Hausdorff-Raum, und seien V_n , $n \in \mathbb{N}$, offene dichte Teilmengen von X. Dann ist auch $\bigcap_{n \in \mathbb{N}} V_n$ dicht in Orienfrerung am Beweis von Sah 4.1.1. Sei W eine middlere, offene Teilmenge von X instablin: ·) Ix & Wn V1 , weil V diche in X ret also V1 n W 7 0 weiley if Wn V, als Schnight were offen Menger offen also Ungelring von x, es gild also Umgelring K, van x, mil Kn = Wn Vy und K 1 brompolet, weil ja (X, T) lokalhampolet ist ·) La mm n > 1 und seien Xn-2, Kn-2 lereits definient de Kn-, Umgelung van Xn-, if gill es Un-, Ekn-, aften min Xn-, EUn-, da Vnolich in X in gill Vn n Un- 7 # 0 effen => 3 × n & Vn n Un- 1 wood Kn hompolike Vnogeling von Xn mil Kn E Vn n Kn-1 the ist (xn)neN eine Tolge in K1, olds kommatt ist. Um gibt es eine Teilfolge (xi); es mit I = N , se gegen en X E K, howeverer Logh Kallenlick Prop. 12. 11.2) Se our le EN bel. donn ist (xi) i EI eine Folge in Ke und da (X, T) harardayf ist, zil Ku obgeschlossen (vgl. Kollenlink Lemma 12.11.2). Die Folge (Xi)iet honvergiert gegen X olso ich nach Kallenläche Progr. 12. 2.7. XEKR = Kla da le EN bel. war gill x e n Kn & Wn n Vn slow Wn N Vn # D

03/1: Ein topologischer Raum heißt lokalkompakt, wenn jeder Punkt eine Umgebungsbasis aus kompak-

ten Mengen besitzt. Zeige die folgende Version des Satzes von Baire: Sei (X,\mathcal{T}) ein lokalkompakter

03/2: Sei $(X, \|.\|)$ ein Banachraum. Zeige, dass die Mächtigkeit einer algebraischen Basis von X als \mathbb{C} -Vektorraum entweder endlich oder überabzählbar ist. *Hinweis.* Zeige, dass ein linearer Teilraum $Y \subseteq X$ keinen inneren Punkt hat. Sei Oleo V = X linearer Teilraum und sei (bj) jej Bagy von V und (bi) i Et olie Erwiterung Eu errer Bress von X, wobei hEI/ bas er siber zill weil 1 7 X Wille nun beliefige Willemgebung U in X. Da U Willemgebung ist folgt, dass es alsortianed ist, ofer gibles teR+ mit tbe EU, olen tbu # K ockso U \$ K cand olan U bel. won int O nicht minerer Puntet von V. Da Transloction ein Homoonoghinny ist hat V keinen mieren Punket Nehmen vir run om X hal eine alsählbore Bacis (bn) new Sa (Ma) new eine Abzählung aller endl. Telmengen von N (sind die endl. Terkmingen obsählber ? and sei Ke := span [b. | i & Me } und Vi := Vi Sei x ∈ X bel. mil x = ∑ex αnb, wober V n ∈ N: αn = 0 also Ile N: X & le = X & Ve = X & MVn mod weil x lel. won 1 Vn = 10 alen: ·) l & N hol. und W bel. offene middleere Teilmenge von X. Da Ve beine mineren Rumble beeitht gill & # VenW = VenW und da Whel. war ill Ve dish also the N: Vn = X ·) Fin alle ne V ist Vn ale endlichding, Teilraum nach Ed 2.2.1 (ii) obg. oles Vn offen Nach dem Sols von Baire Br. Korollon 4, 1.2 ill No # D 4

	_		,	D ei	urc ne (hsc dicl	hn hte	$\frac{1}{G}$	$_{\delta}$ -M	n a' Ieng	bzä ge i	ihll ist.	bar	vie	elei	n c	lich	iter	1 <i>G</i>	δ_{δ} -1	Иer	ige:	n e	eine	es v	oll	stä	ndi	gen	m	etr	iscl	nen	R	laui	ge, d mes	W			
	<u></u>		/ 1		00.	,								_	12		Α/	_	14			(_	11	,		-	,	11			2				. Sei	+	+		
_	(/	× ,	a()	100	uq	. n	nes	2.	Rau	m	N	md	ser		7	ne	ΛV	= ,	Mn	e	ml	U	б	JV 4	ing	l	m	. ,	v_{l_n}	= e	()	Pne	2	-	und	tein	en	+	+	
			. /		11.	Л	1	1.	M	1	λ.																			1/2	e W						-	+		
																															-						+	+		
		\cap	M			1	\wedge	P	h =	_ /	\wedge	P			,		, ,		·	1		D	_	L			./.	1	,		. ,	1	0		110		+	+		
_		l 1 he (y	'n		/ h∈	N 1	(1 RGA	1 1	r -	· (n	ilse X	ر ا /ه×۷	1 K	Ų	Ln	~W	h d	lm	ba	4 1	nen	Ιά	Иl	9,	7,1	,	θU	vw	/	w	n	vie	r _n .	h t	Men		+	+		
			1 100	امرا	1.	0	0 -		ż			d	/	10	/	1.		1/	1	~ Y)	_	, -	11													+	+		
		m)(-0-1	,	aus .	Ų	ver	mer	rgl	U	m	, ju	wi	un	JU	Un	fin	JV	h -	۱ ک	Nn	e)	N	WL	•												+	+		
																															+						+	+		
																																					+	+		
																																						\top		
																																					\top	\top		
																															_						_	_		
																															_						_	_		
																															_						_	_		
																															_						_	_		
																															_						+	+		
																															\dashv						+	+		
																															+						+	+		
																															+						+	+		
																																						T		
																															_						_	_		
																															_						+	+		
									-	\vdash																					\dashv	_	-				+	+	-	
									-	\dashv																					\dashv		+				+	+	+	
																															+						+	+		
																															+						+	+		
																															+						+	+		
																															_						_	_		
																															_						_	_		
																															_						+	+		
									-	\dashv																				+	\dashv		+				+	+		
																															+		+				+	+		
																															+		+				+	+		
																																						+		
																															+		+				+	+		

03/4:*Sei $f: \mathbb{R} \to \mathbb{R}$. Zeige, dass die Menge aller Punkte $x \in \mathbb{R}$ an denen f stetig ist eine G_{δ} -Menge ist. $M:=\{x\in\mathbb{R}\mid \forall \xi\in\mathbb{R}^+\mid \exists\,\delta\in\mathbb{R}^+:\ \forall\,\xi\in\mathbb{R}:\ |\xi-x|<\delta=\}\ |\{(\xi)-\xi(x)|<\varepsilon\}$ Sin (En) new eine Mullage aus R+ VNE N: Un: = 6×6 R | 30 € R+ : FE € R: 16-×1<0 => 10(E)-1(X) < En} ε < 1 + lel., do εn > 0 = 3 le < N: εle ≤ ε mo 3 σ6 ∈ R+: 4 t ∈ R: 1t - x < σ1 => 1/(ε) - 1/(ε) < ε = ε =) VEER+; 3 deR+. YEER: 1+x < 0 => 1/16)-1(x)(28 => ye M ·) ser ungekehrt y & M lel- und k & N bel 35 € R+: YE € R; E-4 (5=) 11(E)-1(x) (< 2 withle z & W:= &x & N: |x-4 (4 5 3 bel. ∀t ∈ {x∈M: |x-2| < \frac{\display}{2} \display \dinploy \dinploy \display \display \display \display \display \display \display $|f(t) - f(t)| \le |f(t) - f(y)| + |f(y) - f(t)| < \frac{\xi_u}{t} + \frac{\xi_u}{t} = \xi_k =) \ge \epsilon U_b$ und dri 2 & Whel. wor will W & U & mol Will offer mil y & W also y & U is and wed be Whel win gill y & now moldonial ME new Un Insgesomt: M= NVn was date in Neine Go Menge.

03/5:*Zeige, dass es keine Funktion $f: \mathbb{R} \to \mathbb{R}$ gibt die an allen rationalen Punkten stetig aber an allen irrationalen Punkten unstetig ist. Finde eine Funktion $f: \mathbb{R} \to \mathbb{R}$ die an allen irrationalen Punkten stetig aber an allen rationalen Punkten unstetig ist.

Hinweis. Ist die Teilmenge \mathbb{Q} von \mathbb{R} (welche ja dicht liegt) eine G_{δ} -Menge?

Ang. Q ist Go - Mange RIQ = 1 R1693 ist Go - Menge uno Cichel . Q ist of del now suppose 3/3 ist Qn(RQ) olichle Gr-Minge, ober Qn(RQ) = 0 3 Also ist Q keine Gg - Menge Ang. 3 f: 1R -> 1R: first stelig and R und unstelig and IR Q wach Augabe 3/4 ist Q Gg - Minge & Also gill er so ein f nicht $f: \mathbb{R} \to \mathbb{R}: \begin{cases} \frac{p}{q} \mapsto \frac{1}{q}, \text{ falls } f \in \mathbb{R} \\ \times \mapsto O, \text{ falls } \times \in \mathbb{R} \setminus \mathbb{R} \end{cases}$ ·1×c/R\Q bel Vx∈R Vε∈R+: | { q ∈ Q: f ∈ U_ε(x) } / (∞ wegen | q - p+1 | = 1/9 An gill dann ∀y∈ (10 (x) 1 f(y) - f(x) = 1/(y) (€ ·) x e Q X = 19 04/1: Sei X ein Banachraum, und seien M,N zwei abgeschlossene lineare Teilräume von X mit

$$M + N = X, \ M \cap N = \{0\}.$$

Es sind M und N mit der von X vererbten Norm selbst normierte Räume, also können wir den Produktraum $M \times N$ mit der Summennorm betrachten. Zeige, dass die Abbildung

$$\varphi: \left\{ \begin{array}{ccc} M\times N & \to & X \\ (m,n) & \mapsto & m+n \end{array} \right.$$

$\varphi \cdot (m,n) \mapsto m+n$	+
ein linearer Homöomorphismus ist.	
1), Injektivital": $Q(m,n) = Q(p,q) = m+n = p+q = m-p = q-n$, when $m-p \in Munol q-n \in N$, where $m-p \in M$ and $m-p \in M$ and $m-p \in M$ and $m-p \in M$ and $m-p \in M$	eil
M, N lineare Teilroutine sinot. Also gill $m-p=q-n \in N \Rightarrow m-p \in N \cap M \Rightarrow m-p=0 \Rightarrow m-p$	
$q-n=m-p\in n=)$ $q-n\in M\cap N=) q-n=0=) q=n$	
2) Sayiphivirhin': XEX bel wegen M+N=X=> 3 meM, neN: m+n=x >> y (m,n)=x	
3) " dinearitan" $\varphi((m,n) + \alpha(p,q)) = \varphi(m+\alpha p, n+\alpha q) = m+\alpha p + n+\alpha q = (m+n) + \alpha(p+q) = \varphi(m,n) + \alpha(p,q)$	
4), Seligheir": Noch Proposition 7.4.5- (i) in die von der Summermorm aseugle Topologie glaich der	
Problem Mapadage Thellax Thell	
North Sole 1.2.1: (1/m) (N, 11.11) (1/m) (N, 11.11) (1/m) (N, 11.11) (1/m) (N, 11.11)	
(Stelij &) TC7 of Stolig 1 Tick Stolig	
und The of = (10 Th) which states	
The ol = le v Ti n stering was in a Steling wood old X als Barrachnaum inches. TVR ist, willen w	zi
Ψ: X×X →X: (x, q) → x+y Merig also auch Ψ OL und es ist & = Ψ ol alw ist auch & stelig	
Do M, Waly brieve TR von X sind und X Barrachraum, sand and (M, 11.11m) und (M, 11.11m)	
nach Prop. 2. 4. 4. (ii) Bonachianne and noch Prop. 2.4.5 also auch MXN.	
Ensonwerenbessend sind also MXN und X Banadránune sourie Q: MXN -> X linear, bijetilis und	
delig, with Korollar 4-3.4- it and 4-7 delig also 4 ein lineares Hornoomarshimmy.	
	+

04/2: Sei Ω eine Menge, und X ein linearer Raum dessen Elemente Funktionen von Ω nach $\mathbb C$ sind und dessen lineare Operationen durch punktweise Addition und skalare Multiplikation gegeben sind. Für $w \in \Omega$ bezeichne mit $\chi_w:X\to\mathbb{C}$ das Punktauswertungsfunktional

$$\chi_w(f) := f(w), \quad f \in X.$$

Dann ist χ_w linear. Zeige, dass es (bis auf Äquivalenz der Normen) höchstens eine Norm $\|.\|$ auf Xgeben kann, sodass $(X, \|.\|)$ ein Banachraum ist und alle Punktauswertungsfunktionale bzgl. $\|.\|$ stetig

i	Hinweis.	Wende	den S	Satz vo	om ab	ogescl	nlosse	enen	Gr	aphe	n au	f die	ide	ntisc	he A	\bb	ildu	ing a	n.	l l	ı	ı		
X = { f:	Ω → C	}																						
Ang. es o	jebl zwei	Norw	ren 11	'. (₁	11.112	50	, da	U	(X	, [(-1	(1)	ens (((<i>x</i>	ζ, ΙΙ·	·11z)	R	m	ach	".dm	e G	nol r	mol		
alle Punh	lauguertu	ngslum	bhon	ale:	χω	brief	V. 11	1.117	ls	w.	11.1	72	Sel	rig	Imo	(.								
Behaeme	den Gr	apphen	von	id	: X -	-> <i>)</i>	Χ,	no	:1-	€(,	c, f)	εX×,	X }) w	stei	u	'n,	X×	X.	mil				
olen Produ	Melopolo	rgie 7	• X	T _{11.11}	ve	rsehi	m , 1	webe	i e	s na	els	Prop	W. 2	2.4,	5.	eine	Л	lorm	.	ρ	gib	7		
mil T11-110	= (11-11-11-11-11-11-11-11-11-11-11-11-11-	× (/.//,	un	01 (>	<×X	, 1(-1	(_p)	B	mal	lvra	wy		Sei n	un	(f	f, f) ∈	iol	- 11. 11 _p	be	el.			
(C111)	(7)	_	Ψ,	Ų	1		, \	1	7 (\^/	10 11 1 d													
(C,111) Th	- (0×0, C,	·1×[1·1)	Xw		(XXX	7 11.11	(P) -	II 2) E	X/11	· // _L)													
Yw : XxX																								
-1/6	1. Ch	\ - C	()		/1 7	1	- Ψ	' [0) _	(x	101 -			()	c. 1	011	- [[,	- () ,	12.					
Yw-1 (£(2,2)	17€ US,										'													
		= { (;	(, €) ∈	X x X	1 7 5	ϵU	, 1 (1	w) =	9(1	w)=.	₹ 5 -	- 4 (1,9.) E >	(xX	1//	w) `	=g(u	v) j					
XwoTT1 W	nol Xi	r OTT 2	Ino.	nac	h 1	brou	vselv	uref	gli	Nig	ala	ano	h	17,	0	Yu	,= ,	X w	UIT 1	Ln	nel IT	104	/n = X	'n 071
und mich																								
und oly U.									'															
4-1 (D).						'																		
= L (f, g)													ľ	`				ine	as	ech				
lineas igi																					il.			
Da Neine des																						hiem	Ø	
⇒ × ₁																								//,
	io(-7 (-1																							
=> 1·11																								
									-								_				_	\perp		+

