Mathematical Physics 311: Mid-term Examination (4-28-2021)

(1) 20 pts

The group D_4 has 8 group elements, which leaves a square invariant (see the figure).

- (a) Construct the 3×3 matrix representation of the group D_4 using the basis vectors \hat{e}_x , \hat{e}_y , \hat{e}_z , where the z-axis is the four-fold symmetry axis.
- (b) Find the characters of the three dimensional representation obtained in part (a).
- (c) Use the following character table to show that it can be reduced to a two-dimensional and a one-dimensional irreducible representation.

$\{E\}$	$\{C_4^2\}$	$\{C_4,C_4^3\}$	$\{A,B\}$	$\{C,D\}$
1	1	1	1	1
1	1	1	-1	-1
1	1	-1	1	-1
1	1	-1	-1	1
2	-2	0	0	0
	1 1 1 1	$ \begin{array}{c cc} \{E\} & \{C_4^2\} \\ \hline 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & -2 \\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

(2) 30 pts

Consider the 6-dimensional function space V consisting of homogeneous polynomials of degree 2 in real variables (x, y, z):

$$f(x, y, z) = ax^2 + by^2 + cz^2 + dxy + eyz + gzx$$

where a, b, c, d, e, g are complext constants. If (x, y, z) transform under the dihedral group D_4 as the coordinates of a 3-vector, then we obtain a 6-dimension representation of D_4 on V.

- (a) Find the characters of the representation for each class.
- (b) Decompose the representation into irreducible representations (use the table in question (1)).
- (c) Determine the basis of each irreducible representation that you found in part (b).