新普惠自动气象站通讯协议

V20160307

景

— .	协议特性	2
	协议说明	
	XPH 通讯协议	
	(1).XPH 通用帧格式	
	(2).XPH 协议通讯码	
	(3).XPH 通讯协议详细说明	
	(4).继电器控制相关说明	
2.	标准 MODBUS 通讯协议	
	(1).获取 16 通道数据	
	(2).获取单独通道数据	
Ш	附录	
	RC16 校验码的计算	
	i道数据转换	
	≥~~>^ #H TX #/X···································	

一. 协议特性

- 1、支持 XPH 通讯、标准 MODBUS 通讯两种格式。
- 2、支持 RS-232、RS-485 通讯总线。
- 3、支持9600波特率,特殊版本可达38400.
- 4、支持最大设备数254个。
- 5、数据帧最小间隔 300ms 以上。
- 6、使用 CRC16 数据帧错误检查,多项式码 0xA001。

二.协议说明

新普惠气象站支持两种格式的通讯协议工作,任一时刻只能使用一种通讯协议进行通讯。 下面分别对两种通讯协议进行详细说明。

1. XPH 通讯协议

通讯参数:波特率 9600 数据位 8位 无校验位

XPH 通讯协议是效仿标准 MODBUS 通讯的一个自定义版本,其并不兼容 MODBUS 通讯协议。 其特点是召唤式工作,气象站仅作为服务器,使用上位机客户端进行通讯。气象站收到正确 数据帧后,就回复相应的内容,无效数据帧则不回复任何内容。不回复是便于多台气象站进 行 485 总线组网,避免数据通讯冲突。

(1).XPH 通用帧格式

序号	内容	字节数	说明	备注
1	地址域	1	气象站通讯地址	唯一
2	读写域	1	读(0x03)/写(0x10)操作码	2选1
3	命令域	2	命令码,前1字节必须为0	00 xx
4	数据长度域	2	数据域长度,不包括本域	发送时可无
5	数据域	N	数据	
6	校验域	2	CRC16 检验码	低前高后

(2).XPH 协议通讯码

序号	命令码	含义	类型	备注
1	0x00	实时环境参数数据	通用类型	仅读
2	0x20	系统参数配置	通用类型	读写
3	0x37	读历史数据	通用类型	仅读
4	0x38	历史数据重读	通用类型	仅读
5	0x7A	手动控制命令		仅写
6	0x80	复位气象站	通用类型	仅写

(3).XPH 通讯协议详细说明

对于每条通讯命令码,进行收发过程的详细描述,假定气象站的地址为 0x01。返回的通道数据都以有符号16进制数表示,如通道1的数据(包括实时数和历史数据)为0x12 0x34,表示为十进制数即 4660(0x1234)。即数据字节的高位在前,低位在后,此顺序不能错,否则数据值将错误。

另外,对不不同的传感器类型,某些通道数据值需要表示 N 位小数,此时,该通道 16 位有符号数扩大 10 的 N 次方倍。如通道 1 表示风速,带一位小数,其数据为 0 x 00 0 x 7B (十进制 123),则实际风速为 12.3 m/s,即读取的数据扩大了 10 倍,其他小数以此类推。传感器精度参数详见说明书。

1>. 读气象站地址命令:

客户端发送: (4字节)

00 20 00 68 00 为广播地址,在地址未知的情况下也可以通讯

返回: (5字节) 00 20 Add CRC16

2>. 写气象站地址命令:

客户端发送: (7字节) 00 10 00 81 Add CRC16

例如发送:

00 10 00 81 01 81 50

返回: (5字节) 00 10 01 BD C0

3>. 读取实时环境数据

客户端发送: (6 字节) Add 03 00 00 CRC16 例如发送:

01 03 00 00 F1 D8 返回: (70 字节)

返回数据格式说明:

序号	含义	偏移	字节数	说明	备注
1	地址域	0	1	地址(0x01)	0x01
2	操作码	1	1	仅读(0x03)	0x03
3	数据长度域	2	2	0x00 0x40	高前低后
		4	2	通道1	0x7FFF(无效/未接)
		6	2	通道2	0x7FFF(无效/未接)
4	数据域	8	2	通道3	0x7FFF(无效/未接)
		10	2	通道4	0x7FFF(无效/未接)
		12	2	通道5	0x7FFF(无效/未接)

		1	T _a	17 1/4 o	0 = 000 (T) (1 15)
		14	2	通道 6	0x7FFF(无效/未接)
		16	2	通道7	0x7FFF(无效/未接)
		18	2	通道8	0x7FFF(无效/未接)
		20	2	通道 9	0x7FFF(无效/未接)
		22	2	通道 10	0x7FFF(无效/未接)
		24	2	通道 11	0x7FFF(无效/未接)
		26	2	通道 12	0x7FFF(无效/未接)
		28	2	通道 13	0x7FFF(无效/未接)
		30	2	通道 14	0x7FFF(无效/未接)
		32	2	通道 15	0x7FFF(无效/未接)
		34	2	通道 16	0x7FFF(无效/未接)
		36	1	继电器 1	01 打开/00 关闭
		37	1	继电器 2	01 打开/00 关闭
		38	1	继电器 3	01 打开/00 关闭
		39	1	继电器 4	01 打开/00 关闭
		40	1	继电器 5	01 打开/00 关闭
		41	1	继电器 6	01 打开/00 关闭
		42	1	继电器 7	01 打开/00 关闭
		43	1	继电器 8	01 打开/00 关闭
		44	1	继电器 9	01 打开/00 关闭
		45	1	继电器 10	01 打开/00 关闭
		46	1	继电器 11	01 打开/00 关闭
		47	1	继电器 12	01 打开/00 关闭
		48	1	继电器 13	01 打开/00 关闭
		49	1	继电器 14	01 打开/00 关闭
	继电器控制	50	1	继电器 15	01 打开/00 关闭
_		51	1	继电器 16	01 打开/00 关闭
5		52	1	继电器 17	01 打开/00 关闭
		53	1	继电器 18	01 打开/00 关闭
		54	1	继电器 19	01 打开/00 关闭
		55	1	继电器 20	01 打开/00 关闭
		56	1	继电器 21	01 打开/00 关闭
		57	1	继电器 22	01 打开/00 关闭
		58	1	继电器 23	01 打开/00 关闭
		59	1	继电器 24	01 打开/00 关闭
		60	1	继电器 25	01 打开/00 关闭
		61	1	继电器 26	01 打开/00 关闭
		62	1	继电器 27	01 打开/00 关闭
		63	1	继电器 28	01 打开/00 关闭
		64	1	继电器 29	01 打开/00 关闭
		65	1	继电器 30	01 打开/00 关闭
		66	1	继电器 31	01 打开/00 关闭
		67	1	继电器 32	01 打开/00 关闭

6 校验域 68 2	低前高后	0x6B 0xDA
------------	------	-----------

16 通道对应的配置出厂时定义,根据需要而定。

4>. 读取系统参数配置

客户端发送: (6 个字节) Add 03 00 20 CRC16

例如发送:

01 03 00 20 F0 00 返回: (14 字节)

01 03 00 08 0B 08 1F 0B 00 0A 01 01 98 E0

返回数据说明:

序号	含义	偏移	字节数	说明	备注
1	地址域	0	1	地址(0x01)	0x01
2	操作码	1	1	读(0x03)	0x03
3	数据长度域	2	2	0x00 0x08	高前低后
		3	1	年	0B(2011年)
		4	1	月	08(8月)
		5	1	E	1F (31 日)
4	数据域	6	1	时	0B(12 点/24 小时制)
4		7	1	分	00(00分钟)
		8	1	存储间隔	10(分钟)
		9	1	语言类型 0/1	1-英语/0-中文
		10	1	设备地址	01 (0x01-0xFE)
5	校验域	11	2	低前高后	0x98 0xE0

存储间隔:即历史数据保存的间隔,单位为:分钟

设备地址:设置范围 0-254,

0 为广播地址,一般不要随便使用,主要用于组网或多播;

1-254 为正常设备地址,同一总线上必须保证唯一;

若无返回数据,则说明读取不成功。

5>. 读取采集仪用户 ID

客户端发送: (8字节)

Add 03 00 60 00 04 CRC16

返回: Add 03 00 60 xx xx xx xx CRC16 例如发送: 01 03 00 60 00 04 44 17

返回: (12字节)

01 03 00 60 00 04 **OE** 06 **OC O1** 82 DD

返回数据说明:

序号	含义	偏移	字节数	说明	备注
1	地址域	0	1	地址(0x01)	0x01
2	操作码	1	1	读(0x03)	0x03
3	命令码	2	2	0x00 0x60	高前低后

4	数据长度	4	2	0x00 0x04	表示返回的有效数据是4个字节
5 设备编号	C	4	0x0E 0x06	即十进制 14 06 12 01,拼接而成	
9	以甘州与	O	4	0x0C 0x01	就是 14061201
6	CRC16	10	2	0x82 0xDD	低前高后

6>. 写采集仪 ID 命令:

客户端发送: (12字节)

Add 10 00 60 00 04 xx xx xx xx CRC16

返回: Add 10 00 60 00 04 CRC16

例如发送:

01 10 00 60 00 04 0F 09 18 01 65 12

返回: (8字节)

01 10 00 60 00 04 C1 D4

发送数据说明:

序号	含义	偏移	字节数	说明	备注
1	地址域	0	1	地址(0x01)	0x01
2	操作码	1	1	写 (0x10)	0x10
3	命令码	2	2	0x00 0x60	高前低后
4	数据长度	4	2	0x00 0x04	表示要发送 4 个字节的数据
_	要写入的设	C	4	0x0F 0x09	即 10 进制 15 09 24 01,即写
5	备编号	6	4	0x18 0x01	入的设备编号为 15092401
6	CRC16	10	2	0x65 0x12	低前高后

7>. 写入系统参数配置

客户端发送: (17字节)

Add 10 00 20 00 04 XX XX XX XX XX XX XX XX CRC16

例如发送:

01 10 00 20 00 04 08 0B 08 1F 0B 00 10 00 01 98 1D

返回: (8个字节)

01 10 00 20 00 04 C0 00

发送数据说明:

序号	含义	偏移	字节数	说明	备注
1	地址域	0	1	地址(0x01)	0x01
2	操作码	1	1	写(0x10)	0x10
3	命令码	2	2	0x00 0x20	高前低后
4	寄存器数量	4	2	0x00 0x04	高前低后
5	数据长度	6	1	0x08	8个数据字节
	数据域	7	1	0B	0B(2011年)
6		8	1	08	08(8月)
0		9	1	1F	1F (31 日)
		10	1	0B	0B(12点/24小时制)

		11	1	00	00(00分钟)
		12	1	10	存储间隔 16(分钟)
		13	1	00	1-英语/0-中文
		14	1	01	地址
5	校验域	15	2	0x98 0x1D	低前高后

寄存器数量:该域无意义,保留该域为了向前兼容,请尽量使用说明的数值;数据域最后一个字节,目前为设备地址设置,之前的通讯版本选择为保留,故在 20110831 之后都要小心设置。最好是先读取系统参数,然后使用读取的设备地址填充该字节。若无返回数据,则说明写入不成功,否则写入成功。

8>. 读取历史数据

客户端发送: (6个字节)

01 03 00 37 B0 0E

气象站返回: (1044 个字节)

01 03 04 0E 00 1C D0~DN CRC16

返回数据说明:

序号	含义	偏移	字节数	说明	备注
1	地址域	0	1	地址(0x01)	0x01
2	操作码	1	1	读(0x03)	0x03
3	数据长度	2	2	0x04 0x0E	高前低后
4	有效数据帧数	4	2	0x00 0x1C	高前低后
5	数据域	6	1036	历史数据包	分成N帧
6	校验域	1042	2	低前高后	CRC16 低前高后

数据长度域:为"有效数据帧数"和"数据域"两个域字节总和。

数据域: 固定大小为 1036 个字节, 每帧 37 字节, 故最大有效帧 1036/37=28 帧。

有效数据帧数:由于历史数据包是等长的,该域指示数据域中包含的有效帧数,有效帧从数据域的 0 位置开始,顺序往后排列。最大有效帧为 28 帧。

历史数据帧说明: (37字节)

序号	偏移	字节数	说明
1	0	1	年(2000年以后的偏移)
2	1	1	月
3	2	1	田
4	3	1	时(24 小时制)
5	4	1	分钟
	5	2	通道 1
	7	2	通道 2
16 通	9	2	通道 3
道数	11	2	通道 4
据值	13	2	通道 5
	15	2	通道 6
	17	2	通道 7

19	2	通道 8
21	2	通道 9
23	2	通道 10
25	2	通道 11
27	2	通道 12
29	2	通道 13
31	2	通道 14
33	2	通道 15
35	2	通道 16

9>. 重读历史数据

客户端发送:

01 03 00 38 F0 0A

返回:

返回数据与"[D]读取历史数据"返回数据格式相同。

说明:

由于远程数据读取时,且历史数据包比较大,可能会发生数据错误。就可能造成读取的历史数据在传输过程中出错,从而导致某些上位机接口程序误判读取历史数据错误。而气象站一旦读取了历史数据后不能重读的话,就会造成某包历史数据丢失的现象。重读历史数据命令用于重复读取上一次读取的历史数据,从而解决错误丢失历史问题。

10>. 读取登录密码(该命令需额外支持, 默认不支持)

客户端发送: (8个字节) 01 03 00 61 00 04 15 D7

返回: (12 个字节)

01 03 00 61 00 04 XX XX XX XX CRC16

返回数据说明:

序号	含义	偏移	字节数	说明	备注	
1	地址域	0	1	地址(0x01)	0x01	
2	操作码	1	1	读(0x03)	0x03	
3	命令码	2	2	0x00 0x61	高前低后	
4	数据长度域	4	2	0x00 0x04	高前低后	
5	数据域	6	4	4 位密码数据	从左到右	
6	校验域	10	2	低前高后	CRC16 低前高后	

数据域: 4 位 ASCII 码表示的密码,每位的范围 0-9,即 0x30-0x39。数据域 0-3 字节对应 界面输入的左-右顺序。

11>. 写入登录密码(该命令需额外支持, 默认不支持)

客户端发送: (12字节)

01 10 00 61 00 04 XX XX XX XX CRC16

返回: (8个字节)

01 10 00 61 00 04 CRC16

写入数据说明:

数据域: 4 位 ASCII 码表示的密码,每位的范围 0-9,即 0x30-0x39。数据域 0-3 字节对应界面输入的左-右顺序。

12>. 将气象站通讯协议切换成 Modbus 协议

客户端发送: (4字节)

00 50 01 8C 返回: (4 个字节)

00 50 01 8C

13>. 复位气象站(气象站会切换成 XPH 协议)

客户端发送: (4字节)

01 80 01 80 气象站无返回.

14>. 读取电源信息/GPRS 信号

发送: Add 03 00 21 CRC16

回复: Add 03 00 06 xx xx xx xx xx xx xx CRC16

例如: 01 03 00 21 31 CO

回复: 01 03 00 06 00 00 00 00 00 00 53 32

第 5 位开始 $\underline{00}$ $\underline{00}$ $\underline{00}$ $\underline{00}$ $\underline{00}$ $\underline{00}$ $\underline{00}$ $\underline{00}$ 依次为电源电压,电量百分比,GPRS 信号强度,都是两个字节高前低后,电压除以 $\underline{1000}$,即保留 $\underline{3}$ 位小数,以 \underline{V} 为单位,例如 $\underline{12}$. $\underline{353V}$,电量百分比为整数例如 $\underline{95\%}$,GPRS 信号为整数.

15>. 切换电源工作模式 切换省电模式

发送:Add 10 00 23 00 CRC16 回复:Add 10 00 23 00 CRC16 00表示省电模式

切换常规模式

发送:Add 10 00 23 01 CRC16 回复:Add 10 00 23 01 CRC16 01 表示非省电模式

(4).继电器控制相关说明

注:继电器需要硬件支持。

1>. 写继电器控制

发送:

Add 10 00 7A XX(写继电器起始位置, 一个字节) XX(写继电器个数, 一个字节,01表示为1个) XX(要写的状态, 一个字节,00表示关01表示开) CRC16

例如: Add 10 00 7A XX XX XX CRC16(9个字节)

返回:

Add 10 00 7A XX(第几个继电器, 一个字节) XX(继电器开关状态 00 表示断开 01 表示闭合) CRC16

例如: Add 10 00 7A XX XX CRC16(8 个字节) 默认地址是1则控制32个继电器发送如下命令:

打开第一个继电器

发送:01 10 00 7A 00 01 01 D0 18 返回:01 10 00 7A 00 01 20 10 关闭第一个继电器 01 10 00 7A 00 01 00 11 D8

打开第二个继电器

发送:01 10 00 7A 01 01 01 81 D8 返回:01 10 00 7A 01 01 21 80 关闭第二个继电器 发送:01 10 00 7A 01 01 00 40 18

发送:01 10 00 7A 01 01 00 40 18 返回:01 10 00 7A 01 00 E0 40

打开第三个继电器

发送:01 10 00 7A 02 01 01 71 D8 返回:01 10 00 7A 02 01 21 70 关闭第三个继电器 发送:01 10 00 7A 02 01 00 B0 18 返回:01 10 00 7A 02 00 E0 B0

打开第四个继电器

发送:01 10 00 7A 03 01 01 20 18 返回:01 10 00 7A 03 01 20 E0 关闭第四个继电器

发送:01 10 00 7A 03 01 00 E1 D8 返回:01 10 00 7A 03 00 E1 20

打开第五个继电器

发送:01 10 00 7A 04 01 01 91 D9 返回:01 10 00 7A 04 01 22 D0 关闭第五个继电器

发送:01 10 00 7A 04 01 00 50 19 返回:01 10 00 7A 04 00 E3 10

其他依此类推.

2>. 写继电器打开持续时间

打开持续时间:即打开继电器之后持续 XX 秒之后自动关闭,防止气象站无法通信的时候强电设备持续长时间运行,默认为 0xFFFF,即 65535 秒。

客户端发送:

Add 10 00 80 XX(继电器起始号, 1 个字节) XX(继电器个数, 1 个字节) XX XX…..(数据, 每个继电器 2 个字节) CRC

例如:

设置继电器 1 打开持续时间为 60 秒, 即发送:

01 10 00 80 00 01 00 3C C0 09

说明: 16 进制 0x003C 即 10 进制 60, 即持续时间为 60 秒。

返回:

01 10 00 80 01 BD

3>. 读继电器闭合持续时间

客户端发送:

Add 03 00 80 XX(继电器起始号) XX (继电器个数) CRC16

返回:

01 03 00 80 XX (返回字节数) XX XX…. (数据,每个继电器 2 个字节) CRC16

例如:

发送: 01 03 00 80 00 01 85 E2 返回: 01 03 00 80 02 00 3C 83 E2

2.标准 MODBUS 通讯协议

通讯参数:波特率9600 数据位8位 无校验位

气象站标准 MODBUS 通讯协议使用 RTU 模式。消息帧发送至少要以 3.5 个字符时间的停顿间隔开始,即在传输完每帧的最后一个字节,至少需要 3.5 个字符时间的停顿来标定消息帧的结束。下一个新的消息帧可在此停顿后开始,整个消息帧必须作为一连续的流传输。

气象站标准 MODBUS 通讯协议仅支持读功能,不支持配置气象站寄存器的功能,即不能写入任何数据。其特点有:

- ①气象站共有 16 个通道寄存器,对应 16 个通道的传感器测量输出值;
- ②寄存器最小编号固定于0,最大编号固定于15,不可更改;
- ③支持一次读取单个、多个(寄存器编号必须连续)寄存器;
- ④每一通道数据占2个字节,高字节在前,低字节在后,16位有符号整形值;
- ⑤数据小数位定义,同 XPH 协议的小数定义,即 N 位小数,数据值扩大 10 的 N 次方倍。

气象站标准 MODBUS 通讯协议

(1).获取 16 通道数据

发送: Add 03 00 00 00 10 CRC16 例如: 01 03 00 00 00 10 44 06

户 旦	含义	伯級	一字世點	1H HH
序号	省 入	││││││││││	字节数	说明

1	设备地址	0	1	设备唯一标识
2	操作码(读)	1	1	固定值 0x03
3	寄存器起始编号	2	2	读取的第一个寄存器编号
4	寄存器个数	4	2	读取寄存器个数
5	CRC16 检验	6	2	低前高后

设备地址:假定为0x01,有效范围0-254,0为广播地址。操作码:固定为0x03,即读取操作,不支持其他操作。 起始编号:范围0-15,表示要读取的第一个寄存器编号。

寄存器个数: 范围 1-16

气象站返回数据帧:

如 01 03 20 7F FF 7F FF

序号	含义	偏移	字节数	说明
1	设备地址	0	1	设备唯一标识
2	操作码(读)	1	1	固定值 0x03
3	数据长度	2	1	不含本字节
4	数据域	3	N	最多 32 个字节
5	CRC16 检验	3+N	2	低前高后

数据长度:不含本身,仅表示数据域的字节数量。最大32,最小0。

根据读取指令序列的"起始编号"和"结束编号"来确定。

数据长度 = (结束编号 - 起始编号)*2

(2).获取单独通道数据

序号	地址	字节数	说明
	40001	2	通道1 (风速)
	40002	2	通道2(雨量)
	40003	2	通道3(温度)
	40004	2	通道4(气压)
	40005	2	通道 5
	40006	2	通道6(辐射)
16 通	40007	2	通道7(风向)
道数	40008	2	通道 8
据值	40009	2	通道9(湿度)
加且	40010	2	通道 10
	40011	2	通道 11
	40012	2	通道 12
	40013	2	通道 13
	40014	2	通道 14
	40015	2	通道 15
	40016	2	通道 16

注: 其他通道未配置读出来为 OX7FFF, 数据为高前低后。

如读取通道3(温度)数据:

发送: 01 03 00 02 00 01 25 CA

返回: 01 03 02 7F FF D8 34

7F FF 表示未接传感器。

四.附录

1.CRC16 校验码的计算

- (1). 预置 1 个 16 位的寄存器为十六进制 FFFF (即全为 1), 称此寄存器为 CRC 寄存器;
- (2). 把第一个8位二进制数据(既通讯信息帧的第一个字节)与16位的CRC寄存器的低8位相异或,把结果放于CRC寄存器;
- (3). 把 CRC 寄存器的内容右移一位(朝低位)用 0 填补最高位,并检查右移后的移出位;
- (4). 如果移出位为 0: 重复第 3 步 (再次右移一位); 如果移出位为 1: CRC 寄存器与多项式 A001 (1010 0000 0000 0001) 进行异或;
- (5). 重复步骤3和4,直到右移8次,这样整个8位数据全部进行了处理;
- (6). 重复步骤 2 到步骤 5, 进行通讯信息帧下一个字节的处理;
- (7). 将该通讯信息帧所有字节按上述步骤计算完成后,得到的16位CRC寄存器的高、低字节进行交换;
- (8). 最后得到的 CRC 寄存器内容即为 CRC16 码。(注意得到的 CRC 码即为低前高后顺序)

```
附 CRC16 计算代码:
```

```
u16 CRC16 (u8 * p, u16 datalen)
unsigned char CRC16Lo, CRC16Hi,CL,CH,SaveHi,SaveLo;
int i,Flag;
CRC16Lo = 0xFF;
     CRC16Hi = 0xFF;
CL = 0x01;
     CH = 0xA0;
for(i=0;i<datalen;i++)</pre>
    CRC16Lo ^=*(p+i);
                                      //每一个数据与 CRC 寄存器进行异或
    for(Flag=0;Flag<8;Flag++)
       SaveHi = CRC16Hi;
       SaveLo = CRC16Lo;
       CRC16Hi >>= 1;
       CRC16Lo >>= 1;
                                     //高位右移一位,低位右移一位
       if ((SaveHi & 0x01) == 0x01)
                                     //如果高位字节最后一位为 1
         CRC16Lo |=0x80;
                                     //则低位字节右移后前面补 1 否则自动补 0
```

2.通道数据转换

例如温度十六进制编码为"00 C3",换算成二进制为"0000000 11000011",其二进制的第一位为"0",所以它的值为正数,换算出十进制值"195",最后将它除以10后得到最终结果"19.5"。

又例如温度十六进制编码为"FF 3D",换算成二进制为"11111111 00111101",其二进制的第一位为"1",所以它的值为负数。

其具体换算步骤如下:

- (1) 将其二进制的的第一位替换为"0" 得到:"01111111 00111101"
- (2) 后 15 位取反后得到: "00000000 11000010"
- (3) 加上"1"后得到:"00000000 11000011"
- (4) 按照 1 中的正数表示方法得到十进制值"195"
- (5) 因为是负值所以为"-195"
- (6) 结果除以 10, 最终结果为"-19.5"

所以: 00 C3 → 19.5℃ FF 3D → -19.5℃