Arquivos - Tecnologia

Prof.: Leonardo Tórtoro Pereira leonardop@usp.br

*Material baseado em aulas dos professores: Elaine Parros Machado de Souza, Gustavo Batista, Robson Cordeiro, Moacir Ponti Jr., Maria Cristina Oliveira e Cristina Ciferri.

- → Mecanismo de organização de informação mantida em memória secundária
 - Acessada via computador
- → Disco (HDD)
- Disquete, Fitas Magnéticas
- → CD, DVD
- → Pen-drive, cartões, SSD
- **→** ...

- → Por que utilizamos arquivos?
 - Armazena grande quantidade de memória a um custo relativamente baixo
 - Armazena memória de maneira não-volátil
 - Permite a persistência dos dados

- → Desvantagens
 - Alto tempo de acesso
 - Discos e outros dispositivos de armazenamento secundário são lentos*

*Pode variar bastante

Dispositivos de Armazenamento

	RAM	Discos (HDD)	SSD
Custo	Alto	Baixo	Intermediário
Tempo de Acesso	Baixo	Alto	Médio
Capacidade	Baixa	Alto	Alta
Princípio	Elétrico	Magnético	Elétrico
Persistência	Volátil	Não-volátil	Não-volátil
Acesso	Aleatório	Aleatório	Aleatório
Organização	Células	Trilhas/Setores	Células

Disco (HDD)

Fonte (Dir.): https://techenter.com.br/o-que-e-hdd-hard-disk-drive/

Shock resistant up to 55g (operating)
Shock resistant up to 350g (non-operating)

SSD 2.5"

HDD vs SSD

(Fonte:

https://www.leak.pt/ssd-vs-hdd-existe-desenvolvimento-de-hdds/)

RAM

Fontes: (sup.) https://br.crucial.com/memory/ddr4/ct8g4dfs824a (inf.) https://www.systemverilog.io/ddr4-basics

Dispositivos de Armazenamento

- \rightarrow HDD
 - Disco mecânico
 - Rotacionar e apontar uma agulha no local adequado
- → SSD
 - Semicondutores, Controlador acessa células NAND
 - Memória NAND ou NVM (3D XPoint/Optane) [5]
- → Ram
 - Circuitos integrados, Semicondutores

Fonte: https://emolike.net/nvme-vs-ssd-vs-hdd-performance
Programa usado: https://crystalmark.info/en/software/crystaldiskmark/

Dispositivos de Armazenamento

- → Um SSD com especificação de módulo M2 e especificação de interface NVME para barramento PCI Express é substancialmente mais rápido que um SSD com interface SATA... E muito mais que um HDD SATA
- → Na prática, a diferença de NVME vs SATA não é grande
 - https://www.youtube.com/watch?v=V3AMz-xZ2VM

Dispositivos de Armazenamento

- → De qualquer forma isso ainda é muito inferior à velocidade da RAM!
- → Não é possível fazer uma comparação direta com o mesmo programa devido à diferenças de acesso à RAM e limitações do SO, porém, vamos ver alguns valores de RAM direto do site da fabricante Crucial
- → Lembrem-se de que o SDD NVME tem leitura de aproximadamente 2500MB/s

Friendly name	Industry name	Peak Transfer Rate	Data transfers/second (in millions)
DDR4-2400	PC4-19200	19200 MB/s	2400
DDR4-2666	PC4-21300	21300 MB/s	2666
DDR4-2933	PC4-23400	23400 MB/s	2933
DDR4-3000	PC4-24000	24000 MB/s	3000
DDR4-3200	PC4-25600	25600 MB/s	3200
DDR4-3600	PC4-28800	28800 MB/s	3600
DDR4-4000	PC4-32000	32000 MB/s	4000
DDR4-4400	PC4-35200	35200 MB/s	4400

Velocidade DDR4
Fonte: https://www.crucial.com/support/memory-speeds-compatability

Friendly name	Industry name	Peak Transfer Rate	Data transfers/second (in millions)
DDR3-800	PC3-6400	6400 MB/s	800
DDR3-1066	PC3-8500	8533 MB/s	1066
DDR3-1333	PC3-10600	10667 MB/s	1333
DDR3-1600	PC3-12800	12800 MB/s	1600

Fonte: https://www.crucial.com/support/memory-speeds-compatability

Friendly name	Industry name	Peak Transfer Rate	Data transfers/second (in millions)
DDR2-400	PC2-3200	3200 MB/s	400
DDR2-533	PC2-4200	4266 MB/s	533
DDR2-667	PC2-5300	5333 MB/s	667
DDR2-800	PC2-6400	6400 MB/s	800
DDR2-1000	PC2-8000	8000 MB/s	1000

Dispositivos de Armazenamento

- → Portanto, mesmo as memórias RAM mais antigas (DDR2) superam os melhores SSDs atuais.
- → Para as memórias mais recentes (DDR4), a transferência chega a ser 10x mais rápido!
- → E também temos a questão da latência!

Dispositivos de Armazenamento

- \rightarrow HDD
 - ◆ Alguns milisegundos => ~2ms-30ms [1, 2];
- → SSD
 - \bullet Alguns microssegundos => ~10μs-100μs [3];
- → RAM
 - ♦ Alguns nanossegundos => ~10ns-30ns [4];

HDD	SSD	RAM
10^-3s	10^-6s	10^-9s

	RAM	Discos (HDD)	SSD
Custo	Alto	Baixo	Intermediário
Tempo de Acesso	Baixo	Alto	Médio
Capacidade	Baixa	Alto	Alta
Princípio	Elétrico	Magnético	Elétrico
Persistência	Volátil	Não-volátil	Não-volátil
Acesso	Aleatório	Aleatório	Aleatório
Organização	Células	Trilhas/Setores	Células

Como funciona um HDD?

Disco (HDD)

Fonte (Dir.): https://techenter.com.br/o-que-e-hdd-hard-disk-drive/

Extra: https://animagraffs.com/hard-disk-drive/

Como funciona um HDD?

- → Disco:
 - Conjunto de 'pratos' empilhados:
 - Dados são gravados nas superfícies desses pratos.
- → Superfícies:
 - São organizadas em trilhas.
- → Trilhas:
 - São organizadas em setores.
- → Cilindro:
 - Conjunto de trilhas na mesma posição.

FIGURE 3.2 Surface of disk showing tracks and sectors.

Superfície de um disco com trilhas e setores

FIGURE 3.3 Schematic illustration of disk drive viewed as a set of seven cylinders. ← Seven cylinders → Ten tracks

Disco visto como um conjunto de 7 cilindros

Ilustração de um disco

FIGURE 3.3 Schematic illustration of disk drive viewed as a set of seven cylinders. Seven cylinders Ten tracks

Organização de um HDD

Organização de um Seagate ST-157A - 26 setores por trilha Fonte: https://blog.stuffedcow.net/2019/09/hard-disk-geometry-microbenchmarking/

Capacidade do disco (nominal)

- → Capacidade do setor:
- → Capacidade da trilha:
 - nº de setores por trilha * capacidade do setor.
- → Capacidade do cilindro:
 - nº de trilhas por cilindro * capacidade da trilha.
- → Capacidade do disco:

Custo de acesso a disco

- → Combinação de 3 fatores:
 - Tempo de busca (seek): tempo para posicionar a cabeça de L/E no cilindro correto
 - Delay de rotação (latência): tempo para o disco rodar de modo que a cabeça de L/E esteja posicionada sobre o setor desejado;
 - Tempo de transferência: tempo para transferir os bytes para memória principal.

Tempo de Busca (Seek)

- → Parte mais expressiva do tempo de acesso
 - Movimento mais lento da operação leitura/escrita
 - Conteúdo de todo um cilindro pode ser lido com 1 único seek.
- → Depende de quanto o braço precisa se movimentar.
- → É geralmente mais caro em ambientes multi-usuário.
- → Para cálculos, trabalha-se com o tempo de busca médio: tempo de busca para 1/3 do número de cilindros. [6]
- → Deve ser reduzido ao mínimo.

Delay de Rotação

- → Ex: para um HD de 5000 rpm, o delay de rotação é de 12ms.
- → Na média: considera-se o delay de rotação de meia-volta, ou seja, metade do tempo de rotação.
- → Na prática: esse delay é reduzido quando é possível ler/gravar o arquivo em setores da mesma trilha e trilhas do mesmo cilindro.

Tempo de Transferência

Tempo transferência =

(nº de bytes transferidos / nº de bytes por trilha) * tempo de rotação

- → Ex: disco de 10000 rpm com 170 setores por trilha:
 - Para ler 1 setor: 1/170 de rotação;
 - ◆ 10000 rpm = 6ms por rotação (tempo de rotação);
 - Tempo de transf. para 1 setor = 0,035ms.

Exercício

- → Você sabe o seguinte sobre seu HD
 - Número de bytes por setor: 512
 - Número de setores por trilha: 40
 - Número de trilhas por cilindro: 11
 - Número de cilindros: 1.331

Exercício

- Qual a capacidade nominal do HD?
- → Há um conjunto de dados composto por 20.000 registros, sendo que cada registro tem 256 bytes
- → Quantos cilindros são necessários para se armazenar esses 20.000 registros?

Resolução

- → Cada setor, de 512 bytes, armazena dois registros (de 256 bytes cada)
- → Portanto, são necessários 10.000 setores
- → Um cilindro tem 11 trilhas, sendo que cada uma tem 40 setores
- → Número de setores por cilindro: 11 * 40 = 440
- → Número de cilindros necessários: 10.000/440 = 22,7 cilindros

Atualmente...

Atualmente

- → Nós vimos a definição de acessos a disco no sistema Cylinder-head-sector (CHS) ou Cilindro-Cabeça-Setor
- → Esse tipo de endereçamento não é mais usado, e tinha limitações (até 8GB)
- → Foi substituído por Endereçamento de Bloco Lógico (Logical Block Addressing LBA)

LBA	C	Н	S
0 1 2 3 4 5 6 7 8	0	0	S 0 1 2 3 4 5 6 7 8
1	0	0	1
2	0	0	2
3	0	0	3
4	0	0	4
5	0	0	5
6	0	0	6
7	0	0	7
8	0	0	8
9	0	0	9
10	0	1	0
11	0	1	1
12	0	1	2
13	0	1	3
14	0	1	4
15	0	1	5
10 11 12 13 14 15 16 17	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	0 1 2 3 4 5 6
17	0	1	7
18		1	8
19	0	1	9
4	Cylind	er 0	

LBA	С	Н	S
20	1	0	0
21	1	0	1
22	1	0	2
23	1	0	3
24	1	0	4
25	1	0	5
26	1	0	6
27	1	0	7
28	1	0	8
29	1	0	9
30	1	1	0
31	1	1	1
32	1	1	2
32 33	1	1	2
34	1	1	4
35	1	1	5
36	1	1	6
37	1	1	7
38	1	1	8
39	1	1	9

Tabela de endereçamento LBA Fonte: https://datacadamia.com/io/drive/lba

Referências

- 1. https://en.wikipedia.org/wiki/Hard disk drive performance characteristics
- 2. https://www.seagate.com/files/www-content/solutions/mach-2-multi-actuator-hard-drive/files/tp714-dot-2-2006us-mach-2-technology-paper.pdf
- 3. https://www.intel.com.br/content/www/br/pt/architecture-and-technology/performance-where-it-matters-tech-brief.html
- 4. https://br.crucial.com/articles/about-memory/difference-between-speed-an-d-latency
- 5. https://en.wikipedia.org/wiki/3D XPoint
- 6. https://pages.cs.wisc.edu/~remzi/OSFEP/file-disks.pdf (pág. 9)
- 7. M. J. Folk, B. Zoellick and G. Riccardi. File Structures: An object-oriented approach with C++, Addison Wesley, 1998.