

# Simulação de Dinâmica de Fluidos com Navier-Stokes em MATLAB

# Simulações e Modelação



Joshua Dourado Capistrano nº 115799

Maio, 2024 Aveiro

# Índice:

| Resumo:                                   | 2 |
|-------------------------------------------|---|
| Introdução:                               | 3 |
| Métodos e Classes:                        | 3 |
| Classe Fluid:                             | 3 |
| Descrição Geral                           | 3 |
| Propriedades                              | 3 |
| Métodos                                   | 3 |
| Fluid(N, dt, diff, visc)                  | 3 |
| setBlock(obj, b)                          | 4 |
| addDensity(obj, x, y, ammount)            | 4 |
| addVelocity(obj, x, y, amountX, amountY)  | 4 |
| step(obj)                                 | 4 |
| diffuse(obj, b, x, x0, diff, dt)          | 4 |
| lin_solve(obj, b, x, x0, a, c)            | 4 |
| project(obj, velocX, velocY, p, div)      | 4 |
| advect(obj, b, d, d0, velocX, velocY, dt) | 4 |
| set_bnd(obj, b, x)                        | 4 |
| Resumo dos Métodos de Processamento       | 5 |
| Conclusão                                 | 5 |
| Classe Square:                            | 5 |
| Classe FluidNavier:                       | 5 |
| Resultados:                               | 5 |
| Discussão:                                | 6 |
| Conclusão:                                | 6 |

#### Resumo:

Este relatório detalha o desenvolvimento de um simulador de fluidos multifuncional em MATLAB, que integra as equações de Navier-Stokes para estudar a dinâmica de fluidos em diversos cenários. Utilizando as classes Fluid, Square e FluidNavier, este projeto permite a visualização interativa e a manipulação de parâmetros físicos que influenciam o comportamento dos fluidos. Os resultados demonstram a capacidade do simulador em modelar eficazmente o fluxo de fluidos e suas interações com obstáculos, fornecendo uma ferramenta robusta para educação e pesquisa em mecânica dos fluidos.

# Introdução:

A simulação de fluidos desempenha um papel crucial em diversos campos técnicos e científicos para compreender o comportamento de líquidos e gases em diferentes condições físicas. Este projeto utiliza MATLAB para desenvolver um simulador de fluidos que combina métodos numéricos clássicos, oferecendo uma plataforma interativa para visualização e análise. O simulador é construído sobre três componentes principais: Fluid, Square e FluidNavier, cada um contribuindo com funcionalidades específicas para estudar desde fluxos laminados até padrões complexos de turbulência.

#### Métodos e Classes:

Os simuladores são compostos pelas seguintes classes desenvolvidas em MATLAB:

#### Classe Fluid:

Gerencia o estado básico do fluido, incluindo densidade e velocidade, e implementa métodos para difusão, advecção e projeção.

# Descrição Geral

A classe Fluid em MATLAB foi desenvolvida para gerenciar o estado de um fluido dentro de um simulador que implementa as equações de Navier-Stokes. Esta classe é responsável por manipular as propriedades do fluido, como densidade e velocidade, e implementar métodos essenciais para simular processos físicos, como advecção, difusão e projeção. A seguir, detalharemos a implementação e funcionalidade dos métodos principais desta classe.

# **Propriedades**

- size: Tamanho da grade (grid) de simulação.
- dt: Intervalo de tempo para cada passo da simulação.
- diff: Coeficiente de difusão.
- visc: Viscosidade do fluido.

- **s**: Matriz auxiliar para cálculos intermediários.
- density: Matriz de densidade do fluido.
- Vx e Vy: Matrizes de velocidade do fluido nas direções x e y.
- Vx0 e Vy0: Matrizes auxiliares de velocidade.
- block: Matriz que define a posição de obstáculos no grid.

# **Métodos**

#### Fluid(N, dt, diff, visc)

Construtor da classe, inicializa as propriedades com os valores fornecidos.

#### setBlock(obj, b)

Define a matriz de obstáculos dentro do grid.

#### addDensity(obj, x, y, ammount)

Adiciona uma quantidade de densidade em uma posição específica (x, y) no grid.

#### addVelocity(obj, x, y, amountX, amountY)

Adiciona uma quantidade de velocidade nas direções x e y em uma posição específica (x, y) no grid.

#### step(obj)

Executa um passo da simulação, chamando os métodos para difusão, projeção e advecção da velocidade e densidade.

O método step é responsável por atualizar o estado do fluido a cada passo de tempo. Ele segue uma sequência específica de chamadas para métodos que implementam os processos físicos principais.

#### diffuse(obj, b, x, x0, diff, dt)

Realiza a difusão da matriz x com base na matriz x0, coeficiente de difusão diff e intervalo de tempo dt.

#### lin\_solve(obj, b, x, x0, a, c)

Resolve o sistema linear para a matriz x usando iterações de Gauss-Seidel, ajustando os valores com base nas matrizes x0, a e c.

#### project(obj, velocX, velocY, p, div)

Corrige a divergência do campo de velocidade, garantindo que o fluido permaneça incompressível.

## advect(obj, b, d, d0, velocX, velocY, dt)

Realiza a advecção da matriz d com base na matriz d0 e nas velocidades velocX e velocY.

# set\_bnd(obj, b, x)

Aplica condições de contorno à matriz x para garantir que o fluido permaneça confinado ao domínio de simulação e interaja corretamente com obstáculos

#### Resumo dos Métodos de Processamento

Difusão (diffuse): Simula a propagação de densidade e velocidade para suavizar variações.

Projeção (project): Corrige o campo de velocidade para que seja solenoidal (divergência zero).

Advecção (advect): Transporta densidade e velocidade conforme o campo de velocidade.

Condições de Contorno (set\_bnd): Mantém o fluido dentro dos limites do grid e trata as interações com obstáculos.

#### Conclusão

A classe Fluid é fundamental para a simulação da dinâmica dos fluidos no projeto, permitindo modelar e visualizar o comportamento do fluido sob diversas condições físicas. A implementação em MATLAB oferece uma plataforma robusta e interativa, adequada tanto para fins educacionais quanto de pesquisa em mecânica dos fluidos.

# **Classe Square:**

Utilizada para adicionar obstáculos dentro da simulação. Esta classe permite a criação, transformação e rotação de formas quadradas dentro do grid.

# Classe FluidNavier:

Combina as funcionalidades das classes Fluid e Square em uma interface GUI completa, permitindo aos usuários configurar parâmetros e visualizar os resultados em tempo real.

#### Resultados:

As simulações realizadas demonstraram a eficácia do simulador em replicar diversos fenômenos fluidos, incluindo:

- Comportamento do fluido sob várias configurações de viscosidade e difusão: Testes em diferentes cenários de viscosidade e difusão mostraram como esses parâmetros afetam a fluidez e a dispersão do fluido.
- 2. Interação do fluido com obstáculos móveis e imóveis: A interação do fluido com diversos tipos de obstáculos foi simulada com sucesso, destacando a capacidade do simulador de lidar com condições dinâmicas e estáticas.
- 3. Efeitos da adição de densidade e velocidade em pontos específicos do grid: As visualizações detalhadas mostraram como pequenas alterações nos parâmetros de densidade e velocidade influenciam significativamente o comportamento do fluido.

Embora os resultados sejam promissores, o simulador ainda apresenta alguns erros e inconsistências que precisam ser resolvidos para alcançar a precisão desejada. Há um caminho considerável a ser percorrido para aperfeiçoar o simulador e garantir sua robustez em todas as condições de simulação.

#### Conclusão:

Este projeto alcançou com sucesso seus objetivos ao desenvolver um simulador interativo de fluidos em MATLAB, integrando técnicas de Navier-Stokes. Ele serve como uma ferramenta educacional e de pesquisa, oferecendo insights valiosos sobre a mecânica dos fluidos.