

QCM de mathématiques

QCM de révisions (Arnaud)

Répondre en cochant la ou les cases correspondant à des assertions vraies (et seulement cellesci).

Logique

8 1
Question 1 Soit l'équation $E: x^n = 27$.
\Box <i>E</i> a une unique solution réelle quel que soit $n \ge 1$.
\Box E a au moins une solution réelle quel que soit $n \ge 1$.
\square E a n solutions réelles quel que soit $n \ge 1$.
\square E a au moins n solutions complexes quel que soit $n \ge 1$.
\square <i>E</i> a exactement <i>n</i> solutions complexes quel que soit $n \ge 1$.
Question 2
Soit $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2 + 1$.
\Box f est injective.
\Box f n'est pas injective.
\Box f est surjective.
\Box f n'est pas surjective.
□ La restriction de f , f : [1,2] \rightarrow [2,5] est bijective.
Question 3
Soit $f: \mathbb{C} \to \mathbb{C}$, $z \mapsto z^2 + 1$.
\Box f est injective.
\Box f n'est pas injective.
\Box f est surjective.
$\Box f$ n'est pas surjective.

 \Box La restriction de f , $f_{|}:$ [1,2] \rightarrow [2,5] est bijective.

Question 4

Pour $x, y \in \mathbb{R}$ et z = x + iy, on pose $e^z = e^x \times e^{iy} = e^{x+iy}$.

- $\Box |e^z| = e^x$.
- $\Box |e^z| = \sqrt{x^2 + y^2}.$
- \square Arg $e^z = y$.
- \square Arg $e^z = x + y$.
- \square La fonction $f: \mathbb{C} \to \mathbb{C}, z \mapsto e^z$ est injective.

Question 5

Par quoi peut on compléter les pointillés pour que les **deux** assertions suivantes soient vraies :

 $z \in \mathbb{C}$ $z = \overline{z} \dots z \in \mathbb{R}$; $z \in \mathbb{C}$ $z^3 = -1 \dots z = -1$

- $\square \implies \text{et} \Longleftarrow.$
- $\square \iff \text{et} \iff$.
- $\square \iff$ et \iff .
- $\square \implies \text{et} \implies$.
- $\square \iff \text{et} \Longleftarrow$.

Question 6

Soit la suite $(x_n)_{n\in\mathbb{N}^*}$ définie par $x_n = \frac{(-1)^n}{n}$.

- $\square \exists n \in \mathbb{N}^* \qquad x_n = 0.$
- $\label{eq:constraints} \square \ \forall \varepsilon > 0 \ \exists N \in \mathbb{N}^* \ \forall n \in \mathbb{N}^* \ (n \geq N \implies |x_n| \leq \varepsilon).$

Question 7

Soit *E* un ensemble, $A, B \subset E$, soit $A \triangle B = (A \cup B) \setminus (A \cap B)$. Les assertions suivantes sont-elles vraies quels que soient *A* et *B* inclus dans *E*?

- $\Box \ A\Delta B = (A \setminus B) \cup (B \setminus A).$
- $\Box \ A\Delta B = (E \setminus A) \cap (E \setminus B).$
- \square Si $B \subset A$ alors $A \triangle B = A$.
- □ Si E est un ensemble fini, $Card(A\Delta B) \leq CardA + CardB$.
- \square Si *E* est un ensemble fini, Card($A\Delta B$) < Card A + Card B.

Question 8

Soit la suite $(x_n)_{n\in\mathbb{N}}$ définie par $x_0=1$ puis pour $n\geq 1$ $x_n=\frac{x_{n-1}}{n}$.

 $\square \ \forall n \in \mathbb{N} \qquad x_n > 0.$

 $\square \ \forall n \in \mathbb{N} \qquad x_{n+1} \leq x_n.$

 $\square \ \forall n \in \mathbb{N} \qquad x_n \geqslant \frac{1}{2} \frac{1}{n!}.$

 $\square \ \forall n \in \mathbb{N} \qquad x_n \leq \frac{1}{2} \frac{1}{n!}.$

Question 9

On lance de façon aléatoire deux dés identiques à 6 faces (numérotées de 1 à 6). On ne tient pas compte de l'ordre, par exemple le tirage 1 puis 5 est le même que 5 puis 1, mais les tirages 3 puis 3, et 3 puis 4 sont distincts.

☐ Il y a 36 tirages distincts possibles.

☐ Il y a 30 tirages distincts possibles.

 \square Il y a 21 tirages distincts possibles.

☐ La somme des deux chiffres a strictement plus de chances d'être 7 que 2.

 \square La somme des deux chiffres a strictement plus de chances d'être ≥ 11 que ≤ 3 .

Question 10

Soit E un ensemble fini de cardinal n, soit $A \subset E$ un ensemble à p éléments, et $B \subset E$ un ensemble à q éléments. On note $\mathcal{S} = \{(a,b) \in A \times B \mid a \neq b\}$ et $\mathcal{T} = \{(I,b) \text{ avec } I \subset A \mid \text{Card } I = r \text{ et } b \in B\}$.

 \square Si $A \cap B = \emptyset$ alors Card $\mathcal{S} = p + q$.

 $\Box \ \ \operatorname{Si} A \cap B = \emptyset \ \text{alors Card} \ \mathscr{S} = pq.$

 \square Si $A \subset B$ alors $\mathcal{S} = \emptyset$.

 \square Card $\mathscr{T} = C_n^p \times r$.

 $\Box \operatorname{Card} \mathscr{T} = C_p^r \times q.$

Arithmétique

Question 11

Les propositions suivantes sont-elles vraies quels que soient $\ell \ge 2$ et p_1, \ldots, p_ℓ des nombres premiers > 2?

 \square $p_1p_2...p_\ell$ est un nombre premier.

 $\hfill \square$ Le carré de p_1 est un nombre premier.

$\square p_1 p_2 \dots p_\ell + 1$ est un nombre premier.
$\square \prod_{i=1}^\ell p_i$ est un nombre impair.
$\square \sum_{i=1}^{\ell} p_i$ est un nombre impair.
Question 12
□ Soit $n \in \mathbb{N}$ un entier, alors $(n+1)(n+2)(n+3)(n+4)$ est divisible par 24.
☐ Soit $n \ge 6$ un entier pair alors $\frac{n}{2}$ est impair.
☐ La somme et le produit de deux nombres pairs est un nombre pair.
$\Box \ a b \text{ et } a' b' \implies aa' bb'.$
$\Box \ a b \text{ et } a' b' \implies a+a' b+b'.$
O
<i>Question 13</i> ☐ Le pgcd de 924, 441 et 504 est 21.
☐ 627 et 308 sont premiers entre eux.
□ Si p ≥ 3 est premier, alors p! est premier.
\square Soit $n \ge 2$ alors n et $n + 1$ sont premiers entre eux.
□ Soit $n \ge 2$ un entier, le pgcd de $\{in^i \text{ pour } i = 1,, 100\}$ est n .
_ contres _ an entitel, to page at (ent pour t _ 1,111,1200) est in
Question 14
Soient $a, b, c \ge 1$ des entiers.
$\Box \ ab = \operatorname{pgcd}(a,b) \times \operatorname{ppcm}(a,b).$
$\Box \ abc = \operatorname{pgcd}(a, b, c) \times \operatorname{ppcm}(a, b, c).$
\square ppcm (a, b, c) est divisible par c .
\square ppcm(1932, 345) = 19320.
\square ppcm(5, 10, 15) = 15.
Question 15
\square Soit $a, b, c \ge 1$ des entiers. Si $a bc$ et a ne divise pas b alors $a c$.
\square Sachant que 7 divise 86419746 × 111 alors 7 divise 86419746.
\square Si $a = bq + r$ est la division euclidienne de a par b alors $pgcd(a, b) = pgcd(b, r)$.
$□ Il existe u, v ∈ \mathbb{Z} \text{ tels que } 195u + 2380v = 5.$
□ Sachant qu'il existe u, v tels que $2431u + 65520v = 39$ alors $pgcd(2431, 65520) = 39$.

Question 16

- $\square \exists P \in \mathbb{Z}[X] \quad \forall x \in \mathbb{R} \qquad P(x) > 0.$
- $\square \ \forall P \in \mathbb{Z}[X] \ \exists x \in \mathbb{R} \ |P(x)| < 1.$
- $\square \ \forall P \in \mathbb{Q}[X] \qquad x \in \mathbb{Q} \Longrightarrow P(x) \in \mathbb{Q}.$
- $\square \ \forall P \in \mathbb{C}[X] \text{ de degr\'e} \ge 1 \quad \exists z \in \mathbb{C} \qquad P(z) = 0.$
- ☐ Tout polynôme de degré 2 ne s'annulant pas, prend uniquement des valeurs positives.

Question 17

Soit $P,Q \in \mathbb{C}[X]$ des polynômes non nuls $P = \sum_{i=0}^{n} a_i X^i$, soit $I_P = \{i \in \mathbb{N} \mid a_i \neq 0\}$, soit $\mathrm{val}(P) = \min I_P$.

- \square val $(-X^7 + X^3 + 7X^2) = 2$.
- \square val $(P+Q) \ge \text{val}(P)$.
- \square val $(P \times Q) \ge \text{val}(P) + \text{val}(Q)$.
- \square val $(k.P) = k \cdot \text{val}(P)$ où $k \in \mathbb{N}^*$.
- \square Si Q|P alors val(P/Q) = val(P) val(Q).

Question 18

- $\square X^4 + X^3 X^2 X$ est divisible par X(X 1).
- \square Le reste la division euclidienne de $X^3 + X^2 + 3$ par X 1 est X + 4.
- \Box Le quotient de $X^5 + 2X^3 + X^2 + 2X + 1$ par $X^2 + 1$ est $X^3 + X + 1$.
- $\square X 1$ divise $X^n 1$ pour $n \ge 1$.
- $\square X + 1$ divise $X^n + 1$ pour $n \ge 1$.

Question 19

- \square Soit $P \in \mathbb{C}[X]$. X a divise P ssi P(a) = 0.
- \square Soit $P \in \mathbb{R}[X]$ de degré impair. Il existe $x \in \mathbb{R}$ tel que P(x) = 0.
- \square Soit $P \in \mathbb{R}[X]$, les racines de P^2 sont d'ordre au moins 2.
- \square Soit $P \in \mathbb{R}[X]$, x est racine simple ssi P(x) = 0.
- \square Un polynôme $P \in \mathbb{C}[X]$ de degré n a n racines réelles.

Question 20

- $\square X^4 + 1$ est irréductible dans $\mathbb{R}[X]$.
- $\square X^2 + 7$ est irréductible dans $\mathbb{Q}[X]$.
- $\square X^2 + 7$ est irréductible dans $\mathbb{C}[X]$.
- \square Dans $\mathbb{Z}[X]$, pgcd $(X(X-1)^2(X^2+1), X^2(X-1)(X^2-1)) = X(X-1)$.
- \square Dans $\mathbb{Z}[X]$, pgcd $(X^4 + X^3 + X^2 + X, X^3 X^2 X + 1) = X + 1$.

Réels

Question 21 (Réel et rationnels)

- \square $(x \in \mathbb{Q} \text{ et } y \in \mathbb{Q}) \Longrightarrow x + y \in \mathbb{Q}$
- \square $(x \in \mathbb{R} \setminus \mathbb{Q} \text{ et } y \in \mathbb{R} \setminus \mathbb{Q}) \Longrightarrow x + y \in \mathbb{R} \setminus \mathbb{Q}$
- $\square \ \forall x \in \mathbb{R} \setminus \mathbb{Q} \quad \forall y \in \mathbb{R} \setminus \mathbb{Q} \qquad x < y \Longrightarrow (\exists z \in \mathbb{Q} \ x < z < y)$
- $\Box \ (\forall x \in \mathbb{R} \setminus \mathbb{Q}) \quad (\forall y \in \mathbb{R} \setminus \mathbb{Q}) \qquad x < y \implies (\exists z \in \mathbb{R} \setminus \mathbb{Q} \quad x < z < y)$
- \square Pour $n \ge 3$, n impair $\implies \sqrt{n} \in \mathbb{R} \setminus \mathbb{Q}$

Question 22

Soient A, B, C des parties de \mathbb{R}

- \square Si sup *A* existe alors max *A* existe.
- \square Si max A existe alors sup A existe.
- \square Pour A, B majorées et $C \subset A \cap B$ alors $\sup C \leq \sup A$ et $\sup C \leq \sup B$.
- \square Si $A = \left\{ \frac{(-1)^n}{n} + 1 \mid n \in \mathbb{N}^* \right\}$ alors $\inf A = 0$ et $\sup A = 1$.
- \square Si $B = \left\{ \frac{E(x)}{x} | x > 0 \right\}$ alors $\inf B = 0$ et $\sup B = 1$.

Question 23 (Limites de suites)

- \square Si $u_n = n \sin(\frac{1}{n})$ alors (u_n) tend vers 1.
- \square Si $u_n = \ln(\ln(n))$ alors (u_n) a une limite finie.
- $\square \ u_n = \frac{(\ln n)^2}{\sqrt{n}} \ \text{alors} \ (u_n) \ \text{tend vers} + \infty.$
- $\square u_n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}$ alors (u_n) diverge.
- \square $u_n = \sin(n)$, il existe une sous-suite de (u_n) convergente.

Question 24 (Suites définies par récurrence)

Soit f(x) = 2x(1-x) et la suite définie par $u_0 \in [0,1]$ et $u_{n+1} = f(u_n)$.

- $\square \ \forall n \in \mathbb{N} \qquad u_n \in [0,1].$
- \square Quelque soit u_0 dans [0,1], (u_n) est monotone.
- \square Si (u_n) converge vers ℓ alors $\ell = 0$ ou $\ell = 1$.
- \square Si (u_n) converge vers ℓ alors $\ell = 0$ ou $\ell = \frac{1}{2}$.
- $\square \ u_0 \in]0,1[$ alors (u_n) ne converge pas vers 0.

Question 25 (Fonctions continues)

☐ La somme, le produit et le quotient de deux fonctions continues est continue.

\square La fonction $\sqrt{\sqrt{x}} \ln x$ est prolongeable par continuité en 0.
☐ Il existe $a, b \ge 0$ tels que fonction définie par $f(x) = -e^x$ si $x < 0$ et $f(x) = ax^2 + b$ si $x \ge 0$ soit continue.
\square Toute fonction impaire de $\mathbb R$ dans $\mathbb R$ est continue en 0.
\square La fonction $\frac{\sqrt{ x }}{x}$ est prolongeable par continuité en 0.
Question 26 (Théorème des valeurs intermédiaires, fonctions bornées) ☐ La méthode de dichotomie est basée sur le théorème des valeurs intermédiaires. ☐ Tout polynôme de degré ≥ 3 a au moins une racine réelle. ☐ La fonction $f(x) = \frac{1}{x^3(x^2+1)}$ admet au moins une racine réelle dans $]-1,+1[$. ☐ Pour $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ continue admettant une limite finie en $+\infty$, f est bornée. ☐ Pour $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ continue admettant une limite finie qui vaut $f(0)$ en $+\infty$ alors f
est bornée et atteint ses bornes.
Question 27 (Dérivation) \square La fonction $f(x) = 1/x$ est décroissante sur \mathbb{R}^* .
\square La fonction $f(x) = x \sin \frac{1}{x}$ est continue et dérivable en 0.
☐ La fonction définie par $x \mapsto 0$ si $x \in \mathbb{Q}$ et $x \mapsto x^2$ si $x \notin \mathbb{Q}$ est dérivable en 0.
☐ Si $f(x) = P(x)e^x$ avec P un polynôme alors pour tout $n \in \mathbb{N}$ il existe un polynôme Q_n tel que $f^{(n)}(x) = Q_n(x)e^x$.
\square Si $f(x) = \sqrt{x} \ln x$ si $x \in \mathbb{R}^*$ et $f(0) = 0$ alors f est dérivable en 0.
Question 28 (Théorème de Rolle et des accroissements finis)
□ Si f est dérivable sur $[a,b]$ avec $f(a) = f(b)$ il existe un unique $c \in]a,b[$ tel que $f'(c) = 0$.
\square Si f est une fonction continue sur $[a,b]$ et dérivable sur $]a,b[$ et $f'(x)$ tend vers ℓ quand x tend vers a alors f est dérivable en a et $f'(a) = \ell$.
□ Soit $f(x) = \ln x$ si $x > 0$ et $f(0) = 0$. Pour $x > 0$ il existe $c \in]0, x[$ tel que $\ln x = \frac{x}{c}$.
☐ Si f est dérivable sur \mathbb{R} et $\lim f(x) = +1$ quand $x \to +\infty$ et $\lim f(x) = +1$ quand $x \to -\infty$ alors il existe $c \in \mathbb{R}$ tel que $f'(c) = 0$.
$\square \ \forall x > 0 \ e^x \le x e^x + 1.$
Question 29 (Fonctions usuelles)
$\square \ \forall n \in \mathbb{N} \ \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty.$

- $\Box \frac{\operatorname{ch} x}{\operatorname{sh} x}$ tend vers 1 quand x tend vers $+\infty$.
- $\Box \ \operatorname{ch} 2x = 1 + 2\operatorname{sh}^2 x.$
- $\Box \ \ \operatorname{th}(a+b) = \frac{\operatorname{th} a + \operatorname{th} b}{1 \operatorname{th} a \operatorname{th} b}.$

Question 30 (Fonctions réciproques)

- \square Un fonction continue $\mathbb{R} \longrightarrow \mathbb{R}$ strictement décroissante est bijective.
- $\hfill\Box$ Si f est une fonction continue bijective croissante alors f^{-1} est croissante.
- $\hfill\Box$ Si f est une fonction continue bijective ne s'annulant jamais alors $(\frac{1}{f})^{-1}=f$.
- \square arcsin(sin x) = x pour tout $x \in [0, 2\pi[$.
- \square Si $f(x) = \arctan(x^2)$ alors $f'(x) = \frac{1}{1+x^4}$.