Tsinghua-Berkeley Shenzhen Institute Operations Research Fall 2023

Homework 7

Haizhou Ge 2023312829

November 28, 2023

- Acknowledgments: This assignment refers to the textbook: Introduction to Operations Research(10th).
- Collaborators: I finish this assignment by myself.

The answers below are arranged according to the order of the following questions in the textbook: 13.2-6(a)(b)(c)(d)(e), 13.2-9, 13.3-4, 13.4-1, 13.6-4.

7.1. 13.2-6 SOLUTION

- (a) f''(x) = -2 < 0, so f(x) is convex.
- (b) $f''(x) = 12x^2 + 12 > 0$, so f(x) is concave.
- (c) f''(x) = 12x 6, so f(x) is neither convex or concave.
- (d) $f''(x) = 12x^2 + 2 > 0$, so f(x) is concave.
- (e) $f''(x) = 6x + 12x^2 = 6x(1+2x)$, so f(x) is neither convex or concave.

7.2. 13.2-9 SOLUTION

- (a) Since $\frac{\partial f(x)}{\partial x_1^2} = \frac{\partial f(x)}{\partial x_2^2} = \frac{\partial f(x)}{\partial x_1 \partial x_2} = 0$, and $\frac{\partial f(x)}{\partial x_1^2} \frac{\partial f(x)}{\partial x_2^2} \left[\frac{\partial f(x)}{\partial x_1 \partial x_2}\right]^2 = 0$, f(x) is convex. And $\frac{\partial g(x)}{\partial x_1^2} = \frac{\partial g(x)}{\partial x_2^2} = \frac{\partial g(x)}{\partial x_1 \partial x_2} = 2 > 0$, and $\frac{\partial g(x)}{\partial x_1^2} \frac{\partial g(x)}{\partial x_2^2} \left[\frac{\partial g(x)}{\partial x_1 \partial x_2}\right]^2 = 4 > 0$, g(x) is convex, too. Hence the problem is a convex programming problem.
- (b) The graph is shown as Figure 1.

7.3. 13.3-4 SOLUTION

(a) SOLUTION

Let $x_1 = e^{y_1}$ and $x_2 = e^{y_2}$, the problem becomes: Objective:

Minimize
$$f(y) = 2e^{-2y_1 - y_2} + e^{-y_1 - 2y_2},$$
 (1)

subject to:

$$g(y) = 4 * e^{y_1 + y_2} + e^{2y_1 + 2y_2} - 12 \le 0.$$
 (2)

Figure 1: Graph of the nonlinear program

(b) Since:
$$\frac{\partial f(y)}{\partial y_1^2} = 8e^{-2y_1 - y_2} + e^{-y_1 - y_2} \ge 0, \quad \frac{\partial f(y)}{\partial y_2^2} = 2e^{-2y_1 - y_2} + 4e^{-y_1 - y_2} \ge 0,$$
$$\frac{\partial f(y)}{\partial y_1^2} \frac{\partial f(y)}{\partial y_2^2} - \left[\frac{\partial f(y)}{\partial y_1 \partial y_2}\right]^2 = 18e^{-3y_1 - 3y_2} \ge 0.$$
$$\frac{\partial g(y)}{\partial y_1^2} = \frac{\partial g(y)}{\partial y_2^2} = \left[\frac{\partial g(y)}{\partial y_1 \partial y_2}\right]^2 = 4e^{y_1 + y_2} + 4e^{y_1 + y_2},$$
$$\frac{\partial g(y)}{\partial y_1^2} \frac{\partial g(y)}{\partial y_2^2} - \left[\frac{\partial g(y)}{\partial y_1 \partial y_2}\right]^2 = 0.$$
Hence f(y) and g(y) are both convex, which means the model formulated in part (a) is indeed a convex programming problem.

formulated in part (a) is indeed a convex programming problem.

7.4. 13.4-1 SOLUTION

(a) $f'(x) = 3x^2 + 2 - 4x - x^3$ and the answer is shown in Figure 2.

Itertation	f'(x)	lower x	upper x	New x'	f(x')			
0		0	2.4	1.2	0.7296			
1	-0.208	0	1.2	0.6	0.6636			
2	0.464	0.6	1.2	0.9	0.745			
3	0.101	0.9	1.2	1.05	0.7487			
4	-0.05	0.9	1.05	0.975	0.7497			
5	0.025	0.975	1.05	1.0125	0.7499			
Stop Solution: x = 1.0125								

Figure 2: Bisection method

(b) $f''(x) = 6x - 4 - 3x^2$ and the answer is shown in Figure 3.

Itertation i	хi	f(xi)	f'(xi)	f''(xi)	xi+1	xi-xi+1			
1	1.2000	0.7296	-0.208	-1.12	1.0143	0.1857			
2	1.0143	0.7499	-0.014	-1.0006	1.0000	0.0143			
3	1.0000	0.75	0	-1	1.0000	0.0000			
Stop Solution: x = 1.000006 (more accurate)									

Figure 3: Newton's method

Figure 4: Objective function over the feasible region of subproblem 1

7.5. 13.6-4

(a) SOLUTION:

The KKT conditions are as followed:

$$1(j = 1) : 24 - 2x_1 - u_1 \le 0$$

$$2(j = 1) : x_1(24 - 2x_1 - u_1) = 0$$

$$1(j = 2) : 10 - 2x_2 - u_2 \le 0$$

$$2(j = 2) : x_2(10 - 2x_2 - u_2) = 0$$

$$3 : x_1 - 10 \le 0, x_2 - 15 \le 0$$

$$4 : u_1(x_1 - 10) = 0, u_2(x_2 - 15) = 0$$

$$5 : x_1 \ge 0, x_2 \ge 0$$

$$6 : u_1 \ge 0, u_2 \ge 0$$

(b) SOLUTION:

The subproblem 1 is: Objective:

Maximize
$$f_1(x_1) = 24x_1 - x_1^2$$
, (4)

subject to: $0 \le x_1 \le 10$.

Figure 5: Objective function over the feasible region of subproblem 2

The subproblem 2 is: Objective:

Maximize
$$f_2(x_2) = 10x_2 - x_2^2$$
, (5)

subject to: $0 \le x_2 \le 15$.

The objective funtion over the feasible region of the two problems are shown in Figure 4 and Figure 5.

Since $\frac{\partial f(x_1)}{\partial x_1} = 24 - 2x_1 > 0$ when $0 \le x_1 \le 10$, hence $x_1 = 10$ is a global optimal solution over the feasible region. Since $\frac{\partial f(x_2)}{\partial x_2} = 10 - 2x_2 = 0$ when $x_2 = 5 < 15$ and $\frac{\partial f(x_2)}{\partial x_2^2} = -2 < 0$, hence $x_2 = 5$ is a global optimal solution.

\mathbf{A} Relevant Files

Relevant files can be found in my GitHub repository: $\verb|https://github.com/OpenGHz/TBSI-MyHomework.git|.$