

Surface: Total displacement (µm)

Optimization of Bistable Silicon Photonic MEMS Switch Architectures

■ École Polytechnique Fédérale de Lausanne – Q Lab

Contents

- 1. Introduction
- 2. Current implementation
- 3. Design & Development
- 4. Performance characteristics& Limitations
- 5. Conclusions

1. Introduction

1. Introduction – Optical Switches

- Optical switch: device that switches optical signals between channels.
- Historically using mirrors.
- MEMS are advantageous for their integration capabilities, reliability, and low power consumption.
- Silicon photonic MEMS allows us to use well understood fabrication procedures.
- Exploiting mechanical properties of MEMS, instability under buckling creates 2 stable states: we have created a latching switch.

1.2 Introduction – Scope of the project

- "Silicon Photonic MEMS Switches have recently been shown to be an excellent contender for large-scale photonic integrated circuit switch matrices."
- We want to design and simulate optimized silicon MEMS switch architectures.

2. Current implementation

2.1 Current implementation – Original design

Output Ports

- The original design exhibits bi-axial stress. Leads to instabilities, and torsion.
- Footprint could be reduced.
- Any design must maintain the same optical losses.
- Low-loss crossing is untouched.

The matrix exists on 2 levels (top & bottom)

Strod Honor Ho

2.2 Current design – Optimization criteria

- Uniaxial stress only.
- Smaller footprint.
- Increase switching speed.
- Low losses.
- (optional) all inputs (resp. outputs) on the same side.

3. Design and development

3.1 Design and development - Methodology

- Geometry design on paper.
- 2. Implementation of specific elements using **MATLAB**.
- 3. Verification using KLayout & L-Edit.
- Assembly on L-Edit.
- 5. Simulation on COMSOL.

Design 1 : Linear Coupler

EPFL

3.2 Design and development –

Design 1

 Coupler principle : linear clamped-clamped beam.

- Bottom waveguide is deformed to comply with the geometry.
- We use a Sine-Circle-Sine curve matching strategy.
- Minimum radius of curvature is
 5 um (strip). Curvature is continuous.
- Estimated loss:
 - 0.06 dB/cell (BWG)
 - 0.48 dB/coupler

3.2 Design and development – Design 1 (cont'd)

 Compressive stress of 7.78 MPa is applied.
 Load of 0.27 nN applied.

y z x

- Upwards buckling at critical load factor of λ=1.13.
- Stationary deflection is too small, because the load is small (less than 1 nm).

First buckling mode, critical load factor = 1.13

EPFL

3.2 Design and development – Design 1 alternative

- Using 3rd order Bézier curves
 - The design respects all constraints.
 - However the entire path should be rib waveguides.
 - Coupler length is higher.
 - Estimated loss: 0.05 dB/cell (BWG).

Claudio Jaramili

3.2 Design and development – Design 1 alternative (cont'd)

- We attempt to reduce the overall footprint by changing the orientation of the low-loss crossing.
- The coupler is pushed as close as possible to the crossing.
- Main problem : high optical losses.
- If we try to reduce the bends, we increase the footprint, and stagger the cells : bad design!

EPFL

3.2 Design and development - Design 1 conclusions

- Main limiting parameter is the crossing of both "lobes" on the bottom waveguide. Pushing the drive closer to the low-loss crossing creates an overlap in the lobes.
- A more compact design also interferes with the suspension and the row/column addressing.
- 3rd order Bézier curves provide an **elegant solution** to the problem.
- Main problems : footprint of low loss crossing, optical losses.

Linear design with lobes pushed close together

Design 2 : U-Turn coupler

3.3 Design and development – Design 2

- Coupler principle : suspended U-Turn.
- Bottom waveguide is deformed using sine-circle sine methods.
- MEMS redesigned.
- Minimum radius of curvature is 5 um (strip).
- Estimated loss:
 - 0.13 dB/cell (BWG)
 - 0.52 dB/coupler

3.3 Design and development – Design 2 MEMS redesign

- We remove 2 comb drive actuators and join both inletoutlet together.
- Beam in the middle acts as anti-roll bar.
- The MEMS is already smaller than the crossing.
- Further mechanical simulations could reduce the MEMS mass.

U-Turn coupler with smallest possible radius.

3.2 Design and development – Design (cont'd)

- Compressive stress of 7.78 MPa is applied. Load of 0.27 nN applied.
- Upwards buckling at critical load factor of λ=0.86.
- Stationary deflection is too small.
- Deflection of 150 nm achieved for approx. 100 times the initial load.

First buckling mode, critical load factor = 0.86

3.2 Design and development – Design 2 conclusions

- The geometry is limited by the low-loss crossing.
- We redesigned the comb drives.
- Applied load is **not sufficient** to obtain the required deflection.
- Buckling mode behaviour as expected.
- Highly compact.
- Main problem : high optical losses.

Claudio Jaramillo

Design 3 : Sigmoid Coupler

3.4 Design and development – Design 3

- Coupler principle : suspended logistic sigmoid function.
- Both waveguides are deformed using sine-circle sine methods.
- Minimum radius of curvature is 5 um (strip), obtained via parametrization.
- Estimated loss:
 - 0.08 dB/cell (BWG)
 - 0.54 dB/coupler

3.4 Design and development – Design 3 Coupler

- The sigmoid height is limited by the low-loss crossing (again !).
- A smaller coupler would require a redesign of the BWG: tight turns, high losses.
- Mechanically compromised.

Sigmoid coupler with a height limited by the low-loss crossing.

3.2 Design and development - Design 3 simulations

- Compressive stress of 7.78 MPa is applied. Load of 0.27 nN applied.
- Upwards buckling at critical load factor of $\lambda = 1.23$
- Stationary deflection shows that the design is mechanically unstable.

Surface: Total displacement (µm)

First buckling mode, critical load factor = 1.23

Critical load factor=1.2274

▼ -2.33×10⁻¹

Optimization of Bistable Silicon Photonic MEMS Switch

3.2 Design and development – Design 2 conclusions

- Elegant solution because of the parametrization capabilities.
- The geometry is limited by the low-loss crossing.
- MEMS is thin and long, therefore mechanically unstable, as expected and demonstrated by the FEM simulation.
- Design could be useful for a lower height (approx. 15 um).
- Main problems : high footprint, mechanically unstable MEMS.

4. Performance characteristics & Limitations

4.1 Performance characteristics – Summary

	Linear Design	U-Turn Design	Sigmoid Design
Estimated losses for the BWG [dB]	0.0595	0.1344	0.0845
Estimated losses for the coupler [dB]	0.0167	0.0496	0.0698

Table 1: Estimated optical losses for the 3 designs.

	Linear Coupler	U-Turn Coupler	Sigmoid Coupler
λ : 1st mode	1.135	0.858	1.227
λ : 2nd mode	1.152	1.016	1.281
λ : 3rd mode	1.954	1.118	1.653

Table 2: Summary of the critical load factors λ for each coupler, for the first 3 buckling mode shapes.

4.2 Limitations - Summary

Design size limitations

- Main limitation in the design is the low-loss crossing.
- For all 3 designs it is the limiting factor.
- But, the low-loss crossing cannot be miniaturized : current dimensions minimize cross-talk.

Performance limitations

- Main limitation in performance is the optical loss.
- If BWG's optical losses are in the range of the crossing, then the design is too lossy.
- All designs show high losses because the BWG needs to accommodate small MEMS, and a big LLC.

Final Presentation - Optimization of Bistable Silicon Photonic MEMS Switch Architectures

5. Conclusions

5. Conclusions

- The linear design as the lowest losses, and the simplest MEMS.
- The U-Turn design has the smallest MEMS, the smallest footprint, but the highest losses.
- It is important to keep in mind that the low-loss crossing is the limiting factor for all future work.
- These designs could be used for other projects.

	Pros	Cons
Linear design	Simple MEMS.Lowest optical losses.	Larger footprint.
U-Turn design	Most compact design.Smallest MEMS.	High optical losses.
Sigmoid design	 Low optical loss. Design could be used for other projects. 	 Mechanically unstable. Large footprint.

Thank you for your attention!

Presented by: Claudio Jaramillo claudio.jaramilloconcha@epfl.ch

Supervisor : Dr. Hernán Furci

Responsible: Prof. Dr. Niels Quack