2021 NYCU OS HW3 report

Ouestion

Q1.

Briefly describe your design for the sorting algorithm, merge function, the thread management.

Also, describing the number of sort threads and number of merge threads in the Multi-thread program.

Answer

我的 code 裡面共有四個 function, partition_index 和 merge_index 是用來處理傳入 sort 和 merge 索引的函數,方便我寫程式也方 便我閱讀程式碼。sort 是主要排序的 function,我使用 bubble sort 來完成。 而 merge 則是將排序好的數列兩兩合併 起來。在 worst case 和 single thread 裡,我把資料切成四份,而 best case 則 為 8 份,我是盡量把資料等分,如果不 能整除則把多的資料都丟到最後一 份。thread 的數量則是由資料被切成幾 份來決定,以 best case 為例,由於我切 成8份,所以排序時會用到8個 thread,而合併則是兩兩合併,每次合 併會用到一個 thread, 因此在 best case 共用到 4+2+1=7 個 thread 合併。同理 worst case 共用到 4+3 =7 個 thread。

Q2.

Show the fastest time acceleration between single-thread and multithread. (Take screenshots of the time between single-thread and multithread)

以上截圖為第一個測資的執行結果。 兩個幾乎一模一樣的程式碼,因為使用 thread 導致速度差了將近三倍。我後來 以第二個測資實驗,效果更明顯,single thread 跑了半小時多,而 multi thread(worst case) 則花了大概十分鐘出 頭。 Q3.

You need a brief description of the best

multi-threads and worst multi-threads methods.

The content includes the number of threads used and the way of partitioning, comparing the difference in time, and taking the screenshot between two multi-thread results.

以上截圖為第一個測資的執行結果。 兩者的內容幾乎相同,唯一變得地方是 我將 worst case 的冊資切成 4 份並且以 4 個 thread 執行,而 best case 則為 8 個。即使 worst case 比較慢,相較於 single thread 仍然快上許多。順代一 提,在測資 2 裡,worst 跑了十分鐘,而 best 跑了四分鐘左右。

04.

What did you learn from doing hw3?

在這次作業裡,我學到如何使用 pthread 並行處理來增加程式效能,並且善用硬體設備。然而我覺得 pthread 的使用感覺有點不方便,尤其因為參數傳遞上的限制讓許多函數的使用變得更加麻煩,不過也因此這次作業讓我更熟知了平常很少使用的 C structure。