est fest
$$n=1$$
 in $T_3(x)=1+n-n^3$
 $T_3(1)=1+1-\frac{13}{3}=x-\frac{1}{3}=1.6667$.

Now,

 $f(1)=e^{1}\cos(1)$
 $=x.71.828 \times 0.540$
 $=1.469$.

The faylor approximation gives 1.6667 which is reasonable bed here some error.

 $Error=f(1)-T_3(1)$
 $=1.469-1.6662$
 $=-0.1979$

Findly an error bound,

 $|R_3(n)|=f^4(3)\frac{14}{4!}$
 $f^4(n)$ at $n=0$.

 $f^4(0)=-4e^{0}(\cos(0))=-4$.

Since $f^{11}(n)$ without fresh e^{n} and e^{n} increase in $(0,2]$. Remark volume will be at 2.

 $|f^{11}(2)|=4e^{2}[\cos(2)]=4x.7.383\times0.4161$
 $=12.3$
 $|R_3(n)|=\frac{12.3}{4!}$ $|X|^4=0.5125n^4$.

$$|R_3(2)| = 0.5/25 \times 2^4$$

= 8.2

$$T_3(2) = 1 + 2 - \frac{2^3}{3} = 3 - \frac{8}{3} = 3 - 2.667$$

= 0.3333

$$f(2) = e^2 \cos(2)$$

= 7.3891 x 0.4191
= 3.075

The approx $T_{Z}(2)$ is much smaller than the actual value f(2), and the error bound $|R_{Z}(2)| \leq 8.2$ reflect the approx. Is less accorate as x increases