M.A. Ing. Edgar Darío Álvarez Cotí, Coordinador Guatemala 14 enero del año 2021

EXAMEN SEGUNDA RETRASADA FISICA 2

INSTRUCCIONES GENERALES:

El examen consta de siete problemas. Durante los cálculos realizados en el examen se pide utilizar todos los decimales y la respuesta debe aproximarla a 2 decimales. Debe dejar constancia en sus cálculos, suposiciones y referencias en la solución de cada problema. El problema que no tenga el procedimiento de solución será anulado. Debe enviar su procedimiento al correo indicado. Tiempo de examen 100 minutos.

NOMBRE CARM	NE
NOMBRE CAR	NE

PROBLEMA 1: (10 puntos, 5 puntos cada inciso)

Una esfera hueca conductora, con radio exterior 0.25 m y radio interior de 0.20 m tiene una densidad de carga superficial de $+ 6.37 \,\mu\text{C/m}^2$. Se introduce una carga de $- 0.50 \,\mu\text{C}$ en el centro de la cavidad interna de la esfera.

a) La nueva densidad de carga en la superficie externa de la esfera es de (μ C/m²) Respuesta: = \pm 5.73 tolerancia = \pm 0.03

b) La intensidad de campo eléctrico (en 10 5 N/C) para un radio r = 0.2501m (justo afuera de la esfera) es de: Respuesta = 6.48 tolerancia = ± 0.03

PROBLEMA 2: (10 puntos)

Una varilla delgada se dobla para formar un arco semicircular de radio r = 20 cm, y una carga eléctrica total $Q = 1.5 \times 10^{-9}$ C está distribuida de manera uniforme a lo largo de la varilla. Calcular la magnitud campo eléctrico (en N/C) en el centro de curvatura del arco.

Respuesta = 214.66 tolerancia = ± 0.10

PROBLEMA 3: (10 puntos, 5 puntos cada inciso)

El circuito de la figura se encuentra alimentado por una Fem ε = 24 V y está conformado por las resistencias mostradas y por el capacitor C de $4\mu F$ que inicialmente se encontraba descargado.

a) ¿Qué valor de corriente (en A) pasa por el capacitor ${\it C}$ para un tiempo ${\it t}={\it 0}$ s?

Respuesta = $\frac{1.89}{1.89}$ tolerancia = ± 0.05

b) ¿Cuál es la carga máxima (en μ C) que adquiere el capacitor C?

Respuesta = $\frac{41.14}{1000}$ tolerancia = ± 0.10

PROBLEMA 4: (20 puntos, 10 puntos cada inciso)

Una espira de resistencia 2.0 m Ω está situada como lo muestra la figura respecto de un alambre largo que transporta una corriente y en el instante mostrado i = 0.80 A.

a) ¿Cuál es el flujo magnético (en μ Tm²) a través de la espira? Tomar d= 1cm, D= 6 cm, L = 1.5 m. Recuerde que el flujo magnético no es constante en la espira.

b) ¿Cuál es el valor absoluto de la FEM inducida en la espira (en μ V) en el instante que la corriente se incrementa a razón de 100 A/s? Tomar d= 1cm, D= 6 cm, L = 1.5 m

Respuesta = 53.75 tolerancia = ± 0.05

PROBLEMA 5: (15 puntos)

El circuito de la figura está en un campo magnético uniforme, que está dirigido hacia adentro de la página \otimes , y disminuye a razón de 125 T/s. La corriente total resultante (en A) en el circuito es,

Respuesta = 0.22 tolerancia = ± 0.003

PROBLEMA 6 (15 puntos)

Por una lámpara eléctrica B_1 con filamento de tungsteno, de 60 W, circula una intensidad de corriente de 0.5 A, cuando en estas condiciones funciona a un voltaje de 120 V y la temperatura del filamento es 1800 °C. Si el coeficiente de temperatura de resistividad para el tungsteno es de 4.5 x 10 $^{-3}$ /°C, la resistencia (en Ω) del filamento a una temperatura ambiente (20°C) es

Respuesta = 26.64 tolerancia = ± 0.06

PROBLEMA 7 (20 puntos, 10 puntos cada inciso)

En la figura se muestran tres conductores paralelos, perpendiculares a la página, en la esquina de un cuadrado de lado 2 m, con i = 5A en la dirección mostrada.

a) ¿Cuál es el campo magnético (en μ T) en el punto "P" en magnitud, producido únicamente por los conductores W_1 y W_2 . **Debe realizar el diagrama vectorial** de campo magnético en ese punto.

$\begin{array}{c|cccc} & W_1 \\ & W_2 \\ & W_3 \\ & W_3 \\ & W_4 \\ & W_5 \\ &$

Respuesta = 0.71 tolerancia = ± 0.04

b) ¿Cuál es la fuerza magnética (en μ N), en magnitud y dirección, en 10 m de longitud sobre el conductor W_3 ?

Respuesta = 35.36 tolerancia = ± 0.04