

Logikk og vitenskapsteori

- Logikk og argumentasjon
- Vitenskapelige idealer, forklaringsmodeller og metoder
- Verifikasjon og falsifikasjon
- Vitenskap og kvasi-vitenskap (Logisk positivisme, Popper)
- Vitenskapelig fremgang og paradigmer (Kuhn)
- Naturvitenskap, humanvitenskap og samfunnsvitenskap

- Logikk: læren om gyldige argumenter (gyldige slutninger)
 - Hva er et argument?
 - Logisk gyldighet og holdbarhet
 - Utsagnslogikk og predikatlogikk

- Et *argument* er en serie utsagn fremsatt som belegg for sannheten av et annet utsagn.
 - Den første gruppen (serien): premissene
 - Det andre: konklusjonen

```
P1
P2
...
<u>Pn</u>
altså, K
```


- Eksempler på argumenter:
 - (1) Alle menn er dødelige <u>Sokrates er en mann</u> Sokrates er dødelig
 - (2) <u>Alle ravner vi har observert, har vært sorte</u>
 Alle ravner er sorte
 - (3) Hvis Jorden er flat, så er Erna Solberg statsminister <u>Jorden er flat</u> Erna Solberg er statsminister
 - (4) Alle katter er rovdyr <u>Fifi er et rovdyr</u> Fifi er en katt

- Ikke alle argumenter er *gode* argumenter!
 - Et argument kan feile av to grunner
 - Ugyldig form
 - Usanne premisser

- Logisk gyldighet og holdbarhet:
 - Et argument er logisk gyldig hvis og bare hvis det er logisk følge fra premissene til konklusjonen – dvs: hvis premissene er sanne så må konklusjonen være sann.
 - Angår argumentets *form*, dvs forholdet mellom premissene og konklusjonen.
 - Angår ikke om premissene, eller konklusjonen, er sanne.
 - Et argument er holdbart hvis og bare hvis det er logisk gyldig og alle premissene er sanne.

- Utsagnslogikk (= påstandslogikk, setningslogikk):
 - Dreier seg om slutninger som er gyldige pga at premissene og konklusjonen består av hele setninger og utrykk som «ikke», «eller», «og», «hvis...så».
 - Utsagn: P, Q, R, S, ...
 - Konnektiver: ~ (ikke); V (eller); & (og); → (hvis...så)

Hvis Jorden er flat, så er Erna Solberg statsminister Jorden er flat

Erna Solberg er statsminister

Hvis Jens Stoltenberg er norsk, så er han europeer <u>Jens Stoltenberg er norsk</u> Jens Stoltenberg er europeer

Begge argumentene har samme logisk form:

$$P \rightarrow Q$$
 (hvis P, så Q)
 P
 Q

Begge to er logisk gyldige

Men hva med dette argumentet?

```
Alle menn er dødelige
Sokrates er en mann
Sokrates er dødelig
```

• I utsagnslogikk har slutningen følgende form:

P

Q

R

Et mer komplekst logisk system kreves

- Predikatlogikk:
 - Individkonstanter: a, b, c, ...
 - Individvariabler: x, y, z, ...
 - Predikater: F, G, H, ...
 - Kvantorer:
 - $\forall x$: for enhver x
 - ∃x: det finnes en x slik at
 - (samme konnektiver som i utsagnslogikk)

Alle menn er dødelige Sokrates er en mann Sokrates er dødelig

I predikatlogikk:

```
\forall x \ (Fx \to Gx) (For enhver x: hvis x er en mann, så er x dødelig)

Fa (Sokrates er en mann)

Ga (Sokrates er dødelig)
```


Argumenttyper

- Deduktive argumenter: logiske gyldige (i utsagnslogikk, predikatlogikk, eller i et mer komplekst logisk system)
- Ikke-deduktive argumenter:
 - Induktive argumenter / induktive generaliseringer
 - Abduktive argumenter / argumenter ut fra den beste forklaring
 - Analogiargumenter

- Induktive argumenter / induktive generaliseringer:
 - Den enkleste typen: en slutning fra «noen» til «alle»:

Alle kjente tilfeller av A har vist seg å være B Alle A er B

Kan også ta en statistisk form, f eks:

80-90% av alle undersøkte tilfeller av lungekreft skyldes røyking

Røyking er årsak til lungekreft hos 80-90% av dem som har lungekreft

- Problemer med induksjon:
 - Humes induksjonsproblem
 - «Ravneparadokset»
 - «Grue»-paradokset

- Ravneparadokset (Carl Hempel 1945)
 - «Alle ravner er sorte»: $\forall x (Rx \rightarrow Sx)$
 - Vi styrker denne ved å observere en rekke ravner og så finne at disse faktisk er sorte
 - Men $\forall x$ (Rx \rightarrow Sx) er logisk ekvivalent med $\forall x$ (\sim Sx \rightarrow \sim Rx) (dvs «alle ikke-sorte ting er ikke-ravner)
 - Så vil enhver hvit svane, ethvert gult hus enhver ikke-sort ting som ikke er en ravn – støtte generaliseringen «alle ravner er sorte»

- «Grue»-paradokset (Nelson Goodman 1955)
 - «Grue» = noe er grue hvis og bare hvis det enten er grønt og observert før midnatt nyttårsaften år 2050 eller det er blått og blir observert etter midnatt nyttårsaften år 2050
 - All empirisk evidens som vi nå har tilgang til støtter generaliseringen

«alle smaragder er grue»

like mye som

«alle smaragder er grønne»

Abduksjon

- Abduktive argumenter / argumenter ut fra den beste forklaring
 - Man konkluderer med et utsagn som forklarer de fakta som beskrives i premissene
 - Eksempel:

Jeg har mistet nettforbindelsen Jeg har ikke endret noe på min datamaskin Det er et problem med universitets nettverk

Argumentet er ikke logisk gyldig

Abduksjon

- Abduksjon er viktig i formuleringen av vitenskapelige hypoteser
- Eksempel: oppdagelsen av elektronet:

As the cathode rays carry a charge of negative electricity, are deflected by an electrostatic force as if they were negatively electrified, and are acted on by a magnetic force in just the way in which this force would act on a negatively electrified body moving along the path of these rays, I can see no escape from the conclusion that they are charges of negative electricity carried by particles of matter. (Joseph John Thomson 1896)

Analogi

Analogiargument: argument på grunn av likhet:

A og B ligner på hverandre (begge har egenskapene P, Q, ...) A har egenskap R B har egenskap R

- Ikke logisk gyldig
- Analogiske argumenter ofte viktige i hverdagslivet
- Også i vitenskapen, i utvikling av hypoteser
 - F eks:
 - Lysstråler og strømmer av partikler
 - Lystråler og bølger
 - Atomen og solsystemet

Vitenskapsmodeller og -idealer

- Hvordan går man (og hvordan skal man gå) fra måleresultater og annen empirisk observasjon til formulering av naturlover?
- Det aksiomatisk-deduktive idealet (Platon, Aristoteles, Descartes) kan ikke gjøre rede for empirisk/eksperimentell naturvitenskapelig forskning.

Modeller og idealer

- Problemer med det aksiomatisk-deduktive idealet:
 - Hvor kommer aksiomene fra?
 - Hvordan gjøre rede for ny kunnskap?
- Det aksiomatisk-deduktive idealet ble gradvis erstattet av induktivisme og den hypotetiskdeduktive modellen

Induktivisme

- Induktivisme: en vitenskapelig lov, teori eller hypotese etableres simpelthen ved induktiv generalisering fra observasjon
 - Vi samler observasjoner og observerer at A og B opptrer sammen mange ganger → vi slutter at det (sannsynligvis) er en lovmessig sammenheng mellom A og B.

Induktivisme

- Problemer med induktivisme:
 - Hvordan vet vi hvilke faktorer som er relevante? Induktivisme forutsetter at man allerede har dannet forestilling om hva som er mulige årsaker.
 - Induktivismen forutsetter at at man kan observere de kausalt relevante variablene. Men vitenskapen danner ofte hypoteser om hittil uobserverte fenomener.
 - Induksjonsproblemene (Hume, Hempel, Goodman ...)

Den hypotetisk-deduktive metoden (HDM)

- Den hypotetisk-deduktive metoden («prøve og feile» -metoden)
 - 1) Formulering av hypotese H
 - Pga iakttagelser, gjetninger, abduktivt argument, analogiargument, intuisjon, ...
 - Deduksjon av observerbare konsekvenser O (prediksjoner) fra H
 - 3) Undersøkelse av hvorvidt O foreligger eller ikke
 - 4) Hvis O ikke foreligger, må H forkastes og erstattes med en annen; Hvis O foreligger, regnes hypotesen som styrket, og kan testes videre

HDM

- De observerbare konsekvensene O følger deduktivt fra hypotesen: hvis H er sann, vil O foreligge (H→O)
- Hypotesen testes ved observasjon:
 - Hvis O foreligger, styrkes, eller verifiseres H
 - Hvis O ikke foreligger, tilbakevises, eller falsifiseres H

HDM

- Verifisering og falsifisering
 - Verifisering:

- Ikke logisk gyldig, dvs O *beviser* ikke H, men bare *støtter* den.
- Falsifisering:

Logisk gyldig: ~O tilbakeviser H.

HDM

- Ifølge den hypotetisk-deduktive modellen er vitenskapelig kunnskap aldri sikker viten: observasjon kan ikke bevise en teori eller hypotese.
- En vellykket teori (en lov) kan brukes både til å forklare og forutsi heldelser i naturen:
 - Deduktiv-nomologisk forklaring: hendelse h skjedde fordi h kan deduseres fra en generell lov L og omstendighetene I.
 - Forutsigelse av nye hendelser gjennom deduksjon fra L og omstendighetene I (lov L blir også testet)