JCMCC

THE JOURNAL of COMBINATORIAL MATHEMATICS and

VOLUME 7
APRIL, 1990

COMBINATORIAL COMPUTING

Some New Simple t-Designs

D. L. Kreher, Y. M. Chee, D. de Caen, C. J. Colbourn and E. S. Kramer

ABSTRACT

The concept of using basis reduction for finding $t-(v,k,\lambda)$ designs without repeated blocks was introduced by D. L. Kreher and S. P. Radziszowski at the Seventeenth Southeastern International Conference on Combinatorics, Graph Theory and Computing. This tool and other algorithms were packaged into a system of programs that was called the design theory toolchest. It was distributed to several researchers at different institutions. This paper reports the many new open parameter situations that were settled using this toolchest.

1. Introduction

A $t-(v,k,\lambda)$ design (X,\mathcal{D}) is a family of k-element subsets \mathcal{D} from a v-element set X such that every t-element subset $T\subseteq X$ is contained in exactly λ of the k-element subsets in \mathcal{D} . A current listing of the settled parameter situations for $t-(v,k,\lambda)$ designs is provided in [CCK]. A group $G\leq Sym(X)$ is an automorphism group of a $t-(v,k,\lambda)$ design (X,\mathcal{D}) if \mathcal{D} is a union of orbits of k-element subsets under G. For each G-orbit Δ of t-element subsets and for each G-orbit Γ of k-element subsets define $A_{tk}[\Delta,\Gamma]$ to be $|\{K\in\Gamma:K\supseteq T\}|$, where $T\in\Delta$. This value is independent of the choice of T. If N_i is the number of G-orbits of i-element subsets, then A_{tk} is an N_t by N_k nonnegative integer valued matrix. In 1973 Kramer and Mesner [KM] made the following observation:

A $t-(v,k,\lambda)$ design exists with $G \leq Sym(X)$ as an automorphism group if and only if there is a (0,1)-solution U to the matrix equation

$$A_{tk}U=\lambda J, \tag{1}$$

where: $J=[1,1,1,...,1]^T$.

Several attempts were made to design a computer program for finding solutions to equation (1) among the most successful is the so called Basis Reduction algorithm designed and implemented by Kreher and Radziszowski [KR1,KR2]. The central idea of this algorithm is to find a (0,1)-vector U such that:

$$\begin{bmatrix} I & 0 \\ A_{tk} & -\lambda J \end{bmatrix} \begin{bmatrix} U \\ d \end{bmatrix} = [U^T, 0, \dots, 0]^T.$$

Such a U gives a $t-(v,k,d\cdot\lambda)$ design with automorphism group G for some nonnegative integer d. They observe that if $B=\begin{bmatrix} I & 0 \\ A_{tk} & -\lambda J \end{bmatrix}$ and Γ is the lattice obtained as the integer span of the columns of B then

$$\mathbf{U} = [U^T, 0, \dots, 0]^T$$
 is a short vector of Γ (i.e. $\|\mathbf{U}\|^2 < N_k$).

Finally they implemented several methods of efficiently transforming the basis B to a new basis B' of Γ such that

$$\sum \{ \| V \|^2 : V \in B \} \ge \sum \{ \| V \|^2 : V \in B' \}.$$

Repeated application of these methods to the basis causes basis vectors to become shorter and shorter and a solution to eqn. (I) very often appear in the basis. Using these methods and other tools found in the design theory toolchest we were able to settle all of the parameter situations found in Table I.

TABLE I

	Parameter Situation	Automorphism group
2 -(18,7, λ)	$\lambda \equiv 0 \pmod{336}$	$SAF(17)_{\infty}$
2 - $(20,4,\lambda)$	$\lambda \equiv 0 \pmod{3}$	$SAF(19)_{\infty}$
3-(16,7,λ)	$\lambda = 10$	Frobenius of order 16-5
3-(19,7,λ)	all possible λ's	AF(19)
3-(19,9,λ)	$\lambda \in \{112,196,280,364,924,1204, 1764,2044,2604,2884,3444,3724\}$	AF (19)
3-(20,5,λ)	$\lambda \in \{18,28,48,58\}$ $\lambda \in \{24,54\}$ $\lambda \in \{12,22,34,42,52,64\}$ $\lambda \in \{50,56\}$	Hypergraphical Semi-hypergraphical H_{∞} where H is Frobenius of order 19 6. D_4 wr A_5
3-(21,5,λ)	$\lambda \in \{15,39,48,69,75\}$ $\lambda \in \{30,33,39,69,75\}$	Semi-graphical Graphical
3-(21,6,λ)	$\lambda \in \{40,68,108,120,136, \\ 160,208,220,236,248,268, \\ 280,296,320,328,340,356, \\ 376,388,400,168,176,256, \\ 288,336,368\}.$	Semi-graphical
3-(23,8,8s)	$s \ge 2$	AF (23)
3-(23,9,24s)	s ≥ 2	AF (23)
3 - $(25,4,\lambda)$	$\lambda \in \{2,8,10\}$	C ₅ wr A ₅
3 - $(26,6,\lambda)$	$\lambda \equiv 0 \text{ or } 1 \pmod{10} \lambda \notin \{10,11\}$	PSL ₂ (25)
4 - $(20,5,\lambda)$	$\lambda = 4$	$AF(19)_{\infty}$
4 -(20,6, λ)	$\lambda = 30$	$AF(19)_{\infty}$
4 -(21,6, λ)	$\lambda \in \{36, 40, 60\}$	$PSL_2(19)_{\infty}$
4 -(23,5, λ)	$\lambda \in \{2,4,5,6,7,8,9\}$	AF (23)
$4-(29,5,\lambda)$	$\lambda = 5$	AF (29)
5 - $(24,6,\lambda)$	all possible λ 's	PSL₂(23) _∞
5-(24,7,λ)	all possible λ's	$PSL_2(23)_{\infty}$

In Table I the following notation is used for describing automorphism groups. If $q = p^{\epsilon}$ where p is a prime, then $AF(q) = \{x \to \alpha : x + \beta : \alpha, \beta \in GF(q), \alpha \neq 0\}$ is the

so called affine group and has order $q \cdot (q-1)$. The representation of this group we use is the natural action on the elements of GF(q). We denote by $SAF(q) = \{x \to \alpha^2 \cdot x + \beta : \alpha, \beta \in GF(q), \alpha \neq 0\}$ the special affine group a subgroup of AF(q). Any other transitive subgroup of AF(q) of order $q \cdot n$, $n \mid (q-1)$ is referred to as Frobenius of order $q \cdot n$. $PSL_2(p)$ is the projective special linear group acting on the projective line. The terms hypergraphical, graphical, semi-graphical and semi-hypergraphical are described in the next section. If G is a group acting on a set Y with $\infty \notin Y$, then we denote by G_{∞} the representation of G on $X = Y \cup \{\infty\}$ obtained by adding the point ∞ fixed by all group elements. Let G and G be permutation groups acting on sets G and G respectively; G wr G denotes the wreath product of G by G acting on G and G respectively; G wr G denotes the wreath

2. Graphical, Semi-Graphical, Hypergraphical and Semi-Hypergraphical designs

A $t-(\binom{p}{2},k,\lambda)$ design (X,\mathcal{D}) is said to be graphical if X is the set of all $v=\binom{p}{2}$ labeled edges of the undirected complete graph K_p and if $B\in\mathcal{D}$, than all subgraphs of K_p isomorphic to B are also in \mathcal{D} . Thus (X,\mathcal{D}) has the full symmetric group S_p as an automorphism group. If the $t-(\binom{p}{2},k,\lambda)$ design (X,\mathcal{D}) only has the alternating group A_p as an automorphism group then we say that it is semi-graphical. An example of these designs are given in Figure 1 and the graphical and semi-graphical designs we found are presented in the appendix. Two orbits under A_p whose union is a single isomorphism class of graphs is indicated by adding the subscripts 1 and 2 to the graph.

FIGURE 1:(a) incidence matrix of a graphical 3-(10,5,6) design.
(b) incidence matrix of the design in (a) partitioned into two semi-graphical 3-(10,5,3) designs.

The generalization from graphical to hypergraphical designs is straight forward. We simply consider the action of the full symmetric group on $X = \binom{P}{d}$ the collection of all d-element subsets of the p-element set P. Many of the 3-designs on $20 = \binom{6}{3}$ points were found this way. They appear in the appendix.

3. Concluding remarks

Although we found many solutions in several of the parameter situations given in Table I, space prohibited the inclusion of more than one in the appendix. During this investigation we have realized that many improvements to the tools in the design theory toolchest can be made. Research is planned to make these improvements in the near future.

4. Acknowledgements

The graphical 3-(21,5,3) in section A9 first appeared in [K] we included it again in this paper because it appears as a subdesign of a graphical 3-(21,5,33) we construct.

This research was encouraged by many of our colleagues and we thank them all. In particular we would like to express our appreciation to Jeff Dinitz whose respect for block designers is unsurpassed. Also the author ESK wishes to thank Spyros S. Magliveras for some software used in obtaining some designs.

Finally, this work was supported by the National Science Foundation under grant CCR-8711229 (DLK) by the National Security Agency under grant MSP-076-89 (ESK) and by the Natural Science and Engineering Research Council of Canada under grants URF0038628 (DdeC) and A0579 (CJC).

Author Addresses

D. de Caen
Dept. of Mathematics
Queens University
Kingston, Ontario K7L 3N6
CANADA

C.J. Colbourn

Dept. of Combinatorics and Optimization
University of Waterloo
Waterloo, Ontario N2L 3G1
CANADA

Y.M. Chee
Dept. of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1
CANADA

E.S. Kramer

Dept. of Mathematics and Statistics
University of Nebraska - Lincoln
Lincoln, Nebraska 68588
U.S.A.

D.L. Kreher
Dept. of Computer Science
Rochester Institute of Technology
Rochester, New York 14623
U.S.A.

References

- [CCK] Y.M. Chee, C.J. Colbourn and D.L. Kreher, Simple t-designs with $v \le 30$, submitted simultaneously with this paper.
- [K] E.S. Kramer, An $S_3(3,5,21)$ using graphs, to appear in Discrete Mathematics.
- [KM] E.S. Kramer and D.M. Mesner, t-designs on hypergraphs, Discrete Mathematics Vol. 15 (1976), 263-296.
- [KR1] D.L. Kreher and S.P. Radziszowski, Constructing 6-(14,7,4) designs, AMS series Contemporary Mathematics to appear.
- [KR2] D.L. Kreher and S.P. Radziszowski, Finding t-designs by using basis reduction, Congressus Numerantium, 55 (1986) 235-244.

APPENDIX

A.1. $2-(18,7,\lambda)$ Designs with $\lambda \equiv 0 \pmod{336}$

In Table III is a convenient listing of the orbit representatives of 7-element subsets under the action of $SAF(17)_{\infty}$. Develop each of the 7-element subsets indicated in Table II with the automorphisms in $SAF(17)_{\infty}$ to obtain a 2-(18,7, λ) design.

TABLE II

λ	row and column entry of Table III
336	23D 24D 24E 27B 27F 27H 28B 13G 13H 16H 17B 18C 14B 2C 14F 14H 15G 2D
672	23D 24D 24E 27B 27F 27H 28B 28H 29B 29C 29D 29H 30A 30D 13G 13H 16H
	17B 18C 2F 19E 19F 3A 3C 14B 2C 14F 14H 15G 2D 17D 17H 3B 3E 3G 4B
1008	18G 21G 22C 23C 23E 23F 24F 24G 25A 25B 25C 25D 25E 26C 26G 26H 27E
	28A 28E 29F 31G 14B 2C 14F 14H 15G 2D 17D 17H 3B 3E 3G 4B 5A 5B 5C
	5E 5F 5G 1D 6E 6F 6H 7B 7G 8B 8F 14A 14C 14D 14E 15A 15C 17E
1344	18G 18H 20H 21D 21E 21H 22A 22B 21G 22C 23C 23E 23F 24F 24G 25A 25B
	25C 25D 25E 26C 26G 26H 27E 28A 28E 29F 31G 14B 2C 14F 14H 15G 2D
	17D 17H 3B 3E 3G 4B 5A 5B 5C 5E 5F 5G 1D 6E 6F 6H 7B 7G 8B 8F 9B 1H
1680	18G 18H 20H 21D 21E 21H 22A 22B 22E 22F 23A 23B 24A 24H 25H 21G 22C
	23C 23E 23F 24F 24G 25A 25B 25C 25D 25E 26C 26G 26H 27E 28A 28E 29F
	31G 14B 2C 14F 14H 15G 2D 17D 17H 3B 3E 3G 4B 5A 5B 5C 5E 5F 5G 1D
	6E 6F 6H 7B 7G 8B 8F 9B 1H 11E 12C 14A 14C 14D 14E 15A 15C 17E 17F
	18A 18B 18D 18E 19H 1B 3D 5D 6C 6D 6G 8A 8E 8G 8H 9A 9D 10A 10D 11B
	11H 12F 13A
2016	18G 18H 20H 21D 21E 21H 21G 22C 23C 23E 23F 24F 24G 25A 25B 25C 25D
	25E 26C 26G 26H 27E 28A 28E 29F 31G 23D 24D 24E 27B 27F 27H 28B 28H
	29B 29C 29D 29H 30A 30D 31A 31F 13G 13H 16H 17B 18C 2F 19E 19F 3A 3C
	3F 4D 4E 1C 4F 6A 6B 14B 2C 14F 14H 15G 2D 17D 17H 3B 3E 3G 4B 5A 5B
	5C 5E 5F 5G 1D 6E 6F 6H 7B 7G 8B 8F 9B 1H 11E 12C 14A 14C 14D 14E 15A
	15C 17E 17F 18A 18B 18D 18E 19R 1B 3D 5D 6C 6D 6G

TABLE III

					E	F	G	н
Ц		В	c	D	0134567	0123557	0123456	0134578
1	01367813	01356810	0135679	0235678	0234678	0123479	0123459	0345678
2	0123478	0125468	0123678	0135678		01285610	0134689	0134589
3	0123569	0123679	0234579	0134679	0234679	0356789	01234610	01346710
4	0123489	0123689	01234510	0234789	0134789		01345810	013561011
5	01234710	01345610	01236710	01356710	02348710	01346810		01356910
6	02345711	01234611	03567810	01347810	03456810	02347610	03568910	
7	01234511	01235611	01234711	02356811	02346711	01346711	01236711	01346811
8	01345811	02356711	01356511	01367811	01347811	01236911	03567811	01356911
9	03567612	01346812	01236712	01235612	01234612	02345712	01234812	01356712
10	01236812	02356812	01356812	01237612	03456812	01367812	01236813	01234613
11	013561012	02346912	035681112	01236715	01234713	01234813	01356813	01346813
12	01237813	013681315	013561014	01234714	01368913	03567813	02367813	02346913
13	01236913	013681213	013681013	013561013	013681115	035681113	01235614	01234614
-	01346814	01356714	01236714	02345714	01236814	01345814	01347814	03456814
14	01356814	01237814	03567816	02347814	03568914	02347914	01356715	013681314
15		013471014		023671114	023471114	035681114	084781114	01235615
16		01236715	02346715	03456815	01346815	01345815	01356815	03567815
17				0 2 3 4 5 10 15	01348915	034581015	02347900	01236700
18		01347815	02346716	01234616	03567816	01346816	01347816	013551016
19	 	01356716		012356∞	02345700	03456800	013458∞	013567∞
20	01234700	01234600	012345∞	01346800	012368∞	02356800	013568∞	03567800
21	01346700	023467∞	012348∞		02367800	02346900	02345900	012349∞
22	01347800	012378∞	013678∞			03568900	013489∞	02367900
22	01236900	01356900		035681000		0135610 00	0234710∞	
24	0234510∞	0123410∞		0136710∞			023451100	
25	0236710∞	0345810∞			0134711∞	0123711 00	012361200	
26	0234711 co			0136811 00				
77	013681300	0368912∞	0123812 oc	013671200	0123712∞		013491200	1
22	012361300	036811120	02345130	012371300	_	 		
2	034681300			0367813∞				1
×	013681500	03681314 0	0368914 0	0356814 00	03681114 ∞	023671500	023451500	1
3	 			0134716 00	1	03681316∞	035681600	02341516 00
L."	1 2 2 2 2 2 2 2							

A.2. $2-(20,4,\lambda)$ Designs with $\lambda \equiv 0 \pmod{3}$

Let H be the Frobenius group of order 3·19 generated by $\alpha: X \to X+1$ and $\beta: X \to 7 \cdot X$. In Table V is a convenient listing of all the orbit representatives of 4-element subsets under the action of $G_1 = H_{\infty}$. Developing each of the 4-element subsets in Table IV with the automorphisms in G_1 constructs a 2-(20,4, λ) design,

for each $\lambda \equiv 0 \pmod{3}$.

TABLE IV

_	
λ	row and column entry of Table V
3	6A 7G 10E 8B 7H
6	10E 12E 7H 10B 5A 6H
9	1LA 10E 12E 5A 2F 3H 5C
12	11A 12A 10E 12E 7H 5A SA 2F 3H 5C
15	11H 11A 12A 10E 12E 7H 10B 5A 3A 2F 3H 5C 5E
18	1A 2G 9E 10G 3A 3B 2F 3H 5C 5E
21	10E 7H 1A 2G 3C 9E 10G 3A 3B 4C 2F 3H 5C
24	10E 12E 7H 10B 1A 2G 3C 3F 9E 10G 3A 3B 4C 4H 2F 3H
27	9D 1A 2G 9E 10G 3A 3B 2F 3H 5C 5E 5F 6C 6D 6G
30	10E 7H 9D 1A 2G 3C 9E 10G 3A 3B 4C 2F 3H 5C SE 5F 6C 6D
33	10E 12E 7H 10B 9D 1A 2G 3C 3F 9E 10G 3A 3B 4C 4H 2F 3H 5C 5E 5F 6C
36	9D 11B 1A 2G 9E 10G 3A 3B 2F 3H 5C 5E 5F 6C 6D 6G 7B 8C 8D 8G
39	10E 7H 9D 11B 1A 2G 3C 9E 10G 3A 3B 4C 2F 3H 5C 5E 5F 6C 5D 6G 7B 8C 8D
42	10E 12E 7H 10B 9D 11B 1A 2G 3C 3F 9E 10G 3A 3B 4C 4H 2F 3H 5C 5E 5F 6C 6D 6G 7B 8C
45	9D 11B 11C 1A 2G 3C 9E 10G 3A 3B 4C 2F 3H 5C 5E 5F 6C 6D 6G 7B 8C 8D 8G 9G 2B
48	10E 7H 9D 11B 11C 1A 2G 3C 9E 10G 3A 3B 4C 2F 3H 5C 5E 5F 6C 8D 6G 7B 8C 8D 8G 9G 10A 2A
51	10E 12E 7H 10B 9D 11B 11C 1A 2G 3C 3F 9E 10G 3A 3B 4C 4H 2F 3H 5C 5E 5F 6C 6D 6G 7B 8C 8D 8G 9G 10A
54	9D 11B 11C 11D 1A 2G 3C 3F 9E 10G 3A 3B 4C 4H 2F 3H 5C 5E 5F 6C 6D 6G 7B 8C 8D 8G 9G 10A 2B 2C
57	10E 7H 9D 11B 11C 11D 1A 2G 3C 3F 4B 9E 10G 3A 3B 4C 4H 6B 2F 3H 5C 5E 5F 6C 6D 6G 7B 8C 8D 8G 9G 2B 2C
60	10E 12E 7H 10B 9D 11B 11C 11D 1A 2G 3C 3F 4B 9E 10G 3A 3B 4C 4H 6B 2F 3H 5C 5E 5F 6C 6D 6G 7B 8C 8D 8G 9G 10A 2A 2B
63	9D 11B 11C 11D 11G 1A 2G 3C 3F 4B 9E 10G 3A 3B 4C 4H 6B 2F 3H 5C 5E 5F 6C 6D 6G 7B 8C 8D 8G 9G 10A 2A 2B 2C 4D
66	10E 7H 9D 11B 11C 11D 11G 1A 2G 3C 3F 4B 4G 9E 10G 3A 3B 4C 4H 6B 7A 2F 3H 5C 5E 5F 6C 6D 6G 7B 8C 8D 8G 9G 2B 2C 10A 4D
8	10E 12E 7H 10B 9D 11B 11C 11D 11G 1A 2G 3C 3F 4B 4G 9E 10G 3A 3B 4C 4H 6B 7A 8E 2F 3H 5C 5E 5F 6C 6D 6G 7B 8C 8D 8G 9G 10A 2D 2B 2C
72	9D 11B 11C 11D 11G 12C 1A 2G 3C 3F 4B 4G 9E 10G 3A 3B 4C 4H 6B 7A 8E 2F 3H 5C 5E 5F 6C 6D 6G 7B 8C 8D 8G 9G 10A 2D 2B 2C 4D 5D
75	10E 7H 9D 11B 11C 11D 11G 12C 1A 2G 3C 3F 4B 4G 9E 10G 3A 3B 4C 4H 6B 7A 8E 2F 3H 5C 5E 5F 6C 6D 6G 7B 8C 8D 8G 9G 10A 2A 2D 3D 3G 2B 2C

TABLE V

	A	В	С	D	E	F	U	H
1	0 2 9 10	0129	0236	0235	0124	0123	0125	0245
2	0126	0238	0237	0127	0246	0267	0167	0128
3	0258	0248	0148	0278	0178	0289	0259	0239
4	0249	0179	0269	0279	0 2 5 10	02310	01210	02410
5	01710	02610	02810	02914	0 2 9 12	02911	02311	01211
6	01711	02611	02711	02312	0 1 2 12	02612	02412	02812
7	0 2 4 13	02313	01213	0 2 9 13	01713	02613	01913	02314
8	02916	02515	02315	01215	02415	02915	02718	02615
9	02316	0 2 11 15	02616	02819	02319	02418	0 2 9 17	0 2 10 16
10	02918	02718	0 1 2 19	02619	02519	0 2 4 19	0 2 7 19	01719
11	01819	0 2 12 19	0 2 10 19	02919	01919	0 1 10 19	0 2 11 19	0 4 10 19
12	0 1 12 19	0 2 15 19	0 2 13 19	0 4 13 19	0 2 16 19			

A.3. A 3-(16,7,10)

Let G_{ℓ} be the representation of the Frobenius group of order 80 generated by the permutations in table VI. Then developing the 7-element subsets

02345915 and 012451015

into 160 blocks with the members of G_2 gives a 3-(16,7,10) design.

TABLE VI

(0.1)(2,3)(4,5)	6,7)(8,9)(10,11)(1	2,13)(14,15)
(0,2)(1,3)(4,6)	(5,7)(8,10)(9,11)(1	2,14) (13,15)
(0,4)(1,5)(2,6)	(3,7)(8,12)(9,13)(1	0,14)(11,15)
(0,8)(1,9)(2,10)	(3,11)(4,12)(5,13)	(6,14)(7,15)
(0)(1,8,15,5,3)	2,9,7,10,6)(4,11,1 ₁	4,13,12)

A.4. $3-(19,7,\lambda)$ designs from AF(19).

Using the elements of AF(19) the orbit representatives given in Table VII can be developed into seven disjoint 3-(19,7, λ) designs for $\lambda=35$, 35, 105, 210, 210 and 210 respectively. Taking unions of appropriate combinations of these designs yield 3-(19,7, λ) designs for each possible λ .

TABLE VII

λ	Orbit representatives			
35	012371114	01234512	0123567	01367812
35	013671517	0123456	0123457	0123678
105	0123459	0123589	01356911	01346712
	01235813	0 1 2 3 4 11 12	01345813	01345815
	01348918		•	
210	013671114	0 1 2 3 7 11 16	01234510	01256917
	01367810	01346812	01367915	0123478
	01256711	01368913	01345818	01367811
	01234811	01346918	01368910	01234710
	0 1 3 6 10 11 12			
210	01345911	0 1 2 3 8 11 16	0134689	01235817
	01256913	01346711	0 1 2 3 4 11 13	01256710
	012351116	01235818	01347914	01235816
ľ	01346814	0 1 3 6 7 10 11	01356918	0 1 2 3 6 10 11
	01368912			
210	01237817	01367813	0 1 3 6 10 11 15	0 1 3 10 11 13 18
	0134569	0 1 3 4 5 10 14	0125679	01234511
	01345917	0123458	0 1 3 6 10 11 16	0 1 2 3 7 8 13
	0 1 3 6 10 11 13	01346818	01356818	01346816
	01347918			
210	01356816	0 1 2 3 4 11 16	01348915	0134679
	0123467	01345910	0 1 3 6 10 11 18	01356711
	01256912	01234810	01356914	0 1 2 3 7 10 11
	01235810	0123568	01345817	01346817
	01237814			

A.5. $3-(19,9,\lambda)$ designs from AF(19).

Using the elements of AF(19) the orbit representatives given in Table VIII can be developed into eleven disjoint 3-(19,7, λ) designs for $\lambda=28$, 84, 84, 252, 252, 504, 504, 504, 504, 504 and 504 respectively. Taking unions of appropriate combinations of these designs yield 3-(19,9, λ) designs for many of the previously unreported values of λ in this situation. That is $\lambda=112$, 196, 280, 364, 924, 1204, 1764, 2044, 2604, 2884, 3444 and 3724.

TABLE VIII

λ	Orbit representatives			
28	0 1 2 3 5 6 8 10 13	0123678914	0 1 2 3 5 7 12 13 16	
84	0123458913	01234581013	0 1 3 4 5 6 8 11 13	0123456916
84	01345681015	01346781018	012345678	01345791417
252	0123456812	0123678912	0123467913	01234681013
202	01346781011	0 1 2 3 4 6 7 12 17	0123456910	0 1 2 3 4 7 8 10 13
	0134568914			
252	01235691011	0134678917	0 1 3 6 7 8 10 11 15	0123456818
-02	0134568911	01234571114	0123456710	0 1 2 3 4 5 7 10 15
	0134578918			
504	01256791112	0134678913	0 1 2 3 4 5 9 10 17	01234671415
	0123467811	01234561014	0 1 2 3 4 6 7 11 13	0123468910
1	0123458912	0123467912	0 1 3 5 6 7 8 10 11	01235891115
	01234681115	0123458917	01236781011	0 1 2 3 4 7 8 11 13
	0123567914			
504	0 1 3 6 7 9 10 11 15	0123567810	0123456813	0 1 3 4 6 7 8 11 13
	01346891012	0123478911	0 1 2 3 4 6 7 10 15	0134578917
	01234571017	0 1 3 6 8 9 10 11 12	0 1 2 3 4 5 7 10 14	0134578915
	0 1 2 3 4 5 7 12 13	0 1 3 4 5 6 8 11 18	0123456816	0134578911
	01235891013			
504	01234681015	01234781014	0123478912	01256891013
	01346891118	0123567913	0134567812	01236781117
	0123567911	01236891115	0123467813	0123467814 0123456810
	01234671011	01346891017	0 1 3 4 6 7 8 10 12	0123450510
	0123467812		2.5.0.4.5.0.0.10	0123467817
504	0123458915	0123456711	0134578916	0123467817
į	0123456911	0123567915	01235891011 01356781118	01234581015
	01236781014	01346781015	01336781116	01345791011
	01345681012 0134567811	01234101111	0123403810	01010101011
	0134567811	0134567814	0 1 2 3 4 5 9 10 16	0123457912
504	01234678918	01235681011	01234581010	0123478917
	0134678918	01233081011	0134568910	0123456914
	0123367912	01234781016	01236791014	01356781115
	01345681016	01201.01010	0.1.2.0.1.0.1.0.	
504	013678101118	0123458916	01234581016	01346781217
OUTS.	012368101115	01236781017	012378101114	0134568912
	012368101113	01345681017	01234681116	0 1 2 3 4 5 7 11 12
	0123567910	01236781012	01234581114	0 1 3 6 7 8 10 11 16
	0123478913			
				

A10.22. A 3-(21,6,208) design.

A10.23. A 3-(21,6,220) design.

A10.24. A 3-(21,6,236) design.

A10.25. A 3-(21,6,280) design.

A10.26. A 3-(21,6,280) design.

A10.27. A 3-(21,6,296) design.

A10.28. A 3-(21,6,340) design.

A10.29. A 3-(21,6,340) design.

A.11. 3-(23,8,8s) designs for $s \ge 2$.

Generating the orbit of $\{0,1,2,3,5,7,12,16\}$ under the group AF(23) constructs a 3-(23,8,16) design and the union of the orbits of $\{0,1,3,4,6,7,8,22\}$ and $\{0,1,2,3,5,7,12,17\}$ forms a 3-(23,8,24) design. These two designs are disjoint. In each box of Tables IXa, IXb and IXc is displayed two 6-element subsets, A and B. The union of the orbits of $A \cup \{0,1\}$ and $B \cup \{0,1\}$ under AF(23) is for each box a 3-(23,8,32) design. Furthermore the 241 designs generated from these tables are pairwise disjoint and are each disjoint from the 3-(23,8,16) and 3-(23,8,24) designs given above. Thus by taking unions of combinations of these 243 pairwise disjoint designs we can construct a 3-(23,8, λ) design for each $\lambda = 8s \le (15504)/2 = 7752$ except $\lambda = 8$.

TABLE IXa

3 5 6 10 11 20	3 5 8 9 11 17	234568	34691011	235689	3 5 6 7 10 13
235679	3456910	234579	25791012	234589	23561011
345789	2356910	2345710	3467911	2345610	3478911
2345810	3 4 5 7 10 12	2356710	3 4 6 9 11 19	2346810	3 4 5 8 10 14
2368910	2 3 5 7 12 15	2367810	2 3 5 7 10 13	3458810	23481014
3567810	2 5 7 9 10 13	3467810	2348915	2346910	23671113
2357910	2567918	2347910	3 4 5 6 7 15	2367910	2 3 5 7 13 20
3567910	3 4 5 7 8 13	2567910	2 3 5 7 12 13	3456711	3457912
2345711	3458913	2345611	3 5 6 8 10 14	3468910	2357918
2346811	3 5 6 10 11 14	2345811	3456911	2356811	2356914
3567911	3 4 5 10 11 14	2356911	2358918	3567811	2346911
2367811	2357913	3457811	3457913	3467811	23481013
3457911	23691113	2357911	2367813	2367911	23681013
2567911	3456914	3458911	2345612	2348911	2345720
4567911	2358913	2358911	23481214	3468911	23461019
2368911	2 3 4 8 12 21	23451011	3 4 6 8 13 15	3578911	3567813
2578911	2 3 6 8 12 21	4578911	2358914	23681011	3 4 6 8 12 15
25671011	2346914	23581011	3456717	34591011	2345813
45791011	23491214	25791011	2 3 4 6 13 15	2358912	2345812
3567812	2348917	3456812	3 5 6 10 13 14	3456712	2356812
2356712	3 5 6 7 9 21	2367812	23451016	2357812	3 4 6 8 12 13
3457812	2 3 4 8 10 15	3467812	3 4 5 8 10 16	2367912	36791113
2357912	2356814	2356912	3 5 8 9 12 18	2347912	3 5 6 7 12 19
3567912	3 6 7 10 12 14	2567912	23591014	23481012	34681117
23561012	23581014	2 3 4 5 10 12	23561118	3578912	3456714
				·	

TABLE IXb

2 3 5 7 10 12	2567916	2 3 4 7 10 12	2356813	3 4 5 6 10 12	3 4 6 8 12 21
23681012	2 3 5 8 12 14	3 4 5 8 10 12	3 6 7 8 12 16	2 3 5 8 10 12	2345719
34681012	2367815	4 5 7 9 10 12	3567913	23561112	23681014
3 4 5 6 11 12	35781118	3 4 6 8 11 12	3 5 7 8 14 15	3 4 6 7 11 12	23671013
3 4 5 7 11 12	3458916	2 3 6 8 11 12	3 5 6 7 10 17	3 4 5 10 11 12	3457918
36781112	3457920	3 5 6 8 11 12	2 3 4 8 10 21	3 4 5 9 11 12	3 5 6 7 11 22
3 4 7 9 11 12	2345816	3 6 8 10 11 12	23671315	3 5 6 10 11 12	2 3 4 8 9 20
3456713	36891115	2356713	2367920	3456813	25791114
3467813	23691014	2367913	2 3 6 10 12 21	2356913	3 4 5 8 11 15
2567913	2 3 5 7 10 15	23561013	3 4 6 8 12 14	3478913	2 3 5 6 10 15
3468913	3 5 6 10 11 17	23451013	45791120	3578913	3 7 10 11 12 14
23461013	3 6 7 8 13 14	3 6 7 8 10 13	2347917	3 4 5 8 10 13	3457915
2 3 5 8 10 13	3 4 6 8 10 21	3 4 6 8 10 13	2 3 6 8 14 21	3 5 7 8 10 13	3 4 6 8 13 17
2 3 5 9 10 13	3567814	36891013	3 10 11 12 13 15	3 5 6 7 12 13	3 4 6 7 12 13
34591113	2 3 6 10 12 19	2 5 7 10 11 13	2 3 5 7 13 16	25671213	3 4 6 8 10 16
3 4 7 8 12 13	2 3 5 7 12 17	3 5 7 8 12 13	2358920	3 4 8 10 12 13	3457814
3 6 8 10 12 13	3 4 5 10 12 14	36781014	2357916	2367914	23691118
2346814	3 5 6 7 10 21	3 9 10 11 12 13	3 4 7 8 14 20	3 4 10 11 12 13	2 5 6 7 10 15
3 5 10 11 12 13	3467814	3 8 10 11 12 13	2367814	2345714	35891119
2356714	2 3 5 9 12 19	23561014	2367922	3458914	35671119
3467914	3 5 6 7 10 15	2567914	3 4 5 7 10 16	3478914	3 5 6 7 10 18
23451014	3467820	3578914	3 5 6 8 10 19	23571014	3 4 5 7 12 17
23471014	2 3 5 6 10 16	25671014	23461117	3 4 6 7 10 14	3 4 6 8 12 19
3 5 6 T 10 14	2 3 5 9 12 16	3 4 6 8 10 14	2346915	35781014	2 3 4 8 12 19
3 4 6 9 11 14	2357915	3 4 6 9 10 14	45791114	25791014	2345717
3 4 7 9 10 14	23571220	3 4 6 8 11 14	234101217	23671114	3 4 8 10 12 16
3 4 5 8 11 14	2 3 4 9 10 21	3 4 5 9 11 14	2 4 5 7 12 18	3 6 8 10 11 14	36791116
36791114	2 3 5 9 10 19	257101114	3 10 11 12 13 17	3 4 6 7 12 14	2356917
3 4 5 7 12 14	2 3 5 9 10 16	2 5 6 7 12 14	23451119	3 4 5 8 12 14	3 10 11 12 13 20
3 4 7 10 12 14	2346917	\$ 5 6 10 12 14	3 4 6 7 12 17	3 4 6 8 13 14	2345712
2345715	3 4 7 9 10 19	2356715	3 4 6 11 12 16	2356815	3 4 6 10 12 17
2347915	3 6 7 8 10 17	3 5 6 7 9 15	3 4 5 9 11 16	\$467915	2 3 5 6 12 18
2358915	23491015	3478915	2357917	2368915	2 3 5 7 10 19
3578915	3 5 6 7 11 21	23671015	2347918	3 6 7 8 10 15	3 6 8 11 12 15
2 3 5 8 10 15	3 4 6 8 10 20	3 5 6 8 10 15	3467916	3 6 8 9 10 15	3 4 6 7 10 17
J		 			

TABLE IXc

23481215	3 4 6 8 10 18	35681115	3 5 7 8 9 20	35891115	2347916
3 5 6 10 11 15	2 3 4 9 13 20	3 5 6 7 12 15	23491116	3 4 5 10 12 15	23481019
23681215	3 4 5 7 11 21	3 4 6 7 13 15	2 3 5 9 10 20	2 3 5 6 13 15	2348921
3478916	2 3 10 11 12 20	3567816	3 4 6 9 11 16	2345716	2 3 5 10 12 10
3 4 5 7 14 15	3 4 7 9 10 20	23571415	3578919	\$456716	3 4 6 9 10 16
3456816	34791116	2367816	3 4 5 7 9 21	3457916	2367820
3 5 6 7 11 16	2356818	23671016	2 3 5 6 10 20	3578916	36781120
23571016	3 6 8 11 12 21	25671016	23461118	23491016	2 3 5 8 12 19
23451116	3458918	23471116	2367822	3 4 6 7 11 16	2368917
45791116	3 4 5 7 12 22	3458917	3 4 5 7 10 17	34591416	3 4 7 9 10 22
3 6 7 10 15 16	3 4 5 7 13 18	2345817	3 4 7 8 12 18	2367917	2 3 5 7 12 18
3457917	3 4 5 8 14 17	3567917	3567821	3467917	2345718
2 3 5 6 10 17	3 4 6 9 10 21	23451017	3 4 5 8 9 21	3578917	23681117
2 3 6 7 10 17	3 4 5 8 10 17	23571017	3 6 8 10 13 19	23681017	3 5 6 10 11 21
8 4 7 9 10 17	23471219	3 4 6 9 10 17	23471118	23481117	3 4 6 8 11 21
3 4 6 9 11 17	3 4 5 7 10 19	35681117	3 4 5 9 11 19	34591117	3 4 5 7 13 20
2 5 7 10 11 17	3 4 6 8 12 17	3 4 7 9 12 17	3456718	36891317	3 4 8 10 13 19
3 4 6 9 13 17	2 3 5 7 12 21	3467818	2 3 5 7 10 18	2356918	3 6 7 8 12 21
3478918	2 3 5 6 10 19	2 3 4 7 10 18	3 5 8 9 11 18	3 4 5 7 10 18	2368919
23591118	2 3 4 8 10 20	3456811	2 3 4 8 11 22	2 3 4 10 12 18	2 3 6 9 11 21
2 3 5 7 13 18	36891021				

A.12. 3-(23,9,12s) designs for $s \ge 2$.

Generating the orbit of $\{0,1,3,4,5,6,7,11,12\}$ under the group AF(23) constructs a 3-(23,9,24) design and the union of the orbits of $\{0,1,2,3,5,7,8,9,10\}$ and $\{0,1,3,4,5,6,7,8,12\}$ forms a 3-(23,9,36) design. These two designs are disjoint. In each box of Tables Xa, Xb, Xc, Xd and Xe is displayed two 6-element subsets, A and B. The union of the orbits of $A \cup \{0,1\}$ and $B \cup \{0,1\}$ under AF(23) is for each box a 3-(23,9,32) design. Furthermore the 403 designs generated from these tables are pairwise disjoint and are each disjoint from the 3-(23,9,24) and 3-(23,9,36) designs given above. Thus by taking unions of combinations of these 405 pairwise disjoint designs we can construct a 3-(23,9, λ) design for each $\lambda = 12s \le (38760)/2 = 19380$ except $\lambda = 12$.

TABLE Xa

235781013	3 4 6 8 9 10 15	3 4 5 6 9 10 16	345691117	3 6 7 8 11 12 18	3 4 5 8 11 15 19
3 4 6 8 11 15 30	236791231	3 4 6 8 10 12 21	2 3 5 6 10 12 22	3 10 11 12 13 14 17	236891115
3 6 10 11 12 13 14	256791120	234571213	456791120	34567813	3 4 5 6 7 10 12
234571012	235891013	234581011	234571014	34567811	2 3 6 8 9 10 12
23567810	234681112	2356789	356791011	23456810	235891012
23456710	346791113	35678910	3 4 5 6 9 10 14	23568910	23567912
23567910	236891215	34567810	34568913	23458910	235791114
34568910	3 8 6 7 9 10 13	23456811	3 4 5 9 10 11 14	23456711	2 5 6 7 12 13 16
23567811	3 10 11 12 13 14 16	34568911	234681119	23567911	3 4 6 7 8 12 13
23457911	23567813	23568911	234581114	23458911	234561315
35678911	2 3 5 6 8 10 12	34578911	2346101215	23578911	3 4 5 6 9 12 14
23678911	23456812	25678911	234571214	234571011	234581014
234561011	235681114	23456712	3 4 6 9 11 15 17	235691011	23458918
235681011	234561114	236781011	234581419	234691011	3 6 8 9 10 13 17
234591011	3 4 5 6 7 14 22	345691011	234691415	236791011	23458914
256791011	23567916	236891011	234781314	346891011	234681219
23568912	3 4 5 8 11 14 17	23457812	3 4 6 7 9 12 17	23567812	234691114
23457912	3 5 6 10 11 12 14	23458912	235671213	3 4 5 7 8 9 12	2 3 5 7 10 13 16
34568912	3 5 6 7 10 12 20	23578912	234781213	35678912	2 3 6 7 10 13 15
23678912	234581121	25678912	234561012	234581012	235691013
235671012	35678913	234681012	346781113	236781012	356791114
3 4 5 7 8 10 12	235891320	3 4 5 6 8 10 12	3 4 5 6 9 11 14	3 4 6 7 8 10 12	3 4 5 8 9 14 15
234691012	34567814	234791012	23456714	3 4 5 6 9 10 12	3 7 10 11 12 13 14
356791012	2 5 7 9 10 13 15	256791012	234681013	2 3 5 6 10 11 12	34578914
356781112	235691216	257891012	2 3 6 7 9 12 16	346891012	2 3 5 7 11 12 20
356891012	2 3 6 7 10 13 14	234561112	367891113	235671112	2579101113
345681112	3 4 5 7 8 10 13	234581112	256791213	235681112	234681114
346781112	257891114	234691112	235671416	345691112	4 5 7 9 10 11 14
236791112	3 4 5 6 7 13 17	3 4 5 7 9 11 12	34567818	346791112	3 4 5 6 8 10 15
235891112	234551314	2346101112	236781315	2348101112	3567111417
2 3 5 7 10 11 12	8 4 5 8 9 13 18	2368101112	245671013	3 4 5 8 10 11 12	2357101314
2 3 5 8 10 11 12	234691214	\$ 5 6 8 10 11 12	3 4 5 8 9 13 16	3 4 6 8 10 11 12	235681415
23456713	3 4 6 9 10 11 20	4579101112	234791314	235681013	235691014
23568913	235691015	23567913	2356111215	23457913	3 4 6 7 8 11 20
23458913	457891115	34578913	2 3 5 7 10 12 15	23578913	2367101113
					

TABLE Xb

23678913	3 4 5 6 7 10 15	235671013	23567919	234571013	3 4 6 7 10 12 14
234561013	3 4 5 7 8 11 13	234581013	3 5 6 7 10 11 13	345671013	23678915
3 4 6 7 8 10 13	235681014	345681013	2 3 4 5 8 12 18	236781013	2 3 5 8 10 12 13
3 5 6 7 8 10 13	234891116	256781013	2 3 5 6 9 12 13	234691013	3 6 7 8 10 13 15
2 3 5 7 9 10 13	2 3 5 6 8 10 21	3 4 5 6 9 10 13	235671218	3 4 6 7 9 10 13	2 3 4 5 7 14 20
236791013	3 4 5 9 12 14 20	256791013	3 6 10 11 12 13 15	345671113	2368101215
234561113	3 4 5 6 8 14 19	236891013	2 3 5 7 9 12 15	356891013	3 5 6 7 9 10 17
257891013	234571117	234571113	2348101214	235671113	234691014
234681113	3 5 6 7 10 11 20	234581113	3 4 5 7 12 14 17	236781113	2 3 4 6 10 12 17
457891113	3 4 5 6 8 10 17	234891113	4579111422	235691113	456791114
234691113	3 4 5 6 8 10 19	236791113	234691016	3 4 5 8 9 11 13	234571015
235891113	3 4 5 6 7 14 18	236891113	3 4 5 6 10 12 19	257891113	235781114
347891113	3 5 6 7 10 15 20	2358101113	234681214	2 3 5 7 10 11 13	2 3 6 7 8 12 16
2356101113	35678916	2346101113	2 3 5 6 8 14 21	3 4 5 6 10 11 13	2 3 4 5 7 13 20
2 3 5 9 10 11 13	34568915	2 3 6 9 10 11 13	23567914	3 6 7 9 10 11 13	234681115
2 3 6 10 11 12 13	3 4 6 8 9 11 14	3 5 6 7 8 12 13	236891016	3 4 5 6 8 12 13	2 3 5 6 10 12 14
3 4 5 6 7 12 13	3 6 7 10 12 13 14	235681213	2 3 6 8 11 12 21	3 4 5 7 8 12 13	234681117
235781213	236781017	236791213	2 3 5 6 8 12 15	2 3 4 8 10 12 13	236781016
235891213	356781118	356791213	3 5 6 8 10 11 14	236891213	2 3 5 6 7 10 15
3 5 7 8 9 12 13	3 4 5 6 7 11 14	2 3 6 7 10 12 13	2 3 5 6 8 10 20	2 3 4 7 10 12 13	235781014
3 4 5 7 10 12 13	3 4 5 8 11 14 22	3 5 6 7 10 12 13	234791214	3 4 5 7 11 12 13	235671316
3 4 6 8 10 12 13	23567814	3 4 5 8 10 12 13	2 3 5 8 10 12 17	2 3 6 8 10 12 13	3 4 5 7 8 13 14
2 3 5 9 10 12 13	3 4 5 10 12 14 20	2 5 7 9 10 12 13	2 3 5 7 11 12 15	3 4 5 8 11 12 15	3 4 5 6 7 13 16
3 4 6 7 11 12 18	3 4 5 6 8 10 16	23568914	2 3 5 6 10 12 15	23678914	2 3 5 7 13 16 21
234561014	3 4 5 6 10 11 21	245571014	236791017	235671014	2 3 4 5 8 10 22
346781014	3 4 5 6 7 14 21	345681014	3 8 10 11 12 13 14	236781014	234561117
3 5 6 7 8 10 14	3 4 5 7 9 13 16	236891014	234581117	234791014	235671018
2 3 5 7 9 10 14	2 5 7 9 10 14 18	236791014	234571316	3 5 6 7 9 10 14	3 4 8 10 12 13 15
256791014	3 6 7 9 11 13 16	235891014	3 5 6 7 9 10 15	234571114	3 4 5 6 11 12 15
346891014	2356101217	345681214	234691018	2356101114	235691018
			······		

TABLE Xc

345781114	235591020	346781114	2346101121	345791114	3 4 5 9 10 11 20
346791114	3 4 5 6 7 11 16	236791114	234691021	256791114	235791418
3 4 7 8 9 11 14	2 3 4 6 10 11 17	3 4 5 8 9 11 14	3 5 6 7 8 12 18	235891114	236891015
457891114	347891116	357891114	3 4 5 9 10 11 18	2 3 4 6 10 11 14	3679111214
2368101114	3 4 5 6 8 11 16	2 3 5 7 10 11 14	234561016	2347101114	3 9 10 11 12 13 16
3 4 5 6 10 11 14	2 3 4 6 10 13 17	3 5 6 7 10 11 14	234691119	3 4 5 7 10 11 14	234581018
2358101114	235671116	2348101114	234571315	3 4 5 8 10 11 14	2579101316
3 4 6 9 10 11 14	234681015	3488101114	234581015	8 4 5 6 7 12 14	8 4 5 7 9 11 16
234581216	234791015	235681214	234681016	2 3 6 7 10 12 14	3 5 7 8 9 11 22
235891216	3 4 5 6 7 12 19	236791214	235671217	356781214	234571318
3 4 6 7 8 12 14	2 3 4 8 10 13 19	3 4 5 7 9 12 14	3 4 5 6 9 10 15	356791214	4 5 7 9 10 11 15
256791214	2 3 4 8 10 13 21	2 3 4 5 10 12 14	2 3 6 9 10 12 14	3 4 5 7 10 12 14	23457917
3 5 6 7 10 12 14	3 4 6 8 9 16 17	\$ ± 7 9 10 12 14	234561015	3 5 6 9 10 12 14	234791016
2 3 6 8 11 12 14	356791018	3 4 6 8 11 12 14	457891116	3 4 6 10 11 12 14	3 10 11 12 13 14 15
3 4 7 9 11 12 14	2 3 5 8 10 13 19	3 4 7 10 11 12 14	3 5 6 7 9 12 19	3 6 8 10 11 12 14	3 6 7 8 10 16 17
236781314	3 6 8 10 11 12 15	234691314	236781117	346781314	234691017
2356101314	235681219	3 4 7 8 9 13 14	3 7 10 11 12 13 15	346891314	3 5 6 10 11 12 17
2346101314	3 4 5 6 8 14 18	2 3 4 7 10 13 14	3 4 6 9 10 11 16	3 5 6 7 10 13 14	234791018
2567101314	2 3 5 7 9 10 17	3 5 7 8 12 13 14	2368101417	2378111314	3 4 6 7 10 12 17
3 4 8 10 12 13 14	3 4 5 6 11 12 18	3 6 8 10 12 13 14	346781116	3 4 10 11 12 13 14	236791118
3 5 10 11 12 13 14	236571016	235691016	346891017	23568915	234691015
3 9 10 11 12 13 14	2 4 5 7 12 14 17	23567915	345791119	34567815	234891119
23457915	3 4 6 8 9 11 15	23458915	2356101116	25678915	235791016
235681015	3 4 5 7 10 12 16	236781015	3 4 5 8 9 16 17	356781015	3 4 6 7 9 12 19
2 3 5 7 9 10 15	234891315	3 4 5 6 9 11 15	3 4 5 7 10 12 19	234561115	3 4 6 7 8 13 2L
3 5 6 8 9 10 15	3 5 8 10 11 12 20	345671115	3 4 6 7 9 11 19	234581115	3 4 5 9 10 11 19
235681115	2 3 5 6 10 14 18	235691115	234691221	234691115	235681019
346791115	257891118	236791115	23567920	234891115	234681019
235891115	2 5 7 9 10 13 17	2 3 4 5 10 11 15	3 4 7 8 13 14 22	2357101115	845891416
3 4 5 6 10 11 15	234551418	2 3 6 8 10 11 15	35678917	3 4 5 8 10 11 15	3 4 6 8 12 13 22
-					

TABLE Xd

2 3 5 8 10 11 15	3 6 8 10 12 13 22	3 4 5 9 10 11 15	2348121419	235891215	234791017
3 4 5 6 7 12 15	234691117	235671215	234691030	234681215	2 3 5 7 10 11 21
234581215	3 4 6 7 9 10 16	3 5 6 7 8 12 15	3 4 6 7 8 12 16	234891215	2 3 6 7 9 12 20
357891215	3 4 5 6 8 13 18	3 5 6 7 10 12 15	23568916	3 4 5 8 10 12 15	3 6 8 10 11 12 21
3 4 6 8 10 12 15	346781118	3 4 6 8 11 12 15	8 4 5 6 10 11 17	3 6 8 9 11 12 15	2 2 5 6 7 10 19
3 5 6 10 11 12 15	236891317	3 4 5 6 7 14 15	2 8 5 7 9 10 19	3 4 7 8 9 13 15	3 4 5 6 11 12 17
235681315	3 5 6 7 9 10 16	3 4 8 6 7 13 15	234681020	3 4 6 7 8 13 15	3 4 7 8 10 12 16
3 4 5 8 9 13 15	256791116	2 \$ 6 8 9 13 15	2346101315	2 3 4 5 10 13 15	3 4 6 7 9 12 20
2 3 4 8 10 13 15	\$ 6 7 8 11 12 19	3 6 7 10 12 13 15	234691319	234571415	345891119
235891415	236791020	3 4 5 6 9 14 15	257891121	234891415	3 4 5 8 10 11 16
2 3 5 7 10 14 15	2 3 4 8 10 12 18	34567816	234891122	23458916	\$ 4 5 9 10 11 16
235681016	3 4 6 7 11 12 19	234581016	2 3 4 5 10 11 21	3 4 6 7 8 10 16	8 4 5 7 9 12 22
3 4 5 6 8 12 16	2 3 5 6 7 10 21	234571116	256791320	3 10 11 12 13 14 17	236891115
3 6 10 11 12 13 14	256791120	234571213	456791120	34567813	3 4 5 6 7 10 12
234571012	235891013	234581011	234571014	34567811	236891012
23567810	234681112	2356789	356791011	25456810	235891012
23456710	3 4 6 7 9 11 13	35678910	3 4 5 6 9 10 14	23568910	23557912
23567910	236891215	34567810	34568913	23458910	235791114
34568910	3 5 6 7 9 10 13	23456811	3 4 5 9 10 11 14	23456711	2 5 6 7 12 13 16
23567811	3 10 11 12 13 14 16	34568911	234681119	23567911	3 4 6 7 8 12 13
23457911	23567813	23568911	234581114	23458911	234561315
35678911	235681012	34578911	2 3 4 5 10 12 15	23578911	3 4 5 6 9 12 14
23678911	23456812	25678911	234571214	234571011	234581014
234561011	235681114	23456712	3 4 6 9 11 15 17	235691011	23458918
235681011	234561114	236781011	234581419	234691011	3 6 8 9 10 13 17
234591011	3 4 5 6 7 14 22	3 4 5 6 9 10 11	234591415	236791011	23458914
256791011	23567916	236891011	234781314	346891011	234681219
23568912	3 4 5 8 11 14 17	23457812	3 4 6 7 9 12 17	23567812	234691114
23457912	3 5 6 10 11 12 14	23458912	235671213	34578912	2 3 5 7 10 13 16
34568912	3 5 6 7 10 12 20	23578912	234781213	35678912	2 3 6 7 10 13 15

TABLE Xe

		1			
23678912	234581121	25678912	234561012	234581012	2 3 5 6 9 10 13
2 3 5 6 7 10 12	35678913	234681012	3 4 6 7 8 11 13	236781012	356791114
3 4 5 7 8 10 12	2 3 5 8 9 13 20	345681012	345691114	346781012	345891415
234691012	34567814	234791012	23456714	3 4 5 6 9 10 12	\$ 7 10 11 12 13 14
3 5 6 7 9 10 12	2 5 7 9 10 13 15	256791012	234681013	2 3 5 6 10 11 12	34578914
3 5 6 7 8 11 12	235691216	257891012	236791216	346891012	2 3 5 7 11 12 20
3 5 6 8 9 10 12	2 3 6 7 10 13 14	234561112	367891113	235671112	2 5 7 9 10 11 13
3 4 5 6 8 11 12	3 4 5 7 8 10 13	234581112	256791213	235681112	234681114
3 4 6 7 8 11 12	257891114	234691112	235671416	3 4 5 6 9 11 12	4 5 7 9 10 11 14
236791112	3 4 5 6 7 13 17				

A.13. $3-(25,4,\lambda)$ designs with $\lambda \in \{2,8,10\}$.

Let G_7 be the representation of the wreath product C_5 wr A_5 generated by the permutations in Table XI. Then a 3-(25,4, λ) design for each $\lambda \in \{2,8,10\}$ can be obtained by developing the 4-element subsets in the appropriate table below.

TABLE XI

(1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,0)
(1,6,11,16,21)(2,7,12,17,22)(3,8,13,18,23)(4,9,14,19,24)(5,10,15,20,0)
(1,2)(3,4)(6,7)(8,9)(11,12)(13,14)(16,17)(18,19)(21,22)(23,24)

TABLE XI: A 3-(25,4,2) design.

0128	0 1 6 10	0 1 5 11	0 5 6 16	0 5 10 15
06718	0 1 10 21	0 5 11 21	0 21 22 23	

TABLE XI: A 3-(25,4,8) design.

0125	0678	05610	01511	0 1 2 11	06710
01712	0 1 10 20	0 1 2 15	0 6 10 12	0 1 10 15	0 1 10 17
05617	06718	01218	06720	05622	0 5 16 20
0 5 11 21	0 1 5 22	0 1 10 22	0 1 7 23		•

TABLE XI: A 3-(25,4,10) design.

0 1 5 6 0 6 7 11 0 1 10 15 0 5 6 17 0 1 5 22	0 1 2 5 0 1 10 20 0 5 10 15 0 1 2 18 0 1 10 22	0 1 10 11 0 1 2 15 0 1 10 17 0 5 6 20 0 1 7 23	0 1 2 11 0 1 7 13 0 1 5 17 0 6 7 20 0 1 22 23	0 6 7 10 0 1 2 13 0 5 10 16 0 5 6 22 0 21 22 23	0 5 6 11 0 6 10 12 0 6 10 16 0 6 7 21
--	--	--	---	---	--

A.14. $3-(26,6,\lambda)$ designs with $\lambda \equiv 0$ or $1 \pmod{10}$, $\lambda \notin \{10,11\}$ Let $G_{\mathcal{S}}$ be the representation of $PSL_2(25)$ generated by

> (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25) (1,6,11,16,21)(2,7,12,17,22)(3,8,13,18,23)(4,9,14,19,24)(5,10,15,20,25) (1)(2,7,14,3,13,22,5,25,18,4,19,10)(6,8,20,11,15,9,21,24,12,16,17,23) and

(0,1)(3,4)(6,16)(7,10)(8,12)(9,15)(11,21)(13,18)(14,19)(17,23)(20,24)(22,25)

There are two orbits of 3-element subsets and orbit representatives for them are: $T_1 = \{0,1,2\}$ and $T_2 = \{0,1,6\}$. There are forty-five orbits of 6-element subsets and orbit representatives for them are given in Table XII. Using tools in the design theory toolchest these representatives were obtained and the A_{36} matrix was constructed. The transpose of this matrix can be found in Table XIII. Note that many columns of A_{36} have exactly the same entries. We represent this in Table XIII by listing in a particular row all the orbits which yield the column entries given in that row. From this data it is relatively easy to construct a $3-(26,6,\lambda)$ design for each $\lambda \equiv 0$ or $1 \pmod{10}$, $\lambda \notin \{10,11\}$.

TABLE XII

	<u> </u>	Ð	C	D	E
1	0127912	012679	012369	012567	012367
2	012345	012349	012368	012479	012379
3	012570	0123911	0127910	012789	012689
4	0126711	0127911	0126911	0123912	0126912
8	0127918	0127915	0126714	0126913	0123913
6	01291213	0123914	0123915	0123916	0126716
7	01291115	0123917	0126718	0123923	0123920
8	0123919	0126719	0124919	0123621	01291820
9	0 1 6 11 16 21	0127923	0124923	0123924	0124924

TABLE XIII

	A_{36}^T	
T_1	T_2	Row and column entries of Table XII
0	1	9A
1	. 0	2A
20	20	5B 5D
:8	12	8E
12	8	6D
30	30	5E 9B 9E
12	18	6E 8D
18	12	2C 8B
60	60	1B 1C 1D 1E 3A 3D 4D 5C 7D 7E
24	36	1A 3B 4C 6A 7A 9D
36	24	3C 3E 6C 7B 8C 9C
48	72	4A 4B 4E 5A
72	48	2D 2E 6B 8A
84	36	2B
36	84	7C

A.15. A 4-(20,5,4) Design.

Developing each of the thirteen 5-element subsets in Table XIV with the automorphisms in $AF(19)_{\infty}$ constructs a 4-(20,5,4) design.

TABLE XIV

01234 01378	012310	013611	013411
0131113 013614	013615	013519	0 1 3 11 17
013419	013819	013	10 19

A.16. A 4-(20,6,30) Design.

Developing each of the thirty one 6-element subsets in Table XV with the automorphisms in $AF(19)_{\infty}$ constructs a 4-(20,6,30) design.

TABLE XV

0 1 3 6 10 11	013678	012345	012378	013569
013489	0123511	0123711	0134811	0136911
0123512	0134514	01451113	0 1 3 10 11 18	0134515
0136915	0134516	0136816	0136917	0123517
0123419	0134919	01381119	0 1 3 6 14 19	0 1 3 11 17 19
	013489 0123512 0136915	013489 0123511 0123512 0134514 0136915 0134516	013489 0123511 0123711 0123512 0134514 01451113 0136915 0134516 0136816	013489 0123511 0123711 0134811 0123512 0134514 01451113 013101118 0136915 0134516 0136816 0136917

A.17. 4-(21,6, λ) Designs from $PSL_{2}(19)_{\infty}$.

Let G_{θ} be the representation of $PSL_{2}(19)_{\infty}$ generated by

 $(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19)(\infty)$

 $(0,19,1)(2,10,18)(3,7,9)(4,15,6)(5,16,14)(8)(11,13,17)(12)(\infty)$

A $4-(21,6,\lambda)$ design for each $\lambda \in \{36,40,60\}$ can be obtained by developing the 5-element subsets in the appropriate table below with the

TABLE XVI:4-(21,6,36) design.

0123411 012357 0124511 01247∞ 01239∞

TABLE XVII:4-(21,6,40) design.

0123411 012345 012357 012479 01247 ∞ 012411 ∞

TABLE XVIII:4-(21,6,60) design.

0123411	012347	012357	012479	0124511	0123400
		012	47∞		

A.18. $4-(23,5,\lambda)$ Designs from AF(23).

A $4-(23,5,\lambda)$ design for each $\lambda \in \{2,4,5,6,7,8,9\}$ can be obtained by developing the 5-element subsets in the appropriate table below.

TABLE XIX:A 4-(23,5,2) design.

01378 013411	013512	0 1 3 12 13	014513	013520	0 1 2 5 21

TABLE XX:A 4-(23,5,4) design.

01235	01346	01367	01358	013811
013412	013712	0 1 3 11 12	013813	013514
0 1 3 12 19	013617	0 1 3 15 18	013822	

TABLE XXI:A 4-(23,5,5) design.

01356	01234	01358	01369	013811
012512	013412	0 1 3 5 12	013712	013413
012313	013813	0 1 3 12 14	013714	012516
013617	013519	012520	0 1 3 12 21	0 1 3 10 21

TABLE XXII:A 4-(23,5,6) design.

01235	01346	01367	01358	013811
013412	013712	0 1 3 11 12	013813	013514
0 1 3 12 19	013617	0 1 3 15 18	013822	

TABLE XXIII:A 4-(23,5,7) design.

01356	01234	01346	01257	01358	01349
013710	0 1 2 3 12	014511	013811	013412	0 1 3 5 12
013712	0 1 3 12 15	0 1 3 12 13	012313	013813	013714
0 1 3 5 15	012516	013617	013518	012520	0 1 3 12 21
0 1 3 10 21	0 1 3 8 22	0 1 3 6 22			

TABLE XXIV:A 4-(23,5,8) design.

01345	01235	01257	01347	01457	01369
01378	012311	0 1 3 7 10	013612	013512	013812
013912	013413	0 1 4 5 13	013813	0 1 3 12 14	013614
013714	013615	0 1 3 12 19	0 1 3 12 17	013616	013617
0 1 3 12 18	013519	0 1 3 15 18	013620		

TABLE XXV:A 4-(23,5,9) design.

01368	01356	01234	01346	01358	013410
01369	01378	01231	013710	013411	014511
	01378	012311	013710	013411	014511
013612				012515	0131219
0 1 3 12 14	013514	013814	013714		
0 1 3 12 17	0 1 3 12 16	013617	013521	0 1 3 12 20	0 1 3 5 20
0 1 2 5 20	0 1 2 5 21	0 1 3 12 21	013822		

A.19. A 4-(29,5,5) Design from AF (29)

Developing each of the thirty three 5-element subsets in Table XXVI with the automorphisms in AF(13) constructs a 4-(29,5,5) design.

TABLE XXVI

01234	01236	01356	01258	01279	013410
0 1 3 7 10	013610	012511	013411	0 1 2 5 12	0 1 3 11 13
0 1 4 5 13	0 1 2 9 13	012316	014516	013517	012716
015616	0 1 4 5 17	013618	0 1 2 13 18	013819	0 1 3 5 22
0 1 3 11 23	0 1 3 21 22	013623	012724	0 1 3 11 25	013526
012	5 26	013726	013	11 27	

A.20. 5-(24, k, λ) Designs, k=6 and k=7, from $PSL_2(23)$.

Let $G_{1\theta} = \langle \alpha, \beta \rangle$ be the representation of $PSL_2(23)$ in its action on the projective line given by:

$$\alpha = (0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23)$$

$$\beta = (0,23,1)(2,12,22)(3,16,11)(4,18,15)(5,10,17)(6,20,9)(7,14,19)(8,21,13)$$

Then $5-(24,k,\lambda)$ designs for k=6 and k=7 and each admissible λ can be obtained from G_{10} by developing the orbit representatives given in the appropriate table below

TABLE XXVII: A 5-(24,6,1) design.

012468 0123610 0124920

TABLE XXVIII: A 5-(24,6,2) design.

012456 012478 0124713 0124917

TABLE XXIX: A 5-(24,6,3) design.

012468	0123410	0124911
	0124617	

TABLE XXX: A 5-(24,6,4) design.

012345	012468	012478
0124910	0 1 2 3 6 10	0124613
0124616	0 1 2 4 14 17	0124917

TABLE XXXI: A 5-(24,6,5) design...

012478	010450	010011		· · · · · · · · · · · · · · · · · · ·
	012459	0123410	0124911	0124612
0124712	0124617	0124018	0 1 2 4 14 17	0101000
		0 1 2 1 2 10	0124111	0124922

TABLE XXXII: A 5-(24,6,6) design.

012345	012468	012478	012469	0 1 2 4 9 10
0123610	0124612	0 1 2 4 7 13	0124614	0124918
01241417			0 1 2 4 16 18	01249.10

TABLE XXXIII: A 5-(24,6,7) design.

012478	012459	012469	0 1 2 3 4 10	0123610
0124617	0124913	0124613	0 1 2 4 14 17	0124618
0124920	0124619	0 1 2 4 16 18	0124922	

TABLE XXXIV: A 5-(24,6,8) design.

012345	012468	012478	0124910	012489	0124911
0124611	0124612	0124712	0124914	0123417	0124918
0 1 2 4 14 17	0124917	0124618	0124619	01241618	

TABLE XXXV: A 5-(24,6,9) design.

012468	012469	012489		0 1 2 4 9 13
		0124616	+	0 1 2 4 14 17
0124917	0124619	0 1 2 4 16 18	0124922	

TABLE XXXVI: A 5-(24,7,3) design.

0 1 2 4 9 11 13

TABLE XXXVII: A 5-(24,7,6) design.

0123479 0123489

TABLE XXXVIII: A 5-(24,7,9) design.

01234916 01246918 012491223

TABLE XXXIX: A 5-(24,7,12) design.

01246717 01247918 01245618 012491219

TABLE XL: A 5-(24,7,15) design.

01247917 01247922 01246721 01245922 012491223

TABLE XLI: A 5-(24,7,18) design.

01246716	0 1 2 4 9 12 20	01234919
01245620	01247922	01245922

TABLE XLII: A 5-(24,7,21) design.

0 1 2 4 6 7 17 0 1 2 4 9 12 19	0 1 2 4 7 9 19 0 1 2 4 9 12 23	0 1 2 3 4 9 18

TABLE XLIII: A 5-(24,7,24) design.

01234916	01247916	01247918	01245618
01246918	01234919	012491219	01245922

TABLE XLIV: A 5-(24,7,27) design.

01246716	019 <i>4</i> 7016	01246717	01018050	
01 - 10 1 10	01711910	V1240/1/	01247919	01247918
01045010			· · • -•	0 1 - 1 . 0 10
01245618	01245620	0 1 2 4 9 12 19	በ19 ፈደሰ ዓላ	
		012131213	01240922	

TABLE XLV: A 5-(24,7,30) design.

01246716	01247916	01234917	01247918	01245618
01246918	0 1 2 4 9 12 19	01247921	01246721	01234923

TABLE XLVI: A 5-(24,7,33) design.

01247016	01015010			
0124/910	01247919	01246918	0 1 2 3 6 10 18	01245690
010404040			0 2 2 0 0 10 10	01240020
0 1 2 4 9 12 19	01245920	D 1 2 4 7 G 22	01947091	01004000
		01411344	01241941	01234922
01246716				
01740110				

TABLE XLVII: A 5-(24,7,36) design.

01247916	01246717	01247917	0 1 2 4 9 12 20	01246918
01245620	0 1 2 4 9 12 19	01247922	01234922	0 1 2 4 9 12 23
01234916	0 1 2 3 6 10 18			

TABLE XLVIII: A 5-(24,7,39) design.

01247916	01247919	01234918	01234919	0 1 2 3 6 10 18
012491219	01247922	01247921	01246721	0 1 2 4 9 12 23
01246716	01245620	01234923		