## 水资源匮乏时代的救赎

随着美国西部旱情的加剧,作为美国西南部生命线的科罗拉多河也陷入困境。在科罗拉多河流域,合理分配水资源至关重要。本文旨在衡量不同州不同用户的利益冲突,并制定适合不同环境条件的水资源和水力发电分配方案。

主要建立两个模型:模型一:水电运输模型;

模型二:协调发展多目标规划模型。

在建立所有模型之前,对格伦峡谷大坝和胡佛大坝的水库进行了分析,得到了水库水位与水库蓄水量之间的关系。

对于模型一:为了合理配置水电,建立了水电输送模型,目标函数为两坝的最小供水量,约束条件主要是最低发电水位对供给的约束和需求对供给的约束。

通过分析五州的地理位置、地形地貌、格兰峡谷大坝和胡佛大坝,得到两坝之间水流 方向与水资源转移的关系,反映供水情况。分析运输过程中水电的损耗,得到最终的约束 条件。然后设计维持时间计算算法,求解在不增加额外水量的情况下维持需求的最长时间 。最后将鲍威尔湖和米德湖的初始水位赋值给数值结果第5.4节。

模型二:该模型是模型一的进一步延伸,平衡了五个州的工业、农业和居民之间的利益冲突。水的供应体现在社会效应、经济效应和环境效应三个方面。电力的供应体现在社会效应和经济效应。

当不发生缺水情况时,主要考虑五州工业、农业和居民生活用地的经济效应;当发生 缺水情况时,结合三种效应进行多目标规划,结果见6.3节。

另外,我们还兼顾了墨西哥的权益,提出了墨西哥在不同水资源剩余条件下的分配方案。

最后进行敏感性分析,包括三类对象(工业、农业和居民)对水电需求随时间的变化 、可再生能源技术的发展以及节水节电措施的影响。

关键词: 交通运输 模型:多目标规划:分布

和权衡

# 内容

| 1引言               |             |
|-------------------|-------------|
| 北早<br>月宗          | 3 1.2 问题    |
| 的重述               | 3 1.3 我们的工  |
| 作                 | 42假设和依据     |
|                   |             |
|                   |             |
|                   |             |
|                   |             |
|                   |             |
| 85.1 基2           |             |
| 85.1 基2           |             |
|                   |             |
| 95.3 维护时间计算算法。    |             |
|                   |             |
| 136模型二:协调发展多目标规划模 |             |
| 14 6.1 多目标规划模型的建立 |             |
| 14 6.2 参数确定       |             |
| 17 6.3 计算结果       |             |
| 20 7 墨西哥分摊模型      |             |
| 21 7.1 墨西哥分摊模型的建立 |             |
| 2 计算结果            | 21          |
|                   |             |
|                   |             |
|                   |             |
|                   |             |
|                   |             |
| 8 敏感性分析           | 2 2         |
| 8.1 需求变化          | 22 8.2 可    |
| 再生能源技术            | 22 8.3 节水节电 |
| 措施                |             |
| Jane              |             |
|                   |             |
|                   |             |
|                   | シ ショス州/     |
|                   |             |
|                   |             |
| 《干旱与口渴》杂志文章       |             |

## 1 简介

### 1.1 背景

犹他州州长 Spencer J.Cox 在 2021 年 6 月 4 日的视频恳求中说道:"请和我以及犹他州人民一起,无论宗教信仰如何,谦卑地祈祷一个周末能下雨。" [1]

新华社8月18日在洛杉矶报道称:"美国西部'缺水时代'已正式到来。"[2]

科罗拉多河<sup>[3]</sup>发源于美国科罗拉多州落基山脉,全长2300多公里,其干流流经犹他州、亚利桑那州、内华达州、加利福尼亚州和墨西哥,最终流入太平洋。科罗拉多河是美国西部最大的水系,因流经广大的干旱和半干旱地区而被誉为"西南的生命线"。



图 1:2022 年 2 月 15 日美国干旱监测[4]

从图1可以看出,美国西部的旱情十分严重。其实早在2021年夏天,就有报道称,为西部各州2500万人提供水源的胡佛水坝米德湖处于历史最低水位。6月9日,水位降至1071.57英尺,打破了2016年创下的前史最低水位。气候变化减少了流入科罗拉多河及其支流的雪量;气温升高也使土壤更加干渴,河流流经美国西部干旱地区时,蒸发量增加。

美国西部科罗拉多河流域有两个人工湖,鲍威尔湖和米德湖,与两座水坝(格兰峡谷和胡佛水坝)水库相对应,两座水坝的水量足以满足美国亚利桑那州(AZ)、加利福尼亚州(CA)、怀俄明州(WY)、新墨西哥州(NM)、科罗拉多州(CO)五州的水电需求,多余的水量则从科罗拉多河流入墨西哥,汇入加利福尼亚湾。

## 1.2 问题重述

水资源分配紧张影响到各个地区的利益冲突。通过

分析考察问题的背景以及谈判人员的引导,问题的重述可以如下表述:

建立一个数学模型,解决在供需条件固定的情况下的水分配问题。 给定两个湖泊的初始水位,计算出每个湖泊需要抽取多少水才能满足水和电力需求。 在没有额外供水,且需求固定的情况下,求解能够满足需求的最长维持时间。 计算出必须加班供应多少额外的水才能确保满足这些固定需求。 建立一个模型,确定五个州之间一般(农业、工业、住宅)用水和电力生产的水分配,并描述解决利益冲突的标准。 基于模型,改进水资源短缺情况下的解决方案,使其能够满足所有的水和电力需求。 根据以下情况分析模型结果的变化: 随着水和电力需求随时间变化,人口、农业和工业发生变化。 可再生能源技术的初值增加。 采取措施节约水电。 总结研究结果并准备一篇一到两页的文章提交给《干旱与口渴》杂志。

### 1.3 我们的工作

该问题要求我们针对墨西哥的需要,针对五个州的三类对象(工业、农业和居民)以及不同的环境条件,制定合理的水电分配方案。我们的主要工作如下:

- 1)在需求一定的情况下,通过分析两湖之间的水电运输和调水情况,建立水电运输模型,确定两湖的日供水量,不加水的最大维持时间,以及满足需求所需的加水量。
- 2)从社会、经济、环境三个角度考虑工业、农业和居民对水电的需求,建立了协调发展多目标规划模型,分别分析了水资源充足和水资源紧张时的水电分配问题。3)在此基础上,建立了考虑墨西哥利益分配的墨西哥分配模型。4)从需求和可再生能源技术的角度对模型进行了灵敏度分析。

## 2 假设与依据

为了建立数学模型来解决问题,我们在问题的基础上做出以下补充假设,并对每个假设进行 合理的解释

鲍威尔湖和米德湖分别是格兰峡谷大坝和胡佛大坝的水库,这两个湖都是人工湖,水库和大坝 距离很近,根据连通器理论,湖水高度可以认为是大坝上游的水位高度,误差可以忽略。

大坝不会因溃坝等情况而溢流。气候变化的主要趋势是降水减少、气温升高,水资源紧张,因 此不考虑溢流情况。

发电最低水位就是水库允许的最低水位,经过资料查找,我们把鲍威尔湖的最低水位设定为3 490英尺,米德湖的最低水位设定为950英尺。

各州的电力供应仅来自水力发电。为了简化模型并减少数据搜索的负担,仅考虑水力发电。

水可以重复利用,流经大坝的所有水都用于发电。基于资源可重复利用性,这一假设更为现实

考虑降雨、温度变化和河流蒸发的影响。气候变化减少了流入科罗拉多河及其支流的雪量;随着河流流经美国西部的干旱地区,气温升高也使土壤更加干旱,蒸发增加。考虑蒸发是必要且合理的。

从鲍威尔湖输送到米德湖并供应给用户的水被视为属于米德湖。

水源供应依赖河流,在实际操作上,各地区对水源采取"就近原则",即只有流经本地区的干流或支流才可供使用。电力输送则与五州的地理环境有关。

电能的损失是由于导线电阻产生的热能。从同一个水坝输送电力会导致距离水坝较远的州比距 离水坝较近的州发电更多,损失也更多。由于怀俄明州距离水坝较远,因此需要考虑电力损失。

## 3 符号

本文使用的重要符号及其含义如表1所示。有些变量这里没有列出,将在各节中详细讨论。

表 1: 重要符号和说明

| Symbol | Description                                  |
|--------|----------------------------------------------|
| l      | The height of the water level of a reservoir |

| v                        | Volume of water in a reservoir                                                                                                                       |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| $W_{suply}$              | Total volume of water supply                                                                                                                         |
| $W_{ij}$                 | Volume of water supplied from Reservoir $i$ to State $j(j=1,2,\cdots,5)$                                                                             |
| $W_{loss}$               | Volume of water lost through transport                                                                                                               |
| $D_{w_j}$                | Electricity demand (transferred to the volume of water) in State $j(j=1,2,\cdots,5)$                                                                 |
| $D_{e_j}$                | Water demand in State $j(j=1,2,\dots,5)$                                                                                                             |
| $oldsymbol{x}_{ij}^{km}$ | Supply for $m$ (water or electricity) from source $i$ to object $k(k=1,2,3)$ (industrial, agricultural and residential) of State $j(j=1,2,\cdots,5)$ |
| $D_j^{km}$               | Demand for $m$ (water or electricity) of object $k(k=1,2,3)$ (industrial, agricultural and residential) in State $j(j=1,2,\cdots,5)$                 |

# 4模型准备

### 4.1 数据收集

这个问题没有给我们数据,所以我们需要收集数据来建立模型。为了分析这个问题,我们需要收集两个湖泊和水坝的数据,以及五个州的农业、工业和居民用水和用电需求。数据收集到之后,还要进行一定的处理和分析,为后续的模型建立做准备。

两座湖泊和水坝的官方网站为我们提供了大量有关水坝的数据。详细数据来源如下表 2 所示。(其他数据来源包含在参考资料中。)

表 2:部分数据来源

| <b>Database Names</b>   | Database Websites                      |
|-------------------------|----------------------------------------|
| Lake Powell             | http://lakepowell.water-data.com/      |
| Lake Mead               | http://lakemead.water-data.com/        |
| Electricity Consumption | https://www.eia.gov/electricity/state/ |

### 4.2 水位与库容关系

鲍威尔湖和米德湖分别是格伦峡谷大坝和胡佛大坝的水库,湖泊海拔越高,水库容量越大。 通过对两湖近12个月的水位进行分析研究(数据来源见表1),我们 得出结论:湖泊的海拔和内容之间存在线性相关性。

因此我们对高程和含量进行多项式拟合分析, 步骤如下:

步骤1:取一组数据点,包括m个,作为样本点

$$\{(l_1, v_1)(l_2, v_2)\cdots(l_i, v_i)\cdots(l_m, v_m)\}\tag{1}$$

式中, 康承采样点对应水库的水位高度, 即湖泊高程; 表示水库水量, 即湖泊容量。

$$i(i = 1, 2, \dots, m)$$
  $v_i(i = 1, 2, \dots, m)$ 

Step2:利用多项式进行曲线拟合

$$\hat{v} = a_0 l^n + a_1 l^{n-1} + a_2 l^{n-2} + \dots + a_{n-1} l + a_n$$
(2)

其中表示拟合系数,表示次数多项式;为预测值。

ŵ

步骤3:计算残差平方和

$$\varepsilon = \sum_{i=1}^{m} (\hat{v}_i - v_i)^2 \tag{3}$$

我们利用MATLAB对高程和内容进行多项式拟合,结果如下





图2:鲍威尔湖(左)和米德湖(右)的拟合曲线

经过多次曲线拟合发现,二次多项式的拟合效果更加理想。 从图2可以看出,鲍威尔湖和米德湖的采样点与拟合曲线比较接近,两水库水位与容积关系如下

$$v_{powell} = 224.26l^{2} - 1.5157*10^{6}l + 2.5622*10^{9}$$

$$v_{mead} = 338.64l^{2} - 6.719*10^{5}l + 3.4155*10^{8}$$
(4)

我们通过对比预测值与实际值来验证函数的有效性。根据Wikipedia, Lake Powell<sup>[5]</sup> 海拔3700英尺,有效容量为20876000英亩英尺,拟合值为24229400英亩英尺;Lake Mead<sup>[6]</sup>海拔1221.4英尺,有效容量为26120000英亩英尺,拟合值为26080000英亩英尺。从数值上看,拟合效果比较理想

# 5 模型一:水电运输模型

### 5.1 基本思想

科罗拉多河流域内有两处水体群,分别是鲍威尔湖和米德湖。两湖海拔较高,水可以从中流向周边地区。另外,米德湖的海拔比鲍威尔湖高,因此水从格伦峡谷大坝(鲍威尔湖)流向胡佛大坝(米德湖),最终流入加利福尼亚湾。

地理图如图3所示。



图 3:地理地图[3]

需求包括水需求和电力需求,其中包括农业、工业和雷西个州出现凹痕。

- 1. 供水:假设每个区域从流经它的河流中引水,而这些水可以追溯到鲍威尔湖或米德湖。其中,鲍威尔湖的一部分水流入米德湖后会供给用户,这部分水被视为属于米德湖。在输水过程中,主要考虑蒸发造成的水力损失。
- 2、电力供应:水力发电是把水的势能转化为机械能,再转化为电能。同样,我们也可以将电力在输送过程中的损失转化为水势能的损失,从而对水库蓄水量产生制约。

这样问题就简化为两个湖泊向五大洲分配水资源,三次产业(农业、工业、居民生活)的分配问题将在第六部分详细讨论。

在水需求和电力需求一定的情况下,可以通过运输模型对水资源进行合理的配置。

### 5.2 运输模型的建立

#### 5.2.1 目标函数

为了充分利用水资源,我们希望两座水坝的供水能够梅满足各州的水和电力需求,同时提供尽可能少的水

$$\min W_{\text{suply}} = W_1 + W_2 = \sum_{i=1}^{2} \sum_{j=1}^{5} W_{ij}$$
 (5)

其中 表示总供水量,表示来自格伦峡谷大坝的水量, 概示来自胡佛大坝的水量。 表示从水库向州供水的水量。如果没有相应的河流流过,则 。  $W_{ii}$ 

$$i(i = 1, 2)$$
  $j(j = 1, 2, \dots, 5)$ 

 $W_{ii} = 0$ 

对于湖泊来说,供水可以分为两种:不经过水坝直接供水,和通过水坝供水。(代表格伦峡,谷水坝,代表胡佛水坝)。  $W_{idown}$  i=1 i=2

考虑到格伦峡谷大坝修建后,部分水会流入米德湖,我们将这部分调入的水量设为,其中为比例参数。另外,假设调入的水量低减入后纳入米德湖的水源供应中。因此,水源供应量可表示为  $W_3$ 

$$W_{suply} = W_{1up} + (1 - \lambda)W_{1down} + W_{2up} + W_{2down}$$

$$= \sum_{i=1}^{2} (W_{iup} + W_{idown}) - \lambda W_{1down}$$
(6)

对于大坝,W包括大坝之后湖泊提供给用户的水量,受用户用水需求(转化为水量)和电力需求的制约,即  $D_{e}$   $D_{e}$ 

$$W_{idown} \ge \max\{D_e + D_w\} \tag{7}$$

水电转换关系和运输过程中水电的损失将在5.2.3节详细讨论。

#### 5.2.2 供应限制

供水量不能超过水库的最低水位,否则将无法供电。假设最低水位为水库的最小容量。

因此,格伦峡谷大坝的供水

$$W_1 \le Q_G \tag{8}$$

其中,栰表格伦峡谷大坝供给的水量,代表格伦峡谷大坝的水库容量。 $\mathit{Q}_{\scriptscriptstyle G}$ 

对于胡佛大坝来说,其供水

$$W_2 \le Q_H + \gamma \lambda W_{1down} \tag{9}$$

其中,表示胡佛大坝供给的水量,表示胡佛大坝的水库容量。Q是从格兰峡谷大坝输送到胡佛大坝的水量。是一个参数 $_{100}$ 表示运输过程中水的损失(详细信息在第 5.2.3 节中讨论)



图4:示意图

#### 5.2.3 需求约束

需求分为水需求和电需求,我们的解决方案需要满足五大洲的两种需求。

#### 电力需求

当水库水量较少时,相应的水流量就会减少,当水位低到一定程度时,甚至会停止发电。

对于水力发电,涡轮机平动功率公式[7]如下

$$E = f(W) = (\eta + \beta)(\rho \dot{V})g\Delta h\Delta t \tag{10}$$

其中 是电能 ,是水的体积 ,表际水的势能和电能之间的关系。 是效率系数(无单位的标量系数 ,范围从 0 表示完全无效到 1 表示完全有效 ) 。 $\eta$  表示可再生能源技术增强的功能。 是水的密度。 是体积流量。 是重力加速度。 是高度变化。 表示工作时间。

$$ho$$
  $ho$   $ho$   $ho$   $ho$   $ho$   $ho$ 

发电高差为当前水位减去最低水位。

$$\Delta h_1 = P - P_{\min}$$

$$\Delta h_2 = M - M_{\min}$$
(11)

鲍威尔湖的水位是多少?格伦峡谷大坝的最低发电水位是多少?

M 是米德湖的水位,也是胡佛水坝的最低发电水位。

由于导线的电阻,电能在传输过程中会有损失

$$E_{loss_{ij}} = \frac{I^2 \rho' L_{ij} \Delta t_i}{s} \tag{12}$$

$$\sum_{i=1}^{2} W_{down_{ij}} - \sum_{i=1}^{2} W_{eloss_{ij}} \ge D_{e_{j}}$$
(13)

其中, 阿結合公式(10,12)得出。

#### 用水需求

水的运输主要依靠河流系统。河流受阳光照射大,受蒸发影响大。蒸发受温度影响很大。因此,运输过程中水的损失可以用以下公式来表示

$$W_{wloss_{ij}} = W_{ij} \alpha^{\frac{\sigma}{Td_{ij}}} \tag{14}$$

其中,**表**示从水库向州供应的水量,是受温度影响的蒸发系数。和是参数。j 是温度。5是从水库到州的距离。  $\alpha$   $\sigma$  T  $d_{ij}$  i j

假设发电后水仍可供用户使用。因此,在考虑供水时,应综合考虑水和电的运输损耗

$$W_{loss_{::}} = W_{wloss_{::}} + W_{eloss_{::}} \tag{15}$$

对于水来说,供应需要满足需求,如下所示

$$\sum_{i=1}^{2} W_{down_{ij}} - \sum_{i=1}^{2} W_{loss_{ij}} \ge D_{w_{j}}$$
 (16)

#### 5.2.4 模型总结

通过总结上面的目标函数和约束方程,我们可以得到以下 水电运输模式。

min 
$$W_{\text{suply}} = \sum_{i=1}^{2} \sum_{j=1}^{5} W_{ij}$$
 (17)

$$\begin{aligned} W_{suply} &= \sum_{i=1}^{2} \left( W_{iup} + W_{idown} \right) - \lambda W_{1down} \\ W_{idown} &\geq \max \left\{ D_{e} + D_{w} \right\} \\ W_{1} &\leq Q_{G} \\ W_{2} &\leq Q_{H} + \gamma \lambda W_{1down} \\ \sum_{i=1}^{2} W_{down_{ij}} - \sum_{i=1}^{2} W_{eloss_{ij}} \geq D_{e_{j}} \\ \sum_{i=1}^{2} W_{down_{ij}} - \sum_{i=1}^{2} W_{loss_{ij}} \geq D_{w_{j}} \\ W_{ij} &\geq 0 \end{aligned}$$

$$(18)$$

请参阅公式(6-16)以获得符号解释。

### 5.3 维护时间计算算法

为了解决在不加水的情况下最大维持时间的问题,我们设计了一个算法来计算维持时间。

该算法的思想是通过反复迭代模型一,求解在不考虑外部水源供应的情况下,两个水库的水可以维持多长时间。

该算法的伪代码如下:

### Algorithm: Maintenance Time Calculation Algorithm

输入: P, M, Pm, M需求 Whill(9)

输出:n

1/\*根据拟合函数2 计算 水库水位和水量\*/3 while  $\ge$  or  $\ge$  do 4 n  $\longleftarrow n+1$ ;  $5\cos t \longleftarrow 0$ ; 6 for  $i \longleftarrow 0$  to 1 do 7 for  $j \longleftarrow 0$  to 4 do 8 if demand> 0 then 9  $\cos t \longleftarrow_{\min} - \sum_{\min} (1-\alpha) - E[i][j] * (1-\beta)$ ; 11 end 12 end 13 if  $\cos t = \min \{\cos t\}$  then

W[i][j]

W[i][j]

 $P \leftarrow P$  which is calculated based on the volume

15  $M \leftarrow M_{\min}$  which is calculated based on the volume;

16 **end** 

需要输入的参数为:两座水库的初始水位高度和,以及最低发电水位高度和。W为矩阵,若水库到状态没有可行水路,则视始化为Wmin需求D。持续天数n初始化为0。

i j W[i][j]

模型中的参数为:计算的水路输送损耗 $\alpha$ ,计算的电路输送损耗 $\beta$ ,W矩阵元素表示从水库i输送到状态i的水量,同样,E矩阵元素表示从水库到状态的发电量。

i j

模型求解及输出:根据模型一可得到每次满足需求且保证损耗最小所需的水库用水量,根据 拟合曲线计算出对应的水库水位,若两座水库水位均低于最低发电水位,则表明水库已经不能提 供电力,即不能再满足需求,算法退出,输出天数n。

### 5.4 计算结果

#### 5.4.1 各湖泊取水量

我们为鲍威尔湖和米德湖的初始水位分配了数值。并且。根据过去的数据,我们假设用水需 救为12310fte·忆加仑,电力需求为1073千兆瓦时。

我们每天分析这个问题。利用该模型,我们得到的总供水量为 594.67 亿加仑。应从米德湖中排出的水量为 416.02 亿加仑,应从鲍威尔湖中排出的水量为 178.65 亿加仑。

经过一天的使用,两个湖泊的水位分别变化了0.45英尺和1.55英尺,结果是合理的。

#### 5.4.2 维护时间

在没有额外水源供应(例如降雨等)的情况下,水位会随时间下降。当水位降至最低发电水位时,水库将无法再提供电力,即无法满足需求。最大维持时间为从初始水位到最低水位。

在前文结果的基础上,结合模型一及维修时间计算 算法算法得到的结果为63天。

#### 5.4.3 补充水

当供水系统达到无法满足需求的临界状态时,需要补充水来维持供水系统运行。此时需求是一定的,水库中的水量为常数值,相当于供水量就是补充的水量,因此结果差别不大。不同之处在于该模型是基于时间线的,我们考虑的实际温度会导致不同的蒸发损失,因此实际需要补充的补充水量将

also be different. The calculation results are shown in the figure below:



图 5:添加水的结果

需要补充的水量与温度呈正相关, 高温度越高,损失越多,就越需要补充水分。

# 6 模型二:协调发展多目标规划模型

模型二是模型一的进一步改进。在模型一中,我们只分配水 各州之间的供应和电力供应。在模型二中,我们考虑了 工业、农业和居民生活用水。

## 6.1 多目标规划模型的建立

#### 6.1.1 目标函数

工业、农业和居民用水、用电的比例最终将 有 社会、经济和环境影响。<sup>[8]</sup>

我们的目标是社会、经济和环境协调发展。社会、经济和环境条件对应于水使用前、使用中和使用后的情况。电力在使用前和使用中分别对应于这个社会和经济。

社会效应指供水(或电)需求得不到满足时,水(或电)的短缺。换言之,社会效益指缺水(或电)带来的负面效应。当不存在缺水时,目标函数中不考虑社会效益。 经济效应指水(或电)带来的工业产出。一个地区工业、农业和居民的供给,在不同程度上影响着该地区的经济状况

环境效应是指水使用后带来的污染物的量。从环境可持续的角度,我们希望污染物的总量尽可能的小。

$$F = opt[f_1(x), f_2(x), f_3(x)]$$
(19)

其中,分别对应社会)经济和环境影响。

水资源供需同时影响三种效应,而电力供需仅影响社会效应和经济效应。

#### 社会效益 $f_1(x)$

水源主要有三个:格兰峡谷水坝、胡佛水坝和降雨。电力供应有两个来源:格兰峡谷水坝和胡佛水坝=3) (i=1)

(i = 2)

当供给不能满足需求时,水(或电)短缺量等于需求量减去供给量。我们希望社会影响尽可能小。

$$\max f_1(x) = -\min \sum_{m=1}^{2} \sum_{k=1}^{3} \sum_{j=1}^{5} [D_j^{km} - \sum_{i=1}^{I(m)} x_{ij}^{km}]$$
 (20)

其中是》州的对象(工业、农业和住宅)对《水或电)的需求m=是州的对象(工业、农业和住宅))对(水或电)2的供应。  $k=3 \qquad j(j=1,2,\cdots,5) \quad x_{ij}^{km} \qquad m \qquad m=1$   $m=2 \qquad k \qquad k=1 \qquad k=2 \qquad k=3$   $j(j=1,2,\cdots,5)$ 

经济效应  $f_2(x)$ 

水经济主要包括水资源所带来的水(或电)的价值,以及利用水(或电)所带来的效益。

水资源带来的水(或电)的价值直接体现在水电的收费制度中,用收费系数来表示;水电利用带来的效益用效益系数来表示,例如,对于一个工厂来说,它的效益可以用收费系数来体现,它的利润可以用效益系数来体现。 b

$$\max f_2(x) = \max \sum_{m=1}^{2} \sum_{k=1}^{3} \sum_{i=1}^{5} \sum_{i=1}^{I(m)} (b_{ij}^{km} - c_{ij}^{km}) x_{ij}^{km} \chi_{ij}^{m} \delta_{j}^{km} w_{j}^{m}$$
(21)

其中,树效益系数,为收费系数,为供给量,为秩序系数,为公平系数,为区域权衡系数。

$${\cal S}_i^{\it km}$$
  ${\it w}_i^{\it n}$ 

受三个经济因素的影响:不同地区的供给差异、不同地区的需求差异、同一地区不同行业的 需求差异。

电力输送过程中水体蒸发和电能损耗的影响均受距离约束,各州与两大坝的距离不同,决定了两大坝对五州供电的优先顺序不同,用序系数表示。工业、农业、居民三类对象是水电资源的三类固定需求群体,他们的需求不同,需求占比相差较大。  $\chi$ 

用公平系数来表示。五个州之间的资源分配用区域权衡系数来表示。

w

这三个系数的具体获取及方法将在第6.2节结合实例详细介绍。

环境影响  $f_3(x)$ 

水在使用之后,会有大量含有重要污染物(如COD、BOD)<sup>[9]</sup>的污水排放,对环境造成负面 影响,如生态系统的破坏,环境效应越小越好。

$$\max f_3(x) = -\min \sum_{k=1}^{3} \sum_{j=1}^{5} d_j^k p_j^k \sum_{i=1}^{3} x_{ij}^k$$
 (22)

式中,为州对象(工业、农业和生活)的污染物排放系数  $k(\mathbf{b}=\mathbf{N})$  对象(工业、农业和生活)排放量中重要污染物的含量( $\lim_{k \to \infty} (\mathbf{L},\mathbf{b})$  。  $d_i^k$ 

$$k(k = 1, 2, 3)$$

 $j(j = 1, 2, \dots, 5)$ 

#### 6.1.2 约束

模型一可以遵循供给和需求的约束,而模型二由于纳入了社会、经济和环境因素,因此可以添加一些额外的约束。

#### 需求约束

用户对水的需求都会有最大需求和最小需求,最大需求指生产能力的最大输出,即达到用户的最大满足,最小需求则是用户维持基本运转的需要。

当供给大于最大需求时,会造成资源浪费;当供给小于最小需求时,需求得不到保证。因此,供需约束如下:

$$D_{j\min}^{k} \le \sum_{i=1}^{3} x_{ij}^{k} \le D_{j\max}^{k}$$
 (23)

#### 污染物限制

污染物排放不得超过污染物最高允许排放总量

$$\sum_{k=1}^{3} \sum_{i=1}^{5} d_{j}^{k} p_{j}^{k} \sum_{i=1}^{3} x_{ij}^{k} \le M_{\text{max}}^{k}$$
 (24)

式中,为某州对象(工业、农业和生活)污染物排放系数 k 为某州对象(工业、农业和生活)排放量中重要污染物的净量, $(0, \max_i, k)$ )。  $d_i^k$ 

$$k(k = 1, 2, 3)$$

 $j(j=1,2,\dots,5)$ . 为最大允许污染物总量,其值为5989kg(总COG/天)<sup>[9]</sup>。

#### 6.1.3 模型摘要

总结上述目标函数和约束方程,可得到如下协调发展多目标规划模型。

$$obj.F(X) = opt[f_{1}(x), f_{2}(x), f_{3}(x)]$$

$$= \begin{cases}
\max f_{1}(x) = -\min \sum_{m=1}^{2} \sum_{k=1}^{3} \sum_{j=1}^{5} [D_{j}^{km} - \sum_{i=1}^{l(m)} x_{ij}^{km}] \\
\max f_{2}(x) = \max \sum_{m=1}^{2} \sum_{k=1}^{3} \sum_{j=1}^{5} \sum_{i=1}^{l(m)} (b_{ij}^{km} - c_{ij}^{km}) x_{ij}^{km} \chi_{ij}^{m} \delta_{j}^{km} w_{j}^{m} \\
\max f_{3}(x) = -\min \sum_{k=1}^{3} \sum_{i=1}^{5} d_{j}^{k} p_{j}^{k} \sum_{i=1}^{l(m)} x_{ij}^{k}
\end{cases}$$
(25)

st.

$$\begin{cases} W_{1} \leq Q_{G} \\ W_{2} \leq Q_{H} + \gamma \lambda W_{1down} \\ D_{j\min}^{k} \leq \sum_{i=1}^{3} x_{ij}^{k} \leq D_{j\max}^{k} \\ \sum_{k=1}^{3} \sum_{j=1}^{5} d_{j}^{k} p_{j}^{k} \sum_{i=1}^{3} x_{ij}^{k} \leq M_{\max}^{k} \\ x_{ij}^{k} \geq 0 \end{cases}$$
(26)

符号解释见公式(8-24),更多参数确定见6.2节。

### 6.2 需确定的参数

由于篇幅所限,不可能一一列举,因此我们以加利福尼亚州为例,说明模型中各个参数的确定。

6.2.1 经济效应参数  $f_2(x)$ 

经济效果包括五个参数:效益系数、收费系数(x秩序系数、公平系数 $b_i^k$ 区域权衡系数。

$$c_{ij}^{km}$$
  $extstyle extstyle extstyle$ 

效益系数

水电利用所带来的效益用效益系数来表示。

工农业用水(或用电)效益系数可由产值用水(或用电)需求量的倒数确定,根据查表<sup>[11,12]</sup> 所得数据可得:

表3: 工业和农业效益系数

| Object      | Total output value<br>/million dollars | Total water volume<br>/million gallons | Total<br>electricity/KMWh | Benefit<br>coefficient(water)<br>dollars/gallons | Benefit<br>coefficient(electricity)<br>dollars/KWh |
|-------------|----------------------------------------|----------------------------------------|---------------------------|--------------------------------------------------|----------------------------------------------------|
| Industry    | 9,025,218                              | 19183                                  | 47631.5                   | 470.48                                           | 189.48                                             |
| Agriculture | 196037.6                               | 399                                    | 6804.5                    | 491.3223                                         | 28.80999                                           |

生活用水(电)效益系数一般很难有一个明确的数值<sup>[8]</sup>,为了保证供应,我们按照表3给出一个较大的数值,水的效益系数为550美元/加仑,电的效益系数为200美元/千瓦时。

### 收费系数

水资源所带来的水电价值,直接体现在水电收费制度上,用收费系数来表示。

收费系数可按照加州水电单价[13,14,15]确定。

表4三个对象的充电系数

| Object                           | Industry | Agriculture | Residents |
|----------------------------------|----------|-------------|-----------|
| Water price<br>(dollars/gallons) | 3.77     | 2.12        | 5.85      |
| Electricity price (cents/KWh)    | 8.16     | 17.5        | 15.98     |

#### 订单系数

$$\chi_{ij}^m$$

三大水源地对五州供水的不同优先顺序,以序系数表示。

由水(或电)使用优先级到订购系数的转换可由如下转换关系[8]得到:

$$\chi_{ij}^{m} = \frac{1 + n_{\max j}^{m} - n_{ij}^{m}}{\sum_{i=1}^{I(m)} (1 + n_{\max j}^{m} - n_{ij}^{m})}$$
(27)

m = 2

对于一个给定的州,水源有三个:格伦峡谷大坝、胡佛大坝和降雨。由于输送距离的增加会导致冰因蒸发而损失;运此优先级按距离确定。对于加利福尼亚州,降雨在很短的时间内可用,并且它到胡佛大坝的距离小于格伦峡谷大坝。因此,优先级为降雨第一,胡佛第二,格伦最后,分别表示为。(水)分别为 1/3、1/2、1/6。

$$n_{1j}^1 = 3, n_{2j}^1 = 2, n_{3j}^1 = 1$$
  $\chi_{ij}^1$ 

电力来自两个来源:格兰峡谷大坝和胡佛大坝。由于运输<u>距离的增加会因电力损失</u>而造成损失,因此其优先级也由

距离。优先度为:胡佛第一,格伦第二,分别用表示,得出(电量)分别为1/3,2/3。

$$n_{1i}^2 = 2, n_{2i}^2 = 1$$
  $\chi_i^1$ 

公平系数  $\delta$ 

他们的诉求是不同的,他们诉求比例的差异就用公平系数来体现。

$$\delta_j^{km} = \frac{1 + n_{\text{max}}^{km} - n_j^{km}}{\sum_{k=1}^{3} (1 + n_{\text{max}}^{km} - n_j^{km})}$$
(28)

用水优先顺序 $^{[16]}$ :居民生活用水第一,农业用水第二,工业用水最后,对应顺序为:。代入公式,用水公平系数分别为 $^{1}/^{2}$   $^{3}$   $^{1}/^{2}$   $^{2}/^{6}$   $^{3}$   $^{1}$   $^{1}$ 

电力需求优先顺序<sup>[17]</sup>:农业用电占电力消费比重较小,因此我们优先考虑居民用电,其次是工业用电,最后是农业用电。对应:,代入公式,得电力公平系数分别为1/3、1/6、1/2。

$$n_j^{11} = 2, n_j^{21} = 3, n_j^{31} = 1$$

### 区域权衡系数

 $w_{i}^{n}$ 

五个州之间的资源分配以区域权衡系数来表示。

以水为例,我们有五个州的用水数据 $^{[10]}$ 。根据数据, $\overline{D}$ 五种状态中的八种如下图 5 所示。



图6: 五州的区域权衡系数

#### 6.2.2 环境影响参数

 $f_3(x)$ 

环境效应有两个参数:污染物排放系数,重要污染物的含量。

 $p_i^k$ 

 $d_i^k$ 

通过数据查询 $^{[19]}$ ,加州的COD(或其他污染物)排放量 $^{190}$ mg/L,排放量 $^{k}$ 

coefficient  $p_i^k$  is 0.20.

### 6.3 计算结果

#### 6.3.1 问题二的答案

为了更好地表示农业、工业、居民用水与发电量之间的关系,我们假设各州有充足的水源供应和10亿加仑的降雨量,计算最优经济效益,得到各州水电资源分布情况如下表所示。

| region     | source of water | industrial water | domestic water | agricultural water | industrial<br>electricity | domestic<br>electricity | agricultural<br>electricity |
|------------|-----------------|------------------|----------------|--------------------|---------------------------|-------------------------|-----------------------------|
|            | Glen Canyon dam | 455.09           | 1444.41        | 6272.32            | 6605.41                   | 2431.79                 | 1049.80                     |
| Arizona    | Hoover dam      | 176.52           | 560.24         | 2432.84            | 2443.22                   | 899.47                  | 388.30                      |
|            | rainfall        | 55.69            | 376.76         | 567.55             |                           |                         |                             |
|            | Glen Canyon dam |                  |                |                    |                           |                         |                             |
| California | Hoover dam      | 426.98           | 697.37         | 11842.18           | 1919.93                   | 1433.90                 | 377.17                      |
|            | rainfall        | 32.93            | 253.78         | 713.29             |                           |                         |                             |
|            | Glen Canyon dam | 569.47           | 1395.46        | 13635.83           | 3844.46                   | 5309.69                 | 932.85                      |
| Wyoming    | Hoover dam      |                  |                |                    |                           |                         |                             |
|            | rainfall        | 36.50            | 289.45         | 674.05             |                           |                         |                             |
|            | Glen Canyon dam | 464.81           | 1479.55        | 2513.00            | 2212.86                   | 7340.91                 | 533.22                      |
| New Mexico | Hoover dam      | 180.29           | 573.87         | 974.71             | 818.50                    | 2715.27                 | 197.23                      |
|            | rainfall        | 104.28           | 531.93         | 363.79             |                           |                         |                             |
|            | Glen Canyon dam | 441.07           | 1324.92        | 11606.08           | 5755.73                   | 2957.83                 | 1373.44                     |
| Colorado   | Hoover dam      |                  |                |                    |                           |                         |                             |
|            | rainfall        | 32.98            | 299.08         | 667.93             |                           |                         |                             |

从表中可以看出:(1)在大多数地区,农业和居民用水量相对较高。这是因为(1)各州农田面积相对较大,灌溉用水需求量较大。(2)居民用水优先性较高。我们在水资源再分配中优先考虑居民用水,因此居民用水占比相对较高。

从表中可以看出,工业和居民生活用电占比较高,农业用电占比较低,这是因为(1)工业产出对电力需求较大,(2)居民用电以保证生活需要为主,(3)农业主要需求是水利,对电力需求较低。

#### 6.3.2 问题三的答案

问题二考虑水资源不短缺情况下的资源配置,此时主要考虑经济效应;问题三考虑水资源短缺,因此采用社会效应、经济效应、环境效应多目标规划,保证率如下表所示

表5:担保率

| Guarantee rate | $f_1(x)$ /million gallons | $f_2(x)$ /million dollars | $f_3(x)$ /kg |
|----------------|---------------------------|---------------------------|--------------|
| 50%            | 2071.65                   | 37965.48                  | 1235.68      |
| 75%            | 2748.52                   | 34545.59                  | 1396.32      |
| 95%            | 3107.47                   | 28675.33                  | 1731.43      |

在保证率由50%向95%变化过程中,水资源缺口总量增大,州内重要污染物排放量也随之增加,但州内产生的效益价值却减少,即区域经济效应的提升是以社会效应和环境效应的降低为代价的,表明三者之间是相互影响、相互竞争的

在建立的协调多目标规划模型中。

#### 6.3.3 模型的重新运行

考虑到现实生活中水库调度工作,模型需要经过一定时间后做相应的调整,我们以一个月为间隔运行模型,每次运行模型得到一个月的调度数据,如有余缺,可在下个月做相应的调整。

## 7墨西哥分配模型

### 7.1 墨西哥分配模式的建立

该模型基于水库分配后墨西哥的分配计划。

无论是模型一还是模型二,在给各州分配完资源后,如果没有剩余资源(即资源不足,Rem=0即刚**好押完**),**则**被模型不适用。没有给墨西哥分配资源。

如果分配资源后还有剩余:考虑将资源分配给墨西哥。我们以每个月作为模型的运行周期,根据数据运行模型,得到美国一个月所需的用水量Req。用预估的总用水量减去预估的每月用水量Req,得到Rem。这就是模型的应用之处。分配给墨西哥的数量为 $\mu$ \*Req(计算方法为缩放因子乘以美国一个月的需求量)。

我们参考Logistic曲线,设置参数,使其符合我们的模型:

$$\mu(t) = \frac{1}{1 + (\frac{\mu_m}{\mu_0} - 1)e^{-rt}}$$
 (29)

## 7.2 计算结果

我们使用MATLAB设置参数以符合我们的模型,并得到最终的参数值=1,,。  $\mu_{m}=1$   $\mu_{0}=0.0001$  r=9.2



图 7:关系图

当剩余的Rem很少, $\mu$ 接近于0时,分配给墨西哥的资源也接近于0。当Rem大于等于美国月需求Req的两倍时, $\mu$ 几乎为1,给墨西哥的量相当于美国一个月的量,也就是说,最多给墨西哥的量相当于美国一个月的量(计算周期为一个月)。当Rem刚好等于Req时, $\mu$ =为0.5,给美国一个月的量相当于其所需量的一半。

## 8 敏感性分析

### 8.1 需求变化

随着时间的推移,各个行业对水电的需求可能上升也可能下降,此时我们选取工业、农业和居民用水需求在原有需求基础上增加5%,工业、农业和居民用电需求在原有需求基础上减少5%,探究对模型求解最终结果的影响。



图8:需求变化

可以看出,居民生活用水原有比重较大,利用的水资源基数较大,因此,当工业、农业和居民生活用水需水量分别增加5%时,总体比重变化较大,且居民生活比重增加较多。但工业原有比重较小,需水量增加5%后,对总体比重影响不大,工业比重调整也较小。对于电力消费,也可以看出,原有比重较大的行业,会引起总体比重较大的变化。

## 8.2 可再生能源技术

在我们的模型中,可再生能源技术中,暂时只考虑水力发电的技术升级,如果考虑风电、太阳能等可再生能源技术,则只需增加电力供应即可。在第一个模型中,提到水能转换成电能的利用效率为 $\eta+\beta$ ,,其中 $\eta$ 为基本利用效率,为80%。表示可再生能源技术升级的作用,增加值分别假设为5%、10%和15%。计算出的供水量随着利用效率的提高而减少。这是可以理解的,因为损失的额外能量少了,所以提供的水量就少了。

表 6: 可再生能源技术变化

| β      | 5%    | 10%   | 15%   |
|--------|-------|-------|-------|
| Supply | 55567 | 53722 | 52642 |

从数据中可以看出,在我们的模型中 $\beta$ 增加之后,水供应量有所减少,但是并不显著,说明水分利用效率 $n+\beta$ 对我们的模型影响不大,这可能是因为蒸发造成的损失大于水分利用效率的损失。

### 8.3 节水节电措施

我们认为,额外的节水节电措施将导致居民对水电的需求减少。对资源的需求减少将使水坝保持较高的水位,从而将发电量保持在较高的水平(较高),因此需求减少越多,水库提供的水就越多。但是,当需求减少到一定程度时,水库的水位足够高,变化不大,发电量基本稳定。随着需求的减少,水坝提供的减少水量也趋于正相关。



图9:保护措施的变化

# 9 优势与劣势

## 9.1 优势

- (1)本文采用的两个主要模型具有通用性,可以处理不同的供需情况,得到更优的分配方案
- (2)模型二综合考虑社会效应、经济效应和环境效应,三者相互作用、相互竞争,提高结果的合理性
  - (3)在水电转换、功率损失方面,参考了大量的文献资料,保证了模型的严谨性。

## 9.2 弱点

- (1) 在模型计算中,没有找到一些参数的具体值,这可能会对结果造成一定的影响。
- (2) 模型中仅考虑水力发电,若考虑风力发电等其他发电方式,结果将更加符合实际。

# 参考

- [1] https://finance.sina.com.cn/tech/2021-06-11/doc-ikqcfnca0393441.shtml
- [2] 美国西部缺水消息https://finance.sina.com.cn/tech/2021-08-19/doc-ikqciyzm2363948.shtml
- [3] 科罗拉多河流域来自维基百科 https://en.wikipedia.org/wiki/Colorado\_River
- [4] https://droughtmonitor.unl.edu/
- [5] 鲍威尔湖 https://en.wikipedia.org/wiki/Lake\_Powell
- [6] 米德湖 https://en.wikipedia.org/wiki/Lake\_Me 广告
- [7] 水力发电 https://en.wikipedia.org/wiki/Hydroelectricity
- [8] 常毅.基于遗传算法的区域水资源优化配置研究及应用[D].华中科技大学, 2011。
- [9]杜柏林.基于模拟退火粒子群优化的大荔县水资源优化配置研究[D]西安理工大学,2021 DOI:1 0.27398/d.cnki.gxalu.2021.000819.
- [10] Dieter C A. 水资源可用性和利用科学计划: 2015 年美国水资源使用量估算[M]. 地质调查局, 2 018.
- [11] https://www.eia.gov/electricity/sales\_revenue\_price/pdf/table5\_c.pdf
- [12] https://apps.bea.gov/regional/downloadzip.cfm
- [13] https://www.boardofwatersupply.com/customer-service/water-rates-and-charges/water-rate-schedule-july-1-2019-june-30-2023
- [14] https://www.electricitylocal.com/states/california/industry/
- [15] https://www.cfbf.com/wp-content/uploads/2019/06/ElectricityRates.pdf
- [16] https://www.suiniann.com/book/895/25709.html
- [17] https://www.eia.gov/electricity/state/
- [18] https://www.waterboards.ca.gov/resources/data\_databases/wq\_status\_report.html

## 《干旱与口渴》杂志文章

## 水资源匮乏时代的救赎

科罗拉多河是美国西部最大的水系,因流经广大干旱和半干旱地区而被誉为"西南的生命线"。然而,由于严重的旱灾和不合理的水资源利用,许多地区的水坝和水库水源水量正在减少。因此,针对当前和未来的供水状况制定合理、可靠的水资源分配计划至关重要。

为了解决水库水资源配置问题,提出了两 个模型:模型一是水电





为了便于求解模型,我们首先求解水库水位与水库蓄水量之间的关系问题。在此基础上,我们进一步考虑模型的目标函数和约束关系。我们试图找到一种分配方法,使大坝能够供应最少的水量,从而缓解缺水状况。对于模型的约束,我们考虑了需求量约束、损失约束和库存容量约束。根据格伦峡谷和胡佛大坝之间的关系以及给定的参数,该模型可用于计算两座大坝向亚利桑那州、加利福尼亚州、怀俄明州、新墨西哥州和科罗拉多州五个州供应的水量和电量。

解决一般用水和电力生产的利益冲突同样困难。为此,我们提出了模型二,它可以更好地确定五个州的农业、工业和居民用水和电力的合理分配。我们的第二个模型的思路是结合社会效益和经济效益,提出一个多目标规划模型。通过这个模型,我们可以在满足基本用水和电力供应需求的同时兼顾其他方面。最后,我们可以得到每个行业的权衡。

在获得足够的数据后,我们的模型就可以很好地发挥作用。例如,我们可能需要温度数据、 降雨量数据等。我们建议每隔一个月运行一次我们的模型,以更好地管理水资源,以便及时调整 最佳策略。

至于墨西哥的权利,我们有分级分配制度,可以很好地分配剩余的水资源。由于缺水,我们 不考虑将科罗拉多河改道流入加利福尼亚湾。

虽然我们的方法能更好地解决水库水量分配的问题,但我们还是要珍惜水资源,鼓励民众节约用水,鼓励相关部门加大可再生能源技术的比例,共同努力,才能解决缺水问题。