

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

102. Proposed by F. L. SAWYER. Mitchell, Ontario, Canada.

Prove that the factors of the sum of the squares of two numbers prime to each other are themselves the sum of two squares.

Solution by DR. L. E. DICKSON, The University of Chicago.

If a and b are relatively prime, every prime divisor of $a^2 + b^2$ is of the form 4n+1; inversely, every prime of the form 4n+1 can be expressed as the sum of the squares of the two relatively prime integers. These are well known theorems in the Theory of Numbers (compare Weber's Algebra, 1st edition, I, p. 585). Let $a^2 + b^2$ have the prime factors p_1, p_2, \ldots, p_s , which need not be distinct. In view of the theorems quoted, $p_i = x_i^2 + y_i^2$, where x_i and y_i are integers. But

$$(x_i^2 + y_i^2)(x_j^2 + y_j^2) = (x_ix_j + y_iy_j)^2 + (x_iy_j - x_jy_i)^2$$

It fellows that any prime or composite divisor of $a^2 + b^2$ is the sum of two squares.

Also solved by LON C. WALKER, and G. B. M. ZERR.

PROBLEMS FOR SOLUTION.

ARITHMETIC.

165. Proposed by B. F. FINKEL, A.M., M.Sc., Professor of Mathematics and Physics, Drury College, Springfield, Mo.

A borrows \$2000 and agrees to pay back principal and interest in 100 equal monthly payments. Find the monthly payment. What would he have to pay yearly on the same conditions in order to discharge the debt in 100 months?

ALGEBRA.

173. Proposed by JOHN M. COLAW, A. M., Monterey, Va.

Solve
$$\sqrt{(a+x+y)}=z...(1)$$
, $\sqrt{(b+y+z)}=x...(2)$, $\sqrt{(c+z+x)}=y...(3)$.

GEOMETRY.

195. Proposed by F. L. SAWYER, Mitchell. Ontario, Canada.

The diagonals of a four-sided figure are h and k, and the area is A; show that the area of the circumscribing square is

$$\frac{h^2 k^2 - 4A^2}{h^2 + k^2 - A}.$$

196. Proposed by HARRY S. VANDIVER, Bala, Pa.

If a quadrilateral circumscribe a circle, the two diagonals and the two lines joining the points where the opposite sides of the quadrilateral touch the circle will all four meet in a point.