DESSIN D'ENFANT: AN INTRODUCTION

XIAOXIANG ZHOU

ABSTRACT. In this talk, we will talk about the relation between Belyi map and dessin d'enfant, and than extract imformations from the dessin.

Contents: section 4.1-4.3 and some examples from section 4.6.

Last time, we talked about the Belyi's Theorem:

Theorem 0.1 (Thm 3.1). Let S be a cpt RS, then S is defined over \mathbb{Q} iff S admits a Belyi fct.

This time, we talked a specific Belyi fct (ramified at $0, 1, \infty$), and

- combine it with a kind of special graph (on S);
- extract information from this graph.

A black box is useful for us to familiar with Belyi fct (But not actually used in this talk):

Prop 3.34: Belyi fcts are defined over
$$\bar{\mathbb{Q}}$$
.

Remark 0.2. We can talk about the Galois group $Gal(\bar{\mathbb{Q}}/\mathbb{Q})$ acts on $\{S \longrightarrow \mathbb{P}^1\}$.

Example 0.3. When $S = \mathbb{P}^1$, then an Belyi fct f(z) is an rational fct with coefficient in $\bar{\mathbb{Q}}$ such that f maps any zero or pole of f'(z) to $0,1,\infty$. In short,

- 1. $f(z) \in \overline{\mathbb{Q}}(z)$;
- 2. For any z_0 such that $f'(z_0) = 0$ or ∞ , $f(z_0) = 0, 1$ or ∞ .

For example,

- $f(z) = z^n$; $f(z) = -\frac{256}{27}z^3(z-1)$;
- $f(z) = \frac{3+i}{5}z^3(z-1)^2\left(z-\frac{4}{25}(4+3i)\right);$
- $f(z) = \frac{4}{27} \frac{(1-z+z^2)^3}{z^2(z-1)^2};$ $f(z) = C \frac{z^4(z-1)^2}{z + \frac{9+2\sqrt{10}}{18}}.$
 - 1. What is a dessin d'enfants? / Quel est un dessin d'enfants?

We postponed the abstract definition of the dessin d'enfant. A better question: How to draw a dessin d'enfants from a Belyi fct?

Proposition 1.1.

the graph D is drawed on the RS S;

D is bicolored;

 $X \setminus D$ is union of finitely many topo discs;

D is connected.

Abstractly, we have the following concept:

Definition 1.2 (Def 4.1). A dessin d'enfant, or simply a dessin, is a pair (X, \mathcal{D}) where X is an oriented compact topological surface, and $\mathcal{D} \subset X$ is a finite graph such that:

- (i) \mathcal{D} is connected.
- (ii) \mathcal{D} is bicoloured, i.e. the vertices have been given either white or black colour and vertices connected by an edge have different colours.
- (iii) $X \setminus \mathcal{D}$ is the union of finitely many topological discs, which we call faces of \mathcal{D} .

Example 1.3. example pictures

Proposition 1.4 (Prop 4.20).

Example 1.5. example pictures

Remark 1.6. Belyi maps have some kind of rigid: they're decided by dessins (be viewed as skeleton of Belyi fcts)

Proof of Prop. 1. Given a pair (X, D), we need

- give a RS structure of X;
- give a fct $f: X \longrightarrow \mathbb{P}^1$.

f gives a RS structure of X (Riemann extension)

2. compability

3.

$$(S, f) \to (S, D_f) \to (S, f_{D_f})$$
 $(S, f) \sim (S, f_{D_f})$?
 $(X, D) \to (X_D, f_D) \to (X_D, D_{f_D})$ $(X, D) \sim (X_D, D_{f_D})$?

2. Extract informations from the correspondence

$\{ \mathrm{Belyi\ fct} \} / \sim$	$\{Dessin d'enfants\}/\sim$
$\#f^{-1}(0) + \#f^{-1}(1)$	v
$\#f^{-1}(\infty)$	f
$\deg f$	e
2-2g(S)	v+f-e
Ram index of $x \in f^{-1}(0)$	# black dots adjecent to x
Ram index of $x \in f^{-1}(1)$	# white dots adjecent to x
Ram index of $x \in f^{-1}(\infty)$	$\frac{1}{2}$ # sides of face

Table 1: Correspondence

2.1. basic information.

$\overline{\text{Belyi fct}}/\sim$	${\rm [Dessin\ d'enfants]/\sim}$	${\rm \{perm\ rep\ pair\}/\sim}$
$\#f^{-1}(0)$	# {white dots}	$\# \{ \text{cycles of } \sigma_0 \}$
$\#f^{-1}(1)$	# {black dots}	$\# \{ \text{cycles of } \sigma_1 \}$
$\#f^{-1}(\infty)$	f	$\# \{ \text{cycles of } \sigma_1 \sigma_0 \}$
$\deg f$	e	$N = \# \{ \text{ cycles of } Id \}$
2-2g(S)	v + f - e	$\#\{\ldots\sigma_0\}+\#\{\ldots\sigma_1\}+\#\{\ldots\sigma_1\sigma_0\}-N$
Ram index of $x \in f^{-1}(0)$	$\#$ {black dots adjacent to x }	length of a cycle on σ_0
Ram index of $x \in f^{-1}(1)$	$\#$ {white dots adjacent to x }	length of a cycle on σ_1
Ram index of $x \in f^{-1}(\infty)$	$\frac{1}{2}$ # {sides of face}	length of a cycle on $\sigma_0\sigma_1$

2.2. monodromy.

2.3. Galois action.

2.4. construct new from old. School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, P.R. China,

Email address: email:xx352229@mail.ustc.edu.cn