

基于数加平台,助力光伏产业优化升级

闵佳(花名:申杭) 袋鼠云首席大数据架构师

集中式电站

分布式电站(家庭)

- 一.项目意义
- 二.项目实施流程
- 三.取得的项目成果
- 四.项目中的难点
- 五.项目中对数加产品的使用
- 六.项目实际应用价值

国家"售电测改革"政策支持

- 1、提高电网稳定性、增加电网消纳光电能力
- 2、帮助光伏电站减少由于限电带来的经济损失,提高光伏电站运营管理效率
- 3、光伏发电预测结合光伏智慧能源管理系统和智能家居系统

光伏能源预测流<mark>云栖社区</mark>

光伏发电历史数据云标社区

字段名	数据类型	含义
inverter_id	string	逆变器序列号
collector_id	string	采集器序列号
voltage_first	double	第一路直流电压(V)
voltage_second	double	第二路直流电压(V)
electric_flow_first	double	第一路直流电流(A)
electric_flow_second	double	第二路直流电流(A)
voltage_a	double	A相电压(V)
voltage_b	double	B相电压(V)
voltage_c	double	C相电压(V)
electric_flow_a	double	A相电流(A)
electric_flow_b	double	B相电流(A)
electric_flow_c	double	C相电流(A)
frequency_a	double	A相频率(Hz)
frequency_b	double	B相频率(Hz)
frequency_c	double	C相频率(Hz)
grid_power	double	并网功率(W)
work_model	bigint	工作模式(1表示正常)
cavity_temp	double	腔体温度(摄氏度)
total_electricity	double	总发电量(kWh)
electricty_day	double	日发电量(kWh)
upload_date	double	时间

字段名	数据类型	含义
collector_id	string	采集器序列号
radiation	double	辐射强度(W/m2)
ambient_temp	double	环境温度(摄氏度)
assembly_temp	double	组件温度(摄氏度)
wind_speed	double	风速(m/s)
degree	double	风向(degree)注:32767表示风向获取失败
creationDate	string	数据获取时间

逆变器采集数据

气象采集数据

光伏发电预测算法模型 云栖社区

线性回归

RMSE=2.74

随机森林

预测未来光伏发电量

天气预报等数据

训练得出一个模型

准确率 **81.3%**

我们对2017年1月的数据做了一次预测, 按小时的预测粒度,我们对预测的结果值 做了一次统计,对RMSE<2.5的合格率达 到81.3%,符合客户的预期结果。

难点

目前特征值有限 只有辐射、温度、风速、风向 太阳照射方向角

改进

引入云量、天气类型 等新的特征值 需要购买新的天气数据

MaxCompute 大数据计算服务

PAI 机器学习平台

Data IDE 大数据开发套件

Quick BI

© hadoop	数加
需要写java代码进行开发,门槛高	直接使用SQL进行开发,使用门槛低
需要使用多个组件,系统稳定性低	一站式开发平台,系统稳定性高
不支持界面化操作	支持界面化操作,拖拽即可
不支持数据管理和运维管理,维护成本高	支持数据管理和运维管理,维护成本低
应用开发周期长	应用开发周期短

项目实际应用<mark>云栖社区</mark>

电力调度

分布式家庭电站国家提倡"自给自用,余电上网",作为余电上网的条件之一,为了方便国家调度电力资源,提供电量预测功能。

故障排查

根据发电功率的预测 值对真实发电功率值, 监测异常波动大的数据

提供增值服务

分布式电站的核心是用 户资源,发电功率预测 可以作为一种增值服务 去吸引客户资源。

面向未来

在电力市场化的大背景下由于电价的放开,发电计划的放开,电力交易中心的成立,以及"绿证"这一基于配额形成的可再生能源交易体系,以对发电量进行宏观把控的功率预测形式是大势所趋。

袋鼠云

袋鼠云由多名前阿里云资深技术专家创立,核心员工来自阿里巴巴、华为、神州数码等做为阿里云的战略合作伙伴,专注于为企业客户提供云计算和大数据智能服务及产品。

乙天・智能 APSARA INTELLIGENCE

2017云栖大会·成都峰会

5月23日 成都世纪城天堂洲际大酒店