Collaborative Metric Learning

By Hsieh, Cheng-Kang, et al.

Presented by Kim Han

Contents

- 1. Introduction
- 2. Background
- 3. Model
- 4. Experiment
- 5. Implementation
- 6. Conclusion

Introduction

Background

Metric Learning

$$d_E(\mathbf{x}_1,\mathbf{x}_2) = \sqrt{\sum_{i=1}^d (\mathbf{x}_{1,i} - \mathbf{x}_{2,i})^2}$$

Euclidean distance

$$d_M(\mathbf{x}_1, \mathbf{x}_2) = \sqrt{(\mathbf{x}_1 - \mathbf{x}_2)^T S^{-1}(\mathbf{x}_1 - \mathbf{x}_2)} \qquad \Longrightarrow \qquad d_A(x_i, x_j) = \sqrt{(x_i - x_j)^T A(x_i, -x_j)}$$
 Mahalanobis distance

$$S = \{(x_i, x_j) | x_i \text{ and } x_j \text{ are considered similar} \}$$

$$\mathcal{D} = \{(x_i, x_j) | x_i \text{ and } x_j \text{are considered dissimilar} \}$$

$$\min_{A} \sum_{(x_i, x_j) \in \mathcal{S}} d_A(x_i, x_j)^2$$

s.t.
$$\sum_{(x_i,x_j)\in\mathcal{D}} d_A(x_i,x_j)^2 \ge 1$$
 and $A \succeq 0$.

Background

Metric Learning (Large Margin Nearest Neighbor)

$$\mathcal{L}_{pull}(d) = \sum_{j \sim i} d(x_i, x_j)^2$$

$$\mathcal{L}_{push}(d) = \sum_{i,j \sim i} \sum_{k} (1 - y_{ik}) [1 + d(x_i, x_j)^2 - d(x_i, x_k)^2]_{+}$$

Collaborative Metric Learning

- 1. $D(\vec{x}_i, \vec{x}_j) + D(\vec{x}_j, \vec{x}_k) \ge D(\vec{x}_i, \vec{x}_k)$ (triangular inequality).
- 2. $D(\vec{x}_i, \vec{x}_j) \ge 0$ (non-negativity).
- 3. $D(\vec{x}_i, \vec{x}_j) = D(\vec{x}_j, \vec{x}_i)$ (symmetry).
- 4. $D(\vec{x}_i, \vec{x}_j) = 0 \iff \vec{x}_i = \vec{x}_j$ (distinguishability).

- the items liked by this user previously
- the items liked by other users who share a similar taste with this user previously

Collaborative Metric Learning

 $u_i \in \mathcal{R}^r$: User vector

 $v_i \in \mathcal{R}^r$: Item vector

 $d(i,j) = \|\mathbf{u}_i - \mathbf{v}_j\|$: Distance (with euclidean distance)

$$w_{ij} = log(rank_d(i,j) + 1)$$

Approximated Ranking Weight

$$\lfloor \frac{J}{N} \rfloor \longrightarrow \lfloor \frac{J \times M}{U} \rfloor$$

Hinge Loss

$$\mathcal{L}_{m}(d) = \sum_{(i,j)\in\mathcal{S}} \sum_{(i,k)\notin\mathcal{S}} w_{ij} [m + d(i,j)^{2} - d(i,k)^{2}]_{+}, \quad (1)$$

Integrating Item Features

$$\mathcal{L}_f(\theta, \mathbf{v}_*) = \sum_j \|f(\mathbf{x}_j, \theta) - \mathbf{v}_j\|^2$$

Regularization

$$\|\mathbf{u}_*\|^2 \le 1 \text{ and } \|\mathbf{v}_*\|^2 \le 1$$
Normalize

$$C_{ij} = \frac{1}{N} \sum_{n} (y_i^n - \mu_i)(y_j^n - \mu_j) \qquad ||C||_f^2 = |a_{11}|^2 + |a_{12}|^2 + \dots + |a_{mm}|^2$$

$$\mu_i = \frac{1}{N} \sum_{n} y_i^n \qquad ||diag(C)||_2^2 = |a_{11}|^2 + |a_{22}|^2 + |a_{33}|^2 + \dots + |a_{mm}|^2$$

$$\mathcal{L}_c = \frac{1}{N} (\|C\|_f - \|diag(C)\|_2^2)$$

Training

$$\min_{\theta, \mathbf{u}_*, \mathbf{v}_*} \mathcal{L}_m + \lambda_f \mathcal{L}_f + \lambda_c \mathcal{L}_c$$
s.t. $\|\mathbf{u}_*\|^2 \le 1$ and $\|\mathbf{v}_*\|^2 \le 1$

- 1. Sample N positive pairs from S.
- 2. For each pair, sample U negative items and approximate rank_d(i, j).
- 3. For each pair, keep the negative item k that maximizes the hinge loss and form a mini-batch of size N.
- 4. Compute gradients and update parameters with a learning rate controlled by AdaGrad.
- 5. Censor the norm of u* and v* by $y' = \frac{y}{\max(\|y\|,1)}$
- 6. Repeat this procedure until convergence.

Experiment

Table 1: Dataset Statistics.

	CiteULike	BookCX	Flickr	Medium	MovieLens20M	EchoNest
Domain	Paper	Book	Photography	News	Movie	Song
# Users	7,947	22,816	43,758	61,909	129,797	766,882
# Items	25,975	43,765	100,000	80,234	20,709	260,417
# Ratings	142,794	623,405	1,372,621	2,047,908	9,939,873	7,261,443
Concentration a	33.47%	33.10%	13.48%	55.38%	72.52%	65.88%
Features Type	Tags	Subjects	Image Features	Tags	Genres, Keywords	NA
# Feature Dim.	10,399	7,923	2,048	2,313	10,399	NA

	WRMF	BPR	WARP	CML	$ours\ vs.$ $best$	$_{ m FM}$	VBPR	CDL	CML+F	$ours\ vs.$ $best$		
Recall@50												
CiteULike	0.2437	0.2489	0.1916	0.2714***	9.03%	0.1668	0.2807	0.3375**	0.3312	-1.86%		
BookCX	0.0910	0.0812	0.0801	0.1037***	13.95%	0.1016	0.1004	0.0984	0.1147***	12.89%		
Flickr	0.0667	0.0496	0.0576	0.0711***	6.59%	NA	0.0612	0.0679	0.0753***	10.89%		
Medium	0.1457	0.1407	0.1619	0.1730***	6.41%	0.1298	0.1656	0.1682	0.1780***	5.82%		
MovieLens	0.4317	0.3236	0.4649	0.4665	0.34%	0.4384	0.4521	0.4573	0.4617*	0.96%		
EchoNest	0.2285	0.1246	0.2433	0.2460	1.10%	NA	NA	NA	NA	NA		
Recall@100												
CiteULike	0.3112	0.3296	0.2526	0.3411***	3.37%	0.2166	0.3437	0.4173	0.4255**	1.96%		
BookCX	0.1286	0.1230	0.1227	0.1436***	11.66%	0.1440	0.1455	0.1428	0.1712***	17.66%		
Flickr	0.0821	0.0790	0.0797	0.0922***	12.30%	NA	0.0880	0.0909	0.1048***	15.29%		
Medium	0.2112	0.2078	0.2336	0.2480***	6.16%	0.1900	0.2349	0.2408	0.2531***	5.10%		
MovieLens	0.5649	0.4455	0.5989	0.6022	0.55%	0.5561	0.5712	0.5943	0.5976	0.55%		
EchoNest	0.2891	0.1655	0.3021	0.3022	0.00%	NA	NA	NA	NA	NA		

Experiment

- 1. CML's throughput is improved by 106x with only 2% reduction in accuracy.
- 2. Over 8x, 9x faster than MF models given the same accuracy

Experiment

Conclusion

- 1. Implementing collaborative filtering in another way that is more efficient than the existing method
- 2. Shown to be very efficient and fast in the Top-K recommendation method

3. Not only user-item, but also user-user, item-item relationships were interpreted to make the entire system easier to understand

감사합니다.