11_ML - One Hot Encoding and Dummy Variables

- To convert categorical data into numerical data, as ML use mathemetical formulas in its model so all string data should be converted into numerical data
- It is normally used when number of data is lees

[1]:	im	<pre>import pandas as pd</pre>							
[2]:	<pre>dataset = pd.read_csv('loan.csv')</pre>								
[3]:	dataset.head(3)								
		Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome C							
[3]:		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	C
[3]:	0	Loan_ID LP001002	Gender Male	Married No	Dependents 0	Education Graduate	Self_Employed No	ApplicantIncome 5849	(
[3]:					<u> </u>				(

11.1 Find Missing Values and Handle it

```
In [4]: dataset.isnull().sum()
Out[4]: Loan_ID
                               0
         Gender
                               13
         Married
                               3
         Dependents
                               15
         Education
                               0
         Self_Employed
                              32
         ApplicantIncome
                               0
         CoapplicantIncome
                              22
         LoanAmount
         Loan_Amount_Term
                              14
         Credit_History
                              50
         Property Area
                               0
         Loan_Status
         dtype: int64
In [8]: dataset['Gender'].mode()[0]
Out[8]: 'Male'
In [11]: # Gender column contains missing values so we will fill it using mode method
         dataset['Gender'].fillna(dataset['Gender'].mode()[0],inplace=True)
```

```
In [12]: dataset.isnull().sum()
Out[12]: Loan_ID
                               0
         Gender
         Married
                               3
         Dependents
                              15
         Education
                               0
         Self_Employed
                              32
         ApplicantIncome
         CoapplicantIncome
                              22
         LoanAmount
         Loan_Amount_Term
                              14
         Credit_History
                              50
         Property_Area
                               0
         Loan_Status
         dtype: int64
In [13]: # Married column contains missing values so we will fill it using mode method
         dataset['Married'].fillna(dataset['Married'].mode()[0],inplace=True)
In [14]: dataset.isnull().sum()
Out[14]: Loan_ID
                               0
         Gender
                               0
         Married
                               0
         Dependents
                              15
         Education
         Self_Employed
                              32
                               0
         ApplicantIncome
         CoapplicantIncome
                               0
         LoanAmount
                              22
         Loan_Amount_Term
                              14
         Credit_History
                              50
                               0
         Property_Area
         Loan_Status
                               0
         dtype: int64
```

11.2 Use One Hot Code to handle missing values

First separate Gender and Married data to perform encoding

```
In [16]: en_data = dataset[['Gender', 'Married']]
  en_data
```

Out[16]:		Gender	Married
	0	Male	No
	1	Male	Yes
	2	Male	Yes
	3	Male	Yes
	4	Male	No
	•••	•••	
	609	Female	No
	610	Male	Yes
	611	Male	Yes
	612	Male	Yes

614 rows × 2 columns

No

In [17]: pd.get_dummies(en_data)

613 Female

_			
Оu	+	1 /	
\cup \cup		1 1 / 1	

	Gender_Female	Gender_Male	Married_No	Married_Yes
0	0	1	1	0
1	0	1	0	1
2	0	1	0	1
3	0	1	0	1
4	0	1	1	0
•••	•••		•••	
609	1	0	1	0
610	0	1	0	1
611	0	1	0	1
612	0	1	0	1
613	1	0	1	0

614 rows × 4 columns

In [18]: pd.get_dummies(en_data).info()

```
<class 'pandas.core.frame.DataFrame'>
       RangeIndex: 614 entries, 0 to 613
       Data columns (total 4 columns):
        # Column
                          Non-Null Count Dtype
        --- -----
                          -----
        0 Gender_Female 614 non-null uint8
        1
            Gender_Male 614 non-null uint8
                         614 non-null uint8
        2 Married_No
        3 Married Yes 614 non-null uint8
       dtypes: uint8(4)
       memory usage: 2.5 KB
In [19]: from sklearn.preprocessing import OneHotEncoder
In [20]: # fit_transfrom() converts categorical data into numerical data
         ohe = OneHotEncoder()
         ohe.fit_transform(en_data)
Out[20]: <614x4 sparse matrix of type '<class 'numpy.float64'>'
                 with 1228 stored elements in Compressed Sparse Row format>
         sparse matrix contains data in 0 and 1 form
In [25]: ohe = OneHotEncoder()
         ar = ohe.fit_transform(en_data).toarray()
Out[25]: array([[0., 1., 1., 0.],
                [0., 1., 0., 1.],
                [0., 1., 0., 1.],
                . . . ,
                [0., 1., 0., 1.],
                [0., 1., 0., 1.],
                [1., 0., 1., 0.]
In [27]: # Convert the array data into dataframe
         pd DataFrame(ar, columns=['Gender_Female', 'Gender_Male', 'Married_No', 'Married_Ye
```

Out[27]:		Gender_Female	Gender_Male	Married_No	Married_Yes
	0	0.0	1.0	1.0	0.0
	1	0.0	1.0	0.0	1.0
	2	0.0	1.0	0.0	1.0
	3	0.0	1.0	0.0	1.0
	4	0.0	1.0	1.0	0.0
	•••				
	609	1.0	0.0	1.0	0.0
	610	0.0	1.0	0.0	1.0
	611	0.0	1.0	0.0	1.0
	612	0.0	1.0	0.0	1.0
	613	1.0	0.0	1.0	0.0

614 rows × 4 columns

You can see out of 2 column 4 column are produced, so to avoid this, we will use 'drop first' to delete first column after encoding i.e. Gender_Female and Married_No, so use it as follows:

Out[29]:		Gender_Male	Married_Yes
	0	1.0	0.0
	1	1.0	1.0
	2	1.0	1.0
	3	1.0	1.0
	4	1.0	0.0
	•••		
	609	0.0	0.0
	610	1.0	1.0
	611	1.0	1.0
	612	1.0	1.0

614 rows × 2 columns

0.0

0.0

613