Teoria dei gruppi di Lie approccio gruppale alla meccanica classica.

AMM

Universita' Milano Bicocca

30 novembre, 2010

SUR UNE FORME NOUVELLE DES ÉQUATIONS DE LA MÉCANIQUE

Henri Poincaré

Comptes rendus de l'Académie des Sciences, tome 132, pp. 369-371 (18 février 1901)

Ayant eu l'occasion de m'occuper du mouvement de rotation d'un corps solide creux, dont la cavité est remplie de liquide, j'ai été conduit à mettre les équations générales de la Mécanique sous une forme que je crois nouvelle et qu'il peut être interessant de faire connaître.

Supposons qu'il y ait n degrés de liberté et désignons par $x_1, x_2, ..., x_n$ les variables qui définissent l'état du systéme. Soyent T et U l'énergie cinétique et l'énergie obentielle.

Envisageons un groupe transitif continu quelconque. Soit $X_i(f)$ une substitution infinitésimale quelconque de ce groupe, telle que

$$X_i(f) = X_i^1 \frac{df}{dx_i} + X_i^2 \frac{df}{dx_n} + ... + X_i^n \frac{df}{dx}$$
.

Ces substitutions formant un groupe, on devra avoir

$$X_i X_k - X_k X_i = \sum c_{ik,s} X_s$$
.

Nous pourrons poser (puisque le groupe est transitif)

$$x'_{\mu} = \frac{dx_{\mu}}{dt} = \eta_1 X_1^{\mu} + \eta_2 X_2^{\mu} + ... + \eta_r X_r^{\mu}$$

de telle façon qu'on puisse passer de l'état $(x_1,x_2,...,x_n)$ du systéme à l'état infiniment voisin $(x_1+x'_1dt,...,x_n+x'_ndt)$ par la substitution infinitésimale du groupe $\sum_n dt X_i(t)$.

T, au lieu de s'exprimer en fonction des x' et des x, pourra s'exprimer en fonction des η et des x. Si nous donnons aux η et aux x des accroissements virtuels δn et δx , il en résultera pour T et U des accroissements

$$\delta T = \sum \frac{dT}{dt} \delta \eta + \sum \frac{dT}{dt} \delta x; \quad \delta U = \sum \frac{dU}{dt} \delta x.$$

Le groupe étant transitif, je pourrai poser

$$\delta x_{\mu} = \omega_1 X_1^{\mu} + \omega_2 X_2^{\mu} + ... + \omega_r X_r^{\mu}$$

de telle façon que l'on puisse passer de l'état x_i du systéme à l'état infiniment voisin $x_i+\delta x_i$ par la substitution infinitésimale du groupe $\sum \omega_i X_i(f)$. Je poserai ensuite

$$\sum \left(\frac{dT}{dx} - \frac{dU}{dx}\right) \delta x = \sum \Omega_i \omega_i.$$

Soit alors l'intégrale de Hamilton

$$J = \int (T - U)dt$$
,

on aura

$$\delta J = \int \left(\sum \frac{dT}{d\eta_i} \delta \eta_i + \sum \Omega_i \omega_i \right) dt$$
.

Or on trouve aisément

$$\delta \eta_i = \frac{d\omega_i}{dt} + \sum c_{ski} \eta_k \omega_s$$
.

Le principle de moindre action nous donne alors

(1)
$$\frac{d}{dt} \frac{dT}{d\tau_{is}} = \sum_{ski} \frac{dT}{d\eta_{is}} \tau_{ik} + \Omega_{s}.$$

Les equations (1) comprennent comme cas particuliers:

 1° Les équations de Lagrange, quand le groupe se réduit aux substitutions, toutes permutables entre elles, qui augmentent une des variables x d'une constante infiniment petite.

 2^o Les équations d'Euler pour la rotation des corps solides, où le rôle des η_i est joué par les composantes p,q,r de la rotation, et celui de Ω_s par les couples dus aux forces extérieures.

Elles sont surtout intéressantes dans le cas où U étant nul, T ne dépend que des $\eta.$

Articolo di Poincarè

Nell'articolo appaiano per la prima volta le equazioni di Eulero Poincarè

$$\frac{d}{dt} \frac{dT}{d\tau_{is}} = \sum c_{ski} \frac{dT}{d\eta_i} \tau_{ik} + \Omega_s .$$

Nelle equazioni del moto entra esplicitamente la struttura gruppale dello spazio di configurazione.

Compaiono al loro interno i coefficienti C_{ski} , Costanti di Struttura del gruppo.

Struttura Della Tesi

Elementi di Teoria dei Gruppi di Lie

Struttura Della Tesi

Elementi di Teoria dei Gruppi di Lie

Il gruppo delle Rotazioni e La cinematica del Corpo Rigido

Struttura Della Tesi

Elementi di Teoria dei Gruppi di Lie

Il gruppo delle Rotazioni e La cinematica del Corpo Rigido

Equazioni di Eulero e E-P

Algebre e Gruppi di Lie

Temi affrontati:

- Definizione astratta di Gruppo di Lie.
- Definizione delle strutture invarianti (traslazioni, campi e 1-forme) e loro proprietà.
- Algebra di un gruppo di Lie.
- Rappresentazioni e azioni del gruppo su se stesso (azione aggiunta e coaggiunta).
- Realizzazione delle strutture presentate nel caso di gruppi di matrici.

Il gruppo delle Rotazioni

Temi affrontati:

- Presentazione del gruppo \Re delle rotazioni in astratto.
- Parametrizzazione del gruppo e identificazione con SO(3).
- Identificazione di SO(3) con lo spazio di configurazione del C.R. con punto fisso.
- Studio delle strutture di *SO*(3).

Equazioni di *Eulero* e *E-P*

Temi affrontati:

- Presentazione delle equazioni di Eulero e loro interpretazione algebrica.
- Introduzione dell' Equazione Centrale della dinamica.
- Studio dell'equazione centrale nell'ipotesi che lo spazio di configurazione possieda la struttura di gruppo di Lie.

Obiettivo

Interpretazione dei risultati orginali di Poincarè in un linguaggio moderno.

 $\begin{array}{lll} \textit{\'equations g\'en\'erales} &\Longrightarrow & \text{Equazione Centrale della Dinamica} \\ \textit{group transitif continu} &\Longrightarrow & \text{Spazio di configurazione} \equiv \text{Gruppo di Lie} \\ \textit{forme nouvelle} &\Longrightarrow & \text{Equazioni EP} \\ \end{array}$

Obiettivo

Interpretazione dei risultati orginali di Poincarè in un linguaggio moderno.

```
\begin{array}{lll} \textit{\'equations g\'en\'erales} &\Longrightarrow & \text{Equazione Centrale della Dinamica} \\ \textit{group transitif continu} &\Longrightarrow & \text{Spazio di configurazione} \equiv \text{Gruppo di Lie} \\ \textit{forme nouvelle} &\Longrightarrow & \text{Equazioni EP} \\ \end{array}
```

TESI

Le Equazioni EP sono la proiezione dell' Equazione Centrale sulla base delle 1-forme invarianti.

Concetti chiave della formulazione lagrangiana della meccanica classica:

Concetti chiave della formulazione lagrangiana della meccanica classica:

 Lo spazio di configurazione di un sistema meccanico Q è una varietà differenziale.

Concetti chiave della formulazione lagrangiana della meccanica classica:

- Lo spazio di configurazione di un sistema meccanico Q è una varietà differenziale.
- Il fibrato tangente allo spazio di configurazione, **TQ**, congloba in se tutta la cinematica del sistema concessa dai suoi vincoli.

Concetti chiave della formulazione lagrangiana della meccanica classica:

- Lo spazio di configurazione di un sistema meccanico Q è una varietà differenziale.
- Il fibrato tangente allo spazio di configurazione, **TQ**, congloba in se tutta la cinematica del sistema concessa dai suoi vincoli.
- La dinamica di un generico sistema conservativo è tutta racchiusa in una funzione

$$L: TQ \rightarrow R$$

detta lagrangiana.

È possibile definire due forme differenziali: :

È possibile definire due forme differenziali: :

• La 1-forma Lavoro di Lagrange:

$$I_L = \vec{F} \cdot dP + dT = dL$$

È possibile definire due forme differenziali: :

• La 1-forma Lavoro di Lagrange:

$$I_L = \vec{F} \cdot dP + dT = dL$$

• La 1-forma Azione di Maupertuis

$$a_M = \vec{p} \cdot dP = p_k dx^k = \frac{\partial L}{\partial \dot{x}^k} dx^k$$

È possibile definire due forme differenziali: :

• La 1-forma Lavoro di Lagrange:

$$I_L = \vec{F} \cdot dP + dT = dL$$

• La 1-forma Azione di Maupertuis

$$a_M = \vec{p} \cdot dP = p_k dx^k = \frac{\partial L}{\partial \dot{x}^k} dx^k$$

Principio dell'equazione centrale

I moti *naturali* avvegono sempre in modo da verificare in ogni punto l'equazione

$$\frac{\mathrm{d}}{\mathrm{d}t}a_{M}=I_{L}$$

Detta Equazione Centrale della Dinamica.

Nelle coordinate (q^k, \dot{q}^k) e sulla base $(dq_k, d\dot{q}_k)$ risulta:

$$a_M = p_k(q, \dot{q}) dq^k$$
 $I_L = dL(q, \dot{q}) = \frac{\partial L}{\partial q^k} dq^k + \frac{\partial L}{\partial \dot{q}^k} d\dot{q}^k$

Nelle coordinate (q^k, \dot{q}^k) e sulla base $(dq_k, d\dot{q}_k)$ risulta:

$$a_M = p_k(q, \dot{q}) dq^k$$
 $I_L = dL(q, \dot{q}) = \frac{\partial L}{\partial q^k} dq^k + \frac{\partial L}{\partial \dot{q}^k} d\dot{q}^k$

L'equazione centrale assuma la forma:

$$\dot{p_k} dq_k + p_k d\dot{q_k} = \frac{\partial L}{\partial q^k} dq^k + \frac{\partial L}{\partial \dot{q}^k} d\dot{q}^k$$

Nelle coordinate (q^k, \dot{q}^k) e sulla base (dq_k, dq_k) risulta:

$$a_M = p_k(q, \dot{q}) dq^k$$
 $I_L = dL(q, \dot{q}) = \frac{\partial L}{\partial q^k} dq^k + \frac{\partial L}{\partial \dot{q}^k} d\dot{q}^k$

L'equazione centrale assuma la forma:

$$\dot{p_k} dq_k + p_k d\dot{q_k} = \frac{\partial L}{\partial q^k} dq^k + \frac{\partial L}{\partial \dot{q}^k} d\dot{q}^k$$

Uguagliando i coefficienti delle 1- forme :

$$d\dot{q}_{k}: \qquad p_{k} = \frac{\partial L}{\partial \dot{q}_{k}}$$
$$dq_{k}: \qquad \dot{p}_{k} = \frac{\partial L}{\partial q_{k}}$$

Nelle coordinate (q^k, \dot{q}^k) e sulla base $(dq_k, d\dot{q}_k)$ risulta:

$$a_M = p_k(q, \dot{q}) dq^k$$
 $I_L = dL(q, \dot{q}) = \frac{\partial L}{\partial q^k} dq^k + \frac{\partial L}{\partial \dot{q}^k} d\dot{q}^k$

L'equazione centrale assuma la forma:

$$\dot{p_k} dq_k + p_k d\dot{q_k} = \frac{\partial L}{\partial q^k} dq^k + \frac{\partial L}{\partial \dot{q}^k} d\dot{q}^k$$

Uguagliando i coefficienti delle 1- forme :

$$d\dot{q}_{k}: \qquad p_{k} = \frac{\partial L}{\partial \dot{q}_{k}}$$
$$dq_{k}: \qquad \dot{p}_{k} = \frac{\partial L}{\partial q_{k}}$$

Eliminando i momenti canonici :

equazioni Eulero-Lagrange

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}_{k}} - \frac{\partial L}{\partial \dot{q}_{k}} = 0$$

- Si fissa un sistema di coordinate x^i arbitrario sulla varietà G.
- Si fissa una base ξ_i di vettori sull'algebra $\mathfrak g$ del gruppo.

- Si fissa un sistema di coordinate x^i arbitrario sulla varietà G.
- Si fissa una base ξ_i di vettori sull'algebra $\mathfrak g$ del gruppo.
- Ad una base di vettori nell'algebra si associa una base X_i di campi invarianti (a destra o a sinistra).
- Ad una base di campi invarianti si associa la base di 1-forme invarianti (a destra o a sinistra) ϵ^j tale che $\epsilon^j(X_i) = \delta^j_i$.

- Si fissa un sistema di coordinate x^i arbitrario sulla varietà G.
- Si fissa una base ξ_i di vettori sull'algebra $\mathfrak g$ del gruppo.
- Ad una base di vettori nell'algebra si associa una base X_i di campi invarianti (a destra o a sinistra).
- Ad una base di campi invarianti si associa la base di 1-forme invarianti (a destra o a sinistra) ϵ^j tale che $\epsilon^j(X_i) = \delta^j_i$.
- Sfruttando le 1-forme invarianti è possibile associare le componenti di un generico vettore tangente sulla base invariante. Si definiscono le quasivelocità come: v^a = ε^a(v).

Costruzione del sistema di coordinate dei campi invarianti:

- Si fissa un sistema di coordinate x^i arbitrario sulla varietà G.
- Si fissa una base ξ_i di vettori sull'algebra $\mathfrak g$ del gruppo.
- Ad una base di vettori nell'algebra si associa una base X_i di campi invarianti (a destra o a sinistra).
- Ad una base di campi invarianti si associa la base di 1-forme invarianti (a destra o a sinistra) ϵ^j tale che $\epsilon^j(X_i) = \delta^j_i$.
- Sfruttando le 1-forme invarianti è possibile associare le componenti di un generico vettore tangente sulla base invariante. Si definiscono le quasivelocità come: v^a = ε^a(v).

La 2-npla di funzioni (x^i, v^a) costituisce un sistema di coordinate su TG.

Decomposizione dell'equazione Centrale

Alle coordinate appena scelte si associa la base non naturale delle 1-forme (ϵ^a, dv^b) .

Decomposizione dell'equazione Centrale

Alle coordinate appena scelte si associa la base non naturale delle 1-forme (ϵ^a, dv^b) .

Decomponendo le 1-forme su questa base:

$$a_M = p_a \epsilon^a$$
 $I_L = dL(x, v)$

L'equazione centrale diventa:

$$\dot{p}_{a}\epsilon^{a} + p_{a}\frac{\mathrm{d}\epsilon^{a}}{\mathrm{d}t} = \frac{\partial L}{\partial x^{i}}\mathrm{d}x^{i} + \frac{\partial L}{\partial v^{a}}\mathrm{d}v^{a}$$

Decomposizione dell'equazione Centrale

Alle coordinate appena scelte si associa la base non naturale delle 1-forme (ϵ^a, dv^b) .

Decomponendo le 1-forme su questa base:

$$a_M = p_a \epsilon^a$$
 $I_L = dL(x, v)$

L'equazione centrale diventa:

$$\dot{p}_a \epsilon^a + p_a \frac{\mathrm{d} \epsilon^a}{\mathrm{d} t} = \frac{\partial L}{\partial x^i} \mathrm{d} x^i + \frac{\partial L}{\partial v^a} \mathrm{d} v^a$$

Resta da capire come si calcola:

$$\frac{\mathrm{d}\,\epsilon^a}{\mathrm{d}\,t}$$

Serve l'identità di Hamel-Boltzman.

Identità di Hamel Boltzman

Tesi

Vale l'equazione:

$$\frac{\mathrm{d}\epsilon^a}{\mathrm{d}t} = \mathrm{d}v^a - C^a_{bc}v^c\,\epsilon^b$$

Identità di Hamel Boltzman

Tesi

Vale l'equazione:

$$\frac{\mathrm{d}\epsilon^a}{\mathrm{d}t} = \mathrm{d}v^a - C^a_{bc}v^c \,\epsilon^b$$

Per dimostrarla ci si avvale fondamentalmente di due ipotesi:

- É nota la matrice $A_{i,j}$ di cambio di base tra la base naturale e la base delle 1-forme invarianti.
- È valida la Regola di scambio

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{d}x_k = \mathrm{d}\dot{x_k}$$

Equazioni di Eulero Poincarè

È possibile ora decomporre l'equazione centrale sulla base $(\epsilon^a,\mathrm{d} v^a)$.

$$(\dot{p}_a - C^b_{a,c} p_b v^c) \epsilon^a + p_a \, dv^a = \left(A^j_a \frac{\partial L}{\partial x^i} \right) \epsilon^a + \frac{\partial L}{\partial v^a} \, dv^a$$

Equazioni di Eulero Poincarè

È possibile ora decomporre l'equazione centrale sulla base $(\epsilon^a, \mathrm{d} v^a)$.

$$(\dot{p}_a - C^b_{a,c} p_b v^c) \epsilon^a + p_a dv^a = \left(A^j_a \frac{\partial L}{\partial x^i}\right) \epsilon^a + \frac{\partial L}{\partial v^a} dv^a$$

Uguagliando le componenti si ottengono le equazioni:

$$dv^{a} : p_{a} = \frac{\partial L}{\partial v^{a}}$$

$$\epsilon^{a} : \dot{p}_{a} = C_{ac}^{b} p_{b} v^{c} + A_{a}^{j} \frac{\partial L}{\partial x^{j}}$$

Equazioni di Eulero Poincarè

È possibile ora decomporre l'equazione centrale sulla base $(\epsilon^a,\mathrm{d} v^a)$.

$$(\dot{p}_a - C^b_{a,c} p_b v^c) \epsilon^a + p_a \, dv^a = \left(A^j_a \frac{\partial L}{\partial x^i} \right) \epsilon^a + \frac{\partial L}{\partial v^a} \, dv^a$$

Uguagliando le componenti si ottengono le equazioni:

$$dv^{a} : p_{a} = \frac{\partial L}{\partial v^{a}}$$

$$\epsilon^{a} : \dot{p}_{a} = C_{ac}^{b} p_{b} v^{c} + A_{a}^{j} \frac{\partial L}{\partial x^{j}}$$

Eliminando i quasi-momenti:

equazioni Eulero-Poincarè

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial v^a} = C^b_{ac}\frac{\partial L}{\partial v^b}v^c + A^j_a\frac{\partial L}{\partial x^j}$$

Lagrangiane invarianti

Nell'ipotesi suplementare :

$$\frac{\partial L}{\partial x^j}(x, v) = 0$$

Le equazioni EP si riducono alla forma:

$$\dot{p}_a = C_{ac}^b p_b v^c$$

Nel caso il gruppo considerato fosse quello delle rotazioni si giunge in questo modo alle *Equazioni di Eulero* per il corpo rigido.

Interpretazione geometrica

