

Mathematical analysis Lecture 3

Konstantinos Giannoutakis Assistant Professor

Spyros Chalkidis E.D.I.P.

October 2022

Topics of the 3rd lecture

- Method of Mathematical Induction
- Sequences
- Blocked sequences and monotony
- Convergence of sequences

Mathematical induction

The method of mathematical induction is used to prove propositions which depend, in the simplest case, on an integer variable. $n \in \mathbb{N}$. We symbolize P(n) this proposal.

In the method of mathematical induction we follow the following three steps:

- ▶ Basic step: We first show the proposal for some $n=n_0$ for which we prove to be true. That is, we show that the $P(n_0)$ is a true proposition.
- Inductive Hypothesis: We assume that the proposition is true for some n=kwith $k > n_0$. That is, we assume that the P(k) is a true proposal.
- Inductive step: We prove, using the previous assumption that the P(k + 1) is a true sentence.

If the implication in the last step is true, then the proposition is true for all $k \ge n_0$.

Induction Example 1

Show that for *n*≥1:

$$1+2+\cdots+n= \frac{n(n+1)}{2}$$

- For n=1 we have 1 = 1.2 2 which is valid.
- Suppose that the relationship holds for n=k, that is: $1 + 2 + \cdots + k = k(k+1)$.
- T.d.o.1 + 2 + $\cdot \cdot \cdot \cdot + k + (k+1) = (k+1)(k+2) \frac{2}{2}$.

 From the hypothesis we have that the above proposition is equivalent to $\frac{k(k+1)+k+1}{2} = (k+1)(k+2) \stackrel{\longleftrightarrow}{\rightleftharpoons} k_2 + k \\ \frac{2}{2} = 2 + k+1 = k+3 + 2 \stackrel{\longleftrightarrow}{\rightleftharpoons} k_2 + 3k+2 = k+3 + 2 \stackrel{\longleftrightarrow}{\rightleftharpoons} 2$.

Thus we have shown by induction that the relation holds for every $n \ge 1$.

Induction Example 2

To show that $2n \ge n3$, for $n \ge 10$.

- For n=10, $2n=1024 \ge 1000 = 103$ therefore the original hypothesis is valid.
- Let it be true for n=k >10, that is 2k≥k3.
- T.d.o.2 $_{k+1} \ge (k+1)$ 3Multiplying the inductive hypothesis by 2 we have that2 $_{k+1} \ge 2k$ 3. So it suffices to show that

$$2k_3 \ge (k+1)_3 \Leftrightarrow (2_1 \quad \overline{3}k)^3 \ge (k+1)_3$$

 $\Leftrightarrow 2_{1\overline{3}}k \ge k+1 \Leftrightarrow k \ge \qquad \frac{1}{2^{\frac{1}{3}-1}} \approx 3.85 \text{ which is valid since } k \ge 10.$

Thus we have shown that the relationship $2n \ge m$ applies to $n \ge 10$.

Induction Example 3

- For n=1 we have: $f(x) = (-1) \cdot 01!(x-1) \cdot (1+1) = (x-1) \cdot 2$ which is valid since $f(x) = \frac{1}{(x-1)2} \cdot \frac{1}{(x-1)2} \cdot \frac{1}{(x-1)2} \cdot \frac{1}{(x-1)2}$
- Let it be true for n=k, that is f(k)(x) = (-1)k-1k!(x-1)-(k+1).
- We will show that it is true and [i for n=k+1. Thus we have f(k+1)(x) = f(k)(x) = (-1)k-1k!(x-1)-(k+1) = (-1)k-1k!(-(k+1))(x-1)-(k+1)-1 = (-1)k(k+1)!(x-1)-(k+2)

Thus we have shown that f(n)(x) = (-1)n-1n!(x-1)-(n+1), $n \in \mathbb{N}$.

Definition of sequence

An important family of functions is that consisting of functions with domain the set of natural numbers. N = $\{0,1,\cdots\}$ (or the N_r= $\{p,p+1,r+2,\cdots\}$) for some positive integer p). Such functions are called sequences.

Each function

 $a: \mathbb{N} \to E$, $n7 \to a(n) \in E$ (or $a: \mathbb{N}_r \to E$, $n7 \to a(n) \in E$)

with domain the set of natural numbersN (or N_r) and values in a set E, is called a sequence of elements of the set E in N (or in N_r). In particular, if $E \subseteq \mathbb{R}$ the sequence is called a sequence of real numbers.

Sequences of real numbers

We will focus on the case of sequences of real numbers.

In the above correspondence the values of the sequence $a: N \ni n \to a(n) \in \mathbb{R}$, are called terms of the sequence and the natural number n is called the index or class of term a(n) which is also called n-th or general term of the sequence.

For the sake of brevity and simplicity, we will denote the sequence by $(a_n)_{n \in \mathbb{N}}$ and the a(n) with a_n .

Representation forms of sequences of real numbers

We can represent sequences of real numbers either by giving the general term:

B.C.
$$a_{n=1}$$
 $\binom{n}{2}$, $n \in \mathbb{N}$

$$a_{n} = \begin{cases} 0, n=2r+1, r \in \mathbb{N} \ 1, n=2 \\ p, p \in \mathbb{N} \end{cases}$$

or by giving the recursive relation of the sequence and its initial value: e.g. $a_{n+1}=2a_n+5$, $a_1=1$.

General form of reductive type (recursive relation)

When we give the recursive relation (reductive formula) of a sequence, the necessary first terms must be given and the recursive relation must allow us to find the next term. *an*+1 of each term *an* from its predecessor, or more generally than some of its predecessors. Thus we have sequences of the form:

```
a_1=a(a\in\mathbb{R}) and a_{n+1}=f(a_n) or more generally of the form:

a_1=a, a_2=b(a,b\in\mathbb{R}) and a_{n+1}=f(a_n, a_{n-1})
```

A sequence (a_n) we say that it is lower bounded if and only if there exists real number ϕ_k such that it is $a_n \ge \phi_k$ for each $n \in \mathbb{N}$.

Symbolically:

(an) bottom blocked $\Leftrightarrow \exists \phi_k \in \mathbb{R}$: $\forall n \in \mathbb{N}$, an≥ ϕ_k .

The number ϕ_k (as well as any other real number $s < \phi_k$) we say is a lower bound of the sequence.

A sequence (a_n) we say that it is upper bounded if and only if there exists real number $\phi_{\vec{a}}$ such that it is $a_n \le \phi_{\vec{a}}$ for each $n \in \mathbb{N}$.

Symbolically:

(an) upper blocked $\Leftrightarrow \exists \phi_a \in \mathbb{R}$: $\forall n \in \mathbb{N}$, an≤ ϕ_a .

The number $\phi_{\vec{e}}$ (as well as any other real number $s > \phi_{\vec{e}}$) we say is an upper bound of the sequence.

A sequence (an) we say that it is bounded if and only if it is above and lower bounded, that is, if there are real numbers ϕ_k , $\phi_a(\phi_k \le \phi_a)$ such that they are $\phi_k \le an \le \phi_a$ for each $n \in \mathbb{N}$.

Symbolically:

(an) blocked $\Leftrightarrow \exists \phi_k, \ \phi_a \in \mathbb{R}$: $\forall n \in \mathbb{N}, \ \phi_k \leq a_n \leq \phi_a$.

A sequence (a_n) we say that it is absolutely closed if and only if there exists real number ϕ , such that it holds $|a_n| \le \phi$ for each $n \in \mathbb{N}$.

Symbolically:

```
(an) completely blocked \Leftrightarrow \exists \phi \in \mathbb{R}_{+} : \forall n \in \mathbb{N}, |a_n| \leq \phi.
The number \phi (as well as any other real number s > \phi), we say that it is an absolute bound of the sequence. We can easily see that:
(an) blocked \Leftrightarrow absolutely blocked (it is enough to consider \phi = max\{|\phi_k|, |\phi_a|\}).
```

The minimum upper bound of an upper bounded sequence (a_n) is called the supremum of (a_n) and is denoted by sup a_n .

The maximum lower bound of a lower bounded sequence (a_n) is called the infimum of (a_n) and is denoted by inf a_n .

If a sequence (a_n) is not upper bounded, then we assume that $\sup a_n = +\infty$ Similarly, if a sequence (a_n) is not lower bounded, then we assume that $\inf a_n = -\infty$.

Example of a blocked sequence

Prove that the sequence $a_n=1+(-1 2)+(-1 2)2+\cdots+(-1 2)n-1$ it is blocked.

$$\frac{2}{n-1}$$
 it is

We have:

$$a_n=1+(-1 \quad 2)+(-1 \quad 2)2+\cdots+(-1 \quad 2)_{n-1}=1-(-1)^{\frac{2}{1-(-1)}}=2(\frac{1}{3}-(-1 \quad 2)_n).$$

SO

$$\forall n \in \mathbb{N}, |a_n| = 2 \ 3/1 - (-1 \ 2)n/ \le 2 \ 3(1 + /(-1 \ 2)n/) = 2 \ 3(1 + 1 \ 2n) \le 2 \ 3(1 + 1 \ 2) = 1.$$

Example of a blocked sequence

Prove that the sequences $a_n = 3m - 1$ and $b_n = 3m + 1$ they are blocked.

Both sequences are positive, so lower bounded by 0. For anwe

have:

$$an= \ \frac{3m-1}{2m+1} \le \frac{3m}{2m} = \frac{3}{2},$$

so it is blocked above by3

 $\overline{2}$

For the bnwe have:

$$bn = \frac{3m+1}{2m-1} \le \frac{3m+m}{2m-m} = 4,$$

so it is upper bounded by 4.

A sequence (an) we say that it is increasing if and only if it holds $an \le an+1$ for each $n \in \mathbb{N}$. Symbolically: (an) ascending $\Leftrightarrow \forall n \in \mathbb{N}$, $an \le an+1$.

A sequence (a_n) we say that it is purely increasing if and only if it holds $a_n < a_{n+1}$ for each $n \in \mathbb{N}$. Symbolically: (a_n) purely increasing $\Leftrightarrow \forall n \in \mathbb{N}$, $a_n < a_{n+1}$.

A sequence (an) we say that it is decreasing if and only if it holds $an \ge an+1$ for each $n \in \mathbb{N}$. Symbolically: (an) decreasing $\Leftrightarrow \forall n \in \mathbb{N}$, $an \ge an+1$.

A sequence (an) we say that it is genuinely decreasing if and only if it holds an > an+1 for each $n \in \mathbb{N}$. Symbolically: (an) genuinely decreasing $\Leftrightarrow \forall n \in \mathbb{N}$, an > an+1.

A (purely) increasing or decreasing sequence is called a (purely) monotonic sequence.

To test a sequence for monotonicity, we usually work with one of the following methods:

- 1) We examine the sign of the difference (of successive terms) $a_{n+1} a_n$
- 2) We compare the ratio (of successive terms) am (when the terms of the sequence retain sign).
- 3) Having an indication of monotonicity from the anisotropy relationship between the first terms of the sequence, we use the method of mathematical induction to show that this holds for every $n \in \mathbb{N}$.

Check the sequence for monotonicity $a_n = m^{-1}$.

We have that $a_{n+1} - a_n = (n+1) \frac{1}{2(n+1)-n_2-1} \frac{1}{2n-n_2+n_1} \frac{1}{2n-n_2+n_2} 0$, $\forall n \in \mathbb{N}$. So the a_n it is truly ascending.

Alternatively, we have: $a_n = n_2 - \frac{1}{2n} = n_1 - \frac{1}{2n} <_{n+1} = \frac{1}{2} - \frac{1}{2(n+1)} = a_{n+1}$.

Subsequences

Let the sequence of real numbers (a_n) and a purely increasing a- sequence of natural numbers (s_n) . We can then define the sequence (b_n) with $b_n = a_{sn}$, $n \in \mathbb{N}$. This is the sequence with terms:

$$a_{S1}$$
, a_{S2} , \cdots , a_{Sn} , \cdots

and which is called a subsequence of (a_n) .

Example: If we consider the sequence (a_n) with $a_n = (-1)_n$ — n_r then the subsequence which results if $s_n = 2n$ is the $b_n = a_{2n} = 1$

The concept of limit

We say that the sequence (a_n) converges to $a \in \mathbb{R}$, if and only if for each $\epsilon > 0$ there is a natural number $n \circ = n \circ (\epsilon)$ such that it is $|a_n - \alpha| < \epsilon$ for each $n \ge n \circ \epsilon$ Symbolically:

The concept of the limit of a sequence geometrically means that, if a sequence converges to a real number athen, any e-area of a and if we choose, after some term of the sequence all the following ones will be in this region, no matter how small it is.

Limit proof example

The sequence (an) with (an) = 1 \overline{n} has a limit 0 (is zero). Based on the definition of the limit we have:

We observe that the algebra of limits of convergent sequences is identical to the properties of the algebra of real numbers. That is, if (a_n) and (b_n) is convergent sequences with limits a and b respectively then:

```
(a)\lim ca_n = ca
(b)\lim (a_n \pm \beta_n) = a \pm \beta (c)
\lim (a_n)(b_n) = ab
```

(d)lim (an/bn) = a/b provided that $b \neq 0$

The limit of a convergent sequence is unique.

$$\begin{array}{c}
a_n \to a \\
a_n \to b
\end{array} \Rightarrow a = b$$

Any subsequence of a convergent sequence has the same limit as the sequence. In summary:

$$an \rightarrow a \Rightarrow as_n \rightarrow a$$

If $k \in \mathbb{N}$ and $a \in \mathbb{R}$ then the equivalence holds:

$$an \rightarrow a \Leftrightarrow an+k \rightarrow a$$

Every convergent sequence is bounded. In summary:

$$an \rightarrow a \Rightarrow (an)$$
 blocked.

The product of a zero sequence times a bounded sequence is a zero asequence. In summary:

$$\begin{array}{ccc}
& & & \\
& & a_n \to 0 \\
& & & \Rightarrow a_n b_n \to 0 \\
(b_n) \text{ blocked}
\end{array}$$

If the (b_n) is a null sequence and (a_n) sequence such that for each $n \ge n n \le N$ to be $|a_n| \le s/b_n/,>0$, then the sequence (a_n) is zero. In summary:

$$\begin{array}{ccc}
& & & \\
a_{n} \leq s / b_{n} /, \forall n \geq n_{0}, > 0 & & \rightarrow a_{n} \rightarrow 0 \\
& & (b_{n}) \rightarrow 0 & & \rightarrow a_{n} \rightarrow 0
\end{array}$$

Property of isoconvergent sequences (interpolation criterion):

$$b_{n} \le a_{n} \le c_{n}, \forall n \ge n_{0} \Rightarrow a_{n} \to a$$
$$\lim b_{n} = \lim c_{n} = a$$

If the sequences (a_n) and (b_n) are convergent and it holds $a_n < b_n$ for each $n \in \mathbb{N}$, then it will be $\lim a_n \le \lim b_n$ In summary:

$$\begin{cases}
a_n \to a, b_n \to b \text{ an} \\
< b_n, \forall n \in \mathbb{N}
\end{cases}
\Rightarrow a \le b$$

Convergence criterion of Cauchy

A sequence (an) converges if and only if for each $\epsilon > 0$ there is a natural number n = n = n = 0 such that it is $|ap - aq| < \epsilon$ for each p, $q \ge n = 0$ Symbolically:

 $lim a_n=a \Leftrightarrow \forall \epsilon >0, \exists n=n_0(\epsilon): |a_p-a_q| < \epsilon, \forall p, q \ge n_0.$

Remark: based on this criterion, we do not need to know the limit a in order to show that the sequence (an) converges.

Every monotone and bounded sequence is convergent. In particular,

```
 (an) \text{ ascending} 
an \le \phi_a, \forall n \in \mathbb{N} 
 \Rightarrow \lim_{an = a \le \phi} a 
 (an) \text{ decreasing} 
 an \ge \phi_k, \forall n \in \mathbb{N} 
 \Rightarrow \lim_{an = a \ge \phi} a
```

In these cases the sequences converge tosup*an*andinf*an* respectively.

Example

Find the limit of the sequence $a_n = \sin(n) + \cos(n)$

It is true that $-1 \le \sin(n) \le 1$ and $-1 \le \cos(n) \le 1$.

Therefore $-2 \le \sin(n) + \cos(n) \le 2$ and -2 $m \le (\sin(n) + \cos(n)) \le \frac{2}{m}$.

But $\overline{n}_2 = 0$ and $\overline{n}_2 = 0$. Therefore, according to the interpolation criterion we have: $\overline{n}_1 = 0$.

Finite sequences

We say that the sequence (a_n) is positively infinite or that the limit of (a_n) is the $+\infty$, if and only if for each M>0 exists as a natural number $n_0=n_0(M)$ (i.e. which depends on the M) such that it is $a_n>M$ for each $n\geq n_0$ Symbolically,

 $\lim a_n = +\infty \Leftrightarrow \forall M > 0, \exists n_0 = n_0(M) : a_n > M, \forall n \geq n_0$

We say that the sequence (a_n) is negatively infinite or that the limit of (a_n) is the $-\infty$, if and only if for each M > 0 exists as a natural number $n = n \in M$ (i.e. which depends on the M) such that it is $a_n < -M$ for each $n \ge n \in M$ Symbolically,

 $\lim_{n\to\infty} a_n = -\infty \Leftrightarrow \forall M > 0, \exists n_0 = n_0(M) : a_n < -M, \forall n \ge n_0$

Example

Show that the sequence $a_n=2n$ is positively experienced.

We need to show that for any value of M > 0 exists $n = n \cap (M)$ such Come on. $a \cap M$, $\forall n > n \cap M$, equivalent 2n > M, $\forall n > n \cap M$ select the $n \cap M = M + 1$.

Theorem

We assume that (an) is a convergent sequence with limit a, that the (bn) is positively inferred. It is true that:

(a)
$$\lim ab_n = +\infty$$
 for $a > 0$ and $-\infty$ for $a < 0$. (b) $\lim (a_n + b_n) = +\infty$ (c) $\lim (a_n - b_n) = -\infty$

(d)lim
$$(a_n)(b_n) = +\infty$$
for $a > 0$ and $-\infty$ for $a < 0$ (e)lim (a_n/b)

$$n) = 0$$

Relationship between limits of functions and limits of sequences

If
$$\lim_{X\to +\infty} f(x) = L$$
 and $f(n) = a_n$ where $n\in \mathbb{N}$, then $\lim_{X\to +\infty} L(L\in \mathbb{R} \text{ or } \pm \infty)$.

If $\lim a_n = a$ and the function f is continuous in x = a, then

$$\lim f(a_n) = f(a)$$

Exercise

Show that
$$\lim_{n\to\infty} \frac{\ln(\ln(n))}{\ln(n)} = 0$$
.

We calculate the limit

$$\lim_{X \to \infty} \frac{\ln(\ln(x))L}{\ln(x)} \frac{Hospita}{\underline{\mathbf{d}}}^{\omega} \stackrel{\overline{\omega}}{=} \lim_{X \to \infty} \frac{(\ln(\ln(x)))^{x}}{(\ln(x))^{x}} = \lim_{X \to \infty} \frac{\frac{1}{\ln(x)x} \frac{1}{x}}{\frac{1}{x}} = \lim_{X \to \infty} \frac{1}{(x)} = 0$$

Application

Show that the sequence $a_{n+1=2}$ 5 a_n+5 , $a_0=0$ is convergent.

The tax rate is increasing.

For n=0 it is true that $a_0=0$ and $a_1=5 > a_0$.

We proceed with induction trying to show that it is increasing:

For n=k we assume that $a_{k+1} \ge a_k \leftrightarrow 2$ $5a_k + 5 \ge a_k \leftrightarrow 3$ $5a_k \le 5 \leftrightarrow a_k \le 25$ 3. For n=k+1 T.d.o. $a_{k+2} \ge a_{k+1}$ But, $a_{k+2} \ge a_{k+1} \leftrightarrow 2$ $5a_k + 1 \leftrightarrow 2$ $5a_k + 1 \leftrightarrow 2$ $25a_k \leftrightarrow 3$ 3. For n=k+1 T.d.o. $a_{k+2} \ge a_{k+1}$ But, $a_{k+2} \ge a_{k+1} \leftrightarrow 2$ $5a_k + 1 \leftrightarrow 2$ $25a_k \leftrightarrow 3$ 3. Such that $a_k + 1 \leftrightarrow 2$ $a_$

4□ ▶ 4₫ ▶ 4 ≧ ▶ 4 ≧ ▶ 2 9 9 9 9

Application

The heating system is blocked from above.

Let it be san upper dam of an. Then $an \le S \Leftrightarrow 5an \le 5s \Leftrightarrow 5an \le 5s$

 $an < s \leftrightarrow 2$ 5an < 2 $5s \leftrightarrow 2$ 5an + 5 < 2 $5s + 5 \leftrightarrow an + 1 < 2$ 5s + 5. If we choose $s \ge 2$ $5s + 5 \leftrightarrow 3$ $5s \ge 5 \leftrightarrow \sigma \ge 25$ 3(Alternatively, we could directly solve the equation x = 2 $5x + 5 \leftrightarrow 3$ $5x = 5 \leftrightarrow x = 25$ 3).

We show the desired result by induction:

- For n=0, $a_0=0 < 25$
- For*n=k*, even if*ak≤*25 $\overline{_3}$.
- For n=k+1, T.D.O. $ak+1 \le 25$ 3. From the inductive hypothesis we have $ak \le 25 \xrightarrow{3} \implies 2 \quad 5ak \le 2 \xrightarrow{25} \xrightarrow{3} \implies 2 \quad 5ak+5 \le 10 \quad 3+5 \Leftrightarrow ak+1 \le 25 \quad 3$.

Therefore, the sequence is convergent as increasing and upper bounded.

Show that the sequence $a_n=1,2,3,\cdots$ is convergent.

The sequence $a_n=1$ 2π is decreasing. To see this, we take

considering that:

 $a_{n+1}=1$ $\frac{1}{2n+1}=\frac{1}{2}$ $\frac{1}{2}$ \frac

Useful known limits

```
lim<sub>1</sub>=0
\lim_{n\to\infty} \, _{n}\bar{a}=1, a>0
                                             /a/ <1
                                             a=1
\lim_{n\to\infty}a_n =
                                             a >1
                            + ∞
                      there is no
                                             a≤ −1
```

Reason criterion

When $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = b$, with $a_n \ne 0$ and $0 \le b < 1$ then $a_n \to 0$. If >1 then $a_n \to \infty$, while if b = 1 we cannot decide.

Example:

Let it be an=2m! Then based on the ratio criterion we have:

$$\frac{2n+1}{n}_{(n+1)!} = \frac{2n+1}{\frac{2n}{n!}} = n+12 - - 0.$$

Therefore the sequence converges to 0.

Root criterion

When $\lim_{n\to\infty} \sqrt[n]{a_n} = b$, with $a_n \ge 0$ and $0 \le b < 1$ then $a_n \to 0$. If >1 then $a_n \to \infty$, while if b = 1 we cannot decide.

Example:

Let it be a $n=2n \frac{1}{774}$ Then based on the root criterion we have:

$$n \frac{2n}{74} = \frac{\sqrt{2}}{(nn)^4} = \frac{--}{n \to \infty} \to \frac{2}{14} = 2$$

Therefore the sequence diverges at $+\infty$.

Examine the sequence for convergence: an=

$$\frac{n^2}{n^4+n^3+1}$$

We observe that $0 \le w e_{n_4 + n_3 + 1}^{n_2} \le n_{n_3 = 1}^{n_3} = 1$ n = ---- 0, so a by the interference criterion conclude that $a_n \to 0$.

Examine the sequence for convergence: an=

$$\frac{4 \cdot 10_{n} - 3 \cdot 10_{2n}}{3 \cdot 10_{n-1} - 2 \cdot 10_{2n-1}}$$

We divide the numerator and denominator by102*n*-1and we have:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{4\frac{1}{10n-1} - 3 \cdot 10}{3 \cdot \frac{1}{10n-2}} = 4\frac{0 - 3 \cdot 10}{30 - 2} = 15$$

Examine the sequence for convergence: an=m2

We divide the numerator and denominator by 4n and we have:

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{\frac{p_n^2}{2n} + \frac{n}{2n}}{1 + n_{4n}} \text{We will first calculate the limit} \qquad \lim_{n\to\infty} \frac{n_{2n}}{1 + n_{4n}} \text{using it}$$

$$\text{criterion of speech: } \lim_{n\to\infty} \frac{\frac{(n+1)2}{2n}}{2n} = \lim_{n\to\infty} \frac{n_{2n}+1}{2n} = \lim_{n\to\infty} \frac{1 + 2n+1}{2n} = \lim_{n\to\infty} \frac{1 + 2n+1}{2n} = 1 \text{ 2} < 1$$

$$\text{therefore lim}_{n\to\infty} \frac{n_{2n}}{2n} = 0. \text{ Cat}$$

$$\text{we know that lim}_{n\to\infty} \left(\frac{1}{2} n = \lim_{n\to\infty} \frac{1}{2} n \right) \text{, so finally: } \lim_{n\to\infty} \frac{n}{2n} = \frac{0 + 0 - 0}{1 + 0} \text{.}$$

Examine the sequence for convergence: an=

We divide by 3 n and we have: $a_n = \frac{\left(\frac{1}{3}\right)_n + 1}{\left(\frac{1}{3}\right)^n + 1}$ We distinguish 3 cases:

► $0 \le \lambda < 3$ where applicable $\lim_{n \to \infty} (1/3)_n = 0$, so

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\lim_{n \to \infty} (1/3)_{n+1}}{\lim_{n \to \infty} (1/3)_{n+1} \lim_{n \to \infty} (1/3)_{n+1} = 1.}$$

► \neq 3 where applicable $\lim_{n\to\infty} (3/3)_n=1$, so

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\lim_{n \to \infty} (1/3)_{n+1}}{\lim_{n \to \infty} (1/3)_{n+1} \lim_{n \to \infty} (3/3)_{n+1} = 2.}$$

► />3 where applicable $\lim_{n\to\infty} (1/3)_n = +\infty$, so

$$\lim_{n \to \infty} a = \frac{\lim_{n \to \infty} (1/3)_{n+1}}{\lim_{n \to \infty} (1/3)_{n+1} \lim_{n \to \infty} (1/3)_{n+1} = \frac{0+1}{1+\infty+1=0}$$

$$\sqrt{\frac{2+a_{n-1}}{\text{with}}a_1} = \sqrt{\frac{2}{2}}.$$

We will first show that it is closed. Let s > 0 an upper dam of $a_{n/4}$ then we will have equivalents $a_{n-1} < s \Leftrightarrow 2 + a_{n-1} < 2 + s \Leftrightarrow a_n = 2 + a_{n-1} < 2 + s \in A_n$

let's choose the sso that

 $s \ge 2 + s \leftrightarrow s_2 \ge 2 + s \leftrightarrow s_2 - s - 2 \ge 0 \leftrightarrow (s+1)(s-2) \ge 0$. Because s >0 then that's enough $s \ge 1$ 2. so we choose *s*= 2.

Continuing with induction: $\sqrt{}$

- For n=1 we have $a_1=2<2$
- Let it be true for *n*=*k*, that is *a*
- \sqrt{k} $\sqrt{2}$. $\sqrt{4} \Leftrightarrow a_{k+1} < 2$, therefore it is valid. ► Then ak<2 ⇔ ak+2<7 + 7 ⇔ ak+7 <
- We will show that it is increasing. We have:

 $a_2 - a_2 - a_{n-1} = 2 + a_{n-1} - a_2$ $n-1 = -(a_2 - a_{n-1} - a_{n-1} - a_{n-1}) = (2 - a_{n-1})(a_{n-1} + 1) > 0$

because it is true $0 < a_{n-1} < 2$. Therefore $a_{n-1} > a_{n-1} \Leftrightarrow a_{n-1} < a_{n-1}$ sequence are positive). Therefore the sequence is purely increasing.

Exercise

To what number does the converge?
$$a_n = \sqrt[4]{\frac{1}{2 + a_{n-1} with a_{1}}} = \sqrt[4]{\frac{1}{2}};$$

Solution

Let it be $x=\lim_{x\to\infty}a_n\geq 0$. Then, $x=\lim_{x\to\infty}\sqrt[4]{2+a_{n-1}=}\sqrt[4]{2+\lim_{x\to\infty}it_{a_n-1}=}\sqrt[4]{2+x}$. We square both sides: $x_2-x-2=0$ \Leftrightarrow (x-2)(x+1)=0 \Leftrightarrow x=2 (after $x\geq 0$).