LA E χ 02

isagila

Собрано 10.06.2023 в 06:19

Содержание

1.	Лин	ейная алгебра	3
	1.1.	Евклидово пространство: определение, неравенство Коши-Буняковского. Нормированное евклидово	
		пространство	3
	1.2.	Ортонормированный базис, ортогонализация базиса. Матрица Грама	3
	1.3.	Ортогональность вектора подпространству. Ортогональное дополнение. Теорема Пифагора	4
	1.4.	Задача о перпендикуляре	5
	1.5.	Линейный оператор: определение, основные свойства.	5
	1.6.	Обратный оператор. Взаимно-однозначный оператор. Ядро и образ оператора. Теорема о размерностях.	5
	1.7.	Матрица линейного оператора. Преобразование матрицы при переходе к новому базису	7
	1.8.	Собственные числа и собственные векторы оператора. Теоремы о диагональной матрице оператора	7
	1.9.	Сопряженный и самосопряженный операторы в вещественном евклидовом пространстве: определения,	
		основные свойства. Свойства собственных чисел и собственных векторов самосопряженного оператора.	7
	1.10.	Структура образа самосопряженного оператора. Проектор. Спектральное разложение оператора	7
	1.11.	Ортогональная матрица и ортогональный оператор. Поворот плоскости и пространства как ортогональное	
		преобразование.	7
	1.12.	Билинейные формы: определения, свойства. Матрица билинейной формы.	7
	1.13.	Квадратичная форма: определения, приведение к каноническому виду	7
	1.14.	Знакоопределенность квадратичной формы: необходимые и достаточные. условия. Критерий Сильвестра.	7
2	Пиф	оференциальные уравнения	c
4.	2.1.	Обыкновенное дифференциальное уравнение (ДУ): задача о радиоактивном распаде и задача о падении	G
		тела. Определение ДУ, решения ДУ и их геометрический смысл. Задача Коши	8
	2.2.	Уравнение с разделяющимися переменными	8
	2.3.	Однородное уравнение.	8
	2.4.	Уравнение в полных дифференциалах.	8
	2.5.	Линейное уравнение первого порядка. Метод Лагранжа.	9
	2.6.	Теорема существования и единственности решения задачи Коши. Особые решения	9
	2.7.	Уравнения n -ого порядка, допускающие понижение порядка	9
	2.8.	Линейные однородные дифференциальные уравнения (ЛОДУ) : определения, решение ЛОДУ $_2$ с посто-	J
		янными коэффициентами для случая различных вещественных корней характеристического уравнения.	10
		Решение ЛОДУ ₂ с постоянными коэффициентами для случая вещественных кратных корней характери-	10
		стического уравнения.	11
		Решение ЛОДУ2 с постоянными коэффициентами для случая комплексных корней характеристического	
		уравнения.	11
		Свойства решений ЛОДУ ₂ : линейная независимость решений, определитель Вронского. Теоремы 1,2.	11
		Свойства решений ЛОДУ2: линейная комбинация решений, линейная зависимость решений. Определитель	
		Вронского. Теоремы о вронскиане.	13
		Свойства решений ЛОД Y_2 : линейная комбинация решений, линейная зависимость решений. Теорема о	
		структуре общего решения ЛОДУ ₂ . Фундаментальная система решений (определение)	13
		Свойства решений ЛНД V_2 : теоремы о структуре общего решения и решении Д V_2 с суммой правых частей.	
		Структура решения ЛОДУn: линейная независимость решений, нахождение фундаментальной системы	
		решений по корням характеристического уравнения.	14
		Решение ЛНУ ₂ с постоянными коэффициентами: специальная правая часть, поиск частного решения	
		методом неопределенных коэффициентов	14
		Решение ЛНУ $_2$: метод вариации произвольных постоянных (Лагранжа)	14
		Системы дифференциальных уравнений: определения, решение методом исключения.	14
		Системы дифференциальных уравнений: определения, решение матричным методом в случае различных	
		вещественных собственных чисел	14
	2.20.	Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ.	
		Примеры устойчивого и неустойчивого решения	14

1. Линейная алгебра

1.1. Евклидово пространство: определение, неравенство Коши-Буняковского. Нормированное евклидово пространство.

Def 1.1.1. Скалярным произведением называется функция двух элементов линейного пространства $x, y \in L^n$ обозначаемая $(x, y) \to \mathbb{R}$, для которой выполнены аксиомы: $\forall x, y \in L^n, \lambda \in \mathbb{C}$

- 1. (x,y) = (y,x)
- 2. $(\lambda x, y) = \lambda(x, y)$
- 3. $(x_1 + x_2, y) = (x_1, y) + (x_2, y)$
- 4. $(x,x) \ge 0$, $(x,x) = 0 \implies x = 0$

Def 1.1.2. Линейное пространство с введенным скалярным произведением называется евклидовым пространством E^n .

3амечание 1.1.3. Если $L=C_{[a;b]},$ то скалярное произведение обычно определяется как $(f,g)=\int_a^b f(x)g(x)\mathrm{d}x$

Теорема 1.1.4. Неравенство Коши-Буняковского

$$(x,y)^2 \leqslant (x,x)(y,y)$$

Доказательство. Рассмотрим скалярное произведение:

$$(\lambda x - y, \lambda x - y) \ge 0$$
$$(\lambda x - y, \lambda x - y) = \lambda^{2}(x, x) - 2\lambda(x, y) + (y, y) \ge 0$$

Полученное выражение можно рассмотреть как квадратное уравнение относительно λ . Т.к. оно неотрицательно $\forall \lambda$, то его дискриминант будет ≤ 0 . Таким образом

$$4\lambda^{2}(x,y)^{2} - 4\lambda^{2}(x,x)(y,y) \leq 0$$
$$(x,y)^{2} - (x,x)(y,y) \leq 0$$
$$(x,y)^{2} \leq (x,x)(y,y)$$

Def 1.1.5. Нормой называется функция одного элемента линейного пространства $x \in L^n$, обозначаемая ||x|| и определяемая аксиомами: $\forall x, y \in L^n, \lambda \in \mathbb{C}$:

- 1. $\|\lambda x\| = \lambda \|x\|$
- 2. $||x + y|| \le ||x|| + ||y||$
- 3. $||x|| \ge 0$, $||x|| = 0 \implies x = 0$

Def 1.1.6. Евклидово пространство называется нормированным, если в нем определена норма.

Замечание 1.1.7. Чаще всего норма определяется как $||x|| = \sqrt{(x,x)}$.

1.2. Ортонормированный базис, ортогонализация базиса. Матрица Грама.

Def 1.2.8. Углом между двумя элементами Евклидова пространства называется

$$\cos \angle(x,y) = \frac{(x,y)}{\|x\| \cdot \|y\|}$$

Def 1.2.9. Для элемента Евклидова пространства ортогональны, если их скалярное произведение равно нулю.

$$x \perp y \iff (x, y) = 0$$

Теорема 1.2.10. Во всяком E^n можно выделить ортонормированный базис размера n.

Доказательство. Пусть у нас есть базис $B = \{\beta_1, \dots, \beta_n\}$. Ортогонализируем его, полученный базис обозначим $\mathcal{E}' = \{\mathbf{e}'_1, \dots, \mathbf{e}'_n\}$. Этот базис можно нормировать и получить искомый ортонормированный базис $\mathcal{E} = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$.

Процесс ортогонализации Грама-Шмидта:

Будем добавлять векторы в базис $\mathcal E$ из базиса B по-одному:

База: начнем с одного произвольного вектора β_1 . Тогда $e_1' = \beta_1$.

Переход: пусть у нас уже выделен набор из k-1 ортогональных векторов $\{e'_1, \dots, e'_{k-1}\}$ и в него требуется добавить вектор β_k .

Будем искать \mathfrak{e}'_k в виде

$$e'_{k} = \beta_{k} + \lambda_{1}e'_{k-1} + \lambda_{2}e'_{k-2} + \ldots + \lambda_{k-1}e'_{1}$$

Чтобы \mathfrak{e}'_k был ортогонален остальным векторам уже построенной системы, необходимо, чтобы скалярные произведение \mathfrak{e}'_k с остальными векторами системы равнялись нулю. Рассмотрим на примере \mathfrak{e}'_1 :

$$(e'_k, e'_1) = (\beta_k, e'_1) + \lambda_1(e'_{k-1}, e'_1) + \ldots + \lambda_{k-1}(e'_1, e'_1) = 0$$

Учитывая то, что построенная система ортогональна, то $(e'_i, e'_j) = 0$ (i, j < k). Значит выражение выше упрощается и остается:

$$(\beta_k, \mathbf{e}_1') + \lambda_{k-1}(\mathbf{e}_1', \mathbf{e}_1') = 0$$
$$\lambda_{k-1} = -\frac{(\beta_k, \mathbf{e}_1')}{(\mathbf{e}_1', \mathbf{e}_1')}$$

Аналогично можно получить оставшиеся коэффициенты λ_i . Тогда добавляемый в систему вектор \mathfrak{e}'_k будет иметь вид:

$$\mathbf{e}'_k = \beta_k - \frac{(\beta_k, \mathbf{e}'_{k-1})}{(\mathbf{e}'_{k-1}, \mathbf{e}'_{k-1})} \cdot \mathbf{e}'_{k-1} - \dots - \frac{(\beta_k, \mathbf{e}'_1)}{(\mathbf{e}'_1, \mathbf{e}'_1)} \cdot \mathbf{e}'_1$$

Def 1.2.11. Матрицей Грама называется матрица составленная из скалярных произведений

$$\begin{pmatrix} (\mathbb{e}_1, \mathbb{e}_1) & \dots & (\mathbb{e}_k, \mathbb{e}_1) \\ \vdots & \ddots & \vdots \\ (\mathbb{e}_1, \mathbb{e}_k) & \dots & (\mathbb{e}_k, \mathbb{e}_k) \end{pmatrix}$$

Замечание 1.2.12. В ортогональном базисе матрица Грама диагональная, а в ортонормированном — единичная.

1.3. Ортогональность вектора подпространству. Ортогональное дополнение. Теорема Пифагора.

Def 1.3.13. Пусть дано Евклидово пространство E^n . Элемент $h \in E^n$ называется ортогональным (перпендикулярным) подпространству $G \subset E^n$, если $\forall x \in G : h \perp x$.

Cледствие 1.3.14. Выделим в подпространстве G базис $\mathcal{E} = \{e_1, \dots, e_k\}$. Если $h \perp e_i \forall e_i \in \mathcal{E}$, то $h \perp G$.

Доказательство. Любой элемент $x \in G$ можно представить в виде $x = \sum_{i=1}^k \lambda_i \mathbf{e}_i$. Рассмотрим скалярное произведение (h,x). По свойствам линейности разложим его на $\sum_{i=1}^k \lambda_i (h,\mathbf{e}_i)$. Т.к. h ортогонален каждому из базисных векторов, то полученная сумма будет равна нулю, значит h ортогонален любому $x \in G$.

Def 1.3.15. Пусть дано Евклидово пространство E^n . Ортогональным дополнением F к подпространству $G \subset E^n$ называется совокупность векторов $h \perp G$.

Замечание 1.3.16. Из определения 1.3.13 следует, что F также является подпространством E^n .

Теорема 1.3.17. Евклидово пространство E^n является прямой суммой подпространства $F \subset E^n$ и его ортогонального $G = F^{\perp}$.

$$E^n = F \oplus F^{\perp}$$

Доказательство. В Евклидовом пространстве E^n выделим базис, после чего разложим произвольный элемент пространства $x \in E^n$ по этому базису:

$$\mathcal{E} = \underbrace{\{\underline{\mathbf{e}}_1, \dots, \underline{\mathbf{e}}_k, \underline{\mathbf{e}}_{k+1}, \dots \underline{\mathbf{e}}_n\}}_{\text{Basinc } G}$$

$$x = \underbrace{x_1\underline{\mathbf{e}}_1 + \dots + x_k\underline{\mathbf{e}}_k}_{\overline{x}} + \underbrace{x_{k+1}\underline{\mathbf{e}}_{k+1} + \dots + x_n\underline{\mathbf{e}}_n}_{\hat{x}} = \overline{x} + \hat{x}$$

TODO: Дальше в конспекте что-то непонятное

ТООО: Теорема Пифагора?

1.4. Задача о перпендикуляре.

1.5. Линейный оператор: определение, основные свойства.

Def 1.5.18. Пусть V^n, W^m линейные пространства. Отображение $\mathcal{A}: V^n \to W^m$, которое $\forall x \in V^n$ сопоставляет $y \in W^m$ называется линейным оператором при выполнении следующих условий: $\forall x_1, x_2 \in V^n, \lambda \in \mathbb{C}$:

- 1. $A(x_1 + x_2) = Ax_1 + Ax_2$
- 2. $\mathcal{A}(\lambda x_1) = \lambda(\mathcal{A}x_1)$

3амечание 1.5.19. y = Ax означает, что y порождается применением оператора A

Обозначим некоторые базовые свойства линейных операторов. Пусть $\mathcal{A}, \mathcal{B} \colon V^n \to W^m$ это линейные операторы, тогда определены:

- 1. Cymma (A + B)x = Ax + Bx
- 2. Умножение на число $(\lambda A)x = \lambda (Ax)$
- 3. Нулевой оператор $\Theta x = 0, \forall x \in V^n$
- 4. Противоположный оператор $-\mathcal{A} = (-1) \cdot \mathcal{A}$

Далее рассмотрим операторы $\mathcal{A}, \mathcal{B}, \mathcal{C} \colon V^n \to V^n$ действующие в одном линейном пространстве. Для таких операторов определена композиция (произведение) $(\mathcal{A} \cdot \mathcal{B})x = \mathcal{A}(\mathcal{B}x)$. В общем случае она не коммутативна $\mathcal{A} \cdot \mathcal{B} \neq \mathcal{B} \cdot \mathcal{A}$.

Свойства композиции операторов:

- 1. $\lambda(\mathcal{A} \cdot \mathcal{B}) = (\lambda \mathcal{A}) \cdot \mathcal{B}$
- 2. $(A + B) \cdot C = A \cdot C + B \cdot C$
- 3. $A \cdot (B + C) = A \cdot B + A \cdot C$
- 4. $\mathcal{A} \cdot (\mathcal{B} \cdot C) = (\mathcal{A} \cdot \mathcal{B}) \cdot \mathcal{C}$

Def 1.5.20. Композиция оператора самим с собой n раз называется n-ой степенью оператора: $\mathcal{A}^n = \underbrace{A \cdot \ldots \cdot A}_{n}$

Для степени оператора справедливо равенство $\mathcal{A}^{n+m} = \mathcal{A}^n \cdot \mathcal{A}^m$

1.6. Обратный оператор. Взаимно-однозначный оператор. Ядро и образ оператора. Теорема о размерностях.

Def 1.6.21. Оператор $I: V^n \to V^n$ называется тождественным оператором, если $Ix = x, \forall x \in V^n$.

Def 1.6.22. Пусть даны операторы $\mathcal{A}, \mathcal{B} \colon V^n \to V^n$. Оператор \mathcal{B} называется обратным для оператора \mathcal{A} , если их композиция равна тождественному оператору.

$$\mathcal{B} = \mathcal{A}^{-1} \iff \mathcal{A} \cdot \mathcal{B} = \mathcal{B} \cdot \mathcal{A} = I$$

Def 1.6.23. Оператор $A: V^n \to V^n$ называется взаимно-однозначным, если разным $x \in V^n$ сопоставляются разные $y \in V^n$.

$$x \neq y \implies \mathcal{A}x \neq \mathcal{A}y \quad \forall x, y \in V^n$$

Lm 1.6.24. Если оператор $\mathcal{A}: V^n \to V^n$ взаимно-однозначный, то $\mathcal{A}x = 0 \implies x = 0$.

Доказательство. От противного

$$\exists x = x_1 - x_2 \neq 0 \implies x_1 \neq x_2$$

$$\mathcal{A}x = \mathcal{A}(x_1 - x_2) = \mathcal{A}x_1 - \mathcal{A}x_2 = 0 \implies \mathcal{A}x_1 = \mathcal{A}x_2$$

 Θ то невозможно, т.к. \mathcal{A} взаимно-однозначный.

Теорема 1.6.25. Взаимно-однозначный оператор переводит линейно-независимый набор в линейно-независимый набор.

Доказательство. Пусть дан взаимно-однозначный оператор $\mathcal{A}\colon V^n\to V^n$ и линейно-независимый набор $\{x_1,\ldots,x_n\}$. Построим набор образов $\{\mathcal{A}x_1,\ldots,\mathcal{A}x_n\}$. Составим его нулевую линейную комбинацию, после чего воспользуемся линейностью оператора:

$$\lambda_1 \mathcal{A} x_1 + \ldots + \lambda_n \mathcal{A} x_n = 0$$
$$\mathcal{A} \Big(\lambda_1 x_1 + \ldots + \lambda_n x_n \Big) = 0$$

По 1.6.24 получаем, что $\lambda_1 x_1 + \ldots + \lambda_n x_n = 0$. Т.к. набор $\{x_1, \ldots, x_n\}$ линейно независим, то $\forall \lambda_i = 0$

Следствие 1.6.26. Взаимно-однозначный оператор переводит базис в базис.

Теорема 1.6.27. Оператор $\mathcal{A}: V^n \to V^n$ взаимно-однозначный $\iff \exists \mathcal{A}^{-1}.$

 \mathcal{A} оказательство. \Longrightarrow Пусть $x \xrightarrow{\mathcal{A}} y$. Рассмотрим оператор \mathcal{B} такой, что $y \xrightarrow{\mathcal{B}} x$. Т.к. \mathcal{A} взаимно-однозначный, то $\mathcal{A} \cdot \mathcal{B} = I$.

⇐ От противного

$$\exists x_1 \neq x_2, \mathcal{A}x_1 = \mathcal{A}x_2 = x$$

$$x_1 = \mathcal{A}^{-1}\mathcal{A}x_1 = \mathcal{A}^{-1}x$$

$$x_2 = \mathcal{A}^{-1}\mathcal{A}x_2 = \mathcal{A}^{-1}x$$

$$x_1 \neq x_2 \implies \mathcal{A}^{-1}x \neq \mathcal{A}^{-1}x$$

Получили противоречие.

Def 1.6.28. Пусть дан линейный оператор $\mathcal{A} \colon V^n \to W^m$. Множество $\operatorname{Ker} \mathcal{A} = \{x \in V^n \mid \mathcal{A} x = 0\}$ называется ядром оператора \mathcal{A} .

 $\underline{\mathbf{Lm}}$ **1.6.29.** Оператор $\mathcal{A} \colon V^n \to V^n$ взаимно-однозначный $\Longrightarrow \mathrm{Ker} \mathcal{A} = \{0\}.$

Доказательство. От противного, пусть $x \neq 0 \in \text{Ker}\mathcal{A}$. Тогда по 1.6.24 \mathcal{A} 0 = 0, но в то же время $\mathcal{A}x = 0, x \neq 0$. Нарушается взаимно-однозначность.

Def 1.6.30. Пусть дан линейный оператор $\mathcal{A}: V^n \to W^m$. Множество $\mathrm{Im} \mathcal{A} = \{y \in W^m \mid \exists x \in V^n \colon y = \mathcal{A}x\}$ называется образом оператора \mathcal{A} .

Теорема 1.6.31. Пусть дан оператор $\mathcal{A}: V^n \to V^n$. Тогда

$$\dim \operatorname{Ker} \mathcal{A} + \dim \operatorname{Im} \mathcal{A} = n$$

 \mathcal{A} оказательство. Т.к. $\operatorname{Ker}\mathcal{A}$ и $\operatorname{Im}\mathcal{A}$ это подпространства V^n , то $\exists W \subset V^n \mid W \oplus \operatorname{Ker} A = V^n$. Тогда $\dim W + \dim \operatorname{Ker} A = n$. Требуется доказать, что $\dim W = \dim \operatorname{Im}\mathcal{A}$.

Сначала покажем, что $\mathcal{A} \colon W \to \operatorname{Im} \mathcal{A}$ взаимно-однозначный. От противного:

$$\exists x_1 \neq x_2 \in W \colon \mathcal{A}x_1 = \mathcal{A}x_2$$

$$\mathcal{A}x_1 = \mathcal{A}x_2 \implies \mathcal{A}(x_1 - x_2) = 0 \implies (x_1 - x_2) \in \text{Ker}\mathcal{A}$$

$$x_1, x_2 \in W \implies (x_1 - x_2) \in W$$

Ho это невозможно, т.к. $W \oplus \operatorname{Ker} A = V^n \implies W \cap \operatorname{Ker} A = \varnothing$.

В $\operatorname{Im} \mathcal{A}$ выделим базис $\{y_1, \dots, y_k\}$. Т.к. \mathcal{A} взаимно-однозначный, то выделенный базис порождается линейнонезависимым набором (см. 1.6.25) $\{x_1, \dots, x_k\}, x_i \in W$. Значит $\dim W \geqslant \dim \operatorname{Im} \mathcal{A}$.

Предположим, что $\dim W > \dim \operatorname{Im} \mathcal{A}$. Обозначим $\dim W = p$, дополним систему $\{x_1,\dots,x_k\}$ до p линейнонезависимых векторов. Т.к. оператор $\mathcal{A}\colon W \to \operatorname{Im} \mathcal{A}$ взаимно-однозначный, то он должен перевести полученную линейно-независимую систему в линейно-независимую . Однако это невозможно, т.к. $\operatorname{Im} \mathcal{A}$ имеет базис меньшей размерности.

Замечание 1.6.32. Можно доказать, что

$$\begin{cases} V_1 \subset V^n \\ V_2 \subset V^n \\ \dim V_1 + \dim V_2 = n \end{cases} \implies \exists \mathcal{A} \colon V^n \to V^n, \operatorname{Ker} \mathcal{A} = V_1, \operatorname{Im} \mathcal{A} = V_2$$

Def 1.6.33. Рангом оператора $A: V^n \to V^n$ называется размерность его образа:

$$\mathrm{rang}\mathcal{A}=\dim\mathrm{Im}\mathcal{A}$$

Пусть $\mathcal{A},\mathcal{B}\colon V^n\to V^n$. Рассмотрим некоторые свойства ранга линейного оператора:

- 1. Если оператор \mathcal{A} взаимно-однозначный, то rang $\mathcal{A} = n$ (это следствие из 1.6.31).
- 2. $\operatorname{rang}(A \cdot B) \leqslant \operatorname{rang}A, \operatorname{rang}(A \cdot B) \leqslant \operatorname{rang}B$
- 3. $\operatorname{rang}(A \cdot B) = \operatorname{rang} A + \operatorname{rang} B \dim V$

1.7. Матрица линейного оператора. Преобразование матрицы при переходе к новому базису.

Пусть дан оператор $\mathcal{A}\colon V^n\to V^n$ и $x,y\in V^n,\,\mathcal{A}x=y.$

Выделим в V^n базис, разложим x по этому базису. После чего применим к нему оператор \mathcal{A} :

$$\mathcal{E} = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$$
$$x = x_1 \mathbf{e}_1 + \dots + x_n \mathbf{e}_n$$
$$y = x_1 \mathcal{A} \mathbf{e}_1 + \dots + x_n \mathcal{A} \mathbf{e}_n$$

Далее применим оператор к каждому из базисных векторов:

$$\mathcal{A}\mathbf{e}_i = a_{1,i}\mathbf{e}_1 + \ldots + a_{n,i}\mathbf{e}_n$$

$$y = x_1\Big(a_{1,1}\mathbf{e}_1 + \ldots + a_{n,1}\mathbf{e}_n\Big) + \cdots + x_n\Big(a_{1,n}\mathbf{e}_1 + \ldots + a_{n,n}\mathbf{e}_n\Big)$$

$$y = \mathbf{e}_1\Big(x_1a_{1,1} + \ldots + x_na_{1,n}\Big) + \cdots + \mathbf{e}_n\Big(x_1a_{n,1} + \ldots + x_na_{n,n}\Big)$$

Заметим, что y также можно разложить по базису. Составим СЛАУ и запишем её в матричном виде:

$$\begin{cases} x_1 a_{1,1} + \ldots + x_n a_{1,n} = y_1 \\ \vdots & \ddots & \vdots \\ x_n a_{n,1} + \ldots + x_n a_{n,n} = y_n \end{cases} \iff AX = Y$$

Def 1.7.34. Матрицей оператора \mathcal{A} в данном базисе называется матрица составленная из столбцов-коэффициентов разложения образов базисных векторов по этому же базису.

3амечание 1.7.35. Если $A^{-1} = A^T$, то матрица оператора называется ортогональной.

- 1.8. Собственные числа и собственные векторы оператора. Теоремы о диагональной матрице оператора.
- 1.9. Сопряженный и самосопряженный операторы в вещественном евклидовом пространстве: определения, основные свойства. Свойства собственных чисел и собственных векторов самосопряженного оператора.
- 1.10. Структура образа самосопряженного оператора. Проектор. Спектральное разложение оператора.
- 1.11. Ортогональная матрица и ортогональный оператор. Поворот плоскости и пространства как ортогональное преобразование.
- 1.12. Билинейные формы: определения, свойства. Матрица билинейной формы.
- 1.13. Квадратичная форма: определения, приведение к каноническому виду.
- 1.14. Знакоопределенность квадратичной формы: необходимые и достаточные. условия. Критерий Сильвестра.

2. Дифференциальные уравнения

- 2.1. Обыкновенное дифференциальное уравнение (ДУ): задача о радиоактивном распаде и задача о падении тела. Определение ДУ, решения ДУ и их геометрический смысл. Задача Коши.
- 2.2. Уравнение с разделяющимися переменными.

Def 2.2.1. Уравнение вида

$$m(x)N(y)dx + M(x)n(y)dy = 0$$

называется уравнением с разделяющимися переменными.

Для решения таких уравнений необходимо разделить обе части на M(x)N(y), перенести одно из слагаемых в правую часть, после чего проинтегрировать обе части.

$$m(x)N(y)dx + M(x)n(y)dy = 0$$
$$\frac{m(x)}{M(x)}dx + \frac{n(y)}{N(y)}dy = 0$$
$$\int \frac{m(x)}{M(x)}dx = -\int \frac{n(y)}{N(y)}dy$$

Замечание 2.2.2. В случае, если M(x) = 0 или N(y) = 0, то уравнение решается непосредственным интегрированием.

Замечание 2.2.3. Решения вида x = const, y = const не всегда получаемы из общего решения.

- 2.3. Однородное уравнение.
 - **Def 2.3.4.** Функция f(x,y) называется однородной m-ого измерения $(m \geqslant 0)$, если $f(\lambda x, \lambda y) = \lambda^m f(x,y)$.

Def 2.3.5. Дифференциальное уравнение P(x,y)dx + Q(x,y)dy = 0 называется *однородным*, если P(x,y) и Q(x,y) однородные функции одного измерения m.

Однородные уравнения решаются заменой $t = \frac{y}{x}$. Покажем, откуда появляется подобная замена. Преобразуем функции P(x,y) и Q(x,y):

$$\begin{split} P(x,y) &= P\left(x \cdot 1, x \cdot \frac{y}{x}\right) = x^m P\left(1, \frac{y}{x}\right) \\ Q(x,y) &= Q\left(x \cdot 1, x \cdot \frac{y}{x}\right) = x^m Q\left(1, \frac{y}{x}\right) \end{split}$$

Вернемся к исходному уравнению:

$$P(x,y)dx + Q(x,y)dy = 0 \mid : dx$$

$$y' = -\frac{P(1, y/x)}{Q(1, y/x)} = f\left(1, \frac{y}{x}\right)$$

$$\frac{y}{x} = t \implies \begin{cases} f(1, y/x) = \tilde{f}(t) \\ y = xt, \ y'_x = t + xt' \end{cases}$$

$$t + xt' = \tilde{f}(t)$$

$$x \cdot \frac{dt}{dx} = \tilde{f}(t) - t$$

$$\frac{dt}{\tilde{f}(t) - t} = \frac{dx}{x}$$

Таким образом исходное однородное уравнение сводится к уравнению с разделяющими переменными. Замечание 2.3.6. Случай $\tilde{f}(t) - t = 0$ нужно рассмотреть отдельно.

2.4. Уравнение в полных дифференциалах.

Def 2.4.7. Дифференциальное уравнение P(x,y)dx + Q(x,y)dy = 0 называется уравнением в полных дифференциалах, если

$$\exists z(x,y) : dz = P(x,y)dx + Q(x,y)dy$$

Критерием того, что данное уравнение является уравнением в полных дифференциалах может служить равенство

$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}$$

Решение уравнений в полных дифференциалах сводится к поиску функции z(x,y), удовлетворяющей условиям. Про то, как найти такую функцию можно прочитать в конспекте по матанализу в разделе про интегралы, независящие от пути. После того, как такая функция будет найдена, решить ДУ не составит проблем:

$$P(x,y)dx + Q(x,y)dy = 0$$
$$dz = 0$$
$$z = C$$

ТООО: Интегрирующий множитель

2.5. Линейное уравнение первого порядка. Метод Лагранжа.

Def 2.5.8. Линейным однородным уравнением первого порядка ($\Pi O \Pi Y_1$) называется уравнение вида

$$y' + p(x)y = 0$$

ЛОДУ₁ является уравнением с разделяющими переменными, поэтому оно решается следующим образом:

$$y' + p(x)y = 0$$
$$\frac{dy}{dx} = -p(x)y$$
$$\frac{dy}{y} = -p(x)dx$$
$$\overline{y} = C \cdot \underbrace{e^{-\int p(x)dx}}_{y_1}$$

Замечание 2.5.9. При решении данного уравнения мы поделили на $y \neq 0$. Заметим, что y = 0 также является решением ЛОДУ₁, однако оно получаемо из общего решения при C = 0.

Def 2.5.10. Линейным неоднородным уравнением первого порядка (ЛНДУ₁) называется уравнение вида

$$y' + p(x)y = q(x), \quad q(x) \neq 0$$

Метод Лагранжа (метод вариации произвольной постоянной) для решения ЛНДУ₁:

- 1. Найдем частное решение y_1 соответствующего однородного уравнения.
- 2. Будем искать решение ЛНДУ $_1$ в виде $y(x) = y_1(x) \cdot C(x)$. Преобразуем ДУ в соответствии с этой заменой

$$y' + p(x)y = q(x)$$

$$y'_{1}(x)C(x) + y_{1}(x)C'(x) + p(x)y_{1}(x)C(x) = q(x)$$

$$y_{1}(x)C'(x) + C(x)\underbrace{\left(y'_{1}(x) + p(x)y_{1}(x)\right)}_{=0} = q(x)$$

$$y_{1}(x)C'(x) = q(x)$$

$$C(x) = \int \frac{q(x)}{y_{1}(x)} dx + C$$

3. Подставим найденную функцию C(x) в $y(x) = y_1(x) \cdot C(x)$.

TODO: Уравнение Бернулли, Клеро, Риккати и пр.

- 2.6. Теорема существования и единственности решения задачи Коши. Особые решения.
- **2.7.** Уравнения n-ого порядка, допускающие понижение порядка.

К уравнениям, допускающим понижение порядка относятся:

1. Непосредственно интегрируемые уравнения вида $y^{(n)}(x) = f(x)$. Они решаются интегрированием обоих частей n раз.

- 2. Уравнения не содержащие y(x) в явном виде.
 - Они решаются заменой z(x) = y'(x), z'(x) = y''(x).

Замечание 2.7.11. В общем случае производится замена самой младшей из присутствующих производных.

- 3. Уравнения не содержащие x в явном виде. Они решаются заменой z(y)=y'(x), тогда $y''(x)=z_y'y_x'=z'(y)\cdot z(y)$
- **2.8.** Линейные однородные дифференциальные уравнения (ЛОДУ) : определения, решение ЛОДУ $_2$ с постоянными коэффициентами для случая различных вещественных корней характеристического уравнения.

Def 2.8.12. Линейным дифференциальным уравнением n-ого порядка (ЛДУ $_n$) называется

$$a_0(x)y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \ldots + a_n(x)y(x) = f(x), \quad a_0(x) \neq 0$$

Def 2.8.13. Разрешенным ЛДУ $_n$ называется

$$y^{(n)}(x) + b_1(x)y^{(n-1)}(x) + \ldots + b_n(x)y(x) = f(x)$$

Def 2.8.14. Если в ЛДУ $_n$ $\forall i\colon a_i(x)=p_i\in\mathbb{R},$ то такое ЛДУ $_n$ называется ЛДУ $_n$ с постоянными коэффициентами. Оно имеет вид

$$y^{(n)}(x) + p_1 y^{(n-1)}(x) + \ldots + p_n y(x) = f(x)$$

Def 2.8.15. Линейным однородным дифференциальным уравнение n-ого порядка называется ЛДУ $_n$ вида

$$a_0(x)y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \ldots + a_n(x)y(x) = 0,$$

Def 2.8.16. Линейным неоднородным дифференциальным уравнение n-ого порядка называется ЛДУ $_n$ вида

$$a_0(x)y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \dots + a_n(x)y(x) = f(x), \quad f(x) \neq 0$$

Рассмотрим ЛОДУ $_2$ вида y'' + py' + qy = 0. Любой паре $(p,q) \in \mathbb{R}^2$ можно поставить в соответствие квадратное уравнение $k^2 + pk + q = 0$. По т. Виета $p = -(k_1 + k_2), q = k_1k_2$, где k_1, k_2 это корни уравнения. Подставим полученные выражения в исходное ДУ:

Сначала найдем частное решение соответствующего ЛОДУ₁: $\overline{y} = c_2 e^{k_2 x}, y_1 = e^{k_2 x}$. Далее будем варьировать постоянную c_2 , тогда $y(x) = C_2(x)e^{k_2 x}$. Подставим это в исходное ДУ:

$$C_2'(x)e^{k_2x} + C_2(x) \cdot k_2 \cdot e^{k_2x} - k_2 \cdot C_2(x)e^{k_2x} = c_1e^{k_1x}$$
$$C_2'(x)e^{k_2x} = c_1e^{k_1x}$$

В итоге получаем уравнение

$$C_2'(x) = c_1 e^{(k_1 - k_2)x}$$
 (**)

Проанализируем это уравнение. Всего будет рассмотрено 3 случая: один в этом параграфе, остальные — в двух последующих.

(\bigstar) случай I: $k_1 \neq k_2, k_1, k_2 \in \mathbb{R}$

В заданных ограничениях имеем

$$C_2'(x) = c_1 e^{(k_1 - k_2)x}$$

$$C_2(x) = \frac{c_1}{k_1 - k_2} e^{(k_1 - k_2)x} + \tilde{c_2}$$

$$y(x) = C_2(x)y_1(x) = \underbrace{\frac{c_1}{k_1 - k_2}}_{\tilde{c_1}} e^{k_1 x} + \tilde{c_2} e^{k_2 x}$$

$$y(x) = \tilde{c_1} e^{k_1 x} + \tilde{c_2} e^{k_2 x}$$

2.9. Решение $\Pi O \Pi V_2$ с постоянными коэффициентами для случая вещественных кратных корней характеристического уравнения.

(★) случай II: $k_1 = k_2, k_1, k_2 \in \mathbb{R}$

Пусть $k_1 = k_2 = k$, тогда получаем:

$$C_2'(x) = c_1 e^{(k_1 - k_2)x}$$

$$C_2(x) = c_1 x + c_2$$

$$y(x) = C_2(x)y_1(x) = (c_1 x + c_2)e^{kx}$$

$$y(x) = c_1 x \cdot e^{kx} + c_2 e^{kx}$$

2.10. Решение $\Pi O \Pi V_2$ с постоянными коэффициентами для случая комплексных корней характеристического уравнения.

(\bigstar) случай III: $k_{1,2} = \alpha + \beta i, k_{1,2} \in \mathbb{C}$

В заданных ограничениях получаем

$$C_2'(x) = c_1 e^{(k_1 - k_2)x}$$

$$C_2(x) = \frac{c_1}{k_1 - k_2} e^{(k_1 - k_2)x} + \tilde{c_2}$$

$$y(x) = C_2(x)y_1(x) = \underbrace{\frac{c_1}{k_1 - k_2}}_{\tilde{c_1}} e^{k_1x} + \tilde{c_2}e^{k_2x}$$

$$y(x) = \tilde{c_1}e^{k_1x} + \tilde{c_2}e^{k_2x}$$

$$y(x) = \tilde{c_1}e^{\alpha x}e^{\beta ix} + \tilde{c_2}e^{\alpha x}e^{-\beta ix}$$

Далее используем формулу $e^{i\varphi} = \cos \varphi + i \sin \varphi$:

$$y(x) = e^{\alpha x} \left(\tilde{c_1} \left(\cos(\beta x) + i \sin(\beta x) \right) + \tilde{c_2} \left(\cos(\beta x) - i \sin(\beta x) \right) \right)$$
$$y(x) = e^{\alpha x} \left(\cos(\beta x) \underbrace{\left(\tilde{c_1} + \tilde{c_2} \right)}_{\widehat{c_1}} + i \sin(\beta x) \underbrace{\left(\tilde{c_1} - \tilde{c_2} \right)}_{\widehat{c_2}} \right)$$
$$y(x) = e^{\alpha x} \left(\hat{c_1} \cos(\beta x) + \hat{c_2} i \sin(\beta x) \right)$$

ТООО: Конспект не очень хороший в этом моменте, возможно что-то неправильно

<u>Lm</u> **2.10.17.** Если y(x) = u(x) + iv(x) это решение ЛОДУ₂, то y(x) = u(x) + v(x) также являются решением ЛОДУ₂.

Доказательство. Рассмотрим функцию y(x) = u(x) + v(x):

$$\begin{cases} y(x) = u(x) + v(x) \\ y'(x) = u'(x) + v'(x) \\ y''(x) = u''(x) + v''(x) \end{cases}$$
$$y''(x) + py'(x) + qy(x) = u''(x) + v''(x) + pu'(x) + pv'(x) + u(x) + qu(x) + qv(x) = 0$$
$$\left(u''(x) + pu'(x) + qu(x)\right) + \left(v''(x) + pv'(x) + qv(x)\right) = 0$$

Это равенство верно, т.к. u(x) и v(x) решения ЛОДУ₂.

Значит, по 2.10.17 общее решение (*) в третьем случае будет иметь вид

$$y(x) = e^{\alpha x} \Big(\widehat{c_1} \cos(\beta x) + \widehat{c_2} \sin(\beta x) \Big)$$

2.11. Свойства решений $\Pi O \Pi V_2$: линейная независимость решений, определитель Вронского. Теоремы 1,2.

Рассмотрим множество Ω непрерывных функций с непрерывными производными 20го порядка. Определим линейный дифференциальный оператор $\mathcal{L}[y] = y'' + py' + q \to f(x)$.

Def 2.11.18. Будем называть функции y_1, \dots, y_n линейно-независимыми на отрезке [a, b], если

$$\sum_{i=1}^{n} c_i y_i = 0 \implies \forall c_i = 0$$

Def 2.11.19. Определитель Вронского (вронскиан) W это определитель, составленный из n функций и всех их производных вплоть до (n-1)-ого порядка. Он имеет вид:

$$\mathcal{W} = \begin{vmatrix} y_1 & \dots & y_n \\ \vdots & \ddots & \vdots \\ y_1^{(n-1)} & \dots & y_n^{(n-1)} \end{vmatrix}$$

<u>Lm</u> 2.11.20. Если два решения $\Pi O \Pi V_2$ линейно-зависимы на [a;b], то их вронскиан на [a;b] равен нулю.

$$\left. \begin{array}{l}
 \mathcal{L}[y_1] = 0 \\
 \mathcal{L}[y_2] = 0 \\
 y_1 = \lambda y_2
 \end{array} \right\} \implies \mathcal{W} = 0$$

Доказательство.

$$\mathcal{W} = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} \lambda y_2 & y_2 \\ \lambda y_2' & y_2' \end{vmatrix} = \lambda \begin{vmatrix} y_2 & y_2 \\ y_2' & y_2' \end{vmatrix} = 0$$

<u>Lm</u> **2.11.21.** Если два решения $\Pi O \Pi V_2$ линейно-независимы на [a;b], то их вронскиан на [a;b] не равен нулю.

Доказательство. От противного

$$\exists \mathcal{W} = 0 = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_1' y_2 \mid : y_1^2 \neq 0$$

$$\frac{y_1 y_2' - y_1' y_2}{y_1^2} = 0$$

$$\left(\frac{y_2}{y_1} \right)' = 0$$

$$\frac{y_2}{y_1} = const$$

$$y_1 = \lambda y_2$$

Получили противоречие.

Теорема 2.11.22. Линейная зависимость/независимость функций определяется равенством их вронскиана нулю.

Доказательство. Следствие из 2.11.20 и 2.11.21.

Замечание 2.11.23. Для проверки набора функций на линейную зависимость/независимость лучше использовать именно вронскиан, а не непосредственное определение линейной зависимости функций на отрезке.

 $\overline{\text{Теорема}}$ 2.11.24. Рассмотрим функции на отрезке [a;b]. Если на этом отрезке найдется точка, в которой вронскиан равен нулю, вронскиан будет равен нулю на всем отрезке. Дуально, если найдется точка, в которой вронскиан не равен нулю, то он будет не равен нулю на всем отрезке.

$$\exists x_0 \in [a; b] \mid W(x_0) = W_0 \neq 0 \implies \forall x \in [a, b] \colon W(x) \neq 0$$

 $\exists x_0 \in [a; b] \mid W(x_0) = W_0 = 0 \implies \forall x \in [a, b] \colon W(x) = 0$

Доказательство. Пусть y_1 и y_2 это решения ДУ, тогда

$$\begin{cases} y_2'' + py_2' + qy_2 = 0 \cdot y_1y_1'' + py_1' + qy_1 = 0 \mid \cdot y_2 - y_1y_2'' - y_2y_1'' + p(y_1y_2' - y_1'y_2) = 0 \end{cases}$$

Заметим, что выражение в левой скобке это W', а во правой — W:

$$\mathcal{W} = y_1 y_2' - y_1' y_2$$

$$\mathcal{W}' = (y_1 y_2' - y_1' y_2)' = y_1' y_2' + y_1 y_2'' - y_1'' y_2 - y_1' y_2' = y_1 y_2'' - y_1'' y_2$$

Подставим это в полученное ранее уравнение:

$$(y_1y_2'' - y_2y_1'') + p(y_1y_2' - y_1'y_2) = 0$$

$$\mathcal{W}' + p\mathcal{W} = 0$$

$$\mathcal{W} = c_1e^{-\int pdx}$$

$$\mathcal{W}(x_0) = c_1e^{-\int_{x_0}^{x_0} pdx} = c_1 = \mathcal{W}_0$$

$$\mathcal{W}(x) = c_1e^{-\int_{x_0}^{x} pdx} = \mathcal{W}_0e^{-\int_{x_0}^{x} pdx}$$

Таким образом, если $W_0 = 0$, то W(x) = 0 на всем отрезке [a; b]. Дуально, если $W_0 \neq 0$, то т.к. второй множитель всегда больше нуля (это экспонента) $W(x) \neq 0$.

TODO: Откуда такие границы в интегралах?

Замечание 2.11.25. Таким образом, чтобы узнать равен ли вронскиан нулю на отрезке, достаточно узнать его значение в одной произвольной точке этого отрезка.

2.12. Свойства решений $\Pi O \Pi V_2$: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане.

Lm 2.12.26. Линейная комбинация решений $\Pi O \Pi V_2$ также является решением.

$$\mathcal{L}[y_1] = 0
\mathcal{L}[y_2] = 0 \implies \begin{cases} \mathcal{L}[y_1 + y_2] = 0 \\ \mathcal{L}[\lambda y_1] = 0 \ (\forall \lambda \in \mathbb{R}) \end{cases}$$

Доказательство. Рассмотрим на примере $y = y_1 + y_2$. Подставим в исходное ДУ, раскроем и сгруппируем

$$y'' + py' + qy = 0$$
$$(y_1 + y_2)'' + p(y_1 + y_2)' + q(y_1 + y_2) = 0$$
$$(y_1'' + py_1' + qy_1) + (y_2'' + py_2' + qy_2) = 0$$

Это верно, т.к. y_1 и y_2 это решения исходного ДУ. Случай $y=\lambda y_1$ рассматривает аналогично.

Следствие 2.12.27. Множество решений ЛОДУ образует линейное пространство.

2.13. Свойства решений $\Pi O \Pi V_2$: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения $\Pi O \Pi V_2$. Фундаментальная система решений (определение).

Теорема 2.13.28. О структуре общего решения $\Pi O \Pi Y_2$.

Если $\mathcal{L}[y_1] = 0$, $\mathcal{L}[y_2] = 0$ и y_1, y_2 линейно независимы, то $\overline{y} = c_1 y_1 + c_2 y_2$ – общее решение ЛОДУ₂.

Доказательство. Начнем с того, что $\overline{y} = c_1 y_1 + c_2 y_2$ это решение как линейная комбинация решений (см. 2.12.26). Рассмотрим точку (x_0, y_0) в рамках задачи Коши:

$$\begin{cases} \mathcal{L}[y] = 0 \\ y_0 = y(x_0) \\ y_0' = y'(x_0) \end{cases} \iff \begin{cases} c_1 y_1(x_0) + c_2 y_2(x_0) = y_0 \\ c_1 y_1'(x_0) + c_2 y_2'(x_0) = y_0' \end{cases} \iff \begin{pmatrix} y_1 & y_2 \\ y_1' & y_2' \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} y_0 \\ y_0' \end{pmatrix}$$

По т. Крамера решение полученной СЛАУ будет единственным только в том случае, если определитель главной матрицы не равен нулю. Это выполняется, т.к. этот определитель это вронскиан, который не равен нулю, т.к. решения линейно-независимы.

Def 2.13.29. Фундаментальная система решений (ФСР) $ЛОДУ_n$ это максимальный (по включению) набор линейно независимых решений ДУ.

2.14. Свойства решений $\Pi H \Pi V_2$: теоремы о структуре общего решения и решении ΠV_2 с суммой правых частей.

- 2.15. Структура решения ЛОДУп: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения.
- **2.16.** Решение ЛН \mathbf{V}_2 с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов.
- **2.17.** Решение ЛНУ $_2$: метод вариации произвольных постоянных (Лагранжа).
- 2.18. Системы дифференциальных уравнений: определения, решение методом исключения.
- 2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел.
- **2.20.** Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. Примеры устойчивого и неустойчивого решения