$$\begin{split} \Delta E_{00}^* &= \sqrt{\left(\frac{\Delta L'}{k_L S_L}\right)^2 + \left(\frac{\Delta C'}{k_C S_C}\right)^2 + \left(\frac{\Delta H^*}{k_H S_H}\right)^2 + R_T \frac{\Delta C'}{k_C S_C} \frac{\Delta H'}{k_H S_H}} \\ & \text{Model the terminal below should be degree rather than the application of the k_L and k_L are the solution of the L^* and L^* are the solution of the solution of the L^* and L^* are the solution of the solu$$

A Similarity Measure for Large Color Differences

Nathan Moroney, Ingeborg Tastl and Melanie Gottwals HP Labs

22nd IS&T Color and Imaging Conference, November 2014, Boston MA

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Outline

Motivation

• Large vs. Small Differences

Experiments

- Hundreds of pairs of stimuli with ΔE_{00} of 20
- Sorting of 9 pairs of differences from smallest to largest
- Web and laboratory

Results

Observers rank pairs having equal ΔE_{00} as being different

Similarity metric

- Cosine similarity given categorical vectors
- Cosine similarity is small within a category & large across categories

Discussion and Speculation

Motivation

Which of these two pairs, has the larger ΔE_{00} ?

Motivation

Using ΔE_{00} they are equal

Motivation

But isn't ΔE_{00} only for small differences ? OK, so how to measure maximum error?

Large vs. Small Color Differences

We'll fill this in by the end of the talk

	Small Differences	Large Differences
Application	Just Noticeable Difference	
Central Question	Do 2 colors match?	
Metrics*	$\Delta E*_{ab}$, ΔE_{94} , ΔE_{00}	
Underlying Metric	Euclidean distance, with weighting schemes	
Input	CIELAB coordinates, weights	
Output	"Geometric" distance, where a JND is approximately < 1	

^{*} Small color differences metrics not recommended for large differences or greater than ~5.

Experiments

Sorting of Non-Repeating Random Vectors

Stimuli

- · Non-repeating random vectors
- Similar to a farthest-point sampling of vector endpoints
- All vectors within 0.0001 of 20 ΔE_{00} ,

Task

- Sorting of multiple color differences
- Observer sorts 9 color differences from smallest to largest
- 21 blocks of 9 random color difference pairs

Web-Based Experiment

285 participants; perform sorting of 1 block of differences; unknown displays

Laboratory Experiment

• 12 participants; sort all 21 blocks of differences; sRGB mode HP DreamColor Z27x Display

Not regular or centroid plus offsets sampling

Not forced choice paired comparison of 2 pairs

(Insert comment about Jim King here)

```
NonRepeatingRandomVectors(n, dist, t1, t2)
i = 0
while (i < n)
  test ave = F
  test ends = F
  start = RandomVector()
  end
        = start
  while ((Distance(start, end) - dist) < epsilon)</pre>
    end = RandomStep()
  ave = Average(start, end)
  for (i = 0 to number_vectors)
    if ((ave - ave[i]) < t1) test_ave = T</pre>
    d11 = start - start[i]
    d22 = end - end[i]
    d12 = strt - end[i]
    d21 = end - start[i]
    min diff = Min(d11, d22, d12, d21)
    if (min_diff < t2) test_ends = T</pre>
  if ((test_ave & test_ends) = T)
    AddVector(start, end)
    ++I
```



```
NonRepeatingRandomVectors(n, dist, t1, t2)
i = 0
while (i < n)
  test ave = F
  test ends = F
  start = RandomVector()
  end
        = start
  while ((Distance(start, end) - dist) < epsilon)</pre>
    end = RandomStep()
  ave = Average(start, end)
  for (i = 0 to number_vectors)
    if ((ave - ave[i]) < t1) test_ave = T</pre>
    d11 = start - start[i]
    d22 = end - end[i]
    d12 = strt - end[i]
    d21 = end - start[i]
    min diff = Min(d11, d22, d12, d21)
    if (min diff < t2) test ends = T
  if ((test_ave & test_ends) = T)
    AddVector(start, end)
    ++i
```

Random walk

Don't duplicate vectors

21 blocks rendered as RGB patches and as a CIELAB a* versus b* plot

20 ΔE_{00} and the corresponding ΔE_{94} and ΔE^*_{ab} color differences

Color **Difference Sorting**

HTML5 drag-and-drop interface with color patches rendered to 90x90 pixels in size

- Initial visualizations
 - Each set of 9 sub-plots is for 1 block
- A X-axis is sorted rank
 - Left: smallest difference
 - · Right: largest difference
- Y-axis is relative frequency
 - Larger: observers consistently used this rank
 - Zero: observers did not use this rank
- C Approximate color rendering
 - Shown to the right of each sub-plot
 - Approximate sorting top to bottom

- A Smallest difference
 - Relatively narrower distribution
- **B** Intermediate differences
 - Relatively wider distributions
- Largest difference
 - Relatively narrower distribution
 - Qualitatively, at crossing of naming boundaries?
 - For ideal set of 9 equal differences
 - · Flat histograms for each pair
 - Not seen in the experimental data...

- Similar results seen across other blocks
- Similar results for web-based & laboratory
- **But also multi-modal distributions?**
 - Complicates even basic analysis
 - Can occur for any ranking, shown circled to right
 - Almost as if there were multiple criterion for sorting....

Name boundary crossing

- Tends to result in a mode with a larger rank or sorted color difference
- Shown circled

Other interesting results

Correlation of Web-Based and Laboratory Experiments

Limited to the approximately 2/3^{rds} of pairs with uni-modal distributions* for both experiments

Color Difference Sorting: Uni-Modal Pairs

^{*} F. Schwaiger, H. Holzmann, and S. Vollmer, "bimodalitytest: Testing for bimodality in a normal mixture", R package version 1.0, (2013)

Similarity Metric

- Given these results can a similarity metric be designed that is:
 - Smaller within a color category
 - Larger across color categories
 - Not unlike results seen in Categorical Perception from vision science
- Not based on weighted Euclidean distances?
- Similar to other similarity metrics?
 - Value of 1 for identical
 - Value of 0 for dissimilar

Similarity Metric

Use Categorical Vectors

- K-nearest neighbors used to transform input CIELAB data, on left, to categorical counts, maximum shown color coded on right
- Start with basic 11 terms as the vocabulary
- Similar processing used for document classification

Similarity Metric

Use Cosine Similarity of Categorical Vectors

- K = 100
- Same example from the motivation slides earlier
- These two have ΔE_{00} differences of 20...

$$\Delta S = \frac{\sum A \cdot B}{\sqrt{\sum A^2 \cdot \sum B^2}}$$

	Тор	Bottom	Тор	Bottom
sRGB	43, 212, 224	67, 179, 253	244, 254, 32	150, 253, 137
Gray	3	1	0	0
Blue	96	98	0	0
Green	0	1	0	83
Pink	0	0	0	0
Black	1	0	0	0
Green	0	0	0	0
Orange	0	0	0	1
Purple	0	0	0	0
Red	0	0	0	0
White	0	0	0	0
Yellow	0	0	100	16
Similarity	0.99		0.18	

Large vs. Small Color Differences

We'll fill this in by the end of the talk

	Small Differences	Large Differences*
Application	Just Noticeable Difference	Consistently Describable Difference(s)
Central Question	Do 2 colors match?	When do 2 colors stop looking similar?
Metrics*	$\Delta E*_{ab}$, ΔE_{94} , ΔE_{00}	ΔS
Underlying Metric	Euclidean distance, with weighting schemes	Cosine similarity
Input	CIELAB coordinates, weights	Categorical or lexical vectors
Output	Geometric distance, where a JND is approximately < 1	Similarity measure, where 0 is completely dissimilar

^{*} Large color differences also relevant to image segmentation, analysis & retrieval.

Discussion & Speculation

- Large color differences do not necessarily have a single sorting
 - Can be consistently sorted by multiple criterion
 - More sophisticated analysis needed to detect systematic trends in multi-modal sorting
- Small difference metrics probably not a good idea for maximum errors
 - At a minimum probably want to visualize
- Cosine similarity of categorical vectors is a promising metric
 - Initial stages of optimization but already useful in ways that differ from the ΔE 's
 - Training data and algorithms are key aspects of the metric
- Experiment and data are public and ongoing
 - Same data could also be used to investigate more uniform color spaces
 - Would like to expert-source additional analysis & related experiments

