Part VII. Top-Down Parsing

Basic idea:

Question: Could you construct this table for **any** CFG?

Basic idea:

Question: Could you construct this table for **any** CFG?

Answer: NO

Table:

α	•••	a	•••
•••			
\boldsymbol{A}		$\alpha(A, a)$	
•••			

Table:

Use rule $r_1: A \rightarrow X_1 X_2 ... X_n$

Use rule $r_2: A \rightarrow Y_1 Y_2 ... Y_m$

Gist: First(x) is the set of all terminals that can begin a string derivable from x.

```
Definition: Let G = (N, T, P, S) be a CFG. For every x \in (N \cup T)^*, we define the set First(x) as First(x) = \{a: a \in T, x \Rightarrow^* ay; y \in (N \cup T)^*\}.
```

Illustration:
$$x = X_1 X_2 \cdots X_n$$

Gist: First(x) is the set of all terminals that can begin a string derivable from x.

Definition: Let G = (N, T, P, S) be a CFG. For every $x \in (N \cup T)^*$, we define the set First(x) as $First(x) = \{a: a \in T, x \Rightarrow^* ay; y \in (N \cup T)^*\}$.

Gist: First(x) is the set of all terminals that can begin a string derivable from x.

Definition: Let G = (N, T, P, S) be a CFG. For every $\mathbf{x} \in (N \cup T)^*$, we define the set $First(\mathbf{x})$ as $First(\mathbf{x}) = \{\mathbf{a} : \mathbf{a} \in T, \mathbf{x} \Rightarrow^* \mathbf{a}y; y \in (N \cup T)^*\}.$

Gist: First(x) is the set of all terminals that can begin a string derivable from x.

Definition: Let G = (N, T, P, S) be a CFG. For every $x \in (N \cup T)^*$, we define the set First(x) as $First(x) = \{a : a \in T, x \Rightarrow^* ay; y \in (N \cup T)^*\}$.

Definition: Let G = (N, T, P, S) be a CFG without $\underline{\varepsilon}$ -rules. G is an LL grammar if for every $a \in T$ and every $A \in N$ there is **no more than one** rule $A \to X_1 X_2 ... X_n \in P$ such that $a \in First(X_1 X_2 ... X_n)$

Definition: Let G = (N, T, P, S) be a CFG without $\underline{\varepsilon}$ -rules. G is an LL grammar if for every $a \in T$ and every $A \in N$ there is **no more than one** rule $A \to X_1 X_2 ... X_n \in P$ such that $a \in First(X_1 X_2 ... X_n)$

Definition: Let G = (N, T, P, S) be a CFG without $\underline{\varepsilon}$ -rules. G is an LL grammar if for every $a \in T$ and every $A \in N$ there is **no more than one** rule $A \to X_1 X_2 ... X_n \in P$ such that $a \in First(X_1 X_2 ... X_n)$

Definition: Let G = (N, T, P, S) be a CFG without $\underline{\varepsilon}$ -rules. G is an LL grammar if for every $a \in T$ and every $A \in N$ there is **no more than one** rule $A \to X_1 X_2 ... X_n \in P$ such that $a \in First(X_1 X_2 ... X_n)$

Definition: Let G = (N, T, P, S) be a CFG without $\underline{\varepsilon}$ -rules. G is an LL grammar if for every $a \in T$ and every $A \in N$ there is **no more than one** rule $A \to X_1 X_2 ... X_n \in P$ such that $a \in First(X_1 X_2 ... X_n)$

Definition: Let G = (N, T, P, S) be a CFG without $\underline{\varepsilon}$ -rules. G is an LL grammar if for every $a \in T$ and every $A \in N$ there is **no more than one** rule $A \to X_1 X_2 ... X_n \in P$ such that $a \in First(X_1 X_2 ... X_n)$

Illustration: Ruled out in an LL grammar

Definition: Let G = (N, T, P, S) be a CFG without $\underline{\varepsilon}$ -rules. G is an LL grammar if for every $a \in T$ and every $A \in N$ there is **no more than one** rule $A \to X_1 X_2 ... X_n \in P$ such that $a \in First(X_1 X_2 ... X_n)$

Simple Programming Language (SPL)

```
1: \langle prog \rangle \rightarrow \underline{begin} \langle st\text{-list} \rangle
  2: \langle st\text{-list} \rangle \rightarrow \langle stat \rangle; \langle st\text{-list} \rangle
  3: \langle st\text{-list} \rangle \rightarrow end
  4: \langle stat \rangle \rightarrow read id
  5: \langle stat \rangle \rightarrow write \langle item \rangle
  6: \langle \text{stat} \rangle \rightarrow \text{id} := \text{add} (\langle \text{item} \rangle \langle \text{it-list} \rangle)
  7: \langle \text{it-list} \rangle \rightarrow , \langle \text{item} \rangle \langle \text{it-list} \rangle
  8: \langle \text{it-list} \rangle \rightarrow
  9: \langle \text{item} \rangle \rightarrow \text{int}
10: \langle \text{item} \rangle \rightarrow \text{id}
                                                                  Note: G_{SPL} is LL grammar
```

Example:

```
begin
  read i;
  j := add(i, 1);
  write j;
  end
SPL
```

- Input: G = (N, T, P, S) without ε -rules
- Output: First(X) for every $X \in N \cup T$
- Method:
- for each $a \in T$: $First(a) := \{a\}$
- Apply the following rule until no *First* set can be changed:
- if $A \to X_1 X_2 ... X_n \in P$, then add $First(X_1)$ to First(A)

- Input: G = (N, T, P, S) without ε -rules
- Output: First(X) for every $X \in N \cup T$
- Method:
- for each $a \in T$: $First(a) := \{a\}$
- Apply the following rule until no *First* set can be changed:
- if $A \to X_1 X_2 ... X_n \in P$, then add $First(X_1)$ to First(A)

Illustration:

1) for each $a \in T$:

$$First(a) := \{a\}$$

because $a \Rightarrow^0 a$

- Input: G = (N, T, P, S) without ε -rules
- Output: First(X) for every $X \in N \cup T$
- Method:
- for each $a \in T$: $First(a) := \{a\}$
- Apply the following rule until no *First* set can be changed:

2)

• if $A \to X_1 X_2 ... X_n \in P$, then add $First(X_1)$ to First(A)

Illustration:

1) for each $a \in T$: $First(a) := \{a\}$ because $a \Rightarrow^0 a$

- Input: G = (N, T, P, S) without ε -rules
- Output: First(X) for every $X \in N \cup T$
- Method:
- for each $a \in T$: $First(a) := \{a\}$
- Apply the following rule until no *First* set can be changed:
- if $A \to X_1 X_2 ... X_n \in P$, then add $First(X_1)$ to First(A)

Illustration:

1) for each $a \in T$: $First(a) := \{a\}$ because $a \Rightarrow^0 a$

- Input: G = (N, T, P, S) without ε -rules
- Output: First(X) for every $X \in N \cup T$
- Method:
- for each $a \in T$: $First(a) := \{a\}$
- Apply the following rule until no *First* set can be changed:
- if $A \to X_1 X_2 ... X_n \in P$, then add $First(X_1)$ to First(A)

Illustration:

1) for each $a \in T$: $First(a) := \{a\}$ because $a \Rightarrow^0 a$


```
First(begin):= {begin}First(id):= {id}First(.):= {.}First(end):= {end}First(int):= {int}First(.):= {(.)First(read):= {read}First(:=):= {:=}First(.):= {.}First(write):= {write}First(add):= {add}First(.):= {.}
```

```
First(\mathbf{begin}) := \{\mathbf{begin}\}\
                                 First(id)
                                                             First(,) := \{
First(end)
                                 First(int)
                                                             First( ( ) := 
                := \{end\}
First(read)
                                                             First() :=
                                 First(=)
                := {read}
First(write) := \{write\}
                                 First(add)
                                                             First(;) :=
                                                := {add}
                                                          to First(<item>)
\langle item \rangle \rightarrow id \in P:
                                   add First(id)
\langle item \rangle \rightarrow int \in P:
                                   add First(int)
                                                          to First(<item>)
Summary: First(<item>)
                                   = \{ id, int \}
```

```
First(\mathbf{begin}) := \{\mathbf{begin}\}\
                                     First(id)
                                                                    First(\cdot) := \{\cdot\}
First(end)
                                     First(int)
                                                     := {int}
                                                                    First(() :=
                  := \{end\}
                                                                    First():=
First(read)
                                     First(:=)
                  := {read}
First(write) := {write}
                                     First(add)
                                                                    First(;) := \{;
                                                     := {add}
\langle item \rangle \rightarrow id \in P:
                                                                to First(<item>)
                                       add First(id)
\langle item \rangle \rightarrow int \in P:
                                       add First(int)
                                                                to First(<item>)
                                       = \{ id, int \}
Summary: First(<item>)
\langle \text{it-list} \rangle \rightarrow ) \in P:
                                       add First())
                                                                to First(<it-list>)
\langle it\text{-list} \rangle \rightarrow \overline{,} \dots \in P:
                                       add First(,)
                                                                to First(<it-list>)
Summary: First(<it-list>)
                                       = \{ ), _{\bullet} \}
```

```
First(\mathbf{begin}) := \{\mathbf{begin}\}\
                                       First(id)
                                                                         First(,) := \{,\}
                                       First(int)
                                                         := \{ int \}
                                                                         First( ( ) := \{
First(end)
                   := {end}
                                                                         First():=
First(read) := \{read\}
                                       First(:=)
                                                                         First(;) := \{
First(write) := {write}
                                       First(add) := \{add\}
\langle item \rangle \rightarrow id \in P:
                                                                     to First(<item>)
                                          add First(id)
 \langle item \rangle \rightarrow int \in P:
                                          add First(int)
                                                                     to First(<item>)
                                          = \{ id, int \}
 Summary: First(<item>)
                                                                     to First(<it-list>)
 \langle \text{it-list} \rangle \rightarrow ) \in P:
                                          add First())
 \langle \text{it-list} \rangle \rightarrow \overline{,} \dots \in P:
                                          add First(,)
                                                                     to First(<it-list>)
Summary: First(\langle it-list \rangle) = \{\}, \}
                                          add First(id)
 \langle \text{stat} \rangle \rightarrow \text{id} \dots
                                                                     to First(<stat>)
 \langle \mathbf{stat} \rangle \rightarrow \overline{\mathbf{write}} \dots \in P:
                                          add First(write)
                                                                     to First(<stat>)
 \langle \text{stat} \rangle \rightarrow \overline{\text{read}} \dots \in P:
                                          add First(read)
                                                                     to First(<stat>)
 Summary: First(<stat>)
                                          = \{ id, write, read \}
```

```
First(\mathbf{begin}) := \{ \mathbf{\underline{begin}} \}
                                           First(id)
                                                                               First(,) := \{,\}
                                                              := \{ int \}
First(end)
                                           First(int)
                                                                               First(() := {
                     := \{end\}
                                                                               First():=
First(read) := \{read\}
                                           First(:=)
First(write) := {write}
                                           First(add) := \{add\}
                                                                               First(;) := \{;
 \langle item \rangle \rightarrow id \in P:
                                              add First(id)
                                                                           to First(<item>)
 \langle item \rangle \rightarrow int \in P:
                                              add First(int)
                                                                           to First(<item>)
                                             = \{ id, int \}
 Summary: First(<item>)
                                                                           to First(<it-list>)
 \langle \text{it-list} \rangle \rightarrow ) \in P:
                                              add First())
                                              add First()
                                                                           to First(<it-list>)
 \langle \text{it-list} \rangle \rightarrow \dots \in P:
 Summary: First(\langle it-list \rangle) = \{\}
                                              add First(id)
                                                                       to First(<stat>)
 \langle \text{stat} \rangle \rightarrow \text{id} \dots
 \langle \mathbf{stat} \rangle \rightarrow \overline{\mathbf{write}} \dots \in P:
                                              add First(write) to First(<stat>)
 \langle \text{stat} \rangle \rightarrow \overline{\text{read}} \dots \in P:
                                              add First(read) to First(<stat>)
 Summary: First(<stat>)
                                              = {id, write, read}
\langle \text{st-list} \rangle \rightarrow \text{end} \in P:
                                              add First(end) to First(<st-list>)
 \langle st\text{-list} \rangle \rightarrow \overline{\langle stat} \rangle \dots \in P: add First(\overline{\langle stat} \rangle) to First(\langle st\text{-list} \rangle)
Summary: First(\langle st\text{-list}\rangle) = \{\underline{id}, \underline{write}, \underline{read}, \underline{end}\}
```

First(X) for SPL: Example

```
First(\mathbf{begin}) := \{ \mathbf{\underline{begin}} \}
                                            First(id)
                                                                                First(,) := \{,\}
First(end)
                                                               := \{ int \}
                     := {end}
                                           First(int)
                                                                                First(()) := \{
First(\overline{\mathbf{read}}) := \{\underline{\mathbf{read}}\}
                                                                                First() := {
                                           First(:=)
                                                                                First(;) := \{;\}
First(\overline{\mathbf{write}}) := {\overline{\mathbf{write}}}
                                           First(add) := \{add\}
                                                                            to First(<item>)
 \langle item \rangle \rightarrow id \in P:
                                               add First(id)
 \langle item \rangle \rightarrow int \in P:
                                               add First(int)
                                                                            to First(<item>)
                                              = \{ id, int \}
 Summary: First(<item>)
                                                                            to First(<it-list>)
 \langle \text{it-list} \rangle \rightarrow ) \in P:
                                               add First())
 \langle it\text{-list} \rangle \rightarrow \dots \in P:
                                               add First(,)
                                                                            to First(<it-list>)
 Summary: First(\langle it-list \rangle) = \{\}
                                              add First(id)
                                                                        to First(<stat>)
 \langle \text{stat} \rangle \rightarrow \text{id} \dots
 \langle \mathbf{stat} \rangle \rightarrow \overline{\mathbf{write}} \dots \in P:
                                               add First(write) to First(<stat>)
                                              add First(read) to First(<stat>)
 \langle \text{stat} \rangle \rightarrow \text{read} \dots \in P:
 Summary: First(<stat>)
                                               = \{id, write, read\}
                                              add First(end) to First(<st-list>)
\langle \text{st-list} \rangle \rightarrow \text{end} \in P:
 \langle st\text{-list} \rangle \rightarrow \overline{\langle stat} \rangle \dots \in P: add First(\overline{\langle stat} \rangle) to First(\langle st\text{-list} \rangle)
Summary: First(\langle st\text{-list}\rangle) = \{\underline{id}, \underline{write}, \underline{read}, \underline{end}\}
                                              add First(begin) to First(cpreg>)
 \langle prog \rangle \rightarrow \underline{begin} \dots \in P:
 = {begin}
```

α	•••	a	•••
•••			
\boldsymbol{A}		$\alpha(A, a)$	
•••			

α	•••	a	•••	
A		$\alpha(A, a)$		$\alpha(A, a) = A \rightarrow X_1 X_2 X_n \in P$ if $a \in First(X_1)$; otherwise,
•••				$\alpha(A, a)$ is blank \Rightarrow ERROR

Task: LL table for SPL

 $\begin{array}{lll} \textbf{Rule } r \hbox{:} A \to X_1 X_2 ... X_n & First(X_1) \\ \hline 1 \hbox{:} & < \textbf{prog} > \to \textbf{begin} ... & \{ \underline{\textbf{begin}} \} \\ 2 \hbox{:} & < \textbf{st-list} > \to < \textbf{stat} > ... & \{ \underline{\textbf{id}}, \, \underline{\textbf{write}}, \, \underline{\textbf{read}} \} \\ 3 \hbox{:} & < \textbf{st-list} > \to \textbf{end} & \{ \underline{\textbf{end}} \} \\ 4 \hbox{:} & < \textbf{stat} > \to \textbf{read} ... & \{ \underline{\textbf{read}} \} \\ 5 \hbox{:} & < \textbf{stat} > \to \textbf{write} ... & \{ \underline{\textbf{write}} \} \\ 6 \hbox{:} & < \textbf{stat} > \to \textbf{id} ... & \{ \underline{\textbf{id}} \} \\ 7 \hbox{:} & & < \textbf{it-list} > \to , ... & \{ \underline{\textbf{j}} \} \\ 8 \hbox{:} & & < \textbf{it-list} > \to) & \{ \underline{\textbf{j}} \} \\ 9 \hbox{:} & & < \textbf{item} > \to \textbf{int} & \{ \underline{\textbf{id}} \} \\ 10 \hbox{:} & & < \textbf{item} > \to \textbf{id} & \{ \underline{\textbf{id}} \} \\ \hline \end{array}$

Task: LL table for SPL


```
\begin{array}{lll} \textbf{Rule } r \hbox{:} A \to X_1 X_2 ... X_n & First(X_1) \\ \hline 1 \hbox{:} & < \textbf{prog} > \to \textbf{begin} ... & \{ \underline{\textbf{begin}} \} \\ 2 \hbox{:} & < \textbf{st-list} > \to \textbf{stat} > ... & \{ \underline{\textbf{id}}, \underline{\textbf{write}}, \underline{\textbf{read}} \} \\ 3 \hbox{:} & < \textbf{st-list} > \to \textbf{end} & \{ \underline{\textbf{end}} \} \\ 4 \hbox{:} & < \textbf{stat} > \to \textbf{read} ... & \{ \underline{\textbf{read}} \} \\ 5 \hbox{:} & < \textbf{stat} > \to \textbf{write} ... & \{ \underline{\textbf{write}} \} \\ 6 \hbox{:} & < \textbf{stat} > \to \textbf{id} ... & \{ \underline{\textbf{id}} \} \\ 7 \hbox{:} & & < \textbf{it-list} > \to , ... & \{ \underline{\textbf{j}} \} \\ 8 \hbox{:} & & < \textbf{it-list} > \to ) & \{ \underline{\textbf{j}} \} \\ 9 \hbox{:} & & < \textbf{item} > \to \textbf{int} & \{ \underline{\textbf{id}} \} \\ 10 \hbox{:} & & < \textbf{item} > \to \textbf{id} & \{ \underline{\textbf{id}} \} \\ \end{array}
```



```
1: 
| 1: 
| 2: <st-list> | 3: <st-list> | 4: <stat> | 3: <st-list> | 4: <stat> | 4: <stat> | 3: <st-list> | 4: <stat> | 4: <stat> | 5: <stat> | 4: <stat> | 5: <stat> | 6: <stat> | 3: <st-list> | 3: <st-list> | 4: <stat> | 4: <stat> | 5: <stat> | 4: <stat> | 5: <stat> | 6: <stat> | 3: <st-list> | 3: <st-list> | 3: <st-list> | 3: <stat> | 3: <stat > | 3: <stat >
```

Source program:

begin write 25; end

Source program:

<item>

begin write 25; end


```
1: 
| 1: 
| 2: <st-list> | → | begin | <st-list> | 6: <stat> | → | id | := | add | (... | | | |
| 2: <st-list> | → | <stat> | ; <st-list> | 7: <it-list> | → | <item> | <it-list> |
| 3: <st-list> | → | end | | | | | | | | |
| 4: <stat> | → | end | | | | | | | | | | |
| 5: <stat> | → | | | | | | | | | |
| 5: <stat> | → | | | | | | | |
| 5: <stat> | → | | | | | | | |
| 6: <stat> | → | | | | | | |
| 7: <stat> | → | | | | | | |
| 8: <it-list> | → | | | |
| 8: <it-list> | → | | |
| 1: <stat> | → | | | |
| 1: <stat> | → | | |
| 2: <stat> | → | | |
| 3: = | | | | |
| 4: <stat> | → | |
| 5: <stat> | → | |
| 6: <stat> | → | |
| 7: <stat> | → | |
| 8: <it-list> | → | |
| 1: <stat> | → | |
| 1: <stat> | → | |
| 2: <stat> | → | |
| 3: = | | | | |
| 4: <stat> | → | |
| 5: <stat> | → | |
| 6: <stat> | → | |
| 7: <stat> | → | |
| 8: <it-list> | → | |
| 8: <it-list> | → | |
| 9: <item> | → | |
| 1: <stat> | → | |
| 2: <stat> | → | |
| 3: <stat> | → | |
| 4: <stat> | → | |
| 5: <stat> | → | |
| 6: <stat> | → | |
| 7: <stat> | → | |
| 8: <it-list> | → | |
| 1: <stat> | → | |
| 2: <stat> | → | |
| 3: <stat> | → | |
| 4: <stat> | → | |
| 5: <stat> | → | |
| 6: <stat> | → | |
| 7: <stat> | → | |
| 8: <it-list> | → | |
| 1: <stat> | → | |
| 2: <stat> | → | |
| 3: <stat> | → | |
| 4: <stat> | → | |
| 5: <stat> | → | |
| 6: <stat> | → | |
| 8: <it-list> | → | |
| 1: <stat> | → | |
| 2: <stat> | → | |
| 3: <stat> | → | |
| 4: <stat> | → | |
| 5: <stat> | → | |
| 6: <stat> | → | |
| 7: <stat> | → | |
| 8: <stat
```

Source program:

<item>

begin write 25; end

8

<it-list>

<item>

<item>

<item>


```
1: 
| 1: 
| 2: <st-list> | → | begin | <st-list> | → | id | := | add | (... | |
| 2: <st-list> | → | <stat> | ; <st-list> | → | <item> | <item> | <item> | <item> | → |
| 3: <st-list> | → | |
| 4: <stat> | → | | | |
| 5: <stat> | → | | | | |
| 5: <stat> | → | | | | |
| 6: <stat> | → | | | |
| 8: <it-list> | → | |
| 9: <item> | → | | |
| 10: <item> | → | |
| 10: <| → | |
| 5: <stat> | → | |
| 6: <stat> | → | |
| 7: <item> | → | |
| 8: <it-list> | → | |
| 9: <item> | → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
| 10: <| → | |
|
```


<it-list>

<item>


```
1: 
| 1: 
| 2: <st-list> | 3: <st-list> | 4: <stat> | 3: <stat> | 3
```



```
1: 
| 1: 
| 2: <st-list> | 3: <st-list> | 4: <stat> | 3: <st-list> | 4: <stat> | 4: <stat > | 4: <st
```

	beg	ena	ru	WI	IU	1111	•		•	:=	auu
<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	1										
<pre><pre><pre><st-list></st-list></pre></pre></pre>		3	2	2	2						
<stat></stat>			4	5	6						
<it-list></it-list>			7		U		7	8			
<item></item>					10	9	,				
\ItCIII>											


```
1: 
| 1: 
| 2: <st-list> | → | begin | <st-list> | → | cit-list> |
```

<item>

	beg	end	rd	wr	id	int	•		•	:=	add
<pre><pre><pre><pre><st-list> <stat> <it-list> <item></item></it-list></stat></st-list></pre></pre></pre></pre>	1	3	2 4	2 5	2 6 10	9	7	8			

LL Grammars: Useful Transformations

Generaly: CFG are stronger that LL grammars

- Some CFGs can be converted to equivalent LL grammars Basic conversions:
- 1) Factorization
- 2) Left recursion replacement

Note: A rule of the form $A \to Ax$, where $A \in N$, $x \in (N \cup T)^*$ is called a *left recursive rule*.

Factorization

Idea: Replace rules of the form

$$A \to xy_1, A \to xy_2, \dots, A \to xy_n$$
 with $A \to xA', A' \to y_1, A' \to y_2, \dots, A' \to y_n$,

where A' is a new nonterminal

Factorization

Idea: Replace rules of the form

$$A \to xy_1, A \to xy_2, \dots, A \to xy_n$$
 with $A \to xA', A' \to y_1, A' \to y_2, \dots, A' \to y_n$,

where A' is a new nonterminal

Illustration:

Example:

$$\langle stat \rangle \rightarrow \underline{write} \underline{id}$$

 $\langle stat \rangle \rightarrow \underline{write} \underline{int}$

Factorization

Idea: Replace rules of the form

$$A \to xy_1, A \to xy_2, \dots, A \to xy_n$$
 with $A \to xA', A' \to y_1, A' \to y_2, \dots, A' \to y_n$,

where A' is a new nonterminal

Illustration:

Example:

Left Recursion Replacement

Idea: Replace rules of the form $A \to Ax$, $A \to y$ with $A \to yA'$, $A' \to xA'$, $A' \to \varepsilon$, where A' is a new nonterminal.

Left Recursion Replacement

Idea: Replace rules of the form $A \to Ax$, $A \to y$ with $A \to yA'$, $A' \to xA'$, $A' \to \varepsilon$, where A' is a new nonterminal.

Example:

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T^*F$$

$$T \rightarrow F$$

$$F \rightarrow (E)$$

$$F \rightarrow i$$

Left Recursion Replacement

Idea: Replace rules of the form $A \to Ax$, $A \to y$ with $A \to yA'$, $A' \to xA'$, $A' \to \varepsilon$, where A' is a new nonterminal.

Example:

$$egin{array}{c} E
ightarrow E+T \ E
ightarrow T \ T
ightarrow F \ T
ightarrow F \ F
ightarrow (E) \ F
ightarrow i \ \end{array}$$
 $egin{array}{c} E
ightarrow TE', E'
ightarrow \epsilon \ T
ightarrow FT', T'
ightarrow \epsilon \ F
ightarrow (E) \ F
ightarrow i \ \end{array}$

LL Grammars with ε-rules: Introduction

Why ε-rules?

- elimination of the left recursion introduces ε-rule
- ε-rules often make the language specification clearer

Simplification of this part:

Assume that every input string of tokens ends with \$.

Note: \$ acts as an end marker.

Note: We must define other sets: *Empty*, *Follow* and *Predict*.

Grammar for Arithmetical Expressions

```
• G_{expr3} = (N, T, P, E), where

• N = \{E, E', T, T', F\},

• T = \{i, +, *, (,)\},

• P = \{1: E \to TE', 2: E' \to +TE', 3: E' \to \epsilon, 4: T \to FT', 5: T' \to *FT', 6: T' \to \epsilon, 7: F \to (E), 8: F \to i \}
```

Example:

$$(i+i)*(i+i) \in L(G_{expr3})$$

Set Empty

Gist: Empty(x) is the set that includes ε if x derives the empty string; otherwise, Empty(x) is empty

```
Definition: Let G = (N, T, P, S) be a CFG. Empty(\mathbf{x}) = \{\epsilon\} if \mathbf{x} \Rightarrow^* \epsilon; otherwise, Empty(\mathbf{x}) = \emptyset, where x \in (N \cup T)^*.
```

Illustration: $x = X_1 X_2 \cdots X_n$

Set Empty

Gist: Empty(x) is the set that includes ε if x derives the empty string; otherwise, Empty(x) is empty

```
Definition: Let G = (N, T, P, S) be a CFG. Empty(\mathbf{x}) = \{\varepsilon\} if \mathbf{x} \Rightarrow^* \varepsilon; otherwise, Empty(\mathbf{x}) = \emptyset, where x \in (N \cup T)^*.
```

Illustration:
$$x = X_1 X_2 \cdots X_n$$

$$\varepsilon \varepsilon \varepsilon \cdots \varepsilon$$

Set Empty

Gist: Empty(x) is the set that includes ε if x derives the empty string; otherwise, Empty(x) is empty

Definition: Let G = (N, T, P, S) be a CFG. $Empty(\mathbf{x}) = \{\epsilon\}$ if $\mathbf{x} \Rightarrow^* \epsilon$; otherwise, $Empty(\mathbf{x}) = \emptyset$, where $x \in (N \cup T)^*$.

Illustration:
$$x = X_1 X_2 \cdots X_n$$

$$\varepsilon \quad \varepsilon \quad \varepsilon \quad \varepsilon$$

$$x = X_1 X_2 \cdots X_n \Rightarrow^* \varepsilon$$

$$Empty(x) = \{\varepsilon\}$$

Algorithm: Empty(X)

- **Input:** G = (N, T, P, S)
- Output: Empty(X) for every $X \in N \cup T$
- Method:
- for each $a \in T$: $Empty(a) := \emptyset$
- for each $A \in N$:

if
$$A \to \varepsilon \in P$$
 then $Empty(A) := \{\varepsilon\}$
else $Empty(A) := \emptyset$

- Apply the following rule until no *Empty* set can be changed:
 - if $A \to X_1 X_2 \dots X_n \in P$ and $Empty(X_i) = \{\epsilon\}$ for all $i = 1, \dots, n$ then $Empty(A) = \{\epsilon\}$

- 1) for each $a \in T$: $Empty(a) := \emptyset$ because $a \Rightarrow^* \varepsilon$
- 2) for each $r: A \to \varepsilon \in P$: $Empty(A) := \{\varepsilon\}$ because $A \Rightarrow^1 \varepsilon [r]$
- 3) Apply the following rules until no *Empty* set can be changed:

- 1) for each $a \in T$: $Empty(a) := \emptyset$ because $a \Rightarrow^* \varepsilon$
- 2) for each $r: A \to \varepsilon \in P$: $Empty(A) := \{\varepsilon\}$ because $A \Rightarrow^1 \varepsilon [r]$
- 3) Apply the following rules until no *Empty* set can be changed:
- if $A \to X_1 X_2 \dots X_n \in P$ and $Empty(X_i) = \{\epsilon\}$ for all $i = 1, \dots, n$ then $Empty(A) = \{\epsilon\}$

- 1) for each $a \in T$: $Empty(a) := \emptyset$ because $a \Rightarrow^* \varepsilon$
- 2) for each $r: A \to \varepsilon \in P$: $Empty(A) := \{\varepsilon\}$ because $A \Rightarrow^1 \varepsilon [r]$
- 3) Apply the following rules until no *Empty* set can be changed:
- if $A \to X_1 X_2 \dots X_n \in P$ and $Empty(X_i) = \{\epsilon\}$ for all $i = 1, \dots, n$ then $Empty(A) = \{\epsilon\}$

- 1) for each $a \in T$: $Empty(a) := \emptyset$ because $a \Rightarrow^* \varepsilon$
- 2) for each $r: A \to \varepsilon \in P$: $Empty(A) := \{\varepsilon\}$ because $A \Rightarrow^1 \varepsilon [r]$
- 3) Apply the following rules until no *Empty* set can be changed:
- if $A \to X_1 X_2 \dots X_n \in P$ and $Empty(X_i) = \{\epsilon\}$ for all $i = 1, \dots, n$ then $Empty(A) = \{\epsilon\}$

Empty(X) for G_{expr3} : Example

```
G_{expr3} = (N, T, P, E), where: N = \{E, F, T\}, T = \{i, +, *, (,)\}, P = \{1: E \rightarrow TE', 2: E' \rightarrow +TE', 3: E' \rightarrow \epsilon, 4: T \rightarrow FT' 5: T' \rightarrow *FT', 6: T' \rightarrow \epsilon, 7: F \rightarrow (E), 8: F \rightarrow i\}
```

```
Initialization: Empty(i) := \emptyset Empty(E) := \emptyset Empty(+) := \emptyset Empty(E') := \{\epsilon\} Empty(*) := \emptyset Empty(T) := \{\epsilon\} Empty(() := \emptyset Empty(T') := \{\epsilon\} Empty(() := \emptyset Empty(F) := \emptyset
```

• No *Empty* set can be changed.

Algorithm: First(X)

- **Input:** G = (N, T, P, S)
- Output: First(X) for every $X \in N \cup T$
- Method:
- for each $a \in T$: $First(a) := \{a\}$
- for each $A \in N$: $First(A) := \emptyset$
- Apply the following rule until no *First* set can be changed:
- if $A \rightarrow X_1 X_2 \dots X_{k-1} X_k \dots X_n \in P$ then
 - add all symbols from $First(X_1)$ to First(A)
 - if $Empty(X_i) = \{\epsilon\}$ for all i = 1, ..., k-1, where $k \le n$ then add all symbols from $First(X_k)$ to First(A)

- 1) for each $a \in T$: $First(a) := \{a\}$ because $a \Rightarrow a$
- 2) for each $A \in N$: $First(A) := \emptyset$ (inicialization)
- 3) Apply the following rules until no *First* set or *Empty* set can be changed:
- if $A \rightarrow X_1 X_2 \dots X_{k-1} X_k \dots X_n \in P$ then

- 1) for each $a \in T$: $First(a) := \{a\}$ because $a \Rightarrow a$
- 2) for each $A \in N$: $First(A) := \emptyset$ (inicialization)
- 3) Apply the following rules until no *First* set or *Empty* set can be changed:
- if $A \to X_1 X_2 \dots X_{k-1} X_k \dots X_n \in P$ then

 3a) add all symbols from $First(X_1)$ to First(A)

- 1) for each $a \in T$: $First(a) := \{a\}$ because $a \Rightarrow a$
- 2) for each $A \in N$: $First(A) := \emptyset$ (inicialization)
- 3) Apply the following rules until no *First* set or *Empty* set can be changed:
- if $A \to X_1 X_2 \dots X_{k-1} X_k \dots X_n \in P$ then

 3a) add all symbols from $First(X_1)$ to First(A)

- 1) for each $a \in T$: $First(a) := \{a\}$ because $a \Rightarrow 0$
- 2) for each $A \in N$: $First(A) := \emptyset$ (inicialization)
- 3) Apply the following rules until no *First* set or *Empty* set can be changed:
- if $A \to X_1 X_2 \dots X_{k-1} X_k \dots X_n \in P$ then

 3a) add all symbols from $First(X_1)$ to First(A)

- 1) for each $a \in T$: $First(a) := \{a\}$ because $a \Rightarrow a$
- 2) for each $A \in N$: $First(A) := \emptyset$ (inicialization)
- 3) Apply the following rules until no *First* set or *Empty* set can be changed:
- if $A \rightarrow X_1 X_2 \dots X_{k-1} X_k \dots X_n \in P$ then
 - **3a**) add all symbols from $First(X_1)$ to First(A)
 - **3b) if** $Empty(X_i) = \{\epsilon\}$ for all i = 1, ..., k-1, where k < n then add all symbols from $First(X_k)$ to First(A):

- 1) for each $a \in T$: $First(a) := \{a\}$ because $a \Rightarrow 0$
- 2) for each $A \in N$: $First(A) := \emptyset$ (inicialization)
- 3) Apply the following rules until no *First* set or *Empty* set can be changed:
- if $A \rightarrow X_1 X_2 \dots X_{k-1} X_k \dots X_n \in P$ then
 - **3a**) add all symbols from $First(X_1)$ to First(A)
 - **3b) if** $Empty(X_i) = \{\epsilon\}$ for all i = 1, ..., k-1, where k < n then add all symbols from $First(X_k)$ to First(A):

- 1) for each $a \in T$: $First(a) := \{a\}$ because $a \Rightarrow a$
- 2) for each $A \in N$: $First(A) := \emptyset$ (inicialization)
- 3) Apply the following rules until no *First* set or *Empty* set can be changed:
- if $A \rightarrow X_1 X_2 \dots X_{k-1} X_k \dots X_n \in P$ then
 - **3a**) add all symbols from $First(X_1)$ to First(A)
 - **3b) if** $Empty(X_i) = \{\epsilon\}$ for all i = 1, ..., k-1, where k < n then add all symbols from $First(X_k)$ to First(A):

- 1) for each $a \in T$: $First(a) := \{a\}$ because $a \Rightarrow a$
- 2) for each $A \in N$: $First(A) := \emptyset$ (inicialization)
- 3) Apply the following rules until no *First* set or *Empty* set can be changed:
- if $A \rightarrow X_1 X_2 \dots X_{k-1} X_k \dots X_n \in P$ then
 - **3a**) add all symbols from $First(X_1)$ to First(A)
 - **3b) if** $Empty(X_i) = \{\epsilon\}$ for all i = 1, ..., k-1, where k < n then add all symbols from $First(X_k)$ to First(A):


```
Initialization: First(i) := \{i\} First(E) := \emptyset

First(+) := \{+\} First(E') := \emptyset

First(*) := \{*\} First(T) := \emptyset

First(() := \{(\} First(T') := \emptyset

First()) := \{(\} First(F) := \emptyset
```

```
Initialization:
                          First(i)
                                                  First(E)
                          First(+) := {+}
First(*) := {*}
                                                  First(E')
                                                  First(T)
                          First(()
                                                  First(T')
                          First(
                                                  First(F)
F \rightarrow i \in P:
                   add First(i) = \{i\}
                                                 to First(F)
F \rightarrow (E) \in P:
                  add First(\mathbf{0}) = \{\mathbf{0}\}
                                                 to First(F)
Summary: First(F) = \{i, (\}
```

```
Initialization: First(i) := \{i\}
                                                First(E)
                         First(+) := \{+\}

First(*) := \{*\}
                                                First(E')
                                                First(T)
                                                 First(T')
                         First(()
                         First()
                                                First(F)
\overline{F} \rightarrow i \in P: add First(i) = \{i\}
                                                to First(F)
F \rightarrow (E) \in P: add First(() = \{()\})
                                                to First(F)
Summary: First(F) = \{i, (\}
T' \rightarrow *FT' \in P: add First (*) = {*}
                                                to First(T')
Summary: First(T') = \{*\}
```

```
Initialization:
                        First(i) := \{i\}
                                               First(E)
                        First(+) := \{+\}
                                               First(E')
                        First(*) := {*}
                                               First(T)
                                               First(T')
                        First(()
                        First()
                                               First(F)
\overline{F} \rightarrow i \in P: add First(i) = \{i\}
                                              to First(F)
F \rightarrow (E) \in P: add First(()) = \{()\}
                                              to First(F)
Summary: First(F) = \{i, (\}
T' \rightarrow *FT' \in P: add First (*) = {*}
                                              to First(T')
Summary: First(T') = \{*\}
T \rightarrow FT' \in P: add First(F) = \{i, (\} \text{ to } First(T) \}
Summary: First(T) = \{i, (\}
```

```
Initialization:
                      First(i) := \{i\}
                                               First(E)
                        First(+) := \{+\}
                                               First(E')
                        First(*) := \{*\}
                                               First(T)
                                               First(T')
                        First(()
                        First()
                                               First(F)
\overline{F} \rightarrow i \in P: add First(i) = \{i\}
                                              to First(F)
F \rightarrow (E) \in P: add First(() = \{()\})
                                              to First(F)
Summary: First(F) = \{i, (\}
T' \rightarrow *FT' \in P: add First (*) = {*}
                                              to First(T')
Summary: First(T') = \{*\}
T \rightarrow FT' \in P: add First(F) = \{i, (\} \text{ to } First(T) \}
Summary: First(T) = \{i, (\}
E' \rightarrow +TE' \in P: add First (+) = \{+\} to First(E')
Summary: First(E') = \{+\}
```

```
Initialization:
                       First(i) := \{i\}
                                                 First(E)
                         First(+) := {+}
First(*) := {*}
                                                 First(E')
                                                 First(T)
                                                 First(T')
                         First( ( ) ) :=
                         First()
                                                 First(F)
\overline{F} \rightarrow i \in P: add First(i) = \{i\}
                                                 to First(F)
F \rightarrow (E) \in P: add First(() = \{()\})
                                                 to First(F)
Summary: First(F) = \{i, (\}
T' \rightarrow *FT' \in P: add First (*) = {*}
                                                to First(T')
Summary: First(T') = \{*\}
T \rightarrow FT' \in P: add First(F) = \{i, (\} \text{ to } First(T) \}
Summary: First(T) = \{i, (\}
\overline{E' \rightarrow +TE'} \in P: add First(+) = \{+\} to First(E')
Summary: First(E') = \{+\}
E \rightarrow TE' \in P: add First(T) = \{i, (\} \text{ to } First(E)\}
Summary: First(E) = \{i, (\}
```

```
Initialization: First(i) := \{i\}
                                                    First(E)
                           First(+) := \{+\}
                                                    First(E')
                          First(*) := {*}
                                                    First(T)
                                                    First(T')
                           First(()) :=
                           First()
                                                    First(F)
\overrightarrow{F} \rightarrow \overrightarrow{i} \in P: add First(\overrightarrow{i}) = \{\overrightarrow{i}\}\
                                                   to First(F)
F \rightarrow (E) \in P: add First(() = \{()\})
                                                   to First(F)
Summary: First(F) = \{i, (\}
T' \rightarrow *FT' \in P: add First (*) = {*}
                                                   to First(T')
Summary: First(T') = \{*\}
T \rightarrow FT' \in P: add First(F) = \{i, (\} \text{ to } First(T) \}
Summary: First(T) = \{i, (\}
\overline{E' \rightarrow +TE'} \in P: add First(+) = \{+\} to First(E')
Summary: First(E') = \{+\}
E \rightarrow TE' \in P: add First(T) = \{i, (\} \text{ to } First(E)\}
Summary: First(E) = \{i, (\}
```

No First set can be changed.

First(X) & Empty(X) for G_{expr3} : Summary

```
G_{expr3} = (N, T, P, E), where: N = \{E, F, T\}, T = \{i, +, *, (, )\},
P = \{ 1: E \rightarrow TE', 2: E' \rightarrow +TE', 3: E' \rightarrow \varepsilon, 4: T \rightarrow FT' \}
         5: T' \rightarrow *FT', 6: T' \rightarrow \varepsilon, 7: F \rightarrow (E), 8: F \rightarrow i
                       Empty(i) := \emptyset
Set Empty for
                                                      Empty(E)
                                                                          := \emptyset
                       Empty(+) := \emptyset
                                                      Empty(E')
                                                                         := \{\epsilon\}
all X \in N \cup T:
                       Empty(*) := \emptyset
                                                     Empty(T)
                        Empty( ( ) := \emptyset 
                                                                        := \{\epsilon\}
                                                     Empty(T')
                        Empty() := \emptyset
                                                      Empty(\mathbf{F})
 Set First for all First(i) := \{i\}
                                                      First(\mathbf{E}) := \{i, (\}
                       First(+) := \{+\}
                                                      First(E') := \{+\}
X \in N \cup T:
                       First(*) := {*}
                                                      First(T) := \{i, (\}
                        First( ( ) := \{ ( ) \}
                                                      First(T') := \{*\}
                        First()) := \{\}
                                                      First(\mathbf{F}) := \{i, (\}
```

Note: for each $a \in T$: $Empty(a) = \emptyset$, $First(a) = \{a\}$

- **Input:** G = (N, T, P, S); First(X) & Empty(X) for every $X \in N \cup T$; $x = X_1 X_2 ... X_n$, where $x \in (N \cup T)^+$
- Output: $First(X_1X_2...X_n)$
- Method:
- $First(X_1X_2...X_n) := First(X_1)$
- Apply the following rule until nothing can be added to $First(X_1X_2...X_{k-1}X_k...X_n)$:
 - if $Empty(\bar{X}_i) = \{\epsilon\}$ for all i = 1,...,k-1, where $k \le n$ then add all symbols from $First(\bar{X}_k)$ to $First(\bar{X}_1 \bar{X}_2 ... \bar{X}_n)$
- ! Note: $First(\varepsilon) = \emptyset$

Illustration: $X_1 X_2 \cdots X_{k-1} X_k \cdots X_n$

- **Input:** G = (N, T, P, S); First(X) & Empty(X) for every $X \in N \cup T$; $x = X_1 X_2 ... X_n$, where $x \in (N \cup T)^+$
- Output: $First(X_1X_2...X_n)$
- Method:
- $First(X_1X_2...X_n) := First(X_1)$
- Apply the following rule until nothing can be added to $First(X_1X_2...X_{k-1}X_k...X_n)$:
 - if $Empty(\bar{X}_i) = \{\epsilon\}$ for all i = 1,...,k-1, where $k \le n$ then add all symbols from $First(X_k)$ to $First(X_1X_2...X_n)$
- ! Note: $First(\varepsilon) = \emptyset$

- **Input:** G = (N, T, P, S); First(X) & Empty(X) for every $X \in N \cup T$; $x = X_1 X_2 ... X_n$, where $x \in (N \cup T)^+$
- Output: $First(X_1X_2...X_n)$
- Method:
- $First(X_1X_2...X_n) := First(X_1)$
- Apply the following rule until nothing can be added to $First(X_1X_2...X_{k-1}X_k...X_n)$:
 - if $Empty(\bar{X}_i) = \{\epsilon\}$ for all i = 1,...,k-1, where $k \le n$ then add all symbols from $First(X_k)$ to $First(X_1X_2...X_n)$
- ! Note: $First(\varepsilon) = \emptyset$

- **Input:** G = (N, T, P, S); First(X) & Empty(X) for every $X \in N \cup T$; $x = X_1 X_2 ... X_n$, where $x \in (N \cup T)^+$
- Output: $First(X_1X_2...X_n)$
- Method:
- $First(X_1X_2...X_n) := First(X_1)$
- Apply the following rule until nothing can be added to $First(X_1X_2...X_{k-1}X_k...X_n)$:
 - if $Empty(\bar{X}_i) = \{\epsilon\}$ for all i = 1,...,k-1, where $k \le n$ then add all symbols from $First(X_k)$ to $First(X_1X_2...X_n)$
- ! Note: $First(\varepsilon) = \emptyset$

$First(X_1X_2...X_n)$: Example

```
G_{expr3} = (N, T, P, E), where: N = \{E, F, T\}, T = \{i, +, *, (, )\},
P = \{ 1: E \rightarrow TE', 2: E' \rightarrow +TE', 3: E' \rightarrow \varepsilon, 4: T \rightarrow FT' \}
           5: T' \rightarrow *FT', 6: T' \rightarrow \varepsilon, 7: F \rightarrow (E), 8: F \rightarrow i
Set Empty & First Empty(E) := \emptyset First(E) := \{i, (\}\}
   for all X \in \mathbb{N}: Empty(\underline{E}') := \{\varepsilon\} First(\underline{E}') := \{+\}
                          Empty(T) := \emptyset \quad First(T) := \{i, (\}
                           Empty(T') := \{\epsilon\} First(T') := \{*\}
                           Empty(\mathbf{F}) := \emptyset \quad First(\mathbf{F}) := \{i, (\}i\}
Task: First(E'T'FET)
1) First(E'T'FET) := First(E') = \{+\}
2) First(\underline{F'}\underline{T'}FET): add First(T') = \{*\} to First(\underline{E'}\underline{T'}FET)
 Empty(\mathbf{E}^*) = \{\varepsilon\}
3) First(F'T'FET): add First(F) = \{i, (\} \text{ to } First(E'T'FET)\}
 Empty(E') = Empty(T') = \{\epsilon\}
```

Summary: $First(E'T'FET) = \{+, *, i, (\}$

Algorithm: $Empty(X_1X_2...X_n)$

- Input: G = (N, T, P, S); Empty(X) for every $X \in N \cup T$; $x = X_1 X_2 ... X_n$, where $x \in (N \cup T)^+$
- Output: $Empty(X_1X_2...X_n)$
- Method:
- if $Empty(X_i) = \{\epsilon\}$ for all i = 1,...,n then $Empty(X_1X_2...X_n) := \{\epsilon\}$

else

$$Empty(X_1X_2...X_n) := \emptyset$$

! Note: $Empty(\varepsilon) = \{\varepsilon\}$

Algorithm: $Empty(X_1X_2...X_n)$

- Input: G = (N, T, P, S); Empty(X) for every $X \in N \cup T$; $x = X_1 X_2 ... X_n$, where $x \in (N \cup T)^+$
- Output: $Empty(X_1X_2...X_n)$
- Method:
- if $Empty(X_i) = \{\epsilon\}$ for all i = 1,...,n then $Empty(X_1X_2...X_n) := \{\epsilon\}$

else

$$Empty(X_1X_2...X_n) := \emptyset$$

! Note: $Empty(\varepsilon) = \{\varepsilon\}$

Algorithm: $Empty(X_1X_2...X_n)$

- Input: G = (N, T, P, S); Empty(X) for every $X \in N \cup T$; $x = X_1 X_2 ... X_n$, where $x \in (N \cup T)^+$
- Output: $Empty(X_1X_2...X_n)$
- Method:
- if $Empty(X_i) = \{\epsilon\}$ for all i = 1,...,n then $Empty(X_1X_2...X_n) := \{\epsilon\}$

else

$$Empty(X_1X_2...X_n) := \emptyset$$

! Note: $Empty(\varepsilon) = \{\varepsilon\}$

$Empty(X_1X_2...X_n)$: Example

```
G_{expr3} = (N, T, P, E), where: N = \{E, F, T\}, T = \{i, +, *, (,)\}, P = \{1: E \rightarrow TE', 2: E' \rightarrow +TE', 3: E' \rightarrow \epsilon, 4: T \rightarrow FT' 5: T' \rightarrow *FT', 6: T' \rightarrow \epsilon, 7: F \rightarrow (E), 8: F \rightarrow i\}

Set Empty
for all X \in N:
Empty(E)
Empty(E')
Empty(T')
Empty(T')
Empty(T')
Empty(F')
Empty(F)
```

Task: Empty(E'T')

 $Empty(E') = Empty(T') = \{\epsilon\},$ so $Empty(E'T') = \{\epsilon\}$

Gist: Follow(A) is the set of all terminals that can come right after A in a sentential form of G

```
Definition: Let G = (N, T, P, S) be a CFG. For every A \in N, we define the set Follow(A) as Follow(A) = \{a: a \in T, S \Rightarrow^* xAay, x, y \in (N \cup T)^*\} \cup \{\$: S \Rightarrow^* xA, x \in (N \cup T)^*\}
```

Gist: Follow(A) is the set of all terminals that can come right after A in a sentential form of G

```
Definition: Let G = (N, T, P, S) be a CFG. For every A \in N, we define the set Follow(A) as Follow(A) = \{a: a \in T, S \Rightarrow^* xAay, x, y \in (N \cup T)^*\} \cup \{\$: S \Rightarrow^* xA, x \in (N \cup T)^*\}
```


Gist: Follow(A) is the set of all terminals that can come right after A in a sentential form of G

```
Definition: Let G = (N, T, P, S) be a CFG. For every A \in N, we define the set Follow(A) as Follow(A) = \{a: a \in T, S \Rightarrow^* xAay, x, y \in (N \cup T)^*\} \cup \{\$: S \Rightarrow^* xA, x \in (N \cup T)^*\}
```


Gist: Follow(A) is the set of all terminals that can come right after A in a sentential form of G

```
Definition: Let G = (N, T, P, S) be a CFG. For every A \in N, we define the set Follow(A) as Follow(A) = \{a: a \in T, S \Rightarrow^* xAay, x, y \in (N \cup T)^*\} \cup \{\$: S \Rightarrow^* xA, x \in (N \cup T)^*\}
```


Set Follow

Gist: Follow(A) is the set of all terminals that can come right after A in a sentential form of G

Definition: Let G = (N, T, P, S) be a CFG. For every $A \in N$, we define the set Follow(A) as $Follow(A) = \{a: a \in T, S \Rightarrow^* xAay, x, y \in (N \cup T)^*\}$ $\cup \{\$: S \Rightarrow^* xA, x \in (N \cup T)^*\}$

Algorithm: Follow(A)

- **Input:** G = (N, T, P, S);
- Output: Follow(A) for every $A \in N$
- Method:
- $Follow(S) := \{\$\};$
- Apply the following rules until no *Follow* set can be changed:
- if $A \rightarrow xBy \in P$ then
 - if $y \neq \varepsilon$ then add all symbols from First(y) to Follow(B);
 - if $Empty(y) = \{\epsilon\}$ then add all symbols from Follow(A) to Follow(B);

- 2) Apply the following rules until no *Follow* set can be changed:
- if $A \rightarrow xBy \in P$ then

- 2) Apply the following rules until no *Follow* set can be changed:
- if $A \rightarrow xBy \in P$ then 2a) if $y \neq \varepsilon$ then add all symbols from First(y) to Follow(B)

- 2) Apply the following rules until no *Follow* set can be changed:
- if $A \rightarrow xBy \in P$ then 2a) if $y \neq \varepsilon$ then add all symbols from First(y) to Follow(B)

 $\mathbf{a} \in First(\mathbf{y})$

- 2) Apply the following rules until no *Follow* set can be changed:
- if $A \rightarrow xBy \in P$ then
 2a) if $y \neq \varepsilon$ then add all symbols
 from First(y) to Follow(B)

- 2) Apply the following rules until no *Follow* set can be changed:
- if $A \rightarrow xBy \in P$ then 2a) if $y \neq \varepsilon$ then add all symbols from First(y) to Follow(B)
 - **2b) if** $Empty(y) = \{\epsilon\}$ **then** add all symbols from Follow(A) to

- 2) Apply the following rules until no *Follow* set can be changed:
- if $A \rightarrow xBy \in P$ then 2a) if $y \neq \varepsilon$ then add all symbols from First(y) to Follow(B)
 - **2b) if** $Empty(y) = \{\epsilon\}$ **then** add all symbols from Follow(A) to Follow(B)

- 2) Apply the following rules until no *Follow* set can be changed:
- if $A \rightarrow xBy \in P$ then 2a) if $y \neq \varepsilon$ then add all symbols from First(y) to Follow(B)
 - **2b) if** $Empty(y) = \{\epsilon\}$ **then** add all symbols from Follow(A) to Follow(B)

- 2) Apply the following rules until no *Follow* set can be changed:
- if $A \rightarrow xBy \in P$ then 2a) if $y \neq \varepsilon$ then add all symbols from First(y) to Follow(B)
 - **2b) if** $Empty(y) = \{\epsilon\}$ **then** add all symbols from Follow(A) to Follow(B)


```
First(E)
                                                            Follow(\mathbf{E}) := \emptyset
                               Empty(E)
                               Empty(E') := \{\epsilon\}
                                                           Follow(E') := \emptyset
First(E')
First(T)
                               Empty(T)
                                                           Follow(T) := \emptyset
First(T')
                               Empty(T')
                                               := \{\epsilon\}
                                                            Follow(T') := \emptyset
First(F)
                               Empty(\mathbf{F})
                                                            Follow(\mathbf{F}) := \emptyset
```

```
First(E)
                                                                Follow(\mathbf{E}) := \emptyset
                                 Empty(\mathbf{E})
                                                               Follow(E') := \emptyset
                                 Empty(E')
                                                  := \{\epsilon\}
First(E')
First(T)
                                                                Follow(T)
                                 Empty(T)
First(T')
                                 Empty(T')
                                                  = \{ \epsilon \}
                                                                Follow(T')
First(F)
                                                                Follow(F)
                                 Empty(\mathbf{F})
\overline{\mathbf{0})} \ Follow(\underline{E}) := \{\$\}
```

```
First(E)
                              Empty(\mathbf{E})
                                                           Follow(\mathbf{E}) := \emptyset
                                              := \{\epsilon\}
                                                          Follow(E') := \emptyset
First(E')
                              Empty(E')
First(T)
                              Empty(T)
                                                           Follow(T)
First(T')
                              Empty(T')
                                              := \{\epsilon\}
                                                           Follow(T^{\circ})
First(F)
                                                           Follow(F)
                              Empty(\mathbf{F})
```

 $\overline{\mathbf{0}}) \ Follow(\mathbf{E}) := \{\$\}$

```
1) F \rightarrow (E) \in P:
\neq \varepsilon
```

```
Follow(X) for G_{expr3}: Example 1/3
```

```
First(E)
                              Empty(\mathbf{E})
                                                          Follow(\mathbf{E}) := \emptyset
                                              := \{\epsilon\}
                              Empty(E')
First(E')
                                                          Follow(E') := \emptyset
First(T)
                                                          Follow(T)
                              Empty(T)
First(T')
                                              := \{\epsilon\}
                                                          Follow(T')
                              Empty(T')
First(F)
                                                          Follow(F)
                              Empty(\mathbf{F})
```

 $\overline{\mathbf{0}}) \ Follow(\mathbf{E}) := \{\$\}$

```
1) F \rightarrow (E) \in P: add First() = \{\} to Follow(E)
```

```
First(E)
                            Empty(E)
                                                      Follow(\mathbf{E}) := \emptyset
                                          := \{\epsilon\}
                            Empty(E')
First(E')
                                                      Follow(E') := \emptyset
First(T)
                            Empty(T)
                                                      Follow(T)
First(T')
                                          := \{\epsilon\}
                                                      Follow(T')
                            Empty(T')
First(F)
                                                      Follow(F
                            Empty(F)
```

 $\overline{\mathbf{0}}) \ Follow(\underline{E}) := \{\$\}$

```
1) F \rightarrow (E) \in P: add First()) = \{\} to Follow(E)
```

```
First(E)
                              Empty(E)
                                                         Follow(\mathbf{E}) := \emptyset
                             Empty(\mathbf{E'}) := \{\epsilon\}
First(E')
                                                         Follow(E') := \emptyset
First(T)
                              Empty(T)
                                                         Follow(T)
                                             := \{\epsilon\}
                                                         Follow(T')
First(T')
                              Empty(T')
First(F)
                                                         Follow(F)
                              Empty(\mathbf{F})
```

 $\overline{\mathbf{0}}) \ Follow(\underline{E}) := \{\$\}$

```
1) F \rightarrow (E) \in P: add First() = \{\} to Follow(E)
```

```
2) E \rightarrow TE' \in P:

\varepsilon: Empty(\varepsilon) = \{\varepsilon\}
```

```
First(E)
                               Empty(E)
                                                           Follow(\mathbf{E}) := \emptyset
                               Empty(\mathbf{E'}) := \{\epsilon\}
                                                           Follow(E') := \emptyset
First(E')
First(T)
                               Empty(T)
                                                           Follow(T)
                                               := \{\epsilon\}
                                                           Follow(T')
First(T')
                               Empty(T')
                                                            Follow(F
First(\mathbf{F})
                               Empty(\mathbf{F})
```

 $\overline{\mathbf{0})} \ Follow(\underline{E}) := \{\$\}$

```
1) F \rightarrow (E) \in P: add First() = \{\} to Follow(E)
```

```
2) E \rightarrow TE' \in P: add Follow(E) = \{\$, \} to Follow(E')

E : Empty(E) = \{E\}
```

```
First(\mathbf{E}) := \{\mathbf{i}, (\} \quad Empty(\mathbf{E}) := \emptyset \quad Follow(\mathbf{E}) := \emptyset \\ First(\mathbf{E}') := \{+\} \quad Empty(\mathbf{E}') := \{\epsilon\} \quad Follow(\mathbf{E}') := \emptyset \\ First(\mathbf{T}) := \{\mathbf{i}, (\} \quad Empty(\mathbf{T}) := \emptyset \quad Follow(\mathbf{T}) := \emptyset \\ First(\mathbf{T}') := \{*\} \quad Empty(\mathbf{T}') := \{\epsilon\} \quad Follow(\mathbf{T}') := \emptyset \\ First(\mathbf{F}) := \{\mathbf{i}, (\} \quad Empty(\mathbf{F}) := \emptyset \quad Follow(\mathbf{F}) := \emptyset \}
```

 $\overline{\mathbf{0})} \ Follow(\underline{E}) := \{\$\}$

```
1) F \rightarrow (E) \in P: add First()) = \{\} to Follow(E)
```

2)
$$E \rightarrow TE' \in P$$
: add $Follow(E) = \{\$, \}$ to $Follow(E')$
 $E \mapsto TE' \in P$:
 $\neq E$

```
First(E)
                               Empty(\mathbf{E})
                                                            Follow(\mathbf{E}) := \emptyset
                               Empty(\mathbf{E}') := \{ \mathbf{\varepsilon} \}
First(E') := \{+\}
                                                            Follow(E') := \emptyset
                            Empty(T) := \emptyset
                                                            Follow(T)
First(T)
                         Empty(T') := \{\epsilon\}
                                                            Follow(T')
First(T')
                                                            Follow(F)
First(\mathbf{F})
                            Empty(\mathbf{F})
```

0) $Follow(E) := \{\$\}$

```
1) F \rightarrow (E) \in P:
                           add First() = \{ \} 
                                                        to Follow(E)
```

2)
$$E \rightarrow TE' \in P$$
: add $Follow(E) = \{\$, \}$ to $Follow(E')$
 $E \mapsto TE' \in P$: add $First(E') = \{+\}$ to $Follow(T)$
 $\neq E$

```
Follow(X) for G_{expr3}: Example 1/3
First(E)
                            Empty(\mathbf{E}) := \emptyset
                                                      Follow(\mathbf{E}) := \emptyset
                         Empty(\mathbf{E'}) := \{ \epsilon \}
First(E') := \{+\}
                                                      Follow(E') := \emptyset
First(T) := \{i, (\}\}
First(T') := \{*\}
                         Empty(T) := \emptyset
                                                      Follow(T)
                      Empty(T') := \{\epsilon\}
                                                      Follow(T')
                                                      Follow(F)
First(\mathbf{F})
                         Empty(\mathbf{F})
0) Follow(E) := \{\$\}
\overline{1)} \stackrel{F}{\longrightarrow} (E) \in P:
                             add First() = \{ \} 
                                                             to Follow(E)
Summary: Follow(E) = \{\$, \}
2) E \rightarrow TE' \subseteq P: add Follow(E) = \{\$, \} to Follow(E')
                \varepsilon: Empty(\varepsilon) = \{\varepsilon\}
   E \rightarrow TE' \in P:
                         add First(E') = \{+\} to Follow(T)
```

 $E \rightarrow TE' \in P$:

 $Empty(\mathbf{E'}) = \{ \epsilon \}$

```
Follow(X) for G_{expr3}: Example 1/3
                              Empty(\mathbf{E}) := \emptyset
                                                          Follow(\mathbf{E}) := \emptyset
First(E)
First(E') := \{+\} Empty(E') := \{\epsilon\}
                                                          Follow(E') := \emptyset
First(T) := \{i, (\} \\ First(T') := \{*\}
                        \begin{array}{ccc} () & Empty(T) & := & \varnothing & Follow(T) \\ & Empty(T') & := & \{\epsilon\} & Follow(T') \end{array}
                                                          Follow(T')
                                                          Follow(F)
First(\mathbf{F})
                           Empty(\mathbf{F})
0) Follow(E) := \{\$\}
\overline{1)} \stackrel{F}{F} \rightarrow (E) \in P:
                                add First() = \{ \} 
                                                                 to Follow(E)
Summary: Follow(E) = \{\$, \}
2) E \rightarrow TE' \subseteq P: add Follow(E) = \{\$, \} to Follow(E')
                  \varepsilon: Empty(\varepsilon) = \{\varepsilon\}
                           add First(E') = \{+\} to Follow(T)
   E \to TE' \in P: add Follow(E) = \{\$, \} to Follow(T)
```

 $Empty(\mathbf{E'}) = \{ \epsilon \}$

```
Follow(X) for G_{expr3}: Example 1/3
First(E):= {i, (}Empty(E):= \emptysetFollow(E):= \emptysetFirst(E'):= {+}Empty(E'):= {\epsilon}Follow(E'):= \emptysetFirst(E'):= {i, (}Empty(E'):= \emptysetFollow(E'):= \emptysetFirst(E'):= {\epsilon}Empty(E'):= {\epsilon}Follow(E'):= \emptyset
                                                                  Follow(\mathbf{F}) := \emptyset
First(F)
                              Empty(\mathbf{F})
\overline{\mathbf{0}}) \ Follow(\underline{E}) := \{\$\}
1) \stackrel{F}{\longrightarrow} (\stackrel{E}{E}) \in P:
                                    add First() = \{ \} 
                                                                           to Follow(E)
Summary: Follow(E) = \{\$, \}
2) E \rightarrow TE' \subseteq P: add Follow(E) = \{\$, \} to Follow(E')
                    \varepsilon: Empty(\varepsilon) = \{\varepsilon\}
                               add First(E') = \{+\} to Follow(T)
   E \to TE' \in P: add Follow(E) = \{\$, \} to Follow(T)
    Empty(\mathbf{E'}) = \{ \epsilon \}
Summary: Follow(E') = \{\$, \}, Follow(T) = \{+, \$, \}
```

```
First(E)
                              Empty(\mathbf{E})
                                                           Follow(\mathbf{E}) := \{\$,
                              Empty(E')
                                              := \{\epsilon\}
First(E')
                                                           Follow(E') := \{\$,
First(T)
                                                           Follow(T) := \{+, \$, \}
                              Empty(T)
First(T')
                              Empty(T')
                                              = \{ \epsilon \}
                                                           Follow(T') := \emptyset
First(F)
                              Empty(\mathbf{F})
                                                           Follow(\mathbf{F}) := \emptyset
```

First(E) := {i, (} Empty(E) := \emptyset Follow(E) := {\$,)}

```
:= \{+\} \qquad Empty(\underline{E'}) := \{\epsilon\} \qquad Follow(\underline{E'}) := \{\$,
First(E')
                 := \{i, (\} Empty(T) \} 
 := \{*\} Empty(T') \} 
First(T)
                                               := \emptyset \quad Follow(T)
                                               := \{\epsilon\} \quad Follow(T') := \emptyset
First(T')
             := \{i, (\} Empty(F)\}
                                                    \emptyset Follow(F)
First(\mathbf{F})
3) E' \rightarrow +TE' \subseteq P: add Follow(E') = \{\$, \}
                                                                       to Follow(E')
                      \epsilon: Empty(\epsilon) = \{\epsilon\}
   E' \rightarrow +TE' \in P: \text{ add } First(E') = \{+\} to Follow(T)
   E' \rightarrow +TE' \in P: add Follow(E') = \{\$, \} to Follow(T)
       Empty(\mathbf{E'}) = \{ \epsilon \}
```

Summary: Nothing is changed

```
Follow(X) for G_{expr3}: Example 2/3
 First(E) := {i, (} Empty(E) := \emptyset Follow(E) := {$, Empty(E') := {$}, Empty(E') := {$}, Follow(E') := {$, Empty(E') := {$}, Follow(E') := {$}, First(E') := {i, (} Empty(E') := \emptyset Follow(E') := {+, Empty(E') := {$}, Follow(E') := {+, Empty(E') := {$}, Follow(E') := \emptyset First(E') := {$}, Follow(E') := \emptyset Follow(E') := \emptyset First(E') := {$}, Follow(E') := \emptyset Follow(E') := \emptyset First(E') := \emptyset Follow(E') := \emptyset
                                                                                                                := {+, $, )}
 3) E' \rightarrow +TE' \subseteq P: add Follow(E') = \{\$, \} to Follow(E')
                                 \varepsilon: Empty(\varepsilon) = \{\varepsilon\}
     E' \rightarrow +TE' \in P: add First(E') = \{+\} to Follow(T)
E' \rightarrow +TE' \in P: add Follow(E') = \{\$, \} to Follow(T)
            Empty(\mathbf{E'}) = \{ \epsilon \}
  Summary: Nothing is changed
4) T \rightarrow FT \in P: add Follow(T) = \{+, \$, \} to Follow(T')
                           \varepsilon: Empty(\varepsilon) = \{\varepsilon\}
    T \rightarrow FT' \in P: add First(T') = \{*\} to Follow(F)
T \rightarrow FT' \in P: add Follow(T) = \{+, \$, \} to Follow(F)
     Empty(T') = \{\epsilon\}
 Summary: Follow(T') = \{+, \$, \}, Follow(F) = \{*, +, \$, \}
```

```
First(E)
                            Empty(\mathbf{E})
                                                       Follow(\mathbf{E}) := \{\$,
                                           := \{\epsilon\}
                            Empty(E')
First(E')
                                                      Follow(E') := \{\$,
First(T)
                                                      Follow(T) := \{+, \$,
                            Empty(T)
First(T')
                            Empty(T')
                                           = \{ \epsilon \}
                                                      Follow(T') :=
First(F)
                                                       Follow(F)
                            Empty(\mathbf{F})
```

```
First(E')
             := \{i, (\} \quad Empty(T)'\}
                                        := \emptyset \quad Follow(T) := \{+, \$,
First(T)
             := \{*\} Empty(T') := \{\epsilon\} Follow(T') :=
First(T')
First(F)
                       Empty(\mathbf{F})
                                                Follow(\mathbf{F})
5) T' \rightarrow *FT' \subseteq P: add Follow(T') = \{+, \$, \} to Follow(T')
                  \varepsilon: Empty(\varepsilon) = \{\varepsilon\}
  T' \rightarrow *FT' \in P: add First(T') = \{*\} to Follow(F)
   T' \rightarrow *F \stackrel{\neq}{T'} \stackrel{\varepsilon}{\in} P: add Follow(T') = \{+, \$, \} to Follow(F)
      Empty(T') = \{\varepsilon\}
```

End: Nothing is changed.

First(E)

```
 \vdots = \{i, (\} & Empty(T) & := \emptyset & Follow(T) & := \{+, \$, \}\} \\ := \{*\} & Empty(T') & := \{\epsilon\} & Follow(T') & := \{+, \$, \}\} \\ := \{i, (\} & Empty(F) & := \emptyset & Follow(F) & := \{*, +, \$, \}\} 
First(T)
First(T')
First(F)
5) T' \rightarrow *FT' \in P: add Follow(T') = \{+, \$, \} to Follow(T')
                       \epsilon: Empty(\epsilon) = \{\epsilon\}
    T' \rightarrow *FT' \in P: add First(T') = \{*\} to Follow(F)
    T' \rightarrow *F \stackrel{\not\equiv}{T'} \stackrel{\varepsilon}{\in} P: add Follow(T') = \{+, \$, \} to Follow(F)
        Empty(T') = \{\epsilon\}
```

End: Nothing is changed.

First(E)

First(E')

```
Summary: Follow(E) := \{\$, \}

Follow(E') := \{\$, \}
                Follow(T) := \{+, \$, \}
                 Follow(T') := \{+, \$, \}
                Follow(F) := \{*, +, \$, \}
```

Set Predict

Gist: $Predict(A \rightarrow x)$ is the set of all terminals that can begin a string obtained by a derivation started by using $A \rightarrow x$.

```
Definition: Let G = (N, T, P, S) be a CFG. For every A \to x \in P, we define Predict(A \to x) so that

• if Empty(x) = \{\epsilon\} then Predict(A \to x) = First(x) \cup Follow(A)

• if Empty(x) = \emptyset then Predict(A \to x) = First(x)
```

```
Empty(X_1X_2...X_n) = \emptyset vs. Empty(X_1X_2...X_n) = \{\epsilon\}
```

 $Empty(X_1X_2...X_n) = \emptyset$ vs. $Empty(X_1X_2...X_n) = \{\epsilon\}$

 $Empty(X_1X_2...X_n) = \emptyset$ vs. $Empty(X_1X_2...X_n) = \{\epsilon\}$

Summary: if $Empty(X_1X_2...X_n) = \{\epsilon\}$ then $Predict(A \rightarrow X_1X_2...X_n) = First(X_1X_2...X_n) \cup Follow(A);$ otherwise, $Predict(A \rightarrow X_1X_2...X_n) = First(X_1X_2...X_n)$

```
Predict(A \rightarrow x) for G_{expr3}: Example 1/2
```

```
First(E)
                                                   Follow(E) := \{\$,
                          Empty(E)
                          Empty(E')
                                        := \{\epsilon\}
First(E')
                                                   Follow(E') := \{\$,
First(T)
                                                   Follow(T) := \{+, \}
                          Empty(T)
First(T')
                                        := \{\epsilon\}
                                                   Follow(T') :=
                          Empty(T')
First(F)
                                                   Follow(F)
                          Empty(\mathbf{F})
```

```
Predict(A \rightarrow x) for G_{expr3}: Example 1/2
                                               Follow(E) :=
First(E)
                        Empty(E)
                                     := \{\epsilon\}
First(E')
                        Empty(E')
                                               Follow(E') :=
First(T)
                        Empty(T)
                                               Follow(T)
                                               Follow(T') :=
First(T')
                        Empty(T')
                                     := \{\epsilon\}
First(F)
                                               Follow(F)
                        Empty(\mathbf{F})
1: E \rightarrow TE
   Empty(TE') = \emptyset because Empty(T) = \emptyset
   Predict(1) := First(TE') = First(T) = \{i, (\}i)\}
```

$Predict(A \rightarrow x)$ for G_{expr3} : Example 1/2

```
Empty(E)
                                                  Follow(E) :=
First(E)
                                       := \{\epsilon\}
First(E')
                          Empty(E')
                                                  Follow(E') := \{
First(T)
                          Empty(T)
                                                  Follow(T) := \{+, \$,
First(T')
                          Empty(T')
                                       := \{\epsilon\}
                                                  Follow(T') :=
First(\mathbf{F})
                                                  Follow(F)
                          Empty(F)
```

1: $E \rightarrow TE$

```
Empty(TE') = \emptyset because Empty(T) = \emptyset

Predict(1) := First(TE') = First(T) = \{i, (\}
```

$2: E' \rightarrow +TE'$

```
Empty(+TE') = \emptyset because Empty(+) = \emptyset

Predict(2) := First(+TE') = First(+) = \{+\}
```

$Predict(A \rightarrow x)$ for G_{expr3} : Example 1/2

```
Empty(\mathbf{E})
                                                      Follow(\mathbf{E}) :=
First(E)
                                                      Follow(E') := \{\$.
                                          := \{\epsilon\}
First(E')
                            Empty(E')
First(T) := \{i, (\}
                         Empty(T)
                                                      Follow(T) := \{+, \$, \}
First(T')
                                                      Follow(T') := {
                            Empty(T') := \{\epsilon\}
First(F)
                            Empty(\mathbf{F})
                                                      Follow(\mathbf{F})
```

$1: E \rightarrow TE'$

```
Empty(TE') = \emptyset because Empty(T) = \emptyset

Predict(1) := First(TE') = First(T) = \{i, (\}
```

$\overline{2}$: $E' \rightarrow +TE'$

```
Empty(+TE') = \emptyset because Empty(+) = \emptyset

Predict(2) := First(+TE') = First(+) = \{+\}
```

$3: E' \rightarrow \varepsilon$

```
Empty(\varepsilon) = \{\varepsilon\}

Predict(3) := First(\varepsilon) \cup Follow(E') = \emptyset \cup \{\$, \} = \{\$, \}
```

$Predict(A \rightarrow x)$ for G_{expr3} : Example 1/2

```
First(\mathbf{E}) := \{\mathbf{i}, (\} \quad Empty(\mathbf{E}) := \emptyset \quad Follow(\mathbf{E}) := \{\$, \}\}
First(\mathbf{E}') := \{+\} \quad Empty(\mathbf{E}') := \{\epsilon\} \quad Follow(\mathbf{E}') := \{\$, \}\}
First(\mathbf{T}) := \{\mathbf{i}, (\} \quad Empty(\mathbf{T}) := \emptyset \quad Follow(\mathbf{T}) := \{+, \$, \}\}
First(\mathbf{F}) := \{\} \quad Empty(\mathbf{F}) := \{\} \quad Follow(\mathbf{F}) := \{*, +, \$, \}\}
```

$1: E \rightarrow TE'$

```
Empty(TE') = \emptyset because Empty(T) = \emptyset

Predict(1) := First(TE') = First(T) = \{i, (\}
```

2: $E' \rightarrow +TE'$ $Empty(+TE') = \emptyset$ because $Empty(+) = \emptyset$

```
Predict(2) := First(+TE') = First(+) = \{+\}
```

$3: E' \rightarrow \varepsilon$

```
Empty(\varepsilon) = \{\varepsilon\}
Predict(3) := First(\varepsilon) \cup Follow(E') = \emptyset \cup \{\$, \} = \{\$, \}
```

4: $T \rightarrow FT$

$$Empty(FT') = \emptyset$$
 because $Empty(F) = \emptyset$
 $Predict(4) := First(FT') = First(F) = \{i, (\}$

```
Predict(A \rightarrow x) for G_{expr3}: Example 2/2
```

```
First(E)
                            Empty(E)
                                                     Follow(\mathbf{E}) := \{\$,
                           Empty(E')
                                          := \{\epsilon\}
First(E')
                                                     Follow(E') := \{\$,
First(T)
                                                     Follow(T) := \{+, \}
                            Empty(T)
First(T')
                                          = \{ \epsilon \}
                                                     Follow(T') :=
                           Empty(T')
First(F)
                                                     Follow(F)
                            Empty(\mathbf{F})
```

```
Predict(A \rightarrow x) for G_{expr3}: Example 2/2
First(E)
                        Empty(E)
                                              Follow(E) :=
                        Empty(E')
                                     := \{\epsilon\}
First(E')
                                              Follow(E') := \{
First(T)
                        Empty(T)
                                              Follow(T) := \{+, \}
First(T')
                                              Follow(T') :=
                        Empty(T')
                                     := \{\epsilon\}
First(F)
                                               Follow(F)
                        Empty(\mathbf{F})
5: T' \rightarrow *FT'
   Empty(*FT') = \emptyset because Empty(*) = \emptyset
   Predict(5) := First(*FT') = First(*) = \{*\}
```

```
Predict(A \rightarrow x) for G_{expr3}: Example 2/2
```

```
Empty(\mathbf{E})
                                                     Follow(\mathbf{E}) :=
First(E)
                           Empty(E')
                                          := \{\epsilon\}
First(E')
                                                     Follow(E') := \{\$,
First(T)
                           Empty(T)
                                                     Follow(T) := \{+, \$, \}
First(T')
                           Empty(T')
                                          = \{ \epsilon \}
                                                     Follow(T') :=
First(\mathbf{F})
                                                     Follow(F)
                           Empty(F)
```

5: $T' \rightarrow *FT'$ $Empty(*FT') = \emptyset$ because $Empty(*) = \emptyset$ $Predict(5) := First(*FT') = First(*) = \{*\}$

```
\overline{6: T' \to \varepsilon} 

Empty(\varepsilon) = \{\varepsilon\} 

Predict(6) := First(\varepsilon) \cup Follow(T') = \emptyset \cup \{+, \$, \} = \{+, \$, \} \}
```

```
Predict(A \rightarrow x) for G_{expr3}: Example 2/2
                            Empty(\mathbf{E})
                                                      Follow(E) := \{\$,
First(E)
                                                      Follow(E') := \{\$.
First(E') := \{+\}
                            Empty(E') := \{\epsilon\}
First(T) := \{i, (\}
                          Empty(T) := \emptyset
                                                      Follow(T) := \{+, \$, \}
                                                      Follow(T') := \{+,
First(T')
                            Empty(T') := \{\varepsilon\}
                                                      Follow(\mathbf{F}) := \{*,
First(F)
                            Empty(\mathbf{F})
5: T' \rightarrow *FT'
    Empty(*FT') = \emptyset because Empty(*) = \emptyset
    Predict(5) := First(*FT') = First(*) = \{*\}
6: T^{2} \rightarrow \varepsilon
    Empty(\varepsilon) = \{\varepsilon\}
    Predict(\mathbf{6}) := First(\varepsilon) \cup Follow(\mathbf{T'}) = \emptyset \cup \{+, \$, \} = \{+, \$, \}
7: F \rightarrow (E)
    Empty((E)) = \emptyset because Empty(() = \emptyset
    Predict(7) := First((E)) = First(() = \{(\}
```

```
Predict(A \rightarrow x) for G_{expr3}: Example 2/2
First(E)
                         Empty(\mathbf{E})
                                                       Follow(E) := \{\$,
First(\mathbf{E'}) := \{+\} Empty(\mathbf{E'}) := \{\epsilon\}
                                                       Follow(E') := \{\$,
First(T) := \{i, ()\}
                          Empty(T) := \emptyset
                                                       Follow(T) := \{+, \$, \}
                         Empty(T') := \{\epsilon\}
                                                       Follow(T') := \{+, \$,
First(T') := \{*\}
                                                       Follow(\mathbf{F}) := \{*.
First(F)
                           Empty(\mathbf{F})
5: T' \rightarrow *FT'
    Empty(*FT') = \emptyset because Empty(*) = \emptyset
    Predict(5) := First(*FT') = First(*) = \{*\}
\overline{6}: T' \rightarrow \varepsilon
     Empty(\varepsilon) = \{\varepsilon\}
    Predict(\mathbf{6}) := First(\varepsilon) \cup Follow(\mathbf{T'}) = \emptyset \cup \{+, \$, \} = \{+, \$, \}
7: F \rightarrow (E)
     Empty((E)) = \emptyset because Empty(() = \emptyset
     Predict(7) := First((E)) = First(() = \{(\}
```

8:
$$F \rightarrow i$$

 $Empty(i) = \emptyset$
 $Predict(8) := First(i) = \{i\}$

α	•••	a	•••
•••			
\boldsymbol{A}		$\alpha(A, a)$	
•••			

α	•••	a	•••	
•••				$\alpha(A, \boldsymbol{a}) = A \rightarrow X_1 X_2 X_n \in P \text{ if}$
\boldsymbol{A}		$\alpha(A, a)$		$a \in Predict(A \rightarrow X_1 X_2 X_n);$
•••				otherwise, $\alpha(A, a)$ is blank.

 $\alpha(A, a) = A \rightarrow X_1 X_2 ... X_n \in P$ if $a \in Predict(A \rightarrow X_1 X_2 ... X_n)$; otherwise, $\alpha(A, a)$ is blank.

Task: LL table for G_{expr1}

Rule r	Predict(r)
1: $E \rightarrow TE$	{ <i>i</i> , (}
$2: E' \rightarrow +TE'$	{+ }
$3: E' \rightarrow \varepsilon$	{\$,)}
$4: T \to FT'$	{ <i>i</i> , (}
$5: T' \rightarrow *FT'$	{* }
6: T $\rightarrow \epsilon$	{+, \$,)}
$7: \mathbf{F} \rightarrow (\mathbf{E})$	{(}
$ extbf{8}: m{F} \rightarrow m{i}$	{ <i>i</i> }

 $\alpha(A, a) = A \rightarrow X_1 X_2 ... X_n \in P$ if $a \in Predict(A \rightarrow X_1 X_2 ... X_n)$; otherwise, $\alpha(A, a)$ is blank.

Task: LL table for G_{expr1}

Rule r Predict(r) 1: $E \rightarrow TE$ $\{i, (\}$ 2: $E' \rightarrow +TE'$ **{+**} $3: E' \rightarrow \varepsilon$ **{\$**,)} 4: $T \rightarrow FT$ $\{i, (\}$ $5: T' \rightarrow *FT'$ **{***} 6: $T' \rightarrow \varepsilon$ **{+, \$,**)} 7: $F \rightarrow (E)$ **{()** $\{i\}$

 $\alpha(A, a) = A \rightarrow X_1 X_2 ... X_n \in P \text{ if}$ $a \in Predict(A \rightarrow X_1 X_2 ... X_n);$ otherwise, $\alpha(A, a)$ is blank.

Rule r	Predict(r)
• 1: $E \rightarrow TE$	{ <i>i</i> , (}
$2: E' \to +TE'$	{+ }
$3: E' \rightarrow \varepsilon$	{\$,)}
$-4: T \rightarrow FT'$	{ <i>i</i> , (}
$5: T' \rightarrow *FT'$	{* }
6: $T' \rightarrow \varepsilon$	{ + , \$,)}
$7: \mathbf{F} \rightarrow (\mathbf{E})$	{ <mark>(</mark> }
$m{8}: m{F} \rightarrow m{i}$	{ <i>i</i> }

 $\alpha(A, a) = A \rightarrow X_1 X_2 ... X_n \in P \text{ if}$ $a \in Predict(A \rightarrow X_1 X_2 ... X_n);$ otherwise, $\alpha(A, a)$ is blank.

Rule r	Predict(r)
$1: \mathbf{E} \rightarrow T\mathbf{E}'$	{ <i>i</i> , (}
$2: E' \rightarrow +TE'$	{+ }
$3: E' \rightarrow \varepsilon$	{\$,)}
$-4:T\rightarrow FT$	{ <i>i</i> , (}
5: $T' \rightarrow *FT'$	{* }
6: T $\rightarrow \varepsilon$	{+, \$,)}
$7: \mathbf{F} \rightarrow (\mathbf{E})$	{ <mark>(</mark> }
$\sim 8: F \rightarrow i$	{ <i>i</i> }

 $\alpha(A, a) = A \rightarrow X_1 X_2 ... X_n \in P$ if $a \in Predict(A \rightarrow X_1 X_2 ... X_n)$; otherwise, $\alpha(A, a)$ is blank.

Rule r	Predict(r)
$1: E \rightarrow TE'$	{ <i>i</i> , (}
$2: E' \rightarrow +TE'$	{+ }
$3: E' \rightarrow \varepsilon$	{\$,)}
$4: T \rightarrow FT'$	{ <i>i</i> , (}
$5: T' \rightarrow *FT'$	{* }
6: $T' \rightarrow \varepsilon$	{+, \$,)}
$7: \mathbf{F} \to (\mathbf{E})$	{ <mark>(</mark> }
$-8: F \rightarrow i$	{ i }

	i	+	*			\$
E	1			1		
E, T		2			3	3
_	4			4		
T '		6	5		6	6
\boldsymbol{F}	8			7		

1:
$$E \rightarrow TE'$$
 5: $T' \rightarrow *FT'$
2: $E' \rightarrow +TE'$ 6: $T' \rightarrow \varepsilon$
3: $E' \rightarrow \varepsilon$ 7: $F \rightarrow (E)$
4: $T \rightarrow FT'$ 8: $F \rightarrow i$

Question: $i * i \in L(G_{expr3})$?

E

$$i * i$$

	i	+	*			\$
E, E, T	1			1		
E'		2			3	3
T	4		_	4		
F	0	6	5		6	6
1'	8			/		

1:
$$E \rightarrow TE'$$
 5: $T' \rightarrow *FT'$
2: $E' \rightarrow +TE'$ 6: $T' \rightarrow \varepsilon$
3: $E' \rightarrow \varepsilon$ 7: $F \rightarrow (E)$
4: $T \rightarrow FT'$ 8: $F \rightarrow i$

Question: $i * i \in L(G_{expr3})$?

i * i

	i	+	*			\$
E	1			1		
E, T		2			3	3
_	4			4		
T '		6	5		6	6
\boldsymbol{F}	8			7		

1:
$$E \rightarrow TE'$$
 5: $T' \rightarrow *FT'$
2: $E' \rightarrow +TE'$ 6: $T' \rightarrow \varepsilon$
3: $E' \rightarrow \varepsilon$ 7: $F \rightarrow (E)$
4: $T \rightarrow FT'$ 8: $F \rightarrow i$

$$i * i$$

	i	+	*			\$
\boldsymbol{E}	1			1		
<i>E</i> ,		2			3	3
$m{T}$	4			4		
T *		6	5		6	6
F	8			7		

```
1: E \rightarrow TE' 5: T' \rightarrow *FT'

2: E' \rightarrow +TE' 6: T' \rightarrow \varepsilon

3: E' \rightarrow \varepsilon 7: F \rightarrow (E)

4: T \rightarrow FT' 8: F \rightarrow i
```


	i	+	*			\$
\boldsymbol{E}	1			1		
E, T		2			3	3
\boldsymbol{T}	4			4		
T		6	5		6	6
\boldsymbol{F}	8			7		

```
1: E \rightarrow TE' 5: T' \rightarrow *FT'

2: E' \rightarrow +TE' 6: T' \rightarrow \varepsilon

3: E' \rightarrow \varepsilon 7: F \rightarrow (E)

4: T \rightarrow FT' 8: F \rightarrow i
```


	i	+	*			\$
\boldsymbol{E}	1			1		
<i>E</i> ,		2			3	3
$m{T}$	4			4		
T *		6	5		6	6
F	8			7		

```
1: E \rightarrow TE' 5: T' \rightarrow *FT'

2: E' \rightarrow +TE' 6: T' \rightarrow \varepsilon

3: E' \rightarrow \varepsilon 7: F \rightarrow (E)

4: T \rightarrow FT' 8: F \rightarrow i
```


	i	+	*			\$
\boldsymbol{E}	1			1		
<i>E</i> ,		2			3	3
$m{T}$	4			4		
T *		6	5		6	6
F	8			7		

```
1: E \rightarrow TE' 5: T' \rightarrow *FT'

2: E' \rightarrow +TE' 6: T' \rightarrow \varepsilon

3: E' \rightarrow \varepsilon 7: F \rightarrow (E)

4: T \rightarrow FT' 8: F \rightarrow i
```


	i	+	*			\$
\boldsymbol{E}	1			1		
<i>E</i> ,		2			3	3
$m{T}$	4			4		
T *		6	5		6	6
F	8			7		

```
1: E \rightarrow TE' 5: T' \rightarrow *FT'

2: E' \rightarrow +TE' 6: T' \rightarrow \varepsilon

3: E' \rightarrow \varepsilon 7: F \rightarrow (E)

4: T \rightarrow FT' 8: F \rightarrow i
```


Definition: Let G = (N, T, P, S) be a CFG. G is an LL grammar if for every $a \in T$ and every $A \in N$ there is **no more than one** A-rule $A \to X_1 X_2 ... X_n \in P$ such that $a \in Predict(A \to X_1 X_2 ... X_n)$

Definition: Let G = (N, T, P, S) be a CFG. G is an LL grammar if for every $a \in T$ and every $A \in N$ there is **no more than one** A-rule $A \to X_1 X_2 ... X_n \in P$ such that $a \in Predict(A \to X_1 X_2 ... X_n)$

Definition: Let G = (N, T, P, S) be a CFG. G is an LL grammar if for every $a \in T$ and every $A \in N$ there is **no more than one** A-rule $A \to X_1 X_2 ... X_n \in P$ such that $a \in Predict(A \to X_1 X_2 ... X_n)$

Definition: Let G = (N, T, P, S) be a CFG. G is an LL grammar if for every $a \in T$ and every $A \in N$ there is **no more than one** A-rule $A \to X_1 X_2 ... X_n \in P$ such that $a \in Predict(A \to X_1 X_2 ... X_n)$

Definition: Let G = (N, T, P, S) be a CFG. G is an LL grammar if for every $a \in T$ and every $A \in N$ there is **no more than one** A-rule $A \to X_1 X_2 ... X_n \in P$ such that $a \in Predict(A \to X_1 X_2 ... X_n)$

LL Grammars with ε-rules: Definition

Definition: Let G = (N, T, P, S) be a CFG. G is an LL grammar if for every $a \in T$ and every $A \in N$ there is **no more than one** A-rule $A \to X_1 X_2 ... X_n \in P$ such that $a \in Predict(A \to X_1 X_2 ... X_n)$

Illustration:

LL Grammars with ε-rules: Definition

Definition: Let G = (N, T, P, S) be a CFG. G is an LL grammar if for every $a \in T$ and every $A \in N$ there is **no more than one** A-rule $A \to X_1 X_2 ... X_n \in P$ such that $a \in Predict(A \to X_1 X_2 ... X_n)$

Illustration:

LL Grammars with ε-rules: Definition

Definition: Let G = (N, T, P, S) be a CFG. G is an LL grammar if for every $a \in T$ and every $A \in N$ there is **no more than one** A-rule $A \to X_1 X_2 ... X_n \in P$ such that $a \in Predict(A \to X_1 X_2 ... X_n)$

LL Analyzer Implementation

1) Recursive-Descent Parsing

• Each nonterminal is represented by a procedure, which perform

2) Predictive Parsing

• Table-driven syntax analyzer with pushdown

Recursive Descent: Example 1/4

```
Procedure GetNextToken;
begin
{ this procedure get the next token to global variable "token"}
end
• For E \in N: Rule 1: E \rightarrow TE
function E: boolean;
begin
  E := false;
                                           E
  if token in ['i', '('] then
       { simulation of rule 1: E \rightarrow TE' }
       E := T \text{ and } E1;
end;
• For T \in N: Rule 4: T \to FT
function T: boolean;
begin
                                           E
  T := false;
                                           E
  if token in ['i', '('] then
       { simulation of rule 4: T \rightarrow FT' }
      T := F \text{ and } T1;
end;
```

Recursive Descent: Example 2/4

• For $E' \in N$: Rules $2: E' \to +TE'$, $3: E' \to \varepsilon$

```
function E1: boolean;
begin
  E1 := false;
                                            E
  if token = '+' then begin
      { simulation of rule 2: E' \rightarrow +TE' }
      GetNextToken;
      E1 := T \text{ and } E1;
  end
  else
  if token in [')', '$'] then
      { simulation of rule 3: E' \rightarrow \varepsilon}
      E1 := true;
end;
```

Recursive Descent: Example 3/4

• For $T' \in N$: Rules 5: $T' \to *FT'$, 6: $T' \to \varepsilon$

```
function T1: boolean;
begin
  T1 := false;
                                            E
  if token = '*' then begin
      { simulation of rule 5: T' \rightarrow *FT' }
      GetNextToken;
      T1 := F \text{ and } T1;
  end
  else
  if token in ['+', ')', '$'] then
      { simulation of rule 6: T' \rightarrow \varepsilon}
      T1 := true;
end;
```

Recursive Descent: Example 4/4

```
• For F \in N: Rules 7: F \to (E), 8: F \to i
 function F: boolean;
 begin
   F := false;
   if token = '(' then begin
       { simulation of rule 7: F \rightarrow (E) }
       GetNextToken;
       if E then begin
          F := (token = ')');
          GetNextToken;
       end;
                                  Main body:
   end
                                  begin
   else
   if token = 'i' then begin
                                     GetNextToken;
       { simulation of rule 8: F \rightarrow i }
                                     if E then
                                        write('OK')
       F := true;
       GetNextToken;
                                     else
                                        write('ERROR')
   end;
                                  end.
 end;
```

Start:

Input string:

```
i*i
```

Start: GetNextToken; Call E;

Input string:

Start: GetNextToken;

Call E;

Input string:

Call T, Call E1

Predictive Parsing

Model of table-driven syntax analyzer:

Left parse = sequence of rules used in the leftmost derivation of the input string.

Table-Driven Parsing: Algorithm

- Input: LL-table for $G = (N, T, P, S); x \in T^*$
- Output: Left parse of x if $x \in L(G)$; otherwise, error
- Method:
- push(\$) & push(\$) onto the pushdown;
- while the pushdown is not empty do
 - let X = the pushdown top and a = the current token
 - case X of:
 - X =\$: if a =\$ then success else error;
 - $X \in T$: if X = a then pop(X) & read next a from input string

else error;

• $X \in N$: if $r: X \to x \in LL$ -table [X, a] then replace X with reversal (x) on the pushdown & write r to output else error;

end

	i	+	*			\$
E	1			1		
E		2			3	3
\boldsymbol{T}	4			4		
T		6	5		6	6
\boldsymbol{F}	8			7		

Input string: i * i\$

	Pushdown	Input	Rule	Derivation
_				

-			
1 .	יגוו		
	Π,	\longrightarrow	

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

$$4: T \rightarrow FT'$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

	i	+	*)	\$
E	1			1		
E		2			3	3
\boldsymbol{T}	4			4		
T '		6	5		6	6
\boldsymbol{F}	8			7		

Input string: i * i\$

$TE' \underline{E} \Rightarrow \underline{TE'}$

•	H'	 ' ' '
•		

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

$$4: T \rightarrow FT'$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

	i	+	*)	\$
E	1			1		
\overline{E} ,		2			3	3
	4		_	4		
T'		6	5		6	6
\boldsymbol{F}'	8			7		

Input string: i * i\$

	Pushdown	Input	Rule	Derivation
	\$ <i>E</i>	<i>i*i</i> \$	$1: E \rightarrow TE'$	$\underline{E} \Rightarrow \underline{T}E'$
	\$E'T	<i>i*i</i> \$	$4: T \to FT'$	$\Rightarrow \underline{F}T'E'$
				_
J				

•	H'	
•		

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

$$4: T \rightarrow FT'$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

	i	+	*			\$
E	1			1		
E		2			3	3
\boldsymbol{T}	4			4		
T'		6	5		6	6
\boldsymbol{F}	8			7		

Input string: i * i\$

	Pushdown	Input	Rule	Derivation
	\$ <i>E</i>	<i>i</i> * <i>i</i> \$	$1: E \to TE'$	$\underline{E} \Rightarrow \underline{T}E'$
	\$E'T	<i>i*i</i> \$	$4: T \to FT'$	$\Rightarrow \underline{F}T'E'$
	\$E'T'F	<i>i*i</i> \$	$8: F \rightarrow i$	$\Rightarrow i\underline{T'}\underline{E'}$
_				

•	H'	

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

$$4: T \rightarrow FT'$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

	i	+	*			\$
E	1			1		
E '		2			3	3
	4			4		
	Q	6	5	7	0	O
1'	U			/		

Input string: i * i\$

Pushdown	Input	Rule	Derivation
\$ <i>E</i>	<i>i*i</i> \$	$1: E \to TE'$	$\underline{E} \Rightarrow \underline{TE}$
\$E'T	<i>i*i</i> \$	$4: T \to FT'$	$\Rightarrow \underline{F}T'E'$
\$E'T'F	<i>i*i</i> \$	$8: F \rightarrow i$	$\Rightarrow iT'E'$
\$E'T'i	<i>i*i</i> \$		

•	H'	 ('H')

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

$$4: T \rightarrow FT'$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

	i	+	*			\$
E	1			1		
E'		2			3	3
	4			4		
T		6	5		6	6
\mathbf{F}'	8			7		

Rules:

$$1: E \rightarrow TE'$$

$$2: E' \rightarrow +TE'$$

 $3: E' \rightarrow \varepsilon$

 $4: T \rightarrow FT'$

5: $T' \rightarrow *FT'$

6: $T' \rightarrow \varepsilon$

 $7: F \rightarrow (E)$

 $8: F \rightarrow i$

Pushdown	Input	Rule	Derivation
\$ <i>E</i>	<i>i</i> * <i>i</i> \$	$1: E \rightarrow TE'$	$\underline{E} \Rightarrow \underline{T}E'$
\$E'T	<i>i*i</i> \$	$4: T \to FT'$	$\Rightarrow \underline{F}T'E'$
\$E'T'F	<i>i*i</i> \$	$8: F \rightarrow i$	$\Rightarrow i\underline{T'E'}$
\$E'T'i	<i>i*i</i> \$		
\$E'T'	*i\$	$5: T' \to *FT'$	$\Rightarrow i^*\underline{F}T'E'$

	i	+	*			\$
E	1			1		
E'	1	2		1	3	3
T T	4	6	5	4	6	6
\boldsymbol{F}	8	•		7	U	

Rules:

$$1: E \rightarrow TE'$$

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

$$4: T \rightarrow FT'$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

Pushdown	Input	Rule	Derivation
\$ <i>E</i>	<i>i*i</i> \$	$1: E \rightarrow TE'$	$\underline{E} \Rightarrow \underline{TE}'$
\$E'T	<i>i*i</i> \$	$4: T \to FT'$	$\Rightarrow \underline{F}T'E'$
\$E'T'F	<i>i*i</i> \$	$8: F \rightarrow i$	$\Rightarrow iT'E'$
E'T'i	<i>i</i> * <i>i</i> \$		
\$E'T'	*i\$	$5: T' \to *FT'$	$\Rightarrow i^* \underline{F} T'E'$
\$ <i>E</i> ' <i>T</i> ' <i>F</i> *	*i\$		

	i	+	*)	\$
E	1			1		
E		2			3	3
\boldsymbol{T}	4			4		
T'		6	5		6	6
F	8			7		

Rules:

$$1: E \rightarrow TE'$$

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

$$4: T \rightarrow FT'$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

Pushdown	Input	Rule	Derivation
\$ <i>E</i>	<i>i*i</i> \$	$1: E \rightarrow TE'$	$\underline{E} \Rightarrow \underline{TE}'$
\$E'T	<i>i</i> * <i>i</i> \$	$4: T \to FT'$	$\Rightarrow \underline{F}T'E'$
\$E'T'F	<i>i*i</i> \$	$8: F \rightarrow i$	$\Rightarrow i\underline{T'}E'$
E'T'i	<i>i</i> * <i>i</i> \$		
\$E'T'	*i\$	$5: T' \to *FT'$	$\Rightarrow i^*\underline{F}T'E'$
\$E'T'F*	*i\$		
\$E'T'F	<i>i</i> \$	$8: F \rightarrow i$	$\Rightarrow i*i\underline{T}'\underline{E}'$

	i	+	*)	\$
E	1			1		
E		2			3	3
\boldsymbol{T}	4			4		
T *		6	5		6	6
\boldsymbol{F}	8			7		

Rules:

$$1: E \rightarrow TE'$$

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

$$4: T \rightarrow FT'$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

Pushdown	Input	Rule	Derivation
\$ <i>E</i>	<i>i*i</i> \$	$1: E \rightarrow TE'$	$\underline{E} \Rightarrow \underline{T}E'$
\$E ' T	<i>i*i</i> \$	$4: T \to FT'$	$\Rightarrow \underline{F}T'E'$
\$E'T'F	<i>i*i</i> \$	$8: F \rightarrow i$	$\Rightarrow iT'E'$
\$E'T'i	<i>i*i</i> \$		
\$E'T'	*i\$	$5: T' \to *FT'$	$\Rightarrow i^* \underline{F} T' E'$
\$E'T'F*	*i\$		
\$E'T'F	<i>i</i> \$	$8: F \rightarrow i$	$\Rightarrow i*i\underline{T'}E'$
E'T'i	<i>i</i> \$		

	i	+	*)	\$
E	1			1		
E		2			3	3
	4		_	4		
	Q	O	5	7	O	O
ľ	0			/		

Rules:

$$1: E \rightarrow TE'$$

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

4:
$$T \rightarrow FT$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

Pushdown	Input	Rule	Derivation
\$ <i>E</i>	<i>i*i</i> \$	$1: E \to TE'$	$\underline{E} \Rightarrow \underline{TE}$
\$E'T	<i>i*i</i> \$	$4: T \to FT'$	$\Rightarrow \underline{F}T'E'$
\$E'T'F	<i>i*i</i> \$	$8: F \rightarrow i$	$\Rightarrow iT'E'$
\$E'T'i	<i>i*i</i> \$		
\$E'T'	*i\$	$5: T' \to *FT'$	$\Rightarrow i^* \underline{F} T'E'$
\$ <i>E</i> ' <i>T</i> ' <i>F</i> *	*i\$		
\$E'T'F	<i>i</i> \$	$8: F \rightarrow i$	$\Rightarrow i*i\underline{T'}E'$
\$E'T'i	<i>i</i> \$		
\$E'T'	\$	6: $T' \rightarrow \varepsilon$	$\Rightarrow i*i\underline{E}'$

Table-Driven Parsing: Example

	i	+	*)	\$
E	1			1		
E		2			3	3
T	4			4		
T '		6	5		6	6
\boldsymbol{F}	8			7		

Rules:

$$1: E \rightarrow TE'$$

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

$$4: T \rightarrow FT'$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

Input string: i * i\$

Pushdown	Input	Rule	Derivation
\$ <i>E</i>	<i>i*i</i> \$	$1: E \rightarrow TE'$	$\underline{E} \Rightarrow \underline{TE}'$
\$E'T	<i>i</i> * <i>i</i> \$	$4: T \to FT'$	$\Rightarrow \underline{F}T'E'$
\$E'T'F	<i>i*i</i> \$	$8: F \rightarrow i$	$\Rightarrow i\underline{T'E'}$
\$E'T'i	<i>i*i</i> \$		
\$E'T'	*i\$	$5: T' \to *FT'$	$\Rightarrow i^*\underline{F}T'E'$
\$E'T'F*	*i\$		
\$E'T'F	<i>i</i> \$	$8: F \rightarrow i$	$\Rightarrow i*i\underline{T}'E'$
E'T'i	<i>i</i> \$		
\$E'T'	\$	6: $T' \rightarrow \varepsilon$	$\Rightarrow i*i\underline{E}'$
\$ <i>E</i> '	\$	$3: E' \rightarrow \varepsilon$	$\Rightarrow i^*i$

Table-Driven Parsing: Example

	i	+	*)	\$
E	1			1		
E'	1	2		1	3	3
T T	4	6	5	4	6	6
F	8			7		

Input string: i * i\$

Pushdown	Input	Kule	Derivation
\$ <i>E</i>	<i>i*i</i> \$	$1: E \to TE'$	$\underline{E} \Rightarrow \underline{TE}$
\$E ' T	<i>i*i</i> \$	$4: T \to FT'$	$\Rightarrow \underline{F}T'E'$
\$E'T'F	<i>i*i</i> \$	$8: F \rightarrow i$	$\Rightarrow i\underline{T'}E'$
E'T'i	<i>i*i</i> \$		
\$E'T'	*i\$	$5: T' \to *FT'$	$\Rightarrow i^*\underline{F}T'E'$
\$ <i>E</i> ' <i>T</i> ' <i>F</i> *	*i\$		
\$E'T'F	<i>i</i> \$	$8: F \rightarrow i$	$\Rightarrow i*iT'E'$
E'T'i	<i>i</i> \$		
\$E'T'	\$	6: T $\rightarrow \varepsilon$	$\Rightarrow i*iE'$
\$E '	\$	$3: E' \rightarrow \varepsilon$	$\Rightarrow i*i$
\$	\$		

Rules:

1.	E	\rightarrow	TE

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

$$4: T \rightarrow FT'$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

Table-Driven Parsing: Example

	i	+	*)	\$
E	1			1		
E		2			3	3
T	4			4		
T '		6	5		6	6
\boldsymbol{F}	8			7		

Rules:

$$1: E \rightarrow TE'$$

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

$$4: T \rightarrow FT'$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

Input string: i * i\$

Pushdown	Input	Rule	Derivation
\$ <i>E</i>	<i>i*i</i> \$	$ 1:E \rightarrow T$	$E' \underline{E} \Rightarrow \underline{T}E'$
\$E'T	<i>i*i</i> \$	$4: T \to F$	$T' \Rightarrow \underline{F}T'E'$
\$E'T'F	<i>i*i</i> \$	$8: F \rightarrow i$	$\Rightarrow i\underline{T}'\underline{E}'$
E'T'i	<i>i*i</i> \$		
\$E'T'	*i\$	$5: T' \rightarrow *$	$ FT' \Rightarrow i^*\underline{F}T'E'$
\$ <i>E</i> 'T' <i>F</i> *	*i\$		
\$E'T'F	<i>i</i> \$	$8: F \rightarrow i$	$\Rightarrow i*i\underline{T}'\underline{E}'$
E'T'i	<i>i</i> \$		
\$E'T'	\$	6: $T' \rightarrow \varepsilon$	$\Rightarrow i*iE'$
\$ <i>E</i> '	\$	$3: E' \rightarrow \varepsilon$	$\Rightarrow i*i$
\$	\$	\	Success

Left parse:

Panic-Mode (Hartmann) Error Recovery

Context(X) for Predictive Parser: Variant I

```
For G = (N, T, P, S),

Context(A) = Follow(A) for every A \in N
```

- Method:
- Let A be pushdown top & no rule is applicable:
- repeat

```
a := GetNextToken;
{These tokens are skipped}
until a in Context(A)
```

• pop A from the pushdown;

Context(X) for Predictive Parser: Variant II

```
For G = (N, T, P, S),

Context(A) = First(A) \cup Follow(A) for every A \in N
```

- Method:
- Let A be pushdown top & no rule is applicable:
- repeat

```
a := GetNextToken;
{These tokens are skipped}
until a in Context(A)
```

• if $a \in First(A)$ then resume according to A else pop A from the pushdown $//a \in Follow(A)$

