Lecture 18: Identity function

Wednesday, November 2, 2016

For any non-empty set X, the identity function Ix of X is

$$I_X: X \longrightarrow X$$
, $I_X(x) = x$ for any $x \in X$.

Lemma For any function $f: X \rightarrow Y$, we have

$$I_{Y} \circ f = f = f \circ I_{X}$$

$$f: X \longrightarrow Y$$
 $x \longmapsto f(x)$

$$I_{Y} \circ f : X \longrightarrow Y$$

$$x \longmapsto I_{Y} (f \circ x) = f \circ x .$$

So they have the same (co) domain and rules. Hence

they are equal functions.

(co)domain and rules. Thus
$$f_{\sigma}I_{\chi}=f$$
.

Remark. We say this diagram commutes: it does NOT matter which

path we choose.

Lecture 18: Example of composite functions

Thursday, November 3, 2016

Ex. Complete the missing information, if any.

$$f_1(x) = x+1$$
, $f_2(x) = \sqrt{x}$, and

$$f_2 \circ f_1 : \mathbb{R} \longrightarrow \mathbb{R}$$
, $f_2 \circ f_1(x) = \sqrt{x+1}$.

Solution. Domains and co-domains of f, and f2 are missing.

$$X \xrightarrow{f_1} Y$$
 Since $f_2 \circ f_1$ exists, codomain $f_2 \circ f_1$ of f_1 is the same as domain

of f2 Let's denote it by Y

domain of
$$f_1 = domain of f_2 \circ f_1 = \mathbb{R}^{20}$$

codomain of
$$f_2 = codomain$$
 of $f_2 \cdot f_1 = \mathbb{R}$.

, So
$$f_1: \mathbb{R}^{\geq 0} \rightarrow Y$$
, $f_1(x) = x+1$. In particular,

$$\forall x \in \mathbb{R}^{\geq 0}, \quad \frac{1}{2}(x) = x+1 \in Y. \quad S_0$$

$$x \in \mathbb{R}^{21} \implies \chi \in Y \text{ and so } \mathbb{R} \subseteq Y.$$

•
$$f_2: Y \longrightarrow \mathbb{R}$$
, $f_2(y) = \sqrt{y}$ in order to get a function

which is defined at every yex, we should assume

$$y \in Y \Rightarrow y \ge 0 \Rightarrow y \in \mathbb{R}^{\ge 0}$$
. Thus $Y \subseteq \mathbb{R}^{\ge 0}$.

Hence Y can be any set $\mathbb{R}^{\geq 1}$ $\mathbb{R}^{\geq 0}$.

$$\mathbb{R}^{\geq 1}$$
 $\subseteq Y \subseteq \mathbb{R}^{\geq 0}$.

Lecture 18: Image of a function

Thursday, November 3, 2016

<u>Definition</u>. Let $X \xrightarrow{f} Y$. Image of f is a subset of codomain:

$$Im(f) = \{f(x) \mid x \in X\}$$

So we have
$$\forall y \in Y$$
, $(y \in Im(f) \iff \exists x \in X, y = f(x))$.

Definition. A function X + Y is called surjective or onto

if
$$lm(f) = Y$$
.

So we have

$$X \xrightarrow{f} Y$$
 is surjective $\iff \forall y \in Y, \exists x \in X, y = f(x)$

In another words, for any yeY, you can solve the equation

$$y = f(x)$$
 for $x \in X$.

Ex. Let $f: \mathbb{R}^{\geq 2} \to \mathbb{R}$, $f(x) = x^3$. Find Im (f).

(we will use the facts that $\chi \mapsto \chi^3$ and $\chi \mapsto \sqrt[3]{\chi}$ are

increasing functions.)

Solution. We claim $Im(f) = \mathbb{R}^{\geq 8}$. We need to show $Im(f) \subseteq \mathbb{R}^{\geq 8}$

and $\mathbb{R}^{28} \subseteq \operatorname{Im}(f)$.

 $lm(f) \subseteq \mathbb{R}^{\geq 8}$. To show this we have to verify

Lecture 18: Image of a function

Thursday, November 3, 2016 8:42 AM

$$y \in Im(f) \implies \exists x \in \mathbb{R}^{2^2}, y = f(x) = x^3$$

Since $\chi \mapsto \chi^3$ is increasing and $\chi \ge 2$, we have

$$x^3 \ge 8$$
. So $y \ge 8$, which means $y \in \mathbb{R}^{\ge 8}$.

R = lm (f). We have to show

$$y \in \mathbb{R}^{28} \Rightarrow y \in Im(f)$$

which means $\forall y \in \mathbb{R}^{28}$, $\exists x \in \mathbb{R}^{22}$, $y = x^3$.

If
$$y \ge 8$$
, then $x = \sqrt[3]{y} \ge \sqrt[3]{8} = 2$ and $y = x^3$

So for any
$$y \in \mathbb{R}^{\geq 8}$$
, $y = (3y)^3$ and $3y \in \mathbb{R}^{\geq 2}$.

<u>Definition</u>. Graph of X + Y is a subset of X x Y:

$$G_{\xi} = \{(x, f(x)) \mid x \in X \}.$$

We will see several examples in the next lecture.