МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Машина Тьюринга и конечные автоматы

Студентка гр. 3342	Антипина В.А.
Преподаватель	- Иванов Д.В.

Санкт-Петербург

2023

Цель работы

Изучить принцип работы машины Тьюринга и научиться создавать для неё алгоритмы.

Задание

Вариант 1

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита $\{a, b, c\}$.

Напишите программу, которая удаляет в исходной строке два символа, следующих за первым встретившимся символом 'b'. Если первый встретившийся символ 'b' – последний в строке, то удалить его. Если первый встретившийся символ 'b' – предпоследний в строке, то удалить один символ, следующий за ним, т. е. последний в строке. Если в строке символ 'b' отсутствует, то удалить самый первый символ строки. После удаления в строке не должно оставаться пробелов и пустых мест!

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Алфавит:

- •a
- •b
- •c
- •" " (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
 - 2. Гарантируется, что длина строки не менее 5 символов и не более 13.
 - 3. В середине строки не могут встретиться пробелы.
- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).

5. Курсор по окончании работы алгоритма может находиться на любом символе.

Ваша программа должна вывести полученную ленту после завершения работы.

В отчете предоставьте таблицу состояний. Отдельно кратко опишите каждое состояние, например:

q1 - начальное состояние, которое необходимо, чтобы найти первый встретившийся символ 'b'.

Основные теоретические положения

Машина Тьюринга (МТ) состоит из двух частей: неподвижной бесконечной ленты (памяти) и автомата (процессора).

Лента используется для хранения информации. Она бесконечна в обе стороны и разбита на клетки, которые никак не нумеруются и не именуются. В каждой клетке может быть записан один символ или ничего не записано. Память пассивна: она ничего не делает, просто хранит данные.

Алфавит ленты - конечное множество всех возможных символов ленты. Если предположить, что видимые символы - весь алфавит ленты из примера выше, то мы имеем следующий алфавит: $\{1, 0, +, 'a', "\}$. Последний символ - пустой, означает пустое содержимое клетки.

Автомат — это активная часть Машины Тьюринга. В каждый момент он размещается под одной из клеток ленты и видит её содержимое; это видимая клетка, а находящийся в ней символ — видимый символ; содержимое же соседних и других клеток автомат не видит. Кроме того, в каждый момент автомат находится в одном из состояний, которые обычно обозначаются буквой q с номерами: q0, q1, q2 и т.д. Существует конечное число таких состояний.

В каждом из состояний автомат выполняет какую-то конкретную операцию. Существует заключительное состояние, в котором автомат останавливается.

Автомат за один такт (шаг) может выполнить следующие действия:

- 1. Считать видимый символ;
- 2. Записывать в видимую клетку новый символ (в том числе пустой символ);
- 3. Сдвигаться на одну клетку влево или вправо («перепрыгивать» сразу через несколько клеток автомат не может);
 - 4. Перейти в следующее состояние.

Выполнение работы

Был создан словарь, ключами которого являлись состояния машины Тьюринга, а значениями — словари, ключи которых, в свою очередь, — символы алфавита, а значения — кортежи из «команд» для машины. Q0 — начальное состояние, которое необходимо для того, чтобы найти первый встретившийся символ "b". В этом состоянии значения не перезаписываются, а каретка двигается вправо, пока не найдёт искомый символ. В этом случае она также переходит в правую ячейку, а состояние машины меняется на q1. Состояние q1 заменяет следующий за "b" символ на пробел («пустую» ячейку) и переводит машину в состояние q2, если за "b" не стоял пробел (то есть если "b" не был последним символом в строке). В этом случае машина переходит в состояние q3., а каретка двигается на ячейку влево. В состоянии q2 заменяется второй встретившийся за "b" символ на пробел и прекращается работа аппарата (осуществляется переход в термальное состояние q4). В состоянии q3 "b" заменяется на пробел, после чего машина прекращает работу.

Входные данные были записаны в список memory. Index присвоено значение 0, а состояние было установлено q0. В цикле while (который работает, пока машина не будет в термальном состоянии или пока строка не закончится (последнее условие может завершить цикл, если "b" в строке нет)). Symbol — это символ полученной на вход строки, переменные new_symbol, delta, state соответствуют символу, на который нужно заменить символ в ячейке, перемещению каретки (1 — вправо на ячейку, -1 — влево, 0 - оставить в текущей ячейке). Значение ячейки перезаписывается в списке memory, index увеличивается на delta.

Если по завершении работы цикла состояние осталось начальным, "b" в строке не встретилось. Тогда удаляется первый элемент списка, не являющийся пробелом. Программа выводит изменённый список без разделителей.

Разработанный программный код см. в приложении А.

Тестирование

Результаты тестирования представлены в табл. 1.

Таблица 1 – Результаты тестирования

№ п/п	Входные данные	Выходные данные	Комментарии
1.	abc	ab	Программа работает
			корректно
2.	aaaaaac	aaaaac	
3.	abc	ab	

Выводы

Был изучен принцип работы машины Тьюринга. Была написана программа, имитирующая работу машины Тьюринга, которая получает на вход строку и преобразовывает её по заданному алгоритму. В работе были использованы словари, списки и цикл while.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: Antipina Veronika lb3.py

```
table = {
    'q0':{
        'a':('a',1,'q0'),
        'b':('b',1,'q1'),
        'c':('c',1,'q0'),
        ' ':(' ',1,'q0'),
        },
    'q1':{
        'a':('',1,'q2'),
        'b':('',1,'q2'),
        'c':('',1,'q2'),
        ' ':('',-1,'q3'),
    'q2':{
        'a':('',0,'q4'),
        'b':('',0,'q4'),
        'c':('',0,'q4'),
        ' ':('',0,'q4'),
        } ,
    'q3':{
        'b':('',0,'q4'),
    }
memory = list(input())
index = 0
state = 'q0'
while(state!='q4' and index<len(memory)):</pre>
    symbol = memory[index]
    new symbol,delta,state = table[state][symbol]
    memory[index] = new symbol
    index+=delta
if(state == 'q0'):
    for i in range(0,len(memory)):
        if (memory[i]!=' '):
            memory[i] = ''
            break
print(''.join(memory))
```