14.2 – Propiedades y subestructuras de Anillos

TEOREMA 14.1

En cualquier anillo $(R, +, \cdot)$,

- a) el elemento neutro z es único, y
- b) el inverso aditivo de cada elemento del anillo es único.

TEOREMA 14.2

(Las leyes de cancelación para la suma) Para cualesquiera a, b, $c \in R$,

a)
$$a+b=a+c \Rightarrow b=c$$
, y

b)
$$b+a=c+a\Rightarrow b=c$$
.

TEOREMA 14.3

Para cualquier anillo $(R, +, \cdot)$ y cualquier $a \in R$, tenemos az = za = z.

TEOREMA 14.4

Dado un anillo $(R, +, \cdot)$ y $a, b \in R$,

$$\mathbf{a}) \qquad -(-a)=a,$$

b)
$$a(-b) = (-a)b = -(ab)$$
, y

c)
$$(-a)(-b) = ab$$
.

TEOREMA 14.5 Para un anillo $(R, +, \cdot)$,

- a) Si R tiene un elemento unidad, entonces es único, y
- b) si R tiene un elemento unidad y x es una unidad de R, entonces el inverso multiplicativo de x es único.

TEOREMA 14.7 Si $(F, +, \cdot)$ es un cuerpo, entonces es un dominio de integridad.

TEOREMA 14.8 Un dominio de integridad finito $(D, +, \cdot)$ es un cuerpo.

Definición 14.5 Para un anillo $(R, +, \cdot)$, un subconjunto no vacío S de R es un subanillo de R si $(S, +, \cdot)$ (es decir, S con la suma y producto de R restringidos a S) es un anillo.

Ejemplo 14.7

Para cualquier anillo R, los subconjuntos $\{z\}$ y R son siempre subanillos de R.

Ejemplo 14.8

- a) El conjunto de todos los de integridads pares es un subanillo de (Z, +, ·). De hecho, para cualquier n ∈ Z⁺, nZ = {nx | x ∈ Z} es un subanillo de (Z, +, ·).
- b) (Z, +, ·) es un subanillo de (Q, +, ·), el cual es un subanillo de (R, +, ·), que es un subanillo de (C, +, ·).

Ejemplo 14.9

En el ejemplo 14.6, los subconjuntos $S = \{s, w\}$ y $T = \{s, v, x\}$ son subanillos de R.

Tabla 14.3

(a)

+	S	t	υ	W	x	y
s	s	t	υ	w	x	y
t	t	υ	W	x	y	S
υ	υ	W	x	y	S	t
w	w	x	y	S	t	υ
x	x	y	5	t	υ	W
y	y	5	t	υ	w	x

٠	S	t	υ	w	x	y
s	s	s	s	s	S	s
t	S	t	υ	w	x	y
υ	S	υ	x	S	υ	x
w	S	W	S	W	S	W
x	S	x	υ	S	x	υ
y	S	y	x	w	υ	t

(b)

- TEOREMA 14.9 Dado un anillo $(R, +, \cdot)$, un subconjunto no vacío S de R es un subanillo de R si y sólo si
 - 1) para todos $a, b \in S$, tenemos que $a + b, ab \in S$ (es decir, S es cerrado con las operaciones binarias de suma y producto definidas en R), y
 - 2) para todo $a \in S$, $-a \in S$.
- TEOREMA 14.10 Para cualquier anillo $(R, +, \cdot)$, si $\emptyset \neq S \subseteq R$,
 - a) entonces $(S, +, \cdot)$ es un subanillo de R si y sólo si para todos $a, b \in S$, tenemos que $a b \in S$ y $ab \in S$;
 - b) y si S es finito, entonces (S, +, ·) es un subanillo de R si y sólo si para todos a, b ∈ S, tenemos que a + b, ab ∈ S. (De nuevo, la ayuda adicional proviene de una condición de ser finito.)

Consideremos el anillo $R = M_2(\mathbf{Z})$ y el subconjunto

$$S = \left\{ \begin{bmatrix} x & x+y \\ x+y & x \end{bmatrix} \middle| x, y \in \mathbf{Z} \right\}$$

Definición 14.6 Un subconjunto no vacío I de un anillo R es un *ideal* de R si para todos $a, b \in I$ y todo $r \in R$, tenemos que (a) $a - b \in I$ y (b) $ar, ra \in I$.

Un ideal es un subanillo, pero el recíproco no siempre se cumple: $(\mathbf{Z}, +, \cdot)$ es un subanillo de $(\mathbf{Q}, +, \cdot)$ pero no es un ideal, ya que, por ejemplo, $(1/2)9 \notin \mathbf{Z}$ aunque $(1/2) \in \mathbf{Q}, 9 \in \mathbf{Z}$.