

CB-Tumblebug: 최적 멀티 클라우드 인프라를 찾아서

(멀티 클라우드 인프라 통합 운용 관리)

손 석 호 / CB-Tumblebug 프레임워크 리더

"Contact to the Multi-Cloud"

클라우드 바리스타들의 두 번째 이야기

Cloud-Barista Community 2nd Open Conference

이번 세션은…

멀티 클라우드 서비스 공통 플랫폼

목차

- CB-Tumblebug 개요
- CB-Tumblebug 주요 기능 및 구조
- CB-Tumblebug 개발 현황 및 로드맵
- CB-Tumblebug 사용 방법 및 기술 시연

CB-Tumblebug : 멀티 클라우드 인프라 통합 운용 관리 기술 개요

멀티 클라우드 컴퓨팅 자원의 효과적인 활용을 위해, <mark>자원을 유기적으로 통합</mark> 제공하는 <mark>멀티 클라우드 인프라 서비스</mark> 필요

멀티 클라우드 인프라 서비스 통합 운용 관리 프레임워크 기술 정의

기술 정의

<u>사용자 요구사항에 따라, 멀티 클라우드의 인프라 서비스를 조합 및 프로비저닝</u>하고, 멀티 클라우드 인프라 서비스를 <u>통합 관리</u>하여 <u>사용자의 인프라 운영을 지원</u>하는 기술

클라우드 서비스 성능.. 알고 보면 많이 달라요

멀티 클라우드에서는 자원들의 성능 및 특성이 매우 다양하므로, 최적의 멀티 클라우드 인프라 서비스 제공 필요

수많은 컴퓨팅 머신을 클라우드마다 개별 관리한다면... OTL..

멀티 클라우드 환경에서는 단일 클라우드에 비해, 관리의 대상이 많고 복잡 => <mark>인프라 통합 관리/자동 제어</mark> 기술 필요

CB-Tumblebug 주요 기능

- 멀티 클라우드 인프라 서비스 (MCIS)
 - 지역적으로 격리된 다수의 클라우드 상에서 단일 목적(응용서비스, 애플리케이션 등)을 위해 상호 연계된 하나 이상의 클라우드 인프라 서비스(가상머신(VM) 등) 그룹
- 멀티 클라우드 인프라 자원 (MCIR)
 - 다수의 클라우드 상에서 제공되는 MCIS를 생성 및 운용하기 위한 클라우드 인프라 자원들
 - 클라우드 인프라 자원: 이미지, VM 사양, 네트워크, VM 접속을 위한 자원 등

가상 서버 타입 동적 성능 평가 MCIS 최적 구성 및 스케줄링 기능

정보 수집

배치 계획

[1] 인프라 배치 계획 단계

네임스페이스& MCIR 관리 기능

자원 준비

MCIS 프로비저닝 기능

MCIS

특화 기능

인프라 특화

배치 수행

[2] 인프라 배치 수행 및 특화 단계

MCIS 라이프사이클 관리 기능

인프라 운용

MCIS 자동 제어 기능

관리 자동화

[3] 인프라 운용 및 관리 자동화 단계

CB-Tumblebug는 크게 3 단계로 세부 기능을 분류 가능. [1] 배치 계획, [2] 배치 수행 및 특화, [3] 운용 및 관리 자동화

[1] 인프라 배치 계획

가상 서버 타입 동적 성능 평가 MCIS 최적 구성 및 스케줄링 기능

정보 수집

배치 계획

- MCIS 통합 최적 배치
 - VM 간 응답속도 기반 배치

예) VM 간 응답시간 < 40ms

- MCIS 개별 VM의 최적 배치
 - VM 스팩 기반 배치
 - VM 가격 기반 배치
 - VM 위치 기반 배치
 - VM 성능 기반 배치 (벤치마킹)
 - VM 복합 조건 기반 배치

[2] 인프라 배치 수행 및 특화 단계 (1/2)

멀티 클라우드 환경

[MCIS 구성 예시]

3종 클라우드의 VM 5개의 MCIS

MCIS 확장 및 축소

다중 가상 서버를 담을 수 있는 논리적인 정보 객체 MCIS를 제시

[2] 인프라 배치 수행 및 특화 단계 (2/2)

네임스페이스& MCIR 관리 기능

MCIS 프로비저닝 기능

MCIS 특화 기능

자원 준비

비 배치 수행

인프라 특화

[3] 인프라 운용 및 관리 자동화 단계

MCIS 라이프사이클 관리 기능

MCIS 자동 제어 기능

인프라 운용

관리 자동화

CB-Tumblebug 기능 구조 (참고)

Cappuccino 릴리스 핵심 포인트

🥰 :카푸치노 릴리스 핵심포인트

- 최적 MCIS 배치를 위한 동적 성능 벤치마킹 PoC
 - 다양한 클라우드 서비스 사업자가 있으며, 각 사업자는 클라우드의 Region(서울, 대전, ..)을 늘려 나가고 있음
 - 각 지역에서는 사용할 수 있는 가상 서버의 Spec(사양)이 다르며, 성능도 상이
 - 동적 성능 벤치마킹을 통해서 가상 서버 선택의 어려움을 줄이고 효율 향상이 가능
- MCIS 라이프사이클 상태 관리 기능 개선 릴리스
 - MCIS 는 여러 개의 가상 서버를 포함, 종합적인 상태 명시 방법 고안 필요
 - 클라우드 서비스 사업자 마다, 라이프사이클 상태 처리 방법과 표기가 다르므로, 정확한 상태 파악이 어려움
 - 개선: 현재 MCIS 제어 액션을 인지(DB에 저장)하여, 그 정보를 기준으로 오류가 되는 상태 데이터를 보정

[1] 인프라 배치 계획 단계

네임스페이스& MCIR 관리 기능 자원 준비 비

MCIS 프로비저닝 기능

배치 수행

MCIS 특화 기능

인프라 특화

MCIS 자동 제어 기능

인프라 운용

관리 자동화

[2] 인프라 배치 수행 및 특화 단계

[3] 인프라 운용 및 관리 자동화 단계

최적 MCIS 배치를 위한 동적 성능 벤치마킹 PoC

- 에이전트 기반의 동적 성능 벤치마킹
 - Tumblebug은 각 VM에 벤치마킹 에이전트 (CB-Milkyway) 원격 설치
 - 2. 주기적으로 Milkyway에 평가 요청
 - 3. 각 Milkyway는 성능 평가를 수행하고 결과 를 Tumblebug에게 통보
- 동적 성능 평가 지표
 - CPU 계산속도 (싱글/멀티 코어)
 - Memory 처리속도 (읽기/쓰기)
 - FileIO 처리속도 평가 (읽기/쓰기)
 - DB 처리속도 평가 (읽기/쓰기)
 - 목적지까지 네트워크 지연 시간 _{기 Ping}
 - VM간 상호 네트워크 지연 시간 -

에이전트 기반의 동적 멀티 클라우드 컴퓨팅 성능 벤치마킹 구조

동적 성능 평가 결과 (예 : CPU 성능)

- Prime Number 계산
 Throughput 평가
 - 싱글 코어
 - 멀티 풀 코어

가상 서버의 사양에 따라서 CPU 계산 속도 차이가 발생하는 것을 확인 가능 (vCPU수가 낮아도 높<mark>은 성능 내는 경우도</mark> 발생)

동적 성능 평가 결과 (예: CPU, Memory, FIO, DB 성능)

X축을 CPU의 결과를 기준으로 나열하였으나, 높은 CPU 성능이 다른 지표에 대한 높은 성능을 보장하지 않음 (사용자 상황에 맞는 사양 선택 필요 !!)

동적 성능 평가 결과 (예: 한국 지역 기준 응답 속도)

End User 까지의 응답 속도가 중요한 비즈니스의 경우, 응답 속도 평가에 대해 민감하게 MCIS를 구성할 필요

동적 성능 평가 결과 (예: 사양간 응답속도 평가)

MCIS에서 동작하는 애플리케이션에 의해서 VM간의 통신이 빈번하고 중요한 경우, VM간 응답시간을 낮게 지정하여 MCIS 구성 요청

MCIS 라이프사이클 상태 관리 기능 개선 릴리스

- 멀티클라우드 라이프사이클 이슈
 - CSP 마다, 라이프사이클 상태 처리 방법과 표기가 다름
 - 정확한 상태 파악 어려움
 - MCIS 는 여러 가상 서버를 포함
 - 종합적 상태 명시 방법 고안 필요
- MCIS 라이프사이클 상태 관리 기능 개선 릴리스
 - 표준화 및 오류 보정
 - MCIS의 라이프사이클을 표준화
 - 현재 액션을 인지(DB에 저장)하여, 그 정보를 기준으로 오류를 보정
 - 통합 상태 표시
 - Partial 개념 도입

MCIS 라이프사이클 상태 통합 명시 방식 고안 및 안정성 향상

클라우드 별 서로 다른 라이프사이클 처리 방식

클라우드 별 서로 다른 라이프사이클 상태 정보 (현실..)

오류발생시점

Cloud- Barista	Creating	Running	Suspending	Suspended	Resuming	Rebooting	Terminating	Terminated	Failed
Alibaba	Pending	Running	Stopping	Stopped	Resuming (자체생성상태)	Rebooting (자체생성상태)	Terminating (자체생성상태) (OP: Stop&Delete) - 실제: suspending	Deleted	상태 정보를 얻을 수 없을 때 오류에 의한 비정상 상태
AWS	맵핑 불필요 (현재: StartVM 내부 Running 상태 확인 후 P- IP 부착 후 return)	running	stopping	stopped	Resuming (자체생성상태)	Rebooting	shutting-down	terminated	상태 정보를 얻을 수 없을 때 오류에 의한 비정상 상태
GCP	Provisioning staging	running	stopping	terminated	Resuming (자체생성상태)	Rebooting (자체생성 (OP: Stop&Start) 실제: suspending…, running	Terminating (자체생성상태) (OP: Delete)	(예외) NotExist	상태 정보를 얻을 수 없을 때 오류에 의한 비정상 상태
Azure	starting /-	runnning /succeeded	stopping /-	stopped /succeeded	Resuming (자체생성상태) -> Creating	Rebooting (자체생성상태) (OP: Stop&Start)	deallocating /-	(예외) NotExist	- /failed
OpenStack	BUILD	ACTIVE	Suspending (자체생성상태)	SHUTOFF	Resuming (자체생성상태)	REBOOT	Terminating (자체생성상태) (OP: Delete)	(예외) NotExist	Error
Cloudit	CREATING	RUNNING	STOPPING	STOPPED	STARTING	REBOOTING	DESTROYING	(예외) NotExist	FAILED

MCIS 라이프사이클 처리 방식 개선

MCIS 라이프사이클 처리 방식 개선을 통한 안정화

- MCIS 라이프사이클 처리 방식 개선 (Stateless CB-TB로..)
 - 목적 액션, 상태 변경 히스토리 추적
 - 목적 상태와 현재 상태에 대한 validation 가능
 - CB-TB 시스템 중단 및 재실행시 현황 파악 가능

오류 상황 예시

개선: 정상 출력(오류 보정)

기존 방식: 오류 발생

MCIS 라이프사이클 처리 방식 개선 결과

MCIS 라이프사이클 상태 처리 안정화

Action: Create MCIS

Action: Create Suspend

CB-Tumblebug 개발 현황 및 로드맵

PoC → 프로토타입 → 릴리스 → 안정화&고도화

1	프로토타입 완료(예정)	프로토타입 완료(예정)	안정화 진행	안정화 진행	프로토타입 완료(예정)	안정화 진행	프로토타입 완료(예정)	v에스프레소
	[추진] -평가정밀화 -평가데이터수집	[추진] 알고리즘고안	[기능추가] 통합MCIR처리	[기능추가] MCIR자동생성			[기능추가] -정책 기반 자동 제어 -모니터링연동	V-11—— 11—
	PoC (완료 	안정화 진행	안정화 진행		릴리스 완료		v카푸치노
١					PoC 진행			
			릴리스 완료	릴리스 완료		프로토타입 완료		v아메리카노
			프로토타입 완료	프로토타입 완료				* 0 -1 - 1 1 1 1 1 1 1 1
	가상 서버 타입 동적 성능 평가	MCIS 최적 구성 및 스케줄링 기능	네임스페이스& MCIR 관리 기능	MCIS 프로비저닝 기능	MCIS 특화 기능	MCIS 라이프사이클 관리 기능	MCIS 자동 제어 기능	

MCIS 라이프사이클(릴리스), MCIS 최적 배치 및 멀티클라우드인프라 성능 벤치마킹(PoC)

CB-Tumblebug, 20년도 개발 계획

PoC → 프로토타입 → 릴리스 → 안정화&고도화

주요 업무	상세 업무	수행 내용	결과물 공개 수준	대상 버전
	CB-Tumblebug API 현행화 및 프레임워크 통합	- API 항목 및 파라미터 개선(4월초) - 리모델링 CB-Spider (API 및 정보처리 방식) 통합	대상버전 릴리스	Cappuccino
CB-Tumblebug 시스템 개선 및 안정화	CB-Tumblebug 시험 체계 개선	- CB-Tumblebug 시험 체계 구축 - CB-Tumblebug 시험 데이터 생성	대상버전 릴리스	Cappuccino
개단 ★ 단증되	멀티 클라우드 인프라 서비스 라이프사이클 개선	- 클라우드별 라이프사이클 제어 상태 처리 방식 분석 - 라이프사이클 제어 트렌젝션 생성 및 처리 기능 개발 - 트렌젝션 단위 라이프사이클 상태 저장 및 조회 기능 개발	대상버전 릴리스	Cappuccino
	멀티 클라우드 인프라 서비스 배치 메커니즘 개발	- 최적 배치 조건 선정 [3월 말] - 최적 배치 요구사항 템플릿 및 API 체계 개발 [3월 말] - 멀티 클라우드 인프라 서비스 평가 정보 테이블 자동 생성 기능 개발 [4월 말] - 최적 배치 알고리즘 기반 우선순위 리스트 처리 기능 개발 [6월 말]	PoC (일부) 대상버전 릴리스	Cappuccino Espresso
멀티 클라우드 인프라 서비스 최적 배치 기능 개발	멀티 클라우드 인프라 서비스 동적 성능 평가 메커니즘 개발	- 멀티 클라우드 인프라 서비스 동적 성능 평가 항목 선정 [4월 중] - 멀티 클라우드 인프라 서비스 동적 성능 평가 수집 스케줄러 개발 [6월 말] - 성능 평가 항목별 측정 기능 개발(ex: 계산 성능, DB처리 성능 등) [5월 ~ 6월 말] - 멀티 클라우드 인프라 서비스 평가 수행 에이전트 연동 [7월 말] - 구동 시험 및 데이터 수집 [8월 중]	PoC (일부) 대상버전 릴리스	Cappuccino Espresso
	멀티 클라우드 인프라 서비스 고속·동적 배치 기술 연구	- 멀티 클라우드 인프라 서비스 고속·동적 배치 기술 분석 및 고안 - 멀티 클라우드 인프라 서비스 고속·동적 배치 메커니즘 PoC 추진	PoC	Espresso
	멀티 클라우드 인프라 서비스 통합 품질 제어 자동화 정책 관리 기능 개발	- 멀티 클라우드 인프라 서비스 통합 품질 제어 자동화 정책(조건 및 액션) 요청 템플릿 정의 및 API 체계 개발 - 멀티 클라우드 인프라 서비스 통합 품질 제어 자동화 정책 처리 상태 저장 및 조회 기능 개발	대상버전 릴리스	Espresso
멀티 클라우드 인프라 서비스 통합 품질 제어 자동화 개발	멀티 클라우드 인프라 서비스 통합 품질 분석 기능 개발	- 멀티 클라우드 인프라 서비스 통합 품질 모니터링 항목 정의 - 멀티 클라우드 인프라 서비스 통합 품질 데이터 수집 모듈 개발 (CB-Dragonfly 연동) - 멀티 클라우드 인프라 서비스 통합 품질 조건 판별 및 트리거 모듈 개발	대상버전 릴리스	Espresso
	멀티 클라우드 인프라 서비스 통합 품질 제어 액션 개발	- 멀티 클라우드 인프라 서비스 통합 품질 제어 액션 선정 - 멀티 클라우드 인프라 서비스 통합 품질 제어 액션 개발	대상버전 릴리스	Espresso
270 C71 E01 11414	동일 서브넷 제공 기술 및 UseCase 분석	- VPN 기술 등 동일 서브넷 구성 위한 관련 기술 분석 (Wireguad, Envoy 기술 등) - 동일 서브넷 구성 서비스 기반 use case 후보 발굴 및 PoC 테스트	PoC, 대상버전릴리스	Cappuccino Espresso
클라우드간 동일 서브넷 기술 개발	동일 서브넷 기능 개발 및 시험	- 동일 서브넷 생성, 조회, 삭제 기능 개발 - REST 런타임 서버 개발 및 API 제공	프로토타입	Cappuccino
		- 동일 서브넷 서비스 상태 관리 기능 개발 - REST 런타임 서버 개발 및 API 제공	프로토타입	Cappuccino
클라우드간 서비스	로드밸런싱 제공 기술 및 UseCase 분석	- 로드밸런싱 환경 구성 위한 기술 분석 - 클라우드간 로드밸런싱 기반 use case 후보 발굴 - 로드밸런싱 관련 기존 기술 분석 및 PoC 테스트	PoC	Espresso
로드밸런싱 기술 개발	로드밸런싱 기능 개발 및 시험	- 로드밸런싱 서비스 생성, 조회 및 상태 관리 기능 개발 - REST 런타임 서버 개발 및 API 제공 - 클라우드간 로드밸런싱 서비스 기반 use case 선정 및 개발	대상버전 릴리스	Espresso

CB-Tumblebug 기능 사용 형태 (API 기반 제어) -REST 기반으로 명령이 쉽고 간결 - 언어. 플랫폼에 독립적인 연동 가능

CB-Tumblebug 서버

REST API 사용을 위한 Postman 클라이언트

지도 기반 GUI 클라이언트

Web 기반 GUI 클라이언트 (CB-Waterstrider/WebTool)

CB-Tumblebug 기술 시연

카푸치노(Cappuccino) 한잔 어떠세요? ^^

카푸치노(Cappuccino) : Cloud-Barista의 2nd 소스코드 버전명칭

CB-Tumblebug 기술 시연 개요

- 글로벌 지역을 커버하는 MCIS 생성
 - 컴퓨팅 머신 18개 통합 생성
 - 4개의 CSP (AWS, Azure, GCP, Alibaba) : 10개의 지역으로 구성
- MCIS를 기반으로 글로벌 웹서버 분산 실행
 - 여러 지역에 걸친 18개 서버에 Nginx 웹서버를 원클릭으로 배치 및 실행
 - 각 웹서버에 접속하여, 실제 호스트의 위치를 조회
- MCIS 라이프사이클 제어 및 상태 확인
 - 컴퓨팅 머신 18개 통합 관리
 - Suspend, Resume, Terminate MCIS
- 멀티 클라우드 Spec 동적 성능 벤치마킹 수행 및 결과 확인
 - 벤치마킹 에이전트(CB-Milkyway) 자동 배치
 - CPU 계산속도 평가 (싱글 코어/멀티 코어)
 - Memory 처리속도 평가 (읽기/쓰기)
 - FileIO 처리속도 평가 (읽기/쓰기)
 - DB 처리속도 평가 (읽기/쓰기)
 - 목적지까지 네트워크 지연 시간 평가
 - 상호 네트워크 지연 시간 평가

https://github.com/cloud-barista https://cloud-barista.github.io

(손석호/contact-to-cloud-barista@googlegroups.com)

"Contact to the Multi-Cloud"

클라우드 바리스타들의 두 번째 이야기

Cloud-Barista Community 2nd Open Conference