1

GATE ASSIGNMENT 4

Dishank Jain AI20BTECH11011

Download latex-tikz codes from

https://github.com/Dishank422/EE3900/blob/main/ Gate-Assignment4/latex code.tex

1 EC 1999 Q.2.1

The Fourier representation of an impulse train represented by $s(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_0)$ is given by

(a)
$$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \exp\left(-\frac{j2\pi nt}{T_0}\right)$$

(b)
$$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \exp\left(-\frac{j\pi nt}{T_0}\right)$$

(c)
$$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \exp\left(\frac{j\pi nt}{T_0}\right)$$

(d)
$$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \exp\left(\frac{j2\pi nt}{T_0}\right)$$

2 Solution

Lemma 2.1. Any periodic signal x(t) with period T_0 can be written as

$$x(t) = \sum_{n=-\infty}^{\infty} a_n \exp\left(\frac{j2\pi nt}{T_0}\right)$$
 (2.0.1)

where, a_n is given by

$$a_n = \frac{1}{T_0} \int_{T_0} x(t) \exp\left(-\frac{j2\pi nt}{T_0}\right) dt$$
 (2.0.2)

Proof. We shall verify equation 2.0.2.

$$a_{n} = \frac{1}{T_{0}} \int_{T_{0}} x(t) \exp\left(-\frac{j2\pi nt}{T_{0}}\right) dt$$

$$= \frac{1}{T_{0}} \int_{T_{0}} \left(\sum_{m=-\infty}^{\infty} a_{m} \exp\left(\frac{j2\pi mt}{T_{0}}\right)\right) \exp\left(-\frac{j2\pi nt}{T_{0}}\right) dt$$

$$(2.0.4)$$

$$= \frac{1}{T_0} \sum_{m=-\infty}^{\infty} \int_{T_0} a_m \left(\exp \frac{j2\pi mt}{T_0} \right) \exp \left(-\frac{j2\pi nt}{T_0} \right) dt$$
(2.0.5)

When m = n,

$$\int_{T_0} a_m \exp\left(\frac{j2\pi mt}{T_0}\right) \exp\left(-\frac{j2\pi nt}{T_0}\right) dt = \int_{T_0} a_n$$
(2.0.6)
$$= T_0 a_n$$
(2.0.7)

When $m \neq n$,

$$\int_{T_0} a_m \exp\left(\frac{j2\pi mt}{T_0}\right) \exp\left(-\frac{j2\pi nt}{T_0}\right) dt \qquad (2.0.8)$$

$$= a_m \int_{T_0} \exp\left(\frac{j2\pi(m-n)t}{T_0}\right) dt \tag{2.0.9}$$

Since $\exp\left(\frac{j2\pi(m-n)t}{T_0}\right)$ is periodic with period $\frac{T_0}{m-n}$, it's integral over any time interval of length $\frac{T_0}{m-n}$ or any integral multiple of $\frac{T_0}{m-n}$ will be 0. Therefore, when $m \neq n$,

$$\int_{T_0} a_m \exp\left(\frac{j2\pi mt}{T_0}\right) \exp\left(-\frac{j2\pi nt}{T_0}\right) dt = 0 \quad (2.0.10)$$

Continuing from equation 2.0.5,

$$a_n = \frac{1}{T_0} \sum_{m=-\infty}^{\infty} \int_{T_0} a_m \exp\left(\frac{j2\pi mt}{T_0}\right) \exp\left(-\frac{j2\pi nt}{T_0}\right) dt$$
(2.0.11)

$$=\frac{1}{T_0}(T_0 a_n) = a_n \tag{2.0.12}$$

We observe that s(t) is periodic with period T_0 . Thus it's Fourier representation as a sum of complex exponents is given by

$$s(t) = \sum_{n=-\infty}^{\infty} a_n \exp\left(\frac{j2\pi nt}{T_0}\right)$$
 (2.0.13)

where, a_n can be calculated as

$$a_n = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} s(t) \exp\left(-\frac{j2\pi nt}{T_0}\right) dt \qquad (2.0.14)$$

Between $-\frac{T_0}{2}$ and $\frac{T_0}{2}$, we can say that $s(t) = \delta(t)$.

$$\implies a_n = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \delta(t) \exp\left(-\frac{j2\pi nt}{T_0}\right) dt \quad (2.0.15)$$

$$= \frac{1}{T_0} \quad (2.0.16)$$

$$\implies s(t) = \frac{1}{T_0} \sum_{n = -\infty}^{\infty} \exp\left(\frac{j2\pi nt}{T_0}\right)$$
 (2.0.17)

Therefore option (d) is the correct option.

Lemma 2.2. The Fourier transform of $\exp(j\omega_0 t)$ is $2\pi\delta(\omega-\omega_0)$.

Proof. We verify the lemma by finding the inverse Fourier transform of $2\pi\delta(\omega - \omega_0)$.

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi \delta(\omega - \omega_0) \exp(j\omega t) d\omega = \exp(j\omega_0 t)$$
(2.0.18)

Let $S(\omega)$ be the Fourier transform of s(t). Then using the above lemma and equation 2.0.17

$$S(\omega) = \frac{2\pi}{T_0} \sum_{n=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi n}{T_0}\right)$$
 (2.0.19)

We can also write the above by substituting $\omega_0 = \frac{2\pi}{T_0}$ as

$$S(\omega) = \sum_{n=-\infty}^{\infty} \omega_0 \delta(\omega - n\omega_0)$$
 (2.0.20)

Thus we can observe that the Fourier transform of an impulse train is an impulse train in the frequency domain.