Pierre Mézières

PhD in computer graphics

Latest International publication

- Recursive analytic spherical harmonics gradient for spherical light

Pierre Mézières, Nicolas Mellado, Loïc Barthe, Mathias Paulin In Computer graphics Forum (Presented at Eurographics 2022)

More information on pierremezieres.github.io

Work experience

Postodocal researcher / INRIA Bordeaux

Work on <u>La Coupole</u> with <u>Romain Pacanowski</u>: Reconstruction of SV-BRDF (**S**patially **V**arying **B**idirection **R**eflectance **D**istribution Function) from many photos (several terabytes).

Education

PhD thesis / STORM - IRIT / Université Paul Sabatier Toulouse

- Lighting modeling and simulation for real-time spherical harmonics based rendering.
- Advisor: Pr. Mathias Paulin.

Master Degree - Computer Graphics and Image Analysis

/ Université Paul Sabatier Toulouse

- Computer graphics: rendering, geometry, animation.
- Image analysis and processing.
- Major of promotion. I received the <u>CIMI</u> excellence scholarships for both years.

Licence Degree in computer science / Université Paul Sabatier Toulouse

- Graduated with honors.
- Major in the second and third year of the licence.

Portfolio

Design of a real-time 3D engine "Rogue" (C++/OpenGL)

- Creation from scratch started during my master's degree.
- Oriented efficient prototyping for rendering.
- Main development platform for my PhD thesis.

Moment Based Rendering (C++/OpenGL)

- Implementation and comparison of six methods to compute shadows and transparency in real-time to highlight the moment-based rendering.
- Graduation project realized in group.

See more on pierremezieres.github.io

- m Date of birth 11/25/1996
- ★ 11, Rue Louis-Denis Mallet, 33130 Bègles, France
- https://pierremezieres.github.io/

Profile

PhD Candidate in computer graphics from IRIT (Institut de Recherche en Informatique de Toulouse). My PhD thesis focus on an efficient use of the spherical harmonics applied to real-time shading.

My current contributions cover direct and indirect lighting, including a little bit of differentiable rendering. An efficient use of the spherical harmonics for differentiable rendering sounds like a solid and promising avenue of research.

Research interests

- Efficient rendering
- Spherical harmonics
- Global illumination
- Differentiable rendering

Common use

- C / C++
- OpenGL
- glsl / hlsl
- Python

Other

Tennis, Bicycle, Piano, Drums, Saxophone, Video games...