

Endoscopy Image Processing & Classification

Sujal, Al20BTECH11020

Artificial Intellegince

Indian Institute of Technology Hyderabad, Telangana, India

Table of Content

- Introduction
- Dataset
- Pre-processing
- Model Implementation
- Training
- Results
- Conclusion
- References

INTRODUCTION

- Diagnosing gastrointestinal diseases of images taken with the Wireless Capsule Endoscopy (WCE) method.
- Capture visual images of the GI tract.
- The classification of images taken using the WCE method, into four classes: polyps, ulcerative colitis, esophagitis, and normal
- Comparing EfficientNetB2 Model & InceptionNetv3 Model.

Dataset

Table 1. Dataset specifications.

Raw samples	Class	Train	Validation	Test	Total
	Normal	800	500	200	1500
	Ulcer	800	500	200	1500
	Polyps	800	500	200	1500
	Esophagitis	800	500	200	1500
Total		3,200	2,000	800	6,000

Dataset size: 1.2GB

Figure 2. Gastrointestinal conditions: polyp (a), ulcerative colitis (b), esophagitis (c), healthy gastrointestinal tract (d)

Pre-processing by using Keras' "ImageDataGenerator"

- Images are resized to 224 x 224 x 3 pixels.
- train(53.3%), validate(33.3%) and test(13.3%) images.

Augmentation	Value	
Horizontal flip	True	
Rotation Range	15	
Shear Range	0.2	
Zoom Range	0.2	
Height shift	0.1	
Width shift	0.1	

Model Implementation

- Using transfer learning by using pre-trained models on ImageNet.
- InceptionNetv3 and EfficientNetB2 to extract features from an image.
- Use the Adam optimizer due to it converge faster and more efficiently.
- Record all metrics like accuracy, Precision, Recall and AUC at each epoch.

InceptionNet Vs EfficientNet

ayer (type)	Output Shape	Param #
inception_v3 (Functional)	(None, 5, 5, 2048)	21802784
flatten (Flatten)	(None, 51200)	0
dense (Dense)	(None, 512)	26214912
batch_normalization_94 (Bat chNormalization)	(None, 512)	2048
gaussian_noise (GaussianNoi se)	(None, 512)	0
dropout (Dropout)	(None, 512)	0
dense_1 (Dense)	(None, 4)	2052
Total params: 48,021,796 Trainable params: 26,217,988 Non-trainable params: 21,803	, 808	

Model: "sequential"				
Layer (type)	Output Shape	Param # 		
efficientnetb2 (Functional)	(None, 7, 7, 1408)	7768569		
gaussian_noise (GaussianNoi se)	(None, 7, 7, 1408)			
global_average_pooling2d (G lobalAveragePooling2D)	(None, 1408)			
dense (Dense)	(None, 256)	360704		
batch_normalization (BatchN ormalization)	(None, 256)	1024		
gaussian_noise_1 (GaussianN oise)	(None, 256)			
dropout (Dropout)	(None, 256)			
dense_1 (Dense)	(None, 4)	1028		
Total params: 8,131,325				
Trainable params: 362,244				
Non-trainable params: 7,769,081				

Training:

InceptionNetV3 epochs: 40

EfficientNetB2 epoch: 20

Results using Test data

	precision	recall	f1-score
normal cells	0.70	0.97	0.81
ulcerative colitis cells	0.79	0.62	0.70
polyps cells	0.75	0.66	0.70
esophagitis cells	0.96	0.91	0.94
Average	0.80	0.79	0.79

Table 2. Classification Report of inceptionV3 model on Test data

Table 3. Classification Report of EfficientNetB2 model on Test data

Conclusion

- EfficientNetB2 with an accuracy of 94%, perform better than InceptionNetV3, with an accuracy of 79%.
- InceptionNetv3 uses a combination of convolutional layers, max-pooling layers, and fully connected layers.
- EfficientNetB2 uses a compound scaling method to balance the network's depth, width, and resolution.
- EfficientNetB2 requires less training time than InceptionNetv3 due to its efficient architecture and compound scaling method.
- EfficientNetB2 has a smaller model size compared to InceptionNetv3, making it easier to deploy on resource-constrained devices.

References

- KVASIR Dataset: https://dl.acm.org/doi/abs/10.1145/3083187.3083212
- Diagnosing gastrointestinal diseases from endoscopy images through a multifused CNN: https://www.sciencedirect.com/science/article/pii/S1746809422002051
- Endoscopic Image Classification Based on Explainable Deep Learning
 https://www.mdpi.com/1424-8220/23/6/3176
- Transfer Learning using Tensorflow: https://www.tensorflow.org/guide/keras/transfer_learning
- InceptionV3: https://www.tensorflow.org/api_docs/python/tf/keras/applications/inception_v3/Inception V3
- EfficientNetV2: https://www.tensorflow.org/api_docs/python/tf/keras/applications/efficientnet_v2/Efficient NetV2L

