Class 14: RNASeq mini-project

Linh Dang (PID:A16897764)

Table of contents

Data import	2
Tidy counts to match metadata	3
Remove zero count genes	4
Setup for DESeq object for analysis	4
Run DESeq analysis	5
Extract the results	5
Add Gene annotation	6
Save my results to a CSV file	7
Result visualization	8
Pathway analysis Kegg genesets/pathway Gene Ontology (GO) genesets Reactome Analysis online	13

Here we will perform a complete RNASeq analysis from counts to pathway and biological interpretation.

The data for for hands-on session comes from GEO entry: GSE37704, which is associated with the following publication:

Trapnell C, Hendrickson DG, Sauvageau M, Goff L et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq". Nat Biotechnol 2013 Jan;31(1):46-53. PMID: 23222703

The authors report on differential analysis of lung fibroblasts in response to loss of the developmental transcription factor HOXA1.

```
library(DESeq2)
library(AnnotationDbi)
library(org.Hs.eg.db)
library(pathview)
library(gage)
library(gageData)
```

Data import

```
colData <- read.csv("GSE37704_metadata.csv", row.names = 1)
countData <- read.csv("GSE37704_featurecounts.csv", row.names = 1)</pre>
```

head(colData)

```
condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd
SRR493371 hoxa1_kd
```

head(countData)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
		_				

ENSG00000186092 0 ENSG00000279928 0 ENSG00000279457 46

ENSG00000278566	0
ENSG00000273547	0
ENSG00000187634	258

Tidy counts to match metadata

Check the correspondance of colData rows and countData columns.

colData\$condition

```
[1] "control_sirna" "control_sirna" "control_sirna" "hoxa1_kd"
```

[5] "hoxa1_kd" "hoxa1_kd"

rownames(colData)

[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"

colnames(countData)

```
[1] "length" "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" [7] "SRR493371"
```

Remove the troublesome first column so we match the metadata

```
counts <- countData[,-1]</pre>
```

head(counts)

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

```
all( rownames(colData) == colnames(counts) )
```

[1] TRUE

Remove zero count genes

We will have rows in **counts** for genes that we cannot say anything about because they have zero expression in the particular tissue we are looking at.

head(counts)			

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371	
ENSG00000186092	0	0	0	0	0	0	
ENSG00000279928	0	0	0	0	0	0	
ENSG00000279457	23	28	29	29	28	46	
ENSG00000278566	0	0	0	0	0	0	
ENSG00000273547	0	0	0	0	0	0	
ENSG00000187634	124	123	205	207	212	258	

If the rowSums() is zero then a given gene (i.e. row) has no count data and we should exclude these genes from further consideration.

```
to.keep <- rowSums(counts) != 0
cleancounts <- counts[to.keep, ]</pre>
```

Q. How many genes do we have left?

```
nrow(cleancounts)
```

[1] 15975

Setup for DESeq object for analysis

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

Run DESeq analysis

```
dds <- DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing</pre>
```

Extract the results

```
res <- results(dds)
head(res)</pre>
```

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns

baseMean		${\tt log2FoldChange}$	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43989e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215599	1.040744	2.97994e-01
	pac	dj			
	<numerio< td=""><td>c></td><td></td><td></td><td></td></numerio<>	c>			

ENSG00000279457 6.86555e-01 ENSG00000187634 5.15718e-03

```
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
ENSG00000187642 4.03379e-01
```

Add Gene annotation

```
library("AnnotationDbi")
library("org.Hs.eg.db")
columns(org.Hs.eg.db)
 [1] "ACCNUM"
                    "ALIAS"
                                    "ENSEMBL"
                                                   "ENSEMBLPROT"
                                                                  "ENSEMBLTRANS"
 [6] "ENTREZID"
                    "ENZYME"
                                    "EVIDENCE"
                                                   "EVIDENCEALL"
                                                                  "GENENAME"
[11] "GENETYPE"
                    "GO"
                                    "GOALL"
                                                   "IPI"
                                                                  "MAP"
[16] "OMIM"
                    "ONTOLOGY"
                                    "ONTOLOGYALL"
                                                   "PATH"
                                                                  "PFAM"
[21] "PMID"
                    "PROSITE"
                                    "REFSEQ"
                                                   "SYMBOL"
                                                                  "UCSCKG"
[26] "UNIPROT"
res$symbol = mapIds(org.Hs.eg.db,
                    keys=row.names(res),
                    keytype="ENSEMBL",
                    column="SYMBOL",
                    multiVals="first")
'select()' returned 1:many mapping between keys and columns
res$entrez = mapIds(org.Hs.eg.db,
                    keys=row.names(res),
                    keytype="ENSEMBL",
                    column="ENTREZID",
                    multiVals="first")
'select()' returned 1:many mapping between keys and columns
             mapIds(org.Hs.eg.db,
res$name =
                    keys=row.names(res),
                    keytype="ENSEMBL",
                    column="GENENAME",
                    multiVals="first")
```

head(res, 10)

 $\log 2$ fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 10 rows and 9 columns

	baseMean	log2FoldChange	lfcSH	E stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<pre> <numeric></numeric></pre>	<numeric></numeric>
ENSG00000279457	29.913579	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.229650	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.188076	-0.6927205	0.0548465	-12.630158	1.43989e-36
ENSG00000187961	209.637938	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.255123	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.979750	0.5428105	0.5215599	1.040744	2.97994e-01
ENSG00000188290	108.922128	2.0570638	0.1969053	3 10.446970	1.51282e-25
ENSG00000187608	350.716868	0.2573837	0.1027266	2.505522	1.22271e-02
ENSG00000188157	9128.439422	0.3899088	0.0467163	8.346304	7.04321e-17
ENSG00000237330	0.158192	0.7859552	4.0804729	0.192614	8.47261e-01
	padj	symbol	entrez		name
	<numeric></numeric>	<character> <c< td=""><td>haracter></td><td>•</td><td><pre><character></character></pre></td></c<></character>	haracter>	•	<pre><character></character></pre>
ENSG00000279457	6.86555e-01	NA	NA		NA
ENSG00000187634	5.15718e-03	SAMD11	148398	sterile alph	na motif
ENSG00000188976	1.76549e-35	NOC2L	26155	NOC2 like nu	ıcleolar
ENSG00000187961	1.13413e-07	KLHL17	339451	kelch like	family me
ENSG00000187583	9.19031e-01	PLEKHN1	84069	pleckstrin h	nomology
ENSG00000187642	4.03379e-01	PERM1	84808	${\tt PPARGC1} \ {\tt and} \\$	ESRR ind
ENSG00000188290	1.30538e-24	HES4	57801	hes family 1	oHLH tran
ENSG00000187608	2.37452e-02	ISG15	9636	ISG15 ubiqua	itin like
ENSG00000188157	4.21963e-16	AGRN	375790		agrin
ENSG00000237330	NA	RNF223	401934	ring finger	protein

Save my results to a CSV file

```
write.csv(res, file="results.csv")
```

Result visualization

```
mycols <- rep("gray", nrow(res))
mycols[ res$log2FoldChange <= -2 ] <- "blue"
mycols[ res$log2FoldChange >= 2] <- "blue"
mycols[ res$padj >= 0.05] <- "gray"

plot(res$log2FoldChange, -log(res$padj), col=mycols)
abline(v=-2, col="red")
abline(v=-2, col="red")
abline(h=-log(0.05), col="red")</pre>
```



```
library(ggplot2)
library(ggrepel)

ggplot(res) +
  aes(log2FoldChange, -log(padj), label=res$symbol) +
  geom_point(col=mycols) +
  geom_text_repel() +
  geom_hline(yintercept = -log(0.05), color = "red") +
  geom_vline(xintercept = c(-2, +2), color = "red") +
```

```
theme_bw() +
labs(x= "Log2 Fold-Change",
    y="-log(Adjusted P-value")
```

Warning: Removed 1237 rows containing missing values or values outside the scale range (`geom_point()`) .

Warning: Removed 1409 rows containing missing values or values outside the scale range (`geom_text_repel()`).

Warning: ggrepel: 14563 unlabeled data points (too many overlaps). Consider increasing max.overlaps

ggtitle("Volcano Plot")

```
$title
[1] "Volcano Plot"
attr(,"class")
[1] "labels"
```

Pathway analysis

Kegg genesets/pathway

```
data(kegg.sets.hs)
data(sigmet.idx.hs)
# Focus on signaling and metabolic pathways only
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
# Examine the first 3 pathways
head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
           "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
                                                              "1549"
 [1] "10"
              "1066"
                        "10720"
                                "10941"
                                           "151531" "1548"
                                                                        "1551"
 [9] "1553"
              "1576"
                        "1577"
                                           "1807"
                                 "1806"
                                                    "1890"
                                                              "221223" "2990"
[17] "3251"
              "3614"
                        "3615"
                                 "3704"
                                           "51733"
                                                    "54490"
                                                              "54575"
                                                                        "54576"
                        "54579"
[25] "54577"
              "54578"
                                 "54600"
                                           "54657"
                                                    "54658"
                                                              "54659"
                                                                       "54963"
[33] "574537" "64816"
                        "7083"
                                 "7084"
                                           "7172"
                                                    "7363"
                                                              "7364"
                                                                        "7365"
[41] "7366"
               "7367"
                        "7371"
                                  "7372"
                                           "7378"
                                                    "7498"
                                                              "79799"
                                                                       "83549"
[49] "8824"
                        "9"
                                 "978"
              "8833"
$`hsa00230 Purine metabolism`
                                                               "107"
  [1] "100"
                "10201"
                         "10606"
                                   "10621"
                                            "10622"
                                                     "10623"
                                                                         "10714"
  [9] "108"
                "10846"
                         "109"
                                   "111"
                                            "11128"
                                                     "11164"
                                                               "112"
                                                                         "113"
                                                                         "159"
 [17] "114"
                "115"
                         "122481" "122622" "124583" "132"
                                                               "158"
 [25] "1633"
                                                                         "221823"
                "171568" "1716"
                                   "196883" "203"
                                                     "204"
                                                               "205"
 [33] "2272"
                "22978"
                         "23649"
                                  "246721" "25885"
                                                     "2618"
                                                               "26289"
                                                                        "270"
 [41] "271"
                "27115"
                         "272"
                                   "2766"
                                            "2977"
                                                     "2982"
                                                               "2983"
                                                                         "2984"
 [49] "2986"
               "2987"
                         "29922"
                                  "3000"
                                            "30833"
                                                     "30834"
                                                               "318"
                                                                        "3251"
 [57] "353"
                "3614"
                         "3615"
                                            "377841" "471"
                                                               "4830"
                                                                         "4831"
                                   "3704"
 [65] "4832"
                "4833"
                         "4860"
                                   "4881"
                                            "4882"
                                                     "4907"
                                                               "50484"
                                                                        "50940"
 [73] "51082"
               "51251"
                         "51292"
                                  "5136"
                                            "5137"
                                                     "5138"
                                                               "5139"
                                                                        "5140"
 [81] "5141"
                "5142"
                         "5143"
                                   "5144"
                                            "5145"
                                                     "5146"
                                                               "5147"
                                                                        "5148"
 [89] "5149"
                "5150"
                         "5151"
                                   "5152"
                                            "5153"
                                                     "5158"
                                                               "5167"
                                                                        "5169"
                                                               "54107"
 [97] "51728"
                "5198"
                         "5236"
                                   "5313"
                                            "5315"
                                                      "53343"
                                                                        "5422"
[105] "5424"
                                  "5427"
                                                     "5431"
                                                               "5432"
                "5425"
                         "5426"
                                            "5430"
                                                                        "5433"
[113] "5434"
                "5435"
                         "5436"
                                   "5437"
                                            "5438"
                                                     "5439"
                                                               "5440"
                                                                         "5441"
```

```
[121] "5471"
               "548644" "55276"
                                 "5557"
                                          "5558"
                                                   "55703"
                                                            "55811"
                                                                     "55821"
[129] "5631"
               "5634"
                                 "56953"
                                          "56985"
                                                   "57804"
                                                            "58497"
                                                                     "6240"
                        "56655"
[137] "6241"
              "64425"
                       "646625" "654364" "661"
                                                   "7498"
                                                            "8382"
                                                                     "84172"
                                 "8622"
[145] "84265"
               "84284"
                        "84618"
                                          "8654"
                                                   "87178"
                                                            "8833"
                                                                     "9060"
                       "953"
                                 "9533"
                                          "954"
                                                   "955"
                                                            "956"
                                                                     "957"
[153] "9061"
               "93034"
[161] "9583"
               "9615"
```

To run pathway analysis we will use the gage() function and it requires a new wee "vector of importance". We will use our Log2FC results from our res object.

```
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)
```

```
<NA> 148398 26155 339451 84069 84808
0.17925708 0.42645712 -0.69272046 0.72975561 0.04057653 0.54281049
```

```
# Get the results
keggres = gage(foldchanges, gsets=kegg.sets.hs)
```

What is in the returned keggres object

```
attributes(keggres)
```

\$names

```
[1] "greater" "less" "stats"
```

head(keggres\$less, 4)

```
p.geomean stat.mean
                                                                p.val
hsa04110 Cell cycle
                                  8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                  9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                  1.246882e-03 -3.059466 1.246882e-03
hsa03440 Homologous recombination 3.066756e-03 -2.852899 3.066756e-03
                                        q.val set.size
                                                                exp1
hsa04110 Cell cycle
                                  0.001448312
                                                   121 8.995727e-06
hsa03030 DNA replication
                                  0.007586381
                                                    36 9.424076e-05
hsa03013 RNA transport
                                  0.066915974
                                                   144 1.246882e-03
hsa03440 Homologous recombination 0.121861535
                                                    28 3.066756e-03
```

We can pass our foldchanges vector (our results) together with any of these highlighted pathway IDs to see how our genes overlap the pathway.

pathview(gene.data=foldchanges, pathway.id="hsa04110")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/lgdang/Desktop/courses/BIMM143/class14

Info: Writing image file hsa04110.pathview.png

Figure 1: The Kegg pathway overlaps with our differentially exppresed genes

Gene Ontology (GO) genesets

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets)
```

```
head(gobpres$less, 5)
```

```
p.geomean stat.mean
                                                                       p.val
GO:0048285 organelle fission
                                         1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                         2.028624e-11 -6.878340 2.028624e-11
                                                q.val set.size
GO:0048285 organelle fission
                                         5.841698e-12
                                                           376 1.536227e-15
GO:0000280 nuclear division
                                         5.841698e-12
                                                           352 4.286961e-15
GO:0007067 mitosis
                                                           352 4.286961e-15
                                         5.841698e-12
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                        1.1956/2e-11
1.658603e-08
                                                           362 1.169934e-14
GO:0007059 chromosome segregation
                                                           142 2.028624e-11
```

Reactome Analysis online

We need to make a little file of our significant genes that we can upload to the reactome webpage:

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
sig_genes[6]
```

```
ENSG00000188157
"AGRN"
```

Then, to perform pathway analysis online go to the Reactome website (https://reactome.org/PathwayBrowser/# Select "choose file" to upload your significant gene list. Then, select the parameters "Project to Humans", then click "Analyze".

