Лабораторная работа № 1 «Численные методы решения задачи Коши для ОДУ»

Срок сдачи: 23.09.2022

Найти приближенное решение задачи Коши для обыкновенного дифференциального уравнения первого порядка на равномерной сетке отрезка [a,b] с шагами $h_1=0.1$ и $h_2=0.05$ методами, указанными в варианте задания. Сравнить полученные приближенные решения с точным, т.е. найти норму разности между точным и приближенными решениями. В одной системе координат построить графики точного и приближенных решений. Для неявного метода решение уравнений выполнить с помощью метода Ньютона.

Варианты заданий

Номер варианта	Задача Коши	Точное решение	Методы
1	$u' = -u^2 + \frac{u}{x}, x \in [1, 2],$ u(1) = 2/3.	$u(x) = \frac{2x}{x^2 + 2}$	Явный метод Эйлера; неявный метод Эйлера; явный метод Рунге- Кутта 4-го порядка.
2	$u' = \frac{u^2 \ln x - u}{x}, x \in [1, 2],$ u(1) = 0.5.	$u(x) = \frac{1}{\ln x + x + 1}$	Явный метод Эйлера; неявный метод трапеций; явный метод Рунге-Кутта 3-го порядка.
3	$u' = \frac{u^2 + x^2 u}{x^3}, x \in [1, 2],$ u(1) = 0.5.	$u(x) = \frac{x^2}{1+x}$	Явный метод Эйлера; неявный метод трапеций; явный метод Рунге-Кутта 4-го порядка.
4	$u' = x^{2}(u^{2} + 1), x \in [0, 1],$ u(0) = 0.	$u(x) = tg\left(\frac{x^3}{3}\right)$	Явный метод средних прямоугольников; неявный метод трапеций; явный метод Рунге-Кутта 3-го порядка.
5	$u' = (x-u)^2 + 1, x \in [0,1],$ u(0) = 0.5.	$u(x) = \frac{x^2 - 2x - 1}{x - 2}$	Явный метод средних прямоугольников; неявный метод трапеций; явный метод Рунге-Кутта 4-го порядка.
6	$u' = \frac{u \ln u}{x}, x \in [1, 2],$ $u(1) = e.$	$u(x) = e^x$	Явный метод средних прямоугольников; неявный метод Эйлера; явный метод Рунге-Кутта 3-го порядка.
7	$u' = \frac{u^2 + ux}{x^2}, x \in [1, 2],$ u(1) = 0.5.	$u(x) = \frac{x}{2 - \ln x}$	Явный метод средних прямоугольников; неявный метод Эйлера; явный метод Рунге-Кутта 4-го порядка.
8	$u' = (u + x)^2, x \in [0,1],$ u(0) = 0.	$u(x) = \operatorname{tg} x - x$	Явный метод трапеций; неявный метод трапеций; явный метод Рунге-Кутта 3-го порядка.
9	$u' = \frac{xu}{u+1} - x, t \in [1,2],$ u(1) = 2.	$u(x) = \sqrt{10 - x^2} - 1$	Явный метод трапеций; неявный метод трапеций; явный метод Рунге-Кутта 4-го порядка.

10	$u' = \frac{u}{x} + \frac{x}{u}, x \in [1, 2],$ u(1) = 1.	$u(x) = x\sqrt{2\ln x + 1}$	Явный метод трапеций; неявный метод Эйлера; явный метод Рунге- Кутта 3-го порядка.
11	$u' = -\frac{u}{x} \ln\left(\frac{u}{x}\right), x \in [1, 2],$ $u(1) = 1.$	$u(x) = xe^{\frac{1-x}{x}}$	Явный метод трапеций; неявный метод Эйлера; явный метод Рунге- Кутта 4-го порядка.
12	$u' = \frac{1 - u^2}{2x}, x \in [2, 3],$ u(2) = 2.	$u(x) = \frac{3x+2}{3x-2}$	Явный метод средних прямоугольников; неявный метод трапеций; явный метод Рунге-Кутта 3-го порядка.
13	$u' = -u^2 - \frac{1}{x^4}, x \in [1, 2],$ u(1) = 1.	$u = \frac{x - tg\left(\frac{x - 1}{x}\right)}{x^2}$	Явный метод средних прямоугольников; неявный метод трапеций; явный метод Рунге-Кутта 4-го порядка.

По результатам лабораторной работы оформляется отчет. Он должен содержать:

- постановку задачи;
- краткие теоретические сведения (записать методы, применяемые для численного решения поставленной задачи Коши);
- численные результаты;
- выводы;
- листинг программы с комментариями.

Отчет необходимо отправить на yvolotovskaya@gmail.com. Тема письма: «ЛР1 3к 1гр Фамилия».