

CAI 4104/6108 — Machine Learning Engineering: Unsupervised Learning

Prof. Vincent Bindschaedler

Spring 2024

Unsupervised Learning

Learning from unlabeled data (we must discover patterns in the data)

- Problems / Tasks
 - Density Estimation
 - * Model the (unknown) probability distribution function (pdf) from which the data is drawn

- Outlier Detection
 - * Identify data points that do not belong in (i.e., are very different from) the (training) data
- Clustering
 - Group similar data points together in "clusters"
- Dimensionality Reduction (& Visualization)
 - * Transform dataset into a low(er)-dimensional representation in a way that preserves useful information
- Association Rule Mining
 - * Discover interesting relationships between variables in the data

Clustering

- Goal: assign data points to clusters in the optimal way
 - What does optimal mean?
 - How many clusters?
- Dataset: Matrix **X** (n × m); no labels
- Clustering algorithms
 - k-means clustering
 - DBSCAN
 - Hierarchical clustering
- Q: Do we need a "holdout" set?
 - Yes! The clustering could overfit.
 - So we should train test split or train test val split

Clustering: K-Means

K-Means Clustering

- Greedy iterative algorithm to assign points to clusters
- ◆ Input: dataset X, integer k (hyperparameter number of clusters)
- Objective function: $L = \sum_{i} || \mathbf{x_i} c(\mathbf{x_i}) ||^2$
 - Here $c(x_i)$ is the centroid of the cluster that x_i is assigned to.
- Algorithm:
 - Initialization: random centroid for each cluster
 - Do until no change in clustering:
 - · Assignment: Assign each data point to the cluster with the closest centroid
 - Update: Recalculate centroids from points assigned to each cluster
- Q: How do we determine k?
 - Guess or try a bunch of different options
 - Heuristics: Silhouette method or Elbow method
 - Tune it as you would any other hyperparameter (if you have an objective metric to evaluate the quality of a clustering — e.g. co-membership test)
 - Or: Use a different algorithm that does not require specifying k (e.g., DBSCAN)

Dimensionality Reduction

Curse of Dimensionality

- Working with high dimensional data is challenging
- For example: what do we do if each example in our dataset has millions of features?
 - Not only would training be slow, but model performance may suffer. Why?
- What can we do?
 - Increase the amount of training data to compensate for the large number of features
 - · Not feasible in practice (in most cases)
 - If the dimensionality of the data is artificial, then we should be able to reduce dimension without losing information

Dimensionality Reduction Techniques

- Projections (e.g., PCA)
 - Project the data into a lower dimensional subspace by exploiting feature correlations
- Manifold Learning (e.g., LLE, Isomap)
 - * Assume the data lies on some manifold. Model that manifold to reduce dimensionality
- Note: another motivation for reducing dimensionality is visualization

Principal Components Analysis (PCA)

Principal Components Analysis (PCA)

- Method for linear transformation onto a new system of coordinates
 - Invented by Pearson in 1901
 - The transformation is such that the principal components (coordinate vectors) capture the greatest amount of variance given the previous components
- Algorithm:
 - Given data matrix X (n × m)
 - Mean-center it: subtract the mean of each feature
 - **⊗** Compute covariance matrix $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ ($m \times m$)
 - The eigendecomposition of gives principal components
 - We can use Singular Value Decomposition (SVD)
 - Matrix **W** of eigenvectors is the transformation matrix (the i^{th} column is the i^{th} principal component)
 - Eigenvalue λ_i gives the variance of i^{th} principal component
- Note: we can do PCA on the correlation matrix instead of covariance matrix

Principal Components Analysis (PCA)

- PCA Transformation / Dimensionality Reduction
 - Given data matrix **X** $(n \times m)$, transformation matrix **W** $(m \times m)$, and eigenvalues λ
 - * $\mathbf{Z} = \mathbf{X} \mathbf{W}$ is the transformed data onto the PCA coordinate system
 - If we want to reduce dimensionality, we can keep only the first k principal components
 - * Think of k as a hyperparameter
 - * Let \mathbf{W}_k is the transformation matrix with only the first k columns $(m \times k)$
 - * Transformed data: $\mathbf{Z}_k = \mathbf{X} \; \mathbf{W}_k$ [here is a $n \times k$ matrix]
 - How much of the variance is explained?
 - * Variance explained: $(\lambda_1 + \lambda_2 + ... + \lambda_k) / \sum_i \lambda_i$
 - How do we determine k?
 - Same way we tune other hyperparameters
 - Or: set k to explain a fixed portion of the variance (e.g., 95%)

Principal Components Analysis (PCA)

- PCA Transformation / Dimensionality Reduction
 - Inverse transformation: can we transform the data back to the original space?
 - * Yes: $\mathbf{X}' = \mathbf{Z}_k \mathbf{W}_k^{\mathsf{T}}$ where $\mathbf{W}_k^{\mathsf{T}}$ is a $k \times m$ matrix
 - # Here: X' is a $(n \times m)$ matrix (note: some information was lost in the transformation unless k = m)
 - What does this actually look like?

Kernel PCA

- PCA is a linear decomposition/transformation
 - What if we need non-linear dimensionality reduction?
 - * We can use the kernel trick (the same one we used for SVM); this is called Kernel PCA

Manifold Learning

Manifold Learning

- ullet Given a dataset $X=\{x_1, x_2, ..., x_n\}$ embedded in \mathbb{R}^m (each point $x_i \in \mathbb{R}^m$)
- Find a mapping of the dataset X into a dataset $Z=\{z_1, z_2, ..., z_n\}$ embedded in \mathbb{R}^p ($z_i \in \mathbb{R}^p$) for some integer p < m
- Such that (informally) Z preserves the local geometry of X
 - * For example if x_i and x_j are close (according to some distance metric), then z_i and z_j are also close
 - So really we want to preserve the neighborhood structure

Multidimensional Scaling (MDS)

- Compute the Euclidean distance d_{ij} between any two points \boldsymbol{x}_i and \boldsymbol{x}_j
- We want to minimize: $\sum_{i < j} [|| \mathbf{z}_i \mathbf{z}_j || d_{ij}]^2$
 - * The minimization here is over $z_1, z_2, ..., z_n$
- What if we don't care about (approximately) preserving large distances?
 - Then we could ask to only preserve distances only if two points are neighbors

Manifold Learning

Algorithms

- Different algorithms aim to preserve different "local" properties
- Multidimensional Scaling (MDS)
 - Preserve distances between points
- Locally Linear Embedding (LLE)
 - Express each data point as a linear combination of its closest neighbors
- Isomap
 - Form a graph where data points are connected to their closest neighbors
 - Aims to preserve geodestic distance (i.e., shortest path distance)
- t-distributed Stochastic Neighbor Embedding (t-SNE)
 - Tries to keep similar data points close together, dissimilar data points far apart
 - Mostly used for visualization
- Q: Does feature scaling matter?
 - Yes, we should rescale the data (to ensure all features have the scale)
 - Why? Methods are based on nearest-neighbors search

Next Time

Friday (2/23): Exercise

- Upcoming:
 - Homework 2 due 2/23