Biçimsel Diller ve Otomata Teorisi

Sunu V Geçiş Çizgeleri

İZZET FATİH ŞENTÜRK

Relaxing the Restiction on Inputs

- In the last chapter, we saw an FA
 - That accepts only the word baa
 - Required five states because an FA can read one letter at a time
- Suppose we design a more powerful machine that can read either one or two letters at a time

Relaxing the Restiction on Inputs

- A variation of FAs
 - We abondon the requirement that the edges eat just one letter at a time
- If we are interested in a machine that accepts only the word baa
 - Why just read two letters at a time?

Relaxing the Restiction on Inputs

- Interprete the picture as an FA-like machine
 - baa get to the final state
 - All other input strings end up nowhere
- If we start in the minus state and the first letter of the input is an a
 - We have not direction as to what to do
- If the input is baabb
 - The first three letters take us to the accept state
 - When we read more of the input letters?
 - According to the rules of FAs, we cannot stop reading input letters until the input string completely runs out

Trash-can State

- When we fail to be able to make any of the allowable edge crossings
 - We assume a trash-can state that we must go
- We consider two pictures to be equivalent
 - They accept the exact same language

Trash-can State

- We introduce a new term to describe what happens when an input is running on a machine and gets into a state from which it cannot escape though it has not yet been fully read
- When an input string that has not been completely read reaches a state (final or otherwise) that it cannot leave because there is no outgoing edge that it may follow
 - We say that the input (or machine) crashes at that state
 - Execution terminates
 - The input is rejected

FAs and Crashes

- It is not possible for any input to crash
 - Because there is always an outgoing a-edge and an outgoing bedge from each state
 - As long as there remains letters unread, progress is possible

TGs and Rejects

- There are two different ways that an input can be rejected
 - Trace a path ending a nonfinal state
 - Crash while being processed

Decisions to Make

- Assume a machine that can read one or two letters at a time
 - Recognize all words that can contain a double letter

- We have changed a fundamental rule in this machine
 - We must decide how many letters to read from the input string each time

Decisions to Make

- Assume that the input string is baa
- It is easy to see how this string is accepted: (b) (aa)
- We reject the same string if read (b)(a)(a)
- What if we read (ba)(a)? The machine crashes
- This situation is totally different than what we had before
 - One path leads to acceptance and one to rejection for the <u>same</u> input

Decisions to Make

- Is this input string part of the language of this machine or not?
 - It cannot depend on the cleverness of the machine operator
 - It must be an absolute yes or no
 - Otherwise, the language is not well defined

Change the Definition of the Abstract Machine

- If we are going to change the definition of the abstract machine
 - To allow for more than one letter to be read at a time
 - We must also change the definition of acceptance
- We shall say that a string is accepted by a machine if there is <u>some</u> way it could be processed as as to arrive at a final state
 - There may also be ways in which this string does not get to a final state, but we ignore all failures

Change the Definition of the Abstract Machine

- We are about to design machines in which
 - any edge in the picture can be labeled by any string of alphabet letters
- We must consider some additional consequences
 - We can encounter the following problem..

Change the Definition of the Abstract Machine

- We can accept the baab in two different ways
 - (baa)(b)
 - (ba)(ab)
- In FAs, we had a unique path for every input string
 - Now, some strings have no paths at all, while some have several

- We have observed many of the difficulties when we expand the definition of "machine" to allow reading more than one letter of input at a time
- We leave the definition of the FA
- We call these <u>new</u> machines transition graphs

Definition of Transition Graphs

- TG is a collection of three things
 - A finite set of states, at least one of which is designated as the start state (-) and some (maybe none) of which are designated as final states (+)
 - An alphabet Σ of possible input letters from which input strings are formed
 - 3. A finite set of transitions (edge labels) that show how to go from some states to some others, based on reading specified substrings of input letters (possible even the null string Λ)

- Some states may have no edge coming out of them at all and some may have thousands (a, aa, aaa, aaaa, ...)
- Transition graphs were invented in 1957
- A successful path through a transition graph is a series of edges forming a path beginning at some start state (there may be several) and ending at a final state

- To produce a word accepted by this machine, concatenate edge labels in the path
 - (abb)(∧)(aa)(b): abbaab
- A means a free ride
 - Without consuming letters
 - We do not have to follow that edge but we can if we want to

- If we are presented with a particular string of a's and b's to run on a given TG
 - We must decide how to break the word into substrings that might correspond to labels of edges in a path
- Consider the input string abbab on the following machine

- The possibility of more than one start state?
- If we allow some edges to be traversed for free (Λ)
 - We can always introduce more start states and connect them to the original start state by edges labeled Λ

- All the strings accepted by the first are accepted by the second and vice versa
- They are equivalent despite differences such as the number of states they have

TGs and FAs

- Every FA is also a TG
- Not every TG satisfies the definition of an FA

A TG that accepts nothing, not even the null string Λ

• To be able to accept anything, it must have a final state

This machine accepts only the string Λ

- Any TG in which some start state is also a final state will always accept the string Λ
 - This is also true for Fas
- ullet There are some other TGs that accept the word $oldsymbol{\Lambda}$
 - Also accepts baa and abba

The following TGs only accept ∧

- We can read all input letters one at a time and stay in the left-side state
 - When we read a b in the state, there are two edges we can follow
 - If the last letter is a b we can use it to go to the + state
- If we try to read another letter in the right state, we crash

- All words that end in b can be accepted by some path
 - The language accepted by this TG is all words ending in b
- One regular expression for this language:

$$(a + b)*b$$

 An FA that accepts the same language:

 The language of all words that begin and end with different letters

• The language of all words in which the a's occur only in even clumps and that end in three or more b's

• **EVEN-EVEN:** The language of all words with an even number of a's and an even number of b's

Even-Even: TG vs FA vs RE

- We have reviewed three examples of definitions of this language
 - TG is the most understandable
 - A practical problem with TGs? So many possible ways of grouping the letters of the input string. More complicated to decide whether the given string is accepted or rejected
- [aa + bb + (ab + ba)(aa + bb)*(ab + ba)]*

Is the word abbbabbabba accepted by this machine?

- The only word accepted by this machine is the single word
 - But it can be accepted by infinitely many different paths
- Λ-loop-edges can make life difficult
 - When we trim away Λ -loops, the graph is still a TG and accepts the same set of input strings
 - Why did we ever allow Λ-loops in the first place?

A Loops

- The definition is simple and universal with Λ -loops
 - Any edges, anywhere, with any labels
- We will see in Chapter 7 that Λ-edges are never necessary at all
 - Any language that can be accepted by a TG with Λ -edges can be accepted by some different TG without Λ -edges

A Loops

• It is obvious how to eliminate the Λ -loop

 But in this machine, if any Λ option is erased, the resultant language is changed

Generalized Transition Graph (GTG)

- GTG is a collection of three things
 - A finite set of states of which at least one is a start state and some (maybe none) are final states
 - 2. An alphabet Σ of input letters
 - 3. Directed edges connecting some pairs of states each labeled with a regular expression

 The machine that accepts all strings without a double b

Kleene Star vs Loop

Choose Λ from b^* for no loop in the middle

Nondeterminism

- The ultimate path through the machine is not determined by the input alone.
- Human choice becomes a factor in selecting the path
- This machine is **nondeterministic**
- The machine does not make all its own determinations

