CSE208: Data Structures and Algorithms II Sessional

Online week 5: Generalized shortest path (B1/B2)

Time: 35 minutes

Generalized shortest-paths problem. In Internet routing, there are delays on lines but also, more significantly, delays at routers. This motivates a generalized shortest-paths problem.

Suppose that in addition to having edge lengths $\{l_e : e \in E\}$, a graph also has *vertex costs* $\{c_v : v \in V\}$. Now define the cost of a path to be the sum of its edge lengths, *plus* the costs of all vertices on the path (including the endpoints). Give an efficient algorithm for the following problem.

Input: A directed graph G = (V, E); positive edge lengths l_e and positive vertex costs c_v ; a starting vertex $s \in V$.

Output: An array $cost[\cdot]$ such that for every vertex u, cost[u] is the least cost of any path from s to u (i.e., the cost of the cheapest path), under the definition above.

Notice that $cost[s] = c_s$.

Input: The first line of the input file will contain the number of vertices $n \leq 1000$ and the number of edges $m \leq 10000$ followed by $n \leq 100000$ followed by $n \leq 100000$ of an edge of the directed graph. The last line will contain a source vertex $n \leq 100000$ of an edge of the directed graph.

Sample input and output:

5 10	Shortest path cost: 21
0 5	0 -> 1 -> 4
13	
2 4	
3 10	
4 6	
0 1 4	
022	
123	
132	
1 4 3	
211	
2 4 5	
2 3 4	
3 4 5	
4 3 1	
0 4	