ORGANIC REACTIONS

Recall: 5 Types of Reactions

- 1. Condensation Reactions
- 2. Addition Reactions
- 3. Substitution Reactions
- 4. Elimination Reactions
- 5. Oxidation Reactions

2. Addition Reactions

These reactions involve a double bond becoming a single bond by the addition of two groups of atoms.

$$H_2C=CH_2 + XY \rightarrow H_2XC-CYH_2$$

a) Halogenation (Br₂ or Cl₂)

b) Hydrogenation (H₂)

c) Hydrohalogenation (HBr or HCI)

d) Hydration (H₂O)
$$\stackrel{\text{Hormal or HCI}}{\stackrel{\text{Hormal or HCI}}{\stackrel{\text$$

Ethylene

Water

Ethanol

More Vocabulary

alkyl group - side-chains of Cs

aryl group - side-chains of phenyl

a) Halogenation

Each C across the double bond receives a halogen atom.

$$H_{2}C = CH_{2} + CI_{2} \xrightarrow{\text{Room temperature}} H_{2}C - CH_{2}$$

$$H_{2}C = CH_{2} + Br_{2} \xrightarrow{\text{Room temperature}} H_{2}C - CH_{2}$$

$$H_{2}C - CH_{2} + Br_{2} \xrightarrow{\text{Room temperature}} H_{2}C - CH_{2}$$

a) Halogenation

Halogenation results in the formation of an .

b) Hydrogenation

Similar to halogenation, except each C receives an H.

$$H_2C=CH_2 + H_2 \xrightarrow[Pressure]{Pt} H_3C-CH_3$$
 $HC=CH + 2 H_2 \xrightarrow[Pressure]{Pt} H_3C-CH_3$
 $HC=CH_3 + H_2 \xrightarrow[Pressure]{Pt} H_3C-CH_3$
 $HC=CH_3 + H_2 \xrightarrow[Pressure]{Pt} H_3C-CH_3$
 $HC=CH_3 + H_3$
 $HC=CH_3 + H_3$
 $HC=CH_3$
 HC

c) Hydrohalogenation

HBr or HCl is added across a double bond.

Which one is the main product?

Markovnikov Rule

The H atom goes on the C that already contains the greatest number of H's.

$$H_2C=CHCH_3 + HCI \xrightarrow{\text{UV light}} H-C-C-C-H$$
 H_1
 $H_2C=CHCH_3 + HCI \xrightarrow{\text{or heat}} H-C-C-C-H$
 H_1
 H_2

c) Hydrohalogenation

Hydrohalogenation results in the formation of an

d) Hydration

This method of addition also follows the Markovnikov rule.

HCH=CH-CH₃ + H₂O
$$\stackrel{\text{H}_2SO_4}{\rightarrow}$$
 H— C— C— C—H
H—H—H

d) Hydration

Hydration reactions result in the formation of

Example #1

a) $CH_3CH_2C(CH_3)=CH_2 + H_2O \rightarrow$

Here is the mechanism:

Example #1

b) Draw structural diagrams to represent an addition reaction of an alkene to produce 2-chlorobutane.

Example #1

b) Draw structural diagrams to represent an addition reaction of an alkene to produce 2-chlorobutane.

This works as well

Homework

Page 26 # 1, 2

Page 27 # 9,10