TASK DESCRIPTION

Problem Title:

Man and the poorly constructed bridges

Problem Description:

A deserted city has N number of pillars, connected via poorly constructed bridges such that once a bridge is crossed it breaks down and can not be used again. In the city no other way of movement from one place to another exists. In order to move, a person has to use these bridges only. A distant traveller, unaware of the condition of the bridges arrive at the doorstep of the city. Seeing not a single person, he is hesitating to enter into the city, but being curious, he also has a urge to see if he could find a single person or not. Assuming, city starts from pillar 1, tell if the man would be able to return back to the same place from where he started his journey?

Note: All pillars are named as pillar 1, pillar 2, and so on. A bridge breaks down once it is completely crossed.

Input Format:

First line contains the number of pillars present in the city.

Each of the next N lines contain to which other pillars, that pillar is connected. eg. 1st line contains values 1 0 1 1 0 => means that pillar 1 is connected to pillar 1, pillar 3 and pillar 4 and not connected to pillar 2 and pillar 5. Assuming, a pillar will always be connected to itself.

NOTE: 0 means that pillars are not connected to each other. 1 means that pillars are connected to each other.

Example:

Explanation:

7 => number of pillars in the park
1 1 0 0 0 0 0 => pillar 1 is connected to pillar 1 and pillar 2 only
1 1 1 1 0 0 0 => pillar 2 is connected to pillar 1, pillar 2, pillar 3, pillar 4 only
0 1 1 0 0 0 0 => pillar 3 is connected to pillar 2 and pillar 3 only
0 1 0 1 1 0 0 => pillar 4 is connected to pillar 2, pillar 4 and pillar 5 only
0 0 0 0 1 1 0 => pillar 5 is connected to 5 and pillar 6 only
0 0 0 1 1 1 => pillar 6 is connected to pillar 4, pillar 5, pillar 6, pillar 7 only
1 0 0 0 0 1 1 => pillar 7 is connected to pillar 1, pillar 6 and pillar 7 only

Output Format:

0

Explanation:

1 => yes, he will be able to return back to the same place from where he started 0 => no, he will not be able to return back to the same place from where he started

Constraints:

Pillars are connected via bridges only

Bridge will break down once it has been crossed completely. As a result, a bridge can not be used more than once.

The entry to the city is from pillar 1 only.

Sample Input:

Sample Output:

Test Cases:

Test Name: Test 1

Input:

Output:

Test Name: Test 2

Input:

Output:

Input: $0\,0\,0\,1\,0\,1\,0\,1\,0\,0\,0\,0\,0\,0\,0\,0\,0$ $0\,0\,0\,0\,0\,0\,1\,1\,1\,0\,0\,0\,0\,0\,0\,0\,0$ $0\,0\,0\,0\,0\,0\,0\,1\,1\,0\,0\,0\,0\,0\,0\,0\,0$ $0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,1\,1\,0\,0\,0$

Test Name: Test 3

Output:

(

Test Name: Test 4

Input:

Output:

Test Name: Test 5 Input: $0\,0\,0\,0\,0\,0\,0\,1\,1\,0\,0\,0\,0\,0\,0\,0\,0$ $0\,0\,0\,0\,0\,0\,0\,0\,0\,1\,1\,1\,0\,0\,0\,0\,0\,0$

Output:

Test Name: Test 6

Input:

Output: