Image Processing and Computer Vision - Notes

Dom Hutchinson

October 8, 2019

Contents

1	Image Acquistion	2
2	Image Representation	2

1 Image Acquistion

Proposition 1.1 - Common Challenges with Image Acquistion

Below are some common challeges that are faced/produced by image acquistion

Viewpoint Variation	Several images may be taken of the same object but will vary the angle
*	l î
Illumination	Images may be taken in low/high light
Occlusion	Object may be partly obscured
Scale	Objects may look vary different when placed next to other objects due
	to their relative scale
Deformation	Objects may have slight variations on the perfect form
Background Clutter	Lots happening behind an object may work to obscure it
Object Intra-Class Variation	Some objects in the same class can vary a lot in shape (e.g. chairs)
Local Ambiguity	Certain regions of an image can be missinturpred without the rest of the
Local Ambiguity	scene being accounted for
World Behind the Image	Depth may need to be accounted for to make sense of an image.

Definition 1.1 - Dirac Delta-Function, δ

The *Dirac Delta-Function* is used to map continuous distributions to discrete distributions by sampling at particular intervals. Intuitively

$$\delta(t) = \begin{cases} 1 & , t = 0 \\ 0 & , t \neq 0 \end{cases} \implies \delta(t - \alpha) = \begin{cases} 1 & , t = \alpha \\ 0 & , t \neq \alpha \end{cases}$$

Definition 1.2 - Sifting Property

We can apply the Dirac Delta-Function to a function to sample a particular value

$$\int_{-\infty}^{\infty} f(t)\delta(t)dt = f(0) \implies \int_{-\infty}^{\infty} f(t)\delta(t-\alpha)dt = f(\alpha)$$

This can be applied to 2D objects (such as images) as

$$\int_{-\infty}^{\infty} f(a,b)\delta(a-x,b-y)dadb = f(x,y)$$

Definition 1.3 - Point Spread-Function

A *Point Spread-Function* is applied after sampling an image. It takes the value of a pixel & transforms pixels around it using this value in some way.

2 Image Representation

Definition 2.1 - Colour Space

Colour Space are different techniques for representing colours. These are generally made up of 3D vectors

5D vectors.			
Colour Space	Vector Description		
RGB	$(\text{Red} \in [0, 255], \text{Green} \in [0, 255], \text{Blue} \in [0, 255])$		
HSI	$(\text{Hue} \in [0, 360), \text{Saturation} \in [0, 1], \text{Intensity} \in [0, 1])$		
1101	Hue gives the colour in degrees		
YUV	(Brightness $\in [0, 255]$, Blue Projection $\in [0, 255]$, Red Projection $\in [0, 255]$)		
La*b*	(Luminance $\in [0, 100]$, Red/Green $\in \{-a, +b\}$, Blue/Yellow $\in \{+b, -b\}$		

Remark 2.1 - Representing Video

To represent video each fixel is given a third parameter, time so we now have

$$f(x, y, t) \mapsto (R, G, B)$$

or any other Colour Space.

Definition 2.2 - Quantisation

Quantisation is representing a continuous single channel function with discrete single channel function that groups the continuous values into a set number of levels.

Example 2.1 - Quantisation

2 levels

16 levels

6 levels

Definition 2.3 - Aliasing

Aliasing is the result of sparse sampling since single pixels represent to large an area to get any detail out of it.

Example 2.2 - Aliasing

256 x256

64x64

32x32

Definition 2.4 - Anti-Aliasing

Anti-Aliasing is the process for avoiding Aliasing. This can be achieved by using a sampling rate which is a critical limit defined by the Shannon-Nyquist Theorem.

Theorem 2.1 - Shannon-Nyquist Theorem

An analogue signal with maximum frequency xHz may be completly reconstructed if regular samples are taken with frequency 2xHz.

Definition 2.5 - Convolution

Convolution is an operation which takes two functions & produces a third which describes how the shape of one of the two functions is changed by the other.

For functions f & g

$$(f * g)(x) := \int_{-\infty}^{\infty} f(x - t)h(x)\partial t$$

N.B. * is the symbol for convolution.

Remark 2.2 - Convolution in Image Representation

Suppose you have a system, represented by kernel g(x), & an input signal, represented by f(x). Then f * g(x) describes the effect of the system on the input signal. The resulting image is called the *Response of f to the kernel h*.

Proposition 2.1 - 2D Discrete Convolution

Since images are represented by discrete 2D functions $f: \mathbb{N} \times \mathbb{N} \to (\mathbb{N} \times \mathbb{N} \times \mathbb{N})$ it is pertinent to understand 2D Discrete Convolution.

$$h(x,y) = \sum_{i \in I} \sum_{j \in J} f(x-i, y-j)g(i, j)$$

Often the kernel, g(x, y), has negative indices so the pixel being acted upto is equivalent to the middle pixel in the matrix representation of g(x, y).

N.B. A convolution whose kernel is symmetric on 180 degree rotation is called a Correlation.

Example 2.3 - 2D Discrete Convolution

Below is a representation of a grayscale image, f(x,y), on the left & a kernel g(x,y) on the

right.

$$(f*g)(x,y) = f(x+1,y+1)g(-1,-1) + f(x+1,y)g(0-1,0) + \dots + f(x-1,y-1)g(1,1) = -68.$$

Remark 2.3 - High/Loss Pass Filtering

Kernels can be defined for specific desired effects on an image through convolution.

i) An image can be made more fuzzy using a Low Pass Kernel

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

ii) An image can be made sharper using a High Pass Kernel

$$\begin{pmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{pmatrix}$$