In [1]: #Importin Relevant Libraries

import pandas as pd
import numpy as np
import seaborn as sns

In [3]: a = pd.read_csv(r"/Users/harshavardhan/Desktop/archive/Admission_Predict.csv
a

Out[3]:		Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
	0	1	337	118	4	4.5	4.5	9.65	1	0.92
	1	2	324	107	4	4.0	4.5	8.87	1	0.76
	2	3	316	104	3	3.0	3.5	8.00	1	0.72
	3	4	322	110	3	3.5	2.5	8.67	1	0.80
	4	5	314	103	2	2.0	3.0	8.21	0	0.65
	•••	•••	•••	•••	•••	•••		•••	•••	•••
	395	396	324	110	3	3.5	3.5	9.04	1	0.82
	396	397	325	107	3	3.0	3.5	9.11	1	0.84
	397	398	330	116	4	5.0	4.5	9.45	1	0.91
	398	399	312	103	3	3.5	4.0	8.78	0	0.67
	399	400	333	117	4	5.0	4.0	9.66	1	0.95

400 rows × 9 columns

In [4]: a.head()

Out[4]:		Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
	0	1	337	118	4	4.5	4.5	9.65	1	0.92
	1	2	324	107	4	4.0	4.5	8.87	1	0.76
	2	3	316	104	3	3.0	3.5	8.00	1	0.72
	3	4	322	110	3	3.5	2.5	8.67	1	0.80
	4	5	314	103	2	2.0	3.0	8.21	0	0.65

In [5]: a.drop('Serial No.', axis=1, inplace=True)
 a.head()

Out[5]: **GRE TOEFL** University Chance of SOP LOR CGPA Research Score Score Rating **Admit** 1 0 337 9.65 0.92 118 4 4.5 4.5 1 324 107 4.5 8.87 0.76 4.0 2 316 104 3 3.0 3.5 8.00 1 0.72 3 322 110 3 2.5 8.67 0.80 3.5 4 314 103 2 2.0 3.0 8.21 0 0.65

```
a['Chance of Admit']= [1 if each >0.75 else 0 for each in a['Chance of Admi
 In [6]:
          a.head()
                 GRE
                          TOEFL
                                                                             Chance of
 Out[6]:
                                      University
                                                SOP LOR CGPA Research
                Score
                           Score
                                         Rating
                                                                                Admit
                 337
                             118
                                                 4.5
                                                      4.5
                                                           9.65
                                                                       1
                                                                                     1
                                             4
          1
                 324
                             107
                                             4
                                                 4.0
                                                      4.5
                                                           8.87
                                                                                     1
          2
                                                                                    0
                 316
                            104
                                             3
                                                 3.0
                                                      3.5
                                                           8.00
                                                                       1
          3
                 322
                                                      2.5
                                                           8.67
                             110
                                             3
                                                 3.5
                                                                                     1
                 314
                             103
                                                                      0
                                                                                    0
          4
                                             2
                                                 2.0
                                                      3.0
                                                           8.21
 In [7]: x = a[['GRE Score', 'TOEFL Score', 'University Rating', 'SOP', 'LOR ', 'CGPA
          y = a[['Chance of Admit ']]
          from sklearn.model selection import train test split
          x_train,x_test,y_train,y_test = train_test_split(x,y,test size=0.2, random s
 In [8]: from sklearn.tree import DecisionTreeClassifier
          csf = DecisionTreeClassifier(max depth=2)
 In [9]: csf.fit(x train,y train)
 Out[9]: •
                 DecisionTreeClassifier
         DecisionTreeClassifier(max_depth=2)
In [10]:
         y prediction = csf.predict(x test)
          y prediction
         array([1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1,
Out[10]:
                 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0,
                 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1,
                 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0])
In [11]:
          from sklearn.tree import plot_tree
          column = ['GRE Score', 'TOEFL Score', 'University Rating', 'SOP', 'LOR', 'C(
          column
         ['GRE Score',
Out[11]:
           'TOEFL Score',
           'University Rating',
           'SOP',
           'LOR',
           'CGPA',
           'Research']
In [12]:
          import matplotlib.pyplot as plt
In [13]: plt.figure(figsize=(20,15))
          sns.set_style('whitegrid')
          plot_tree(csf,
                   feature_names=column,
                   max_depth=2,
                   class_names=['0','1'],
                   filled = False,
                   rounded = False,
                   fontsize=22)
```

plt.savefig('decision.png')

.11 [14].	<pre>from sklearn classificati</pre>		_		eport					
out[14]:	1	precision	n recall	f1-score	support\n\n		0			
Jul[14].	0.89	91 0.90	0 44	\n	1 0	.89	0.86			
	0.87	36\n\n ad	ccuracy			0.89	80\n			
	macro avg	0.89	0.89	0.89	80\nweig	hted avg	0.89			
	0.89	89 80	0\n'							
in [21]:	<pre>from sklearn from sklearn</pre>			_	-	core				
n [25]:	<pre>print(classification_report(y_test, y_prediction))</pre>									
		precision	recall	f1-score	support					
	0	-		f1-score 0.90	support					
	0	0.89	0.91		11					
	•	0.89	0.91	0.90	44					
	accuracy	0.89	0.91	0.90 0.87 0.89	44 36					
	1	0.89 0.89	0.91 0.86	0.90 0.87 0.89 0.89	44 36 80					

ConfusionMatrixDisplay.from_predictions(y_test,y_prediction)

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x167e0ae</pre>

In [26]:

Out[26]:

90>

