Nachbau der Turing-Maschine

Beispiel: Dekrementierung einer Binärzahl

Folgendes Programm ist für die Turing-Maschine gegeben:

Aktueller Zustand	Gelesenes Zeichen	Geschriebenes Zeichen	Bewegung	Neuer Zustand
S	#	#	LEFT	S
S	1	0	RIGHT	R
S	0	1	LEFT	L
R	0	0	RIGHT	R
R	1	1	RIGHT	R
R	#	#	LEFT	W
W	1	1	RIGHT	HALT
W	0	0	RIGHT	HALT
W	#	#	RIGHT	HALT

Aktueller Zustand	Gelesenes Zeichen	Geschriebenes Zeichen	Bewegung	Neuer Zustand
L	0	1	LEFT	L
L	1	0	RIGHT	R
L	#	#	RIGHT	R

Die ersten drei Einzelschritte erklärt:

Das Band wird initialisiert mit:

```
# 1 1 0 0 0 {#}
```

Das Vorbelegungszeichen auf dem Band ist # und die Maschine befindet sich im Zustand S.

Schritt 1: Die TM liest das Zeichen # an der Position des S/L-Kopfes vom Band. Der S/L-Kopf schreibt **keine** Änderung, bewegt sich nach links und die TM bleibt im Zustand S.

Schritt 2: Die TM liest das Zeichen 0 an der Position des S/L-Kopfes vom Band. Der S/L-Kopf schreibt das Zeichen 1, bewegt sich nach links und die TM wechselt in Zustand L.

Schritt 3: Die TM liest das Zeichen **0** an der Position des S/L-Kopfes vom Band. Der S/L-Kopf schreibt das Zeichen **1**, bewegt sich nach **links** und die TM wechselt in Zustand **L**.

Alle Schritte in der jshell:

jshell> turingMachine.run()

```
0: # 1 1 0 0 0 {#} -- S

1: # 1 1 0 0 {0} # -- S

2: # 1 1 0 {0} 1 # -- L

3: # 1 1 {0} 1 1 # -- L

4: # 1 {1} 1 1 1 # -- L

5: # 1 0 {1} 1 1 # -- R

6: # 1 0 1 {1} 1 # -- R

7: # 1 0 1 1 {1} # -- R

8: # 1 0 1 1 {1} # -- R

9: # 1 0 1 1 {1} # -- W

10: # 1 0 1 1 1 {#} -- HALT
```

Um diese Ausgaben auch in der LiveView zu erzeugen, führe diese Kommandos in der jshell aus:

Initialisiert das Band:

```
String initialContent = "#11000#"
```

Vorbelegungszeichen setzten:

```
int startPosition = initialContent.length() - 1
```

Der Turing-Maschine das Band, den Zustand, das Vorbelegungszeichen und die Tabelle übergeben:

```
TM turingMachine = new TM(initialContent, "S", startPosition, "decrement");
```

Turing-Maschine starten:

turingMachine.run()

Hier die Ausgabe:

1 0 1 1 {#}