Cálculo de Probabilidades I

Laboratorio 1

Instituto Tecnológico Autónomo de México

David Isaac López Romero

16 de agosto de 2021

1. Introducción

1. **Una integral importante:** Esta integral se relaciona con la distribución Gamma que se ve al final del curso.

Para $r \in \mathbb{Z}^+$ y $\lambda > 0$ pruebe que

$$\int_0^{+\infty} x^r e^{-\lambda x} \, dx = \frac{r!}{\lambda^{r+1}}$$

2. Pruebe para 0 y <math>A > 0

$$\sum_{x=j}^{\infty} Ap^x = \frac{Ap^j}{1-p}$$

3. Pruebe que para 0 se cumple que

$$\sum_{x=0}^{\infty} xp^x = \frac{p}{(1-p)^2}$$

4. Sean A y B subconjuntos de Ω . Demuestre que

$$A \subseteq B \Longleftrightarrow B^c \subseteq A^c$$

5. Demuestre que si A y B son conjuntos, entonces

$$\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$$

6. Demuestre las leyes (o fórmulas) de De Morgan. Si $\{A_i|i\in I\}$ es una colección arbitraria de subconjuntos de Ω , entonces

$$a) \left(\bigcup_{i} A_{i}\right)^{c} = \bigcap_{i} A_{i}^{c}$$

$$b) \left(\bigcap_{i} A_{i}\right)^{c} = \bigcup_{i} A_{i}^{c}$$

- 7. Demuestre que si \mathcal{F} es una σ -álgebra de subconjuntos de Ω si, y solo si, se satisfacen las siguientes propiedades:
 - $a) \emptyset \in \mathcal{F}$

- $b) A \in \mathcal{F} \Longrightarrow A^c \in \mathcal{F}$
- $c) (A_n)_{n=1}^{+\infty} \in \mathcal{F} \Longrightarrow \bigcap_{n=1}^{\infty} A_n \in \mathcal{F}$
- 8. Pruebe que el conjunto potencia de $\Omega \neq \emptyset$ arbitrario es una σ -álgebra.
- 9. Sea $\Omega = \{a, b, c, d\}$ y sean $A = \{a, b\}$ y $B = \{b, c\}$. Defina la familia $\mathcal{A} = \{A, B\}$. Determine si \mathcal{A} es σ -álgebra. Encuentre la mínima σ -álgebra que contiene a \mathcal{A} , que se define por:

$$\sigma\{\mathcal{A}\} = \bigcap_{i} \{\mathcal{F}_{i} | \mathcal{F}_{i} \supset \mathcal{A}\}$$

10. Sean \mathcal{F}_i para $i=1,\ldots,n$ una colección de σ - algebras. Defina a

$$\mathcal{F} = \bigcap_{i=1}^{n} \mathcal{F}_i$$

Pruebe que \mathcal{F} es σ -álgebra.

(Observación: La prueba en versión infinita es análoga.)

- 11. Sean \mathcal{F}_1 y \mathcal{F}_2 dos σ álgebras de subconjuntos de Ω . Pruebe que $\mathcal{F}_1 \cup \mathcal{F}_2$ no necesariamente es una σ -algebra. Para ello considere el espacio $\Omega = \{1, 2, 3\}$ y las σ -álgebras $\mathcal{F}_1 = \{\emptyset, \{1\}, \{2, 3\}, \Omega\}$ y $\mathcal{F}_2 = \{\emptyset, \{1, 2\}, \{3\}, \Omega\}$.
- 12. Sea \mathcal{F} una σ -álgebra de subconjuntos de Ω . Pruebe que la colección $\mathcal{F}^C = \{A^c | A \in \mathcal{F}\}$ es una σ -álgebra. Compruebe que \mathcal{F}^C y \mathcal{F} coinciden.
- 13. (*Opcional:) Sean Ω y Ω' conjuntos arbitrarios y $f:\Omega\to\Omega'$ una función. Si $B\subset\Omega'$, la imagen inversa de B con respecto a f será

$$f^{-1}(B) = \{ \omega \in \Omega | f(\omega) \in B \}$$

Si \mathcal{C} es una familia de subconjuntos Ω' , entonces

$$f^{-1}(\mathcal{C}) = \{ f^{-1}(B) | B \in \mathcal{C} \}$$

Demuestre:

- a) $f^{-1}(\Omega') = \Omega.$
- b) Si B y C son subconjuntos de Ω' entonces $f^{-1}(C-B) = f^{-1}(C) f^{-1}(B)$. En particular, $f^{-1}(B^c) = [f^{-1}(B)]^c y f^{-1}(\emptyset) = \emptyset$.
- c) Si $\{B_i, i \in I\}$ es una familia arbitraria de subconjuntos de Ω' , entonces

$$f^{-1}\Big(\bigcup_i B_i\Big) = \bigcup_i f^{-1}(B_i)$$
 y $f^{-1}\Big(\bigcap_i B_i\Big) = \bigcap f^{-1}(B_i)$

d) Si \mathcal{F}' es una σ -álgebra de Ω' , entonces la familia

$$f^{-1}(\mathcal{F}') = \{ f^{-1}(B) | B \in \mathcal{F}' \}$$

es una σ -álgebra de Ω .