Poroelasticity

Other viscous effects

Constitutive model for creep

Power law

$$\varepsilon(t) = \varepsilon_0 + ct^n$$

Creep

Stress relaxation

Thermoporoelasticity

$$\boldsymbol{\sigma} = \mathbf{S} - \alpha P_p \mathbf{I} - K \alpha_T \Delta T \mathbf{I}$$

 α_T is coefficient of thermal expansion/(contraction)

Rock failure

Types of tests on rocks

Hydrostatic compression

$$S_0 = S_1 = S_2 = S_3$$

Uniaxial compression

$$S_0 \neq 0$$
 $S_2 = S_3 = 0$

Triaxial compression

$$S_1 > S_2 = S_3$$

Triaxial extension

$$S_1 = S_2 > S_3$$

True triaxial

$$S_1 \neq S_2 \neq S_3$$

Mohr's circles

$$\tau_f = \frac{1}{2}(\sigma_1 - \sigma_3)\sin(2\beta)$$

$$\sigma_n = \frac{1}{2}(\sigma + \sigma_3) + \frac{1}{2}(\sigma_1 - \sigma_3)\cos(2\beta)$$

Mohr Envelope

Linearized Mohr Envelope

Mohr-Coulomb failure

$$\tau = S_0 + \sigma_n \mu_i$$

$$C_0 = 2S_0 \left(\sqrt{\mu_i^2 + 1} + \mu_i \right)$$

Triaxial tests on sandstone

Mohr Envelope for Sandstone

Cohesion and internal friction data

Cohesion and internal friction data

Yield surface

Mohr Coulomb Yield Surface 3Da. Licensed under CC BY-SA 3.0 via Wikipedia

π -plane

Mohr Coulomb Yield Surface 3Db. Licensed under CC BY-SA 3.0 via Wikipedia

