1.操作系统的功能:

用户视角:

- [1] 对于 PC 用户,操作系统的目的是优化用户进行的工作(游戏), 使用户使用方便。
- [2] 对于大型机或小型机用户,操作系统的目的是优化资源利用率,确保所有的 CPU 时间、内存和 IO 都能得到有效使用,并且确保没有用户使用超出限额以外的资源。
- [3] 对于工作站用户,操作系统需要兼顾使用方便性和资源利用率。
- [4] 移动计算机资源匮乏,针对可用性和电池寿命进行了优化。
- [5] 某些计算机的用户界面很少或没有,例如设备和汽车中的嵌入式计算机。

系统视角:

- [1] 操作系统是与硬件紧密相连的程序,可以看作资源分配器,操作系统管理 CPU 时间、内存空间、文件存储空间、IO 设备等资源。 面对许多甚至冲突的资源请求,操作系统应考虑如何为各个程序 和用户分配资源,以便计算机系统能有效公平的运行。
- [2] 操作系统是一个控制程序,管理用户程序的执行,防止计算机资源的错误或不当使用。

System View

- OS is a control program
 - Controls execution of programs to prevent errors and improper use of the computer

OS is a resource allocator

- Manages all resources
- Decides between conflicting requests for efficient and fair resource use

User View

- PC users want convenience, ease of use and good performance, don't care about resource utilization
- But shared computer such as mainframe or minicomputer must keep all users happy: maximize resource utilization
- Users of dedicate systems such as workstations have dedicated resources but frequently use shared resources from servers: tradeoff
- Mobile computers are resource poor, optimized for usability and battery life
- Some computers have little or no user interface, such as embedded computers in devices and automobiles

2.multi-programming (多道程序设计)

通过安排作业(编码和数据)使得 CPU 总有一个执行作业,从而提高 CPU 的利用率。

设计目的:解决人机矛盾及CPU和IO设备之间的速度不匹配的矛盾。 multi-tasking (分时系统)

是 multi-programming 的自然延伸。对于分时系统,虽然 CPU 还是通过切换作业来执行多个作业,但是由于切换频率很高,用户可以在程序运行时与其交互。

设计目的: 多个用户通过终端共享一台主机,这些终端连接在主机上,用户可以与主机进行交互操作而互不干扰。

3.存储层次:

寄存器、高速缓存、内存、固态磁盘、硬盘、光盘、磁带

缓存的思想:

信息通常保存在存储系统中(如内存),使用时,它会被临时复制到更快存储系统,即高速缓存。当需要特定信息时,首先检查它是否处于告诉缓存,如果是,可以直接使用高速缓存的信息,如果否,就使用位于源地的信息,同时将其复制到高速缓存以便下次再用。

4.系统调用:

系统调用提供操作系统服务接口,为用户程序提供手段,以便请求操作系统完成完成某些特权任务,是进程和系统内核的编程接口,用户可以通过这个接口访问内核空间。

系统调用与 API 的逻辑关系:

API 是应用编程接口,与内核无关。系统调用通过中断向内核发出请求,实现内核提供的某些服务。系统调用的实现是在内核中完成的,API 是在函数库中实现的。

5. Dual Mode 的工作机制:

分为内核模式和用户模式, 计算机硬件通过一个模式位来表示当前模式: 内核模式 (0), 用户模式 (1)。用户通过系统调用时切换到内核模式, 返回时重置为用户模式。硬件只有在特权模式下才能执行特权指令。

原因:

提供保护手段, 防止操作系统和用户程序受到错误用户程序的影响。

6.操作系统需要提供的服务:

用户界面、程序执行、IO 操作、文件系统操作、通信、错误检测、资源分配、记账、保护与安全

7.

	дъ ⊢	<i>t</i> + ⊢
	优点	缺点
Monolithic 结构	系统调用接口和内核	难以实现与维护
	通信开销很小。	
层次化结构	隐藏底层实现, 易于	难以定义各种层次,
	构建和调试	效率较低
微内核结构	容易扩展,将服务添	用户空间和内核空间
	加到用户空间,无序	的通信开销大
	更改内核。更可靠、	
	更安全	
模块化结构	类似于分层系统,更	模块间的接口规定很
	灵活。类似于微内核	难满足对接口的实际
	系统,更高效。	需求。各模块设计者
		齐头并进,每个决定
		无法建立在上一个已
		验证的正确决定基础
		上,无法找到可靠的

决定顺序。模块划分
的大小, 也会影响模
块内聚性和耦合度。

8. 例子:

对于 CPU 定时器机制,可根据用户对响应高低的需求改变定时器时长

该设计的好处:

在机制保持不变的情况下可以改变策略。