Ramdom Forest (สร้างป่า)

ตัวต่อของ Decision Tree(สร้างต้นไม้) : เพื่อลดความ Overfit

การทำ Decision Tree ให้ได้หลายๆ ต้นเพื่อหา Majority Vote (เหมือนคะแนนโหวตเลือกตั้ง)

เช่น ในรูปมี Yes มากกว่า No ผลลัพธ์เลยเลือกตอบ Yes

ปกติการสร้างต้นไม้ Decision Tree เราจะหยิบ Feature มาเป็นหัวข้อคำถาม แล้วแตกย่อยแต่ละ Feature ให้ได้ 1 ต้นที่คิดว่าดีที่สุด

แล้วจะเลือกสร้างต้นไม้หลายต้นยังไง จากข้อมูล Feature เท่าเดิม => Ramdom Feature มาใช้แต่ละต้น

Data	=

<i>X</i> 1	<i>X</i> 2		XD	Y
x_1^1	x_1^2	•••	x_1^D	y_1
x_2^1	x_{2}^{2}	•••	x_2^D	y_2
x_3^1	x_{3}^{2}	•••	x_3^D	y_3
:	:	:	:	:
x_N^1	x_N^2		x_N^D	y_N

X คือ ตัวแปรตัน (Feature)

Y คือ ตัวแปรตาม (Target)

N คือ จำนวนตัวอย่างทั้งหมด

D คือ จำนวน Feature ทั้งหมด

เป็นการ Ramdom ที่ทุกตัวมีโอกาสเท่ากัน (Unifom)

การ Ramdom Example

ใน sklearn เวลา run code กับข้อมูลชุดเดิม จะได้ผลลัพธ์เหมือนเดิมเสมอ เพราะ Fix ค่า Ramdom

Code ที่ใช้เรียนในครั้งนี้ จะ Ramdom ตลอดทุกครั้ง จึงจะได้ค่าไม่เท่าเดิม

เพศ	อายุ	ชื้อคอม ?
หญิง	40	ไม่ซื้อ
หญิง	50	ไม่ซื้อ
ชาย	20	ไม่ซื้อ
ชาย	40	ชื่อ
ชาย	50	ชื่อ
หญิง	20	ซื้อ

อายุ	ชื้อคอม ?
40	ไม่ซื้อ
50	ไม่ซื้อ
20	ไม่ซื้อ
40	ซื้อ
50	ซื้อ
20	ขึ้อ

	•
	-
7.3	
3	54
Dal S	
	STATE OF THE PARTY
1000	

D=1

เพศ	ชื่อคอม ?
หญิง	ไม่ซื้อ
หญิง	ไม่ซื้อ
ชาย	ไม่ซื้อ
ชาย	ชื่อ
ชาย	ชื่อ
หญิง	ขึ้อ

Ref: www.pineswcd.com/?SEC=89C9FF96-EB3D-415F-83E4-325A204886AF

ข้อมูล Test

เพศ	อายุ	ชื้อคอม ?
หญิง	45	?

Ref: www.pineswcd.com/?SEC=89C9FF96-EB3D-415F-83E4-325A204886AF

Random Forest: Code

I. เรียนรู้ (สร้าง Tree)

```
def RF_fit(X_Train, Y_Train, Feature_Name, All Class, n tree=10, boostrap=True, max depth=np.inf. depth=1.
                    max majority=np.inf, min leaf=-np.inf):
             N, D = X Train.shape
                                                       Random (Bootrep ซ้ำได้)
             if boostrap == True:
                  example index = np.random.choice(N, N)
                 X Train = X Train[example index]
                 Y Train = Y Train[example index]
             forest = []
                                                        Random Feature =>root(D)
             for i in range(n tree):
                  n filter feature = int(np.sqrt(D))
                  feature index = random.sample(range(D), n filter feature)
                  Feature to forest = Feature Name[feature index]
                  X to forest = X Train[:, feature index]
Decision Tree => tree = DT fit(X to forest, Y Train, Feature to forest, feature_index, All_Class, max_depth=max_depth,
                                max majority=max majority, min leaf=min leaf)
                  forest.append(tree)
                                                                                   index ของ Feature ที่ Random มา (คอลัมน์ใหนบ้าง)
             return forest
```

```
np.random.choice(5, 5) # np.arange(5) , size 3:
array([3, 3, 4, 0, 2])

print(random.sample(range(5),3))
[3, 1, 0]
```

```
def DT find best question(X, Y, Feature Name, Feature Index, All Class):
    max Gain = -np.inf
    isComplete = False
    Gini Parent = DT compute Gini(Y, All Class)
    Ouestion Dict = DT create Ouestion(X, Feature Name)
    for d, fn in enumerate(Feature Name):
        N = X.shape[0]
        if fn in Ouestion Dict:
            unique value = Question Dict[fn]['unique value']
            check type = Question Dict[fn]['type of feature']
            for i, uv in enumerate(unique value):
                filter true, filter false = DT find filter(X, check type, d, uv)
                X True = X[filter true]; Y True = Y[filter true];
                X False = X[filter false]; Y False = Y[filter false];
                weight true, weight false = DT compute weight true false(filter true, filter false, N)
                Gini True, Gini False = DT compute Gini True False(Y True, Y False, All Class)
                Gini Children = DT compute Gini Children(weight true, Gini True, weight false, Gini False)
                Gain = DT compute Gain(Gini Parent, Gini Children)
                if Gain >= max Gain:
                    max Gain = Gain
                    best = \{\}
                    best['fn'] = fn
                    best['findex'] = Feature Index[d] ## เพิ่มตรงนี้มาโดยเฉพาะ (คำถามที่ดีสดอย่ Index ไหน)
                    best['uv'] = uv
                    best['X True'] = X True
                    best['Y True'] = Y True
```

best['X_False'] = X_False
best['Y_False'] = Y_False
if max_Gain == Gini_Parent:
 isComplete = True
 return best, isComplete

return best, isComplete

II. พยากรณ์ (For loop ต้นไม้แต่ละต้น เพื่อได้ผลลัพธ์แต่ละต้น)

```
def RF predict(X Test, forest):
                  N = X Test.shape[0]
                  n tree = len(forest)
                  Yhat forest = np.emptv([N, 0])
                  for i in range(n tree):
                     tree = forest[i]
     Decision Tree => Yhat each tree = DT predict(X Test, tree)[:, 0:1]
                     Yhat forest = np.hstack([Yhat forest, Yhat each tree])
                  Yhat Test = []
                  for Y in Yhat forest:
                      unique prediction, count unique prediction = np.unique(Y, return counts=True)
                      prediction = unique prediction[count unique prediction.argmax()]
                      percent = count unique prediction.max()/n tree
                     yhat test = np.array([prediction, percent])
เป็นเปอร์เซ็นต์เรียบร้อย
                     Yhat Test.append(yhat test)
                  return np.array(Yhat Test)
```

```
>>> np.unique([1, 1, 2, 2, 3, 3])
array([1, 2, 3])
>>> a = np.array([[1, 1], [2, 3]])
>>> np.unique(a)
array([1, 2, 3])
```