

Time Matters: Examine Temporal Effects on Biomedical Language Models

Weisi Liu*, Zhe He^ and Xiaolei Huang*

* University of Memphis, TN, USA ^ Florida State University, Tallahassee, FL, USA

Time root in model development & deployment

Data temporal shift

Questions about the flu?

Sorry, this is beyond my knowledge.

What about the COVID-19?

Does the model still perform well? If not, why?

Current Study

Rapid development of the LLMs

But, very **limited** study about model temporal effects in the biomedical domain...

Overview

Phenotype Inference

Information Extraction

Question Answering

Datasets

• MIMIC:

2014-2019

Ŋ

Clinical Notes for Patient.

Predict ICD-10 codes 'I10' (Hypertension)

'E119' (Type 2 diabetes mellitus)

• BioNER:

2009-2013

Addition of neutralizing anti - **TNF - alpha** antibodies drastically reduced **p24** antigen release and prevented **CD4** + cell depletion associated with infection. **B-Protein, I-Protein, E-Protein**

• BioASQ:

2014-2023

Question: Where in the cell do we find the protein Cep135?

Snippets form scientific articles related to the question.

Answer: "centrosome"

Experiments: Model Temporal Performance Variation

Data Shift Measurement

Word level Metric

Jaccard Similarity

TF-IDF Cosine Similarity

Use **Encoder Models** to obtain semantic representation of time domains, and measure the shift (e.g. Cosine similarity, Euclidean distance).

Universal Sentence Encoder [1]

Semantic level Metrics

SBERT [2]

BioLORD [3]

MedCPT [4]

^[1] Cer D, et al. Universal sentence encoder.

^[2] Reimers N, et al. Sentence-BERT: Sentence embeddings using siamese BERT-networks.

^[3] Remy F, et al. BioLORD-2023: Semantic textual representations fusing large language models and clinical knowledge graph insights.

^[4] Jin Q, et al. MedCPT: Contrastive pre-trained transformers with large-scale PubMed search logs for zero-shot biomedical information retrieval.

Statistical Analysis

Two-tailed T-test:

- Does the model really have *performance degradation*?
- Is there really a *data shift*?

T-TEST

Pearson Correlation Coefficient:

• What's the correlation between *data shift* and model *performance variations*?

Q1. Does the performance of biomedical language models change over time?

Performance change heatmaps. The star (*) indicates the performance change is significant.

Specific temporal event can impact model performance across time!

COVID-19 at this point

Does not show statistically significant degradation

Verification Experiment:

A small COVID-19 related test dataset derived from BioASQ test split (BioASQ-COVID)

Model	T1	T2	T3	T4
RougeL(%)	37.6	35.2	38.8	41.9

Performance (RougeL) of models trained on different time domain and test on BioASQ-COVID

Q2: Does the performance change statistically correlate with the data shift?

Performance change heatmap. Heatmaps of data shift measurement across domain pairs in MIMIC

MIMIC			BioNER		BioASQ		_	_			
Jaccard Similarity	.68*	.71*	.58*	.77**	.65*	.74*	.36	.45		-0.9	
TF-IDF-Cosine-	.74*	.79**	.62*	.94**	.74**	.89**	.51*	.56*		-0.8	Yes! But
USE-Cosine	.70*	.76**	.59*	.91**	.72**	.86**	.53*	.53*		-0.7	
SBERT-Cosine	.86**	.90**	.75**	.95**	.74*	.90**	.54*	.54*		-0.6	
BioLORD-Cosine	.81**	.86**	.70*	.90**	.71*	.86**	.54*	.54*		-0.5	
MedCPT-Cosine-	.86**	.90**	.75**	.97**	.75**	.92**	.62*	.62*		-0.4	

The heatmap of correlation coefficient between the model performance changes and data shift measurements Over the three dataset. * indicates the p-value is less than 0.05, and ** indicates the p-value is less than 0.001

Precision Recall F1 Precision Recall RougeL Meteor

Q3: Do All Data Shift Measurements Tell Us the Same Story?

Q3: Do All Data Shift Measurements Tell Us the Same Story?

Takeaways

- 1. Biomedical models are time-sensitive
 - Timely knowledge updates or model adaptation is needed
- 2. Data shift evaluation could be an indicator
 - Signals when model adaptation is necessary
- 3. Different metrics provide varying perspectives on data drift
 - Choose suitable metrics based on task nature

Acknowledgement:

Agency for Healthcare Research and Quality

Scan the QR code for more details in our paper at:

https://arxiv.org/pdf/2407.17638

wliu9@memphis.edu Email:

