1 特性

可选时间的看门狗定时器

VCC 的降压检测和复位控制

5 种标准的开始复位电压

使用特定的编程顺序即可对低电压检测和复位开始电压进行编程

复位电压可低至 VCC=1V

省电特性

在看门狗打开时 电流小于 50uA

在看门狗关闭时 电流小 10uA

在读操作时 电流小 2mA

不同的型号的器件 其供电电压可以是 1.8-3.6V,2.7V-5.5V,4.5V-5.5V

4K 位 EEPROM 1000000 次的擦写周期

具有数据的块保护功能 可以保护 1/4 1/2 全部的 EEPROM 当然也可以置于不保护状态内建的防误写措施

用指令允许写操作

写保护引脚

时钟可达 3.3M

短的编程时间

16字节的页写模式

写时由器件内部自动完成

典型的器件写周期为 5ms

2 功能描述

本器件将四种功能合于一体 上电复位控制 看门狗定时器 降压管理以及具有块保护功能的串行 EEPROM 它有助于简化应用系统的设计 减少印制板的占用面积 提高可靠性

该芯片内的串行 EEPROM 是具有 Xicor 公司的块锁保护 CMOS 串行 EEPROM 它被组织成 8 位的结构 它由一个由四线构成的 SPI 总线方式进行操作 其擦写周期至少有 1000000 次 并且写好的数据能够保存 100 年

3 操作方法

上电复位

当器件通电并超过 V_{TRIP} 时 X5045 内部的复位电路将 会提供一个约为 200MS 的复位脉冲 让微处理器能够正常 复位

降压检测

工作过程中 X5045 监测 Vcc 端的电压下降 并且在 VCC 电压跌落到 V_{TRIP} 以下时会产生一个复位脉冲 这个 复位脉冲一直有效 直到 VCC 降到 1V 以下 如果 V_{CC} 在 降落到 V_{TRIP} 后上升 则在 V_{CC} 超过 V_{TRIP} 后延时约 200ms 复位信号消失 使得微处理器可以继 续工作

引脚	名称	功能描述			
1		芯片选择输入 当CS是高电平时 芯片未选中 并将SO置为高阻态 器件			
	CS /WDI	处于标准的功耗模式。除非一个向非易失单元写的周期开始。在CS是高电			
		平时 将CS拉低将使器件处于选择状态 器件将工作于工作功耗状态 在			
		上电后任何操作之前 CS必须要有一个高变低的过程			
		看门狗输入 在看门狗定时器超时并产生复位之前 一个加在 WDI 引脚上			
		的由高到低的电平变化将复位看门狗定时器			
2	SO	串行输出 SO 是一个推/拉串行数据输出引脚 在读数据时 数据在 SCK			
		脉冲的下降沿由这个引脚送出			
3	WP	写保护 当WP引脚是低电平时 向X5045中写的操作被禁止 但是其它的			
		功能正常 当引脚是高电平时 所有操作正常 包括写操作 如果在CS是			
		低的时候 WP变为低电平 则会中断向X5045中写的操作 但是 如果此			
		时内部的非易失性写周期已经初始化了 WP变为低电平不起作用			
4	VSS	地			
5	SI	串行输入 SI是串行数据输入端 指令码 地址 数据都通过这个引脚进行			
		输入 在SCK的上升沿进行数据的输入 并且高位 MSB 在前			
6	SCK	串行时钟 串行时钟的上升沿通过 SI 引脚进行数据的输入 下降沿通过 SO			
		引脚进行数据的输出			
7	RESET	复位输出 RESET 是一个开漏型输出引脚 只要 Vcc 下降到最小允许 Vcc			
		值 这个引脚就会输出高电平 一直到 Vcc 上升超过最小允许值之后 200ms			
		同时它也受看门狗定时器控制 只要看门狗处于激活状态 并且 WDI 引脚			
		上电平保持为高或者为低超过了定时的时间 就会产生复位信号 CS 引脚			
		上的一个下降沿将会复位看门狗定时器 由于这是一个开漏型的输出引脚			
		所以在使用时必须接上拉电阻			
8	VCC	正电源			

看门狗定时器

看门狗定时器电路监测 WDI 的输入来判断微处理器是否工作正常 在设定的定时时间以内 微处理器必须在 WDI 引脚上产生一个由高到低的电平的变化 否则 X5045 将产生一个复位信号 在 X5045 内部的一个控制寄存器中有 2 位可编程位决定了定时周期的长短 微处理器可以通过指 令来改变这两个位从而改变看门狗定时时间的长短

SPI 串行编程 EEPROM

芯片控制的指令被组织成一个字节 8bit 这些命令中有两条只要直接将指令代码写入芯片即可 有两条读指令用于初始化输出数据 其它的指令 还需要一个8位的地址以及相关的数据 所有指令见于下表 它们都是通过 SPI 串行总线来写入器件的 所有指令 地址 数据都是 MSB 先写

指令名称	指令格式	完成的操作
WREN	0000 0110	写允许
WRDI	0000 0100	写禁止
RSDR	0000 0101	读状态寄存器
WRSR	0000 0001	写状态寄存器 看门狗和块锁定
READ	0000 A ₈ 011	从选定的开始地址单元中读数据
WRITE	0000 A ₈ 011	向选定的开始地址单元写入数据 1-16 字节

写允许

在器件进行写操作之前 首先必须设置写操作指令 WREN 指令允许进行写操作 而 WRDI 将禁止写操作 在器件复位后将自动禁止写操作 而一旦对器件写入一个字节 一页或写入状态 寄存器后也将自动处于写禁止状态 在 WP 引脚接地后也会使器件处理写禁止状态

在写了 WREN WRDI RSDR 和WRSR 指令后不需要在后跟上一个地址或一个数据状态寄存器

状态寄存器由4个非断电不会丢失的 控制位和2个断电即消失的状态位组成 控制位用于设置看门狗定时器的溢出时 间和存储器块保护区 状态寄存器的格式 见下面的表格

状态寄存器 缺省值是 00H

7	6	5	4	3	2	1	0
0	0	WD1	WD0	BL1	BL0	WEL	WIP

WIP是一个易失性的只读位 在片内编程时 它指示出器件 忙 这一位可以用RDSR指令读出 当读出的这一位是 1 则表示内部正在进行写操作 如果是 0 表示内部没有进行写操作

WEL是一个易失性位 当该位为 1 时表示芯片处于写允许状态 而该位是 0 则代表芯片处于写禁止状态 WEL也是一个只读位 指令WREN将使WEL变为 1 而指令WRDS则将这位变为 0

块锁定位BL0和BL1用于设置块保护的层次 这个非易失性的位通过WRSR指令来编程 通过 这两位的设置 可以使存储器的1/4 1/2 全部都处于写保护状态 当然也可以全部都不处于写保护状态 具体的设置看下面的表格

看门狗定时器控制位 WD0和WD1 用于选择看门狗的定时溢出时间 具体的情况看下面的 表格 这两个非易失位通过WRSR指令进行编程

读状态寄存器

状态寄存器位		看门狗定时溢出时间
WD1	WD0	X5045/X5043
0	0	1 4秒
0	1	600毫秒
1	0	200毫秒
1	1	禁止

状态智	寄存器位	保护的地址空间
BL1	BL0	X5045/X5043
0	0	不保护
0	1	\$180H-\$1FFH
1	0	\$100H-\$1FFH
1	1	\$000H-\$1FFH

要读状态寄器 首先将CS接地以选择该器件 然后送一个8位的RDSR指令 然后状态寄存器的内容就通过SD0线进行输出 当然必须要有相应的时钟加到SCK线上 图6给出了读状态寄存器的时序 状态寄存器可以在任何时候被读出 即使是在EEPROM内部的写周期内也可以读出写状态寄存器

要将数据写入状态寄存器 首先必须用WREN命令将WEL置为 1 首先将CS接低电平以选中该器件 然后写入WREN指令 接着将CS拉至高电平 然后再次将CS接低电平 接着写入WRSR指令 跟着写入8位数据 这个8位数据就是相应的寄存器中的内容 写入结束后必须将CS拉至高电平 如果CS没有在WREN和WRSR期间变高 则WRSR指令将被忽略

读存储器内容

要读存储器的内容 首先将CS拉低以选中该器件 然后将8位的读指令送到器件中去 跟着送8位的地址 读指令的位3用于选择存储器的上半区或下半区 在读操作码和地址发送完毕后所选中的地址单元的数据通过SD0线送出 在读完这一字节后 如果继续提供时钟脉冲 则这一地址单元的下一个单元的数据将会被顺序读出 地址将会自动地增加到 当到达最高地址之后地址将会回绕到\$000H单元 读周期在CS变为高电平后中止

写存储器内容

要写存储器内容 WEL位必须通过WREN指令置为 1 先将CS拉低 将WREN指令送入器件 然后将CS拉高 然后再次将CS拉低 随后写入WRITE指令并跟随8位的地址 WRITE指令的位3用于选择存储器的上半区和下半区 如果CS没有在WREN和WRITE指令之间变为高电平则WRITE指令被忽略

写操作至少需要24个时钟周期 CS必须拉低并在操作期间保持低电平 主控机可以连续写入 16个字节的数据 限制是这16个字节必须写入同一页 一页的地址开始于地址[X XXXX 0000]结束于地址[X XXXX 1111] 如果待写入的字节地址已到达一页的最后 而时钟还继续存在 由计数 器将回绕到该页的第一个地址并覆盖前面所写的内容

在进行写操作 字节或页写 完成时 CS必须在最后一个待写入字节的位0被写入之后拉至 高电平 在任何其它时候将CS变为高电平 写操作都没有完成

在一次写状态寄存器的操作或写存储器的操作之后做写入的操作 必须首先读状态寄存器并 检查WIP位 如果WIP位是高说明正在进行内部的写操作

注意点

上电复位后的状态如下

器件处于低功耗状态

要使器件进入激活状态或接受一条指令 则一次加在CS上的由高到低的变化是必须的

S0引脚处于高阻状态

处于写禁止状态

标志位的状态是 0

复位时间是tpurst