SOMMAIRE

UNIT:

Unit ID	Unit Name
0	BRU/CMP or AGU
1	LSU
2	ALU
3	VPU/PDIV

ADD: Addition

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source 2	Source 1	Size	ADD: 0x000	Unit
Register	Register	Register		0000 0000 00	
6 bits	6 bits	6 bits	2 bits	10 bits	2 bits

Operation : RD.size = RS1 + RS2

Latency: 3 cycles **Example:** add.w r0,r1,r2

SUB: Substraction

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source 2	Source 1	Size	SUB: 0x040	Unit
Register	Register	Register		0001 0000 00	
6 bits	6 bits	6 bits	2 bits	10 bits	2 bits

Operation: RD.size = RS1 - RS2

Latency: 3 cycles **Example:** sub.w r0,r1,r2

MULS: Multiplication Signed

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source 2	Source 1	Size	MULS: 0x080	Unit
Register	Register	Register		0010 0000 00	
6 bits	6 bits	6 bits	2 bits	10 bits	2 bits

Operation : RD.size = RS1 x RS2

Latency: 3/3/4/5 cycles **Example:** muls.w r0,r1,r2

MULU: Multiplication Unsigned

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source 2	Source 1	Size	MULU: 0xC00	Unit
Register	Register	Register		0011 0000 00	
6 bits	6 bits	6 bits	2 bits	10 bits	2 bits

Operation : RD.size = RS1 x RS2

Latency: 3/3/4/5 cycles **Example:** mulu.w r0,r1,r2

DIVS: Division Signed

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source 2	Source 1	Size	DIVS: 0x100	Unit
Register	Register	Register		0100 0000 00	
6 bits	6 bits	6 bits	2 bits	10 bits	2 bits

Operation : RD.size = RS1 / RS2

Latency: 3/3/5/10 cycles **Example:** divs.l r0,r1,r2

DIVU: Division Unsigned

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source 2	Source 1	Size	DIVU: 0x140	Unit
Register	Register	Register		0101 0000 00	
6 bits	6 bits	6 bits	2 bits	10 bits	2 bits

Operation : RD.size = RS1 / RS2

Latency: 3/3/5/10 cycles **Example:** divu.b r0,r1,r2

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination Register	Source 2 Register	Source 1 Register	Size	AND: 0x180 0110 0000 00	Unit
register	register	register		0110 0000 00	
6 bits	6 bits	6 bits	2 bits	10 bits	2 bits

Operation: RD.size = RS1 & RS2

Latency: 3 cycles **Example:** and.b r0,r1,r2

OR: Or

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source 2	Source 1	Size	OR: 0x1C0	Unit
Register	Register	Register		0111 0000 00	
6 bits	6 bits	6 bits	2 bits	10 bits	2 bits

Operation : RD.size = RS1 | RS2

Latency: 3 cycles **Example:** or.l r0,r1,r2

XOR: Exclusive Or

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination Register	Source 2 Register	Source 1 Register	Size	XOR: 0x200 1000 0000 00	Unit
6 bits	6 bits	6 bits	2 bits	10 bits	2 bits

Operation : RD.size = RS1 \sim RS2

Latency: 3 cycles **Example:** xor.q r0,r1,r2

ASL: Arithmetic Shift Left

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source 2	Source 1	Size	AND: 0x240	Unit
Register	Register	Register		1001 0000 00	
6 bits	6 bits	6 bits	2 bits	10 bits	2 bits

Operation: RD.size = RS1 << RS2

Latency: 3 cycles **Example:** asl.b r0,r1,r2

LSL: Logical Shift Left

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source 2	Source 1	Size	OR: 0x280	Unit
Register	Register	Register		1010 0000 00	
6 bits	6 bits	6 bits	2 bits	10 bits	2 bits

Operation: RD.size = RS1 << RS2

Latency: 3 cycles **Example:** lsl.l r0,r1,r2

ASR: Arithmetic Shift Right

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination Register	Source 2 Register	Source 1 Register	Size	XOR: 0x2C0 1011 0000 00	Unit
6 bits	6 bits	6 bits	2 bits	10 bits	2 bits

Operation: RD.size = RS1 >> RS2

Latency: 3 cycles **Example:** asr.q r0,r1,r2

LSR: Logical Shift Right

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination Register	Source 2 Register	Source 1 Register	Size	XOR: 0x300 1100 0000 00	Unit
6 bits	6 bits	6 bits	2 bits	10 bits	2 bits

Operation: RD.size = RS1 >> RS2

Latency: 3 cycles **Example:** lsr.b r0,r1,r2

ADDI: Addition Immediate

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0- 00 -0 -0 -0					
Destination	Source 2	Source 1	Size	ADDI:	Unit
Register	Register	Immediate		0x001	
_	_			0000 01	
6 bits	6 bits	10 bits	2 bits	6 bits	2 bits

Operation: RD.size = RS2 + IMM

Latency: 3 cycles

Example: addi.w r0,r1,100

SUBI: Substraction Immediate

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source 2	Source 1	Size	SUBI:	Unit
Register	Register	Immediate		0x005 0001 01	
6 bits	6 bits	10 bits	2 bits	6 bits	2 bits

Operation: RD.size = RS2 - IMM

Latency: 3 cycles

Example: addi.w r0,r1,100

MULSI: Multiplication Signed Immediate

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Γ	D .: .:	C 2	C 1	C:	MIII CI	Unit
	Destination	Source 2	Source 1	Size	MULSI:	Oill
	Register	Register	Immediate		0x009	
	110910101	110910101			0010 01	
	6 bits	6 bits	10 bits	2 bits	6 bits	2 bits

Operation : RD.size = RS2 x IMM

Latency: 3/3/4/5 cycles **Example:** mulsi.b r0,r1,100

MULUI: Multiplication Unsigned Immediate

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source 2	Source 1	Size	MULUI:	Unit
Register	Register	Immediate		0x00D	
				0011 01	
6 bits	6 bits	10 bits	2 bits	6 bits	2 bits

Operation : RD.size = RS2 x IMM

Latency: 3/3/4/5 cycles **Example:** mului.w r0,r1,100

DIVSI: Division Signed Immediate

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source 2	Source 1	Size	DIVSI:	Unit
Register	Register	Immediate		0x011	
				0100 01	
6 bits	6 bits	10 bits	2 bits	6 bits	2 bits

Operation : RD.size = RS2 / IMM

Latency: 3/3/5/10 cycles **Example:** divs.l r0,r1,100

DIVUI: Division Unsigned Immediate

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source 2	Source 1	Size	DIVUI:	Unit
Register	Register	Immediate		0x015	
_	_			0101 01	
6 bits	6 bits	10 bits	2 bits	6 bits	2 bits

Operation : RD.size = RS2 / IMM

Latency: 3/3/5/10 cycles **Example:** divs.l r0,r1,100

ANDI: And Immediate

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source 2	Source 1	Size	ANDI:	Unit
Register	Register	Immediate		0x019	
				0110 01	
6 bits	6 bits	10 bits	2 bits	6 bits	2 bits

Operation: RD.size = RS2 & IMM

Latency: 3 cycles

Example: and i.w r0,r1,100

ORI: Or Immediate

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 00 20 20 27 20	20 21 20 22 21 20	15 16 17 16 15 11 15 12 11 16		<i>,</i>	
Destination	Source 2	Source 1	Size	ORI:	Unit
Register	Register	Immediate		0x01D	
_				0111 01	
6 bits	6 hits	10 hits	2 hits	6 hits	2 hits

Operation: RD.size = RS2 | IMM

Latency: 3 cycles **Example:** ori.l r0,r1,100

XORI: Exclusive Or Immediate

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source 2	Source 1	Size	XORI:	Unit
Register	Register	Immediate		0x021 1000 01	
6 bits	6 bits	10 bits	2 bits	6 bits	2 bits

Operation : RD.size = RS2 \sim IMM

Latency: 3 cycles

Example: xori.q r0,r1,100

ASLI: Arithmetic Shift Left Immediate

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination Register	Source 2 Register	0000	Source 1 Immediate	Size	ASLI: 0x025 1001 01	Unit
6 bits	6 bits	6 bits	6 bits	2 bits	6 bits	2 bits

Operation: RD.size = RS2 << IMM

Latency: 3 cycles

Example: asli.w r0,r1,100

LSLI: Logical Shift Left Immediate

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 00 = 0 = 0 =0	-5 -: -55	10 10 17 10	10 1. 10 1 - 11 10		, , , , ,	
Destination	Source 2	0000	Source 1	Size	ASLI:	Unit
Register	Register		Immediate		0x029	
					1010 01	
6 bits	6 bits	6 bits	6 bits	2 bits	6 bits	2 bits

Operation: RD.size = RS2 << IMM

Latency: 3 cycles **Example:** lsli.l r0,r1,100

ASRI : Arithmetic Shift Right Immediate

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination Register	Source 2 Register	0000	Source 1 Immediate	Size 	ASRI: 0x02D 1011 01	Unit
6 bits	6 bits	6 bits	6 bits	2 bits	6 bits	2 bits

Operation: RD.size = RS2 >> IMM

Latency: 3 cycles

Example: asri.w r0,r1,100

LSRI: Logical Shift Right Immediate

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

	01 00 20 20 27 20	-0 -1 -00	10 10 17 10	10 11 10 12 11 10	, , ,	,	
	Destination	Source 2	0000	Source 1	Size	LSRI:	Unit
	Register	Register		Immediate		0x030 1100 01	
•	6 bits	6 bits	6 bits	6 bits	2 bits	6 bits	2 bits

Operation : RD.size = RS2 >> IMM

Latency: 3 cycles

Example: lsri.w r0,r1,100

ADDQ: Addition Quick immediate

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination Register	Source 1 Immediate	Size	ADDQ: 0x002 0000 10	Unit
6 bits	16 bits	 2 bits	6 bits	2 bits

Operation: RD.size += IMM

Latency: 3 cycles

Example: addi.w r0,r1,100

----etc etc

MOVEI: Move Immediate

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination Register	Source 1 Immediate	Size	Move 0x3 10	Unit
611	2011			

6 bits 20 bits 2 bits 2 bits 2 bits 2 bits

Operation: RD.size = IMM

Latency: 3 cycles

Example: movei.w r0,100

NOP: No Operation

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0000 0000 0000 0000 0000	NOP:	Unit
	0x04	
	00e1 00	

24 bits 6 bits 2 bits

Operation: ...

Latency: 1/3 cycles **Example:** nop /nop.e

SWITCH: Switch

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 00 10 10 17 10 10 11 10 0	, 00.02	
0000 0000 0000 0000 0000	Switch:	Unit
	0x10 010c 00	
24 bits	6 bits	2 bits

Operation: RF&0xFE = c **Latency:** 1/2 cycles **Example:** switch 0

CMP: Compare

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

	Source 2	Source 1		Size	CMP	Unit
	Register	Register	0000 0000 0000		0x0	
					0000	
٠	6 bits	6 bits	12 bits	2 bits	4 bits	2 bits

Operation : RF = RS1 ? RS2

Latency: 3 cycles **Example:** cmp.b r1,r2

PCMP.H: Posits Half Compare

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Source 2	Source 1		Size2	Size1	РСМРН	Unit
Posit Register	Posit Register	0000 0000 00			0x4 0100	
6 bits	6 bits	10 bits	2 bits	2 bits		2 bits

Operation: RF = PH1 ? PH2

Latency: 3 cycles

Example: pcmp.h vp0x,vp0y

PCMP.S: Posits Single Compare

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Source 2	Source 1		PCMPS	Unit	
Posit Register	Posit Register	0000 0000 0000 00	0x8 1000		
6 bits	6 bits	14 bits	4 bits	2 bits	•

Operation : RF = PS1 ? PS2

Latency: 3 cycles

Example: pcmp.s vp0,vp1

CMPI: Compare Immediate

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Source 2 Register	Source 1 Immediate	Size	0x1 01	Unit
6 bits	20 bits	2 bits	2 bits	2 bits

Operation: RF = RS1 ? IMM ≤ 3

Latency: 3 cycles **Example:** cmpi.b r1,42

PCMPI.H: Posits Half Compare Immediate

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Source 2 Posit Register	Source 1 Immediate	0000	Size	PCHI 0x2 10	Unit
6 bits	16 bits	4 bits	2 bits	2 bits	2 bits

Operation : RF = RS1 ? IMM \leq 3

Latency: 3 cycles

Example: pcmpi.h vp0x,3.41

PCMPI.S: Posits Single Compare Immediate

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Source 2 Posit Register	Source 1 Immediate	PCSI 0x3 11	Unit
6 bits	20 bits	2 bits	2 bits

Operation : RF = RS2 ? IMM<<3

Latency: 3 cycles

Example: pcmpi.s vp0,3.41

BNE: Branch Not Equal

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

51 50 25 20 27 20 25 24 25 22 21 20 15 10	1/ 10 15 14 15 12	11 10 3 0 7 0 3 4 3 2	
Source		BNE: 0x00C	Unit
Immediate	00 0000	0000 0011 00	
14 bits	6 bits	10 bits	2 bits

Operation : if(Z = 0) PC += IMM x 8

Latency: 1/2 cycles **Example:** bne label

BEQ: Branch Equal

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

51 50 E5 E0 E7 E0 E5 E1 E5 EE E1 E0 15 10	17 10 10 1 10 1 =	11 10 0 0 7 0 0 1 0 1	
Source		BNE: 0x04C	Unit
Immediate	00 0000	0001 0011 00	
14 bits	6 bits	10 bits	2 bits
14 0103	0 0163	10 0163	2 D1t3

Operation : if(Z = 1) PC += IMM x 8

Latency: 1/2 cycles **Example:** beq label

BL: Branch Less

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Source		BL: 0x08C	Unit
Immediate	00 0000	0010 0011 00	
14 hits	6 bits	10 bits	2 bits

Operation: if() PC += IMM x 8

Latency: 1/2 cycles **Example:** bl label

BLE: Branch Less or Equal

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

51 50 25 20 27 20 25 21 25 22 21 20 15 10	17 10 10 11 10 12	11 10 3 0 7 0 5 1 5 2	
Source		BLE: 0x0CC	Unit
Immediate	00 0000	0011 0011 00	
14 bits	6 bits	10 bits	2 bits

Operation: if() PC += IMM x 8

Latency: 1/2 cycles **Example:** ble label

BG: Branch Greater or Equal

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 E5 E6 E7 E6 E8 E1 E5 EE E1 E6 15 16	17 10 10 1. 10 1 =	11 10 0 0 7 0 0 1 0 1	
Source		BG: 0x10C	Unit
Immediate	00 0000	0100 0011 00	
		_	
14 bits	6 bits	10 bits	2 bits

Operation: if() PC += IMM x 8

Latency: 1/2 cycles **Example:** bg label

BGE: Branch Greater or Equal

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Source Immediate	00 0000	BGE : 0x14C 0101 0011 00	Unit
14 bits	6 bits	10 bits	2 bits

Operation: if() PC += IMM x 8

Latency: 1/2 cycles **Example:** bge label

BLS: Branch Less Signed

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 00 20 20 27 20 20 21 20 22 21 20 10 10	17 10 10 11 10 12	11 10 5 0 7 0 5 1 5 2	
Source		BLS: 0x18C	Unit
Immediate	00 0000	0110 0011 00	
14 bits	6 bits	10 bits	2 bits

Operation: if() PC += IMM x 8

Latency: 1/2 cycles **Example:** bls label

BLES: Branch Less or Equal Signed

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 E5 E6 E7 E6 E8 E1 E6 E1 E6 15 16	17 10 10 1 10 1 =	11 10 0 0 7 0 0 1 0 2	
Source		BLES: 0x1CC	Unit
Immediate	00 0000	0111 0011 00	
14 bits	6 bits	10 bits	2 bits
17 0163	0 0163	10 0163	2 DIG

Operation: if() PC += IMM x 8

Latency: 1/2 cycles **Example:** bles label

BGS: Branch Greater or Equal Signed

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

<u> </u>			
Source		BGS: 0x20C	Unit
Immediate	00 0000	1000 0011 00	
14 bits	6 bits	10 bits	2 bits
14 DIIS	O DIIS	TO DITS	2 0115

Operation: if() PC += IMM x 8

Latency: 1/2 cycles **Example:** bgs label

BGES: Branch Greater or Equal Signed

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

J1 J0	25 20 27 20 25 24 25 22 21 20 15 1	7 17 10 13 17 13 12	11 10 3 0 7 0 3 7 3 2	1 0
	Source		BGES: 0x24C	Unit
	Immediate	00 0000	1001 0011 00	
	14 bits	6 bits	10 bits 2	2 bits

Operation : if() PC += IMM x 8

Latency: 1/2 cycles **Example:** bges label

B: Branch Unconditional

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 00 10 10 17 10 10 11 10 11 10 10 10	1, 10 10 1 1 10 1 =	11 10 0 0 7 0 0 1 0 -	
Source		B: 0x28C	Unit
Immediate	00 0000	1010 0011 00	
14 bits	6 bits	10 bits	2 bits

Operation : $PC += IMM \times 8$

Latency: 1/2 cycles
Example: bges label

JMP: Jump

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

51 50 25 20 27 20 25 24 25 22 21 20 15 10	1/ 10 15 14 15 12	11 10 3 0 7 0 3 4 3 2	
Source		JMP: 0x02C	Unit
Immediate	00 0000	0000 1011 00	
14 bits	6 bits	10 bits	2 bits

Operation: PC = IMM x 8 **Latency:** 1/2 cycles **Example:** jmp label

JMPR: Jump Relative

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 00 10 10 17 10 10 11 10 11 10 10 10	17 10 10 11 10 1	11 10 0 0 1 0 0 1 0 -	
Source		JMPR: 0x06C	Unit
Immediate	00 0000	0001 1011 00	
14 bits	6 bits	10 bits	2 bits

Operation : $PC = LR + IMM \times 8$

Latency: 1/2 cycles **Example:** jmpr label

CALL: Call

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

91 90 29 20 27 20 29 2 1 29 22 21 20 19 10	17 10 10 11 10 12	11 10 0 0 7 0 0 1 0 2	
Source		CALL: 0x0AC	Unit
Immediate	00 0000	0010 1011 00	
14 bits	6 bits	10 bits	2 bits

Operation: PC = IMM x 8 **Latency:** 1/2 cycles **Example:** call label

CALLR: Call Relative

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Source Immediate	00 0000	CALLR : 0x0EC 0011 1011 00	Unit
14 bits	6 bits	10 bits	2 bits

Operation : $PC = LR + IMM \times 8$

Latency: 1/2 cycles **Example:** callr label

RET: Return

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

<u> </u>		
0000 0000 0000 0000 0000	RET:	Unit
	0x2C 1111 00	
24 bits	6 bits	2 bits

Operation: ...

Latency: 1/2 cycles

Example: ret

LDM: Load Memory

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination Register	Source 2 Register	Source 1 Immediate	Size 	LDM: 0x0 +0 00	Unit
6 hits	6 hits	12 hits	2 hits	4 hits	2 hits

Operation: RD.size = SP_MEMORY(RS2 + IMM)

Latency: 4 cycles

Example: ldm.w r0,42[r1]

STM: Store Memory

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 00 2 0 2 0 2 0	-0 -: -0+ -0	10 10 17 10 10 11 10 1		· · -	
Source 3	Source 2	Source 1	Size	STM:	Unit
Register	Register	Immediate		0x4 +1 00	
6 bits	6 bits	12 bits	2 bits	4 bits	2 bits

Operation: SP_MEMORY(RS2 + IMM) = RS3.size

Latency: 4 cycles

Example: stm.w r0,42[r1]

LDC: Load Cache

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination Register	Source 2 Register	Source 1 Immediate	Size	LDC: 0x1 +0 01	Unit
6 bits	6 bits	12 bits	2 bits	4 bits	2 bits

Operation: RD.size = SP_MEMORY(RS2 + IMM)

Latency: 4 cycles

Example: ldm.w r0,42[r1]

STC: Store Cache

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 00 = 0 = 0 = 0	-0 -: -0+ -0	10 10 17 10 10 11 10 1	, , ,	· · -	
Source 3	Source 2	Source 1	Size	STC:	Unit
Register	Register	Immediate		0x5 +1 01	
6 bits	6 bits	12 bits	2 bits	4 bits	2 bits

Operation: SP_MEMORY(RS2 + IMM) = RS3.size

Latency: 4 cycles

Example: stm.w r0,42[r1]

IN: In I/O Memory

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

	0- 00 -0 -0 -0					
	Destination	Source 1		Size	IN:	Unit
	Register	Immediate	0000 0000		0x001	
					0000 01	
٠	6 bits	8 bits	8 bits	2 bits	6 bits	2 bits

Operation: RD.size = SPIO_MEMORY(IMM)

Latency: 3 cycles **Example:** in.w r0,42

OUT: Out I/O Memory

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Source 2	Source 1		Size	OUT:	Unit
Register	Immediate	0000 0000		0x001	
_				1000 01	
6 bits	8 bits	8 bits	2 bits	6 bits	2 bits

Operation: SPIO_MEMORY(IMM) = RS2.size

Latency: 3 cycles **Example:** out.q r0,42

OUTI: Out I/O Memory Immediate

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Source 2 Immediate	Source 1 Immediate	IN: 0x001	Unit
		0000 01	
8 bits	16 bits	6 bits	2 bits

Operation : SPIO_MEMORY(IMM2) = IMM1

Latency: 3 cycles **Example:** outi.b r0,13

LDMV: Load Memory Vector Posits

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination Posit Register	Source 2 Register	Source 1 Immediate	Size	LDMV: 0x03 +000 11	Unit
6 bits	3 bits	13 bits	2 bits		2 bits

Operation: VPD.size = SP_MEMORY(RS2 + IMM*16)

Latency: 4 cycles

Example: ldmv.xy vp0,42[r1]

STMV: Store Memory Vector Posits

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P	Source 3 Posit Register	Source 2 Register	Source 1 Immediate	Size	STMV: 0x13 +100 11	Unit
	6 bits	3 bits	13 bits	2 bits	6 bits	2 bits

Operation: SP_MEMORY(RS2 + IMM*16) = VPS.size

Latency: 4 cycles

Example: stmv.xy vp0,42[r1]

LDCV: Load Cache Vector Posits

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination Posit Register	Source 2 Register	Source 1 Immediate	Size	LDMV: 0x0B +010 11	Unit
6 bits	3 bits	13 bits	2 bits	6 bits	2 bits

Operation: VPD.size = SP_MEMORY(RS2 + IMM*16)

Latency: 4 cycles

Example: ldcv.xy vp0,42[r1]

STCV: Store Cache Vector Posits

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Source 3 Posit Register	Source 2 Register	Source 1 Immediate	Size	STMV: 0x1B +110 11	Unit
6 bits	3 bits	13 bits	2 bits	6 bits	2 bits

Operation: SP_MEMORY(RS2 + IMM*16) = VPS.size

Latency: 4 cycles

Example: stcv.xy vp0,42[r1]

PADD.H: Posits Half Addition

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 00 - 0 - 0 -7 -0		10 10 17 10 10 11			, , , , , , , , , , , , , , , , , , , 	
Destination	Source 2	Source 1	Size2	Size1	PADD.H:	Unit
Posit Register	Posit Register	Posit Register			0x00 00 0000 00	
					00 0000 00	
6 bits	6 bits	6 bits	2 bits	2 bits	8 bits	2 bits

Operation: VPH = PS1 + PS2

Latency: 4 cycles

Example: padd.h vp0,vp0y, vp0z

PSUB.H: Posits Half Substraction

description...
description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

_							
	Destination	Source 2	Source 1	Size2	Size1	PSUB.H:	Unit
	Posit Register	Posit Register	Posit Register			0x20	
						00 1000 00	
	6 bits	6 bits	6 bits	2 bits	2 bits	8 bits	2 bits

Operation: VPH = PS1 - PS2

Latency: 4 cycles

Example : psub.h vp0,vp0y, vp0z

PMUL.H: Posits Half Multiplication

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source 2	Source 1	Size2	Size1	PMUL.H:	Unit
Posit Register	Posit Register	Posit Register			0x40	
					01 0000 00	
6 bits	6 bits	6 bits	2 bits	2 bits	8 bits	2 bits

Operation : VPH = PS1 x PS2

Latency: 4 cycles

Example: pmul.h vp0,vp0y, vp0z

PMULADD.H: Posits Half Multiplication Addition

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

_							
	Destination	Source 2	Source 1	Size2	Size1	PMADD.H:	Unit
	Posit Register	Posit Register	Posit Register			0x60	
						01 1000 00	
	6 bits	6 bits	6 bits	2 bits	2 bits	8 bits	2 bits

Operation : $VPH = PS1 + (PS1 \times PS2)$

Latency: 4 cycles

Example: pmuladd.h vp0,vp0y, vp0z

PADD.S: Posits Single Addition

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source 2	Source 1		PADD.S:	Unit
Posit Register	Posit Register	Posit Register	0000	0x80 10 0000 00	
6 bits	6 bits	6 bits	4 bits	8 bits	2 bits

Operation: PD = PS1 + PS2

Latency: 5 cycles

Example: padd.s vp0,vp0, vp0

PSUB.S: Posits Single Substraction

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination Posit Register	Source 2 Posit Register	Source 1 Posit Register	0000	PSUB.S: 0xA0 10 1000 00	Unit
6 bits	6 bits	6 bits	4 bits	8 bits	2 bits

Operation: PD = PS1 - PS2

Latency: 5 cycles

Example: psub.s vp30,vp10, vp20

PMUL.S: Posits Single Multiplication

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination Posit Register	Source 2 Posit Register	Source 1 Posit Register	0000	PMUL.S: 0xC0 11 0000 00	Unit
6 bits	6 bits	6 bits	4 bits	8 bits	2 bits

Operation : $PD = PS1 \times PS2$

Latency: 5 cycles

Example: pmul.s vp1,vp2, vp3

PMADD.S: Posits Single Multiplication Addition

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination Posit Register	Source 2 Posit Register	Source 1 Posit Register	0000	PMADD.S: 0xE0 11 1000 00	Unit
6 bits	6 bits	6 bits	4 bits	8 bits	2 bits

Operation : $PD = PS1 + (PS1 \times PS2)$

Latency: 5 cycles

Example: pmuladd.s vp0,vp8, vp7

PADD.XYZW: Vector Posits Half Addition

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

	Destination	Source 2	Source 1		Size	PADD:	Unit
	Posit Register	Posit Register	Posit Register	00		0x04	
						00 0001 00	
٠	6 bits	6 bits	6 bits	2 bits	2 bits	8 bits	2 bits

Operation: VPD.size = VPS1.size + VPS2.size

Latency: 4 cycles

Example: padd.xyzw vp0,vp1, vp2

PSUB.XYZW: Vector Posits Half Substraction

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination Posit Register	Source 2 Posit Register	Source 1 Posit Register	00	Size 	PSUB: 0x24 00 1001 00	Unit
6 bits	6 bits	6 bits	2 bits	2 bits	8 bits	2 bits

Operation: VPD.size = VPS1.size - VPS2.size

Latency: 4 cycles

Example: psub.xyzw vp0,vp1, vp2

PADDS: Vector Posits Half Addition with Single

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source 2	Source 1	Size2	Size1	PADDS:	Unit
Posit Register	Posit Register	Posit Register			0x08	
					00 0010 00	
6 bits	6 bits	6 bits	2 bits	2 bits	8 bits	2 bits

Operation: VPD.size = VPS1.size + PS2

Latency: 4 cycles

Example: padds.xyzw vp0,vp1, vp2x

PSUBS: Vector Posits Half Addition with Single

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source 2	Source 1	Size2	Size1	PSUBS:	Unit
Posit Register	Posit Register	Posit Register			0x28	
					00 1010 00	
6 bits	6 bits	6 bits	2 bits	2 bits	8 bits	2 bits

Operation: VPD.size = VPS1.size - PS2

Latency: 4 cycles

Example: psubs.xyzw vp0,vp1, vp2x

PIPR: Posits Half Inner Product

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 00 - 0 - 0 - 0	-0 -: -0+ -0	10 10 17 10 10 11			<i>5 6 7 6 5 . 5 -</i>	
Destination	Source 2	Source 1	Size2	Size1	PIPR:	Unit
Posit Register	Posit Register	Posit Register			0x6C	
					01 1011 00	
6 bits	6 bits	6 bits	2 bits	2 bits	8 bits	2 bits

Operation: PD = VPS1.size . VPS2.size

Latency: 4 cycles

Example: pipr.xyz vp0,vp0y, vp0z

PMOVE: Posits Move

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source		Size2	Size1	PMOVE:	Unit
Posit Register	Posit Register	0000 00			0x01	
					00 0000 01	
6 bits	6 bits	6 bits	2 bits	2 bits	8 bits	2 bits

Operation : VPDst.select2 = VPSrc.select1

Latency: 3 cycles

Example : pmove vp0y, vp0z

VPMOVE: Vector Posits Move

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source		Size1	VPMOVE:	Unit
Posit Register	Posit Register	0000 0000		0x05 00 0001 01	
6 bits	6 bits	8 bits	2 bits	8 bits	2 bits

Operation: VPDst.size = VPSrc.size

Latency: 3 cycles

Example: vpmove vp0, vp1

PMOVEI.H: Posits Half Move Immediate

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source	Size	PMOVEIH:	Unit
Posit Register	Immediate		0x11	
			0100 01	
6 bits	16 bits	2 bits	6 bits	2 bits

Operation: PDst.select = IMM

Latency: 3 cycles

Example: pmovei.h vp0y, 42.7

PMOVEI.S: Posits Single Move Immediate

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source	PMOVEIS:	Unit
Posit Register	Immediate	0x15	
		0101 01	
6 bits	20 bits	6 bits	2 bits

Operation : PDst = IMM **Latency :** 3 cycles

Example: pmovei.h vp0, 42.3

VPMOVEI.H: Vector Posits Half Move Immediate

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source	Size	VPMOVEI:	Unit	
Posit Register	Immediate		0x19		
			0110 01		
6 bits	16 bits	2 bits	6 bits	2 bits	

Operation: VPDst.size = IMM

Latency: 3 cycles

Example: vpmovei.xyz vp0y, 42.7

PMOVERO: Posits Move Register Out

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source		Size1	PMOVERO:	Unit
Register	Posit Register	0000 0000		0x08	
				00 0010 01	
6 bits	6 bits	8 bits	2 bits	8 bits	2 bits

Operation: RDst = VPSrc.size

Latency: 3 cycles

Example: pmovero r0,vp1

PMOVERI: Posits Move Register In

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0- 00 -0 -: -0					
Destination	Destination		Size1	PMOVERI:	Unit
Register	Posit Register	0000 0000		0x0D 00 0011 01	
6 bits	6 bits	8 bits	2 bits	8 bits	2 bits

Operation: VPSrc.size = RDst

Latency: 3 cycles

Example: pmoveri vp1,r0

PDIV.H: Posits Half Division

description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source 2	Source 1	Size2	Size1	PDIV.H:	Unit
Posit Register	Posit Register	Posit Register			0x02	
					00 0000 10	
6 bits	6 bits	6 bits	2 bits	2 bits	8 bits	2 bits

Operation : PDst = Psrc1.select1 / PSrc2.select1

Latency: 6 cycles

Example: pdiv.h vp0,vp0y, vp0z

PDIV.S: Posits Single Division

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination Posit Register	Source 2 Posit Register	Source 1 Posit Register	0000	PDIV.H:	Unit
1 osit Register	1 OSIT REGISTEI	1 osit register	0000	00 0000 10	
6 bits	6 bits	6 bits	4 bits	8 bits	2 bits

Operation : PDst = PSrc1 / PSrc2

Latency: 8 cycles

Example: pdiv.s vp0,vp1, vp2

PSQRT.H: Posits Half Square Root

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

]	Destination	Source		Size	Size	PSQRT.H:	Unit
P	osit Register	Posit Register	0000 0000			0x08	
						00 0010 01	
	6 bits	6 bits	8 bits	2 bits	2 bits	8 bits	2 bits

Operation: PDst = SQRT (VPSrc.select)

Latency: 10 cycles

Example: psqr.h vp1y,vp1x

PSQRT.S: Posits Half Square Root

description... description...

Operation Code:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination	Source		Size	PSQRT.H:	Unit
Posit Register	Posit Register	0000 0000		0x08	
				00 0010 01	
6 bits	6 bits	8 bits	2 bits	8 bits	2 bits

Operation: PDst = SQRT(VPSrc)

Latency: 14 cycles **Example:** psqrt.s vp0,vp1