Exercice 1. Étudier les fonctions suivantes en trouvant leurs asymptotes et extremums locaux :

- (i) La fonction $x \mapsto 5x^2 10x + 15$.
- (ii) La fonction $x \mapsto \frac{x^2 5x}{x^2 1}$.

Exercise 1

(i)
$$\frac{d}{dx}(5x^2 - 10x + 15) = 10x - (0) \implies f(y = 0)$$
 ssi $x = 1$
 $f(x) \implies 55$ $x = 90$

Donc f admet one asymptote verticale en $f(x)$ et un point critique en $f(x)$ and $f(x)$ $f(x) = 1$
 $\frac{d^2}{dx^2}(5x^2 - 10x + 15) = 10 > 0$ donc $f(x)$ $f(x) = 10$ alors $f(x) = 10$ est un minimum local strict.

(ii) $\frac{x^2 - 5x}{x^2 - 1} = \frac{x^2 - 1 - (5x - 1)}{x^2 - 1} = 1 - \frac{5x - 1}{x^2 - 1}$
 $\frac{d}{dx}(1 - \frac{5x - 1}{x^2 - 1}) = 0 - \frac{5(x^2 - 1)^2}{(x^2 - 1)^2} = \frac{5x^2 - 5 - 10x^2 + 2x}{(x^2 - 1)^2} = \frac{5x^2 - 2x + 5}{(x^2 - 1)^2} \implies f(x) = 0$

(x2-1) = 0 (=> x2-1 = 0 (=> x = ±1).

(-2) = 4 - 5 - 5 = -96 < 0 donc $f(x) = 1 - 5x - 1 = 0$

Danc $f(x) = 1 - 1 = 0$

Danc $f(x) = 1 - 1 = 0$

Danc $f(x) = 1 - 1 = 0$

Reelle.

Danc $f(x) = 1 - 1 = 0$

Danc f

Exercice 2. En décomposant l'intervalle [0,b] en n intervalles de longueurs égales, montrer à l'aide de l'Exercice 4.1.(ii) que

$$\int_0^b x^3 dx = \frac{b^4}{4}$$

Exercise 2

Décomposons [0,b] en n intervalles de longueur
$$\frac{b \cdot 0}{n}$$
. En prevant $X_i = \frac{ib}{n}$, nous avers $\int_{0}^{b} x^3 dx = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{(ib)^3}{n} \frac{b}{n} = \lim_{n \to \infty} \frac{\sum_{i=1}^{n} \frac{b^4}{n^4}}{n^2} = \lim_{n \to \infty} \frac{b^4}{n^4} \cdot \lim_{n \to \infty} \left(\frac{n+1}{n}\right)^2 = \frac{b^4}{4} \cdot \lim_{n \to \infty} \left(\frac{n+1}{n}\right)^2 = \frac{b^4}{4}$

Exercice 3. Montrer que

$$\int_{a}^{b} x^{p} dx = \frac{b^{p+1} - a^{p+1}}{p+1} \tag{1}$$

pour tout $b \ge a \ge 0$ et $p \in \mathbb{N}$, comme suit.

- (i) Montrer qu'il suffit de considérer a > 0.
- (ii) Trouver la décomposition de [a,b] en n intervalles I_1, \ldots, I_n , où I_i a les bords a_i et a_{i+1} , tels que le quotient a_{i+1}/a_i ne dépend pas de i.
- (iii) En utilisant la décomposition de (ii) et l'expression pour la série géométrique, conclure (1) pour b>a>0.

Exercice 4. Déterminer si les fonctions f suivantes définies sur [0,1] sont intégrables. Justifier la réponse.

$$f(x) = \begin{cases} x & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \notin \mathbb{Q} \end{cases}$$

(ii)
$$f(x) = \begin{cases} 1 - |2^{k+1}(x - 2^{-k}) - 1| & \text{si } x \in [2^{-k}, 2^{-k+1}] \text{ pour } k \in \mathbb{N}^* \\ 0 & \text{sinon} \end{cases}$$

Commencer par dessiner le graphe de f.

Exercice 5. Montrer que la suite

$$u_n = \sum_{i=1}^n \frac{n}{(n+i)^2}$$

converge et exprimer sa limite comme une intégrale.

Exercise 5

Soit (vin) one soite,
$$V_{n=1}^{n} \frac{1}{(n+i)^n} = \frac{1}{n^n+2n+2n+2n} = \frac{1}{n+2n+2n+2n} = 0$$

Alors $\{v_n\} = \sum_{i=1}^n v_n^i \text{ est one somme de soites convergents, danc (v.) converge.}$

$$\lim_{n \to \infty} \sum_{i=1}^n \frac{1}{(n+i)^n} = \lim_{n \to \infty} \sum_{i=1}^n \frac{1}{(n+i)^n} \cdot \frac{1}{n} = \lim_{n \to \infty} \sum_{i=1}^n \left(\frac{1}{(n+i)^n} \cdot \frac{1}{n}\right) = \lim_{n \to \infty} \sum_{i=1}^n \left(\frac{1}{(n+i)^n} \cdot \frac{1}{(n+i)^n}\right) = \lim_{n \to \infty} \sum_{i=1}^n \left(\frac{1}{(n+i)^n} \cdot \frac{1}{(n+i)^n}$$

Exercice 6. (Études de suites définies par récurrence)

Soit f une fonction C^1 et soit ℓ un point fixe de f, i.e. $f(\ell) = \ell$. Définissons la suite (u_n) par la relation de récurrence $u_{n+1} = f(u_n)$.

- (i) Supposons $|f'(\ell)| < 1|$.
 - (a) Soit $\varepsilon > 0$ tel que $|f'(\ell)| < 1 \varepsilon < 1|$. Montrer qu'il existe $\delta > 0$ tel que $|f'(\ell)| \le 1 \varepsilon|$ pour tout $x \in [\ell \delta, \ell + \delta]$. Nous fixons maintenant δ possédant cette propriété.
 - (b) Montrer que si $u_N \in [\ell \delta, \ell + \delta]$, alors $|u_{n+1} \ell| \le (1 \varepsilon)|u_n \ell|$ pour tout $n \ge N$.
 - (c) Montrer que $|u_n \ell| \le (1 \varepsilon)^n |u_0 \ell|$ si u_0 est assez proche de ℓ . En déduire que pour u_0 assez proche de ℓ , (u_n) tend vers ℓ . On dit que le point fixe est *attractif*.
- (ii) Supposons $|f'(\ell)>1|$. Montrer en raisonnant par l'absurde que (u_n) converge vers ℓ ssi $\exists N \in \mathbb{N}, \forall n \geq N, u_n = \ell$. Dans ce cas, le point fixe est dit *répulsif*.