1	
2	A dynamic microbial sulfur cycle in a serpentinizing continental ophiolite
3	
4	Mary C. Sabuda ^{1,a,b} , William J. Brazelton ² , Lindsay I. Putman ^{1,3} , Tom M. McCollom ⁴ , Tori M
5	Hoehler ⁵ , Michael D.Y. Kubo ^{5, 6} , Dawn Cardace ⁷ , Matthew O. Schrenk ^{1,3,a}
6	
7	
8	
9	Supporting Information

Figures

Figure S1 - Fluid salinity for CROMO wells. CROMO monitoring well sodium and chloride values (μ M) are compared. Wells are grouped into three clusters based upon their drilled depth. Shallow represents wells drilled to < 15 m (CSW1.4, N08-C, QV1.2, CSW1.2), medium represents wells drilled between 15 and 20 m (CSW1.1, QV1.1, CSW1.3, N08-B), and deep represents wells drilled to depths < 20 m (CSW1.5, QV1.3, N08-A, CSWold).

Figure S2 – Br-Cl values for CROMO wells. Measured values for bromide and chloride are plotted here. All values offset the seawater dilution line to slightly higher ratios, as some Cl was likely removed from the fluid at depth, through substitution of Cl for hydroxyl groups in serpentine or precipitated in Cl-bearing minerals such as iowaite.

Tables

Table S1 – CROMO aqueous geochemistry measured for this study.

Table S2 – Collection of global serpentinite water chemistry from previously published studies of serpentinizing systems around the world.

Table S3 – Sulfur and related water chemistry reported since CROMO establishment.

Table S4 – A table of all operational taxonomic units (OTUs) present at CROMO in greater than 1% abundance and used for statistical analyses.

Table S5 – All statistically significant Pearson's correlation analyses (p < 0.05) of measured environmental parameters and OTUs.

Table S6 – A list of all statistically significant Pearson's correlations between measured environmental variables.

Table S7 – Thermodynamic Gibbs Free Energy calculations for select sulfur reactions at CROMO.

Table S8 – Thermodynamic Gibbs free energy calculations for select thiosulfate reactions using a range of thiosulfate values.

Table S9 – Bacterial species present in greater than 1% relative abundance in CSWold

Table S10 – KEGG accession, genes, and transcripts associated with MetaCyc sulfur metabolic pathways.

Table S11 – All quantified metagenome and metatranscriptome abundances in CROMO waters for select sulfur pathways through time.

Table S12 – Log₂ Fold Changes for CROMO metatranscriptomic data

Table S13 – *PhyloPythiaS*+ assigned taxonomy for each contig encoding a sulfur gene and calculated abundance of each contig in each metagenome and metatranscriptome.

Table S14 – *dsrB* phylogenetic tree data

Table S1: CROMO July 2014 Aqueous Geochemistry

Well	Well depth (m)	рН	T (°C)	Cond. (µS)	DO (mg/L)	ORP (mV)	Br ⁻	Cľ	F ⁻	NO ₂	NO ₃	SO ₄ ²⁻	HS ⁻	Ca ²⁺	Na ⁺	Mg ²⁺	K⁺	Mn ²⁺	Fe	Sr	H ₂	со	СН₄	DIC	HC00 [.]	CH₃COO
CSW1.4	8.80	7.75	15.05	1950	2.36	116	46.93	9622.33	13.69	< 1.45	2.58	391.94	1.00	782.73	16082.76	826.37	118.21	<3.14	81.09	3.60	0.29	0.16	3.66	3870.12	1.00	1.00
N08-C	13.70	8.46	15.53	1372	0.42	-153	46.06	7556.82	14.21	< 1.45	13.87	51.22	1.00	487.88	11027.28	176.01	179.17	<3.14	23.98	6.07	0.26	0.04	1.13	674.65	1.00	1.00
QV 1.2	14.90	9.47	17.09	3042	0.40	-143	106.00	28676.00	11.58	< 1.45	< 1.61	32.00	1.00	559.39	26113.34	23.03	156.86	<3.14	52.95	5.13	0.49	0.17	263.77	682.16	1.00	1.00
CSW1.2	19.20	7.76	15.97	4495	0.25	-119	83.60	32994.62	18.95	78.99	< 1.61	191.65	1.00	772.23	38690.27	26.80	287.44	<3.14	14.92	10.34	0.18	0.11	783.87	1238.59	1.00	1.00
CSW1.1	19.50	12.32	16.31	4453	0.43	-297	30.79	1956.11	26.84	< 1.45	< 1.61	266.19	12.88	706.47	18847.22	3.13	1111.17	<3.14	46.01	22.70	0.79	0.18	593.90	192.00	19.00	57.00
QV 1.1	23.00	11.51	17.52	2854	0.28	-234	60.20	16172.67	16.32	< 1.45	< 1.61	257.13	4.76	1978.56	17840.16	3.13	967.73	<3.14	34.78	13.53	0.25	0.12	286.46	45.43	1.00	6.10
CSW1.3	23.20	10.15	15.64	4842	0.16	-205	94.61	39610.63	11.58	< 1.45	< 1.61	151.16	1.00	808.86	40831.81	3.13	307.55	<3.14	17.18	10.55	2.89	0.11	1138.16	254.95	1.00	1.00
N08-B	26.20	10.68	16.12	3132	0.76	-198	65.70	23610.94	15.26	< 1.45	< 1.61	27.69	1.00	1139.10	25520.89	3.13	237.87	<3.14	74.44	17.96	0.09	0.06	303.20	28.04	1.00	1.00
CSW1.5	27.40	9.77	15.80		0.16			40001.66									332.29	<3.14					1075.03		1.00	1.00
QV 1.3	34.60	9.68	16.60		0.26			74557.95									333.49	<3.14	32.66				1281.63		1.00	7.90
N08-A	39.60	10.89	16.85	6335	0.09			54610.27							51245.33		450.21	<3.14	00.00	86.04	0.00	0.0.	1268.96		1.00	1.00
CSW OLD	76.20	9.73	17.43	11529	0.26	-280	166.45	81853.64	15.79	< 1.45	< 1.61	139.29	8.39	1660.11	73939.94	3.13	540.29	<3.14	47.86	38.89	0.15	0.25	1316.97	44.24	1.00	1.00

Anions, cations, and dissolved gases are reported in micromolar concentrations

Gases are reported as concentration dissolved in fluid

Acetate and Formate values listed were estimated based on data from previous sampling trips

T = temperature; Cond = conductivity; DO = dissolved oxygen; ORP = oxidation reduction potential; DIC = dissolved inorganic carbon

Table S2: Terrestrial Serpentinizing Systems Selected Water Chemistry Parameters

Site Name	Well/ Specific Name	Conductivity (µS/cm)	рН	SO ₄ ²⁻ (μM)	Cl⁻(μM)	Na ⁺ (μM)	References
CROMO, California, USA	CSW 1,1	4453.00	12.32	266.19	1956.11	18847.22	This Work
CROMO, California, USA	CSW 1,2	4495.00	7.76	191.65	32994.62	38690.27	This Work
CROMO, California, USA	CSW 1,3	4842.00	10.15	151.16	39610.63	40831.81	This Work
CROMO, California, USA	CSW 1,4	1950.00	7.75	391.94	9622.33	16082.76	This Work
CROMO, California, USA	CSW 1,5	4792.00	9.77	317.41	40001.66	42202.20	This Work
CROMO, California, USA	CSW OLD	11529.00	9.86	139.29	81853.64	73939.94	This Work
CROMO, California, USA	N-08 A	6335.00	10.89	40.18	54610.27	51245.33	This Work
CROMO, California, USA	N-08 B	3132.00	10.68	27.69	23610.94	25520.89	This Work
CROMO, California, USA	N-08 C	1372.00	8.46	51.22	7556.82	11027.28	This Work
CROMO, California, USA	QV 1,1	2854.00	11.51	257.13	16172.67	17840.16	This Work
	· · · · · · · · · · · · · · · · · · ·						
CROMO, California, USA	QV 1,2	3042.00	9.47	32.00	28676.00	26113.34	This Work
CROMO, California, USA	QV 1,3	6507.00	9.68	55.69	74557.95	51677.62	This Work
Oman	Yellowstone du pauvre	2700.00	10.10	349.00	21052.00	22086.00	Chavagnac et al., 2013
Oman	Yellowstone du pauvre	2210.00	11.90	15.00	9844.00	10740.00	Chavagnac et al., 2013
Oman	Little Grand Canon	1730.00	11.80	5.00	6091.00	6261.00	Chavagnac et al., 2013
Oman	Little Grand Canon	1690.00	11.70	1.00	5701.00	5939.00	Chavagnac et al., 2013
Oman	Izki les 2 puits	810.00	7.80	71.00	5136.00	7647.00	Chavagnac et al., 2013
Oman	Izki les 2 puits	920.00	11.20	28.00	5464.00	5373.00	Chavagnac et al., 2013
Oman	Le partage du midi	2250.00	11.70	3.00	10301.00	11965.00	Chavagnac et al., 2013
Oman	Lac bleu de Bahla	780.00	10.80	179.00	5215.00	5412.00	Chavagnac et al., 2013
Oman	Rustag	980.00	8.20	812.00	4007.00	5489.00	Chavagnac et al., 2013
Oman	La poule au pot	1870.00	11.30	45.00	11027.00	10094.00	Chavagnac et al., 2013
		1360.00	7.90	2433.00	5327.00	6446.00	_
Oman	L'ane blanc						Chavagnac et al., 2013
Oman	Two shoes	1480.00	11.60	40.00	4511.00	6581.00	Chavagnac et al., 2013
Oman	Two shoes	1480.00	11.60	41.00	3009.00	6691.00	Chavagnac et al., 2013
Oman	Irma (Yellowstone du pauvre)	2540.00	10.50	44.00	11154.00	18311.00	Chavagnac et al., 2013
Oman	Irma (Yellowstone du pauvre)	2540.00	10.50	46.00	11632.00	18579.00	Chavagnac et al., 2013
Oman	Irma (Yellowstone du pauvre)	2650.00	9.90	48.00	12752.00	20366.00	Chavagnac et al., 2013
Oman	Irma (Yellowstone du pauvre)	2650.00	9.90	48.00	12926.00	20304.00	Chavagnac et al., 2013
New Caledonia	La Coulee 1	n.r.	10.80	7.81	628.57	634.78	Barnes et al., 1978
New Caledonia	La Coulee 2	n.r.	10.70	60.38	465.71	1134.78	Barnes et al., 1978
Liguria, Italy	Fiorino village	n.r.	9.50	12.60	600.00	570.00	Chavagnac et al., 2013
Liguria, Italy	Fiorino village	n.r.	9.50	11.20	600.00	580.00	Chavagnac et al., 2013
Liguria, Italy	Rio Dellecave	n.r.	6.70	31.80	130.00	110.00	Chavagnac et al., 2013
Liguria, Italy	Acquasanta	n.r.	11.70	3.30	450.00	1260.00	Chavagnac et al., 2013
Liguria, Italy	Acquasanta	n.r.	11.70	3.00	450.00	1270.00	Chavagnac et al., 2013
Liguria, Italy	Acquasanta	n.r.	11.70	3.40	450.00	1270.00	Chavagnac et al., 2013
Liguria, Italy	Ponte Arma		9.50	32.80	560.00	450.00	Chavagnac et al., 2013
		n.r.					,
Liguria, Italy	Rio Leone	n.r.	11.30	19.20	650.00	550.00	Chavagnac et al., 2013
Liguria, Italy	Rio Leone	n.r.	11.30	16.70	640.00	550.00	Chavagnac et al., 2013
Liguria, Italy	Rio Leone	n.r.	11.30	7.50	550.00	430.00	Chavagnac et al., 2013
Liguria, Italy	Rio Leone	n.r.	11.30	5.00	550.00	430.00	Chavagnac et al., 2013
Liguria, Italy	Rio Branega	n.r.	11.50	0.60	500.00	1050.00	Chavagnac et al., 2013
Liguria, Italy	Rio Branega	n.r.	11.50	0.50	500.00	1040.00	Chavagnac et al., 2013
Liguria, Italy	Gorzente (lago Lavagnina)	n.r.	11.20	10.50	220.00	280.00	Chavagnac et al., 2013
Liguria, Italy	Gorzente (lago Lavagnina)	n.r.	11.20	10.40	220.00	280.00	Chavagnac et al., 2013
Liguria, Italy	Gorzente (lago Lavagnina)	n.r.	11.50	0.80	220.00	300.00	Chavagnac et al., 2013
Liguria, Italy	Gorzente (lago Lavagnina)	n.r.	11.20	1.20	310.00	410.00	Chavagnac et al., 2013
Liguria, Italy	Gorzente	n.r.	11.60	1.40	420.00	850.00	Chavagnac et al., 2013
Liguria, Italy	Gorzente	n.r.	11.60	1.30	420.00	860.00	Chavagnac et al., 2013
Liguria, Italy	Maddalena (Don Orione)	n.r.	11.10	23.60	420.00	740.00	Chavagnac et al., 2013
Liguria, Italy	Maddalena (Don Orione)	n.r.	11.10	23.80	420.00	740.00	Chavagnac et al., 2013
Genova Province, Italy	V18		11.37	42.68			Cipolli et al., 2004
, ,		n.r.			n.r.	n.r.	
Genova Province, Italy	BR1	n.r.	11.86	1.46	n.r.	n.r.	Cipolli et al., 2004
Genova Province, Italy	L43	n.r.	11.52	4.58	n.r.	n.r.	Cipolli et al., 2004
Genova Province, Italy	S70	n.r.	11.42	190.51	n.r.	n.r.	Cipolli et al., 2004
Genova Province, Italy	C11	n.r.	10.50	263.38	n.r.	n.r.	Cipolli et al., 2004
Genova Province, Italy	A1	n.r.	11.57	133.25	n.r.	n.r.	Cipolli et al., 2004
Genova Province, Italy	V18	n.r.	11.37	42.68	11700.00	16600.00	Cipolli et al., 2004
Genova Province, Italy	BR1	n.r.	11.86	1.46	21700.00	23700.00	Cipolli et al., 2004
Genova Province, Italy	L43	n.r.	11.52	4.58	18600.00	28300.00	Cipolli et al., 2004
Genova Province, Italy	S70	n.r.	11.42	190.51	23300.00	5500.00	Cipolli et al., 2004
Genova Province, Italy	C11	n.r.	10.50	263.38	23200.00	12800.00	Cipolli et al., 2004
Genova Province, Italy	LER20	n.r.	11.57	133.25	26500.00	12700.00	Cipolli et al., 2004
Genova Province, Italy	BR2	n.r.	11.73	1.04	30500.00	41100.00	Cipolli et al., 2004
Conova i Tovilloe, Italy	DIXE	11.1.	11.73	1.07	00000.00	- 1 100.00	Oiponi et al., 2004

One and Description Halis							
Genova Province, Italy	ERR20	n.r.	11.36	32.06	15400.00	16500.00	Cipolli et al., 2004
Genova Province, Italy	GOR34	n.r.	11.68	1.04	17300.00	18500.00	Cipolli et al., 2004
Genova Province, Italy	GOR34A	n.r.	11.55	5.73	15000.00	18300.00	Cipolli et al., 2004
							•
Genova Province, Italy	LER18A	n.r.	11.38	12.28	18900.00	6800.00	Cipolli et al., 2004
Genova Province, Italy	LER2	n.r.	11.11	39.35	19700.00	10300.00	Cipolli et al., 2004
Genova Province, Italy	LER20	n.r.	11.53	15.93	27900.00	12700.00	Cipolli et al., 2004
Genova Province, Italy	LER2I	n.r.	11.49	11.56	23100.00	9900.00	Cipolli et al., 2004
Genova Province, Italy	ORB101	n.r.	10.59	34.77	14700.00	3900.00	Cipolli et al., 2004
Genova Province, Italy	PIO14	n.r.	10.69	17.49	17200.00	53000.00	Cipolli et al., 2004
Genova Province, Italy	S70	n.r.	11.48	22.28	23900.00	5400.00	Cipolli et al., 2004
Genova Province, Italy	V18	n.r.	11.31	47.89	11200.00	16100.00	Cipolli et al., 2004
Genova Province, Italy	GOR35	n.r.	11.44	1.04	8960.00	6700.00	Cipolli et al., 2004
Genova Province, Italy	L43	n.r.	11.55	4.68	20800.00	27700.00	Cipolli et al., 2004
Genova Province, Italy	BR1		11.79	2.08	20800.00	23500.00	Cipolli et al., 2004
		n.r.					•
Genova Province, Italy	BR3	n.r.	11.72	15.62	17400.00	18400.00	Cipolli et al., 2004
Genova Province, Italy	PIO14	n.r.	10.49	26.23	19600.00	53600.00	Cipolli et al., 2004
Genova Province, Italy	GOR36	n.r.	9.95	30.71	46100.00	84000.00	Cipolli et al., 2004
Genova Province, Italy	V99	n.r.	11.28	212.37	97400.00	68100.00	Cipolli et al., 2004
The Cedars, California, USA	NS1	740.00	11.50	1.00	945.00	945.00	Morrill et al., 2013
The Cedars, California, USA	BS5	870.00	11.60	1.00	1490.00	1980.00	Morrill et al., 2013
The Cedars, California, USA	CREEK	3010.00	8.70	8.00	230.00	60.00	Morrill et al., 2013
The Cedars, California, USA	NS1	740.00	11.50	1.00	970.00	960.00	Suzuki et al., 2013
							·
The Cedars, California, USA	BS5	800.00	11.50	1.00	1450.00	1940.00	Suzuki et al., 2013
Santa Elena, Costa Rica	Camino al inglés	425.00	7.85	26.34	45.14	52.57	Sanchez-Murillo et al., 2014
Santa Elena, Costa Rica	Poza del General	404.00	8.45	23.63	69.14	96.83	Sanchez-Murillo et al., 2014
Santa Elena, Costa Rica	Río Murciélago springs	428.00	7.45	18.22	53.43	74.35	Sanchez-Murillo et al., 2014
Santa Elena, Costa Rica	Casa de Zinc	369.00	8.43	20.92	66.86	76.96	Sanchez-Murillo et al., 2014
Santa Elena, Costa Rica	Río Calera 4	397.00	8.53	18.01	49.43	57.57	Sanchez-Murillo et al., 2014
Santa Elena, Costa Rica	Río Calera 3	401.00	8.24	16.55	48.00	62.17	Sanchez-Murillo et al., 2014
Santa Elena, Costa Rica	Nancite spring	681.00	8.77	30.50	171.71	112.52	Sanchez-Murillo et al., 2014
-		560.00	7.42	21.03	101.71	92.57	•
Santa Elena, Costa Rica	Los Pargos Spring						Sanchez-Murillo et al., 2014
Santa Elena, Costa Rica	Casa de Zinc	545.00	8.46	24.05	56.00	70.43	Sanchez-Murillo et al., 2014
Santa Elena, Costa Rica	Río Murciélago	643.00	7.26	14.68	38.00	65.65	Sanchez-Murillo et al., 2014
Santa Elena, Costa Rica	Quebrada Danta	412.00	8.30	21.03	65.14	426.09	Sanchez-Murillo et al., 2014
Santa Elena, Costa Rica	Río Calera	558.00	8.40	15.30	39.71	56.96	Sanchez-Murillo et al., 2014
Santa Elena, Costa Rica	Pozo Aguas Calientes	535.00	7.20	59.75	1181.43	704.78	Sanchez-Murillo et al., 2014
Red Mountain, California, USA	Red Mountain	n.r.	11.78	14.57	914.29	1739.13	Barnes et al., 2015
Zambales, Philippines	Manleluag 1, ML1	315.00	10.90	7.29	514.29	1000.00	Cardace et al., 2015
Zambales, Philippines	Manleluag 2, ML2	337.00	10.80	7.29	534.29	1060.87	•
Zambalae Dhilinninge	<u>-</u>						Cardace et al., 2015
Zambales, Philippines	Manleluag 3, ML3	307.00	10.80	8.33	485.71	982.61	Cardace et al., 2015
Zambales, Philippines	Manleluag 3, ML3 Bigbiga well, BB1	307.00 349.00	10.80 9.30	8.33 492.40	485.71 125.71	982.61 4369.57	Cardace et al., 2015 Cardace et al., 2015
Zambales, Philippines Zambales, Philippines	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1	307.00 349.00 505.00	10.80 9.30 11.30	8.33 492.40 1.04	485.71 125.71 685.71	982.61 4369.57 1039.13	Cardace et al., 2015 Cardace et al., 2015 Cardace et al., 2015
Zambales, Philippines Zambales, Philippines Zambales, Philippines	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool]	307.00 349.00 505.00 229.00	10.80 9.30 11.30 9.20	8.33 492.40 1.04 1.04	485.71 125.71 685.71 322.86	982.61 4369.57 1039.13 447.83	Cardace et al., 2015 Cardace et al., 2015 Cardace et al., 2015 Cardace et al., 2015
Zambales, Philippines Zambales, Philippines	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1	307.00 349.00 505.00	10.80 9.30 11.30	8.33 492.40 1.04	485.71 125.71 685.71	982.61 4369.57 1039.13	Cardace et al., 2015 Cardace et al., 2015 Cardace et al., 2015
Zambales, Philippines Zambales, Philippines Zambales, Philippines Zambales, Philippines Zambales, Philippines Zambales, Philippines	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool]	307.00 349.00 505.00 229.00	10.80 9.30 11.30 9.20	8.33 492.40 1.04 1.04	485.71 125.71 685.71 322.86	982.61 4369.57 1039.13 447.83	Cardace et al., 2015 Cardace et al., 2015 Cardace et al., 2015 Cardace et al., 2015
Zambales, Philippines Zambales, Philippines Zambales, Philippines Zambales, Philippines	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3	307.00 349.00 505.00 229.00 606.00	10.80 9.30 11.30 9.20 11.30	8.33 492.40 1.04 1.04 0.00	485.71 125.71 685.71 322.86 511.43	982.61 4369.57 1039.13 447.83 678.26	Cardace et al., 2015 Cardace et al., 2015 Cardace et al., 2015 Cardace et al., 2015 Cardace et al., 2015
Zambales, Philippines Zambales, Philippines Zambales, Philippines Zambales, Philippines Zambales, Philippines Zambales, Philippines	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1	307.00 349.00 505.00 229.00 606.00 516.00	10.80 9.30 11.30 9.20 11.30 10.50	8.33 492.40 1.04 1.04 0.00 40.60	485.71 125.71 685.71 322.86 511.43 1640.00	982.61 4369.57 1039.13 447.83 678.26 3982.61	Cardace et al., 2015 Cardace et al., 2015
Zambales, Philippines	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1	307.00 349.00 505.00 229.00 606.00 516.00 784.00	10.80 9.30 11.30 9.20 11.30 10.50 9.70	8.33 492.40 1.04 1.04 0.00 40.60 100.98	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09	Cardace et al., 2015 Cardace et al., 2015
Zambales, Philippines	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1 Manleluag 2, ML2	307.00 349.00 505.00 229.00 606.00 516.00 784.00 388.00	10.80 9.30 11.30 9.20 11.30 10.50 9.70 10.80	8.33 492.40 1.04 1.04 0.00 40.60 100.98 192.59	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29 485.71 482.86	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09 813.04	Cardace et al., 2015 Cardace et al., 2015
Zambales, Philippines	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1 Manleluag 2, ML2 Manleluag 3, ML3 Bigbiga well, BB1	307.00 349.00 505.00 229.00 606.00 516.00 784.00 388.00 270.00 428.00	10.80 9.30 11.30 9.20 11.30 10.50 9.70 10.80 10.30 7.00	8.33 492.40 1.04 1.04 0.00 40.60 100.98 192.59 200.92 485.11	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29 485.71 482.86 280.00	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09 813.04 860.87 8691.30	Cardace et al., 2015
Zambales, Philippines	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1 Manleluag 2, ML2 Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1	307.00 349.00 505.00 229.00 606.00 516.00 784.00 388.00 270.00 428.00 232.00	10.80 9.30 11.30 9.20 11.30 10.50 9.70 10.80 10.30 7.00 9.60	8.33 492.40 1.04 1.04 0.00 40.60 100.98 192.59 200.92 485.11 99.94	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29 485.71 482.86 280.00 354.29	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09 813.04 860.87 8691.30 834.78	Cardace et al., 2015
Zambales, Philippines	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1 Manleluag 2, ML2 Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2	307.00 349.00 505.00 229.00 606.00 516.00 784.00 388.00 270.00 428.00 232.00 189.00	10.80 9.30 11.30 9.20 11.30 10.50 9.70 10.80 10.30 7.00 9.60 8.70	8.33 492.40 1.04 1.04 0.00 40.60 100.98 192.59 200.92 485.11 99.94 927.55	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29 485.71 482.86 280.00 354.29 311.43	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09 813.04 860.87 8691.30 834.78 643.48	Cardace et al., 2015
Zambales, Philippines	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1 Manleluag 2, ML2 Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 Maria Rita (b)	307.00 349.00 505.00 229.00 606.00 516.00 784.00 388.00 270.00 428.00 232.00 189.00	10.80 9.30 11.30 9.20 11.30 10.50 9.70 10.80 10.30 7.00 9.60 8.70 8.04	8.33 492.40 1.04 1.04 0.00 40.60 100.98 192.59 200.92 485.11 99.94 927.55	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29 485.71 482.86 280.00 354.29 311.43	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09 813.04 860.87 8691.30 834.78 643.48	Cardace et al., 2015
Zambales, Philippines	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1 Manleluag 2, ML2 Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 Maria Rita (b) Vale Fabiano (sp)	307.00 349.00 505.00 229.00 606.00 516.00 784.00 388.00 270.00 428.00 232.00 189.00	10.80 9.30 11.30 9.20 11.30 10.50 9.70 10.80 10.30 7.00 9.60 8.70 8.04 7.37	8.33 492.40 1.04 1.04 0.00 40.60 100.98 192.59 200.92 485.11 99.94 927.55 181.14 185.51	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29 485.71 482.86 280.00 354.29 311.43	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09 813.04 860.87 8691.30 834.78 643.48	Cardace et al., 2015 Marques, et al., 2008 Marques, et al., 2008
Zambales, Philippines Cabeco de Vide, Portugal Cabeco de Vide, Portugal Cabeco de Vide, Portugal	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1 Manleluag 2, ML2 Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 Maria Rita (b) Vale Fabiano (sp) Furo da Camara (b)	307.00 349.00 505.00 229.00 606.00 516.00 784.00 388.00 270.00 428.00 232.00 189.00	10.80 9.30 11.30 9.20 11.30 10.50 9.70 10.80 10.30 7.00 9.60 8.70 8.04 7.37 7.54	8.33 492.40 1.04 1.04 0.00 40.60 100.98 192.59 200.92 485.11 99.94 927.55 181.14 185.51 150.11	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29 485.71 482.86 280.00 354.29 311.43 576.57 314.00 259.43	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09 813.04 860.87 8691.30 834.78 643.48 1208.70 508.70 415.65	Cardace et al., 2015 Marques, et al., 2008 Marques, et al., 2008
Zambales, Philippines	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1 Manleluag 2, ML2 Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 Maria Rita (b) Vale Fabiano (sp)	307.00 349.00 505.00 229.00 606.00 516.00 784.00 388.00 270.00 428.00 232.00 189.00	10.80 9.30 11.30 9.20 11.30 10.50 9.70 10.80 10.30 7.00 9.60 8.70 8.04 7.37	8.33 492.40 1.04 1.04 0.00 40.60 100.98 192.59 200.92 485.11 99.94 927.55 181.14 185.51	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29 485.71 482.86 280.00 354.29 311.43	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09 813.04 860.87 8691.30 834.78 643.48	Cardace et al., 2015 Marques, et al., 2008 Marques, et al., 2008
Zambales, Philippines Cabeco de Vide, Portugal Cabeco de Vide, Portugal Cabeco de Vide, Portugal	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1 Manleluag 2, ML2 Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 Maria Rita (b) Vale Fabiano (sp) Furo da Camara (b)	307.00 349.00 505.00 229.00 606.00 516.00 784.00 388.00 270.00 428.00 232.00 189.00 n.r. n.r.	10.80 9.30 11.30 9.20 11.30 10.50 9.70 10.80 10.30 7.00 9.60 8.70 8.04 7.37 7.54	8.33 492.40 1.04 1.04 0.00 40.60 100.98 192.59 200.92 485.11 99.94 927.55 181.14 185.51 150.11	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29 485.71 482.86 280.00 354.29 311.43 576.57 314.00 259.43	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09 813.04 860.87 8691.30 834.78 643.48 1208.70 508.70 415.65	Cardace et al., 2015 Marques, et al., 2008 Marques, et al., 2008
Zambales, Philippines Cabeco de Vide, Portugal Cabeco de Vide, Portugal Cabeco de Vide, Portugal Turkey Turkey	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1 Manleluag 2, ML2 Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 Maria Rita (b) Vale Fabiano (sp) Furo da Camara (b) YT-0m YT-S8.8m	307.00 349.00 505.00 229.00 606.00 516.00 784.00 388.00 270.00 428.00 232.00 189.00 n.r. n.r. n.r.	10.80 9.30 11.30 9.20 11.30 10.50 9.70 10.80 10.30 7.00 9.60 8.70 8.04 7.37 7.54 11.95 9.40	8.33 492.40 1.04 1.04 0.00 40.60 100.98 192.59 200.92 485.11 99.94 927.55 181.14 185.51 150.11 83.28 302.94	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29 485.71 482.86 280.00 354.29 311.43 576.57 314.00 259.43 522.86 694.57	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09 813.04 860.87 8691.30 834.78 643.48 1208.70 508.70 415.65 499.13 532.61	Cardace et al., 2015 Marques, et al., 2008 Marques, et al., 2008 Meyer-Dombard et al., 2015 Meyer-Dombard et al., 2015
Zambales, Philippines Cabeco de Vide, Portugal Cabeco de Vide, Portugal Cabeco de Vide, Portugal Turkey Turkey Leka Ophiolite Complex	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1 Manleluag 2, ML2 Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 Maria Rita (b) Vale Fabiano (sp) Furo da Camara (b) YT-0m YT-S8.8m gw 1	307.00 349.00 505.00 229.00 606.00 516.00 784.00 388.00 270.00 428.00 232.00 189.00 n.r. n.r. n.r. n.r.	10.80 9.30 11.30 9.20 11.30 10.50 9.70 10.80 10.30 7.00 9.60 8.70 8.04 7.37 7.54 11.95 9.40 9.56	8.33 492.40 1.04 1.04 0.00 40.60 100.98 192.59 200.92 485.11 99.94 927.55 181.14 185.51 150.11 83.28 302.94 27.00	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29 485.71 482.86 280.00 354.29 311.43 576.57 314.00 259.43 522.86 694.57	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09 813.04 860.87 8691.30 834.78 643.48 1208.70 508.70 415.65 499.13 532.61	Cardace et al., 2015 Marques, et al., 2008 Marques, et al., 2008 Meyer-Dombard et al., 2015 Meyer-Dombard et al., 2015
Zambales, Philippines Cabeco de Vide, Portugal Cabeco de Vide, Portugal Cabeco de Vide, Portugal Turkey Turkey Leka Ophiolite Complex Leka Ophiolite Complex	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1 Manleluag 2, ML2 Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 Maria Rita (b) Vale Fabiano (sp) Furo da Camara (b) YT-0m YT-S8.8m gw 1 gw 2	307.00 349.00 505.00 229.00 606.00 516.00 784.00 388.00 270.00 428.00 232.00 189.00 n.r. n.r. n.r. n.r.	10.80 9.30 11.30 9.20 11.30 10.50 9.70 10.80 10.30 7.00 9.60 8.70 8.04 7.37 7.54 11.95 9.40 9.56 8.58	8.33 492.40 1.04 1.04 0.00 40.60 100.98 192.59 200.92 485.11 99.94 927.55 181.14 185.51 150.11 83.28 302.94 27.00 38.00	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29 485.71 482.86 280.00 354.29 311.43 576.57 314.00 259.43 522.86 694.57 414.00 519.00	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09 813.04 860.87 8691.30 834.78 643.48 1208.70 508.70 415.65 499.13 532.61 429.00 535.00	Cardace et al., 2015 Marques, et al., 2008 Marques, et al., 2008 Marques, et al., 2008 Meyer-Dombard et al., 2015 Okland et al., 2012 Okland et al., 2012
Zambales, Philippines Cabeco de Vide, Portugal Cabeco de Vide, Portugal Cabeco de Vide, Portugal Turkey Turkey Leka Ophiolite Complex Leka Ophiolite Complex Leka Ophiolite Complex	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1 Manleluag 2, ML2 Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 Maria Rita (b) Vale Fabiano (sp) Furo da Camara (b) YT-0m YT-S8.8m gw 1 gw 2 gw 3	307.00 349.00 505.00 229.00 606.00 516.00 784.00 388.00 270.00 428.00 232.00 189.00 n.r. n.r. n.r. n.r. n.r.	10.80 9.30 11.30 9.20 11.30 10.50 9.70 10.80 10.30 7.00 9.60 8.70 8.04 7.37 7.54 11.95 9.40 9.56 8.58 8.80	8.33 492.40 1.04 1.04 0.00 40.60 100.98 192.59 200.92 485.11 99.94 927.55 181.14 185.51 150.11 83.28 302.94 27.00 38.00 38.00	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29 485.71 482.86 280.00 354.29 311.43 576.57 314.00 259.43 522.86 694.57 414.00 519.00 543.00	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09 813.04 860.87 8691.30 834.78 643.48 1208.70 508.70 415.65 499.13 532.61 429.00 535.00 545.00	Cardace et al., 2015 Marques, et al., 2008 Marques, et al., 2008 Marques, et al., 2008 Meyer-Dombard et al., 2015 Okland et al., 2012 Okland et al., 2012
Zambales, Philippines Cabeco de Vide, Portugal Cabeco de Vide, Portugal Cabeco de Vide, Portugal Turkey Turkey Leka Ophiolite Complex Leka Ophiolite Complex Leka Ophiolite Complex Leka Ophiolite Complex	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1 Manleluag 2, ML2 Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 Maria Rita (b) Vale Fabiano (sp) Furo da Camara (b) YT-0m YT-S8.8m gw 1 gw 2 gw 3 sw 1	307.00 349.00 505.00 229.00 606.00 516.00 784.00 388.00 270.00 428.00 232.00 189.00 n.r. n.r. n.r. n.r. n.r. n.r.	10.80 9.30 11.30 9.20 11.30 10.50 9.70 10.80 10.30 7.00 9.60 8.70 8.04 7.37 7.54 11.95 9.40 9.56 8.58 8.80 7.90	8.33 492.40 1.04 1.04 0.00 40.60 100.98 192.59 200.92 485.11 99.94 927.55 181.14 185.51 150.11 83.28 302.94 27.00 38.00 38.00 26.00	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29 485.71 482.86 280.00 354.29 311.43 576.57 314.00 259.43 522.86 694.57 414.00 519.00 543.00 433.00	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09 813.04 860.87 8691.30 834.78 643.48 1208.70 508.70 415.65 499.13 532.61 429.00 535.00 545.00 440.00	Cardace et al., 2015 Marques, et al., 2008 Marques, et al., 2008 Marques, et al., 2008 Meyer-Dombard et al., 2015 Okland et al., 2012 Okland et al., 2012 Okland et al., 2012
Zambales, Philippines Cabeco de Vide, Portugal Cabeco de Vide, Portugal Cabeco de Vide, Portugal Turkey Turkey Leka Ophiolite Complex Cazadero, California, USA	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1 Manleluag 2, ML2 Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 Maria Rita (b) Vale Fabiano (sp) Furo da Camara (b) YT-0m YT-S8.8m gw 1 gw 2 gw 3 sw 1 ultrabasic	307.00 349.00 505.00 229.00 606.00 516.00 784.00 388.00 270.00 428.00 232.00 189.00 n.r. n.r. n.r. n.r. n.r.	10.80 9.30 11.30 9.20 11.30 10.50 9.70 10.80 10.30 7.00 9.60 8.70 8.04 7.37 7.54 11.95 9.40 9.56 8.58 8.80 7.90 11.54	8.33 492.40 1.04 1.04 0.00 40.60 100.98 192.59 200.92 485.11 99.94 927.55 181.14 185.51 150.11 83.28 302.94 27.00 38.00 38.00 26.00 4.16	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29 485.71 482.86 280.00 354.29 311.43 576.57 314.00 259.43 522.86 694.57 414.00 519.00 543.00 433.00	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09 813.04 860.87 8691.30 834.78 643.48 1208.70 508.70 415.65 499.13 532.61 429.00 535.00 545.00 440.00 2173.91	Cardace et al., 2015 Marques, et al., 2008 Marques, et al., 2008 Marques, et al., 2008 Meyer-Dombard et al., 2015 Okland et al., 2012 Okland et al., 2012 Okland et al., 2012 Okland et al., 2012
Zambales, Philippines Cabeco de Vide, Portugal Cabeco de Vide, Portugal Cabeco de Vide, Portugal Turkey Turkey Leka Ophiolite Complex Leka Ophiolite Complex Leka Ophiolite Complex Cazadero, California, USA Cyprus Ophiolite	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1 Manleluag 2, ML2 Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 Maria Rita (b) Vale Fabiano (sp) Furo da Camara (b) YT-0m YT-S8.8m gw 1 gw 2 gw 3 sw 1 ultrabasic 10.00	307.00 349.00 505.00 229.00 606.00 516.00 784.00 388.00 270.00 428.00 232.00 189.00 n.r. n.r. n.r. n.r. n.r. n.r.	10.80 9.30 11.30 9.20 11.30 10.50 9.70 10.80 10.30 7.00 9.60 8.70 8.04 7.37 7.54 11.95 9.40 9.56 8.58 8.80 7.90	8.33 492.40 1.04 1.04 0.00 40.60 100.98 192.59 200.92 485.11 99.94 927.55 181.14 185.51 150.11 83.28 302.94 27.00 38.00 38.00 26.00 4.16 22.59	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29 485.71 482.86 280.00 354.29 311.43 576.57 314.00 259.43 522.86 694.57 414.00 519.00 543.00 433.00 1571.43 200.00	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09 813.04 860.87 8691.30 834.78 643.48 1208.70 508.70 415.65 499.13 532.61 429.00 535.00 545.00 440.00 2173.91	Cardace et al., 2015 Marques, et al., 2008 Marques, et al., 2008 Marques, et al., 2008 Meyer-Dombard et al., 2015 Okland et al., 2012 Okland et al., 2012 Okland et al., 2012
Zambales, Philippines Cabeco de Vide, Portugal Cabeco de Vide, Portugal Cabeco de Vide, Portugal Turkey Turkey Leka Ophiolite Complex Cazadero, California, USA	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1 Manleluag 2, ML2 Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 Maria Rita (b) Vale Fabiano (sp) Furo da Camara (b) YT-0m YT-S8.8m gw 1 gw 2 gw 3 sw 1 ultrabasic	307.00 349.00 505.00 229.00 606.00 516.00 784.00 388.00 270.00 428.00 232.00 189.00 n.r. n.r. n.r. n.r. n.r. n.r. n.r. n	10.80 9.30 11.30 9.20 11.30 10.50 9.70 10.80 10.30 7.00 9.60 8.70 8.04 7.37 7.54 11.95 9.40 9.56 8.58 8.80 7.90 11.54	8.33 492.40 1.04 1.04 0.00 40.60 100.98 192.59 200.92 485.11 99.94 927.55 181.14 185.51 150.11 83.28 302.94 27.00 38.00 38.00 26.00 4.16	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29 485.71 482.86 280.00 354.29 311.43 576.57 314.00 259.43 522.86 694.57 414.00 519.00 543.00 433.00	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09 813.04 860.87 8691.30 834.78 643.48 1208.70 508.70 415.65 499.13 532.61 429.00 535.00 545.00 440.00 2173.91	Cardace et al., 2015 Marques, et al., 2008 Marques, et al., 2008 Marques, et al., 2008 Meyer-Dombard et al., 2015 Okland et al., 2012 Okland et al., 2012 Okland et al., 2012 Okland et al., 2012
Zambales, Philippines Cabeco de Vide, Portugal Cabeco de Vide, Portugal Cabeco de Vide, Portugal Turkey Turkey Leka Ophiolite Complex Leka Ophiolite Complex Leka Ophiolite Complex Cazadero, California, USA Cyprus Ophiolite	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1 Manleluag 2, ML2 Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 Maria Rita (b) Vale Fabiano (sp) Furo da Camara (b) YT-0m YT-S8.8m gw 1 gw 2 gw 3 sw 1 ultrabasic 10.00	307.00 349.00 505.00 229.00 606.00 516.00 784.00 388.00 270.00 428.00 232.00 189.00 n.r. n.r. n.r. n.r. n.r. n.r. n.r. n	10.80 9.30 11.30 9.20 11.30 10.50 9.70 10.80 10.30 7.00 9.60 8.70 8.04 7.37 7.54 11.95 9.40 9.56 8.58 8.80 7.90 11.54 8.50	8.33 492.40 1.04 1.04 0.00 40.60 100.98 192.59 200.92 485.11 99.94 927.55 181.14 185.51 150.11 83.28 302.94 27.00 38.00 38.00 26.00 4.16 22.59	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29 485.71 482.86 280.00 354.29 311.43 576.57 314.00 259.43 522.86 694.57 414.00 519.00 543.00 433.00 1571.43 200.00	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09 813.04 860.87 8691.30 834.78 643.48 1208.70 508.70 415.65 499.13 532.61 429.00 535.00 545.00 440.00 2173.91	Cardace et al., 2015 Marques, et al., 2008 Marques, et al., 2008 Marques, et al., 2008 Meyer-Dombard et al., 2015 Okland et al., 2012 Barnes et al., 2015 Neal & Shand 2002
Zambales, Philippines Cabeco de Vide, Portugal Cabeco de Vide, Portugal Cabeco de Vide, Portugal Turkey Turkey Leka Ophiolite Complex Leka Ophiolite Complex Leka Ophiolite Complex Cazadero, California, USA Cyprus Ophiolite	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1 Manleluag 2, ML2 Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 Maria Rita (b) Vale Fabiano (sp) Furo da Camara (b) YT-0m YT-S8.8m gw 1 gw 2 gw 3 sw 1 ultrabasic 10.00 11.00	307.00 349.00 505.00 229.00 606.00 516.00 784.00 388.00 270.00 428.00 232.00 189.00 n.r. n.r. n.r. n.r. n.r. n.r. n.r. n	10.80 9.30 11.30 9.20 11.30 10.50 9.70 10.80 10.30 7.00 9.60 8.70 8.04 7.37 7.54 11.95 9.40 9.56 8.58 8.80 7.90 11.54 8.50 7.90	8.33 492.40 1.04 1.04 0.00 40.60 100.98 192.59 200.92 485.11 99.94 927.55 181.14 185.51 150.11 83.28 302.94 27.00 38.00 38.00 26.00 4.16 22.59 25.61	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29 485.71 482.86 280.00 354.29 311.43 576.57 314.00 259.43 522.86 694.57 414.00 519.00 543.00 433.00 1571.43 200.00 228.57	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09 813.04 860.87 8691.30 834.78 643.48 1208.70 508.70 415.65 499.13 532.61 429.00 535.00 545.00 440.00 2173.91	Cardace et al., 2015 Marques, et al., 2008 Marques, et al., 2008 Marques, et al., 2008 Meyer-Dombard et al., 2015 Okland et al., 2015 Okland et al., 2012 Okland et al., 2012 Okland et al., 2012 Okland et al., 2012 Barnes et al., 2015 Neal & Shand 2002 Neal & Shand 2002
Zambales, Philippines Cabeco de Vide, Portugal Cabeco de Vide, Portugal Cabeco de Vide, Portugal Turkey Turkey Leka Ophiolite Complex Leka Ophiolite Complex Leka Ophiolite Complex Cazadero, California, USA Cyprus Ophiolite Cyprus Ophiolite Cyprus Ophiolite	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1 Manleluag 2, ML2 Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 Maria Rita (b) Vale Fabiano (sp) Furo da Camara (b) YT-0m YT-S8.8m gw 1 gw 2 gw 3 sw 1 ultrabasic 10.00 11.00 12.00 6.00	307.00 349.00 505.00 229.00 606.00 516.00 784.00 388.00 270.00 428.00 232.00 189.00 n.r. n.r. n.r. n.r. n.r. n.r. n.r.	10.80 9.30 11.30 9.20 11.30 10.50 9.70 10.80 10.30 7.00 9.60 8.70 8.04 7.37 7.54 11.95 9.40 9.56 8.58 8.80 7.90 11.54 8.50 7.90 8.60 9.10	8.33 492.40 1.04 1.04 0.00 40.60 100.98 192.59 200.92 485.11 99.94 927.55 181.14 185.51 150.11 83.28 302.94 27.00 38.00 38.00 26.00 4.16 22.59 25.61 31.86 37.89	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29 485.71 482.86 280.00 354.29 311.43 576.57 314.00 259.43 522.86 694.57 414.00 519.00 543.00 433.00 1571.43 200.00 228.57 257.14	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09 813.04 8691.30 834.78 643.48 1208.70 508.70 415.65 499.13 532.61 429.00 535.00 545.00 440.00 2173.91 143.04 176.52 205.65 203.48	Cardace et al., 2015 Marques, et al., 2008 Marques, et al., 2008 Meyer-Dombard et al., 2015 Okland et al., 2012 Okland et al., 2012 Okland et al., 2012 Okland et al., 2012 Neal & Shand 2002 Neal & Shand 2002 Neal & Shand 2002 Neal & Shand 2002
Zambales, Philippines Cabeco de Vide, Portugal Cabeco de Vide,	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1 Manleluag 2, ML2 Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 Maria Rita (b) Vale Fabiano (sp) Furo da Camara (b) YT-0m YT-S8.8m gw 1 gw 2 gw 3 sw 1 ultrabasic 10.00 11.00 12.00 6.00 7.00	307.00 349.00 505.00 229.00 606.00 516.00 784.00 388.00 270.00 428.00 232.00 189.00 n.r. n.r. n.r. n.r. n.r. n.r. n.r.	10.80 9.30 11.30 9.20 11.30 10.50 9.70 10.80 10.30 7.00 9.60 8.70 8.04 7.37 7.54 11.95 9.40 9.56 8.58 8.80 7.90 11.54 8.50 7.90 8.60 9.10 9.80	8.33 492.40 1.04 1.04 0.00 40.60 100.98 192.59 200.92 485.11 99.94 927.55 181.14 185.51 150.11 83.28 302.94 27.00 38.00 26.00 4.16 22.59 25.61 31.86 37.89 28.21	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29 485.71 482.86 280.00 354.29 311.43 576.57 314.00 259.43 522.86 694.57 414.00 519.00 543.00 433.00 1571.43 200.00 228.57 257.14 228.57	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09 813.04 860.87 8691.30 834.78 643.48 1208.70 508.70 415.65 499.13 532.61 429.00 535.00 545.00 440.00 2173.91 143.04 176.52 205.65 203.48 191.30	Cardace et al., 2015 Marques, et al., 2008 Marques, et al., 2008 Meyer-Dombard et al., 2015 Okland et al., 2012 Okland et al., 2012 Okland et al., 2012 Okland et al., 2012 Barnes et al., 2015 Neal & Shand 2002
Zambales, Philippines Cabeco de Vide, Portugal Cabeco de Vide, Portugal Cabeco de Vide, Portugal Turkey Turkey Leka Ophiolite Complex Leka Ophiolite Complex Leka Ophiolite Complex Cazadero, California, USA Cyprus Ophiolite Cyprus Ophiolite Cyprus Ophiolite	Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 [star pool] Poon Bato 3, PB3 San Isidro Spr, SI1 Mainit Falls, MF1 Manleluag 2, ML2 Manleluag 3, ML3 Bigbiga well, BB1 Poon Bato 1, PB1 Poon Bato 2, PB2 Maria Rita (b) Vale Fabiano (sp) Furo da Camara (b) YT-0m YT-S8.8m gw 1 gw 2 gw 3 sw 1 ultrabasic 10.00 11.00 12.00 6.00	307.00 349.00 505.00 229.00 606.00 516.00 784.00 388.00 270.00 428.00 232.00 189.00 n.r. n.r. n.r. n.r. n.r. n.r. n.r.	10.80 9.30 11.30 9.20 11.30 10.50 9.70 10.80 10.30 7.00 9.60 8.70 8.04 7.37 7.54 11.95 9.40 9.56 8.58 8.80 7.90 11.54 8.50 7.90 8.60 9.10	8.33 492.40 1.04 1.04 0.00 40.60 100.98 192.59 200.92 485.11 99.94 927.55 181.14 185.51 150.11 83.28 302.94 27.00 38.00 38.00 26.00 4.16 22.59 25.61 31.86 37.89	485.71 125.71 685.71 322.86 511.43 1640.00 6534.29 485.71 482.86 280.00 354.29 311.43 576.57 314.00 259.43 522.86 694.57 414.00 519.00 543.00 433.00 1571.43 200.00 228.57 257.14	982.61 4369.57 1039.13 447.83 678.26 3982.61 11726.09 813.04 8691.30 834.78 643.48 1208.70 508.70 415.65 499.13 532.61 429.00 535.00 545.00 440.00 2173.91 143.04 176.52 205.65 203.48	Cardace et al., 2015 Marques, et al., 2008 Marques, et al., 2008 Meyer-Dombard et al., 2015 Okland et al., 2012 Okland et al., 2012 Okland et al., 2012 Okland et al., 2012 Neal & Shand 2002 Neal & Shand 2002 Neal & Shand 2002 Neal & Shand 2002

Cyprus Ophiolite	5.00	n.r.	8.70	477.83	1285.71	2260.87	Neal & Shand 2002
Cyprus Ophiolite	13.00	n.r.	9.50	154.07	800.00	521.74	Neal & Shand 2002
Cyprus Ophiolite	1.00	n.r.	9.70	244.64	4857.14	7521.74	Neal & Shand 2002
Cyprus Ophiolite	2.00	n.r.	9.70	229.02	4857.14	7739.13	Neal & Shand 2002
Cyprus Ophiolite	21.00	n.r.	9.50	310.22	4000.00	6347.83	Neal & Shand 2002
Cyprus Ophiolite	15.00	n.r.	9.90	2592.13	3314.29	5956.52	Neal & Shand 2002
Cyprus Ophiolite	14.00	n.r.	9.60	2592.13	3314.29	6173.91	Neal & Shand 2002
Cyprus Ophiolite	17.00	n.r.	9.60	2841.97	3714.29	7521.74	Neal & Shand 2002
Cyprus Ophiolite	3.00	n.r.	11.60	4091.19	12000.00	16739.13	Neal & Shand 2002
Cyprus Ophiolite	4.00	n.r.	11.40	1134.71	12000.00	16739.13	Neal & Shand 2002
Cyprus Ophiolite	19.00	n.r.	11.20	2154.90	5428.57	7086.96	Neal & Shand 2002
Cyprus Ophiolite	18.00	n.r.	9.00	36331.46	222857.14	252173.91	Neal & Shand 2002
Cyprus Ophiolite	16.00	n.r.	9.00	26035.81	3714.29	6782.61	Neal & Shand 2002
Cyprus Ophiolite	20.00	n.r.	9.60	11451.18	11428.57	13130.43	Neal & Shand 2002
	20.00						
seawater	-	56000.00	8.00	28107.43	542857.14	456521.74	Culkin and Cox, 1966
Del Puerto	Adobe Springs Well	n.r.	8.73	166.56	137.14	234.78	Blank et al., 2009
	, .						•
Del Puerto	Del Puerto Creek	n.r.	8.52	104.10	271.43	417.39	Blank et al., 2009
New Caledonia	HP11-BdJ-llot1-W1C	n.r.	11.08	100.00	2220.00	2380.00	Monnin et al., 2014
New Caledonia	HP11-BdJ-Ilot1-W2	n.r.	10.48	280.00	5470.00	7290.00	Monnin et al., 2014
							•
New Caledonia	HP11-BdJ-llot1-W3	n.r.	10.01	1240.00	21610.00	26140.00	Monnin et al., 2014
New Caledonia	HP11-BdJ-llot1-W5	n.r.	11.07	10.00	410.00	1280.00	Monnin et al., 2014
New Caledonia	HP11-BdJ-llot1-W6	n.r.	10.68	190.00	4020.00	5680.00	Monnin et al., 2014
New Caledonia	HP11-BdJ-llot1-W1	n.r.	10.87	70.00	1840.00	2980.00	Monnin et al., 2014
New Caledonia	HP11-BdJ-Dil1	n.r.	10.05	3360.00	52670.00	22630.00	Monnin et al., 2014
New Caledonia	HP11-BdJ-Dil2	n.r.	9.13	11850.00	179270.00	197980.00	Monnin et al., 2014
New Caledonia	HP11-BdJ-Dil3	n.r.	8.66	16090.00	241800.00	284150.00	Monnin et al., 2014
New Caledonia	HP11-BdJ-Dil4	n.r.	10.20	2160.00	34520.00	1910.00	Monnin et al., 2014
New Caledonia	HP11-BdJ-Dil5	n.r.	8.30	21450.00	322050.00	392810.00	Monnin et al., 2014
New Caledonia	HP11-BdJ-Dil6	n.r.	11.00	60.00	1440.00	2550.00	Monnin et al., 2014
New Caledonia	HP11-BdJ-Dil7	n.r.	10.92	20.00	660.00	1650.00	Monnin et al., 2014
New Caledonia	HP11-BdJ-Dil8	n.r.	10.88	20.00	760.00	1750.00	Monnin et al., 2014
			10.80	bdl	230.00	650.00	
New Caledonia	HP11-CarKao-W1	n.r.					Monnin et al., 2014
New Caledonia	HP11-CarKao-W2	n.r.	10.80	bdl	190.00	580.00	Monnin et al., 2014
New Caledonia	HP11-Site11-W1	n.r.	10.64	1540.00	45780.00	40520.00	Monnin et al., 2014
New Caledonia	HP11-Site11-W4	n.r.	9.58	16160.00	327740.00	270850.00	Monnin et al., 2014
New Caledonia	HP11-Site11-W5	n.r.	8.76	22560.00	451960.00	386580.00	Monnin et al., 2014
New Caledonia	HP11-Site11-W10	n.r.	9.06	15790.00	319180.00	263710.00	Monnin et al., 2014
New Caledonia	HP11-Site11-W11	n.r.	9.38	12130.00	248690.00	199400.00	Monnin et al., 2014
					41740.00		
New Caledonia	HP11-Site12-W1	n.r.	11.00	380.00		40050.00	Monnin et al., 2014
New Caledonia	HP11-Site12-W3	n.r.	8.92	21500.00	432700.00	384520.00	Monnin et al., 2014
New Caledonia	HP11-Site12-W4	n.r.	9.50	11530.00	247310.00	191240.00	Monnin et al., 2014
New Caledonia	HP11-Site12-W5		8.85	21790.00	440030.00	385320.00	Monnin et al., 2014
		n.r.					
New Caledonia	HP11-Site12-W6	n.r.	9.34	18200.00	371920.00	323690.00	Monnin et al., 2014
New Caledonia	HP11-Site12-W7	n.r.	8.60	22170.00	447210.00	393220.00	Monnin et al., 2014
New Caledonia	HP11-Site12-W8	n.r.	8.15	25890.00	515390.00	475500.00	Monnin et al., 2014
New Caledonia	HP11-Site7-W1	n.r.	9.73	12240.00	252370.00	190960.00	Monnin et al., 2014
New Caledonia	HP11-Site7-W2	n.r.	9.66	12140.00	250440.00	187730.00	Monnin et al., 2014
New Caledonia	HP11-Site7-W3	n.r.	9.67	10170.00	212430.00	154310.00	Monnin et al., 2014
New Caledonia	HP11-Site7-W4		9.61	10820.00	225870.00	167610.00	Monnin et al., 2014
		n.r.					
New Caledonia	HP11-Site7-W5	n.r.	9.72	12780.00	262810.00	198080.00	Monnin et al., 2014
New Caledonia	HP11-Site7-W6	n.r.	9.61	14590.00	297380.00	235440.00	Monnin et al., 2014
New Caledonia	HP11-Site7-W3Ti	n.r.	9.44	19950.00	400870.00	346460.00	Monnin et al., 2014
							•
New Caledonia	HP11-Site7-W7	n.r.	10.00	14200.00	290680.00	232610.00	Monnin et al., 2014
New Caledonia	HP11-Site7-W8	n.r.	10.13	10640.00	223030.00	163750.00	Monnin et al., 2014
New Caledonia	HP11-Site7-W9	n.r.	9.91	15190.00	309310.00	249170.00	Monnin et al., 2014
New Caledonia	HP11-Site7-W10		10.14	7530.00	163850.00	97320.00	Monnin et al., 2014
		n.r.					•
New Caledonia	HP11-Site7-W11	n.r.	9.96	14250.00	292430.00	228890.00	Monnin et al., 2014
New Caledonia	HP11-Site9-W1	n.r.	10.45	3310.00	81520.00	36670.00	Monnin et al., 2014
New Caledonia	HP11-Site9-W3	n.r.	10.62	1720.00	50580.00	6460.00	Monnin et al., 2014
New Caledonia	HP11-Site9-W4	n.r.	10.46	3820.00	91620.00	44960.00	Monnin et al., 2014
New Caledonia	HP11-Site9-W6	n.r.	9.18	18850.00	380770.00	337760.00	Monnin et al., 2014
New Caledonia	HP11-Site9-W7	n.r.	10.51	4030.00	95840.00	47540.00	Monnin et al., 2014
New Caledonia	La Coulee 1	n.r.	10.80	7.81	628.57	634.78	Barnes et al., 1978
New Caledonia	La Coulee 2	n.r.	10.70	60.38	465.71	1134.78	Barnes et al., 1978
Hakuba Happo	Happo #1	70300.00	10.80	10.00	1770.00	150.00	Suda et al., 2014
Hakuba Happo	Happo #3	48300.00	10.70	10.00	1160.00	130.00	Suda et al., 2014
Lost City Hydrothermal Field	J2-362IGT2		10.50	3640.00	541000.00	494000.00	Seyfried et al., 2015
• •		n.r.					•
Lost City Hydrothermal Field	J2-362IGT4	n.r.	10.50	3510.00	541000.00	494000.00	Seyfried et al., 2015

Lost City Hydrothermal Field	J2-360IGT2	n.r.	10.40	4120.00	542000.00	491000.00	Seyfried et al., 2015
Lost City Hydrothermal Field	J2-360IGT6	n.r.	10.60	3460.00	541000.00	485000.00	Seyfried et al., 2015
Lost City Hydrothermal Field	J2-360CGTR	n.r.	10.10	5010.00	542000.00	485000.00	Seyfried et al., 2015
Lost City Hydrothermal Field	J2-361IGT5	n.r.	10.50	3990.00	541000.00	495000.00	Seyfried et al., 2015
Lost City Hydrothermal Field	J2-361IGT6	n.r.	10.60	3610.00	543000.00	492000.00	Seyfried et al., 2015
Lost City Hydrothermal Field	J2-361CGTB	n.r.	10.20	6160.00	543000.00	490000.00	Seyfried et al., 2015
Lost City Hydrothermal Field	J2-361CGT-Wu	n.r.	10.50	4240.00	543000.00	493000.00	Seyfried et al., 2015
Lost City Hydrothermal Field	Seawater	n.r.	8.00	28700.00	554000.00	475000.00	Seyfried et al., 2015
Aqua de Ney	Average	35900.00	12.00	2810.74	220771.16	488294.17	Boschetti et al., 2018

Table S3: CROMO sulfur chemistry and YSI probe measurements reported for all wells since establishment

Well	Date Sampled	SO ₄ ²⁻ (μΜ)	HS ⁻ (µM)	рН	Temperature (°C)	Conductivity (µS/cm)	DO (mg/L)	ORP (mV)
	March-12	183.64	n.a.	12.38	13.66	4674.00	0.03	-298.90
	June-12	108.27	n.a.	12.30	14.99	5100.00	0.32	-287.90
	August-13	147.08	< 1.0	12.39	16.16	4486.00	0.20	-258.40
0011/4.4	December-13	305.43	n.a.	12.17	14.39	4578.00	0.37	-298.60
CSW 1.1	July-14	266.19	12.88	12.32	16.31	4453.00	0.43	-297.00
	August-15	180.46	22.67	11.76	16.71	4206.00	0.17	-243.10
	January-16	340.00	15.49	12.42	14.83	4130.00	0.19	-276.50
	June-16	389.55	3.54	12.06	17.21	3809.00	0.25	-271.60
	5 4.15 15	000.00	0.0 .	.2.00		0000.00	0.20	27 1.00
	August-13	125.30	< 1.0	9.27	15.62	4174.00	3.55	132.80
CSW 1.2	December-13	< 1.56	3.90	8.55	15.38	4278.00	0.30	-55.50
	July-14	191.65	< 1.0	7.76	15.97	4495.00	0.25	-118.50
	June-16	112.43	8.50	8.80	16.90	4627.00	0.41	-97.50
	August-13	114.90	4.64	10.20	16.51	4708.00	0.14	-246.60
	December-13	135.02	2.64	10.10	15.21	4740.00	0.20	-191.20
CSW 1.3	July-14	151.16	< 1.0	10.15	15.64	4842.00	0.16	-204.80
	June-16	174.79	4.20	10.10	18.83	4787.00	0.21	-275.20
	ound to		1.20	10.10	10.00	1101.00	0.21	270.20
	August-13	222.02	< 1.0	8.04	14.94	1989.00	0.92	336.00
CSW 1.4	December-13	393.61	< 1.0	7.64	15.40	1931.00	2.50	500.00
C3VV 1.4	July-14	391.94	< 1.0	7.75	15.05	1950.00	2.36	116.20
	June-16	429.42	< 1.0	7.87	17.34	1978.00	4.40	203.00
	A	254.20	20.74	0.05	45.04	4040.00	0.07	040.40
	August-13	351.39	33.74	9.95	15.91	4643.00	0.27	-216.40
	December-13	433.37	19.81	9.59	15.29	4632.00	0.43	-290.00
CSW 1.5	July-14	317.41	23.75	9.77	15.80	4792.00	0.16	-285.20
	August-15	99.99	27.73	9.39	16.15	4755.00	0.19	-211.60
	June-16	358.21	1.41	9.77	15.69	4780.00	0.49	-206.50
	August-13	47.92	34.21	9.82	18.18	10400.00	0.02	-278.00
	December-13	118.88	< 1.0	9.69	17.90	11150.00	0.22	-346.00
CSW OLD	July-14	139.29	8.39	9.73	17.43	11529.00	0.26	-279.90
	August-15	96.14	25.63	9.59	17.24	11110.00	0.55	-213.90
	January-16	46.42	< 1.0	9.87	17.95	11000.00	0.08	-294.90
	June-16	170.21	< 1.0	9.84	18.45	11290.00	1.42	-356.70
	August-13	n.a.	3.47	10.42	16.41	5917.00	0.19	-161.10
NOO A	December-13	32.27	2.61	10.17	15.34	6444.00	0.07	-229.60
N08-A	July-14	40.18	1.14	10.89	16.85	6335.00	0.09	-249.50
	June-16	77.14	3.70	10.82	16.32	6040.00	0.27	-216.10
			. 4.0	10.00	40.00	0070.00	0.04	74.00
	August-13	n.a.	< 1.0	10.98	16.03	3070.00	0.31	-74.60
N08-B	December-13	27.48	< 1.0	10.55	15.03	4350.00	0.10	-117.90
	July-14	27.69	< 1.0	10.68	16.12	3132.00	0.76	-197.60
	June-16	58.30	< 1.0	10.22	16.87	3047.00	0.15	-78.60
	August-13	54.53	< 1.0	7.55	14.99	1143.00	0.17	243.90
	December-13	40.70	< 1.0	9.32	15.08	1307.00	0.10	-164.90
N08-C	July-14	51.22	< 1.0	8.46	15.53	1372.00	0.10	-153.10
	June-16	77.45	< 1.0	7.25	16.67	1393.00	0.42	39.80
	Julie-10	11.45	< 1.0	1.25	10.07	1030.00	0.20	33.00
	August-13	< 10.00	11.53	11.64	16.36	2596.00	0.15	-122.70
	December-13	22.17	< 1.0	11.54	15.95	6722.00	0.21	-225.40
0)/44	July-14	257.13	4.76	11.51	17.52	2854.00	0.28	-233.50
QV 1.1	August-15	17.49	3.53	11.34	17.69	3075.00	0.19	-139.40
	January-16	< 1.56	< 1.0	11.75	15.90	3274.00	0.19	-218.30
	June-16	76.10	< 1.0	11.41	16.74	3362.00	0.18	-181.00
	August-13	< 10.00	< 1.0	9.07	16.63	2781.00	0.79	-8.50
QV 1.2	December-13	< 1.56	< 1.0	8.99	15.52	4285.00	0.47	-123.00
~-· -	July-14	32.00	< 1.0	9.47	17.09	3042.00	0.40	-142.70
	June-16	< 1.56	< 1.0	9.31	16.68	3004.00	0.17	-156.20
	August-13	191.91	4.64	9.63	16.45	6200.00	0.03	-183.40
	•							
QV 1.3	December-13	59.96	< 1.0	9.58	16.10	6727.00	0.11	-211.50
	July-14	55.69	10.13	9.68	16.60	6507.00	0.26	-223.60
	June-16	72.25	< 1.0	9.78	16.55	4735.00	0.22	-207.80

Table S4 - CROMO OTUs >0.1% Abundance for Statistical Analyses July 2014

		Oltavalala	labi	e S4 - CROMO OTU	s >0.1% Abundance for S	tatistical Analyses Jul	y 2014	
		Sitewide Average						
Representative Sequence	OTU Number	Abundance	Taxonomy	Phylum	Class	Order	Family	Genus Species
HWI-M02808_85_AJHNL_1_1101_20048_2184	OTU83437	13.57%	Bacteria	Proteobacteria	Gammaproteobacteria	Betaproteobacteriales	Burkholderiaceae	Burkholderiaceae unclassified
HWI-M02808_85_AJHNL_1_1103_21100_6722	OTU171116	7.00%	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidales_unclassified	Bacteroidales_unclassified
HWI-M02808_85_AJHNL_1_1103_27798_17116	OTU1915	4.14%	Bacteria	Firmicutes	Clostridia	Clostridiales	Syntrophomonadaceae	Dethiobacter
HWI-M02808_85_AJHNL_1_1101_17918_2017	OTU33777	4.03%	Bacteria	Deinococcus-Thermus	Deinococci	Deinococcales	Trueperaceae	Truepera
HWI-M02808_85_AJHNL_1_1104_8273_4674	OTU90462	3.48%	Bacteria	Proteobacteria	Gammaproteobacteria	Betaproteobacteriales	Burkholderiaceae	Hydrogenophaga
HWI-M02808_85_AJHNL_1_1101_17192_2407	OTU136519	2.89%	Bacteria	Firmicutes	Clostridia	Clostridiales	Syntrophomonadaceae	Dethiobacter
HWI-M02808_85_AJHNL_1_1109_22908_21284	OTU153801	2.48%	Bacteria	Proteobacteria	Gammaproteobacteria	Methylococcales	Methylomonaceae	Methylomonas
HWI-M02808_85_AJHNL_1_2109_4377_21131	OTU49796	2.43%	Bacteria	Firmicutes	Clostridia	Clostridiales	Syntrophomonadaceae	Dethiobacter
HWI-M02808_85_AJHNL_1_1106_5301_8438	OTU26811	1.70%	Bacteria	Firmicutes	Erysipelotrichia	Erysipelotrichales	Erysipelotrichaceae	Erysipelothrix
HWI-M02808_85_AJHNL_1_1104_11682_21160	OTU142042 OTU122688	1.53%	Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Beijerinckiaceae	Beijerinckiaceae_unclassified
HWI-M02808_85_AJHNL_1_1109_13355_7771 HWI-M02808 85 AJHNL 1 1101 10693 7658	OTU122688 OTU167481	1.21% 1.19%	Bacteria Bacteria	Firmicutes Firmicutes	Clostridia Clostridia	Thermoanaerobacterales Clostridiales	SRB2 Syntrophomonadaceae	SRB2_ge Dethiobacter
HWI-M02808 85 AJHNL 1 1105 26860 11279	OTU24860	1.19%	Bacteria	Firmicutes	Clostridia	Clostridia Incertae Sedis	Unknown Family	Candidatus Desulforudis
HWI-M02808 85 AJHNL 1 1103 10683 9335	OTU146119	1.07%	Bacteria	Proteobacteria	Alphaproteobacteria	Rhodobacterales	Rhodobacteraceae	Rhodobacter
HWI-M02808 85 AJHNL 1 2110 11654 16963	OTU35825	0.96%	Bacteria	Proteobacteria	Gammaproteobacteria	Betaproteobacteriales	Rhodocyclaceae	Rhodocyclaceae unclassified
HWI-M02808 85 AJHNL 1 1104 20198 4705	OTU130179	0.62%	Bacteria	Proteobacteria	Alphaproteobacteria	Caulobacterales	Caulobacteraceae	Phenylobacterium
HWI-M02808 85 AJHNL 1 2101 12173 12171	OTU22547	0.60%	Bacteria	Proteobacteria	Gammaproteobacteria	Betaproteobacteriales	Methylophilaceae	UBA6140
HWI-M02808 85 AJHNL 1 1108 24510 7557	OTU23329	0.55%	Bacteria	Firmicutes	Erysipelotrichia	Erysipelotrichales	Erysipelotrichaceae	Erysipelothrix
HWI-M02808 85 AJHNL 1 1104 4942 23661	OTU157466	0.55%	Bacteria	Acidobacteria	Blastocatellia (Subgroup 4)	Blastocatellales	Blastocatellaceae	Blastocatellaceae uncultured
HWI-M02808 85 AJHNL 1 1103 16857 24687	OTU140311	0.54%	Bacteria	Proteobacteria	Gammaproteobacteria	Betaproteobacteriales	Burkholderiaceae	Burkholderiaceae unclassified
HWI-M02808 85 AJHNL 1 1108 16168 8446	OTU2499	0.53%	Bacteria	Bacteroidetes	Bacteroidia	Sphingobacteriales	Sphingobacteriales unclassified	Sphingobacteriales unclassified
HWI-M02808_85_AJHNL_1_1101_16532_7035	OTU140763	0.48%	Bacteria	Chloroflexi	Anaerolineae	Anaerolineales	Anaerolineaceae	Bellilinea
HWI-M02808_85_AJHNL_1_2105_24061_20363	OTU27309	0.48%	Bacteria	Firmicutes	Clostridia	Thermoanaerobacterales	SRB2	SRB2_ge
HWI-M02808_85_AJHNL_1_1107_14145_21318	OTU81733	0.48%	Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Rhizobiaceae	Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium
HWI-M02808_85_AJHNL_1_1107_5134_16942	OTU21542	0.44%	Bacteria	Proteobacteria	Alphaproteobacteria	Sphingomonadales	Sphingomonadaceae	Porphyrobacter
HWI-M02808_85_AJHNL_1_1112_14170_19757	OTU142009	0.42%	Bacteria	Proteobacteria	Deltaproteobacteria	Syntrophobacterales	Syntrophaceae	Smithella
HWI-M02808_85_AJHNL_1_1112_21164_19133	OTU133065	0.42%	Bacteria	Firmicutes	Clostridia	Clostridiales	Clostridiales_uncultured	uncultured_ge
HWI-M02808_85_AJHNL_1_1106_19311_2988	OTU92145	0.41%	Bacteria	Proteobacteria	Gammaproteobacteria	Xanthomonadales	Xanthomonadaceae	Xanthomonadaceae_uncultured
HWI-M02808_85_AJHNL_1_2110_11524_5121	OTU23922	0.39%	Bacteria	Firmicutes	Erysipelotrichia	Erysipelotrichales	Erysipelotrichaceae	Erysipelothrix
HWI-M02808_85_AJHNL_1_1101_23196_4273	OTU102436	0.38%	Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Xanthobacteraceae	Bradyrhizobium
HWI-M02808_85_AJHNL_1_1114_20682_21407	OTU128184	0.35%	Bacteria	Firmicutes	Clostridia	Clostridiales	Family_XII	Fusibacter
HWI-M02808_85_AJHNL_1_1107_6126_6665 HWI-M02808 85 AJHNL 1 1107 23247 21981	OTU151977 OTU62527	0.35% 0.34%	Bacteria Bacteria	Proteobacteria Proteobacteria	Alphaproteobacteria Gammaproteobacteria	Rhizobiales Betaproteobacteriales	Rhizobiales_Incertae_Sedis Nitrosomonadaceae	Phreatobacter Nitrosomonas
HWI-M02808 85 AJHNL 1 1110 17696 7989	OTU167108	0.34%	Bacteria	Proteobacteria	Alphaproteobacteria	Caulobacterales	Caulobacteraceae	Brevundimonas
HWI-M02808 85 AJHNL 1 1113 15872 17500	OTU145530	0.33%	Bacteria	Nitrospirae	Nitrospira	Nitrospirales	Nitrospiraceae	Nitrospira
HWI-M02808_85_AJHNL_1_1101_4497_8927	OTU75087	0.32%	Bacteria	Firmicutes	Clostridia	Thermoanaerobacterales	SRB2	SRB2 ge
HWI-M02808 85 AJHNL 1 2105 13143 15497	OTU63293	0.32%	Bacteria	Verrucomicrobia	Verrucomicrobiae	Opitutales	Opitutaceae	Lacunisphaera
HWI-M02808 85 AJHNL 1 1101 8018 4755	OTU94893	0.31%	Bacteria	Firmicutes	Clostridia	Clostridiales	Clostridiaceae 4	Clostridiaceae 4 uncultured
HWI-M02808 85 AJHNL 1 2102 13386 18268	OTU55834	0.31%	Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Beijerinckiaceae	Methylocystis
HWI-M02808 85 AJHNL 1 2104 9737 12868	OTU28357	0.31%	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Prolixibacteraceae	Prolixibacteraceae uncultured
HWI-M02808 85 AJHNL 1 1106 18337 20397	OTU14737	0.30%	Bacteria	Proteobacteria	Gammaproteobacteria	Methylococcales	Methylomonaceae	Methylomonaceae unclassified
HWI-M02808_85_AJHNL_1_1104_19259_24357	OTU56632	0.29%	Bacteria	Proteobacteria	Alphaproteobacteria	Sphingomonadales	Sphingomonadaceae	Qipengyuania
HWI-M02808_85_AJHNL_1_1110_2855_18839	OTU184525	0.29%	Bacteria	Firmicutes	Clostridia	Clostridiales	Clostridiales_unclassified	Clostridiales_unclassified
HWI-M02808_85_AJHNL_1_1101_24150_5326	OTU150543	0.28%	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptococcaceae	Desulfitispora
HWI-M02808_85_AJHNL_1_1106_10033_4103	OTU145529	0.28%	Bacteria	Firmicutes	Clostridia	Clostridiales	TC1	TC1_ge
HWI-M02808_85_AJHNL_1_2114_4352_18207	OTU139269	0.27%	Bacteria	Bacteroidetes	Ignavibacteria	OPB56	OPB56_fa	OPB56_ge
HWI-M02808_85_AJHNL_1_1101_22499_5481	OTU182127	0.27%	Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Beijerinckiaceae	Salinarimonas
HWI-M02808_85_AJHNL_1_1105_18048_6511	OTU28657	0.26%	Bacteria	Firmicutes	Clostridia	Clostridiales	Clostridiaceae_4	Salimesophilobacter
HWI-M02808_85_AJHNL_1_1101_16854_7369	OTU83849	0.25%	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidales_unclassified	Bacteroidales_unclassified
HWI-M02808_85_AJHNL_1_1103_25473_23195	OTU17778	0.24%	Bacteria	Proteobacteria	Gammaproteobacteria	Betaproteobacteriales	Betaproteobacteriales_unclassified	Betaproteobacteriales_unclassified
HWI-M02808_85_AJHNL_1_1103_8071_4949	OTU70317	0.24%	Bacteria	Planctomycetes	Planctomycetacia	Pirellulales	Pirellulaceae	Rhodopirellula
HWI-M02808_85_AJHNL_1_1101_9105_4721	OTU85884 OTU77385	0.23% 0.23%	Bacteria Bacteria	Firmicutes Protochastoria	Clostridia	Clostridiales	Syntrophomonadaceae	Dethiobacter Hydrogopophaga
HWI-M02808_85_AJHNL_1_1101_17949_2457 HWI-M02808_85_AJHNL_1_1108_13218_15855	OTU77385 OTU86472	0.23%	Bacteria Bacteria	Proteobacteria Bacteroidetes	Gammaproteobacteria Bacteroidia	Betaproteobacteriales Bacteroidales	Burkholderiaceae Prolixibacteraceae	Hydrogenophaga Prolixibacteraceae uncultured
HWI-M02808 85 AJHNL 1 1101 8850 3213	OTU107300	0.22%	Bacteria	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas
HWI-M02808 85 AJHNL 1 1105 18131 5315	OTU48861	0.22%	Bacteria	Spirochaetes	Spirochaetia	Spirochaetales	Spirochaetaceae	Spirochaetaceae uncultured
HWI-M02808 85 AJHNL 1 1112 20122 9065	OTU189836	0.22%	Bacteria	Actinobacteria	RBG-16-55-12	RBG-16-55-12 or	RBG-16-55-12 fa	RBG-16-55-12 ge
HWI-M02808 85 AJHNL 1 1101 19096 11828	OTU60509	0.21%	Bacteria	Proteobacteria	Alphaproteobacteria	Acetobacterales	Acetobacteraceae	Roseomonas
HWI-M02808 85 AJHNL 1 1101 20850 21312	OTU6671	0.20%	Bacteria	Proteobacteria	Gammaproteobacteria	Betaproteobacteriales	Betaproteobacteriales unclassified	Betaproteobacteriales unclassified
HWI-M02808 85 AJHNL 1 1109 20613 22006	OTU135193	0.20%	Bacteria	Firmicutes	Clostridia	Clostridiales	Peptococcaceae	Desulfitispora
HWI-M02808 85 AJHNL 1 2110 14519 22333	OTU43135	0.20%	Bacteria	Bacteria unclassified	Bacteria unclassified	Bacteria_unclassified	Bacteria unclassified	Bacteria unclassified
HWI-M02808_85_AJHNL_1_2103_26618_18257	OTU27705	0.20%	Bacteria	Planctomycetes	Phycisphaerae	Phycisphaerales	Phycisphaeraceae	Phycisphaeraceae_unclassified
				•	•		•	_

HWI-M02808_85_AJHNL_1_2102_14598_23066	OTU124649	0.19%	Bacteria	Firmicutes	Clostridia	Clostridiales	Syntrophomonadaceae	Dethiobacter
HWI-M02808_85_AJHNL_1_1101_20642_3370	OTU8904	0.19%	Bacteria	Firmicutes	Clostridia	Clostridiales	Family_XIV	Family_XIV_uncultured
HWI-M02808_85_AJHNL_1_1101_21249_4130	OTU180109	0.17%	Bacteria	Firmicutes	Clostridia	Clostridiales	Syntrophomonadaceae	Dethiobacter
HWI-M02808 85 AJHNL 1 1101 7615 8182	OTU120264	0.17%	Bacteria	Actinobacteria	Nitriliruptoria	Nitriliruptorales	Nitriliruptoraceae	Egicoccus
HWI-M02808 85 AJHNL 1 1105 21800 25660	OTU5365	0.16%	Bacteria	Verrucomicrobia	Verrucomicrobiae	Pedosphaerales	Pedosphaeraceae	Pedosphaeraceae ge
HWI-M02808 85 AJHNL 1 1101 28097 12743	OTU98303	0.16%	Bacteria	Proteobacteria	Alphaproteobacteria	Rhodobacterales	Rhodobacteraceae	Rhodobacteraceae unclassified
HWI-M02808 85 AJHNL 1 1107 22980 6232	OTU123766	0.16%	Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Beijerinckiaceae	Methylocystis
HWI-M02808 85 AJHNL 1 1108 20955 13458	OTU138388	0.15%	Bacteria	Proteobacteria	Gammaproteobacteria	Betaproteobacteriales	Rhodocyclaceae	Denitratisoma
HWI-M02808 85 AJHNL 1 1103 15102 15538	OTU61940	0.15%	Bacteria	Proteobacteria	Alphaproteobacteria	Rhodobacterales	Rhodobacteraceae	Rhodobacteraceae unclassified
HWI-M02808 85 AJHNL 1 1101 21442 4297	OTU29267	0.15%	Bacteria	Firmicutes	Clostridia	Clostridiales	Clostridiales unclassified	Clostridiales unclassified
HWI-M02808 85 AJHNL 1 2111 18984 15162	OTU49101	0.14%	Bacteria	Bacteroidetes	Ignavibacteria	SJA-28	SJA-28 fa	SJA-28 ge
HWI-M02808_85_AJHNL_1_1101_8931_5002	OTU129191	0.13%	Bacteria	Firmicutes	Clostridia	Clostridiales	Syntrophomonadaceae	Dethiobacter
HWI-M02808_85_AJHNL_1_1101_7284_6821	OTU85158	0.13%	Bacteria	Chlamydiae	Chlamydiae	Chlamydiales	Simkaniaceae	Simkaniaceae_unclassified
HWI-M02808_85_AJHNL_1_1101_23818_10636	OTU106439	0.13%	Bacteria	Firmicutes	Erysipelotrichia	Erysipelotrichales	Erysipelotrichaceae	Erysipelothrix
HWI-M02808_85_AJHNL_1_1110_18737_15034	OTU4132	0.12%	Bacteria	Acidobacteria	Acidobacteriia	Acidobacteriales	Acidobacteriales_unclassified	Acidobacteriales_unclassified
HWI-M02808_85_AJHNL_1_1101_13289_11050	OTU185606	0.11%	Bacteria	Actinobacteria	Acidimicrobiia	Microtrichales	Microtrichales_uncultured	uncultured_ge
HWI-M02808_85_AJHNL_1_2105_22226_4620	OTU103664	0.11%	Bacteria	Firmicutes	Clostridia	Clostridiales	Clostridiaceae_4	Clostridiaceae_4_unclassified
HWI-M02808_85_AJHNL_1_2113_15368_19109	OTU24139	0.11%	Bacteria	Proteobacteria	Gammaproteobacteria	Betaproteobacteriales	Burkholderiaceae	Burkholderiaceae_unclassified
HWI-M02808_85_AJHNL_1_1113_19158_10121	OTU181493	0.10%	Bacteria	Firmicutes	Clostridia	Clostridiales	Family_XIII	Family_XIII_unclassified
HWI-M02808_85_AJHNL_1_2103_22544_20946	OTU112541	0.10%	Bacteria	Proteobacteria	Gammaproteobacteria	Betaproteobacteriales	Nitrosomonadaceae	Nitrosomonas

Table S5: Top Sitewide (≥0.1%) Operational Taxonomic Units vs. Environmental Variables

Table S5: Top Sitewide (≥0.1%) Operational Taxonom	Environmental Variable	Correlation		p-value
OTU83437 Bacteria;Proteobacteria;Gammaproteobacteria;Betaproteobacteriales; Burkholderiaceae;Burkholderiaceae unclassified	рН	0.9	+	3.86E-04
OTU33777 Bacteria;Deinococcus-Thermus;Deinococci;Deinococcales;Trueperaceae;Truepera	Ace+C6tate (μM)	0.98	+	6.40E-07
Daciena, Demococcus- Memus, Demococci, Demococcales, Mueperaceae, Muepera	Formate (µM)	0.995	+	3.43E-09
OTHERS 40	Lithium (µM)	0.991	+	2.55E-08
OTU136519 Bacteria;Firmicutes;Clostridia;Clostridiales;Syntrophomonadaceae;Dethiobacter	pН	0.781	+	7.62E-03
	Potassium (μM)	0.823	+	3.42E-03
OTU49796 Bacteria;Firmicutes;Clostridia;Clostridiales;Syntrophomonadaceae;Dethiobacter	Specific Conductance (µS)	0.83	+	2.97E-03
	Well Depth (m)	0.916	+	1.97E-04
OTU24860 Bacteria;Firmicutes;Clostridia;Clostridia_Incertae_Sedis;Unknown_Family; Candidatus_Desulforudis	Specific Conductance (μS)	0.825	+	3.29E-03
	Well Depth (m)	0.917	+	1.84E-04
OTU146119 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Rhodobacter	Dissolved Hydrogen (μM)	0.916	+	1.93E-04
OTU130179 Bacteria;Proteobacteria;Alphaproteobacteria;Caulobacterales;Caulobacteraceae; Phenylobacterium	Bromide (μM)	0.905	+	3.24E-04
Thorposaconan	Fluoride (µM)	0.904	+	3.24E-04
OTU157466 Bacteria;Acidobacteria;Blastocatellia_(Subgroup_4);Blastocatellales; Blastocatellaceae;Blastocatellaceae_uncultured	Magnesium (μM)	0.993	+	1.06E-08
	Nitrate (µM)	0.844	+	2.12E-03
OTU2499 Bacteria;Bacteroidetes;Bacteroidia;Sphingobacteriales;Sphingobacteriales_unclassi	Bromide (μM)	0.929	+	1.03E-04
fied;Sphingobacteriales_unclassified	Fluoride (µM)	0.929	+	1.03E-04
OTU27309 Bacteria;Firmicutes;Clostridia;Thermoanaerobacterales;SRB2;SRB2 ge	Dissolved Oxygen (μM)	0.794	+	6.07E-03
OTU81733 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhizobiaceae; Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium	Bromide (μM)	0.935	+	7.11E-05
Allomizobium-reomizobium-ramizobium	Fluoride (µM)	0.935	+	7.14E-05
OTU21542 Bacteria;Proteobacteria;Alphaproteobacteria;Sphingomonadales; Sphingomonadaceae;Porphyrobacter	Magnesium (μM)	0.993	+	1.30E-08
Sphingomonadaceae,i orphyrobacter	Nitrate (µM)	0.841	+	2.32E-03
OTU142009 Bacteria;Proteobacteria;Deltaproteobacteria;Syntrophobacterales;Syntrophaceae; Smithella	Bromide (μM)	0.918	+	1.79E-04
Sillulella	Fluoride (µM)	0.918	+	1.80E-04
OTU92145 Bacteria;Proteobacteria;Gammaproteobacteria;Xanthomonadales;	Magnesium (μM)	0.993	+	9.29E-09
Xanthomonadaceae;Xanthomonadaceae_uncultured	Nitrate (µM)	0.842	+	2.22E-03
OTU23922 Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae;	Dissolved Hydrogen (μM)	0.918	+	1.79E-04
Erysipelothrix OTU102436 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Xanthobacteraceae; Bradyrhizobium	Dissolved Hydrogen (μM)	0.967	+	4.88E-06
OTU128184 Bacteria;Firmicutes;Clostridia;Clostridiales;Family_XII;Fusibacter	Dissolved Hydrogen (μM)	0.903	+	3.46E-04
OTU62527 Bacteria;Proteobacteria;Gammaproteobacteria;Betaproteobacteriales; Nitrosomonadaceae;Nitrosomonas	Magnesium (μM)	0.993	+	9.39E-09
*	Nitrate (µM)	0.843	+	2.21E-03

	1			1
OTU145530 Bacteria;Nitrospirae;Nitrospira;Nitrospirales;Nitrospiraceae;Nitrospira	Magnesium (μM)	0.993	+	9.89E-09
,,,,,,,,	Nitrate (µM)	0.842	+	2.23E-03
OTU63293 Bacteria; Verrucomicrobia; Verrucomicrobiae; Opitutales; Opitutaceae; Lacunisphaera	Magnesium (μM)	0.993	+	9.78E-09
	Nitrate (µM)	0.842	+	2.22E-03
OTU94893 Bacteria;Firmicutes;Clostridia;Clostridiales;Clostridiaceae_4; Clostridiaceae_4_uncultured	Calcium (µM)	0.823	+	3.41E-03
OTU55834 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Beijerinckiaceae; Methylocystis	Dissolved Hydrogen (μM)	0.967	+	4.74E-06
OTU28357 Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prolixibacteraceae; Prolixibacteraceae_uncultured	Dissolved Hydrogen (μM)	0.943	+	4.22E-05
OTU56632 Bacteria;Proteobacteria;Alphaproteobacteria;Sphingomonadales; Sphingomonadaceae;Qipengyuania	Magnesium (µM)	0.992	+	1.43E-08
	Nitrate (µM)	0.84	+	2.37E-03
OTU184525 Bacteria;Firmicutes;Clostridia;Clostridiales;Clostridiales_unclassified; Clostridiales_unclassified	Bromide (μM)	0.878	+	8.39E-04
OTU150543	Fluoride (µM)	0.878	+	8.41E-04
Bacteria; Firmicutes; Clostridia; Clostridiales; Peptococcaceae; Desulfitispora	Specific Conductance (µS)	0.825	+	3.29E-03
	Well Depth (m)	0.917	+	1.84E-04
OTU139269 Bacteria;Bacteroidetes;Ignavibacteria;OPB56;OPB56_fa;OPB56_ge	Magnesium (μM)	0.993	+	1.01E-08
	Nitrate (µM)	0.842	+	2.23E-03
OTU182127 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Beijerinckiaceae; Salinarimonas	Specific Conductance (µS)	0.825	+	3.31E-03
	Well Depth (m)	0.918	+	1.83E-04
OTU83849 Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidales_unclassified; Bacteroidales_unclassified	Chloride (μM)	0.8	+	5.45E-03
_	Specific Conductance (µS)	0.86	+	1.41E-03
	Well Depth (m)	0.793	+	6.16E-03
OTU70317 Bacteria;Planctomycetes;Planctomycetacia;Pirellulales;Pirellulaceae;Rhodopirellula	Magnesium (μM)	0.993	+	9.41E-09
OTU85884	Nitrate (µM)	0.843	+	2.21E-03
Bacteria;Firmicutes;Clostridia;Clostridiales;Syntrophomonadaceae;Dethiobacter	Dissolved Oxygen (μM)	0.795	+	6.02E-03
OTU77385 Bacteria;Proteobacteria;Gammaproteobacteria;Betaproteobacteriales; Burkholderiaceae;Hydrogenophaga	Specific Conductance (µS)	0.825	+	3.28E-03
	Well Depth (m)	0.918	+	1.82E-04
OTU48861 Bacteria;Spirochaetes;Spirochaetia;Spirochaetales;Spirochaetaceae; Spirochaetaceae_uncultured	Bromide (µM)	0.92	+	1.66E-04
	Fluoride (μM)	0.92	+	1.66E-04
OTU189836 Bacteria;Actinobacteria;RBG-16-55-12;RBG-16-55-12_or;RBG-16-55-12_fa; RBG-16-55-12_ge	Dissolved Oxygen (μM)	0.798	+	5.67E-03
OTU6671 Bacteria;Proteobacteria;Gammaproteobacteria;Betaproteobacteriales; Betaproteobacteriales_unclassified	Hydrogen Sulfide (μM)	0.794	+	6.12E-03
OTU43135 Bacteria;Bacteria_unclassified;Bacteria_unclassified;Bacteria_unclassified; Bacteria_unclassified;Bacteria_unclassified	Magnesium (μM)	0.993	+	1.07E-08
	Nitrate (uM)	0.842	+	2.26E-03
OTU27705 Bacteria;Planctomycetes;Phycisphaerae;Phycisphaerales;Phycisphaeraceae; Phycisphaeraceae_unclassified	Magnesium (μM)	0.993	+	1.01E-08
	Nitrate (µM)	0.843	+	2.21E-03

	1			
OTU8904 Bacteria;Firmicutes;Clostridia;Clostridiales;Family_XIV;Family_XIV_uncultured	Specific Conductance (µS)	0.785	+	7.16E-03
, , , , , , , , , , , , , , , , , , ,	Well Depth (m)	0.819	+	3.75E-03
OTU180109 Bacteria;Firmicutes;Clostridia;Clostridiales;Syntrophomonadaceae;Dethiobacter	Specific Conductance (µS)	0.825	+	3.30E-03
	Well Depth (m)	0.917	+	1.85E-04
OTU120264 Bacteria; Actinobacteria; Nitriliruptoria; Nitriliruptorales; Nitriliruptoraceae; Egicoccus	Specific Conductance (µS)	0.826	+	3.26E-03
· · · · · · · · · · · · · · · · · · ·	Well Depth (m)	0.918	+	1.82E-04
OTU5365 Bacteria;Verrucomicrobia;Verrucomicrobiae;Pedosphaerales;Pedosphaeraceae; Pedosphaeraceae ge	Magnesium (uM)	0.993	+	9.85E-09
	Nitrate (µM)	0.842	+	2.23E-03
OTU98303 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;Rhodobacteraceae_unclassified	Specific Conductance (µS)	0.825	+	3.29E-03
OT11400700	Well Depth (m)	0.917	+	1.84E-04
OTU123766 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Beijerinckiaceae; Methylocystis	Dissolved Hydrogen (μM)	0.967	+	4.85E-06
OTU138388 Bacteria;Proteobacteria;Gammaproteobacteria;Betaproteobacteriales; Rhodocyclaceae;Denitratisoma	Magnesium (μM)	0.993	+	9.60E-09
·	Nitrate (µM)	0.843	+	2.18E-03
OTU61940 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae; Rhodobacteraceae_unclassified	Calcium (µM)	0.804	+	5.07E-03
OTU49101 Bacteria;Bacteroidetes;Ignavibacteria;SJA-28;SJA-28 fa;SJA-28 ge	Magnesium (uM)	0.993	+	9.56E-09
	Nitrate (µM)	0.842	+	2.22E-03
OTU85158 Bacteria;Chlamydiae;Chlamydiales;Simkaniaceae; Simkaniaceae unclassified	Magnesium (μM)	0.993	+	9.40E-09
	Nitrate (µM)	0.843	+	2.21E-03
OTU106439 Bacteria;Firmicutes;Erysipelotrichia;Erysipelotrichales;Erysipelotrichaceae; Erysipelothrix	Hydrogen Sulfide (μΜ)	0.791	+	6.42E-03
OTU4132 Bacteria;Acidobacteria;Acidobacteriia;Acidobacteriales; Acidobacteriales unclassified;Acidobacteriales unclassified	Magnesium (uM)	0.993	+	9.74E-09
	Nitrate (µM)	0.843	+	2.20E-03
OTU185606 Bacteria;Actinobacteria;Acidimicrobiia;Microtrichales;Microtrichales_uncultured; uncultured_ge	Specific Conductance (µS)	0.825	+	3.30E-03
	Well Depth (m)	0.919	+	1.75E-04
OTU112541 Bacteria;Proteobacteria;Gammaproteobacteria;Betaproteobacteriales; Nitrosomonadaceae;Nitrosomonas	Magnesium (μM)	0.993	+	9.39E-09
	Nitrate (µM)	0.843	+	2.22E-03

OTUs present in >0.1% relative abundance within CROMO wells were used for this analysis. This is not a comprehensive list of OTUs present at CRC

Table S6: Pearson's Correlation Analysis Results: Environmental Variables vs. Environmental Variables

Environmental Variable 1	Environmental Variable 2	Correlation	Sign	p-value
Mall Double (as)	Specific Conductance (µS)	0.910	+	2.53E-04
Well Depth (m)	Sodium (µM)	0.835	+	2.66E-03
рН	Potassium (μM)	0.835	+	2.67E-03
	Chloride (µM)	0.852	+	1.77E-03
Specific Conductance (µS/cm)	Sodium (µM)	0.940	+	5.30E-05
	Dissolved Methane (µM)	0.816	+	3.97E-03
	Sodium (µM)	0.956	+	1.51E-05
Chloride (µM)	Silica (µM)	0.849	+	1.88E-03
	Dissolved Methane (µM)	0.835	+	2.65E-03
Bromide (µM)	Fluoride (μM)	1.00	+	2.96E-27
Nitrate (µM)	Magnesium (μM)	0.873	+	9.66E-04
1:46: (Acetate (µM)	0.989	+	5.27E-08
Lithium (μM)	Formate (µM)	0.992	+	1.63E-08
Sodium (µM)	Dissolved Methane (µM)	0.898	+	4.20E-04
Silica (µM)	Dissolved Methane (µM)	0.799	+	5.52E-03
Acetate (µM)	Formate (µM)	0.989	+	5.34E-08

Correlations (p<0.05 and q<0.05) Calculated for CROMO wells only

Table S7: Thermodynamic Gibbs free energy calculations for select sulfur reactions using CROMO in situ water chemistries

	Gibbs energy change (kJ/mol)	Volumetric Gibbs energy availability (mJ/L)
	CSW1.1 CSW1.2 CSW1.3 CSW1.4 CSW1.5 CSW OLD N08-A N08-B N08-C QV 1.1 QV 1.2 QV 1.3	CSW1.1 CSW1.2 CSW1.3 CSW1.4 CSW1.5 CSWOLD N08-A N08-B N08-C QV1.1 QV1.2 QV1.3
Sulfate Reduction		
$SO_4^{2-} + CH_4 + H^+ \rightarrow HS^- + CO_2 + 2H_2O$	-53.74 -43.10 -48.74 -29.43 -40.41 -46.75 -52.84 -47.54 -28.75 -53.97 -37.96 -37.94	14304.41 8259.80 7366.95 107.73 12825.81 6511.73 2123.28 1316.38 32.49 13878.55 1214.63 2112.68
$SO_4^{2-} + CH_3COO^- + 5H^+ \rightarrow HS^- + 2CO_2 + 2H_2O$	-96.13 -58.21 -68.74 -54.54 -58.27 -69.86 -80.22 -76.60 -61.44 -92.56 -57.71 -59.76	54794.05 58.21 68.74 54.54 58.27 69.86 80.22 76.60 61.44 564.64 57.71 472.09
SO ₄ ²⁻ + 4HCOO ⁻ +5H ⁺ → HS ⁻ +4CO ₂ + 4H ₂ O	-151.88 -86.56 -95.31 -77.43 -82.50 -106.12 -118.21 -112.19 -89.01 -129.19 -80.77 -78.43	721.44 21.64 23.83 19.36 20.62 26.53 29.55 28.05 22.25 32.30 20.19 19.61
$SO_4^{2-} + 4H_2 + H^+ \rightarrow HS^- + 4H_2O$	-87.31 -80.35 -92.88 -86.81 -69.59 -61.35 -65.64 -64.97 -80.57 -78.84 -76.11 -60.18	17.24 3.62 67.11 6.29 6.61 2.30 1.31 1.46 5.24 4.93 9.32 2.56
Sulfide Oxidation		
HS ⁻ + 2O ₂ → SO ₄ ²⁻ + H ⁺	-799.28 -766.45 -778.60 -775.21 -782.28 -783.89 -783.77 -792.72 -772.14 -791.03 -782.62 -786.17	10742.27 76.64 77.86 77.52 1955.71 3186.51 893.49 79.27 77.21 3460.77 78.26 3195.79
2HS ⁻ + 2O ₂ → S ₂ O ₃ ²⁻ + H ₂ O	-743.36 -728.04 -726.65 -738.48 -741.99 -739.45 -724.80 -734.12 -730.72 -736.85 -731.13 -740.19	4794.64 36.40 36.33 36.92 1854.97 3005.88 413.14 36.71 36.54 1753.70 36.56 3008.88
HS ⁻ + 0.5O ₂ → S _(s) + H ₂ O	-147.79 -165.59 -152.09 -168.39 -161.95 -160.46 -147.80 -151.37 -163.00 -149.35 -157.37 -161.07	1903.51 16.56 15.21 16.84 1619.55 2692.55 168.49 15.14 16.30 710.90 15.74 1631.69
$HS^{-} + NO_{3}^{-} \rightarrow S_{(s)} + NO_{2}^{-} + H_{2}O$	-71.01 -98.59 -87.84 -102.82 -86.16 -88.45 -78.64 -71.51 -99.54 -70.67 -91.68 -92.52	113.61 9.86 8.78 10.28 138.72 142.40 89.65 7.15 9.95 113.79 9.17 148.95
$5HS^{-} + 2NO_{3}^{-} + 7H^{+} \rightarrow 5S_{(s)} + N_{2} + 6H_{2}O$	-568.25 -728.71 -641.68 -737.52 -672.38 -671.88 -604.57 -595.83 -713.73 -582.40 -669.88 -682.08	457.44 14.57 12.83 14.75 541.27 540.86 137.84 11.92 14.27 468.83 13.40 549.07
$5HS^{-} + 8NO_{3}^{-} + 3H^{+} \rightarrow SO_{4}^{-2} + 4N_{2} + 4H_{2}O$	-3313.56 -3435.30 -3417.86 -3458.26 -3361.81 -3397.69 -3381.14 -3319.41 -3455.58 -3297.73 -3445.11 -3437.64	662.71 68.71 68.36 69.17 672.36 683.79 680.45 66.39 69.11 663.67 68.90 691.83
Thiosulfate Disproportionation		
S ₂ O ₃ ²⁻ + H ₂ O → SO ₄ ²⁻ + HS* + H*	-55.92 -38.41 -51.95 -36.73 -40.29 -44.43 -58.97 -58.59 -41.42 -54.18 -51.48 -45.98	55.92 38.41 51.95 36.73 40.29 44.43 58.97 58.59 41.42 54.18 51.48 45.98
$5S_2O_3^{2^*} + 4O_2 + H_2O \rightarrow 6SO_4^{2^*} + 4S_{(6)} + 2H^*$	-1670.03 -1620.86 -1646.73 -1632.42 -1631.57 -1647.90 -1669.79 -1691.16 -1631.26 -1659.35 -1669.52 -1660.37	334.01 324.17 329.35 326.48 326.31 329.58 333.96 338.23 326.25 331.87 333.90 332.07
Thiosulfate Oxidation		
5S ₂ O ₃ ²⁻ + 8NO ₃ ⁻ + H ₂ O → 10SO ₄ ²⁻ + 4N ₂ +2H ⁺	-3593.17 -3627.37 -3677.62 -3641.92 -3563.29 -3619.87 -3675.99 -3612.38 -3662.71 -3568.66 -3702.53 -3667.55	718.63 725.47 735.52 728.38 712.66 723.97 735.20 722.48 732.54 713.73 740.51 733.51
$S_2O_3^{-2} + 2O_2 + H_2O + 2SO_4^{-2} + 2H^+$	-855.20 -804.86 -830.56 -811.94 -822.58 -828.32 -842.73 -851.31 -813.56 -845.22 -834.10 -832.15	855.20 804.86 830.56 811.94 822.58 828.32 842.73 851.31 813.56 845.22 834.10 832.15
Thiosulfate Reduction		
S ₂ O ₃ ²⁻ + 4HCOO ⁻ +4H ⁺ → 4CO ₂ + 2HS ⁻ + 3H ₂ O	-207.95 -125.12 -147.41 -114.31 -122.94 -150.70 -177.33 -170.94 -130.59 -183.52 -132.40 -124.56	207.95 31.28 36.85 28.58 30.73 37.68 44.33 42.73 32.65 45.88 33.10 31.14
S ₂ O ₃ ²⁻ + CH ₃ COO ⁻ + H ⁺ → 2HS ⁻ + 2CO ₂ + H ₂ O	-151.85 -96.42 -120.49 -91.06 -98.36 -114.09 -138.98 -134.99 -102.66 -146.54 -108.99 -105.53	151.85 96.42 120.49 91.06 98.36 114.09 138.98 134.99 102.66 146.54 108.99 105.53
S ₂ O ₃ ²⁻ + CH ₄ →2HS ⁻ + H ₂ O + CO ₂	-109.79 -81.64 -100.81 -66.29 -80.83 -91.31 -111.94 -106.26 -70.31 -108.29 -89.57 -84.04	109.79 81.64 100.81 66.29 80.83 91.31 111.94 106.26 70.31 108.29 89.57 84.04
S ₂ O ₃ ²⁻ + 4H ₂ → 2HS ⁻ + 3H ₂ O	-143.23 -118.76 -144.83 -123.54 -109.89 -105.78 -124.60 -123.56 -121.99 -133.03 -127.60 -106.16	28.29 5.34 104.64 8.96 10.44 3.97 2.49 2.78 7.93 8.31 15.63 4.51

Calculated log(activities)	CSW 1.1	CSW 1.2	CSW 1.3	CSW 1.4	CSW 1.5	CSW OLD	N08-A	N08-B	N08-C	QV 1.1	QV 1.2	QV 1.3
aCH₄	-3.23	-3.11	-2.94	-5.40	-2.97	-2.88	-2.90	-3.52	-6.00	-3.54	-3.58	-2.89
aSO ₄ 2·	-3.86	-4.09	-4.20	-3.71	-3.89	-4.34	-4.85	-4.88	-3.94	-3.92	-4.81	-4.68
aH⁺	-12.30	-7.80	-10.20	-7.80	-9.80	-9.70	-10.89	-10.68	-8.46	-11.51	-9.47	-9.68
aHS ⁻	-4.96	-6.16	-6.08	-6.14	-4.71	-5.18	-6.05	-6.07	-6.07	-5.39	-6.07	-5.09
aCO ₂	-11.90	-4.40	-7.84	-3.88	-7.03	-7.96	-9.90	-9.37	-5.32	-11.10	-6.43	-6.80
aO ₂	-4.89	-5.10	-5.30	-4.13	-5.30	-5.10	-5.52	-4.62	-4.89	-5.05	-4.89	-5.10
aNO ₃	-6.58	-4.93	-4.54	-4.19	-6.61	-5.83	-5.53	-7.00	-4.19	-7.00	-4.59	-5.21
aNO ₂	-6.00	-6.00	-6.00	-6.00	-6.00	-6.00	-6.00	-6.00	-6.00	-6.00	-6.00	-6.00
aN ₂	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00
aS ₂ O ₃ ²	-6.25	-6.32	-6.32	-6.22	-6.33	-6.41	-6.37	-6.28	-6.20	-6.26	-6.28	-6.36
aH ₂	-5.06	-6.74	-5.53	-6.54	-6.41	-6.81	-6.41	-6.49	-6.58	-5.73	-6.31	-6.76
aFormate		-6.08	-6.08	-6.06	-6.08	-6.08	-6.08	-6.08	-6.08	-6.08	-6.08	-6.08
aAcetate	-4.31	-6.08	-6.08	-6.06	-6.08	-6.08	-6.08	-6.08	-6.08	-5.30	-6.08	-5.19

Thiosulfate concentrations are estimated at 1 µM for calculations shown here.

CSW1.2 measured nitrite value is an outlier, and is not reflected in the table of calculated activities. This is replaced with a hypothetical activity of 10^-8

Table S8: Thermodynamic Gibbs free energy calculations for select thiosulfate reactions using a range of thiosulfate values

		Gibbs e	nergy ch	nange (k	J/mol)									Volumeti	ic Gibbs	energy av	ailability	(mJ/L)							
		CSW 1.1	CSW 1.2	CSW 1.3	CSW 1.4	CSW 1.5	CSW OLD	N08-A	N08-B	N08-C	QV 1.1	QV 1.2	QV 1.3	CSW 1.1	CSW 1.2	CSW 1.3	CSW 1.4	CSW 1.5	CSW OLD	N08-A	N08-B	N08-C	QV 1.1	QV 1.2	QV 1.3
Thiosulfate Disproportionation	[\$203]																								
S ₂ O ₃ ²⁻ + H ₂ O → SO ₄ ²⁻ + HS ⁻ + H ⁺	1 nM	-39.21	-21.70	-35.24	-20.01	-23.58	-27.72	-42.25	-41.88	-24.71	-37.47	-34.77	-29.26	0.04	0.02	0.04	0.02	0.02	0.03	0.04	0.04	0.02	0.04	0.03	0.03
	1 μΜ	-55.92	-38.41	-51.95	-36.73	-40.29	-44.43	-58.97	-58.59	-41.42	-54.18	-51.48	-45.98	55.92	38.41	51.95	36.73	40.29	44.43	58.97	58.59	41.42	54.18	51.48	45.98
	1 mM	-72.64	-55.13	-68.67	-53.45	-57.01	-61.15	-75.68	-75.31	-58.14	-70.90	-68.20	-62.70	72636.38	55126.66	68666.18	53445.79	57008.94	61148.92	75682.78	75307.90	58139.14	70899.63	68198.41	62695.45
$5S_2O_3^{2^c} + 4O_2 + H_2O \rightarrow 6SO_4^{2^c} + 4S_{(8)} + 2H^+$	1 nM	-1586.46	-1537.28	-1563.15	-1548.85	-1547.99	-1564.33	-1586.21	-1607.59	-1547.68	-1575.77	-1585.94	-1576.79	0.32	0.31	0.31	0.31	0.31	0.31	0.32	0.32	0.31	0.32	0.32	0.32
	1 μΜ	-1670.03	-1620.86	-1646.73	-1632.42	-1631.57	-1647.90	-1669.79	-1691.16	-1631.26	-1659.35	-1669.52	-1660.37	334.01	324.17	329.35	326.48	326.31	329.58	333.96	338.23	326.25	331.87	333.90	332.07
	1 mM	-1753.61	-1704.43	-1730.31	-1716.00	-1715.15	-1731.48	-1753.37	-1774.74	-1714.83	-1742.93	-1753.10	-1743.95	5892.13	3327.91	2162.88	31638.78	2143.93	3519.23	1231.74	10537.53	5628.94	3812.66	5478.42	3544.58
Thiosulfate Oxidation																									
5S ₂ O ₃ ² + 8NO ₃ + H ₂ O → 10SO ₄ ² + 4N ₂ +2H*	1 nM				-3558.34	-3479.71	-3536.29				-3485.09			0.70	0.71	0.72	0.71	0.70	0.71	0.72	0.71	0.72	0.70	0.72	0.72
	1 μΜ				-3641.92		-3619.87							718.63	725.47	735.52	728.38	712.66	723.97	735.20	722.48	732.54	713.73	740.51	733.51
	1 mM	-3676.75	-3710.94	-3761.20	-3725.50	-3646.86	-3703.45	-3759.57	-3695.96	-3746.29	-3652.24	-3786.11	-3751.13	739.95	746.83	756.94	1201.47	733.93	745.32	756.61	743.81	6495.13	735.01	761.95	754.91
$S_2O_3^{2-} + 2O_2 + H_2O \rightarrow 2SO_4^{2-} + 2H^+$	1 nM	-838.48	-788.14	-813.84	-795.22	-805.86	-811.61	-826.02	-834.59	-796.85	-828.50	-817.38	-815.44	0.84	0.79	0.81	0.80	0.81	0.81	0.83	0.83	0.80	0.83	0.82	0.82
	1 μΜ	-855.20	-804.86	-830.56	-811.94	-822.58	-828.32	-842.73	-851.31	-813.56	-845.22	-834.10	-832.15	855.20	804.86	830.56	811.94	822.58	828.32	842.73	851.31	813.56	845.22	834.10	832.15
	1 mM	-871.91	-821.58	-847.27	-828.65	-839.29	-845.04	-859.45	-868.02	-830.28	-861.93	-850.81	-848.87	5859.25	3212.36	2118.18	30556.64	2098.23	3435.08	1207.53	10307.78	5450.79	3770.96	5317.59	3450.65
Thiosulfate Reduction																									
S ₂ O ₃ ²⁻ + 4HCOO ⁻ +4H ⁺ → 4CO ₂ + 2HS ⁻ + 3H ₂ O	1 nM	-191.24	-108.41	-130.70	-97.60	-106.22	-133.99	-160.61	-154.22		-166.81		-107.84	0.19	0.11	0.13	0.10	0.11	0.13	0.16	0.15	0.11	0.17	0.12	0.11
	1 μΜ			-147.41		-122.94	-150.70					-132.40		207.95	31.28	36.85	28.58	30.73	37.68	44.33	42.73	32.65	45.88	33.10	31.14
	1 mM	-224.67	-141.84	-164.13	-131.03	-139.65	-167.42	-194.04	-187.65	-147.30	-200.24	-149.12	-141.27	1067.17	35.46	41.03	32.76	34.91	41.85	48.51	46.91	36.83	50.06	37.28	35.32
$S_2O_3^{2-} + CH_3COO^- + H^+ \rightarrow 2HS^- + 2CO_2 + H_2O$	1 nM	-135.13	-79.70	-103.77	-74.35	-81.64	-97.37	-122.27	-118.27	-85.95	-129.83	-92.27	-88.82	0.14	0.08	0.10	0.07	0.08	0.10	0.12	0.12	0.09	0.13	0.09	0.09
	1 μΜ	-151.85	-96.42	-120.49	-91.06	-98.36	-114.09	-138.98	-134.99	-102.66	-146.54	-108.99	-105.53	151.85	96.42	120.49	91.06	98.36	114.09	138.98	134.99	102.66	146.54	108.99	105.53
	1 mM	-168.56	-113.13	-137.20	-107.78	-115.07	-130.80	-155.70	-151.70	-119.38	-163.26	-125.70	-122.25	9608.06	113.13	137.20	107.78	115.07	130.80	155.70	151.70	119.38	995.88	125.70	965.78
S ₂ O ₃ ² + CH ₄ →2HS ⁻ + H ₂ O + CO ₂	1 nM	-93.07	-64.92	-84.10	-49.58	-64.11	-74.59	-95.22	-89.54	-53.59	-91.57	-72.85	-67.33	0.09	0.06	0.08	0.05	0.06	0.07	0.10	0.09	0.05	0.09	0.07	0.07
	1 μΜ	-109.79	-81.64	-100.81	-66.29	-80.83	-91.31	-111.94	-106.26	-70.31	-108.29	-89.57	-84.04	109.79	81.64	100.81	66.29	80.83	91.31	111.94	106.26	70.31	108.29	89.57	84.04
	1 mM	-126.50	-98.35	-117.53	-83.01	-97.54	-108.03	-128.65	-122.97	-87.02	-125.00	-106.28	-100.76	75128.81	77095.05	117529.06	303.81	97543.45	108025.14	128653.87	37285.87	98.33	35807.86	28034.11	100758.74
S ₂ O ₃ ²⁻ + 4H ₂ → 2HS ⁻ + 3H ₂ O	1 nM	-126.52	-102.04	-128.12	-106.83	-93.17	-89.07	-107.89	-106.85	-105.28	-116.31	-110.88	-89.44	0.13	0.10	0.13	0.11	0.09	0.09	0.11	0.11	0.11	0.12	0.11	0.09
	1 μΜ	-143.23	-118.76	-144.83	-123.54	-109.89	-105.78	-124.60	-123.56	-121.99	-133.03	-127.60	-106.16	28.29	5.34	104.64	8.96	10.44	3.97	2.49	2.78	7.93	8.31	15.63	4.51
	1 mM	-159.95	-135.47	-161.55	-140.26	-126.60	-122.50	-141.32	-140.28	-138.71	-149.74	-144.31	-122.87	31.59	6.10	116.72	10.17	12.03	4.59	2.83	3.16	9.02	9.36	17.68	5.22

Calculated Activities	CSW 1.1	CSW 1.2	CSW 1.3	CSW 1.4	CSW 1.5	CSW OLD	N08-A	N08-B	N08-C	QV 1.1	QV 1.2	QV 1.3
aCH₄	-3.23	-3.11	-2.94	-5.40	-2.97	-2.88	-2.90	-3.52	-6.00	-3.54	-3.58	-2.89
aSO ₄ 2-	-3.86	-4.09	-4.20	-3.71	-3.89	-4.34	-4.85	-4.88	-3.94	-3.92	-4.81	-4.68
aH⁺	-12.30	-7.80	-10.20	-7.80	-9.80	-9.70	-10.89	-10.68	-8.46	-11.51	-9.47	-9.68
aHS ⁻	-4.96	-6.16	-6.08	-6.14	-4.71	-5.18	-6.05	-6.07	-6.07	-5.39	-6.07	-5.09
aCO ₂	-11.90	-4.40	-7.84	-3.88	-7.03	-7.96	-9.90	-9.37	-5.32	-11.10	-6.43	-6.80
aO ₂	-4.89	-5.10	-5.30	-4.13	-5.30	-5.10	-5.52	-4.62	-4.89	-5.05	-4.89	-5.10
aNO ₃	-6.58	-4.93	-4.54	-4.19	-6.61	-5.83	-5.53	-7.00	-4.19	-7.00	-4.59	-5.21
aNO ₂	-6.00	-6.00	-6.00	-6.00	-6.00	-6.00	-6.00	-6.00	-6.00	-6.00	-6.00	-6.00
aN ₂	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00
aS ₂ O ₃ ²⁻	-6.25	-6.32	-6.32	-6.22	-6.33	-6.41	-6.37	-6.28	-6.20	-6.26	-6.28	-6.36
aH ₂	-5.06	-6.74	-5.53	-6.54	-6.41	-6.81	-6.41	-6.49	-6.58	-5.73	-6.31	-6.76
aHCOO*	-4.79	-6.08	-6.08	-6.06	-6.08	-6.08	-6.08	-6.08	-6.08	-6.08	-6.08	-6.08
aCH ₃ COO [*]	-4.31	-6.08	-6.08	-6.06	-6.08	-6.08	-6.08	-6.08	-6.08	-5.30	-6.08	-5.19

Table S9: Bacterial Species Present in >1% Relative Abundance in CSWold

Domain	Phylum	Class	Order	Family	Genus_Species	Average Counts	Percent Abundance (%)
Bacteria	Firmicutes	Clostridia	Clostridiales	Syntrophomonadaceae	Dethiobacter	13852.83	22.74
Bacteria	Firmicutes	Clostridia	Clostridia_Incertae_Sedis	Unknown_Family	Candidatus_Desulforudis	6813.67	11.19
Bacteria	Firmicutes	Clostridia	Clostridiales	Syntrophomonadaceae	Dethiobacter	6654.83	10.93
Bacteria	Firmicutes	Clostridia	Clostridiales	Peptococcaceae	Desulfitispora	1687.17	2.77
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Beijerinckiaceae	Salinarimonas	1679.50	2.76
Bacteria	Proteobacteria	Gammaproteobacteria	Betaproteobacteriales	Burkholderiaceae	Hydrogenophaga	1377.67	2.26
Bacteria	Firmicutes	Clostridia	Clostridiales	Syntrophomonadaceae	Dethiobacter	1021.50	1.68
Bacteria	Proteobacteria	Alphaproteobacteria	Rhodobacterales	Rhodobacteraceae	Rhodobacteraceae_unclassified	958.17	1.57
Bacteria	Actinobacteria	Nitriliruptoria	Nitriliruptorales	Nitriliruptoraceae	Egicoccus	949.83	1.56
Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidales_unclassified	Bacteroidales_unclassified	904.17	1.48
Bacteria	Proteobacteria	Alphaproteobacteria	Caulobacterales	Caulobacteraceae	Brevundimonas	894.83	1.47
Bacteria	Firmicutes	Clostridia	Clostridiales	Family_XIV	Family_XIV_uncultured	782.00	1.28
Bacteria	Actinobacteria	Acidimicrobiia	Microtrichales	Microtrichales_uncultured	uncultured_ge	667.83	1.10
Bacteria	Proteobacteria	Alphaproteobacteria	Rhodobacterales	Rhodobacteraceae	Rhodobacter	636.00	1.04

Classified using Silva v.132

Table S10: KEGG Accessions and Genes, Transcripts Associated with MetaCyc Sulfur Metabolic Pathways (Reported as FPKM)

-	Metabolic Pathway	Gene	KEGG ID	LIG	LCY 3862	LCY H08	QV1.1	QV1.1 mt	QV1.2	QV12 mt	N08-B	N08B mt	CSWold	CSWold mt
-	dissimilatory sulfate reduction I (to sulfide)	sat	K00956	13.80	10.17	6.75	65.06	7.03	176.51	120.99	121.06	10.27	35.76	0.83
	dissimilatory sulfate reduction I (to sulfide)	sat	K00957	24.48	35.55	247.90	145.56	6.19	224.29	576.35	241.63	84.02	90.17	2.72
	dissimilatory sulfate reduction I (to sulfide)	sat	K00958	57.30	95.74	64.40	0.38	0.00	0.59	29.74	18.60	15.10	72.96	2043.18
Sulfate Reduction	dissimilatory sulfate reduction I (to sulfide)	aprA	K00394	32.63	4.63	11.92	65.87	0.65	0.34	35.91	9.85	80.79	10.05	5970.80
	dissimilatory sulfate reduction I (to sulfide)	aprB	K00395	68.48	14.66	17.57	21.79	0.00	1.20	65.43	7.53	5.40	6.57	7228.29
	dissimilatory sulfate reduction I (to sulfide)	dsrA	K11180	66.98	12.13	9.53	139.56	224.49	1.17	127.06	23.53	47.04	19.81	49.68
	dissimilatory sulfate reduction I (to sulfide)	dsrB	K11181	59.15	9.71	45.96	98.72	111.89	0.69	25.46	8.15	29.67	3.94	22.94
	thiosulfate disproportionation IV (rhodanese)	sseA	K01011	27.29	66.16	63.06	20.06	0.00	130.71	55.29	86.52	188.53	102.00	71.23
Thiosulfate	thiosulfate disproportionation IV (rhodanese)	glpE	K02439		14.57	81.70	0.26	0.00	86.86	0.00	0.64	0.00	1.21	0.00
Disproportionation	thiosulfate disproportionation III (quinone)	phsA	K08352	57.30	0.42	0.00	5.45	73.79	1.23	1.64	21.83	30.84	14.43	0.71
	thiosulfate disproportionation III (quinone)	phsB	K08354	5.61	-	-	0.00	0.00	2.76	7.15	0.36	0.00	0.00	0.00
	sulfide oxidation I (sulfide-quinone reductase)	sqr	K17218	54.75	467.294	1281.73	193.54	31.97	217.98	395.21	140.38	61.92	109.28	10.61
Sulfide Oxidation	sulfide oxidation II (sulfide dehydrogenase)	fccB	K17229	-	277.898	701.805	0.13	0.00	1.38	3.67	0.26	0.00	0.27	0.00
	sulfide oxidation II (sulfide dehydrogenase)	fccA	K17230	-	0.00	23.3227	0.00	0.00	0.13	0.00	0.00	0.00	0.27	0.00
	Thiosulfate Oxidation I	tsdA	K19713	-	_	_	0.08	0.00	10.14	3.47	0.77	0.00	0.18	0.00
	Thiosulfate Oxidation II	doxA	K16936	-	-	_	-	-	-	-	-	_	-	-
	Thiosulfate Oxidation II	doxD	K16937	3.91	-	-	0.00	0.00	23.24	0.00	7.97	36.37	4.22	2.84
	Thiosulfate Oxidation III	soxA	K17222	45.13	350.286	278.92	0.50	0.00	147.64	121.86	41.87	123.76	76.44	1.93
Thiosulfate Oxidation	Thiosulfate Oxidation III	soxX	K17223	62.11	150.015	167.72	0.27	0.00	133.91	122.76	18.46	21.49	35.31	0.00
Tillosullate Oxidation	Thiosulfate Oxidation III	soxB	K17224	3.42	954.826	710.79	0.29	0.00	158.38	56.98	13.51	59.26	16.62	0.23
	Thiosulfate Oxidation III	soxC	K17225	8.20	162.12	520.28	0.25	0.00	150.21	117.05	16.33	12.40	25.78	0.92
	Thiosulfate Oxidation III	soxY	K17226	118.89	529.582	454.28	109.93	321.47	119.55	558.46	218.55	1276.78	55.38	2.23
	Thiosulfate Oxidation III	soxZ	K17227	119.17	157.039	189.48	105.84	314.48	188.64	489.35	265.02	1143.75	83.26	4.31
	Thiosulfate Oxidation III	CYC	K08378	-	-	-	-	-	-	-	-	-	-	-
Reference Gene	recombination protein	recA	K03553	173.41	415.3	4702.84	375.11	467.32	280.89	241.47	175.83	166.13	206.83	326.19

mt = metatranscript

mt = metatranscript
LCY = Lost City; LIG = Liguria

(-) = no sequences were observed meeting the given criteria
KEGG = Kyoto Encyclopedia of Genes and Genomes
Metagenomes from Aug 12; Metatranscriptomes from Aug. 2013.
Abundances reported as metagenome fragments per kilobase of predicted protein sequence per million mapped reads
CSWOLD mt from dec of 2013

Table S11: All quantified metagenome and metatranscriptome abundances in CROMO waters for select sulfur pathways through time (reported as FPKM)

		•	CSW1.1 November-11	CSW1.1 August-12	CSW1.3 August-12	CSW1.4 March-12		CSW old mt December-13	QV1.1 March-12	QV1.1 June-12	QV1.1 August-12	QV1.1 December-1		QV1.1 mt August-13	QV1.2 August-12	QV1.2 mt August-13	QV1.2 mt	N08-A		N08-A August-11	N08-A August-12	N08-B April-11	N08-B July-11	N08-B August-12		N08-B mt August-13	N08-B mt	N08-C 3 August-12
	Gene	KEGG ID																										
Sulfate Reduction Sulfate reduction I (dissimilatory,	sat	K00956	107.12	206.83	111.13	46.54	35.76	0.83	81.51	86.93	65.06	88.25	1.81	7.03	176.51	120.99	270.78	174.50	203.25	236.15	197.40	174.82	78.68	121.06	43.11	10.27	39.64	7.96
to hydrogen sulfide) Sulfate reduction I (dissimilatory, to hydrogen sulfide)	sat	K00957	328.79	375.85	213.73	197.23	90.17	2.72	176.31	196.39	145.56	174.37	4.41	6.19	224.29	576.35	629.20	403.18	420.16	455.92	444.99	515.14	280.91	241.63	110.69	84.02	109.75	111.34
Sulfate reduction I (dissimilatory, to hydrogen sulfide)	sat	K00958	0.00	0.75	2.66	1.86	72.96	2043.18	0.00	0.36	0.38	0.15	0.00	0.00	0.59	29.74	439.54	31.71	24.18	21.07	30.47	29.54	7.24	18.60	43.99	15.10	43.27	84.26
Sulfate reduction I (dissimilatory, to hydrogen sulfide)	aprA	K00394	0.18	0.37	3.03	0.77	10.05	5970.80	74.69	89.71	65.87	97.57	0.00	0.65	0.34	35.91	1018.52	17.71	19.12	17.53	25.51	19.61	3.47	9.85	27.36	80.79	47.03	0.05
Sulfate reduction I (dissimilatory, to hydrogen sulfide)	aprB	K00395	0.00	0.00	3.68	22.79	6.57	7228.29	31.67	27.89	21.79	30.39	0.00	0.00	1.20	65.43	1064.03	17.20	18.41	13.90	34.02	17.96	29.75	7.53	19.69	5.40	61.68	0.00
Sulfate reduction I (dissimilatory, to hydrogen sulfide)	dsrA	K11180	0.51	0.71	6.98	6.65	19.81	49.68	158.45	235.96	139.56	256.59	1.65	224.49	1.17	127.06	557.94	127.11	132.99	161.71	209.17	160.81	29.43	23.53	98.20	47.04	703.53	0.08
Sulfate reduction I (dissimilatory, to hydrogen sulfide)	dsrB	K11181	0.16	0.82	5.58	1.03	3.94	22.94	108.29	160.01	98.72	173.96	5.54	111.89	0.69	25.46	331.55	9.89	12.94	10.37	20.06	13.45	3.27	8.15	30.48	29.67	24.81	0.00
Thiosulfate Disproportionation thiosulfate disproportionation IV																												
(rhodanese) thiosulfate disproportionation IV	sseA	K01011	10.80	75.41	206.36	132.32	102.00	71.23	19.28	13.03	20.06	5.72	354.76	0.00	130.71	55.29	71.30	121.12	143.70	105.62	143.26	97.77	181.66	86.52	284.59	188.53	21.42	366.21
(rhodanese) thiosulfate disproportionation III	glpE	K02439	0.00	0.00	2.47	0.00	1.21	0.00	0.00	0.00	0.26	0.00	0.00	0.00	86.86	0.00	0.00	0.00	0.00	0.00	0.00	1.62	1.24	0.64	0.00	0.00	0.72	3.68
(quinone) thiosulfate disproportionation III	phsA	K08352	79.01	1.79	7.77	29.11	14.43	0.71	6.29	8.75	5.45	9.26	76.05	73.79	1.23	1.64	13.78	96.08	102.69	71.31	104.70	28.77	41.69	21.83	17.57	30.84	197.91	0.09
(quinone)	phsB	K08354	0.00	0.00	0.00	8.53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.76	7.15	6.05	0.19	0.00	0.00	0.00	0.00	10.20	0.36	0.00	0.00	0.00	0.00
Sulfide Oxidation sulfide oxidation I (sulfide-quinone reductase)	sqr	K17218	129.75	123.53	98.08	143.94	109.28	10.61	205.01	228.28	193.54	216.60	28.24	31.97	217.98	395.21	461.06	420.29	414.81	408.64	413.50	551.63	254.71	140.38	439.82	61.92	439.54	141.19
sulfide oxidation II (sulfide dehydrogenase)	fccA	K17230	0.00	0.00	0.00	7.21	0.27	0.00	0.15	0.00	0.00	0.00	0.00	0.00	0.13	0.00	0.37	2.28	1.56	3.16	13.47	0.16	9.82	0.00	0.00	0.00	0.00	0.00
sulfide oxidation II (sulfide dehydrogenase)	fccB	K17229	0.00	0.14	0.06	25.52	0.27	0.00	0.00	0.07	0.13	0.08	0.00	0.00	1.38	3.67	8.05	3.04	1.85	2.49	13.58	1.40	30.78	0.26	0.00	0.00	0.00	0.08
Thiosulfate Oxidation																												
Thiosulfate Oxidation I	tsdA	K19713	0.34	0.00	10.41	65.88	0.18	0.00	0.00	0.00	0.08	0.00	0.00	0.00	10.14	3.47	5.32	0.15	0.23	0.20	0.13	0.22	76.73	0.77	6.08	0.00	0.53	21.47
Thiosulfate Oxidation II	doxA	K16936	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Thiosulfate Oxidation II	doxD	K16937	0.00	0.00	0.00	1.71	4.22	2.84	0.00	0.00	0.00	0.00	0.00	0.00	23.24	0.00	0.60	6.67	3.12	1.20	5.18	18.22	3.93	7.97	82.45	36.37	5.39	90.81
Thiosulfate Oxidation III	soxA	K17222	1.15	0.63	65.72	119.72	76.44	1.93	0.25	0.18	0.50	0.20	0.00	0.00	147.64	121.86	261.55	271.79	287.00	340.16	389.40	326.88	175.15	41.87	177.16	123.76	56.71	2.39
Thiosulfate Oxidation III	soxX	K17223	1.00	1.25	69.45	82.98	35.31	0.00	0.60	0.00	0.27	0.00	0.00	0.00	133.91	122.76	259.20	143.68	131.93	133.49	166.91	226.10	120.36	18.46	52.60	21.49	16.25	5.27
Thiosulfate Oxidation III	soxB	K17224	0.19	0.50	62.42	101.22	16.62	0.23	0.35	0.11	0.29	0.12	0.00	0.00	158.38	56.98	82.42	49.43	52.86	52.21	85.63	55.22	130.21	13.51	96.16	59.26	56.42	0.11
Thiosulfate Oxidation III	soxC	K17225	0.37	0.13	62.24	89.36	25.78	0.92	0.07	0.00	0.25	0.00	0.00	0.00	150.21	117.05	359.16	20.21	15.95	8.92	19.28	17.09	114.83	16.33	96.09	12.40	3.83	6.37
Thiosulfate Oxidation III	soxY	K17226	411.71	321.15	152.90	175.48	55.38	2.23	129.85	123.30	109.93	112.74	56.83	321.47	119.55	558.46	653.53	271.94	290.05	322.61	347.35	297.40	245.52	218.55	1307.53	1276.78	1500.90	20.64
Thiosulfate Oxidation III	soxZ	K17227	422.93	388.66	118.96	115.94	83.26	4.31	149.96	125.45	105.84	122.05	129.20	314.48	188.64	489.35	763.61	375.67	425.19	481.19	474.50	475.26	196.59	265.02	1913.85	1143.75	940.05	35.46
Thiosulfate Oxidation III	CYC	K08378	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Reference Gene																												
recombination protein	recA	K03553	72.01	180.47	319.41	263.30	206.83	326.19	319.48	345.45	375.11	337.18	467.32	260.13	280.89	241.47	189.85	195.07	192.91	168.94	213.55	187.39	353.38	175.83	166.13	416.78	135.05	1000.28

mt = metatranscript
KEGG = Kyoto Encyclopedia of Genes and Genomes
CSW = Core Shed Well
QV = Quarry Valley Well
- Previously owned by Homestake Mining Company

Table S12: Log₂ Fold Change for CROMO Metatranscriptomic Data Associated with MetaCyc Sulfur Metabolic Pathways (reported as FPKM)

	Well depth (m)			19.20	23.00		26.20		76.20	
	Metabolic Pathway	Gene	KEGG ID	QV1.2 mt	QV1.1 mt	Log ₂ Fold Change (QV1.2/QV1.1)	N08-B mt	Log ₂ Fold Change (QV1.2/N08-B)	CSWold mt	Log₂ Fold Change (QV1.2/CSWold)
	dissimilatory sulfate reduction I (to sulfide)	sat	K00956	120.99	7.03	-4.10	10.27	-3.56	0.83	-7.19
	dissimilatory sulfate reduction I (to sulfide)	sat	K00957	576.35	6.19	-6.54	84.02	-2.78	2.72	-7.73
	dissimilatory sulfate reduction I (to sulfide)	sat	K00958	29.74	0.00	-18.18	15.10	-0.98	2043.18	6.10
Sulfate Reduction	dissimilatory sulfate reduction I (to sulfide)	aprA	K00394	35.91	0.65	-5.79	80.79	1.17	5970.80	7.38
	dissimilatory sulfate reduction I (to sulfide)	aprB	K00395	65.43	0.00		5.40	-3.60	7228.29	6.79
	dissimilatory sulfate reduction I (to sulfide)	dsrA	K11180	127.06	224.49	0.82	47.04	-1.43	49.68	-1.35
	dissimilatory sulfate reduction I (to sulfide)	dsrB	K11181	25.46	111.89	2.14	29.67	0.22	22.94	-0.15
	thiosulfate disproportionation IV (rhodanese)	sseA	K01011	55.29	0.00		188.53	1.77	71.23	0.37
Thiosulfate	thiosulfate disproportionation IV (rhodanese)	glpE	K02439	0.00	0.00		0.00		0.00	
Disproportionation	thiosulfate disproportionation III (quinone)	phsA	K08352	1.64	73.79	5.49	30.84	4.23	0.71	-1.22
	thiosulfate disproportionation III (quinone)	phsB	K08354	7.15	0.00		0.00		0.00	
	sulfide oxidation I (sulfide-quinone reductase)	sqr	K17218	395.21	31.97	-3.63	61.92	-2.67	10.61	-5.22
Sulfide Oxidation	sulfide oxidation II (sulfide dehydrogenase)	fccB	K17229	3.67	0.00	5.55	0.00		0.00	
	sulfide oxidation II (sulfide dehydrogenase)	fccA	K17230	0.00	0.00		0.00		0.00	
	Thiosulfate Oxidation I	tsdA	K19713	3.47	0.00		0.00		0.00	
	Thiosulfate Oxidation II	doxA	K16936	-	-		0.00		0.00	
	Thiosulfate Oxidation II	doxD	K16937	0.00	0.00		36.37		2.84	
	Thiosulfate Oxidation III	soxA	K17222	121.86	0.00		123.76	0.02	1.93	-5.98
	Thiosulfate Oxidation III	soxX	K17223	122.76	0.00		21.49	-2.51	0.00	0.00
Thiosulfate Oxidation	Thiosulfate Oxidation III	soxB	K17224	56.98	0.00		59.26	0.06	0.23	-7.95
	Thiosulfate Oxidation III	soxC	K17225	117.05	0.00		12.40	-3.24	0.92	-6.99
	Thiosulfate Oxidation III	soxY	K17226	558.46	321.47	-0.80	1276.78	1.19	2.23	-7.97
	Thiosulfate Oxidation III	soxZ	K17227	489.35	314.48	-0.64	1143.75	1.22	4.31	-6.83
	Thiosulfate Oxidation III	CYC	K08378	-	-		-		-	1.55

mt = metatranscript

Metagenomes from Aug 12; Metatranscriptomes from Aug. 2013. CSWold mt from Dec of 2013

LCY = Lost City Hydrothermal Field; LIG = Liguria
(-) = no sequences were observed meeting the given criteria

KEGG = Kyoto Encyclopedia of Genes and Genomes

Abundances reported as metagenome fragments per kilobase of predicted protein sequence per million mapped reads (FPKM)
Log2 Fold Changes are calculated for the shallowest well, QV1.2, compared to all CROMO wells with available metatranscriptomic data.
Log2 Fold Changes cannot be calculated for wells reporting 0.00 for metatranscriptomic data. These spaces are left blank.

Table S13 - PhyloPythiaS+ Assigned Taxonomy for each Contig Encoding a Sulfur Gene and Calculated Abundance of each Contig in each Metagenome and Metatranscriptome

		Ial	ble S13 - PhyloPythiaS-	+ Assig	ned lax	conomy	for each	cn Cont	ig Enco	ding a	Sultur	ene aı	na Caic	ulated A	bundar	ice or e	acn Co	ontig in each					
Gene	KEGG ID	Contig	PROKKA	CSW1.1	QV1.1	CSW1.3	QV1.2	N08-A	N08-B	N08-C	CSWold	CSW1.4	QV1.1 mt	CSWold mt	N08-B mt	QV1.2 mt	Domain	Phylum	Class	Order Order	nomic Assignment Family	Genus	Genus, Species
aprA	K00394	c_000000997749	PROKKA_681849	0.00	0.00	0.00	0.00	0.00	0.00	0.00	69.82	1.04	0.00	10384.23	0.00	42.48	Bacteria	Proteobacteria	Deltaproteobacteria		ranniy	Genus	Genus, opecies
aprAB	K00394, K00395	c_000000283170	PROKKA_200060	0.00	0.00	0.00	0.00	0.00	0.00	0.00	145.54	0.00	0.00	487114.56	0.00	0.00	Bacteria	Firmicutes	Clostridia	Clostridiales	Syntrophomonadaceae		
aprAB	K00394, K00395	c_000000848240	PROKKA_569718, PROKKA_569719	0.00	0.00	0.00	2.57	2.22	70.53	0.00	27.90	0.00	0.00	4033.03	2821.95	2090.42	Bacteria	Firmicutes	Clostridia	Clostridiales			
aprAB	K00394, K00395	c_0000000000009	PROKKA_01633, PROKKA_01634	57.78	24241.81	1137.75	59.40	243.88	98.03	15.19	205.54	72.88	5438.98	32.15	56.76	82.56	Bacteria						
aprAB	K00394, K00395	c 000000423537	PROKKA_285558, PROKKA_285557	36.51	18.61	13.55	60.36	23.18	22.81	7.87	13.31	75.38	2.04	0.42	7.42	7.77	Bacteria	Proteobacteria	Betaproteobacteria	Hydrogenophilales	Hydrogenophilaceae	Thiobacillus	Thiobacillus denitrificans
aprAB	K00394, K00395	c_000000706742	PROKKA_463859, PROKKA_463860	4.54	4.37	5.73	11.66	21.70	5.89	31.82	2.29	24.58	0.00	301.48	0.00	12.48	Bacteria	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodocyclaceae	Dechloromonas	Dechloromonas aromatica
aprB dsrA	K00395 K11180	c_000000337380 c_000000631759	PROKKA_256459 PROKKA_436008	0.00 64.30	0.00 7.74	0.00 13.56	0.00 30.02	0.00 86732 15	0.00 4792 45	0.00	42.12 7907.83	0.00 215.43	0.00	16553.58	0.00 11766 11	0.00 17213.37	Bacteria	Proteobacteria	Betanroteobacteria	Rhodocyclales	Rhodocyclaceae	Aznarcus	
dsrA	K11180	c 0000000491049	PROKKA_436006 PROKKA 344146	33.69	16.21	14.21	30.46	67908.42	9546.10	28.35	8183.20	106.85	0.00	0.00	8793.94	23854.45		Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	AZUAICUS	
dsrAB	K11180 K11181	c 000000000103	PROKKA 06634 PROKKA 06633	22.98	12.08	12.78	20.62	3.13	14.03	7.06	6.01	56.41	0.00	0.00	2 95	0.00	Bacteria	Protenhacteria	Betanroteobacteria	Hydrogenophilales	Hydrogenophilaceae	Thiobacillus	Thiobacillus denitrificans
		_															Duotoriu		Deaprocoductina	Trydrogenophilales	Trydrogenopiniaceae	THIODUGHIUD	THOOGGINGS GOTHERNOONS
dsrAB	K11180, K11181	c_000000284787	PROKKA_210993, PROKKA_210994	0.00	0.00	0.00	0.00	0.00	24.71	0.00	9.61	3.56	0.00	0.00	0.00	401.05	Bacteria	Proteobacteria					
dsrAB	K11180, K11181	c 000000285367	PROKKA 213123, PROKKA 213122	0.00	0.00	0.00	2.82	0.00	58.76	0.00	36.50	2.26	0.00	4743.09	1980.40	2596.92	Bacteria	Proteobacteria	Deltaproteobacteria				
dsrAB	K11180, K11181	c_000000774717	PROKKA_539297, PROKKA_539296	83.04	24355.88	1137.08	73.39	206.18	88.78	19.68	191.18	81.19	6924.59	684.59	62.67	103.89	Bacteria	Firmicutes	Clostridia	Clostridiales	Syntrophomonadaceae		
sat	K00957 K00956	c_000000398317 c_000000977096	PROKKA_270118 PROKKA_638597	28.82 84526.58	14.10 19876.01	10833.90 11205.54	7.23 72.78	10.64 49003.63	17.61 50882.12	16.21 57.91	10.34 6675.43	26.12 153.67	0.00 9740.85	4.59 0.00	0.00 10862.14	1.48 16924.84	Bacteria Bacteria	Proteobacteria Proteobacteria	Burkholderiales	Comamonadaceae	Acidovorax	Rubrivivax	Rubrivivax gelatinosus
sat sat	K00956	c_000000977096	PROKKA_638597 PROKKA_733719	54531.37	288.35	224.00	2.70	18.46	29068.37	1.62	3.64	0.54	980.42	0.00	0.00	0.93	Bacteria	Proteobacteria Proteobacteria	Betaproteobacteria Betaproteobacteria	Burkholderiales Burkholderiales	Comamonadaceae	Acidovorax	Acidovorax sp. KKS102
sat	K00956	c 000000706657	PROKKA 458240	266.54	46.89	0.91	1.01	822.41	543.77	3.89	123.25	2.61	0.00	1.56	1455.56	13515.27	Bacteria	Proteobacteria	Gammaproteobacteria	Methylococcales	Methylococcaceae	Methylomonas	Methylomonas methanica
																				•	•	•	-
sat	K00956	c_000000844528	PROKKA_551519	11.47	6.15	3.43	11.39	0.93	5.93	36.45	0.00	2.60	0.00	79.45	0.00	0.64	Bacteria	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodocyclaceae	Dechloromonas	Dechloromonas aromatica
sat	K00956, K00957	c_000000991007	PROKKA_668415, PROKKA_668414	14921.21	4163.72	2365.59	18.99	15539.69	8876.58	16.98	2228.88	76.28	2538.42	4.56	980.61	2958.11	Bacteria	Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae		
sat	K00956, K00957	c 000000706934	PROKKA 471525. PROKKA 471524	20.52	15.59	16.84	21.72	6.00	23.58	21.07	0.78	0.36	0.00	2.67	0.00	0.09	Bacteria	Proteobacteria	Betaproteobacteria	Methylophilales	Methylophilaceae	Methylovorus	
	,																					-	
sat	K00956, K00957	c_000000988584	PROKKA_647411,PROKKA_647412	79.20	9142.45	17068.56	6.29	8.43	45.63	5.46	2.79	42.66	2354.78	0.00	0.00	30.35	Bacteria	Firmicutes	Clostridia	Clostridiales	Syntrophomonadaceae	Dethiobacter	Dethiobacter alkaliphilus
sat	K00956, K00957	c_000000283369	PROKKA_202629, PROKKA_202628	433.91	8466.31	11.35	9.29	9066.61	359.80	3.94	361.66	27.97	1356.55	1.11	240.51	0.00	Bacteria	Firmicutes	Clostridia	Clostridiales			
sat	K00956, K00957	c_000001130590	PROKKA_738185,PROKKA_738184	7.82	8.77	13.27	8426.91	1.34	4.59	0.93	0.47	817.90	0.00	0.00	0.00	581.92	Bacteria	Bacteroidetes	Cytophagia	Cytophagales	Cyclobacteriaceae	Belliella	Belliella baltica
eat	K00957	c_000000918750	PROKKA 628355	125814.64	38594 52	18683.03	99 12	108815.23	74943.16	34.18	12715.45	414.81	1085.08	0.00	15617.41	2041.07	Bacteria	Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae		
sat	K00957	c_000000706203	PROKKA_451323	8.09	0.00	1811.77	797.88	6.46	136.22	210.66	0.00	3.02	0.00	113.62	311.45	46465.63	Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Methylocystaceae	Methylocystis	Methylocystis sp. SC2
sat	K00957	c_000000423398	PROKKA_283984	0.00	0.00	327.65	1.36	0.00	0.00	0.00	1.60	1.19	33.54	0.00	0.00	34644.73	Bacteria	Proteobacteria	Alphaproteobacteria				
sat	K00957	c_000000289758	PROKKA_223010	0.00	11.84	2449.62	2755.79	29.48	0.00	13.80	43.41	174.15	0.00	0.00	0.00	2076.87	Bacteria	Proteobacteria	Gammaproteobacteria				Pseudoxanthomonas
sat	K00957	c_000000493173	PROKKA_344723	0.00	0.00	241.42	3525.73	16.07	0.00	180.56	15.22	25865.78	0.00	0.00	511.00	44.29	Bacteria	Proteobacteria	Gammaproteobacteria	Xanthomonadales	Xanthomonadaceae	Pseudoxanthomonas	suwonensis
sat	K00957	c_000000564124	PROKKA_367597	9.15	5.75	3.30	3.32	16.94	3.63	20972.95	0.36	0.00	0.00	0.00	0.00	0.00	Bacteria	B	41.1	Buttering			
sat sat	K00957 K00957	c_000000486621 c 000000707125	PROKKA_342957 PROKKA_477682	0.00	0.00 0.77	18.37 9.41	4.07 484 47	0.00	0.00	2.44 0.00	0.00 3.22	10342.90 7795.69	0.00	0.00	0.00	0.00	Bacteria Bacteria	Proteobacteria Proteobacteria	Alphaproteobacteria	Rhizobiales			
sat	K00958	c_000000997109	PROKKA_680919	0.00	0.00	0.00	0.00	0.00	56.90	0.00	44.28	0.00	0.00	13589.05	4758.88	4230.45	Bacteria	Proteobacteria	Deltaproteobacteria				
sat	K00958	c_000000564734	PROKKA_379015	0.00	0.00	0.00	0.00	0.00	0.00	0.00	102.82	0.00	0.00	91198.10	0.00	0.00	Bacteria						
sat	K00958	c_000000283222	PROKKA_200850	21.37	10.66	12.23	79.51	0.61	12.36	11.57	13.09	91.58	0.00	0.00	0.00	1.97	Bacteria	Proteobacteria	Betaproteobacteria	Hydrogenophilales	Hydrogenophilaceae	Thiobacillus	Thiobacillus denitrificans
sat	K00958	c 000000988663	PROKKA 651441	20.77	10.98	6.69	11.09	4.56	10.38	6.40	4.31	41.02	0.00	0.00	0.00	0.00	Bacteria	Proteobacteria	Betaproteobacteria	Hydrogenophilales	Hydrogenophilaceae	Thiobacillus	Thiobacillus denitrificans
sat	K00958	c 000000995678	PROKKA_678588	0.00	0.00	0.00	0.00	0.00	0.00	0.00	12469.00	0.00	0.00	203.96	0.00	0.00	Bacteria	Actinobacteria	Actinobacteria	Actinomycetales	,		
sat	K00958	c_000000706642	PROKKA 457811	9.35	2.71	0.00	1.76	10.52	7.89	11341.59	0.00	0.00	0.00	0.00	0.00	0.00	Archaea	Thaumarchaeota		Nitrosopumilales	Nitrosopumilaceae		
sat	K00958	c_000000853757	PROKKA_588190	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.24	0.00	0.00	10183.02	0.00	21.09	Bacteria	Proteobacteria	Deltaproteobacteria				
sat, aprA	K00958, K00394	c_000000988818	,PROKKA_654936	19.19	13.12	12.75	19.06	2.56	12.44	5.40	3.64	85.97	0.00	2.91	0.00	0.58	Bacteria	Proteobacteria	Betaproteobacteria	Hydrogenophilales	Hydrogenophilaceae	Thiobacillus	Thiobacillus denitrificans
sat, aprAB	K00958, K00394,	c 000000848590	PROKKA_572459, PROKKA_572457,	0.00	0.00	0.00	0.00	0.00	58.23	0.00	5.66	35.64	0.00	0.00	0.00	300.05	Bacteria	Proteobacteria	Deltaproteobacteria				
зац аргив	K00395	C_0000000046590	PROKKA_572458	0.00	0.00	0.00	0.00	0.00	30.23	0.00	5.00	33.04	0.00	0.00	0.00	300.03	Dacteria	Proteobacteria	Deliaproleobaciena				
sat, sseA	K01011, K00956, K00957	c_000001130721	PROKKA_742611, PROKKA_742612	48.12	28.05	158.09	39949.88	13.37	38.06	63.15	1.89	15.71	0.00	1.25	0.00	2152.07	Bacteria	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodocyclaceae	Dechloromonas	Dechloromonas aromatica
dsrAB, soxA	K11180, K11181, K17222, K17224	c_000000563866	PROKKA_357998, PROKKA_357997, PROKKA_358010, PROKKA_358009	3.41	4.93	4.32	3.19	702.07	119.29	32.33	90.34	31.21	0.00	76.92	44.12	167.93	Bacteria	Proteobacteria	Betaproteobacteria				
	, i																						
phsA phsA	K08352 K08352	c_000000706397 c_000000712386	PROKKA_453193 PROKKA_499875	0.00 19.15	0.00 5804.73	0.00 4.04	2.40 0.00	4114.25 434.45	742.20 43.43	8.65 0.00	427.61 71.38	23.91 21.47	0.00 73203.83	0.00	2652.94 246.68	0.00 6.49	Bacteria Bacteria	Deinococcus-Thermus	Deinococci	Deinococcales	Trueperaceae	Truepera	Truepera radiovictrix
phsA	K08352	c 0000000712300	PROKKA 21962	182.72	831.40	1574.87	0.00	808.11	123.31	0.00	156.50	7.46	37888.28	114.24	800.17	22.45	Bacteria	Firmicutes	Clostridia	Clostridiales	Syntrophomonadaceae	Dathishastas	Dethiobacter alkaliphilus
plisa		_	_														Dacteria	1 IIIIICutes	Ciosuluia	Ciostitulales	Syntroprioritoriadaceae	Detrilopaciei	Detiliobaciei aikalipililus
sseA	K01011	c_000000988440	PROKKA_641444	2.30	1.11	0.97	1.61	606.80	313.25	3.87	81.83	0.86	27.97	2.12	4738.30	34224.89	Bacteria	Proteobacteria	Gammaproteobacteria	Methylococcales	Methylococcaceae	Methylomonas	Methylomonas methanica
sseA	K01011	c_000000988355	PROKKA_640577	0.00	0.00	0.00	924.97	0.00	0.00	7.39	0.00	3.59	0.00	6.37	0.00	11236.07	Bacteria	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodocyclaceae	Thauera	
sseA sseA	K01011 K01011	c_000000670881 c_000000563829	PROKKA_444268 PROKKA_357637	0.00 4.41	0.00 3.30	29.41 76.06	2981.63 3380.51	0.00 1.82	0.00 2.86	0.00 32.02	21.05 26.35	23826.74 19868.45	0.00	0.00 2.09	0.00	0.00 2.12	Bacteria Bacteria	Proteobacteria Proteobacteria	Betaprotenhacteria	Burkholderiales	Comamonadaceae		
sseA	K01011	c_000000007983	PROKKA_34705	17790.20	6391.00	22.17	18.11	379.74	9555.44	2.70	127.75	48.58	5806.54	0.00	22453.38	167.66	Bacteria	Proteobacteria	Deltaproteobacteria	Myxococcales			
sseA	K01011	c_000000423185	PROKKA_279770	81.89	17.23	21352.15	1.15	25.51	54.84	1.49	1.34	1.98	0.00	0.00	0.00	3.95	Bacteria	Firmicutes					
sseA	K01011	c_000000706442	PROKKA_453740	3.58	5.15	2.26	5.01	15.72	4.64	20849.28	1.80	0.00	0.00	1.71	0.00	0.00	Archaea	Thaumarchaeota		Nitrosopumilales	Nitrosopumilaceae	T-1	****
sseA	K01011	c_000000847966	PROKKA_566017	3.60	5.20	6.06	20.11	0.00	4.67	4.04	4.50	37.63	0.00	0.00	0.00	0.00	Bacteria	Proteobacteria	Betaproteobacteria	Hydrogenophilales	Hydrogenophilaceae	Thiobacillus	Thiobacillus denitrificans
sseA	K01011	c_000000989118	PROKKA_658739, PROKKA_658742	11.30	3.59	2.64	3.28	24.10	7.61	19601.26	0.40	0.00	0.00	0.37	0.00	0.00	Archaea	Thaumarchaeota		Nitrosopumilales	Nitrosopumilaceae		
sseA	K01011	c_000000848504	PROKKA_571919	18.38	12.64	6.65	7.36	14.69	11.91	19365.54	0.00	0.00	0.00	0.00	0.00	0.00	Archaea	Thaumarchaeota		Nitrosopumilales	Nitrosopumilaceae		
sseA	K01011 K01011	c_000000072116 c_000000425171	PROKKA_71817	22.66	21.81 5.30	0.00	0.00	18.11 4058 11	14.68 541.06	17752.16	0.00	0.00	0.00	0.00	0.00 839 09	0.00	Archaea	Thaumarchaeota	B.0.	Nitrosopumilales	Nitrosopumilaceae	-	-
sseA sseA	K01011 K01011	c_000000425171 c_000000140882	PROKKA_294931 PROKKA_85902	0.00	5.30 0.00	3.10 0.00	0.00	4058.11 0.00	541.06 0.00	8.24 0.00	369.30 15840.65	16.47 2.54	0.00	0.00 233 62	839.09	0.00	Bacteria Bacteria	Deinococcus-Thermus Actinobacteria	Deinococci Actinobacteria	Deinococcales Actinomycetales	Trueperaceae	Truepera	Truepera radiovictrix
sseA	K01011	c_000001140002	PROKKA_731945	0.00	0.00	7.41	0.00	1.75	0.00	0.00	5.53	11442.87	0.00	0.00	0.00	0.00	Bacteria	Proteobacteria	Alphaproteobacteria				
sseA	K01011	c_000000995730	PROKKA_678688	18.84	4.58	4.01	5.55	0.00	12.21	26.69	0.00	3.56	0.00	117.75	0.00	0.00	Bacteria	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodocyclaceae	Dechloromonas	Dechloromonas aromatica
sseA	K01011	c_000000988651	PROKKA_651012	38.32	10.91	10766.41	10.43	7.82	21.79	20.86	20.32	37.17	0.00	5.77	185.50	7.90	Bacteria	Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Polaromonas	
sseA	K01011	c_000000002451	PROKKA_22964	4.90	0.00	0.00	0.00	0.00	9.19	10378.67	0.00	0.00	0.00	0.00	0.00	0.00	Archaea	Thaumarchaeota		Nitrosopumilales	Nitrosopumilaceae	Nitrosopumilus	Nitrosopumilus maritimus
sseA	K01011	c 000000282673	PROKKA 181404	23.74	14.48	9807.09	21.81	12.44	15.40	55.90	91.22	107.40	0.00	7.30	130.64	9.76	Bacteria	Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Acidovorax	Acidovorax sp. KKS102
sseA	K01011	c 00000000140	PROKKA_07756	0.00	0.00	5.51	416.76	0.73	0.00	0.51	3.44	7049.61	0.00	0.00	0.00	0.00	Bacteria	Proteobacteria	Alphaproteobacteria	Rhodobacterales			
sseA	K01011	c_000000328761	PROKKA_253260	0.00	3.03	0.00	11.76	0.00	0.00	7.06	0.00	0.00	0.00	12.01	0.00	0.00	Bacteria	Proteobacteria	Betaproteobacteria				
sqr	K17218 K17218	c_000000448349 c 000000581008	PROKKA_325676 PROKKA_410729	73055.51 0.00	16991.27 0.00	1174.83	78.17 0.00	6809.68 0.00	38999.13 0.00	23.56 0.00	719.20 13433.39	86.27 0.00	5221.91 0.00	0.00 218.76	0.00	3522.51 0.00	Bacteria Bacteria	Actinobacteria Actinobacteria	Actinobacteria Actinobacteria	Actinomycetales Actinomycetales	Nocardioidaceae		
sqr	K17218	c_000000140824	PROKKA_84930	65032.49	19877.86	10954.38	142.00	94048.06	42273.69	36.48	10542.71	305.12	3247.87	0.00	4368.36	5662.39	Bacteria	Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Polaromonas	
sqr	K17218	c_000000459937	PROKKA_332553	12009.32	27219.13	2388.33	90.36	78010.96	10452.47	32.71	7869.74	271.75	1684.04	4.66	2377.53	17985.21	Bacteria	Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Polaromonas	
sqr	K17218 K17218	c_000000000017 c 000000706490	PROKKA_02758 PROKKA_454450	60.43 0.00	24400.52 3.58	1128.18 51.03	63.06 3078.38	155.95 0.00	79.74	21.98 1.04	207.90 27.23	79.64 27054.57	8105.34 0.00	72.77	231.47 0.00	149.80 2.00	Bacteria Bacteria	Firmicutes Proteobacteria	Clostridia	Clostridiales	Syntrophomonadaceae		
sqr	K17218	c_000000988639	PROKKA_650605	29.87	9.66	15.09	25.01	5.17	20.57	19.83	0.24	0.35	0.00	7.15	0.00	0.68	Bacteria	Proteobacteria	Betaproteobacteria	Methylophilales	Methylophilaceae	Methylovorus	
sqr	K17218	c_000000285577	PROKKA_213762	16.66	0.00	986.35	1118.55	8.88	168.61	227.23	11.20	8.30	154.26	121.94	0.00	23397.80	Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Methylocystaceae	Methylocystis	Methylocystis sp. SC2
sqr	K17218	c_000000461334	PROKKA_333348	0.00	0.00	2123.69	1523.21	0.00	0.00	0.00	15.40	17.06	0.00	0.00	0.00	1425.64	Bacteria	Proteobacteria	Alphaproteobacteria	Caulobacterales	Caulobacteraceae		

sqr	K17218	c 000000141364	PROKKA 102238, PROKKA 102239	10180.24	3145.86	1258.00	17.01	12908.74	6532.75	6.83	2087.76	67.28	103.21	0.00	481.90	946.26	Bacteria	Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Polaromonas	
sqr sqr	K17218 K17218	c_000000433572 c_000000847661	PROKKA_311898 PROKKA_553400	0.00 0.00	0.00 0.65	0.00 0.00	875.77 1.26	0.00 4299.42	0.00 568.53	0.00 2.27	0.00 378.73	11.33 23.60	0.00 0.00	14.53 0.00	0.00 1793.18	1786.88 0.00	Bacteria Bacteria	Proteobacteria Deinococcus-Thermus		Deinococcales	Trueperaceae	Truepera	Truepera radiovictrix
sqr sqr	K17218 K17218	c_000000564250 c_000000283007	PROKKA_372601 PROKKA_197001	0.00 30.11	0.00 11.94	1.38 10.99	0.00 23.77	610.70 4.18	407.95 16.12	4.93 5.14	96.32 8.58	1.30 58.19	5.06 0.00	1.64 0.00	3993.35 0.00	15502.00 1.39	Bacteria Bacteria	Proteobacteria Proteobacteria	Gammaproteobacteria Betaproteobacteria	Hydrogenophilales	Hydrogenophilaceae	Thiobacillus	Thiobacillus denitrificans
sar	K17218	c 000000282745	PROKKA 183540	11.32	8.47	6.22	11.56	2.83	6.42	12.26	7.09	62.60	0.00	0.00	0.00	3.05	Bacteria	Proteobacteria	Betaproteobacteria	Hydrogenophilales	Hydrogenophilaceae	Thiobacillus	Thiobacillus denitrificans
sqr	K17218	c_000000283105	PROKKA_198937	9.92	8.30	9.66	13.51	3.47	8.71	5.89	4.06	38.21	0.00	0.00	0.00	0.00	Bacteria	Proteobacteria	Betaproteobacteria	Hydrogenophilales	Hydrogenophilaceae	Thiobacillus	Thiobacillus denitrificans
sqr	K17218	c_000000711408	PROKKA_497537	14.81	4.99	8.68	15.85	0.00	9.60	17.45	0.00	12.72	0.00	63.89	0.00	4.23	Bacteria	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodocyclaceae	Dechloromonas	Dechloromonas aromatica
fccB					10.94	9.59				3.19								Protenhacteria					
	K17229	c_000000283845	PROKKA_206080	45.45			0.00	8.72	22.09		0.00	21.23	0.00	0.00	0.00	0.00	Bacteria		Betaproteobacteria	Rhodocyclales	Rhodocyclaceae	Dechloromonas	Dechloromonas aromatica
fccB	K17229	c_000000564232		16.32	10.16 4.05	9.31	20.10	4.60	11.20	4.31	2.42 8.08	42.30	0.00	0.00	0.00	0.00	Bacteria	Proteobacteria	Betaproteobacteria	Hydrogenophilales	Hydrogenophilaceae	Thiobacillus	Thiobacillus denitrificans
tccB	K17229	c_000000141967	PROKKA_107929			1,77	421.29	0.00	0.00	0.00		7458.79		0.00	0.00	0.00	Bacteria	Proteobacteria	Alphaproteobacteria	Sphingomonadales	Sphingomonadaceae		
sqr,dox	D K17229, K16937	c_000000847790	PROKKA_558845, PROKKA_558944	10.93	3.56	4.29	4.21	15.54	7.62	17421.41	0.25	0.00	0.00	0.00	0.00	0.00	Bacteria	Actinobacteria	Actinobacteria				
sseA, soxAXB	K01011, K17222, K17223, K17224, K17225, K17226, K17227	c_000001130720	PROKKA_742322, PROKKA_742400, PROKKA_742399, PROKKA_742398, PROKKA_742404, PROKKA_742402, PROKKA_742401	43.40	27.72	169.50	40932.68	15.68	35.43	71.76	1.51	21.31	0.00	1.54	0.00	4212.05	Bacteria	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodocyclaceae	Dechloromonas	Dechloromonas aromatica
soxAXB(K17222, K17223, K17224, K17225, K17226, K17227	c_000000423423	PROKKA_284276, PROKKA_284275, PROKKA_284280, PROKKA_284280, PROKKA_284278, PROKKA_284277	0.00	0.00	5.62	778.79	0.00	0.00	3.74	0.00	7.48	0.00	0.00	0.00	3926.74	Bacteria	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodocyclaceae		
soxAX	K17222, K17223, K17226, K17227	c_000000564381 c_000000928519	PROKKA_375127, PROKKA_375128, PROKKA_375126, PROKKA_375125 PROKKA_630679, PROKKA_630680	5.38 57502.43	2.61 14891.85	4.60 7959.52	2.55	0.00	3.49 33741.68	15.30	0.00	0.00	0.00	6.39	0.00	0.00	Bacteria Bacteria	Proteobacteria Proteobacteria	Betaproteobacteria Gammaproteobacteria	Rhodocyclales	Rhodocyclaceae	Azoarcus	
soxA	· ·	_						79500.31		30.68	7575.85	250.54		0.00									
soxAl	K17222, K17224	c_000000990013		7.28	7.01	12.14	15.29	23.25	11.79	34.66	20.18	36.68	0.00	1.74	0.00	3.93	Bacteria	Proteobacteria	Betaproteobacteria	Hydrogenophilales	Hydrogenophilaceae	Thiobacillus	Thiobacillus denitrificans
soxX	K17223 K17223, K17226	c_000000000343 c 000000423219	PROKKA_11141	41.34	9.91	10.91	20.53	2.07	23.47	0.00	13.05	84.90	0.00	0.00	0.00	0.00	Bacteria Bacteria	Proteobacteria Proteobacteria	Betaproteobacteria Alphaproteobacteria	Hydrogenophilales Rhodobacterales	Hydrogenophilaceae	Thiobacillus	
soxX	K17223, K17220	c 000000423595	PROKKA_280719, PROKKA_280718 PROKKA_286197	0.00	1.31 9.21	6.50 8.08	471.93 7.15	0.00	0.29 14.69	3.06 0.00	3.88 1.93	7214.59 12.87	0.00	0.00	0.00	0.00	Bacteria	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodocyclaceae		
soxXBC	K17223, K17224,	_	PROKKA_462551, PROKKA_462550, PROKKA_462556, PROKKA_462554, PROKKA_462553	86.84	23.56	113.32	3912.23	41.40	50.50	30.75	40.31	31340.39	3.33	1.26	3.45	24.01	Bacteria	Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Polaromonas	
soxX	K17223, K17224, K17225, K17226, K17227	c_000000988538	PROKKA_644392, PROKKA_644391, PROKKA_644398, PROKKA_644395, PROKKA_644394	103.03	49.64	10491.04	9.73	132.45	65.75	15.78	46.11	26.28	3.70	7.22	66.72	46.57	Bacteria	Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Acidovorax	Acidovorax sp. KKS102
soxB soxB	K17224 K17224	c_000000339213 c 000001045896	PROKKA_257126 PROKKA_712449	6929.75 33876.63	2302.17 11297.80	1406.22 9458.50	10.60 110.24	61366.05 75658.12	6093.68 25400.59	12.73 37.85	6671.63 9232.19	144.21 201.70	1157.68 10613.45	0.00 8.09	14012.84 45045.78	6022.29 28452.53	Bacteria	Proteobacteria Proteobacteria	Gammaproteobacteria Betaproteobacteria	Burkholderiales			
sox YZ	K17224 K17226, K17227	c_000001045896 c_000000172352	_	8635.10	2850.19	2092.54	36.09	61874.45	16445.90	4.82	8624.51	102.69	170.98	7.96	61942.65	39979.50		Proteobacteria Proteobacteria	Betaproteobacteria	Burkholderiales Burkholderiales	Comamonadaceae	Polaromonas	
soxYZ	K17226, K17227	c 000000423099		24.70	15.86	16.85	20.89	7.52	25.21	16.17		1.17	0.00	2.00	0.00	0.00	Bacteria	Protenhacteria	Betaproteobacteria			Methylovorus	
soxY	K17226, K17227 K17226	c_000000423099 c_000000440997	PROKKA_275779, PROKKA_275778 PROKKA_319797	10.53	5.07	16.85	9.84	16.83	6.83	16.17 5.91	1.23 0.00	0.00	0.00	5.05	0.00	0.00	Bacteria	Proteobacteria Proteobacteria	Betaproteobacteria Betaproteobacteria	Methylophilales Burkholderiales	Methylophilaceae	inetnylovorus	
soxY	K17226, K17227	c 000000563897	_	0.00	0.00	11.34	465.26	0.00	0.00	1.31	5.89	7495.40	0.00	0.00	0.00	1.73	Bacteria	Proteobacteria	DesaproteObacteria	Durknoidefidies			
	· ·	_																				B.1	
soxYZ	K17226, K17227	c_000000564326		13683.58	4092.42	2117.62	29.05	14828.92	8426.94	18.10	2194.42	75.37	2194.07	0.00	409.72	1435.20	Bacteria	Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Polaromonas	
soxY soxYZ	K17226 K17226, K17227	c_000000596759 c 000000601491	PROKKA_422048 PROKKA 424590, PROKKA 424589	0.00 205384.17	0.00 56861.67	24071.25	0.00 281.21	781.54 9431.76	636.12 109784.92	0.00 35.57	85.10 895.19	12.58 372.60	0.00 73227.38	0.00	114544.35 0.00	0.00 4891.69	Bacteria	Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Acidovorax	Acidovorax sp. KKS102
		_										372.00											Joroux op. 1440 102
soxYZ	K17226, K17227	c_000000903751		56600.97	18356.68	8188.31	75.52	85444.31	34611.89	52.99	9071.24	314.86	2032.36	0.00	16491.97	9409.28	Bacteria	Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Polaromonas	
soxY	K17226	c_000000988678	PROKKA_651867	28.31	13.27	17.13 6.43	16.75	4.71	22.14	18.31	0.54	0.00	0.00	6.11 31.44	0.00	0.15	Bacteria	Proteobacteria	Betaproteobacteria	Methylophilales	Methylophilaceae	Methylovorus	
soxY2	K17226, K17227	c_000000993711	PROKKA_675067, PROKKA_675066 PROKKA_53495	24.39	5.87	22.16	25.62 78.26	0.00 25.19	15.80	10.26 70.74	0.00 5.30	20.50	0.00	0.00	0.00	0.00 8574 64	Bacteria	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodocyclaceae	Thauera	
soxZ	K17227	c_000000026914	PRUKKA_53495	0.00	0.00	22.16	78.26	25.19	0.00	/0./4	5.30	23.56	0.00	0.00	0.00	65/4.64	Bacteria	Proteobacteria	Gammaproteobacteria				

Table S14 - dsrB Phylogenetic Tree Data

PROKKA	Contig	Site	# aa	ncluded in tree
>PROKKA_539303 hydrogensulfite reductase	c_000000774717	CROMO	368	у
>PROKKA_587390 hydrogensulfite reductase	c_000000853312	CROMO	368	У
>PROKKA_06633 sulfite reductase, dissimilatory-type beta subunit	c_000000000103	CROMO	356	У
>PROKKA_135376 dsrA; sulfite reductase, dissimilatory-type, beta subunit	c_000000155579	CROMO	85	n
>PROKKA_192589 sulfite reductase, dissimilatory-type beta subunit	c_000000282889	CROMO	357	У
>PROKKA_196277 sulfite reductase, dissimilatory-type beta subunit	c_000000282982	CROMO	357	У
>PROKKA_210994 dsrB; dissimilatory-type sulfite reductase subuit beta	c_000000284787	CROMO	356	У
>PROKKA_213122 sulfite reductase, dissimilatory-type beta subunit	c_000000285367	CROMO	395	У
>PROKKA_224266 sulfite reductase, dissimilatory-type beta subunit	c_000000290566	CROMO	295	n
>PROKKA_326785 dsrB; dissimilatory sulfite reductase subunit B	c_000000449980	CROMO	122	n
>PROKKA_330124 sulfite reductase, dissimilatory-type beta subunit	c_000000455538	CROMO	357	У
>PROKKA_349922 sulfite reductase, dissimilatory-type beta subunit	c_000000516947	CROMO	82	n
>PROKKA_357997 sulfite reductase, dissimilatory-type beta subunit	c_000000563866	CROMO	358	У
>PROKKA_359048 dsrB; sulfite reductase, dissimilatory-type subunit beta	c_000000563943	CROMO	356	у
>PROKKA_444110 sulfite reductase, dissimilatory-type beta subunit	c_000000669909	CROMO	44	n
>PROKKA_451956 sulfite reductase beta subunit	c_000000706274	CROMO	197	n
>PROKKA_458891 dsrB; dissimilatory sulfite reductase subunit B	c_000000706678	CROMO	354	У
>PROKKA_473929 sulfite reductase, dissimilatory-type beta subunit	c_000000706981	CROMO	392	у
>PROKKA_498108 dissimilatory sulfite reductase beta subunit	c_000000711526	CROMO	357	У
>PROKKA_539296 dissimilatory sulfite reductase beta subunit	c_000000774717	CROMO	352	У
>PROKKA_16556 sulfite reductase, dissimilatory-type beta subunit	contig-42395000000	LCY H08	61	n
>PROKKA_17090 dissimilatory sulfite reductase subunit B	contig-46854000000	LCY H08	55	n
>PROKKA_21790 dsrB; dissimilatory-type sulfite reductase subuit beta	contig-2000003	LIG	356	у
>PROKKA_42088 sulfite reductase, dissimilatory-type beta subunit	contig-14436000005	LIG	382	у
>PROKKA_81017 sulfite reductase, dissimilatory-type beta subunit	contig-6808000011	LIG	353	у

aa = amino acids; cutoff = 352 aa LCY = Lost City; LIG = Liguria