Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 292.2 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen \ 1B/Oppgave 1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

$Filen\ 1B/Oppgave 1B_Figur_E.png$

656.70 - (m) 656.68 - 656.66 - 656.64 -

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

0

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 4.84, tilsynelatende blå størrelseklass $\rm m_B=6.75$

40

60

Periode (år)

100

120

80

20

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 10.40, tilsynelatende blå størrelseklass $m_B = 13.31$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\text{-}}\mathrm{V}=10.40,$ tilsynelatende

blå størrelseklass m_B = 12.31

Stjerna D: Tilsynelatende visuell størrelseklasse m
_V = 4.84, tilsynelatende blå størrelseklass $m_B = 7.75$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.11 og store halvakse a=99.27 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.11 og store halvakse a=81.50 AU.

Filen 1F.txt

Ved bølgelengden 699.64 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E 9.10 Tilsynelatende størrelsklasse m_V 9.00 8.90 8.80 8.70 8.60 8.50 5 10 Ò 15 20 25 30 Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 3.00 solmasser, temperatur på 42.40 Kelvin og tetthet 8.13e-21 kg per kubikkmeter

Gass-sky B har masse på 18.00 solmasser, temperatur på 48.70 Kelvin og tetthet 3.25e-21 kg per kubikkmeter

Gass-sky C har masse på 8.40 solmasser, temperatur på 88.60 Kelvin og

tetthet 3.94e-21 kg per kubikkmeter

Gass-sky D har masse på 15.80 solmasser, temperatur på 20.70 Kelvin og tetthet 1.37e-21 kg per kubikkmeter

Gass-sky E har masse på 27.70 solmasser, temperatur på 18.90 Kelvin og tetthet 1.36e-20 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas energi kommer fra frigjort gravitasjonsenergi

STJERNE B) stjernas overflate består hovedsaklig av helium

STJERNE C) stjernas energi kommer hovedsaklig fra heliumfusjon i skall

STJERNE D) stjernas energi kommer fra Planck-stråling alene

STJERNE E) kjernen består av karbon og oksygen og er degenerert

Filen 1L.txt

Stjerne A har spektralklasse K4 og visuell tilsynelatende størrelseklasse m $_{\text{-}}\mathrm{V}$ = 2.13

Stjerne B har spektralklasse A4 og visuell tilsynelatende størrelseklasse m_V = 9.15

Stjerne C har spektralklasse F2 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 4.91

Stjerne D har spektralklasse F2 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 5.05

Stjerne E har spektralklasse A4 og visuell tilsynelatende størrelseklasse m_V = 5.05

Filen 1P.txt

Alle gasspartiklene har fart 100 m/s i tilfeldige (uniformt fordelte) retninger.

$Filen~2A/Oppgave 2A_Figur 1.png$

Figur 1 10 9 8 y-posisjon (buesekunder) 7 6 5 3 2 · 1 i ź 3 5 9 10

x-posisjon (buesekunder)

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.77800000000000024869 AU.

Tangensiell hastighet er 43785.702729271615680773 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=3.964 AU.

Kometens avstand fra jorda i punkt 2 er r2=9.070 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=20.686.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9308 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00072 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=920.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9943 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 761.40 nm.

Filen 4A.txt

Stjernas masse er 6.62 solmasser.

Stjernas radius er 0.89 solradier.

Filen 4C.png

Figur 4C 1.8000 1.6500 1.5000 Sannsynlighetstetthet i 10⁻⁴ % 1.3500 1.2000 1.0500 0.9000 0.7500 0.6000 0.4500 0.3000 0.1500 0.0000 -750 -500 -250 250 500 -1000 750 1000 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 12.17 millioner K

Filen 4G.txt

Massen til det sorte hullet er 4.95 solmasser.

r-koordinaten til det innerste romskipet er
r $=15.33~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=23.12~\mathrm{km}.$