quence (1, 2, ..., n). For every permutation $\pi = (\pi_1, ..., \pi_n) \in S_n$, let $\operatorname{inv}(\pi)$ be the number of pairs $1 \leq i < j \leq n$ with $\pi_i > \pi_j$; i.e. the number of inversions in π . Denote by f(n) the number of permutations $\pi \in S_n$ for which $\operatorname{inv}(\pi)$ is divisible by n+1.

Let S_n denote the set of permutations of the se-

Prove that there exist infinitely many primes p such that $f(p-1) > \frac{(p-1)!}{p}$, and infinitely many primes p such that $f(p-1) < \frac{(p-1)!}{p}$.