THAPAR INSTITUTE OF ENGINEERING AND TECHNOLOGY, PATIALA Department of Electronics and Communication Engineering UEC310 - Information and Communication Theory

TUTORIAL - 8

Q1	Let A, B, and C be independent normal $N(1,1)$ random variables. Let
Q_	$\{X(t), t \in [0, \infty)\}$ be defined as $X(t) = A + Bt$, for all $t \in [0, \infty)$. Also,
	let $\{Y(t), t \in [0, \infty)\}$ be defined as $Y(t) = A + Ct$, for all $t \in [0, \infty)$.
	Find $R_{XY}(t_1, t_2)$ and $C_{XY}(t_1, t_2)$, for $t_1, t_2 \in [0, \infty)$.
Q2	Consider a random process $X(t)$ and its derivative, $X'(t) = \frac{d}{dt}X(t)$.
	Assuming that the derivatives are well-defined, show that
	а
	$R_{XX},(t_1,t_2) = \frac{\partial}{\partial t_2} R_X(t_1,t_2)$