Dropout as an Implicit Gating Mechanism for Continual Learning

Iman Mirzadeh¹ Mehrdad Farajtabar², Hassan Ghasemzadeh¹

 $^{1}Washington\ State\ University \\ \{seyediman.mirzadeh,\ hassan.ghasemzadeh\}@wsu.edu$

 $^2 {\sf DeepMind} \\ {\sf farajtabar@google.com}$

June 2020

Agenda

- Introduction
- 2 Dropout and Gating Mechanism
- Second Second
- 4 Conclusion

Continual Learning & Catastrophic Forgetting

• Neural networks suffer from the *catastrophic forgetting* problem when they face a sequence of tasks.

3/12

Continual Learning & Catastrophic Forgetting

- Neural networks suffer from the catastrophic forgetting problem when they face a sequence of tasks.
- They forget older tasks more and more as they learn newer ones.

Continual Learning & Catastrophic Forgetting

- Neural networks suffer from the *catastrophic forgetting* problem when they face a sequence of tasks.
- They forget older tasks more and more as they learn newer ones.

Figure: Catastrophic Forgetting in Continual Learning

Motivation

Observation

Networks trained with dropout tend to forget at a slower rate.

(b) Zenke et al., 2017

Motivation

Observation

Networks trained with dropout tend to forget at a slower rate.

(b) Zenke et al., 2017

Question

But why?

Dropout and Gating (1)

Our Claim

Training with dropout and learning rate decay implicitly creates a gating behavior in network such that for different tasks, different paths of the network are active.

5 / 12

Dropout and Gating (1)

Our Claim

Training with dropout and learning rate decay implicitly creates a gating behavior in network such that for different tasks, different paths of the network are active.

(a) The three phases of learning. For a particular input, a typical active neuron (red) starts out with low variance, experiences a large increase in variance during learning, and eventually settles to some steady constant value. In contrast, a typical inactive neuron (blue) quickly learns to stay silent.

Figure: From Baldi and Sadowski, 2013

Dropout and Gating (2)

Oropout regularization helps to create gates in the network by pushing the neurons to be either highly active or highly inactive during the learning experience.

Dropout and Gating (2)

- Oropout regularization helps to create gates in the network by pushing the neurons to be either highly active or highly inactive during the learning experience.
- When facing new tasks, the regularization mechanism will change the semi-active neurons more compared to active or inactive neurons, which helps to preserve the task-specific pathways when learning subsequent tasks.

Dropout and Gating (2)

- Oropout regularization helps to create gates in the network by pushing the neurons to be either highly active or highly inactive during the learning experience.
- When facing new tasks, the regularization mechanism will change the semi-active neurons more compared to active or inactive neurons, which helps to preserve the task-specific pathways when learning subsequent tasks.
- The learning rate decay, also helps preserving gates throughout the continual learning experience.

Results (1): Dropout and Gating

Figure: The effect of dropout on the activation(firing) pattern of neurons

Results (1): Dropout and Gating

Figure: The effect of dropout on the activation(firing) pattern of neurons

Figure: Consistency between activation patterns of neurons for task 1, after learning task 1 and task 5

Results (2): Dropout Increases the Network Stability

Figure: Increasing the stability and reducing the plasticity from left to right by increasing the the dropout rate and learning rate decay.

Comparison with Other Methods (20 Tasks)

Method	Memoryless	Permuted MNIST		Rotated MNIST		Split CIFAR100	
		Accuracy	Forgetting	Accuracy	Forgetting	Accuracy	Forgetting
Naive SGD	1	44.4 (±2.46)	0.53 (±0.03)	46.3 (±1.37)	0.52 (±0.01)	40.4 (±2.83)	0.31 (±0.02)
EWC	✓	70.7 (±1.74)	$0.23 (\pm 0.01)$	48.5 (±1.24)	$0.48 (\pm 0.01)$	42.7 (±1.89)	0.28 (±0.03)
A-GEM	X	65.7 (±0.51)	$0.29 (\pm 0.01)$	55.3 (±1.47)	$0.42 (\pm 0.01)$	50.7 (±2.32)	0.19 (±0.04)
ER-Reservoir	X	72.4 (±0.42)	$0.16 (\pm 0.01)$	69.2 (±1.10)	$0.21 (\pm 0.01)$	46.9 (±0.76)	0.21 (±0.03)
Stable SGD	1	80.1 (±0.51)	$0.09~(\pm 0.01)$	70.8 (±0.78)	$0.10~(\pm 0.02)$	59.9 (±1.81)	$0.08~(\pm 0.01)$
MTL	N/A	86.5 (±0.21)	0.0	87.3(±0.47)	0.0	64.8(±0.72)	0.0

Table: Comparison of the average accuracy and forgetting of several methods on three datasets.

• We studied an open question in continual learning: "Why does dropout networks forget at a slower rate?"

- We studied an open question in continual learning: "Why does dropout networks forget at a slower rate?"
- We showed that one explanation could be the gating mechanism due to the dropout regularization

- We studied an open question in continual learning: "Why does dropout networks forget at a slower rate?"
- We showed that one explanation could be the gating mechanism due to the dropout regularization
- To verify our hypothesis, we studied the activation pattern of dropout network compared to non-dropout networks.

- We studied an open question in continual learning: "Why does dropout networks forget at a slower rate?"
- We showed that one explanation could be the gating mechanism due to the dropout regularization
- To verify our hypothesis, we studied the activation pattern of dropout network compared to non-dropout networks.

Thanks

ArXiv Link

https://arxiv.org/abs/2004.11545.pdf

Github Code:

https://github.com/imirzadeh/stable-continual-learning

Feel free to contact me regarding any further questions.

References

- Baldi, P., & Sadowski, P. J. (2013). Understanding dropout
 (C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, &
 K. Q. Weinberger, Eds.). In C. J. C. Burges, L. Bottou,
 M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural information processing systems 26. Curran Associates,
 Inc.
 http://papers.nips.cc/paper/4878-understanding-dropout.pdf
- Zenke, F., Poole, B., & Ganguli, S. (2017). Continual learning through synaptic intelligence. *Proceedings of machine learning research*, 70, 3987–3995.