Отчет о выполнении лабораторной работы 4.3.1 Дифракция света

Выполнил: Голубович Тимур, группа Б01-108 17.03.2023

Цель работы

Исследовать дифракцию Френеля и Фраунгофера, изучить влияние дифракции на разрешающую способность оптических инструментов.

Оборудование и приборы

Оптическая скамья; ртутная лампа; монохроматор; щели с регулируемой шириной; рамка с вертикальной нитью; двойная щель; микроскоп на поперечных салазках с микрометрическим винтом; зрительная труба.

А. Дифракция Френеля

Схема установки для наблюдения дифракции Френеля представлена на рис. 1. Световые лучи освещают щель S_2 и испытывают на ней дифракцию. Дифракционная картина рассматривается с помощью микроскопа M, сфокусированного на некоторую плоскость наблюдения Π .

Рис. 1: Схема установки для наблюдения дифракции Френеля

Вид наблюдаемой дифракционной картины определяется числом Френеля Ф:

$$\Phi^2 = \frac{D}{\sqrt{a\lambda}}.$$

І. Подготовка приборов к работе

- 1. Соберем схему согласно рис. 1.
- 2. Для освещения параллельным пучком щели S_2 установим линзу O_1 на расстоянии от щели S_1 , близком к фокусному $f_1=10.8$ см. Будем использовать зелёный монохроматор с длиной волны $\lambda=546$ нм.
- 3. Настроим трубу на бесконечность.
- 4. Поставим зрительную трубу за линзой O_1 . Слегка перемещая линзу O_1 вдоль оси системы, найдем в окуляре зрительной трубы резкое изображение входной щели S_1 . Закрепим входную щель и линзу на оптической скамье.
- 5. Определим нуль микрометрического винта щели S_2 : глядя сквозь щель на окно или лампу накаливания, определим момент её открытия. Далее все данные уже отсчитаны от нового нуля. Установим ширину щели 0.23 мм. Поставим щель S_2 за линзой O_1 и закрепим.
- 6. Сфокусируем микроскоп на щель S_2 . . Поставим микроскоп за щелью S_2 так, чтобы указатель продольного перемещения салазок микроскопа был расположен со стороны окуляра. Перемещая микроскоп вдоль оптической оси, найдем в окуляре резкое изображение щели S_2 .
- 7. Методом последовательных приближений увеличим контрастность картины.

II. Измерения

- 8. Добившись наибольшей чёткости дифракционной картины, снова найдем резкое изображение щели. Запишем начальное положение микроскопа координату по шкале продольной линейки, расположенной на оптической скамье $x_0 = 72.0$ см.
- 9. Постепенно отодвигая микроскоп от щели S_2 , заметим по шкале положение микроскопа, при котором на фоне щели видна одна темная полоса. Смещение микроскопа от первоначального положения даёт величину a расстояние от щели до плоскости наблюдения.

Приближая микроскоп к щели, снимем зависимость координаты микроскопа от числа n наблюдаемых тёмных полос. Результаты занесем в таблицу 1.

n	m	x, cm	a, cm	$2z_m$, mm
1	2	67.0	5.0	0.47
2	3	69.0	3.0	0.44
3	4	70.0	2.0	0.42
4	5	70.6	1.4	0.40
5	6	71.0	1.0	0.36

Таблица 1: Зависимость $2z_m(m)$

10. Измерим ширину D щели S_2 , используя микрометрический винт поперечных салазок микроскопа: $D = (0.22 \pm 0.01)$ мм.

Видно, что результат совпадает с показаниями микрометрического винта щели S_2 .

III. Качественные наблюдения

- 11. Вновь сфокусируем микроскоп на щель. При небольшом удалении микроскопа от щели у её краёв появляются узкие частые полосы это дифракция на краю экрана.
- 12. Закрепим микроскоп на оптической скамье и проследим за изменением дифракционной картины при уменьшении ширины щели S_2 . Резкость картины увеличивается. В конце концов картина пропадает.

IV. Обработка результатов

13. Сравним размер зон Френеля с измеренной шириной D щели S_2 . Для этого построим график $2z_m = f(m)$ и отложим на нем величину D.

Puc. 2: Зависимость $z_m(m)$

Видно, что размер зон Френеля и ширина щели имеют одинаковые порядки, хотя последняя и меньше.

Б. Дифракция Фраунгофера на щели

Картина дифракции резко упрощается, когда ширина щели становится значительно меньше ширины первой зоны Френеля.

Это условие всегда выполняется при достаточно большом расстоянии a от щели до плоскости наблюдения. Дифракционную картину, наблюдаемую в этом случае, принято называть дифракцией Фраунгофера. Исследование такой дифракционной картины заметно облегчается, потому что упрощаются фазовые соотношения.

Дифракцию Френеля и Фраунгофера можно наблюдать на одной и той же установке. Однако при обычных размерах установки дифракция Фраунгофера возникает только при очень узких щелях. Поскольку работать с такими тонкими щелями неудобно, для наблюдения дифракции Фраунгофера к схеме добавляется объектив O_2 .

Рис. 3: Схема установки для наблюдения дифракции Фраунгофера на щели

Расстояние X_m тёмной полосы от оптической оси объектива O_2 пропорционально фокусному расстоянию f_2 :

$$X_m = f_2 m \frac{\lambda}{D}.$$

І. Настройка установки

- 1. Для перехода из ближней волновой зоны в дальнюю к установке, собранной по рис. 1, достаточно добавить линзу O_2 .
- 2. Поставим линзу O_2 между щелью S_2 и микроскопом. Настроим микроскоп на фокальную плоскость Π линзы. Перемещая микроскоп вдоль скамьи, найдем резкое изображение щели S_1 .
- 3. Поместим щель S_2 между линзами и подберем её ширину так, чтобы в поле зрения микроскопа появилась дифракционная картина. Добьемся наибольшей контрастности картины.

II. Измерения

4. Измерим с помощью винта поперечного перемещения микроскопа координаты X_m нескольких дифракционных минимумов (x_m по шкале трубы). Результаты запишем в таблицу 2.

m	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
x_m , MM	1.10	1.20	1.35	1.50	1.65	1.80	2.00	2.20	2.35	2.50	2.65	2.80	2.90

Таблица 2: Зависимость $x_m(m)$

Определим ширину щели: $D = (0.30 \pm 0.01)$ мм.

А также фокусное расстояние линзы O_2 : f = 9 см.

III. Качественные наблюдения

- 5. Смещение щели S_2 в боковом направлении не приводит к сдвигу дифракционной картины.
- 6. При уменьшении щели S_2 масштаб картины уменьшается, пока она вовсе не пропадает.

IV. Обработка результатов

7. Построим график $x_m(m)$.

Рис. 4: Зависимость $x_m(m)$

По углу наклона прямой определим среднее расстояние между соседними минимумами: $\Delta X = (0.160 \pm 0.003)$ мм.

По формуле

$$D = \lambda \frac{f_2}{\Delta X}$$

определим ширину щели: $D=(0.310\pm0.001)$ мм, что почти совпадает с определенным раньше значением.

В. Дифракция Фраунгофера на двух щелях

Для наблюдения дифракции Фраунгофера на двух щелях в установке следует заменить щель S_2 экраном \Im с двумя щелями.

Если входная щель достаточно узка, то дифракционная картина в плоскости П подобна той, что получалась при дифракции на одной щели, однако теперь вся картина испещрена рядом дополнительных узких полос. Наличие этих полос объясняется суперпозицией световых волн, приходящих в плоскость наблюдения через разные щели экрана Э.

Рис. 5: Схема установки для наблюдения дифракции Фраунгофера на двух щелях

Линейное расстояние δx между соседними интерференционными полосами в плоскости Π равно:

$$\delta x = f_2 \frac{\lambda}{d}.$$

Нетрудно оценить число n интерференционных полос, укладывающихся в области центрального дифракционного максимума:

$$n = \frac{2\lambda f_2}{D} \frac{1}{\delta x} = \frac{2d}{D}.$$

При дифракции света на двух щелях чёткая система интерференционных полос наблюдается только при достаточно узкой ширине входной щели S. При увеличении её ширины интерференционная картина периодически пропадает и появляется вновь, но полосы при этом оказываются сильно размытыми и видны плохо. Это явление объясняется наложением интерференционных картин от разных элементов широкой щели S. Первое размытие интерференционных полос возникает при условии:

$$\frac{b}{f_1} = \frac{\lambda}{d}.$$

І. Настройка и измерения

1. Не перемещая линз и микроскопа, заменим в установке входную щель S_1 щелью с микрометрическим винтом и, слегка передвигая её вдоль скамьи, найдем в микроскопе резкое изображение новой входной щели.

Поставим между линзами экран \Im с двойной щелью. В области главного дифракционного максимума появилась система равноотстоящих тёмных и светлых полос. Центрировкой системы и подбором ширины щели S добьемся наибольшей чёткости дифракционной картины.

- 2. Определим с помощью микрометрического винта поперечных салазок микроскопа координаты самых удалённых друг от друга тёмных полос внутри центрального максимума: $\Delta X = 0.7$ мм. Посчитаем число светлых промежутков между ними: n = 9. Измерим ширину центрального максимума: $\Delta L = 0.8$ мм.
- 3. Исследуем влияние пространственной когерентности на видность интерференционной картины. Для этого, расширяя входную щель S, подберем такую ширину щели b_0 , при которой наступает первое исчезновение интерференционных полос, и запишем эту величину: $b_0 = 0.31$ мм.

Определим ширину, при которой картина наиболее контрастна: $b_{\rm max} = 0.27$ мм.

4. Запишем фокусные расстояния обеих линз: $f_1 = 10.8$ см, $f_2 = 9$ см.

II. Обработка результатов

5. Определим расстояние между минимумами: $\delta x = X/n = 0.078$ мм.

Рассчитаем величину d:

$$d = f_2 \frac{\lambda}{\delta x} = 0.9$$
 MM.

Рассчитаем число полос внутри главного максимума по формуле:

$$n = \frac{2d}{D} = 8.$$

Почти совпадает с экспериментом.

6. Сравним измеренную ширину b_0 щели S с расчетом:

$$b_0 = f_1 \frac{\lambda}{d} = 0.4 \text{ mm}.$$

Достаточно сильно расходится с измеренным значением.

Г. Влияние дифракции на разрешающую способность оптического инструмента

Линзы O_1 и O_2 в отсутствие щели S_2 создают в плоскости П изображение щели S_1 , и это изображение рассматривается в микроскоп M. Таким образом, нашу установку можно рассматривать как оптический инструмент, предназначенный для получения изображения предмета.

Если перед объективом O_2 зрительной трубы расположить щель S_2 , то изображение объекта будет искажено дифракцией на щели S_2 . Чем меньше ширина D_0 этой щели, тем сильнее искажение.

Из критерия Рэлея получаем:

$$\frac{\lambda}{D_0} = \frac{d}{f_1}.$$

Рис. 6: Схема установки для исследования разрешающей способности оптического инструмента

I. Настройка и измерения

- 1. Соберем схему согласно рисунку. Для этого в предыдущей схеме, не меняя положения линз и микроскопа, вместо щели S поставимдвойную щель и, перемещая её вдоль оси, получим в поле зрения микроскопа чёткое, симметричное изображение двойного источника.
- 2. Поставим между линзами щель S_2 и, уменьшая её ширину, наблюдаем за ухудшением качества изображения. Подберем ширину щели S_2 так, чтобы изображения обеих щелей почти сливались, но всё-таки ещё воспринимались раздельно. Запишем показания микрометрического винта щели S_2 : $D_0 = 0.06$ мм.
- 3. Поставим двойную щель перед микроскопом и измерим с помощью микрометрического винта поперечных салазок микроскопа расстояние d между щелями: d=0.7 мм. А также ширину каждой щели: D=0.06 мм.

II. Обработка результатов

4. Для проверки справедливости критерия Рэлея сравните измеренную ширину D_0 щели S_2 с расчётом: $D_0 = \lambda f_1/d = 0.08$ мм, что недалеко от измеренного значения.

Вывод

В данной работе мы пронаблюдали и исследовали дифракцию Френеля и Фраунгофера, а также изучили влияние дифракции на разрешающую способность оптических инструментов. В ходе работы были определены некоторые величины, специфичные для эксперимента — в них присутствуют погрешности. Они связаны с несовершенством техники измерения.

Список литературы

- [1] Сивухин Д. В. Общий курс физики. Том 4 Оптика, 2004
- [2] Кириченко Н.А. Оптика., 2011
- [3] Лабораторный практикум по общей физике. В 3 томах. Том 3. Оптика: учебное пособие под ред. А. В. Максимычева, М. Г. Никулина