МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4 по дисциплине «Построение и анализ алгоритмов»

Тема: КМП

Студент гр. 3388	 Беннер В.А.
Преподаватель	Жангиров Т.Р.

Санкт-Петербург

2025

Задание

Задача 1

Реализуйте алгоритм КМП и с его помощью для заданных шаблона P(|P| < 15000) и текста T(|T| < 5000000) найдите все вхождения P в T.

Вход:

Первая строка - Р

Вторая строка - Т

Выход:

Индексы начал вхождений Р в Т, разделенных запятой. Если Р не входит в Т, то вывести -1.

Задача 2

Заданы две строки A ($|A| \le 5000000$) и B ($|B| \le 5000000$).

Определить, является ли A циклическим сдвигом B (это значит, что A и B имеют одинаковую длину и A состоит из суффикса B, склеенного с префиксом B). Например, `defabc` является циклическим сдвигом `abcdef`.

Вход:

Первая строка - А

Вторая строка - В

Выход:

Если А является циклическим сдвигом В, индекс начала строки В в А, иначе вывести -1. Если возможно несколько сдвигов, вывести первый индекс.

Выполнение работы

Алгоритм префикс-функции — это ключевая часть алгоритма Кнута-Морриса-Пратта (КМП), предназначенная для эффективного поиска подстрок в тексте. Префикс-функция для строки S определяет массив л, где каждый элемент $\pi[i]$ равен длине наибольшего собственного префикса подстроки S[0..i], совпадающего с её суффиксом. Например, для строки "ababc" префикс-функция принимает значения [0, 0, 1, 2, 0], так как у подстроки "aba" префикс "a" совпадает с суффиксом, а у "abab" совпадает "ab". Алгоритм вычисляет префикс-функцию линейное за время, используя динамическое программирование: на каждом шаге он сравнивает символы и либо увеличивает либо длину совпадения, откатывается к предыдущему совпадающему префиксу.

Префикс-функция вычисляется за O(M) для шаблона длины M.

Поиск вхождений в тексте длины N выполняется за O(N).

Общая сложность алгоритма — O(M + N), что оптимально для задачи поиска подстрок.

Память: О(М) для хранения префикс-функции шаблона.

Тестирование:

Input	Output
ab abab	0,2
abab	
IT	2,4
TAITIT	
dog cats	-1
cats	

Input	Output
defabc abcdef	3
xyzw	1
yzwx	
11123	-1
11153	

Выводы:

Разработанный алгоритм корректно находит все вхождения шаблона в тексте, выводит их позиции в порядке возрастания и обрабатывает случаи отсутствия совпадений. Добавление отладочных выводов упрощает анализ работы программы. Решение демонстрирует высокую эффективность даже на больших данных, подтверждая теоретическую оценку сложности.