II Semester Online Examination 2019-20
Your email address (osamai@student.iul.ac.in) will be recorded when you submit this form. Not you? Switch account
Section A Multiple Choice Questions
Attempt All Questions. Each question carry equal marks. (Q.1 to Q.90)
1. C language was developed by 1 point
Martin Richards
C Ken Thompson
Dennis Ritchie
O Bjarne Stroustrup
2. Which of the following symbols can be used in a variable name? 1 point
Ampersand (&)
Asterisk (*)
Hyphen (-)
Underscore (_)

3. Which of the following is not a keyword in C?	1 point
default	
Continue	
variable	
O volatile	
4. After everyting into extetement, the value of a will be	
4. After executing int a; statement, the value of a will be	1 point
O 0	
Garbage	
None of the above	
5. Which of the following data types cannot be modified with sign specifiers (signed and unsigned)?	1 point
char	
O ling int	
short int	
O float	
and the same of th	

- 6. Consider the statements: "int a=5; int *p=&a; int **q=&p;" What does the $\,\,$ 1 point expression **q evaluate to?
- (!
- \bigcirc
- Garbage value
- None of the above
- 7. Consider the statements "int x = 10, y=11; int *const p = &x;" Which of the 1 point following statements is illegal?
- x=11
- > *p=11
- p=&y
- y=12
- 8. If column-major order is used, the sequence of elements stored in memory for following matrix is

a b c d e f g h i

o abcdefghi	
adeghibcf	
adgbehcfi	
o aeibcfdgh	
9. Elements in an array are accessed	1 point
randomly	
sequentially	
exponentially	
Ologarithmically	
10 data structure is used to represent hierarchical relationship between elements	1 point
Array	
C Linked list	
Tree	
Graph	
11. Which of the following data structure is non linear type?	1 point
	1 point
Array	1 point
Array Linked list	1 point
Array	1 point

12is very useful in situation when data have to stored and then retrieved in reverse order.	1 point
Array	
Queue	
Stack	
C Lined List	
13. Which of the following function is more appropriate for reading in a multi-word string?	1 point
scanf()	
printf()	
gets()	
oputs()	
14. If the two strings are identical, then strcmp() function returns	1 point
O -1	
O 1	
0	
None	

```
main()

{
Statement 1;
Statement 2;
Statement 3;
....
Statement k;
}

O(N)

O(N^2)

O(1)

O(k)
```

16. Formal definition of Ω Notation is

1 point

- $\Omega \ (g(n)) = \{f(n): \text{ there exist positive constants c1, c2 and n0 such that } 0 <= c1*g(n) <= f(n) <= c2*g(n) \text{ for all } n >= n0\}$
- O $(g(n)) = \{ f(n): \text{ there exist positive constants c and n0 such that } 0 <= f(n) <= c*g(n)$ for all n >= n0}
- $O (g(n)) \{f(n): \text{ there exist positive constants c and n0 such that } 0 <= c*g(n) <= f(n) \text{ for all } n >= n0\}$
- None of above

17. If for an algorithm time complexity is given by O(1) then complexity of it is:	1 point
Constant	
Polynomial	
Exponential	
Linear	
18. The number of element in array A (-10:10) is	1 point
O 10	
O 100	
O 20	
21	
19. The number of element in array A (2:12, -5:5) is	1 point
O 60	
O 100	
121	
O 144	

20. In which data structure memory is contiguous	1 point
Array	
Linked List	
O Both	
None	
21. Which of the following statement is false?	1 point
Arrays are dense lists and static data structure	
O Data elements in a linked list need not be stored in adjacent space in memory	
Pointers store the next data element of a list	
C Linked lists are a collection of the nodes that contain information part and next pointer	
22. The operation of processing each element in the list is known as	1 point
Inserting	
Traversal	
○ Sorting	
Merging	

23. Consider an array A[10, 20], assume 4 words per memory cell and the base address of array A is 100. What is the address of A[7, 15]? Assume row major storage.	1 point
560	
720	
O 636	
650	
24. Which data structure is used for implementing recursion?	1 point
Queue	
Stack	
O Arrays	
C Linked List	
25 data structure is required to check balanced parenthesis in an expression.	1 point
C Linked List	
Queue	
○ Tree	

26. A set of functions that grow slower than or at the same rate as expression is represented by	1 point
Big O	
Theta-Θ	
Omega-Ω	
None of the above	
27. Which of the following is true?	1 point
Array is a dynamic data structure	
Linked-list is a static data structures	
Elements of an array can be accessed only sequentially	
Elements of a linked-list can be accessed only sequentially	
28. The indirect change of the values of a variable in one module by another module is called	1 point
Internal change	
Inter-module change	
Side effect	
Side-module update	

29. Which of the following data structure is not linear data structure?	1 point
O Arrays	
C Linked List	
Both of the above	
None of the above	
30. In a doubly linked list, the number of pointers affected for an insertion operation will be	1 point
O 0	
O 1	
2	
O 4	
31. The following steps in a linked list, result in which type of operation?	1 point

result in which type of operation

p=getnode() info(p)=10

next(p)=list

list p

removal of a node	
inserting a node	
modifying an existing node	

32. Consider the following definition in c programming language Which of 1 point the following c code is used to create new node?

```
struct node
{
  int data;
  struct node * next;
}
typedef struct node NODE;
NODE *ptr;

ptr=(NODE*)malloc(sizeof(NODE));

ptr=(NODE*)malloc(NODE);

ptr=(NODE*)malloc(sizeof(NODE*));

ptr=(NODE)malloc(sizeof(NODE));
```

33. A variation of linked list is circular linked list, in which the last node in the list points to first node of the list. One problem with this type of list is?

	It waste memory space since the pointer head already points to the first node and
\cup	thus the list node does not need to point to the first node.

- It is not possible to add a node at the end of the list.
- lt is difficult to traverse the list as the pointer of the last node is now not NULL
- All of the above

.

34. A circular linked list can be used for	1 point
○ Stack	
Queue	
Both Stack & Queue	
Neither Stack or Queue	
35. The situation when in a linked list START=NULL is	1 point
Underflow	
Overflow	
O Houseful	
Saturated	
36. Which of the following statements about linked list data structure is/ar TRUE?	e 1 point
Addition and deletion of an item to/ from the linked list require modification of existing pointers	the
The linked list pointers do not provide an efficient way to search an item in the list	linked
Linked list pointers always maintain the list in ascending order	
The linked list data structure provides an efficient way to find kth element in the	e list

37. Linked lists are best suited	1 point
of for relatively permanent collections of data	
for the size of the structure and the data in the structure are constantly changing	g
of for both of above situation	
of for none of above situation	
38. When new data are to be inserted into a data structure, but there is no available space; this situation is usually called	1 point
Underflow	
Overflow	
Houseful	
Saturated	
39. Which of the following is two way list?	1 point
Grounded header list	
Circular header list	
Linked list with header and trailer nodes	
None of above	

40. The data structure required for Breadth First Traversal on a graph is?	1 point
○ Stack	
Array	
Queue	
○ Tree	
41. A queue follows	1 point
FIFO (First In First Out) principle	
LIFO (Last In First Out) principle	
Ordered Array	
C Linear Tree	
42. If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?	1 point
ABCD	
O DCBA	
O DCAB	
○ ABDC	

43. A data structure in which elements can be inserted or deleted at/from both the ends but not in the middle is?	1 point
Queue	
Circular Queue	
Dequeue	
O Priority Queue	
44. A normal queue, if implemented using an array of size MAX_SIZE, gets full when	1 point
Rear = MAX_SIZE - 1	
Front = (rear + 1)mod MAX_SIZE	
Front = rear + 1	
Rear = front	
45. Which of the following is not the type of queue?	1 point
Ordinary queue	
Single ended queue	
Circular queue	
O Priority queue	

46. In linked list implementation of a queue, front and rear pointers are tracked. Which of these pointers will change during an insertion into a NONEMPTY queue?	1 point
Only front pointer	
Only rear pointer	
Both front and rear pointer	
None of the front and rear pointer	
47. In Queues, we can insert an element at end and can delete an element at end.	1 point
REAR, FRONT	
FRONT, REAR	
О тор, воттом	
О ВОТТОМ, ТОР	
48. A circular queue is implemented using an array of size 10. The array index starts with 0, front is 6, and rear is 9. The insertion of next element takes place at the array index of	1 point
O 0	
O 7	

49. In Queue, ENQUEUE means whereas DEQUEUE refers	1 point
An insertion operation, a deletion operation	
End of the queue, defining a queue	
O Both A and B	
None of above	
50. To implement a stack using queue(with only enqueue and dequeue	1 point
operations), how many queues will you need?	
O 1	
2	
O 3	
O 4	
51. Pushing an element into stack already having five elements and stack	1 point
size of 5, then stack becomes	Гропп
Overflow	
Overflow	
Crash	
Underflow	
Userflow	

52. A data structure in which elements are added and removed only at one end is known as	1 point
Queue	
Stack	
Array	
String	
53. Stack is	1 point
Static data structure	
O Dynamic data structure	
In built data structure	
None of these	
54. Get the value of most recently inserted node and delete the node	1 point
● POP	
O PUSH	
○ EMPTY	
None of the above	

55. A stack may be represented by a linked list.	1 point
Linear	
O Non-linear	
None of the above	
56. Push operation in stack may result in	1 point
Overflow	
Underflow	
Userflow	
None of the above	
57. A stack is a linked-list that can be accessed from either end.	1 point
O True	
False	
58. Transform the following infix expression to postfix form: A $-$ B $/$ (C * D)	1 point
A B * C D - /	
ΔRCD*/-	

Ŀ

() /-DC*BA	
/ * A B C D	
59. Which one of the following is an application of Stack Data Structure?	1 po
Managing function calls	
The stock span problem	
Arithmetic expression evaluation	
All of the above	
48	
None of the chave	
None of the above	
61. To evaluate an expression without any embedded function calls:	1 po
One stack is enough	
Two stacks are needed	
As many stacks as the height of the expression tree are needed	
A Turing machine is needed in the general case	

62. The result of evaluating the postfix expression 10 5 + 60 6 / * 8 - will be? 1 point
284
O 213
142
O 71
63. Every tree can be uniquely represented by a binary tree.
True
○ False
64. Tree traversal is a procedure by which each node in the tree is processed exactly twice, in a systematic manner.
○ True
False
65. Suppose a binary tree is constructed with n nodes, such that each node 1 point has exactly either zero or two children. The maximum height of the tree will be?
(n+1)/2

(n-1)/2	
(n/2)-1	
((n+1)/2)-1	
66. Binary search tree is generated by inserting in order the following integers::: 50, 15, 62, 5, 20, 58, 91, 3, 8, 37, 60, 24The number of the node in the left sub-tree and right sub-tree of the root, respectively, is	1 point
(4, 7)	
(7, 4)	
(8, 3)	
(3, 8)	
67. Which type of traversal of binary search tree outputs the value in sorted order?	1 point
O Preorder	
Inorder	
OPostorder	
None of the above	
68. In the traversal we process all of a vertex's descendants before we move to an adjacent vertex.	1 point
O Depth Limited	
With First	
Breath First	

Depth	First
 D OP CIT	

69. In an AVL tree the heights of two subtrees of every node never differ by more than	1 point
1	
O 0	
None of the above	
70. A NULL left link of any node is replaced with an address of inorder which performing inorder threading of a given binary tree.	1 point
Successor	
Predecessor	
None of the above	
71. In, the balance of any node must be 1, -1, or 0	1 point
AVL Tree	
Threaded Tree	
Binary Search Tree	
None of the above	

72. To represent hierarchical relationship between elements, which data structure is suitable?	1 point
O Dequeue	
Priority	
Tree	
Graph	
73. Which data structure is used in breadth first search of a graph to hold nodes?	1 point
○ Stack	
Queue	
○ Tree	
O Array	
74. What is the number of edges present in a complete graph having n vertices?	1 point
(n*(n+1))/2	
(n*(n-1))/2	
O n	
Information given is insufficient	

\cup	imornation given is insumicient	

75. A connected graph T without any cycles is called	1 point
Free graph	
No cycle graph	
Non cycle graph	
Circular graph	

- 76. Suppose we do merge sort with a three-way split: divide the array into 3 1 point equal parts, sort each part and do a 3 way merge. What would the worst-case complexity of this version be?
- O(n(log2 n)^2)
- O(n log2 n)
- O(n^2 log3 n)
- O(n^2)
- 77. A connected undirected graph G has 1225 edges. What can we say about n, the number of vertices in G?
- 51 ≤ n ≤ 1225
- 50 ≤ n ≤ 1225
- 51 ≤ n ≤ 1226
- 60 < n < 1226

78. Which sorting algorithm will perform best if the list to be sorted is already sorted?	1 point
Quick Sort	
Insertion Sort	
Radix Sort	
Merge Sort	
79. Key-value pairs are usually seen in which of the following data structures?	1 point
Hash Tables	
Heaps	
O B Trees	
O AVL Trees	
80. What causes a collision?	1 point
The program you are running crashes	
There are too many hash keys in the array	
Two hash keys are the same	
The program is out of memory	

81. Suppose we do merge sort with a five-way split: divide the array into 5 equal parts, sort each part and do a 5 way merge. What would the worst-case complexity of this version be?	1 point
O(n^2)	
O(n^2 log5 n)	
O(n log2 n)	
O(n(log2 n)^2)	
82. Using which of the following methods, is sorting not possible?	1 point
Insertion	
Selection	
Exchange	
Deletion	
83. The worst case occur in linear search algorithm when	1 point
O Item is somewhere in the middle of the array	
O Item is not in the array at all	
O Item is the last element in the array	
Item is the last element in the array or item is not there at all	

84. The complexity of sorting algorithm measures the as a function of the number n of items to be sorter.	1 point
Average time	
Running time	
Average-case complexity	
O Case-complexity	
85. Sorting algorithm can be characterized as	1 point
Simple algorithm which require the order of n2 comparisons to sort n items	
O Sophisticated algorithms that require the O(nlog2n) comparisons to sort items	
Both of the above	
None of the above	
86. What is the worst-case time for serial search finding a single item in an array?	1 point
Quadratic Time	
Linear Time	
O Logarithmic Time	
Constant Time	

87. Consider the situation in which assignment operation is very costly. Which of the following sorting algorithm should be performed so that the number of assignment operations is minimized in general?	1 point
Insertion Sort	
Selection Sort	
Heap Sort	
None	
88. Which of the following algorithms has lowest worst case time complexity?	1 point
Insertion Sort	
Selection Sort	
Quick Sort	
Heap Sort	
89. Which of the following sorting algorithms is/are stable	1 point
Bucket Sort	
Radix Sort	
All of the above	

90. Which of the following sorting algorithm has the running time that is least dependant on the initial ordering of the input?	ooint
O Insertion Sort	
Quick Sort	
Merge Sort	
Selection Sort	
Back Next	

Never submit passwords through Google Forms.

This form was created inside of Integral University. Report Abuse

Google Forms