- α) Η ε_1 διέρχεται από την αρχή των αξόνων και από το σημείο $A(3,\sqrt{3})$ ενώ η ε_2 διέρχεται από την αρχή των αξόνων και από το σημείο B(3,3), όπως φαίνεται στο παρακάτω σχήμα.
- β) Η ε_1 έχει συντελεστή διεύθυνσης $\frac{\sqrt{3}}{3}$ οπότε σχηματίζει με τον xx' γωνία 30° , ενώ η ε_2 έχει συντελεστή διεύθυνσης 1, οπότε σχηματίζει με τον xx' γωνία 45° .

γ) Είναι
$$\overrightarrow{OA} = (3, \sqrt{3}), \overrightarrow{OB} = (3, 3)$$
 οπότε $(OAB) = \frac{1}{2} \left| det(\overrightarrow{OA}, \overrightarrow{OB}) \right| = \frac{1}{2} \begin{vmatrix} 3 & \sqrt{3} \\ 3 & 3 \end{vmatrix} = \frac{9 - 3\sqrt{3}}{2}$

τετραγωνικές μονάδες.

δ) Όπως φαίνεται και στο παρακάτω σχήμα η οξεία γωνία που σχηματίζουν οι ευθείες $\varepsilon_1, \varepsilon_2$ είναι η διαφορά των γωνιών που σχηματίζει η κάθε μία από τις $\varepsilon_1, \varepsilon_2$ με τον xx', δηλαδή $45^\circ-30^\circ=15^\circ$. Γνωρίζουμε από τη γεωμετρία ότι $(\mathrm{OAB})=\frac{1}{2}\cdot(\mathrm{OA})\cdot(\mathrm{OB})\cdot\eta\mu15^\circ$, οπότε

$$(OAB) = \frac{1}{2} \cdot (OA) \cdot (OB) \cdot \eta \mu 15^{\circ} \Leftrightarrow$$

$$\frac{9 - 3\sqrt{3}}{2} = \frac{1}{2} \cdot \sqrt{3^{2} + (\sqrt{3})^{2}} \cdot \sqrt{3^{2} + 3^{2}} \cdot \eta \mu 15^{\circ} \Leftrightarrow$$

$$9 - 3\sqrt{3} = \sqrt{12} \cdot \sqrt{18} \cdot \eta \mu 15^{\circ} \Leftrightarrow$$

$$3(3 - \sqrt{3}) = 2\sqrt{3} \cdot 3\sqrt{2} \cdot \eta \mu 15^{\circ} \Leftrightarrow$$

$$\eta \mu 15^{\circ} = \frac{3 - \sqrt{3}}{2 \cdot \sqrt{3} \cdot \sqrt{2}} \Leftrightarrow$$

$$\eta \mu 15^{\circ} = \frac{\sqrt{3}(\sqrt{3} - 1)}{2 \cdot \sqrt{3} \cdot \sqrt{2}} \Leftrightarrow$$

$$\eta \mu 15^{\circ} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$$

