Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Currently Amended) A compound of general formula (I):

$$R^{1}$$
 R^{2}
 R^{3}
 R^{6}
 R^{7}
 R^{7}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{6}
 R^{7}
 R^{7}
 R^{7}

in which:

n is 1, 2 or 3;

each X is the same or different and is independently selected from the group consisting of a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a sulfanyl group, a pentafluoro- λ^6 -sulfanyl group, a formyl group, a formyloxy group, a formylamino group, a carboxy group, a carbamoyl group, a N-hydroxycarbamoyl group, a carbamate group, a (hydroxyimino)- C_1 - C_6 -alkyl group, a C_1 - C_8 -alkyl, a C_2 - C_8 -alkenyl, a C_2 - C_8 -alkynyl, a C_1 - C_8 -alkylamino, a di- C_1 - C_8 -alkylamino, a C_1 - C_8 -alkoxy, a C_1 - C_8 -halogenoalkoxy having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulfanyl, a C_1 - C_8 -halogenoalkylsulfanyl having 1 to 5 halogen atoms, a C_2 - C_8 -alkenyloxy, a C_2 - C_8 -halogenoalkenyloxy having 1 to 5 halogen atoms, a C_3 - C_8 -alkynyloxy, a C_3 - C_8 -halogenoalkynyloxy having 1 to 5 halogen atoms, a C_3 - C_8 -cycloalkyl,

a C₃-C₈-halogenocycloalkyl having 1 to 5 halogen atoms, a C₁-C₈-alkylcarbonyl, a C₁-C₈-halogenoalkylcarbonyl having 1 to 5 halogen atoms, a C₁-C₈-alkylcarbamoyl, a di-C₁-C₈-alkylcarbamoyl, a (N-C₁-C₈-alkyl)-C₁-C₈-alkoxycarbamoyl, a C₁-C₈-alkoxycarbamoyl, a C₁-C₈-alkoxycarbamoyl, a C₁-C₈-alkoxycarbonyl having 1 to 5 halogen atoms, a C₁-C₈-alkylcarbonyloxy, a C₁-C₈-halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, a C₁-C₈-alkylcarbonylamino, a C₁-C₈-halogenoalkylcarbonylamino having 1 to 5 halogen atoms, a C₁-C₈-alkylaminocarbonyloxy, a di-C₁-C₈-alkylaminocarbonyloxy, a C₁-C₈-alkylaminocarbonyloxy, a C₁-C₈-alkyloxycarbonyloxy, a C₁-C₈-alkylsulphenyl, a C₁-C₈-halogenoalkylsulphenyl having 1 to 5 halogen atoms, a C₁-C₈-alkylsulphinyl, a C₁-C₈-halogenoalkylsulphinyl having 1 to 5 halogen atoms, a C₁-C₈-alkylsulphonyl, a C₁-C₈-halogenoalkylsulphinyl having 1 to 5 halogen atoms, a C₁-C₈-alkylsulphonyl, a C₁-C₈-alkenyloxyimino)-C₁-C₆-alkyl, a (C₁-C₆-alkyl, a (C₁-C₆-alkyl, a (C₁-C₆-alkyl, a (C₁-C₆-alkyl, a benzyloxy, a benzylsulfanyl, a benzylamino, a phenoxy, a phenylsulfanyl or and a phenylamino;

 R^1 is selected from the group consisting of a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a sulfanyl group, a pentafluoro λ^6 -sulfanyl group, a formyl group, a formyloxy group, a formylamino group, a carboxy group, a carbamoyl group, a N-hydroxycarbamoyl group, a carbamate group, a (hydroxyimino)- C_1 - C_6 -alkyl group, a C_1 - C_8 -alkyl, a C_2 - C_8 -alkenyl, a C_2 - C_8 -alkynyl, a C_1 - C_8 -alkylamino, a C_1 - C_8 -alkoxy, a C_1 - C_8 -halogenoalkoxy having 1 to 5 halogen atoms, a C_1 - C_8 -alkenyloxy, a alkylsulfanyl, a C_1 - C_8 -halogenoalkylsulfanyl having 1 to 5 halogen atoms, a C_2 - C_8 -alkenyloxy, a

C₂-C₈-halogenoalkenyloxy having 1 to 5 halogen atoms, a C₃-C₈-alkynyloxy, a C₃-C₈halogenoalkynyloxy having 1 to 5 halogen atoms, a C₃-C₈-cycloalkyl, a C₃-C₈halogenocycloalkyl having 1 to 5 halogen atoms, a C₁-C₈-alkylcarbonyl, a C₁-C₈halogenoalkylcarbonyl having 1 to 5 halogen atoms, a C₁-C₈-alkylcarbamoyl, a di-C₁-C₈alkylcarbamoyl, a N-C₁-C₈-alkyloxycarbamoyl, a C₁-C₈-alkoxycarbamoyl, a N-C₁-C₈-alkyl-C₁-C₈-alkoxycarbamoyl, a C₁-C₈-alkoxycarbonyl, a C₁-C₈-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, a C₁-C₈-alkylcarbonyloxy, a C₁-C₈-halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, a C₁-C₈-alkylcarbonylamino, a C₁-C₈-halogenoalkylcarbonylamino having 1 to 5 halogen atoms, a C₁-C₈-alkylaminocarbonyloxy, a di-C₁-C₈-alkylaminocarbonyloxy, a C₁-C₈alkyloxycarbonyloxy, a C₁-C₈-alkylsulphenyl, a C₁-C₈-halogenoalkylsulphenyl having 1 to 5 halogen atoms, a C₁-C₈-alkylsulphinyl, a C₁-C₈-halogenoalkylsulphinyl having 1 to 5 halogen atoms, a C₁-C₈-alkylsulphonyl, a C₁-C₈-halogenoalkylsulphonyl having 1 to 5 halogen atoms, a (C₁-C₆-alkoxyimino)-C₁-C₆-alkyl, a (C₁-C₆-alkenyloxyimino)-C₁-C₆-alkyl, a (C₁-C₆alkynyloxyimino)-C₁-C₆-alkyl, a (benzyloxyimino)-C₁-C₆-alkyl, a benzyloxy, a benzylsulfanyl optionally substituted with 1 to 5 halogen atoms, a benzylamino, a phenoxy, a phenylsulfanyl optionally substituted with 1 to 5 halogen atoms or and a phenylamino;

with the proviso that X and R^1 are not both a hydrogen atom;

 R^2 and R^3 are the same or different and are independently selected from the group consisting of a hydrogen atom, a halogen atom, a cyano group, a hydroxy group, a C_1 - C_6 -alkyl, a C_1 - C_6 -halogenoalkyl having 1 to 5 halogen atoms, a C_2 - C_6 -alkenyl, a C_1 - C_6 -alkoxy, a C_1 - C_6 -

alkylsulfanyl, a C_1 - C_6 -alkylsulfenyl, a C_1 - C_6 -alkylsulfinyl, a C_1 - C_6 -alkoxycarbonyl, a C_1 - C_6 -alkylcarbonyloxy or and a C_1 - C_6 -alkylcarbonylamino;

or R^2 and R^3 may together form a 3-, 4-, 5- or 6-membered carbocycle;

R⁴ and R⁵ are the same or different and are independently selected from the group consisting of a hydrogen atom, a halogen atom, a cyano group, a C₁-C₆-alkyl or and a C₁-C₆-halogenoalkyl having 1 to 5 halogen atoms;

or R⁴ and R⁵ may together form a 3-, 4-, 5- or 6-membered carbocycle;

 R^6 is selected from the group consisting of a hydrogen atom, a cyano group, a formyl group, a hydroxy group, a C_1 - C_6 -alkyl, a C_1 - C_6 -halogenoalkyl having 1 to 5 halogen atoms, a C_3 - C_6 -cycloalkyl, a C_3 - C_6 -halogenocycloalkyl having 1 to 5 halogen atoms, a C_2 - C_6 -alkenyl, a C_2 - C_6 -alkynyl, a C_1 - C_6 -alkyl, a C_1 - C_6 -alkylamino- C_1 - C_6 -alkyl, a C_1 - C_6 -alkylamino- C_1 - C_6 -alkyl, a C_1 - C_6 -alkylamino- C_1 - C_6 -alkyloxycarbonyl, a C_1 - C_6 -halogenalkylcarbonyl having 1 to 5 halogen atoms, a C_1 - C_6 -alkyloxycarbonyl, a C_1 - C_6 -benzyloxycarbonyl, a C_1 - C_6 -alkoxy- C_1 - C_6 -alkylcarbonyl, a C_1 - C_6 -alkylsulfonyl or and a C_1 - C_6 -halogenoalkylsulfonyl having 1 to 5 halogen atoms;

p is 1, 2, 3 or 4;

each Y is the same or different and is independently selected from the group consisting of a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a sulfanyl group, a pentafluoro- λ^6 -sulfanyl group, a formyl group, a formyloxy group, a

formylamino group, a carboxy group, a C_1 - C_8 -alkyl, a C_1 - C_8 -halogenoalkyl having 1 to 5 halogen atoms, a C_2 - C_8 -alkenyl, a C_2 - C_8 -alkynyl, a C_1 - C_8 -alkylamino, a di- C_1 - C_8 -alkylamino, a C_1 - C_8 -alkoxy, a C_1 - C_8 -halogenoalkoxy having 1 to 5 halogen atoms, a C_1 - C_8 -alkoxy- C_2 - C_8 -alkenyl, a C_1 - C_8 -halogenoalkylsulfanyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkoxycarbonyl, a C_1 - C_8 -halogenoalkoxycarbonyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphenyl, a C_1 - C_8 -halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphenyl, a C_1 - C_8 -halogenoalkylsulphenyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphinyl, a C_1 - C_8 -halogenoalkylsulphinyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or and a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or and a C_1 - C_8 -alkylsulfonamide; and

 R^7 is selected from the group consisting of a halogen atom, a nitro group, a cyano group, an amino group, a sulfanyl group, a pentafluoro- λ^6 -sulfanyl group, a formyl group, a formyloxy group, a formylamino group, a carboxy group, a C_1 - C_8 -alkyl, a C_1 - C_8 -halogenoalkyl having 1 to 5 halogen atoms, a C_2 - C_8 -alkenyl, a C_2 - C_8 -alkynyl, a C_1 - C_8 -alkylamino, a di- C_1 - C_8 -alkoxy, a C_1 - C_8 -halogenoalkoxy having 1 to 5 halogen atoms, a C_1 - C_8 -alkoxy- C_2 - C_8 -alkenyl, a C_1 - C_8 -alkylsulfanyl, a C_1 - C_8 -halogenoalkylsulfanyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylcarbonyloxy, a C_1 - C_8 -halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphenyl, a C_1 - C_8 -halogenoalkylsulphenyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphenyl, a C_1 - C_8 -halogenoalkylsulphenyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphinyl, a C_1 - C_8 -halogenoalkylsulphinyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphinyl, a C_1 - C_8 -halogenoalkylsulphinyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphinyl, a C_1 - C_8 -halogenoalkylsulphinyl having 1 to 5 halogen atoms, a C_1 - C_8 -

alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or and a C_1 - C_8 -alkylsulfonamide;

as well as its salts, N-oxydes, metallic and metalloidic complexes a salt or N-oxide thereof.

- 2. (Currently Amended) A The compound according to of claim 1, characterised in that wherein R¹ is a hydrogen atom or a halogen atom.
- 3. (Currently Amended) A The compound according to of claim 1, characterised in that wherein n is 1 or 2.
- 4. (Currently Amended) A The compound according to of claim 1, characterised in that wherein each X is selected from the group consisting of a halogen atom or and a C_1 - C_8 -alkyl.
- 5. (Currently Amended) A The compound according to of claim 1, characterised in that wherein the 2-pyridyl is substituted by X in the 3- and/or in the 5-position.
- 6. (Currently Amended A The compound according to of claim 1, characterised in that wherein R^7 is selected from the group consisting of a halogen atom, a C_1 - C_8 -alkyl or and a C_1 - C_8 -halogenoalkyl having 1 to 5 halogen atoms.

- 7. (Currently Amended) A The compound according to of claim 1, characterised in that wherein p is 1 or 2.
- 8. (Currently Amended) A The compound according to of claim 7, characterised in that wherein p is 1.
- 9. (Currently Amended) A The compound according to of claim 1, characterised in that wherein each Y is selected from the group consisting of a hydrogen atom, a halogen atom or and a C₁-C₈-alkyl.
- 10. (Currently Amended) A The compound according to of claim 9, characterised in that wherein each Y is a hydrogen atom.
- 11. (Currently Amended) A The compound according to of claim 1, characterised in that wherein the phenyl is substituted by Y preferentially first in the para position.
- 12. (Currently Amended) A process (A) for the preparation of <u>a</u> compound of general formula (Ia)

$$R^{1}$$
 R^{2}
 R^{3}
 R^{7}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{7}
 R^{1}

wherein:

 R^1 , R^2 , R^7 , X, Y, n and p are as defined in claim 1;

R², R⁴, and R⁵ are hydrogen atoms;

 R^3 is a C_1 - C_6 alkyl;

which process comprises:

a first step according to reaction scheme A-1:

Scheme A-1
$$(X)_{n}$$

$$R^{1}$$

$$N$$

$$U^{+}$$

$$R^{2}$$

$$O$$

$$R^{8}$$

$$R^{1}$$

$$N$$

$$R^{2}$$

$$O$$

$$R^{8}$$

$$O$$

$$R^{8}$$

$$O$$

$$R^{8}$$

$$O$$

$$O$$

$$R^{8}$$

in which:

 R^8 is selected from the group consisting of a C_1 - C_6 alkyl, a C_1 - C_6 haloalkyl, a benzyl, 4-methoxybenzyl or and pentafluorophenyl;

U is a leaving group chosen as being selected from the group consisting of a halogen, a C_1 - C_6 alkylsulfonate or and a C_1 - C_6 haloalkylsulfonate;

comprising the arylation of a cyanoacetate derivative of general formula (III) by a pyridine derivative of general formula (II), to provide a 2-(pyridyl)cyanoacetate derivative of general formula (IV), in the presence of a base, at a temperature of from 0°C to 200°C; a second step according to reaction scheme A-2:

Scheme A-2

$$(X)_n$$
 $(X)_n$
 $(X)_$

in which:

R³ is a hydrogen atom;

 \mathbb{R}^8 -is a \mathbb{C}_1 - \mathbb{C}_6 -alkyl, a \mathbb{C}_1 - \mathbb{C}_6 -haloalkyl, a benzyl, 4-methoxybenzyl or pentafluorophenyl;

comprising a basic hydrolysis, an acidic hydrolysis or a displacement by an a halide of a compound of general formula (IV) in the same or a different pot to provide, upon heating at a temperature of from 40°C to reflux, a 2-pyridylacetonitrile derivative of general formula (Va);

a third step according to reaction scheme A-3:

Scheme A-3
$$(X)_{n}$$

$$R^{1}$$

$$R^{2}$$

$$(Va)$$

$$(X)_{n}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$(Vb)$$

in which:

 \mathbb{R}^3 -is a C_1 - C_6 alkyl;

W is selected from the group consisting of a halogen atom, a C_1 - C_6 alkylsulfonate, a C_1 - C_6 haloalkylsulfonate or and a 4-methyl-phenylsulfonate,

comprising the alkylation of a compound of general formula (Va) by a reagent of general formula (XVII) to provide a compound of general formula (Vb);

a fourth step according to reaction scheme A-4:

Scheme A-4

$$(X)_{n}$$

$$R^{1} N_{R^{2}R^{3}}$$

$$(Va) \text{ or } (Vb)$$

$$(VI)$$

$$(X)_{n}$$

$$R^{1} N_{R^{2}R^{3}PG}$$

$$(VII)$$

in which:

R³ is a hydrogen atom or a C₁-C₆ alkyl;

L¹ is a leaving group chosen as being a selected from the group consisting of an

Page 13 of 28

-OR8 group or a and an -OCOR8 group,

R*-being a C₁-C₆ alkyl, a C₁-C₆ haloalkyl, a benzyl, 4-methoxybenzyl or pentafluorophenyl;

PG represents a protecting group which may be selected from the group consisting of a -COOR⁸ group or and a -COR⁸ group,

 \mathbb{R}^8 -being a C_1 - C_6 alkyl, a C_1 - C_6 haloalkyl, a benzyl, methoxybenzyl or pentafluorophenyl;

comprising the reduction, by hydrogenation or by an hydride donor, of a compound of general formula (Va) or (Vb), in the presence of a catalyst and in the presence of a compound of general formula (VI) to produce a compound of general formula (VII), at a temperature of from 0°C to 150°C and under a pressure of from 1 bar and 100 bar;

a fifth step according to reaction scheme A-5:

Scheme A-5
$$(X)_{n}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$PG$$

$$(VII)$$

$$(VIIIa)$$

R³ is a C_t-C₆alkyl;

in which:

PG represents a protecting group which may be a -COOR⁸-group or -COR⁸ group,

R⁸-being a C₁-C₆ alkyl, a C₁-C₆ haloalkyl, a benzyl, 4-methoxybenzyl or pentafluorophenyl;

comprising a deprotection reaction, in an acidic or in a basic medium, of a compound of general formula (VII) to provide an amine derivative of general formula (VIIIa) or one of its salt salts; and

a sixth step according to reaction scheme A-6:

$$(X)_{n}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{7}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{4}$$

$$R^{7}$$

$$R^{7}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{4}$$

$$R^{7}$$

$$R^{7}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{7}$$

$$R^{7}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{7}$$

$$R^{7}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{7}$$

$$R^$$

in which:

 \mathbb{R}^3 is a \mathbb{C}_1 - \mathbb{C}_6 alkyl;

L² is a leaving group chosen as being selected from the group consisting of a halogen atom, a hydroxyl group, an OR⁸ group, an OCOR⁸,

R⁸-being a C₁-C₆ alkyl, a C₁-C₆ haloalkyl, a benzyl, 4-methoxybenzyl or pentafluorophenyl; or and a group of formula

Page 15 of 28

comprising a coupling reaction of an amine derivative of general formula (VIIIa) or one of its salt salts, with a carboxylic acid derivative of formula (IX) to provide a compound of general formula (Ia).

13-17. (Canceled)

18. (Currently Amended) A The process according to of claim 12 which further comprises comprising a step according to reaction scheme G:

Scheme G

Scheme G

in which:

n = 1, 2 or 3;

X is the same or different and is a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a sulfanyl group, a pentafluoro-f-sulfanyl group, a formyl group, a formyloxy group, a formylamino group, a carboxy group, a carbamoyl group, a N-hydroxycarbamoyl group, a carbamate group, a (hydroxyimino)-C_t-C₆-alkyl group, a C_t-C₈alkyl, a C₂-C₈-alkenyl, a C₂-C₈-alkynyl, a C₁-C₈-alkylamino, a di-C₁-C₈-alkylamino, a C₁-C₈-alkylamino, a alkoxy, a C_t-C₈-halogenoalkoxy having 1 to 5 halogen atoms, a C_t-C₈-alkylsulfanyl, a C_t-C₈halogenoalkylsulfanyl having 1 to 5 halogen atoms, a C2-C8-alkenyloxy, a C2-C8halogenoalkenyloxy having 1 to 5 halogen atoms, a C₃-C₈-alkynyloxy, a C₃-C₈halogenoalkynyloxy having 1 to 5 halogen atoms, a C₃-C₆-eyeloalkyl, a C₃-C₆halogenocycloalkyl having 1 to 5 halogen atoms, a C_t-C₈-alkylearbonyl, a C_t-C₈halogenoalkylcarbonyl having 1 to 5 halogen atoms, a C₄-C₈-alkylcarbamoyl, a di-C₄-C₈alkylcarbamoyl, a (N-C₁-C₂-alkyl)oxycarbamoyl, a C₁-C₂-alkoxycarbamoyl, a (N-C₁-C₂-alkyl)-C_t-C_s-alkoxycarbamoyl, a C_t-C_s-alkoxycarbonyl, a C_t-C_s-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, a C₁-C₈-alkylearbonyloxy, a C₁-C₈-halogenoalkylearbonyloxy having 1 to 5 halogen atoms, a C₁-C₂-alkylearbonylamino, a C₁-C₂-halogenoalkylearbonylamino having 1 to 5 halogen atoms, a C₁-C₈-alkylaminocarbonyloxy, a di-C₁-C₈-alkylaminocarbonyloxy, a C₁-C₈alkyloxycarbonyloxy, a C₁-C₈-alkylsulphenyl, a C₁-C₈-halogenoalkylsulphenyl having 1 to 5 halogen atoms, a C₁-C₈-alkylsulphinyl, a C₁-C₈-halogenoalkylsulphinyl having 1 to 5 halogen

atoms, a C₁-C₈-alkylsulphonyl, a C₁-C₈-halogenoalkylsulphonyl having 1 to 5 halogen atoms, a (C₁-C₆-alkoxyimino)-C₁-C₆-alkyl, a (C₁-C₆-alkenyloxyimino)-C₁-C₆-alkyl, a (C₁-C₆-alkenyloxyimino) alkynyloxyimino)-C_t-C₆-alkyl, a (benzyloxyimino)-C_t-C₆-alkyl, a benzyloxy, a benzylsulfanyl, a benzylamino, a phenoxy, a phenylsulfanyl or a phenylamino; -R[†] is a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a sulfanyl group, a pentafluoro-l⁶-sulfanyl group, a formyl group, a formyloxy group, a formylamino group, a carboxy group, a carbamoyl group, a Nhydroxycarbamoyl group, a carbamate group, a (hydroxyimino)-C_t-C₆-alkyl group, a C_t-C₈-alkyl, a C₂-C₈-alkenyl, a C₂-C₈-alkynyl, a C₄-C₈-alkylamino, a di-C₄-C₈-alkylamino, a C₄-C₈-alkoxy, a C₊-C₂-halogenoalkoxy having 1 to 5 halogen atoms, a C₊-C₂-alkylsulfanyl, a C₊-C₃halogenoalkylsulfanyl having 1 to 5 halogen atoms, a C₂-C₈-alkenyloxy, a C₂-C₈halogenoalkenyloxy having 1 to 5 halogen atoms, a C₃-C₈-alkynyloxy, a C₃-C₈halogenoalkynyloxy having 1 to 5 halogen atoms, a C₃-C₈-cycloalkyl, a C₃-C₈halogenocycloalkyl having 1 to 5 halogen atoms, a C₁-C₈-alkylearbonyl, a C₁-C₈halogenoalkylcarbonyl having 1 to 5 halogen atoms, a C₁-C₈-alkylcarbamoyl, a di-C₁-C₈alkylcarbamoyl, a N-C₁-C₈-alkyloxycarbamoyl, a C₁-C₈-alkoxycarbamoyl, a N-C₁-C₈-alkyl-C₁-C₈-alkoxyearbamoyl, a C₁-C₈-alkoxyearbonyl, a C₁-C₈-halogenoalkoxyearbonyl having 1 to 5 halogen atoms, a C₁-C₈-alkylearbonyloxy, a C₁-C₈-halogenoalkylearbonyloxy having 1 to 5 halogen atoms, a C₁-C₈-alkylearbonylamino, a C₁-C₈-halogenoalkylearbonylamino having 1 to 5

halogen atoms, a C₁-C₈-alkylaminocarbonyloxy, a di-C₁-C₈-alkylaminocarbonyloxy, a C₁-C₈-

alkyloxycarbonyloxy, a C_1 - C_8 -alkylsulphenyl, a C_1 - C_8 -halogenoalkylsulphenyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphinyl, a C_1 - C_8 -halogenoalkylsulphinyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms, a $(C_1$ - C_6 -alkoxyimino)- C_1 - C_6 -alkyl, a $(C_1$ - C_6 -alkenyloxyimino)- C_1 - C_6 -alkyl, a $(C_1$ - C_6 -alkyl, a (benzyloxyimino)- C_1 - C_6 -alkyl, a benzyloxy, a benzylsulfanyl optionally substituted with 1 to 5 halogen atoms, a benzylamino, a phenoxy, a phenylsulfanyl optionally substituted with 1 to 5 halogen atoms or a phenylamino; with the proviso that X and R^{\dagger} are not both a hydrogen atom;

R² and R³ are the same or different and are a hydrogen atom, a halogen atom, a cyano group, a hydroxy group, a C₁-C₆-alkyl, a C₁-C₆-halogenoalkyl having 1 to 5 halogen atoms, a C₂-C₆-alkenyl, a C₁-C₆-alkoxy, a C₁-C₆-alkylsulfanyl, a C₁-C₆-alkylsulfenyl, a C₁-C₆-alkylsulfinyl, a C₁-C₆-alkoxycarbonyl, a C₁-C₆-alkylearbonyloxy or a C₁-C₆-alkylearbonylamino; or R² and R³ may together form a 3-, 4-, 5- or 6-membered carbocycle;

R⁴ and R⁵ are the same or different and are a hydrogen atom, a halogen atom, a cyano group, a C₁-C₆-alkyl or a C₁-C₆-halogenoalkyl having 1 to 5 halogen atoms;

or R⁴ and R⁵ may together form a 3-, 4-, 5- or 6-membered carbocycle;

 R^6 is a hydrogen atom, a cyano group, a formyl group, a hydroxy group, a C_1 - C_6 -alkyl, a C_1 - C_6 -halogenoalkyl having 1 to 5 halogen atoms, a C_1 - C_6 -alkoxy, a C_1 - C_6 -halogenocycloalkyl having 1 to 5 halogen atoms, a C_3 - C_6 -cycloalkyl, a C_3 - C_6 -halogenocycloalkyl having 1 to 5 halogen atoms, a C_2 - C_6 -alkenyl, a C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, a C_1 -

 C_6 -cyanoalkyl, a C_1 - C_6 -aminoalkyl, a C_1 - C_6 -alkylamino- C_1 - C_6 -alkyl, a di- C_1 - C_6 -alkylcarbonyl, a C_1 - C_6 -alkylcarbonyl, a C_1 - C_6 -alkylcarbonyl, a C_1 - C_6 -alkyloxycarbonyl, a C_1 - C_6 -alkyloxycarbonyl, a C_1 - C_6 -alkyloxycarbonyl, a C_1 - C_6 -alkylcarbonyl or a C_1 - C_6 -alkylsulfonyl or a C_1 - C_6 -halogenoalkylsulfonyl having 1 to 5 halogen atoms; and $\frac{1}{1}$ $\frac{1}{1}$

Y is the same or different and is a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a sulfanyl group, a pentafluoro-f-sulfanyl group, a formyl group, a formyloxy group, a formylamino group, a carboxy group, a C₁-C₂-alkyl, a C₁-C₈-halogenoalkyl having 1 to 5 halogen atoms, a C₂-C₈-alkenyl, a C₅-C₈-alkynyl, a C₄-C₈alkylamino, a di-C₁-C₈-alkylamino, a C₁-C₈-alkoxy, a C₁-C₈-halogenoalkoxy having 1 to 5 halogen atoms, a C₁-C₂-alkoxy-C₂-C₃-alkenyl, a C₁-C₃-alkylsulfanyl, a C₁-C₃halogenoalkylsulfanyl having 1 to 5 halogen atoms, a C_t-C₈-alkoxyearbonyl, a C_t-C₈halogenoalkoxycarbonyl having 1 to 5 halogen atoms, a C_t-C₈-alkylearbonyloxy, a C_t-C₈halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, a C₁-C₈-alkylsulphenyl, a C₁-C₈halogenoalkylsulphenyl having 1 to 5 halogen atoms, a C₄-C₈-alkylsulphinyl, a C₄-C₈halogenoalkylsulphinyl having 1 to 5 halogen atoms, a C₁-C₈-alkylsulphonyl, a C₁-C₈halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C₄-C₈-alkylsulfonamide; and R⁷ is a halogen atom, a nitro group, a cyano group, an amino group, a sulfanyl group, a pentafluoro-16-sulfanyl group, a formyl group, a formyloxy group, a formylamino group, a carboxy group, a C₁-C₈-alkyl, a C₁-C₈-halogenoalkyl having 1 to 5 halogen atoms, a C₂-C₈-

alkenyl, a C_2 - C_8 -alkynyl, a C_4 - C_8 -alkylamino, a di- C_4 - C_8 -alkylamino, a C_4 - C_8 -alkoxy, a C_4 - C_8 -alkoxy, a C_4 - C_8 -alkoxy having 1 to 5 halogen atoms, a C_4 - C_8 -alkoxy- C_2 - C_8 -alkenyl, a C_4 - C_8 -alkoxycarbonyl, a C_4 - C_8 -halogenoalkylsulfanyl having 1 to 5 halogen atoms, a C_4 - C_8 -alkylcarbonyloxy, a C_4 - C_8 -halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, a C_4 - C_8 -alkylsulphenyl, a C_4 - C_8 -halogenoalkylsulphenyl having 1 to 5 halogen atoms, a C_4 - C_8 -alkylsulphinyl, a C_4 - C_8 -halogenoalkylsulphinyl having 1 to 5 halogen atoms, a C_4 - C_8 -alkylsulphinyl, a C_4 - C_8 -halogenoalkylsulphinyl having 1 to 5 halogen atoms, a C_4 - C_8 -alkylsulphonyl, a C_4 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C_4 - C_8 -alkylsulphonyl, a C_4 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C_4 - C_8 -alkylsulfonamide;

as well as its salts, N-oxydes, metallic and metalloidic complexes;

L⁵ is a leaving group chosen as being selected from the group consisting of a halogen atom, a 4-methyl phenylsulfonyloxy, and a methylsulfonyloxy;

comprising the reaction of a compound of general formula (Ia) with a compound of general formula (XVI) to provide a compound of general formula (Ib).

- 19. (Canceled)
- 20. (Original) Fungicidal composition comprising an effective amount of a compound according to claim 1 and an agriculturally acceptable support.

21. (Currently Amended) Method for preventively or curatively combating the treating phytopathogenic fungi of crops, characterised in that comprising applying an effective and non-phytotoxic amount of a composition according to claim 20 is applied to the plant seeds or to the plant leaves and/or to the fruits of the plants or to the soil in which the plants are growing or in which it is desired to grow them.