GNE.2830P1C51

NITED STATES PATENT AND TRADEMARK OFFICE

Examiner	_:	Unknown)
Evenin		** •)
		ACIDS ENCODING THE SAME)
•		POLYPEPTIDES AND NUCLEIC)
		TRANSMEMBRANE)
For	:	SECRETED AND)
Filed	:	December 12, 2001)
		10,010,000	,)
Appl. No.	:	10/015,385)
Applicant	:	Baker et al.) Group Art Unit Unknown

SEQUENCE SUBMISSION STATEMENT

United States Patent and Trademark Office PO Box 2327 Arlington, VA 22202

Dear Sir:

This is in response to the Notice to Comply with Requirements for Patent Applications Containing Nucleotide Sequence and/or Amino Acid Sequence Disclosures, mailed May 14, 2002. I hereby state that the amendments, made in accordance with 37 C.F.R. § 1.825(a) and included in the Substitute Sequence Listing submitted herewith, are supported in the application, and that the Substitute Sequence Listing does not include new matter.

I further state that the information recorded in the currently submitted substitute copy of the computer-readable form of the Sequence Listing is identical to the paper form of the Sequence Listing submitted herewith as required in 37 C.F.R. § 1.825(b).

Please charge any additional fees, including any fees for additional extension of time, or credit overpayment to Deposit Account No. 11-1410.

Respectfully submitted,

KNOBBE, MARTENS, OLSON & BEAR, LLP

Dated: July 9, 2002

By:

Adeel S. Akhtar Registration No. 41,394 Attorney of Record

620 Newport Center Drive, 16th Floor

Newport Beach, CA 92660

(415) 954-4114

Sequence Listing

<110> Baker, Revin P.
 Botstein, David
 Desnoyers, Luc
 Eaton, Dan 1.
 Ferrara, Napoleone
 Fong, Sherman
 Gao, Wei-Qiang
 Goddard, Audrey
 Godowski, Paul J.
 Grimaldi, Christopher J.
 Gurney, Austin L.
 Hillan, Kenneth J.
 Pan, James
 Paoni, Nicholas F.

- $<\!\!120\!\!>$ Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same
- <130> P2830P1C51
- <140> 10/015385
- <141> 2001-12-12
- <150> 60/098716
- <151> 1998-09-01
- <150> 60/098723
- <151> 1998-09-01
- <150> 60/098749
- <151> 1998-09-01
- <150> 60/098750
- <151> 1998-09-01
- <150> 60/098803
- <151> 1998-09-02
- <150> 60/098821
- <151> 1998-09-02
- <150> 60/098843
- <151> 1998-09-02
- <150> 60/099536 <151> 1998-09-09
- <150> 60/099596 <151> 1998-09-09
- <150> 60/099598 <151> 1998-09-09
- <150> 60/099602
- <151> 1998-09-09

#4

- <150> 60/099642
- <151> 1998-09-09
- <150> 60/099741
- <151> 1998-09-10
- <150> 60/099754
- <151> 1998-09-10
- <150> 60/099763
- <151> 1998-09-10
- <150> 60/099792
- <151> 1998-09-10
- <150> 60/099808
- <151> 1998-09-10
- <150> 60/099812
- <151> 1998-09-10
- <150> 60/099815
- <151> 1998-09-10
- <150> 60/099816
- <151> 1998-09-10
- <150> 60/100385
- <151> 1998-09-15
- <150> 60/100388
- <151> 1998-09-15
- <150> 60/100390
- <151> 1998-09-15
- <150> 60/100584
- <151> 1998-09-16
- <150> 60/100627
- <151> 1998-09-16
- <150> 60/100661
- <151> 1998-09-16
- <150> 60/100662
- <151> 1998-09-16
- <150> 60/100664
- <151> 1998-09-16
- <150> 60/100683
- <151> 1998-09-17
- <150> 60/100684
- <151> 1998-09-17

- <150> 60/100710
- <151> 1998-09-17
- <150> 60/100711
- <151> 1998-09-17
- <150> 60/100848
- <151> 1998-09-18
- <150> 60/100849
- <151> 1998-09-18
- <150> 60/100919
- <151> 1998-09-17
- <150> 60/100930
- <151> 1998-09-17
- <150> 60/101014
- <151> 1998-09-18
- <150> 60/101068
- <151> 1998-09-18
- <150> 60/101071
- <151> 1998-09-18
- <150> 60/101279
- <151> 1998-09-22
- <150> 60/101471
- <151> 1998-09-23
- <150> 60/101472
- <151> 1998-09-23
- <150> 60/101474
- . <151> 1998-09-23
 - <150> 60/101475
 - <151> 1998-09-23
 - <150> 60/101476
 - <151> 1998-09-23
 - <150> 60/101477
 - <151> 1998-09-23
 - <150> 60/101479
 - <151> 1998-09-23
 - <150> 60/101738
 - <151> 1998-09-24
 - <150> 60/101741
 - <151> 1998-09-24

- <150> 60/101743
- <151> 1998-09-24
- <150> 60/101915
- <151> 1998-09-24
- <150> 60/101916
- <151> 1998-09-24
- <150> 60/102207
- <151> 1998-09-29
- <150> 60/102240
- <151> 1998-09-29
- <150> 60/102307
- <151> 1998-09-29
- <150> 60/102330
- <151> 1998-09-29
- <150> 60/102331
- <151> 1998-09-29
- <150> 60/102484
- <151> 1998-09-30
- <150> 60/102487
- <151> 1998-09-30
- <150> 60/102570
- <151> 1998-09-30
- <150> 60/102571
- <151> 1998-09-30
- <150> 60/102684
- <151> 1998-10-01
- <150> 60/102687
- <151> 1998-10-01
- <150> 60/102965
- <151> 1998-10-02
- <150> 60/103258
- <151> 1998-10-06
- <150> 60/103314
- <151> 1998-10-07
- <150> 60/103315
- <151> 1998-10-07
- <150> 60/103328
- <151> 1998-10-07

- <150> 60/103395
- <151> 1998-10-07
- <150> 60/103396
- <151> 1998-10-07
- <150> 60/103401
- <151> 1998-10-07
- <150> 60/103449
- <151> 1998-10-06
- <150> 60/103633
- <151> 1998-10-08
- <150> 60/103678
- <151> 1998-10-08
- <150> 60/103679
- <151> 1998-10-08
- <150> 60/103711
- <151> 1998-10-08
- <150> 60/104257
- <151> 1998-10-14
- <150> 60/104987
- <151> 1998-10-20
- <150> 60/105000
- <151> 1998-10-20
- <150> 60/105002
- <151> 1998-10-20
- <150> 60/105104
- <151> 1998-10-21
- <150> 60/105169
- <151> 1998-10-22
- <150> 60/105266
- <151> 1998-10-22
- <150> 60/105693
- <151> 1998-10-26
- <150> 60/105694
- <151> 1998-10-26
- <150> 60/105807
- <151> 1998-10-27
- <150> 60/105881
- <151> 1998-10-27

- <150> 60/105882
- <151> 1998-10-27
- <150> 60/106023
- <151> 1998-10-28
- <150> 60/106029
- <151> 1998-10-28
- <150> 60/106030
- <151> 1998-10-28
- <150> 60/106032
- <151> 1998-10-28
- <150> 60/106033
- <151> 1998-10-28
- <150> 60/106062
- <151> 1998-10-27
- <150> 60/106178
- <151> 1998-10-28
- <150> 60/106248
- <151> 1998-10-29
- <150> 60/106384
- <151> 1998-10-29
- <150> 60/108500
- <151> 1998-10-29
- <150> 60/106464
- <151> 1998-10-30
- <150> 60/106856
- <151> 1998-11-03
- <150> 60/106902
- <151> 1998-11-03
- <150> 60/106905
- <151> 1998-11-03
- <150> 60/106919
- <151> 1998-11-03
- <150> 60/106932
- <151> 1998-11-03
- <150> 60/106934
- <151> 1998-11-03
- <150> 60/107783
- <151> 1998-11-10

```
<150> 60/108775
```

- <151> 1998-11-17
- <150> 60/108779
- <151> 1998-11-17
- <150> 60/108787
- <151> 1998-11-17
- <150> 60/108788
- <151> 1998-11-17
- <150> 60/108801
- <151> 1998-11-17
- <150> 60/108802
- <151> 1998-11-17
- <150> 60/108806
- <151> 1998-11-17
- <150> 60/108807 <151> 1998-11-17
- <150> 60/108848
- <151> 1998-11-18
- <150> 60/108849
- <151> 1998-11-18
- <150> 60/108850
- <151> 1998-11-18
- <150> 60/108851
- <151> 1998-11-18
- <150> 60/108852
- <151> 1998-11-18
- <150> 60/108858
- <151> 1998-11-18
- <150> 60/108867
- <151> 1998-11-17
- <150> 60/108904
- <151> 1998-11-18
- <150> 60/108925
- <151> 1998-11-17
- <150> 60/113296
- <151> 1998-12-22
- <150> 60/114223
- <151> 1998-12-30

- <150> 60/129674
- <151> 1999-04-16
- <150> 60/141037
- <151> 1999-06-23
- <150> 60/144758
- <151> 1999-07-20
- <150> 60/145698
- <151> 1999-07-26
- <150> 60/162506
- <151> 1999-10-29
- <150> 09/218517
- <151> 1998-12-22
- <150> 09/284291
- <151> 1999-04-12
- <150> 09/403297
- <151> 1999-10-18
- <150> 09/872035
- <151> 2001-06-01
- <150> 09/882636
- <151> 2001-06-14
- <150> 09/946374
- <151> 2001-09-04
- <150> PCT/US99/00106
- <151> 1999-01-05
- <150> PCT/US99/20111
- <151> 1999-09-01
- <150> PCT/US99/21194
- <151> 1999-09-15
- <150> PCT/US99/28313
- <151> 1999-11-30
- <150> PCT/US99/28551
- <151> 1999-12-02
- <150> PCT/US99/30095
- <151> 1999-12-16
- <150> PCT/US00/00219
- <151> 2000-01-05
- <150> PCT/US00/00376
- <151> 2000-01-06

- <150> PCT/US00/03565
- <151> 2000-02-11
- <150> PCT/US00/04342
- <151> 2000-02-18
- <150> PCT/US00/05004
- <151> 2000-02-24
- <150> PCT/US00/05841
- <151> 2000-03-02
- <150> PCT/US00/06884
- <151> 2000-03-15
- <150> PCT/US00/13705
- <151> 2000-05-17
- <150> PCT/US00/14042
- <151> 2000-05-22
- <150> PCT/US00/14941
- <151> 2000-05-30
- <150> PCT/US00/15264
- <151> 2000-06-02
- <150> PCT/US00/23328
- <151> 2000-08-24
- <150> PCT/US00/23522
- <151> 2000-08-23
- <150> PCT/US00/30873
- <151> 2000-11-10
- <150> PCT/US00/30952
- <151> 2000-11-08
- <150> PCT/US00/32678
- <151> 2000-12-01
- <150> PCT/US01/06520
- <151> 2001-02-28
- <150> PCT/US01/06666
- <151> 2001-03-01
- <150> PCT/US01/17800
- <151> 2001-06-01
- <150> PCT/US01/19692
- <151> 2001-06-20
- <150> PCT/US01/21066
- <151> 2001-06-29

```
<150> PCT/US01/21735
   <151> 2001-07-09
   <160> 477
   <210> 1
   <211> 43
   <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Synthetic oligonucleotide probe
   tgtaaaacga cggccagtta aatagacctg caattattaa tct 43
  <210> 2
  <211> 41
  <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
  caggaaacag ctatgaccac ctgcacacct gcaaatccat t 41
 <210> 3
 <211> 1110
 <212> DNA
 <213> Homo sapiens
 <400> 3
 ccaatcgccc ggtgcggtgg tgcagggtct cgggctagtc atggcgtccc 50
 cgtctcggag actgcagact aaaccagtca ttacttgttt caagagcgtt 100
 ctgctaatct acacttttat tttctggatc actggcgtta tccttcttgc 150
 agttggcatt tggggcaagg tgagcctgga gaattacttt tctcttttaa 200
 atgagaaggc caccaatgtc cccttcgtgc tcattgctac tggtaccgtc 250
 attattcttt tgggcacctt tggttgtttt gctacctgcc gagcttctgc 300
atggatgcta aaactgtatg caatgtttct gactctcgtt tttttggtcg 350
aactggtcgc tgccatcgta ggatttgttt tcagacatga gattaagaac 400
agctttaaga ataattatga gaaggctttg aagcagtata actctacagg 450
agattataga agccatgcag tagacaagat ccaaaatacg ttgcattgtt 500
gtggtgtcac cgattataga gattggacag atactaatta ttactcagaa 550
aaaggatttc ctaagagttg ctgtaaactt gaagattgta ctccacagag 600
```

```
agatgcagac aaagtaaaca atgaaggttg ttttataaag gtgatgacca 650
    ttatagagtc agaaatggga gtcgttgcag gaatttcctt tggagttgct 700
    tgcttccaac tgattggaat ctttctcgcc tactgccwct ctcgtgccat 750
    aacaaataac cagtatgaga tagtgtaacc caatgtatct gtgggcctat 800
   tcctctctac ctttaaggac atttagggtc ccccctgtga attagaaagt 850
   tgcttggctg gagaactgac aacactactt actgatagac caaaaaacta 900
   caccagtagg ttgattcaat caagatgtat gtagacctaa aactacacca 950
   ataggctgat tcaatcaaga tccgtgctcg cagtgggctg attcaatcaa 1000
   gatgtatgtt tgctatgttc taagtccacc ttctatccca ttcatgttag 1050
   atcgttgaaa ccctgtatcc ctctgaaaca ctggaagagc tagtaaattg 1100
   taaatgaagt 1110
  <210> 4
  <211> 245
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> sig_peptide
 <222> 1-42
 <223> Signal Peptide
 <220>
 <221> TRANSMEM
 <222> 19-42, 61-83, 92-114, 209-230
 <223> Transmembrane Domains
 <220>
 <221> misc_feature
 <222> 69-80, 211-222
<223> Prokaryotic Membrane Lipoprotein Lipid Attachment Site.
<220>
<221> misc_feature
<222> 75-81, 78-84, 210-216, 214-220, 226-232
<223> N-Myristoylation Site.
<220>
<221> misc_feature
<222> 134-138
<223> N-Glycosylation Site.
<220>
<221> misc_feature
<222> 160-168, 160-169
<223> Tyrosine Kinase Phosphorylation Site.
```

<220> <221> unsure <222> 233 <223> unknown amino acid
<400> 4 Met Ala Ser Pro Ser Arg Arg Leu Gln Thr Lys Pro Val Ile Thr 1 5 10 15
Cys Phe Lys Ser Val Leu Leu Ile Tyr Thr Phe Ile Phe Trp Ile 20 25 30
Thr Gly Val Ile Leu Leu Ala Val Gly Ile Trp Gly Lys Val Ser 35 40 45
Leu Glu Asn Tyr Phe Ser Leu Leu Asn Glu Lys Ala Thr Asn Val 50 55 60
Pro Phe Val Leu Ile Ala Thr Gly Thr Val Ile Ile Leu Leu Gly 65 70 75
Thr Phe Gly Cys Phe Ala Thr Cys Arg Ala Ser Ala Trp Met Leu 80 85 90
Lys Leu Tyr Ala Met Phe Leu Thr Leu Val Phe Leu Val Glu Leu 95 100 105
Val Ala Ala Ile Val Gly Phe Val Phe Arg His Glu Ile Lys Asn 110 115 120
Ser Phe Lys Asn Asn Tyr Glu Lys Ala Leu Lys Gln Tyr Asn Ser 125 130 135
Thr Gly Asp Tyr Arg Ser His Ala Val Asp Lys Ile Gln Asn Thr 140 145 150
Leu His Cys Cys Gly Val Thr Asp Tyr Arg Asp Trp Thr Asp Thr 155 160 165
Asn Tyr Tyr Ser Glu Lys Gly Phe Pro Lys Ser Cys Cys Lys Leu 170 175 180
Glu Asp Cys Thr Pro Gln Arg Asp Ala Asp Lys Val Asn Asn Glu 185 190 195
Gly Cys Phe Ile Lys Val Met Thr Ile Ile Glu Ser Glu Met Gly 200 205 210
Val Val Ala Gly Ile Ser Phe Gly Val Ala Cys Phe Gln Leu Ile 215 220 225
Gly Ile Phe Leu Ala Tyr Cys Xaa Ser Arg Ala Ile Thr Asn Asn 230 235 240
Gln Tyr Glu Ile Val 245

<210> 5 <211> 1218 <212> DNA <213> Homo sapiens

<400> 5 cccacgcgtc cggcgccgtg gcctcgcgtc catctttgcc gttctctcgg 50 acctgtcaca aaggagtcgc gccgccgccg ccgccccctc cctccggtgg 100 gecegggagg tagagaaagt eagtgecaea gecegaeege getgetetga 150 gccctgggca cgcggaacgg gagggagtct gagggttggg gacgtctgtg 200 agggaggga acagccgctc gagcctgggg cgggcggacc ggactggggc 250 cggggtaggc tctggaaagg gcccgggaga gaggtggcgt tggtcagaac 300 ctgagaaaca gccgagaggt tttccaccga ggcccgcgct tgagggatct 350 gaagaggttc ctagaagagg gtgttccctc tttcgggggt cctcaccaga 400 agaggttctt gggggtcgcc cttctgagga ggctgcggct aacagggccc 450 agaactgcca ttggatgtcc agaatcccct gtagttgata atgttgggaa 500 taagctctgc aactttcttt ggcattcagt tgttaaaaac aaataggatg 550 caaattcctc aactccaggt tatgaaaaca gtacttggaa aactgaaaac 600 tacctaaatg atcgtctttg gttgggccgt gttcttagcg agcagaagcc 650 ttggccaggg tctgttgttg actctcgaag agcacatagc ccacttccta 700 gggactggag gtgccgctac taccatgggt aattcctgta tctgccgaga 750 tgacagtgga acagatgaca gtgttgacac ccaacagcaa caggccgaga 800 acagtgcagt acccactgct gacacaagga gccaaccacg ggaccctgtt 850 cggccaccaa ggaggggccg aggacctcat gagccaagga gaaagaaaca 900 aaatgtggat gggctagtgt tggacacact ggcagtaata cggactcttg 950 tagataagta agtatctgac tcacggtcac ctccagtgga atgaaaagtg 1000 ttctgcccgg aaccatgact ttaggactcc ttcagttcct ttaggacata 1050 ctcgccaagc cttgtgctca cagggcaaag gagaatattt taatgctccg 1100 ctgatggcag agtaaatgat aagatttgat gtttttgctt gctgtcatct 1150 actttgtctg gaaatgtcta aatgtttctg tagcagaaaa cacgataaag 1200 ctatgatctt tattagag 1218

```
<210> 6
 <211> 117
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> sig_peptide
 <222> 1-16
 <223> Signal Peptide
 <220>
 <221> misc_feature
 <222> 18-24, 32-38, 34-40, 35-41, 51-57
 <223> N-Myristoylation Site.
 <220>
 <221> misc_feature
 <222> 22-26, 50-54, 113-117
 <223> Casein Kinase II Phosphorylation Site.
 <400> 6
 Met Ile Val Phe Gly Trp Ala Val Phe Leu Ala Ser Arg Ser Leu
                                       10
 Gly Gln Gly Leu Leu Thr Leu Glu Glu His Ile Ala His Phe
 Leu Gly Thr Gly Gly Ala Ala Thr Thr Met Gly Asn Ser Cys Ile
                  35
 Cys Arg Asp Ser Gly Thr Asp Asp Ser Val Asp Thr Gln Gln
 Gln Gln Ala Glu Asn Ser Ala Val Pro Thr Ala Asp Thr Arg Ser
                                       70
                                                           75
 Gln Pro Arg Asp Pro Val Arg Pro Pro Arg Arg Gly Arg Gly Pro
 His Glu Pro Arg Arg Lys Lys Gln Asn Val Asp Gly Leu Val Leu
 Asp Thr Leu Ala Val Ile Arg Thr Leu Val Asp Lys
                 110
<210> 7
<211> 756
<212> DNA
<213> Homo sapiens
<400> 7
ggcacgaggc gctgtccacc cgggggcgtg ggagtgaggt accagattca 50
gcccatttgg ccccgacgcc tctgttctcg gaatccgggt gctgcggatt 100
gaggtcccgg ttcctaacgg actgcaagat ggaggaaggc gggaacctag 150
```

```
gaggeetgat taagatggte catetaetgg tettgteagg tgeetgggge 200
   atgcaaatgt gggtgacctt cgtctcaggc ttcctgcttt tccgaagcct 250
   tccccgacat accttcggac tagtgcagag caaactcttc cccttctact 300
   tccacatctc catgggctgt gccttcatca acctctgcat cttggcttca 350
   cagcatgctt gggctcagct cacattctgg gaggccagcc agctttacct 400
  gctgttcctg agccttacgc tggccactgt caacgcccgc tggctggaac 450
  cccgcaccac agctgccatg tgggccctgc aaaccgtgga gaaggagcga 500
  ggcctgggtg gggaggtacc aggcagccac cagggtcccg atccctaccg 550
  ccagctgcga gagaaggacc ccaagtacag tgctctccgc cagaatttct 600
  teegetacea tgggetgtee tetetttgea atetgggetg egteetgage 650
  aatgggctct gtctcgctgg ccttgccctg gaaataagga gcctctagca 700
  tgggccctgc atgctaataa atgcttcttc agaaatgaaa aaaaaaaaa 750
  aaaaaa 756
 <210> 8
 <211> 189
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> sig_peptide
 <222> 1-24
 <223> Signal Peptide
<220>
<221> misc_feature
<222> 4-10, 5-11, 47-53, 170-176, 176-182
<223> N-Myristoylation Site.
<220>
<221> misc_feature
<222> 44-85
<223> G-protein Coupled Receptors Proteins.
<220>
<221> misc feature
<222> 54-65
<223> Prokaryotic Mmembrane Lipoprotein Lipid Attachment Site.
<220>
<221> misc_feature
<222> 82-86
<223> Casein Kinase II Phosphorylation Site.
<220>
```

```
<221> TRANSMEM
 <222> 86-103, 60-75
 <223> Transmembrane Domain
 <220>
 <221> misc feature
 <222> 144-151
 <223> Tyrosine Kinase Phosphorylation Site.
 <400> 8
 Met Glu Glu Gly Gly Asn Leu Gly Gly Leu Ile Lys Met Val His
 Leu Leu Val Leu Ser Gly Ala Trp Gly Met Gln Met Trp Val Thr
 Phe Val Ser Gly Phe Leu Leu Phe Arg Ser Leu Pro Arg His Thr
 Phe Gly Leu Val Gln Ser Lys Leu Phe Pro Phe Tyr Phe His Ile
                                       55
 Ser Met Gly Cys Ala Phe Ile Asn Leu Cys Ile Leu Ala Ser Gln
                                      70
 His Ala Trp Ala Gln Leu Thr Phe Trp Glu Ala Ser Gln Leu Tyr
Leu Leu Phe Leu Ser Leu Thr Leu Ala Thr Val Asn Ala Arg Trp
Leu Glu Pro Arg Thr Thr Ala Ala Met Trp Ala Leu Gln Thr Val
                 110
                                                          120
Glu Lys Glu Arg Gly Leu Gly Gly Glu Val Pro Gly Ser His Gln
                                     130
Gly Pro Asp Pro Tyr Arg Gln Leu Arg Glu Lys Asp Pro Lys Tyr
                                     145
Ser Ala Leu Arg Gln Asn Phe Phe Arg Tyr His Gly Leu Ser Ser
                155
Leu Cys Asn Leu Gly Cys Val Leu Ser Asn Gly Leu Cys Leu Ala
Gly Leu Ala Leu Glu Ile Arg Ser Leu
                185
```

<210> 9

<211> 1508

<212> DNA

<213> Homo sapiens

<400> 9

aattcagatt ttaagcccat tctgcagtgg aatttcatga actagcaaga 50

ggacaccatc ttcttgtatt atacaagaaa ggagtgtacc tatcacacac 100 agggggaaaa atgctctttt gggtgctagg cctcctaatc ctctgtggtt 150 ttctgtggac tcgtaaagga aaactaaaga ttgaagacat cactgataag 200 tacattttta tcactggatg tgactcgggc tttggaaact tggcagccag 250 aacttttgat aaaaagggat ttcatgtaat cgctgcctgt ctgactgaat 300 caggatcaac agctttaaag gcagaaacct cagagagact tcgtactgtg 350 cttctggatg tgaccgaccc agagaatgtc aagaggactg cccagtgggt 400 gaagaaccaa gttggggaga aaggtctctg gggtctgatc aataatgctg 450 gtgttcccgg cgtgctggct cccactgact ggctgacact agaggactac 500 agagaaccta ttgaagtgaa cctgtttgga ctcatcagtg tgacactaaa 550 tatgcttcct ttggtcaaga aagctcaagg gagagttatt aatgtctcca 600 gtgttggagg tcgccttgca atcgttggag ggggctatac tccatccaaa 650 tatgcagtgg aaggtttcaa tgacagctta agacgggaca tgaaagcttt 700 tggtgtgcac gtctcatgca ttgaaccagg attgttcaaa acaaacttgg 750 cagatccagt aaaggtaatt gaaaaaaac tcgccatttg ggagcagctg 800 tctccagaca tcaaacaaca atatggagaa ggttacattg aaaaaagtct 850 agacaaactg aaaggcaata aatcctatgt gaacatggac ctctctccgg 900 tggtagagtg catggaccac gctctaacaa gtctcttccc taagactcat 950 tatgccgctg gaaaagatgc caaaattttc tggatacctc tgtctcacat 1000 gccagcagct ttgcaagact ttttattgtt gaaacagaaa gcagagctgg 1050 ctaatcccaa ggcagtgtga ctcagctaac cacaaatgtc tcctccaggc 1100 tatgaaattg gccgatttca agaacacatc tccttttcaa ccccattcct 1150 tatctgctcc aacctggact catttagatc gtgcttattt ggattgcaaa 1200 agggagtece accategetg gtggtatece agggteeetg etcaagtttt 1250 ctttgaaaag gagggctgga atggtacatc acataggcaa gtcctgccct 1300 gtatttaggc tttgcctgct tggtgtgatg taagggaaat tgaaagactt 1350 gcccattcaa aatgatcttt accgtggcct gccccatgct tatggtcccc 1400 agcatttaca gtaacttgtg aatgttaagt atcatctctt atctaaatat 1450 taaaagataa gtcaacccaa aaaaaaaaa aaaaaaaaa aaaaaaaaa 1500

```
<210> 10
 <211> 319
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> sig_peptide
 <222> 1-17
 <223> Signal Peptide
 <220>
 <221> misc_feature
<222> 36-47, 108-113, 166-171,198-203, 207-212
<223> N-myristoylation Sites.
<220>
<221> misc feature
<222> 39-42
<223> Glycosaminoglycan Attachment Site.
<220>
<221> TRANSMEM
<222> 136-152
<223> Transmembrane Domain
<220>
<221> misc_feature
\langle 222 \rangle 161-163, 187-190 and 253-256
<223> N-glycosylation Sites.
<400> 10
Met Leu Phe Trp Val Leu Gly Leu Leu Ile Leu Cys Gly Phe Leu
Trp Thr Arg Lys Gly Lys Leu Lys Ile Glu Asp Ile Thr Asp Lys
Tyr Ile Phe Ile Thr Gly Cys Asp Ser Gly Phe Gly Asn Leu Ala
Ala Arg Thr Phe Asp Lys Lys Gly Phe His Val Ile Ala Ala Cys
Leu Thr Glu Ser Gly Ser Thr Ala Leu Lys Ala Glu Thr Ser Glu
                                      70
Arg Leu Arg Thr Val Leu Leu Asp Val Thr Asp Pro Glu Asn Val
                                                           90
Lys Arg Thr Ala Gln Trp Val Lys Asn Gln Val Gly Glu Lys Gly
Leu Trp Gly Leu Ile Asn Asn Ala Gly Val Pro Gly Val Leu Ala
```

110

aaaaaaaa 1508

Pro	Thr	Asp	o Tr	p Le	u Thi	: Lei	ı Glı	ı Ası	р Тул 13(r Arg	g Gl	u Pr	o Il	e Glu 135
Val	Asn	Leu	ı Phe	⊖ Gly 140	y Leu)	ı Ile	e Sei	· Val	l Thr 145	Leu	ı Ası	n Met	t Le	ı Pro 150
Leu	Val	Lys	Lys	3 Ala 155	a Gln	Gly	Arg	Val	. Ile	Asn	va]	l Sei	Se:	Val 165
Gly	Gly	Arg	Leu	170	ılle	Val	Gly	Gly	Gly 175	Tyr	Thr	Pro	Se ₁	Lys 180
Tyr	Ala	Val	Glu	Gly 185	Phe	Asn	Asp	Ser	Leu 190	Arg	Arg	Asp	Met	Lys 195
Ala	Phe	Gly	Val	His 200	Val	Ser	Cys	Ile	Glu 205	Pro	Gly	Leu	Phe	Lys 210
Thr A	Asn	Leu	Ala	Asp 215	Pro	Val	Lys	Val	Ile 220	Glu	Lys	Lys	Leu	Ala 225
Ile 7	Trp	Glu	Gln	Leu 230	Ser	Pro	Asp	Ile	Lys 235	Gln	Gln	Tyr	Gly	Glu 240
Gly T	Tyr	Ile	Glu	Lys 245	Ser	Leu	Asp	Lys	Leu 250	Lys	Gly	Asn	Lys	Ser 255
Tyr V	al.	Asn	Met	Asp 260	Leu	Ser	Pro	Val	Val 265	Glu	Cys	Met	Asp	His 270
Ala L	eu '	Thr	Ser	Leu 275	Phe	Pro	Lys	Thr	His 280	Tyr .	Ala	Ala	Gly	Lys 285
Asp A	la 1	Lys :	Ile	Phe 290	Trp	Ile	Pro	Leu	Ser 295	His 1	Met	Pro	Ala	Ala 300
Leu G	ln A	Asp 1	Phe	Leu 305	Leu 1	Leu 1	Lys (Gln :	Lys 2 310	Ala (Glu	Leu		
Pro Ly	ys A	la V	/al											

gegggetgtt gaeggegetg egatggetge etgegaggge aggagaageg 50

gagetetegg tteeteteag teggaettee tgaegeegee agtgggeggg 100

gccccttggg ccgtcgccac cactgtagtc atgtacccac cgccgccgcc 150

gccgcctcat cgggacttca tctcggtgac gctgagcttt ggcgagagct 200

<210> 11 <211> 2720 <212> DNA

<400> 11

<213> Homo sapines

atgacaacag caagagttgg cggcggcgct cgtgctggag gaaatggaag 250 caactgtcga gattgcagcg gaatatgatt ctcttcctcc ttgcctttct 300 gettttetgt ggaeteetet tetacateaa ettggetgae eattggaaag 350 ctctggcttt caggctagag gaagagcaga agatgaggcc agaaattgct 400 gggttaaaac cagcaaatcc accegtetta ccageteete agaaggegga 450 caccgaccct gagaacttac ctgagatttc gtcacagaag acacaaagac 500 acatecageg gggaceacet cacetgeaga ttagaceece aageeaagae 550 ctgaaggatg ggacccagga ggaggccaca aaaaggcaag aagcccctgt 600 ggateceege eeggaaggag ateegeagag gacagteate agetggaggg 650 gageggtgat egageetgag eagggeaceg ageteeette aagaagagea 700 gaagtgeeca ccaageetee eetgeeaceg gecaggaeae agggeacace 750 agtgcatctg aactatcgcc agaagggcgt gattgacgtc ttcctgcatg 800 catggaaagg ataccgcaag tttgcatggg gccatgacga gctgaagcct 850 gtgtccaggt ccttcagtga gtggtttggc ctcggtctca cactgatcga 900 cgcgctggac accatgtgga tcttgggtct gaggaaagaa tttgaggaag 950 ccaggaagtg ggtgtcgaag aagttacact ttgaaaagga cgtggacgtc 1000 aacctgtttg agagcacgat ccgcatcctg ggggggctcc tgagtgccta 1050 ccacctgtct ggggacagcc tcttcctgag gaaagctgag gattttggaa 1100 ateggetaat geetgeette agaacaceat eeaagattee ttaeteggat 1150 gtgaacatcg gtactggagt tgcccacccg ccacggtgga cctccgacag 1200 cactgtggcc gaggtgacca gcattcagct ggagttccgg gagctctccc 1250 gtctcacagg ggataagaag tttcaggagg cagtggagaa ggtgacacag 1300 cacatceacg gcctgtctgg gaagaaggat gggctggtgc ccatgttcat 1350 caatacceae agtggeetet teacecaeet gggegtatte aegetgggeg 1400 ccagggccga cagctactat gagtacctgc tgaagcagtg gatccagggc 1450 gggaagcagg agacacagct gctggaagac tacgtggaag ccatcgaggg 1500 tgtcagaacg cacctgctgc ggcactccga gcccagtaag ctcacctttg 1550 tgggggaget tgcccacgge cgettcagtg ccaagatgga ccacctggtg 1600 tgcttcctgc cagggacgct ggctctgggc gtctaccacg gcctgcccgc 1650

```
cagccacatg gagctggccc aggagctcat ggagacttgt taccagatga 1700
   accggcagat ggagacgggg ctgagtcccg agatcgtgca cttcaacctt 1750
   tacccccagc cgggccgtcg ggacgtggag gtcaagccag cagacaggca 1800
   caacctgctg cggccagaga ccgtggagag cctgttctac ctgtaccgcg 1850
   tcacagggga ccgcaaatac caggactggg gctgggagat tctgcagagc 1900
   ttcagccgat tcacacgggt cccctcgggt ggctattctt ccatcaacaa 1950
  tgtccaggat cctcagaagc ccgagcctag ggacaagatg gagagcttct 2000
  tcctggggga gacgctcaag tatctgttct tgctcttctc cgatgaccca 2050
  aacctgetea geetggaege etaegtgtte aacacegaag eccaecetet 2100
  gcctatctgg acccctgcct agggtggatg gctgctggtg tggggacttc 2150
  gggtgggcag aggcaccttg ctgggtctgt ggcattttcc aagggcccac 2200
  gtagcaccgg caaccgccaa gtggcccagg ctctgaactg gctctgggct 2250
  cctcctcgtc tctgctttaa tcaggacacc gtgaggacaa gtgaggccgt 2300
  cagtcttggt gtgatgcggg gtgggctggg ccgctggagc ctccgcctgc 2350
  ttcctccaga agacacgaat catgactcac gattgctgaa gcctgagcag 2400
  gtctctgtgg gccgaccaga ggggggcttc gaggtggtcc ctggtactgg 2450
 ggtgaccgag tggacagccc agggtgcagc tctgcccggg ctcgtgaagc 2500
 ctcagatgtc cccaatccaa gggtctggag gggctgccgt gactccagag 2550
 gcctgaggct ccagggctgg ctctggtgtt tacaagctgg actcagggat 2600
 cctcctggcc gccccgcagg gggcttggag ggctggacgg caagtccgtc 2650
 tagctcacgg gcccctccag tggaatgggt cttttcggtg gagataaaag 2700
 ttgatttgct ctaaccgcaa 2720
<210> 12
<211> 699
<212> PRT
<213> Homo sapiens
<220>
<221> TRANSMEM
<222> 21-40 and 84-105
<223> Transmembrane Domain (type II)
<400> 12
Met Ala Ala Cys Glu Gly Arg Arg Ser Gly Ala Leu Gly Ser Ser
```

Val Phe Leu His Ala Trp Lys Gly Tyr Arg Lys Phe Ala Trp Gly

His Asp Glu Leu Lys Pro Val Ser Arg Ser Phe Ser Glu Trp Phe

Gly Leu Gly Leu Thr Leu Ile Asp Ala Leu Asp Thr Met Trp Ile

285

260

Iou Cl. 7
Leu Gly Leu Arg Lys Glu Phe Glu Glu Ala Arg Lys Trp Val Ser 305 310 315
Lys Lys Leu His Phe Glu Lys Asp Val Asp Val Asn Leu Phe Glu 320 325 330
Ser Thr Ile Arg Ile Leu Gly Gly Leu Leu Ser Ala Tyr His Leu 335 340 345
Ser Gly Asp Ser Leu Phe Leu Arg Lys Ala Glu Asp Phe Gly Asn 350 355 360
Arg Leu Met Pro Ala Phe Arg Thr Pro Ser Lys Ile Pro Tyr Ser 365 370 375
Asp Val Asn Ile Gly Thr Gly Val Ala His Pro Pro Arg Trp Thr 380 385 390
Ser Asp Ser Thr Val Ala Glu Val Thr Ser Ile Gln Leu Glu Phe 395 400 405
Arg Glu Leu Ser Arg Leu Thr Gly Asp Lys Lys Phe Gln Glu Ala 410 415 420
Val Glu Lys Val Thr Gln His Ile His Gly Leu Ser Gly Lys Lys 425 430 435
Asp Gly Leu Val Pro Met Phe Ile Asn Thr His Ser Gly Leu Phe 440 445 450
Thr His Leu Gly Val Phe Thr Leu Gly Ala Arg Ala Asp Ser Tyr 455 460 465
Tyr Glu Tyr Leu Leu Lys Gln Trp Ile Gln Gly Gly Lys Gln Glu 470 475 480
Thr Gln Leu Leu Glu Asp Tyr Val Glu Ala Ile Glu Gly Val Arg 485 490 495
Thr His Leu Leu Arg His Ser Glu Pro Ser Lys Leu Thr Phe Val 500 505 510
Gly Glu Leu Ala His Gly Arg Phe Ser Ala Lys Met Asp His Leu 515 520 525
Val Cys Phe Leu Pro Gly Thr Leu Ala Leu Gly Val Tyr His Gly
Leu Pro Ala Ser His Met Glu Leu Ala Gln Glu Leu Met Glu Thr 545 550 540
Cys Tyr Gln Met Asn Arg Gln Met Glu Thr Gly Leu Ser Pro Glu
Ile Val His Phe Asn Leu Tyr Pro Gln Pro Gly Arg Arg Asp Val

575 580 585 Glu Val Lys Pro Ala Asp Arg His Asn Leu Leu Arg Pro Glu Thr 590 595 Val Glu Ser Leu Phe Tyr Leu Tyr Arg Val Thr Gly Asp Arg Lys 605 Tyr Gln Asp Trp Gly Trp Glu Ile Leu Gln Ser Phe Ser Arg Phe 620 625 Thr Arg Val Pro Ser Gly Gly Tyr Ser Ser Ile Asn Asn Val Gln Asp Pro Gln Lys Pro Glu Pro Arg Asp Lys Met Glu Ser Phe Phe 650 Leu Gly Glu Thr Leu Lys Tyr Leu Phe Leu Leu Phe Ser Asp Asp Pro Asn Leu Leu Ser Leu Asp Ala Tyr Val Phe Asn Thr Glu Ala 680 685 His Pro Leu Pro Ile Trp Thr Pro Ala 695 <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 13 cgccagaagg gcgtgattga cgtc 24 <210> 14 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 14 ccatccttct tcccagacag gccg 24 <210> 15 <211> 44 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 15

<210> 16 <211> 1524

<212> DNA

<213> Homo sapiens

<400> 16

ggcgccgcgt aggcccggga ggccgggccg gccgggctgc gagcgcctgc 50 cccatgcgcc gccgcctctc cgcacgatgt tcccctcgcg gaggaaagcg 100 gegeagetge cetgggagga eggeaggtee gggttgetet eeggeggeet 150 ccctcggaag tgttccgtct tccacctgtt cgtggcctgc ctctcgctgg 200 gcttcttctc cctactctgg ctgcagctca gctgctctgg ggacgtggcc 250 cgggcagtca ggggacaagg gcaggagacc tcgggccctc cccgtgcctg 300 cccccagag ccgcccctg agcactggga agaagacgca tcctggggcc 350 cccaccgcct ggcagtgctg gtgcccttcc gcgaacgctt cgaggagctc 400 ctggtcttcg tgccccacat gcgccgcttc ctgagcagga agaagatccg 450 gcaccacatc tacgtgctca accaggtgga ccacttcagg ttcaaccggg 500 cagegeteat caaegtggge tteetggaga geageaacag caeggaetae 550 attgccatgc acgacgttga cctgctccct ctcaacgagg agctggacta 600 tggctttcct gaggctgggc ccttccacgt ggcctccccg gagctccacc 650 ctctctacca ctacaagacc tatgtcggcg gcatcctgct gctctccaag 700 cageactace ggetgtgeaa tgggatgtee aacegettet ggggetgggg 750 ccgcgaggac gacgagttct accggcgcat taagggagct gggctccagc 800 ttttccgccc ctcgggaatc acaactgggt acaagacatt tcgccacctg 850 catgacccag cctggcggaa gagggaccag aagcgcatcg cagctcaaaa 900 acaggagcag ttcaaggtgg acagggaggg aggcctgaac actgtgaagt 950 accatgtggc ttcccgcact gccctgtctg tgggcggggc cccctgcact 1000 gtcctcaaca tcatgttgga ctgtgacaag accgccacac cctggtgcac 1050 attcagctga gctggatgga cagtgaggaa gcctgtacct acaggccata 1100 ttgctcaggc tcaggacaag gcctcaggtc gtgggcccag ctctgacagg 1150 atgtggagtg gccaggacca agacagcaag ctacgcaatt gcagccaccc 1200 ggccgccaag gcaggcttgg gctgggccag gacacgtggg gtgcctggga 1250

```
cgctgcttgc catgcacagt gatcagagag aggctggggt gtgtcctgtc 1300
 egggaeece cetgeettee tgeteacet actetgaeet eetteacgtg 1350
 cccaggcctg tgggtagtgg ggagggctga acaggacaac ctctcatcac 1400
 cctactctga cctccttcac gtgcccaggc ctgtgggtag tggggagggc 1450
 aaaaaaaaa aaaaaaaaa aaaa 1524
<210> 17
<211> 327
<212> PRT
<213> Homo sapiens
<220>
<221> sig_peptide
<222> 1-42
<223> Signal peptide.
<220>
<221> misc_feature
<222> 19-25,65-71,247-253,285-291,303-310
<223> N-myristoylation site.
<220>
<221> misc feature
<222> 27-31
<223> cAMP- and cGMP-dependent protein kinase phosphorylation site.
<220>
<221> TRANSMEM
<222> 29-49
<223> Transmembrane domain (type II).
<220>
<221> misc feature
<222> 154-158
<223> N-glycosylation site.
<220>
<221> misc feature
<222> 226-233
<223> Tyrosine kinase phosphorylation site.
<400> 17
Met Phe Pro Ser Arg Arg Lys Ala Ala Gln Leu Pro Trp Glu Asp
  1
Gly Arg Ser Gly Leu Leu Ser Gly Gly Leu Pro Arg Lys Cys Ser
Val Phe His Leu Phe Val Ala Cys Leu Ser Leu Gly Phe Phe Ser
                 35
                                    40
```

Leu Leu Trp Leu Gln Leu Ser Cys Ser Gly Asp Val Ala Arg Ala 50 55 60
Val Arg Gly Gln Gly Gln Glu Thr Ser Gly Pro Pro Arg Ala Cys 65 70 75
Pro Pro Glu Pro Pro Pro Glu His Trp Glu Glu Asp Ala Ser Trp 80 85 90
Gly Pro His Arg Leu Ala Val Leu Val Pro Phe Arg Glu Arg Phe 95 100 105
Glu Glu Leu Leu Val Phe Val Pro His Met Arg Arg Phe Leu Ser 110 115 120
Arg Lys Lys Ile Arg His His Ile Tyr Val Leu Asn Gln Val Asp 125 130 135
His Phe Arg Phe Asn Arg Ala Ala Leu Ile Asn Val Gly Phe Leu 140 145 150
Glu Ser Ser Asn Ser Thr Asp Tyr Ile Ala Met His Asp Val Asp 155 160 165
Leu Leu Pro Leu Asn Glu Glu Leu Asp Tyr Gly Phe Pro Glu Ala 170 175 180
Gly Pro Phe His Val Ala Ser Pro Glu Leu His Pro Leu Tyr His 185 190 195
Tyr Lys Thr Tyr Val Gly Gly Ile Leu Leu Ser Lys Gln His 200 205 210
Tyr Arg Leu Cys Asn Gly Met Ser Asn Arg Phe Trp Gly Trp Gly 215 220 225
Arg Glu Asp Asp Glu Phe Tyr Arg Arg Ile Lys Gly Ala Gly Leu 230 235 240
Gln Leu Phe Arg Pro Ser Gly Ile Thr Thr Gly Tyr Lys Thr Phe 245 250 255
Arg His Leu His Asp Pro Ala Trp Arg Lys Arg Asp Gln Lys Arg 260 265 270
Ile Ala Ala Gln Lys Gln Glu Gln Phe Lys Val Asp Arg Glu Gly 275 280 285
Gly Leu Asn Thr Val Lys Tyr His Val Ala Ser Arg Thr Ala Leu 290 295 300
Ser Val Gly Gly Ala Pro Cys Thr Val Leu Asn Ile Met Leu Asp 305 310 315
Cys Asp Lys Thr Ala Thr Pro Trp Cys Thr Phe Ser 320 325

```
<210> 18
 <211> 23
 <212> DNA
 <<213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
 <400> 18
  gcgaacgctt cgaggagtcc tgg 23
 <210> 19
 <211> 24
 <212> DNA
 <213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 19
 gcagtgcggg aagccacatg gtac 24
<210> 20
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 20
 cttcctgagc aggaagaaga tccggcacca catctacgtg ctcaac 46
<210> 21
<211> 494
<212> DNA
<213> Homo sapiens
<400> 21
caatgtttgc ctatccacct cccccaagcc cctttaccta tgctgctgct 50
aacgctgctg ctgctgctgc tgctgcttaa aggctcatgc ttggagtggg 100
gactggtcgg tgcccagaaa gtctcttctg ccactgacgc ccccatcagg 150
gattgggcct tctttccccc ttcctttctg tgtctcctgc ctcatcggcc 200
tgccatgacc tgcagccaag cccagccccg tggggaaggg gagaaagtgg 250
gggatggcta agaaagctgg gagataggga acagaagagg gtagtgggtg 300
ggctaggggg gctgccttat ttaaagtggt tgtttatgat tcttatacta 350
atttatacaa agatattaag gccctgttca ttaagaaatt gttcccttcc 400
cctgtgttca atgtttgtaa agattgttct gtgtaaatat gtctttataa 450
```

```
<210> 22
 <211> 73
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> sig_peptide
 <222> 1-15
 <223> Signal peptide.
 .
<220>
 <221> misc_feature
 <222> 3-18
 <223> Growth factor and cytokines receptors family.
<400> 22
 10
 Ser Cys Leu Glu Trp Gly Leu Val Gly Ala Gln Lys Val Ser Ser
 Ala Thr Asp Ala Pro Ile Arg Asp Trp Ala Phe Pro Pro Ser
 Phe Leu Cys Leu Leu Pro His Arg Pro Ala Met Thr Cys Ser Gln
               50
Ala Gln Pro Arg Gly Glu Gly Glu Lys Val Gly Asp Gly
<210> 23
<211> 2883
<212> DNA
<213> Homo sapiens
<400> 23
gggacccatg cggccgtgac ccccggctcc ctagaggccc agcgcagccg 50
cagcggacaa aggagcatgt ccgcgccggg gaaggcccgt cctccggccg 100
ggctccgggg cggcccgcta ggccagtgcg ccgccgctcg ccccgcaggc 200
cccggcccgc agcatggagc cacccggacg ccggcggggc cgcgcgcagc 250
cgccgctgtt gctgccgctc tcgctgttag cgctgctcgc gctgctggga 300
ggcggcggcg gcggcggcgc cgcggcgctg cccgccggct gcaagcacga 350
tgggcggccc cgaggggctg gcagggcggc gggcgccgcc gagggcaagg 400
```

tggtgtgcag cagcctggaa ctcgcgcagg tcctgccccc agatactctg 450

cccaaccgca cggtcaccct gattctgagt aacaataaga tatccgagct 500 gaagaatggc tcattttctg ggttaagtct ccttgaaaga ttggacctcc 550 gaaacaatct tattagtagt atagatccag gtgccttctg gggactgtca 600 tctctaaaaa gattggatct gacaaacaat cgaataggat gtctgaatgc 650 agacatattt cgaggactca ccaatctggt tcggctaaac ctttcgggga 700 atttgttttc ttcattatct caaggaactt ttgattatct tgcgtcatta 750 cggtctttgg aattccagac tgagtatctt ttgtgtgact gtaacatact 800 gtggatgcat cgctgggtaa aggagaagaa catcacggta cgggatacca 850 ggtgtgttta tcctaagtca ctgcaggccc aaccagtcac aggcgtgaag 900 caggagetgt tgacatgega eceteegett gaattgeegt etttetacat 950 gactccatct catcgccaag ttgtgtttga aggagacagc cttcctttcc 1000 agtgcatggc ttcatatatt gatcaggaca tgcaagtgtt gtggtatcag 1050 gatgggagaa tagttgaaac cgatgaatcg caaggtattt ttgttgaaaa 1100 gaacatgatt cacaactgct ccttgattgc aagtgcccta accatttcta 1150 atattcaggc tggatctact ggaaattggg gctgtcatgt ccagaccaaa 1200 cgtgggaata atacgaggac tgtggatatt gtggtattag agagttctgc 1250 acagtactgt cctccagaga gggtggtaaa caacaaaggt gacttcagat 1300 ggcccagaac attggcaggc attactgcat atctgcagtg tacgcggaac 1350 acccatggca gtgggatata tcccggaaac ccacaggatg agagaaaagc 1400 ttggcgcaga tgtgatagag gtggcttttg ggcagatgat gattattctc 1450 gctgtcagta tgcaaatgat gtcactagag ttctttatat gtttaatcag 1500 atgcccctca atcttaccaa tgccgtggca acagctcgac agttactggc 1550 ttacactgtg gaagcagcca acttttctga caaaatggat gttatatttg 1600 tggcagaaat gattgaaaaa tttggaagat ttaccaagga ggaaaaatca 1650 aaagagctag gtgacgtgat ggttgacatt gcaagtaaca tcatgttggc 1700 tgatgaacgt gtcctgtggc tggcgcagag ggaagctaaa gcctgcagta 1750 ggattgtgca gtgtcttcag cgcattgcta cctaccggct agccggtgga 1800 gctcacgttt attcaacata ttcacccaat attgctctgg aagcttatgt 1850

catcaagtct actggcttca cggggatgac ctgtaccgtg ttccagaaag 1900 tggcagcctc tgatcgtaca ggactttcgg attatgggag gcgggatcca 1950 gagggaaacc tggataagca gctgagcttt aagtgcaatg tttcaaatac 2000 attttcgagt ctggcactaa aggtatgtta cattctgcaa tcatttaaga 2050 ctatttacag ttaaattaga atgctccaaa tgttctgctt cgcaaaataa 2100 ccttattaaa agatttttt ttgcaggaag ataggtatta ttgcttttgc 2150 tactgtttta aagaaaacta accaggaaga actgcattac gactttcaag 2200 ggccctaggc atttttgcct ttgattccct ttcttcacat aaaaatatca 2250 gaaattacat tttataactg cagtggtata aatgcaaata tactattgtt 2300 acatgtgaaa aaattttatt tgacttaaaa gtttatttat ttgtttttt 2350 gctcctgatt ttaagacaat aagatgtttt catgggcccc taaaagtatc 2400 atgageettt ggeactgege etgecaagee tagtggagaa gteaaceetg 2450 agaccaggtg tttaatcaag caagctgtat atcaaaattt ttggcagaaa 2500 acacaaatat gtcatatatc ttttttaaa aaaagtattt cattgaagca 2550 agcaaaatga aagcattttt actgattttt aaaattggtg ctttagatat 2600 atttgactac actgtattga agcaaataga ggaggcacaa ctccagcacc 2650 ctaatggaac cacattttt tcacttagct ttctgtgggc atgtgtaatt 2700 gtattctctg cggtttttaa tctcacagta ctttatttct gtcttgtccc 2750 tcaataatat cacaaacaat attccagtca ttttaatggc tgcataataa 2800 ctgatccaac aggtgttagg tgttctggtt tagtgtgagc actcaataaa 2850 tattgaatga atgaacgaaa aaaaaaaaaa aaa 2883

```
<210> 24
<211> 616
<212> PRT
<213> Homo sapiens

<220>
<221> sig_peptide
<222> 1-33
<223> Signal peptide.

<220>
<221> TRANSMEM
<222> 13-40
<223> Transmembrane domain (type II).
```

<400 Met			Pro) Pr	o Gl	y Arg	g Ar	g Ar	g Gl			a Gl	n Pr	o Pr	o Leu
		eu	Pro	Le	u Sei	r Lei	ı Le	u Ala	a Lei	ا Leı ي		a Le	u Le	u Gl	15 y Gly
					20	J				2	5				30
					35)				4 ()				s His 45
Asp	G1	У.	Arg	Pro	Arg 50	g Gly	Ala	a Gly	/ Arc	y Ala 55	a Ala	a Gly	/ Ala	a Al	a Glu 60
Gly	Ly	s '	Val	Va]	. Cys 65	Ser	Ser	. Leu	ı Glu	Let 70	ı Ala	a Glr	ı Val	L Le	u Pro 75
Pro	As	p !	Thr	Leu	Pro 80	Asn	Arg	J Thr	Val	Thr 85	Leu	ı Ile	e Lei	ı Sei	r Asn 90
Asn	Lys	s I	Ile	Ser	Glu 95	Leu	Lys	: Asn	Gly	Ser	Ph∈	Ser	Gly	' Lei	Ser 105
Leu	Leı	ı (Glu	Arg	Leu 110	Asp	Leu	Arg	Asn	Asn 115	Leu	ılle	Ser	Ser	Ile 120
Asp	Pro	o (Sly	Ala	Phe 125	Trp	Gly	Leu	Ser	Ser 130	Leu	Lys	Arg	Leu	Asp
Leu	Thr	. A	sn	Asn	Arg 140	Ile	Gly	Cys	Leu	Asn 145	Ala	Asp	Ile	Phe	Arg 150
Gly	Leu	T	hr	Asn	Leu 155	Val	Arg	Leu	Asn	Leu 160	Ser	Gly	Asn	Leu	Phe 165
Ser	Ser	· L	eu	Ser	Gln 170	Gly	Thr	Phe	Asp	Tyr 175	Leu	Ala	Ser	Leu	Arg 180
Ser	Leu	G.	lu	Phe	Gln 185	Thr	Glu	Tyr	Leu	Leu 190	Суѕ	Asp	Cys	Asn	Ile 195
Leu	Trp	Me	et :	His	Arg 200	Trp	Val	Lys	Glu	Lys 205	Asn	Ile	Thr	Val	Arg 210
Asp	Thr	Aı	rg (Cys	Val 215	Tyr	Pro	Lys	Ser	Leu 220	Gln	Ala	Gln	Pro	Val 225
Thr	Gly	Vá	al I	Lys	Gln 230	Glu :	Leu	Leu	Thr	Cys 235	Asp	Pro	Pro	Leu	
Leu 1	Pro	Se	er E	Phe	Tyr 1 245	Met '	Thr	Pro	Ser	His . 250	Arg	Gln	Val	Val	
Glu (Gly	As	g g	Ser	Leu 1 260	Pro I	Phe	Gln (Cys 1	Met . 265	Ala	Ser	Tyr		
Gln <i>I</i>	/sp	Me	t G	ln i	Val I 275	Leu I	rp '	Tyr (Gln /	Asp (280	Gly .	Arg	Ile	Val	

Thr	As	p G]	.u S∈	er Gl 29	n Gl	y Ile	e Phe	e Val	l Gli 295	ı Ly:	s As:	n Me	t Il	e His 300
Asn	Су	s Se	er Le	u Il 30	e Ala 5	a Sei	r Alá	a Let	1 Thi 310		e Se	r Ası	n Il	e Gln 315
Ala	G1	y S∈	r Th	r Gl;	y Ası O	n Trp	Gl3	y Cys	325		l Gli	n Thi	r Ly:	s Arg 330
Gly	As	n As	n Th	r Are	g Thi	c Val	. Asp) Ile	Val 340		. Le	ı Glı	ı Sei	Ser 345
Ala	Gl	n Ty	r Cy	s Pro 350	Pro	Glu	Arg	y Val	Val 355	. Asn	Asr	Lys	Gly	7 Asp 360
Phe	Arg	g Tr	p Pr	o Arg 365	Thr	Leu	Ala	Gly	7 Ile 370		Ala	ı Tyr	Let	Gln 375
Cys	Thi	Ar	g Ası	n Thr 380	His	Gly	Ser	Gly	Ile 385	Tyr	Pro	Gly	Asn	Pro 390
Gln	Asp	Gl:	u Ar	395	Ala	Trp	Arg	Arg	Cys 400	Asp	Arg	Gly	Gly	Phe 405
Trp	Ala	a Asp	o Asp	410	Tyr	Ser	Arg	Cys	Gln 415	Tyr	Ala	Asn	Asp	Val 420
Thr	Arg	Va.	L Let	1 Tyr 425	Met	Phe	Asn	Gln	Met 430	Pro	Leu	Asn	Leu	Thr 435
Asn	Ala	. Val	. Ala	Thr 440	Ala	Arg	Gln	Leu	Leu 445	Ala	Tyr	Thr	Val	Glu 450
				Ser 455					460					465
				Phe 470					475					480
Glu	Leu	Gly	Asp	Val 485	Met	Val	Asp	Ile	Ala 490	Ser	Asn	Ile	Met	Leu 495
Ala	Asp	Glu	Arg	Val 500	Leu	Trp	Leu		Gln 505	Arg	Glu	Ala	Lys	Ala 510
Cys :				212					520					525
Leu A				330					535					540
Ala I				345					550					555
Thr (Cys	Thr	Val	Phe 560	Gln	Lys	Val .	Ala	Ala 565	Ser .	Asp	Arg		Gly 570

```
Leu Ser Asp Tyr Gly Arg Arg Asp Pro Glu Gly Asn Leu Asp Lys
                   575
                                       580
  Gln Leu Ser Phe Lys Cys Asn Val Ser Asn Thr Phe Ser Ser Leu
                                       595
  Ala Leu Lys Val Cys Tyr Ile Leu Gln Ser Phe Lys Thr Ile Tyr
                   605
                                       610
  Ser
 <210> 25
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 25
 gaggactcac caatctggtt cggc 24
<210> 26
 <211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 26
 aactggaaag gaaggctgtc tccc 24
<210> 27
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 27
gtaaaggaga agaacatcac ggtacgggat accaggtgtg tttatcctaa 50
<210> 28
<211> 683
<212> DNA
<213> Homo sapiens
<400> 28
gcgtggggat gtctaggagc tcgaaggtgg tgctgggcct ctcggtgctg 50
ctgacggcgg ccacagtggc cggcgtacat gtgaagcagc agtgggacca 100
gcagaggctt cgtgacggag ttatcagaga cattgagagg caaattcgga 150
```

aaaaagaaaa cattcgtctt ttgggagaac agattattt gactgagcaa 200 cttgaagcag aaagagaaa gatgttattg gcaaaaaggat ctcaaaaaatc 250 atgacttgaa tgtgaaatat ctgttggaca gacaacacga gtttgtgtgt 300 gtgtgttgat ggagagtagc ttagtagtat cttcatctt tttttggtc 350 actgtccttt taaacttgat caaataaagg acagtgggtc atataagtta 400 ctgcttcag ggtcccttat atctgaataa aggagtgtgg gcagacactt 450 tttggaagag tctgtctggg tgatcctggt agaagcccca ttagggtcac 500 tgtccagtgc ttagggttg tactgagaag cactgcgag cttgtgagaa 550 ggaagggatg gatagtagca tccacctgag tagtctgatc agtcggcatg 600 atgacgaagg cacgagaaca tcgacctcag aaggactgga ggaaggtgaa 650 gtggagggag agacgctcct gatcgtcgaa tcc 683

<210> 29

<211> 81

<212> PRT

<213> Homo sapiens

<220>

<221> sig_peptide

<222> 1-21

<223> Signal peptide.

<400> 29

Met Ser Arg Ser Ser Lys Val Val Leu Gly Leu Ser Val Leu Leu 1 5 10 15

Thr Ala Ala Thr Val Ala Gly Val His Val Lys Gln Gln Trp Asp $20 \\ 25 \\ 30$

Gln Gln Arg Leu Arg Asp Gly Val Ile Arg Asp Ile Glu Arg Gln \$35\$ \$40\$ \$45

Ile Arg Lys Lys Glu Asn Ile Arg Leu Leu Gly Glu Gln Ile Ile 50 55 60

Leu Thr Glu Gln Leu Glu Ala Glu Arg Glu Lys Met Leu Leu Ala 65 70 75

Lys Gly Ser Gln Lys Ser 80

<210> 30

<211> 2128

<212> DNA

<213> Homo sapiens

<400> 30 ctgtcgtctt tgcttcagcc gcagtcgcca ctggctgcct gaggtgctct 50 tacageetgt tecaagtgtg gettaateeg tetecaceae cagatettte 100 tccgtggatt cctctgctaa gaccgctgcc atgccagtga cggtaacccg 150 caccaccatc acaaccacca cgacgtcatc ttcgggcctg gggtccccca 200 tgatcgtggg gtcccctcgg gccctgacac agcccctggg tctccttcgc 250 ctgctgcagc tggtgtctac ctgcgtggcc ttctcgctgg tggctagcgt 300 gggcgcctgg acggggtcca tgggcaactg gtccatgttc acctggtgct 350 tetgettete egtgaeeetg ateateetea tegtggaget gtgegggete 400 caggeceget tececetgte ttggegeaac ttececatea eettegeetg 450 ctatgcggcc ctcttctgcc tctcggcctc catcatctac cccaccacct 500 atgtccagtt cctgtcccac ggccgttcgc gggaccacgc catcgccgcc 550 accttettet eetgeatege gtgtgtgget taegecaeeg aagtggeetg 600 gacccgggcc cggcccggcg agatcactgg ctatatggcc accgtacccg 650 ggctgctgaa ggtgctggag accttcgttg cctgcatcat cttcgcgttc 700 atcagcgacc ccaacctgta ccagcaccag ccggccctgg agtggtgcgt 750 ggcggtgtac gccatctgct tcatcctagc ggccatcgcc atcctgctga 800 acctggggga gtgcaccaac gtgctaccca tccccttccc cagcttcctg 850 teggggetgg cettgetgte tgteeteete tatgecaeeg eeettgttet 900 ctggcccctc taccagttcg atgagaagta tggcggccag cctcggcgct 950 cgagagatgt aagctgcagc cgcagccatg cctactacgt gtgtgcctgg 1000 gaccgccgac tggctgtggc catcctgacg gccatcaacc tactggcgta 1050 tgtggctgac ctggtgcact ctgcccacct ggtttttgtc aaggtctaag 1100 acteteceaa gaggeteeeg tteeetetee aacetetttg ttettettge 1150 ccgagttttc tttatggagt acttctttcc tccgcctttc ctctgttttc 1200 ctcttcctgt ctcccctccc tcccaccttt ttctttcctt cccaattcct 1250 tgcactctaa ccagttcttg gatgcatctt cttccttccc tttcctcttg 1300 ctgtttcctt cctgtgttgt tttgttgccc acatcctgtt ttcacccctg 1350 agctgtttct cttttcttt tctttcttt ttttttttt ttttaagacg 1400

<210> 31

<211> 322

<212> PRT

<213> Homo sapiens

<400> 31

Met Pro Val Thr Val Thr Arg Thr Thr Ile Thr Thr Thr Thr 1 5 10 15

Ser Ser Ser Gly Leu Gly Ser Pro Met Ile Val Gly Ser Pro Arg 20 25 30

Ala Leu Thr Gln Pro Leu Gly Leu Leu Arg Leu Leu Gln Leu Val 35 40 45

Ser Thr Cys Val Ala Phe Ser Leu Val Ala Ser Val Gly Ala Trp 50 55 60

Thr Gly Ser Met Gly Asn Trp Ser Met Phe Thr Trp Cys Phe Cys 65 70 75

Phe Ser Val Thr Leu Ile Ile Leu Ile Val Glu Leu Cys Gly Leu 80 85 90

Gln Ala Arg Phe Pro Leu Ser Trp Arg Asn Phe Pro Ile Thr Phe 95 100 105

							1							
Ala	Суз	з Туг	Ala	Ala 110	a Leu)	ı Phe	e Cys	S Leu	Ser 115		Ser	Ile	Ile	Туг 120
Pro	Thr	Thr	Туг	Val 125	Glr	n Ph∈	e Leu	ı Ser	His 130	Gly	Arg	Ser	Arg	Asp 135
His	Ala	ı Ile	e Ala	Ala 140	Thr	Phe	e Phe	e Ser	Cys 145		Ala	Cys	Val	Ala 150
Tyr	Ala	Thr	Glu	Val 155	Ala	Trp	Thr	· Arg	Ala 160	Arg	Pro	Gly	Glu	Ile 165
Thr	Gly	Tyr	Met	Ala 170	Thr	Val	. Pro	Gly	Leu 175	Leu	Lys	Val	Leu	Glu 180
Thr	Phe	Val	Ala	Cys 185	Ile	Ile	Phe	Ala	Phe 190	Ile	Ser	Asp	Pro	Asn 195
Leu	Tyr	Gln	His	Gln 200	Pro	Ala	Leu	Glu	Trp 205	Cys	Val	Ala	Val	Tyr 210
Ala	Ile	Cys	Phe	Ile 215	Leu	Ala	Ala	Ile	Ala 220	Ile	Leu	Leu	Asn	Leu 225
Gly	Glu	Cys	Thr	Asn 230	Val	Leu	Pro	Ile	Pro 235	Phe	Pro	Ser	Phe	Leu 240
Ser	Gly	Leu	Ala	Leu 245	Leu	Ser	Val	Leu	Leu 250	Tyr	Ala	Thr	Ala	Leu 255
Val	Leu	Trp	Pro	Leu 260	Tyr	Gln	Phe	Asp	Glu 265	Lys	Tyr	Gly	Gly	Gln 270
Pro	Arg	Arg	Ser	Arg 275	Asp	Val	Ser	Cys	Ser 280	Arg	Ser	His	Ala	Tyr 285
Tyr	Val	Cys	Ala	Trp 290	Asp	Arg	Arg	Leu	Ala 295	Val	Ala	Ile	Leu	Thr 300
Ala	Ile	Asn	Leu	Leu 305	Ala	Tyr	Val	Ala	Asp 310	Leu	Val	His		Ala 315
His	Leu	Val	Phe	Val 320	Lys	Val								
<210><211><211><212><213>	368 DNA		pien	s										

<400> 32
gaacgtgcca ccatgcccag ctaatttttg tatttttagt agagacgggg 50
tttcaccatg ttggccaggc tggtcttgaa ctcgtgacct catgatccgc 100

. tcacctcggc ctcccaaagt gctgggatta caggcatgag ccactgacgc 150

ctggccagcc tatgcatttt taagaaatta ttctgtatta ggtgctgtgc 200 taaacattgg gcactacagt gaccaaaaca gactgaattc cccaagagcc 250 aaagaccagt gagggagacc aacaagaaac aggaaatgca aaagagacca 300 ttattactca ctatgactaa gggtcacaaa tggggtacgt tgatggagag 350 tgatttgtta agagactaca gagggaggac agactaccaa gaggggggcc 400 aggaaagctc ctctgacgag gtggtatttc agcccaaact ggaagaatga 450 gaaagagcta gccagccatc agaatagtcc agaagagatg gggagcacta 500 cactcactac actttggcct gagaaaatag catgggattg gaggaggctg 550 ggggaacacc acttctgccg acctgggcag gaggcattga gggcttgaga 600 aagggcaatg gcagtagcag tagaaaggac agggtaggag cagggacttt 650 gcaggtggaa tcattaggtc ttatcaacag atatgggcaa gcaaagccag 700 gggagaattg atggtaatgc tgaggtttgg agccaggcta gatgggacag 750 tggtgggtga tgcaaaggaa agaggtcagg aagcagggcc agacgtgggg 800 agaaggtgtg ggggtttggt ttccatcttg ccgagtctgc cggaatgtgg 850 atgggaagac caagaggagg agcaaggggc agaggggaag ggaatcttaa 900 agaagteetg gatgeeacae tettetteet teeteetett eeeteteete 950 agaggtetea etegtggtte tteattteet geeetgeete eateteetet 1000 gggtgctggg aaagtggagg attagctgaa gttttgcttc tcggggcctg 1050 tctgaatctc cattgetttc tgggaggaca taattcacct gtcctagctt 1100 cttatcatct tacatttccc tgtagccact gggacatatg tggtgttcct 1150 tectagetee tgteteetee teatgeettt getgggtatg ggeatgttag 1200 ggggaaggtc attgctgtca gaggggcact gactttctaa tggtgttacc 1250 caaggtgaat gttggagaca cagtcgcgat gctgcccaag tcccggcgag 1300 ccctaactat ccaggagatc gctgcgctgg ccaggtcctc cctgcatggt 1350 atgcagecce teccatgttt etggeeactt tgteetttet eeteeegttt 1400 gcacatccct ttggaactgt ttcctgtgag tacatgctgg ggtctcccct 1450 ttcttccctt gctcaggtga atctcagccc cttctcccac ccaaaggttc 1500 acatggatee taaetaetge caccetteca eeteeetgea eetgtgetee 1550 ctggcctggt cctttaccag gcttctccac cctcccctat ctccaggtat 1600

ttcccaggtg gtgaaggacc acgtgaccaa gcctaccgcc atggcccagg 1650 gccgagtggc tcacctcatt gagtggaagg gctggagcaa gccgagtgac 1700 tcacctgctg ccctggaatc agecttttcc tcctattcag acctcagcga 1750 gggcgaacaa gaggctcgct ttgcagcagg agtggctgag cagtttgcca 1800 tegeggaage caageteega geatggtett eggtggatgg egaggaetee 1850 actgatgact cctatgatga ggactttgct gggggaatgg acacagacat 1900 ggctgggcag ctgcccctgg ggccgcacct ccaggacctg ttcaccggcc 1950 accegettete eeggeetgtg egecaggget eegtggagee tgagagegae 2000 tgctcacaga ccgtgtcccc agacaccctg tgctctagtc tgtgcagcct 2050 ggaggatggg ttgttgggct ccccggcccg gctggcctcc cagctgctgg 2100 gcgatgagct gcttctcgcc aaactgcccc ccagccggga aagtgccttc 2150 cgcagcctgg gcccactgga ggcccaggac tcactctaca actcgcccct 2200 cacagagtee tgeettteee eegeggagga ggageeagee eeetgeaagg 2250 actgccagcc actctgccca ccactaacgg gcagctggga acggcagcgg 2300 caageetetg acetggeete ttetggggtg gtgteettag atgaggatga 2350 ggcagagcca gaggaacagt gacccacatc atgcctggca gtggcatgca 2400 tececegget getgeeaggg geagageete tgtgeecaag tgtgggetea 2450 aggeteecag cagageteea cageetagag ggeteetggg agegeteget 2500 teteegttgt gtgttttgca tgaaagtgtt tggagaggag geaggggetg 2550 ggctgggggc gcatgtcctg ccccactcc cggggcttgc cgggggttgc 2600 ccggggcctc tggggcatgg ctacagctgt ggcagacagt gatgttcatg 2650 ttcttaaaat gccacacaca catttcctcc tcggataatg tgaaccacta 2700 agggggttgt gactgggctg tgtgagggtg gggtgggagg gggcccagca 2750 acceccacc etececatge etetetete tetgettte teteactte 2800 cgagtccatg tgcagtgctt gatagaatca cccccacctg gaggggctgg 2850 ctcctgccct cccggagcct atgggttgag ccgtccctca agggcccctg 2900 cccagctggg ctcgtgctgt gcttcattca cctctccatc gtctctaaat 2950 cttcctcttt tttcctaaag acagaaggtt tttggtctgt ttttcagtc 3000

ggatettete ttetetgga ggetttggaa tgatgaaage atgtaceete 3050 caccetttte etggeeceet aatggggeet gggeeettte eeaaceeete 3100 ctaggatgt egggeagtg getggegeet eacacgeeage egggetgeee 3150 atteacgeag ageteetega gegggaggtg gaagaaagga tggetetggt 3200 tgeeacacagag etgggaette atgteettet agaggaggee acaagaggge 3250 cacaggggtg geegggagtt gteagetgat geetgetgag aggeaggaat 3300 tgtgeeagtg geegggagtt gteagetgat geetgetgag aggeaggaat 3350 gaaggtaagag eetteetget tgaatgaaag geeaaggeta eagtacaggg 3400 eeeeggeeea geeagggtg taatgeeag gtetetett ggggaaggaaa 3450 ateetgeat eeaaggteg taatgeeae gttttatgg ttgtgggaag 3500 ggtgggtgge tttagaatta agggeettgt aggetttgge aggtaagagg 3500 ggeteattag gtgtttatt tgttetatt aagaatteg tttataaat 3650 taatataaaa ateettgtaa ateeteaaaa 3680

<210> 33

<211> 335

<212> PRT

<213> Homo sapiens

<400> 33

Met Phe Leu Ala Thr Leu Ser Phe Leu Leu Pro Phe Ala His Pro 1 5 10 15

Phe Gly Thr Val Ser Cys Glu Tyr Met Leu Gly Ser Pro Leu Ser 20 25 30

Ser Leu Ala Gln Val Asn Leu Ser Pro Phe Ser His Pro Lys Val

His Met Asp Pro Asn Tyr Cys His Pro Ser Thr Ser Leu His Leu
50 55 60

Cys Ser Leu Ala Trp Ser Phe Thr Arg Leu Leu His Pro Pro Leu 65 70 75

Ser Pro Gly Ile Ser Gln Val Val Lys Asp His Val Thr Lys Pro 80 85 90

Thr Ala Met Ala Gln Gly Arg Val Ala His Leu Ile Glu Trp Lys 95 100 105

Gly Trp Ser Lys Pro Ser Asp Ser Pro Ala Ala Leu Glu Ser Ala 110 115 120

Phe Ser Ser Tyr Ser Asp Leu Ser Glu Gly Glu Gln Glu Ala Arc 125 130 135	5
Phe Ala Ala Gly Val Ala Glu Gln Phe Ala Ile Ala Glu Ala Lys 140 145 150	
Leu Arg Ala Trp Ser Ser Val Asp Gly Glu Asp Ser Thr Asp Asp 155 160 165	
Ser Tyr Asp Glu Asp Phe Ala Gly Gly Met Asp Thr Asp Met Ala 170 175 180	
Gly Gln Leu Pro Leu Gly Pro His Leu Gln Asp Leu Phe Thr Gly 185 190 195	
His Arg Phe Ser Arg Pro Val Arg Gln Gly Ser Val Glu Pro Glu 200 205 210	
Ser Asp Cys Ser Gln Thr Val Ser Pro Asp Thr Leu Cys Ser Ser 215 220 225	
Leu Cys Ser Leu Glu Asp Gly Leu Leu Gly Ser Pro Ala Arg Leu 230 235 240	
Ala Ser Gln Leu Leu Gly Asp Glu Leu Leu Leu Ala Lys Leu Pro 245 250 255	
Pro Ser Arg Glu Ser Ala Phe Arg Ser Leu Gly Pro Leu Glu Ala 260 265 270	
Gln Asp Ser Leu Tyr Asn Ser Pro Leu Thr Glu Ser Cys Leu Ser 275 280 285	
Pro Ala Glu Glu Pro Ala Pro Cys Lys Asp Cys Gln Pro Leu 290 295 300	
Cys Pro Pro Leu Thr Gly Ser Trp Glu Arg Gln Arg Gln Ala Ser 305 310 315	
Asp Leu Ala Ser Ser Gly Val Val Ser Leu Asp Glu Asp Glu Ala 320 325 330	
Glu Pro Glu Glu Gln 335	
<210> 34 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic oligonucleotide probe	
<400> 34 tgtcctttgt cccagacttc tgtcc 25	

```
<210> 35
  <211> 50
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Synthetic oligonucleotide probe
  <400> 35
   ctggatgcta atgtgtccag taaatgatcc ccttatcccg tcgcgatgct 50
  <210> 36
  <211> 25
  <212> DNA
  <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 36
  ttccactcaa tgaggtgagc cactc 25
 <210> 37
 <211> 23
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 37
  ggcgagccct aactatccag gag 23
 <210> 38
 <211> 39
 <212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 38
 ggagateget gegetggeea ggteeteeet geatggtat 39
<210> 39
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
ctgctgcaaa gcgagcctct tg 22
<210> 40
<211> 2084
```

<400> 40 ggttcctggg cgctctgtta cacaagcaag atacagccag ccccacctaa 50 ttttgtttcc ctggcaccct cctgctcagt gcgacattgt cacacttaac 100 ccatctgttt tctctaatgc acgacagatt cctttcagac aggacaactg 150 tgatatttca gttcctgatt gtaaatacct cctaagcctg aagcttctgt 200 tactagccat tgtgagcttc agtttcttca tctgcaaaat gggcataata 250 caatctattc ttgccacatc aagggattgt tattccttta aaaaaaaacc 300 aataccaaag aagcctacaa tgttggcctt agccaaaatt ctgttgattt 350 caacgttgtt ttattcactt ctatcgggga gccatggaaa agaaaatcaa 400 gacataaaca caacacagaa cattgcagaa gtttttaaaa caatggaaaa 450 taaacctatt tctttggaaa gtgaagcaaa cttaaactca gataaagaaa 500 atataaccac ctcaaatctc aaggcgagtc attcccctcc tttgaatcta 550 cccaacaaca gccacggaat aacagatttc tccagtaact catcagcaga 600 gcattetttg ggcagtetaa aacceacate taccatttee acaageeete 650 ccttgatcca tagctttgtt tctaaagtgc cttggaatgc acctatagca 700 gatgaagate ttttgeecat eteageacat eecaatgeta eacetgetet 750 gtcttcagaa aacttcactt ggtctttggt caatgacacc gtgaaaactc 800 ctgataacag ttccattaca gttagcatcc tctcttcaga accaacttct 850 ccatctgtga cccccttgat agtggaacca agtggatggc ttaccacaaa 900 cagtgatagc ttcactgggt ttacccctta tcaagaaaaa acaactctac 950 agcctacctt aaaattcacc aataattcaa aactctttcc aaatacgtca 1000 gatccccaaa aagaaaatag aaatacagga atagtattcg gggccatttt 1050 aggtgctatt ctgggtgtct cattgcttac tcttgtgggc tacttgttgt 1100 gtggaaaaag gaaaacggat tcattttccc atcggcgact ttatgacgac 1150 agaaatgaac cagttctgcg attagacaat gcaccggaac cttatgatgt 1200 gagttttggg aattctagct actacaatcc aactttgaat gattcagcca 1250 tgccagaaag tgaagaaaat gcacgtgatg gcattcctat ggatgacata 1300 cctccacttc gtacttctgt atagaactaa cagcaaaaag gcgttaaaca 1350

gcaagtgtca tctacatcct agcettttga caaattcatc tttcaaaagg 1400 ttacacaaaa ttactgtcac gtggattttg tcaaggagaa tcataaaagg 1450 aggagaccag tagcagaaat gtagacagga tgtatcatcc aaaggttttc 1500 tttcttacaa tttttggcca tcctgaggca tttactaagt agcettaatt 1550 tgtattttag tagtatttc ttagtagaaa atatttgtgg aatcagataa 1600 aactaaaaga tttcaccatt acagccctgc ctcataacta aataataaaa 1650 attactcacc caaaaaattc taaaacaatg aagatgaccc tttactgctc 1700 tgcctgaagc cctagtacca taattcaaga ttgcatttc ttaaatgaaa 1750 attgaaaggg tgcttttaa agaaaatttg acttaaagct aaaaagagga 1800 catagcccag agttctgtt attgggaaat tgaggcaata gaaatgacag 1850 acctgtattc tagtacgtta taatttcta gatcagcaca cacatgatca 1900 gcccactgag ttatgaagct gacaatgact gcattcaacg gggccatggc 1950 aggaaagctg accetacca ggaaagtaat agcttctta aaagtcttca 2000 aaggttttgg gaattttaac ttgtcttaat atactttag cttcaatta 2050 ttgggtgcct taaaaactca atgagaatca tggt 2084

<210> 41

<211> 334

<212> PRT

<213> Homo sapiens

<400> 41

Met Leu Ala Leu Ala Lys Ile Leu Leu Ile Ser Thr Leu Phe Tyr 1 5 10 15

Ser Leu Leu Ser Gly Ser His Gly Lys Glu Asn Gln Asp Ile Asn 20 25 30

Thr Thr Gln Asn Ile Ala Glu Val Phe Lys Thr Met Glu Asn Lys 35 40 45

Pro Ile Ser Leu Glu Ser Glu Ala Asn Leu Asn Ser Asp Lys Glu
50 55 60

Asn Ile Thr Thr Ser Asn Leu Lys Ala Ser His Ser Pro Pro Leu 65 70 75

Asn Leu Pro Asn Asn Ser His Gly Ile Thr Asp Phe Ser Ser Asn 80 85 90

Ser Ser Ala Glu His Ser Leu Gly Ser Leu Lys Pro Thr Ser Thr 95 100 105

		-10			115	Val Ser L	120
Pro Trp	Asn Ala	Pro Ile 125	Ala	Asp Glu	Asp Leu 130	Leu Pro I	le Ser 135
Ala His	Pro Asn	Ala Thr 140	Pro A	Ala Leu	Ser Ser 145	Glu Asn Ph	ne Thr 150
Trp Ser]	Leu Val	Asn Asp 155	Thr V	Val Lys	Thr Pro	Asp Asn Se	
Ile Thr V	al Ser	Ile Leu 170	Ser S	Ser Glu	Pro Thr	Ser Pro Se	
Thr Pro L	eu Ile	Val Glu 185	Pro S	Ger Gly	Trp Leu 1	Thr Thr As	
Asp Ser P	he Thr	Gly Phe 200	Thr P	ro Tyr	Gln Glu I 205	Lys Thr Th	· · · · · -
Gln Pro T	hr Leu	Lys Phe ' 215	Thr A	sn Asn		Leu Phe Pro	
Thr Ser A	sp Pro (Gln Lys (230	Glu As	sn Arg		Sly Ile Val	
Gly Ala II	le Leu (Gly Ala] 245	le Le	eu Gly		eu Leu Thr	
Val Gly Ty	r Leu I 2	eu Cys G	ly Ly	ys Arg 1	Lys Thr A 265	sp Ser Phe	
His Arg Ar	g Leu T 2	yr Asp A 75	sp Ar	g Asn (Glu Pro Va 280	al Leu Arg	Leu
Asp Asn Al	a Pro G 2	lu Pro T 90	yr As	p Val S	Ger Phe G]	ly Asn Ser	
Tyr Tyr As:	n Pro Ti 30	hr Leu A: 05	sn As _l	p Ser A		o Glu Ser	
Glu Asn Ala	a Arg As	sp Gly II	le Pro	o Met A		e Pro Pro	
Arg Thr Ser	· Val			3			330

<210> 42

<211> 1594

<212> DNA

<213> Homo sapiens

<400> 42

aacaggatct cctcttgcag tctgcagccc aggacgctga ttccagcagc 50

gccttaccgc gcagcccgaa gattcactat ggtgaaaatc gccttcaata 100 cccctaccgc cgtgcaaaag gaggaggcgc ggcaagacgt ggaggccctc 150 ctgagccgca cggtcagaac tcagatactg accggcaagg agctccgagt 200 tgccacccag gaaaaagagg gctcctctgg gagatgtatg cttactctct 250 taggcctttc attcatcttg gcaggactta ttgttggtgg agcctgcatt 300 tacaagtact tcatgcccaa gagcaccatt taccgtggag agatgtgctt 350 ttttgattct gaggatcctg caaattccct tcgtggagga gagcctaact 400 tcctgcctgt gactgaggag gctgacattc gtgaggatga caacattgca 450 atcattgatg tgcctgtccc cagtttctct gatagtgacc ctgcagcaat 500 tattcatgac tttgaaaagg gaatgactgc ttacctggac ttgttgctgg 550 ggaactgcta tctgatgccc ctcaatactt ctattgttat gcctccaaaa 600 aatctggtag agctctttgg caaactggcg agtggcagat atctgcctca 650 aacttatgtg gttcgagaag acctagttgc tgtggaggaa attcgtgatg 700 ttagtaacct tggcatcttt atttaccaac tttgcaataa cagaaagtcc 750 ttccgccttc gtcgcagaga cctcttgctg ggtttcaaca aacgtgccat 800 tgataaatgc tggaagatta gacacttccc caacgaattt attgttgaga 850 ccaagatetg tcaagagtaa gaggcaacag atagagtgte ettggtaata 900 agaagtcaga gatttacaat atgactttaa cattaaggtt tatgggatac 950 tcaagatatt tactcatgca tttactctat tgcttatgct ttaaaaaaag 1000 gaaaaaaaa aaaactacta accactgcaa gctcttgtca aattttagtt 1050 taattggcat tgcttgtttt ttgaaactga aattacatga gtttcatttt 1100 ttctttgcat ttatagggtt tagatttctg aaagcagcat gaatatatca 1150 cctaacatcc tgacaataaa ttccatccgt tgttttttt gtttgtttgt 1200 tttttctttt cctttaagta agctctttat tcatcttatg gtggagcaat 1250 tttaaaattt gaaatatttt aaattgtttt tgaacttttt gtgtaaaata 1300 tatcagatct caacattgtt ggtttctttt gtttttcatt ttgtacaact 1350 ttcttgaatt tagaaattac atctttgcag ttctgttagg tgctctgtaa 1400 ttaacctgac ttatatgtga acaattttca tgagacagtc atttttaact 1450 aatgcagtga ttctttctca ctactatctg tattgtggaa tgcacaaaat 1500

<210> 43

<211> 263

<212> PRT

<213> Homo sapiens

<400> 43

Glu Ala Arg Gln Asp Val Glu Ala Leu Leu Ser Arg Thr Val Arg $20 \\ 25 \\ 30$

Thr Gln Ile Leu Thr Gly Lys Glu Leu Arg Val Ala Thr Gln Glu 35 40 45

Lys Glu Gly Ser Ser Gly Arg Cys Met Leu Thr Leu Leu Gly Leu 50 55 60

Ser Phe Ile Leu Ala Gly Leu Ile Val Gly Gly Ala Cys Ile Tyr 65 70 75

Lys Tyr Phe Met Pro Lys Ser Thr Ile Tyr Arg Gly Glu Met Cys 80 85 90

Phe Phe Asp Ser Glu Asp Pro Ala Asn Ser Leu Arg Gly Glu 95 100 105

Pro Asn Phe Leu Pro Val Thr Glu Glu Ala Asp Ile Arg Glu Asp 110 115 120

Asp Asn Ile Ala Ile Ile Asp Val Pro Val Pro Ser Phe Ser Asp 125 130 135

Ala Tyr Leu Asp Leu Leu Leu Gly Asn Cys Tyr Leu Met Pro Leu 155 160 165

Asn Thr Ser Ile Val Met Pro Pro Lys Asn Leu Val Glu Leu Phe 170 175 180

Gly Lys Leu Ala Ser Gly Arg Tyr Leu Pro Gln Thr Tyr Val Val 185 190 195

Arg Glu Asp Leu Val Ala Val Glu Glu Ile Arg Asp Val Ser Asn 200 205 210

Leu Gly Ile Phe Ile Tyr Gln Leu Cys Asn Asn Arg Lys Ser Phe 215 220 225

Arg Leu Arg Arg Arg Asp Leu Leu Gly Phe Asn Lys Arg Ala

230 235 240

Ile Asp Lys Cys Trp Lys Ile Arg His Phe Pro Asn Glu Phe Ile 245 250 255

Val Glu Thr Lys Ile Cys Gln Glu 260

<210> 44

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 44

gaaagacacg acacagcagc ttgc 24

<210> 45

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 45

gggaactgct atctgatgcc 20

<210> 46

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 46

caggatetee tettgeagte tgeage 26

<210> 47

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 47

cttctcgaac cacataagtt tgaggcag 28

<210> 48

<211> 25

<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe
<400> 48
 cacgattccc tccacagcaa ctggg 25
<210> 49
<211> 1969
<212> DNA
<213> Homo sapiens

<400> 49 ggaggagga gggcgggcag gcgccagccc agagcagccc cgggcaccag 50 cacggactet etettecage ecaggtgeee eccaeteteg etecattegg 100 cgggagcacc cagtcctgta cgccaaggaa ctggtcctgg gggcaccatg 150 gtttcggcgg cagccccag cctcctcatc cttctgttgc tgctgctggg 200 gtctgtgcct gctaccgacg cccgctctgt gcccctgaag gccacgttcc 250 tggaggatgt ggcgggtagt ggggaggccg agggctcgtc ggcctcctcc 300 cegageetee egecaceetg gaeeeeggee eteageeeca categatggg 350 geeceageee acaaccetgg ggggeecate acceccace aactteetgg 400 atgggatagt ggacttette egecagtacg tgatgetgat tgetgtggtg 450 ggctccctgg cctttctgct gatgttcatc gtctgtgccg cggtcatcac 500 ceggeagaag cagaaggeet eggeetatta eccategtee tteeceaaga 550 agaagtacgt ggaccagagt gaccgggccg ggggcccccg ggccttcagt 600 gaggtccccg acagagcccc cgacagcagg cccgaggaag ccctggattc 650 ctcccggcag ctccaggccg acatcttggc cgccacccag aacctcaagt 700 cccccaccag ggctgcactg ggcggtgggg acggagccag gatggtggag 750 ggcaggggcg cagaggaaga ggagaagggc agccaggagg gggaccagga 800 agtccaggga catggggtcc cagtggagac accagaggcg caggaggagc 850 cgtgctcagg ggtccttgag ggggctgtgg tggccggtga gggccaaggg 900 gagctggaag ggtctctctt gttagcccag gaagcccagg gaccagtggg 950 tececegaa ageceetgtg ettgeageag tgteeacee agtgtetaac 1000 agtcctcccg ggctgccagc cctgactgtc gggcccccaa gtggtcacct 1050 ccccgtgtat gaaaaggcct tcagccctga ctgcttcctg acactccctc 1100 cttggcctcc ctgtggtgcc aatcccagca tgtgctgatt ctacagcagg 1150

cagaaatgct ggtccccggt gccccggagg aatcttacca agtgccatca 1200 tccttcacct cagcagcccc aaagggctac atcctacagc acagctcccc 1250 tgacaaagtg agggagggca cgtgtccctg tgacagccag gataaaacat 1300 cccccaaagt gctgggatta caggcgtgag ccaccgtgcc cggcccaaac 1350 tactttttaa aacagctaca gggtaaaatc ctgcagcacc cactctggaa 1400 aatactgete ttaattttee tgaaggtgge eeeetgttte tagttggtee 1450 aggattaggg atgtggggta tagggcattt aaatcctctc aagcgctctc 1500 caagcacccc cggcctgggg gtgagtttct catcccgcta ctgctgctgg 1550 gatcaggttg aatgaatgga actetteetg tetggeetee aaageageet 1600 agaagctgag gggctgtgtt tgaggggacc tccaccctgg ggaagtccga 1650 ggggctgggg aagggtttct gacgcccagc ctggagcagg ggggccctgg 1700 ccacccctg ttgctcacac attgtctggc agcctgtgtc cacaatattc 1750 gtcagtcctc gacagggagc ctgggctccg tcctgcttta gggaggctct 1800 ggcaggaggt cctctccccc atccctccat ctggggctcc cccaacctct 1850 gcacagetet ccaggtgetg agatataatg caccageaca ataaacettt 1900 attccggcct gaaaaaaaaa aaaaaaaaaa aaaaaaaaa 1950 aaaaaaaaa aaaaaaaga 1969

```
<210> 50
```

<400> 50

Met Val Ser Ala Ala Ala Pro Ser Leu Leu Ile Leu Leu Leu 1 5 10 15

Leu Leu Gly Ser Val Pro Ala Thr Asp Ala Arg Ser Val Pro Leu 20 25 30

Lys Ala Thr Phe Leu Glu Asp Val Ala Gly Ser Gly Glu Ala Glu 35 40 45

Gly Ser Ser Ala Ser Ser Pro Ser Leu Pro Pro Pro Trp Thr Pro
50 55 60

Ala Leu Ser Pro Thr Ser Met Gly Pro Gln Pro Thr Thr Leu Gly 65 70 75

Gly Pro Ser Pro Pro Thr Asn Phe Leu Asp Gly Ile Val Asp Phe

<211> 283

<212> PRT

<213> Homo sapiens

Phe	e Ar	g Gl	n Ty	r Va	l Me	t Lei	ı Il	e Al	a Va. 10	l Va.	1 G1	y Se	r Le	u Ala
Phe	e Lei	u Le	u Me	t Phe	e Ile	e Val	L Cy:	s Al		a Vai	1 11	e Th:	r Ar	105 g Gln 120
Lys	Glr	n Ly	s Al	a Sei 125	c Ala	a Tyr	Туз	r Pr	o Ser 130	Sei	r Phe	e Pro	D Lys	Lys 135
Lys	Туг	· Vai	l Ası	Glr 140	n Ser	Asp	Arg	g Ala	a Gly 145	/ Gly	/ Pro	Arg	g Ala	Phe
Ser	Glu	ı Val	l Pro	Asp 155	Arg	, Ala	Pro	Asp	Ser 160	Arg	Pro	Glu	ı Glu	Ala 165
Leu	Asp	Ser	Ser	170	Gln	Leu	Gln	Ala	Asp 175	Ile	Leu	Ala	Ala	Thr 180
Gln	Asn	Leu	Lys	Ser 185	Pro	Thr	Arg	Ala	Ala 190	Leu	Gly	Gly	Gly	Asp 195
Gly	Ala	Arg	Met	Val 200	Glu	Gly	Arg	Gly	Ala 205	Glu	Glu	Glu	Glu	Lys 210
Gly	Ser	Gln	Glu	Gly 215	Asp	Gln	Glu	Val	Gln 220	Gly	His	Gly	Val	Pro 225
				230		Gln			235					240
				243		Gly			250					255
Ser	Leu	Leu	Leu	Ala 260	Gln	Glu .	Ala	Gln	Gly 265	Pro	Val	Gly	Pro	Pro 270
Glu :	Ser	Pro	Cys	Ala 275	Cys	Ser :	Ser	Val	His 280	Pro	Ser	Val		
210>		4												

<211> 1734

<212> DNA

<213> Homo sapiens

<400> 51

gtggactctg agaagcccag gcagttgagg acaggagaga gaaggctgca 50 gacccagagg gagggaggac agggagtcgg aaggaggagg acagaggagg 100 gcacagagac gcagagcaag ggcggcaagg aggagaccct ggtgggagga 150 agacactctg gagagagag gggctgggca gagatgaagt tccaggggcc 200 cetggeetge etcetgetgg eeetetgeet gggeagtggg gaggetggee 250

ccctgcagag cggagaggaa agcactggga caaatattgg ggaggccctt 300 ggacatggcc tgggagacgc cctgagcgaa ggggtgggaa aggccattgg 350 caaagaggcc ggagggcag ctggctctaa agtcagtgag gcccttggcc 400 aagggaccag agaagcagtt ggcactggag tcaggcaggt tccaggcttt 450 ggcgcagcag atgctttggg caacagggtc ggggaagcag cccatgctct 500 gggaaacact gggcacgaga ttggcagaca ggcagaagat gtcattcgac 550 acggagcaga tgctgtccgc ggctcctggc agggggtgcc tggccacagt 600 ggtgcttggg aaacttctgg aggccatggc atctttggct ctcaaggtgg 650 ccttggaggc cagggccagg gcaatcctgg aggtctgggg actccgtggg 700 tecaeggata ecceggaaac teageaggea getttggaat gaateeteag 750 ggagctccct ggggtcaagg aggcaatgga gggccaccaa actttgggac 800 caacactcag ggagctgtgg cccagcctgg ctatggttca gtgagagcca 850 gcaaccagaa tgaagggtgc acgaatcccc caccatctgg ctcaggtgga 900 ggetecagea actetggggg aggeagegge teacagtegg geageagtgg 950 cagtggcagc aatggtgaca acaacaatgg cagcagcagt ggtggcagca 1000 gcagtggcag cagcagtggc agcagcagtg gcggcagcag tggcggcagc 1050 agtggtggca gcagtggcaa cagtggtggc agcagaggtg acagcggcag 1100 tgagtcctcc tggggatcca gcaccggctc ctcctccggc aaccacggtg 1150 ggagcggcgg aggaaatgga cataaacccg ggtgtgaaaa gccagggaat 1200 gaagcccgcg ggagcgggga atctgggatt cagggcttca gaggacaggg 1250 agtttccagc aacatgaggg aaataagcaa agagggcaat cgcctccttg 1300 gaggctctgg agacaattat cgggggcaag ggtcgagctg gggcagtgga 1350 ggaggtgacg ctgttggtgg agtcaatact gtgaactctg agacgtctcc 1400 tgggatgttt aactttgaca ctttctggaa gaattttaaa tccaagctgg 1450 gtttcatcaa ctgggatgcc ataaacaagg accagagaag ctctcgcatc 1500 ccgtgacctc cagacaagga gccaccagat tggatgggag cccccacact 1550 ccctccttaa aacaccaccc tctcatcact aatctcagcc cttgcccttg 1600

aaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 1734

<210> 52 <211> 440 <212> PRT <213> Homo sapiens
<pre><400> 52 Met Lys Phe Gln Gly Pro Leu Ala Cys Leu Leu Leu Ala Leu Cys 1</pre>
Leu Gly Ser Gly Glu Ala Gly Pro Leu Gln Ser Gly Glu Glu Ser 20 25 30
Thr Gly Thr Asn Ile Gly Glu Ala Leu Gly His Gly Leu Gly Asp 35 40 45
Ala Leu Ser Glu Gly Val Gly Lys Ala Ile Gly Lys Glu Ala Gly 50 55 60
Gly Ala Ala Gly Ser Lys Val Ser Glu Ala Leu Gly Gln Gly Thr 65 70 75
Arg Glu Ala Val Gly Thr Gly Val Arg Gln Val Pro Gly Phe Gly 80 85 90
Ala Ala Asp Ala Leu Gly Asn Arg Val Gly Glu Ala Ala His Ala 95 100 105
Leu Gly Asn Thr Gly His Glu Ile Gly Arg Gln Ala Glu Asp Val 110 115 120
Ile Arg His Gly Ala Asp Ala Val Arg Gly Ser Trp Gln Gly Val 125 130 135
Pro Gly His Ser Gly Ala Trp Glu Thr Ser Gly Gly His Gly Ile 140 145 150
Phe Gly Ser Gln Gly Gly Leu Gly Gly Gln Gly Gln Gly Asn Pro 155 160 165
Gly Gly Leu Gly Thr Pro Trp Val His Gly Tyr Pro Gly Asn Ser 170 175 180
Ala Gly Ser Phe Gly Met Asn Pro Gln Gly Ala Pro Trp Gly Gln 185 190 195
Gly Gly Asn Gly Gly Pro Pro Asn Phe Gly Thr Asn Thr Gln Gly 200 205 210
Ala Val Ala Gln Pro Gly Tyr Gly Ser Val Arg Ala Ser Asn Gln 215 220 225
Asn Glu Gly Cys Thr Asn Pro Pro Pro Ser Gly Ser Gly Gly 230 235 240

Ser Ser	Asn Se	r Gly Gl 245	y Gly	Ser	Gly	Ser 250	Gln	Ser	Gly	Ser	Ser 255
Gly Ser	Gly Se	r Asn Gl	y Asp	Asn	Asn	Asn 265	Gly	Ser	Ser	Ser	Gly 270
Gly Ser	Ser Se	r Gly Sea 275	r Ser	Ser	Gly	Ser 280	Ser	Ser	Gly	Gly	Ser 285
Ser Gly	Gly Se	r Ser Gly 290	/ Gly	Ser	Ser	Gly 295	Asn	Ser	Gly	Gly	Ser 300
Arg Gly	Asp Sei	Gly Ser 305	Glu	Ser	Ser	Trp 310	Gly	Ser	Ser	Thr	Gly 315
Ser Ser	Ser Gly	Asn His	Gly	Gly	Ser	Gly 6 325	Gly	Gly	Asn	Gly	His 330
Lys Pro	Gly Cys	Glu Lys 335	Pro	Gly	Asn	Glu <i>i</i> 340	Ala	Arg	Gly	Ser	Gly 345
Glu Ser	Gly Ile	Gln Gly 350	Phe	Arg	Gly	Gln (355	Gly '	Val	Ser		Asn 360
Met Arg (Glu Ile	Ser Lys 365	Glu	Gly .	Asn	Arg I 370	Leu 1	Leu	Gly		Ser 375
Gly Asp A	Asn Tyr	Arg Gly 380	Gln	Gly :	Ser	Ser 1 385	rp (Gly :	Ser (Gly 390
Gly Asp A	Ala Val	Gly Gly 395	Val Z	Asn	Thr '	Val A 400	sn S	Ger (Glu 7		Ser 405
Pro Gly M	let Phe	Asn Phe 410	Asp 5	Thr E	Phe :	Trp L 415	ys A	sn I	Phe I		Ser 120
Lys Leu G	ly Phe	Ile Asn 425	Trp A	Asp A	Ala 1	[le A	sn L	ys P	Asp G		Arg 135
Ser Ser A	rg Ile	Pro 440									
<210> 53 <211> 3580 <212> DNA <213> Homo	sapien	s									
<400> 53 gaccggtccc	c toogg	teetg ga	tgtgc	gga (ctct	gctgc	a go	gag	ggct	g 50	

qaccggtccc teeggteetg gatgtgegga etetgetgea gegagggetg 50 caggeeegge gggeggtget eaccgtgeee tggetggtgg agtttetete 100 etttgetgae eatgttgtte eettgetgga atattaeegg gacatettea 150 eteteetget gegeetgeae eggagettgg tgttgtegea ggagagtgag 200 gggaagatgt gttteetgaa eaagetgetg etaettgetg teetgggetg 250

gettttecag atteceaeag teeetgagga ettgttettt etggaagagg 300 gtccctcata tgcctttgag gtggacacag tagccccaga gcatggcttg 350 gacaatgcgc ctgtggtgga ccagcagctg ctctacacct gctgccccta 400 categgagag eteeggaaac tgetegette gtgggtgtea ggeagtagtg 450 gacggagtgg gggcttcatg aggaaaatca ccccaccac taccaccagc 500 ctgggagccc agccttccca gaccagccag gggctgcagg cacagctcgc 550 ccaggeettt ttecacaace ageegeeete ettgegeegg acegtagagt 600 tcgtggcaga aagaattgga tcaaactgtg tcaaacatat caaggctaca 650 ctggtggcag atctggtgcg ccaggcagag tcacttctcc aagagcagct 700 ggtgacacag ggagaggaag ggggagaccc agcccagctg ttggagatct 750 tgtgttccca gctgtgccct cacggggccc aggcattggc cctggggcgg 800 gagttctgtc aaaggaagag ccctggggct gtgcgggcgc tgcttccaga 850 ggagaccccg gcagccgttc tgagcagtgc agagaacatt gctgtggggc 900° ttgcaacaga gaaagcetgt gettggetgt cagecaacat cacageactg 950 atcaggaggg aggtgaaagc agcagtgagt cgcacacttc gagcccaggg 1000 teetgaaeet getgeeeggg gggageggag gggetgetee egegeetgae 1050 gtgctctcct tggccgtggg gccacgggac cctgacgagg gagtctcccc 1100 agagcatetg gaacagetee taggecaget gggecagaeg etgeggtgee 1150 gccagttcct gtgcccacct gctgagcagc atctggcaaa gtgctctgtg 1200 gagttagett ceeteetegt tgeagateaa atteetatee tagggeeece 1250 ggcacagtac aggctggaga gagggcaggc tcgaaggctt ctgcacatgc 1300 tgctttcctt gtggaaggaa gactttcagg ggccggttcc gctgcagctg 1350 ctgctgagcc caagaaatgt ggggcttctg gcagacacaa ggccaaggga 1400 gtgggacttg ctgctattct tgctacggga gctggtggag aagggtctga 1450 tgggacggat ggagatagag gcctgcctgg gcagcctcca ccaggcccag 1500 tggccagggg actttgctga agaattagca acactgtcta atctgtttct 1550 ageogageee cacetgeeag aaceceaget aagageetgt gagttggtge 1600 agccaaaccg gggcactgtg ctggcccaga gctagggctg agaagtggcc 1650

ctgeettggg cattgeacca gaaccetgga ceeeegeete aegaggagge 1700 ccaagtgccc aatgcagacc ctcactggtt ggggtgtagc tgggtctaca 1750 gtcagacttc ctgctctaag ggtgtcactg cctggcatcc caccacgcga 1800 atcctagagg aaggagagtt ggcctgattt gggattatgg cagaaaagtc 1850 cagagatgcc agtcctggag tagaagaggt ggtgtttgtt tatctcttgg 1900 atactaaatg aaatgaggtg tgtgggcttg tcaacacaga attcaagcct 1950 catttgctat cccagcatct cttaaaactt tgtagtcttg gaattcatga 2000 cagaggcaaa tgactcctgc ttaacttatg aagaaagtta aaacatgaat 2050 cttgggagtc tacattttct tatcaccagg agctggactg ccatctcctt 2100 ataaatgcct aacacaggcc gggtctggtg gctcatgcct gtaatcccag 2150 cactttgaga ggcctgaggt cggcggactg cctgaggtca ggaattcaag 2200 accageetgg ecaacatgge aaaaceecat etetaetaaa aataaaaaaa 2250 ttattagetg ggcatggtgg tgtgtgeetg taateeeage taeteaggag 2300 gatgaggcag gagacctgct tgaacctgga ggtggaggtt gcagtgagcc 2350 gaggtcgcac cactgcactc cagtctgggt aacagagcga gactttctag 2400 aaaaagceta acaaacagat aaggtaggac tcaaccaact gaaacetgac 2450 tttccccctg taccttcagc ccctgtgcag gtagtaacct cttgagacct 2500 ctccctgacc agggaccaag cacagggcat ttagagcttt ttagaataaa 2550 ctggttttct ttaaaaaaaa aaaaaaaaa agggcggccg ccctttttt 2600 ttttattaaa atteteecca caegatgget eetgeaatet geeacagete 2700 tggggcgtgt cctgtaggga aaggccctgt tttccctgag gcggggctgg 2750 gettgteeat gggteegegg agetggeegt gettggegee etggegtgtg 2800 tctagctgct tcttgccggg cacagagctg cggggtctgg gggcaccggg 2850 agctaagagc aggctctggt gcaggggtgg aggcctgtct cttaaccgac 2900 accetgaggt geteetgaga tgetgggtee accetgagtg geacggggag 2950 cagctgtggc cggtgctcct tcytaggcca gtcctgggga aactaagctc 3000 gggcccttct ttgcaaagac cgaggatggg gtgggtgtgg gggactcatg 3050 gggaatggcc tgaggagcta cgtgtgaaga gggcgccggt ttgttggctg 3100

<210> 54

<211> 280

<212> PRT

<213> Homo sapiens

<400> 54

Met Cys Phe Leu Asn Lys Leu Leu Leu Leu Ala Val Leu Gly Trp
1 5 10 15

Leu Phe Gln Ile Pro Thr Val Pro Glu Asp Leu Phe Phe Leu Glu 20 25 30

Glu Gly Pro Ser Tyr Ala Phe Glu Val Asp Thr Val Ala Pro Glu 35 40 45

His Gly Leu Asp Asn Ala Pro Val Val Asp Gln Gln Leu Leu Tyr 50 55 60

Thr Cys Cys Pro Tyr Ile Gly Glu Leu Arg Lys Leu Leu Ala Ser 65 70 75

Trp Val Ser Gly Ser Ser Gly Arg Ser Gly Gly Phe Met Arg Lys

Ile Thr Pro Thr Thr Thr Ser Leu Gly Ala Gln Pro Ser Gln 95 100 105

Thr Ser Gln Gly Leu Gln Ala Gln Leu Ala Gln Ala Phe Phe His 110 115 120

Asn Gln Pro Pro Ser Leu Arg Arg Thr Val Glu Phe Val Ala Glu 125 130 135

Arg Ile Gly Ser Asn Cys Val Lys His Ile Lys Ala Thr Leu Val

Ala	Asp	Leu	Val	Arg	Gln	Ala	Glu	Ser	Leu	Leu	Gln	Glu	Gln	Leu
				155					160					165
Val	Thr	Gln	Gly	Glu 170	Glu	Gly	Gly	Asp	Pro 175	Ala	Gln	Leu	Leu	Glu 180
Ile	Leu	Cys	Ser	Gln 185	Leu	Cys	Pro	His	Gly 190	Ala	Gln	Ala	Leu	Ala 195
Leu	Gly	Arg	Glu	Phe 200	Cys	Gln	Arg	Lys	Ser 205	Pro	Gly	Ala	Val	Arg 210
Ala	Leu	Leu	Pro	Glu 215	Glu	Thr	Pro	Ala	Ala 220	Val	Leu	Ser	Ser	Ala 225
Glu	Asn	Ile	Ala	Val 230	Gly	Leu	Ala	Thr	Glu 235	Lys	Ala	Cys	Ala	Trp 240
Leu	Ser	Ala	Asn	Ile 245	Thr	Ala	Leu	Ile	Arg 250	Arg	Glu	Val	Lys	Ala 255
Ala	Val	Ser	Arg	Thr 260	Leu	Arg	Ala	Gln	Gly 265	Pro	Glu	Pro	Ala	Ala 270
Arg	Gly	Glu	Arg	Arg 275	Gly	Cys	Ser	Arg	Ala 280					

<210> 55

<211> 2401

<212> DNA

<213> Homo sapiens

<400> 55

tecettgaca ggtetggtgg etggtteggg gtetactgaa ggetgtettg 50 atcaggaaac tgaagactet etgettttge cacagcagtt eetgcagett 100 cettgaggtg tgaacceaca tecetgeece cagggeeace tgeaggaege 150 egacacetac eectcageag acgeeggaga gaaatgagta geaacaaaga 200 geageggtea geagtgtteg tgateetett tgeeeteate accateetea 250 teceteacag etceaacagt geeaatgagg tetteeatta eggeteectg 300 eggggeegta geegeegace tgteaacete aagaagtgga geateactga 350 eggetatgte eccatteeeg geaacaagae actgeeetet eggtgeeace 400 agtgtgat tgteageage teeageeace tgetgggeae eaagetggge 450 eetgagateg ageggetga gtgtacaate eggeatgaatg atgeaceace 500 eactggetae teagetgat tgggeaacaa gaceacetae eggetegtgg 550 eeccatteeag tgtgtteeg gtgetgagga ggeeecagga gtttgteaac 600

cggacccctg aaaccgtgtt catcttctgg gggcccccga gcaagatgca 650 gaageeceag ggeageeteg tgegtgtgat eeagegageg ggeetggtgt 700 tececaacat ggaageatat geegtetete eeggeegeat geggeaattt 750 gacgacctct tccggggtga gacgggcaag gacagggaga agtctcattc 800 gtggttgagc acaggctggt ttaccatggt gatcgcggtg gagttgtgtg 850 accacgtgca tgtctatggc atggtccccc ccaactactg cagccagcgg 900 ccccgcctcc agcgcatgcc ctaccactac tacgagccca aggggccgga 950 cgaatgtgtc acctacatcc agaatgagca cagtcgcaag ggcaaccacc 1000 accgcttcat caccgagaaa agggtcttct catcgtgggc ccagctgtat 1050 ggcatcacct tctcccaccc ctcctggacc taggccaccc agcctgtggg 1100 acctcaggag ggtcagagga gaagcagcct ccgcccagcc gctaggccag 1150 ggaccatett etggeeaate aaggettget ggagtgtete eeageeaate 1200 agggccttga ggaggatgta tcctccagcc aatcagggcc tggggaatct 1250 gttggcgaat cagggatttg ggagtctatg tggttaatca ggggtgtctt 1300 tettgtgcag teagggtetg egeacagtea ateagggtag agggggtatt 1350 tetgagteaa tetgaggeta aggaeatgte ettteeeatg aggeettggt 1400 tcagagecee aggaatggae eececaatea etececaete tgetgggata 1450 atggggtcct gtcccaagga gctgggaact tggtgttgcc ccctcaattt 1500 ccagcaccag aaagagagat tgtgtggggg tagaagctgt ctggaggccc 1550 ggccagagaa tttgtggggt tgtggaggtt gtgggggggg tggggaggtc 1600 ccagaggtgg gaggctggca tccaggtctt ggctctgccc tgagaccttg 1650 gacaaaccct tccccctctc tgggcaccct tctgcccaca ccagtttcca 1700 gtgcggagtc tgagaccctt tccacctccc ctacaagtgc cctcgggtct 1750 gteeteeeeg tetggaeeet eeeageeaet ateeettget ggaaggetea 1800 gctctttggg gggtctgggg tgacctcccc acctcctgga aaactttagg 1850 gtatttttgc gcaaactcct tcagggttgg gggactctga aggaaacggg 1900 acaaaacctt aagctgtttt cttagcccct cagccagctg ccattagctt 1950 ggctcttaaa gggccaggcc tccttttctg ccctctagca gggaggtttt 2000 ccaactgttg gaggcgcctt tggggctgcc cctttgtctg gagtcactgg 2050

gggcttccga gggtctccct cgaccctctg tcgtcctggg atggctgtcg 2100 ggagctgtat cacctgggtt ctgtcccctg gctctgtatc aggcacttta 2150 ttaaagctgg gcctcagtgg ggtgttttg tctcctgctc ttctggagcc 2200 tggaaggaaa gggcttcagg aggaggctgt gaggctggag ggaccagatg 2250 gaggaggcca gcagctagcc attgcacact ggggtgatgg gtgggggggg 2300 tgactgcccc agacttggtt ttgtaatgat ttgtacagga ataaacacac 2350 a 2401 <210> 56 <211> 299 <212> PRT <213> Homo sapiens <400> 56 Met Ser Ser Asn Lys Glu Gln Arg Ser Ala Val Phe Val Ile Leu Phe Ala Leu Ile Thr Ile Leu Ile Leu Tyr Ser Ser Asn Ser Ala 20 25 Asn Glu Val Phe His Tyr Gly Ser Leu Arg Gly Arg Ser Arg Arg 45 Pro Val Asn Leu Lys Lys Trp Ser Ile Thr Asp Gly Tyr Val Pro Ile Leu Gly Asn Lys Thr Leu Pro Ser Arg Cys His Gln Cys Val 70 75 Ile Val Ser Ser Ser His Leu Leu Gly Thr Lys Leu Gly Pro Glu Ile Glu Arg Ala Glu Cys Thr Ile Arg Met Asn Asp Ala Pro 95 100 Thr Thr Gly Tyr Ser Ala Asp Val Gly Asn Lys Thr Thr Tyr Arg 110 115 120 Val Val Ala His Ser Ser Val Phe Arg Val Leu Arg Arg Pro Gln 125 130 Glu Phe Val Asn Arg Thr Pro Glu Thr Val Phe Ile Phe Trp Gly 140 145 Pro Pro Ser Lys Met Gln Lys Pro Gln Gly Ser Leu Val Arg Val 160

Ile Gln Arg Ala Gly Leu Val Phe Pro Asn Met Glu Ala Tyr Ala

Val Ser Pro Gly Arg Met Arg Gln Phe Asp Asp Leu Phe Arg Gly
185 190 195

Glu Thr Gly Lys Asp Arg Glu Lys Ser His Ser Trp Leu Ser Thr 200 205 210

Gly Trp Phe Thr Met Val Ile Ala Val Glu Leu Cys Asp His Val 215 220 225

His Val Tyr Gly Met Val Pro Pro Asn Tyr Cys Ser Gln Arg Pro 230 235 240

Arg Leu Gln Arg Met Pro Tyr His Tyr Tyr Glu Pro Lys Gly Pro 245 250 255

Asp Glu Cys Val Thr Tyr Ile Gln Asn Glu His Ser Arg Lys Gly 260 265 270

Asn His His Arg Phe Ile Thr Glu Lys Arg Val Phe Ser Ser Trp 275 280 285

Ala Gln Leu Tyr Gly Ile Thr Phe Ser His Pro Ser Trp Thr 290 295

<210> 57

<211> 4277

<212> DNA

<213> Homo sapiens

<400> 57

gtttctcata gttggcgtct tctaaaggaa aaacactaaa atgaggaact 50 cagcggaccg ggagcgacgc agcttgaggg aagcatccct agctgttggc 100 gcagaggggc gaagctgaag ccgagtggcc cgaggtgtct gaggggctgg 150 ggaaaaggtg aaagagttc agaacaagct tcctggaacc catgacccat 200 gaagtcttgt cgacatttat accgtctgag ggtagcagct cgaaactaga 250 agaagtggaag tgttgccagg gacggcagta tctctttgtg tgaccctggc 300 ggcctatggg acgttggctt cagacctttg tgatacacca tgctgcgtgg 350 gacgatagacg gcgtggagag gaatgaggcc tgaggtcaca ctggcttgcc 400 tcctcctagc cacagcaggc tgctttgctg acttgaacga ggtcectcag 450 gtcaccgtcc agcctgcgtc caccgtccag aagcccggaa gaatgaacg gcactgtgat 500 cttgggctgc gtggtggaac ctccaaggat gaatgtaacc tggcgcctga 550 atggaaagga gctgaatggc tcggatgat ctctgggtgt cctcatcacc 600 cacgggaccc tcgtcatcac tgcccttaac aaccacctg tgggacggta 650

ccagtgtgtg gcccggatgc ctgcgggggc tgtggccagc gtgccagcca 700 ctgtgacact agccaatctc caggacttca agttagatgt gcagcacgtg 750 attgaagtgg atgagggaaa cacagcagtc attgcctgcc acctgcctga 800 gagecacece aaageceagg teeggtacag egteaaacaa gagtggetgg 850 aggectecag aggtaactae etgateatge eetcagggaa eetceagatt 900 gtgaatgcca gccaggagga cgagggcatg tacaagtgtg cagcctacaa 950 cccagtgacc caggaagtga aaacctccgg ctccagcgac aggctacgtg 1000 tgcgccgctc caccgctgag gctgcccgca tcatctaccc cccagaggcc 1050 caaaccatca tcgtcaccaa aggccagagt ctcattctgg agtgtgtggc 1100 cagtggaatc ccaccccac gggtcacctg ggccaaggat gggtccagtg 1150 tcaccggcta caacaagacg cgcttcctgc tgagcaacct cctcatcgac 1200 accaccagcg aggaggactc aggcacctac cgctgcatgg ccgacaatgg 1250 ggttgggcag cccggggcag cggtcatcct ctacaatgtc caggtgtttg 1300 aaccccctga ggtcaccatg gagctatccc agctggtcat cccctggggc 1350 cagagtgcca agcttacctg tgaggtgcgt gggaaccccc cgccctccgt 1400 getgtggetg aggaatgetg tgeeceteat etecageeag egeeteegge 1450 teteçegeag ggeeetgege gtgeteagea tggggeetga ggaegaagge 1500 gtctaccagt gcatggccga gaacgaggtt gggagcgccc atgccgtagt 1550 ccagctgcgg acctccaggc caagcataac cccaaggcta tggcaggatg 1600 ctgagctggc tactggcaca cctcctgtat caccctccaa actcggcaac 1650 cctgagcaga tgctgagggg gcaaccggcg ctccccagac ccccaacgtc 1700 agtggggcct gcttccccga agtgtccagg agagaagggg cagggggctc 1750 ccgccgaggc tcccatcatc ctcagctcgc cccgcacctc caagacagac 1800 tcatatgaac tggtgtggcg gcctcggcat gagggcagtg gccgggcgcc 1850 aatcctctac tatgtggtga aacaccgcaa gcaggtcaca aattcctctg 1900 acgattggac catctctggc attccagcca accagcaccg cctgaccctc 1950 accagacttg accccgggag cttgtatgaa gtggagatgg cagcttacaa 2000 ctgtgcggga gagggccaga cagccatggt caccttccga actggacggc 2050

ggcccaaacc cgagatcatg gccagcaaag agcagcagat ccagagagac 2100 gaccetggag ecagteecca gageageage cagecagace aeggeegeet 2150 ctcccccca gaageteccg acaggeecac catetecacg geetecgaga 2200 cctcagtgta cgtgacctgg attccccgtg ggaatggtgg gttcccaatc 2250 cagtccttcc gtgtggagta caagaagcta aagaaagtgg gagactggat 2300 tetggecace agegecatee ecceategeg getgteegtg gagateaegg 2350 gcctagagaa aggcacctcc tacaagtttc gagtccgggc tctgaacatg 2400 ctgggggaga gcgagcccag cgcccctct cggccctacg tggtgtcggg 2450 ctacageggt egegtgtacg agaggeeegt ggeaggteet tatateacet 2500 tcacggatgc ggtcaatgag accaccatca tgctcaagtg gatgtacatc 2550 ccagcaagta acaacaacac cccaatccat ggcttttata tctattatcg 2600 acccacagac agtgacaatg atagtgacta caagaaggat atggtggaag 2650 gggacaagta ctggcactcc atcagccacc tgcagccaga gacctcctac 2700 gacattaaga tgcagtgctt caatgaagga ggggagagcg agttcagcaa 2750 cgtgatgatc tgtgagacca aagctcggaa gtcttctggc cagcctggtc 2800 gactgccacc cccaactetg gccccaccac agccgccct tcctgaaacc 2850 atagagegge eggtgggeae tggggeeatg gtggeteget eeagegaeet 2900 gccctatctg attgtcgggg tcgtcctggg ctccatcgtt ctcatcatcg 2950 tcaccttcat ccccttctgc ttgtggaggg cctggtctaa gcaaaaacat 3000 acaacagacc tgggttttcc tcgaagtgcc cttccaccct cctgcccgta 3050 tactatggtg ccattgggag gactcccagg ccaccaggcc agtggacagc 3100 cctacctcag tggcatcagt ggacgggcct gtgctaatgg gatccacatg 3150 aataggggct gcccctcggc tgcagtgggc tacccgggca tgaagcccca 3200 gcagcactgc ccaggcgagc ttcagcagca gagtgacacc agcagcctgc 3250 tgaggcagac ccatcttggc aatggatatg acccccaaag tcaccagatc 3300 acgaggggtc ccaagtctag cccggacgag ggctctttct tatacacact 3350 geoegaegae tecaeteace agetgetgea geoecateae gaetgetgee 3400 aacgccagga gcagcctgct gctgtgggcc agtcaggggt gaggagagcc 3450 cccgacagtc ctgtcctgga agcagtgtgg gaccctccat ttcactcagg 3500

gcccccatgc tgcttgggcc ttgtgccagt tgaagaggtg gacagtcctg 3550 actcctgcca agtgagtgga ggagactggt gtccccagca ccccgtaggg 3600 gcctacgtag gacaggaacc tggaatgcag ctctccccgg ggccactggt 3650 gcgtgtgtct tttgaaacac cacctctcac aatttaggca gaagctgata 3700 tcccagaaag actatatatt gtttttttt taaaaaaaaa agaagaaaaa 3750 agagacagag aaaattggta tttatttttc tattatagcc atatttatat 3800 atttatgcac ttgtaaataa atgtatatgt tttataattc tggagagaca 3850 taaggagtcc tacccgttga ggttggagag ggaaaataaa gaagctgcca 3900 cetaacagga gtcacccagg aaagcaccgc acaggetggc gegggacaga 3950 ctcctaacct ggggcctctg cagtggcagg cgaggctgca ggaggcccac 4000 agataagctg gcaagaggaa ggatcccagg cacatggttc atcacgagca 4050 tgagggaaca gcaaggggca cggtatcaca gcctggagac acccacacag 4100 atggctggat ccggtgctac gggaaacatt ttcctaagat gcccatgaga 4150 acagaccaag atgtgtacag cactatgagc attaaaaaac cttccagaat 4200 caataatccg tggcaacata tctctgtaaa aacaaacact gtaacttcta 4250 aataaatgtt tagtcttccc tgtaaaa 4277

```
<210> 58
```

<211> 1115

<212> PRT

<213> Homo sapiens

<400> 58

Met Leu Arg Gly Thr Met Thr Ala Trp Arg Gly Met Arg Pro Glu 1 5 10 15

Val Thr Leu Ala Cys Leu Leu Leu Ala Thr Ala Gly Cys Phe Ala 20 25 30

Asp Leu Asn Glu Val Pro Gln Val Thr Val Gln Pro Ala Ser Thr 35 40 45

Val Gln Lys Pro Gly Gly Thr Val Ile Leu Gly Cys Val Val Glu 50 55 60

Pro Pro Arg Met Asn Val Thr Trp Arg Leu Asn Gly Lys Glu Leu 65 70 75

Asn Gly Ser Asp Asp Ala Leu Gly Val Leu Ile Thr His Gly Thr 80 85 90

His Leu Pro Glu Ser His Pro Lys Ala Gln Val Arg Tyr Ser 155 160 Lys Gln Glu Trp Leu Glu Ala Ser Arg Gly Asn Tyr Leu Ile 170 Pro Ser Gly Asn Leu Gln Ile Val Asn Ala Ser Gln Glu Asp 185 Gly Met Tyr Lys Cys Ala Ala Tyr Asn Pro Val Thr Gln Glu 205 Lys Thr Ser Gly Ser Ser Asp Arg Leu Arg Val Arg Arg Ser 215 Ala Glu Ala Ala Arg Ile Ile Tyr Pro Pro Glu Ala Gln Thr 230 Ile Val Thr Lys Gly Gln Ser Leu Ile Leu Glu Cys Val Ala 245 Gly Ile Pro Pro Pro Arg Val Thr Trp Ala Lys Asp Gly Ser 260 Val Thr Gly Tyr Asn Lys Thr Arg Phe Leu Leu Ser Asn Leu I 275 Ile Asp Thr Thr Ser Glu Glu Asp Ser Gly Thr Tyr Arg Cys M 290 Ala Asp Asn Gly Val Gly Gln Pro Glu Ala Ala Val Ile Leu 300 Asn Val Gln Val Phe Glu Pro Pro Glu Val Thr Met Glu Leu 320 Gln Leu Val Ile Pro Trp Gly Gln Ser Ala Lys Leu Thr Cys G 335 Val Arg Gly Asn Pro Pro Pro Ser Val Leu Trp Leu Arg Asn A 350 Val Pro Leu Ile Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Arg Arg Leu Pro Leu I Ile Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Arg Arg Leu Pro Leu II Ser Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Leu Pro Leu II Ser Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Leu Pro Leu II Ser Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Leu Pro Leu II Ser Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Arg Arg Arg Arg Leu Pro Leu II Ser Arg Arg Arg Arg Arg Arg Arg Arg Arg Ar	Leu	ı Val	l Ile	e Thr	Ala 95		ı Asr	n Asr	n His	3 Thi 100		l Gl	y Ar	д Туі	Gln 105
His Val Ile Glu Val Asp Glu Gly Asn Thr Ala Val Ile Ala 140 His Leu Pro Glu Ser His Pro Lys Ala Gln Val Arg Tyr Ser 155 Lys Gln Glu Trp Leu Glu Ala Ser Arg Gly Asn Tyr Leu Ile 170 Pro Ser Gly Asn Leu Gln Ile Val Asn Ala Ser Gln Glu Asp 185 Gly Met Tyr Lys Cys Ala Ala Tyr Asn Pro Val Thr Gln Glu 200 Lys Thr Ser Gly Ser Ser Asp Arg Leu Arg Val Arg Arg Ser 215 Ala Glu Ala Ala Arg Ile Ile Tyr Pro Pro Glu Ala Gln Thr 230 Ile Val Thr Lys Gly Gln Ser Leu Ile Leu Glu Cys Val Ala 325 Gly Ile Pro Pro Pro Arg Val Thr Trp Ala Lys Asp Gly Ser 326 Val Thr Gly Tyr Asn Lys Thr Arg Phe Leu Leu Ser Asn Leu I 280 Ala Asp Asn Gly Val Gly Gln Pro Gly Ala Ala Val Ile Leu 305 Asn Val Gln Val Phe Glu Pro Pro Gly Clu Thr Met Glu Leu 3305 Gln Leu Val Ile Pro Pro Pro Pro Ser Val Leu Trp Leu Arg Asn A 350 Val Pro Leu Ile Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Arg Arg Arg Arg Ar	Cys	: Val	l Ala	a Arç	Met 110	Pro	Ala	a Gly	/ Ala			a Sei	r Val	l Pro	Ala 120
His Leu Pro Glu Ser His Pro Lys Ala Gln Val Arg Tyr Ser 155 Lys Gln Glu Trp Leu Glu Ala Ser Arg Gly Asn Tyr Leu Ile 170 Pro Ser Gly Asn Leu Gln Ile Val Asn Ala Ser Gln Glu Asp 185 Gly Met Tyr Lys Cys Ala Ala Tyr Asn Pro Val Thr Gln Glu 200 Lys Thr Ser Gly Ser Ser Asp Arg Leu Arg Val Arg Arg Ser 215 Ala Glu Ala Ala Arg Ile Ile Tyr Pro Pro Glu Ala Gln Thr 230 Ile Val Thr Lys Gly Gln Ser Leu Ile Leu Glu Cys Val Ala 250 Gly Ile Pro Pro Pro Arg Val Thr Trp Ala Lys Asp Gly Ser 265 Val Thr Gly Tyr Asn Lys Thr Arg Phe Leu Leu Ser Asn Leu I 275 Ala Asp Asn Gly Val Gly Gln Pro Gly Ala Ala Val Ile Leu 300 Asn Val Gln Val Phe Glu Pro Pro Glu Val Thr Met Glu Leu 320 Cln Leu Val Ile Pro Trp Gly Gln Ser Ala Lys Leu Thr Cys Gardy Arg Gly Arg Gly Arg Arg Arg Arg Arg Arg Arg Arg Leu Arg Leu Arg Leu Arg Asn Arg Cyal Arg Gly Arg Gly Arg Gly Arg Arg Arg Arg Arg Arg Arg Arg Leu Ser Arg Arg Arg Arg Leu Arg Leu Ser Arg Arg Arg Arg Pro Leu Ile Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Leu Pro Leu Ile Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Leu Pro Leu Ile Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Arg Arg Leu Pro Leu Ile Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Arg Arg Arg Arg Ar	Thr	Va]	l Thi	c Leu			Leu	ı Glr	ı Asp			Lei	ı Asp	Val	. Gln 135
Lys Gln Glu Trp Leu Glu Ala Ser Arg Gly Asn Tyr Leu Ile 170 Pro Ser Gly Asn Leu Gln Ile Val Asn Ala Ser Gln Glu Asp 185 Gly Met Tyr Lys Cys Ala Ala Tyr Asn Pro Val Thr Gln Glu 200 Lys Thr Ser Gly Ser Ser Asp Arg Leu Arg Val Arg Arg Ser 215 Ala Glu Ala Ala Arg Ile Ile Tyr Pro Pro Glu Ala Gln Thr 230 Ile Val Thr Lys Gly Gln Ser Leu Ile Leu Glu Cys Val Ala 245 Gly Ile Pro Pro Pro Arg Val Thr Trp Ala Lys Asp Gly Ser 265 Val Thr Gly Tyr Asn Lys Thr Arg Phe Leu Leu Ser Asn Leu I 275 Ile Asp Thr Thr Ser Glu Glu Asp Ser Gly Thr Tyr Arg Cys M 290 Ala Asp Asn Gly Val Gly Gln Pro Gly Ala Ala Val Ile Leu I 305 Asn Val Gln Val Phe Glu Pro Pro Glu Val Thr Met Glu Leu S 335 Val Arg Gly Asn Pro Pro Pro Pro Ser Val Leu Trp Leu Arg Asn A 355 Val Pro Leu Ile Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg A	His	Val	l Ile	e Glu			Glu	ı Gly	/ Asr			ı Val	. Il€	e Ala	Cys 150
Pro Ser Gly Asn Leu Gln Ile Val Asn Ala Ser Gln Glu Asp 185 Gly Met Tyr Lys Cys Ala Ala Tyr Asn Pro Val Thr Gln Glu 200 Lys Thr Ser Gly Ser Ser Asp Arg Leu Arg Val Arg Arg Ser 215 Ala Glu Ala Ala Arg Ile Ile Tyr Pro Pro Glu Ala Gln Thr 230 Ile Val Thr Lys Gly Gln Ser Leu Ile Leu Glu Cys Val Ala 250 Gly Ile Pro Pro Pro Arg Val Thr Trp Ala Lys Asp Gly Ser 260 Val Thr Gly Tyr Asn Lys Thr Arg Phe Leu Leu Ser Asn Leu Ile Asp Thr Thr Ser Glu Glu Asp Ser Gly Thr Tyr Arg Cys M 290 Ala Asp Asn Gly Val Gly Gln Pro Glu Val Thr Tyr Arg Cys M 305 Asn Val Gln Val Phe Glu Pro Pro Glu Val Thr Met Glu Leu San Asn Val Glo Val Ile Pro Trp Gly Gln Ser Ala Lys Leu Thr Cys G 335 Val Arg Gly Asn Pro Pro Pro Ser Val Leu Trp Leu Arg Asn Asn Arg Cys Pro Leu Ile Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Leu Ser Arg Arg Arg Arg Arg Leu Ser Arg Arg Arg Arg Arg Arg Leu Ser Arg Arg Arg Arg Leu Ser Arg Arg Arg Arg Arg Arg Arg Arg Arg Ar	His	Leu	ı Pro	Glu			Pro	Lys	Ala			Arç	J Tyr	Ser	Val 165
Gly Met Tyr Lys Cys Ala Ala Tyr Asn Pro Val Thr Gln Glu 200 Lys Thr Ser Gly Ser Ser Asp Arg Leu Arg Val Arg Arg Ser 215 Ala Glu Ala Ala Arg Ile Ile Tyr Pro Pro Glu Ala Gln Thr 230 Ile Val Thr Lys Gly Gln Ser Leu Ile Leu Glu Cys Val Ala 250 Gly Ile Pro Pro Pro Arg Val Thr Trp Ala Lys Asp Gly Ser 265 Val Thr Gly Tyr Asn Lys Thr Arg Phe Leu Leu Ser Asn Leu I 280 Ile Asp Thr Thr Ser Glu Glu Asp Ser Gly Thr Tyr Arg Cys M 295 Ala Asp Asn Gly Val Gly Gln Pro Gly Ala Ala Val Ile Leu 305 Asn Val Gln Val Phe Glu Pro Pro Glu Val Thr Met Glu Leu S 335 Val Arg Gly Asn Pro Pro Pro Ser Val Leu Trp Leu Arg Asn A 355 Val Pro Leu Ile Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Arg Arg Leu Ser Arg Arg Arg Arg Arg Leu Ser Arg Arg Arg Arg Leu Ser Arg Arg Arg Arg Leu Ser Arg Arg Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Arg Arg Arg Arg Ar	Lys	Gln	Glu	Trp	Leu 170	Glu	Ala	Ser	Arg			Туг	Leu	ılle	Met 180
Lys Thr Ser Gly Ser Ser Asp Arg Leu Arg Val Arg Arg Ser 215 Ala Glu Ala Ala Arg Ile Ile Tyr Pro Pro Glu Ala Gln Thr 230 Ile Val Thr Lys Gly Gln Ser Leu Ile Leu Glu Cys Val Ala 250 Gly Ile Pro Pro Pro Arg Val Thr Trp Ala Lys Asp Gly Ser 260 Val Thr Gly Tyr Asn Lys Thr Arg Phe Leu Leu Ser Asn Leu Ile Asp Thr Thr Ser Glu Glu Asp Ser Gly Thr Tyr Arg Cys Marg 290 Ala Asp Asn Gly Val Gly Gln Pro Gly Ala Ala Val Ile Leu 305 Asn Val Gln Val Phe Glu Pro Pro Glu Val Thr Met Glu Leu San 325 Gln Leu Val Ile Pro Trp Gly Gln Ser Ala Lys Leu Thr Cys Gan 335 Val Pro Leu Ile Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg Arg Arg Pro Leu Arg Asp Arg Arg Arg Leu Ser Arg Arg Arg Leu Ser Arg Arg Arg Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Arg Arg Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Arg Arg Arg Arg Ar	Pro	Ser	Gly	' Asn	Leu 185	Gln	Ile	· Val	Asn			Gln	Glu	Asp	Glu 195
Ala Glu Ala Ala Arg Ile Ile Tyr Pro Pro Glu Ala Gln Thr 230 Ile Val Thr Lys Gly Gln Ser Leu Ile Leu Glu Cys Val Ala 245 Gly Ile Pro Pro Pro Arg Val Thr Trp Ala Lys Asp Gly Ser 265 Val Thr Gly Tyr Asn Lys Thr Arg Phe Leu Leu Ser Asn Leu I 275 Ile Asp Thr Thr Ser Glu Glu Asp Ser Gly Thr Tyr Arg Cys M 290 Ala Asp Asn Gly Val Gly Gln Pro Gly Ala Ala Val Ile Leu 305 Asn Val Gln Val Phe Glu Pro Pro Glu Val Thr Met Glu Leu 320 Gln Leu Val Ile Pro Trp Gly Gln Ser Ala Lys Leu Thr Cys G 335 Val Arg Gly Asn Pro Pro Pro Ser Val Leu Trp Leu Arg Asn A 350 Val Pro Leu Ile Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Arg Arg Arg Arg Ar	Gly	Met	Tyr	Lys			Ala	Tyr	Asn			Thr	Gln	Glu	Val 210
Ille Val Thr Lys Gly Gln Ser Leu Ille Leu Glu Cys Val Ala Ser Ser Gly Ille Pro Pro Pro Arg Val Thr Trp Ala Lys Asp Gly Ser Ser Ser Gly Thr Gly Tyr Asn Lys Thr Arg Phe Leu Leu Ser Asn Leu Ille Asp Thr Thr Ser Glu Glu Asp Ser Gly Thr Tyr Arg Cys Manager Ser Gly Val Gly Val Gly Gln Pro Gly Ala Ala Val Ille Leu Ta 305 Asn Val Gln Val Phe Glu Pro Pro Glu Val Thr Met Glu Leu Ser Asn And Val Ille Leu Ta 320 Gln Leu Val Ille Pro Trp Gly Gln Ser Ala Lys Leu Thr Cys Ga 335 Val Arg Gly Asn Pro Pro Pro Ser Val Leu Trp Leu Arg Asn And Val Pro Leu Ille Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Arg Leu Ser Arg Arg Arg Arg Arg Leu Ser Arg Arg Arg Arg Leu Ser Arg Arg Arg Arg Leu Ser Arg Arg Arg Arg Arg Leu Ser Arg Arg Arg Arg Leu Ser Arg Arg Arg Arg Leu Ser Arg Arg Arg Arg Arg Leu Ser Arg Arg Arg Arg Leu Ser Arg Arg Arg Arg Arg Leu Ser Arg Arg Arg Arg Leu Ser Arg Arg Arg Arg Arg Arg Arg Arg Arg Ar	Lys	Thr	Ser	Gly	Ser 215	Ser	Asp	Arg	Leu			Arg	Arg	Ser	Thr 225
Gly Ile Pro Pro Pro Arg Val Thr Trp Ala Lys Asp Gly Ser Ser 260 Val Thr Gly Tyr Asn Lys Thr Arg Phe Leu Leu Ser Asn Leu I 280 Ile Asp Thr Thr Ser Glu Glu Asp Ser Gly Thr Tyr Arg Cys M 290 Ala Asp Asn Gly Val Gly Gln Pro Gly Ala Ala Val Ile Leu 300 Asn Val Gln Val Phe Glu Pro Pro Glu Val Thr Met Glu Leu 300 Gln Leu Val Ile Pro Trp Gly Gln Ser Ala Lys Leu Thr Cys G 335 Val Arg Gly Asn Pro Pro Pro Ser Val Leu Trp Leu Arg Asn A 350 Val Pro Leu Ile Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Pro Pro Leu Ile Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Arg Arg Arg Arg Ar	Ala	Glu	Ala	Ala	Arg 230	Ile	Ile	Tyr	Pro		Glu	Ala	Gln	Thr	Ile 240
Val Thr Gly Tyr Asn Lys Thr Arg Phe Leu Leu Ser Asn Leu I 280 Ile Asp Thr Thr Ser Glu Glu Asp Ser Gly Thr Tyr Arg Cys M 295 Ala Asp Asn Gly Val Gly Gln Pro Gly Ala Ala Val Ile Leu T 305 Asn Val Gln Val Phe Glu Pro Pro Glu Val Thr Met Glu Leu S 320 Gln Leu Val Ile Pro Trp Gly Gln Ser Ala Lys Leu Thr Cys G 335 Val Arg Gly Asn Pro Pro Pro Ser Val Leu Trp Leu Arg Asn A 350 Val Pro Leu Ile Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Arg Arg Arg Arg Ar	Ile	Val	Thr	Lys	Gly 245	Gln	Ser	Leu	Ile		Glu	Cys	Val	Ala	Ser 255
Ille Asp Thr Thr Ser Glu Glu Asp Ser Gly Thr Tyr Arg Cys Mag 290 Ala Asp Asn Gly Val Gly Gln Pro Gly Ala Ala Val Ille Leu Tag 305 Asn Val Gln Val Phe Glu Pro Pro Glu Val Thr Met Glu Leu Sag 320 Gln Leu Val Ille Pro Trp Gly Gln Ser Ala Lys Leu Thr Cys Gag 335 Val Arg Gly Asn Pro Pro Pro Ser Val Leu Trp Leu Arg Asn Ag 350 Val Pro Leu Ille Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg Arg Arg Arg Arg Arg Arg Arg Ar	Gly	Ile	Pro	Pro	Pro 260	Arg	Val	Thr	Trp		Lys	Asp	Gly	Ser	Ser 270
Ala Asp Asn Gly Val Gly Gln Pro Gly Ala Ala Val Ile Leu Tagono 305 Asn Val Gln Val Phe Glu Pro Pro Glu Val Thr Met Glu Leu Sagono 325 Gln Leu Val Ile Pro Trp Gly Gln Ser Ala Lys Leu Thr Cys Gagono 335 Val Arg Gly Asn Pro Pro Pro Ser Val Leu Trp Leu Arg Asn Agono 355 Val Pro Leu Ile Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg Arg Agono 365	Val	Thr	Gly	Tyr	Asn 275	Lys	Thr	Arg	Phe		Leu	Ser	Asn	Leu	Leu 285
Asn Val Gln Val Phe Glu Pro Pro Glu Val Thr Met Glu Leu S 320 325 3 Gln Leu Val Ile Pro Trp Gly Gln Ser Ala Lys Leu Thr Cys G 335 340 3 Val Arg Gly Asn Pro Pro Pro Ser Val Leu Trp Leu Arg Asn A 350 355 365	Ile	Asp	Thr	Thr	Ser 290	Glu	Glu	Asp	Ser		Thr	Tyr	Arg	Cys	Met 300
Gln Leu Val Ile Pro Trp Gly Gln Ser Ala Lys Leu Thr Cys G 335 Val Arg Gly Asn Pro Pro Pro Ser Val Leu Trp Leu Arg Asn A 350 Val Pro Leu Ile Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg A	Ala	Asp	Asn	Gly	Val 305	Gly	Gln	Pro	Gly		Ala	Val	Ile	Leu	Tyr 315
Val Arg Gly Asn Pro Pro Pro Ser Val Leu Trp Leu Arg Asn A 350 355 3 Val Pro Leu Ile Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg A					320					325					330
Val Pro Leu Ile Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg A	Gln	Leu	Val	Ile	Pro 335	Trp	Gly	Gln	Ser		Lys	Leu	Thr	Cys	Glu 345
					350					355					360
	Val	Pro	Leu	Ile	Ser 365	Ser	Gln	Arg	Leu		Leu	Ser	Arg	Arg	Ala 375

Le	u Ar	g Va	l Le	u Ser 380	Me	t Gl	y Pr	o Gl	u As 38		u Gl	y Va	1 Ту	r Gln 390
Cys	s Me	t Al	a Glı	u Asr 395	Glı	u Vai	l Gl	y Se	r Al 40	a Hi O	s Al	a Va	l Va	l Gln 405
Let	ı Ar	g Th	r Sei	r Arg 410	Pro	o Sei	r Il	e Th	r Pr 41		g Le	u Tr	p Gl	n Asp 420
Ala	a Gli	u Lei	ı Ala	425	Gl	/ Thr	r Pro	o Pro	o Va 43		r Pro	Se.	r Ly	s Leu 435
Gly	/ Ası	n Pro	o Glu	Gln 440	Met	Leu	ı Arç	g Gly	y Gl:	n Pro 5	Ala	a Lei	u Pr	0 Arg 450
Pro	Pro	Thi	Ser	Val 455	Gly	Pro	Ala	a Sei	Pro 460		s Cys	Pro	Gl ₂	y Glu 465
Lys	Gl ₃	/ Glr	Gly	Ala 470	Pro	Ala	Glu	ı Ala	475	o Ile	: Ile	: Leı	ı Sei	Ser 480
Pro	Arg	Thr	Ser	Lys 485	Thr	Asp	Ser	Tyr	Glu 490	ı Leu)	Val	Trp	Arg	y Pro 495
Arg	His	Glu	Gly	Ser 500	Gly	Arg	Ala	Pro	Il∈ 505	e Leu	Tyr	Tyr	Val	Val 510
Lys	His	Arg	Lys	Gln 515	Val	Thr	Asn	Ser	Ser 520	Asp	Asp	Trp	Thr	Ile 525
Ser	Gly	Ile	Pro	Ala 530	Asn	Gln	His	Arg	Leu 535	Thr	Leu	Thr	Arg	Leu 540
Asp	Pro	Gly	Ser	Leu 545	Tyr	Glu	Val	Glu	Met 550	Ala	Ala	Tyr	Asn	Cys 555
Ala	Gly	Glu	Gly	Gln 560	Thr	Ala	Met	Val	Thr 565	Phe	Arg	Thr	Gly	Arg 570
Arg	Pro	Lys	Pro	Glu 575	Ile	Met	Ala	Ser	Lys 580	Glu	Gln	Gln	Ile	Gln 585
Arg	Asp	Asp	Pro	Gly . 590	Ala	Ser	Pro	Gln	Ser 595	Ser	Ser	Gln	Pro	Asp 600
				Ser :					610					615
				Glu : 620					625					630
Gly A				033					640					645
Lys 1	Leu	Lys	Lys '	Val 0 650	Sly A	Asp '	Trp	Ile	Leu 655	Ala	Thr	Ser	Ala	Ile 660

I	Pro	Pro	Sei	c Ar	G Lei 66	ı Se. 5	r Va	l Gl	u Il	e Th.		y Le	eu G.	lu L	ys	Gly 675
נ	hr'	Ser	Туг	Lys	680	e Ar	g Vai	l Ar	g Ala	a Lei 685		n Me	et Le	eu G	ly	Glu 690
S	er	Glu	Pro	Ser	Ala 695	a Pro	o Sei	r Ar	g Pro	700		l Va	.1 Se	er G	ly	Tyr 705
S	er	Gly	Arg	y Val	. Tyı 71(Glu	ı Arç	g Pro	o Val	1 Ala 715		y Pr	о Ту	/r I	le	Thr 720
P	he	Thr	Asp	Ala	Val 725	. Asr	n Glu	ı Thi	Thr	730		t Le	u Ly	/s Ti	q	Met 735
Т	yr	Ile	Pro	Ala	Ser 740	Asr	n Asn	ı Asr	Thr	745		e Hi	s Gl	y Pl	ne	Tyr 750
I	le	Tyr	Tyr	Arg	Prc 755	Thr	Asp	Ser	Asp	760		Se	r As	T q	r'	Lys 765
L	ys	Asp	Met	Val	Glu 770	Gly	Asp	Lys	Tyr	Trp 775	His	s Se	r Il	e Se	r	His 780
L	eu	Gln	Pro	Glu	Thr 785	Ser	Tyr	Asp	Ile	Lys 790		: Gl	n Cy	s Ph		Asn 795
G.	lu	Gly	Gly	Glu	Ser 800	Glu	Phe	Ser	Asn	Val 805		: Ile	е Су	s Gl		Thr 810
Ly	/S	Ala	Arg	Lys	Ser 815	Ser	Gly	Gln	Pro	Gly 820	Arg	Le	ı Pr	o Pr		Pro 825
Tł	ır :	Leu	Ala	Pro	Pro 830	Gln	Pro	Pro	Leu	Pro 835	Glu	Thi	Il	e Gl		Arg 840
Pr	7 0:	Val	Gly	Thr	Gly 845	Ala	Met	Val	Ala	Arg 850	Ser	Ser	: Ası	o Le		Pro 855
Ту	r I	Leu	Ile	Val	Gly 860	Val	Val	Leu	Gly	Ser 865	Ile	Val	Lei	ı Ile		Ile 370
Va	1 7	hr :	Phe	Ile	Pro 875	Phe	Cys	Leu	Trp	Arg 880	Ala	Trp	Sei	Ly:		Gln 885
					890		Gly			895					9	900
					905		Val			910					9	915
Gl	n A	la S	Ser	Gly	Gln 920	Pro	Tyr	Leu	Ser	Gly 925	Ile	Ser	Gly	' Arg		la 930
Су	s A	la <i>P</i>	Asn	Gly	Ile 935	His	Met	Asn		Gly 940	Cys	Pro	Ser	Ala		la 45

```
Val Gly Tyr Pro Gly Met Lys Pro Gln Gln His Cys Pro Gly Glu
                   950
                                       955
                                                            960
  Leu Gln Gln Gln Ser Asp Thr Ser Ser Leu Leu Arg Gln Thr His
                                       970
  Leu Gly Asn Gly Tyr Asp Pro Gln Ser His Gln Ile Thr Arg Gly
                   980
  Pro Lys Ser Ser Pro Asp Glu Gly Ser Phe Leu Tyr Thr Leu Pro
                  995
                                      1000
  Asp Asp Ser Thr His Gln Leu Leu Gln Pro His His Asp Cys Cys
                 1010
                                      1015
  Gln Arg Gln Glu Gln Pro Ala Ala Val Gly Gln Ser Gly Val Arg
                 1025
                                      1030
  Arg Ala Pro Asp Ser Pro Val Leu Glu Ala Val Trp Asp Pro Pro
                 1040
                                      1045
  Phe His Ser Gly Pro Pro Cys Cys Leu Gly Leu Val Pro Val Glu
 Glu Val Asp Ser Pro Asp Ser Cys Gln Val Ser Gly Gly Asp Trp
                 1070
 Cys Pro Gln His Pro Val Gly Ala Tyr Val Gly Gln Glu Pro Gly
                 1085
                                     1090
                                                          1095
 Met Gln Leu Ser Pro Gly Pro Leu Val Arg Val Ser Phe Glu Thr
                                     1105
 Pro Pro Leu Thr Ile
                1115
<210> 59
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 59
gggaaacaca gcagtcattg cctgc 25
<210> 60
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 60
gcacacgtag cctgtcgctg gagc 24
```

```
<210> 61
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 61
 caccccaaag cccaggtccg gtacagcgtc aaacaagagt gg 42
<210> 62
<211> 1661
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 678
<223> unknown base
<400> 62
 cgggaggctg ggtcgtcatg atccggaccc cattgtcggc ctctgcccat 50
cgcctgctcc tcccaggctc ccgcggccga cccccgcgca acatgcagcc 100
cacgggccgc gagggttccc gcgcgctcag ccggcggtat ctgcggcgtc 150
tgctgctcct gctactgctg ctgctgctgc ggcagcccgt aacccgcgcg 200
gagaccacge egggegeece cagageeete tecaegetgg geteeceeag 250
cetetteace acgeegggtg tececagege ceteactace ecaggeetea 300
ctacgccagg cacccccaaa accctggacc ttcggggtcg cgcgcaggcc 350
ctgatgcgga gtttcccact cgtggacggc cacaatgacc tgccccaggt 400
cctgagacag cgttacaaga atgtgcttca ggatgttaac ctgcgaaatt 450
tcagccatgg tcagaccagc ctggacaggc ttagagacgg cctcgtgggt 500
geocagttet ggteageete egteteatge eagteeeagg accagaetge 550
cgtgcgcctc gccctggagc agattgacct cattcaccgc atgtgtgcct 600
cctactctga actcgagctt gtgacctcag ctgaaggtct gaacagctct 650
caaaagctgg cctgcctcat tggcgtgnag ggtggtcact cactggacag 700
cagcetetet gtgctgcgca gtttetatgt gctgggggtg cgctacetga 750
cacttacctt cacctgcagt acaccatggg cagagagttc caccaagttc 800
agacaccaca tgtacaccaa cgtcagcgga ttgacaagct ttggtgagaa 850
```

agtagtagag gagttgaacc gcctgggcat gatgatagat ttgtcctatg 900 catcggacac cttgataaga agggtcctgg aagtgtctca ggctcctgtg 950 atcttctccc actcagctgc cagagctgtg tgtgacaatt tgttgaatgt 1000 tcccgatgat atcctgcagc ttctgaagaa cggtggcatc gtgatggtga 1050 cactgtccat gggggtgctg cagtgcaacc tgcttgctaa cgtgtccact 1100 gtggcagatc actttgacca catcagggca gtcattggat ctgagttcat 1150 cgggattggt ggaaattatg acgggactgg ccggttccct caggggctgg 1200 aggatgtgtc cacataccca gtcctgatag aggagttgct gagtcgtasc 1250 tggagcgagg aagagcttca aggtgtcctt cgtggaaacc tgctgcgggt 1300 cttcagacaa gtggaaaagg tgagagagga gagcagggcg cagagccccg 1350 tggaggctga gtttccatat gggcaactga gcacatcctg ccactcccac 1400 ctcgtgcctc agaatggaca ccaggctact catctggagg tgaccaagca 1450 gccaaccaat cgggtcccct ggaggtcctc aaatgcctcc ccataccttg 1500 ttccaggcct tgtggctgct gccaccatcc caaccttcac ccagtggctc 1550 tgctgacaca gtcggtcccc gcagaggtca ctgtggcaaa gcctcacaaa 1600 geoecetete etagtteatt cacaageata tgetgagaat aaacatgtta 1650 cacatggaaa a 1661

```
<210> 63
```

<220>

<221> unsure

<222> 196, 386

<223> unknown amino acid

<400> 63

Met Gln Pro Thr Gly Arg Glu Gly Ser Arg Ala Leu Ser Arg Arg $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Tyr Leu Arg Arg Leu Leu Leu Leu Leu Leu Leu Leu Leu Arg 20 25 30

Gln Pro Val Thr Arg Ala Glu Thr Thr Pro Gly Ala Pro Arg Ala 35 40 45

Leu Ser Thr Leu Gly Ser Pro Ser Leu Phe Thr Thr Pro Gly Val
50 55 60

<211> 487

<212> PRT

<213> Homo sapiens

Pr	o Se	r Al	a Le	u Thr 65	Thr	Pro	o Gl	y Le	u Th:	r Thi	r Pro	o Gl	у Т	nr Pro 75
Ly	s Th	r Le	u As	p Leu 80	Arg	Gly	y Arq	g Al	a Gli 85		a Let	ı Me	t Ar	g Ser 90
Phe	e Pr	o Le	u Va	l Asp 95	Gly	His	s Asr	ı Ası	D Let 100		Glr	ı Va	l Le	u Arg 105
Glr	n Ar	д Ту	r Ly	s Asn 110	Val	Let	ı Glr	Asp	> Val		Leu	Ar	g As	n Phe 120
Ser	His	s G1	y Glr	125	Ser	Leu	Asp	Arg	J Leu 130	Arg	Asp	Gl	y Le	u Val 135
Gly	Ala	a Gli	n Phe	Trp 140	Ser	Ala	Ser	Val	Ser 145	Cys	Gln	Sei	Gl:	n Asp 150
Gln	Thr	Ala	a Val	Arg 155	Leu	Ala	Leu	Glu	Gln 160	Ile	Asp	Leu	ılle	∋ His 165
Arg	Met	Cys	a Ala	Ser 170	Tyr	Ser	Glu	Leu	Glu 175	Leu	Val	Thr	Sei	Ala 180
Glu	Gly	Leu	ı Asn	Ser 185	Ser	Gln	Lys	Leu	Ala 190	Cys	Leu	Ile	G17	/ Val 195
Xaa	Gly	Gly	His	Ser 200	Leu	Asp	Ser	Ser	Leu 205	Ser	Val	Leu	Arg	Ser 210
				Gly 215					220					225
				Ala (235					240
				Ser (245					250					255
				Arg I 260					265					270
				Ile <i>P</i> 275					280					285
				His S 290					295					300
				Asp A 305					310					315
				Thr L 320				•	325					330
Leu A	Ala A	Asn	Val :	Ser T. 335	hr V	al A	Ala A	sp i	His E 340	Phe A	sp H	lis	Ile	Arg 345

```
Ala Val Ile Gly Ser Glu Phe Ile Gly Ile Gly Gly Asn Tyr Asp
                   350
   Gly Thr Gly Arg Phe Pro Gln Gly Leu Glu Asp Val Ser Thr Tyr
                                       370
  Pro Val Leu Ile Glu Glu Leu Leu Ser Arg Xaa Trp Ser Glu Glu
                   380
                                       385
  Glu Leu Gln Gly Val Leu Arg Gly Asn Leu Leu Arg Val Phe Arg
                   395
                                       400
  Gln Val Glu Lys Val Arg Glu Glu Ser Arg Ala Gln Ser Pro Val
                                       415
  Glu Ala Glu Phe Pro Tyr Gly Gln Leu Ser Thr Ser Cys His Ser
                                       430
  His Leu Val Pro Gln Asn Gly His Gln Ala Thr His Leu Glu Val
  Thr Lys Gln Pro Thr Asn Arg Val Pro Trp Arg Ser Ser Asn Ala
  Ser Pro Tyr Leu Val Pro Gly Leu Val Ala Ala Ala Thr Ile Pro
                  470
  Thr Phe Thr Gln Trp Leu Cys
<210> 64
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 64
 ccttcacctg cagtacacca tgggc 25
<210> 65
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 65
gtcacacaca gctctggcag ctgag 25
<210> 66
<211> 47
<212> DNA
<213> Artificial Sequence
```

<220> <223> Synthetic oligonucleotide probe <400> 66 ccaagttcag acaccacatg tacaccaacg tcagcggatt gacaagc 47

<210> 67

<211> 1564

<212> DNA

<213> Homo sapiens

<400> 67 tgctaggctc tgtcccacaa tgcacccgag agcaggagct gaaagcctct 50 aacacccaca gatccctcta tgactgcaat gtgaggtgtc cggctttgct 100 ggcccagcaa gcctgataag catgaagctc ttatctttgg tggctgtggt 150 cgggtgtttg ctggtgcccc cagctgaagc caacaagagt tctgaagata 200 tccggtgcaa atgcatctgt ccaccttata gaaacatcag tgggcacatt 250 tacaaccaga atgtatccca gaaggactgc aactgcctgc acgtggtgga 300 gcccatgcca gtgcctggcc atgacgtgga ggcctactgc ctgctgtgcg 350 agtgcaggta cgaggagcgc agcaccacca ccatcaaggt catcattgtc 400 atctacctgt ccgtggtggg tgccctgttg ctctacatgg ccttcctgat 450 gctggtggac cctctgatcc gaaagccgga tgcatacact gagcaactgc 500 acaatgagga ggagaatgag gatgeteget etatggeage agetgetgea 550 teectegggg gaeeeegage aaacacagte etggagegtg tggaaggtge 600 ccagcagcgg tggaagctgc aggtgcagga gcagcggaag acagtcttcg 650 atcggcacaa gatgctcagc tagatgggct ggtgtggttg ggtcaaggcc 700 ccaacaccat ggctgccagc ttccaggctg gacaaagcag ggggctactt 750 ctcccttccc tcggttccag tcttcccttt aaaagcctgt ggcatttttc 800 ctccttctcc ctaactttag aaatgttgta cttggctatt ttgattaggg 850 aagagggatg tggtctctga tctctgttgt cttcttgggt ctttggggtt 900 gaagggaggg ggaaggcagg ccagaaggga atggagacat tcgaggcggc 950 ctcaggagtg gatgcgatct gtctctcctg gctccactct tgccgccttc 1000 cagctctgag tcttgggaat gttgttaccc ttggaagata aagctgggtc 1050 ttcaggaact cagtgtctgg gaggaaagca tggcccagca ttcagcatgt 1100 gttcctttct gcagtggttc ttatcaccac ctccctccca gccccggcgc 1150 tgggcccct gagcccactg ggtcttcagg gtgcactgga agctggtgtt 1250
cgctgtcccc tgtgcacttc tcgcactgg gcatggagtg cccatgcata 1300
ctctgctgcc ggtccccta cctgcacttg aggggtctgg gcagtccctc 1350
ctctcccag tgtccacagt cactgagcca gacggtcggt tggaacatga 1400
gactcgaggc tgagcgtgga tctgaacacc acagcccctg tacttgggtt 1450
gcctcttgtc cctgaacttc gttgtaccag tgcatggaga gaaaattttg 1500
tcctcttgtc ttagagttgt gtgtaaatca aggaagccat cattaaattg 1550
ttttatttct ctca 1564

<210> 68

<211> 183

<212> PRT

<213> Homo sapiens

<400> 68

Met Lys Leu Leu Ser Leu Val Ala Val Val Gly Cys Leu Leu Val 1 5 10 15

Pro Pro Ala Glu Ala Asn Lys Ser Ser Glu Asp Ile Arg Cys Lys 20 25 30

Cys Ile Cys Pro Pro Tyr Arg Asn Ile Ser Gly His Ile Tyr Asn
35 40 45

Gln Asn Val Ser Gln Lys Asp Cys Asn Cys Leu His Val Val Glu
50 55 60

Pro Met Pro Val Pro Gly His Asp Val Glu Ala Tyr Cys Leu Leu 65 70 75

Cys Glu Cys Arg Tyr Glu Glu Arg Ser Thr Thr Thr Ile Lys Val 80 85 90

Ile Ile Val Ile Tyr Leu Ser Val Val Gly Ala Leu Leu Tyr 95 100 105

Met Ala Phe Leu Met Leu Val Asp Pro Leu Ile Arg Lys Pro Asp 110 115 120

Ala Tyr Thr Glu Gln Leu His Asn Glu Glu Glu Asn Glu Asp Ala 125 130 135

Arg Ser Met Ala Ala Ala Ala Ser Leu Gly Gly Pro Arg Ala 140 145 150

Asn Thr Val Leu Glu Arg Val Glu Gly Ala Gln Gln Arg Trp Lys
155
160
165

Met Leu Ser

<210> 69

<211> 3170

<212> DNA

<213> Homo sapiens

<400> 69

agcgggtctc gcttgggttc cgctaatttc tgtcctgagg cgtgagactg 50 agttcatagg gtcctgggtc cccgaaccag gaagggttga gggaacacaa 100 tetgcaagee eeegegaeee aagtgagggg eeeegtgttg gggteeteee 150 tecetttgca tteceaecce teegggettt gegtetteet ggggaecece 200 tegeegggag atggeeget tgatgeggag caaggatteg teetgetgee 250 tgctcctact ggccgcggtg ctgatggtgg agagctcaca gatcggcagt 300 tcgcgggcca aactcaactc catcaagtcc tctctgggcg gggagacgcc 350 tggtcaggcc gccaatcgat ctgcgggcat gtaccaagga ctggcattcg 400 gcggcagtaa gaagggcaaa aacctggggc aggcctaccc ttgtagcagt 450 gataaggagt gtgaagttgg gaggtattgc cacagtcccc accaaggatc 500 ateggeetge atggtgtgte ggagaaaaaa gaagegetge cacegagatg 550 gcatgtgctg ccccagtacc cgctgcaata atggcatctg tatcccagtt 600 actgaaagca tettaaceee teacateeeg getetggatg gtacteggea 650 cagagatega aaccaeggte attacteaaa ecatgaettg ggatggeaga 700 atctaggaag accacacat aagatgtcac atataaaagg gcatgaagga 750 gacccctgcc tacgatcatc agactgcatt gaagggtttt gctgtgctcg 800 tcatttctgg accaaaatct gcaaaccagt gctccatcag ggggaagtct 850 gtaccaaaca acgcaagaag ggttctcatg ggctggaaat tttccagcgt 900 tgcgactgtg cgaagggcct gtcttgcaaa gtatggaaag atgccaccta 950 ctcctccaaa gccagactcc atgtgtgtca gaaaatttga tcaccattga 1000 ggaacatcat caattgcaga ctgtgaagtt gtgtatttaa tgcattatag 1050 catggtggaa aataaggttc agatgcagaa gaatggctaa aataagaaac 1100

gtgataagaa tatagatgat cacaaaaagg gagaaagaaa acatgaactg 1150 aatagattag aatgggtgac aaatgcagtg cagccagtgt ttccattatg 1200 caacttgtct atgtaaataa tgtacacatt tgtggaaaat gctattatta 1250 agagaacaag cacacagtgg aaattactga tgagtagcat gtgactttcc 1300 aagagtttag gttgtgctgg aggagaggtt tccttcagat tgctgattgc 1350 ttatacaaat aacctacatg ccagatttct attcaacgtt agagtttaac 1400 aaaatactcc tagaataact tgttatacaa taggttctaa aaataaaatt 1450 gctaaacaag aaatgaaaac atggagcatt gttaatttac aacagaaaat 1500 taccttttga tttgtaacac tacttctgct gttcaatcaa gagtcttggt 1550 agataagaaa aaaatcagtc aatatttcca aataattgca aaataatggc 1600 cagttgttta ggaaggcctt taggaagaca aataaataac aaacaaacag 1650 ccacaaatac tttttttca aaattttagt tttacctgta attaataaga 1700 actgatacaa gacaaaaaca gttccttcag attctacgga atgacagtat 1750 atctctcttt atcctatgtg attcctgctc tgaatgcatt atattttcca 1800 aactataccc ataaattgtg actagtaaaa tacttacaca gagcagaatt 1850 ttcacagatg gcaaaaaaat ttaaagatgt ccaatatatg tgggaaaaga 1900 gctaacagag agatcattat ttcttaaaga ttggccataa cctatattt 1950 gatagaatta gattggtaaa tacatgtatt catacatact ctgtggtaat 2000 agagacttaa gctggatctg tactgcactg gagtaagcaa gaaaattggg 2050 aaaacttttt cgtttgttca ggttttggca acacatagat catatgtctg 2100 aggcacaagt tggctgttca tctttgaaac caggggatgc acagtctaaa 2150 tgaatatctg catgggattt gctatcataa tatttactat gcagatgaat 2200 tcagtgtgag gtcctgtgtc cgtactatcc tcaaattatt tattttatag 2250 tgctgagatc ctcaaataat ctcaatttca ggaggtttca caaaatgtac 2300 teetgaagta gacagagtag tgaggtttea ttgeeeteta taagettetg 2350 actagecaat ggcatcatee aattteette ecaaacetet geageatetg 2400 ctttattgcc aaagggctag tttcggtttt ctgcagccat tgcggttaaa 2450 aaatataagt aggataactt gtaaaacctg catattgcta atctatagac 2500 accacagttt ctaaattctt tgaaaccact ttactacttt ttttaaactt 2550

aactcagttc taaatacttt gtctgagca caaaacaata aaaggttatc 2600 ttatagtcgt gactttaaac tttttgtagac cacaattcac tttttagttt 2650 tctttactt aaatcccatc tgcagtctca aatttaagtt ctcccagtag 2700 agattgagtt tgagcctgta tatctattaa aaatttcaac ttcccacata 2750 tatttactaa gatgattaag acttacatt tctgcacagg tctgcaaaaa 2800 caaaaattat aaactagtcc atccaagaac caaagtttgt ataaacaggt 2850 tgctataagc ttgtgaaatg aaaatggaac atttcaatca aacatttcct 2900 ataaaacaat tattatatt acaatttggt ttctgcaata ttttcttat 2950 gtccaccctt ttaaaaatta ttattgaag taatttatt acaggaaatg 3000 ttaatgagat gtatttctt atagagatat ttcttacaga aagctttgta 3050 gcagaatata tttgcagcta ttgacttgt aattaggaa aaatgtataa 3100 taagataaaa tctattaaat ttttccctc taaaaactga aaaaaaaaa 3150 aaaaaaaaaa aaaaaaaaa aaaaaaaaa 3170

<210> 70

<211> 259

<212> PRT

<213> Homo sapiens

<400> 70

Met Ala Ala Leu Met Arg Ser Lys Asp Ser Ser Cys Cys Leu Leu 1 5 10 15

Leu Leu Ala Ala Val Leu Met Val Glu Ser Ser Gln Ile Gly Ser
20 25 30

Ser Arg Ala Lys Leu Asn Ser Ile Lys Ser Ser Leu Gly Glu 35 40 45

Thr Pro Gly Gln Ala Ala Asn Arg Ser Ala Gly Met Tyr Gln Gly 50 55 60

Leu Ala Phe Gly Gly Ser Lys Lys Gly Lys Asn Leu Gly Gln Ala
65 70 75

Tyr Pro Cys Ser Ser Asp Lys Glu Cys Glu Val Gly Arg Tyr Cys 80 85 90

His Ser Pro His Gln Gly Ser Ser Ala Cys Met Val Cys Arg Arg 95 100 105

Lys Lys Lys Arg Cys His Arg Asp Gly Met Cys Cys Pro Ser Thr 110 115 120

Arg Cys Asn Asn Gly Ile Cys Ile Pro Val Thr Glu Ser Ile Leu 125 135 Thr Pro His Ile Pro Ala Leu Asp Gly Thr Arg His Arg Asp Arg 140 145 Asn His Gly His Tyr Ser Asn His Asp Leu Gly Trp Gln Asn Leu 160 Gly Arg Pro His Thr Lys Met Ser His Ile Lys Gly His Glu Gly 175 180 Asp Pro Cys Leu Arg Ser Ser Asp Cys Ile Glu Gly Phe Cys Cys 190 195 Ala Arg His Phe Trp Thr Lys Ile Cys Lys Pro Val Leu His Gln 205 Gly Glu Val Cys Thr Lys Gln Arg Lys Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Asp Cys Ala Lys Gly Leu Ser Cys Lys Val Trp Lys Asp Ala Thr Tyr Ser Ser Lys Ala Arg Leu His Val

250

Cys Gln Lys Ile

<210> 71

<211> 1809

<212> DNA

<213> Homo sapiens

<400> 71

tetecaatetg etgacetegt gateegeetg accitegtaat ecacetacet 50 teggeeteeca aagtgitegg attacaggeg tegageeaceg egeeeggeea 100 acateacegtt titaaaaatt gattiettea aatteategge aaatatitee 150 ettecetita actiettateg teagaategag gaaggatage tegeatitati 200 tagteagtit teatigeata giaatatiti eatgitegata titeetaagti 250 atatititagi aatteatag tittagatia taggititaa eatacitegi 300 aaaaataciteg atgiettia aageeetiggg eagaaatiee giaatigitega 350 ggattigite tittateeee ettitaaagt eateegieet tegeeeaga 400 titiggaagage tigaaageee eaaaaatggea aacateacea geteeeaga 450 titiggaceag tigaaageee egagititiggg eeagititaee aecaceeeaa 500 gtacacagea gaatagtaea agteaceeeta eaacateacea titetiggace 550

ctcaagcccc caacatccca gtcctcagtc ctcagtcatc ttgacttcaa 600 atctcaacct gagccatccc cagttcttag ccagttgagc cagcgacaac 650 agcaccagag ccaggcagtc actgttcctc ctcctggttt ggagtccttt 700 ccttcccagg caaaacttcg agaatcaaca cctggagaca gtccctccac 750 tgtgaacaag cttttgcagc ttcccagcac gaccattgaa aatatctctg 800 tgtctgtcca ccagccacag cccaaacaca tcaaacttgc taagcggcgg 850 atacccccag cttctaagat cccagcttct gcagtggaaa tgcctggttc 900 agcagatgtc acaggattaa atgtgcagtt tggggctctg gaatttgggt 950 cagaaccttc tctctctgaa tttggatcag ctccaagcag tgaaaatagt 1000 aatcagattc ccatcagctt gtattcgaag tctttaagtg agcctttgaa 1050 tacatettta teaatgaeea gtgeagtaea gaaeteeaca tatacaaett 1100 ccgtcattac ctcctgcagt ctgacaagct catcactgaa ttctgctagt 1150 ccagtagcaa tgtcttcctc ttatgaccag agttctgtgc ataacaggat 1200 cccataccaa agccctgtga gttcatcaga gtcagctcca ggaaccatca 1250 tgaatggaca tggtggtggt cgaagtcagc agacactaga cagtaagtat 1300 agcagcaagc tactcttgtc atggctggtg ccaaccaaac agaggaagag 1350 gatagctcac gtgatgtgga aaacaccagt tggtcaatgg ctcattcgtt 1400 aaaaagcagc ccttttgctt ttttgttttt ggaccaggtg ttggctgtgg 1450 tgttattaga aatgtcttaa ccacagcaag aaggaggtgg tggtctcata 1500 ttcttctgcc ctaatcagac tgcaccacaa gtgcagcata cagtatgcat 1550 tttaaagatg cttgggccag gcggggtggc tgatgcccat aatcccagtg 1600 ctttgggggg ccaaggcagg cagattgccc aagctcagga gtttgagacc 1650 accetgggea acatggtgaa actetgtete tactaaaata egaaaaacta 1700 gccgggtgtg gtggcggcgc gtgcctgtaa tcccagctac ttgggaggct 1750 gaggcacaag aatcgcttga gccagcttgg gctacaaagt gagactccgt 1800 ctgaaaaga 1809

<210> 72

<211> 363

<212> PRT

<213> Homo sapiens

< 4	100	> 7:	2												
M	let 1	Cy:	s Ph	e Ly		a Lei	ı Gly	/ Arc	g Ası	n Sei		l Le	u Le	u Ar	g Ile 15
C	:ys	Sei	r Ph	e Il	e Pro 20	Leu)	ı Lev	ı Lys	s Se	r Sei 25		l Lei	u Gl	y Sei	r Gly 30
P	he	Gly	y Gl	u Lei	a Ala 35	a Pro	Pro	Lys	Met	Ala 40		ı Ile	e Th:	r Sei	Ser 45
G	ln	Ile	e Le	u Asp	Glr 50	Leu)	ı Lys	Ala	Pro	Ser 55		ı Gly	/ Gli	n Phe	Thr 60
Т	hr	Thr	Pro	o Sei	Thr 65	Gln	Gln	Asn	Ser	Thr 70		. His	s Pro) Thr	Thr 75
Т	hr	Thr	Sei	r Trp	Asp 80	Leu	Lys	Pro	Pro	Thr 85		Gln	sei	Ser	Val 90
L	eu	Ser	His	. Leu	Asp 95	Phe	Lys	Ser	Gln	Pro 100		Pro	Ser	Pro	Val 105
L	eu	Ser	Glr	ı Lev	Ser 110	Gln	Arg	Gln	Gln	His 115	Gln	Ser	Gln	Ala	Val 120
Tl	nr	Val	Pro	Pro	Pro 125	Gly	Leu	Glu	Ser	Phe 130	Pro	Ser	Gln	Ala	Lys 135
Le	eu	Arg	Glu	Ser	Thr 140	Pro	Gly	Asp	Ser	Pro 145	Ser	Thr	Val	Asn	Lys 150
L€	eu	Leu	Gln	Leu	Pro 155	Ser	Thr	Thr	Ile	Glu 160	Asn	Ile	Ser	Val	Ser 165
Vā	1	His	Gln	Pro	Gln 170	Pro	Lys	His	Ile	Lys 175	Leu	Ala	Lys	Arg	Arg 180
11	.e	Pro	Pro	Ala	Ser 185	Lys	Ile	Pro	Ala	Ser 190	Ala	Val	Glu	Met	Pro 195
Gl	У	Ser	Ala	Asp	Val 200	Thr	Gly	Leu	Asn	Val 205	Gln	Phe	Gly	Ala	Leu 210
Gl	u	Phe	Gly	Ser	Glu 215	Pro	Ser	Leu	Ser	Glu 220	Phe	Gly	Ser	Ala	Pro 225
Se	r	Ser	Glu	Asn	Ser 230	Asn	Gln	Ile	Pro	Ile 235	Ser	Leu	Tyr	Ser	Lys 240
Se	r :	Leu	Ser	Glu	Pro 245	Leu	Asn	Thr	Ser	Leu 250	Ser	Met	Thr	Ser	Ala 255
Va	1 (Gln	Asn	Ser	Thr 260	Tyr	Thr	Thr	Ser	Val 265	Ile	Thr	Ser	Cys	Ser 270
Le	u 7	Thr	Ser	Ser	Ser	Leu .	Asn :	Ser .	Ala	Ser	Pro	Val	Ala	Met	Ser

275 280 285

Ser Ser Tyr Asp Gln Ser Ser Val His Asn Arg Ile Pro Tyr Gln 290 295 300

Ser Pro Val Ser Ser Ser Glu Ser Ala Pro Gly Thr Ile Met Asn 305 310 315

Gly His Gly Gly Gly Arg Ser Gln Gln Thr Leu Asp Ser Lys Tyr 320 325 330

Ser Ser Lys Leu Leu Ser Trp Leu Val Pro Thr Lys Gln Arg 335 340 345

Lys Arg Ile Ala His Val Met Trp Lys Thr Pro Val Gly Gln Trp 350 355 360

Leu Ile Arg

<210> 73

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 73

aattcatggc aaatatttcc cttccc 26

<210> 74

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 74

tggtaaactg gcccaaactc gg 22

<210> 75

<211> 50

<212> DNA

<213> Artificial Sequence

<2205

<223> Synthetic oligonucleotide probe

<400> 75

ttaaagtcat ccgtccttgg ctcaggattt ggagagcttg caccaccaaa 50

<210> 76

<211> 1989

<212> DNA

<213> Homo sapiens

<400> 76 gccgagtggg acaaagcctg gggctgggcg ggggccatgg cgctgccatc 50 ccgaatcctg ctttggaaac ttgtgcttct gcagagctct gctgttctcc 100 tgcactcagc ggtggaggag acggacgcgg ggctgtacac ctgcaacctg 150 caccatcact actgccacct ctacgagage ctggccgtcc gcctggaggt 200 caccgacggc cccccggcca cccccgccta ctgggacggc gagaaggagg 250 tgctggcggt ggcgcgggc gcacccgcgc ttctgacctg cgtgaaccgc 300 gggcacgtgt ggaccgaccg gcacgtggag gaggctcaac aggtggtgca 350 ctgggaccgg cagccgccg gggtcccgca cgaccgcgcg gaccgcctgc 400 tggaceteta egegteggge gagegeegeg eetaegggee eettttetg 450 cgcgaccgcg tggctgtggg cgcggatgcc tttgagcgcg gtgacttctc 500 actgcgtatc gagccgctgg aggtcgccga cgagggcacc tactcctgcc 550 acctgcacca ccattactgt ggcctgcacg aacgccgcgt cttccacctg 600 acggtegeeg aaceceaege ggageegeee eecegggget eteegggeaa 650 eggetecage cacageggeg ceceaggeee agaeeeeaca etggegegeg 700 gccacaacgt catcaatgte ategteeceg agageegage ceaettette 750 cagcagctgg gctacgtgct ggccacgctg ctgctcttca tcctgctact 800 ggtcactgtc ctcctggccg cccgcaggcg ccgcggaggc tacgaatact 850 cggaccagaa gtcgggaaag tcaaagggga aggatgttaa cttggcggag 900 ttcgctgtgg ctgcagggga ccagatgctt tacaggagtg aggacatcca 950 gctagattac aaaaacaaca teetgaagga gagggeggag etggeecaca 1000 gccccctgcc tgccaagtac atcgacctag acaaagggtt ccggaaggag 1050 aactgcaaat agggaggccc tgggctcctg gctgggccag cagctgcacc 1100 tetectgtet gtgeteeteg gggeatetee tgatgeteeg gggeteaece 1150 cccttccage ggctggtccc gctttcctgg aatttggcct gggcgtatgc 1200 agaggccgcc tccacaccc tcccccaggg gcttggtggc agcatagccc 1250 ccacccctgc ggcctttgct cacgggtggc cctgcccacc cctggcacaa 1300 ccaaaatccc actgatgccc atcatgccct cagacccttc tgggctctgc 1350 ccgctggggg cctgaagaca ttcctggagg acactcccat cagaacctgg 1400

cagccccaaa actggggtca gcctcagggc aggagtccca ctcctcagg 1450 gctctgctcg tccggggctg ggagatgttc ctggaggagg acactcccat 1500 cagaacttgg cagccttgaa gttggggtca gcctcggcag gagtcccact 1550 cctcctgggg tgctgcctgc caccaagagc tccccacct gtaccaccat 1600 gtgggactcc aggcaccatc tgttctcccc agggacctgc tgacttgaat 1650 gccagccctt gctcctctgt gttgctttgg gccacctggg gctgcacccc 1700 ctgcccttc tctgcccat ccctacccta gccttgctct cagccacctt 1750 gatagtcact gggctccctg tgacttctga ccctgacacc cctcccttgg 1800 actctgcctg ggctggagtc tagggctggg gctacatttg gcttctgtac 1850 tggctgagga caggggaggg agtgaagttg gtttggggtg gcctgtgttg 1900 ccactctcag cacccacat ttgcatctgc tggtggacct gccaccatca 1950 caataaaagtc cccatctgat ttttaaaaaaa aaaaaaaaa 1989

<210> 77

<211> 341

<212> PRT

<213> Homo sapiens

<400> 77

Met Ala Leu Pro Ser Arg Ile Leu Leu Trp Lys Leu Val Leu Leu 1 5 10 15

Gln Ser Ser Ala Val Leu Leu His Ser Ala Val Glu Glu Thr Asp $20 \\ \hspace{1.5cm} 25 \\ \hspace{1.5cm} 30$

Ala Gly Leu Tyr Thr Cys Asn Leu His His His Tyr Cys His Leu 35 40 45

Tyr Glu Ser Leu Ala Val Arg Leu Glu Val Thr Asp Gly Pro Pro 50 55 60

Ala Thr Pro Ala Tyr Trp Asp Gly Glu Lys Glu Val Leu Ala Val 65 70 75

Ala Arg Gly Ala Pro Ala Leu Leu Thr Cys Val Asn Arg Gly His $80 \\ 85 \\ 90$

Val Trp Thr Asp Arg His Val Glu Glu Ala Gln Gln Val Val His 95 $$ 100 $$ 105

Trp Asp Arg Gln Pro Pro Gly Val Pro His Asp Arg Ala Asp Arg

Leu Leu Asp Leu Tyr Ala Ser Gly Glu Arg Arg Ala Tyr Gly Pro 125 130 135

Leu	Phe	Leu	Arg	Asp 140	Arg	Val	. Ala	Val	Gly 145		. Asp	Ala	Phe	Glu 150
Arg	Gly	Asp	Phe	Ser 155	Leu	Arg	Ile	Glu	Pro 160		Glu	val	Ala	Asp 165
Glu	Gly	Thr	Tyr	Ser 170	Cys	His	Leu	His	His 175		Tyr	Cys	Gly	Leu 180
His	Glu	Arg	Arg	Val 185	Phe	His	Leu	Thr	Val 190	Ala	Glu	Pro	His	Ala 195
Glu	Pro	Pro	Pro	Arg 200	Gly	Ser	Pro	Gly	Asn 205	Gly	Ser	Ser	His	Ser 210
Gly	Ala	Pro	Gly	Pro 215	Asp	Pro	Thr	Leu	Ala 220	Arg	Gly	His	Asn	Val 225
Ile	Asn	Val	Ile	Val 230	Pro	Glu	Ser	Arg	Ala 235	His	Phe	Phe	Gln	Gln 240
Leu	Gly	Tyr	Val	Leu 245	Ala	Thr	Leu	Leu	Leu 250	Phe	Ile	Leu	Leu	Leu 255
Val	Thr	Val	Leu	Leu 260	Ala	Ala	Arg	Arg	Arg 265	Arg	Gly	Gly	Tyr	Glu 270
Tyr	Ser	Asp	Gln	Lys 275	Ser	Gly	Lys	Ser	Lys 280	Gly	Lys	Asp	Val	Asn 285
Leu i	Ala	Glu	Phe	Ala 290	Val	Ala	Ala	Gly	Asp 295	Gln	Met	Leu	Tyr	Arg 300
Ser (Glu	Asp	Ile	Gln 305	Leu	Asp	Tyr	Lys	Asn 310	Asn	Ile	Leu	Lys	Glu 315
Arg A	Ala	Glu	Leu	Ala 320	His	Ser	Pro	Leu	Pro 325	Ala	Lys	Tyr	Ile	Asp 330
Leu A	Asp	Lys		Phe 335	Arg	Lys	Glu		Cys 340	Lys				
<210> <211> <212> <213>	224 DNA		pien	s										

<400> 78

cgccggaggc agcggcgg tggcgacgg gcgacatggc cgttgtctca 50 gaggacgact ttcagcacag ttcaaactcc acctacggaa ccacaagcag 100 cagtctccga gctgaccagg aggcactgct tgagaagctg ctggaccgcc 150 cgccccctgg cctgcagagg cccgaggacc gcttctgtgg cacatacatc 200

atcttcttca gcctgggcat tggcagtcta ctgccatgga acttctttat 250 cactgccaag gagtactgga tgttcaaact ccgcaactcc tccagcccag 300 ccaccgggga ggaccctgag ggctcagaca tcctgaacta ctttgagagc 350 taccttgccg ttgcctccac cgtgccctcc atgctgtgcc tggtggccaa 400 cttcctgctt gtcaacaggg ttgcagtcca catccgtgtc ctggcctcac 450 tgacggtcat cctggccatc ttcatggtga taactgcact ggtgaaggtg 500 gacactteet eetggaceeg tggtttttt geggteacea ttgtetgeat 550 ggtgatcctc agcggtgcct ccactgtctt cagcagcagc atctacggca 600 tgaccggctc ctttcctatg aggaactccc aagcactgat atcaggagga 650 gccatgggcg ggacggtcag cgccgtggcc tcattggtgg acttggctgc 700 atccagtgat gtgaggaaca gcgccctggc cttcttcctg acggccacca 750 tettectegt getetgeatg ggaetetace tgetgetgte caggetggag 800 tatgccaggt actacatgag gcctgttctt gcggcccatg tgttttctgg 850 tgaagaggag cttccccagg actccctcag tgccccttcg gtggcctcca 900 gattcattga ttcccacaca ccccctctcc gccccatcct gaagaagacg 950 gccagcctgg gcttctgtgt cacctacgtc ttcttcatca ccagcctcat 1000 ctaccccgcc gtctgcacca acatcgagtc cctcaacaag ggctcgggct 1050 cactgtggac caccaagttt ttcatccccc tcactacctt cctcctgtac 1100 aactttgctg acctatgtgg ccggcagctc accgcctgga tccaggtgcc 1150 agggcccaac agcaaggcgc tcccagggtt cgtgctcctc cggacctgcc 1200 teateceect ettegtgete tgtaactace ageeeegegt eeacetgaag 1250 actgtggtct tccagtccga tgtgtacccc gcactcctca gctccctgct 1300 ggggctcagc aacggctacc tcagcaccct ggccctcctc tacgggccta 1350 agattgtgcc cagggagctg gctgaggcca cgggagtggt gatgtccttt 1400 tatgtgtgct tgggcttaac actgggctca gcctgctcta ccctcctggt 1450 gcacctcatc tagaagggag gacacaagga cattggtgct tcagagcctt 1500 tgaagatgag aagaggtgc aggagggctg ggggccatgg aggaaaggcc 1550 taaagtttca cttggggaca gagagcagag cacactcggg cctcatccct 1600 cccaagatgc cagtgagcca cgtccatgcc cattccgtgc aaggcagata 1650

ttccagtcat attaacagaa cactcctgag acagttgaag aagaaatagc 1700 acaaatcagg ggtactccct tcacagctga tggttaacat tccaccttct 1750 ttctagccct tcaaagatgc tgccagtgtt cgccctagag ttattacaaa 1800 gccagtgcca aaacccagcc atgggctctt tgcaacctcc cagctgcgct 1850 cattccagct gacagcgaga tgcaagcaaa tgctcagctc tccttaccct 1900 gaaggggtct ccctgggaatg gaagtcccct ggcatggtca gtcctcaggc 1950 ccaagaactca agtgtgcaca gacccctgtg ttctgcgggt gaacaactgc 2000 cattccagag ggaccagagg gcctccctgt gcaagggatc aagcatgct 2000 ggcctggtt ttcaaaaaaa gagggatcct catgacctgg tggtctatgg 2150 cctggggtca gatgagggtc tttcagtgtt cctgtttaca acatgtcaaa 2200 gccattggtt caaggggtca ataaatactt gcgtattcaa aaa 2243

<210> 79

<211> 475

<212> PRT

<213> Homo sapiens

<400> 79

Met Ala Val Val Ser Glu Asp Asp Phe Gln His Ser Ser Asn Ser 1 5 10 15

Thr Tyr Gly Thr Thr Ser Ser Ser Leu Arg Ala Asp Gln Glu Ala 20 25 30

Leu Leu Glu Lys Leu Leu Asp Arg Pro Pro Pro Gly Leu Gln Arg
35 40 45

Pro Glu Asp Arg Phe Cys Gly Thr Tyr Ile Ile Phe Phe Ser Leu 50 55 60

Gly Ile Gly Ser Leu Leu Pro Trp Asn Phe Phe Ile Thr Ala Lys
65 70 75

Glu Tyr Trp Met Phe Lys Leu Arg Asn Ser Ser Ser Pro Ala Thr 80 85 90

Gly Glu Asp Pro Glu Gly Ser Asp Ile Leu Asn Tyr Phe Glu Ser 95 100 105

Tyr Leu Ala Val Ala Ser Thr Val Pro Ser Met Leu Cys Leu Val 110 115 120

Ala Asn Phe Leu Leu Val Asn Arg Val Ala Val His Ile Arg Val 125 130 135

Leu A	da Ser I	eu Thr Va 140	al Ile	Leu Al	a Ile Ph 145	ne Met V	al Ile	Thr 150
Ala L	eu Val L	ys Val As 155	p Thr	Ser Se	r Trp Th 160	ır Arg G	ly Phe	Phe
Ala V	al Thr I	le Val Cy 170	s Met	Val Il	e Leu Se 175	r Gly A	la Ser	Thr 180
Val P	he Ser S	er Ser Il 185	e Tyr	Gly Me	t Thr Gl 190	y Ser Pł	ne Pro	Met 195
Arg A:	sn Ser G	ln Ala Le 200	u Ile	Ser Gl	y Gly Al 205	a Met Gl	y Gly	Thr 210
Val Se	er Ala Va	al Ala Se 215	r Leu '	Val Asp	Leu Ala 220	a Ala Se	r Ser	Asp 225
Val Ar	rg Asn Se	er Ala Lei 230	ı Ala I	Phe Phe	Leu Thi	c Ala Th	r Ile	Phe 240
Leu Va	ıl Leu Cy	s Met Gly 245	/ Leu T	Tyr Leu	Leu Leu 250	ı Ser Ar	g Leu	Glu 255
Tyr Al	a Arg Ty	r Tyr Met 260	Arg F	Pro Val	Leu Ala 265	Ala Hi	s Val	Phe 270
Ser Gl	y Glu Gl	u Glu Leu 275	Pro G	3ln Asp	Ser Leu 280	Ser Ala	a Pro	Ser 285
Val Al	a Ser Ar	g Phe Ile 290	Asp S	er His	Thr Pro 295	Pro Lei		Pro 300
		s Thr Ala 305			310			315
Phe Phe	e Ile Thi	Ser Leu 320	Ile T	yr Pro	Ala Val 325	Cys Thr		Ile 330
Glu Ser	Leu Asr	Lys Gly 335	Ser G	ly Ser	Leu Trp 340	Thr Thr		?he 345
		Thr Thr 350			355		3	360
		Leu Thr 365			370		3	75
		Pro Gly 380			385		3	90
		Leu Cys 395			400		4	05
Thr Val	Val Phe	Gln Ser . 410	Asp Va	l Tyr	Pro Ala 415	Leu Leu		er 20

```
Leu Leu Gly Leu Ser Asn Gly Tyr Leu Ser Thr Leu Ala Leu Leu
                   425
                                       430
                                                            435
  Tyr Gly Pro Lys Ile Val Pro Arg Glu Leu Ala Glu Ala Thr Gly
                   440
  Val Val Met Ser Phe Tyr Val Cys Leu Gly Leu Thr Leu Gly Ser
                                       460
  Ala Cys Ser Thr Leu Leu Val His Leu Ile
                  470
                                       475
 <210> 80
 <211> 22
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
<400> 80
 ttttgcggtc accattgtct gc 22
<210> 81
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 81
 cgtaggtgac acagaagccc agg 23
<210> 82
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 82
tacggcatga ccggctcctt tcctatgagg aactcccagg cactgatat 49
<210> 83
<211> 1844
<212> DNA
<213> Homo sapiens
<400> 83
gacagtggag ggcagtggag aggaccgcgc tgtcctgctg tcaccaagag 50
ctggagacac catctcccac cgagagtcat ggccccattg gccctgcacc 100
tectegteet egteeceate etecteagee tggtggeete ceaggactgg 150
```

aaggetgaac geageeaaga eeeettegag aaatgeatge aggateetga 200 ctatgagcag ctgctcaagg tggtgacctg ggggctcaat cggaccctga 250 agccccagag ggtgattgtg gttggcgctg gtgtggccgg gctggtggcc 300 gccaaggtgc tcagcgatgc tggacacaag gtcaccatcc tggaggcaga 350 taacaggatc gggggccgca tcttcaccta ccgggaccag aacacgggct 400 ggattgggga gctgggagcc atgcgcatgc ccagctctca caggatcctc 450 cacaagetet gecagggeet ggggeteaac etgaceaagt teacceagta 500 cgacaagaac acgtggacgg aggtgcacga agtgaagctg cgcaactatg 550 tggtggagaa ggtgcccgag aagctgggct acgccttgcg tccccaggaa 600 aagggccact cgcccgaaga catctaccag atggctctca accaggccct 650 caaagacctc aaggcactgg gctgcagaaa ggcgatgaag aagtttgaaa 700 ggcacacgct cttggaatat cttctcgggg aggggaacct gagccggccg 750 gccgtgcagc ttctgggaga cgtgatgtcc gaggatggct tcttctatct 800 cagettegee gaggeeetee gggeeeacag etgeeteage gacagaetee 850 agtacageeg categtgggt ggetgggaee tgetgeegeg egegetgetg 900 agetegetgt cegggettgt getgttgaac gegeeegtgg tggegatgae 950 ccagggaccg cacgatgtgc acgtgcagat cgagacctct cccccggcgc 1000 ggaatctgaa ggtgctgaag gccgacgtgg tgctgctgac ggcgagcgga 1050 ccggcggtga agcgcatcac cttctcgccg ccgctgcccc gccacatgca 1100 ggaggcgctg cggaggctgc actacgtgcc ggccaccaag gtgttcctaa 1150 gcttccgcag gcccttctgg cgcgaggagc acattgaagg cggccactca 1200 aacaccgatc gecegtegeg catgatttte taccegeege egegegaggg 1250 cgcgctgctg ctggcctcgt acacgtggtc ggacgcggcg gcagcgttcg 1300 ccggcttgag ccgggaagag gcgttgcgct tggcgctcga cgacgtggcg 1350 gcattgcacg ggcctgtcgt gcgccagctc tgggacggca ccggcgtcgt 1400 caagcgttgg gcggaggacc agcacagcca gggtggcttt gtggtacagc 1450 cgccggcgct ctggcaaacc gaaaaggatg actggacggt cccttatggc 1500 cgcatctact ttgccggcga gcacaccgcc tacccgcacg gctgggtgga 1550

<210> 84

<211> 567

<212> PRT

<213> Homo sapiens

<400> 84

Met Ala Pro Leu Ala Leu His Leu Leu Val Leu Val Pro Ile Leu
1 5 10 15

Leu Ser Leu Val Ala Ser Gln Asp Trp Lys Ala Glu Arg Ser Gln $20 \\ 25 \\ 30$

Asp Pro Phe Glu Lys Cys Met Gln Asp Pro Asp Tyr Glu Gln Leu 35 40 45

Leu Lys Val Val Thr Trp Gly Leu Asn Arg Thr Leu Lys Pro Gln 50

Lys Val Leu Ser Asp Ala Gly His Lys Val Thr Ile Leu Glu Ala 80 85 90

Asp Asn Arg Ile Gly Gly Arg Ile Phe Thr Tyr Arg Asp Gln Asn 95 100 105

Thr Gly Trp Ile Gly Glu Leu Gly Ala Met Arg Met Pro Ser Ser 110 115 120

His Arg Ile Leu His Lys Leu Cys Gln Gly Leu Gly Leu Asn Leu 125 130 135

Thr Lys Phe Thr Gln Tyr Asp Lys Asn Thr Trp Thr Glu Val His 140 145 150

Glu Val Lys Leu Arg Asn Tyr Val Val Glu Lys Val Pro Glu Lys 155 160 165

Leu Gly Tyr Ala Leu Arg Pro Gln Glu Lys Gly His Ser Pro Glu 170 175 180

Asp Ile Tyr Gln Met Ala Leu Asn Gln Ala Leu Lys Asp Leu Lys 185 190 195

Ala :	Leu	Gly	у Су	s Ar 20	g Ly 0	s Al	a Me	t Ly	's Ly 20	s Ph 5	e Gl	u Ar	g Hi	s Thr 210
Leu 1	Leu	Glu	а Ту:	r Le 21	u Le 5	u Gl	y Gl	u Gl	y As 22		u Se	r Ar	g Pr	o Ala 225
Val (Gln	Leu	ı Leı	23	y As 0	p Va	l Me	t Se	r Gl 23		p Gl	y Ph	e Ph	e Tyr 240
Leu S	Ser	Phe	· Ala	a Gl: 24	u Ala	a Lei	u Ar	g Al	a Hi 25		r Cy	s Le	u Se	r Asp 255
Arg I	Seu	Gln	Туг	260 260	r Ar	g Ile	e Vai	l Gl	y Gl; 26	y Trp 5	As _l	p Le	u Le	u Pro 270
Arg A	lla	Leu	Leu	275 275	s Sei	Let	ı Sei	r Gl	y Lei 280		L Lei	ı Le	ı Ası	n Ala 285
Pro V	al	Val	Ala	Met 290	Thi	Glr	ı Gly	y Pro	O His 295	s Asp	Va]	l His	s Val	l Gln 300
Ile G				305)				310)				315
Asp V				320)				325	,				330
Thr P				335					340					345
Arg L				350					355					360
Arg P				365					370					375
Thr As				380					385					390
Gly Al				395					400					405
Ala Ph				410					415					420
Asp As				425					430					435
Asp Gl				440					445					450
Gln Gl				455					460					465
Lys As	p A:	sp '	ľrp	Thr 470	Val	Pro	Tyr	Gly	Arg 475	Ile	Tyr	Phe	Ala	Gly 480

Glu His Thr Ala Tyr Pro His Gly Trp Val Glu Thr Ala Val Lys \$485\$ \$490\$ \$495

Ser Ala Leu Arg Ala Ala Ile Lys Ile Asn Ser Arg Lys Gly Pro
500 505 510

Ala Ser Asp Thr Ala Ser Pro Glu Gly His Ala Ser Asp Met Glu 515 520 525

Gly Gln Gly His Val His Gly Val Ala Ser Ser Pro Ser His Asp 530 535 540

Leu Ala Lys Glu Glu Gly Ser His Pro Pro Val Gln Gly Gln Leu 545 550 555

Ser Leu Gln Asn Thr Thr His Thr Arg Thr Ser His 560 565

<210> 85

<211> 3316

<212> DNA

<213> Homo sapiens

<400> 85

ctgacatggc ctgactcggg acagctcaga gcagggcaga actggggaca 50 ctctgggccg gccttctgcc tgcatggacg ctctgaagcc accctgtctc 100 tggaggaacc acgagcgagg gaagaaggac agggactcgt gtggcaggaa 150 gaactcagag ccgggaagcc cccattcact agaagcactg agagatgcgg 200 ccccctcgca gggtctgaat ttcctgctgc tgttcacaaa gatgcttttt 250 atctttaact ttttgttttc cccacttccg accccggcgt tgatctgcat 300 cctgacattt ggagctgcca tcttcttgtg gctgatcacc agacctcaac 350 ccgtcttacc tcttcttgac ctgaacaatc agtctgtggg aattgaggga 400 ggagcacgga agggggtttc ccagaagaac aatgacctaa caagttgctg 450 cttctcagat gccaagacta tgtatgaggt tttccaaaga ggactcgctg 500 tgtctgacaa tgggccctgc ttgggatata gaaaaccaaa ccagccctac 550 agatggctat cttacaaaca ggtgtctgat agagcagagt acctgggttc 600 tetttgetea gaataggeea gagtggatea teteegaatt ggettgttae 700 acgtactcta tggtagctgt acctctgtat gacaccttgg gaccagaagc 750 catcgtacat attgtcaaca aggctgatat cgccatggtg atctgtgaca 800 caccccaaaa ggcattggtg ctgataggga atgtagagaa aggcttcacc 850

ccgagcctga aggtgatcat ccttatggac ccctttgatg atgacctgaa 900 gcaaagaggg gagaagagtg gaattgagat cttatcccta tatgatgctg 950 agaacctagg caaagagcac ttcagaaaac ctgtgcctcc tagcccagaa 1000 gacctgagcg tcatctgctt caccagtggg accacaggtg accccaaagg 1050 agccatgata acccatcaaa atattgtttc aaatgctgct gcctttctca 1100 aatgtgtgga gcatgcttat gagcccactc ctgatgatgt ggccatatcc 1150 tacctccctc tggctcatat gtttgagagg attgtacagg ctgttgtgta 1200 cagctgtgga gccagagttg gattcttcca aggggatatt cggttgctgg 1250 ctgacgacat gaagactttg aagcccacat tgtttcccgc ggtgcctcga 1300 ctccttaaca ggatctacga taaggtacaa aatgaggcca agacaccctt 1350 gaagaagttc ttgttgaagc tggctgtttc cagtaaattc aaagagcttc 1400 aaaagggtat catcaggcat gatagtttct gggacaagct catctttgca 1450 aagatccagg acagectggg eggaagggtt egtgtaattg teactggage 1500 tgcccccatg tccacttcag tcatgacatt cttccgggca gcaatgggat 1550 gtcaggtgta tgaagcttat ggtcaaacag aatgcacagg tggctgtaca 1600 tttacattac ctggggactg gacatcaggt cacgttgggg tgcccctggc 1650 ttgcaattac gtgaagctgg aagatgtggc tgacatgaac tactttacag 1700 tgaataatga aggagaggtc tgcatcaagg gtacaaacgt gttcaaagga 1750 tacctgaagg accctgagaa gacacaggaa gccctggaca gtgatggctg 1800 gcttcacaca ggagacattg gtcgctggct cccgaatgga actctgaaga 1850 tcatcgaccg taaaaagaac attttcaagc tggcccaagg agaatacatt 1900 gcaccagaga agatagaaaa tatctacaac aggagtcaac cagtgttaca 1950 aatttttgta cacggggaga gcttacggtc atccttagta ggagtggtgg 2000 ttcctgacac agatgtactt ccctcatttg cagccaagct tggggtgaag 2050 ggctcctttg aggaactgtg ccaaaaccaa gttgtaaggg aagccatttt 2100 agaagacttg cagaaaattg ggaaagaaag tggccttaaa acttttgaac 2150 aggtcaaagc catttttctt catccagagc cattttccat tgaaaatggg 2200 ctcttgacac caacattgaa agcaaagcga ggagagcttt ccaaatactt 2250

tcggacccaa attgacagcc tgtatgagca catccaggat taggataagg 2300 tacttaagta cctgccggcc cactgtgcac tgcttgtgag aaaatggatt 2350 aaaaactatt cttacatttg ttttgccttt cctcctattt ttttttaacc 2400 tgttaaactc taaagccata gcttttgttt tatattgaga catataatgt 2450 gtaaacttag ttcccaaata aatcaatcct gtctttccca tcttcgatgt 2500 tgctaatatt aaggetteag ggetaetttt ateaacatge etgtetteaa 2550 gateceagtt tatgttetgt gteetteete atgattteea aeettaatae 2600 tattagtaac cacaagttca agggtcaaag ggaccctctg tgccttcttc 2650 tttgttttgt gataaacata acttgccaac agtctctatg cttatttaca 2700 tettetaetg tteaaactaa gagattttta aattetgaaa aactgettae 2750 aattcatgtt ttctagccac tccacaaacc actaaaattt tagttttagc 2800 ctatcactca tgtcaatcat atctatgaga caaatgtctc cgatgctctt 2850 ctgcgtaaat taaattgtgt actgaaggga aaagtttgat cataccaaac 2900 atttcctaaa ctctctagtt agatatctga cttgggagta ttaaaaattg 2950 ggtctatgac atactgtcca aaaggaatgc tgttcttaaa gcattattta 3000 cagtaggaac tggggagtaa atctgttccc tacagtttgc tgctgagctg 3050 gaagctgtgg gggaaggagt tgacaggtgg gcccagtgaa cttttccagt 3100 aaatgaagca agcactgaat aaaaacctcc tgaactggga acaaagatct 3150 acaggcaagc aagatgccca cacaacaggc ttattttctg tgaaggaacc 3200 aactgatctc ccccaccctt ggattagagt tcctgctcta ccttacccac 3250 agataacaca tgttgtttct acttgtaaat gtaaagtctt taaaataaac 3300 tattacagat aaaaaa 3316

```
<210> 86
```

<400> 86

Met Asp Ala Leu Lys Pro Pro Cys Leu Trp Arg Asn His Glu Arg
1 5 10 15

Gly Lys Lys Asp Arg Asp Ser Cys Gly Arg Lys Asn Ser Glu Pro
20 25 30

Gly Ser Pro His Ser Leu Glu Ala Leu Arg Asp Ala Ala Pro Ser

<211> 739

<212> PRT

<213> Homo sapiens

Gl	n Gl	y Le	u As	n Phe	e Lei	u Lei	ı Leı	ı Phe	e Thi		s Me	t Le	u Ph	e Ile 60
Ph	e As	n Ph	e Le	u Phe	e Sei	r Pro) Let	ı Pro	7 Thi		o Ala	a Le	u Il	e Cys 75
Ile	e Le	u Th	r Ph	e Gly 80	/ Ala	a Ala	ıle	e Phe	e Leu 85		Let	ı Ile	∍ Thi	r Arg 90
Pro	Gl:	n Pr	o Va	l Leu 95	Pro	Leu	Leu	ı Asp	Leu 100		n Asr	ı Glı	n Sei	Val
Gl	7 Ile	e Gl	u Gly	y Gly 110	Ala	a Arg	Lys	: Gly	7 Val 115		Glr	Lys	s Asr	Asn 120
Asp	Let	ı Th	r Sei	Cys 125	Cys	Phe	Ser	Asp	Ala 130		Ťhr	Met	Tyr	Glu 135
Val	. Phe	e Gli	n Arg	Gly 140	Leu	Ala	Val	Ser	Asp 145		Gly	Pro	Cys	Leu 150
Gly	Tyr	Ar	g Lys	Pro 155	Asn	Gln	Pro	Tyr	Arg 160	Trp	Leu	Ser	Tyr	Lys 165
Gln	Val	Sei	: Asp	Arg 170	Ala	Glu	Tyr	Leu	Gly 175	Ser	Cys	Leu	Leu	His 180
Lys	Gly	Туг	Lys	Ser 185	Ser	Pro	Asp	Gln	Phe 190	Val	Gly	Ile	Phe	Ala 195
Gln	Asn	Arg	, Pro	Glu 200	Trp	Ile	Ile	Ser	Glu 205	Leu	Ala	Cys	Tyr	Thr 210
Tyr	Ser	Met	Val	Ala 215	Val	Pro	Leu	Tyr	Asp 220	Thr	Leu	Gly	Pro	Glu 225
Ala	Ile	Val	His	Ile 230	Val	Asn	Lys	Ala	Asp 235	Ile	Ala	Met	Val	Ile 240
Cys	Asp	Thr	Pro	Gln 245	Lys	Ala	Leu	Val	Leu 250	Ile	Gly	Asn	Val	Glu 255
Lys	Gly	Phe	Thr	Pro 260	Ser	Leu	Lys	Val	Ile 265	Ile	Leu	Met	Asp	Pro 270
Phe	Asp	Asp	Asp	Leu 275	Lys	Gln	Arg	Gly	Glu 280	Lys	Ser	Gly	Ile	Glu 285
Ile	Leu	Ser	Leu	Tyr 290	Asp	Ala	Glu	Asn	Leu 295	Gly	Lys	Glu	His	Phe 300
Arg	Lys	Pro	Val	Pro 305	Pro	Ser	Pro	Glu	Asp 310	Leu	Ser	Val	Ile	Cys 315
Phe	Thr	Ser	Gly	Thr	Thr	Gly	Asp	Pro	Lys	Gly .	Ala	Met	Ile	Thr

Tyr Ser Cys Gly Ala Arg Val Gly Phe Phe Gln Gly Asp Ile Arg 380 385 Leu Leu Ala Asp Asp Met Lys Thr Leu Lys Pro Thr Leu Phe Pro 400 Ala Val Pro Arg Leu Leu Asn Arg Ile Tyr Asp Lys Val Gln Asn Glu Ala Lys Thr Pro Leu Lys Lys Phe Leu Leu Lys Leu Ala Val 430 Ser Ser Lys Phe Lys Glu Leu Gln Lys Gly Ile Ile Arg His Asp 445 Ser Phe Trp Asp Lys Leu Ile Phe Ala Lys Ile Gln Asp Ser Leu 455 460 Gly Gly Arg Val Arg Val Ile Val Thr Gly Ala Ala Pro Met Ser 475 Thr Ser Val Met Thr Phe Phe Arg Ala Ala Met Gly Cys Gln Val 485 490 Tyr Glu Ala Tyr Gly Gln Thr Glu Cys Thr Gly Gly Cys Thr Phe 510 Thr Leu Pro Gly Asp Trp Thr Ser Gly His Val Gly Val Pro Leu Ala Cys Asn Tyr Val Lys Leu Glu Asp Val Ala Asp Met Asn Tyr Phe Thr Val Asn Asn Glu Gly Glu Val Cys Ile Lys Gly Thr Asn 545 555 Val Phe Lys Gly Tyr Leu Lys Asp Pro Glu Lys Thr Gln Glu Ala Leu Asp Ser Asp Gly Trp Leu His Thr Gly Asp Ile Gly Arg Trp 575 580 Leu Pro Asn Gly Thr Leu Lys Ile Ile Asp Arg Lys Lys Asn Ile 590

Phe Lys Leu Ala Gln Gly Glu Tyr Ile Ala Pro Glu Lys Ile Glu

Asn Ile Tyr Asn Arg Ser Gln Pro Val Leu Gln Ile Phe Val His $620 \hspace{1cm} 625 \hspace{1cm} 630$

Gly Glu Ser Leu Arg Ser Ser Leu Val Gly Val Val Pro Asp 635 640 645

Thr Asp Val Leu Pro Ser Phe Ala Ala Lys Leu Gly Val Lys Gly 650 655 660

Ser Phe Glu Glu Leu Cys Gln Asn Gln Val Val Arg Glu Ala Ile 665 670 675

Leu Glu Asp Leu Gln Lys Ile Gly Lys Glu Ser Gly Leu Lys Thr 680 685 690

Phe Glu Gln Val Lys Ala Ile Phe Leu His Pro Glu Pro Phe Ser 695 700 705

Ile Glu Asn Gly Leu Leu Thr Pro Thr Leu Lys Ala Lys Arg Gly 710 715 720

Glu Leu Ser Lys Tyr Phe Arg Thr Gln Ile Asp Ser Leu Tyr Glu
725 730 735

His Ile Gln Asp

<210> 87

<211> 2725

<212> DNA

<213> Homo sapiens

<400> 87

ggaggcggaggccggggcagccgggccgagcagtgagggccetagcggg50gcccgagcggggcccggggcccctaagccattcctgaagtcatgggctgg100ccaggacattggtgacccgccaatccggtatggacgactggaagcccagc150cccctcatcaagccctttggggctcggaagaagcggagctggtaccttac200ctggaagtataaactgacaaaccagcgggccctgcggagattctgtcaga250caggggccgtgcttttcctgctggtgactgtcattgtcaatatcaagttg300atcctggacactcggcgagccatcagtgaagccaatgaagacccagagcc350agagcaagactatgatgaggccetaggccgcctggagccccacggcgca400gaggcagtggtccccggcgggtcctggacctagaggtgtattcaagtcgc450agcaaagtatatgtggcagtggatggcaccacggtgctggaggatgaggc500ccgggagcagggccggggcatccatgtcattgtcctcaaccaggccacgg550

gccacgtgat ggcaaaacgt gtgtttgaca cgtactcacc tcatgaggat 600 gaggccatgg tgctattcct caacatggta gcgcccggcc gagtgctcat 650 ctgcactgtc aaggatgagg gctccttcca cctcaaggac acagccaagg 700 gacacatggg ccttcgtggg acgaaaagga ggtcctgtct tcggggagaa 800 acattctaag tcacctgccc tctcttcctg gggggaccca gtcctgctga 850 agacagatgt gccattgagc tcagcagaag aggcagagtg ccactgggca 900 gacacagage tgaacegteg eegeeggege ttetgeagea aagttgaggg 950 ctatggaagt gtatgcagct gcaaggaccc cacacccatc gagttcagcc 1000 ctgacccact cccagacaac aaggtcctca atgtgcctgt ggctgtcatt 1050 gcagggaacc gacccaatta cctgtacagg atgctgcgct ctctgctttc 1100 agcccagggg gtgtctcctc agatgataac agttttcatt gacggctact 1150 atgaggaacc catggatgtg gtggcactgt ttggtctgag gggcatccag 1200 catactecea teageateaa gaatgeeege gtgteteage actacaagge 1250 cageeteact gecaetttea acetgtttee ggaggeeaag tttgetgtgg 1300 ttctggaaga ggacctggac attgctgtgg attttttcag tttcctgagc 1350 caatccatcc acctactgga ggaggatgac agcctgtact gcatctctgc 1400 ctggaatgac caggggtatg aacacacggc tgaggaccca gcactactgt 1450 accgtgtgga gaccatgcct gggctgggct gggtgctcag gaggtccttg 1500 tacaaggagg agcttgagcc caagtggcct acaccggaaa agctctggga 1550 ttgggacatg tggatgcgga tgcctgaaca acgccggggc cgagagtgca 1600 tcatccctga cgtttcccga tcctaccact ttggcatcgt cggcctcaac 1650 atgaatgget actttcacga ggeetaette aagaageaca agttcaacae 1700 ggttccaggt gtccagctca ggaatgtgga cagtctgaag aaagaagctt 1750 atgaagtgga agttcacagg ctgctcagtg aggctgaggt tctggaccac 1800 agcaagaacc cttgtgaaga ctctttcctg ccagacacag agggccacac 1850 ctacgtggcc tttattcgaa tggagaaaga tgatgacttc accacctgga 1900 cccagcttgc caagtgcctc catatctggg acctggatgt gcgtggcaac 1950 catcggggcc tgtggagatt gtttcggaag aagaaccact tcctggtggt 2000

```
<210> 88
```

<400> 88

Met	Asp	Asp	Trp	Lys	Pro	Ser	Pro	Leu	Ile	Lys	Pro	Phe	Gly	Ala
1				5					10				_	15

Arg Lys Lys Arg Ser Trp Tyr Leu Thr Trp Lys Tyr Lys Leu Thr 20 25 30

Asn Gln Arg Ala Leu Arg Arg Phe Cys Gln Thr Gly Ala Val Leu 35 40 45

Phe Leu Leu Val Thr Val Ile Val Asn Ile Lys Leu Ile Leu Asp 50 55 60

Thr Arg Arg Ala Ile Ser Glu Ala Asn Glu Asp Pro Glu Pro Glu 65 7.0 75

Gln Asp Tyr Asp Glu Ala Leu Gly Arg Leu Glu Pro Pro Arg Arg

Arg Gly Ser Gly Pro Arg Arg Val Leu Asp Val Glu Val Tyr Ser 95 100 105

<211> 660

<212> PRT

<213> Homo sapiens

	Sei	c Ar	g Se:	r Ly	s Vai	l Tyı O	c Val	l Ala	a Val	l Ası 11		y Th	r Th	r Va	l Leu 120	
ı	Glu	ı Asp	o Gli	ı Ala	a Arg	g Glu 5	ı Glr	n Gly	y Aro	g Gly 130		e Hi	s Vai	l Il	e Val 135	
					140)				145	5				2 Asp 150	
					155	,				160)				1 Asn 165	
					170	ł				175	•				Glu 180	
					185					190					Ser 195	
					200					205					Trp 210 His	
					215					220					Leu	
					230	Leu				235					240	
					Glu	Leu				250 Arg					255	
L	ys	Val	Glu	Gly	260 Tyr 275	Gly	Ser	Val	Cys	265 Ser 280	Cys	Lys	Asp	Pro		
P.	ro	Ile	Glu	Phe	Ser 290	Pro	Asp	Pro	Leu		Asp	Asn	Lys	Val	285 Leu 300	
A:	sn	Val	Pro	Val	Ala 305	Val	Ile	Ala	Gly	Asn 310	Arg	Pro	Asn	Tyr		
T	yr	Arg	Met	Leu	Arg 320	Ser	Leu	Leu	Ser	Ala 325	Gln	Gly	Val	Ser	Pro 330	
					335	Phe				340					345	
					350	Phe				355					360	
					365	Ala				370					375	
Le	u '	Thr .	Ala	Thr	Phe 380	Asn .	Leu	Phe	Pro	Glu 385	Ala	Lys	Phe	Ala	Val 390	

Val	. Leu	Glu	Glu	Asp 395	Leu	Asp	Ile	Ala	Val 400	Asp	Phe	Phe	Ser	Phe 405
Leu	Ser	Gln	Ser	Ile 410	His	Leu	Leu	Glu	Glu 415	Asp	Asp	Ser	Leu	Tyr 420
Cys	Ile	Ser	Ala	Trp 425	Asn	Asp	Gln	Gly	Tyr 430	Glu	His	Thr	Ala	Glu 435
Asp	Pro	Ala	Leu	Leu 440	Tyr	Arg	Val	Glu	Thr 445	Met	Pro	Gly	Leu	Gly 450
Trp	Val	Leu	Arg	Arg 455	Ser	Leu	Tyr	Lys	Glu 460	Glu	Leu	Glu	Pro	Lys 465
Trp	Pro	Thr	Pro	Glu 470	Lys	Leu	Trp	Asp	Trp 475	Asp	Met	Trp	Met	Arg 480
Met	Pro	Glu	Gln	Arg 485	Arg	Gly	Arg	Glu	Cys 490	Ile	Ile	Pro	Asp	Val 495
Ser	Arg	Ser	Tyr	His 500	Phe	Gly	Ile	Val	Gly 505	Leu	Asn	Met	Asn	Gly 510
Tyr	Phe	His	Glu	Ala 515	Tyr	Phe	Lys	Lys	His 520	Lys	Phe	Asn	Thr	Val 525
Pro	Gly	Val	Gln	Leu 530	Arg	Asn	Val	Asp	Ser 535	Leu	Lys	Lys	Glu	Ala 540
Tyr	Glu	Val	Glu	Val 545	His	Arg	Leu	Leu	Ser 550	Glu	Ala	Glu	Val	Leu 555
Asp	His	Ser	Lys	Asn 560	Pro	Cys	Glu	Asp	Ser 565	Phe	Leu	Pro	Asp	Thr 570
Glu	Gly	His	Thr	Tyr 575	Val	Ala	Phe	Ile	Arg 580	Met	Glu	Lys	Asp	Asp 585
Asp	Phe	Thr	Thr	Trp 590	Thr	Gln	Leu	Ala	Lys 595	Cys	Leu	His	Ile	Trp 600
Asp	Leu	Asp	Val	Arg 605	Gly	Asn	His	Arg	Gly 610	Leu	Trp	Arg	Leu	Phe 615
Arg	Lys	Lys	Asn	His 620	Phe	Leu	Val	Val	Gly 625	Val	Pro	Ala	Ser	Pro 630
Tyr	Ser	Val	Lys	Lys 635	Pro	Pro	Ser	Val	Thr 640	Pro	Ile	Phe	Leu	Glu 645
Pro	Pro	Pro	Lys	Glu 650	Glu	Gly	Ala	Pro	Gly 655	Ala	Pro	Glu	Gln	Thr 660
<210>	89													

```
<212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 89
  gatggcaaaa cgtgtgtttg acacg 25
 <210> 90
 <211> 22
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 90
 cctcaaccag gccacgggcc ac 22
<210> 91
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 91
 cccaggcaga gatgcagtac aggc 24
<210> 92
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 92
cctccagtag gtggatggat tggctc 26
<210> 93
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 93
ctcacctcat gaggatgagg ccatggtgct attcctcaac atggtag 47
<210> 94
<211> 3037
<212> DNA
<213> Homo sapiens
```

<400> 94 cggacgcgtg ggctgctggt gggaaggcct aaagaactgg aaagcccact 50 ctcttggaac caccacact gtttaaagaa cctaagcacc atttaaagcc 100 actggaaatt tgttgtctag tggttgtggg tgaataaagg agggcagaat 150 ggatgatttc atctccatta gcctgctgtc tctggctatg ttggtgggat 200 gttacgtggc cggaatcatt cccttggctg ttaatttctc agaggaacga 250 ctgaagetgg tgactgtttt gggtgetgge ettetetgtg gaactgetet 300 ggcagtcatc gtgcctgaag gagtacatgc cctttatgaa gatattcttg 350 agggaaaaca ccaccaagca agtgaaacac ataatgtgat tgcatcagac 400 aaagcagcag aaaaatcagt tgtccatgaa catgagcaca gccacgacca 450 cacacagetg catgeetata ttggtgttte cetegttetg ggettegttt 500 tcatgttgct ggtggaccag attggtaact cccatgtgca ttctactgac 550 gatccagaag cagcaaggtc tagcaattcc aaaatcacca ccacgctggg 600 tctggttgtc catgctgcag ctgatggtgt tgctttggga gcagcagcat 650 ctacttcaca gaccagtgtc cagttaattg tgtttgtggc aatcatgcta 700 cataaggcac cagctgcttt tggactggtt tccttcttga tgcatgctgg 750 cttagagegg aategaatea gaaageaett getggtettt geattggeag 800 caccagttat gtccatggtg acatacttag gactgagtaa gagcagtaaa 850 gaagcccttt cagaggtgaa cgccacggga gtggccatgc ttttctctgc 900 cgggacattt ctttatgttg ccacagtaca tgtcctccct gaggtgggcg 950 gaatagggca cagccacaag cccgatgcca cgggagggag aggcctcagc 1000 cgcctggaag tggcagccct ggttctgggt tgcctcatcc ctctcatcct 1050 gtcagtagga caccagcatt aaatgttcaa ggtccagcct tggtccaggg 1100 ccgtttgcca tccagtgaga acagccggca cgtgacagct actcacttcc 1150 tcagtctctt gtctcacctt gcgcatctct acatgtattc ctagagtcca 1200 gaggggaggt gaggttaaaa cctgagtaat ggaaaagctt ttagagtaga 1250 aacacattta cgttgcagtt agctatagac atcccattgt gttatctttt 1300 aaaaggccct tgacattttg cgttttaata tttctcttaa ccctattctc 1350 agggaagatg gaatttagtt ttaaggaaaa gaggagaact tcatactcac 1400

aatgaaatag tgattatgaa aatacagtgt tctgtaatta agctatgtct 1450 ctttcttctt agtttagagg ctctgctact ttatccattg atttttaaca 1500 tggttcccac catgtaagac tggtgcttta gcatctatgc cacatgcgtt 1550 gatggaaggt catagcaccc actcacttag atgctaaagg tgattctagt 1600 taatctggga ttagggtcag gaaaatgata gcaagacaca ttgaaagctc 1650 tctttatact caaaagagat atccattgaa aagggatgtc tagagggatt 1700 taaacagete etttggeacg tgeetetetg aatecageet geeatteeat 1750 caaatggagc aggagggtg ggaggagctt ctaaagaggt gactggtatt 1800 ttgtagcatt ccttgtcaag ttctcctttg cagaatacct gtctccacat 1850 teetagagag gageeaagtt etagtagttt eagttetagg ettteettea 1900 agaacagtca gatcacaaag tgtctttgga aattaaggga tattaaattt 1950 taagtgattt ttggatggtt attgatatct ttgtagtagc tttttttaaa 2000 agactaccaa aatgtatggt tgtccttttt ttttgttttt tttttttta 2050 attatttctc ttagcagatc agcaatccct ctagggacct aaatactagg 2100 tcagctttgg cgacactgtg tcttctcaca taaccacctg tagcaagatg 2150 gatcataaat gagaagtgtt tgcctattga tttaaagctt attggaatca 2200 tgtctcttgt ctcttcgtct tttctttgct tttcttctaa cttttccctc 2250 tageetetee tegeeacaat ttgetgetta etgetggtgt taatatttgt 2300 gtgggatgaa ttcttatcag gacaaccact tctcgaactg taataatgaa 2350 gataataata totttattot ttatoooott caaagaaatt acotttgtgt 2400 caaatgccgc tttgttgagc ccttaaaata ccacctcctc atgtgtaaat 2450 tgacacaatc actaatctgg taatttaaac aattgagata gcaaaagtgt 2500 ttaacagact aggataattt tttttcata tttgccaaaa tttttgtaaa 2550 ccctgtcttg tcaaataagt gtataatatt gtattattaa tttattttta 2600 ctttctatac catttcaaaa cacattacac taagggggaa ccaagactag 2650 tttcttcagg gcagtggacg tagtagtttg taaaaacgtt ttctatgacg 2700 cataagctag catgcctatg atttatttcc ttcatgaatt tgtcactgga 2750 tcagcagctg tggaaataaa gcttgtgagc cctctgctgg ccacagtgag 2800

gaaagtagca caaataggat acagttgtat gtagtcattg gcaacaattg 2850 catacaattt tactaccaag agaaggtata gtatggaaag tccaaatgac 2900 ttccttgatt ggatgttaac agctgactgg tgtgagactt gaggtttcat 2950 ctagtccttc aaaactatat ggttgcctag attctctctg gaaactgact 3000 ttgtcaaata aatagcagat tgtagtgtca aaaaaaa 3037

<210> 95

<211> 307

<212> PRT

<213> Homo sapiens

<400> 95

Met Asp Asp Phe Ile Ser Ile Ser Leu Leu Ser Leu Ala Met Leu 1 5 10 15

Val Gly Cys Tyr Val Ala Gly Ile Ile Pro Leu Ala Val Asn Phe 20 25 30

Ser Glu Glu Arg Leu Lys Leu Val Thr Val Leu Gly Ala Gly Leu 35 40 45

Leu Cys Gly Thr Ala Leu Ala Val Ile Val Pro Glu Gly Val His 50 55 60

Ala Leu Tyr Glu Asp Ile Leu Glu Gly Lys His His Gln Ala Ser
65 70 75

Glu Thr His Asn Val Ile Ala Ser Asp Lys Ala Ala Glu Lys Ser 80 85 90

Val Val His Glu His Glu His Ser His Asp His Thr Gln Leu His
95 100 105

Ala Tyr Ile Gly Val Ser Leu Val Leu Gly Phe Val Phe Met Leu 110 115 120

Leu Val Asp Gln Ile Gly Asn Ser His Val His Ser Thr Asp Asp 125 130 135

Pro Glu Ala Ala Arg Ser Ser Asn Ser Lys Ile Thr Thr Leu 140 145 150

Gly Leu Val Val His Ala Ala Ala Asp Gly Val Ala Leu Gly Ala 155 160 165

Ala Ala Ser Thr Ser Gln Thr Ser Val Gln Leu Ile Val Phe Val 170 175 180

Ala Ile Met Leu His Lys Ala Pro Ala Ala Phe Gly Leu Val Ser 185 190 195

Phe Leu Met His Ala Gly Leu Glu Arg Asn Arg Ile Arg Lys His 200 205 210

```
Leu Leu Val Phe Ala Leu Ala Ala Pro Val Met Ser Met Val Thr
                   215
                                       220
                                                            225
  Tyr Leu Gly Leu Ser Lys Ser Ser Lys Glu Ala Leu Ser Glu Val
                   230
  Asn Ala Thr Gly Val Ala Met Leu Phe Ser Ala Gly Thr Phe Leu
                   245
                                       250
  Tyr Val Ala Thr Val His Val Leu Pro Glu Val Gly Gly Ile Gly
                   260
                                       265
  His Ser His Lys Pro Asp Ala Thr Gly Gly Arg Gly Leu Ser Arg
                  275
  Leu Glu Val Ala Ala Leu Val Leu Gly Cys Leu Ile Pro Leu Ile
                  290
  Leu Ser Val Gly His Gln His
                  305
 <210> 96
 <211> 25
 <212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 96
 gttgtgggtg aataaaggag ggcag 25
<210> 97
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 97
 ctgtgctcat gttcatggac aactg 25
<210> 98
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 98
ggatgatttc atctccatta gcctgctgtc tctggctatg ttggtgggat 50
<210> 99
<211> 1429
```

<400> 99 getegaggee ggeggegge ggagagegae eegggeggee tegtageggg 50 gccccggatc cccgagtggc ggccggagcc tcgaaaagag attctcagcg 100 ctgattttga gatgatgggc ttgggaaacg ggcgtcgcag catgaagtcg 150 cegeceeteg tgetggeege eetggtggee tgeatcateg tettgggett 200 caactactgg attgcgaget eceggagegt ggacetecag acaeggatea 250 tggagctgga aggcagggtc cgcagggcgg ctgcagagag aggcgccgtg 300 gagctgaaga agaacgagtt ccagggagag ctggagaagc agcgggagca 350 gcttgacaaa atccagtcca gccacaactt ccagctggag agcgtcaaca 400 agctgtacca ggacgaaaag gcggttttgg tgaataacat caccacaggt 450 gagaggetea teegagtget geaagaceag ttaaagaeee tgeagaggaa 500 ttacggcagg ctgcagcagg atgtcctcca gtttcagaag aaccagacca 550 acctggagag gaagttetee tacgacetga gecagtgeat caatcagatg 600 aaggaggtga aggaacagtg tgaggagcga atagaagagg tcaccaaaaa 650 ggggaatgaa gctgtagctt ccagagacct gagtgaaaac aacgaccaga 700 gacagcaget ccaagceete agtgageete ageceagget geaggeagea 750 ggcctgccac acacagaggt gccacaaggg aagggaaacg tgcttggtaa 800 cagcaagtcc cagacaccag cccccagttc cgaagtggtt ttggattcaa 850 agagacaagt tgagaaagag gaaaccaatg agatccaggt ggtgaatgag 900 gageeteaga gggacagget geegeaggag eeaggeeggg ageaggtggt 950 ggaagacaga cctgtaggtg gaagaggctt cgggggagcc ggagaactgg 1000 gecagaeeee acaggtgeag getgeeetgt eagtgageea ggaaaateea 1050 gagatggagg gccctgagcg agaccagctt gtcatccccg acggacagga 1100 ggaggagcag gaagctgccg gggaagggag aaaccagcag aaactgagag 1150 gagaagatga ctacaacatg gatgaaaatg aagcagaatc tgagacagac 1200 aagcaagcag ccctggcagg gaatgacaga aacatagatg tttttaatgt 1250 tgaagatcag aaaagagaca ccataaattt acttgatcag cgtgaaaagc 1300 ggaatcatac actctgaatt gaactggaat cacatatttc acaacagggc 1350

cgaagagatg actataaaat gttcatgagg gactgaatac tgaaaactgt 1400 gaaatgtact aaataaaatg tacatctga 1429

ر		9		-			
<21	.0>	100)				
<21	1>	401					
<21	2>	PRI	1				
<21	3>	Hon	10	sa	pie	ens	;
< 40	0>	100)				
Me	t M	let	Gl	У	Let	1 G	j
	1						

Met Met Gly Leu Gly Asn Gly Arg Arg Ser Met Lys Ser Pro Pro
1 5 10 15

Leu Val Leu Ala Ala Leu Val Ala Cys Ile Ile Val Leu Gly Phe 20 25 30

Asn Tyr Trp Ile Ala Ser Ser Arg Ser Val Asp Leu Gln Thr Arg 35 40 45

Ile Met Glu Leu Glu Gly Arg Val Arg Arg Ala Ala Glu Arg
50 55 60

Gly Ala Val Glu Leu Lys Lys Asn Glu Phe Gln Gly Glu Leu Glu 65 70 75

Lys Gln Arg Glu Gln Leu Asp Lys Ile Gln Ser Ser His Asn Phe 80 85 90

Gln Leu Glu Ser Val Asn Lys Leu Tyr Gln Asp Glu Lys Ala Val 95 100 105

Leu Val Asn Asn Ile Thr Thr Gly Glu Arg Leu Ile Arg Val Leu 110 115 120

Gln Asp Gln Leu Lys Thr Leu Gln Arg Asn Tyr Gly Arg Leu Gln 125 130 135

Gln Asp Val Leu Gln Phe Gln Lys Asn Gln Thr Asn Leu Glu Arg 140 145 150

Lys Phe Ser Tyr Asp Leu Ser Gln Cys Ile Asn Gln Met Lys Glu 155 160 165

Val Lys Glu Glu Cys Glu Glu Arg Ile Glu Glu Val Thr Lys Lys 170 \$175\$

Gly Asn Glu Ala Val Ala Ser Arg Asp Leu Ser Glu Asn Asn Asp 185 190 195

Gln Arg Gln Gln Leu Gln Ala Leu Ser Glu Pro Gln Pro Arg Leu 200 205 210

Gln Ala Ala Gly Leu Pro His Thr Glu Val Pro Gln Gly Lys Gly 215 220 225

Asn Val Leu Gly Asn Ser Lys Ser Gln Thr Pro Ala Pro Ser Ser

				230					235					240
Glu	Val	Val	Leu	Asp 245	Ser	Lys	Arg	Gln	Val 250	Glu	Lys	Glu	Glu	Thr 255
Asn	Glu	Ile	Gln	Val 260	Val	Asn	Glu	Glu	Pro 265	Gln	Arg	Asp	Arg	Leu 270
Pro	Gln	Glu	Pro	Gly 275	Arg	Glu	Gln	Val	Val 280	Glu	Asp	Arg	Pro	Val 285
Gly	Gly	Arg	Gly	Phe 290	Gly	Gly	Ala	Gly	Glu 295	Leu	Gly	Gln	Thr	Pro 300
Gln	Val	Gln	Ala	Ala 305	Leu	Ser	Val	Ser	Gln 310	Glu	Asn	Pro	Glu	Met 315
Glu	Gly	Pro	Glu	Arg 320	Asp	Gln	Leu	Val	Ile 325	Pro	Asp	Gly	Gln	Glu 330
Glu	Glu	Gln	Glu	Ala 335	Ala	Gly	Glu	Gly	Arg 340	Asn	Gln	Gln	Lys	Leu 345
Arg	Gly	Glu	Asp	Asp 350	Tyr	Asn	Met	Asp	Glu 355	Asn	Glu	Ala	Glu	Ser 360
Glu	Thr	Asp	Lys	Gln 365	Ala	Ala	Leu	Ala	Gly 370	Asn	Asp	Arg	Asn	Ile 375
Asp	Val	Phe	Asn	Val 380	Glu	Asp	Gln	Lys	Arg 385	Asp	Thr	Ile	Asn	Leu 390
Leu .	Asp	Gln	Arg	Glu 395	Lys	Arg	Asn		Thr 400	Leu				
<210><211><211><212><213>	367 DNA	1	pien	S										
<400>														
ggat	gcag	aa a	gcct	cagt	g tt	gctc	ttcc	tgg	cctg	ggt	ctgc	ttcc	tc 5	0
ttcta	acgc	tg g	catt	gccc.	t ct	tcac	cagt	ggc.	ttcc	tgc ·	tcac	ccgt	tt 1	00
ggago	ctca	cc aa	acca	tagca	a gci	tgcc	aaga	gcc	ccca	ggc (cctg	ggtc	cc 1	50

tgccatgggg gagccaaggg aaacctgggg cctgctggat ggcttcccga 200

ttttcgcggg ttgtgttggt gctgatagat gctctgcgat ttgacttcgc 250

ccagecccag catteacacg tgectagaga geeteetgte teectaeeet 300

tcctgggcaa actaagctcc ttgcagagga tcctggagat tcagccccac 350

catgecegge tetacegate teaggttgae cetectacea ecaecatgea 400

gcgcctcaag gccctcacca ctggctcact gcctaccttt attgatgctg 450 gtagtaactt cgccagccac gccatagtgg aagacaatct cattaagcag 500 ctcaccagtg caggaaggcg tgtagtcttc atgggagatg atacctggaa 550 agaccttttc cctggtgctt tctccaaagc tttcttcttc ccatccttca 600 atgtcagaga cctagacaca gtggacaatg gcatcctgga acacctctac 650 cccaccatgg acagtggtga atgggacgtg ctgattgctc acttcctggg 700 tgtggaccac tgtggccaca agcatggccc tcaccaccct gaaatggcca 750 agaaacttag ccagatggac caggtgatcc agggacttgt ggagcgtctg 800 gagaatgaca cactgctggt agtggctggg gaccatggga tgaccacaaa 850 tggagaccat ggaggggaca gtgagctgga ggtctcagct gctctcttc 900 tgtatagece caeageagte tteeceagea eeceaceaga ggagecagag 950 gtgattcctc aagttagcct tgtgcccacg ctggccctgc tgctgggcct 1000 gcccatccca tttgggaata tcggggaagt gatggctgag ctattctcag 1050 ggggtgagga ctcccagccc cactcctctg ctttagccca agcctcagct 1100 ctccatctca atgctcagca ggtgtcccga tttcttcata cctactcagc 1150 tgctactcag gaccttcaag ctaaggagct tcatcagctg cagaacctct 1200 tetecaagge etetgetgae taceagtgge ttetecagag eeceaagggg 1250 gctgaggcga cactgccgac tgtgattgct gagctgcagc agttcctgcg 1300 gggagctcgg gccatgtgca tcgagtcttg ggctcgtttc tctctggtcc 1350 gcatggcggg gggtactgct ctcttggctg cttcctgctt tatctgcctg 1400 ctggcatctc agtgggcaat atccccaggc tttccattct gccctctact 1450 cctgacacct gtggcctggg gcctggttgg ggccatagcg tatgctggac 1500 teetgggaae tattgagetg aagetagate tagtgettet aggggetgtg 1550 gctgcagtga gctcattcct cccttttctg tggaaagcct gggctggctg 1600 ggggtccaag aggcccctgg caaccctgtt tcccatccct gggcccgtcc 1650 tgttactcct gctgtttcgc ttggctgtgt tcttctctga tagttttgtt 1700 gtagctgagg ccagggccac ccccttcctt ttgggctcat tcatcctgct 1750 cctggttgtc cagcttcact gggagggcca gctgcttcca cctaagctac 1800 teacaatgee eegeettgge actteageea caacaaacee eecaeggeae 1850

aatggtgcat atgccctgag gcttggaatt gggttgcttt tatgtacaag 1900 gctagctggg ctttttcatc gttgccctga agagacacct gtttgccact 1950 cctctccctg gctgagtcct ctggcatcca tggtgggtgg tcgagccaag 2000 aatttatggt atggagcttg tgtggcggcg ctggtggccc tgttagctgc 2050 cgtgcgcttg tggcttcgcc gctatggtaa tctcaagagc cccgagccac 2100 ccatgctctt tgtgcgctgg ggactgcccc taatggcatt gggtactgct 2150 gcctactggg cattggcgtc gggggcagat gaggctcccc cccgtctccg 2200 ggtcctggtc tctggggcat ccatggtgct gcctcgggct gtagcagggc 2250 tggctgcttc agggctcgcg ctgctgctct ggaagcctgt gacagtgctg 2300 gtgaaggetg gggcaggege tecaaggace aggactgtee teaetecett 2350 ctcaggcccc cccacttctc aagctgactt ggattatgtg gtccctcaaa 2400 tctaccgaca catgcaggag gagttccggg gccggttaga gaggaccaaa 2450 tctcagggtc ccctgactgt ggctgcttat cagttgggga gtgtctactc 2500 agetgetatg gteacagece teaccetgtt ggeetteeca ettetgetgt 2550 tgcatgcgga gcgcatcage cttgtgttcc tgcttctgtt tctgcagage 2600 ttccttctcc tacatctgct tgctgctggg atacccgtca ccacccctgg 2650 tccttttact gtgccatggc aggcagtctc ggcttgggcc ctcatggcca 2700 cacagacett etaeteeaca ggeeaceage etgtetttee ageeateeat 2750 tggcatgcag ccttcgtggg attcccagag ggtcatggct cctgtacttg 2800 gctgcctgct ttgctagtgg gagccaacac ctttgcctcc cacctcctct 2850 ttgcagtagg ttgcccactg ctcctgctct ggcctttcct gtgtgagagt 2900 caagggctgc ggaagagaca gcagccccca gggaatgaag ctgatgccag 2950 agtcagaccc gaggaggaag aggagccact gatggagatg cggctccggg 3000 atgcgcctca gcacttctat gcagcactgc tgcagctggg cctcaagtac 3050 ctctttatcc ttggtattca gattctggcc tgtgccttgg cagcctccat 3100 ccttcgcagg catctcatgg tctggaaagt gtttgcccct aagttcatat 3150 ttgaggctgt gggcttcatt gtgagcagcg tgggacttct cctgggcata 3200 gctttggtga tgagagtgga tggtgctgtg agctcctggt tcaggcagct 3250

atttctggcc cagcagaggt agcctagtct gtgattactg gcacttggct 3300 acagagagtg ctggagaaca gtgtagcctg gcctgtacag gtactggatg 3350 atctgcaaga caggctcagc catactctta ctatcatgca gccaggggcc 3400 gctgacatct aggacttcat tattctataa ttcaggacca cagtggagta 3450 tgatccctaa ctcctgattt ggatgcatct gagggacaag gggggcggtc 3500 tccgaagtgg aataaaatag gccgggcgtg gtgacttgca cctataatcc 3550 cagcactttg ggaggcagag gtgggaggat tgcttggtcc caggagttca 3600 agaccagcct gtggaacata acaagacccc gtctctacta tttaaaaaaa 3650 agtgtaataa aatgataata t 3671

<210> 102

<211> 1089

<212> PRT

<213> Homo sapiens

<400> 102

Met Gln Lys Ala Ser Val Leu Leu Phe Leu Ala Trp Val Cys Phe 1 5 10 15

Leu Phe Tyr Ala Gly Ile Ala Leu Phe Thr Ser Gly Phe Leu Leu 20 25 30

Thr Arg Leu Glu Leu Thr Asn His Ser Ser Cys Gln Glu Pro Pro 35 40 45

Gly Pro Gly Ser Leu Pro Trp Gly Ser Gln Gly Lys Pro Gly Ala $50\,$

Cys Trp Met Ala Ser Arg Phe Ser Arg Val Val Leu Val Leu Ile 65 70 75

Asp Ala Leu Arg Phe Asp Phe Ala Gln Pro Gln His Ser His Val 80 85 90

Pro Arg Glu Pro Pro Val Ser Leu Pro Phe Leu Gly Lys Leu Ser 95 100 105

Ser Leu Gln Arg Ile Leu Glu Ile Gln Pro His His Ala Arg Leu 110 115 120

Tyr Arg Ser Gln Val Asp Pro Pro Thr Thr Thr Met Gln Arg Leu
125 130 135

Lys Ala Leu Thr Thr Gly Ser Leu Pro Thr Phe Ile Asp Ala Gly 140 145 150

Ser Asn Phe Ala Ser His Ala Ile Val Glu Asp Asn Leu Ile Lys 155 160 165

Gln Leu Thr Ser Ala Gly Arg Arg Val Val Phe Met Gly Asp 170 Thr Trp Lys Asp Leu Phe Pro Gly Ala Phe Ser Lys Ala Phe 185	180
	Phe 195
Phe Pro Ser Phe Asn Val Arg Asp Leu Asp Thr Val Asp Asn 200 205	Gly 210
Ile Leu Glu His Leu Tyr Pro Thr Met Asp Ser Gly Glu Trp 215 220	Asp 225
Val Leu Ile Ala His Phe Leu Gly Val Asp His Cys Gly His 230 235	Lys 240
His Gly Pro His His Pro Glu Met Ala Lys Lys Leu Ser Gln 245 250	Met 255
Asp Gln Val Ile Gln Gly Leu Val Glu Arg Leu Glu Asn Asp 260 265	Thr 270
Leu Leu Val Val Ala Gly Asp His Gly Met Thr Thr Asn Gly . 275 280	Asp 285
His Gly Gly Asp Ser Glu Leu Glu Val Ser Ala Ala Leu Phe 290 295	Leu 300
Tyr Ser Pro Thr Ala Val Phe Pro Ser Thr Pro Pro Glu Glu 305 310	Pro 315
Glu Val Ile Pro Gln Val Ser Leu Val Pro Thr Leu Ala Leu 320 325	Leu 330
Leu Gly Leu Pro Ile Pro Phe Gly Asn Ile Gly Glu Val Met 7 335 340	Ala 345
Glu Leu Phe Ser Gly Gly Glu Asp Ser Gln Pro His Ser Ser A	Ala 360
Leu Ala Gln Ala Ser Ala Leu His Leu Asn Ala Gln Gln Val 3 365 370	Ser 375
Arg Phe Leu His Thr Tyr Ser Ala Ala Thr Gln Asp Leu Gln <i>I</i> 380 385	Ala 390
Lys Glu Leu His Gln Leu Gln Asn Leu Phe Ser Lys Ala Ser A	Ala 405
Asp Tyr Gln Trp Leu Leu Gln Ser Pro Lys Gly Ala Glu Ala 7 410 415	Thr 420
Leu Pro Thr Val Ile Ala Glu Leu Gln Gln Phe Leu Arg Gly A 425 430 4	Ala 435
Arg Ala Met Cys Ile Glu Ser Trp Ala Arg Phe Ser Leu Val A 440 445 4	Arg 450

Met	Al.	a Gl	y Gl	y Thr 455	Ala	Leu	ı Lev	ı Ala	a Ala 460		c Cys	s Phe	e Ile	e Cys 465
Leu	ı Le	u Ala	a Sei	r Gln 470	Trp	Ala	ı Ile	e Ser	Pro 475		y Phe	e Pro) Phe	Cys 480
Pro	Lei	u Lei	ı Leı	1 Thr 485	Pro	Val	. Ala	Trp	Gly 490		ı Val	l Gly	/ Ala	1le 495
Ala	Ту	r Ala	a Gly	/ Leu 500	Leu	Gly	Thr	Ile	Glu 505		ı Lys	Leu	Asp	Leu 510
Val	Let	ı Leı	ı Gly	7 Ala 515	Val	Ala	Ala	Val	Ser 520		Phe	e Leu	Pro	Phe 525
Leu	Trp	Lys	8 Ala	Trp 530	Ala	Gly	Trp	Gly	Ser 535		Arg	J Pro	Leu	Ala 540
Thr	Leu	ı Phe	Pro	Ile 545	Pro	Gly	Pro	Val	Leu 550		Leu	Leu	Leu	Phe 555
Arg	Leu	ı Ala	Val	Phe 560	Phe	Ser	Asp	Ser	Phe 565	Val	Val	Ala	Glu	Ala 570
Arg	Ala	Thr	Pro	Phe 575	Leu	Leu	Gly	Ser	Phe 580	Ile	Leu	Leu	Leu	Val 585
Val	Gln	Leu	His	Trp 590	Glu	Gly	Gln	Leu	Leu 595	Pro	Pro	Lys	Leu	Leu 600
Thr	Met	Pro	Arg	Leu 605	Gly	Thr	Ser	Ala	Thr 610	Thr	Asn	Pro	Pro	Arg 615
His	Asn	Gly	Ala	Tyr 620	Ala	Leu	Arg	Leu	Gly 625	Ile	Gly	Leu	Leu	Leu 630
Cys	Thr	Arg	Leu	Ala 635	Gly	Leu	Phe	His	Arg 640	Cys	Pro	Glu	Glu	Thr. 645
Pro	Val	Cys	His	Ser 650	Ser	Pro	Trp	Leu	Ser 655	Pro	Leu	Ala	Ser	Met 660
Val	Gly	Gly	Arg	Ala 665	Lys	Asn	Leu	Trp	Tyr 670	Gly	Ala	Cys	Val	Ala 675
Ala	Leu	Val	Ala	Leu 680	Leu .	Ala	Ala	Val	Arg 685	Leu	Trp	Leu	Arg	Arg 690
Tyr	Gly	Asn	Leu	Lys 695	Ser	Pro	Glu	Pro	Pro 700	Met	Leu	Phe	Val	Arg 705
Trp	Gly	Leu	Pro	Leu 710	Met 1	Ala	Leu	Gly	Thr 715	Ala	Ala	Tyr	Trp	Ala 720
Leu .	Ala	Ser	Gly	Ala 725	Asp (Glu	Ala		Pro 730	Arg	Leu	Arg		Leu 735

Val	. Sei	r Gly	y Ala	3 Sea 74(Met	. Val	l Lei	u Pr	o Aro 74!		a Val	l Ala	a Gly	7 Leu 750
Ala	Ala	a Sei	r Gly	7 Let 755	ı Ala	a Leu	ı Leı	ı Le	u Trp 760		s Pro	Va]	L Thr	765
Leu	Va]	L Lys	s Alá	770		a Gly	/ Ala	a Pro	o Arg 775		Arq	g Thr	. Val	. Leu 780
Thr	Pro	Ph∈	e Ser	785	Pro	Pro	Thi	: Sei	r Glr 790		Asp	Leu	Asp	795
Val	Val	. Pro	Glr	11e 800	Туг	Arg	, His	s Met	Glr 805		ı Glü	ı Phe	e Arg	Gly 810
Arg	Leu	Glu	Arg	Thr 815		Ser	Glr	Gly	Prc 820		Thr	· Val	Ala	Ala 825
Tyr	Gln	Leu	Gly	Ser 830	Val	Tyr	Ser	: Ala	Ala 835		Val	Thr	Ala	Leu 840
Thr	Leu	Leu	Ala	Phe 845	Pro	Leu	Leu	Leu	Leu 850		Ala	Glu	Arg	Ile 855
Ser	Leu	Val	Phe	Leu 860	Leu	Leu	Phe	Leu	Gln 865		Phe	Leu	Leu	Leu 870
His	Leu	Leu	Ala	Ala 875	Gly	Ile	Pro	Val	Thr 880	Thr	Pro	Gly	Pro	Phe 885
Thr	Val	Pro	Trp	Gln 890	Ala	Val	Ser	Ala	Trp 895	Ala	Leu	Met	Ala	Thr 900
Gln	Thr	Phe	Tyr	Ser 905	Thr	Gly	His	Gln	Pro 910	Val	Phe	Pro	Ala	Ile 915
His	Trp	His	Ala	Ala 920	Phe	Val	Gly	Phe	Pro 925	Glu	Gly	His	Gly	Ser 930
Cys	Thr	Trp	Leu	Pro 935	Ala	Leu	Leu	Val	Gly 940	Ala	Asn	Thr	Phe	Ala 945
Ser	His	Leu	Leu	Phe 950	Ala	Val	Gly	Cys	Pro 955	Leu	Leu	Leu	Leu	Trp 960
Pro	Phe	Leu	Cys	Glu 965	Ser	Gln	Gly	Leu	Arg 970	Lys	Arg	Gln	Gln	Pro 975
Pro	Gly	Asn	Glu	Ala 980	Asp	Ala	Arg	Val	Arg 985	Pro	Glu	Glu	Glu	Glu 990
Glu	Pro	Leu	Met	Glu 995	Met	Arg	Leu		Asp 1000	Ala	Pro	Gln		Phe 005
Tyr	Ala	Ala	Leu 1	Leu 010	Gln	Leu	Gly		Lys 1015	Tyr	Leu	Phe		Leu 020

Gly Ile Gln Ile Leu Ala Cys Ala Leu Ala Ala Ser Ile Leu Arg 1025 1030 1035

Arg His Leu Met Val Trp Lys Val Phe Ala Pro Lys Phe Ile Phe 1040 1045 1050

Glu Ala Val Gly Phe Ile Val Ser Ser Val Gly Leu Leu Gly 1055 1060 1065

Ile Ala Leu Val Met Arg Val Asp Gly Ala Val Ser Ser Trp Phe 1070 1075 1080

Arg Gln Leu Phe Leu Ala Gln Gln Arg 1085

<210> 103

<211> 1743

<212> DNA

<213> Homo sapiens

<400> 103

tgccgctgcc gccgctgctg ctgttgctcc tggcggcgcc ttggggacgg 50 gcagttccct gtgtctctgg tggtttgcct aaacctgcaa acatcacctt 100 cttatccatc aacatgaaga atgtcctaca atggactcca ccagagggtc 150 ttcaaggagt taaagttact tacactgtgc agtatttcat cacaaattgg 200 cccaccagag gtggcactga ctacagatga gaagtccatt tctgttgtcc 250 tgacagctcc agagaagtgg aagagaaatc cagaagacct tcctgtttcc 300 atgcaacaaa tatactccaa tctgaagtat aacgtgtctg tgttgaatac 350 taaatcaaac agaacgtggt cccagtgtgt gaccaaccac acgctggtgc 400 tcacctggct ggagccgaac actctttact gcgtacacgt ggagtccttc 450 gtcccagggc cccctcgccg tgctcagcct tctgagaagc agtgtgccag 500 gactttgaaa gatcaatcat cagagttcaa ggctaaaatc atcttctggt 550 atgttttgcc catatctatt accgtgtttc ttttttctgt gatgggctat 600 tccatctacc gatatatcca cgttggcaaa gagaaacacc cagcaaattt 650 gattttgatt tatggaaatg aatttgacaa aagattcttt gtgcctgctg 700 aaaaaatcgt gattaacttt atcaccctca atatctcgga tgattctaaa 750 atttctcatc aggatatgag tttactggga aaaagcagtg atgtatccag 800 ccttaatgat cctcagccca gcgggaacct gaggccccct caggaggaag 850 aggaggtgaa acatttaggg tatgcttcgc atttgatgga aattttttgt 900

gactetgaag aaaacaegga aggtaettet eteaceeage aagagteeet 950 cagcagaaca ataccccgg ataaaacagt cattgaatat gaatatgatg 1000 tcagaaccac tgacatttgt gcggggcctg aagagcagga gctcagtttg 1050 caggaggagg tgtccacaca aggaacatta ttggagtcgc aggcagcgtt 1100 ggcagtcttg ggcccgcaaa cgttacagta ctcatacacc cctcagctcc 1150 aagacttaga ccccctggcg caggagcaca cagactcgga ggaggggccg 1200 gaggaagagc catcgacgac cctggtcgac tgggatcccc aaactggcag 1250 gctgtgtatt ccttcgctgt ccagcttcga ccaggattca gagggctgcg 1300 agcettetga gggggatggg eteggagagg agggtettet atetagaete 1350 tatgaggage eggeteeaga eaggeeacea ggagaaaatg aaacetatet 1400 catgcaattc atggaggaat gggggttata tgtgcagatg gaaaactgat 1450 gccaacactt cettttgcct tttgtttcct gtgcaaacaa gtgagtcacc 1500 cctttgatcc cagccataaa gtacctggga tgaaagaagt tttttccagt 1550 ttgtcagtgt ctgtgagaat tacttatttc ttttctctat tctcatagca 1600 cgtgtgtgat tggttcatgc atgtaggtct cttaacaatg atggtgggcc 1650. tetggagtee aggggetgge eggttgttet atgeagagaa ageagteaat 1700 aaatgtttgc cagactgggt gcagaattta ttcaggtggg tgt 1743

<400> 104

Met Ser Tyr Asn Gly Leu His Gln Arg Val Phe Lys Glu Leu Lys 1 5 10 15

Leu Leu Thr Leu Cys Ser Ile Ser Ser Gln Ile Gly Pro Pro Glu $20 \hspace{1cm} 25 \hspace{1cm} 30$

Val Ala Leu Thr Thr Asp Glu Lys Ser Ile Ser Val Val Leu Thr 35 40 45

Ala Pro Glu Lys Trp Lys Arg Asn Pro Glu Asp Leu Pro Val Ser 50 55 60

Met Gln Gln Ile Tyr Ser Asn Leu Lys Tyr Asn Val Ser Val Leu
65 70 75

Asn Thr Lys Ser Asn Arg Thr Trp Ser Gln Cys Val Thr Asn His

<210> 104

<211> 442

<212> PRT

<213> Homo sapiens

Thr	Leu	Val	Leu	Thr 95	Trp	Leu	Glu	Pro	Asn 100	Thr	Leu	Tyr	Cys	Val 105
His	Val	Glu	Ser		Val	Pro	Gly	Pro	Pro 115	Arg	Arg	Ala	Gln	
Ser	Glu	Lys	Gln		Ala	Arg	Thr	Leu	Lys 130	Asp	Gln	Ser	Ser	Glu 135
Phe	Lys	Ala	Lys	Ile 140	Ile	Phe	Trp	Tyr	Val 145	Leu	Pro	Ile	Ser	Ile 150
Thr	Val	Phe	Leu	Phe 155	Ser	Val	Met	Gly	Tyr 160	Ser	Ile	Tyr	Arg	Tyr 165
Ile	His	Val	Gly	Lys 170	Glu	Lys	His	Pro	Ala 175	Asn	Leu	Ile	Leu	Ile 180
Tyr	Gly	Asn	Glu	Phe 185	Asp	Lys	Arg	Phe	Phe 190	Val	Pro	Ala	Glu	Lys 195
Ile	Val	Ile	Asn	Phe 200	Ile	Thr	Leu	Asn	Ile 205	Ser	Asp	Asp	Ser	Lys 210
Ile	Ser	His	Gln	Asp 215	Met	Ser	Leu	Leu	Gly 220	Lys	Ser	Ser	Asp	Val 225
				230					Gly 235					240
				245					Gly 250					255
				260					Asn 265					270
				275					Thr 280					285
				290					Arg 295					300
				305					Leu 310					315
				320					325					330
				335					340					Asp 345
				350					355					Pro 360
Glu	ı Glu	Glu	Pro	Ser 365		Thr	Leu	val	. Asp 370		Asp	Pro	OTN	Thr 375

```
Gly Arg Leu Cys Ile Pro Ser Leu Ser Ser Phe Asp Gln Asp Ser
                   380
                                        385
                                                            390
  Glu Gly Cys Glu Pro Ser Glu Gly Asp Gly Leu Gly Glu Gly
                                        400
  Leu Leu Ser Arg Leu Tyr Glu Glu Pro Ala Pro Asp Arg Pro Pro
                   410
                                       415
  Gly Glu Asn Glu Thr Tyr Leu Met Gln Phe Met Glu Glu Trp Gly
                   425
                                       430
                                                            435
  Leu Tyr Val Gln Met Glu Asn
                   440
 <210> 10.5
 <211> 21
 <212> DNA
 <213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
 <400> 105
  cgctgctgct gttgctcctg g 21
 <210> 106
 <211> 18
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Synthetic oligonucleotide probe
<400> 106
 cagtgtgcca ggactttg 18
<210> 107
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 107
 agtcgcaggc agcgttgg 18
<210> 108
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
```

```
<400> 108
ctcctccgag tctgtgtgct cctgc 25
<210> 109
<211> 51
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 109
 ggacgggcag ttccctgtgt ctctggtggt ttgcctaaac ctgcaaacat 50
 c 51
<210> 110
<211> 1114
<212> DNA
<213> Homo sapiens
<400> 110
 cggacgcgtg ggcggacgcg tgggcggacg cgtgggtctc tgcggggaga 50
 cgccagcctg cgtctgccat ggggctcggg ttgaggggct ggggacgtcc 100
 tctgctgact gtggccaccg ccctgatgct gcccgtgaag ccccccgcag 150
 gctcctgggg ggcccagatc atcgggggcc acgaggtgac cccccactcc 200
 aggecetaca tggcatecgt gegetteggg ggccaacate actgeggagg 250
 cttectgetg egageceget gggtggtete ggeegeecae tgetteagee 300
 acagagacet cegeactgge etggtggtge tgggegeeca egteetgagt 350
 actgcggagc ccacccagca ggtgtttggc atcgatgctc tcaccacgca 400
 ccccgactac caccccatga cccacgccaa cgacatctgc ctgctgcggc 450
 tgaacggctc tgctgtcctg ggccctgcag tggggctgct gaggctgcca 500
 gggagaaggg ccaggcccc cacagcgggg acacggtgcc gggtggctgg 550
 ctggggcttc gtgtctgact ttgaggagct gccgcctgga ctgatggagg 600
 ccaaggtccg agtgctggac ccggacgtct gcaacagctc ctggaagggc 650
 cacctgacac ttaccatgct ctgcacccgc agtggggaca gccacagacg 700
 gggettetge teggeegact eeggagggee eetggtgtge aggaaceggg 750
 ctcacggcct cgtttccttc tcgggcctct ggtgcggcga ccccaagacc 800
```

cccgacgtgt acacgcaggt gtccgccttt gtggcctgga tctgggacgt 850

ggttcggcgg agcagtcccc agcccggccc cctgcctggg accaccaggc 900

ccccaggaga agccgcctga gccacaacct tgcggcatgc aaatgagatg 950 gccgctccag gcctggaatg ttccgtggct gggccccacg ggaagcctga 1000 tgttcagggt tggggtggga cgggcagcgg tggggcacac ccattccaca 1050 tgcaaagggc agaagcaaac ccagtaaaat gttaactgac aaaaaaaaa 1100 aaaaaaaaaa gaaa 1114

<210> 111

<211> 283

<212> PRT

<213> Homo sapiens

<400> 111

Met Gly Leu Gly Leu Arg Gly Trp Gly Arg Pro Leu Leu Thr Val 1 5 10 15

Ala Thr Ala Leu Met Leu Pro Val Lys Pro Pro Ala Gly Ser Trp 20 25 30

Gly Ala Gln Ile Ile Gly Gly His Glu Val Thr Pro His Ser Arg 35 40 45

Pro Tyr Met Ala Ser Val Arg Phe Gly Gly Gln His His Cys Gly 50 $\,$ 55 $\,$ 60

Gly Phe Leu Leu Arg Ala Arg Trp Val Val Ser Ala Ala His Cys 65 70 75

Phe Ser His Arg Asp Leu Arg Thr Gly Leu Val Val Leu Gly Ala 80 85 90

His Val Leu Ser Thr Ala Glu Pro Thr Gln Gln Val Phe Gly Ile 95 100 105

Asp Ala Leu Thr Thr His Pro Asp Tyr His Pro Met Thr His Ala 110 115 120

Asn Asp Ile Cys Leu Leu Arg Leu Asn Gly Ser Ala Val Leu Gly 125 130 135

Pro Ala Val Gly Leu Leu Arg Leu Pro Gly Arg Arg Ala Arg Pro 140 145 150

Pro Thr Ala Gly Thr Arg Cys Arg Val Ala Gly Trp Gly Phe Val

Ser Asp Phe Glu Glu Leu Pro Pro Gly Leu Met Glu Ala Lys Val 170 175 180

Arg Val Leu Asp Pro Asp Val Cys Asn Ser Ser Trp Lys Gly His \$185\$

Leu Thr Leu Thr Met Leu Cys Thr Arg Ser Gly Asp Ser His Arg

```
200
                                       205
                                                           210
 Arg Gly Phe Cys Ser Ala Asp Ser Gly Gly Pro Leu Val Cys Arg
                  215
 Asn Arg Ala His Gly Leu Val Ser Phe Ser Gly Leu Trp Cys Gly
                  230
                                      235
 Asp Pro Lys Thr Pro Asp Val Tyr Thr Gln Val Ser Ala Phe Val
                  245
                                      250
 Ala Trp Ile Trp Asp Val Val Arg Arg Ser Ser Pro Gln Pro Gly
                                      265
 Pro Leu Pro Gly Thr Thr Arg Pro Pro Gly Glu Ala Ala
                  275
                                      280
<210> 112
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 112
 gacgtctgca acagctcctg gaag 24
<210> 113
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 113
 cgagaaggaa acgaggccgt gag 23
<210> 114
<211> 44
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 114
tgacacttac catgetetge accegeagtg gggacageea caga 44
<210> 115
<211> 1808
<212> DNA
<213> Homo sapiens
<400> 115
gagctaccca ggcggctggt gtgcagcaag ctccgcgccg actccggacg 50
```

cctgacgcct gacgcctgtc cccggcccgg catgagccgc tacctgctgc 100 cgctgtcggc gctgggcacg gtagcaggcg ccgccgtgct gctcaaggac 150 tatgtcaccg gtggggcttg ccccagcaag gccaccatcc ctgggaagac 200 ggtcatcgtg acgggcgcca acacaggcat cgggaagcag accgccttgg 250 aactggccag gagaggaggc aacatcatcc tggcctgccg agacatggag 300 aagtgtgagg cggcagcaaa ggacatccgc ggggagaccc tcaatcacca 350 tgtcaacgcc cggcacctgg acttggcttc cctcaagtct atccgagagt 400 ttgcagcaaa gatcattgaa gaggaggagc gagtggacat tctaatcaac 450 aacgegggtg tgatgeggtg eeceeactgg accaeegagg aeggettega 500 gatgcagttt ggcgttaacc acctgggtca ctttctcttg acaaacttgc 550 tgctggacaa gctgaaagcc tcagcccctt cgcggatcat caacctctcg 600 tccctggccc atgttgctgg gcacatagac tttgacgact tgaactggca 650 gacgaggaag tataacacca aagccgccta ctgccagagc aagctcgcca 700 tcgtcctctt caccaaggag ctgagccggc ggctgcaagg ctctggtgtg 750 actgtcaacg ccctgcaccc cggcgtggcc aggacagagc tgggcagaca 800 cacgggcatc catggctcca cettetecag caccacacte gggcccatet 850 tctggctgct ggtcaagagc cccgagctgg ccgcccagcc cagcacatac 900 ctggccgtgg cggaggaact ggcggatgtt tccggaaagt acttcgatgg 950 actcaaacag aaggccccgg cccccgaggc tgaggatgag gaggtggccc 1000 ggaggetttg ggetgaaagt geeegeetgg tgggettaga ggeteeetet 1050 gtgagggagc agcccctccc cagataacct ctggagcaga tttgaaagcc 1100 aggatggcgc ctccagaccg aggacagetg tecgecatge eegcagette 1150 ctggcactac ctgagccggg agacccagga ctggcggccg ccatgcccgc 1200 agtaggttct agggggcggt gctggccgca gtggactggc ctgcaggtga 1250 gcactgcccc gggctctggc tggttccgtc tgctctgctg ccagcagggg 1300 agaggggcca tetgatgett eecetgggaa tetaaactgg gaatggeega 1350 ggaggaaggg gctctgtgca cttgcaggcc acgtcaggag agccagcggt 1400 gcctgtcggg gagggttcca aggtgctccg tgaagagcat gggcaagttg 1450

tctgacactt ggtggattct tgggtccctg tgggaccttg tgcatgcatg 1500 gtcctctctg agccttggtt tcttcagcag tgagatgctc agaataactg 1550 ctgtctccca tgatggtgtg gtacagcgag ctgttgtctg gctatggcat 1600 ggctgtgccg ggggtgtttg ctgagggctt cctgtgccag agcccagcca 1650 gagagcaggt gcaggtgtca tcccgagttc aggctctgca cggcatggag 1700 tgggaacccc accagctgct gctacaggac ctgggattgc ctgggactcc 1750 caccttccta tcaattctca tggtagtcca aactgcagac tctcaaactt 1800 gctcattt 1808

<210> 116

<211> 331

<212> PRT

<213> Homo sapiens

<400> 116

Met Ser Arg Tyr Leu Leu Pro Leu Ser Ala Leu Gly Thr Val Ala 5

Gly Ala Ala Val Leu Leu Lys Asp Tyr Val Thr Gly Gly Ala Cys

Pro Ser Lys Ala Thr Ile Pro Gly Lys Thr Val Ile Val Thr Gly

Ala Asn Thr Gly Ile Gly Lys Gln Thr Ala Leu Glu Leu Ala Arg 50 60

Arg Gly Gly Asn Ile Ile Leu Ala Cys Arg Asp Met Glu Lys Cys

Glu Ala Ala Lys Asp Ile Arg Gly Glu Thr Leu Asn His His 80

Val Asn Ala Arg His Leu Asp Leu Ala Ser Leu Lys Ser Ile Arg 95 105

Glu Phe Ala Ala Lys Ile Ile Glu Glu Glu Glu Arg Val Asp Ile

Leu Ile Asn Asn Ala Gly Val Met Arg Cys Pro His Trp Thr Thr 125 130 135

Glu Asp Gly Phe Glu Met Gln Phe Gly Val Asn His Leu Gly His 150

Phe Leu Leu Thr Asn Leu Leu Leu Asp Lys Leu Lys Ala Ser Ala 160

Pro Ser Arg Ile Ile Asn Leu Ser Ser Leu Ala His Val Ala Gly 170 175 180

His	Ile	Asp	Phe	Asp 185	Asp	Leu	Asn	Trp	Gln 190	Thr	Arg	Lys	Tyr	Asn 195
Thr	Lys	Ala	Ala	Tyr 200	Cys	Gln	Ser	Lys	Leu 205	Ala	Ile	Val	Leu	Phe 210
Thr	Lys	Glu	Leu	Ser 215	Arg	Arg	Leu	Gln	Gly 220	Ser	Gly	Val	Thr	Val 225
Asn	Ala	Leu	His	Pro 230	Gly	Val	Ala	Arg	Thr 235	Glu	Leu	Gly	Arg	His 240
Thr	Gly	Ile	His	Gly 245	Ser	Thr	Phe	Ser	Ser 250	Thr	Thr	Leu	Gly	Pro 255
Ile	Phe	Trp	Leu	Leu 260	Val	Lys	Ser	Pro	Glu 265	Leu	Ala	Ala	Gln	Pro 270
Ser	Thr	Tyr	Leu	Ala 275	Val [·]	Ala	Glu	Glu	Leu 280	Ala	Asp	Val	Ser	Gly 285
Lys	Tyr	Phe	Asp	Gly 290	Leu	Lys	Gln	Lys	Ala 295	Pro	Ala	Pro	Glu	Ala 300
Glu	Asp	Glu	Glu	·Val 305	Ala	Arg	Arg	Leu	Trp 310	Ala	Glu	Ser	Ala	Arg 315
Leu	Val	Gly	Leu	Glu 320	Ala	Pro	Ser	Val	Arg 325	Glu	Gln	Pro	Leu	Pro 330

Arg

<210> 117

<211> 2249

<212> DNA

<213> Homo sapiens

<400> 117

gaagttegegagegetggeatgtggteetggggegeggetggeggegetg50ctggeggtgetggegetegggaeaggagaeccagaaagggctgeggeteg100gggegacaegtteteggegetgaecagegtggegegegeectggegeeeg150agegeeggetgetggggetgecetgegggggaggagggeg200eggetgegggacetgaetagattetaegaeaaggtaetttetttgeatga250ggatteaacaacecetgtggetaaceetetgettgeatttacteteatea300aacgeetgeagtetgaetggtacatagtetggaggeeagt350gagaacateegagctetgaaggatggetatgagaaggtggageaagaeet400tecageetttgaggaecettgagggageageaagggeecetgatgeggetge450

aggacgtgta catgctcaat gtgaaaggcc tggcccgagg tgtctttcag 500 agagtcactg gctctgccat cactgacctg tacagcccca aacggctctt 550 ttctctcaca ggggatgact gcttccaagt tggcaaggtg gcctatgaca 600 tgggggatta ttaccatgcc attccatggc tggaggaggc tgtcagtctc 650 ttccgaggat cttacggaga gtggaagaca gaggatgagg caagtctaga 700 agatgccttg gatcacttgg cctttgctta tttccgggca ggaaatgttt 750 cgtgtgccct cagcctctct cgggagtttc ttctctacag cccagataat 800 aagaggatgg ccaggaatgt cttgaaatat gaaaggctct tggcagagag 850 ccccaaccac gtggtagctg aggctgtcat ccagaggccc aatatacccc 900 acctgcagac cagagacacc tacgaggggc tatgtcagac cctgggttcc 950 cageccaete tetaccagat ecetageete taetgtteet atgagaccaa 1000 ttccaacgcc tacctgctgc tccagcccat ccggaaggag gtcatccacc 1050 tggagcccta cattgctctc taccatgact tcgtcagtga ctcagaggct 1100 cagaaaatta gagaacttgc agaaccatgg ctacagaggt cagtggtggc 1150 atcaggggag aagcagttac aagtggagta ccgcatcagc aaaagtgcct 1200 ggctgaagga cactgttgac ccaaaactgg tgaccctcaa ccaccgcatt 1250 gctgccctca caggccttga tgtccggcct ccctatgcag agtatctgca 1300 ggtggtgaac tatggcatcg gaggacacta tgagcctcac tttgaccatg 1350 ctacgtcacc aagcagccc ctctacagaa tgaagtcagg aaaccgagtt 1400 gcaacattta tgatctatct gagctcggtg gaagctggag gagccacagc 1450 cttcatctat gccaacctca gcgtgcctgt ggttaggaat gcagcactgt 1500 tttggtggaa cctgcacagg agtggtgaag gggacagtga cacacttcat 1550 gctggctgtc ctgtcctggt gggagataag tgggtggcca acaagtggat 1600 acatgagtat ggacaggaat teegeagace etgeagetee agecetgaag 1650 actgaactgt tggcagagag aagctggtgg agtcctgtgg ctttccagag 1700 aagccaggag ccaaaagctg gggtaggaga ggagaaagca gagcagcctc 1750 ctggaagaag gccttgtcag ctttgtctgt gcctcgcaaa tcagaggcaa 1800 gggagaggtt gttaccaggg gacactgaga atgtacattt gatctgcccc 1850 agccacggaa gtcagagtag gatgcacagt acaaaggagg ggggagtgga 1900 ggcctgagag ggaagtttct ggagttcaga tactctctgt tgggaacagg 1950 acatctcaac agtctcaggt tcgatcagtg ggtcttttgg cactttgaac 2000 cttgaccaca gggaccaaga agtggcaatg aggacacctg caggaggggc 2050 tagcctgact cccagaactt taagactttc tccccactge cttctgctgc 2100 agcccaagca gggagtgtcc ccctcccaga agcatatccc agatgagtgg 2150 tacattatat aaggatttt tttaagttga aaacaacttt ctttctttt 2200 tgtatgatgg tttttaaca cagtcattaa aaatgtttat aaatcaaaa 2249

<210> 118

<211> 544

<212> PRT

<213> Homo sapiens

<400> 118

Met Gly Pro Gly Ala Arg Leu Ala Ala Leu Leu Ala Val Leu Ala 1 5 10 15

Leu Gly Thr Gly Asp Pro Glu Arg Ala Ala Ala Arg Gly Asp Thr 20 25 30

Phe Ser Ala Leu Thr Ser Val Ala Arg Ala Leu Ala Pro Glu Arg 35 40 45

Arg Leu Leu Gly Leu Leu Arg Arg Tyr Leu Arg Gly Glu Glu Ala 50 55 60

Arg Leu Arg Asp Leu Thr Arg Phe Tyr Asp Lys Val Leu Ser Leu
65 70 75

His Glu Asp Ser Thr Thr Pro Val Ala Asn Pro Leu Leu Ala Phe $80 \hspace{1cm} 85 \hspace{1cm} 90$

Thr Leu Ile Lys Arg Leu Gln Ser Asp Trp Arg Asn Val Val His 95 100 105

Ser Leu Glu Ala Ser Glu Asn Ile Arg Ala Leu Lys Asp Gly Tyr \$110\$ \$120\$

Glu Lys Val Glu Gln Asp Leu Pro Ala Phe Glu Asp Leu Glu Gly 125 130 135

Ala Ala Arg Ala Leu Met Arg Leu Gln Asp Val Tyr Met Leu Asn 140 145 150

Val Lys Gly Leu Ala Arg Gly Val Phe Gln Arg Val Thr Gly Ser 155 160 165

Ala Ile Thr Asp Leu Tyr Ser Pro Lys Arg Leu Phe Ser Leu Thr 170 175 180

Gly	Asp	Asp	Cys	Phe 185	Gln	Val	Gly	Lys	Val 190	Ala	Tyr	Asp	Met	Gly 195
Asp	Tyr	Tyr	His	Ala 200	Ile	Pro	Trp	Leu	Glu 205	Glu	Ala	Val	Ser	Leu 210
Phe	Arg	Gly	Ser	Tyr 215	Gly	Glu	Trp	Lys	Thr 220	Glu	Asp	Glu	Ala	Ser 225
Leu	Glu	Asp	Ala	Leu 230	Asp	His	Leu	Ala	Phe 235	Ala	Tyr	Phe	Arg	Ala 240
Gly	Asn	Val	Ser	Cys 245	Ala	Leu	Ser	Leu	Ser 250	Arg	Glu	Phe	Leu	Leu 255
Tyr	Ser	Pro	Asp	Asn 260	Lys	Arg	Met	Ala	Arg 265	Asn	Val	Leu	Lys	Tyr 270
Glu	Arg	Leu	Leu	Ala 275	Glu	Ser	Pro	Asn	His 280	Val	Val	Ala	Glu	Ala 285
Val	Ile	Gln	Arg	Pro 290	Asn	Ile	Pro	His	Leu 295	Gln	Thr	Arg	Asp	Thr 300
Tyr	Glu	Gly	Leu	Cys 305	Gln	Thr	Leu	Gly	Ser 310	Gln	Pro	Thr	Leu	Tyr 315
Gln	Ile	Pro	Ser	Leu 320	Tyr	Cys	Ser	Tyr	Glu 325	Thr	Asn	Ser	Asn	Ala 330
Tyr	Leu	Leu	Leu	Gln 335	Pro	Ile	Arg	Lys	Glu 340	Val	Ile	His	Leu	Glu 345
Pro	Tyr	Ile	Ala	Leu 350	Tyr	His	Asp	Phe	Val 355	Ser	Asp	Ser	Glu	Ala 360
Gln	Lys	Ile	Arg	Glu 365	Leu	Ala	Glu	Pro	Trp 370	Leu	Gln	Arg	Ser	Val 375
Val	Ala	Ser	Gly	Glu 380	Lys	Gln	Leu	Gln	Val 385	Glu	Tyr	Arg	Ile	Ser 390
Lys	Ser	Ala	Trp	Leu 395	Lys	Asp	Thr	Val	Asp 400	Pro	Lys	Leu	Val	Thr 405
Leu	Asn	His	Arg	Ile 410	Ala	Ala	Leu	Thr	Gly 415	Leu	Asp	Val	Arg	Pro 420
Pro	Tyr	Ala	Glu	Tyr 425	Leu	Gln	Val	Val	Asn 430	Tyr	Gly	Ile	Gly	Gly 435
His	Tyr	Glu	Pro	His 440	Phe	Asp	His	Ala	Thr 445	Ser	Pro	Ser	Ser	Pro 450
Leu	Tyr	Arg	Met	Lys 455	Ser	Gly	Asn	Arg	Val 460	Ala	Thr	Phe	Met	Ile 465

```
Tyr Leu Ser Ser Val Glu Ala Gly Gly Ala Thr Ala Phe Ile Tyr
                    470
                                        475
   Ala Asn Leu Ser Val Pro Val Val Arg Asn Ala Ala Leu Phe Trp
                                                             495
   Trp Asn Leu His Arg Ser Gly Glu Gly Asp Ser Asp Thr Leu His
   Ala Gly Cys Pro Val Leu Val Gly Asp Lys Trp Val Ala Asn Lys
                                                            525
   Trp Ile His Glu Tyr Gly Gln Glu Phe Arg Arg Pro Cys Ser Ser
  Ser Pro Glu Asp
 <210> 119
 <211> 23
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 119
 cgggacagga gacccagaaa ggg 23
 <210> 120
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Synthetic oligonucleotide probe
<400> 120
 ggccaagtga tccaaggcat cttc 24
<210> 121
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 121
ctgcgggacc tgactagatt ctacgacaag gtactttctt tgcatgggg 49
<210> 122
<211> 1778
<212> DNA
<213> Homo sapiens
```

<400> 122 gagataggga gtctgggttt aagttcctgc tccatctcag gagcccctgc 50 teceaeceet aggaageeae cagaeteeae ggtgtgggge caateaggtg 100 gaatcggccc tggcaggtgg ggccacgagc gctggctgag ggaccgagcc 150 ggagagcccc ggagcccccg taacccgcgc ggggagcgcc caggatgccg 200 cgcggggact cggagcaggt gcgctactgc gcgcgcttct cctacctctg 250 gctcaagttt tcacttatca tctattccac cgtgttctgg ctgattgggg 300 ccctggtcct gtctgtgggc atctatgcag aggttgagcg gcagaaatat 350 aaaacccttg aaagtgcctt cctggctcca gccatcatcc tcatcctcct 400 gggcgtcgtc atgttcatgg tctccttcat tggtgtgctg gcgtccctcc 450 gtgacaacct gtaccttctc caagcattca tgtacatcct tgggatctgc 500 ctcatcatgg agctcattgg tggcgtggtg gccttgacct tccggaacca 550 gaccattgac ttcctgaacg acaacattcg aagaggaatt gagaactact 600 atgatgatct ggacttcaaa aacatcatgg actttgttca gaaaaagttc 650 aagtgctgtg gcggggagga ctaccgagat tggagcaaga atcagtacca 700 cgactgcagt gcccctggac ccctggcctg tggggtgccc tacacctgct 750 gcatcaggaa cacgacagaa gttgtcaaca ccatgtgtgg ctacaaaact 800 atcgacaagg agcgtttcag tgtgcaggat gtcatctacg tgcggggctg 850 caccaacgcc gtgatcatct ggttcatgga caactacacc atcatggcgt 900 gcatcctcct gggcatcctg cttccccagt tcctgggggt gctgctgacg 950 ctgctgtaca tcacccgggt ggaggacatc atcatggagc actctgtcac 1000 tgatgggctc ctggggcccg gtgccaagcc cagcgtggag gcggcaggca 1050 cgggatgctg cttgtgctac cccaattagg gcccagcctg ccatggcagc 1100 tccaacaagg accgtctggg atagcacctc tcagtcaaca tcgtggggct 1150 ggacagggct gcggcccctc tgcccacact cagtactgac caaagccagg 1200 gctgtgtgtg cctgtgtgta ggtcccacgg cctctgcctc cccagggagc 1250 agageetggg ceteceetaa gaggetttee eegaggeage tetggaatet 1300 gtgcccacct ggggcctggg gaacaaggcc ctcctttctc caggcctggg 1350 ctacagggga gggagagcct gaggctctgc tcagggccca tttcatctct 1400

gggagaggg agtgtgccc tcggggcagg agggaagggc atctggggaa 1500 ggggcaggg gaagagctgt ccatgcagcc acgcccatgg ccaggttggc 1550 ctcttctcag cctcccaggt gccttgagcc ctcttgcaag ggcggctgct 1600 tccttgagcc tagttttt ttacgtgatt tttgtaacat tcatttttt 1650 gtacagataa caggagttc tgaccagtt tgttaatca acaataaaaa 1750 catgtttgt tttgtttta aaaaaaa 1778

<210> 123

<211> 294

<212> PRT

<213> Homo sapiens

<400> 123

Met Pro Arg Gly Asp Ser Glu Gln Val Arg Tyr Cys Ala Arg Phe 1 5 10 15

Ser Tyr Leu Trp Leu Lys Phe Ser Leu Ile Ile Tyr Ser Thr Val $20 \\ 25 \\ 30$

Phe Trp Leu Ile Gly Ala Leu Val Leu Ser Val Gly Ile Tyr Ala 35 40 45

Glu Val Glu Arg Gln Lys Tyr Lys Thr Leu Glu Ser Ala Phe Leu
50 55 60

Ala Pro Ala Ile Ile Leu Ile Leu Leu Gly Val Val Met Phe Met 65 70 75

Val Ser Phe Ile Gly Val Leu Ala Ser Leu Arg Asp Asn Leu Tyr 80 85 90

Leu Leu Gln Ala Phe Met Tyr Ile Leu Gly Ile Cys Leu Ile Met 95 100 105

Glu Leu Ile Gly Gly Val Val Ala Leu Thr Phe Arg Asn Gln Thr 110 \$115 120

Ile Asp Phe Leu Asn Asp Asn Ile Arg Arg Gly Ile Glu Asn Tyr 125 130 135

Tyr Asp Asp Leu Asp Phe Lys Asn Ile Met Asp Phe Val Gln Lys 140 145 150

Lys Phe Lys Cys Cys Gly Gly Glu Asp Tyr Arg Asp Trp Ser Lys 155 160 165

Asn Gln Tyr His Asp Cys Ser Ala Pro Gly Pro Leu Ala Cys Gly

170 175 180

Thr Met Cys Gly Tyr Lys Thr Ile Asp Lys Glu Arg Phe Ser Val 200 205 210

Gln Asp Val Ile Tyr Val Arg Gly Cys Thr Asn Ala Val Ile Ile 215 220 225

Trp Phe Met Asp Asn Tyr Thr Ile Met Ala Cys Ile Leu Leu Gly 230 235 240

Ile Leu Leu Pro Gln Phe Leu Gly Val Leu Leu Thr Leu Leu Tyr 245 250 255

Ile Thr Arg Val Glu Asp Ile Ile Met Glu His Ser Val Thr Asp 260 265 270

Gly Leu Leu Gly Pro Gly Ala Lys Pro Ser Val Glu Ala Ala Gly 275 280 285

Thr Gly Cys Cys Leu Cys Tyr Pro Asn 290

<210> 124

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 124

atcatctatt ccaccgtgtt ctggc 25

<210> 125

<211> 25

<212> DNA

<213> Artificial Sequence

<220\

<223> Synthetic oligonucleotide probe

<400> 125

gacagagtgc tccatgatga tgtcc 25

<210> 126

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 126

- <210> 127
- <211> 1636
- <212> DNA
- <213> Homo sapiens

<400> 127

gaggagcggg ccgaggactc cagcgtgccc aggtctggca tcctgcactt 50 gctgccctct gacacctggg aagatggccg gcccgtggac cttcaccctt 100 ctctgtggtt tgctggcagc caccttgatc caagccaccc tcagtcccac 150 tgcagttctc atcctcggcc caaaagtcat caaagaaaag ctgacacagg 200 agetgaagga ccacaacgee accageatee tgcageaget geegetgete 250 agtgccatgc gggaaaagcc agccggaggc atccctgtgc tgggcagcct 300 ggtgaacacc gtcctgaagc acatcatctg gctgaaggtc atcacagcta 350 acatcctcca gctgcaggtg aagccctcgg ccaatgacca ggagctgcta 400 gtcaagatcc ccctggacat ggtggctgga ttcaacacgc ccctggtcaa 450 gaccatcgtg gagttccaca tgacgactga ggcccaagcc accatccgca 500 tggacaccag tgcaagtggc cccacccgcc tggtcctcag tgactgtgcc 550 accagccatg ggagcctgcg catccaactg ctgtataagc tctccttcct 600 ggtgaacgcc ttagctaagc aggtcatgaa cctcctagtg ccatccctgc 650 ccaatctagt gaaaaaccag ctgtgtcccg tgatcgaggc ttccttcaat 700 ggcatgtatg cagacctcct gcagctggtg aaggtgccca tttccctcag 750 cattgaccgt ctggagtttg accttctgta tcctgccatc aagggtgaca 800 ccattcagct ctacctgggg gccaagttgt tggactcaca gggaaaggtg 850 accaagtggt tcaataactc tgcagcttcc ctgacaatgc ccaccctgga 900 caacatcccg ttcagcctca tcgtgagtca ggacgtggtg aaagctgcag 950 tggctgctgt gctctctcca gaagaattca tggtcctgtt ggactctgtg 1000 cttcctgaga gtgcccatcg gctgaagtca agcatcgggc tgatcaatga 1050 aaaggctgca gataagctgg gatctaccca gatcgtgaag atcctaactc 1100 aggacactcc cgagtttttt atagaccaag gccatgccaa ggtggcccaa 1150 ctgatcgtgc tggaagtgtt tccctccagt gaagccctcc gccctttgtt 1200 caccetggge ategaageca geteggaage teagttttae accaaaggtg 1250

accaacttat actcaacttg aataacatca gctctgatcg gatccagctg 1300 atgaactctg ggattggctg gttccaacct gatgttctga aaaacatcat 1350 cactgagatc atccactcca tcctgctgcc gaaccagaat ggcaaattaa 1400 gatctggggt cccagtgtca ttggtgaagg ccttgggatt cgaggcagct 1450 gaacccaga tgaccaagga tgcccttgtg cttactccag cctccttgtg 1500 gaaacccagc tctcctgtct cccagtgaag acttggatgg cagccatcag 1550 ggaaaggctgg gtcccagctg ggagtatggg tgtgagctct atagaccatc 1600 cctctctgca atcaataaac acttgcctgt gaaaaa 1636

<210> 128

<211> 484

<212> PRT

<213> Homo sapiens

<400> 128

Met Ala Gly Pro Trp Thr Phe Thr Leu Leu Cys Gly Leu Leu Ala 1 5 10 15

Ala Thr Leu Ile Gln Ala Thr Leu Ser Pro Thr Ala Val Leu Ile 20 25 30

Leu Gly Pro Lys Val Ile Lys Glu Lys Leu Thr Gln Glu Leu Lys 35 40 45

Asp His Asn Ala Thr Ser Ile Leu Gln Gln Leu Pro Leu Leu Ser 50 55 60

Ala Met Arg Glu Lys Pro Ala Gly Gly Ile Pro Val Leu Gly Ser 65 70 75

Leu Val Asn Thr Val Leu Lys His Ile Ile Trp Leu Lys Val Ile 80 85 90

Thr Ala Asn Ile Leu Gln Leu Gln Val Lys Pro Ser Ala Asn Asp 95 100 105

Gln Glu Leu Leu Val Lys Ile Pro Leu Asp Met Val Ala Gly Phe \$110\$ \$120\$

Asn Thr Pro Leu Val Lys Thr Ile Val Glu Phe His Met Thr Thr 125 130 135

Glu Ala Gln Ala Thr Ile Arg Met Asp Thr Ser Ala Ser Gly Pro 140 145 150

Thr Arg Leu Val Leu Ser Asp Cys Ala Thr Ser His Gly Ser Leu 155 160 165

Arg Ile Gln Leu Leu Tyr Lys Leu Ser Phe Leu Val Asn Ala Leu

455 460 465

Asp Ala Leu Val Leu Thr Pro Ala Ser Leu Trp Lys Pro Ser Ser 470 475 480

Pro Val Ser Gln

<210> 129

<211> 2213

<212> DNA

<213> Homo sapiens

<400> 129

gagcgaacat ggcagcgcgt tggcggtttt ggtgtgtctc tgtgaccatg 50 gtggtggcgc tgctcatcgt ttgcgacgtt ccctcagcct ctgcccaaag 100 ctaacaaaag acctgtaata agaatgaatg gagacaagtt ccgtcgcctt 200 gtgaaagccc caccgagaaa ttactccgtt atcgtcatgt tcactgctct 250 ccaactgcat agacagtgtg tcgtttgcaa gcaagctgat gaagaattcc 300 agatcctggc aaactcctgg cgatactcca gtgcattcac caacaggata 350 ttttttgcca tggtggattt tgatgaaggc tctgatgtat ttcagatgct 400 aaacatgaat tcagctccaa ctttcatcaa ctttcctgca aaagggaaac 450 ccaaacgggg tgatacatat gagttacagg tgcggggttt ttcagctgag 500 cagattgccc ggtggatcgc cgacagaact gatgtcaata ttagagtgat 550 tagaccccca aattatgctg gtccccttat gttgggattg cttttggctg 600 ttattggtgg acttgtgtat cttcgaagaa gtaatatgga atttctcttt 650 aataaaactg gatgggcttt tgcagctttg tgttttgtgc ttgctatgac 700 atctggtcaa atgtggaacc atataagagg accaccatat gcccataaga 750 atccccacac gggacatgtg aattatatcc atggaagcag tcaagcccag 800 tttgtagctg aaacacacat tgttcttctg tttaatggtg gagttacctt 850 aggaatggtg cttttatgtg aagctgctac ctctgacatg gatattggaa 900 agcgaaagat aatgtgtgtg gctggtattg gacttgttgt attattcttc 950 agttggatgc tctctatttt tagatctaaa tatcatggct acccatacag 1000 ctttctgatg agttaaaaag gtcccagaga tatatagaca ctggagtact 1050 ggaaattgaa aaacgaaaat cgtgtgtgtt tgaaaagaag aatgcaactt 1100

gtatattttg tattacctct ttttttcaag tgatttaaat agttaatcat 1150 ttaaccaaag aagatgtgta gtgccttaac aagcaatcct ctgtcaaaat 1200 ctgaggtatt tgaaaataat tatcctctta accttctctt cccagtgaac 1250 tttatggaac atttaattta gtacaattaa gtatattata aaaattgtaa 1300 aactactact ttgttttagt tagaacaaag ctcaaaacta ctttagttaa 1350 cttggtcatc tgattttata ttgccttatc caaagatggg gaaagtaagt 1400 cctgaccagg tgttcccaca tatgcctgtt acagataact acattaggaa 1450 ttcattctta gcttcttcat ctttgtgtgg atgtgtatac tttacgcatc 1500 tttccttttg agtagagaaa ttatgtgtgt catgtggtct tctgaaaatg 1550 gaacaccatt cttcagagca cacgtctagc cctcagcaag acagttgttt 1600 ctcctcctcc ttgcatattt cctactgcgc tccagcctga gtgatagagt 1650 gagactctgt ctcaaaaaaa agtatctcta aatacaggat tataatttct 1700 gcttgagtat ggtgttaact accttgtatt tagaaagatt tcagattcat 1750 tccatctcct tagttttctt ttaaggtgac ccatctgtga taaaaatata 1800 gcttagtgct aaaatcagtg taacttatac atggcctaaa atgtttctac 1850 aaattagagt ttgtcactta ttccatttgt acctaagaga aaaataggct 1900 cagttagaaa aggactccct ggccaggcgc agtgacttac gcctgtaatc 1950 tcagcacttt gggaggccaa ggcaggcaga tcacgaggtc aggagttcga 2000 gaccatcctg gccaacatgg tgaaaccccg tctctactaa aaatataaaa 2050 attagctggg tgtggtggca ggagcctgta atcccagcta cacaggaggc 2100 tgaggcacga gaatcacttg aactcaggag atggaggttt cagtgagccg 2150 agatcacgcc actgcactcc agcctggcaa cagagcgaga ctccatctca 2200 aaaaaaaaa aaa 2213

Val Ala Leu Leu Ile Val Cys Asp Val Pro Ser Ala Ser Ala Gln

<210> 130

<211> 335

<212> PRT

<213> Homo sapiens

<400> 130

Met Ala Ala Arg Trp Arg Phe Trp Cys Val Ser Val Thr Met Val 1 5 10

Ar	g Ly	s Ly	s Gl	u Met	t Vai	l Leı	ı Sei	r Gl	u Ly 4		l Se	r Gl	n Le	u Met 45
Gl	u Tr	p Th	r As	n Lys 50	s Arq	g Pro	Val	l Il	e Aro		t Ası	n Gl	y As _l	Lys 60
Ph	e Ar	g Ar	g Le	u Val	L Lys	s Ala	Pro) Pro	o Aro	_	n Ty	r Sei	r Val	l Ile 75
Va.	l Me	t Ph	e Th:	r Ala	Leu)	ı Gln	Leu	ı His	s Arg	g Glr 5	n Cys	s Val	l Val	L Cys 90
Lys	s Glr	n Ala	a Asp	95 95	Glu	ı Phe	Gln	ı Ile	e Leu 100		a Asr	n Ser	Trp	Arg 105
Туг	Sei	: Sei	r Ala	Phe 110	Thr	Asn	Arg	Ile	Phe 115	Phe	e Ala	Met	: Val	Asp 120
Phe	e Asp) Glu	ı Gly	/ Ser 125	Asp	Val	Phe	Gln	Met 130	Leu	Asn	Met	Asn	Ser 135
Ala	Pro) Thr	Phe	lle 140	Asn	Phe	Pro	Ala	Lys 145		. Lys	Pro	Lys	Arg 150
Gly	Asp	· Thr	Tyr	Glu 155	Leu	Gln	Val	Arg	Gly 160		Ser	Ala	Glu	Gln 165
Ile	Ala	Arg	Trp	Ile 170	Ala	Asp	Arg	Thr	Asp 175	Val	Asn	Ile	Arg	Val 180
Ile	Arg	Pro	Pro	Asn 185	Tyr	Ala	Gly	Pro	Leu 190	Met	Leu	Gly	Leu	Leu 195
Leu	Ala	Val	Ile	Gly 200	Gly	Leu	Val	Tyr	Leu 205	Arg	Arg	Ser	Asn	Met 210
Glu	Phe	Leu	Phe	Asn 215	Lys	Thr	Gly	Trp	Ala 220	Phe	Ala	Ala	Leu	Cys 225
Phe	Val	Leu	Ala	Met 230	Thr	Ser	Gly	Gln	Met 235	Trp	Asn	His	Ile	Arg 240
Gly	Pro	Pro	Tyr	Ala 245	His	Lys	Asn	Pro	His 250	Thr	Gly	His	Val	Asn 255
				Ser 260					265					270
Ile	Val	Leu	Leu	Phe 275	Asn	Gly	Gly	Val	Thr 280	Leu	Gly	Met	Val	Leu 285
Leu	Cys	Glu	Ala	Ala 290	Thr	Ser :	Asp 1	Met	Asp 295	Ile	Gly	Lys		Lys 300
Ile	Met	Cys	Val	Ala	Glv	Ile	Glv	Len	Val	Val	Lan	Dho	Dho	Com

305 310 315

Trp Met Leu Ser Ile Phe Arg Ser Lys Tyr His Gly Tyr Pro Tyr 320 325 330

Ser Phe Leu Met Ser 335

<210> 131

<211> 2476

<212> DNA

<213> Homo sapiens

<400> 131

aagcaaccaa actgcaagct ttgggagttg ttcgctgtcc ctgccctgct 50 ctgctaggga gagaacgcca gagggaggcg gctggcccgg cggcaggctc 100 tcagaaccgc taccggcgat gctactgctg tgggtgtcgg tggtcgcagc 150 cttggcgctg gcggtactgg cccccggagc aggggagcag aggcggagag 200 cagecaaage geecaatgtg gtgetggteg tgagegaete ettegatgga 250 aggttaacat ttcatccagg aagtcaggta gtgaaacttc cttttatcaa 300 ctttatgaag acacgtggga cttcctttct gaatgcctac acaaactctc 350 caatttgttg cccatcacgc gcagcaatgt ggagtggcct cttcactcac 400 ttaacagaat cttggaataa ttttaagggt ctagatccaa attatacaac 450 atggatggat gtcatggaga ggcatggcta ccgaacacag aaatttggga 500 aactggacta tacttcagga catcactcca ttagtaatcg tgtggaagcg 550 tggacaagag atgttgcttt cttactcaga caagaaggca ggcccatggt 600 taatcttatc cgtaacagga ctaaagtcag agtgatggaa agggattggc 650 agaatacaga caaagcagta aactggttaa gaaaggaagc aattaattac 700 actgaaccat ttgttattta cttgggatta aatttaccac acccttaccc 750 ttcaccatct tctggagaaa attttggatc ttcaacattt cacacatctc 800 tttattggct tgaaaaagtg tctcatgatg ccatcaaaat cccaaagtgg 850 tcacctttgt cagaaatgca ccctgtagat tattactctt cttatacaaa 900 aaactgcact ggaagattta caaaaaaga aattaagaat attagagcat 950 tttattatgc tatgtgtgct gagacagatg ccatgcttgg tgaaattatt 1000 ttggcccttc atcaattaga tcttcttcag aaaactattg tcatatactc 1050 ctcagaccat ggagagctgg ccatggaaca tcgacagttt tataaaatga 1100

gcatgtacga ggctagtgca catgttccgc ttttgatgat gggaccagga 1150 attaaagccg gcctacaagt atcaaatgtg gtttctcttg tggatattta 1200 ccctaccatg cttgatattg ctggaattcc tctgcctcag aacctgagtg 1250 gatactcttt gttgccgtta tcatcagaaa catttaagaa tgaacataaa 1300 gtcaaaaacc tgcatccacc ctggattctg agtgaattcc atggatgtaa 1350tgtgaatgcc tccacctaca tgcttcgaac taaccactgg aaatatatag 1400 cctattcgga tggtgcatca atattgcctc aactctttga tctttcctcg 1450 gatccagatg aattaacaaa tgttgctgta aaatttccag aaattactta 1500 ttctttggat cagaagcttc attccattat aaactaccct aaagtttctg 1550 cttctgtcca ccagtataat aaagagcagt ttatcaagtg gaaacaaagt 1600 ataggacaga attattcaaa cgttatagca aatcttaggt ggcaccaaga 1650 ctggcagaag gaaccaagga agtatgaaaa tgcaattgat cagtggctta 1700 aaacccatat gaatccaaga gcagtttgaa caaaaagttt aaaaatagtg 1750 ttctagagat acatataaat atattacaag atcataatta tgtattttaa 1800 atgaaacagt tttaataatt accaagtttt ggccgggcac agtggctcac 1850 acctgtaatc ccaggacttt gggaggctga ggaaagcaga tcacaaggtc 1900 aagagattga gaccatcctg gccaacatgg tgaaaccctg tctctactaa 1950 aaatacaaaa attagctggg cgcggtggtg cacacctata gtctcagcta 2000 ctcagaggct gaggcaggag gatcgcttga acccgggagg cagcagttgc 2050 agtgagctga gattgcgcca ctgtactcca gcctggcaac agagtgagac 2100 tgtgtcgcaa aaaaataaa ataaataat aataattacc aatttttcat 2150 tattttgtaa gaatgtagtg tattttaaga taaaatgcca atgattataa 2200 aatcacatat tttcaaaaat ggttattatt taggcctttg tacaatttct 2250 aacaatttag tggaagtatc aaaaggattg aagcaaatac tgtaacagtt 2300 atgttccttt aaataataga gaatataaaa tattgtaata atatgtatca 2350 taaaatagtt gtatgtgagc atttgatggt gaaaaaaaaa aaaaaaaaa 2400 aaaaaaaaa aaaaaaaa aaaaaa 2476

<21	l1> ! l2> ! l3> !	PRT	sapi	lens										
	00> 1 et Le 1		eu Le	eu Tr	p Va	ıl Se	r Va	l Va		a Al O	a Le	u Al	a Le	u Ala
Va	l Le	eu Al	a Pr	o G1 2	y Al :0	a Gl	y Gl	u Gl	n Ar 2	g Ar 5	g Ar	g Al	a Al	a Lys 3(
Al	a Pr	o As	n Va	1 Va 3	l Le 5	u Va	l Va	l Se	r As	p Se	r Phe	e As	p Gl	y Arg 45
Le	u Th	r Ph	e Hi	s Pr 5	o Gl 0	y Se	r Glı	n Vai	l Va.	l Ly: 5	s Lei	ı Pr	o Ph	e Ile 60
As	n Ph	e Me	t Ly	s Th	r Ar	g Gly	y Thi	r Sei	r Phe	e Lei	ı Asr	n Ala	а Ту:	r Thr 75
Ası	n Se	r Pro	o Ile	e Cys 80	s Cya	s Pro	Ser	: Arg	g Ala 85		a Met	Tr	Sei	Gly 90
Leı	ı Phe	e Thi	r His	E Let 95	a Thi	r Glu	ı Ser	Trp	Asr 100	n Asn	Phe	Lys	Gly	/ Leu 105
Asp	Pro	Asr	n Tyr	Thr 110	Thi	Trp	Met	Asp	Val 115	Met	Glu	Arg	, His	Gly 120
Tyr	: Arg	J Thr	Gln	Lys 125	Phe	e Gly	Lys	Leu	Asp 130	Tyr	Thr	Ser	Gly	His 135
His	Ser	Ile	e Ser	Asn 140	Arg	Val	Glu	Ala	Trp 145	Thr	Arg	Asp	Val	Ala 150
Phe	Leu	Leu	Arg	Gln 155	Glu	Gly	Arg	Pro	Met 160	Val	Asn	Leu	Ile	Arg 165
Asn	Arg	Thr	Lys	Val 170	Arg	Val	Met	Glu	Arg 175	Asp	Trp	Gln	Asn	Thr 180
Asp	Lys	Ala	Val	Asn 185	Trp	Leu	Arg	Lys	Glu 190	Ala	Ile	Asn	Tyr	Thr 195
Glu	Pro	Phe	Val	Ile 200	Tyr	Leu	Gly	Leu	Asn 205	Leu	Pro	His	Pro	Tyr 210
Pro	Ser	Pro	Ser	Ser 215	Gly	Glu	Asn	Phe	Gly 220	Ser	Ser	Thr	Phe	His 225
Thr	Ser	Leu	Tyr	Trp 230	Leu	Glu	Lys	Val	Ser 235	His	Asp	Ala	Ile	Lys 240
Ile	Pro	Lys	Trp	Ser 245	Pro	Leu	Ser	Glu	Met 250	His	Pro	Val	Asp	Tyr 255

<210> 132

Ту	r Se	r Se	r Ty:	r Thi 260	Lys	s Ası	n Cys	s Th	r Gl	y Aro 5	g Phe	e Th	r Ly	s Lys 270
Gl	u Il	e Ly:	s Ası	n Ile 275	e Arg	g Ala	a Phe	е Ту:	r Ty: 280		a Met	Cy:	s Ala	Glu 285
Th	r Ası	o Ala	a Met	290	Gly	/ Glu	ı Ile	e Ile	e Let 295		a Lei	ı Hi:	s Glı	1 Leu 300
Ası) Lei	ı Leı	ı Glr	1 Lys 305	Thr	: Ile	e Val	Ile	Э Туг 310		Ser	Asp) His	Gly 315
Glı	ı Leı	ı Ala	a Met	Glu 320	His	Arg	g Gln	n Ph∈	325	Lys	Met	Se ₁	Met	Tyr 330
Glı	ı Ala	ser	Ala	His 335	Val	Pro	Leu	. Leu	Met 340	Met	Gly	Pro	Gly	7 Ile 345
Lys	Ala	Gly	Leu	Gln 350	Val	Ser	Asn	Val	. Val 355	Ser	Leu	Val	. Asp	Ile 360
Tyr	Pro	Thr	Met	Leu 365	Asp	Ile	Ala	Gly	7 Ile 370		Leu	Pro	Gln	Asn 375
Leu	Ser	Gly	Tyr	Ser 380	Leu	Leu	Pro	Leu	Ser 385	Ser	Glu	Thr	Phe	Lys 390
Asn	Glu	His	Lys	Val 395	Lys	Asn	Leu	His	Pro 400	Pro	Trp	Ile	Leu	Ser 405
Glu	Phe	His	Gly	Cys 410	Asn	Val	Asn	Ala	Ser 415	Thr	Tyr	Met	Leu	Arg 420
Thr	Asn	His	Trp	Lys 425	Tyr	Ile	Ala	Tyr	Ser 430	Asp	Gly	Ala	Ser	Ile 435
Leu	Pro	Gln	Leu	Phe 440	Asp	Leu	Ser	Ser	Asp 445	Pro	Asp	Glu	Leu	Thr 450
Asn	Val	Ala	Val	Lys 455	Phe	Pro	Glu	Ile	Thr 460	Tyr	Ser	Leu	Asp	Gln 465
Lys	Leu	His	Ser	Ile 470	Ile	Asn	Tyr	Pro	Lys 475	Val	Ser	Ala	Ser	Val 480
His	Gln	Tyr	Asn	Lys 485	Glu	Gln	Phe	Ile	Lys 490	Trp	Lys	Gln	Ser	Ile 495
Gly	Gln	Asn	Tyr	Ser 500	Asn	Val	Ile	Ala	Asn 505	Leu	Arg	Trp	His	Gln 510
Asp	Trp	Gln	Lys	Glu 515	Pro	Arg	Lys	Tyr	Glu 520	Asn	Ala	Ile	Asp	Gln 525
Trp	Leu	Lys	Thr	His 530	Met .	Asn	Pro	Arg	Ala 535	Val				

<210> 133

<211> 1475

<212> DNA

<213> Homo sapiens

<400> 133

gagagaagtc agcctggcag agagactctg aaatgaggga ttagaggtgt 50 tcaaggagca agagcttcag cctgaagaca agggagcagt ccctgaagac 100 gcttctactg agaggtctgc catggcctct cttggcctcc aacttgtggg 150 ctacatccta ggccttctgg ggcttttggg cacactggtt gccatgctgc 200 tccccagctg gaaaacaagt tcttatgtcg gtgccagcat tgtgacagca 250 gttggcttct ccaagggcct ctggatggaa tgtgccacac acagcacagg 300 catcacccag tgtgacatct atagcaccct tctgggcctg cccgctgaca 350 tccaggctgc ccaggccatg atggtgacat ccagtgcaat ctcctccctg 400 gcctgcatta tctctgtggt gggcatgaga tgcacagtct tctgccagga 450 atcccgagcc aaagacagag tggcggtagc aggtggagtc tttttcatcc 500 ttggaggcct cctgggattc attcctgttg cctggaatct tcatgggatc 550 ctacgggact tctactcacc actggtgcct gacagcatga aatttgagat 600 tggagagget etttaettgg geattattte tteeetgtte teeetgatag 650 ctggaatcat cctctgcttt tcctgctcat cccagagaaa tcgctccaac 700 tactacgatg cctaccaagc ccaacctctt gccacaagga gctctccaag 750 gcctggtcaa cctcccaaag tcaagagtga gttcaattcc tacagcctga 800 cagggtatgt gtgaagaacc aggggccaga gctgggggt ggctgggtct 850 gtgaaaaaca gtggacagca ccccgagggc cacaggtgag ggacactacc 900 actggatcgt gtcagaaggt gctgctgagg atagactgac tttggccatt 950 ggattgagca aaggcagaaa tgggggctag tgtaacagca tgcaggttga 1000 attgccaagg atgctcgcca tgccagcctt tctgttttcc tcaccttgct 1050 gctcccctgc cctaagtccc caaccctcaa cttgaaaccc cattccctta 1100 agccaggact cagaggatcc ctttgccctc tggtttacct gggactccat 1150 ccccaaaccc actaatcaca tcccactgac tgaccctctg tgatcaaaga 1200 ccctctctct ggctgaggtt ggctcttagc tcattgctgg ggatgggaag 1250 gagaagcagt ggcttttgtg ggcattgctc taacctactt ctcaagcttc 1300

cctccaaaga aactgattgg ccctggaacc tccatcccac tcttgttatg 1350 actccacagt gtccagacta atttgtgcat gaactgaaat aaaaccatcc 1400 tacggtatcc agggaacaga aagcaggatg caggatggga ggacaggaag 1450 gcagcctggg acatttaaaa aaata 1475

- <210> 134
- <211> 230
- <212> PRT
- <213> Homo sapiens
- <400> 134
- Met Ala Ser Leu Gly Leu Gln Leu Val Gly Tyr Ile Leu Gly Leu
 1 5 10 15
- Leu Gly Leu Leu Gly Thr Leu Val Ala Met Leu Leu Pro Ser Trp $20 \\ 25 \\ 30$
- Phe Ser Lys Gly Leu Trp Met Glu Cys Ala Thr His Ser Thr Gly 50 55 60
- Ile Thr Gln Cys Asp Ile Tyr Ser Thr Leu Leu Gly Leu Pro Ala 65 70 75
- Asp Ile Gln Ala Gln Ala Met Met Val Thr Ser Ser Ala Ile 80 85 90
- Ser Ser Leu Ala Cys Ile Ile Ser Val Val Gly Met Arg Cys Thr 95 100 105
- Val Phe Cys Gln Glu Ser Arg Ala Lys Asp Arg Val Ala Val Ala 110 115 120
- Gly Gly Val Phe Phe Ile Leu Gly Gly Leu Leu Gly Phe Ile Pro 125 130 135
- Val Ala Trp Asn Leu His Gly Ile Leu Arg Asp Phe Tyr Ser Pro 140 145 150
- Leu Val Pro Asp Ser Met Lys Phe Glu Ile Gly Glu Ala Leu Tyr 155 160 165
- Leu Gly Ile Ile Ser Ser Leu Phe Ser Leu Ile Ala Gly Ile Ile 170 175 180
- Leu Cys Phe Ser Cys Ser Ser Gln Arg Asn Arg Ser Asn Tyr Tyr 185 190 195
- Asp Ala Tyr Gln Ala Gln Pro Leu Ala Thr Arg Ser Ser Pro Arg 200 205 210

Pro Gly Gln Pro Pro Lys Val Lys Ser Glu Phe Asn Ser Tyr Ser 215 220 225

Leu Thr Gly Tyr Val 230

<210> 135

<211> 610

<212> DNA

<213> Homo sapiens

<400> 135

<210> 136

<211> 119

<212> PRT

<213> Homo sapiens

<400> 136

Met Val Pro Arg Ile Phe Ala Pro Ala Tyr Val Ser Val Cys Leu
1 5 10 15

Leu Leu Cys Pro Arg Glu Val Ile Ala Pro Ala Gly Ser Glu 20 25 30

Pro Trp Leu Cys Gln Pro Ala Pro Arg Cys Gly Asp Lys Ile Tyr 35 40 45

Asn Pro Leu Glu Gln Cys Cys Tyr Asn Asp Ala Ile Val Ser Leu 50 55 60

Ser Glu Thr Arg Gln Cys Gly Pro Pro Cys Thr Phe Trp Pro Cys

65 70 75

Phe Glu Leu Cys Cys Leu Asp Ser Phe Gly Leu Thr Asn Asp Phe 80 85 90

Val Val Lys Leu Lys Val Gln Gly Val Asn Ser Gln Cys His Ser 95 100 105

Ser Pro Ile Ser Ser Lys Cys Glu Ser Arg Arg Phe Pro 110 115

<210> 137

<211> 771

<212> DNA

<213> Homo sapiens

<400> 137

ctccactgca accacccaga gccatggctc cccgaggctg catcgtagct 50 gtctttgcca ttttctgcat ctccaggctc ctctgctcac acggagcccc 100 agtggccccc atgactcctt acctgatgct gtgccagcca cacaagagat 150 gtggggacaa gttctacgac cccctgcagc actgttgcta tgatgatgcc 200 gtcgtgccct tggccaggac ccagacgtgt ggaaactgca ccttcagagt 250 ctgctttgag cagtgctgcc cctggacctt catggtgaag ctgataaacc 300 agaactgcga ctcagcccgg acctcggatg acaggctttg tcgcagtgtc 350 agctaatgga acatcagggg aacgatgact cctggattct ccttcctggg 400 tgggcctgga gaaagaggct ggtgttacct gagatctggg atgctgagtg 450 gctgtttggg ggccagagaa acacacactc aactgcccac ttcattctgt 500 gacctgtctg aggcccaccc tgcagctgcc ctgaggaggc ccacaggtcc 550 ccttctagaa ttctggacag catgagatgc gtgtgctgat gggggcccag 600 ggactctgaa ccctcctgat gacccctatg gccaacatca acccggcacc 650 accccaagge tggctgggga acccttcacc cttctgtgag attttccatc 700 atctcaagtt ctcttctatc caggagcaaa gcacaggatc ataataaatt 750 tatgtacttt ataaatgaaa a 771

<210> 138

<211> 110

<212> PRT

<213> Homo sapiens

<400> 138

Met Ala Pro Arg Gly Cys Ile Val Ala Val Phe Ala Ile Phe Cys
1 5 10 15

Ile Ser Arg Leu Leu Cys Ser His Gly Ala Pro Val Ala Pro Met 20 25 30

Thr Pro Tyr Leu Met Leu Cys Gln Pro His Lys Arg Cys Gly Asp 35 40 45

Lys Phe Tyr Asp Pro Leu Gln His Cys Cys Tyr Asp Asp Ala Val
50 55 60

Val Pro Leu Ala Arg Thr Gln Thr Cys Gly Asn Cys Thr Phe Arg
65 70 75

Val Cys Phe Glu Gln Cys Cys Pro Trp Thr Phe Met Val Lys Leu 80 85 90

Ile Asn Gln Asn Cys Asp Ser Ala Arg Thr Ser Asp Asp Arg Leu
95 100 105

Cys Arg Ser Val Ser 110

<210> 139

<211> 2044

<212> DNA

<213> Homo sapiens

<400> 139

gggggcgggt gcctggaga ggcttccccg cgccgccgc gcccgccgg 100
ctccccggca ccagaagttc ctctgcggt ccgacggcga catgggcgtc 150
cccacggcac tggaggccgg cagctggcg tggggatccc tgctttcgc 200
tctcttcctg gctgcgtccc taggtccggt ggcagaccttc aaggtcgca 250
cgccgtattc cctgtatgtc tgtcccgagg ggcagaacgt caccctcacc 300
tgcaggctct tggggcctgt ggacaaaggg cacgatgtga ccttctacaa 350
gacgtggtac cgcagctcga gggcgaggt gcagacctgc tcagagcgcc 400
ggcccatccg caacctcacg ttccaggacc ttcacctgac cacctgggcg 450
caccaggctc tagcgcctc tacggacc tcaccactg caccactgg 550
caccaggctg ccaacaccag ccacgacctg gctcagcgc acgggctgga 500
gtcggcctcc gaccaccat gcaacttctc catcaccat gcaacctga 550
ccctgctgaa tagcggcctc tactgctgcc tggtggtgaa gatcaggcac 600
caccactcgg agcacagggt ccatggtgc atggagctgc aggtgcagac 650
aggcaaaagat gcaccatcaa actgtgtggt gtacccatcc tcctccagg 700
atagtgaaaa catcacggct gcagccctgg ctacgggtgc ctgcatcgta 750

ggaateetet geeteeeet eateetgete etggtetaea ageaaaggea 800 ggcagcctcc aaccgccgtg cccaggagct ggtgcggatg gacagcaaca 850 ttcaagggat tgaaaacccc ggctttgaag cctcaccacc tgcccagggg 900 atacccgagg ccaaagtcag gcacccctg tcctatgtgg cccagcggca 950 gccttctgag tctgggcggc atctgctttc ggagcccagc accccctgt 1000 ctcctccagg ccccggagac gtcttcttcc catccctgga ccctgtccct 1050 gactetecaa aetttgaggt catetageee agetggggga cagtgggetg 1100 ttgtggctgg gtctggggca ggtgcatttg agccagggct ggctctgtga 1150 gtggcctcct tggcctcggc cctggttccc tccctcctgc tctgggctca 1200 gatactgtga catcccagaa gcccagcccc tcaacccctc tggatgctac 1250 atggggatgc tggacggctc agcccctgtt ccaaggattt tggggtgctg 1300 agattetece etagagacet gaaatteace agetacagat gecaaatgae 1350 ttacatetta agaagtetea gaaegteeag eeetteagea getetegtte 1400 tgagacatga gccttgggat gtggcagcat cagtgggaca agatggacac 1450 tgggccaccc tcccaggcac cagacacagg gcacggtgga gagacttctc 1500 ccccgtggcc gccttggctc ccccgttttg cccgaggctg ctcttctgtc 1550 agactteete tttgtaceae agtggetetg gggeeaggee tgeetgeeea 1600 ctggccatcg ccaccttccc cagctgcctc ctaccagcag tttctctgaa 1650 gatetgteaa caggttaagt caatetgggg ettecaetge etgeatteea 1700 gtccccagag cttggtggtc ccgaaacggg aagtacatat tggggcatgg 1750 tggcctccgt gagcaaatgg tgtcttgggc aatctgaggc caggacagat 1800 gttgccccac ccactggaga tggtgctgag ggaggtgggt ggggccttct 1850 gggaaggtga gtggagaggg gcacctgccc cccgccctcc ccatccccta 1900 ctcccactgc tcagcgcggg ccattgcaag ggtgccacac aatgtcttgt 1950 ccaccctggg acacttctga gtatgaagcg ggatgctatt aaaaactaca 2000 tggggaaaaa aaaaaaaaa aaaaaaaaaa aaga 2044

<210> 140

<211> 311

<212> PRT

<213> Homo sapiens

<4(00>	14	0														
Me	et G 1	ly	Va	l Pr	o Th	nr A 5	la	Leu	Gl:	u Al		ly 10	Sea	r Tr	p Ar	g Tr	p Gly 15
Se	er L	eu	Le	u Ph	ie Al 2	a L 90	eu	Phe	Lei	u Al		la 25	Sei	c Le	u Gl	y Pr	o Val
Al	a Ai	la	Ph	е Ly	s Va	1 A	la	Thr	Pro	э Ту		er 40	Leu	1 Ту	r Va	l Cy	s Pro 45
G1	u Gl	Lу	Gli	n As	n Va 5	1 TI 0	ır :	Leu	Thi	с Су	s A:	rg 55	Leu	ı Le	u Gl	y Pr	o Val 60
As	b r?	/S	Gly	y Hi	s As 6	p Va 5	al ?	Fhr	Ph∈	Э Ту	r Ly	7s 70	Thr	Tr	э Ту	r Ar	g Ser 75
Se	r Ar	g	Gly	/ Gl	u Va 8	1 G1 0	n 1	Thr	Cys	Se:	r Gl	.u 35	Arg	Arq	g Pro	o Il	e Arg 90
Ası	n Le	u	Thr	Phe	e Gl: 9:	n As 5	p I	Leu	His	Lei	и Ні 10	.s	His	G13	/ Gly	/ Hi	s Gln 105
Ala	a Al	а.	Asn	Thi	Se:	r Hi O	s A	sp	Leu	Ala	a Gl 11		Arg	His	Gl _y	/ Let	ı Glu 120
Sei	Al	a .	Ser	Asp	His 125	s Hi	s G	ly	Asn	Ph€	Se 13	r O	Ile	Thr	Met	: Arç	g Asn 135
Leu	ı Th	r]	Leu	Leu	140	Se)	r G	ly	Leu	Tyr	Су 14	s 5	Cys	Leu	Val	Val	Glu 150
Ile	e Ar	g I	His	His	His 155	Se:	r G	lu	His	Arg	Va. 16	1 :	His	Gly	Ala	Met	Glu 165
Leu	Glr	/ r	/al	Gln	Thr 170	Gl;	y L	ys .	Asp	Ala	Pro 17	o :	Ser	Asn	Cys	Val	Val 180
Tyr	Pro) S	Ser	Ser	Ser 185	Glı	ı A	sp :	Ser	Glu	Ası 190	n I	[le	Thr	Ala	Ala	Ala 195
Leu	Ala	T	'hr	Gly	Ala 200	Cys	; II	le ^v	Val	Gly	Ile 205	e I	Leu	Cys	Leu	Pro	Leu 210
Ile	Leu	L	eu	Leu	Val 215	Туг	. L7	/s (Gln	Arg	Glr 220	n <i>P</i>	la.	Ala	Ser	Asn	Arg 225
Arg	Ala	G	ln	Glu	Leu 230	Val	Ar	g N	1et	Asp	Ser 235	A	sn	Ile	Gln	Gly	Ile 240
Glu	Asn	P.	ro	Gly	Phe 245	Glu	Al	a S	Ser	Pro	Pro 250	A	la (Gln	Gly	Ile	Pro 255
Glu	Ala	L	ys	Val	Arg 260	His	Pr	o I	eu :	Ser	Tyr 265	V	al A	Ala	Gln	Arg	Gln 270
Pro	Ser	G.	lu	Ser	Gly	Arg	Hi	s L	eu I	Leu	Ser	G	lu E	Pro	Ser	Thr	Pro

275 280 285

Leu Ser Pro Pro Gly Pro Gly Asp Val Phe Phe Pro Ser Leu Asp 290 295 300

Pro Val Pro Asp Ser Pro Asn Phe Glu Val Ile 305 310

<210> 141

<211> 1732

<212> DNA

<213> Homo sapiens

<400> 141

cccacgcgtc cgcgcctctc ccttctgctg gaccttcctt cgtctctcca 50 tetetecete ettteeege gttetette cacettete ttetteeeac 100 cttagacete cetteetgee etectteet geecaceget getteetgge 150 cettetecga eccegeteta geageagace teetggggte tgtgggttga 200 tctgtggccc ctgtgcctcc gtgtcctttt cgtctccctt cctcccgact 250 ccgctcccgg accagcggcc tgaccctggg gaaaggatgg ttcccgaggt 300 gagggtcctc tcctccttgc tgggactcgc gctgctctgg ttccccctgg 350 actcccacgc tcgagcccgc ccagacatgt tctgcctttt ccatgggaag 400 agatactece eeggegagag etggeaeeee taettggage cacaaggeet 450 gatgtactgc ctgcgctgta cctgctcaga gggcgcccat gtgagttgtt 500 accgcctcca ctgtccgcct gtccactgcc cccagcctgt gacggagcca 550 cagcaatgct gtcccaagtg tgtggaacct cacactccct ctggactccg 600 ggccccacca aagtcctgcc agcacaacgg gaccatgtac caacacggag 650 agatetteag tgeccatgag etgtteecet eeegeetgee caaccagtgt 700 gtcctctgca gctgcacaga gggccagatc tactgcggcc tcacaacctg 750 ccccgaacca ggctgcccag cacccctccc actgccagac tcctgctgcc 800 aagcctgcaa agatgaggca agtgagcaat cggatgaaga ggacagtgtg 850 cagtcgctcc atggggtgag acatcctcag gatccatgtt ccagtgatgc 900 tgggagaaag agaggcccgg gcaccccagc cccactggc ctcagcgccc 950 ctctgagctt catccctcgc cacttcagac ccaagggagc aggcagcaca 1000 actgtcaaga tcgtcctgaa ggagaaacat aagaaagcct gtgtgcatgg 1050 cgggaagacg tactcccacg gggaggtgtg gcacccggcc ttccgtgcct 1100

teggecett geeetgeate etatgeacet gtgaggatgg cegeeaggae 1150
tgeeagegtg tgaeetgtee cacegagtae eeetgeegte aeeeegagaa 1200
agtggetggg aagtgetgea agatttgeee agaggaeaaa geagaeeetg 1250
geeacaagtga gateagttet aeeaggtgte eeaaggeace gggeegggte 1300
etegteeaca eateggtate eeeaageeaa gaeaaeetge gtegetttge 1350
cetggaacae gaggeetegg aettggtga gatetaeete tggaagetgg 1400
taaaagatga ggaaaetgag geteagagag gtgaagtaee tggeeeaagg 1450
eeacacagee agaatettee aettgaetea gateaagaaa gteaggaage 1500
aagaetteea gaaagagea eageaettee gaetgetege tggeeeeae 1550
gaaggteact ggaaegtett eetageeeag aeeetggage tgaaggteae 1600
ggeeagteea gacaaagtga ceaagaeata aeaaagaeet aacagttgea 1650
gatatgaget gtataattgt tgttattata tattaataaa taagaagttg 1700
cattaeeete aaaaaaaaaa aaaaaaaaaa aa 1732

```
<210> 142
```

<400> 142

Met Va	l Pro Glu	Val	Arg	Val	Leu	Ser	Ser	Leu	Leu	Glv	Leu	Ala
1		5					10					15

Leu Leu Trp Phe Pro Leu Asp Ser His Ala Arg Ala Arg Pro Asp 20 25 30

Met Phe Cys Leu Phe His Gly Lys Arg Tyr Ser Pro Gly Glu Ser 35 40 45

Trp His Pro Tyr Leu Glu Pro Gln Gly Leu Met Tyr Cys Leu Arg
50 55 60

Cys Thr Cys Ser Glu Gly Ala His Val Ser Cys Tyr Arg Leu His
65 70 75

Cys Pro Pro Val His Cys Pro Gln Pro Val Thr Glu Pro Gln Gln
80 85 90

Cys Cys Pro Lys Cys Val Glu Pro His Thr Pro Ser Gly Leu Arg
95 100 105

Ala Pro Pro Lys Ser Cys Gln His Asn Gly Thr Met Tyr Gln His 110 115 120

<211> 451

<212> PRT

<213> Homo sapiens

Gly	Glu	Ile	Phe	Ser 125		His	Glu	Leu	Phe 130	Pro	Ser	Arg	, Leu	Pro 135
Asn	Gln	Cys	: Val	Leu 140		Ser	Cys	Thr	Glu 145		Gln	ı Ile	Tyr	Cys 150
Gly	Leu	Thr	Thr	Cys 155		Glu	Pro	Gly	Cys 160	Pro	Ala	Pro	Leu	Pro 165
Leu	Pro	Asp	Ser	Cys 170		Gln	Ala	Cys	Lys 175	Asp	Glu	Ala	Ser	Glu 180
Gln	Ser	Asp	Glu	Glu 185	Asp	Ser	Val	Gln	Ser 190	Leu	His	Gly	Val	Arg 195
His	Pro	Gln	Asp	Pro 200	Cys	Ser	Ser	Asp	Ala 205	Gly	Arg	Lys	Arg	Gly 210
Pro	Gly	Thr	Pro	Ala 215	Pro	Thr	Gly	Leu	Ser 220	Ala	Pro	Leu	Ser	Phe 225
Ile	Pro	Arg	His	Phe 230	Arg	Pro	Lys	Gly	Ala 235	Gly	Ser	Thr	Thr	Val 240
Lys	Ile	Val	Leu	Lys 245	Glu	Lys	His	Lys	Lys 250	Ala	Cys	Val	His	Gly 255
Gly	Lys	Thr	Tyr	Ser 260	His	Gly	Glu	Val	Trp 265	His	Pro	Ala	Phe	Arg 270
Ala	Phe	Gly	Pro	Leu 275	Pro	Cys	Ile	Leu	Cys 280	Thr	Cys	Glu	Asp	Gly 285
Arg	Gln	Asp	Cys	Gln 290	Arg	Val	Thr	Суѕ	Pro 295	Thr	Glu	Tyr	Pro	Cys 300
Arg	His	Pro	Glu	Lys 305	Val	Ala	Gly	Lys	Cys 310	Cys	Lys	Ile	Cys	Pro 315
Glu	Asp	Lys	Ala	Asp 320	Pro	Gly	His	Ser	Glu 325	Ile	Ser	Ser	Thr	Arg 330
Cys	Pro	Lys	Ala	Pro 335	Gly	Arg	Val	Leu	Val 340	His	Thr	Ser	Val	Ser 345
Pro	Ser	Pro	Asp	Asn 350	Leu	Arg	Arg	Phe	Ala 355	Leu	Glu	His	Glu	Ala 360
Ser	Asp	Leu	Val	Glu 365	Ile	Tyr	Leu	Trp	Lys 370	Leu	Val	Lys	Asp	Glu 375
Glu	Thr	Glu	Ala	Gln 380	Arg	Gly	Glu		Pro 385	Gly	Pro	Arg	Pro	His 390
Ser	Gln	Asn	Leu	Pro 395	Leu	Asp	Ser		Gln 400	Glu	Ser	Gln	Glu	Ala 405

Arg Leu Pro Glu Arg Gly Thr Ala Leu Pro Thr Ala Arg Trp Pro Pro Arg Arg Ser Leu Glu Arg Leu Pro Ser Pro Asp Pro Gly Ala 430 Glu Gly His Gly Gln Ser Arg Gln Ser Asp Gln Asp Ile Thr Lys 445 Thr <210> 143 <211> 693 <212> DNA <213> Homo sapiens <400> 143 ctagcctgcg ccaaggggta gtgagaccgc gcggcaacag cttgcggctg 50 cggggagctc ccgtgggcgc tccgctggct gtgcaggcgg ccatggattc 100 cttgcggaaa atgctgatct cagtcgcaat gctgggcgca ggggctggcg 150 tgggctacgc gctcctcgtt atcgtgaccc cgggagagcg gcggaagcag 200 gaaatgctaa aggagatgcc actgcaggac ccaaggagca gggaggaggc 250 ggccaggacc cagcagctat tgctggccac tctgcaggag gcagcgacca 300 cgcaggagaa cgtggcctgg aggaagaact ggatggttgg cggcgaaggc 350 ggcgccagcg ggaggtcacc gtgagaccgg acttgcctcc gtgggcgccg 400 gaccttggct tgggcgcagg aatccgaggc agcctttctc cttcgtgggc 450 ccagcggaga gtccggaccg agataccatg ccaggactct ccggggtcct 500 gtgagctgcc gtcgggtgag cacgtttccc ccaaaccctg gactgactgc 550 tttaaggtcc gcaaggcggg ccagggccga gacgcgagtc ggatgtggtg 600 aactgaaaga accaataaaa tcatgttcct ccaaaaaaaa aaaaaaaaa 650 aaaaaaaaaa aaaaaaaaa aaaaaaaaaa aaa 693 <210> 144 <211> 93 <212> PRT <213> Homo sapiens <400> 144 Met Asp Ser Leu Arg Lys Met Leu Ile Ser Val Ala Met Leu Gly

Ala Gly Ala Gly Val Gly Tyr Ala Leu Leu Val Ile Val Thr Pro

Gly Glu Arg Arg Lys Gln Glu Met Leu Lys Glu Met Pro Leu Gln
35 40 45

Asp Pro Arg Ser Arg Glu Glu Ala Ala Arg Thr Gln Gln Leu Leu 50 55 60

Leu Ala Thr Leu Gln Glu Ala Ala Thr Thr Gln Glu Asn Val Ala 65 70 75

Trp Arg Lys Asn Trp Met Val Gly Gly Glu Gly Gly Ala Ser Gly 80 85 90

Arg Ser Pro

<210> 145

<211> 1883

<212> DNA

<213> Homo sapiens

<400> 145

caggagagaa ggcaccgccc ccaccccgcc tccaaagcta accctcgggc 50 ttgaggggaa gaggctgact gtacgttcct tctactctgg caccactctc 100 caggetgeca tggggeccag caccectete etcatettgt teettttgte 150 atggtcggga cccctccaag gacagcagca ccaccttgtg gagtacatgg 200 aacgccgact agctgcttta gaggaacggc tggcccagtg ccaggaccag 250 agtagtcggc atgctgctga gctgcgggac ttcaagaaca agatgctgcc 300 actgctggag gtggcagaga aggagcggga ggcactcaga actgaggccg 350 acaccatctc cgggagagtg gatcgtctgg agcgggaggt agactatctg 400 gagacccaga acccagetet geeetgtgta gagtttgatg agaaggtgae 450 tggaggccct gggaccaaag gcaagggaag aaggaatgag aagtacgata 500 tggtgacaga ctgtggctac acaatctctc aagtgagatc aatgaagatt 550 ctgaagcgat ttggtggccc agctggtcta tggaccaagg atccactggg 600 gcaaacagag aagatctacg tgttagatgg gacacagaat gacacagcct 650 ttgtcttccc aaggctgcgt gacttcaccc ttgccatggc tgcccggaaa 700 gcttcccgag tccgggtgcc cttcccctgg gtaggcacag ggcagctggt 750 atatggtggc tttctttatt ttgctcggag gcctcctgga agacctggtg 800 gaggtggtga gatggagaac actttgcagc taatcaaatt ccacctggca 850 aaccgaacag tggtggacag ctcagtattc ccagcagagg ggctgatccc 900

cccctacggc ttgacagcag acacctacat cgacctggta gctgatgagg 950 aaggtetttg ggetgtetat gecaceeggg aggatgaeag geacttqtgt 1000 ctggccaagt tagatccaca gacactggac acagagcagc agtgggacac 1050 accatgtccc agagagaatg ctgaggctgc ctttgtcatc tgtgggaccc 1100 tetatgtegt etataaeace egteetgeea gtegggeeeg eateeagtge 1150 teetttgatg ceageggeae eetgaceeet gaacgggeag cacteeetta 1200 ttttccccgc agatatggtg cccatgccag cctccgctat aacccccqag 1250 aacgccaget ctatgcctgg gatgatggct accagattgt ctataagctg 1300 gagatgagga agaaagagga ggaggtttga ggagctagcc ttqttttttq 1350 catctttctc actcccatac atttatatta tatccccact aaatttcttg 1400 ttcctcattc ttcaaatgtg ggccagttgt ggctcaaatc ctctatattt 1450 ttagccaatg gcaatcaaat tctttcagct cctttqtttc atacggaact 1500 ccagatcctg agtaatcctt ttagagcccg aagagtcaaa accctcaatg 1550 ttccctcctg ctctcctgcc ccatgtcaac aaatttcagg ctaaggatgc 1600 cccagaccca gggctctaac cttgtatgcg ggcaggccca gggagcaggc 1650 agcagtgttc ttcccctcag agtgacttgg ggagggagaa ataggaggag 1700 acgtccaget ctgtcctctc ttcctcactc ctcccttcag tgtcctgagg 1750 aacaggactt tctccacatt gttttgtatt gcaacatttt gcattaaaag 1800 aaaaaaaaaa aaaaaaaaaa aaa 1883

<210> 146

<211> 406

<212> PRT

<213> Homo sapiens

<400> 146

Met Gly Pro Ser Thr Pro Leu Leu Ile Leu Phe Leu Leu Ser Trp 1 5 10 15

Ser Gly Pro Leu Gln Gly Gln Gln His His Leu Val Glu Tyr Met $20 \\ 25 \\ 30$

Glu Arg Arg Leu Ala Ala Leu Glu Glu Arg Leu Ala Gln Cys Gln
35 40 45

Asp Gln Ser Ser Arg His Ala Ala Glu Leu Arg Asp Phe Lys Asn

Lys	Met	Leu	Pro	Leu 65	Leu	Glu	Val	Ala	Glu 70	Lys	Glu	Arg	Glu	Ala 75
Leu	Arg	Thr	Glu	Ala 80	Asp	Thr	Ile	Ser	Gly 85	Arg	Val	Asp	Arg	Let 90
Glu	Arg	Glu	Val	Asp 95	Tyr	Leu	Glu	Thr	Gln 100	Asn	Pro	Ala	Leu	Pro 105
Cys	Val	Glu	Phe	Asp 110	Glu	Lys	Val	Thr	Gly 115	Gly	Pro	Gly	Thr	Lys 120
Gly	Lys	Gly	Arg	Arg 125	Asn	Glu	Lys	Tyr	Asp 130	Met	Val	Thr	Asp	Cys 135
Gly	Tyr	Thr	Ile	Ser 140	Gln	Val	Arg	Ser	Met 145	Lys	Ile	Leu	Lys	Arg 150
Phe	Gly	Gly	Pro	Ala 155	Gly	Leu	Trp	Thr	Lys 160	Asp	Pro	Leu	Gly	Glr 165
Thr	Glu	Lys	Ile	Tyr 170	Val	Leu	Asp	Gly	Thr 175	Gln	Asn	Asp	Thr	Ala 180
Phe	Val	Phe	Pro	Arg 185	Leu	Arg	Asp	Phe	Thr 190	Leu	Ala	Met	Ala	Ala 195
Arg	Lys	Ala	Ser	Arg 200	Val	Arg	Val	Pro	Phe 205	Pro	Trp	Val	Gly	Thr 210
Gly	Gln	Leu	Val	Tyr 215	Gly	Gly	Phe	Leu	Tyr 220	Phe	Ala	Arg	Arg	Pro 225
Pro	Gly	Arg	Pro	Gly 230	Gly	Gly	Gly	Glu	Met 235	Glu	Asn	Thr	Leu	Glr 240
Leu	Ile	Lys	Phe	His 245	Leu	Ala	Asn	Arg	Thr 250	Val	Val	Asp	Ser	Ser 255
Val	Phe	Pro	Ala	Glu 260	Gly	Leu	Ile	Pro	Pro 265	Tyr	Gly	Leu	Thr	Ala 270
Asp	Thr	Tyr	Ile	Asp 275	Leu	Val	Ala	Asp	Glu 280	Glu	Gly	Leu	Trp	Ala 285
Val	Tyr	Ala	Thr	Arg 290	Glu	Asp	Asp	Arg	His 295	Leu	Cys	Leu	Ala	Lys 300
Leu	Asp	Pro	Gln	Thr 305	Leu	Asp	Thr	Glu	Gln 310	Gln	Trp	Asp	Thr	Pro 315
Cys	Pro	Arg	Glu	Asn 320	Ala	Glu	Ala	Ala	Phe 325	Val	Ile	Cys	Gly	Thr 330
T.e.u	Tur	Val	Val	Tur	Aen	Thr	Dr~	Dro	717	Sar	71 ~~~	7.1. ~	7 ~~	T1 ~

335 340 345

Gln Cys Ser Phe Asp Ala Ser Gly Thr Leu Thr Pro Glu Arg Ala 350 355 360

Ala Leu Pro Tyr Phe Pro Arg Arg Tyr Gly Ala His Ala Ser Leu 365 370 375

Arg Tyr Asn Pro Arg Glu Arg Gln Leu Tyr Ala Trp Asp Asp Gly 380 385 390

Tyr Gln Ile Val Tyr Lys Leu Glu Met Arg Lys Lys Glu Glu Glu 395 400 405

Val

<210> 147

<211> 2052

<212> DNA

<213> Homo sapiens

<400> 147

gacagetgtg tetegatgga gtagaetete agaacagege agtttgeeet 50 ccgctcacgc agagcctctc cgtggcttcc gcaccttgag cattaggcca 100 gttctcctct tctctctaat ccatccgtca cctctcctgt catccgtttc 150 catgccgtga ggtccattca cagaacacat ccatggctct catgctcagt 200 ttggttctga gtctcctcaa gctgggatca gggcagtggc aggtgtttgg 250 gccagacaag cctgtccagg ccttggtggg ggaggacgca gcattctcct 300 gtttcctgtc tcctaagacc aatgcagagg ccatggaagt gcggttcttc 350 aggggccagt tctctagcgt ggtccacctc tacagggacg ggaaggacca 400 gccatttatg cagatgccac agtatcaagg caggacaaaa ctggtgaagg 450 attctattgc ggaggggcgc atctctctga ggctggaaaa cattactgtg 500 ttggatgctg gcctctatgg gtgcaggatt agttcccagt cttactacca 550 gaaggccatc tgggagctac aggtgtcagc actgggctca gttcctctca 600 tttccatcac gggatatgtt gatagagaca tccagctact ctgtcagtcc 650 tegggetggt teeceeggee caeagegaag tggaaaggte caeaaggaca 700 ggatttgtcc acagactcca ggacaaacag agacatgcat ggcctgtttg 750 atgtggagat ctctctgacc gtccaagaga acgccgggag catatcctgt 800 tccatgcggc atgctcatct gagccgagag gtggaatcca gggtacagat 850

aggagatacc tttttcgagc ctatatcgtg gcacctggct accaaagtac 900 tgggaatact ctgctgtggc ctattttttg gcattgttgg actgaagatt 950 ttcttctcca aattccagtg gaaaatccag gcggaactgg actggagaag 1000 aaagcacgga caggcagaat tgagagacgc ccggaaacac gcagtggagg 1050 tgactctgga tccagagacg gctcacccga agctctgcgt ttctgatctg 1100 aaaactgtaa cccatagaaa agctccccaq qaqqtqcctc actctqaqaa 1150 gagatttaca aggaagagtg tggtggcttc tcagagtttc caagcaggga 1200 aacattactg ggaggtggac ggaggacaca ataaaaggtg gcgcgtggga 1250 gtgtgccggg atgatgtgga caggaggaag gagtacgtga ctttgtctcc 1300 cgatcatggg tactgggtcc tcagactgaa tggagaacat ttgtatttca 1350 cattaaatcc ccgttttatc agcgtcttcc ccaggacccc acctacaaaa 1400 ataggggtct tcctggacta tgagtgtggg accatctcct tcttcaacat 1450 aaatgaccag teeettattt ataceetgae atgteggttt gaaggettat 1500 tgaggcccta cattgagtat ccgtcctata atgagcaaaa tggaactccc 1550 atagtcatct gcccagtcac ccaggaatca gagaaagagg cctcttggca 1600 aagggcctct gcaatcccag agacaagcaa cagtgagtcc tcctcacagg 1650 caaccacgcc cttcctcccc aggggtgaaa tgtaggatga atcacatccc 1700 acattettet ttagggatat taaggtetet eteceagate caaagteeeg 1750 cagcagccgg ccaaggtggc ttccagatga agggggactg gcctgtccac 1800 atgggagtca ggtgtcatgg ctgccctgag ctgggaggga agaaggctga 1850 cattacattt agtttgctct cactccatct ggctaagtga tcttgaaata 1900 ccacctctca ggtgaagaac cgtcaggaat tcccatctca caggctgtgg 1950 tgtagattaa gtagacaagg aatgtgaata atgcttagat cttattgatg 2000 acagagtgta tcctaatggt ttgttcatta tattacactt tcagtaaaaa 2050 aa 2052

Met Ala Leu Met Leu Ser Leu Val Leu Ser Leu Lys Leu Gly

<210> 148

<211> 500

<212> PRT

<213> Homo sapiens

<400> 148

His Ala Val Glu Val Thr Leu Asp Pro Glu Thr Ala His Pro Lys

290 295 300 Leu Cys Val Ser Asp Leu Lys Thr Val Thr His Arg Lys Ala Pro 305 310 Gln Glu Val Pro His Ser Glu Lys Arg Phe Thr Arg Lys Ser Val 325 320 Val Ala Ser Gln Ser Phe Gln Ala Gly Lys His Tyr Trp Glu Val 345 340 Asp Gly Gly His Asn Lys Arg Trp Arg Val Gly Val Cys Arg Asp 355 Asp Val Asp Arg Arg Lys Glu Tyr Val Thr Leu Ser Pro Asp His 370 365 Gly Tyr Trp Val Leu Arg Leu Asn Gly Glu His Leu Tyr Phe Thr 380 385 Leu Asn Pro Arg Phe Ile Ser Val Phe Pro Arg Thr Pro Pro Thr 395 400 Lys Ile Gly Val Phe Leu Asp Tyr Glu Cys Gly Thr Ile Ser Phe Phe Asn Ile Asn Asp Gln Ser Leu Ile Tyr Thr Leu Thr Cys Arg 430 Phe Glu Gly Leu Leu Arg Pro Tyr Ile Glu Tyr Pro Ser Tyr Asn 440 445 Glu Gln Asn Gly Thr Pro Ile Val Ile Cys Pro Val Thr Gln Glu 465 455 460 Ser Glu Lys Glu Ala Ser Trp Gln Arg Ala Ser Ala Ile Pro Glu 475 Thr Ser Asn Ser Glu Ser Ser Ser Gln Ala Thr Thr Pro Phe Leu 495 490 Pro Arg Gly Glu Met 500 <210> 149 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe

<210> 150 <211> 23

<400> 149

gcgtggtcca cctctacagg gacg 24

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 150
 ggaactgacc cagtgctgac acc 23
<210> 151
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 151
gcagatgcca cagtatcaag gcaggacaaa actggtgaag gattc 45
<210> 152
<211> 2294
<212> DNA
<213> Homo sapiens
<400> 152
gcgatggtgc gcccggtggc ggtggcggcg gcggttgcgg aggcttcctt 50
ggtcggattg caacgaggag aagatgactg accaaccgac tggctgaatg 100
aatgaatggc ggagccgagc gcgccatgag gagcctgccg agcctgggcg 150
gcctcgccct gttgtgctgc gccgccgccg ccgccgccgt cgcctcagcc 200
gcctcggcgg ggaatgtcac cggtggcggc ggggccgcgg ggcaggtgga 250
cgcgtcgccg ggccccgggt tgcggggcga gcccagccac cccttcccta 300
gggcgacggc teceaeggee eaggeeeega ggacegggee eeegegegee 350
acceptccacc gaccectgge tgcgacttet ccagcccagt ccccggagac 400
cacccctctt tgggcgactg ctggaccctc ttccaccacc tttcaggcgc 450
egeteggeee etegeegaee acceeteegg eggeggaaeg caettegaee 500
acctctcagg cgccgaccag acccgcgccg accacccttt cgacgaccac 550
tggcccggcg ccgaccaccc ctgtagcgac caccgtaccg gcgcccacga 600
ctccccggac cccgaccccc gatctcccca gcagcagcaa cagcagcgtc 650
ctccccaccc cacctgccac cgaggccccc tcttcgcctc ctccagagta 700
tgtatgtaac tgctctgtgg ttggaagcct gaatgtgaat cgctgcaacc 750
agaccacagg gcagtgtgag tgtcggccag gttatcaggg gcttcactgt 800
```

gaaacctgca aagagggctt ttacctaaat tacacttctg ggctctgtca 850 gccatgtgac tgtagtccac atggagetet cagcataceg tgcaacaggt 900 aagcaacaga gggtggaact gaagtttatt ttattttagc aagggaaaaa 950 aaaaggctgc tactctcaag gaccatactg gtttaaacaa aggaggatga 1000 gggtcataga tttacaaaat attttatata cttttattct cttactttat 1050 atgttatatt taatgtcagg atttaaaaac atctaattta ctgatttagt 1100 tcttcaaaag cactagagtc gccaattttt ctctgggata atttctgtaa 1150 atttcatggg aaaaaattat tgaagaataa atctgctttc tggaagggct 1200 ttcaggcatg aaacctgcta ggaggtttag aaatgttctt atgtttatta 1250 atataccatt ggagtttgag gaaatttgtt gtttggttta tttttctctc 1300 taatcaaaat totacatttg tttotttgga catotaaago ttaacctggg 1350 ggtaccctaa tttatttaac tagtggtaag tagactggtt ttactctatt 1400 taccagtaca tttttgagac caaaagtaga ttaagcagga attatcttta 1450 aactattatg ttatttggag gtaatttaat ctagtggaat aatgtactgt 1500 tatctaagca tttgccttgt actgcactga aagtaattat tctttgacct 1550 tatgtgaggc acttggcttt ttgtggaccc caagtcaaaa aactgaagag 1600 acagtattaa ataatgaaaa aaataatgac aggttatact cagtgtaacc 1650 tgggtataac ccaagatetg etgecaetta egagetgtgt teettgggea 1700 agtaatttcc tttcactgag cttgtttctt ctcaaggttg ttgtgaagat 1750 taaatgagtt gatatatata aaatgcctag cacatgtcac tcaataaatt 1800 ctggtttgtt ttaatttcaa aggaatatta tggactgaaa tgagagaaca 1850 tgttttaaga acttttagct ccttgacaaa gaagtgcttt atactttagc 1900 actaaatatt ttaaatgctt tataaatgat attatactgt tatggaatat 1950 tgtatcatat tgtagtttat taaaaatgta gaagaggctg ggcgcggtgg 2000 ctcacgcctg taatcctage actttgggag gccaaggcgg gtggatcact 2050 tgaggccagg agttctagat gagcctggcc agcacagtga aaccccgtct 2100 ctactaaaaa tacaaacaaa ttagctgggc gtggtggcac acacctgtag 2150 teccagetae tegggagget gaggeaggag aateggttga accegggagg 2200

tggaggttgc agtgagctga gatcgcgcca ctgcactcca gcctggtgag 2250

2 5 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
agagggagac tctgtcttaa aaaaaaaaaa aaaaaaaaaa
<pre><400> 153 Met Arg Ser Leu Pro Ser Leu Gly Gly Leu Ala Leu Leu Cys Cys 1 5 10 15</pre>
Ala Ala Ala Ala Ala Val Ala Ser Ala Ala Ser Ala Gly Asn 20 25 30
Val Thr Gly Gly Gly Ala Ala Gly Gln Val Asp Ala Ser Pro 35 40 45
Gly Pro Gly Leu Arg Gly Glu Pro Ser His Pro Phe Pro Arg Ala 50 55 60
Thr Ala Pro Thr Ala Gln Ala Pro Arg Thr Gly Pro Pro Arg Ala 65 70 75
Thr Val His Arg Pro Leu Ala Ala Thr Ser Pro Ala Gln Ser Pro 80 85 90
Glu Thr Thr Pro Leu Trp Ala Thr Ala Gly Pro Ser Ser Thr Thr 95 100 105
Phe Gln Ala Pro Leu Gly Pro Ser Pro Thr Thr Pro Pro Ala Ala 110 115 120
Glu Arg Thr Ser Thr Thr Ser Gln Ala Pro Thr Arg Pro Ala Pro 125 130 135
Thr Thr Leu Ser Thr Thr Thr Gly Pro Ala Pro Thr Thr Pro Val
Ala Thr Thr Val Pro Ala Pro Thr Thr Pro Arg Thr Pro Thr Pro 155 160 165
Asp Leu Pro Ser Ser Ser Asn Ser Ser Val Leu Pro Thr Pro Pro 170 175 180
Ala Thr Glu Ala Pro Ser Ser Pro Pro Pro Glu Tyr Val Cys Asn 185 190 195
Cys Ser Val Val Gly Ser Leu Asn Val Asn Arg Cys Asn Gln Thr 200 205 210
Thr Gly Gln Cys Glu Cys Arg Pro Gly Tyr Gln Gly Leu His Cys 215 220 225

Glu Thr Cys Lys Glu Gly Phe Tyr Leu Asn Tyr Thr Ser Gly Leu

235

230

```
Cys Gln Pro Cys Asp Cys Ser Pro His Gly Ala Leu Ser Ile Pro
                  245
 Cys Asn Arg
<210> 154
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 154
 aactgctctg tggttggaag cctg 24
<210> 155
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 155
 cagtcacatg gctgacagac ccac 24
<210> 156
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 156
aggttatcag gggcttcact gtgaaacctg caaagagg 38
<210> 157
<211> 689
<212> DNA
<213> Homo sapiens
<400> 157
tgcggcgcag tgtagacctg ggaggatggg cggcctgctg ctggctgctt 50
ttctggcttt ggtctcggtg cccagggccc aggccgtgtg gttgggaaga 100
ctggaccctg agcagcttct tgggccctgg tacgtgcttg cggtggcctc 150
ccgggaaaag ggctttgcca tggagaagga catgaagaac gtcgtggggg 200
tggtggtgac cctcactcca gaaaacaacc tgcggacgct gtcctctcag 250
cacgggctgg gagggtgtga ccagagtgtc atggacctga taaagcgaaa 300
```

ctccggatgg gtgtttgaga atccctcaat aggcgtgctg gagctctggg 350
tgctggccac caacttcaga gactatgcca tcatcttcac tcagctggag 400
ttcggggacg agcccttcaa caccgtggag ctgtacagtc tgacggagac 450
agccagccag gaggccatgg ggctcttcac caagtggagc aggagcctgg 500
gcttcctgtc acagtagcag gcccagctgc agaaggacct cacctgtgct 550
cacaagatcc ttctgtgagt gctgcgtccc cagtagggat ggcgcccaca 600
gggtcctgtg acctcggcca gtgtccaccc acctcgctca gcggctcccg 650
gggcccagca ccagctcaga ataaagcgat tccacagca 689

<210> 158

<211> 163

<212> PRT

<213> Homo sapiens

<400> 158

Met Gly Gly Leu Leu Leu Ala Ala Phe Leu Ala Leu Val Ser Val 1 5 10 15

Pro Arg Ala Gln Ala Val Trp Leu Gly Arg Leu Asp Pro Glu Gln 20 25 30

Leu Leu Gly Pro Trp Tyr Val Leu Ala Val Ala Ser Arg Glu Lys 35 40 45

Gly Phe Ala Met Glu Lys Asp Met Lys Asn Val Val Gly Val Val
50 55 60

Val Thr Leu Thr Pro Glu Asn Asn Leu Arg Thr Leu Ser Ser Gln 65 70 75

His Gly Leu Gly Gly Cys Asp Gln Ser Val Met Asp Leu Ile Lys 80 85 90

Arg Asn Ser Gly Trp Val Phe Glu Asn Pro Ser Ile Gly Val Leu 95 100 105

Phe Thr Gln Leu Glu Phe Gly Asp Glu Pro Phe Asn Thr Val Glu 125 130 135

Leu Tyr Ser Leu Thr Glu Thr Ala Ser Gln Glu Ala Met Gly Leu 140 145 150

Phe Thr Lys Trp Ser Arg Ser Leu Gly Phe Leu Ser Gln
155

<211> 1665

<212> DNA

<213> Homo sapiens

<400> 159

aacagacgtt ccctcgcggc cctggcacct ctaaccccag acatgctgct 50 gctgctgctg cccctgctct gggggaggga gagggcggaa ggacagacaa 100 gtaaactgct gacgatgcag agttccgtga cggtgcagga aggcctgtgt 150 gtccatgtgc cctgctcctt ctcctacccc tcgcatggct ggatttaccc 200 tggcccagta gttcatggct actggttccg ggaaggggcc aatacagacc 250 aggatgetee agtggeeaca aacaaceeag etegggeagt gtgggaggag 300 actegggace gattecacet cettggggac ceacatacea agaattgeac 350 cctgagcatc agagatgcca gaagaagtga tgcggggaga tacttctttc 400 gtatggagaa aggaagtata aaatggaatt ataaacatca ccggctctct 450 gtgaatgtga cagcettgae ceacaggeee aacateetea teecaggeae 500 cctggagtcc ggctgccccc agaatctgac ctgctctgtg ccctgggcct 550 gtgagcaggg gacaccccct atgatctcct ggatagggac ctccgtgtcc 600 cccctggacc cctccaccac ccgctcctcg gtgctcaccc tcatcccaca 650 geeceaggae catggeacea geeteacetg teaggtgace tteeetgggg 700 ccagcgtgac cacgaacaag accgtccatc tcaacgtgtc ctacccgcct 750 cagaacttga ccatgactgt cttccaagga gacggcacag tatccacagt 800 cttgggaaat ggctcatctc tgtcactccc agagggccag tctctgcgcc 850 tggtctgtgc agttgatgca gttgacagca atccccctgc caggctgagc 900 ctgagctgga gaggcctgac cctgtgcccc tcacagccct caaacccggg 950 ggtgctggag ctgccttggg tgcacctgag ggatgcagct gaattcacct 1000 gcagagetea gaaccetete ggeteteage aggtetaeet gaacgtetee 1050 ctgcagagca aagccacatc aggagtgact cagggggtgg tcggggggagc 1100 tggagccaca gccctggtct tcctgtcctt ctgcgtcatc ttcgttgtag 1150 tgaggtcctg caggaagaaa tcggcaaggc cagcagcggg cgtgggagat 1200 acgggcatag aggatgcaaa cgctgtcagg ggttcagcct ctcaggggcc 1250 cctgactgaa ccttgggcag aagacagtcc cccagaccag cctccccag 1300

cttctgcccg ctcctagtg ggggaaggag agctccagta tgcatcctc 1350 agcttccaga tggtgaagcc ttgggactcg cggggacagg aggccactga 1400 caccgagtac tcggagatca agatccacag atgagaaact gcagagactc 1450 accctgattg agggatcaca gccctccaag gcaagggaga agtcagaggc 1500 tgattcttgt agaattaaca gccctcaacg tgatgagcta tgataacact 1550 atgaattat tgcagagtga aaagcacaca ggctttagag tcaaagtatc 1600 tcaaacctga atccacactg tgccctccct tttattttt taactaaaag 1650 acagacaaat tccta 1665

<210> 160

<211> 463

<212> PRT

<213> Homo sapiens

<400> 160

Met Leu Leu Leu Leu Pro Leu Leu Trp Gly Arg Glu Arg Ala 1 5 10 15

Glu Gly Gln Thr Ser Lys Leu Leu Thr Met Gln Ser Ser Val Thr 20 25 30

Val Gln Glu Gly Leu Cys Val His Val Pro Cys Ser Phe Ser Tyr 35 40 40 45

Pro Ser His Gly Trp Ile Tyr Pro Gly Pro Val Val His Gly Tyr 50 55 60

Trp Phe Arg Glu Gly Ala Asn Thr Asp Gln Asp Ala Pro Val Ala
65 70 75

Thr Asn Asn Pro Ala Arg Ala Val Trp Glu Glu Thr Arg Asp Arg 80 85 90

Phe His Leu Leu Gly Asp Pro His Thr Lys Asn Cys Thr Leu Ser 95 100 105

Ile Arg Asp Ala Arg Arg Ser Asp Ala Gly Arg Tyr Phe Phe Arg 110 115 120

Met Glu Lys Gly Ser Ile Lys Trp Asn Tyr Lys His His Arg Leu 125 130 135

Ser Val Asn Val Thr Ala Leu Thr His Arg Pro Asn Ile Leu Ile 140 145 150

Pro Gly Thr Leu Glu Ser Gly Cys Pro Gln Asn Leu Thr Cys Ser 155 160 165

Val Pro Trp Ala Cys Glu Gln Gly Thr Pro Pro Met Ile Ser Trp 170 175 180

Ile	Gly	Thr	Ser	Val 185	Ser	Pro	Leu	Asp	Pro 190	Ser	Thr	Thr	Arg	Ser 195
Ser	Val	Leu	Thr	Leu 200	Ile	Pro	Gln	Pro	Gln 205	Asp	His	Gly	Thr	Ser 210
Leu	Thr	Cys	Gln	Val 215	Thr	Phe	Pro	Gly	Ala 220	Ser	Val	Thr	Thr	Asn 225
Lys	Thr	Val	His	Leu 230	Asn	Val	Ser	Tyr	Pro 235	Pro	Gln	Asn	Leu	Thr 240
Met	Thr	Val	Phe	Gln 245	Gly	Asp	Gly	Thr	Val 250	Ser	Thr	Val	Leu	Gly 255
Asn	Gly	Ser	Ser	Leu 260	Ser	Leu	Pro	Glu	Gly 265	Gln	Ser	Leu	Arg	Leu 270
Val	Cys	Ala	Val	Asp 275	Ala	Val	Asp	Ser	Asn 280	Pro	Pro	Ala	Arg	Leu 285
Ser	Leu	Ser	Trp	Arg 290	Gly	Leu	Thr	Leu	Cys 295	Pro	Ser	Gln	Pro	Ser 300
Asn	Pro	Gly	Val	Leu 305	Glu	Leu	Pro	Trp	Val 310	His	Leu	Arg	Asp	Ala 315
Ala	Glu	Phe	Thr	Cys 320	Arg	Ala	Gln	Asn	Pro 325	Leu	Gly	Ser	Gln	Gln 330
Val	Tyr	Leu	Asn	Val 335	Ser	Leu	Gln	Ser	Lys 340	Ala	Thr	Ser	Gly	Val 345
Thr	Gln	Gly	Val	Val 350	Gly	Gly	Ala	Gly	Ala 355	Thr	Ala	Leu	Val	Phe 360
Leu	Ser	Phe	Cys	Val 365	Ile	Phe	Val	Val	Val 370	Arg	Ser	Cys	Arg	Lys 375
Lys	Ser	Ala	Arg	Pro 380	Ala	Ala	Gly	Val	Gly 385	Asp	Thr	Gly	Ile	Glu 390
Asp	Ala	Asn	Ala	Val 395	Arg	Gly	Ser	Ala	Ser 400	Gln	Gly	Pro	Leu	Thr 405
Glu	Pro	Trp	Ala	Glu 410	Asp	Ser	Pro	Pro	Asp 415	Gln	Pro	Pro	Pro	Ala 420
Ser	Ala	Arg	Ser	Ser 425	Val	Gly	Glu	Gly	Glu 430	Leu	Gln	Tyr	Ala	Ser 435
Leu	Ser	Phe	Gln	Met 440	Val	Lys	Pro	Trp	Asp 445	Ser	Arg	Gly	Gln	Glu 450
Ala	Thr	Asp	Thr	Glu 455	Tyr	Ser	Glu	Ile	Lys 460	Ile	His	Arg		

```
<210> 161 <211> 739
```

<212> DNA

<213> Homo sapiens

<400> 161 gacgcccagt gacctgccga ggtcggcagc acagagctct ggagatgaag 50 accetyttce tyggtyteae geteggeety geegetyeee tyteetteae 100 cctggaggag gaggatatca cagggacctg gtacgtgaag gccatggtgg 150 tcgataagga ctttccggag gacaggaggc ccaggaaggt gtccccagtg 200 aaggtgacag ccctgggcgg tgggaagttg gaagccacgt tcaccttcat 250 gagggaggat cggtgcatcc agaagaaaat cctgatgcgg aagacggagg 300 agcctggcaa atacagcgcc tatgggggca ggaagctcat gtacctgcag 350 gagctgccca ggagggacca ctacatcttt tactgcaaag accagcacca 400 tgggggcctg ctccacatgg gaaagcttgt gggtaggaat tctgatacca 450 accgggaggc cctggaagaa tttaagaaat tggtgcagcg caagggactc 500 teggaggagg acatttteae geeeetgeag aegggaaget gegtteeega 550 acactaggea geceegggt etgeacetee agageeeace etaceaceag 600 acacagagee eggaceacet ggacetacee tecagecatg accetteeet 650

<210> 162

<211> 170

<212> PRT

<213> Homo sapiens

<400> 162

Met Lys Thr Leu Phe Leu Gly Val Thr Leu Gly Leu Ala Ala 1 5 10 15

Leu Ser Phe Thr Leu Glu Glu Glu Asp Ile Thr Gly Thr Trp Tyr 20 25 30

Val Lys Ala Met Val Val Asp Lys Asp Phe Pro Glu Asp Arg Arg 35 40 45

Pro Arg Lys Val Ser Pro Val Lys Val Thr Ala Leu Gly Gly Gly
50 55 60

Lys Leu Glu Ala Thr Phe Thr Phe Met Arg Glu Asp Arg Cys Ile

```
Gln Lys Lys Ile Leu Met Arg Lys Thr Glu Glu Pro Gly Lys Tyr
                                       85
 Ser Ala Tyr Gly Gly Arg Lys Leu Met Tyr Leu Gln Glu Leu Pro
                                      100
 Arg Arg Asp His Tyr Ile Phe Tyr Cys Lys Asp Gln His His Gly
                 110
                                      115
 Gly Leu Leu His Met Gly Lys Leu Val Gly Arg Asn Ser Asp Thr
                                      130
 Asn Arg Glu Ala Leu Glu Glu Phe Lys Lys Leu Val Gln Arg Lys
 Gly Leu Ser Glu Glu Asp Ile Phe Thr Pro Leu Gln Thr Gly Ser
                                      160
 Cys Val Pro Glu His
<210> 163
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 163
 ggagatgaag accetgttee tg 22
<210> 164
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 164
ggagatgaag accetgttcc tgggtg 26
<210> 165
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 165
gtcctccgga aagtccttat c 21
<210> 166
```

<211> 25

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 166
 gcctagtgtt cgggaacgca gcttc 25
<210> 167
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 167
 cagggacctg gtacgtgaag gccatggtgg tcgataagga ctttccggag 50
<210> 168
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 168
ctgtccttca ccctggagga ggaggatatc acagggacct ggtac 45
<210> 169
<211> 1204
<212> DNA
<213> Homo sapiens
<400> 169
gttccgcaga tgcagaggtt gaggtggctg cgggactgga agtcatcggg 50
cagaggtete acageageea aggaacetgg ggeeegetee teeeceetee 100
aggccatgag gattctgcag ttaatcctgc ttgctctggc aacagggctt 150
gtagggggag agaccaggat catcaagggg ttcgagtgca agcctcactc 200
ccagccctgg caggcagccc tgttcgagaa gacgcggcta ctctgtgggg 250
cgacgctcat cgccccaga tggctcctga cagcagccca ctgcctcaag 300
ccccgctaca tagttcacct ggggcagcac aacctccaga aggaggaggg 350
ctgtgagcag acccggacag ccactgagtc cttcccccac cccggcttca 400
acaacagcct ccccaacaaa gaccaccgca atgacatcat gctggtgaag 450
atggcatcgc cagtetecat cacetggget gtgcgacccc teaccetete 500
```

<210> 170

<211> 250

<212> PRT

<213> Homo sapiens

<400> 170

Met Arg Ile Leu Gln Leu Ile Leu Leu Ala Leu Ala Thr Gly Leu 1 5 10 15

Val Gly Glu Thr Arg Ile Ile Lys Gly Phe Glu Cys Lys Pro 2025 30

His Ser Gln Pro Trp Gln Ala Ala Leu Phe Glu Lys Thr Arg Leu
35 40 45

Leu Cys Gly Ala Thr Leu Ile Ala Pro Arg Trp Leu Leu Thr Ala
50 55 60

Ala His Cys Leu Lys Pro Arg Tyr Ile Val His Leu Gly Gln His
65 70 75

Asn Leu Gln Lys Glu Glu Gly Cys Glu Gln Thr Arg Thr Ala Thr 80 85 90

Glu Ser Phe Pro His Pro Gly Phe Asn Asn Ser Leu Pro Asn Lys 95 100 105

```
Asp His Arg Asn Asp Ile Met Leu Val Lys Met Ala Ser Pro Val
                  110
                                      115
 Ser Ile Thr Trp Ala Val Arg Pro Leu Thr Leu Ser Ser Arg Cys
                  125
                                      130
 Val Thr Ala Gly Thr Ser Cys Leu Ile Ser Gly Trp Gly Ser Thr
                                      145
 Ser Ser Pro Gln Leu Arg Leu Pro His Thr Leu Arg Cys Ala Asn
                  155
                                      160
 Ile Thr Ile Ile Glu His Gln Lys Cys Glu Asn Ala Tyr Pro Gly
                 170
                                      175
 Asn Ile Thr Asp Thr Met Val Cys Ala Ser Val Gln Glu Gly Gly
                 185
                                      190
 Lys Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Asn
                 200
                                      205
 Gln Ser Leu Gln Gly Ile Ile Ser Trp Gly Gln Asp Pro Cys Ala
                                      220
 Ile Thr Arg Lys Pro Gly Val Tyr Thr Lys Val Cys Lys Tyr Val
                                      235
 Asp Trp Ile Gln Glu Thr Met Lys Asn Asn
                                      250
<210> 171
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 171
ggctgcggga ctggaagtca tcggg 25
<210> 172
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 172
ctccaggcca tgaggattct gcag 24
<210> 173
<211> 18
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 173
 cctctggtct gtaaccag 18
<210> 174
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 174
tctgtgatgt tgccggggta ggcg 24
<210> 175
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 175
cgtgtagaca ccaggctttc gggtg 25
<210> 176
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 176
cccttgatga tcctggtc 18
<210> 177
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 177
aggccatgag gattctgcag ttaatcctgc ttgctctggc aacagggctt 50
<210> 178
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
<400> 178
  gagagaccag gatcatcaag gggttcgagt gcaagcctca ctc 43
 <210> 179
 <211> 907
 <212> DNA
 <213> Homo sapiens
 <400> 179
 gagcagtgtt ctgctggagc cgatgccaaa aaccatgcat ttcttattca 50
 gattcattgt tttcttttat ctgtggggcc tttttactgc tcagagacaa 100
 aagaaagagg agagcaccga agaagtgaaa atagaagttt tgcatcgtcc 150
 agaaaactgc tctaagacaa gcaagaaggg agacctacta aatgcccatt 200
 atgacggcta cctggctaaa gacggctcga aattctactg cagccggaca 250
 caaaatgaag gccaccccaa atggtttgtt cttggtgttg ggcaagtcat 300
 aaaaggccta gacattgcta tgacagatat gtgccctgga gaaaagcgaa 350
 aagtagttat acccccttca tttgcatacg gaaaggaagg ctatgcagaa 400
 ggcaagattc caccggatgc tacattgatt tttgagattg aactttatgc 450
 tgtgaccaaa ggaccacgga gcattgagac atttaaacaa atagacatgg 500
 acaatgacag gcagetetet aaageegaga taaaeeteta ettgeaaagg 550
 gaatttgaaa aagatgagaa gccacgtgac aagtcatatc aggatgcagt 600
 tttagaagat atttttaaga agaatgacca tgatggtgat ggcttcattt 650
 ctcccaagga atacaatgta taccaacacg atgaactata gcatatttgt 700
 atttctactt tttttttta gctatttact gtactttatg tataaaacaa 750
 agtcactttt ctccaagttg tatttgctat ttttccccta tgagaagata 800
 ttttgatctc cccaatacat tgattttggt ataataaatg tgaggctgtt 850
 ttgcaaactt aaaaaaaaa aaaaaaaaaa aaaaaaaaa 900
 aaaaaaa 907
<210> 180
<211> 222
<212> PRT
<213> Homo sapiens
<400> 180
Met Pro Lys Thr Met His Phe Leu Phe Arg Phe Ile Val Phe Phe
```

10

```
Tyr Leu Trp Gly Leu Phe Thr Ala Gln Arg Gln Lys Lys Glu Glu
                   20
  Ser Thr Glu Glu Val Lys Ile Glu Val Leu His Arg Pro Glu Asn
 Cys Ser Lys Thr Ser Lys Lys Gly Asp Leu Leu Asn Ala His Tyr
 Asp Gly Tyr Leu Ala Lys Asp Gly Ser Lys Phe Tyr Cys Ser Arg
 Thr Gln Asn Glu Gly His Pro Lys Trp Phe Val Leu Gly Val Gly
 Gln Val Ile Lys Gly Leu Asp Ile Ala Met Thr Asp Met Cys Pro
                   95
                                      100
 Gly Glu Lys Arg Lys Val Val Ile Pro Pro Ser Phe Ala Tyr Gly
                                      115
 Lys Glu Gly Tyr Ala Glu Gly Lys Ile Pro Pro Asp Ala Thr Leu
                                      130
 Ile Phe Glu Ile Glu Leu Tyr Ala Val Thr Lys Gly Pro Arg Ser
                                      145
 Ile Glu Thr Phe Lys Gln Ile Asp Met Asp Asn Asp Arg Gln Leu
                                      160
 Ser Lys Ala Glu Ile Asn Leu Tyr Leu Gln Arg Glu Phe Glu Lys
                 170
                                      175
 Asp Glu Lys Pro Arg Asp Lys Ser Tyr Gln Asp Ala Val Leu Glu
                 185
 Asp Ile Phe Lys Lys Asn Asp His Asp Gly Asp Gly Phe Ile Ser
                                                          210
 Pro Lys Glu Tyr Asn Val Tyr Gln His Asp Glu Leu
                 215
<210> 181
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 181
gtgttctgct ggagccgatq cc 22
<210> 182
<211> 18
<212> DNA
```

<213> Artificial Sequence

```
<220>
 <223> Synthetic oligonucleotide probe
 <400> 182
 gacatggaca atgacagg 18
<210> 183
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 183
· cctttcagga tgtaggag 18
<210> 184
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 184
 gatgtctgcc accccaag 18
<210> 185
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 185
 gcatcctgat atgacttgtc acgtggc 27
<210> 186
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 186
tacaagaggg aagaggagtt gcac 24
<210> 187
<211> 52
<212> DNA
<213> Artificial Sequence
```

<220>

```
<223> Synthetic oligonucleotide probe
 <400> 187
  gcccattatg acggctacct ggctaaagac ggctcgaaat tctactgcag 50
  cc 52
 <210> 188
 <211> 573
 <212> DNA
 <213> Homo sapiens
 <400> 188
 cagaaatgca gggaccattg cttcttccag gcctctgctt tctgctgagc 50
 ctctttggag ctgtgactca gaaaaccaaa acttcctgtg ctaagtgccc 100
 cccaaatgct tcctgtgtca ataacactca ctgcacctgc aaccatggat 150
 atacttctgg atctgggcag aaactattca cattcccctt ggagacatgt 200
 aacgccaggc atggtggctc gcgcctgtaa tcccagttct ttgggaagcc 250
 aaggcaggtg gatcacctga ggtcaggagt ttgagaccag cctggccaac 300
 atagtgaaac cccgtgtcta ctaaaaatac aaaaatcagc cgggcgtggt 350
 ggtgcatgcc tgcaatccca gttactcggg aggctgaggc aggagaatcg 400
 cttgaactca ggaggcagaa gttgcagtga acccagatcc tgccattgca 450
 ctccagcatg gatgacagag caagactccg tctcaaaaag aaaagatagt 500
 ttcttgtttc atttcgcgac tgccctctca gtgtttcctg ggatcccctc 550
 ccaaataaag tacttatatt ctc 573
<210> 189
<211> 74
<212> PRT
<213> Homo sapiens
<400> 189
Met Gln Gly Pro Leu Leu Pro Gly Leu Cys Phe Leu Leu Ser
  1
                  5
Leu Phe Gly Ala Val Thr Gln Lys Thr Lys Thr Ser Cys Ala Lys
Cys Pro Pro Asn Ala Ser Cys Val Asn Asn Thr His Cys Thr Cys
Asn His Gly Tyr Thr Ser Gly Ser Gly Gln Lys Leu Phe Thr Phe
Pro Leu Glu Thr Cys Asn Ala Arg His Gly Gly Ser Arg Leu
```

65

```
<210> 190
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 190
 agggaccatt gcttcttcca ggcc 24
<210> 191
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 191
 cgttacatgt ctccaagggg aatg 24
<210> 192
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 192
cctgtgctaa gtgccccca aatgcttcct gtgtcaataa cactcactgc 50
<210> 193
<211> 1091
<212> DNA
<213> Homo sapiens
<400> 193
caagcaggtc atccccttgg tgaccttcaa agagaagcag agagggcaga 50
ggtgggggc acagggaaag ggtgacctct gagattcccc ttttccccca 100
gactttggaa gtgacccacc atggggctca gcatcttttt gctcctgtgt 150
gttcttgggc tcagccaggc agccacaccg aagattttca atggcactga 200
gtgtgggcgt aactcacagc cgtggcaggt ggggctgttt gagggcacca 250
gcctgcgctg cgggggtgtc cttattgacc acaggtgggt cctcacagcg 300
gctcactgca gcggcagcag gtactgggtg cgcctggggg aacacagcct 350
cagecagete gaetggaeeg ageagateeg geaeagegge ttetetgtga 400
cccatcccgg ctacctggga gcctcgacga gccacgagca cgacctccgg 450
```

ctgctgcgc tgcgctgcc cgtccgcgta accagcagcg ttcaacccct 500 gcccctgccc aatgactgtg caaccgctgg caccgagtgc cacgtctcag 550 gctggggcat caccaaccac ccacggaacc cattcccgga tctgctccag 600 tgcctcaacc tctccatcgt ctcccatgcc acctgccatg gtgtgtatcc 650 cgggagaatc acgagcaaca tggtgtgtgc aggcggcgtc ccgggggcagg 700 atgcctgca gggtgattct gggggccccc tggtgtgtgg gggagtcctt 750 caaggtctgg tgtcctgggg gtctgtgggg ccctgtggac aagatggcat 800 ccctggagtc tacacctata tttgcaagta tgtggactgg atccggatga 850 tcatgaggaa caactgacct gtttcctcca cctccacccc caccccttaa 900 cttgggtacc cctctggccc tcagagcacc aatatctcct ccatcacttc 950 ccctagctcc actcttgttg gcctgggaac ttcttggaac tttaactcct 1000 gccagccctt ctaagaccca cgagcgggt gagagaagtg tgcaatagtc 1050 tggaataaat ataaatgaag gagggcaaa aaaaaaaaa a 1091

<210> 194

<211> 248

<212> PRT

<213> Homo sapiens

<400> 194

Met Gly Leu Ser Ile Phe Leu Leu Cys Val Leu Gly Leu Ser 1 5 10 15

Gln Ala Ala Thr Pro Lys Ile Phe Asn Gly Thr Glu Cys Gly Arg
20 25 30

Asn Ser Gln Pro Trp Gln Val Gly Leu Phe Glu Gly Thr Ser Leu
35 40 45

Arg Cys Gly Gly Val Leu Ile Asp His Arg Trp Val Leu Thr Ala
50 55 60

Ala His Cys Ser Gly Ser Arg Tyr Trp Val Arg Leu Gly Glu His
65 70 75

Ser Leu Ser Gln Leu Asp Trp Thr Glu Gln Ile Arg His Ser Gly
80 85 90

Phe Ser Val Thr His Pro Gly Tyr Leu Gly Ala Ser Thr Ser His 95 100 105

Glu His Asp Leu Arg Leu Leu Arg Leu Arg Leu Pro Val Arg Val
110 115 120

Thr Ser Ser Val Gln Pro Leu Pro Leu Pro Asn Asn Cys Ala Thr 135

Ala Gly Thr Glu Cys His Val Ser Gly Trp Gly Ile Thr Asn His 150

Pro Arg Asn Pro Phe Pro Asp Leu Leu Gln Cys Leu Asn Leu Ser 165

Ile Val Ser His Ala Thr Cys His Gly Val Tyr Pro Gly Arg Ile 170 175 180

Thr Ser Asn Met Val Cys Ala Gly Gly Val Pro Gly Gln Asp Ala 185 190 195

Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Gly Gly Val Leu 200 205 210

Gln Gly Leu Val Ser Trp Gly Ser Val Gly Pro Cys Gly Gln Asp 215 220 225

Gly Ile Pro Gly Val Tyr Thr Tyr Ile Cys Lys Tyr Val Asp Trp 230 235 240

Ile Arg Met Ile Met Arg Asn Asn 245

<210> 195

<211> 1485

<212> DNA

<213> Homo sapiens

<400> 195

ctcccgatct tgctgccctt cttgacacac tgtgatctct ctctctcta 650 tttgtttggt cattgagggt ttgtttgtgt tttcatcaat gtctttgtaa 700 agcacaaatt atctgcctta aaggggctct gggtcgggga atcctgagcc 750 ttqqqtcccc tccctcttt cttccctcct tccccgctcc ctgtgcagaa 800 qqqctqatat caaaccaaaa actagagggg gcagggccag ggcagggagg 850 cttccagcct gtgttcccct cacttggagg aaccagcact ctccatcctt 900 tcagaaaqtc tccaaqccaa gttcaggctc actgacctgg ctctgacgag 950 gaccccaggc cactctgaga agaccttgga gtagggacaa ggctgcaggg 1000 cctctttcgg gtttccttgg acagtgccat ggttccagtg ctctggtgtc 1050 acccaggaca cagccactcg gggccccgct gccccagctg atccccactc 1100 gcttggcatt gggagccctt caagaaggta ccagaaggaa ccctccagtc 1200 ctgctctctq qccacacctq tgcaggcagc tgagaggcag cgtgcagccc 1250 tactgtccct tactggggca gcagagggct tcggaggcag aagtgaggcc 1300 tggggtttgg ggggaaaggt cagctcagtg ctgttccacc ttttagggag 1350 gatactgagg ggaccaggat gggagaatga ggagtaaaat gctcacggca 1400 aagtcagcag cactggtaag ccaagactga gaaatacaag gttgcttgtc 1450 tgaccccaat ctgcttgaaa aaaaaaaaa aaaaa 1485

<210> 196

<211> 150

<212> PRT

<213> Homo sapiens

<400> 196

Met Ser Gly Glu Leu Ser Asn Arg Phe Gln Gly Gly Lys Ala Phe
1 5 10 15

Gly Leu Leu Lys Ala Arg Gln Glu Arg Arg Leu Ala Glu Ile Asn 20 25 30

Arg Glu Phe Leu Cys Asp Gln Lys Tyr Ser Asp Glu Glu Asn Leu
35 40 45

Pro Glu Lys Leu Thr Ala Phe Lys Glu Lys Tyr Met Glu Phe Asp
50 55 60

Leu Asn Asn Glu Gly Glu Ile Asp Leu Met Ser Leu Lys Arg Met
65 70 75

Met Glu Lys Leu Gly Val Pro Lys Thr His Leu Glu Met Lys Lys $80 \\ 85 \\ 90$

Met Ile Ser Glu Val Thr Gly Gly Val Ser Asp Thr Ile Ser Tyr 95 100 105

Arg Asp Phe Val Asn Met Met Leu Gly Lys Arg Ser Ala Val Leu 110 115 120

Lys Leu Val Met Met Phe Glu Gly Lys Ala Asn Glu Ser Ser Pro 125 130 135

Lys Pro Val Gly Pro Pro Pro Glu Arg Asp Ile Ala Ser Leu Pro 140 145 150

<210> 197

<211> 4842

<212> DNA

<213> Homo sapiens

<400> 197

egegeteece gegegetee tegggeteea egegtettge eeegeagagg 50 caqcetecte caqqaqeqqq qeeetqeaca ceatggeece egggtgggea 100 agagtegged eegeegtegg egeeegeetg gegetggeet tggegetgge 150 gagcgtcctg agtgggcctc cagccgtcgc ctgccccacc aagtgtacct 200 gctccgctgc cagcgtggac tgccacgggc tgggcctccg cgcggttcct 250 cggggcatcc cccgcaacgc tgagcgcctt gacctggaca gaaataatat 300 caccaggate accaagatgg acttegetgg geteaagaac eteegagtet 350 tgcatctgga agacaaccag gtcagcgtca tcgagagagg cgccttccag 400 gacctgaagc agctagagcg actgcgcctg aacaagaata agctgcaagt 450 ccttccagaa ttgcttttcc agagcacgcc gaagctcacc agactagatt 500 tgagtgaaaa ccagatccag gggatcccga ggaaggcgtt ccgcggcatc 550 accgatgtga agaacctgca actggacaac aaccacatca gctgcattga 600 agatggagec ttccgagege tgegegattt ggagateett acceteaaca 650 acaacaacat cagtegeate etggteacea getteaacea catgeegaag 700 atccgaactc tgcgcctcca ctccaaccac ctctactgcg actgccacct 750 ggcctggctc tcggattggc tgcgacagcg acggacagtt ggccagttca 800 cactetgeat qqctcctqtq catttgaggg gcttcaacgt ggcggatgtg 850 cagaagaagg agtacgtgtg cccagccccc cactcggagc ccccatcctg 900 caatgccaac tecateteet gecettegee etgeaegtge ageaataaca 950 tcgtggactg tcgaggaaag ggcttgatgg agattcctgc caacttgccg 1000 gagggcatcg tcgaaatacg cctagaacag aactccatca aagccatccc 1050 tgcaggagcc ttcacccagt acaagaaact gaagcgaata gacatcagca 1100 agaatcagat atcggatatt gctccagatg ccttccaggg cctgaaatca 1150 ctcacatcgc tggtcctgta tgggaacaag atcaccgaga ttgccaaggg 1200 actgtttgat gggctggtgt ccctacagct gctcctcctc aatgccaaca 1250 agatcaactg cctgcgggtg aacacgtttc aggacctgca gaacctcaac 1300 ttgctctccc tgtatgacaa caagctgcag accatcagca aggggctctt 1350 egecectetg cagtecatee agacacteca ettageceaa aacceatttg 1400 tgtgcgactg ccacttgaag tggctggccg actacctcca ggacaacccc 1450 ategagacaa geggggeeeg etgeageage eegegeegae tegeeaacaa 1500 gcgcatcagc cagatcaaga gcaagaagtt ccgctgctca ggctccgagg 1550 attaccgcag caggttcagc agcgagtgct tcatggacct cgtgtgcccc 1600 gagaagtgtc gctgtgaggg cacgattgtg gactgctcca accagaagct 1650 ggtccgcatc ccaagccacc tccctgaata tgtcaccgac ctgcgactga 1700 atgacaatga ggtatctgtt ctggaggcca ctggcatctt caagaagttg 1750 cccaacctgc ggaaaataaa tctgagtaac aataagatca aggaggtgcg 1800 agagggaget ttegatggag cagecagegt geaggagetg atgetgaeag 1850 ggaaccagct ggagaccgtg cacgggcgcg tgttccgtgg cctcagtggc 1900 ctcaaaacct tgatgctgag gagtaacttg atcagctgtg tgagtaatga 1950 cacctttgcc ggcctgagtt cggtgagact gctgtccctc tatgacaatc 2000 ggatcaccac catcacccct ggggccttca ccacgcttgt ctccctgtcc 2050 accataaacc tectgtecaa eccetteaac tgeaactgee acetggeetg 2100 gctcggcaag tggttgagga agaggcggat cgtcagtggg aaccctaggt 2150 gccagaagcc atttttcctc aaggagattc ccatccagga tgtggccatc 2200 caggacttca cctgtgatgg caacgaggag agtagctgcc agctgagccc 2250 gcgctgcccg gagcagtgca cctgtatgga gacagtggtg cgatgcagca 2300 acaagggget eegegeeete eecagaggea tgeecaagga tgtgaeegag 2350

ctgtacctgg aaggaaacca cctaacagcc gtgcccagag agctgtccgc 2400 cctccgacac ctgacgctta ttgacctgag caacaacagc atcagcatgc 2450 tgaccaatta caccttcagt aacatgtctc acctctccac tctgatcctg 2500 agetacaace ggetgaggtg cateceegte caegeettea aegggetgeg 2550 gtccctgcga gtgctaaccc tccatggcaa tgacatttcc agcgttcctg 2600 aaggeteett caacgaeete acatetettt eeeatetgge getgggaace 2650 aacccactcc actgtgactg cagtcttcgg tggctgtcgg agtgggtgaa 2700 ggcggggtac aaggagcctg gcatcgcccg ctgcagtagc cctgagccca 2750 tggctgacag gctcctgctc accaccccaa cccaccgctt ccagtgcaaa 2800 gggccagtgg acatcaacat tgtggccaaa tgcaatgcct gcctctccag 2850 cccgtgcaag aataacggga catgcaccca ggaccctgtg gagctgtacc 2900 gctgtgcctg cccctacagc tacaagggca aggactgcac tgtgcccatc 2950 aacacctgca tccagaaccc ctgtcagcat ggaggcacct gccacctgag 3000 tgacagccac aaggatgggt tcagctgctc ctgccctctg ggctttgagg 3050 ggcagcggtg tgagatcaac ccagatgact gtgaggacaa cgactgcgaa 3100 aacaatgcca cctgcgtgga cgggatcaac aactacgtgt gtatctgtcc 3150 gcctaactac acaggtgagc tatgcgacga ggtgattgac cactgtgtgc 3200 ctgagctgaa cctctgtcag catgaggcca agtgcatccc cctggacaaa 3250 ggattcagct gcgagtgtgt ccctggctac agcgggaagc tctgtgagac 3300 agacaatgat gactgtgtgg cccacaagtg ccgccacggg gcccagtgcg 3350 tggacacaat caatggctac acatgcacct gcccccaggg cttcagtgga 3400 cccttctgtg aacacccccc acccatggtc ctactgcaga ccagcccatg 3450 cgaccagtac gagtgccaga acggggccca gtgcatcgtg gtgcagcagg 3500 ageceaectg eegetgeeca eeaggetteg eeggeeceag atgegagaag 3550 ctcatcactg tcaacttcgt gggcaaagac tcctacgtgg aactggcctc 3600 cgccaaggtc cgaccccagg ccaacatctc cctgcaggtg gccactgaca 3650 aggacaacgg catcettete tacaaaggag acaatgaeee eetggeaetg 3700 gagetgtace agggeeacgt geggetggte tatgaeagee tgagtteece 3750

tccaaccaca gtgtacagtg tggagacagt gaatgatggg cagtttcaca 3800 gtgtggagct ggtgacgcta aaccagaccc tgaacctagt agtggacaaa 3850 ggaactccaa agagcctggg gaagctccag aagcagccag cagtgggcat 3900 caacageece etetacettg gaggeateec cacetecace ggeeteteeg 3950 cettgegeca gggcaeggae eggeetetag geggetteca eggatgeate 4000 catgaggtgc gcatcaacaa cgagctgcag gacttcaagg ccctcccacc 4050 acagtecetg ggggtgteac caggetgeaa gteetgeace gtgtgeaage 4100 acggcctgtg ccgctccgtg gagaaggaca gcgtggtgtg cgagtgccgc 4150 ccaggctgga ccggcccact ctgcgaccag gaggcccggg acccctgcct 4200 cggccacaga tgccaccatg gaaaatgtgt ggcaactggg acctcataca 4250 tgtgcaagtg tgccgagggc tatggagggg acttgtgtga caacaagaat 4300 gactetgeca atgeetgete ageetteaag tgteaceatg ggeagtgeea 4350 catctcagac caaggggagc cctactgcct gtgccagccc ggctttagcg 4400 gcgagcactg ccaacaagag aatccgtgcc tgggacaagt agtccgagag 4450 gtgatccgcc gccagaaagg ttatgcatca tgtgccacag cctccaaggt 4500 gcccatcatg gaatgtcgtg ggggctgtgg gccccagtgc tgccagccca 4550 cccgcagcaa gcggcggaaa tacgtcttcc agtgcacqqa cqqctcctcq 4600 tttgtagaag aggtggagag acacttagag tgcggctgcc tcgcgtgttc 4650 ctaagcccct gcccgcctgc ctgccacctc tcggactcca gcttgatgga 4700 gttgggacag ccatgtggga ccccctggtg attcagcatg aaggaaatga 4750 agctggagag gaaggtaaag aagaagagaa tattaagtat attgtaaaat 4800

<210> 198

<211> 1523

<212> PRT

<213> Homo sapiens

<400> 198

Met Ala Pro Gly Trp Ala Gly Val Gly Ala Ala Val Arg Ala Arg 1 5 10 15

Leu Ala Leu Ala Leu Ala Ser Val Leu Ser Gly Pro Pro
20 25 30

Ala Val Ala Cys Pro Thr Lys Cys Thr Cys Ser Ala Ala Ser Val

				35	5				40)				45
Ası	o Cys	s His	Gly	/ Let 50	ı Gly	/ Leu	ı Arg	, Ala	Val		Arg	g Gl	/ Ile	Pro 60
Arg	g Asr	n Ala	a Glu	Arç 65	g Leu	ı Asp	Leu	Asp	Arg 70		Asn	ıle	Thr	Arg 75
Ile	e Thr	Lys	Met	Asp 80	Phe	: Ala	Gly	Leu	Lys 85		Leu	Arç	y Val	Leu 90
His	. Leu	Glu	Asp	Asn 95	Gln	Val	Ser	Val	Ile 100		Arg	Gly	'Ala	Phe 105
Gln	Asp	Leu	Lys	Gln 110	Leu	Glu	Arg	Leu	Arg 115	Leu	Asn	Lys	Asn	Lys 120
Leu	Gln	Val	Leu	Pro 125	Glu	Leu	Leu	Phe	Gln 130	Ser	Thr	Pro	Lys	Leu 135
Thr	Arg	Leu	Asp	Leu 140	Ser	Glu	Asn	Gln	Ile 145	Gln	Gly	Ile	Pro	Arg 150
Lys	Ala	Phe	Arg	Gly 155	Ile	Thr	Asp	Val	Lys 160	Asn	Leu	Gln	Leu	Asp 165
Asn	Asn	His	Ile	Ser 170	Cys	Ile	Glu	Asp	Gly 175	Ala	Phe	Arg	Ala	Leu 180
Arg	Asp	Leu	Glu	Ile 185	Leu	Thr	Leu	Asn	Asn 190	Asn	Asn	Ile	Ser	Arg 195
Ile	Leu	Val	Thr	Ser 200	Phe	Asn	His	Met	Pro 205	Lys	Ile	Arg	Thr	Leu 210
Arg	Leu	His	Ser	Asn 215	His	Leu	Tyr	Cys	Asp 220	Cys	His	Leu	Ala	Trp 225
Leu	Ser	Asp	Trp	Leu 230	Arg	Gln	Arg	Arg	Thr 235	Val	Gly	Gln	Phe	Thr 240
Leu	Cys	Met	Ala	Pro 245	Val	His	Leu	Arg	Gly 250	Phe	Asn	Val	Ala	Asp 255
Val	Gln	Lys	Lys	Glu 260	Tyr	Val	Cys	Pro	Ala 265	Pro	His	Ser	Glu	Pro 270
Pro	Ser	Cys	Asn	Ala 275	Asn	Ser	Ile		Cys 280	Pro	Ser	Pro	Cys	Thr 285
Cys	Ser	Asn	Asn	Ile 290	Val	Asp	Cys		Gly 295	Lys	Gly	Leu	Met	Glu 300
Ile	Pro	Ala	Asn	Leu 305	Pro	Glu	Gly		Val 310	Glu	Ile	Arg	Leu	Glu 315
Gln	Asn	Ser	Ile	Lys	Ala	Ile	Pro	Ala	Gly .	Ala	Phe	Thr	Gln	Tyr

				320)				325	•				330
Ly	s Ly:	s Le	u Lys	335		. Asp	Ile	Ser	Lys 340		Gln	ı Ile	: Ser	Asp 345
Il	e Ala	a Pro	o Asp	350	Phe	Gln	Gly	Leu	Lys 355		Leu	Thr	Ser	Leu 360
Va	l Lei	а Туг	c Gly	7 Asn 365	Lys	Ile	Thr	Glu	Ile 370		Lys	Gly	Leu	Phe 375
As	p Gly	/ Let	ı Val	Ser 380	Leu	Gln	Leu	Leu	Leu 385		Asn	Ala	Asn	Lys 390
Il	e Asr	п Суз	s Leu	Arg 395	Val	Asn	Thr	Phe	Gln 400	Asp	Leu	Gln	Asn	Leu 405
Ası	n Leu	ı Lev	ı Ser	Leu 410	Tyr	Asp	Asn	Lys	Leu 415	Gln	Thr	Ile	Ser	Lys 420
Gl	y Let	ı Ph∈	e Ala	Pro 425	Leu	Gln	Ser	Ile	Gln 430	Thr	Leu	His	Leu	Ala 435
Glr	n Asn	Pro	Phe	Val 440	Cys	Asp	Cys	His	Leu 445	Lys	Trp	Leu	Ala	Asp 450
Тул	c Leu	. Gln	Asp	Asn 455	Pro	Ile	Glu	Thr	Ser 460	Gly	Ala	Arg	Cys	Ser 465
Sei	Pro	Arg	Arg	Leu 470	Ala	Asn	Lys	Arg	Ile 475	Ser	Gln	Ile	Lys	Ser 480
Lys	s Lys	Phe	Arg	Cys 485	Ser	Gly	Ser	Glu	Asp 490	Tyr	Arg	Ser	Arg	Phe 495
Ser	Ser	Glu	Суѕ	Phe 500	Met	Asp	Leu	Val	Cys 505	Pro	Glu	Lys	Cys	Arg 510
Суз	Glu	Gly	Thr	Ile 515	Val	Asp	Cys	Ser	Asn 520	Gln	Lys	Leu	Val	Arg 525
Ile	Pro	Ser	His	Leu 530	Pro	Glu	Tyr	Val	Thr 535	Asp	Leu	Arg	Leu	Asn 540
Asp	Asn	Glu	Val	Ser 545	Val	Leu	Glu	Ala	Thr 550	Gly	Ile	Phe	Lys	Lys 555
Leu	Pro	Asn	Leu	Arg 560	Lys	Ile	Asn	Leu	Ser 565	Asn	Asn	Lys	Ile	Lys 570
Glu	Val	Arg	Glu	Gly 575	Ala	Phe	Asp	Gly	Ala 580	Ala	Ser	Val	Gln	Glu 585
Leu	Met	Leu	Thr	Gly 590	Asn	Gln	Leu	Glu	Thr 595	Val	His	Gly	Arg	Val 600
Phe	Arg	Gly	Leu	Ser	Gly	Leu	Lys	Thr	Leu	Met	Leu	Arg	Ser	Asn

				605					610					615
Leu	Ile	Ser	Cys	Val 620		Asn	Asp	Thr	Phe 625		Gly	Leu	Ser	Ser 630
Val	Arg	Leu	Leu	Ser 635		Tyr	Asp	Asn	Arg 640		Thr	Thr	Ile	Thr 645
Pro	Gly	Ala	Phe	Thr 650	Thr	Leu	Val	Ser	Leu 655	Ser	Thr	Ile	Asn	Leu 660
Leu	Ser	Asn	Pro	Phe 665	Asn	Cys	Asn	Cys	His 670	Leu	Ala	Trp	Leu	Gly 675
Lys	Trp	Leu	Arg	Lys 680	Arg	Arg	Ile	Val	Ser 685	Gly	Asn	Pro	Arg	Cys 690
Gln	Lys	Pro	Phe	Phe 695	Leu	Lys	Glu	Ile	Pro 700	Ile	Gln	Asp	Val	Ala 705
Ile	Gln	Asp	Phe	Thr 710	Cys	Asp	Gly	Asn	Glu 715	Glu	Ser	Ser	Cys	Gln 720
Leu	Ser	Pro	Arg	Cys 725	Pro	Glu	Gln	Cys	Thr 730	Cys	Met	Glu	Thr	Val 735
Val	Arg	Cys	Ser	Asn 740	Lys	Gly	Leu	Arg	Ala 745	Leu	Pro	Arg	Gly	Met 750
Pro	Lys	Asp	Val	Thr 755	Glu	Leu	Tyr	Leu	Glu 760	Gly	Asn	His	Leu	Thr 765
Ala	Val	Pro	Arg	Glu 770	Leu	Ser	Ala	Leu	Arg 775	His	Leu	Thr	Leu	Ile 780
Asp	Leu	Ser	Asn	Asn 785	Ser	Ile	Ser	Met	Leu 790	Thr	Asn	Tyr	Thr	Phe 795
Ser	Asn	Met	Ser	His 800	Leu	Ser	Thr	Leu	Ile 805	Leu	Ser	Tyr	Asn	Arg 810
Leu	Arg	Cys	Ile	Pro 815	Val	His	Ala	Phe	Asn 820	Gly	Leu	Arg	Ser	Leu 825
Arg	Val	Leu	Thr	Leu 830	His	Gly	Asn	Asp	Ile 835	Ser	Ser	Val	Pro	Glu 840
Gly	Ser	Phe	Asn	Asp 845	Leu	Thr	Ser	Leu	Ser 850	His	Leu	Ala	Leu	Gly 855
Thr	Asn	Pro	Leu	His 860	Cys	Asp	Cys	Ser	Leu 865	Arg	Trp	Leu	Ser	Glu 870
Trp	Val	Lys	Ala	Gly 875	Tyr	Lys	Glu		Gly 880	Ile	Ala	Arg	Cys	Ser 885
Ser	Pro	Glu	Pro	Met	Ala	Asp	Arg	Leu	Leu	Leu	Thr	Thr	Pro	Thr

Val	Ala	Thr	Asp Lys 1190	Asp	Asn	Gly	Ile Leu 1195	Leu	Tyr	Lys	Gly Asp 1200
Asn	Asp	Pro	Leu Ala 1205	Leu	Glu	Leu	Tyr Gln 1210	Gly	His	Val	Arg Leu 1215
Val	Tyr	Asp	Ser Leu 1220	Ser	Ser	Pro	Pro Thr 1225	Thr	Val	Tyr	Ser Val 1230
Glu	Thr	Val	Asn Asp 1235	Gly	Gln	Phe	His Ser 1240	Val	Glu	Leu	Val Thr 1245
Leu	Asn	Gln	Thr Leu 1250	Asn	Leu	Val	Val Asp 1255	Lys	Gly	Thr	Pro Lys 1260
Ser	Leu	Gly	Lys Leu 1265	Gln	Lys	Gln	Pro Ala 1270	Val	Gly	Ile	Asn Ser 1275
Pro	Leu	Tyr	Leu Gly 1280	Gly	Ile	Pro	Thr Ser 1285	Thr	Gly	Leu	Ser Ala 1290
Leu	Arg	Gln	Gly Thr 1295	Asp	Arg	Pro	Leu Gly 1300	Gly	Phe	His	Gly Cys 1305
Ile	His	Glu	Val Arg 1310	Ile	Asn	Asn	Glu Leu 1315	Gln	Asp	Phe	Lys Ala 1320
Leu	Pro	Pro	Gln Ser 1325	Leu	Gly	Val	Ser Pro 1330	Gly	Cys	Lys	Ser Cys 1335
Thr	Val	Cys	Lys His 1340	Gly	Leu	Cys	Arg Ser 1345	Val	Glu	Lys	Asp Ser 1350
Val	Val	Cys	Glu Cys 1355	Arg	Pro	Gly	Trp Thr 1360	Gly	Pro	Leu	Cys Asp 1365
Gln	Glu	Ala	Arg Asp 1370	Pro	Cys	Leu	Gly His 1375	Arg	Cys	His	His Gly 1380
Lys	Cys	Val	Ala Thr 1385	Gly	Thr	Ser	Tyr Met 1390	Cys	Lys	Cys	Ala Glu 1395
Gly	Tyr	Gly	Gly Asp 1400	Leu	Cys	Asp	Asn Lys 1405	Asn	Asp	Ser	Ala Asn 1410
Ala	Cys	Ser	Ala Phe 1415	Lys	Cys	His	His Gly 1420	Gln	Cys	His	Ile Ser 1425
Asp	Gln	Gly	Glu Pro 1430	Tyr	Cys	Leu	Cys Gln 1435	Pro	Gly	Phe	Ser Gly 1440
Glu	His	Cys	Gln Gln 1445	Glu	Asn	Pro	Cys Leu 1450	Gly	Gln	Val	Val Arg 1455
Glu	Val	Ile	Arg Arg	Gln	Lys	Gly	Tyr Ala	Ser	Cys	Ala	Thr Ala

Ser Lys Val Pro Ile Met Glu Cys Arg Gly Gly Cys Gly Pro Gln \$1475\$ \$1480\$ \$1485

Cys Cys Gln Pro Thr Arg Ser Lys Arg Arg Lys Tyr Val Phe Gln 1490 1495 1500

Cys Thr Asp Gly Ser Ser Phe Val Glu Glu Val Glu Arg His Leu 1505 1510 1515

Glu Cys Gly Cys Leu Ala Cys Ser 1520

<210> 199

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 199

atggagattc ctgccaactt gccg 24

<210> 200

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 200

ttgttggcat tgaggaggag cagc 24

<210> 201

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 201

gagggcatcg tcgaaatacg cctagaacag aactccatca aagccatccc 50

<210> 202

<211> 753

<212> DNA

<213> Homo sapiens

<400> 202

ggatgcagga cgctcccctg agctgcctgt caccgactag gtggagcagt 50

gtttcttccg cagactcaac tgagaagtca gcctctgggg caggcaccag 100

gaatetgeet titeagitet gieteeggea gigettigagi atgaaggetg 150 egggeattet gaeceteatt gigetgeetgig teacaggege egagiteeaaa 200 atetacacte gitigeaaact gigeaaaata titetegagigi etggeetgiga 250 eaattaetigi gigetteagee titiggaaaetig gatetgeatigi geatattatig 300 agageggeta eaaeaceae geeeegaegigi teetggatiga eggeageate 350 gaetatiggea tetteeagat eaaeagette gegitigeta gaeegeggaaa 400 getgaagga aacaaceaet geeatgitege etgeteagee titigateaetig 450 atgaeetea agatgeaatt atetigtigeea gigaaaattigi taaagagaea 500 eaaggaatga actatiggea aggeetggaagi aaeaattigtig aggigeagaa 550 eetgiteega titigeagaaa geetgigaagi titeetaaaet gigaaetggae 600 eetgitigetea ettigeeegi titeeteeaa tatteettet eaaaettigga 700 gagggaaaat taagetatae tittaagaaa ataaatatti eeatttaaat 750 gite 753

<210> 203

<211> 148

<212> PRT

<213> Homo sapiens

<400> 203

Met Lys Ala Ala Gly Ile Leu Thr Leu Ile Gly Cys Leu Val Thr 1 5 10 15

Gly Ala Glu Ser Lys Ile Tyr Thr Arg Cys Lys Leu Ala Lys Ile 20 25 30

Phe Ser Arg Ala Gly Leu Asp Asn Tyr Trp Gly Phe Ser Leu Gly
35 40 45

Asn Trp Ile Cys Met Ala Tyr Tyr Glu Ser Gly Tyr Asn Thr Thr 50 55 60

Ala Pro Thr Val Leu Asp Asp Gly Ser Ile Asp Tyr Gly Ile Phe 65 70 75

Gln Ile Asn Ser Phe Ala Trp Cys Arg Arg Gly Lys Leu Lys Glu 80 85 90

Asn Asn His Cys His Val Ala Cys Ser Ala Leu Ile Thr Asp Asp 95 100 105

Leu Thr Asp Ala Ile Ile Cys Ala Arg Lys Ile Val Lys Glu Thr 110 115 120

```
Gln Gly Met Asn Tyr Trp Gln Gly Trp Lys Lys His Cys Glu Gly
Arg Asp Leu Ser Glu Trp Lys Lys Gly Cys Glu Val Ser
<210> 204
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 204
gcaggctttg aggatgaagg ctgc 24
<210> 205
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 205
ctcattggct gcctggtcac aggc 24
<210> 206
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 206
 ccagtcggac aggtctctcc cctc 24
<210> 207
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 207
 tcaqtgacca aggctgagca ggcg 24
<210> 208
<211> 47
<212> DNA
<213> Artificial Sequence
```

<220>

<223> Synthetic oligonucleotide probe

<400> 208

ctacactcgt tgcaaactgg caaaaatatt ctcgagggct ggcctgg 47

<210> 209

<211> 1648

<212> DNA

<213> Homo sapiens

<400> 209

caggccattt gcatcccact gtccttgtgt tcggagccag gccacaccgt 50 cctcagcagt gtcatgtgtt aaaaacgcca agctgaatat atcatgcccc 100 tattaaaact tgtacatggc tccccattgg tttttggaga aaagttcaag 150 ctttttacct tggtgtctgc ctgtatccca gtgttcaggc tggctagacg 200 gcggaagaag atcctatttt actgtcactt cccagatctg cttctcacca 250 agagagattc ttttcttaaa cgactataca gggccccaat tgactggata 300 gaggaataca ccacaggcat ggcagactgc atcttagtca acagccagtt 350 cacagotgot gtttttaagg aaacattcaa gtccctgtct cacatagacc 400 ctgatgtcct ctatccatct ctaaatgtca ccagctttga ctcagttgtt 450 cctgaaaagc tggatgacct agtccccaag gggaaaaaat tcctgctgct 500 ctccatcaac agatacgaaa ggaagaaaaa tctgactttg gcactggaag 550 ccctagtaca gctgcgtgga agattgacat cccaagattg ggagagggtt 600 catctgatcg tggcaggtgg ttatgacgag agagtcctgg agaatgtgga 650 acattatcag gaattgaaga aaatggtcca acagtccgac cttggccagt 700 atgtgacctt cttgaggtct ttctcagaca aacagaaaat ctccctcctc 750 cacagctgca cgtgtgtgct ttacacacca agcaatgagc actttggcat 800 tgtccctctg gaagccatgt acatgcagtg cccagtcatt gctgttaatt 850 cgggtggacc cttggagtcc attgaccaca gtgtcacagg gtttctgtgt 900 gageetgaee eggtgeaett eteagaagea atagaaaagt teateegtga 950 accttcctta aaagccacca tgggcctggc tggaagagcc agagtgaagg 1000 aaaaattttc ccctgaagca tttacagaac agctctaccg atatgttacc 1050 aaactgctgg tataatcaga ttgtttttaa gatctccatt aatgtcattt 1100 ttatggattg tagacccagt tttgaaacca aaaaagaaac ctagaatcta 1150 atgcagaaga gatcttttaa aaaataaact tgagtcttga atgtgagcca 1200 ctttcctata taccacacct ccctgtccac ttttcagaaa aaccatgtct 1250 tttatgctat aatcattcca aattttgcca gtgttaagtt acaaatgtgg 1300 tgtcattcca tgttcagcag agtattttaa ttatatttc tcgggattat 1350 tgctcttctg tctataaatt ttgaatgata ctgtgcctta attggtttcc 1400 atagtttaag tgtgtatcat tatcaaagtt gattaatttg gcttcatagt 1450 ataatgagag cagggctatt gtagttccca gattcaatcc accgaagtgt 1500 tcactgtcat ctgttaggga atttttgtt gtcctgtctt tgcctggatc 1550 catagcgaga gtgctctgta tttttttaa gataatttgt atttttgcac 1600 acctgagatat aataaaaggt gtttatcata aaaaaaaaa aaaaaaaa 1648

<210> 210

<211> 323

<212> PRT

<213> Homo sapiens

<400> 210

Met Pro Leu Leu Lys Leu Val His Gly Ser Pro Leu Val Phe Gly
1 5 10 15

Glu Lys Phe Lys Leu Phe Thr Leu Val Ser Ala Cys Ile Pro Val
20 25 30

Phe Arg Leu Ala Arg Arg Arg Lys Lys Ile Leu Phe Tyr Cys His
35 40 45

Phe Pro Asp Leu Leu Thr Lys Arg Asp Ser Phe Leu Lys Arg 50 55 60

Leu Tyr Arg Ala Pro Ile Asp Trp Ile Glu Glu Tyr Thr Thr Gly
65 70 75

Met Ala Asp Cys Ile Leu Val Asn Ser Gln Phe Thr Ala Ala Val 80 85 90

Phe Lys Glu Thr Phe Lys Ser Leu Ser His Ile Asp Pro Asp Val 95 100 105

Leu Tyr Pro Ser Leu Asn Val Thr Ser Phe Asp Ser Val Val Pro 110 115 120

Glu Lys Leu Asp Asp Leu Val Pro Lys Gly Lys Lys Phe Leu Leu 125 130 135

Leu Ser Ile Asn Arg Tyr Glu Arg Lys Lys Asn Leu Thr Leu Ala 140 145 150

Leu Glu Ala Leu Val Gln Leu Arg Gly Arg Leu Thr Ser Gln Asp

				155					160					165
Trp	Glu	Arg	Val	His 170	Leu	Ile	Val	Ala	Gly 175	Gly	Tyr	Asp	Glu	Arg 180
Val	. Leu	Glu	Asn	Val 185	Glu	His	Tyr	Gln	Glu 190	Leu	Lys	Lys	Met	Val 195
Gln	Gln	Ser	Asp	Leu 200	Gly	Gln	Tyr	Val	Thr 205	Phe	Leu	Arg	Ser	Phe 210
Ser	Asp	Lys	Gln	Lys 215	Ile	Ser	Leu	Leu	His 220	Ser	Cys	Thr	Cys	Val 225
Leu	Tyr	Thr	Pro	Ser 230	Asn	Glu	His	Phe	Gly 235	Ile	Val	Pro	Leu	Glu 240
Ala	Met	Tyr	Met	Gln 245	Cys	Pro	Val	Ile	Ala 250	Val	Asn	Ser	Gly	Gly 255
Pro	Leu	Glu	Ser	Ile 260	Asp	His	Ser	Val	Thr 265	Gly	Phe	Leu	Cys	Glu 270
Pro	Asp	Pro	Val	His 275	Phe	Ser	Glu	Ala	Ile 280	Glu	Lys	Phe	Ile	Arg 285
Glu	Pro	Ser	Leu	Lys 290	Ala	Thr	Met	Gly	Leu 295	Ala	Gly	Arg	Ala	Arg 300
Val	Lys	Glu	Lys	Phe 305	Ser	Pro	Glu	Ala	Phe 310	Thr	Glu	Gln	Leu	Tyr 315
Arg	Tyr	Val	Thr	Lys 320	Leu	Leu	Val							
<211><212>	<210> 211 <211> 1554 <212> DNA <213> Homo sapiens													
<400>			teen	agac	a ta	acto	ccta	aac	aaca	ma a	aas t	~++~	~n E	0

gactacgccg atccgagacg tggctccctg ggcggcagaa ccatgttgga 50 cttcgcgatc ttcgccgtta ccttcttgct ggcgttggtg ggagccgtgc 100 tctacctcta tccggcttcc agacaagctg caggaattcc agggattact 150 ccaactgaag aaaaagatgg taatcttcca gatattgtga atagtggaag 200 tttgcatgag ttcctggtta atttgcatga gagatatggg cctgtggtct 250 ccttctggtt tggcaggcgc ctcgtggtta gtttgggcac tgttgatgta 300 ctgaagcagc atatcaatcc caataagaca tcggaccctt ttgaaaccat 350 gctgaagtca ttattaaggt atcaatctgg tggtggcagt gtgagtgaaa 400

accacatgag gaaaaaattg tatgaaaatg gtgtgactga ttctctgaag 450 agtaactttg ccctcctcct aaagctttca gaagaattat tagataaatg 500 gctctcctac ccagagaccc agcacgtgcc cctcagccag catatgcttg 550 gttttgctat gaagtctgtt acacagatgg taatgggtag tacatttgaa 600 gatgatcagg aagtcattcg cttccagaag aatcatggca cagtttggtc 650 tgagattgga aaaggctttc tagatgggtc acttgataaa aacatgactc 700 ggaaaaaaca atatgaagat gccctcatgc aactggagtc tgttttaagg 750 aacatcataa aagaacgaaa aggaaggaac ttcagtcaac atattttcat 800 tgactcctta gtacaaggga accttaatga ccaacagatc ctagaagaca 850 gtatgatatt ttctctggcc agttgcataa taactgcaaa attgtgtacc 900 tgggcaatct gttttttaac cacctctgaa gaagttcaaa aaaaattata 950 tgaagagata aaccaagttt ttggaaatgg tcctgttact ccagagaaaa 1000 ttgagcagct cagatattgt cagcatgtgc tttgtgaaac tgttcgaact 1050 gccaaactga ctccagtttc tgcccagctt caagatattg aaggaaaaat 1100 tgaccgattt attattccta gagagaccct cgtcctttat gcccttggtg 1150 tggtacttca ggatcctaat acttggccat ctccacacaa gtttgatcca 1200 gatcggtttg atgatgaatt agtaatgaaa actttttcct cacttggatt 1250 ctcaggcaca caggagtgtc cagagttgag gtttgcatat atggtgacca 1300 cagtacttct tagtgtattg gtgaagagac tgcacctact ttctgtggag 1350 ggacaggtta ttgaaacaaa gtatgaactg gtaacatcat caagggaaga 1400 agcttggatc actgtctcaa agagatatta aaattttata catttaaaat 1450 cattgttaaa ttgattgagg aaaacaacca tttaaaaaaa atctatgttg 1500 aatcctttta taaaccagta tcactttgta atataaacac ctatttgtac 1550 ttaa 1554

<210> 212

<211> 462

<212> PRT

<213> Homo sapiens

<400> 212

Met Leu Asp Phe Ala Ile Phe Ala Val Thr Phe Leu Leu Ala Leu 1 5 10 15

Val	Gly	' Ala	Val	. Leu 20		Leu	Tyr	Pro	Ala 25	Ser	Arg	Gln	Ala	Ala 30
Gly	Ile	Pro	Gly	Ile 35	Thr	Pro	Thr	Glu	Glu 40	Lys	Asp	Gly	Asn	Leu 45
Pro	Asp	Ile	Val	Asn 50	Ser	Gly	Ser	Leu	His 55	Glu	Phe	Leu	Val	Asn 60
Leu	His	Glu	Arg	Tyr 65	Gly	Pro	Val	Val	Ser 70	Phe	Trp	Phe	Gly	Arg 75
Arg	Leu	Val	Val	Ser 80	Leu	Gly	Thr	Val	Asp 85	Val	Leu	Lys	Gln	His 90
Ile	Asn	Pro	Asn	Lys 95	Thr	Ser	Asp	Pro	Phe 100	Glu	Thr	Met	Leu	Lys 105
Ser	Leu	Leu	Arg	Tyr 110	Gln	Ser	Gly	Gly	Gly 115	Ser	Val	Ser	Glu	Asn 120
His	Met	Arg	Lys	Lys 125	Leu	Tyr	Glu	Asn	Gly 130	Val	Thr	Asp	Ser	Leu 135
Lys	Ser	Asn	Phe	Ala 140	Leu	Leu	Leu	Lys	Leu 145	Ser	Glu	Glu	Leu	Leu 150
Asp	Lys	Trp	Leu	Ser 155	Tyr	Pro	Glu	Thr	Gln 160	His	Val	Pro	Leu	Ser 165
Gln	His	Met	Leu	Gly 170	Phe	Ala	Met	Lys	Ser 175	Val	Thr	Gln	Met	Val 180
Met	Gly	Ser	Thr	Phe 185	Glu	Asp	Asp	Gln	Glu 190	Val	Ile	Arg	Phe	Gln 195
				Thr 200					205					210
Asp	Gly	Ser	Leu	Asp 215	Lys	Asn	Met	Thr	Arg 220	Lys	Lys	Gln	Tyr	Glu 225
Asp	Ala	Leu	Met	Gln 230	Leu	Glu	Ser	Val	Leu 235	Arg	Asn	Ile	Ile	Lys 240
Glu	Arg	Lys	Gly	Arg 245	Asn	Phe	Ser		His 250	Ile	Phe	Ile	Asp	Ser 255
				Asn 260					265					270
				Leu 275					280					285
Thr	Trp	Ala	Ile	Cys 290	Phe	Leu	Thr		Ser 295	Glu	Glu	Val	Gln	Lys 300

Lys Leu Tyr Glu Glu Ile Asn Gln Val Phe Gly Asn Gly Pro Val Thr Pro Glu Lys Ile Glu Gln Leu Arg Tyr Cys Gln His Val Leu 320 325 Cys Glu Thr Val Arg Thr Ala Lys Leu Thr Pro Val Ser Ala Gln 335 340 Leu Gln Asp Ile Glu Gly Lys Ile Asp Arg Phe Ile Ile Pro Arg 355 Glu Thr Leu Val Leu Tyr Ala Leu Gly Val Val Leu Gln Asp Pro 365 370 375 Asn Thr Trp Pro Ser Pro His Lys Phe Asp Pro Asp Arg Phe Asp 380 385 Asp Glu Leu Val Met Lys Thr Phe Ser Ser Leu Gly Phe Ser Gly 395 400 405 Thr Gln Glu Cys Pro Glu Leu Arg Phe Ala Tyr Met Val Thr Thr 410 415 420 Val Leu Leu Ser Val Leu Val Lys Arg Leu His Leu Leu Ser Val 425 430 Glu Gly Gln Val Ile Glu Thr Lys Tyr Glu Leu Val Thr Ser Ser 440 445 Arg Glu Glu Ala Trp Ile Thr Val Ser Lys Arg Tyr

<210> 213 <211> 759

<212> DNA

<213> Homo sapiens

455

<400> 213

ctagatttyt cygcttycgy ggagacttca ggagtcycty tetetyaact 50
tecagectca gagaccyccy ecettytece cyagygccat gygcegyyte 100
teagygetty tygcetetey etteetyacy etcetyycyc atetyyyyt 150
cyteateace ttattetyyt ecegyyacay caacatacay geetyeetye 200
eteteacytt eaceeceyyy gagtatyaca ayeayyacat teagetyyt 250
geegegetet etyteaceet gygeetettt geagtyyage tygeegytt 300
eeteteagya gteteeatyt teaacaycae ecayageete ateteeatty 350
gygeteacty taytycatee gtygeeetyt eettetteat attegageyt 400
tyggagtyca etacytatty gtacatttt gtettetyca gtygeeettee 450

agctgtcact gaaatggctt tattcgtcac cgtctttggg ctgaaaaaga 500 aacccttctg attaccttca tgacgggaac ctaaggacga agcctacagg 550 ggcaagggcc gcttcgtatt cctggaagaa ggaaggcata ggcttcggtt 600 ttcccctcgg aaactgcttc tgctggagga tatgtgttgg aataattacg 650 tcttgagtct gggattatcc gcattgtatt tagtgctttg taataaaata 700 tgttttgtag taacattaag acttatatac agttttaggg gacaattaaa 750 aaaaaaaaa 759

<210> 214

<211> 140

<212> PRT

<213> Homo sapiens

<400> 214

Met Gly Arg Val Ser Gly Leu Val Pro Ser Arg Phe Leu Thr Leu
1 5 10 15

Leu Ala His Leu Val Val Ile Thr Leu Phe Trp Ser Arg Asp
20 25 30

Ser Asn Ile Gln Ala Cys Leu Pro Leu Thr Phe Thr Pro Glu Glu
35 40 45

Tyr Asp Lys Gln Asp Ile Gln Leu Val Ala Ala Leu Ser Val Thr
50 55 60

Leu Gly Leu Phe Ala Val Glu Leu Ala Gly Phe Leu Ser Gly Val

Ser Met Phe Asn Ser Thr Gln Ser Leu Ile Ser Ile Gly Ala His

Cys Ser Ala Ser Val Ala Leu Ser Phe Phe Ile Phe Glu Arg Trp 95 100 105

Glu Cys Thr Thr Tyr Trp Tyr Ile Phe Val Phe Cys Ser Ala Leu 110 115 120

Pro Ala Val Thr Glu Met Ala Leu Phe Val Thr Val Phe Gly Leu
125 130 135

Lys Lys Pro Phe 140

<210> 215

<211> 697

<212> DNA

<213> Homo sapiens

<400> 215

tcccggaccc tgccgccctg ccactatgtc ccgccgctct atgctgcttg 50

cetgggetet ceccageete ettegaeteg gageggetea ggagaeagaa 100 gacceggeet getgeageee catagtgeee eggaaegagt ggaaggeeet 150 ggeateagag tgegeeeage acetgageet geeettaege tatgtggtgg 200 tategeacae ggegggeage agetgeaaea eececegeete gtgeeageag 250 caggeeegga atgtgeagea etaceacatg aagaeaetgg getggtgega 300 egtggggetae aactteetga ttggagaaga egggetegta taegagggee 350 gtgggetggaa etteaegggt geeeaceteag gteaettatg gaaeeeeatg 400 teeattggea teagetteat gggeaaetae atggategga tgeeeaaee 450 eeaggeeate egggeageee agggeteaet ggeetggga tggeeeaaee 500 gageeetgaa gteeaaetat gtgeteaaag gaeaeeggga tgtgeagegt 550 acaeteete eegggaaeea getetaeea eteateeaga attggeeaea 600 etaeeggeee eeetgaggee etgetgatee geaeeeeatt eeteeetee 650 eatggeeaaa aaeeeeetg teteettee eaataaagat gtagete 697

<210> 216

<211> 196

<212> PRT

<213> Homo sapiens

<400> 216

Met Ser Arg Arg Ser Met Leu Leu Ala Trp Ala Leu Pro Ser Leu 1 5 10 15

Leu Arg Leu Gly Ala Ala Gln Glu Thr Glu Asp Pro Ala Cys Cys
20 25 30

Ser Pro Ile Val Pro Arg Asn Glu Trp Lys Ala Leu Ala Ser Glu
35 40 45

Cys Ala Gln His Leu Ser Leu Pro Leu Arg Tyr Val Val Ser
50 55 60

His Thr Ala Gly Ser Ser Cys Asn Thr Pro Ala Ser Cys Gln Gln 65 70 75

Gln Ala Arg Asn Val Gln His Tyr His Met Lys Thr Leu Gly Trp 80 85 90

Cys Asp Val Gly Tyr Asn Phe Leu Ile Gly Glu Asp Gly Leu Val 95 100 105

Tyr Glu Gly Arg Gly Trp Asn Phe Thr Gly Ala His Ser Gly His
110 115 120

Leu Trp Asn Pro Met Ser Ile Gly Ile Ser Phe Met Gly Asn Tyr 125 130 135

Met Asp Arg Val Pro Thr Pro Gln Ala Ile Arg Ala Ala Gln Gly 140 145 150

Leu Leu Ala Cys Gly Val Ala Gln Gly Ala Leu Arg Ser Asn Tyr 155 160 160

Val Leu Lys Gly His Arg Asp Val Gln Arg Thr Leu Ser Pro Gly 170 175 180

Asn Gln Leu Tyr His Leu Ile Gln Asn Trp Pro His Tyr Arg Ser 185 190 195

Pro

<210> 217

<211> 1871 <212> DNA

<213> Homo sapiens

<400> 217

ctgggacccc gaaaagagaa ggggagagcg aggggacqaq aqcqqaqqaq 50 gaagatgcaa ctgactcgct gctgcttcgt gttcctggtg cagggtagcc 100 tctatctggt catctgtggc caggatgatg gtcctcccgg ctcagaggac 150 cctgagcgtg atgaccacga gggccagccc cggccccggg tgcctcggaa 200 gcggggccac atctcaccta agtcccgccc catggccaat tccactctcc 250 tagggctgct ggccccgcct ggggaggctt ggggcattct tgggcagccc 300 cccaaccgcc cgaaccacag cccccaccc tcagccaagg tgaagaaaat 350 ctttggctgg ggcgacttct actccaacat caagacggtg gccctgaacc 400 tgctcgtcac agggaagatt gtggaccatg gcaatgggac cttcagcgtc 450 cacttccaac acaatgccac aggccaggga aacatctcca tcagcctcgt 500 gcccccagt aaagctgtag agttccacca ggaacagcag atcttcatcg 550 aagccaaggc ctccaaaatc ttcaactgcc ggatggagtg ggagaaggta 600 gaacggggcc gccggacctc gctttgcacc cacgacccag ccaagatctg 650 ctcccgagac cacgctcaga gctcagccac ctggagctgc tcccagccct 700 tcaaagtcgt ctgtgtctac atcgccttct acagcacgga ctatcggctg 750 gtccagaagg tgtgcccaga ttacaactac catagtgata ccccctacta 800

ggacaggeet geceatgeag gagaceatet ggacaeeggg cagggaaggg 900 gttgggcctc aggcagggag gggggtggag acgaggagat gccaagtggg 950 gccagggcca agtctcaagt ggcagagaaa gggtcccaag tgctggtccc 1000 aacctgaagc tgtggagtga ctagatcaca ggagcactgg aggaggagtg 1050 ggctctctgt gcagcctcac agggctttgc cacggagcca cagagagatg 1100 ctgggtcccc gaggcctgtg ggcaggccga tcagtgtggc cccagatcaa 1150 gtcatgggag gaagctaagc ccttggttct tgccatcctg aggaaagata 1200 gcaacaggga gggggagatt tcatcagtgt ggacagcctg tcaacttagg 1250 gccagaggag ctctccagcc ctgcctagtg ggcgccctga gccccttgtc 1350 gtgtgctgag catggcatga ggctgaagtg gcaaccctgg ggtctttgat 1400 gtcttgacag attgaccatc tgtctccagc caggccaccc ctttccaaaa 1450 ttccctcttc tgccagtact ccccctgtac cacccattgc tgatggcaca 1500 cccatcctta agctaagaca ggacgattgt ggtcctccca cactaaggcc 1550 acageceate egegtgetgt gtgteeetet teeaceceaa eecetgetgg 1600 ctcctctggg agcatccatg tcccggagag gggtccctca acagtcagcc 1650 tcacctgtca gaccggggtt ctcccggatc tggatggcgc cgccctctca 1700 qcaqcqqqca cqqqtqqqqc qqqqccqqqc cqcaqaqcat qtqctqqatc 1750 tgttctgtgt gtctgtctgt gggtgggggg aggggaggga agtcttgtga 1800 aaccgctgat tgctgacttt tgtgtgaaga atcgtgttct tggagcagga 1850 aataaagctt gccccggggc a 1871

<210> 218

<211> 252

<212> PRT

<213> Homo sapiens

<400> 218

Met Gln Leu Thr Arg Cys Cys Phe Val Phe Leu Val Gln Gly Ser 1 5 10 15

Leu Tyr Leu Val Ile Cys Gly Gln Asp Asp Gly Pro Pro Gly Ser 20 25 30

Glu Asp Pro Glu Arg Asp Asp His Glu Gly Gln Pro Arg Pro Arg
35 40 45

Val	Pro	Arg	Lys	Arg 50	Gly	His	Ile	Ser	Pro 55	Lys	Ser	Arg	Pro	Met 60
Ala	Asn	Ser	Thr	Leu 65	Leu	Gly	Leu	Leu	Ala 70	Pro	Pro	Gly	Glu	Ala 75
Trp	Gly	Ile	Leu	Gly 80	Gln	Pro	Pro	Asn	Arg 85	Pro	Asn	His	Ser	Pro 90
Pro	Pro	Ser	Ala	Lys 95	Val	Lys	Lys	Ile	Phe 100	Gly	Trp	Gly	Asp	Phe 105
Tyr	Ser	Asn	Ile	Lys 110	Thr	Val	Ala	Leu	Asn 115	Leu	Leu	Val	Thr	Gly 120
Lys	Ile	Val	Asp	His 125	Gly	Asn	Gly	Thr	Phe 130	Ser	Val	His	Phe	Gln 135
His	Asn	Ala	Thr	Gly 140	Gln	Gly	Asn	Ile	Ser 145	Ile	Ser	Leu	Val	Pro 150
Pro	Ser	Lys	Ala	Val 155	Glu	Phe	His	Gln	Glu 160	Gln	Gln	Ile	Phe	Ile 165
Glu	Ala	Lys	Ala	Ser 170	Lys	Ile	Phe	Asn	Cys 175	Arg	Met	Glu	Trp	Glu 180
Lys	Val	Glu	Arg	Gly 185	Arg	Arg	Thr	Ser	Leu 190	Cys	Thr	His	Asp	Pro 195
Ala	Lys	Ile	Cys	Ser 200	Arg	Asp	His	Ala	Gln 205	Ser	Ser	Ala	Thr	Trp 210
Ser	Cys	Ser	Gln	Pro 215	Phe	Lys	Val	Val	Cys 220	Val	Tyr	Ile	Ala	Phe 225
Tyr	Ser	Thr	Asp	Tyr 230	Arg	Leu	Val	Gln	Lys 235	Val	Cys	Pro	Asp	Tyr 240
Asn	Tyr	His	Ser	Asp 245	Thr	Pro	Tyr	Tyr	Pro 250	Ser	Gly			
<210><211><211>	206	55									•			

<400> 219

<213> Homo sapiens

gtgaatgtga gggtttgatg actttcagat gtctaggaac cagagtgggt 50 gcaggggccc caggcagggc tgattcttgg gcggaggaga gtagggtaaa 100 gggttctgca tgagctcctt aaaggacaaa ggtaacagag ccagcgagag 150 agctcgaggg gagactttga cttcaagcca cagaattggt ggaagtgtgc 200

gcgccgccgc cgccgtcgct cctgcagcgc tgtcgaccta gccgctagca 250 tettecegag cacegggate eeggggtagg aggegaegeg ggegageace 300 agegecagee ggetgegget geceaeaegg etcaceatgg geteegggeg 350 cogggogetg tecgoggtge oggeogtget getggteete acgetgeeqq 400 ggctgcccgt ctgggcacag aacgacacgg agcccatcgt gctggagggc 450 aagtgtctgg tggtgtgcga ctcgaacccg gccacggact ccaagggctc 500 ctcttcctcc ccgctgggga tatcggtccg ggcggccaac tccaaggtcg 550 ccttctcggc ggtgcggagc accaaccacg agccatccga gatgagcaac 600 aagacgcgca tcatttactt cgatcagatc ctggtgaatg tgggtaattt 650 tttcacattg gagtctgtct ttgtagcacc aagaaaagga atttacagtt 700 tcagttttca cgtgattaaa gtctaccaga gccaaactat ccaggttaac 750 ttgatgttaa atggaaaacc agtaatatct gcctttgcgg gggacaaaga 800 tgttactcgt gaagctgcca cgaatggtgt cctgctctac ctagataaag 850 aggataaggt ttacctaaaa ctggagaaag gtaatttggt tggaggctgg 900 cagtattcca cgttttctgg ctttctggtg ttccccctat aggattcaat 950 ttctccatga tgttcatcca ggtgagggat gacccactcc tgagttattg 1000 gaagatcatt ttttcatcat tggattgatg tcttttattg gtttctcatg 1050 ggtggatatg gattctaagg attctagcct gtctgaacca atacaaaatt 1100 tcacagatta tttgtgtgtg tctgtttcag tatatttgga ttgggactct 1150 aagcagataa tacctatgct taaatgtaac agtcaaaagc tgtctgcaag 1200 acttattctg aatttcattt cctgggatta ctgaattagt tacagatgtg 1250 gaattttatt tgtttagttt taaaagactg gcaaccaggt ctaaggatta 1300 gaaaactcta aagttctgac ttcaatcaac ggttagtgtg atactgccaa 1350 agaactgtat actgtgttaa tatattgatt atatttgttt ttattccttt 1400 ggaattagtt tgtttggttc ttgtaaaaaa cttggatttt ttttttcagt 1450 aactggtatt atgttttctc ttaaaataag gtaatgaatg gcttgcccac 1500 aaatttacct tgactacgat atcatcgaca tgacttctct caaaaaaaaa 1550 gaatgcttca tagttgtatt ttaattgtat atgtgaaaga gtcatatttt 1600 ccaagttata ttttctaaga agaagaatag atcataaatc tgacaaggaa 1650

aaagttgctt acccaaaatc taagtgctca atccctgagc ctcagcaaaa 1700 cagctcccct ccgagggaaa tcttatactt tattgctcaa ctttaattaa 1750 aatgattgat aataaccact ttattaaaaa cctaaggttt ttttttttc 1800 cgtagacatg accactttat taactggtgg tgggatgctg ttgtttctaa 1850 ttatacctat ttttcaaggc ttctgttgta tttgaagtat catctggttt 1900 tgccttaact ctttaaattg tatatatta tctgtttagc taatattaaa 1950 ttcaaatatc ccatatctaa atttagtgca atatcttgtc ttttgtatag 2000 gtcatatgaa ttcataaaat tatttatgtc tgttatagaa taaagattaa 2050 tatatgttaa aaaaa 2065

<210> 220

<211> 201

<212> PRT

<213> Homo sapiens

<400> 220

Met Gly Ser Gly Arg Arg Ala Leu Ser Ala Val Pro Ala Val Leu
1 5 10 15

Leu Val Leu Thr Leu Pro Gly Leu Pro Val Trp Ala Gln Asn Asp $20 \\ 25 \\ 30$

Thr Glu Pro Ile Val Leu Glu Gly Lys Cys Leu Val Val Cys Asp
35 40 45

Ser Asn Pro Ala Thr Asp Ser Lys Gly Ser Ser Ser Ser Pro Leu
50 55 60

Gly Ile Ser Val Arg Ala Ala Asn Ser Lys Val Ala Phe Ser Ala
65 70 75

Val Arg Ser Thr Asn His Glu Pro Ser Glu Met Ser Asn Lys Thr

Arg Ile Ile Tyr Phe Asp Gln Ile Leu Val Asn Val Gly Asn Phe 95 100 105

Phe Thr Leu Glu Ser Val Phe Val Ala Pro Arg Lys Gly Ile Tyr 110 115 120

Ser Phe Ser Phe His Val Ile Lys Val Tyr Gln Ser Gln Thr Ile 125 130 135

Gln Val Asn Leu Met Leu Asn Gly Lys Pro Val Ile Ser Ala Phe 140 . 145 150

Ala Gly Asp Lys Asp Val Thr Arg Glu Ala Ala Thr Asn Gly Val 155 160 165

Leu Leu Tyr Leu Asp Lys Glu Asp Lys Val Tyr Leu Lys Leu Glu Lys Gly Asn Leu Val Gly Gly Trp Gln Tyr Ser Thr Phe Ser Gly 190 Phe Leu Val Phe Pro Leu 200 <210> 221 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 221 acggctcacc atgggctccg 20 <210> 222 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 222 aggaagagga gcccttggag tccg 24 <210> 223 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 223 cgtgctggag ggcaagtgtc tggtggtgtg cgactcgaac 40 <210> 224 <211> 902 <212> DNA <213> Homo sapiens <400> 224 cggtggccat gactgcggcc gtgttcttcg gctgcgcctt cattgccttc 50 gggcctgcgc tcgcccttta tgtcttcacc atcgccatcg agccgttgcg 100 tatcatcttc ctcatcgccq qagctttctt ctgqttggtg tctctactga 150 tttcgtccct tgtttggttc atggcaagag tcattattga caacaaagat 200

ggaccaacac agaaatatct gctgatcttt ggagcgtttg tetetgteta 250
tatccaagaa atgtteegat ttgeatatta taaactetta aaaaaageca 300
gtgaaggttt gaagagtata aacceaggtg agacageace etetatgega 350
ctgetggeet atgtteetgg ettgggettt ggaateatga gtggagtatt 400
tteetttgtg aataceetat etgaeteett ggggeeagge acagtgggea 450
tteatggaga tteteetaa ttetteettt atteagettt eatgaegetg 500
gteattatet tgetgeatgt atteetggge attgtatttt ttgatggetg 550
tgagaagaaa aagtggggea teeteettat egtteetetg acceacetge 600
tggtgteage ecagacette ataagttett attatggaat aaaceetggeg 650
teageattta taateetggt geteatgge acetgggeat teetagetge 700
gggaggeage tgeegaagee tgaaactetg eetgetetge eaagacaaga 750
actteettet ttacaaceag egeteeagat aaceeteaggg aaceageact 800
teecaaaceg eagactacat etttagagga ageacaactg tgeetttte 850
tgaaaateee ttttetggt ggaattgaga aagaaataaa actatgeaga 900
ta 902

<210> 225

<211> 257

<212> PRT

<213> Homo sapiens

<400> 225

Met Thr Ala Ala Val Phe Phe Gly Cys Ala Phe Ile Ala Phe Gly 1 5 10 15

Pro Ala Leu Ala Leu Tyr Val Phe Thr Ile Ala Ile Glu Pro Leu 20 25 30

Arg Ile Ile Phe Leu Ile Ala Gly Ala Phe Phe Trp Leu Val Ser

Leu Leu Ile Ser Ser Leu Val Trp Phe Met Ala Arg Val Ile Ile
50 55 60

Asp Asn Lys Asp Gly Pro Thr Gln Lys Tyr Leu Leu Ile Phe Gly
65 70 75

Ala Phe Val Ser Val Tyr Ile Gln Glu Met Phe Arg Phe Ala Tyr 80 85 90

Tyr Lys Leu Leu Lys Lys Ala Ser Glu Gly Leu Lys Ser Ile Asn 95 100 105

Pro Gly Glu Thr Ala Pro Ser Met Arg Leu Leu Ala Tyr Val Ser 110 115 Gly Leu Gly Phe Gly Ile Met Ser Gly Val Phe Ser Phe Val Asn 125 130 135 Thr Leu Ser Asp Ser Leu Gly Pro Gly Thr Val Gly Ile His Gly Asp Ser Pro Gln Phe Phe Leu Tyr Ser Ala Phe Met Thr Leu Val 155 160 165 Ile Ile Leu Leu His Val Phe Trp Gly Ile Val Phe Phe Asp Gly 170 175 Cys Glu Lys Lys Trp Gly Ile Leu Leu Ile Val Leu Leu Thr 190 His Leu Leu Val Ser Ala Gln Thr Phe Ile Ser Ser Tyr Tyr Gly 200 205 Ile Asn Leu Ala Ser Ala Phe Ile Ile Leu Val Leu Met Gly Thr 215 220 Trp Ala Phe Leu Ala Ala Gly Gly Ser Cys Arg Ser Leu Lys Leu 235 Cys Leu Leu Cys Gln Asp Lys Asn Phe Leu Leu Tyr Asn Gln Arg 245 250 255

Ser Arg

<210> 226

<211> 3939

<212> DNA

<213> Homo sapiens

<400> 226

eggcaaceag cegeegecae cacegetgee actgeegeee tgeeggggee 50
atgttegete tgggettgee ettettggtg etettggtgg ceteggtega 100
gagceatetg ggggttetgg ggeecaagaa egtetegeag aaagaegeeg 150
agtttgageg cacetaegtg gaegaggtea acagegaget ggteaacate 200
tacacettea accataetgt gaecegeaae aggaeagagg gegtgegtgt 250
gtetgtgaae gteetgaaea ageagaagg ggegeegttg etgtttgtgg 300
teegeeagaa ggaggetgtg gtgteettee aggtgeeet aateetgega 350
gggatgttte agegeaagta eetetaeeaa aaagtggaae gaaceetgtg 400
teageeeece accaagaatg agteggagat teagttette tacgtggatg 450

tgtccaccct gtcaccagtc aacaccacat accageteeg ggtcageege 500 atggacgatt ttgtgctcag gactggggag cagttcagct tcaataccac 550 agcagcacag ccccagtact tcaagtatga gttccctgaa ggcgtggact 600 eggtaattgt caaggtgace tecaacaagg cetteecetg etcagteate 650 tccattcagg atgtgctgtg tcctgtctat gacctggaca acaacgtagc 700 cttcatcggc atgtaccaga cgatgaccaa gaaggcggcc atcaccgtac 750 agegeaaaga etteeceage aacagetttt atgtggtggt ggtggtgaag 800 accgaagacc aagcctgcgg gggctccctg cctttctacc ccttcgcaga 850 agatgaaccg gtcgatcaag ggcaccgcca gaaaaccctg tcagtgctgg 900 tgtctcaagc agtcacgtct gaggcatacg tcagtgggat gctcttttgc 950 ctgggtatat ttctctcctt ttacctgctg accgtcctcc tggcctgctg 1000 ggagaactgg aggcagaaga agaagaccct gctggtggcc attgaccgag 1050 cctgcccaga aagcggtcac cctcgagtcc tggctgattc ttttcctggc 1100 agttcccctt atgagggtta caactatggc tcctttgaga atgtttctgg 1150 atctaccgat ggtctggttg acagcgctgg cactggggac ctctcttacg 1200 gttaccaggg ccgctccttt gaacctgtag gtactcggcc ccgagtggac 1250 tccatgagct ctgtggagga ggatgactac gacacattga ccgacatcga 1300 ttccgacaag aatgtcattc gcaccaagca atacctctat gtggctgacc 1350 tggcacggaa ggacaagcgt gttctgcgga aaaagtacca gatctacttc 1400 tggaacattg ccaccattgc tgtcttctat gcccttcctg tggtgcagct 1450 ggtgatcacc taccagacgg tggtgaatgt cacagggaat caggacatct 1500 gctactacaa cttcctctgc gcccacccac tgggcaatct cagcgccttc 1550 aacaacatee teageaacet ggggtacate etgetgggge tgetttteet 1600 gctcatcatc ctgcaacggg agatcaacca caaccgggcc ctgctgcgca 1650 atgacetetg tgeeetggaa tgtgggatee ceaaacaett tgggetttte 1700 tacgccatgg gcacagccct gatgatggag gggctgctca gtgcttgcta 1750 tcatgtgtgc cccaactata ccaatttcca gtttgacaca tcgttcatgt 1800 acatgatege eggaetetge atgetgaage tetaceagaa geggeaceeg 1850 gacatcaacg ccagcgccta cagtgcctac gcctgcctgg ccattgtcat 1900

cttcttctct gtgctgggcg tggtctttgg caaagggaac acggcgttct 1950 ggatcgtctt ctccatcatt cacatcatcg ccaccctgct cctcagcacg 2000 cagetetatt acatgggeeg gtggaaactg gaetegggga tetteegeeg 2050 catectecae gtgetetaea eagactgeat eeggeagtge agegggeege 2100 tetacgtgga cegcatggtg etgetggtea tgggcaacgt cateaactgg 2150 tegetggetg cetatggget tateatgege eccaatgatt tegetteeta 2200 cttgttggcc attggcatct gcaacctgct cctttacttc gccttctaca 2250 tcatcatgaa geteeggagt ggggagagga tcaageteat eeceetgete 2300 tgcatcgttt gcacctccgt ggtctggggc ttcgcgctct tcttcttctt 2350 ccagggactc agcacctggc agaaaacccc tgcagagtcg agggagcaca 2400 accgggactg catcetecte gaettetttg acgaecacga catetggeae 2450 ttcctctcct ccatcgccat gttcgggtcc ttcctggtgt tgctgacact 2500 ggatgacgac ctggatactg tgcagcggga caagatctat gtcttctagc 2550 aggagetggg ceettegett caceteaagg ggeeetgage teetttgtgt 2600 catagaccgg tcactctgtc gtgctgtggg gatgagtccc agcaccgctg 2650 cccagcactg gatggcagca ggacagccag gtctagctta ggcttggcct 2700 gggacagcca tggggtggca tggaaccttg cagctgccct ctgccgagga 2750 gcaggcctgc tcccctggaa cccccagatg ttggccaaat tgctgctttc 2800 ttotcagtgt tggggccttc catgggcccc tgtcctttgg ctctccattt 2850 gtccctttgc aagaggaagg atggaaggga caccctcccc atttcatgcc 2900 ttgcattttg cccgtcctcc tccccacaat gccccagcct gggacctaag 2950 gcctcttttt cctcccatac tcccactcca gggcctagtc tggggcctga 3000 atctctgtcc tgtatcaggg ccccagttct ctttgggctg tccctggctg 3050 ccatcactgc ccattccagt cagccaggat ggatgggggt atgagatttt 3100 gggggttggc cagctggtgc cagacttttg gtgctaaggc ctgcaagggg 3150 cctggggcag tgcgtattct cttccctctg acctgtgctc agggctggct 3200 ctttagcaat gcgctcagcc caatttgaga accgccttct gattcaagag 3250 gctgaattca gaggtcacct cttcatccca tcagctccca gactgatgcc 3300

agcaccagga ctggaggag aagcgcctca ccccttccct tccttcttc 3350 caggccctta gtcttgccaa accccagctg gtggcctttc agtgccattg 3400 acactgccca agaatgtcca ggggcaaagg agggatgata cagagttcag 3450 cccgttctgc ctccacagct gtgggcaccc cagtgcctac cttagaaagg 3500 ggcttcagga agggatgtgc tgtttccctc tacgtgccca gtcctagcct 3550 cgctctagga cccagggctg gcttctaagt ttccgtccag tcttcaggca 3600 agttctgtg tagtcatgca cacacatacc tatgaaacct tggagttac 3650 aaagaattgc cccagctctg ggcaccctgg ccaccctggt ccttggatcc 3700 ccttcgtcc acctggtcca cccagatgc tgggaatgg ggagctcagg 3750 cggggcctct gctttgggga tgggaatgtg ttttctccc aaacttgttt 3800 ttatagctct gcttgaaggg ctgggagatg aggtgggtct ggatctttc 3850 tcagagcgtc tccatgctat ggttgcattt ccgttttcta tgaatgaatt 3900 tgcattcaat aaacaaccag actcaaaaaa aaaaaaaaa 3939

<210> 227

<211> 832

<212> PRT

<213> Homo sapiens

<400> 227

Met Phe Ala Leu Gly Leu Pro Phe Leu Val Leu Leu Val Ala Ser 1 5 10 15

Val Glu Ser His Leu Gly Val Leu Gly Pro Lys Asn Val Ser Gln
20 25 30

Lys Asp Ala Glu Phe Glu Arg Thr Tyr Val Asp Glu Val Asn Ser 35 40 45

Glu Leu Val Asn Ile Tyr Thr Phe Asn His Thr Val Thr Arg Asn 50 55 60

Arg Thr Glu Gly Val Arg Val Ser Val Asn Val Leu Asn Lys Gln 65 70 75

Lys Gly Ala Pro Leu Leu Phe Val Val Arg Gln Lys Glu Ala Val 80 85 90

Val Ser Phe Gln Val Pro Leu Ile Leu Arg Gly Met Phe Gln Arg 95 100 105

Lys Tyr Leu Tyr Gln Lys Val Glu Arg Thr Leu Cys Gln Pro Pro 110 115 120

Thr Lys Asn Glu Ser Glu Ile Gln Phe Phe Tyr Val Asp Val Ser

		410					415					420
Asn Val Ile	Arg	Thr 425	Lys	Gln	Tyr	Leu	Tyr 430	Val	Ala	Asp	Leu	Ala 435
Arg Lys Asp	Lys	Arg 440	Val	Leu	Arg	Lys	Lys 445	Tyr	Gln	Ile	Tyr	Phe 450
Trp Asn Ile	Ala	Thr 455	Ile	Ala	Val	Phe	Tyr 460	Ala	Leu	Pro	Val	Val 465
Gln Leu Val	Ile	Thr 470	Tyr	Gln	Thr	Val	Val 475	Asn	Val	Thr	Gly	Asn 480
Gln Asp Ile	Cys	Tyr 485	Tyr	Asn	Phe	Leu	Cys 490	Ala	His	Pro	Leu	Gly 495
Asn Leu Ser	Ala	Phe 500	Asn	Asn	Ile	Leu	Ser 505	Asn	Leu	Gly	Tyr	Ile 510
Leu Leu Gly	Leu	Leu 515	Phe	Leu	Leu	Ile	Ile 520	Leu	Gln	Arg	Glu	Ile 525
Asn His Asn	Arg	Ala 530	Leu	Leu	Arg	Asn	Asp 535	Leu	Cys	Ala	Leu	Glu 540
Cys Gly Ile	Pro	Lys 545	His	Phe	Gly	Leu	Phe 550	Tyr	Ala	Met	Gly	Thr 555
Ala Leu Met	Met	Glu 560	Gly	Leu	Leu	Ser	Ala 565	Cys	Tyr	His	Val	Cys 570
Ala Leu Met Pro Asn Tyr		560	_				565					570
	Thr	560 Asn 575	Phe	Gln	Phe	Asp	565 Thr 580	Ser	Phe	Met	Tyr	570 Met 585
Pro Asn Tyr	Thr Leu	560 Asn 575 Cys 590	Phe Met	Gln Leu	Phe Lys	Asp Leu	565 Thr 580 Tyr 595	Ser Gln	Phe Lys	Met Arg	Tyr His	570 Met 585 Pro 600
Pro Asn Tyr	Thr Leu Ala	560 Asn 575 Cys 590 Ser 605	Phe Met	Gln Leu Tyr	Phe Lys Ser	Asp Leu Ala	565 Thr 580 Tyr 595 Tyr 610	Ser Gln Ala	Phe Lys Cys	Met Arg Leu	Tyr His Ala	Met 585 Pro 600 Ile 615
Pro Asn Tyr Ile Ala Gly Asp Ile Asn	Thr Leu Ala Phe	560 Asn 575 Cys 590 Ser 605 Ser 620	Phe Met Ala Val	Gln Leu Tyr Leu	Phe Lys Ser Gly	Asp Leu Ala Val	565 Thr 580 Tyr 595 Tyr 610 Val 625	Ser Gln Ala Phe	Phe Lys Cys	Met Arg Leu Lys	Tyr His Ala Gly	570 Met 585 Pro 600 Ile 615 Asn 630
Pro Asn Tyr Ile Ala Gly Asp Ile Asn Val Ile Phe	Thr Leu Ala Phe Trp	560 Asn 575 Cys 590 Ser 605 Ser 620 Ile 635	Phe Met Ala Val	Gln Leu Tyr Leu Phe	Phe Lys Ser Gly	Asp Leu Ala Val Ile	565 Thr 580 Tyr 595 Tyr 610 Val 625 Ile 640	Ser Gln Ala Phe His	Phe Lys Cys Gly Ile	Met Arg Leu Lys	Tyr His Ala Gly Ala	Met 585 Pro 600 Ile 615 Asn 630 Thr 645
Pro Asn Tyr Ile Ala Gly Asp Ile Asn Val Ile Phe Thr Ala Phe	Thr Leu Ala Phe Trp Ser	Asn 575 Cys 590 Ser 605 Ser 620 Ile 635 Thr 650	Phe Met Ala Val Val Gln	Gln Leu Tyr Leu Phe Leu	Phe Lys Ser Gly Ser	Asp Leu Ala Val Ile Tyr	565 Thr 580 Tyr 595 Tyr 610 Val 625 Ile 640 Met 655	Ser Gln Ala Phe His	Phe Lys Cys Gly Ile Arg	Met Arg Leu Lys Ile Trp	Tyr His Ala Gly Ala Lys	570 Met 585 Pro 600 Ile 615 Asn 630 Thr 645 Leu 660
Pro Asn Tyr Ile Ala Gly Asp Ile Asn Val Ile Phe Thr Ala Phe Leu Leu Leu	Thr Leu Ala Phe Trp Ser	Asn 575 Cys 590 Ser 605 Ser 620 Ile 635 Thr 650 Phe 665	Phe Met Ala Val Val Gln Arg	Gln Leu Tyr Leu Phe Leu Arg	Phe Lys Ser Gly Ser Tyr	Asp Leu Ala Val Ile Tyr Leu	565 Thr 580 Tyr 595 Tyr 610 Val 625 Ile 640 Met 655 His 670	Ser Gln Ala Phe His Gly Val	Phe Lys Cys Gly Ile Arg	Met Arg Leu Lys Ile Trp	Tyr His Ala Gly Ala Lys	Met 585 Pro 600 Ile 615 Asn 630 Thr 645 Leu 660 Asp 675

				695					700					705
Gly	Leu	Ile	Met	Arg 710	Pro	Asn	Asp	Phe	Ala 715	Ser	Tyr	Leu	Leu	Ala 720
Ile	Gly	Ile	Cys	Asn 725	Leu	Leu	Leu	Tyr	Phe 730	Ala	Phe	Tyr	Ile	Ile 735
Met	Lys	Leu	Arg	Ser 740	Gly	Glu	Arg	Ile	Lys 745	Leu	Ile	Pro	Leu	Leu 750
Cys	Ile	Val	Cys	Thr 755	Ser	Val	Val	Trp	Gly 760	Phe	Ala	Leu	Phe	Phe 765
Phe	Phe	Gln	Gly	Leu 770	Ser	Thr	Trp	Gln	Lys 775	Thr	Pro	Ala	Glu	Ser 780
Arg	Glu	His	Asn	Arg 785	Asp	Cys	Ile	Leu	Leu 790	Asp	Phe	Phe	Asp	Asp 795
His	Asp	Ile	Trp	His 800	Phe	Leu	Ser	Ser	Ile 805	Ala	Met	Phe	Gly	Ser 810
Phe	Leu	Val	Leu	Leu 815	Thr	Leu	Asp	Asp	Asp 820	Leu	Asp	Thr	Val	Gln 825
Arg	Asp	Lys	Ile	Tyr 830	Val	Phe								
		_												

<210> 228

<211> 2848

<212> DNA

<213> Homo sapiens

<400> 228

getcaagtgecetgecttgececaccageceagectggecagagecece50tggagaaggagetctettettgettggcagetggaccaagggagecagte100ttgggcgctggagggcctgtcetgaccatggtecetgectggetgtggct150getttgtgteteegtececeaggetetececaaggeccagcetgcagage200tgtctgtggaagttecagaaaactatggtggaaatttecetttatacetg250accaagttgeegetgececgtgaggggetgaaggecagategtgetgte300aggggacteaggcaaggeaaetgagggeceatttgetatggatecagatt350etggetteetgetggtgaceagggecetggaccgagaggageaggeagag400taccagetacaggteacectggagatgeagtettgtggg450tccacageetgtgettgtgeacgtgaaggatgagaatgaccaggtgece500atttetetaagccatetacagageteggetgagecegggtaccaggeet550

ggcatcccct tcctcttcct tgaggcttca gaccgggatg agccaggcac 600 cttccccaga catgttccag ctggagcctc ggctgggggc tctggccctc 700 agececaagg ggageaceag cettgaceae geeetggaga ggaeetaeea 750 gctgttggta caggtcaagg acatgggtga ccaggcctca ggccaccagg 800 ccactgccac cgtggaagtc tccatcatag agagcacctg ggtgtcccta 850 gagectatee acetggeaga gaateteaaa gteetataee egeaceaeat 900 ggcccaggta cactggagtg ggggtgatgt gcactatcac ctggagagcc 950 atcccccggg accctttgaa gtgaatgcag agggaaacct ctacgtgacc 1000 agagagetgg acagagaage ecaggetgag tacetgetee aggtgeggge 1050 tcagaattcc catggcgagg actatgcggc ccctctggag ctgcacgtgc 1100 tggtgatgga tgagaatgac aacgtgccta tctgccctcc ccgtgacccc 1150 acagtcagca tecetgaget cagtecacea ggtactgaag tgaetagaet 1200 gtcagcagag gatgcagatg ccccggctc ccccaattcc cacgttgtgt 1250 atcagctcct gagccctgag cctgaggatg gggtagaggg gagagccttc 1300 caggtggacc ccacttcagg cagtgtgacg ctgggggtgc tcccactccg 1350 agcaggccag aacatcctgc ttctggtgct ggccatggac ctggcaggcg 1400 cagagggtgg cttcagcagc acgtgtgaag tcgaagtcgc agtcacagat 1450 atcaatgatc acgcccctga gttcatcact tcccagattg ggcctataag 1500 cctccctgag gatgtggagc ccgggactct ggtggccatg ctaacagcca 1550 ttgatgctga cctcgagccc gccttccgcc tcatggattt tgccattgag 1600 aggggagaca cagaagggac ttttggcctg gattgggagc cagactctgg 1650 gcatgttaga ctcagactct gcaagaacct cagttatgag gcagctccaa 1700 gtcatgaggt ggtggtggtg gtgcagagtg tggcgaagct ggtggggcca 1750 ggcccaggcc ctggagccac cgccacggtg actgtgctag tggagagagt 1800 gatgccaccc cccaagttgg accaggagag ctacgaggcc agtgtcccca 1850 tcagtgcccc agccggctct ttcctgctga ccatccagcc ctccgacccc 1900 atcagccgaa ccctcaggtt ctccctagtc aatgactcag agggctggct 1950 ctgcattgag aaattctccg gggaggtgca caccgcccag tccctgcagg 2000 gcgcccagcc tggggacacc tacacggtgc ttgtggaggc ccaggataca 2050 qccctgactc ttgcccctgt gccctcccaa tacctctgca caccccgcca 2100 agaccatggc ttgatcgtga gtggacccag caaggacccc gatctggcca 2150 gtgggcacgg tccctacagc ttcacccttg gtcccaaccc cacggtgcaa 2200 cgggattggc gcctccagac tctcaatggt tcccatgcct acctcacctt 2250 ggccctgcat tgggtggagc cacgtgaaca cataatcccc gtggtggtca 2300 gccacaatgc ccagatgtgg cagctcctgg ttcgagtgat cgtgtgtcgc 2350 tgcaacgtgg aggggcagtg catgcgcaag gtgggccgca tgaagggcat 2400 gcccacgaag ctgtcggcag tgggcatcct tgtaggcacc ctggtagcaa 2450 taggaatett ceteateete atttteacee aetggaeeat gteaaggaag 2500 aaggacccgg atcaaccagc agacagcgtg cccctgaagg cgactgtctg 2550 aatggcccag gcagctctag ctgggagctt ggcctctggc tccatctgag 2600 teccetggga gagageecag cacecaagat ecageagggg acaggacaga 2650 gtagaagccc ctccatctgc cctggggtgg aggcaccatc accatcacca 2700 ggcatgtctg cagagcctgg acaccaactt tatggactgc ccatgggagt 2750 gctccaaatg tcagggtgtt tgcccaataa taaagcccca gagaactggg 2800

<210> 229

<211> 807

<212> PRT

<213> Homo sapiens

<400> 229

Met Val Pro Ala Trp Leu Trp Leu Leu Cys Val Ser Val Pro Gln
1 5 10 15

Ala Leu Pro Lys Ala Gln Pro Ala Glu Leu Ser Val Glu Val Pro 20 25 30

Glu Asn Tyr Gly Gly Asn Phe Pro Leu Tyr Leu Thr Lys Leu Pro
35 40 45

Leu Pro Arg Glu Gly Ala Glu Gly Gln Ile Val Leu Ser Gly Asp
50 55 60

Ser Gly Lys Ala Thr Glu Gly Pro Phe Ala Met Asp Pro Asp Ser 65 70 75

Gly Phe Leu Leu Val Thr Arg Ala Leu Asp Arg Glu Glu Gln Ala

Glu	Tyr	Gln	Leu	Gln 95	Val	Thr	Leu	Glu	Met 100	Gln	Asp	Gly	His	Val 105
Leu	Trp	Gly	Pro	Gln 110	Pro	Val	Leu	Val	His 115	Val	Lys	Asp	Glu	Asn 120
Asp	Gln	Val	Pro	His 125	Phe	Ser	Gln	Ala	Ile 130	Tyr	Arg	Ala	Arg	Leu 135
Ser	Arg	Gly	Thr	Arg 140	Pro	Gly	Ile	Pro	Phe 145	Leu	Phe	Leu	Glu	Ala 150
Ser	Asp	Arg	Asp	Glu 155	Pro	Gly	Thr	Ala	Asn 160	Ser	Asp	Leu	Arg	Phe 165
His	Ile	Leu	Ser	Gln 170	Ala	Pro	Ala	Gln	Pro 175	Ser	Pro	Asp	Met	Phe 180
Gln	Leu	Glu	Pro	Arg 185	Leu	Gly	Ala	Leu	Ala 190	Leu	Ser	Pro	Lys	Gly 195
Ser	Thr	Ser	Leu	Asp 200	His	Ala	Leu	Glu	Arg 205	Thr	Tyr	Gln	Leu	Leu 210
Val	Gln	Val	Lys	Asp 215	Met	Gly	Asp	Gln	Ala 220	Ser	Gly	His	Gln	Ala 225
Thr	Ala	Thr	Val	Glu 230	Val	Ser	Ile	Ile	Glu 235	Ser	Thr	Trp	Val	Ser 240
Leu	Glu	Pro	Ile	His 245	Leu	Ala	Glu	Asn	Leu 250	Lys	Val	Leu	Tyr	Pro 255
His	His	Met	Ala	Gln 260	Val	His	Trp	Ser	Gly 265	Gly	Asp	Val	His	Tyr 270
His	Leu	Glu	Ser	His 275	Pro	Pro	Gly	Pro	Phe 280		Val	Asn	Ala	Glu 285
Gly	Asn	Leu	Tyr	Val 290	Thr	Arg	Glu	Leu	Asp 295	Arg	Glu	Ala	Gln	Ala 300
Glu	Tyr	Leu	Leu	Gln 305	Val	Arg	Ala	Gln	Asn 310		His	Gly	Glu	Asp 315
Tyr	Ala	Ala	Pro	Leu 320		Leu	His	Val	Leu 325		Met	. Asp	Glu	Asn 330
Asp	Asn	. Val	Pro	11e 335		Pro	Pro	Arg	Asp 340		Thr	. Val	Ser	Ile 345
Pro	Glu	Leu	Ser	Pro 350		Gly	Thr	Glu	Val 355		Arg	g Leu	Ser	Ala 360
Glu	Asp	Ala	Asp	Ala	Pro	Gly	Ser	Pro	Asr	Ser	His	s Val	. Val	Tyr

Gln	Leu	Leu	Ser	Pro 380	Glu	Pro	Glu	Asp	Gly 385	Val	Glu	Gly	Arg	Ala 390
Phe	Gln	Val	Asp	Pro 395	Thr	Ser	Gly	Ser	Val 400	Thr	Leu	Gly	Val	Leu 405
Pro	Leu	Arg	Ala	Gly 410	Gln	Asn	Ile	Leu	Leu 415	Leu	Val	Leu	Ala	Met 420
Asp	Leu	Ala	Gly	Ala 425	Glu	Gly	Gly	Phe	Ser 430	Ser	Thr	Cys	Glu	Val 435
Glu	Val	Ala	Val	Thr 440	Asp	Ile	Asn	Asp	His 445	Ala	Pro	Glu	Phe	11e 450
Thr	Ser	Gln	Ile	Gly 455	Pro	Ile	Ser	Leu	Pro 460	Glu	Asp	Val	Glu	Pro 465
Gly	Thr	Leu	Val	Ala 470	Met	Leu	Thr	Ala	Ile 475	Asp	Ala	Asp	Leu	Glu 480
Pro	Ala	Phe	Arg	Leu 485	Met	Asp	Phe	Ala	Ile 490	Glu	Arg	Gly	Asp	Thr 495
Glu	Gly	Thr	Phe	Gly 500	Leu	Asp	Trp	Glu	Pro 505	Asp	Ser	Gly	His	Val 510
Arg	Leu	Arg	Leu	Cys 515	Lys	Asn	Leu	Ser	Tyr 520	Glu	Ala	Ala	Pro	Ser 525
His	Glu	Val	Val	Val 530	Val	Val	Gln	Ser	Val 535	Ala	Lys	Leu	Val	Gl ₃ 540
Pro	Gly	Pro	Gly	Pro 545	Gly	Ala	Thr	Ala	Thr 550	Val	Thr	Val	Leu	Va]
Glu	Arg	Val	Met	Pro 560	Pro	Pro	Lys	Leu	Asp 565	Gln	Glu	Ser	Tyr	Gl: 570
Ala	Ser	Val	Pro	Ile 575	Ser	Ala	Pro	Ala	Gly 580	Ser	Phe	Leu	Leu	Th: 585
				590					595				Ser	600
				605					610				Ser	615
				620					625				Gly	630
Thr	Tyr	Thr	Val	Leu 635	Val	Glu	Ala	Gln	Asp 640	Thr	Ala	Leu	Thr	Let 645
Λ1 a	Dro	U = 1	Pro	Ser	Gln	Tyr	Len	Cvs	Thr	Pro	Ara	Gln	Asp	His

660 655 650 Gly Leu Ile Val Ser Gly Pro Ser Lys Asp Pro Asp Leu Ala Ser 670 665 Gly His Gly Pro Tyr Ser Phe Thr Leu Gly Pro Asn Pro Thr Val 685 Gln Arg Asp Trp Arg Leu Gln Thr Leu Asn Gly Ser His Ala Tyr 695 Leu Thr Leu Ala Leu His Trp Val Glu Pro Arg Glu His Ile Ile 710 Pro Val Val Val Ser His Asn Ala Gln Met Trp Gln Leu Leu Val 735 730 Arg Val Ile Val Cys Arg Cys Asn Val Glu Gly Gln Cys Met Arg 745 740 Lys Val Gly Arg Met Lys Gly Met Pro Thr Lys Leu Ser Ala Val 760 Gly Ile Leu Val Gly Thr Leu Val Ala Ile Gly Ile Phe Leu Ile 775 770 Leu Ile Phe Thr His Trp Thr Met Ser Arg Lys Lys Asp Pro Asp 785 Gln Pro Ala Asp Ser Val Pro Leu Lys Ala Thr Val <210> 230 <211> 50 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 230 cgccttaccg cgcagcccga agattcacta tggtgaaaat cgccttcaat 50 <210> 231 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 231 cctgagctgt aaccccactc cagg 24 <210> 232 <211> 23 <212> DNA

<213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 232 agagtctgtc ccagctatct tgt 23 <210> 233 <211> 2786 <212> DNA <213> Homo sapiens <400> 233 ccggggacat gaggtggata ctgttcattg gggcccttat tgggtccagc 50 atctgtggcc aagaaaaatt ttttggggac caagttttga ggattaatgt 100 cagaaatgga gacgagatca gcaaattgag tcaactagtg aattcaaaca 150 acttgaaget caatttetgg aaateteeet eeteetteaa teggeetgtg 200 gatgtcctgg tcccatctgt cagtctgcag gcatttaaat ccttcctgag 250 atcccagggc ttagagtacg cagtgacaat tgaggacctg caggcccttt 300 tagacaatga agatgatgaa atgcaacaca atgaagggca agaacggagc 350 agtaataact tcaactacgg ggcttaccat tccctggaag ctatttacca 400 cgagatggac aacattgccg cagactttcc tgacctggcg aggagggtga 450 agattggaca ttcgtttgaa aaccggccga tgtatgtact gaagttcagc 500 actgggaaag gcgtgaggcg gccggccgtt tggctgaatg caggcatcca 550 ttcccgagag tggatctccc aggccactgc aatctggacg gcaaggaaga 600 ttgtatctga ttaccagagg gatccagcta tcacctccat cttggagaaa 650 atggatattt tcttgttgcc tgtggccaat cctgatggat atgtgtatac 700 tcaaactcaa aaccgattat ggaggaagac gcggtcccga aatcctggaa 750 gctcctgcat tggtgctgac ccaaatagaa actggaacgc tagttttgca 800 ggaaagggag ccagcgacaa cccttgctcc gaagtgtacc atggacccca 850 cgccaattcg gaagtggagg tgaaatcagt ggtagatttc atccaaaaac 900

atgggaattt caagggcttc atcgacctgc acagctactc gcagctgctg 950

atgtatccat atgggtactc agtcaaaaag gccccagatg ccgaggaact 1000

cgacaaggtg gcgaggcttg cggccaaagc tctggcttct gtgtcgggca 1050

ctgagtacca agtgggtccc acctgcacca ctgtctatcc agctagcggg 1100

agcagcatcg actgggcgta tgacaacggc atcaaatttg cattcacatt 1150 tgagttgaga gataccggga cctatggctt cctcctgcca gctaaccaga 1200 tcatccccac tgcagaggag acgtggctgg ggctgaagac catcatggag 1250 atttgtaccc acacgtgcac gcactgaggc cattgttaaa ggagctcttt 1350 cctacctgtg tgagtcagag ccctctgggt ttgtggagca cacaggcctg 1400 cccctctcca gccagctccc tggagtcgtg tgtcctggcg gtgtccctgc 1450 aagaactggt tctgccagcc tgctcaattt tggtcctgct gtttttgatg 1500 agocttttgt ctgtttctcc ttccaccctg ctggctgggc ggctgcactc 1550 agcatcaccc cttcctgggt ggcatgtctc tctctacctc atttttagaa 1600 ccaaagaaca totgagatga ttototacco toatocacat otagocaago 1650 cagtgacctt gctctggtgg cactgtggga gacaccactt gtctttaggt 1700 gggtctcaaa gatgatgtag aatttccttt aatttctcgc agtcttcctg 1750 gaaaatattt tcctttgagc agcaaatctt gtagggatat cagtgaaggt 1800 ctctccctcc ctcctctct gttttttttt tttttgagac agagttttgc 1850 tcttgttgcc caggctggag tgtgatggct cgatcttggc tcaccacaac 1900 ctctgcctcc tgggttcaag caattctcct gcctcagcct cttgagtagc 1950 ttggtttata ggcgcatgcc accatgcctg gctaattttg tgtttttagt 2000 agagacaggg tttctccatg ttggtcaggc tggtctcaaa ctcccaacct 2050 caggtgatct gccctccttg gcctcccaga gtgctgggat tacaggtgtg 2100 agccactgtg ccgggcccgt cccctccttt tttaggcctg aatacaaagt 2150 agaagatcac tttccttcac tgtgctgaga atttctagat actacagttc 2200 ttactcctct cttccctttg ttattcagtg tgaccaggat ggcgggaggg 2250 gatctgtgtc actgtaggta ctgtgcccag gaaggctggg tgaagtgacc 2300 atctaaattg caggatggtg aaattatccc catctgtcct aatgggctta 2350 cctcctcttt gccttttgaa ctcacttcaa agatctaggc ctcatcttac 2400 aggtcctaaa tcactcatct ggcctggata atctcactgc cctggcacat 2450 teceatttgt getgtggtgt atectgtgtt teettgteet ggtttgtgtg 2500

<210> 234

<211> 421

<212> PRT

<213> Homo sapiens

<400> 234

Met Arg Trp Ile Leu Phe Ile Gly Ala Leu Ile Gly Ser Ser Ile
1 5 10 15

Cys Gly Gln Glu Lys Phe Phe Gly Asp Gln Val Leu Arg Ile Asn 20 25 30

Val Arg Asn Gly Asp Glu Ile Ser Lys Leu Ser Gln Leu Val Asn 35 40 45

Ser Asn Asn Leu Lys Leu Asn Phe Trp Lys Ser Pro Ser Ser Phe 50 55 60

Asn Arg Pro Val Asp Val Leu Val Pro Ser Val Ser Leu Gln Ala 65 70 75

Phe Lys Ser Phe Leu Arg Ser Gln Gly Leu Glu Tyr Ala Val Thr 80 85 90

Ile Glu Asp Leu Gln Ala Leu Leu Asp Asn Glu Asp Asp Glu Met 95 100 105

Gln His Asn Glu Gly Gln Glu Arg Ser Ser Asn Asn Phe Asn Tyr 110 115 120

Gly Ala Tyr His Ser Leu Glu Ala Ile Tyr His Glu Met Asp Asn 125 130 135

Ile Ala Ala Asp Phe Pro Asp Leu Ala Arg Arg Val Lys Ile Gly
140 145 150

His Ser Phe Glu Asn Arg Pro Met Tyr Val Leu Lys Phe Ser Thr 155 160 165

Gly Lys Gly Val Arg Arg Pro Ala Val Trp Leu Asn Ala Gly Ile 170 175 180

His Ser Arg Glu Trp Ile Ser Gln Ala Thr Ala Ile Trp Thr Ala 185 190 195

Arg	Lys	Ile	Val	Ser 200	Asp	Tyr	Gln	Arg	Asp 205	Pro	Ala	Ile	Thr	Ser 210
Ile	Leu	Glu	Lys	Met 215	Asp	Ile	Phe	Leu	Leu 220	Pro	Val	Ala	Asn	Pro 225
Asp	Gly	Tyr	Val	Tyr 230	Thr	Gln	Thr	Gln	Asn 235	Arg	Leu	Trp	Arg	Lys 240
Thr	Arg	Ser	Arg	Asn 245	Pro	Gly	Ser	Ser	Cys 250	Ile	Gly	Ala	Asp	Pro 255
Asn	Arg	Asn	Trp	Asn 260	Ala	Ser	Phe	Ala	Gly 265	Lys	Gly	Ala	Ser	Asp 270
Asn	Pro	Cys	Ser	Glu 275	Val	Tyr	His	Gly	Pro 280	His	Ala	Asn	Ser	Glu 285
Val	Glu	Val	Lys	Ser 290	Val	Val	Asp	Phe	Ile 295	Gln	Lys	His	Gly	Asn 300
Phe	Lys	Gly	Phe	Ile 305		Leu	His	Ser	Tyr 310	Ser	Gln	Leu	Leu	Met 315
Tyr	Pro	Tyr	Gly	Tyr 320	Ser	Val	Lys	Lys	Ala 325	Pro	Asp	Ala	Glu	Glu 330
Leu	Asp	Lys	Val	Ala 335		Leu	Ala	Ala	Lys 340	Ala	Leu	Ala	Ser	Val 345
Ser	Gly	Thr	Glu	Tyr 350		Val	Gly	Pro	Thr 355	Cys	Thr	Thr	Val	Tyr 360
Pro	Ala	Ser	Gly	Ser 365		Ile	Asp	Trp	Ala 370	Tyr	Asp	Asn	Gly	Ile 375
Lys	Phe	Ala	Phe	Thr 380		Glu	Leu	Arg	Asp 385		Gly	Thr	Tyr	Gly 390
Ph∈	e Leu	Leu	Pro	Ala 395		Gln	Ile	Ile	Prc 400		: Ala	Glu	ı Glu	Thr 405
Trp	Leu	Gly	Leu	Lys 410		Ile	Met	Glu	His 415	Val	Arg	, Asp	Asn	Leu 420

Tyr

<210> 235

<211> 1743

<212> DNA

<213> Homo sapiens

<400> 235

caaccatgca aggacagggc aggagaagag gaacctgcaa agacatattt 50

tgttccaaaa tggcatctta cctttatgga gtactctttg ctgttggcct 100

ctgtgctcca atctactgtg tgtccccggc caatgccccc agtgcatacc 150 cccgcccttc ctccacaaag agcacccctg cctcacaggt gtattccctc 200 aacaccgact ttgccttccg cctataccgc aggctggttt tggagacccc 250 gagtcagaac atcttcttct cccctgtgag tgtctccact tccctggcca 300 tgctctccct tggggcccac tcagtcacca agacccagat tctccagggc 350 ctgggcttca acctcacaca cacaccagag tctgccatcc accagggctt 400 ccagcacctg gttcactcac tgactgttcc cagcaaagac ctgaccttga 450 agatgggaag tgccctcttc gtcaagaagg agctgcagct gcaggcaaat 500 ttcttgggca atgtcaagag gctgtatgaa gcagaagtct tttctacaga 550 tttctccaac ccctccattg cccaggcgag gatcaacagc catgtgaaaa 600 agaagaccca agggaaggtt gtagacataa tccaaggcct tgaccttctg 650 acggccatgg ttctggtgaa tcacattttc tttaaagcca agtgggagaa 700 . gccctttcac cttgaatata caagaaagaa cttcccattc ctggtgggcg 750 agcaggtcac tgtgcaagtc cccatgatgc accagaaaga gcagttcgct 800 tttggggtgg atacagagct gaactgcttt gtgctgcaga tggattacaa 850 gggagatgcc gtggccttct ttgtcctccc tagcaagggc aagatgaggc 900 aactggaaca ggccttgtca gccagaacac tgataaagtg gagccactca 950 ctccagaaaa ggtggataga ggtgttcatc cccagatttt ccatttctgc 1000 ctcctacaat ctggaaacca tcctcccgaa gatgggcatc caaaatgcct 1050 ttgacaaaaa tgctgatttt tctggaattg caaagagaga ctccctgcag 1100 gtttctaaag caacccacaa ggctgtgctg gatgtcagtg aagagggcac 1150 tgaggccaca gcagctacca ccaccaagtt catagtccga tcgaaggatg 1200 gtccctctta cttcactgtc tccttcaata ggaccttcct gatgatgatt 1250 acaaataaag ccacagacgg tattctcttt ctagggaaag tggaaaatcc 1300 cactaaatcc taggtgggaa atggcctgtt aactgatggc acattgctaa 1350 tgaccccagt ggagctggat tcgctggcag ggatgccact tccaaggctc 1450 aatcaccaaa ccatcaacag ggaccccagt cacaagccaa cacccattaa 1500 <210> 236

<211> 417

<212> PRT

<213> Homo sapiens

<400> 236

Met Ala Ser Tyr Leu Tyr Gly Val Leu Phe Ala Val Gly Leu Cys
1 5 10 15

Ala Pro Ile Tyr Cys Val Ser Pro Ala Asn Ala Pro Ser Ala Tyr 20 25 30

Pro Arg Pro Ser Ser Thr Lys Ser Thr Pro Ala Ser Gln Val Tyr 35 40 45

Ser Leu Asn Thr Asp Phe Ala Phe Arg Leu Tyr Arg Arg Leu Val 50 55 60

Leu Glu Thr Pro Ser Gln Asn Ile Phe Phe Ser Pro Val Ser Val
65 70 75

Ser Thr Ser Leu Ala Met Leu Ser Leu Gly Ala His Ser Val Thr 80 85 90

Lys Thr Gln Ile Leu Gln Gly Leu Gly Phe Asn Leu Thr His Thr 95 100 105

Pro Glu Ser Ala Ile His Gln Gly Phe Gln His Leu Val His Ser 110 115 120

Leu Thr Val Pro Ser Lys Asp Leu Thr Leu Lys Met Gly Ser Ala 125 130 135

Leu Phe Val Lys Lys Glu Leu Gln Leu Gln Ala Asn Phe Leu Gly
140 145 150

Asn Val Lys Arg Leu Tyr Glu Ala Glu Val Phe Ser Thr Asp Phe 155 160 165

Ser Asn Pro Ser Ile Ala Gln Ala Arg Ile Asn Ser His Val Lys 170 175 180

Lys Lys Thr Gln Gly Lys Val Val Asp Ile Ile Gln Gly Leu Asp 185 190 195

Leu Leu Thr Ala Met Val Leu Val Asn His Ile Phe Phe Lys Ala 200 205 210

Lys Trp	Glu	Lys	Pro 215	Phe	His	Leu	Glu	Tyr 220	Thr	Arg	Lys	Asn	Phe 225
Pro Phe	Leu	Val	Gly 230	Glu	Gln	Val	Thr	Val 235	Gln	Val	Pro	Met	Met 240
His Gln	Lys	Glu	Gln 245	Phe	Ala	Phe	Gly	Val 250	Asp	Thr	Glu	Leu	Asn 255
Cys Phe	Val	Leu	Gln 260	Met	Asp	Tyr	Lys	Gly 265	Asp	Ala	Val	Ala	Phe 270
Phe Val	Leu	Pro	Ser 275	Lys	Gly	Lys	Met	Arg 280	Gln	Leu	Glu	Gln	Ala 285
Leu Ser	Ala	Arg	Thr 290	Leu	Ile	Lys	Trp	Ser 295	His	Ser	Leu	Gln	Lys 300
Arg Trp	Ile	Glu	Val 305	Phe	Ile	Pro	Arg	Phe 310	Ser	Ile	Ser	Ala	Ser 315
Tyr Asn	Leu	Glu	Thr 320	Ile	Leu	Pro	Lys	Met 325	Gly	Ile	Gln	Asn	Ala 330
Phe Asp	Lys	Asn	Ala 335	Asp	Phe	Ser	Gly	Ile 340	Ala	Lys	Arg	Asp	Ser 345
Leu Gln	Val	Ser	Lys 350		Thr	His	Lys	Ala 355	Val	Leu	Asp	Val	Ser 360
Glu Glu	. Gly	Thr	Glu 365		Thr	Ala	Ala	Thr 370	Thr	Thr	Lys	Phe	Ile 375
Val Arg	Ser	Lys	Asp 380		Pro	Ser	Tyr	Phe 385	Thr	Val	Ser	Phe	Asn 390
Arg Thr	Phe	e Leu	Met 395		Ile	. Thr	Asr	Lys 400	Ala	Thr	Asp	Gly	1le 405
Leu Phe	e Lev	ı Gly	Lys 410		Glu	ı Asr	n Pro	Thr 415	Lys	Ser	•		
<210> 23 <211> 23 <212> DN <213> An	3 NA	icial	. Sec	quenc	ce								
<220> <223> Sy	ynthe	etic	oli	gonu	cleot	ide	prol	oe oe					
<400> 23		agga	acago	ggc a	agg 2	23							
<210> 2: <211> 4:	7												

<212> DNA

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 238
ctttgctgtt ggcctctgtg ctcccaacca tgcaaggaca gggcagg 47
<210> 239
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 239
 tgactcgggg tctccaaaac cagc 24
<210> 240
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 240
 ggtataggcg gaaggcaaag tcgg 24
<210> 241
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 <400> 241
 ggcatcttac ctttatggag tactctttgc tgttggcctc tgtgctcc 48
 <210> 242
 <211> 2436
 <212> DNA
 <213> Homo sapiens
 <400> 242
  ggctgaccgt gctacattgc ctggaggaag cctaaggaac ccaggcatcc 50
  agetgeeeac geetgagtee aagattette eeaggaacae aaacgtagga 100
  gacccacgct cctggaagca ccagccttta tctcttcacc ttcaagtccc 150
  ctttctcaag aatcctctgt tctttgccct ctaaagtctt ggtacatcta 200
  ggacccaggc atcttgcttt ccagccacaa agagacagat gaagatgcag 250
```

aaaggaaatg ttctccttat gtttggtcta ctattgcatt tagaagctgc 300 aacaaattcc aatgagacta gcacctctgc caacactgga tccagtgtga 350 tctccagtgg agccagcaca gccaccaact ctgggtccag tgtgacctcc 400 agtggggtca gcacagccac catctcaggg tccagcgtga cctccaatgg 450 ggtcagcata gtcaccaact ctgagttcca tacaacctcc agtgggatca 500 gcacagccac caactetgag ttcagcacag cgtccagtgg gatcagcata 550 gccaccaact ctgagtccag cacaacctcc agtggggcca gcacagccac 600 caactctgag tccagcacac cctccagtgg ggccagcaca gtcaccaact 650 ctgggtccag tgtgacctcc agtggagcca gcactgccac caactctgag 700 tccagcacag tgtccagtag ggccagcact gccaccaact ctgagtctag 750 cacactetee agtggggeea geacageeae caactetgae tecageacaa 800 cctccagtgg ggctagcaca gccaccaact ctgagtccag cacaacctcc 850 agtggggcca gcacagccac caactetgag tecagcacag tgtecagtag 900 ggccagcact gccaccaact ctgagtccag cacaacctcc agtggggcca 950 gcacagccac caactetgag tecagaacga eetecaatgg ggetggeaca 1000 gccaccaact ctgagtccag cacgacctcc agtggggcca gcacagccac 1050 caactctgac tccagcacag tgtccagtgg ggccagcact gccaccaact 1100 ctgagtccag cacgacctcc agtggggcca gcacagccac caactctgag 1150 tccagcacga cctccagtgg ggctagcaca gccaccaact ctgactccag 1200 cacaacctcc agtggggccg gcacagccac caactctgag tccagcacag 1250 tgtccagtgg gatcagcaca gtcaccaatt ctgagtccag cacaccctcc 1300 agtggggcca acacagccac caactctgag tccagtacga cctccagtgg 1350 ggccaacaca gccaccaact ctgagtccag cacagtgtcc agtggggcca 1400 gcactgccac caactctgag tccagcacaa cctccagtgg ggtcagcaca 1450 gccaccaact ctgagtccag cacaacctcc agtggggcta gcacagccac 1500 caactetgae tecageacaa eetecagtga ggeeageaca geeaceaact 1550 ctgagtctag cacagtgtcc agtgggatca gcacagtcac caattctgag 1600 tccagcacaa cctccagtgg ggccaacaca gccaccaact ctgggtccag 1650 tgtgacctct gcaggctctg gaacagcagc tctgactgga atgcacacaa 1700 cttcccatag tgcatctact gcagtgagtg aggcaaagcc tggtgggtcc 1750 ctggtgccgt gggaaatctt cctcatcacc ctggtctcgg ttgtggcggc 1800 cgtggggctc tttgctgggc tcttcttctg tgtgagaaac agcctgtccc 1850 tgagaaacac ctttaacaca gctgtctacc accctcatgg cctcaaccat 1900 ggccttggtc caggccctgg agggaatcat ggagcccccc acaggcccag 1950 gtggagtcct aactggttct ggaggagacc agtatcatcg atagccatgg 2000 agatgagcgg gaggaacagc gggccctgag cagccccgga agcaagtgcc 2050 gcattettea ggaaggaaga gacetgggea eecaagacet ggttteettt 2100 cattcatccc aggagacccc tcccagcttt gtttgagatc ctgaaaatct 2150 tgaagaaggt attcctcacc tttcttgcct ttaccagaca ctggaaagag 2200 aatactatat tgctcattta gctaagaaat aaatacatct catctaacac 2250 acacgacaaa gagaagctgt gcttgccccg gggtgggtat ctagctctga 2300 gatgaactca gttataggag aaaacctcca tgctggactc catctggcat 2350 tcaaaatctc cacagtaaaa tccaaagacc tcaaaaaaaa aaaaaaaaa 2400 aaaaaaaaa aaaaaaaaa aaaaaaaa aaaaaa 2436

<210> 243

<211> 596

<212> PRT

<213> Homo sapiens

<400> 243

Met Lys Met Gln Lys Gly Asn Val Leu Leu Met Phe Gly Leu Leu

Leu His Leu Glu Ala Ala Thr Asn Ser Asn Glu Thr Ser Thr Ser 20

Ala Asn Thr Gly Ser Ser Val Ile Ser Ser Gly Ala Ser Thr Ala

Thr Asn Ser Gly Ser Ser Val Thr Ser Ser Gly Val Ser Thr Ala

Thr Ile Ser Gly Ser Ser Val Thr Ser Asn Gly Val Ser Ile Val

Thr Asn Ser Glu Phe His Thr Thr Ser Ser Gly Ile Ser Thr Ala

Thr Asn Ser Glu Phe Ser Thr Ala Ser Ser Gly Ile Ser Ile Ala 105

Thr	Asn	Ser	Glu	Ser 110	Ser	Thr	Thr	Ser	Ser 115	Gly	Ala	Ser	Thr	Ala 120
Thr	Asn	Ser	Glu	Ser 125	Ser	Thr	Pro	Ser	Ser 130	Gly	Ala	Ser	Thr	Val 135
Thr	Asn	Ser	Gly	Ser 140	Ser	Val	Thr	Ser	Ser 145	Gly	Ala	Ser	Thr	Ala 150
Thr	Asn	Ser	Glu	Ser 155	Ser	Thr	Val	Ser	Ser 160	Arg	Ala	Ser	Thr	Ala 165
Thr	Asn	Ser	Glu	Ser 170	Ser	Thr	Leu	Ser	Ser 175	Gly	Ala	Ser	Thr	Ala 180
Thr	Asn	Ser	Asp	Ser 185	Ser	Thr	Thr	Ser	Ser 190	Gly	Ala	Ser	Thr	Ala 195
Thr	Asn	Ser	Glu	Ser 200	Ser	Thr	Thr	Ser	Ser 205	Gly	Ala	Ser	Thr	Ala 210
Thr	Asn	Ser	Glu	Ser 215	Ser	Thr	Val	Ser	Ser 220	Arg	Ala	Ser	Thr	Ala 225
Thr	Asn	Ser	Glu	Ser 230	Ser	Thr	Thr	Ser	Ser 235	Gly	Ala	Ser	Thr	Ala 240
Thr	Asn	. Ser	Glu	Ser 245	Arg	Thr	Thr	Ser	250	Gly	Ala	Gly	Thr	Ala 255
Thr	Asn	n Ser	Glu	Ser 260		Thr	Thr	Ser	Ser 265	Gly	/ Ala	Sei	Thr	270
Thr	: Asr	n Sei	Asp	Ser 275		Thr	· Val	Ser	Ser 280	Gly	, Ala	sei	Thi	Ala 285
Thr	: Asr	n Sei	c Glu	Ser 290		Thr	Thi	s Sei	Ser 299	Gly	y Ala	a Sei	r Thi	300
Thi	: Ası	n Se:	r Glu	ser 305		Thi	Th	r Sei	Se:	c Gly	y Ala	a Se	r Th:	r Ala 315
Thi	r Ası	n Se	r Asp	Ser 320		Thi	Th:	r Se:	r Se:	r Gl; 5	y Ala	a Gl	y Th:	r Ala 330
Thi	r Ası	n Se	r Glı	335		r Thi	r Va	l Se	r Se 34	r Gl	y Il	e Se	r Th	r Val 345
Th	r As	n Se	r Gl	u Sei 350		r Th	r Pr	o Se	r Se 35	r Gl 5	y Al	a As	n Th	r Ala 360
Th	r As	n Se	r Gl	u Se:		r Th	r Th	r Se	r Se 37	r Gl 0	y Al	a As	n Th	r Ala 375
Th	r As	n Se	r Gl	u Se:		r Th	r Va	l Se	r Se 38	r Gl 5	y Al	a Se	r Th	r Ala 390

•

Thr A	Asn	Ser	Glu	Ser 395	Ser	Thr	Thr	Ser	Ser 400	Gly	Val	Ser	Thr	Ala 405
Thr	Asn	Ser	Glu	Ser 410	Ser	Thr	Thr	Ser	Ser 415	Gly	Ala	Ser	Thr	Ala 420
Thr .	Asn	Ser	Asp	Ser 425	Ser	Thr	Thr	Ser	Ser 430	Glu	Ala	Ser	Thr	Ala 435
Thr	Asn	Ser	Glu	Ser 440	Ser	Thr	Val	Ser	Ser 445	Gly	Ile	Ser	Thr	Val 450
Thr	Asn	Ser	Glu	Ser 455	Ser	Thr	Thr	Ser	Ser 460	Gly	Ala	Asn	Thr	Ala 465
Thr	Asn	Ser	Gly	Ser 470	Ser	Val	Thr	Ser	Ala 475	Gly	Ser	Gly	Thr	Ala 480
Ala	Leu	Thr	Gly	Met 485	His	Thr	Thr	Ser	His 490	Ser	Ala	Ser	Thr	Ala 495
Val	Ser	Glu	Ala	Lys 500	Pro	Gly	Gly	Ser	Leu 505	Val	Pro	Trp	Glu	Ile 510
Phe	Leu	Ile	Thr	Leu 515	Val	Ser	Val	Val	Ala 520	Ala	Val	Gly	Leu	Phe 525
Ala	Gly	Leu	Phe	Phe 530		Val	Arg	Asn	Ser 535	Leu	Ser	Leu	Arg	Asn 540
Thr	Phe	Asn	Thr	Ala 545		Tyr	His	Pro	His 550	Gly	Leu	Asn	His	Gly 555
Leu	Gly	Pro	Gly	Pro 560		gly	Asn	His	Gly 565	Ala	Pro	His	Arg	9 Pro 570
Arg	Trp	Sei	r Pro	Asn 575) Phe	Trp	Arg	Arg 580	Pro	Val	. Ser	Ser	1le 585
Ala	Met	: Gl	ı Met	Ser 590		/ Arc	g Asr	n Ser	Gly 595	Pro)			
<210 <211 <212 <213	> 26 > Di	5 NA	icia.	l Sed	quenc	ce								
<220 <223)> 3> S:	ynth	etic	oli	gonu	cleo	tide	prol	oe					
<400 gaa)> 2 agca	44 ccag	cct	ttat	ctc	ttca	cc 2	6						
<210 <211 <212	L> 2	4												

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 245
gtcagagttg gtggctgtgc tagc 24
<210> 246
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 246
ggacccaggc atcttgcttt ccagccacaa agagacagat gaagatgc 48
<210> 247
<211> 957
<212> DNA
<213> Homo sapiens
<400> 247
 gggagagag ataaatagca gcgtggcttc cctggctcct ctctgcatcc 50
 ttcccgacct tcccagcaat atgcatcttg cacgtctggt cggctcctgc 100
 teeeteette tgetactggg ggeeetgtet ggatgggegg eeagegatga 150
 ccccattgag aaggtcattg aagggatcaa ccgagggctg agcaatgcag 200
 agagagaggt gggcaaggcc ctggatggca tcaacagtgg aatcacgcat 250
 gccggaaggg aagtggagaa ggttttcaac ggacttagca acatggggag 300
 ccacaccggc aaggagttgg acaaaggcgt ccaggggctc aaccacggca 350
 tggacaaggt tgcccatgag atcaaccatg gtattggaca agcaggaaag 400
 gaagcagaga agcttggcca tggggtcaac aacgctgctg gacaggccgg 450
 gaaggaagca gacaaagcgg tccaagggtt ccacactggg gtccaccagg 500
 ctgggaagga agcagagaaa cttggccaag gggtcaacca tgctgctgac 550
 caggctggaa aggaagtgga gaagcttggc caaggtgccc accatgctgc 600
 tggccaggcc gggaaggagc tgcagaatgc tcataatggg gtcaaccaag 650
 ccagcaagga ggccaaccag ctgctgaatg gcaaccatca aagcggatct 700
 tecagecate aaggaggge cacaaceaeg cegttageet etggggeete 750
 agtcaacacg cettteatea acetteeege eetgtggagg agegtegeea 800
```

acatcatgcc ctaaactggc atccggcctt gctgggagaa taatgtcgcc 850 gttgtcacat cagctgacat gacctggagg ggttgggggt gggggacagg 900 tttctgaaat ccctgaaggg ggttgtactg ggatttgtga ataaacttga 950 tacacca 957

<210> 248

<211> 247

<212> PRT

<213> Homo sapiens

<400> 248

Met His Leu Ala Arg Leu Val Gly Ser Cys Ser Leu Leu Leu 1 5 10 15

Leu Gly Ala Leu Ser Gly Trp Ala Ala Ser Asp Asp Pro Ile Glu 20 25 30

Lys Val Ile Glu Gly Ile Asn Arg Gly Leu Ser Asn Ala Glu Arg 35 40 45

Glu Val Gly Lys Ala Leu Asp Gly Ile Asn Ser Gly Ile Thr His
50 55 60

Ala Gly Arg Glu Val Glu Lys Val Phe Asn Gly Leu Ser Asn Met 65 70 75

Gly Ser His Thr Gly Lys Glu Leu Asp Lys Gly Val Gln Gly Leu 80 85 90

Asn His Gly Met Asp Lys Val Ala His Glu Ile Asn His Gly Ile 95 100 105

Gly Gln Ala Gly Lys Glu Ala Glu Lys Leu Gly His Gly Val Asn 110 115 120

Asn Ala Ala Gly Gln Ala Gly Lys Glu Ala Asp Lys Ala Val Gln 125 130 135

Gly Phe His Thr Gly Val His Gln Ala Gly Lys Glu Ala Glu Lys 140 145 150

Leu Gly Gln Gly Val Asn His Ala Ala Asp Gln Ala Gly Lys Glu 155 160 165

Val Glu Lys Leu Gly Gln Gly Ala His His Ala Ala Gly Gln Ala 170 175 180

Gly Lys Glu Leu Gln Asn Ala His Asn Gly Val Asn Gln Ala Ser 185 190 195

Lys Glu Ala Asn Gln Leu Leu Asn Gly Asn His Gln Ser Gly Ser 200 205 210

Ser Ser His Gln Gly Gly Ala Thr Thr Pro Leu Ala Ser Gly

215 220 225

Ala Ser Val Asn Thr Pro Phe Ile Asn Leu Pro Ala Leu Trp Arg 230 235 240

Ser Val Ala Asn Ile Met Pro 245

<210> 249

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 249

caatatgcat cttgcacgtc tgg 23

<210> 250

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 250

aagcttctct gcttcctttc ctgc 24

<210> 251

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 251

tgaccccatt gagaaggtca ttgaagggat caaccgaggg ctg 43

<210> 252

<211> 3781

<212> DNA

<213> Homo sapiens

<400> 252

ctccgggtcc ccaggggctg cgccgggccg gcctggcaag ggggacgagt 50 cagtggacac tccaggaaga gcggccccgc ggggggcgat gaccgtgcgc 100 tgaccctgac tcactccagg tccggaggcg ggggcccccg gggcgactcg 150 ggggcggacc gcggggcga gctgccgcc gtgagtccgg ccgagccacc 200 tgagcccgag ccgcgggaca ccgtcgctcc tgctctccga atgctgcgca 250

ccgcgatggg cctgaggagc tggctcgccg ccccatgggg cgcgctgccg 300 cctcggccac cgctgctgct gctcctgctg ctgctgctcc tgctgcagcc 350 geogeeteeg acetgggege teageeeeg gateageetg cetetggget 400 ctgaagagcg gccattcctc agattcgaag ctgaacacat ctccaactac 450 acagecette tgetgageag ggatggeagg accetgtaeg tgggtgeteg 500 agaggeeete tttgeactea gtageaacet cagetteetg eeaggegggg 550 agtaccagga gctgctttgg ggtgcagacg cagagaagaa acagcagtgc 600 agetteaagg geaaggaeee acagegegae tgteaaaaet acateaagat 650 ceteetgeeg eteageggea gteacetgtt cacetgtgge acageageet 700 tcagccccat gtgtacctac atcaacatgg agaacttcac cctggcaagg 750 gacgagaagg ggaatgtcct cctggaagat ggcaagggcc gttgtccctt 800 cgacccgaat ttcaagtcca ctgccctggt ggttgatggc gagctctaca 850 ctggaacagt cagcagcttc caagggaatg acccggccat ctcgcggagc 900 caaageette geeceaceaa gaeegagage teeeteaact ggetgeaaga 950 cccagctttt gtggcctcag cctacattcc tgagagcctg ggcagcttgc 1000 aaggcgatga tgacaagatc tactttttct tcagcgagac tggccaggaa 1050 tttgagttct ttgagaacac cattgtgtcc cgcattgccc gcatctgcaa 1100 gggcgatgag ggtggagagc gggtgctaca gcagcgctgg acctccttcc 1150 tcaaggccca gctgctgtgc tcacggcccg acgatggctt ccccttcaac 1200 gtgctgcagg atgtcttcac gctgagcccc agcccccagg actggcgtga 1250 caccetttte tatggggtet teaetteeca gtggeacagg ggaactacag 1300 aaggetetge egtetgtgte tteacaatga aggatgtgea gagagtette 1350 ageggeetet acaaggaggt gaacegtgag acacagcagt ggtacacegt 1400 gacccacccg gtgcccacac cccggcctgg agcgtgcatc accaacagtg 1450 cccgggaaag gaagatcaac tcatccctgc agctcccaga ccgcgtgctg 1500 aacttcctca aggaccactt cctgatggac gggcaggtcc gaagccgcat 1550 gctgctgctg cagccccagg ctcgctacca gcgcgtggct gtacaccgcg 1600 teectggeet geaceaece taegatgtee tetteetggg caetggtgae 1650 ggccggctcc acaaggcagt gagcgtgggc ccccgggtgc acatcattga 1700 ggagctgcag atcttctcat cgggacagcc cgtgcagaat ctgctcctgg 1750 acacccacag ggggctgctg tatgcggcct cacactcggg cgtagtccag 1800 gtgcccatgg ccaactgcag cctgtaccgg agctgtgggg actgcctcct 1850 cgcccgggac ccctactgtg cttggagcgg ctccagctgc aagcacgtca 1900 gcctctacca gcctcagctg gccaccaggc cgtggatcca ggacatcgag 1950 ggagccagcg ccaaggacct ttgcagcgcg tcttcggttg tgtccccgtc 2000 ttttgtacca acaggggaga agccatgtga gcaagtccag ttccagccca 2050 acacagtgaa cactttggcc tgcccgctcc tctccaacct ggcgacccga 2100 ctctggctac gcaacggggc ccccgtcaat gcctcggcct cctgccacgt 2150 gctacccact ggggacctgc tgctggtggg cacccaacag ctgggggagt 2200 tccagtgctg gtcactagag gagggcttcc agcagctggt agccagctac 2250 tgcccagagg tggtggagga cggggtggca gaccaaacag atgagggtgg 2300 cagtgtaccc gtcattatca gcacatcgcg tgtgagtgca ccagctggtg 2350 gcaaggccag ctggggtgca gacaggtcct actggaagga gttcctggtg 2400 atgtgcacgc tctttgtgct ggccgtgctg ctcccagttt tattcttgct 2450 ctaccggcac cggaacagca tgaaagtctt cctgaagcag ggggaatgtg 2500 ccagcgtgca ccccaagacc tgccctgtgg tgctgccccc tgagacccgc 2550 ccactcaacg gcctagggcc ccctagcacc ccgctcgatc accgagggta 2600 ccagtccctg tcagacagcc ccccgggggc ccgagtcttc actgagtcag 2650 agaagaggcc actcagcatc caagacagct tcgtggaggt atccccagtg 2700 tgcccccggc cccgggtccg ccttggctcg gagatccgtg actctgtggt 2750 gtgagagetg acttecagag gaegetgeee tggetteagg ggetgtgaat 2800 gctcggagag ggtcaactgg acctcccctc cgctctgctc ttcgtggaac 2850 acgaccgtgg tgcccggccc ttgggagcct tggagccagc tggcctgctg 2900 ctctccagtc aagtagcgaa gctcctacca cccagacacc caaacagccg 2950 tggccccaga ggtcctggcc aaatatgggg gcctgcctag gttggtggaa 3000 cagtgctcct tatgtaaact gagccctttg tttaaaaaac aattccaaat 3050 gtgaaactag aatgagaggg aagagatagc atggcatgca gcacacacgg 3100

ttgtctgaga cagagttgga aaccetcacc aactggcetc ttcaccttcc 3200 acattatccc gctgccaccg gctgccctgt ctcactgcag attcaggacc 3250 agcttggget gcgtgcgttc tgccttgcca gtcagccgag gatgtagttg 3300 ttgctgccgt cgtcccacca cctcagggac cagagggcta ggttggcact 3350 gcggccctca ccaggtcctg ggctcggacc caactcctgg acctttccag 3400 cctgtatcag gctgtggca cacgagagga cagcggagc tcaggagaga 3450 ttcgtgaca atgtacgcct ttccctcaga attcaggaa gagactgtcg 3500 cctgcttcc tccgttgttg cgtgagaacc cgtgtgcccc ttcccacca 3550 atccacctc gctcatctt tgaactcaaa cacgaggaac taactgcacc 3600 ctggtcctct ccccagtccc cagttcaccc tccatcctc accttcctcc 3650 actctaaggg atatcaacac tgcccagcac aggggccctg aatttatgtg 3700 gttttatac atttttaat aagatgcact ttatgtcatt ttttaataaa 3750 gtctgaagaa ttactgttta aaaaaaaaaa a 3781

<210> 253

<211> 837

<212> PRT

<213> Homo sapiens

<400> 253

Met Leu Arg Thr Ala Met Gly Leu Arg Ser Trp Leu Ala Ala Pro 1 5 10 15

Trp Gly Ala Leu Pro Pro Arg Pro Pro Leu Leu Leu Leu Leu 20 25 30

Leu Leu Leu Leu Gln Pro Pro Pro Pro Thr Trp Ala Leu Ser 35 40 45

Pro Arg Ile Ser Leu Pro Leu Gly Ser Glu Glu Arg Pro Phe Leu 50 55 60

Arg Phe Glu Ala Glu His Ile Ser Asn Tyr Thr Ala Leu Leu Leu 65 70 75

Ser Arg Asp Gly Arg Thr Leu Tyr Val Gly Ala Arg Glu Ala Leu 80 85 90

Phe Ala Leu Ser Ser Asn Leu Ser Phe Leu Pro Gly Gly Glu Tyr 95 100 105

Gln Glu Leu Trp Gly Ala Asp Ala Glu Lys Lys Gln Gln Cys 110 115 120

											,			
Ser	Phe	Lys	Gly 1	Lys 1 125	Asp	Pro	Gln	Arg	Asp 130	Суѕ	Gln	Asn	Tyr	Ile 135
Lys	Ile	Leu	Leu l	Pro :	Leu	Ser	Gly	Ser	His 145	Leu	Phe	Thr	Cys	Gly 150
Thr	Ala	Ala	Phe	Ser 155	Pro	Met	Cys	Thr	Tyr 160	Ile	Asn	Met	Glu	Asn 165
Phe	Thr	Leu	Ala .	Arg 170	Asp	Glu	Lys	Gly	Asn 175	Val	Leu	Leu	Glu	Asp 180
Gly	Lys	Gly	Arg	Cys 185	Pro	Phe	Asp	Pro	Asn 190	Phe	Lys	Ser	Thr	Ala 195
Leu	Val	Val	Asp	Gly 200	Glu	Leu	Tyr	Thr	Gly 205	Thr	Val	Ser	Ser	Phe 210
Gln	Gly	Asn	Asp	Pro 215	Ala	Ile	Ser	Arg	Ser 220	Gln	Ser	Leu	Arg	Pro 225
Thr	Lys	Thr	Glu	Ser 230	Ser	Leu	Asn	Trp	Leu 235	Gln	Asp	Pro	Ala	Phe 240
Val	Ala	Ser	Ala	Tyr 245	Ile	Pro	Glu	Ser	Leu 250	Gly	Ser	Leu	Gln	Gly 255
Asp	Asp	Asp	Lys	Ile 260	Tyr	Phe	Phe	Phe	Ser 265	Glu	Thr	Gly	Gln	Glu 270
Phe	Glu	Phe	Phe	Glu 275	Asn	Thr	Ile	Val	Ser 280	Arg	Ile	Ala	Arg	Ile 285
Cys	Lys	Gly	Asp	Glu 290	Gly	Gly	Glu	Arg	Val 295	Leu	Gln	Gln	Arg	Trp 300
Thr	Ser	Phe	Leu	Lys 305	Ala	Gln	Leu	. Lev	Cys 310	Ser	Arg	Pro	Asp	315
Gly	, Phe	e Pro	Phe	Asn 320	Val	. Leu	Gln	a Asp	Val 325	Phe	Thr	Leu	ser	330
Ser	Pro	o Gln	Asp	Trp 335	Arg	, Asp	Thr	: Lei	Phe 340	Tyr	Gly	Val	L Ph∈	Thr 345
Ser	c Glr	Trp	His	Arg 350		7 Thr	Thi	Glı	a Gly 355	ser	Ala	Va]	L Cys	360
Ph€	e Thi	r Met	Lys	Asp 365		l Glr	n Arg	g Val	l Ph∈ 370	e Ser	Gly	, Le	тул	1 Lys 375
Glı	ı Vai	l Asr	n Arg	Glu 380		r Gli	n Gli	n Tr	ryT c 385		· Val	LTh	r Hi	s Pro 390
Val	l Pr	o Thi	r Pro	Arg 395		o Gl	y Ala	а Су	s Ile 400	e Thi	: Ası	n Se	r Ala	a Arg 405

(Glu	Arg	Lys	Ile	Asn 410	Ser	Ser	Leu	Gln	Leu 415	Pro	Asp	Arg	Val	Leu 420
	Asn	Phe	Leu	Lys	Asp 425	His	Phe	Leu	Met	Asp 430	Gly	Gln	Val	Arg	Ser 435
	Arg	Met	Leu	Leu	Leu 440	Gln	Pro	Gln	Ala	Arg 445	Tyr	Gln	Arg	Val	Ala 450
	Val	His	Arg	Val	Pro 455	Gly	Leu	His	His	Thr 460	Tyr	Asp	Val	Leu	Phe 465
	Leu	Gly	Thr	Gly	Asp 470	Gly	Arg	Leu	His	Lys 475	Ala	Val	Ser	Val	Gly 480
	Pro	Arg	Val	His	Ile 485	Ile	Glu	Glu	Leu	Gln 490	Ile	Phe	Ser	Ser	Gly 495
	Gln	Pro	Val	Gln	Asn 500	Leu	Leu	Leu	Asp	Thr 505	His	Arg	Gly	Leu	Leu 510
	Tyr	Ala	Ala	Ser	His 515	Ser	Gly	Val	Val	Gln 520	Val	Pro	Met	Ala	Asn 525
	Cys	Ser	Leu	Tyr	Arg 530	Ser	Суѕ	Gly	Asp	Cys 535	Leu	Leu	Ala	Arg	Asp 540
	Pro	Tyr	Cys	Ala	Trp 545	Ser	Gly	Ser	Ser	Cys 550	Lys	His	Val	Ser	Leu 555
	Tyr	Glr	n Pro	Gln	Leu 560		Thr	Arg	Pro	565	lle	Gln	Asp	Ile	Glu 570
	Gly	Ala	a Ser	: Ala	Lys 575		Leu	Cys	s Ser	Ala 580	Ser	Ser	Val	Val	Ser 585
	Pro	Sei	r Phe	e Val	. Pro 590	Thr	Gly	Glu	ı Lys	595	Cys	Glu	Gln	. Val	Gln 600
	Ph∈	e Gli	n Pro	o Asr	Thr 605		L Asr	Th:	r Lei	1 Ala 610	a Cys	Pro	Leu	ı Lev	Ser 615
	Asr	ı Le	u Ala	a Thi	620		ı Trp	Lei	ı Ar	g Ası 62!	n Gly 5	Ala	a Pro	o Val	Asn 630
	Ala	a Se	r Al	a Se:	c Cys 635		s Val	L Le	u Pr	o Th:	r Gly O	y Asp	Let	ı Lev	Leu 645
	Va:	l Gl	y Th	r Gl	n Gli 650		u Gl	y Gl	u Ph	e Gl: 65	n Cys 5	s Trp	Sei	r Lei	1 Glu 660
	Gl	u Gl	y Ph	e Gl	n Gl:		u Va	l Al	a Se	r Ty 67	r Cy: 0	s Pro	o Gli	u Val	1 Val 675
	G1	u As	p Gl	y Va	1 Al 68		p Gl	n Th	r As	p Gl 68	u Gl; 5	y Gl	y Se	r Va	1 Pro 690

```
Val Ile Ile Ser Thr Ser Arg Val Ser Ala Pro Ala Gly Gly Lys
                                       700
                  695
 Ala Ser Trp Gly Ala Asp Arg Ser Tyr Trp Lys Glu Phe Leu Val
 Met Cys Thr Leu Phe Val Leu Ala Val Leu Leu Pro Val Leu Phe
                                       730
 Leu Leu Tyr Arg His Arg Asn Ser Met Lys Val Phe Leu Lys Gln
 Gly Glu Cys Ala Ser Val His Pro Lys Thr Cys Pro Val Val Leu
                                       760
                  755
  Pro Pro Glu Thr Arg Pro Leu Asn Gly Leu Gly Pro Pro Ser Thr
                                       775
                  770
  Pro Leu Asp His Arg Gly Tyr Gln Ser Leu Ser Asp Ser Pro Pro
                                       790
                  785
  Gly Ala Arg Val Phe Thr Glu Ser Glu Lys Arg Pro Leu Ser Ile
                                       805
                  800
  Gln Asp Ser Phe Val Glu Val Ser Pro Val Cys Pro Arg Pro Arg
                                       820
                  815
  Val Arg Leu Gly Ser Glu Ile Arg Asp Ser Val Val
                  830
                                       835
 <210> 254
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 254
  agcccgtgca gaatctgctc ctgg 24
. <210> 255
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 255
  tgaagccagg gcagcgtcct ctgg 24
 <210> 256
 <211> 18
 <212> DNA
 <213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 256
gtacaggctg cagttggc 18
<210> 257
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 257
 agaagccatg tgagcaagtc cagttccagc ccaacacagt g 41
<210> 258
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 258
 gagetgeaga tetteteate gggacagece gtgeagaate tgete 45
<210> 259
<211> 4563
<212> DNA
<213> Homo sapiens
<220>
 <221> unsure
 <222> 3635
 <223> unknown base
 <400> 259
 ctaagccgga ggatgtgcag ctgcggcggc ggcgccggct acgaagagga 50
  cggggacagg cgccgtgcga accgagccca gccagccgga ggacgcgggc 100
  agggcgggac gggagcccgg actcgtctgc cgccgccgtc gtcgccgtcg 150
  tgccggcccc gcgtccccgc gcgcgagcgg gaggagccgc cgccacctcg 200
  cgcccgagcc gccgctagcg cgcgccgggc atggtcccct cttaaaggcg 250
  caggccgcgg cggcgggggc gggtgtgcgg aacaaagcgc cggcgcgggg 300
  cetgegggeg geteggggge egegatggge geggegggee egeggeggeg 350
  geggegetge eegggeeggg eetegeggeg etaggeeggg etggeeteeg 400
  tgggcggggg cagcgggctg agggcgcgcg gagcctgcgg cggcggcggc 450
```

ggcggcggcg gcggcccggc gggcggagcg gcgcgggcat ggccgcgcgc 500 ggccggcgcg cctggctcag cgtgctgctc gggctcgtcc tgggcttcgt 550 gctggcctcg cggctcgtcc tgccccgggc ttccgagctg aagcgagcgg 600 gcccacggcg ccgcgccagc cccgagggct gccggtccgg gcaggcggcg 650 getteecagg eeggeggge gegeggegat gegeggggg egeagetetg 700 geogeoegge teggacecag atggeggeee gegegacagg aactttetet 750 tcgtgggagt catgaccgcc cagaaatacc tgcagactcg ggccgtggcc 800 gcctacagaa catggtccaa gacaattcct gggaaagttc agttcttctc 850 aagtgagggt tetgacacat etgtaceaat teeagtagtg ecaetaeggg 900 gtgtggacga ctcctacccg ccccagaaga agtccttcat gatgctcaag 950 tacatgcacg accactactt ggacaagtat gaatggttta tgagagcaga 1000 tgatgacgtg tacatcaaag gagaccgtct ggagaacttc ctgaggagtt 1050 tgaacagcag cgagccctc tttcttgggc agacaggcct gggcaccacg 1100 gaagaaatgg gaaaactggc cctggagcct ggtgagaact tctgcatggg 1150 ggggcctggc gtgatcatga gccgggaggt gcttcggaga atggtgccgc 1200 acattggcaa gtgtctccgg gagatgtaca ccacccatga ggacgtggag 1250 gtgggaaggt gtgtccggag gtttgcaggg gtgcagtgtg tctggtctta 1300 tgagatgcgg cagctttttt atgagaatta cgagcagaac aaaaaggggt 1350 acattagaga tctccataac agtaaaattc accaagctat cacattacac 1400 cccaacaaaa acccacccta ccagtacagg ctccacagct acatgctgag 1450 ccgcaagata tccgagctcc gccatcgcac aatacagctg caccgcgaaa 1500 ttgtcctgat gagcaaatac agcaacacag aaattcataa agaggacctc 1550 cagctgggaa tccctcctc cttcatgagg tttcagcccc gccagcgaga 1600 ggagattctg gaatgggagt ttctgactgg aaaatacttg tattcggcag 1650 ttgacggcca gccccctcga agaggaatgg actccgccca gagggaagcc 1700 ttggacgaca ttgtcatgca ggtcatggag atgatcaatg ccaacgccaa 1750 gaccagaggg cgcatcattg acttcaaaga gatccagtac ggctaccgcc 1800 gggtgaaccc catgtatggg gctgagtaca tcctggacct gctgcttctg 1850

tacaaaaagc acaaagggaa gaaaatgacg gtccctgtga ggaggcacgc 1900 gtatttacag cagactttca gcaaaatcca gtttgtggag catgaggagc 1950 tggatgcaca agagttggcc aagagaatca atcaggaatc tggatccttg 2000 teetttetet caaacteest gaagaagete gteecettte ageteestgg 2050 gtcgaagagt gagcacaaag aacccaaaga taaaaagata aacatactga 2100 ttcctttgtc tgggcgtttc gacatgtttg tgagatttat gggaaacttt 2150 gagaagacgt gtcttatccc caatcagaac gtcaagctcg tggttctgct 2200 tttcaattct gactccaacc ctgacaaggc caaacaagtt gaactgatga 2250 gagattaccg cattaagtac cctaaagccg acatgcagat tttgcctgtg 2300 tctggagagt tttcaagagc cctggccctg gaagtaggat cctcccagtt 2350 taacaatgaa totttgctot tottotgcga cgtcgacoto gtgtttacta 2400 cagaattcct tcagcgatgt cgagcaaata cagttctggg ccaacaaata 2450 tattttccaa tcatcttcag ccagtatgac ccaaagattg tttatagtgg 2500 gaaagttccc agtgacaacc attttgcctt tactcagaaa actggcttct 2550 ggagaaacta tgggtttggc atcacgtgta tttataaggg agatcttgtc 2600 cgagtgggtg gctttgatgt ttccatccaa ggctgggggc tggaggatgt 2650 ggaccttttc aacaaggttg tccaggcagg tttgaagacg tttaggagcc 2700 aggaagtagg agtagtccac gtccaccatc ctgtcttttg tgatcccaat 2750 cttgacccca aacagtacaa aatgtgcttg gggtccaaag catcgaccta 2800 tgggtccacc cagcagetgg ctgagatgtg gctggaaaaa aatgatccaa 2850 gttacagtaa aagcagcaat aataatggct cagtgaggac agcctaatgt 2900 ccagctttgc tggaaaagac gtttttaatt atctaattta tttttcaaaa 2950 attttttgta tgatcagttt ttgaagtccg tatacaagga tatattttac 3000 aagtggtttt cttacatagg actcctttaa gattgagctt tctgaacaag 3050 aaggtgatca gtgtttgcct ttgaacacat cttcttgctg aacattatgt 3100 agcagacctg cttaactttg acttgaaatg tacctgatga acaaaacttt 3150 tttaaaaaaa tgttttcttt tgagaccctt tgctccagtc ctatggcaga 3200 aaacgtgaac attcctgcaa agtattattg taacaaaaca ctgtaactct 3250 ggtaaatgtt ctgttgtgat tgttaacatt ccacagattc taccttttgt 3300

gttttgtttt tttttttac aattgtttta aagccatttc atgttccagt 3350 tgtaagataa ggaaatgtga taatagctgt ttcatcattg tcttcaggag 3400 agetttccag agttgatcat ttcctctcat ggtactctgc tcagcatggc 3450 cacgtaggtt ttttgtttgt tttgttttgt tctttttttg agacggagtc 3500 tcactctgtt acccaggctg gaatgcagtg gcgcaatctt ggctcacttt 3550 aacctccact tccctggttc aagcaattcc cctgcctttg cctcccgagt 3600 agctgggatt acaggcacac accaccacgc ccagntagtt tttttgtatt 3650 tttagtagag acggggtttc accatgcaag cccagctggc cacgtaggtt 3700 ttaaagcaag gggcgtgaag aaggcacagt gaggtatgtg gctgttctcg 3750 tggtagttca ttcggcctaa atagacctgg cattaaattt caagaaggat 3800 ttggcatttt ctcttcttga cccttctctt taaagggtaa aatattaatg 3850 tttagaatga caaagatgaa ttattacaat aaatctgatg tacacagact 3900 gaaacataca cacatacacc ctaatcaaaa cgttggggaa aaatgtattt 3950 ggttttgttc ctttcatcct gtctgtgtta tgtgggtgga gatggttttc 4000 attettteat tactgttttg ttttateett tgtatetgaa atacetttaa 4050 tttatttaat atctgttgtt cagagetetg ceatttettg agtacetgtt 4100 agttagtatt atttatgtgt atcgggagtg tgtttagtct gttttatttg 4150 cagtaaaccg atctccaaag atttcctttt ggaaacgctt tttcccctcc 4200 ttaattttta tatteettae tgttttaeta aatattaagt gttetttgae 4250 aattttggtg ctcatgtgtt ttggggacaa aagtgaaatg aatctgtcat 4300 tataccagaa agttaaattc tcagatcaaa tgtgccttaa taaatttgtt 4350 ttcatttaga tttcaaacag tgatagactt gccattttaa tacacgtcat 4400 tggagggctg cgtatttgta aatagcctga tgctcatttg gaaaaataaa 4450 ccagtgaaca atattttct attgtacttt tcgaaccatt ttgtctcatt 4500 attcctgttt tagctgaaga attgtattac atttggagag taaaaaactt 4550 aaacacgaaa aaa 4563

<210> 260

<211> 802

<212> PRT

<213> Homo sapiens

Met 1	Ala	Ala	Arg	Gly 5	Arg	Arg	Ala	Trp	Leu 10	Ser	Val	Leu	Leu	Gly 15
Leu	Val	Leu	Gly	Phe 20	Val	Leu	Ala	Ser	Arg 25	Leu	Val	Leu	Pro	Arg 30
Ala	Ser	Glu	Leu	Lys 35	Arg	Ala	Gly	Pro	Arg 40	Arg	Arg	Ala	Ser	Pro 45
Glu	Gly	Cys	Arg	Ser 50	Gly	Gln	Ala	Ala	Ala 55	Ser	Gln	Ala	Gly	Gly 60
Ala	Arg	Gly	Asp	Ala 65	Arg	Gly	Ala	Gln	Leu 70	Trp	Pro	Pro	Gly	Ser 75
Asp	Pro	Asp	Gly	Gly 80	Pro	Arg	Asp	Arg	Asn 85	Phe	Leu	Phe	Val	Gly 90
Val	Met	Thr	Ala	Gln 95	Lys	Tyr	Leu	Gln	Thr 100	Arg	Ala	Val	Ala	Ala 105
Tyr	Arg	Thr	Trp	Ser 110	Lys	Thr	Ile	Pro	Gly 115	Lys	Val	Gln	Phe	Phe 120
Ser	Ser	Glu	Gly	Ser 125	Asp	Thr	Ser	Val	Pro 130	Ile	Pro	Val	Val	Pro 135
Leu	Arg	Gly	Val	Asp 140	Asp	Ser	Tyr	Pro	Pro 145	Gln	Lys	Lys	Ser	Phe 150
Met	Met	Leu	Lys	Tyr 155	Met	His	Asp	His	Tyr 160	Leu	Asp	Lys	Tyr	Glu 165
Trp	Phe	Met	Arg	Ala 170	Asp	Asp	Asp	Val	Tyr 175	Ile	Lys	Gly	Asp	Arg 180
Leu	Glu	Asn	Phe	Leu 185	Arg	Ser	Leu	Asn	Ser 190	Ser	Glu	Pro	Leu	Phe 195
Leu	Gly	Gln	Thr	Gly 200	Leu	Gly	Thr	Thr	Glu 205	Glu	Met	Gly	Lys	Leu 210
Ala	Leu	Glu	Pro	Gly 215	Glu	Asn	Phe	Cys	Met 220	Gly	Gly	Pro	Gly	Val 225
Ile	Met	Ser	Arg	Glu 230	Val	Leu	Arg	Arg	Met 235	Val	Pro	His	Ile	Gly 240
Lys	Cys	Leu	Arg	Glu 245	Met	Tyr	Thr	Thr	His 250	Glu	Asp	Val	Glu	Val 255
Gly	Arg	Cys	Val	Arg 260	Arg	Phe	Ala	Gly	Val 265	Gln	Cys	Val	Trp	Ser 270
Tyr	Glu	Met	Arg	Gln	Leu	Phe	Tyr	Glu	Asn	Tyr	Glu	Gln	Asn	Lys

Lys Gl	lv '	Tvr	Ile	Arq	Asp	Leu	His	Asn	Ser	Lys	Ile	His	Gln	Ala
				290					295					300
Ile Th				305					310					J15
His Se	er	Tyr	Met	Leu 320	Ser	Arg	Lys	Ile	Ser 325	Glu	Leu	Arg	His	Arg 330
Thr I	le	Gln	Leu	His 335	Arg	Glu	Ile	Val	Leu 340	Met	Ser	Lys	Tyr	Ser 345
Asn T	hr	Glu	Ile	His 350	Lys	Glu	Asp	Leu	Gln 355	Leu	Gly	Ile	Pro	Pro 360
Ser P	he	Met	Arg	Phe 365	Gln	Pro	Arg	Gln	Arg 370	Glu	Glu	Ile	Leu	Glu 375
Trp G	lu	Phe	Leu	Thr 380	Gly	Lys	Tyr	Leu	Tyr 385	Ser	Ala	Val	Asp	Gly 390
Gln P	ro,	Pro	Arg	Arg 395	Gly	Met	Asp	Ser	Ala 400	Gln	Arg	Glu	Ala	Leu 405
Asp A	sp	Ile	Val	Met 410		Val	Met	Glu	Met 415	Ile	Asn	Ala	Asn	Ala 420
Lys T	hr	Arg	Gly	Arg 425	Ile	Ile	Asp	Phe	Lys 430	Glu	Ile	Gln	Tyr	Gly 435
Tyr A	۱rg	Arg	Val	Asn 440	Pro	Met	Tyr	Gly	Ala 445	Glu	Tyr	Ile	Leu	Asp 450
Leu I	Leu	Leu	Leu	Tyr 455	Lys	Lys	His	Lys	Gly 460	Lys	Lys	Met	Thr	Val 465
Pro \	Val	Arg	, Arç	y His		Туг	Leu	ı Glr	1 Gln 475	Thr	Phe	Ser	Lys	Ile 480
Gln I	Phe	Val	. Glu	ı His	s Glu	ı Glü	ı Lev	ı Asp	Ala 490	Gln	Glu	Leu	Ala	Lys 495
Arg :	Ile	Asr	n Glr	n Glu 500		Gly	y Sei	c Lev	Ser 505	Phe	Leu	Ser	Asn	Ser 510
Leu :	Lys	. Ly	s Lei	u Val		o Phe	e Glr	n Lei	ı Pro 520	o Gly	Ser	Lys	Ser	Glu 525
His	Lys	s Gl	ı Pro	o Ly:		o Ly:	s Ly:	s Il	e Asr 535	ı Ile	e Leu	ı Ile	e Pro	540
Ser	Gl	/ Ar	g Ph	e As		t Ph	e Va	l Ar	g Phe 550	e Met	: Gly	Ası	n Phe	e Glu 555
Lys	Thi	с Су	s Le	u Il	e Pr	o As	n Gl	n As	n Val	l Lys	s Let	ı Va	l Vai	l Leu

		560					565					570
Leu Phe Ası	n Ser	Asp 575	Ser	Asn	Pro	Asp	Lys 580	Ala	Lys	Gln	Val	Glu 585
Leu Met Arc	g Asp	Tyr 590	Arg	Ile	Lys	Tyr	Pro 595	Lys	Ala	Asp	Met	Gln 600
Ile Leu Pro	o Val	Ser 605	Gly	Glu	Phe	Ser	Arg 610	Ala	Leu	Ala	Leu	Glu 615
Val Gly Se	r Ser	Gln 620	Phe	Asn	Asn	Glu	Ser 625	Leu	Leu	Phe	Phe	Cys 630
Asp Val As	o Leu	Val 635	Phe	Thr	Thr	Glu	Phe 640	Leu	Gln	Arg	Cys	Arg 645
Ala Asn Th	r Val	Leu 650	Gly	Gln	Gln	Ile	Tyr 655	Phe	Pro	Ile	Ile	Phe 660
Ser Gln Ty	r Asp	Pro 665	Lys	Ile	Val	Tyr	Ser 670	Gly	Lys	Val	Pro	Ser 675
Asp Asn Hi	s Phe	Ala 680	Phe	Thr	Gln	Lys	Thr 685	Gly	Phe	Trp	Arg	Asn 690
Tyr Gly Ph	e Gly	1le 695	Thr	Cys	Ile	Tyr	Lys 700	Gly	Asp	Leu	Val	Arg 705
Val Gly Gl	y Phe	Asp 710		Ser	Ile	Gln	Gly 715	Trp	Gly	Leu	Glu	Asp 720
Val Asp Le	u Phe	Asn 725		Val	Val	Gln	Ala 730	Gly	Leu	Lys	Thr	Phe 735
Arg Ser Gl	n Glu	val 740		Val	Val	His	Val 745	His	His	Pro	Val	Phe 750
Cys Asp Pi	o Asr	1 Leu 755	Asp	Pro	Lys	Gln	Tyr 760	Lys	Met	Cys	Leu	Gly 765
Ser Lys Al	.a Sei	Thr 770		Gly	ser,	Thr	Gln 775	Gln	Leu	Ala	Glu	Met 780
Trp Leu G	u Lys	3 Asr 785) Pro	Ser	туг	Ser 790	Lys	Ser	Ser	: Asn	Asn 795
Asn Gly Se	er Val	l Arg 800		: Ala	ì							
<210> 261												
<211> 24												

<220>

<212> DNA

<223> Synthetic oligonucleotide probe

<213> Artificial Sequence

```
<400> 261
 gtgccactac ggggtgtgga cgac 24
 <210> 262
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
. <400> 262
  tcccatttct tccgtggtgc ccag 24
 <210> 263
 <211> 46
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 263
  ccagaagaag tccttcatga tgctcaagta catgcacgac cactac 46
 <210> 264
 <211> 1419
 <212> DNA
 <213> Homo sapiens
 <400> 264
  ggacaaccgt tgctgggtgt cccagggcct gaggcaggac ggtactccgc 50
  tgacaccttc cctttcggcc ttgaggttcc cagcctggtg gccccaggac 100
  gttccggtcg catggcagag tgctacggac gacgcctatg aagcccttag 150
  teettetagt tgegettttg ctatggeett egtetgtgee ggettateeg 200
  agcataactg tgacacctga tgaagagcaa aacttgaatc attatataca 250
  agttttagag aacctagtac gaagtgttcc ctctggggag ccaggtcgtg 300
   agaaaaaatc taactctcca aaacatgttt attctatagc atcaaaggga 350
   tcaaaattta aggagctagt tacacatgga gacgcttcaa ctgagaatga 400
   tgttttaacc aatcctatca gtgaagaaac tacaactttc cctacaggag 450
   gcttcacacc ggaaatagga aagaaaaaac acacggaaag taccccattc 500
   tggtcgatca aaccaaacaa tgtttccatt gttttgcatg cagaggaacc 550
   ttatattgaa aatgaagagc cagagccaga gccggagcca gctgcaaaac 600
   aaactgaggc accaagaatg ttgccagttg ttactgaatc atctacaagt 650
```

ccatatgtta cctcatacaa gtcacctgtc accactttag ataagagcac 700 tggcattgag atctctacag aatcagaaga tgttcctcag ctctcaggtg 750 aaactgcgat agaaaaaccc gaagagtttg gaaagcaccc agagagttgg 800 aataatgatg acattttgaa aaaaatttta gatattaatt cacaagtgca 850 acaggcactt cttagtgaca ccagcaaccc agcatataga gaagatattg 900 aagcctctaa agatcaccta aaacgaagcc ttgctctagc agcagcagca 950 gaacataaat taaaaacaat gtataagtcc cagttattgc cagtaggacg 1000 aacaagtaat aaaattgatg acatcgaaac tgttattaac atgctgtgta 1050 attctagatc taaactctat gaatatttag atattaaatg tgttccacca 1100 gagatgagag aaaaagctgc tacagtattc aatacattaa aaaatatgtg 1150 tagatcaagg agagtcacag ccttattaaa agtttattaa acaataatat 1200 aaaaatttta aacctacttg atattccata acaaagctga tttaagcaaa 1250 ctgcattttt tcacaggaga aataatcata ttcgtaattt caaaagttgt 1300 ataaaaatat tttctattqt agttcaaatg tgccaacatc tttatgtgtc 1350 atgtgttatg aacaattttc atatgcacta aaaacctaat ttaaaataaa 1400 attttggttc aggaaaaaa 1419

<210> 265

<211> 350

<212> PRT

<213> Homo sapiens

<400> 265

Met Lys Pro Leu Val Leu Leu Val Ala Leu Leu Leu Trp Pro Ser 1 5 10 15

Ser Val Pro Ala Tyr Pro Ser Ile Thr Val Thr Pro Asp Glu Glu 20 25 30

Gln Asn Leu Asn His Tyr Ile Gln Val Leu Glu Asn Leu Val Arg 35 40 45

Ser Val Pro Ser Gly Glu Pro Gly Arg Glu Lys Lys Ser Asn Ser 50 55 60

Pro Lys His Val Tyr Ser Ile Ala Ser Lys Gly Ser Lys Phe Lys 65 70 75

Glu Leu Val Thr His Gly Asp Ala Ser Thr Glu Asn Asp Val Leu
80 85 90

Thr As	n I	Pro	Ile	Ser 95	Glu	Glu	Thr	Thr	Thr 100	Phe	Pro	Thr	Gly	Gly 105
Phe Th	r	Pro	Glu	Ile 110	Gly	Lys	Lys	Lys	His 115	Thr	Glu	Ser	Thr	Pro 120
Phe Tr	p q	Ser	Ile	Lys 125	Pro	Asn	Asn	Val	Ser 130	Ile	Val	Leu	His	Ala 135
Glu Gl	.u	Pro	Tyr	Ile 140	Glu	Asn	Glu	Glu	Pro 145	Glu	Pro	Glu	Pro	Glu 150
Pro Al	.a .	Ala	Lys	Gln 155	Thr	Glu	Ala	Pro	Arg 160	Met	Leu	Pro	Val	Val 165
Thr G	Lu	Ser	Ser	Thr 170	Ser	Pro	Tyr	Val	Thr 175	Ser	Tyr	Lys	Ser	Pro 180
Val Th	ır	Thr	Leu	Asp 185	Lys	Ser	Thr	Gly	Ile 190	Glu	Ile	Ser	Thr	Glu 195
Ser G	Lu	Asp	Val	Pro 200	Gln	Leu	Ser	Gly	Glu 205	Thr	Ala	Ile	Glu	Lys 210
Pro G	lu	Glu	Phe	Gly 215	Lys	His	Pro	Glu	Ser 220	Trp	Asn	Asn	Asp	Asp 225
Ile L	eu	Lys	Lys	Ile 230	Leu	Asp	Ile	Asn	Ser 235	Gln	Val	Gln	Gln	Ala 240
Leu L	eu	Ser	Asp	Thr 245	Ser	Asn	Pro	Ala	Tyr 250	Arg	Glu	Asp	Ile	Glu 255
Ala S	er	Lys	Asp	His 260	Leu	Lys	Arg	Ser	Leu 265	Ala	Leu	Ala	Ala	Ala 270
Ala G	lu	His	Lys	Leu 275	Lys	Thr	Met	Tyr	Lys 280	Ser	Gln	Leu	Leu	Pro 285
Val G	ly	Arg	Thr	Ser 290	Asn	Lys	Ile	Asp	Asp 295		Glu	Thr	Val	Ile 300
Asn M	et	Leu	Cys	Asn 305	Ser	Arg	Ser	Lys	Leu 310	Tyr	Glu	Tyr	Leu	Asp 315
Ile L	ys	Cys	Val	Pro 320	Pro	Glu	Met	Arg	Glu 325		Ala	Ala	Thr	Val 330
Phe A	sn	Thr	Leu	Lys 335		Met	Cys	Arg	Ser 340		Arg	Val	Thr	Ala 345
Leu L	eu	Lys	Val	Tyr 350										
<210> <211> <212>	24(3												

<400> 266 cggctcgagc ggctcgagtg aagagcctct ccacggctcc tgcgcctgag 50 acagetggcc tgacetccaa atcatecate cacecetget gteatetgtt 100 ttcatagtgt gagatcaacc cacaggaata tccatggctt ttgtgctcat 150 tttggttctc agtttctacg agctggtgtc aggacagtgg caagtcactg 200 gaccgggcaa gtttgtccag gccttggtgg gggaggacgc cgtgttctcc 250 tgctccctct ttcctgagac cagtgcagag gctatggaag tgcggttctt 300 caggaatcag ttccatgctg tggtccacct ctacagagat ggggaagact 350 gggaatctaa gcagatgcca cagtatcgag ggagaactga gtttgtgaag 400 gactccattg caggggggcg tgtctctcta aggctaaaaa acatcactcc 450 ctcggacatc ggcctgtatg ggtgctggtt cagttcccag atttacgatg 500 aggaggeeae etgggagetg egggtggeag eaetgggete aetteetete 550 atttccatcg tgggatatgt tgacggaggt atccagttac tctgcctgtc 600 ctcaggctgg ttcccccagc ccacagccaa gtggaaaggt ccacaaggac 650 aggatttgtc ttcagactcc agagcaaatg cagatgggta cagcctgtat 700 gatgtggaga tctccattat agtccaggaa aatgctggga gcatattgtg 750 ttccatccac cttgctgagc agagtcatga ggtggaatcc aaggtattga 800 taggagagac gtttttccag ccctcacctt ggcgcctggc ttctatttta 850 ctcgggttac tctgtggtgc cctgtgtggt gttgtcatgg ggatgataat 900 tgttttcttc aaatccaaag ggaaaatcca ggcggaactg gactggagaa 950 gaaagcacgg acaggcagaa ttgagagacg cccggaaaca cgcagtggag 1000 gtgactctgg atccagagac ggctcacccg aagctctgcg tttctgatct 1050 gaaaactgta acccatagaa aagctcccca ggaggtgcct cactctgaga 1100 agagatttac aaggaagagt gtggtggctt ctcagggttt ccaagcaggg 1150 agacattact gggaggtgga cgtgggacaa aatgtagggt ggtatgtggg 1200 agtgtgtcgg gatgacgtag acagggggaa gaacaatgtg actttgtctc 1250 ccaacaatgg gtattgggtc ctcagactga caacagaaca tttgtatttc 1300 acattcaatc cccattttat cagcctcccc cccagcaccc ctcctacacg 1350 agtaggggtc ttcctggact atgagggtgg gaccatctcc ttcttcaata 1400 caaatgacca gtcccttatt tataccctgc tgacatgtca gtttgaaggc 1450 ttgttgagac cctatatcca gcatgcgatg tatgacgagg aaaaggggac 1500 teceatatte atatgteeag tgteetgggg atgagacaga gaagaceetg 1550. cttaaagggc cccacaccac agacccagac acagccaagg gagagtgctc 1600 ccgacaggtg gccccagctt cctctccgga gcctgcgcac agagagtcac 1650 gcccccact ctcctttagg gagctgaggt tcttctgccc tgagccctgc 1700 agcageggea gteacagett ceagatgagg ggggattgge etgaceetgt 1750 gggagtcaga agccatggct gccctgaagt ggggacggaa tagactcaca 1800 ttaggtttag tttgtgaaaa ctccatccag ctaagcgatc ttgaacaagt 1850 cacaacctcc caggeteete atttgetagt caeggacagt gatteetgee 1900 tcacaggtga agattaaaga gacaacgaat gtgaatcatg cttgcaggtt 1950 tgagggcaca gtgtttgcta atgatgtgtt tttatattat acattttccc 2000 accataaact ctgtttgctt attccacatt aatttacttt tctctatacc 2050 aaatcaccca tggaatagtt attgaacacc tgctttgtga ggctcaaaga 2100 ataaagagga ggtaggattt ttcactgatt ctataagccc agcattacct 2150 gataccaaaa ccaggcaaag aaaacagaag aagaggaagg aaaactacag 2200 gtccatatcc ctcattaaca cagacacaaa aattctaaat aaaattttaa 2250 caaattaaac taaacaatat atttaaagat gatatataac tactcagtgt 2300 ggtttgtccc acaaatgcag agttggttta atatttaaat atcaaccagt 2350 gtaattcagc acattaataa agtaaaaaag aaaaccataa aaaaaaaaa 2400 aaa 2403

<210> 267

<211> 466

<212> PRT

<213> Homo sapiens

<400> 267

Met Ala Phe Val Leu Ile Leu Val Leu Ser Phe Tyr Glu Leu Val 1 5 10 15

Ser Gly Gln Trp Gln Val Thr Gly Pro Gly Lys Phe Val Gln Ala 20 25 30

Leu Val Gly Glu Asp Ala Val Phe Ser Cys Ser Leu Phe Pro Glu

Thr	Ser	Ala	Glu	Ala 50	Met	Glu	Val	Arg	Phe 55	Phe	Arg .	Asn	Gln	Phe 60
His	Ala	Val	Val	His 65	Leu	Tyr	Arg	Asp	Gly 70	Glu	Asp	Trp	Glu	Ser 75
Lys	Gln	Met	Pro	Gln 80	Tyr	Arg	Gly	Arg	Thr 85	Glu	Phe	Val	Lys	Asp 90
Ser	Ile	Ala	Gly	Gly 95	Arg	Val	Ser	Leu	Arg 100	Leu	Lys	Asn	Ile	Thr 105
Pro	Ser	Asp	Ile	Gly 110	Leu	Tyr	Gly	Cys	Trp 115	Phe	Ser	Ser	Gln	Ile 120
Tyr	Asp	Glu	Glu	Ala 125	Thr	Trp	Glu	Leu	Arg 130	Val	Ala	Ala	Leu	Gly 135
Ser	Leu	Pro	Leu	Ile 140	Ser	Ile	Val	Gly	Tyr 145	Val	Asp	Gly	Gly	Ile 150
Gln	Leu	Leu	Cys	Leu 155	Ser	Ser	Gly	Trp	Phe 160	Pro	Gln	Pro	Thr	Ala 165
Lys	Trp	Lys	Gly	Pro 170		Gly	Gln	Asp	Leu 175	Ser	Ser	Asp	Ser	Arg 180
Ala	Asn	Ala	Asp	Gly 185		Ser	Leu	Tyr	Asp 190	Val	Glu	Ile	Ser	Ile 195
Ile	Val	Gln	Glu	Asn 200		Gly	Ser	lle	Leu 205	Cys	Ser	Ile	His	Leu 210
Ala	Glu	Gln	Ser	His 215		ı Val	Glu	ı Ser	Lys 220	Val	Leu	Ile	Gly	Glu 225
Thr	Phe	Ph∈	e Gln	230		Pro	Trp	Arg	Leu 235	Ala	Ser	Ile	Leu	Leu 240
Gly	, Leu	ı Lev	ı Cys	Gly 245		a Lev	ı Cys	s Gly	7 Val 250	. Val	Met	Gly	Met	Ile 255
Ile	e Val	. Phe	e Phe	Lys 260		c Lys	s Gly	y Lys	265	Glr	Ala	Glu	. Leu	Asp 270
Trp	o Arg	g Ar	g Lys	s His 275		y Gli	n Ala	a Glu	1 Leu 280	a Arg	Asp	Ala	Arg	Lys 285
His	s Ala	a Vai	l Glu	ı Val 290		r Le	u Ası	p Pro	o Glu 295	ı Thi	Ala	n His	s Pro	300
Le	u Cys	s Vai	l Se	r Ası 30		u Ly	s Th	r Vai	1 Thi 310	r His	a Arç	j Lys	s Ala	315
Gl	n Gl	u Va	l Pr	o Hi	s Se	r Gl	u Ly	s Ar	g Phe	e Thi	r Arç	J Ly:	s Sei	c Val

Val Ala Ser Gln Gly Phe Gln Ala Gly Arg His Tyr Trp Glu Val Asp Val Gly Gln Asn Val Gly Trp Tyr Val Gly Val Cys Arg Asp 360 Asp Val Asp Arg Gly Lys Asn Asn Val Thr Leu Ser Pro Asn Asn 370 365 Gly Tyr Trp Val Leu Arg Leu Thr Thr Glu His Leu Tyr Phe Thr 385 Phe Asn Pro His Phe Ile Ser Leu Pro Pro Ser Thr Pro Pro Thr 400 405 395 Arg Val Gly Val Phe Leu Asp Tyr Glu Gly Gly Thr Ile Ser Phe 415 410 Phe Asn Thr Asn Asp Gln Ser Leu Ile Tyr Thr Leu Leu Thr Cys 430 Gln Phe Glu Gly Leu Leu Arg Pro Tyr Ile Gln His Ala Met Tyr

Asp Glu Glu Lys Gly Thr Pro Ile Phe Ile Cys Pro Val Ser Trp

460

Gly

<210> 268 <211> 2103 <212> DNA

<213> Homo sapiens

<400> 268
ccttcacagg actcttcatt gctggttggc aatgatgtat cggccagatg 50

tggtgagggc taggaaaaga gtttgttggg aaccctgggt tatcggcctc 100

gtcatcttca tatccctgat tgtcctggca gtgtgcattg gactcactgt 150

tcattatgtg agatataatc aaaagaagac ctacaattac tatagcacat 200

tgtcatttac aactgacaaa ctatatgctg agtttggcag agaggcttct 250

aacaatttta cagaaatgag ccagagactt gaatcaatgg tgaaaaatgc 300

attttataaa tctccattaa gggaagaatt tgtcaagtct caggttatca 350

agttcagtca acagaagcat ggagtgttgg ctcatatgct gttgatttgt 400

agatttcact ctactgagga tcctgaaact gtagataaaa ttgttcaact 450

tgttttacat gaaaagctgc aagatgctgt aggacccct aaagtagatc 500

ctcactcagt taaaattaaa aaaatcaaca agacagaaac agacagctat 550 ctaaaccatt gctgcggaac acgaagaagt aaaactctag gtcagagtct 600 caggatcgtt ggtgggacag aagtagaaga gggtgaatgg ccctggcagg 650 ctagcctgca gtgggatggg agtcatcgct gtggagcaac cttaattaat 700 gccacatggc ttgtgagtgc tgctcactgt tttacaacat ataagaaccc 750 tgccagatgg actgcttcct ttggagtaac aataaaacct tcgaaaatga 800 aacggggtct ccggagaata attgtccatg aaaaatacaa acacccatca 850 catgactatg atatttctct tgcagagctt tctagccctg ttccctacac 900 aaatgcagta catagagttt gtctccctga tgcatcctat gagtttcaac 950 caggtgatgt gatgtttgtg acaggatttg gagcactgaa aaatgatggt 1000 tacagtcaaa atcatcttcg acaagcacag gtgactctca tagacgctac 1050 aacttgcaat gaacctcaag cttacaatga cgccataact cctagaatgt 1100 tatgtgctgg ctccttagaa ggaaaaacag atgcatgcca gggtgactct 1150 ggaggaccac tggttagttc agatgctaga gatatctggt accttgctgg 1200 aatagtgagc tggggagatg aatgtgcgaa acccaacaag cctggtgttt 1250 atactagagt tacggccttg cgggactgga ttacttcaaa aactggtatc 1300 taagagacaa aagcctcatg gaacagataa cattttttt tgttttttgg 1350 gtgtggaggc catttttaga gatacagaat tggagaagac ttgcaaaaca 1400 gctagatttg actgatctca ataaactgtt tgcttgatgc atgtattttc 1450 ttcccagctc tgttccgcac gtaagcatcc tgcttctgcc agatcaactc 1500 tgtcatctgt gagcaatagt tgaaacttta tgtacataga gaaatagata 1550 atacaatatt acattacagc ctgtattcat ttgttctcta gaagttttgt 1600 cagaattttg acttgttgac ataaatttgt aatgcatata tacaatttga 1650 agcacteett ttetteagtt eeteagetee teteatttea gcaaatatee 1700 attttcaagg tgcagaacaa ggagtgaaag aaaatataag aagaaaaaa 1750 tcccctacat tttattggca cagaaaagta ttaggtgttt ttcttagtgg 1800 aatattagaa atgatcatat tcattatgaa aggtcaagca aagacagcag 1850 aataccaatc acttcatcat ttaggaagta tgggaactaa gttaaggaag 1900 tccagaaaga agccaagata tatccttatt ttcattcca aacaactact 1950 atgataaatg tgaagaagat tctgttttt tgtgacctat aataattata 2000 caaacttcat gcaatgtact tgttctaagc aaattaaagc aaatattat 2050 ttaacattgt tactgaggat gtcaacatat aacaataaaa tataaatcac 2100 cca 2103

<210> 269

<211> 423

<212> PRT

<213> Homo sapiens

<400> 269

Met Met Tyr Arg Pro Asp Val Val Arg Ala Arg Lys Arg Val Cys
1 5 10 15

Trp Glu Pro Trp Val Ile Gly Leu Val Ile Phe Ile Ser Leu Ile 20 25 30

Val Leu Ala Val Cys Ile Gly Leu Thr Val His Tyr Val Arg Tyr \$35\$

Asn Gln Lys Lys Thr Tyr Asn Tyr Tyr Ser Thr Leu Ser Phe Thr 50 55 60

Thr Asp Lys Leu Tyr Ala Glu Phe Gly Arg Glu Ala Ser Asn Asn 65 70 75

Phe Thr Glu Met Ser Gln Arg Leu Glu Ser Met Val Lys Asn Ala 80 85 90

Phe Tyr Lys Ser Pro Leu Arg Glu Glu Phe Val Lys Ser Gln Val 95 100 105

Ile Lys Phe Ser Gln Gln Lys His Gly Val Leu Ala His Met Leu 110 115 120

Leu Ile Cys Arg Phe His Ser Thr Glu Asp Pro Glu Thr Val Asp 125 130 135

Lys Ile Val Gln Leu Val Leu His Glu Lys Leu Gln Asp Ala Val

Gly Pro Pro Lys Val Asp Pro His Ser Val Lys Ile Lys Lys Ile 155 160 165

Asn Lys Thr Glu Thr Asp Ser Tyr Leu Asn His Cys Cys Gly Thr 170 175 180

Arg Arg Ser Lys Thr Leu Gly Gln Ser Leu Arg Ile Val Gly Gly 185 190 195

Thr Glu Val Glu Glu Gly Glu Trp Pro Trp Gln Ala Ser Leu Gln 200 205 210

				_			C	C1	ת ז ת	Th.∽	T OU	Tla	Δen	Δla	Thr
1	rp	Asp	Gly	Ser	H1S 215	Arg	Cys	сту	Ala	220	пеп	116	AJII	Ala	225
7	ľrp	Leu	Val	Ser	Ala 230	Ala	His	Cys	Phe	Thr 235	Thr	Tyr	Lys	Asn	Pro 240
1	Ala	Arg	Trp	Thr	Ala 245	Ser	Phe	Gly	Val	Thr 250	Ile	Lys	Pro	Ser	Lys 255
ľ	Met	Lys	Arg	Gly	Leu 260	Arg	Arg	Ile	Ile	Val 265	His	Glu	Lys	Tyr	Lys 270
]	His	Pro	Ser	His	Asp 275	Tyr	Asp	Ile	Ser	Leu 280	Ala	Glu	Leu	Ser	Ser 285
	Pro	Val	Pro	Tyr	Thr 290	Asn	Ala	Val	His	Arg 295	Val	Cys	Leu	Pro	Asp 300
	Ala	Ser	Tyr	Glu	Phe	Gln	Pro	Gly	Asp	Val 310	Met	Phe	Val	Thr	Gly 315
	Phe	Gly	Ala	Leu	Lys 320	Asn	Asp	Gly	Tyr	Ser 325	Gln	Asn	His	Leu	Arg 330
	Gln	Ala	Gln	Val	Thr 335		Ile	Asp	Ala	Thr 340	Thr	Cys	Asn	Glu	Pro 345
	Gln	Ala	Tyr	Asn	Asp 350		Ile	Thr	Pro	Arg 355	Met	Leu	Cys	Ala	Gly 360
	Ser	Leu	Glu	Gly	Lys 365		Asp	Ala	Cys	Gln 370	Gly	Asp	Ser	Gly	Gly 375
	Pro	Leu	Val	Ser	Ser 380		Ala	Arg	Asp	Ile 385	Trp	Tyr	Leu	ı Ala	Gly 390
	Ile	· Val	Ser	Trp	Gly 395		Glu	Cys	Ala	Lys 400	Pro	Asn	Lys	Pro	Gly 405
	Val	. Tyr	Thr	Arg	Val 410		Ala	Leu	a Arg	Asp 415	Trp	ıle	e Thr	: Ser	Lys 420
	mh w	. (1)	, т1с												

Thr Gly Ile

<210> 270

<211> 1170

<212> DNA

<213> Homo sapiens

<400> 270

gtcgaaggtt ataaaagctt ccagccaaac ggcattgaag ttgaagatac 50
aacctgacag cacagcctga gatcttgggg atccetcage ctaacaccca 100
cagacgtcag ctggtggatt cccgctgcat caaggcctac ccactgtctc 150

catgctgggc tetecetgce ttetgtggct cetggeegtg acettettgg 200 ttcccagage tcagecettg geceetcaag aetttgaaga agaggaggea 250 gatgagactg agacggcgtg gccgcctttg ccggctgtcc cctgcgacta 300 cgaccactgc cgacacctgc aggtgccctg caaggagcta cagagggtcg 350 ggccggcggc ctgcctgtgc ccaggactct ccagcccgc ccagccgccc 400 gacccgccgc gcatgggaga agtgcgcatt gcggccgaag agggccgcgc 450 agtggtccac tggtgtgccc ccttctcccc ggtcctccac tactggctgc 500 tgctttggga cggcagcgag gctgcgcaga aggggccccc gctgaacgct 550 acggtccgca gagccgaact gaaggggctg aagccagggg gcatttatgt 600 cgtttgcgta gtggccgcta acgaggccgg ggcaagccgc gtgccccagg 650 ctggaggaga gggcctcgag ggggccgaca tccctgcctt cgggccttgc 700 agecgeettg eggtgeegee caaceceege actetggtee aegeggeegt 750 cggggtgggc acggccctgg ccctgctaag ctgtgccgcc ctggtgtggc 800 acttetgeet gegegatege tggggetgee egeegage egeegeega 850 gccgcagggg cgctctgaaa ggggcctggg ggcatctcgg gcacagacag 900 ccccacctgg ggcgctcagc ctggcccccg ggaaagagga aaacccgctg 950 cctccaggga gggctggacg gcgagctggg agccagcccc aggctccagg 1000 gccacggcgg agtcatggtt ctcaggactg agcgcttgtt taggtccggt 1050 acttggcgct ttgtttcctg gctgaggtct gggaaggaat agaaaggggc 1100 ccccaatttt tttttaagcg gccagataat aaataatgta acctttgcgg 1150 ttaaaaaaa aaaaaaaaa 1170

<210> 271

<211> 238

<212> PRT

<213> Homo sapiens

<400> 271

Met Leu Gly Ser Pro Cys Leu Leu Trp Leu Leu Ala Val Thr Phe
1 5 10 15

Leu Val Pro Arg Ala Gln Pro Leu Ala Pro Gln Asp Phe Glu Glu 20 25 30

Glu Glu Ala Asp Glu Thr Glu Thr Ala Trp Pro Pro Leu Pro Ala

Val	Pro	Cys	Asp	Tyr 50	Asp	His	Cys	Arg	His 55	Leu	Gln	Val	Pro	Cys 60
Lys	Glu	Leu	Gln	Arg 65	Val	Gly	Pro	Ala	Ala 70	Cys	Leu	Cys	Pro	Gly 75
Leu	Ser	Ser	Pro	Ala 80	Gln	Pro	Pro	Asp	Pro 85	Pro	Arg	Met	Gly	Glu 90
Val	Arg	Ile	Ala	Ala 95	Glu	Glu	Gly	Arg	Ala 100	Val	Val	His	Trp	Cys 105
Ala	Pro	Phe	Ser	Pro 110	Val	Leu	His	Tyr	Trp 115	Leu	Leu	Leu	Trp	Asp 120
Gly	Ser	Glu	Ala	Ala 125	Gln	Lys	Gly	Pro	Pro 130	Leu	Asn	Ala	Thr	Val 135
Arg	Arg	Ala	Glu	Leu 140	Lys	Gly	Leu	Lys	Pro 145	Gly	Gly	Ile	Tyr	Val 150
Val	Cys	Val	Val	Ala 155	Ala	Asn	Glu	Ala	Gly 160	Ala	Ser	Arg	Val	Pro 165
Gln	Ala	Gly	Gly	Glu 170	Gly	Leu	Glu	Gly	Ala 175	Asp	Ile	Pro	Ala	Phe 180
Gly	Pro	Cys	Ser	Arg 185		Ala	Val	Pro	Pro 190	Asn	Pro	Arg	Thr	Leu 195
Val	His	Ala	Ala	Val 200		Val	Gly	Thr	Ala 205	Leu	Ala	Leu	Leu	Ser 210
Cys	Ala	Ala	Leu	Val 215		His	Phe	Cys	Leu 220	Arg	Asp	Arg	Trp	Gly 225
Cys	Pro	Arg	Arg	Ala 230		Ala	Arg	Ala	Ala 235		Ala	Leu		
<210 <211 <212 <213	> 23 > DN	897 IA	apie	ens										

<400> 272

agagaaagaa gcgtctccag ctgaagccaa tgcagccctc cggctctccg 50

cgaagaagtt ccctgccccg atgagccccc gccgtgcgtc cccgactatc 100

cccaggeggg cgtggggcac cgggcccagc gccgacgatc gctgccgttt 150

tgcccttggg agtaggatgt ggtgaaagga tggggcttct cccttacggg 200

gctcacaatg gccagagaag attccgtgaa gtgtctgcgc tgcctgctct 250

acgccctcaa tctgctcttt tggttaatgt ccatcagtgt gttggcagtt 300

tctgcttgga tgagggacta cctaaataat gttctcactt taactgcaga 350 aacgagggta gaggaagcag tcattttgac ttactttcct gtggttcatc 400 cggtcatgat tgctgtttgc tgtttcctta tcattgtggg gatgttagga 450 tattgtggaa cggtgaaaag aaatctgttg cttcttgcat ggtactttgg 500 aagtttgctt gtcattttct gtgtagaact ggcttgtggc gtttggacat 550 atgaacagga acttatggtt ccagtacaat ggtcagatat ggtcactttg 600 aaagccagga tgacaaatta tggattacct agatatcggt ggcttactca 650 tgcttggaat ttttttcaga gagagtttaa gtgctgtgga gtagtatatt 700 tcactgactg gttggaaatg acagagatgg actggccccc agattcctgc 750 tgtgttagag aattcccagg atgttccaaa caggcccacc aggaagatct 800 cagtgacctt tatcaagagg gttgtgggaa gaaaatgtat tcctttttga 850 gaggaaccaa.acaactgcag gtgctgaggt ttctgggaat ctccattggg 900 gtgacacaaa tcctggccat gattctcacc attactctgc tctgggctct 950 gtattatgat agaagggagc ctgggacaga ccaaatgatg tccttgaaga 1000 atgacaactc tcagcacctg tcatgtccct cagtagaact gttgaaacca 1050 agcctgtcaa gaatctttga acacacatcc atggcaaaca gctttaatac 1100 acactttgag atggaggagt tataaaaaga aatgtcacag aagaaaacca 1150 caaacttgtt ttattggact tgtgaatttt tgagtacata ctatgtgttt 1200 cagaaatatg tagaaataaa aatgttgcca taaaataaca cctaagcata 1250 tactattcta tgctttaaaa tgaggatgga aaagtttcat gtcataagtc 1300 accacctgga caataattga tgcccttaaa atgctgaaga cagatgtcat 1350 acceactgtg tagectgtgt atgactttta etgaacacag ttatgttttg 1400 aggcagcatg gtttgattag catttccgca tccatgcaaa cgagtcacat 1450 atggtgggac tggagccata gtaaaggttg atttacttct accaactagt 1500 atataaagta ctaattaaat gctaacatag gaagttagaa aatactaata 1550 acttttatta ctcagcgatc tattcttctg atgctaaata aattatatat 1600 cagaaaactt tcaatattgg tgactaccta aatgtgattt ttgctggtta 1650 ctaaaatatt cttaccactt aaaagagcaa gctaacacat tgtcttaagc 1700 tcgattcagga tttttgtat ataagtctgt gttaaatctg tataattcag 1750
tcgatttcag ttctgataat gttaagaata accattatga aaaggaaaat 1800
ttgtcctgta tagcatcatt attttagcc tttcctgtta ataaagcttt 1850
actattctgt cctgggctta tattacacat ataactgtta tttaaatact 1900
taaccactaa ttttgaaaat taccagtgtg atacatagga atcattattc 1950
agaatgtagt ctggtcttta ggaagtatta ataagaaaat ttgcacataa 2000
cttagttgat tcagaaagga cttgtatgct gttttctcc caaatgaaga 2050
ctctttttga cactaaacac ttttaaaaa gcttatcttt gccttctcca 2100
aacaagaagc aatagtctcc aagtcaatat aaattctaca gaaaatagtg 2150
ttctttttct ccagaaaaat gcttgtgaga atcattaaaa catgtgacaa 2200
tttagagatt ctttgttta tttcactgat taatatactg tggcaaatta 2200
cacagattat taaattttt tacaagagta tagtatatt atttgaaatg 2300
ggaaaagtgc attttactg attttgtgta ttttgttat ttctcagaat 2350
atggaaaagaa aattaaaatg tgtcaataaa tattttctag agagtaa 2397

<210> 273

<211> 305

<212> PRT

<213> Homo sapiens

<400> 273

Met Ala Arg Glu Asp Ser Val Lys Cys Leu Arg Cys Leu Leu Tyr
1 5 10 15

Ala Leu Asn Leu Leu Phe Trp Leu Met Ser Ile Ser Val Leu Ala 20 25 30

Val Ser Ala Trp Met Arg Asp Tyr Leu Asn Asn Val Leu Thr Leu 35 40 45

Thr Ala Glu Thr Arg Val Glu Glu Ala Val Ile Leu Thr Tyr Phe
50 55 60

Pro Val Val His Pro Val Met Ile Ala Val Cys Cys Phe Leu Ile 65 70 75

Ile Val Gly Met Leu Gly Tyr Cys Gly Thr Val Lys Arg Asn Leu 80 85 90

Leu Leu Leu Ala Trp Tyr Phe Gly Ser Leu Leu Val Ile Phe Cys 95 100 105

Val Glu Leu Ala Cys Gly Val Trp Thr Tyr Glu Gln Glu Leu Met 110 115 120

Val Pro	Val	Gln	Trp 125	Ser	Asp	Met	Val	Thr 130	Leu	Lys	Ala	Arg	Met 135
Thr Asr	ı Tyr	Gly	Leu 140	Pro	Arg	Tyr	Arg	Trp 145	Leu	Thr	His	Ala	Trp 150
Asn Phe	Phe	Gln	Arg 155	Glu	Phe	Lys	Cys	Cys 160	Gly	Val	Val	Tyr	Phe 165
Thr Asp	Trp	Leu	Glu 170	Met	Thr	Glu	Met	Asp 175	Trp	Pro	Pro	Asp	Ser 180
Cys Cys	s Val	Arg	Glu 185	Phe	Pro	Gly	Cys	Ser 190	Lys	Gln	Ala	His	Gln 195
Glu Asp	Leu	Ser	Asp 200	Leu	Tyr	Gln	Glu	Gly 205	Cys	Gly	Lys	Lys	Met 210
Tyr Se	. Phe	Leu	Arg 215	Gly	Thr	Lys	Gln	Leu 220	Gln	Val	Leu	Arg	Phe 225
Leu Gly	y Ile	Ser	Ile 230	Gly	Val	Thr	Gln	Ile 235	Leu	Ala	Met	Ile	Leu 240
Thr Ile	e Thr	Leu	Leu 245	Trp	Ala	Leu	Tyr	Tyr 250	Asp	Arg	Arg	Glu	Pro 255
Gly Th	r Asp	Gln	Met 260	Met	Ser	Leu	Lys	Asn 265	Asp	Asn	Ser	Gln	His 270
Leu Se	r Cys	Pro	Ser 275	Val	Glu	Leu	Leu	Lys 280	Pro	Ser	Leu	Ser	Arg 285
Ile Ph	e Glu	His	Thr 290	Ser	Met	Ala	Asn	Ser 295	Phe	Asn	Thr	His	Phe 300
Glu Me	t Glu	Glu	Leu 305										
<210> 2				-									

<211> 2063

<212> DNA

<213> Homo sapiens

<400> 274

gagagaggca gcagcttgct cagcggacaa ggatgctggg cgtgagggac 50
caaggcctgc cctgcactcg ggcctcctcc agccagtgct gaccagggac 100
ttctgacctg ctggccagcc aggacctgtg tggggaggcc ctcctgctgc 150
cttggggtga caatctcagc tccaggctac agggagaccg ggaggatcac 200
agagccagca tgttacagga tcctgacagt gatcaacctc tgaacagcct 250
cgatgtcaaa cccctgcgca aaccccgtat ccccatggag accttcagaa 300

aggtggggat ccccatcatc atagcactac tgagcctggc gagtatcatc 350 attgtggttg tcctcatcaa ggtgattctg gataaatact acttcctctg 400 cgggcagcct ctccacttca tcccgaggaa gcagctgtgt gacggagagc 450 tggactgtcc cttgggggag gacgaggagc actgtgtcaa gagcttcccc 500 gaagggcctg cagtggcagt ccgcctctcc aaggaccgat ccacactgca 550 ggtgctggac tcggccacag ggaactggtt ctctgcctgt ttcgacaact 600 tcacagaagc tctcgctgag acagcctgta ggcagatggg ctacagcaga 650 gctgtggaga ttggcccaga ccaggatctg gatgttgttg aaatcacaga 700 aaacagccag gagcttcgca tgcggaactc aagtgggccc tgtctctcag 750 gctccctggt ctccctgcac tgtcttgcct gtgggaagag cctgaagacc 800 ccccgtgtgg tgggtgggga ggaggcctct gtggattctt ggccttggca 850 ggtcagcatc cagtacgaca aacagcacgt ctgtggaggg agcatcctgg 900 acceccactg ggteetcacg geageceact getteaggaa acatacegat 950 gtgttcaact ggaaggtgcg ggcaggctca gacaaactgg gcagcttccc 1000 atccctggct gtggccaaga tcatcatcat tgaattcaac cccatgtacc 1050 ccaaagacaa tgacatcgcc ctcatgaagc tgcagttccc actcactttc 1100 tcaggcacag tcaggcccat ctgtctgccc ttctttgatg aggagctcac 1150 tccagccacc ccactctgga tcattggatg gggctttacg aagcagaatg 1200 gagggaagat gtctgacata ctgctgcagg cgtcagtcca ggtcattgac 1250 agcacacggt gcaatgcaga cgatgcgtac cagggggaag tcaccgagaa 1300 gatgatgtgt gcaggcatcc cggaaggggg tgtggacacc tgccagggtg 1350 acagtggtgg gcccctgatg taccaatctg accagtggca tgtggtgggc 1400 atcgttagct ggggctatgg ctgcgggggc ccgagcaccc caggagtata 1450 caccaaggtc tcagcctatc tcaactggat ctacaatgtc tggaaggctg 1500 agctgtaatg ctgctgcccc tttgcagtgc tgggagccgc ttccttcctg 1550 ccctgcccac ctggggatcc cccaaagtca gacacagagc aagagtcccc 1600 ttgggtacac ccctctgccc acagcctcag catttcttgg agcagcaaag 1650 ggcctcaatt cctgtaagag accctcgcag cccagaggcg cccagaggaa 1700 gtcagcagcc ctagctcggc cacacttggt gctccagca tcccaggag 1750
agacacagcc cactgaacaa ggtctcaggg gtattgctaa gccaagaagg 1800
aactttccca cactactgaa tggaagcagg ctgtcttgta aaagcccaga 1850
tcactgtggg ctggagagga gaaggaaagg gtctgcgcca gccctgtccg 1900
tcttcaccca tccccaagcc tactagagca agaaaccagt tgtaatataa 1950
aatgcactgc cctactgttg gtatgactac cgttacctac tgttgtcatt 2000
gttattacag ctatggccac tattattaaa gagctgtgta acatctctgg 2050
caaaaaaaaa aaa 2063

<210> 275

<211> 432

<212> PRT

<213> Homo sapiens

<400> 275

Met Leu Gln Asp Pro Asp Ser Asp Gln Pro Leu Asn Ser Leu Asp 1 5 10 15

Val Lys Pro Leu Arg Lys Pro Arg Ile Pro Met Glu Thr Phe Arg 20 25 30

Lys Val Gly Ile Pro Ile Ile Ile Ala Leu Leu Ser Leu Ala Ser 35 40 45

Ile Ile Val Val Val Leu Ile Lys Val Ile Leu Asp Lys Tyr
50 55 60

Tyr Phe Leu Cys Gly Gln Pro Leu His Phe Ile Pro Arg Lys Gln
65 70 75

Leu Cys Asp Gly Glu Leu Asp Cys Pro Leu Gly Glu Asp Glu Glu 80 85 90

His Cys Val Lys Ser Phe Pro Glu Gly Pro Ala Val Ala Val Arg 95 100 105

Leu Ser Lys Asp Arg Ser Thr Leu Gln Val Leu Asp Ser Ala Thr 110 115

Gly Asn Trp Phe Ser Ala Cys Phe Asp Asn Phe Thr Glu Ala Leu 125 130 135

Ala Glu Thr Ala Cys Arg Gln Met Gly Tyr Ser Arg Ala Val Glu 140 145 150

Ile Gly Pro Asp Gln Asp Leu Asp Val Val Glu Ile Thr Glu Asn 155 160 165

Ser Gln Glu Leu Arg Met Arg Asn Ser Ser Gly Pro Cys Leu Ser 170 175 180

Gly	Ser	Leu	Val	Ser 185	Leu	His	Cys	Leu	Ala 190	Cys	Gly	Lys	Ser	Leu 195
Lys	Thr	Pro	Arg	Val 200	Val	Gly	Gly	Glu	Glu 205	Ala	Ser	Val	Asp	Ser 210
Trp	Pro	Trp	Gln	Val 215	Ser	Ile	Gln	Tyr	Asp 220	Lys	Gln	His	Val	Cys 225
Gly	Gly	Ser	Ile	Leu 230	Asp	Pro	His	Trp	Val 235	Leu	Thr	Ala	Ala	His 240
Cys	Phe	Arg	Lys	His 245	Thr	Asp	Val	Phe	Asn 250	Trp	Lys	Val	Arg	Ala 255
Gly	Ser	Asp	Lys	Leu 260	Gly	Ser	Phe	Pro	Ser 265	Leu	Ala	Val	Ala	Lys 270
Ile	Ile	Ile	Ile	Glu 275	Phe	Asn	Pro	Met	Tyr 280	Pro	Lys	Asp	Asn	Asp 285
Ile	Ala	Leu	Met	Lys 290	Leu	Gln	Phe	Pro	Leu 295	Thr	Phe	Ser	Gly	Thr 300
Val	Arg	Pro	Ile	Cys 305	Leu	Pro	Phe	Phe	Asp 310	Glu	Glu	Leu	Thr	Pro 315
Ala	Thr	Pro	Leu	Trp 320	Ile	Ile	Gly	Trp	Gly 325	Phe	Thr	Lys	Gln	Asn 330
Gly	Gly	Lys	Met	Ser 335	Asp	Ile	Leu	Leu	Gln 340	Ala	Ser	Val	Gln	Val 345
Ile	Asp	Ser	Thr	Arg 350		Asn	Ala	Asp	Asp 355	Ala	Tyr	Gln	Gly	Glu 360
Val	Thr	Glu	Lys	Met 365		Cys	: Ala	Gly	7 Ile 370	Pro	Glu	Gly	Gly	Val 375
Asp	Thr	Cys	Gln	Gly 380		Ser	Gly	/ Gly	7 Pro 385	Leu	Met	Tyr	Gln	Ser 390
Asp	Gln	Trp	His	Val		Gly	/ Ile	e Val	Ser 400	Trp	Gly	Tyr	Gly	Cys 405
Gly	Gly	Pro	Ser	Thr 410		Gly	y Val	L Tyı	Thr 415	Lys	: Val	. Ser	Ala	Tyr 420
Leu	. Asn	Trp	o Ile	Tyr 425		ı Val	l Trị	o Lys	s Ala 430		ı Lev	1		

<210> 276

<211> 3143

<212> DNA <213> Homo sapiens

<400> 276 gggctgaggc actgagagac cggaaagcct ggcattccag agggagggaa 50 acgcagcggc atccccaggc tccagagctc cctggtgaca gtctgtggct 100 gagcatggcc ctcccagccc tgggcctgga cccctggagc ctcctgggcc 150 ttttcctctt ccaactgctt cagctgctgc tgccgacgac gaccgcgggg 200 ggaggcgggc aggggcccat gcccagggtc agatactatg caggggatga 250 acgtagggca cttagcttct tccaccagaa gggcctccag gattttgaca 300 ctctgctcct gagtggtgat ggaaatactc tctacgtggg ggctcgagaa 350 gccattctgg ccttggatat ccaggatcca ggggtcccca ggctaaagaa 400 catgataccg tggccagcca gtgacagaaa aaagagtgaa tgtgccttta 450 agaagaagag caatgagaca cagtgtttca acttcatccg tgtcctggtt 500 tettacaatg teacecatet etacacetge ggeacetteg cetteagece 550 tgcttgtacc ttcattgaac ttcaagattc ctacctgttg cccatctcgg 600 aggacaaggt catggaggga aaaggccaaa gcccctttga ccccgctcac 650 aagcatacgg ctgtcttggt ggatgggatg ctctattctg gtactatgaa 700 caactteetg ggcagtgage ceateetgat gegeacactg ggateecage 750 ctgtcctcaa gaccgacaac ttcctccgct ggctgcatca tgacgcctcc 800 tttgtggcag ccatcccttc gacccaggtc gtctacttct tcttcgagga 850 gacagecage gagtttgaet tetttgagag getecaeaca tegegggtgg 900 ctagagtctg caagaatgac gtgggcggcg aaaagctgct gcagaagaag 950 tggaccacct tcctgaaggc ccagctgctc tgcacccagc cggggcagct 1000 gecetteaac gteateegee aegeggteet geteeeegee gatteteeea 1050 cagetececa catetacgea gtetteacet eccagtggea ggttggeggg 1100 accaggaget etgeggtttg tgeettetet etettggaca ttgaacgtgt 1150 ctttaagggg aaatacaaag agttgaacaa agaaacttca cgctggacta 1200 cttatagggg ccctgagacc aacccccggc caggcagttg ctcagtgggc 1250 ccctcctctg ataaggccct gaccttcatg aaggaccatt tcctgatgga 1300 tgagcaagtg gtggggacgc ccctgctggt gaaatctggc gtggagtata 1350 cacggettge agtggagaca geceagggee ttgatgggea cagecatett 1400 gtcatgtacc tgggaaccac cacagggtcg ctccacaagg ctgtggtaag 1450 tggggacagc agtgctcatc tggtggaaga gattcagctg ttccctgacc 1500 ctgaacctgt tcgcaacctg cagctggccc ccacccaggg tgcagtgttt 1550 gtaggcttct caggaggtgt ctggagggtg ccccgagcca actgtagtgt 1600 ctatgagage tgtgtggact gtgtccttgc ccgggacccc cactgtgcct 1650 gggaccetga gteecgaace tgttgeetee tgtetgeece caacetgaae 1700 tcctggaagc aggacatgga gcgggggaac ccagagtggg catgtgccag 1750 tggccccatg agcaggagcc ttcggcctca gagccgcccg caaatcatta 1800 aagaagteet ggetgteece aacteeatee tggageteee etgeeceeae 1850 ctgtcagcct tggcctctta ttattggagt catggcccag cagcagtccc 1900 agaagcetet tecaetgtet acaatggete eetettgetg atagtgeagg 1950 atggagttgg gggtctctac cagtgctggg caactgagaa tggcttttca 2000 taccctgtga tctcctactg ggtggacagc caggaccaga ccctggccct 2050 ggatcctgaa ctggcaggca tcccccggga gcatgtgaag gtcccgttga 2100 ccagggtcag tggtggggcc gccctggctg cccagcagtc ctactggccc 2150 cactttgtca ctgtcactgt cctctttgcc ttagtgcttt caggagccct 2200 catcatcctc gtggcctccc cattgagagc actccgggct cggggcaagg 2250 ttcagggctg tgagaccctg cgccctgggg agaaggcccc gttaagcaga 2300 gagcaacacc tccagtctcc caaggaatgc aggacctctg ccagtgatgt 2350 ggacgctgac aacaactgcc taggcactga ggtagcttaa actctaggca 2400 caggeegggg etgeggtgea ggeaeetgge catgetgget gggeggeeca 2450 agcacagece tgaetaggat gacageagea caaaagaeea eettteteee 2500 ctgagaggag cttctgctac tctgcatcac tgatgacact cagcagggtg 2550 atgcacagca gtctgcctcc cctatgggac tcccttctac caagcacatg 2600 agetetetaa cagggtgggg getaceeeca gaeetgetee tacaetgata 2650 ttgaagaacc tggagaggat ccttcagttc tggccattcc agggaccctc 2700 cagaaacaca gtgtttcaag agaccctaaa aaacctgcct gtcccaggac 2750 cctatggtaa tgaacaccaa acatctaaac aatcatatgc taacatgcca 2800 ctcctggaaa ctccactctg aagctgccgc tttggacacc aacactccct 2850

teteccaggg teatgeaggg atetgeteec teetgettee ettaccagte 2900 gtgcaccgct gactcccagg aagtctttcc tgaagtctga ccacctttct 2950 tettgettea gttggggeag actetgatee ettetgeeet ggeagaatgg 3000 caggggtaat ctgagccttc ttcactcctt taccctagct gaccccttca 3050 cetetecece tecetttee tttgttttgg gatteagaaa actgettgte 3100 agagactgtt tatttttat taaaaatata aggcttaaaa aaa 3143

<210> 277

<211> 761

<212> PRT

<213> Homo sapiens

<400> 277

Met Ala Leu Pro Ala Leu Gly Leu Asp Pro Trp Ser Leu Leu Gly

Leu Phe Leu Phe Gln Leu Leu Gln Leu Leu Pro Thr Thr Thr

Ala Gly Gly Gly Gln Gly Pro Met Pro Arg Val Arg Tyr Tyr 35

Ala Gly Asp Glu Arg Arg Ala Leu Ser Phe Phe His Gln Lys Gly

Leu Gln Asp Phe Asp Thr Leu Leu Ser Gly Asp Gly Asn Thr

Leu Tyr Val Gly Ala Arg Glu Ala Ile Leu Ala Leu Asp Ile Gln

Asp Pro Gly Val Pro Arg Leu Lys Asn Met Ile Pro Trp Pro Ala 100

Ser Asp Arg Lys Lys Ser Glu Cys Ala Phe Lys Lys Ser Asn 120 115 110

Glu Thr Gln Cys Phe Asn Phe Ile Arg Val Leu Val Ser Tyr Asn 130

Val Thr His Leu Tyr Thr Cys Gly Thr Phe Ala Phe Ser Pro Ala 150 140

Cys Thr Phe Ile Glu Leu Gln Asp Ser Tyr Leu Leu Pro Ile Ser 155 160

Glu Asp Lys Val Met Glu Gly Lys Gly Gln Ser Pro Phe Asp Pro 175 170

Ala His Lys His Thr Ala Val Leu Val Asp Gly Met Leu Tyr Ser 195 190 185

Gly	Thr	Met	Asn	Asn 200	Phe	Leu	Gly	Ser	Glu 205	Pro	Ile	Leu	Met	Arg 210
Thr	Leu	Gly	Ser	Gln 215	Pro	Val	Leu	Lys	Thr 220	Asp	Asn	Phe	Leu	Arg 225
Trp	Leu	His	His	Asp 230	Ala	Ser	Phe	Val	Ala 235	Ala	Ile	Pro	Ser	Thr 240
Gln	Val	Val	Tyr	Phe 245	Phe	Phe	Glu	Glu	Thr 250	Ala	Ser	Glu	Phe	Asp 255
Phe	Phe	Glu	Arg	Leu 260	His	Thr	Ser	Arg	Val 265	Ala	Arg	Val	Cys	Lys 270
Asn	Asp	Val	Gly	Gly 275	Glu	Lys	Leu	Leu	Gln 280	Lys	Lys	Trp	Thr	Thr 285
Phe	Leu	Lys	Ala	Gln 290	Leu	Leu	Суѕ	Thr	Gln 295	Pro	Gly	Gln	Leu	Pro 300
Phe	Asn	Val	Ile	Arg 305	His	Ala	Val	Leu	Leu 310	Pro	Ala	Asp	Ser	Pro 315
Thr	Ala	Pro	His	Ile 320	Tyr	Ala	Val	Phe	Thr 325	Ser	Gln	Trp	Gln	Val 330
Gly	Gly	Thr	Arg	Ser 335	Ser	Ala	Val	Cys	Ala 340	Phe	Ser	Leu	Leu	Asp 345
Ile	Glu	Arg	Val	Phe 350	Lys	Gly	Lys	Tyr	Lys 355	Glu	Leu	Asn	Lys	Glu 360
Thr	Ser	Arg	Trp	Thr 365	Thr	Tyr	Arg	Gly	Pro 370	Glu	Thr	Asn	Pro	Arg 375
Pro	Gly	Ser	Cys	Ser 380	Val	Gly	Pro	Ser	Ser 385	Asp	Lys	Ala	Leu	Thr 390
Phe	Met	Lys	Asp	His 395	Phe	Leu	Met	Asp	Glu 400	Gln	Val	Val	Gly	Thr 405
Pro	Leu	Leu	Val	Lys 410	Ser	Gly	Val	Glu	Tyr 415	Thr	Arg	Leu	Ala	Val 420
Glu	Thr	Ala	Gln	Gly 425	Leu	Asp	Gly	His	Ser 430	His	Leu	Val	Met	Tyr 435
Leu	Gly	Thr	Thr	Thr 440	Gly	Ser	Leu	His	Lys 445	Ala	Val	Val	Ser	Gly 450
Asp	Ser	Ser	Ala	His 455	Leu	Val	Glu	Glu	Ile 460	Gln	Leu	Phe	Pro	Asp 465
Pro	Glu	Pro	Val	Arg 470	Asn	Leu	Gln	Leu	Ala 475	Pro	Thr	Gln	Gly	Ala 480

Val	Phe	Val	Gly	Phe 485	Ser	Gly	Gly	Val	Trp 490	Arg	Val	Pro	Arg	Ala 495
Asn	Cys	Ser	Val	Tyr 500	Glu	Ser	Cys	Val	Asp 505	Cys	Val	Leu	Ala	Arg 510
Asp	Pro	His	Cys	Ala 515	Trp	Asp	Pro	Glu	Ser 520	Arg	Thr	Суз	Cys	Leu 525
Leu	Ser	Ala	Pro	Asn 530	Leu	Asn	Ser	Trp	Lys 535	Gln	Asp	Met	Glu	Arg 540
Gly	Asn	Pro	Glu	Trp 545	Ala	Cys	Ala	Ser	Gly 550	Pro	Met	Ser	Arg	Ser 555
Leu	Arg	Pro	Gln	Ser 560	Arg	Pro	Gln	Ile	Ile 565	Lys	Glu	Val	Leu	Ala 570
Val	Pro	Asn	Ser	Ile 575	Leu	Glu	Leu	Pro	Cys 580	Pro	His	Leu	Ser	Ala 585
Leu	Ala	Ser	Tyr	Tyr 590	Trp	Ser	His	Gly	Pro 595	Ala	Ala	Val	Pro	Glu 600
Ala	Ser	Ser	Thr	Val 605	Tyr	Asn	Gly	Ser	Leu 610	Leu	Leu	Ile	Val	Gln 615
Asp	Gly	Val	Gly	Gly 620	Leu	Tyr	Gln	Cys	Trp 625	Ala	Thr	Glu	Asn	Gly 630
Phe	Ser	Tyr	Pro	Val 635	Ile	Ser	Tyr	Trp	Val 640	Asp	Ser	Gln	Asp	Gln 645
Thr	Leu	Ala	Leu	Asp 650	Pro	Glu	Leu	Ala	Gly 655	Ile	Pro	Arg	Glu	His 660
Val	Lys	Val	Pro	Leu 665		Arg	Val	Ser	Gly 670	Gly	Ala	Ala	Leu	Ala 675
Ala	Gln	Gln	Ser	Tyr 680	Trp	Pro	His	Phe	Val 685	Thr	Val	Thr	Val	Leu 690
Phe	Ala	Leu	Val	Leu 695		Gly	Ala	Leu	1le 700	Ile	Leu	Val	Ala	Ser 705
Pro	Leu	. Arg	, Ala	Leu 710		Ala	Arg	Gly	Lys 715	Val	Gln	Gly	Cys	Glu 720
Thr	Leu	Arç	g Pro	Gly 725		Lys	a Ala	Pro	730		Arg	Glu	Gln	His 735
Leu	ı Glm	Ser	Pro	Lys 740		ı Cys	s Arg	J Thr	Ser 745		Ser	Asp	Val	750
Ala	a Asp	Ası	n Asn	Cys 755		ı Gly	/ Thr	Glu	val 760		L			

```
<210> 278
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 278
 ctgctggtga aatctggcgt ggag 24
<210> 279
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 279
 gtctggtcct ggctgtccac ccag 24
<210> 280
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 280
 catcttgtca tgtacctggg aaccaccaca gggtcgctcc acaag 45
 <210> 281
 <211> 2320
 <212> DNA
 <213> Homo sapiens
 <400> 281
  agggtccctt agccgggcgc agggcgcgca gcccaggctg agatccgcgg 50
  cttccgtaga agtgagcatg gctgggcagc gagtgcttct tctagtgggc 100
  ttccttctcc ctggggtcct gctctcagag gctgccaaaa tcctgacaat 150
  atctacagta ggtggaagcc attatctact gatggaccgg gtttctcaga 200
  ttcttcaaga tcacggtcat aatgtcacca tgcttaacca caaaagaggt 250
  ccttttatgc cagattttaa aaaggaagaa aaatcatatc aagttatcag 300
  ttggcttgca cctgaagatc atcaaagaga atttaaaaag agttttgatt 350
  tctttctgga agaaacttta ggtggcagag gaaaatttga aaacttatta 400
  aatgttctag aatacttggc gttgcagtgc agtcattttt taaatagaaa 450
```

ggatatcatg gattccttaa agaatgagaa cttcgacatg gtgatagttg 500 aaacttttga ctactgtcct ttcctgattg ctgagaagct tgggaagcca 550 tttgtggcca ttctttccac ttcattcggc tctttggaat ttgggctacc 600 aatccccttg tcttatgttc cagtattccg ttccttgctg actgatcaca 650 tggacttctg gggccgagtg aagaattttc tgatgttctt tagtttctgc 700 aggaggcaac agcacatgca gtctacattt gacaacacca tcaaggaaca 750 tttcacagaa ggctctaggc cagttttgtc tcatcttcta ctgaaagcag 800 agttgtggtt cattaactct gactttgcct ttgattttgc tcgacctctg 850 cttcccaaca ctgtttatgt tggaggcttg atggaaaaac ctattaaacc 900 agtaccacaa gacttggaga acttcattgc caagtttggg gactctggtt 950 ttgtccttgt gaccttgggc tccatggtga acacctgtca gaatccggaa 1000 atcttcaagg agatgaacaa tgcctttgct cacctacccc aaggggtgat 1050 atggaagtgt cagtgttctc attggcccaa agatgtccac ctggctgcaa 1100 atgtgaaaat tgtggactgg cttcctcaga gtgacctcct ggctcaccca 1150 agcatccgtc tgtttgtcac ccacggcggg cagaatagca taatggaggc 1200 catccagcat ggtgtgccca tggtggggat ccctctcttt ggagaccagc 1250 ctgaaaacat ggtccgagta gaagccaaaa agtttggtgt ttctattcag 1300 ttaaagaagc tcaaggcaga gacattggct cttaagatga aacaaatcat 1350 ggaagacaag agatacaagt ccgcggcagt ggctgccagt gtcatcctgc 1400 geteceaece geteageece acaeagegge tggtgggetg gattgaecae 1450 gtcctccaga cagggggcgc gacgcacctc aagccctatg tctttcagca 1500 gecetggeat gageagtace tgttegaegt ttttgtgttt etgetgggge 1550 tcactctggg gactctatgg ctttgtggga agctgctggg catggctgtc 1600 tggtggctgc gtggggccag aaaggtgaag gagacataag gccaggtgca 1650 gccttggcgg ggtctgtttg gtgggcgatg tcaccatttc tagggagctt 1700 cccactagtt ctggcagccc cattctctag tccttctagt tatctcctgt 1750 tttcttgaag aacaggaaaa atggccaaaa atcatccttt ccacttgcta 1800 attttgctac aaattcatcc ttactagctc ctgcctgcta gcagaaatct 1850 ttccagtcct cttgtcctcc tttgtttgcc atcagcaagg gctatgctgt 1900 gattctgtct ctgagtgact tggaccactg accetcagat ttccagcett 1950 aaaatccacc ttccttctca tgcgcctctc cgaatcacac cctgactctt 2000 ccagcctcca tgtccagacc tagtcagcct ctctcactcc tgcccctact 2050 atctatcatg gaataacatc caagaaagac accttgcata ttctttcagt 2100 ttctgttttg ttctccaca tattctcttc aatgctcagg aagcctgccc 2150 tgtgcttgag agttcagggc cggacacagg ctcacaggtc tccacattgg 2200 gtccctgtct ctggtgcca cagtgagctc cttcttggct gagcaggcat 2250 ggagactgta ggtttccaga tttcctgaaa aataaaagtt tacagcgtta 2300 tctctccca acctcactaa 2320

<400> 282

Met	Ala	Gly	Gln	Arg	Val	Leu	Leu	Leu	Val	Gly	Phe	Leu	Leu	Pro
1				5					10					15

Val Gly Gly Ser His Tyr Leu Leu Met Asp Arg Val Ser Gln Ile
$$35$$
 40 45

Leu Gln Asp His Gly His Asn Val Thr Met Leu Asn His Lys Arg
$$50 \,$$
 $55 \,$ $60 \,$

Gly Pro Phe Met Pro Asp Phe Lys Lys Glu Glu Lys Ser Tyr Gln
$$657075$$

Lys Phe Glu Asn Leu Leu Asn Val Leu Glu Tyr Leu Ala Leu Gln
$$110$$
 115 120

Asn Glu Asn Phe Asp Met Val Ile Val Glu Thr Phe Asp Tyr Cys
$$140$$
 145 150

Pro Phe Leu Ile Ala Glu Lys Leu Gly Lys Pro Phe Val Ala Ile

<210> 282

<211> 523

<212> PRT

<213> Homo sapiens

L	eu	Ser	Thr	Ser	Phe 170	Gly	Ser	Leu	Glu	Phe 175	Gly	Leu	Pro	Ile	Pro 180
L	eu	Ser	Tyr	Val	Pro 185	Val	Phe	Arg	Ser	Leu 190	Leu	Thr	Asp	His	Met 195
A	sp	Phe	Trp	Gly	Arg 200	Val	Lys	Asn	Phe	Leu 205	Met	Phe	Phe	Ser	Phe 210
C	ys	Arg	Arg	Gln	Gln 215	His	Met	Gln	Ser	Thr 220	Phe	Asp	Asn	Thr	Ile 225
L	ys	Glu	His	Phe	Thr 230	Glu	Gly	Ser	Arg	Pro 235	Val	Leu	Ser	His	Leu 240
Le	eu	Leu	Lys	Ala	Glu 245	Leu	Trp	Phe	Ile	Asn 250	Ser	Asp	Phe	Ala	Phe 255
As	qe	Phe	Ala	Arg	Pro 260	Leu	Leu	Pro	Asn	Thr 265	Val	Tyr	Val	Gly	Gly 270
Le	eu	Met	Glu	Lys	Pro 275	Ile	Lys	Pro	Val	Pro 280	Gln	Asp	Leu	Glu	Asn 285
Pł	ne	Ile	Ala	Lys	Phe 290	Gly	Asp	Ser	Gly	Phe 295	Val	Leu	Val	Thr	Leu 300
					Asn 305					310				_	315
Me	et	Asn	Asn	Ala	Phe 320	Ala	His	Leu	Pro	Gln 325	Gly	Val	Ile	Trp	Lys 330
C.7	/S	Gln	Cys	Ser	His 335	Trp	Pro	Lys	Asp	Val 340	His	Leu	Ala	Ala	Asn 345
Vā	11	Lys	Ile	Val	Asp 350	Trp	Leu	Pro	Gln	Ser 355	Asp	Leu	Leu	Ala	His 360
					Leu 365					370					375
					Gln 380					385					390
					Pro 395					400					405
					Ile 410					415					420
					Lys 425					430					435
A1	a	Ala	Val	Ala	Ala	Ser	Val	Ile	Leu	Arg	Ser	His	Pro	Leu	Ser

Pro Thr Gln Arg Leu Val Gly Trp Ile Asp His Val Leu Gln Thr
455 460 465

Gly Gly Ala Thr His Leu Lys Pro Tyr Val Phe Gln Gln Pro Trp
470 475 480

His Glu Gln Tyr Leu Phe Asp Val Phe Val Phe Leu Leu Gly Leu
485
490
495

Thr Leu Gly Thr Leu Trp Leu Cys Gly Lys Leu Leu Gly Met Ala 500 505 505

<210> 283

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 283

tgcctttgct cacctacccc aagg 24

<210> 284

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 284

tcaggctggt ctccaaagag aggg 24

<210> 285

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 285

cccaaagatg tccacctggc tgcaaatgtg aaaattgtgg actgg 45

<210> 286

<211> 2340

<212> DNA

<213> Homo sapiens

<400> 286

gggctgttga tttgtggggg attttgaaga gaggaggaat aggaggaagg 50

ggttgagggg ctgcctctgg catatgcaca cactcacaca ttctgtcaca 100 cccgtcacac acacatacca tgttctccat cccccaggt ccagccctca 150 gtgctgtccc atccagcagg gctaccctga agctctggct gcagccctcc 200 cgtccagtgg gcaggcggct tcatccctcc tttctctccc aaagcccaac 250 tgctgtcact gcatgctctg ccaaggagga gggaactgca gtgacagcag 300 gagtaagagt gggaggcagg acagagctgg gacacaggta tggagagggg 350 gttcagcgag cctagagagg gcagactatc agggtgccgg cggtgagaat 400 ccagggagag gagcggaaac agaagagggg cagaagaccg gggcacttgt 450 gggttgcaga gcccctcagc catgttggga gccaagccac actggctacc 500 aggtccccta cacagtcccg ggctgccctt ggttctggtg cttctggccc 550 tgggggccgg gtgggcccag gaggggtcag agcccgtcct gctggagggg 600 gagtgcctgg tggtctgtga gcctggccga gctgctgcag gggggcccgg 650 gggagcagcc ctgggagagg caccccctgg gcgagtggca tttgctgcgg 700 tecgaageea ceaceatgag eeageagggg aaaceggeaa tggeaceagt 750 ggggccatct acttcgacca ggtcctggtg aacgagggcg gtggctttga 800 cegggeetet ggeteetteg tageceetgt eeggggtgte taeagettee 850 ggttccatgt ggtgaaggtg tacaaccgcc aaactgtcca ggtgagcctg 900 atgctgaaca cgtggcctgt catctcagcc tttgccaatg atcctgacgt 950 gaccegggag gcagccacca getetgtget actgecettg gaccetgggg 1000 accgagtgtc tctgcgcctg cgtcggggga atctactggg tggttggaaa 1050 tactcaagtt tctctggctt cctcatcttc cctctctgag gacccaagtc 1100 tttcaagcac aagaatccag cccctgacaa ctttcttctg ccctctcttg 1150 ccccagaaac agcagaggca ggagagagac tccctctggc tcctatccca 1200 cctctttgca tgggaccctg tgccaaacac ccaagtttaa gagaagagta 1250 gagetgtgge atetecagae caggeettte cacceaceca eccecagtta 1300 ccctcccagc cacctgctgc atctgttcct gcctgcagcc ctaggatcag 1350 ggcaaggttt ggcaagaagg aagatctgca ctactttgcg gcctctgctc 1400 ctccggttcc cccaccccag cttcctgctc aatgctgatc agggacaggt 1450 ggcgcaggtg agcctgacag gccccacag gagcccagat ggacaagcct 1500 cagcgtaccc tgcaggcttc ttcctgtgag gaaagccagc atcacggatc 1550 tcagccagca ccgtcagaag ctgagccagc accgtatggg ctagggtggg 1600 aggeteagee acaggeagaa gggtgggaag ggeetggagt etgtggetgg 1650 tgaggaagga aggagggtgt attgtctaga ctgaacatgg tacacattct 1700 gcatgtatag cagagcagcc agcaggtagc aatcctggct gtccttctat 1750 gctggatccc agatggactc tggcccttac ctccccacct gagattaggg 1800 tgagtgtgtt tgctctggct gagagcagag ctgagagcag gtatacagag 1850 ctggaagtgg accatggaaa acatcgataa ccatgcatcc tcttgcttgg 1900 ccacctcctg aaactgctcc acctttgaag tttgaacttt agtccctcca 1950 cactetgact getgeeteet tecteecage teteteactg agttatette 2000 actgtacctg ttccagcata tccccactat ctctctttct cctgatctgt 2050 gctgtcttat tctcctcctt aggcttccta ttacctggga ttccatgatt 2100 catteettea gaccetetee tgccagtatg ctaaaccete cetetett 2150 tettateceg etgteceatt ggeceageet ggatgaatet ateaataaaa 2200 caactagaga atggtggtca gtgagacact atagaattac taaggagaag 2250 atgcctctgg agttttggatc gggtgttaca ggtacaagta ggtatgttgc 2300 agaggaaaat aaatatcaaa ctgtatacta aaattaaaaa 2340

<210> 287

<211> 205

<212> PRT

<213> Homo sapiens

<400> 287

Met Leu Gly Ala Lys Pro His Trp Leu Pro Gly Pro Leu His Ser

Pro Gly Leu Pro Leu Val Leu Val Leu Ala Leu Gly Ala Gly 25

Trp Ala Gln Glu Gly Ser Glu Pro Val Leu Leu Glu Gly Glu Cys

Leu Val Val Cys Glu Pro Gly Arg Ala Ala Gly Gly Pro Gly

Gly Ala Ala Leu Gly Glu Ala Pro Pro Gly Arg Val Ala Phe Ala 70

```
Ala Val Arg Ser His His His Glu Pro Ala Gly Glu Thr Gly Asn
Gly Thr Ser Gly Ala Ile Tyr Phe Asp Gln Val Leu Val Asn Glu
                                     100
Gly Gly Gly Phe Asp Arg Ala Ser Gly Ser Phe Val Ala Pro Val
Arg Gly Val Tyr Ser Phe Arg Phe His Val Val Lys Val Tyr Asn
Arg Gln Thr Val Gln Val Ser Leu Met Leu Asn Thr Trp Pro Val
                 140
Ile Ser Ala Phe Ala Asn Asp Pro Asp Val Thr Arg Glu Ala Ala
                                     160
                 155
Thr Ser Ser Val Leu Leu Pro Leu Asp Pro Gly Asp Arg Val Ser
                                     175
                 170
Leu Arg Leu Arg Arg Gly Asn Leu Leu Gly Gly Trp Lys Tyr Ser
                                     190
                 185
Ser Phe Ser Gly Phe Leu Ile Phe Pro Leu
                 200
<210> 288
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 288
 aggcagccac cagctctgtg ctac 24
<210> 289
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 289
 cagagagga agatgaggaa gccagag 27
<210> 290
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

<400> 290 ctgtgctact gcccttggac cctggggacc gagtgtctct gc 42

<210> 291 <211> 1570 <212> DNA

<213> Homo sapiens

<400> 291

gctgtttctc tcgcgccacc actggccgcc ggccgcagct ccaggtgtcc 50 tagccgccca gcctcgacgc cgtcccggga cccctgtgct ctgcgcgaag 100 ccctggcccc gggggccggg gcatgggcca ggggcgcggg gtgaagcggc 150 ttcccgcggg gccgtgactg ggcgggcttc agccatgaag accctcatag 200 ccgcctactc cggggtcctg cgcggcgagc gtcaggccga ggctgaccgg 250 agccageget etcaeggagg acetgegetg tegegegagg ggtetgggag 300 atggggcact ggatccagca tecteteege ecteeaggae etettetetg 350 tcacctggct caataggtcc aaggtggaaa agcagctaca ggtcatctca 400 gtgctccagt gggtcctgtc cttccttgta ctgggagtgg cctgcagtgc 450 catcctcatg tacatattct gcactgattg ctggctcatc gctgtgctct 500 acttcacttg gctggtgttt gactggaaca cacccaagaa aggtggcagg 550 aggtcacagt gggtccgaaa ctgggctgtg tggcgctact ttcgagacta 600 ctttcccatc cagctggtga agacacacaa cctgctgacc accaggaact 650 atatetttgg ataccaecce catggtatea tgggeetggg tgeettetge 700 aacttcagca cagaggccac agaagtgagc aagaagttcc caggcatacg 750 gccttacctg gctacactgg caggcaactt ccgaatgcct gtgttgaggg 800 agtacctgat gtctggaggt atctgccctg tcagccggga caccatagac 850 tatttgcttt caaagaatgg gagtggcaat gctatcatca tcgtggtcgg 900 gggtgcggct gagtctctga gctccatgcc tggcaagaat gcagtcaccc 950 tgcggaaccg caagggcttt gtgaaactgg ccctgcgtca tggagctgac 1000 ctggttccca tctactcctt tggagagaat gaagtgtaca agcaggtgat 1050 cttcgaggag ggctcctggg gccgatgggt ccagaagaag ttccagaaat 1100 acattggttt cgccccatgc atcttccatg gtcgaggcct cttctcctcc 1150 gacacctggg ggctggtgcc ctactccaag cccatcacca ctgttgtggg 1200 agageceate accatececa agetggagea eccaacecag caagacateg 1250 acctgtacca caccatgtac atggaggccc tggtgaagct cttcgacaag 1300 cacaagacca agttcggcct cccggagact gaggtcctgg aggtgaactg 1350 agccagcctt cggggccaat tccctggagg aaccagctgc aaatcacttt 1400 tttgctctgt aaatttggaa gtgtcatggg tgtctgtggg ttatttaaaa 1450 aaaaaaaaa aaaaaaaaa 1570

<210> 292

<211> 388

<212> PRT

<213> Homo sapiens

<400> 292

Met Lys Thr Leu Ile Ala Ala Tyr Ser Gly Val Leu Arg Gly Glu

Arg Gln Ala Glu Ala Asp Arg Ser Gln Arg Ser His Gly Gly Pro

Ala Leu Ser Arg Glu Gly Ser Gly Arg Trp Gly Thr Gly Ser Ser

Ile Leu Ser Ala Leu Gln Asp Leu Phe Ser Val Thr Trp Leu Asn 50

Arg Ser Lys Val Glu Lys Gln Leu Gln Val Ile Ser Val Leu Gln

Trp Val Leu Ser Phe Leu Val Leu Gly Val Ala Cys Ser Ala Ile

Leu Met Tyr Ile Phe Cys Thr Asp Cys Trp Leu Ile Ala Val Leu 105

Tyr Phe Thr Trp Leu Val Phe Asp Trp Asn Thr Pro Lys Lys Gly

Gly Arg Arg Ser Gln Trp Val Arg Asn Trp Ala Val Trp Arg Tyr 130

Phe Arg Asp Tyr Phe Pro Ile Gln Leu Val Lys Thr His Asn Leu 140

Leu Thr Thr Arg Asn Tyr Ile Phe Gly Tyr His Pro His Gly Ile 160

Met Gly Leu Gly Ala Phe Cys Asn Phe Ser Thr Glu Ala Thr Glu 180 170

Val Ser Lys	Lys Ph	e Pro 5	Gly	Ile	Arg	Pro 190	Tyr	Leu	Ala	Thr	Leu 195
Ala Gly Asn	Phe Ar		Pro	Val	Leu	Arg 205	Glu	Tyr	Leu	Met	Ser 210
Gly Gly Ile	Cys Pr 21		Ser	Arg	Asp	Thr 220	Ile	Asp	Tyr	Leu	Leu . 225
Ser Lys Asn	Gly Se		Asn	Ala	Ile	Ile 235	Ile	Val	Val	Gly	Gly 240
Ala Ala Glu	Ser Le		Ser	Met	Pro	Gly 250	Lys	Asn	Ala	Val	Thr 255
Leu Arg Asn	Arg Ly		Phe	Val	Lys	Leu 265	Ala	Leu	Arg	His	Gly 270
Ala Asp Leu		co Ile 75	Tyr	Ser	Phe	Gly 280	Glu	Asn	Glu	Val	Tyr 285
Lys Gln Val		ne Glu 90	Glu	Gly	Ser	Trp 295	Gly	Arg	Trp	Val	Gln 300
Lys Lys Phe		ys Tyr 05	Ile	Gly	Phe	Ala 310	Pro	Суз	Ile	Phe	His 315
Gly Arg Gly		he Ser 20	Ser	Asp	Thr	Trp 325	Gly	Leu	Val	Pro	Tyr 330
Ser Lys Pro		hr Thi 35	· Val	. Val	Gly	Glu 340	Pro	lle	Thr	Ile	Pro 345
Lys Leu Glu		ro Thi 50	Glr	Gln	Asp	355	Asp	Leu	Туг	His	360
Met Tyr Met		la Leu 65	ı Val	Lys	Leu	Phe 370	: Asp	Lys	: His	. Lys	375
Lys Phe Gly		ro Gli 80	ı Thi	c Glu	ı Val	Let 385	ı Glu	ı Val	. Asr	ì	
<210> 293 <211> 24 <212> DNA <213> Artif	icial S	Sequen	ce								
<220> <223> Synth	etic ol	igonu	cleo	tide	prol	ре					
<400> 293 gctgacctgg	ttccc	atcta	ctcc	24							
<210> 294 <211> 24 <212> DNA											

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 294
 cccacagaca cccatgacac ttcc 24
<210> 295
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 295
 aagaatgaat tgtacaaagc aggtgatctt cgaggagggc tcctggggcc 50
<210> 296
<211> 3060
<212> DNA
<213> Homo sapiens
<400> 296
 gggcggcggg atgggggccg ggggcggcgg gcgccgcact cgctgaggcc 50
 ccgacgcagg gccgggccgg gcccagggcc gaggagcgcg gcggccagag 100
 cggggccgcg gaggcgacgc cggggacgc cgcgcgacga gcaggtggcg 150
 gcggctgcag gcttgtccag ccggaagccc tgagggcagc tgttcccact 200
 ggctctgctg accttgtgcc ttggacggct gtcctcagcg aggggccgtg 250
 caccegetee tgageagege catgggeetg etggeettee tgaagaceca 300
 gttcgtgctg cacctgctgg tcggctttgt cttcgtggtg agtggtctgg 350
 tcatcaactt cgtccagctg tgcacgctgg cgctctggcc ggtcagcaag 400
 cagetetace geogeeteaa etgeogeete geotaeteae tetggageea 450
 actggtcatg ctgctggagt ggtggtcctg cacggagtgt acactgttca 500
 cggaccaggc cacggtagag cgctttggga aggagcacgc agtcatcatc 550
 ctcaaccaca acttcgagat cgacttcctc tgtgggtgga ccatgtgtga 600
 gcgcttcgga gtgctgggga gctccaaggt cctcgctaag aaggagctgc 650
 tctacgtgcc cctcatcggc tggacgtggt actttctgga gattgtgttc 700
 tgcaagcgga agtgggagga ggaccgggac accgtggtcg aagggctgag 750
```

gcgcctgtcg gactaccccg agtacatgtg gtttctcctg tactgcgagg 800

ggacgcgctt cacggagacc aagcaccgcg ttagcatgga ggtggcggct 850 gctaaggggc ttcctgtcct caagtaccac ctgctgccgc ggaccaaggg 900 cttcaccacc gcagtcaagt gcctccgggg gacagtcgca gctgtctatg 950 atgtaaccct gaacttcaga ggaaacaaga acccgtccct gctggggatc 1000 ctctacggga agaagtacga ggcggacatg tgcgtgagga gatttcctct 1050 ggaagacatc ccgctggatg aaaaggaagc agctcagtgg cttcataaac 1100 tgtaccagga gaaggacgcg ctccaggaga tatataatca gaagggcatg 1150 tttccagggg agcagtttaa gcctgcccgg aggccgtgga ccctcctgaa 1200 cttcctgtcc tgggccacca ttctcctgtc tcccctcttc agttttgtct 1250 tgggcgtctt tgccagcgga tcacctctcc tgatcctgac tttcttgggg 1300 tttgtgggag cagcttcctt tggagttcgc agactgatag gagaatcgct 1350 tgaacctggg aggtggagat tgcagtgagc tgagatggca tcactgtact 1400 ccagcctagg caacagagca agactcagtc tcaaaaaaaa aaaaaaacaa 1450 aaaaacccca gaaattctgg agttgaactg tgtagttact gacatgaaaa 1500 attcactaga ggctgaacag cagatttgag caggcagaaa aaaatcagca 1550 agcttgaaga tggtaccttg agatttttca ggctaatgaa aaaagaatga 1600 aggaaaatta acagcctcag agacccatgg tgcaccgtca cacaaatcaa 1650 catatgcatg atgagagtcc cagaaggaga ggagagaaag ggtcagaaag 1700 aatggccaca agctgatgaa aaacagtaac ctacccactc aggaagctca 1750 gtgaactcca atgaggatga atatcagaga tccacaccta gatatttcat 1800 aatcaaagtg tcaaatgaca aagaatcttg aaagcagcaa gagatgagca 1850 acttatcttg ttcaaaggat ctttgatcag attaacagct catttctcct 1900 cagaaatcat gggagccagg agatagtggg atgaacactg ttgaaggcaa 1950 aaccttcaac tgtaattatt ggacttttga gtcttagatg gtcctgacct 2000 ctttgtcttc agggacagtt tttcaattta atccctaata acaattagtc 2050 aagctteett gaeetgtagg aaggeetgte tttaggeegg geaeagtgge 2100 ttacacctgt aatcccagca ctttgggagg cccagacggg tggatcattt 2150 ggggtcaggc tgatctcaaa ctcctgagtt caggtgatct gcccgcctca 2200 gcctcccaaa gtgttgtgat tgcaggcgtg agccactgcg cctggccgga 2250

atttcttttt aaggctgaat gatgggggcc aggcacgatg gctcacgcct 2300 gtgatcccaa gtagcttgga ttgtaaacat gcaccaccat gcctggctaa 2350 tttttgtatt tttagtagag acgtgttagc caggctggtc tcgatctcct 2400 gacctcaagt gaccacctgc ctcagcctcc caaagtactg ggattacagg 2450 cgtgagccac tgtgcctggc cttgagcatc ttgtgatgtg cttattggcc 2500 atttgtatat cttctatctt ctttggggaa atgtctgttc aagtcctttg 2550 ttgttctgtt gcccaggctg gagtacagtg gcacagtctt ggctcactgc 2650 ageetegace teetgggetg cagtgateet eccaecteag cetecettgt 2700 agctgtattt ttttgtattt tgtattttgt agctgtagtt tttgtatttt 2750 ttgtggagac agcatttcac catgatgccc aggctggtct tgaactcctg 2800 agetcaagtg atetgeetge tteageetee caaagtgetg ggattacaga 2850 catgagccac tgcacctggc aaactcccaa aattcaacac acacacacaa 2900 aaaaccacct gattcaaaat gggcagaggg gccgggtgtg gccccaacta 2950 ccagggagac tgaagtggga ggatcgcttg ggcatgagaa gtcgaggctg 3000 cagtgagtcg aggttgtgcg actgcattcc agcctggaca acagagtgag 3050 accetatete 3060

<210> 297

<211> 368

<212> PRT

<213> Homo sapiens

<400> 297

Met Gly Leu Leu Ala Phe Leu Lys Thr Gln Phe Val Leu His Leu
1 5 10 15

Leu Val Gly Phe Val Phe Val Val Ser Gly Leu Val Ile Asn Phe 20 25 30

Val Gln Leu Cys Thr Leu Ala Leu Trp Pro Val Ser Lys Gln Leu 35 40 45

Tyr Arg Arg Leu Asn Cys Arg Leu Ala Tyr Ser Leu Trp Ser Gln
50 55 60

Leu Val Met Leu Leu Glu Trp Trp Ser Cys Thr Glu Cys Thr Leu 65 70 75

Phe Thr Asp Gln Ala Thr Val Glu Arg Phe Gly Lys Glu His Ala

Val	Ile	Ile	Leu	Asn 95	His	Asn	Phe	Glu	Ile 100	Asp	Phe	Leu	Cys	Gly 105
Trp	Thr	Met	Cys	Glu 110	Arg	Phe	Gly	Val	Leu 115	Gly	Ser	Ser	Lys	Val 120
Leu	Ala	Lys	Lys	Glu 125	Leu	Leu	Tyr	Val	Pro 130	Leu	Ile	Gly	Trp	Thr 135
Trp	Tyr	Phe	Leu	Glu 140	Ile	Val	Phe	Cys	Lys 145	Arg	Lys	Trp	Glu	Glu 150
Asp	Arg	Asp	Thr	Val 155	Val	Glu	Gly	Leu	Arg 160	Arg	Leu	Ser	Asp	Tyr 165
Pro	Glu	Tyr	Met	Trp 170	Phe	Leu	Leu	Tyr	Cys 175	Glu	Gly	Thr	Arg	Phe 180
Thr	Glu	Thr	Lys	His 185	Arg	Val	Ser	Met	Glu 190	Val	Ala	Ala	Ala	Lys 195
Gly	Leu	Pro	Val	Leu 200	Lys	Tyr	His	Leu	Leu 205	Pro	Arg	Thr	Lys	Gly 210
Phe	Thr	Thr	Ala	Val 215	Lys	Cys	Leu	Arg	Gly 220	Thr	Val	Ala	Ala	Val 225
Tyr	Asp	Val	Thr	Leu 230	Asn	Phe	Arg	Gly	Asn 235	Lys	Asn	Pro	Ser	Leu 240
Leu	Gly	Ile	Leu	Tyr 245	Gly	Lys	Lys	Tyr	Glu 250	Ala	Asp	Met	Суз	Val 255
Arg	Arg	Phe	Pro	Leu 260	Glu	Asp	Ile	Pro	Leu 265	Asp	Glu	Lys	Glu	Ala 270
Ala	Gln	Trp	Leu	His 275	Lys	Leu	Tyr	Gln	Glu 280	Lys	Asp	Ala	Leu	Gln 285
Glu	Ile	Tyr	Asn	Gln 290	Lys	Gly	Met	Phe	Pro 295	Gly	Glu	Gln	Phe	Lys 300
Pro	Ala	Arg	Arg	Pro 305	Trp	Thr	Leu	Leu	Asn 310	Phe	Leu	Ser	Trp	Ala 315
Thr	Ile	. Leu	Leu	Ser 320		Leu	Phe	Ser	Phe 325		Leu	Gly	Val	Phe 330
Ala	Ser	Gly	Ser	Pro 335		Leu	ılle	Leu	Thr 340		Leu	Gly	Phe	Val 345
Gly	Ala	a Ala	Ser	Phe 350		Val	Arg	, Arg	Leu 355		Gly	Glu	ı Ser	Leu 360
Glu	Pro	Gly	, Arg	Trp	Arg	Leu	ı Glr	1						

```
<210> 298
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 298
cttcctctgt gggtggacca tgtg 24
<210> 299
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 299
 gccacctcca tgctaacgcg g 21
<210> 300
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 300
 ccaaggteet egetaagaag gagetgetet aegtgeeeet eateg 45
<210> 301
<211> 1334
<212> DNA
<213> Homo sapiens
<400> 301
 gatattettt atttttaaga atetgaagta etatgeatea eteeeteeaa 50
 tgtcctgggg cagccaccag gcatattcat ctttgtgtgt gtttttcttt 100
 tgctttagca ctggggcact tcttgcttat ttctttggta ggaaaggggc 150
 tcagtttgtc ttgtggggtt ggtggcaggc aggccggctt acgcctgata 200
 cggccctggg ttagaaggga agggaagata aacttttata caaatgggga 250
 tagctggggt ctgagacctg cttcctcagt aaaattcctg ggatctgcct 300
 ataccttctt ttctctaacc tggcataccc tgcttaaagc ctctcagggc 350
 ttctctctgt tcttaggatc aaagtattta gagctacaag agccctcatg 400
```

gtctggcccc tgccccctg gccagcttca ttgtacatgt ggtgttctct 450 tgtcgttcct gtaatgtggt atgccatggg gtctttgcac aagcctttcc 500 tetttggctg gacactgttc cctgccccc ccatactctt cctacttaat 550 atgtagtcat cctgcagatt tcaattctaa catcattttc tccagggatc 600 ctggcctgac agaatctcat cttgtttaat gctctcataa gaccacttgt 650 ttcccttttg cagcacttgc cactcagttg tatctttatg tgcgtttgtg 700 gttgtatggg ttgtgtctgt tccccagaat gcccagctct gagctgcgtg 750 agggtcaagg gcattgctgt gcctgccagg tatagtgcct acatgtggtg 800 ggtgctcatg ttttagagac taaatggagg aggagatgag gaaaagattg 850 aaatctctca gttcaccaga tggtgtaggg cccagcattg taaattcaca 900 cgttgactgt gcttgtgaat tatctgggga tgcaggtcct gattcagtag 950 geccaggttg ggcateteta acaaacteee aegtgatget gatgetggte 1000 ctatgaacta tactaaatag taagaatcta tggagccagg ctgggcatgg 1050 tggctcacac ctatgatccc agcactttgg gaggctgagg caggctgatc 1100 acctggagtc aggatttcaa gactagcctg gccaacatgg tggaacccca 1150 tetgtactaa aaatacacaa attagetggg catggtggca catgeetgta 1200 gtcccagcta cttgggaggc tgaagcaaga gaatcgcttg aacctgggag 1250 gcggaggttg cagtgagccg agatcaggcc actgtattcc aaccagggtg 1300 acagagtgag actctatgtc caaaaaaaaa aaaa 1334

<210> 302

<211> 143

<212> PRT

<213> Homo sapiens

<400> 302

Met His His Ser Leu Gln Cys Pro Gly Ala Ala Thr Arg His Ile
1 5 10 15

His Leu Cys Val Cys Phe Ser Phe Ala Leu Ala Leu Gly His Phe
20 25 30

Leu Leu Ile Ser Leu Val Gly Lys Gly Leu Ser Leu Ser Cys Gly 35 40 45

Val Gly Gly Arg Gln Ala Gly Leu Arg Leu Ile Arg Pro Trp Val
50 55 60

Arg Arg Glu Gly Lys Ile Asn Phe Tyr Thr Asn Gly Asp Ser Trp

Gly Leu Arg Pro Ala Ser Ser Val Lys Phe Leu Gly Ser Ala Tyr

Thr Phe Phe Ser Leu Thr Trp His Thr Leu Leu Lys Ala Ser Gln

Gly Phe Ser Leu Phe Leu Gly Ser Lys Tyr Leu Glu Leu Gln Glu 110

Pro Ser Trp Ser Gly Pro Cys Pro Pro Gly Gln Leu His Cys Thr 130 125

Cys Gly Val Leu Leu Ser Phe Leu

<210> 303

<211> 1768

<212> DNA

<213> Homo sapiens

<400> 303

ggetggaetg gaacteetgg teccaagtga tecaceegee teageeteee 50 aaggtgctgt gattataggt gtaagccacc gtgtctggcc tctgaacaac 100 tttttcagca actaaaaaag ccacaggagt tgaactgcta ggattctgac 150 tatgctgtgg tggctagtgc tcctactcct acctacatta aaatctgttt 200 tttgttctct tgtaactagc ctttaccttc ctaacacaga ggatctgtca 250 ctgtggctct ggcccaaacc tgaccttcac tctggaacga gaacagaggt 300 ttctacccac accgtcccct cgaagccggg gacagcctca ccttgctggc 350 ctctcgctgg agcagtgccc tcaccaactg tctcacgtct ggaggcactg 400 actegggeag tgeaggtage tgageetett ggtagetgeg gettteaagg 450 tgggccttgc cctggccgta gaagggattg acaagcccga agatttcata 500 ggcgatggct cccactgccc aggcatcagc cttgctgtag tcaatcactg 550 ccctggggcc aggacgggcc gtggacacct gctcagaagc agtgggtgag 600 acatcacgct gcccgcccat ctaacctttt catgtcctgc acatcacctg 650 atccatgggc taatctgaac tctgtcccaa ggaacccaga gcttgagtga 700 gctgtggctc agacccagaa ggggtctgct tagaccacct ggtttatgtg 750 acaggacttg cattetectg gaacatgagg gaacgeegga ggaaageaaa 800 gtggcaggga aggaacttgt gccaaattat gggtcagaaa agatggaggt 850 gttgggttat cacaaggcat cgagtctcct gcattcagtg gacatgtggg 900 ggaagggctg ccgatggcgc atgacacact cgggactcac ctctggggcc 950 atcagacage egttteegee eegateeacg taceagetge tgaagggeaa 1000 ctgcaggccg atgctctcat cagccaggca gcagccaaaa tctgcgatca 1050 ccagccaggg gcagccgtct gggaaggagc aagcaaagtg accatttctc 1100 ctccctcct tccctctgag aggccctcct atgtccctac taaagccacc 1150 agcaagacat agctgacagg ggctaatggc tcagtgttgg cccaggaggt 1200 cagcaaggcc tgagagctga tcagaagggc ctgctgtgcg aacacggaaa 1250 tgcctccagt aagcacaggc tgcaaaatcc ccaggcaaag gactgtgtgg 1300 ctcaatttaa atcatgttct agtaattgga gctgtcccca agaccaaagg 1350 agctagagct tggttcaaat gatctccaag ggcccttata ccccaggaga 1400 ctttgatttg aatttgaaac cccaaatcca aacctaagaa ccaggtgcat 1450 taagaatcag ttattgccgg gtgtggtggc ctgtaatgcc aacattttgg 1500 gaggccgagg cgggtagatc acctgaggtc aggagttcaa gaccagcctg 1550 gccaacatgg tgaaacccct gtctctacta aaaatacaaa aaaactagcc 1600 aggcatggtg gtgtgtgcct gtatcccagc tactcgggag gctgagacag 1650 gagaattact tgaacctggg aggtgaagga ggctgagaca ggagaatcac 1700 ttcagcctga gcaacacagc gagactctgt ctcagaaaaa ataaaaaaag 1750 aattatggtt atttgtaa 1768

<210> 304

<211> 109

<212> PRT

<213> Homo sapiens

<400> 304

Met Leu Trp Trp Leu Val Leu Leu Leu Leu Pro Thr Leu Lys Ser 1 5 10 15

Val Phe Cys Ser Leu Val Thr Ser Leu Tyr Leu Pro Asn Thr Glu
20 25 30

Asp Leu Ser Leu Trp Leu Trp Pro Lys Pro Asp Leu His Ser Gly 35 40 45

Thr Arg Thr Glu Val Ser Thr His Thr Val Pro Ser Lys Pro Gly 50 55 60

Thr Ala Ser Pro Cys Trp Pro Leu Ala Gly Ala Val Pro Ser Pro

Thr Val Ser Arg Leu Glu Ala Leu Thr Arg Ala Val Gln Val Ala

Glu Pro Leu Gly Ser Cys Gly Phe Gln Gly Gly Pro Cys Pro Gly 105 100

Arg Arg Arg Asp

<210> 305

<211> 989

<212> DNA

<213> Homo sapiens

<400> 305

gegggeeege gagteegaga eetgteeeag gageteeage teaegtgace 50 tgtcactgcc tcccgccgcc tcctgcccgc gccatgaccc agccggtgcc 100 ceggetetee gtgeeegeeg egetggeeet gggeteagee geaetgggeg 150 cegeettege cactggeete tteetgggga ggeggtgeee eccatggega 200 ggccggcgag agcagtgcct gcttcccccc gaggacagcc gcctgtggca 250 gtatettetg ageegeteea tgegggagea eeeggegetg egaageetga 300 ggctgctgac cctggagcag ccgcaggggg attctatgat gacctgcgag 350 caggcccagc tcttggccaa cctggcgcgg ctcatccagg ccaagaaggc 400 gctggacctg ggcaccttca cgggctactc cgccctggcc ctggccctgg 450 cgctgcccgc ggacgggcgc gtggtgacct gcgaggtgga cgcgcagccc 500 ccggagctgg gacggcccct gtggaggcag gccgaggcgg agcacaagat 550 cgacctccgg ctgaagcccg ccttggagac cctggacgag ctgctggcgg 600 cgggcgaggc cggcaccttc gacgtggccg tggtggatgc ggacaaggag 650 aactgctccg cctactacga gcgctgcctg cagctgctgc gacccggagg 700 catectegee gteeteagag teetgtggeg egggaaggtg etgeaacete 750 cgaaagggga cgtggcggcc gagtgtgtgc gaaacctaaa cgaacgcatc 800 cggcgggacg tcagggtcta catcagcctc ctgcccctgg gcgatggact 850 caccttggcc ttcaagatct agggctggcc cctagtgagt gggctcgagg 900 gagggttgcc tgggaacccc aggaattgac cctgagtttt aaattcgaaa 950 ataaagtggg gctgggacac aaaaaaaaa aaaaaaaa 989

<210> <211> <212> <213>	262 PRT	o sa	pien	s											
<400> Met 1	306 Thr	Gln	Pro	Val 5	Pro	Arg	Leu	Ser `	Val	Pro	Ala	Ala	Leu	Ala 15	
Leu	Gly	Ser	Ala	Ala 20	Leu	Gly	Ala	Ala	Phe 25	Ala	Thr	Gly	Leu	Phe 30	
Leu	Gly	Arg	Arg	Cys 35	Pro	Pro	Trp	Arg	Gly 40	Arg	Arg	Glu	Gln	Cys 45	
Leu	Leu	Pro	Pro	Glu 50	Asp	Ser	Arg	Leu	Trp 55	Gln	Tyr	Leu	Leu	Ser 60	
Arg	Ser	Met	Arg	Glü 65	His	Pro	Ala	Leu	Arg 70	Ser	Leu	Arg	Leu	Leu 75	
Thr	Leu	Glu	Gln	Pro 80	Gln	Gly	Asp	Ser	Met 85	Met	Thr	Cys	Glu	Gln 90	
Ala	Gln	Leu	Leu	Ala 95	Asn	Leu	Ala	Arg	Leu 100	Ile	Gln	Ala	Lys	Lys 105	
Ala	Leu	Asp	Leu	Gly 110	Thr	Phe	Thr	Gly	Tyr 115	Ser	Ala	Leu	Ala	Leu 120	
Ala	Leu	Ala	Leu	Pro 125	Ala	Asp	Gly	Arg	Val 130	Val	Thr	Cys	Glu	Val 135	
Asp	Ala	Gln	Pro	Pro 140	Glu	Leu	Gly	Arg	Pro 145	Leu	Trp	Arg	Gln	Ala 150	
Glu	Ala	Glu	His	Lys 155	Ile	Asp	Leu	Arg	Leu 160	Lys	Pro	Ala	Leu	Glu 165	
Thr	Leu	Asp	Glu	Leu 170	Leu	Ala	Ala	Gly	Glu 175	Ala	Gly	Thr	Phe	180	
Val	. Ala	ı Val	L Val	Asp 185		Asp	Lys	Glu	Asn 190	Суѕ	s Ser	Ala	туг	Tyr 195	
Glu	ı Arç	g Cys	s Lei	1 Glr 200		ı Leu	ı Arç	J Pro	Gly 205	Gly	/ Ile	. Lev	ı Ala	a Val 210	
Lev	ı Arç	g Val	l Lei	ı Trp 215		g Gly	/ Lys	s Val	Leu 220	ı Glr	n Pro	Pro	Ly:	3 Gly 225	
Ası	o Val	l Al	a Ala	a Glu 230	ı Cys	s Val	L Ar	g Asr	235	ı Ası	n Glu	a Ar	g Il	e Arg 240	
Ar	g Ası	p Va	l Ar	g Va:	l Ту: 5	r Ile	e Se	r Lei	1 Let 250	ı Pro	o Lei	ı G1;	y As	p Gly 255	

<210> 307

<211> 2272

<212> DNA

<213> Homo sapiens

<400> 307

ccgccgccgc agccgctacc gccgctgcag ccgctttccg cggcctgggc 50 ctctcgccgt cagcatgcca cacgccttca agcccgggga cttggtgttc 100 gctaagatga agggctaccc tcactggcct gccaggatcg acgacatcgc 150 ggatggcgcc gtgaagcccc cacccaacaa gtaccccatc tttttctttg 200 gcacacacga aacagcette etgggaceca aggacetgtt eccetacgae 250 aaatgtaaag acaagtacgg gaagcccaac aagaggaaag gcttcaatga 300 agggctgtgg gagatccaga acaaccccca cgccagctac agcgcccctc 350 cgccagtgag ctcctccgac agcgaggccc ccgaggccaa ccccgccgac 400 ggcagtgacg ctgacgagga cgatgaggac cggggggtca tggccgtcac 450 ageggtaace gecaeagetg ecagegaeag gatggagage gaeteagaet 500 cagacaagag tagcgacaac agtggcctga agaggaagac gcctgcgcta 550 aagatgtcgg tctcgaaacg agcccgaaag gcctccagcg acctggatca 600 ggccagcgtg tccccatccg aagaggagaa ctcggaaagc tcatctgagt 650 cggagaagac cagcgaccag gacttcacac ctgagaagaa agcagcggtc 700 cgggcgccac ggaggggccc tctgggggga cggaaaaaaa agaaggcgcc 750 gtcagcctcc gactccgact ccaaggccga ttcggacggg gccaagcctg 800 agecggtgge catggeggg teggegteet ecteeteet tteeteetee 850 tectecgaet ecgatgtgte tgtgaagaag eeteegaggg geaggaagee 900 ageggagaag cetetecega ageeggagg geggaaaceg aageetgaae 950 ggcctccgtc cagctccagc agtgacagtg acagcgacga ggtggaccgc 1000 atcagtgagt ggaagcggcg ggacgaggcg cggaggcgcg agctggaggc 1050 ccggcggcgg cgagagcagg aggaggagct gcggcgcctg cgggagcagg 1100 agaaggagga gaaggagcgg aggccgagc gggccgaccg cggggaggct 1150 gageggggca geggeggeag eageggggae gageteaggg aggaegatga 1200 gcccgtcaag aagcggggac gcaagggccg gggccggggt cccccgtcct 1250 cetetgaete egageeegag geegagetgg agagagage caagaaatea 1300 gcgaagaagc cgcagtcctc aagcacagag cccgccagga aacctggcca 1350 gaaggagaag agagtgegge eegaggagaa geaacaagee aageeegtga 1400 aggtggagcg gacccggaag cggtccgagg gcttctcgat ggacaggaag 1450 gtagagaaga agaaagagcc ctccgtggag gagaagctgc agaagctgca 1500 cagtgagatc aagtttgccc taaaggtcga cagcccggac gtgaagaggt 1550 gcctgaatgc cctagaggag ctgggaaccc tgcaggtgac ctctcagatc 1600 ctccagaaga acacagacgt ggtggccacc ttgaagaaga ttcgccgtta 1650 caaagcgaac aaggacgtaa tggagaaggc agcagaagtc tatacccggc 1700 tcaagtcgcg ggtcctcggc ccaaagatcg aggcggtgca gaaagtgaac 1750 aaggctggga tggagaagga gaaggccgag gagaagctgg ccggggagga 1800 gctggccggg gaggaggcc cccaggagaa ggcggaggac aagcccagca 1850 ccgatctctc agccccagtg aatggcgagg ccacatcaca gaagggggag 1900 agcgcagagg acaaggagca cgaggaggt cgggactcgg aggagggcc 1950 aaggtgtggc teetetgaag aeetgeaega eagegtaegg gagggteeeg 2000 acctggacag gcctgggagc gaccggcagg agcgcgagag ggcacggggg 2050 gactcggagg ccctggacga ggagagctga gccgcgggca gccaggccca 2100 geceegeee gageteagge tgeceetete etteeeegge tegeaggaga 2150 gcagagcaga gaactgtggg gaacgctgtg ctgtttgtat ttgttccctt 2200 gggttttttt ttcctgccta atttctgtga tttccaacca acatgaaatg 2250 actataaacg gttttttaat ga 2272

<210> 308

<211> 671

<212> PRT

<213> Homo sapiens

<400> 308

Met Pro His Ala Phe Lys Pro Gly Asp Leu Val Phe Ala Lys Met
1 5 10 15

Lys Gly Tyr Pro His Trp Pro Ala Arg Ile Asp Asp Ile Ala Asp 20 25 30

Gly Ala Val Lys Pro Pro Pro Asn Lys Tyr Pro Ile Phe Phe

Gly	Thr	His	Glu	Thr 50	Ala	Phe	Leu	Gly	Pro 55	Lys	Asp	Leu	Phe	Pro 60
Tyr	Asp	Lys	Cys	Lys 65	Asp	Lys	Tyr	Gly	Lys 70	Pro	Asn	Lys	Arg	Lys 75
Gly	Phe	Asn	Glu	Gly 80	Leu	Trp	Glu	Ile	Gln 85	Asn	Asn	Pro	His	Ala 90
Ser	Tyr	Ser	Ala	Pro 95	Pro	Pro	Val	Ser	Ser 100	Ser	Asp	Ser	Glu	Ala 105
Pro	Glu	Ala	Asn	Pro 110	Ala	Asp	Gly	Ser	Asp 115	Ala	Asp	Glu	Asp	Asp 120
Glu	Asp	Arg	Gly	Val 125	Met	Ala	Val	Thr	Ala 130	Val	Thr	Ala	Thr	Ala 135
Ala	Ser	Asp	Arg	Met 140	Glu	Ser	Asp	Ser	Asp 145	Ser	Asp	Lys	Ser	Ser 150
Asp	Asn	Ser	Gly	Leu 155	Lys	Arg	Lys	Thr	Pro 160	Ala	Leu	Lys	Met	Ser 165
Val	Ser	Lys	: Arg	Ala 170		Lys	Ala	Ser	Ser 175	Asp	Leu	Asp	Gln	Ala 180
Ser	Val	. Ser	Pro	Ser 185	Glu	Glu	Glu	. Asn	Ser 190	Glu	Ser	Ser	Ser	Glu 195
Ser	Glu	ı Lys	s Thr	Ser 200	Asp	Gln	Asp	Phe	205	Pro	Glu	Lys	Lys	Ala 210
Alá	a Val	L Ar	g Ala	215		, Arg	g Gly	, Pro	220	ı Gly	, Gly	Arg	Lys	Lys 225
Lys	s Lys	s Ala	a Pro	Ser 230	Ala	ser	Asp	Sei	23!	Sei	Lys	: Ala	a Asp	Ser 240
Ası	o Gl	y Ala	a Lys	s Pro 245	o Glu 5	ı Pro	o Val	l Ala	a Met 25	t Ala	a Arg	g Ser	Ala	Ser 255
Se	r Se	r Se	r Sei	r Sei 26		r Sei	r Se:	r Se	r Asj 26	p Se: 5	r Asp	val	L Ser	270
Ly	s Ly	s Pr	o Pr	o Ar		y Ar	g Ly	s Pr	o Al 28	a Gl [.] O	u Lys	s Pro	o Lei	285
Ly	s Pr	o Ar	g Gl	y Ar 29		s Pr	o Ly	s Pr	o Gl 29	u Ar 5	g Pro	o Pr	o Sei	r Ser 300
Se	r Se	r Se	r As	p Se 30		p Se	r As	p Gl	u Va 31	l As O	p Ar	g Il	e Se	r Glu 315
ጥャ	n Lv	s Ar	a Ar	a As	p Gl	u Al	a Ar	g Ar	g Ar	g Gl	u Le	u Gl	u Al	a Arg

Glu Ala Val Gln Lys Val Asn Lys Ala Gly Met Glu Lys Glu Lys 570

Ala Glu Glu Lys Leu Ala Gly Glu Glu Leu Ala Gly Glu Glu Ala 575

Pro Gln Glu Lys Ala Glu Asp Lys Pro Ser Thr Asp Leu Ser Ala 600

Pro Val Asn Gly Glu Ala Thr Ser Gln Lys Gly Glu Ser Ala Glu

550

605 610 615

Asp Lys Glu His Glu Glu Gly Arg Asp Ser Glu Glu Gly Pro Arg 620 625 630

Cys Gly Ser Ser Glu Asp Leu His Asp Ser Val Arg Glu Gly Pro 635 640 645

Asp Leu Asp Arg Pro Gly Ser Asp Arg Gln Glu Arg Glu Arg Ala 650 655 660

Arg Gly Asp Ser Glu Ala Leu Asp Glu Glu Ser 665 670

<210> 309

<211> 3871

<212> DNA

<213> Homo sapiens

<400> 309

gttggttctc ctggatcttc accttaccaa ctgcagatct tgggactcat 50 cagcctcaat aattatatta aattaacacc atttgaaaga gaacattgtt 100 ttcatcatga atgctaataa agatgaaaga cttaaagcca gaagccaaga 150 ttttcacctt tttcctgctt tgatgatgct aagcatgacc atgttgtttc 200 ttccagtcac tggcactttg aagcaaaata ttccaagact caagctaacc 250 tacaaagact tgctgctttc aaatagctgt attccctttt tgggttcatc 300 agaaggactg gattttcaaa ctcttctctt agatgaggaa agaggcaggc 350 tgctcttggg agccaaagac cacatctttc tactcagtct ggttgactta 400 aacaaaaatt ttaagaagat ttattggcct gctgcaaagg aacgggtgga 450 attatgtaaa ttagctggga aagatgccaa tacagaatgt gcaaatttca 500 tcagagtact tcagccctat aacaaaactc acatatatgt gtgtggaact 550 ggagcatttc atccaatatg tgggtatatt gatcttggag tctacaagga 600 ggatattata ttcaaactag acacacataa tttggagtct ggcagactga 650 aatgtccttt cgatcctcag cagccttttg cttcagtaat gacagatgag 700 tacctctact ctggaacagc ttctgatttc cttggcaaag atactgcatt 750 cactcgatcc cttgggccta ctcatgacca ccactacatc agaactgaca 800 tttcagagca ctactggctc aatggagcaa aatttattgg aactttcttc 850 ataccagaca cctacaatcc agatgatgat aaaatatatt tcttctttcg 900 tgaatcatct caagaaggca gtacctccga taaaaccatc ctttctcgag 950

ttggaagagt ttgtaagaat gatgtaggag gacaacgcag cctgataaac 1000 aagtggacga cttttcttaa ggccagactg atttgctcaa ttcctggaag 1050 tgatggggca gatacttact ttgatgagct tcaagatatt tatttactcc 1100 ccacaagaga tgaaagaaat cctgtagtat atggagtctt tactacaacc 1150 agctccatct tcaaaggctc tgctgtttgt gtgtatagca tggctgacat 1200 cagagcagtt tttaatggtc catatgctca taaggaaagt gcagaccatc 1250 gttgggtgca gtatgatggg agaattcctt atccacggcc tggtacatgt 1300 ccaagcaaaa cctatgaccc actgattaag tccacccgag attttccaga 1350 tgatgtcatc agtttcataa agcggcactc tgtgatgtat aagtccgtat 1400 acccagttgc aggaggacca acgttcaaga gaatcaatgt ggattacaga 1450 ctgacacaga tagtggtgga tcatgtcatt gcagaagatg gccagtacga 1500 tgtaatgttt cttggaacag acattggaac tgtcctcaaa gttgtcagca 1550 tttcaaagga aaagtggaat atggaagagg tagtgctgga ggagttgcag 1600 atattcaagc actcatcaat catcttgaac atggaattgt ctctgaagca 1650 gcaacaattg tacattggtt cccgagatgg attagttcag ctctccttgc 1700 acagatgcga cacttatggg aaagcttgcg cagactgttg tcttgccaga 1750 gacccctact gtgcctggga tggaaatgca tgctctcgat atgctcctac 1800 ttctaaaagg agagctagac gccaagatgt aaaatatggc gacccaatca 1850 cccagtgctg ggacatcgaa gacagcatta gtcatgaaac tgctgatgaa 1900 aaggtgattt ttggcattga atttaactca acctttctgg aatgtatacc 1950 taaatcccaa caagcaacta ttaaatggta tatccagagg tcaggggatg 2000 agcatcgaga ggagttgaag cccgatgaaa gaatcatcaa aacggaatat 2050 gggctactga ttcgaagttt gcagaagaag gattctggga tgtattactg 2100 caaagcccag gagcacactt tcatccacac catagtgaag ctgactttga 2150 atgtcattga gaatgaacag atggaaaata cccagagggc agagcatgag 2200 gaggggcagg tcaaggatct attggctgag tcacggttga gatacaaaga 2250 ctacatccaa atccttagca gcccaaactt cagcctcgac cagtactgcg 2300 aacagatgtg gcacagggag aagcggagac agagaaacaa ggggggccca 2350

aagtggaagc acatgcagga aatgaagaag aaacgaaatc gaagacatca 2400 cagagacctg gatgagctcc ctagagctgt agccacgtag ttttctactt 2450 aatttaaaga aaagaattcc ttacctataa aaacattgcc ttctgttttg 2500 tatatccctt atagtaattc ataaatgctt cccatggagt tttgctaagg 2550 cacaagacaa taatctgaat aagacaatat gtgatgaata taagaaaggg 2600 caaaaaattc atttgaacca gttttccaag aacaaatctt gcacaagcaa 2650 agtataagaa ttatcctaaa aatagggggt ttacagttgt aaatgtttta 2700 tgttttgagt tttggaattt attgtcatgt aaatagttga gctaagcaag 2750 ccccgaattt gatagtgtat aaggtgcttt attccctcga atgtccatta 2800 agcatggaat ttaccatgca gttgtgctat gttcttatga acagatatat 2850 cattcctatt gagaaccagc taccttgtgg tagggaataa gaggtcagac 2900 acaaattaag acaactccca ttatcaacag gaactttctc agtgagccat 2950 tcactcctgg agaatggtat aggaatttgg agaggtgcat tatttctttc 3000 tggccactgg ggttaaattt agtgtactac aacattgatt tactgaaggg 3050 cactaatgtt tcccccagga tttctattga ctagtcagga gtaacaggtt 3100 cacagagaga agttggtgct tagttatgtg ttttttagag tatatactaa 3150 gctctacagg gacagaatgc ttaataaata ctttaataag atatgggaaa 3200 atattttaat aaaacaagga aaacataatg atgtataatg catcctgatg 3250 ggaaggcatg cagatgggat ttgttagaag acagaaggaa agacagccat 3300 aaattctggc tttggggaaa actcatatcc ccatgaaaag gaagaacaat 3350 cacaaataaa gtgagagtaa tgtaatggag ctcttttcac tagggtataa 3400 gtagctgcca atttgtaatt catctgttaa aaaaaatcta gattataaca 3450 aactgctagc aaaatctgag gaaacataaa ttcttctgaa gaatcatagg 3500 aagagtagac attttattta taaccaatga tatttcagta tatattttct 3550 ctcttttaaa aaatatttat catactctgt atattatttc tttttactgc 3600 ctttattctc tcctgtatat tggattttgt gattatattt gagtgaatag 3650 gagaaaacaa tatataacac acagagaatt aagaaaatga catttctggg 3700 gagtggggat atatatttgt tgaataacag aacgagtgta aaattttaac 3750 aacggaaagg gttaaattaa ctctttgaca tcttcactca accttttctc 3800 attgctgagt taatctgttg taattgtagt attgtttttg taatttaaca 3850 ataaataagc ctgctacatg t 3871

<210> 310

<211> 777

<212> PRT

<213> Homo sapiens

<400> 310

Met Asn Ala Asn Lys Asp Glu Arg Leu Lys Ala Arg Ser Gln Asp 1 5 10 15

Phe His Leu Phe Pro Ala Leu Met Met Leu Ser Met Thr Met Leu 20 25 30

Phe Leu Pro Val Thr Gly Thr Leu Lys Gln Asn Ile Pro Arg Leu 35 40 45

Lys Leu Thr Tyr Lys Asp Leu Leu Leu Ser Asn Ser Cys Ile Pro 50 55 60

Phe Leu Gly Ser Ser Glu Gly Leu Asp Phe Gln Thr Leu Leu Leu 65 70 75

Asp Glu Glu Arg Gly Arg Leu Leu Cly Ala Lys Asp His Ile 80 85 90

Phe Leu Leu Ser Leu Val Asp Leu Asn Lys Asn Phe Lys Lys Ile 95 100 105

Tyr Trp Pro Ala Ala Lys Glu Arg Val Glu Leu Cys Lys Leu Ala 110 115 120

Gly Lys Asp Ala Asn Thr Glu Cys Ala Asn Phe Ile Arg Val Leu 125 130 135

Gln Pro Tyr Asn Lys Thr His Ile Tyr Val Cys Gly Thr Gly Ala 140 145 150

Phe His Pro Ile Cys Gly Tyr Ile Asp Leu Gly Val Tyr Lys Glu 155 160 165

Asp Ile Ile Phe Lys Leu Asp Thr His Asn Leu Glu Ser Gly Arg 170 175 180

Leu Lys Cys Pro Phe Asp Pro Gln Gln Pro Phe Ala Ser Val Met 185 190 195

Thr Asp Glu Tyr Leu Tyr Ser Gly Thr Ala Ser Asp Phe Leu Gly 200 205 210

Lys Asp Thr Ala Phe Thr Arg Ser Leu Gly Pro Thr His Asp His 215 220 225

His Tyr Ile Arg Thr Asp Ile Ser Glu His Tyr Trp Leu Asn Gly

					515					520					525
L	eu	Val	Gln	Leu	Ser 530	Leu	His	Arg	Cys	Asp 535	Thr	Tyr	Gly	Lys	Ala 540
С	ys	Ala	Asp	Cys	Cys 545	Leu	Ala	Arg	Asp	Pro 550	Tyr	Cys	Ala	Trp	Asp 555
G	ly	Asn	Ala	Cys	Ser 560	Arg	Tyr	Ala	Pro	Thr 565	Ser	Lys	Arg	Arg	Ala 570
A	rg	Arg	Gln	Asp	Val 575	Lys	Tyr	Gly	Asp	Pro 580	Ile	Thr	Gln	Cys	Trp 585
A	sp	Ile	Glu	Asp	Ser 590	Ile	Ser	His	Glu	Thr 595	Ala	Asp	Glu	Lys	Val 600
Ι	le	Phe	Gly	Ile	Glu 605	Phe	Asn	Ser	Thr	Phe 610	Leu	Glu	Cys	Ile	Pro 615
L	ys	Ser	Gln	Gln	Ala 620	Thr	Ile	Lys	Trp	Tyr 625	Ile	Gln	Arg	Ser	Gly 630
A	sp	Glu	His	Arg	Glu 635	Glu	Leu	Lys	Pro	Asp 640	Glu	Arg	Ile	Ile	Lys 645
T	hr	Glu	Tyr	Gly	Leu 650	Leu	Ile	Arg	Ser	Leu 655	Gln	Lys	Lys	Asp	Ser 660
G.	ly	Met	Tyr	Tyr	Cys 665	Lys	Ala	Gln	Glu	His 670	Thr	Phe	Ile	His	Thr 675
I.	le	Val	Lys	Leu	Thr 680	Leu	Asn	Val	Ile	Glu 685	Asn	Glu	Gln	Met	Glu 690
A	sn	Thr	Gln	Arg	Ala 695	Glu	His	Glu	Glu	Gly 700	Gln	Val	Lys	Asp	Leu 705
L	eu	Ala	Glu	Ser	Arg 710	Leu	Arg	Tyr	Lys	Asp 715	Tyr	Ile	Gln	Ile	Leu 720
S	er	Ser	Pro	Asn	Phe 725	Ser	Leu	Asp	Gln	Tyr 730	Cys	Glu	Gln	Met	Trp 735
H	is	Arg	Glu	Lys	Arg 740	Arg	Gln	Arg	Asn	Lys 745	Gly	Gly	Pro	Lys	Trp 750
L	ys	His	Met	Gln	Glu 755	Met	Lys	Lys	Lys	Arg 760	Asn	Arg	Arg	His	His 765
A:	rg	Asp	Leu	Asp	Glu 770	Leu	Pro	Arg	Ala	Val 775	Ala	Thr			
<2.	10>	> 311	1												

<210> 311

<211> 25

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 311
caacgcagcc gtgataaaca agtgg 25
<210> 312
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 312
gcttggacat gtaccaggcc gtgg 24
<210> 313
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 313
ggccagactg atttgctcaa ttcctggaag tgatggggca gatac 45
<210> 314
<211> 3934
<212> DNA
<213> Homo sapiens
<400> 314
 ccctgacctc cctgagccac actgagctgg aagccgcaga ggtcatcctg 50
 gagcatgccc accgcgggga gcagacaacc tcccaggtaa gctgggagca 100
 ctcagcagtt tcagccagca gggactgatc aggtgtgtgt cctggagtgg 200
ggagcagaag gcgtggctgg caagagtggc ctggagaaag aggttcagcg 250
 cttgaccage cgagetgeec gtgactacaa gatecagaae catgggeate 300
gggtgaggtg ggggggcaca ggtgtcatgt gcaccttctt gtctcagcaa 350
gaagagctga gagaggggat cttggagcca ttgagggtgt catggagcta 400
cagaggggag ggaaaggtat tttaaggtaa cagtgtggca caatagttaa 450
gagcacagtt tttggagcta gaccgacata ggttcaaatt ctcttctgtt 500
gcttcctagt tctgtagccc caggtaaggg agtgacttaa cctctctgga 550
```

cttcaatttc ctcatcacta aagtagggcc aataatagca cccacctcat 600 agggaagatt aaatgacata atgtatgtga tgcaactagc aaagtaccag 650 tcccatagta agtcatgccc cacagtattt ccacccaccc ctgttctctg 700 ccttcccaac caggtactgc aacgactgga gcagaggcgg cagcaggctt 750 cagagcggga ggctccaagc atagaacaga ggttacagga agtgcgagag 800 agcatccgcc gggcacaggt gagccaggtg aagggggctg cccggctggc 850 cctgctgcag ggggctggct tagatgtgga gcgctggctg aagccagcca 900 tgacccaggc ccaggatgag gtggagcagg agcggcggct cagtgaggct 950 cggctgtccc agagggacct ctctccaacc gctgaggatg ctgagctttc 1000 tgactttgag gaatgtgagg agacgggaga gctctttgag gagcctgccc 1050 cccaagccct ggccacgagg gccctcccct gccctgcaca cgtggtattt 1100 cgctatcagg cagggcgtga ggatgagctg acaatcacgg agggtgagtg 1150 gctggaggtc atagaggagg gagatgctga cgaatgggtc aaggctcgga 1200 accagcacgg cgaggtaggc tttgtccctg agcgatatct caacttcccg 1250 gacetetece teccagagag cagecaagae agtgacaate eetgegggge 1300 agageeeaca geatteetgg cacaggeeet gtacagetae aceggacaga 1350 gtgcagagga gctgagcttc cctgaggggg cactcatccg tctgctgccc 1400 cgggcccaag atggagtaga tgacggcttc tggaggggag aatttggggg 1450 ccgtgttggg gtcttcccct ccctgctggt ggaagagctg cttggccccc 1500 cagggccacc tgaactetet gaccetgaac agatgetgee gteceettet 1550 cctcccagct tctccccacc tgcacctacc tctgtgttgg atgggccccc 1600 tgcacctgtc ctgcctgggg acaaagccct ggacttccct gggttcctgg 1650 acatgatggc acctcgactc aggccgatgc gtccaccacc tccccgccg 1700 gctaaagccc cggatcctgg ccacccagat cccctcacct gaaggccagg 1750 gaageettga eececagtga tgetgetgte eetatettea agetgteaga 1800 ccacaccatc aatgatccag agcaacacag ccaaaagctg gaatcgccct 1850 tatttccacc ctcacctcca agggtggaaa cttgcccctt cccatttcta 1900 gagetggaac ceaeteettt tttteeeatt gttetateat etetaggace 1950 ggaactacta ccttctcttc tgtcatgacc ctatctaggg tggtgaaatg 2000

cctgaaatct ctggggctgg aaaccatcca tcaaggtctc tagtagttct 2050 ggcccacctc tttccccacc ctggctccat gacccacccc actctggatg 2100 ccagggtcac tggggttggg ctggggagag gaacaggcct tgggaatcag 2150 gagctggagc caggatgcga agcagctgta atggtctgag cggatttatt 2200 gacaatgaat aaagggcacg aaggccaggc cagggcctgg gcctcttgtg 2250 ctaagagggc agggggccta cggtgctatt gctttagggg cccaccacgg 2300 gcaggggcct gctcccagct gccacgctct atcatatgga gcgaggtgtt 2350 ggggaaggcg gggcaggcag cctgttgcag gcaggggaag gagaagagac 2400 tgaggggctg tgacctctcc tgaggccccc agcctgagac tgtgcaactc 2450 caggtggaag tagagctggt ccctcagctg gggggcagtg ctgtccagtg 2500 gaggggaggg ctttcacgcc cacccacccc ctggccctgc cagctggtag 2550 tccatcagca caatgaagga gacttggaga agaggaagaa taacactgtt 2600 getteetgtt caagetgtgt ceagetttte eeetgggget eeaggaeett 2650 ccctacctcc accaccaaac caagggattt atagcaaagg ctaagcctgc 2700 agtttactct gggggttcag ggagccgaaa ggcttaaata gtttaagtag 2750 gtgatgggaa gatgagatta cctcatttag ggctcaggca gactcacctc 2800 tcaacaatga gagaccagga gtaggtccta tcagtgcccc ccagagtaga 2900 gagcaataag agcccagccc agtgcagtcc cggctgtgtt ttcctacctg 2950 gtgatcagaa gtgtctggtt tgcttggctg cccatttgcc tcttgagtgg 3000 gcagccctgg gcttgggccc ctccctccgg ccctcagtgt tggctctgca 3050 gaagetetgg ggtteeette aagtgeaega ggggttagge tgetgteeet 3100 gagtceteca ttetgtactg gggggetgge taggacetgg ggetgtggee 3150 tetcaggggg cageetetee atggeaggea teeetgeett gggetgeeet 3200 cccccagacc cctgaccacc ccctgggtcc tgtcccccac cagagcccca 3250 gctcctgtct gtgggggagc catcacggtg ttcgtgcagt ccatagcgct 3300 tctcaatgtg tgtcacccgg aacctgggag gggagggaac actggggttt 3350 aggaccacaa ctcagaggct gcttggccct cccctctgac cagggacatc 3400

<210> 315

<211> 370

<212> PRT

<213> Homo sapiens

<400> 315

Met Gln Leu Ala Lys Tyr Gln Ser His Ser Lys Ser Cys Pro Thr 1 5 10 15

Val Phe Pro Pro Thr Pro Val Leu Cys Leu Pro Asn Gln Val Leu 20 25 30

Gln Arg Leu Glu Gln Arg Arg Gln Gln Ala Ser Glu Arg Glu Ala 35 40 45

Pro Ser Ile Glu Gln Arg Leu Gln Glu Val Arg Glu Ser Ile Arg
50 55 60

Arg Ala Gln Val Ser Gln Val Lys Gly Ala Ala Arg Leu Ala Leu 65 70 75

Leu Gln Gly Ala Gly Leu Asp Val Glu Arg Trp Leu Lys Pro Ala 80 85 90

Met Thr Gln Ala Gln Asp Glu Val Glu Gln Glu Arg Arg Leu Ser 95 100 105

Glu Ala Arg Leu Ser Gln Arg Asp Leu Ser Pro Thr Ala Glu Asp 110 115 120

Ala Glu Leu Ser Asp Phe Glu Glu Cys Glu Glu Thr Gly Glu Leu 125 130 135

Phe Glu Glu Pro Ala Pro Gln Ala Leu Ala Thr Arg Ala Leu Pro 140 145 150

Cys	Pro	Ala	His	Val 155	Val	Phe	Arg	Tyr	Gln 160	Ala	Gly	Arg	Glu	Asp 165
Glu	Leu	Thr	Ile	Thr 170	Glu	Gly	Glu	Trp	Leu 175	Glu	Val	Ile	Glu	Glu 180
Gly	Asp	Ala	Asp	Glu 185	Trp	Val	Lys	Ala	Arg 190	Asn	Gln	His	Gly	Glu 195
Val	Gly	Phe	Val	Pro 200	Glu	Arg	Tyr	Leu	Asn 205	Phe	Pro	Asp	Leu	Ser 210
Leu	Pro	Glu	Ser	Ser 215	Gln	Asp	Ser	Asp	Asn 220	Pro	Cys	Gly	Ala	Glu 225
Pro	Thr	Ala	Phe	Leu 230	Ala	Gln	Ala	Leu	Tyr 235	Ser	Tyr	Thr	Gly	Gln 240
Ser	Ala	Glu	Glu	Leu 245	Ser	Phe	Pro	Glu	Gly 250	Ala	Leu	Ile	Arg	Leu 255
Leu	Pro	Arg	Ala	Gln 260	Asp	Gly	Val	Asp	Asp 265	Gly	Phe	Trp	Arg	Gly 270
Glu	Phe	Gly	Gly	Arg 275	Val	Gly	Val	Phe	Pro 280	Ser	Leu	Leu	Val	Glu 285
Glu	Leu	Leu	Gly	Pro 290	Pro	Gly	Pro	Pro	Glu 295	Leu	Ser	Asp	Pro	Glu 300
Gln	Met	Leu	Pro	Ser 305	Pro	Ser	Pro	Pro	Ser 310	Phe	Ser	Pro	Pro	Ala 315
Pro	Thr	Ser	Val	Leu 320	Asp	Gly	Pro	Pro	Ala 325	Pro	Val	Leu	Pro	Gly 330
Asp	Lys	Ala	Leu	Asp 335	Phe	Pro	Gly	Phe	Leu 340	Asp	Met	Met	Ala	Pro 345
Arg	Leu	Arg	Pro	Met 350	Arg	Pro	Pro	Pro	Pro 355	Pro	Pro	Ala	Lys	Ala 360
Pro	Asp	Pro	Gly	His 365	Pro	Asp	Pro	Leu	Thr 370					
<210>	316													
(211)														
	0													

<211> 4407 <212> DNA

<213> Homo sapiens

<400> 316

cacagggaga cccacagaca catatgcacg agagagacag aggaggaaag 50 agacagagac aaaggcacag cggaagaagg cagagacagg gcaggcacag 100 aagcggccca gacagagtcc tacagaggga gaggccagag aagctgcaga 150

agacacaggc agggagagac aaagatccag gaaaggaggg ctcaggagga 200 gagtttggag aagccagacc cctgggcacc tctcccaagc ccaaggacta 250 agttttctcc atttccttta acggtcctca gcccttctga aaactttgcc 300 tctgaccttg gcaggagtcc aagcccccag gctacagaga ggagctttcc 350 aaagctaggg tgtggaggac ttggtgccct agacggcctc agtccctccc 400 agctgcagta ccagtgccat gtcccagaca ggctcgcatc ccgggagggg 450 cttggcaggg cgctggctgt ggggagccca accctgcctc ctgctcccca 500 ttgtgccgct ctcctggctg gtgtggctgc ttctgctact gctggcctct 550 ctcctgccct cagcccggct ggccagcccc ctcccccggg aggaggagat 600 cgtgtttcca gagaagctca acggcagcgt cctgcctggc tcgggcgccc 650 ctgccaggct gttgtgccgc ttgcaggcct ttggggagac gctgctacta 700 gagctggagc aggactccgg tgtgcaggtc gaggggctga cagtgcagta 750 cctgggccag gcgcctgagc tgctgggtgg agcagagcct ggcacctacc 800 tgactggcac catcaatgga gatccggagt cggtggcatc tctgcactgg 850 gatgggggag ccctgttagg cgtgttacaa tatcgggggg ctgaactcca 900 cetecagece etggagggag geacecetaa etetgetggg ggacetgggg 950 ctcacatect acgceggaag agtectgeea geggteaagg teccatgtge 1000 aacgtcaagg ctcctcttgg aagccccagc cccagacccc gaagagccaa 1050 gegetttget teactgagta gatttgtgga gacactggtg gtggeagatg 1100 acaagatggc cgcattccac ggtgcggggc taaagcgcta cctgctaaca 1150 gtgatggcag cagcagccaa ggccttcaag cacccaagca tccgcaatcc 1200 tgtcagcttg gtggtgactc ggctagtgat cctggggtca ggcgaggagg 1250 ggccccaagt ggggcccagt gctgcccaga ccctgcgcag cttctgtgcc 1300 tggcagcggg gcctcaacac ccctgaggac tcgggccctg accactttga 1350 cacagocatt ctgtttaccc gtcaggacct gtgtggagtc tccacttgcg 1400 acacgctggg tatggctgat gtgggcaccg tctgtgaccc ggctcggagc 1450 tgtgccattg tggaggatga tgggctccag tcagccttca ctgctgctca 1500 tgaactgggt catgtcttca acatgctcca tgacaactcc aagccatgca 1550

tcagtttgaa tgggcctttg agcacctctc gccatgtcat ggcccctgtg 1600 atggctcatg tggatcctga ggagccctgg tccccctgca gtgcccgctt 1650 catcactgac ttcctggaca atggctatgg gcactgtctc ttagacaaac 1700 cagaggetee attgeatetg cetgtgaett teeetggeaa ggaetatgat 1750 gctgaccgcc agtgccagct gaccttcggg cccgactcac gccattgtcc 1800 acagetgeeg eegeeetgtg etgeeetetg gtgetetgge eaceteaatg 1850 gccatgccat gtgccagacc aaacactcgc cctgggccga tggcacaccc 1900 tgcgggcccg cacaggcctg catgggtggt cgctgcctcc acatggacca 1950 gctccaggac ttcaatattc cacaggctgg tggctggggt ccttggggac 2000 catggggtga ctgctctcgg acctgtgggg gtggtgtcca gttctcctcc 2050 cgagactgca cgaggcctgt cccccggaat ggtggcaagt actgtgaggg 2100 ecgcegtace egetteeget ectgeaacae tgaggaetge ecaactgget 2150 cagccctgac cttccgcgag gagcagtgtg ctgcctacaa ccaccgcacc 2200 gacctettea agagetteee agggeeeatg gactgggtte etegetaeae 2250 aggegtggee ecceaggace agtgeaaact cacetgeeag geeegggeae 2300 tgggctacta ctatgtgctg gagccacggg tggtagatgg gaccccctgt 2350 teceeggaea geteeteggt etgtgteeag ggeegatgea tecatgetgg 2400 ctgtgatcgc atcattggct ccaagaagaa gtttgacaag tgcatggtgt 2450 gcggagggga cggttctggt tgcagcaagc agtcaggctc cttcaggaaa 2500 ttcaggtacg gatacaacaa tgtggtcact atccccgcgg gggccaccca 2550 cattettgte eggeageagg gaaaceetgg ceaeeggage atetaettgg 2600 ccctgaaget gecagatgge tectatgeee teaatggtga atacaegetg 2650 atgccctccc ccacagatgt ggtactgcct ggggcagtca gcttgcgcta 2700 cagcggggcc actgcagcct cagagacact gtcaggccat gggccactgg 2750 cccagccttt gacactgcaa gtcctagtgg ctggcaaccc ccaggacaca 2800 cgcctccgat acagcttctt cgtgccccgg ccgacccctt caacgccacg 2850 ccccactccc caggactggc tgcaccgaag agcacagatt ctggagatcc 2900 ttcggcggcg cccctgggcg ggcaggaaat aacctcacta tcccggctgc 2950 cctttctggg caccggggcc tcggacttag ctgggagaaa gagagagctt 3000

ctgttgctgc ctcatgctaa gactcagtgg ggaggggctg tgggcgtgag 3050 acctgcccct cctctctgcc ctaatgcgca ggctggccct gccctggttt 3100 cetgccetgg gaggcagtga tgggttagtg gatggaaggg getgacagae 3150 agccctccat ctaaactgcc ccctctgccc tgcgggtcac aggagggagg 3200 gggaaggcag ggagggcctg ggccccagtt gtatttattt agtatttatt 3250 cacttttatt tagcaccagg gaaggggaca aggactaggg tcctggggaa 3300 cctgacccct gacccctcat agccctcacc ctggggctag gaaatccagg 3350 gtggtggtga taggtataag tggtgtgtgt atgcgtgtgt gtgtgtgt 3400 gaaaatgtgt gtgtgcttat gtatgaggta caacctgttc tgctttcctc 3450 ttcctgaatt ttattttttg ggaaaagaaa agtcaagggt agggtgggcc 3500 ttcagggagt gagggattat ctttttttt ttttctttct ttctttcttt 3550 tttttttttg agacagaatc tcgctctgtc gcccaggctg gagtgcaatg 3600 gcacaatctc ggctcactgc atcctccgcc tcccgggttc aagtgattct 3650 catgcctcag cctcctgagt agctgggatt acaggctcct gccaccacgc 3700 ccagctaatt tttgttttgt tttgtttgga gacagagtct cgctattgtc 3750 accagggetg gaatgattte ageteactge aacettegee acctgggtte 3800 cagcaattct cctgcctcag cctcccgagt agctgagatt ataggcacct 3850 accaccacgc ccggctaatt tttgtatttt tagtagagac ggggtttcac 3900 catgttggcc aggetggtct cgaacteetg acettaggtg atceaetege 3950 cttcatctcc caaagtgctg ggattacagg cgtgagccac cgtgcctggc 4000 cacgcccaac taatttttgt atttttagta gagacagggt ttcaccatgt 4050 tggccaggct gctcttgaac tcctgacctc aggtaatcga cctgcctcgg 4100 cctcccaaag tgctgggatt acaggtgtga gccaccacgc ccggtacata 4150 ttttttaaat tgaattctac tatttatgtg atccttttgg agtcagacag 4200 atgtggttgc atcctaactc catgtctctg agcattagat ttctcatttg 4250 ccaataataa tacctccctt agaagtttgt tgtgaggatt aaataatgta 4300

<210> 317 <211> 837 <212> PRT <213> Homo sapiens <400> 317 Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg Trp Leu Trp Gly Ala Gln Pro Cys Leu Leu Pro Ile Val Pro Leu Ser Trp Leu Val Trp Leu Leu Leu Leu Leu Leu Ala Ser Leu 35 40 Leu Pro Ser Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu 50 Ile Val Phe Pro Glu Lys Leu Asn Gly Ser Val Leu Pro Gly Ser 65 Gly Ala Pro Ala Arg Leu Leu Cys Arg Leu Gln Ala Phe Gly Glu Thr Leu Leu Glu Leu Glu Gln Asp Ser Gly Val Gln Val Glu 100 Gly Leu Thr Val Gln Tyr Leu Gly Gln Ala Pro Glu Leu Leu Gly 110 115 Gly Ala Glu Pro Gly Thr Tyr Leu Thr Gly Thr Ile Asn Gly Asp 125 130 Pro Glu Ser Val Ala Ser Leu His Trp Asp Gly Gly Ala Leu Leu Gly Val Leu Gln Tyr Arg Gly Ala Glu Leu His Leu Gln Pro Leu Glu Gly Gly Thr Pro Asn Ser Ala Gly Gly Pro Gly Ala His Ile 170 Leu Arg Arg Lys Ser Pro Ala Ser Gly Gln Gly Pro Met Cys Asn 185 Val Lys Ala Pro Leu Gly Ser Pro Ser Pro Arg Pro Arg Ala 200 205 210 Lys Arg Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val 215 220 Ala Asp Asp Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg

235

Tyr Leu Leu Thr Val Met Ala Ala Ala Ala Lys Ala Phe Lys His

230

505

Gln Leu Gln Asp Phe Asn Ile Pro Gln Ala Gly Gly Trp Gly Pro

Trp Gly Pro Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly Val

500

515

510

Glu Ile Leu Arg Arg Arg Pro Trp Ala Gly Arg Lys 830 <210> 318 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 318 ccctgaagct gccagatggc tcc 23 <210> 319 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 319 ctgtgctctt cggtgcagcc agtc 24 <210> 320 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 320 ccacagatgt ggtactgcct ggggcagtca gcttgcgcta cag 43 <210> 321 <211> 1197 <212> DNA <213> Homo sapiens <400> 321 cagcagtggt ctctcagtcc tctcaaagca aggaaagagt actgtgtgct 50 gagagaccat ggcaaagaat cctccagaga attgtgaaga ctgtcacatt 100 ctaaatgcag aagcttttaa atccaagaaa atatgtaaat cacttaagat 150 ttgtggactg gtgtttggta tcctggccct aactctaatt gtcctgtttt 200 gggggagcaa gcacttctgg ccggaggtac ccaaaaaagc ctatgacatg 250 gagcacactt tctacagcaa tggagagaag aagaagattt acatggaaat 300

tgatcctgtg accagaactg aaatattcag aagcggaaat ggcactgatg 350

aaacattgga agtgcacgac tttaaaaacg gatacactgg catctacttc 400 gtgggtcttc aaaaatgttt tatcaaaact cagattaaag tgattcctga 450 attttctgaa ccagaagagg aaatagatga gaatgaagaa attaccacaa 500 ctttctttga acagtcagtg atttgggtcc cagcagaaaa gcctattgaa 550 aaccgagatt ttcttaaaaa ttccaaaatt ctggagattt gtgataacgt 600 gaccatgtat tggatcaatc ccactctaat atcagtttct gagttacaag 650 actttgagga ggagggagaa gatcttcact ttcctgccaa cgaaaaaaaa 700 gggattgaac aaaatgaaca gtgggtggtc cctcaagtga aagtagagaa 750 gacccgtcac gccagacaag caagtgagga agaacttcca ataaatgact 800 atactgaaaa tggaatagaa tttgatccca tgctggatga gagaggttat 850 tgttgtattt actgccgtcg aggcaaccgc tattgccgcc gcgtctgtga 900 acctttacta ggctactacc catatccata ctgctaccaa ggaggacgag 950 teatetgteg tgteateatg cettgtaact ggtgggtgge eegeatgetg 1000 gggagggtct aataggaggt ttgagctcaa atgcttaaac tgctggcaac 1050 atataataaa tgcatgctat tcaatgaatt tctgcctatg aggcatctgg 1100 cccctggtag ccagctctcc agaattactt gtaggtaatt cctctcttca 1150

<400> 322

<4002	, 224	-				_	_	_	~ 1	70	C	uio	Tla	T.e.11
Met	70 l a	1.775	Asn	Pro	Pro	Glu	Asn	Cys	GLU	Asp	Cys	птэ	TTG	пец
Mec	VIG	טעם	11011			_		-	10					15
1				5					10					10

Asn Ala Glu Ala Phe Lys Ser Lys Lys Ile Cys Lys Ser Leu Lys 20 25 30

Lys Ile Tyr Met Glu Ile Asp Pro Val Thr Arg Thr Glu Ile Phe

<210> 322

<211> 317

<212> PRT

<213> Homo sapiens

Lys Asn Gly Tyr Thr Gly Ile Tyr Phe Val Gly Leu Gln Lys Cys

Phe Ile Lys Thr Gln Ile Lys Val Ile Pro Glu Phe Ser Glu Pro 125 130 135

Glu Glu Glu Ile Asp Glu Asn Glu Glu Ile Thr Thr Thr Phe Phe 140 145 150

Glu Gln Ser Val Ile Trp Val Pro Ala Glu Lys Pro Ile Glu Asn 155 160 165

Arg Asp Phe Leu Lys Asn Ser Lys Ile Leu Glu Ile Cys Asp Asn 170 175

Val Thr Met Tyr Trp Ile Asn Pro Thr Leu Ile Ser Val Ser Glu
185 190 190

Leu Gln Asp Phe Glu Glu Glu Gly Glu Asp Leu His Phe Pro Ala 200 205

Asn Glu Lys Lys Gly Ile Glu Gln Asn Glu Gln Trp Val Val Pro 215 220 225

Gln Val Lys Val Glu Lys Thr Arg His Ala Arg Gln Ala Ser Glu 230 235 240

Glu Glu Leu Pro Ile Asn Asp Tyr Thr Glu Asn Gly Ile Glu Phe 245 250

Asp Pro Met Leu Asp Glu Arg Gly Tyr Cys Cys Ile Tyr Cys Arg 260 265

Arg Gly Asn Arg Tyr Cys Arg Arg Val Cys Glu Pro Leu Leu Gly 275 280 285

Tyr Tyr Pro Tyr Pro Tyr Cys Tyr Gln Gly Gly Arg Val Ile Cys 290 295 300

Arg Val Ile Met Pro Cys Asn Trp Trp Val Ala Arg Met Leu Gly 305 310

Arg Val

<210> 323

<211> 1174

<212> DNA

<213> Homo sapiens

<400> 323

gcggaactgg ctccggctgg cacctgagga gcggcgtgac cccgagggcc 50

cagggagetg eceggetgge etaggeagge ageegeacea tggecageae 100 ggccgtgcag cttctgggct tcctgctcag cttcctgggc atggtgggca 150 cgttgatcac caccatcctg ccgcactggc ggaggacagc gcacgtgggc 200 accaacatcc tcacggccgt gtcctacctg aaagggctct ggatggagtg 250 tgtgtggcac agcacaggca tctaccagtg ccagatctac cgatccctgc 300 tggcgctgcc ccaagacete caggctgccc gcgccctcat ggtcatetec 350 tgcctgctct cgggcatagc ctgcgcctgc gccgtcatcg ggatgaagtg 400 cacgcgctgc gccaagggca cacccgccaa gaccaccttt gccatcctcg 450 geggeacect etteatectg geeggeetee tgtgeatggt ggeegtetee 500 tggaccacca acgacgtggt gcagaacttc tacaacccgc tgctgcccag 550 cggcatgaag tttgagattg gccaggccct gtacctgggc ttcatctcct 600 cgtccctctc gctcattggt ggcaccctgc tttgcctgtc ctgccaggac 650 gaggcaccct acaggcccta ccaggccccg cccagggcca ccacgaccac 700 tgcaaacacc gcacctgcct accagccacc agctgcctac aaagacaatc 750 gggccccctc agtgacctcg gccacgcaca gcgggtacag gctgaacgac 800 tacgtgtgag tececacage etgettetee eetgggetge tgtgggetgg 850 gtccccggcg ggactgtcaa tggaggcagg ggttccagca caaagtttac 900 ttctgggcaa tttttgtatc caaggaaata atgtgaatgc gaggaaatgt 950 ctttagagca cagggacaga gggggaaata agaggaggag aaagctctct 1000 ataccaaaga ctgaaaaaaa aaatcctgtc tgtttttgta tttattatat 1050 atatttatgt gggtgatttg ataacaagtt taatataaag tgacttggga 1100 gtttggtcag tggggttggt ttgtgatcca ggaataaacc ttgcggatgt 1150 ggctgtttat gaaaaaaaaa aaaa 1174

<210> 324

<211> 239

<212> PRT

<213> Homo sapiens

<400> 324

Met Ala Ser Thr Ala Val Gln Leu Leu Gly Phe Leu Leu Ser Phe 5 1

Leu Gly Met Val Gly Thr Leu Ile Thr Thr Ile Leu Pro His Trp

Arg	Arg	Thr	Ala	His 35	Val	Gly	Thr	Asn	Ile 40	Leu	Thr	Ala	Val	Ser 45
Tyr	Leu	Lys	Gly	Leu 50	Trp	Met	Glu	Cys	Val 55	Trp	His	Ser	Thr	Gly 60
Ile	Tyr	Gln	Cys	Gln 65	Ile	Tyr	Arg	Ser	Leu 70	Leu	Ala	Leu	Pro	Gln 75
Asp	Leu	Gln	Ala	Ala 80	Arg	Ala	Leu	Met	Val 85	Ile	Ser	Cys	Leu	Leu 90
Ser	Gly	Ile	Ala	Cys 95	Ala	Cys	Ala	Val	Ile 100	Gly	Met	Lys	Суѕ	Thr 105
Arg	Cys	Ala	Lys	Gly 110	Thr	Pro	Ala	Lys	Thr 115	Thr	Phe	Ala	Ile	Leu 120
Gly	Gly	Thr	Leu	Phe 125	Ile	Leu	Ala	Gly	Leu 130	Leu	Cys	Met	Val	Ala 135
Val	Ser	Trp	Thr	Thr 140		Asp	Val	Val	Gln 145	Asn	Phe	Tyr	Asn	Pro 150
Leu	Leu	Pro	Ser	Gly 155	Met	Lys	Phe	Glu	Ile 160	Gly	Gln	Ala	Leu	Tyr 165
Lev	ıGly	Phe	: Ile	Ser 170	Ser	Ser	Leu	Ser	Leu 175	Ile	Gly	gly	Thr	Leu 180
Lev	ı Cys	Let	ı Ser	Cys 185	Glr	a Asp	Glu	. Ala	Pro 190	Tyr	Arg	g Pro	туг	Gln 195
Ala	a Pro	Pro	Arç	3 Ala 200	a Thr	Thr	Thr	Thr	Ala 205	a Asr	n Thi	c Ala	a Pro	Ala 210
Ту	r Glr	n Pro	o Pro	Ala 215	a Ala	а Туг	Lys	s Asp	220	n Arg	g Ala	a Pro	Sei	225
Th	r Sei	r Ala	a Thi	r His		r Gly	у Туг	c Aro	g Let 23!	ı Ası 5	n Asj	р Ту:	r Val	L
	0> 3:													
	1> 2 2> D													
~														

<400> 325
gagctcccct caggagcgcg ttagcttcac acctteggca gcaggaggc 50

ggcagcttct cgcaggcggc agggcgggcg gccaggatca tgtccaccac 100

cacatgccaa gtggtggcgt tcctcctgtc catcctgggg ctggccggct 150

gcatcgcggc caccgggatg gacatgtgga gcacccagga cctgtacgac 200

<213> Homo sapiens

aaccccgtca cctccgtgtt ccagtacgaa gggctctgga ggagctgcgt 250 gaggcagagt tcaggcttca ccgaatgcag gccctatttc accatcctgg 300 gacttccagc catgctgcag gcagtgcgag ccctgatgat cgtaggcatc 350 gtcctgggtg ccattggcct cctggtatcc atctttgccc tgaaatgcat 400 ccgcattggc agcatggagg actctgccaa agccaacatg acactgacct 450 ccgggatcat gttcattgtc tcaggtcttt gtgcaattgc tggagtgtct 500 gtgtttgcca acatgctggt gactaacttc tggatgtcca cagctaacat 550 gtacaccggc atgggtggga tggtgcagac tgttcagacc aggtacacat 600 ttggtgcggc tctgttcgtg ggctgggtcg ctggaggcct cacactaatt 650 gggggtgtga tgatgtgcat cgcctgccgg ggcctggcac cagaagaaac 700 caactacaaa gccgtttctt atcatgcctc aggccacagt gttgcctaca 750 agcctggagg cttcaaggcc agcactggct ttgggtccaa caccaaaaac 800 aagaagatat acgatggagg tgcccgcaca gaggacgagg tacaatctta 850 teettecaag cacgactatg tgtaatgete taagacetet cageaeggge 900 ggaagaaact cccggagagc tcacccaaaa aacaaggaga tcccatctag 950 atttcttctt gcttttgact cacagctgga agttagaaaa gcctcgattt 1000 catctttgga gaggccaaat ggtcttagcc tcagtctctg tctctaaata 1050 ttccaccata aaacagctga gttatttatg aattagaggc tatagctcac 1100 attttcaatc ctctatttct ttttttaaat ataactttct actctgatga 1150 gagaatgtgg ttttaatctc tctctcacat tttgatgatt tagacagact 1200 ccccctcttc ctcctagtca ataaacccat tgatgatcta tttcccagct 1250 tatccccaag aaaacttttg aaaggaaaga gtagacccaa agatgttatt 1300 ttctgctgtt tgaattttgt ctccccaccc ccaacttggc tagtaataaa 1350 cacttactga agaagaagca ataagagaaa gatatttgta atctctccag 1400 agtcattttc agtttgaggc aaccaaacct ttctactgct gttgacatct 1500 tettattaca geaacaccat tetaggagtt teetgagete teeactggag 1550 tectettet gregeggte agaaattgte eetagatgaa tgagaaaatt 1600 atttttta atttaagtcc taaatatagt taaaataaat aatgttttag 1650 taaaatgata cactatctct gtgaaatagc ctcaccccta catgtggata 1700 gaaggaaatg aaaaataat tgctttgaca ttgtctatat ggtactttgt 1750 aaagtcatgc ttaagtacaa attccatgaa aagctcacac ctgtaatcct 1800 agcactttgg gaggctgagg aggaaggatc acttgagccc agaagttcga 1850 gactagcctg ggcaacatgg agaagccctg tctctacaaa atacagagag 1900 aaaaaatcag ccagtcatgg tggcatacac ctgtagtccc agcattccgg 1950 gaggctgagg tgggaggatc acttgagccc aggaggttg gggctgcagt 2000 gagccatgat cacaccactg cactccagcc aggtgacata gcgagatcct 2050 gtctaaaaaa ataaaaaata aataatggaa cacagcaagt cctaggaagt 2100 aggttaaaac taattcttta a 2121

<400> 326

Met	Ser	Thr	Thr	Thr	Cys	Gln	Val	Val	Ala	Phe	Leu	Leu	Ser	Ile
				5	-				10					15

Tyr Glu Gly Leu Trp Arg Ser Cys Val Arg Gln Ser Ser Gly Phe
$$50$$
 55 60

Leu Gl
n Ala Val Arg Ala Leu Met Ile Val Gly Ile Val Leu Gly

$$80 \hspace{1.5cm} 85 \hspace{1.5cm} 90$$

<210> 326

<211> 261

<212> PRT

<213> Homo sapiens

Thr Ala Asn Met Tyr Thr Gly Met Gly Gly Met Val Gln Thr Val 160 Gln Thr Arg Tyr Thr Phe Gly Ala Ala Leu Phe Val Gly Trp Val 175 Ala Gly Gly Leu Thr Leu Ile Gly Gly Val Met Met Cys Ile Ala 190 Cys Arg Gly Leu Ala Pro Glu Glu Thr Asn Tyr Lys Ala Val Ser 205 210 200 Tyr His Ala Ser Gly His Ser Val Ala Tyr Lys Pro Gly Gly Phe 215 Lys Ala Ser Thr Gly Phe Gly Ser Asn Thr Lys Asn Lys Lys Ile 240 230 Tyr Asp Gly Gly Ala Arg Thr Glu Asp Glu Val Gln Ser Tyr Pro 250 245 Ser Lys His Asp Tyr Val

<210> 327

<211> 2010

<212> DNA

<213> Homo sapiens

260

<400> 327

ggaaaaactg ttetettetg tggcacagag aaccetgett caaagcagaa 50 gtagcagtte cggagtecag ctggctaaaa cteateccag aggataatgg 100 caacceatge cttagaaate getgggetgt ttettggtgg tgttggaatg 150 gtgggcacag tggctgtcac tgtcatgcet cagtggagag tgtcggcett 200 cattgaaaac aacategtgg tttttgaaaa cttetgggaa ggactgtgga 250 tgaattgegt gaggcagget aacateagga tgcagtgeaa aatetatgat 300 teectgetgg ctettetee ggacetacag geagecagag gaetgatgg 350 tgetgettee gtgatgteet tettggett catgatggee ateettggea 400 tgaaatgeae caggtgeaeg ggggacaatg agaaggtgaa ggeteacatt 450 ctgctgage ctggaateat etteateate aegggeatgg tggtgeteat 500 ceetgtgage tgggttgeea atgeeateat cagagattte tataacteaa 550 tagtgaatgt tgeecaaaaa cgtgagettg gagagetetg tettgetge 650

tttttgttgc aacgaaaaga gcagtagcta cagatactcg ataccttccc 700 atcgcacaac ccaaaaaagt tatcacaccg gaaagaagtc accgagcgtc 750 tactccagaa gtcagtatgt gtagttgtgt atgttttttt aactttacta 800 taaagccatg caaatgacaa aaatctatat tactttctca aaatggaccc 850 caaagaaact ttgatttact gttcttaact gcctaatctt aattacagga 900 actgtgcatc agctatttat gattctataa gctatttcag cagaatgaga 950 tattaaaccc aatgctttga ttgttctaga aagtatagta atttgttttc 1000 taaggtggtt caagcatcta ctctttttat catttacttc aaaatgacat 1050 tgctaaagac tgcattattt tactactgta atttctccac gacatagcat 1100 tatgtacata gatgagtgta acatttatat ctcacataga gacatgctta 1150 tatggtttta tttaaaatga aatgccagtc cattacactg aataaataga 1200 actcaactat tgcttttcag ggaaatcatg gatagggttg aagaaggtta 1250 ctattaattg tttaaaaaca gcttagggat taatgtcctc catttataat 1300 gaagattaaa atgaaggctt taatcagcat tgtaaaggaa attgaatggc 1350 tttctgatat gctgtttttt agcctaggag ttagaaatcc taacttcttt 1400 atcetettet eccagagget tttttttet tgtgtattaa attaacattt 1450 ttaaaacgca gatattttgt caaggggctt tgcattcaaa ctgcttttcc 1500 agggctatac tcagaagaaa gataaaagtg tgatctaaga aaaagtgatg 1550 gttttaggaa agtgaaaata tttttgtttt tgtatttgaa gaagaatgat 1600 gcattttgac aagaaatcat atatgtatgg atatatttta ataagtattt 1650 gagtacagac tttgaggttt catcaatata aataaaagag cagaaaaata 1700 tgtcttggtt ttcatttgct taccaaaaaa acaacaacaa aaaaagttgt 1750 cetttgagaa etteacetge teetatgtgg gtacetgagt caaaattgte 1800 atttttgttc tgtgaaaaat aaatttcctt cttgtaccat ttctgtttag 1850 ttttactaaa atctgtaaat actgtatttt tctgtttatt ccaaatttga 1900 tgaaactgac aatccaattt gaaagtttgt gtcgacgtct gtctagctta 1950 aatgaatgtg ttctatttgc tttatacatt tatattaata aattgtacat 2000 ttttctaatt 2010

```
<211> 225
<212> PRT
<213> Homo sapiens
<400> 328
Met Ala Thr His Ala Leu Glu Ile Ala Gly Leu Phe Leu Gly Gly
                                      10
 Val Gly Met Val Gly Thr Val Ala Val Thr Val Met Pro Gln Trp
 Arg Val Ser Ala Phe Ile Glu Asn Asn Ile Val Val Phe Glu Asn
 Phe Trp Glu Gly Leu Trp Met Asn Cys Val Arg Gln Ala Asn Ile
 Arg Met Gln Cys Lys Ile Tyr Asp Ser Leu Leu Ala Leu Ser Pro
 Asp Leu Gln Ala Ala Arg Gly Leu Met Cys Ala Ala Ser Val Met
 Ser Phe Leu Ala Phe Met Met Ala Ile Leu Gly Met Lys Cys Thr
                   95
 Arg Cys Thr Gly Asp Asn Glu Lys Val Lys Ala His Ile Leu Leu
 Thr Ala Gly Ile Ile Phe Ile Ile Thr Gly Met Val Val Leu Ile
                  125
 Pro Val Ser Trp Val Ala Asn Ala Ile Ile Arg Asp Phe Tyr Asn
                  140
 Ser Ile Val Asn Val Ala Gln Lys Arg Glu Leu Gly Glu Ala Leu
                  155
  Tyr Leu Gly Trp Thr Thr Ala Leu Val Leu Ile Val Gly Gly Ala
                                      175
                  170
  Leu Phe Cys Cys Val Phe Cys Cys Asn Glu Lys Ser Ser Ser Tyr
                  185
  Arg Tyr Ser Ile Pro Ser His Arg Thr Thr Gln Lys Ser Tyr His
                                       205
  Thr Gly Lys Lys Ser Pro Ser Val Tyr Ser Arg Ser Gln Tyr Val
                                       220
 <210> 329
 <211> 1315
 <212> DNA
 <213> Homo sapiens
```

<400> 329

tegecatgge etetgeegga atgeagatee tgggagtegt cetgaeactg 50

ctgggctggg tgaatggcct ggtctcctgt gccctgccca tgtggaaggt 100 gaccgctttc atcggcaaca gcatcgtggt ggcccaggtg gtgtgggagg 150 gcctgtggat gtcctgcgtg gtgcagagca ccggccagat gcagtgcaag 200 gtgtacgact cactgctggc gctgccacag gacctgcagg ctgcacgtgc 250 cetetgtgte ategecetee ttgtggccct gtteggettg etggtetace 300 ttgctggggc caagtgtacc acctgtgtgg aggagaagga ttccaaggcc 350 cgcctggtgc tcacctctgg gattgtcttt gtcatctcag gggtcctgac 400 gctaatcccc gtgtgctgga cggcgcatgc catcatccgg gacttctata 450 acccctggt ggctgaggcc caaaagcggg agctgggggc ctccctctac 500 ttgggctggg cggcctcagg ccttttgttg ctgggtgggg ggttgctgtg 550 ctgcacttgc ccctcggggg ggtcccaggg ccccagccat tacatggccc 600 gctactcaac atctgcccct gccatctctc ggggggccctc tgagtaccct 650 accaagaatt acgtctgacg tggaggggaa tgggggctcc gctggcgcta 700 gagccatcca gaagtggcag tgcccaacag ctttgggatg ggttcgtacc 750 ttttgtttct gcctcctgct atttttcttt tgactgagga tatttaaaat 800 tcatttgaaa actgagccaa ggtgttgact cagactctca cttaggctct 850 gctgtttctc acccttggat gatggagcca aagaggggat gctttgagat 900 tctggatctt gacatgccca tcttagaagc cagtcaagct atggaactaa 950 tgcggaggct gcttgctgtg ctggctttgc aacaagacag actgtcccca 1000 agagtteetg etgetgetgg gggetggget teeetagatg teaetggaca 1050 getgeeece atectactea ggtetetgga geteetetet teacceetgg 1100 aaaaacaaat catctgttaa caaaggactg cccacctccg gaacttctga 1150 cetetgttte eteegteetg ataagaegte caceeccag ggecaggtee 1200 cagetatgta gaccecegee eccaceteca acaetgeace ettetgeeet 1250 geceeeteg teteacece tttacactea catttttate aaataaagea 1300 tgttttgtta gtgca 1315

<210> 330

<211> 220

<212> PRT

<213> Homo sapiens

<pre><400> 330 Met Ala Ser Ala Gly Met Gln Ile Leu Gly Val Val Leu Thr I</pre>	Jeu 15
Leu Gly Trp Val Asn Gly Leu Val Ser Cys Ala Leu Pro Met T 20 25	7rp 30
Lys Val Thr Ala Phe Ile Gly Asn Ser Ile Val Val Ala Gln V	Val 45
Val Trp Glu Gly Leu Trp Met Ser Cys Val Val Gln Ser Thr 0	Gly 60
Gln Met Gln Cys Lys Val Tyr Asp Ser Leu Leu Ala Leu Pro (Gln 75
Asp Leu Gln Ala Ala Arg Ala Leu Cys Val Ile Ala Leu Leu '	Val 90
Ala Leu Phe Gly Leu Leu Val Tyr Leu Ala Gly Ala Lys Cys 100	Thr 105
Thr Cys Val Glu Glu Lys Asp Ser Lys Ala Arg Leu Val Leu	Thr 120
Ser Gly Ile Val Phe Val Ile Ser Gly Val Leu Thr Leu Ile 125 130	Pro 135
Val Cys Trp Thr Ala His Ala Ile Ile Arg Asp Phe Tyr Asn 140 145	Pro 150
Leu Val Ala Glu Ala Gln Lys Arg Glu Leu Gly Ala Ser Leu 155 160	Tyr 165
Leu Gly Trp Ala Ala Ser Gly Leu Leu Leu Gly Gly Gly 170	Leu 180
Leu Cys Cys Thr Cys Pro Ser Gly Gly Ser Gln Gly Pro Ser 185	His 195
Tyr Met Ala Arg Tyr Ser Thr Ser Ala Pro Ala Ile Ser Arg 200 205	Gly 210
Pro Ser Glu Tyr Pro Thr Lys Asn Tyr Val 215 220	
<210> 331 <211> 1160 <212> DNA <213> Homo sapiens	
<400> 331 gccaaggaga acatcatcaa agacttctct agactcaaaa ggcttccacg	50
ttctacatct tgagcatctt ctaccactcc gaattgaacc agtcttcaaa	100

gtaaaggcaa tggcatttta tcccttgcaa attgctgggc tggttcttgg 150 gttccttggc atggtgggga ctcttgccac aacccttctg cctcagtggt 200 ggagtatcag cttttgttgg cagcaacatt attgtctttg agaggctctg 250 ggaagggctc tggatgaatt gcatccgaca agccagggtc cggttgcaat 300 gcaagttcta tagctccttg ttggctctcc cgcctgccct ggaaacagcc 350 egggeeetea tgtgtgtgge tgttgetete teettgateg eeetgettat 400 tggcatctgt ggcatgaagc aggtccagtg cacaggctct aacgagaggg 450 ccaaagcata ccttctggga acttcaggag tcctcttcat cctgacgggt 500 atcttcgttc tgattccggt gagctggaca gccaatataa tcatcagaga 550 tttctacaac ccagccatcc acataggtca gaaacgagag ctgggagcag 600 cacttttcct tggctgggca agcgctgctg tcctcttcat tggagggggt 650 ctgctttgtg gattttgctg ctgcaacaga aagaagcaag ggtacagata 700 tecagtgeet ggetacegtg tgecacacae agataagega agaaataega 750 caatgettag taagacetee accagttatg tetaatgeet cettttgget 800 ccaagtatgg actatggtca atgtttttta taaagtcctg ctagaaactg 850 taagtatgtg aggcaggaga acttgcttta tgtctagatt tacattgata 900 cgaaagtttc aatttgttac tggtggtagg aatgaaaatg acttacttgg 950 acattctgac ttcaggtgta ttaaatgcat tgactattgt tggacccaat 1000 cgctgctcca attttcatat tctaaattca agtataccca taatcattag 1050 caagtgtaca atgatggact acttattact ttttgaccat catgtattat 1100 ctgataagaa tctaaagttg aaattgatat tctataacaa taaaacatat 1150 acctattcta 1160

<210> 332

<211> 173

<212> PRT

<213> Homo sapiens

<400> 332

Met Asn Cys Ile Arg Gln Ala Arg Val Arg Leu Gln Cys Lys Phe 1 5 10 15

Tyr Ser Ser Leu Leu Ala Leu Pro Pro Ala Leu Glu Thr Ala Arg
20 25 30

Ala Leu Met Cys Val Ala Val Ala Leu Ser Leu Ile Ala Leu Leu

Ile Gly Ile Cys Gly Met Lys Gln Val Gln Cys Thr Gly Ser Asn Glu Arg Ala Lys Ala Tyr Leu Leu Gly Thr Ser Gly Val Leu Phe Ile Leu Thr Gly Ile Phe Val Leu Ile Pro Val Ser Trp Thr Ala Asn Ile Ile Ile Arg Asp Phe Tyr Asn Pro Ala Ile His Ile Gly

Gln Lys Arg Glu Leu Gly Ala Ala Leu Phe Leu Gly Trp Ala Ser 110

Ala Ala Val Leu Phe Ile Gly Gly Gly Leu Leu Cys Gly Phe Cys 125

Cys Cys Asn Arg Lys Lys Gln Gly Tyr Arg Tyr Pro Val Pro Gly 150 145

Tyr Arg Val Pro His Thr Asp Lys Arg Arg Asn Thr Thr Met Leu 155

Ser Lys Thr Ser Thr Ser Tyr Val 170

<210> 333

<211> 535

<212> DNA

<213> Homo sapiens

<400> 333

agtgacaatc tcagagcagc ttctacacca cagccatttc cagcatgaag 50 atcactgggg gtctccttct gctctgtaca gtggtctatt tctgtagcag 100 ctcagaagct gctagtctgt ctccaaaaaa agtggactgc agcatttaca 150 agaagtatcc agtggtggcc atcccctgcc ccatcacata cctaccagtt 200 tgtggttctg actacatcac ctatgggaat gaatgtcact tgtgtaccga 250 gagettgaaa agtaatggaa gagtteagtt tetteacgat ggaagttget 300 aaatteteea tggacataga gagaaaggaa tgatattete ateateatet 350 teatcatece aggetetgae tgagtttett teagttttae tgatgttetg 400 ggtgggggac agagccagat tcagagtaat cttgactgaa tggagaaagt 450 ttctgtgcta cccctacaaa cccatgcctc actgacagac cagcattttt 500 tttttaacac gtcaataaaa aaataatctc ccaga 535

```
<210> 334
<211> 85
```

<212> PRT

<213> Homo sapiens

<400> 334

Met Lys Ile Thr Gly Gly Leu Leu Leu Cys Thr Val Val Tyr 1

Phe Cys Ser Ser Ser Glu Ala Ala Ser Leu Ser Pro Lys Lys Val

Asp Cys Ser Ile Tyr Lys Lys Tyr Pro Val Val Ala Ile Pro Cys

Pro Ile Thr Tyr Leu Pro Val Cys Gly Ser Asp Tyr Ile Thr Tyr

Gly Asn Glu Cys His Leu Cys Thr Glu Ser Leu Lys Ser Asn Gly

Arg Val Gln Phe Leu His Asp Gly Ser Cys

<210> 335

<211> 742

<212> DNA

<213> Homo sapiens

<400> 335

cccgcgcccg gttctccctc gcagcacctc gaagtgcgcc cctcgccctc 50 ctgctcgcgc cccgccgcca tggctgcctc ccccgcgcgg cctgctgtcc 100 tggccctgac cgggctggcg ctgctcctgc tcctgtgctg gggcccaggt 150 ggcataagtg gaaataaact caagctgatg cttcaaaaac gagaagcacc 200 tgttccaact aagactaaag tggccgttga tgagaataaa gccaaagaat 250 teettggcag ectgaagege cagaagegge agetgtggga eeggaetegg 300 cccgaggtgc agcagtggta ccagcagttt ctctacatgg gctttgatga 350 agcgaaattt gaagatgaca tcacctattg gcttaacaga gatcgaaatg 400 gacatgaata ctatggcgat tactaccaac gtcactatga tgaagactct 450 gcaattggtc cccggagccc ctacggcttt aggcatggag ccagcgtcaa 500 ctacgatgac tactaaccat gacttgccac acgctgtaca agaagcaaat 550 agcgattctc ttcatgtatc tcctaatgcc ttacactact tggtttctga 600 tttgctctat ttcagcagat cttttctacc tactttgtgt gatcaaaaaa 650 gaagagttaa aacaacacat gtaaatgcct tttgatattt catgggaatg 700

```
cctctcattt aaaaatagaa ataaagcatt ttgttaaaaa ga 742
```

```
<210> 336
<211> 148
<212> PRT
<213> Homo sapiens
<400> 336
Met Ala Ala Ser Pro Ala Arg Pro Ala Val Leu Ala Leu Thr Gly
 Leu Ala Leu Leu Leu Leu Cys Trp Gly Pro Gly Gly Ile Ser
                  20
 Gly Asn Lys Leu Lys Leu Met Leu Gln Lys Arg Glu Ala Pro Val
 Pro Thr Lys Thr Lys Val Ala Val Asp Glu Asn Lys Ala Lys Glu
                                                           60
                                       55
                  50
 Phe Leu Gly Ser Leu Lys Arg Gln Lys Arg Gln Leu Trp Asp Arg
 Thr Arg Pro Glu Val Gln Gln Trp Tyr Gln Gln Phe Leu Tyr Met
 Gly Phe Asp Glu Ala Lys Phe Glu Asp Asp Ile Thr Tyr Trp Leu
                   95
 Asn Arg Asp Arg Asn Gly His Glu Tyr Tyr Gly Asp Tyr Tyr Gln
                                      115
                  110
 Arg His Tyr Asp Glu Asp Ser Ala Ile Gly Pro Arg Ser Pro Tyr
                                                           135
                                      130
                  125
 Gly Phe Arg His Gly Ala Ser Val Asn Tyr Asp Asp Tyr
                                      145
                  140
 <210> 337
 <211> 1310
 <212> DNA
 <213> Homo sapiens
 <400> 337
  cggctcgagc ccgcccggaa gtgcccgagg ggccgcgatg gagctggggg 50
  agccgggcgc tcggtagcgc ggcgggcaag gcaggcgcca tgaccctgat 100
  tgaaggggtg ggtgatgagg tgaccgtcct tttctcggtg cttgcctgcc 150
  ttctggtgct ggcccttgcc tgggtctcaa cgcacaccgc tgagggcggg 200
```

gacccactgc cccagccgtc agggacccca acgccatccc agcccagcgc 250

agccatggca gctaccgaca gcatgagagg ggaggcccca ggggcagaga 300

ccccagcct gagacacaga ggtcaagctg cacagccaga gcccagcacg 350 gggttcacag caacaccgcc agccccggac tccccgcagg agcccctcgt 400 gctacggctg aaattcctca atgattcaga gcaggtggcc agggcctggc 450 cccacgacac cattggctcc ttgaaaagga cccagtttcc cggccgggaa 500 cagcaggtgc gactcatcta ccaagggcag ctgctaggcg acgacaccca 550 gaccetggge agcetteace teceteceaa etgegttete caetgeeacg 600 tgtccacgag agtcggtccc ccaaatcccc cctgcccgcc ggggtccgag 650 eceggeeet eeggetgga aateggeage etgetgetge eeetgetget 700 cetgetgttg etgetgetet ggtactgcca gatecagtae eggecettet 750 ttcccctgac cgccactctg ggcctggccg gcttcaccct gctcctcagt 800 ctcctggcct ttgccatgta ccgcccgtag tgcctccgcg ggcgcttggc 850 agegtegeeg geeecteegg acettgetee eegegeegeg gegggagetg 900 ctgcctgccc aggcccgcct ctccggcctg cctcttcccg ctgccctgga 950 geccageeet gegeegeaga ggaeteeegg gaetggegga ggeeeegeee 1000 tgcgaccgcc ggggctcggg gccacctccc ggggctgctg aacctcagcc 1050 cgcactggga gtgggctcct cggggtcggg catctgctgt cgctgcctcg 1100 gccccgggca gagccgggcc gccccggggg cccgtcttag tgttctgccg 1150 gaggacccag ccgcctccaa tccctgacag ctccttgggc tgagttgggg 1200 acgccaggtc ggtgggaggc tggtgaaggg gagcggggag gggcagagga 1250 gttccccgga acccgtgcag attaaagtaa ctgtgaagtt ttaaaaaaaa 1300 aaaaaaaaa 1310

<210> 338

<211> 246

<212> PRT

<213> Homo sapiens

<400> 338

Met Thr Leu Ile Glu Gly Val Gly Asp Glu Val Thr Val Leu Phe 1 5 10 15

Ser Val Leu Ala Cys Leu Leu Val Leu Ala Leu Ala Trp Val Ser 20 25 30

Thr His Thr Ala Glu Gly Gly Asp Pro Leu Pro Gln Pro Ser Gly

Thr	Pro	Thr	Pro	Ser 50	Gln	Pro	Ser	Ala	Ala 55	Met	Ala	Ala	Thr	Asp 60
Ser	Met	Arg	Gly	Glu 65	Ala	Pro	Gly	Ala	Glu 70	Thr	Pro	Ser	Leu	Arg 75
His	Arg	Gly	Gln	Ala 80	Ala	Gln	Pro	Glu	Pro 85	Ser	Thr	Gly	Phe	Thr 90
Ala	Thr	Pro	Pro	Ala 95	Pro	Asp	Ser	Pro	Gln 100	Glu	Pro	Leu	Val	Leu 105
Arg	Leu	Lys	Phe	Leu 110	Asn	Asp	Ser	Glu	Gln 115	Val	Ala	Arg	Ala	Trp 120
Pro	His	Asp	Thr	Ile 125	Gly	Ser	Leu	Lys	Arg 130	Thr	Gln	Phe	Pro	Gly 135
Arg	Glu	Gln	Gln	Val 140	Arg	Leu	Ile	Tyr	Gln 145	Gly	Gln	Leu	Leu	Gly 150
Asp	Asp	Thr	Gln	Thr 155	Leu	Gly	Ser	Leu	His 160	Leu	Pro	Pro	Asn	Cys 165
Val	Leu	His	Cys	His 170	Val	Ser	Thr	Arg	Val 175	Gly	Pro	Pro	Asn	Pro 180
Pro	Cys	Pro	Pro	Gly 185		Glu	Pro	Gly	Pro	Ser	Gly	Leu	Glu	Ile 195
Gly	Ser	Leu	ı Leu	Leu 200		Leu	Leu	Leu	Leu 205	Leu	Leu	Leu	Leu	Leu 210
Trp	туг	Cys	s Glr	1le 215		Tyr	Arg	Pro	Phe 220	Phe	Pro	Leu	Thr	Ala 225
Thr	Leu	ı Gly	, Leu	1 Ala 230		Phe	Thr	Leu	Lev 235	ı Lev	ı Ser	Leu	. Lev	Ala 240
Ph∈	e Ala	a Met	туг	245)								
<211 <212)> 33 L> 84 2> DI 3> Ho	49 NA	sapie	ens										
<400	0> 3	39										229	Faac	50

tgccctctcc agattccca ggctctcaga gaagatcagc agaaagtctg 100 caagacccta agaaccatca gccctcagct gcacctcctc ccctccaagg 150 atgacaaagg cgctactcat ctatttggtc agcagctttc ttgccctaaa 200 tcaggccagc ctcatcagtc gctgtgactt ggcccaggtg ctgcagctgg 250

aggacttgga tgggtttgag ggttactcc tgagtgactg gctgtgcctg 300 gcttttgtgg aaagcaagtt caacatatca aagataaatg aaaatgcgga 350 tggaagcttt gactatggcc tcttccagat caacagccac tactggtgca 400 acgattataa gagttactcg gaaaaccttt gccacgtaga ctgtcaagat 450 ctgctgaatc ccaaccttct tgcaggcatc cactgcgcaa aaaggattgt 500 gtccggagca cgggggatga acaactgggt agaatggagg ttgcactgtt 550 caggccggcc actctcctac tggctgacag gatgccgcct gagatgaaac 600 agggtgcggg tgcaccgtgg agtcattcca agactcctgt cactcatg 650 ggattcttca tttcttctc ctactgcctc cactcatgt tattttcttc 700 ccttcccatt tacaactaaa actgaccaga gccccaggaa taaatggtt 750 tcttggcttc ctccttactc ccatctggac ccagtccct ggttcctgtc 800 tgttatttgt aaactgagga ccacaataaa gaaatcttta tattatcg 849

<400> 340

Met	Thr	Lvs	Ala	Leu	Leu	Ile	Tyr	Leu	Val	Ser	Ser	Phe	Leu	Ala
1		210		5			-		10					15

<210> 340

<211> 148

<212> PRT

<213> Homo sapiens

```
Arg Pro Leu Ser Tyr Trp Leu Thr Gly Cys Arg Leu Arg
                 140
<210> 341
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 341
 ccctccaagg atgacaaagg cgc 23
<210> 342
<211> 29
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 342
 ggtcagcagc tttcttgccc taaatcagg 29
<210> 343
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 343
 atctcaggcg gcatcctgtc agcc 24
<210> 344
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 344
 gtggatgcct gcaagaaggt tggg 24
<210> 345
<211> 45
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
```

<400> 345

<210> 346

<211> 2575

<212> DNA

<213> Homo sapiens

<400> 346

tetgacetga etggaagegt ecaaagaggg aeggetgtea geeetgettg 50 actgagaacc caccagctca tcccagacac ctcatagcaa cctatttata 100 caaaggggga aagaaacacc tgagcagaat ggaatcatta ttttttccc 150 gtgaatgggc tttcagaagg caattaaaga aatccactca gagaggactt 250 ggggtgaaac ttgggtcctg tggttttctg attgtaagtg gaagcaggtc 300 ttgcacacgc tgttggcaaa tgtcaggacc aggttaagtg actggcagaa 350 aaacttccag gtggaacaag caacccatgt tctgctgcaa gcttgaagga 400 gcctggagcg ggagaaagct aacttgaaca tgacctgttg catttggcaa 450 gttctagcaa catgctccta aggaagcgat acaggcacag accatgcaga 500 ctccagttcc tcctgctgct cctgatgctg ggatgcgtcc tgatgatggt 550 ggcgatgttg caccetecce accaeacet geaceagaet gteacageee 600 aagccagcaa gcacagccct gaagccaggt accgcctgga ctttggggaa 650 teccaggatt gggtaetgga agetgaggat gagggtgaag agtaeageee 700 totggagggc otgocaccot ttatotcact gogggaggat cagotgotgg 750 tggccgtggc cttaccccag gccagaagga accagagcca gggcaggaga 800 ggtgggagct accgcctcat caagcagcca aggaggcagg ataaggaagc 850 cccaaagagg gactgggggg ctgatgagga cggggaggtg tctgaagaag 900 aggagttgac cccgttcagc ctggacccac gtggcctcca ggaggcactc 950 agtgcccgca tccccctcca gagggctctg cccgaggtgc ggcacccact 1000 gtgtctgcag cagcaccctc aggacagcct gcccacagcc agcgtcatcc 1050 tetgttteca tgatgaggee tggteeacte teetgeggae tgtacacage 1100 atcctcgaca cagtgcccag ggccttcctg aaggagatca tcctcgtgga 1150 cgacctcagc cagcaaggac aactcaagtc tgctctcagc gaatatgtgg 1200 ccaggctgga gggggtgaag ttactcagga gcaacaagag gctgggtgcc 1250 atcagggccc ggatgctggg ggccaccaga gccaccgggg atgtgctcgt 1300 cttcatggat gcccactgcg agtgccaccc aggctggctg gagcccctcc 1350 tcagcagaat agctggtgac aggagccgag tggtatctcc ggtgatagat 1400 gtgattgact ggaagacttt ccagtattac ccctcaaagg acctgcagcg 1450 tggggtgttg gactggaagc tggatttcca ctgggaacct ttgccagagc 1500 atgtgaggaa ggccctccag tcccccataa gccccatcag gagccctgtg 1550 gtgcccggag aggtggtggc catggacaga cattacttcc aaaacactgg 1600 agcgtatgac tctcttatgt cgctgcgagg tggtgaaaac ctcgaactgt 1650 ctttcaagge ctggetetgt ggtggetetg ttgaaateet teeetgetet 1700 cgggtaggac acatctacca aaatcaggat tcccattccc ccctcgacca 1750 ggaggccacc ctgaggaaca gggttcgcat tgctgagacc tggctggggt 1800 cattcaaaga aaccttctac aagcatagcc cagaggcctt ctccttgagc 1850 aaggctgaga agccagactg catggaacgc ttgcagctgc aaaggagact 1900 gggttgtcgg acattccact ggtttctggc taatgtctac cctgagctgt 1950 acccatctga acccaggccc agtttctctg gaaagctcca caacactgga 2000 cttgggctct gtgcagactg ccaggcagaa ggggacatcc tgggctgtcc 2050 catggtgttg gctccttgca gtgacagccg gcagcaacag tacctgcagc 2100 acaccagcag gaaggagatt cactttggca gcccacagca cctgtgcttt 2150 gctgtcaggc aggagcaggt gattcttcag aactgcacgg aggaaggcct 2200 ggccatccac cagcagcact gggacttcca ggagaatggg atgattgtcc 2250 acattettte tgggaaatge atggaagetg tggtgeaaga aaacaataaa 2300 gatttgtacc tgcgtccgtg tgatggaaaa gcccgccagc agtggcgatt 2350 tgaccagata aatgctgtgg atgaacgatg aatgtcaatg tcagaaggaa 2400 aagagaattt tggccatcaa aatccagctc caagtgaacg taaagagctt 2450 atatatttca tgaagctgat ccttttgtgt gtgtgctcct tgtgttagga 2500 gagaaaaaag ctctatgaaa gaatatagga agtttctcct tttcacacct 2550 tatttcattg actgctggct gctta 2575

<400> Met 1	347 Leu	Leu	Arg	Lys 5	Arg	Tyr	Arg	His	Arg 10	Pro	Cys	Arg	Leu	Gln 15
Phe	Leu	Leu	Leu	Leu 20	Leu	Met	Leu	Gly	Cys 25	Val	Leu	Met	Met	Val 30
Ala	Met	Leu	His	Pro 35	Pro	His	His	Thr	Leu 40	His	Gln	Thr	Val	Thr 45
Ala	Gln	Ala	Ser	Lys 50	His	Ser	Pro	Glu	Ala 55	Arg	Tyr	Arg	Leu	Asp 60
Phe	Gly	Glu	Ser	Gln 65	Asp	Trp	Val	Leu	Glu 70	Ala	Glu	Asp	Glu	Gly 75
Glu	Glu	Tyr	Ser	Pro 80	Leu	Glu	Gly	Leu	Pro 85	Pro	Phe	Ile	Ser	Leu 90
Arg	Glu	Asp	Gln	Leu 95	Leu	Val	Ala	Val	Ala 100	Leu	Pro	Gln	Ala	Arg 105
Arg	Asn	Gln	Ser	Gln 110	Gly	Arg	Arg	Gly	Gly 115	Ser	Tyr	Arg	Leu	Ile 120
Lys	Gln	Pro	Arg	Arg 125	Gln	Asp	Lys	Glu	Ala 130	Pro	Lys	Arg	Asp	Trp 135
Gly	Ala	Asp	Glu	Asp 140	Gly	Glu	Val	Ser	Glu 145	Glu	Glu	Glu	Leu	Thr 150
Pro	Phe	e Ser	Leu	Asp 155		Arg	Gly	Leu	Gln 160	Glu	Ala	Leu	Ser	Ala 165
Arg	ıle	e Pro) Let	Gln 170		Ala	Leu	Pro	Glu 175	ı Val	. Arg	, His	Pro	Leu 180
Cys	: Leu	ı Glr	n Glr	185		Gln	Asp	Ser	190	ı Pro	Thr	: Ala	Ser	Val 195
Ile	e Lei	ı Cys	s Phe	9 His		Glu	Ala	a Trp	Ser 205	Thr	Leu	ı Lev	ı Arg	Thr 210
Val	L His	s Se	r Ile	e Leu 215		Thr	· Val	L Pro	220	g Ala	a Phe	e Let	ı Lys	Glu 225
Ile	e Ile	e Le	u Vai	1 Asp 230		Leu	ı Sei	r Glı	n Gli 23!	n Gly 5	y Gli	n Lei	ı Lys	Ser 240
Ala	a Le	u Se	r Gl	u Tyi 245		. Ala	a Ar	g Le	u Gli 25	u Gl <u>y</u> O	y Vai	l Ly:	s Lei	ı Leu 255
Ar	g Se	r As	n Ly	s Arg 260		ı Gly	y Ala	a Il	e Ar	g Ala 5	a Ar	g Me	t Le	Gly 270

Ala	Thr	Arg	Ala	Thr 275	Gly	Asp	Val	Leu	Val 280	Phe	Met	Asp	Ala	His 285
Cys	Glu	Cys	His	Pro 290	Gly	Trp	Leu	Glu	Pro 295	Leu	Leu	Ser	Arg	Ile 300
Ala	Gly	Asp	Arg	Ser 305	Arg	Val	Val	Ser	Pro 310	Val	Ile	Asp	Val	Ile 315
Asp	Trp	Lys	Thr	Phe 320	Gln	Tyr	Tyr	Pro	Ser 325	Lys	Asp	Leu	Gln	Arg 330
Gly	Val	Leu	Asp	Trp 335	Lys	Leu	Asp	Phe	His 340	Trp	Glu	Pro	Leu	Pro 345
Glu	His	Val	Arg	Lys 350	Ala	Leu	Gln	Ser	Pro 355	Ile	Ser	Pro	Ile	Arg 360
Ser	Pro	Val	Val	Pro 365	Gly	Glu	Val	Val	Ala 370	Met	Asp	Arg	His	Tyr 375
Phe	Gln	Asn	Thr	Gly 380	Ala	Tyr	Asp	Ser	Leu 385	Met	Ser	Leu	Arg	Gly 390
Gly	Glu	Asn	Leu	Glu 395	Leu	Ser	Phe	Lys	Ala 400	Trp	Leu	Cys	Gly	Gly 405
Ser	Val	Glu	Ile	Leu 410	Pro	Cys	Ser	Arg	Val 415	Gly	His	Ile	Tyr	Gln 420
Asn	Gln	Asp	Ser	His 425	Ser	Pro	Leu	Asp	Gln 430	Glu	Ala	Thr	Leu	Arg 435
Asn	Arg	Val	Arg	Ile 440	Ala	Glu	Thr	Trp	Leu 445	Gly	Ser	Phe	Lys	Glu 450
Thr	Phe	Tyr	Lys	His 455		Pro	Glu	Ala	Phe 460	Ser	Leu	Ser	Lys	Ala 465
Glu	Lys	Pro	Asp	Cys 470		Glu	Arg	Leu	Gln 475	Leu	Gln	Arg	Arg	Leu 480
Gly	Cys	: Arg	g Thr	Phe 485		Trp	Phe	Leu	Ala 490	Asn	Val	Tyr	Pro	Glu 495
Leu	Туг	Pro	Ser	Glu 500		Arg	pro	Ser	Phe 505		Gly	Lys	Leu	His 510
Asn	Thr	: Gly	/ Leu	Gly 515		Cys	s Ala	Asp	Cys 520		Ala	Glu	Gly	Asp 525
Ile	. Leu	ı Gly	y Cys	530		: Val	L Leu	Ala	Pro 535		Ser	Asp	Ser	Arg 540
Glr	Glr	n Gli	n Tyr	Leu 545		n His	s Thr	Ser	Arg 550		: Glu	ı Ile	e His	555 555

.

```
Gly Ser Pro Gln His Leu Cys Phe Ala Val Arg Gln Glu Gln Val
                                     565
Ile Leu Gln Asn Cys Thr Glu Glu Gly Leu Ala Ile His Gln Gln
                                     580
His Trp Asp Phe Gln Glu Asn Gly Met Ile Val His Ile Leu Ser
                590
Gly Lys Cys Met Glu Ala Val Val Gln Glu Asn Asn Lys Asp Leu
                                     610
                 605
Tyr Leu Arg Pro Cys Asp Gly Lys Ala Arg Gln Gln Trp Arg Phe
Asp Gln Ile Asn Ala Val Asp Glu Arg
<210> 348
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 348
 ggagaggtgg tggccatgga cag 23
<210> 349
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 349
 ctgtcactgc aaggagccaa cacc 24
<210> 350
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 <400> 350
 tatgtcgctg cgaggtggtg aaaacctcga actgtctttc aaggc 45
 <210> 351
 <211> 2524
 <212> DNA
 <213> Homo sapiens
```

<400> 351 cgccaagcat gcagtaaagg ctgaaaatct gggtcacagc tgaggaagac 50 ctcagacatg gagtccagga tgtggcctgc gctgctgctg tcccacctcc 100 tecetetetg gecaetgetg ttgetgeece teceaeegee tgeteaggge 150 tetteateet eccetegaae eccaceagee ecageeegee eccegtgtge 200 caggggaggc ccctcggccc cacgtcatgt gtgcgtgtgg gagcgagcac 250 ctccaccaag ccgatctcct cgggtcccaa gatcacgtcg gcaagtcctg 300 cetggcactg caceceage caceceatea ggetttgagg aggggeegee 350 ctcatcccaa tacccctggg ctatcgtgtg gggtcccacc gtgtctcgag 400 aggatggagg ggaccccaac tetgccaate eeggatttet ggactatggt 450 tttgcagccc ctcatgggct cgcaacccca caccccaact cagactccat 500 gcgaggtgat ggagatgggc ttatccttgg agaggcacct gccaccctgc 550 ggccattcct gttcgggggc cgtggggaag gtgtggaccc ccagctctat 600 gtcacaatta ccatctccat catcattgtt ctcgtggcca ctggcatcat 650 cttcaagttc tgctgggacc gcagccagaa gcgacgcaga ccctcagggc 700 agcaaggtgc cctgaggcag gaggagagcc agcagccact gacagacctg 750 tecceggetg gagteactgt getgggggee tteggggaet eacetacece 800 cacccctgac catgaggagc cccgaggggg accccggcct gggatgcccc 850 accccaaggg ggctccagcc ttccagttga accggtgagg gcaggggcaa 900 tgggatggga gggcaaagag ggaaggcaac ttaggtcttc agagctgggg 950 tgggggtgcc ctctggatgg gtagtgagga ggcaggcgtg gcctcccaca 1000 geceetggee eteceaaggg ggetggaeca geteetetet gggaggeaee 1050 cttccttctc ccagtctctc aggatctgtg tcctattctc tgctgcccat 1100 aactccaact ctgccctctt tggttttttc tcatgccacc ttgtctaaga 1150 caactetgee etettaacet tgatteece tetttgtett gaactteece 1200 ttctattctg gcctacccct tggttcctga ctgtgccctt tccctcttcc 1250 tetcaggatt eccetggtga atetgtgatg ecceeaatgt tggggtgeag 1300 ccaagcagga ggccaagggg ccggcacagc ccccatccca ctgagggtgg 1350 ggcagctgtg gggagctggg gccacagggg ctcctggctc ctgccccttg 1400 cacaccacco ggaacactco coagococac gggcaatcot atotgotogo 1450 cetectgeag gtgggggeet cacatatetg tgaetteggg teeetgteee 1500 caccettgtg cacteacatg anageettge acacteacet ceacetteae 1550 aggccatttg cacacgctcc tgcaccctct ccccgtccat accgctccgc 1600 teagetgact eteatgttet etegteteae atttgeacte teteetteee 1650 acattetgtg etcageteae teagtggtea gegttteetg cacaetttae 1700 ctctcatgtg cgtttcccgg cctgatgttg tggtggtgt cggcgtgctc 1750 actetetece teatgaacae ecaceacet egttteegea geecetgegt 1800 gctgctccag aggtgggtgg gaggtgagct gggggctcct tgggccctca 1850 teggtcatgg tetegteeca ttecacacca tttgtttete tgteteecca 1900 tectacteca aggatgeegg cateaceetg agggeteece ettgggaatg 1950 gggtagtgag gccccagact tcacccccag cccactgcta aaatctgttt 2000 tetgacagat gggttttggg gagtegeetg etgeactaca tgagaaaggg 2050 acteceattt gecetteeet tteteetaea gteeettttg tettgtetgt 2100 cetggctgtc tgtgtgtgt ccattctctg gacttcagag ccccctgagc 2150 cagtcctccc ttcccagcct ccctttgggc ctccctaact ccacctaggc 2200 tgccagggac cggagtcagc tggttcaagg ccatcgggag ctctgcctcc 2250 aagtctaccc ttcccttccc ggactccctc ctgtcccctc ctttcctccc 2300 teetteette eacteteett eetttigett eeetgeeett teeceeteet 2350 caggitette ecteettete actggittit ceaeciteet ecticeette 2400 ttccctggct cctaggctgt gatatatatt tttgtattat ctctttcttc 2450 ttcttgtggt gatcatcttg aattactgtg ggatgtaagt ttcaaaattt 2500 tcaaataaag cctttgcaag ataa 2524

Leu Leu Leu Leu Leu Gln Leu Pro Ala Pro Ser Ser Ala

<210> 352

<211> 243

<212> PRT

<213> Homo sapiens

<400> 352

Met Arg Pro Gln Gly Pro Ala Ala Ser Pro Gln Arg Leu Arg Gly
1 5 10 15

Ser	Glu	Ile	Pro	Lys 35	Gly	Lys	Gln	Lys	Ala 40	Gln	Leu	Arg	Gln	Arg 45
Glu	Val	Val	Asp	Leu 50	Tyr	Asn	Gly	Met	Cys 55	Leu	Gln	Gly	Pro	Ala 60
Gly	Val	Pro	Gly	Arg 65	Asp	Gly	Ser	Pro	Gly 70	Ala	Asn	Val	Ile	Pro 75
Gly	Thr	Pro	Gly	Ile 80	Pro	Gly	Arg	Asp	Gly 85	Phe	Lys	Gly	Glu	Lys 90
Gly	Glu	Cys	Leu	Arg 95	Glu	Ser	Phe	Glu	Glu 100	Ser	Trp	Thr	Pro	Asn 105
Tyr	Lys	Gln	Cys	Ser 110	Trp	Ser	Ser	Leu	Asn 115	Tyr	Gly	Ile	Asp	Leu 120
Gly	Lys	Ile	Ala	Glu 125	Cys	Thr	Phe	Thr	Lys 130	Met	Arg	Ser	Asn	Ser 135
Ala	Leu	Arg	Val	Leu 140	Phe	Ser	Gly	Ser	Leu 145	Arg	Leu	Lys	Cys	Arg 150
Asn	. Ala	Cys	Cys	Gln 155	Arg	Trp	Tyr	Phe	Thr 160	Phe	Asn	Gly	Ala	Glu 165
Cys	Ser	Gly	/ Pro	Leu 170	Pro	Ile	Glu	Ala	Ile 175	Ile	туг	Leu	Asp	Gln 180
Gly	, Sei	Pro	o Glu	185	Asn	Ser	Thr	· Ile	Asn 190	ı Ile	e His	s Arg	Thr	Ser 195
Ser	· Val	L Glu	ı Gly	/ Leu 200		Glu	ı Gly	, Il∈	e Gly 205	y Ala	a Gly	/ Leu	ı Val	Asp 210
Val	L Ala	a Ile	e Trp	o Val 215		Thr	Суз	s Ser	220	э Туг	r Pro	o Lys	s Gly	Asp 225
Ala	a Se:	r Thi	r Gl	y Trp 230	Asr	n Sei	val	L Sei	23!	g Ile 5	e Ile	e Ile	e Glu	1 Glu 240
Lei	u Pr	o Ly	s											

<210> 353

<211> 480

<212> DNA

<213> Homo sapiens

<400> 353

gttaaccage gcagtcctcc gtgcgtcccg cccgccgctg ccctcactcc 50 cggccaggat ggcatcctgt ctggccctgc gcatggcgct gctgctggtc 100 teeggggtte tggeecetge ggtgeteaca gacgatgtte cacaggagee 150 cgtgcccacg ctgtggaacg agccggccga gctgccgtcg ggagaaggcc 200 ccgtggagag caccageece ggccgggage ccgtggaeae cggteececa 250 gcccccaccg tegegeeagg accegaggae agcacegege aggagegget 300 ggaccagggc ggcgggtcgc tggggcccgg cgctatcgcg gccatcgtga 350 tegeegeet getggeeace tgegtggtge tggegetegt ggtegtegeg 400 ctgagaaagt tttctgcctc ctgaagcgaa taaaggggcc gcgcccggcc 450 gcggcgcgac tcggcaaaaa aaaaaaaaa 480

<210> 354

<211> 121

<212> PRT

<213> Homo sapiens

<400> 354

Met Ala Ser Cys Leu Ala Leu Arg Met Ala Leu Leu Val Ser

Gly Val Leu Ala Pro Ala Val Leu Thr Asp Asp Val Pro Gln Glu

Pro Val Pro Thr Leu Trp Asn Glu Pro Ala Glu Leu Pro Ser Gly 35

Glu Gly Pro Val Glu Ser Thr Ser Pro Gly Arg Glu Pro Val Asp

Thr Gly Pro Pro Ala Pro Thr Val Ala Pro Gly Pro Glu Asp Ser 65

Thr Ala Gln Glu Arg Leu Asp Gln Gly Gly Gly Ser Leu Gly Pro

Gly Ala Ile Ala Ala Ile Val Ile Ala Ala Leu Leu Ala Thr Cys 105 100

Val Val Leu Ala Leu Val Val Ala Leu Arg Lys Phe Ser Ala 115 110

Ser

<210> 355

<211> 2134

<212> DNA

<213> Homo sapiens

<400> 355

ggccgttggt tggtgcgcgg ctgaagggtg tggcgcgagc agcgtcgttg 50 gttggccggc ggcgggccgg gacgggcatg gccctgctgc tgtgcctggt 100 gtgcctgacg gcggcgctgg cccacggctg tctgcactgc cacagcaact 150 tctccaagaa gttctccttc taccgccacc atgtgaactt caagtcctgg 200 tgggtgggcg acatececgt gtcaggggcg etgetcaceg actggagcga 250 cgacacgatg aaggagetge acctggecat eccegecaag atcaceeggg 300 agaagctgga ccaagtggcg acagcagtgt accagatgat ggatcagctg 350 taccagggga agatgtactt ccccgggtat ttccccaacg agctgcgaaa 400 catcttccgg gagcaggtgc acctcatcca gaacgccatc atcgaaaggc 450 acctggcacc aggcagctgg ggaggagggc agctctccag ggagggaccc 500 agcctagcac ctgaaggatc aatgccatca ccccgcgggg acctccccta 550 agtagecece agaggegetg ggagtgttge cacegecete eeetgaagtt 600 tgctccatct cacgctgggg gtcaacctgg ggaccccttc cctccgggcc 650 atggacacac atacatgaaa accaggccgc atcgactgtc agcaccgctg 700 tggcatette cagtaegaga ecateteetg caacaaetge acagaetege 750 acgtcgcctg ctttggctat aactgcgagt agggctcagg catcacaccc 800 accegtgeca gggeectact gteectgggg teecaggete teettggagg 850 gggctccccg ccttccacct ggctgtcatc gggtagggcg gggccgtggg 900 ttcaggggcg caccacttcc aagcctgtgt cccacaggtc ctcggcgcag 950 tggaagtcag ctgtccaggg cctcctgaac tacataaata actggcacaa 1000 gtaagtcccc tcctcaaacc aacacaggca gtgtgtgtat gtgagcacct 1050 cgtgggtgag tatgtgtggg gcacaggctg gctccctcag ctcccacgtc 1100 ctagagggc tcccgaggag gtggaacctc aacccagctc tgcgcaggag 1150 geggetgeag teettttete eeteaaaggt eteegaeeet eagetggagg 1200 cgggcatctt tcctaaaggg tccccatagg gtctggttcc accccatccc 1250 aggtctgtgg tcagagcctg ggagggttcc ctacgatggt taggggtgcc 1300 ccatggaggg gctgactgcc ccacattgcc tttcagacag gacacgagca 1350 tgaggtaagg ccgccctgac ctggacttca gggggagggg gtaaagggag 1400 agaggagggg ggctaggggg tcctctagat cagtgggggc actgcaggtg 1450 gggctctccc tatacctggg acacctgctg gatgtcacct ctgcaaccac 1500 accoatgtgg tggtttcatg aacagaccac gctcctctgc cttctcctgg 1550 cetgggacae acagageeae eceggeettg tgagtgacee agagaaggga 1600 ggcctcggga gaaggggtgc tcgtaagcca acaccagcgt gccgcggcct 1650 gcacaccett eggacatece aggeacgagg gtgtegtgga tgtggceaca 1700 cataggacca cacgtcccag ctgggaggag aggcctgggg cccccaggga 1750 gggaggcagg gggtggggga catggagagc tgaggcagcc tcgtctcccc 1800 gcagcctggt atcgccagcc ttaaggtgtc tggagccccc acacttggcc 1850 aacctgacct tggaagatgc tgctgagtgt ctcaagcagc actgacagca 1900 gctgggcctg ccccagggca acgtgggggc ggagactcag ctggacagcc 1950 cetgcctgtc actctggagc tgggctgctg ctgcctcagg accccctctc 2000 cgaccccgga cagagctgag ctggccaggg ccaggagggc gggagggagg 2050 gaatgggggt gggctgtgcg cagcatcagc gcctgggcag gtccgcagag 2100 ctgcgggatg tgattaaagt ccctgatgtt tctc 2134

<210> 356

<211> 157

<212> PRT

<213> Homo sapiens

<400> 356

Met Ala Leu Leu Cys Leu Val Cys Leu Thr Ala Ala Leu Ala

His Gly Cys Leu His Cys His Ser Asn Phe Ser Lys Lys Phe Ser

Phe Tyr Arg His His Val Asn Phe Lys Ser Trp Trp Val Gly Asp

Ile Pro Val Ser Gly Ala Leu Leu Thr Asp Trp Ser Asp Asp Thr 55 50

Met Lys Glu Leu His Leu Ala Ile Pro Ala Lys Ile Thr Arg Glu

Lys Leu Asp Gln Val Ala Thr Ala Val Tyr Gln Met Met Asp Gln

Leu Tyr Gln Gly Lys Met Tyr Phe Pro Gly Tyr Phe Pro Asn Glu 105 95

Leu Arg Asn Ile Phe Arg Glu Gln Val His Leu Ile Gln Asn Ala 115 110

Ile Ile Glu Arg His Leu Ala Pro Gly Ser Trp Gly Gly Gln

Leu Ser Arg Glu Gly Pro Ser Leu Ala Pro Glu Gly Ser Met Pro 145 140

Ser Pro Arg Gly Asp Leu Pro

<210> 357

<211> 1536

<212> DNA

<213> Homo sapiens

<400> 357

agcaggagca ggagagggac aatggaagct gccccgtcca ggttcatgtt 50 cctcttattt ctcctcacgt gtgagctggc tgcagaagtt gctgcagaag 100 ttgagaaatc ctcagatggt cctggtgctg cccaggaacc cacgtggctc 150 acagatgtcc cagctgccat ggaattcatt gctgccactg aggtggctgt 200 cataggette ttecaggatt tagaaatace ageagtgeee atacteeata 250 gcatggtgca aaaattccca ggcgtgtcat ttgggatcag cactgattct 300 gaggttctga cacactacaa catcactggg aacaccatct gcctctttcg 350 cctggtagac aatgaacaac tgaatttaga ggacgaagac attgaaagca 400 ttgatgccac caaattgagc cgtttcattg agatcaacag cctccacatg 450 gtgacagagt acaaccctgt gactgtgatt gggttattca acagcgtaat 500 tcagattcat ctcctcctga taatgaacaa ggcctcccca gagtatgaag 550 agaacatgca cagataccag aaggcagcca agctcttcca ggggaagatt 600 ctctttattc tggtggacag tggtatgaaa gaaaatggga aggtgatatc 650 atttttcaaa ctaaaggagt ctcaactgcc agctttggca atttaccaga 700 ctctagatga cgagtgggat acactgccca cagcagaagt ttccgtagag 750 catgtgcaaa acttttgtga tggattccta agtggaaaat tgttgaaaga 800 aaatcgtgaa tcagaaggaa agactccaaa ggtggaactc tgacttctcc 850 ttggaactac atatggccaa gtatctactt tatgcaaagt aaaaaggcac 900 aactcaaatc tcagagacac taaacaacag gatcactagg cctgccaacc 950 acacacaca gcacgtgcac acacgcacgc acgcgtgcac acacacacgc 1000 gcacacaca acacacag agetteattt eetgtettaa aatetegttt 1050 tetettette ettetttaa attteatate eteaeteeet ateeaattte 1100 cttcttatcg tgcattcata ctctgtaagc ccatctgtaa cacacctaga 1150 tcaaggcttt aagagactca ctgtgatgcc tctatgaaag agaggcattc 1200 ctagagaaag attgttccaa tttgtcattt aatatcaagt ttgtatactg 1250 cacatgactt acacacaaca tagttcctgc tctttaagg ttacctaagg 1300 gttgaaactc taccttctt cataagcaca tgtccgtctc tgactcagga 1350 tcaaaaacca aaggatggtt ttaaacacct ttgtgaaatt gtcttttgc 1400 cagaagttaa aggctgtctc caagtccctg aactcagcag aaatagacca 1450 tgtgaaaact ccatgcttgg ttagcatctc caactcccta tgtaaatcaa 1500 caacctgcat aataaataaa aggcaatcat gttata 1536

<210> 358

<211> 273

<212> PRT

<213> Homo sapiens

<400> 358

Met Glu Ala Ala Pro Ser Arg Phe Met Phe Leu Leu Phe Leu Leu 1 5 10 15

Thr Cys Glu Leu Ala Ala Glu Val Ala Ala Glu Val Glu Lys Ser 20 25 30

Ser Asp Gly Pro Gly Ala Ala Gln Glu Pro Thr Trp Leu Thr Asp 35 40 45

Val Pro Ala Ala Met Glu Phe Ile Ala Ala Thr Glu Val Ala Val 50 55 60

Ile Gly Phe Phe Gln Asp Leu Glu Ile Pro Ala Val Pro Ile Leu 65 70 75

His Ser Met Val Gln Lys Phe Pro Gly Val Ser Phe Gly Ile Ser 80 85 90

Thr Asp Ser Glu Val Leu Thr His Tyr Asn Ile Thr Gly Asn Thr 95 100 105

Ile Cys Leu Phe Arg Leu Val Asp Asn Glu Gln Leu Asn Leu Glu 110 115 120

Asp Glu Asp Ile Glu Ser Ile Asp Ala Thr Lys Leu Ser Arg Phe 125 130 135

Ile Glu Ile Asn Ser Leu His Met Val Thr Glu Tyr Asn Pro Val 140 140 145 150

Thr Val Ile Gly Leu Phe Asn Ser Val Ile Gln Ile His Leu Leu 155 160 165

Leu Ile Met Asn Lys Ala Ser Pro Glu Tyr Glu Glu Asn Met His 175 170 Arg Tyr Gln Lys Ala Ala Lys Leu Phe Gln Gly Lys Ile Leu Phe 185 Ile Leu Val Asp Ser Gly Met Lys Glu Asn Gly Lys Val Ile Ser 205 200 Phe Phe Lys Leu Lys Glu Ser Gln Leu Pro Ala Leu Ala Ile Tyr 220 215 Gln Thr Leu Asp Asp Glu Trp Asp Thr Leu Pro Thr Ala Glu Val 230 Ser Val Glu His Val Gln Asn Phe Cys Asp Gly Phe Leu Ser Gly 250 245 Lys Leu Leu Lys Glu Asn Arg Glu Ser Glu Gly Lys Thr Pro Lys 265 260 Val Glu Leu <210> 359 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 359 ccagcagtgc ccatactcca tagc 24 <210> 360 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 360 tgacgagtgg gatacactgc 20 <210> 361 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 361 gctctacgga aacttctgct gtgg 24

```
<210> 362
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 362
 attcccaggc gtgtcatttg ggatcagcac tgattctgag gttctgacac 50
<210> 363
<211> 1777
<212> DNA
<213> Homo sapiens
<400> 363
 ggagagccgc ggctgggacc ggagtgggga gcgcggcgtg gaggtgccac 50
 ccggcgcggg tggcggagag atcagaagcc tcttccccaa gccgagccaa 100
 cctcagcggg gacccgggct cagggacgcg gcggcggcgg cggcgactgc 150
 agtggctgga cgatggcagc gtccgccgga gccggggcgg tgattgcagc 200
 cccagacagc cggcgctggc tgtggtcggt gctggcggcg gcgcttgggc 250
 tcttgacagc tggagtatca gccttggaag tatatacgcc aaaagaaatc 300
 ttcgtggcaa atggtacaca agggaagctg acctgcaagt tcaagtctac 350
 tagtacgact ggcgggttga cctcagtctc ctggagcttc cagccagagg 400
```

gggccgacac tactgtgtcg tttttccact actcccaagg gcaagtgtac 450

cttgggaatt atccaccatt taaagacaga atcagctggg ctggagacct 500

tgacaagaaa gatgcatcaa tcaacataga aaatatgcag tttatacaca 550

atggcaccta tatctgtgat gtcaaaaacc ctcctgacat cgttgtccag 600

cctggacaca ttaggctcta tgtcgtagaa aaagagaatt tgcctgtgtt 650

tccagtttgg gtagtggtgg gcatagttac tgctgtggtc ctaggtctca 700

ctctgctcat cagcatgatt ctggctgtcc tctatagaag gaaaaactct 750

aaacgggatt acactggctg cagtacatca gagagtttgt caccagttaa 800

gcaggetect eggaagteec ceteegacae tgagggtett gtaaagagte 850

tgccttctgg atctcaccag ggcccagtca tatatgcaca gttagaccac 900

teeggeggae ateacagtga caagattaac aagteagagt etgtggtgta 950

tgcggatatc cgaaagaatt aagagaatac ctagaacata tcctcagcaa 1000

gaaacaaaac caaactggac tctcgtgcag aaaatgtagc ccattaccac 1050 atgtagcctt ggagacccag gcaaggacaa gtacacgtgt actcacagag 1100 ggagagaaag atgtgtacaa aggatatgta taaatattct atttagtcat 1150 cctgatatga ggagccagtg ttgcatgatg aaaagatggt atgattctac 1200 atatgtaccc attgtcttgc tgtttttgta ctttcttttc aggtcattta 1250 caattgggag atttcagaaa cattcctttc accatcattt agaaatggtt 1300 tgccttaatg gagacaatag cagatcctgt agtatttcca gtagacatgg 1350 ccttttaatc taagggctta agactgatta gtcttagcat ttactgtagt 1400 tggaggatgg agatgctatg atggaagcat acccagggtg gcctttagca 1450 cagtatcagt accatttatt tgtctgccgc ttttaaaaaa tacccattgg 1500 ctatgccact tgaaaacaat ttgagaagtt tttttgaagt ttttctcact 1550 aaaatatggg gcaattgtta gccttacatg ttgtgtagac ttactttaag 1600 tttgcaccct tgaaatgtgt catatcaatt tctggattca taatagcaag 1650 attagcaaag gataaatgcc gaaggtcact tcattctgga cacagttgga 1700 tcaatactga ttaagtagaa aatccaagct ttgcttgaga acttttgtaa 1750 cgtggagagt aaaaagtatc ggtttta 1777

```
<210> 364
```

<400> 364

Met Ala Ala Ser Ala Gly Ala Gly Ala Val Ile Ala Ala Pro Asp 1 5 10

Ser Arg Arg Trp Leu Trp Ser Val Leu Ala Ala Ala Leu Gly Leu 20 25 30

Leu Thr Ala Gly Val Ser Ala Leu Glu Val Tyr Thr Pro Lys Glu 35 40 45

Ile Phe Val Ala Asn Gly Thr Gln Gly Lys Leu Thr Cys Lys Phe
50 55 60

Lys Ser Thr Ser Thr Thr Gly Gly Leu Thr Ser Val Ser Trp Ser 65 70 75

Phe Gln Pro Glu Gly Ala Asp Thr Thr Val Ser Phe Phe His Tyr 80 85 90

<211> 269

<212> PRT

<213> Homo sapiens

Ser	Gln	Gly	Gln	Val 95	Tyr	Leu	Gly	Asn	Tyr 100	Pro	Pro	Phe	Lys	Asp 105
Arg	Ile	Ser	Trp	Ala 110	Gly	Asp	Leu	Asp	Lys 115	Lys	Asp	Ala	Ser	Ile 120
Asn	Ile	Glu	Asn	Met 125	Gln	Phe	Ile	His	Asn 130	Gly	Thr	Tyr	Ile	Cys 135
Asp	Val	Lys	Asn	Pro 140	Pro	Asp	Ile	Val	Val 145	Gln	Pro	Gly	His	Ile 150
Arg	Leu	Tyr	Val	Val 155	Glu	Lys	Glu	Asn	Leu 160	Pro	Val	Phe	Pro	Val 165
Trp	Val	Val	Val	Gly 170	Ile	Val	Thr	Ala	Val 175	Vaİ	Leu	Gly	Leu	Thr 180
Leu	Leu	Ile	Ser	Met 185	Ile	Leu	Ala	Val	Leu 190	Tyr	Arg	Arg	Lys	Asn 195
Ser	Lys	Arg	Asp	Tyr 200		Gly	Cys	Ser	Thr 205	Ser	Glu	Ser	Leu	Ser 210
Pro	Val	Lys	Gln	Ala 215		Arg	Lys	Ser	Pro 220	Ser	Asp	Thr	Glu	Gly 225
Leu	Val	Lys	Ser	Leu 230		Ser	Gly	Ser	His 235	Gln	Gly	Pro	Val	Ile 240
Tyr	Ala	Gln	Leu	Asp 245		Ser	Gly	gly	His 250	His	Ser	Asp	Lys	Ile 255
Asn	Lys	Ser	Glu	Ser 260		. Val	L Tyr	Ala	Asp 265	Ile	Arg	Lys	Asn	l
)> 36 > 13													

<211> 1321

<212> DNA

<213> Homo sapiens

<400> 365

geoggettgtgcagagacgceatgtaceggeteetgteageagtgactgce50cgggettgcegcececegggggcttggeetcaagetgeggaegaegegggg100ceateagegegeegggettgecgeetcteggceaeggettgggteggggge150tegggettggggetggggetggegeteggggtgaagetggeaggtgggetg200aggggegeggceceggegeagteeceeggegeceegaceetgaggett250geetetggegeegeetgeteeaggtgettegecagagetagteteeg300agecggacetgetgcacaggateaaggatgaggtgggecacegggcat400

agtggttgga gtttctgtag atggaaaaga agtctggtca gaaggtttag 450 gttatgctga tgttgagaac cgtgtaccat gtaaaccaga gacagttatg 500 cgaattgcta gcatcagcaa aagtctcacc atggttgctc ttgccaaatt 550 gtgggaagca gggaaactgg atcttgatat tccagtacaa cattatgttc 600 ccgaattccc agaaaaagaa tatgaaggtg aaaaggtttc tgtcacaaca 650 agattactga tttcccattt aagtggaatt cgtcattatg aaaaggacat 700 aaaaaaggtg aaagaagaga aagcttataa agccttgaag atgatgaaag 750 agaatgttgc atttgagcaa gaaaaagaag gcaaaagtaa tgaaaagaat 800 gattttacta aatttaaaac agagcaggag aatgaagcca aatgccggaa 850 ttcaaaacct ggcaagaaaa agaatgattt tgaacaaggc gaattatatt 900 tgagagaaaa gtttgaaaat tcaattgaat ccctaagatt atttaaaaat 950 gatcctttgt tcttcaaacc tggtagtcag tttttgtatt caacttttgg 1000 ctatacccta ctggcagcca tagtagagag agcttcagga tgtaaatatt 1050 tggactatat gcagaaaata ttccatgact tggatatgct gacgactgtg 1100 caggaagaaa acgagccagt gatttacaat agagcaaggt aaatgaatac 1150 cttctgctgt gtctagctat atcgcatctt aacactattt tattaattaa 1200 aagtcaaatt ttctttgttt ccattccaaa atcaacctgc cacattttgg 1250 gagcttttct acatgtctgt tttctcatct gtaaagtgaa ggaagtaaaa 1300 catgtttata aagtaaaaaa a 1321

```
<210> 366
```

<400> 366

Met Tyr Arg Leu Leu Ser Ala Val Thr Ala Arg Ala Ala Pro 1 5 10 15

Gly Gly Leu Ala Ser Ser Cys Gly Arg Arg Gly Val His Gln Arg
20 25 30

Ala Gly Leu Pro Pro Leu Gly His Gly Trp Val Gly Gly Leu Gly
35 40 45

Leu Gly Leu Gly Leu Ala Leu Gly Val Lys Leu Ala Gly Gly Leu
50 55 60

<211> 373

<212> PRT

<213> Homo sapiens

A	rg	Gly	Ala	Ala	Pro 65	Ala	Gln	Ser	Pro	Ala 70	Ala	Pro	Asp	Pro	Glu 75	
P	la	Ser	Pro	Leu	Ala 80	Glu	Pro	Pro	Gln	Glu 85	Gln	Ser	Leu	Ala	Pro 90	
]	rp	Ser	Pro	Gln	Thr 95	Pro	Ala	Pro	Pro	Cys 100	Ser	Arg	Cys	Phe	Ala 105	
7	Arg	Ala	Ile	Glu	Ser 110	Ser	Arg	Asp	Leu	Leu 115	His	Arg	Ile	Lys	Asp 120	
(Glu	Val	Gly	Ala	Pro 125	Gly	Ile	Val	Val	Gly 130	Val	Ser	Val	Asp	Gly 135	•
					Ser 140					145					100	,
					Lys 155					100	,				100	
					170	}				1/5	•				10.	,
					Det 185	•				190	,					
					s Glu 200)				20:	0					•
					e Sei 21	5				22	U					
					s Vai	0				23	5				2.1	·
					u As: 24	5				23	U					
					rs As 26	0				20	5					
					rs Cy 27	5				28	U				-	,
					n Gl 29	0				25	75				J.	, ,
					er Le 30)5				3.	LU				٥.	
					er Gl 32	20				3,	25				٠,	30
	L€	eu Al	la A	la I	le Va	al Gl 35	u Ar	g Al	.a S∈	er Gi 3	ly C: 40	ys L	ys T	yr L	eu A 3	sp 45

```
Tyr Met Gln Lys Ile Phe His Asp Leu Asp Met Leu Thr Thr Val
Gln Glu Glu Asn Glu Pro Val Ile Tyr Asn Arg Ala Arg
                 365
<210> 367
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 367
tggaaaagaa gtctggtcag aaggtttagg 30
<210> 368
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 368
 catttggctt cattctcctg ctctg 25
<210> 369
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 <400> 369
 aaaacctcag aacaactcat tttgcacc 28
 <210> 370
 <211> 41
 <212> DNA
 <213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
 <400> 370
  gtctcaccat ggttgctctt gccaaattgt gggaagcagg g 41
 <210> 371
 <211> 1150
 <212> DNA
 <213> Homo sapiens
 <400> 371
  gtgacactat agaagageta tgacgtcgca tgcacgcgta cgtaagctcg 50
```

gaattcggct cgaggctggt gggaagaagc cgagatggcg gcagccagcg 100 ctggggcaac ccggctgctc ctgctcttgc tgatggcggt agcagcgccc 150 agtcgagccc ggggcagcgg ctgccgggcc gggactggtg cgcgaggggc 200 tggggcggaa ggtcgagagg gcgaggcctg tggcacggtg gggctgctgc 250 tggagcactc atttgagatc gatgacagtg ccaacttccg gaagcggggc 300 teactgetet ggaaccagea ggatggtace ttgteeetgt cacageggea 350 gctcagcgag gaggagcggg gccgactccg ggatgtggca gccctgaatg 400 gcctgtaccg ggtccggatc ccaaggcgac ccggggccct ggatggcctg 450 gaagetggtg getatgtete eteetttgte eetgegtget eeetggtgga 500 gtcgcacctg tcggaccagc tgaccctgca cgtggatgtg gccggcaacg 550 tggtgggcgt gtcggtggtg acgcaccccg ggggctgccg gggccatgag 600 gtggaggacg tggacctgga gctgttcaac acctcggtgc agctgcagcc 650 geceaceaea geceeaggee etgagaegge ggeetteatt gagegeetgg 700 agatggaaca ggcccagaag gccaagaacc cccaggagca gaagtccttc 750 ttcgccaaat actggatgta catcattccc gtcgtcctgt tcctcatgat 800 gtcaggagcg ccagacaccg ggggccaggg tgggggtggg ggtggggtg 850 gtggtggggg tagtggcctt tgctgtgtgc caccctccct gtaagtctat 900 ttaaaaacat cgacgataca ttgaaatgtg tgaacgtttt gaaaagctac 950 agettccage agecaaaage aactgttgtt ttggcaagae ggtcctgatg 1000 tacaagettg attgaaatte actgeteact tgataegtta tteagaaace 1050 caaggaatgg ctgtccccat cctcatgtgg ctgtgtggag ctcagctgtg 1100 ttgtgtggca gtttattaaa ctgtccccca gatcgacacg caaaaaaaa 1150

Leu Met Ala Val Ala Ala Pro Ser Arg Ala Arg Gly Ser Gly Cys
20 25 30

<210> 372

<211> 269

<212> PRT

<213> Homo sapiens

<400> 372

Met Ala Ala Ser Ala Gly Ala Thr Arg Leu Leu Leu Leu 1 5 10 15

Arg	Ala	Gly	Thr	Gly 35	Ala	Arg	Gly	Ala	Gly 40	Ala	Glu	Gly	Arg	Glu 45
Gly	Glu	Ala	Cys	Gly 50	Thr	Val	Gly	Leu	Leu 55	Leu	Glu	His	Ser	Phe 60
Glu	Ile	Asp	Asp	Ser 65	Ala	Asn	Phe	Arg	Lys 70	Arg	Gly	Ser	Leu	Leu 75
Trp	Asn	Gln	Gln	Asp 80	Gly	Thr	Leu	Ser	Leu 85	Ser	Gln	Arg	Gln	Leu 90
Ser	Glu	Glu	Glu	Arg 95	Gly	Arg	Leu	Arg	Asp 100	Val	Ala	Ala	Leu	Asn 105
Gly	Leu	Tyr	Arg	Val 110	Arg	Ile	Pro	Arg	Arg 115	Pro	Gly	Ala	Leu	Asp 120
Gly	Leu	Glu	Ala	Gly 125	Gly	Tyr	Val	Ser	Ser 130	Phe	Val	Pro	Ala	Cys 135
Ser	Leu	Val	Glu	Ser 140		Leu	Ser	Asp	Gln 145	Leu	Thr	Leu	His	Val 150
Asp	Val	. Ala	Gly	Asn 155		Val	Gly	Val	Ser 160	Val	Val	Thr	His	Pro 165
Gly	Gly	у Суз	s Arg	Gly 170		: Glu	Val	Glu	Asp 175	Val	Asp	Leu	Glu	Leu 180
Phe	e Asr	n Thi	s Ser	Val		Leu	Gln	·Pro	Pro 190	Thr	Thr	Ala	Pro	Gly 195
Pro	Glı	ı Thi	r Ala	a Ala 200	a Phe	e Ile	e Glu	ı Arç	g Let 205	ı Glu	ı Met	: Glu	ı Glm	Ala 210
Glr	ı Ly:	s Ala	a Lys	3 Asr 215		o Glr	ı Glu	ı Glr	n Lys 220	s Sei	r Phe	e Phe	e Ala	Lys 225
Ту	r Tr	p Me	t Ty:	r Ile 230		e Pro	o Vai	l Vai	l Let 23!	ı Phe	e Lei	Me¹ נ	t Met	Ser 240
Gl:	y Al	a Pr	o As	p Th: 24	r Gl	y Gl	y Gli	n Gl	y Gly 25	y Gly O	y Gl	y Gl	y Gly	y Gly 255
Gl	y Gl	y Gl	y Gl	y Se 26	r Gl O	y Le	u Cy	s Cy	s Va. 26	l Pr	o Pr	o Se	r Le	נ
<21 <21	0> 3 1> 1 2> D 3> H	706 NA	sapi	ens										
<40 gg	0> 3 agcg	73 jetge	: tgg	aacc	:cga	gccg	gagc	cg g	agcc	acag	c gg	ggag	ggtg	50

gcctggcggc ctggagccgg acgtgtccgg ggcgtccccg cagaccgggg 100

cagcaggtcg teegggggee caccatgetg gtgaetgeet acettgettt 150 tgtaggcctc ctggcctcct gcctggggct ggaactgtca agatgccggg 200 ctaaaccccc tggaagggcc tgcagcaatc cctccttcct tcggtttcaa 250 ctggacttct atcaggtcta cttcctggcc ctggcagctg attggcttca 300 ggccccctac ctctataaac tctaccagca ttactacttc ctggaaggtc 350 aaattgccat cctctatgtc tgtggccttg cctctacagt cctctttggc 400 ctagtggcct cctcccttgt ggattggctg ggtcgcaaga attcttgtgt 450 cetettetee etgaettact cactatgetg ettaaccaaa eteteteaag 500 actactttgt gctgctagtg gggcgagcac ttggtgggct gtccacagcc 550 ctgctcttct cagccttcga ggcctggtat atccatgagc acgtggaacg 600 gcatgacttc cctgctgagt ggatcccagc tacctttgct cgagctgcct 650 tctggaacca tgtgctggct gtagtggcag gtgtggcagc tgaggctgta 700 gccagctgga tagggctggg gcctgtagcg ccctttgtgg ctgccatccc 750 teteetgget etggeagggg cettggeeet tegaaactgg ggggagaact 800 atgaccggca gcgtgccttc tcaaggacct gtgctggagg cctgcgctgc 850 ctcctgtcgg accgccgcgt gctgctgctg ggcaccatac aagctctatt 900 tgagagtgtc atcttcatct ttgtcttcct ctggacacct gtgctggacc 950 cacacggggc ccctctgggc attatcttct ccagcttcat ggcagccagc 1000 ctgcttggct cttccctgta ccgtatcgcc acctccaaga ggtaccacct 1050 teageceatg cacetgetgt ceettgetgt geteategte gtettetete 1100 tetteatgtt gaetttetet accageceag geeaggagag teeggtggag 1150 teetteatag eetttetaet tattgagttg gettgtggat tataetttee 1200 cagcatgage ttectaegga gaaaggtgat eeetgagaca gageaggetg 1250 gtgtactcaa ctggttccgg gtacctctgc actcactggc ttgcctaggg 1300 ctccttgtcc tccatgacag tgatcgaaaa acaggcactc ggaatatgtt 1350 cagcatttgc tetgetgtca tggtgatgge tetgetggca gtggtgggac 1400 tettcacegt ggtaaggcat gatgetgage tgegggtace tteacetact 1450 gaggageeet atgeeeetga getgtaaeee eacteeagga caagataget 1500 gggacagact cttgaattcc agctatccgg gattgtacag atctctctgt 1550 gactgacttt gtgactgtcc tgtggtttct cctgccattg ctttgtgttt 1600 gggaggacat gatgggggtg atggactgga aagaaggtgc caaaagttcc 1650 ctctgtgtta ctcccattta gaaaataaac acttttaaat gatcaaaaaa 1700 aaaaaa 1706

<210> 374

<211> 450

<212> PRT

<213> Homo sapiens

<400> 374

Met Leu Val Thr Ala Tyr Leu Ala Phe Val Gly Leu Leu Ala Ser 1

Cys Leu Gly Leu Glu Leu Ser Arg Cys Arg Ala Lys Pro Pro Gly

Arg Ala Cys Ser Asn Pro Ser Phe Leu Arg Phe Gln Leu Asp Phe 40 35

Tyr Gln Val Tyr Phe Leu Ala Leu Ala Ala Asp Trp Leu Gln Ala 50

Pro Tyr Leu Tyr Lys Leu Tyr Gln His Tyr Tyr Phe Leu Glu Gly 70

Gln Ile Ala Ile Leu Tyr Val Cys Gly Leu Ala Ser Thr Val Leu

Phe Gly Leu Val Ala Ser Ser Leu Val Asp Trp Leu Gly Arg Lys

Asn Ser Cys Val Leu Phe Ser Leu Thr Tyr Ser Leu Cys Cys Leu 115 110

Thr Lys Leu Ser Gln Asp Tyr Phe Val Leu Leu Val Gly Arg Ala 130 125

Leu Gly Gly Leu Ser Thr Ala Leu Leu Phe Ser Ala Phe Glu Ala 145

Trp Tyr Ile His Glu His Val Glu Arg His Asp Phe Pro Ala Glu 155

Trp Ile Pro Ala Thr Phe Ala Arg Ala Ala Phe Trp Asn His Val 175 170

Leu Ala Val Val Ala Gly Val Ala Ala Glu Ala Val Ala Ser Trp 190 185

Ile Gly Leu Gly Pro Val Ala Pro Phe Val Ala Ala Ile Pro Leu 210 205 200

Leu	Ala	Leu	Ala	Gly 215	Ala	Leu	Ala	Leu	Arg 220	Asn	Trp	Gly	Glu	Asn 225
Tyr	Asp	Arg	Gln	Arg 230	Ala	Phe	Ser	Arg	Thr 235	Cys	Ala	Gly	Gly	Leu 240
Arg	Cys	Leu	Leu	Ser 245	Asp	Arg	Arg	Val	Leu 250	Leu	Leu	Gly	Thr	Ile 255
Gln	Ala	Leu	Phe	Glu 260	Ser	Val	Ile	Phe	Ile 265	Phe	Val	Phe	Leu	Trp 270
Thr	Pro	Val	Leu	Asp 275	Pro	His	Gly	Ala	Pro 280	Leu	Gly	Ile	Ile	Phe 285
Ser	Ser	Phe	Met	Ala 290	Ala	Ser	Leu	Leu	Gly 295	Ser	Ser	Leu	Tyr	Arg 300
Ile	Ala	Thr	Ser	Lys 305	Arg	Tyr	His	Leu	Gln 310	Pro	Met	His	Leu	Leu 315
Ser	Leu	Ala	Val	Leu 320	Ile	Val	Val	Phe	Ser 325	Leu	Phe	Met	Leu	Thr 330
Phe	Ser	Thr	Ser	Pro 335		Gln	Glu	Ser	Pro 340	Val	Glu	Ser	Phe	Ile 345
Ala	Phe	Leu	Leu	Ile 350		Leu	Ala	Cys	Gly 355	Leu	Tyr	Phe	Pro	Ser 360
Met	Ser	Phe	Leu	Arg 365		Lys	Val	Ile	Pro	Glu	Thr	Glu	Gln	Ala 375
Gly	Val	Leu	. Asn	Trp		Arg	Val	Pro	Leu 385	His	Ser	Leu	Ala	Cys 390
Leu	Gly	Leu	ı Leu	Val 395		His	Asp	Ser	Asp	Arg	Lys	Thr	Gly	Thr 405
Arg	Asn	n Met	: Phe	Ser 410		суз	Ser	Ala	Val 415	. Met	: Val	Met	Ala	Leu 420
Leu	Ala	ı Val	L Val	Gl _y 425		ı Ph∈	. Thr	Val	. Val	Arç	g His	s Asp	Ala	Glu 435
Leu	ı Arç	g Val	L Pro	Ser 440		Thi	Glu	ı Glu	2 Pro	о Туг Б	: Ala	a Pro	Glu	Leu 450
<21C	1> 3"	75												

<210> 375

<211> 1098

<212> DNA

<213> Homo sapiens

<400> 375

gcgacgcgcg gcggggcggc gagaggaaac gcggcgccgg gccgggcccg 50

gccctggaga tggtccccgg cgccgcgggc tggtgttgtc tcgtgctctg 100 gctccccgcg tgcgtcgcgg cccacggctt ccgtatccat gattatttgt 150 actttcaagt gctgagtcct ggggacattc gatacatctt cacagccaca 200 cctgccaagg actttggtgg tatctttcac acaaggtatg agcagattca 250 cettgteece getgaacete cagaggeetg eggggaacte ageaacggtt 300 tetteateca ggaceagatt getetggtgg agagggggg etgeteette 350 ctctccaaga ctcgggtggt ccaggagcac ggcgggcggg cggtgatcat 400 ctctgacaac gcagttgaca atgacagctt ctacgtggag atgatccagg 450 acagtaccca gcgcacagct gacatccccg ccctcttcct gctcggccga 500 gacggctaca tgatccgccg ctctctggaa cagcatgggc tgccatgggc 550 catcatttcc atcccagtca atgtcaccag catccccacc tttgagctgc 600 tgcaaccgcc ctggaccttc tggtagaaga gtttgtccca cattccagcc 650 ataagtgact ctgagctggg aaggggaaac ccaggaattt tgctacttgg 700 aatttggaga tagcatctgg ggacaagtgg agccaggtag aggaaaaggg 750 cccagggccc ccaagggtgt ctcatgctac aagaagaggc aagagacagg 850 ccccagggct tctggctaga acccgaaaca aaaggagctg aaggcaggtg 900 geetgagage catetgtgae etgteacaet caeetggete cageeteece 950 tacccagggt ctctgcacag tgaccttcac agcagttgtt ggagtggttt 1000 aaagagctgg tgtttgggga ctcaataaac cctcactgac tttttagcaa 1050 taaagcttct catcagggtt gcaaaaaaaa aaaaaaaaa aaaaaaaa 1098

<400> 376

<210> 376

<211> 188

<212> PRT

<213> Homo sapiens

Met Val Pro Gly Ala Ala Gly Trp Cys Cys Leu Val Leu Trp Leu

Pro Ala Cys Val Ala Ala His Gly Phe Arg Ile His Asp Tyr Leu

Tyr Phe Gln Val Leu Ser Pro Gly Asp Ile Arg Tyr Ile Phe Thr

Ala	Thr	Pro	Ala	Lys 50	Asp	Phe	Gly	Gly	Ile 55	Phe	His	Thr	Arg	Tyr 60
Glu	Gln	Ile	His	Leu 65	Val	Pro	Ala	Glu	Pro 70	Pro	Glu	Ala	Cys	Gly 75
Glu	Leu	Ser	Asn	Gly 80	Phe	Phe	Ile	Gln	Asp 85	Gln	Ile	Ala	Leu	Val 90
Glu	Arg	Gly	Gly	Cys 95	Ser	Phe	Leu	Ser	Lys 100	Thr	Arg	Val	Val	Gln 105
Glu	His	Gly	Gly	Arg 110	Ala	Val	Ile	Ile	Ser 115	Asp	Asn	Ala	Val	Asp 120
Asn	Asp	Ser	Phe	Tyr 125	Val	Glu	Met	Ile	Gln 130	Asp	Ser	Thr	Gln	Arg 135
Thr	Ala	Asp	Ile	Pro		Leu	Phe	Leu	Leu 145	Gly	Arg	Asp	Gly	Tyr 150
Met	Ile	Arg	Arg	Ser 155		Glu	Gln	His	Gly 160	Leu	Pro	Trp	Ala	Ile 165
Ile	Ser	Ile	Pro	Val 170		Val	Thr	Ser	Ile 175	Pro	Thr	Phe	Glu	Leu 180
Leu	Gln	Pro) Pro	Trp 185		Phe	Trp)						
<211 <212)> 37 .> 49 !> DN	6 IA	sapie	ens										
		nsure 96	e ,											

<400> 377

<223> unknown base

tctgcctcactgctctgtctgggatcatggaacttgcactgctgtgt50ggctggtggtgatggctggtgtgattcaatccagggcgggatcctgaac100ctgaacaagatggtcaagcaagtgactgggaaaatgcccatcctctccta150ctggccctacggctgtcactgcggactaggtggcagaggccaacccaaag200atgccacggactggtgctgccagacccatgactgctgctatgaccacctg250aagacccaggggtgcggcatctacaaggacaacaacaaaagcagcataca300ttgtatggatttatctcaacgctattgttaatggctgttttaatgtga350tctatctggaaaatgaggactccgaataaaaagctattactawttnaaaa400

Cys His Cys Gly Leu Gly Gly Arg Gly Gln Pro Lys Asp Ala Thr

Asp Trp Cys Cys Gln Thr His Asp Cys Cys Tyr Asp His Leu Lys 65 70 75

Thr Gln Gly Cys Gly Ile Tyr Lys Asp Asn Asn Lys Ser Ser Ile 80 85

His Cys Met Asp Leu Ser Gln Arg Tyr Cys Leu Met Ala Val Phe 95 100 105

Asn Val Ile Tyr Leu Glu Asn Glu Asp Ser Glu

<210> 379

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 379

ctgcctccac tgctctgtgc tggg 24

<210> 380

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 380

cagagcagtg gatgttcccc tggg 24

<210> 381

```
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 381
ctgaacaaga tggtcaagca agtgactggg aaaatgccca tcctc 45
<210> 382
<211> 764
<212> DNA
<213> Homo sapiens
<400> 382
 ctcgcttctt ccttctggat gggggcccag ggggcccagg agagtataaa 50
 ggcgatgtgg agggtgcccg gcacaaccag acgcccagtc acaggcgaga 100
 gccctgggat gcaccggcca gaggccatgc tgctgctgct cacgcttgcc 150
 ctcctggggg gccccacctg ggcagggaag atgtatggcc ctggaggagg 200
 caagtatttc agcaccactg aagactacga ccatgaaatc acagggctgc 250
 gggtgtctgt aggtcttctc ctggtgaaaa gtgtccaggt gaaacttgga 300
 gactcctggg acgtgaaact gggagcctta ggtgggaata cccaggaagt 350
 caccetgeag ceaggegaat acateacaaa agtetttgte geetteeaag 400
 ctttcctccg gggtatggtc atgtacacca gcaaggaccg ctatttctat 450
 tttgggaagc ttgatggcca gatctcctct gcctacccca gccaagaggg 500
 gcaggtgctg gtgggcatct atggccagta tcaactcctt ggcatcaaga 550
  gcattggctt tgaatggaat tatccactag aggagccgac cactgagcca 600
  ccagttaatc tcacatactc agcaaactca cccgtgggtc gctagggtgg 650
  ggtatggggc catccgagct gaggccatct gtgtggtggt ggctgatggt 700
  actggagtaa ctgagtcggg acgctgaatc tgaatccacc aataaataaa 750
  gcttctgcag aaaa 764
 <210> 383
 <211> 178
 <212> PRT
 <213> Homo sapiens
 <400> 383
  Met His Arg Pro Glu Ala Met Leu Leu Leu Thr Leu Ala Leu
                                       10
    1
```

```
Leu Gly Gly Pro Thr Trp Ala Gly Lys Met Tyr Gly Pro Gly Gly
Gly Lys Tyr Phe Ser Thr Thr Glu Asp Tyr Asp His Glu Ile Thr
                                     40
                 35
Gly Leu Arg Val Ser Val Gly Leu Leu Val Lys Ser Val Gln
Val Lys Leu Gly Asp Ser Trp Asp Val Lys Leu Gly Ala Leu Gly
Gly Asn Thr Gln Glu Val Thr Leu Gln Pro Gly Glu Tyr Ile Thr
Lys Val Phe Val Ala Phe Gln Ala Phe Leu Arg Gly Met Val Met
Tyr Thr Ser Lys Asp Arg Tyr Phe Tyr Phe Gly Lys Leu Asp Gly
                                                         120
                                     115
                 110
Gln Ile Ser Ser Ala Tyr Pro Ser Gln Glu Gly Gln Val Leu Val
                 125
                                     130
Gly Ile Tyr Gly Gln Tyr Gln Leu Leu Gly Ile Lys Ser Ile Gly
                                     145
Phe Glu Trp Asn Tyr Pro Leu Glu Glu Pro Thr Thr Glu Pro Pro
                                                         165
Val Asn Leu Thr Tyr Ser Ala Asn Ser Pro Val Gly Arg
                 170
<210> 384
```

<211> 2379

<212> DNA

<213> Homo sapiens

<400> 384

getgagegtg tgegeggtae ggggetetee tgeettetgg geteeaacge 50 agctctgtgg ctgaactggg tgctcatcac gggaactgct gggctatgga 100 atacagatgt ggcagctcag gtagccccaa attgcctgga agaatacatc 150 atgtttttcg ataagaagaa attgtaggat ccagtttttt ttttaaccgc 200 cccccccca ccccccaaaa aaactgtaaa gatgcaaaaa cgtaatatcc 250 atgaagatcc tattacctag gaagattttg atgttttgct gcgaatgcgg 300 tgttgggatt tatttgttct tggagtgttc tgcgtggctg gcaaagaata 350 atgttccaaa atcggtccat ctcccaaggg gtccaatttt tcttcctggg 400 tgtcagcgag ccctgactca ctacagtgca gctgacaggg gctgtcatgc 450 aactggcccc taagccaaag caaaagacct aaggacgacc tttgaacaat 500 acaaaggatg ggtttcaatg taattaggct actgagcgga tcagctgtag 550 cactggttat agcccccact gtcttactga caatgctttc ttctgccgaa 600 cgaggatgcc ctaagggctg taggtgtgaa ggcaaaatgg tatattgtga 650 atctcagaaa ttacaggaga taccctcaag tatatctgct ggttgcttag 700 gtttgtccct tcgctataac agccttcaaa aacttaagta taatcaattt 750 aaagggetea accageteae etggetatae ettgaecata accatateag 800 caatattgac gaaaatgctt ttaatggaat acgcagactc aaagagctga 850 ttcttagttc caatagaatc tcctattttc ttaacaatac cttcagacct 900 gtgacaaatt tacggaactt ggatctgtcc tataatcagc tgcattctct 950 gggatctgaa cagtttcggg gcttgcggaa gctgctgagt ttacatttac 1000 ggtctaactc cctgagaacc atccctgtgc gaatattcca agactgccgc 1050 aacctggaac ttttggacct gggatataac cggatccgaa gtttagccag 1100 gaatgtettt getggeatga teagaetteaa agaaetteae etggageaea 1150 atcaattttc caagetcaac etggeeettt ttecaaggtt ggteageett 1200 cagaaccttt acttgcagtg gaataaaatc agtgtcatag gacagaccat 1250 gtcctggacc tggagctcct tacaaaggct tgatttatca ggcaatgaga 1300 tcgaagcttt cagtggaccc agtgttttcc agtgtgtccc gaatctgcag 1350 cgcctcaacc tggattccaa caagctcaca tttattggtc aagagatttt 1400 ggattcttgg atatccctca atgacatcag tcttgctggg aatatatggg 1450 aatgcagcag aaatatttgc tcccttgtaa actggctgaa aagttttaaa 1500 ggtctaaggg agaatacaat tatctgtgcc agtcccaaag agctgcaagg 1550 agtaaatgtg atcgatgcag tgaagaacta cagcatctgt ggcaaaagta 1600 ctacagagag gtttgatctg gccagggctc tcccaaagcc gacgtttaag 1650 cccaagetee ccaggeegaa geatgagage aaaceeett tgcccccgae 1700 ggtgggagcc acagagcccg gcccagagac cgatgctgac gccgagcaca 1750 tctctttcca taaaatcatc gcgggcagcg tggcgctttt cctgtccgtg 1800 ctcgtcatcc tgctggttat ctacgtgtca tggaagcggt accctgcgag 1850 catgaagcag ctgcagcagc gctccctcat gcgaaggcac aggaaaaaga 1900

aaagacagtc cctaaagcaa atgactcca gcacccagga attttatgta 1950 gattataaac ccaccaacac ggagaccagc gagatgctgc tgaatgggac 2000 gggaccctgc acctataaca aatcgggctc cagggagtgt gaggtatgaa 2050 ccattgtgat aaaaagagct cttaaaagct gggaaataag tggtgcttta 2100 ttgaactctg gtgactatca agggaacgcg atgcccccc tccccttccc 2150 tctccctctc actttggtgg caagatcctt ccttgtccgt tttagtgcat 2200 tcataatact ggtcatttc ctctcataca taatcaaccc attgaaattt 2250 aaataccaca atcaatgtga agcttgaact ccggtttaat ataataccta 2300 ttgtataaga ccctttactg attccattaa tgtcgcattt gtttaagat 2350 aaaacttctt tcataggtaa aaaaaaaaa 2379

<210> 385

<211> 513

<212> PRT

<213> Homo sapiens

<400> 385

Met Gly Phe Asn Val Ile Arg Leu Leu Ser Gly Ser Ala Val Ala 1 5 10 15

Leu Val Ile Ala Pro Thr Val Leu Leu Thr Met Leu Ser Ser Ala 20 25 30

Glu Arg Gly Cys Pro Lys Gly Cys Arg Cys Glu Gly Lys Met Val 35 40 45

Tyr Cys Glu Ser Gln Lys Leu Gln Glu Ile Pro Ser Ser Ile Ser 50 55 60

Ala Gly Cys Leu Gly Leu Ser Leu Arg Tyr Asn Ser Leu Gln Lys
65 70 75

Leu Lys Tyr Asn Gln Phe Lys Gly Leu Asn Gln Leu Thr Trp Leu 80 85 90

Tyr Leu Asp His Asn His Ile Ser Asn Ile Asp Glu Asn Ala Phe 95 100 105

Asn Gly Ile Arg Arg Leu Lys Glu Leu Ile Leu Ser Ser Asn Arg 110 115 120

Ile Ser Tyr Phe Leu Asn Asn Thr Phe Arg Pro Val Thr Asn Leu 125 130 135

Arg Asn Leu Asp Leu Ser Tyr Asn Gln Leu His Ser Leu Gly Ser 140 145

Glu	Gln	Phe	Arg	Gly 155	Leu	Arg	Lys	Leu	Leu 160	Ser	Leu	His	Leu	Arg 165
Ser	Asn	Ser	Leu	Arg 170	Thr	Ile	Pro	Val	Arg 175	Ile	Phe	Gln	Asp	Cys 180
Arg	Asn	Leu	Glu	Leu 185	Leu	Asp	Leu	Gly	Tyr 190	Asn	Arg	Ile	Arg	Ser 195
Leu	Ala	Arg	Asn	Val 200	Phe	Ala	Gly	Met	Ile 205	Arg	Leu	Lys	Glu	Leu 210
His	Leu	Glu	His	Asn 215	Gln	Phe	Ser	Lys	Leu 220	Asn	Leu	Ala	Leu	Phe 225
Pro	Arg	Leu	Val	Ser 230	Leu	Gln	Asn	Leu	Tyr 235	Leu	Gln	Trp	Asn	Lys 240
				Gly 245					250					255
				Leu 260					265					270
				Gln 275					280					285
				Leu 290					295					300
				305					310					Glu 315
				320					325					Phe 330
				335					340	1				345
				350					355	•				Ile 360
				365	•				370)				Leu 375
				380)				385)				390
				395	ò				400)				405
				410)				415	5				Ile 420
Ile	e Ala	a Gl	y Se:	r Val		a Le	u Phe	e Lei	3 Set 430	r Val	L Lei	ı Va.	r TT	e Leu 435

```
Leu Val Ile Tyr Val Ser Trp Lys Arg Tyr Pro Ala Ser Met Lys
                                     445
                440
Gln Leu Gln Gln Arg Ser Leu Met Arg Arg His Arg Lys Lys
                455
                                     460
Arg Gln Ser Leu Lys Gln Met Thr Pro Ser Thr Gln Glu Phe Tyr
                                     475
Val Asp Tyr Lys Pro Thr Asn Thr Glu Thr Ser Glu Met Leu Leu
Asn Gly Thr Gly Pro Cys Thr Tyr Asn Lys Ser Gly Ser Arg Glu
                 500
Cys Glu Val
<210> 386
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 386
ctgggatctg aacagtttcg gggc 24
<210> 387
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 387
 ggtccccagg acatggtctg tccc 24
<210> 388
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 gctgagttta catttacggt ctaactccct gagaaccatc cctgtgcg 48
 <210> 389
 <211> 1449
 <212> DNA
 <213> Homo sapiens
 <400> 389
```

agttctgaga aagaaggaaa taaacacagg caccaaacca ctatcctaag 50 ttgactgtcc tttaaatatg tcaagatcca gacttttcag tgtcacctca 100 gcgatctcaa cgatagggat cttgtgtttg ccgctattcc agttggtgct 150 ctcggaccta ccatgcgaag aagatgaaat gtgtgtaaat tataatgacc 200 aacaccctaa tggctggtat atctggatcc tcctgctgct ggttttggtg 250 gcagctette tetgtggage tgtggteete tgeeteeagt getggetgag 300 gagaccccga attgattctc acaggcgcac catggcagtt tttgctgttg 350 gagacttgga ctctatttat gggacagaag cagctgtgag tccaactgtt 400 ggaattcacc ttcaaactca aacccctgac ctatatcctg ttcctgctcc 450 atgttttggc cctttaggct ccccacctcc atatgaagaa attgtaaaaa 500 caacctgatt ttaggtgtgg attatcaatt taaagtatta acgacatctg 550 taattccaaa acatcaaatt taggaatagt tatttcagtt gttggaaatg 600 tccagagatc tattcatata gtctgaggaa ggacaattcg acaaaagaat 650 ggatgttgga aaaaattttg gtcatggaga tgtttaaata gtaaagtagc 700 aggettttga tgtgtcactg etgtateata ettttatget acacaaccaa 750 attaatgctt ctccactagt atccaaacag gcaacaatta ggtgctggaa 800 gtagtttcca tcacatttag gactccactg cagtatacag cacaccattt 850 tctgctttaa actctttcct agcatggggt ccataaaaat tattataatt 900 taacaatagc ccaagccgag aatccaacat gtccagaacc agaaccagaa 950 agatagtatt tgaatgaagg tgaggggaga gagtaggaaa aagaaaagtt 1000 tggagttgaa gggtaaagga taaatgaaga ggaaaaggaa aagattacaa 1050 gtctcagcaa aaacaagagg ttttatgccc caacctgaag aggaagaaat 1100 tgtagataga aggtgaagga gattgctgaa gatatagagc acatataatg 1150 ccaacacggg gagaaaagaa aatttcccct tttacagtaa tgaatgtggc 1200 ctccatagtc catagtgttt ctctggagcc tcagggcttg gcatttattg 1250 cagcatcatg ctaagaacct tcggcatagg tatctgttcc catgaggact 1300 gcagaagtag caatgagaca tetteaagtg geattttgge agtggeeate 1350 agcaggggga cagacaaaaa catccatcac agatgacata tgatcttcag 1400 ctgacaaatt tgttgaacaa aacaataaac atcaatagat atctaaaaa 1449

```
<210> 390
<211> 146
<212> PRT
<213> Homo sapiens
<400> 390
Met Ser Arg Ser Arg Leu Phe Ser Val Thr Ser Ala Ile Ser Thr
                   5
 Ile Gly Ile Leu Cys Leu Pro Leu Phe Gln Leu Val Leu Ser Asp
                                       25
 Leu Pro Cys Glu Glu Asp Glu Met Cys Val Asn Tyr Asn Asp Gln
 His Pro Asn Gly Trp Tyr Ile Trp Ile Leu Leu Leu Val Leu
                  50
 Val Ala Ala Leu Leu Cys Gly Ala Val Val Leu Cys Leu Gln Cys
 Trp Leu Arg Arg Pro Arg Ile Asp Ser His Arg Arg Thr Met Ala
                                       85
 Val Phe Ala Val Gly Asp Leu Asp Ser Ile Tyr Gly Thr Glu Ala
                                      100
 Ala Val Ser Pro Thr Val Gly Ile His Leu Gln Thr Gln Thr Pro
 Asp Leu Tyr Pro Val Pro Ala Pro Cys Phe Gly Pro Leu Gly Ser
                  125
 Pro Pro Pro Tyr Glu Glu Ile Val Lys Thr Thr
                                      145
                  140
 <210> 391
 <211> 26
 <212> DNA
 <213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
 <400> 391
  cttttcagtg tcacctcagc gatctc 26
 <210> 392
 <211> 23
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 392
```

ccaaaacatg gagcaggaac agg 23

<210> 393 <211> 47

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 393

ccagttggtg ctctcggacc taccatgcga agaagatgaa atgtgtg 47

<210> 394

<211> 2340

<212> DNA

<213> Homo sapiens

<400> 394

gageggagta aaateteeac aagetgggaa caaacetegt eecaaeteec 50 acceacegge gtttetecag etegatetgg aggetgette gecagtgtgg 100 gacgcagctg acgcccgctt attagctctc gctgcgtcgc cccggctcag 150 aagctccgtg gcggcggcga ccgtgacgag aagcccacgg ccagctcagt 200 tetettetae tttgggagag agagaaagte agatgeeeet tttaaaetee 250 ctcttcaaaa ctcatctcct gggtgactga gttaatagag tggatacaac 300 cttgctgaag atgaagaata tacaatattg aggatatttt tttctttttt 350 ttttcaagtc ttgatttgtg gcttacctca agttaccatt tttcagtcaa 400 gtctgtttgt ttgcttcttc agaaatgttt tttacaatct caagaaaaaa 450 tatgtcccag aaattgagtt tactgttgct tgtatttgga ctcatttggg 500 gattgatgtt actgcactat acttttcaac aaccaagaca tcaaagcagt 550 gtcaagttac gtgagcaaat actagactta agcaaaagat atgttaaagc 600 tctagcagag gaaaataaga acacagtgga tgtcgagaac ggtgcttcta 650 tggcaggata tgcggatctg aaaagaacaa ttgctgtcct tctggatgac 700 attttgcaac gattggtgaa gctggagaac aaagttgact atattgttgt 750 gaatggctca gcagccaaca ccaccaatgg tactagtggg aatttggtgc 800 cagtaaccac aaataaaaga acgaatgtct cgggcagtat cagatagcag 850 ttgaaaatca ccttgtgctg ctccatccac tgtggattat atcctatggc 900 agaaaagctt tataattgct ggcttaggac agagcaatac tttacaataa 950 aagetetaca catttteaag gagtatgetg gatteatgga actetaatte 1000 tgtacataaa aattttaaag ttatttgttt gctttcaggc aagtctgttc 1050 aatgctgtac tatgtcctta aagagaattt ggtaacttgg ttgatgtggt 1100 aagcagatag gtgagttttg tataaatctt ttgtgtttga gatcaagctg 1150 aaatgaaaac actgaaaaac atggattcat ttctataaca catttattta 1200 agtatataac acgttttttg gacaagtgaa gaatgtttaa tcattctgtc 1250 atttgttctc aatagatgta actgttagac tacggctatt tgaaaaaatg 1300 tgcttattgt actatatttt gttattccaa ttatgagcag agaaaggaaa 1350 tataatgttg aaaataatgt tttgaaatca tgacccaaag aatgtattga 1400 tttgcactat ccttcagaat aactgaaggt taattattgt atatttttaa 1450 aaattacact tataagagta taatcttgaa atgggtagca gccactgtcc 1500 attacctatc gtaaacattg gggcaattta ataacagcat taaaatagtt 1550 gtaaactcta atcttatact tattgaagaa taaaagatat ttttatgatg 1600 agagtaacaa taaagtattc atgatttttc acatacatga atgttcattt 1650 aaaagtttaa tootttgagt gtotatgota toaggaaago acattattto 1700 catatttggg ttaattttgc ttttattata ttggtctagg aggaagggac 1750 tttggagaat ggaactcttg aggactttag ccaggtgtat ataataaagg 1800 taagagtatc ctttatgaaa ttttgaattt gtataacaga tgcattagat 1900 attcatttta tataatggcc acttaaaata agaacattta aaatataaac 1950 tatgaagatt gactatcttt tcaggaaaaa agctgtatat agcacaggga 2000 accetaatet tgggtaatte tagtataaaa caaattatae ttttatttaa 2050 atttcccttg tagcaaatct aattgccaca tggtgcccta tatttcatag 2100 tatttattct ctatagtaac tgcttaagtg cagctagctt ctagatttag 2150 actatataga atttagatat tgtattgttc gtcattataa tatgctacca 2200 catgtagcaa taattacaat attttattaa aataaatatg tgaaatattg 2250 acctttatgt gaagaaatta attatatgcc attgccaggt 2340

```
<211> 140
<212> PRT
<213> Homo sapiens
<400> 395
Met Phe Phe Thr Ile Ser Arg Lys Asn Met Ser Gln Lys Leu Ser
Leu Leu Leu Val Phe Gly Leu Ile Trp Gly Leu Met Leu Leu
 His Tyr Thr Phe Gln Gln Pro Arg His Gln Ser Ser Val Lys Leu
 Arg Glu Gln Ile Leu Asp Leu Ser Lys Arg Tyr Val Lys Ala Leu
 Ala Glu Glu Asn Lys Asn Thr Val Asp Val Glu Asn Gly Ala Ser
 Met Ala Gly Tyr Ala Asp Leu Lys Arg Thr Ile Ala Val Leu Leu
 Asp Asp Ile Leu Gln Arg Leu Val Lys Leu Glu Asn Lys Val Asp
                  95
 Tyr Ile Val Val Asn Gly Ser Ala Ala Asn Thr Thr Asn Gly Thr
                 110
 Ser Gly Asn Leu Val Pro Val Thr Thr Asn Lys Arg Thr Asn Val
                 125
                                      130
 Ser Gly Ser Ile Arg
                  140
 <210> 396
 <211> 2639
 <212> DNA
 <213> Homo sapiens
 <400> 396
  cgcggccggg ccgccggggt gagcgtgccg aggcggctgt ggcgcaggct 50
  tecagecece accatgeegt ggeecetget getgetgetg geegtgagtg 100
  gggcccagac aacccggcca tgcttccccg ggtgccaatg cgaggtggag 150
  accttcggcc ttttcgacag cttcagcctg actcgggtgg attgtagcgg 200
```

cetgggeece cacateatge eggtgeecat ceetetggae acageecact 250

tggacctgtc ctccaaccgg ctggagatgg tgaatgagtc ggtgttggcg 300

gggccgggct acaccagtt ggctggcctg gatctcagcc acaacctgct 350

caccagcatc tcacccactg ccttctcccg ccttcgctac ctggagtcgc 400

ttgacctcag ccacaatggc ctgacagccc tgccagccga gagcttcacc 450 agetcacece tgagegaegt gaacettage cacaaceage teegggaggt 500 ctcagtgtct gccttcacga cgcacagtca gggccgggca ctacacgtgg 550 acctetecca caaceteatt cacegeeteg tgeeceacee caegagggee 600 ggcctgcctg cgcccaccat tcagagcctg aacctggcct ggaaccggct 650 ccatgccgtg cccaacctcc gagacttgcc cctgcgctac ctgagcctgg 700 atgggaaccc tctagctgtc attggtccgg gtgccttcgc ggggctggga 750 ggccttacac acctgtctct ggccagcctg cagaggctcc ctgagctggc 800 geccagtgge tteegtgage tacegggeet geaggteetg gaeetgtegg 850 gcaaccccaa gcttaactgg gcaggagctg aggtgttttc aggcctgagc 900 teeetgeagg agetggaeet ttegggeaee aacetggtge eeetgeetga 950 ggcgctgctc ctccacctcc cggcactgca gagcgtcagc gtgggccagg 1000 atgtgcggtg ccggcgcctg gtgcgggagg gcacctaccc ccggaggcct 1050 ggctccagcc ccaaggtgcc cctgcactgc gtagacaccc gggaatctgc 1100 tgccaggggc cccaccatct tgtgacaaat ggtgtggccc agggccacat 1150 aacagactgc tgtcctgggc tgcctcaggt cccgagtaac ttatgttcaa 1200 tgtgccaaca ccagtgggga gcccgcaggc ctatgtggca gcgtcaccac 1250 aggagttgtg ggcctaggag aggctttgga cctgggagcc acacctagga 1300 gcaaagtete acceettigt etacgtiget teeceaaace atgageagag 1350 ggacttcgat gccaaaccag actcgggtcc cctcctgctt cccttcccca 1400 cttatccccc aagtgccttc cctcatgcct gggccggcct gacccgcaat 1450 gggcagaggg tgggtgggac cccctgctgc agggcagagt tcaggtccac 1500 tgggctgagt gtccccttgg gcccatggcc cagtcactca ggggcgagtt 1550 tettttetaa eatageeett tetttgeeat gaggeeatga ggeeegette 1600 atccttttct atttccctag aaccttaatg gtagaaggaa ttgcaaagaa 1650 tcaagtccac ccttctcatg tgacagatgg ggaaactgag gccttgagaa 1700 ggaaaaaggc taatctaagt teetgeggge agtggeatga etggageaea 1750 geeteetgee teecageeeg gaeecaatge aetttettgt eteetetaat 1800 aagccccacc ctccccgcct gggctcccct tgctgccctt gcctgttccc 1850

cattagcaca ggagtagcag cagcaggaca ggcaagagcc tcacaagtgg 1900 gactetggge etetgaceag etgtgeggea tgggetaagt caetetgeee 1950 ttcggagcct ctggaagctt agggcacatt ggttccagcc tagccagttt 2000 ctcaccctgg gttggggtcc cccagcatcc agactggaaa cctacccatt 2050 ttcccctgag catcctctag atgctgcccc aaggagttgc tgcagttctg 2100 gagcctcatc tggctgggat ctccaagggg cctcctggat tcagtcccca 2150 ctggccctga gcacgacagc ccttcttacc ctcccaggaa tgccgtgaaa 2200 ggagacaagg tctgcccgac ccatgtctat gctctacccc cagggcagca 2250 tetcagette egaaceetgg getgttteet tagtetteat tttataaaag 2300 ttgttgcctt tttaacggag tgtcactttc aaccggcctc ccctacccct 2350 gctggccggg gatggagaca tgtcatttgt aaaagcagaa aaaggttgca 2400 tttgttcact tttgtaatat tgtcctgggc ctgtgttggg gtgttggggg 2450 aagctgggca tcagtggcca catgggcatc aggggctggc cccacagaga 2500 ccccacaggg cagtgagctc tgtcttcccc cacctgccta gcccatcatc 2550 tatctaaccg gtccttgatt taataaacac tataaaaggt ttaaaaaaaa 2600

```
<210> 397
```

<400> 397

Met	Dro	Trn	Pro	Len	Leu	Leu	Leu	Leu	Ala	Val	Ser	Gly	Ala	Gln
Met	FIO	ттр	110	E C	200				10					15
1				5										

Thr Thr Arg Pro Cys Phe Pro Gly Cys Gln Cys Glu Val Glu Thr 20 25 30

Phe Gly Leu Phe Asp Ser Phe Ser Leu Thr Arg Val Asp Cys Ser 35 40 45

Gly Leu Gly Pro His Ile Met Pro Val Pro Ile Pro Leu Asp Thr
50 55 60

Ala His Leu Asp Leu Ser Ser Asn Arg Leu Glu Met Val Asn Glu 65 70 75

Ser Val Leu Ala Gly Pro Gly Tyr Thr Thr Leu Ala Gly Leu Asp 80 85 90

<211> 353

<212> PRT

<213> Homo sapiens

Leu	Ser	Н	is.	Asn	Leu 95	Leu	Thr	Ser	Ile	Ser 100	Pro	Thr	Ala	Phe	Ser 105
Arg	Leu	Α	rg	Tyr	Leu 110	Glu	Ser	Leu	Asp	Leu 115	Ser	His	Asn	Gly	Leu 120
Thr	Ala	L	eu	Pro	Ala 125	Glu	Ser	Phe	Thr	Ser 130	Ser	Pro	Leu	Ser	Asp 135
Val	Asn	L	.eu	Ser	His 140	Asn	Gln	Leu	Arg	Glu 145	Val	Ser	Val	Ser	Ala 150
Phe	Thr	T	hr	His	Ser 155	Gln	Gly	Arg	Ala	Leu 160	His	Val	Asp	Leu	Ser 165
His	Asn	ıI	Leu	Ile	His 170	Arg	Leu	Val	Pro	His 175	Pro	Thr	Arg	Ala	Gly 180
Leu	Pro	P	Ala	Pro	Thr 185	Ile	Gln	Ser	Leu	Asn 190	Leu	Ala	Trp	Asn	Arg 195
Leu	His	s 1	Ala	Val	Pro 200	Asn	Leu	Arg	Asp	Leu 205	Pro	Leu	Arg	Tyr	Leu 210
Ser	Lei	1 2	Asp	Gly	Asn 215	Pro	Leu	Ala	Val	Ile 220	Gly	Pro	Gly	Ala	Phe 225
Ala	Gl	y :	Leu	Gly	Gly 230	Leu	Thr	His	Leu	Ser 235	Leu	Ala	Ser	Leu	Gln 240
Arg	j Le	u	Pro	Glu	Leu 245	Ala	Pro	Ser	Gly	Phe 250	Arg	Glu	Leu	Pro	Gly 255
Lev	ı Gl	n	Val	Leu	Asp 260	Leu	Ser	Gly	Asn	Pro 265	Lys	Leu	a Asr	Trp	Ala 270
Gl	y Al	a	Glu	val	Phe 275	e Ser	Gly	Leu	ı Ser	Ser 280	Leu	Glr	n Glu	ı Lev	285
Lei	u Se	r	Gly	Thi	290	n Leu)	ı Val	. Pro	Lei	295	o Glu 5	ı Ala	a Lei	ı Lev	1 Leu 300
Hi	s Le	u	Pro	Ala	a Let 30		n Ser	. Val	L Sei	r Va:	l Gly	/ Gli	n Asj	o Val	Arg 315
Су	s Ar	g	Arq	g Lei	u Va 32		g Glu	ı Gly	y Thi	r Ty:	r Pro	o Ar	g Ar	g Pro	330
Se	r Se	er	Pro	o Ly	s Va 33	l Pro	o Le	ı Hi	s Cy	s Va 34	l Asi O	p Th	r Ar	g Gl	a Ser 345
Al	a Al	La	Are	g Gl	y Pr 35	o Th O	r Il	e Le	u						

<210> 398 <211> 23 <212> DNA

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 398
ccctgccagc cgagagcttc acc 23
<210> 399
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 399
 ggttggtgcc cgaaaggtcc agc 23
<210> 400
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 400
 caaccccaag cttaactggg caggagetga ggtgttttca ggcc 44
<210> 401
 <211> 1571
 <212> DNA
 <213> Homo sapiens
 <400> 401
 gatggcgcag ccacagcttc tgtgagattc gatttctccc cagttcccct 50
  gtgggtctga ggggaccaga agggtgagct acgttggctt tctggaaggg 100
  gaggctatat gcgtcaattc cccaaaacaa gttttgacat ttcccctgaa 150
  atgtcattct ctatctattc actgcaagtg cctgctgttc caggccttac 200
  ctgctgggca ctaacggcgg agccaggatg gggacagaat aaaggagcca 250
  cgacctgtgc caccaactcg cactcagact ctgaactcag acctgaaatc 300
  ttctcttcac gggaggcttg gcagtttttc ttactcctgt ggtctccaga 350
  tttcaggcct aagatgaaag cctctagtct tgccttcagc cttctctctg 400
  ctgcgtttta tctcctatgg actccttcca ctggactgaa gacactcaat 450
  ttgggaagct gtgtgatcgc cacaaacctt caggaaatac gaaatggatt 500
  ttctgagata cggggcagtg tgcaagccaa agatggaaac attgacatca 550
```

gaatettaag gaggaetgag tetttgeaag acacaaagee tgegaatega 600 tgctgcctcc tgcgccattt gctaagactc tatctggaca gggtatttaa 650 aaactaccag acccctgacc attatactct ccggaagatc agcagcctcg 700 ccaatteett tettaceate aagaaggace teeggetete teatgeeeae 750 atgacatgcc attgtgggga ggaagcaatg aagaaataca gccagattct 800 gagtcacttt gaaaagctgg aacctcaggc agcagttgtg aaggctttgg 850 gggaactaga cattcttctg caatggatgg aggagacaga ataggaggaa 900 agtgatgctg ctgctaagaa tattcgaggt caagagctcc agtcttcaat 950 acctgcagag gaggcatgac cccaaaccac catctctta ctgtactagt 1000 cttgtgctgg tcacagtgta tcttatttat gcattacttg cttccttgca 1050 tgattgtctt tatgcatccc caatcttaat tgagaccata cttgtataag 1100 atttttgtaa tatctttctg ctattggata tatttattag ttaatatat 1150 tatttatttt ttgctattta atgtatttat ttttttactt ggacatgaaa 1200 ctttaaaaaa attcacagat tatatttata acctgactag agcaggtgat 1250 gtatttttat acagtaaaaa aaaaaaacct tgtaaattct agaagagtgg 1300 ctaggggggt tattcatttg tattcaacta aggacatatt tactcatgct 1350 gatgctctgt gagatatttg aaattgaacc aatgactact taggatgggt 1400 tgtggaataa gttttgatgt ggaattgcac atctacctta caattactga 1450 ccatccccag tagactcccc agtcccataa ttgtgtatct tccagccagg 1500 aatcctacac ggccagcatg tatttctaca aataaagttt tctttgcata 1550 ccaaaaaaa aaaaaaaaa a 1571

<210> 402

<211> 261

<212> PRT

<213> Homo sapiens

<400> 402

Met Arg Gln Phe Pro Lys Thr Ser Phe Asp Ile Ser Pro Glu Met
1 5 10 15

Ser Phe Ser Ile Tyr Ser Leu Gln Val Pro Ala Val Pro Gly Leu

Thr Cys Trp Ala Leu Thr Ala Glu Pro Gly Trp Gly Gln Asn Lys
35 40 45

Gly Ala Th	r Thr	Cys 50	Ala	Thr	Asn	Ser	His 55	Ser	Asp	Ser	Glu	Leu 60
Arg Pro Gl	u Ile	Phe 65	Ser	Ser	Arg	Glu	Ala 70	Trp	Gln	Phe	Phe	Leu 75
Leu Leu Ti	cp Ser	Pro 80	Asp	Phe	Arg	Pro	Lys 85	Met	Lys	Ala	Ser	Ser 90
Leu Ala Ph	ne Ser	Leu 95	Leu	Ser	Ala	Ala	Phe 100	Tyr	Leu	Leu	Trp	Thr 105
Pro Ser Tl	hr Gly	Leu 110	Lys	Thr	Leu	Asn	Leu 115	Gly	Ser	Суѕ	Val	Ile 120
Ala Thr A	sn Leu	Gln 125	Glu	Ile	Arg	Asn	Gly 130	Phe	Ser	Glu	Ile	Arg 135
Gly Ser V	al Gln	Ala 140	Lys	Asp	Gly	Asn	Ile 145	Asp	Ile	Arg	Ile	Leu 150
Arg Arg T	hr Glu	Ser 155	Leu	Gln	Asp	Thr	Lys 160	Pro	Ala	Asn	Arg	Cys 165
Cys Leu L	eu Arg	His 170	Leu	Leu	Arg	Leu	Tyr 175	Leu	Asp	Arg	Val	Phe 180
Lys Asn T	yr Glr	Thr 185	Pro	Asp	His	Tyr	Thr 190	Leu	Arg	Lys	Ile	Ser 195
Ser Leu A	ala Asr	Ser 200		Leu	Thr	Ile	Lys 205	Lys	Asp	Leu	Arg	Leu 210
Ser His F	Ala His	Met 215	Thr	Cys	His	Cys	Gly 220	Glu	Glu	ı Ala	Met	Lys 225
Lys Tyr S	Ser Glı	n Ile 230	Leu	Ser	His	: Phe	e Glu 235	ı Lys	Leu	ı Glı	ı Pro	Gln 240
Ala Ala ^v	Val Va	l Lys 245	Ala	Leu	ı Gly	/ Glu	Let 250	ı Asp	Ile	e Lei	ı Lev	255
Trp Met (Glu Gl	u Thr 260		1								
<210> 403 <211> 28 <212> DNA <213> Art	ificia	l Sed	quenc	ce								
<220> <223> Syn	thetic	oli	gonu	cleo	tide	pro	be					

<400> 403

ctcctgtggt ctccagattt caggccta 28

<210> 404 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 404 agtcctcctt aagattctga tgtcaa 26 <210> 405 <211> 998 <212> DNA <213> Homo sapiens <400> 405 cegttategt ettgegetae tgetgaatgt eegteeegga ggaggaggag 50 aggettttge egetgaecca gagatggeec egagegagea aatteetaet 100 gtccggctgc gcggctaccg tggccgagct agcaaccttt cccctggatc 150 tcacaaaaac tcgactccaa atgcaaggag aagcagctct tgctcggttg 200 ggagacggtg caagagaatc tgccccctat aggggaatgg tgcgcacagc 250 cctagggatc attgaagagg aaggctttct aaagctttgg caaggagtga 300 caccegecat ttacagacae gtagtgtatt etggaggteg aatggteaca 350 tatgaacatc teegagaggt tgtgtttgge aaaagtgaag atgageatta 400 teceetttgg aaateagtea ttggagggat gatggetggt gttattggee 450 agtttttagc caatccaact gacctagtga aggttcagat gcaaatggaa 500 ggaaaaagga aactggaagg aaaaccattg cgatttcgtg gtgtacatca 550 tgcatttgca aaaatcttag ctgaaggagg aatacgaggg ctttgggcag 600 gctgggtacc caatatacaa agagcagcac tggtgaatat gggagattta 650 accacttatg atacagtgaa acactacttg gtattgaata caccacttga 700 ggacaatatc atgactcacg gtttatcaag tttatgttct ggactggtag 750 cttctattct gggaacacca gccgatgtca tcaaaagcag aataatgaat 800 caaccacgag ataaacaagg aaggggactt ttgtataaat catcgactga 850 ctgcttgatt caggctgttc aaggtgaagg attcatgagt ctatataaag 900 getttttace atettggetg agaatgacee ettggteaat ggtgttetgg 950 cttacttatg aaaaaatcag agagatgagt ggagtcagtc cattttaa 998

<210> <211> <212> <213>	323 PRT		piens	S										
<400> Met 3	406 Ser	Val	Pro (Glu 5	Glu	Glu	Glu	Arg	Leu 10	Leu	Pro	Leu	Thr	Gln 15
Arg '	Trp	Pro	Arg .	Ala 20	Ser	Lys	Phe	Leu	Leu 25	Ser	Gly	Cys	Ala	Ala 30
Thr	Val	Ala	Glu	Leu 35	Ala	Thr	Phe	Pro	Leu 40	Asp	Leu	Thr	Lys	Thr 45
Arg	Leu	Gln	Met	Gln 50	Gly	Glu	Ala	Ala	Leu 55	Ala	Arg	Leu	Gly	Asp 60
Gly	Ala	Arg	Glu	Ser 65	Ala	Pro	Tyr	Arg	Gly 70	Met	Val	Arg	Thr	Ala 75
Leu	Gly	Ile	Ile	Glu 80	Glu	Glu	Gly	Phe	Leu 85	Lys	Leu	Trp	Gln	Gly 90
Val	Thr	Pro	Ala	Ile 95	Tyr	Arg	His	Val	Val 100	Tyr	Ser	Gly	Gly	Arg 105
Met	Val	Thr	Tyr	Glu 110	His	Leu	Arg	Glu	Val 115	Val	Phe	Gly	Lys	Ser 120
Glu	Asp	Glu	His	Tyr 125	Pro	Leu	Trp	Lys	Ser 130	Val	Ile	Gly	Gly	Met 135
Met	Ala	Gly	Val	Ile 140		Gln	Phe	Leu	Ala 145	Asn	Pro	Thr	Asp	Leu 150
Val	Lys	Val	Gln	Met 155		Met	Glu	Gly	Lys 160	Arg	Lys	Leu	Glu	Gly 165
Lys	Pro	Leu	Arg	Phe	Arg	Gly	v Val	. His	His 175	Ala	Phe	Ala	Lys	Ile 180
Leu	Ala	Glu	Gly	Gly 185		e Arg	g Gly	Leu	190	Ala	Gly	Trp	Val	Pro 195
Asn	Ile	e Gln	Arg	Ala 200	a Ala	a Lei	ı Val	L Asr	n Met 205	Gly	Asp	Leu	ı Thr	Thr 210
Tyr	Asp	Thr	. Val	Lys 215		з Туі	r Lei	ı Val	L Let 220	ı Asn	Thr	Pro	Let	225
Asp	Ası	ı Ile	e Met	Th:		s Gl	y Lei	ı Sei	r Sei 23!	r Leu 5	і Суз	s Sei	c Gly	7 Let 240
Val	. Ala	a Sei	: Ile	Let 245		y Th	r Pro	o Ala	a As ₁	p Val	Ile	e Ly:	s Sei	255

Ile Met Asn Gln Pro Arg Asp Lys Gln Gly Arg Gly Leu Leu Tyr Lys Ser Ser Thr Asp Cys Leu Ile Gln Ala Val Gln Gly Glu Gly 275 Phe Met Ser Leu Tyr Lys Gly Phe Leu Pro Ser Trp Leu Arg Met Thr Pro Trp Ser Met Val Phe Trp Leu Thr Tyr Glu Lys Ile Arg 310 305 Glu Met Ser Gly Val Ser Pro Phe 320 <210> 407 <211> 31 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 407 cgcggatccc gttatcgtct tgcgctactg c 31 <210> 408 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 408 gcggaattct taaaatggac tgactccact catc 34 <210> 409 <211> 1487 <212> DNA <213> Homo sapiens <400> 409 cggacgcgtg ggcgcgggac gccggcaggg ttgtggcgca gcagtctcct 50 tcctgcgcgc gcgcctgaag tcggcgtggg cgtttgagga agctgggata 100 cagcatttaa tgaaaaattt atgcttaaga agtaaaaatg gcaggcttcc 150 tagataattt tcgttggcca gaatgtgaat gtattgactg gagtgagaga 200 agaaatgctg tggcatctgt tgtcgcaggt atattgtttt ttacaggctg 250 gtggataatg attgatgcag ctgtggtgta tcctaagcca gaacagttga 300 accatgcctt tcacacatgt ggtgtatttt ccacattggc tttcttcatg 350

ataaatgctg tatccaatgc tcaggtgaga ggtgatagct atgaaagcgg 400 ctgtttagga agaacaggtg ctcgagtttg gcttttcatt ggtttcatgt 450 tgatgtttgg gtcacttatt gcttccatgt ggattctttt tggtgcatat 500 gttacccaaa atactgatgt ttatccggga ctagctgtgt tttttcaaaa 550 tgcacttata ttttttagca ctctgatcta caaatttgga agaaccgaag 600 agctatggac ctgagatcac ttcttaagtc acattttcct tttgttatat 650 tctgtttgta gataggtttt ttatctctca gtacacattg ccaaatggag 700 tagattgtac attaaatgtt ttgtttcttt acatttttat gttctgagtt 750 ttgaaatagt tttatgaaat ttctttattt ttcattgcat agactgttaa 800 tatgtatata atacaagact atatgaattg gataatgagt atcagttttt 850 tattcctgag atttagaact tgatctactc cctgagccag ggttacatca 900 tettgtcatt ttagaagtaa ccactettgt etetetgget gggeaeggtg 950 gctcatgcct gtaatcccag cactttggga ggccgagggg ggccgattgc 1000 ttgaggtcaa gtgtttgaga ccagcctggc caacatggcg aaaccccatc 1050 tactaaaaat acaaaaatta gccaggcatg gtggtgggtg cctgtaatcc 1100 cagctacctg ggaggctgag gcaggagaat cgcttgaacc cggggggcag 1150 aggttgcagt gagctgagtt tgcgccactg cactctagcc tgggggagaa 1200 agtgaaactc cctctcaaaa aaaagaccac tctcagtatc tctgatttct 1250 gaagatgtac aaaaaaatat agcttcatat atctggaatg agcactgagc 1300 cataaaaggt tttcagcaag ttgtaactta ttttggccta aaaatgaggt 1350 ttttttggta aagaaaaaat atttgttctt atgtattgaa gaagtgtact 1400 tttatataat gattttttaa atgcccaaag gactagtttg aaagcttctt 1450 ttaaaaagaa ttcctctaat atgactttat gtgagaa 1487

<210> 410

<211> 158

<212> PRT

<213> Homo sapiens

<400> 410

Met Ala Gly Phe Leu Asp Asn Phe Arg Trp Pro Glu Cys Glu Cys
1 5 10 15

Ile Asp Trp Ser Glu Arg Arg Asn Ala Val Ala Ser Val Val Ala

```
Gly Ile Leu Phe Phe Thr Gly Trp Trp Ile Met Ile Asp Ala Ala
                 35
Val Val Tyr Pro Lys Pro Glu Gln Leu Asn His Ala Phe His Thr
Cys Gly Val Phe Ser Thr Leu Ala Phe Phe Met Ile Asn Ala Val
Ser Asn Ala Gln Val Arg Gly Asp Ser Tyr Glu Ser Gly Cys Leu
Gly Arg Thr Gly Ala Arg Val Trp Leu Phe Ile Gly Phe Met Leu
                                     100
Met Phe Gly Ser Leu Ile Ala Ser Met Trp Ile Leu Phe Gly Ala
                110
Tyr Val Thr Gln Asn Thr Asp Val Tyr Pro Gly Leu Ala Val Phe
                 125
Phe Gln Asn Ala Leu Ile Phe Phe Ser Thr Leu Ile Tyr Lys Phe
                                                          150
                                     145
Gly Arg Thr Glu Glu Leu Trp Thr
                 155
<210> 411
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 411
 gtttgaggaa gctgggatac 20
<210> 412
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 412
 ccaaactcga gcacctgttc 20
<210> 413
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

<400> 413
atggcaggct tcctagataa ttttcgttgg ccagaatgtg 40

<210> 414

<211> 1337

<212> DNA

<213> Homo sapiens

<400> 414

gttgatggca aacttcctca aaggagggc agagcctgcg cagggcagga 50 gcagctggcc cactggcggc ccgcaacact ccgtctcacc ctctgggccc 100 actgcatcta gaggagggcc gtctgtgagg ccactacccc tccagcaact 150 gggaggtggg actgtcagaa gctggcccag ggtggtggtc agctgggtca 200 gggacctacg gcacctgctg gaccacctcg ccttctccat cgaagcaggg 250 aagtgggagc ctcgagccct cgggtggaag ctgaccccaa gccacccttc 300 acctggacag gatgagagtg tcaggtgtgc ttcgcctcct ggccctcatc 350 tttgccatag tcacgacatg gatgtttatt cgaagctaca tgagcttcag 400 catgaaaacc atccgtctgc cacgctggct ggcagcctcg cccaccaagg 450 agatccaggt taaaaagtac aagtgtggcc tcatcaagcc ctgcccagcc 500 aactactttg cgtttaaaat ctgcagtggg gccgccaacg tcgtgggccc 550 tactatgtgc tttgaagacc gcatgatcat gagtcctgtg aaaaacaatg 600 tgggcagagg cctaaacatc gccctggtga atggaaccac gggagctgtg 650 ctgggacaga aggcatttga catgtactct ggagatgtta tgcacctagt 700 gaaatteett aaagaaatte eggggggtge aetggtgetg gtggeeteet 750 acgacgatcc agggaccaaa atgaacgatg aaagcaggaa actcttctct 800 gacttgggga gttcctacgc aaaacaactg ggcttccggg acagctgggt 850 cttcatagga gccaaagacc tcaggggtaa aagccccttt gagcagttct 900 taaagaacag cccagacaca aacaaatacg agggatggcc agagctgctg 950 gagatggagg gctgcatgcc cccgaagcca ttttagggtg gctgtggctc 1000 ttcctcagcc aggggcctga agaagctcct gcctgactta ggagtcagag 1050 cccggcaggg gctgaggagg aggagcaggg ggtgctgcgt ggaaggtgct 1100 gcaggtcctt gcacgctgtg tcgcgcctct cctcctcgga aacagaaccc 1150 teccaeagea catectaece ggaagaecag eeteagaggg teettetgga 1200 accagctgtc tgtggagaga atggggtgct ttcgtcaggg actgctgacg 1250 gctggtcctg aggaaggaca aactgcccag acttgagccc aattaaattt 1300 tatttttgct ggttttgaaa aaaaaaaaaa aaaaaaa 1337

tatttttgct ggttttgaaa aaaaaaaa aaaaaaa 1337 <210> 415 <211> 224 <212> PRT <213> Homo sapiens <400> 415 Met Arg Val Ser Gly Val Leu Arg Leu Leu Ala Leu Ile Phe Ala Ile Val Thr Trp Met Phe Ile Arg Ser Tyr Met Ser Phe Ser Met Lys Thr Ile Arg Leu Pro Arg Trp Leu Ala Ala Ser Pro Thr Lys Glu Ile Gln Val Lys Lys Tyr Lys Cys Gly Leu Ile Lys Pro Cys Pro Ala Asn Tyr Phe Ala Phe Lys Ile Cys Ser Gly Ala Ala Asn Val Val Gly Pro Thr Met Cys Phe Glu Asp Arg Met Ile Met Ser Pro Val Lys Asn Asn Val Gly Arg Gly Leu Asn Ile Ala Leu Val Asn Gly Thr Thr Gly Ala Val Leu Gly Gln Lys Ala Phe Asp 110 Met Tyr Ser Gly Asp Val Met His Leu Val Lys Phe Leu Lys Glu 130 125 Ile Pro Gly Gly Ala Leu Val Leu Val Ala Ser Tyr Asp Asp Pro 140 Gly Thr Lys Met Asn Asp Glu Ser Arg Lys Leu Phe Ser Asp Leu 160 Gly Ser Ser Tyr Ala Lys Gln Leu Gly Phe Arg Asp Ser Trp Val 175 180 Phe Ile Gly Ala Lys Asp Leu Arg Gly Lys Ser Pro Phe Glu Gln 185 Phe Leu Lys Asn Ser Pro Asp Thr Asn Lys Tyr Glu Gly Trp Pro 210 205

Glu Leu Leu Glu Met Glu Gly Cys Met Pro Pro Lys Pro Phe

215

```
<210> 416
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 416
 gccatagtca cgacatggat g 21
<210> 417
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 417
 ggatggccag agctgctg 18
<210> 418
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 418
 aaagtacaag tgtggcctca tcaagc 26
<210> 419
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 419
 tctgactcct aagtcaggca ggag 24
 <210> 420
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 420
  attctctcca cagacagctg gttc 24
```

<210> 421

```
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 421
gtacaagtgt ggcctcatca agccctgccc agccaactac tttgcg 46
<210> 422
<211> 1701
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 1528
<223> unknown base
<400> 422
 gagactgcag agggagataa agagagagg caaagaggca gcaagagatt 50
 tgtcctgggg atccagaaac ccatgatacc ctactgaaca ccgaatcccc 100
 tggaagccca cagagacaga gacagcaaga gaagcagaga taaatacact 150
 cacgccagga gctcgctcgc tctctctct tctctctcac tcctccctcc 200
 ctctctctct gcctgtccta gtcctctagt cctcaaattc ccagtcccct 250
 gcaccccttc ctgggacact atgttgttct ccgccctcct gctggaggtg 300
 atttggatcc tggctgcaga tgggggtcaa cactggacgt atgagggccc 350
 acatggtcag gaccattggc cagcctctta ccctgagtgt ggaaacaatg 400
 cccagtcgcc catcgatatt cagacagaca gtgtgacatt tgaccctgat 450
 ttgcctgctc tgcagcccca cggatatgac cagcctggca ccgagccttt 500
  ggacctgcac aacaatggcc acacagtgca actctctctg ccctctaccc 550
  tgtatctggg tggacttccc cgaaaatatg tagctgccca gctccacctg 600
  cactggggtc agaaaggatc cccagggggg tcagaacacc agatcaacag 650
  tgaagccaca tttgcagagc tccacattgt acattatgac tctgattcct 700
```

atgacagett gagtgagget getgagagge etcagggeet ggetgteetg 750

ggcatcctaa ttgaggtggg tgagactaag aatatagctt atgaacacat 800

tctgagtcac ttgcatgaag tcaggcataa agatcagaag acctcagtgc 850

ctcccttcaa cctaagagag ctgctcccca aacagctggg gcagtacttc 900

cgctacaatg gctcgctcac aactccccct tgctaccaga gtgtgctctg 950 gacagttttt tatagaaggt cccagatttc aatggaacag ctggaaaagc 1000 ttcaggggac attgttctcc acagaagagg agccctctaa gcttctggta 1050 cagaactacc gagcccttca gcctctcaat cagcgcatgg tctttgcttc 1100 tttcatccaa gcaggatcct cgtataccac aggtgaaatg ctgagtctag 1150 gtgtaggaat cttggttggc tgtctctgcc ttctcctggc tgtttatttc 1200 attgctagaa agattcggaa gaagaggctg gaaaaccgaa agagtgtggt 1250 cttcacctca gcacaagcca cgactgaggc ataaattcct tctcagatac 1300 catggatgtg gatgacttcc cttcatgcct atcaggaagc ctctaaaatg 1350 gggtgtagga tctggccaga aacactgtag gagtagtaag cagatgtcct 1400 ccttcccctg gacatctctt agagaggaat ggacccaggc tgtcattcca 1450 ggaagaactg cagagccttc agcctctcca aacatgtagg aggaaatgag 1500 gaaatcgctg tgttgttaat gcagaganca aactctgttt agttgcaggg 1550 gaagtttggg atatacccca aagtcctcta cccctcact tttatggccc 1600 tttccctaga tatactgcgg gatctctcct taggataaag agttgctgtt 1650 gaagttgtat atttttgatc aatatatttg gaaattaaag tttctgactt 1700 t 1701

<210> 423

<211> 337

<212> PRT

<213> Homo sapiens

<400> 423

Met Leu Phe Ser Ala Leu Leu Leu Glu Val Ile Trp Ile Leu Ala 1 5 10 15

Ala Asp Gly Gly Gln His Trp Thr Tyr Glu Gly Pro His Gly Gln 20 . 25 30

Asp His Trp Pro Ala Ser Tyr Pro Glu Cys Gly Asn Asn Ala Gln
35 40 45

Ser Pro Ile Asp Ile Gln Thr Asp Ser Val Thr Phe Asp Pro Asp 50 55 60

Leu Pro Ala Leu Gln Pro His Gly Tyr Asp Gln Pro Gly Thr Glu
65 70 75

Pro Leu Asp Leu His Asn Asn Gly His Thr Val Gln Leu Ser Leu 80 85 90

Pro	Ser	Thr	Leu	Tyr 95	Leu	Gly	Gly	Leu	Pro 100	Arg	Lys	Tyr	Val	Ala 105
Ala	Gln	Leu	His	Leu 110	His	Trp	Gly	Gln	Lys 115	Gly	Ser	Pro	Gly	Gly 120
Ser	Glu	His	Gln	Ile 125	Asn	Ser	Glu	Ala	Thr 130	Phe	Ala	Glu	Leu	His 135
Ile	Val	His	Tyr	Asp 140	Ser	Asp	Ser	Tyr	Asp 145	Ser	Leu	Ser	Glu	Ala 150
Ala	Glu	Arg	Pro	Gln 155	Gly	Leu	Ala	Val	Leu 160	Gly	Ile	Leu	Ile	Glu 165
Val	Gly	Glu	Thr	Lys 170	Asn	Ile	Ala	Tyr	Glu 175	His	Ile	Leu	Ser	His 180
Leu	His	Glu	Val	Arg 185	His	Lys	Asp	Gln	Lys 190	Thr	Ser	Val	Pro	Pro 195
Phe	Asn	Leu	Arg	Glu 200	Leu	Leu	Pro	Lys	Gln 205	Leu	Gly	Gln	Tyr	Phe 210
Arg	Tyr	Asn	Gly	Ser 215	Leu	Thr	Thr	Pro	Pro 220	Cys	Tyr	Gln	Ser	Val 225
Leu	Trp	Thr	Val	Phe 230	Tyr	Arg	Arg	Ser	Gln 235	Ile	Ser	Met	Glu	Gln 240
Leu	Glu	Lys	Leu	Gln 245	Gly	Thr	Leu	Phe	Ser 250	Thr	Glu	Glu	Glu	Pro 255
Ser	Lys	Leu	Leu	Val 260		Asn	Tyr	Arg	Ala 265	Leu	Gln	Pro	Leu	Asn 270
Gln	Arg	Met	Val	Phe 275		Ser	Phe	Ile	Gln 280	Ala	Gly	Ser	Ser	Tyr 285
Thr	Thr	Gly	Glu	Met 290		Ser	Leu	Gly	Val 295	Gly	, Ile	e Leu	ı Val	Gly 300
Cys	: Leu	Cys	: Leu	Leu 305	Leu	ı Ala	val	Tyr	Phe 310	: Ile	Ala	Arç	J Lys	315
Arç	, Lys	Lys	arg	Leu 320		ı Asr	n Arg	l Lys	Ser 325	Val	. Val	Phe	e Thr	Ser 330
Ala	a Glr	n Ala	a Thr	Thr 335		ı Ala	à							

<210> 424

<211> 18

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 424
gtaaagtcgc tggccagc 18
<210> 425
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 425
 cccgatctgc ctgctgta 18
<210> 426
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 426
 ctgcactgta tggccattat tgtg 24
<210> 427
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 427
 cagaaaccca tgatacccta ctgaacaccg aatcccctgg aagcc 45
<210> 428
<211> 1073
<212> DNA
<213> Homo sapiens
<400> 428
 aatttttcac cagagtaaac ttgagaaacc aactggacct tgagtattgt 50
 acattttgcc tcgtggaccc aaaggtagca atctgaaaca tgaggagtac 100
 gattctactg ttttgtcttc taggatcaac tcggtcatta ccacagctca 150
 aacctgcttt gggactccct cccacaaaac tggctccgga tcagggaaca 200
 ctaccaaacc aacagcagtc aaatcaggtc tttccttctt taagtctgat 250
 accattaaca cagatgctca cactggggcc agatctgcat ctgttaaatc 300
```

ctgctgcagg aatgacacct ggtacccaga cccacccatt gaccctggga 350 gggttgaatg tacaacagca actgcaccca catgtgttac caatttttgt 400 cacacaactt ggagcccagg gcactatcct aagctcagag gaattgccac 450 aaatcttcac gagcctcatc atccattcct tgttcccggg aggcatcctg 500 cccaccagtc aggcaggggc taatccagat gtccaggatg gaagccttcc 550 agcaggagga gcaggtgtaa atcctgccac ccagggaacc ccagcaggcc 600 geeteceaae teceagtgge acagatgaeg aetttgeagt gaeeaeeeet 650 gcaggcatcc aaaggagcac acatgccatc gaggaagcca ccacagaatc 700 agcaaatgga attcagtaag ctgtttcaaa ttttttcaac taagctgcct 750 cgaatttggt gatacatgtg aatctttatc attgattata ttatggaata 800 gattgagaca cattggatag tcttagaaga aattaattct taatttacct 850 gaaaatattc ttgaaatttc agaaaatatg ttctatgtag agaatcccaa 900 cttttaaaaa caataattca atggataaat ctgtctttga aatataacat 950 tatgctgcct ggatgatatg catattaaaa catatttgga aaactggaaa 1000 aaaaaaaaa aaaaaaaaa aaa 1073

<210> 429

<211> 209

<212> PRT

<213> Homo sapiens

<400> 429

Met Arg Ser Thr Ile Leu Leu Phe Cys Leu Leu Gly Ser Thr Arg
1 5 10 15

Ser Leu Pro Gln Leu Lys Pro Ala Leu Gly Leu Pro Pro Thr Lys $20 \\ 25 \\ 30$

Leu Ala Pro Asp Gln Gly Thr Leu Pro Asn Gln Gln Gln Ser Asn
35 40 45

Gln Val Phe Pro Ser Leu Ser Leu Ile Pro Leu Thr Gln Met Leu
50 55 60

Thr Leu Gly Pro Asp Leu His Leu Leu Asn Pro Ala Ala Gly Met
65 70 75

Thr Pro Gly Thr Gln Thr His Pro Leu Thr Leu Gly Gly Leu Asn 80 85 90

Val Gln Gln Leu His Pro His Val Leu Pro Ile Phe Val Thr

				95					100					105
Gln	Leu	Gly	Ala	Gln 110	Gly	Thr	Ile	Leu	Ser 115	Ser	Glu	Glu	Leu	Pro 120
Gln	Ile	Phe	Thr	Ser 125	Leu	Ile	Ile	His	Ser 130	Leu	Phe	Pro	Gly	Gly 135
Ile	Leu	Pro	Thr	Ser 140	Gln	Ala	Gly	Ala	Asn 145	Pro	Asp	Val	Gln	Asp 150
Gly	Ser	Leu	Pro	Ala 155	Gly	Gly	Ala	Gly	Val 160	Asn	Pro	Ala	Thr	Gln 165
Gly	Thr	Pro	Ala	Gly 170	Arg	Leu	Pro	Thr	Pro 175	Ser	Gly	Thr	Asp	Asp 180
Asp	Phe	Ala	Val	Thr 185	Thr	Pro	Ala	Gly	Ile 190	Gln	Arg	Ser	Thr	His 195
Ala	Ile	Glu	Glu	Ala 200	Thr	Thr	Glu	Ser	Ala 205	Asn	Gly	Ile	Gln	
-010	. 12	^												

<210> 430

<211> 1257

<212> DNA

<213> Homo Sapien

<400> 430

ggagagagagegegegggtgaaaggegeatgatgeageetgeggeggeet50eggagegeggeggagecagaegetgaecaegtteeteteeteegteteet100eegeetecaaeteegegetgeeeggeageegggagecatgegaececagg150geeeegeegeeteecegeageggeteegeggeeteetgetgeteetget200etgaagetgeeegegeegtegagegeetetgagateeeeaaagggaaagea250aaaggegeageteeggeagagggaggtggtggaecetgtataatggaatgt300gettacaagggecageaggagtgeetggtgagaegggageeetggggee350aatgttatteegggtacaeetgggaaagetttgaggagtetggaeaeeea450aactacaageagtgtteatgaagtteattgaagtteaaag500aaaattgeggagtgtacatttacaaagatgegtteaaatagteettaag500agttttgtteagtggeteatteeggetaaaatgteagaaatgeatgetete600ageggttggtattteacatteaatggagetgaatgtteagatgaatteae650attgaagetataatttatttggaecaaggaaageectgaaatgaatteae700

aattaatat catcgcactt cttctgtga aggactttgt gaaggaattg 750 gtgctggatt agtggatgtt gctatctgg ttggcacttg ttcagattac 800 ccaaaaggag atgcttctac tggatggaat tcagtttctc gcatcattat 850 tgaaggaacta ccaaaataaa tgctttaatt ttcatttgct acctcttttt 900 ttattatgcc ttggaatggt tcacttaaat gacattttaa ataagtttat 950 gtatacatct gaatgaaaag caaagctaaa tatgtttaca gaccaaagtg 1000 tgattcaca ctgttttaa atctagcatt attcatttg cttcaatcaa 1050 aagtggttc aatatttt ttagttggtt agaatactt cttcatagtc 1100 acattctctc aacctataat ttggaatatt gttgtggtct tttgttttt 1150 ctcttagtat agcatttta aaaaaatata aaagctacca atcttgtac 1200 aatttgtaaa tgttaagaat ttttttata tctgttaaat aaaaattatt 1250 tccaaca 1257

<210> 431

<211> 243

<212> PRT

<213> Homo Sapien

<400> 431

Met Arg Pro Gln Gly Pro Ala Ala Ser Pro Gln Arg Leu Arg Gly
1 5 10 15

Leu Leu Leu Leu Leu Leu Gln Leu Pro Ala Pro Ser Ser Ala 20 25 30

Ser Glu Ile Pro Lys Gly Lys Gln Lys Ala Gln Leu Arg Gln Arg 35 40 45

Glu Val Val Asp Leu Tyr Asn Gly Met Cys Leu Gln Gly Pro Ala
50 55 60

Gly Val Pro Gly Arg Asp Gly Ser Pro Gly Ala Asn Val Ile Pro
65 70 75

Gly Thr Pro Gly Ile Pro Gly Arg Asp Gly Phe Lys Gly Glu Lys 80 85 90

Gly Glu Cys Leu Arg Glu Ser Phe Glu Glu Ser Trp Thr Pro Asn 95 100 105

Tyr Lys Gln Cys Ser Trp Ser Ser Leu Asn Tyr Gly Ile Asp Leu 110 115 120

Gly Lys Ile Ala Glu Cys Thr Phe Thr Lys Met Arg Ser Asn Ser 125 130 135

```
Ala Leu Arg Val Leu Phe Ser Gly Ser Leu Arg Leu Lys Cys Arg
                 140
Asn Ala Cys Cys Gln Arg Trp Tyr Phe Thr Phe Asn Gly Ala Glu
                                     160
                                                          165
Cys Ser Gly Pro Leu Pro Ile Glu Ala Ile Ile Tyr Leu Asp Gln
                 170
Gly Ser Pro Glu Met Asn Ser Thr Ile Asn Ile His Arg Thr Ser
                 185
                                     190
Ser Val Glu Gly Leu Cys Glu Gly Ile Gly Ala Gly Leu Val Asp
                                     205
Val Ala Ile Trp Val Gly Thr Cys Ser Asp Tyr Pro Lys Gly Asp
                                     220
Ala Ser Thr Gly Trp Asn Ser Val Ser Arg Ile Ile Glu Glu
                                     235
Leu Pro Lys
<210> 432
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 432
aggacttgcc ctcaggaa 18
<210> 433
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 433
cgcaggacag ttgtgaaaat a 21
<210> 434
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 434
 atgacgeteg tecaaggeea e 21
```

```
<210> 435
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 435
cccacctgta ccaccatgt 19
<210> 436
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 436
actocaggea ceatetgtte tece 24
<210> 437
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 437
aagggctggc attcaagtc 19
<210> 438
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 438
tgacctggca aaggaagaa 19
<210> 439
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 439
cagccaccct ccagtccaag g 21
<210> 440
<211> 19
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 440
gggtcgtgtt ttggagaga 19
<210> 441
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 441
ctggccctca gagcaccaat 20
<210> 442
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 442
tectecatea etteceetag eteca 25
<210> 443
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 443
 ctggcaggag ttaaagttcc aaga 24
<210> 444
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 444
 aaaggacacc gggatgtg 18
<210> 445
<211> 26
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 445
agcgtacact ctctccaggc aaccag 26
<210> 446
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 446
caattctgga tgaggtggta ga 22
<210> 447
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 447
 caggactgag cgcttgttta 20
<210> 448
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 448
 caaagcgcca agtaccggac c 21
<210> 449
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 449
 ccagacetea gecaggaa 18
<210> 450
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic oligonucleotide probe
<400> 450
ccctagctga ccccttca 18
<210> 451
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 451
 tctgacaagc agttttctga atc 23
<210> 452
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 452
 ctctcccct cccttttcct ttgttt 26
<210> 453
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 453
 ctctggtgcc cacagtga 18
<210> 454
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 454
 ccatgcctgc tcagccaaga a 21
 <210> 455
 <211> 23
 <212> DNA
 <213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
```

```
<400> 455
caggaaatct ggaaacctac agt 23
<210> 456
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 456
ccttgaaaag gacccagttt 20
<210> 457
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 457
 atgagtcgca cctgctgttc cc 22
<210> 458
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 458
 tagcagctgc ccttggta 18
<210> 459
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 459
 aacagcaggt gcgactcatc ta 22
<210> 460
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 460
 tgctaggcga cgacacccag acc 23
```

```
<210> 461
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 461
 tggacacgtg gcagtgga 18
<210> 462
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 462
tcatggtctc gtcccattc 19
<210> 463
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 463
 caccatttgt ttctctgtct ccccatc 27
<210> 464
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 464
ccggcatcct tggagtag 18
<210> 465
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 465
tccccattag cacaggagta 20
```

<210> 466

```
<211> 23
 <212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 466
 aggetettge etgteetget get 23
<210> 467
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 467
 gcccagagtc ccacttgt 18
<210> 468
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 468
 actgctccgc ctactacga 19
<210> 469
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 469
 aggcatcctc gccgtcctca 20
<210> 470
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 470
aaggccaagg tgagtccat 19
<210> 471
<211> 20
<212> DNA
```

```
<213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 471
  cgagtgtgtg cgaaacctaa 20
 <210> 472
 <211> 24
 <212> DNA
 <213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 472
 tcagggtcta catcagcctc ctgc 24
<210> 473
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 473
 aaggccaagg tgagtccat 19
<210> 474
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 474
 cctactgagg agccctatgc 20
<210> 475
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 475
tccaggtgga ccccacttca gg 22
<210> 476
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe

<400> 476
  gggaggctta taggcccaat ctgg 24

<210> 477
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 477
  ggcttcagca gcacgtgtga agtcgaagtc gcagtcacag atatcaatga 50

-230-
-1-
```