Notas de Clase Sobre Regresión Lineal Regresión Lineal Simple (RLS): Parte I

Nelfi González Alvarez

Profesora Asociada Escuela de Estadística e-mail: ngonzale@unal.edu.co

Isabel Cristina Ramírez Guevara

Profesora Asociada Escuela de Estadística e-mail: iscramirezgu@unal.edu.co

Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín

Escuela de Estadística 2021

Introducción Nomenclatura Significado de la Regresión Modelo y consideraciones Estimación por Mínimos Cuadrados (MCO) Estimación por Máxima verosimilitud (MLE) Estimación de σ^2 Coeficiente de determinación ó R^2 de una regresión

Contenido I

- Introducción
- Nomenclatura
- Significado de la Regresión
- Modelo y consideraciones
- 3 Estimación por Mínimos Cuadrados (MCO)
- 6 Estimación por máxima verosimilitud (MLE)
- **2** Estimación de σ^2
- $\centsymbol{8}$ Coeficiente de determinación ó \centsymbol{R}^2 de una regresión

$\begin{array}{c} \textbf{Introducción} \\ \textbf{Nomenclatura} \\ \textbf{Significado de la Regresión} \\ \textbf{Modelo y consideraciones} \\ \textbf{Estimación por Mínimos Cuadrados (MCO)} \\ \textbf{Estimación por máxima verosimilitud (MLE)} \\ \textbf{_j^{Stimación de } \sigma^{Z}} \\ \textbf{Coeficiente de determinación ó } R^{Z} \\ \textbf{de una regresión} \end{array}$

Contenido

- Introducción
- Nomenclatura
- 3 Significado de la Regresión
- Modelo y consideraciones
- 5 Estimación por Mínimos Cuadrados (MCO
- 6 Estimación por máxima verosimilitud (MLE)
- \bigcirc Estimación de σ

- Se desea modelar una relación de tendencia entre un par de variables (X, Y);
- Pero muchas veces sólo se cuenta con datos observacionales sobre estas variables, obtenidos baio situaciones no controladas estrictamente.
- · Posiblemente, no hubo replicación de las condiciones observadas
- Bajo estas circunstancias lo más conveniente es el método de mínimos cuadrados (MCO).

Introducción Nomenclatura Significado de la Regresión Modelo y consideraciones Estimación por Mínimos Cuadrados (MCO) Estimación por máxima verosimilitud (MLE) Estimación de σ^2 Coeficiente de determinación δR^2 de una regresión

- Se desea modelar una relación de tendencia entre un par de variables (X, Y);
- Pero muchas veces sólo se cuenta con datos observacionales sobre estas variables, obtenidos bajo situaciones no controladas estrictamente.
- Posiblemente, no hubo replicación de las condiciones observadas
- Bajo estas circunstancias lo más conveniente es el método de mínimos cuadrados (MCO).

- Se desea modelar una relación de tendencia entre un par de variables (X, Y);
- Pero muchas veces sólo se cuenta con datos observacionales sobre estas variables, obtenidos bajo situaciones no controladas estrictamente.
- · Posiblemente, no hubo replicación de las condiciones observadas
- Bajo estas circunstancias lo más conveniente es el método de mínimos cuadrados (MCO).

- Se desea modelar una relación de tendencia entre un par de variables (X, Y);
- Pero muchas veces sólo se cuenta con datos observacionales sobre estas variables, obtenidos bajo situaciones no controladas estrictamente.
- Posiblemente, no hubo replicación de las condiciones observadas
- Bajo estas circunstancias lo más conveniente es el método de mínimos cuadrados (MCO).

Introduccion Nomenclatura Significado de la Regresión Modelo y consideraciones Estimación por Mínimos Cuadrados (MCO) Estimación por Máxima verosimilitud (MLE) __stimación de σ^2 Coeficiente de determinación ó R^2 de una regresión

Contenido

- Introducción
- Nomenclatura
- 3 Significado de la Regresión
- Modelo y consideraciones
- 5 Estimación por Mínimos Cuadrados (MCO)
- 6 Estimación por máxima verosimilitud (MLE)
- \bigcirc Estimación de σ

Nomenclatura

En el modelo teórico:

- Y: Variable respuesta o dependiente.
- X: Variable predictora, independiente o regresora
- E: Error aleatoric
- β_0 , β_1 : Parámetros de la regresión. β_0 es el intercepto y β_1 la pendiente de la línea recta.
- $\mu_{Y|X}$: Valor esperado condicional de Y dado X, es decir, E[Y|X]

En el modelo estimado

- $\widehat{\beta}_0$: Estimador del parámetro β_0
- $\widehat{\beta}_1$: Estimador del parámetro β_1 .
- *E*: Residual, es una estimación del error aleatorio.
- \hat{Y} : Es la estimación de $\mu_{Y|X}$.

Nomenclatura

En el modelo teórico:

- *Y*: Variable respuesta o dependiente.
- X: Variable predictora, independiente o regresora.
- E: Error aleatorio
- β₀, β₁: Parámetros de la regresión. β₀ es el intercepto y β₁ la pendiente de la línea recta.
- $\mu_{Y|X}$: Valor esperado condicional de Y dado X, es decir, E[Y|X]

En el modelo estimado:

- $\widehat{\beta}_0$: Estimador del parámetro β_0
- $\widehat{\beta}_1$: Estimador del parámetro β_1 .
- *E*: Residual, es una estimación del error aleatorio
- Y: Es la estimación de $\mu_{Y|X}$.

Nomenclatura

En el modelo teórico:

- Y: Variable respuesta o dependiente.
- X: Variable predictora, independiente o regresora.
- E: Error aleatorio
- β₀, β₁: Parámetros de la regresión. β₀ es el intercepto y β₁ la pendiente de la línea recta.
- $\mu_{Y|X}$: Valor esperado condicional de *Y* dado *X*, es decir, E[Y|X]

En el modelo estimado:

- $\widehat{\beta}_0$: Estimador del parámetro β_0
- $\widehat{\beta}_1$: Estimador del parámetro β_1 .
- \widehat{E} : Residual, es una estimación del error aleatorio.
- \widehat{Y} : Es la estimación de $\mu_{Y|X}$.

Introducción Nomenclatura Significado de la Regresión Modelo y consideraciones

Estimación por Mínimos Ćuadrados (MCO) Estimación por máxima verosimilitud (MLE) Estimación de σ^2 Coeficiente de determinación ó R^2 de una regresión

Función de medias en términos generales Función de medias con forma lineal (MRLS)

Contenido

- Introducción
- Nomenclatura
- 3 Significado de la Regresión
 - Función de medias en términos generales
 - Función de medias con forma lineal (MRLS)
- Modelo y consideraciones
- (5) Estimación por Mínimos Cuadrados (MCO)
- 6 Estimación por máxima verosimilitud (MLE)
- \bigcirc Estimación de σ^2

Modelo y consideraciones Estimación por Mínimos Cuadrados (MCO)

Coeficiente de determinación ó R² de una regresión

Función de medias en términos generales Función de medias con forma lineal (MRLS)

Función de medias en términos generales

Figura 1: Función de regresión: (a) Curva que pasa por las medias de Y dado cada valor de X, es decir, $\mu_{Y|X} = f(x)$ (b) Curva con respecto a la cual es mínima la distancia vertical de las observaciones (x_i, y_i) i = 1, 2, ..., n.

Estimación de σ^2

Función de medias con forma lineal (MRLS)

Figura 2: Recta en el MRLS como la función de la media condicional de Y|x. En este ejemplo se ha asumido que $Y|x \sim N\left(62 + 3.5x, \sigma^2\right)$, luego, la recta de regresión corresponde a E[Y|x] = 62 + 3.5x y en cada nivel de x se tiene la misma varianza para Y alrededor de la respectiva media condicional.

Contenido

- Introducción
- Nomenclatura
- Significado de la Regresión
- Modelo y consideraciones
 - Modelo de Regresión Lineal Simple (MRLS)
 - Consideraciones
 - Interpretación de los parámetros
- 3 Estimación por Mínimos Cuadrados (MCO)
- 6 Estimación por máxima verosimilitud (MLE)

Modelo de Regresión Lineal Simple (MRLS)

Con *n* pares (X_i, Y_i) , i = 1, 2, ..., n,

$$Y|X_i = \beta_0 + \beta_1 X_i + E_i, i = 1, 2, \dots, n$$
 (1)

$$E[Y|X_i] = \beta_0 + \beta_1 X_i \tag{2}$$

Bajo el supuesto $E_i \stackrel{iid}{\sim} N(0, \sigma^2)$, iid: Independientes e idénticamente distribuidos

Nota 4.

Por simplicidad escribimos

$$Y_i = \beta_0 + \beta_1 X_i + E_i, \ E_i \stackrel{iid}{\sim} N(0, \sigma^2) \ i = 1, 2, ..., n$$
 (3)

- Los errores $E_i = Y_i (\beta_0 + \beta_1 X_i)$,
- Los errores E_i no son observables, desde que los parámetros β_j , j = 0, 1, son desconocidos y deben estimarse.

Modelo de Regresión Lineal Simple (MRLS)

Con n pares (X_i, Y_i) , $i = 1, 2, \ldots, n$,

$$Y|X_i = \beta_0 + \beta_1 X_i + E_i, i = 1, 2, \dots, n$$
 (1)

$$E[Y|X_i] = \beta_0 + \beta_1 X_i \tag{2}$$

Bajo el supuesto $E_i \stackrel{iid}{\sim} N(0, \sigma^2)$, iid: Independientes e idénticamente distribuidos.

Nota 4.1

Por simplicidad escribimos

$$Y_i = \beta_0 + \beta_1 X_i + E_i, \ E_i \stackrel{iid}{\sim} N(0, \sigma^2) \ i = 1, 2, ..., n$$
 (3)

- Los errores $E_i = Y_i (\beta_0 + \beta_1 X_i)$,
- Los errores E_i no son observables, desde que los parámetros β_j , j = 0, 1, son desconocidos y deben estimarse.

Modelo de Regresión Lineal Simple (MRLS)

Interpretación de los parámetros

Modelo de Regresión Lineal Simple (MRLS)

Con n pares (X_i, Y_i) , i = 1, 2, ..., n,

$$Y|X_i = \beta_0 + \beta_1 X_i + E_i, i = 1, 2, \dots, n$$
 (1)

$$E[Y|X_i] = \beta_0 + \beta_1 X_i \tag{2}$$

Bajo el supuesto $E_i \stackrel{iid}{\sim} N(0, \sigma^2)$, iid: Independientes e idénticamente distribuidos.

Nota 4.1

Por simplicidad escribimos,

$$Y_i = \beta_0 + \beta_1 X_i + E_i, \ E_i \stackrel{iid}{\sim} N(0, \sigma^2) \ i = 1, 2, ..., n$$
 (3)

- Los errores $E_i = Y_i (\beta_0 + \beta_1 X_i)$,
- Los errores E_i no son observables, desde que los parámetros β_j , j = 0, 1, son desconocidos y deben estimarse.

- Y es una v.a observada mediante la selección de los valores de X en un intervalo de interés.
- X no se considera v.a, sus valores son definidos con anticipación y se miden sin error.
- Si lo anterior no se cumple, el método MCO sigue siendo siendo válido si los errores en los valores de X son pequeños comparados con E_i.
- Los datos constituyen una muestra representativa de un medio acerca del cual se desea generalizar. Si no es así, no es apropiado realizar extrapolaciones.
- El modelo de regresión es lineal en los parámetros.
- La varianza de los E_i es igual a σ^2 , $\forall i$
- Los E_i son variables aleatorias normales, independientes e idénticamente distribuidos con media cero. Los Y_i (o sea Y|X_i) son variables aleatorias normales e independientes, pero no son idénticamente distribuidos, pues no tienen misma media aunque sí tienen misma varianza igual a σ²:

$$Y|X_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2) \tag{4}$$

- Y es una v.a observada mediante la selección de los valores de X en un intervalo de interés.
- X no se considera v.a, sus valores son definidos con anticipación y se miden sin error.
- Si lo anterior no se cumple, el método MCO sigue siendo siendo válido si los errores en los valores de X son pequeños comparados con E_i.
- Los datos constituyen una muestra representativa de un medio acerca del cual se desea generalizar. Si no es así, no es apropiado realizar extrapolaciones.
- El modelo de regresión es lineal en los parámetros
- La varianza de los E_i es igual a σ^2 , $\forall i$
- Los E_i son variables aleatorias normales, independientes e idénticamente distribuidos con media cero. Los Y_i (o sea Y|X_i) son variables aleatorias normales e independientes, pero no son idénticamente distribuidos, pues no tienen misma media aunque sí tienen misma varianza igual a σ²:

$$Y|X_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2) \tag{4}$$

- Y es una v.a observada mediante la selección de los valores de X en un intervalo de interés.
- X no se considera v.a, sus valores son definidos con anticipación y se miden sin error.
- Si lo anterior no se cumple, el método MCO sigue siendo siendo válido si los errores en los valores de X son pequeños comparados con E_i.
- Los datos constituyen una muestra representativa de un medio acerca del cual se desea generalizar. Si no es así, no es apropiado realizar extrapolaciones.
- El modelo de regresión es lineal en los parámetros
- La varianza de los E_i es igual a σ^2 , $\forall i$
- Los E_i son variables aleatorias normales, independientes e idénticamente distribuidos con media cero. Los Y_i (o sea Y|X_i) son variables aleatorias normales e independientes, pero no son idénticamente distribuidos, pues no tienen misma media aunque sí tienen misma varianza igual a σ²:

- Y es una v.a observada mediante la selección de los valores de X en un intervalo de interés.
- X no se considera v.a, sus valores son definidos con anticipación y se miden sin error.
- Si lo anterior no se cumple, el método MCO sigue siendo siendo válido si los errores en los valores de X son pequeños comparados con E_i.
- Los datos constituyen una muestra representativa de un medio acerca del cual se desea generalizar. Si no es así, no es apropiado realizar extrapolaciones.
- El modelo de regresión es lineal en los parámetros
- La varianza de los E_i es igual a σ^2 , $\forall i$.
- Los E_i son variables aleatorias normales, independientes e idénticamente distribuidos con media cero. Los Y_i (o sea Y|X_i) son variables aleatorias normales e independientes, pero no son idénticamente distribuidos, pues no tienen misma media aunque sí tienen misma varianza igual a o²:

- Y es una v.a observada mediante la selección de los valores de X en un intervalo de interés.
- X no se considera v.a, sus valores son definidos con anticipación y se miden sin error.
- Si lo anterior no se cumple, el método MCO sigue siendo siendo válido si los errores en los valores de X son pequeños comparados con E_i.
- Los datos constituyen una muestra representativa de un medio acerca del cual se desea generalizar. Si no es así, no es apropiado realizar extrapolaciones.
- El modelo de regresión es lineal en los parámetros.
- La varianza de los E_i es igual a σ^2 , $\forall i$
- Los E_i son variables aleatorias normales, independientes e idénticamente distribuidos con media cero. Los Y_i (o sea Y|X_i) son variables aleatorias normales e independientes, pero no son idénticamente distribuidos, pues no tienen misma media aunque sí tienen misma varianza igual a σ²:

$$Y|X_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2) \tag{4}$$

- Y es una v.a observada mediante la selección de los valores de X en un intervalo de interés.
- X no se considera v.a, sus valores son definidos con anticipación y se miden sin error.
- Si lo anterior no se cumple, el método MCO sigue siendo siendo válido si los errores en los valores de X son pequeños comparados con E_i.
- Los datos constituyen una muestra representativa de un medio acerca del cual se desea generalizar. Si no es así, no es apropiado realizar extrapolaciones.
- El modelo de regresión es lineal en los parámetros.
- La varianza de los E_i es igual a σ^2 , $\forall i$.
- Los E_i son variables aleatorias normales, independientes e idénticamente distribuidos con media cero. Los Y_i (o sea Y|X_i) son variables aleatorias normales e independientes, pero no son idénticamente distribuidos, pues no tienen misma media aunque sí tienen misma varianza igual a σ²:

$$Y|X_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2) \tag{4}$$

- Y es una v.a observada mediante la selección de los valores de X en un intervalo de interés.
- X no se considera v.a, sus valores son definidos con anticipación y se miden sin error.
- Si lo anterior no se cumple, el método MCO sigue siendo siendo válido si los errores en los valores de X son pequeños comparados con E_i.
- Los datos constituyen una muestra representativa de un medio acerca del cual se desea generalizar. Si no es así, no es apropiado realizar extrapolaciones.
- El modelo de regresión es lineal en los parámetros.
- La varianza de los E_i es igual a σ^2 , $\forall i$.
- Los E_i son variables aleatorias normales, independientes e idénticamente distribuidos con media cero. Los Y_i (o sea $Y|X_i$) son variables aleatorias normales e independientes, pero no son idénticamente distribuidos, pues no tienen misma media aunque sí tienen misma varianza igual a σ^2 :

$$Y|X_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2) \tag{4}$$

Interpretación de los parámetros

Nota 4.2

La interpretación de los coeficientes de regresión:

- β_1 : Representa el cambio en la media de Y dado un cambio unitario en X.
- β_0 : Si el rango en que se observa X incluye a x = 0, entonces β_0 corresponde a la media de la distribución de Y cuando x = 0. Sin embargo, si x = 0 no ha sido observado en los datos, entonces β_0 no tiene interpretación práctica en el modelo de regresión.

Interpretación de los parámetros

Nota 4.2

La interpretación de los coeficientes de regresión:

- β_1 : Representa el cambio en la media de Y dado un cambio unitario en X.
- β₀: Si el rango en que se observa X incluye a x = 0, entonces β₀ corresponde a la media de la distribución de Y cuando x = 0. Sin embargo, si x = 0 no ha sido observado en los datos, entonces β₀ no tiene interpretación práctica en el modelo de regresión.

Contenido

- Introducción
- Nomenclatura
- Significado de la Regresión
- Modelo y consideraciones
- 5 Estimación por Mínimos Cuadrados (MCO)
 - Ejemplo con datos simulados
 - Tipos de sumas en MCO
- 6 Estimación por máxima verosimilitud (MLE)
- Estimación de σ^2

Estimación por Mínimos Cuadrados (MCO)

Con n pares (x_i, y_i) de observaciones: hallar β_0 y β_1 que minimicen a

Suma de Cuad. del error:
$$S(\beta_0, \beta_1) = \sum_{i=1}^n E_i^2 = \sum_{i=1}^n [Y_i - (\beta_0 + \beta_1 X_i)]^2$$
 (5)

Ecuaciones normales $\frac{\partial S(\beta_0, \beta_1)}{\partial \beta_0} = 0, \quad \frac{\partial S(\beta_0, \beta_1)}{\partial \beta_1} = 0$ Conducen a $\sum_{i=1}^{n} y_i = n\beta_0 + \beta_1 \sum_{i=1}^{n} x_i \qquad (6)$ $\sum_{i=1}^{n} x_i y_i = \beta_0 \sum_{i=1}^{n} x_i + \beta_1 \sum_{i=1}^{n} x_i^2, \qquad (7)$

Estimadores resultantes

Intercepto:
$$\widehat{\beta}_0 = \bar{y} - \widehat{\beta}_1 \bar{x}$$
, (8)

Pendiente:
$$\widehat{\beta}_1 = \frac{\sum\limits_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2},$$
 (9)

o bien,
$$\widehat{\beta}_1 = \frac{\sum\limits_{i=1}^n (x_i - \bar{x}) y_i}{\sum\limits_{i=1}^n (x_i - \bar{x})^2}.$$
 (10)

Estimación por Mínimos Cuadrados (MCO)

Con n pares (x_i, y_i) de observaciones: hallar β_0 y β_1 que minimicen a

Suma de Cuad. del error:
$$S(\beta_0, \beta_1) = \sum_{i=1}^n E_i^2 = \sum_{i=1}^n [Y_i - (\beta_0 + \beta_1 X_i)]^2$$
 (5)

Ecuaciones normales

$$\frac{\partial S(\beta_0,\beta_1)}{\partial \beta_0}=0, \quad \frac{\partial S(\beta_0,\beta_1)}{\partial \beta_1}=0$$

Conducen a

$$\sum_{i=1}^{n} y_i = n\beta_0 + \beta_1 \sum_{i=1}^{n} x_i \tag{6}$$

$$\sum_{i=1}^{n} x_i y_i = \beta_0 \sum_{i=1}^{n} x_i + \beta_1 \sum_{i=1}^{n} x_i^2, \tag{7}$$

Estimadores resultantes

Intercepto:
$$\widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x}$$
, (8)

Pendiente:
$$\widehat{\beta}_1 = \frac{\sum\limits_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum\limits_{i=1}^n (x_i - \bar{x})^2},$$
 (9)

o bien,
$$\widehat{\beta}_1 = \frac{\sum\limits_{i=1}^{n} (x_i - \widehat{x}) y_i}{\sum\limits_{i=1}^{n} (x_i - \widehat{x})^2}$$
. (10)

Estimación por Mínimos Cuadrados (MCO)

Con n pares (x_i, y_i) de observaciones: hallar β_0 y β_1 que minimicen a

Suma de Cuad. del error:
$$S(\beta_0, \beta_1) = \sum_{i=1}^n E_i^2 = \sum_{i=1}^n [Y_i - (\beta_0 + \beta_1 X_i)]^2$$
 (5)

Ecuaciones normales

$$\frac{\partial S(\beta_0,\beta_1)}{\partial \beta_0} = 0, \quad \frac{\partial S(\beta_0,\beta_1)}{\partial \beta_1} = 0$$

Conducen a

$$\sum_{i=1}^{n} y_i = n\beta_0 + \beta_1 \sum_{i=1}^{n} x_i \tag{6}$$

$$\sum_{i=1}^{n} x_i y_i = \beta_0 \sum_{i=1}^{n} x_i + \beta_1 \sum_{i=1}^{n} x_i^2, \tag{7}$$

Estimadores resultantes

Intercepto:
$$\widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x}$$
, (8)

Pendiente:
$$\widehat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2},$$
 (9)

o bien,
$$\widehat{\beta}_1 = \frac{\sum\limits_{i=1}^{n} (x_i - \bar{x}) y_i}{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2}$$
. (10)

Ejemplo con datos simulados Tipos de sumas en MCO

Ejemplo con datos simulados

Tabla 1: Datos simulados bajo modelo $Y_i = 62 + 3.5x_i + E_i$, $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, con $\sigma = 50$, y cálculos para ajuste del modelo de regresión lineal simple por mínimos cuadrados ordinarios.

i	x_i	y_i	$x_i - \bar{x}$	$(x_i - \bar{x})^2$	$y_i - \bar{y}$	$(y_i - \bar{y})^2$	$(x_i - \bar{x})(y_i - \bar{y})$
1	50	243.93	-50	2500	-171.33	29353.35	8566.41
2	60	361.95	-40	1600	-53.31	2841.76	2132.33
3	70	286.37	-30	900	-128.89	16612.16	3866.65
4	80	302.25	-20	400	-113.01	12770.85	2260.16
5	90	371.58	-10	100	-43.68	1907.78	436.78
6	100	437.67	0	0	22.41	502.29	0
7	110	532.59	10	100	117.33	13766.76	1173.32
8	120	401.91	20	400	-13.35	178.17	-266.96
9	130	561.66	30	900	146.40	21433.49	4392.05
10	140	513.88	40	1600	98.62	9726.26	3944.87
11	150	554.05	50	2500	138.79	19263.17	6939.59
n	\bar{x}	ÿ	$\sum_{i=1}^{n} (x_i - \bar{x})$	$\sum_{i=1}^{n} (x_i - \bar{x})^2$	$\sum_{i=1}^{n} (y_i - \bar{y})$	$\sum_{i=1}^{n} (y_i - \bar{y})^2$	$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$
11	100	415.26	0	11000	0	128356.05	33445.2
$\widehat{\beta}_1 =$	$\widehat{\beta}_1 = \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y}) / \sum_{i=1}^n (x_i - \bar{x})^2 = 3.041; \qquad \widehat{\beta}_0 = \bar{y} - \widehat{\beta}_1 \bar{x} = 111.211;$						

Tabla 2: Datos simulados, ajustes MCO y residuos (continuación Tabla 1).

i	x_i	y_i	\widehat{y}_i	\widehat{E}_i		
1	50	243.93	263.24	-19.31		
2	60	361.95	293.64	68.31		
3	70	286.37	324.04	-37.67		
4	80	302.25	354.45	-52.20		
5	90	371.58	384.85	-13.27		
6	100	437.67	415.26	22.41		
7	110	532.59	445.66	86.93		
8	120	401.91	476.07	-74.16		
9	130	561.66	506.47	55.19		
10	140	513.88	536.88	-22.00		
11	150	554.05	567.28	-13.23		
n	\bar{X}	ÿ	Media de	Media de		
			$\log \widehat{y}_i$	$los \widehat{E}_i$		
11	100	415.26	415.26	0		
F						

Ecuación ajustada: $\widehat{y}_i = 111.211 + 3.041x_i$, SSE = $\sum_{i=1}^{n} \widehat{E}_i^2 = 26666.83$

Figura 3: Ilustración del criterio de mínimos cuadrados. (a) Recta ajustada asumiendo como modelo a $Y_i = \beta_0 + E_i$, $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, (b) Recta ajustada mediante mínimos cuadrados ordinarios con el modelo $Y_i = \beta_0 + \beta_1 x_i + E_i$, $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$. La suma de cuadrados de residuos, SSE = $\sum_{i=1}^n \widehat{E}_i^2 = 26666.83$, del ajuste en (b) es menor que en (a); para este último se tiene que SSE = SST = $\sum_{i=1}^n (y_i - \bar{y})^2 = 128356$, en cambio en (b), SSE \leq SST.

Figura 4: Resultados de ajuste en datos simulados. (a) Recta ajustada asumiendo como modelo a $Y_i = \beta_0 + \beta_1 x_i + E_i$, $E_i \stackrel{\text{iid}}{\sim} N\left(0, \sigma^2\right)$, curva LOESS y verdadera función de regresión $\mu_{Y|X} = 62 + 3.5 x_i$, (b) Residuos \widehat{E}_i vs. x_i .

Funciones R para regresión lineal

Nombre	Descripción corta
lm()	Ajusta de modelos de regresión lineal.
summary()	Obtiene la tabla de parámetros estimados cuando se aplica a
	un objeto 1m.
anova()	Para Tabla ANOVA.
residuals()	Obtiene los valores de los residuos de ajuste.
fitted()	Obteniene los valores ajustados en la variable respuesta.
predict()	Calcula predicciones puntuales y por intervalos de predic-
	ción. También permite calcular valores ajustados y los inter-
	valos de confianza para $\mu_{Y x}$.
qqnorm(),qqline()	Para gráfico de probabilidad normal.
shapiro.test()	Para test de normalidad Shapiro-Wilk.
coef()	Extrae en un vector los valores estimados de los parámetros
	de la regresión.
confint()	Retorna una matriz en la cual en cada fila se dan los límites
	de los intervalos de confianza para los parámetros del mode-
	lo.
vcov()	Produce la matriz de varianzas y covarianzas estimadas, para
	el vector de parámetros estimado.

Tipos de sumas en MCO

Tabla 3: Principales sumas en el ajuste por mínimos cuadrados

Tipo de sumas	Expresión
Suma de cuadrados corregidos en x:	$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2 = \sum_{i=1}^{n} (x_i - \bar{x})x_i$
Suma de cuadrados corregidos en y. También es conocida como suma de cuadrados totales o SST:	$S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} y_i^2 - n\bar{y}^2 = \sum_{i=1}^{n} (y_i - \bar{y})y_i$
Suma de productos cruzados:	$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} (x_i - \bar{x})y_i$
Suma de los cuadrados de los residuos o SSE. Es la estimación de $S(\beta_0,\beta_1)$. Sea $\widehat{E}_i=y_i-\hat{y}_i$ el i-ésimo residuo, entonces:	SSE = $\sum_{i=1}^{n} \widehat{E}_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2} = S_{yy} - \widehat{\beta}_{1} S_{xy}$
Suma de cuadrados de regresión SSR:	$SSR = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2 = \widehat{\beta}_1^2 S_{xx} = \widehat{\beta}_1 S_{xy}$

$$\widehat{\beta}_1$$
 puede ser expresado así: $\widehat{\beta}_1 = S_{xy}/S_{xx}$ (11)

Introducción Nomenclatura Significado de la Regresión Modelo y consideraciones Estimación por Mínimos Cuadrados (MCO) Estimación por máxima verosimilitud (MLE) Estimación de σ^2 Coeficiente de determinación δ R de una regresión

Contenido

- Introducción
- Nomenclatura
- Significado de la Regresión
- Modelo y consideraciones
- 5 Estimación por Mínimos Cuadrados (MCO)
- 6 Estimación por máxima verosimilitud (MLE)
- \bigcirc Estimación de σ^2

Estimación por máxima verosimilitud (MLE)

Definición 6.1 (Función de verosimilitud)

Dada una muestra observada \mathcal{M}_n de tamaño n y una distribución de probabilidad $F(\cdot,\theta)$, siendo θ un parámetro o un vector de parámetros, la función de verosimilitud $L(\theta|\mathcal{M}_n)$ puede concebirse como una cuantificación de la probabilidad de que la muestra proviene de la distribución F. La verosimilitud indica qué tan probable es que la muestra observada \mathcal{M}_n sea una función de los posibles valores de θ .

Definición 6.2 (Estimador de máxima verosimilitud ó MLE)

Dada una muestra observada \mathcal{M}_n , el estimador de máxima verosimilitud de θ , parámetro o vector de parámetros de una distribución de probabilidad $F(\cdot,\theta)$, es el valor de este parámetro (o vector de parámetros) que hace máxima la probabilidad de que la muestra \mathcal{M}_n haya sido generada de la distribución $F(\cdot,\theta)$.

Denotaremos por $\widetilde{\theta}$ al MLE de θ .

Estimación por máxima verosimilitud (MLE)

Definición 6.1 (Función de verosimilitud)

Dada una muestra observada \mathcal{M}_n de tamaño n y una distribución de probabilidad $F(\cdot,\theta)$, siendo θ un parámetro o un vector de parámetros, la función de verosimilitud $L(\theta|\mathcal{M}_n)$ puede concebirse como una cuantificación de la probabilidad de que la muestra proviene de la distribución F. La verosimilitud indica qué tan probable es que la muestra observada \mathcal{M}_n sea una función de los posibles valores de θ .

Definición 6.2 (Estimador de máxima verosimilitud ó MLE)

Dada una muestra observada \mathcal{M}_n , el estimador de máxima verosimilitud de θ , parámetro o vector de parámetros de una distribución de probabilidad $F(\cdot,\theta)$, es el valor de este parámetro (o vector de parámetros) que hace máxima la probabilidad de que la muestra \mathcal{M}_n haya sido generada de la distribución $F(\cdot,\theta)$.

Denotaremos por $\widetilde{\theta}$ al MLE de θ .

Estimación por máxima verosimilitud (MLE)

Definición 6.1 (Función de verosimilitud)

Dada una muestra observada \mathcal{M}_n de tamaño n y una distribución de probabilidad $F(\cdot,\theta)$, siendo θ un parámetro o un vector de parámetros, la función de verosimilitud $L(\theta|\mathcal{M}_n)$ puede concebirse como una cuantificación de la probabilidad de que la muestra proviene de la distribución F. La verosimilitud indica qué tan probable es que la muestra observada \mathcal{M}_n sea una función de los posibles valores de θ .

Definición 6.2 (Estimador de máxima verosimilitud ó MLE)

Dada una muestra observada \mathcal{M}_n , el estimador de máxima verosimilitud de θ , parámetro o vector de parámetros de una distribución de probabilidad $F(\cdot,\theta)$, es el valor de este parámetro (o vector de parámetros) que hace máxima la probabilidad de que la muestra \mathcal{M}_n haya sido generada de la distribución $F(\cdot,\theta)$.

Denotaremos por $\widetilde{\theta}$ al MLE de θ .

- $\mathcal{M}_n = (\mathbf{x}, \mathbf{y})$: los pares de puntos observados $(x_1, y_1), \dots, (x_n, y_n)$.
- Modelo probabilístico: $Y|x_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$, $y Y|x_1, ..., Y|x_n$ son independientes, y la función de densidad conjunta es $f(y_1, ..., y_n|\beta_0, \beta_1, \sigma^2)$.
- Vector de parámetros desconocidos: $\theta = (\beta_0, \beta_1, \sigma^2)$.
- La función de verosimilitud: $L(\beta_0, \beta_1, \sigma^2 | \mathbf{x}, \mathbf{y}) = f(y_1, \dots, y_n | \beta_0, \beta_1, \sigma^2)$

Entonces:

$$L(\beta_0, \beta_1, \sigma^2 | \mathbf{x}, \mathbf{y}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (y_i - \beta_0 - \beta_1 x_i)^2\right\}$$
$$= (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2\right\}. \tag{12}$$

- $\mathcal{M}_n = (\mathbf{x}, \mathbf{y})$: los pares de puntos observados $(x_1, y_1), \dots, (x_n, y_n)$.
- Modelo probabilístico: $Y|x_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$, $y \ Y|x_1, \dots, Y|x_n$ son independientes, y la función de densidad conjunta es $f(y_1, \dots, y_n | \beta_0, \beta_1, \sigma^2)$.
- Vector de parámetros desconocidos: $\theta = (\beta_0, \beta_1, \sigma^2)$.
- La función de verosimilitud: $L(\beta_0, \beta_1, \sigma^2 | \mathbf{x}, \mathbf{y}) = f(y_1, \dots, y_n | \beta_0, \beta_1, \sigma^2)$

Entonces

$$L(\beta_0, \beta_1, \sigma^2 | \mathbf{x}, \mathbf{y}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (y_i - \beta_0 - \beta_1 x_i)^2\right\}$$
$$= \left(2\pi\sigma^2\right)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2\right\}. \tag{12}$$

- $\mathcal{M}_n = (\mathbf{x}, \mathbf{y})$: los pares de puntos observados $(x_1, y_1), \dots, (x_n, y_n)$.
- Modelo probabilístico: $Y|x_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$, $y \ Y|x_1, \dots, Y|x_n$ son independientes, y la función de densidad conjunta es $f(y_1, \dots, y_n | \beta_0, \beta_1, \sigma^2)$.
- Vector de parámetros desconocidos: $\theta = (\beta_0, \beta_1, \sigma^2)$.
- La función de verosimilitud: $L(\beta_0, \beta_1, \sigma^2 | \mathbf{x}, \mathbf{y}) = f(y_1, \dots, y_n | \beta_0, \beta_1, \sigma^2)$

Entonces:

$$L(\beta_0, \beta_1, \sigma^2 | \mathbf{x}, \mathbf{y}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (y_i - \beta_0 - \beta_1 x_i)^2\right\}$$
$$= \left(2\pi\sigma^2\right)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2\right\}. \tag{12}$$

- $\mathcal{M}_n = (\mathbf{x}, \mathbf{y})$: los pares de puntos observados $(x_1, y_1), \dots, (x_n, y_n)$.
- Modelo probabilístico: $Y|x_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$, $y Y|x_1, ..., Y|x_n$ son independientes, y la función de densidad conjunta es $f(y_1, ..., y_n | \beta_0, \beta_1, \sigma^2)$.
- Vector de parámetros desconocidos: $\theta = (\beta_0, \beta_1, \sigma^2)$.
- La función de verosimilitud: $L(\beta_0, \beta_1, \sigma^2 | \mathbf{x}, \mathbf{y}) = f(y_1, \dots, y_n | \beta_0, \beta_1, \sigma^2)$,

Entonces

$$L(\beta_0, \beta_1, \sigma^2 | \mathbf{x}, \mathbf{y}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (y_i - \beta_0 - \beta_1 x_i)^2\right\}$$
$$= (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2\right\}. \tag{12}$$

- $\mathcal{M}_n = (\mathbf{x}, \mathbf{y})$: los pares de puntos observados $(x_1, y_1), \dots, (x_n, y_n)$.
- Modelo probabilístico: $Y|x_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$, $y Y|x_1, ..., Y|x_n$ son independientes, y la función de densidad conjunta es $f(y_1, ..., y_n|\beta_0, \beta_1, \sigma^2)$.
- Vector de parámetros desconocidos: $\theta = (\beta_0, \beta_1, \sigma^2)$.
- La función de verosimilitud: $L(\beta_0, \beta_1, \sigma^2 | \mathbf{x}, \mathbf{y}) = f(y_1, \dots, y_n | \beta_0, \beta_1, \sigma^2)$,

Entonces

$$L(\beta_0, \beta_1, \sigma^2 | \mathbf{x}, \mathbf{y}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (y_i - \beta_0 - \beta_1 x_i)^2\right\}$$
$$= (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2\right\}. \tag{12}$$

- $\mathcal{M}_n = (\mathbf{x}, \mathbf{y})$: los pares de puntos observados $(x_1, y_1), \dots, (x_n, y_n)$.
- Modelo probabilístico: $Y|x_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$, $y Y|x_1, ..., Y|x_n$ son independientes, y la función de densidad conjunta es $f(y_1, ..., y_n | \beta_0, \beta_1, \sigma^2)$.
- Vector de parámetros desconocidos: $\theta = (\beta_0, \beta_1, \sigma^2)$.
- La función de verosimilitud: $L(\beta_0, \beta_1, \sigma^2 | \mathbf{x}, \mathbf{y}) = f(y_1, \dots, y_n | \beta_0, \beta_1, \sigma^2)$,

Entonces:

$$L(\beta_0, \beta_1, \sigma^2 | \mathbf{x}, \mathbf{y}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (y_i - \beta_0 - \beta_1 x_i)^2\right\}$$
$$= (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2\right\}. \tag{12}$$

- $\mathcal{M}_n = (\mathbf{x}, \mathbf{y})$: los pares de puntos observados $(x_1, y_1), \dots, (x_n, y_n)$.
- Modelo probabilístico: $Y|x_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$, $y Y|x_1, ..., Y|x_n$ son independientes, y la función de densidad conjunta es $f(y_1, ..., y_n | \beta_0, \beta_1, \sigma^2)$.
- Vector de parámetros desconocidos: $\theta = (\beta_0, \beta_1, \sigma^2)$.
- La función de verosimilitud: $L(\beta_0, \beta_1, \sigma^2 | \mathbf{x}, \mathbf{y}) = f(y_1, \dots, y_n | \beta_0, \beta_1, \sigma^2)$,

Entonces:

$$L(\beta_0, \beta_1, \sigma^2 | \mathbf{x}, \mathbf{y}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (y_i - \beta_0 - \beta_1 x_i)^2\right\}$$
$$= (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2\right\}. \tag{12}$$

El MLE de $\theta = (\beta_0, \beta_1, \sigma^2)$

Con *n* pares (x_i, y_i) de observaciones: hallar β_0 , β_1 y σ^2 que maximicen al log-versosimilitud:

$$\log L = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(y_i - \beta_0 - \beta_1 x_i)^2.$$
 (13)

$$S(\beta_0,\beta_1)=\sum_{i=1}^n E_i^2$$

Sistema de ecuaciones

$$\frac{\partial \log L}{\partial \beta_0} = 0, \quad \frac{\partial \log L}{\partial \beta_1} = 0, \quad \frac{\partial \log L}{\partial \sigma^2} = 0:$$

$$\sum_{i=1}^{n} y_i = n\beta_0 + \beta_1 \sum_{i=1}^{n} x_i \tag{14}$$

$$\sum_{i=1}^{N} x_i y_i = \beta_0 \sum_{i=1}^{N} x_i + \beta_1 \sum_{i=1}^{N} x_i^2$$
 (15)

$$\sigma^{2} = \sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1} x_{i})^{2} / n$$
 (16)

Estimadores resultantes

Intercepto:
$$\widetilde{\beta}_0 = \widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \, \overline{x},$$
 (17)

Pendiente:
$$\widetilde{\beta}_1 = \widehat{\beta}_1 = \frac{\sum\limits_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2}$$
 (18)

Varianza:
$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i \right)^2$$
. (19)

 $SSE = \sum_{i=1}^{n} E_i^2$

El MLE de $\theta = (\beta_0, \beta_1, \sigma^2)$

Con *n* pares (x_i, y_i) de observaciones: hallar β_0 , β_1 y σ^2 que maximicen al log-versosimilitud:

$$\log L = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(y_i - \beta_0 - \beta_1 x_i)^2.$$
 (13)

$$S(\beta_0,\beta_1) = \sum_{i=1}^n E_i^2$$

Sistema de ecuaciones

$$\frac{\partial \log L}{\partial \beta_0} = 0, \quad \frac{\partial \log L}{\partial \beta_1} = 0, \quad \frac{\partial \log L}{\partial \sigma^2} = 0:$$

$$\sum_{i=1}^{n} y_i = n\beta_0 + \beta_1 \sum_{i=1}^{n} x_i$$
 (14)

$$\sum_{i=1}^{n} x_i y_i = \beta_0 \sum_{i=1}^{n} x_i + \beta_1 \sum_{i=1}^{n} x_i^2$$
 (15)

$$\sigma^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 / n \tag{16}$$

Estimadores resultantes

Intercepto:
$$\widetilde{\beta}_0 = \widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \, \overline{x},$$
 (17)

Pendiente:
$$\widetilde{\beta}_1 = \widehat{\beta}_1 = \frac{\sum\limits_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2}$$
 (18)

Varianza:
$$\widetilde{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i)^2$$
. (19)

 $SSE = \sum_{i=1}^{n} E_i^2$

El MLE de $\theta = (\beta_0, \beta_1, \sigma^2)$

Con *n* pares (x_i, y_i) de observaciones: hallar β_0 , β_1 y σ^2 que maximicen al log-versosimilitud:

$$\log L = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(y_i - \beta_0 - \beta_1 x_i)^2.$$
 (13)

$$S(\beta_0,\beta_1) = \sum_{i=1}^n E_i^2$$

Sistema de ecuaciones

$$\frac{\partial \log L}{\partial \beta_0} = 0, \quad \frac{\partial \log L}{\partial \beta_1} = 0, \quad \frac{\partial \log L}{\partial \sigma^2} = 0:$$

$$\sum_{i=1}^{n} y_i = n\beta_0 + \beta_1 \sum_{i=1}^{n} x_i \tag{14}$$

$$\sum_{i=1}^{n} x_i y_i = \beta_0 \sum_{i=1}^{n} x_i + \beta_1 \sum_{i=1}^{n} x_i^2$$
 (15)

$$\sigma^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 / n \tag{16}$$

Estimadores resultantes

Intercepto:
$$\widetilde{\beta}_0 = \overline{\widehat{\beta}_0} = \overline{y} - \overline{\widehat{\beta}_1} \overline{x}$$
, (17)

Pendiente:
$$\widetilde{\beta}_1 = \widehat{\beta}_1 = \frac{\sum\limits_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2}$$
 (18)

Varianza:
$$\widetilde{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i)^2$$
. (19)

$$SSE = \sum_{i=1}^{n} \widehat{E}_{i}^{2}$$

Estimadores MLE vs. estimadores MCO

- Los estimadores MLE: $\widetilde{\beta}_0$ y $\widetilde{\beta}_1$ son iguales, respectivamente, a los estimadores MCO: $\widehat{\beta}_0$ y $\widehat{\beta}_1$, sólo si se cumple los supuestos sobre los errores de ajuste: $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$.
- La diferencia entre los dos métodos se da en la estimación de la varianza σ^2 (ver más adelante).
- Cuando alguno de los supuestos sobre los errores no es válido, hay que buscar soluciones alternativas: Transformaciones, modelos lineales generalizados, métodos no paramétricos, entre otros.

Estimadores MLE vs. estimadores MCO

- Los estimadores MLE: $\widetilde{\beta}_0$ y $\widetilde{\beta}_1$ son iguales, respectivamente, a los estimadores MCO: $\widehat{\beta}_0$ y $\widehat{\beta}_1$, sólo si se cumple los supuestos sobre los errores de ajuste: $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$.
- La diferencia entre los dos métodos se da en la estimación de la varianza σ^2 (ver más adelante).
- Cuando alguno de los supuestos sobre los errores no es válido, hay que buscar soluciones alternativas: Transformaciones, modelos lineales generalizados, métodos no paramétricos, entre otros.

Estimadores MLE vs. estimadores MCO

- Los estimadores MLE: $\widetilde{\beta}_0$ y $\widetilde{\beta}_1$ son iguales, respectivamente, a los estimadores MCO: $\widehat{\beta}_0$ y $\widehat{\beta}_1$, sólo si se cumple los supuestos sobre los errores de ajuste: $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$.
- La diferencia entre los dos métodos se da en la estimación de la varianza σ^2 (ver más adelante).
- Cuando alguno de los supuestos sobre los errores no es válido, hay que buscar soluciones alternativas: Transformaciones, modelos lineales generalizados, métodos no paramétricos, entre otros.

Introduccion

Nomenclatura

Significado de la Regresión

Modelo y consideraciones

Estimación por Mínimos Cuadrados (MCO)

Estimación por Máxima verosimilitud (MLE)

Estimación de o

Coeficiente de determinación o R

de una regresión

Contenido

- Introducción
- Nomenclatura
- 3 Significado de la Regresión
- Modelo y consideraciones
- 5 Estimación por Mínimos Cuadrados (MCO)
- 6 Estimación por máxima verosimilitud (MLE)
- Estimación de σ^2

Sean $\widehat{E}_i = y_i - \widehat{y}_i$ los residuos del ajuste del MRLS con base en una muestra de tamaño n. Sea tambien la suma de cuadrados de los residuos de ajuste, SSE = $\sum_{i=1}^{n} \widehat{E}_i^2$. Bajo supuestos: $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$,

 Tabla 4: Comparación estimadores de la varianza

Sean $\widehat{E}_i = y_i - \widehat{y}_i$ los residuos del ajuste del MRLS con base en una muestra de tamaño n. Sea tambien la suma de cuadrados de los residuos de ajuste, SSE = $\sum_{i=1}^{n} \widehat{E}_i^2$. Bajo supuestos: $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$,

Tabla 4: Comparación estimadores de la varianza

Estimador	Ecuación	Valor Esperado
Insesgado: MSE	$\widehat{\sigma}^2 = \frac{\text{SSE}}{n-2}$	$E\left[\widehat{\sigma^2}\right] = \sigma^2$
MLE	$\widetilde{\sigma}^2 = \frac{1}{n} SSE$	$\mathrm{E}\left[\widetilde{\sigma}^2\right] = \left(\frac{n-2}{n}\right)\sigma^2$

Sean $\widehat{E}_i = y_i - \widehat{y}_i$ los residuos del ajuste del MRLS con base en una muestra de tamaño n. Sea tambien la suma de cuadrados de los residuos de ajuste, SSE = $\sum_{i=1}^n \widehat{E}_i^2$. Bajo supuestos: $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$,

Tabla 4: Comparación estimadores de la varianza

Estimador	Ecuación	Valor Esperado
Insesgado: MSE	$\widehat{\sigma}^2 = \frac{\text{SSE}}{n-2}$	$E\left[\widehat{\sigma}^2\right] = \sigma^2$
MLE	$\widetilde{\sigma}^2 = \frac{1}{n} SSE$	$\mathrm{E}\left[\widetilde{\sigma}^2\right] = \left(\frac{n-2}{n}\right)\sigma^2$

- Note que $\tilde{\sigma}^2 = \left(\frac{n-2}{n}\right)\tilde{\sigma}^2$.
- $\widehat{\sigma}^2$ es insesgado mientras que $\widetilde{\sigma}^2$ es sesgado con respecto a σ^2 , sin embargo, este último es asintóticamente insesgado: $\lim_{n\to\infty} \mathbb{E}\left[\widehat{\sigma}^2\right] = \sigma^2$.
 - El estimador MLE es de mínima varianza y consistente: $\tilde{\sigma}^2 \stackrel{P}{\to} \sigma^2$.

Sean $\widehat{E}_i = y_i - \widehat{y}_i$ los residuos del ajuste del MRLS con base en una muestra de tamaño n. Sea tambien la suma de cuadrados de los residuos de ajuste, SSE = $\sum_{i=1}^{n} \widehat{E}_i^2$. Bajo supuestos: $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$,

Tabla 4: Comparación estimadores de la varianza

Estimador	Ecuación	Valor Esperado
Insesgado: MSE	$\widehat{\sigma}^2 = \frac{\text{SSE}}{n-2}$	$E\left[\widehat{\sigma}^2\right] = \sigma^2$
MLE	$\widetilde{\sigma}^2 = \frac{1}{n} SSE$	$\mathrm{E}\left[\widetilde{\sigma}^2\right] = \left(\frac{n-2}{n}\right)\sigma^2$

- Note que $\tilde{\sigma}^2 = \left(\frac{n-2}{n}\right)\tilde{\sigma}^2$.
- $\widehat{\sigma}^2$ es insesgado mientras que $\widetilde{\sigma}^2$ es sesgado con respecto a σ^2 , sin embargo, este último es asintóticamente insesgado: $\lim_{n\to\infty} \mathbb{E}\left[\widetilde{\sigma}^2\right] = \sigma^2$.
- El estimador MLE es de mínima varianza y consistente: $\tilde{\sigma}^2 \stackrel{\mathcal{P}}{\longrightarrow} \sigma^2$.

Sean $\widehat{E}_i = y_i - \widehat{y}_i$ los residuos del ajuste del MRLS con base en una muestra de tamaño n. Sea tambien la suma de cuadrados de los residuos de ajuste, SSE = $\sum_{i=1}^n \widehat{E}_i^2$. Bajo supuestos: $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$,

Tabla 4: Comparación estimadores de la varianza

Estimador	Ecuación	Valor Esperado
Insesgado: MSE	$\widehat{\sigma}^2 = \frac{\text{SSE}}{n-2}$	$E\left[\widehat{\sigma}^2\right] = \sigma^2$
MLE	$\widetilde{\sigma}^2 = \frac{1}{n} SSE$	$\mathrm{E}\left[\widetilde{\sigma}^2\right] = \left(\frac{n-2}{n}\right)\sigma^2$

- Note que $\tilde{\sigma}^2 = \left(\frac{n-2}{n}\right)\tilde{\sigma}^2$.
- $\widehat{\sigma}^2$ es insesgado mientras que $\widetilde{\sigma}^2$ es sesgado con respecto a σ^2 , sin embargo, este último es asintóticamente insesgado: $\lim_{n\to\infty} \mathbb{E}\left[\widetilde{\sigma}^2\right] = \sigma^2$.
- El estimador MLE es de mínima varianza y consistente: $\tilde{\sigma}^2 \stackrel{\mathcal{P}}{\longrightarrow} \sigma^2$.

Introduccion Nomenclatura Significado de la Regresión Modelo y consideraciones Estimación por Mínimos Cuadrados (MCO) Estimación por Máxima verosimilitud (MLE) Estimación de σ^2 Coeficiente de determinación ó R^2 de una regresión

Contenido

- Introducción
- Nomenclatura
- 3 Significado de la Regresión
- Modelo y consideraciones
- S Estimación por Mínimos Cuadrados (MCO)
- 6 Estimación por máxima verosimilitud (MLE)
- \bigcirc Estimación de σ

Considere las siguientes sumas de cuadrados:

- Suma de cuadrados totales (vista previamente como S_{yy}): SST = $\sum_{i=1}^{n} (y_i \bar{y})^2$
- Suma de cuadrados de residuos: SSE = $\sum_{i=1}^{n} \widehat{E}_{i}^{2}$
- Suma de cuadrados de regresión: SSR = $\sum_{i=1}^{n} (\widehat{y}_i \overline{y})^2$

La descomposición: SST = SSR + SSE, la veremos más adelante como Análisis de vari anza o ANOVA.

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} \tag{20}$$

Interpretación: La proporción de la variabilidad total observada en la variable respuesta que es explicada por la relación lineal con la variable predictora considerada.

Interpretaciones erróneas:

Un R^c alto indica que el modelo puede hacer predicciones titiles.

Considere las siguientes sumas de cuadrados:

- Suma de cuadrados totales (vista previamente como S_{yy}): SST = $\sum_{i=1}^{n} (y_i \bar{y})^2$
- Suma de cuadrados de residuos: SSE = $\sum_{i=1}^{n} \widehat{E}_{i}^{2}$
- Suma de cuadrados de regresión: SSR = $\sum_{i=1}^{n} (\widehat{y}_i \overline{y})^2$

La descomposición: SST = SSR + SSE, la veremos más adelante como Análisis de vari anza o ANOVA.

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} \tag{20}$$

Interpretación: La proporción de la variabilidad total observada en la variable respuesta que es explicada por la relación lineal con la variable predictora considerada.

Considere las siguientes sumas de cuadrados:

- Suma de cuadrados totales (vista previamente como S_{yy}): SST = $\sum_{i=1}^{n} (y_i \bar{y})^2$
- Suma de cuadrados de residuos: SSE = $\sum_{i=1}^{n} \widehat{E}_{i}^{2}$
- Suma de cuadrados de regresión: SSR = $\sum_{i=1}^{n} (\widehat{y}_i \overline{y})^2$

La descomposición: SST = SSR + SSE, la veremos más adelante como Análisis de vari anza o ANOVA.

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} \tag{20}$$

Interpretación: La proporción de la variabilidad total observada en la variable respuesta que es explicada por la relación lineal con la variable predictora considerada.

Interpretaciones erróneas:

Un \mathbb{R}^2 alto indica que el modelo puede hacer predicciones útiles.

Considere las siguientes sumas de cuadrados:

- Suma de cuadrados totales (vista previamente como S_{yy}): SST = $\sum_{i=1}^{n} (y_i \bar{y})^2$
- Suma de cuadrados de residuos: SSE = $\sum_{i=1}^{n} \widehat{E}_{i}^{2}$
- Suma de cuadrados de regresión: SSR = $\sum_{i=1}^{n} (\widehat{y}_i \overline{y})^2$

La descomposición: SST = SSR + SSE, la veremos más adelante como Análisis de vari anza o ANOVA.

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} \tag{20}$$

Interpretación: La proporción de la variabilidad total observada en la variable respuesta que es explicada por la relación lineal con la variable predictora considerada.

Considere las siguientes sumas de cuadrados:

- Suma de cuadrados totales (vista previamente como S_{yy}): SST = $\sum_{i=1}^{n} (y_i \bar{y})^2$
- Suma de cuadrados de residuos: SSE = $\sum_{i=1}^{n} \widehat{E}_{i}^{2}$
- Suma de cuadrados de regresión: SSR = $\sum_{i=1}^{n} (\widehat{y}_i \overline{y})^2$

La descomposición: SST = SSR + SSE, la veremos más adelante como Análisis de varianza o ANOVA.

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} \tag{20}$$

Interpretación: La proporción de la variabilidad total observada en la variable respuesta, que es explicada por la relación lineal con la variable predictora considerada.

Interpretaciones erróneas:

 $^{\circ}$ Un \mathbb{R}^2 alto indica que el modelo puede hacer predicciones útiles.

Considere las siguientes sumas de cuadrados:

La descomposición: SST = SSR + SSE, la veremos más adelante como Análisis de varianza o ANOVA.

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} \tag{20}$$

Interpretación: La proporción de la variabilidad total observada en la variable respuesta, que es explicada por la relación lineal con la variable predictora considerada.

- Un R² alto indica que el modelo puede hacer predicciones útiles.
- Un R² alto indica que la recta de regresión tiene buen ajuste.

Considere las siguientes sumas de cuadrados:

La descomposición: SST = SSR + SSE, la veremos más adelante como Análisis de varianza o ANOVA.

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} \tag{20}$$

Interpretación: La proporción de la variabilidad total observada en la variable respuesta, que es explicada por la relación lineal con la variable predictora considerada.

- Un R² alto indica que el modelo puede hacer predicciones útiles.
- Un R² alto indica que la recta de regresión tiene buen ajuste.
- Un R² cercano a cero indica que X y Y no están relacionados.

Considere las siguientes sumas de cuadrados:

La descomposición: SST = SSR + SSE, la veremos más adelante como Análisis de varianza o ANOVA.

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} \tag{20}$$

Interpretación: La proporción de la variabilidad total observada en la variable respuesta, que es explicada por la relación lineal con la variable predictora considerada.

- Un R² alto indica que el modelo puede hacer predicciones útiles.
- Un R² alto indica que la recta de regresión tiene buen ajuste.
- on it with thaten que in rectu de regression tiene ouen ajuste.

Considere las siguientes sumas de cuadrados:

La descomposición: SST = SSR + SSE, la veremos más adelante como Análisis de varianza o ANOVA.

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} \tag{20}$$

Interpretación: La proporción de la variabilidad total observada en la variable respuesta, que es explicada por la relación lineal con la variable predictora considerada.

- Un R² alto indica que el modelo puede hacer predicciones útiles.
- Un R² alto indica que la recta de regresión tiene buen ajuste.
- Un R² cercano a cero indica que X y Y no están relacionados.

Considere las siguientes sumas de cuadrados:

La descomposición: SST = SSR + SSE, la veremos más adelante como Análisis de varianza o ANOVA.

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} \tag{20}$$

Interpretación: La proporción de la variabilidad total observada en la variable respuesta, que es explicada por la relación lineal con la variable predictora considerada.

- Un R² alto indica que el modelo puede hacer predicciones útiles.
- Un R² alto indica que la recta de regresión tiene buen ajuste.
- Un R² cercano a cero indica que X y Y no están relacionados.

Figura 5: Datos simulados.(a) la verdadera relación estadística es lineal: $\mu_{Y|X} = 650 + 2x$ y el ajuste RLS arroja R^2 cercano a 1; (b) La verdadera relación no es lineal: $\mu_{Y|X} = 30000 + 2x + 0.2x^2$ aunque el ajuste por RLS arroja R^2 cercano a 1; (c) La verdadera relación no es lineal: $\mu_{Y|X} = 92500 - 100x + 0.2x^2$ y el ajuste RLS produce un R^2 de casi cero, sin embargo, en este caso, no se puede decir que no existe relación estadística entre X y Y sino que la relación es no lineal.

Figura 6: Datos simulados. El verdadero modelo es $Y_i = 5000 + E_i$, $E_i \stackrel{\text{iid}}{\sim} N(0,10000)$, es decir, no hay ningún tipo de asociación estadística de Y con X, sin embargo. se ajustó modelo de RLS asumiendo que $\mu_{Y|X} = \beta_0 + \beta_1 x$, y su ajuste da un R^2 pequeño, como era de esperarse bajo estas circuntancias. El modelo $Y_i = \beta_0 + E_i$, $E_i \stackrel{\text{iid}}{\sim} N(0,\sigma^2)$ da como estimación $\widehat{\beta_0} = 4995.508$ muy próximo a la media verdadera de Y.