

No double descent in PCA: Training and pre-training in high dimensions

Daniel Gedon Uppsala University

Belkin Lab weekly meeting San Diego, March 06, 2023

Found/analysed in: linear/logistic regression, random forests, adversarial training, neural networks, ...

Belkin et al., "Reconciling modern machine-learning practice and the classical bias-variance trade-off".

Introduction – Encoder-decoder models

Vaswani et al., "Attention is all you need".

Radford et al., "Learning transferable visual models from natural language supervision".

Problem formulation

Data generator

Model

SVD:
$$\boldsymbol{X} \approx \hat{\boldsymbol{U}} \hat{\boldsymbol{\Sigma}} \hat{\boldsymbol{V}}^{\top},$$

PCA:
$$\hat{\pmb{z}}_i = \hat{\pmb{V}}^{\top} \pmb{x}_i,$$

lin. reg. $\hat{y}_i = \hat{\pmb{\theta}}^{\top} \hat{\pmb{z}}_i.$

in. reg.
$$\hat{y}_i = \hat{m{ heta}}^ op \hat{m{z}}_i$$
.

Supervised case – Analysis

Interested in risk: $R(\hat{\theta}) = \mathbb{E}_{y_0} \left[(y_0 - \hat{y}_0)^2 \right].$

Write data generator directly from features to outputs as $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ with $\boldsymbol{\beta} \in \mathbb{R}^m$.

Lemma

Sample covariance $\hat{C} = \frac{1}{n} X^{\top} X$ and the true covariance C. Orthogonal projectors $\Pi = I_m - \hat{V} \hat{V}^{\top}$. Then,

$$\mathbb{E}_{\epsilon}\left[R(\hat{\boldsymbol{\theta}})\right] = \boldsymbol{\beta}^{\top}\boldsymbol{\Pi}\boldsymbol{C}\boldsymbol{\Pi}\boldsymbol{\beta} + \frac{\sigma_{\epsilon}^{2}}{n}\operatorname{Tr}(\hat{\boldsymbol{V}}^{\top}\boldsymbol{C}\hat{\boldsymbol{V}}\hat{\boldsymbol{V}}^{\top}\hat{\boldsymbol{C}}^{+}\hat{\boldsymbol{V}}) + \sigma_{\epsilon}^{2}.$$

Compare with Hastie et al. for direct linear regression:

$$\mathbb{E}_{\epsilon}\left[R(\hat{\boldsymbol{\theta}})\right] = \boldsymbol{\beta}^{\top} \boldsymbol{\Pi} \boldsymbol{C} \boldsymbol{\Pi} \boldsymbol{\beta} + \frac{\sigma_{\epsilon}^{2}}{n} \operatorname{Tr}(\boldsymbol{C} \hat{\boldsymbol{C}}^{+}) + \sigma_{\epsilon}^{2}.$$

Hastie et al., "Surprises in high-dimensional ridgeless least squares interpolation".

Supervised case – Analysis – Isotropic case

Theorem

Assume isotropic features $C = I_m$, which implies d = m and choose constant \hat{d} . Then, as $m, n \to \infty$, such that $\frac{m}{n} \to \gamma$, the expected risk satisfies almost surely

$$\mathbb{E}_{\epsilon}\left[R(\hat{\boldsymbol{\theta}})\right] \rightarrow \sigma_{\epsilon}^2 \frac{m}{n} \int_{s_f}^{\infty} \frac{1}{s} dF_{\gamma}(s) + \sigma_{\epsilon}^2 + \begin{cases} \boldsymbol{\beta}^{\top} \boldsymbol{\beta} \left(1 - \min(\hat{d}, m)/m\right) & \text{for} \quad \gamma < 1\\ \boldsymbol{\beta}^{\top} \boldsymbol{\beta} \left(1 - \min(\hat{d}, n)/m\right) & \text{for} \quad \gamma > 1 \end{cases}$$

with F_{γ} the Marčenko-Pastur law and s_f the value in $\mathbb R$ that satisfies $\frac{\hat d}{m}=\int_{s_f}^{\infty}dF_{\gamma}.$

Supervised case – Numerical results

Isotropic data: Theorem from last slide.

Latent variable data: No theorem but empirical results.

Supervised case – Numerical results

Real world example: Diverse MAGIC wheat genetics data set.

Input: genome sequence (=1.1M nucleotides) of 504 wheat lines.

Outcome: real-valued phenotypes.

Supervised case – Open problem

Aim: Asymptotic risk for latent variable data generator.

Data generator = spiked covariance model $\boldsymbol{C} = \sigma_0 \boldsymbol{I} + \sum_{i=0}^K s_i \boldsymbol{v}_i \boldsymbol{v}_i^{\top}$

Need eigenvector product: $\mathbb{E}_{\epsilon}\left[R(\hat{\boldsymbol{\theta}})\right] = \boldsymbol{\beta}^{\top}\boldsymbol{\Pi}\boldsymbol{C}\boldsymbol{\Pi}\boldsymbol{\beta} + \frac{\sigma_{\epsilon}^{2}}{n}\operatorname{Tr}(\hat{\boldsymbol{V}}^{\top}\boldsymbol{C}\hat{\boldsymbol{V}}\hat{\boldsymbol{V}}^{\top}\hat{\boldsymbol{C}}^{+}\hat{\boldsymbol{V}}) + \sigma_{\epsilon}^{2}$. Results:

$$(\hat{oldsymbol{v}}_i^{ op}oldsymbol{v}_i)^2
ightarrow egin{cases} rac{1-\gamma/(\ell_i-1)^2}{1-\gamma/(\ell_i-1)} & ext{for } \ell_i > 1+\sqrt{\gamma} \ 0 & ext{for } \ell_i \in [1,1+\sqrt{\gamma}] \end{cases}$$

Johnstone and Paul, "PCA in High Dimensions: An Orientation".

Pre-training the PCA – Setup

Use two data sets:

- Pre-training data set $\{x_i\}_{i=1}^{n_p}$
- Training data set $\{x_i, y_i\}_{i=1}^n$

Two step training procedure:

- 1. Unsupervised pre-training of PCA.
- 2. Train linear regression on the PCA features \hat{z}_i .

Pre-training the PCA – Analysis

For technical reasons: orthogonalize features and noise $x_i = Dz_i + D_{\perp}e_i$. Then:

Model:
$$\hat{\mathbf{z}}_i = \hat{\mathbf{V}}^{\top} \mathbf{x}_i$$
,

Data generator:
$$\mathbf{z}_i = \mathbf{D}^+(\mathbf{x}_i - \mathbf{D}_\perp \mathbf{e}_i) = \mathbf{D}^+ \mathbf{x}_i$$
.

Define projection loss:

$$\mathcal{L}(\mathbf{D}) = \mathbb{E}\left[\|\mathbf{x}\|_{2}^{2} - \|\mathbf{D}^{+}\mathbf{x}\|_{2}^{2}\right]; \qquad \mathcal{L}(\hat{\mathbf{V}}) = \mathbb{E}\left[\|\mathbf{x}\|_{2}^{2} - \|\hat{\mathbf{V}}^{\top}\mathbf{x}\|_{2}^{2}\right]$$

Lemma

$$\mathcal{L}(\hat{\boldsymbol{V}}) - \mathcal{L}(\boldsymbol{D}) = \sum_{i=1}^{\min(d,\hat{d})} \sum_{j=1}^{m} (\hat{\boldsymbol{v}}_i^{\top} \boldsymbol{v}_j)^2 (s_i - s_j) + \sum_{\substack{i=\hat{d} \\ =0 \text{ for } \hat{d} \geq d}}^{d} \sum_{j=1}^{m} (\hat{\boldsymbol{v}}_i^{\top} \boldsymbol{v}_j)^2 s_j.$$

ightarrow Correct estimation of eigenvectors $\hat{m{V}}$ crucial for small loss difference.

Pre-training the PCA - Analysis

Theorem

Take
$$t > 0$$
, $k_j^2 = s_j(s_j + \text{Tr}(\mathbf{C}))$, then
$$P\left(\mathcal{L}(\hat{\mathbf{V}}) - \mathcal{L}(\mathbf{D}) > t\right) \le$$

$$\le \frac{4}{t \, n_p} \left(\sum_{i=1}^{\min(d,\hat{d})} \sum_{j=i+1}^m \frac{k_j^2}{|s_i - s_j|} + \sum_{i=\hat{d}}^d \sum_{j=1}^m \frac{k_j^2 s_i}{(s_i - s_j)^2} + \sum_{i=d}^{\hat{d}} \sum_{j=1}^m \frac{k_j^2 s_j}{(s_i - s_j)^2} \right).$$

Tighter bound by:

- rapidly decaying eigenvalues \rightarrow large $|s_i s_j| \ge 0$,
- more pre-training samples n_p .

Loukas, "How close are the eigenvectors of the sample and actual covariance matrices?"

Pre-training the PCA – Numerical results

Pre-training the PCA – Open problem

Aim: Closed form for the risk with pre-training.

Move away from sample complexity towards asymptotic results.

$$ightarrow$$
 Use results for $(\hat{\mathbf{v}}_i^{ op}\mathbf{v}_i)^2
ightarrow egin{dcases} rac{1-\gamma/(\ell_i-1)^2}{1-\gamma/(\ell_i-1)} & ext{for } \ell_i > 1+\sqrt{\gamma} \ 0 & ext{for } \ell_i \in [1,1+\sqrt{\gamma}] \end{cases}$

to quantify asymptotic risk for spiked covariance model

Extensions:

- Use real-world nonlinear data
- Neural networks: multi-layer approaches
- Nonlinear setting: replace PCA with kernel PCA
- Distribution shift between pre-training and training / testing

Paul, "Asymptotics of sample eigenstructure for a large dimensional spiked covariance model".

Supervised case:

- Generalize results from Hastie et al. for direct regression
- Selecting sufficiently large latent dimension \hat{d} is crucial for low risk
- ightarrow formal guarantees for performance of PCA-regression on real-world data structures

Pre-training:

- more pre-training data only help to improve eigenvector estimates
- \bullet certain decay rate α is necessary such that more pre-training data are helpful

Thank you!

Daniel Gedon, Uppsala University

E-mail: daniel.gedon@it.uu.se

Web: dgedon.github.io

Twitter: @danigedon

Supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by Knut and Alice Wallenberg Foundation.