Introduction

Probabilistic Neural Network was introduced by D.F. Specht in the early 1990s. PNN is a feed forward Neural Network greatly inspired by Bayesian Network.

It's a Four Layer Architecture consists of

- 1. Input Layer
- 2. Hidden Layer
- 3. Pattern Layer/Summation Layer
- 4. Output Layer

PNN Architecture

PNN Architecture Details

Input Layer:

It supplies input to the hidden layer. (Extracted Features from the dataset are supplied here).

Hidden Layer:

- There are total n Neurons in Hidden Layer.
- They are grouped based on their corresponding class.
- If there are C Classes and n Neurons then in each group there will be n/C neurons.
- Output X at each neuron will be computed by a probability density function (generally used Gaussian distribution).
- Hence $g_i(x) = \frac{1}{\sqrt{2\Pi\sigma^2}} \exp\{-((||\mathbf{x} x_j||)^2 / 2\sigma^2)\}$

set or estimated heuristically) σ is the smoothing parameter (values depends on the data j=1 k (Number of Inputs in Input Layer) Where i=1 n (Neurons in Hidden Layer)

PNN Architecture Details

Pattern Layer/Summation Layer:

All the neurons which belongs to that class will be summationed here.

$$f_l(x) = \sum_{j=1}^{l} g_l(x)$$

where i=1 C (Classes)

l is the number of neurons which belongs to that class.

Output Layer:

It decides in which class test sample belongs by comparing the f's values of the pattern layer.

If
$$f_i(x) \ge f_j(x)$$
 // Given $i \ne j$
Then $x \in i$ (eth number of class)

Else

 $x \in j$ (eth number of class) End

Advantages of using PNN

Advantages:

- ✓ Fast Training Process.
- ✓ An inherently parallel structure.
- ✓ Guaranteed to converge to an optimal classifier as the size of the representative training set increases.
- ✓ Training samples can be added or removed without extensive retraining.

Disadvantages:

- ✓ Large memory requirements.
- \checkmark It is vital to find an accurate smoothing parameter (σ)

Applications of PNN

- Probabilistic neural networks in modeling structural deterioration of storm water pipes.
- Probabilistic Neural Networks in Solving Different Pattern Classification Problems.
- > Application of probabilistic neural networks to population pharmacokineties.
- Leukemia and Embryonal Tumor of Central Nervous System. > Probabilistic Neural Networks to the Class Prediction of
- > Ship Identification Using Probabilistic Neural. Networks
- Probabilistic Neural Network-Based sensor configuration management in a wireless AD-HOC network.
- ➤ Probabilistic Neural Network in character recognizing.

Let we have 2D dataset, consist of 2 different class represented by different patterns

Φ, and Ψ

Samples belongs to class Φ

(1,5), (3,2)

Samples belongs to class \P

(7,9),(8,6),(9,5)

and let the smoothing parameter σ =.5

Network Details:

Calculation at Hidden Layer:

if the
$$\sigma$$
 is fixed we will have only
$$g_l(x) = \exp\{-((||x - x_j||)^2 / 2\sigma^2)\}$$

$$g_1(x) = \exp\{-\frac{(x_1 - 1)^2 + (x_2 - 5)^2}{(.5)^2}\}$$

$$g_2(x) = \exp\{-\frac{(x_1 - 3)^2 + (x_2 - 5)^2}{(.5)^2}\}$$

$$g_3(x) = \exp\{-\frac{(x_1 - 7)^2 + (x_2 - 9)^2}{(.5)^2}\}$$

$$g_4(x) = \exp\{-\frac{(x_1 - 7)^2 + (x_2 - 9)^2}{(.5)^2}\}$$

$$g_5(x) = \exp\{-\frac{(x_1 - 9)^2 + (x_2 - 5)^2}{(.5)^2}\}$$

Calculation at Pattern/Summation Layer:

$$f_1(x) = g_1(x) + g_2(x)$$

$$f_2(x) = g_3(x) + g_4(x) + g_5(x)$$

Calculation at Output Layer:

$$f(f_1(x)) = f_2(x)$$

X will belong to f_1 class

98/2

X will belong to f₂ class

Testing:

Let we have a testing vector

(3,5)

Then

At output layer we have

$$f_1(x) = \exp\left\{-\frac{(3-1)^2 + (5-5)^2}{(.5)^2}\right\} + \exp\left\{-\frac{(3-3)^2 + (5-2)^2}{(.5)^2}\right\}$$

$$f_2(x) = \exp\left\{-\frac{(3-7)^2 + (5-9)^2}{(.5)^2}\right\} + \exp\left\{-\frac{(3-8)^2 + (5-6)^2}{(.5)^2}\right\} + \exp\left\{-\frac{(3-9)^2 + (5-5)^2}{(.5)^2}\right\} = \exp\left\{-\frac{(3-9)^2 + (5-5)^2}{(.5)^2}\right\} = 6.8136e - 046$$

= 3.3546e-004

Testing:

Here $f_2(x) > f_1(x)$

Therefore testing samples x will belong to f_2 (second class)

い

