DEVOIR À LA MAISON N°11

- ▶ Le devoir devra être rédigé sur des copies doubles.
- ▶ Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- ► Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 -

Pour $n \in \mathbb{N}$, on note f_n et g_n les fonctions telles que pour tout $x \in \mathbb{R}$

$$f_n(x) = \cos(nx)$$
 et $g_n(x) = \cos^n(x)$

En particulier, f_0 et g_0 sont la fonction constante égale à 1.

Pour tout $n \in \mathbb{N}$, on pose

$$F_n = \text{vect}(f_0, f_1, \dots, f_n)$$
 et $G_n = \text{vect}(g_0, g_1, \dots, g_n)$

 F_n et G_n sont donc des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{R}}$.

Partie I - Cas particulier

- **1.** Montrer que pour tout $k \in \{0, 1, 2\}$, $f_k \in G_2$. En déduire que $F_2 \subset G_2$.
- 2. Montrer que la famille (f_0, f_1, f_2) est libre. Quelle est la dimension de F_2 ?
- 3. Montrer que la famille (g_0,g_1,g_2) est libre. Quelle est la dimension de G_2 ?
- **4.** En déduire que $F_2 = G_2$.

Partie II - Une inclusion

- **1.** Montrer que pour tout $n \in \mathbb{N}$, $f_{n+2} = 2f_{n+1}f_1 f_n$.
- 2. Montrer par récurrence double que pour tout $n\in\mathbb{N},$ $f_n\in G_n.$
- **3.** En déduire que pour tout $n \in \mathbb{N}$, $F_n \subset G_n$.

Partie III - Utilisation de la dimension

- 1. Calculer $I_{k,l}=\int_0^{2\pi}f_k(t)f_l(t)\,dt$ pour $(k,l)\in\mathbb{N}^2.$ On distinguera plusieurs cas.
- **2.** Montrer que pour tout $n \in \mathbb{N}$, la famille (f_0, \ldots, f_n) est libre.
- **3.** En déduire la dimension de F_n pour tout $n \in \mathbb{N}$.
- **4.** Justifier que dim $G_n \le n + 1$.
- **5.** Prouver que $F_n = G_n$ pour tout $n \in \mathbb{N}$.