BOUT++ Results

Dmitry Meyerson

dmitry.meyerson@gmail.com

ABSTRACT

This document highlights some results from BOUT++ simulation

metadata

zs_mode: 1.0

evolved: ['Ni' 'rho' 'jpar'] IC: [1.00000000e-08 0.00000000e+00 0.00000000e+00] ZMAX: 0.01 TIMESTEP: 100.0 **ZMIN: 0.0** ShiftXderivs: false restart: false $grid: /home/cryosphere/BOUT/tools/cyl_and_helimak_grids/Helimak_1_10_1x32_140_lam_n.nc$ MYG: 2.0 dump_format: nc MXG: 2.0 TwistShift: false NOUT: 100.0 MZ: 129.0 mxstep: 10000.0 RTOL: 1e-08 type: cvode ATOL: 1e-12 AA: 2.0 estatic: true nu_perp: 1e-20 phi_flags: 0.0 ZeroElMass: true apar_flags: 0.0 ShearFactor: 0.0 ZZ: 1.0 Zeff: 4.0 ys_mode: 1.0 scale: 1e-08 zs_opt: 3.0 xs_opt: 0.0 bndry_all: neumann ys_opt: 2.0

Te_x: [10.] eV

Ti_x: [0.01] eV

bmag: [1005.43981934] gauss

hthe0: [0.31830987] m

Ni_x: [4.99999949e+10] cm^-3

nx: 5 ny: 32 dt: 100.0

rho_s: [0.45368987] cm rho_i: [0.01434693] cm rho_e: [0.0074855] cm fmei: 0.000272301492212 lambda_ei: [13.98494053]

lambda_ii: [3.4280262]

wci: [4816056.5]

wpi: [2.08710320e+08] wce: [1.78968289e+10] wpe: [1.26114222e+10] v_the: [1.32499432e+08]

v_thi: [69225.75] c_s: [2826129.5]

v_A: [689376.5625]

nueix: [64346.30078125]

nuiix: [5793313.]

nu_hat: [0.05344315]

L_d: [0.01050761]

L_i_inrt: [144.19987488]

L_e_inrt: [1.18735200e+11]

Ve_x: [4.19000000e+08]

R0: 1.1004999876

dz: [0.01]

w_Ln: [4.42295823e-05]

sig_par: [134737.28125]

```
int physics_run(BoutReal t) { solve_phi_tridag(rho, phi, phi_flags); if(estatic || ZeroElMass) { Apar = 0.0;
}else { solve apar tridag(Ajpar, Apar, apar flags); } mesh->communicate(comms); Nit = Ni0; Tit = Ti0; Tet
= Te0; Vit = Vi0; nu = nu hat * Nit / (Tet^1.5); mu i = mui hat * Nit / (Tit^0.5); kapa Te =
3.2*(1./fmei)*(wci/nueix)*(Tet^2.5); kapa Ti = 3.9*(wci/nuiix)*(Tit^2.5); pei = (Te0+Ti0)*Ni + (Te+
Ti)*Ni0; pe = Te0*Ni + Te*Ni0; if(ZeroElMass) { ipar = ((Te0*Grad par LtoC(Ni)) -
(Ni0*Grad par LtoC(phi)))/(fmei*0.51*nu); jpar = lowPass(jpar,8); /* for(int jx=MXG;jxngx-MXG;jx++) {
for(int jy=MYG;jyngy-MYG;jy++) { for(int jz=0;jzngz;jz++) { j [jy][jz] = ( T (Te0[jx][jy] *
(Ni[jx][jy+1][jz] - Ni[jx][jy][jz])) - (Ni0[jx][jy] * (phi[jx][jy+1][jz] - phi[jx][jy][jz])) / (fmei * 0.51 * 1.50)
nu[jx][jy][jz] * dy[jx][jy] * sqrt(mesh->g_22[jx][jy])); } } } */jpar.applyBoundary();
mesh->communicate(jpar); Ve = Vi - jpar/Ni0; Ajpar = Ve; }else { Ve = Ajpar + Apar; jpar = Ni0*(Vi - Ve);
} ddt(Ni) = 0.0; if(evolve_ni) { ddt(Ni) -= vE_Grad(Ni0, phi); /* ddt(Ni) -= Vpar_Grad_par(Vi, Ni0) +
Vpar_Grad_par(Vi0, Ni) + Vpar_Grad_par(Vi, Ni); ddt(Ni) -= Ni0*Div_par(Vi) + Ni*Div_par(Vi0) +
Ni*Div par(Vi); ddt(Ni) += Div par(jpar); ddt(Ni) += 2.0*V dot Grad(b0xcv, pe); ddt(Ni) -=
2.0*(Ni0*V_dot_Grad(b0xcv, phi) + Ni*V_dot_Grad(b0xcv, phi0) + Ni*V_dot_Grad(b0xcv, phi)); */
ddt(Ni) = lowPass(ddt(Ni),8); ddt(Vi) = 0.0; if(evolve vi) \{ ddt(Vi) -= vE Grad(Vi0, phi) + vE Grad(Vi, ph
phi0) + vE Grad(Vi, phi); ddt(Vi) -= Vpar Grad par(Vi0, Vi) + Vpar Grad par(Vi, Vi0) +
Vpar_Grad_par(Vi, Vi); ddt(Vi) -= Grad_par(pei)/Ni0; } ddt(Te) = 0.0; if(evolve_te) { ddt(Te) -=
vE_Grad(Te0, phi) + vE_Grad(Te, phi0) + vE_Grad(Te, phi); ddt(Te) -= Vpar_Grad_par(Ve, Te0) +
Vpar_Grad_par(Ve0, Te) + Vpar_Grad_par(Ve, Te); ddt(Te) += 1.333*Te0*( V_dot_Grad(b0xcv, pe)/Ni0 -
V dot Grad(b0xcv, phi); ddt(Te) += 3.333*Te0*V dot Grad(b0xcv, Te); ddt(Te) +=
(0.6666667/Ni0)*Div_par_K_Grad_par(kapa_Te, Te); } ddt(Ti) = 0.0; if(evolve_ti) { ddt(Ti) =
vE_Grad(Ti0, phi) + vE_Grad(Ti, phi0) + vE_Grad(Ti, phi); ddt(Ti) -= Vpar_Grad_par(Vi, Ti0) +
Vpar\_Grad\_par(Vi0, Ti) + Vpar\_Grad\_par(Vi, Ti); ddt(Ti) += 1.333*(Ti0*V\_dot\_Grad(b0xcv, pe)/Ni0 -= 1.333*(Ti0*V_dot\_Grad(b0xcv, pe)/Ni0 -= 1.333*(Ti0*V_dot\_Grad(b0xcv, pe)/Ni0 -= 1.333*(Ti0*V_dot\_Grad(b0x
Ti*V dot Grad(b0xev, phi); ddt(Ti) = 3.333*Ti0*V dot Grad(b0xev, Ti); ddt(Ti) = 3.333*Ti0*V dot Grad(b0xev, Ti);
(0.6666667/Ni0)*Div_par_K_Grad_par(kapa_Ti, Ti); } ddt(rho) = 0.0; if(evolve_rho) { /* ddt(rho) =
vE Grad(rho0, phi) + vE Grad(rho, phi0) + vE Grad(rho, phi); ddt(rho) -= Vpar Grad par(Vi, rho0) +
Vpar Grad par(Vi0, rho) + Vpar Grad par(Vi, rho); */ ddt(rho) +=
mesh->Bxy*mesh->Bxy*Div_par_CtoL(jpar); /* for(int jx=MXG;jxngx-MXG;jx++) { for(int
(\text{jpar}[\text{jx}][\text{jy}+1][\text{jz}] - \text{jpar}[\text{jx}][\text{jy}][\text{jz}]) / (\text{dy}[\text{jx}][\text{jy}] * \text{sqrt}(\text{mesh-}>g_22[\text{jx}][\text{jy}])); } } } } } } } 
if(evolve_ajpar) { /* for(int jx=MXG;jxngx-MXG;jx++) { for(int jy=MYG;jyngy-MYG;jy++) { for(int
CELL_YLOW); ddt(Ajpar) -= (1./fmei)*(Te0/Ni0)*Grad_par(Ni, CELL_YLOW); ddt(Ajpar) +=
0.51*interp_to(nu, CELL_YLOW)*jpar/Ni0; }
```


Dominant mode phase for rho

Dominant mode behavior for rho

Dominant mode amp for Ni

Dominant mode behavior for Ni

Dominant mode amp for rho

Dominant mode behavior for rho

Dominant mode amp for Ni

Dominant mode amp for Ni

Dominant mode phase for Ni

Dominant mode behavior for Ni

Dominant mode phase for Ni

Dominant mode behavior for Ni

gamma computed from Ni

gamma computed from Ni

gamma computed from Ni

gamma computed from rho

freq computed from Ni

freq computed from Ni

freq computed from rho

freq computed from Ni

Dominant mode behavior for Ni

Dominant mode behavior for Vi

Dominant mode behavior for rho

Dominant mode behavior for rho

