(ADAPTIVE) GROVER FIXED POINT SEARCH FOR QUBO

ABSTRACT. to be completed later...

1. Introduction

to be completed later...

Organization of the paper: In Section 2, ...

2. Grover Fixed Points Search

Input: A symmetric, integer-valued, n-by-n matrix, Q and a constant $c \in \mathbb{Z}$, or, equivalently, a quadratic function on $x \in \{0,1\}^n$ given by

$$f(x) := x^T Q x + c. \tag{2.1}$$

(Note that since $x_i^2 = x_i$, we can move linear terms into the diagonal of Q.)

Output: An estimate for the value

$$M := \max(\{ f(x) \mid x \in \{0,1\}^n \}).$$

Example 2.1 (Maximal Graph Cuts). Given a simple, undirected graph, G = (V, E), let Q be its graph Laplacian, defined as

$$Q_{i,j} = \begin{cases} \deg(v_i), & \text{if } i = j, \\ -1, & \text{if } \{v_i, v_j\} \in E, \\ 0, & \text{otherwise,} \end{cases}$$

b=0 and c=0. Then $V=V^+\coprod V^-$ is a maximal exactly when $\mathrm{MaxCut}(G)=f(x)=M$, where $x\in\{0,1\}^n$ is defined as $x_i=1$ if $v_i\in V^+$ and zero otherwise.

The Edwards-Erdős bound yields

$$\operatorname{MaxCut}(G) \geq B_G := \left\{ \begin{array}{ll} \frac{2|V| + |E| - 1}{4}, & \text{if (we know that) G is connected,} \\ \frac{|V|}{2} + \sqrt{\frac{|V|}{8} + \frac{1}{64}} - \frac{1}{8}, & \text{otherwise.} \end{array} \right.$$

Date: August 22, 2023.

Key words and phrases. Grover Fixed Point Search, Binary Optimization.

3. THE ORACLES:

An element $x = (x_1, x_2, ..., x_n) \in \{0, 1\}^n$ is also regarded as a binary number via $x \sim \overline{x_1 x_2 ... x_n} := \sum_i x_i 2^{n-i}$ and as an element of the computational basis via

$$|x\rangle_n := |x_1\rangle \dots |x_{n-1}\rangle |x_n\rangle,$$

Given a function as in equation (2.1), let us pick $m \gg \log_2(M)$ (in fact, $m = \lceil \log_2(\operatorname{tr}(Q)) \rceil + 1$ works for our purposes). We use the binary 2s complement convention when digitizing integers and we with that in mind, we construct a oracle on (n+m)-qubits, U_f , so that

$$U_f|x\rangle_n|y\rangle_m = |x\rangle_n|y-f(x)\rangle_m.$$

Note that the $(n+1)^{\text{th}}$ register of $U_f|x\rangle_n |y\rangle_m$ is $|1\rangle$ exactly when y < f(x).

3.1. **Construction of** U_f : Let $\mathcal{P}(\theta)$ be the following m-qubit gate

$$|y_{1}\rangle - P(2^{m-1}\theta) - e^{i\theta y_{1}2^{m-1}}|y_{1}\rangle$$

$$\vdots$$

$$|y_{j}\rangle - P(2^{m-j}\theta) - e^{i\theta y_{j}2^{m-j}}|y_{j}\rangle$$

$$\vdots$$

$$|y_{m}\rangle - P(\theta) - e^{i\theta y_{m}}|y_{m}\rangle$$

Thus $\mathscr{P}(\theta)|y\rangle_m = e^{i\theta y}|y\rangle_m$. Note that

$$|y\rangle_m$$
 — QFT — $\mathscr{P}(k\frac{2\pi}{2^m})$ — QFT[†] — $|z+k\rangle_m$

Thus if $f(x) = \sum_{i,j} Q_{i,j} x_i x_j + c$, then we need to add:

- (1) $-Q_{i,j}$, exactly when $x_i = x_j = 1$. This amounts to the addition of a QFT[†] $\circ \mathscr{P}\left(-Q_{i,j}\frac{2\pi}{2^m}\right) \circ$ QFT gate, controlled by the i^{th} and j^{th} register of $|x\rangle_n$,
- (2) -c, independent of $|x\rangle$. This amounts to the addition of a QFT[†] $\circ \mathscr{P}\left(-c\frac{2\pi}{2^m}\right) \circ$ QFT gate.

However, the following observation further simplifies the circuit. Let $q_i = \sum_{j=1}^n Q_{i,j}$ and for i < j let $S^{(i,j)}$ be the n-by-n matrix defined via

$$S_{k,l}^{(i,j)} = \begin{cases} 1, & \text{if } k = l \in \{i, j\}, \\ -1, & \text{if } k = i, l = j, \text{ or } k = j, l = j, \\ 0, & \text{otherwise.} \end{cases}$$

Then *Q* can be written as

$$Q = \operatorname{diag}(q_1, q_2, ..., q_n) + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Q_{i,j} S^{(i,j)}.$$

Since QFT is unitary, only the first one is needed; similarly, only the last QFT[†] is need. Hence U_f is given by:

Example 3.1. Let n = 4 and $f(x) = 3x_1^2 + x_2^2 + x_3^2 + x_4^2 - 2(x_1x_2 + x_1x_3 + x_1x_4)$. This is equivalent to equation (2.1), with

$$Q_{1,2} = Q_{1,2} = Q_{1,4} = -1$$
, $b_1 = 3$, $b_2 = b_3 = b_4 = 1$,

and all other coefficient zero. Furthermore, m = 3 works.

Remark 3.2. When f has symmetries, the above picture can be simplified. For example, in the case of MaxCut, we can assume that, say the last vertex is always in the 0-components, thus that qubit register can be eliminated.

Note that the adjusted cost, y-f(x), is encoded, which can later be used to implements the unitary operators $\exp(i\gamma H_f)$ without Trotterization as follow: let $\gamma \in \mathbb{R}$ and let us omit the ancilla qubit. Then $\exp(i\gamma H_f)|x\rangle_n = e^{i\gamma(y-f(x))}|x\rangle$ can be prepared via a $\mathscr{P}(\gamma \frac{2\pi}{2^m})$ -gate.

4. APPLICATION TO GROVER FIXED POINT SEARCH AND STATE PREPARATION

Fix
$$\delta \in (0,1)$$
 and y . Let $\lambda := \frac{|C_y|}{2^n}$, where $C_y := \left\{ x \in \{0,1\}^n \middle| f(x) \ge y \right\}$. Finally let $l := \left\lceil \frac{\log_2\left(\frac{2}{\delta}\right)}{2\sqrt{\lambda}} - \frac{1}{2} \right\rceil$.

Then, following [?yoder_fixed-point_2014], we can construct a Quantum circuit (using U_f from the previous section), that results in a state $S_l|0\rangle_n|y\rangle_m$ with the following significance: When the first n qubits are measured in the computational basis, then

$$P\big(x\in C_y\big) = \sum_{x\in C_y} |\langle x|S_l|0\rangle|^2 \geq 1-\delta^2.$$

Let us make the following definitions:

$$\begin{split} U_S &:= H^{\otimes n} \otimes \mathbb{1}^{\otimes m}, \\ R_0(\alpha) &:= \mathbb{1}^{\otimes (n+m)} + \left(1 - e^{i\alpha}\right) |0\rangle_n \langle 0|_n \otimes \mathbb{1}^{\otimes (1+m)}, \\ R_T(\beta) &:= U_f^{\dagger} P_{n+1}(\beta) U_f, \\ G(\alpha, \beta) &:= -U_S R_0(\alpha) U_S^{\dagger} R_T(\beta). \end{split}$$

Let $(\boldsymbol{\alpha}, \boldsymbol{\beta}) = (\alpha_1, \beta_1, \dots, \alpha_l, \beta_l)$ be given by

$$\forall j \in \{1, ..., l\}: \quad \alpha_j := -\beta_{l-j+1} = 2 \cot^{-1} \left(\tan \left(\frac{2\pi j}{2l+1} \right) \sqrt{1 - \gamma^2} \right),$$

where $\gamma := (T_{1/(2l+1)}(\delta^{-1}))^{-1}$ and let

$$S_l(\boldsymbol{\alpha},\boldsymbol{\beta}) = G(\alpha_l,\beta_l)G(\alpha_{l-1},\beta_{l-1})\cdots G(\alpha_1,\beta_1)U_S.$$