	Bonus	Note
Name	Vorname	
	1	
Matrikelnummer	Studiengang	
Obige Angaben sind richtig:		
Obige imgaben sind fichtig.		
	Unterschrift der Kandidatin / d	les Kandidaten
TECHNISCHE U	JNIVERSITÄT MÜNCHEN	
Fakultä	t für Mathematik	
Üb	ungsklausur	Punkte
Ferienkurs zu M	athematik für Physiker 1	Pulikte
	eare Algebra)	
29. März 20	019, 10:15 – 11:45 Uhr	2
Laura Lou	nis, Frederik Schnack	
		3
Himmaiaa		4
Hinweise: Viel Erfolg! :-)		4
		5
		6
ur von der Aufsicht auszufüllen	:	
örsaal verlassen von	bis	\sum
orzeitig abgegeben um	••••	
esondere Bemerkungen:		

Korrektor(en)

Aufgabe 1. Wahr oder Falsch? (1+1+1+1+1+1=6 Punkte)

Beantworten Sie die folgenden Fragen jeweils mit Ja oder Nein und begründen Sie Ihre Antwort. Antworten ohne Begründung werden, auch wenn sie korrekt sind, nicht gewertet.

- (a) Ist die Lösungsmenge eines inhomogenen linearen Gleichungssystems ein Vektorraum?
- (b) Sei $f: \mathbb{R} \to \mathbb{R}$ eine \mathbb{R} -lineare Abbildung. Ist dann f von der Form f(x) = ax für ein $a \in \mathbb{R}$?
- (c) Sind $\sqrt{2}$ und $\sqrt{3}$ linear unabhängig im \mathbb{Q} -Vektorraum \mathbb{R} ?
- (d) Sei $A \in \mathbb{R}^{n \times n}$ und alle Diagonaleinträge von A sind 0, d.h. $a_{ii} = 0 \ \forall i \in \{1, ..., n\}$. Kann $A \in GL_n(\mathbb{R})$ liegen?
- (e) Ist die Vereinigung zweier Unterräume stets ein Unterraum?
- (f) Sei V ein \mathbb{R} -Vektorraum und $U\subseteq V$ ein Unterraum von V. Seien weiter u_1,u_2 in V. Gilt folgende Äquivalenz

$$u_1, u_2 \in U \iff u_1 + u_2 \in U$$
?

Punkte

Aufgabe 2. Darstellungsmatrizen (2+4+4+2=12) Punkte

Seien

$$\mathcal{B} = \{b_1, b_2\} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \end{pmatrix} \right\} \quad \text{und} \quad \mathcal{C} = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 4 \end{pmatrix} \right\}$$

geordnete Basen des \mathbb{R}^2 .

(a) Geben Sie die Basiswechselmatrizen $T_{\mathcal{C}}^{\mathcal{B}}$ und $T_{\mathcal{B}}^{\mathcal{C}}$ an.

Sei $\mathcal{B}^* = \{b_1^*, b_2^*\}$ die Dualbasis zu \mathcal{B} .

- (b) Geben Sie die Darstellungsmatrix von b_1^* und b_2^* bezüglich der Basis $\mathcal{B} \subseteq \mathbb{R}^2$ und der Basis $\mathcal{D} = \{1\} \subset \mathbb{R}$ an.
- (c) Geben Sie die Darstellungsmatrix von b_1^* und b_2^* bezüglich der Basis $\mathcal{C} \subseteq \mathbb{R}^2$ und der Basis $\mathcal{D} = \{1\} \subseteq \mathbb{R}$ an.
- (d) Rechnen Sie die Gleichheit

$$M_{\mathcal{D}}^{\mathcal{B}}(b_1^*) = T_{\mathcal{D}}^{\mathcal{D}} \cdot M_{\mathcal{D}}^{\mathcal{C}}(b_1^*) \cdot T_{\mathcal{C}}^{\mathcal{B}}$$

nach und visualisieren Sie den Zusammenhang in einem Diagramm.

(e) Sind die Basiswechselmatrizen $T_{\mathcal{C}}^{\mathcal{B}}$ und $T_{\mathcal{B}}^{\mathcal{C}}$ invertierbar? Kurze Begründung.

Aufgabe 3. Eigenwerte (2+2+2+1=7 Punkte)

Sei

$$A = \begin{pmatrix} 0 & 2 & -3 \\ -4 & 6 & -12 \\ -2 & 2 & -4 \end{pmatrix}.$$

- (a) Berechne das charakteristische Polynom von A.
- (b) Berechne die Eigenwerte von A über \mathbb{Q} .
- (c) Berechnen Sie Basen der Eigenräume von A über $\mathbb{Q}.$
- (d) Ist A diagonalisierbar über \mathbb{Q} ? Ist A triagonalisierbar über \mathbb{Q} ?

Punkte

Aufgabe 4. Kern und Bild. (1+2+2+1=6 Punkte)

Gegeben ist die Matrix $C:=\begin{pmatrix}2&1&0&0\\0&0&0&3\\0&0&0&0\end{pmatrix}\in\mathbb{R}^{3\times 4}.$ Die Matrix C kann als eine Matrixabbildung $\phi_C:\mathbb{R}^s\to\mathbb{R}^t, x\mapsto Cx$ betrachtet werden.

- a) Bestimmen Sie s und t.
- b) Welcher der folgenden Vektoren sind in $\operatorname{im}(\phi_C)$, welche nicht? Begründe.

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 0 \\ 3 \end{pmatrix}.$$

- c) Bestimmen Sie ein von Null verschiedenes Element in $\ker(C)$.
- d) Ist ϕ_C eine injektive Abbildung? Ist ϕ_C eine surjektive Abbildung?

Aufgabe 5. Unitärer Vektorraum. (5 Punkte)	P unkte

Sei V ein unitärer Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$ und sei $U = \{u_1, ..., u_k\} \subseteq V$ eine orthonormale Menge von Vektoren aus V.

Zeigen Sie: Für jeden Vektor $v \in V$ ist

$$w = v - \sum_{i=1}^{k} \langle u_i, v \rangle u_i$$

orthogonal zu jedem u_i .

Punkte

Aufgabe 6. Lineare Unabhängigkeit. (6 Punkte)

Sei V ein \mathbb{R} -Vektorraum. Beweise:

- a) Seien $\{v_1,v_2\}\subset V$ linear unabhängig. Dann sind auch $\{v_1+v_2,v_1-v_2\}$ linear unabhängig.
- b) Sei $B=\{b_1,b_2\}$ eine Basis von V. Sei weiter $f:V\to V$ eine lineare Abbildung mit

$$f(b_1) = b_1 + b_2, \quad f(b_2)b_1 - b_2.$$

Dann ist f bijektiv.

