Lecture 30: Numerical Linear Algebra (UMA021): Matrix Algebra

Dr. Meenu Rani

Department of Mathematics TIET, Patiala Punjab-India

Least Square Approximation Method:

Suppose that the data points are

 $(\underline{x_0}, y_0), (\underline{x_1}, y_1), (\underline{x_2}, y_2), \cdots, (\underline{x_n}, y_n)$, where x_i are the independent variable and y_i are the dependent variable.

Let $e_i = y_i - f(x_i)$ be the error at each data points.

According to the method of least squares, the best fitting curve

has the property that
$$\sum_{i=0}^{n} e_i^2 = \sum_{j=0}^{n} (y_i - f(x_i))^2$$
 is minimum.

yenect
$$f(n)$$
 $(e_i)^2 = \sum_{i=0}^{n} y_i - f(n_i)^2$

No
$$y_0$$
 $f(n_0)$ $ei = y_i - f(n_i)$
 x_1 y_1 x_2 y_3 $=$
 x_4 y_5 $=$
 x_5 y_5 $=$
 x_6 $=$
 x_7 $=$
 x

Condition
$$f(x,y)$$
 for $x=0$, for $y=0$ let $y=0$ for finding $y=0$ for $y=$

Least Square fit of a straight line:

Suppose that the data points are $(x_0, y_0), (x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$. Let f(x) = a + bx, where a, b are the constants to be determined to the given data.

Now residuals is given by

$$e_i = y_i - f(x_i) = y_i - (a + bx_i) \Rightarrow E = \sum_{i=0}^n e_i^2 = \sum_{i=0}^n (y_i - (a + bx_i))^2$$
.

We need to find a and b such that error E is minimum. The necessary condition for minimum is $\frac{\partial E}{\partial a} = 0$ and $\frac{\partial E}{\partial b} = 0$

$$e_{i}^{2} = (y_{i} - (a+b\pi i))^{2} = \sum_{i=0}^{n} e_{i}^{2} = \sum_{i=0}^{n} (y_{i} - (a+b\pi i))^{2}$$

$$E = \sum_{i=0}^{n} (y_{i} - (a+b\pi i))^{2}$$

(2x+3)4

$$E(a,b) = \sum_{i=0}^{m} (y_i - (a+b \pi i))^2$$

$$\frac{\partial E}{\partial a} = \sum_{i=0}^{n} \left(\frac{2}{y_i} - (a+bx_i) \right)^{\frac{1}{(i-1)}} = \tau$$

$$= -2 \sum_{i=0}^{n} y_i - (a+bx_i) = 0$$

$$\Rightarrow \sum_{i=0}^{n} (y_i - (a+bx_i)) = 0$$

$$\sum_{i=0}^{n} y_i - a \sum_{i=0}^{n} 1 - b \sum_{i=0}^{n} x_i = 0$$

$$4 \frac{\partial E}{\partial b} = 0$$

$$= \sum_{i \geq 0} 2(y_i - (a + b n_i)) (-n_i) = 0$$

$$= \sum_{i \geq 0} (y_i \cdot x_i - q n_i) - b n_i^2 = 0$$

 $=) \sum_{i=0}^{n} x_i y_i - a \sum_{i=0}^{n} x_i - b \sum_{i=0}^{n} x_i^2 = 0$

Example:

Obtain the least square straight line fit to the following data:

X	5	10	15	20
f(x) sy	16	19	23	26

Solution:
$$i \times i \times ji \times iji \times i^2$$
 $0 \times 5 \times 16 \times 80 \times 25$
 $1 \times 10 \times 19 \times 190 \times 100$
 $2 \times 15 \times 23 \times 345 \times 225$
 $3 \times 20 \times 26 \times 520 \times 400$

let the straight line be and to

 $50 \times 10 \times 100 \times 100$
 $50 \times 100 \times 100 \times 100$
 $50 \times 100 \times 100 \times 100 \times 100$
 $50 \times 100 \times 100 \times 100 \times 100 \times 100$
 $50 \times 100 \times$

$$E(a,b) = \frac{3}{5}(y_1 - (ax_1+b))^2$$

 $\frac{3E}{5a} = 0 = \frac{3}{5}y_1 - a = \frac{3}{5}x_1 - b = 0$

$$4 \quad \frac{\partial E}{\partial b} = 0 \quad \Rightarrow \quad \sum_{i=0}^{3} x_i y_i - \alpha \quad \frac{3}{2} z_i^2 - b \quad \sum_{i=0}^{3} x_i = 0$$

$$1135 - a(750) - b(50) = 0$$

on swing (1) 4 (2) a=0.68, b=12.5 =) Str-line is 0.652+12.5

Exercise:

Use the method of least squares to fit the linear polynomial to the following data:

X	-2	-1	0	1	2
f(x)	15	1	1	3	19

Power method:

Power method:

It is an iterative method which is used to determine the dominant eigenvalue i.e the eigenvalue with largest magnitude.

Power method:

Procedure of Power method:

x(0) - initial guess.

Take largest element in magnitude common from the elements of $y^{(i)}$ is k_1 then we get $y^{(i)} = k_1 x^{(i)}$

$$A \chi^{(1)} = \chi^{(2)} = \kappa_2 \chi^{(2)}$$

 $A \chi^{(2)} = \chi^{(2)} = \kappa_3 \chi^{(3)}$

Power method:

Example:

Determine the largest eigenvalue and the corresponding eigenvector of the following matrix correct to one decimal using the power method with $x^{(0)} = (1,0,0)^t$

$$\begin{bmatrix} 1 & -1 & 0 \\ -2 & 4 & -2 \\ 0 & -1 & 2 \end{bmatrix}.$$

We will do this question again in the next lecture.