Conversion of One flip-flop to other

SR Flip-flop

Inputs		Outputs			Outp	uts	Inn	
		Present State	Next State		Present State		Inpu	
	R	Qn	Q _{n+1}		Qn	Q _{n+1}	S	
	0	0	0	-	0	0	0	
	0	1	1		0	1	1	
	1	0	0		1	0	0	
	1	1	0		1	1	X	
	0	0	1					
	0	1	1					
	1	invalid						
	1	invalid						

Characteristic Table Table

JK Flip-flop

Inputs		Outputs			Outp	uts	Inputs	
		Present State	Next State		Present State		Inp)UI
J	K	Qn	Q _{n+1}		Q _n	Q _{n+1}	J	ł
0	0	0	0	-	0	0	0	>
0	0	1	1	*	0	1	1	>
0	1	0	0		1	0	Χ	1
0	1	1	0		. 1	1	Χ	0
1	0	0	1					
1	0	1	1 '					
1	1	0	1					
1	1	1	0					

Characteristic Table Table

D Flip-flop

Input	Outputs			Outputs		Innut
	Present State	Next State		Present State	Next State	Input
D	Q n	Q _{n+1}		Qn	Q _{n+1}	D
0	0	0	———	0	0	0
0	1	0	—	0	1	1
1	0	1		1	0	0
1	1	1	———	1	1	1

Characteristic Table Table

T Flip-flop

Input	Outputs			Outputs		Innut
	Present State	Next State		Present State	Next State	Input
T	Q _n	Q_{n+1}		Qn	Q _{n+1}	T
0	0	0	-	0	0	0
0	1	1		0	1	1
1	0	1	-	1	0	1
1	1	0		1	1	0

Characteristic Table Table

Conversion of One flip-flop to another

Structure of a conversion table

□This can be done by filling the entries from the excitation table of the given flip-flop into the appropriate rows of the truth table corresponding to the desired flip-flop by adding additional column(s) which represent the input(s) of the given flip-flop.

□When done so, we will get a new table which we can refer to as a "Conversion Table":

Conversion of SR flip-flop to JK flip-flop

- i. For example, the conversion process of the SR flip-flop into a JK flip-flop is initiated by writing the truth table for the JK flip-flop as shown by the yellowish enclosure in Figure 6.
- ii. Here, it is seen that the first row has the present- and the next-states of the flip-flop as 0 and 0 (the red entries in the truth table).
- Now we look at the excitation table of the SR flip-flop (shown in the right-side of Figure 6) which has a row indicating the present- and the next-states of the SR flip-flop to be 0 and 0.
- iv. As seen by the red entries in the excitation table, this corresponds to the first row for which the inputs are S = 0 and R = X.
- v. The same information is placed into the first row of the JK flip-flop's truth table by adding two more columns, S and R (as shown by the pink enclosure in Figure 6), to result in an SR-to-JK Conversion Table:

TruthTable of JK Flip-flop Outputs Excitation Table of SR Flip-flop Outputs Inputs JK Inputs **SR Inputs** Next State Present State Present State Next State Q_{n+1} Outputs K Q_{n+1} S Inputs Present Next State State R S Q_{n+1} Figure: 6

Conversion of SR flip-flop to JK flip-flop

Using a K-Map to Obtain Logical Expressions

According to this, for the example under consideration, we need to obtain the expressions for the inputs S and R in terms of J, K, and Q_n . This can be done by employing the K-map simplification technique as shown in Figure 7:

Figure 7: K-map simplification for the inputs of the SR flip-flop in terms of J, K, and Q_n

