الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

لديوان الوطني للرمنا حانات واهسا

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات

المدة: 04 سا و30 د

دورة: جوان 2015

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد العوضوعين التاليين: الموضوع الأول

التمرين الأول: (04 نقاط)

الفضاء منسوب إلى المعلم المتعامد والمتجانس $(O; ec{i}, ec{j}, ec{k})$.

عتبر النقط (4;3;5) ، B(10;4;3) ، A(1;5;4) و (0;4;5) .

م استقامیة، B ، A استقامیة، (1)) این استفامیة، (1)

ب) بين أنّ اللقط A ، B ، A و D من نفس المستوى.

ج) استنتج أنّ النقطة D هي مرجّح النقط A ، B و C المرفقة بمعاملات يُطلب تعيينها.

. D مَقِن إحداثيات النقطة E نظيرة النقطة A بالنسبة إلى النقطة

AE) اكتب معادلة ديكارتية المستوي (θ) المحوري القطعة

 $2\overline{MA} - \overline{MB} + 2\overline{MC} = |3\overline{MD} - 3\overline{MA}|$: عِيْن M من الغط M من الغط (2) عَيْن (2) عَيْن (2)

أ) تحقق أن النقطة (1;8;10 تنتمي إلى المستوي (٩).

H و G النقطتين G يقطع G في النقطتين G

حدد طبيعة الرباعي AGEH ، ثمّ احسب مساحته.

 (ΔEH) (المستقيم الذي يشمل النقطة (ΔEH) ويعامد المستوي ((ΔEH)).

) بين أنّ الشعاع AC ناظمي للمستوي (AEH).

 (Δ) بَا يَحْقُقُ أَلَّهُ مِن أَجِل كُل عدد حَقِيقي t ، النقطة N(3t;4-2t;5+t) تتمي إلى المستقيم

 $v(t) = 2|t|\sqrt{14}$ بين أنه من أجل كل عدد حقيقي t ، حجم المجسم NAGEH هو $V(t) = 2|t|\sqrt{14}$ عدد حقيقي $V(t) = 2|t|\sqrt{14}$ من أجل كل عدد حقيقي $V(t) = 2|t|\sqrt{14}$ مددة الحجوم).

 $v(t)=2\sqrt{3}$ trv أجليهما من أجليهما N_2 من N_2 من N_3 من أجليهما كل من أحليهما عين إحداثيات كل من النقطتين N_1

التمرين الثاني: (05 نقاط)

ينسب المستوي إلى المعلم المتعامد والمتجانس $(O; \vec{u}, \vec{v})$. نعثير النقط H ، C ، B ، A المستوي المستوي إلى المعلم المتعامد والمتجانس $z_I = -1 - i$ ، $z_I = -3 + 4i$ ، $z_C = -3$ ، $z_B = -2 + i$ ، $z_A = i$ على الترتيب:

. ($O(\bar{u},\bar{v})$) مثل النقط A ، B ، A مثل النقط B ، C ، B ، A مثل النقط (1)

C عين النسبة وزاوية للتشايه المباشر الذي مركزه B ويحوّل النقطة A إلى النقطة C

ABC عَيْن G عَيْن عَلَى المثلث G النقطة G عين عين عند (2

 $\frac{z_B - z_C}{z_H - z_A}$) أكتب على الشكل الجبري العدد المركّب على الشكل الجبري العدد المركّب

ب) استنتج أن المستقيمين (AH) و (BC) متعامدان.

ج) بين أن H هي نقطة تلاقي ارتفاعات المثلث ABC.

بيّن أنّ النقط G ، H ، G في استقامية.

 $\theta \in \mathbb{R}$ مجموعة النقط M من المستوي ذات اللاحقة z حيث: $\theta \in \mathbb{R}$ مع $H = \pi + 1 + i = \sqrt{5}e^{i\theta}$ (5)

 $-(\Gamma)$ بين أنّ النقطة A تتثمي إلى المجموعة (Γ)

ب) عين طبيعة المجموعة (٢) مع تحديد عناصرها المعيّزة.

(Г) أنشئ المجموعة (Г).

د) تحقق أنّ النقطتين B و C تتتميان إلى المجموعة Γ

التمرين الثالث: (04) نقاط)

1) أ) عين حسب قيم العند الطبيعي n ، باقي القسمة الإقليدية للعند 2^n على 7 . ب) استنتج باقي القسمة الإقليدية للعند n على n على n استنتج باقي القسمة الإقليدية للعند n على n على n .

2) أ) بين أن 89 عدد أزلى.

ب) عين كل القواسم الطبيعية للعدد 7832.

ج) بيَّن أنَّ العددين 981 و 977 أوليان فيما بينهما.

3) x و ال عندان طبیعیان غیر معدومین قاسماهما المشترك الأكبر هو 2.

$$\begin{cases} x^2 - y^2 = 31328 \\ x - y = 8[22] \end{cases}$$

و ما أعداد طبيعية غير معدومة حيث a أولى مع b و a أولى مع a .

ا) باستعمال ميرهنة بيزو ، برهن أن α أولي مع . δ×c

 $-PGCD(a;b^n)=1$ ، n عير معتوم $pGCD(a;b^n)=1$ ، $pGCD(a;b^n)=1$. $pGCD(a;b^n)=1$. (يُرمز $pGCD(a;b^n)=1$

استنتج القاسم المشترك الأكبر العددين 1962¹⁹⁵⁴ و1954.

التمرين الرابع: (37) نقاط)

 $f(x) = 1 - x^2 \ln x$ ، $]0; +\infty[$ الدللة السعرفة بf(0) = 1 ، ومن أجل كل عدد حقيقي x من المجال f(0; i, j) منحنى الدالة f(0; i, j) المحلق في المحلوي المنسوب إلى المحلم المتعامد والعنجانس f(0; i, j).

1) أ) انرس استمرارية الدالة ﴿ عند 0 من اليمين،

ب) احسب
$$\frac{f(x)-1}{x}$$
 ، ثم فمكر النتيجة هندسيا.

. $\lim_{x \to \pm m} f(x)$ نحسب (أ (2

ب) ادرس اثجاه تغيّر الدالة ﴿ ، ثَمْ شَكَّلَ جِدُولَ تَغَيْرَاتُهَا.

. $[0;+\infty[$ المعلالة α عنيل حلاً وحيدا α في المجال f(x)=0 أين أن المعلالة α

ب) تحثق أن 1,532 < α < 1,532

g(x) = f(|x|) بنطبر الدائة g المعرفة على $\mathbb R$ ب π :

. $(O; ec{i}, ec{j})$ المنحنى الممثل للدائة g في نفس المعلم (\mathcal{C}_g) .

أ) الرس شفعية الدالة ج.

ب) أنشئ المنحى (\mathcal{C}_g) على المجال [-2;2].

، $]0;+\infty[$ المكاملة بالتجزئة ، عين الدالة الأصلية للدالة $x\mapsto x^2\ln x$ المعرّفة على للمجال $[0;+\infty[$.

 $F(t) = \int_{t}^{\alpha} f(x)dx$ عند حقيقي ينتمي إلى المجال [0; α] نضع 2 عند عقيقي ينتمي إلى المجال [0; α]

. α و t اكتب العبارة F(t) بدلالة t و α

 $F(t) = \frac{-3t f(t) - t^3 - 6t + \alpha^3 + 6\alpha}{9}$ ، $]0;\alpha]$ من المجال $[0;\alpha]$ من المجال عدد حقيقي عند معتوقي المجال أو

 $\lim_{t\to 0} F(t) \iff (*$

[0,lpha] عند حقيقي ينتمي إلى المجال m

m مساحة الدائرة ذات المركز المبدأ O ونصف القطر $\delta(m)$

تغرض أنّ مساحة الحيّز المستوي المحدّد بالمنحني $\left(rac{a}{2}
ight)$ ، حامل مجور الغواصل والمستقيمين اللّذين ا

 $A = \frac{2}{9}(\alpha^3 + 6\alpha)ua$ على الترتيب: $A = \alpha$ و $x = \alpha$ و $x = -\alpha$ عادلتيهما على الترتيب:

(140 وحدة المساحات).

أ) عين القيمة المضموطة للعدد m حتى يكون 2aA = 5(m)

ب) علماً أن 3,142 م > 3,140 أعط حصرًا للعدد رس.

الموضوع الثاني

التمرين الأول: (04 نقاط)

عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة ، في كل حالة من الحالات الأربع الآتية ، مع التغليل.

: هو: $u_{n+1} = \frac{1}{2}u_n + 3$ هم عدد طبيعي $u_n = 3$ المعرفة يـ: $u_n = 3$ المعرفة العددية (u_n) المعرفة العددية (u_n) المعرفة العددية (u_n) المعرفة العدد العام المعرفة العددية (u_n) العدد العددية (u_n) العددية (u_n) العدد العددية (u_n) العددية (u_n) العدد العددية (u_n) العددي

$$u_n = 3\left(\frac{1}{2}\right)^{n+1} + \frac{3}{2}$$
 (* $u_n = 3\left(\frac{1}{2}\right)^n$ (* $u_n = -3\left(\frac{1}{2}\right)^n + 6$ (*)

2) المستوي منسوب إلى معلم متعامد ومتجانس. مجموعة النقط M من العستوي، ذات اللاحقة ع، حيث

iz-1-i=3 هي: أ) دائرة نصف قطرها 3 ولاحقة مركزها iz-1-i=3

-1-i دائرة نصف قطرها 3 ولاحقة مركزها -1.

-1+i دائرة نصف قطرها 3 ولاحقة مركزها i+1--

c · b · a (3 و d أعداد طبيعية غير معتومة وأصغر من أو تساوي 9.

abcd عدد طبيعي مكتوب في النظام العشري.

من أجل كل الأعداد c · b · a و c · b ؛ يكون العدد abcd يقبل القسمة على 11 إذا وقفط إذا كان:

العدد (a-b+c-d) يقبل القسمة على 11.

ب) العدد (a+b+c+d) يقبل القسمة على 11.

ج) العدد cd المكتوب في النظام العشري، يقبل القسمة على 11.

4) الفضاء منسوب إلى مطم متعامد ومتجانس. مجموعة النقط 1 من الفضاء ذات الإحداثيات (٢; ١/١) حيث

$$A(1;2;-3)$$
 عيث A هي: (1 المجموعة A حيث $x = 1 + \frac{2}{3}t - k$ $y = 2 - t + \frac{3}{2}k$; $(t \in \mathbb{R})$; $(k \in \mathbb{R})$ $z = -3 + 4t - 6k$

ب) المستقيم الذي يشمل النقطة $\bar{u}\left(-\frac{1}{3};\frac{1}{2};-2\right)$ و A(1;2;-3) شعاع توجيه له.

 π (3; -2; -1) و π (3; -2; -3) شعاع ناظمي له.

التمرين الثاني: (05 نقاط)

1) حل في مجموعة الأعداد المركّبة ٢٠ المعادلة ذات المجهول ت التالية:

$$((1+\sqrt{3})^2=4+2\sqrt{3}: 2-2(1-\sqrt{3})z+8=0$$

 $(O; \vec{u}, \vec{v})$ منسوب إلى المعلم المتعامد والمتجانس ($O; \vec{u}, \vec{v}$)،

 $z_B=\overline{z_A}$ و $z_A=\left(1-\sqrt{3}
ight)+i\left(1+\sqrt{3}
ight)$ و B و B نقطتان من المستوي ، لاحقتاهما على الترتيب: A

CSILR218AC2015

$$\frac{z_B}{z_A} = e^{-\frac{7\pi}{6}t}$$
 يين ان: (5 (2)

ب) استنتج عمدة للعدد العربيّب ٢٦٠

$$+\sin\frac{7\pi}{12}$$
 و $\cos\frac{7\pi}{12}$ بينتج القيمة المضبوطة لكل من العدين $\cos\frac{7\pi}{12}$

-7x - 2y = 1 أ) حل ، في مجموعة الأعداد الصحيحة ، المعادلة ذات المجهول (x;y) التآلية: 3

ب) بين أنه إذا كانت الثانية
$$(x;y)$$
 من الأعداد الصحيحة ، حلا المعادلة $24y = 24y = 7$ فإن x بكون مضاعة اللحد 12.

- -7x 24y = 12 المنتنج كل الفائيات (x; y) من الأعداد الصحيحة ، حلولا للمعائلة = 7x 24y = 12
- د) عين مجموعة قيم العدد الطبيعي n التي يكون من أجلها العدد "(برع) عددا حقيقيا سالبا تماماً.

التعرين الثالث: (94 نقاط)

 $\cdot (O; ec{t}, ec{f}, ec{k})$ الفضاء منسوب إلى المعلم المتعامد والمتجانس

A(2;0;0) يعتبر النفطنين A(2;0;0) و

المستقيم الذي يشمل النقطة A و (1-1;2;-1) شعاع توجيه له.

$$\begin{cases} x=-3-3t \\ y=2+2t & (t\in\mathbb{R}) \end{cases}$$
 المستقيم المعرّف بالتمثيل الوسيطي التالي: Δ_2

المستقيم الذي يشمل النقطة B و $\overline{
u}(2;5;3)$ شعاع توجيه له. $\overline{
u}(d)$

- ا) بين أنّ المستقيمين (Δ_1) و (Δ_2) يتقاطعان في اللقطة C يُطلب تعيين إحداثياتها.
 - (2) بين أنّ المستقيمين (Δ_1) و (d) ليسا من نفس المستوي.
 - (Δ_2)) اكتب تمثيلا وسيطيا للمستوي (\mathfrak{P}) الذي يشمل المستقيمين (Δ_1) و (Δ_2) .
 - ب) استنج أنّ 0=8-2z+3y+2z-8 هي معاملة ديكارتية المستوي $\{ \mathcal{P} \}$.
 - ج) تحقَّق من أنْ النقطة C هي المسقط للعمودي للنقطة B على المعبتوي (\mathfrak{P}) .
- (a) بنين أنه توجد نقطة وحيدة (b) من المستقيم (b) وتوجد نقطة وحيدة (b) من المستقيم (b) حيث تكون النقط (b) من (b) من استقامية؛ يُطلب تعيين إحداثيات النقطة (b)
 - AD بين أنّ النقطة I هي منتصف القطعة [AD] .
 - طى K على النفطة K مرجح الجملة المثقلة $\{(B;1),(I;2)\}$ والنقطة G المسقط العمودي للنفطة K على المستوي (\mathcal{G}) .
 - أ) بيْن أنّ النقطة G هي مرجح النقط C ، A العرقة بمعاملات يُطلب تعيينها.
 - ب) احتتج إحداثيات النقطة G.

التمرين الرابع: (07 نقاط)

 $f(x) = (x-1)e^{rac{1}{x}}$ ، $]-\infty;0[$ الدالة المعرّفة بf(0)=0 ومن أجل كل عدد حقيقي f(x)=0 من المجلّ أبيان ألممثل المدالة f(x)=0 ومن المستوي المنسوب إلى المعلم المتعامد والمتجانس f(0)=0.

- 1) ادرين استمرارية الدائة ﴿ عند ٥ من اليسار.
- ي احسب $\frac{f(x)}{x}$ ، ثمّ فشر النتيجة هندسيا. $\frac{1}{x}$
 - $\lim_{x \to -\infty} f(x) | \text{lam.} (1/3)$
- ب) ادرس انجاه تغيّر الدالة كر ، ئمّ شكّل جدول تغيّراتها.
 - . $\lim_{x \to -\infty} [f(x) x] = 0$ بين ان (4

ب) لمنتتج أنْ المنحنى (-2) يقبل مستقيما مقاربا مائلا (Δ) بجوار -2 ، يُطلب تعيين معادلة له.

- $g(x) = \frac{f(x)}{x}$: با $-\infty;0$ [بالمعرّفة على المجال g (5)
 - $\lim_{x\to -\infty} g(x) \to 0$
 - ب) ادرس انجاه تغير الدالة g ثمّ شكّل جدول تغيراتها.
- f(x)>x ،]- ∞ وا المجال المجال عدد حقیقی x من المجال $-\infty$ 0 المجال (6
 - ...) استنتج وضعية المنحنى (γ) بالنصبة إلى المستقيم (Δ) .
 - ج) أنشئ المنحنى (e_f) .
- $u_{n+1}=f\left(u_{n}
 ight)$ ، n عند طبيعي $u_{0}=-3$: المنتائية المعرّفة ب $u_{0}=-3$ ومن أجل كل عند طبيعي (u_{n}
 - أ) بنين أنه من أجل كل عدد طبيعي n ، 0 ، 2 ، 10 ، 10 ، 10 ، 10 ، 10 ، 10 .
 - ب) حقد اتجاه تغيّر المتكالية (١١٥).
 - . $\lim_{n\to+\infty}u_n$ يَنِنَ أَنْ الْمِنْدَالِيةِ $\left(u_n\right)$ مِنْقَارِيةِ ، ثُمَّ عَنِنَ إِنْ الْمِنْدَالِيةِ $\left(u_n\right)$
 - : با] $-\infty$, و الدالة ذات المتغيّر المقيقي π المعرّفة على المجال h_m . و با m (8

$$h_m(x) = xe^{\frac{1}{x}} - mx$$

- h_m عيث h'_m هي الدالة المشتقة للدالة h'_m عيث h'_m
- ب) باستعمال المنحني (روع) ، ناقش بيانيا وحسب قيم الوسيط الحقيقي ، عدد حلول المعادلة
 - $.h'_m(x)=0$