

#### **Vehicle Networks**

CAN-based Higher Layer Protocols

Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl







#### **Outline**

- Introduction
- General-purpose HLPs
  - → ISO TP
  - **TP2.0**
- → Special-purpose HLPs
  - → Vehicle-Operational Purposes:
    - CANopen
    - **→** SAE J1939
  - Diagnostics Purposes:
    - → ISO 15765-3 (KWP2000/CAN)
    - Unified Diagnostic Services
    - → On-Board Diagnostics



- "Pure CAN" provides fast, prioritized, reliable, broadcast message transmission with sophisticated error detection and error handling
- → Pure CAN can fulfill all requirements of small closed systems
- Pure CAN cannot satisfy the requirements that have to be fulfilled within large, extendable, interconnected networks from different manufacturers
  - → Higher Layer Protocols (HLP) required that enable the interconnection of these networks
- Inter-manufacturer connection is of major importance for all kinds of utility vehicles:
  - → Trucks → Harvesters
  - → Tractors → Foresters
  - → Snowcats → Cranes
- **T** Extension:
  - Fixed attached components: blue lights, information systems, taximeter
  - Dynamic attached components: trailers, seeders, dozer blades
  - → Highly dynamic attaches components: Fleet management system



- Functions that have to be fulfilled by HLPs:
  - Definition of common message identifiers, their meaning, format and respective data types to enable interoperability
  - Flow control
  - → Transportation of messages > 8 bytes
  - Node addressing to address a specific device
  - → Networking via gateways
  - Network management:
    - Startup, maintenance and shutdown behavior
    - Status reporting, diagnosis

Application Application Application Application

Interconnecting Higher Layer Protocol

CAN CAN CAN CAN CAN High Speed High Speed Protocols



# Introduction CAN in ISO/OSI Reference Model

| No. of layer | ISO/OSI ref model | CAN protocol specification   |  |
|--------------|-------------------|------------------------------|--|
| 7            | Application       | Application specific         |  |
| 6            | Presentation      |                              |  |
| 5            | Session           | Optional:                    |  |
| 4            | Transport         | Higher Layer Protocols (HLF  |  |
| 3            | Network           |                              |  |
| 2            | Data Link         | CAN protocol                 |  |
| 1            | Physical          | (with free choice of medium) |  |



### Protocol messaging

- Protocol Data Unit (PDU) of layer N becomes Service Data Unit (SDU) of layer N-1
- (N-1)-SDU extended with Protocol Control Information (PCI) and Footer becomes (N-1)-PDU
- Terminology
  - → Layer 1 PDU: bits
  - → Layer 2 PDU: frame
  - → Layer 3 PDU: packet
  - → Layer 4 PDU: segment





#### Protocol service primitives

- Service Access Points (SAP) provide services to upper and lower layers
- → SAP to layer (N-1)
  - Request
  - Confirmation
- → SAP to layer (N)
  - Response
  - Indication



### **Network Layer**

- Transmission of packets over multiple intermediate hops
- → Protocols: IPv4, IPv6, ICMP, IGMP
- Main functions:
  - Global addressing
  - → Routing, e.g.:
    - → Flooding
    - → Link State Routing
    - Distance Vector Routing
    - Hierarchical Routing
  - Fragmentation
  - Quality of Service



#### **Transport Layer**

- → Data exchange over a logical connection between end-to-end systems
- Protocols: TCP, UDP, DCCP, SCTP
- Main functions:
  - Reliability management:
    - → Reliable communication (e.g. TCP by acknowledgements)
    - Unreliable communication (e.g. UDP)
  - Segmentation with (un)ordered delivery
  - Flow control: Overload at receivers
  - Congestion control: Overload of the network
  - Connection management:
    - Connection-oriented (e.g. TCP)
    - → Connectionless (e.g. UDP)
  - → Error Control
  - Multiplexing of concurrent services



# **General-purpose HLPs ISO-TP**

#### ISO-TP

#### Overview

- → ISO-TP = ISO Transport Protocol
- Designed to run existing diagnostics protocols (ISO 14230) on CAN
- Unreliable connection-oriented transport protocol enabling:
  - → Segmentation (transmission of up to 4095 bytes)
  - Flow Control
  - Broadcast and unicast addressing
- Uses CAN on Data Link layer
- → Standardized under ISO 15765-2
- → E.g. used with diagnostics protocols KWP2000 and UDS

#### **ISO-TP**

#### Frames

- Frame Types:
  - Single Frame:

    Ox0

    Data Length

    O..7 Data Bytes

    Standard frame for unsegmented data

4 bit

8 bit

4 bit

- First Frame: 0x1 Data Length Data Length 0..6 Data Bytes
  Initial frame in a sequence of frames
- Consecutive Frame: 0x2 Seq Number 0..7 Data Bytes
  Subsequent frame in the sequence (SN modulo 24)
- Flow Control Frame: 0x3 Flow Status Block Size Separation Time

  Response of the receiver specifying min. timing and max. buffer size (=block size) for consecutive frames

0-127ms

0-127ms

- In case of error (timeout or wrong sequence number) application layer is informed but not sender of the message
  - → no inherent reliability, application layer has to handle errors



8 bit

#### ISO-TP

## Addressing

- Flow control requires unicast communication
- Addresses have to be predefined and statically assigned
- Addressing schemes:
  - Normal Addressing: Source and destination address are encoded in CAN identifier
  - Extended Addressing (for gateways): Additional Transport-PCI Byte (= first byte of CAN payload) with gateway address
    - → CAN payload reduced to 0..6 bytes

# **General-purpose HLPs TP2.0**

# **TP2.0**Overview

- Designed to allow existing diagnostics protocols on CAN2.0A
- Mainly used by Volkswagen Group
- Connection-oriented transport protocol enabling:
  - → Segmentation of arbitrary size
  - Flow control with handshake
  - Dynamic assignment of CAN identifier per channel (vs. static assignment of CAN identifiers in ISO-TP)
  - → Automatic recovery after timeout
  - Addressing:
    - **7** Unicast
    - → Multicast, e.g. all ECUs on the powertrain
    - **7** Broadcast

# **TP2.0**Broadcast communication

- Allows usage of gateways (specified by Logical Address)
- Broadcast messages with and without required response



# TP2.0 Connection-oriented unicast communication

→ Connection setup request/response message:



Data message:



Connection shutdown message:





# **TP2.0** Message sequence

- 1. Channel Setup
- 2. Data Exchange
  - → Block-wise data transmission
  - Cumulative acknowledgements
- 3. Channel Shutdown



# Special-purpose HLPs CANopen

#### Overview

- Developed by CAN in Automation (CiA) since 1995
- Originally developed for motion-oriented machine control networks, by now it is also used to network:
  - medical electronics, automotive-, industrial- and rail-vehicles, laboratory automation systems,
  - building automation systems,
  - embedded networks such as passenger information systems, gambling machines and professional coffee machines,
  - vehicle add-ons (blue lights, taximeter, etc.)
- Standardized in 2002 under EN 50325-4
- Features:
  - CAN 2.0A on Data Link layer (optional CAN 2.0B)
  - Network auto-configuration
  - Access to all device parameters
  - Device synchronization
  - Cyclic and event-driven data transfer
  - Synchronous reading or setting of inputs, outputs or parameters

#### Overview

Three parts:



## Object Dictionary and Profiles

- Every CANopen device has a standardized device specification, the Object Dictionary (OD)
  - It includes general objects (ID, manufacturer, etc.) and status objects (temperature, speed, etc.)
  - Semantics of the OD-objects are defined in the *Electronic Data Sheet* (EDS)
  - Objects are addressed by 16-bit index + 8-bit subindex
    - → 1000-1FFF: Communication profile area (CiA DS-301)
    - → 2000-5FFF: Manufacturer-specific profile area
    - → 6000-9FFF: Standardized device profile area (e.g. CiA DS-401)
    - → A000-AFFF: Network variables (NWV)
- CANopen defines:
  - Communication profiles: definition of fundamental communication mechanisms
  - Device profiles: unambiguous definition of manufacturer-independent ODparameters describing the device and its network behavior (i.e. input/output modules, drives, encoders, etc.)
  - → Devices become interoperable and interchangeable between manufacturers

#### Communication Profile

- → Process Data Objects (PDO): Transport of real-time data (=operational data)
- → Service Data Objects (SDO): Read and write OD entries (=system parameters)
- Special Object Messages:
  - Synchronization (SYNC)Cyclic time synchronization
  - Time Stamp (TIME)
     Adjustment of global network time
  - Emergency Object (EMCY)
    Indicate device internal errors
- → Administrative Messages:
  - Network Management (NMT) Node state monitoring
  - Error Control:Cyclic heartbeat,Node/Life guarding



Communication

- Real-time data
- High priority
- Max. 8 Bytes
- Broadcast communication
- "Pure" CAN
- No confirmation

- System parameters
- Low priority
- Data aggregation (>8 Bytes)
- Unicast communication
- Data addressing by index
- Confirmed services

#### Device and Application Profiles (extract)

- → CiA 301: CANopen application layer and communication profile
- → CiA 401: Device profile for generic I/O modules
- CiA 402: Device profile for drives and motion control (servo controller, stepper motor controller, frequency inverter)
- CiA 404: Device profile for measuring devices and closed-loop controllers
- CiA 406: Device profile for encoders (rotating and linear)
- **CiA 413**: Set of device profiles for truck gateways
- → CiA 415: Application profile for road construction machine sensors
- CiA 418: Device profile for battery module
- → CiA 419: Device profile for battery charger
- → CiA 422: Application profile for municipal vehicles (e.g. garbage trucks)
- **CiA 423**: Application profile for power drive systems (e.g. diesel engine)
- CiA 424: Application profile for rail vehicle door control systems
- → CiA 447: Application profile for special-purpose car add-on devices.



# CANopen CiA DS-447 Car add-on devices



- Attachment of add-on devices, such as blue light, siren, taximeter, etc.
- Standardization finished in 2008

## CiA DS-413 Device profiles for truck gateways







ISO 11783 (ISOBUS) for agricultural and municipal vehicles, based on J1939 and NMEA-2000



# Special-purpose HLPs SAE J1939

- Specified by Society of Automotive Engineers (SAE) heavy trucks and bus division
- → The SAE J1939 set of profiles is based on the CAN data link layer (ISO 11898-1) using the extended frame format (CAN2.0B) with 29-bit identifier
- Features
  - Unicast and broadcast communication
  - Network management
  - Transport protocol functions: data segmentation, flow control
  - Definition of parameter groups
  - Support of real-time close loop control
- Applications
  - Light to heavy trucks
  - Agriculture equipment
     e.g. tractors, harvester, etc.
  - Engines for public work



### SAE J1939 Standards

**SAE J1939-71** Truck and bus power-train network

Defines all parameters as well as assembled messages called parameter groups

**SAE J1939-73** Application layer diagnostics

Defines diagnostic messages

SAE J1939-31 Network layer

Defines repeaters, routers, gateways and bridges

SAE J1939-21 Data link layer

Defines commonly used messages such as Request, Acknowledgement and Transport Protocol

SAE J1939-11 Physical layer

Physical layer based on ISO 11898-2 at 250 kbit/s with up to 30 devices and a maximum of 40 m bus length (twisted shielded pair)

and constraints on the use of addresses (e.g address claiming) Defines message sequences for initialization Æ Network management

# SAE J1939 Message Format

CAN 29-bit-Identifier Structure

| Priority  | Pa                 | rameter Group Num | ber (PGN)   | Source Address |
|-----------|--------------------|-------------------|-------------|----------------|
| 3         |                    | 18                |             | 8              |
| Res<br>ve | ser Data<br>d Page | PDU Format        | PDU Specifi | С              |
| 1         | 1                  | 8                 | 8           |                |

- Priority: Priority during the arbitration phase (lower value = higher priority)
- Reserved: Reserved for future usage (always 0)
- Data Page selector: Expands parameter groups (for future usage)
- PDU Format:
  - → Global PGNs for broadcast parameter groups
    - **PDU** Format  $>= 0 \times F0 = 240_{10}$
    - → PDU Specific: Group Extension (further PDU type specification)
  - Specific PGNs for unicast parameter groups
    - **PDU** Format  $\leq 0$ xEF = 239<sub>10</sub>
    - → PDU Specific: Destination Address

# SAE J1939 Example

Engine Temperature message: Broadcast transmission with 1 Hz

CAN 2.0B Frame Arbitration Control A C K End of **Data Field CRC Field Field** Frame **PDU Format** PDU Specific Source Address **Priority** Res DP 0 254=0xFE 238=ÖxEE 6 0 Coolant **Engine Oil** Fuel Turbo Oil **Engine Inter-**Not defined Temperature cooler Temp. Temperature Temperature Temperature 8 16 16 8 8 8

Torque/Speed Control message: Unicast transmission

- → to Engine (=00) with 100 Hz
- → to Engine-Retarder(=15) with 20 Hz

| Priority | Res | DP | PDU Format | PDU Specific           | Source Address       |
|----------|-----|----|------------|------------------------|----------------------|
| 3        | 0   | 0  | 0          | 15 (= Engine-Retarder) | <b>11</b> (= ABS/TC) |

| Control Bits | Requested Speed / Speed Limit | Requested Torque /<br>Torque Limit | Not defined |
|--------------|-------------------------------|------------------------------------|-------------|
| 8            | 16                            | 8                                  | 32          |



#### Transport Layer

- The Transport Protocol specifies the breaking up of large amounts of data into multiple CAN-sized frames, along with adequate communication and timing to support effective frame transmission between nodes
- Two types:
  - → Broadcast Announcement Message (BAM)
    - Broadcast communication
    - Connection-less (e.g. no handshake)
    - Unreliable
    - No flow control
  - Connection Mode Data Transfer (CMDT)
    - Unicast communication
    - Connection-oriented (2-way handshake)
    - Reliability by cumulative ACKs
    - Flow control by windowing







# SAE J1939 Addressing

#### Address:

Unique identity within a session

▼ Every device requires a unique address (0-253)

→ 254: zero address

255: broadcast address

Included in every message

Can change during re-configuration

#### Name:

Probably unique identifier within the network

Provides functional identification of ECUs

Used to arbitrate in the case of an address selection conflict

#### Name

| Arbitrary<br>Address<br>Capable | Industry<br>Group | Vehicle<br>System<br>Instance | Vehicle<br>System | Reserved | Function | Function<br>Instance | ECU<br>Instance | Manufacturer<br>Code | Identity<br>Number |
|---------------------------------|-------------------|-------------------------------|-------------------|----------|----------|----------------------|-----------------|----------------------|--------------------|
| 1 Bit                           | 3 Bits            | 4 Bits                        | 7 Bits            | 1 Bit    | 8 Bits   | 5 Bits               | 3 Bits          | 11 Bits              | 21 Bits            |



## Network management

- Dynamic address allocation (address claiming)
- Address conflict detection
- Address conflict resolution



Address Claim with no complications.

# **Application**







Source: CLAAS 2005, Diagnose bei CLAAS

## Fleet Management System (FMS)

- Supervise a whole fleet consisting of vehicles from different manufacturers over the Internet
- Developed by the 6 major European truck manufacturers Daimler, MAN, Scania, DAF, IVECO, Volvo/Renault
- Based on J1939
- Vehicle data shall be available for third parties but internal vehicle busses shall be untouched

Secure and legal solution for the remote download of data e.g. from the digital tachograph





# Special-purpose HLPs Diagnostics

## **Diagnostics**

Interchange of digital information between an on-board ECU and a off-board diagnostic tester to facilitate inspection, test, diagnostics and configuration





in US

Legislated diagnostics



Based on: Zimmermann, Schmidgall 2007: Bussysteme in der Fahrzeugtechnik

### **Diagnostics**

## ISO 15765-3 Diagnostics on CAN

- Diagnostics on CAN standardized in ISO 15765-3 in 2004
- Enables interoperability between off-board diagnostic tester and onboard ECU
- → ISO 15765-3 is based on the Keyword Protocol 2000 (KWP2000)
  protocol
- Client-Server with simple request-response communication



# **Diagnostics**ISO 15765-3 Diagnostics on CAN

- Client-Server communication:
  - Client (=diagnostic tester) initiates request and waits for confirmation
  - → Server (=ECU) receives indication and sends response
- Services
  - Diagnostic Management: Control of diagnostic sessions
  - Network Layer Protocol Control
  - Data Transmission: Read from and write to ECUs
  - → Stored Data Transmission: Read Diagnostic Trouble Codes (DTC)
  - → Input/Output Control: Control of ECU I/O
  - Remote Activation of Routines: ECU program startup
  - Upload/Download: ECU Flashing

# **Diagnostics**ISO 15765-3 Diagnostics on CAN

#### Message formats:

| Service Request   |                     |            |  |  |  |
|-------------------|---------------------|------------|--|--|--|
| Service ID<br>SID | Request Parameters  |            |  |  |  |
|                   | Positive            | Response   |  |  |  |
| SID   0x40        | Response Parameters |            |  |  |  |
|                   | Negative            | Response   |  |  |  |
| Error ID          | SID                 | Error Code |  |  |  |

### **Diagnostics**

## Unified Diagnostic Services

- Unified Diagnostics Services (UDS) standardized by ISO 14229
- Advancement of *Diagnostics on CAN* for general usage
- → Whereas ISO 15765-3 relies on CAN, UDS is independent of lower layer protocols
- Technically UDS is almost identical to *Diagnostics on CAN*, advancements are mainly the restructuring of SIDs and unification
- UDS also defines, as one of the first protocols, a security layer in order to encrypt data





# **Diagnostics**On-Board Diagnostics

- Self-diagnostic and reporting capability of modern vehicles
- Guarantees standardized access to vehicle information for:
  - fault diagnostics by repair shop and
  - → emission inspection by technical inspection agencies ("TÜV")
- → Mandatory in Europe for:
  - gasoline vehicles manufactured since 2001
  - diesel vehicles manufactured since 2003
- OBD provides diagnostic data on:
  - Emission-related components (e.g. lambda sensor, catalytic converter)
  - Engine
  - Vehicle electronics



# **Diagnostics**On-Board Diagnostics

Service Request

|                   |                     | <u> </u>                   |
|-------------------|---------------------|----------------------------|
| Service ID<br>SID | Parameter ID<br>PID | 06 Byte Request Parameters |

- Service Identifiers (SID):
  - Fault memory
    - 0x03 Request emission-related diagnostic trouble codes
    - → 0x02 Request powertrain freeze frame data
    - → 0x04 Clear emission-related diagnostic information
  - Test of emission-related components
    - **→** 0x05 Request oxygen sensor monitoring test results
    - Ox06 Request control of on-board system, test or component
  - Read ECUs
    - Ox01 Request current powertrain diagnostic data
    - Ox09 Request vehicle information
- Parameter Identifier (PID):
  - Ox04 Calculated Load Value
  - → 0x05 Engine Coolant Temp
  - → 0x0A Fuel Pressure (gage)
  - → 0x0C Engine RPM
  - → 0x0D Vehicle Speed
  - → 0x11 Absolute Throttle Position



#### **Questions**

- Why are Higher Layer Protocols (HLP) required?
- What are the main functions of HLP in automotive environments?
- → Why almost all HLPs introduce unicast communication?