Unit V: Graphs theory II

Planar Graph:

A graph is called *planar* if it can be drawn in the plane without any edges crossing (where a crossing of edges is the intersection of the lines or arcs representing them at a point other than their common endpoin(). Such a drawing is called a *planar representation* of the graph.

K3,3 is not planar

Q1. Determine whether the following graphs are planar?

(c) $K_{3,3}$ \rightarrow Non-Panar

(d)

Non-Planar

(e)

A graph is non-planar if it contains either of these two graphs $K_{3,3}$ or K_5 .

If a graph is planar, so will be any graph obtained by removing an edge $\{u, v\}$ and adding a new vertex w together with edges $\{u, w\}$ and $\{w, v\}$. Such an operation is called an elementary subdivision. The graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are called **homeomorphic** if they can be obtained from the same graph by a sequence of elementary subdivisions.

