Задача А. Максимальный поток (2 балла)

Имя входного файла: maxflow.in Имя выходного файла: maxflow.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Задан ориентированный граф, каждое ребро которого обладает целочисленной пропускной способностью. Найдите максимальный поток из вершины с номером 1 в вершину с номером n.

Формат входного файла

Первая строка входного файла содержит n и m — количество вершин и количество ребер графа ($2 \le n \le 100, \ 1 \le m \le 1000$). Следующие m строк содержат по три числа: номера вершин, которые соединяет соответствующее ребро графа и его пропускную способность. Пропускные способности не превосходят 10^5 .

Формат выходного файла

В выходной файл выведите одно число — величину максимального потока из вершины с номером 1 в вершину с номером n.

maxflow.in	maxflow.out
4 5	3
1 2 1	
1 3 2	
3 2 1	
2 4 2	
3 4 1	

Задача В. Паросочетание (2 балла)

Имя входного файла: matching.in Имя выходного файла: matching.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан двудольный невзвешенный граф. Необходимо найти максимальное паросочетание.

Формат входного файла

В первой строке входного файла три целых числа n, m и k $(1 \le n, m \le 200, 1 \le k \le n \times m)$ — количество чисел в первой и второй долях, а также число ребер соответственно. Далее следуют k строк, в каждой из которых два числа a_i и b_i , что означает ребро между вершиной с номером a_i первой доли и вершиной с номером b_i второй доли. Вершины в обеих долях нумеруются с единицы.

Формат выходного файла

В выходной файл выведите одно число — максимальное число ребер в паросочетании.

matching.in	matching.out
3 3 5	3
1 1	
1 3	
2 1	
2 2	
3 2	

Задача С. Декомпозиция потока (3 балла)

Имя входного файла: decomposition.in Имя выходного файла: decomposition.out

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Задан ориентированный граф, каждое ребро которого обладает целочисленной пропускной способностью. Найдите максимальный поток из вершины с номером 1 в вершину с номером n и постройте декомпозицию этого потока.

Формат входного файла

Первая строка входного файла содержит n и m — количество вершин и количество ребер графа ($2 \le n \le 500, 1 \le m \le 10000$). Следующие m строк содержат по три числа: номера вершин, которые соединяет соответствующее ребро графа и его пропускную способность. Пропускные способности не превосходят 10^9 .

Формат выходного файла

В первую строку выходного файла выведите одно число — количество путей в декомпозции максимального потока из вершины с номером 1 в вершину с номером n. Следующий строки должны содержать описания элементарых потоков, на который был разбит максимальный. Описание следует выводить в следующем формате: величина потока, количество ребер в пути, вдоль которого течет данный поток и номера ребер в этом пути. Ребра нумеруются с единицы в порядке появления во входном файле.

decomposition.in	decomposition.out
4 5	3
1 2 1	1 2 1 4
1 3 2	1 3 2 3 4
3 2 1	1 2 2 5
2 4 2	
3 4 1	

Задача D. Циркуляция (3 балла)

Имя входного файла: circulation.in Имя выходного файла: circulation.out

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Назовем *циркуляцией* поток величины 0. Дан ориентированный граф с нижними и верхними пропускными способностями, то есть для любых вершин i и j должно быть верно, что $l_{ij} \leq f_{ij} \leq c_{ij}$, где l_{ij} — нижняя граница, а c_{ij} — верхняя. Требуется найти циркуляцию в данном графе, удовлетворяющую данным ограничениям.

Формат входного файла

В первой строке входного файла 2 целых числа N и M ($1 \le N \le 200$, $0 \le M \le 15000$). Далее следуют M строк, описывающие ребра графа. Каждая строка содержит 4 целых положительных числа i, j, l_{ij} и c_{ij} ($0 \le l_{ij} \le c_{ij} \le 10^5$), что означает, что ребро ведет из вершины с номером i в вершину с номером j с нижней границей l_{ij} и верхней c_{ij} . Гарантируется, что если в графе есть ребро из i в j, то нет ребра из j в i.

Формат выходного файла

Если не существует циркуляции удовлетворяющей данным ограничения, выведите NO. Иначе на первой строке выведите YES. Далее в M строках должно содержаться по одному числу. В i-ой строке — величина потока по ребру на i-ой строке во входном файле. Напомним, что для любых i и j должно быть верно, что $l_{ij} \leq f_{ij} \leq c_{ij}$.

circulation.in	circulation.out
4 6	NO
1 2 1 2	
2 3 1 2	
3 4 1 2	
4 1 1 2	
1 3 1 2	
4 2 1 2	
4 6	YES
1 2 1 3	1
2 3 1 3	2
3 4 1 3	3
4 1 1 3	2
1 3 1 3	1
4 2 1 3	1