1.3. Dedução Natural para o Cálculo Proposicional

Observação 89: O sistema formal de demonstrações que estudaremos nesta secção será notado por DNP e designado por *Dedução Natural para o Cálculo Proposicional*.

Observação 90: O sistema DNP constitui uma certa formalização da noção de *demonstração* para as fórmulas do Cálculo Proposicional, num estilo conhecido como *dedução natural*. As demonstrações permitirão uma abordagem alternativa à relação de consequência semântica (definida à custa do conceito de valoração) e, em particular, permitirão identificar as tautologias com as fórmulas para as quais podem ser construídas demonstrações.

Exemplo 91: Demonstrações em DNP serão construídas usando um certo conjunto de regras (chamadas *regras de inferência*), que codificam raciocínios elementares utilizados habitualmente na elaboração de demonstrações matemáticas.

Um raciocínio elementar que usamos frequentemente na construção de demonstrações é o seguinte: de φ e $\varphi \to \psi$ podemos concluir ψ . Representaremos este raciocínio do seguinte modo:

$$\frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$$

Esta regra é habitualmente conhecida por *modus ponens*, embora no formalismo DNP adotemos um nome diferente para esta regra, como veremos adiante.

Um outro raciocínio elementar é o seguinte: se assumindo φ por hipótese podemos concluir ψ , então podemos concluir $\varphi \to \psi$. Este raciocínio será representado do seguinte modo:

$$\begin{array}{c}
\varphi \\
\vdots \\
\psi \\
\varphi \to \psi
\end{array}$$

Neste raciocínio, φ é uma hipótese temporária usada para concluir ψ . A notação φ reflete o facto de que a conclusão $\varphi \to \psi$ não depende da hipótese temporária φ . Nesta representação, a notação \vdots simboliza a possibilidade de podermos concluir ψ a partir de φ .

Notação 92: O conceito de demonstração em DNP será formalizado adiante, através de uma definição indutiva. As demonstrações corresponderão a certas árvores finitas de fórmulas, onde uma fórmula φ que ocorra como folha poderá estar cortada, o que será notado por φ .

Na apresentação das regras de inferência de DNP, usaremos a notação

para representar uma árvore de fórmulas cuja raiz é ψ e cujas eventuais ocorrências da fórmula φ como folha podem ser cortadas.

Definição 93: As regras de inferência do sistema formal DNP são apresentadas de seguida. Cada uma destas regras origina uma regra na definição indutiva do *conjunto das derivações* (Definição 95). As regras de inferência recebem derivações (uma ou mais) e produzem uma nova derivação.

$$\begin{array}{ccc}
\varphi \\
\vdots \\
\psi \\
\varphi \to \psi
\end{array} \to I \qquad \qquad \begin{array}{ccc}
\vdots & \vdots \\
\varphi & \varphi \to \psi \\
\hline
\psi
\end{array} \to E$$

Numa regra de inferência, as fórmulas imediatamente acima do *traço* de inferência serão chamadas as *premissas* da regra e a fórmula abaixo do traço de inferência é chamada a *conclusão* da regra de inferência.

Regras de Introdução

Regras de Eliminação

$$\begin{array}{ccc}
\vdots & \vdots \\
\frac{\varphi & \psi}{\varphi \wedge \psi} \wedge I \\
\varphi \\
\vdots \\
\frac{\bot}{\neg \varphi} \neg I
\end{array}$$

$$\frac{\vdots}{\varphi \wedge \psi} \qquad \vdots \qquad \qquad \vdots \\
\frac{\varphi \wedge \psi}{\varphi} \wedge_1 E \qquad \frac{\varphi \wedge \psi}{\psi} \wedge_2 E$$

$$\frac{\perp}{e\varphi}$$
 $\neg I$

$$\begin{array}{ccc} \vdots & \vdots \\ \frac{\varphi & \neg \varphi}{\bot} & \neg E \end{array}$$

$$\begin{array}{ccc} \vdots & & \vdots \\ \frac{\varphi}{\varphi \vee w} \vee_1 I & \frac{\psi}{\varphi \vee w} \vee_2 I \end{array}$$

$$\begin{array}{cccc}
 & \varphi & \psi \\
\vdots & \vdots & \vdots \\
 & \varphi \lor \psi & \sigma & \sigma \\
\hline
 & \sigma & & \lor E
\end{array}$$

Uma aplicação ou instância de uma regra de inferência é uma substituição das fórmulas da regra (meta-variáveis) por fórmulas do CP. Chamaremos inferência a uma aplicação de uma regra de inferência.

Exemplo 94: Vejamos dois exemplos de inferências $\wedge_1 E$:

$$\frac{p_1 \wedge p_2}{p_1} \wedge_1 E \qquad \frac{(p_1 \wedge p_2) \wedge (p_1 \to \neg p_3)}{p_1 \wedge p_2} \wedge_1 E \tag{1}$$

Estas duas inferências podem ser combinadas do seguinte modo:

$$\frac{(p_1 \wedge p_2) \wedge (p_1 \rightarrow \neg p_3)}{\frac{p_1 \wedge p_2}{p_1} \wedge_1 E} \wedge_1 E$$
(2)

Combinando esta construção com uma inferência \rightarrow *I* podemos obter:

$$\frac{\frac{(p_1 \wedge p_2) \wedge (p_1 \rightarrow \neg p_3)}{p_1 \wedge p_2} \wedge_1 E}{\frac{p_1 \wedge p_2}{p_1} \wedge_1 E} \xrightarrow{((p_1 \wedge p_2) \wedge (p_1 \rightarrow \neg p_3)) \rightarrow p_1} \rightarrow I$$
(3)

As duas inferências em (1), assim como as combinações de inferências em (2) e (3), são exemplos de demonstrações no sistema formal DNP.

Definição 95: O conjunto \mathcal{D}^{DNP} das derivações de DNP é o menor conjunto X, de árvores finitas de fórmulas, com folhas possivelmente cortadas, tal que:

- a) para todo $\varphi \in \mathcal{F}^{\mathit{CP}}$, a árvore cujo único nodo é φ pertence a X;
- b) X é fechado para cada uma das regras de inferência de DNP; por exemplo, X é fechado para as regras $\rightarrow I$ e $\rightarrow E$:

i)
$$\begin{subarray}{c} φ & D & ψ & D & ψ & $\to I$ & $\in X$ \\ (onde ψ denota uma derivação (árvore de fórmulas) cuja & φ & D denota a árvore de fórmulas obtida de ψ cortando todas as eventuais ocorrências de φ como folha);$$

ii)
$$\varphi \in X \in \varphi \xrightarrow{D_2} \psi \in X \Longrightarrow \frac{\varphi \quad \varphi \xrightarrow{D_2} \psi}{\psi} \to E \in X.$$

As derivações de DNP são também chamadas *deduções*. No nosso estudo, privilegiaremos a terminologia derivação. A terminologia *demonstração* será reservada para uma classe especial de derivações (ver Definição 99).

Observação 96: O conjunto \mathcal{D}^{DNP} das derivações de DNP admite princípios de indução estrutural e de recursão estrutural. Existe também um conceito natural de *subderivação*. Por exemplo, a derivação (3) do exemplo 94 tem as seguintes quatro subderivações:

$$\begin{array}{c} (p_1 \wedge p_2) \wedge (p_1 \to \neg p_3) \,, \\ \\ \frac{(p_1 \wedge p_2) \wedge (p_1 \to \neg p_3)}{p_1 \wedge p_2} \wedge_1 E \,, \\ \\ \frac{(p_1 \wedge p_2) \wedge (p_1 \to \neg p_3)}{p_1 \wedge p_2} \wedge_1 E \,, \\ \\ \frac{p_1 \wedge p_2}{p_1} \wedge_1 E \,, \\ \\ \frac{p_1 \wedge p_2}{(p_1 \wedge p_2) \wedge (p_1 \to \neg p_3)) \to p_1} \to I \,. \end{array}$$

Exemplo 97: Para quaisquer fórmulas do CP φ , ψ e σ , as construções abaixo são exemplos de derivações de DNP.

1)
$$\frac{\varphi \wedge \psi^{(1)}}{\varphi} \wedge_{1} E \frac{\frac{\varphi \wedge \psi^{(1)}}{\psi} \wedge_{2} E \quad \psi \to (\varphi \to \sigma)}{\varphi \to \sigma} \to E}{\frac{\sigma}{(\varphi \wedge \psi) \to \sigma} \to I^{(1)}}$$

2)
$$\frac{\varphi^{(2)} \qquad \varphi^{(1)}}{\frac{1}{\varphi} RAA^{(2)}} \neg E$$
$$\frac{1}{\varphi} RAA^{(2)} \rightarrow I^{(1)}$$

3)
$$\frac{\varphi^{(1)}}{\psi \to \varphi} \to I^{(2)}$$
$$\frac{\varphi \to (\psi \to \varphi)}{\varphi \to (\psi \to \varphi)} \to I^{(1)}$$

Os números naturais que aparecem a anotar inferências e fórmulas cortadas estabelecem uma correspondência, unívoca, entre as fórmulas cortadas e as regras que permitem efetuar esses cortes. Por exemplo, em 3), a inferência $\rightarrow I$ anotada com (1) é utilizada para cortar a única ocorrência como folha de φ , enquanto que a inferência $\rightarrow I$ anotada com (2) não é utilizada para efetuar qualquer corte.

Definição 98: Numa derivação *D*:

a raiz de *D* é chamada a *conclusão* de *D*; as folhas de *D* são chamadas as *hipóteses* de *D*; as folhas de *D* cortadas serão chamadas as *hipóteses canceladas* de *D*; as folhas de *D* não cortadas serão chamadas as as *hipóteses não canceladas* de *D*.

Definição 99: Diremos que uma derivação D é uma derivação de uma fórmula φ a partir de um conjunto de fórmulas Γ quando φ é a conclusão de D e o conjunto das hipóteses não canceladas de D é um subconjunto de Γ .

Diremos que D é uma derivação de uma fórmula φ quando φ é a conclusão de D e todas as hipóteses de D estão canceladas. A uma derivação de φ chamaremos também uma demonstração de φ .

Exemplo 100: Sejam φ , ψ e σ fórmulas.

1. Seja D_1 a seguinte derivação de DNP.

$$\frac{\varphi^{(2)} \quad \varphi \to \psi}{\frac{\psi}{\varphi \to \varphi}} \to E \quad \psi \to \varphi^{(1)} \to E$$

$$\frac{\varphi^{(2)} \quad \varphi \to \psi}{\varphi \to \varphi} \to I^{(2)}$$

$$\frac{\varphi}{(\psi \to \varphi) \to (\varphi \to \varphi)} \to I^{(1)}$$

Então:

- (i) o conjunto de hipóteses de D_1 é $\{\varphi, \varphi \rightarrow \psi, \psi \rightarrow \sigma\}$;
- (ii) o conjunto de hipóteses não canceladas de D_1 é $\{\varphi \rightarrow \psi\}$;
- (iii) a conclusão de D_1 é $(\psi \rightarrow \sigma) \rightarrow (\varphi \rightarrow \sigma)$;
- (iv) D_1 é uma derivação de $(\psi \rightarrow \sigma) \rightarrow (\varphi \rightarrow \sigma)$ a partir de $\{\varphi \rightarrow \psi\}$.

2. Seja D_2 a seguinte derivação de DNP.

$$\frac{\varphi \wedge \neg \varphi^{(1)}}{\varphi} \wedge_{1}E \frac{\varphi \wedge \neg \varphi^{(1)}}{\neg \varphi} \wedge_{2}E$$

$$\frac{\bot}{\neg (\varphi \wedge \neg \varphi)} \neg I^{(1)} \neg E$$

Então:

- (i) o conjunto de hipóteses de D_2 é $\{\varphi \land \neg \varphi\}$;
- (ii) o conjunto de hipóteses não canceladas de D_2 é vazio;
- (iii) a conclusão de D_2 é $\neg(\varphi \land \neg \varphi)$;
- (iv) D_2 é uma derivação (ou uma demonstração) de $\neg(\varphi \land \neg \varphi)$.

Definição 101: Uma fórmula φ diz-se *derivável* α *partir de* um conjunto de fórmulas Γ ou uma *consequência sintática* de Γ quando existe uma derivação de DNP cuja conclusão é φ e cujo conjunto de hipóteses não canceladas é um subconjunto de Γ . Escreveremos $\Gamma \vdash \varphi$ para denotar que φ é derivável a partir de Γ e $\Gamma \not\vdash \varphi$ para denotar que φ não é derivável a partir de Γ .

Definição 102: Uma fórmula φ diz-se um *teorema* de DNP quando existe uma demonstração de φ . Escreveremos $\vdash \varphi$ para denotar que φ é um teorema de DNP e $\not\vdash \varphi$ para denotar que φ não é teorema de DNP.

Exemplo 103: Atendendo ao exemplo anterior:

- 1. $\{\varphi \to \psi\} \vdash (\psi \to \sigma) \to (\varphi \to \sigma)$ (i. e., $(\psi \to \sigma) \to (\varphi \to \sigma)$ é derivável a partir de $\{\varphi \to \psi\}$).
- 2. $\vdash \neg(\varphi \land \neg \varphi)$ (i. e., $\neg(\varphi \land \neg \varphi)$ é um teorema de DNP).

Definição 104: Um conjunto de fórmulas Γ diz-se (*sintaticamente*) *inconsistente* quando $\Gamma \vdash \bot$ e diz-se (*sintaticamente*) *consistente* no caso contrário (i. e. quando $\Gamma \not\vdash \bot$, ou seja, quando não existem derivações de \bot a partir de Γ).

Exemplo 105: O conjunto $\Gamma = \{p_0, p_0 \rightarrow \neg p_0\}$ é inconsistente. Uma derivação de \bot a partir de Γ é:

$$\frac{p_0}{p_0} \xrightarrow{\neg p_0} \neg E \rightarrow E$$

Proposição 106: Seja Γ um conjunto de fórmulas. As seguintes afirmações são equivalentes:

- a) Γ é inconsistente;
- **b)** para alguma fórmula φ , $\Gamma \vdash \varphi$ e $\Gamma \vdash \neg \varphi$;
- c) para toda a fórmula φ , $\Gamma \vdash \varphi$.

Dem.: É suficiente provar, por exemplo, as implicações $a) \Rightarrow b$), $b) \Rightarrow c$) e $c) \Rightarrow a$).

a) \Rightarrow b): admitindo que Γ é inconsistente, existe uma derivação D de \bot a partir de Γ . Assim, fixando uma (qualquer) fórmula φ , tem-se que

$$D_{1} = \frac{D}{\varphi} (\bot) \qquad \qquad D_{2} = \frac{D}{\neg \varphi} (\bot)$$

são, respetivamente, derivações de φ a partir de Γ (a conclusão de D_1 é φ e as hipóteses não canceladas de D_1 são as mesmas que em D) e de $\neg \varphi$ a partir de Γ (a conclusão de D_2 é $\neg \varphi$ e as hipóteses não canceladas de D_2 são as mesmas que em D). Por conseguinte, $\Gamma \vdash \varphi$ e $\Gamma \vdash \neg \varphi$. (Exercício: prove as outras duas implicações.)

Notação 107: Na representação de consequências sintáticas utilizaremos abreviaturas análogas às utilizadas para representação de consequências semânticas. Por exemplo, dadas fórmulas $\varphi, \varphi_1, ..., \varphi_n$ e dados conjuntos de fórmulas Γ e Δ , escreveremos $\Gamma, \Delta, \varphi_1, ..., \varphi_n \models \varphi$ em vez de $\Gamma \cup \Delta \cup \{\varphi_1, ..., \varphi_n\} \models \varphi$.

Proposição 108: Para toda a fórmula φ , $\vdash \varphi$ se e só se $\varnothing \vdash \varphi$.

Dem.: Imediata a partir das definições.

Proposição 109: Sejam φ e ψ fórmulas e Γ e Δ conjuntos de fórmulas. Então:

- a) se $\varphi \in \Gamma$, então $\Gamma \vdash \varphi$;
- **b)** se $\Gamma \vdash \varphi$ e $\Gamma \subseteq \Delta$, então $\Delta \vdash \varphi$;
- c) se $\Gamma \vdash \varphi$ e $\Delta, \varphi \vdash \psi$, então $\Delta, \Gamma \vdash \psi$;
- **d)** $\Gamma \vdash \varphi \rightarrow \psi$ se e só se $\Gamma, \varphi \vdash \psi$;
- **e)** se $\Gamma \vdash \varphi \rightarrow \psi$ e $\Gamma \vdash \varphi$, então $\Gamma \vdash \psi$.

Dem.:

- a) Suponhamos que $\varphi \in \Gamma$. Então, a árvore cuja única fórmula é φ é uma derivação cuja conclusão é φ e cujo conjunto de hipóteses não canceladas é $\{\varphi\}$, que é um subconjunto de Γ , pois $\varphi \in \Gamma$. Assim, por definição de consequência sintática, $\Gamma \vdash \varphi$.
- b), c) e e): Exercício.
- d) Suponhamos que $\Gamma \vdash \varphi \rightarrow \psi$, i. e. suponhamos que existe uma derivação D de $\varphi \rightarrow \psi$ a partir de Γ . Então,

$$\frac{\varphi \quad \varphi \stackrel{D}{\rightarrow} \psi}{\psi} \rightarrow E$$

é uma derivação de ψ a partir de $\Gamma \cup \{\varphi\}$, pois: i) ψ é a conclusão desta derivação; e ii) o conjunto Δ de hipóteses não canceladas desta derivação é constituído por φ e pelas hipóteses não canceladas de D, que formam um subconjunto de Γ , sendo portanto Δ um subconjunto de $\Gamma \cup \{\varphi\}$.

Suponhamos agora que $\Gamma, \varphi \vdash \psi$, i.e. suponhamos que existe uma derivação D de ψ a partir de $\Gamma \cup \{\varphi\}$. Então, a derivação

$$\frac{\varphi^{(1)}}{\stackrel{\square}{\psi}} \xrightarrow{\rho \to \psi} \to I^{(1)},$$

é uma derivação de $\varphi \to \psi$ a partir de Γ , pois: i) $\varphi \to \psi$ é a conclusão desta derivação; e ii) o conjunto Δ de hipóteses não canceladas desta derivação é constituído por todas as hipóteses não canceladas de D (um subconjunto de $\Gamma \cup \{\varphi\}$), exceto φ , sendo portanto Δ um subconjunto de Γ .

Teorema 110 (*Correção*): Para todo $\varphi \in \mathcal{F}^{CP}$ e para todo $\Gamma \subseteq \mathcal{F}^{CP}$, se $\Gamma \vdash \varphi$, então $\Gamma \vDash \varphi$.

Suponhamos $\Gamma \vdash \varphi$, i. e., suponhamos que existe uma derivação D de φ a partir de Γ . Aplicando o lema que se segue, conclui-se de imediato o resultado pretendido.

Lema: Para todo $D \in \mathcal{D}^{DNP}$, se D é uma derivação de φ a partir de Γ , então $\Gamma \models \varphi$.

Dem. do Lema: Por indução estrutural em derivações.

a) Suponhamos que D é uma derivação de φ a partir de Γ com um único nodo. Então, o conjunto de hipóteses não canceladas de D é $\{\varphi\}$ e, assim, $\varphi \in \Gamma$. Donde, pela Proposição 86(a), $\Gamma \models \varphi$.

b) Caso D seja uma derivação de φ a partir de Γ da forma

$$\frac{\stackrel{\mathcal{Y}}{D_1}}{\stackrel{\sigma}{\psi \to \sigma}} \to I,$$

então $\varphi = \psi \rightarrow \sigma$ e D_1 é uma derivação de σ a partir de $\Gamma \cup \{\psi\}$. Assim, aplicando a hipótese de indução relativa à subderivação D_1 , $\Gamma, \psi \models \sigma$. Donde, pela Proposição 86(d), $\Gamma \models \psi \rightarrow \sigma$.

c) Caso D seja uma derivação de φ a partir de Γ da forma

$$\frac{D_1}{\sigma} \quad \frac{\sigma}{\sigma} \xrightarrow{\varphi} \psi \rightarrow E,$$

então $\varphi = \psi \ D_1$ é uma derivação de σ a partir de Γ e D_2 é uma derivação de $\sigma \to \psi$ a partir de Γ . Assim, aplicando as hipóteses de indução relativas às subderivações D_1 e D_2 , segue $\Gamma \models \sigma$ e $\Gamma \models \sigma \to \psi$, respetivamente. Daqui, pela Proposição 86(e), conclui-se $\Gamma \models \psi$.

d) Os restantes casos, correspondentes às outras formas possíveis de *D*, são deixados como exercício.

Observação 111: O Teorema da Correção constitui uma ferramenta para provar a não derivabilidade de fórmulas a partir de conjuntos de fórmulas. De facto, do Teorema da Correção segue que

$$\Gamma \not\models \varphi \Longrightarrow \Gamma \not\models \varphi,$$

o que significa que, para mostrar que não existem derivações em DNP de uma fórmula φ a partir de um conjunto de fórmulas Γ , basta mostrar que φ não é consequência semântica de Γ .

Exemplo 112: Seja $\Gamma = \{p_1 \lor p_2, p_1 \to p_0\}.$

- Em DNP não existem derivações de p₀ ∨ p₁ a partir de Γ. Se existisse uma tal derivação, pelo Teorema da Correção, teríamos Γ ⊨ p₀ ∨ p₁, mas esta consequência semântica não é válida (tome-se, por exemplo, a valoração que atribui valor 1 a p₂ e valor O às restantes variáveis proposicionais).
- 2. De forma análoga, pode verificar-se que Γ é satisfazível e, então, concluir que Γ é consistente (proposição seguinte).

Proposição 113: Seja $\Gamma \subseteq \mathcal{F}^{CP}$. Se Γ é satisfazível, então Γ é consistente.

Dem.: Suponhamos que Γ é satisfazível e $\Gamma \vdash \bot$. Então, pelo Teorema da Correção, $\Gamma \models \bot$. Assim, existe alguma valoração v que satisfaz Γ e tem-se $v(\bot) = 1$, o que é absurdo. Concluímos que se Γ é satisfazível, tem de ser $\Gamma \not\models \bot$.

Definição 114: Um conjunto $\Gamma \subseteq \mathcal{F}^{\mathit{CP}}$ diz-se maximalmente consistente se

- Γ é consistente; e
- 2. se $\Gamma \subseteq \Gamma'$ e Γ' é consistente, então $\Gamma = \Gamma'$.

(A condição 2. pode ser substituída por: para todo $\psi \in \mathcal{F}^{CP}$ tal que $\psi \notin \Gamma$, $\Gamma \cup \{\psi\}$ é inconsistente.)

Exemplo 115: Seja v uma valoração qualquer e seja $\Gamma = \{ \varphi \in \mathcal{F}^{CP} : v(\varphi) = 1 \}$. Então Γ é maximalmente consistente: $1 - \Gamma$ é consistente por ser satisfazível; $2 - \sec \psi \notin \Gamma$, então $v(\psi) = 0$, pelo que $v(\neg \psi) = 1$, donde $\neg \psi \in \Gamma$; assim, $\{ \psi, \neg \psi \} \subseteq \Gamma \cup \{ \psi \}$, logo $\Gamma \cup \{ \psi \}$ é inconsistente.

Proposição 116: Todo o conjunto de fórmulas consistente está contido num conjunto maximalmente consistente.

Dem.: Seja Γ um conjunto de fórmulas consistente. O conjunto \mathcal{F}^{CP} é numerável, pelo que podemos considerar uma sucessão de fórmulas $\varphi_0, \varphi_1, \varphi_2, \ldots, \varphi_n, \ldots$ que o esgota. Vamos definir uma sucessão de conjuntos de fórmulas da seguinte forma:

$$\Gamma_0 = \Gamma;$$

$$\Gamma_{i+1} = \begin{cases}
\Gamma_i \cup \{\varphi_i\} & \text{se } \Gamma_i \cup \{\varphi_i\} \text{ é consistente} \\
\Gamma_i & \text{se } \Gamma_i \cup \{\varphi_i\} \text{ é inconsistente}
\end{cases}$$
The property of the property

Prova-se que $\Gamma^* = \bigcup_{i \in \mathbb{N}_0} \Gamma_i$ é maximalmente consistente.

Proposição 117: Se Γ é um conjunto maximalmente consistente, então é fechado para a derivabilidade (i. e., $\Gamma \vdash \varphi \Rightarrow \varphi \in \Gamma$.)

Dem.: Seja Γ maximalmente consistente e suponhamos que $\varphi \notin \Gamma$; então $\Gamma \cup \{\varphi\}$ é inconsistente. Daqui concluímos facilmente (v. abaixo) que $\Gamma \models \neg \varphi$. Isto significa que $\Gamma \not\models \varphi$, porque caso contrário Γ seria inconsistente.

Proposição 118: Seja Γ um conjunto maximalmente consistente.

- 1. Para todo $\varphi \in \mathcal{F}^{CP}$, ou $\varphi \in \Gamma$ ou $\neg \varphi \in \Gamma$.
- 2. Para todos $\varphi, \psi \in \mathcal{F}^{CP}$, $\varphi \to \psi \in \Gamma$ se e só se $\varphi \in \Gamma \Rightarrow \psi \in \Gamma$.

Dem.: Exercício.

Proposição 119: Seja $\Gamma \subseteq \mathcal{F}^{CP}$. Se Γ é consistente, então Γ é satisfazível.

Dem.: Suponhamos que Γ é consistente e seja Γ^* um conjunto maximalmente consistente que contenha Γ . Seja v a única valoração tal que

$$v(p_i) = \begin{cases} 1 & \text{se } p_i \in \Gamma^* \\ 0 & \text{se } p_i \notin \Gamma^* \end{cases} \text{, para todo } i \in \mathbb{N}_0.$$

Prova-se, por indução sobre \mathcal{F}^{CP} , que $v(\varphi)=1$ se e só se $\varphi\in\Gamma^*$ (exercício). Em particular, v sat. Γ .

Teorema 120 (Completude): Para todo $\varphi \in \mathcal{F}^{\mathit{CP}}$ e para todo $\Gamma \subseteq \mathcal{F}^{\mathit{CP}}$,

se
$$\Gamma \models \varphi$$
, então $\Gamma \vdash \varphi$.

Dem.: Se $\Gamma \not\models \varphi$, então $\Gamma \cup \{\neg \varphi\}$ é consistente (porquê?) logo, pela proposição anterior, é satisfazível, i. e., existe uma valoração v tal que v sat. Γ e $v(\varphi) = 0$, ou seja, $\Gamma \not\models \varphi$.

Teorema 121 (Adequação): Para todo $\varphi \in \mathcal{F}^{\mathit{CP}}$ e para todo $\Gamma \subset \mathcal{F}^{\mathit{CP}}$,

$$\Gamma \vdash \varphi$$
 se e só se $\Gamma \models \varphi$.

Dem.: Consequência imediata dos teoremas da Correção e da Completude.

Corolário 122: Para todo $\varphi \in \mathcal{F}^{\mathit{CP}}$, φ é um teorema de DNP se e só se φ é uma tautologia.

Dem.: Exercício.