Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Révisions	TD2 - Correction

Exercice 1: Diagramme de Bode

Question 1: Déterminer les coefficients caractéristiques et formes factorisées (quand il y a lieu) des fonctions de transfert proposées

$$H_1(p) = \frac{100}{1+0.1p} \qquad H_2(p) = \frac{100}{1+0.11p+0.001p^2} \qquad H_3(p) = \frac{10}{1+0.1p+0.01p^2}$$

$$H_2(p) = \frac{100}{1+0.11p+0.001p^2} \qquad H_3(p) = \frac{10}{1+0.1p+0.01p^2}$$

$$H_2(p) = \frac{100}{1+0.11p+0.001p^2} \qquad H_3(p) = \frac{10}{1+0.1p+0.01p^2}$$

$$= \frac{K}{1+\frac{2z}{\omega_0}p+\frac{1}{\omega_0^2}p^2}$$

$$\begin{cases} K=10\\ \omega_0 = \sqrt{100} = 10\\ z = \frac{10}{2}0.1 = 0.5 \end{cases}$$

$$K=10$$

$$(z=\frac{10}{2}0.1=0.5)$$
 Factorisable? $z<1$ donc non Sinon:
$$\Delta=0.1^2-4*1*0.01$$

$$= -0.03$$

Factorisation uniquement pour H_2

Méthode: Vérifier si le dénominateur est factorisable en calculant son discriminant ou z.

$$H_2(p) = \frac{100}{1 + 0.11p + 0.001p^2}$$

$$\Delta = 0.11^2 - 4 * 0.001 * 1 = 0.0081 = 0.09^2$$

$$p_i = \frac{-0.11 \pm 0.09}{2 * 0.001} = \begin{cases} \frac{-0.11 + 0.09}{2 * 0.001} = \frac{-0.02}{2 * 0.001} = -10 \\ \frac{-0.2}{2 * 0.001} = -100 \end{cases}$$

$$0.001p^2 + 0.11p + 1 = 0.001(p + 100)(p + 10) = (1 + 0.01p)(1 + 0.1p)$$

$$H_2(p) = \frac{100}{(1 + 0.01p)(1 + 0.1p)}$$

Attention: Les erreurs souvent rencontrées ici sont de considérer le « a » de $ap^2 + bp + c$ valant 1 car on lit de gauche à droite $c + bp + ap^2$, à la fois dans le dénominateur des racines et dans la factorisation (mis en gras ci-dessus) — Ou vous oublier de vous ramener à la forme $(1 + \cdots p)$ au dénominateur en passant 10^3 au numérateur 2 et parfois en interprétant mal les 2 pulsations de coupure 100 ou 0,01 et 10 ou 0,1...

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Révisions	TD2 - Correction

Question 2: Etablir les diagrammes de bode asymptotique des fonctions de transferts (des documents réponses sont proposés en fin de TD)

Question 3: Ajouter une allure des courbes réelles sur vos tracés

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Révisions	TD2 - Correction

Document réponse 2

$$H_2(p) = \frac{100}{1 + 0.11p + 0.001p^2}$$

Attention: je vois trop souvent des élèves qui quand ils cherchent à placer 50, partent de 0 dans leur tête et qui compte donc 10, 20, 30... à partir de la graduation après 10. Ils décalent donc tout vers la droite d'une graduation. Après 10, il faut compter à partir de 20!

Page 3 sur 5

Entrée : E Sortie : S

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Révisions	TD2 - Correction

$$\omega_r = \omega_0 \sqrt{1 - 2z^2} = 10 \sqrt{1 - \frac{2}{2^2}} = 10\sqrt{0.5} \approx 7$$

Attention : Ne pas confondre ω_r avec $\omega_n=\omega_0\sqrt{1-z^2}$, pseudo pulsation de la réponse à un échelon d'un second ordre. Dites-vous cela : 1 pour la formule vue en premier en 1° année (temporel) puis 2 pour le fréquentiel

$$G_r = 20 \log(|H(j\omega_r)|) = 20 \log\left(\frac{10}{\sqrt{(1 - 0.01\omega_r^2) + (0.1\omega_r)}}\right) \approx 21,$$

$$G_{\omega_0} = G_0 - 20 \log(2z) = G_0 - 20 \log(1) = G_0 = 20$$

Page 4 sur 5

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Révisions	TD2 - Correction

Question 4: Déterminer les marges de stabilité des systèmes en BF pour les BO 1, 1' et 2

et 2		
$H_{\nu}(n) =$	100	
$H_1(p) = \frac{100}{1 + 0.1p}$		
	gain infinie $\Delta arphi$	
$ H_1(i\omega_c) = 1$	ΔΨ	
$\frac{\omega_{c_0}}{ H_1(j\omega_{c_0}) = 1}$ $100 = \sqrt{1 + \frac{{\omega_{c_0}}^2}{100}}$	$\varphi_{\omega_{c_0}} = \arg\left(\frac{100}{1 + \frac{\omega_{c_0}}{10}j}\right)$	
$10000 = 1 + \frac{{\omega_{c_0}}^2}{100}$ $9999 = \frac{{\omega_{c_0}}^2}{100}$	$\varphi_{\omega_{c_0}} = -\arg\left(1 + \frac{\omega_{c_0}}{10}j\right)$ $\varphi_{\omega_{c_0}} = -\tan^{-1}\left(\frac{\omega_{c_0}}{10}\right)$	
$9999 = \frac{\omega_{c_0}^2}{100}$	$ \varphi_{\omega_{c_0}} = -\tan^{-1}\left(\frac{1}{10}\right) $ $ \varphi_{\omega_{c_0}} = -1,56 rd = -89,43^{\circ} $	
$\omega_{c_0}^2 = 999900$	$\Delta \varphi = 180 + \varphi_{\omega_{c_0}} = 90,57^{\circ}$	
$\omega_{c_0} \approx 999,95 rd. s^{-1}$		
	$\frac{100}{(1+0,1p)}$	
	gain infinie	
$\left \frac{\omega_{c_0}}{H(i\omega)} \right = 1$	$\Delta arphi$	
$\frac{\omega_{c_0}}{ H_1(j\omega_{c_0}) = 1}$ $100 = \omega_{c_0} \sqrt{1 + \frac{{\omega_{c_0}}^2}{100}}$	Il faut évidemment profiter de la factorisation	
$10000 = \omega_{c_0}^2 + \frac{\omega_{c_0}^4}{100}$	$\varphi_{\omega_{c_0}} = \arg\left(\frac{100}{j\omega_{c_0}\left(1 + \frac{\omega_{c_0}}{10}j\right)}\right)$	
$\omega_{c_0}^4 + 100\omega_{c_0}^2 - 1000000 = 0$ $X = \omega_{c_0}^2$	$\varphi_{\omega_{c_0}} = -\frac{\pi}{2} - \arg\left(1 + \frac{\log \tau}{10}\right)$	
$X = \omega_{c_0}$ $X^2 + 100X - 1000000 = 0$	$\varphi_{\omega_{c_0}} = -\frac{\pi}{2} - \tan^{-1}\left(\frac{\omega_{c_0}}{10}\right)$	
$\Delta = 10000 + 4 * 1000000 \approx 4010000$	$ \varphi_{\omega_{c_0}} = -\frac{1}{2} - \tan^{-1}\left(\frac{1}{10}\right) $ $ \varphi_{\omega_{c_0}} = -2.83 rd = -162.04^{\circ} $	
On garde la solution positive : $-100 \pm \sqrt{4010000}$	$\Delta \varphi = 180 + \varphi_{\omega_{c_0}} = 17,96^{\circ}$	
$X = \frac{-100 + \sqrt{4010000}}{2} = 951,25$, , , , , , , , , , , , , , , , , , , ,	
$\omega_{c_0} = \sqrt{X} \approx 30.8 \ rd. s^{-1}$		
$H_2(p) = \frac{1}{1+0}$	100	
1 + U	11p + 0,001p2 gain infinie	
Marge de gain infinie ω_{c_0} $\Delta arphi$		
•	$ \varphi_{\omega_{c_0}} = \arg\left(\frac{100}{(1 - 0.001\omega_{c_0}^2) + (0.11\omega_{c_0})j}\right) $	
$\left H_2(j\omega_{c_0})\right =1$	$\varphi_{\omega_{c_0}} = -\arg\left(\left(1 - 0.001\omega_{c_0}^2\right) + \left(0.11\omega_{c_0}\right)j\right)$	
$ H_2(j\omega_{c_0}) = 1$ $100 = \sqrt{(1 - 0.001\omega_{c_0}^2)^2 + 0.11^2\omega_{c_0}^2}$	$\varphi_{\omega_{c_0}} = \arg\left((1 - 0.001\omega_{c_0}^2) - (0.11\omega_{c_0})j\right)$	
$10000 = 1 - 0,002\omega_{c_0}^2 + 0,001^2\omega_{c_0}^4 + 0,11^2\omega_{c_0}^2$ $1 - 10000 + (0,11^2 - 0,002)\omega_{c_0}^2 + 0,001^2\omega_{c_0}^4 = 0$ $0,000001\omega_{c_0}^4 + 0,0101\omega_{c_0}^2 - 9999 = 0$	$\varphi_{\omega_{c_0}} = -\cos^{-1}\left(\frac{\left(1 - 0.001\omega_{c_0}^2\right)}{\sqrt{\left(1 - 0.001\omega_{c_0}^2\right)^2 + 0.11^2\omega_{c_0}^2}}\right)$	
$0,000001\omega_{c_0}^{4} + 0,0101\omega_{c_0}^{2} - 9999 = 0$ $X = \omega_{c_0}^{2}$	1	
$A = \omega_{c_0}^{-}$ $0,000001X^2 + 0,0101X - 9999 = 0$ $\Delta = 0,0101^2 + 4 * 0,000001 * 9999 \approx 0,04$	$arphi_{\omega_{c_0}} = -2.79 \ rd = -160.17^{\circ} \ \Delta \varphi = 180 + arphi_{\omega_{c_0}} = 19.83^{\circ}$	
On garde la solution positive :	Pour faire plus simple, on peut passer par l'expression	
$X = \frac{-0.0101 + \sqrt{0.04}}{2 * 0.000001} = 95072$	numérique dès le départ (100 \	
$\omega_{c_0} = \sqrt{X} \approx 308 rd. s^{-1}$	$\varphi_{\omega_{c_0}} = \arg\left(\frac{100}{-94,07 + 33,92j}\right) = \arg(-94,07 - 33,92j)$	
	$\varphi_{\omega_{c_0}} = -\cos^{-1}\left(\frac{-94,07}{\sqrt{94,07^2 + 33,92^2}}\right) = -2,79 rd$	