HandWritten Digit Recognition

First DeepLearning project

In this project, we are using mnist dataset and try to train a neural network to do the digit classification

```
In [33]: import numpy as np
    import pandas as pd
    import matplotlib as plt
    import tensorflow as tf
    from tensorflow import keras
    import matplotlib.pyplot as plt

    print(tf.__version__)
```

2.13.0

load the mnist data

```
In [2]: from tensorflow.keras.datasets import mnist
```

load the mnist dataset

```
In [3]: (train_images, train_labels), (test_images, test_labels) = mnist.load_data(
```

Inspect the data

```
In [4]: plt.imshow(train_images[0], cmap='gray')
    plt.title(f"Label: {train_labels[0]}")
    plt.show()
```


before we do anything, we have to remember to normalize the data

Normalize the images to be values between 0 and 1

```
In [5]: train_images = train_images.astype('float32') / 255
test_images = test_images.astype('float32') / 255
```

then.

One-hot encode the labels

```
In [6]: train_labels = tf.keras.utils.to_categorical(train_labels)
test_labels = tf.keras.utils.to_categorical(test_labels)
```

to understand how the data is structured, we print it

```
In [7]: print(train_images)
```

```
[[[0. 0. 0. ... 0. 0. 0.]]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
  . . .
  [0. \ 0. \ 0. \ \dots \ 0. \ 0. \ 0.]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]]
 [[0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
 [[0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]]
 [[0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]]
 [[0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]]
 [[0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]]]
```

so each number is 28 pixels x 28 pixels

1. Now, we start to set up layers for it

we use relu functions as the activation function since is good and its simple, easy for training and processing data


```
In [9]: from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten, Dense

model = Sequential([
    Flatten(input_shape=(28, 28)), # Flatten the 28x28 images
    Dense(128, activation='relu'), # Fully connected layer with 128 units
    Dense(10, activation='softmax') # Output layer with 10 units (for 10 c
])
```

2. Complie the Model

Model: "sequential"

Layer (type)	Output Shape	Param #		
flatten (Flatten)	(None, 784)	0		
dense (Dense)	(None, 128)	100480		
dense_1 (Dense)	(None, 10)	1290		
======================================				

3. Train the Model

Non-trainable params: 0 (0.00 Byte)

```
In [11]: history = model.fit(
       train_images,
       train labels,
       epochs=5,
       batch size=32,
       validation data=(test images, test labels)
     Epoch 1/5
     - accuracy: 0.9281 - val_loss: 0.1287 - val_accuracy: 0.9625
     Epoch 2/5
     - accuracy: 0.9682 - val loss: 0.0963 - val accuracy: 0.9700
     Epoch 3/5
     - accuracy: 0.9769 - val loss: 0.0829 - val accuracy: 0.9726
     - accuracy: 0.9820 - val loss: 0.0816 - val accuracy: 0.9748
     Epoch 5/5
     - accuracy: 0.9858 - val loss: 0.0749 - val accuracy: 0.9777
```

4. Evaluate the Model

lets vitualize it

```
In [13]: # Plot training & validation accuracy values
         plt.figure(figsize=(12, 4))
         plt.subplot(1, 2, 1)
         plt.plot(history.history['accuracy'])
         plt.plot(history.history['val_accuracy'])
         plt.title('Model accuracy')
         plt.ylabel('Accuracy')
         plt.xlabel('Epoch')
         plt.legend(['Train', 'Test'], loc='upper left')
         # Plot training & validation loss values
         plt.subplot(1, 2, 2)
         plt.plot(history.history['loss'])
         plt.plot(history.history['val_loss'])
         plt.title('Model loss')
         plt.ylabel('Loss')
         plt.xlabel('Epoch')
         plt.legend(['Train', 'Test'], loc='upper left')
         plt.tight layout()
         plt.show()
```


Great! we got 97% accuracy!

we can still do some improvments

Model: "sequential_1"

Layer (type)	Output	Shape	Param #	
flatten_1 (Flatten)	(None,	784)	0	
dense_2 (Dense)	(None,	256)	200960	
dense_3 (Dense)	(None,	10)	2570	
Total params: 203530 (795.04 KB) Trainable params: 203530 (795.04 KB) Non-trainable params: 0 (0.00 Byte)				

now we change the epochs count to 10, but just in case we add early_stopping to avoid overfitting

In [15]: from tensorflow.keras.callbacks import EarlyStopping

early stopping = EarlyStopping(

```
min delta=0.001, # minimium amount of change to count as an improvement
  patience=20, # how many epochs to wait before stopping
  restore best weights=True,
)
history = model.fit(
  train images,
  train_labels,
  epochs=10,
  batch size=32,
  callbacks=[early stopping], # put your callbacks in a list
  validation data=(test images, test labels)
)
Epoch 1/10
- accuracy: 0.9342 - val loss: 0.1143 - val accuracy: 0.9652
Epoch 2/10
- accuracy: 0.9721 - val loss: 0.0896 - val accuracy: 0.9692
Epoch 3/10
- accuracy: 0.9815 - val_loss: 0.0675 - val_accuracy: 0.9786
Epoch 4/10
- accuracy: 0.9866 - val loss: 0.0682 - val accuracy: 0.9785
Epoch 5/10
- accuracy: 0.9889 - val loss: 0.0706 - val accuracy: 0.9780
- accuracy: 0.9922 - val loss: 0.0760 - val accuracy: 0.9775
Epoch 7/10
- accuracy: 0.9936 - val loss: 0.0744 - val accuracy: 0.9793
Epoch 8/10
- accuracy: 0.9946 - val_loss: 0.0748 - val_accuracy: 0.9802
Epoch 9/10
- accuracy: 0.9956 - val loss: 0.0791 - val accuracy: 0.9796
Epoch 10/10
- accuracy: 0.9965 - val loss: 0.0784 - val accuracy: 0.9815
```

Great! almost 100% accuracy, lets try further with higher epoches

```
In [16]: history = model.fit(
       train images,
       train labels,
       epochs=15,
       batch size=32,
       callbacks=[early stopping], # put your callbacks in a list
       validation_data=(test_images, test_labels)
     )
     Epoch 1/15
     - accuracy: 0.9968 - val loss: 0.0725 - val accuracy: 0.9830
     Epoch 2/15
     - accuracy: 0.9967 - val_loss: 0.0832 - val_accuracy: 0.9801
     Epoch 3/15
     - accuracy: 0.9973 - val_loss: 0.0831 - val_accuracy: 0.9815
     Epoch 4/15
     - accuracy: 0.9976 - val_loss: 0.0913 - val_accuracy: 0.9792
     - accuracy: 0.9981 - val_loss: 0.0992 - val_accuracy: 0.9785
     Epoch 6/15
     - accuracy: 0.9985 - val loss: 0.0985 - val accuracy: 0.9808
     Epoch 7/15
     - accuracy: 0.9976 - val loss: 0.1078 - val accuracy: 0.9798
     Epoch 8/15
     - accuracy: 0.9983 - val loss: 0.1113 - val accuracy: 0.9797
     Epoch 9/15
     - accuracy: 0.9979 - val loss: 0.1200 - val accuracy: 0.9784
     Epoch 10/15
     - accuracy: 0.9979 - val loss: 0.1132 - val accuracy: 0.9809
     Epoch 11/15
     - accuracy: 0.9986 - val loss: 0.1189 - val accuracy: 0.9804
     Epoch 12/15
     - accuracy: 0.9980 - val loss: 0.1043 - val accuracy: 0.9813
     Epoch 13/15
     - accuracy: 0.9993 - val loss: 0.1362 - val accuracy: 0.9780
     Epoch 14/15
     - accuracy: 0.9979 - val loss: 0.1164 - val accuracy: 0.9798
     Epoch 15/15
     - accuracy: 0.9988 - val loss: 0.1139 - val accuracy: 0.9815
```

it seems if I directly use another fit functions, the loss start as where I ended last time, which might suggest that it trains again on the model I have just trained

If we want to avoid it, I guess we should start it over

```
In [28]: model = Sequential([
        Flatten(input_shape=(28, 28)), # Flatten the 28x28 images
        Dense(128, activation='relu'), # Fully connected layer with 128 units
        Dense(10, activation='softmax') # Output layer with 10 units (for 10 c
      ])
      model.compile(optimizer='adam',
               loss='categorical crossentropy',
              metrics=['accuracy'])
      early_stopping = EarlyStopping(
        min delta=0.001, # minimium amount of change to count as an improvement
        patience=20, # how many epochs to wait before stopping
        restore_best_weights=True,
      history = model.fit(
        train_images,
        train labels,
        epochs=10,
        batch size=32,
        callbacks=[early stopping], # put your callbacks in a list
        validation_data=(test_images, test_labels)
      Epoch 1/10
      - accuracy: 0.9274 - val loss: 0.1318 - val accuracy: 0.9618
      - accuracy: 0.9664 - val loss: 0.0943 - val accuracy: 0.9717
      Epoch 3/10
      - accuracy: 0.9766 - val loss: 0.0832 - val accuracy: 0.9739
      Epoch 4/10
      - accuracy: 0.9829 - val loss: 0.0814 - val accuracy: 0.9760
      Epoch 5/10
      - accuracy: 0.9858 - val loss: 0.0796 - val accuracy: 0.9758
      Epoch 6/10
      - accuracy: 0.9887 - val loss: 0.0813 - val accuracy: 0.9760
      - accuracy: 0.9913 - val loss: 0.0810 - val accuracy: 0.9756
     Epoch 8/10
      - accuracy: 0.9928 - val loss: 0.0782 - val accuracy: 0.9775
      Epoch 9/10
      - accuracy: 0.9945 - val loss: 0.0813 - val accuracy: 0.9785
      Epoch 10/10
```

- accuracy: 0.9952 - val loss: 0.0777 - val accuracy: 0.9776

plt.show()

```
In [29]: # Plot training & validation accuracy values
         plt.figure(figsize=(12, 4))
         plt.subplot(1, 2, 1)
         plt.plot(history.history['accuracy'])
         plt.plot(history.history['val_accuracy'])
         plt.title('Model accuracy')
         plt.ylabel('Accuracy')
         plt.xlabel('Epoch')
         plt.legend(['Train', 'Test'], loc='upper left')
         # Plot training & validation loss values
         plt.subplot(1, 2, 2)
         plt.plot(history.history['loss'])
         plt.plot(history.history['val_loss'])
         plt.title('Model loss')
         plt.ylabel('Loss')
         plt.xlabel('Epoch')
         plt.legend(['Train', 'Test'], loc='upper left')
         plt.tight_layout()
```



```
In [34]: history_df = pd.DataFrame(history.history)
history_df.loc[:, ['loss', 'val_loss']].plot();
```


In [19]: history.history

```
Out[19]: {'loss': [0.22070597112178802,
           0.09154766798019409,
           0.06130516901612282,
           0.04478169232606888,
           0.03293851763010025,
           0.025184987112879753,
           0.019530057907104492,
           0.01601477712392807,
           0.01281061489135027,
           0.010680190287530422,
           0.009442095644772053,
           0.008974487893283367,
           0.007534516975283623,
           0.007101559080183506,
           0.006281865295022726],
           'accuracy': [0.9360666871070862,
           0.9730833172798157,
           0.9814833402633667,
           0.9863499999046326,
           0.989983320236206,
           0.9916666746139526,
           0.9935666918754578,
           0.9950666427612305,
           0.9958999752998352,
           0.996483325958252,
           0.9971833229064941,
           0.9970333576202393,
           0.9974666833877563,
           0.9975166916847229,
           0.9977666735649109],
           'val loss': [0.11028121411800385,
           0.08852854371070862,
           0.07909859716892242,
           0.0747181624174118,
           0.07619019597768784,
           0.06984405219554901,
           0.06666118651628494,
           0.07518196105957031,
           0.08322479575872421,
           0.0868171975016594,
           0.08774709701538086,
           0.08541646599769592,
           0.11101407557725906,
           0.09484095126390457,
           0.093724697828292851,
           'val_accuracy': [0.9681000113487244,
           0.9710999727249146,
           0.9753999710083008,
           0.975600004196167,
           0.9771999716758728,
           0.9801999926567078,
           0.9805999994277954,
           0.9793999791145325,
           0.9779999852180481,
           0.9785000085830688,
           0.9782999753952026,
           0.9807000160217285,
```

```
0.9757999777793884,
0.9789000153541565,
0.9801999926567078]}
```

well, it seems that loss and the accuracy still have some space to impove since they are not following to the trend of train.

OK, now its time to see if this model acctually works,

Lets Predict

Make Predictions:

Use the predict method of your trained model to get predictions. This method will return the predicted probabilities for each class

predictions will be an array with shape (number_of_samples, number_of_classes). Each row will contain the predicted probabilities for each class.

Get Predicted Classes:

If we want to get the class with the highest probability for each sample (i.e., the predicted class label), we can use np.argmax:

```
In [36]: predicted_labels = np.argmax(predictions, axis=1)
```

Visualize Predictions

```
In [37]: # Visualize the first 10 predictions
plt.figure(figsize=(10, 5))
for i in range(10):
    plt.subplot(2, 5, i+1)
    plt.imshow(test_images[i], cmap='gray')
    plt.title(f"Pred: {predicted_labels[i]}\nTrue: {np.argmax(test_labels[i plt.axis('off'))
    plt.tight_layout()
    plt.show()
```


Evaluate Prediction Accuracy

```
In [38]: accuracy = np.mean(predicted_labels == np.argmax(test_labels, axis=1))
    print(f"Prediction accuracy: {accuracy * 100:.2f}%")

    Prediction accuracy: 97.76%

In []:
```