VLSI Symposium 2016

Samsung Electronics will present a 10nm logic technology developed using 3rd generation Si FinFETs for low power, high performance applications, demonstrating a speed improvement of 27% with a 40% reduction in power compared to 14nm process, achieved with multi-threshold voltage devices and reduced contact resistance.

Overcoming process challenges such as multiple patterning, high aspect ratio etching, niche gate replacements, and advanced isolation, the authors demonstrated yield analysis of a 0.04µm² SRAM with 128Mb cell size and observed a static noise margin of 190mV at 0.75V.

Paper T2.1, Figure 7 – "Si FinFET-based 10nm Technology with Multi V_t Gate Stack for Low Power and High Performance Applications," Cho et al., Samsung Electronics

Next Wednesday

- Bring your own PC. (Of course, with internect connection!)
 - Check your accesibility to the EDISON website.

Lecture14: Physics of MOS transistors (2)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

MOSFET

- Vertical structure
 - Metal-Oxide-Semiconductor
- Terminals
 - Gate, Source, Drain, (and substrate)

Actual device

- TEM image of a MOSFET
 - 32nm node
 - (somewhat old...)

(Packan et al., IEDM 2009)

How to fabricate it (1/6)

How to fabricate it (2/6)

How to fabricate it (3/6)

How to fabricate it (4/6)

How to fabricate it (5/6)

How to fabricate it (6/6)

0.18 μm NMOSFET

Source/drain implant

Top view

- TEM image of a MOSFET
 - 22nm node
 - (a few years ago...)

(Wikipedia)

Future

Nanowire?

(Google images)

• III-V?

(Google images)

Other application

- Up to now, we have seen the MOSFET used for the logic application.
 - CMOS RF
- However,
 - NAND Flash memory
 - Power device
 - Various sensors

Review (1/2)

- The MOSFET has three terminals.
 - (Low-frequency) gate current is zero. (Isolated by the dielectric material)
 - Source current + drain current = 0
 - Source is connected to the GND.
 - Gate voltage and drain voltage are variables.

Review (2/2)

- Typical graphs
 - Id-Vg for given Vd values
 - Id-Vd for given Vg values

Threshold voltage

- Threshold behavior
 - Physical reason? (See p. 248)

A door threshold and a dog (Google images)

← A typical Id-Vg curve

Derivation of IV (1/2)

Drain current

First of all, the current is given by

$$I = Q v ag{6.4}$$

- Here, Q is the charge density per unit length.
- It follows

$$Q = WC_{ox}[V_G - V(x) - V_{TH}]$$
 (6.3)

- Also v is the electron velocity.

$$v = -\mu_n E = +\mu_n \frac{dV}{dx}$$
 (6.5 and 6.6)

The drain current is

$$I_D = W C_{ox} [V_G - V(x) - V_{TH}] \mu_n \frac{dV}{dx}$$
 (6.7)

Derivation of IV (2/2)

- Integration over the channel
 - Simply re-arranging,

$$I_D dx = \mu_n C_{ox} W[V_G - V(x) - V_{TH}] dV$$

When integrated,

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_G - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

← Is it acceptable?

Voltage

Of course, not!

- Current usually increases as the voltage increases...
- Recall (6.3).

$$Q = WC_{ox}[V_G - V(x) - V_{TH}]$$
 (6.3)

- What happens when $V(x) = V_G V_{TH}$?
- "Saturation region"

← Instead, the current is saturated. (Red lines)

Voltage

Example 6.6

- Assume the saturation region.
 - Then, the saturation current becomes 200 μ A.

Long vs. short

- Long channel device
 - "Long"?
 - It depends on the situation.
- Short channel device
 - "Short"?
 - Again, it depends on the situation.
- Channel-length modulation
- Velocity saturation
- Body effect

Channel length modulation

Channel length modulation

Output resistance?

$$r_O = \frac{\Delta V_{DS}}{\Delta I_D}$$

MOS transconductance

- "conductance" of a simple resistor
 - It means $\frac{I}{V}$.
- "trans" + "conductance"
 - Between different terminals

$$g_m = \frac{\partial I_D}{\partial V_{GS}} \tag{6.44}$$

For the saturation region,

$$g_{m} = \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{TH})$$

$$g_{m} = \sqrt{2\mu_{n} C_{ox} \frac{W}{L} I_{D}}$$

$$g_{m} = \frac{2I_{D}}{V_{GS} - V_{TH}}$$
*Why?

Body effect

- Actually, a MOSFET is a four-terminal device.
 - Substrate (or bulk)
 - Threshold voltage, V_{TH} , varies. (In which direction?)

Two more issues

- Velocity saturation
 - Once again, the current is given by

$$I = Q v ag{6.4}$$

- How did we have the saturation?
- Subthreshold conduction
 - Although not covered, it's the critical issue!

Summary

MOS structure

- Two different mechanisms to provide negative charges
- Threshold voltage
- Once the MOS is inverted, it is a capacitor.

MOS IV

- Current as a product of density and velocity
- Triode region and saturation region
- Concept of transconductance
- Channel length modulation
- Body effect
- Velocity saturation
- Subthreshold swing

Large-signal model (1/2)

Saturation region

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$$

- Drain current is determined by gate voltage. (voltage-controlled current source)
- Channel-length modulation?

Large-signal model (2/2)

Triode region

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left[2(V_{GS} - V_{TH}) V_{DS} - V_{DS}^2 \right]$$

Still, it can be described by a voltage-controlled current source.

Example 6.13

- Always in the saturation region!
 - Any necessary condition?

Gate and drain are tied.

They are connected to V_{DD} .

Small-signal model

- The large-signal model is complete (within its accuracy limitation).
 - But, for small-signal analysis, it is convenient to have the small-signal model.

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

What is g_m and r_o ?

Time-dependent one?

- Everything was in the dc steady-state...
 - How about the frequency-dependent case?
 - Capacitive components can be seen.
 - Their physical origin?

High-frequency, equivalent-circuit model for the case in which the source is connected to the substrate

CMOS

- 9's complementary of 123?
 - **876**
- Complementary MOS
 - Here we have an NMOSFET.
 - A device where the transport is dominated by holes

Why is it important?