

# EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

#### PROBA D

Varianta ....094

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică, Filiera\ Vocațională,\ profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică,\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\$ 

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

# La toate subiectele se cer rezolvări cu soluții complete

# SUBIECTUL I (20p)

(4p) a) Să se calculeze modulul numărului complex 
$$\frac{3+2i}{2+3i}$$
.

(4p) b) Să se calculeze distanța de la punctul 
$$D(1,2,8)$$
 la planul  $x+2y+3z-9=0$ .

(4p) c) Să se determine punctele de intersecție dintre cercul 
$$x^2 + y^2 = 1$$
 și dreapta  $x = 2y$ .

(4p) d) Să se arate că 
$$\cos 1 > \cos 2$$
.

(2p) e) Să se calculeze aria triunghiului cu vârfurile în punctele 
$$A(1,3)$$
,  $B(3,1)$  și  $C(-1,-1)$ .

(2p) f) Să se determine 
$$a,b \in \mathbb{R}$$
, astfel încât să avem egalitatea de numere complexe

$$\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^3 = a + bi .$$

## SUBIECTUL II (30p)

1.

(3p) a) Să se calculeze 
$$\log_2 \sqrt{8}$$
.

(3p) b) Să se calculeze probabilitatea ca un element 
$$\hat{x} \in \mathbb{Z}_4$$
 să verifice relația  $\hat{x}^3 = \hat{1}$ .

(3p) c) Să se determine numărul de mulțimi 
$$X$$
 care verifică  $\{1,2\} \subseteq X \subseteq \{1,2,3,4,5\}$ 

(3p) d) Să se rezolve în mulțimea numerelor reale ecuația 
$$5^x + 25^x = 30$$
.

(3p) e) Să se calculeze produsul rădăcinilor polinomului 
$$f = X^3 + X - 2$$
.

**2.** Se consideră funcția 
$$f: \mathbf{R} \to \mathbf{R}$$
,  $f(x) = 3x - \arctan x$ .

(3p) a) Să se calculeze 
$$f'(x)$$
,  $x \in \mathbb{R}$ .

(3p) b) Să se calculeze 
$$\int_{0}^{1} f'(x)dx$$
.

(3p) c) Să se arate că funcția 
$$f$$
 este strict crescătoare pe  ${\bf R}$ .

(3p) d) Să se calculeze 
$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}.$$

(3p) e) Să se calculeze 
$$\int_0^1 \frac{4x^3}{x^4 + 1} dx.$$

## SUBIECTUL III (20p)

Se consideră matricele  $P = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$  și  $Q = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ .

- (4p) a) Să se calculeze matricele P+Q şi  $(P+Q)^2$ .
- (4p)  $| \mathbf{b} |$  Să se calculeze determinantul și rangul matricei P.
- (4p) c) Să se arate că  $\det(A+B) + \det(A-B) = 2(\det(A) + \det(B)), \forall A, B \in M_2(\mathbf{R})$ .
- (2p) d) Să se arate că, dacă  $x, y, a, b \in \mathbb{R}$  şi x + y = 2(a + b), atunci  $x \ge a + b$  sau  $y \ge a + b$ .
- (2p) e) Să se arate că  $\forall A, B \in M_2(\mathbf{R})$ , avem  $\det(A+B) \ge \det(A) + \det(B)$  sau  $\det(A-B) \ge \det(A) + \det(B)$ .
- (2p) **f)** Utilizând metoda inducției matematice, să se arate că  $\forall n \in \mathbb{N}^*$  și  $\forall A_1, A_2, ..., A_n \in M_2(\mathbb{R})$ , există o alegere a semnelor astfel încât  $\det(A_1 \pm A_2 \pm ... \pm A_n) \ge \det(A_1) + \det(A_2) + ... + \det(A_n)$ .
- (2p) g) Să se arate că există o alegere a semnelor + şi astfel încât  $(\cos 1 \pm \cos 2 \pm ... \pm \cos 2007)^2 + (\sin 1 \pm \sin 2 \pm ... \pm \sin 2007)^2 \ge 2007$

## SUBIECTUL IV (20p)

Se consideră funcțiile  $f_n, g_n : \mathbf{R} \to \mathbf{R}$ ,  $f_n(x) = \arctan x - \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} ... + \frac{x^{4n-3}}{4n-3}\right)$ 

$$g_n(x) = f_n(x) + \frac{x^{4n-1}}{4n-1}$$
, unde  $n \in \mathbb{N}^*$ .

- (4p) a) Să se calculeze  $f_n(0)$  și  $g_n(0)$ .
- (4p) b) Să se verifice identitatea  $1 + (-x^2) + (-x^2)^2 + ... + (-x^2)^k = \frac{1 (-x^2)^{k+1}}{1 + x^2}, \ \forall x \in \mathbf{R},$
- (2p) c) Să se arate că  $f'_n(x) = \frac{-x^{4n-2}}{1+x^2}$  și  $g'_n(x) = \frac{x^{4n}}{1+x^2}$ ,  $\forall x \in \mathbb{R}$ ,  $\forall n \in \mathbb{N}^*$ .
- (2p) d) Să se arate că:  $f_n(x) < 0 < g_n(x)$ ,  $\forall x > 0, \forall n \in \mathbb{N}^*$ .
- (2p) e) Să se calculeze  $\int_{0}^{1} \operatorname{arctg} x dx$ .
- (2p) f) Să se arate că  $\lim_{n\to\infty} \frac{x^n}{n} = 0$ ,  $\forall x \in [-1,1]$ .
- (2p) g) Să se arate că  $\lim_{n \to \infty} \left( x \frac{x^3}{3} + \frac{x^5}{5} \frac{x^7}{7} + \dots + \frac{x^{4n-3}}{4n-3} \right) = \operatorname{arctg} x \ \forall x \in [-1,1].$
- (2p) **h**) Să se arate că  $\lim_{n\to\infty} \left( \frac{1}{1\cdot 2} \frac{1}{3\cdot 4} + \frac{1}{5\cdot 6} \dots + \frac{1}{(4n-3)(4n-2)} \right) = \frac{\pi}{4} \frac{\ln 2}{2}$ .