7. ОБРАБОТКА МАТРИЦ

Цель работы - овладение навыками алгоритмизации и программирования структур с вложенными циклами, навыками использования приемов программирования во вложенных циклах; освоение способов описания, ввода и вывода матриц.

7.1 Подготовка к лабораторной работе

При подготовке к лабораторной работе необходимо изучить:

- правила организации вложенного цикла с учетом порядка перебора элементов матрицы;
- правила использования приемов программирования в структурах с вложенными циклами;
- способы ввода и вывода матриц, имеющиеся в языке С++.

7.2 Теоретические сведения

Количество п индексов, необходимое при обращении к элементу массива, определяет n-мерность массива. При n=1 массив называется одномерным; при n=2 - двумерным. Двумерный массив соответствует понятию матрицы в математике.

Двумерные массивы предназначены для работы с табличными данными. В двумерном массиве элементы определяются именем массива и двумя индексами: первый индекс указывает на номер строки, а второй — на номер столбца, на пересечении которых находится элемент, например, p[1] [2] — третий элемент второй строки массива р (нумерация индексов массива начинается с 0).

Многомерные массивы представляются как массивы массивов.

```
int d2[10][20]; // d2 является массивом из 10 элементов по 20 элементов каждый char v[2][5] = { {'a', 'b', 'c', 'd', 'e'}, {'0', '1', '2', '3', '4'} };
```

Ввод-вывод матриц, также как и одномерных массивов, осуществляется поэлементно. Для этого используются вложенные циклы. В правильно организованном вложенном цикле операторы внутреннего цикла не могут выходить за пределы внешнего цикла, хотя внутренний и внешний циклы могут заканчиваться одним оператором.

```
Пример 7.1. Ввод-вывод матрицы
```

```
int main() {
    SetConsoleOutputCP(1251);
    const int k = 3;
    int a[k][k];
    cout<<"Введите элементы матрицы "<<k<<"x"<<k<":\n";
    for(int i = 0; i < k; ++i)
        cin>>a[i][j];
    cout<<"Матрица:\n";
    for(int i = 0; i < k; ++i)
    {
        for(int i = 0; i < k; ++i)
        cout<<a[i][j]
    cout<<a[i][j]
```

При решении задач возможны просмотры матриц по строкам или по столбцам. Если просматривается матрица по строкам, то индекс I (номер строки) меняется медленнее индекса J (номер столбца), т.е. цикл по I - внешний, цикл по J - внутренний. И, наоборот, если матрица просматривается по столбцам, то цикл по I - внутренний, а цикл по J - внешний.

<u>Пример 7.2.</u> Подсчитать количество отрицательных элементов в каждом столбце матрицы. Результаты занести в массив.

```
#include <iostream>
                      // файл, где определена функция rand()
#include<stdlib.h>
#include <iomanip> // файл, где определена функция setw(4)
using namespace std;
int main()
 const int m = 4, n = 4;
 int \ a[n][m];
 int d[n] = \{0,0,0,0\};
//ввод матрицы с помощью генератора случайных чисел
 for(int \ i = 0; \ i < n; ++i)
        for(int j = 0; j < m; ++j)
               a[i][j]=rand()\%100-10;
//вывод матрицы
cout << "Matrix: \n";
for(int i = 0; i < n; ++i)
        for(int j = 0; j < m; ++j)
               cout<<setw(4)<<a[i][j];
        cout << ' \setminus n';
 /* подсчет количества отрицательных элементов в каждом столбце матрицы с
                        записью результатов в массив */
 for(int j = 0; j < m; ++j)
        for(int i = 0; i < n; ++i)
               if(a[i][j] < 0)
                       ++d[i];
cout < "number of negative elements in the column [" < i+1 < "]="< < d[i] < < n';
 return 0;
Пример 7.3. Вывести элементы главной и побочной диагоналей матрицы a(k,k).
```

Замечание. Пусть задана матрица Aij, где i, j=1,2,...,k.

1. Элементы главной диагонали можно выделить, используя условие i=j for(int i=0; i < k; ++i) for(int j=0; j < k; ++j) if (i==j) {обработка элементов главной диагонали}

- 2. Элементы над главной диагональю можно выделить, используя
 - а. условие i < j

```
for(int\ i=0;\ i< k;\ ++i) for(int\ j=0;\ j< k;\ ++j) if\ (i< j)\ \{oбработка\ элементов\ над\ главной\ диагональю\}
```

b. особую организацию циклов прохода по матрице

```
for(int \ i = 0; \ i < k-1; \ ++i) for(int \ j = i+1; \ j < k; \ ++j) {\it o} {
```

- 3. Элементы под главной диагональю можно выделить, используя
 - а. условие i > j

```
for(int \ i = 0; \ i < k; \ ++i) for(int \ j = 0; \ j < k; \ ++j) if \ (i>j) \ \{ oбработка элементов под главной диагональю \}
```

b. особую организацию циклов прохода по матрице

```
for(int \ i=1; \ i < k; \ ++i) \ for(int \ j=0; \ j < i; \ ++j) \ {\it \{oбработка элементов nod главной диагональю\}}
```

7.3 Варианты заданий

Обработать матрицу в соответствии с вариантом задания, указанного в таблице 7.1. Вывести на печать результаты и исходную матрицу в общепринятом виде.

Таблица 7.1- Варианты заданий

	7.1- Варианты з	адании 	Vаларуя у
№	Имя	п. ⊻	Условия и
вар-та	матрицы и	Действия	ограничения
	размеры	7	
		Вычислить и запомнить сумму и число	
1	A(6,9)	положительных элементов каждого столбца	
		матрицы.	
2	B(N,N)	Вычислить сумму и число элементов матрицы,	N<=6
		находящихся под главной диагональю и на ней.	
3	A(N,N)	Задана матрица A(n,n). Определить	
		максимальный элемент среди элементов	N<=7
	, , ,	матрицы, расположенных выше главной	
		диагонали, и минимальный элемент среди тех,	
		что находятся ниже главной диагонали. Если	
		эти элементы равны, найти количество таких	
		чисел в матрице.	
		Записать на место отрицательных элементов	
4	D(8,8)	матрицы нули, а на место положительных –	
		единицы. Вывести на печать нижнюю	
		треугольную матрицу в общепринятом виде.	
			N<= 8
	F(N,M)	Найти в каждой строке матрицы максимальный	
5		и минимальный элементы и поместить их на	M<=7
	, , ,	место первого и последнего элемента строки	
		соответственно.	
	F(6,6)	Транспонировать матрицу и вывести на печать	
6		элементы главной диагонали и диагонали,	
		расположенной под главной.	
		Для целочисленной матрицы найти для каждой	
7	N(7,7)	строки число элементов, кратных пяти, и	
		наибольший из полученных результатов.	
		Задана матрица A(n,n). Зеркально отразить ее	
		относительно главной диагонали. В	
8	A(N,N)	преобразованной матрице найти строки,	
		элементы которой образуют возрастающую	
		последовательность.	
		Найти в каждой строке наибольший элемент и	
9	P(N,N)	поменять его местами с элементом главной	N<=5
		диагонали.	
10	A(N,N)	Из всех строк матрицы, кроме последней,	N<=5
		поэлементно вычесть последнюю строку.	
		Найти строку с наибольшей и наименьшей	N<=8
11	T(N,M)	суммой элементов. Вывести на печать	$M \le 6$
		найденные строки и суммы их элементов.	
10	B(N,M)	Задана матрица B(n,m). Определить количество	
		столбцов, упорядоченных по возрастанию.	
12		Определить количество нулевых элементов	
		матрицы.	
13	A(5,6) X(5)	Четные столбцы матрицы А заменить на Х.	
14	Y(4,5)	Поменять местами четные и нечетные столбцы.	
15	A(K,L)	Найти сумму максимальных элементов строк	K=4 L=5
	11(11,11)	матрицы.	
	L		

№ вар-та	Имя матрицы и	Действия	Условия и ограничения
1	размеры		-
16	D(N,M)	Найти сумму минимальных элементов столбцов матрицы.	N=6 M=4
17	L(A,B)	В матрице вычеркнуть строку, содержащую минимальный элемент.	A<=8 B<=6
18	P(N, M)	В матрице P(n,m) найти строку с максимальной суммой элементов и поэлементно поменять ее с первой строкой.	N<=6
19	C(N,N)	Найти наибольший элемент среди стоящих на главной и побочной диагоналях, и поменять его местами с элементом, стоящим на пересечении этих диагоналей.	N<=6
20	V(6,5)	Найти и отпечатать симметричный столбец матрицы. Если такого нет, то выдать сообщение.	
21	D(4,6)	Найти наименьший элемент матрицы; записать нули в строку и столбец, в которых он находится.	30
22	A(3,4) B(4,5)	Перемножить матрицы A и B. Произведение C = $A*B$ определяется по формуле: $C_{ij} = \sum_{k=1}^{n} A_{ik} \cdot B_{kj}$.	
23	B(K,K)	В матрице вычеркнуть І-ю строку и Ј-й столбец, т.е. получить матрицу, на порядок меньшую исходной.	K=7
24	K(5,8)	Найти и отпечатать симметричную строку матрицы. Если такой нет, то выдать сообщение.	
25	B(M,N)	Найти и отпечатать строку матрицы, элементы которой образуют возрастающую последовательность.	M<=5 N<=7
26	L(5,6)	Записать элементы каждого столбца матрицы в обратном порядке.	
27	A(6,6)	Получить матрицу B(5,6), первая строка которой равна сумме элементов первой и второй строки матрицы A.	
28	B(M,N)	В каждом столбце матрицы поменять местами наибольший и наименьший элементы.	M<=5 N<=6
29	C(P,R)	Записать строки матрицы в обратном порядке.	P=5 R=4
30	E(K,N)	Упорядочить по убыванию элементы того столбца, где находится наименьший элемент матрицы.	K<=5 N<=6
31	X(5,5)	Определить, является ли заданная целая квадратная матрица магическим квадратом, т.е. такой, в которой суммы элементов во всех строках и столбцах одинаковы.	
32	R(K,N)	Найти наибольший и наименьший элементы матрицы и поменять местами строки, которые их содержат.	K<=7 N<=5

7.4 Контрольные вопросы

- 1. Как описываются матрицы?
- 2. Как определить количество элементов в матрице?
- 3. Какие основные правила организации вложенных циклов?
- 4. Указать способы выхода из внутреннего цикла.
- 5. Какие способы просмотра матрицы?
- 6. Как организовать ввод матрицы и вывод в общепринятом виде?
- 7. Как организовать вывод нижней треугольной матрицы в общепринятом виде?