Name: Maths Teacher:

SYDNEY TECHNICAL HIGH SCHOOL

Year 12 Mathematics Extension 1

TRIAL HSC

2016

Time allowed: 2 hours plus 5 min reading time

General Instructions:

- Marks for each question are indicated on the question.
- Approved calculators may be used
- All necessary working should be shown
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a new page
- Write using black or blue pen
- All answers are to be in the writing booklet provided
- A BOSTES reference sheet is provided at the rear of this Question Booklet, and may be removed at any time.

Section 1 Multiple Choice

Questions 1-10

10 Marks (allow 15 minutes)

Section II Questions 11-14

60 Marks (allow 1 hour 45 min)

Total Marks 70

Section I

10 Marks

Attempt Questions 1-10.

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for questions 1-10.

1 In the diagram, AB is a diameter of the circle and MCN is the tangent to the circle at C. $\angle CAB = 35^{\circ}$. What is the size of $\angle MCA$?

- (A) 35°
- (B) 45°
- (C) 55°
- (D) 65°
- 2. When the polynomial $P(x) = x^3 5x^2 + kx + 2$ is divided by (x+1) the remainder is 3. What is the value of k?
 - (A) -7
 - (B) -5
 - (C) 5
 - (D) 7

3 Which of the following is a simplification of $4\log_e \sqrt{e^x}$?

- $4\sqrt{x}$ (A)
- (B) $\frac{1}{2}x$
- (C)
- x^2 (D)
- 4 The acute angle between the lines 2x y = 0 and kx y = 0 is equal to $\frac{\pi}{4}$. What is the value of k?
 - 1

- k = -3 or $k = -\frac{1}{3}$ (A)
- k = -3 or $k = \frac{1}{3}$ (B)
- (C) k = 3 or $k = -\frac{1}{3}$
- k = 3 or $k = \frac{1}{3}$ (D)
- 5 Which of the following is a simplification of $\frac{1-\cos 2x}{\sin 2x}$?

1

- (A) $1-\cot 2x$
- (B) 1
- (C) $\cot x$
- (D) $\tan x$
- 6 The statement 7'' 3'' is always divisible by 10 is true for

- (A) all integers $n \ge 1$
- (B) all integers $n \ge 2$
- (C) all odd integers $n \ge 1$
- (D) all even integers $n \ge 2$

7 What is the value of $\int_{1}^{2} \frac{1}{\sqrt{4-x^2}} dx$?

1

1

- (A) $\frac{\pi}{6}$
- (B) $\frac{\pi}{4}$
- (C) $\frac{\pi}{3}$
- (D) #
- 8 The radius r of a circle is increasing at a constant rate of $0.1 \,\mathrm{cm \, s^{-1}}$. What is the rate at which the area of the circle is increasing when $r = 10 \,\mathrm{cm}$?
 - (A) $\pi \text{ cm}^2 \text{ s}^{-1}$
 - (B) $2\pi \text{ cm}^2 \text{ s}^{-1}$
 - (C) $10\pi \,\mathrm{cm^2 \, s^{-1}}$
 - (D) $20\pi \text{ cm}^2 \text{ s}^{-1}$
- 9 If $x + \frac{1}{x} = 2$ what is the value of $x^2 + \frac{1}{x^2}$?

- (A) 2
- (B) 4
- (C) 6
- (D) 8
- 10 A particle is performing Simple Harmonic Motion in a straight line. In 1 minute of its motion it completes exactly 15 oscillations and travels exactly 120 metres. What is the amplitude of the motion?
- 1

- (A) 2 metres
- (B) 4 metres
- (C) 8 metres
- (D) 16 metres

Section II

60 Marks

Attempt Questions 11-14

Allow about 1 hour and 45 minutes for this section.

Answer the questions in writing booklet provided. Use a new page for each question. In Questions 11-14 your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)	<u>Marks</u>
a) Solve $\frac{2x+1}{x-2} \ge 1$	2
b) P divides AB <u>externally</u> in the ratio 3:2. Find the co-ordinates of B given that	
A is (-2, 5) and P is (1, 3)	2
c) Solve $\cos^2 x + \sin x - 1 = 0$	
for $0 \le x \le 2\pi$	2
d) Given that $\frac{dy}{dx} = \frac{1}{1+x^2}$ and $x = 1$ when $y = 0$, find y when $x = \sqrt{3}$	3
e) Differentiate $y = \ln(\sin^{-1} x)$ with respect to x	2

f) In the diagram below, the two circles are of radius 1 unit and pass through the centres O and P. The circles intersect at A and B.

i) Find the size of angle AOB

1

ii) Find the shaded area in exact form.

Question 12		(15 marks)	<u>Marks</u>
		(Start a new page)	
a)	Evaluate	$\int_{0}^{\pi/8} \cos^2 2x dx \text{ in exact form.}$	3

b) Evaluate
$$\int_{0}^{\pi/4} \sin x \cdot \cos^{3} x \, dx \text{ by}$$
 3

using the substitution $u = \cos x$, or otherwise.

c) i) Sketch
$$y = \sin^{-1}(1-x)$$
 and state the domain 3
ii) Show that $\sin(\sin^{-1}x - \cos^{-1}x) = 2x^2 - 1$ 3
iii) Hence, or otherwise, solve the equation
$$\sin^{-1}x - \cos^{-1}x = \sin^{-1}(1-x)$$
 3

(Start a new page)

a) Use the principle of Mathematical Induction to prove that $7^n + 2$ is divisible by 3 for all positive integers n.

3

b) An object is projected horizontally from the top edge of a vertical cliff 40metres above sea level with a velocity of 40m/s. (Take $g = 10 \text{ m/s}^2$)

i) Using the top edge of the cliff as origin, show that the parametric equations of the path of the object are:

$$x = 40t$$

$$y = -5t^2$$

2

ii) Calculate when and where the object hits the water.

2

iii) Find the velocity of the object the instant it hits the water.

- The inside of a vessel used for water has the shape of a solid of revolution obtained by the rotation of the parabola $9y = 8x^2$ about the y axis. The depth of the vessel is 8 cm
 - i) Prove that a volume of water h cm from its bottom is $\frac{9}{16} \pi h^2$.
 - ii) If water is poured into the vessel at a rate of 20 cm³/sec, find the rate at which the level of water is rising when the vessel is half <u>full</u>. 2

- d) The acceleration of a particle is given by $\frac{d^2x}{dt^2} = 16(1+x)$, where x cm is the displacement from the origin. When t = 0, x = 0 and v = 4 cm/sec.
 - i) Derive an expression for its velocity in terms of its displacement. 2
 - ii) Deduce that its displacement function is $x = e^{4t} 1$.

Question 14 (15 Marks) (Start a new page)

Marks

a) A particle moves with simple harmonic motion. At at the extremities of the motion the absolute value of the acceleration is $1~{\rm cm}~s^{-2}$ and when the particle is $3~{\rm cm}$ from the centre of motion, the speed is $2\sqrt{2}~{\rm cm}~s^{-1}$. Find the period and amplitude for this motion.

b) ABCD and AEFG are two squares of different areas, and GD \perp BE. M is the mid point of DE.

Let $\overrightarrow{AED} = x$

- i) Copy the diagram into your answer book
- ii) Give a reason why DE is the diameter of the circle with points A, D and E on its circumference.
- iii) Prove that BDEG is a cyclic quadrilateral (reasons required) 1
- iv) Produce MA to meet BG at T. Prove MALBG (reasons required) 3
- c) Two parametric points P(2p,p²) and Q(2q,q²) lie on the parabola $x^2 = 4y$, and the line through PQ is parallel to the line y = mx.
 - i) Show that p + q = 2m.

1

1

- ii) Derive the equation of the normal to the parabola at the point P.
- 1
- iii) Find the co-ordinates of N, the point of intersection of the normals from P and Q.
- 2

3

iv) Determine the locus of N as the line PQ moves parallel to the line y=mx. Without further calculations, write any restrictions placed upon the locus of N.

ad a		
S.T.1	S TRIAL H.S.C. Solution	5 Ex+1 2016.
ection 1		c) cos oc+ sinx - 1=0
uestion Answer	Solution ∠ACB = 90° (∠ in a semi-circle is a right angle)	cos2x + 51111 -1 = 0
C	∴ ∠CBA=55° (∠ sum of \triangle ABC is 180°) ∴ ∠MCA=55° (using alternate segment theorem)	1-51226 + 51216-1=0
A	$P(-1)=3 \implies -1-5-k+2=3 : k=-7$	SIA X - SIAZ X = 0
С	$4\log_{e}\sqrt{e^{x}} = 4\log_{e}e^{\frac{1}{2}x} = 4 \times \frac{1}{2}x = 2x$	SIN SL (1- SINK) =0
В	$\tan \frac{\pi}{4} = 1 = \begin{vmatrix} \frac{k-2}{1+2k} \end{vmatrix}$ $\therefore 1+2k=k-2 or 1+2k=-(k-2)$ $\therefore k=-3 or k=\frac{1}{3}$	SIAK = 0 SIAK = 1
D	$\frac{1-\cos 2x}{\sin 2x} = \frac{2\sin^2 x}{2\sin x \cos x} = \frac{\sin x}{\cos x} = \tan x$	1
	$7^{n+2} - 3^{n+2} = 9(7^n - 3^n) + 40 \times 7^n \text{ and } 7^1 - 3^1 = 4, 7^2 - 3^2 = 40.$	2.Π
; . D	Since the prime factors of 10 are not factors of 9, and 40 is divisible by 10, by the process of Mathematical Induction, the statement cannot be true for odd positive integers n, but is true for even positive integers n.	T T
, с	$\int_{1}^{2} \frac{1}{\sqrt{4-x^{2}}} dx = \left[\sin^{-1} \frac{x}{2} \right]_{1}^{2} = \sin^{-1} 1 - \sin^{-1} \frac{1}{2} = \frac{\pi}{2} - \frac{\pi}{6} = \frac{\pi}{3}$	T best T
В	$A = \pi r^2 \therefore \frac{dA}{dt} = 2\pi r \frac{dr}{dt} = 2\pi \times 10 \times 0.1 = 2\pi \qquad Ans. 2\pi \text{ cm}^2 \text{ s}^{-1}$	$\therefore x = 0, \pi, 2\pi \text{ and } \frac{\pi}{2}$
, A	$x^{2} + \frac{1}{x^{2}} = \left(x + \frac{1}{x}\right)^{2} - 2 \cdot x \cdot \frac{1}{x} = 2^{2} - 2 = 2$	
10 A	If the amplitude is A metres, then $15\times4A=120$ $\therefore A=2$ Ans. 2 metres	$\frac{d}{d\alpha} = \frac{1}{1+31}$
Sa	chien III	:. y = tan sc +c
<u> </u>	Ovestion 11	sub (1,0)
		0= ta~11+c
	X-2.	· · · · c = - \(\pi \)_4
	$(\alpha-2)(2\alpha+1) \geqslant (\alpha-2)^2$	y = tan-1x - T/4
Madd Marshood	$(x-2)(2x+1) - (x-2)^2 > 0$	sub x = \(\frac{1}{2}
	(3c-2)(23c+1-(3c-2))>0	$y = \pm a^{-1}\sqrt{3} - T$ $y = T/3 - T/4$
	(oc-2)(oc+3)>>0	W = T/3 - T/4
		$\therefore \dot{y} = \frac{\pi}{12}$
	x>2, st ≤-3	
Ь		e) Let u= sn-1x : y=h u
	A(-2,5) $B(x,y)$ $P(13)$	$\frac{du}{dbc} = \frac{1}{\sqrt{1-3c^2}} \frac{dy}{dx} = \frac{1}{\sqrt{1-3c^2}}$
	-3:2 P(1,3)	asc VIII der
	(2x-2)+-3x=1: -4-3x=-1	: dy = 1 . 1
	3c = 1	doc sin-12c 11-22
	$(2\times5) + -3y = 3 : 10 - 3y = -3$	<u> </u>
<u></u>	y = 13/3	

4.1	[*]	
		OUESTION 13
	c) y = sin (1->1)	a) Step () Show true for n = 1
	i j	7+2=9 div by 3
•	-1 ≤ 1-2L ≤ 1	Step @ assume true for n=k
	-2 < -> ≤ 0	some tre integer
	Domain : 0 ≤ x ≤ 2	7t+2=3M (where Mis an intege
	Try 1	Step 3) Show true for n=1x+1
	1/2	$7^{k+1} + 2 = 7^{k}.7 + 2$
		= (3M-2)7+2 step2
	1 2	= 21 M - 14 +2
		= 21M -12
	3-	=3(74-4)
<u>O</u> .	ni) Let	Step @ Since true for n=1 and
		if assumed tive for n=k (some
	"SINCLEX COS B = X	tre integer) we have shown true
	1 / B x	for n=+2+1 -: true for all
	/	tre integers (n >1)
	1-322	
	since sin(x-B)=sinacosB-corasinB	
;		bi) == 1 == -10
		$\dot{x} = c$, $\dot{y} = -10t + k$, $\dot{y} = -10t + k$
	$ = 3t^2 - \left(1 - 3t^2\right) $:. 3c = 40 : 4=70t k,=0
\mathbb{C}^{1}	$\operatorname{Sn}(\alpha-\beta)=2x^{2}-1$	x=40t+c, u=-5+2+b.
	$\therefore \forall -\beta = \sin^{-1}\left(2\pi^2 - 1\right)$	> <= 40±
	= · Sin (sin be - cos se) = 2x2-1	using
		initially t=0 x=0 xy=0
	iii) sin' 21 - cos'x = sin' (1-20)	y=0 x= 40
	sin (sin x - 105/x) = 1-x	ii) hits water if y=-40
	$2 \times 2^{2} - 1 = 1 - \infty$: - 40 = - 5t ²
	$23c^2 + 3c - 2 = 0$	t2=8 t>0
	x=-1±117 since 0 <x<2< th=""><th>:.t= 18:</th></x<2<>	:.t= 18:
	4	t=212 sec
	only solution or=-1+17=0.78	$\frac{1}{3c = 2\sqrt{2} \times 40} = 80\sqrt{2} = \frac{1}{6}$
· · · · · · · · · · · · · · · · · · ·		

	f = T / (21+1)	ii) DE is the diameter
	4	M is the centre of circle
	$4t = \log_{e}(x+1)$	(angle in semicircle is 900)
	4-t	DAE = 90° (angle sum of straight
	e = 21 +1	line GAD and GAE = 90°
	$\therefore x = e^{\frac{1}{4}}$	iii) DBA = EGA = 450 (diagonals
	The second secon	bisect angles)
:	Question 14	DBA = EGA (angles in same
	$3 \dot{x} = -\kappa^2 \lambda$	segment equal)
	at extremities $x = -a$ $\ddot{x} = -1$	BDEG is a cyclic guad
	:. 1 = n^2 a	[V)
	$n^2 = \frac{1}{\alpha}$ \bigcirc \bigcirc	· MÂE = or (opposité equal sides
	$v^2 = n^2 (a^2 - x^2)$ $v = 2\sqrt{2} x = 3$	in isosceles DAME
10-00-	$(2\sqrt{2})^2 = n^2 (a^2 - 9)$ — 2	(since AM=ME angle in
	sub (1) into (2)	semi circle part ii)
	$8 = \frac{1}{2} \left(a^2 - 9 \right)$	· TÂB = >1 (vertically opposite)
	$8a = a^2 - 9$	Let GDE = 4
	$a^2 - 8a - 9 = 0$	CBF = u (alte in alterate
	(a-9)(a+1)=0	segment')
	a = 9 only since a>	segment') (cyclic quad BDEG portini
	n = \frac{1}{2}	since suty = 90° angle
	-: amplitude is 9 cm	Sum ADE
		BÎA = 90° angle sum
	period 2TT = 6 TT sec	ABFA
	b) i) @ _ B _ C	MA 1 B G
	1 9 45	
	C/ A	
	ws) _x y/ (3)	
_		
······································	FO	

		A Part of the second of the se
(د	1 x2= Hy 1	$\frac{x-x}{9} = q^2 - p^2$
The all of the second of the s	P(2p, p ²)	$x\left(\frac{1}{q}-\frac{1}{p}\right)=(q-p)(q+p)$
	(2q, q ²)	$\frac{\partial \left(\frac{P-Q}{PQ}\right) = (q-p)(q+p)}{\partial q}$
	* * * * * * * * * * * * * * * * * * * *	bc = bd(d-b)(d+b)
	i) $m - b^2 - a^2$	x = -pq(q+p)
	i) $m = p^2 - q^2$ $2p - 2q$	
-	$= \frac{(p-q)(p+q)}{2(p-q)} = \frac{p+q}{2}$	$\frac{y = p^2 - 1}{p} \left(-pq (p+q) - 2 \right)$
S	gradient of line y=mx is m	$y = p^{2} - \frac{1}{p}(-p^{2}q - pq^{2} - 2p)$
	$\frac{1}{2}$	$y = p^2 + pq + q^2 + 2$
-	$\frac{2m = p+q}{ii}$	1.11111111111111111111111111111111111
	$\frac{dy - 2x = x}{dh \cdot 4} = \frac{P(2p, p^2)}{2}$	x = -pq(q+p)
	at P m = p :. m = -1 T P	$y = p^2 + pq + q^2 + 2$ and $p + q = 2m *$
	eqn of normal at P $y - p^2 = -\frac{1}{p} (3c - 2p)$	since (p+q) = p2+ q2+2pq
	iii) $y = p^2 - \frac{1}{p}(3l - 2p)$ normal at P	substitute * and ** $(2m)^2 = (p^2 + q^2 + pq + 2) + pq^{-1}$
	$y = q^2 - \frac{1}{q} \left(x - 2q \right) \text{ normal at } 0$ $\sin x = q$	$\left(2m\right)^2 = y - \frac{sL}{2m} - 2$
	$p^2 - \frac{1}{p}(x-2p) = q^2 - \frac{1}{q}(x-2q)$	$4m^{2} = y - \frac{3C}{2m} - 2$ $y = \frac{3C}{2m} + 4m^{2} + 2$
	$p^2 - \frac{x}{p} + 2 = q^2 - \frac{x}{q} + 2$	N must lie inside the parabola as N is pt on intersecting normals.
	· · · · · · · · · · · · · · · · · · ·	