Homologie de factorisation et espaces de configuration

Najib Idrissi

14 mai 2019

1 Homologie de factorisation

1.1 Définition

Définition 1. Top : catégorie des espaces topologiques et applications continues. $Ch(\mathbb{Z})$: catégorie des complexes de chaînes de \mathbb{Z} -modules en degrés positifs.

Théorème 2. Soit G un groupe abélien. Il existe un unique foncteur (à équivalence homotopique près) C: Top \to Ch(\mathbb{Z}) tq 1. invariance homotopique; 2. $C(X \sqcup Y) \simeq C(X) \oplus C(Y)$; 3. si $Z = X \cup Y$, alors $0 \to C(X \cap Y) \to C(X) \oplus C(Y) \to C(Z) \to 0$ est exacte; 4. $C(*) \simeq G$.

But : obtenir un théorème similaire pour des invariants de variétés, coefficients non-commutatifs, avec une catégorie monoïdale symétrique quelconque à l'arrivée.

Définition 3. Mfd_n : catégorie des variétés topologiques de dimension n et de leur plongements. Le produit monoïdal est la somme disjointe. Variantes Mfd_n^{or} , Mfd_n^{fr} ...

Définition 4. Sous-catégorie pleine $\mathsf{Disk}_n^? \subset \mathsf{Mfd}_n^?$ avec pour objets les réunions disjointes finies de copies de \mathbb{R}^n .

Remarque 5. Ce sont des catégories topologiques. Implicitement, tous les foncteurs que l'on va considérer seront continus. La catégorie cible est donc topologique; plus précisément, ce doit être un ∞ -catégorie...

Définition 6. Une algèbre $\mathsf{Disk}_n^?$ est un foncteur monoïdal symétrique $F: \mathsf{Disk}_n^? \to \mathsf{C}$, où C est une catégorie monoïdale symétrique.

Concrètement, on a $F(\mathbb{R}^n) = A$, $F(\bigsqcup^k \mathbb{R}^n) = A^{\otimes k}$, et des morphismes structurels pour chaque configuration de plongements de copies de \mathbb{R}^n dans \mathbb{R}^n (faire un dessin).

Exemple 7. Une algèbre Disk_1^{or} est une algèbre associative à homotopie près (dessin).

Proposition 8. Soit $F: \mathsf{Mfd}_n^? \to \mathsf{C}$ un foncteur monoïdal symétrique. Alors pour $N \in \mathsf{Mfd}_{n-k}^?$, $F(N \times \mathbb{R}^k)$ est une algèbre $\mathsf{Disk}_k^?$. Si $M \in \mathsf{Mfd}_n^?$ est une variété à bord, alors F(M) est un module à gauche sur $F(\partial M \times \mathbb{R})$.

Remarque 9. En particulier, $F(\mathbb{R}^n)$ est une algèbre $\mathsf{Disk}_n^?$

Théorème 10 (Francis). Soit A une algèbre $\mathsf{Disk}_n^?$ dans C . Alors il existe un unique foncteur (à équivalence homotopique près) $F: \mathsf{Mfd}_n^? \to \mathsf{C}$ tq 1. F est symétrique monoïdal; 2. si $M = M' \cup_N M''$ est une décomposition de M en deux sous-variétés recollées le long de leur bord, alors $F(M) \simeq F(M') \otimes_{F(N \times \mathbb{R})}^{\mathbb{L}} F(M'')$; 3. $F(\mathbb{R}^n) \simeq A$.

Définition 11. Soit A une algèbre $\mathsf{Disk}_n^?$ et $M \in \mathsf{Disk}_n^?$. On note $\int_M A$ l'évaluation en M du foncteur associé à A et on l'appelle **homologie de factorisation de** M à **coefficients dans** A.

Théorème 12. On peut calculer $\int_M A$ comme la colimite homotopique hocolim $_{\bigsqcup^k \mathbb{R}^n \hookrightarrow M} A^{\otimes k}$.

1.2 Définition alternative

La définition comme une colimite homotopique enrichie n'est pas très pratique si on veut faire des calculs concrets.

Proposition 13. La catégorie $\mathsf{Disk}_n^?$ définit une opérade, encore notée $\mathsf{Disk}_n^?$, par :

$$\mathsf{Disk}_n^?(k) \coloneqq \hom_{\mathsf{Disk}_n^?}(\bigsqcup^k \mathbb{R}^n, \mathbb{R}^n).$$

Concrètement, ça veut dire qu'on peut composer les plongements entre eux. Par définition, une algèbre sur l'opérade $\mathsf{Disk}_n^?$ est une algèbre $\mathsf{Disk}_n^?$ (ça tombe bien!).

Définition 14. Soit $M \in \mathsf{Mfd}^?_n$. On définit :

$$\mathsf{Disk}_M^?(k) \coloneqq \hom_{\mathsf{Mfd}_n^?}(\bigsqcup^k \mathbb{R}^n, M)$$

Proposition 15. Disk $_M^?$ définit un module à droite sur l'opérade Disk $_n^?$

Théorème 16 (Francis). L'homologie de factorisation $\int_M A$ peut se définir comme un "produit tensoriel dérivé":

$$\begin{split} \int_{M} A &\simeq \mathsf{Disk}_{M}^{?} \circ^{\mathbb{L}}_{\mathsf{Disk}_{n}^{?}} A \\ &= \mathsf{hocoeq} \big(\mathsf{Disk}_{M}^{?}(k) \otimes \mathsf{Disk}_{n}^{?}(r_{1}) \otimes \cdots \otimes \mathsf{Disk}_{n}^{?}(r_{k}) \otimes A^{r_{1} + \cdots + r_{k}} \rightrightarrows \mathsf{Disk}_{M}^{?}(k) \otimes A^{\otimes k} \big) \end{split}$$

Concrètement, faire un dessin.

Ça n'a pas l'air mieux qu'avant. Mais ça a un gros avantage : on a séparé l'information en trois données, qu'on peut calculer séparément! Et comme c'est dérivé, on peut tout changer à homotopie près.

2 Calcul

À partir de maintenant, on se place dans les complexes de chaînes sur \mathbb{R} . Comme $C_*(-;\mathbb{R})$ préserve les colimites, on a :

$$C_*(\int_M A;\mathbb{R}) \simeq C_*(\mathsf{Disk}_M^?;\mathbb{R}) \circ^{\mathbb{L}}_{C_*(\mathsf{Disk}_n^?;\mathbb{R})} C_*(A;\mathbb{R}).$$

On se place également dans le cas ? = fr.

2.1 Espaces de configuration

Définition 17. Pour un espace X, on définit :

$$Conf_k(X) := \{ x \in X^k \mid \forall i \neq j, \ x_i \neq x_j \}.$$

Proposition 18. On a des équivalences faibles :

$$\operatorname{Disk}_n^{fr}(k) \simeq \operatorname{Conf}_k(\mathbb{R}^n)$$
 $\operatorname{Disk}_M^{fr}(k) \simeq \operatorname{Conf}_k(M).$

Problème: ce ne sont plus des opérades / modules opéradiques. En effet, il faudrait pouvoir mettre plusieurs points au même endroit. Il existe une manière de compactifier pour récupérer une structure d'opérade (Fulton-MacPherson, Axelrod-Singer).

2.2 Formalité de Kontsevich

Rappel: on veut calculer

$$C_*(\int_M A) = C_*(\operatorname{Disk}_M^{fr}) \circ_{C_*(\operatorname{Disk}_n^{fr})}^{\mathbb{L}} C_*(A) \simeq C_*(\operatorname{FM}_M) \circ_{C_*(\operatorname{FM}_n)}^{\mathbb{L}} \tilde{A}.$$

Théorème 19 (Tamarkin n=2, Kontsevich, Lambrechts-Volic, Petersen n=2, Fresse-Willwacher). L'opérade Disk $_n^{fr}$ est formelle : $C_*(\mathsf{Disk}_n^{fr}) \simeq H_*(\mathsf{Disk}_n^{fr})$.

Théorème 20 (Arnold, Cohen). Une algèbre sur $H_*(\mathsf{Disk}_n^{fr})$ est une n-algèbre de Poisson. On a explicitement :

$$H^*(\mathsf{Disk}_n^{fr}(k)) = H^*(\mathsf{Conf}_k(\mathbb{R}^n)) = S(\omega_{ij})_{1 \le i, j \le k} / (\omega_{ij}^2, \omega_{ii}, \omega_{ij}\omega_{jk} + \omega_{jk}\omega_{ki} + \omega_{ki}\omega_{ij}).$$

Conséquence : dans $\int_M A$, on peut remplacer $C_*(\mathsf{Disk}_n^{fr})$ par $H_*(\mathsf{Disk}_n^{fr})$, qui a une description combinatoire très simple.

 $Id\acute{e}e$ de la preuve de Kontsevich. Kontsevich introduit une coopérade des graphes, Graphs_n . L'espace vectoriel $\mathsf{Graphs}_n(k)$ est engendré par des classes d'isomorphismes de graphes du type suivant : dessin. La différentielle contracte les arêtes adjacentes à un sommet interne (attention aux signes!). Kontsevich construit ensuite un zigzag :

$$H^*(\mathsf{Disk}_n^{fr}) \leftarrow \mathsf{Graphs}_n \rightarrow \Omega^*(\mathsf{Disk}_n^{fr}).$$

La première flèche est une projection, et est un quasi-isomorphisme par des arguments combinatoires. La deuxième flèche est définie par des intégrales – on comprend comment ça marche sur la relation $\omega_{12}\,\omega_{23} + \omega_{23}\,\omega_{31} + \omega_{31}\,\omega_{12}$.

Remarque 21. On voit dans la preuve que le théorème est plus fort : comme on a $\Omega^*(\mathsf{Disk}_n^{fr})$, la théorie de l'homotopie rationelle de Sullivan (+ travaux de Fresse) dit que l'on récupère tout le type d'homotopie réel de Disk_n^{fr} .

2.3 Modèle de Lambrechts-Stanley

But : généraliser et adapter ça pour Disk_M^{fr} .

Définition 22. Une algèbre à dualité de Poincaré de dimension n est une algèbre différentielle-graduée commutative A qui vérifie la dualité de Poincaré strictement au niveau des chaînes.

Conjecture 23 (Lambrechts-Stanley 2006). Soit M une variété compacte sans bord simplement connexe et soit $A \simeq \Omega^*(M)$ une algèbre à dualité de Poincaré. Soit Δ_A la classe diagonale de A. Alors $\Omega^*(\operatorname{Conf}_k(M))$ est quasi-isomorphe à

$$\mathsf{G}_A(k) = \left(A^{\otimes k} \otimes H^*(\mathrm{Conf}_k(\mathbb{R}^n)) / (p_i^*(a)\omega_{ij} = p_j^*(a)\omega_{ij}), d\omega_{ij} = p_{ij}^*(\Delta_A)\right).$$

Théorème 24. Soit M une variété compacte sans bord simplement connexe lisse. Alors la conjecture de Lambrechts-Stanley est vraie sur \mathbb{R} . De plus, si dim $M \geq 4$ et que M est parallélisée, alors G_A admet une structure de comodule à droite sur $H^*(\mathsf{Disk}_n^{fr})$ et $\mathsf{G}_A \simeq \Omega^*(\mathsf{Conf}_{\bullet}(M)) \simeq \Omega^*(\mathsf{Disk}_M^{fr})$ préserve cette structure.

Conséquence : dans $\int_M A$, on peut remplacer $C_*(\mathsf{Disk}_M^{fr})$ par G_A^\vee .

Idée de la preuve du théorème. Comme Kontsevich, on définit un complexe de graphes Graphs_R où R s'insère dans un zigzag de quasi-isomorphismes $\Omega^*(M) \leftarrow R \to A$. Je montre qu'alors on a un zigzag de quasi-isomorphismes

$$\mathsf{G}_A \leftarrow \mathsf{Graphs}_R o \Omega^*(\mathsf{Disk}_M^{fr})$$

qui préservent la structure opéradique si M est parallélisée.

Remarque 25. La preuve repose sur l'annulation de certaines intégrales sur Disk_M^{fr} qui ne se produisent que quand $\dim M \geq 4$. Si $\dim M \leq 3$, cette preuve ne marche pas, mais les seules variétés possibles sont S^2 (classification des surfaces) et S^3 (conjecture de Poincaré / théorème de Perelman) et dans ce cas on vérifie aisément la conjecture de Lambrechts-Stanley. On n'a cependant pas la structure de module opéradique.

Exemple d'application :

Définition 26. $\mathcal{O}_{\text{poly}}(T^*\mathbb{R}^d[1-n])$ est la *n*-algèbre de Poisson donnée par les applications polynomiales sur l'espace cotangent décalé. Concrètement,

$$\mathcal{O}_{\text{poly}}(T^*\mathbb{R}^d[1-n]) = \mathbb{R}[x_1,\ldots,x_d,\xi_1,\ldots,\xi_d],$$

où deg $x_i = 0$, deg $\xi_j = n - 1$, et $\{x_i, \xi_j\} = \delta_{ij}$.

Théorème 27 (I., cf. Markarian, Döppenschmidt). Si M vérifie les hypothèses du théorème précédent, alors

$$\int_{M} \mathcal{O}_{\text{poly}}(T^* \mathbb{R}^d [1-n]) \simeq \mathbb{R}.$$

Interprétation physique : l'espérance d'un observable quantique sur une variété compacte sans bord est simplement un nombre.