FUNDAMENTOS DE INTELIGÊNCIA ARTIFICIAL

Aula 8:

Knowledge - Conhecimento

Prof. Dr. Rodrigo Xavier de Almeida Leão Cientista de Dados e Big Data

Knowledge-based agents

- Agentes que são capazes de raciocinar e agir representando o conhecimento internamente.
 - 1. Se não choveu, Mario surfou hoje.

2. Mario surfou ou correu hoje, mas não ambos.

3. Mario correu hoje.

Proposition Symbols

 \neg \land \lor not and or

→ ↔ implication biconditional

Not (¬)

0	r	(V)

P	$\neg P$
false	true
true	false

P	Q	$P \vee Q$
false	false	false
false	true	true
true	false	true
true	true	true

Biconditional (↔)

And (A)

P	Q	$P \wedge Q$
false	false	false
false	true	false
true	false	false
true	true	true

Implication (→)

P	Q	$P \rightarrow Q$
false	false	true
false	true	true
true	false	false
true	true	true

P	Q	$P \leftrightarrow Q$
false	false	true
false	true	false
true	false	false
true	true	true

Modelo

• Inferir valores booleanos para cada símbolo proposicional

P: Está chovendo.

Q: É quarta-feira.

P = True

Q = False

Entailment

Alpha |= Beta

Em qualquer modelo que Alpha seja verdadeiro então Beta também é verdadeiro.

Alpha = é terça feira de janeiro

Beta = é janeiro

6

Inferência

• Inferência é o processo de derivar novas sentenças de antigas.

Base de conhecimento (KB)

A base de conhecimento é um conjunto de sentenças conhecidas por um agente baseado em conhecimento.

7

Inferência

P: Hoje é terça

Q: Está chovendo

R: Mario vai surfar

 $KB: (P^{\prime} \neg Q) \rightarrow R$

 $\neg Q$

Inferência: R

Algoritmo de Inferência

Busca a resposta para:

KB |= Alpha ?

Model Checking

Para determinar se KB |= Alpha

- Verificar todos os modelos possíveis (estados possíveis)
- Se em todos os modelos em que KB é True, Alpha é
 True, então KB |= Alpha

DAMENTOS DA IA

10

KB: $(P \land \neg Q) \rightarrow R$

P

 $\neg \mathcal{Q}$

Query: R

P	Q	R	KB
false	false	false	
false	false	true	
false	true	false	
false	true	true	
true	false	false	
true	false	true	
true	true	false	
true	true	true	

KB: $(P \land \neg Q) \rightarrow R$

P

 $\neg Q$

Query: R

P	Q	R	KB
false	false	false	false
false	false	true	false
false	true	false	false
false	true	true	false
true	false	false	false
true	false	true	true
true	true	false	false
true	true	true	false

check.py

```
from logic import *

# Create new classes, each having a name, or a symbol, representing each propositio
rain = Symbol("rain") # It is raining.
hagrid = Symbol("hagrid") # Harry visited Hagrid
```

```
dumbledore = Symbol("dumbledore") # Harry visited Dumbledore
```

```
sentence = And(rain, hagrid)
print(sentence.formula())
```

check.py

```
from logic import *

# Create new classes, each having a name, or a symbol, representing each propositio
rain = Symbol("rain")  # It is raining.
hagrid = Symbol("hagrid")  # Harry visited Hagrid
```

```
dumbledore = Symbol("dumbledore") # Harry visited Dumbledore
```

```
knowledge = And(
    Implication(Not(rain), hagrid),
    Or(hagrid, dumbledore),
    Not(And(hagrid, dumbledore)),
    dumbledore
)
```

print(knowledge.formula())

```
from logic import *
# Create new classes, each having a name, or a symbol, representing each propositio
rain = Symbol("rain") # It is raining.
hagrid = Symbol("hagrid") # Harry visited Hagrid
dumbledore = Symbol("dumbledore") # Harry visited Dumbledore
# Save sentences into the KB
knowledge = And( # Starting from the "And" logical connective, becasue each propos
    Implication(Not(rain), hagrid), # ¬(It is raining) → (Harry visited Hagrid)
    Or(hagrid, dumbledore), # (Harry visited Hagrid) V (Harry visited Dumbledore).
    Not(And(hagrid, dumbledore)), # ¬(Harry visited Hagrid ∧ Harry visited Dumbled
    dumbledore # Harry visited Dumbledore. Note that while previous propositions c
```

ELINDAMENTOS DA IA

```
knowledge = And(
    Implication(Not(rain), hagrid),
    Or(hagrid, dumbledore),
    Not(And(hagrid, dumbledore)),
    dumbledore [
print(model_check(knowledge, rain))
```

16

Engenharia de Conhecimento

 Transformar conhecimento para uma forma que o computador entenda.

 Quais símbolos são necessários para solucionar o problema com base em dedução lógica.

Como codificar o problema lógico.

Detetive

People

Col. Mustard

Prof. Plum

Ms. Scarlet

Rooms

Ballroom

Kitchen

Library

Weapons

Knife

Revolver

Wrench

18

Weapons **People** Rooms

Símbolos Proposicionais

Variáveis que podem ser verdadeiras ou falsas.

People	Rooms	Weapons
Col. Mustard	Ballroom	Knife
Prof. Plum	Kitchen	Revolver
Ms. Scarlet	Library	Wrench

20

Clue

```
(mustard v plum v scarlet)
(ballroom v kitchen v library)
 (knife v revolver v wrench)
```

Ter a carta

 $\neg plum$

Palpite ¬mustard v ¬library v ¬revolver

21

Logic Puzzle

- Gilderoy, Minerva, Pomona and Horace each belong to a different one of the four houses: Gryffindor, Hufflepuff, Ravenclaw, and Slytherin House.
- Gilderoy belongs to Gryffindor or Ravenclaw.
- Pomona does not belong in Slytherin.
- Minerva belongs to Gryffindor.

Premissa do Problema

Cada pessoa está associada a uma casa diferente.

Propositional Symbols

GilderoyGryffindor GilderoyHufflepuff GilderoyRavenclaw GilderoySlytherin

PomonaGryffindor PomonaHufflepuff PomonaRavenclaw PomonaSlytherin MinervaGryffindor MinervaHufflepuff MinervaRavenclaw MinervaSlytherin

HoraceGryffindor HoraceHufflepuff HoraceRavenclaw HoraceSlytherin

Cada pessoa está apenas em uma casa

 $(PomonaSlytherin \rightarrow \neg PomonaHufflepuff)$

Cada casa possui apenas uma pessoa

 $(MinervaRavenclaw \rightarrow \neg GilderoyRavenclaw)$

Informações do problema

(GilderoyGryffindor v GilderoyRavenclaw)

25

Logic Puzzle

- Entre Mario, Adão, José e Pedro existe um príncipe, um ladrão, um padre e um policial.
- Mario é príncipe ou padre.
- José não é policial.
- Adão é príncipe.

Mastermind

Model Check

 2^n Modelos N = número de variáveis

Regras de Inferência

Modus Ponens

If it is raining, then Harry is inside.

It is raining.

Harry is inside.

Modus Ponens

$$\alpha \rightarrow \beta$$
 α

And Elimination

Harry is friends with Ron and Hermione.

Harry is friends with Hermione.

And Elimination

$$\alpha \wedge \beta$$

Double Negation Elimination

It is not true that Harry did not pass the test.

Harry passed the test.

Double Negation Elimination

$$\neg(\neg\alpha)$$

Implication Elimination

If it is raining, then Harry is inside.

It is not raining or Harry is inside.

Implication Elimination

$$\alpha \rightarrow \beta$$

$$\neg \alpha \lor \beta$$

Biconditional Elimination

It is raining if and only if Harry is inside.

If it is raining, then Harry is inside, and if Harry is inside, then it is raining.

Biconditional Elimination

$$\alpha \leftrightarrow \beta$$

$$(\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$$

It is not true that both Harry and Ron passed the test.

Harry did not pass the test or Ron did not pass the test.

$$\neg(\alpha \land \beta)$$

$$\neg \alpha \lor \neg \beta$$

It is not true that Harry or Ron passed the test.

Harry did not pass the test and Ron did not pass the test.

$$\neg(\alpha \lor \beta)$$

$$\neg \alpha \land \neg \beta$$

Distributive Property

$$(\alpha \wedge (\beta \vee \gamma))$$

$$(\alpha \land \beta) \lor (\alpha \land \gamma)$$

Distributive Property

$$(\alpha \vee (\beta \wedge \gamma))$$

$$(\alpha \vee \beta) \wedge (\alpha \vee \gamma)$$