ANALIZA III - LISTA 11

Na ćwiczeniach nie robimy zadania 1.

- 1. Niech $\Phi(u,v)=(u-v,u+v,u)$ i D bedzie kołem jednostkowym w płaszczyźnie uv. Obliczyc pole powierzchi $\Phi(D)$.
- 2. Obliczyc pole powierzchni helikoidy $\Phi(r,\theta)=(r\cos\theta,r\sin\theta,\theta),\ 0\leq r\leq 1$ i $0\leq\theta\leq 4\pi.$
- 3. Obliczyc pole powierchni torusa $x = (R + r \cos \varphi) \cos \psi$, $y = (R + r \cos \varphi) \sin \psi$, $z = r \sin \varphi$, gdzie $\varphi, \psi \in [0, 2\pi]$. Co by sie stało, gdyby dopuścić $\varphi, \psi \in [0, 4\pi]$?
- 4. Obliczyc pole powierzchi fragmentu sfery jednostkowej wyciętego przez stożek $\sqrt{x^2+y^2} \leq z.$
- 5. Znaleźć parametryzację powierzchni $x^2-y^2=1$, gdzie $x>0,\;-1\leq y\leq 1$ i $0\leq z\leq 1$. Wyrazić pole powierzcni za pomoca całki.
- 6. Znaleźć pole powierzchni wykresu funkcji $f(x,y)=\frac{2}{3}\left(x^{3/2}+y^{3/2}\right)$, leżącego ponad kwadratem $[0,1]\times[0,1]$.
- 7. Obliczyć pole powierzchni określonej przez $x+y+z=1,\,x^2+2y^2\leq 1.$
- 8. Obliczyć $\iint_S xy\ dS$, gdzie S jest powierzchnią czworościanu o ścianach z=0,y=0,x+z=1 i x=y.
- 9. Obliczyć $\iint_S z \ dS$, gdzie S jest górna półsferą o promienu a.
- 10. Obliczyć $\iint_S xyz\ dS$, gdzie S jest trójkatem o wierchołkach (1,0,0),(0,2,0),(0,1,1).
- 11. Obliczyć $\iint_S z \ dS$, gdzie S jest powierzchnią $z=x^2+y^2, \ x^2+y^2 \leq 1$.
- 12. Obliczyć $\iint_S z^2 dS$, gdzie S jest brzegiem sześcianu $[-1,1] \times [-1,1] \times [-1,1]$.
- 13*. Obliczyć masę sfery o promieniu R, gdzie gęstość masy w punkcie (x, y, z) jest równa odległości tego punktu od ustalonego punktu (x_0, y_0, z_0) tej sfery. Wsk. Masa, to całką powierzchniową z gęstości. Wybrać właściwe współrzędne.
- 14. Metalowa powłoka S ma kształt górnej półsfery o promieniu R. Gęstość masy w (x,y,z) wynosi $\rho(x,y,z)=x^2+y^2$. Znaleźć całkowitą masę S.
- 15. Znaleźć środek masy części sfery o promieniu R leżącej w pierwszym oktancie, przy założeniu, że masa jest proporcjonalna do powierzchni. Wsk. środek masy to punkt

$$\frac{1}{\iint_S dS} \left(\iint_S x \, dS, \iint_S y \, dS, \iint_S z \, dS \right).$$

- 16. Niech $v, u \in \mathbb{R}^3$, a R będzie równoległobokiem wyznaczonym przez 0, u, v. Pokaż, ze pole równoległoboku $A(R) = ||u \times v||$.
- 17. Załóżmy, że temperatura w punkcie powierzchni jest dana wzorem $T(x,y,z)=3x^2+3z^2$. Obliczyć przepływ ciepła przez powierzchnię $x^2+z^2=2,\ 0\leq y\leq 2,$ przy k=1. Wsk. Przepływ ciepła to całka zorientowana $\iint_S (-k\nabla T)\circ dS$.
- 18. Obliczyć przepływ ciepła przez sferę jednostkową, jeśli T(x,y,z)=x. Podać interpretację fizyczna wyniku.
- 19. Niech S będzie powierzchnią zamkniętą złożoną z górnej półsfery jednostkowej i jej podstawy $x^2+y^2\leq 1,\ z=0.$ Niech E(x,y,z)=(2x,2y,2z) będzie polem elektrycznym w R^3 . Obliczyć strumień elektryczny przez S. Wsk. można liczyć strumień elektryczny $\iint_S E\circ dS$ niezależnie po górnej półsfery jednostkowej i po jej podstawie.
- 20. Silna jednostajna ulewa powoduje przepływ wody zgodnie z polem wektorowym F(x,y,z)=(0,0,-1). Znaleźć całkowity przepływ przez powierzchnię boczną stożka $z=\sqrt{x^2+y^2}, x^2+y^2\leq 1$. Wsk. przepływ to $\iint_S F\circ dS$.
- 21. Mocny wiatr powoduje, że deszcz z zadania 23 zaczyna padać pod kątem 45° i jest opisany polem wektorowym $F(x,y,z) = -(\sqrt{2}/2,0,\sqrt{2}/2)$. Jaki jest teraz przepływ wody przez powierzchnię boczną stożka $z = \sqrt{x^2 + y^2}, x^2 + y^2 \le 1$.