Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных систем и сетей Кафедра электронных вычислительных машин

Лабораторная работа по курсу «Нейросетевые технологии принятия решений»

Выполнила: магистрант группы 355841 А.В. Деркач

Проверил: д.т.н., профессор

М.М. Татур

1 ЗАДАНИЕ

Составить легенду, план исследования и разработки и техническое задание по теме магистерской диссертации.

2 ВЫПОЛНЕНИЕ РАБОТЫ

2.1 Тема магистерской диссертации

Автоматизированная система анализа продуктов по изображениям для рецептурного подбора.

2.2 Легенда проекта

Основная идея заключается в создании интеллектуальной системы, способной анализировать продукты на основе их изображений и предоставлять рецептурные рекомендации. Предполагается, что данную систему можно будет интегрировать в другие проекты и она быдет легко масштабируема.

Рисунок 1 – Визуализация идеи

Принцип работы системы следующий:

- Пользователь делает фотографию продуктов с помощью мобильного устройства или загружает изображение с компьютера.
- Система принимает изображение и применяет алгоритмы машинного обучения для распознавания продуктов на изображении.
- Модель машинного обучения классифицирует каждый продукт на основе базы данных, определяя его тип.

- На основе распознанных продуктов система обращается к базе данных рецептов, содержащей информацию о блюдах, в которых эти продукты могут быть использованы.
 - Формируются рецептурные рекомендации.
- Рекомендуемые рецепты предоставляются пользователю через удобный интерфейс, где можно увидеть список ингредиентов, шаги приготовления и питательную ценность блюда.

2.3 План проведения разработки

- **1.** Анализ существующих методов и алгоритмов для определения продуктов по изображениям.
- **1.1.** Анализ существующих систем с автоматическими алгоритмами по анализу изображений.
 - **1.2.** Обзор основных методов и технологий анализа продуктов на изображениях.
 - 1.3. Выбор наиболее подходящих методов для разработки системы.
 - 2. Сбор и подготовка данных.
 - 2.1. Поиск и сбор изображений для анализа продуктов.
 - 2.2. Аннотация, разметка данных и создание метаданных.
- **2.3.** Создание базы данных с подготовленными обучающими и тестовыми наборами данных.
 - 3. Проектирование и разработка архитектуры разрабатываемой системы.
 - 3.1. Определение общей архитектуры автоматизированной системы.
 - 3.2. Выбор алгоритма машинного обучения.
- **3.3.** Реализация основных модулей для взаимодействия пользователя с алгоритмами системы.
- **3.4.** Создание пользовательского интерфейса разрабатываемой системы.
 - 4. Разработка основных алгоритмов системы.
 - 4.1. Разработка компонентов для анализа изображений продуктов.
- **4.2.** Реализация модулей для рецептурного подбора на основе найденных продуктов.
 - 5. Обучение и экспериментальное тестирование системы.
 - 5.1. Обучение и валидация моделей на подготовленных данных.
 - 5.2. Сравнение результатов с существующими подходами.
 - 5.3. Анализ эффективности и точности системы на тестовых данных.
 - 5.4. Дообучение сети, доработка алгоритма.
 - 6. Оценка применимости системы.
- **6.1.** Подведение итогов исследования, основные выводы о применяемых алгоритмах.
 - 6.2. Оценка применимости системы для задач рецептурного подбора.
- **6.3.** Формулирование выводов и рекомендаций для дальнейшего развития системы.

2.4 Техническое задание

- **1. Наименование разработки:** Автоматизированная система анализа продуктов по изображениям для рецептурного подбора.
 - **2. Срок сдачи:** 31 декабря 2025 года

3. Задачи исследования:

- Изучение существующих методов и алгоритмов машинного обучения для анализа продуктов по изображениям и выбор наиболее подходящих для разработки системы.
- Сбор и подготовка базы данных изображений продуктов для обучения и тестирования системы.
- Разработка и реализация архитектуры автоматизированной системы анализа изображений продуктов с последующим рецептурным подбором.
- Экспериментальное тестирование системы для оценки точности и эффективности применяемых алгоритмов.
- Анализ полученных результатов для определения применимости системы для рецептурного под-бора.

4. Используемые технологии:

- Язык программирования для алгоримов по анализу изображений Python.
- Язык программирования для сервисов, обеспечивающих взаимодейтсивя пользователя с алгоритмами Java или Kotlin.
 - Стэк технологий для реализации frontend части любой.
 - Взаимодействие frontend и backend части по REST API.
 - Обмен сообщений между микросервисами backend части по gRPC.
 - СУБД PostgreSQL 15.

5. Требования:

- Проект реализуется на микросервисной архитектуре.
- Обеспечить поддержку работы с основными алгоритмами системы в сторонних проектах.
- Разработка должна проводиться в соответствии с заданным планом (см. раздел 2.3).
- На разработку должна быть составлена техническая документация, включающая алгоритмы по анализу изображений и рецептурного подбора, а также руководство к использованию.