2.5 Esercizi

Esercizio 2.1 Si descrive il gruppo dell'isometrie del piano che fissano un rettangolo (che non sia un quadrato).

Esercizio 2.2 Sia $G = D_n$, $n \ge 3$, il gruppo diedrale. Determinare il sottoinsieme $S \subset G$ costituito da tutti gli elementi di ordine 2.

Esercizio 2.3 Sia f la permutazione di S_{12} data da

Si scriva la decomposizione in cicli disgiunti di f, f^2 , f^3 e f^5 e si calcolino gli ordini di queste permutazioni.

Esercizio 2.4 Siano f e g la permutazioni di S_{10} definite come segue:

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 4 & 5 & 7 & 9 & 8 & 10 & 6 & 3 & 1 \end{pmatrix} e g = (23).$$

Si trovi la decomposizione in cicli disgiunti delle permutazioni f, g, $f \circ g$ e $g \circ f$ e si calcolino gli ordini di queste permutazioni.

Esercizio 2.5 Dimostrare che due cicli σ e τ della stessa lunghezza sono coniugati, cioé esiste una permutazione f tale che $f^{-1} \circ \sigma \circ f = \tau$.

Esercizio 2.6 Sia σ un ciclo di lunghezza l e $k \in N_+$ tale che $\sigma^k \neq id$. Mostrare che esistono t cicli disgiunti $\sigma_1, \ldots, \sigma_t$ tutti della stessa lunghezza m, tali che l = mt e

$$\sigma^k = \sigma_1 \circ \cdots \circ \sigma_t. \tag{2.20}$$

Mostrare, inoltre che $m=\frac{1}{(k,l)}$ e t=(k,l). (Suggerimento: usare il fatto che supp $(\sigma^k)=\mathrm{supp}(\sigma)$ e il teorema fondamentale delle permutazioni Per l'ultima parte si calcolino gli ordini di σ^k e $\sigma_1 \circ \cdots \circ \sigma_t$).

Esercizio 2.7 Mostrare che se $\sigma_1, \ldots, \sigma_t$ sono cicli disgiunti tutti della stessa lunghezza m allora esiste un ciclo σ di lunghezza l=mt e $k\in N_+$ tali che $\sigma^k=\sigma_1\circ\cdots\circ\sigma_t$. (Suggerimento: se $\sigma_j=(a_{j1}\cdots a_{jm}), j=1,\ldots,t$, si definisca

$$\sigma = (a_{11}a_{21} \dots a_{t1}a_{12}a_{22} \cdots a_{t2} \cdots a_{1m}a_{2m} \cdots a_{tm})$$

e si verifichi che $\sigma^t = \sigma_1 \circ \cdots \circ \sigma_t$.).

2.5. ESERCIZI 49

Esercizio 2.8 Dimostrare che S_n é generato da $\{A_n, \tau\}$ dove τ é una trasposizione arbitraria.

Esercizio 2.9 Sia σ un ciclo di lunghezza l. Dimostrare che

- 1. σ^2 é un ciclo se e solo se *l* é dispari;
- 2. se l é dispari allora σ é il quadrato di un ciclo di lunghezza l;
- 3. se *l* é pari, l = 2m, allora σ^2 é il prodotto di due cicli di lunghezza m;
- 4. se l = tm, allora σ^t é il prodotto di t cicli di lunghezza m;
- 5. se l é un numero primo allora ogni potenza di σ é un ciclo.

(Suggerimento: usare l'Esercizio 2.6).

Esercizio 2.10 Il cubo di Rubik puó essere visto come un gruppo algebrico \mathcal{R} , dove le operazioni sono rappresentate dalle mosse che si possono eseguire sulle facce del cubo (si veda anche wikipedia) Piú precisamente \mathcal{R} é generato dalle seguenti mosse di base.

- *U*: Rotazione di 90 gradi della faccia superiore (Upper) in senso orario;
- D: Rotazione di 90 gradi della faccia inferiore (Down) in senso orario;
- L: Rotazione di 90 gradi della faccia sinistra (Left) in senso orario;
- R: Rotazione di 90 gradi della faccia destra (Right) in senso orario;
- *F*: Rotazione di 90 gradi della faccia frontale (Front) in senso orario;
- *B*: Rotazione di 90 gradi della faccia posteriore (Back) in senso orario.
- 1. Calcolare l'ordine di ogni mossa di base;
- 2. Calcolare l'ordine degli elementi $R^{-1}D$ e $R^{-1}D^{-1}$;
- 3. Dimostrare che la permutazione dei 20 cubetti del cubo di Rubik (8 angoli e 12 spigoli) indotta da una qualunque mossa é di classe pari.