

In the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1 1. (Currently Amended) A color-separating and -recombining optical system comprising:
 - 3 cubic- or square column-like first to fourth polarization beam
 - 4 splitters having polarization-splitting planes intersecting each other like a
 - 5 character-“X”; and
 - 6 wavelength-selective polarizing converters each for rotating the
 - 7 plane of polarization of a specific-color light component by 90 degrees,
 - 8 one of the converters being placed at a light-incident side of the first
 - 9 splitter, another of the converters being placed at a light-emitting side of
 - 10 the fourth splitter, the first and the fourth splitters being provided at a
 - 11 light-incident side and a light-emitting side, respectively, of the optical
 - 12 system, the first and the fourth splitters being arranged as diagonally
 - 13 opposing each other, and the remaining converters being placed
 - 14 between at least two inner facing planes of the first to the fourth splitters,
 - 15 wherein at least the remaining converters and three of the first to
 - 16 the fourth splitters are joined ~~each other~~ to form an optical joint
 - 17 component with a gap located between the remaining one splitter and
 - 18 the optical joint component.
- 1 2. Canceled.
- 1 3. (Original) The color-separating and -recombining optical system according to claim 1, wherein opto-elastic constants for the first to the fourth polarization beam splitters have a relationship $K_i < K_m$ and K_o in which K_i , K_m and K_o denote the opto-elastic constants for the first splitter, the second and the third splitters and the fourth splitter, respectively.

1 4. (Original) The color-separating and -recombining optical system
2 according to claim 1, wherein opto-elastic constants for the first to the
3 fourth polarization beam splitters have a relationship K_i and $K_m < K_o$ in
4 which K_i , K_m and K_o denote the opto-elastic constants for the first
5 splitter, the second and the third splitters and the fourth splitter,
6 respectively.

1 5. (Original) The color-separating and -recombining optical system
2 according to claim 1, wherein opto-elastic constants for the first to the
3 fourth polarization beam splitters have a relationship $K_i < K_m < K_o$ in
4 which K_i , K_m and K_o denote the opto-elastic constants for the first
5 splitter, the second and the third splitters and the fourth splitter,
6 respectively.

1 6. (Original) A color-separating and -recombining optical system comprising:
2 cubic- or square column-like first to fourth polarization beam
3 splitters having polarization-splitting planes intersecting each other like a
4 character-“X”; and
5 wavelength-selective polarizing converters each for rotating the
6 plane of polarization of a specific-color light component by 90 degrees,
7 one of the converters being placed at a light-incident side of the first
8 splitter, another of the converters being placed at a light-emitting side of
9 the fourth splitter, the first and the fourth splitters being provided at a
10 light-incident side and a light-emitting side, respectively, of the optical
11 system, the first and the fourth splitters being arranged as diagonally
12 opposing each other, and the remaining converters being placed
13 between at least two inner facing planes of the first to the fourth splitters,
14 wherein opto-elastic constants for the first to the fourth splitters
15 have a relationship $K_i < K_m$ and K_o , K_i and $K_m < K_o$ or $K_i < K_m < K_o$ in
16 which K_i , K_m and K_o denote the opto-elastic constants for the first

17 splitter, the second and the third splitters and the fourth splitter,
18 respectively.

1 7. Canceled.

1 8. Canceled.

1 9. Canceled.

1 10. Canceled.

1 11. (Currently Amended) A projection display comprising:
2 a light source for emitting unlinearly-polarized light;
3 a first polarizer to allow only a first specific-linearly-polarized light
4 component of the unlinearly-polarized light to pass therethrough;
5 a color-separating and -recombining optical system including
6 cubic- or square column-like first to fourth polarization beam splitters
7 having polarization-splitting planes intersecting each other like a
8 character-“X”, the first splitter being provided as facing the first polarizer,
9 and wavelength-selective polarizing converters each for rotating the
10 plane of polarization of a specific-color light component by 90 degrees,
11 one of the converters being placed at a light-incident side of the first
12 splitter, another of the converters being placed at a light-emitting side of
13 the fourth splitter, the first and the fourth splitters being provided at a
14 light-incident side and a light-emitting side, respectively, of the optical
15 system, the first and the fourth splitters being arranged as diagonally
16 opposing each other, and the remaining converters being placed
17 between at least two inner facing planes of the first to the fourth splitters,
18 wherein at least the remaining converters and three of the first to the
19 fourth splitters are joined ~~each other~~ to form an optical joint component
20 with a gap located between the remaining one splitter and the optical
21 joint component;

22 reflective spatial light modulators for light modulation in
23 accordance with a video signal, provided outside the optical system, as
24 facing each light-passing plane of the second and the third splitters,
25 a second polarizer provided as facing a light-emitting side plane of
26 the fourth splitter, to allow only a second specific-linearly-polarized light
27 component emitted from the light-emitting side plane of the fourth splitter
28 to pass therethrough; and
29 a projection lens provided as facing the second polarizer, to
30 receive the second specific-linearly-polarized light component for image
31 projection.

- 1 12. (Original) A projection display comprising:
2 a light source for emitting unlinearly-polarized light;
3 a first polarizer to allow only a first specific-linearly-polarized light
4 component of the unlinearly-polarized light to pass therethrough;
5 a color-separating and -recombining optical system including
6 cubic- or square column-like first to fourth polarization beam splitters
7 having polarization-splitting planes intersecting each other like a
8 character-“X”, the first splitter being provided as facing the first polarizer,
9 and wavelength-selective polarizing converters each for rotating the
10 plane of polarization of a specific-color light component by 90 degrees,
11 one of the converters being placed at a light-incident side of the first
12 splitter, another of the converters being placed at a light-emitting side of
13 the fourth splitter, the first and the fourth splitters being provided at a
14 light-incident side and a light-emitting side, respectively, of the optical
15 system, the first and the fourth splitters being arranged as diagonally
16 opposing each other, and the remaining converters being placed
17 between at least two inner facing planes of the first to the fourth splitters,
18 wherein opto-elastic constants for the first to the fourth splitters have a
19 relationship $K_i < K_m$ and K_o , K_i and $K_m < K_o$ or $K_i < K_m < K_o$ in which
20 K_i , K_m and K_o denote the opto-elastic constants for the first splitter, the
21 second and the third splitters and the fourth splitter, respectively;

22 reflective spatial light modulators for light modulation in
23 accordance with a video signal, provided outside the optical system, as
24 facing each light-passing plane of the second and the third splitters,
25 a second polarizer provided as facing a light-emitting side plane of
26 the fourth splitter, to allow only a second specific-linearly-polarized light
27 component emitted from the light-emitting side plane of the fourth splitter
28 to pass therethrough; and
29 a projection lens provided as facing the second polarizer, to
30 receive the second specific-linearly-polarized light component for image
31 projection.

1 13. Canceled.

1 14. Canceled.

1 15. Canceled.

1 16. Canceled.

1 17. Canceled.

1 18. Canceled.

1 19. Canceled.

1 20. Canceled.