LITERATURE SURVEY

S.NO	TITLE	AUTHORS AND YEARS	TECHNIQUES	PROBLEM DESCRIPTIO
1	Deep convolutional features for image retrieval	Gkelios, S., Sophokleous, A., Plakias, S., Boutalis, Y., & Chatzichristofis, S. (2021)	machine learning, social network mining and recommendation systems addressing open problems in fashion domain	This study describes a method for shaping image retrieval features using the most recentpretrained CNN architectures, which were initially suggested for image classification.
2	Personalized fashion recommender system with image based neural networks	Sridevi, M., ManikyaArun, N., Sheshikala, M., & Sudarshan, E (2020)	It processes the DeepFashion dataset's photos using neural networks, and then creates final suggestions using a closest neighbor-backed recommender.	It processes the DeepFashion dataset's photos using neural networks, and then creates final suggestions using a closest neighbor- backed recommender.
3	Modeling Instant User Intent and Content-Level Transition for Sequential Fashion Recommendation	Yujuan Ding, Yunshan Ma, Wai Keung Wong, Tat- Seng Chua (2021)	Attentional Content- level Translation-based Recommender (ACTR) framework	It aims to capture additional short-term fashion interest of users by modeling the item-to-item transitions.
4	A Literature Survey of Recent Advances in Chatbots	Guendalina Caldarini, Sardar Jaf, Kenneth McGarry (2022)	Natural Language Processing and Machine Learning.	Intelligent conversational computer programmes known as chatbots are created to mimic human speech in order to provide automated online assistance and support.
5	Fashion Recommender Systems	Nima Dokoohaki (2020)	machine learning, social network mining and recommendation systems addressing open problems in fashion domain	In this context, recommender systems, such as social fashion based recommendations (outfits influenced by influencers), product recommendations, or size and fit suggestions, are frequently utilised to handle a variety of complicated challenges.

6	A Survey on Accuracy-oriented Neural Recommendation: From Collaborative Filtering to Information-rich Recommendation	Le Wu, Xiangnan He, Xiang Wang, Kun Zhang, Meng Wang (2021)	They propose a novel deep neural network, called Detect, Pick, and Retrieval Network (DPRNet)	To improve the effectiveness of the video-to-shop work, they updated the conventional object detector, which automatically selects the best object offers for each commodity in films without duplication.
7	Deep convolutional features for image retrieval	Gkelios, S., Sophokleous, A., Plakias, S., Boutalis, Y., & Chatzichristofis, S. (2021)	Collaborative filtering and information-rich recommendation	We undertake a thorough analysis of neural recommender models from the viewpoint of recommendation modelling with the accuracy objective, hoping to provide researchers and professionals working on recommender systems with a summary of this area.
8	Learning fashion compatibility across categories with deep multimodal neural networks	Guang-Lu Sun, Jun- Yan He, Xiao Wu, Bo Zhao, Qiang Peng (2021)	multilayered Long Short-Term Memory (LSTM) is employed for discriminative semantic representation learning, while a deep Convolutional Neural Network (CNN) is used for visual embeddings.	Here, we offer a unique multimodal framework for fashion compatibility learning that concurrently incorporates semantic and visual embeddings into a single deep learning model.
9	Understanding User Satisfaction with Task-oriented Dialogue Systems	Clemencia Siro, Mohammad Aliannejadi, Maarten de Rijke (2022)	conversational recommendation System	They gather information by adding an extra annotation layer to conversations taken from the ReDial dataset, a popular conversational recommendation dataset. along with annotations at the turn and dialogue levels for the sampled dialogues. We can investigate how various conversation elements affect user satisfaction thanks to the annotations.

10	UNITER:	Yen-Chun	Masked Language	They introduce UNITER,
	UNiversal Image-	Chen, Linjie	Modeling (MLM),	a UNiversal Image-TExt
	TExt	Li, Licheng	Masked Region	Representation, which
	Representation	Yu, Ahmed El	Modeling (MRM, with	can power diverse
	Learning	Kholy, Faisal	three versions), Image-	downstream V+L tasks
		Ahmed, Zhe	Text Matching (ITM),	with joint multimodal
		Gan, Yu	and Word-Region	embeddings. UNITER
		Cheng, Jingjing Liu	Alignment are the four	was learned by large-
		(2020)	pre-training tasks that	scale pre-training using
			we develop (WRA).	four image-text datasets
			Unlike earlier research	(COCO, Visual Genome,
			that uses simultaneous	Conceptual Captions, and
			random masking for	SBU Captions).
			both modalities	