Logika układów cyfrowych lab.

Prowadzący: Mgr inż. Antoni Sterna (E02-38m, wtorek 17:05)

sprawozdanie 2 - 2017.10.17

Jakub Dorda 235013 Marcin Kotas 235098

> 22 października 2017 L^AT_EX

1 Wprowadzenie/cel ćwiczeń

Celem pierwszego zadania było stworzenie transkodera naturalnego kodu binarnego 3 bitowego wykonującego dla każdego przypadku operację dodawania +3. Kolejnym zadaniem było wykonanie subtraktora pełnego 1 bitowego. Trudność w drugim zadaniu polegała na ograniczeniu implementacji tylko do dwuwejściowych bramek NAND. Obydwa układy zostały sprawdzone w symulatorze oraz przez wykonanie ich na zestawie prototypowym w czasie zajęć w laboratorium.

2 Transkoder naturalnego kodu binarnego na kod +3

2.1 Tabela prawdy i tablice Karnaugh:

Tabela 1: Tabela Prawdy

a	b	\mathbf{c}	У3	y_2	y_1	У0
0	0	0	0	0	1	1
0	0	1	0	1	0	0
0	1	0	0	1	0	1
0	1	1	0	1	1	0
1	0	0	0	1	1	1
1	0	1	1	0	0	0
1	1	0	1	0	0	1
1	1	1	1	0	1	0

Tabela 2: Tablica Karnaugh dla y₃

c ab	00	01	11	10
0	0	0	1	0
1	0	0	1	1

Tabela 3: Tablica Karnaugh dla y₂

c ab	00	01	11	10
0	0	1	0	1
1	1	1	0	0

Tabela 4: Tablica Karnaugh dla y₁

c ab	00	01	11	10
0	1	0	0	1
1	0	1	1	0

Tabela 5: Tablica Karnaugh dla y₀

c ab	00	01	11	10
0	1	1	1	1
1	0	0	0	0

2.2 Minimalizacje:

$$y_3 = ab + ac = \overline{ab} \cdot \overline{ac}$$

$$y_2 = a\overline{bc} + \overline{ab} + \overline{ac} = \overline{abc} \cdot \overline{ab} \cdot \overline{ac}$$

$$y_1 = bc + \bar{b}\bar{c} = \overline{bc} \cdot \overline{b}\bar{c}$$
$$y_0 = \bar{c}$$

2.3 Użyte wzory:

$$\overline{a \cdot b} = \overline{a} + \overline{b} \tag{1}$$

$$\overline{a+b} = \bar{a} \cdot \bar{b} \tag{2}$$

2.4 Schemat układu:

Schemat 1. Układ transkodera na bramkach NAND

3 Subtraktor pełny 1 bitowy (na NAND 2 wejściowych)

3.1 Tabela prawdy i tablice Karnaugh:

 A_i - odjemna, B_i - odjemnik, C_i - pożyczka od poprzedniego bitu D_i - bit różnicy/wynik, C_{i+1} - bit pożyczki/przeniesienie

3.2 Minimalizacje:

$$D_{i} = \bar{a}\bar{b}c + \bar{a}b\bar{c} + abc + a\bar{b}\bar{c} = \bar{a}(\bar{b}c + b\bar{c}) + a(bc + \bar{b}\bar{c}) = \overline{\bar{a}(\bar{b}c + b\bar{c})} \cdot \overline{a(bc + \bar{b}\bar{c})} = \overline{\bar{a}(\bar{b}c \cdot \bar{b}\bar{c})} \cdot \overline{a(\bar{b}c \cdot \bar{b}\bar{c})} \cdot \overline{a(\bar{b}c \cdot \bar{b}\bar{c})}$$

$$C_{i+1} = \bar{a}b + \bar{a}c + bc = \bar{a}b + c(\bar{a} + b) = \overline{\bar{a}b \cdot \bar{c}(\bar{a} + b)} = \overline{\bar{a}b \cdot \bar{c}(\bar{\bar{a}} \cdot \bar{b})} = \overline{\bar{a}b \cdot \bar{c}(\bar{\bar{a}} \cdot \bar{b})}$$

3.3 Użyte wzory:

$$\overline{a \cdot b} = \overline{a} + \overline{b} \tag{3}$$

$$\overline{a+b} = \bar{a} \cdot \bar{b} \tag{4}$$

Tabela 6: Tabela Prawdy

A	В	С	D_{i}	C_{i+1}	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	1	1	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	1	0	0	0	
1	1	1	1	1	
$D_{\cdot} = A_{\cdot} \oplus B_{\cdot} \oplus C_{\cdot}$					

$$D_i = A_i \oplus B_i \oplus C_i$$

$$C_{i+1} = A_i < (B_i + C_i)$$

Tabela 7: Tablica Karnaugh dla D_i

C AB	00	01	11	10
0	0	1	0	1
1	1	0	1	0

Tabela 8: Tablica Karnaugh dla C_{i+1}

C AB	00	01	11	10
0	0	1	0	0
1	1	1	1	0

3.4 Schemat układu:

Schemat 1. Układ subtraktora na dwuwejściowych bramkach NAND

4 Wnioski/podsumowanie

W celu sprawdzenia poprawności działania należało przeprowadzić testy dla wszystkich możliwych kombinacji wejść w tym przypadku dla obu układów było to $2^3 = 8$. Obydwa układy działały poprawnie, aczkolwiek w przypadku pierwszego zadania możliwa była dalsza minimalizacja oraz użycie innych bramek w celu uproszczenia finalnego układu.