光纤光谱仪实验报告

郑晓旸

2024年2月29日

目录

1	实验目的	2
2	实验仪器	2
3	实验原理	2
	3.1 光谱仪工作原理	2
	3.2 xxx 情况下的边界条件和 xx 现象	2
	3.3 xx 在 xxx 条件下的 xxx 现象	2
4	实验过程与数据分析	2
	4.1 A. 在 xx 条件下测量 xxx	2
	4.1.1 a1. 计算出 xx 的电阻和电感	2
	4.1.2 <i>a</i> 2.Complete by yourself!	2
	4.1.3 <i>a</i> 3.Complete by yourself!	3
	4.2 展示一下行间公式	3
	4.2.1 行间公式	3
	4.2.2 相对于行内公式	3
5	分析与讨论	3
	5.1 误差分析	3
	5.1.1 实验中的系统误差	3
	5.1.2 实验中的偶然误差	3
	5.2 实验后的思考	3
6	原始数据	4

1 实验目的

- 1. 了解光谱分析的基本原理
- 2. 掌握光纤光谱仪的正确使用方法
- 3. 了解光谱分析在物理学中的应用.
- 4. 正确的

2 实验仪器

- 1. Ocean2000 型光纤光谱仪
- 2. 组合气体放电灯
- 3. 组合 LED 灯源
- 4. 光纤光源
- 5. 待测吸光液体

3 实验原理

- 3.1 光谱仪工作原理
- 3.2 xxx 情况下的边界条件和 xx 现象

xxxx 时发生 xxxx 现象。由 xxx 方程可知,xxx 波形为 $y^+ = f(vt+x)$,xxx 波形为 $y^- = f(vt-x)$ 。

3.3 xx 在 xxx 条件下的 xxx 现象

Complete by yourself!

4 实验过程与数据分析

- 4.1 A. 在 xx 条件下测量 xxx
- **4.1.1** *a*1. 计算出 xx 的电阻和电感

在 xx 上将 xx 的两端串联 xx 和 xx 相连,将 xx 的两端串联进 xx,分别将 xx 接在 L_1 , L_2 ,xx 的两端测量 xx 并记录。

4.1.2 a2.Complete by yourself!

Complete by yourself!

4.1.3 a3.Complete by yourself!

实验得到的数据如下:

线圈名称	$R'(\Omega)$	Va(V)	V(V)	Vr'(V)	Vo(V)
线圈 1(空气芯)	123	456	789	012	345
线圈 2(空气芯)	123	456	789	012	345
线圈 3(铝芯)	123	456	789	012	345
线圈 4(铝芯)	123	456	789	012	345

4.2 展示一下行间公式

4.2.1 行间公式

这是一个不确定度计算。

$$U_k = tinv(x, y)xs_k = xxx$$

4.2.2 相对于行内公式

这是一个不确定度计算: $U_k = tinv(x, y)xs_k = xxx$

5 分析与讨论

5.1 误差分析

5.1.1 实验中的系统误差

来自 xxx 的精度影响。 受空间内 xx 与 xx 的干扰。

5.1.2 实验中的偶然误差

接线时可能有 xxx 情况,导致 xxx。xx 上的 xx 在某情况下有 xx 的问题存在,经反复调整后得以正常测量。

5.2 实验后的思考

可说明自己做本实验的总结、收获和体会,对实验中发现的问题提出自己的建议。

6 原始数据

Change the picture by yourself

示例图片