TÉLÉCHARGER EN PDF

SITUATION

Il est souvent demandé de déterminer la position relative d'une courbe et d'une droite (le plus souvent une tangente ou une asymptote), c'est-à-dire de déterminer laquelle est graphiquement située audessus de l'autre. Ce problème revient à étudier le signe d'une différence.

ÉNONCÉ

On considère la fonction f définie sur $\mathbb{R} \setminus \{-1\}$ par :

$$f\left(x\right) = \frac{x^2 + 1}{x + 1}$$

Déterminer la position relative de $\,C_f\,$ et de la droite $\it D\,$ d'équation $\,y=x-1\,.$

ETAPE 1

Énoncer la démarche

Avant de commencer les calculs, on explique la démarche :

"Pour étudier la position relative de la courbe $\,C_f\,$ et de la droite $\it D\,$ d'équation $\,y=ax+b$, on étudie le signe de f(x) - (ax + b)."

APPLICATION

Pour étudier la position relative de $\,C_f\,$ et de $\it D$, on étudie le signe de $\,f\left(x
ight)-\left(x-1
ight)\,$ pour tout réel x différent de -1.

ETAPE 2

Calculer et simplifier f(x) - (ax + b)

On calcule et simplifie autant que possible la différence $\,f\left(x
ight)-\left(ax+b
ight)$, de manière à obtenir une expression dont on puisse facilement déterminer le signe.

APPLICATION

Pour tout réel x différent de -1, on a :

$$f(x) - (x - 1) = \frac{x^2 + 1}{x + 1} - (x - 1)$$

$$f(x) - (x - 1) = \frac{x^2 + 1}{x + 1} - \frac{(x - 1)(x + 1)}{x + 1}$$

On réduit au même dénominateur et on reconnaît une identité remarquable du type

$$(a-b)(a+b)=a^2-b^2$$
 , pour tous réels a et b .

$$f\left(x
ight)-\left(x-1
ight)=rac{x^2+1-\left(x^2-1
ight)}{x+1}$$

Soit:

$$f\left(x\right)-\left(x-1\right)=\frac{2}{x+1}$$

ETAPE 3

Étudier le signe de $f\left(x ight)-\left(ax+b ight)$

On étudie alors le signe de la différence $f\left(x
ight)-\left(ax+b
ight)$ en distinguant les cas selon les valeurs de xsi nécessaire. Un tableau de signes peut s'avérer utile dans les cas les plus compliqués.

APPLICATION

On a:

- 2 > 0
- $x+1>0 \Leftrightarrow x>-1$

On en déduit donc le signe de la différence :

X	-∞	-1		+∞
2	+		+	
x + 1	_	•	+	
f(x)-(x-1)	_		+	

ETAPE 4

Conclure sur la position relative

Finalement, on conclut:

- ullet Sur les intervalles où $f\left(x
 ight)-\left(ax+b
 ight)>0$, $\,C_{f}\,$ est au-dessus de $\,D_{f}\,$
- ullet Sur les intervalles où $f\left(x
 ight)-\left(ax+b
 ight)<0$, $\,C_{f}\,$ est en dessous de \it{D} .
- ullet Lorsque $f\left(x
 ight) -\left(ax+b
 ight) =0$, $\,C_{f}\,$ et ${\it D}$ ont un point d'intersection.

APPLICATION

Finalement, on peut conclure:

- C_f est au-dessus de D sur $]-1;+\infty[$.
- C_f est en dessous de D sur $]-\infty;-1[$.

Sommaire

- 1 Énoncer la démarche
- 2 Calculer et simplifier $f\left(x\right) - \left(ax + b\right)$
- 3 Étudier le signe de $f\left(x\right) - \left(ax + b\right)$
- 4 Conclure sur la position relative

Tout le contenu en illimité avec nos offres Premium

S'ABONNER

