理学総論レポート

g1840624 鷲津 優維

2018/10/29

1

1.1 問い

万有引力定数 $G_N=6.67 imes~10^{-11} \mathrm{m}^3 \mathrm{kg}^{-1} \mathrm{s}^{-2}$ を自然単位系で

$$G_N = \frac{1}{M_{nl}^2}$$

の形で表したとき, M_{pl} (GeV 単位) を求めなさい. M_{pl} はプランク質量 (もしくはプランクスケール) と呼ばれる.プランク質量を長さ (メートル) および時間 (秒) に換算してみよ.

1.2 解

まず、 G_N の単位を GeV に変換する.

$$6.67\times 10^{-11} [\mathrm{m^3 kg^{-1} s^{-2}}] = 6.7065\times~01^{-39} [\mathrm{GeV}]$$

なので,以下のようになる.

$$M_{pl} = \sqrt{\frac{1}{G_N}}$$

= $\sqrt{\frac{1}{6.7065 \times 10^{39}}} [\text{GeV}]$
= 1.2210×10^{19}
 $\simeq 1.22 \times 10^{19} [\text{GeV}]$

また,この M_{pl} を長さ(メートル)に換算すると,

$$1 [{\rm GeV}] = 5.07 \times 10^{15} [{\rm m}]$$

なので,

$$M_{pl} = 1.2210 \times 10^{19} [\text{GeV}]$$

 $= 1.2210 \times 10^{19} \times 5.07 \times 10^{15} [\text{m}^{-1}]$
 $= 6.1904 \times 10^{34} [\text{m}^{-1}]$
 $\simeq 6.19 \times 10^{34} [\text{m}^{-1}]$

また, M_{pl} を時間 (秒) に換算すると

$$M_{pl} = 1.2210 \times 10^{19} [\text{GeV}]$$

 $= 1.2210 \times 10^{19} \times 1.52 \times 10^{24} [\text{s}^{-1}]$
 $= 1.8559 \times 10^{43} [\text{s}^{-1}]$
 $\simeq 1.86 \times 10^{43} [\text{s}^{-1}]$

2

2.1 問い

ボルツマン定数 $k_B\approx 1.38\times 10^{-23} [{\rm m^2kgs^{-2}K^{-2}}]$ の温度 T の積を eV で表し,T=1K のときのエネルギーを求めなさい.

2.2 解

ボルツマン定数に 1[K] をかけると,

$$\begin{array}{lll} 1.38\times 10^{-23} [\mathrm{m^2 kg s^{-2} K^{-1}}] & = & 1.38\times 10^{-23}\times 6.2415\times 10^9 [\mathrm{GeV}] \\ \\ & = & 8.61327\times 10^{-14} [\mathrm{GeV}] \\ \\ & = & 8.61327\times 10^{-5} [\mathrm{eV}] \\ \\ & \simeq & 8.61\times 10^{-5} [\mathrm{eV}] \end{array}$$

3

3.1 問い

太陽の表面温度を調べ、それをエネルギーの単位で表しなさい.

3.2 解

太陽の表面温度は、5778[K]. $E = k_B T$ だから、2 で得られた値より、

$$8.61 \times 10^{-5} \times 5778 [\text{eV}] = 0.4974 [\text{eV}]$$

 $\simeq 0.497 [\text{eV}]$

4

4.1 問い

学生実験含め、これまでにやったことのある X 線回折やコンプトン散乱など、標的にビームを照射する 実験で、使用したビームのエネルギーと測定対象のスケールの関係を自然単位系の観点から議論しなさい. もし、この類の実験の経験などがなければ、出所を明記した上でどこかで行われいてる実験について議論 してもよい.

4.2 解

学生実験で行ったコンプトン散乱実験について述べる。 662[keV] の γ 線を NaI シンチレータに照射して実験を行った。 測定対象だった電子の静止質量は $9.1093\times 10^{-31}[kg]$ なので,自然単位系で表すと,

$$9.1093 \times 10^{-31} [kg] = 9.1093 \times 10^{-31} \times 5.61 \times 10^{26} [GeV]$$

= $511.03 [keV]$
 $\simeq 511 [keV]$

となるので、照射した γ 線のエネルギーは妥当であると判断される.