电动力学

Electrodynamics

NeptonS_02

目录

1	矢量	量分析 7
	1.1	矢量与张量 7
		1.1.1 三维矢量
		1.1.2 并矢
	1.2	微分场论
		1.2.1 ▽ 算符
		1.2.2 梯度
		1.2.3 散度
		1.2.4 旋度
		1.2.5 关于旋度与散度的重要定理 9
2	电磁	滋现象的普遍规律 11
	2.1	静电场
		2.1.1 真空中电场
		2.1.2 介质中电场
		2.1.3 电场的边界条件
	2.2	静磁场
		2.2.1 静磁场的基本定理 13
		2.2.2 磁介质
		2.2.3 磁场的边界条件
	2.3	Maxwell 方程组
		2.3.1 静电场与静磁场中的 Maxwell 方程组
		2.3.2 真空中的 Maxwell 方程组
		2.3.3 介质中的 Maxwell 方程组 15
	2.4	电磁场的能量与能流 16
		2.4.1 洛伦兹力 16
		2.4.2 电磁场的能量、能流密度 16

4			目录
3	静日	电场	19
			19
		Laplace 方程	
	3.3	镜像法	20
		3.3.1 接地无限大平面导体板	20
		3.3.2 导体球	21
	3.4	多极展开	22
4	静磁	兹场	23
		矢势	23
		4.1.1 矢势的引入与库伦规范	23
		4.1.2 矢势微分方程	
	4.2	磁标势	24
	4.3	磁多极矩	25
		4.3.1 矢势的多极展开	25
		4.3.2 磁场的能量	26
	4.4	Aharonov-Bohm 效应	26
5	电磁	兹波的传播	27
	5.1	平面电磁波	27
		5.1.1 电磁场波动方程	27
		5.1.2 时谐电磁波与其平面波解	28
		5.1.3 电磁波的能量和能流	29
	5.2	反射和折射定律	30
	5.3	有导体存在时电磁波的传播	31
		5.3.1 导体内的电磁波	31
	5.4	电磁波的反射与折射	32
		5.4.1 Fresnel 公式	32
		5.4.2 全反射	32
		5.4.3 反射系数	33
	5.5	波导	33
		5.5.1 矩形波导	33
		5.5.2 截止频率	34
6	电磁	兹波的辐射	37

目录 5

	6.1	电磁场的矢势和标势	37
		6.1.1 电磁场中势的引入	37
		6.1.2 规范变换	38
		6.1.3 d'Alembert 方程	38
	6.2	电偶极辐射	38
		6.2.1 计算辐射场的一般公式	38
		6.2.2 矢势展开	39
7	ない	义相对论	41
•			41
	1.1		41
		1874 1872 1744	41
			42
			42
	7 2		44
	1.2	14/4/084/4/12/2/0	44
		/ CTIH/90/	44 45
	7.0		46
	1.3	THAT TO BE TO THE TO TH	46
		147-1-147-147-147-147-147-147-147-147-14	46
			47
	7.4		48
			48
		· · · · · · · · · · · · · · · · · · ·	49
			50
	7.5	18/4/19/4	51
		N=	51
		7.5.2 四维力矢量	51

6 目录

Chapter 1

矢量分析

1.1 矢量与张量

1.1.1 三维矢量

$$\mathbf{a} = a_i \mathbf{e}_i + a_j \mathbf{e}_j + a_k \mathbf{e}_k$$

矢量运算:

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 = \delta_{ij} a^i b^j = a_i b^i \tag{1.1}$$

$$\mathbf{a} \times \mathbf{b} = a_2 b_3 \mathbf{e}_1 + a_3 b_1 \mathbf{e}_2 + a_1 b_2 \mathbf{e}_3 = \varepsilon_{jk}^i a^j b^k$$
 (1.2)

$$\boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c}) = \delta_{ij} a^i \varepsilon_{kl}^j b^k c^l = a_j \varepsilon_{kl}^j b^k c^l = \varepsilon_{jkl} a^j b^k c^l$$
 (1.3)

1.1.2 并矢

$$ab = a_i b_j e_i e_j$$

有时可以用二阶张量代替并矢: $\overset{\rightarrow}{\mathcal{T}} = T_{ij} \mathbf{e}_i \mathbf{e}_j = a_i b_j \mathbf{e}_i \mathbf{e}_j$ 并矢运算:

$$(\mathbf{a}\mathbf{b}) \cdot \mathbf{c} = a_i b_j c^j \mathbf{e}_i \tag{1.4}$$

$$\boldsymbol{c} \cdot (\boldsymbol{a}\boldsymbol{b}) = c^i a_i b_j \boldsymbol{e}_j \tag{1.5}$$

$$\boldsymbol{c} \cdot (\boldsymbol{a}\boldsymbol{b}) \cdot \boldsymbol{d} = c^i a_i b_j d^j \tag{1.6}$$

$$(\mathbf{ab}): (\mathbf{cd}) = b_i c^i a^j d_j \tag{1.7}$$

1.2 微分场论

1.2.1 ▽ 算符

在平面直角坐标系中, ∇ 算符定义为:

$$\nabla = \mathbf{e}_x \frac{\partial}{\partial x} + \mathbf{e}_y \frac{\partial}{\partial y} + \mathbf{e}_z \frac{\partial}{\partial z}$$
 (1.8)

柱坐标系下定义为:

$$\nabla = \mathbf{e}_r \frac{\partial}{\partial r} + \mathbf{e}_\theta \frac{1}{r} \frac{\partial}{\partial \theta} + \mathbf{e}_z \frac{\partial}{\partial z}$$
 (1.9)

球坐标系下定义为:

$$\nabla = \mathbf{e}_r \frac{\partial}{\partial r} + \mathbf{e}_\theta \frac{1}{r} \frac{\partial}{\partial \theta} + \mathbf{e}_\varphi \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi}$$
 (1.10)

1.2.2 梯度

定义线元 $d\mathbf{l} = dx\mathbf{e}_x + dy\mathbf{e}_y + dz\mathbf{e}_z$

对于一个**标量场** φ , 可做全微分

$$d\varphi = \frac{\partial \varphi}{\partial x} dx + \frac{\partial \varphi}{\partial y} dy + \frac{\partial \varphi}{\partial z} dz$$
 (1.11)

于是可以定义该标量场 φ 的梯度为

grad
$$\varphi = \mathbf{e}_x \frac{\partial \varphi}{\partial x} + \mathbf{e}_y \frac{\partial \varphi}{\partial y} + \mathbf{e}_z \frac{\partial \varphi}{\partial z}$$
 (1.12)

利用 ∇ 算符,梯度可以表示为

$$\operatorname{grad} \varphi = \nabla \varphi \tag{1.13}$$

$$d\varphi = \nabla \varphi \cdot d\boldsymbol{l} \tag{1.14}$$

1.2.3 散度

对于三维矢量场 f(x,y,z), 设曲面 S 围着体积 ΔV , 当 $\Delta V \rightarrow 0$ 时, f 对 S 的通量与 ΔV 之比的极限称为 f 的散度:

$$\operatorname{div} \mathbf{f} = \lim_{\Delta V \to 0} \frac{\oint \mathbf{f} \cdot d\mathbf{S}}{\Delta V}$$
 (1.15)

特别地,在直角坐标系下,可以推导出:

$$\operatorname{div} \mathbf{f} = \nabla \cdot \mathbf{f} \tag{1.16}$$

1.2. 微分场论 9

要注意的是,在柱坐标系或球坐标系下 $\operatorname{div} \boldsymbol{f}$ 也可以写作 $\nabla \cdot \boldsymbol{f}$,但只是作为一种写法使用,数学上二者并不相等。在柱坐标系下:

$$\operatorname{div} \mathbf{f} = \frac{1}{r} \frac{\partial (rf_r)}{\partial r} + \frac{1}{r} \frac{\partial f_{\theta}}{\partial \theta} + \frac{\partial f_z}{\partial z}$$
 (1.17)

在球坐标系下:

$$\operatorname{div} \mathbf{f} = \frac{1}{r^2} \frac{\partial (r^2 f_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\theta f_{\theta})}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial f_z}{\partial z}$$
(1.18)

1.2.4 旋度

对于三维矢量场 f(x, y, z), 设闭合曲线 L 围着体积 ΔS , 当 $\Delta S \rightarrow 0$ 时, f 对 L 的通量与 ΔS 之比的极限称为 f 的散度:

$$(\text{rot } \mathbf{f})_n = \lim_{\Delta S \to 0} \frac{\oint \mathbf{f} \cdot d\mathbf{l}}{\Delta S}$$
 (1.19)

同样地,在直角坐标系下有:

$$rot \mathbf{f} = \nabla \times \mathbf{f} \tag{1.20}$$

1.2.5 关于旋度与散度的重要定理

微分

$$\nabla \times (\nabla \varphi) = 0 \tag{1.21}$$

$$\nabla \cdot (\nabla \times \boldsymbol{f}) = 0 \tag{1.22}$$

$$\nabla \varphi \to \text{vector}$$
 (1.23)

$$\nabla \cdot (\nabla \varphi) = \nabla^2 \varphi = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2}$$
 (1.24)

积分变换式

由散度、旋度定义可以得到

$$\oint_{S} \mathbf{f} \cdot d\mathbf{S} = \int_{V} \operatorname{div} \mathbf{f} dV \tag{1.25}$$

$$\oint_{L} \boldsymbol{f} \cdot d\boldsymbol{l} = \int_{S} \operatorname{rot} \boldsymbol{f} d\boldsymbol{S}$$
(1.26)

▽ 算符运算公式

下方公式中 φ , ψ 代表标量场、f,g 代表矢量场.

$$\nabla(\varphi\psi) = \varphi\nabla\psi + \psi\nabla\varphi \tag{1.27}$$

$$\nabla \cdot (\varphi \mathbf{f}) = (\nabla \varphi) \cdot \mathbf{f} + \varphi \nabla \cdot \mathbf{f} \tag{1.28}$$

$$\nabla \times (\varphi \mathbf{f}) = (\nabla \varphi) \times \mathbf{f} + \varphi \nabla \times \mathbf{f}$$
(1.29)

$$\nabla \cdot (\boldsymbol{f} \times \boldsymbol{g}) = (\nabla \times \boldsymbol{f}) \cdot \boldsymbol{g} - \boldsymbol{f} \cdot (\nabla \times \boldsymbol{g})$$
(1.30)

$$\nabla \times (\mathbf{f} \times \mathbf{g}) = (\mathbf{g} \cdot \nabla)\mathbf{f} + (\nabla \cdot \mathbf{g})\mathbf{f} - (\mathbf{f} \cdot \nabla)\mathbf{g} - (\nabla \cdot \mathbf{f})\mathbf{g}$$
(1.31)

$$\nabla (\mathbf{f} \cdot \mathbf{g}) = \mathbf{f} \times (\nabla \times \mathbf{g}) + (\mathbf{f} \cdot \nabla)\mathbf{g} + \mathbf{g} \times (\nabla \times \mathbf{f}) + (\mathbf{g} \cdot \nabla)\mathbf{f} \quad (1.32)$$

$$\nabla \times (\nabla \times \boldsymbol{f}) = \nabla(\nabla \cdot \boldsymbol{f}) - \nabla^2 \boldsymbol{f}$$
(1.33)

Chapter 2

电磁现象的普遍规律

2.1 静电场

2.1.1 真空中电场

库仑定律:

$$\mathbf{F} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^3} \mathbf{r} \tag{2.1}$$

$$\boldsymbol{E} = \frac{1}{4\pi\varepsilon_0} \frac{q_2}{r^3} \boldsymbol{r} \tag{2.2}$$

$$q_1 \mathbf{E} = \mathbf{F} \tag{2.3}$$

高斯定理

$$\oint_{S} \mathbf{E} \cdot d\mathbf{S} = \frac{q_{in}}{\varepsilon_{0}}$$
(2.4)

由积分变换式1.25可以导出电场散度公式:

$$\oint_{S} \mathbf{E} \cdot d\mathbf{S} = \int_{V} \nabla \cdot \mathbf{E} d\mathbf{V}$$
 (2.5)

$$\frac{q_{in}}{\varepsilon_0} = \frac{\int_V \rho \cdot d\mathbf{V}}{\varepsilon_0} \tag{2.6}$$

$$\nabla \cdot \boldsymbol{E} = \frac{\rho}{\varepsilon_0} \tag{2.7}$$

静电场沿闭合曲线积分后结果为 0, 由斯托克斯公式可以导出静电 场旋度亦为 0 的结果:

$$\oint_{I} \mathbf{E} \cdot d\mathbf{l} = \int_{S} \nabla \times \mathbf{E} \cdot d\mathbf{S} = 0$$
(2.8)

$$\nabla \times \mathbf{E} = 0 \tag{2.9}$$

由旋度基本公式 $\nabla \times (\nabla \varphi) = 0$ 与公式2.9,我们可以设一个标量 φ 使得 $-\nabla \varphi = \mathbf{E}$,这就是**电势**. 其中负号代表电势沿电场线方向减小.

2.1.2 介质中电场

引入矢量 $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$, 其中 \mathbf{P} 为极化强度矢量, 等于小体积 ΔV 内的总电偶极矩与 ΔV 之比:

$$\mathbf{P} = \frac{\sum_{i} \mathbf{P}_{i}}{\Delta V} \tag{2.10}$$

特别地,在线性介质中,极化强度 P 与 E 之间有简单的线性关系 $P = \chi_e \varepsilon_0 E$,由此可得

$$\boldsymbol{D} = \varepsilon \boldsymbol{E} + \boldsymbol{P} \tag{2.11}$$

$$\varepsilon = \varepsilon_r \varepsilon_0, \ \varepsilon_r = 1 + \chi$$
 (2.12)

 ε 称为介质的电容率, ε_r 称为介质的相对电容率.

对应于 E, 可以定义

$$\nabla \cdot \boldsymbol{D} = \rho_f \tag{2.13}$$

$$\nabla \cdot \boldsymbol{P} = \rho_p \tag{2.14}$$

2.1.3 电场的边界条件

以 σ_f 表示自由电荷的电荷面密度, σ_p 表示束缚电荷的电荷面密度. 法向分量上有

$$\varepsilon_0(E_{2n} - E_{1n}) = \sigma_f + \sigma_p \qquad (2.15)$$

由各自定义及式2.11可以得到:

$$P_{2n} - P_{1n} = -\sigma_n \tag{2.16}$$

$$D_{2n} - D_{1n} = \sigma_f (2.17)$$

切向分量上有:

$$E_{2n} - E_{1n} = 0 (2.18)$$

2.2. 静磁场 13

总结起来就是:

$$\boldsymbol{e}_n \times (\boldsymbol{E}_2 - \boldsymbol{E}_1) = 0 \tag{2.19}$$

$$\boldsymbol{e}_n \cdot (\boldsymbol{D}_2 - \boldsymbol{D}_1) = \sigma_f \tag{2.20}$$

2.2 静磁场

2.2.1 静磁场的基本定理

毕奥-萨伐尔定律:

$$d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{Id\mathbf{l} \times \mathbf{r}}{r^3}$$
 (2.21)

静磁场的高斯定理与旋度定理:

$$\nabla \cdot \boldsymbol{B} = 0 \tag{2.22}$$

$$\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{J} \tag{2.23}$$

其中, J 表示电流密度.

2.2.2 磁介质

以 M 表示磁化强度,定义为小体积 ΔV 内总的磁偶极矩与 ΔV 之比:

$$\mathbf{M} = \frac{\sum_{i} m_i}{\Delta V} \tag{2.24}$$

以 J_M 表示磁化电流密度,有:

$$\int_{S} \boldsymbol{J}_{M} \cdot d\boldsymbol{S} = \oint_{L} \boldsymbol{M} \cdot d\boldsymbol{l} = \int_{S} \nabla \times \boldsymbol{M} \cdot d\boldsymbol{S}$$
 (2.25)

得到

$$\boldsymbol{J}_M = \nabla \times \boldsymbol{M} \tag{2.26}$$

定义矢量 $H = \frac{B}{\mu_0} - M$,对于各向同性非铁磁物质,M 和 H 之间有简单的线性关系:

$$\boldsymbol{M} = \chi_M \boldsymbol{H} \tag{2.27}$$

代入式2.26可得:

$$\boldsymbol{B} = \mu \boldsymbol{H} \tag{2.28}$$

$$\mu = \mu_r \mu_0, \ \mu_r = 1 + \chi_M \tag{2.29}$$

2.2.3 磁场的边界条件

对于磁场, 法向分量上有:

$$B_{2n} - B_{1n} = 0 (2.30)$$

切向分量上有:

$$H_{2n} - H_{1n} = \alpha_f (2.31)$$

$$\boldsymbol{e}_n \cdot \boldsymbol{B}_2 - \boldsymbol{B}_1 = 0 \tag{2.32}$$

$$\boldsymbol{e}_n \times \boldsymbol{H}_2 - \boldsymbol{H}_1 = \boldsymbol{\alpha}_f \tag{2.33}$$

2.3 Maxwell 方程组

2.3.1 静电场与静磁场中的 Maxwell 方程组

静电场与静磁场中的 Maxwell 方程组如下:

$$\begin{cases}
\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \\
\nabla \times \mathbf{E} = 0 \\
\nabla \cdot \mathbf{B} = 0 \\
\nabla \times \mathbf{B} = \mu_0 \mathbf{J}
\end{cases} (2.34)$$

2.3.2 真空中的 Maxwell 方程组

感应电动势

一般情况下,我们遇到的绝大部分电场磁场都不是静电场或静磁场. 电磁感应现象告诉我们电场和磁场内部能够相互作用. 因此非静电、静磁场时要对 Maxwell 方程组进行修正. \mathcal{E} 为感应电动势, 电磁感应定律为:

$$\mathcal{E} = \oint_{L} \mathbf{E} \cdot d\mathbf{l} = -\frac{\partial \Phi}{\partial t} = -\frac{d}{dt} \int_{S} \mathbf{B} \cdot d\mathbf{S} \qquad (2.35)$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \qquad (2.36)$$

位移电流假说

需要假设存在位移电流 $\nabla \cdot (\boldsymbol{J} + \boldsymbol{J}_D) = 0$ 使得电荷守恒定律满足. 由电荷守恒定律得到:

$$\nabla \cdot \boldsymbol{J} = \frac{\partial \rho}{\partial t} = 0 \tag{2.37}$$

又由电荷密度与电场散度关系式

$$\nabla \cdot \boldsymbol{E} = \frac{\rho}{\varepsilon_0} \tag{2.38}$$

得到位移电流表达式

$$\nabla \cdot \left(\boldsymbol{J} + \varepsilon_0 \frac{\partial \boldsymbol{E}}{\partial t} \right) = 0 \tag{2.39}$$

$$\mathbf{J}_D = \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \tag{2.40}$$

修正后的 Maxwell 方程组

经过如上两个修正后的 Maxwell 方程组如下:

$$\begin{cases}
\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \\
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \cdot \mathbf{B} = 0 \\
\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}
\end{cases} (2.41)$$

2.3.3 介质中的 Maxwell 方程组

可以做简单的代换 $\varepsilon_0 \to \varepsilon$, $\mu_0 \to \mu$, 并通过式 $\mathbf{D} = \varepsilon \mathbf{E}$, $\mathbf{B} = \mu \mathbf{H}$ 得到介质中的 Maxwell 方程组

$$\begin{cases}
\nabla \cdot \mathbf{D} = \rho \\
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \cdot \mathbf{B} = 0 \\
\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}
\end{cases} (2.42)$$

2.4 电磁场的能量与能流

2.4.1 洛伦兹力

对于运动电荷, 其受到场的洛伦兹力为

$$\mathbf{F} = q\mathbf{E} + q\mathbf{v} \times \mathbf{B} \tag{2.43}$$

而对单位体积内来说, 洛伦兹力公式变为

$$\mathbf{f} = \rho \mathbf{E} + \rho \mathbf{v} \times \mathbf{B} = \mathbf{J} \times \mathbf{B} \tag{2.44}$$

由此可以推导出功率密度

$$\boldsymbol{f} \cdot \boldsymbol{v} = \rho \boldsymbol{v} \cdot \boldsymbol{E} = \boldsymbol{J} \cdot \boldsymbol{E} \tag{2.45}$$

2.4.2 电磁场的能量、能流密度

考虑空间 V,其界面为 S. 由能量守恒定律得到,通过界面 S 流入 V 内的能量 = 空间 V 内场对电荷系统所做功率 +V 内场能量的增加率. 即

$$-\oint_{S} \mathbf{S} \cdot d\mathbf{\sigma} = \int_{V} \mathbf{f} \cdot \mathbf{v} dV + \frac{d}{dt} \int_{V} \omega dV$$
 (2.46)

其中 S 为能流密度, ω 为能量密度.

将介质中的 Maxwell 方程组的第四式 $J = \nabla \times H - \frac{\partial D}{\partial t}$ 代入式2.45得到:

$$\boldsymbol{J} \cdot \boldsymbol{E} = \boldsymbol{E} \cdot (\nabla \times \boldsymbol{H}) - \boldsymbol{E} \cdot \frac{\partial \boldsymbol{D}}{\partial t}$$
 (2.47)

由式1.30得到:

$$\boldsymbol{J} \cdot \boldsymbol{E} = -\nabla \cdot (\boldsymbol{E} \times \boldsymbol{H}) - \boldsymbol{E} \cdot \frac{\partial \boldsymbol{D}}{\partial t} - \boldsymbol{H} \cdot \frac{\partial \boldsymbol{B}}{\partial t}$$
(2.48)

将该式与2.46对比可以得到能流密度与能量密度变化率的表达式:

$$S = E \times H \tag{2.49}$$

$$\frac{\partial w}{\partial t} = \mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t} + \mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t}$$
 (2.50)

真空中,有 $\boldsymbol{H} = \frac{1}{\mu_0} \boldsymbol{B}$, $\boldsymbol{D} = \varepsilon_0 \boldsymbol{E}$, 因此有

$$\boldsymbol{S} = \frac{1}{\mu_0} \boldsymbol{E} \times \boldsymbol{B} \tag{2.51}$$

$$w = \frac{1}{2} \left(\varepsilon E^2 + \frac{1}{\mu_0} B^2 \right) \tag{2.52}$$

而在介质中,由式2.50可以得到场的改变量为

$$\delta w = \mathbf{E} \cdot \delta \mathbf{D} + \mathbf{H} \cdot \delta \mathbf{B} \tag{2.53}$$

线性均匀介质中, $\boldsymbol{D}=\varepsilon\boldsymbol{E},\;\boldsymbol{B}=\mu\boldsymbol{H}$,因此可以对上式进行积分得到:

$$w = \frac{1}{2}(\mathbf{E} \cdot \mathbf{D} + \mathbf{H} \cdot \mathbf{B}) \tag{2.54}$$

Chapter 3

静电场

3.1 静电场的标势

在静电场中,存在关系:

$$\begin{cases}
\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \\
\nabla \times \mathbf{E} = 0 \\
\mathbf{e}_n \times (\mathbf{E}_2 - \mathbf{E}_1) = 0 \\
\mathbf{e}_n \cdot (\mathbf{D}_2 - \mathbf{D}_1) = \sigma_f
\end{cases} (3.1)$$

由 $\nabla \times \mathbf{E} = 0$,我们可以设一个标量 φ 使得 $\mathbf{E} = -\nabla \varphi$ 以便于我们对电场的描述. 将其代入上方第一式得到 Poisson 方程:

$$\nabla^2 \varphi = -\frac{\rho}{\varepsilon_0} \tag{3.2}$$

在介质边界,存在关系:

$$\varphi_1 = \varphi_2 \tag{3.3}$$

$$\varepsilon_2 \frac{\partial \varphi_2}{\partial n} - \varepsilon_1 \frac{\partial \varphi_1}{\partial n} = -\sigma_f \tag{3.4}$$

其中, $\frac{\partial}{\partial n}$ 是法向上的偏导数, σ 是界面上的自由电荷面密度. 对于导体而言,其静电条件还需满足以下 3 点:

- (1) 导体内部无电荷, 电荷只能分布在导体表面;
- (2) 导体内部电场为 0;
- (3) 导体表面上电场必延法线方向. 导体表面为等势面, 处处电势相等.

静电问题的唯一性定理: 设区域 V 内给定自由电荷分布 $\rho(x)$, 在 V 的边界 S 上给定:

- (1) 电势 $\varphi|_s$
- (2) 电势的法线方向偏导数 $\frac{\partial \varphi}{\partial n}$

3.2 Laplace 方程

导体内部自由电荷密度 $\rho=0$, 于是 Poisson 方程3.2化为 Laplace 方程:

$$\nabla^2 \varphi = 0 \tag{3.5}$$

其通解可以由分离变量法解出。在球坐标系下, Laplace 方程的通解为:

$$\varphi(R,\theta,\phi) = \sum_{n,m} (a_{nm}R^n + \frac{b_{nm}}{R^{n+1}}) P_n^m(\cos\theta) \cos m\phi$$
 (3.6)

$$+\sum_{n,m} (c_{nm}R^n + \frac{d_{nm}}{R^{n+1}}) \mathcal{P}_n^m(\cos \theta) \sin m\phi \qquad (3.7)$$

其中 $P_n^m(\cos \theta)$ 为**关联 Legendre 函数**. 若该问题中有对称轴,则可以取其为极轴,则通解不依赖 ϕ ,通解变为:

$$\varphi(R,\theta,\phi) = \sum_{n} (a_n R^n + \frac{b_n}{R^{n+1}}) P_n(\cos\theta)$$
 (3.8)

 $P_n(\cos \theta)$ 为 **Legendre 函数**. a_n , b_n 由边界条件确定.

3.3 镜像法

3.3.1 接地无限大平面导体板

3.3. 镜像法 21

例 1 接地无穷大平面导体板附近有一点电荷 Q, 求空间中的电场.

可以设在导体板下方与Q对称位置有一个假想 电荷 Q' = -Q,则空间中任意点 P 点电势为:

E导体板下方与
$$Q$$
 对称位置有一个假想 Q ,则空间中任意点 P 点电势为 :
$$\varphi(P) = \frac{1}{4\pi\varepsilon_0} \left(\frac{Q}{r} - \frac{Q}{r'} \right) \tag{3.9}$$

选 Q 到导体板上的投影点 O 为坐标原点,设 Q 到导体板距离为 a, 则有

$$\varphi(x,y,z) = \frac{1}{4\pi\varepsilon_0} \left[\frac{Q}{\sqrt{x^2 + y^2 + (z-a)^2}} - \frac{Q}{\sqrt{x^2 + y^2 + (z+a)^2}} \right]$$
(3.10)

3.3.2 导体球

例 2 真空中一半径为 R_0 的接地导体球, 距球心为 $a(a > R_0)$ 处有 一点电荷 Q, 求空间各点的电势.

可以设在球内有一个假想电荷 Q' 满足关系

$$b = \frac{R_0^2}{a} {(3.11)}$$

$$Q' = -Q\frac{R_0}{a} \tag{3.12}$$

这样便可以得到球外任意一点 P 的电势为

$$\varphi = \frac{1}{4\pi\varepsilon} \left(\frac{Q}{r} - \frac{R_0 Q}{ar'} \right)$$

$$= \frac{1}{4\pi\varepsilon} \left(\frac{Q}{\sqrt{R^2 + a^2 - 2Ra \cos \theta}} - \frac{R_0 Q/a}{\sqrt{R^2 + b^2 - 2Rb \cos \theta}} \right) \quad (3.13)$$

3.4 多极展开

对于任意一个电荷体系激发势,我们都可以对其在 x' 处进行多极展开:

$$\varphi(\mathbf{x}) = \int_{V} \frac{\rho'(\mathbf{x}) dV'}{4\pi\varepsilon_0 r}$$
(3.14)

$$= \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{R} - \boldsymbol{p} \cdot \nabla \frac{1}{R} + \frac{1}{6} \sum_{i,j} \mathcal{D}_{ij} \frac{\partial^2}{\partial x_i \partial x_j} \frac{1}{R} + \dots \right)$$
(3.15)

上式第一项称为**单极子项**,第二项称为**偶极子项**,第三项称为**四极 子项**……将其各自所含的参数 q, p, $\overrightarrow{\mathcal{D}}$ 写出,我们不难发现:

$$q = \int_{V} \rho(\mathbf{x}') dV' \tag{3.16}$$

$$\boldsymbol{p} = \int_{V} \rho(\boldsymbol{x}') \boldsymbol{x}' dV' \tag{3.17}$$

$$\overset{\rightarrow}{\mathcal{D}} = 3 \int_{V} \rho(\mathbf{x}') \mathbf{x}' \mathbf{x}' dV'$$
 (3.18)

电四极子只有 5 个独立分量(无迹对称张量).

Chapter 4

静磁场

4.1 矢势

4.1.1 矢势的引入与库伦规范

由静磁场中的 Maxwell 方程组2.41

$$\nabla \cdot \boldsymbol{B} = 0 \tag{4.1}$$

$$\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{J} \tag{4.2}$$

我们肯定能找到一个矢量场 A 满足 $B = \nabla \times A$. A 称为磁场的**矢 势**. 把 B 对任一以 L 为边界的曲面 S 积分得到:

$$\int_{S} \boldsymbol{B} \cdot d\boldsymbol{S} = \int_{S} \nabla \times \boldsymbol{A} \cdot d\boldsymbol{S} = \oint_{L} \boldsymbol{A} \cdot d\boldsymbol{l}$$
 (4.3)

由 $\nabla \times \nabla \varphi = 0$, 我们可以得到磁场矢势的性质:

$$\nabla \times (\mathbf{A} + \nabla \varphi) = \nabla \times \mathbf{A} \tag{4.4}$$

$$\mathbf{A} + \nabla \varphi = \mathbf{A} \tag{4.5}$$

由于这种任意性,我们需要对其加上限制条件使得 A 对 B 唯一确定:

$$\nabla \cdot \mathbf{A} = 0 \tag{4.6}$$

称之为 Coulomb 规范.

4.1.2 矢势微分方程

将 $\mathbf{B} = \nabla \times \mathbf{A}$ 代入式4.2中得到:

$$\nabla \times (\nabla \times \boldsymbol{A}) = \mu_0 \boldsymbol{J} \tag{4.7}$$

毕奥-萨伐尔的肯定

利用矢量分析公式1.33有

$$\nabla \times (\nabla \mathbf{A}) = \nabla(\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A} \tag{4.8}$$

代入 Coulomb 规范条件 $\nabla \cdot \mathbf{A} = 0$, 得到矢势 \mathbf{A} 的微分方程

$$\nabla^2 \mathbf{A} = -\mu_0 \mathbf{J} \tag{4.9}$$

$$(\nabla \cdot \mathbf{A} = 0) \tag{4.10}$$

或替换成标量的 Poisson 方程:

$$\nabla^2 A_i = -\mu_0 J_i \quad (i = 1, 2, 3) \tag{4.11}$$

在之前讨论电势问题时,同样有 Poisson 方程 $\nabla^2 \varphi = -\frac{\rho}{\varepsilon_0}$,其解为 $\varphi = \frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\boldsymbol{x}'\mathrm{d}V')}{r}$. 仿照此结果我们可以写出4.11的解:

$$\mathbf{A}(\mathbf{x}) = \frac{\mu}{4\pi} \int_{V} \frac{\mathbf{J}(\mathbf{x}') dV'}{r}$$
(4.12)

对其取旋度即可得到 B

$$\boldsymbol{B} = \nabla \times \boldsymbol{A} = \frac{\mu}{4\pi} \int_{V} \frac{\boldsymbol{J} \times \boldsymbol{r}}{r^{3}} dV'$$
 (4.13)

由代换 $m{J} ext{d} V' o m{J} ext{d} m{l}$ 可以推导出 $m{Biot\text{-Savart}}$ **定律**

$$\boldsymbol{B} = \frac{\mu}{4\pi} \oint_{L} \frac{\boldsymbol{J} d\boldsymbol{l} \times \boldsymbol{r}}{r^{3}}$$
 (4.14)

$$\mathbf{A}_2 = \mathbf{A}_1 \tag{4.15}$$

4.2 磁标势

必要条件:

由环路定理可得:

$$\oint_{L} \boldsymbol{H} \cdot d\boldsymbol{l} = \int_{S} \boldsymbol{J} \cdot d\boldsymbol{S}$$
 (4.16)

当所围成环路内不含电流,则

$$\oint_{L} \boldsymbol{H} \cdot d\boldsymbol{l} = \int_{S} \boldsymbol{J} \cdot d\boldsymbol{S} = 0 \qquad (4.17)$$

4.3. 磁多极矩 25

此时可以类比电势引入磁标势 φ 描述磁场. 定义

$$\boldsymbol{H} = -\nabla \phi \tag{4.18}$$

$$\nabla^2 \phi = -\frac{\rho_m}{\mu_0} \tag{4.19}$$

无磁荷时,Poisson 方程变为 Laplace 方程 $\nabla^2 \phi = 0$,可以仿照对电势的处理写出其通解3.6.

4.3 磁多极矩

4.3.1 矢势的多极展开

类比之前对电势的泰勒展开,同样可以把磁场矢势展开为

$$\boldsymbol{A}(\boldsymbol{x}) = \frac{\mu_0}{4\pi} \int_{V} \boldsymbol{J}'(\boldsymbol{x}) \left[\frac{1}{R} - \boldsymbol{x}' \cdot \nabla \frac{1}{R} + \frac{1}{2!} \sum_{i,j} x_i' x_j' \frac{\partial^2}{\partial x_i \partial x_j} \frac{1}{R} \right] dV' \quad (4.20)$$

其中展开式第一项

$$\boldsymbol{A}^{(0)} = \frac{\mu_0}{4\pi R} \int_{V} \boldsymbol{J}'(\boldsymbol{x}) dV' = \frac{\mu_0}{4\pi R} I \int_{V} d\boldsymbol{l} = 0$$
 (4.21)

即展开式不含磁单极项. 第二项

$$\mathbf{A}^{(1)} = -\frac{\mu_0}{4\pi} \int_{V} \mathbf{J}(\mathbf{x}') \mathbf{x}' \cdot \nabla \frac{1}{R} dV'$$
 (4.22)

$$= \frac{\mu_0}{4\pi R^3} \cdot \frac{I}{2} \oint_I (\boldsymbol{x}' \times d\boldsymbol{l}') \times \boldsymbol{R}$$
 (4.23)

$$=\frac{\mu_0}{4\pi} \frac{\boldsymbol{m} \times \boldsymbol{R}}{R^3} \tag{4.24}$$

式中

$$\boldsymbol{m} = \frac{I}{2} \oint_{L} \boldsymbol{x}' \times d\boldsymbol{l}' = \frac{1}{2} \int_{V} \boldsymbol{x}' \times \boldsymbol{J}(\boldsymbol{x}') d\boldsymbol{V}'$$
 (4.25)

为电流圈的磁矩.

4.3.2 磁场的能量

由2.54得到,静磁场能量

$$W = \frac{1}{2} \int_{V} \mathbf{B} \cdot \mathbf{H} dV \tag{4.26}$$

$$= \frac{1}{2} \int_{V} (\nabla \times \mathbf{A}) \cdot \mathbf{H} dV \tag{4.27}$$

$$= \frac{1}{2} \int_{V} \mathbf{A} \cdot \mathbf{J} dV \tag{4.28}$$

4.4 Aharonov-Bohm 效应

在经典电动力学中,磁场矢势 A 和电势 φ 不是有直接观测意义的物理量. 但在量子力学中,势 A 和 φ 具有可观测的物理效应,这一效应称为 Aharonov–Bohm 效应,简称 A-B 效应.

Chapter 5

电磁波的传播

5.1 平面电磁波

5.1.1 电磁场波动方程

在没有自由电荷的真空中,描述电磁场运动规律的 Maxwell 方程为

$$\begin{cases}
\nabla \cdot \mathbf{D} = 0 \\
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \cdot \mathbf{B} = 0 \\
\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t}
\end{cases} (5.1)$$

取第二式的旋度,得到

$$\nabla \times (\nabla \times \mathbf{E}) = -\frac{\partial}{\partial t} \nabla \times \mathbf{B} = -\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} = -\frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2}$$
 (5.2)

$$\nabla \times (\nabla \times \mathbf{E}) = \nabla(\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E} = -\nabla^2 \mathbf{E} \ (\nabla \cdot \mathbf{E} = 0)$$
 (5.3)

得到电磁波传播方程 1

$$\nabla^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0 \tag{5.4}$$

用同样的方法可以得到电磁波传播方程 2

$$\nabla^2 \mathbf{B} - \frac{1}{c^2} \frac{\partial^2 \mathbf{B}}{\partial t^2} = 0 \tag{5.5}$$

5.1.2 时谐电磁波与其平面波解

线性均匀介质中一定频率的电磁波,设角频率为 ω ,电磁场可以表示为

$$\boldsymbol{E}(\boldsymbol{x},t) = \boldsymbol{E}(\boldsymbol{x})e^{-i\omega t} \tag{5.6}$$

$$\boldsymbol{B}(\boldsymbol{x},t) = \boldsymbol{B}(\boldsymbol{x})e^{-i\omega t} \tag{5.7}$$

将其代入 Maxwell 方程组5.1中,并应用线性均匀介质条件 $D = \varepsilon E$, $B = \mu H$ 得到

$$\nabla \times \mathbf{E} = i\omega \mu \mathbf{H} \tag{5.8}$$

$$\nabla \times \boldsymbol{H} = -\mathrm{i}\omega \varepsilon \boldsymbol{E} \tag{5.9}$$

$$\nabla \cdot \boldsymbol{E} = 0 \tag{5.10}$$

$$\nabla \cdot \boldsymbol{H} = 0 \tag{5.11}$$

由于

$$\nabla \cdot (\nabla \times \mathbf{E}) = i\omega \mu \nabla \cdot \mathbf{H} = 0 \tag{5.12}$$

$$\nabla \cdot (\nabla \times \boldsymbol{H}) = -i\omega \varepsilon \nabla \cdot \boldsymbol{E} = 0 \tag{5.13}$$

(5.14)

故只有式5.8与式5.9是独立的,后两项可由前两项导出。 同样地,我们对式5.8取旋度得到

$$\nabla \times (\nabla \times \mathbf{E}) = i\omega \mu \nabla \times \mathbf{H} = \omega^2 \mu \varepsilon \mathbf{E}$$
 (5.15)

又由式5.3得到

$$\nabla^2 \mathbf{E} + \frac{\omega^2}{v^2} \mathbf{E} = 0 \tag{5.16}$$

 $\Rightarrow \frac{\omega}{v} = k$, 得到 Helmholtz 方程

$$\nabla^2 \mathbf{E} + k^2 \mathbf{E} = 0 \tag{5.17}$$

解出 E 后,B 也可以由5.8解出:

$$\boldsymbol{B} = -\frac{\mathrm{i}}{\omega} \nabla \times \boldsymbol{E} = -\frac{\mathrm{i}}{k} \sqrt{\mu \varepsilon} \nabla \times \boldsymbol{E}$$
 (5.18)

平面波: 电磁波沿x方向传播, 其场强在于x正交的方向上具有相同值. 此时 Helmholtz 方程化为一维常微分方程

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2} \mathbf{E}(\mathbf{x}) + k^2 \mathbf{E}(\mathbf{x}) = 0 \tag{5.19}$$

29

它的一个解是

$$\boldsymbol{E}(\boldsymbol{x}) = \boldsymbol{E}_0 \mathrm{e}^{\mathrm{i}kx} \tag{5.20}$$

由式5.6得到

$$\boldsymbol{E}(\boldsymbol{x},t) = \boldsymbol{E}_0 e^{\mathrm{i}kx - \omega t} \tag{5.21}$$

由 $\nabla \cdot \mathbf{E} = 0$ 得到

$$ik\boldsymbol{e}_x \cdot \boldsymbol{E} = 0 \Longrightarrow \boldsymbol{E}_x = 0 \tag{5.22}$$

5.1.3 电磁波的能量和能流

在电磁波传播中,有关系

$$\boldsymbol{B} = \sqrt{\mu\varepsilon} \frac{\boldsymbol{k}}{k} \times \boldsymbol{E} = \sqrt{\mu\varepsilon} \boldsymbol{e}_k \times \boldsymbol{E}$$
 (5.23)

即 $E \setminus B \setminus k$ 是三个相互正交的矢量,且 E 和 B 同相,振幅比为

$$\left| \frac{E}{B} \right| = \frac{1}{\sqrt{\mu \varepsilon}} = v \tag{5.24}$$

可以得到 $\varepsilon E^2 = \frac{1}{\mu} B^2$. 又由式2.54得到,在均匀线性介质中电磁场能量密度为

$$w = \frac{1}{2}(\mathbf{E} \cdot \mathbf{D} + \mathbf{H} \cdot \mathbf{B}) = \frac{1}{2} \left(\varepsilon E^2 + \frac{1}{\mu} B^2 \right)$$
 (5.25)

故

$$w = \varepsilon E^2 = \frac{1}{\mu} B^2 \tag{5.26}$$

而由式2.51可以得到平面电磁波的能流密度

$$S = E \times H = \sqrt{\frac{\varepsilon}{\mu}} E \times (e_k \times E) = \sqrt{\frac{\varepsilon}{\mu}} E^2 e_k = vwe_k$$
 (5.27)

能量密度和能流密度的时间平均值

$$w = \frac{1}{2}\varepsilon E_0^2 = \frac{1}{2\mu}B_0^2 \tag{5.28}$$

$$\mathbf{S} = \frac{1}{2} \sqrt{\frac{\varepsilon}{\mu}} E_0^2 \mathbf{e}_k \tag{5.29}$$

5.2 反射和折射定律

讨论时谐电磁波时,只需要考虑以下两个边界条件

$$\begin{cases} \boldsymbol{n} \cdot (\boldsymbol{E}_2 - \boldsymbol{E}_1) = 0 \\ \boldsymbol{n} \cdot (\boldsymbol{H}_2 - \boldsymbol{H}_1) = \alpha \end{cases}$$
 (5.30)

设入射波、反射波和折射波的电场强度分别为 $E \times E'$ 和 E'',波矢量分别为 $k \times k'$ 和 k'',它们的平面波分别表示为:

$$\mathbf{E}' = \mathbf{E}'_0 e^{i(\mathbf{k}' \cdot \mathbf{x} - \omega t)} \tag{5.32}$$

$$\boldsymbol{E}'' = \boldsymbol{E}_0'' e^{i(\boldsymbol{k}'' \cdot \boldsymbol{x} - \omega t)}$$
 (5.33)

代入5.30第一式中得到

$$\boldsymbol{n} \times (\boldsymbol{E}_0 e^{i\boldsymbol{k}\cdot\boldsymbol{x}} + \boldsymbol{E}_0' e^{i\boldsymbol{k}'\cdot\boldsymbol{x}}) = \boldsymbol{n} \times \boldsymbol{E}_0'' e^{i\boldsymbol{k}''\cdot\boldsymbol{x}}$$
 (5.34)

对界面 z=0 成立. 于是应当有

$$k_x = k_x' = k_x'', \ k_y = k_y' = k_y'' = 0$$
 (5.35)

 θ 、 θ' 和 θ'' 代表入射角、反射角和折射角,有

$$k_x = k \sin \theta \tag{5.36}$$

$$k_x' = k' \sin \theta' \tag{5.37}$$

$$k_x'' = k'' \sin \theta'' \tag{5.38}$$

(5.39)

设电磁波在两介质中的相速度为 v_1 、 v_2 ,则

$$\frac{\omega}{v_1} = k = k', \ \frac{\omega}{v_2} = k''$$
 (5.40)

将波矢及其分量代入得到

$$\theta = \theta', \ \frac{\sin\theta}{\sin\theta''} = \frac{v_1}{v_2} = n_{21}, \ v = \frac{c}{n}$$
 (5.41)

这就是反射和折射定律

5.3 有导体存在时电磁波的传播

5.3.1 导体内的电磁波

在导体内部, $\rho_f = 0$, $\boldsymbol{J} = \sigma \boldsymbol{E}$. Maxwell 方程组(式2.42)中:

$$\nabla \times \boldsymbol{H} = \frac{\partial \boldsymbol{D}}{\partial t} + \sigma \boldsymbol{E} \tag{5.42}$$

对一定频率的电磁波, 此时有

$$\begin{cases}
\nabla \times \mathbf{E} = i\omega \mu \mathbf{H} \\
\nabla \times \mathbf{H} = -i\omega \varepsilon \mathbf{E} + \sigma \mathbf{E} = -i\omega \varepsilon' \mathbf{E} \\
\varepsilon' = \varepsilon + i\frac{\sigma}{\omega}
\end{cases} (5.43)$$

此时导体内部满足:

$$\begin{cases}
\nabla^{2} \mathbf{E} + k^{2} \mathbf{E} = 0 \\
k = \omega \sqrt{\mu \varepsilon'} = \boldsymbol{\beta} + i\boldsymbol{\alpha} \\
\nabla \cdot \mathbf{E} = 0 \\
\mathbf{H} = \sqrt{\frac{\varepsilon'}{\mu}} \mathbf{n} \times \mathbf{E}
\end{cases}$$
(5.44)

这一 Helmholtz 方程有形式上的平面波解

$$\boldsymbol{E}(\boldsymbol{x}) = \boldsymbol{E}_0 e^{-\boldsymbol{\alpha} \cdot \boldsymbol{x}} e^{i(\boldsymbol{\beta} \cdot \boldsymbol{x} - \omega t)}$$
 (5.45)

这一解中 $e^{-\alpha \cdot x}$ 的存在表示波幅会随着 x 的增大而衰减. **垂直人射 时**波幅衰减至导体表面原值 $\frac{1}{e}$ 的传播距离 δ 称为**穿透深度**,在良导体 $\left(\frac{\sigma}{\varepsilon\omega}\gg1\right)$ 情形,穿透距离

$$\delta = \frac{1}{\alpha} = \sqrt{\frac{2}{\omega\mu\sigma}} \tag{5.46}$$

由定义得到

$$k^{2} = \beta^{2} - \alpha^{2} + 2i\boldsymbol{\alpha} \cdot \boldsymbol{\beta} = \omega^{2} \mu \left(\varepsilon + i \frac{\sigma}{\omega} \right)$$
 (5.47)

比较实部和虚部得到

$$\beta^2 - \alpha^2 = \omega^2 \mu \varepsilon \tag{5.48}$$

$$\boldsymbol{\alpha} \cdot \boldsymbol{\beta} = \frac{1}{2} \omega \mu \varepsilon \tag{5.49}$$

垂直入射时, 在良导体中近似有

$$\alpha \approx \beta = \sqrt{\frac{\omega\mu\sigma}{2}} \tag{5.50}$$

电磁波的反射与折射 5.4

5.4.1 Fresnel 公式

$E \perp$ 入射面

$$\frac{E'}{E} = -\frac{\sin(\theta - \theta')}{\sin(\theta + \theta'')} \tag{5.51}$$

$$\frac{E'}{E} = -\frac{\sin(\theta - \theta')}{\sin(\theta + \theta'')}$$

$$\frac{E''}{E} = \frac{2\cos\theta\sin\theta'')}{\sin(\theta + \theta'')}$$
(5.51)

E || 入射面

$$\frac{E'}{E} = -\frac{\tan(\theta - \theta'')}{\tan(\theta + \theta'')} \tag{5.53}$$

$$\frac{E''}{E} = \frac{2\cos\theta\sin\theta'')}{\sin(\theta + \theta'')\cos(\theta - \theta'')}$$
 (5.54)

当 $\theta + \theta'' = \frac{\pi}{2}$ 时, $\frac{E'}{E} = 0$,反射光的平行分量消失,这个特殊的角 称为 Brewster 角,满足 $tan\theta = n_2 1$

5.4.2 全反射

由式5.41知, 当 $\sin\theta = n_{21}$ 时, $\theta'' = \pi$, 此时折射波沿界面略过. 当 $\sin \theta > n_{21}$ 时

$$k_x'' = k_x = k \sin \theta, \ k'' = k n_{21}$$
 (5.55)

故此时 $k_x'' > k''$,于是

$$k_z'' = \sqrt{k''^2 - k_x''^2} = ik\sqrt{\sin^2\theta - n_{21}^2} = i\kappa$$
 (5.56)

此时折射波电场表达式为

$$E'' = E_0'' e^{-\kappa z} e^{i(k_x'' x -)}$$
(5.57)

它的场强沿 z 轴方向指数衰减, 该电磁波只存在于界面附近一薄层 内, 其厚度

$$\kappa^{-1} = \frac{1}{k\sqrt{\sin\theta - n_{21}^2}} = \frac{\lambda_1}{2\pi\sqrt{\sin\theta - n_{21}^2}}$$
 (5.58)

5.5. 波导 33

5.4.3 反射系数

反射系数定义为反射能流与入射能流之比

$$R = \frac{\bar{\mathbf{S}}' \cdot \mathbf{e}_n}{\bar{\mathbf{S}} \cdot \mathbf{e}_n} = \left| \frac{E_0'}{E_0} \right|^2 \tag{5.59}$$

与之相对的也有折射系数的概念

$$T = \frac{\bar{\mathbf{S}}'' \cdot \mathbf{e}_n}{\bar{\mathbf{S}} \cdot \mathbf{e}_n} = \frac{n_2 \cos \theta''}{n_1 \cos \theta} \left| \frac{E_0''}{E_0} \right|^2$$
 (5.60)

在没有损耗的情况下,总是存在 T + R = 1. 在良导体表面,有

$$R = \left| \frac{E_0'}{E_0} \right|^2 = 1 - 2\sqrt{\frac{2\omega\varepsilon_0}{\sigma}} \tag{5.61}$$

即电导率越高,反射系数越接近于1.

5.5 波导

5.5.1 矩形波导

取传播方向为 z 轴, 在一定频率下, 管内电磁波是 Helmholtz 方程

$$\begin{cases}
\nabla^2 \mathbf{E} + k^2 \mathbf{E} = 0 \\
k = \omega \sqrt{\mu \varepsilon} \\
\nabla \cdot \mathbf{E} = 0
\end{cases} (5.62)$$

电磁波应有传播因子 $e^{i(k_z z - \omega t)}$, 故可以设

$$\boldsymbol{E}(x,y,z) = \boldsymbol{E}(x,y)e^{ik_z z}$$
(5.63)

将其代人式5.62中得到

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \mathbf{E}(x, y) + (k^2 - k_z^2) \mathbf{E}(x, y) = 0$$
 (5.64)

设 u(x,y)=X(x)Y(y) 为电磁场的任一直角分量,代入5.64得到方程组

$$\frac{\mathrm{d}^2 X}{\mathrm{d}x^2} + k_x^2 X = 0 \tag{5.65}$$

$$\frac{\mathrm{d}^2 Y}{\mathrm{d}y^2} + k_y^2 Y = 0 (5.66)$$

u(x,y) 的通解为

$$u(x,y) = (C_1 \cos k_x x + D_1 \sin k_x x)(C_2 \cos k_y y + D_2 \sin k_y y) \quad (5.67)$$

接下来考虑其边界条件

$$E_{y} = E_{z} = 0 \quad \frac{\partial E_{x}}{\partial x} = 0(x = 0, a)$$

$$E_{x} = E_{z} = 0 \quad \frac{\partial E_{y}}{\partial y} = 0(y = 0, b)$$
(5.68)

解得

$$\begin{cases}
E_x = A_1 \cos k_x x \sin k_y y e^{ik_z z} \\
E_y = A_1 \sin k_x x \cos k_y y e^{ik_z z} \\
E_z = A_1 \sin k_x x \sin k_y y e^{ik_z z}
\end{cases}$$
(5.69)

其中

$$k_x = \frac{m\pi}{a}, \quad k_y = \frac{n\pi}{b} \quad (m, n = 0, 1, 2, ...)$$
 (5.70)

再加上条件 $\nabla \cdot \mathbf{E} = 0$ 得到

$$k_x A_1 + k_y A_1 - ik_z A_3 = 0 (5.71)$$

即 A_1 , A_2 和 A_3 中只有两个是独立的.

磁场:

$$\boldsymbol{H} = -\frac{\mathrm{i}}{\omega\mu}\nabla \times \boldsymbol{E} \tag{5.72}$$

 $E_z = 0$, $H_z \neq 0$ 的波成为横电波 (TE), $H_z = 0$, $E_z \neq 0$ 的波成为横磁波 (TM), 按 (m,n) 的不同又可以将其分为 TE_{mn} 波和 TM_{mn} 波.

5.5.2 截止频率

当激发频率降低至 $k < \sqrt{k_x^2 + k_y^2}$, 则 k_z 为虚数, 传播因子 e^{ik_zz} 变为 $e^{-\kappa z}$ 的衰减因子的形式,此时电磁场不再是沿波导传播的波. 能给在波导内传播的波的最低频率 ω_c 称为该波模的**截止频率**. 前文提到的 (m,n) 型波导的截止角频率为

$$\omega_{c,mn} = \frac{\pi}{\sqrt{\mu\varepsilon}} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2} \tag{5.73}$$

5.5. 波导 35

若 a > b 则 TE_10 波的最低截止频率为

$$\frac{1}{2\pi}\omega_{c,10} = \frac{1}{2a\sqrt{\mu\varepsilon}} = \frac{c}{2a} \text{ (vacuum)}$$
 (5.74)

相应的截止波长为

$$\lambda_{c,10} = 2a \tag{5.75}$$

Chapter 6

电磁波的辐射

6.1 电磁场的矢势和标势

6.1.1 电磁场中势的引入

真空中电磁场的 Maxwell 方程组为

$$\begin{cases}
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J} \\
\nabla \cdot \mathbf{D} = \rho \\
\nabla \cdot \mathbf{B} = 0
\end{cases} (6.1)$$

恒定场中引入矢势 A 使得

$$\boldsymbol{B} = \nabla \times \boldsymbol{A} \tag{6.2}$$

将其代入6.1第一式中得到

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} = -\frac{\partial}{\partial t} (\nabla \times \mathbf{A}) = -\nabla \times \frac{\partial \mathbf{A}}{\partial t}$$
 (6.3)

$$\nabla \times (\mathbf{E} + \frac{\partial \mathbf{A}}{\partial t}) = 0 \tag{6.4}$$

这表示 $E + \frac{\partial A}{\partial t}$ 为无旋场. 于是可以设一标势 φ 满足

$$\boldsymbol{E} + \frac{\partial \boldsymbol{A}}{\partial t} = -\nabla \varphi \tag{6.5}$$

此时电场的表示式为

$$\boldsymbol{E} = -\nabla \varphi - \frac{\partial \boldsymbol{A}}{\partial t} \tag{6.6}$$

要注意的是,此时的势能 E 为非保守场,一般不存在势能概念,标 势 φ 也**不再表示电场中的势能**.

6.1.2 规范变换

由 A 和 φ 的任意性,可以做变换

$$\mathbf{A} \to \mathbf{A}' = \mathbf{A} + \nabla \psi \tag{6.7}$$

$$\varphi \to \varphi' = \varphi - \frac{\partial \psi}{\partial t}$$
 (6.8)

称之为势的**规范变换**. 当势做规范变换时,所有物理量和物理规律都保持不变,称之为规范不变性.

从计算方便考虑,不同的问题可以采用不同的规范条件. 其中应用最广泛的是 Columb 规范和 Lorentz 规范

Coulomb gauge:
$$\nabla \cdot \mathbf{A} = 0$$
 (6.9)

Lorentz guage:
$$\nabla \cdot \mathbf{A} + \frac{1}{c^2} \frac{\partial \varphi}{\partial t} = 0$$
 (6.10)

6.1.3 d'Alembert 方程

若采用 Lorentz 规范, 关于 A 和 φ 存在方程

$$\nabla^{2} \mathbf{A} - \frac{1}{c^{2}} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}} = -\mu_{0} \mathbf{J}$$

$$\nabla^{2} \varphi - \frac{1}{c^{2}} \frac{\partial^{2} \varphi}{\partial t^{2}} = -\frac{\rho}{\varepsilon_{0}}$$

$$\left(\nabla \cdot \mathbf{A} + \frac{1}{c^{2}} \frac{\partial \varphi}{\partial t} = 0\right)$$
(6.11)

称该方程为 d'Alembert 方程, 解该方程得到

$$\varphi(\boldsymbol{x},t) = \frac{1}{4\pi\varepsilon_0} \int_V \frac{\rho\left(\boldsymbol{x}', t - \frac{r}{c}\right)}{r} dV'$$
 (6.12)

$$\mathbf{A}(\mathbf{x},t) = \frac{\mu_0}{4\pi} \int_{V} \frac{\mathbf{J}\left(\mathbf{x}', t - \frac{r}{c}\right)}{r} dV'$$
(6.13)

这个解说明电荷产生的物理作用不能立刻传至该点,而是在较晚的时刻才传到场点,所推迟的时间 r/c 正是电磁作用从源点 x' 传到场点 x 所用的时间. 即电磁作用具有一定的传播速度 c.

6.2 电偶极辐射

6.2.1 计算辐射场的一般公式

若 J 是一定频率 ω 的交变电流,则有

$$\boldsymbol{J}(\boldsymbol{x}',t) = \boldsymbol{J}(\boldsymbol{x}')e^{-i\omega t} \tag{6.14}$$

代入6.13中得到

$$\mathbf{A}(\mathbf{x},t) = \frac{\mu_0}{4\pi} \int_{V} \frac{\mathbf{J}(\mathbf{x}') e^{i(kr - \omega t)}}{r} dV'$$
(6.15)

设 $\mathbf{A}(\mathbf{x},t) = \mathbf{A}(\mathbf{x})e^{-i\omega t}$, 则有

$$\mathbf{A}(\mathbf{x}) = \frac{\mu_0}{4\pi} \int_{V} \frac{\mathbf{J}(\mathbf{x}') e^{ikr}}{r} dV'$$
(6.16)

其中 e^{ikr} 是推迟作用因子,表示电磁波传至场点时有相位滞后 kr. 在一定频率的交变电流中同样有

$$\nabla \cdot \boldsymbol{J} = i\omega \rho \tag{6.17}$$

$$\rho(\mathbf{x}',t) = \rho(\mathbf{x}')e^{i\omega t} \tag{6.18}$$

可以确定标势

$$\varphi(\boldsymbol{x},t) = \int_{V} \frac{\rho\left(\boldsymbol{x}', t - \frac{r}{c}\right)}{4\pi\varepsilon_{0}r} dV' = \int_{V} \frac{\rho(\boldsymbol{x}')e^{\mathrm{i}(kr - \omega t)}}{4\pi\varepsilon_{0}r} dV'$$
(6.19)

最终确定

$$\boldsymbol{B} = \nabla \times \boldsymbol{A} \tag{6.20}$$

$$\boldsymbol{E} = \frac{\mathrm{i}c}{k} \nabla \times \boldsymbol{B} \text{ (when } \boldsymbol{J} = 0) = -\nabla \varphi - \frac{\partial \boldsymbol{A}}{\partial t} \text{ (anywhere)}$$
 (6.21)

6.2.2 矢势展开

根据 r 和 λ 的大小, 空间可以分为三个区域:

 $(1)r \ll \lambda$: 近区

 $(2)r \approx \lambda$: 感应区

 $(3)r \gg \lambda$: 远区 (辐射区)

近区内有 $kr \ll 1$,推迟因子 $e^{ikr} \approx 1$,此时电场和磁场具有类似恒定场的性质。远区内可以将 \boldsymbol{A} 对 \boldsymbol{x}'/λ 展开得到

$$\boldsymbol{A}(\boldsymbol{x}) = \frac{e^{ikR}\mu_0}{4\pi R} \int_{v} \boldsymbol{J}(\boldsymbol{x}')(1 - ik\boldsymbol{e}_R \cdot \boldsymbol{x}' + ...)dV'$$
 (6.22)

其中第一项代表振荡电偶极矩产生的辐射

$$\boldsymbol{A}(\boldsymbol{x}) = \frac{e^{ikR}\mu_0}{4\pi R} \int_{\boldsymbol{x}} \boldsymbol{J}(\boldsymbol{x}') dV' = \frac{e^{ikR}\mu_0}{4\pi R} \frac{d\boldsymbol{p}}{dt}$$
(6.23)

第二项代表磁偶极辐射势与电偶极辐射势的和

$$\boldsymbol{A}(\boldsymbol{x}) = \frac{-\mathrm{i}k\mathrm{e}^{\mathrm{i}kR}\mu_0}{4\pi R} \int_{v} \boldsymbol{J}(\boldsymbol{x}')(\boldsymbol{e}_R \cdot \boldsymbol{x}')\mathrm{d}V'$$
 (6.24)

$$= -\frac{\mathrm{i}k \mathrm{e}^{\mathrm{i}kR} \mu_0}{4\pi R} \left(-\boldsymbol{e}_R \times \boldsymbol{m} + \frac{1}{6} \boldsymbol{e}_R \cdot \frac{\mathrm{d}}{\mathrm{d}t} \stackrel{\rightarrow}{\mathcal{D}} \right)$$
(6.25)

Chapter 7

狭义相对论

7.1 Lorentz 变换

7.1.1 相对论的基本原理

Einstein 于 1905 年提出:

- (1) 光速不变原理. 可以记 $c = 1(3 \times 10^8 \text{m/s})$
- (2) 相对性原理: 惯性系是等价的. 体现了四维矢量的协变性.

7.1.2 四维矢量与协变性

在牛顿力学中,一个三维矢量 \overrightarrow{PQ} ,其模长 $|\overrightarrow{PQ}|^2 = x^2 + y^2 + z^2$,且在任意惯性系下均成立,这就是其牛顿力学的协变性.

四维矢量则是在三个空间维度的基础上引入时间轴,变为 r=(x,y,z,ct). 此时 $|\overrightarrow{PQ}|^2=x^2+y^2+z^2-c^2t^2$. 令 t 为第 0 分量,我们可以定义一个张量场 g_{ij} ,满足 $|\overrightarrow{PQ}|^2=g_{ij}r^ir^j$,即

$$g_{ij} = \begin{cases} 1 & \text{when } i = j \neq 0 \\ -1 & \text{when } i = j = 0 \\ 0 & \text{when } i \neq j \end{cases}$$
 (7.1)

 g_{ij} 被称为(狭义相对论中的)**度规**. 此时

$$v_{i} = g_{ij}v^{i} = \begin{cases} v^{1} & \text{when } i = 1\\ v^{2} & \text{when } i = 2\\ v^{3} & \text{when } i = 3\\ -v^{0} & \text{when } i = 0 \end{cases}$$
(7.2)

故 $v_i v^i = v^{1^2} + v^{2^2} + v^{3^2} - v^{0^2}$ 或者可以今 r = (x, y, z, ict) 此时便无需引入度规.

7.1.3 间隔不变性

由相对性原理得到,当

$$x^2 + y^2 + z^2 - c^2 t^2 = 0 (7.3)$$

时,亦有

$$x^{2} + y^{2} + z^{2} - c^{2}t^{2} = 0 (7.4)$$

故一定存在

$$x^{2} + y^{2} + z^{2} - c^{2}t^{2} = A(x'^{2} + y'^{2} + z'^{2} - c^{2}t'^{2})$$
 (7.5)

由于空间中不存在特定方向, 故亦存在

$$x'^{2} + y'^{2} + z'^{2} - c^{2}t'^{2} = A(x^{2} + y^{2} + z^{2} - c^{2}t^{2})$$
(7.6)

解得

$$\begin{cases} A = 1 \\ x^2 + y^2 + z^2 - c^2 t^2 = x'^2 + y'^2 + z'^2 - c^2 t'^2 \end{cases}$$
 (7.7)

今

$$s^{2} = c^{2}t^{2} - (x^{2} + y^{2} + z^{2})$$
(7.8)

$$s'^{2} = c^{2}t'^{2} - (x'^{2} + y'^{2} + z'^{2})$$
(7.9)

则可以把关系式7.7简写为

$$s^2 = s'^2 (7.10)$$

称为间隔不变性,表示两事件的间隔不随参考系变换而改变.

7.1.4 Lorentz 变换的引入

7.1. LORENTZ 变换

43

为简单考虑,选取 x 轴和 x' 轴都 沿 Σ' 相对于 Σ 的运动方向, 此时可 以假设

$$x' = a_{11}x + a_{12}ct$$

$$y' = y$$

$$z' = z$$

$$ct' = a_{21}x + a_{22}ct$$

$$(7.11)$$

或是写为

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x \\ ct \end{bmatrix} = \begin{bmatrix} x' \\ ct' \end{bmatrix}$$
 (7.12)

代入时空间隔表达式7.7得到

$$a_{11}^{2} - a_{21}^{2} = 1$$

$$a_{11}a_{12} - a_{21}a_{22} = 0$$

$$a_{12}^{2} - a_{22}^{2} = -1$$

$$(7.13)$$

解得

$$a_{11} = \sqrt{1 + a_{21}^2}, \quad a_{22} = \sqrt{1 + a_{12}^2}, \quad a_{12} = a_{21}$$
 (7.14)

对于 Σ' 系来说, O' 点永远 x'=0, 而对于 Σ 系, O 点坐标为 x=vt, 故由7.11第一式得到

$$a_{11}vt + a_{12}ct = 0 (7.15)$$

即

$$\frac{a_{12}}{a_{11}} = -\frac{v}{c} \tag{7.16}$$

进而推导出所有四个系数的值:

$$a_{11} = a_{22} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \tag{7.17}$$

$$a_{11} = a_{22} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$a_{12} = a_{21} = \frac{-\frac{v}{c}}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$(7.17)$$

最终得到 Lorentz 变换公式

$$x' = \frac{x' - vt}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$y' = y$$

$$z' = z$$

$$t' = \frac{t - \frac{v}{c^2}x}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$(7.19)$$

或者用矩阵形式写成

$$\begin{bmatrix} \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} & 0 & 0 & -\frac{v}{\sqrt{1 - \frac{v^2}{c^2}}} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\frac{v/c^2}{\sqrt{1 - \frac{v^2}{c^2}}} & 0 & 0 & \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ t' \end{bmatrix}$$
 (7.20)

由于 Σ' 系与 Σ 系是等价的,因此若 Σ' 系相对 Σ 系以 v 的速度运动,则 Σ 系相对 Σ' 系以 -v 的速度运动. 因此将 Lorentz 变换中的 v 全部改为 -v 即可得到逆变换式

$$x' = \frac{x' + vt}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$y' = y$$

$$z' = z$$

$$t' = \frac{t + \frac{v}{c^2}x}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$(7.21)$$

7.2 相对论的时空理论

7.2.1 尺缩效应

应用 Lorentz 变换式得到

$$x' = \frac{x - vt}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$\Delta x' = \frac{\Delta x - v\Delta t}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$(7.22)$$

$$(7.23)$$

$$P_1$$

由于要求同时观测,因此 $\Delta t = 0$,即

$$\Delta x = \Delta x' \sqrt{1 - \frac{v^2}{c^2}} \tag{7.24}$$

该式表明在 Σ 系下观测到物体长度 Δx 要短于 Σ' 系下观测到物体静止长度 $\Delta x'$

7.2.2 钟慢效应

对于静止坐标系 Σ' 而言,两事件发生于同一地点 x',设时间间隔为 $\Delta \tau$,则时空间隔为

$$\Delta s^{\prime 2} = c^2 \Delta \tau^2 \tag{7.25}$$

而对于另一坐标系 Σ 而言,该物体以 Δv 运动,两事件发生于不同

地点,设两事件发生的地点间隔 Δx ,时间间隔 Δt ,则时空间隔为

$$\Delta s^2 = c^2 \Delta t^2 - (\Delta \boldsymbol{x})^2 \tag{7.26}$$

由间隔不变性有

$$c^2 \Delta t^2 - (\Delta \mathbf{x})^2 = c^2 \Delta \tau^2 \tag{7.27}$$

 $|\Delta x|/\Delta t = v$ 为物体相对 Σ 的运动速度, 因此有

$$\Delta t = \frac{\Delta \tau}{\sqrt{1 - \frac{v^2}{c^2}}}\tag{7.28}$$

即所观测物体运动速度越大,观察到的其内部物理过程进行得越缓慢.

7.2.3 速度变换公式

由 Lorentz 变换公式7.19可得

$$u'_{x} = \frac{\mathrm{d}x'}{\mathrm{d}t'} = \frac{(\mathrm{d}x - v\mathrm{d}t)/\sqrt{1 - \frac{v^{2}}{c^{2}}}}{(\mathrm{d}t + \frac{v}{c^{2}}\mathrm{d}x)/\sqrt{1 - \frac{v^{2}}{c^{2}}}} = \frac{u_{x} - v}{1 - \frac{vu_{x}}{c^{2}}}$$
(7.29)

同理可得

$$u_y' = \frac{u_y \sqrt{1 - \frac{v^2}{c^2}}}{1 - \frac{v u_x}{c^2}} \tag{7.30}$$

$$u_z' = \frac{u_z \sqrt{1 - \frac{v^2}{c^2}}}{1 - \frac{vu_x}{c^2}}$$
 (7.31)

7.3 相对论理论的四维形式

7.3.1 物理量按空间变换性质的重新分类

标量: 坐标系变换下与取向无关,故不变的物理量,例如质量、电荷. 在两坐标系下标量有

$$u' = u \tag{7.32}$$

矢量: 在两个参考系下满足

$$v_i' = a_{ij}v_j \tag{7.33}$$

的量,例如速度、位矢、相对论中的四维矢量等等.∇ 算符在该定义下也可以认为是矢量.

二阶张量(并矢): 当空间变换时满足

$$T'_{ij} = a_{ik}a_{im}T_{km} (7.34)$$

的量(两个分量分别进行变换).如电磁场应力张量,电四极矩等.

二阶张量又可以进一步分类为

对称张量: $T_{ij} = T_{ji}$

反对称张量: $T_{ij} = -T_{ji}$

不论是对称还是反对称张量,变换后仍具有对称与反对称性.

迹: $\operatorname{Tr}(T_{ij}) = T_{ii}$,对称张量之迹是一个标量. 电四极矩是一个无迹对称张量,只有 5 个独立分量.

7.3.2 Lorent 变换的四维形式

采用虚数单位的形式,沿x 轴方向的特殊 Lorentz 变换式 7.19 的变换矩阵为

$$a = \begin{bmatrix} \gamma & 0 & 0 & i\beta\gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -i\beta\gamma & 0 & 0 & \gamma \end{bmatrix}$$
 (7.35)

即式7.20. 式中
$$\beta = \frac{v}{c}, \ \gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

逆变换矩阵为

$$a^{-1} = \begin{bmatrix} \gamma & 0 & 0 & -i\beta\gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ i\beta\gamma & 0 & 0 & \gamma \end{bmatrix} = a^{T}$$
 (7.36)

满足正交条件 $a^Ta = I$

四维协变量

位矢的四维矢量为

$$r_{\mu} = (x, y, z, ict) \tag{7.37}$$

速度的四维矢量为

$$U_{\mu} = \gamma_u(u_1, u_2, u_3, ic) \tag{7.38}$$

系数 γ_u 的出现是由于当坐标系变换时 $\mathrm{d}x_i$ 按四维矢量的分量变换,但 $\mathrm{d}t$ 也发生改变导致的.

$$\gamma_u = \frac{\mathrm{d}t}{\mathrm{d}\tau} = \frac{1}{\sqrt{1 - \frac{u^2}{c^2}}} \tag{7.39}$$

相位的四维矢量为

$$k_{\mu} = \left(k_1, k_2, k_3, i\frac{\omega}{c}\right) \tag{7.40}$$

这是由于相位只是计数问题,不随参考系而变,故

$$\phi = \phi' = \text{invariant} \tag{7.41}$$

即

$$\mathbf{k} \cdot \mathbf{x} - \omega t = \mathbf{k}' \cdot \mathbf{x}' - \omega' t' = \text{invariant}$$
 (7.42)

由于 x 与 ict 合成为四维矢量 x_{μ} ,故可以设 k 与 i $\frac{\omega}{c}$ 合成为四维矢量 k_{μ} 这样便有

$$k_{\mu}x_{\mu} = k'_{\mu}x'_{\mu} = \text{invariant} \tag{7.43}$$

7.4 电动力学中的协变量

7.4.1 电流密度矢量

电荷量与其运动速度无关,故

$$Q = \int \rho dV = \int \rho \sqrt{1 - \frac{u^2}{c^2}} dV' = \int \rho' dV'$$
 (7.44)

得到

$$\rho = \frac{\rho'}{\sqrt{1 - \frac{u^2}{c^2}}} = \gamma_u \rho' \tag{7.45}$$

49

由于

$$\boldsymbol{J} = \rho \boldsymbol{u} = \gamma_u \rho' \boldsymbol{u} \tag{7.46}$$

因此可以引入

$$J_0 = ic\rho \tag{7.47}$$

使得

$$J_{\mu} = \rho' U_{\mu} \tag{7.48}$$

电荷守恒定律用四维形式就可以简单表示为

$$\frac{\partial J_{\mu}}{\partial x_{\mu}} = 0 \tag{7.49}$$

7.4.2 四维势矢量

用势表示的电动力学基本方程组6.11在 Lorentz 规范下为

$$\nabla^{2} \mathbf{A} - \frac{1}{c^{2}} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}} = -\mu_{0} \mathbf{J}$$

$$\nabla^{2} \varphi - \frac{1}{c^{2}} \frac{\partial^{2} \varphi}{\partial t^{2}} = -\frac{\rho}{\varepsilon_{0}}$$

$$\left(\nabla \cdot \mathbf{A} + \frac{1}{c^{2}} \frac{\partial \varphi}{\partial t} = 0\right)$$
(7.50)

定义算符

$$\Box \equiv \nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} = \frac{\partial}{\partial x_\mu} \frac{\partial}{\partial x_\mu}$$
 (7.51)

则7.50可以改写为

$$\Box \mathbf{A} = -\mu_0 \mathbf{J}$$

$$\Box \varphi = -\mu_0 c^2 \rho \tag{7.52}$$

可以将 A 和 φ 合并为一个四维矢量

$$A_{\mu} = \left(\boldsymbol{A}, \frac{\mathrm{i}}{c}\varphi\right) \tag{7.53}$$

这样7.52就可以合写为

$$\Box A_{\mu} = -\mu_0 J_{\mu} \tag{7.54}$$

7.4.3 电磁场张量

电磁场 E 和 B 用势表出为

$$\mathbf{B} = \nabla \times \mathbf{A}$$

$$\mathbf{E} = -\nabla \varphi - \frac{\partial \mathbf{A}}{\partial t}$$
(7.55)

其分量为

$$B_{1} = \frac{\partial A_{3}}{\partial x_{2}} - \frac{\partial A_{2}}{\partial x_{3}}, \ B_{2} = \frac{\partial A_{1}}{\partial x_{3}} - \frac{\partial A_{3}}{\partial x_{1}}, \ B_{3} = \frac{\partial A_{2}}{\partial x_{1}} - \frac{\partial A_{1}}{\partial x_{2}}$$

$$E_{i} = ic \left(\frac{\partial A_{0}}{\partial x_{i}} - \frac{\partial A_{i}}{\partial x_{0}}\right)$$

$$(7.56)$$

引入一个反对称四维张量

$$F_{\mu\nu} = \frac{\partial A_{\nu}}{\partial_{\mu}} - \frac{\partial A_{\mu}}{\partial_{\nu}} = \begin{bmatrix} 0 & \frac{i}{c}E_{1} & \frac{i}{c}E_{2} & \frac{i}{c}E_{3} \\ -\frac{i}{c}E_{1} & 0 & B_{3} & -B_{2} \\ -\frac{i}{c}E_{2} & -B_{3} & 0 & B_{1} \\ -\frac{i}{c}E_{3} & B_{2} & -B_{1} & 0 \end{bmatrix}$$
(7.57)

或者按课本上的写法,将 A_{μ} 中的 $\frac{\mathrm{i}}{c}\varphi$ 作为第四项,则 $F_{\mu\nu}$ 变为

$$F_{\mu\nu} = \begin{bmatrix} 0 & B_3 & -B_2 & -\frac{\mathrm{i}}{c}E_1 \\ -B_3 & 0 & B_1 & -\frac{\mathrm{i}}{c}E_2 \\ B_2 & -B_1 & 0 & -\frac{\mathrm{i}}{c}E_3 \\ \frac{\mathrm{i}}{c}E_1 & \frac{\mathrm{i}}{c}E_2 & \frac{\mathrm{i}}{c}E_3 & 0 \end{bmatrix}$$
(7.58)

于是, Maxwell 方程组中的一对方程

$$\begin{cases}
\nabla \cdot \boldsymbol{E} = \frac{\rho}{\varepsilon_0} \\
\nabla \times \boldsymbol{B} = \mu_0 \varepsilon_0 \frac{\partial \boldsymbol{E}}{\partial t} + \mu_0 \boldsymbol{J}
\end{cases}$$
(7.59)

就可以简写为

$$\frac{\partial F_{\mu\nu}}{\partial x_{\nu}} = \mu_0 J_{\mu} \tag{7.60}$$

另一对方程

$$\begin{cases}
\nabla \cdot \mathbf{B} = 0 \\
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}
\end{cases}$$
(7.61)

51

就可以简写为

$$\frac{\partial F_{\mu\nu}}{\partial x_{\lambda}} + \frac{\partial F_{\nu\lambda}}{\partial x_{\mu}} + \frac{\partial F_{\lambda\mu}}{\partial x_{\nu}} = 0 \tag{7.62}$$

由张量变换关系 $F'_{\mu\nu}=a_{\mu\lambda}a_{\nu\tau}F_{\lambda\tau}$ 可以得到电场与磁场的变换关系式:

$$\mathbf{E}'_{\parallel} = \mathbf{E}_{\parallel} \qquad \mathbf{B}'_{\parallel} = \mathbf{B}_{\parallel} \mathbf{E}'_{\perp} = \gamma (\mathbf{E} + \mathbf{v} \times \mathbf{B})_{\perp} \quad \mathbf{B}'_{\perp} = \gamma (\mathbf{B} - \frac{\mathbf{v}}{c^2} \times \mathbf{B})_{\perp}$$
 (7.63)

7.5 相对论力学

7.5.1 能量-动量四维矢量

牛顿力学中有

$$F = \frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t}, \quad \boldsymbol{p} = m\boldsymbol{v}$$
 (7.64)

但 v 在相对论中不是一个协变量,因此可以引入式7.38以定义**四维 动量矢量**

$$p_{\mu} = m_0 U_{\mu} \tag{7.65}$$

其空间与时间分量

$$\mathbf{p} = \gamma m_0 \mathbf{v} = m \mathbf{v}$$

$$p_0 = i c \gamma m_0 = \frac{i}{c} \gamma m_0 c^2 = \frac{i}{c} \left(m_0 c^2 + \frac{1}{2} m_0 v^2 + \dots \right) = \frac{i}{c} W$$
(7.66)

由四维矢量 p_{μ} 可构成不变量

$$p_{\mu}p^{\mu} = \boldsymbol{p}^2 - \frac{W^2}{c^2} = \text{invariant}$$
 (7.67)

在静止系内,p=0, $W=m_0c^2$,因此

$$W = \sqrt{p^2 c^2 + m_0^2 c^4} (7.68)$$

7.5.2 四维力矢量

定义外界对物体的作用可以用一个四维力矢量 K_{μ} 描述,则

$$K_{\mu} = \frac{\mathrm{d}p_{\mu}}{\mathrm{d}\tau} \tag{7.69}$$

其时间分量

$$K_0 = \frac{\mathrm{i}}{c} \frac{\mathrm{d}W}{\mathrm{d}\tau} = \frac{\mathrm{i}}{c} \frac{\mathrm{d}}{\mathrm{d}\tau} = \frac{\mathrm{i}}{c} \frac{c^2}{W} \boldsymbol{p} \cdot \frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}\tau} = \frac{\mathrm{i}}{c} \boldsymbol{K} \cdot \boldsymbol{v}$$
 (7.70)

因此,作用在速度 v 物体上的四维力矢量为

$$K_{\mu} = \left(\boldsymbol{K}, \frac{\mathrm{i}}{c}\boldsymbol{K} \cdot \boldsymbol{v}\right) \tag{7.71}$$

相对论协变的力学方程为

$$\begin{cases}
\mathbf{K} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}\tau} = \gamma \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} \\
\mathbf{K} \cdot \mathbf{v} = \frac{\mathrm{d}W}{\mathrm{d}\tau} = \gamma \frac{\mathrm{d}W}{\mathrm{d}t}
\end{cases} (7.72)$$

定义力为

$$\mathbf{F} = \sqrt{1 - \frac{v^2}{c^2}} \mathbf{K} = \frac{\mathbf{K}}{\gamma} \tag{7.73}$$

则相对论力学方程可以写为

$$\begin{cases}
\mathbf{F} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} \\
\mathbf{F} \cdot \mathbf{v} = \frac{\mathrm{d}W}{\mathrm{d}t}
\end{cases} (7.74)$$