# Trig Graphs

# Jordan Baillie 310123

#### 1 Introduction

Sketch the following graphs:

- 1.  $y = \sin x, 0 \le x \le 360$ .
- 2.  $y = \cos x, 0 \le x \le 360$ .
- 3.  $y = \tan x, 0 \le x \le 180$ .

What are their maximum and minimum values? What are their amplitudes? What is the *period* of each?

## 2 Changing the amplitude

Sketch the following graphs: (Hint: check the values of y at important points.)

- 1.  $y = 2\sin x, 0 \le x \le 360$ .
- 2.  $y = 3\cos x, 0 \le x \le 360$ .
- 3.  $y = -4\sin x, 0 \le x \le 360$ .

What effect does the variable a have whenever you draw a graph of the form  $y = a \sin x$  or  $y = a \cos x$ ? What happened when a was negative? What is their maximum and minimum values? What are their amplitudes?

Without explanation, write down the amplitudes of the following graphs:

- 1.  $y = 6 \cos x$ .
- 2.  $y = -70\sin 3x$ .
- 3.  $y = \tan x$ .

## 3 Changing the period

Sketch the following graphs: (Hint: check the values of y at important points.)

- 1.  $y = \sin 2x, 0 \le x \le 360$ .
- 2.  $y = \cos 3x, 0 \le x \le 360$ .
- 3.  $y = \tan 2x, 0 \le x \le 180$ .

What effect does the variable b have whenever you draw a graph of the form  $y = \sin bx$ ,  $y = \cos bx$  or  $y = \tan bx$ ? How many waves did you draw in each compared to what the regular graph has? What are their *periods*?

Without explanation, write down the periods of the following graphs:

- 1.  $y = \sin 4x$ .
- $2. \ y = \cos 5x.$
- 3.  $y = 5\sin 60x$ .
- 4.  $y = \tan 20x$ .

## 4 Shifting vertically

Sketch the following graphs: (Hint: check the values of y at important points.)

- 1.  $y = \sin x + 1, 0 \le x \le 360$ .
- 2.  $y = \cos x 2, 0 \le x \le 360$ .
- 3.  $y = \tan x + 1, 0 \le x \le 360$ .

What effect does the variable c have whenever you draw a graph of the form  $y = \sin x + c$ ,  $y = \cos x + c$  or  $y = \tan x + c$ ? Did the graph fundamentally change? What are the maximums and minimums of each graph? Without explanation, write down the maximum and minimum values of the following graphs:

- 1.  $y = \sin x + 3$ .
- 2.  $y = \sin x 3$ .
- 3.  $y = \cos x + 5$ .
- 4.  $y = \cos x 4$ .
- 5.  $y = \tan x + 2$ .

## 5 Shifting horizontally

Sketch the following graphs: (Hint: check the values of y at important points.)

- 1.  $y = \sin(x 90), 0 \le x \le 360$ .
- 2.  $y = \sin(x + 90), 0 \le x \le 360$ .
- 3.  $y = \cos(x 45), 0 \le x \le 360$ .
- 4.  $y = \cos(x + 60), 0 \le x \le 360$ .
- 5.  $y = \tan(x 90), 0 \le x \le 180$ .

What effect does the variable b have whenever you draw a graph of the form  $y = \sin(x+b)$ ,  $y = \cos(x+b)$  or  $y = \tan(x+b)$ ? Did the graph fundamentally change? When b is positive, what direction does the graph move? How about when b is negative?

#### 6 Putting it all together

The goal here is to be able to sketch graphs of the form  $y = a \sin bx + c$  etc where  $(a, b, c) \in \mathbb{R}^3$ . Sketch the following:

- 1.  $y = \sin 2x + 1, 0 \le x \le 360$ .
- 2.  $y = -\cos 3x, 0 \le x \le 360$ .
- 3.  $y = 5\sin x + 3, 0 \le x \le 360$ .

Now all of them together:

- 1.  $y = 2\sin 2x + 1, 0 \le x \le 360$ .
- 2.  $y = 3\cos 2x 1, 0 \le x \le 360$ .
- 3.  $y = -\sin 3x + 1, 0 \le x \le 360.$
- 4.  $y = 2\cos(x+90) + 1, 0 \le x \le 360$ .

# 7 Sample Questions

1. The diagram below shows a graph of the form  $y = a \cos bx + c$ . State the values of (a, b, c).



2. The diagram below shows a graph of the form  $y = a \sin bx + c$ . State the values of (a,b,c).



3. The diagram below shows the graph  $y = 3\cos(x+45)$ . The graph has a minimum turning point at A. State the coordinates of A.

