09/830223

PCT/JP99/05866

日本国特許庁

25.10.99

PATENT OFFICE
JAPANESE GOVERNMENT

EKU

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1999年 9月29日

REC'D 1 0 DEC 1999

WIPO

PC:

出 額 番 号 Application Number:

平成11年特許願第277399号

東洋紡績株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

1999年11月26日

特 許 庁 長 官 Commissioner, Patent Office

近 藤 隆

出証番号 出証特平11-3081780

【書類名】

特許願

【整理番号】

CN99-0635

【提出日】

平成11年 9月29日

【あて先】

特許庁長官 殿

【国際特許分類】

C08G 63/82

【発明者】

【住所又は居所】

滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

中嶋 孝宏

【発明者】

【住所又は居所】

滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

形舞 祥一

【発明者】

【住所又は居所】

滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

田口 裕朗

【特許出願人】

【識別番号】

000003160

【氏名又は名称】

東洋紡績株式会社

【代表者】

津村 準二

【先の出願に基づく優先権主張】

【出願番号】

平成10年特許願第302692号

【出願日】

平成10年10月23日

【手数料の表示】

【予納台帳番号】

000619

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【プルーフの要否】 要

【書類名】明細書

【発明の名称】ポリエステル重合触媒およびこれを用いて製造されたポリエステルならびにポリエステルの製造方法

【特許請求の範囲】

【請求項1】アンチモン化合物またはゲルマニウム化合物を用いることなく下記(1)式で表される活性パラメータを満たす触媒であり、かつその触媒を用いて重合したポリエチレンテレフタレートが下記(2)式で表される熱安定性指標を満たすポリエステル重合触媒。

(1) 活性パラメータ (AP) : AP(min) < T(min) *2

(上記式中、APは所定の触媒を用いて275℃、0.1Torrの減圧度で固有粘度が0.5d \lg^{-1} のポリエチレンテレフタレートを重合するのに要する時間(min)を示す。Tは三酸化アンチモンを触媒として用いた場合のAPを示す。ただし、三酸化アンチモンは生成ポリエチレンテレフタレート中の酸成分に対してアンチモン原子として0.05mol%添加する。)

(2) 熱安定性指標(TD):TD<25(%)

(上記式中、TDは固有粘度0.6dlg⁻¹のPET1gをガラス試験管に入れ130℃で12時間 真空乾燥した後、窒素雰囲気下で300℃、2時間溶融したときの固有粘度の減少率 (%)を示す)

【請求項2】アルカリ金属またはそれらの化合物とアルカリ土類金属またはそれらの化合物の群から選ばれる一種以上と、下記一般式(1)および/または(2)の構造を含む化合物からなる群より選ばれる一種以上の化合物からなることを特徴とするポリエステル重合触媒。

【化1】

Ar-O- (1)

【化2】

$$Ar-N$$
 (2)

(式(1)~(2)中、Arはアリール基を表す。)

【請求項3】アルカリ金属またはそれらの化合物とアルカリ土類金属またはそれらの化合物の群から選ばれる一種以上と、上記一般式(1)および/または(2)の構造を含む化合物からなる群より選ばれる一種以上の化合物からなることを特徴とする請求項1記載のポリエステル重合触媒。

【請求項4】アルカリ金属またはそれらの化合物とアルカリ土類金属またはそれらの化合物がLi,Na,K,Rb,Cs,Be,Mg,Ca,Sr,Baから選ばれる一種以上の金属またはそれらの化合物である請求項2または3のいずれかに記載のポリエステル重合触媒。

【請求項5】一般式(1)および/または(2)の構造を有する化合物がそれぞれ下記一般式(3)および/または(4)で表される構造を有する化合物である請求項2~4のいずれかに記載のポリエステル重合触媒。

【化3】

$$Ar - O - X^1$$
 (3)

【化4】

$$Ar - N < X^2$$
 (4)

(式(3) \sim (4)中、Arはアリール基を表し、 X^1, X^2, X^3 はそれぞれ独立に水素、炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表す。)

【請求項6】一般式(3)および(4)のArが下記一般式(5)から(12)からなる群より選ばれることを特徴とする請求項5記載のポリエステル重合触媒。

【化5】

【化6】

【化7】

【化8】

【化9】

【化10】

【化11】

【化12】

【請求項7】一般式(3)および/または(4)で表される構造を有する化合物が、下記一般式(13)および(14)で表されるような直線状フェノール化合物、直線状アニリン化合物およびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化13】

$$(XO)_a$$

$$(R^1)_b$$

$$(R^1)_d$$

$$(OX)_c$$

$$R^2$$

$$(13)$$

【化14】

$$(X_2N)_a$$

$$(R^1)_b$$

$$(R^1)_d$$

$$(R^1)_d$$

$$(R^2)_c$$

$$(R^2)_c$$

$$(R^2)_d$$

$$(R^2)_d$$

(式(13)~(14)中、各 R^1 は同じかまたは異なり、炭素原子数 $1 \sim 20$ の炭化水素基、水酸基またはハロゲン基を有する炭素原子数 $1 \sim 20$ の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル) -0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基または

5

その置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各R²は同じかまたは異なり、水素、炭素原子数1~20の炭化水素基、水酸基またはハロゲン基を有する炭素原子数1~20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、炭素原子数1~20の炭化水素基、水酸基またはハロゲン基を有する炭素原子数1~20の炭化水素基、水酸基またはハロゲン基を有する炭素原子数1~20の炭化水素基を表し、各Yは同じかまたは異なり、直接結合、炭素原子数1~10のアルキレン基、-(アルキレン)-0-、-(アルキレン)-S-、-0-、-S-、-SO₂-、-CO-、-COO-を表し、nは1から100の整数を表し、aおよびには1から3の整数を表し、bおよびdは0または1から3の整数を表す。ただし、1≤a+b≤5、1≤c+d≤4である。各dは同じでも異なっていてもよい。)

【請求項8】一般式(3) および/または(4)で表される構造を有する化合物が、下記一般式(15)および(16)で表されるような枝分かれ線状フェノール化合物、枝分かれ線状アニリン化合物およびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化15】

$$R^{2} \xrightarrow{(XO)_{c}} P^{2}$$

$$(R^{1})_{d}$$

$$(OX)_{c}$$

$$(P^{1})_{d}$$

$$(OX)_{c}$$

$$(P^{1})_{d}$$

$$(OX)_{c}$$

$$(P^{1})_{d}$$

【化16】

$$R^{2} \xrightarrow{(X_{2}N)_{c}} Y \xrightarrow{NX_{2}} Y \xrightarrow{(NX_{2})_{c}} R^{2}$$

$$(R^{1})_{d} \xrightarrow{n} (NX_{2})_{c}$$

$$(NX_{2})_{c} \xrightarrow{(NX_{2})_{c}} R^{2}$$

$$(R^{1})_{d} \xrightarrow{n} (16)$$

(式(15) \sim (16)中、各 R^1 は同じかまたは異なり、炭素原子数 $1\sim 2$ 0 の炭化水 素基、水酸基またはハロゲン基を有する炭素原子数1~20の炭化水素基、ハロ ゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル) -0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基または その置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、 ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各R²は同じか または異なり、水素、炭素原子数1~20の炭化水素基、水酸基またはハロゲン 基を有する炭素原子数1~20の炭化水素基、ハロゲン基、カルボキシル基また はそのエステル、ホルミル基、アシル基、(アシル)-0-で表される基、アミノ基 、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコ キシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ 基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、炭素原 子数1~20の炭化水素基、水酸基またはハロゲン基を有する炭素原子数1~2 0 の炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、または エーテル結合を有する炭化水素基を表し、各Yは同じかまたは異なり、直接結合 、炭素原子数1~10のアルキレン基、-(アルキレン)-0-、-(アルキレン)-S-、 -O-、-S-、-SO₂-、-CO-、-COO-を表し、各nは同じかまたは異なり、1から100の 整数を表し、各cは同じかまたは異なり、1から3の整数を表し、各dは同じかまた は異なり、0または1から3の整数を表す。ただし、1≦c+d≦4である。各dは同じ

でも異なっていてもよい。)

【請求項9】一般式(3) および/または(4)で表される構造を有する化合物が、下記一般式(17)および(18)で表されるような環状フェノール化合物、環状アニリン化合物およびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化17】

$$(XO)_{c}$$

$$(R^{1})_{d}$$

$$n$$
(17)

【化18】

$$(X_2N)_c$$

$$(R^1)_d$$

$$n$$
(18)

(式(17)~(18)中、各R¹は同じかまたは異なり、炭素原子数 1~20の炭化水素基、水酸基またはハロゲン基を有する炭素原子数 1~20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、炭素原子数 1~20の炭化水素基、水酸基またはハロゲン基を有する炭素原子数 1~20の炭化水素基、アシル基、スルホニルを含む基、

ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表し、各Yは同じかまたは異なり、直接結合、炭素原子数 $1 \sim 1$ 0 のアルキレン基、-(アルキレン)-0-、-(アルキレン)-S-、-0-、-S-、 $-S0_2-$ 、-C0-、-C00-を表し、-R1から10 0の整数を表し、-R10 の整数を表し、-R11 なるの整数を表し、-R12 は-R13 の整数を表す。ただし、-R13 による。各dは同じでも異なっていてもよい。)

【請求項10】一般式(3) および/または(4)で表される構造を有する化合物が、下記一般式(19)および(20)で表されるようなクマリン誘導体、または下記一般式(21)および(22)で表されるようなクロモン誘導体からなる群より選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化19】

$$(XO)_{j} \qquad (OX)_{m} \qquad (19)$$

【化20】

$$(X_2N)_j \qquad (NX_2)_m \qquad (20)$$

【化21】

$$(XO)_{j}$$

$$(OX)_{m}$$

$$(R)_{b}$$

$$(21)$$

【化22】

$$(X_2N)_j \qquad (NX_2)_m \qquad (22)$$

(式(19)~(22)中、各Rは同じかまたは異なり、炭素原子数1~20の炭化水素基、水酸基またはハロゲン基を有する炭素原子数1~20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、炭素原子数1~20の炭化水素基、水酸基またはハロゲン基を有する炭素原子数1~20の炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表し、jおよびbは0または1から3の整数を表し、mおよびdは0または1から2の整数を表す。ただし、0≤j+b≤4、0≤m+d≤2、1≤j+m≤5である。)

【請求項11】一般式(3) および/または(4)で表される構造を有する化合物が、下記一般式(23)および(24)で表されるようなジヒドロクマリン誘導体、下記一般式(25)および(26)で表されるようなクロマノン誘導体、または下記一般式(27)および(28)で表されるようなイソクロマノン誘導体からなる群より選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化23】

$$(XO)_a \qquad (OX)_p \qquad (CX)_q \qquad ($$

【化24】

$$(X_2N)_a$$

$$(R)_b$$

$$(R)_p$$

$$(R)_q$$

$$(R)_q$$

$$(R)_q$$

【化25】

$$(XO)_a \qquad (OX)_p \qquad (25)$$

【化26】

$$(X_2N)_a$$
 $(R)_b$
 $(NX_2)_p$
 $(R)_q$
 (26)

【化27】

$$(XO)_{a}$$

$$(OX)_{p}$$

$$(R)_{q}$$

$$(27)$$

$$(X_2N)_a$$
 $(NX_2)_p$
 $(R)_q$
 $(X_2N)_a$
 $(X_2N)_p$
 $(X_2N)_q$
 $(X_2N)_q$
 $(X_2N)_q$
 $(X_2N)_q$

(式(23)~(28)中、各Rは同じかまたは異なり、炭素原子数1~20の炭化水素基、水酸基またはハロゲン基を有する炭素原子数1~20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、炭素原子数1~20の炭化水素基、水酸基またはハロゲン基を有する炭素原子数1~20の炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表し、aは1から3の整数を表し、bは0または1から3の整数を表し、pおよびqは0または1から2の整数を表す。ただし、1≤a+b≤4、0≤p+g≤2である。)

【請求項12】一般式(3)および/または(4)で表される構造を有する化合物が、下記一般式(29)および(30)で表されるようなクロマン誘導体、または下記一般式(31)および(32)で表されるようなイソクロマン誘導体からなる群より選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化29】

$$(XO)_a \qquad (OX)_c \qquad (29)$$

【化30】

$$(X_2N)_a$$

$$(R)_b$$

$$(NX_2)_c$$

$$(R)_d$$

$$(30)$$

【化31】

$$(XO)_a \qquad (OX)_c \qquad (31)$$

【化32】

$$(X_2N)_a \qquad (NX_2)_c$$

$$(R)_b \qquad (32)$$

(式(29)~(32)中、各Rは同じかまたは異なり、炭素原子数 1~20の炭化水素基、ハロゲン基を有する炭素原子数 1~20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、炭素原子数 1~20の炭化水素基、水酸基またはハロゲン基を有する炭素原子数 1~20の炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表し、aは1から3の整数を表し、bは0または1から3の整数を表し、cおよびdは0または1から3の整数を表す。ただし、1≦a+b≦4、0≦c+d≦3である。)

【請求項13】一般式(3) および/または(4)で表される構造を有する化合物が、下記一般式(33)および(34)で表されるようなナフタレン誘導体、または下記一般式(35)および(36)で表されるようなビスナフチル誘導体からなる群より選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化33】

$$(XO)_{j} \qquad (OX)_{c} \qquad (33)$$

【化34】

$$(X_2N)_j \qquad (NX_2)_c \qquad (34)$$

(式(33)~(34)中、各Rは同じかまたは異なり、炭素原子数1~20の炭化水素基、ハロゲン基、水酸基またはハロゲン基を有する炭素原子数1~20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、炭素原子数1~20の炭化水素基、水酸基またはハロゲン基を有する炭素原子数1~20の炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表し、j、b、c、およびdは0または1から3の整数を表す。ただし、0≦j+b≦4、0≦c+d≦4、1≦j+c≦6である。)

【化35】

$$(XO)_{j}$$

$$(R)_{d}$$

$$(XO)_{e}$$

$$(XO)_{e}$$

$$(P)_{h}$$

$$(P)_{h}$$

$$(A)_{h}$$

$$(A)_{h}$$

【化36】

$$(X_{2}N)_{j}$$

$$(R)_{b}$$

$$(X_{2}N)_{e}$$

$$(NX_{2})_{c}$$

$$(R)_{d}$$

$$(NX_{2})_{g}$$

$$(NX_{2})_{g}$$

$$(R)_{h}$$

【請求項14】一般式(3)および/または(4)で表される構造を有する化合物が、下記一般式(37)および(38)で表されるようなアントラセン誘導体からなる群より選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化37】

$$(XO)_{j}$$

$$(OX)_{p}$$

$$(OX)_{e}$$

$$(R)_{b}$$

$$(R)_{f}$$

$$(R)_{f}$$

【化38】

$$(X_2N)_i \qquad (NX_2)_p \qquad (NX_2)_e \qquad (38)$$

(式(37)~(38)中、各Rは同じかまたは異なり、炭素原子数 $1 \sim 20$ の炭化水素基、水酸基またはハロゲン基を有する炭素原子数 $1 \sim 20$ の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル) -0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、炭素原子数 $1 \sim 20$ の炭化水素基、水酸基またはハロゲン基を有する炭素原子数 $1 \sim 20$ の炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表し、j、b、e、およびfは0または1から3の整数を表し、pおよびqは0または1から2の整数を表す。ただし、 $0 \le j+b \le 4$ 、 $0 \le p+q \le 2$ 、 $0 \le e+f \le 4$ 、 $1 \le j+p+e \le 8$ である。)

【請求項15】一般式(3)および/または(4)で表される構造を有する化合物が、下記一般式(39)および(40)で表されるようなベンゾキノン誘導体からなる群より選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化39】

$$(XO)_k \qquad (OX)_p \qquad (39)$$

$$(R)_i \qquad (R)_q \qquad (39)$$

【化40】

$$(X_2N)_k \qquad (NX_2)_p \qquad (40)$$

(式(39)~(40)中、各Rは同じかまたは異なり、炭素原子数1~20の炭化水素基、水酸基またはハロゲン基を有する炭素原子数1~20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、炭素原子数1~20の炭化水素基、水酸基またはハロゲン基を有する炭素原子数1~20の炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表し、k、l、p、およびqは0または1から2の整数を表す。ただし、0≤k+l≤2、0≤p+q≤2、1≤k+p≤4である。)

【請求項16】一般式(3)および/または(4)で表される構造を有する化合物が、下記一般式(41)および(42)で表されるようなナフトキノン誘導体からなる群より選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化41】

$$(XO)_k \qquad (OX)_c \qquad (41)$$

【化42】

$$(X_2N)_k$$

$$(NX_2)_c$$

$$(R)_d$$

$$(42)$$

(式(41)~(42)中、各Rは同じかまたは異なり、炭素原子数1~20の炭化水素基、水酸基またはハロゲン基を有する炭素原子数1~20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、炭素原子数1~20の炭化水素基、水酸基またはハロゲン基を有する炭素原子数1~20の炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表し、kおよびlは0または1から2の整数を表し、cおよびdは0または1から3の整数を表す。ただし、0≤k+l≤2、0≤c+d≤4、1≤k+c≤5である。)

【請求項17】一般式(3)および/または(4)で表される構造を有する化合物が、下記一般式(43)および(44)で表されるようなアントラキノン誘導体からなる群より選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化43】

$$(XO)_{j}$$

$$(R)_{d}$$

$$(43)$$

【化44】

$$(X_2N)_j \qquad (NX_2)_c \qquad (44)$$

(式(43)~(44)中、各Rは同じかまたは異なり、炭素原子数1~20の炭化水素基、水酸基またはハロゲン基を有する炭素原子数1~20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、ホスホリルを含む基、ニトロ基、シアノ基、チオシアノ基を表し、各Xは同じかまたは異なり、水素、炭素原子数1~20の炭化水素基、水酸基またはハロゲン基を有する炭素原子数1~20の炭化水素基、アシル基、スルホニルを含む基、ホスホリルを含む基、またはエーテル結合を有する炭化水素基を表し、j、b、c、およびdは0または1から3の整数を表す。ただし、0≦j+b≦4、0≦c+d≦4、1≦j+c≦6である。)

【請求項18】一般式(3)および/または(4)で表される構造を有する化合物が、下記式(45)で表される2,2'-ビスフェノール、または下記式(46)で表される2-アミノビフェニルおよびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化45】

【化46】

【請求項19】一般式(3)および/または(4)で表される構造を有する化合物が、下記式(47)で表される2,2'-ジヒドロキシジフェニルエーテル、下記式(48)で表される2,2'-チオビス(4-tert-オクチルフェノール)、または下記式(49)で表される2,2'-メチレンビス(6-tert-ブチル-p-クレゾール)およびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化47】

【化48】

【化49】

tert-butyl
$$CH_2$$
 $tert$ -butyl CH_3 CH_3 CH_3 (49)

【請求項20】一般式(3)および/または(4)で表される構造を有する化合物が、下記式(50)で表されるメチレン架橋直線状フェノール化合物(2から100量体までの混合物)、または下記式(51)で表されるメチレン架橋直線状p-tert-ブチルフェノール化合物(2から100量体までの混合物)およびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化50】

$$OH$$
 CH_2
 H
(50)

(式(50)中、nは1から99の任意の整数を表す。)

【化51】

(式(51)中、nは1から99の任意の整数を表す。)

【請求項21】一般式(3)および/または(4)で表される構造を有する化合物が、下記式(52)で表されるカリックス[4]アレーン、下記式(53)で表されるカリックス[6]アレーン、下記式(54)で表されるカリックス[8]アレーン、下記式(55)で表されるp-tert-ブチルカリックス[4]アレーン、下記式(56)で表されるp-tert-ブチルカリックス[6]アレーン、または下記式(57)で表されるp-tert-ブチルカリックス[8]アレーンおよびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化52】

【化53】

$$CH_2$$
 (53)

2 2

【化54】

【化55】

$$CH_2$$
 t -butyl (55)

【化56】

$$\begin{array}{c}
\text{OH} \\
\text{CH}_2
\end{array}$$

$$\begin{array}{c}
\text{CH}_2
\end{array}$$

$$\begin{array}{c}
\text{CH}_2
\end{array}$$

【化57】

【請求項22】一般式(3)および/または(4)で表される構造を有する化合物が、下記式(58)で表されるエスクレチン、または下記式(59)で表される7-アミノ

-4-メチルクマリンおよびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化58】

【化59】

$$H_2N$$
 O O O O O

【請求項23】一般式(3)および/または(4)で表される構造を有する化合物が、下記式(60)で表されるクリシン、下記式(61)で表されるモリン、または下記式(62)で表される2-アミノクロモンおよびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化60】

【化61】

【化62】

【請求項24】一般式(3)および/または(4)で表される構造を有する化合物が、下記式(63)で表されるエピカテキン、または下記式(64)で表されるエピガロカテキンガレートおよびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化63】

【化64】

【請求項25】一般式(3)および/または(4)で表される構造を有する化合物が、下記式(65)で表される4,5-ジヒドロキシナフタレン-2,7-ジスルホン酸二ナトリウム、下記式(66)で表される1,8-ジアミノナフタレン、下記式(67)で表されるナフトールAS、下記式(68)で表される1,1'-ビ-2-ナフトール、または下記式(69)で表される1,1'-ビナフチル-2,2'-ジアミンおよびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化65】

【化66】

【化67】

【化68】

【化69】

【請求項26】一般式(3)および/または(4)で表される構造を有する化合物が、下記式(70)で表されるアンスラロビン、下記式(71)で表される9,10-ジメトキシアントラセン、または下記式(72)で表される2-アミノアントラセンおよびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化70】

【化71】

【化72】

【請求項27】一般式(3)および/または(4)で表される構造を有する化合物が、下記式(73)で表される2,5-ジヒドロキシベンゾキノンおよびその誘導体からなる群より選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化73】

【請求項28】一般式(3)および/または(4)で表される構造を有する化合物が、下記式(74)で表される5,8-ジヒドロキシ-1,4-ナフトキノンまたは下記式(75)で表される2-アミノナフトキノンおよびそれらの誘導体からなる群より選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化74】

【化75】

$$H_2N$$
 (75)

【請求項29】一般式(3)および/または(4)で表される構造を有する化合物が、下記式(76)で表されるキナリザリン、下記式(77)で表されるアリザリン、下記式(78)で表されるキニザリン、下記式(79)で表されるアントラルフィン、下記式(80)で表されるエモジン、下記式(81)で表される1,4-ジアミノアントラキノン

、下記式(82)で表される1,8-ジアミノ-4,5-ジヒドロキシアントラキノン、または下記式(83)で表されるアシッドブルー25およびそれらの誘導体からなる群より 選ばれる化合物であることを特徴とする請求項5記載のポリエステル重合触媒。

【化76】

【化77】

【化78】

【化79】

【化80】

【化81】

【化82】

$$\begin{array}{c|c}
OH & O & OH \\
\hline
NH_2 & O & NH_2
\end{array}$$
(82)

[化83]

【請求項30】ポリエステル重合の触媒活性を実質的に有さない化合物2種以上からなる触媒活性を実質的に有するポリエステル重合用触媒。

【請求項31】ポリエステル重合の触媒活性を実質的に有さない化合物の少なくとも1種が金属化合物である請求項30記載のポリエステル重合触媒。

【請求項32】金属化合物の金属が、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、カルシウム、ストロンチウム、珪素、バナジウム、クロム、ルテニウム、ロジウム、パラジウム、テルル、銅からなる群より選ばれる請求項31記載のポリエステル重合触媒。

【請求項33】ポリエステル重合の触媒活性を実質的に有さない化合物の少なくとも1種が有機化合物である請求項30~32のいずれかに記載のポリエステル重合触媒。

【請求項34】ポリエステル重合の触媒活性を実質的に有さない金属化合物を2種以上含む請求項30~33のいずれかに記載のポリエステル重合触媒。

【請求項35】ポリエステル重合の触媒活性を実質的に有さない金属化合物2種以上とポリエステル重合の触媒活性を実質的に有さない有機化合物を含む請求項30~34のいずれかに記載のポリエステル重合触媒。

【請求項36】請求項1~35のいずれかに記載の触媒を用いて製造された ポリエステル。

【請求項37】ポリエステルを製造する際に、請求項1~35のいずれかに 記載の触媒を用いることを特徴とするポリエステルの製造方法。

【請求項38】ポリエステルを製造する際に、アンチモン化合物をアンチモン原子としてポリエステルに対して50ppm以下の量で添加することを特徴とする

請求項37記載のポリエステルの製造方法。

【請求項39】ポリエステルを製造する際に、ゲルマニウム化合物をゲルマニウム原子としてポリエステルに対して20ppm以下の量で添加することを特徴とする請求項37記載のポリエステルの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、溶融成形時に熱劣化をほとんど起こさない熱安定性に優れたポリエステルおよびこれを重合するためのポリエステル重合触媒ならびにポリエステルの製造方法に関するものであり、詳しくは、アンチモン化合物ならびにゲルマニウム化合物以外の重合触媒を用いて重合した熱安定性に優れたポリエステルおよびこれを重合するためのポリエステル重合触媒ならびにポリエステルの製造方法に関するものである。

[0002]

【従来の技術】

ポリエステル、特にポリエチレンテレフタレート(以下、PET と略す)は、機械的特性および化学的特性に優れており、多用途への応用、例えば、衣料用や産業資材用の繊維、包装用や磁気テープ用などの各種フィルムやシート、ボトルやエンジニアリングプラスチックなどの成形物への応用がなされている。

[0003]

PETは、工業的にはテレフタル酸もしくはテレフタル酸ジメチルとエチレングリコールとのエステル化もしくはエステル交換によってピス(2-ヒドロキシエチル)テレフタレートを製造し、これを高温、真空下で触媒を用いて重縮合することで得られる。重縮合時に用いられる触媒としては、三酸化アンチモンが広く用いられている。三酸化アンチモンは、安価で、優れた触媒活性を有し、かつ熱安定性に優れたポリエステルを与える触媒であるが、重縮合時に金属アンチモンが析出するため、PET に黒ずみや異物が発生するという問題点を有している。また、最近環境面からアンチモンの安全性に対する問題が指摘されている。このような経緯で、アンチモンを含まないか、もしくは極少量のみ含むポリエステルが望

まれている。

[0004]

重縮合触媒として、三酸化アンチモンを用いて、かつ PET の黒ずみや異物の発生を抑制する試みが行われている。例えば、特許第2666502号においては、重縮合触媒として三酸化アンチモンとビスマスおよびセレンの化合物を用いることで、PET 中の黒色異物の生成を抑制している。また、特開平9-291141号においては、重縮合触媒としてナトリウムおよび鉄の酸化物を含有する三酸化アンチモンを用いると、金属アンチモンの析出が抑制されることを述べている。ところが、これらの重縮合触媒では、結局アンチモンの含有量を低減するという目的は達成できない。

[0005]

アンチモン化合物以外で優れた触媒活性を有しかつ熱安定性に優れたポリエステルを与える触媒としては、ゲルマニウム化合物がすでに実用化されているが、この触媒は非常に高価であるという問題点や、重合中に反応系から外へ留出しやすいため反応系の触媒濃度が変化し重合の制御が困難になるという問題点を有している。

[0006]

このような経緯で、アンチモン化合物およびゲルマニウム化合物以外の重合触媒であり、触媒活性に優れかつ溶融成形時に熱劣化をほとんど起こさない熱安定性に優れたポリエステルを与える重合触媒が望まれている。

[0007]

アンチモン化合物およびゲルマニウム化合物以外で優れた触媒活性を有する重 合触媒としては、テトラアルコキシチタネートに代表されるチタン化合物やスズ 化合物がすでに提案されているが、これらを用いて製造されたポリエステルは溶 融成形時に熱劣化を受けやすく、またポリエステルが著しく着色するという問題 点を有する。

[0008]

チタン化合物を触媒として用いて重合したポリエステルの溶融成形時の熱劣化 を抑制する試みとして、例えば、特開平10-259296号では、チタン化合物を触媒 としてポリエステルを重合した後にリン系化合物を添加する方法が開示されている。この技術に代表されるように、リン系化合物のような安定剤を添加して触媒を失活することによってポリエステルの熱安定性を向上することは確かに可能であるが、重合後のポリマーに添加剤を効果的に混ぜ込むことは技術的に困難であるばかりでなく、コストアップにもつながり実用化されていないのが現状である。また、添加剤を使うこと自体、コストアップにもつながるので好ましくない。

[0009]

また、ポリエステルの溶融成形時の熱劣化を抑制する方法として、ポリエステルから触媒を除去する方法も挙げられる。ポリエステルから触媒を除去する方法としては、例えば特開平10-251394号では、酸性物質の存在下にポリエステル樹脂と超臨界流体である抽出剤とを接触させる方法が開示されている。しかし、このような超臨界流体を用いる方法は技術的に困難である上にコストアップにもつながるので好ましくない。

[0010]

アンチモン化合物またはゲルマニウム化合物以外で触媒活性に優れ、かつ触媒 の失活もしくは除去をすることなしに、溶融成形時の熱劣化を効果的に抑制した 熱安定性に優れたポリエステルを与える重合触媒はこれまで開発されていなかっ た。

[0011]

【発明が解決しようとする課題】

本発明の目的は、アンチモン化合物ならびにゲルマニウム化合物以外の重合触媒を用いて重合した、溶融成形時に熱劣化をほとんど起こさない熱安定性に優れたポリエステルおよびこれを重合するためのポリエステル重合触媒ならびにポリエステルの製造方法を提供することである。

[0012]

【課題を解決するための手段】

本発明の筆者らは、上記課題の解決を目指して鋭意検討を重ねた結果、次に示すような特性を有する触媒、すなわち、アンチモン化合物またはゲルマニウム化合物を用いることなく下記(1)式で表される活性パラメータを満たす触媒であり

、かつその触媒を用いて重合したポリエチレンテレフタレートが下記(2)式で表される熱安定性指標を満たすような触媒であれば、その触媒を用いて重合したポリエステルの溶融成形時の熱劣化を効果的に抑制できることを見いだした。さらには、アルカリ金属またはそれらの化合物やアルカリ土類金属またはそれらの化合物のようにもともとポリエステル重合の触媒活性が低いものにある特定の化合物を共存させることで、驚くべき事に重合触媒として十分な活性を持つようになり、さらに、本触媒はアンチモン化合物またはゲルマニウム化合物を全く用いずとも下記(1)式を満足する触媒で、その触媒を用いて重合したポリエチレンテレフタレートが下記(2)式の特性を満足する触媒となることを見いだし本発明に到達した。

(1) 活性パラメータ (AP) : AP(min) < T(min) * 2

(上記式中、APは所定の触媒を用いて275℃、0.1Torrの減圧度で固有粘度が0.5d \lg^{-1} のポリエチレンテレフタレートを重合するのに要する時間(min)を示す。Tは三酸化アンチモンを触媒として用いた場合のAPを示す。ただし、三酸化アンチモンは生成ポリエチレンテレフタレート中の酸成分に対してアンチモン原子として0.05mol%添加する。)

(2) 熱安定性指標(TD):TD<25(%)

(上記式中、TDは固有粘度0.6dlg⁻¹のPET1gをガラス試験管に入れ130℃で12時間 真空乾燥した後、窒素雰囲気下で300℃、2時間溶融したときの固有粘度の減少率 (%)を示す)

[0013]

すなわち、本発明は上記課題の解決法として、アルカリ金属またはそれらの化合物やアルカリ土類金属またはそれらの化合物のように重合触媒として活性をほとんど有していないか、もしくは有していても十分な活性ではない金属化合物と特定の化合物を組み合わせた触媒およびこれを用いて製造される溶融成形時に熱劣化をほとんど起こさない熱安定性に優れたポリエステルならびにポリエステルの製造方法を提供する。また本発明は、ポリエステル重合の触媒活性を実質的に有さない化合物2種以上からなる触媒活性を実質的に有する触媒およびこれを用いて製造されるポリエステルならびにポリエステルの製造方法を提供する。

[0014]

【発明の実施の形態】

本発明は、アンチモン化合物ならびにゲルマニウム化合物以外の重合触媒を用いて重合した、溶融成形時に熱劣化をほとんど起こさない熱安定性に優れたポリエステルおよびこれを重合するためのポリエステル重合触媒ならびにポリエステルの製造方法を提供するものである。本発明の重合触媒はアルカリ金属またはそれらの化合物やアルカリ土類金属またはそれらの化合物のように重合触媒として活性をほとんど有していないか、もしくは有していても十分な活性ではない金属化合物と特定の化合物を組み合わせた触媒である。

[0015]

本発明の重合触媒を構成するアルカリ金属またはそれらの化合物あるいはアルカリ土類金属またはそれらの化合物としては、アルカリ金属あるいはアルカリ土類金属の他に、Li,Na,K,Rb,Cs,Be,Mg,Ca,Sr,Baから選ばれる一種もしくは二種以上の化合物であれば特に限定はされないが、例えば、これらの金属のギ酸、酢酸、プロピオン酸、酪酸、蓚酸などの飽和脂肪族カルボン酸塩、アクリル酸、メタクリル酸などの不飽和脂肪族カルボン酸塩、安息香酸などの芳香族カルボン酸塩、トリクロロ酢酸などのハロゲン含有カルボン酸塩、乳酸、クエン酸、サリチル酸などのヒドロキシカルボン酸塩、炭酸、硫酸、硝酸、リン酸、ホスホン酸、炭酸水素、リン酸水素、硫酸水素、亜硫酸、チオ硫酸、塩酸、臭化水素酸、塩素酸、臭素酸などの無機酸塩、1-プロパンスルホン酸、1-ペンタンスルホン酸、ナフタレンスルホン酸などの有機スルホン酸塩、ラウリル硫酸などの有機硫酸塩、メトキシ、エトキシ、n-プロポキシ、iso-プロポキシ、n-ブトキシ、などのアルコキサイド、アセチルアセトネートなどのキレート化合物、酸化物、水酸化物などが挙げられ、これらのうち飽和脂肪族カルボン酸塩が好ましく、さらに酢酸塩がとくに好ましい。

[0016]

これらアルカリ金属またはそれらの化合物あるいはアルカリ土類金属またはそれらの化合物の使用量としては、得られるポリエステルのジカルボン酸や多価カルボン酸などのカルボン酸成分の全構成ユニットのモル数に対して1×10⁻⁶~0.1

モルの範囲であることが好ましく、更に好ましくは $5 \times 10^{-6} \sim 0.05$ モルの範囲であることである。

[0017]

本発明の重合触媒を構成する特定の化合物とは、下記一般式(1)および/または(2)の構造を有する化合物からなる群より選ばれる化合物である。

[0018]

【化84】

$$Ar-O- \qquad (1)$$

[0019]

【化85】

$$Ar-N$$
 (2)

[0020]

(式(1)~(2)中、Arはアリール基を表す。)

[0021]

本発明の重合触媒を構成する特定の化合物は一般式(1)、(2)の双方を備えた、例えばアミノフェノール類等のような芳香族にNと0の双方が結合された化合物やその誘導体であってもよい。

[0022]

本発明の重合触媒において特定の化合物として使用される一般式(1)および/または(2)の構造を有する化合物としては、詳しくは、下記一般式(3)および/または(4)の構造を有する化合物からなる群より選ばれる一種以上の化合物が好ましい。

[0023]

【化86】

$$Ar - O - X^1 \qquad (3)$$

[0024]

【化87】

$$Ar - N < \chi^2 \qquad (4)$$

[0025]

(式(3)~(4)中、 X^1,X^2,X^3 はそれぞれ独立に水素、炭化水素基、アシル基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、またはエーテル結合を有する炭化水素基などを表し、Arは下記一般式(5)から(12)などに例示されるアリール基を表す。)

[0026]

【化88】

[0027]

[化89]

[0028]

【化90】

[0029]

【化91】

[0030]

【化92】

[0031]

【化93】

[0032]

【化94】

[0033]

【化95】

[0034]

Arが一般式(5)で表される $Ar-0-X^1$ または $Ar-N(-X^2)-X^3$ の構造を有する化合物としては、例えば、下記一般式(13)および(14)で表されるような直線状フェノール化合物、直線状アニリン化合物およびそれらの誘導体、下記一般式(15)および(16)で表されるような枝分かれ線状フェノール化合物、枝分かれ線状アニリン化合物およびそれらの誘導体、または下記一般式(17)および(18)で表されるような環

状フェノール化合物、環状アニリン化合物およびそれらの誘導体などが挙げられ、これらのうち直線状フェノール化合物、直線状アニリン化合物、または環状フェノール化合物およびそれらの誘導体が好ましい。さらに、直線状フェノール化合物およびそれらの誘導体のなかでも、下記式(45)で表される2,2'-ビスフェノール、下記式(46)で表される2-アミノビフェニル、下記式(47)で表される2,2'-ジヒドロキシジフェニルエーテル、下記式(48)で表される2,2'-チオビス(4-tert-オクチルフェノール)、下記式(49)で表される2,2'-メチレンピス(6-tert-ブチル-p-クレゾール)、下記式(50)で表されるメチレン架橋直線状フェノール化合物(2から100量体までの混合物)、下記式(51)で表されるメチレン架橋直線状ア-tert-ブチルフェノール化合物(2から100量体までの混合物)、下記式(52)で表されるカリックス[4]アレーン、下記式(53)で表されるカリックス[6]アレーン、下記式(54)で表されるカリックス[8]アレーン、下記式(55)で表されるp-tert-ブチルカリックス[6]アレーン、または下記式(57)で表されるp-tert-ブチルカリックス[8]アレーン、または下記式(57)で表されるp-tert-ブチルカリックス[8]アレーンおよびそれらの誘導体がとくに好ましい。

[0035]

【化96】

$$(XO)_a$$

$$(R^1)_b$$

$$(R^1)_d$$

$$(OX)_c$$

$$R^2$$

$$(13)$$

[0036]

【化97】

$$(X_2N)_a$$

$$(R^1)_b$$

$$(R^1)_d$$

$$(R^1)_d$$

$$(14)$$

[0037]

【化98】

$$R^{2} \xrightarrow{(XO)_{c}} Y \xrightarrow{(OX)_{c}} R^{2}$$

$$(R^{1})_{d} \xrightarrow{n} (OX)_{c}$$

$$(OX)_{c} \xrightarrow{(OX)_{c}} R^{2}$$

$$(R^{1})_{d} \xrightarrow{n} n$$

$$(15)$$

[0038]

【化99】

$$R^{2} \xrightarrow{(X_{2}N)_{c}} \xrightarrow{(NX_{2})_{c}} R^{2}$$

$$(R^{1})_{d} \xrightarrow{(NX_{2})_{c}} R^{2}$$

$$(R^{1})_{d} \xrightarrow{(NX_{2})_{c}} R^{2}$$

$$(R^{1})_{d} \xrightarrow{(NX_{2})_{c}} R^{2}$$

[0039]

【化100】

$$(XO)_{c}$$

$$(R^{1})_{d}$$

$$n$$

$$(17)$$

[0040]

【化101】

[0041]

(式(13)~(18)中、各R¹は同じかまたは異なり、炭素原子数1~20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、二トロ基、シアノ基、チオシアノ基などを表し、各R²は同じかまたは異なり、水素、炭素原子数1~20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含

む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、ニトロ基、シアノ基、チオシアノ基などを表し、各Xは同じかまたは異なり、水素、炭素原子数1~20の炭化水素基、アシル基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、またはエーテル結合を有する炭化水素基などを表し、各Yは同じかまたは異なり、直接結合、炭素原子数1~10のアルキレン基、-(アルキレン)-0-、-(アルキレン)-S-、-0-、-S-、-S02-、-C0-、-C00-などを表し、各nは同じかまたは異なり、1から100の整数を表し、aは1から3の整数を表し、bは0または1から3の整数を表し、各cは同じかまたは異なり、1から3の整数を表し、各dは同じかまたは異なり、0または1から3の整数を表す。ただし、1≦a+b≦5、1≦c+d≦4である。ここでいう炭化水素基はアルキル基やアリール基などを表し、分子鎖中に水酸基やハロゲン基などの置換基を含んでいてもよい。)

[0042]

【化102】

[0043]

【化103】

[0044]

【化104】

[0045]

【化105】

[0046]

【化106】

tert-butyl
$$CH_2$$
 CH_3 CH_3 (49)

[004.7]

【化107】

$$\begin{array}{c}
OH \\
CH_2
\end{array}$$

$$\begin{array}{c}
H \\
\end{array}$$

$$(50)$$

[0048]

(式(50)中、nは1から99の任意の整数を表す。)

[0049]

【化108】

$$\begin{array}{c|c}
OH & OH \\
CH_2 & H \\
\hline
t-butyl & n
\end{array}$$
(51)

[0050]

(式(51)中、nは1から99の任意の整数を表す。)

[0051]

【化109】

$$CH_2$$
 (52)

[0052]

【化110】

[0053]

【化111】

[0054]

【化112】

$$CH_2$$
 t -butyl (55)

[0055]

【化113】

$$\begin{array}{c}
\text{OH} \\
\text{CH}_2
\end{array}$$

$$\begin{array}{c}
\text{(56)}
\end{array}$$

【0056】 【化114】

[0057]

Arが一般式(5)で表されるAr-O-X¹またはAr-N(-X²)-X³の構造を有する化合物のその他の例としては、下記一般式(19)および(20)で表されるようなクマリン誘導体、下記一般式(21)および(22)で表されるようなクロモン誘導体、下記一般式(23)および(24)で表されるようなジヒドロクマリン誘導体、下記一般式(25)および(26)で表されるようなクロマノン誘導体、下記一般式(27)および(28)で表されるようなイソクロマノン誘導体、下記一般式(29)および(30)で表されるようなクロマン誘導体、下記一般式(29)および(30)で表されるようなクロマン誘導体、下記一般式(31)および(32)で表されるようなイソクロマン誘導体などの複素環式化合物などが挙げられ、これらのうちクマリン誘導体、クロモン誘導体などの複素環式化合物などが挙げられ、これらのうちクマリン誘導体、クロモン誘導体、またはクロマン誘導体が好ましい。クマリン誘導体、クロモン誘導体、またはクロマン誘導体のなかでも、下記式(58)で表されるエスクレチン、下記式(59)で表される7-アミノー4ーメチルクマリン、下記式(60)で表されるクリシン、下記式(61)で表されるモリン、下記式(62)で表される2-アミノクロモン、下記式(63)で表されるエピカテキン、または下記式(64)で表されるエピガロカテキンガレートおよびそれらの誘導体がとくに好ましい。

[0058]

【化115】

$$(XO)_a \qquad (OX)_c \qquad (19)$$

[0059]

【化116】

$$(X_2N)_a$$
 $(R)_b$
 $(NX_2)_c$
 $(R)_d$
 $(R)_d$
 $(R)_d$

[0060]

【化117】

$$(XO)_a \qquad (OX)_c \qquad (21)$$

[0061]

【化118】

$$(X_2N)_a \qquad (X_2)_c \qquad (X_2N)_d \qquad$$

[0062]

(式(19)~(22)中、各Rは同じかまたは異なり、炭素原子数1~20の炭化水

素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、ニトロ基、シアノ基、チオシアノ基などを表し、各Xは同じかまたは異なり、水素、炭素原子数1~20の炭化水素基、アシル基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、またはエーテル結合を有する炭化水素基などを表し、jおよびbは0または1から3の整数を表し、mおよびdは0または1から2の整数を表す。ただし、0≦j+b≦4、0≦m+d≦2、1≦j+m≦5である。ここでいう炭化水素基はアルキル基やアリール基などを表し、分子鎖中に水酸基やハロゲン基などの置換基を含んでいてもよい。)

[0063]

【化119】

$$(XO)_a \qquad (OX)_c \qquad (23)$$

[0064]

【化120】

$$(X_2N)_a$$

$$(R)_b$$

$$(R)_b$$

$$(24)$$

[0065]

【化121】

$$(XO)_a$$
 $(P)_b$
 $(OX)_c$
 $(R)_d$
 (25)

[0066]

【化122】

$$(X_2N)_a \qquad (NX_2)_c \qquad (R)_d \qquad (26)$$

[0067]

【化123】

$$(XO)_a \qquad (OX)_c \qquad O \qquad (27)$$

$$(R)_b \qquad (R)_d \qquad (27)$$

[0068]

【化124】

$$(X_2N)_a$$

$$(R)_b$$

$$(R)_d$$

$$(28)$$

[0069]

(式(23)~(28)中、各Rは同じかまたは異なり、炭素原子数1~20の炭化水

素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、二トロ基、シアノ基、チオシアノ基などを表し、各Xは同じかまたは異なり、水素、炭素原子数1~20の炭化水素基、アシル基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、またはエーテル結合を有する炭化水素基などを表し、aは1から3の整数を表し、bは0または1から3の整数を表し、cおよびdは0または1から2の整数を表す。ただし、1≤a+b≤4、0≤c+d≤2である。ここでいう炭化水素基はアルキル基やアリール基などを表し、分子鎖中に水酸基やハロゲン基などの置換基を含んでいてもよい。)

[0070]

【化125】

$$(XO)_a \qquad (OX)_c \qquad (29)$$

[0071]

【化126】

$$(X_2N)_a \qquad (NX_2)_c \qquad (30)$$

[0072]

【化127】

$$(XO)_a \qquad (OX)_c \qquad (31)$$

$$(R)_b \qquad (31)$$

[0073]

【化128】

$$(X_2N)_a$$

$$(R)_b$$

$$(X_2)_c$$

$$(R)_d$$

$$(32)$$

[0074]

(式(29)~(32)中、各Rは同じかまたは異なり、炭素原子数 1~20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、二トロ基、シアノ基、チオシアノ基などを表し、各Xは同じかまたは異なり、水素、炭素原子数 1~20の炭化水素基、アシル基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、またはエーテル結合を有する炭化水素基などを表し、aは1から3の整数を表し、bは0または1から3の整数を表し、cおよびdは0または1から3の整数を表す。ただし、1≦a+b≤4、0≦c+d≤3である。ここでいう炭化水素基はアルキル基やアリール基などを表し、分子鎖中に水酸基やハロゲン基などの置換基を含んでいてもよい。)

[0075]

【化129】

[0076]

【化130】

$$H_2N$$
 O O O O O

[0077]

【化131】

[0078]

【化132】

[0079]

【化133】

[0080]

【化134】

[0081]

【化135】

[0082]

Arが一般式(6)で表されるAr-0-X¹またはAr-N(-X²)-X³の構造を有する化合物としては、例えば、下記一般式(33)および(34)で表されるようなナフタレン誘導体、または下記一般式(35)および(36)で表されるようなビスナフチル誘導体などが

挙げられ、これらのなかでも、下記式(65)で表される4,5-ジヒドロキシナフタレン-2,7-ジスルホン酸二ナトリウム、下記式(66)で表される1,8-ジアミノナフタレン、下記式(67)で表されるナフトールAS、下記式(68)で表される1,1'-ビ-2-ナフトール、または下記式(69)で表される1,1'-ビナフチル-2,2'-ジアミンおよびそれらの誘導体が好ましく、さらにこれらの中でも、4,5-ジヒドロキシナフタレン-2,7-ジスルホン酸二ナトリウムまたは1,8-ジアミノナフタレンおよびそれらの誘導体がとくに好ましい。

[0083]

【化136】

$$(XO)_a$$
 $(OX)_c$
 $(R)_d$
 (33)

[0084]

【化137】

$$(X_2N)_a$$
 $(NX_2)_c$
 $(R)_b$
 $(R)_d$

[0085]

(式(33)~(34)中、各Rは同じかまたは異なり、炭素原子数1~20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、ニトロ基、シアノ基、チオシアノ基などを表し、各Xは同じかまたは異なり、水素、炭素原子数1~20の炭化水素基

、アシル基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、 ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、またはエーテ ル結合を有する炭化水素基などを表し、j、b、c、およびdは0または1から3の整 数を表す。ただし、0≦j+b≦4、0≦c+d≦4、1≦j+c≦6である。ここでいう炭化 水素基はアルキル基やアリール基などを表し、分子鎖中に水酸基やハロゲン基な どの置換基を含んでいてもよい。)

[0086]

【化138】

$$(XO)_{a}$$

$$(R)_{b}$$

$$(XO)_{e}$$

$$(P)_{f}$$

$$(OX)_{c}$$

$$(R)_{d}$$

$$(OX)_{g}$$

$$(OX)_{g}$$

$$(OX)_{g}$$

$$(OX)_{g}$$

[0087]

【化139】

$$(X_{2}N)_{a}$$

$$(R)_{b}$$

$$(X_{2}N)_{e}$$

$$(X_{2}N)_{e}$$

$$(NX_{2})_{c}$$

$$(R)_{d}$$

$$(NX_{2})_{g}$$

$$(NX_{2})_{g}$$

$$(R)_{h}$$

[0088]

(式(35)~(36)中、各Rは同じかまたは異なり、炭素原子数1~20の炭化水 素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基 、(アシル)-0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、二トロ基、シアノ基、チオシアノ基などを表し、各Xは同じかまたは異なり、水素、炭素原子数1~20の炭化水素基、アシル基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、またはエーテル結合を有する炭化水素基などを表し、Yは直接結合、炭素原子数1~10のアルキレン基、-(アルキレン)-0-、-(アルキレン)-S-、-0-、-S-、-S02-、-C0-、-C00-などを表し、j、b、c、d、e、f、g、およびhは0または1から3の整数を表す。ただし、0≤j+b≤4、0≤c+d≤3、0≤e+f≤4、0≤g+h≤3、1≤j+c+e+g≤12である。ここでいう炭化水素基はアルキル基やアリール基などを表し、分子鎖中に水酸基やハロゲン基などの置換基を含んでいてもよい。)

[0089]

【化140】

[0090]

【化141】

[0091]

【化142】

[0092]

【化143】

[0093]

【化144】

[0094]

Arが一般式(7)または(8)で表されるAr-0- X^1 またはAr- $N(-X^2)$ - X^3 の構造を有する化合物としては、例えば、下記一般式(37)および(38)で表されるようなアントラセン誘導体などが挙げられ、これらのなかでも、下記式(70)で表されるアンスラロビン、下記式(71)で表される9,10-53、トキシアントラセン、または下記式(

72)で表される2-アミノアントラセンおよびそれらの誘導体が好ましく、さらにこれらの中でも、アンスラロビンおよびその誘導体がとくに好ましい。

[0095]

【化145】

$$(XO)_a \qquad (OX)_c \qquad (OX)_e \qquad (37)$$

$$(R)_b \qquad (R)_f \qquad (37)$$

[0096]

【化146】

$$(X_2N)_e \xrightarrow{(NX_2)_c} (NX_2)_e$$

$$(R)_b \xrightarrow{(R)_d} (R)_f$$

$$(38)$$

[0097]

(式(37)~(38)中、各Rは同じかまたは異なり、炭素原子数1~20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、二トロ基、シアノ基、チオシアノ基などを表し、各Xは同じかまたは異なり、水素、炭素原子数1~20の炭化水素基、アシル基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、またはエーテル結合を有する炭化水素基などを表し、j、b、e、およびfは0または1から3の整

数を表し、pおよびqは0または1から2の整数を表す。ただし、 $0 \le j+b \le 4$ 、 $0 \le p+q$ ≤ 2 、 $0 \le e+f \le 4$ 、 $1 \le j+p+e \le 8$ である。ここでいう炭化水素基はアルキル基やアリール基などを表し、分子鎖中に水酸基やハロゲン基などの置換基を含んでいてもよい。)

[0098]

【化147】

[0099]

【化148】

[0100]

【化149】

[0101]

Arが一般式(9)で表される $Ar-0-X^1$ または $Ar-N(-X^2)-X^3$ の構造を有する化合物と

しては、例えば、下記一般式(39)および(40)で表されるようなベンゾキノン誘導体などが挙げられ、これらのなかでも、下記式(73)で表される2,5-ジヒドロキシベンゾキノンおよびその誘導体が好ましい。

[0102]

【化150】

$$(XO)_a \qquad (OX)_c \qquad (39)$$

[0103]

【化151】

$$(X_2N)_a \qquad (NX_2)_c \qquad (40)$$

[0104]

(式(39)~(40)中、各Rは同じかまたは異なり、炭素原子数1~20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、二トロ基、シアノ基、チオシアノ基などを表し、各Xは同じかまたは異なり、水素、炭素原子数1~20の炭化水素基、アシル基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、またはエーテ

ル結合を有する炭化水素基などを表し、k、l、p、およびqは0または1から2の整数を表す。ただし、 $0 \le k+1 \le 2$ 、 $0 \le p+q \le 2$ 、 $1 \le k+p \le 4$ である。ここでいう炭化水素基はアルキル基やアリール基などを表し、分子鎖中に水酸基やハロゲン基などの置換基を含んでいてもよい。)

[0105]

【化152】

[0106]

Arが一般式(10)または(11)で表されるAr-0-X¹またはAr-N(-X²)-X³の構造を有する化合物としては、例えば、下記一般式(41)および(42)で表されるようなナフトキノン誘導体などが挙げられ、これらのなかでも、下記式(74)で表される5,8-ジヒドロキシ-1,4-ナフトキノンまたは下記式(75)で表される2-アミノナフトキノンおよびそれらの誘導体が好ましい。

[0107]

【化153】

[0108]

$$(XO)_a \qquad (OX)_c \qquad (41)$$

$$(R)_b \qquad (R)_d \qquad (41)$$

6 4

【化154】

$$(X_2N)a \qquad (NX_2)_c \qquad (42)$$

$$(R)_b \qquad (R)_d$$

[0109]

(式(41)~(42)中、各Rは同じかまたは異なり、炭素原子数 1~20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、二トロ基、シアノ基、チオシアノ基などを表し、各Xは同じかまたは異なり、水素、炭素原子数 1~20の炭化水素基、アシル基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、またはエーテル結合を有する炭化水素基などを表し、kおよび1は0または1から2の整数を表し、cおよびdは0または1から3の整数を表す。ただし、0≦k+1≦2、0≦c+d≦4、1≦k+c≦5である。ここでいう炭化水素基はアルキル基やアリール基などを表し、分子鎖中に水酸基やハロゲン基などの置換基を含んでいてもよい。)

[0110]

【化155】

[0111]

【化156】

$$H_2N$$
 (75)

[0112]

Arが一般式(12)で表されるAr-O-X¹またはAr-N(-X²)-X³の構造を有する化合物としては、例えば、下記一般式(43)および(44)で表されるようなアントラキノン誘導体などが挙げられ、これらのなかでも、下記式(76)で表されるキナリザリン、下記式(77)で表されるアリザリン、下記式(78)で表されるキニザリン、下記式(79)で表されるアントラルフィン、下記式(80)で表されるエモジン、下記式(81)で表される1,4-ジアミノアントラキノン、下記式(82)で表される1,8-ジアミノ-4,5-ジヒドロキシアントラキノン、または下記式(83)で表されるアシッドブルー25およびそれらの誘導体が好ましく、さらにこれらの中でも、キナリザリンまたは1,4-ジアミノアントラキノンおよびそれらの誘導体がとくに好ましい。

[0113]

【化157】

$$(XO)_a$$

$$(P)_b$$

$$(R)_d$$

$$(A3)$$

[0114]

【化158】

$$(X_2N)_a \qquad (NX_2)_c \qquad (44)$$

[0115]

(式(43)~(44)中、各Rは同じかまたは異なり、炭素原子数 1~20の炭化水素基、ハロゲン基、カルボキシル基またはそのエステル、ホルミル基、アシル基、(アシル)-0-で表される基、アミノ基、モノまたはジアルキルアミノ基、アミド基またはその置換体、水酸基、アルコキシル基、アルキルチオ基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、二トロ基、シアノ基、チオシアノ基などを表し、各Xは同じかまたは異なり、水素、炭素原子数 1~20の炭化水素基、アシル基、スルホニルを含む基、例えばスルホン酸基やスルホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、ホスホリルを含む基、例えばホスホン酸基やホスホネート基など、またはエーテル結合を有する炭化水素基などを表し、j、b、c、およびdは0または1から3の整数を表す。ただし、0≤j+b≤4、0≤c+d≤4、1≤j+c≤6である。ここでいう炭化水素基はアルキル基やアリール基などを表し、分子鎖中に水酸基やハロゲン基などの置換基を含んでいてもよい。)

[0116]

【化159】

[0117]

【化160】

[0118]

【化161】

[0119]

【化162】

[0120]

【化163】

[0121]

【化164】

[0122]

【化165】

$$\begin{array}{c|c}
OH & O & OH \\
\hline
NH_2 & O & NH_2
\end{array}$$
(82)

[0123]

【化166】

[0124]

このような特定の化合物の使用量としては、共存するアルカリ金属またはそれらの化合物あるいはアルカリ土類金属またはそれらの化合物のモル数に対して0.01~100モルの範囲であることが好ましく、更に好ましくは0.05~50モルの範囲であることである。

[0125]

本発明は、アンチモン化合物以外の新規の重合触媒を提供するものである。本 発明の重合触媒は、ポリエステル重合の触媒活性を実質的に有さない化合物2種 以上からなる触媒活性を実質的に有するポリエステル重合触媒である。

[0126]

本発明のポリエステル重合の触媒活性を実質的に有さない化合物の少なくとも 一種は金属またはその化合物であることが好ましい。また本発明のポリエステル 重合の触媒活性を実質的に有さない化合物の別の少なくとも一種は有機化合物で あることが好ましい。

[0127]

本発明のポリエステル重合の触媒活性を実質的に有さない金属またはその化合物とはNa,K,Rb,Cs,Be,Ca,Sr,Si,V,Cr,Ru,Rh,Pd,Te,Cuなどの金属またはそれらの化合物であり、好ましくは、Na,K,Rb,Cs,Be,Si,Cuまたはそれらの化合物である。これらの金属の化合物としては特に限定はされないが、例えば、これらのギ酸、酢酸、プロピオン酸、酪酸、蓚酸などの飽和脂肪族カルボン酸塩、アクリル酸、メタクリル酸などの不飽和脂肪族カルボン酸塩、安息香酸などの芳香族カルボン酸塩、トリクロロ酢酸などのハロゲン含有カルボン酸塩、乳酸、クエン酸、サ

リチル酸などのヒドロキシカルボン酸塩、炭酸、硫酸、硝酸、リン酸、ホスホン酸、炭酸水素、リン酸水素、硫酸水素、亜硫酸、チオ硫酸、塩酸、臭化水素酸、塩素酸、臭素酸などの無機酸塩、1-プロパンスルホン酸、1-ペンタンスルホン酸、ナフタレンスルホン酸などの有機スルホン酸塩、ラウリル硫酸などの有機硫酸塩、メトキシ、エトキシ、n-プロポキシ、iso-プロポキシ、n-ブトキシ、t - ブトキシなどのアルコキサイド、アセチルアセトネートなどのキレート化合物、酸化物、水酸化物などが挙げられ、これらのうち飽和脂肪族カルボン酸塩が好ましく、さらに酢酸塩がとくに好ましい。

[0128]

本発明の重合触媒を構成するポリエステル重合の触媒活性を実質的に有さない有機化合物としては、既に述べた一般式(1)および/または(2)の構造を有する化合物からなる群より選ばれる化合物が好ましい。より詳しくは、一般式(1)および/または(2)の構造を有する化合物は、段落番号21から124に記載の化合物である。

[0129]

本発明によるポリエステルの製造は、従来公知の方法で行うことができる。例えば、PETの場合はテレフタル酸とエチレングリコールとのエステル化後、重縮合する方法、もしくは、テレフタル酸ジメチルなどのテレフタル酸のアルキルエステルとエチレングリコールとのエステル交換反応を行った後、重縮合する方法のいずれの方法でも行うことができる。また、重合の装置は、回分式であっても、連続式であってもよい。

[0130]

本発明の触媒は、重縮合反応のみならずエステル化反応およびエステル交換反応にも触媒活性を有する。テレフタル酸ジメチルなどのテレフタル酸のアルキルエステルとエチレングリコールとのエステル交換反応は、通常マンガンもしくは 亜鉛などのエステル交換触媒の存在下で行われるが、これらの触媒の代わりかもしくはこれらの触媒に共存して本発明の触媒を用いることもできる。また、本発明の触媒は、溶融重合のみならず固相重合や溶液重合においても触媒活性を有する。

[0131]

本発明の重合触媒の添加時期は、重縮合反応の開始前が望ましいが、エステル 化反応もしくはエステル交換反応の開始前および反応途中の任意の段階で反応系 に添加することもできる。

[0132]

本発明の重合触媒の添加方法は、粉末状であってもよいし、エチレングリコールなどの溶媒のスラリー状もしくは溶液状での添加であってもよく、特に限定されない。また、アルカリ金属またはそれらの化合物あるいはアルカリ土類金属またはそれらの化合物と特定の化合物とを予め混合したものを添加してもよいし、これらを別々に添加してもよい。また、ポリエステル重合の触媒活性を実質的に有さない化合物2種以上を予め混合したものを添加してもよいし、これらを別々に添加してもよい。

[0133]

本発明の重合触媒を用いてポリエステルを重合する際には、アンチモン化合物やゲルマニウム化合物を併用してもよい。ただし、アンチモン化合物としては重合して得られるポリエステルに対してアンチモン原子として50ppm以下の量で添加することが好ましい。より好ましくは30ppm以下の量で添加することである。アンチモンの添加量を50ppm以上にすると、金属アンチモンの析出が起こり、ポリエステルに黒ずみや異物が発生するため好ましくない。ゲルマニウム化合物としては重合して得られるポリエステル中にゲルマニウム原子として20ppm以下の量で添加することが好ましい。より好ましくは10ppm以下の量で添加することである。ゲルマニウムの添加量を20ppm以上にするとコスト的に不利となるため好ましくない。

[0134]

本発明で用いられるアンチモン化合物としては、三酸化アンチモン、五酸化アンチモン、酢酸アンチモン、アンチモングリコキサイドなどが挙げられ、これらのうち三酸化アンチモンが好ましい。また、ゲルマニウム化合物としては、二酸化ゲルマニウム、四塩化ゲルマニウムなどが挙げられ、これらのうち二酸化ゲルマニウムが好ましい。

[0135]

また、本発明の重合触媒はチタン化合物、スズ化合物、コバルト化合物などの 他の重合触媒をポリエステルの熱安定性および色調を損なわない範囲で共存させ ることが可能である。

[0136]

本発明に言うポリエステルとは、ジカルボン酸を含む多価カルボン酸およびこれらのエステル形成性誘導体から選ばれる一種または二種以上とグリコールを含む多価アルコールから選ばれる一種または二種以上とから成るもの、またはヒドロキシカルボン酸およびこれらのエステル形成性誘導体から成るもの、または環状エステルから成るものをいう。

[0137]

ジカルボン酸としては、蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸 、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、 ドデカンジカルボン酸、 テトラデカンジカルボン酸、ヘキサデカンジカルボン 酸、1,3ーシクロブタンジカルボン酸、1,3ーシクロペンタンジカルボン酸、 1,2 ーシクロヘキサンジカルボン酸、1,3 ーシクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、2,5-ノルボルナンジカルボン酸、ダイマ 一酸などに例示される飽和脂肪族ジカルボン酸またはこれらのエステル形成性誘 **導体、フマル酸、マレイン酸、イタコン酸などに例示される不飽和脂肪族ジカル** ボン酸またはこれらのエステル形成性誘導体、オルソフタル酸、イソフタル酸、 テレフタル酸、5ー(アルカリ金属)スルホイソフタル酸、ジフェニン酸、1, 3ーナフタレンジカルボン酸、1,4ーナフタレンジカルボン酸、1,5ーナフタ レンジカルボン酸、2,6ーナフタレンジカルボン酸、2,7ーナフタレンジカル ボン酸、4、4′ーピフェニルジカルボン酸、4、4′ーピフェニルスルホンジ カルボン酸、4、4'ーピフェニルエーテルジカルボン酸、1,2ーピス(フェ ノキシ) エタンーp,p'ージカルボン酸、パモイン酸、アントラセンジカルボ ン酸などに例示される芳香族ジカルボン酸またはこれらのエステル形成性誘導体 が挙げられ、これらのジカルボン酸のうちテレフタル酸およびナフタレンジカル ボン酸とくに2,6ーナフタレンジカルボン酸が好ましい。

これらジカルボン酸以外の多価カルボン酸として、エタントリカルボン酸、プロパントリカルボン酸、ブタンテトラカルボン酸、ピロメリット酸、トリメリット酸、トリメシン酸、3、4、3、4、一ピフェニルテトラカルボン酸、およびこれらのエステル形成性誘導体などが挙げられる。

[0139]

グリコールとしてはエチレングリコール、1、2ープロピレングリコール、1、3ープロピレングリコール、ジエチレングリ コール、トリエチレングリコー ル、1、2ーブチレングリコール、1、3ーブチレングリコール、2、3ーブチ レングリコール、1,4ーブチレングリコール、1、5ーペンタンジオール、ネ オペンチルグリコール、1,6ーヘキサンジオー ル、1,2ーシクロヘキサンジ オール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1 1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、<math>1,4-シクロヘキサンジエタノール、<math>1,10ーデカメチレングリコール、1、12ードデカンジオール、ポリエチレングリ コール、ポリトリメチレングリコール、ポリテトラメチレングリコールなどに例 示される脂肪族グリコール、ヒドロキノン、4,4'ージヒドロキシビスフェノ -ル、 $1,4-ビス(\beta-ヒドロキシエトキシ)ベンゼン、<math>1,4-ビス(\beta-$ ヒドロキシエトキシフェニル) スルホン、ビス (p-ヒドロキシフェニル) エー テル、ビス (p-ヒドロキシフェニル) スルホン、ビス (p-ヒドロキシフェニ ル) メタン、1、2-ビス(p-ヒドロキシフェニル) エタン、ビスフェノール A、ピスフェノールC、2,5ーナフタレンジオール、これらのグリコールにエチ レンオキシドが付加したグリコール、などに例示される芳香族グリコールが挙げ られ、これらのグリコールのうちエチレングリコールおよび1,4ーブチレング リコールが好ましい。

[0140]

これらグリコール以外の多価アルコールとして、トリメチロールメタン、トリ メチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセロ ール、ヘキサントリオールなどが挙げられる。

[0141]

ヒドロキシカルボン酸としては、乳酸、クエン酸、リンゴ酸、酒石酸、ヒドロキシ酢酸、3-ヒドロキシ酪酸、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸、4-ヒドロキシシクロヘキサンカルボン酸、またはこれらのエステル形成性誘導体などが挙げられる。

[0142]

環状エステルとしては、 ε -カプロラクトン、 β -プロピオラクトン、 β -メチル- β -プロピオラクトン、 δ -バレロラクトン、 グリコリド、 ラクチドなどが挙げられる。

[0143]

また、本発明のポリエステルには公知のリン系化合物を共重合成分として含むことができる。リン系化合物としては二官能性リン系化合物が好ましく、例えば、フェニルホスホン酸ジメチル、フェニルホスホン酸ジフェニル、(2-カルボキシルエチル)メチルホスフィン酸、(2-カルボキシルエチル)フェニルホスフィン酸、(2-メトキシカルボキシルエチル)フェニルホスフィン酸メチル、(4-メトキシカルボニルフェニル)フェニルホスフィン酸メチル、「2-(β-ヒドロキシエトキシカルボニル)エチル」メチルホスフィン酸のエチレングリコールエステル、(1,2-ジカルボキシエチル)ジメチルホスフィンオキサイド、9,10-ジヒドロ-10-オキサー(2,3-カルボキシプロピル)-10-ホスファフェナンスレン-10-オキサイドなどが挙げられる。これらのリン系化合物を共重合成分として含むことで、得られるポリエステルの難燃性等を向上させることが可能である。

[0144]

多価カルボン酸もしくはヒドロキシカルボン酸のエステル形成性誘導体として は、これらのアルキルエステル、酸クロライド、酸無水物などが挙げられる。

[0145]

本発明で用いられるポリエステルは主たる酸成分がテレフタル酸またはそのエステル形成性誘導体もしくはナフタレンジカルボン酸またはそのエステル形成性 誘導体であり、主たるグリコール成分がアルキレングリコールであるポリエステルが好ましい。主たる酸成分がテレフタル酸またはそのエステル形成性誘導体も しくはナフタレンジカルボン酸またはそのエステル形成性誘導体であるポリエステルとは、全酸成分に対してテレフタル酸またはそのエステル形成性誘導体とナフタレンジカルボン酸またはそのエステル形成性誘導体を合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。主たるグリコール成分がアルキレングリコールであるポリエステルとは、全グリコール成分に対してアルキレングリコールを合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。ここで言うアルキレングリコールは、分子鎖中に置換基や脂環構造を含んでいても良い。

[0146]

本発明で用いられるナフタレンジカルボン酸またはそのエステル形成性誘導体としては、1,3ーナフタレンジカルボン酸、1,4ーナフタレンジカルボン酸、1,5ーナフタレンジカルボン酸、2,6ーナフタレンジカルボン酸、2,7ーナフタレンジカルボン酸、またはこれらのエステル形成性誘導体が好ましい。

[0147]

[0148]

本発明のポリエステルには、テレフタル酸またはそのエステル形成性誘導体、

ナフタレンジカルボン酸またはそのエステル形成性誘導体以外の酸成分として蓚 酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、 アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、 テ トラデカンジカルボン酸、ヘキサデカンジカルボン酸、1,3-シクロブタンジ カルボン酸、1,3ーシクロペンタンジカルボン酸、1,2ーシクロヘキサンジカ ルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカル ボン酸、2,5ーノルボルナンジカルボン酸、ダイマー酸などに例示される飽和 脂肪族ジカルボン酸またはこれらのエステル形成性誘導体、フマル酸、マレイン 酸、イタコン酸などに例示される不飽和脂肪族ジカルボン酸またはこれらのエス テル形成性誘導体、オルソフタル酸、イソフタル酸、5-(アルカリ金属)スル ホイソフタル酸、ジフェニン酸、4、4'ービフェニルジカルボン酸、4、4' ービフェニルスルホンジカルボン酸、4、4'ービフェニルエーテルジカルボン 酸、1,2-ビス(フェノキシ)エタン-p,p'ージカルボン酸、パモイン酸、 アントラセンジカルボン酸などに例示される芳香族ジカルボン酸またはこれらの エステル形成性誘導体、エタントリカルボン酸、プロパントリカルボン酸、ブタ ンテトラカルボン酸、ピロメリット酸、トリメリット酸、トリメシン酸、3、4 、3′、4′ービフェニルテトラカルボン酸などに例示される多価カルボン酸お よびこれらのエステル形成性誘導体などを共重合成分として含むことができる。 また、乳酸、クエン酸、リンゴ酸、酒石酸、ヒドロキシ酢酸、3-ヒドロキシ酪 酸、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸、4 ーヒドロキシシクロヘキサンカルボン酸などに例示されるヒドロキシカルボン酸 またはそのエステル形成性誘導体を含むこともできる。また、 ε-カプロラクト ン、 β -プロピオラクトン、 β -メチル- β -プロピオラクトン、 δ -バレロラクト ン、グリコリド、ラクチドなどに例示される環状エステルを含むこともできる。

[0149]

本発明のポリエステルには、アルキレングリコール以外のグリコール成分として、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコールなどに例示される脂肪族グリコール、ヒドロキノン、4,4'ージヒドロキシピスフェノール、

[0150]

また、本発明のポリエステルには公知のリン系化合物を共重合成分として含むことができる。リン系化合物としては二官能性リン系化合物が好ましく、例えば、フェニルホスホン酸ジメチル、フェニルホスホン酸ジフェニル、(2-カルボキシルエチル)メチルホスフィン酸、(2-カルボキシルエチル)フェニルホスフィン酸、(4-メトキシカルボキシルエチル)フェニルホスフィン酸メチル、(4-メトキシカルボニルフェニル)フェニルホスフィン酸メチル、「2-(β-ヒドロキシエトキシカルボニル)エチル」メチルホスフィン酸のエチレングリコールエステル、(1,2-ジカルボキシエチル)ジメチルホスフィンオキサイド、9,10-ジヒドロ-10-オキサー(2,3-カルボキシプロピル)-10-ホスファフェナンスレン-10-オキサイドなどが挙げられる。これらのリン系化合物を共重合成分として含むことで、得られるポリエステルの難燃件等を向上させることが可能である。

[0151]

本発明のポリエステルとしてはポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレート、ポリ(1,4-シクロヘキサンジメチレンテレフタレート)、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリプロピレンナフタレートおよびこれらの共重合体が好ましく、これらのうちポリエチレンテレフタレートおよびこの共重合体が特に好ましい。

[0152]

本発明の触媒を用いたPETの重合は、従来公知の方法で行うことができる。す

なわち、テレフタル酸とその2倍モル量のエチレングリコールを撹拌機付きのバッチ式オートクレーブに仕込み、2.5kgcm⁻²の加圧下245℃にて、生成する水を系外へ留去しながらエステル化反応を行いビス(2-ヒドロキシエチル)テレフタレートを製造する。留去した水の量から計算してエステル化率が95%に達した時点で放圧する。ここに本発明の触媒を添加し、窒素雰囲気下常圧にて245℃で10分間以上攪拌する。引き続き、50分間を要して275℃まで昇温しつつ反応系の圧力を徐々に下げて0.1Torrとして、さらに275℃、0.1Torrで一定速度で撹拌を行いながら重縮合反応を行いPETを重合する。このうち重縮合反応に要した時間を重合時間と呼ぶ。

[0153]

本発明の重合触媒は、活性パラメータ(AP)がAP(min)<T(min)*2を満たすものである。好ましくは、AP(min)<T(min)*1.5であり、さらに好ましくは、AP(min)<T(min)である。ただし、APは上記した方法により固有粘度が0.5dlg⁻¹のポリエチレンテレフタレートを重合するのに要する時間(min)を示す。Tは三酸化アンチモンを触媒として用いた場合のAPを示す。ただし、三酸化アンチモンは市販の三酸化二アンチモン、例えばALDRICH製のAntimony(III)oxide、純度99.99%を使用し、これを約10gl⁻¹の濃度となるようにエチレングリコールに150℃で約1時間撹拌して溶解させた溶液を、生成ポリエチレンテレフタレート中の酸成分に対してアンチモン原子として0.05mol%になるように添加する。

[0154]

本発明の重合触媒を用いて重合したポリエチレンテレフタレートは、熱安定性 指標 (TD) がTD<25%を満たさなければならない。ただし、TDは固有粘度0.6dlg⁻¹ のPET1gをガラス試験管に入れ130℃で12時間真空乾燥した後、窒素雰囲気下で30 0℃、2時間溶融したときの固有粘度の減少率(%)である。好ましくはTD<22%であ り、さらに好ましくはTD<18%である。TDが25%以上であるような触媒だと、この 触媒を用いて重合したポリエステルは溶融成形時に熱劣化を受けやすくなり、得 られる繊維やフィルムなどの極端な強度低下や著しい着色を招いてしまう。

[0155]

本発明でいうポリエステル重合の触媒活性を実質的に有さない化合物とは、限

界活性パラメータ (LP) がLP(min)>T(min)*2を満たすものである。ただし、LP は上記した方法により固有粘度が $0.3dlg^{-1}$ のポリエチレンテレフタレートを重合するのに要する時間(min)を示す。また、本発明でいうポリエステル重合の触媒活性を実質的に有する触媒は、活性パラメータ (AP) がAP(min)<T(min)*2を満たすものである。好ましくは、AP(min)<T(min)*1.5であり、さらに好ましくは、AP(min)<T(min)*0である。

[0156]

本発明のポリエステル中にはリン系、硫黄系、アミン系等の安定剤やフェノール系、芳香族アミン系等の酸化防止剤を含むことができ、これらを一種もしくは二種以上含有することによってポリエステルの熱安定性をさらに高めることができる。リン系安定剤としては、リン酸ならびにトリメチルホスフェート等のリン酸エステル、亜リン酸、トリフェニルホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)4,4'-ピフェニレンジホスファイト等の亜リン酸エステル、ジステアリルペンタエリスリトールジホスファイト等の亜ホスホン酸エステル、メチルホスホン酸、フェニルホスホン酸等のホスホン酸ならびにホスホン酸のモノあるいはジアルキルエステルなどが挙げられる。フェノール系酸化防止剤としては、テトラキス-[メチル-3-(3',5'-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、4,4'-ブチリデンビス-(3-メチル-6-tert-ブチルフェノール)などが挙げられる。

[0157]

本発明のポリエステルを重合した後に、ポリエステルから触媒を除去するか、 またはリン系化合物などの添加によって触媒を失活させることによって、ポリエ ステルの熱安定性をさらに高めることができる。

[0158]

本発明のポリエステル中には、コバルト化合物等の青み付け剤、有機系、無機系、および有機金属系のトナー、ならびに蛍光増白剤などを含むことができ、これらを一種もしくは二種以上含有することによって、ポリエステルの黄み等の着色を抑えることができる。本発明のポリエステル中には他の任意の重合体や安定剤、酸化防止剤、制電剤、消泡剤、染色性改良剤、染料、顔料、艶消剤、その他

の添加剤が含有されていてもよい。

[0159]

アルカリ金属またはそれらの化合物あるいはアルカリ土類金属またはそれらの 化合物はもともと触媒活性は低いものの、本発明の特定の化合物を共存させるこ とで、重合触媒として十分な活性を持つようになり、かつ溶融成形時に熱劣化を ほとんど起こさない熱安定性に優れたポリエステルを得ることができる。

[0160]

【実施例】

以下、本発明を実施例により説明するが本発明はもとよりこれらの実施例に限 定されるものではない。なお、各実施例および比較例においてポリエステルの物 性値は次のようにして測定した。

[0161]

固有粘度(IV):p-クロロフェノール / 1,1,2,2-テトラクロロエタンの 6 / 4 混合溶媒(重量比)を用いて、温度30℃で測定した。

[0162]

熱安定性指標 (TD): IVが0.6dlg⁻¹のPET1gをガラス試験管に入れ130℃で12時間真空乾燥した後、窒素雰囲気下で300℃、2時間溶融したときのIVの減少率(%)

[0163]

(実施例1)

ビス (2-ヒドロキシエチル) テレフタレート8900重量部に対し5g/1濃度の酢酸リチウムのエチレングリコール溶液を0.23容量部加え、次いでキナリザリン (A)をポリエステル中の酸成分に対して0.1mol%加えて、常圧にて245℃で10分間攪拌した。次いで50分を要して275℃まで昇温しつつ反応系の圧力を徐々に下げて0.1Torrとしてさらに同温同圧で180分間重縮合反応を行った。得られたポリマーの物性値を表1に示す。

[0164]

(実施例2)

キナリザリンをアリザリン(B)に変えたこと以外は実施例1と全く同様にし

てポリエステルを重合した。得られたポリマーの物性値を表1に示す。

[0165]

(実施例3)

キナリザリンをエモジン (C) に変えたこと以外は実施例1と全く同様にして ポリエステルを重合した。得られたポリマーの物性値を表1に示す。

[0166]

(実施例4)

キナリザリンを1,4-ジアミノアントラキノン(D)に変えたこと以外は実施例 1と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表1 に示す。

[0167]

(実施例5)

キナリザリンを1,8-ジアミノ-4,5-ジヒドロキシアントラキノン(E)に変えたこと以外は実施例1と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表1に示す。

[0168]

(実施例6)

キナリザリンを5,8-ジヒドロキシ-1,4-ナフトキノン(F)に変えたこと以外は 実施例1と全く同様にしてポリエステルを重合した。得られたポリマーの物性値 を表1に示す。

[0169]

(実施例7)

キナリザリンを2,5-ジヒドロキシベンゾキノン(G)に変えたこと以外は実施例1と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表1に示す。

[0170]

(実施例8)

キナリザリンをアンスラロビン(H)に変えたこと以外は実施例1と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表1に示す。

[0171]

(実施例9)

キナリザリンを4,5-ジヒドロキシナフタレン-2,7-ジスルホン酸二ナトリウム (I) に変えたこと以外は実施例1と全く同様にしてポリエステルを重合した。 得られたポリマーの物性値を表1に示す。

[0172]

(実施例10)

キナリザリンをエスクレチン (J) に変えたこと以外は実施例 1 と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表1に示す。

[0173]

(実施例11)

キナリザリンをモリン (K) に変えたこと以外は実施例1と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表1に示す。

[0174]

(実施例12)

キナリザリンをエピガロカテキンガレート(L)に変えたこと以外は実施例1 と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表1に 示す。

[0175]

(実施例13)

キナリザリンをメチレン架橋直線状フェノール化合物 (1から100量体までの混合物) (M) に変えたこと以外は実施例 1 と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表1に示す。

[0176]

(実施例14)

キナリザリンをメチレン架橋直線状p-tert-ブチルフェノール化合物 (1から100量体までの混合物) (N) に変えたこと以外は実施例 1 と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表1に示す。

[0177]

(実施例15)

キナリザリンをカリックス [8] アレーン (0) に変えたこと以外は実施例 1 と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表1に示す

[0178]

(実施例16)

キナリザリンをp-tert-ブチルカリックス[8]アレーン(P)に変えたこと以外は実施例1と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表1に示す。

[0179]

(実施例17)

キナリザリンを2,2'-ビスフェノール(Q)に変えたこと以外は実施例1と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表1に示す。

[0180]

(実施例18)

キナリザリンを2,2'-ジヒドロキシジフェニルエーテル(R)に変えたこと以外は実施例1と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表1に示す。

[0181]

(比較例1)

キナリザリンを加えなかったこと以外は実施例1と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表1に示す。

[0182]

(比較例2)

酢酸リチウムのエチレングリコール溶液を加えなかったこと以外は実施例1と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表1に示す。

[0183]

(実施例19)

ビス (2-ヒドロキシエチル) テレフタレート8900重量部に対し5g/l濃度の酢酸ナトリウムのエチレングリコール溶液を0.29容量部加え、次いでキナリザリン (A) をポリエステル中の酸成分に対して0.1mol%加えて、常圧にて245℃で10分間攪拌した。次いで50分を要して275℃まで昇温しつつ反応系の圧力を徐々に下げて0.1Torrとしてさらに同温同圧で180分間重縮合反応を行った。得られたポリマーの物性値を表2に示す。

[0184]

(実施例20)

キナリザリンをアリザリン(B)に変えたこと以外は実施例19と全く同様に してポリエステルを重合した。得られたポリマーの物性値を表2に示す。

. [0185]

(実施例21)

キナリザリンをエモジン(C)に変えたこと以外は実施例19と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表2に示す。

[0186]

(実施例22)

キナリザリンを1,4-ジアミノアントラキノン(D)に変えたこと以外は実施例 19と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表 2に示す。

[0187]

(実施例23)

キナリザリンを1,8-ジアミノ-4,5-ジヒドロキシアントラキノン(E)に変えたこと以外は実施例19と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表2に示す。

[0188]

(実施例24)

キナリザリンを5,8-ジヒドロキシ-1,4-ナフトキノン(F)に変えたこと以外は 実施例19と全く同様にしてポリエステルを重合した。得られたポリマーの物性 値を表2に示す。

[0189]

(実施例25)

キナリザリンを2,5-ジヒドロキシベンゾキノン(G)に変えたこと以外は実施例19と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表2に示す。

[0190]

(実施例26)

キナリザリンをアンスラロビン(H)に変えたこと以外は実施例19と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表2に示す。

[0191]

(実施例27)

キナリザリンを4,5-ジヒドロキシナフタレン-2,7-ジスルホン酸二ナトリウム (I) に変えたこと以外は実施例19と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表2に示す。

[0192]

(実施例28)

キナリザリンをエスクレチン (J) に変えたこと以外は実施例 1 9 と全く同様 にしてポリエステルを重合した。得られたポリマーの物性値を表2に示す。

[0193]

(実施例29)

キナリザリンをモリン(K)に変えたこと以外は実施例19と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表2に示す。

[0194]

(実施例30)

キナリザリンをエピガロカテキンガレート(L)に変えたこと以外は実施例1 9と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表2 に示す。

[0195]

(実施例31)

キナリザリンをメチレン架橋直線状フェノール化合物(1から100量体までの混合物)(M)に変えたこと以外は実施例19と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表2に示す。

[0196]

(実施例32)

キナリザリンをメチレン架橋直線状p-tert-ブチルフェノール化合物(1から100量体までの混合物)(N)に変えたこと以外は実施例19と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表2に示す。

[0197]

(実施例33)

キナリザリンをカリックス[8]アレーン(0)に変えたこと以外は実施例19と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表2に示す。

[0198]

(実施例34)

キナリザリンをp-tert-ブチルカリックス[8] アレーン(P) に変えたこと以外は実施例19と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表2に示す。

[0199]

(実施例35)

キナリザリンを2,2'-ビスフェノール(Q)に変えたこと以外は実施例19と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表2に示す

[0200]

(実施例36)

キナリザリンを2,2'-ジヒドロキシジフェニルエーテル(R)に変えたこと以外は実施例19と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表2に示す。

[0201]

キナリザリンを加えなかったこと以外は実施例19と全く同様にしてポリエス テルを重合した。得られたポリマーの物性値を表1に示す。

[0202]

(実施例37)

ビス (2-ヒドロキシエチル) テレフタレート8900重量部に対し5g/1濃度の酢酸カリウムのエチレングリコール溶液を0.34容量部加え、次いでキナリザリン (A) をポリエステル中の酸成分に対して0.1mol%加えて、常圧にて245℃で10分間攪拌した。次いで50分を要して275℃まで昇温しつつ反応系の圧力を徐々に下げて0.1Torrとしてさらに同温同圧で180分間重縮合反応を行った。得られたポリマーの物性値を表3に示す。

[0203]

(実施例38)

キナリザリンをアリザリン (B) に変えたこと以外は実施例37と全く同様に してポリエステルを重合した。得られたポリマーの物性値を表3に示す。

[0204]

(実施例39)

キナリザリンをエモジン(C)に変えたこと以外は実施例37と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表3に示す。

[0205]

(実施例40)

キナリザリンを1,4-ジアミノアントラキノン(D)に変えたこと以外は実施例37と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表3に示す。

[0206]

(実施例41)

キナリザリンを1,8-ジアミノ-4,5-ジヒドロキシアントラキノン(E)に変えたこと以外は実施例37と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表3に示す。

[0207]

(実施例42)

キナリザリンを5,8-ジヒドロキシ-1,4-ナフトキノン(F)に変えたこと以外は 実施例37と全く同様にしてポリエステルを重合した。得られたポリマーの物性 値を表3に示す。

[0208]

(実施例43)

キナリザリンを2,5-ジヒドロキシベンゾキノン(G)に変えたこと以外は実施例37と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表3に示す。

[0209]

(実施例44)

キナリザリンをアンスラロビン(H)に変えたこと以外は実施例37と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表3に示す。

[0210]

(実施例45)

キナリザリンを4,5-ジヒドロキシナフタレン-2,7-ジスルホン酸二ナトリウム (I) に変えたこと以外は実施例37と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表3に示す。

[0211]

(実施例46)

キナリザリンをエスクレチン (J) に変えたこと以外は実施例37と全く同様 にしてポリエステルを重合した。得られたポリマーの物性値を表3に示す。

[0212]

(実施例47)

キナリザリンをモリン(K)に変えたこと以外は実施例37と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表3に示す。

[0213]

(実施例48)

キナリザリンをエピガロカテキンガレート(L)に変えたこと以外は実施例37と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表3に示す。

[0214]

(実施例49)

キナリザリンをメチレン架橋直線状フェノール化合物(1から100量体までの混合物) (M) に変えたこと以外は実施例37と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表3に示す。

[0215]

(実施例50)

キナリザリンをメチレン架橋直線状p-tert-ブチルフェノール化合物 (1から100量体までの混合物) (N) に変えたこと以外は実施例 3 7 と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表3に示す。

[0216]

(実施例51)

キナリザリンをカリックス[8]アレーン(0)に変えたこと以外は実施例37と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表3に示す。

[0217]

(実施例52)

キナリザリンをp-tert-ブチルカリックス[8] アレーン(P) に変えたこと以外 は実施例37と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表3に示す。

[0218]

(実施例53)

キナリザリンを2,2'-ビスフェノール(Q)に変えたこと以外は実施例37と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表3に示す

[0219]

(実施例54)

キナリザリンを2,2'-ジヒドロキシジフェニルエーテル(R)に変えたこと以外は実施例37と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表3に示す。

[0220]

(比較例4)

キナリザリンを加えなかったこと以外は実施例37と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表3に示す。

[0221]

(実施例55)

ビス (2-ヒドロキシエチル) テレフタレート8900重量部に対し10g/l濃度の酢酸ベリリウムのエチレングリコール溶液を0.36容量部加え、次いでキナリザリン(A)をポリエステル中の酸成分に対して0.1mol%加えて、常圧にて245℃で10分間攪拌した。次いで50分を要して275℃まで昇温しつつ反応系の圧力を徐々に下げて0.1Torrとしてさらに同温同圧で180分間重縮合反応を行った。得られたポリマーの物性値を表4に示す。

[0222]

(実施例56)

キナリザリンをアリザリン(B)に変えたこと以外は実施例55と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表4に示す。

[0223]

(実施例57)

キナリザリンをエモジン(C)に変えたこと以外は実施例55と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表4に示す。

[0224]

(実施例58)

キナリザリンを1,4-ジアミノアントラキノン(D)に変えたこと以外は実施例 55と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表 4に示す。

[0225]

(実施例59)

キナリザリンを1,8-ジアミノ-4,5-ジヒドロキシアントラキノン(E)に変えた こと以外は実施例55と全く同様にしてポリエステルを重合した。得られたポリ マーの物性値を表4に示す。

[0226]

(実施例60)

キナリザリンを5,8-ジヒドロキシ-1,4-ナフトキノン(F)に変えたこと以外は 実施例55と全く同様にしてポリエステルを重合した。得られたポリマーの物性 値を表4に示す。

[0227]

(実施例61)

キナリザリンを2,5-ジヒドロキシベンゾキノン(G)に変えたこと以外は実施 例 5 5 と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表4に示す。

[0228]

(実施例62)

キナリザリンをアンスラロビン(H)に変えたこと以外は実施例55と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表4に示す。

[0229]

(実施例63)

キナリザリンを4,5-ジヒドロキシナフタレン-2,7-ジスルホン酸二ナトリウム (I) に変えたこと以外は実施例55と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表4に示す。

[0230]

(実施例64)

キナリザリンをエスクレチン(J)に変えたこと以外は実施例55と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表4に示す。

[0231]

(実施例65)

キナリザリンをモリン(K)に変えたこと以外は実施例55と全く同様にして ポリエステルを重合した。得られたポリマーの物性値を表4に示す。

[0232]

(実施例66)

キナリザリンをエピガロカテキンガレート (L) に変えたこと以外は実施例 5 5 と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表4 に示す。

[0233]

(実施例67)

キナリザリンをメチレン架橋直線状フェノール化合物(1から100量体までの混合物)(M)に変えたこと以外は実施例55と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表4に示す。

[0234]

(実施例68)

キナリザリンをメチレン架橋直線状p-tert-ブチルフェノール化合物(1から100量体までの混合物)(N)に変えたこと以外は実施例55と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表4に示す。

[0235]

(実施例69)

キナリザリンをカリックス[8] アレーン(0) に変えたこと以外は実施例55と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表4に示す。

[0236]

(実施例70)

キナリザリンをp-tert-ブチルカリックス[8]アレーン(P)に変えたこと以外は実施例55と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表4に示す。

[0237]

(実施例71)

キナリザリンを2,2'-ビスフェノール(Q)に変えたこと以外は実施例55と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表4に示す

[0238]

(実施例72)

キナリザリンを2,2'-ジヒドロキシジフェニルエーテル(R)に変えたこと以外は実施例55と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表4に示す。

[0239]

(比較例5)

キナリザリンを加えなかったこと以外は実施例55と全く同様にしてポリエス テルを重合した。得られたポリマーの物性値を表4に示す。

[0240]

(実施例73)

ビス (2-ヒドロキシエチル) テレフタレート8900重量部に対し10g/l濃度の酢酸マグネシウムのエチレングリコール溶液を0.19容量部加え、次いでキナリザリン (A) をポリエステル中の酸成分に対して0.1mol%加えて、常圧にて245℃で10分間攪拌した。次いで50分を要して275℃まで昇温しつつ反応系の圧力を徐々に下げて0.1Torrとしてさらに同温同圧で180分間重縮合反応を行った。得られたポリマーの物性値を表5に示す。

[0241]

(実施例74)

キナリザリンをアリザリン(B)に変えたこと以外は実施例73と全く同様に してポリエステルを重合した。得られたポリマーの物性値を表5に示す。

[0242]

(実施例75)

キナリザリンをエモジン(C)に変えたこと以外は実施例73と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表5に示す。

[0243]

(実施例76)

キナリザリンを1,4-ジアミノアントラキノン(D)に変えたこと以外は実施例73と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表5に示す。

[0244]

(実施例77)

キナリザリンを1,8-ジアミノ-4,5-ジヒドロキシアントラキノン(E)に変えたこと以外は実施例73と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表5に示す。

[0245]

(実施例78)

キナリザリンを5,8-ジヒドロキシ-1,4-ナフトキノン(F)に変えたこと以外は 実施例73と全く同様にしてポリエステルを重合した。得られたポリマーの物性 値を表5に示す。

[0246]

(実施例79)

キナリザリンを2,5-ジヒドロキシベンゾキノン(G)に変えたこと以外は実施例73と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表5に示す。

[0247]

(実施例80)

キナリザリンをアンスラロビン(H)に変えたこと以外は実施例73と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表5に示す。

[0248]

(実施例81)

キナリザリンを4,5-ジヒドロキシナフタレン-2,7-ジスルホン酸二ナトリウム (I) に変えたこと以外は実施例73と全く同様にしてポリエステルを重合した 。得られたポリマーの物性値を表5に示す。

[0249]

(実施例82)

キナリザリンをエスクレチン(J)に変えたこと以外は実施例73と全く同様 にしてポリエステルを重合した。得られたポリマーの物性値を表5に示す。

[0250]

(実施例83)

キナリザリンをモリン(K)に変えたこと以外は実施例73と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表5に示す。

[0251]

(実施例84)

キナリザリンをエピガロカテキンガレート(L)に変えたこと以外は実施例73と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表5に示す。

[0252]

(実施例85)

キナリザリンをメチレン架橋直線状フェノール化合物(1から100量体までの混合物)(M)に変えたこと以外は実施例73と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表5に示す。

[0253]

(実施例86)

キナリザリンをメチレン架橋直線状p-tert-ブチルフェノール化合物(1から100量体までの混合物)(N)に変えたこと以外は実施例73と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表5に示す。

[0254]

(実施例87)

キナリザリンをカリックス[8] アレーン(0) に変えたこと以外は実施例73と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表5に示す。

[0255]

(実施例88)

キナリザリンをp-tert-ブチルカリックス[8] アレーン (P) に変えたこと以外 は実施例73と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表5に示す。

[0256]

(実施例89)

キナリザリンを2,2'-ビスフェノール(Q)に変えたこと以外は実施例73と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表5に示す

[0257]

(実施例90)

キナリザリンを2,2'-ジヒドロキシジフェニルエーテル(R)に変えたこと以外は実施例73と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表5に示す。

[0258]

(比較例6)

キナリザリンを加えなかったこと以外は実施例73と全く同様にしてポリエステルを重合した。得られたポリマーの物性値を表5に示す。

[0259]

【表1】

	金属化合物	添加剤	IV (dl/g)
実施例1	酢酸リチウム	Α	0.58
実施例 2	酢酸リチウム	В	0.61
実施例 3	酢酸リチウム	С	0.62
実施例 4	酢酸リチウム	D	0.56
実施例 5	酢酸リチウム	E	0.60
実施例 6	酢酸リチウム	F	0.58
実施例 7	酢酸リチウム	G	0.57
実施例8	酢酸リチウム	н	0.62
実施例 9	酢酸リチウム	1	0.61
実施例 1 0	酢酸リチウム	J	0.57
実施例11	酢酸リチウム	κ	0.65
実施例12	酢酸リチウム	L	0.57
実施例13	酢酸リチウム	М	0.62
実施例14	酢酸リチウム	N	0.58
実施例15	酢酸リチウム	0	0.63
実施例16	酢酸リチウム	Р	0.60
実施例17	酢酸リチウム	Q	0.57
実施例18	酢酸リチウム	R	0.57
比較例1	酢酸リチウム		0.31
比較例2	-	Α	0.25

[0260]

【表2】

		,	
	金属化合物	添加剤	IV (dl/g)
実施例19	酢酸ナトリウム	Α	0.60
実施例20	酢酸ナトリウム	В	0.58
実施例21	酢酸ナトリウム	С	0.55
実施例22	酢酸ナトリウム	D	0.61
実施例23	酢酸ナトリウム	E	0.61
実施例24	酢酸ナトリウム	F	0.58
実施例 2 5	酢酸ナトリウム	G	0.57
実施例 2 6	酢酸ナトリウム	Н	0.61
実施例 2 7	酢酸ナトリウム	I	0.59
実施例 2 8	酢酸ナトリウム	J	0.56
実施例29	酢酸ナトリウム	к	0.63
実施例30	酢酸ナトリウム	L	0.55
実施例 3 1	酢酸ナトリウム	М	0.60
実施例32	酢酸ナトリウム	N	0.61
実施例33	酢酸ナトリウム	0	0.60
実施例34	酢酸ナトリウム	P	0.58
実施例 3 5	酢酸ナトリウム	Q	0.54
実施例36	酢酸ナトリウム	R	0.55
比較例3	酢酸ナトリウム	-	0.27

[0261]

【表3】

	金属化合物	添加剤	IV (dl/g)
実施例 3 7	酢酸カリウム	Α	0.56
実施例 3 8	酢酸カリウム	В	0.60
実施例39	酢酸カリウム	С	0.57
実施例40	酢酸カリウム	D	0.59
実施例 4 1	酢酸カリウム	E	0.60
実施例 4 2	酢酸カリウム	F	0.55
実施例 4 3	酢酸カリウム	G	0.56
実施例 4 4	酢酸カリウム	н	0.58
実施例 4 5	酢酸カリウム	1	0.59
実施例 4 6	酢酸カリウム	J	0.58
実施例 4 7	酢酸カリウム	κ	0.61
実施例 4 8	酢酸カリウム	L	0.59
実施例 4 9	酢酸カリウム	М	0.61
実施例 5 0	酢酸カリウム	N	0.60
実施例 5 1	酢酸カリウム	0	0.59
実施例 5 2	酢酸カリウム	P	0.57
実施例53	酢酸カリウム	Q	0.57
実施例 5 4	酢酸カリウム	R	0.58
比較例4	酢酸カリウム	_	0.27

[0262]

_	金属化合物	添加剤	IV (dl/g)
実施例55	酢酸ベリリウム	Α	0.61
実施例 5 6	酢酸ベリリウム	В	0.59
実施例 5 7	酢酸ベリリウム	С	0.56
実施例 5 8	酢酸ベリリウム	D	0.60
実施例 5 9	酢酸ベリリウム	E	0.63
実施例60	酢酸ベリリウム	F	0.61
実施例 6 1	・酢酸ベリリウム	G	0.58
実施例 6 2	酢酸ベリリウム	н	0.60
実施例63	酢酸ベリリウム	ı	0.61
実施例64	酢酸ベリリウム	J	0.57
実施例65	酢酸ベリリウム	К	0.61
実施例66	酢酸ペリリウム	L	0.58
実施例67	酢酸ベリリウム	М	0.60
実施例68	酢酸ベリリウム	N	0.61
実施例69	酢酸ベリリウム	0	0.61
実施例70	酢酸ベリリウム	Р	0.58
実施例71	酢酸ベリリウム	Q	0.59
実施例72	酢酸ベリリウム	R	0.60
比較例5	酢酸ベリリウム	-	0.26

[0263]

【表5】

	金属化合物	添加剤	IV (dl/g)
実施例73	酢酸マグネシウム	А	0.68
実施例74	酢酸マグネシウム	В	0.67
実施例75	酢酸マグネシウム	С	0.63
実施例76	酢酸マグネシウム	D	0.66
実施例77	酢酸マグネシウム	Ε	0.68
実施例78	酢酸マグネシウム	F	0.65
実施例79	酢酸マグネシウム	G	0.61
実施例80	酢酸マグネシウム	н	0.69
実施例 8 1	酢酸マグネシウム	t	0.66
実施例 8 2	酢酸マグネシウム	J	0.65
実施例 8 3	酢酸マグネシウム	к	0.71
実施例 8 4	酢酸マグネシウム	L	0.64
実施例85	酢酸マグネシウム	М	0.69
実施例86	酢酸マグネシウム	8	0.67
実施例87	酢酸マグネシウム	0	0.65
実施例88	酢酸マグネシウム	Р	0.66
実施例89	酢酸マグネシウム	Q	0.65
実施例90	酢酸マグネシウム	R	0.63
比較例6	酢酸マグネシウム	-	0.38

[0264]

(実施例91)

ビス (2-ヒドロキシエチル) テレフタレート8900重量部に対し5g/1濃度の酢酸 リチウムのエチレングリコール溶液を0.23容量部加え、次いでキナリザリンをポ

リエステル中の酸成分に対して0.1mol%加えて、窒素雰囲気下常圧にて245 $\mathbb C$ で10分間攪拌した。次いで50分間を要して275 $\mathbb C$ まで昇温しつつ反応系の圧力を徐々に下げて0.1Torrとしてさらに275 $\mathbb C$ 、0.1Torrで重縮合反応を行った。 PETのIVが $0.5~\mathrm{dlg}^{-1}$ に到達するまでに要した重合時間を表6に示す。また、上記方法でIVが $0.6~\mathrm{dlg}^{-1}$ のPETを重合し熱安定性指標(TD)を求めた。溶融試験後のIVならびにTDの値を表6に示す。

[0265]

(参考例1)

触媒を三酸化アンチモンに変えた事以外は実施例 9.1 と同様の操作を行った。 三酸化アンチモンの添加量はPET中の酸成分に対してアンチモン原子として0.05m ol%とした。 PETの IVが0.5 dlg $^{-1}$ に到達するまでに要した重合時間、溶融試験後の IVならびにTDの値を表 8 に示す。

[0266]

(実施例92~118、および比較例7~9)

触媒を変えた事以外は実施例91と同様の操作を行った。用いた触媒組成およびPETのIVが $0.5~\rm dlg^{-1}$ に到達するまでに要した重合時間、溶融試験後のIVならびにTDの値を表 $6\sim8$ に示す。ただし、添加量はPET中の酸成分に対する値である。 金属触媒の添加量は金属原子としての添加量である。

[0267]

(比較例10)

キナリザリンを加えなかったこと以外は実施例91と同様にしてPETを重合しようとした。重縮合反応を180分間行った時点でIVが0.5 dlg⁻¹に達していなかったので重合を断念した。

[0268]

(比較例11)

酢酸リチウムのエチレングリコール溶液を加えなかったこと以外は実施例91と同様にしてPETを重合しようとした。重縮合反応を180分間行った時点でIVが0.5 dlg⁻¹に達していなかったので重合を断念した。

[0269]

【表 6 】

			重合時間	海融試験後	
	触媒	添加量	(min)*	1V(d1g ⁻¹)	(%) (%)
実施例91	酢酸リチウム	0.05mol%			
	キナリザリン	0.1mol%	62	0.49	18
実施例92	酢酸リチウム	0.3mo1%			
	アリザリン	0.2mo1%	55	0.46	23
来据例93	酢酸ナトリウム	0.1mol%			
	1,8-ジアミノ-4,5-ジヒドロキシアントラキノン	0.1mo1%	65	0.46	23
実施例94	酢酸カリウム	0.05mol%			
	モリン	0.2mo1%	29	0.5	17
実施例95	酢酸ナトリウム	0.5mo1%			
	エモジン	0.5mo1%	54	0.46	23
実施例96	カリウムアセチルアセトネート	0.07mo1%			
	1.4-ジアミノアントラキノン	0.01mol%	75	0.48	20
実施例97	酢酸ペンコウム	0.08mo1%			
	エピガロカテキンガレート	0.15mol%	72	0.49	18
実施例98	酢酸マグネシウム	0.05mo1%			
	p-tert-ブチルカリックス[8]アレーン	0.05mol%	51	0.48	20
実施例のの	酢酸ナトリウム	0.05mo1%			
	カリックス[8]アレーン	0.08mol%	53	0.48	20
実施例100	酢酸ナトリウム	0.1mol%			
	キナリザリン	0.2mo1%	සු	0.46	23
実施例101	酢酸カルシウム	0.05mo1%			
	アリギリン	0.1mol%	29	0.47	22
実施例102	酢酸ナトリウム	0.1mol%			
	アンスラロビン	0.2mo1%	99	0.46	23
実施例103	酢酸カリウム	0.1mol%			
	キナリザリン	0.1mo1%	65	0.46	23
実施例104	<u>-</u>	0.008mo1%			
	キナリザリン	0.05mo1%	106	0.51	15

[0270]

【表7】

			無合時間	海融試験後	
	bb. (1)	添加量	(Jin) *	1V(d1g ⁻¹)	TD (%)
実施例105	リチウムアセチルアセトネート オキニギニン	0.01mol%	8	1	!
実施例106	酢酸ストロンチウム	0 2 0 0 0	00	0.5	
	日市ペン	0.100%	<u>.</u>	0.47	2
実施例107	酢酸バリウム	0.1mo1%	>	7	\$
	1.4-ジアミノアントラキノン	0.5mol%	63	0.47	2
東施倒108	年数 ラカック 4	0.05mo1%			77
I	1,8-ジアミノ-4,5-ジヒドロキシアントラキノン	0.2mo1%	69	0.49	28
実施例109	酢酸ナトリウム	0.1mol%			
	5,8-ジヒドロキシ-1,4-ナフトキノン	0.1mol%	83	0.47	22
実施例110	酢酸マグネシウム	0.05mo1%			
	2.5-ジヒドロキシベンゾキノン	0.1mol%	115	0.46	23
実施例111		0.05mo1%			
	クス[8]アレーン	0.1mol%	20	0.5	17
実施例112	ウムメトキサイド	0.1mo!%			
	フロビン	0.08mo1%	64	0.47	22
実施例113	酢酸リチウム	0.2mol%			
	4,5-ジヒドロキシナフタレン-2,7-ジスルホン酸				
	ナトリウム	0.2mo!%	78	0.46	23
実施例114	一酢酸カリウム	0.05mo1%			
-	エスクレチン	0.1mo1%	93	0.48	20
実施例115	ሀታム	0.1mol%			
		0.25mol%	57	0,47	22
実施例116	トウ ト	0.1mol%			
	コカテキンガレート	10.1mol%	77	0.47	22
実施例117	ブネシウム	0.05mo1%			,
	イー/エ/エ/ー/ト ご	0.2mol%	109	0,46	23
美麗绚 18	酢酸マクネシウム 2.2' –ジヒドロキシジフェニルエーテル	0.03mol%	112	0 47	2
		W. O	31		77

[0271]

【表8】

			重合時間	必翻对颗 徐	
	触媒	添加量	(min)*	$V(d g^{-1})$	(%) PL
参考例 1	三酸化アンチモン	0.05mo!%	99	0.46	23
比較例7	テトラブトキシチタネート	810000.0	54	0.42	30
打教室8	(登)	0.005mo1%			
	リン	0.01mol%	166	0.52	13
一形数色の	一酸マグネシウム	0.5mol%			
	2,2'-ピスフェノール	0.5mol%	29	0.38	37
比較例10	酢酸リチウム	0.05mol%	180以上	1	'
比較例11	キナリザリン	0.1mol%	18011 F	: : : :	,

*: IVO.5dlg-'のPETを重合するのに要した重合時間 (表6~8に共通)

[0272]

(実施例119~122)

触媒を変えた事以外は実施例91と同様の操作を行った。用いた触媒組成およびPETのIVが0.5 dlg⁻¹に到達するまでに要した重合時間、溶融試験後のIVならびにTDの値を表9に示す。ただし、添加量はPET中の酸成分に対する値である。金属触媒の添加量は金属原子としての添加量である。

[0273]

(比較例12)

キナリザリンを加えなかったこと以外は実施例100と同様にしてポリエチレンテレフタレートを重合しようとした。ポリエチレンテレフタレートのIVが0.3 dlg^{-1} に到達するまでに要した重合時間を表10に示す。

[0274]

(比較例13)

酢酸ナトリウムを加えなかったこと以外は実施例100と同様にしてポリエチレンテレフタレートを重合しようとした。ポリエチレンテレフタレートのIVが0. 3 dlg^{-1} に到達するまでに要した重合時間を表10に示す。

[0275]

(比較例14~23)

触媒を変えた事以外は実施例 9 1 と同様にしてポリエチレンテレフタレートを重合しようとした。用いた触媒組成およびポリエチレンテレフタレートのIVが0. 3 dlg^{-1} に到達するまでに要した重合時間を表 1 0 に示す。ただし、添加量はPET中の酸成分に対する値である。金属触媒の添加量は金属原子としての添加量である。

[0276]

【表9】

		重合触媒			
	触媒組成	添加量	*(wim)闘争写真	遊勵試験後 V(d g⁻¹) **	10(%)***
実施例119	実施倒119 ルテニウムアセチルアセトネート	0.05mo!%			
	エスクレチン	10.2mo1%	98	0.47	23
実施例120	実施例120 ロジウムアセチルアセトネート	0.05mo1%			
	キナリザリン	0.1mol%	87	0.47	22
実施例121	実施例121 酢酸パラジウム	0.5mol%			
	エモジン	0.5mo1%	62	0.46	23
実施例122	実施例122 テトラエトキシシラン	0.1mol%			
	モリン	0.2mo1%	65	0.46	23

*:IVO.5dlg⁻¹のPETを重合するのに要した重合時間。

*キ:IVが0.6dlg-1のポリエチレンテレフタレート1gをガラス試験管に入れ130℃で12時間真空乾燥した後、

鍛素雰囲気下で300℃、2時間海融したときの1/v。

***:IVが0.6dlg⁻¹のポリエチレンテレフタレート1gをガラス試験管に入れ130℃で12時間真空乾燥した後、

盤素雰囲気下で300℃、2時間溶融したときの1Vの減少率(%)。

【0277】 【表10】

		重合触媒	
	抽集租成	添加量	重合時間(min)****
比較例12	比較例12 酢酸ナトリウム	0.1mo1%	144
比較例13	キナリザリン	0.2mo1%	162
比較例14	比較例14 酢酸カリウム	0.05mol%	168
比較例15	一酢酸ルビジウム	0.05mo!%	175
比較例16	酢酸セシウム	0.1mol%	180
比較例17	酢酸ペリリウム	0.08mo1%	152
比較例18	比較例18 デトラエトキシシラン	0.1mol%	163
比較例19	酢酸カルシウム	0.05mo!%	147
比較例20	酢酸ストロンチウム	0.2mol%	191
比較例21	ルテニウムアセチルアセトネート	0.05mo1%	159
比較例22	比較例22 ロジウムアセチルアセトネート	0.05mol%	170
比較例23	酢酸パラジウム	0.5mol%	158
	************************************	無今時間。	

[0278]

【発明の効果】

本発明によれば、アンチモン化合物ならびにゲルマニウム化合物以外の重合触媒を用いて重合した熱安定性に優れたポリエステルおよびこれを重合するためのポリエステル重合触媒ならびにポリエステルの製造方法が提供される。本発明の

ポリエステルは、衣料用繊維、産業資材用繊維、各種フィルム、シート、ボトルやエンジニアリングプラスチックなどの各種成形物、および塗料や接着剤などへの応用が可能である。

【要約】

【課題】アンチモン化合物ならびにゲルマニウム化合物以外の重合触媒を用いて 重合した熱安定性に優れたポリエステルおよびこれを重合するためのポリエステ ル重合触媒ならびにポリエステルの製造方法を提供する。

【解決手段】アンチモン化合物またはゲルマニウム化合物を用いることなく特定 の活性パラメータを満たす触媒であり、かつその触媒を用いて重合したポリエチ レンテレフタレートが特定の熱安定性指標を満たすようなポリエステル重合触媒 を使用する。

出願人履歴情報

識別番号

[000003160]

1. 変更年月日

1990年 8月10日

[変更理由]

新規登録

住 所

大阪府大阪市北区堂島浜2丁目2番8号

氏 名

東洋紡績株式会社

THIS PAGE BLANK (USPTO)