House Prices - Advanced Regression Techniques

Sanjin Jurić Fot

Josipa Radnić

Božidar Grgur Drmić

DATASET

PODACI

METRIKA

data_description.txt

sample_submission.csv

test.csv

train.csv

$$RMSE_{\log} = \sqrt{\frac{\sum_{k=1}^{n} (\log \hat{y}_k - \log y_k)^2}{n}}$$

 $y_k = \text{stvarna cijena kuće}$

 $\hat{y}_k = \text{cijena koju je predvidio model}$

Logaritam!

Ključni file nam je Train.csv

- 1480 redaka (kuća), 81 stupac
- 79 kovarijata, od čega 38 numeričkih
- Podjela: vrijeme, mjesto, kvaliteta i ostalo
- 5.8% podataka nedostaje

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	 PoolArea	PoolQC	Fence	MiscFeature	MiscVal	Мо
0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	NaN	NaN	0	
1	2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	NaN	NaN	0	
2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN	NaN	0	
3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN	NaN	0	
4	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN	NaN	0	
5	6	50	RL	85.0	14115	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	MnPrv	Shed	700	
6	7	20	RL	75.0	10084	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	NaN	NaN	0	
7	8	60	RL	NaN	10382	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN	Shed	350	
8	9	50	RM	51.0	6120	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	NaN	NaN	0	
9	10	190	RL	50.0	7420	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	NaN	NaN	0	

SalePrice je nagnuta ulijevo

```
In [85]:
         price.describe()
Out[85]:
         count
                     1460.000000
                   180921.195890
          mean
          std
                    79442.502883
          min
                    34900.000000
          25%
                   129975.000000
          50%
                   163000.000000
          75%
                   214000.000000
                   755000.000000
          max
```


Njezin logaritam je više simetričan

```
log_price.describe()
In [89]:
Out[89]:
                   1460.000000
         count
                     12.024051
          mean
          std
                      0.399452
          min
                     10.460242
          25%
                     11.775097
          50%
                     12.001505
          75%
                     12.273731
                     13.534473
          max
```


Međutim, nitko ovdje nije normalan!

p=6.341849795213477e-61

p=5.683759591984467e-06

Podijelimo kovarijate:

- Vrijeme: YearBuilt, YearRemodAdd, YrSold, MoSold
- Mjesto: MSZoning, Neighborhood, Condition
- Kvaliteta: "sve živo", OverallQual, OverallCond
- Ostalo: SaleType, SaleCondition

Analizirajmo subjektivne procjene kuća

Corr(OverallCond, OverallQual) = -0.09 < 0 Corr(OverAllCond, LogPrice) = -0.03 < 0

Koje je objašnjenje za to?

Čini se da su novije kuće poželjnije

Kao i one nedavno obnavljane

Zanima nas koliko je kuća uopće obnavljano i kada

47% sveukupno

15% godinu dana nakon gradnje

Korelacijska mapa

10 najbitnijih?

Promotrimo potencijalne outliere

Grupirajmo Missing values:

	Total	Percent
PoolQC	1451	0.996566
MiscFeature	1402	0.962912
Alley	1365	0.937500
Fence	1176	0.807692
FireplaceQu	690	0.473901
LotFrontage	259	0.177885
GarageYrBlt	81	0.055632
GarageFinish	81	0.055632
GarageQual	81	0.055632
GarageCond	81	0.055632
GarageType	81	0.055632
BsmtExposure	38	0.026099
BsmtFinType2	38	0.026099
BsmtCond	37	0.025412
BsmtQual	37	0.025412
BsmtFinType1	37	0.025412
MasVnrArea	8	0.005495
MasVnrType	8	0.005495
Electrical	1	0.000687

Površina garaže nam je dovoljna!

Isto vrijedi i za podrum!

Izbacimo Missing Values:

	Total	Percent		
PoolQC	1451	0.996566		
MiscFeature	1402	0.962912		
Alley	1365	0.937 00		
Fence	1176	0.867692		
Firep aceQu	690	0 473901		
LotFrol tage	259	0.177885		
GarageY Blt	81	0.055632		
GarageFinis	J 1	0.055632		
GarageQual	81	0.055632		GAF
GarageCond	81	0.055632		
GarageTyp	31	0.055632	J	
SsmtExpos re	38	0.026099)	
BsmtFin7/pe2	38	0.026099		
Bsr tCond	37	0 025412	\	POI
EsmtQual	37	0.0. 5412		
Bsr tFinType1	37	0.025 112	J	
MasVnrArea	8	0.005455		
MasVnrType	8	0.005495		
Electrical	1	0.000687		
		•		

GARAŽA

PODRUM

SADRŽAJ

- Uvod u problem
- Rekapitulacija opisne statistike
- Linearna regresija uvod
- Regresija modeli

SADRŽAJ

- Uvod u problem
- Rekapitulacija opisne statistike
- Linearna regresija uvod
- Regresija modeli

DATASET

PODACI

METRIKA

data_description.txt

sample_submission.csv

test.csv

train.csv

$$RMSE_{\log} = \sqrt{\frac{\sum_{k=1}^{n} (\log \hat{y}_k - \log y_k)^2}{n}}$$

 $y_k = \text{stvarna cijena kuće}$

 $\hat{y}_k = \text{cijena koju je predvidio model}$

Logaritam!

In	[5]	:	train

Out[5]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	 PoolArea	PoolQC	Fence	MiscFeature	MiscVal
0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	NaN	NaN	0
1	2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	NaN	NaN	0
2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN	NaN	0
3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN	NaN	0
4	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN	NaN	0
1455	1456	60	RL	62.0	7917	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	NaN	NaN	0
1456	1457	20	RL	85.0	13175	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	MnPrv	NaN	0
1457	1458	70	RL	66.0	9042	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	GdPrv	Shed	2500
1458	1459	20	RL	68.0	9717	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	NaN	NaN	0
1459	1460	20	RL	75.0	9937	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	NaN	NaN	0

1460 rows × 81 columns

PODACI

- 1460 kuća
- 79 nezavisnih varijabli: 33 numeričke i 46 kategorijskih

SADRŽAJ

- Uvod u problem
- Rekapitulacija opisne statistike
- Linearna regresija uvod
- Regresija modeli

Izbacimo Missing Values:

	Total	Percent
PoolQC	1451	0.996566
MiscFeature	1402	0.962912
Alley	1365	0.937,00
Fence	1176	0.867692
Firep aceQu	690	0 473901

 Bsr/tFinType1
 37
 0.025112

 MasVnrArea
 8
 0.005485

 MasVnrType
 8
 0.005495

 Electrical
 1
 0.000687

MISSING VALUES

	Total	Percent	
PoolQC	1451	0.996566	
MiscFeature	1402	0.962912	
Alley	1365	0.937500	
Pence	1176/	0.807692	
FireplaceQu	690	0.473901	
LotFrontage	259	0.177885	
GarageYr Bit	81	0.055632	
GarageFinish	81	0.055632	
GarageQual	81	0.055632	≻ GARAŽA
GarageCond	81	0.055632	
GarageType	81	0.055632	
BsmtExposure	38	0.026099	
BsmtFinType2	38	0.026099	
BsmtCond	37	0.025412	>PODRUM
BsmtQual	37	0.025412	1 OBROW
BsmtFinType1	37	0.025412	
MasVnrArea	8	0.005495	
MasVnrType	8	0.005495	
Electrical	1	0.000687	

KORELACIJSKA MAPA OLAKŠAVA ODABIR VARIJABLI

BASEMENT VARIJABLE

GARAGE VARIJABLE

BATH VARIJABLE

SADRŽAJ

- Uvod u problem
- Rekapitulacija opisne statistike
- Linearna regresija uvod
- Regresija modeli

POMOĆU VALIDACIJSKIH FUNKCIJA ODREĐUJEMO NAJBOLJI MODEL

$$R^{2} = 1 - \frac{SS_{residuals}}{SS_{total}}$$

Adjusted R² = 1 -
$$\frac{SS_{residuals}}{SS_{total}} (n - K)$$

$$(n - 1)$$

$$MSE = \frac{1}{n} \sum \left(y - \hat{y} \right)^{2}$$
The square of the difference between actual and predicted

Koristimo SKEWNESS za "popravljanje" podataka

Što je SKEWNES?

- mjera asimetričnosti funkcije distribucije slučajne varijable realne vrijednosti u odnosu na njezinu srednju vrijednost
- pozitivna, nula, negativna i nedefinirana


```
skewed_feats = train[numeric_feats].apply(lambda x: skew(x.dropna()))
skewed_feats = skewed_feats[skewed_feats > 0.75]
skewed_feats = skewed_feats.index
train[skewed_feats] = np.log1p(train[skewed_feats])
```

1.KORAK: dummy varijable

79 nezavisnih varijabli

249 nezavisnih varijabli

Water	Temperature	var_hot	var_warm	var_cold
А	Hot	1	0	0
В	Cold	0	0	1
С	Warm	0	1	0
D	Cold	1	0	0

2.KORAK: Linearna regresija s dummy varijablama

Train set evaluation:

MAE: 0.06645438387074533

MSE: 0.008699787924455868

RMSE: 0.09327265367971402

R2 Square 0.9455260794693383

0.9343334263694177

NIJE LOŠE? DA, ALI NE.

3.KORAK: k-fold cross validation protiv overfitting

- 1. Podijeli train set na k = 5 jednakih dijelova
- 2. Fiksiraj 1 dio podataka za validiranje modela
- 3. "Treniraj" na preostala 4 dijela podataka
- 4. Validiraj model dobiven "treniranjem" na dijelu koji si fiksirao
- 5. Izračunaj RMSE modela
- 6. Ponovi postupak 2. 5. dok ne prođeš svaki dio podataka za testiranje
- 7. Uzmi srednju vrijednost RMSE za svaki k=1,..,5

4.KORAK: Ridge regresija protiv overfitting

manje šanse za overfitting

Odabir parametra regularizacije za model s dummy varijablama

$$\rightarrow \lambda = 10 \rightarrow RMSE_{cross} = 0.1221$$

Dakle, koristit ćemo Ridge regresiju za daljnje modele.

SADRŽAJ

- Uvod u problem
- Rekapitulacija opisne statistike
- Linearna regresija uvod
- Regresija modeli

Ridge regresija

"mali" model

- nakon izbacivanja outliera, missing values i "prepravljanja" podataka sa skewness, provodimo Ridge regresiju
- uzimamo 9 najkoreliranijih numeričkih varijabli

$$\longrightarrow$$
 RMSE_{cross} = 0.168942

```
X = train[selected]
mali_model = Ridge(alpha = 0.01).fit(X, y)
rmse_cv(mali_model, X, y)
```

0.16894260231430222

Ridge regresija

"srednji" model

3626 Sanjin Juric Fot

0.15965

S

Your First Entry ↑

Welcome to the leaderboard!

3627 Sirui Shao

0.15967

rmse cv(srednji model, X, y)

srednji_model = Ridge(alpha = 10).fit(X, y)

26

5d

```
for zona in zone:
```

X['LotArea*'+zona] = train['LotArea']*train[zona]
X['GarageArea*'+zona] = train['GarageArea']*train[zona]

0.12625691440016526

Ridge regresija

"veliki" model

Validation

0.138 -

847 Sanjin Juric Fot

0.12499

- 1

Your Best Entry 1

Your submission scored 0.12499, which is an improvement of your previous score of 0.15965. Great job!

Tweet this

$$\lambda = 10$$
 RMSE_{cross} = 0.1221

NEURONSKE MREŽE

- Koristimo samo dense slojeve
- Loši rezultati (0.47) → Premalo podataka?
- Kada treniramo na nešto manjem skupu još lošiji rezultati

Generiranje podataka

- Podatke koje već imamo multipliciramo
- Dodajemo šumove i distorzije
- Validiramo isključivo na originalnim podatcima

Problem overfittinga

- Prilagodba broja epoha
- Dropout
- Early stopping
- Normalizacija?

• RMSE = 0.1703

Poboljšanje rezultata

- Dodavanje interakcija:
 - ako dodamo sve, opet je premalen dataset
 - biramo samo neke interakcije
 - normalizacija?
- Grid search hiperparametara

Mode:	l: "	msle_	_model"

Layer (type)	Output Shape	Param #
input_53 (InputLayer)	[(None, 299)]	0
dropout_66 (Dropout)	(None, 299)	0
dense_344 (Dense)	(None, 500)	150000
dense_345 (Dense)	(None, 500)	250500
dropout_67 (Dropout)	(None, 500)	0
dense_346 (Dense)	(None, 500)	250500
dense_347 (Dense)	(None, 300)	150300
dropout_68 (Dropout)	(None, 300)	0
dense_348 (Dense)	(None, 200)	60200
dense_349 (Dense)	(None, 1)	201

Total params: 861,701 Trainable params: 861,701 Non-trainable params: 0

0.14017

subm.csv

2 hours ago by Bozidar Grgur Drmic

Interakcije, dropout, standardizacija

