CLASE 7

Ing Carlos M. Alvarado

Medios de Transmisión

Definición: Canales físicos que transportan señales de comunicación.

Tipos:

Cable de par trenzado:
Utilizado en redes
telefónicas y Ethernet.

Cable coaxial: Mayor ancho de banda, usado en televisión por cable.

Fibra óptica: Alta velocidad y gran capacidad de datos.

Ancho de Banda Dificultades en la Transmision Interferencias Numero de receptores

ELF = Frecuencias extremadamente bajas

VF = Frecuencias de voz

VLF = Frecuencias muy bajas

LF = Frecuencias bajas

MF = Frecuencias medias

HF = Frecuencias altas

VHF ≈ Frecuencias muy altas

UHF = Frecuencias ultra altas

SHF = Frecuencias super altas

EHF = Frecuencias extremadamente altas

	Rango de frecuencias	Atenuación típica	Retardo típico	Separación entre repetidores
Par trenzado (con carga)	0 para 3,5 kHz	0,2 dB/km @ 1 kHz	50 μs/km	2 km
Pares trenzados (múltiples cables)	0 para 1 MHz	3 dB/km @ 1 kHz	5 μs/km	2 km
Cable coaxial	0 para 500 MHz	7 dB/km @ 10 MHz	4 μs/km	1 para 9 km
Fibra óptica	180 para 370 THz	0,2 para 0,5 dB/km	5 μs/km	40 km

Ejemplos Medios de Transmision

Diafonía y Atenuación

Diafonía: Interferencia entre señales de canales adyacentes.

Tipos: Diafonía cercana (NEXT) y lejana (FEXT).

Atenuación: Pérdida de potencia de la señal al viajar por el medio.

Causas: Distancia, calidad del cable, interferencias.

Diafonia y Atenuacion

	Atenuación (dB por 100 m)			Diafonía en el extremo final (dB)		
Frecuencia (MHz)	UTP tipo 3	UTP tipo 5	STP 150 ohmios	UTP tipo 3	UTP tipo 5	STP 150 ohmios
1	2,6	2,0	1,1	41	62	58
4	5,6	4,1	2,2	32	53	58
16	13,1	8,2	4,4	23	44	50,4
25	_	10,4	6,2	_	41	47,5
100		22,0	12,3		32	38,5
300		_	21,4		_	31,3

Ejemplo de Diafonía y Atenuación

Diafonía:

Ejemplo: Interferencia en cables telefónicos no blindados.

Atenuación:

Ejemplo: Degradación de señal en cables largos de Ethernet.

Transmisiones de Fibra Óptica

Funcionamiento: Uso de luz para transmitir datos.

Ventajas: Alta
velocidad, larga
distancia sin
repetidores, inmunidad
a interferencias.

Componentes: Núcleo, revestimiento, y cubierta.

Transmisiones de la Fibra Optica

Pulso de salida

(a) Multimodo de índice discreto

(b) Multimodo de índice gradual

Pulso de salida

(c) Monomodo

Transmisiones No Guiadas Inalámbricas

Definición: Comunicación sin cables físicos.

Tipos:

Radiofrecuencia: Uso común en WiFi y Bluetooth.

Infrarrojo: Utilizado en controles remotos.

Transmisiones no Guiadas (inhalambrico)

Banda de frecuencia	Nombre	Datos analógicos		Datos digitales		Aplicaciones
		Modulación	Ancho de banda	Modulación	Velocidad de transmisión	principales
30-300 kKHz	LF (frecuencia baja)	Normalmente no se usa		ASK, FSK MSK	0,1 para 100 bps	Navegación
300-3.000 kHz	MF (frecuencia media)	AM	Para 4 kHz	ASK, FSK MSK	10 para 1.000 bps	Radio AM comercial
3-30 MHz	HF (frecuencia alta)	AM, SSB	Para 4 kHz	ASK, FSK MSK	10 para 3.000 bps	Radio de onda corta
30-300 MHz	VHF (frecuencia muy alta)	AM, SSB; FM	5 kHz para 5 MHz	FSK, PSK	Para 100 kbps	Televisión VHF, radio FM comercia
300-3.000 MHz	UHF (frecuencia ultra alta)	FM, SSB	Para 20 MHz	PSK	Para 10 Mbps	Televisión VHF, microondas terrestres
3-30 GHz	SHF (frecuencia súper alta)	FM	Para 500 MHz	PSK	Para 100 Mbps	Microondas terrestres, microondas por satélite
30-300 GHz	EHF (frecuencia extremadamente alta)	FM	Para 1 GHz	PSK	Para 750 Mbps	Enlaces punto a punto cercanos experimentales

Ejemplos Microondas terrestres

- Ejemplo:
 - Redes de backhaul para telefonía móvil.
 - **Uso**: Conectar estaciones base a la red central.

Microondas Terrestres

- Características: Comunicaciones a larga distancia usando torres de microondas.
- **Usos**: Redes telefónicas, televisión, internet.
- Ventajas y Desventajas: Alta capacidad, pero requiere línea de vista directa.

Microondas Terrestres – Descripcion Fisica

$$d=7.14\sqrt{Kh}$$

Esta fórmula se utiliza para calcular la distancia de visibilidad directa sobre la superficie terrestre, comúnmente conocida como el "alcance de la línea de vista" en aplicaciones de telecomunicaciones, como las microondas terrestres.

Componentes de la fórmula:

- •d: Distancia máxima de visibilidad o alcance (en kilómetros).
- •K: Factor de refracción de la Tierra. Este valor suele ser alrededor de 4/3, pero puede variar dependiendo de las condiciones atmosféricas.
- •h: Altura de la antena o punto de observación (en metros).

Explicación:

- •7.14: Este es un coeficiente que toma en cuenta el radio efectivo de la Tierra y las unidades utilizadas para convertir la altura en metros a una distancia en kilómetros.
- •Kh: Indica que la distancia de visibilidad aumenta con la raíz cuadrada del producto del factor de refracción y la altura de la antena.

Banda (GHz)	Ancho de banda (MHz)	Velocidad de transmisión (Mbps)
2	7	12
6	30	90
11	40	135
18	220	274

Transmisión Satelital

- **Funcionamiento**: Uso de satélites para rebotar señales de un punto a otro.
- **Aplicaciones**: Televisión, internet, comunicaciones globales.
- Tipos de órbitas: GEO, MEO, LEO.

Transmision Satelital

Configuración VSAT

- **Definición**: Terminales de pequeña apertura para comunicaciones satelitales.
- **Usos**: Redes empresariales, acceso remoto a internet.
- Componentes: Antena parabólica, módem satelital.

Configuración VSAT

Ondas de Radio

DEFINICIÓN: USO DE ONDAS ELECTROMAGNÉTICAS PARA TRANSMITIR INFORMACIÓN.

APLICACIONES: RADIO, TELEVISIÓN, COMUNICACIONES MÓVILES. **ESPECTRO**: DISTRIBUCIÓN DE FRECUENCIAS PARA DIFERENTES USOS.

Ondas de Radio

Seguridad de las Redes

Como Podemos definirlo

• Como un conjunto de reglas y configuraciones disenadas para proteger la integridad confidencialidad y accesibilidad de las redes y datos.

Tipos de Seguridad de las Redes

Fisica Tecnica Administrativa

Seguridad Fisica Redes

• Todas las articulaciones que en su mayoria, son accesiones de prevencion y deteccion que sirven para proteger cualquier recurso y active de un Sistema.

Seguridad fisica del hardware de los sistemas

Acceso Fisico a los Sistemas

- DDoS (ataques de denegacion de servicio)
- Copias ilegables de los archivos

Como evitar problemas de Seguridad Fisica

- Tarjetas Inteligentes
- Videocamaras
- Analizadores de Retina
- Procesos de accesos

Seguridad Fisica ante desastres naturales

- Terremotos
- Inundaciones
- Tormentas Electricas
- Incendios

•Gracias por su Atencion