Name:		

In-class midterm, EC421

120 points possible

1 True or false (50 points; 20 questions)

Note In this section, select the correct answer (true or false). You do not need to explain your answer.

- 1. (2.5 points) **[T/F]** Ordinary least squares (OLS) regression is biased for estimating the coefficients of a linear model when the disturbances are heteroskedastic.
- 2. (2.5 points) **[T/F]** One of the "standard" assumptions for OLS regression is that the disturbances are uncorrelated with each other.
- 3. (2.5 points) [T/F] If our disturbances have different variances, then we have a violation of exogeneity.
- 4. (2.5 points) [T/F] In the regression model

Income_i =
$$\beta_0 + \beta_1$$
Education_i + β_2 Age_i + u_i ,

the effect of education on income depends on the individual's age.

5. (2.5 points) **[T/F]** The White test for heteroskedasticity for the above model would run the following regression:

$$e_i^2 = \beta_0 + \beta_1 \mathrm{Education}_i + \beta_2 \mathrm{Age}_i^2 + \beta_3 \mathrm{Education}_i \times \mathrm{Age} + v_i.$$

- 6. (2.5 points) [T/F] While OLS is biased when we violate exogeneity, it is still consistent.
- 7. (2.5 points) [T/F] The square of a variable is equivalent to interacting the variable with itself.
- 8. (2.5 points) **[T/F]** In the following model, if $\hat{\beta}_1=0.5$, then a one-unit increase in X_i is associated with a 0.5-unit increase in Y_i :

$$\log(y)_i = \beta_0 + \beta_1 x_i + u_i.$$

- 9. (2.5 points) **[T/F]** Weighted least squares (WLS) upweights individuals with higher variance disturbances and downweights individuals with lower variance disturbances.
- 10. (2.5 points) **[T/F]** If the disturbance correlates with an explanatory variable, then we have a violation of the homoskedasticity assumption.
- 11. (2.5 points) **[T/F]** An estimator can be consistent without being unbiased.
- 12. (2.5 points) [T/F] Adding additional variables to a regression model will always increase the \mathbb{R}^2 .
- 13. (2.5 points) [T/F] Disturbances are unobservable, while residuals are observable.
- 14. (2.5 points) **[T/F]** Measurement error in the explanatory variable tends to bias the OLS estimator downward.
- 15. (2.5 points) **[T/F]** For the Goldfeld-Quandt test, the null hypothesis is that the variances of the disturbances are equal across groups.
- 16. (2.5 points) **[T/F]** Consistency tells us about the behavior of an estimator when we take an infinite number of samples with the same sample size.
- 17. (2.5 points) **[T/F]** In the following regression model, the expected income for a non-female student is $\beta_0 + \beta_1$

$$Income_i = \beta_0 + \beta_1 Female_i + \beta_2 Student + \beta_3 Female_i \times Student_i + u_i$$
.

- 18. (2.5 points) **[T/F]** A p-value of 0.5 means that we can reject the null hypothesis that the coefficient is equal to zero at the 5% level.
- 19. (2.5 points) **[T/F]** One problem of the Goldfeld-Quandt test for heteroskedasticity is that it fails to detect certain patterns of heteroskedasticity.
- 20. (2.5 points) [T/F] Omitted-variable bias occurs when we omit a variable from a regression.

2 Multiple choice (20 points; 5 questions)

Note In this section, check (\checkmark or \times) **all** correct answers. You do not need to explain your answer.

21. (4 points) [Multiple choice] Choose all correct answers:

Which of the following statements are part of the "standard" assumptions for OLS regression?

$$\bigcirc \ E[u_i|X_i] = 0 \quad \bigcirc \ \operatorname{Var}(u_i) = 0 \quad \bigcirc \ \operatorname{Var}(X_i) > 0 \quad \bigcirc \ \operatorname{Cov}(u_i,u_i) = 0$$

22. (4 points) [Multiple choice] Choose all correct answers:

In the presence of heteroskedasticity, which of the following statements are true?

- OLS is unbiased for the coefficients.
- WLS is biased for the coefficients.
- O WLS is the best linear unbiased estimator.
- OLS is biased for the standard errors.

23. (4 points) [Multiple choice] Choose all correct answers:

Which of the following scenarios necessarily causes OLS to be biased for the coefficients?

- heteroskedasticitycorrelated disturbancesviolating exogeneitymeasurement error
- 24. (4 points) [Multiple choice] Choose all correct answers:

Which of the following models violates OLS's requirement of linearity?

$$\bigcirc \, \log(y) = \beta_0 + \beta_1 \log(x_1) + \beta_2 \log(x_2) + u$$

$$0 \ u = e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + u}$$

$$\bigcirc \ y = \beta_0 + \beta_1 x_1^{\beta_2} + \beta_3 x_2 + u$$

$$\bigcirc \ y = \beta_0 + \beta_1 x_1 \beta_2 x_1^2 + \beta_3 x_2 + \beta_4 x_2^2 + u$$

25. (4 points) [Multiple choice] Choose all correct answers:

What can we "do" in the presence of heteroskedasticity?

- Check the specification. Look for omitted variables.
- Use het.-robust standard errors. Estimate the model using WLS.

3 Short answer (50 points; 10 questions)

Note In this section, briefly answer the questions/prompts in 1–3 short (and complete) sentences. V	Ne will
deduct points for excessively long answers.	
26. (5 points) Explain how OLS regression defines the "best-fit" line.	
27. (5 points) Define the concept of a standard error.	
28. (5 points) Explain how the phrase <i>correlation is not causation</i> relates to the concept of <i>omitted-volume</i> .	riable

29.	. (5 points)	Write down a	simple linear regre	ession model (actual v	ariables; not jus	st y and x), ar	nd provide
	an exampl	le of a variable	e that could cause	omitted variable bias.	Explain how t	he variable sa	atisfies the
	requireme	ents for omitted	d-variable bias.				

30. (5 points) In class we showed that for included regressor x_1 and excluded regressor x_2 , the coefficient on x_1 has probability limit

$$\operatorname{plim} \hat{\beta}_1 = \beta_1 + \frac{\operatorname{Cov}(x_1, x_2)}{\operatorname{Var}(x_1)}$$

Using this formula, explain which direction you would expect the OLS estimator to be biased when we regress *income* on *education* and omit *ability*.

31. (5 points) Compare and contrast consistency and unbiasedness.

32. (5 points) For the regression model below, suppose we estimate $\hat{\beta}_0=9.4$ and $\hat{\beta}_1=-0.5$. Interpret the slope coefficient in the context of the model.

$$\log(\mathsf{Quantity}_i) = \beta_0 + \beta_1 \log(\mathsf{Price}_i) + u_i$$

33. (5 points) For the regression model below, suppose we estimate $\hat{\beta}_0=55.4$, $\hat{\beta}_1=0.3$, $\hat{\beta}_2=12.1$, and $\hat{\beta}_3=0.1$. Interpret the coefficient on the interaction term.

$$(\text{Years Lived})_i = \beta_0 + \beta_1 \text{Income}_i + \beta_2 \text{Female}_i + \beta_3 \text{Income}_i \times \text{Female}_i + u_i$$

Note: Income is measured in thousands of dollars; Female is a binary indicator variable.

34.	(5 points) Imagine you are running the White test for heteroskedasticity. You notice that the coefficient	
	on x_1^2 is statistically significant. What does this tell you about the presence of heteroskedasticity? Explain.	
35.	(5 points) Draw an example of a scatterplot that would violate the assumption of exogeneity. Briefly	
35.		
35.	(5 points) Draw an example of a scatterplot that would violate the assumption of exogeneity. Briefly explain why the scatterplot violates the assumption.	
35.		
35.		
35.		
35.		
35.		
35.		
35.		
35.		
35.		
35.		
35.		
35.		
35.		
35.		
35.		
35.		