Aula Laboratório Visão Computacional

Espaço de Cores

img = cv2.imread('./imagens/Burano01.jpg')

Carregans imagem

```
# Convertendo espaço de cores
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
```

img_hls = cv2.cvtColor(img, cv2.COLOR_BGR2HLS)

Espaço de Cores

W

Convertendo para Preto e Branco

Python:

cv.threshold(src, thresh, maxval, type[, dst]) -> retval, dst

maxval.

type

double

int

Parameters

src input array (multiple-channel, 8-bit or 32-bit floating point).

dst output array of the same size and type and the same number of channels as src.

thresh threshold value.

maxval maximum value to use with the THRESH_BINARY and THRESH_BINARY_INV thresholding types.

type thresholding type (see ThresholdTypes).

190

Kernel


```
#preparando o "kernel"
kernel = np.ones((5,5), np.uint8)
```


Operadores Morfológicos

#operadores Morfologicos

```
img_dilate = cv2.dilate(thresh,kernel,iterations = 1)
img_erode = cv2.erode(thresh,kernel,iterations = 1)
img_open = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
img_close = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
img_grad = cv2.morphologyEx(thresh, cv2.MORPH_GRADIENT, kernel)
img_tophat = cv2.morphologyEx(thresh, cv2.MORPH_TOPHAT, kernel)
img_blackhat = cv2.morphologyEx(thresh, cv2.MORPH_BLACKHAT, kernel)
```


Operadores Morfológicos

Detecção de bordas

```
# Detecção borda com Canny (sem blurry)
edges_gray = cv2.Canny(image=img_gray, threshold1=a/2, threshold2=a/2)
# Detecção borda com Canny (com blurry)
edges_blur = cv2.Canny(image=img_blur, threshold1=a/2, threshold2=a/2)
```

Detecção de bordas

Atividade Laboratório #1

