$$\underline{\text{proposition}}\ S = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \ \text{and} \ T = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) \ \text{generate SL}_2(\mathbf{Z}).$$

proof firstly note that
$$S^2 = -\mathrm{id}$$
 and $T^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ for all $n \in \mathbf{Z}$. thus we have

$$\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+nc & b+nd \\ c & d \end{pmatrix}$$
$$S \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -c & -d \\ a & b \end{pmatrix}$$
$$ST^{n} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -c & -d \\ a+nc & b+nd \end{pmatrix}$$

fixing
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbf{Z})$$
, we'll show that $A \in \langle T, S \rangle$ by induction on $|c|$. base if $c = 0$ then $ad = 1 \implies a = d = \pm 1 \implies A = \pm T^{\pm d} \in \langle T, S \rangle$.

step if $c \neq 0$ then we pick n for which |a+nc| < |c|. by the induction hypothesis $ST^nA \in \langle T, S \rangle$ and so $A \in \langle T, S \rangle$.

<u>programming exercise</u> in your favourite language write a function which takes a general $SL_2(\mathbf{Z})$ matrix as input and outputs a string in T^{\pm} , S^{\pm} that equals the input.