Topology Homework 08

Ethan Jensen

April 18, 2020

EXCERCISE 4.23

Find three different topologies on the tree-point set $X = \{a, b, c\}$, each consisting of five open sets (including X and \varnothing), such that two of the topologies are homeomorphic to each other, but the third is not homeomorphic to the other two.

$$\begin{split} &\mathfrak{I}_1 = \{\varnothing, \{a\}, \{c\}, \{a,c\}, X\} \\ &\mathfrak{I}_2 = \{\varnothing, \{b\}, \{c\}, \{b,c\}, X\} \\ &\mathfrak{I}_3 = \{\varnothing, \{a\}, \{a,b\}, \{a,c\}, X\} \end{split}$$

Where
$$f: X \to X$$
 defined by $f(x) = \begin{cases} b, & x = a \\ a, & x = b \\ c, & x = c \end{cases}$ is a homeomorphism.

 \mathcal{T}_1 and \mathcal{T}_2 are homeomorphic, since the homeomorphism f exists. However, there is no homeomorphism between \mathcal{T}_1 and \mathcal{T}_3 or \mathcal{T}_2 and \mathcal{T}_3 .

Prove that a bijection $f: X \to Y$ is a homeomorphism if and only if f and f^{-1} map closed sets to closed sets.

Proof.

 (\rightarrow) Let $f: X \rightarrow Y$ be a homeomorphism.

Consider some closed set $C \in X$.

C = X - U for some open set U in X.

f(C) = f(X - U) = f(X) - f(U) since f is a bijection.

Since f is a homeomorphism, f(U) = V, where V is an open set.

So f(C) = Y - V, which is closed in Y.

Consider some closed set $D \in Y$.

D = Y - V for some open set V in Y.

 $f^{-1}(D) = f^{-1}(Y - V) = f^{-1}(Y) - f^{-1}(V)$ since f is a bijection.

Since f is a homeomorphism, $f^{-1}(V) = U$, where U is an open set.

So $f^{-1}(V) = X - U$, which is closed in X.

Thus, f and f^{-1} map closed sets to closed sets.

 (\leftarrow) Assume that f and f^{-1} map closed sets to closed sets.

Consider some closed set $C \in X$.

C = X - U for some open set U in X.

f(C) = f(X - U) = f(X) - f(U) since f is a bijection.

f(C) = Y - f(U).

f(C) is closed in Y.

So f(U) is open in Y.

Consider some closed set $D \in Y$.

D = Y - V for some open set V in Y.

 $f^{-1}(D) = f^{-1}(Y - V) = f^{-1}(Y) - f^{-1}(V)$ since f is a bijection.

 $f^{-1}(D)$ is closed in X.

So $f^{-1}(V)$ is open in X.

Thus, f is a homeomorphism.

 \therefore A bijection $f: X \to Y$ is a homeomorphism if and only if f and f^{-1} map closed sets to closed sets.

(a) Provide an example of a homeomorphism between \mathbb{R} and the interval $(-\infty,a)$.

(b) Provide a formula for a homeomorphism between \mathbb{R} and the interval (a,b), with a < b.

(c) Given the homeomorphism in Example 4.12 and the first two parts of this exercise, prove that if I_1 and I_2 are in collection (i) in Example 4.12, then I_1 and I_2 are topologically equivalent.

(a) Let $f: \mathbb{R} \to (-\infty, a)$ where $f(x) = a - e^{-x}$.

(b) Let $f: \mathbb{R} \to (a,b)$ where $f(x) = a + \frac{b-a}{1+be^{-x}}$.

(c) Let I_1 and I_2 be in the collection (i) consisting of open intervals: $(a, b), (-\infty, a), (a, \infty), \mathbb{R}$. So there are four cases for I_1 and I_2 .

Case 1: $I_1 = (a, b)$ for some $a, b \in \mathbb{R}$ and a < b. I_1 is homeomorphic to \mathbb{R} using $f: \mathbb{R} \to I_1$ where $f(x) = a + \frac{b-a}{1+be^-x}$.

Case 2: $I_1 = (-\infty, a)$ for some $a \in \mathbb{R}$. I_1 is homeomorphic to \mathbb{R} using $f: \mathbb{R} \to I_1$ where $f(x) = a - e^{-x}$.

Case 3: $I_1 = (a, \infty)$ for some $a \in \mathbb{R}$. I_1 is homeomorphic to \mathbb{R} using $f: \mathbb{R} \to I_1$ where $f(x) = a + e^x$.

Case 4: $I_1 = \mathbb{R}$.

 I_1 is homeomorphic to \mathbb{R} using $f: \mathbb{R} \to I_1$ where f(x) = x.

In every case, we can find homeomorphisms $f: \mathbb{R} \to I_1$ and $g: \mathbb{R} \to I_2$

The function $g \circ f^{-1}(x) : I_1 \to I_2$ is a homeomorphism, since continuity is maintained through composition.

 $\therefore I_1$ and I_2 are topologically equivalent.

(a) Provide a formula for a homeomorphism between the intervals $[0, \infty)$ and [a, b), with a < b.

(b) Provide a formula for a homeomorphism between the intervals $(-\infty, 0]$ and (a, b], with a < b.

(c) Given the homeomorphisms in Example 4.12 and the first two parts of this exercise, prove that if I_1 and I_2 are intervals in the collection (iii) in Example 4.12, then I_1 and I_2 are topologically equivalent.

(a) Let $f:[0,\infty)\to [a,b)$ where $f(x)=a+(b-a)(1-e^{-x})$.

(b) Let $f: (-\infty, 0] \to (a, b]$ where $f(x) = b + (a - b)(1 - e^x)$.

(c) Let I_1 and I_2 be in the collection (iii) consisting of open intervals: $[a,b), (a,b], (-\infty,a], [a,\infty)$.

So there are four cases for I_1 and I_2 .

Case 1: $I_1 = [a, b)$ for some $a, b \in \mathbb{R}$ where a < b. I_1 is homeomorphic to [a, b) using $f: I_1 \to [a, b)$ where f(x) = b + a - x.

Case 2: $I_1 = (a, b]$ for some $a, b \in \mathbb{R}$ where a < b. I_1 is homeomorphic to [a, b) using $f: I_1 \to [a, b)$ where f(x) = x.

Case 3: $I_1 = (-\infty, a]$ for some $a \in \mathbb{R}$. I_1 is homeomorphic to [a, b) using $f: I_1 \to (a, b]$ where $f(x) = a + (b - a)(1 - e^{x-a})$.

Case 4: $I_1 = [a, \infty)$ for some $a \in \mathbb{R}$. I_1 is homeomorphic to [a, b) using $f: I_1 \to [a, b)$ where $f(x) = a + (b - a)(1 - e^{a - x})$.

In every case, we can find homeomorphisms $f: I_1 \to [a,b)$ and $g: I_2 \to [a,b)$

The function $g^{-1} \circ f(x) : I_1 \to I_2$ is a homeomorphism, since continuity is maintained through composition.

 $\therefore I_1$ and I_2 are topologically equivalent.

Show that homeomorphism preserves interior, closure, and boundary as indicated in the following implications:

- (a) If $f: X \to Y$ is a homeomorphism, then $f(\operatorname{Int}(A)) = \operatorname{Int}(f(A))$ for every $A \subseteq X$.
- (b) If $f: X \to Y$ is a homeomorphism, then f(Cl(A)) = Cl(f(A)) for every $A \subseteq X$.
- (c) If $f: X \to Y$ is a homeomorphism, then $f(\partial(A)) = \partial(f(A))$ for every $A \subseteq X$.
- (a) Since f is a homeomorphism, open sets in X map to open sets in Y. Since homeomorphisms are injective, we know that for all $U, V \subseteq X$, $U \subseteq V \implies f(U) \subseteq f(V)$

So the biggest open subset of A maps to the biggest open subset of f(A).

 $\therefore f(\operatorname{Int}(A)) = \operatorname{Int}(f(A))$

(b) Since f is a homeomorphism, closed sets in X map to closed sets in Y. Since homeomorphisms are injective, we know that for all $U, V \subseteq X$, $U \subset V \implies f(U) \subset f(V)$

So the smallest closed superset of A maps to the smallest closed superset of f(A).

$$\therefore f(\mathrm{Cl}(A)) = \mathrm{Cl}(f(A))$$

(c) $f(\partial A) = f(\operatorname{Cl}(A) - \operatorname{Int}(A))$

Since f is a homeomorphism, and homeomorphisms are injective, we know that for all $U, V \subseteq X$, f(U - V) = f(U) - f(V).

$$f(\partial(A)) = f(\mathrm{Cl}(A)) - f(\mathrm{Int}(A))$$

From (a) and (b), $f(\partial(A)) = \text{Cl}f((A)) - \text{Int}f((A))$

$$\therefore f(\partial(A)) = \partial(f(A))$$