Chandler Squires

chandlersquires.com

Contact 1556 Cambridge St chandlersquires18@gmail.com Information Cambridge, MA, 02139 1-210-412-2105 Research Causality: Causal structure learning, experimental design, causal representation learning. Applied statistics/machine learning: Healthcare, biology, neuroscience. Interests **EDUCATION** Ph.D. Candidate, Electrical Engineering and Computer Science Expected June 2024 Thesis Advisors: David Sontag, Caroline Uhler M.Eng., Electrical Engineering and Computer Science September 2019 Massachusetts Institute of Technology, Cambridge, MA, USA Thesis Advisor: Caroline Uhler GPA: 5.0/5.0B.S., Electrical Engineering and Computer Science Massachusetts Institute of Technology, Cambridge, MA, USA GPA: 4.9/5.0SELECTED 1. Squires, C., Uhler, C. (2022). Causal Structure Learning: a Combinatorial Perspective, **PUBLICATIONS** JoFCM [arXiv:2206.01152]. 2. Belyaeva, A., Cammarata, L., Radhakrishnan, A., Squires, C., Yang, K., Shivashankar, G.V., Uhler C. (2021) Causal Network Models of SARS-CoV-2 Expression and Aging to Identify Candidates for Drug Repurposing, Nature Comm. [arXiv:2006.03735]. 3. Squires, C., Magliacane, S., Greenewald, K., Katz, D., Kocaoglu, M., Shanmugam, K. (2020). Active Structure Learning of Causal DAGs via Directed Clique Trees, NeurIPS 2021 [arXiv:2011.00641]. 4. Squires, C., Wang, Y., Uhler, C. (2020). Permutation-Based Causal Structure Learning with Unknown Intervention Targets, UAI 2020 [arXiv:1910.09007]. 5. Bernstein, D., Saeed, B., Squires, C., Uhler, C. (2020). Ordering-based causal structure learning in the presence of latent variables, AISTATS 2020 [arXiv:1910.09014]. 6. Agarwal, R., Squires, C., Yang, K., Uhler, C. (2019). ABCD-Strategy: Budgeted Experimental Design for Targeted Causal Structure Discovery, AISTATS 2019 [arXiv:1910.09007].

June 2018

January 2023

Teaching EXPERIENCE

Massachusetts Institute of Technology

1. Instructor: 6.S091, Causality

	Link to lecture notes and recordings.	
2	2. Teaching Assistant: 6.437, Inference and Information	Spring 2019
3	3. Teaching Assistant: 6.438, Algorithms for Inference	Fall 2018
MENTORSHIP	. Cathy Cai, $BS + MEng$	2023-
	2. Álvaro Ribot, BS, now at Harvard University	2022-
	3. Sathwick Karnik, BS	2020-2022
	. Michael Truell, BS	2021-2023
	. Eshaan Nichani, MEng, now at Princeton University	2020-2021
6	s. Neha Prasad, BS $+$ MEng, now at Valo	2020-2021

7. Annie Yun, BS + MEng, now at HRT	2020-2021
8. Joshua Amaniampong, BS, now at HAP Capital	2020-2021

ACADEMIC SERVICE

- 1. Reviewer for NeurIPS, ICML, UAI, AISTATS, JMLR, JOCI.
- 2. MIT EECS Communication Lab fellow.

INVITED TALKS

1. SIAM Conference on Optimization	June 2023
2. When Causal Inference meets Statistical Analysis	April 2023
3. Principles of Distribution Shift Workshop	2022
4. Institute for Mathematical Sciences Annual Meeting	2022
5. Workshop on Interactive Causal Learning	2022
6. Simons Institute Causality Bootcamp	2022
7. AI4Science Colloqium	2021

REFEREED PUBLICATIONS

- 1. Squires, C., Seigal, A., Bhate, S., Uhler, C. (2022), Linear Causal Disentanglement via Interventions, ICML 2023 [arXiv:2211.16467].
- 2. Squires, C. Yun, A., Nichani, E., Agrawal R., Uhler C. (2022). Causal Structure Discovery between Clusters of Nodes Induced by Latent Factors, CLeaR 2022 [arXiv:2207.01237].
- 3. Squires, C., Shen, D., Agarwal, A., Shah, D., Uhler, C. Causal Imputation via Synthetic Interventions, CLeaR 2022 [arXiv:2011.03127].
- 4. Squires, C., Uhler, C. (2022). Causal Structure Learning: a Combinatorial Perspective, JoFCM [arXiv:2206.01152].
- Zhang, J., Squires, C., Uhler C. (2021). Matching a Desired Causal State via Shift Interventions, VeurIPS 2021 [arXiv:2107.01850].
- Belyaeva, A., Squires, C., Uhler. C (2021). DCI: learning causal differences between gene regulatory networks, Bioinformatics 2021 [bioRxiv:10.1101/2020.05.13.093765v1].
- Belyaeva, A., Cammarata, L., Radhakrishnan, A., Squires, C., Yang, K., Shivashankar, G.V., Uhler C. (2021) Causal Network Models of SARS-CoV-2 Expression and Aging to Identify Candidates for Drug Repurposing, Nature Comm. [arXiv:2006.03735].
- 8. Squires, C., Magliacane, S., Greenewald, K., Katz, D., Kocaoglu, M., Shanmugam, K. (2020). Active Structure Learning of Causal DAGs via Directed Clique Trees, NeurIPS 2021 [arXiv:2011.00641].
- 9. Squires, C., Wang, Y., Uhler, C. (2020). Permutation-Based Causal Structure Learning with Unknown Intervention Targets, UAI 2020 [arXiv:1910.09007].
- 10. Bernstein, D., Saeed, B., **Squires, C.**, Uhler, C. (2020). Ordering-based causal structure learning in the presence of latent variables, AISTATS 2020 [arXiv:1910.09014].
- 11. Katz, D., Shanmugan, K., **Squires, C.**, Uhler, C. (2019). Size of Interventional Markov Equivalence Classes in random DAG models, AISTATS 2019 [arXiv:1903.02054]
- 12. Agarwal, R., **Squires, C.**, Yang, K., Uhler, C. (2019). *ABCD-Strategy: Budgeted Experimental Design for Targeted Causal Structure Discovery*, **AISTATS 2019** [arXiv:1910.09007].
- 13. Wang, Y., **Squires, C.**, Belyaeva, A., Uhler, C. (2019). Direct Estimation of Differences in Causal Graphs, NeurIPS 2018 [arXiv:1802.05631].

Preprints

- 1. Sturma, N., **Squires, C.**, Drton, M., Uhler, C. (2023). *Unpaired Multi-Domain Causal Representation Learning*, [arXiv:2302.00993].
- 2. Zhang, J., Cammarata, L., **Squires, C.**, Sapsis, T., Uhler, C. (2022), Active Learning for Optimal Intervention Design in Causal Models. [arXiv:2209.04744].
- 3. Truell, M, Hütter J.C., **Squires, C.**, Zwiernik P., Uhler C. (2021) *Maximum Likelihood Estimation for Brownian Motion Tree Models based on One Sample* [arXiv:2112.00816].
- 4. Agrawal, R., **Squires**, C., Prasad, N., Uhler C. (2021). The DeCAMFounder: Non-Linear Causal Discovery in the Presence of Hidden Variables, [arXiv:2102.07921].

Industry Experience

Summer Researcher, Microsoft Research, Redmond, WA, USA June 2021-August 2021

Developed a contrastive learning schema for improved multivariate time-series prediction in settings with causal relationships between variables.

Summer Researcher, IBM, Cambridge, MA, USA

June 2019-August 2019

Developed theoretical characterization of optimal experimental design strategies for learning causal graphical models.

Data Science Intern, nference, Cambridge, MA, USA

January 2018-August 2018

Led both frontend and backend development for two new apps aimed at protein annotation and alignment and patient segmentation; analyzed custom statistical models of protein sequences