Plan | Accueil | Contact |

3-1 Notions de Base | 3-2 RdP Particuliers | 3-3 Propriétés | 3-4 Graphe et Arborescence | 3-5 Algébre Linéaire | 3-6 T.P |

3-1 Notions de Base

3-1-1 Définition d'un RdP3-1-6 Marquages accessibles3-1-2 Places, transitions et arcs3-1-7 Graphe de marquages

3-1-3 Marquage 3-1-8 RdP autonome et non autonome

3-1-4 Franchissement d'une transition 3-1-9 Testez vos connaissances

3-1-5 Séquence de franchissement

3-1-1 Définition d'un RdP

Un réseau de Pétri est un moyen de:

- modélisation du comportement des systèmes dynamiques à événements discrets.
- description des relations existantes entre des conditions et des évènements.

3-1-2 Places, transitions et arcs

Un Rdp est composé de places, transitions et arcs :

Une place est représentée par un cercle

Une transition par un trait:

Un arc relie soit une place à une transition

soit une transition à une place.

3-1-3 Marquage

Chaque place contient un nombre entier positif ou nul de **marques** ou **jetons**. Le marquage M définit l'état du système décrit par le réseau à un instant donné. C'est un vecteur colonne de dimension le nombre de places dans le réseau. Le $i^{\acute{e}me}$ élément du vecteur correspond au nombre de jetons contenus dans la place P_i .

Exemple 1:marquage

Exemple 2:marquage

Exemple 3:marquage

3-1-4 Franchissement d'une transition

Une transition est franchissable lorsque toutes les places qui lui sont en amont (ou toutes les places d'entrée de la transition) contiennent au moins un jeton.

Exemple 4: Franchissement d'une transition

T₂ ne peut pas être franchie car P₂ ne contient aucun jeton.

Le franchissement consiste à retirer un jeton de chacune des places d'entrée et à rajouter un jeton à chacune des places de sortie de la même transition.

Exemple 5: Franchissement d'une transition

Avant franchissement :

Après franchissement :

Le franchissement de T_1 consiste à enlever un jeton de P_1 et un jeton de P_2 et à rajouter un jeton dans P_3 et un jeton dans P_4 .

Exemple 6: Franchissement d'une transition

Avant franchissement :

Après franchissement :

Le franchissement de T_1 consiste à enlever un jeton de P_1 et à ajouter un jeton à chacune des places P_2 , P_3 et P_4 .

Une transition franchissable n'est pas forcément immédiatement franchie.

Une transition sans place d'entrée est toujours franchissable : c'est une transition source.

Exemple 7: transition source

Le franchissement d'une transition source consiste à rajouter un jeton à chacune de ces places de sortie.

Une transition sans place de sortie est une transition puits.

Exemple 8: transition puits

Le franchissement d'une transition puits consiste à retirer un jeton de chacune de ses places d'entrée.

3-1-5 Séquence de franchissement

Une séquence de franchissement S est une suite de transitions T_i T_j ... T_k qui peuvent être franchies successivement à partir d'un marquage donné. Une seule transition peut être franchie à la fois.

On note : $M_i^{[S \to M_j]_{ou}} M_i^{[S \to M_j]}$: à partir du marquage M_i , le franchissement de la séquence S aboutit au marquage M_i .

Exemple 9: séquence de franchissement

 $M_0 | T_1 T_2 \stackrel{\text{et } T_1 T_3 \text{ sont deux séquences de franchissement:}}{M_0 | T_1 T_2 \stackrel{\rightarrow}{\rightarrow} M_1 \underset{\text{et }}{M_0} | T_1 T_2 \stackrel{\rightarrow}{\rightarrow} M_2 \underset{\text{avec }}{\longrightarrow} M_1 = [0\ 0\ 1\ 0\]^{\text{T}} \underset{\text{et }}{\text{et }} M_2 = [0\ 0\ 0\ 1\]^{\text{T}}$

3-1-6 Marquages accessibles

L'ensemble des marquages accessibles est l'ensemble des marquages M_i qui peuvent être atteint par le franchissement d'une séquence S à partir du marquage initial M_0 .

On le note *M_0 .

$$^*M_0 = \{M_i \text{ tel que } M_j [S \rightarrow M_j] \}$$

Exemple 10 : ensemble des marquages accessibles

$${}^{*}M_{0} = \{M_{0} M_{1} M_{2} M_{3}\}_{\text{avec}} M_{0} = [1 0 0 0]^{T}; M_{1} = [0 1 0 0]^{T}; M_{2} = [0 0 1 0]^{T}; M_{2} = [0 0 0 1 0]^{T}; M_{3} = [0 0 0 0 1]^{T}; M_{4} = [0 0 0 0]^{T}; M_{5} = [0 0 0 0]^{T}; M_{5} = [0 0 0]^{T}; M_{5} = [0 0]^{T}; M_{5} = [0]^{T}; M_{5} = [0]$$

3-1-7 Graphe de marquages

On utilise le graphe de marquages quand le nombre de marquages accessibles est fini.

Exemple 11 : graphe de marquages

Le graphe de marquage correspondant:

Haut de page

3-1-8 RdP autonome et non autonome

Un RdP autonome décrit le fonctionnement d'un système dont les instants de franchissement ne sont pas connus ou indiqués.

Exemple 13: RdP autonome

Le moment de passage de l'été à l'automne est inconnu.

Un RdP non autonome décrit le fonctionnement d'un système dont l'évolution est conditionnée par des événements externes ou par le temps. Un RdP non autonome est synchronisé et/ou temporisé.

3-1-9 Testez vos connaissances

Plan | Accueil | Contact |

3-1 Notions de Base |3-2 RdP Particuliers |3-3 Propriétés |3-4 Graphe et Arborescence |3-5 Algébre Linéaire |3-6 T.P |

3-2 RdP Particuliers

3-2-6 RdP nur

c 2 1 Graphic a coat	
3-2-2 Graphe d'événement	3-2-7 RdP généralisés
2.2.2 DJD some conflict	2.2.0 DJD à como cités

3-2-3 RdP sans conflit
3-2-8 RdP à capacités
3-2-4 RdP à choix libre
3-2-9 RdP à priorités

3-2-5 RdP simple 3-2-10 Testez vos connaissances

3-2-1 Graphe d'état

3-2-1 Graphe d'état

Un réseau de Pétri non marqué est un graphe d'état si et seulement si toute transition a exactement une seule place d'entrée et une seule place de sortie.

Exemple 14 : graphe d'état

Chacune des transitions T₁, T₂, T₃, T₄ et T₅ possède une seule place d'entrée et une seule place de sortie.

Haut de page

3-2-2 Graphe d'événement

Un RdP est un graphe d'événement si et seulement si chaque place possède exactement une seule transition d'entrée et une seule transition de sortie.

Exemple 15 : graphe d'événement

3-2-3 RdP sans conflit

Un Rdp sans conflit est un réseau dans lequel chaque place a au plus une transition de sortie. Un RdP avec conflit est un réseau qui possède donc une place avec au moins deux transitions de sorties. Un conflit est noté: $[P_i$, $\{T_1,T_2,...,T_n\}]$; avec $T_1,T_2,...,T_n$ étant les transitions de sorties de la place P_i .

Exemple 16:

3-2-4 RdP à choix libre

Un RdP est à choix libre est un réseau dans lequel pour tout conflit $[P_i, \{T_1, T_2, ..., T_n\}]$ aucune des transitions $T_1, T_2, ..., T_n$ ne possède aucune autre place d'entrée que P_i .

Exemple 17:

3-2-5 RdP simple

Un Réseau de Pétri simple est un RdP dans lequel chaque transition ne peut être concernée que par un conflit au plus.

Exemple 18:

3-2-6 RdP pur

Un RdP pur est un réseau dans lequel il n'existe pas de transition ayant une place d'entrée qui soit à la fois place de sortie de cette transition.

Exemple 19:

3-2-7 RdP généralisés

Un RdP généralisé est un RdP dans lequel des poids (nombres entiers strictement positifs) sont associés aux arcs.

Si un arc (P_i, T_j) a un poids k: la transition T_j n'est franchie que si la place P_i possède au moins k jetons. Le franchissement consiste à retirer k jetons de la place P_i .

Si un arc (T_j , P_i) a un poids k: le franchissement de la transition rajoute k jetons à la place P_i .

Lorsque le poids n'est pas signalé, il est égal à un par défaut.

Exemple 20 : RdP généralisé

Avant franchissement:

Après franchissement :

3-2-8 RdP à capacités

Un RdP à capacités est un RdP dans lequel des capacités (nombres entiers strictement positifs) sont associées aux places. Le franchissement d'une transition d'entrée d'une place P_i dont la capacité est cap(Pi) n'est possible que si le franchissement ne conduit pas à un nombre de jetons dans P_i qui est plus grand que $Cap(P_i)$.

Exemple 21:

Le franchissement de T_1 conduit à 3 jetons dans P_2 d'où T_1 ne peut plus être franchie.

Haut de page

3-2-9 RdP à priorités

Dans un tel réseau si on atteint un marquage tel que plusieurs transitions sont franchissables, on doit franchir la transition qui a la plus grande priorité.

Exemple 22 : RdP à priorité

Avant franchissement:

Après franchissement:

3-2-10 Testez vos connaissances

Plan | Accueil | Contact |

3-1 Notions de Base |3-2 RdP Particuliers |3-3 Propriétés |3-4 Graphe et Arborescence |3-5 Algébre Linéaire |3-6 T.P.|

3-4 Graphe de marquages & Arborescence de couverture

3-4-1 Graphe de marquages

3-4-2 Arborescence de couverture

3-4-3 Testez vos connaissances

3-4-1 Graphe de marquages

On utilise le graphe de marquages quand le nombre de marquages accessibles est fini. Exemple 34 : graphe des marquages

*
$$M_0 = \left\{ \begin{bmatrix} 2\\1 \end{bmatrix}; \begin{bmatrix} 1\\1 \end{bmatrix}; \begin{bmatrix} 0\\2 \end{bmatrix}; \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$$

D'où le graphe de marquage correspondant :

Les propriétés déterminées à partir de ce graphe des marquages sont :

deux blocages M₂ et M₃ 2-borné non vivant quasi-vivant non réinitilisable

Exemple 35: graphe des marquages

D'où le graphe de marquages correspondant :

Les propriétés déterminées à partir de ce graphe des marquages sont :

sauf sans blocage réinitialisable : a un état d'accueil M_0 2 séquences répétitives : $T_1T_2T_3T_4$ et $T_1T_3T_2T_4$.

3-4-2 Arborescence de couverture

Un graphe de marquage ne peut plus être construit quand le réseau est non borné c-à-d quand le nombre de marquages accessibles est infini. D'où le recourt au graphe dit de couverture. C'est un graphe à nombre de marquages fini.

Algorithme de construction d'un graphe de marquage

Pas 1:

A partir du marquage initial \mathbf{M}_0 indiquer toutes les transitions validées et les marquages accessibles successeurs correspondants.

Si un des marquages est strictement supérieur à \mathbf{M}_0 , on met la variable "w" pour chacune des composantes supérieures aux composantes de \mathbf{M}_0 .

Pas 2

Pour chaque nouveau marquage M_i, on fait soit le pas 2.1 soit le pas 2.2 suivants :

Pas 2.1

S'il existe sur le chemin de M_0 jusqu'à M_i (ce dernier exclut) un marquage $M_j = M_i$ alors M_i n'a pas de successeurs.

Pas 2.2:

Sinon, on prolonge le graphe avec les successeurs M_k (M_i): Une composante "w" de M_i reste une composante "w" de M_k . S'il existe un marquage M_j sur le chemin de M_0 à M_k tel que $M_k > M_j$, alors on met "w" pour chacune des composantes supérieures aux composantes de M_i .

Remarques:

Le marquage symbolique "w" désigne un nombre de jetons dans une place Pi qui peut atteindre un nombre très grand (l'infinie). Il représente en effet une infinité de marquages possibles.

~ Les opérations sur "w" sont :

$$\forall n \in N \hspace*{0.2cm} ; \hspace*{0.2cm} n < \omega \hspace*{0.2cm} : \begin{cases} n + \omega = \omega + n = \omega + \omega = \omega \\ \omega - n = \omega \end{cases}$$

Exemple 36 : graphe de couverture

 T_1 est une transition source, franchissable un nombre infini de fois. D'où le recours au graphe de couverture.

A partir du marquage initial M_0 =(0), seule la transition T_1 est franchissable : M_0 (T_1 > M_1 =(1). M_1 est supérieur à M_0 donc M_1 =(w).

A partir de M_1 , les deux transitions T_1 et T_2 sont franchissables :

- · Si on franchit $T_1 : M_2 = (w+1) = (w) = M_1$ donc M_2 n'a plus de successeurs.
- · Si on franchit T_2 : $M_3=(w-1)=(w)=M_1$ donc M_3 n'a plus de successeurs.

D'où le graphe de marquage correspondant :

Exemple 37 : graphe de couverture

d'où le graphe de marquage correspondant :

3-4-3 Testez vos connaissances

Plan | Accueil | Contact |

3-1 Notions de Base | 3-2 RdP Particuliers | 3-3 Propriétés | 3-4 Graphe et Arborescence | 3-5 Algébre Linéaire | 3-6 T.P |

3-5 Algébre Linéaire

3-5-1 Notations et définitions

3-5-2 Equation fondamentale ou équation d'état

3-5-3 Testez vos connaissances

3-5-1 Notations et définitions

" pré (P_i , T_j) " est le poids "k" de l'arc reliant une place à une transition.

$$\operatorname{pr\acute{e}}(P_{i}, T_{j}) = \begin{cases} k & \operatorname{si l'arc}(P_{i}, T_{j}) \text{ existe} \end{cases}$$

$$0 & \operatorname{sinon}$$

" post (P_i , T_i) " est le poids "k" de l'arc reliant une transition à une place .

post
$$(P_i, T_j) = \begin{cases} k & \text{si l'arc } (T_j, P_i) \text{ existe} \end{cases}$$

$$0 & \text{sinon}$$

on appelle "matrice d'incidence avant":

$$W^{+} = [pr\acute{e}(Pi,Tj)]$$

on appelle "matrice d'incidence arrière":

$$W^{+} = [post(Pi,Tj)]$$

on appelle "matrice d'incidence":

$$W = W^+ - W^-$$

Dans ces matrices les transitions représentent les colonnes et les places représentent les lignes.

3-5-2 Equation fondamentale ou équation d'état

- \cdot Soit S une séquence de franchissement réalisable à partir d'un marquage $\boldsymbol{M}_i: \boldsymbol{M}_i$ [S > \boldsymbol{M}_k
- \cdot Soit \underline{S} le vecteur caractéristique de la séquence S: c'est un vecteur de dimension m égale au nombre de transitions dans le réseau. Sa composante numéro j correspond au nombre de fois où la transition T_i est franchie dans la séquence S.

Exemple si $S=T_2T_4T_1T_4T_2T_4$ alors $\underline{S}=[1, 2, 0, 3]^T$

 \cdot Si la séquence de franchissement S est tel que \boldsymbol{M}_i [S > \boldsymbol{M}_k alors l'équation fondamentale correspondante s'écrit :

$$M_{k}=M_{i}+W*\underline{S}$$

Exemple 38: équation fondamentale

Soit la séquence $S = T_1 T_2$ donc $\underline{S} = [1, 1, 0, 0]^T$

la matrice d'incidence avant:

la matrice d'incidence arrière:

la matrice d'incidence:

$$\mathbf{W}^{-} = \begin{bmatrix} 1000 \\ 0100 \\ 0001 \\ 0001 \\ 0011 \end{bmatrix} \qquad \mathbf{W}^{+} = \begin{bmatrix} 0001 \\ 1000 \\ 0100 \\ 0010 \end{bmatrix} \qquad \mathbf{W} = \mathbf{W}^{+} - \mathbf{W}^{-} \qquad = \begin{bmatrix} -1 & 0 & 0 & 1 \\ 1-1 & 0 & 0 \\ 1 & 0-1 & 0 \\ 0 & 1 & 0-1 \\ 0 & 0 & 1-1 \end{bmatrix}$$

L'équation fondamentale correspondante à cette séquence est :

$$M_{2}=M_{0}+W*S$$

$$M_{2}=\begin{bmatrix}1\\0\\0\\0\\0\end{bmatrix}+\begin{bmatrix}-1&0&0&1\\1&-1&0&0\\1&0&-1&0\\0&1&0&-1\end{bmatrix}*\begin{bmatrix}1\\1\\0\\0\end{bmatrix}$$

Haut de page

3-5-3 Testez vos connaissances