#### Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные

НКА: основные

ДКА и НКА эквивалент-

Произведение автоматов

# Лекция A1 Языки, автоматы

Вадим Пузаренко

16 ноября 2022 г.

# Содержание

#### Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные

ε-НКΑ: основные

НКА: основные

ДКА и НКА эквивалентность

Произведение

- Языки: основные сведения.
- ДКА и НКА: основные сведения.
- ДКА и НКА: эквивалентность.

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные

сведения

основные сведения

ДКА и НКА эквивалентность

Произведение автоматов Алфавит. Фиксируем произвольное множество  $\Sigma$ , которое будем называть **алфавитом**.

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов Алфавит. Фиксируем произвольное множество  $\Sigma$ , которое будем называть **алфавитом**.

Слово непустое. Любая конечная непустая последовательность называется непустой цепочкой (непустым словом). Другими словами, все непустые слова составляют множество  $\Sigma^+ \leftrightharpoons \bigcup_{n \in \omega \setminus \{0\}} \Sigma^n$ . В дальнейшем слово  $(w_1, w_2, \ldots, w_n) (\in \Sigma^n)$  будем записывать как  $w_1 w_2 \ldots w_n$ ,  $n \geqslant 1$ . Часто слова будем обозначать строчными греческими буквами (возможно, с индексами).

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведения автоматов Алфавит. Фиксируем произвольное множество  $\Sigma$ , которое будем называть **алфавитом**.

Слово непустое. Любая конечная непустая последовательность называется непустой цепочкой (непустым словом). Другими словами, все непустые слова составляют множество  $\Sigma^+ \leftrightharpoons \bigcup_{n \in \omega \setminus \{0\}} \Sigma^n$ . В дальнейшем слово  $(w_1, w_2, \ldots, w_n) (\in \Sigma^n)$  будем

дальнейшем слово  $(w_1,w_2,\ldots,w_n)(\in\Sigma^n)$  будем записывать как  $w_1w_2\ldots w_n,\ n\geqslant 1$ . Часто слова будем обозначать строчными греческими буквами (возможно, с индексами).

Слово пустое. Последовательность (единственная) длины нуль называется пустой цепочкой (пустым словом) и обозначается как  $\varepsilon$ . В этом случае  $\Sigma^* \leftrightharpoons \{\varepsilon\} \cup \Sigma^+$ .

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

 $arepsilon ext{-} \mathsf{HKA} : \ \mathsf{ochoshide} \ \mathsf{cseqehus}$ 

НКА: основные сведения

ДКА и НКА эквивалентность

Произведени: автоматов Алфавит. Фиксируем произвольное множество  $\Sigma$ , которое будем называть **алфавитом**.

Слово непустое. Любая конечная непустая последовательность называется непустой цепочкой (непустым словом). Другими словами, все непустые слова составляют множество  $\Sigma^+ \leftrightharpoons \bigcup_{n \in \omega \setminus \{0\}} \Sigma^n$ . В

дальнейшем слово  $(w_1,w_2,\ldots,w_n)$   $(\in \Sigma^n)$  будем записывать как  $w_1w_2\ldots w_n,\ n\geqslant 1$ . Часто слова будем обозначать строчными греческими буквами (возможно, с индексами).

Слово пустое. Последовательность (единственная) длины нуль называется пустой цепочкой (пустым словом) и обозначается как  $\varepsilon$ . В этом случае  $\Sigma^* \leftrightharpoons \{\varepsilon\} \cup \Sigma^+$ .

Язык.  $L \subseteq \Sigma^*$  называется **языком алфавита**  $\Sigma$ .

# Структурные свойства, примеры

#### Лекция А1 Языки, автоматы

Вадим Пузаренко

#### Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение

- Если  $\Sigma = \emptyset$ , то  $\Sigma^* = \{\varepsilon\}$ ; в частности, любой язык пустого алфавита либо пуст, либо состоит из пустого слова.
- ② Если  $\Sigma \neq \varnothing$  конечный алфавит, то  $\Sigma^*$  счётно; в частности, любой язык непустого конечного алфавита не более, чем счётен;
- ② Если  $\Sigma$  бесконечный алфавит, то  $\operatorname{card}(\Sigma^*) = \operatorname{card}(\Sigma)$  (такие языки нас интересовать в курсе не будут).

# Структурные свойства, примеры

Лекция А1 Языки, автоматы

Вадим Пузаренко

#### Языки: основные сведения

ДКА: основные сведения

 $\varepsilon$ -НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произве дение автоматов

- Если  $\Sigma = \emptyset$ , то  $\Sigma^* = \{\varepsilon\}$ ; в частности, любой язык пустого алфавита либо пуст, либо состоит из пустого слова.
- ② Если  $\Sigma \neq \varnothing$  конечный алфавит, то  $\Sigma^*$  счётно; в частности, любой язык непустого конечного алфавита не более, чем счётен;
- ② Если  $\Sigma$  бесконечный алфавит, то  $\operatorname{card}(\Sigma^*) = \operatorname{card}(\Sigma)$  (такие языки нас интересовать в курсе не будут).

### Пример А1.1.

Пусть  $\Sigma=\{0\}$ . Тогда все слова языка  $\Sigma^*$  имеют вид  $0^n \leftrightharpoons \underbrace{00\dots 0}$  для подходящего  $n \in \omega$ .

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные

ε-НКА: основные

НКА: основные

ДКА и НКА эквивалентность

Произведение автоматов

#### Пример А1.2.

Пусть  $\Sigma=\{0,1\}$ . Тогда все слова языка  $\Sigma^*$  имеют вид  $0^{n_1}1^{m_1}0^{n_2}1^{m_2}\dots0^{n_k}1^{m_k}$  для подходящих  $k\in\omega$  и  $n_1,m_1,n_2,m_2,\dots,n_k,m_k\in\omega$ .

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение

#### Пример А1.2.

Пусть  $\Sigma=\{0,1\}$ . Тогда все слова языка  $\Sigma^*$  имеют вид  $0^{n_1}1^{m_1}0^{n_2}1^{m_2}\dots 0^{n_k}1^{m_k}$  для подходящих  $k\in\omega$  и  $n_1,\, n_1,\, n_2,\, m_2,\dots,n_k,\, m_k\in\omega$ .

#### Определение А1.1.

Определим операцию **конкатенации** (приписывания) на словах следующим образом: если  $\alpha = w_1w_2\dots w_p, \ \beta = s_1s_2\dots s_q$ , то  $\alpha\hat{\ } = w_1w_2\dots w_ps_1s_2\dots s_q \ (p,q\in\omega).$ 

Лекция А1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведения

### Пример А1.2.

Пусть  $\Sigma=\{0,1\}$ . Тогда все слова языка  $\Sigma^*$  имеют вид  $0^{n_1}1^{m_1}0^{n_2}1^{m_2}\dots 0^{n_k}1^{m_k}$  для подходящих  $k\in\omega$  и  $n_1,m_1,n_2,m_2,\dots,n_k,m_k\in\omega$ .

#### Определение А1.1.

Определим операцию **конкатенации** (приписывания) на словах следующим образом: если  $\alpha = w_1 w_2 \dots w_p$ ,  $\beta = s_1 s_2 \dots s_q$ , то  $\alpha \hat{\ } = w_1 w_2 \dots w_p s_1 s_2 \dots s_q$  ( $p, q \in \omega$ ).

### Определение А1.2.

Говорят, слово  $\beta$  является **(собственным; начальным; собственным начальным) подсловом** слова  $\alpha$  и записывают как  $\beta \sqsubseteq \alpha$  ( $\beta \sqsubset \alpha$ ;  $\beta \sqsubseteq_{\operatorname{beg}} \alpha$ ;  $\beta \sqsubset_{\operatorname{beg}} \alpha$ ), если найдутся слова  $\gamma$  и  $\delta$  такие, что  $\alpha = (\gamma \hat{\ }\beta)\hat{\ }\delta$  (причём  $\gamma \hat{\ }\delta \neq \varepsilon; \ \gamma = \varepsilon; \ \gamma = \varepsilon$  и  $\delta \neq \varepsilon$ ).

Лекция А1 Языки, автоматы

Вадим Пузаренко

#### Языки: основные сведения

ДКА: основные сведения

 $arepsilon ext{-} \mathsf{HKA}$ : основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение

### Предложение А1.1.

Пусть  $\Sigma \neq \varnothing$ . Тогда выполняется следующее:

- $\alpha \hat{\epsilon} = \varepsilon \hat{\alpha} = \alpha \ (\alpha \in \Sigma^*);$
- $\alpha^{\hat{}}(\beta^{\hat{}}\gamma) = (\alpha^{\hat{}}\beta)^{\hat{}}\gamma \ (\alpha, \beta, \gamma \in \Sigma^*);$
- ullet если  $\Sigma=\{0\}$ , то  $lpha\hat{}eta=eta\hat{}lpha$  для всех  $lpha,eta\in\Sigma^*$ ;
- если  $\Sigma=\{0,1\}$ , то  $\alpha\hat{\ }eta\neq\beta\hat{\ }lpha$  в общем случае (например, для lpha=0 и eta=1 имеет место  $01\neq10$ ).

Лекция А1 Языки, автоматы

Вадим Пузаренко

#### Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

#### Предложение А1.1.

Пусть  $\Sigma \neq \varnothing$ . Тогда выполняется следующее:

- $\alpha \hat{\epsilon} = \varepsilon \hat{\alpha} = \alpha \ (\alpha \in \Sigma^*);$
- $\alpha^{\hat{}}(\beta^{\hat{}}\gamma) = (\alpha^{\hat{}}\beta)^{\hat{}}\gamma \ (\alpha, \beta, \gamma \in \Sigma^*);$
- ullet если  $\Sigma=\{0\}$ , то  $lpha\hat{}eta=eta\hat{}lpha$  для всех  $lpha,eta\in\Sigma^*$ ;
- если  $\Sigma=\{0,1\}$ , то  $\alpha\hat{\ }eta\neq\beta\hat{\ }lpha$  в общем случае (например, для lpha=0 и eta=1 имеет место  $01\neq10$ ).

### Примеры А1.3.

- $\alpha_1 = 00, \ \beta_1 = 10 \mapsto \alpha_1 \hat{\beta}_1 = 0010;$
- $\alpha_2 = 001, \ \beta_2 = 0 \mapsto \alpha_2 \hat{\beta}_2 = 0010;$
- **3**  $\alpha_3 = 01$ ,  $\beta_3 = 10 \mapsto \alpha_3 \hat{\beta}_3 = 0110$ ;
- $\alpha_4 = 0, \ \beta_4 = 110 \mapsto \alpha_4 \hat{\beta}_4 = 0110.$

# Слова, длины

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

 $\varepsilon ext{-}\,\mathsf{HKA} ext{:}$  основные сведения

НКА: основные

ДКА и НКА эквивалентность

Произведение

#### Определение А1.3.

Пусть  $\Sigma$  — алфавит. Определим операцию длины  $\mathrm{lh}$  на словах из  $\Sigma^*$  следующим образом:  $\mathrm{lh}(\alpha) \leftrightharpoons n$ , если  $\alpha \in \Sigma^n$   $(n \in \omega \setminus \{0\})$ ;  $\mathrm{lh}(\varepsilon) = 0$ . Фактически данная операция выдаёт количество символов в слове.

# Слова, длины

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произве дение автоматов

#### Определение А1.3.

Пусть  $\Sigma$  — алфавит. Определим операцию **длины**  $\mathrm{lh}$  на словах из  $\Sigma^*$  следующим образом:  $\mathrm{lh}(\alpha) \leftrightharpoons n$ , если  $\alpha \in \Sigma^n$   $(n \in \omega \setminus \{0\})$ ;  $\mathrm{lh}(\varepsilon) = 0$ . Фактически данная операция выдаёт количество символов в слове.

#### Замечание А1.1.

Отметим, что имеет место равенство  $\mathrm{lh}(\alpha_1\hat{\ }\alpha_2)=\mathrm{lh}(\alpha_1)+\mathrm{lh}(\alpha_2)$  для любых слов  $\alpha_1$  и  $\alpha_2$ . В частности, если  $\alpha\sqsubseteq\beta$ , то  $\mathrm{lh}(\alpha)\leqslant\mathrm{lh}(\beta)$ ; если же  $\alpha\sqsubseteq\beta$ , то  $\mathrm{lh}(\alpha)<\mathrm{lh}(\beta)$ .

# Слова, обращение, инверсия



Вадим Пузаренко

#### Языки: основные сведения

ДКА: основные

ε-НКΑ: основные

основные сведения

основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

## Определение А1.4.

Определим операцию **обращения** следующим образом: если  $\alpha = w_1 w_2 \dots w_n$ , то  $\alpha^R \leftrightharpoons w_n \dots w_2 w_1$ .

# Слова, обращение, инверсия

Лекция А1 Языки, автоматы

Вадим Пузаренко

#### Языки: основные сведения

ДКА: основные сведения

 $arepsilon ext{-} \mathsf{HKA} : \ \mathsf{ochobhole} \ \mathsf{cbedehus}$ 

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

#### Определение А1.4.

Определим операцию **обращения** следующим образом: если  $\alpha = w_1 w_2 \dots w_n$ , то  $\alpha^R \leftrightharpoons w_n \dots w_2 w_1$ .

### Определение А1.5.

Пусть  $\Sigma = \{0,1\}$  и пусть  $w \in \Sigma$ ; тогда положим

$$\overline{w} = egin{cases} 0, & ext{ если } w = 1; \ 1, & ext{ если } w = 0. \end{cases}$$

Определим теперь операцию **инверсии** на словах следующим образом: если  $\alpha = w_1 w_2 \dots w_n (\in \{0; 1\}^*)$ , то  $\overline{\alpha} = \overline{w}_1 \overline{w}_2 \dots \overline{w}_n$ .

# Слова, обращение, инверсия

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные

ε-НКΑ: основные

сведения

основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

#### Определение А1.4.

Определим операцию **обращения** следующим образом: если  $\alpha = w_1 w_2 \dots w_n$ , то  $\alpha^R \leftrightharpoons w_n \dots w_2 w_1$ .

#### Определение А1.5.

Пусть  $\Sigma = \{0,1\}$  и пусть  $w \in \Sigma$ ; тогда положим

$$\overline{w} = egin{cases} 0, & ext{ если } w = 1; \ 1, & ext{ если } w = 0. \end{cases}$$

Определим теперь операцию **инверсии** на словах следующим образом: если  $\alpha = w_1 w_2 \dots w_n (\in \{0; 1\}^*)$ , то  $\overline{\alpha} = \overline{w}_1 \overline{w}_2 \dots \overline{w}_n$ .

### Примеры А1.4.

- $\bullet \ \alpha_1 = abc \mapsto \alpha_1^R = cba;$
- $\alpha_3 = abab \mapsto \alpha_3^R = baba.$

# Обращение, инверсия

Лекция А1 Языки. автоматы

Вадим

#### Языки: основные сведения

## Примеры А1.5.

- $\beta_1 = 1010 \mapsto \beta_1^R = 0101;$
- **2**  $\beta_1 = 1010 \mapsto \overline{\beta_1} = 0101$ ;
- $\beta_2 = 101 \mapsto \beta_2^R = 101;$
- $\beta_3 = 110 \mapsto \beta_3^R = 011;$

# Обращение, инверсия

Лекция А1 Языки, автоматы

Вадим Пузаренко

#### Языки: основные сведения

ДКА: основные

сведения  $\varepsilon ext{-HKA}$ :

е-пка: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Примеры А1.5.

$$\beta_1 = 1010 \mapsto \beta_1^R = 0101;$$

$$\beta_1 = 1010 \mapsto \overline{\beta_1} = 0101;$$

$$\beta_2 = 101 \mapsto \beta_2^R = 101;$$

$$\beta_3 = 110 \mapsto \beta_3^R = 011;$$

$$\beta_3 = 110 \mapsto \beta_3 = 001.$$

#### Сокращение.

Пусть a — буква; тогда через  $a^n$  будем обозначать слово  $\underbrace{aa \dots a}$ 

$$(n \in \omega)$$
.



Вадим Пузаренко

#### Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные

основные сведения

основные сведения

ДКА и НКА эквивалентность

Произведение автоматов Будем считать, что заранее зафиксирован алфавит  $\Sigma$ , и все рассматриваемые языки  $L_1$ ,  $L_2$  и L являются языками данного алфавита.

Лекция А1 Языки, автоматы

Вадим Пузаренко

#### Языки: основные сведения

ДКА: основные сведения

 $arepsilon ext{-} \mathsf{HKA} :$  основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов Будем считать, что заранее зафиксирован алфавит  $\Sigma$ , и все рассматриваемые языки  $L_1$ ,  $L_2$  и L являются языками данного алфавита.

### Теоретико-множественные.

- **①**  $L_1, L_2 \mapsto L_1 \cup L_2$  (объединение);
- 2  $L_1$ ,  $L_2 \mapsto L_1 \cap L_2$  (пересечение);
- lacksquare  $L_1, L_2 \mapsto L_1 \setminus L_2$  (разность);
- **②**  $L \mapsto \Sigma^* \setminus L$  (дополнение).

Лекция А1 Языки, автоматы

Вадим Пузаренко

#### Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные

НКА: основные

ДКА и НКА эквивалентность

Произве дение автоматов Будем считать, что заранее зафиксирован алфавит  $\Sigma$ , и все рассматриваемые языки  $L_1$ ,  $L_2$  и L являются языками данного алфавита.

#### Теоретико-множественные.

- **①**  $L_1, L_2 \mapsto L_1 \cup L_2$  (объединение);
- ullet  $L_1, L_2 \mapsto L_1 \cap L_2$  (пересечение);
- $lacksymbol{0}$   $L_1$ ,  $L_2 \mapsto L_1 \setminus L_2$  (разность);

### Структурные (основные).

- $m{Q}$   $L_1, L_2 \mapsto L_1 L_2 = \{ \alpha_1 \hat{\alpha}_2 \mid \alpha_1 \in L_1, \alpha_2 \in L_2 \}$  (конкатенация языков);
- ②  $L \mapsto L^* = \{\alpha_1 \hat{\alpha}_2 \hat{\ldots} \hat{\alpha}_n \mid \alpha_i \in L, 1 \leqslant i \leqslant n, n \in \omega\}$  (звездочка Клини);

#### Лекция А1 Языки, автоматы

Вадим Пузаренко

#### Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные

НКА: основные

ДКА и НКА эквивалентность

Произведение автоматов

## Структурные (доп.)

- **3**  $L\mapsto L^R=\{\alpha^R\mid \alpha\in L\}$  (обращение языка);
- ②  $L\mapsto \overline{L}=\{\overline{\alpha}\mid \alpha\in L\}$  (инверсия языка; только при  $\Sigma=\{0;1\}$ ).

#### Лекция А1 Языки, автоматы

Вадим Пузаренко

#### Языки: основные сведения

ДКА: основные

ε-НКА:

сведения НКА:

нка: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

#### Структурные (доп.)

- **①**  $L \mapsto L^R = \{\alpha^R \mid \alpha \in L\}$  (обращение языка);
- ②  $L\mapsto \overline{L}=\{\overline{\alpha}\mid \alpha\in L\}$  (инверсия языка; только при  $\Sigma=\{0;1\}$ ).

### Примеры А1.6.

Пусть 
$$\Sigma = \{0; 1\}, \ L_1 = \{\underbrace{00 \dots 0}_{n} | n \in \omega\}, \ L_2 = \{0^{\hat{}}\underbrace{11 \dots 1}_{n} | n \in \omega\};$$

#### тогда

- $L_1 \cap L_2 = \{0\};$
- $L_1L_2 = \{0^n \hat{1}^m | n \in \omega \setminus \{0\}, m \in \omega\};$
- $L_1^R = L_1$ ,  $L_2^R = \{1^n \hat{\ } 0 | n \in \omega \}$ ,
- $\overline{L_1} = \{1^n | n \in \omega\}, \overline{L_2} = \{1^0 | n \in \omega\}.$

## ДКА: определение

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произве дение автоматов

#### Определение А1.6.

Двухосновная структура  $\mathfrak{A}=(Q;\Sigma;\delta,q_0,F)$  называется **детерминированным конечным автоматом (ДКА)**, если она удовлетворяет следующим условиям:

- ullet Q 
  eq arnothing конечное множество состояний;
- $\Sigma \neq \varnothing$  конечный алфавит;
- $Q \cap \Sigma = \emptyset$ ;
- $\delta: Q \times \Sigma \to Q$  функция перехода;
- $ullet q_0 \in Q$  начальное состояние;
- $F \subseteq Q$  множество конечных состояний.

# Способы задания ДКА

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произве дение автоматов

#### Графический.

Самый наглядный, но не всегда удобный для практических целей. Любой ДКА может быть представлен в виде конечного ориентированного помеченного графа, возможно, с петлями, в котором из каждой вершины, обозначающей состояние, исходит ровно одна стрелка, помеченная буквой алфавита  $\Sigma$ , согласно его функции перехода. При этом помечаются также и вершины этого графа для того, чтобы можно было отличить начальное, а также конечные состояния от остальных.

# Способы задания ДКА

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основны сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

#### Графический.

Самый наглядный, но не всегда удобный для практических целей. Любой ДКА может быть представлен в виде конечного ориентированного помеченного графа, возможно, с петлями, в котором из каждой вершины, обозначающей состояние, исходит ровно одна стрелка, помеченная буквой алфавита  $\Sigma$ , согласно его функции перехода. При этом помечаются также и вершины этого графа для того, чтобы можно было отличить начальное, а также конечные состояния от остальных.

#### Табличный.

Любой ДКА однозначно задаётся таблицей, описывающей функцию перехода, в которой определённым образом выделяются начальное состояние, а также конечные состояния.

# ДКА: пример

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НΚΑ: основные

основные сведения

пка: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

## Пример А1.7.

|                       | 0     | 1     |
|-----------------------|-------|-------|
| $\triangleright q_0*$ | $q_0$ | $q_1$ |
| $q_1$                 | $q_1$ | $q_2$ |
| $q_2$                 | $q_2$ | $q_0$ |

# Как работает ДКА?

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов Пусть заданы детерминированный конечный автомат  $\mathfrak{A}=(Q;\Sigma;\delta,q_0,F)$  и слово  $\alpha=a_1a_2\dots a_n$ , где  $n\in\omega$ . Для того, чтобы переработать данное слово на заданном автомате, необходимо проделать следующую процедуру:

- t=0: в момент t=0 находимся в состоянии  $q_0$  (в частности, если  $\alpha=arepsilon$ , то в состоянии  $q_0$  завершаем работу);
- $t\mapsto t+1$ : предположим, что в момент времени t находимся в состоянии q(t); тогда в момент t+1 мы попадаем в состояние  $q(t+1)=\delta(q(t),a_{t+1});$
- Завершение. Если после полной переработки слова  $\alpha$  мы попадаем в конечное состояние, а именно,  $q(n) \in F$ , то слово  $\alpha$  распознается автоматом  $\mathfrak{A}$ ; в противном случае слово  $\alpha$  им не распознается.

# ДКА: функция перехода

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

arepsilon- НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение

#### Определение А1.7.

Определим функцию  $\delta^*: Q \times \Sigma^* \to Q$ , расширяющую  $\delta: Q \times \Sigma \to Q$ , индукцией по длине слова  $\alpha$  следующим образом:

- $\delta^*(q,\varepsilon)=q$ ;
- $\delta^*(q, \alpha \hat{a}) = \delta(\delta^*(q, \alpha), a)$ .

# ДКА: функция перехода

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

#### Определение А1.7.

Определим функцию  $\delta^*:Q imes\Sigma^* o Q$ , расширяющую  $\delta:Q imes\Sigma o Q$ , индукцией по длине слова  $\alpha$  следующим образом:

- $\delta^*(q,\varepsilon) = q$ ;
- $\delta^*(q, \alpha \hat{a}) = \delta(\delta^*(q, \alpha), a)$ .

### Определение А1.8.

Язык, распознаваемый ДКА  $\mathfrak{A}$ , — это

$$L(\mathfrak{A}) = \{ \alpha \in \Sigma^* \mid \delta^*(q_0, \alpha) \in F \}.$$



Вадим Пузаренко

Языки: основные сведения

ДКА: основные

основные сведения

г-пка: основные сведения

НКА: основные

ДКА и НКА эквивалентность

Произведение автоматов Будем считать, что все рассматриваемые языки в конечном алфавите  $\Sigma \neq \varnothing$ .

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные

ДКА и НКА эквивалентность

Произведение

Будем считать, что все рассматриваемые языки в конечном алфавите  $\Sigma \neq \varnothing$  .

### Предложение А1.2.

- 1) Пустой язык распознаваем некоторым ДКА.
- 2) Язык  $\Sigma^*$  распознаваем некоторым ДКА.

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные

НКА: основные сведения

ДКА и НКА эквивалентность

Произве дение автоматов Будем считать, что все рассматриваемые языки в конечном алфавите  $\Sigma \neq \varnothing$ .

### Предложение А1.2.

- 1) Пустой язык распознаваем некоторым ДКА.
- 2) Язык  $\Sigma^*$  распознаваем некоторым ДКА.

#### Доказательство.

1) Покажем, что автомат

 $\mathfrak{A}_1=(\{q_0\};\Sigma;\{((q_0,a),q_0)\mid a\in\Sigma\},q_0,\varnothing)$  распознаёт пустой язык. В самом деле, для любого  $\alpha\in\Sigma^*$  имеем  $\delta^*(q_0,\alpha)=q_0\not\in\varnothing=F$ .

Лекция A1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произве дение автоматов Будем считать, что все рассматриваемые языки в конечном алфавите  $\Sigma \neq \varnothing$ .

### Предложение А1.2.

- 1) Пустой язык распознаваем некоторым ДКА.
- 2) Язык  $\Sigma^*$  распознаваем некоторым ДКА.

#### Доказательство.

- 1) Покажем, что автомат
- $\mathfrak{A}_1=(\{q_0\};\Sigma;\{((q_0,a),q_0)\mid a\in\Sigma\},q_0,\varnothing)$  распознаёт пустой язык. В самом деле, для любого  $\alpha\in\Sigma^*$  имеем
- $\delta^*(q_0,\alpha)=q_0\not\in\varnothing=F$ .
- 2) Покажем, что автомат
- $\mathfrak{A}_2=(\{q_0\};\Sigma;\{((q_0,a),q_0)\mid a\in\Sigma\},q_0,\{q_0\})$  распознаёт  $\Sigma^*.$  В
- самом деле, для любого  $\alpha \in \Sigma^*$  имеем  $\delta^*(q_0, \alpha) = q_0 \in \{q_0\} = F$ .

# Языки, распознаваемые ДКА

#### Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные

ДКА и НКА эквивалентность

Произведение автоматов

### Предложение А1.3.

- 1) Язык  $\{arepsilon\}$  распознаваем некоторым ДКА.
- 2) Для любого  $a \in \Sigma$  язык  $\{a\}$  распознаваем некоторым ДКА.

# Языки, распознаваемые ДКА

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

#### Предложение А1.3.

- 1) Язык  $\{arepsilon\}$  распознаваем некоторым ДКА.
- 2) Для любого  $a \in \Sigma$  язык  $\{a\}$  распознаваем некоторым ДКА.

### Доказательство.

1) Покажем, что автомат

$$\mathfrak{A}_3=(\{q_0,q_1\};\Sigma;\{((q,a),q_1)\mid q\in Q,\, a\in \Sigma\},q_0,\{q_0\})$$
 распознаёт язык  $\{\varepsilon\}$ . В самом деле, для любого  $\alpha\in\Sigma^+$  имеем

$$\delta^*(q_0,lpha)=q_1
ot\in\{q_0\}={\sf F}$$
 , a  $\delta^*(q_0,arepsilon)=q_0\in\{q_0\}={\sf F}$  .

# Языки, распознаваемые ДКА

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Предложение А1.3.

- 1) Язык  $\{arepsilon\}$  распознаваем некоторым ДКА.
- 2) Для любого  $a\in \Sigma$  язык  $\{a\}$  распознаваем некоторым ДКА.

### Доказательство.

1) Покажем, что автомат

 $\mathfrak{A}_3=(\{q_0,q_1\};\Sigma;\{((q,a),q_1)\mid q\in Q,\,a\in\Sigma\},q_0,\{q_0\})$  распознаёт язык  $\{\varepsilon\}$ . В самом деле, для любого  $\alpha\in\Sigma^+$  имеем

$$\delta^*(q_0, \alpha) = q_1 \not\in \{q_0\} = \mathsf{F}$$
, a  $\delta^*(q_0, \varepsilon) = q_0 \in \{q_0\} = \mathsf{F}$ .

2) Покажем, что автомат

 $\mathfrak{A}_4=(\{q_0,q_1,q_2\};\Sigma;\{((q_0,a),q_1),((q_1,a),q_2),((q_2,a),q_2)\}\cup\{((q,b),q_2)\mid a\neq b\in\Sigma,\ q\in Q\},q_0,\{q_1\})$  распознаёт  $\{a\}$ . В самом деле, для любого  $\alpha\in\Sigma^+$   $(\alpha\neq a)$  имеем

$$\delta^*(q_0, lpha) = q_2 
ot\in \{q_1\} = F$$
; кроме того,

$$\delta^*(q_0,a)=\delta(q_0,a)=q_1\in\{q_1\}={\sf F}$$
 и

$$\delta^*(q_0,\varepsilon)=q_0\not\in\{q_1\}=F$$
.

# Дополнение

#### Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные

ДКА: основные сведения

ε-НКА: основные

НКА: основные

ДКА и НКА эквивалентность

Произведение автоматов

### Теорема А1.1.

Если язык L конечного алфавита  $\Sigma \neq \varnothing$  распознаётся некоторым ДКА, то и его дополнение  $\Sigma^* \setminus L$  также распознаётся некоторым ДКА.

# Дополнение

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведения автоматов

### Теорема А1.1.

Если язык L конечного алфавита  $\Sigma \neq \varnothing$  распознаётся некоторым ДКА, то и его дополнение  $\Sigma^* \setminus L$  также распознаётся некоторым ДКА.

#### Доказательство.

Пусть ДКА  $\mathfrak{A}=(Q;\Sigma;\delta,q_0,F)$  таков, что  $\mathbf{L}=\mathbf{L}(\mathfrak{A})$ . Покажем, что его дополнение распознаётся автоматом  $\mathfrak{A}'=(Q;\Sigma;\delta,q_0,Q\setminus F)$ . В самом деле, для любого  $\alpha\in\Sigma^*$  имеем  $\alpha\in\mathbf{L}(\mathfrak{A}')\Leftrightarrow\delta^*(q_0,\alpha)\in Q\setminus F\Leftrightarrow\delta^*(q_0,\alpha)\not\in F\Leftrightarrow\alpha\not\in\mathbf{L}(\mathfrak{A})$ .  $\square$ 

# Дополнение

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведени автоматов

### Теорема А1.1.

Если язык L конечного алфавита  $\Sigma \neq \varnothing$  распознаётся некоторым ДКА, то и его дополнение  $\Sigma^* \setminus L$  также распознаётся некоторым ДКА.

#### Доказательство.

Пусть ДКА  $\mathfrak{A}=(Q;\Sigma;\delta,q_0,F)$  таков, что  $\mathbf{L}=\mathbf{L}(\mathfrak{A})$ . Покажем, что его дополнение распознаётся автоматом  $\mathfrak{A}'=(Q;\Sigma;\delta,q_0,Q\setminus F)$ . В самом деле, для любого  $\alpha\in\Sigma^*$  имеем  $\alpha\in\mathbf{L}(\mathfrak{A}')\Leftrightarrow\delta^*(q_0,\alpha)\in Q\setminus F\Leftrightarrow\delta^*(q_0,\alpha)\not\in F\Leftrightarrow\alpha\not\in\mathbf{L}(\mathfrak{A})$ .  $\square$ 

### Замечание А1.2.

Отметим, что все атрибуты (количество состояний и, следовательно, переходов) остаются неизменными при переходе от автомата  $\mathfrak A$  к автомату  $\mathfrak A'$  в теореме A1.1.

# Инверсия



Языки:

сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные

ДКА и НКА эквивалентность

Произведение автоматов

### Теорема А1.2.

Если язык L алфавита  $\Sigma=\{0;1\}$  распознаётся некоторым ДКА, то и его инверсия  $\overline{L}$  также распознаётся некоторым ДКА.

# Инверсия

#### Лекция A1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведения автоматов

### Теорема А1.2.

Если язык L алфавита  $\Sigma=\{0;1\}$  распознаётся некоторым ДКА, то и его инверсия  $\overline{L}$  также распознаётся некоторым ДКА.

#### Доказательство.

Пусть ДКА  $\mathfrak{A}=(Q;\Sigma;\delta,q_0,F)$  таков, что  $\mathbf{L}=\mathbf{L}(\mathfrak{A})$ . Покажем, что его инверсия распознаётся автоматом  $\mathfrak{A}'=(Q;\Sigma;\tau,q_0,F)$ , где  $\tau=\{((q,\overline{a}),q')\mid ((q,a),q')\in\delta\}$ . В самом деле, для любого  $\alpha\in\Sigma^*$  имеем  $\tau^*(q,\overline{\alpha})\in F\Leftrightarrow \delta^*(q,\alpha)\in F$ , что нетрудно доказывается индукцией по длине слова  $\alpha$ . Таким образом,  $\mathbf{L}(\mathfrak{A}')=\overline{\mathbf{L}(\mathfrak{A})}$ .

# Инверсия

Лекция A1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Теорема А1.2.

Если язык L алфавита  $\Sigma=\{0;1\}$  распознаётся некоторым ДКА, то и его инверсия  $\overline{L}$  также распознаётся некоторым ДКА.

#### Доказательство.

Пусть ДКА  $\mathfrak{A}=(Q;\Sigma;\delta,q_0,F)$  таков, что  $\mathbf{L}=\mathbf{L}(\mathfrak{A})$ . Покажем, что его инверсия распознаётся автоматом  $\mathfrak{A}'=(Q;\Sigma;\tau,q_0,F)$ , где  $\tau=\{((q,\overline{a}),q')\mid ((q,a),q')\in\delta\}$ . В самом деле, для любого  $\alpha\in\Sigma^*$  имеем  $\tau^*(q,\overline{\alpha})\in F\Leftrightarrow \delta^*(q,\alpha)\in F$ , что нетрудно доказывается индукцией по длине слова  $\alpha$ . Таким образом,  $\mathbf{L}(\mathfrak{A}')=\overline{\mathbf{L}(\mathfrak{A})}$ .

#### Замечание А1.3.

Отметим, что все атрибуты (количество состояний и, следовательно, переходов) остаются неизменными при переходе от автомата  $\mathfrak A$  к автомату  $\mathfrak A'$  в теореме A1.2.

# $\varepsilon$ -НКА: определение

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Определение А1.9.

Двухосновная структура  $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$  называется **недетерминированным конечным автоматом с**  $\varepsilon$ -переходами ( $\varepsilon$ -НКА), если она удовлетворяет следующим условиям:

- $Q \neq \varnothing$  конечное множество состояний;
- $\Sigma \neq \varnothing$  конечный алфавит;
- $Q \cap \Sigma = \emptyset$ ;
- ullet  $\delta: Q imes (\Sigma \cup \{arepsilon\}) o \mathcal{P}(Q)$  функция перехода;
- ullet  $arnothing 
  otin \mathcal{Q} 
  eq Q_0 \subseteq Q$  множество начальных состояний;
- $F \subseteq Q$  множество конечных состояний.

# Способы задания $\varepsilon$ -НКА

Лекция A1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведения автоматов

### Графический.

Самый наглядный, но не всегда удобный для практических целей. Любой  $\varepsilon$ -НКА может быть представлен в виде конечного ориентированного помеченного графа, возможно, с петлями, в котором из вершины, обозначающей состояние, исходит стрелка, помеченная буквой алфавита  $\Sigma \cup \{\varepsilon\}$ , согласно его функции перехода. В отличие от ДКА, количество стрелок, помеченных буквой из  $\Sigma \cup \{\varepsilon\}$ , не обязано равняться единице (оно может равняться и нулю). При этом помечаются также и вершины этого графа для того, чтобы можно было отличить начальные (ещё одно отличие!!!), а также конечные состояния от остальных.

# Способы задания $\varepsilon$ -НКА

Лекция А1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произве дение автоматов

#### Графический.

Самый наглядный, но не всегда удобный для практических целей. Любой  $\varepsilon$ -НКА может быть представлен в виде конечного ориентированного помеченного графа, возможно, с петлями, в котором из вершины, обозначающей состояние, исходит стрелка, помеченная буквой алфавита  $\Sigma \cup \{\varepsilon\}$ , согласно его функции перехода. В отличие от ДКА, количество стрелок, помеченных буквой из  $\Sigma \cup \{\varepsilon\}$ , не обязано равняться единице (оно может равняться и нулю). При этом помечаются также и вершины этого графа для того, чтобы можно было отличить начальные (ещё одно отличие!!!), а также конечные состояния от остальных.

#### Табличный.

Любой  $\varepsilon$ -НКА однозначно задаётся таблицей, описывающей функцию перехода, в которой определенным образом выделяются начальные, а также конечные состояния.

# $\varepsilon$ -НКА: пример

Лекция А1 Языки, автоматы

Вадим

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

нка:

ДКА и НКА эквивалент-

Произведения

Пример А1.8.

# Как работает $\varepsilon$ -НКА?

#### Лекция А1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведения автоматов Пусть заданы недетерминированный конечный автомат с  $\varepsilon$ -переходами  $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$  и слово  $\alpha=a_1a_2\dots a_n$ , где  $n\in\omega$ . Для того, чтобы переработать данное слово на заданном автомате, необходимо проделать следующую процедуру:

- t=0: в момент t=0 находимся в одном из состояний из  $Q_0$ ;
- $t\mapsto t+1$ : предположим, что в момент времени t находимся в состоянии q(t); при этом переработано слово  $a_1a_2\dots a_{t'}$ ; тогда в момент t+1 мы попадаем в состояние  $q(t+1)\in \delta(q(t),a_{t'+1})\cup \delta(q(t),arepsilon)$ ;
- Завершение. Если после полной переработки слова  $\alpha$  мы попадаем в конечное состояние, а именно,  $q(n') \in F$   $(n' \geqslant n)$ , то слово  $\alpha$  распознается автоматом  $\mathfrak A$ ; если никакая последовательность не приводит в конечное состояние, то слово  $\alpha$  им не распознается.

# arepsilon- $\mathsf{HKA}$ : распознаваемые слова

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произве дение автоматов

#### Определение А1.10.

Пусть задан  $\varepsilon$ -НКА  $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$ . Пусть также  $\alpha=w_1w_2\dots w_n\in\Sigma^*$   $(n\in\omega)$ . Будем говорить, что слово  $\alpha$  распознаётся  $\varepsilon$ -НКА  $\mathfrak{A},$  если найдутся состояния  $r_0^0,\,r_0^1,\,\dots,\,r_0^{k_0},\,r_1^0,\,r_1^1,\,\dots,\,r_1^{k_1},\,\dots,\,r_n^{n},\,r_n^1,\,\dots,\,r_n^{k_n}\in Q$ , удовлетворяющие следующим условиям:

- $r_0^0 \in Q_0$ ;
- $r_i^{j+1} \in \delta(r_i^j, \varepsilon)$ ,  $0 \leqslant j < k_i$ ,  $0 \leqslant i \leqslant n+1$ ;
- $r_{i+1}^0 \in \delta(r_i^{k_i}, w_{i+1}), \ 0 \leqslant i < n;$
- $r_n^{k_n} \in F$ .

# arepsilon-HKA: распознаваемые слова

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведения автоматов

#### Определение А1.10.

Пусть задан  $\varepsilon$ -НКА  $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$ . Пусть также  $\alpha=w_1w_2\dots w_n\in\Sigma^*$   $(n\in\omega)$ . Будем говорить, что слово  $\alpha$  распознаётся  $\varepsilon$ -НКА  $\mathfrak{A}$ , если найдутся состояния  $r_0^0,\,r_0^1,\,\dots,\,r_0^{k_0},\,r_1^1,\,\dots,\,r_1^{k_1},\,\dots,\,r_n^{n},\,r_n^1,\,\dots,\,r_n^{k_n}\in Q$ , удовлетворяющие следующим условиям:

- $r_0^0 \in Q_0$ ;
- $r_i^{j+1} \in \delta(r_i^j, \varepsilon)$ ,  $0 \leqslant j < k_i$ ,  $0 \leqslant i \leqslant n+1$ ;
- $r_{i+1}^0 \in \delta(r_i^{k_i}, w_{i+1}), \ 0 \leqslant i < n;$
- $r_n^{k_n} \in F$ .

### Определение А1.11.

Язык, распознаваемый  $\varepsilon$ -НКА  $\mathfrak{A}$ , — это  $\mathrm{L}(\mathfrak{A}) = \{ \alpha \in \Sigma^* \mid \alpha \text{ распознается } \mathfrak{A} \}.$ 

# ДКА $\Rightarrow \varepsilon$ -НКА

#### Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные

ДКА и НКА эквивалентность

Произведение автоматов

#### Теорема А1.3.

Для любого ДКА  $\mathfrak A$  существует arepsilon-HKA  $\mathfrak A'$  такой, что  $\mathrm L(\mathfrak A)=\mathrm L(\mathfrak A').$ 

# ДКА $\Rightarrow \varepsilon$ -НКА

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

#### Теорема А1.3.

Для любого ДКА  $\mathfrak A$  существует  $\varepsilon$ -НКА  $\mathfrak A'$  такой, что  $\mathrm L(\mathfrak A)=\mathrm L(\mathfrak A').$ 

#### Доказательство.

Пусть задан ДКА  $\mathfrak{A}=(Q;\Sigma;\delta,q_0,F)$ . Определим  $\varepsilon$ -НКА  $\mathfrak{A}'=(Q;\Sigma;\tau,\{q_0\},F)$  так, что  $\tau=\{((q,a),\{\delta(q,a)\})\mid q\in Q,\ a\in\Sigma\}$ , и покажем, что  $\mathrm{L}(\mathfrak{A})=\mathrm{L}(\mathfrak{A}')$ .  $\mathrm{L}(\mathfrak{A})\subseteq\mathrm{L}(\mathfrak{A}')$ . Пусть  $\alpha=w_1w_2\dots w_n\in\Sigma^*$  таково, что  $\alpha\in\mathrm{L}(\mathfrak{A})$ ,  $\tau$ . е.  $\delta^*(q_0,\alpha)\in F$ . Рассмотрим последовательность  $\tau_0=q_0=\delta^*(q_0,\varepsilon),\ r_1=\delta(r_0,w_1)=\delta^*(q_0,w_1),\ r_2=\delta(r_1,w_2)=\delta^*(q_0,w_1w_2),\ \ldots,\ r_n=\delta(r_{n-1},w_n)=\delta^*(q_0,w_1w_2\dots w_n)=\delta^*(q_0,\alpha)$  состояний; она удовлетворяет определению распознаваемости слова  $\alpha$  автоматом  $\mathfrak{A}'$ , поскольку  $r_0\in\{q_0\},\ r_{i+1}=\delta(r_i,w_{i+1})\in\{\delta(r_i,w_{i+1})\}=\tau(r_i,w_{i+1})$  и  $r_n\in F$ ; таким образом,  $\alpha\in\mathrm{L}(\mathfrak{A}')$ .

# ДКА $\Rightarrow \varepsilon$ -НКА

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Доказательство (окончание).

 $L(\mathfrak{A}')\subseteq L(\mathfrak{A})$ . Пусть теперь  $\alpha=w_1w_2\dots w_n\in L(\mathfrak{A}')$ ; так как  $\mathfrak{A}'$  не содержит  $\varepsilon$ -переходов, найдётся последовательность состояний  $r_0=q_0,\ r_1,\ r_2,\ \dots,\ r_n\in F$ , для которой справедливы условия  $r_{i+1}\in \tau(r_i,w_{i+1})=\{\delta(r_i,w_{i+1})\}$ . Далее, индукцией по длине слова доказывается, что  $r_0=\delta^*(q_0,\varepsilon)$ ,  $r_i=\delta^*(q_0,w_1w_2\dots w_i),\ 1\leqslant i\leqslant n$ ; в частности,  $r_n=\delta^*(q_0,w_1w_2\dots w_n)=\delta^*(q_0,\alpha)\in F$ ; тем самым,  $\alpha\in L(\mathfrak{A})$ .

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Доказательство (окончание).

 $\mathbf{L}(\mathfrak{A}')\subseteq \mathbf{L}(\mathfrak{A}).$  Пусть теперь  $\alpha=w_1w_2\dots w_n\in \mathbf{L}(\mathfrak{A}');$  так как  $\mathfrak{A}'$  не содержит  $\varepsilon$ -переходов, найдётся последовательность состояний  $r_0=q_0,\ r_1,\ r_2,\ \dots,\ r_n\in F,$  для которой справедливы условия  $r_{i+1}\in \tau(r_i,w_{i+1})=\{\delta(r_i,w_{i+1})\}.$  Далее, индукцией по длине слова доказывается, что  $r_0=\delta^*(q_0,\varepsilon),$   $r_i=\delta^*(q_0,w_1w_2\dots w_i),\ 1\leqslant i\leqslant n;$  в частности,  $r_n=\delta^*(q_0,w_1w_2\dots w_n)=\delta^*(q_0,\alpha)\in F;$  тем самым,  $\alpha\in \mathbf{L}(\mathfrak{A}).$ 

### Замечание А1.4.

Теорема A1.3 носит чисто теоретический характер и демонстрирует, что любой детерминированный конечный автомат может рассматриваться, как частный случай недетерминированного конечного автомата.

Лекция А1 Языки,

Вадим Пузаренк

Языки: основны сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов Формально любой  $\varepsilon$ -переход не увеличивает временную сложность, поскольку для "считывания" пустого слова не требуется дополнительных усилий. В связи с этим возникает вопрос, имеется ли возможность построить недетерминированный конечный автомат, не использующий  $\varepsilon$ -переходов? Если да, то какие усилия для этого потребуются и чем придётся пожертвовать?

Лекция А1 Языки, автоматы

Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные

ДКА и НКА эквивалентность

Произведение автоматов

### Теорема А1.4.

Для любого  $\varepsilon$ -НКА  $\mathfrak A$  существует  $\varepsilon$ -НКА  $\mathfrak A'$ , не содержащий  $\varepsilon$ -переходов, для которого имеет место  $\mathrm L(\mathfrak A)=\mathrm L(\mathfrak A').$ 

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

#### Теорема А1.4.

Для любого  $\varepsilon$ -НКА  $\mathfrak A$  существует  $\varepsilon$ -НКА  $\mathfrak A'$ , не содержащий  $\varepsilon$ -переходов, для которого имеет место  $\mathrm L(\mathfrak A)=\mathrm L(\mathfrak A')$ .

#### Доказательство.

Пусть задан  $\varepsilon$ -НКА  $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$ . На множестве Q определим отношение предпорядка следующим образом:  $q_0 \leq q_1$ , если и только если найдётся последовательность  $q_0=r_0$ ,  $r_1,\ldots,r_n=q_1$  состояний такая, что  $r_{i+1}\in\delta(r_i,\varepsilon)$  для всех i,  $0\leqslant i< n$ , для некоторого  $n\in\omega$ .

Далее, определим автомат  $\mathfrak{A}'=(Q;\Sigma;\delta',Q_0,F')$  так, что  $\delta'(q,a)=\bigcup\{\delta(q',a)\mid q\trianglelefteq q'\}$  для всех  $q\in Q$  и  $a\in \Sigma$  и  $F'=\{q\mid q\trianglelefteq q'$  для некоторого  $q'\in F\}$ . Покажем теперь, что  $\mathrm{L}(\mathfrak{A})=\mathrm{L}(\mathfrak{A}')$ .

ДКА и НКА эквивалентность

Произведение автоматов

### Доказательство (продолжение).

 $L(\mathfrak{A}')\subseteq L(\mathfrak{A})$ . Пусть  $\alpha=w_1w_2\ldots w_n\in L(\mathfrak{A}')$ ; тогда найдётся последовательность  $r_0, r_1, \ldots, r_n$  состояний, для которой выполняется следующее:  $r_0 \in Q_0$ ,  $r_n \in F'$  и, к тому же,  $r_{i+1} \in \delta'(r_i, w_{i+1})$  для всех  $i, 0 \leqslant i < n$ , где  $n \in \omega$ . Так как  $r_{i+1} \in \delta'(r_i, w_{i+1})$ , существует последовательность  $r_i = s_i^0, s_i^1, \ldots,$  $s_i^{k_i}$  состояний такая, что  $s_i^{j+1} \in \delta(s_i^j, arepsilon)$  (это означает, что  $r_i ext{ } ext{ }$ и, к тому же,  $r_{i+1} \in \delta(s_i^{k_i}, w_{i+1})$ , где  $0 \le i < n$ . Так как  $r_n \in F'$ , существует последовательность  $r_n = s_n^0, s_n^1, \ldots, s_n^{k_n}$  состояний такая, что  $s_n^{i+1} \in \delta(s_n^i, \varepsilon)$  для всех  $i, 0 \leqslant i < n$  (снова это означает, что  $r_n \leq s_n^{k_n}$ ), и, к тому же,  $s_n^{k_n} \in F$ . Тем самым, последовательность  $s_0^0$ ,  $s_0^1$ , ...,  $s_0^{k_0}$ ,  $s_1^0$ ,  $s_1^1$ , ...,  $s_1^{k_1}$ , ...,  $s_n^0$ ,  $s_n^1$ , ...,  $s_n^{k_n}$  состояний удовлетворяет условиям определения для  $\alpha = w_1 w_2 \dots w_n \in L(\mathfrak{A}).$ 

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произве дение автоматов

### Доказательство (окончание).

 $\mathbf{L}(\mathfrak{A})\subseteq \mathbf{L}(\mathfrak{A}')$ . Пусть  $\alpha=w_1w_2\dots w_n\in \Sigma^*$  таково, что  $\alpha\in \mathbf{L}(\mathfrak{A})$ , и пусть  $r_0^0,\,r_0^1,\,\dots,\,r_0^{k_0},\,r_1^0,\,r_1^1,\,\dots,\,r_1^{k_1},\,\dots,\,r_n^0,\,r_n^1,\,\dots,\,r_n^{k_n}$ — последовательность состояний из определения распознавания слова  $\alpha$  на  $\varepsilon$ -НКА  $\mathfrak{A}$ . Далее, из определения отношения  $\unlhd$  на словах вытекает, что  $r_i^0\unlhd r_i^{k_i}$  для всех  $i,\,0\leqslant i\leqslant n$ . Следовательно,  $r_{i+1}^0\in \delta'(r_i^0,w_{i+1})$  и  $r_n^0\in F'$ . Таким образом,  $\alpha\in \mathbf{L}(\mathfrak{A}')$ .

Лекция А1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Доказательство (окончание).

 $\mathbf{L}(\mathfrak{A})\subseteq \mathbf{L}(\mathfrak{A}')$ . Пусть  $\alpha=w_1w_2\dots w_n\in \Sigma^*$  таково, что  $\alpha\in \mathbf{L}(\mathfrak{A})$ , и пусть  $r_0^0,\,r_0^1,\,\dots,\,r_0^{k_0},\,r_1^0,\,r_1^1,\,\dots,\,r_1^{k_1},\,\dots,\,r_n^0,\,r_n^1,\,\dots,\,r_n^{k_n}$ — последовательность состояний из определения распознавания слова  $\alpha$  на  $\varepsilon$ -НКА  $\mathfrak{A}$ . Далее, из определения отношения  $\unlhd$  на словах вытекает, что  $r_i^0\unlhd r_i^{k_i}$  для всех  $i,\,0\leqslant i\leqslant n$ . Следовательно,  $r_{i+1}^0\in \delta'(r_i^0,w_{i+1})$  и  $r_n^0\in F'$ . Таким образом,  $\alpha\in \mathbf{L}(\mathfrak{A}')$ .

#### Замечание А1.5.

Трансформация, описанная в теореме А1.4, имеет следующую сложность: количество состояний сохраняется (обозначим его через n(Q)); если в  $\mathfrak A$  количество стрелок в переходах, соответствующих буквам из  $\Sigma$ , равнялось n, то количество стрелок в автомате  $\mathfrak A'$  можно оценить числом  $n' \leqslant n(Q) \cdot n$ , причём данная оценка является точной (почему?)

# НКА: определение



Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов Обычно в литературе под недетерминированным конечным автоматом понимается конечный автомат, не содержащий  $\varepsilon$ -переходов.

# НКА: определение

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произве дение автоматов Обычно в литературе под недетерминированным конечным автоматом понимается конечный автомат, не содержащий  $\varepsilon$ -переходов.

### Определение А1.12.

Двухосновная структура  $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$  называется **недетерминированным конечным автоматом (НКА)**, если она удовлетворяет следующим условиям:

- ullet Q 
  eq arnothing конечное множество состояний;
- $\Sigma \neq \varnothing$  конечный алфавит;
- $Q \cap \Sigma = \emptyset$ ;
- $\delta: Q \times \Sigma \to \mathcal{P}(Q)$  функция перехода;
- ullet  $arnothing arnothing 
  eq Q_0 \subseteq Q$  множество начальных состояний;
- $F \subseteq Q$  множество конечных состояний.

# Способы задания НКА

Лекция A1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

 $\varepsilon$ -НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Графический.

Самый наглядный, но не всегда удобный для практических целей. Любой НКА может быть представлен в виде конечного ориентированного помеченного графа, возможно, с петлями, в котором из вершины, обозначающей состояние, исходит стрелка, помеченная буквой алфавита  $\Sigma$ , согласно его функции перехода. В отличие от ДКА, количество стрелок, помеченных буквой из  $\Sigma$ , не обязано равняться единице (оно может равняться и нулю). При этом помечаются также и вершины этого графа для того, чтобы можно было отличить начальные (ещё одно отличие!!!), а также конечные состояния от остальных.

# Способы задания НКА

Лекция A1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведения

### Графический.

Самый наглядный, но не всегда удобный для практических целей. Любой НКА может быть представлен в виде конечного ориентированного помеченного графа, возможно, с петлями, в котором из вершины, обозначающей состояние, исходит стрелка, помеченная буквой алфавита  $\Sigma$ , согласно его функции перехода. В отличие от ДКА, количество стрелок, помеченных буквой из  $\Sigma$ , не обязано равняться единице (оно может равняться и нулю). При этом помечаются также и вершины этого графа для того, чтобы можно было отличить начальные (ещё одно отличие!!!), а также конечные состояния от остальных.

#### Табличный.

Любой НКА однозначно задаётся таблицей, описывающей функцию перехода, в которой определённым образом выделяются начальные, а также конечные состояния.

# НКА: пример

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалент-

Произведение

Пример А1.9.

# Как работает НКА?

#### Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

 $arepsilon ext{-} \mathsf{HKA} : \ \mathsf{ochobholo} \ \mathsf{cbedehus}$ 

НКА: основные сведения

ДКА и НКА эквивалентность

Произведения автоматов Пусть заданы недетерминированный конечный автомат  $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$  и слово  $\alpha=a_1a_2\ldots a_n$ , где  $n\in\omega$ . Для того, чтобы переработать данное слово на заданном автомате, необходимо проделать следующую процедуру:

t=0: в момент t=0 находимся в одном из состояний из  $Q_0$ ;

 $t\mapsto t+1$ : предположим, что в момент времени t находимся в состоянии q(t); при этом переработано слово  $a_1a_2\dots a_t$ ; тогда в момент t+1 мы попадаем в состояние  $q(t+1)\in \delta(q(t),a_{t+1})$ ;

Завершение. Если после полной переработки слова  $\alpha$  мы попадаем в конечное состояние, а именно,  $q(n) \in F$ , то слово  $\alpha$  распознается автоматом  $\mathfrak{A}$ ; если никакая последовательность не приводит в конечное состояние, то слово  $\alpha$  им не распознается.

# НКА: распознаваемые слова

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произве дение автоматов

### Определение А1.13.

Пусть задан НКА  $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$ . Пусть также  $lpha=w_1w_2\dots w_n\in\Sigma^*\ (n\in\omega)$ . Будем говорить, что слово lpha распознаётся НКА  $\mathfrak{A},$  если найдутся состояния  $r_0,\,r_1,\,\dots,\,r_n\in Q,$  удовлетворяющие следующим условиям:

- $r_0 \in Q_0$ ;
- $r_{i+1} \in \delta(r_i, w_{i+1}), 0 \leqslant i < n;$
- $r_n \in F$ .

# НКА: распознаваемые слова

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произве дение автоматов

### Определение А1.13.

Пусть задан НКА  $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$ . Пусть также  $lpha=w_1w_2\dots w_n\in\Sigma^*\ (n\in\omega)$ . Будем говорить, что слово lpha распознаётся НКА  $\mathfrak{A},$  если найдутся состояния  $r_0,\,r_1,\,\dots,\,r_n\in Q,$  удовлетворяющие следующим условиям:

- $r_0 \in Q_0$ ;
- $r_{i+1} \in \delta(r_i, w_{i+1}), \ 0 \leqslant i < n;$
- $r_n \in F$ .

### Определение А1.14.

Язык, распознаваемый НКА  $\mathfrak{A}$ , — это  $L(\mathfrak{A}) = \{ \alpha \in \Sigma^* \mid \alpha \text{ распознаётся НКА } \mathfrak{A} \}.$ 

# НКА: основные примеры



Вадим Пузаренко

Языки: основные сведения

ДКА: основные

ε-НКΑ: основные

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Предложение А1.4.

Для любого  $\alpha \in \Sigma^*$  язык  $\{\alpha\}$  распознаваем некоторым НКА.

# НКА: основные примеры

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

#### Предложение А1.4.

Для любого  $\alpha \in \Sigma^*$  язык  $\{\alpha\}$  распознаваем некоторым НКА.

#### Доказательство.

Пусть  $\alpha=w_1w_2\dots w_n\in \Sigma^*$   $(n\in\omega)$ ; определим автомат  $\mathfrak{A}=(Q;\Sigma;\delta,\{q_0\},F)$  следующим образом:

- $Q = \{q_0, q_1, \ldots, q_n\};$
- $F = \{q_n\};$
- $\delta = \{((q_i, w_{i+1}), \{q_{i+1}\}) \mid 0 \le i < n\} \cup \{((q_i, a), \varnothing) \mid a \in \Sigma \setminus \{w_{i+1}\}, 0 \le i < n\} \cup \{((q_n, a), \varnothing) \mid a \in \Sigma\}.$

Так как последовательность  $q_0, q_1, \ldots, q_n$  состояний удовлетворяет условиям определения распознавания слова  $\alpha$  в автомате  $\mathfrak{A}$ , имеем  $\alpha \in \mathrm{L}(\mathfrak{A})$ .

## НКА: основные примеры



Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

## Доказательство (окончание).

Остаётся теперь только показать, что  $\beta \not\in \mathrm{L}(\mathfrak{A})$  при  $\beta \in \Sigma^* \setminus \{\alpha\}$ . Разберем несколько случаев.

## НКА: основные примеры

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Доказательство (окончание).

Остаётся теперь только показать, что  $\beta \not\in \mathrm{L}(\mathfrak{A})$  при  $\beta \in \Sigma^* \setminus \{\alpha\}$ . Разберем несколько случаев.

 $eta \sqsubseteq_{
m beg} lpha$ . В этом случае единственной последовательностью состояний для считывания слова eta будет  $q_0, q_1, \ldots, q_{{
m lh}(eta)},$  причём  ${
m lh}(eta) < n$ ; в частности,  $q_{{
m lh}(eta)} 
ot\in \{q_n\} = F$ . Таким образом,  $eta \not\in {
m L}(\mathfrak{A})$ .

# НКА: основные примеры

#### Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Доказательство (окончание).

Остаётся теперь только показать, что  $\beta \notin L(\mathfrak{A})$  при  $\beta \in \Sigma^* \setminus \{\alpha\}$ . Разберем несколько случаев.

- $eta \sqsubseteq_{
  m beg} lpha$ . В этом случае единственной последовательностью состояний для считывания слова eta будет  $q_0, q_1, \ldots, q_{{
  m lh}(eta)},$  причём  ${
  m lh}(eta) < n$ ; в частности,  $q_{{
  m lh}(eta)} 
  ot\in \{q_n\} = F$ . Таким образом,  $eta 
  otin {
  m L}(\mathfrak{A})$ .

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Теорема А1.5.

Если языки  $L_1$  и  $L_2$  конечного алфавита  $\Sigma \neq \varnothing$  распознаются некоторыми НКА, то язык  $L_1 \cup L_2$  также распознаётся некоторым НКА.

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Теорема А1.5.

Если языки  $L_1$  и  $L_2$  конечного алфавита  $\Sigma \neq \varnothing$  распознаются некоторыми НКА, то язык  $L_1 \cup L_2$  также распознаётся некоторым НКА.

#### Доказательство.

Пусть недетерминированные конечные автоматы  $\mathfrak{A}_1=(Q_1;\Sigma;\delta_1,Q_0^1,F_1)$  и  $\mathfrak{A}_2=(Q_2;\Sigma;\delta_2,Q_0^2,F_2)$  таковы, что  $L_1=\mathrm{L}(\mathfrak{A}_1)$  и  $L_2=\mathrm{L}(\mathfrak{A}_2)$ . Без ограничения общности, можно считать, что  $Q_1\cap Q_2=\varnothing$ . Положим  $\mathfrak{A}'=(Q_1\cup Q_2;\Sigma;\delta_1\cup\delta_2,Q_0^1\cup Q_0^2,F_1\cup F_2)$  и докажем, что  $\mathrm{L}(\mathfrak{A}')=L_1\cup L_2$ .

#### Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Доказательство (окончание).

 $L_1 \cup L_2 \subseteq L(\mathfrak{A}')$ . Пусть  $\alpha = w_1w_2 \dots w_n \in L_1 \cup L_2$ ; разберём только случай, когда  $\alpha \in L_1$ , — случай, когда  $\alpha \in L_2$ , рассматривается аналогично. Пусть последовательность  $q_0, q_1, \dots, q_n$  состояний свидетельствует о том, что  $\alpha \in L_1$  в автомате  $\mathfrak{A}_1$ . Тогда  $q_0 \in Q_0^1 \subseteq Q_0^1 \cup Q_0^2$ ,  $q_{i+1} \in \delta_1(q_i, w_{i+1}) \subseteq (\delta_1 \cup \delta_2)(q_i, w_{i+1})$  для всех  $i, 0 \leqslant i < n$ , и, к тому же,  $q_n \in F_1 \subseteq F_1 \cup F_2$ . Таким образом,  $\alpha \in L(\mathfrak{A}')$ .

#### Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произве дение автоматов

### Доказательство (окончание).

 $L_1 \cup L_2 \subseteq L(\mathfrak{A}')$ . Пусть  $\alpha = w_1w_2 \dots w_n \in L_1 \cup L_2$ ; разберём только случай, когда  $\alpha \in L_1$ , — случай, когда  $\alpha \in L_2$ , рассматривается аналогично. Пусть последовательность  $q_0, q_1, \dots, q_n$  состояний свидетельствует о том, что  $\alpha \in L_1$  в автомате  $\mathfrak{A}_1$ . Тогда  $q_0 \in Q_0^1 \subseteq Q_0^1 \cup Q_0^2$ ,  $q_{i+1} \in \delta_1(q_i, w_{i+1}) \subseteq (\delta_1 \cup \delta_2)(q_i, w_{i+1})$  для всех  $i, 0 \leqslant i < n$ , и, к тому же,  $q_n \in F_1 \subseteq F_1 \cup F_2$ . Таким образом,  $\alpha \in L(\mathfrak{A}')$ .

 $\mathbf{L}(\mathfrak{A}')\subseteq L_1\cup L_2$ . Пусть  $\alpha=w_1w_2\dots w_n\in\mathbf{L}(\mathfrak{A}')$ ; тогда найдётся последовательность  $q_0,\ q_1,\ \dots,\ q_n$  состояний из  $Q_1\cup Q_2$  такая, что  $q_0\in Q_0^1\cup Q_0^2,\ q_{i+1}\in(\delta_1\cup\delta_2)(q_i,w_{i+1})$  и, к тому же,  $q_n\in F_1\cup F_2$ . Пусть для определённости  $q_0\in Q_0^2$ . Так как  $Q_1\cap Q_2=\varnothing$  и  $(\delta_1\cup\delta_2)\upharpoonright Q_2=\delta_2$ , приходим к тому, что  $q_i\in Q_2$ ,  $q_{i+1}\in\delta_2(q_i,w_{i+1})$  для всех  $i,\ 0\leqslant i< n$ , и, к тому же,  $q_n\in F_2$ . Таким образом,  $\alpha\in\mathbf{L}(\mathfrak{A}_2)\subseteq L_1\cup L_2$ .

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

#### Замечание А1.6.

Трансформация, описанная в теореме A1.5, имеет следующую сложность: количество состояний и стрелок в автомате  $\mathfrak{A}'$  есть сумма соответственно количеств состояний и количеств стрелок из автоматов  $\mathfrak{A}_1$  и  $\mathfrak{A}_2$ .

Лекция А1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

#### Замечание А1.6.

Трансформация, описанная в теореме A1.5, имеет следующую сложность: количество состояний и стрелок в автомате  $\mathfrak{A}'$  есть сумма соответственно количеств состояний и количеств стрелок из автоматов  $\mathfrak{A}_1$  и  $\mathfrak{A}_2$ .

### Следствие А1.1.

Объединение конечного числа языков, распознаваемых недетерминированными конечными автоматами, является языком, распознаваемым некоторым НКА.

Лекция А1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

#### Замечание А1.6.

Трансформация, описанная в теореме A1.5, имеет следующую сложность: количество состояний и стрелок в автомате  $\mathfrak{A}'$  есть сумма соответственно количеств состояний и количеств стрелок из автоматов  $\mathfrak{A}_1$  и  $\mathfrak{A}_2$ .

## Следствие А1.1.

Объединение конечного числа языков, распознаваемых недетерминированными конечными автоматами, является языком, распознаваемым некоторым НКА.

### Доказательство.

Проводится индукцией по количеству n языков, распознаваемых недетерминированными конечными автоматами, причём база индукции описывается в предложении A1.2(1), а индукционный шаг — в теореме A1.5.

## НКА: конечные языки

Лекция А1 Языки, автоматы

Вадим Пузаренк

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение

## Следствие А1.2.

Любой конечный язык распознаваем некоторым НКА.

## НКА: конечные языки

Лекция А1 Языки, автоматы

Вадим Пузаренк

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Следствие А1.2.

Любой конечный язык распознаваем некоторым НКА.

#### Доказательство.

Непосредственно следует из следствия A1.1 и предложения A1.4.



Вадим Пузаренко

Языки: основные сведения

ДКА: основные

arepsilon-НКА: основные

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Теорема А1.6.

Язык L распознаваем некоторым НКА, если и только если его обращение  $L^R$  также распознаваемо некоторым НКА.

Лекция А1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведения автоматов

### Теорема А1.6.

Язык L распознаваем некоторым НКА, если и только если его обращение  $L^R$  также распознаваемо некоторым НКА.

#### Доказательство.

( $\Rightarrow$ ) Разберём только случай, когда  $L \neq \varnothing$ : случай, когда  $L = \varnothing$ , очевиден, поскольку  $L^R$  также пуст. Пусть НКА  $\mathfrak{A} = (Q; \Sigma; \delta, Q_0, F)$  таков, что  $L = \mathrm{L}(\mathfrak{A})$ . Покажем, что  $L^R = \mathrm{L}(\mathfrak{A}')$  для автомата  $\mathfrak{A}' = (Q; \Sigma; \delta', F, Q_0)$ , где  $q \in \delta'(q', a) \Leftrightarrow q' \in \delta(q, a)$  для всех  $q, q' \in Q$  и  $q \in \Sigma$ . (Другими словами, в автомате все стрелки меняем на противоположные, начальные состояния — на конечные, а конечные состояния — на начальные.)

#### Лекция A1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Теорема А1.6.

Язык L распознаваем некоторым НКА, если и только если его обращение  $L^R$  также распознаваемо некоторым НКА.

#### Доказательство.

 $(\Rightarrow)$  Разберём только случай, когда  $L \neq \varnothing$ : случай, когда  $L = \varnothing$ , очевиден, поскольку  $L^R$  также пуст. Пусть НКА  $\mathfrak{A} = (Q; \Sigma; \delta, Q_0, F)$  таков, что  $L = \mathrm{L}(\mathfrak{A})$ . Покажем, что  $L^R = \mathrm{L}(\mathfrak{A}')$  для автомата  $\mathfrak{A}' = (Q; \Sigma; \delta', F, Q_0)$ , где  $q \in \delta'(q', a) \Leftrightarrow q' \in \delta(q, a)$  для всех  $q, q' \in Q$  и  $q \in \Sigma$ . (Другими словами, в автомате все стрелки меняем на противоположные, начальные состояния — на конечные, а конечные состояния — на начальные.)

 $L(\mathfrak{A}') \subseteq L^R$ . Пусть  $\alpha = w_1 w_2 \dots w_n \in L(\mathfrak{A}')$ ; тогда существует последовательность  $q_0, q_1, \dots, q_n$  состояний такая, что  $q_0 \in F$ ,  $q_n \in Q_0$  и  $q_{i+1} \in \delta'(q_i, w_{i+1})$  для всех  $i, 0 \leqslant i < n$ .

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Доказательство (окончание).

Из определения следует, что  $q_i \in \delta(q_{i+1}, w_{i+1})$  и, следовательно,  $\alpha^R = w_n \dots w_2 w_1 \in \mathrm{L}(\mathfrak{A}) = L$ ; таким образом,  $\alpha = (\alpha^R)^R \in L^R$ .

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произве дение автоматов

### Доказательство (окончание).

Из определения следует, что  $q_i \in \delta(q_{i+1},w_{i+1})$  и, следовательно,  $\alpha^R = w_n \dots w_2 w_1 \in \mathrm{L}(\mathfrak{A}) = L$ ; таким образом,  $\alpha = (\alpha^R)^R \in L^R$ .  $L^R \subseteq \mathrm{L}(\mathfrak{A}')$ . Пусть  $\alpha = w_1 w_2 \dots w_n \in L^R$ , т. е.  $w_n \dots w_2 w_1 \in L$ ; тогда существует последовательность  $q_0, q_1, \dots, q_n$  состояний такая, что  $q_0 \in Q_0, q_n \in F$  и  $q_{i+1} \in \delta(q_i, w_{n-i})$  для всех i,  $0 \leqslant i < n$ . Из определения следует, что  $q_i \in \delta'(q_{i+1}, w_{n-i})$  и, следовательно,  $\alpha = w_1 w_2 \dots w_n \in \mathrm{L}(\mathfrak{A}')$ .

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

 $arepsilon ext{-} \mathsf{HKA} : \ \mathsf{ochobholo} \ \mathsf{cbedehus}$ 

НКА: основные сведения

ДКА и НКА эквивалентность

Произве дение автоматов

### Доказательство (окончание).

Из определения следует, что  $q_i \in \delta(q_{i+1},w_{i+1})$  и, следовательно,  $\alpha^R = w_n \dots w_2 w_1 \in \mathrm{L}(\mathfrak{A}) = L$ ; таким образом,  $\alpha = (\alpha^R)^R \in L^R$ .  $L^R \subseteq \mathrm{L}(\mathfrak{A}')$ . Пусть  $\alpha = w_1 w_2 \dots w_n \in L^R$ , т. е.  $w_n \dots w_2 w_1 \in L$ ; тогда существует последовательность  $q_0, q_1, \dots, q_n$  состояний такая, что  $q_0 \in Q_0, q_n \in F$  и  $q_{i+1} \in \delta(q_i, w_{n-i})$  для всех i,  $0 \leqslant i < n$ . Из определения следует, что  $q_i \in \delta'(q_{i+1}, w_{n-i})$  и, следовательно,  $\alpha = w_1 w_2 \dots w_n \in \mathrm{L}(\mathfrak{A}')$ .

 $(\Leftarrow)$  Если  $L^R$  распознаваем некоторым НКА, то, по доказанному,  $(L^R)^R=L$  также распознаваем некоторым НКА.

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведения автоматов

## Доказательство (окончание).

Из определения следует, что  $q_i \in \delta(q_{i+1}, w_{i+1})$  и, следовательно,  $\alpha^R = w_n \dots w_2 w_1 \in \mathrm{L}(\mathfrak{A}) = L$ ; таким образом,  $\alpha = (\alpha^R)^R \in L^R$ .  $L^R \subseteq \mathrm{L}(\mathfrak{A}')$ . Пусть  $\alpha = w_1 w_2 \dots w_n \in L^R$ , т. е.  $w_n \dots w_2 w_1 \in L$ ; тогда существует последовательность  $q_0, q_1, \dots, q_n$  состояний такая, что  $q_0 \in Q_0, q_n \in F$  и  $q_{i+1} \in \delta(q_i, w_{n-i})$  для всех i,  $0 \leqslant i < n$ . Из определения следует, что  $q_i \in \delta'(q_{i+1}, w_{n-i})$  и, следовательно,  $\alpha = w_1 w_2 \dots w_n \in \mathrm{L}(\mathfrak{A}')$ .

 $(\Leftarrow)$  Если  $L^R$  распознаваем некоторым НКА, то, по доказанному,  $(L^R)^R = L$  также распознаваем некоторым НКА.

### Замечание А1.7.

Трансформация, описанная в теореме A1.6, сохраняет как количество состояний, так и количество стрелок.

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Теорема А1.7.

Если языки  $L_1$  и  $L_2$  распознаваемы некоторыми НКА, то их конкатенация  $L_1L_2$  также распознаваема некоторым НКА.

Произведение автоматов

### Теорема А1.7.

Если языки  $L_1$  и  $L_2$  распознаваемы некоторыми НКА, то их конкатенация  $L_1L_2$  также распознаваема некоторым НКА.

### Доказательство.

Пусть НКА  $\mathfrak{A}_1=(Q_1;\Sigma;\delta_1,Q_0^1,F_1)$  и  $\mathfrak{A}_2=(Q_2;\Sigma;\delta_2,Q_0^2,F_2)$  таковы, что  $L_1=\mathrm{L}(\mathfrak{A}_1)$  и  $L_2=\mathrm{L}(\mathfrak{A}_2)$ . Будем считать, что  $Q_1\cap Q_2=\varnothing$ . По теореме А1.4, достаточно построить  $\varepsilon$ -НКА, распознающий язык  $L_1L_2$ . Определим  $\mathfrak{A}'=(Q_1\cup Q_2;\Sigma;\delta',Q_0^1,F_2)$  так, что  $\delta'=\delta_1\cup\delta_2\cup\{((q,\varepsilon),q')\mid q\in F_1,\,q'\in Q_0^2\}\cup\{((q,\varepsilon),\varnothing)\mid q\not\in F_1\};$  докажем, что  $\mathrm{L}(\mathfrak{A}')=L_1L_2$ .

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

## Доказательство (продолжение).

 $L(\mathfrak{A}')\subseteq L_1L_2$ . Пусть  $\alpha=w_1w_2\ldots w_n\in L(\mathfrak{A}')$ ; тогда существуют последовательность  $q_0, q_1, ..., q_m \ (m \geqslant n)$  и  $0 \le i_0 < i_1 < \ldots < i_{n-1} < m$ , удовлетворяющие следующим условиям:  $q_0 \in Q_0^1$ ,  $q_m \in F_2$  и  $q_{i,+1} \in \delta'(q_{i}, w_{i+1})$   $(0 \leqslant i < n)$ , а также  $q_{k+1} \in \delta'(q_k, \varepsilon)$   $(0 \leqslant k < m, k \neq i_i, 0 \leqslant i < n)$ . Так как  $Q_1 \cap Q_2 = \emptyset$ , должно выполняться m > n. Из того, что  $\delta'(q,\varepsilon) \subseteq Q_2 \; (q \in Q_1 \cup Q_2)$  и  $\delta'(q',\varepsilon) = \emptyset \; (q' \in Q_2)$ , вытекает  $m\leqslant n+1$ . Пусть  $k_0$  таково, что  $q_{k_0+1}\in\delta'(q_{k_0},\varepsilon)$ ; тогда  $q_{k_0}\in F_1$  и  $q_{i} \in Q_{1} \ (0 \leqslant j \leqslant k_{0})$ ; следовательно,  $\alpha_1 = w_1 w_2 \dots w_{k_0} \in L(\mathfrak{A}_1) = L_1$ . Кроме того,  $q_{k_0+1} \in Q_0^2$  и  $q_i \in Q_2$  $(k_0 + 1 \le i \le n + 1)$ ; следовательно,  $\alpha_2 = w_{k_0+1} \dots w_n \in \mathrm{L}(\mathfrak{A}_2) = L_2$ . Таким образом,  $\alpha = \alpha_1 \hat{\alpha}_2 \in L_1 L_2$ 

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произве дение автоматов

## Доказательство (окончание).

 $L_1L_2\subseteq L(\mathfrak{A}')$ . Пусть  $u_1u_2\ldots u_m\in L_1$  и  $v_1v_2\ldots v_n\in L_2$ ; тогда существуют последовательности  $r_0,\ r_1,\ \ldots,\ r_m\in Q_1$  и  $s_0,\ s_1,\ \ldots,\ s_n\in Q_2$ , удовлетворяющие следующим условиям:  $r_0\in Q_0^1,\ s_0\in Q_0^2,\ r_m\in F_1,\ s_n\in F_2$  и, к тому же,  $r_{i+1}\in \delta_1(r_i,u_{i+1})$   $(0\leqslant i< m),\ s_{j+1}\in \delta_2(s_j,v_{j+1})\ (0\leqslant j< n)$ . Далее, имеем  $s_0\in \delta'(r_m,\varepsilon)$  и, тем самым,  $u_1u_2\ldots u_mv_1v_2\ldots v_n\in L(\mathfrak{A}')$ .

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произве дение автоматов

### Доказательство (окончание).

 $L_1L_2\subseteq L(\mathfrak{A}')$ . Пусть  $u_1u_2\dots u_m\in L_1$  и  $v_1v_2\dots v_n\in L_2$ ; тогда существуют последовательности  $r_0,\ r_1,\dots,\ r_m\in Q_1$  и  $s_0,\ s_1,\dots,\ s_n\in Q_2$ , удовлетворяющие следующим условиям:  $r_0\in Q_0^1$ ,  $s_0\in Q_0^2$ ,  $r_m\in F_1,\ s_n\in F_2$  и, к тому же,  $r_{i+1}\in \delta_1(r_i,u_{i+1})$   $(0\leqslant i< m),\ s_{j+1}\in \delta_2(s_j,v_{j+1})\ (0\leqslant j< n)$ . Далее, имеем  $s_0\in \delta'(r_m,\varepsilon)$  и, тем самым,  $u_1u_2\dots u_mv_1v_2\dots v_n\in L(\mathfrak{A}')$ .

#### Замечание А1.8.

Трансформация построения НКА без  $\varepsilon$ -переходов, описанная в теореме A1.7, имеет следующую сложность: количество состояний равняется  $n(Q_1)+n(Q_2)$ , а количество стрелок —  $n'\leqslant n_1+n_2+n(Q_1)\cdot n_2$ , причём данная оценка является точной. (см. теорему A1.4).



Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов Зачастую на практике необходимо, чтобы конечный автомат имел единственное начальное состояние. Следующая трансформация позволяет не только предполагать данное условие, но и при этом, что в начальное состояние вернуться уже не удастся.

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов Зачастую на практике необходимо, чтобы конечный автомат имел единственное начальное состояние. Следующая трансформация позволяет не только предполагать данное условие, но и при этом, что в начальное состояние вернуться уже не удастся.

### Теорема А1.8.

Для любого НКА  $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$  существует НКА  $\mathfrak{A}'=(Q';\Sigma;\delta',\{\overline{q}\},F')$  такой, что  $\mathrm{L}(\mathfrak{A})=\mathrm{L}(\mathfrak{A}')$ , удовлетворяющий, к тому же, условию  $\overline{q}\not\in\delta'(q,a)$  для всех  $q\in Q'$  и  $a\in\Sigma$ .

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов Зачастую на практике необходимо, чтобы конечный автомат имел единственное начальное состояние. Следующая трансформация позволяет не только предполагать данное условие, но и при этом, что в начальное состояние вернуться уже не удастся.

### Теорема А1.8.

Для любого НКА  $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$  существует НКА  $\mathfrak{A}'=(Q';\Sigma;\delta',\{\overline{q}\},F')$  такой, что  $\mathrm{L}(\mathfrak{A})=\mathrm{L}(\mathfrak{A}'),$  удовлетворяющий, к тому же, условию  $\overline{q}\not\in\delta'(q,a)$  для всех  $q\in Q'$  и  $a\in\Sigma$ .

### Доказательство.

По теореме A1.4, достаточно построить  $\varepsilon$ -HKA  $\mathfrak{A}'$ , удовлетворяющий заключению теоремы. Определим  $\mathfrak{A}'=(Q\cup\{\overline{q}\};\Sigma;\delta',\{\overline{q}\},F)$  так, что  $\overline{q}\not\in Q$  и  $\delta'=\delta\cup\{((\overline{q},\varepsilon),Q_0)\}\cup\{((q,\varepsilon),\varnothing)\mid q\in Q\}$ ; докажем, что  $\mathrm{L}(\mathfrak{A})=\mathrm{L}(\mathfrak{A}')$ .

#### Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Доказательство (окончание).

 $\mathbf{L}(\mathfrak{A})\subseteq\mathbf{L}(\mathfrak{A}')$ . Пусть  $lpha=w_1w_2\dots w_n\in\mathbf{L}(\mathfrak{A})$ ; тогда существует последовательность  $q_0,\ q_1,\dots,\ q_n$  состояний такая, что  $q_0\in Q_0,\ q_n\in F$  и, к тому же,  $q_{i+1}\in\delta(q_i,w_{i+1})=\delta'(q_i,w_{i+1})\ (0\leqslant i< n)$ . Так как  $q_0\in Q_0=\delta'(\overline{q},\varepsilon)$ , имеем  $lpha\in\mathbf{L}(\mathfrak{A}')$  (следует рассмотреть последовательность  $\overline{q},\ q_0,\ q_1,\dots,\ q_n$ ).

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произве дение автоматов

### Доказательство (окончание).

последовательность  $q_0, q_1, \ldots, q_n$  состояний такая, что  $q_0 \in Q_0$ ,  $q_n \in F$  и, к тому же,  $q_{i+1} \in \delta(q_i, w_{i+1}) = \delta'(q_i, w_{i+1}) \ (0 \leqslant i < n)$ . Так как  $q_0 \in Q_0 = \delta'(\overline{q}, \varepsilon)$ , имеем  $\alpha \in L(\mathfrak{A}')$  (следует рассмотреть последовательность  $\overline{q}$ ,  $q_0$ ,  $q_1$ , ...,  $q_n$ ).  $L(\mathfrak{A}')\subseteq L(\mathfrak{A})$ . Пусть  $\alpha=w_1w_2\ldots w_n\in L(\mathfrak{A}')$ ; тогда существуют последовательность  $r_0, r_1, \ldots, r_m \ (m > n)$  состояний и  $0 \leqslant j_0 < j_1 < \ldots < j_n \leqslant m$  такие, что  $r_0 = \overline{q}$ ,  $r_m \in F$  и, к тому же,  $r_{i,i+1} \in \delta'(r_i, w_{i+1}) = \delta(r_i, w_{i+1}) \ (0 \leqslant i < n), \ r_{k+1} \in \delta'(r_k, \varepsilon)$  $(0 \le k < m, k \ne j_i, 0 \le i < n)$ . Из определения функции  $\delta'$ перехода, а также из того, что  $\mathfrak A$  не содержит  $\varepsilon$ -переходов, следует, что  $r_1 \in Q_0 (= \delta'(r_0, \varepsilon))$  и m = n + 1. Тем самым, последовательность  $r_1, r_2, \ldots, r_{n+1}$  свидетельствует о том, что  $\alpha \in L(\mathfrak{A})$ .

 $L(\mathfrak{A})\subseteq L(\mathfrak{A}')$ . Пусть  $\alpha=w_1w_2\ldots w_n\in L(\mathfrak{A})$ ; тогда существует

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

 $\varepsilon$ -НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение

### Замечание А1.9.

Трансформация, описанная в теореме A1.8, имеет сложность n(Q)+1 для количества состояний и  $n'\leqslant 2\cdot n_1$  для количества стрелок, причём последняя оценка является точной (здесь  $n_1$  — количество стрелок в автомате  $\mathfrak A$ ).



Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

arepsilon-НКА: основные

НКА: основные сведения

ДКА и НКА эквивалентность

Произве дение автоматов

## Теорема А1.9.

Если язык L распознаваем некоторым НКА, то и  $L^*$  распознаваем некоторым НКА.

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Теорема А1.9.

Если язык L распознаваем некоторым НКА, то и  $L^*$  распознаваем некоторым НКА.

### Доказательство.

Пусть язык L распознаётся НКА  $\mathfrak{A}=(Q;\Sigma;\delta,\{q_0\},F)$  (по теореме A1.8 можно предполагать, что автомат  $\mathfrak{A}$  удовлетворяет свойству вахтера). По теореме A1.4, достаточно построить  $\varepsilon$ -НКА  $\mathfrak{A}'$ , распознающий язык  $L^*$ . Определим автомат  $\mathfrak{A}'=(Q;\Sigma;\delta',\{q_0\},\{q_0\})$  так, что  $\delta'=\delta\cup\{((q,\varepsilon),\{q_0\})\mid q\in F\setminus\{q_0\}\}\cup\{((q,\varepsilon),\varnothing)\mid q\in (Q\setminus F)\cup\{q_0\}\};$  докажем, что  $L^*=\mathrm{L}(\mathfrak{A}')$ .

Лекция А1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произве дение автоматов

### Теорема А1.9.

Если язык L распознаваем некоторым НКА, то и  $L^*$  распознаваем некоторым НКА.

### Доказательство.

Пусть язык L распознаётся НКА  $\mathfrak{A}=(Q;\Sigma;\delta,\{q_0\},F)$  (по теореме A1.8 можно предполагать, что автомат  $\mathfrak{A}$  удовлетворяет свойству вахтера). По теореме A1.4, достаточно построить  $\varepsilon$ -НКА  $\mathfrak{A}'$ , распознающий язык  $L^*$ . Определим автомат  $\mathfrak{A}'=(Q;\Sigma;\delta',\{q_0\},\{q_0\})$  так, что  $\delta'=\delta\cup\{((q,\varepsilon),\{q_0\})\mid q\in F\setminus\{q_0\}\}\cup\{((q,\varepsilon),\varnothing)\mid q\in (Q\setminus F)\cup\{q_0\}\};$  докажем, что  $L^*=\mathrm{L}(\mathfrak{A}')$ .

 $L^*\subseteq \mathrm{L}(\mathfrak{A}')$ . Пусть  $\alpha\in L^*$ ; если  $\alpha=\varepsilon$ , то  $\alpha\in\mathrm{L}(\mathfrak{A}')$ , поскольку  $q_0\in\{q_0\}\cap F$ ; перейдём к рассмотрению случая, когда  $\alpha=\beta_0\hat{\ }\beta_1\hat{\ }\ldots\hat{\ }\beta_n$ , где  $\varepsilon\neq\beta_i\in L$ ,  $0\leqslant i\leqslant n$ . Тогда существуют последовательности  $r_0^i=q_0,\,r_1^i,\,\ldots,\,r_{k_i}^i\in F$  состояний, подтверждающие  $\beta_i\in\mathrm{L}(\mathfrak{A})$  ( $\mathrm{lh}(\beta_i)=k_i,\,0\leqslant i\leqslant n$ ).

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Доказательство (окончание).

Тем самым, последовательность  $q_0=r_0^0,\ r_1^0,\ \dots,\ r_{k_0}^0,\ r_0^1,\ r_1^1,\ \dots,\ r_{k_1}^1,\ r_0^2,\ \dots,\ r_0^n,\ r_1^n,\ \dots,\ r_{k_n}^n,\ q_0$  свидетельствует о том, что  $\alpha\in\mathrm{L}(\mathfrak{A}')$ , поскольку  $q_0\in\delta'(r_{k_i}^i,\varepsilon)$   $(0\leqslant i\leqslant n)$  и  $q_0$  — конечное состояние автомата  $\mathfrak{A}'$ .

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произве дение автоматов

### Доказательство (окончание).

Тем самым, последовательность  $q_0 = r_0^0, r_1^0, \ldots, r_{k_0}^0, r_1^1, \ldots,$  $r_{k_1}^1, r_0^2, \ldots, r_0^n, r_1^n, \ldots, r_{k_n}^n, q_0$  свидетельствует о том, что  $\alpha \in \mathrm{L}(\mathfrak{A}')$ , поскольку  $q_0 \in \delta'(r_k^i, \varepsilon)$   $(0 \leqslant i \leqslant n)$  и  $q_0$  — конечное состояние автомата  $\mathfrak{A}'$ .  $L(\mathfrak{A}')\subseteq L^*$ . Пусть  $\varepsilon\neq\alpha\in L(\mathfrak{A}')$ ; тогда существует последовательность  $q_0 = s_0, s_1, \ldots, s_m = q_0$  состояний, свидетельствующая о том, что  $\alpha \in \mathrm{L}(\mathfrak{A}')$ . Пусть также  $0 = i_0 < i_1 < \ldots < i_{k+1} = m$  — возрастающая последовательность всех номеров состояния  $q_0$ . Рассмотрим пару  $i_i < i_{i+1}$  ближайших таких номеров. Так как 🎗 удовлетворяет свойству вахтёра, имеем  $i_i < i_i + 1 < i_{i+1}$ , и единственный способ попасть из  $s_{i_{i+1}-1}$  в  $q_0$ только по arepsilon-переходу; следовательно,  $s_{i_{i+1}-1} \in \mathcal{F} \setminus \{q_0\}$ . Таким образом,  $\alpha=\alpha_1\hat{\alpha}_2\hat{\ldots}\hat{\alpha}_k$ , где последовательность  $s_{i_i}=q_0$ ,  $s_{i_i+1}$ ,  $\ldots$ ,  $s_{i+1}$  свидетельствует о том, что  $\alpha_i \in L(\mathfrak{A}) = L$ , т. е.  $\alpha \in L^*$ .

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Замечание А1.10.

Трансформация, описанная в теореме А1.9, сначала осуществляет переход от произвольного НКА к НКА, удовлетворяющему свойству вахтёра  $(n(Q'') = n(Q) + 1, n'' \leqslant 2 \cdot n_1)$ , а затем уже к НКА, распознающему звёздочку Клини  $(n(Q') = n(Q'') = n(Q) + 1, n' \leqslant 2 \cdot n_1^2)$ .

# $HKA \Rightarrow ДKA$

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные

ДКА и НКА: эквивалентность

Произведение автоматов

### Теорема А1.10.

Для любого недетерминированного конечного автомата  $\mathfrak A$  существует детерминированный конечный автомат  $\mathfrak A'$ , для которого имеет место равенство  $\mathrm L(\mathfrak A)=\mathrm L(\mathfrak A').$ 

# $HKA \Rightarrow ДKA$

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА: эквивалентность

Произведение автоматов

### Теорема А1.10.

Для любого недетерминированного конечного автомата  $\mathfrak A$  существует детерминированный конечный автомат  $\mathfrak A'$ , для которого имеет место равенство  $\mathrm L(\mathfrak A)=\mathrm L(\mathfrak A')$ .

#### Доказательство.

Пусть  $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$  — НКА. Определим ДКА  $\mathfrak{A}'=(\mathcal{P}(Q);\Sigma;\tau,Q_0,F')$  так, что  $F'=\{S\subseteq Q\mid S\cap F\neq\varnothing\}$  и  $\tau(S,a)=\bigcup\limits_{s\in S}\delta(s,a)$  для всех  $a\in\Sigma$  и  $S\subseteq Q$ ; докажем, что  $\mathrm{L}(\mathfrak{A})=\mathrm{L}(\mathfrak{A}').$ 

# $HKA \Rightarrow JKA$

Лекция А1 Языки. автоматы

Вадим Пузаренко

ДКА и НКА: эквивалент-

#### Теорема А1.10.

Для любого недетерминированного конечного автомата  ${\mathfrak A}$ существует детерминированный конечный автомат  $\mathfrak{A}'$ , для которого имеет место равенство  $L(\mathfrak{A}) = L(\mathfrak{A}')$ .

#### Доказательство.

Пусть  $\mathfrak{A} = (Q; \Sigma; \delta, Q_0, F)$  — HKA. Определим ДКА  $\mathfrak{A}'=(\mathcal{P}(Q);\Sigma; au,Q_0,F')$  так, что  $F'=\{S\subseteq Q\mid S\cap F
eq\varnothing\}$  и  $au(S,a) = \bigcup \ \delta(s,a)$  для всех  $a \in \Sigma$  и  $S \subseteq Q$ ; докажем, что  $L(\mathfrak{A}) = L(\mathfrak{A}')$ 

 $L(\mathfrak{A})\subseteq L(\mathfrak{A}')$ . Пусть  $\alpha=w_1w_2\ldots w_n\in L(\mathfrak{A})$ ; тогда существует последовательность  $q_0 \in Q_0, q_1, \ldots, q_n \in F$  состояний из Qтакая, что  $q_{i+1} \in \delta(q_i, w_{i+1}) \ (0 \leqslant i < n)$ . Индукцией по i < nдокажем, что  $q_i \in \tau^*(Q_0, w_1 w_2 \dots w_i)$ .

### Доказательство (окончание).

В самом деле, имеем  $q_0 \in \tau^*(Q_0, \varepsilon) = Q_0$ . Далее, предположим, что  $q_i \in \tau^*(Q_0, w_1w_2 \dots w_i)$ ; тогда  $q_{i+1} \in \delta(q_i, w_{i+1}) \subseteq \bigcup_{s \in \tau^*(Q_0, w_1w_2 \dots w_i)} \delta(s, w_{i+1}) = \tau(\tau^*(Q_0, w_1w_2 \dots w_i), w_{i+1}) = \tau^*(Q_0, w_1w_2 \dots w_{i+1})$ . В конечном итоге, получаем  $q_n \in \tau^*(Q_0, \alpha) \cap F$ ; тем самым,  $\tau^*(Q_0, \alpha) \in F'$  и  $\alpha \in \mathrm{L}(\mathfrak{A}')$ .

ДКА и НКА: эквивалентность

Произве дение автоматов

### Доказательство (окончание).

В самом деле, имеем  $q_0 \in au^*(Q_0, arepsilon) = Q_0$ . Далее, предположим, что  $q_i \in \tau^*(Q_0, w_1 w_2 \dots w_i)$ ; тогда  $q_{i+1} \in \delta(q_i, w_{i+1}) \subseteq \bigcup_{s \in au^*(Q_0, w_1 w_2 ... w_i)} \delta(s, w_{i+1}) =$  $\tau(\tau^*(Q_0, w_1w_2...w_i), w_{i+1}) = \tau^*(Q_0, w_1w_2...w_{i+1})$ . B конечном итоге, получаем  $q_n \in \tau^*(Q_0, \alpha) \cap F$ ; тем самым,  $\tau^*(Q_0, \alpha) \in F'$  и  $\alpha \in L(\mathfrak{A}')$ .  $L(\mathfrak{A}')\subseteq L(\mathfrak{A})$ . Пусть  $\alpha=w_1w_2\ldots w_n\in L(\mathfrak{A}')$ ; тогда  $\tau^*(Q_0,\alpha)\in F'$ . Состояния  $r_0, r_1, \ldots, r_n$  из Q будем находить обратной индукцией по  $i \leq n$  так, чтобы  $r_i \in \tau^*(Q_0, w_1 w_2 \dots w_i)$  и  $r_{i+1} \in \delta(r_i, w_{i+1})$ . Возьмём  $r_n \in \tau^*(Q_0, \alpha) \cap F$ . Предположим, что  $r_{i+1}, \ldots, r_n$  уже выбраны. Так  $\mathsf{kak}\ r_{i+1} \in \tau^*(Q_0, w_1w_2 \dots w_iw_{i+1}) = \tau(\tau^*(Q_0, w_1w_2 \dots w_i), w_{i+1}) =$  $\delta(s,w_{i+1})$ , найдётся  $r_i\in au^*(Q_0,w_1w_2\ldots,w_i)$  такое, что  $s \in \tau^*(Q_0, w_1 w_2 \dots w_i)$  $r_{i+1} \in \delta(r_i, w_{i+1})$ . В конечном итоге,  $r_0 \in \tau^*(Q_0, \varepsilon) = Q_0$ . Таким образом,  $\alpha \in L(\mathfrak{A})$ .

# $HKA \Rightarrow ДKA$

Лекция А1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

 $\varepsilon$ - НКА: основные сведения

НКА: основные сведения

ДКА и НКА: эквивалентность

Произведение автоматов

#### Замечание А1.11.

Трансформация, описанная в теореме A1.10, имеет сложность  $2^{n(Q)}$  по количеству состояний и  $2^{n(Q)} \cdot n(\Sigma)$  по количеству стрелок. Данная оценка является точной (см. пример ниже). Тем самым, при рассмотрении детерминированных конечных автоматов основным показателем является количество состояний, а количество стрелок задаётся однозначно по числу состояний.

# $HKA \Rightarrow ДKA$

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

 $arepsilon ext{-} \mathsf{HKA} : \ \mathsf{ochobholo} \ \mathsf{cbedehus}$ 

НКА: основные сведения

ДКА и НКА: эквивалентность

Произве дение автоматов

#### Замечание А1.11.

Трансформация, описанная в теореме A1.10, имеет сложность  $2^{n(Q)}$  по количеству состояний и  $2^{n(Q)} \cdot n(\Sigma)$  по количеству стрелок. Данная оценка является точной (см. пример ниже). Тем самым, при рассмотрении детерминированных конечных автоматов основным показателем является количество состояний, а количество стрелок задаётся однозначно по числу состояний.

### Пример А1.10.



Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НΚΑ: основные

сведения НКА:

ДКА и НКА: эквивалентность

Произведение автоматов



Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные

ДКА и НКА: эквивалентность

Произведение автоматов Класс языков, распознаваемых ДКА, замкнут относительно следующих операций:

ullet объединения  $L_1, L_2 \mapsto L_1 \cup L_2$  (теоремы A1.3, A1.4, A1.10, A1.5; трансформация имеет сложность  $2^{n(Q_1)+n(Q_2)}$ );

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА: эквивалентность

Произведение автоматов

- ullet объединения  $L_1, L_2 \mapsto L_1 \cup L_2$  (теоремы A1.3, A1.4, A1.10, A1.5; трансформация имеет сложность  $2^{n(Q_1)+n(Q_2)}$ );
- ② дополнения  $L \mapsto \Sigma^* \setminus L$  (теорема A1.1; трансформация имеет сложность n(Q));

#### Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА: эквивалентность

Произведение автоматов

- ullet объединения  $L_1, L_2 \mapsto L_1 \cup L_2$  (теоремы A1.3, A1.4, A1.10, A1.5; трансформация имеет сложность  $2^{n(Q_1)+n(Q_2)}$ );
- ② дополнения  $L\mapsto \Sigma^*\setminus L$  (теорема A1.1; трансформация имеет сложность n(Q));
- ullet конкатенации  $L_1, L_2 \mapsto L_1 L_2$  (теоремы A1.3, A1.4, A1.10, A1.7; трансформация имеет сложность  $2^{n(Q_1)+n(Q_2)}$ );

#### Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

 $arepsilon ext{-} \mathsf{HKA} : \ \mathsf{ochoshide} \ \mathsf{cseqehus}$ 

НКА: основные сведения

ДКА и НКА: эквивалентность

Произведение автоматов

- ullet объединения  $L_1, L_2 \mapsto L_1 \cup L_2$  (теоремы A1.3, A1.4, A1.10, A1.5; трансформация имеет сложность  $2^{n(Q_1)+n(Q_2)}$ );
- ② дополнения  $L\mapsto \Sigma^*\setminus L$  (теорема A1.1; трансформация имеет сложность n(Q));
- ullet конкатенации  $L_1, L_2 \mapsto L_1 L_2$  (теоремы A1.3, A1.4, A1.10, A1.7; трансформация имеет сложность  $2^{n(Q_1)+n(Q_2)}$ );
- loop звёздочки Клини  $L\mapsto L^*$  (теоремы A1.3, A1.4, A1.10, A1.9; трансформация имеет сложность  $2^{n(Q)}$ );

#### Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА: эквивалентность

Произве дение автоматов

- объединения  $L_1, L_2 \mapsto L_1 \cup L_2$  (теоремы A1.3, A1.4, A1.10, A1.5; трансформация имеет сложность  $2^{n(Q_1)+n(Q_2)}$ );
- ② дополнения  $L\mapsto \Sigma^*\setminus L$  (теорема A1.1; трансформация имеет сложность n(Q));
- ullet конкатенации  $L_1, L_2 \mapsto L_1 L_2$  (теоремы A1.3, A1.4, A1.10, A1.7; трансформация имеет сложность  $2^{n(Q_1)+n(Q_2)}$ );
- ullet звёздочки Клини  $L\mapsto L^*$  (теоремы A1.3, A1.4, A1.10, A1.9; трансформация имеет сложность  $2^{n(Q)}$ );
- **©** обращения  $L \mapsto L^R$  (теоремы A1.3, A1.4, A1.10, A1.6; трансформация имеет сложность  $2^{n(Q)+1}$ );

#### Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА: эквивалентность

Произведение автоматов

- ullet объединения  $L_1, L_2 \mapsto L_1 \cup L_2$  (теоремы A1.3, A1.4, A1.10, A1.5; трансформация имеет сложность  $2^{n(Q_1)+n(Q_2)}$ );
- ② дополнения  $L\mapsto \Sigma^*\setminus L$  (теорема A1.1; трансформация имеет сложность n(Q));
- ullet конкатенации  $L_1, L_2 \mapsto L_1 L_2$  (теоремы A1.3, A1.4, A1.10, A1.7; трансформация имеет сложность  $2^{n(Q_1)+n(Q_2)}$ );
- ullet звёздочки Клини  $L\mapsto L^*$  (теоремы A1.3, A1.4, A1.10, A1.9; трансформация имеет сложность  $2^{n(Q)}$ );
- **©** обращения  $L \mapsto L^R$  (теоремы A1.3, A1.4, A1.10, A1.6; трансформация имеет сложность  $2^{n(Q)+1}$ );
- ullet инверсии  $L\mapsto \overline{L}$  при  $\Sigma=\{0;1\}$  (теорема A1.2; трансформация имеет сложность n(Q)).

# ДКА: пересечение

Лекция А1 Языки, автоматы

Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные

НКА: основные

ДКА и НКА: эквивалентность

Произведение

### Теорема А1.11.

Если  $L_1$ ,  $L_2$  распознаваемы некоторыми ДКА, то и их пересечение  $L_1 \cap L_2$  также распознаваемо некоторым ДКА.

# ДКА: пересечение

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА: эквивалентность

Произве дение автоматов

### Теорема А1.11.

Если  $L_1$ ,  $L_2$  распознаваемы некоторыми ДКА, то и их пересечение  $L_1 \cap L_2$  также распознаваемо некоторым ДКА.

### Доказательство.

Непосредственно следует из того, что языки, распознаваемые ДКА, замкнуты относительно операций объединения и дополнения, а также тождества де Моргана  $L_1 \cap L_2 = \Sigma^* \setminus ((\Sigma^* \setminus L_1) \cup (\Sigma^* \setminus L_2)).$ 

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные

ДКА и НКА эквивалентность

Произведение автоматов

### Определение А1.15.

Пусть  $\mathfrak{A}_1=(Q_1;\Sigma;\delta_1,q_0^1,F_1)$  и  $\mathfrak{A}_2=(Q_2;\Sigma;\delta_2,q_0^2,F_2)$  — ДКА. Определим их **произведение** как автомат  $(\mathfrak{A}_1\times\mathfrak{A}_2)(F)==(Q_1\times Q_2;\Sigma;\delta_1\times\delta_2,(q_0^1,q_0^2),F)$ , для которого имеют место соотношения  $(\delta_1\times\delta_2)((q_1,q_2),a)=(\delta_1(q_1,a),\delta_2(q_2,a))$  для всех  $(q_1,q_2)\in Q_1\times Q_2$  и  $a\in\Sigma$ , а также  $F\subseteq Q_1\times Q_2$ .

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

 $arepsilon ext{-} \mathsf{HKA} : \ \mathsf{ochobholo} \ \mathsf{cbedehus}$ 

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Определение А1.15.

Пусть  $\mathfrak{A}_1=(Q_1;\Sigma;\delta_1,q_0^1,F_1)$  и  $\mathfrak{A}_2=(Q_2;\Sigma;\delta_2,q_0^2,F_2)$  — ДКА. Определим их **произведение** как автомат  $(\mathfrak{A}_1\times\mathfrak{A}_2)(F)==(Q_1\times Q_2;\Sigma;\delta_1\times\delta_2,(q_0^1,q_0^2),F)$ , для которого имеют место соотношения  $(\delta_1\times\delta_2)((q_1,q_2),a)=(\delta_1(q_1,a),\delta_2(q_2,a))$  для всех  $(q_1,q_2)\in Q_1\times Q_2$  и  $a\in\Sigma$ , а также  $F\subseteq Q_1\times Q_2$ .

#### Лемма А1.1.

Выполняется равенство  $(\delta_1 \times \delta_2)^*((q_1, q_2), \alpha) = (\delta_1^*(q_1, \alpha), \delta_2^*(q_2, \alpha))$  для всех  $\alpha \in \Sigma^*$  и  $(q_1, q_2) \in Q_1 \times Q_2$ .

Лекция A1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Определение А1.15.

Пусть  $\mathfrak{A}_1=(Q_1;\Sigma;\delta_1,q_0^1,F_1)$  и  $\mathfrak{A}_2=(Q_2;\Sigma;\delta_2,q_0^2,F_2)$  — ДКА. Определим их **произведение** как автомат  $(\mathfrak{A}_1\times\mathfrak{A}_2)(F)==(Q_1\times Q_2;\Sigma;\delta_1\times\delta_2,(q_0^1,q_0^2),F)$ , для которого имеют место соотношения  $(\delta_1\times\delta_2)((q_1,q_2),a)=(\delta_1(q_1,a),\delta_2(q_2,a))$  для всех  $(q_1,q_2)\in Q_1\times Q_2$  и  $a\in\Sigma$ , а также  $F\subseteq Q_1\times Q_2$ .

#### Лемма А1.1.

Выполняется равенство  $(\delta_1 \times \delta_2)^*((q_1, q_2), \alpha) = (\delta_1^*(q_1, \alpha), \delta_2^*(q_2, \alpha))$  для всех  $\alpha \in \Sigma^*$  и  $(q_1, q_2) \in Q_1 \times Q_2$ .

#### Доказательство.

Индукцией по  $\mathrm{lh}(\alpha)$ . В самом деле,  $(\delta_1 \times \delta_2)^*((q_1,q_2),\varepsilon) = (q_1,q_2) = (\delta_1^*(q_1,\varepsilon),\delta_2^*(q_2,\varepsilon));$  далее,  $(\delta_1 \times \delta_2)^*((q_1,q_2),\alpha\hat{a}) = (\delta_1 \times \delta_2)((\delta_1 \times \delta_2)^*((q_1,q_2),\alpha),a) = (\delta_1 \times \delta_2)((\delta_1^*(q_1,\alpha),\delta_2^*(q_2,\alpha)),a) = (\delta_1(\delta_1^*(q_1,\alpha),a),\delta_2(\delta_2^*(q_2,\alpha),a)) = (\delta_1^*(q_1,\alpha\hat{a}),\delta_2^*(q_2,\alpha\hat{a})).$ 

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные

ДКА и НКА эквивалентность

Произведение автоматов

### Второе доказательство теоремы А1.11.

Воспользовавшись леммой A1.1, приходим к следующей эквивалентности для произведения автоматов  $(\mathfrak{A}_1 \times \mathfrak{A}_2)(F_1 \times F_2)$   $(\alpha \in \Sigma^*)$ :

$$\alpha \in L(\mathfrak{A}_1 \times \mathfrak{A}_2) \Leftrightarrow (\delta_1 \times \delta_2)^*((q_1^0, q_2^0), \alpha) = (\delta_1^*(q_1^0, \alpha), \delta_2^*(q_2^0, \alpha)) \in F_1 \times F_2 \Leftrightarrow [\delta_1^*(q_1^0, \alpha) \in F_1 \text{ in } \delta_2^*(q_2^0, \alpha) \in F_2] \Leftrightarrow [\alpha \in L(\mathfrak{A}_1) \text{ in } \alpha \in L(\mathfrak{A}_2)] \Leftrightarrow \alpha \in L(\mathfrak{A}_1) \cap L(\mathfrak{A}_2).$$

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

 $arepsilon ext{-} \mathsf{HKA} : \ \mathsf{ochobhise} \ \mathsf{cbedehus}$ 

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Второе доказательство теоремы А1.11.

Воспользовавшись леммой A1.1, приходим к следующей эквивалентности для произведения автоматов  $(\mathfrak{A}_1 \times \mathfrak{A}_2)(F_1 \times F_2)$   $(\alpha \in \Sigma^*)$ :

$$\begin{array}{l} \alpha \in \mathrm{L}(\mathfrak{A}_1 \times \mathfrak{A}_2) \Leftrightarrow (\delta_1 \times \delta_2)^*((q_1^0, q_2^0), \alpha) = (\delta_1^*(q_1^0, \alpha), \delta_2^*(q_2^0, \alpha)) \in \\ F_1 \times F_2 \Leftrightarrow [\delta_1^*(q_1^0, \alpha) \in F_1 \text{ in } \delta_2^*(q_2^0, \alpha) \in F_2] \Leftrightarrow [\alpha \in \mathrm{L}(\mathfrak{A}_1) \text{ in } \alpha \in \mathrm{L}(\mathfrak{A}_2)] \Leftrightarrow \alpha \in \mathrm{L}(\mathfrak{A}_1) \cap \mathrm{L}(\mathfrak{A}_2). \end{array}$$

#### Замечание А1.12.

В первом доказательстве трансформация имеет сложность экспоненциальную по количеству состояний. Трансформация, изложенная во втором доказательстве, имеет сложность  $n(Q_1) \cdot n(Q_2)$ , что значительно ниже изложенной в первом доказательстве.

### ДКА: объединение

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные

ДКА и НКА эквивалентность

Произведение автоматов

### Теорема А1.12.

Если  $L_1$ ,  $L_2$  распознаваемы некоторыми ДКА, то  $L_1 \cup L_2$  также распознаваем некоторым ДКА.

# ДКА: объединение

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА:

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Теорема А1.12.

Если  $L_1$ ,  $L_2$  распознаваемы некоторыми ДКА, то  $L_1 \cup L_2$  также распознаваем некоторым ДКА.

#### Доказательство.

Здесь можно применить теоремы A1.1, A1.11 к равенству  $L_1 \cup L_2 = \Sigma^* \setminus ((\Sigma^* \setminus L_1) \cap (\Sigma^* \setminus L_2))$ , однако мы приведём явную конструкцию, которая соответствует данным рассуждениям. Пусть ДКА  $\mathfrak{A}_1 = (Q_1; \Sigma, \delta_1, q_0^1, F_1)$  и  $\mathfrak{A}_2 = (Q_2; \Sigma, \delta_2, q_0^2, F_2)$  таковы, что  $L_1 = L(\mathfrak{A}_1)$  и  $L_2 = L(\mathfrak{A}_2)$ ; докажем, что  $L_1 \cup L_2 = L((\mathfrak{A}_1 \times \mathfrak{A}_2)((Q_1 \times F_2) \cup (F_1 \times Q_2)))$ . В самом деле,  $\alpha \in L((\mathfrak{A}_1 \times \mathfrak{A}_2)((Q_1 \times F_2) \cup (F_1 \times Q_2))) \Leftrightarrow (\delta_1 \times \delta_2)^*((q_0^1, q_0^2), \alpha) \in ((Q_1 \times F_2) \cup (F_1 \times Q_2)) \Leftrightarrow [\delta_1^*(q_0^1, \alpha) \in F_1 \vee \delta_2^*(q_0^2, \alpha) \in F_2] \Leftrightarrow [\alpha \in L_1 \vee \alpha \in L_2] \Leftrightarrow \alpha \in L_1 \cup L_2$  для любого  $\alpha \in \Sigma^*$ .

# ДКА: разность

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные

НКА: основные

ДКА и НКА эквивалентность

Произведение автоматов

### Теорема А1.13.

Если  $L_1$ ,  $L_2$  распознаваемы некоторыми ДКА, то и их разность  $L_1 \setminus L_2$  также распознаваема некоторым ДКА.

# ДКА: разность

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Теорема А1.13.

Если  $L_1$ ,  $L_2$  распознаваемы некоторыми ДКА, то и их разность  $L_1 \setminus L_2$  также распознаваема некоторым ДКА.

### Доказательство.

Непосредственно следует из того, что языки, распознаваемые ДКА, замкнуты относительно операций пересечения и дополнения, а также тождества  $L_1 \setminus L_2 = L_1 \cap (\Sigma^* \setminus L_2)$ .

# ДКА: разность

Лекция А1 Языки,

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКΑ: основные сведения

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

### Теорема А1.13.

Если  $L_1$ ,  $L_2$  распознаваемы некоторыми ДКА, то и их разность  $L_1 \setminus L_2$  также распознаваема некоторым ДКА.

### Доказательство.

Непосредственно следует из того, что языки, распознаваемые ДКА, замкнуты относительно операций пересечения и дополнения, а также тождества  $L_1 \setminus L_2 = L_1 \cap (\Sigma^* \setminus L_2)$ .

#### Замечание А1.13.

Трансформации для объединения и разности, использующие НКА, имеют сложность экспоненциальную по количеству состояний. Трансформации, изложенные в теоремах A1.12, A1.13, имеет сложность  $n(Q_1) \cdot n(Q_2)$ , что значительно ниже трансформаций, использующих НКА.

Лекция А1 Языки, автоматы

Вадим Пузаренко

Языки: основные сведения

ДКА: основные сведения

ε-НКА: основные сведения

НКА: основные

ДКА и НКА эквивалент-

Произведение автоматов Спасибо за внимание.