Spline (MARS) Models (Multivariate Adaptive Regression Spline)

Spline Regressions: Intuition

A spline regression is very similar to a piecewise regression, except that an **additional constraint** is placed on the model so that **knots** have only **1 predicted value**, (i.e., **no shifts** at the knots) thus having a **continuous** function throughout the entire range of the predictor

How Spline Regressions Work

- The full mathematics behind splines is explained in the textbook, but it boils down to a simple concept:
 - For a given variable, start at the origin with a plain polynomial
 - Then add a "truncated" power function for values beyond the 1st knot:
 - ✓ θ before the knot, i.e. for $x < c_1$ where c_1 is the 1st knot
 - \checkmark A **polynomial** after the knot, i.e., $x \ge c_1$ but using $x c_1$ instead of x which will cause the two polynomials to connect at the dot
 - ✓ In the prior example, the truncated function for the first knot at age = 25 in a cubic spline would be:
 - **❖ 0** for **age** < **25**
 - $4 (age-25)^3$ for age >= 25
 - Repeat this procedure at every knot
- This ensures that the various polynomial segments connect at the knot, thus yielding a continuous curve

Natural Splines

- Since we are using various polynomials to fit the splines, the splines will suffer from some of the typical **dimensionality** issues of polynomials, e.g., **high variance**, over-fitting
- Keeping the **dimensionality** of the segment splines **low** (i.e., cubic at the most) helps avoid some of these problems.
- However, splines are notorious for having high variance at the outer ranges of the data, where x is very high or very low.
- A natural spline helps correct for this problem to some extent by forcing the very first and last segments to a linear fit.

Tuning Spline Regressions

- As with other models, spline regressions need to be tuned
- The two most important tuning **parameters** are:
 - 1. The number of **segments** or **knots** to use
 - More segments/knots add complexity to the model and make it harder to interpret
 - More knots will yield a tighter training fit, but will not necessarily improve the test MSE
 - ➤ Each **knot** uses up **1 degree of freedom** in the model, so be mindful before adding more knots.
 - Knots can be evenly spaced or specifically selected based on business knowledge or observations of plots
 - 2. The polynomial degree or function to use in each segment
 - ➤ Low degree polynomials are preferred and more interpretable i.e., no more than cubic
- As with most other methods the best models and tuning parameters should be evaluated with cross-validation

bs() {splines} -> "Spline Basis" function in the {splines} package to fit spline models fit.linear.spline1=lm($y \sim bs(x, knots=c(25, 40, 60), degree=1)$, data=dataName) → Fits a linear spline (degree=1) with arbitrary knots at x=24, 40 and 60 fit.linear.spline2=lm(y~bs(x,df=4,degree=1), data=dataName) → Fits a linear spline (degree=1) with 4 equally spaced segments (df=4) ns() {splines} -> "Natural Cubic Spline" function in the {splines} package to fit natural cubic splines; degree does not need to be specified fit.natural=lm($y \sim ns(x, df=4)$, data=Wage) \rightarrow The ns() function fits a natural cubic spline with 4 segments

KOGOD SCHOOL of BUSINESS

