M5 Categories

Robin Adams

November 4, 2022

Definition 0.1 (Category). A category C is a sextuple (Ar, Ob, dom, cod, id, m) such that:

- dom : $Ar \to Ob$
- $cod : Ar \rightarrow Ob$
- $id.Ob \rightarrow Ar$
- $m: \{(f,g) \in Ar^2 : \operatorname{dom} f = \operatorname{cod} g\} \to Ar$

such that:

- $\forall A \in Ob. \operatorname{dom}(\operatorname{id}_A) = A$
- $\forall A \in Ob. \operatorname{cod}(\operatorname{id}_A) = A$
- $\forall f, g \in Ar.(\text{dom } f = \text{cod } g \Rightarrow \text{dom } m(f, g) = \text{dom } g)$
- $\forall f, g \in Ar.(\text{dom } f = \text{cod } g \Rightarrow \text{cod } m(f, g) = \text{cod } f)$
- $\forall f \in Ar.m(id_{\ell} \operatorname{cod} f), f) = f$
- $\forall f \in Ar.m(f, id_{\ell} \text{ dom } f)) = f$
- $\forall f, g, h \in Ar.(\text{dom } f = \text{cod } g \land \text{dom } g = \text{cod } h \Rightarrow m(f, m(g, h)) = m(m(f, g), h))$

We call Ar the arrows of $\mathcal C$ and Ob the objects. We call dom f the domain of the arrow f, and cod f the codomain. We write $f:A\to B$ for dom $f=A\wedge\operatorname{cod} f=B$

We say arrows f and g are composable iff dom f = cod g, in which case m(f,g) is called their composite, written $f \circ g$.

We call id_A the *identity arrow* on A.

Definition 0.2 (Category of Sets). The *category of sets* **Set** is the category with set of objects **V** and with $\mathbf{Set}[A, B]$ the set of all functions from A to B.

Definition 0.3 (Preordered Sets as Categories). Identify any preordered set (P, \leq) with the category P with set of objects P and a morphism $(a, b) : a \to b$ iff $a \leq b$.

Definition 0.4 (Discrete Category). For any set A, the discrete category A is the preordered set (A, =) considered as a category.

Definition 0.5 (Slice Category). Let \mathbb{C} be a category and $A \in \mathbb{C}$. The *slice category* \mathbb{C}/A is the category with:

- objects all pairs (B, f) where $B \in \mathbb{C}$ and $f : B \to A$ in \mathbb{C}
- morphisms $(B,f) \to (C,g)$ all morphisms $h: B \to C$ in $\mathbb C$ such that $g \circ h = f$.

Definition 0.6 (Slice Category). Let \mathbb{C} be a category and $A \in \mathbb{C}$. The *coslice category* $\mathbb{C} \backslash A$ is the category with:

- objects all pairs (B, f) where $B \in \mathbb{C}$ and $f : A \to B$ in \mathbb{C}
- morphisms $(B,f) \to (C,g)$ all morphisms $h: B \to C$ in $\mathbb C$ such that $g = h \circ f$.

Definition 0.7 (Pointed Sets). The category \mathbf{Set}_* of *pointed sets* is the coslice category $\mathbf{Set}\setminus 1$.

Definition 0.8 (Subcategory). A category $\mathbb C$ is a *subcategory* of $\mathbb D$ iff every object of $\mathbb C$ is an object of $\mathbb D$, and every morphism $A \to B$ in $\mathbb C$ is a morphism $A \to B$ in $\mathbb D$.

It is full iff, for all $A, B \in \mathbb{C}$, every morphism $A \to B$ in \mathbb{D} is a morphism $A \to B$ in \mathbb{C} .

Proposition 0.9. Let $f, g: A \to B$. Then f = g if and only if, for every object X and arrow $x: X \to A$, we have $f \circ x = g \circ x$.

PROOF: If the right-hand side holds then $f = f \circ id_A = g \circ id_A = g$.

Definition 0.10 (Monic). An arrow $f:A\to B$ is *monic*, $f:A\rightarrowtail B$, iff, for every object X and morphisms $x,y:X\to A$, if $f\circ x=f\circ y$ then x=y.

Definition 0.11 (Epic). An arrow $f: A \to B$ is *epic*, $f: A \to B$, iff, for every object X and morphisms $x, y: B \to X$, if $x \circ f = y \circ f$ then x = y.

Definition 0.12 (Section, Retraction). Let $r: A \to B$ and $s: B \to A$. Then r is a retraction of s, and s is a section of r, iff $r \circ s = \mathrm{id}_B$.

We also call a retraction a split epi, and a section a split monic.

Proposition 0.13. Every section is monic.

Proof:

- $\langle 1 \rangle 1$. Let: $s: A \to B$ be a section of $r: B \to A$
- $\langle 1 \rangle 2$. Let: X be an object and $x, y: X \to A$
- $\langle 1 \rangle 3$. Assume: $s \circ x = s \circ y$
- $\langle 1 \rangle 4. \ x = y$

Proof:

$$x = r \circ s \circ x$$
$$= r \circ s \circ y$$
$$= y$$

Proposition 0.14. Every retraction is epic.

PROOF: Dual.

Lemma 0.15. Let $f: A \to B$, $g: B \to A$ and $h: B \to A$ be arrows. If g is a retraction of f and h is a section of f then g = h.

Proof:

$$g = g \circ id_B$$

$$= g \circ f \circ h$$

$$= id_A \circ h$$

$$= h$$

Proposition 0.16. Let $r: A \to B$. Then r is a retraction if and only if, for every object X and morphism $y: X \to B$, there exists $x: X \to A$ such that $r \circ x = y$.

Proof:

- $\langle 1 \rangle 1$. If r is a retraction then, for every object X and morphism $y: X \to B$, there exists $x: X \to A$ such that $r \circ x = y$.
 - $\langle 2 \rangle 1$. Let: $s: B \to A$ be a section of r.
 - $\langle 2 \rangle 2$. Let: X be an object and $y: X \to B$
 - $\langle 2 \rangle 3$. Let: $x = s \circ y$
 - $\langle 2 \rangle 4. \ r \circ x = y$
- $\langle 1 \rangle 2$. If, for every object X and morphism $y: X \to B$, there exists $x: X \to A$ such that $r \circ x = y$, then r is a retraction.

PROOF: Simply take $x = id_A$.

П

Definition 0.17 (Isomorphism). An arrow $f: A \to B$ is an *isomorphism*, $f: A \cong B$, iff there exists an arrow $f^{-1}: B \to A$, its *inverse*, such that f^{-1} is both a section and a retraction of f.

Proposition 0.18. The inverse of an isomorphism is unique.

Proof: Lemma 0.15. \square

Proposition 0.19. Every isomorphism is monic.

Proof: Proposition 0.13. \square

Proposition 0.20. Every isomorphism is epic.

Proof: Proposition 0.14. \square

Proposition 0.21. If a morphism is monic and split epi then it is an isomorphism.

PROOF:

- $\langle 1 \rangle 1$. Let: $f: A \to B$ be monic and have section $s: B \to A$
- $\langle 1 \rangle 2$. $f \circ s \circ f = f$
- $\langle 1 \rangle 3. \ s \circ f = \mathrm{id}_A$
- $\langle 1 \rangle 4$. f is iso with inverse s.

Proposition 0.22. If a morphism is epic and split monic then it is an isomorphism.

Proof: Dual.

Proposition 0.23. For any object A, we have $id_A : A \cong A$ with $id_A^{-1} = id_A$.

PROOF: Since $id_A \circ id_A = id_A$. \square

Proposition 0.24. If $f : A \cong B$ then $f^{-1} : B \cong A$ and $(f^{-1})^{-1} = f$.

Proposition 0.25. If $f: A \cong B$ and $g: B \cong C$ then $g \circ f: A \cong C$ and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof:

$$f^{-1} \circ g^{-1} \circ g \circ f = f^{-1} \circ f$$

$$= id_A$$

$$g \circ f \circ f^{-1} \circ g^{-1} = g \circ g^{-1}$$

$$= id_C$$

Definition 0.26 (Balanced). A category is *balanced* iff every arrow that is both monic and epic is an isomorphism.

1 Terminal Objects

Definition 1.1 (Terminal). An object T is terminal iff, for every object X, there exists a unique morphism $X \to T$.

Example 1.2. In Set, 1 is terminal.

Example 1.3. $* \in 1$ is terminal in \mathbf{Set}_* .

Proposition 1.4. Any two terminal objects are isomorphic, and the isomorphism between them is unique.

Proof:

 $\langle 1 \rangle 1$. Let: S and T be terminal objects.

2 Initial Objects

Definition 2.1 (Initial). An object I is *initial* iff, for every object X, there exists a unique morphism $I \to X$.

Example 2.2. In a preorder, an initial object is the same as a least element.

Example 2.3. The only initial object in **Set** is \emptyset .

Example 2.4. $* \in 1$ is initial in Set_{*}.

Proposition 2.5. Any two initial objects are isomorphic, and the isomorphism between them is unique.

PROOF: Dual to Proposition 1.4.

3 Zero Objects

Definition 3.1 (Zero Object). A zero object is an object that is both initial and terminal.

Example 3.2. $* \in 1$ is the zero object in \mathbf{Set}_* .

Proposition 3.3. Let (P, \leq) be a preorder and $a \in P$. The slice category P/a is isomorphic to the preorder $(\{x \in P : x \leq a\}, \leq)$ considered as a category.

Proposition 3.4. Let (P, \leq) be a preorder and $a \in P$. The coslice category $P \setminus a$ is isomorphic to the preorder $(\{x \in P : a \leq x\}, \leq)$ considered as a category.

4 Opposite Category

Definition 4.1 (Opposite Category). Let \mathbb{C} be any category. The *opposite* category \mathbb{C}^{op} has objects the objects of \mathbb{C} and morphisms $A \to B$ the morphisms $B \to A$ in \mathbb{C} .

Proposition 4.2. An initial object in \mathbb{C}

5 Groupoids

Definition 5.1 (Groupoid). A *groupoid* is a category in which every morphism is an isomorphism.

6 Automorphisms

Definition 6.1 (Automorphism). Let A be an object. An automorphism on A is an isomorphism $A \cong A$.

7 Quotient Sets

Proposition 7.1. Let A be a set and let \sim be an equivalence relation on A. Let \mathbb{C} be the subcategory of $\mathbf{Set} \setminus A$ consisting of pairs (Z, ϕ) such that, for all $x, y \in A$, if $x \sim y$ then $\phi(x) = \phi(y)$.

Then $(A/\sim,\pi)$ is the initial object in \mathbb{C} , where $\pi:A\to A/\sim$ is the canonical projection.

PROOF: For any object $\phi: A \to Z$ in the category, the only morphism $(A/\sim,\pi) \to (Z,\phi)$ is the function $f: A/\sim Z$ such that $f([a]) = \phi(a)$ for all $a \in A$.

8 Products

Definition 8.1 (Product). Let \mathbb{C} be a category and $\{A_i\}_{i\in I}$ a family of objects in \mathbb{C} . A *product* of $\{A_i\}_{i\in I}$ is a terminal object in the category with:

- objects all pairs $(C, \{f_i\}_{i \in I})$ where $C \in \mathbb{C}$ and $f_i : C \to A_i$ for all $i \in I$;
- morphisms $(C, \{f_i\}_{i \in I}) \to (D, \{g_i\}_{i \in I})$ all morphisms $x : C \to D$ such that, for all $i \in I$, we have $g_i \circ x = f_i$.

Example 8.2. The Cartesian product $\prod_{i \in I} A_i$ with projections is the product of $\{A_i\}_{i \in I}$ in **Set**.

Example 8.3. Products in a preorder are meets.

Proposition 8.4. If $A \times B$ and $B \times A$ exist then they are isomorphic.

Proposition 8.5. If $A \times (B \times C)$ and $(A \times B) \times C$ exist then they are isomorphic.

9 Coproducts

Definition 9.1 (Coproduct). Let \mathbb{C} be a category and $A, B \in \mathbb{C}$. A *coproduct* of A and B is an initial object in the category with:

- objects all triples (C, f, g) where $C \in \mathbb{C}, f : A \to C$ and $g : B \to C$
- \bullet morphisms $(C,f,g)\to (D,h,k)$ all morphisms $x:C\to D$ such that $h=x\circ f$ and $k=x\circ g$

Example 9.2. Disjoint unions are coproducts in **Set**.

Example 9.3. Products in a preorder are joins.