G C D (The Greatest Common Divisor)

21PC32 - SATHEESH KUMAR R.S.

The GCD of n Positive Numbers

The gcd of n numbers where (n>=2) positive numbers $a_1, a_2, a_3, \ldots, a_n$ is the the largest positive integer that divides each ai where i in the range [1, n]. It is denoted by

```
gcd(a_1, a_2, a_3, ..., an).
```

Example:

Find gcd (12, 18, 28), gcd (12, 36, 60, 108) and gcd (15, 28, 50).

Solution:

- i) The Largest Positive Integer that divides 12,18 and 28 is 2. So gcd(12,18,28) = 2.
- ii) The Largest Positive Integer that divides 12,36,60,108 is 12. The Common greatest factor of the above numbers is 12. So gcd (12,36,60,108) = 12.
- iii) The Largest Positive Integer that divides 15,28,50 is 1.

 The Common greatest factor of the above numbers is 1.

 So gcd (15,28,50) = 1.

Example:

Using Recursion, Evaluate (18, 30, 60, 75, 132)

Solution:

In order to find $gcd(a_1, a_2, a_3, ..., an)$ we should find it for $gcd(gcd(a_1, a_2, ..., an-1), an)$ and for it $gcd(gcd(a_1, a_2, ..., an-2), an-1)$, an) and proceed till it makes to calculate for pair of numbers.

So by using the above statement,

```
gcd (18,30,60,75,132) = gcd (gcd (18,30,60,75),132)
= gcd (gcd (gcd (18,30,60),75),132)
= gcd (gcd (gcd (gcd (18,30),60),75),132)
```

we know that gcd(18,30) = 6.

Substitute it in the above and proceed the same procedure.

Therefore gcd(18, 30, 60, 75, 132) = 3.

Corollary:

If the gcd $(a_1, a_2, a_3, a_4, ..., an) = d$ then $d \mid ai$ for every integer i, where $1 \le i \le n$. i.e., d divides ai where i belongs to [1, n].

Corollary:

If a_1, a_2, a_3, \ldots , an be the numbers then there exists d such that $d \mid (a_1 * a_2 * a_3 * \ldots * a_n)$ and gcd(d, ai) = 1 for $1 \le i \le n-1$ then $d \mid an$.

Example:

```
If the numbers be 7,5,3
then 7*5*3 = 105
if d = 3 then d | 105 such that gcd (d,ai) = 1 where 1 \le i \le n-1 so that d | 3 which is d | an and also d can also take 1 for each case.
```

Here the value of d = 1 and d = 3.

From this we can say that if d be any number and d divides $a_1 * a_2 * a_3 * ... *$ and gcd (d, ai) = 1 for every $1 \le i \le n-1$ then d | an.

Linear Combination of n Positive Integers:

A Linear Combination of n positive integers a_1, a_2, a_3, \ldots , an is a sum of the form $\alpha * a_1 + \beta * a_2 + \gamma * a_3 + \ldots + An * an where <math>\alpha, \beta, \gamma, \ldots$, An are integers.

For Example:

The Linear Combination of the Numbers 12,15 and 21 is, 2*12+(-2)*15+15*(-5) so that is yields 3 which is the gcd(12,15,21).

Example:

Express the gcd (12,15,21) as a linear combination of 12,15,21.

Solution:

First we need to find the gcd (12,15,21) which is 3. Then find the values of α , β and γ such that α * 12 + β * 15 + 21 * γ = 3 . By trial and error method we came to know α = -1 , β = 1 and γ = 0 so that

(-1)*12 + 1*15 + 0*23 = 3 [we will study later in Euclidean Algorithm how to efficiently find the values for α , β and γ].

Corollary

```
If a \mid c and b \mid c and gcd(a,b) = 1, then a*b \mid c.
```

Proof:

From given if a | c and b | c means c = n * a and c = m * bFor some n,m belongs to Z.

And also gcd(a,b) = 1 means the linear combination of a,b is $\alpha * a + \beta * b = 1$. For some α , β belongs to Z.

Then

$$\alpha*a*c+\beta*b*c=c$$
 Sub c = n*a and c = m*b in the above Equation,
$$\alpha*a*m*b+\beta*b*n*a=c$$
 ab $(\alpha*m+\beta*n)=c$

Therfore from the above we can conclude that $a*b \mid c \mid a*b \mid divides \mid c \mid a*b \mid c \mid a*b \mid divides \mid c \mid a*b \mid c \mid a*b \mid divides \mid c \mid a*b \mid c \mid a*b \mid divides \mid c \mid a*b \mid c \mid a*b \mid divides \mid div$

Pairwise Relatively Prime Integers:

The Positive integers a_1 , a_2 , a_3 ,..., an are pairwise relatively prime if Every pair of integers is relatively prime; that is, (ai, aj) = 1, whenever i \neq j.

Corollary:

If the positive integers a_1, a_2, a_3, \ldots , an are pairwise relatively prime, then the gcd $(a_1, a_2, a_3, \ldots, a_n) = 1$.

For Example:

Let the numbers be 4,27,35 as they are relatively prime (there is no any common divisors for the above three numbers) their gcd is 1.

Note:

The Converse of the above Corollary is not true; that is if the $\gcd(a_1,a_2,a_3,\ldots,a_n)=1$ then the integers are relatively prime numbers. The counter example for this is, Let the numbers be 6,15 and 49 and their $\gcd(6,15,49)=1$ but they are not relatively prime because 6 and 15 have common Divisor which is 3. So the converse of the above corollary is not true.

Corollary:

There are Infinitely Many Primes. And for this corollary, proof is not necessary.

Theorem:

```
Let the numbers be a_1, a_2, a_3, \ldots, an be positive integers, where n>=3. Then gcd (a_1, a_2, a_3, \ldots, a_1) = gcd (gcd <math>(a_1, a_2, a_3, \ldots, a_n).
```

Proof:

```
Let the gcd (a_1, a_2, a_3, ..., a_n) = d, gcd (a_1, a_2, a_3, ..., a_n) = d and let d'' = gcd (d', a_n).
```

We need to show that d = d''; $d \mid d''$ and $d'' \mid d$.

Since d = gcd (a_1 , a_2 , a_3 , , an) , d | ai for $1 \le i \le n-1$ and d | d' which also holds

 $d \mid gcd(d', an) = d \mid d'' \cdot d'' = m * d == \rightarrow for some m belongs to Z$

We also need to show that $d \mid d''$.

Since $d'' = \gcd(d', an)$ which means $d'' \mid d'$ and $d'' \mid an$; $d'' \mid d'$ - holds for $1 \le i \le n-1$. Thus d'' must divide d'' too. Hence $d'' \mid d'$.

Hence we got $d \mid d''$ and $d'' \mid d$. Therefore d = d''Then $gcd(a_1, a_2, a_3, ..., a_n) = gcd(gcd(a_1, a_2, a_3, ..., a_n))$ Hence Showed.

Exercises:

i) Using Recursion, find gcd (14, 18, 21, 36, 48)

```
Solution:
    gcd (gcd (14, 18, 21, 36), 48)
     gcd (gcd (gcd (14, 18, 21), 36), 48)
    gcd(gcd(gcd(gcd(14,18),21),36),48) == \rightarrow gcd(14,18) = 2
    gcd (gcd (gcd (2, 21), 36), 48)
                                                     == \rightarrow \gcd(2,21) = 1
                                                      == \rightarrow \gcd(1,36) = 1
    gcd (gcd (1, 36), 48)
    gcd (1,48)
                                                      == \rightarrow \gcd(1, 48) = 1
```

ii) Disprove the Below Statement .

If
$$(a,b) = 1 = (b,c)$$
 then $(a,c) = 1$.

Solution:

In order to disprove the above statement we should provide a Encounter example of it.

Assume that the given statement is true for any integers .

Let us have the values for a, b and c as a = 2, b = 3 and c = 8 such that the gcd(2,3) = gcd(3,8) = 1 but

 $gcd(2,8) \neq 1$; as it yields a contradiction of our assumption.

So it is clearly known that when gcd(a,b) = gcd(b,c) = 1 it is not suppose to be that gcd(a,c) should 1.

Express the gcd of each pair as a linear combination of the numbers.

- i) 18,28
- ii) 12, 15, 18

Solution:

The
$$gcd(18, 28) = 2$$

Then find the values for α , β such that

$$\alpha * 18 + \beta * 28 = 2$$

From Trial and error method one such values for α and A_2 is $\alpha=-3$, $\beta=2$. So the Linear combination of the number 18,28 is

$$(-3)*18 + 2*28 = 2$$

The gcd(12, 15, 18) = 3.

Then find the values of α , β and γ such that the equation $\alpha * 12 + \beta * 15 + A_3 * 18 = 3$

By trial and error method one such values of α , β and γ is :

 α = 3 , β = -1 , γ = -1 such that the Linear Combination of the numbers 12 , 15 and 18 is

$$3*12+(-1)*15+(-1)*18=3$$
.