TITLE: Perform EDA and Visualise the relationships for a given dataset. CODE: import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # Load the Dataset data = pd.read_csv("Housing.csv") print(data.info()) print(data.describe()) # Check for Missing Values print("Missing Values:\n", data.isnull().sum()) # Univariate Analysis: Distribution of Prices sns.histplot(data['price'], kde=True) plt.title("Distribution of House Prices") plt.xlabel("Price") plt.ylabel("Frequency") plt.show() # Distribution of Area sns.histplot(data['area'], kde=True, color='orange') plt.title("Distribution of House Area") plt.xlabel("Area") plt.ylabel("Frequency") plt.show() # Bar Plot: Furnishing Status sns.countplot(x="furnishingstatus", data=data, palette="Set2")

```
plt.title("Furnishing Status Count")
plt.xlabel("Furnishing Status")
plt.ylabel("Count")
plt.show()
# Multivariate Analysis: Price vs Area
sns.scatterplot(x="area", y="price", hue="furnishingstatus", data=data, palette="cool")
plt.title("Price vs Area")
plt.xlabel("Area")
plt.ylabel("Price")
plt.show()
# Correlation Heatmap
sns.heatmap(data.corr(), annot=True, cmap="coolwarm")
plt.title("Correlation Heatmap")
plt.show()
# Price vs Number of Bedrooms
sns.boxplot(x="bedrooms", y="price", data=data, palette="Set3")
plt.title("Price vs Number of Bedrooms")
plt.xlabel("Number of Bedrooms")
plt.ylabel("Price")
plt.show()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 545 entries, 0 to 544
Data columns (total 13 columns):
# Column
                  Non-Null Count Dtype
---
                   -----
0 price
                   545 non-null int64
                   545 non-null int64
1 area
 2 bedrooms
                   545 non-null int64
                   545 non-null
                                int64
 3 bathrooms
 4
   stories
                   545 non-null
                                  int64
                   545 non-null
 5
   mainroad
                                 object
                   545 non-null
 6
   guestroom
                                  object
 7
    basement
                    545 non-null
                                  object
   hotwaterheating 545 non-null airconditioning 545 non-null
 8
                                  object
 9
                                  object
10 parking
                    545 non-null
                                  int64
 11 prefarea
                    545 non-null
                                  object
12 furnishingstatus 545 non-null object
dtypes: int64(6), object(7)
memory usage: 55.5+ KB
None
            price
                         area bedrooms bathrooms
                                                       stories \
count 5.450000e+02
                    545,000000 545,000000 545,000000 545,000000
mean 4.766729e+06 5150.541284
                               2.965138 1.286239
                                                     1.805505
     1.870440e+06 2170.141023 0.738064 0.502470
                                                     0.867492
    1.750000e+06 1650.000000 1.000000 1.000000 1.000000
25%
    3.430000e+06 3600.000000 2.000000 1.000000
                                                     1.000000
50%
     4.340000e+06 4600.000000 3.000000 1.000000 2.000000
75%
     5.740000e+06 6360.000000 3.000000 2.000000 2.000000
max 1.330000e+07 16200.000000 6.000000
                                           4.000000
                                                      4.000000
        parking
count 545.000000
mean
       0.693578
std
        0.861586
       0.000000
min
25%
       0.000000
50%
       0.000000
75%
       1.000000
max
       3.000000
Missing Values:
price
                  0
area
                  0
bedrooms
                  0
bathrooms
                 а
stories
mainroad
                 0
guestroom
basement
hotwaterheating
                  0
airconditioning
                  0
parking
                 а
prefarea
                 a
furnishingstatus
                 0
dtype: int64
```


TITLE: Perform EDA and Visualise the relationships and also train a Linear regression model and evaluate model's performance for Housing Price dataset.

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
# Load Dataset
data = pd.read_csv("User_Data.csv")
print(data.info())
# EDA: Visualize the relationships
sns.scatterplot(x="EstimatedSalary", y="Purchased", hue="Gender", data=data)
plt.title("Relationship Between Salary and Purchase Decision")
plt.show()
# Preprocessing
data = pd.get_dummies(data, columns=["Gender"], drop_first=True)
X = data[["Age", "EstimatedSalary", "Gender_Male"]]
y = data["Purchased"]
# Split Data into Training and Testing Sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train Linear Regression Model
model = LinearRegression()
model.fit(X_train, y_train)
# Make Predictions
```

```
y_pred = model.predict(X_test)
# Evaluate Model
rmse = mean_squared_error(y_test, y_pred, squared=False)
r2 = r2_score(y_test, y_pred)
print("RMSE:", rmse)
print("R² Score:", r2)
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 400 entries, 0 to 399 Data columns (total 5 columns): Column Non-Null Count Dtype User ID 0 400 non-null int64 400 non-null object 1 Gender 2 Age 400 non-null int64 int64 3 EstimatedSalary 400 non-null Purchased 400 non-null int64 dtypes: int64(4), object(1) memory usage: 15.8+ KB None

RMSE: 0.315190846926146 R² Score: 0.5633174945669398

TITLE: Perform EDA and Visualise the relationships and also train a Ridge regression model and evaluate model's performance for given dataset.

```
# Import necessary libraries
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt
import seaborn as sns
# Load the dataset
df = pd.read_csv("Housing.csv")
print(df.shape)
# EDA
sns.pairplot(df)
plt.show()
sns.heatmap(df.corr(), annot=True, cmap="coolwarm")
plt.show()
# Preprocessing
df = pd.get_dummies(df, drop_first=True)
X = df.drop("price", axis=1)
y = df["price"]
# Standardization
```

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
# Model Training and Evaluation
ridge = Ridge(alpha=1.0) # Try different alpha (λ) values
ridge.fit(X_train, y_train)
y_pred = ridge.predict(X_test)
# Performance Metrics
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f"Mean Squared Error: {mse}")
print(f"R-squared: {r2}")
# Residuals Plot
residuals = y_test - y_pred
sns.histplot(residuals, kde=True)
plt.title("Residuals Distribution")
plt.show()
```


Mean Squared Error: 1754768938809.1035

R-squared: 0.6528351861223265

TITLE: Perform EDA and Visualise the relationships and also train a Lasso regression model and evaluate model's performance for given dataset.

```
# Import necessary libraries
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Lasso
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt
import seaborn as sns
# Load the dataset
df = pd.read_csv("Housing.csv")
print(f"Dataset Shape: {df.shape}")
# EDA
sns.pairplot(df)
plt.show()
sns.heatmap(df.corr(), annot=True, cmap="coolwarm")
plt.show()
# Preprocessing
df = pd.get_dummies(df, drop_first=True)
X = df.drop("price", axis=1)
y = df["price"]
# Standardization
from sklearn.preprocessing import StandardScaler
```

```
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
# Model Training and Evaluation
lasso = Lasso(alpha=1.0) # Experiment with different alpha (λ) values
lasso.fit(X_train, y_train)
y_pred = lasso.predict(X_test)
# Performance Metrics
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f"Mean Squared Error: {mse}")
print(f"R-squared: {r2}")
# Residual Plot
residuals = y_test - y_pred
sns.histplot(residuals, kde=True)
plt.title("Residuals Distribution")
plt.show()
```


Mean Squared Error: 1754768938809.1035

R-squared: 0.6528351861223265

TITLE: Perform EDA and Visualise the relationships and also train a Logistic regression model and evaluate model's performance for Iris dataset.

CODE:

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
# Load Dataset
from sklearn.datasets import load_iris
data = load_iris(as_frame=True)
df = data.frame
# EDA: Pair plot
sns.pairplot(df, hue='target', vars=['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal
width (cm)'])
plt.show()
# Split Data
X = df.drop('target', axis=1)
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train Logistic Regression
model = LogisticRegression()
model.fit(X_train, y_train)
```

Predictions and Evaluation

```
y_pred = model.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Classification Report:\n", classification_report(y_test, y_pred))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
```


Accuracy: 1.0

Classification Report:

	precision	recall	f1-score	support	
0	1.00	1.00	1.00	10	
1	1.00	1.00	1.00	9	
2	1.00	1.00	1.00	11	
accuracy			1.00	30	
macro avg	1.00	1.00	1.00	30	
weighted avg	1.00	1.00	1.00	30	

Confusion Matrix: [[10 0 0] [0 9 0] [0 0 11]]

TITLE: Perform EDA and Visualise the relationships and also train a Logistic regression model and evaluate model's performance for User dataset.

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
# Load Dataset
data = pd.read_csv('User_Data.csv')
# EDA: Check dataset info
print(data.info())
# Scatter Plot
sns.scatterplot(x='Age', y='EstimatedSalary', hue='Purchased', data=data)
plt.title('Age vs Estimated Salary Colored by Purchase')
plt.show()
# Data Preprocessing
data['Gender'] = data['Gender'].map({'Male': 0, 'Female': 1}) # Encode Gender
X = data[['Gender', 'Age', 'EstimatedSalary']]
y = data['Purchased']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train Logistic Regression
model = LogisticRegression()
```

```
model.fit(X_train, y_train)

# Predictions and Evaluation

y_pred = model.predict(X_test)

print("Accuracy:", accuracy_score(y_test, y_pred))

print("Classification Report:\n", classification_report(y_test, y_pred))

print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	User ID	400 non-null	int64
1	Gender	400 non-null	object
2	Age	400 non-null	int64
3	EstimatedSalary	400 non-null	int64
4	Purchased	400 non-null	int64

dtypes: int64(4), object(1)

memory usage: 15.8+ KB

None

Age vs Estimated Salary Colored by Purchase

140000 - 0 1

120000 - 40000 - 40000 - 20

Accuracy: 0.65
Classification Report:

Classification	precision	recall	f1-score	support
0	0.65	1.00	0.79	52
1	0.00	0.00	0.00	28
accuracy			0.65	80
macro avg	0.33	0.50	0.39	80
weighted avg	0.42	0.65	0.51	80

Age

Confusion Matrix:

[[52 0] [28 0]]

TITLE: Perform EDA and Visualise the relationships and also train a Naive Baye's Classifier model and evaluate model's performance for Wine dataset.

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
# Load Dataset
from sklearn.datasets import load_wine
data = load_wine(as_frame=True)
df = data.frame
# EDA: Visualizing Correlation Heatmap
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
# Splitting Features and Target
X = df.drop('target', axis=1)
y = df['target']
# Train-Test Split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train Naive Bayes Classifier
model = GaussianNB()
```

```
model.fit(X_train, y_train)

# Predictions and Evaluation

y_pred = model.predict(X_test)

print("Accuracy:", accuracy_score(y_test, y_pred))
```

print("Classification Report:\n", classification report(y test, y pred))

print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))

Accuracy: 1.0 Classification Report:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	14
1	1.00	1.00	1.00	14
2	1.00	1.00	1.00	8
accuracy			1.00	36
macro avg	1.00	1.00	1.00	36
weighted avg	1.00	1.00	1.00	36

Confusion Matrix:

[[14 0 0] [0 14 0] [0 0 8]]

TITLE: Perform EDA and Visualise the relationships and also train a Decision Tree Classifier model and evaluate model's performance for Titanic dataset.

```
CODE:
```

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
# Load Dataset
data = pd.read_csv('titanic.csv')
# EDA: Summary and Visualization
print(data.info())
sns.barplot(x='Sex', y='Survived', data=data)
plt.title('Survival Rate by Gender')
plt.show()
# Preprocessing: Handle missing values and encode categorical variables
data['Age'].fillna(data['Age'].median(), inplace=True)
data['Embarked'].fillna(data['Embarked'].mode()[0], inplace=True)
data = pd.get_dummies(data, columns=['Sex', 'Embarked'], drop_first=True)
# Feature Selection
features = ['Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'Sex_male', 'Embarked_Q', 'Embarked_S']
X = data[features]
y = data['Survived']
# Split Data
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train Decision Tree Classifier
model = DecisionTreeClassifier(max_depth=5, random_state=42)
model.fit(X_train, y_train)
# Predictions and Evaluation
y_pred = model.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Classification Report:\n", classification_report(y_test, y_pred))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
```

	•	re.frame.DataFra	ne'>
_		ntries, 0 to 890	
Data	columns (tota	al 12 columns):	
#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtyp	es: float64(2)), int64(5), obj	ect(5)
memo	ry usage: 83.	7+ KB	
None			

Accuracy: 0.7988826815642458 Classification Report:

	precision	recall	f1-score	support
0	0.79	0.90	0.84	105
1	0.83	0.65	0.73	74
accuracy			0.80	179
macro avg	0.81	0.78	0.78	179
weighted avg	0.80	0.80	0.79	179

Confusion Matrix:

[[95 10] [26 48]]

TITLE: Perform EDA and Visualise the relationships and also train a KNN model and evaluate model's performance for Digit dataset.

```
CODE:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
# Load Digits Dataset
digits = load_digits()
X = digits.data
y = digits.target
print(f"Dataset Shape: {X.shape}")
# Visualize a Sample Digit
plt.gray()
plt.matshow(digits.images[0])
plt.title(f"Digit: {digits.target[0]}")
plt.show()
# Normalize the Data
scaler = StandardScaler()
```

Split into Training and Testing Sets

X_scaled = scaler.fit_transform(X)

```
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
# Train KNN Model
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
# Make Predictions
y_pred = knn.predict(X_test)
# Evaluate Model
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
print("Classification Report:\n", classification_report(y_test, y_pred))
```

Dataset Shape: (1797, 64)
<Figure size 640x480 with 0 Axes>

Accuracy: 0.975 Confusion Matrix:

[[33 0 0 0 0 0 0 0 0 0] [028 0 0 0 0 0 0 0 0] [0 0 33 0 0 0 0 0] [0 0 1 33 0 0 [0 0 0 0 46 0 0 0 0 0] [0 0 0 0 0 45 1 0 0 1] $[\ 0 \ 0 \ 0 \ 0 \ 0 \ 35 \ 0 \ 0 \ 0]$ [00000103201] [000000000300] [00011100136]]

Classification Report:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	33
1	1.00	1.00	1.00	28
2	0.97	1.00	0.99	33
3	0.97	0.97	0.97	34
4	0.98	1.00	0.99	46
5	0.96	0.96	0.96	47
6	0.97	1.00	0.99	35
7	1.00	0.94	0.97	34
8	0.97	1.00	0.98	30
9	0.95	0.90	0.92	40
accuracy			0.97	360
macro avg	0.98	0.98	0.98	360
weighted avg	0.98	0.97	0.97	360

TITLE: . Perform EDA and Visualise the relationships and also train a K-Means regression model and evaluate model's performance for Income dataset.

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
# Load Dataset
data = pd.read_csv("User_Data.csv")
print(data.info())
# EDA: Visualize EstimatedSalary and Age distributions
sns.scatterplot(x="Age", y="EstimatedSalary", hue="Purchased", data=data)
plt.title("Scatterplot: Age vs Estimated Salary Colored by Purchase")
plt.show()
# Preprocessing
data = pd.get_dummies(data, columns=["Gender"], drop_first=True)
scaler = StandardScaler()
data[["Age", "EstimatedSalary"]] = scaler.fit_transform(data[["Age", "EstimatedSalary"]])
# Apply K-Means Clustering
kmeans = KMeans(n_clusters=3, random_state=42)
data["Cluster"] = kmeans.fit_predict(data[["Age", "EstimatedSalary"]])
# Visualize Clusters
sns.scatterplot(x="Age", y="EstimatedSalary", hue="Cluster", data=data, palette="viridis")
plt.title("Clusters Visualized: Age vs Estimated Salary")
```

plt.show()

```
# Evaluate Model
```

```
print("Cluster Centroids:\n", kmeans.cluster_centers_)
print("Intra-Cluster Variance (WCSS):", kmeans.inertia_)
print("Silhouette Score:", silhouette_score(data[["Age", "EstimatedSalary"]], data["Cluster"]))
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 5 columns):
     Column
                    Non-Null Count Dtype
    User ID
 0
                     400 non-null
                                     int64
                                     object
 1
     Gender
                     400 non-null
                                     int64
 2
     Age
                     400 non-null
     EstimatedSalary 400 non-null
                                     int64
     Purchased
                      400 non-null
                                     int64
dtypes: int64(4), object(1)
memory usage: 15.8+ KB
None
```

Scatterplot: Age vs Estimated Salary Colored by Purchase

Clusters Visualized: Age vs Estimated Salary

Cluster Centroids:

[[0.7991185 -0.40988428]

[0.46159632 1.54420291]

[-0.83200206 -0.38911019]]

Intra-Cluster Variance (WCSS): 323.8667384794876

Silhouette Score: 0.36205845294545275

TITLE: Perform EDA and Visualise the relationships and also train a K-Means regression model and evaluate model's performance for Iris dataset.

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import numpy as np
# Load Dataset
iris = load_iris()
data = pd.DataFrame(iris.data, columns=iris.feature_names)
data['species'] = iris.target
print(data.head())
# EDA: Pair Plot
sns.pairplot(data, hue='species', vars=iris.feature_names)
plt.show()
# Data Preprocessing: Standardize Features
scaler = StandardScaler()
data_scaled = scaler.fit_transform(data[iris.feature_names])
# Determine Optimal k using Elbow Method
wcss = []
for k in range(1, 11):
  kmeans = KMeans(n_clusters=k, random_state=42)
```

```
kmeans.fit(data_scaled)
  wcss.append(kmeans.inertia_)
plt.plot(range(1, 11), wcss, marker='o')
plt.title('Elbow Method')
plt.xlabel('Number of Clusters')
plt.ylabel('WCSS')
plt.show()
# Train K-Means Model
kmeans = KMeans(n_clusters=3, random_state=42)
data['cluster'] = kmeans.fit_predict(data_scaled)
# Visualize Clusters
sns.scatterplot(x=data[iris.feature_names[0]], y=data[iris.feature_names[2]], hue=data['cluster'],
palette='viridis')
plt.title('K-Means Clusters')
plt.xlabel('Sepal Length')
plt.ylabel('Petal Length')
plt.show()
# Evaluate Clustering
silhouette_avg = silhouette_score(data_scaled, data['cluster'])
print("Silhouette Score:", silhouette_avg)
```

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm) \
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
	species			
0	0			
1	0			
2	0			
3	0			
4	0			

Silhouette Score: 0.45994823920518635