Document 8: Projections and Reflections in 3D

We envision a vector in 3D space. We equally have a plane we want to project the vector onto, where both the vector and the plane are at the origin. Now, lets add a line orthogonal to the plane. On the same side as the vector, on the line, is \vec{x}^{\parallel} , opposite it is the inverse projection of \vec{x} onto the line. On the plane, we have \vec{x}^{\perp} , the projection on the plane. The plane, we call V.

We have four unique equations representing the relationships between all these values:

1.
$$\operatorname{proj}_L(\vec{x}) = (\vec{x} \cdot \vec{u})\vec{u}$$

2.
$$\operatorname{proj}_V(\vec{x}) = \vec{x} - (\vec{x} \cdot \vec{u})\vec{u}$$

3.
$$\operatorname{ref}_{L}(\vec{x}) = 2(\vec{x} \cdot \vec{u})\vec{u} - \vec{x}$$

4.
$$\operatorname{ref}_{V}(\vec{x}) = \vec{x} - 2(\vec{x} \cdot \vec{u})\vec{u}$$

The derivation of the essential properties is as follows:

$$\operatorname{Let} \ x \in \mathbb{R}^3, \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \operatorname{Recall} \ \vec{x} = \vec{x}^{\parallel} + \vec{x}^{\perp}.$$

$$\vec{x}^{\parallel} = \operatorname{proj}_L(\vec{x}) = (\vec{x} \cdot \vec{u}) \vec{u}$$

$$\vec{x}^{\perp} = \operatorname{proj}_V(\vec{x})$$

$$\vec{x}^{\perp} = \operatorname{proj}_V(\vec{x}) = \vec{x} - \vec{x}^{\parallel} = \vec{x} - \operatorname{proj}_L(\vec{x})$$

$$\vec{x}^{\perp} = \vec{x} - (\vec{x} \cdot \vec{u}) \vec{u}$$

$$\operatorname{ref}_L(\vec{x}) = \operatorname{proj}_L(\vec{x}) - \operatorname{proj}_L(\vec{x}) - \operatorname{proj}_L(\vec{x}) - \operatorname{proj}_L(\vec{x}) - \operatorname{proj}_L(\vec{x}) - \operatorname{proj}_L(\vec{x}) - \operatorname{proj}_L(\vec{x}) = \operatorname{proj}_L(\vec{x}) = \operatorname{proj}_L(\vec{x}) - \operatorname{proj}_L(\vec{x}) - \operatorname{proj}_L(\vec{x}) = \operatorname{proj}_L(\vec{x}) - \operatorname{proj}_L(\vec{x}) - \operatorname{proj}_L(\vec{x}) = \operatorname{proj}_L(\vec{x}) - \operatorname{proj}_L(\vec{x}) = \operatorname{proj}_L(\vec{x}) - \operatorname{proj}_L(\vec{x}) - \operatorname{proj}_L(\vec{x}) = \operatorname{proj}_L(\vec{x}) - \operatorname{proj}_L(\vec{x}) - \operatorname{proj}_L(\vec{x}) = \operatorname{proj}_L(\vec{x}) - \operatorname{proj}_L(\vec{x}) -$$

These transformations are linear transformations, and hence we may have an inverse transformation.

Definition: A function $T: X \to Y$ is invertible if T(x) = y has a unique solution $x \in X$ for each $y \in Y$. We define the inverse function of T, written T^{-1} , from Y to X, $x = T^{-1}(y)$. For matrices, consider $x \in \mathbb{R}^n \overset{A_{n \times m}}{\to} y \in \mathbb{R}^m$, with $\vec{y} = A\vec{x}$. We say $A\vec{x}$ is invertible if $A\vec{x} = \vec{y}$ has a unique solution $\vec{x} \in \mathbb{R}^n$ for all $\vec{y} \in \mathbb{R}^m$. We define the inverse of A as A^{-1} .

Defining when a matrix is invertible: A_{mxn} is invertible if and only if:

- 1. A is a square matrix, and m = n
- 2. $\operatorname{rref}(A) = I_{m \times n}$

It is useful to note that additionally for a homogeneous system of equations, $A\vec{x} = \vec{0}$, we reduce the possible cases for solutions from three, to two; There must be either infinite solutions, or just 1 solution. No solutions is not an option, and if there is one solution, then $\vec{x} = \vec{0}$.

There are a couple useful property to note when dealing with a homogeneous system. A is invertible $\Leftrightarrow \vec{x} = \vec{0}$ and A is not invertible $\Leftrightarrow \vec{x}$ has infinite solutions.

One last thing to note: when a matrix is invertible, $A\vec{x} = b \Rightarrow \vec{x} = A^{-1}b$.