Langevin equation:

$$\lambda \frac{dx}{dt} = -\frac{2V(x)}{2x} + 1(t) \qquad (1)$$

where Xt is the position of a particle in a potential VIXI and 1(t) is a noise term

(1) is also written as:

We: Brownian motion.

(stendy-state distribution)

It can shown that the SDE in (2) has a unique invariant measure that closs not change along the trajectory (Xt) of the particle. This means that if Xo is distributed according to Some pdf Pao, then Xt is also distributed according to Pao for all $t \ge 0$. If we set the potential V s.t. Pao = TI, then we can simulate the SDE (2) to generate samples from TI.

Choosing the potential:

By Fokker Plank eqn, the prob density of
$$X_t$$
 in (1) satisfies
$$\frac{\partial p(x,t)}{\partial t} = \frac{\partial}{\partial x} \left[\frac{\partial V(x)}{\partial x} p(x,t) \right] + \frac{\partial^2 p(x,t)}{\partial x^2}$$
(3)

The steady-state solution for (3) is given by 3P1xt1 = 0

If Po is the steady-state distribution, we have

=> J(x) is a constant. Since Pax(x) and 2 Pax(x) must satisfy certain boundary conditions

=> Boundary condition: J(x)=0 at infinity

(4) represents a Gibbs distribution. This means we can sample from energy-based models of the form $T(x) = \exp\{-E(x)\}/Z$ by setting $V(x) = E(x)$. We can also write $T(x)$ as $\exp[LlegT(x)]$, which means that we can set $V(x) = -legT(x)$
=) dX= √log∏(x) dt + TEdWe.