OBJETIVOS

Como objetivo general tenemos que diseñar y construir un circuito combinacional decodificador de BINARIO a 7-SEG con compuertas NAND y NOR de 2 entradas, con el menor número de componentes posible. Además como objetivo particular perseguimos el tratar de implementarlo con solo un circuito integrado en lo posible.

DESARROLLO

Al ser el grupo nº 9, los datos de entrada que nos interesan son las combinaciones para el 9, 12, 15, 2 y 5 en BINARIO y sus correspondientes 9, C, F, 2 y 5 en HEX. Todos los demás datos serán combinaciones sin cuidado. Trabajando con lógica positiva, realizamos la tabla de verdad en función de los datos que nos interesan en la entrada y los que necesitamos visualizar a la salida:

	D	U	В	Α	a	b	C	d	е	f	g
I	0	0	0	ı	Х	Х	Х	х	х	Х	Х
2	0	0	Т	0	I	I	0	I	I	0	_
3	0	0	I	ı	Х	Х	Х	х	х	Х	Х
4	0	-	0	0	X	Х	X	Х	Х	х	Х
5	0	Т	0	_	I	0	-	I	0	ı	_
6	0	ı	I	0	Х	Х	Х	х	х	Х	Х
7	0	ı	ı	I	Х	х	Х	х	х	х	Х
8	ı	0	0	0	Х	Х	Х	х	х	Х	Х
9	ı	0	0	_	I	I	-	I	0	ı	_
Α	I	0	ı	0	Х	х	Х	х	х	х	Х
В	ı	0	I	ı	Х	Х	Х	х	х	Х	Х
С		_	0	0	-	0	0	-	_	_	0
D	Ī	-	0	I	Х	Х	X	х	Х	Х	Х
Е	I	-	-	0	Х	Х	X	х	Х	Х	Х
F	ı	Т	_		I	0	0	0	_	_	_

Notamos que el segmento (a) estará siempre encendido para todas las combinaciones de interés.

Para obtener las expresiones lógicas trazamos los mapas de Karnaugh y agrupamos de manera más conveniente, con la referencia BA para datos de la primera fila y DC para los de la primera columna, en ese orden:

а	00	01	П	10
00	x	х	Х	1
01	х	Т	Х	х
П	Ι	х	Т	х
10	×	I	Х	x

b	00	01		10
00	х	X	X	I
01	х	0	х	х
П	0	х	0	х
10	х	Т	Х	х

С	00	01	П	10
00	х	х	х	0
01	х	Т	х	х
П	0	х	0	х
10	Х		х	х

d	00	01	Ш	10	_
00	х	х	х	1	
01	х	I	х	х	
П	-	х	0	х	
10	Х	T	х	х	

-Seg. A constante.

-Como único grupo.

-Indep. de CD.

-Como dos grupos.

e	00	01	Ш	10
00	х	х	х	$\overline{}$
01	х	0	х	х
П	Τ	х	Τ	х
10	х	0	×	x

f	00	01	Ш	10
00	х	X	Х	0
01	х	Т	х	х
Ш	Ι	х	Τ	х
10	х	$\overline{}$	X	х

g	00	01	F	10
00	Х	х	×	Т
01	Х	Ι	х	х
П	0	х	Ι	х
10	Х		х	Х

Los 3 indep. de CD también.

Luego de elegir los grupos más convenientes, tratando de dejar todas las expresiones en función de A y B solamente, llegamos a las expresiones lógicas:

Funciones lógicas	
a = 1	
$b = \bar{C}$	
$c = \bar{B}A$	
$d = \bar{B} + \bar{A}$	
$e = B + \bar{A}$	
$f = \bar{B} + A$	
g = B + A	
9 5 1 11	

Llegamos a independizarnos totalmente de la variable D.

Circuito que necesita de 3 integrados y además en uno de ellos solo usaremos una compuerta AND, desperdiciando el resto.

Buscando reducir las expresiones y tratando de encontrar patrones de combinaciones que se puedan aprovechar, aplicamos el teorema de De Morgan:

$$a = 1$$

$$b = \overline{C}$$

$$c = \overline{\overline{B}A} = \overline{B} + \overline{A}$$

$$d = \overline{\overline{B}} + \overline{A} = \overline{B}A$$

$$e = \overline{B} + \overline{A} = \overline{B}A$$

$$f = \overline{\overline{B}} + \overline{A} = \overline{B}\overline{A}$$

$$g = \overline{A} + \overline{B} = \overline{B}\overline{A}$$

Que representan el circuito:

Consultando un manual TTL vemos que los integrados 7400 y 7402 se adaptan a nuestras necesidades y como vienen 4 compuertas por cada integrado, y solo usaremos una compuerta NOR, optamos por convertir las restantes en los inversores necesarios, quedando:

Así que necesitaremos solo 2 integrados para la implementación.

CALCULOS

Consultando las datasheets, notamos que los integrados nos entregan 5V en estado alto en las salidas, y que además el display necesita una corriente I_algo para funcionar, por tanto calculamos las resistencias necesarias para completar la lista de materiales:

$$R = \frac{V}{I} = \frac{5V}{15mA} = 333,333\Omega \cong 330\Omega \rightarrow P = RI^2 \cong 74mW \rightarrow Res \ de \ \frac{1}{4}W \ functionan.$$

Además como utilizaremos una fuente de 5V, 700mA para la alimentación, optamos por poner un capacitor de 100nF en paralelo para estabilizar cualquier posible variación.

Quedando el diagrama final:

LISTA DE MATERIALES

IC 7400 Quad NAND-2 Input	1
IC 7402 Quad NOR-2 Input	1
Switch SPDT Display-7 Seg. C-5615R. Cat.Com	1
Resistencia 330Ω a 1/4 de vatio	7
Capacitor 104	1

CONCLUSIONES

No logramos simplificar lo suficiente las funciones para cumplir el objetivo particular con nuestras condiciones de interés. Sin embargo, si cumplimos el objetivo general del problema y nos independizarnos de la variable D, disminuyendo la cantidad de integrados y el espacio de circuito impreso, bajando costos de implementación.

Además los integrados que conseguimos son el 74LSA00, un TTL de bajo consumo y el 74HCTLS02 un CMOS de bajo consumo y alta velocidad, compatible con TTL por lo que no debería traer inconvenientes en este caso.

DATASHEETS: