

AUTOMATED DETECTION OF CONTEXTUALITY PROOFS

WITH INTERMEDIATE NUMBERS OF OBSERVABLES

Henri de Boutray, Frédéric Holweck, Alain Giorgetti and Pierre-Alain Masson

Institut FEMTO-ST, Université Bourgogne Franche-Comté, CNRS, Besançon, France Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS, Besançon, France

Contextual geometries

Finite geometries $G = (\mathcal{O}, L)$ parametrized by observables $O \in \mathcal{O}$ with $\forall l \in L, l \neq \emptyset, l \subset \mathcal{O}$ such that

$$\forall l \in L, \left(\forall \{O_1, O_2\} \subset l, O_1 O_2 = O_2 O_1\right) \land \left(\prod_{O \in I} O = \pm I\right).$$

They are contextual if

$$\nexists f: \mathcal{O} \to \{-1, 1\} / \forall l \in L, \prod_{O \in l} f(O)I = \prod_{O \in l} O.$$
 (1)

A linear problem

$$(\{-1,1\},\times)\to (\mathbb{Z}_2,+)$$

- Let A be the incidence matrix of G.
- Let e be the evaluation vector with |L| entries such that, for the entry e_l corresponding to $l \in L, e_l I = \prod_{O \in l} O$

Eq.(1) can be rewritten as
$$\nexists x \in (\mathbb{Z}_2)^n / Ax = e$$

Here x is in in relation with f as follows: the entry corresponding to $l \in L$ would be $x_l = \prod_{O \in l} f(O)$.

Symplectic space

A space encoding the Pauli group

$$(0,1,1,1) \leftrightarrow X \otimes Y$$

$$((0,0) \leftrightarrow I, (0,1) \leftrightarrow X, (1,0) \leftrightarrow Z, (1,1) \leftrightarrow Y)$$

With an inner product encoding commutativity

We chose the lines of the geometry G to be subspaces of the symplectic space.

A Magma program [dB21] generates all elements of five families of geometries and automatically establishes their contextuality:

_					
	Geometries	n=2	n=3	n=4	n = 5
	Lines	C(1)	C(1)	C(1)	C(1)
	Generators	C(1)	N(1)	N(1)	N(1)
	Hyperbolics	C(10)	C(36)	C(136)	C(528)
	Elliptics	N/A (6)	C(28)	C(120)	C(496)

n: Number of qubits of the system N: Non-contextual

C: Contextual

(k): There are k instances in this family

N/A: Not applicable Perpsets N(15) N(63) N(255) N(1023)

bold: New results

References

H. de Boutray Magma-contextuality: Automated detection of contextuality proofs with intermediate numbers of observables. QuantCert, https://quantcert.github.io/Magma-contextuality/. [dB21]

[dHGM21] H. de Boutray, F. Holweck, A. Giorgetti, and P.-A. Masson, Automated synthesis of contextuality proofs from subspaces of symplectic polar spaces. arXiv:2105.13798 [math-ph, physics:quant-ph], May 2021.

F. Holweck. Testing Quantum Contextuality of Binary Symplectic Polar Spaces on a Noisy Intermediate Scale Quantum Computer. arXiv:2101.03812 [math-ph, physics:quant-ph], January 2021. [Hol21]

