Preliminary Design of a Ramjet for Integration with Ground-Based Launch Assist

Emily L. Sayles

NASA MUST Intern

Summer 2008

Outline

- Overview of Ground-Based Launch Assist
- OTIS and Trajectory Analysis
- Ramjet Performance Software Analysis
 - Ramjet Data
 - D-21
 - Stataltex
 - LASRM
 - Engine Performance Software
 - ONX
 - GECAT
- Next Steps

Ground-Based Launch Assist

Why?

- •Reusable/Reliable
- •Combination of E/M, air-breathing, and rocket propulsion
- Decrease in Weight=Increase in Payload
- Low Operational Costs

- Launch to Orbit in Stages
 - Linear Induction Motors (0 to M1.5)
 - •Ramjet (M1.5 to M4)
 - Scramjet (M4 to M10)
 - Rocket to Orbit

Launch Assist Benefit Analysis

Initial Velocity

Total ΔV is increased with an initial velocity

Decrease in Total Launch Weight per Payload Mass

Launch assist ΔV doesn't require on-board propellant

Coefficient of Drag

Launch assist will bypass $C_{D \text{ max}}$ in the trans-sonic range

OTIS Simulations

Theory

OTIS: Optimal Trajectory by Implicit Simulation

Input: Flight Parameters

Output: Trajectory, Velocity, Drag, etc.

Verification of Simulation by Flight Data

Experiment

"Flight Research of an Aerospike Nozzle Using High Power Solid Rockets"

AIAA 2005-3797

Bui, et al.

Flight Parameters: Drag Coefficient,
Thrust

Flight data: Altitude, Mach Number

Figure 12. Pressure Altitudes for Three Rocket Flights.

Burn

- ■7-Second Duration
- ■Average Thrust of 900 lbf
- ■lsp of 215 s
- With Drag

Coast

- ■Free-fall
- ■No chute
- With Drag

Max Velocity: ~1750 ft/s (M1.57); Max Altitude: ~27500 ft

OTIS Input Files

Specific Initial Conditions

 $(V_0, h_0, \gamma, weight)$

Atmospheric Model

1976 US Standard Atmosphere

Engine Model

Thrust, Isp

Timing of Phases

OTIS Flowchart

Rocket Equation

 $\Delta V = Isp * g_0 * \ln \left(\frac{m_0}{m_{bo}}\right) - g_0 * t_{bo} - d$

In a Vacuum

In an Atmosphere

	Rocket Parameters	Numerical Values From Bui, et al.
ΔV	Change in velocity (V _f -V ₀)	1694 ft/s
Isp	Specific Impulse	215 s
m_0	Initial Mass	$(100 lbs) / g_0$
m_{bo}	Mass at Burn Out	(71 lbs) / g ₀
\mathbf{t}_{bo}	Burn Time	7 s
g_0	Gravitational Acceleration	32.2 ft/s ²
d	Drag Effects	Varies with time

Verification of Drag Effect's Existence

Comparison Between OTIS and Theory

Comparison Within OTIS

Correction Term: d

"Turning off" the Atmosphere:

Removal of atmospheric model from otis.inl

Offset between ΔVs from OTIS and rocket equation at burn out

Compute Offset between 2 OTIS models:

With Drag

Without Drag

$$d = 497 \text{ ft/s}$$

$$d = \Delta V_{\text{no drag}} - \Delta V_{\text{with drag}} = 509 \text{ ft/s}$$

2.4% Difference

Values from both comparisons agree

OTIS is accurate in predicting the drag term

Method of Comparison: Using the Concept of "Virtual Isp"

Different Scenarios Input to OTIS

Drag, Initial Velocity

OTIS Outputs a ΔV

Comparison of ΔVs

Rocket Alone vs. Combined System

Rocket Equation

Translate Change in ΔV to an Isp Gain

$$\Delta(\Delta V) = Isp_{gain} * g_0 * \ln\left(\frac{m_0}{m_{bo}}\right) - g_0 * t_{bo}$$

"Virtual Isp" = Normal Isp + Isp Gain

Launch Assist Benefit Analysis

Initial Velocity

Total ΔV is increased with an initial velocity

Decrease in Total Launch Weight per Payload Mass

Launch assist ΔV doesn't require on-board propellant

Coefficient of Drag

Launch assist will bypass $C_{D \text{ max}}$ in the trans-sonic range

Initial Velocity Advantage

Variable Speed Launch Assist in a Vacuum

Kocket

Combined System

Case	Drag	V ₀ (ft/s)	Virtual Isp (s)	% Increase
1	Vacuum	0	225	0
2	Vacuum	440 (300 mph)	265	17.8
3	Vacuum	880 (600 mph)	306	36
4	Vacuum	1563 (M1.4*)	390	73.3

Launch Assist Benefit Analysis

Initial Velocity

Total ΔV is increased with an initial velocity

Decrease in Total Launch Weight per Payload Mass

Launch assist ΔV doesn't require on-board propellant

Coefficient of Drag

Launch assist will surpass $C_{D \text{ max}}$ in the trans-sonic range

Drag Coefficient Models

"Constant"

Transonic peak

$$D = \frac{1}{2}C_D A \rho V^2 \longrightarrow$$

Drag force is directly proportional to coefficient of drag

Drag Coefficient Advantage

Case	Drag	V ₀ (ft/s)	Virtual Isp (s)	% Increase
1	Conventional C _D	0	215	0
2	Constant C _D	0	243	13

Indicates possible gains from surpassing transonic peak

Variable Speed Launch Assist in Atmosphere

Rocket Only

Combined System

Case	Drag	V ₀ (ft/s)	Virtual Isp (s)	% Increase
1	Conventional C _D	0	215	0
2	Conventional C _D	440 (300mph)	227	5.6
3	Conventional C _D	880 (600mph)	248	15.3
4	Conventional C _D	1563 (M1.4*)	278	29.3

Launch Assist Benefit Analysis

Initial Velocity

Total ΔV is increased with an initial velocity

Decrease in Total Launch Weight per Payload Mass

Launch assist ΔV doesn't require on-board propellant

Coefficient of Drag

Launch assist will bypass $C_{D max}$ in the trans-sonic range

Motivation: Launch Assist can provide supersonic speeds thus allowing ignition of ramjet without an onboard compressor. This means a further reduction in total launch weight.

Outline

- Overview of Ground-Based Launch Assist
- OTIS and Trajectory Analysis
- Ramjet Performance Software Analysis
 - Ramjet Data
 - D-21
 - Stataltex
 - LASRM
 - Engine Performance Software
 - ONX
 - GECAT
 - Next Steps

Outline of Ramjet Study

- Gather data from past, operational ramjets
 - LASRM
 - D-21
 - Stataltex
- Calculate missing parameters, if necessary
 - Mass Flow Rates
 - Pressure Recovery
- Input data to engine simulation software
 - ONX
 - GECAT
- Verify software outputs with real data
 - Geometry
 - Thrust

Structure of ONX Simulations

Verification of ONX with Holloman Sled Track Data

Experiment: "Feasibility of Ramjet Engine Test Capability on The Holloman AFB Sled Track" McTaggart, 1973

Theory: ONX

Inputs from McTaggart:

- Mach number
- Diffuser Pressure Ratio
- •Fuel and Air Mass Flow Rates
- Fuel Heating Value

Points of Verification

- Geometry
- Mass Flow Rates

Low Altitude Short Range Missile (LASRM)

US Air Force, 1964-1967

Comments

Allows for direct input of thrust

Does not allow for direct input of geometry

Intermediate Conclusions: Not enough LASRM data (no flight test thrust values)
Indications that the ONX program is not sufficient to meet our needs

D-21 Data

Known Parameters

- •Geometry:
 - •Inlet Area
 - Nozzle Areas
 - Combustion Area
- Mach Numbers (Mach 3)
- Altitudes
- •Thrust (1500 lbs)
- Specific Fuel Consumption
- Fuel Heating Value

Calculated Parameters

- Mass Flow Rate
- Pressure Recovery

Conclusions: ONX is not sufficient to meet our needs because of difficulty in entering and interpreting area data (unable to enter specific area data for each station)

GECAT Simulation Architecture

Stataltex Data

Known Parameters

- Geometry
 - Inlet Area
 - Nozzle Areas
- Fuel Heating Value
- Mach Numbers (Mach 3 to 5)
- Altitudes
- •Thrust (max 4500 lbs)
- Combustion Temperatures
- Combustor Efficiency
- Inlet Efficiency

ONERA study, 1960-1964

Solid Fuel Booster plus Ramjet

Approached Mach 5

10 flights

Figure 25. Range of flight investigated with ramjet propulsion.

Calculated Parameters

- Pressure Recovery
- Air Mass Flow Rate

Calculation of Mass Flow Rates

D-21

Stataltex

- Focus on Air Intake
 - Free-stream Mach number, altitude give densities and temperatures
- Isentropic Compression Along Spike
 - Prandtl-MeyerCompression Waves
- Normal Shock at Inlet
 - Normal Shock Relations give Mach number, density, temperature after the shock

$$m = \rho AV$$

Calculation of Pressure Recovery (r_i)

 Measure of inlet performance

Ratio of total
 pressure after inlet at to free stream total
 pressure

Stataltex Inlet Efficiency (η_i) as a Function of Free Stream Mach Number

$$r_i = \eta_i \left(1 - 0.075 (M - 1)^{1.35} \right)$$

Verification of GECAT with Stataltex and D-21 Data

Input Parameters

- Geometry
- Flight Conditions
- Air Mass Flow Rate
- Fuel Heating Value
- Efficiencies
- Combustion Temperature

Stataltex Flight Conditions

Flight Number	Mach Number	Altitude (ft)
06	4	32808
06	5	85630
09	4	25154
09	5	38278

Adjustments

- Throat Flow Coefficient
- Gross Thrust Coefficient

D-21 Flight Conditions

Mach Number	Altitude (ft)
3.25	80000
3.3	80000

Model 'Stataltex_09_4' Case 1 Analyzed with Termap_V12_E05.exe at 2008/08/19 14:48:34 ----tors or warnings.

Comments on Software Analysis

	ONX	GECAT
Pros	✓Direct input of thrust	 ✓ Specification of Geometry ✓ Ability to Override Idealizations ✓ Matching Capability ✓ View Properties at Every Station
Cons	➤ Geometry is calculated, not specified➤ Limited selection of inputs	➤Issues with Nozzle Exit Area Input

- •Not enough data to model the LASRM
- •D-21 GECAT model at 2 points
- Successful Stataltex GECAT model at 4 points

Next Steps

Create GECAT model of launch assist ramjet

Learned Solidworks

Linear Motor Research and Development

Phase 1 Motors Embry-Riddle-159 mph

Phase 2 Motors

Phase 2 Motors-Manufacturing

Phase 2 Motors-Testing Fall 2008

Launch Assist Ramjet

- Assumptions/Requirements
 - Sea level to 10,000ft operation
 - Mach Number 1.5 to 2
 - 2-5 seconds burn time
 - Gross wet weight between 50 and 100lbs
 - Detection limits 1-10g out of 500g
 - Type of Fuel? JP/kerosene

Inlet Considerations

Inlet Geometry:

Hole

-- ·Cone

•Storage for instrument package

Ramjet

Shock Wave Model

- •Oblique
- Normal
- Detached Bow Wave
 - •Low supersonic speeds
 - Cone half-angle

Preliminary Calculations

- Acceleration: 3-5 g's
- •Burn Duration: 3-5 sec
- $\bullet V_0 = M1.2$
- $\bullet V_f = M1.6-M1.9$
- Propellant Mass Fraction: 1/3
- Total Ramjet Weight: 20 lbs
- Net Thrust: 60 lbs
- •Fuel Density: 50 lbs/ft³
- •Fuel Volume (JP-4): 30-50 in³

Trade Studies

Variable Parameters

Flight Mach Number

Inlet Efficiency

Altitude

Air Mass Flow Rate

Combustion Temperature

Restrictions

Cross-Sectional Areas

Inlet Area

Nozzle Throat Area

Nozzle Exit Area

•Net Thrust (0 – 100 lbs)

What:

Start with Basic Cases

Change Parameters in Cases

Simulate Changing Flight Conditions

On-Design

Design Points

Off-Design

Why:

Find 60 lbs thrust cases

Examine Performance at Non-Ideal Conditions

GECAT Flow Chart

9 On-Design Cases

Mach 1.2

Altitudes: 0, 5000, 10000 ft

Inlet Efficiencies: 75%, 85%, 95%

Combustion Temperature: 3000 R

Thrust = 60 lbs

Mass Flow Rate: Determined on Case to Case Basis

Off-Design Variable Parameters

M1.2 to M2.0

Altitude: 0 to 10000 ft

Pressure Recovery: 0.5 to 1.0

Combustion Temperature: 2000 to 4000 R

Mass Flow Rate: 5 to 50 pps

Restrictions

0 lbs<Thrust<100 lbs

Determination of Acceptable

Flight Regimes Red denotes either

0 lbs<Thrust<100 lbs

Green denotes

Thrust >100 lbs or Thrust <0 lbs

Determination of Acceptable Flight Regimes (cont'd)

Data points represent green areas from previous slide

Flight Envelope Graphs

Future Studies

- Continue/Complete Design of Launch Assist Ramjet for Existing Linear Motors
- Launch Assist Trajectory Analysis Including Air-Breathing Ramjet
- Big Air-Breathing Ramjet (BARJ)
 - 100,000 lbs of thrust

Acknowledgments

Kurt Kloesel
Shari Olson
Jonathan Pickrel
Interns/co-ops
Tiffany Scott
Krista Shipley
Softball Buddies

