

### **Assignment 1**

# Submission Instructions Deadline: 25<sup>th</sup> April 2021 11:59 PM

- ➤ Submit Python Notebook named in following format i18\_XXXX\_A1.ipynb
- ➤ Not Late Submissions are allowed.
- ➤ In case of Plagiarism you will be marked Zero.

### **`N-Queen(s) Problem**

N - Queens problem is to place n - queens on an n x n chessboard in such a manner that no queens attack each other by being in the same row, column or diagonal. Following are one of the possible solutions for 4-queens and 8 queens respectively.

|   | 1              | 2              | 3     | 4              |
|---|----------------|----------------|-------|----------------|
| 1 |                |                | $q_1$ |                |
| 2 | q <sub>2</sub> |                |       |                |
| 3 |                |                |       | q <sub>3</sub> |
| 4 |                | q <sub>4</sub> |       |                |

|   | 1     | 2  | 3              | 4     | 5              | 6              | 7  | 8              |
|---|-------|----|----------------|-------|----------------|----------------|----|----------------|
| 1 |       |    |                | $q_1$ |                |                |    |                |
| 2 |       |    |                |       |                | q <sub>2</sub> |    |                |
| 3 |       |    |                |       |                |                |    | q <sub>3</sub> |
| 4 |       | q₄ |                |       |                |                |    |                |
| 5 |       |    |                |       |                |                | q₅ |                |
| 6 | $q_6$ |    |                |       |                |                |    |                |
| 7 |       |    | q <sub>7</sub> |       |                |                |    |                |
| 8 |       |    |                |       | q <sub>8</sub> |                |    |                |

## **Prior Knowledge**

- 1- We can observe that, in any solution, no two queens can occupy the same Column, and consequently no column can be empty, and vice versa for rows
- 2- It can be seen that for n = 1, the problem has a trivial solution, and no solution exists for n = 2 and n = 3. So first we will consider the 4 queens problem and then generate it to n queens problem.



#### **Tasks to Perform**

- 1- Write a function generate ( N ) which takes N ( Number of queens )and generate N\*N board having N queens randomly placed on the board.
- 2- Write a function to search for the solution using **Hill climbing** (You can chose any variation of Hill climbing i.e. Stochastic, Steepest ascent, First Choice etc.)
- 3- Write a function to search for the possible solution using **Simulated Annealing**
- 4- Output both the solutions.

Note: You can build your code on the Lab Task of Week#7

~ Best of Luck ~