Лекции по математическому анализу для 1 курса ФН2, 3

Власова Елена Александровна 2024-2025 год.

Содержание

1	Вве	едение	3
	1.1	Элементы теории множеств	3
	1.2	Кванторные операции	3
	1.3	Метод математической индукции	3
2	Множество действительных чисел		3
	2.1	Аксиоматика действительных чисел	3
	2.2	Геометрическая интерпретация \mathbb{R}	4
	2.3	Числовые промежутки	4
	2.4	Бесконечные числовые промежутки	4
	2.5	Окрестности точки	4
	2.6	Принцип вложенных отрезков (Коши-Кантора)	4
	2.7	Ограниченные и неограниченные числовые множества	5
	2.8	Точные грани числового множества	5
	2.9	Принцип Архимеда	5
3	Функции или отображения		
	3.1	Понятие функции	5
	3.2	Ограниченные и неограниченные числовые множества	5
	3.3	Обратные функции	5
	3.4		5
	3.5		5
	3.6		5
	3.7		5
4	Числовые последовательности и их пределы		
	4.1	Ограниченные и неограниченные числовые последователь-	
			5
	4.2	Предел числовой последовательности	6
	4.3	Бесконечные пределы	6
	4.4	Свойства сходящихся последовательностей	6
	4.5	Монотонные числовые последовательности	6
	4.6		7
	4.7		7
	4.8	Предельные точки числового множества	7
	49	Предельные точки числовых последовательностей	7

Элементарные функции и их пределы

- 1 Введение
- 1.1 Элементы теории множеств
- 1.2 Кванторные операции
- 1.3 Метод математической индукции
- 2 Множество действительных чисел

2.1 Аксиоматика действительных чисел

Определение 1. Множесство \mathbb{R} называется множесством действительных чисел, если элементы этого множесства удовлетворяют следующему комплексу условий:

- 1. На множестве \mathbb{R} определена операция сложения "+", то есть задано отображение, которое каждой упорядоченной паре $(x,y) \in \mathbb{R}^2$ ставит в соответствие элемент из \mathbb{R} , называемый суммой x+y и удовлетворяющий следующим аксиомам:
 - (a) $\exists 0 \in \mathbb{R}, \ makoŭ, \ \forall mo \ \forall x \in \mathbb{R} : x + 0 = 0 + x = x;$
 - (b) $\forall x \; \exists \; npomuвonоложный элемент "-x", такой, что <math>x+(-x)=(-x)+x=0;$
 - (c) Ассоциативность. $\forall x, y, z \in \mathbb{R} : (x+y) + z = x + (y+z);$
 - (d) Коммутативность. $\forall x, y \in \mathbb{R} : x + y = y + x$.
- 2. На \mathbb{R} определена операция умножения "·", то есть $\forall (x,y) \in \mathbb{R}^2$ ставится в соответствие элемент $(x \cdot y) \in \mathbb{R}$.
 - (a) \exists нейтральный элемент $1 \in \mathbb{R}$, такой, что $\forall x \in \mathbb{R} : 1 \cdot x = x \cdot 1 = x;$
 - $(b) \ \forall x \in \mathbb{R} \setminus \{0\} \ \exists \ обратный элемент "x^{-1}", такой, что <math>x \cdot x^{-1} = x^{-1} \cdot x = 1;$
 - (c) Ассоциативность. $\forall x, y, z \in \mathbb{R} \setminus \{0\} : (x \cdot y) \cdot z = x \cdot (y \cdot z);$
 - (d) Коммутативность. $\forall x, y \in \mathbb{R} \setminus \{0\} : x \cdot y = y \cdot x$.

Операция умножения дистрибутивна по отношению к сложению.

$$\forall x, y, z \in \mathbb{R} : (x+y)z = xz + yz$$

- 3. Отношения порядка. Для \mathbb{R} определено отношение " \leq ".
 - (a) $\forall x \in \mathbb{R} : x \leq x$;
 - (b) $\forall x, y \in \mathbb{R} : (x \le y \land y \le x) \implies x = y;$
- 2.2 Геометрическая интерпретация $\mathbb R$
- 2.3 Числовые промежутки
- 2.4 Бесконечные числовые промежутки
- 2.5 Окрестности точки
- 2.6 Принцип вложенных отрезков (Коши-Кантора)

Определение 2. Пусть $\{x_n\}_{n=1}^{\infty}$ — последовательность некоторых множеств. Если $\forall n \in \mathbb{N} : X_n \supset X_{n+1}$, то эта последовательность называется последовательностью вложенных отрезков.

- 2.7 Ограниченные и неограниченные числовые множества
- 2.8 Точные грани числового множества
- 2.9 Принцип Архимеда
- 3 Функции или отображения
- 3.1 Понятие функции
- 3.2 Ограниченные и неограниченные числовые множества
- 3.3 Обратные функции
- 3.4 Чётные и нечётные функции
- 3.5 Периодические функции
- 3.6 Сложная функция (композиция)
- 3.7 Основные элементарные функции
- 4 Числовые последовательности и их пределы

Определение 3. $f: \mathbb{N} \to \mathbb{R}$ — числовая последовательность, т.е. $\{x_n\}_{n=1}^{\infty}, x_n \in \mathbb{R}$.

4.1 Ограниченные и неограниченные числовые последовательности

Определение 4. Числовая последовательность $\{x_n\}_{n=1}^{\infty}$ называется

- 1. ограниченной сверху, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : x_n \leq M;$
- 2. ограниченной снизу, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : x_n \geq M;$
- 3. ограниченной, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : |x_n| \leq M;$
- 4. неограниченной, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : |x_n| > M;$

4.2 Предел числовой последовательности

Определение 5. Число $a \in \mathbb{R}$ называется пределом числовой последовательности, если $\forall \varepsilon > 0$ существует такой номер n, зависящий от ε , что \forall натурального числа N > n верно неравенство $|x_n - a| < \varepsilon$.

$$\lim_{n \to \infty} x_n = a$$

4.3 Бесконечные пределы

4.4 Свойства сходящихся последовательностей

4.5 Монотонные числовые последовательности

Определение 6. Числовая последовательность $\{x_n\}_{n=1}^{\infty}$ называется

- 1. возрастающей, если $\forall n \in \mathbb{N} : x_n < x_{n+1};$
- 2. убывающей, если $\forall n \in \mathbb{N} : x_n > x_{n+1};$
- 3. неубывающей, если $\forall n \in \mathbb{N} : x_n \leq x_{n+1};$
- 4. невозрастающей, если $\forall n \in \mathbb{N} : x_n \geq x_{n+1}$

Для монотонных числовых последовательностей ограниченность является достаточным условием для сходимости.

Теорема 1 (Вейерштрасса о сходимости монотонных числовых последовательностей). Если последовательность не убывает и ограничена сверху, то она является сходящейся. Если последовательность не возрастает и ограничена снизу, то она является сходящейся. В общем, любая монотонная последовательность сходится.

Доказательство. Пусть $\{x_n\}_{n=1}^{\infty}$ не убывает и ограничена сверху $\Longrightarrow \exists M \in \mathbb{R} : \forall n \in \mathbb{N} : x_n \leq M \Longrightarrow$ множество значений этой последовательности $\{x_1, x_2, x_3, \ldots, x_n, \ldots\} = A$ является ограниченным сверху числовым множеством $\Longrightarrow \exists \sup A \in \{x_n\}_{n=1}^{\infty} = a$, то есть

- 1. $\forall n \in \mathbb{N} : x_n \leq a;$
- 2. $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} : x_N > a \varepsilon$.

Т.к. $\{x_n\}_{n=1}^{\infty}$ — неубывающая последовательность \implies

Если $\{x_n\}_{n=1}^{\infty}$ — невозрастающая и ограниченная снизу последовательность, то $\exists \lim_{n\to\infty} x_n = \inf A, A = \{x_1, x_2, \dots, x_n, \dots\}$. Доказательство аналогично.

- **4.6** Число *е*
- 4.7 Гиперболические функции
- 4.8 Предельные точки числового множества
- 4.9 Предельные точки числовых последовательностей