HOMEWORK 13

Note: * marked problems might be slightly more difficult or interesting than the unmarked ones.

- (1) Show that a locally compact Hausdorff space X is dense as a subspace of its one-point compactification Y.
- (2) Show that the construction of one-point compactification carried for the space $X = \mathbb{Q}$ produces Y that is not Hausdorff.
- (3) Show that a space X is homeomorphic to an open subspace of a compact Hausdorff space if and only if X is locally compact Hausdorff.
- (4)* Let $f: X \to Y$ be a continuous map between X and Y both locally compact Hausdorff spaces. Then let $f^*: X^* \to Y^*$ denote the one-point extension of f between one-point compactifications X^* and Y^* of X and Y respectively, which is defined as $f^*(\infty_X) = \infty_Y$, and $f^*|_X = f$. Show that f^* is continuous if and only if f is proper.
- (5)* Let $f: X \to Y$ be a continuous map and let X be a Hausdorff space and Y be a locally compact Hausdorff space. Then show that f is proper if and only if f is closed and for each $y \in Y$ the set $f^{-1}(y)$ is compact.
- (6) Let $f: X \to Y$ and $g: Y \to Z$ be continuous. Show that :
 - (1) If f and g are proper, then $g \circ f$ is also proper.
 - (2) If Y is Hausdorff, and $g \circ f$ is proper, then f is proper.
 - (3) If f is onto, and $g \circ f$ is proper, then g is proper.
- $(7)^*$ Show that S_{Ω} is locally compact. Show that \tilde{S}_{Ω} is homeomorphic to its one-point compactification.
- (8)* Topology (Munkres), Chapter 3, Section 29, Exercise (4).
- (9) Topology (Munkres), Chapter 3, Section 29, Exercise (8).
- (10) Topology (Munkres), Chapter 3, Section 29, Exercise (11).