3D and exact geometries for PostGIS

3D and exact geometries for PostGIS FOSDEM PGDay

02-01-2013 - Hugo Mercier / Oslandia

Oslandia

Oslandia

PostGIS, QGIS, Mapserver suite

Training

Support

Development

Context

FEDER-funded program e-PLU

City modelling applications

3D spatial operations

PostGIS geometries can carry a z coordinate

What about spatial processing?

IGN - Oslandia collaboration

CGAL

GEOS (PostGIS geometry backend) is 2D only Appealing candidate : CGAL

Modern C++ framework

Lots of 2D/3D algorithms already implemented

Exact computational model!

Does it perform well?

Exact computation

CGAL is templated by geometric 'Kernel's Must use an 'exact' kernel for constructions

Arbitrary precision numbers

Lazy evaluation of an expression tree

Interval arithmetics

<example?>

SFCGAL

Design of an OGC Simple Features compliant framework on top of CGAL

Our own PostGIS branch (postgis-sfcgal)

SFCGAL

Currently supported:

2D and 3D intersection (including solids)

2D and 3D intersection test (including solids)

2D and 3D convex hull

2D and 3D triangulations

3D extrusion

2D and 3D distances

(in progress) buffers

PostGIS-SFCGAL

```
Postgis-sfcgal:
```

Optional support for SFCGAL functions
Using the 'sfcgal' schema

```
e.g.:
```

```
SELECT sfcgal.ST_Intersects( g1, g2 )
SELECT sfcgal.ST_3DIntersection(g1, g2)
```

. . .

Performance comparison

PostGIS based

2D Only

Varying geometry's number of points

Results are very promising

SFCGAL is sometimes better, sometimes worse

Considering SFCGAL is way less mature than GEOS

Comparable behaviour and space for improvements!

3D view

Couple PostGIS 3D to a 3D viewer SFCGAL viewer

3D view

QGIS with the Globe plugin

Precision issues

Do they intersect?

Precision issues

Do they intersect?

Should be true!

GEOS only supports 'double' numbers

Support for exact geometries

New 'exact_geometry' type Coordinates stored with arbitrary precision Serialization/deserialization process

Serialization performances

```
'exact_geometry' serialization is slow!

Comparing 4 chained 'noop' functions

SELECT ST Copy(ST Copy(ST Copy(ST Copy(g))))
```


Serialization performances


```
Btw, do we need to serialize?

Not if you only need temporary results

ST_f1(ST_f2(ST_f3(g : geometry)))

New type 'ref_geometry'

Complex C++ objects (SFCGAL::Geometry*) can
```

be created and passed by reference

When to deallocate?

Everything allocated by palloc() will be freed on Memory Context's reset/deletion

C++ objects need **destruction**, **not only deallocation**!

Solution

Use a child context with your own deletion method

Where to allocate?

The parent context where to allocate is important If it vanishes too fast, we loose our objects If it lives too long, we explode memory

Current rule of thumb

Attach to the ExprContext when we can Attach to a long-living context otherwise (MessageContext)

Cannot be stored!

Control over serialization / deserialization

```
Through conversion functions
```

```
ST Geometry( ref geometry ): geometry
         ST RefGeometry( geometry ): ref geometry
=>
         SELECT ST Geometry(
          ST f1(
            ST f2(
             ST f3( ST RefGeometry(g)
         ))))
```


Conclusion

High potential!

3D spatial processing

Exact computation

With good performances

Work in progress

PostGIS integration

Referenced geometry testing

Cache mechanism

Spatial operations (boolean set)

QGIS integration

Test and feedback

http://www.oslandia.com

On github

Oslandia/SFCGAL

Oslandia/postgis-sfcgal

hugo.mercier@oslandia.com

