Divide and Conquer 2

Lecture 3

Timothy Kim GWU CSCI 6212

Practice Question

 Given the following recurrence, find a f(n) such that T(n) becomes O(log n)

$$T(n) = 2T(\frac{n}{2}) + f(n)$$

Quick Review

- Binary Search Tree
 - Operations and their running time
- Merge Sort
 - Analysis via recurrence tree
- Master Method
 - · Proof and implication it has on divide and conquer algorithm design.

Today

- Quick Sort
 - Description
 - Proof of correctness
 - Analysis
 - Random Pivot Selection
 - Deterministic Pivot Selection
- Matrix Multiplication (if time provides)

Sorting Problem

- Input: array of n numbers
- Output: array of same n numbers, placed in increasing order
- · Assumption: all numbers are unique

Quick Sort

- Used a lot in practice
- O(n log n) on average
- In place sort (minimal memory needed)
- My favorite algorithm (beautiful analysis)

Partitioning

Pick a pivot

4	6	8	1	3	7	2	5
---	---	---	---	---	---	---	---

Partitioning

Pick a pivot

Partitioning

Pick a pivot

Rearrange

less than four

greater than four

Partition Subroutine

- Places pivot in this correct location
- Running time?
- Reduces the problem size (divide and conquer)

Partition (naive)

```
1. Partition(A, pivot):

    Running Time?

   L = \lceil \rceil
                                       • O(n)
G = \begin{bmatrix} 1 \end{bmatrix}
4. for x in A:
                                     Space?
5. if x < pivot:
                                       • O(n)
          L = L + X
7. else if x > pivot:
      G = G + X
8.
    return L + pivot + G
```

Partition (in place) Example

1. Partition(A, begin, end): • Assumption: pivot is in the first position

Partition (in place)

```
    Partition(A, begin, end):
    pivotIndex = ChoosePivot(A, begin, end)
    pivot = A[pivotIndex]
    swap A[begin] with A[pivotIndex]
    //Rest for Homework
```

Quick Sort (naive)

```
    QuickSort(A):
    p = ChoosePivot(A)
    S1, S2 = Partition(A, p)
    return QuickSort(S1) + p + QuickSort(S2)
```

Quick Sort (in place)

```
    QuickSort(A, begin, end):
    if begin < end:</li>
    p = Partition(A, begin, end)
    QuickSort(A, begin, p - 1)
    QuickSort(A, p + 1, end)
```

// Call
 QuickSort(A, 1, |A|)

Quick Sort Proof of Correctness

- QuickSort correctly sorts all possible input array of length n
 - (No matter how pivot is chosen)
- Proof by induction

Proof by Induction

- · Given P(n) (a statement parameterized by n)
- Claim: P(n) holds true for all possible value of n > 0
 - 1. Base Case: First prove P(1) is true
 - 2. Inductive Hypothesis:

Assume P(n) is true for all values of n leading up to k $P(1) \dots P(k)$

3. Inductive Case: Prove P(k + 1) is true.

Proof by Induction of QS

- P(n) = QuickSort correctly sorts all possible input array of length n
- Claim: P(n) is true for all values of n > 0
- Base Case:
 - P(1) = QuickSort correctly sorts input array of length 1
- Inductive Hypothesis:
 - Assume $P(1) \sim P(k)$ holds true
- Inductive Case:
 - Prove P(k + 1) holds true

Inductive Case

- Prove P(k + 1) is true:
 - Note, QuickSort partitions input array around a pivot.

$$S_1 = \{ \text{ elements}
$$S_2 = \{ \text{ elements} > p \}$$$$

- Pivot is in the right place
- $k_1 = \text{size of } S_1 < k + 1$
 - Thus $P(k_1)$ must be true, that is S_1 is sorted (by Inductive Hypothesis)
- $k_2 = size of S_2 < k + 1$
 - Thus P(k₂) must be true, that is S₂ is sorted (by Inductive Hypothesis)
- · QED

Quick Sort Analysis

```
    QS(A):
    p = ChoosePivot(A)
    S1, S2 = Partition(A, p)
    return QS(S1) + p + QS(S2)

T(n)

??

O(n)

T(??) + T(??)
```

- The recurrence is T(n) = T(l) + T(m) + O(n) + f(n)
- Master Method doesn't work!
- Size of S1 and S2 depends on the ChoosePivot subroutine
- Let's think about best case and worst case

Worst Case pivot selection

- Recall QS's running time: T(n) = T(l) + T(m) + O(n) + f(n)
- What if every time we selected a pivot, the division looked like this:

$$l = 0$$

 $m = n-1$
 $T(m) = (n-1) + (n-2) + ... + 1 = \frac{n(n+1)}{2} - n = O(n^2)$

- · That means, pivot was selected in sorted order.
- Finally $T(n) = O(n^2)$
- Can you think of a pivot selection algorithm that produces this case?

Naive Pivot Selection

```
    ChoosePivot(A):
    return A[1]
```

Best case pivot selection

- Recall QS's running time: T(n) = T(l) + T(m) + O(n) + f(n)
- What if l=m and f(n)=O(n) ?
- Then our running time becomes $T(n) = 2T(\frac{n}{2}) + O(n)$
- Using master method: $T(n) = 2T(\frac{n}{2}) + O(n) = O(n \log n)$
- But how?

Random Pivot Selection

```
    ChoosePivot(A):
    r = random(1, |A|)
    return A[r]
```

Random QuickSort Analysis

· Claim:

 For all input array of length n, the average running time of QuickSort with random pivot selection is O(n log n)

Probability Ideas

- Sample Spaces
- Events
- Random Variables
- Expected Values
- Linearity of Expectation

Sample Space

- Ω = All possible outcomes of a randomness (often finite)
- Given $i \in \Omega$, $P(i) \ge 0$
- Constraint $\sum_{i \in \Omega} P(i) = 1$
- Example: Rolling 2 dice
 - $\Omega = \{ (1,1), (2,1), (3,1), \dots (5,6), (6,6) \}$
 - Where P(i) = 1/36 for all $i \in \Omega$

Event

- Event is a subset of sample space.
 - $S \subseteq \Omega$

$$P(S) = \sum_{i \in S} P(i) = 1$$

- Example: set of outcomes for which the sum of two dice is 7
 - $S = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$
 - P(S) = ?

Random Variables

- Random variable is a function that maps sample space to a real-value.
 - ullet $X:\Omega o\mathbb{R}$
- Example:
 - Sum of two dice

Expected Value

- Let X be a random variable
- Expected value or expectation of X is just a average value of X

$$E[X] = \sum_{i \in \Omega} X(i) \cdot P(i)$$

- Example: X = Sum of two dice
 - What is E[X]?

Linearity of Expectation

• Claim:

Given X_1, \ldots, X_n random variables over Ω :

$$E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i]$$

• Dice Example: if X_1 , X_2 = two dice

$$E[X_i] = 1/6 (1+2+3+4+5+6) = 3.5$$

 $E[X_1+X_2] = E[X_1]+E[X_2] = 3.5+3.5=7$

Proof Setup

- Fix an input array A of length n
- Pivot Sequence σ = list of random pivots chosen by running QS with A
- Sample Space: Ω = set of all possible pivot sequences
- Random Variable:

$$\sigma \in \Omega$$

 $C(\sigma)$ = number of comparison made by QS given σ

· Why do we care about number of comparisons?

Lemma

- Running time of QuickSort dominated by comparisons
- More formally

$$\exists c \mid \forall \sigma \in \Omega, T(\sigma) \leq c \cdot C(\sigma)$$

 Most of the work is done during partition, all it does is just compares elements and swaps.

New Goal

 Average Running time of Randomized QuickSort is determined by expected value of the random variable C, number of comparisons done by QuickSort.

$$T(n) = E[C] = O(n \log n)$$

But what is the value of C?

Random Variable Decomposition

We'll look at a smaller random variable

```
A = \text{fixed input array}
\Omega = \text{set of all possible pivot sequence}
\sigma \in \Omega
z_i = i^{\text{th}} \text{ smallest element of } A
X_{ij}(\sigma) = \text{number of times } z_i, z_j \text{ get compared } \mid i < j
```

 Given any two element in A, how many times can they be compared to each other?

$$X_{ij}(\sigma) = [0,1] = \text{indicator random variable}$$

Random Variable Decomposition

$$C(\sigma)$$
 = number of comparisons between input elements $X_{ij}(\sigma)$ = number of comparisons between z_i and z_j

$$\forall \sigma, C(\sigma) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}(\sigma)$$

$$E[C] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]$$

note:
$$E[X_{ij}] = 0 \cdot P(X_{ij} = 0) + 1 \cdot P(X_{ij} = 1) = P(X_{ij} = 1)$$

$$E[C] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} P(X_{ij} = 1, z_i \text{ and } z_j \text{ get compared})$$

What is the probability?

claim:
$$\forall i < j, P(X_{ij} = 1) = \frac{2}{j - i + 1}$$

fix $z_i, z_j \mid i < j$ consider $S = \{z_i, z_{i+1}, ..., z_{j-1}, z_j\}$

- If pivot choice is not in S, then S get passed down the recursive call
- If pivot is chosen from S,
 - 1. If z_i or z_j gets chosen, then z_i and z_j gets compared
 - 2. If z_{i+1}, \ldots , or z_{j-1} gets chosen, then z_i and z_j never gets compared
- Since pivots are chosen uniformly at random, all elements in S is equally likely

$$P(X_{ij} = 1) = \frac{\text{choices that lead to } z_i \text{ and } z_j \text{ gets compared}}{\text{total number of choices}} = \frac{2}{j - i + 1}$$

New Goal

$$E[C] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} P(X_{ij} = 1, z_i \text{ and } z_j \text{ get compared})$$

$$P(X_{ij} = 1) = \frac{2}{j - i + 1}$$

$$E[C] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \stackrel{?}{=} O(n \log n)$$

Proof

$$E[C] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \stackrel{?}{=} O(n \log n)$$

$$= 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j-i+1} \le 2 \cdot n \cdot \sum_{k=2}^{n} \frac{1}{k}$$

For each fixed i

$$\sum_{i=i+1}^{n} \frac{1}{j-i+1} \le \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

Let's finish the proof

$$E[C] \le 2n \sum_{k=2}^{n} \frac{1}{k}$$

$$\leq 2n \int_{2}^{n} \frac{1}{x} dx$$

$$\leq 2n \int_{0}^{\pi} \frac{1}{x} dx = 2n \cdot \ln x |_{1}^{n} = 2n \cdot (\ln n - \ln 1) = O(n \log n)$$

Deterministic QuickSort

- ChoosePivot subroutine must be updated without random call.
- What is the best pivot selection?
- How can we pick the median?

Naive Median Selection

```
    Median(A):
    S = sort(A)
    middle = |S|/2
    return S[middle]
```

What's wrong with this?

Randomized Selection

1. Select(A, n, i): · Homework

Deterministic Selection

```
1. Select(A, n, i):
2. split A in to group of 5
3. sort each group
4. C = array of 3rd element in each group (median array)
5. p = Select(C, n/5, n/10) (median of median)
6. Partition(A, p)
7. j = location of p after partition
8. if (i = j) return p
     if (j < i) return Select(A[1...j-1], j-1, i)
9.
               return Select(A[j+1, n], n-j, i-j)
    else
10.
```

Running Time of Deterministic Selection

```
1. Select(A, n, i):
     split A in to group of 5
                                                 2. O(n)
3. sort each group
                                                  3. O(n)
4. C = array of 3rd element in each group
                                                 4. O(n)
5. p = Select(C, n/5, n/10)
                                                  5. T(n/5)
                                                  6. O(n)
6.
     Partition(A, p)
                                                 7. 0(1)
     j = location of p after partition
     if (i = j) return p
8.
     if (j < i) return Select(first section)</pre>
                                                 9.0(?)
               return Select(second section)
     else
```

Running time of Selection

$$T(n) = O(n) + T(n/5) + T(x)$$

- Claim: $x \le n \frac{7}{10}$
- In other words, our median of median will cause a partition of our array to be at best 30:70 split.
- Visual proof of the claim

Visual Proof Idea

Finish the proof

$$T(n) \le O(n) + T(\frac{n}{5}) + T(\frac{7n}{10}) \stackrel{?}{=} O(n)$$

- Let k be a constant > 1, then $T(n) \le kn$
- Proof by induction
 - Base Case: T(1) = 1 = O(n)
 - Inductive Hypothesis: $T(k) \le kn \ \forall \ k < n$
 - Inductive Case: $T(n) \le cn + T(\frac{n}{5}) + T(\frac{7n}{10})$

$$\leq cn + k\frac{n}{5} + k\frac{7n}{10}$$

$$= n(c + \frac{9k}{10})$$

$$=kn$$