Projet de Simulations et Monte Carlo Wall Street

Margot Etève, Aymeric Floyrac, Jérémy Marck

ENSAE ParisTech

- Introduction
- 2 Différentes méthodes de réduction de variance
 - Monte Carlo standard
 - Variables antithétiques
 - Variables de contrôle
 - Quasi-Monte Carlo
 - Randomized Quasi-Monte Carlo
- Multi-Level Monte Carlo
- Multi-Level Quasi Monte Carlo

Introduction

• Objectif : Evaluer le prix d'une option asiatique

$$C = \mathbb{E}\left[e^{-rT}\left(\frac{1}{k}\sum_{i=1}^{k}S(t_i)-K\right)^+\right]$$

- Processus de Black et Scholes $S(t) = S_0 \exp\left((\mu \frac{\sigma^2}{2})t + \sigma W_t\right)$ solution de $dS_t = \mu S_t dt + \sigma S_t dW_t$
- On suppose que $S_0 = K$
- \bullet (W_t) le mouvement brownien standard

Introduction

Mouvement brownien:

- $\forall s < t, W_t W_s \sim \mathcal{N}(0, t s)$
- Les acroissements sont indépendants, i.e. $\forall t_1 < t_2 < t_3, \ W_{t_2} W_{t_1} \perp W_{t_2} W_{t_2}$
- $W_0 = 0$ (convention)

Construction par marche aléatoire : simulation des accroissements gaussiens puis W_T est la somme cumulative des accroissements.

- Introduction
- 2 Différentes méthodes de réduction de variance
 - Monte Carlo standard
 - Variables antithétiques
 - Variables de contrôle
 - Quasi-Monte Carlo
 - Randomized Quasi-Monte Carlo
- Multi-Level Monte Carlo
- 4 Multi-Level Quasi Monte Carlo

Monte Carlo standard

- Idée : simuler un mouvement brownien à k pas, calculer le processus de Black-Scholes et $e^{-rT}\left(\frac{1}{k}\sum_{i=1}^k S_n(t_i) K\right)^+$, puis répèter ceci N fois
- N: nombre de trajectoires browniennes simulées,
 k: nombre de pas de ces trajectoires

•
$$\hat{C} = \frac{1}{N} \left[e^{-rT} \sum_{n=1}^{N} \left(\frac{1}{k} \sum_{i=1}^{k} S_n(t_i) - K \right)^+ \right]$$

• Les éléments stochastiques sont les W_{t_i} dans les $S_n(t_i)$

Représentation de la méthode Monte Carlo

Figure 1: Moyenne et IC pour la méthode Monte Carlo

- Introduction
- 2 Différentes méthodes de réduction de variance
 - Monte Carlo standard
 - Variables antithétiques
 - Variables de contrôle
 - Quasi-Monte Carlo
 - Randomized Quasi-Monte Carlo
- Multi-Level Monte Carlo
- Multi-Level Quasi Monte Carlo

Variables antithétiques

- Idée : réduire la variance sans avoir besoin de simuler à nouveau, en utilisant $W \stackrel{\mathcal{L}}{=} -W$
- Démarche :
 - On simule un mouvement brownien
 - On calcule $\begin{cases} S_n^{SA}(t_i) = S_0 exp\left((\mu \frac{\sigma^2}{2})t_i + \sigma W_{t_i}\right), \text{ sans antith\'etique} \\ S_n^A(t_i) = S_0 exp\left((\mu \frac{\sigma^2}{2})t_i \sigma W_{t_i}\right), \text{ avec antith\'etique} \end{cases}$
 - $\left\{ \begin{array}{c} \hat{C}_N^{SA}, \text{ sans antith\'etique} \\ \hat{C}_N^A, \text{ avec antith\'etique} \end{array} \right.$ et $\left. \begin{array}{c} \hat{C}_N = \frac{1}{2} (\hat{C}_N^{SA} + \hat{C}_N^A) \end{array} \right.$

Représentation de la méthode Monte Carlo

Figure 2: Moyenne et IC pour la méthode MC avec variables antithétiques

- Introduction
- 2 Différentes méthodes de réduction de variance
 - Monte Carlo standard
 - Variables antithétiques
 - Variables de contrôle
 - Quasi-Monte Carlo
 - Randomized Quasi-Monte Carlo
- Multi-Level Monte Carlo
- Multi-Level Quasi Monte Carlo

Variables de contrôle

- Idée : réduire la variance en introduisant une variable de contrôle.
- Principe : Soit Y une variable aléatoire réelle centrée (variable de contrôle), alors $\forall \beta, \ \frac{1}{N} \sum_{n=1}^{N} [X_n \beta Y_n]$ est un estimateur non biaisé de $\mathbb{E}[X]$.

On minimise la variance en prenant $\beta = \frac{Cov(X,Y)}{Var(Y)}$.

• Ici : $X_t = e^{-rT} \left(\frac{1}{k} \sum_{i=1}^k S_n(t_i) - K \right)^+$, W_T comme variable de contrôle et $\hat{C}_N^C = \hat{C}_N - \mathbb{E}[\hat{\beta}W_t]$

Représentation de la méthode avec variables de contrôle :

Figure 3: Gauche : sans variables antithétiques. Droite : Avec variables antithétiques.

- Introduction
- 2 Différentes méthodes de réduction de variance
 - Monte Carlo standard
 - Variables antithétiques
 - Variables de contrôle
 - Quasi-Monte Carlo
 - Randomized Quasi-Monte Carlo
- Multi-Level Monte Carlo
- Multi-Level Quasi Monte Carlo

Quasi-Monte Carlo

- Idée : on ne simule pas de façon totalement aléatoire. On fait une sorte de quadrillage pour "forcer" les simulations.
- Utilisation de la suite de Halton (discrépance faible).
- Discrépance : dans le contexte d'une suite de nombres dans un intervalle, cela mesure l'écart maximal de la suite donnée avec l'équirépartition.
- Package randtoolbox dans R

Représentation graphique pour le Quasi Monte Carlo

Figure 4: Gauche : sans variables antithétiques. Droite : Avec variables antithétiques.

- Introduction
- 2 Différentes méthodes de réduction de variance
 - Monte Carlo standard
 - Variables antithétiques
 - Variables de contrôle
 - Quasi-Monte Carlo
 - Randomized Quasi-Monte Carlo
- Multi-Level Monte Carlo
- Multi-Level Quasi Monte Carlo

Randomized Quasi-Monte Carlo

- Variante de Quasi Monte Carlo
- Consiste à générer un ensemble de points à faible discrépance
- Argument scrambling de la fonction sobol du package randtoolbox

Représentation graphique pour le Randomized Quasi Monte Carlo

Figure 5: Gauche : sans variables antithétiques. Droite : Avec variables antithétiques.

Comparaisons

Table 1

	moyenne	écart-type	temps de calcul
MC	0.378	0.568	0.066
antithétique	0.379	0.302	0.060
contrôle	0.374	0.372	0.056
contrôle antithétique	0.380	0.304	0.079
QMC	0.382	0.376	0.059
QMC antithétique	0.381	0.300	0.061
Randomized QMC	0.383	0.383	0.066
RQMC antithétique	0.383	0.305	0.0.56

- Introduction
- Différentes méthodes de réduction de variance
- Multi-Level Monte Carlo
- Multi-Level Quasi Monte Carlo

Multi-Level Monte Carlo

T : la maturité qu'on découpe en intervalles de temps.

Au niveau 0, T est découpé en $h_0 = \frac{T}{k}$ intervalles. Au niveau I, T est découpé $h_I = \frac{T}{2^I k}$ intervalles. Et ce jusqu'au niveau L.

 M_I : au nombre de tirages effectués au niveau I.

Puis N repétitions de ces tirages.

On pose $f: x \mapsto e^{-rT}(x - K)^+$. La méthode consiste à calculer :

$$\mathbb{E}\left[f\left(X_{T}^{(h_{L})}\right)\right] = \mathbb{E}\left[f\left(X_{T}^{(h_{0})}\right)\right] + \sum_{l=1}^{L} \mathbb{E}\left[f\left(X_{T}^{(h_{l})}\right)\right] - \mathbb{E}\left[f\left(X_{T}^{(h_{l-1})}\right)\right]$$

Οù

$$X_T^{(h)} = \frac{1}{k} \sum_{i=1}^k S^{(h)}(t_i)$$

avec $S^{(h)}$ le processus de Black-Scholes résolu par schéma d'Euler de pas h

Schéma d'Euler

Le processus de Black-Scholes est solution de l'équation

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

L'équation discrétisée du schéma d'Euler s'écrit

$$S_{t+h} - S_t = \mu S_t \times h + \sigma S_t (W_{t+h} - W_t)$$

et
$$W_{t+h} - W_t \sim \mathcal{N}(0,h)$$

De plus, les 2 composantes du l-ième terme de

$$\sum_{l=1}^{L} \mathbb{E}\left[f\left(X_{T}^{(h_{l})}\right)\right] - \mathbb{E}\left[f\left(X_{T}^{(h_{l-1})}\right)\right] \text{ sont simulés à partir de la même}$$

trajectoire brownienne.

Représentation de la méthode Multi Level Monte Carlo

Figure 6: Moyenne et IC pour la méthode Multi Level Monte Carlo

- Introduction
- 2 Différentes méthodes de réduction de variance
- Multi-Level Monte Carlo
- 4 Multi-Level Quasi Monte Carlo

Multi-Level Quasi Monte Carlo

Figure 7: Moyenne et IC pour la méthode Multi Level Quasi Monte Carlo

Comparaisons

Table 2

	moyenne	écart-type	temps de calcul
MC	0.378	0.568	0.066
antithétique	0.379	0.302	0.060
contrôle	0.374	0.372	0.056
contrôle antithétique	0.380	0.304	0.079
QMC	0.382	0.376	0.059
QMC antithétique	0.381	0.300	0.061
Randomized QMC	0.383	0.383	0.066
RQMC antithétique	0.383	0.305	0.056
Multi-niveaux	0.367	0.011	0.078
QMC Multi-niveaux	0.365	0.011	0.259