Total No. of Pages 01
Forth SEMESTER
SUPPLEMETARY EXAMINATION

Roll No.
B.Tech(ECE)
SEPT-2019

EC262 DIGITAL ELECTRONICS

TIME: 03 Hrs	MaximumMarks:40
Note: Attempt any five questions. Assume suitable missing data if any.	
1.(a) Convert the given expression in (i) $(X+YZ)(\bar{X}+Y)(Y+Z)$ (ii) $(\bar{A}+\bar{C})(A+\bar{B}+C)$	
(b) Simplify the followings by usin (i) $A\overline{C}D + \overline{A}\overline{B}D + BC\overline{D} + A$ (ii) $f = \pi M(1,3,5,7,10,13,14)$	$\bar{B} + AB \bar{C}$
2. (a) Simplify the following Boolean $F(A,B,C,D,E) = \pi M(0,4,7,8,9,1)$	function using K-map technique 4
(b) Using the tabular method, Simp $F(A,B,C,D,E) = \Sigma m(1,4,7,9,10,E)$	•
3.(a) Design a four bit gray to Binary	converter. 4
(b)Implement a binary full su	btractor logic using suitable size
Multiplexer and Decoder.	. 4
4.(a) Design a 5-4-2-1 to Ex-3 BCD c	ode converter. 4
(b) Implement the following Boolean function using PLA f_1 (A,B,C,D) = Σ M(0,2,6,9,10,12,13)	
$f_2(A,B,C,D)=\Sigma M(1,3,5,8,10,14)$ 5.(a) Discuss the followings: (i) Locking of states in counter	Locking states in a counter typically refers to preventing further changes to the counter's value once a desired state has been reached.
(ii) Resolution of DAC	4
(b) With neat block diagram discuss the working of Successive approximation A/D converter and state its advantages.	
6. (a) With neat block diagram discuss the working of ECL NOR gate	
circuit. State the advantage of ECL over TTL logic family.	
(b) Design a synchronous co 0,2,4,6,9,10,12,13 & repeat by usi	