Artur Savchii Problem Set 6

Course: Advanced Topics: Linear Algebra

Instructor: Mr. Blauss 29 January, 2024

Problem 1

Let S and T be subspaces of V. Prove that:

- a) $S + T = L(S \cup T)$
- b) $S \cap (S+T) = S$
- c) S + T = T + S
- d) If $S \subseteq T$, then S + T = T

Proof. a) $S + T = L(S \cup T)$

Let $A \in S + T \implies A = \vec{s} + \vec{t}$ where $\vec{s} \in S, \vec{t} \in T \implies \vec{s}, \vec{t} \in S \cup T$. $\vec{s} + \vec{t}$ is a linear combination of vectors in $S \cup T$, and therefore, $\vec{s} + \vec{t} = A \in L(S \cup T)$ by the defn. of linear span. Thus, $S + T \subseteq L(S \cup T)$

Let $A \in L(S \cup T)$. This implies that A can be represented as linear combination of vectors in $S \cup T$: $A = r_1\vec{a_1} + r_2\vec{a_2} + ... + r_k\vec{a_k}$, where $\vec{a_i} \in S \cup T$. $\vec{a_i} \in S$ or $\vec{a_i} \in T$ or both, by the defn. of union. Hence, denote those $\vec{a_i} \in S$ as $\vec{s_i}$, $\vec{a_i} \in T$ as $\vec{t_i}$ and $\vec{a_i} \in S$, T as $\vec{t_i}$ as well. $A = r_1\vec{a_1} + r_2\vec{a_2} + ... + r_k\vec{a_k} = r_s\vec{i_1} + r_t\vec{i_1} + ... + r_s\vec{i_n} + r_t\vec{i_n}$. Because S is a subspace of V, and, therefore, a vector space, and, therefore, closed under vector addition and scalar multiplication, $(r_s\vec{i_1} + ... + r_s\vec{i_n}) \in S$. Similarly, for T, $(r_t\vec{i_1} + ... + r_t\vec{i_n}) \in T$. Thus, $A = (r_s\vec{i_1} + ... + r_s\vec{i_n}) + (r_t\vec{i_1} + ... + r_t\vec{i_n}) = (\vec{s} + \vec{t}) \in S + T$ by the definition of the sum of subspaces. Thus, $L(S \cup T) \subseteq S + T$.

 $S+T\subseteq L(S\cup T)$ and $L(S\cup T)\subseteq S+T$. This implies $S+T=L(S\cup T)$

b) $S \cap (S+T) = S$

Let $A \in S \cap (S+T) \implies A \in S$ by the defn. of intersection. Thus, $S \cap (S+T) \subseteq S$.

Let $A \in S$. T is a subspace of V, and, therefore, $\vec{0} \in T$. Thus, $A + \vec{0} \in S + T$ by the definition of the sum of the subspaces. $A + \vec{0} = A$ by Axiom 3. Therefore, $A \in S + T$. $A \in S + T$ and $A \in S \implies A \in S \cap (S + T)$ by the definition of the intersection. Thus, $S \subseteq S \cap (S + T)$

 $S \cap (S+T) \subseteq S$ and $S \subseteq S \cap (S+T)$. This implies $S \cap (S+T) = S$.

c) S + T = T + S

S+T is a set of $\vec{s} + \vec{t}$ with $\vec{s} \in S$ and $\vec{t} \in T$ by defn.

T+S is a set of $\vec{t} + \vec{s}$ with $\vec{t} \in T$ and $\vec{s} \in S$ by defn.

T and S are subspaces, and vector addition is commutative by Axiom 1.

Therefore, T+S is a set of $\vec{t} + \vec{s} = \vec{s} + \vec{t}$ with $\vec{t} \in T$ and $\vec{s} \in S$ by defn.

This matches our definition of S+T. Thus, S+T=T+S.

d) Let $A \in S + T$. Then $A = \vec{s} + \vec{t}$ with $\vec{s} \in S$ and $\vec{t} \in T$ by defn. $S \subseteq T$. Therefore, if $\vec{s} \in S$, $\vec{s} \in T$ by defn. of a subset. $\vec{s} \in T$ and $\vec{t} \in T$. Thus, $\vec{s} + \vec{t} = A \in T$, as T is a subspace of V, and, therefore, a vector space, and, therefore, closed under vector addition. Thus, $S + T \subseteq T$

Let $A \in T$. S is a subspace of V, and, therefore, $\vec{0} \in S$. Thus, $\vec{0} + A \in S + T$ by the definition of the subspaces. $A + \vec{0} = A$ by Axiom 3. Therefore, $A \in S + T$. Thus, $T \subseteq S + T$.

 $S + T \subseteq T$ and $T \subseteq S + T$. This implies S + T = T.

Problem 2

Which of the following sets of vectors in \mathbb{R}^3 are linearly dependent? Which are linearly independent? $E = \{\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}\}, F = \{\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}\}, G = \{\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}\}, H = \{\begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, K = \{\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}\}$

Solution:

E)
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$
. Therefore, by the definition, **E** is linearly dependent.

F) $r_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + r_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + r_3 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$.

For the third term we have $r_1 * 1 + r_2 * 0 + r_3 * 0 = 0 \implies r_1 = 0$. For the second term we have $r_1 * 1 + r_2 * 1 + r_3 * 0 = 0 * 1 + r_2 * 1 + r_3 * 0 = 0 \implies r_2 = 0$. For the first term we have $r_1 * 1 + r_2 * 1 + r_3 * 1 = 0 * 1 + 0 * 1 + r_3 * 1 = 0 \implies r_3 = 0$. However, by the definition, it has to be non-trivial linear combination. Therefore, **F** is linearly independent.

G)
$$r_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + r_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + r_3 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

For the third term we have $r_1 * 1 + r_2 * 0 + r_3 * 1 = 0 \implies r_1 + r_3 = 0$. For the second term we have $r_1 * 1 + r_2 * 1 + r_3 * 0 = 0 \implies r_1 + r_2 = 0$. For the first term we have $r_1 * 1 + r_2 * 1 + r_3 * 1 = 0 \implies r_1 + r_2 + r_3 = 0$. We know from the second term that $r_1 + r_2 = 0$. Thus, we have $0 + r_3 = 0 \implies r_3 = 0$. We know from the third term that $r_1 + r_3 = 0 = r_1 + 0 \implies r_1 = 0$. Thus, we get $r_1 = 0, r_2 = 0, r_3 = 0$. However, by the definition, it has to be non-trivial linear combination. Therefore, **G** is linearly independent.

H)
$$r_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + r_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + r_3 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

For the third term we have $r_1 * 0 + r_2 * 0 + r_3 * 1 = 0 \implies r_3 = 0$. For the second term we have $r_1 * 0 + r_2 * 1 + r_3 * 2 = 0 \implies r_2 + 2r_3 = 0 \implies r_2 = 0$. For the first term we have $r_1 * 1 + r_2 * 0 + r_3 * 1 = 0 \implies r_1 + r_3 = 0 \implies r_1 = 0$. However, by the definition, it has to be non-trivial linear combination. Therefore, **H** is linearly independent.

K)
$$r_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + r_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + r_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

For the first term we have $r_1*1+r_2*0+r_3*0=0 \implies r_1=0$. For the second term we have $r_1*1+r_2*1+r_3*0=0 \implies r_1+r_2=0 \implies r_2=0$. For the third term we have $r_1*1+r_2*0+r_3*1=0 \implies r_1+r_3=0 \implies r_3=0$. Thus, we get $r_1=0,r_2=0,r_3=0$. However, by the definition, it has to be non-trivial linear combination. Therefore, **K** is linearly independent.

Problem 3

Let $E = \{(1, 1, 0, 0, 1), (1, 1, 0, 1, 1), (0, 1, 1, 1, 1), (2, 1, -1, 0, 1)\} \subseteq \mathbb{R}^5$, and let L(E) = U. Find $F \subseteq E$ such that L(F) = U and F is linearly independent.

Solution: (2, 1, -1, 0, 1) = (1, 1, 0, 0, 1) + (1, 1, 0, 1, 1) - (0, 1, 1, 1, 1). This means (2, 1, -1, 0, 1) is linearly dependent on a set $\{(1, 1, 0, 0, 1), (1, 1, 0, 1, 1), (0, 1, 1, 1, 1)\}$. Therefore, let $F = E \setminus \{(2, 1, -1, 0, 1)\}$. Then we have L(F) = L(E) = U by Theorem 2. Now let's prove that F is linearly independent. Assume not. Then we have: $r_1(1, 1, 0, 0, 1) + r_2(1, 1, 0, 1, 1) + r_3(0, 1, 1, 1, 1) = \vec{0} = (0, 0, 0, 0, 0)$. $((r_1+r_2), (r_1+r_2+r_3), r_3, (r_2+r_3), (r_1+r_2+r_3)) = (0, 0, 0, 0, 0)$ We get $r_3 = 0$. $r_2+r_3 = 0 \implies r_2 = 0$. $r_1 + r_2 = 0 \implies r_1 = 0$. However, by the definition, it has to be non-trivial linear combination. Therefore, F is linearly independent.

Problem 4

Suppose that $E \subseteq F$ are sets of vectors in V, a vector space. Prove that if F is linearly independent, so is E.

Proof. Assume not. Assume F is linearly independent, but E is linearly dependent. By the defn, $\exists A_1, ..., A_k \in E$ and $a_1, ..., a_k \in \mathbb{R}$ (not all zeros), such that $a_1A_1 + ... + a_kA_k = \vec{0}$.

 $E \subseteq F \implies A_1, ..., A_k \in F$. Denote those vectors that are in F but not in E as $B_1, ..., B_k$. Then we have $a_1A_1 + ... + a_kA_k + 0B_1 + ... + 0B_k = (a_1A_1 + ... + a_kA_k) + 0(B_1 + ... + B_k) = \vec{0} + \vec{0} = \vec{0}$. This implies that F is linearly dependent (by the definition), which contradicts our initial assumption. Therefore, if F is linearly independent, so is E.

Problem 5

Suppose that $E \subseteq F$ are sets of vectors in V, a vector space. Prove that if E is linearly dependent, so is F.

Proof. By the defn, $\exists A_1, ..., A_k \in E$ and $a_1, ..., a_k \in \mathbb{R}$ (not all zeros), such that $a_1A_1 + ... + a_kA_k = \vec{0}$. Denote those vectors that are in F but not in E as $B_1, ..., B_k$. Then we have $a_1A_1 + ... + a_kA_k + 0B_1 + ... + 0B_k = (a_1A_1 + ... + a_kA_k) + 0(B_1 + ... + B_k) = \vec{0} + \vec{0} = \vec{0}$. This implies that F is linearly dependent by the definition. \Box