Assignment -4

Assignment Date	06 November 2022
Student Name	P.THOMAS
Student Roll Number	812719104047
Maximum Marks	4 Marks

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression

df=pd.read_csv("/content/drive/NyDrive/Colab Notebooks/abalone.csv")

d-F['age'] = d-F['Rings']+1.5
df = df.drop('Rings', axis = 1)
```

Univariate Analysis

```
df.hist(figsize=(20,10), grid=False, layout=(2, 4), bins = 3B)
    array([[<matplotlib.axes._subplots.AxesSubplot object at 8x7f3dlb8fb698>, <matplotlib.axes._subplots.AxesSubplot object at 0x7f3dlade4d98>,
             <matplotlib.axes._subplots.AxesSubplot object at 0x7f3dladaa398>,
            <matplotlib.axes._subplots.AxesSubplot object at 8x7f3dlac53ld8>]],
           dtype=object)
                                                                                                                                          Whole weight
                     Length
                                                            Diameter
                                                                                                     Height
                                                                                    1600
      400
                                                                                                                             300
                                             350
                                                                                    1400
      350
                                                                                                                             250
                                             300
                                                                                    1200
      300
                                             250
                                                                                                                             200
                                                                                    1000
      250
                                             200
                                                                                     800
                                                                                                                             150
                                             150
                                                                                     600
                                                                                                                             100
                                             100
      100
                                                                                     400
                                              50
      50
                                                                                     200
                                                                 0.4
                                                                                                       0.6
                                                                                                            0.8
                                                                                                                                     0.5
                                                                                                                                          1.0
                                                                                                                                               1.5
                                                            0.3
                                                                                                  0.4
                                                                                                   Shell weight
                  Shucked weight
                                                          Viscera weight
      350
                                             350
                                                                                     350
                                                                                                                             600
      300
                                             300
                                                                                     300
                                                                                                                             500
      250
                                             250
                                                                                     250
                                                                                                                             400
      200
                                             200
                                                                                     200
                                                                                                                             300
      150
                                             150
                                                                                     150
      100
                                             100
                                                                                                                             200
                                                                                     100
      50
                                              50
                                                                                                                             100
                                                                                      50
         0.00 0.25 0.50 0.75 1.00 1.25 1.50
                                                        0.2
                                                                0.4
                                                                       0.6
                                                                                              0.2
                                                                                                    0.4
                                                                                                         0.6
```

Sex									
	0.427746	0.326494	0.107996	0.431363	0.191035	0.092010	0.128182	9.390462	
М	0.561391	0.439287	0.151381	0.991459	0.432946	0.215545	0.281969	12.205497	
F	0.579093	0.454732	0.158011	1.046532	0.446188	0.230689	0.302010	12.629304	

Bivariate Analysis

numerical_features = df.select_dtypes(include = [np.number]).columns
sns.pairplot(df[numerical_features])

Descriptive statistics

df.describe()										
	Length	Diameter	Height	whole weight	Shucked weight	viscera weight	Shell weight	age		
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000		
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	11.433684		
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169		
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	2.500000		
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	9.500000		
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	10.500000		
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	12.500000		
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	30.500000		

Check for missing values

df.isnull().sum()

```
df - pd.get dummies(df)
dummy_da ta = df . copy()
var = 'Viscera weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
# outliers removal
d-F. drop(df[ (d-F[ ' VI scera weight ' ] > 0. 5) & (df-[ ' age ' ] < 20) ] . Index, inp1ace=True)
\tt df.drop\,(df[(df['Uiscera\ weight']<0.5)\ \&\ (df['age']\ >\ 25)].index,\ inplace=True)
var - 'Shell weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
#Outliers removal
\label{eq:dfdf} $$ df.drop(df[(df['Shell weight'] > 0.6) & (df['age'] < 25)].index, inplace=True) $$
df.drop(df[(df['Shell weight']<8.8) 8 (df['age'] > 25)].index, inplace=True)
var = 'Shucked weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
#Outlier removal
df.drop(df[(df['Shucked weight'] >= 1) & (df['age'] < 28)].index, inplace=True)</pre>
df.drop(df[(df['Shuckedweight']<1) & (df['age'] > 28)].iudex, inplace=True)
var = ' Nhole weight '
pit . scatter (x = df-[var] , y = df[ ' age ' ] )
p1t . grid(True)
df.drop(df[(df['Whole weight'] >= 2.5) &
           (df['age'] < 25)].index, inplace = True)</pre>
df. drop(df-[(df['Nhole weight']<2.5) & (
d-F['age'] \rightarrow 25)]. Index, 1nplace = True)
var = ' Diameter '
pit . scatter (x = df-[var] , y = df[ ' age ' ] )
p1t . grid(True)
df.drop~(df\hbox{-}[(df\hbox{['Diazeten']}~<8.~1)~\&
           (df['age'] < 5)].index, inplace = True)</pre>
df. drop(df-[ (df[ ' Diameter ' ] <0. 6) & (
d-F['age'] > 25)]. Index, 1nplace = True)
d-F- . drop(df-[ (d1°[ ' Diameter ' ] >=0. 6) & (
df-[ ' age ' ] < 25) ] . Index, 1nplace = True)
var = 'Height'
p1t . scatter (x - df[var], y - df['age'])
p1t.arid(True)
d-F. drop(d-I- [ (df-[ ' Height '] > 6 . 4) &
           (df[ ' age ' ] < 15) ] . Index, Inplace = True)
d-F. drop(df-[ (d-F[ ' Height ' ] <0. 4) & (
d-I°['age'] > 25)]. index, 1nplace = True)
var = 'Length'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
df.drop(df[(df['Leugth'] < 8.1) &
          (df['age'] < 5)].index, inplace = True)</pre>
dfdropd[df['Leugth]<0.8) & (
df['age'] > 25)].index, inplace = True)
df.dropd[df['Length]>=8.8) & (
df['age'] < 25)].iudex, inplace = True)
```


Categorical columns

numerical_features = df.select_dtypes(include = [np.number]).columns categorica1_features = df.select_dtypes(include = [np.object]).columns

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: Deprecationwarning: 'up.object' is a deprecated alias for the builtin 'object' To siler Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.8-notes.html#deprecations

numerical_features

categonica I_featunes

Index(['Sex'], dtype='object')

ENCODING

from sklearn.preprocessing import LabelEncoder le=LabelEncoder() print(df.Sex.value_counts())

M 1525 1 1341 F 1301

Name: Sex, dtype: int64

x=df.iloc[:, :5]

	Sex	Length	Diameter	Helght	Nhole we1ght	1			
0	М	0.455	0.365	0.095	0.5140				
1	М	0.350	0.265	0.090	0.2255				
2	2 F	0.530	0.420	0.135	0.6770				
3	М	0.440	0.365	0.125	0.5160				
4		0.330	0.255	0.080	0.2050				
4172	F	0.565	0.450	0.165	0.8870				
4173	М	0.590	0.440	0.135	0.9660				
4174	М	0.600	0.475	0.205	1.1760				
4175	F	0.625	0.485	0.150	1.0945				
4176	М	0.710	0.555	0.195	1.9485				
4167 rows • 5 columns									

y=df.iloc[:,5:]

	Shucked weight	VIscera weight	Shell weight	age	2
0	0.2245	0.1010	0.1500	16.5	
1	0.0995	0.0485	0.0700	8.5	
2	0.2565	0.1415	0.2100	10.5	
3	0.2155	0.1140	0.1550	11.5	
4	0.0895	0.0395	0.0550	8.5	
4172	0.3700	0.2390	0.2490	12.5	
4173	0.4390	0.2145	0.2605	11.5	
4174	0.5255	0.2875	0.3080	10.5	
4175	0.5310	0.2610	0.2960	11.5	
4176	0.9455	0.3765	0.4950	13.5	
440=					

4167 rows 4 columns

 $from \ sk1earn.model_selection \ import \ train_test_split \\ x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)$

Model Building

from sklearn.linear_model import LinearRegression mlr=LinearRegression() mlr.fit(x_train,y_train)

Train and Test model

x_test [6:5]

	Sex	Length	Diameter	Height	Nhole we1ght
661		0.535	0.450	0.170	0.781
370	F	0.650	0.545	0.165	1.566
2272	М	0.635	0.510	0.210	1.598
1003	М	0.595	0.455	0.150	1.044
1145	M	0.580	0.455	0.195	1.859

y_test[0:5]

е	Shell v	t Shel	ght S	we	vlscera	e1ght	Shucked w		
(5	555	0		0.3055		661	
(5	455	0		0.6645		370	
(5	335	0		0.6535		2272	2
(5	205	0		0.5180		1003	•
()	260	0		0.9450		1145	

Feature Scaling

Performance measure

I-rom sklearn .metric s Import r2_score r2_s core(m1r . predict (x_test) , y_test)

0.5597133867640833