電子教材の閲覧データとコンテンツ 内容を用いた学習者のスコア予測

2022/12/23 兵庫県立大学 川嶋研 小岸沙也加

背景

講義ではオンライン上で講義資料が閲覧できる機能が使われる

詳細な閲覧データを取得することができる

学生の行動から理解度が推定ができれば はやめのアプローチが学生にできるのでは?

背景

「理解度」→「点数」として小テストのスコア予測をする

コンテンツは講義で使われる講義資料(スライド)のこと

閲覧行動を使用して最終成績予測を行っている研究はある

⇒ コンテンツそのものを含む研究が少ない

問題設定

電子教材の閲覧データとコンテンツ 内容を用いた学習者のスコア予測

入力:閲覧データ、コンテンツ内容(スライド)

出力:予測した小テスの点数(小テストごと)

評価: RMSE

RQ

⇒ コンテンツ内容を使用することでどこまで精度があがるのか

使用データ

九州大学講義(2020年サイバーセキュリティ基礎論)

閲覧データ(講義回数:7回、100名、200,818ログ)

コンテンツ画像・内容

小テストのデータ(回数:7回、5問択一式)

(学生番号・問題文・学生の選択・正解かどうか・提出時間)

全体像

ベースライン

学生の学習行動

閲覧データの取得 学生の行動特徴量を抽出 ベクトル化

(行動回数・閲覧時間)

1.2 2.3

1.5 - 1.4

提案手法

閲覧データのみを使 用した場合

学生	予測点数
0	5
1	4
2	3

LightGBMで 点数を予測 RSMEで評価

学生	予測点数					
0	5					
1	3					
2	5					

小テスト・コンテンツの取得

内容のベクトル化 (768次元)

閲覧データとコンテンツ を使用した場合

ベースライン

閲覧データから各ページにおける各操作の操作回数および閲覧時間を求め、特徴量を要素とするベクトルを行動特徴ベクトル $u_c^{(i)}$ と呼ぶ

行動特徴ベクトル $u_c^{(i)}$ のみを使用

講義時間外も含めて

講義時間内+前後1時間絞って

行動特徴量に含む行動は削る

次元数はページ数×(12+1(閲覧時間))

User id	Open 1	Close 1	 Next 15	Prev 15
0	3	0	4	3
1	2	1	3	2
2	0	0	2	1

 \uparrow 行動特徴ベクトル $u_c^{(i)}$

i:学生

C: コンテンツ

提案手法

行動の中でも閲覧時間に着目

「閲覧時間の長いページのコンテンツ情報を多く含むベクトル」

 \Rightarrow 学生i のコンテンツc に対する「閲覧コンテンツベクトル $v_c^{(i)}$ 」

行動特徴ベクトル $u_c^{(i)}$ と閲覧コンテンツベクトル $v_c^{(i)}$ を使用

事前学習済のSentenceBERTを用いて各ページの文章のベクトル化を行い 行動特徴ベクトルに連結する

このままだとほぼ全員に同じベクトルを与えることになる

提案手法: スライドベクトルを行動特徴量に連結する

ページベクトル

重要度

閲覧コンテンツベクトル

$$v_{(c,p)}$$
 × $w_{(c,p)}^{(i)}$ → $\sum_{p} w_{(c,p)}^{(i)} v_{(c,p)} = v_c^{(i)}$ $i:$ $j:$ $j:$

閲覧時間 $t_{(c,p)}^{(i)}$ が長いスライドほど重要度を高くする

1回の閲覧時間が5分より長く開いていたページは放置されたものとして省く

結果

講義時間内+講義前後の 行動がより予測に関わっ ている?

RMSE平均

コンテンツ内容を含める ことは精度向上に繋がる

小テストごとに求めたRMSEの平均

今後の計画

1問ごとに予測する

⇒より詳しく学生の理解状況がわかる

行動の重要度及びスライドの重要度によって重みを変える

⇒ 学生・行動によって重みが変わるので結果が期待できる

別のベクトル化手法・予測手法を行う

⇒精度あがるかもしれない

結果(P11の補足)

小テスト	ベースライン	閲覧コンテン ツベクトル	提案手法	ベースライン	閲覧コンテン ツベクトル	提案手法
1週目	1.144	1.219	1.217	1.051	1.072	1.103
2週目(1)	1.052	1.166	1.083	1.194	1.060	1.080
2週目(2)	1.088	0.777	0.796	1.089	0.707	0.690
3週目	0.909	0.619	0.611	0.902	0.384	0.390
4週目	1.191	1.109	1.107	1.283	1.068	1.072
5週目	1.220	0.932	0.968	1.139	1.020	1.007
6週目	1.075	1.199	1.132	1.085	1.004	0.949
7週目	1.372	1.180	1.155	1.433	1.242	1.233

operation

使った

OPEN, NEXT, PREV, CLOSE, PAGE_JUMP, GETIT, OPEN_RECOMMENDATION, CLOSE_RECOMMENDATION, NOTGETIT, ADD MARKER, DELETE MARKER, CLICK_RECOMMENDATION, open_time(後から加えた閲覧時間) 削った

TIMER_STOP, TIMER_PAUSE, MEMO_TEXT_CHANGE_HISTORY, ADD MEMO, ADD BOOKMARK, LINK_CLICK, CHANGE MEMO, BOOKMARK_JUMP, DELETE BOOKMARK, DELETE_MEMO, SEARCH, SEARCH_JUMP, ADD_HW_MEMO