Resistance

- (i) The property of substance by virtue of which it opposes the flow of current through it, is known as the resistance.
- (ii) **Formula of resistance :** For a conductor if l = length of a conductor A = Area of cross-section of conductor, n = No. of free electrons per unit volume in conductor, $\tau = \text{relaxation time then resistance of conductor } R = \rho \frac{l}{A} = \frac{m}{ne^2 \tau} \cdot \frac{l}{A}$; where $\rho = \text{resistivity of the material of conductor}$

(iii) Unit: It's S.I. unit is
$$Volt/Amp$$
. or $Ohm(\Omega)$. Also 1 $ohm = \frac{1volt}{1Amp} = \frac{10^8 emu \text{ of potential}}{10^{-1} emu \text{ of current}} = 10^9 emu \text{ of resistance}$

- (iv) **Dependence of resistance :** Resistance of a conductor depends upon the following factors.
- (a) Length of the conductor: Resistance of a conductor is directly proportional to it's length *i.e.* $R \propto l$ and inversely proportional to it's area of cross-section *i.e.* $R \propto \frac{1}{A}$
 - (b) Temperature: For a conductor

Resistance ∞ temperature.

If R_0 = resistance of conductor at $0^{\circ}C$

 R_t = resistance of conductor at $t^{\circ}C$

and α = temperature co-efficient of resistance

then
$$R_t = R_0(1 + \alpha t)$$
 for $t \le 300^{\circ}C$ or $\alpha = \frac{R_t - R_0}{R_0 \times t}$

If R_1 and R_2 are the resistances at $t_1^{\circ}C$ and $t_2^{\circ}C$ respectively then $\frac{R_1}{R_2} = \frac{1 + \alpha t_1}{1 + \alpha t_2}$.

The value of α is different at different temperature. Temperature coefficient of resistance averaged over the temperature range $t_1^{\circ}C$ to $t_2^{\circ}C$ is given by $\alpha = \frac{R_2 - R_1}{R_1(t_2 - t_1)}$ which gives $R_2 = R_1 \left[1 + \alpha \left(t_2 - t_1 \right) \right]$. This formula gives an approximate value.

Combination of Resistors

(1) Series Combination

(i) Same current flows through each resistance but potential difference distributes in the ratio of resistance *i.e.* $V \propto R$

- (ii) $R_{eq} = R_1 + R_2 + R_3$ equivalent resistance is greater than the maximum value of resistance in the combination.
- (iii) If *n* identical resistance are connected in series $R_{eq} = nR$ and potential difference across each resistance $V' = \frac{V}{n}$

(2) Parallel Combination

- (i) Same potential difference appeared across each resistance but current distributes in the reverse ratio of their resistance i.e. $i \propto \frac{1}{R}$
 - (ii) Equivalent resistance is given by $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ or $R_{eq} = (R_1^{-1} + R_2^{-1} + R_3^{-1})^{-1}$ or $R_{eq} = \frac{R_1 R_2 R_3}{R_1 R_2 + R_2 R_3 + R_2 R_1}$

Equivalent resistance is smaller than the minimum value of resistance in the combination.

- (iv) If two resistance in parallel $R_{eq} = \frac{R_1 R_2}{R_1 + R_2} = \frac{\text{Multiplication}}{\text{Addition}}$
- (v) Current through any resistance

$$i' = i \times \left[\frac{\text{Resistance of opposite branch}}{\text{Total resistance}} \right]$$

Where i' = required current (branch current), i = main current

$$i_1 = i \left(\frac{R_2}{R_1 + R_2} \right) \text{ and } i_2 = i \left(\frac{R_1}{R_1 + R_2} \right)$$

(vi)In *n* identical resistance are connected in parallel

$$R_{eq} = \frac{R}{n}$$
 and current through each resistance $i' = \frac{i}{n}$

Electric cell:

- a) It is a device which converts chemical energy into electrical energy.
- b) There are two types of cells
 - i) Primary cell ii) Secondary cell
- c) comparison of primary and secondary cells:

Electromotive force (e.m.f) of a Cell:

- a) The work done is carrying a unit positive charge once in the whole circuit including the cell, is defined as the electromotive force.
- b) Electromotive force is the potential difference between the terminals of a cell in open circuit.
- c) Electromotive force depends on -(1) nature of electrolyte (2) metal of the electrodes.
- d) Electromotive force does not depend on (1) area of plates (2) distance between the electrodes (3) Quantity of electrolyte (4) size of the cell.
- e) Electromotive force is the characteristic property of the cell. The direction of current inside the cell is always from negative to positive electrode.
- f) The unit of electromotive force is volt.

Internal resistance (r):

The internal resistance of a cell is the resistance offered by the column of the electrolyte between the positive plate and the negative plate.

- i) The internal resistance of a perfect cell or ideal cell is zero.
- ii) Internal resistance depends on
 - a) strength of electrolyte ($r \propto strength$)
 - b) distance between plates $(r \propto d)$
 - c) area of the plates $r \propto \frac{1}{A}$
 - d) temperature of electrolyte $\left[r \propto \frac{1}{t}\right]$

Relation between EMF and PD:

- (i) In case of charging of a cell
 - a) The current flows from +ve to -ve terminal inside the cell.

b)
$$V > E$$

- c) V = E + ir
- (ii) In case of discharge of a cell
 - a) The current flows from -ve to +ve terminal inside the cells
 - b) V < E

c)
$$V = E - ir$$

(iii) The difference between E and V is called lost volts

$$\therefore$$
 lost volts = E – V = ir

(iv) A cell of emf 'E' and its resistance 'r' is connected to resistance 'R'.

a)
$$i = \frac{E}{R+r}$$

b) P.D. across resistance R is given by

$$V = iR = \frac{ER}{R+r}$$

- c) Fraction of energy useful = $\frac{V}{E} = \frac{R}{R+r}$
- d) % of fractional useful energy= $\left(\frac{V}{E}\right)$ 100 = $\left(\frac{R}{R+r}\right)$ 100

e) Fraction of energy lost =
$$\frac{E - V}{E} = \frac{ir}{E} = \frac{r}{R + r}$$

f) % of lost energy =
$$\left(\frac{r}{R+r}\right)$$
100

g)
$$r = \frac{(E - V)R}{V}$$

h) For single cell, the condition for maximum current is R = r.

Back emf:

- a) The copper electrode gets covered with a layer of hydrogen and this hinders flow of current. In the neighbourhood of both electrodes, the concentrations of ions get altered. This results in an emf acting in a direction opposite to the emf of the cell. This is called *back emf*.
- b) This formation of hydrogen around the anode is called *polarization*.
- c) To reduce the back e.m.f manganese dioxide and potassium dichromite are added to electrolyte of cell. These are called *depolarizers*.