

Искенеева Камиля КМБО-01-20

kamila.iskeneeva@yandex.ru

tg:Iskam17

Краткие сведения

Матрицы

Бидиагональная матрица — матрица с ненулевыми элементами вдоль главной диагонали и диагональю выше (ниже).

$$egin{pmatrix} a_{11} & a_{12} & 0 & 0 & \dots \\ 0 & a_{22} & a_{23} & 0 & \dots \\ 0 & 0 & a_{33} & a_{34} & \dots \\ 0 & 0 & 0 & a_{44} & \dots \\ \dots & \dots & \dots & \dots \end{pmatrix}$$
 — верхняя бидиагональной матрица

$$\begin{pmatrix} a_{11} & 0 & 0 & 0 & \dots \\ a_{21} & a_{22} & 0 & 0 & \dots \\ 0 & a_{32} & a_{33} & 0 & \dots \\ 0 & 0 & a_{43} & a_{44} & \dots \\ \dots & \dots & \dots & \dots \end{pmatrix}$$
 - нижняя бидиагональной матрица

Cупердиагональ квадратной матрицы — это диагональ, состоящая из элементов, которые лежат непосредственно над элементами, составляющую главную диагональ. Индексы супердиагональных элементов: i, j = i + 1.

Блочная матрица — представление матрицы, при котором она рассекается вертикальными и горизонтальными линиями на прямоугольные части — блоки:

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1t} \\ A_{21} & A_{22} & \cdots & A_{2t} \\ \cdots & \cdots & \cdots & \cdots \\ A_{s1} & A_{s1} & \cdots & A_{st} \end{bmatrix},$$

где блок $A_{\alpha\beta}$ имеет размер $m_{\alpha} \times n_{\beta}$ для $\alpha=1,2,...,s$ и $\beta=1,2,...,t$.

Сингулярное разложение (SVD)

Неотрицательное вещественное число σ называется *сингулярным числом* матрицы A, когда существуют два вектора единичной длины $u \in \mathbb{R}^m$ и $v \in \mathbb{R}^n$ такие, что:

$$Av = \sigma u$$
, и $A^*u = \sigma v$

Векторы u и v называются, соответственно, **левым сингулярным вектором** и **правым сингулярным вектором**, соответствующим сингулярному числу σ .

Сингулярное разложение (Singular Value Decomposition - SVD) матрицы A размера $m \times n$ – разложение вида:

$$A = U\Sigma V^T,$$

где $\Sigma = \mathrm{diag}(\sigma_1, ..., \sigma_p, 0, ..., 0) \in \mathbb{R}^{m \times n}$, где $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_n \geq 0$. $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$; U, V — матрицы, чьи столбцы представляют собой векторы, образующие ортонормированные базисы в пространствах \mathbb{R}^m и \mathbb{R}^n соответственно.

Алгоритм "Разложение по сингулярным значениям бидиагональной матрицы с высокой относительной точностью»

На вход алгоритма поступает верхняя бидиагональной матрица B размером $n \times n$.

На выходе ожидаются диагональная матрица Σ размером $n \times n$ с сингулярными значениями, а также ортогональные матрицы U и V размером $n \times n$ такие, что $B = U \Sigma V^T$.

Опишем пошагово алгоритм:

- 1. Вычислим $\underline{\sigma}$, где $\underline{\sigma} = \underline{\sigma}(B) := \min_{||x||=1} ||Bx||$.
- 2. Вычислим $\bar{\sigma} = max_i(b_{i,i}, b_{i,i+1})$.
- 3. Повторяем следующие действия:
 - а. Для всех $i=1, \ldots, n-1$ положим $b_{i,i+1}=0,$ если выполнен критерий сходимости.
 - b. Определим наименьшее значение p и наибольшее значение q так, чтобы матрица В стала блочной.

$$B = \begin{pmatrix} B_{1,1} & 0 & 0 \\ 0 & B_{2,2} & 0 \\ 0 & 0 & B_{3,3} \end{pmatrix},$$

где $B_{1,1}$ — матрица размера $p \times p$; $B_{2,2}$ — матрица размера $(n-p-q) \times (n-p-q)$, у которой элементы, лежащие на супердиагонали, ненулевые; $B_{3,3}$ — диагональная матрица размера $q \times q$.

- с. Если q=n, то диагональ матрицы \varSigma это диагональ матрицы В. Останавливаемся.
- d. Если для i = p + 1, ... , n-q-1, $b_{i,i} = 0$, то

Применим вращения Гивенса так, чтобы $b_{i,i+1}=0$ и матрица $B_{2,2}$ оставалась верхней бидиагональной.

В противном случае

Необходимо применить следующий алгоритм.

Алгоритм «Шаг Деммеля-Кахана»

На вход поступают числа n, p u q, матрицы B, Q, P, где B — верхняя бидиагональная матрица размера $n \times n$; Q и P состоят из ортогональных векторов таких, что $A = QBP^T$; значения $\overline{\sigma}$ и $\underline{\sigma}$.

На выходе ожидаются матрицы B, Q, P такие, что $A = QBP^T$; Q и P состоят из ортогональных векторов; матрица B имеет меньшие недиагональные элементы, чем на входе. В памяти матрицы B, Q, P перезаписываются.

Опишем пошагово алгоритм:

- 1. Пусть $B_{2,2}$ блок матрицы B, состоящий только из элементов главной диагонали матрицы B, с индексами строк и столбцов вида $p+1, \ldots, n-q$.
- 2. Если $tol^*\underline{\sigma} \leq \varepsilon_0 \overline{\sigma}$, тогда:
 - а. Определяем значение c', как c' = c = 1;
 - b. Для k = p + 1, n q 1
 - Введем значения $\alpha = cb_{k,k}$, $\beta = b_{k,k+1}$;
 - Определим *c* и *s*:

$$\begin{bmatrix} \alpha & \beta \end{bmatrix} \begin{bmatrix} c & s \\ -s & c \end{bmatrix} = \begin{bmatrix} r & 0 \end{bmatrix}$$
, где $r = \sqrt{\alpha^2 + \beta^2}$.

- Если $k \neq p+1$, то $b_{k-1,k} = s'r$.
- Переопределим матрицу P $P \leftarrow PR_{k,k+1}(c,s)$, где $R_{k,k+1}(c,s)$ матрица вращений.
- Переопределим значения α и β так, что $\alpha = c'r$, $\beta = sb_{k+1,k+1}$.
- Определим с' и ѕ':

$$\begin{bmatrix} c' & -s' \\ s' & c' \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha^2 + \beta^2} \\ 0 \end{bmatrix}.$$

■ Переопределим матрицу Q $Q \leftarrow QR_{k,k+1}(c,-s)$, где $R_{k,k+1}(c,-s)$ — матрица вращений.

$$\bullet b_{k,k} = \sqrt{\alpha^2 + \beta^2}.$$

c.
$$b_{n-q-1,n-q} = (b_{n-q,n-q}c)s';$$

 $b_{n-q,n-q} = (b_{n-q,n-q}c)c'.$

В противном случае

d. Применяем алгоритм «Шаг Голуб–Кахана» к n, p, q, B, Q, P.

Список литературы

- 1. Alan Kaylor Cline and Inderjit S. Dhillon. Handook of Linear Algebra. Computation of the Singular Value Decomposition, 45:1-13, 2006
- 2. G.H. Golub and W.Kahan. Calculating the Singular Values and Pseudoinverse of a Matrix, SIAM J.Number., Ser. B 2:205-224, 1965
- 3. J.W.Demmel and W.Kahan. Accurate singular values of bidiagonal matrices, SIAM J.Stat.Comp.: 873-912, 1990