

CLAIMS

What is claimed is:

1
2
3

1. An electronic device comprising:
a housing to enable the device to be docked into a notebook computer;
an interface disposed on a surface of the housing to enable
communication between the device and the notebook computer when
the device is docked; and
a processor to operate as a system processor of the notebook computer
when the device is docked and to operate as a system processor of
the device when the device is undocked.

1 2. The electronic device of claim 1, further comprising an input controller to
receive input data into the device when the device is undocked.

1 3. The electronic device of claim 2, further comprising core memory to store the
input data when the device is undocked.

1 4. The electronic device of claim 3, further comprising an output controller to
provide output data from the device when the device is undocked.

1 5. The electronic device of claim 4, further comprising a visual display disposed
on a surface of the housing, the visual display being coupled to the input
controller to provide the input data via pen-based entries on the display and

4 being coupled to the output controller to provide the output data via the
5 display.

1 6. The electronic device of claim 1, further comprising core memory having
2 stored thereon a mini operating system.

1 7. The electronic device of claim 1, further comprising a battery to provide
2 power to the processor when the electronic device is undocked.

1 8. The electronic device of claim 7, wherein the interface is coupled to the
2 battery to charge the battery when the electronic device is docked.

1 9. The electronic device of claim 8, wherein the notebook computer is to provide
2 power to the processor when the electronic device is docked.

1 10. The electronic device of claim 9, wherein the processor is to operate at a
2 higher frequency and at a higher voltage when the device is docked than
3 when the device is undocked.

1 11. The electronic device of claim 1, wherein the processor is to operate at a
2 higher frequency and at a higher voltage when the device is docked than
3 when the device is undocked.

1 12. A base computer comprising:

2 a docking port to receive a hand-held core computer having a processor

3 to operate as a system processor of the base computer when the

4 device is docked and to operate as a system processor of the core

5 computer when the device is undocked; and

6 an interface in the docking port to enable communication between the

7 core computer and the base computer when the core computer is

8 docked.

1 13. The base computer of claim 12, further comprising base memory having

2 stored thereon a full operating system, the core computer comprising core

3 memory having stored thereon a mini operating system.

1 14. The base computer of claim 12, wherein the interface is to couple a power

2 supply of the base computer to a battery in the core computer to charge the

3 battery and to provide power to the processor when the core computer is

4 docked.

1 15. The base computer of claim 14, wherein the processor is to operate at a

2 higher frequency and at a higher voltage when the processor operates as a

3 system processor of the base computer than when the processor operates as

4 a system processor of the core computer.

1 16. The base computer of claim 12, wherein the processor is to operate in one of
2 a high power mode and a low power mode according to user preference.

1 17. A method of operating a computer system comprising:
2 operating a processor as a system processor of a notebook computer
3 when a core computer is docked in a docking port of the notebook
4 computer; and
5 operating the processor as a system processor of the core computer
6 when the core computer is undocked.

1 18. The method of claim 17, further comprising synchronizing memory of the
2 notebook computer with memory of the core computer when the core
3 computer is docked.

1 19. The method of claim 17, further comprising charging a battery in the core
2 computer when the core computer is docked.

1 20. The method of claim 17, wherein operating the processor as a system
2 processor of the notebook computer includes operating the processor at a
3 higher frequency and voltage than when operating the processor as a system
4 processor of the core computer.

1 21. The method of claim 17, wherein operating the processor as a system
2 processor of the notebook computer includes running a full operating system
3 on the processor, and operating the processor as a system processor of the
4 core computer includes running a mini operating system on the processor.
5