

Comprehensive Evaluation of CAZyme Prediction Tools in Fungal and Bacterial Species

Emma Hobbs^{1,2}, Tracey Gloster¹, Sean Chapman², Leighton Pritchard

¹University of St Andrews, St Andrews, UK ²The James Hutton Institute, Dundee, UK ³University of Strathclyde, Glasgow, UK

Introduction

Carbohydrate Active enZymes (CAZymes) are pivotal in pathogen recognition, signalling, structure and energy metabolism. CAZy is the most comprehensive CAZyme database, cataloguing CAZymes into sequence-based CAZy families [1]. The CAZyme prediction tools dbCAN [2], CUPP [3] and eCAMI [4] annotate CAZymes with CAZy families. However, these tools have not been independently evaluated on a common high-quality dataset. Additionally, previous evaluations did not evaluate the binary classification of CAZymes/non-CAZymes, and the multilabel classification of CAZymes to multiple CAZy families.

Method

upplementary

at GitHub

The bioinformatic pipeline pyrewton was developed for this independent evaluation (Fig.1). **GitHub:** https://github.com/HobnobMancer/pyrewton

The ground truths were retrieved using cazy webscraper.

GitHub: https://github.com/HobnobMancer/cazy_webscraper

cazyme prediction tool evaluation.Rmc Evaluate CAZyme prediction tool performances and generate figures

Invoke dbCAN, CUPP and eCAMI

2. Standardise outputs

3. Retrieve ground truths

Binary CAZyme/non-CAZyme classification: Specificity, recall, precision, F₁-score, accuracy, and bootstrapped accuracy

Multilabel CAZy family classification: Adjusted Rand Index per protein Fβ-score per CAZy family

Fig.3 Expected range of performance of CAZyme prediction tools dbCAN, CUPP and eCAMI Bootstrapping the CAZyme/non-CAZyme prediction accuracy was performed 10,000 times per test set. The median bootstrapped accuracy of each test set was plotted.

Results

Binary CAZyme/non-CAZymes classification evaluation

dbCAN invokes the function prediction tools HMMER, Hotpep and DIAMOND. All predictiontools showed a low probability of misidentifying non-CAZymes as CAZymes, but also showed a tendency to miss identify a small proportion of CAZymes as non-CAZymes (Fig.2).

Fig.2 Evaluation of CAZyme/non-CAZyme differentiation performance.

One-dimensional scatterplots overlaying boxplots for [A] specificity, [B] recall, [C] precision and [D] F1-score.

Multilabel classification arises from the ability of a CAZyme to be assigned multiple CAZy families The Adjusted Rand Index (ARI) was calculated per protein (Fig.4[A]) and the Fβ-score (β=1) calculated for each CAZy family, true negative non-CAZyme predictions were excluded (Fig.4[B])

Multilabel CAZy family classification evaluation

[A] Adjusted Rand Index per protein sequence. [B] Proportional area plot of CAZy classes sized by the number o families analysed, and coloured by the proportion of CAZy family Feta-scores within each range of the scale, (eta=1)

Conclusions

- Created a bioinformatic pipeline for the reproducible evaluation of CAZyme predictions tools, and benchmarked dbCAN. CUPP and eCAMI against a high quality test set
- Evaluated the binary and multilabel classification of CAZymes for the first time
- Statistically evaluated the expected range of performance for the first time
- dbCAN was best overall but the weakest was Hotpep, which is incorporated into dbCAN
- Best performance may be achieved by replacing Hotpep with CUPP and/or eCAMI
- Next steps are to expand the dataset and evaluate substituting Hotpep with CUPP and/or eCAMI

- 1. Lombard, V. et al. (2014) 'The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Research, 42, pp.D490-D495 2. Zhange et al. (2018) 'dbCAN2: a meta server for automated carbohydrate-active enzyme annotation', Nucleic Acids Research
- 3. Barrett, K., Lange, L. (2019) 'Peptide-based functional annotation of carbohydrate active enzymes by conserved unique peptide patterns (CUPP)', Biotechnology for biofuels, 12, 102
- 4. Xu et al. (2020) 'eCAMI: simultaneous classification and motif identification for enzyme annotation', Bioinformatics, 36, 7

Acknowledgements

We would like to thank the EASTBIO Doctoral Training Partnership (BBSCR) for funding our research.

Fig. 1 Schematic of the bioinformatic pipeline pyrewton for evaluating CAZyme prediction tools