## **Clustering**

Introduction to omics data

#### **Overview**

- Recap of the molecules of life
- High-throughput datasets/omic datasets
- Transcriptomic data
- Computational tasks with transcriptomic data

#### Molecules of life

- DNA
- RNA
  - mRNA
  - ncRNA
- Proteins
- Metabolites
- Whereas DNA is mostly static, RNA, proteins, metabolites change between cell types, tissues, environments and conditions



### RNA levels are dynamic



- What is varied: individuals, strains, cell types, environmental conditions, disease states, etc.
- What is measured: RNA quantities for thousands of genes, exons or other transcribed sequences

## High-throughput datasets and "omes"

- Aim to measure as many components of a sample of cells simultaneously
- Types of omes
  - Genome: collection of DNA in a cell
  - Epigenome: all of the chemical modifications on the genome
  - Transcriptome: all of the RNA in cell
  - Proteome: all of the proteins in a cell
  - Metabolome: all of the metabolites present in a cell
  - Interactome: all of the interactions within a cell

## Omics data provide comprehensive description of nearly all components of the cell



#### **Databases with omic data**

|                   | Databast                                                                       | 3 WICH OILIG                                                       | aata                                      |
|-------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|
| Data types        | Online resource                                                                | Description                                                        | URL                                       |
| Components        |                                                                                |                                                                    |                                           |
| Genomics          | Genomes OnLine Database<br>(GOLD)                                              | Repository of completed and ongoing genome projects                | http://www.genomesonline.org              |
| Transcriptomics   | Gene Expression Omnibus (GEO)                                                  | Microarray and SAGE-based genome-<br>wide expression profiles      | http://www.ncbi.nlm.nih.gov/geo           |
|                   | Stanford Microarray Database (SMD)                                             | Microarray-based genome-wide expression data                       | http://genome-www.stanford.edu/microarray |
| Proteomics        | World-2DPAGE                                                                   | Links to 2D-PAGE data                                              | http://us.expasy.org/ch2d/2d-index.html   |
|                   | Open Proteomics Database<br>(OPD)                                              | Mass-spectrometry-based proteomics data                            | http://bioinformatics.icmb.utexas.edu/OPD |
| Lipidomics        | Lipid Metabolites and Pathways<br>Strategy (LIPID MAPS)                        | Genome-scale lipids database                                       | http://www.lipidmaps.org                  |
| Localizomics      | Yeast GFP Fusion Localization<br>Database                                      | Yeast genome-scale protein-localization data                       | http://yeastgfp.ucsf.edu                  |
| Interactions      |                                                                                |                                                                    |                                           |
| Protein–DNA       | Biomolecular Network Database (BIND)                                           | Published protein–DNA interactions                                 | http://www.bind.ca/Action/                |
|                   | Encyclopedia of DNA Elements (ENCODE)                                          | Database of functional elements in human DNA                       | http://genome.ucsc.edu/ENCODE/index.html  |
| Protein-protein   | Munich Information Center for<br>Protein Sequences (MIPS)                      | Links to protein-protein-interaction data and resources            | http://mips.gsf.de/proj/ppi               |
|                   | Database of Interacting Proteins (DIP)                                         | Published protein-protein interactions                             | http://dip.doe-mbi.ucla.edu               |
| Functional states |                                                                                |                                                                    |                                           |
| Phenomics         | RNAi database                                                                  | C. elegans RNAi screen data                                        | http://rnai.org                           |
|                   | General Repository for<br>Interaction Datasets (GRID)                          | Synthetic-lethal interactions in yeast                             | http://biodata.mshri.on.ca/grid           |
|                   | A Systematic Annotation Package<br>For Community Analysis of<br>Genomes (ASAP) | Single-gene-deletion microarray data for <i>E. coli</i> phenotypes | http://www.genome.wisc.edu/tools/asap.htm |
|                   |                                                                                |                                                                    |                                           |

### Understand a cell as a system

- Measure: identify the parts of a system
  - Parts: different types of bio-molecules
    - genes, proteins, metabolites
  - High-throughput assays to measure these molecules
- Model: how these parts are put together
  - Clustering
  - Network inference and analysis

#### Bio-techniques to measure transcriptomes

Microarrays



Sequencing–RNA-seq





#### A typical RNA-seq pipeline



Wang et al, Nature Genetics 2009

### Gene expression profiles

- We will assume we have a 2D matrix of gene expression measurements
  - rows represent genes
  - columns represent different experiments, time points, individuals etc.
- We will refer to individual rows or columns as *profiles* 
  - a row is a profile for a gene
  - a column is a profile for an experiment, time point, etc.

## Gene-expression profiles for yeast cell cycle

- Rows represent yeast genes
- Columns represent time points as yeast goes through cell cycle
- Color represents
  expression level relative
  to baseline (red=high,
  green=low,
  black=baseline)



# Gene-expression profiles for leukemia patients

- rows represent genes
- columns represent people with 2 subtypes of leukemia: ALL and AML

Each column corresponds to a microarray measurement



## Commonly asked questions from expression datasets

- If we measure gene expression in a normal versus disease cell type, which genes have different expression levels across two groups?
  - Differential expression
- Which genes seem to be changing together?
  - Clustering genes based on expression profiles of genes across all conditions
- Which treatments/individuals have similar profiles?
  - Clustering samples based on gene expression profiles of all genes
- What does a gene do?
  - To which functional classes does a given gene belong
- What class is a sample from?
  - e.g., does this patient have ALL or AML