Part III – Algebraic Topology (Ongoing course, rough)

Based on lectures by Professor I. Smith Notes taken by Bhavik Mehta

Michaelmas 2018

Contents

0 Introduction 2

0 Introduction

Algebraic topology concerns the connectivity properties of topological spaces. Recall a space X is **connected** if we cannot write $X = U \cup V$ where U, V are non-empty, open and disjoint.

Example. \mathbb{R} is connected (with its Euclidean topology), $\mathbb{R} \setminus \{0\}$ is not connected.

Corollary (Intermediate value theorem). If $f : \mathbb{R} \to \mathbb{R}$ is continuous and f(x) > 0, f(y) < 0, then there is some z lying between x, y such that f(z) = 0.

Proof. If
$$f(z) \neq 0$$
 for all z, then $\mathbb{R} = f^{-1}(-\infty, 0) \cup f^{-1}(0, \infty)$ is disconnected.

For nice spaces, connected \iff path-connected. Recall: a space X is path-connected if $\forall x,y\in X, \exists \gamma:[0,1]\to X$ continuous such that $\gamma(0)=x,\gamma(1)=y$. Informally, any two maps of a point to X can be continuously deformed into one another.

Definition (Homotopy). If X, Y are topological spaces and $f, g : X \to Y$ are (continuous) maps, then f is **homotopic** to g if

$$\exists F: X\times [0,1] \to Y$$

continuous such that

$$F|_{X\times\{0\}} = f, F|_{X\times\{1\}} = g.$$

Write $f \simeq g$ or $f \simeq_F g$ and schematically

Definition (Simply connected). A path-connected space X is **simply connected** if every two continuous maps $S^1 \to X$ are homotopic. Here $S^n = \{x \in \mathbb{R}^{n+1} \mid ||x|| = 1\}$ is the n dimensional sphere, S^1 is the circle $\subseteq \mathbb{C}$.

Example. \mathbb{R}^2 is simply connected but $\mathbb{R}^2 \setminus \{0\}$ is not. In fact, continuous maps $S^1 \xrightarrow{\gamma} \mathbb{R}^2 \setminus \{0\}$ have a degree $\deg(\gamma) \in \mathbb{Z}$, invariant under homotopy. (If γ was differentiable, we could set $\deg(\gamma) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z} \in \mathbb{Z}$.) If $\gamma_n : S^1 \to \mathbb{R}^2 \setminus \{0\}$ has $t \mapsto e^{2\pi i n t}$ then $\deg(\gamma_n) = n$.

Corollary (Fundamental theorem of algebra). Every nonconstant complex polynomial has a root.

Proof. Let $f(z) = z^n + a_1 z^{n-1} + a_2 z^{n-2} + \cdots + a_n$ be a complex polynomial and suppose $f(z) \neq 0 \ \forall z \in \mathbb{C}$. Let $\gamma_R(t) = f(Re^{2\pi it})$ so $\gamma_R : S^1 \to \mathbb{R}^2 \setminus \{0\}$. Now γ_0 is a constant map, so $\deg(\gamma_0) = 0$. By homotopy invariance of degree, $\deg(\gamma_R) = 0 \ \forall R$.

If $R \gg \sum_i |a_i|$, we can consider $f_s(z) = z^n + s(a_1 z^{n-1} + \dots + a_n)$ for $0 \le s \le 1$, and on the circle $Re^{2\pi it}$, f_s also takes values in $\mathbb{R}^2 \setminus \{0\}$. If $\gamma_{R,s}(t) = f_s(Re^{2\pi it})$, then $\gamma_{R,1} = \gamma_R$ but $\gamma_{R,0} : z \mapsto z^n$, which has degree n. Now $\deg(\gamma_0) = \deg(\gamma_R) = \deg(\gamma_{R,1}) = \deg(\gamma_{R,0})$, so n = 0 and f is constant.

Fact. Any two maps $S^n \to \mathbb{R}^{n+1}$ are homotopic but maps $S^n \xrightarrow{f} \mathbb{R}^{n+1} \setminus \{0\}$ have a degree $\deg(f) \in \mathbb{Z}$, invariant up to homotopy. Moreover, the degree of the constant map is 0 and the degree of inclusion is 1.

Corollary (Brouwer's fixed point theorem). If $B^n = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$, any continuous map $f: B^n \to B^n$ has a fixed point.

Proof. Suppose f has no fixed point. Let $\gamma_R: S^{n-1} \to \mathbb{R}^n \setminus \{0\}$ be the map $v \mapsto R_v - f(R_v)$ for $0 \le R \le 1$. So γ_0 is a constant, so has degree 0. Hence $\deg(\gamma_1) = 0$.

Let $\gamma_{1,s}(v) := v - sf(v)$, for $0 \le s \le 1$ and $v \in S^{n-1}$. Note $\gamma_{1,s}$ has image in $\mathbb{R}^n \setminus \{0\}$: if s = 1, this is because $v \ne f(v) \ \forall v$ and if s < 1 then |v| > |sf(v)|. Therefore $\gamma_1 = \gamma_{1,1}$ has the same degree as $\gamma_{1,0}$ which is the inclusion $S^{n-1} \hookrightarrow \mathbb{R}^n \setminus \{0\}$, a contradiction.

Definition (Homotopy equivalence). We say spaces X, Y are **homotopy equivalent** if \exists maps $f: X \to Y$ and $g: Y \to X$ such that $g \circ f \simeq \operatorname{id}_X$ and $f \circ g \simeq \operatorname{id}_Y$. We write $X \simeq Y$.

Example.

- Trivial case: if X, Y are homeomorphic, i.e. $X \cong Y$, then clearly $X \simeq Y$.
- $\mathbb{R}^n \simeq \{0\}$, the single point. A space homotopy equivalent to a point is sometimes called contractible.
- $\mathbb{R}^n \setminus \{0\} \simeq S^{n-1}$. If $i: S^{n-1} \hookrightarrow \mathbb{R}^n \setminus \{0\}$ inclusion, and $p: \mathbb{R}^n \setminus \{0\} \to S^{n-1}$ is projection $v \mapsto \frac{v}{\|v\|}$, then $p \circ i = \mathrm{id}_{S^{n-1}}$ and $i \circ p \simeq \mathrm{id}_{\mathbb{R}^n \setminus \{0\}}$ via the homotopy

$$F: \mathbb{R}^n \setminus \{0\} \times [0,1] \longrightarrow \mathbb{R}^n \setminus \{0\}$$
$$(v,t) \longmapsto tv + (1-t)\frac{v}{\|v\|}$$

Algebraic topology is the study of the set of spaces up to homotopy equivalence via the set of groups up to isomorphism.

The first naive attempt would be homotopy groups: Loops (continuous maps $S^1 \to X$) with a common base-point can be concatenated and this induces a group structure on the set of homotopy classes of maps $(S^1,*) \to (X,x_0)$. This refers to continuous maps $S^1 \to X$ taking $* \mapsto x_0$ and a based homotopy $F: f \simeq g$ of two such is one such that $F|_{S \times \{t\}}$ sends * to $x_0 \ \forall t$.

Again, there is a group structure on the set of based homotopy classes of maps $(S^n, *) \to (X, x_0)$ calld $\pi_n(X, x_0)$, the *n*-th homotopy group of X.

Fact. $\{\pi_n(S^2,x)\}_{n\geq 1}$ is not known. Indeed, there is no simply connected manifold of dimension > 0 for which all π_n are known.

Instead, we will focus on homology theory, more precisely singular (co)homology. We will obtain invariants of spaces in a two-step process:

- (a) Associate to X a chain complex (or cochain complex).
- (b) take (co)homology of that complex.

This will be rather computable for simple spaces. In this course, we will mostly focus on studying manifolds.

Definition (Chain complex, cochain complex). A **chain complex** (C_*, d) is a sequence of abelian groups and homomorphisms

$$\cdots \longrightarrow C_{n+1} \stackrel{d_{n+1}}{\longrightarrow} C_n \stackrel{d_n}{\longrightarrow} C_{n-1} \stackrel{d_{n-1}}{\longrightarrow} C_{n-2} \longrightarrow \cdots$$

(indexed by \mathbb{N} or \mathbb{Z}) with the key property that $\forall n \ d_{n-1} \circ d_n = 0$ Then image $(d_{n+1}) \subseteq \ker(d_n)$ and the *n*-th homology group $H_n(C_*, d)$ of the chain complex is the quotient

$$H_n(C_*,d) := \frac{\ker(d_n)}{\operatorname{im}(d_{n+1})}.$$

A **cochain complex** (C^*,d) is a sequence of abelian groups and homomorphisms

$$\cdots \longrightarrow C_{n+1} \xrightarrow{d_{n-1}} C_n \xrightarrow{d_n} C_{n+1} \longrightarrow \cdots$$

such that $d^n \circ d^{n-1} \equiv 0 \ \forall n$ The n-th cohomology group $H^n(C^*,d)$ is the quotient

$$H^n(C^*,d) \coloneqq \frac{\ker(d^n)}{\operatorname{im}(d^{n-1})}.$$