Speedup Techniques for Hyperparameter Optimization Predicting Learning Curves

Bernd Bischl <u>Frank Hutter</u> Lars Kotthoff Marius Lindauer Joaquin Vanschoren

Learning Curves

Learning Curve Predictions

• Observe learning curve for the first n steps (here n=250)

Learning Curve Predictions

- Observe learning curve for the first n steps (here n=250)
- Extrapolation: fit parametric model on partial learning curve to predict remaining learning curve

Learning Curve Predictions

- **①** Observe learning curve for the first n steps (here n=250)
- 2 Extrapolation: fit parametric model on partial learning curve to predict remaining learning curve
 - Various models can be used (see following slides)

Learning Curves: Early Termination

Learning Curves: Early Termination

• Use a parametric model f_k with parameters θ to model performance at step t as: $y_t = f_k(t|\theta) + \epsilon$, with $\epsilon \sim \mathcal{N}(0, \sigma^2)$.

- Use a parametric model f_k with parameters θ to model performance at step t as: $y_t = f_k(t|\theta) + \epsilon$, with $\epsilon \sim \mathcal{N}(0, \sigma^2)$.
- Linear combination of K=11 parametric types of models:

$$f_{comb}(t|m{\xi}) = \sum_{k=1}^K w_k f_k(t|m{ heta}_k)$$
, where $m{\xi} = (w_1,\ldots,w_K,m{ heta}_1,\ldots,m{ heta}_K,\sigma^2)$

- Use a parametric model f_k with parameters θ to model performance at step t as: $y_t = f_k(t|\theta) + \epsilon$, with $\epsilon \sim \mathcal{N}(0, \sigma^2)$.
- Linear combination of K=11 parametric types of models:

$$f_{comb}(t|\boldsymbol{\xi}) = \sum_{k=1}^K w_k f_k(t|\boldsymbol{\theta}_k)$$
, where $\boldsymbol{\xi} = (w_1, \dots, w_K, \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_K, \sigma^2)$

$(1, \dots, 1, \dots, 1)$	
Reference name	Formula
vapor pressure	$\exp(a + \frac{b}{x} + c\log(x))$
pow ₃	$c - ax^{-\alpha}$
log log linear	$\log(a\log(x) + b)$
Hill ₃	$\frac{y_{\text{max}}x^{\eta}}{\kappa^{\eta}+x^{\eta}}$
log power	$\frac{a}{1+\left(\frac{x}{e^b}\right)^c}$
pow ₄	$c - (ax + b)^{-\alpha}$
MMF	$ \begin{array}{l} \alpha - \frac{\alpha - \beta}{1 + (\kappa x)^{\delta}} \\ c - e^{-ax^{\alpha} + b} \end{array} $
exp ₄	
Janoschek	$\alpha - (\alpha - \beta)e^{-\kappa x^{\delta}}$
Weibull	$\alpha - (\alpha - \beta)e^{-(\kappa x)^{\delta}}$
$ilog_2$	$c - \frac{a}{\log x}$

K=11 parametric families for modelling learning curves

- Use a parametric model f_k with parameters θ to model performance at step t as: $y_t = f_k(t|\theta) + \epsilon$, with $\epsilon \sim \mathcal{N}(0, \sigma^2)$.
- Linear combination of K=11 parametric types of models:

$$f_{comb}(t|\boldsymbol{\xi}) = \sum_{k=1}^K w_k f_k(t|\boldsymbol{\theta}_k)$$
, where $\boldsymbol{\xi} = (w_1, \dots, w_K, \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_K, \sigma^2)$

, 11, , 11, 1	
Reference name	Formula
vapor pressure	$\exp(a + \frac{b}{x} + c\log(x))$
pow ₃	$c - ax^{-\alpha}$
log log linear	$\log(a\log(x) + b)$
$Hill_3$	$\frac{y_{\text{max}}x^{\eta}}{\kappa^{\eta} + x^{\eta}}$
log power	$\frac{a}{1+\left(\frac{x}{e^b}\right)^c}$
pow_4	$c - (ax + b)^{-\alpha}$
MMF	$\alpha - \frac{\alpha - \beta}{1 + (\kappa x)^{\delta}}$
exp ₄	$c - e^{-ax^{\alpha} + b}$
Janoschek	$\alpha - (\alpha - \beta)e^{-\kappa x^{\delta}}$
Weibull	$\alpha - (\alpha - \beta)e^{-(\kappa x)^{\delta}}$
$ilog_2$	$c - \frac{a}{\log x}$

K=11 parametric families for modelling learning curves

• Use Markov Chain Monte Carlo sampling of ξ to obtain uncertainties

Predictive Termination

All learning curves vs. learning curves with early termination

Predictive Termination

All learning curves vs. learning curves with early termination

• Disadvantages of this model?

Predictive Termination

All learning curves vs. learning curves with early termination

- Disadvantages of this model?
 - ▶ Relies on manually-selected parametric families of curves
 - Does not take into account hyperparameters used

- Make a layer out of the parametric learning curves by Domhan et al.
- Also support hyperparameters as inputs (in the figure denoted by x_1, \ldots, x_d)

- Make a layer out of the parametric learning curves by Domhan et al.
- Also support hyperparameters as inputs (in the figure denoted by x_1, \ldots, x_d)
- Disadvantages of this model?

- Make a layer out of the parametric learning curves by Domhan et al.
- Also support hyperparameters as inputs (in the figure denoted by x_1, \ldots, x_d)
- Disadvantages of this model?
 - Relies on manually-selected parametric families of curves
 - Cannot quickly integrate new information from extending the current curve (or from new runs)

- Make a layer out of the parametric learning curves by Domhan et al.
- Also support hyperparameters as inputs (in the figure denoted by x_1, \ldots, x_d)
- Disadvantages of this model?
 - Relies on manually-selected parametric families of curves
 - Cannot quickly integrate new information from extending the current curve (or from new runs)
 - ► Also, the model is very hard to train

Sequence Models (e.g., Bayesian RNN) [Gargiani et al. 2019]

- Learning curves are sequences
 - Previous models don't treat them like this
 - ▶ We can use an RNN (in particular, an LSTM) to predict the next value from a given sequence
 - ▶ We can use variational dropout to obtain uncertainty estimates:

Sequence Models (e.g., Bayesian RNN) [Gargiani et al. 2019]

- Learning curves are sequences
 - Previous models don't treat them like this
 - ▶ We can use an RNN (in particular, an LSTM) to predict the next value from a given sequence
 - ▶ We can use variational dropout to obtain uncertainty estimates:

Sequence Models (e.g., Bayesian RNN) [Gargiani et al. 2019]

- Learning curves are sequences
 - Previous models don't treat them like this
 - ▶ We can use an RNN (in particular, an LSTM) to predict the next value from a given sequence
 - ▶ We can use variational dropout to obtain uncertainty estimates:

Note: we can also use a simpler model

• E.g., a random forest to map from a fixed-size window to the next value

Compare: Baker et al, 2017 [Baker et al. 2018]

- Idea: map from configurations (including architectural hyperparameters) and partial learning curves to the final performance
- Advantages
 - ► Much simpler idea than all the approaches just discussed: no need to model the entire learning curve
 - ► Much easier to implement
- Disadvantage?

Compare: Baker et al, 2017 [Baker et al. 2018]

- Idea: map from configurations (including architectural hyperparameters) and partial learning curves to the final performance
- Advantages
 - ► Much simpler idea than all the approaches just discussed: no need to model the entire learning curve
 - ► Much easier to implement
- ullet Disadvantage? o requires many (e.g., 100) fully-evaluated learning curves as training data
 - After 100 full function evaluations we want to be pretty much converged in practice
 - But definitely helpful for speeding up RL

Freeze-Thaw Bayesian Optimization [Swersky et al. 2014]

- Use a Gaussian process with inputs λ and t; special kernel for t
- \bullet For N configurations and T epochs each: $O(N^3t^3) \to \operatorname{approximation}$
- Iteratively: either extend existing configuration or try new one

Freeze-Thaw Bayesian Optimization [Swersky et al. 2014]

- ullet Use a Gaussian process with inputs $oldsymbol{\lambda}$ and t; special kernel for t
- \bullet For N configurations and T epochs each: $O(N^3t^3) \to \operatorname{approximation}$
- Iteratively: either extend existing configuration or try new one
- Result for probabilistic matrix factorization:

Freeze-Thaw Bayesian Optimization [Swersky et al. 2014]

- ullet Use a Gaussian process with inputs $oldsymbol{\lambda}$ and t; special kernel for t
- \bullet For N configurations and T epochs each: $O(N^3t^3) \to \operatorname{approximation}$
- Iteratively: either extend existing configuration or try new one
- Result for probabilistic matrix factorization:

Unfortunately, no results for DNNs; no code available

Questions to Answer for Yourself / Discuss with Friends

- Repetition. List all learning curve prediction methods you recall, along with their pros and cons.
- Discussion. Could predictive termination cut off evaluations early that would turn out to be the best?
- Discussion. How would you determine a learning curve prediction method's own hyperparameters (such as the 5% for early learning curve termination), in practice?
- Discussion. How could we exploit additional side information we gain about the learning curve, such as, e.g., statistics for the size of the gradients and activations over time?