

High Performance Computing

ELIXIR-EXCELERATE Train-the-Researcher HPC course
Oswaldo Trelles

ortrelles@uma.es

European Life Sciences Infrastructure for Biological Information

ELIXIR-EXCELERATE is funded by the European Commission within the Research Infrastructures programme Horizon 2020, grant agreement number 676559.

www.elixir-europe.org

Genome Comparison

GECKO: Out of core comparison algorithms

The problem

Mammalians

H. sapiens Human

M. musculus Mouse

R. norvegicus Rat

O. cuniculus Rabitt

G. gorilla Gorilla

M. mulata Macaca

P. trogodytes Chimpanzee

B. taurus Cow

S. scrofa Pig

C. familiaris Dog

O.Trelles, PhD

Gene-level Evolution Events

Translocations, inversions, repetitions, duplications, ...

Representation

Out-of-Core & Comp-Space-Reduction

Genome Comparison out-of-core: the global idea

A K-mer is a substring of length k in DNA or Protein sequence data

actgtagactgactaaggacgggacgggaggactagctaccctat<mark>tagtt</mark>

```
actqt
 ctgta
  tqtaq
   gtaga
    tagac
         cctat
          ctatt
           tatta
            tattag
             attagt
               ttagtt
```

- The exact number of K-mers in a sequence of length L is L-K+1
- The maximum number of different kmers of lenght K is 4^K (DNA) or 20^K (proteins)
- The number of K-mers repetitions (frequency)
 reduces with the increase of K
- Specific short k-mers are called oligomers or "oligos" for short

Building-up the dictionaries


```
Output file format:
typedef struct {
        unsigned char b[8];
} word;
typedef struct {
        word w;
        unsigned long pos;
        unsigned char seq;
} wentry;
```


Using binary tree instead of sort step


```
Tree data structure
Typedef struct node {
  char key_alue[33]; // word
  struct node *left;
  struct node *right;
  int ocurrences;
  lkst *positions
}
```

```
// Initial tree : EMPTY
seq = readSequence(FILE)
for all kmer
  kmer = nextKmer(seq, wordSize)

if (kmer < tree.key_value)
      insert(word, tree.left)
else
  if (kmer > tree.key_value)
      insert(word, tree.right)
else
  addRepetition
}
```


Sequence B

From fragments to gapped alignments

Sequence A

Find initial hits by building k-mer dictionaries for both sequences. Shared k-mers are considered hits and will be the seeds for the gapped alignments.

Extending the hits

Sequence A

Extend the initial seeds forward backwards. The algorithm should maximize a scoring function F that takes into account both the length and the number of identities:

$$F = F_{forward} + F_{backward}$$

$$F = F_{forward} + F_{backward}$$

$$F_{forward} = \max \sum_{i=0}^{n} PAM(S_{k_1+i}^A, S_{k_1+i}^B)$$
Subject to $k_1 + i < n_1, \ k_2 + i < n_2$

Subject to
$$k_1 + i < n_1, k_2 + i < n_2$$

$$F_{backwards} = \max \sum_{i=0}^{N} PAM(S_{k_1-i}^A, S_{k_1-i}^B)$$

Subject to
$$k_1 - i > 0$$
, $k_2 - i > 0$

Extending the hits (2)

Seed size (k) of 8

HAAATACAGTCCCGGCAGGTAGA<mark>CTTGCGAAACA</mark>CTTTGAT

<mark>AAACTACAGTCCGGGCATGAAGA</mark>ACAA<mark>CTTGCGAAACA</mark>GATA

$$F_1 = H_1 + e_1$$
 $F_2 = H_2 + e_2$

Hits are now transformed into fragments (which allow mismatches). The fragments will always include the hit plus an extension alignment e_i

Computing the expected value

The e-value associated to $m{F_1}$ is the number of times we would observe $m{F_1}$ by chance.

$$E = Kmne^{-\lambda S}$$

Where K and λ are the Karlin and Lambda parameters, which are obtained from the scoring matrix (e.g. PAM), m and n are the lengths of query and reference (search space) and S is the raw score for the alignment.

Using fragments as anchors

To perform a global Needleman-Wunsch alignment, we can use extended hits as anchors to reduce computation time and space.

Using an affine gap penalty scheme we can model indels, and penalize larger gaps differently from smaller gaps.

Only the anchored diagonal is explored!

Using fragments as anchors (2)

Sequence A

Each cell of the dynamic programming matrix can be calculated as:

Previous diagonal:

$$S(i,j) = PAM(i,j) +$$

$$S(i-1,j-1)$$

Gap in sequence A:

$$S(i,j) = PAM(i,j) + MAX(r_k + g_{open} + (j - k))$$

$$* g_{extension})$$

Gap in sequence B:

$$S(i,j) = PAM(i,j) + MAX(c_k + g_{open} + (i - k) * g_{extension})$$

Using fragments as anchors (3)

The expected value of a gapped alignment can also be calculated following a similar procedure to that of an ungapped alignment. See [1] for further details.

The resulting alignment would be:

Altschul, Stephen F., et al. "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs." *Nucleic acids research* 25.17 (1997): 3389-3402.

O.Trelles, PhD

E.coli (K12 vs O157) dotplot (≈ 5 Mbp)

		Time (sec)				
Process	Input	User (u)	System (s)	Elapsed		
maskSeq	ECk12.fa	0,164	0,024	0,188		
maskSeq	hits32	0,196	0,036	0,232		
words	ECk12m.fa	0,736	0,196	0,932		
words	ECO157m.fa	0,884	0,216	1,100		
sort	ECk12.words.unsort	1,600	0,412	2,012		
sort	ECO157.words.unsort	1,108	0,372	1,480		
w2hd	ECk12.words.sort	1,124	2,428	3,552		
w2hd	ECO157.words.sort	1,280	2,916	4,196		
hits	ECk12 ECO157	1,360	0,740	2,100		
sortHits	EChits32	3,012	0,968	3,980		
FragHits	EChits32.order	0,380	0,032	0,412		
				20,184		

Sequence length	DOTTER	Gepard	Gepard pre-SA
10 000 bp	2 s	<1 s	<1 s
50 000 bp	30 s	<1 s	<1 s
100 000 bp	2 min 4 s	<1 s	<1 s
1 000 000 bp	2 h 10 min	5 s	4 s
5 000 000 bp	52 h 38 min ^a	47 s	40 s
Human chrom. I	382 years ^a	61 min	53 min

Reference: Krumsiek, Jan, et al. (2007); "**Gepard**: a rapid and sensitive tool for creating dotplots on genome scale"; Bioinformatics Vol. 23 no. 8,

Mammalians vs Human ChrX (≈ 150 Mbp)

Comparative genomics: Challenges

Big-data; HPC + cloud; new comparative models, interactive Visualization for Data analysis; GUIs; mobile devices

The End

Human vs Chimpanzee

Different distributions?

Introns, exons, intergenic... produce the same type of fragments?

Statistical Significance of HSPs

New models are needed

Multiple Genome comparison & phylogeny

O.Trelles, PhD

The intermediate species

Memory demand

Genome d2hP		d2hW		hits		hits reverse		frags		frags.INF		
Size	value	ratio	value	ratio	value	ratio	value	ratio	vaue	ratio	value	ratio
1017820	16053968	15,773	22430016	22,037	75520	0,074	51560	0,051	32287	0,032	524	0,001
2307087	36391216	15,774	53444088	23,165	5040	0,002	4760	0,002	1132	0,000	534	0,000
5577086	87974704	15,774	127753872	22,907	3065440	0,550	205560	0,037	135796	0,024	536	0,000
32580616	521203904	15,997	779044512	23,911	14550600	0,447	9521960	0,292	3117655	0,096	527	0,000
252513033	3687610544	14,604	5016212256	19,865	35925818920	142,273	33571929880	132,951	3706903	0,015	549	0,000
252513033	3687610544	14,604	5016212256	19,865	25534140600	101,120	25506710400	101,011	1362745	0,005	549	0,000
252513033	3687610544	14,604	5016212256	19,865	692532400	2,743	690769960	2,736	109	0,000	541	0,000
304123439	3687610544	12,125	5016212256	16,494	19209800	0,063	12965680	0,043	60838	0,000	538	0,000
160599122	2514782336	15,659	3309071016	20,605	19094190000	118,893	18939227360	117,929	200059	0,001	547	0,000

frags.MAT		csv		compariso	compariso	Differe
value	ratio	value	ratio		n size real	nce
				(MB)	(MB)	
201021	0,198	24224	0,024	113,38	110,00	3,08%
201005	0,087	1347	0,001	263,83	241,71	9,15%
201097	0,036	102168	0,018	636,70	600,00	6,12%
204548	0,006	2601235	0,080	3841,86	3891,20	-1,27%
363403	0,001	3122387	0,012	91909,36	91136,00	0,85%
345777	0,001	1075438	0,004	74303,29	73324,04	1,34%
215406	0,001	568	0,000	26943,71	23865,22	12,90%
202494	0,001	49858	0,000	25802,93	17749,72	45,37%
375495	0,002	160378	0,001	53393,85	52642,85	1,43%

