AMENDMENTS TO THE CLAIMS

Claim 1 (currently amended)

A compound selected from the group consisting of all possible stereoisomers of a compound of the formula

$$R1$$
 $N-R2$
 $R3$
 $NH-R$
 $NH-R$

either R_1 is hydrogen or methyl and R_2 is selected from the group consisting of $-CH_2-CH_2NHCH_3$,

$$\begin{array}{c} CH_3\\ \\ |\\ -CH_2\text{-}C\text{-}NH_2\\ \\ |\\ CH_3 \end{array}$$

-CH2CHCH3NH2,

-CH₂CHCH₂NH₂,

-CHCH₃CH₂NH₂, -(CH2)aOH where a is an integer of 1 to 8, -(CH₂)_b -C \equiv N where b is an integer of 1 to 8, -CHCH₃C₆H₅, -(CH₂)-C(CH₃)₂NHCOCF₃, and -CHCH₃(CH₂)dOH where d is an integer of 1 to 8,

 R_3 is selected from the group consisting of hydrogen, methyl and hydroxyl, R_4 is hydrogen or hydroxyl,

R is selected from the group consisting of <u>a</u>) alkyl and cycloalkyl of up to 30 carbon atoms, optionally containing at least one heteroatom, <u>b</u>) at least one heterocycle, <u>c</u>) and acyl or cyclic acyl of up to 30 carbon atoms optionally containing at least one heteroatom, and <u>d</u>) at least one heterocycle,

T is selected from the group consisting of hydrogen, methyl, $-CH_2CONH_2$, $-CH_2-C\equiv N$, and $-(CH_2)_2NH_2$,

Y is selected from the group consisting of hydrogen, hydroxyl, halogen and -OSO₃H or a salt thereof,

W is hydrogen or OH,

Z is hydrogen or methyl and its non-toxic, pharmaceutically acceptable acid addition salt.

Claim 2 (previously presented)

The compound of claim 1 in which T is hydrogen.

Claim 3 (previously presented)

The compound of claim 1 in which W is hydrogen.

Claim 4 (previously presented)

The compound of claim 1 in which Z is methyl.

Claim 5 (previously presented)

The compound of claim 1 in which Y is hydrogen.

Claim 6 (previously presented)

The compound of claim 1 in which R_3 is methyl.

Claim 7 (previously presented)

The compound of claim 1 in which R_4 is hydroxyl.

Claim 8 (previously presented)

The compound of claim 1 in which R is selected from the group consisting of

Claim 9 (previously presented)

The compound of claim 8 in which R is

Claim 10 (previously presented)

The compound of claim 8 in which R is

Claim 11 (previously presented)

The compound of claim 1 in which R₁ is hydrogen.

Claim 12 (cancelled)

Claim 13 (currently amended)

The compound of claim 1 in which R₂ is selected from the group consisting of

Claim 14 (previously presented)

The compound of claim 1 in which R₂ is

$$-CH_2$$
 or $-CH_2$ N

Claim 15 (currently amended)

The compound of claim 1 is 1-[4-[[(1H-benzimidazol-2-yl)-methyl]-amino]-N2-[[4"-(pentyloxy) [1,2':4', 1" <u>[1,2':4', 1"</u>

- terphenyl]-4-yl]-carbonyl]-L-ornithine]-4-[4-(4-hydroxyphenyl)-L-threonine]5-L-serine-echinocandine echinocandin B trifluoroacetate (isomer B).

Claim 16 - 18 (cancelled)

Claim 19 (previously presented)

An antifungal composition comprising an antifungally effective amount of a compound of claim 15 and an inert pharmaceutical carrier.

Claim 20 (previously presented)

A method of treating fungal infections in warm-blooded animals comprising administering to warm-blooded animals in need thereof an antifungally effective amount of a compound of claim 15.