Interconnections

Communication Model

Message Passing 或是 MPI

可以是 unicast, broadcast 或是 multicast

message passing 相比 shared memory

- message passing
 - 。 内存私有
 - 。 显式的 send/receive
 - o message 中有数据和同步信息
 - 需要知道信息的 src 或 dest
- shared memory
 - 。 内存共享
 - 。 隐式的 load/store
 - 。 隐式的同步
 - 。 不需要知道信息的 src 和 dest

可以用 shared memory 实现 message passing:软件上将 load/store 变为 send/receive,硬件上将总线上的数据交流变成信息的发送(核与核,核与内存通过 switch 相连)

可以用 message passing 实现 shared memory: 使用 queue 直接在核之间通过 load/store 和锁实现数据传输

Switching

总线的特点是共享通信媒介,不需要路由,便于监听,而交换机网络是点对点连接各节点,需要路由

有多种 switching 方法

- circuit switched
- store and forward
- cut-through
- wormhole

Topology

节点网络的拓扑也可以有很多种

- 1-D
 - 。 总线连接所有节点
 - 。 节点首尾相接成环
- 2-D
 - o mesh
 - 节点组织成二维的环 (每一行/一列首尾相接成环)
 - full mesh,每个节点间都直接相连
 - hyper cube, 立方体
 - o omega network
 - fat tree, 交换机组成二叉树, 叶节点是主机
 - 。 clos network,同 fat tree,但是增加了冗余,每个非叶非根的交换机都有两个父节点

topology 有各种参数

• routing distance:两点间需要多少 hop

• diameter: 最大的 routing distance

average distance

minimum bisection bandwidth:最小的将网络分成两个不相交的 set 的 cut 的带宽

degree of a router

Network	# Nodes	Router Deg.	Diameter	Bisection BW	# Links
1D Torus	Ν	2	[<i>N</i> /2]	2	N
2D Mesh	$\sqrt{N} \times \sqrt{N}$	4	$2\sqrt{N} - 2$	\sqrt{N}	$2(N-\sqrt{N})$
2D Torus	$\sqrt{N} \times \sqrt{N}$	4	$2\lfloor\sqrt{N}/2\rfloor$	$2\sqrt{N}$	2 <i>N</i>
Full Mesh	Ν	<i>N</i> – 1	1	$N^{2}/4$	N(N-1)/2
Binary Tree	N	3	$2(\lceil \log_2 N \rceil - 1)$	1	N-1
Hyper Cube	$N=2^n$	n	n	N/2	<i>nN</i> /2

Network Performance

bandwidth: 给定时间内能传输的数据总量

latency: 信息从发送到接受需要的时间

带宽上升可以减小延迟:减少拥塞

延迟会限制带宽,如 round trip 的形式

Routing

- link state
- distance vector

flow control 可以是局部或是端到端的

一个流控例子: token bucket