Algorithms

Dana Shapira Lesson #2: Greedy Algorithms Part - I

What is a Greedy Algorithm?

- Solves an optimization problem
- Optimal Substructure:
 - optimal solution contains in it optimal solutions to subproblems
- Greedy Strategy:
 - At each decision point, do what looks best "locally"
 - Top-down algorithmic structure
 - With each step, reduce problem to a smaller problem
- Greedy Choice Property:
 - "locally best" = globally best

Coin Change

Give change for *n* Shekels using the minimum number of coins.

Example: n= ₪ 38

Coin Change

 $S \leftarrow set of all coins$

 $A \leftarrow 0$

while n>0

 $C \leftarrow maximum coin in S$

 $A \leftarrow A + \lfloor n/C \rfloor$

 $n \leftarrow n - \lfloor n/C \rfloor C$

 $s \leftarrow s-\{c\}$

• Can you think of an example where Greedy is not optimal?

4

The Fractional Knapsack Problem

Problem -

You have a knapsack which can only contain certain weight C of goods.

With this weight capacity constraint, you want to maximize the values of the goods you can put in the knapsack.

Example:

	Total value	Total weight (kilos)
Candy	回 1.0	10
Chocolate	回 2.0	1
Ice cream	回 2.5	4

• If C=4 kilos, what would you do?

The Fractional Knapsack Problem

· Problem -

Given $G_1,G_2,...,G_n$, each G_i with weight w_i and value v_i .

Maximize the profit out of the goods you can put in the knapsack with capacity \mathcal{C} .

- Let f_i (0 $\leq f_i \leq 1$) be the fractional of G_i one would put in the knapsack.
- Maximize $\sum_{i=1}^{n} f_i v_i$
- Subject to $\sum_{i=1}^{n} f_i w_i \leq C$

The Fractional Knapsack Problem


```
\begin{split} S &\leftarrow \text{ set of all } V_i/w_i \\ \text{while } C>0 \\ &i \leftarrow \text{ index of maximum value in } S \\ S &\leftarrow S - \left\{V_i/w_i\right\} \\ &\text{ if } (w_i < C) \\ &\quad \text{ print('w_i Kilos of item i were taken')} \\ &\quad C \leftarrow C - w_i \\ &\text{ else} \\ &\quad \text{ print('C Kilos of item i were taken')} \\ &\quad C \leftarrow 0 \end{split}
```

The Integer Knapsack Problem

· Problem -

Given G_1, G_2, \dots, G_n , each G_i with weight w_i and value v_i .

Maximize the profit out of the goods you can put in the knapsack with capacity C.

- This time $f_i=0/1$ is the fractional of G_i
- Maximize $\sum_{i=1}^{n} f_i v_i$
- Subject to $\sum_{i=1}^{n} f_i w_i \leq C$
- Can you think of an example where Greedy is not optimal?

The Integer Knapsack Problem

Value: n 60 n 100 n 120

Activity-Selection

· Problem -

Given S={1,2,...,n} of n activities

- Each activity i has:
 - start time: si
 - finish time : f;
 - s_i < f_i
- Activities i, j are compatible iff non-overlapping:

$$[s_i, f_i) \qquad [s_j, f_j)$$

- Objective:
 - select a <u>maximum-sized</u> set of mutually compatible activities

Activity-Selection

Solution

Order the activities by increasing finishing time, i.e., $f_1 \le f_2 \le ... \le f_n$

Activity-Selection

Greedy-Activity-Selector(s,f)

1.
$$n \leftarrow length(s)$$

2.
$$A \leftarrow \{1\}$$

3. j
$$\leftarrow$$
 1

4. for
$$i = 2$$
 to n

5. if
$$s_i \ge f_i$$

6. then
$$A \leftarrow A \cup \{i\}$$

11

Optimality of Activity-Selection

- Theorem: Algorithm GREED-ACTIVITY-SELECTOR is optimal
- Proof Idea the activity problem satisfied
 - Greedy choice property.
 - Optimal substructure property.
- Proof -
 - Activity 1 has the earliest finish time why?
 Suppose, A⊆S is an optimal solution and let activities in A be ordered by finish time.
 - Suppose, the first activity in A is k.

14

Optimality of Activity-Selection

if k = 1, then A begins with a greedy choice and we are done. if k > 1, we want to show that there is another solution B that begins with greedy choice, activity 1.

Let $B = A - \{k\} \cup \{1\}$. Because $f_1 \le f_k$, the activities in B are disjoint and since B has same number of activities as A, B is also optimal.

Once the greedy choice is made, the problem reduces to finding an optimal solution for the problem. If A is an optimal solution to the original problem S, then $A'=A-\{1\}$ is an optimal solution to the activity-selection problem S $'=\{i\in S: s_i\geq f_i\}$.

why? Because if we could find a solution B' to S' with more activities then A', adding 1 to B' would yield a solution B to S with more activities than A, there by contradicting the optimality. \Box 15