1. Что делалось?

Были сгенерированы 50 случаев центрированного нормального распределения $N(\mu,\sigma,n)$ с условием строгого выполнения $\mu=0$ с $\sigma=10^{-4}$ и n = 48. Каждое распределение представляет распределение наклонов поворотных магнитов SBEND в структуре, вокруг оптической оси z. В обеих (8- и 16-периодичной) структурах имеются 48 поворотных магнитов, каждый из которых наклонён. Фильтры Вина оптимизированы для получения минимального значения спин-тюна в идеальной структуре 0.5E-7.

Наклон магнита моделируется радиальным спин-киком (без возмущения замкнутой орбиты). Таким образом, в 204 экспериментах (50 наклонённых + 1 контрольный с идеальной структурой, для 8/16 периодичной структуры, CW/CCW) четыре замкнутые орбиты. В рамках одной категории экспериментов (например, 8-периодичная структура, направление движения пучка CW) различие в результатах не связано замкнутой орбитой, которая тождественна в них всех.

В наклонённой структуре вычисляется ось стабильного спина и спин-тюн, процедурой TSS. При анализе данных эксперимента учитываются только постоянные члены спин-тюна и оси стабильного спина, т.е. спин-тюн и ось стабильного спина частицы на замкнутой орбите. Пример анализируемых данных представлен на Рис 1.

	nu	Х	Υ	Z	tilt_sd	periodicity	clockwiseness
49	5.217506e-08	2.826871e-06	-0.999995	0.003215	0.000000	8.0	CCW
202	5.239021e-08	7.547966e-07	-1.000000	-0.000857	0.000000	8.0	CW
1	4.347203e-08	2.025403e-06	0.999976	0.006927	0.000000	16.0	CCW
104	4.347203e-08	-2.045771e-06	0.999976	0.006926	0.000000	16.0	CW
130	2.628941e-07	6.719466e-02	-0.198710	0.977752	0.000078	8.0	CCW
							• • •
123	3.137682e-07	9.416461e-03	0.139541	-0.990171	0.000120	16.0	CW
37	6.310400e-08	-1.799427e-02	-0.828809	-0.559243	0.000123	8.0	CCW
48	6.292549e-08	3.000834e-02	-0.829669	-0.557449	0.000123	8.0	CW
93	1.477257e-07	-1.024747e-02	0.289929	0.956993	0.000123	16.0	CCW
143	1.478779e-07	-9.998727e-03	0.296423	0.955004	0.000123	16.0	CW

Рис. 1. Исходные данные для анализа

Поскольку среднее значение распределения наклонов магнитов (эквивалентно, в силу способа моделирования наклонов, средний спин-кик) $\mu=0$, данные охарактеризованы величиной стандартного отклонения наклона (эквивалентно, спин-кика) $\sigma[\theta_{tilt}]$ (на Рис. 1 третья колонка справа, под названием tilt_sd).

В силу того, что длины 8- и 16-периодичных структур разные (250.47 м для 8-ми, и 261.70 м для 16-ти), соответствующие циклотронные частоты: 0.5822942764643650 МГЦ и 0.5822942764643650 МГц. Пучок (дейтроны) инжектируется на энергии $\gamma=1.143914$.

Из исходных данных вычисляются компоненты спиновой частоты $(\Omega_x, \Omega_y, \Omega_z)$, путём домножения на циклотронную частоту. Пример на Рис. 2.

	X	Υ	Z	tilt_sd	periodicity	clockwiseness
49	5.396241e-07	-0.190890	0.000614	0.000000	8.0	CCW
202	1.446780e-07	-0.191678	-0.000164	0.000000	8.0	CW
1	3.085625e-07	0.152343	0.001055	0.000000	16.0	CCW
104	-3.116656e-07	0.152343	0.001055	0.000000	16.0	CW
130	6.463057e-02	-0.191127	0.940442	0.000078	8.0	CCW
						• • •
L23	1.035425e-02	0.153438	-1.088783	0.000120	16.0	CW
37	-4.154449e-03	-0.191352	-0.129116	0.000123	8.0	CCW
48	6.908615e-03	-0.191009	-0.128338	0.000123	8.0	CW
93	-5.305115e-03	0.150096	0.495435	0.000123	16.0	CCW
143	-5.181673e-03	0.153617	0.494915	0.000123	16.0	CW

Рис. 2. Разметка поля экспериментов по частоте спин-прецессии

После этого для каждого эксперимента вычислялась разница спиновых частот между CW и CCW направлениями движения пучка.

1.1 Моделирование обратного (CCW) движения пучка в структуре

¹ Самая левая колонка на Рис. 1 это порядковый номер эксперимента; поскольку данные отсортированы по tilt_sd, порядковые номера идут не по порядку.

Обратное движение пучка в структуре воспроизводится путём перестановки элементов ускорителя, с заменой знака наклона на противоположный: так $\theta^i_{tilt} \mapsto -\, \theta^i_{tilt}$. При этом структуре без компенсации наклонов $\mu \neq 0$, спин-прецессия происходит вокруг преимущественно-радиальной оси, и при обращении знака $\mu \mapsto -\, \mu$ (т.е. при обращении среднего МДМ спин-кика) происходит обращение направления оси спин-прецессии. Пример на Рис. 3.

Рис. 3. Данные по частоте в 8-периодичной структуре с неравным нулю средним радиальным спин-киком для CW и CCW направлений движения пучка.

Иными словами, в нашей модели ССW это структура с (1) обратным порядком элементов, (2) обратным направлением радиального спин-кика θ^i_{tilt} .

2. Полученные результаты

В первую очередь для сравнения доброкачественности 8/16периодичных QFS-структур мы обращаем внимание на систематическую производимую ошибку. Систематическая ошибка определяется как член суммы радиальных частот спин-прецессии прямого (CW) и обратного (CCW) экспериментов, производимый структурой в отсутствии ЭДМ. Иными словами, если структура производит разное по скорости вращение вектора поляризации пучка в сопоставляемых CW и CCW случаях (посредством МДМ), то она производит систематическую ошибку.

На первой панели Рис. 4 изображена сумма радиальных компонент частоты спин-прецессии частицы на замкнутой орбите прямого и обратного экспериментов; на двух нижних — разница вертикальной и продольной компонент частоты спин-прецессии. Существенной разницы между 8- и 16-структурами на первой панели не наблюдается.

Рис. 4. Систематическая ошибка при сравнении данных эксперимента **при одинаковой равновесной энергии** пучка для CW и CCW (верхняя панель). Разница между CW и CCW для вертикальной и продольной компонентами спиновой частоты (средняя и нижняя панели).

На Рис. 5 изображены (верхняя панель) радиальная компонента частоты прецессии спин-вектора частицы на замкнутой орбите при прямом движении пучка в структуре; (нижние панели) отношения между радиальной и остальными компонентами.

Разброс радиальной компоненты частоты прецессии спинвектора частицы на замкнутой орбите в случае 16-периодичной структуры меньше, чем в 8-периодичной. Тем не менее можно обратить внимание, что в невозмущённых 8- и 16-периодичных структурах (самая левая точка, соответствующая $\sigma[\theta_{tilt}]=0$) $\Omega_x^8 \approx \Omega_x^{16}$ совпадают (с точностью 5E-7). Иными словами, различие между 8-периодичными возмущёнными структурами в 19 раз сильнее, чем между 16-периодичными. **Это значимо в контексте подвижности магнитов** в течение эксперимента: через год измерений, мы всё ещё работаем с той же самой (относительно спиновой динамики) 16-периодичной структурой, в то время как 8-периодичная изменилась существенно.

Значимость дополнительно подтверждает средняя панель, на которой изображён разброс отношения между вертикальной (используемой в калибровке пучка) и радиальной компонентами частоты. С изменением распределения несовершенств кольца это отношение значительно меняется в случае 8-периодичной структуры, и существенно меньше в случае 16-периодичной. Это означает неоспоримое преимущество 16-периодичного кольца над 8-периодичным, поскольку в методе калибровки предполагается неизменность отношения калибровочной (вертикальной) и измерительной (радиальной) компонент спиновой частоты. При изменении этого отношения вводится

систематическая ошибка (второго рода) в метод подавления систематических ошибок (первого рода) измерения.

Рис. 5. Радиальная компонента частоты прецессии спин-вектора частицы на замкнутой орбите при прямом движении пучка в структуре (верхняя панель); отношения между радиальной и остальными компонентами (нижние панели).

На Рис. 6 изображены компоненты оси стабильного спина частицы на замкнутой орбите в зависимости от нормализованной частоты спин-прецессии (в зависимости от отстройки от QFS-резонанса).

Рис. 6. Компоненты оси стабильного спина частицы на замкнутой орбите в зависимости от нормализованной частоты спин-прецессии