Решающие деревья

K.B.Воронцов, A.B.Зухба vokov@forecsys.ru a__l@mail.ru

март 2015

Определение бинарного решающего дерева

Бинарное решающее дерево — алгоритм классификации a(x), задающийся бинарным деревом:

- 1) $orall v \in V_{ exttt{внутр}}
 ightarrow \$ предикат $eta_v : X
 ightarrow \{0,1\}$, $eta_v \in \mathscr{B}$
- 2) $\forall v \in V_{\mathsf{лист}} \to \mathsf{\,umg\,\, класса\,\,} c_v \in Y.$
 - 1: $v := v_0$;
 - 2: пока $v \in V_{\text{внутр}}$
 - 3: если $\beta_{v}(x) = 1$ то
 - 4: переход вправо:

$$v := R_v$$
;

- 5: иначе
- 6: переход влево:
 - $v := L_v$;
- 7: **вернуть** *c_v*.

Пример решающего дерева

Задача Фишера о классификации цветков ириса на 3 класса, в выборке по 50 объектов каждого класса, 4 признака.

На графике: в осях двух самых информативных признаков (из 4) два класса разделились без ошибок, на третьем 3 ошибки.

Решающее дерево \rightarrow покрывающий набор конъюнкций

setosa	$r_1(x) = [PL \leqslant 2.5]$
virginica	$r_2(x) = [PL > 2.5] \wedge [PW > 1.68]$
virginica	$r_3(x) = [PL > 5] \land [PW \leqslant 1.68]$
versicolor	$r_4(x) = [PL > 2.5] \wedge [PL \leqslant 5] \wedge [PW < 1.68]$

Жадный алгоритм построения дерева ID3

```
1: ПРОЦЕДУРА LearnID3 (U \subset X^{\ell});
2: если все объекты из U лежат в одном классе c \in Y то
      вернуть новый лист v, c_v := c;
3:
4: найти предикат с максимальной информативностью:
   \beta := \arg \max_{\beta \in \mathscr{B}} I(\beta, U);
5: разбить выборку на две части U = U_0 \sqcup U_1 по предикату \beta:
   U_0 := \{x \in U : \beta(x) = 0\};
   U_1 := \{ x \in U \colon \beta(x) = 1 \};
6: если U_0 = \emptyset или U_1 = \emptyset то
      вернуть новый лист v, c_v := \mathsf{Maxoputaphaim} \ \mathsf{клacc}(U);
8: создать новую внутреннюю вершину v: \beta_v := \beta;
   построить левое поддерево: L_{\nu} := \text{LearnID3 } (U_0);
   построить правое поддерево: R_{v} := \text{LearnID3}(U_{1});
9: вернуть V;
```

Разновидности многоклассовых критериев ветвления

1. Отделение одного класса (слишком сильное ограничение):

$$I(\beta, X^{\ell}) = \max_{c \in Y} I_c(\beta, X^{\ell}).$$

2. Многоклассовый энтропийный критерий:

$$I(\beta, X^{\ell}) = \sum_{c \in Y} h\left(\frac{P_c}{\ell}\right) - \frac{p}{\ell}h\left(\frac{p_c}{p}\right) - \frac{\ell - p}{\ell}h\left(\frac{P_c - p_c}{\ell - p}\right),$$

где
$$P_c = \#\{x_i \colon y_i = c\}, \quad p = \#\{x_i \colon \beta(x_i) = 1\}, \quad h(z) \equiv -z \log_2 z.$$

3. Критерий Джини:

$$I(\beta, X^{\ell}) = \#\{(x_i, x_j) \colon \beta(x_i) = \beta(x_j) \text{ if } y_i = y_j\}.$$

4. *D*-критерий В.И.Донского:

$$I(\beta, X^{\ell}) = \#\{(x_i, x_i) : \beta(x_i) \neq \beta(x_i) \text{ if } y_i \neq y_i\}.$$

Обработка пропусков

На стадии обучения:

- $\beta_{v}(x)$ не определено $\Rightarrow x_{i}$ исключается из U для $I(\beta,U)$
- ullet ullet $q_v = rac{|U_0|}{|U|}$ оценка вероятности левой ветви, $orall v \in V_{ exttt{BHYTP}}$
- ullet $P_{
 u}(y|x)=rac{1}{|U|}\#ig\{x_i\in U\colon y_i=yig\}$ для всех $v\in V_{ exttt{лист}}$

На стадии классификации:

- $\beta_{\nu}(x)$ определено \Rightarrow либо налево, либо направо: $P_{\nu}(y|x) = (1-\beta_{\nu}(x))P_{L_{\nu}}(y|x) + \beta_{\nu}(x)P_{R_{\nu}}(y|x).$
- $\beta_{v}(x)$ не определено \Rightarrow пропорциональное распределение: $P_{v}(y|x) = q_{v}P_{L_{v}}(y|x) + (1-q_{v})P_{R_{v}}(y|x)$.
- ullet Окончательное решение наиболее вероятный класс: $y = rg \max_{y \in Y} P_{v_0}(y|x).$

Решающие деревья ID3: достоинства и недостатки

Достоинства:

- Интерпретируемость и простота классификации.
- Гибкость: можно варьировать множество \mathscr{B} .
- Допустимы разнотипные данные и данные с пропусками.
- Трудоёмкость линейна по длине выборки $O(|\mathscr{B}|h\ell)$.
- Не бывает отказов от классификации.

Недостатки:

- Жадный ID3 переусложняет структуру дерева, и, как следствие, сильно переобучается.
- Фрагментация выборки: чем дальше v от корня, тем меньше статистическая надёжность выбора β_v , c_v .
- Высокая чувствительность к шуму, к составу выборки, к критерию информативности.

Жадный ID3 переусложняет структуру дерева

Оптимальное дерево для задачи XOR:

Усечение дерева (pruning). Алгоритм C4.5

```
X^k — независимая контрольная выборка, k \approx 0.5\ell.
 1: для всех v \in V_{\text{внутр}}
      S_{v} := подмножество объектов X^{k}, дошедших до v;
      если S_v = \emptyset то
 3:
 4:
         вернуть новый лист v, c_v := \mathsf{Maxoputaphaim} \ \mathsf{knacc}(U);
      число ошибок при классификации S_{\nu} четырьмя способами:
 5:
         r(v) — поддеревом, растущим из вершины v;
         r_{l}(v) — поддеревом левой дочерней вершины L_{v};
         r_R(v) — поддеревом правой дочерней вершины R_v;
         r_c(v) — к классу c \in Y.
 6:
       в зависимости от того, какое из них минимально:
         coxpaнuть поддерево v;
         заменить поддерево \nu поддеревом L_{\nu};
         заменить поддерево \nu поддеревом R_{\nu};
         заменить поддерево v листом, c_V := \arg\min_{c \in Y} r_c(v).
```

CART: деревья регрессии и классификации

Обобщение на случай регрессии: $Y=\mathbb{R}$, $c_{v}\in\mathbb{R}$

Пусть U_v — множество объектов x_i , дошедших до вершины v Значения в терминальных вершинах — МНК-решение:

$$c_{v}:=\hat{y}(U_{v})=\frac{1}{|U_{v}|}\sum_{x_{i}\in U_{v}}y_{i}$$

Критерий информативности — среднеквадратичная ошибка

$$I(\beta, U_{\nu}) = \sum_{x_i \in U_{\nu}} (\hat{y}_i(\beta) - y_i)^2,$$

где
$$\hat{y}_i(\beta) = \beta(x_i)\hat{y}(U_{v1}) + (1 - \beta(x_i))\hat{y}(U_{v0})$$
 — прогноз после ветвления β и разбиения $U_v = U_{v0} \sqcup U_{v1}$

CART: критерий Minimal Cost-Complexity Pruning

Среднеквадратичная ошибка со штрафом за сложность дерева

$$C_lpha = \sum_{x_i=1}^\ell ig(\hat{y}_i - y_iig)^2 + lpha |V_{ exttt{nuct}}| o ext{min}$$

При увеличении α дерево последовательно упрощается. Причём последовательность вложенных деревьев единственна.

Из этой последовательности выбирается дерево с минимальной ошибкой на тестовой выборке (Hold-Out).

Для случая классификации используется аналогичная стратегия усечения, с критерием Джини.

Небрежные решающие деревья — ODT (Oblivious Decision Tree) [1991]

Строится сбалансированное дерево высоты H; для всех узлов уровня h условие ветвления $\beta_h(x)$ одинаково; на уровне h ровно 2^{h-1} вершин; X делится на 2^H ячеек.

Классификатор задаётся таблицей решений $T \colon \{0,1\}^H \to Y$:

$$a(x) = T(\beta_1(x), \ldots, \beta_H(x)).$$

Пример: задача XOR, H = 2.

Алгоритм обучения ODT

Вход: выборка X^{ℓ} ; семейство правил \mathscr{B} ; глубина дерева H; Выход: условия $\beta_h,\ h=1,\ldots,H$; таблица $T\colon\{0,1\}^H\to Y$;

- 1: для всех h = 1, ..., H
- 2: найти предикат с максимальной информативностью:

$$\beta_h := \arg \max_{\beta \in \mathscr{B}} I(\beta_1, \dots, \beta_{h-1}, \beta; X^{\ell});$$

- 3: для всех $b \equiv (b_1, \dots, b_H) \in \{0, 1\}^H$
- 4: классификация по мажоритарному правилу:

$$T(b_1, ..., b_H) := \arg \max_{c \in Y} \sum_{i=1}^{\ell} [y_i = c] \prod_{h=1}^{H} [\beta_h(x_i) = b_h];$$

$$I(\beta_1,\ldots,\beta_h) = \sum_{c \in Y} h\left(\frac{P_c}{\ell}\right) - \sum_{b \in \{0,1\}^h} \frac{|X_b|}{\ell} h\left(\frac{|X_b \cap X_c|}{|X_b|}\right);$$

$$X_b = \{x_i \colon \beta_s(x_i) = b_s, \ s = 1,\ldots,h\}, \quad X^{\ell} = \bigsqcup_{b \in \{0,1\}^h} X_b.$$

Случайный лес (Random Forest)

Голосование деревьев классификации, $Y = \{-1, +1\}$:

$$a(t) = \operatorname{sign} \frac{1}{T} \sum_{t=1}^{T} b_t(x).$$

Голосование деревьев регрессии, $Y = \mathbb{R}$:

$$a(t) = \frac{1}{T} \sum_{t=1}^{T} b_t(x).$$

- каждое дерево $b_t(x)$ обучается по случайной выборке с повторениями
- в каждой вершине признак выбирается из случайного подмножества \sqrt{n} признаков
- признаки и пороги выбираются по критерию Джини
- усечений (pruning) нет