

Homework for the Lecture

Functional Analysis

Stefan Waldmann Christopher Rudolph

Winter Term 2024/2025

$\underset{\scriptscriptstyle{\text{revision: }2025\text{-}01\text{-}16}}{\text{Homework Sheet No}} \underset{\scriptscriptstyle{\text{}+0100}}{\text{No}} 12$

Last changes by christopher.rudolph@jmu on 2025-01-16 Git revision of funkana-ws2425: 3b60042 (HEAD -> master, origin/master)

> 13. 01. 2025 (25 Points. Discussion 20.01.2025)

Homework 12-1: Polynomial Functions and Hilbert Bases

Let $I = [a, b], -\infty \le a < b \le \infty$, be a real interval and $\rho \in \mathcal{C}(I, \mathbb{R}^+)$ a positive continuous function. On the Borel σ -algebra of I we define a measure μ via integration over ρ , i.e.

$$\mu(U) := \int_{U} \rho(x) \, \mathrm{d}x \tag{12.1}$$

for every open subset U of I. In the following, we assume that there are constants $\alpha, C > 0$ such that $\rho(x)e^{\alpha|x|} \leq C$ for every $x \in I$.

- i.) (1 Point) Does such a function ρ always exist?
- ii.) (1 Point) Show that the monomial x^n lies in $L^2(I,\mu,\mathbb{C})$ for every $n \in \mathbb{N}_0$.
- iii.) (4 Points) For $f \in L^2(I, \mu, \mathbb{C})$, define

$$F(p) := \int_{I} f(x)e^{ipx} d\mu(x), \qquad (12.2)$$

where p lies within the strip $S_{\alpha} := \{z \in \mathbb{C} : |\mathrm{Im}z| < \frac{\alpha}{4}\}$. Show that the map $S_{\alpha} \ni p \mapsto F(p)$ is well-defined and continuous.

Hint: Find a function $h \in L(I, \mu, \mathbb{R}_0^+)$ such that $|f(x)e^{ipx}| < h(x)$ for every $(p, x) \in S_\alpha \times I$.

iv.) (5 Points) Show that F is holomorphic.

Hint: First, show that F is real differentiable. To this end, use a modification of the hint from the previous part. Then conclude that F satisfies the Cauchy Riemann equations.

- v.) (4 Points) Conclude that $F \equiv 0$ if $\langle x^n, f \rangle_2 = 0$ for every $n \in \mathbb{N}_0$.
- vi.) (4 Points) Conclude that the closure of $\operatorname{span}_{\mathbb{C}}\{x^n\in L^2(I,\mu,\mathbb{C}):n\in\mathbb{N}\}$ coincides with $L^2(I,\mu,\mathbb{C})$.
 - Hint: Here, some Fourier analysis is needed. For a Schwartz function $\phi \in \mathcal{S}(\mathbb{R})$, one defines its Fourier transform as $\mathfrak{F}\phi(p) := \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \phi(x) \mathrm{e}^{-\mathrm{i} p x} \, \mathrm{d} x$, $p \in \mathbb{R}$. One can show that the map \mathfrak{F} is bijective with inverse map given by $\mathcal{L}\phi(p) := \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \phi(x) \mathrm{e}^{\mathrm{i} p x} \, \mathrm{d} x$. It turns out that \mathfrak{F} (and thus also \mathcal{L}) becomes an isometry if one endows the Schwartz space with the L^2 -norm. Since the Schwartz functions are dense in $L^2(I,\mathrm{d} x,\mathbb{C})$, the Fourier transform extends to a bijective isometry $\mathfrak{F}: L^2(I,\mathrm{d} x,\mathbb{C}) \to L^2(I,\mathrm{d} x,\mathbb{C})$. You can use all these facts without proof.
- vii.) (1 Point) Prove the following: $L^2(I, \mu, \mathbb{C})$ has a countable Hilbert basis consisting of polynomial functions.
- viii.) (3 Points) Prove the following: There is a continuous function $f \in \mathcal{C}(I, \mathbb{R})$ and a sequence $(p_n)_{n \in \mathbb{N}_0} \subset \mathcal{C}(I, \mathbb{R})$ of polynomial functions such that the sequence $(fp_n)_{n \in \mathbb{N}_0}$ forms a Hilbert basis of $L^2(I, \mathrm{d}x, \mathbb{C})$.

Homework 12-2: Integrability and Essential Boundedness

(2 Points) Show that for every $p \in [1, \infty)$ there is a function $f \in L^p(\mathbb{R}, dx, \mathbb{R})$ which is not essentially bounded.