Segundo Cuatrimestre 2022

Práctica N° 1: Resolución de sistemas de ecuaciones lineales.

Ejercicio 1. Resolver los siguientes sistemas de ecuaciones lineales no homogéneos y los sistemas homogéneos asociados en \mathbb{R} o en \mathbb{C} . Si la solución es única, puede verificarse el resultado en Python utilizando el comando np. linalg . solve.

(a)
$$\begin{cases} x_1 + x_2 - 2x_3 + x_4 &= -2 \\ 3x_1 - 2x_2 + x_3 + 5x_4 &= 3 \\ x_1 - x_2 + x_3 + 2x_4 &= 2 \end{cases}$$
 (b)
$$\begin{cases} x_1 + x_2 + x_3 - 2x_4 + x_5 &= 1 \\ x_1 - 3x_2 + x_3 + x_4 + x_5 &= 0 \\ 3x_1 - 5x_2 + 3x_3 + 3x_5 &= 0 \end{cases}$$
 (c)
$$\begin{cases} ix_1 - (1+i)x_2 &= -1 \\ x_1 - 2x_2 + x_3 &= 0 \\ x_1 + 2ix_2 - x_3 &= 2i \end{cases}$$
 (d)
$$\begin{cases} 2x_1 + (-1+i)x_2 + x_4 &= 2 \\ -x_1 + 3x_2 - 3ix_3 + 5x_4 &= 1 \end{cases}$$

Ejercicio 2. (a) Determinar los valores de $k \in \mathbb{R}$ para que el siguiente sistema tenga solución única, infinitas soluciones, o no tenga solución:

$$\begin{cases} x_1 + kx_2 - x_3 &= 1\\ -x_1 + x_2 + k^2x_3 &= -1\\ x_1 + kx_2 + (k-2)x_3 &= 2 \end{cases}$$

(b) Considerar el sistema homogéneo asociado y dar los valores de k para los cuales admite solución no trivial. Para esos k, resolverlo.

Ejercicio 3. En Python, importar la librería numpy con el siguiente comando: import numpy as np, y probar los siguientes comandos:

```
import numpy as np
  1 + 3
  b = a + 1
   print("b = ", b)
  # Vectores
   v = np.array([1,2,3,-1])
|w| = np. array([2,3,0,5])
  print("v + w = ", v + w)
print("2*v = ", 2*v)
   print("v**2 = ", v**2)
15 # Matrices (ejecutar los comandos uno a uno para ver los resultados)
  A = \text{np.array} \left( \left[ \left[ 1, 2, 3, 4, 5 \right], \left[ 0, 1, 2, 3, 4 \right], \left[ 2, 3, 4, 5, 6 \right], \left[ 0, 0, 1, 2, 3 \right], \left[ 0, 0, 0, 0, 1 \right] \right] \right)
   print (A)
  A[0:2,3:5]
  A[:2,3:]
_{20} |A[[0,2,4],:]|
  ind = np. array ([0, 2, 4])
```

```
A[ind,ind]
A[ind,ind[:,None]]

# Numeros complejos

1j*1j

(1+2j)*1j
```

Ejercicio 4. Encontrar los coeficientes de la parábola $y = ax^2 + bx + c$ que pasa por los puntos (1,1), (2,2) y (3,0). Verificar el resultado obtenido usando Python. Graficar los puntos y la parábola aprovechando el siguiente código:

```
import numpy as np
import matplotlib.pyplot as plt #libreria para graficar

# ...
# Aca, crear la matriz y resolver el sistema para calcular a,b y c.
# ...

xx = np.array([1,2,3])
yy = np.array([1,2,0])
x = np.linspace(0,4,100) #genera 100 puntos equiespaciados entre 0 y 4.
f = lambda t: a*t**2+b*t+c #esto genera una funcion f de t.
plt.plot(xx,yy,'*')
plt.plot(x,f(x))
plt.show()
```

Ejercicio 5. Encontrar un sistema de generadores para los siguientes espacios vectoriales:

```
(a) \{(x, y, z) \in \mathbb{R}^3 : x + y - z = 0; x - y = 0\}
```

- (b) $\{ \boldsymbol{A} \in \mathbb{C}^{3 \times 3} : \boldsymbol{A} = -\boldsymbol{A}^t \}$
- (c) $\{ \mathbf{A} \in \mathbb{R}^{3 \times 3} : tr(\mathbf{A}) = 0 \}$
- (d) $\{x \in \mathbb{C}^4 : x_1 + x_2 ix_4 = 0, ix_1 + (1+i)x_2 x_3 = 0\}$

Ejercicio 6. Sea $S = \langle (1, -1, 2, 1), (3, 1, 0, -1), (1, 1, -1, -1) \rangle \subseteq \mathbb{R}^4$.

- i) Determinar si $(2,1,3,5) \in S$.
- ii) Determinar si $\{x \in \mathbb{R}^4 / x_1 x_2 x_3 = 0\} \subseteq S$.
- iii) Determinar si $S \subseteq \{x \in \mathbb{R}^4 / x_1 x_2 x_3 = 0\}.$

Ejercicio 7. Hallar un sistema de generadores para $S \cap T$ y para S + T como subespacios de V, y determinar si la suma es directa en cada uno de los siguientes casos:

i)
$$V = \mathbb{R}^3$$
, $S = \{(x, y, z) : 3x - 2y + z = 0\}$ y $T = \{(x, y, z) : x + z = 0\}$.

ii)
$$V = \mathbb{R}^3$$
, $S = \{(x, y, z) : 3x - 2y + z = 0, x - y = 0\}$ y $T = \langle (1, 1, 0), (5, 7, 3) \rangle$

iii)
$$V = \mathbb{R}^3$$
, $S = \langle (1,1,3), (1,3,5), (6,12,24) \rangle$ $T = \langle (1,1,0), (3,2,1) \rangle$

iv)
$$V = \mathbb{R}^{3\times3}$$
, $S = \{(x_{ij}) / x_{ij} = x_{ji} \ \forall i, j\}$ $T = \{(x_{ij}) / x_{11} + x_{12} + x_{13} = 0\}$.

v)
$$V = \mathbb{C}^3$$
, $S = \langle (i, 1, 3 - i), (4, 1 - i, 0) \rangle$ $T = \{x \in \mathbb{C}^3 : (1 - i)x_1 - 4x_2 + x_3 = 0\}.$

Ejercicio 8. Decidir si los siguientes conjuntos son linealmente independientes sobre K. Cuando no lo sean, escribir a uno de ellos como combinación lineal de los otros.

i)
$$\{(1,4,-1,3), (2,1,-3,-1), (0,2,1,-5)\}$$
 en \mathbb{R}^4 , para $K=\mathbb{R}$.

ii)
$$\{(1-i,i), (2,-1+i)\}\ \text{en } \mathbb{C}^2, \text{ para } K=\mathbb{C}.$$

Ejercicio 9. Extraer una base de S de cada uno de los siguientes sistemas de generadores y hallar la dimensión de S. Extender la base de S a una base del espacio vectorial correspondiente.

i)
$$S = \langle (1,1,2), (1,3,5), (1,1,4), (5,1,1) \rangle \subseteq \mathbb{R}^3, K = \mathbb{R}$$

ii)
$$S = \left\langle \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & i \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & i \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \right\rangle \subseteq \mathbb{C}^{2 \times 2}, K = \mathbb{C}$$

Ejercicio 10. Sean $m, n y r \in \mathbb{N}$.

- (a) Probar que si $\mathbf{A} \in K^{m \times n}$ satisface que $\mathbf{A}\mathbf{x} = 0 \ \forall \mathbf{x} \in K^n$, entonces $\mathbf{A} = 0$. Deducir que si $\mathbf{A}, \mathbf{B} \in K^{m \times n}$ satisfacen que $\mathbf{A}\mathbf{x} = \mathbf{B}\mathbf{x} \ \forall \mathbf{x} \in K^n$, entonces $\mathbf{A} = \mathbf{B}$.
- (b) Probar que si $\mathbf{A} \in K^{m \times n}$, $\mathbf{B} \in K^{n \times r}$ con $\mathbf{B} = (b_{ij})$ y, para $1 \leq j \leq r$, $\mathbf{B}_j = \begin{pmatrix} b_{1j} \\ \vdots \\ b_{nj} \end{pmatrix}$ es la columna j-ésima de \mathbf{A} , entonces $\mathbf{A}\mathbf{B} = (\mathbf{A}\mathbf{B}_1 \mid \cdots \mid \mathbf{A}\mathbf{B}_r)$ (es decir, $\mathbf{A}\mathbf{B}_j$ es la columna j-ésima de $\mathbf{A}\mathbf{B}$).

Ejercicio 11. Sean $A, A' \in K^{m \times n}$; $B \in K^{n \times r}$; $D, D' \in K^{n \times n}$; $\alpha \in K$. Probar:

(a)
$$(A + A')^t = A^t + (A')^t$$

(e)
$$tr(\mathbf{D} + \mathbf{D}') = tr(\mathbf{D}) + tr(\mathbf{D}')$$

(b)
$$(\alpha \mathbf{A})^t = \alpha \mathbf{A}^t$$

(c)
$$(\mathbf{A}\mathbf{B})^t = \mathbf{B}^t \mathbf{A}^t$$

(f)
$$tr(\alpha \mathbf{D}) = \alpha tr(\mathbf{D})$$

(d)
$$\mathbf{A}\mathbf{A}^t$$
 y $\mathbf{A}^t\mathbf{A}$ son matrices simétricas.

(g)
$$tr(\mathbf{D}\mathbf{D}') = tr(\mathbf{D}'\mathbf{D})$$

Ejercicio 12. Calcular el determinante de A en cada uno de los siguientes casos:

Ejercicio 13. Determinar si las siguientes matrices son inversibles y en caso afirmativo exhibir sus inversas. Cuando sea posible, verificar utilizando Python, con el comando np. linalg .inv.

(a)
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 (b) $\mathbf{A} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (c) $\mathbf{A} = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 1 & -2 & 3 \\ 3 & 1 & -1 & 3 \end{pmatrix}$

(d)
$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 3 & 1 & 2 \\ 0 & 5 & -1 & 8 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$
 (e) $\mathbf{A} = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$

Ejercicio 14. Escribir funciones de Python que realicen las siguientes operaciones:

- (a) Calcular la traza de una matriz.
- (b) Calcular la sumatoria de todos los elementos de una matriz.

Segundo Cuatrimestre 2022

Práctica N° 2: Aritmética de punto flotante. Número de condición.

Transformaciones lineales

Ejercicio 1. Determinar cuáles de las siguientes aplicaciones son lineales.

(a))
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f(x_1, x_2, x_3) = (x_2 - 3x_1 + \sqrt{2}x_3, x_1 - \frac{1}{2}x_2)$

(b))
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x_1, x_2) = (x_1 + x_2, |x_1|)$

(c))
$$f: \mathbb{R}^{2\times 2} \to \mathbb{R}$$
, $f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}.a_{22} - a_{12}.a_{21}$

(d))
$$f: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 3}$$
, $f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{22} & 0 & a_{12} + a_{21} \\ 0 & a_{11} & a_{22} - a_{11} \end{pmatrix}$

Ejercicio 2. Escribir la matriz de las siguientes transformaciones lineales en base canónica. Interpretar geométricamente cada transformación.

- (a) f(x,y) = (x,0)
- (b) f(x,y) = (x, -y)
- (c) $f(x,y) = (\frac{1}{2}(x+y), \frac{1}{2}(x+y))$
- (d) $f(x,y) = (x \cdot \cos t y \cdot \sin t, x \cdot \sin t + y \cdot \cos t)$

Ejercicio 3. (a) Probar que existe una única transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(1,1) = (-5,3) y f(-1,1) = (5,2). Para dicha f, determinar f(5,3) y f(-1,2).

- (b) ¿Existirá una transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(1,1)=(2,6), f(-1,1)=(2,1) y f(2,7)=(5,3)?
- (c) Sean $f, g: \mathbb{R}^3 \to \mathbb{R}^3$ transformaciones lineales tales que

$$f(1,0,1) = (1,2,1), \quad f(2,1,0) = (2,1,0), \quad f(-1,0,0) = (1,2,1),$$

 $g(1,1,1) = (1,1,0), \quad g(3,2,1) = (0,0,1), \quad g(2,2,-1) = (3,-1,2).$

Determinar si f = g.

Ejercicio 4. Calcular bases del núcleo y de la imagen para cada tranformación lineal de los ejercicios 2 y 3. Decidir, en cada caso, si f es epimorfismo, monomorfismo o isomorfismo. En el caso que sea isomorfismo, calcular f^{-1} .

Ejercicio 5. Sean $f: \mathbb{R}^3 \to \mathbb{R}^4$, $f(x_1, x_2, x_3) = (x_1 + x_2, x_1 + x_3, 0, 0)$ y $g: \mathbb{R}^4 \to \mathbb{R}^2$, $g(x_1, x_2, x_3, x_4) = (x_1 - x_2, 2x_1 - x_2)$. Calcular el núcleo y la imagen de f, de g y de $g \circ f$. Decidir si son monomorfismos, epimorfismos o isomorfismos.

Aritmética de punto flotante

Ejercicio 6. Algunos experimentos: Realizar las siguientes operaciones en Python. En todos los casos, pensar: ¿cuál es el resultado esperado? ¿coincide con el obtenido? ¿a qué se debe el problema (si lo hay)? (Notamos ε al épsilon de la máquina. Puede obtenerse importando la librería numpy como np y ejecutando el comando np. finfo (np. float). eps).

- a) Tomando p = 1e34, q = 1, calcular p + q p.
- b) Tomando $p=100,\ q=1e-15,\ {\rm calcular}\ (p+q)+q\ {\rm y}\ ((p+q)+q)+q.$ Comparar con $p+2q\ {\rm y}\ {\rm con}\ p+3q$ respectivamente.
- c) 0.1+0.2 == 0.3
- d) 0.1+0.3 == 0.4
- e) 1e-323
- f) 1e-324
- g) $\frac{\varepsilon}{2}$
- h) $\left(1+\frac{\varepsilon}{2}\right)+\frac{\varepsilon}{2}$
- i) $1 + (\frac{\varepsilon}{2} + \frac{\varepsilon}{2})$
- $j) \left(\left(1 + \frac{\varepsilon}{2} \right) + \frac{\varepsilon}{2} \right) 1$
- $k) \left(1 + \left(\frac{\varepsilon}{2} + \frac{\varepsilon}{2}\right)\right) 1$
- l) $sen(10^{j}\pi)$ para $1 \le j \le 25$.
- m) $sen(\pi/2 + \pi 10^j)$ para $1 \le j \le 25$.

Ejercicio 7. Mostrar que una serie divergente de términos que tienden a 0 (e.g.: $\sum_{n} \frac{1}{n}$) podría resultar convergente en aritmética de punto flotante. ¿Qué debería ocurrir para que el resultado numérico sea Inf? ¿Cuál es la mejor estrategia para realizar numéricamente una sumatoria de términos positivos?

Ejercicio 8. Para las siguientes matrices

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 - \varepsilon & 2 + \varepsilon \\ 0 & 1 + \varepsilon & \varepsilon \end{pmatrix} \qquad b = \begin{pmatrix} 0 \\ 0.1 \\ 0.1 \end{pmatrix}.$$

- a) Tomando $\varepsilon = 0.001$, resolver el sistema Ax = b mediante eliminación gaussiana sin intercambio de filas usando aritmética de punto flotante en base 10 con 3 dígitos de mantisa y sistema de redondeo.
- b) Para $\varepsilon = 0.001$, hallar la solución exacta x del sistema y comparar con la solución del ítem anterior. ¿Cómo explica la diferencia?nterior.

Ejercicio 9. Considerar las matrices:

$$A = \begin{pmatrix} 1 & n & 5n \\ 1 & 3n & 3n \\ 1 & n & 2n \end{pmatrix} \quad \text{y } b = \begin{pmatrix} \frac{2n}{3} \\ \frac{2n}{3} \\ \frac{n}{3} \end{pmatrix},$$

con $n \in \mathbb{N}$.

- a) Para $n = 10^4$, resolver el sistema Ax = b por eliminación gaussiana sin intercambio de filas utilizando aritmética de 4 dígitos con redondeo (en base 10).
- b) Verificar que, para todo $n \in \mathbb{N}$, la solución exacta del sistema es $x = \left(0, \frac{1}{9}, \frac{1}{9}\right)$ y comparar, para $n = 10^4$, la solución aproximada con la solución exacta.

Normas vectoriales y matriciales

Ejercicio 10. Si $x \in \mathbb{R}^n$ y $A \in \mathbb{R}^{n \times n}$, probar que las constantes de equivalencia entre las normas $\|.\|_1$ y $\|.\|_2$ y entre las normas $\|.\|_2$ y $\|.\|_\infty$ vienen dadas por:

• Vectorial

$$\|\boldsymbol{x}\|_{\infty} \leq \|\boldsymbol{x}\|_{2} \leq \sqrt{n} \|\boldsymbol{x}\|_{\infty}$$

$$\frac{1}{\sqrt{n}} \|\boldsymbol{x}\|_{1} \leq \|\boldsymbol{x}\|_{2} \leq \|\boldsymbol{x}\|_{1}$$

• Matricial

$$\frac{1}{\sqrt{n}} \|\boldsymbol{A}\|_{\infty} \le \|\boldsymbol{A}\|_{2} \le \sqrt{n} \|\boldsymbol{A}\|_{\infty}$$
$$\frac{1}{\sqrt{n}} \|\boldsymbol{A}\|_{1} \le \|\boldsymbol{A}\|_{2} \le \sqrt{n} \|\boldsymbol{A}\|_{1}$$

• Calcular los coeficientes para la equivalencia vectorial y matricial entre las normas $\|.\|_1$ y $\|.\|_{\infty}$

Ejercicio 11. Probar que para toda $A \in \mathbb{R}^{n \times n}$

(a)
$$||\mathbf{A}||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$
 (b) $||\mathbf{A}||_{1} = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}|$.

Ejercicio 12. Se quiere estimar la norma 2 de una matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$ como el máximo del valor $\|\mathbf{A}\mathbf{x}\|_2/\|\mathbf{x}\|_2$ entre varios vectores $\mathbf{x} \in \mathbb{R}^3$ no nulos generados al azar. Hacer un programa que reciba una matriz A y luego

3

• genere los primeros 100 términos de la siguiente sucesión:

$$s_1 = 0, \quad s_{k+1} = \max \left\{ s_k, \frac{\|\mathbf{A}\mathbf{x}_k\|_2}{\|\mathbf{x}_k\|_2} \right\}$$

donde los $x_k \in \mathbb{R}^3$ son vectores no nulos generados al azar en la bola unitaria: $B = \{x : \|x\|_2 \le 1\}$.

• grafique la sucesión calculada, junto con el valor exacto de la norma de la matriz.

Recordar que tanto la norma 2 puede calcularse con el comando np.linalg.norm. Tener en cuenta que los vectores generados al azar (comando np.random.random) tienen coordenadas en el intervalo [0, 1].

Ejercicio 13. Se tiene el sistema Ax = b.

a) Sea \boldsymbol{x} la solución exacta y $\tilde{\boldsymbol{x}}$ la solución obtenida numéricamente. Se llama residuo al vector $\mathbf{r} := \boldsymbol{b} - \boldsymbol{A}\tilde{\boldsymbol{x}}$. Si notamos $\mathbf{e} = \boldsymbol{x} - \tilde{\boldsymbol{x}}$, mostrar que:

$$\frac{1}{cond(\mathbf{A})} \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|} \le \frac{\|\mathbf{e}\|}{\|\mathbf{x}\|} \le cond(\mathbf{A}) \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}.$$

¿Cómo se puede interpretar este resultado?

b) En lugar del dato exacto \boldsymbol{b} se conoce una aproximación $\tilde{\boldsymbol{b}}$. $\tilde{\boldsymbol{x}}$ es tal que $\boldsymbol{A}\tilde{\boldsymbol{x}}=\tilde{\boldsymbol{b}}$. Probar que:

$$\frac{1}{cond(\boldsymbol{A})} \frac{\|\boldsymbol{b} - \tilde{\boldsymbol{b}}\|}{\|\boldsymbol{b}\|} \le \frac{\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|}{\|\boldsymbol{x}\|} \le cond(\boldsymbol{A}) \frac{\|\boldsymbol{b} - \tilde{\boldsymbol{b}}\|}{\|\boldsymbol{b}\|}.$$

¿Cómo se puede interpretar este resultado?

Ejercicio 14. Sea

$$\mathbf{A} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & \frac{5}{4} & \frac{3}{4} \\ 0 & \frac{3}{4} & \frac{5}{4} \end{pmatrix}.$$

- a) Calcular $cond_{\infty}(\mathbf{A})$.
- b) ¿Cuán chico debe ser el error en los datos $(\boldsymbol{b} \tilde{\boldsymbol{b}})$, si se desea que el error en la aproximación de la solución sea menor que 10^{-4} (en $\|\cdot\|_{\infty}$)?
- c) Realizar experimentos numéricos para verificar las estimaciones del ítem anterior. Considerar $\boldsymbol{b}=(3,2,2)^t$, que se corresponde con la solución exacta $\boldsymbol{x}=(1,1,1)^t$. Generar vectores de error aleatorios, normalizarlos para que su norma sea tan chica como la estimada en el item anterior y perturbar \boldsymbol{b} obteniendo $\tilde{\boldsymbol{b}}$. Finalmente, resolver $\boldsymbol{A}\tilde{\boldsymbol{x}}=\tilde{\boldsymbol{b}}$ y verificar que $\|\tilde{\boldsymbol{x}}-\boldsymbol{x}\|<10^{-4}$.

Ejercicio 15. Probar que si $A \in \mathbb{R}^{n \times n}$ es una matriz inversible y $\| \|$ es una norma matricial, la condición de A verifica la desigualdad:

$$\frac{1}{cond(\boldsymbol{A})} \leq \inf \left\{ \frac{\|\boldsymbol{A} - \boldsymbol{B}\|}{\|\boldsymbol{A}\|} : \boldsymbol{B} \text{ es singular} \right\}.$$

Deducir que

$$cond(\boldsymbol{A}) \ge \sup \left\{ \frac{\|\boldsymbol{A}\|}{\|\boldsymbol{A} - \boldsymbol{B}\|} : \boldsymbol{B} \text{ es singular} \right\}.$$

Nota: En ambos casos, vale la igualdad, pero la otra desigualdad es un poco más complicada de probar. De la igualdad se puede concluir que $cond(\mathbf{A})$ mide la distancia relativa de \mathbf{A} a la matriz singular más próxima.

Ejercicio 16. (a) Estimar la $cond_{\infty}(\mathbf{A})$ de las siguientes matrices en función ε (cuando $\varepsilon \to 0$).

(i)
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & \varepsilon & \varepsilon^2 \\ 1 & 0 & 0 \end{pmatrix}$$
, (ii) $\mathbf{B} = \begin{pmatrix} 1 & 0 & 1 + \varepsilon \\ 2 & 3 & 4 \\ 1 - \varepsilon & 0 & 1 \end{pmatrix}$.

(b) Concluir que la condición de las matrices \boldsymbol{A} y \boldsymbol{B} del ítem anterior tienden a infinito, cualquiera sea la norma considerada.

Ejercicio 17. Para la matriz

$$A = \begin{pmatrix} 1 & n & 5n \\ 1 & 3n & 3n \\ 1 & n & 2n \end{pmatrix}$$

con $n \in \mathbb{N}$, probar que existe una constante c > 0 tal que $\operatorname{cond}_{\infty}(A) \geq cn$ para todo $n \in \mathbb{N}$, y deducir que $\operatorname{cond}_{\infty}(A) \to \infty$ cuando $n \to \infty$.

Ejercicio 18. Sea $\mathbf{D}_n = \frac{1}{10}I_n$. Verificar que $det(\mathbf{D}_n) \to 0$ si $n \to \infty$. $\mathbf{\mathcal{D}}_n$ está mal condicionada? ¿Es el determinante un buen indicador de cuán cerca está una matriz de ser singular?

Ejercicio 19. Sea $A_n \in \mathbb{R}^n$ la matriz dada por $A_n = (a_{i,j})$,

$$a_{i,j} = \begin{cases} 1 & \text{si } i = 1 \text{ o } j = 1 \\ 1/i & \text{si } i = j \\ 0 & \text{en otro caso} \end{cases}$$

- a) Probar que $Cond_{\infty}(\mathbf{A}_n) \geq Cn^2$ para alguna constante C independiente de n.
- b) Probar que $Cond_2(\mathbf{A}_n) \longrightarrow \infty$ cuando $n \longrightarrow \infty$.

Segundo Cuatrimestre 2022

Práctica N° 3: Autovalores y autovectores.

Ejercicio 1. Calcular el polinomio característico, los autovalores y los autovectores de la matriz A en cada uno de los siguientes casos (analizar por separado los casos $\mathbb{K} = \mathbb{R}$ y $\mathbb{K} = \mathbb{C}$):

(a)
$$\mathbf{A} = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$$
, $a \in \mathbb{R}$ (b) $\mathbf{A} = \begin{pmatrix} 0 & 2 & 1 \\ -2 & 0 & 2 \\ -1 & -2 & 0 \end{pmatrix}$ (c) $\mathbf{A} = \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & -2 \end{pmatrix}$

(d)
$$\mathbf{A} = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}, a \in \mathbb{R}$$
 (e) $\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$ (f) $\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

Ejercicio 2. Para cada una de las matrices A del ejercicio anterior, sea U una base de K^n y sea $f: \mathbb{K}^n \to \mathbb{K}^n$ la tranformación lineal tal que $|f|_U = A$. Decidir si es posible encontrar una base B de \mathbb{K}^n tal que $|f|_B$ sea diagonal. En caso afirmativo, calcular \mathbf{C}_{BU} .

Ejercicio 3. Considerar la sucesión de Fibonacci, dada por la recursión: $F_0 = 0$, $F_1 = 1$, $F_{n+1} = F_n + F_{n-1}$.

(a) Hallar una matriz
$$\boldsymbol{A}$$
 tal que $\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = \boldsymbol{A} \begin{pmatrix} F_{n-1} \\ F_n \end{pmatrix}$. Mostrar que $\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = \boldsymbol{A}^n \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}$

- (b) Diagonalizar \mathbf{A} .
- (c) Dar una fórmula cerrada para F_n .

Ejercicio 4. Recordando que la solución de la ecuación diferencial

$$x'(t) = ax(t), \quad a \in \mathbb{R}$$

con condición inicial $x(0) = c_0$ es $x(t) = c_0 e^{at}$, resolver el siguiente sistema de ecuaciones diferenciales

$$\begin{cases} x'(t) = 6x(t) + 2y(t) \\ y'(t) = 2x(t) + 3y(t) \end{cases}$$

con condiciones iniciales x(0) = 3, y(0) = -1.

Sugerencia: Hallar una matriz \mathbf{C} tal que $\mathbf{C}^{-1}\begin{pmatrix} 6 & 2 \\ 2 & 3 \end{pmatrix}\mathbf{C}$ sea diagonal y hacer el cambio de variables $\begin{pmatrix} u(t) \\ v(t) \end{pmatrix} = \mathbf{C}^{-1} \cdot \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$.

1

Ejercicio 5. Sea $A \in \mathbb{C}^{n \times n}$ y λ un autovalor. Probar que:

- (a) Si \boldsymbol{A} es triangular sus autovalores son los elementos de la diagonal.
- (b) λ^k es autovalor de \mathbf{A}^k , con el mismo autovector.
- (c) $\lambda + \mu$ es autovalor de $\mathbf{A} + \mu \mathbf{I}$, con el mismo autovector.
- (d) Si p es un polinomio, $p(\lambda)$ es autovalor de $p(\mathbf{A})$.

Ejercicio 6. Sea $A \in \mathbb{R}^{n \times n}$. Probar:

- (a) Si los autovalores de \boldsymbol{A} son todos reales, sus autovectores pueden tomarse con coordenadas reales.
- (b) Si **A** es simétrica, entonces sus autovalores son reales.
- (c) Si \boldsymbol{A} es simétrica y definida positiva (negativa), entonces todos sus autovalores son positivos (negativos)
- (d) Si \boldsymbol{A} es simétrica y λ_1 y λ_2 son autovalores distintos, entonces sus correspondientes autovectores son ortogonales entre sí.

Ejercicio 7. Una transformación lineal $f: \mathbb{K}^n \to \mathbb{K}^n$ se llama proyector si verifica f(f(x)) = f(x) para todo $x \in \mathbb{K}^n$. Probar que los únicos autovectores de un proyector son 1 y 0.

Ejercicio 8. Considerar las matrices

$$m{A} = egin{pmatrix} 1 & rac{1}{arepsilon} \ arepsilon & 1 \end{pmatrix}, \quad m{B} = egin{pmatrix} 1 & rac{1}{arepsilon} \ 0 & 1 \end{pmatrix},$$

donde $\varepsilon \ll 1$ es arbitrario. Calcular los polinomios característicos y los autovalores de \boldsymbol{A} y de \boldsymbol{B} . Concluir que pequeñas perturbaciones en los coeficientes de un polinomio pueden conducir a grandes variaciones en sus raíces (el problema está mal condicionado). En particular, esto afecta el cómputo de autovalores como raíces del polinomio característico.

Ejercicio 9. Sea $\mathbf{A} \in \mathbb{R}^{n \times n}$ tal que admite una base de autovectores $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ (que supondremos normalizados) y, además, tiene un único autovalor de máximo módulo (digamos: λ_1). Es decir, sus autovalores satisfacen:

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|.$$

Dado $\mathbf{v}^{(0)}$ un vector cualquiera tal que sus coordenadas en base B son (a_1, \ldots, a_n) , con $a_1 \neq 0$. Definimos $\mathbf{v}^{(k+1)} = \mathbf{A}\mathbf{v}^{(k)} = \mathbf{A}^k\mathbf{v}^{(0)}$.

- (a) Probar que $\mathbf{A}\mathbf{v}^{(k)} = a_1\lambda_1^k\mathbf{v}_1 + \cdots + a_n\lambda_n^k\mathbf{v}_n$.
- (b) Deducir que $\mathbf{A}\mathbf{v}^{(k)} = \lambda_1^k(a_1\mathbf{v}_1 + \boldsymbol{\varepsilon}_k)$, donde $\boldsymbol{\varepsilon}_k \to 0$ cuando $k \to \infty$.
- (c) Sea $\varphi:\mathbb{C}^n\to\mathbb{C}$ una funcional lineal tal que $\varphi(\boldsymbol{v}_1)\neq 0$. Probar que:

$$rac{arphi(oldsymbol{A}oldsymbol{v}^{(k)})}{arphi(oldsymbol{v}^{(k)})}
ightarrow \lambda_1.$$

(d) Para evitar que $\|\boldsymbol{v}^{(k)}\|$ tienda a 0 o a ∞ es usual normalizar $\boldsymbol{v}^{(k)}$ al cabo de cada iteración. Probar que en tal caso, si λ_1 es real positivo, se tiene que $\boldsymbol{v}^{(k)} \to \boldsymbol{v}_1$.

Ejercicio 10. Implementar el método de la potencia tal como está descripto en el ejercicio anterior, para calcular el autovalor de máximo módulo, con $v^{(0)}$ aleatorio y φ una funcional lineal cualquiera. Aplicarlo para calcular el autovalor de máximo módulo de

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \\ 1 & 5 & 1 \end{pmatrix}.$$

Comparar con el resultado arrojado por np. linalg. eig.

Ejercicio 11. Mostrar que si en el Ejercicio 9 se toma una funcional lineal φ_k distinta en cada paso, el método converge igualmente a λ_1 . Concluir que los cocientes de Raleigh:

$$r_k = rac{oldsymbol{v}^{(k)t} oldsymbol{A} oldsymbol{v}^{(k)}}{oldsymbol{v}^{(k)t} oldsymbol{v}^{(k)}},$$

convergen a λ_1 . Observar que si $\boldsymbol{v}^{(0)}$ es tal que $a_1 \neq 0$, las aplicaciones φ_k correspondientes a los cocientes de Raleigh nunca se anulan en \boldsymbol{v}_1 . Modificar el programa del ejercicio anterior de modo de utilizar el cociente de Raleigh como aproximación de λ_1 .

Ejercicio 12. Asumiendo que A admite un único autovalor de módulo máximo:

- (a) Usando que, $\|A\|_2 = \sqrt{\rho(A^t A)}$ para una A cualquiera y $\|A\|_2 = \rho(A)$ si A es simétrica adaptar el método de la potencia para calcular la norma 2 de A.
- (b) Mostrar que si λ es autovalor de \boldsymbol{A} , y \boldsymbol{A} es inversible, entonces λ^{-1} es autovalor de \boldsymbol{A}^{-1} . En el método de la potencia inversa se define $\boldsymbol{v}^{(k+1)}$ tal que $\boldsymbol{A}\boldsymbol{v}^{(k+1)} = \boldsymbol{v}^{(k)}$. Mostrar que esta modificación del método de la potencia permite calcular el autovalor de menor módulo de \boldsymbol{A} . Implementar el método de la potencia inversa.
- (c) Escribir un programa que, utilizando los anteriores, calcule $Cond_2(\mathbf{A})$.
- (d) Calcular $Cond_2(\mathbf{A})$ de las matrices del Hilbert para n=10,100,500,1000. La matriz de Hilbert de tamaño n puede calcularse como

```
import scipy as sp
# definir n
H = sp.linalg.hilbert(n)
```

Ejercicio 13. Considerar las matrices:

$$A = \begin{pmatrix} -6 & 9 & 3\\ 0 & 8 & -2\\ 0 & -1 & 7 \end{pmatrix} \qquad B = \begin{pmatrix} 5 & 9 & 6\\ -3 & -7 & -6\\ 0 & 0 & -1 \end{pmatrix}$$

y, en cada caso, el Método de la Potencia dado por la siguiente iteración:

$$\begin{cases} v^{(k)} = \frac{Av^{(k-1)}}{\|Av^{(k-1)}\|} \\ r_k = \frac{(v^{(k)})^t Av^{(k)}}{(v^{(k)})^t v^{(k)}} \end{cases} \qquad \begin{cases} v^{(k)} = \frac{Bv^{(k-1)}}{\|Bv^{(k-1)}\|} \\ r_k = \frac{(v^{(k)})^t Bv^{(k)}}{(v^{(k)})^t v^{(k)}} \end{cases},$$

para $k \geq 1$.

- (a) Calcular los autovalores y los autovectores de A y de B. Determinar si las matrices cumplen las hipótesis del Método de la Potencia.
- (b) Para la matriz A, definir un subespacio S tal que r_k converja al autovalor de módulo máximo para cualquier $v^{(0)} \in \mathbb{R}^3 S$.
- (c) Para la matriz B, hallar un $\alpha \in \mathbb{R}$ tal que el Método de la Potencia con $v^{(0)} = (-1, \alpha, -2)$ encuentre el segundo autovalor de mayor módulo.

Ejercicio 14. Sea $A \in \mathbb{R}^{n \times n}$. Supongamos que A tiene todos autovalores de distinto módulo.

- (a) Probar que aplicar el método de la potencia a $\mathbf{A} \mu \mathbf{I}$ da como resultado el autovalor de \mathbf{A} más lejano a μ .
- (b) Probar que aplicar el método de la potencia inversa a ${\bf A}-\mu {\bf I}$ da como resultado el autovalor de ${\bf A}$ más cercano a μ

Procesos de Markov

Ejercicio 15. Una matriz $\mathbf{P} = (p_{ij})_{ij}$ se dice estocástica si sus elementos son todos no negativos y sus columnas suman uno. Los elementos p_{ij} representan la proporción de individuos que pasan del estado i al estado j en cada iteración (también pueden interpretarse como la probabilidad de pasar de i a j).

- (a) Probar que si λ es autovalor de **P**, entonces $|\lambda| \leq 1$.
- (b) Sea 1 es el vector con todas sus coordenadas iguales a 1. Mostrar que $\mathbf{1}^t \mathbf{P} = \mathbf{1}$. De hecho: \mathbf{P} es estocástica si y sólo si sus elementos son no negativos y $\mathbf{1}^t \mathbf{P} = \mathbf{1}$.

4

(c) Probar que toda matriz estocástica tiene a 1 por autovalor.

Ejercicio 16. Probar que ${\bf P}$ y ${\bf Q}$ son matrices estocásticas, entonces:

- (a) **PQ** es estocástica.
- (b) \mathbf{P}^n es estocástica $(n \in \mathbb{N})$.
- (c) $\mathbf{P}^n \mathbf{Q}^m$ es estocástica $(n, m \in \mathbb{N})$.

Figure 1: El laberinto se abre unos pocos segundos cada hora.

Ejercicio 17. En el instante inicial 20 ratones se encuentran en el compartimiento I (ver Figura 1). Las puertas que separan los compartimientos permanecen cerradas salvo durante un breve lapso cada hora, donde los ratones pueden pasar a un comportamiento adyacente o permancer en el mismo. Se supone que nada distingue un compartimento de otro, es decir que es igualmente probable que un ratón pase a cualquiera de los adyacentes o se quede en el compartimiento en el que está. Se realizan observaciones cada hora y se registra el número de ratones en cada compartimiento.

- (a) Determinar la matriz de transición del proceso P.
- (b) Determinar cuántos ratones habrá en cada celda al cabo de 4 horas.
- (c) Decidir si existe o no un estado de equilibrio.
- (d) Decidir si existe \mathbf{P}^{∞} y en tal caso calcularla. ¿Qué aspecto tiene? ¿Por qué?

Ejercicio 18. Un sujeto en evidente estado de ebriedad oscila entre su casa y el bar, separados por n pasos. En cada instante de tiempo da un paso hacia adelante (acercándose a su casa), con probabilidad p o hacia atrás (acercándose nuevamente al bar), con probabilidad 1-p. Si llega a alguno de los dos extremos, se queda allí y no vuelve a moverse.

- (a) Sin hacer ninguna cuenta, mostrar que el proceso admite al menos dos estados límite linealmente independientes entre sí. Implementar un programa que reciba como input la distancia entre la casa y el bar (n) y la probabilidad p y devuelva la matriz de transición del proceso. Verificar que el resultado sea correcto corriéndolo para n = 5 y p = 0.5.
- (b) Para n=20, tomar p=0.5 y \boldsymbol{v}^0 el vector que corresponde a ubicar al sujeto en cualquiera de los puntos intermedios del trayecto con igual probabilidad. Realizar una simulación del proceso hasta que se estabilice. ¿Cuál es el estado límite? ¿Cómo se interpreta?
- (c) Repetir la simulación tomando como vector inicial $\mathbf{v}^0 = \mathbf{e}_2$ (el segundo canónico). Interpretar el resultado.
- (d) Repetir las simulaciones con p=0.8. ¿Qué se observa?
- (e) Explicar los resultados de todas las simulaciones a partir del análisis de los autovalores y autovectores de la matriz.

Ejercicio 19. El movimiento anual entre 4 ciudades está regido por el siguiente diagrama de transición:

Se sabe que $v = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$ es un estado de equilibrio.

- (a) Hallar la matriz de transición **P**.
- (b) Determinar la distribución de población después de 10 años, si la distribución inicial es $\boldsymbol{v}_0=(\frac{1}{2},0,\frac{1}{2},0)^t.$
- (c) ¿Existe un estado límite cualquiera sea el estado inicial? ¿Existe \mathbf{P}^{∞} ?
- (d) ¿Existe estado límite para $\boldsymbol{v}_0 = (0,0,\frac{1}{3},\frac{2}{3})^t$?

Segundo Cuatrimestre 2022

Práctica N° 4: Sistemas lineales.

Ejercicio 1. Sean $A y B \in K^{n \times n}$. Probar que:

- (a) Si $\mathbf{A} \vee \mathbf{B}$ son diagonales, \mathbf{AB} es diagonal.
- (b) Si A y B son triangulares superiores, AB es triangular superior.

Ejercicio 2. Sea $\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 4 & 0 \\ 2 & -1 & 0 & -2 \\ -3 & 3 & 0 & -1 \end{pmatrix} \in \mathbb{R}^{4 \times 4}.$

(a) Escalonar la matriz \boldsymbol{A} multiplicándola a izquierda por matrices elementales $\boldsymbol{T}^{ij}(a)$, $a \in \mathbb{R}, 1 \leq i, j \leq 4$, con $i \neq j$.

Recordar que $T^{ij}(a) \in K^{n \times n}$ se define como:

$$T^{ij}(a) = I_n + aE^{ij}, \quad 1 \le i, j \le n, \quad i \ne j, \quad a \in K,$$

siendo E^{ij} las matrices canónicas de $K^{n\times n}$.

- (b) Hallar la descomposición LU de A.
- (c) Usando la descomposición del ítem anterior resolver el sistema Ax = b,

para
$$\boldsymbol{b} = \begin{pmatrix} 1 \\ -7 \\ -5 \\ 1 \end{pmatrix}$$
.

Ejercicio 3. Escribir funciones de Python que calculen la solución de un sistema:

- (a) Ux = b, siendo U triangular superior.
- (b) Ly = x, siendo L triangular inferior.

Ejercicio 4. Escribir funciones de Python que realicen las siguientes tareas:

- (a) Calcular la descomposición $\boldsymbol{L}\boldsymbol{U}$ de una matriz dada \boldsymbol{A} , asumiendo que no es necesario realizar pivoteos.
- (b) Llamando a la anterior y a las del ejercicio 3, resolver un sistema Ax = b.
- (c) Verificar los resultados obtenidos en el ejercicio 2.

Ejercicio 5. Considerar la matriz: $\mathbf{A} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 1 & 0 & 3 \end{pmatrix}$.

- (a) Probar que \boldsymbol{A} no admite descomposición $\boldsymbol{L}\boldsymbol{U}$.
- (b) Hallar la descomposición $\boldsymbol{L}\boldsymbol{U}$ de $\boldsymbol{P}\boldsymbol{A}$ para alguna matriz de permutación \boldsymbol{P} adecuada.

Recordar que las matrices de permutación $\mathbf{P}^{ij} \in K^{n \times n}$ se definen como:

$$P^{ij} = I_n - E^{ii} - E^{jj} + E^{ij} + E^{ji}, \quad 1 \le i, j \le n, \quad i \ne j,$$

siendo E^{ij} las matrices canónicas de $K^{n\times n}$.

Ejercicio 6. Se quiere calcular la solución del sistema lineal:

$$\begin{cases} 10^{-3}x + 2y = 8 \\ x + y = 2 \end{cases}$$

utilizando eliminación gaussiana sin pivoteo, con aritmética de punto flotante de 3 dígitos y sistema de redondeo.

- (a) Analizar si el resultado difiere significativamente de la solución real.
- (b) Repetir el método de eliminación gaussiana eligiendo el pivote más conveniente.

Ejercicio 7. Considerar la matriz

$$A = \left(\begin{array}{rrr} 4 & 2 & -2 \\ 2 & 5 & 5 \\ -2 & 5 & 11 \end{array}\right).$$

Mostrar que A es definida positiva y calcular su descomposición de Cholesky.

Ejercicio 8. Sea $B = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_n \}$ una base de K^n $(K = \mathbb{R} \circ \mathbb{C})$.

(a) Probar que si B es ortogonal, entonces

$$\mathbf{C}_{EB} = egin{pmatrix} \cdots & rac{oldsymbol{v}_1^*}{\|oldsymbol{v}_1\|_2^2} & \cdots \ \cdots & rac{oldsymbol{v}_2^*}{\|oldsymbol{v}_2\|_2^2} & \cdots \ dots & dots \ \cdots & rac{oldsymbol{v}_n^*}{\|oldsymbol{v}_n\|_2^2} & \cdots \end{pmatrix}$$

- (b) Probar que si B es ortonormal, entonces $\mathbf{C}_{EB} = \mathbf{C}_{BE}^*$.
- (c) Concluir que si B es ortonormal, entonces las coordenadas de un vector \boldsymbol{v} en base B son:

$$(oldsymbol{v})_B = (oldsymbol{v}_1^*oldsymbol{v}, oldsymbol{v}_2^*oldsymbol{v}, \ldots, oldsymbol{v}_n^*oldsymbol{v}).$$

(d) Calcular $(\boldsymbol{v})_B$ siendo $\boldsymbol{v}=(1,-i,3),\,B=\{(\frac{i}{\sqrt{2}},\frac{1}{\sqrt{2}},0),(-\frac{i}{\sqrt{2}},\frac{1}{\sqrt{2}},0),(0,0,i)\}.$

Ejercicio 9. Aplicar el algoritmo de Gram-Schmidt para calcular bases ortonormales de los subespacios generados por las siguientes bases:

(a)
$$B = \{(1,0,1), (0,1,1), (0,0,1)\}$$

(b)
$$B = \{(i, 1 - i, 0), (i, 1, 0)\}$$

(c)
$$B = \{(1, -1, 0, 1), (0, 1, 1, 0), (-1, 0, 1, 1)\}.$$

Ejercicio 10.

(a) Sea $B = \{(1, -1, 0), (0, 1, -1), (0, 0, 1)\}$ base de \mathbb{R}^3 y sea $f : \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal tal que:

$$f(1,-1,0) = (1,-1,0), \quad f(0,1,-1) = (0,1,-1) \quad \text{y} \quad f(0,0,1) = (0,0,0).$$

Calcular $[f]_B$ y comprobar que f es un proyector.

- (b) Construir un proyector $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $Nu(f) = \langle (1,1,1) \rangle$ e $Im(f) = \{x \in \mathbb{R}^3 / x_1 + x_2 3x_3 = 0\}$. ¿Es f una proyección ortogonal?
- (c) Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal dada por:

$$[f] = \begin{pmatrix} -3 & 2 & 0 \\ -6 & 4 & 0 \\ -9 & 6 & 0 \end{pmatrix}.$$

Probar que f es un proyector y hallar una base \boldsymbol{B} / $[f]_B$ sea diagonal.

Ejercicio 11. Sea $v \in \mathbb{C}^n$ un vector columna tal que $||v||_2 = 1$. Probar que:

- (a) La transformación lineal definida por la matriz vv^* es la proyección ortogonal sobre $\langle v \rangle$.
- (b) Si $\{v_1, \ldots, v_m\}$ es una base ortonormal del subespacio \mathbb{S} , entonces: $\mathbf{A} = \sum_{i=1}^m \mathbf{v}_i \mathbf{v}_i^*$ es la proyección ortogonal sobre \mathbb{S} .
- (c) Si \boldsymbol{A} es como en el ítem anterior, $\boldsymbol{I}-\boldsymbol{A}$ es la proyección ortogonal sobre \mathbb{S}^{\perp} .
- (d) $R = \mathbf{I} 2\mathbf{v}\mathbf{v}^*$ es la reflexión respecto de $\langle \mathbf{v} \rangle^{\perp}$.

Ejercicio 12. Sea $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$. Calcular la matriz de la proyección ortogonal sobre el rango de \mathbf{A} .

Ejercicio 13. Hallar la factorización QR de las siguientes matrices:

(a)
$$\mathbf{A} = \begin{pmatrix} 0 & -4 \\ 0 & 0 \\ -5 & -2 \end{pmatrix}$$
.

(b)
$$\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 4 & 5 \end{pmatrix}$$
.

Ejercicio 14. Implementar dos programas que calculen la descomposición QR de una matriz:

- 1. Aplicando de manera directa el método de ortonormalización de Gram-Schmidt.
- 2. Utilizando transformaciones de Householder.

Generar algunas matrices aleatorias y comparar las descomposiciones arrojadas por estos programas con las dadas por el comando np. linalg. qr ¿Qué se observa?

Ejercicio 15. Implementar un programa en Python que resuelva un sistema Ax = b a partir de la descomposición QR de A.

Ejercicio 16.

Método QR: El metódo QR puede utilizarse para calcular la forma de Schur real de una matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$. Dada una matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$, el método consiste en generar una sucesión de matrices \mathbf{A}_k definida del siguiente modo:

$$A_1 = A$$
, $Q_k R_k$ descomposición QR de A_k y $A_{k+1} = R_k Q_k$.

- (a) Probar que las matrices A_k son todas semejantes a A y por lo tanto tienen los mismos autovalores.
- (b) Implementar un programa que realice la iteración del método y devuelva $T = A_k$ y $\mathbf{Q} = \mathbf{Q}_1 \dots \mathbf{Q}_k$
- (c) Aplicar el programa a las matrices:

$$(i)\mathbf{A} = \begin{pmatrix} 1 & 2 & 4 \\ 3 & 6 & 8 \\ 1 & 7 & 2 \end{pmatrix} \qquad (ii)\mathbf{A} = \begin{pmatrix} 1 & 2 & -1 & 5 \\ 2 & 3 & 4 & -2 \\ -1 & 4 & -3 & -2 \\ 5 & -2 & -3 & 6 \end{pmatrix}$$

(iii)
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 (iv) $\mathbf{A} = \begin{pmatrix} 190 & 66 & -84 & 30 \\ 66 & 303 & 42 & -36 \\ 336 & -168 & 147 & -112 \\ 30 & -36 & 28 & 291 \end{pmatrix}$

Comparar los resultados con los arrojados por el comando scipy. linalg. schur. Observar que en el caso de matrices simétricas, el método diagonaliza A.