

Temporal Difference Flows (Farebrother et al., 2025)

Kellen Kanarios

July 13, 2025

Outline

Motivation

2 Flow Matching

3 Application to Reinforcement Learning

Variational inference with normalizing flows (Rezende & Mohamed)

Given data $\mathcal{X} \sim p(\mathbf{x})$. Want to learn $p(\mathbf{x})$.

- Assume there exists some joint $p(\mathbf{x}, \mathbf{z})$, $\mathbf{z} \sim p(\mathbf{z})$ is latent (no samples of \mathbf{z}). (we choose $p(\mathbf{z})$ i.e. $\mathcal{N}(0, 1)$).
- ► Maximize log-likelihood log $p_{\theta}(\mathbf{x})$ via ELBO:

$$\log \rho_{\theta}(\mathbf{x}) \geq \mathbb{D}_{\mathsf{KL}}[\mathbf{q}_{\phi}(\mathbf{z} \mid \mathbf{x}) \mid\mid \rho(\mathbf{z})] + \mathbb{E}_{\mathbf{q}}[\log \rho_{\theta}(\mathbf{x} \mid \mathbf{z})]. \ \ (\mathsf{ELBO})$$

lacktriangle Simultaneously learn q_ϕ and $p_ heta$

Variational inference with normalizing flows (Rezende & Mohamed)

Given data $\mathcal{X} \sim p(\mathbf{x})$. Want to learn $p(\mathbf{x})$.

- Assume there exists some joint $p(\mathbf{x}, \mathbf{z})$, $\mathbf{z} \sim p(\mathbf{z})$ is latent (no samples of \mathbf{z}). (we choose $p(\mathbf{z})$ i.e. $\mathcal{N}(0, 1)$).
- ► Maximize log-likelihood log $p_{\theta}(\mathbf{x})$ via ELBO:

$$\log \rho_{\theta}(\mathbf{x}) \geq \mathbb{D}_{\mathsf{KL}}[q_{\phi}(\mathbf{z} \mid \mathbf{x}) \mid\mid \rho(\mathbf{z})] + \mathbb{E}_{q}[\log \rho_{\theta}(\mathbf{x} \mid \mathbf{z})]. \ \ (\mathsf{ELBO})$$

lacktriangle Simultaneously learn q_ϕ and $p_ heta$

Problem. Recall $q_{\phi^*} = \arg \max_{\phi} \text{ELBO}(\phi) = p_{\theta}(z \mid x)$.

- Need parametric family q_{ϕ} to contain $p_{\theta}(\cdot \mid \mathbf{x})$
- Rarely the case.

Variational inference with normalizing flows (Rezende & Mohamed)

Given data $\mathcal{X} \sim p(\mathbf{x})$. Want to learn $p(\mathbf{x})$.

- Assume there exists some joint $p(\mathbf{x}, \mathbf{z})$, $\mathbf{z} \sim p(\mathbf{z})$ is latent (no samples of \mathbf{z}). (we choose $p(\mathbf{z})$ i.e. $\mathcal{N}(0, 1)$).
- ► Maximize log-likelihood log $p_{\theta}(\mathbf{x})$ via ELBO:

$$\log \rho_{\theta}(\mathbf{x}) \geq \mathbb{D}_{\mathsf{KL}}[q_{\phi}(\mathbf{z} \mid \mathbf{x}) \mid\mid \rho(\mathbf{z})] + \mathbb{E}_{q}[\log \rho_{\theta}(\mathbf{x} \mid \mathbf{z})]. \ \ (\mathsf{ELBO})$$

lacktriangle Simultaneously learn q_ϕ and $p_ heta$

Problem. Recall $q_{\phi^*} = \arg \max_{\phi} \text{ELBO}(\phi) = p_{\theta}(z \mid x)$.

- Need parametric family q_{ϕ} to contain $p_{\theta}(\cdot \mid \mathbf{x})$
- Rarely the case.

How do we create a more expressive family that we can still optimize?

Given target distribution $p(\mathbf{x})$. Pick some initial distribution p_0 , where we can sample $\mathbf{x}_0 \sim p_0$.

Idea. Learn sequence of functions f_1, f_2, \ldots, f_K , such that

$$(f_K \circ f_{K-1} \cdots \circ f_1)(\mathbf{x}_0) \sim p$$

Given target distribution $p(\mathbf{x})$. Pick some initial distribution p_0 , where we can sample $\mathbf{x}_0 \sim p_0$.

Idea. Learn sequence of functions f_1, f_2, \ldots, f_K , such that

$$(f_K \circ f_{K-1} \cdots \circ f_1)(\mathbf{x}_0) \sim \mathbf{p}$$

$$\mathbf{x}_0$$
 $\mathbf{f}_1(\mathbf{x}_0)$ \mathbf{x}_1 \mathbf{x}_i $\mathbf{f}_{i+1}(\mathbf{x}_i)$ \mathbf{x}_K $\mathbf{x}_i \sim p_0(\mathbf{x}_0)$ $\mathbf{x}_i \sim p_i(\mathbf{x}_i)$ $\mathbf{x}_K \sim p_K(\mathbf{x}_K)$

How do we learn such a sequence of functions f_i ?

Given **invertible**, **smooth both ways** function $T : \mathbb{R}^d \to \mathbb{R}^d$.

Change of variables theorem. For $X,Y\subset\mathbb{R}^d$, $T:X\to Y$

$$\int_{\mathcal{X}} \rho_0(\mathbf{x}) \mathrm{d}\mathbf{x} = \int_{\mathcal{T}^{-1}(\mathbf{Y})} \rho_0(\mathcal{T}^{-1}(\mathbf{y})) \left| \det \frac{\partial \mathcal{T}}{\partial \mathbf{y}} \right|^{-1} \mathrm{d}\mathbf{y}.$$

$$\begin{split} &\Rightarrow f_1(\mathbf{x}_0) \sim \rho_0(\mathbf{x}_0) \left| \det \frac{\partial f_1}{\partial \mathbf{x}} \right|^{-1} \\ &\Rightarrow \log \rho_K(\mathbf{x}_k) = \log \rho_0(\mathbf{x}_0) - \sum_{k=1}^K \left| \det \frac{\partial f_k}{\partial \mathbf{x}_{k-1}} \right|^{-1} \end{split}$$

Re.
$$\log \rho_{\mathit{K}}(\mathbf{x}_{\mathit{k}}) = \log \rho_{0}(\mathbf{x}_{0}) - \sum_{\mathit{k}=1}^{\mathit{K}} \left| \det \frac{\partial \mathit{f}_{\mathit{k}}}{\partial \mathbf{x}_{\mathit{k}-1}} \right|^{-1}$$

1. Given $\mathbf{x}^{(i)}$ from dataset, compute $\mathbf{x}_0^{(i)} = (f_{\mathcal{K}} \circ \cdots \circ f_1)^{-1} (\mathbf{x}^{(i)})$

Re.
$$\log \rho_{\mathit{K}}(\mathbf{x}_{\mathit{k}}) = \log \rho_{0}(\mathbf{x}_{0}) - \sum_{\mathit{k}=1}^{\mathit{K}} \left| \det \frac{\partial \mathit{f}_{\mathit{k}}}{\partial \mathbf{x}_{\mathit{k}-1}} \right|^{-1}$$

- 1. Given $\mathbf{x}^{(i)}$ from dataset, compute $\mathbf{x}^{(i)}_{\Omega} = (f_K \circ \cdots \circ f_1)^{-1}(\mathbf{x}^{(i)})$
- 2. Maximize log-likelihood

$$\max_{\boldsymbol{\theta}} \left\lceil \log p_0(\mathbf{x}_0^{(i)}(\boldsymbol{\theta})) - \sum_{k=1}^K \left| \det \frac{\partial f_k(\boldsymbol{\theta})}{\partial \mathbf{x}_{k-1}^{(i)}} \right|^{-1} \right\rceil.$$

Re.
$$\log p_{K}(\mathbf{x}_{k}) = \log p_{0}(\mathbf{x}_{0}) - \sum_{k=1}^{K} \left| \det \frac{\partial f_{k}}{\partial \mathbf{x}_{k-1}} \right|^{-1}$$

- 1. Given $\mathbf{x}^{(i)}$ from dataset, compute $\mathbf{x}_0^{(i)} = (f_{\mathcal{K}} \circ \cdots \circ f_1)^{-1} (\mathbf{x}^{(i)})$
- 2. Maximize log-likelihood

$$\max_{\boldsymbol{\theta}} \left[\log \rho_0(\mathbf{x}_0^{(i)}(\boldsymbol{\theta})) - \sum_{k=1}^K \left| \det \frac{\partial f_k(\boldsymbol{\theta})}{\partial \mathbf{x}_{k-1}^{(i)}} \right|^{-1} \right].$$

Re.
$$\log \rho_{\mathit{K}}(\mathbf{x}_{\mathit{k}}) = \log \rho_{0}(\mathbf{x}_{0}) - \sum_{\mathit{k}=1}^{\mathit{K}} \left| \det \frac{\partial \mathit{f}_{\mathit{k}}}{\partial \mathbf{x}_{\mathit{k}-1}} \right|^{-1}$$

- 1. Given $\mathbf{x}^{(i)}$ from dataset, compute $\mathbf{x}_0^{(i)} = (\mathbf{f}_{\mathcal{K}} \circ \cdots \circ \mathbf{f}_1)^{-1} (\mathbf{x}^{(i)})$
- 2. Maximize log-likelihood

$$\max_{\boldsymbol{\theta}} \left[\log \rho_0(\mathbf{x}_0^{(i)}(\boldsymbol{\theta})) - \sum_{k=1}^K \left| \det \frac{\partial f_k(\boldsymbol{\theta})}{\partial \mathbf{x}_{k-1}^{(i)}} \right|^{-1} \right].$$

Need to pick **simple** transformations i.e.

$$f(\mathbf{x}) = \mathbf{x} + \mathbf{u}h(\mathbf{w}^{\top}\mathbf{x} + b).$$

Require **very large** K to represent complex distributions.

Re.
$$\log \rho_{\mathit{K}}(\mathbf{x}_{\mathit{k}}) = \log \rho_{0}(\mathbf{x}_{0}) - \sum_{\mathit{k}=1}^{\mathit{K}} \left| \det \frac{\partial \mathit{f}_{\mathit{k}}}{\partial \mathbf{x}_{\mathit{k}-1}} \right|^{-1}$$

- 1. Given $\mathbf{x}^{(i)}$ from dataset, compute $\mathbf{x}_0^{(i)} = (\mathbf{f}_{\mathit{K}} \circ \cdots \circ \mathbf{f}_1)^{-1} (\mathbf{x}^{(i)})$
- 2. Maximize log-likelihood

$$\max_{\boldsymbol{\theta}} \left[\log \rho_0(\mathbf{x}_0^{(i)}(\boldsymbol{\theta})) - \sum_{k=1}^K \left| \det \frac{\partial f_k(\boldsymbol{\theta})}{\partial \mathbf{x}_{k-1}^{(i)}} \right|^{-1} \right].$$

Need to pick simple transformations i.e.

$$f(\mathbf{x}) = \mathbf{x} + \mathbf{u}h(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b).$$

Require **very large** K to represent complex distributions.

Neural Ordinary Differential Equations (Chen et al.)

Replace
$$\mathbf{x}_{t+1} = f_t(\mathbf{x}_t)$$
 with the **ODE**

$$\frac{\mathsf{d}\mathbf{x}}{\mathsf{d}t} = f_t(\mathbf{x}_t)$$

Remark. Instantaneous COV

$$\frac{\partial \log p_t(\boldsymbol{x}_t)}{\partial t} = -tr\left(\frac{df}{d\boldsymbol{x}_t}\right)$$

Neural Ordinary Differential Equations (Chen et al.)

Replace
$$\mathbf{x}_{t+1} = f_t(\mathbf{x}_t)$$
 with the **ODE** $rac{\mathsf{d}\mathbf{x}}{\mathsf{d}t} = f_t(\mathbf{x}_t).$

Remark. Instantaneous COV
$$\frac{\partial \log p_t(\mathbf{x}_t)}{\partial t} = -\text{tr}\left(\frac{df}{d\mathbf{x}_t}\right)$$

Given $\mathbf{x}^{(i)}$ from dataset, now must compute $\mathbf{x}_0^{(i)} = \int_1^0 f_t^{-1}(\mathbf{x}_t^{(i)}) \mathrm{d}t$

Requires exact ODE solve for unbiased gradient.

Neural Ordinary Differential Equations (Chen et al.)

Replace
$$\mathbf{x}_{t+1} = f_t(\mathbf{x}_t)$$
 with the **ODE** $rac{\mathsf{d}\mathbf{x}}{\mathsf{d}t} = f_t(\mathbf{x}_t).$

Remark. Instantaneous COV
$$\frac{\partial \log p_{t}(\mathbf{x}_{t})}{\partial t} = -\text{tr}\left(\frac{df}{d\mathbf{x}_{t}}\right)$$

Given $\mathbf{x}^{(i)}$ from dataset, now must compute $\mathbf{x}_0^{(i)} = \int_1^0 f_t^{-1}(\mathbf{x}_t^{(i)}) \mathrm{d}t$

Requires exact ODE solve for unbiased gradient.

Flow Matching for Generative Modeling (Lipman et al., 2023)

Disclaimer. f_t will now often be referred to as the *flow*.

Book keeping. We say the *flow f*_t *generates* a probability path p_t if $X_t = f_t(X_0) \sim p_t$. Equivalently,

$$\rho_t(x) = [f_{t\sharp}\rho_0](x) \triangleq \rho_0(f_t^{-1}(y)) \left| \det \partial_y f_t^{-1}(y) \right|.$$

Key Idea. Do **not** learn the $flow f_t$, learn the **velocity** of the flow.

Def. This velocity is a vector field $u_t : \mathbb{R}^d \to \mathbb{R}^d$, such that

$$\frac{\mathsf{d} f_t(\mathbf{x})}{\mathsf{d} t} = u_t(f_t(\mathbf{x})).$$

Key Idea. Do **not** learn the *flow* f_t , learn the **velocity** of the flow.

Def. This velocity is a vector field $u_t : \mathbb{R}^d \to \mathbb{R}^d$, such that

$$\frac{\mathsf{d} f_t(\mathbf{x})}{\mathsf{d} t} = u_t(f_t(\mathbf{x})).$$

To sample, solve ODE at sample time i.e.

$$f_{t+\Delta t}(\mathbf{x}) pprox f_t(\mathbf{x}) + \Delta t \cdot u_t(f_t(\mathbf{x}))$$
 (Euler method)

By uniqueness of ODE, (vector field u_t) \leftrightarrow (flow f_t).

Def. A vector field u_t generates a probability path p_t if its corresponding flow f_t generates p_t .

Thm. A vector field u_t generates a probability path p_t if and only if it satisfies the continuity equation.

Continuity Equation.

$$\frac{\mathsf{d}}{\mathsf{d}t} p_t(\mathbf{x}) + \mathsf{div}(p_t u_t)(\mathbf{x}) = 0,$$

where
$$\operatorname{div}(v)(x) = \sum_{i=1}^d \partial_{x^i} v^i(x)$$
, and $v(x) = (v^1(x), \dots, v^d(x))$.

Continuity Equation.

$$\frac{\mathsf{d}}{\mathsf{d}t} p_t(x) + \mathsf{div}(p_t u_t)(x) = 0,$$

where $\operatorname{div}(v)(x) = \sum_{i=1}^d \partial_{x^i} v^i(x)$, and $v(x) = (v^1(x), \dots, v^d(x))$.

Proof: (If people care)

$$\begin{split} \frac{d}{dt} \mathbb{E} f(X_t) &= \frac{d}{dt} \int_{\mathbb{R}^d} f(x) p_t(x) dx = \int_{\mathbb{R}^d} f(x) \partial_t p_t(x) dx, \\ \mathbb{E} \frac{d}{dt} f(X_t) &= \int_{\mathbb{R}^d} \left(\nabla f(x_t) \cdot v_t(x_t) \right) p_t(x_t) dx_t \\ &= 0 - \int_{\mathbb{R}^d} f(x_t) \mathrm{div}(v_t(x_t) p_t(x_t)) dx_t \\ &= \int_{\mathbb{R}^d} -f(x) \mathrm{div}(v_t(x) p_t(x)) dx.. \end{split} \tag{IBP}$$

The result follows from fundamental lemma of calculus of variations.

How do we actually learn the vector field u_t ?

Flow Model Loss.

$$\mathcal{L}_{\scriptscriptstyle{\mathsf{FM}}}(\theta) = \mathbb{E}_{\mathsf{t}, \rho_{\mathsf{t}}(\mathsf{x})} \| \mathsf{v}_{\mathsf{t}}(\mathsf{x}; \theta) - \mathsf{u}_{\mathsf{t}}(\mathsf{x}) \|^2$$

- $ightharpoonup
 ho_t: \mathcal{X}
 ightarrow [0,1]$: probability density path.
- lacksquare $u_t: \mathbb{R}^d o \mathbb{R}^d$: vector field that generates p_t .

Flow Model Loss.

$$\mathcal{L}_{\scriptscriptstyle{\mathsf{FM}}}(heta) = \mathbb{E}_{\mathsf{t}, \mathsf{p}_{\mathsf{t}}(\mathsf{x})} \| \mathsf{v}_{\mathsf{t}}(\mathsf{x}; heta) - \mathsf{u}_{\mathsf{t}}(\mathsf{x}) \|^2$$

- $ightharpoonup
 ho_t: \mathcal{X}
 ightarrow [0,1]$: probability density path.
- $lackbox{} u_t: \mathbb{R}^d
 ightarrow \mathbb{R}^d$: vector field that generates p_t .

Intractable.

1. How to choose p_t ?

Flow Model Loss.

$$\mathcal{L}_{\scriptscriptstyle\mathsf{FM}}(heta) = \mathbb{E}_{t, p_t(x)} \| \mathbf{v}_t(x; heta) - \mathbf{u}_t(x) \|^2$$

- $ightharpoonup
 ho_t: \mathcal{X}
 ightarrow [0,1]$: probability density path.
- lacksquare $u_t:\mathbb{R}^d o\mathbb{R}^d$: vector field that generates p_t .

Intractable.

- 1. How to choose p_t ?
- Given p_t need to solve continuity equation for u_t, which is a PDE likely without close-form.

Key Idea. Given the endpoint X_1 , we can easily construct a path between X and X_1 .

Ex: Consider

$$f_t(\mathbf{x} \mid \mathbf{x}_1) = (1 - t)\mathbf{x} + t\mathbf{x}_1$$

$$f_t(X)$$

Figure: Without target **how** do we construct p_t , f_t ?

 $f_t(X \mid X_1)$

Figure: With target, make f_t **line** to known x_1 .

What does the conditional flow being nice have to do with our problem?

Idea 1: Given target data distribution q, approximate q by marginalizing "nice" conditionals by q i.e.

$$ho_{\mathbf{t}}(\mathbf{x}) = \int
ho_{\mathbf{t}}(\mathbf{x} \mid \mathbf{x}_1) q(\mathbf{x}_1) \mathrm{d}\mathbf{x}_1.$$
 (Marginal Density)

For $\rho_1(\mathbf{x} \mid \mathbf{x}_1) \sim N(\mathbf{x}_1, \sigma_1)$, with $\sigma_1 \ll 1$, $\rho_1(\mathbf{x}) \approx \mathbf{q}(\mathbf{x})$.

Idea 1: Given target data distribution q, approximate q by marginalizing "nice" conditionals by q i.e.

$$ho_{t}(\mathbf{x}) = \int
ho_{t}(\mathbf{x} \mid \mathbf{x}_{1}) q(\mathbf{x}_{1}) \mathrm{d}\mathbf{x}_{1}.$$
 (Marginal Density)

For $p_1(\mathbf{x} \mid \mathbf{x}_1) \sim N(\mathbf{x}_1, \sigma_1)$, with $\sigma_1 \ll 1$, $p_1(\mathbf{x}) \approx q(\mathbf{x})$.

Idea 2: Use this to define an approximate vector field

$$u_t(\mathbf{x}) = \int u_t(\mathbf{x} \mid \mathbf{x}_1) \frac{\rho_t(\mathbf{x} \mid \mathbf{x}_1) q(\mathbf{x}_1)}{\rho_t(\mathbf{x})} d\mathbf{x}_1.$$
 (Marginal Vector Field)

Here, $u_t(\mathbf{x} \mid \mathbf{x}_1)$ is the conditional vector field that generates $\rho_t(\mathbf{x} \mid \mathbf{x}_1)$.

Idea 1: Given target data distribution q, approximate q by marginalizing "nice" conditionals by q i.e.

$$ho_{t}(\mathbf{x}) = \int
ho_{t}(\mathbf{x} \mid \mathbf{x}_{1}) q(\mathbf{x}_{1}) \mathrm{d}\mathbf{x}_{1}.$$
 (Marginal Density)

For $p_1(\mathbf{x} \mid \mathbf{x}_1) \sim N(\mathbf{x}_1, \sigma_1)$, with $\sigma_1 \ll 1$, $p_1(\mathbf{x}) \approx q(\mathbf{x})$.

Idea 2: Use this to define an approximate vector field

$$u_t(\mathbf{x}) = \int u_t(\mathbf{x} \mid \mathbf{x}_1) \frac{\rho_t(\mathbf{x} \mid \mathbf{x}_1) q(\mathbf{x}_1)}{\rho_t(\mathbf{x})} d\mathbf{x}_1.$$
 (Marginal Vector Field)

Here, $u_t(\mathbf{x} \mid \mathbf{x}_1)$ is the conditional vector field that generates $p_t(\mathbf{x} \mid \mathbf{x}_1)$.

Thm. The marginal vector field u_t generates the marginal probability path p_t . (Check continuity equation)

Conditional Flow Model Loss.

$$\mathcal{L}_{\text{CFM}}(\theta) = \mathbb{E}_{\mathsf{t}, \mathsf{q}(\mathsf{x}_1), \mathsf{p}_\mathsf{t}(\mathsf{x} | \mathsf{x}_1)} \| \mathsf{v}_\mathsf{t}(\mathsf{x}; \theta) - \mathsf{u}_\mathsf{t}(\mathsf{x} \mid \mathsf{x}_1) \|^2$$

Conditional Flow Model Loss.

$$\mathcal{L}_{\text{CFM}}(\theta) = \mathbb{E}_{t,q(\mathbf{x}_1),p_t(\mathbf{x}|\mathbf{x}_1)} \|\mathbf{v}_t(\mathbf{x};\theta) - \mathbf{u}_t(\mathbf{x} \mid \mathbf{x}_1)\|^2$$

Thm. Up to a constant independent of θ , $\mathcal{L}_{\text{FM}}(\theta) = \mathcal{L}_{\text{CFM}}(\theta)$. In particular, $\nabla \mathcal{L}_{\text{FM}}(\theta) = \nabla \mathcal{L}_{\text{CFM}}(\theta)$.

Batch i

Batch *j*

$\mathbb{E}[\mathsf{Batch}]$

How do we actually use this?

Example: Optimal Transport

For $\mathbf{x} \sim \mathcal{N}(0, 1)$,

$$f_t(\mathbf{x}) = \mu_t(\mathbf{x}_1) + \mathbf{x}\sigma_t(\mathbf{x}_1) \implies f_t(\mathbf{x}) \sim \mathcal{N}(\mu_t(\mathbf{x}), \sigma_t(\mathbf{x}))$$

Consider

$$\mu_t = t \mathbf{x}_1, \quad \sigma_t(\mathbf{x}) = 1 - (1 - \sigma_{\min})t,$$

such that

Example: Optimal Transport

For $\mathbf{x} \sim \mathcal{N}(0, 1)$,

$$f_t(\mathbf{x}) = \mu_t(\mathbf{x}_1) + \mathbf{x}\sigma_t(\mathbf{x}_1) \implies f_t(\mathbf{x}) \sim \mathcal{N}(\mu_t(\mathbf{x}), \sigma_t(\mathbf{x}).$$

Consider

$$\mu_t = tx_1, \quad \sigma_t(x) = 1 - (1 - \sigma_{\min})t,$$

such that

$$f_t^{-1}(x) = \frac{x - tx_1}{1 - (1 - \sigma_{\min})t}, \quad \frac{d}{dt}f_t(x) = x_1 - (1 - \sigma_{\min})x.$$

Example: Optimal Transport

For $\mathbf{x} \sim \mathcal{N}(0,1)$,

$$f_t(\mathbf{x}) = \mu_t(\mathbf{x}_1) + \mathbf{x}\sigma_t(\mathbf{x}_1) \implies f_t(\mathbf{x}) \sim \mathcal{N}(\mu_t(\mathbf{x}), \sigma_t(\mathbf{x})).$$

Consider

$$\mu_t = t \mathbf{x}_1, \quad \sigma_t(\mathbf{x}) = 1 - (1 - \sigma_{\min})t,$$

such that

$$f_t^{-1}(x) = \frac{x - tx_1}{1 - (1 - \sigma_{\min})t}, \quad \frac{d}{dt}f_t(x) = x_1 - (1 - \sigma_{\min})x.$$

Recall

$$\frac{\mathsf{d}}{\mathsf{d}t}f_{\mathsf{t}}(x) = u(f_{\mathsf{t}}(x) \mid x_1) \implies u(x \mid x_1) = \frac{\mathsf{d}}{\mathsf{d}t}f_{\mathsf{t}}(f_{\mathsf{t}}^{-1}(x)).$$

Example: Optimal Transport

$$f_t^{-1}(x) = \frac{x - tx_1}{1 - (1 - \sigma_{\min})t}, \quad \frac{d}{dt}f_t(x) = x_1 - (1 - \sigma_{\min})x.$$

Recall

$$\frac{\mathsf{d}}{\mathsf{d}t}f_{\mathsf{t}}(x) = u(f_{\mathsf{t}}(x) \mid x_1) \implies u(x \mid x_1) = \frac{\mathsf{d}}{\mathsf{d}t}f_{\mathsf{t}}(f_{\mathsf{t}}^{-1}(x)).$$

Thus,

$$u_{\mathbf{t}}(\mathbf{x} \mid \mathbf{x}_1) = \frac{\mathbf{x}_1 - (1 - \sigma_{\min})\mathbf{x}}{1 - (1 - \sigma_{\min})\mathbf{t}}.$$

Example: Optimal Transport

$$f_{\mathsf{t}}^{-1}(\mathsf{x}) = \frac{\mathsf{x} - \mathsf{t} \mathsf{x}_1}{1 - (1 - \sigma_{\mathsf{min}})\mathsf{t}}, \quad \frac{\mathsf{d}}{\mathsf{d} \mathsf{t}} f_{\mathsf{t}}(\mathsf{x}) = \mathsf{x}_1 - (1 - \sigma_{\mathsf{min}})\mathsf{x}.$$

Recall

$$\frac{\mathsf{d}}{\mathsf{d}t} f_t(x) = u(f_t(x) \mid x_1) \implies u(x \mid x_1) = \frac{\mathsf{d}}{\mathsf{d}t} f_t(f_t^{-1}(x)).$$

Thus,

$$u_t(\mathbf{x} \mid \mathbf{x}_1) = \frac{\mathbf{x}_1 - (1 - \sigma_{\min})\mathbf{x}}{1 - (1 - \sigma_{\min})\mathbf{t}}.$$

$$\mathcal{L}_{\mathsf{CFM}}(heta) = \mathbb{E}_{\mathsf{t},\mathsf{q}(\mathsf{x}_1), \mathsf{p}_\mathsf{t}(\mathsf{x}|\mathsf{x}_1)} \left\| \mathsf{v}_\mathsf{t}(\mathsf{x}; heta) - rac{\mathsf{x}_1 - (1 - \sigma_{\mathsf{min}}) \mathsf{x}}{1 - (1 - \sigma_{\mathsf{min}}) \mathsf{t}}
ight\|^2$$

Diffusion Meets Flow Matching: Two Sides of the Same Coin (Gao et al., 2024)

Recall that instead of an ODE, in diffusion, we have a SDE

$$d\mathbf{x}_t = f_t(\mathbf{x}_t)dt + \sigma(\mathbf{x}_t)dB_t.$$

However, for *OU* process, we can actually absorb Brownian motion term and get vector field

$$u_t(\mathbf{x}_t) = -(\mathbf{x}_t + \nabla \ln \rho_t(\mathbf{x}_t)).$$

Similarly, learning the score function $\nabla \ln p_t(\mathbf{x}_t)$ can be rewritten as the flow matching objective for certain choices of p_t see (Lipman et al., 2024).

Why Flows?

Anecdotally.

- The OT path's conditional vector field has constant direction in time and is arguably simpler to fit with a parametric model. (Lipman et al., 2023)
- The deterministic nature of ODEs equips flow-matching methods with simpler learning objectives and faster inference speed (Zheng et al., 2025)

Conditional score

Conditional vector field

Q learning is not yet scalable (Park, 2025)

Long horizon problems are hard.

$$\mathbb{E}_{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}') \sim \mathcal{D}} \left[\left(\mathbf{Q}_{\theta}(\mathbf{s}, \mathbf{a}) - \underbrace{\left(r + \gamma \max_{\mathbf{a}'} \mathbf{Q}_{\bar{\theta}}(\mathbf{s}', \mathbf{a}') \right)}_{\text{Biased}} \right)^{2} \right].$$

Temporal Difference Flows (Farebrother et al., 2025)

Idea. Apply flow matching to learn the *successor measure* of an MDP.

Temporal Difference Flows (Farebrother et al., 2025)

Idea. Apply flow matching to learn the *successor measure* of an MDP.

Def. We define the successor measure as

$$m^{\pi}(\mathsf{X}\mid\mathsf{s},\pmb{\alpha}) = (1-\gamma)\sum_{k=0}^{\infty}\gamma^{k}\Pr(\mathsf{S}_{k+1}\in\mathsf{X}\mid\mathsf{S}_{0}=\mathsf{s},\mathsf{A}_{0}=\pmb{\alpha},\pi),$$

Temporal Difference Flows (Farebrother et al., 2025)

 $\mbox{\bf Idea}. \;\; \mbox{Apply flow matching to learn the } \mbox{\it successor } \mbox{\it measure} \; \mbox{\it of} \; \mbox{\it an} \; \mbox{\it MDP}.$

Def. We define the successor measure as

$$\mathbf{m}^{\pi}(\mathsf{X}\mid\mathsf{s},\mathbf{a}) = (1-\gamma)\sum_{k=0}^{\infty}\gamma^{k}\Pr(\mathsf{S}_{k+1}\in\mathsf{X}\mid\mathsf{S}_{0}=\mathsf{s},\mathsf{A}_{0}=\mathsf{a},\pi),$$

Recall. The successor measure is the unique fix point to the Bellman equation

$$m^{\pi}(\cdot \mid \mathsf{s}, \mathsf{a}) = (\mathcal{T}^{\pi} m^{\pi})(\cdot \mid \mathsf{s}, \mathsf{a})$$

:= $(1 - \gamma)P(\cdot \mid \mathsf{s}, \mathsf{a}) + \gamma(P^{\pi} m^{\pi})(\cdot \mid \mathsf{s}, \mathsf{a}),$

where

$$(P^{\pi}m)(\mathrm{d}x\mid \mathsf{s},\alpha)=\int_{\mathsf{s}'}P(\mathrm{d}\mathsf{s}'\mid \mathsf{s},\alpha)m(\mathrm{d}x\mid \mathsf{s}',\pi(\mathsf{s}')).$$

The most straightforward idea is to just substitute m^π for q in flow matching

The most straightforward idea is to just substitute m^{π} for q in flow matching i.e.

$$\mathcal{L}_{\mathsf{MC-CFM}}(\theta) = \mathbb{E}_{\rho,t,Z,X_t} \Big[\big\| \tilde{\mathsf{v}}_t(\mathsf{X}_t \mid \mathsf{S},\mathsf{A};\theta) - \mathsf{u}_t(\mathsf{X}_t \mid \mathsf{Z}) \big\|^2 \Big],$$

where $Z = X_1 \sim m^{\pi}(\cdot \mid S, A), X_t \sim p_t(\cdot \mid Z).$

Here we just use the optimal transport conditional vector field and corresponding probability density path.

The most straightforward idea is to just substitute m^{π} for q in flow matching i.e.

$$\mathcal{L}_{\mathsf{MC-CFM}}(\theta) = \mathbb{E}_{\rho,t,\mathsf{Z},\mathsf{X}_t} \Big[\Big\| \tilde{\mathsf{v}}_t(\mathsf{X}_t \mid \mathsf{S}, \mathsf{A}; \theta) - \mathsf{u}_t(\mathsf{X}_t \mid \mathsf{Z}) \Big\|^2 \Big],$$

where
$$Z = X_1 \sim m^{\pi}(\cdot \mid S, A), X_t \sim p_t(\cdot \mid Z).$$

Here we just use the optimal transport conditional vector field and corresponding probability density path.

This requires direct access to samples from m^{π} .

Can we learn from offline one-step transitions (S, A, S')?

The most straightforward idea is to just substitute m^{π} for q in flow matching i.e.

$$\mathcal{L}_{\text{MC-CFM}}(\theta) = \mathbb{E}_{\rho,t,Z,X_t} \Big[\big\| \tilde{v}_t(X_t \mid S, A; \theta) - u_t(X_t \mid Z) \big\|^2 \Big],$$

where $Z = X_1 \sim m^{\pi}(\cdot \mid S, A), X_t \sim p_t(\cdot \mid Z)$.

Here we just use the optimal transport conditional vector field and corresponding probability density path.

This requires direct access to samples from m^{π} .

Can we learn from offline one-step transitions (S, A, S')?

Leverage recursive structure of Bellman equation i.e.

$$X_0\sim
ho_0$$

$$Z=X_1\sim (1-\gamma)\delta_{S'}+\gamma\delta_{ ilde f_1(X_0|S',\pi(S'))}. \tag{TD-CFM}$$

Leverage recursive structure of Bellman equation i.e.

$$X_0 \sim \rho_0$$

$$Z = X_1 \sim (1 - \gamma)\delta_{S'} + \gamma \delta_{\tilde{t}_1(X_0|S', \pi(S'))}.$$

- With probability (1γ) , $X_1 = S'$
- With probability γ , sample from \tilde{m}^{π} by integrating \tilde{f}_t .

Can we do better?

Lemma. Let v_t^1 and v_t^2 be vector fields that generate the probability paths $\boldsymbol{\rho}_t^1$ and $\boldsymbol{\rho}_t^2$, respectively. Then, for any $\gamma \in [0,1]$, the mixture probability path $\boldsymbol{\rho}_t = (1-\gamma)\boldsymbol{\rho}_t^1 + \gamma\boldsymbol{\rho}_t^2$ is generated by the vector field.

$$\mathbf{v}_t := \frac{(1-\gamma)\boldsymbol{\rho}_t^1\boldsymbol{v}_t^1 + \gamma\boldsymbol{\rho}_t^2\boldsymbol{v}_t^2}{(1-\gamma)\boldsymbol{\rho}_t^1 + \gamma\boldsymbol{\rho}_t^2}.$$

Lemma. Let v_t^1 and v_t^2 be vector fields that generate the probability paths $\boldsymbol{\rho}_t^1$ and $\boldsymbol{\rho}_t^2$, respectively. Then, for any $\gamma \in [0,1]$, the mixture probability path $\boldsymbol{\rho}_t = (1-\gamma)\boldsymbol{\rho}_t^1 + \gamma\boldsymbol{\rho}_t^2$ is generated by the vector field.

$$\mathbf{v}_t := \frac{(1-\gamma)\boldsymbol{\rho}_t^1\boldsymbol{v}_t^1 + \gamma\boldsymbol{\rho}_t^2\boldsymbol{v}_t^2}{(1-\gamma)\boldsymbol{\rho}_t^1 + \gamma\boldsymbol{\rho}_t^2}.$$

Remember. The *successor measure* is the unique fix point to the *Bellman* equation

$$m^{\pi}(\cdot \mid \mathbf{s}, \mathbf{a}) = (1 - \gamma) \underbrace{\mathbf{P}(\cdot \mid \mathbf{s}, \mathbf{a})}_{\mathbf{p}_{t}^{1}} + \gamma \underbrace{(\mathbf{P}^{\pi}m^{\pi})(\cdot \mid \mathbf{s}, \mathbf{a})}_{\mathbf{p}_{t}^{2}},$$

Lemma. Let v_t^1 and v_t^2 be vector fields that generate the probability paths \boldsymbol{p}_t^1 and \boldsymbol{p}_t^2 , respectively. Then, for any $\gamma \in [0,1]$, the mixture probability path $\boldsymbol{p}_t = (1-\gamma)\boldsymbol{p}_t^1 + \gamma\boldsymbol{p}_t^2$ is generated by the vector field.

$$\mathbf{v}_t := \frac{(1-\gamma)\boldsymbol{\rho}_t^1\boldsymbol{v}_t^1 + \gamma\boldsymbol{\rho}_t^2\boldsymbol{v}_t^2}{(1-\gamma)\boldsymbol{\rho}_t^1 + \gamma\boldsymbol{\rho}_t^2}.$$

Remember. The *successor measure* is the unique fix point to the *Bellman* equation

$$m^{\pi}(\cdot \mid \mathbf{s}, \mathbf{a}) = (1 - \gamma) \underbrace{\mathbf{P}(\cdot \mid \mathbf{s}, \mathbf{a})}_{\mathbf{p}_{t}^{1}} + \gamma \underbrace{(\mathbf{P}^{\pi}m^{\pi})(\cdot \mid \mathbf{s}, \mathbf{a})}_{\mathbf{p}_{t}^{2}},$$

Idea. Learn
$$v_t$$
 for $p_t^1 = P(\cdot \mid S, A)$, $p_t^2 = (P^{\pi}m)(\cdot \mid S, A)$

Lemma. Let \mathbf{v}_t^1 and \mathbf{v}_t^2 be vector fields that generate the probability paths \mathbf{p}_t^1 and \mathbf{p}_t^2 , respectively. For $\gamma \in [0,1]$, the vector field $\mathbf{v}_t = \frac{(1-\gamma)\mathbf{p}_t^1\mathbf{v}_t^1+\gamma\mathbf{p}_t^2\mathbf{v}_t^2}{(1-\gamma)\mathbf{p}_t^1+\gamma\mathbf{p}_t^2}$ satisfies

$$\begin{split} \mathbf{v}_t &= \underset{\mathbf{v}: \mathbb{R}^d \rightarrow \mathbb{R}^d}{\min} \Big\{ (1-\gamma) \mathbb{E}_{\mathbf{x}_t \sim p_t^1} \left[||\mathbf{v}_t(\mathbf{x}_t) - \mathbf{v}_t^1(\mathbf{x}_t)||^2 \right] \\ &+ \gamma \mathbb{E}_{\mathbf{x}_t \sim p_t^2} \left[||\mathbf{v}_t(\mathbf{x}_t) - \mathbf{v}_t^2(\mathbf{x}_t)||^2 \right] \Big\}. \end{split}$$

Lemma. Let v_t^1 and v_t^2 be vector fields that generate the probability paths $\boldsymbol{\rho}_t^1$ and $\boldsymbol{\rho}_t^2$, respectively. For $\gamma \in [0,1]$, the vector field $v_t = \frac{(1-\gamma)\boldsymbol{\rho}_t^1v_t^1+\gamma\boldsymbol{\rho}_t^2v_t^2}{(1-\gamma)\boldsymbol{\rho}_t^1+\gamma\boldsymbol{\rho}_t^2}$ satisfies $v_t = \underset{v\cdot\mathbb{R}^d \to \mathbb{R}^d}{\arg\min} \Big\{ (1-\gamma)\mathbb{E}_{\mathbf{x}_t \sim \boldsymbol{\rho}_t^1} \left[||v_t(\mathbf{x}_t) - v_t^1(\mathbf{x}_t)||^2 \right]$

$$\begin{split} \nu_t &= \underset{v:\mathbb{R}^d \to \mathbb{R}^d}{\arg\min} \Big\{ (1-\gamma) \mathbb{E}_{\mathbf{x}_t \sim \mathbf{p}_t^1} \left[|| \mathbf{v}_t(\mathbf{x}_t) - \mathbf{v}_t^1(\mathbf{x}_t) ||^2 \right] \\ &+ \gamma \mathbb{E}_{\mathbf{x}_t \sim \mathbf{p}_t^2} \left[|| \mathbf{v}_t(\mathbf{x}_t) - \mathbf{v}_t^2(\mathbf{x}_t) ||^2 \right] \Big\}. \end{split}$$

Substitute.

$$\begin{split} \mathbf{v}_{t} &= \underset{\mathbf{v}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}}{\text{arg min}} \Big\{ (1 - \gamma) \, \underbrace{\mathbb{E}_{\mathbf{x}_{t} \sim P} \left[||\mathbf{v}_{t}(\mathbf{x}_{t}) - \mathbf{v}_{t}^{1}(\mathbf{x}_{t})||^{2} \right]}_{+ \, \gamma \underbrace{\mathbb{E}_{\mathbf{x}_{t} \sim P^{\pi}m} \left[||\mathbf{v}_{t}(\mathbf{x}_{t}) - \mathbf{v}_{t}^{2}(\mathbf{x}_{t})||^{2} \right]}_{\mathcal{L}_{\mathsf{GHM}}} \Big\}. \end{split}$$

Lemma. Let v_t^1 and v_t^2 be vector fields that generate the probability paths $\boldsymbol{\rho}_t^1$ and $\boldsymbol{\rho}_t^2$, respectively. For $\gamma \in [0,1]$, the vector field $v_t = \frac{(1-\gamma)\boldsymbol{\rho}_t^1v_t^1+\gamma\boldsymbol{\rho}_t^2v_t^2}{(1-\gamma)\boldsymbol{\rho}_t^1+\gamma\boldsymbol{\rho}_t^2}$ satisfies $v_t = \underset{v,\mathbb{R}^d \to \mathbb{R}^d}{\arg\min} \Big\{ (1-\gamma)\mathbb{E}_{\mathbf{x}_t \sim \boldsymbol{\rho}_t^1} \left[||v_t(\mathbf{x}_t) - v_t^1(\mathbf{x}_t)||^2 \right]$

$$\begin{split} \mathbf{v}_t &= \underset{\mathbf{v}: \mathbb{R}^d \to \mathbb{R}^d}{\min} \Big\{ (1-\gamma) \mathbb{E}_{\mathbf{x}_t \sim \mathbf{p}_t^1} \left[||\mathbf{v}_t(\mathbf{x}_t) - \mathbf{v}_t^1(\mathbf{x}_t)||^2 \right] \\ &+ \gamma \mathbb{E}_{\mathbf{x}_t \sim \mathbf{p}_t^2} \left[||\mathbf{v}_t(\mathbf{x}_t) - \mathbf{v}_t^2(\mathbf{x}_t)||^2 \right] \Big\}. \end{split}$$

Substitute.

$$\begin{split} \mathbf{v}_{t} &= \underset{\mathbf{v}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}}{\min} \Big\{ (1 - \gamma) \underbrace{\mathbb{E}_{\mathbf{x}_{t} \sim P} \left[||\mathbf{v}_{t}(\mathbf{x}_{t}) - \mathbf{v}_{t}^{1}(\mathbf{x}_{t})||^{2} \right]}_{+ \gamma \underbrace{\mathbb{E}_{\mathbf{x}_{t} \sim P^{\pi}m} \left[||\mathbf{v}_{t}(\mathbf{x}_{t}) - \mathbf{v}_{t}^{2}(\mathbf{x}_{t})||^{2} \right]}_{\mathcal{L}_{\mathsf{GHM}}} \Big\}. \end{split}$$

Lemma. Let \mathbf{v}_t^1 and \mathbf{v}_t^2 be vector fields that generate the probability paths \mathbf{p}_t^1 and \mathbf{p}_t^2 , respectively. For $\gamma \in [0,1]$, the vector field $\mathbf{v}_t = \frac{(1-\gamma)\mathbf{p}_t^1\mathbf{v}_t^1+\gamma\mathbf{p}_t^2\mathbf{v}_t^2}{(1-\gamma)\mathbf{p}_t^1+\gamma\mathbf{p}_t^2}$ satisfies

$$\begin{split} \mathbf{v}_t &= \underset{\mathbf{v}: \mathbb{R}^d \rightarrow \mathbb{R}^d}{\arg\min} \Big\{ (1-\gamma) \mathbb{E}_{\mathbf{x}_t \sim p_t^1} \left[||\mathbf{v}_t(\mathbf{x}_t) - \mathbf{v}_t^1(\mathbf{x}_t)||^2 \right] \\ &+ \gamma \mathbb{E}_{\mathbf{x}_t \sim p_t^2} \left[||\mathbf{v}_t(\mathbf{x}_t) - \mathbf{v}_t^2(\mathbf{x}_t)||^2 \right] \Big\}. \end{split}$$

Substitute.

$$\begin{split} \mathbf{v}_{t} &= \underset{\mathbf{v}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}}{\text{arg min}} \Big\{ (1 - \gamma) \underbrace{\mathbb{E}_{\mathbf{x}_{t} \sim P} \left[||\mathbf{v}_{t}(\mathbf{x}_{t}) - \mathbf{v}_{t}^{1}(\mathbf{x}_{t})||^{2} \right]}_{\mathcal{L}_{\mathsf{GHM}}} \\ &+ \gamma \underbrace{\mathbb{E}_{\mathbf{x}_{t} \sim P^{\pi}m} \left[||\mathbf{v}_{t}(\mathbf{x}_{t}) - \mathbf{v}_{t}^{2}(\mathbf{x}_{t})||^{2} \right]}_{\mathcal{L}_{\mathsf{GHM}}} \Big\}. \end{split}$$

Case 1. \mathcal{L}_{OS} , $S' \sim P(\cdot \mid S, A)$

- 1. Our dataset (S,A,S') has plenty of samples $S' \sim P(\cdot \mid S,A)$
- 2. $\vec{u}_t(\cdot \mid Z)$, $\vec{p}_t(\cdot \mid Z)$ can be chosen as done before in **traditional** flow matching

$$\vec{v}_t(x \mid s, \alpha) = \int \vec{u}_t(x \mid x_1) \frac{\vec{\rho}_t(x \mid x_1) P(\mathsf{d}x_1 \mid s, \alpha)}{\vec{\rho}_t(x \mid s, \alpha)},$$

Case 1. \mathcal{L}_{OS} , $S' \sim P(\cdot \mid S, A)$

- 1. Our dataset (S, A, S') has plenty of samples $S' \sim P(\cdot \mid S, A)$
- 2. $\vec{u}_t(\cdot \mid Z), \vec{p}_t(\cdot \mid Z)$ can be chosen as done before in **traditional** flow matching

$$\vec{v}_t(x \mid s, \alpha) = \int \vec{u}_t(x \mid x_1) \frac{\vec{p}_t(x \mid x_1) P(\mathsf{d}x_1 \mid s, \alpha)}{\vec{p}_t(x \mid s, \alpha)},$$

$$\begin{split} \mathcal{L}_{\text{COS}}(\theta) &= \mathbb{E}_{\rho, t, Z, \vec{X}_t} \Big[\big\| \tilde{v}_t(\vec{X}_t \mid S, A; \theta) - \vec{u}_t(\vec{X}_t \mid Z) \big\|^2 \Big] \,, \\ \text{where } Z &= X_1 \sim \textit{P}(\cdot \mid S, A), \; \vec{X}_t \sim \vec{p}_t(\cdot \mid Z) \end{split}$$

Case 2.
$$\mathcal{L}_{\mathsf{GHM}}$$
, $\mathsf{S}' \sim (\mathsf{P}^\pi m)(\cdot \mid \mathsf{S}, \mathsf{A})$

Assume. probability path m_t , such that $m_0 = m_0$ and $m_1 = m_1$.

Recall. We want a marginal distribution, such that

$$(P^{\pi}m_t)(\cdot\mid S,A) \approx \int_{S'} \rho_t(\cdot\mid S',A')q(S'\mid S,A)$$

for some p_t and q.

Case 2.
$$\mathcal{L}_{\mathsf{GHM}}$$
, $\mathsf{S}' \sim (\mathsf{P}^\pi m)(\cdot \mid \mathsf{S}, \mathsf{A})$

Assume. probability path m_t , such that $m_0 = m_0$ and $m_1 = m_1$.

Recall. We want a marginal distribution, such that

$$(P^{\pi}m_t)(\cdot\mid S,A) \approx \int_{S'} \rho_t(\cdot\mid S',A')q(S'\mid S,A)$$

for some p_t and q.

Note. Taking $p_t(\cdot \mid S')$ to be $N(S', \sigma)$ and q to be the desired distribution was just one choice. Need following criteria:

- 1. $p_t(\cdot \mid S', A')$ can be sampled from,
- 2. The conditional vector field $u_t(\cdot \mid S', A')$ that generates $p_t(\cdot \mid S', A')$ can be easily computed,
- 3. Marginal $p_1 \approx P^{\pi} m_1 = P^{\pi} m$.

Case 2.
$$\mathcal{L}_{\mathsf{GHM}}$$
, $\mathsf{S}' \sim (\mathsf{P}^\pi m)(\cdot \mid \mathsf{S}, \mathsf{A})$

By definition,

$$(P^{\pi}m)(\cdot \mid S,A) \approx \int_{S'} m(\cdot \mid S',A')P(S' \mid S,A).$$

In particular,

$$(P^{\pi}m)(\cdot \mid S,A) \approx \int_{S'} m_1(\cdot \mid S',A') P(S' \mid S,A)$$

and m_t satisfies (1),(2),(3)!

Chicken or the egg: How do we compute the vector field that generates m_t ?

Case 2. $\mathcal{L}_{\mathsf{GHM}}$, $\mathsf{S}' \sim (\mathsf{P}^\pi m)(\cdot \mid \mathsf{S}, \mathsf{A})$

Lemma. If $\mathbf{v}_t^{(n+1)} = \arg\max \mathcal{L}_{\mathsf{OS+GHM}}(\mathbf{v}_t^{(n)})$ then $\mathbf{v}_t^{(n+1)}$ generates $m_t^{(n+1)}$ and $m_t^{(n+1)} = \mathcal{T}^\pi m_t^{(n)}$.

Case 2. $\mathcal{L}_{\mathsf{GHM}}$, $\mathsf{S}' \sim (\mathsf{P}^\pi m)(\cdot \mid \mathsf{S}, \mathsf{A})$

Lemma. If $v_t^{(n+1)} = \arg\max \mathcal{L}_{\text{OS+GHM}}(v_t^{(n)})$ then $v_t^{(n+1)}$ generates $m_t^{(n+1)}$ and $m_t^{(n+1)} = \mathcal{T}^\pi m_t^{(n)}$.

Implication. Use $v_t^{(n+1)}(\cdot|S',A')$ in **CFM** loss \implies will converge to vector field that generates $P^{\pi}m_t$.

Case 2. $\mathcal{L}_{\mathsf{GHM}}$, $S' \sim (P^\pi m)(\cdot \mid S, A)$

Lemma. If $\mathbf{v}_t^{(n+1)} = \arg\max \mathcal{L}_{\mathsf{OS+GHM}}(\mathbf{v}_t^{(n)})$ then $\mathbf{v}_t^{(n+1)}$ generates $m_{t}^{(n+1)}$ and $m_{t}^{(n+1)} = \mathcal{T}^{\pi} m_{t}^{(n)}$.

Implication. Use $v_{t}^{(n+1)}(\cdot|S',A')$ in **CFM** loss \implies will converge to vector field that generates $P^{\pi}m_{t}$.

$$\begin{split} \mathcal{L}_{\text{CGHM}}(\theta) &= \mathbb{E}_{\rho,t,\widehat{X}_t} \left[\left\| \tilde{\mathbf{v}}_t(\widehat{X}_t \mid \mathbf{S}, \mathbf{A}; \theta) - \tilde{\mathbf{v}}_t^{(n)}(\widehat{X}_t \mid \mathbf{S}', \pi(\mathbf{S}') \right\|^2 \right], \\ \text{where } \mathbf{X}_0 \sim \mathbf{p}_0, \mathbf{S}' \sim \mathbf{P}(\cdot \mid \mathbf{S}, \mathbf{A}), \widehat{X}_t = \widetilde{\mathbf{f}}_t^{(n)}(\mathbf{X}_0 \mid \mathbf{S}', \pi(\mathbf{S}')), \end{split}$$

Now we just combine the **objectives**!!

$$\begin{split} \mathcal{L}_{\text{COS}}(\theta) &= \mathbb{E}_{\rho, t, Z, \vec{X}_t} \Big[\big\| \tilde{v}_t(\vec{X}_t \mid S, A; \theta) - \vec{u}_t(\vec{X}_t \mid Z) \big\|^2 \Big] \,, \\ \text{where } Z &= X_1 \sim \textit{P}(\cdot \mid S, A), \ \vec{X}_t \sim \vec{p}_t(\cdot \mid Z) \end{split}$$

-

$$\mathcal{L}_{\text{CGHM}}(\theta) = \mathbb{E}_{\rho, t, \widehat{X}_t} \left[\left\| \tilde{v}_t(\widehat{X}_t \mid S, A; \theta) - \tilde{v}_t^{(n)}(\widehat{X}_t \mid S', \pi(S') \right\|^2 \right],$$

where $X_0 \sim p_0$, $S' \sim P(\cdot \mid S, A)$, $\widehat{X}_t = \widetilde{f}_t^{(n)}(X_0 \mid S', \pi(S'))$,

$$\mathcal{L}_{\mathsf{TD}^2-\mathsf{CFM}}(\theta) = (1-\gamma)\mathcal{L}_{\mathsf{COS}}(\theta) + \gamma\mathcal{L}_{\mathsf{CGHM}}(\theta) \implies \mathsf{Lower}\;\mathsf{Var}\left(\nabla\mathcal{L}\right).$$

GPI:

- ▶ Train π_w with Forward backward.
- $\begin{array}{l} \blacktriangleright \ \ \text{Do GPI as } w_t \in \\ \underset{w \sim \mathcal{D}(W)}{\text{arg max}} \underbrace{(1-\gamma)^{-1} \mathbb{E}_{X \sim m^{\pi_w}(\cdot|s_t,\pi_w(s_t)))}[r(X)]}_{Q^{\pi_w}(s_t,\pi_w(s_t))}. \end{array}$
- ► Averaged over 128 samples.

References

- Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural Ordinary Differential Equations.
- Jesse Farebrother, Matteo Pirotta, Andrea Tirinzoni, Rémi Munos, Alessandro Lazaric, and Ahmed Touati. Temporal Difference Flows, March 2025.
- Ruiqi Gao, Emiel Hoogeboom, Jonathan Heek, Valentin De Bortoli, Kevin P. Murphy, and Tim Salimans. Diffusion Meets Flow Matching: Two Sides of the Same Coin, December 2024.
- Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow Matching for Generative Modeling, February 2023.
- Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky T. Q. Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow Matching Guide and Code, December 2024.
- Seohong Park. Q-learning is not yet scalable, June 2025.
- Danilo Jimenez Rezende and Shakir Mohamed. Variational Inference with Normalizing Flows.
- Chongyi Zheng, Seohong Park, Sergey Levine, and Benjamin Eysenbach. Intention-Conditioned Flow Occupancy Models, June 2025.

