Q1(1):

From the indentity $\sin^2\theta + \cos^2\theta = 1$, we have $(\sin\theta + \cos\theta)^2 - 2\sin\theta\cos\theta = 1$. For the equation $\sqrt{2}x^2 - \sqrt{3}x + k = 0$, sum of roots= $-\frac{-\sqrt{3}}{\sqrt{2}} = \sqrt{\frac{3}{2}}$ and product of roots= $\frac{k}{\sqrt{2}}$.

If the two roots can be written as $\sin \theta$ and $\cos \theta$, we have

$$(\sqrt{\frac{3}{2}})^2 - 2\frac{k}{\sqrt{2}} = 1$$

$$l = \left\lceil \frac{\sqrt{2}}{4} \right\rceil$$

Alternative Subtitue $x = \sin \theta$ and $x = \cos \theta$ into the two equations respectively, we have:

$$\sqrt{2}\sin^2\theta = \sqrt{3}\sin\theta - k$$

$$\sqrt{2}\cos^2\theta = \sqrt{3}\cos\theta - k$$

Adding two equations together, we have $\sqrt{2} = \sqrt{3}(\sin \theta + \cos \theta) - 2k$.

On the other hand, as the sum of roots= $\sqrt{\frac{3}{2}}$, we have $\sqrt{2} = \frac{3}{\sqrt{2}} - 2k$, i.e. $k = \left\lceil \frac{1}{2\sqrt{2}} \right\rceil$.

Q1(2):

Consider the binomial expansion of $(x^3 + \frac{a}{x^2})^5$, which is

$$\textstyle \sum_{k=0}^{5} C_k^5(x^3)^k (\frac{a}{x^2})^{5-k} = \sum_{k=0}^{5} C_k^5(a^{5-k}) x^{5k-10}, \text{ where } C_r^n \text{ is the binomial coefficient.}$$

For the constant term, the index of x equals to 0. Solving 5k - 10 = 0, we have

k=2, i.e. the constant term is obtained when k=2.

When k = 2, the term= $C_2^5 a^3 = 10a^3$.

Therefore, the have $10a^3 = -270$, i.e. $a = \boxed{-3}$.

Q1(3):

As the relation provided holds independent on the value of x, we can put any values of x we want expect $-\frac{1}{2}$ and $\frac{3}{2}$.

Note that p=2 and $p=-\frac{2}{3}$ does not satisfy the relation f(g(x))=x.

Put $x = -\frac{1}{p}$, then g(x) = 0, the relation becomes

$$f(0) = -\frac{1}{p}$$

$$1 = -\frac{1}{p}$$

$$p = \boxed{-1}$$

Alternative

$$f(q(x)) = x$$

$$\frac{3(\frac{px+1}{2x-3})+1}{2(\frac{px+1}{2x-3})+1} = x$$

$$\frac{(3p+2)x}{(2p+2)x-1} = x$$

$$(2p+2)x^2 - (3p+3)x = 0$$

As the relation holds independent on the value of x, we have 2p + 2 = 0 and 3p + 3 = 0, which gives us $p = \boxed{-1}$.

Q1(4):

Note that the hidden condition for $\log_2 x$ and $\log_2(x-2)$ to be defined is x>2. On the other hand,

$$\log_2 x + \log_2(x - 2) < 4 \log_{16} 8$$
$$\log_2(x^2 - 2x) < \log_2 8$$
$$x^2 - 2x - 8 < 0$$
$$(x - 4)(x + 2) < 0$$
$$-2 < x < 4$$

Combine the above, we have 2 < x < 4.

Q1(5):

Consider the prime factorisation of $600 = 2^3 \times 3 \times 5^2$.

Therefore, all positive divisors of 600 are in a form of $2^i \times 3^j \times 5^k$, where $i, j, k \in \mathbb{N}$ satisfy $0 \le i \le 3, \ 0 \le j \le 1$ and $0 \le k \le 2$.

By finding the number of combinations of i, j, k, we have the total number of positive divisors of $600 = 4 \cdot 2 \cdot 3 = \boxed{24}$.

On the other hand, the sum of all divisors= $\sum_{i=0}^{3} \sum_{j=0}^{1} \sum_{k=0}^{2} 2^i \times 3^j \times 5^k$

$$= \left(\sum_{i=0}^{3} \sum_{j=0}^{1} 2^{i} \times 3^{j}\right) (5^{0} + 5^{1} + 5^{2})$$

$$= \left(\sum_{i=0}^{3} 2^{i}\right) (3^{0} + 3^{1}) (5^{0} + 5^{1} + 5^{2})$$

$$= \left(2^{0} + 2^{1} + 2^{2} + 2^{3}\right) (3^{0} + 3^{1}) (5^{0} + 5^{1} + 5^{2})$$

$$=(15)(4)(31)$$

$$= 1860$$
.

Q2:

(1): Denote the centres of C and C_r as O and O_r respectively. In addition, denote the point of intersection as I.

Refer to the sketch:

The angle between two radii is equal to 60° . By the cosine formula, the distance

between two centres=
$$\sqrt{1^2 + r^2 - 2(1)(r)\cos 60^\circ} = \sqrt{r^2 - r + 1}$$
.

(2): By completing the square, $d=\sqrt{(r-\frac{1}{2})^2+\frac{3}{4}}$. Therefore, when $(r-\frac{1}{2})^2=0$, i.e. $r=\boxed{\frac{1}{2}}$, the distance is minimised.

Alternative $d' = \frac{2r-1}{2\sqrt{r^2-r+1}}$.

The find the extremum of d, we set d' = 0. Then, we have $r = \frac{1}{2}$.

The table of first derivative test is given:

r	$(0,\frac{1}{2})$	$(\frac{1}{2}, +\infty)$
d'	_	+
d	>	7

Therefore, d attains to its minimum when $r = \boxed{\frac{1}{2}}$

(3): A sketch of case (2):

The required area=(The area of sector (semi-circle) $\widehat{IOrI'}$)+(The area of sector $\widehat{IOI'}$)-(The area of $\triangle IOI'$)

Note that every interior angle of $\triangle IOI'$ equals to 60° .

Then, the area= $(\frac{1}{2}\pi(\frac{1}{2})^2) + (\pi(1)^2 \cdot \frac{60^{\circ}}{360^{\circ}}) - (\frac{1}{2}(1)(1)\sin 60^{\circ})$

$$= \frac{\pi}{8} + \frac{\pi}{6} - \frac{\sqrt{3}}{4}$$
$$= \boxed{\frac{7\pi}{24} - \frac{\sqrt{3}}{4}}$$

Alternative Introduce coordinates: Set O(0,0) be the origin, then $O_r = (\frac{\sqrt{3}}{2},0)$ by (1) and (2).

Now, the equation of C is $x^2 + y^2 = 1$ and that of C_r is $\left(x - \frac{\sqrt{3}}{2}\right)^2 + y^2 = \frac{1}{4}$.

The x-coordinate of their point of intersections will be given by

$$x^2 - 1 = (x - \frac{\sqrt{3}}{2})^2 - \frac{1}{4}$$
. By solving, we have $x = \frac{\sqrt{3}}{2}$.

Moreover, the x-intercepts of C are ± 1 and that of C_r are $\frac{\sqrt{3}}{2} \pm \frac{1}{2}$.

Now, we consider only the upper part (i.e. that above the x-axis) of the region.

Then, by symmetry, the total area will be twice of it.

Therefore, the area=
$$2(\int_{\frac{\sqrt{3}}{2}-\frac{1}{2}}^{\frac{\sqrt{3}}{2}}\sqrt{\frac{1}{4}-(x-\frac{\sqrt{3}}{2})^2}dx+\int_{\frac{\sqrt{3}}{2}}^{1}\sqrt{1-x^2}dx)$$

$$=2(\frac{1}{4}\int_{-\frac{\pi}{2}}^{0}\cos^2\theta d\theta+\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\cos^2\theta d\theta)$$

$$=2(\frac{1}{4}[\frac{1}{2}\theta+\frac{\sin 2\theta}{4}]_{-\frac{\pi}{2}}^{0}+[\frac{1}{2}\theta+\frac{\sin 2\theta}{4}]_{\frac{\pi}{3}}^{\frac{\pi}{2}})$$

$$=2(\frac{\pi}{16}+\frac{\pi}{12}-\frac{\sqrt{3}}{8})$$

$$=\frac{7\pi}{24}-\frac{\sqrt{3}}{4}$$

Q3:

(1):
$$y = 8^x - 9 \cdot 4^x + 15 \cdot 2^x$$

$$= (2^x)^3 - 9 \cdot (2^x)^2 + 15 \cdot 2x$$

$$= X^3 - 9X^2 + 15X.$$

(2):
$$y' = 3X^2 - 18X + 15 = 3(X - 5)(X - 1)$$
.

To find the extremum of y, we set y' = 0, then X = 1 or X = 5.

$$y'' = 6X - 18.$$

Conduct the second derivative test:

When
$$X = 1$$
, $y'' = -12 < 0$

When
$$X = 5$$
, $y'' = 12 > 0$

Therefore, the local maximum is obtained when $X = \boxed{1}$, and the value of it is

$$1 - 9 + 15 = \boxed{7}$$
.

The local minimum is obtained when $X = \boxed{5}$, and the value of it is

$$125 - 225 + 75 = \boxed{-25}$$

(3):
$$0 \le x \le \log_2 7 \iff 1 \le X \le 7$$

When X = 1, maximum is obtained by the result of (2).

When
$$X = 7$$
, $y = 7(49 - 63 + 15) = 7$

Combine the above with the result of (2), we have:

The global maximum is $\boxed{7}$, at X=1 or 7, i.e. $x=\boxed{0 \text{ or } \log_2 7}$

The global maximum is $\boxed{-25}$, at X=5, i.e. $x=\boxed{\log_2 5}$.