The Hong Kong University of Science & Technology

MATH3424 - Regression Analysis

Quiz 1

Answer <u>ALL</u> Questions Date: 9 October 2020

Full marks: 25 + Bonus: 2 Time Allowed: 1 hour

- 1. Consider a simple linear regression model: $y_i = \beta_0 + \beta_1 x_i + e_i$, where e_i is normally distribution with mean 0 and variance σ^2 .
 - (a) (2 marks) You are given 5 pairs of (x_i, y_i) where y_4 is missing

and the fitted line passes through the point (3, 1.65). Find c and then determine $\sum_{i=1}^{5} (y_i - \bar{y})^2$.

(b) (3 marks) Given the following statistics from 25 pairs of (x_i, y_i) ,

$$\bar{x} = 0$$
, $\hat{\sigma}^2 = 100$, $\hat{\beta}_0 = 3$,

determine the length of a 98% confidence interval for β_0 .

(c) (4 marks) Given the following statistics from 10 pairs of (x_i, y_i) ,

$$\sum_{i=1}^{10} (x_i - \bar{x})^2 = 400, \quad \sum_{i=1}^{10} (y_i - \bar{y})^2 = 425, \quad \sum_{i=1}^{10} (\hat{y}_i - \bar{y})^2 = 225,$$

calculate the test statistic for testing the hypothesis $H_0: \beta_1 = 0$ versus $H_1: \beta_1 \neq 0$ by t test. Write down your conclusion clearly. Set the significance level at $\alpha = 0.05$

2. Using the following summary statistics

$$n = 20, \qquad \sum_{i=1}^{20} x_{i1} = 124, \qquad \sum_{i=1}^{20} x_{i2} = 114, \qquad \sum_{i=1}^{20} y_{i} = 138,$$

$$\sum_{i=1}^{20} x_{i1}^{2} = 1012, \qquad \sum_{i=1}^{20} x_{i1}x_{i2} = 875, \qquad \sum_{i=1}^{20} x_{i2}^{2} = 834, \qquad \sum_{i=1}^{20} x_{i1}y_{i} = 962,$$

$$\sum_{i=1}^{20} x_{i2}y_{i} = 1002, \qquad \sum_{i=1}^{20} y_{i}^{2} = 1324,$$

$$S_{x_{1}x_{1}} = 243.2, \qquad S_{x_{1}x_{2}} = 168.2, \qquad S_{x_{2}x_{2}} = 184.2, \qquad S_{x_{1}y} = 106.4,$$

$$S_{x_{2}y} = 215.4, \qquad S_{yy} = 371.8.$$

and

$$\begin{pmatrix} 243.2 & 168.2 \\ 168.2 & 184.2 \end{pmatrix}^{-1} = \begin{pmatrix} 0.011159 & -0.010190 \\ -0.010190 & 0.014734 \end{pmatrix},$$

to fit a model of y on x_1 and x_2 , i.e., do the following regression model,

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + e_i, \quad e_i \sim N(0, \sigma^2).$$

From previous calculation, it is known that $\hat{\beta}_0 = 1.237088$, $\hat{\beta}_1 = -1.007608$ and $\hat{\beta}_2 = 2.089488$.

- (a) (3 marks) Find Residual Sum of Squares and the unbiased estimate of the unknown parameter σ^2 . No need to show that it is unbiased.
- (b) (2 marks) $H_0: \beta_2 = 2$ against the alternative hypothesis that $H_1: \beta_2 \neq 2$ at the significance level of $\alpha = 0.05$ by t-test. Write down the test statistic, the critical value and your conclusion clearly.

Assume that $\beta_0 = 2$.

- (c) (2 marks) Write down X^TX , $(X^TX)^{-1}$ and X^TY in terms of values of summary statistics.
- (d) (2 marks) Find the least squares estimates of the unknown parameters β_1 and β_2 . Then, write down the fitted line.
- (e) (3 marks) Find the Residual Sum of Squares and the unbiased estimate of the unknown parameter σ^2 . No need to show that it is unbiased.

3. Consider a linear model

$$y_i = \beta_0 + i\beta_1 + e_i$$

for $i = 1, 2, 3$

where e_i follows independent normal distribution with mean 0 and variance $i \times \sigma^2$.

- (a) (2 marks) Find the least squares estimates of β_0 and β_1 in terms of y_i .
- (b) (2 marks) Find the $Var(\hat{\beta}_0)$ and $Var(\hat{\beta}_1)$.
- (c) (Bonus: 2 marks) Find the expectation vector and covariance matrix of residual \hat{e} .

****** END ******