

(V) Preliminary Specifications() Final Specifications

Module 10.1"(10.05") HD 16:9 Color TFT-LCD with LED Backlight design	
Model Name	B101XTN01.0 (H/W:0A)
Note (LED Backlight with driving circuit design

Customer	Date		Approved by	Date
	MM/DD/YYYY		Trista Jiang	06/20/2012
Checked & Approved by	Date		Prepared by	Date
	MM/DD/YYYY		Frank Wang	06/20/2012
Note: This Specification is subject to change without notice.			NBBU Market AU Optronics	

Contents

1.	. Handling Precautions	4
2.	. General Description	5
	2.1 General Specification	
	2.2 Optical Characteristics	
3.	. Functional Block Diagram	
	. Absolute Maximum Ratings	
	4.1 Absolute Ratings of TFT LCD Module	12
	4.2 Absolute Ratings of Environment	12
5.	. Electrical Characteristics	13
	5.1 TFT LCD Module	13
	5.2 Backlight Unit	15
6.	. Signal Interface Characteristic	16
	6.1 Pixel Format Image	
	6.2 The Input Data Format	17
	6.3 Integration Interface Requirement	18
	6.4 Interface Timing	20
7.	. Panel Reliability Test	23
	7.1 Vibration Test	
	7.2 Shock Test	23
	7.3 Reliability Test	23
8.	. Mechanical Characteristics	24
	8.1 LCM Outline Dimension	24
9.	. Shipping and Package	26
	9.1 Shipping Label Format	
	9.2 Carton Package	1
	9.3 Shipping Package of Palletizing Sequence	1
10	0. Appendix: EDID Description	

Record of Revision

Ve	Version and Date Page Old description		New Description	Remark	
0.1	2012/02/19	AII	First Edition for Customer		
0.2	2012/3/29	18	Update Pin Assignment		
0.3	2012/4/16	18	Update Connector Description		
0.4	2012/6/20	24, 25	Update LCM Outline Dimension front & back view		
0.5	2012/09/17	26		Updated carton label	

AU OPTRONICS CORPORATION

1. Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) After installation of the TFT Module into an enclosure (Notebook PC Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Disconnecting power supply before handling LCD modules, it can prevent electric shock, DO NOT TOUCH the electrode parts, cables, connectors and LED circuit part of TFT module that a LED light bar build in as a light source of back light unit. It can prevent electrostatic breakdown.

2. General Description

B101XTN01.0 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and LED backlight system. The screen format is intended to support the 16:9 HD, 1366(H) x768(V) screen and 262k colors (RGB 6-bits data driver) with LED backlight driving circuit. All input signals are LVDS interface compatible.

B101XTN01.0 is designed for a display unit of notebook style personal computer and industrial machine.

2.1 General Specification

The following items are characteristics summary on the table at 25 $\,^\circ\mathrm{C}\,$ condition:

Items	Unit		Specifi	ications		
Screen Diagonal	[mm]	255.28				
Active Area	[mm]	222.52 x 12	25.11			
Pixels H x V		1366x3(RGB) x 768				
Pixel Pitch	[mm]	0.1629X0.1	629			
Pixel Format		R.G.B. Ver	tical Stripe			
Display Mode		Normally W	/hite			
White Luminance (ILED=20mA) (Note: ILED is LED current)	[cd/m ²]	200 typ. (5 points average)				
Luminance Uniformity		1.25 (5 poir	nts average)			
Contrast Ratio		500 typ				
Response Time	[ms]	8 typ / 16 M	1ax			
Nominal Input Voltage VDD	[Volt]	+3.3 typ.				
Power Consumption	[Watt]	2.6 max. (Ir	nclude Logic	and Blu po	wer)	
Weight	[Grams]	170 max.				
Physical Size	[mm]		Min.	Тур.	Max.	
Include bracket		Length	243.0	243.5	244.0	
		Width	146.5	147.0	147.5	
		Thickness	_	-	3.6	
Electrical Interface		1 channel LVDS				
Glass Thickness	[mm]	0.5				
Surface Treatment		Glare, Hardness 3H, Low Reflection				
Support Color		262K colors	s (RGB 6-bi	t)		

Temperature Range Operating Storage (Non-Operating)	[°C] [°C]	0 to +50 -20 to +60
RoHS Compliance		RoHS Compliance

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25°C (Room Temperature):

Item		Symbol	Conditions	Min.	Тур.	Max.	Unit	Note
White Luminance ILED=20mA			5 points average	-	200	-	cd/m ²	1, 4, 5.
Viewing Angle		θR θL	Horizontal (Right) CR = 10 (Left)	40 40	45 45	-	degree	4.0
		ф н ф ∟	Vertical (Upper) CR = 10 (Lower)	10 30	15 35	-		4, 9
Luminan Uniformi		δ _{5P}	5 Points	-	-	1.25		1, 3, 4
Luminance Uniformity		δ _{13P}	13 Points	-	-	1.60		2, 3, 4
Contrast Ratio		CR		400	500	-		4, 6
Cross talk		%				4		4, 7
Response ⁻	Гіте	T _{RT}	Rising + Falling	-	8	16	msec	4, 8
	Red	Rx		TBD	TBD	TBD		
	rica	Ry		TBD	TBD	TBD		
	Green	Gx		TBD	TBD	TBD		
Color / Chromaticity	Green	Gy		TBD	TBD	TBD		
Coodinates	Dluc	Вх	CIE 1931	TBD	TBD	TBD		4
	Blue	Ву		TBD	TBD	TBD		
	\//bita	Wx		0.283	0.313	0.343		
	White	Wy		0.299	0.329	0.359		
NTSC		%		-	45	-		

Note 1: 5 points position (Ref: Active area)

Note 2: 13 points position (Ref: Active area)

Note 3: The luminance uniformity of 5 or 13 points is defined by dividing the maximum luminance values by the minimum test point luminance

6		Maximum Brightness of five points
δ w5	= '	Minimum Brightness of five points
2		Maximum Brightness of thirteen points
δ w13	= -	Minimum Brightness of thirteen points

Note 4: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room, and it should be measured in the center of screen.

Note 5: Definition of Average Luminance of Center of the screen

Measure the luminance of gray level 63 at 5 points \cdot $Y_L = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$ L (x) is corresponding to the luminance of the point X at Figure in Note (1).

Note 6: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Brightness on the "White" state Contrast ratio (CR)= Brightness on the "Black" state

Note 7: Definition of Cross Talk (CT)

$$CT = |Y_B - Y_A| / Y_A \times 100 (\%)$$

Where

Y_A = Luminance of measured location without gray level 0 pattern (cd/m₂)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m₂)

AU OPTRONICS CORPORATION

Note 8: Definition of response time:

The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.

AU OPTRONICS CORPORATION

Note 9. Definition of viewing angle

Viewing angle is the measurement of contrast ratio \geq 10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

3. Functional Block Diagram

The following diagram shows the functional block of the 10.1 inches wide Color TFT/LCD 40 Pin one channel Module

TBD

AU OPTRONICS CORPORATION

An absolute maximum rating of the module is as following:

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	Vin	TBD	TBD	[Volt]	Note 1,2

4.2 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit	Conditions
Operating Temperature	TOP	0	+50	[°C]	Note 4
Operation Humidity	HOP	5	95	[%RH]	Note 4
Storage Temperature	TST	-20	+60	[°C]	Note 4
Storage Humidity	HST	5	95	[%RH]	Note 4

Note 1: At Ta (25°℃)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: LED specification refer to section 5.2

Note 4: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).

Operating Range

Storage Range

+

5. Electrical Characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows;

The power specification are measured under 25°C and frame frenquency under 60Hz

Symble	Parameter	Min	Тур	Max	Units	Note
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	
PDD	VDD Power	_	-	0.8	[Watt]	Note 1
IDD	IDD Current	-	-	606	[mA]	Note 1
IRush	Inrush Current	-	-	2000	[mA]	Note 2
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	-	-	100	[mV] p-p	

Note 1: Maximum Measurement Condition: Black Pattern at 3.3V driving voltage. (Pmax=V3.3 x Iblack)

Typical Measurement Condition: Mosaic Pattern

Note 2: Measure Condition

5.1.2 Signal Electrical Characteristics

Input signals shall be low or High-impedance state when VDD is off.

Signal electrical characteristics are as follows;

Parameter	Condition	Min	Max	Unit
V _{TH}	Differential Input High Threshold (Vcm=+1.2V)	-	100	[mV]
V _{TL}	Differential Input Low Threshold (Vcm=+1.2V)	-100	-	[mV]
V _{ID}	Differential Input Voltage	100	600	[mV]
V _{CM}	Differential Input Common Mode Voltage	1.125	1.375	[V]

Note: LVDS Signal Waveform

Single-end Signal

5.2.1 LED characteristics

Parameter	Symbol	Min	Тур	Max	Units	Condition
Backlight Power Consumption	PLED	-	-	1.8	[Watt]	(Ta=25°C), Note 1 Vin =12V
LED Life-Time	N/A	15,000	-	-	Hour	(Ta=25 $^{\circ}$ C), Note 2
						I _F =20 mA

Note 1: Calculator value for reference P_{LED} = VF (Normal Distribution) * IF (Normal Distribution) / Efficiency

Note 2: The LED life-time define as the estimated time to 50% degradation of initial luminous.

Note 3: LED input Current 0.254A typ / LED Forward Current 20mA per string, total 80mA / LED Forward Voltage 25.6V typ / LED Array 4parallel * 8series

Note 4: LED driver IC Vendor – AAT (Advanced Analog Technology,Inc.)

5.2.2 Backlight input signal characteristics

Parameter	Symbol	Min	Тур	Max	Units	Remark
LED Power Supply	VLED	6.0	12.0	21.0	[Volt]	
LED Enable Input High Level	VIED EN	2.5	-	5.5	[Volt]	
LED Enable Input Low Level	VLED_EN	ı	1	0.5	[Volt]	Define as
PWM Logic Input High Level	VPWM EN	2.5	1	5.5	[Volt]	Connector Interface
PWM Logic Input Low Level	_	-	-	0.5	[Volt]	(Ta=25°C)
PWM Input Frequency	FPWM	200	1K	10K	Hz	
PWM Duty Ratio	Duty	5		100	%	

Note 1: Recommend system pull up/down resistor no bigger than 10kohm

6. Signal Interface Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

	1						13	66	
1st Line	R G B	R G B		R	G	В	R	G E	3
	1	1	1						
	١	1							
	•	•	•		•			•	
		•	•						
		•	•		•				
	1	1	1 0						
	1	1	•		١			•	
768th Line	R G B	R G B		R	G	В	R	G E	3

6.2 The Input Data Format

RxCLKIN	1	
RxIN0	G0 R5 R4 R3 R2	R1 R0
RxIN1	B1 B0 G5 G4 G3	G2 G1
RxIN2	DE VS HS B5 B4	B3 B2

Signal Name	Description	
R5	Red Data 5 (MSB)	Red-pixel Data
R4	Red Data 5 (MSB)	Each red pixel's brightness data consists of
R3	Red Data 3	these 6 bits pixel data.
R2	Red Data 2	triese o bits pixei data.
R1	Red Data 1	
R0	Red Data 0 (LSB)	
חט	ned Data 0 (LSB)	
	Red-pixel Data	
G5	Green Data 5 (MSB)	Green-pixel Data
G4	Green Data 4	Each green pixel's brightness data consists of
G3	Green Data 3	these 6 bits pixel data.
G2	Green Data 2	·
G1	Green Data 1	
G0	Green Data 0 (LSB)	
	Green-pixel Data	
B5	Blue Data 5 (MSB)	Blue-pixel Data
B4	Blue Data 4	Each blue pixel's brightness data consists of
B3	Blue Data 3	these 6 bits pixel data.
B2	Blue Data 2	
B1	Blue Data 1	
B0	Blue Data 0 (LSB)	
	Diversity Date	
D. OLIZINI	Blue-pixel Data	The signal is weed to study a the wivel data and
RxCLKIN	Data Clock	The signal is used to strobe the pixel data and
		DE signals. All pixel data shall be valid at the
DE	Diamles: Timine	falling edge when the DE signal is high.
DE	Display Timing	This signal is strobed at the falling edge of
		RxCLKIN. When the signal is high, the pixel
VS	Vertical System	data shall be valid to be displayed.
	Vertical Sync	The signal is synchronized to RxCLKIN.
HS	Horizontal Sync	The signal is synchronized to RxCLKIN.

Note: Output signals from any system shall be low or High-impedance state when VDD is off.

6.3 Integration Interface Requirement

6.3.1 Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

Connector Name / Designation	For Signal Connector
Manufacturer	STM
Type / Part Number	MSAK24025P40
Mating Housing/Part Number	Mating of MSAK24025P40

6.3.2 Pin Assignment

LVDS is a differential signal technology for LCD interface and high speed data transfer device.

Pin	Signal	Description
1	Reserved	Reserved, AUO will use this pin.
2	VDD	Power Supply, 3.3 V (typical)
3	VDD	Power Supply, 3.3 V (typical)
4	V EEDID	DDC 3.3V power
5	TEST	Panel Self Test
6	Clk EEDID	DDC Clock
7	DATA EEDID	DDC Data
8	Odd_Rin0-	- LVDS differential data input (R0-R5, G0) (odd pixels)
9	Odd_Rin0+	+ LVDS differential data input (R0-R5, G0) (odd pixels)
10	VSS	Ground - Shield
11	Odd_Rin1-	- LVDS differential data input (G1-G5, B0-B1) (odd pixels)
12	Odd_Rin1+	+ LVDS differential data input (G1-G5, B0-B1) (odd pixels)
13	VSS	Ground - Shield
14	Odd_Rin2-	- LVDS differential data input (B2-B5, HS, VS, DE) (odd pixels)
15	Odd_Rin2+	+ LVDS differential data input (B2-B5, HS, VS, DE) (odd pixels)
16	VSS	Ground - Shield
17	Odd_ClkIN-	- LVDS differential clock input (odd pixels)
18	Odd_ClkIN+	+ LVDS differential clock input (odd pixels)
19	VSS	Ground - Shield
20	Reserved	Reserved
21	Reserved	Reserved
22	VSS	Ground - Shield
23	Reserved	Reserved

24	Reserved	Reserved
25	VSS	Ground - Shield
26	Reserved	Reserved
27	Reserved	Reserved
28	VSS	Ground - Shield
29	Reserved	Reserved
30	Reserved	Reserved
31	VSS_LED	Ground - LED
32	VSS_LED	Ground - LED
33	VSS_LED	Ground - LED
34	NC	No connection (Reserved)
35	PWM	System PWM Signal Input (+3.3V Swing)
36	LED_EN	LED enable pin (+3.3V Input)
37	Reserved	Reserved
38	VDDLED	LED Power Supply 7V - 21V
39	VDDLED	LED Power Supply 7V - 21V
40	VDDLED	LED Power Supply 7V - 21V

Note 1: Start from right side

Note1: Input signals shall be low or High-impedance state when VDD is off.

B101XTN01.0 _Document Version : 0.5

6.4 Interface Timing

6.4.1 Timing Characteristics

Basically, interface timings should match the 1366x768 /60Hz manufacturing guide line timing.

Parameter		Symbol	Min.	Тур.	Max.	Unit	
Frame	e Rate	-	-	60	-	Hz	
Clock fr	equency	1/ T _{Clock}	66.9	72	80	MHz	
	Period	T _V	788	824	768+A		
Vertical Section	Active	T _{VD}		768		T_Line	
	Blanking	T _{VB}	20	56	Α		
	Period	T _H	1416	1456	1366+B		
Horizontal	Active	T _{HD}		1366		T_{Clock}	
Section	Blanking	T _{HB}	50	90	В		

Note 1: The above is as optimized setting

Note 2: DE mode only

Note 3 : The maximum clock frequency = (1366+B)*(768+A)*60<80MHz

Note 4: Clock frequency number is for reference, real setting value refer to EDID (Clock frequency TBD MHz)

Parameter		Symbol	Min.	Тур.	Max.	Unit
Frame Rate		-	40	60		Hz
Clock fre	Clock frequency		66.6	72	80	MHz
	Period	T _V	1100	1130	1080+A	
Vertical	Active	TvD	1080			T Line
Section	Blanking	T∨B	20	50	Α	
	Period	T H	1010	1050	960+B	
Horizontal	Active	T _{HD}		960		T Clock
Section	Blanking	Тнв	50	90	В	

Note 1: The above is as optimized setting

Note 2: DE mode only

Note 3: The maximum clock frequency = (960+B)*(1080+A)*60 < 80MHz

Note 4: Clock frequency number is for reference, real setting value refer to EDID (Clock frequency TBD MHz)

AU OPTRONICS CORPORATION

AU OPTRONICS CORPORATION

6.5 Power ON/OFF Sequence

Power on/off sequence is as follows. Interface signals and LED on/off sequence are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off

Note 1: If T3<200ms, the display garbage may occur. (T3>200ms is recommended)

Note 2 : If T1 or T12<0.5ms, the inrush current may cause the damage of fuse. If T1 or T12<0.5ms, the inrush current I²t is under typical melt of fuse Spec, there is no mentioned problem.

Note 3: T8,T9,T10,T11 value are recommended, T8,T9,T10,T11≥0 could be acceptable

7. Panel Reliability Test

7.1 Vibration Test

Test Spec:

Test method: Non-Operation

Acceleration: 1.5 G

Frequency: 10 - 500Hz Random

30 Minutes each Axis (X, Y, Z) Sweep:

7.2 Shock Test

Test Spec:

Test method: Non-Operation

Acceleration: 220 G, Half sine wave

Active time: 2 ms

Pulse: X,Y,Z .one time for each side

7.3 Reliability Test

Items	Required Condition	Note
Temperature Humidity Bias	Ta= 40℃, 90%RH, 300h	
High Temperature Operation	Ta= 50℃, Dry, 300h	
Low Temperature Operation	Ta= 0℃, 300h	
High Temperature Storage	Ta= 60℃, 35%RH, 300h	
Low Temperature Storage	Ta= -20℃, 50%RH, 250h	
Thermal Shock Test	Ta=-20℃to 60℃, Duration at 30 min, 100 cycles	
ESD	Contact : ±8 KV	Note 1
	Air: ±15 KV	

Note1: According to EN 61000-4-2, ESD class B: Some performance degradation allowed. Self-recoverable.

No data lost, No hardware failures.

Remark: MTBF (Excluding the LED): 30,000 hours with a confidence level 90%

AU OPTRONICS CORPORATION

8. Mechanical Characteristics

8.1 LCM Outline Dimension

Front View

B101XTN01.0 <u>Document Version : 0.5</u> 24 of 28

AU OPTRONICS CORPORATION

B101XTN01.0 <u>Document Version : 0.5</u> 25 of 28

9. Shipping and Package

9.1.2 Carton Label Format

9.2 Carton Package

9.3 Shipping Package of Palletizing Sequence

10. Appendix: EDID Description

TBD