

Random Graphs

CS224W

Network models

- Why model?
 - □ simple representation of complex network
 - can derive properties mathematically
 - predict properties and outcomes
- Also: to have a strawman
 - In what ways is your real-world network different from hypothesized model?
 - What insights can be gleaned from this?

Downloading NetLogo

- https://ccl.northwestern.edu/netlogo/
- Models specific to this class:
 http://web.stanford.edu/class/cs224w/
 NetLogo/

Erdös and Rényi

Erdös-Renyi: simplest network model

- Assumptions
 - nodes connect at random
 - network is undirected
- Key parameter (besides number of nodes N): p or M
 - p = probability that any two nodes share and edge
 - M = total number of edges in the graph

what they look like

Degree distribution

- (N,p)-model: For each potential edge we flip a biased coin
 - with probability p we add the edge
 - with probability (1-p) we don't
- \blacksquare Alternate notation: G_{np}

Quiz Q:

- As the size of the network increases, if you keep **p**, the probability of any two nodes being connected, the same, what happens to the average degree
 - a) stays the same
 - b) increases
 - c) decreases

http://web.stanford.edu/class/cs224w/NetLogo/ErdosRenyiDegDist.nlogo

http://web.stanford.edu/class/cs224w/NetLogo/ErdosRenyiDegDist.nlogo

Degree distribution

- What is the probability that a node has 0,1,2,3... edges?
- Probabilities sum to 1

How many edges per node?

- Each node has (N 1) tries to get edges
- Each try is a success with probability p
- The binomial distribution gives us the probability that a node has degree k:

$$B(N-1;k;p) = {\binom{N-1}{k}} p^{k} (1-p)^{N-1-k}$$

Quiz Q:

- The maximum degree of a node in a simple (no multiple edges between the same two nodes) N node graph is
 - □ a) N
 - □ b) N 1
 - □ c) N / 2

Explaining the binomial distribution

- 8 node graph, probability p of any two nodes sharing an edge
- What is the probability that a given node has degree 4?

Binomial coefficient: choosing 4 out of 7

Suppose I have 7 blue and white nodes, each of them uniquely marked so that I can distinguish them. The blue nodes are ones I share an edge with, the white ones I don't.

How many different samples can I draw containing the same nodes but in a different order (the order could be e.g. the order in which the edges are added (or not)? e.g.

binomial coefficient explained

If order matters, there are 7! different orderings:

I have 7 choices for the first spot, 6 choices for the second (since I've picked 1 and now have only 6 to choose from),

5 choices for the third, etc.

binomial coefficient

Suppose the order of the nodes I don't connect to (white) doesn't matter.

All possible arrangements (3!) of white nodes look the same to me.

Instead of 7! combinations, we have 7!/3! combinations

binomial coefficient explained

The same goes for the blue nodes, if we can't tell them apart, we lose a factor of 4!

binomial coefficient explained

number of ways of choosing k items out of (n-1)

$$= \frac{n-1!}{k! (n-1-k)!}$$

Note that the binomial coefficient is symmetric – there are the same number of ways of choosing **k** or **n-1-k** things out of **n-1**

Quiz Q:

- What is the number of ways of choosing 2 items out of 5?
 - 0
 - 20

Now the distribution

- p = probability of having edge to node (blue)
- \square (1-p) = probability of not having edge (white)
- The probability that you connect to 4 of the 7 nodes in some particular order (two white followed by 3 blues, followed by a white followed by a blue) is

P(white)*P(blue)*P(blue)*P(blue)*P(white)*P(blue)
$$= p^{4*}(1-p)^{3}$$

Binomial distribution

■ If order doesn't matter, need to multiply probability of any given arrangement by number of such arrangements:

$$B(7;4;p) = \begin{pmatrix} 7 \\ 4 \end{pmatrix} p^4 (1-p)^3$$

. . . .

if p = 0.5

binomial distribution

p = 0.1

What is the mean?

 \square Average degree $\langle k \rangle = z = (n-1)*p$

$$\mu = 3.5$$

Quiz Q:

- What is the average degree of a graph with 10 nodes and probability p = 1/3 of an edge existing between any two nodes?

 - **2**
 - **3**
 - **4**

What is the variance?

- variance in degree $\sigma^2=(\mathbf{n-1})^*\mathbf{p}^*(\mathbf{1-p})$
- in general $\sigma^2 = E[(X-\mu)^2] = \sum (x-\mu)^2 p(x)$

Approximations

$$p_k = \binom{n-1}{k} p^k (1-p)^{n-1-k}$$

$$p_k = \frac{z^k e^{-z}}{k!}$$

$$p_k = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(k-z)^2}{2\sigma^2}}$$

Poisson distribution

Poisson distribution

What insights does this yield? No hubs

You don't expect large hubs in the network

Insights

- Previously: degree distribution / absence of hubs
- Emergence of giant component
- Average shortest path

Emergence of the giant component

<u>(standard model in NetLogo library) http://ccl.northwestern.edu/netlogo/models/GiantComponent</u>

Quiz Q:

- What is the average degree z at which the giant component starts to emerge?

 - **3/2**
 - **3**

Percolation on a 2D lattice

http://web.stanford.edu/class/cs224w/NetLogo/LatticePercolation.nlogo

Quiz Q:

- What is the percolation threshold of a 2D lattice: fraction of sites that need to be occupied in order for a giant connected component to emerge?

 - 1/4
 - **1**/3
 - **1**/2

Percolation threshold

Percolation threshold: how many edges need to be added before the giant component appears?

As the average degree increases to z = 1, a giant component suddenly appears

"Evolution" of the G_{np}

What happens to G_{np} when we vary p?

Back to Node Degrees of G_{np}

- Remember, expected degree $E[X_v] = (n-1)p$
- \square If want $E[X_n]$ be independent of n

let:
$$p = c/(n-1)$$

Probability of a node being isolated

- **Doservation:** If we build random graph G_{np} with p=c/(n-1) we have many isolated nodes
- ■Why?

$$P[v \text{ has degree } 0] = (1-p)^{n-1} = \left(1 - \frac{c}{n-1}\right)^{n-1} \longrightarrow e^{-c}$$

$$\lim_{n \to \infty} \left(1 - \frac{c}{n - 1} \right)^{n - 1} = \left(1 - \frac{1}{x} \right)^{-x \cdot c} = \left[\lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^{-x} \right]^{-c} = e^{-c}$$

Use substitution $\frac{1}{x} = \frac{c}{n-1}$

e (by definition)

No Isolated Nodes

- How big do we have to make p before we are likely to have no isolated nodes?
- We know: $P[v \text{ has degree } 0] = e^{-c}$
- Event we are asking about is:
 - \square I = some node is isolated
- ■We have:

$$P(I) = P\left(\bigcup_{v \in N} I_v\right) \le \sum_{v \in N} P(I_v) = ne^{-c}$$

No Isolated Nodes

- We just learned: $P(I) = n e^{-c}$
- Let's try:
 - $c = \ln n$ then: $n e^{-c} = n e^{-\ln n} = n \cdot 1/n = 1$
 - $c = 2 \ln n$ then: $n e^{-2 \ln n} = n \cdot 1/n^2 = 1/n$
- □So if:
 - $\square p = \ln n$ then: P(I) = 1

"Evolution" of a Random Graph

\blacksquare Graph structure of G_{np} as p changes:

■ Emergence of a Giant Component:

avg. degree k=2E/n or p=k/(n-1)

- $\blacksquare k=1-\varepsilon$: all components are of size $\Omega(\log n)$
- Arr $k=1+\varepsilon$: 1 component of size $\Omega(n)$, others have size $\Omega(\log n)$

Giant component – another angle

- How many other friends besides you does each of your friends have?
- By property of degree distribution
 - the average degree of your friends, you excluded, is z
 - so at z = 1, each of your friends is expected to have another friend, who in turn have another friend, etc.
 - the giant component emerges

Giant component illustrated

Why just one giant component?

■ What if you had 2, how long could they be sustained as the network densifies?

http://web.stanford.edu/class/cs224w/NetLogo/ErdosRenyiTwoComponents.nlogo

- If you have 2 large-components each occupying roughly 1/2 of the graph, how long does it typically take for the addition of random edges to join them into one giant component
 - 1-4 edge additions
 - 5-20 edge additions
 - over 20 edge additions

Average shortest path

- How many hops on average between each pair of nodes?
- again, each of your friends has z = avg. degree friends besides you
- ignoring loops, the number of people you have at distance I is

Average shortest path

friends at distance I

$$N_I = z^I$$

scaling: average shortest path I_{av}

$$l_{av} \sim \frac{\log N}{\log z}$$

What this means in practice

■ Erdös-Renyi networks can grow to be very large but nodes will be just a few hops apart

Logarithmic axes

powers of a number will be uniformly spaced

 $2^{0}=1, 2^{1}=2, 2^{2}=4, 2^{3}=8, 2^{4}=16, 2^{5}=32, 2^{6}=64, \dots$

Erdös-Renyi avg. shortest path

- If the size of an Erdös-Renyi network increases 100 fold (e.g. from 100 to 10,000 nodes), how will the average shortest path change
 - it will be 100 times as long
 - it will be 10 times as long
 - it will be twice as long
 - □ it will be the same
 - it will be 1/2 as long

Realism

- Consider alternative mechanisms of constructing a network that are also fairly "random".
- How do they stack up against Erdös-Renyi?
- http://web.stanford.edu/class/cs224w/ NetLogo/RandomGraphs.nlogo

Introduction model

- Prob-link is the p (probability of any two nodes sharing an edge) that we are used to
- But, with probability prob-intro the other node is selected among one of our friends' friends and not completely at random

Introduction model

- Relative to ER, the introduction model has:
 - more edges
 - more closed triads
 - longer average shortest path
 - more uneven degree
 - smaller giant component at low p

Static Geographical model

- Each node connects to num-neighbors of its closest neighbors
- use the num-neighbors slider, and for comparison, switch PROB-OR-NUM to 'off' to have the ER model aim for num-neighbors as well
- turn off the layout algorithm while this is running, you can apply it at the end

static geo

- Relative to ER, the static geographical model has:
 - longer average shortest path
 - shorter average shortest path
 - narrower degree distribution
 - broader degree distribution
 - smaller giant component at a low number of neighbors
 - larger giant component at a low number of neighbors

Random encounter

- People move around randomly and connect to people they bump into
- use the num-neighbors slider, and for comparison, switch PROB-OR-NUM to 'off' to have the ER model aim for num-neighbors as well
- turn off the layout algorithm while this is running (you can apply it at the end)

random encounters

- Relative to ER, the random encounters model has:
 - more closed triads
 - fewer closed triads
 - smaller giant component at a low number of neighbors
 - larger giant component at a low number of neighbors

Growth model

- Instead of starting out with a fixed number of nodes, nodes are added over time
- use the num-neighbors slider, and for comparison, switch PROB-OR-NUM to 'off' to have the ER model aim for num-neighbors as well

growth model

3D

- Relative to ER, the growth model has:
 - more hubs
 - fewer hubs
 - smaller giant component at a low number of neighbors
 - larger giant component at a low number of neighbors

other models

- in some instances the ER model is plausible
- if dynamics are different, ER model may be a poor fit