# КВАДРАТНА ФУНКЦІЯ

# I Означення та вивчення функції квадрата

Définition n°1.

Квадратна функція – це функція, визначенаг  $g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2 \end{cases}$ 

Définition n°2.

Нехай f — функція, визначена на  $D_f$  . « f f парне » значить, що : За все  $x \in D_f$ , f(-x)=f(x)

Propriété n°1.

Квадратна функція парна.

preuve:

Позначимо g функцію квадрата. Це  $\epsilon$   $x \in \mathbb{R}$  (оскільки  $D_g = \mathbb{R}$  )  $g(-x) = (-x)^2 = -x \times (-x) = x^2 = g(x)$  Отже, g парне.

Remarque n°1.

Якщо функція парна, то її область визначення симетрична відносно нуля.

Définition n°3. <u>зростання, розпад</u>

Нехай f — функція, визначена на  $D_f$  , а  $I \subseteq D_f$  — інтервал. Soit f une fonction définie sur  $D_f$  et  $I \subseteq D_f$  un intervalle.

• « f строго зростає на I » значить, що : Для всіх a і b , що належать I , a < b  $\Rightarrow$  f(a) < f(b)

• « f est croissante sur I » значить, що : Для всіх a і b , що належать I , a < b  $\Rightarrow$  f(a)  $\leqslant$  f(b)

• « f est strictement décroissante sur I » значить, що : Для всіх a і b , що належать I ,  $a < b \Rightarrow f(a) > f(b)$ 

• « f est décroissante sur I » значить, що : Для всіх a і b , що належать I ,  $a < b \Rightarrow f(a) \ge f(b)$ 

Remarque n°2.

Ми говоримо, що зростаюча функція зберігає порядок, а спадна змінює порядок.

Propriété n°2.

Варіанти функції квадрата

Квадратна функція строго спадає на  $]-\infty$ ; 0] і строго зростає на  $[0; +\infty[$  . Це дає наступну таблицю варіацій:

| Ξ. | 11000 1 3 11113  |           |   |           |  |  |  |
|----|------------------|-----------|---|-----------|--|--|--|
|    | $\boldsymbol{x}$ | $-\infty$ | 0 | $+\infty$ |  |  |  |
|    | f(x)             | \         |   | _         |  |  |  |

preuve :

• бути  $a < b \le 0$   $f(a) - f(b) = a^2 - b^2 = (a + b)(a - b)$  золото a + b < 0 (оскільки a і b негативні) et a - b < 0 ( оскільки a < b ) Так (a + b)(a - b) > 0 з чого ми виводимо, що f(a) > f(b) Таким чином, f строго спадає на  $] - \infty$  ; 0 ] .

• Таким же чином ми доводимо, що f строго зростає на  $[0; +\infty[$  . (Цю другу частину залишили як вправу)

### Définition n°4. Графічне представлення





Точка О, початок відліку, є вершиною параболи.

Propriété n°3.

Графічне зображення квадратичної функції допускає вісь ординат як вісь симетрії.

# II Квадратні рівняння та нерівності.

# II.1 Вкладення дійсного числа та округлення

Propriété  $n^{\circ}4$ . Рівняння типу  $x^2 = a$ 

Нехай а — дійсне число.

• чи *a* > 0 так:

рівняння  $x^2 = a$  допускає два розв'язки:  $-\sqrt{a}$  et  $\sqrt{a}$  .

• чи a = 0 так:

рівняння  $x^2 = a$  допускає рішення : нуль .

•чи *a* < 0 так:

рівняння  $x^2 = a$  не допускає вирішення.

preuve:

- Другий момент очевидний.
- Третя пов'язана з тим, що квадрат дійсного числа завжди додатний.
- Для першого пункту:

чи a > 0 так  $\sqrt{a}$  існують.

Тоді наступні рівняння еквівалентні:

$$x^{2} = a$$

$$x^{2}-a = 0$$

$$(x+\sqrt{a})(x-\sqrt{a}) = 0$$

Добуток множників дорівнює нулю тоді і тільки тоді, коли хоча б один із його множників дорівнює нулю.

Виводимо, що це рівняння допускає два розв'язки  $-\sqrt{a}$  et  $\sqrt{a}$ .

Remarque n°3.

Іноді корисно навести приблизні значення рішень, якщо вони існують. це те, що мотивує решту цього абзацу.

#### Propriété n°5.

(зізнався)

Нехай x — дійсне число, а n — відносне ціле.

Існує унікальне відносне ціле число a таке, що :  $\frac{a}{10^n} \le x < \frac{a+1}{10^n}$ 

### Définition n°5.

Ця дужка  $\epsilon$  десятковою дужкою від x до x à  $10^{-n}$  біля .

**Округлення**  $x \ge 10^{-n}$  près яке з двох чисел  $\frac{a}{10^n}$  і  $\frac{a+1}{10^n}$  найближче до x .

За домовленістю, коли x рівновіддалений від  $\frac{a}{10^n}$  і з  $\frac{a+1}{10^n}$ округлення  $x \text{ à } 10^{-n} \text{ près } \epsilon \frac{a+1}{10^n}$ 

Нерівності типу

### Exemple n°1.

$$\frac{16812}{10^3}$$
  $\leq$  16,8127  $<$   $\frac{16813}{10^3}$  тому рамки 16,8127 à  $10^{-3}$   $\epsilon$ :

 $16,812 \le 16,8127 < 16,813$  і округлення до  $10^{-3}$  варто 16,813.

# *Нерівності типу* $x^2 \le k$ et $x^2 \ge k$ Hерівності типу *II.2*

### Propriété n°6.

 $\mathbb{R}$  , нерівність  $x^2 \leq k$  допускає як набір рішень S :

чи 
$$k > 0$$
 так  $S = [-\sqrt{k} ; \sqrt{k}]$ 

чи 
$$k = 0$$
 так  $S = \{0\}$ 

чи k < 0 так  $S = \emptyset$ 



#### preuve:

#### Propriété n°7.

Dans  $\mathbb{R}$ , l'inéquation  $x^2 \ge k$  admet comme ensemble de solutions S:

Si 
$$k>0$$
 alors  
 $S=]-\infty ; -\sqrt{k}] \cup [\sqrt{k} ; +\infty[$ 

Si  $k \le 0$  alors  $S = \mathbb{R}$ 



#### preuve:

#### Remarque n°4.

У двох попередніх доказах ми розв'язували нерівності добутку. Використаний метод можна узагальнити у вигляді таблиці знаків. Чим мотивований останній абзаце.

# II.3 Inéquations produits.

### Exemple n°2.

$$(4x-7)(5-2x)(3x+2) \le 0$$

Почнемо з розв'язання наступних нерівностей:

$$4x-7>0 \Leftrightarrow 4x>7 \Leftrightarrow x>\frac{7}{4}$$

$$5-2x>0 \Leftrightarrow -2x>-5 \Leftrightarrow x<\frac{5}{2}$$

$$3x+2>0 \Leftrightarrow 3x>-2 \Leftrightarrow x>\frac{-2}{3}$$

« >0 » Вказує нам, де поставити "+" в масиві знаків

Для останнього рядка ми використовуємо правило знака.

Тепер створимо таку діаграму знаків:

| x                  | - ∞ |   | $-\frac{2}{3}$ |   | <u>7</u> |   | <u>5</u> 2 |   | + ∞ |
|--------------------|-----|---|----------------|---|----------|---|------------|---|-----|
| 4 <i>x</i> –7      |     | _ | :              | _ | 0        | + | :          | + |     |
| 5-2 x              |     | + | ÷              | + | ÷        | + | 0          | _ |     |
| 3 x+2              |     | _ | 0              | + | ÷        | + | :          | + |     |
| (4x-7)(5-2x)(3x+2) |     | + | 0              | _ | 0        | + | 0          | _ |     |

Позначивши S множину розв'язків:

$$S = \left[ -\frac{2}{3} ; \frac{7}{4} \right] \cup \left[ \frac{5}{2} ; +\infty \right[$$

### Remarque n°5.

Метод однаковий незалежно від кількості факторів.

# III Короткий зміст курсу

### Квадратна функція

Квадратна функція — це функція, визначена  $g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2 \end{cases}$ 

Це навіть, що означає:

за все 
$$x$$
,  $g(-x)=g(x)$ 

Його варіації підсумовані в наступній таблиці:



Точка O, початок відліку,  $\epsilon$  вершиною параболи. Вісь ординат  $\epsilon$  віссю симетрії параболи.



f функція і  $I \subset D_f$  un intervalle, a, b в I

| <i>j</i> 4 <i>j</i>      | j                                  |
|--------------------------|------------------------------------|
| Строгий ріст на <i>I</i> | $a < b \Rightarrow f(a) < f(b)$    |
| Суворе зменшення на І    | $a < b \Rightarrow f(a) > f(b)$    |
| Зростання на І           | $a < b \Rightarrow f(a) \leq f(b)$ |
| Розпад на І              | $a < b \Rightarrow f(a) \ge f(b)$  |

Нехай a — дійсне число.

- чи a > 0 так: рівняння  $x^2 = a$  допускає два рішення:  $-\sqrt{a}$  et  $\sqrt{a}$ .
- чи a = 0 так: рівняння  $x^2 = a$  допускає рішення: *нуль* .
- чи a < 0 так: рівняння  $x^2 = a$  не допускає вирішення.

Нехай x — дійсне число, а n — відносне ціле.

Існує унікальне відносне ціле число a таке, що:  $\frac{a}{10^n} \le x < \frac{a+1}{10^n}$ 

Ця дужка  $\epsilon$  десятковою дужкою  $x \stackrel{.}{a} 10^{-n}$  près

**Округлення**  $x \ge 10^{-n}$  près est, що з двох чисел  $\frac{a}{10^n}$  et  $\frac{a+1}{10^n}$  хто ближче до x.

За умовами, коли x знаходиться на однаковій відстані від  $\frac{a}{10^n}$  et de  $\frac{a+1}{10^n}$ , округлення

$$x \text{ à } 10^{-n} \text{ près } \epsilon \frac{a+1}{10^n}$$

- в  $\mathbb{R}$  , нерівність  $x^2 \leq k$  допускає як набір рішень S :
- чи k > 0 так  $S = [-\sqrt{k}; \sqrt{k}]$
- чи k=0 так  $S=\{0\}$
- чи k < 0 так  $S = \emptyset$
- в  $\mathbb{R}$  , нерівність  $x^2 \ge k$  допускає як набір рішень S :
- чи k>0 так  $S=]-\infty$  ;  $-\sqrt{k}$ ]  $\cup$   $[\sqrt{k}$  ;  $+\infty$ [
- чи  $k \leq 0$  так  $S = \mathbb{R}$