

Model Optimization and Tuning Phase Report

Date	20 June 2025
Team ID	SWTID1749791625
Project Title	Smart Lender- Applicant Credibility Prediction for Loan Approval
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values		
Decision Tree	<pre># Define the Decision Tree classifier dt_classifier = DecisionTreeClassifier() # Define the hyperparameters and their possible values for tuning param_grid = { 'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'max_depth': [None, 10, 20, 30, 40, 50], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], }</pre>	# Evaluate the performance of the tuned model accuracy = accuracy_score(v_text, v_preg) print("Orizmal hyperparameters:", best_params) print("Accuracy on Test Set:", accuracy) Optimal hyperparameters: ("metric": "euclidean", 'n_neighbors': 9, 'weights': 'uniform') Accuracy on Test Set: 0.8536585365853658		
Random Forest	<pre>from sklearn.ensemble import RandomforestClassifier from sklearn.model_selection import GridSearchCV param_grid = {</pre>	# 07005697 07453685 074535181 0.7553925 0.7555611 0.7557485* # 0700572 0.7551481 0.7557455 0.7565734 0.7565734 0.7565748] ## or		

Performance Metrics Comparison Report (2 Marks):

Model		Optimized Metric				
	Test Set	Test Set Metrics for Decision Tree:				
		precision	recall	f1-score	support	
	0	0.46	0.68	0.55	38	
Decision Tree	1	0.82	0.65	0.72	85	
	accuracy			0.66	123	
	macro avg	0.64	0.67	0.64	123	
	weighted avg	0.71	0.66	0.67	123	

	A Took Cot M	letrics for R	andom Force	4.	
	/ Test Set M	precision		t: 1-score si	unnont.
		precision	recall T.	r-score si	иррогс
	0	0.52	0.66	0.58	38
	1	0.83		0.78	85
	-	0.63	0.73	0.78	65
Random Forest	accuracy			0.71	123
	macro avg	0.67	0.69		123
	weighted avg				123
	mengineed avg	0.75	01,72	0172	
	Test Set	Metrics for	KNN:		
	302	precision	recall	f1-score	support
	9	0.54	0.66	0.60	38
	1				
KNN	_				
IXININ	accuracy			0.72	123
	macro avg		0.71		
	weighted avg				
	weighted avg	0.74	6.72	0.73	123
	A Took Cok	M-t: 5	VCD		
	/ lest Set	Metrics for		£1	cuppent
		precision	recall	f1-score	support
Gradient Boosting		0.33	0.70	0.46	20
	0		0.79		38
	1	0.74	0.27	0.40	85
	2.00			0.43	122
	accuracy		0 53	0.43	123
	macro avg		0.53 0.43	0.43	123
	weighted avg	0.61	0.43	0.42	123

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Ensemble Voting Classifier	After training and evaluating multiple machine learning models — including Decision Tree, Random Forest, K-Nearest Neighbors (KNN), and XGBoost — I selected the Ensemble Voting Classifier as the final model. This decision was based on its superior performance across metrics such as accuracy, precision, recall, and f1-score.