Statistical Analysis of Telebix Data from 3/1/19 to 5/31/19

Telebix June 05, 2019

Load and Review Data

```
#Toad data
telebix <- read.csv("Telebix Dataset.csv")</pre>
#Check structure of the data
telebix <- telebix %>% mutate(GENDER_NUM = if_else(GENDER == "Male", 0, 1),
                             CHEM_NUM = if_else(CHEM, 1, 0),
                             BIRTH_SITE_NUM = as.numeric(BIRTH_SITE),
                             CITY NUM = as.numeric(CITY)
str(telebix)
                 1000 obs. of 28 variables:
## $ \tilde{A}^-..PATIENT_ID : int 1 2 3 4 5 6 7 8 9 10 ...
## $ CLINIC : Factor w/ 4 levels "Biu", "Jos", "Kano",..: 2 4 1 3 3 1 1 1 2 2 ...
## $ DATE
                  : Factor w/ 91 levels "2019-03-01","2019-03-02",...: 90 14 28 90 86 81 40 70 2 45 ...
## $ BVALUE
                  : num 0.11 0.23 0.22 0.04 0.23 0.15 0.28 0.22 0.29 0.22 ...
                  : int 20 63 33 66 68 29 52 1 45 12 ...
## $ GENDER
                  : Factor w/ 2 levels "Female", "Male": 2 1 1 2 2 1 2 2 2 2 ...
## $ WEIGHT
                  : num 5.8 5.3 5.9 7.4 6.4 4.6 6.5 4.1 7.3 5.4 ...
                  : logi TRUE FALSE FALSE TRUE TRUE TRUE ...
## $ CHEM
## $ ANTENATAL
                  : int 2 2 1 2 2 1 0 2 2 2 ...
## $ BIRTH_SITE : Factor w/ 3 levels "Clinic", "Home",..: 3 1 3 1 3 2 1 3 1 2 ...
## $ CITY.ID : int 8 18 3 11 12 2 2 3 6 7 ...
## $ CITY
                   : Factor w/ 20 levels "Azare", "Bauchi", ..: 11 18 15 13 20 6 6 15 9 2 ...
## $ LATITUDE
                   : num 10.5 12.6 11.8 12 11.1 ...
## $ LONGITUDE
                   : num
                          7.43 4.99 13.14 8.53 7.69 ...
                 : int 178 36 118 10 98 78 78 118 10 81 ...
## $ EST_DIST
## $ ACTUAL_DIST : int 171 32 126 1 97 80 85 110 4 86 ...
## $ AGE WT
                  : num 0.0392 0.0128 0.0154 0.0155 0.0171 ...
## $ GENDER WT
                  : num 0.0249 0.0136 0.013 0.0235 0.0285 ...
## $ WEIGHT_WT : num 0.0215 0.0442 0.0274 0.0235 0.0246 ...
## $ CHEM_WT : num 0.047 0.0137 0.0187 0.0418 0.0495 ...
## $ ANTENATAL_WT : num 0.00672 0.00951 0.01489 0.00783 0.00564 ...
## $ BIRTH_SITE_WT : num 0.0155 0.0182 0.0166 0.0176 0.0174 ...
              : num 0.034 0.0124 0.0329 0.0103 0.0326 ...
## $ X
                  : num 0.212 0.149 0.166 0.166 0.196 ...
## $ BLEVEL
## $ GENDER NUM
                   : num 0 1 1 0 0 1 0 0 0 0 ...
                  : num 1 0 0 1 1 1 0 0 1 0 ...
## $ CHEM NUM
```

Fitting data via multiple linear regression

: num 11 18 15 13 20 6 6 15 9 2 ...

\$ BIRTH_SITE_NUM: num 3 1 3 1 3 2 1 3 1 2 ...

\$ CITY NUM

```
##
## lm(formula = as.formula(paste("BLEVEL~", paste(all_predictors,
      collapse = "+"), sep = "")), data = telebix)
##
##
## Residuals:
               1Q Median 3Q Max
   Min
## -0.042622 -0.011488 -0.000353 0.010595 0.051617
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
2.290e-01 3.623e-03 63.210 < 2e-16 ***
##
## (Intercept)
                 -4.070e-04 2.421e-05 -16.808 < 2e-16 ***
## AGE
## GENDER_NUM
                 -8.364e-03 1.032e-03 -8.104 1.56e-15 ***
## WEIGHT
                 -6.648e-03 4.511e-04 -14.736 < 2e-16 ***
## CHEM_NUM
                 2.894e-02 1.027e-03 28.180 < 2e-16 ***
## CHEM_NUM 2.894e-02 1.027e-03 28.180 < 2e-16 ***
## ANTENATAL -6.560e-03 6.231e-04 -10.528 < 2e-16 ***
## BIRTH_SITE_NUM 2.039e-04 6.423e-04 0.318
## CITY_NUM 1.134e-04 8.952e-05 1.267 0.206
## ACTUAL_DIST 1.425e-04 1.028e-05 13.865 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\#\,\#
\#\# Residual standard error: 0.01621 on 991 degrees of freedom
## Multiple R-squared: 0.6181, Adjusted R-squared: 0.615
## F-statistic: 200.5 on 8 and 991 DF, p-value: < 2.2e-16
```

Conclusions

Based on the statistical model obtained above, the following variables are considered most statistically significant to explaining the variations in the levels of bilirubin observed.

Risk Factors	Effects on Bilirubin Levels
Age	Every hour going by lowers bilirubin levels by about 0.04%
Gender	A baby girl will have lower bilirubin levels than a baby boy by about 0.8%
Weight	Every pound increase lowers bilirubin levels by about 0.7%
Chemical Exposure	Chemical exposure increases bilirubin levels by almost 3%
Antenatal visits	Every antenatal visit lowers bilirubin levels by about 0.7%
Distance traveled	Every mile traveled increases bilirubin levels by about 0.01%

Making Predictions

```
# c("AGE", "GENDER NUM", "WEIGHT", "CHEM NUM", "ANTENATAL", "BIRTH SITE NUM", "CITY NUM", "ACTUAL DIST")
size <- 10
testdata <- data.frame(</pre>
 AGE = round(runif(size, 10, 72), 0),
 GENDER_NUM = round(runif(size, 0, 1), 0),
 WEIGHT = round(runif(size, 4, 8), 2),
 CHEM NUM = round(runif(size, 0, 1), 0),
 ANTENATAL = round(runif(size, 0, 2), 0),
 BIRTH_SITE_NUM = round(runif(size, 1, 3), 0),
 CITY_NUM = round(runif(size, 1, 20), 0),
 ACTUAL_DIST = round(runif(size, 50, 150), 0)
pred <- round(predict(bval fit, newdata = testdata, interval = "confidence") * 100, 1)</pre>
testdata <-
 testdata %>% mutate(BLEVEL = pred[,1],
                     BLEVEL_LOW = pred[,2],
                     BLEVEL HIGH = pred[,3],
                     GENDER = if_else(GENDER_NUM == 1, "Girl", "Boy"),
                     CHEM = if else(CHEM NUM == 1, "Yes", "No"),
                     DIST = ACTUAL_DIST
testdata %>%
 select(AGE, GENDER, WEIGHT, CHEM, ANTENATAL, DIST, BLEVEL, BLEVEL_LOW, BLEVEL_HIGH) %>%
 arrange(., desc(BLEVEL)) %>%
  kable(caption = "") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```

AGE GENDER	WEIGHT CHEM	ANTENATAL	DIST	BLEVEL	BLEVEL_LOW	BLEVEL_HIGH
30 Boy	5.07 Yes	1	135	22.7	22.4	23.0
55 Boy	6.87 Yes	2	97	19.3	19.0	19.6
54 Girl	6.10 Yes	1	67	19.2	19.0	19.4
62 Boy	7.21 Yes	1	73	19.1	18.8	19.3
57 Boy	5.99 Yes	2	54	19.1	18.9	19.4
25 Boy	5.41 No	1	85	19.0	18.8	19.2
53 Boy	6.93 No	0	118	18.0	17.7	18.3
65 Girl	5.81 No	0	105	17.3	17.0	17.6
47 Girl	5.76 No	1	77	17.0	16.7	17.2
64 Girl	6.27 No	0	117	17.0	16.8	17.3