SOLUTIONS SHEET 9

YANNIS BÄHNI

Exercise 1. We may assume that $f \neq 0$ since otherwise we would have convergence in norm. Thus the continuity of f implies $||f||_p \neq 0$ for all $1 \leq p < \infty$ since also $|f|^p$ is continuous.

Lemma 1.1. Let $1 \leq p < \infty$. Then $g_n, h_n, k_n \in L^p(\mathbb{R})$ for all $n \in \mathbb{N}$.

Proof. This immediately follows from the computations

$$||g_n||_p^p = \int_{\mathbb{R}} |f(x-n)|^p dx = \int_{\mathbb{R}} |f(y)| dy = ||f||_p^p,$$

$$||h_n||_p^p = n^{-1} \int_{\mathbb{R}} |f(x/n)|^p dx = \int_{\mathbb{R}} |f(y)|^p dy = ||f||_p^p,$$

$$||k_n||_p^p = \int_{\mathbb{R}} |f(x)e^{inx}|^p dx = \int_{\mathbb{R}} |f(x)|^p dx = ||f||_p^p.$$

Lemma 1.2. Let $1 . Then <math>g_n, h_n, k_n \rightharpoonup 0$ in $L^p(\mathbb{R})$.

Proof. We make use of lemma 6.2.1 and theorem 2.2.6, which provides an antilinear isometric isomorphism $(L^p(\mathbb{R}))^* \cong L^q(\mathbb{R})$ where q is the dual exponent of p. Since $f \in C_c^{\infty}(\mathbb{R})$, there exists some M > 0 such that $\operatorname{supp}(f) \subseteq [-M, M]$. It is easy to verify that $\operatorname{supp}(g_n) \subseteq [-M+n, M+n]$ for all $n \in \mathbb{N}$. Let $\varphi \in L^q(\mathbb{R})$. Then Hölder's inequality implies

$$\left| \int_{\mathbb{R}} \overline{\varphi}(x) g_n(x) dx \right| \leq \int_{\mathbb{R}} |\varphi(x) g_n(x)| dx$$

$$= \int_{\mathbb{R}} |\varphi(x) g_n(x) \chi_{\text{supp}(g_n)}(x)| dx$$

$$\leq \int_{\mathbb{R}} |\varphi(x) g_n(x) \chi_{[-M+n,M+n]}(x)| dx$$

$$= \|\varphi \chi_{[-M+n,M+n]} \|_{q} \|g_n\|_{p}$$

$$= \|\varphi \chi_{[-M+n,M+n]} \|_{q} \|f\|_{p} \to 0$$

since dominated convergence yields

$$\lim_{n\to\infty} \int_{\mathbb{R}} |\varphi(x)|^q \chi_{[-M+n,M+n]}(x) dx = \int_{\mathbb{R}} |\varphi(x)|^q \lim_{n\to\infty} \chi_{[-M+n,M+n]}(x) dx = 0$$

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

which application is justified by the fact that $|\varphi(x)|^q \chi_{[-M+n,M+n]}(x) \leq |\varphi(x)|^q \in L^1(\mathbb{R})$ and $\chi_{[-M+n,M+n]}(x) \to 0$ for all $x \in \mathbb{R}$ (take n just sufficiently large).

Let $\varepsilon > 0$. Since $1 < q < \infty$, by theorem 2.2.8 we find $\widetilde{\varphi} \in C_c^{\infty}(\mathbb{R})$ such that $\|\varphi - \widetilde{\varphi}\|_q \le \varepsilon$. Since $f \in C_c^{\infty}(\mathbb{R})$, we find $M \ge 0$, such that $|f| \le M$. Hence

$$\left| \int_{\mathbb{R}} \overline{\varphi}(x) h_n(x) dx \right| \leq \int_{\mathbb{R}} |\varphi(x)| |h_n(x)| \, dx$$

$$= \int_{\mathbb{R}} |\varphi(x) - \widetilde{\varphi}(x) + \widetilde{\varphi}(x)| |h_n(x)| \, dx$$

$$\leq \int_{\mathbb{R}} |\varphi(x) - \widetilde{\varphi}(x)| |h_n(x)| \, dx + \int_{\mathbb{R}} |\widetilde{\varphi}(x)| |h_n(x)| \, dx$$

$$\leq \|\varphi - \widetilde{\varphi}\|_q \|h_n\|_p + \int_{\mathbb{R}} |\widetilde{\varphi}(x)| |h_n(x)| \, dx$$

$$= \|\varphi - \widetilde{\varphi}\|_q \|f\|_p + \int_{\mathbb{R}} |\widetilde{\varphi}(x)| |h_n(x)| \, dx$$

$$\leq \varepsilon \|f\|_p + \int_{\mathbb{R}} |\widetilde{\varphi}(x)| |h_n(x)| \, dx$$

$$= \varepsilon \|f\|_p + n^{-1/p} \int_{\mathbb{R}} |\widetilde{\varphi}(x)| |f(x/n)| \, dx$$

$$\leq \varepsilon \|f\|_p + n^{-1/p} M \int_{\mathbb{R}} |\widetilde{\varphi}(x)| \, dx$$

$$= \varepsilon \|f\|_p + n^{-1/p} M \|\widetilde{\varphi}\|_1$$

and thus

$$\left| \int_{\mathbb{R}} \overline{\varphi}(x) h_n(x) dx \right| \xrightarrow{n \to \infty} \varepsilon \|f\|_p.$$

Since ε was arbitrary, we conclude that

$$\int_{\mathbb{R}} \overline{\varphi}(x) h_n(x) dx \xrightarrow{n \to \infty} 0$$

and since $\varphi \in L^q(\mathbb{R})$ was arbitrary, we conclude that

$$h_n \rightharpoonup 0$$

in $L^p(\mathbb{R})$.

Observe that

$$\int_{\mathbb{R}} \overline{\varphi}(x) k_n(x) dx = \sqrt{\frac{2\pi}{2\pi}} \int_{\mathbb{R}} \overline{\varphi}(x) f(x) e^{inx} dx$$

$$= \sqrt{\frac{2\pi}{2\pi}} \int_{\mathbb{R}} \overline{\varphi}(x) f(x) e^{inx} dx$$

$$= \sqrt{\frac{2\pi}{2\pi}} \int_{\mathbb{R}} \overline{\varphi}(x) f(x) e^{-i(-n)x} dx$$

$$= \sqrt{2\pi} \widehat{\overline{\varphi}} f(-n) \to 0$$

by the Riemann-Lebesgue lemma since by Hölders inequality, $\overline{\varphi} f \in L^1(\mathbb{R})$.

Lemma 1.3. Let X be a normed space and $(x_n)_{n\in\mathbb{N}}$ a sequence in X such that $x_n \to x$. If $x_n \to y$ for some $y \in X$, then x = y.

Proof. Suppose that $x_n \to y$. Then since $\mathcal{T}_W \subseteq \mathcal{T}_{\|\cdot\|}$, we have that $x_n \rightharpoonup y$. But (X, \mathcal{T}_W) is Hausdorff and thus limits are unique. Hence x = y.

Corollary 1.1. Let $1 . Then <math>g_n$, h_n and k_n do not converge in norm.

Proof. Since all three sequences converge weakly to 0, we only have to show that they do not converge towards 0 in $L^p(\mathbb{R})$. However, this is immediate from the first lemma, since all sequences have constant norm $\|f\|_p \neq 0$ and hence the limit should have also nonzero norm.

a. Fix $1 and assume that <math>x^{(n)} \to x$ in $\ell^p(\mathbb{K})$. By lemma 6.2.1 this implies that $f\left(x^{(n)}\right) \to f(x)$ for all $f \in \left(\ell^p(\mathbb{K})\right)^*$. By [Wer11, p. 59], we have that $\left(\ell^p(\mathbb{K})\right)^* \cong \ell^q(\mathbb{K})$ isometrically where q is the dual exponent to p. Explicitly, $\varphi(y) \in \left(\ell^p(\mathbb{K})\right)^*$ is given by

$$\varphi(y)(x) \mapsto \sum_{k \in \mathbb{N}} y_k x_k$$

for $y \in \ell^q(\mathbb{K})$. Let $i \in \mathbb{N}$. Then $(\delta_{ik})_{k \in \mathbb{N}} \in \ell^q(\mathbb{K})$ and thus we have that

$$x_i^{(n)} = \sum_{k \in \mathbb{N}} \delta_{ik} x_k^{(n)} = \varphi\left((\delta_{ik})_{k \in \mathbb{N}}\right) \left(x^{(n)}\right) \to \varphi\left((\delta_{ik})_{k \in \mathbb{N}}\right) (x) = \sum_{k \in \mathbb{N}} \delta_{ik} x_k = x_i.$$

Moreover, $x^{(n)}$ is bounded by proposition 6.2.2. Conversly, consider the following lemma.

Lemma 1.4. Let $1 \le p < \infty$. Define

$$A_p := \{ x \in \ell^p(\mathbb{K}) : \text{supp } x \text{ is finite} \}.$$

Then A_p is dense in $\ell^p(\mathbb{K})$.

Proof. Let $x \in \ell^p(\mathbb{K})$. Consider $(x^{(n)})_{n \in \mathbb{N}}$ defined by

$$x_k^{(n)} := \begin{cases} x_k & 1 \le k \le n, \\ 0 & k > n \end{cases}.$$

By

$$\|x^{(n)}\|_p^p = \sum_{k \in \mathbb{N}} |x_k^{(n)}|^p = \sum_{k \le n} |x_k^{(n)}|^p < \infty$$

immediately follows that $x^{(n)} \in \ell^p(\mathbb{K})$ for all $n \in \mathbb{N}$ and hence $x^{(n)} \in A_p$. Moreover

$$||x - x^{(n)}||_p^p = \sum_{k \in \mathbb{N}} |x_k - x_k^{(n)}|^p = \sum_{k \ge n} |x_k|^p \to 0$$

implies that A_p is dense in $\ell^p(\mathbb{K})$.

We make use of exercise 5 on sheet 8. Since $(x^{(n)})_{n\in\mathbb{N}}$ is bounded, we have $\sup_{n\in\mathbb{N}} \|x^{(n)}\|_p < \infty$. By the previous lemma, A_q is dense in $\ell^q(\mathbb{K})$ and thus also in $(\ell^p(\mathbb{K}))^*$ via the explicit isometric isomorphism (to be precise, the image of A_q under this mapping). Let $y \in A_q$. Then we find $N \in \mathbb{N}$, such that $y_k = 0$ for all k > N. Hence

$$\varphi(y)\left(x^{(n)}\right) = \sum_{k \in \mathbb{N}} y_k x_k^{(n)} = \sum_{k \le N} y_k x_k^{(n)} \to \sum_{k \le N} y_k x_k = \sum_{k \in \mathbb{N}} y_k x_k = \varphi(y)(x)$$

since by assumption $x_i^{(n)} \to x_i$ for all $i \in \mathbb{N}$ and the sum is finite. Thus by exercise 5 on sheet 8 we conclude that $x^{(n)} \rightharpoonup x$ in $\ell^p(\mathbb{K})$.

b. Suppose that $x_n \to x$ and $||x_n|| \to ||x||$. By lemma 6.2.1. we have that $f(x_n) \to f(x)$ for all $f \in H^*$. Using the *Riesz representation theorem* this is equivalent to $\langle y, x_n \rangle \to \langle y, x \rangle$ for all $y \in H$. But then

$$||x - x_n||^2 = \langle x - x_n, x - x_n \rangle = ||x||^2 - 2 \operatorname{Re} \langle x, x_n \rangle + ||x_n||^2 \to 0$$

since Re is a continuous function and $\langle x, x_n \rangle \to ||x||^2$.

Exercise 3.

a.

Lemma 1.5. Let $0 < \varepsilon < 1$ and define

$$I_{\varepsilon}(f) := \varepsilon^{-1} \int_{0}^{\varepsilon} f(x) dx$$

for $f \in L^{\infty}(0,1)$. Then $I_{\varepsilon} \in (L^{\infty}(0,1))^*$ and $||I_{\varepsilon}|| = 1$ for all $0 < \varepsilon < 1$. Proof. Let $f \in L^{\infty}(0,1)$. Then we have that $|f| \le ||f||_{\infty} \lambda$ -a.e. Hence

$$|I_{\varepsilon}(f)| = \varepsilon^{-1} \left| \int_0^{\varepsilon} f(x) dx \right| \le \varepsilon^{-1} \int_0^{\varepsilon} |f(x)| \, dx \le ||f||_{\infty} \tag{1}$$

and thus I_{ε} is bounded and thus continuous. Clearly I_{ε} is \mathbb{C} -linear by the \mathbb{C} -linearity of the integral. Moreover, using (1) we get that

$$||I_{\varepsilon}|| = \sup_{\|f\|_{\infty} = 1} |I_{\varepsilon}(f)| \le \sup_{\|f\| = 1} ||f||_{\infty} = 1.$$

Conversly, setting $f:=\chi_{(0,1)}\in L^\infty(0,1)$, we get that $|I_\varepsilon(f)|=1$ and hence by $\|f\|=1$

$$||I_{\varepsilon}|| = \sup_{\|g\|_{\infty} = 1} |I_{\varepsilon}(g)| \ge |I_{\varepsilon}(f)| = 1.$$

Exercise 4.

a. First we show that $\|\cdot\|_{\sigma}$ is well defined. Let $x^* \in X^*$, then we have

$$\|x^*\|_{\sigma} = \sum_{k=1}^{\infty} 2^{-k} |x^*(x_k)| \le \sum_{k=1}^{\infty} 2^{-k} \|x^*\| \|x_k\| = \|x^*\| \sum_{k=1}^{\infty} 2^{-k} = \|x^*\| < \infty$$

since $x_k \in S_X$ and $\sum_{k=1}^{\infty} 2^{-k} = 1$. Hence $\|x^*\|_{\sigma} \leq \|x^*\|$ holds. Let $\lambda \in \mathbb{K}$. Then we have that

$$\|\lambda x^*\|_{\sigma} = \sum_{k=1}^{\infty} 2^{-k} |\lambda x^*(x_k)| = \sum_{k=1}^{\infty} 2^{-k} |\lambda| |x^*(x_k)| = |\lambda| \sum_{k=1}^{\infty} 2^{-k} |x^*(x_k)| = |\lambda| \|x^*\|_{\sigma}.$$

Let $y^* \in X^*$. Then the triangle inequality follows from

$$||x^* + y^*||_{\sigma} = \sum_{k=1}^{\infty} 2^{-k} |x^*(x_k) + y^*(x_k)|$$

$$\leq \sum_{k=1}^{\infty} 2^{-k} |x^*(x_k)| + \sum_{k=1}^{\infty} 2^{-k} |y^*(x_k)|$$

$$= ||x^*||_{\sigma} + ||y^*||_{\sigma}.$$

Lastly, clearly $\|x^*\| = 0$ if $x^* = 0$. Conversly, suppose that $\|x^*\| = 0$. Hence $x^*(x_k) = 0$ for all $k \in \mathbb{N}$. Let $Y \in X$. Since $\overline{\text{span}\{x_k : k \in \mathbb{N}\}} = X$, we find a sequence $(y_n)_{n \in \mathbb{N}}$ in $\text{span}\{x_k : k \in \mathbb{N}\}$, such that $y_n \to y$. Moreover, for each $n \in \mathbb{N}$ we have that $y_n = \sum_{k=1}^{\infty} \lambda_k^{(n)} x_k$ for $\lambda_k^{(n)} \in \mathbb{K}$ and $\lambda_k^{(n)} = 0$ for all but finitely many $k \in \mathbb{N}$. Hence

$$x^*(y) = \lim_{n \to \infty} x^*(y_n) = \lim_{n \to \infty} \sum_{k=1}^{\infty} \lambda_k^{(n)} x^*(x_k) = 0$$

by the continuity of x^* and so $x^* = 0$.

References

[Wer11] Dirk Werner. Funktionalanalysis. 7., korrigierte und erweiterte Auflage. Springer, 2011.