,
 print_prior = TRUE,
  path = NULL,
)
```

Arguments

prior_obj An object from make_prior, from makemyprior_gui, from inference_stan, or

from inference_inla (for refitting model)

use_likelihood Whether to sample from the prior only (FALSE, can be used for e.g. debugging

or to look at the priors on variance parameters when using an HD prior, see also Details), or to use the likelihood and data to get the posterior (TRUE, default).

print_prior Whether to print a text with the chosen prior or not (default TRUE)

path Path to folder. See compile_stan. Only necessary if compiled code is stored

somewhere else than in tempdir() or the package directory (checking tempdir()

first).

Other arguments to be sent to sampling. Useful arguments include:

iter number of iterations for each chain (including burn-in, 2000 is the default)

warmup number of iterations for the burn-in (default is iter/2)

chains number of chains

init initial value of the model parameters on internal parameterization (log-

variances and covariate coefficients)

seed seed value for random number generation

See sampling for more details. Note that for inference with stan, the Ntrials (the size parameter for binomial likelihood) and E (the mean E_i in E_i*exp(eta_i) for Poisson likelihood) argument must be included in the data object, and cannot

be provided to this function.

Details

We cannot sample from a Jeffreys' prior since it is improper. If use_likelihood = FALSE and Jeffreys' prior is used for the total variance, the prior will be changed to a Gaussian(0,1) prior on the log total variance. This means that it does not make sense to look at the variances/standard deviations/precisions, but the variance proportions will be correct. Note that this is only an issue when sampling from the prior (i.e., not using the likelihood).

Value

A named list with a prior object (prior), a stan-object (stan) and some data stan requires (stan_data).

14 latin_data

Examples

```
## Not run:
vignette("make_prior", package = "makemyprior")

## End(Not run)

ex_prior <- makemyprior_example_model()
if (interactive() && requireNamespace("rstan")){
    posterior <- inference_stan(ex_prior, iter = 100)
    # Note: For reliable results, increase the number of iterations (e.g., 'iter = 2000')
    plot(posterior)
}

## Not run:

posterior <- inference_stan(ex_prior, use_likelihood = TRUE, iter = 1e4, chains = 1, seed = 1)
plot(posterior)

## End(Not run)</pre>
```

latin_data

Latin square experiment data

Description

Simulated dataset for latin square experiment with 81 observations.

Usage

latin_data

Format

A list with the following variables:

y Response

lin Covariate for linear effect of treatment

row Row indexes

col Column indexes

treat_iid, treat_rw2 Treatment indexes

logit 15

Examples

```
## Not run:
vignette("latin_square", package = "makemyprior")
## End(Not run)
if (interactive() && requireNamespace("rstan")){
  formula <- y ~ lin + mc(row) + mc(col) + mc(iid) +</pre>
   mc(rw2, model = "rw2", constr = TRUE, lin_constr = TRUE)
  prior <- make_prior(</pre>
    formula, latin_data,
    prior = list(tree = "s1 = (rw2, iid);
                                  s2 = (row, col, s1); s3 = (s2, eps)",
                 w = list(s1 = list(prior = "pc0", param = 0.25),
                          s2 = list(prior = "dirichlet"),
                          s3 = list(prior = "pc0", param = 0.25))))
  posterior <- inference_stan(prior, iter = 150, warmup = 50,</pre>
                               seed = 1, init = "0", chains = 1)
  # Note: For reliable results, increase the number of iterations
  plot(prior)
  plot_tree_structure(prior)
  plot_posterior_fixed(posterior)
  plot_posterior_stan(posterior, param = "prior", prior = TRUE)
}
## Not run:
posterior <- inference_stan(prior, iter = 15000, warmup = 5000,</pre>
                            seed = 1, init = 0, chains = 1)
plot(prior)
plot_tree_structure(prior)
plot_posterior_fixed(posterior)
plot_posterior_stan(posterior, param = "prior", prior = TRUE)
## End(Not run)
```

logit

logit

Description

```
Calculates logit, log(x/(1-x)) = log(x) - log(1-x)
```

Usage

```
logit(x)
```

Arguments

Х

Value between 0 and 1, or vector of such values

Value

logit value

Examples

```
logit(0.5)
logit(seq(0, 1, 0.1))
```

makemyprior_example_model

Returning a simple example prior object

Description

Creating a simple prior object using make_prior. Used in examples of other functions in the package.

Usage

```
makemyprior_example_model(seed = 1)
```

Arguments

seed

A seed value for reproducing the data (default seed = 1).

Details

See the example for what model is made.

Value

An object of class mmp_prior.

makemyprior_gui 17

Examples

makemyprior_gui

Graphical prior construction

Description

This functions opens a shiny app where the specified prior can be seen, and changed.

Usage

```
makemyprior_gui(prior, guide = FALSE, no_pc = FALSE)
```

Arguments

prior An object from make_prior.

guide Logical, whether to open the guide directly when the app is started. Default is FALSE. The guide can be opened in the app at any time.

no_pc Turn off computation of the PC prior on splits when using the shiny-app, to avoid slow computations. Upon closing, the PC priors will be computed. Default is FALSE.

Value

Returns an object that can be sent to inference_stan or inference_inla. Can also be sent to make-myprior_gui again.

18 makemyprior_models

Examples

```
## Not run:
vignette("make_prior", package = "makemyprior")

## End(Not run)

if (interactive()){
    ex_prior <- makemyprior_example_model()
    new_prior <- makemyprior_gui(ex_prior)
}</pre>
```

makemyprior_models

List available priors, latent models and likelihoods

Description

Prints available priors, latent models and likelihoods to use with make_prior.

Usage

```
makemyprior_models(type = c("prior", "latent", "likelihood"), select = NULL)
```

Arguments

type Which of priors, latent models and likelihoods to list. Options are prior, latent

and likelihood

select Which in each group to show details about. NULL gives only list what exists

(default), all gives detailed information about everything in that category. Can

also ask for one or more specific priors/latent models/likelihoods

Value

None.

```
makemyprior_models("prior", c("pc0", "pc1"))
makemyprior_models("latent")
makemyprior_models("likelihood", "all")
```

makemyprior_plotting 19

makemyprior_plotting List of available plotting functions

Description

Directs to this help page.

Usage

```
makemyprior_plotting()
```

Details

The available plotting functions are:

- plot_marginal_prior
- plot_posterior_fixed
- plot_posterior_precision
- plot_posterior_stan
- plot_posterior_stdev
- plot_posterior_variance
- plot_prior
- plot_several_posterior_stan
- plot_tree_structure

In addition the following functions can be used to extract posterior samples of effects and parameters:

- extract_posterior_effect
- extract_posterior_parameter

eval_pc_prior can be used to evaluate a PC prior for a weight parameter, and eval_joint_prior to evaluate the whole joint prior.

Value

None.

20 make_prior

make_prior

Making a prior object

Description

Make a prior object with all necessary information about the prior and model. The object can either be sent to makemyprior_gui or used directly for inference with Stan (inference_stan) or INLA (inference_inla). eval_joint_prior can be used to evaluate the prior.

Usage

```
make_prior(
  formula,
  data,
  family = "gaussian",
  prior = list(),
  intercept_prior = c(),
  covariate_prior = list()
)
```

Arguments

formula

A formula object, using the function mc.

data

The data used in the model, as a data.frame or list. All elements must have the same length.

family

A string indicating the likelihood family. gaussian with identity link is the default. binomial with logit link and poisson with log link are also possible.

prior

tree The tree structure as a string. A split is specified as s1 = (a,b), where (s1) represents a split node and can be any name except names of the input data in data and the reserved (eps), which is used for residuals for a Gaussian likelihood. Short names are recommended. Note that these split names are just used in the initial specification, and will not be used later as they are changed by the function automatically. The child nodes for each split are included in parentheses separated by commas, and each split is separated by semicolons. Singletons are included as (a).

- V A named list with information on the priors on each top node and singleton, i.e., all variances. The names in the list are the top node and singleton names from the tree argument. Syntax is V = list(s1 = list(prior = prior_name, param = parameter_vector)).
- w A named list with information on the priors on each split, i.e., all variance proportions. The names in the list are the split node names from the tree argument, and is specified in the same way as the variance priors in V.

Prior on residuals can be defined using eps in this list in the case of a Gaussian likelihood.

mc 21

```
intercept_prior
```

Parameters for Gaussian prior on intercept, specified as a vector with mean and standard deviation. Default is (0, 1000).

```
covariate_prior
```

Parameters for Gaussian prior on coefficients of covariates, specified as named list, each element is a vector with mean and standard deviation. Default is (0, 1000).

Details

See makemyprior_models for details on available priors and likelihoods.

Value

Prior object.

```
## Not run:
vignette("make_prior", package = "makemyprior")
## End(Not run)
p <- 10
m <- 10
n \leftarrow m*p
set.seed(1)
data <- list(a = rep(1:p, each = m),
             b = rep(1:m, times = p),
             x = runif(n)
datay \leftarrow datax + rnorm(p, 0, 0.5)[dataa] +
  rnorm(m, 0, 0.3)[data$b] + rnorm(n, 0, 1)
formula <- y \sim x + mc(a) + mc(b)
prior <- make_prior(formula, data, family = "gaussian",</pre>
                     intercept\_prior = c(0, 1000),
                     covariate\_prior = list(x = c(0, 100)))
prior
plot(prior)
```

22 mc

Description

Function for defining a latent component for the HD prior package. All model components must be specified, and if an HD prior is used, this is specified later. See make_prior for more details and examples.

Usage

```
mc(
  label,
  model = "iid",
  constr = NULL,
  lin_constr = FALSE,
  Cmatrix = NULL,
  graph = NULL,
  ...
)
```

Arguments

label	Name of the component (short names is an advantage as they are used in the app), no default (MUST be provided)
model	Type of model, default is "iid" (see list of models: makemyprior_models, makemyprior_models("latent
constr	Sum-to-zero constraints on component (default TRUE)
lin_constr	Linear sum-to-zero constraint, TRUE/FALSE (only for rw2 and only for Stan)
Cmatrix	Precision for this component when model = "generic0". We recommend that the matrixes are scaled to the typical variance of the corresponding covariance matrix is 1. This can be done with scale_precmat before sending matrix to mc.
graph	Path to graph file for besag effect (see details).
•••	Additional arguments used for inference. For inference with rstan or inla, the following is useful (especially for the Besag model):
	scale.model if TRUE, the models are scaled so the geometric mean of the variance (typical variance) is 1
	And some additional arguments that can be used by inla. Useful arguments include:
	rankdef number defining rank deficiency of the model
	extraconstr extra linear constraints (in addition to constr)
	See f for details.

Details

The graph argument is a path to a file describing neighbouring relationship on the following form: First row: number of elements The rest: First number is the index of this element, second is the number of neighbours, the rest is the index numbers of all neighbours for this element. If element 1 and 4 are neighbours, 1 should have 4 in its neighbour list, and 4 should have 1.

neonatal_data 23

Value

For specifying details on this latent component.

Examples

```
## Not run:
vignette("make_prior", package = "makemyprior")
## End(Not run)
```

neonatal_data

Neonatal mortality data

Description

Simulated neonatal mortality data with 323 observations.

Usage

```
neonatal_data
```

Format

A list with the following variables:

y Response

Ntrials Number of trials for each cluster

urban Covariate indicating if cluster is urban (1) or rural (0)

- nu Cluster effect indexes
- v County effect indexes for iid effect
- u County effect indexes for Besag effect

```
## Not run:
vignette("neonatal_mortality", package = "makemyprior")
## End(Not run)
if (interactive() && requireNamespace("rstan")){
   graph_path <- paste0(path.package("makemyprior"), "/neonatal.graph")
   formula <- y ~ urban + mc(nu) + mc(v) +</pre>
```

24 plot.mmp_prior

```
mc(u, model = "besag", graph = graph_path, scale.model = TRUE)
  set.seed(1)
  find_pc_prior_param(lower = 0.1, upper = 10, prob = 0.9, N = 2e5)
  prior <- make_prior(</pre>
    formula, neonatal_data, family = "binomial",
    prior = list(tree = "s1 = (u, v); s2 = (s1, nu)",
                 w = list(s1 = list(prior = "pc0", param = 0.25),
                          s2 = list(prior = "pc1", param = 0.75)),
                 V = list(s2 = list(prior = "pc",
                                    param = c(3.35, 0.05))))
  posterior <- inference_stan(prior, iter = 150, warmup = 50,</pre>
                               seed = 1, init = "0", chains = 1)
  # Note: For reliable results, increase the number of iterations
  plot(prior)
  plot_tree_structure(prior)
  plot_posterior_fixed(posterior)
  plot_posterior_stan(posterior, param = "prior", prior = TRUE)
}
## Not run:
posterior <- inference_stan(prior, iter = 15000, warmup = 5000,</pre>
                            seed = 1, init = "0", chains = 1)
plot(prior)
plot_tree_structure(prior)
plot_posterior_fixed(posterior)
plot_posterior_stan(posterior, param = "prior", prior = TRUE)
## End(Not run)
```

plot.mmp_prior

Plotting

Description

Plotting

Usage

```
## S3 method for class 'mmp_prior'
plot(x, ...)
## S3 method for class 'mmp_inla'
plot(x, ...)
```

plot_marginal_prior 25

```
## S3 method for class 'mmp_stan' plot(x, ...)
```

Arguments

x Object of class mmp_prior, mmp_inla or mmp_stan.

... Additional arguments to plotting functions. Varies with what object is sent to function.

Details

See plot_prior (objects of class mmp_prior), plot_posterior_stan (objects of class mmp_stan), and plot_posterior_variance (objects of class mmp_inla),

Value

None.

Examples

```
pri <- makemyprior_example_model()
plot(pri)

if (interactive() && requireNamespace("rstan")){
    res_stan <- inference_stan(ex_prior, iter = 100)
    # Note: For reliable results, increase the number of iterations (e.g., 'iter = 2000')
    plot(res_stan)
}

if (interactive() && requireNamespace("INLA")){
    res_inla <- inference_inla(pri)
    plot(res_inla)
}</pre>
```

plot_marginal_prior

Plotting prior for a single parameter (weight or variance (not standard deviation))

Description

Following the parameterization of the prior.

Usage

```
plot_marginal_prior(x, obj, param, sd = FALSE)
```

26 plot_posterior_fixed

Arguments

X	Values to evaluate prior in.
obj	An object from make_prior, inference_stan, inference_inla, or makemyprior_gui
param	Name of parameter to plot (see print(obj) for syntax). Note that only variances will be plotted, so V[] and sigma^2[] must be used to indicate those parameters.
sd	Whether to plot variance parameters on the standard deviation (TRUE) or variance (FALSE, default) scale

Value

A ggplot with the posterior distribution. See also makemyprior_plotting.

Examples

```
ex_prior <- makemyprior_example_model()
plot_marginal_prior(seq(0, 1, 0.001), ex_prior, "w[a/a_b]")
plot_marginal_prior(seq(0, 1, 0.001), ex_prior, "w[eps/eps_a_b]")
plot_marginal_prior(seq(0, 5, 0.01), ex_prior, "V[eps_a_b]")</pre>
```

```
plot_posterior_fixed Plotting posterior distributions
```

Description

Function for plotting the posterior distributions of the coefficients of the fixed effects

Usage

```
plot_posterior_fixed(obj)
```

Arguments

obj An object from inference_stan or inference_inla

Value

A ggplot with the posterior distributions. See also makemyprior_plotting.

```
if (interactive() && requireNamespace("rstan")){
    ex_prior <- makemyprior_example_model()
    res_stan <- inference_stan(ex_prior, iter = 100)
    # Note: For reliable results, increase the number of iterations (e.g., 'iter = 2000')
    plot_posterior_fixed(res_stan)
}</pre>
```

plot_posterior_stan 27

Description

Function for plotting the posterior distributions of the random effect variances on the scale of the tree parameterization.

Usage

```
plot_posterior_stan(
  obj,
  param = c("prior", "variance", "stdev", "precision"),
  prior = FALSE
)
```

Arguments

obj	An object from inference_stan
param	A string indicating parameterization of plot. "prior" for scale of parameters, "variance", "stdev" and "precision" also possible.
prior	Include prior in the plot? Only possible for param = "prior". Note that if Jeffreys' prior is used for the total variance, it will not be included in the plot.

Value

A ggplot with the posterior distributions. See also makemyprior_plotting.

```
if (interactive() && requireNamespace("rstan")){
    ex_prior <- makemyprior_example_model()
    res_stan <- inference_stan(ex_prior, iter = 100)
    # Note: For reliable results, increase the number of iterations (e.g., 'iter = 2000')
    plot_posterior_stan(res_stan)
}</pre>
```

```
plot_posterior_variance
```

Plotting posterior variances, standard deviations or precisions

Description

Plotting posterior variances, standard deviations or precisions

Usage

```
plot_posterior_variance(obj)
plot_posterior_stdev(obj)
plot_posterior_precision(obj)
```

Arguments

obj

An object from inference_stan or inference_inla.

Value

A ggplot object with the plot See also makemyprior_plotting.

```
if (interactive() && requireNamespace("rstan")){
    ex_prior <- makemyprior_example_model()
    res_stan <- inference_stan(ex_prior, iter = 100)
    # Note: For reliable results, increase the number of iterations (e.g., 'iter = 2000')
    plot_posterior_variance(res_stan)
}

if (interactive() && requireNamespace("INLA")){
    ex_prior <- makemyprior_example_model()
    res_inla <- inference_inla(ex_prior)
    plot_posterior_variance(res_inla)
}</pre>
```

plot_prior 29

plot_prior

Plotting prior distributions

Description

Function for plotting the prior distributions of the random effects on the scale of the parameters chosen

Usage

```
plot_prior(obj)
```

Arguments

obj

An object from make_prior, inference_stan, inference_inla, or makemyprior_gui

Value

A ggplot with the prior distributions. See also makemyprior_plotting.

Examples

```
ex_prior <- makemyprior_example_model()
plot_prior(ex_prior)</pre>
```

```
plot_several_posterior_stan
```

Plotting several posterior distributions

Description

Function for plotting the posterior distributions of the random effect variances on the scale of the tree parameterization.

Usage

```
plot_several_posterior_stan(
  objs,
  param = c("prior", "variance", "stdev", "precision", "logvariance")
)
```

30 plot_tree_structure

Arguments

objs A names list with objects of class mmp_stan from inference_stan, can be any

length (but typically length two for one prior (use_likelihood = FALSE) and

posterior, or two posteriors).

param A string indicating parameterization of plot. "prior" for scale of parameters,

"variance", "stdev", "precision" and "logvariance" are also possible.

Details

We cannot sample from a Jeffreys' prior since it is improper. If Jeffreys' prior is used for the total variance, the prior will be changed to a Gaussian(0,1) prior on the log total variance. This means that it does not make sense to look at the variances/standard deviations/precisions, but the variance proportions will be correct. See also makemyprior_plotting.

Value

A ggplot with the posterior distributions.

Examples

```
if (interactive() && requireNamespace("rstan")){
  ex_prior1 <- makemyprior_example_model(seed = 1)
  ex_prior2 <- makemyprior_example_model(seed = 2)
  # Note: For reliable results, increase the number of iterations (e.g., 'iter = 2000')
  res_stan1 <- inference_stan(ex_prior1, iter = 100)
  res_stan2 <- inference_stan(ex_prior2, iter = 100)
  plot_several_posterior_stan(list(One = res_stan1, Two = res_stan2))
}</pre>
```

Description

Can only be used for visualization in R.

Usage

```
plot_tree_structure(obj, nodenames)
```

Arguments

obj An object from make_prior, inference_stan, inference_inla, or makemyprior_gui

nodenames Custom names for each node (optional). Given as a named list with the default

names as list names, and the new names as list elements. Do not need to provide

all.

print.mmp_prior 31

Value

A visNetwork with the tree graph See also makemyprior_plotting.

Examples

```
ex_prior <- makemyprior_example_model()
plot_tree_structure(ex_prior)</pre>
```

print.mmp_prior

Print

Description

Print

Usage

```
## S3 method for class 'mmp_prior'
print(x, ...)
## S3 method for class 'mmp_inla'
print(x, ...)
## S3 method for class 'mmp_stan'
print(x, ...)
```

Arguments

```
x Object of class mmp_prior, mmp_inla or mmp_stan.... For mmp_stan and mmp_inla, see print.data.frame.
```

Value

Returns input object invisible.

```
pri <- makemyprior_example_model()
pri # or print(pri)

if (interactive() && requireNamespace("rstan")){
    res_stan <- inference_stan(ex_prior, iter = 100)
    # Note: For reliable results, increase the number of iterations (e.g., 'iter = 2000')
    res_stan # or print(res_stan)
}

if (interactive() && requireNamespace("INLA")){</pre>
```

32 summary.mmp_prior

```
res_inla <- inference_inla(pri)
res_inla # or print(res_inla)
}</pre>
```

scale_precmat

Scaling precision matrix

Description

Scaling a precision matrix so the corresponding covariance matrix has typical variance (geometric mean) equal to 1.

Usage

```
scale_precmat(Q)
```

Arguments

Q

Precision matrix

Value

Precision matrix which is now scaled to have typical variance 1.

Examples

```
scale_precmat(diag(10))
```

summary.mmp_prior

Short summary

Description

Short summary

Usage

```
## $3 method for class 'mmp_prior'
summary(object, ...)
## $3 method for class 'mmp_inla'
summary(object, ...)
## $3 method for class 'mmp_stan'
summary(object, ...)
```

typical_variance 33

Arguments

```
object Object of class mmp_prior, mmp_inla or mmp_stan.
... For mmp_stan and mmp_inla, see print.data.frame.
```

Value

Returns summary invisible.

Examples

```
pri <- makemyprior_example_model()
summary(pri)

if (interactive() && requireNamespace("rstan")){
    res_stan <- inference_stan(ex_prior, iter = 100)
    # Note: For reliable results, increase the number of iterations (e.g., 'iter = 2000')
    summary(res_stan)
}

if (interactive() && requireNamespace("INLA")){
    res_inla <- inference_inla(pri)
    summary(res_inla)
}</pre>
```

typical_variance

Compute the typical variance

Description

Computing the typical variance (geometric mean) of a matrix.

Usage

```
typical_variance(mat)
```

Arguments

mat

Matrix.

Value

Typical variance.

```
typical_variance(diag(10))
```

34 wheat_data

wheat_data

Genomic wheat breeding model data

Description

Simulated wheat yield data with 100 observations.

Usage

```
wheat_data
```

Format

A list with the following variables

- y Response
- a, b, x Indexes for the additive, dominance and epistasis genetic effects, respectively
- Q_a, Q_d, Q_x Precision matrices for the genetic effects

```
## Not run:
vignette("wheat_breeding", package = "makemyprior")
## End(Not run)
if (interactive() && requireNamespace("rstan")){
 wheat_data_scaled <- wheat_data</pre>
 wheat_data_scaled$Q_a <- scale_precmat(wheat_data$Q_a)</pre>
 wheat_data_scaled$Q_d <- scale_precmat(wheat_data$Q_d)</pre>
 wheat_data_scaled$Q_x <- scale_precmat(wheat_data$Q_x)</pre>
 formula <- y ~
    mc(a, model = "generic0", Cmatrix = Q_a, constr = TRUE) +
   mc(d, model = "generic0", Cmatrix = Q_d, constr = TRUE) +
   mc(x, model = "generic0", Cmatrix = Q_x, constr = TRUE)
 prior <- make_prior(formula, wheat_data_scaled, prior = list(</pre>
    tree = "s1 = (d, x); s2 = (a, s1); s3 = (s2, eps)",
   w = list(s1 = list(prior = "pcM", param = c(0.67, 0.8)),
             s2 = list(prior = "pcM", param = c(0.85, 0.8)),
             s3 = list(prior = "pc0", param = 0.25))))
 posterior <- inference_stan(prior, iter = 150, warmup = 50,</pre>
                               chains = 1, seed = 1)
 # Note: For reliable results, increase the number of iterations
```

wheat_data 35

```
plot(prior)
plot_tree_structure(prior)
plot_posterior_fixed(posterior)
plot_posterior_stan(posterior, param = "prior", prior = TRUE)
}

## Not run:

posterior <- inference_stan(prior, iter = 150, warmup = 50, chains = 1, seed = 1)

plot(prior)
plot_tree_structure(prior)
plot_posterior_fixed(posterior)
plot_posterior_stan(posterior, param = "prior", prior = TRUE)

## End(Not run)</pre>
```

Index

* INLA inference_inla, 11	inference_inla, 11, 12, 13, 17, 20 inference_stan, 3, 12, 12, 13, 17, 20
* datasets	inla, <i>12</i> , <i>22</i>
latin_data, 14	
neonatal_data, 23	latin_data, 14
wheat_data, 34	logit, 15
* formula	make eval prior data 5
mc, 21	<pre>make_eval_prior_data, 5 make_eval_prior_data</pre>
* gui	(eval_joint_prior), 5
makemyprior_gui, 17	make_prior, 5, 7, 11–13, 16–18, 20, 22
* plot	makemyprior_example_model, 16
plot_marginal_prior, 25	makemyprior_gui, 12, 13, 17, 17, 20
plot_posterior_fixed, 26	makemyprior_models, 18, 21, 22
plot_posterior_stan, 27	makemyprior_plotting, 19, 26–31
$plot_posterior_variance, 28$	mc, 20, 21, 22
plot_prior, 29	110, 20, 21, 22
plot_several_posterior_stan, 29	neonatal_data, 23
plot_tree_structure, 30	
* posterior	<pre>plot.mmp_inla(plot.mmp_prior), 24</pre>
$extract_posterior_effect, 8$	plot.mmp_prior, 24
extract_posterior_parameter,9	<pre>plot.mmp_stan(plot.mmp_prior), 24</pre>
* prior	plot_marginal_prior, 19, 25
make_prior, 20	plot_posterior_fixed, 19, 26
* rstan	plot_posterior_precision, 19
inference_stan, 12	plot_posterior_precision
.1	(plot_posterior_variance), 28
compile_stan, 3, 13	plot_posterior_stan, 19, 25, 27
<pre>create_stan_file, 4</pre>	plot_posterior_stdev, 19
aval joint prior 5 10 20	plot_posterior_stdev
eval_joint_prior, 5, 19, 20	(plot_posterior_variance), 28
eval_pc_prior, 7, 19 expit, 8	plot_posterior_variance, 19, 25, 28
extract_posterior_effect, 8, 19	plot_prior, 19, 25, 29
extract_posterior_errect, 8, 19 extract_posterior_parameter, 9, 19	plot_several_posterior_stan, 19, 29
extract_posterior_parameter, 9, 19	plot_tree_structure, 19, 30
f, 22	print.data.frame, 31, 33
find_pc_prior_param, 10	<pre>print.mmp_inla(print.mmp_prior), 31 print.mmp_prior, 31</pre>
	print.mmp_prior, 31 print.mmp_stan (print.mmp_prior), 31
get_parameter_order, 5, 11	pr 1110.11111p_5 carr (pr 1110.11111p_pr 101), 51
ggplot, 26–30	rstan, 12, 22

INDEX 37

```
sampling, 13
scale_precmat, 22, 32
summary.mmp_inla(summary.mmp_prior), 32
summary.mmp_prior, 32
summary.mmp_stan(summary.mmp_prior), 32
typical_variance, 33
visNetwork, 31
wheat_data, 34
```