DSP for Next Generation Wireless Systems

Chance Tarver

Joseph Cavallaro

Where we're going:

- Massive device to device connectivity:
 - Sensor Networks
 - Internet-of-Things
 - Body Area Networks
- Mobile Broadband over 100 Gpbs

UNITED

STATES

FREQUENCY

ALLOCATIONS

THE RADIO SPECTRUM

SERVICE	EXAMPLE	DESCRIPTION
Primary	FIXED	Capital Letters
Secondary	Mobile	1st Capital with lower case letters

This chart is a graphic single-point-in-time portrayal of the Table of Frequency Allocations used by the FCC and NTTA. As such, it does not completely reflect all aspects, i.e., footnotes and recent changes made to the Table of Frequency Allocations. Therefore, for complete information, users should consult if

UNITED

STATES

FREQUENC ALLOCATIO

THE RADIO SPEC

ALLOCATION USAGE DESIGNATION

ACTIVITY CODE

ALLEGO ATTOM GOL DE DIGITALTON		
SERVICE	EXAMPLE	DESCRIPTION
Primary	FIXED	Capital Letters
		and the second of the second

This chart is a graphic single-point-in-time portrayal of the Table of Frequency Allocations used by the FCC and NTIA. As such, it does not completely reflect all aspects, i.e., tootnotes and recent changes need to the Table of Energy among Allocations, Therefore for reproduce informations seems asked to give the

Challenges

- Densification
- Increased spectrum congestion
- New ultrawideband waveforms stressing the physical layer

Future Directions

- New spectrum resources in mmWave and beyond
- Massive MIMO
- Coexistence aware waveforms assisted by predistortion

Our Unique Approach

Post-layout chip view

DSP / Algorithm

Architecture

Testbed

Co-design

Massive Multi-User MIMO Systems

Hundreds of base station antennas

Simultaneously transmitting to **tens** of users on the same frequency

Record breaking spectral efficiency

I/O Bottlenecks

Decentralized Baseband Processing

conventional BS

Split the base station antennas into clusters with fewer antennas.

BS with decentralization

Decentralized Baseband Processing

conventional BS

- Alleviates interconnection and computation bottlenecks
- Realizes efficient, modular and scalable baseband processing
- Achieves competitive (or equal) performance to centralized methods

BS with decentralization

Reconfigurable Eco-system for Nextgeneration End-to-end Wireless

- Develop world's first fully programmable and observable wireless radio network.
- Wireless research and development community will be able to test diverse ideas and concepts.
- PAWR. More than 28 private-sector companies from US wireless industry

Predistortion for Power Amplifiers

Predistortion for Power Amplifiers

Predistortion for Power Amplifiers

Digital Predistortion (DPD) DPD Power Amp **Application DPD** Learning

Conclusions

- Enabling massive device driven connectivity
- Codesign between algorithms and architectures is necessary to meet challenges in next generation wireless systems

DSP / Algorithm **Frequency Domain** HSPA+ interleave interleaver Architecture Post-layout chip view **Testbed**

Acknowledgments:

Christoph Studer Cornell University

Kaipeng Li Rice University

Joseph Cavallaro Rice University