Detection of Sensational Language Features in News Headlines

A Thesis Submitted In Fulfilment of the Requirements for the Degree of

MASTERS

In Computational Linguistics

by Po-Hsuan Chang (33820070)

Under the Supervision of Dr. AKSHI KUMAR Goldsmiths, University of London

To the

DEPARTMENT OF ENGLISH AND CREATIVE WRITING
DEPARTMENT OF COMPUTING
GOLDSMITHS, UNIVERSITY OF LONDON

New Cross, London SE14 6NW

September 2024

GOLDSMITHS, UNIVERSITY OF LONDON

CERTIFICATE

Date:	29/8/2024

This is to certify that the work embodied in the thesis entitled "Detection of Sensational Language Features in News Headlines" done by Po-Hsuan Chang, 33820070 as a Post-graduate student in the Department of Computing, Goldsmiths University of London, UK is an authentic work carried out by him/her under my guidance.

This work is based on original research and the matter embodied in this research plan has not been submitted earlier for the award of any degree or diploma to the best of my knowledge and belief.

Supervisor

Dr. Akshi Kumar

Senior Lecturer and Director PGR,
Department. of Computing,
Goldsmiths, University of London
London, United Kingdom
akshi.kumar@gold.ac.uk

DECLARATION

I, Po-Hsuan Chang, Post-graduate student (33820070) in the Department of English and Creative Writing and the Department of Computing, hereby declared that the synopsis titled "Detection of Sensational Language Features in News Headlines" which is being submitted towards the fulfilment of the requirements for the degree of (Your Programme name) of Goldsmiths, University of London, United Kingdom is a record of bonafide research work carried out by me. I further declare that this work is based on original research and has not been submitted to any university or institution for any degree or diploma.

Po-Hsuan Chang

33820070

Dept. of English and Creative Writing

Dept. of Computing

Goldsmiths, University of London, United Kingdom

pchan003@gold.ac.uk/changpohsuan@gmail.com

Detection of Sensational Language Features in News Headlines

Abstract

This research acts as a pioneer of applying machine learning with natural language processing methods to identify a self-creating reannotation MIRUKU sensational news headline dataset, covering discussion of sensational language and identify important feature in news headline by SHAP analysis. All code in https://github.com/AD2000X/final_project.

Chapter 1: Introduction

1.1. Background of the Study

News:

The main source of information for modern people has transferred from broadcast, print, and television to the internet (Basera, 2015). News headline briefly illustrates the content of the news article, deliver the importance of the news article, and carry information for readers to decide whether to read the news content or not. Dor (2003) regards newspaper headlines are relevance optimizers: They are designed to optimize the relevance of their stories for their readers. Both above-the-line and below-the-line media aim to capture the attention of readers. The slang "if it bleeds, it leads" reveals that the strategy taken in the newsroom has never been changed. Their goal is not only to attract viewers' attention but also to keep their attention as long as possible. In this "15 minutes of fame" era, chasing higher CTR (Click Through Rate) is held up as a model for online media. Sales volume and viewership ratings are separately considered as the successful criteria of print media publishment and mass media.

Language:

Davis and McLeod (2003) indicates that the evolution of language is to promote the graduate complex social interaction and information exchange, making human individuals able to effectively deliver messages in the group. The point of view emphasized the importance of language in human

society rather than just an intellectual tool. Uribe and Gunter (2007) argues that viewers can have emotional reactions to the news. Sensationalism in the news elicits emotion and sympathy from viewers. In news reports, sensationalism features contain features that can awaken audiences' emotional reactions and stimulate or ignite psychological responses (Uribe and Gunter, 2007). Sensational:

Sensationalism is a characteristic that is emphasized in the process of news packaging, focus on elements that could stimulate human sensory device (Uribe and Gunter, 2007). Indicates that verbal measures of emotionality demonstrate remarkable correlations with physiological measures of emotional responses (Uribe and Gunter, 2007). Using sensational language in news affects the audience's attitude and cognitive process, such as formation and retention (Astari et al., 2023). The attention-drawing effect of sensational events can spread rapidly and widely, it also risks changing the fictional message into a fact during the propagation. The viral media can thrive in any context, as long as the information is sensational enough. The phenomenon can initiate with a conscious share or edit behaviour, evolution, and ends in everyone's information-gathering channels (Vista, 2014).

Evolution:

News sensationalism is not only often focused on the capability of attracting viewers' attention or stimulating physiological reactions, but also related to human evolution (Vettehen and Peeters, 2008). From the evolution perspective, the human brain forms a tendency that attends to the information that affects endurance and reproduction. The tendency makes humans naturally stay highly vigilant to potential threaten (Vettehen and Peeters, 2008). We further examine the possible reasons for sensational feelings in human emotions. From an evolutionary perspective, the goal of biological instinct is to reproduce the next generation. Vettehen and Peeters (2008) explain that sensationalism is not only often focused on the capability of attracting viewers' attention or stimulating physiological reactions, but also related to human evolution. The human brain forms a tendency that attend to the information that affects endurance and reproduction. This tendency makes humans

naturally stay highly vigilant to potential threats and explains not only why sensational news can attract viewers, but also illustrates news reporters and audiences could appeal to deviant or negative news events. Therefore, the sensational news report can evoke people's adaptive pattern to pay attention to the information that could attract humans (Davis and McLeod, 2003). This evolutionary feature explains not only why sensational news can attract viewers, but also illustrates news reporters and audiences could appeal to deviant or negative news events (Vettehen and Peeters, 2008).

To capture readers' attention, people utilize different ways to construct an attractive headline, such as rhetoric skills, stimulating curiosity, and sentiment arousal to deliver the message to readers. Since the sense of elements of sensational are embedded in our genes to adapt to human evolution, it is necessary to identify the linguistic features that could arouse human attention. The approach and method of this research on news headlines are not only suitable for the media field but also act as an inspiration for different fields that language could highly affect human's biological decision system.

1.2. Problem Statement

Most of the research on sensational language is conducted in corpus analysis, and fewer are conducted by NLP (Natural Language Processing) programming techniques. The advantage of using NLP with machine learning is to develop a system that can effectively identify sensational language and understand what kind of elements account for a larger proportion of sensational language.

1.3. Purpose of the Study

Linguistics transition:

Categorizing news is a common practical, however, we can always find a news headline that contains multiple categorized elements. For example, (6) A pedophile monk who paid a schoolboy 50p each time he sexually abused him is locked up for five years (28 Jan. 1) (Molek-Kozakowska, 2013), this news title contains finance, sex, children, morals, and crime. Brown et al. (2018) suggests that sensationalism should be examined under digital circumstances, and treat sensationalism as a stylistic

approach that combines classification and formation. Our goal in this research is to examine the linguistic features in news headlines.

1.4. Research Questions or Hypotheses

- RQ 1. Can we utilize a single linguistic feature to effectively and stability identify the sensational language in news headlines?
- RQ 2. What algorithm demonstrates robust performance in identifying sensational language within news headlines?
- RQ 3. Which features most effectively identify sensational language in news headlines among selected features?

1.5. Scope and Delimitations

This research covers different linguistic features, including the Number of Words in the Headline; the Number of stop words in the headlines; The ratio of the number of stop words to the number of content words; TF-IDF with stop words; TF-IDF without stop words; Superlative word list; Syntactic 4-grams; Sentence Subjectivity and Objectivity Evaluation; Sentiment Analysis; Informality (Flesch-Kincaid Readability); Elongated Words; and Punctuation such as Currency symbols, Exclamation marks, Question marks, Ellipsis, Emphasis marks, Multiple exclamation marks, Single quotes, Double quotes and Contracted word forms. We use built-in stop words list of spaCy, meaning that different stop words lists could result in different consequences. We dropped features that are on our list, such as POS(part-of-speech) tag and POS N-gram. We calculate an optimal threshold of XGBoost but we didn't adjust the threshold in our follow experiment. We chose Cuckoo Search as our feature extraction method and chose Random Search as our model training method, thus the result could not be the same when anyone tried to reproduce the experiment. This research does not include a clustering algorithm for determining the topic of news headlines.

1.6. Definition of sensational

We define "Sensational Language" as follows:

Sensational language refers to a form of expression that quickly elicits strong emotional arousal and instant interest from the audience by appealing to their curiosity, emotion, or bias to capture attention and resonate, using vivid, exaggerated, or dramatic words, shocking details, or provocative content (Vista, 2014; Vettehen and Kleemans, 2017; Uribe and Gunter, 2007; Bell, 2015; Molek-Kozakowska, 2013; Brown et al., 2018).

Chapter 2: Literature Review

2.1. Overview of the Literature

Table 1

#	Ty	Title	Publ	Contribution	Datase	Implement	Feature	Metric
	pe		icati		t			s
			on					
	clic	8	Brown	Proposed a first	4,073	Lingua-EN-	superlative	Precisi
1	kba	amazing	et al.,	automated	news	Tagger	(adjectives	on,
	it	secrets	2018	detection method	webpa	module of	and	Recall,
		for		based on	ges on	CPAN,	adverbs),	F-1
		getting		informality that is	Yahoo	Gradient	quotes,	score,
		more		effective in	homep	Boosted	exclamatio	True
		clicks':		identify clickbait	age,	Decision	ns, use of	Positiv
		detecting		titles.	source	Trees	upper case	e Rate
		clickbaits			d from		letters,	(TPR),
		in news			variou		asking	Featur
		streams			s news		questions,	e
		using			sites		etc.; title-	Import
		article			such as		body	ance

informali	Huffin	Similarity
ty	gton	(tf-idf);
	Post,	unigrams
	New	and
	York	bigrams
	Times,	form title
	CBS,	and body
	Associ	of a page
	ated	as
	Press,	features;
	and	subjectivit
	Forbes	y analysis;
		sentiment
		analysis;
		Informalit
		у;
		Coleman-
		Liau score
		(CLScore)
		; RIX and
		LIX
		indices;
		Formality
		measure;

							web slang;	
							swear	
							words;	
							pronouns	
							and	
							demonstrat	
							ives;	
							words	
							containing	
							repeated	
							characters;	
							Forward-	
							reference;	
							URL	
	2 clic	A deep	Zheng,	Propose an	Webis	LogisticRegr		Accura
4		_					Glove 300	
	kba	model	Yu and	adaptive deep	Clickb	ession,		cy
	it	based on	Wu,	learning	ait	RandomFore		F1
		Lure and	2021	model(Lure and	Corpus	stClassifier,		
		Similarit		Similarity for	2017	DecisionTre		
		y for		Adaptive Clickbait		eClassifier,		
		Adaptive		Detection		GaussianNB,		
		Clickbait		(LSACD)) based		SVM;		
		Detectio		on the degree of		Concatenate		
		n		bait and the		dNNArchite		

similarity between cture,

the title and HybridMode

content that can 1,

detect clickbait ZingelClickb

effectively. aitDetector,

RCNN +

GRU,

LSDA.

3	clic	A Novel	Dwagaa	Dranaga	RoCli	RF and	part-of-	Precisi
3	CHC	A Novel	Brosco	Propose a	Rocii	Kr and	part-or-	Precisi
	kba	Contrasti	and	contrastive	Co	SVM based	speech,	on
	it	ve	Ionesc	learning model to	(Roma	on	tagging,	Recall
		Learning	u, 2023	detect Romania	nian	handcrafted	scores	F1
		Method		clickbait title and	Clickb	features,	(CLScore,	Score
		for		create the first	ait	Random	LIX, and	
		Clickbait		Romania clikcbait	Corpus	Forest,	RIX),	
		Detectio		corpus (RoCliCo).).8,313	SVM;	punctuatio	
		n on			news	BiLSTM	n patterns	
		RoCliCo:			sample	network,		
		A			S	Fine-tuned		
		Romania			which	Ro-BERT		
		n			are			
		Clickbait			manua			
		Corpus			lly			
					annota			

of News	ted
Articles.	with
	clickba
	it and
	non-
	clickba
	it
	labels.
	Roman
	ian
	news
	websit
	es
	(Canca
	n,
	Digi24
	,
	Liberta
	tea,
	ProTV,
	WowB
	iz,
	Viva).
	4,593

					11011			
					clickba			
					it and			
					3,720			
					clickba			
					it.			
4	clic	BaitBust	Imran,	Construct a multi-	BaitBu	MiniLM-	Metadata	Overal
	kba	er-	Shovon	modal Bengali	ster-	L12-v2,	Features,	1
	it	Bangla:	and	YouTube clickbait	Bangla	mpnet-base-	Primary	Accura
		A	Mridha	dataset (Mendeley		v2, xlm-r-	Content	cy
		compreh	, 2024	Data clickbait		multilingual-	Features,	(ACC)
		ensive		dataset).		v1	auto_label	, F1
		dataset					ed, Human	Macro,
		for					Annotatio	F1
		clickbait					n:	Micro,
		detection					human_lab	and
		in					eled, AI-	Kappa
		Bangla					based	scores
		with					Labeling:	
		multi-					ai_labeled	
		feature						
		and						
		multi-						

non-

modal analysis

5	clic	BanglaCl	Joy et	Build a large multi-	Annot	Logistic	TF-IDF, n-	Precisi
	kba	ickBERT	al.,	modal Bengali	ated	Regression,	grams(1-	on
	it	: Bangla	2023	clickbait detection	Datase	Random	5), Bangla	Recall
		Clickbait		dataset that	t:	Forest;	pretrained	F1
		Detectio		provides debiased	Bangla	Masked	word	Score
		n from		and human-	Bait	Language	embedding	
		News		annotated for low-	Unann	Model	s,	
		Headline		resource languages	otated	(MLM),	punctuatio	
		s using		and supports cross-	Datase	Ensemble of	n	
		Domain		language clickbait	t	Convolution	frequency,	
		Adaptive		detection.		al neural	normalize	
		BanglaB				network +	d Parts-of-	
		ERT and				Gated	Speech	
		MLP				recurrent	frequency,	
		Techniqu				unit, Bengali	Abugida	
		es				GloVe	Normalize	
						Pretrained	r and	
						Word	Parser for	
						Vectors;	Unicode	
						LSTM,	Texts	
						BiLSTM,	(bnunicod	

						BanglaBERT	enormalize	
						, XLM-	r), t-SNE	
						RoBERTa	1), t 51\L	
						RODEKTa		
6	clic	Believe	Indurth	We collect 23754	Bizarr	Multi-	Sentence	Precisi
	kba	it or not!	i et al.,	news headlines as	e	Layered	Structure	on
	it	Identifyi	2018	bizarre news,	News	Perceptron,	and	Recall
		ng		sourced from news	Datase	Support	Punctuatio	F1
		bizarre		portals and	t	Vector	n: Length	Score
		news in		channels	(Weird	Machine	of the	
		online		exclusively),	(SVM) RBF	News	
		news		catering to bizarre	Conve	kernel,	Headline,	
		media		news.	ntional	Random	Stop	
				We develop and	News	Forest,	words,	
				evaluate the first	Datase	Logistic	Quotations	
				bizarre and unusual	t	Regression,	using	
				news items		XGBoost,	Colons,	
				detection model.		Convolution	Quoted	
						al Neural	Content,	
						Network	Ellipses;	
						(CNN),	Linguistic	
							Patterns:	
							Frequency	
							of Popular	
							Subjects,	

Pronouns

and

Possessive

s,

Acronyms

and

Abbreviati

ons;

Named

Entities:

Persons,

Locations

and

Organizati

ons (PLO),

Country

Names,

Animals

and Plants,

Human

and

Animal

Body

Parts,

Motor

Vehicles;

POS Tags

and POS

Trigrams,P

re-trained

300-

dimension

al GloVe

embedding

S

7	clic	Clickbait	Liu et	Proposed an	WeCha	MFWCD	Semantic	Accura
	kba	detection	al.,	MFWCD deep	t	(Multiple	Features:	cy
	it	on	2022	learning model that	Clickb	Features for	Extracted	F1
		WeChat:		detects clickbait	ait	WeChat	using	Precisi
		A deep		titles on the	Datase	Clickbait	BERT	on
		model		WeChat platform,	t	Detection),	(Bidirectio	Recall
		integratin		constructs the first		MFWCD-	nal	
		g		Chinese clickbait		BERT,	Encoder	
		semantic		dataset and verifies		MFWCD-	Representa	
		and		the validity and		BiLSTM, K-	tions from	
		syntactic		interpretability of		Nearest	Transform	
		informati		the model.		Neighbor	ers), Bi-	
		on				(KNN),	LSTM	

						Random	(Bidirectio	
						Forest (RF),	nal Long	
						Bernoulli	Short-	
						Naive Bayes	Term	
						(NB),	Memory);	
						Support	Syntactic	
						Vector	Features:	
						Machines	Graph	
						(SVM),	Attention	
						Logistic	Network	
						Regression	(GAT);	
						(LR), Bi-	Part-of-	
						LSTM-A,	speech	
						Bi-GRU-A,	tags and	
						Text-	dependenc	
						CNN,the	y;	
						base BERT	Auxiliary	
						model	Features:	
							metadata	
8	clic	Clickbait	Wuy et	The proposed a	Webis	SATC	Content	Accura
	kba	Detectio	al.,	proven	Clickb	(Style-aware	Features	cy,
	it	n with	2020	effectiveness	ait	Title	by	Precisi
		Style-		SATC model that	Corpus	Modeling	Transform	on,
		aware		combines the	2017		er; Title	Recall,

		T: 41		ı: 1	1	1.0	G. 1: .:	Г1
		Title		semantic and	dataset	and Co-	Stylistic	F1
		Modelin		stylistic features of	, Fake	attention)	Patterns by	Score;
		g and		the title to improve	News		character-	Ablati
		Co-		the accuracy.	Challe		level	on
		attention			nge		Transform	Studie
					(FNC)		er (such as	s;
					Datase		capitalisati	Compa
					t^2		on,	rison
							numeric	with
							characters,	Baseli
							and	ne
							punctuatio	Model
							n); Title-	s:
							Body	CNN,
							Matching	LSTM,
								GRU-
								Att,
								and
								Siames
								eNet
9	clic	CLICK-	Willia	Build a dataset of	CLIC	Human	Headline	Fleiss'
	kba	ID: A	m and	Indonesian	K-ID	annotation,	Attributes:	Kappa
	it	novel	Sari,	clickbait titles to	Datase	Inter-	Original	score,
	11						_	50010,
		dataset	2020	fill the gap in	t	Annotator	Headline,	

		for		Indonesian natural		Agreement,	Publisher	Avg
		Indonesi		language		Bi-LSTM	Informatio	Acc
		an		processing.		(Bidirectiona	n,	
		clickbait				1 Long	Publicatio	
		headlines				Short-Term	n Date and	
						Memory),	Time,	
						CNN	Category	
						(Convolutio	and Sub-	
						nal Neural	Category,	
						Network)	Clickbait	
							Label	
1	clic	Does	Molina	https://blog.chartbe	Clickb	2 deep	Linguistic	Classif
0	kba	Clickbait	et al.,	at.com/2015/11/20/	ait	learning	Features:	ication
	it	Actually	2021	youll-never-guess-	Headli	models,	Questions,	Agree
		Atract		how-chartbeats-	nes	Naïve	Lists, Wh	ment,
		More		data-scientists-	Datase	Bayes,	Words,	Engag
		Clicks?		came-up-with-the-	t	Support	Demonstra	ement
		Three		single-greatest-		Vector	tive	Metric
		Clickbait		headline/		Machine	Adjectives	s,
						(SVM)	, Positive	Negati
							Superlativ	ve
							es,	Binom
							Negative	ial
								Regres

Superlativ	sions,
es, Modals	Tukey
	HSD
	for
	Post-
	Нос
	Compa
	risons

	41	_	_					
1	clic	From	Bourgo	Aim to detect	Fake	Logistic	n-grams	Relate
1	kba	Clickbait	nje,	clickbait and fake	News	Regression	(where n =	dness
	it	to Fake	Schnei	news by	Challe	Classifier,	16),	score,
		News	der and	identifying	nge	Binary	lemmatizat	Three-
		Detectio	Rehm,	positional	(FNC-	Classifiers,	ion, the	class
		n_An	2017	consistency	1)	Mallet's	length and	score,
		Approac		between news		Logistic	inverse	Weight
		h based		headlines and		Regression	document	ed
		on		article content.			frequency	score
		Detectin					(IDF) of	
		g the					the n-	
		Stance of					grams,	
		Headline					presence	
		s to					of question	
		Articles					marks,	
							negation	

								dependenc	
								ies,	
								Dependen	
								cy parsing,	
								sentence	
								structures,	
								and	
								semantic	
								similarity	
								measures	
								between	
								headlines	
								and article	
								bodies	
1	l cli	ic	Investiga	Zhang	Provide a clickbait	WeCha	MLP,	Punctuatio	Cohen'
3	8 kb	oa	ting	and	detection method	t	feedforward	n Usage,	S
	it		clickbait	Clough	for Chinese social	Article	Probabilistic	Word	Kappa,
			in	, 2020	media by feature	S	Neural	Usage,	Precisi
			Chinese		engineering and	Datase	Network	Clickbait	on,
			social		machine learning	t	(PNN),	Indicators,	Recall,
			media: A		models.		Logistic	Metadata,	Accura
			study of				Regression,	SimHash	cy, F1-
			WeChat				Naïve		measur
							Bayes,		e,

Random ROC-

Forest, AUC.

Support

Vector

Machine

(SVM),

Gradient

Boosted

Decision

Tree

(GBDT)

1	sen	Automati	Hoffm	Develop an	10,700	maximum	Document	Accura
4	sati	cally	ana	automatically	record	entropy	-Term	cy,
	on	quantifyi	and	quantifying	S	model	Matrix,	Cohen'
		ng the	Justicz,	scientific quality	retriev		Relevance	S
		scientific	2016	and sensationalism	ed		Correlatio	Kappa,
		quality		in news reports,	from		ns,	Intracl
		and		providing the	Lexis		Scientific	ass
		sensation		possibility for	Nexis		Quality	Correl
		alism of		automated text	data		Correlatio	ation
		news		analysis and health	base		ns,	Coeffi
		records		news report			Sensationa	cient
		mentioni		assessment in the			lism	(ICC),
		ng		future.			Correlatio	Fleiss'

		pandemi					ns	Kappa,
		cs_valida					(Exposing,	Krippe
		ting a					Speculatin	ndorff
		maximu					g,	S
		m					Generalizi	Alpha,
		entropy					ng,	t-test
		machine-					Warning,	
		learning					and	
		model					Extolling	
							by five-	
							point	
							Likert	
							scale)	
1	sen	Indonesi	Astari	Discuss the	14	Qualitative	Language	Public
5	sati	an	et al.,	reaction of the use	respon	Analysis	Features:	Recept
	on	Muslim	2023	of sensational	dents		Sensationa	ion
		society's		language on the	filled		1 phrases,	Mappi
		reception		social media	out the		Reception	ng
		of		among the	questio		Typologies	
		sensation		Indonesian Muslim	nnaire		:	
		language		societies to			Dominant	
		and		promote polygamy,			Hegemoni	
		invitation		suggesting that the			c	
		to		sensational			Reception,	

polygam	language can	Negotiated
y on	increase the	Reception:
social	rejection of	Conditiona
media	polygamy in some	1
	situations.	acceptance
		,
		Opposition
		Reception:
		Rejection

1	sen	Mass	Vista,	Explore	Susan	Network	Sensationa	Viral
6	sati	media,	2014	sensationalism in	Boyle	Dynamics,	1 Language	Spread
	on	the		mass media,	Pheno	Qualitative		(such
		'sensatio		especially how	menon	Analysis		as the
		nal		virus propagation	video,			numbe
		message'		phenomena,	Genov			r of
		, and		explaining the	ese			views
		metamor		impact and	Incide			or the
		phic		changes in public	nt			rapidit
		truths		recognition in the	news			y with
				digital	report			which
				environment.				a
								messa
								ge
								spread

Eyewitnes
s Camera,
Close-Ups
of Human
Faces,

1	sen	The	Bell,	Explore the impact	127	Counterbala	40	Attitud
8	sati	Effects	2015	of sensational	student	nced,	Manipulat	e
	on	of		language in the	s read	double-blind	ed Terms,	Chang
		Sensatio		news report on the	design	experimental	Attitude	e
		nal		reader's attitude	ed	design	Measures,	Scores,
		Languag		and memory,	high-		Knowledg	Knowl
		e in		finding the changes	arousal		e	edge
		News on		in that high arousal	(sensat		Measures:	Scores,
		Memory		language could	ional)		Recognitio	Manip
		and		affect viewers'	and		n Memory	ulation
		Attitudes		attitude to the news	low-		and Story	Check
				content and	arousal		Comprehe	S
				exploring how the	(calm)		nsion	
				language selection	versio			
				forms audiences'	ns of			
				recognition and	two			
				emotional	New			
				reactions.	York			
					Times			

articles

.

1	sen	Why	Davis	Explores why	Newsp	Human	Story	Catego
9	sati	humans	and	people continue to	aper	Coding,	Categories	ry
	on	value	McLeo	pay attention to	Stories	Kendall's	:	Freque
		sensation	d, 2003	sensational news,	of 736	Coefficient	Murder/ph	ncy
		al news:		finding certain	sensati	of	ysical	and
		An		topics could be	onal	Concordance	assault,	Rankin
		evolution		related to the core	front-	, Category	Robbery/v	g,
		ary		issues in human	page	Frequency	andalism,	Stabilit
		perspecti		revolution	newsp	and	Accidental	y Over
		ve		psychology and	aper	Ranking,	/natural	Time
				illustrate that	stories	Stability	injury/deat	
				sensational news	collect	Over Time	h,	
				may satisfy the	ed		Altruism/h	
				information needed	from		eroism,	
				in human	eight		Suicide/sel	
				evolution.	countri		f-inflicted	
					es		injury,	
					(Austr		Abandone	
					alia,		d/destitute	
					Bangla		family,	
					desh,		Harm to a	

Canad child,

a, Sexual

Englan assault/rap

d, e, Taking a

France stand/fight

ing back,

Germa Reputation

ny, ,

Maurit Marital/co

ius, urtship

and the anomalies,

United Miscellane

States) ous stories

spanni

ng

from

1700

to

2001.

2	sen	Are	Uribe	Explore the	80	Human	Emotion-	Overal
0	sati	`Sensatio	and	differences in	weekd	Coding,	Eliciting	1
	on	nal'	Gunter,	emotion-aroused	ay	Shot-Level	Content:	Emoti
		News	2007	between	newsc	Analysis	Sex,	onality
		Stories		sensational news	asts,		Violence,	,

		More		and non-	compri		Destructio	Visual
		Likely to		sensational news,	sing 40	sing 40		and
		Trigger		finding that	edition		Humour,	Verbal
		Viewers'		sensational news	s each		Celebrities	Emoti
		Emotions		tends to contain	from		, Other	onality
		than		visual and text	ITV		Emotional	, Chi-
		Non-		content that is	and		Content	square
		Sensatio		more likely to	BBC1.			tests
		nal News		include emotion-				
		Stories:		aroused elements.				
		A						
		Content						
		Analysis						
		of British						
		TV News						
2	sen	Proving	Vettehe	Investigate how	190	Human	Negative	Viewin
1	sati	the	n and	sensational news	partici	Coding and	Content:	g
	on	Obvious?	Kleem	affects the length	pants	Content	such as	Time,
		What	ans,	of audiences' view	watch	Analysis	crime,	Analys
		Sensatio	2017	time, discovering	up to		accidents,	is of
		nalism		that negative	16		or	Varian
		Contribut		content and	news		disasters,	ce
		es to the		tabloid-style news	stories.		Tabloid	(ANO
		Time		packaging			Packaging,	VA)

		Spent on		significantly			Viewing	
		News		increased viewing			Time	
		Video		time.				
2	sen	Sensatio	Arbaou	A comparison of	812	Human	Sensationa	Sensati
2	sati	nalism in	i, De	the	broadc	Coding,	1 News	onalis
	on	news	Swert	sensationalization	asts	intercoder	Topics:	m
		coverage	and	of television news	and	reliability	crime,	Catego
		: A	van der	in a cross-national	13,444	tests	corruption,	ries:
		comparat	Brug,	manner,	news	(Krippendorf	misconduc	sensati
		ive study	2020	discovering that	items	f's alpha and	t, violence,	onal
		in 14		television systems	from	Cohen's	disasters,	news
		televisio		that rely on	29	kappa)	accidents,	topics,
		n		business income	daily		terrorism,	sensati
		systems		and highly	newsc		sex, drugs,	onal
				dispersed	asts on		celebrities;	storyte
				audiences are more	public		Storytellin	lling,
				likely to report	and		g	and
				sensational news.	private		Sensationa	sensati
					televisi		lism:	onal
					on		"ordinary	formal
					station		actors";	feature
					S			s;
					across			Interco
					14			der

					televisi			Reliabi
					on			lity,
					system			Multil
					S.			evel
								Logisti
								c
								Regres
								sion
2	sen	Towards	Molek-	Aims to build a	120	Human	Illocutions	Sensati
3	sati	a	Kozak	pragma-linguistic	entries	Coding and	, Semantic	onalis
	on	pragma-	owska,	framework, reveals	(headli	Focus	Macrostru	m
		linguistic	2013	how common	nes,	Groups,	ctures/The	Rating
		framewo		linguistic strategies	subhea	Pragma-	mes,	s Five-
		rk for the		in news headlines	dlines,	linguistic	Narrative	point
		study of		could enhance	and	Analysis	Formulas,	Likert
		sensation		sensational effect	lead-		Interperso	scale,
		alism in		and helps identify	ins) of		nal and	Focus
		news		sensational	the		Textual	Group
		headlines		language features	British		Devices	Discus
				in news reports.	newsp			sions
					aper			
					Daily			
					Mail			

2.2. Gaps in the Literature

Current sensational language research is more likely to be conducted in a corpus analysis method, barely in a natural language processing method by programming. We expect to build the bridge by programming technique.

2.3. Relation to Current Study

The use of sensational language and clickbait in news headlines both aim to capture the audience's attention. We investigate different training models and features of clickbait in different languages, hoping to get some ideas that could inspire us in sensational language research.

Chapter 3: Methodology

3.1. Dataset Description

MIRUKU sensational news headline dataset.

We create a MIRUKU sensational news headline dataset. The dataset is made based on the News Clickbait Dataset from Kaggle (Singh, 1996; Chakraborty et al., 2016). The clickbait corpus consists of article headlines from 'BuzzFeed', 'Upworthy', 'ViralNova', 'Thatscoop', 'Scoopwhoop' and 'ViralStories'. The non-clickbait article headlines are collected from 'WikiNews', 'New York Times', 'The Guardian', and 'The Hindu' (Singh, 1996).

MIRUKU sensational news headline dataset contains 30,425 rows and 10 columns: headline, clickbait, sensation, sensation_score, sensation_reason, emotion, arousal, arousal_score, arousal_reason, arousal_category. The MIRUKU dataset is annotated with the help of OpenAI GPT-40. We adopt the Likert scale as guidance. The guidance is originally for human annotators to score the sensation in the news headline (Molek-Kozakowska, 2013).

The MIRUKU sensational news headline dataset is created in two steps:

- 1: Annotate for sensation, sensation_score, sensation_reason. We delete 117 rows with multiple sensation indicators (multiple 1 and 0). The dataset remains 31,883 rows.
- 2: Annotate for emotion, arousal_score, arousal_reason, arousal_category. We delete 1,459 rows with multiple sensation indicators (multiple 1 and 0). The dataset remains 30,424 rows.

Table 2

hea	clic	sens	sensati	sensatio	em	aro	arousa	arousal	arousal_category
dlin	kba	atio	on_scor	n_reaso	otio	usa	l_scor	_reaso	
e	it	n	e	n	n	l	e	n	
\$50	1	1	3.75	The use	ang	Yes	0.8	The	Fairly
0k				of a	er,			mentio	
Of				large	sad			n of	
Stu				monetar	ness			substan	
den				y figure	,			tial	
t				in	fear			debt	
Loa				conjunct				accumu	
n				ion with				lated in	
Deb				a very				a very	
t In				short				short	
37				timefram				period	
Sec				e is				creates	
ond				inherentl				a sense	
S				у				of	
				dramatic				urgency	
				and				and	
				attention				distress	
				-				, which	
				grabbing				contrib	
				. The				utes to	

text aims	high
to	arousal
provoke	levels.
shock	
and	
curiosity	

Superlative adjective words list (Biyani, Tsioutsiouliklis and Blackmer, 2016).

We create a superlative adjective word (594 words) list in five steps for experiment purposes. The sources of the list come from:

- 1. Internet.
- 2. Extract superlative adjectives and adverbs from NLTK's built-in corpora, including Brown, webtext, Reuters, Movie Reviews, and Gutenberg.

We utilize Regular Expression to define the regular superlative patterns. For short adjectives and adverbs, we applied "-est" and "iest" suffixes. We applied most, least, best, and worst for long adjectives and adverbs before the adjective. For common and irregular superlatives adjectives and adverbs, we add best, worst, furthest, farthest', least, most, latest, last, nearest, and dearest.

- 3. Hallman (2016) considers that 'all' and 'every' as quantity superlative formation and add them to the list at the final step.
- 4. To reduce distractions, we decide to remove the superlative adverb list.
- 5. Manual inspect each superlative adjective word. 594 words were eventually left in the list.

3.2. Model and Algorithm Development

We first extract 11 features and train each selected feature separately, and then we concatenate all features. Before we trained all features, we used the Principal Component Analysis (PCA) on different emotions in each news headline to determine the threshold with sensation score and arousal score. We processed the feature reduction in 2 steps. First, we applied the filter method, the variance threshold, to eliminate constant or nearly constant features to reduce dimension. By doing so, we can reduce the risk of overfitting, save computing resources, and improve model interpretability. The threshold we chose is 0.001 and 1,236 features remained. Second, we applied the wrapper method, Cuckoo Search via Lévy flights (Sangwan and Bhatia, 2020). The advantage of Cuckoo Search via Lévy flights is that we can set the objective function as f1-score, which is the evaluation metric we mainly focus on. We can find global optimal instead of local optimal and handle non-linear corelationship features effectively. D-BullyRumbler a safety rumble strip to resolve online denigration bullying using a hybrid flter-wrapper approach, Cuckoo Search via L'evy Flights. Furthermore, we chose XGBoost as our baseline model and AdaBoost, CATBoost and Random Forest as our experiment model. We select Random Search because of the limitation of computing power. Compared with Grid Search, Random Search is more efficient in high-dimension hyper parameter search space because Random Search can cover more dimensions on average, without wasting resources on unimportant dimensions, thereby performing higher computing efficiency. (Bergstra and Bengio, 2012). We use K-Fold cross-validation (n splits=5) and evaluation metric F1 score because we want our model to treat sensational or non-sensational equally. Lastly, we analyse the feature importance and the SHAP ((SHapley Additive exPlanations) dependency, establishing the fundamentals for future research.

Chapter 4: Implementation and Results

4.1. Model Implementation

Experiments are compeleted on Google Colab Pro+, with A100 GPU, System RAM 83.5 GB, GPU RAM 40.0 GB, Disk 201.2 GB.

Parameter	XGBoost	AdaBoost	CatBoost	Random
Type				Forest
Number of	'n_estimators': [100,	n_estimators': [100,	iterations': [100, 300,	n_estimators':
estimators	300, 500]	300, 500]	500]	[100, 300,
				500]
Learning	'learning_rate': [0.01,	learning_rate': [0.01,	learning_rate': [0.01,	N/A
rate	0.1, 0.3]	0.1, 0.3]	0.1, 0.3]	
Tree depth	'max_depth': [3, 6, 9]	base_estimatorma	depth': [3, 6, 9]	max_depth':
		x_depth': [3, 6, 9]		[3, 6, 9]
Minimum	'min_child_weight':	base_estimatormi	12_leaf_reg': [1, 3]	min_samples
samples	[1, 3]	n_weight_fraction_l		_leaf': [1, 3]
per split		eaf': [0, 0.1]		
Feature	'colsample_bytree':	base_estimatorma	colsample_bylevel':	max_features'
subsamplin	[0.8, 1.0]	x_features': [0.8,	[0.8, 1.0]	: [0.8, 1.0]
g		1.0]		
Row	'subsample': [0.8,	N/A	subsample': [0.8,	bootstrap':
subsamplin	1.0]		1.0]	[True, False]
g				
Regulariza	'gamma': [0, 0.1]	N/A	random_strength':	min_impurity
tion			[0, 0.1]	_decrease':
				[0, 0.1]
Model-	N/A	algorithm':	N/A	N/A
specific		['SAMME',		
		'SAMME.R']		

Stage 1: Train with each feature separately: 1.Number of words, 2.Number of stop words, 3.Ratio of stop words to content words, 4.Flesch-Kincaid Readability, 5.Subjectivity and Objectivity, 6.Sentiment analysis (Negative Sentiment, Neutral Sentiment, Positive Sentiment, Compound Sentiment), 7.Elongated Words, 8.Punctuation (Currency symbols, Exclamation marks, Question marks, Ellipsis, Emphasis marks, Multiple exclamation marks, Single quotes, Double quotes, Contracted word forms), 9.TF-IDF with Stop words, 10.TF-IDF without Stop words 11.Syntactic 4-grams

Stage 2:

Calculate the Optimal Threshold for baseline model XGBoost. First use Principal component analysis (PCA) on emotion column and then combine the sensational score and arousal score by using XGBClassifier.

Concatenate all features (except feature TF-IDF without Stop words) and train each model separately: XGBoost, XGBoost with Superlative Adjective Words List, XGBoost with Threshold, XGBoost with Superlative adjective words list and threshold, AdaBoost, CATBoost, Random Forest, CATBoost on Test set.

Stage 3: SHAP analysis.

4.2. Results

Train with each feature separately:

- 1. Number of words (Chakraborty et al., 2016), (Indurthi et al., 2018)
- 2.Number of stop words (Biyani, Tsioutsiouliklis and Blackmer, 2016; Chakraborty et al., 2016; Indurthi et al., 2018)
- 3. Ratio of stop words to content words (Chakraborty et al., 2016)
- 4.Flesch-Kincaid Readability (Biyani, Tsioutsiouliklis and Blackmer, 2016)
- 5. Subjectivity and Objectivity (Biyani, Tsioutsiouliklis and Blackmer, 2016; Molek-Kozakowska, 2013; Volkova et al., 2017).

6.Sentiment analysis (Biyani, Tsioutsiouliklis and Blackmer, 2016; Molek-Kozakowska, 2013; Brown et al., 2018; Yang, Mukherjee and Gragut, 2017; Chakraborty et al., 2016), including Negative Sentiment (Arlim et al., 2022; Cano Mora, 2009; Oraby et al., 2016; Buschmeier, Cimiano and Klinger, 2014; Uribe and Gunter, 2007; Vettehen and Peeters, 2008; Vettehen and Kleemans, 2017; Molek-Kozakowska, 2013; Brown et al., 2018); Neutral Sentiment; Positive Sentiment; Compound Sentiment.

7.Elongated Words (Biyani, Tsioutsiouliklis and Blackmer, 2016; Arlim et al., 2022)
8.Punctuation (Biyani, Tsioutsiouliklis and Blackmer, 2016; Indurthi et al., 2018; Zhang and Clough, 2020; Chakraborty et al., 2016; Arlim et al., 2022), including Currency symbols; Exclamation marks (Biyani, Tsioutsiouliklis and Blackmer, 2016; Arlim et al., 2022; Karoui et al., 2016); Question marks (Biyani, Tsioutsiouliklis and Blackmer, 2016; Arlim et al., 2022); Ellipsis (Chakraborty et al., 2016); Emphasis marks (Chakraborty et al., 2016; Bharti et al., 2016); Multiple exclamation marks (Chakraborty et al., 2016; Karoui et al., 2016); Single quotes (Indurthi et al., 2018; Buschmeier, Cimiano and Klinger, 2014); Double quotes (Indurthi et al., 2018; Bharti et al., 2016; Buschmeier, Cimiano and Klinger, 2014); Contracted word forms (Biyani, Tsioutsiouliklis and Blackmer, 2016); 9.TF-IDF with Stop words (Biyani, Tsioutsiouliklis and Blackmer, 2016); Indurthi et al., 2018); 11.Syntactic 4-grams (Chakraborty et al., 2016; Yang, Mukherjee and Gragut, 2017).
1.Number of words analysis:

Table 3

Numbe	Best parameters: {'subsample': 0.8, 'n_estimators': 100, 'min_child_weight': 3,
r of	'max_depth': 9, 'learning_rate': 0.01, 'gamma': 0, 'colsample_bytree': 0.8}
words	Best cross-validation score: 0.606811546536494
in the	Validation Set Classification Report:

headlin		precisio	recal	f1-	support	
e		n	1	score		
	non-sensation	0.64	0.55	0.59	3224	
	sensation	0.56	0.66	0.61	2861	
	accuracy			0.60	6085	
	macro avg	0.60	0.60	0.60	6085	
	weighted avg	0.61	0.60	0.60	6085	
_	Receiver Operating Characteristic (ROC) Curve			Confusion Matr	<u>I</u> ix	-
True Positive Rate		Actual 0	1766	ı	1458	- 1800 - 1600
90 anii 0.4 -			980		1881	- 1400 - 1200
0.0	O.2 O.4 O.6 O.8 False Positive Rate		Ó	Predicted	i	- 1000

2.Number of stop words:

Table 4

Numbe	Best parameters: {'subsample': 0.8, 'n_estimators': 100, 'min_child_weight': 3,					
r of	'max_depth': 9, 'learning_rate': 0.01, 'gamma': 0, 'colsample_bytree': 0.8}					
stop	Best cross-validation score: 0.6	30440936843047	4			
words	Validation Set Classification Re	eport:				
in the		precision	recall	f1-score	support	
headlin	non-sensation	0.65	0.51	0.57	3224	
es	sensation	0.55	0.68	0.61	2861	

3.Ratio of stop words to content words:

Table 5

The ratio of	Best parameters: {'subsample': 1.0, 'n_estimators': 500, 'min_child_weight': 1,							
the number	'max_depth': 3, 'learning_rate':	'max_depth': 3, 'learning_rate': 0.01, 'gamma': 0, 'colsample_bytree': 0.8}						
of stop	Best cross-validation score: 0.6	Best cross-validation score: 0.608918170266611						
words to	Validation Set Classification Re	Validation Set Classification Report:						
the number		precision	recall	f1-score	support			
of content	non-sensation	0.63	0.56	0.59	3224			
words	sensation	0.56	0.62	0.59	2861			
	accuracy 0.59							
	macro avg 0.59 0.59 6085							
	weighted avg	0.59	0.59	0.59	6085			

4.Flesch-Kincaid Readability

Table 6

Informali	Best parameters: {'subsample': 1.0, 'n_estimators': 500, 'min_child_weight': 1,							
ty	'max_depth': 3, 'learning_rate'	'max_depth': 3, 'learning_rate': 0.01, 'gamma': 0, 'colsample_bytree': 0.8}						
(Flesch-	Best cross-validation score: 0.	Best cross-validation score: 0.608918170266611						
Kincaid	Validation Set Classification I	Validation Set Classification Report:						
Readabili		precision	recall	f1-score	support			
ty)	non-sensation	0.63	0.56	0.59	3224			
	sensation	0.56	0.62	0.59	2861			
	accuracy			0.59	6085			
	macro avg	0.59	0.59	0.59	6085			
	weighted avg	0.59	0.59	0.59	6085			

5. Subjectivity and Objectivity:

Table 7

Sentence	Best parameters: {'subsample': 0.8, 'n_estimators': 100, 'min_child_weight': 1,							
Subjectiv	'max_depth': 3, 'learning_rate': 0.0	'max_depth': 3, 'learning_rate': 0.01, 'gamma': 0, 'colsample_bytree': 0.8}						
ity and	Best cross-validation score: 0.614	Best cross-validation score: 0.6146555909839979						
Objectivi	Validation Set Classification Repo	Validation Set Classification Report:						
ty		precision	recall	f1-score	support			
Evaluatio	non-sensation	0.62	0.45	0.52	3224			
n	sensation	0.52	0.68	0.59	2861			
	accuracy			0.56	6085			
	macro avg	0.57	0.57	0.56	6085			
	weighted avg	0.57	0.56	0.55	6085			

6.Sentiment analysis: Negative Sentiment, Neutral Sentiment, Positive Sentiment, Compound

Sentiment

Table 8

Sentime	Best parameters: {'subsample': 1.0, 'n_estimators': 100, 'min_child_weight': 3,							
nt	'max_depth': 3, 'learning_rate': 0.1,	'max_depth': 3, 'learning_rate': 0.1, 'gamma': 0.1, 'colsample_bytree': 1.0}						
Analysi	Best cross-validation score: 0.5853623871049011							
s	Validation Set Classification Report:							
		precision	recall	f1-score	support			
	non-sensation	0.63	0.70	0.66	3224			
	sensation	0.61	0.53	0.57	2861			
	accuracy			0.62	6085			
	macro avg	0.62	0.62	0.62	6085			
	weighted avg	0.62	0.62	0.62	6085			

7.Elongated Words

Table 9

Elongat	Best parameters: {'subsample': 0.8, 'n_estimators': 500, 'min_child_weight': 1,							
ed	'max_depth': 9, 'learning_rate': 0.	'max_depth': 9, 'learning_rate': 0.3, 'gamma': 0.1, 'colsample_bytree': 1.0}						
Words	Best cross-validation score: 0.39	75923623879674	4					
	Validation Set Classification Report:							
		precision	recall	f1-score	support			
	non-sensation	0.53	1.00	0.69	3224			
	sensation	1.00	0.00	0.00	2861			
	accuracy			0.53	6085			
	macro avg	0.76	0.50	0.35	6085			
	weighted avg	0.75	0.53	0.37	6085			

8. Punctuation: Currency symbols, Exclamation marks, Question marks, Ellipsis, Emphasis marks, Multiple exclamation marks, Single quotes, Double quotes, Contracted word forms.

Table 10

Punctuati	Best parameters: {'subsample': 1	Best parameters: {'subsample': 1.0, 'n_estimators': 300, 'min_child_weight': 3,					
on	'max_depth': 3, 'learning_rate': 0.1, 'gamma': 0.1, 'colsample_bytree': 0.8}						
	Best cross-validation score: 0.35	97061258947	2656				
	Validation Set Classification Re	port:					
		precision	recall	f1-score	support		
	non-sensation	0.56	1.00	0.67	3224		
	sensation	0.58	0.00	0.34	2861		
	accuracy			0.56	6085		
	macro avg	0.57	0.54	0.51	6085		
	weighted avg	0.57	0.56	0.52	6085		

9.TF-IDF with Stop words

Table 11

TF-IDF	Best parameters: {'subsample': 0.8, 'n_estimators': 500, 'min_child_weight': 1,							
with stop	'max_depth': 9, 'learning_rate': 0.1,	'max_depth': 9, 'learning_rate': 0.1, 'gamma': 0.1, 'colsample_bytree': 0.8}						
words	Best cross-validation score: 0.6168231099356203							
	Validation Set Classification Report:							
		precision	recall	f1-score	support			
	non-sensation	0.65	0.79	0.71	3224			
	sensation	0.68	0.52	0.59	2861			
	accuracy			0.66	6085			
	macro avg	0.67	0.65	0.65	6085			
	weighted avg	0.68	0.66	0.65	6085			

10.TF-IDF without Stop words

Table 12

TF-IDF	Best parameters: {'subsample': 0.8, 'n_estimators': 300, 'min_child_weight': 3,							
w/o stop	'max_depth': 3, 'learning_rate': 0.1, 'gamma': 0.1, 'colsample_bytree': 0.8}							
words	Best cross-validation score: 0.5345758987416854							
	Validation Set Classification Report:							
		precision	recall	f1-score	support			
	non-sensation	0.59	0.84	0.69	3224			
	sensation	0.66	0.34	0.45	2861			
	accuracy			0.61	6085			
	macro avg	0.63	0.59	0.57	6085			
	weighted avg	0.62	0.61	0.58	6085			

11.Syntactic 4-grams

Table 13

Syntactic	Best parameters: {'subsample': 0.8, 'n_estimators': 500, 'min_child_weight': 3,					
Ngrams	'max_depth': 9, 'learning_rate': 0.1, 'gamma': 0, 'colsample_bytree': 0.8} Best cross-validation score: 0.6232884322577538					
	Validation Set Classification Report:					
		precision	recall	f1-score	support	
	non-sensation	0.64	0.71	0.68	3224	
	sensation	0.63	0.55	0.59	2861	
	accuracy			0.64	6085	
	macro avg	0.64	0.63	0.63	6085	
	weighted avg	0.64	0.64	0.63	6085	

Stage 2:

Calculate the Optimal Threshold for baseline model XGBoost.

Concatenate all features (except feature TF-IDF without Stop words) and train each model separately: XGBoost, XGBoost with Superlative Adjective Words List, XGBoost with Threshold, XGBoost with Superlative adjective words list and threshold, AdaBoost, CATBoost, Random Forest, CATBoost on Test set.

Table 14

XGBoost	Best parameters: {'subsample': 0.8, 'n_estimators': 500, 'min_child_weight': 3,					
with	'max_depth': 6, 'learning_rate': 0.01, 'gamma': 0, 'colsample_bytree': 0.8}					
Superlati	Best cross-validation score: 0	.664415665748195	9			
ve	Validation Set Classification	Validation Set Classification Report:				
Adjective		precision	recall	f1-score	support	
Words	non-sensation	0.68	0.67	0.68	3223	
List	sensation	0.64	0.65	0.64	2862	
	accuracy			0.66	6085	
	macro avg	0.66	0.66	0.66	6085	
	weighted avg	0.66	0.66	0.66	6085	

Table 15

XGBoost	Best parameters: {'subsample': 0.8, 'n_estimators': 500, 'min_child_weight': 1,						
with	'max_depth': 6, 'learning_rate': 0.01, 'gamma': 0.1, 'colsample_bytree': 0.8}						
Threshol	Best cross-validation score: 0.663423	Best cross-validation score: 0.6634232268949644					
d	Validation Set Classification Report:						
		precision	recall	f1-score	support		
	non-sensation	0.70	0.59	0.64	3223		
	sensation	0.61	0.72	0.66	2862		
	accuracy			0.65	6085		
	macro avg	0.65	0.65	0.65	6085		
	weighted avg	0.66	0.65	0.65	6085		

Table 16

XGBoost	Best parameters: {'subsample': 0.8, 'n_estimators': 500, 'min_child_weight': 3,					
with	'max_depth': 6, 'learning_rate': 0.01	'max_depth': 6, 'learning_rate': 0.01, 'gamma': 0, 'colsample_bytree': 0.8}				
Superlati	Best cross-validation score: 0.6644	15665748195	59			
ve	Validation Set Classification Report	t:				
adjective		precision	recall	f1-score	support	
words list	non-sensation	0.70	0.59	0.64	3223	
and	sensation	0.61	0.72	0.66	2862	
threshold	accuracy			0.65	6085	
	macro avg	0.66	0.65	0.65	6085	
	weighted avg	0.66	0.65	0.65	6085	

Table 17

AdaBoos	Best parameters: {'n_estimators': 300, 'learning_rate': 0.01,					
t	'base_estimatormin_weight_fraction	n_leaf': 0, 'ba	ase_estimato	ormax_fea	tures': 1.0,	
	'base_estimatormax_depth': 3, 'algo	'base_estimatormax_depth': 3, 'algorithm': 'SAMME.R'}				
	Best cross-validation score: 0.6658196	6625136333				
	Validation Set Classification Report:					
		precision	recall	f1-score	support	
	non-sensation	0.68	0.65	0.67	3223	
	sensation	0.62	0.66	0.64	2862	
	accuracy			0.65	6085	
	macro avg	0.65	0.65	0.65	6085	
	weighted avg	0.65	0.65	0.65	6085	

Table 18

CATBoo	Best parameters: {'subsample': 0.8, 'random_strength': 0.1, 'learning_rate': 0.1,				
st	'l2_leaf_reg': 3, 'iterations': 100, 'depth': 9, 'colsample_bylevel': 1.0}				
	Best cross-validation score: 0.669°	700033596410	66		
	Validation Set Classification Repo	ort:			
		precision	recall	f1-score	support
	non-sensation	0.68	0.68	0.68	3223
	sensation	0.64	0.64	0.64	2862
	accuracy			0.66	6085
	macro avg	0.66	0.66	0.66	6085
	weighted avg	0.66	0.66	0.66	6085

Table 19

Rando	Best parameters: {'n_estimators': 500, 'min_samples_leaf': 3, 'min_impurity_decrease':					
m	0, 'max_features': 1.0, 'max_depth': 3, 'bootstrap': True}					
Forest	Best cross-validation score: 0.6611619132764461					
	Validation Set Classification Report:					
		precision	recall	f1-score	support	
	non-sensation	0.69	0.57	0.62	3223	
	sensation	0.59	0.70	0.64	2862	
	accuracy			0.63	6085	
	macro avg	0.64	0.64	0.63	6085	
	weighted avg	0.64	0.63	0.63	6085	

Table 20

CATBoo	Best parameters: {'subsample': 0.8, 'rand	om_strength': 0.	1, 'learnin	g_rate': 0.1,	
st on	'l2_leaf_reg': 3, 'iterations': 100, 'depth': 9, 'colsample_bylevel': 1.0}				
Test set	Validation Set Classification Report:				
		precisio	recall	f1-score	suppor
		n			t
	non-sensation	0.68	0.68	0.68	3224
	sensation	0.64	0.64	0.64	2861
	accuracy			0.66	6085
	macro avg	0.66	0.66	0.66	6085
	weighted avg	0.66	0.66	0.66	6085

Stage 3: SHAP analysis:

SHAP Feature Importance:

Figure 1

SHAP Dependency:

Figure 2

- 1. The number of stop words presents a non-linear relationship between with prediction result. Couldn't simply justify if more or less number of stop words can make the prediction more accurate.
- 2.Breakthrough point appears in the range of 0.2~0.4 (number of stop words). After

0.2, model tends to predict more headlines as sensational (over 0.0).

3.Obervered positive impact for the model prediction when the number of stop words reaches and over to 0.6.

Figure 3

- 1. The number of words in the headline presents a non-linear relationship between with prediction result. Couldn't simply justify if more or less total amount can make the prediction more accurate.
- 2.Breakthrough point appears in the range of 0.3~0.4 (number of words in the headline). After 0.2, model tends to predict more headlines as sensational (over 0.0).
- 3.Obervered positive impact for the model prediction when the number of stop words reaches and over to 0.4.

Figure 4

- 1.Negative sentiment presents a significant positive correlation between features and model prediction results, meaning more negative words results in higher SHAP value.
- 2.But doesn't mean a linear relationship between negative sentiment and SHAP value.
- 3. High variability. Even with a same num_neg, we can observe significant SHAP value differences.

Figure 5

- 1.Observed non-linear relationships between compound sentiment and prediction results.
- 2.An inflection point at around num_compound=0.2, indicating that an increase in compound sentiment score could results in a decrease of the prediction value.
- 3.We can find that when num_com=0.8, high fluctuations in model prediction

results, meaning the specific language pattern in news headlines.

Figure 6

- 1.Observed a clear negative relationship between neutral sentiment score and SHAP value.
- 2.Low SHAP value while with low num_neu, but doesn't mean the existence of linear relationship. Imply the model captured the complex semantic patterns.3.High variability, especially at low num_neu score area, meaning other features could affect the prediction result.

Figure 7

- 1.Representing a positive relationship and non-linear relationship between contracted word forms and SHAP value.
- 2.Number of contracted word from shows a clear discrete characteristic, reflecting the specific pattern of the use in the language.3.High variability in SHAP value indicates
- that the complex interaction between features.

Figure 8

- 1.Observed threshold effect at double quote count around 0.33 and 0.67, indicating the different expression of headlines structures.
- 2.Representing highly contextual dependency especially when double quotes count at around 0.33.
- 3.SHAP values are above 0.0 when the number of double quote count at around 0.67, meaning the positive impact to the prediction result.

Figure 9

- 1.Strong negative relationships between TF-IDF_age and SHAP value.
- 2.The number of TF-IDF_age centralizedbetween 0.6 and 0.8, representing a non-linear relationship and concentration effectsthat the use of "age" in news headlines.3.High variability explains the featuresinteraction and the complex contextual

dependencies of model prediction.

Figure 10

- 1.Observed significant negative relationship between TF-IDF_after and SHAP value.
- 2.Representing a non-linear relationship, especially when the value of TF-IDF_after is 0.0, the changes in SHAP value is relatively small and the changes are more significant in the medium to high value region.
- 3.The discrete pattern represents the contextual dependencies.

Figure 11

- 1.Observed a complex non-linear relationship between TF-IDF_and and SHAP value.
- 2.Data points centralize in the range of TF-IDF_and 0.3 to 0.5.
- 3.The red colour mostly locate above SHAP value 0.0 while TF-IDF_and in the range of 0.3 to 0.5, representing the number of stop words could be a factor that affects the use of "and" and the model prediction.

Chapter 5: Discussion

5.1. Interpretation of Findings

RQ 1. Can we utilize a single linguistic feature to effectively and stability identify the sensational language in news headlines?

Table 21

Feature	Best CV	Accuracy	f1-score	f1-score	f1-score
	score		non-	sensation	difference
			sensation		in
					absolute
					value
Number of words	0.6068	0.60	0.59	0.61 ^{1st}	0.02
Number of stop	0.6304 ^{1st*}	0.59	0.57	0.61 ^{1st}	0.04
words					
The ratio of stop	0.6089	0.59	0.59	0.59 ^{2nd}	0.00 ^{1st}
words to content					
words					
Flesch-Kincaid	0.6089	0.59	0.59	0.59 ^{2nd}	0.00 ^{1st}
Readability					
Subjectivity and	0.6147	0.56	0.52	0.59 ^{2nd}	0.07
Objectivity					
Subjectivity	-	-	-	-	-
Objectivity	-	-	-	-	-
Sentiment analysis	0.5854	0.62 ^{3rd}	0.66	0.57 ^{3rd}	0.09
Negative Sentiment	-	-	-	-	-
Neutral Sentiment	-	-	-	-	-
Positive Sentiment	-	-	-	-	-
Compound Sentiment	-	-	-	-	-
Elongated Words	0.3976	0.53	0.69 ^{2nd}	0.00	0.69

Punctuation	0.3597	0.56	0.67 ^{3rd}	0.34	0.33
Currency symbols	-	-	-	-	-
Exclamation marks	-	-	-	-	-
Question marks	-	-	-	-	-
Ellipsis	-	-	-	-	-
Emphasis marks	-	-	-	-	-
Multiple exclamation	-	-	-	-	-
marks					
Single quotes	-	-	-	-	-
Double quotes	-	-	-	-	-
Contracted word	-	-	-	-	-
forms					
TF-IDF with Stop	0.6168 ^{3rd*}	0.66 ^{1st}	0.71 ^{1st}	0.59 ^{2nd}	0.12 ^{2nd}
words					
TF-IDF without	0.5346	0.61	0.69 ^{2nd}	0.45	0.24
Stop words					
Syntactic 4-grams	0.6233 ^{2nd*}	0.64 ^{2nd}	0.71 ^{1st}	0.55	0.16 ^{3rd}

^{* 1}st, 2nd, and 3rd indicate the ranking of the feature under different evaluation metrics

- 1.According to the table, all feature has limited capability to identify sensational news headlines, since the highest f1-score of sensation is only 0.61.
- 2. We expect a higher score even though the feature The ratio of stop words to content words and the feature Flesch-Kincaid Readability achieved a balance on the f1-score between non-sensational headlines and sensational headlines.
- 3.In identifying non-sensational headlines, both TF-IDF with Stop words and Syntactic 4-grams perform the best.

- 4. The feature of Number of Words and Number of Stop words could be the key to identifying sensational news headlines.
- 5.Compared with TF-IDF without Stop words and TF-IDF with Stop words, stop words represent a more important feature.

We can conclude that the ability to identify sensational news headlines is the breakthrough point to building a robust model. However, we can't identify a valuable feature that mostly contributes to sensational news headlines.

- RQ 2. What algorithm demonstrates robust performance in identifying sensational language within news headlines?
- 1.According to the Tabel 18 and Table 15, both CATBoost and XGBoost performances are similar and robust, yet CATBoost has a higher cross-validation score 0.6697 than XGBoost's 0.6634.
- 2. XGBoost with Threshold can be chosen if the scenario requires identifying sensational news headlines as much as possible since XGBoost has a higher recall of sensational language.

 We can conclude that CATBoost as our most robust model.
- RQ 3. Which features most effectively identify sensational language in news headlines among selected features?
- 1.We can find the Number of stop words is the tier 1 important feature. The Number of words in News Headlines and negative sentiment can be tier 2, negative sentiment, compound sentiment, neutral sentiment, Contracted word forms, and Double quotes belong to tier 3.
- 2. We don't find any syntactic 4-gram features either in SHAP importance or SHAP dependency plot.

5.2. Implications for Practice

Explainable AI:

Feature Fusion Strategy:

Adapt feature fusion strategy, such as Static Feature Fusion (concatenate features with BERT output embeddings) and Dynamic Feature Fusion (directly combine with key features at the input stage of

BERT) to preserve the BERT's contextual understanding and considering the impact of specific linguistic features on the prediction.

Multi-level Feature Evaluation:

Categorize features into different level (tier1, tier2, tier 3...) to evaluate the dependence of BERT model on different features by layered approach.

Optimization news headlines construction:

Number of stop words and number of words in news headlines is the key features of sensational news headlines. The finding indicates that we should take consideration about the use of number of stop words and control the length of headlines to increase the attraction of news headlines.

Prove negative sentiment indeed increase the attraction of news headlines. Controversially, the use of negative sentiment should be carefully considered as well.

Improvement of recommend system:

The research results show that the performance of TF-IDF with stop words stands out. Content recommend system can be more accurately filter out headline with "sensational feature" headlines to improve audiences' click through rate and engagement. In other hand, it also provides a way of optimization.

Model selection and application:

In the scenario that requires to identify as more sensational news headlines, XGBoost with optimal threshold is the first choice, due to the high recall. However, the robust model is CATBoost that has a better balance between precision and recall.

5.3. Recommendations for Future Research

Table 22

Stage	Future Research
	Use different pre-trained language models.

Dataset	Specify different identities in the prompt, such as age, gender, profession,
Annotation	expertise, health condition, etc.
	Specify personality such as Myers–Briggs Type Indicator (MBTI).
	Simulate a specific situation as prompt while pre-trained language models
	annotating (read the news headlines).
	Combine or compare with human annotations.
Feature	Apply robust part-of-speech tag and NER methods such as pre-trained language
Extraction	model.
	Adapt more linguistic features such as forward-reference, rhetorical device,
	demonstrative Adjectives, modal verbs, etc.
	Apply unsupervised topic modelling techniques such as k-means or LDA (Latent
	Dirichlet Allocation) as features.
	Use synonym replacement (word embedding, synonym dictionary) and data
	augmentation.
	Discuss suitable stop words list with professional in news industry.
Model	Adjust self-defined optimal threshold and train different models
Implementatio	Scale up hyper parameter space.
n	Examine the instance of correct predictions and wrong predictions for deep
	understanding.
	Multimodal and Multilingual Analysis by using photos, videos, social media
	metrics and metadata.
	Use deep learning models such as Bidirectional Encoder Representations from
	Transformers (BERT) to achieve better performance and research explainable
	AI.

Feature	Apply clustering algorithms (e.g., k-means, hierarchical clustering) to group
Clustering	similar features.
	Use the clustered features to build a simpler surrogate model, such as a decision
	tree to visualize the key decision paths and how clustered features contribute to
	predictions.
	Add important features from SHAP to attention input layer to train model.

Chapter 6: Conclusion

6.1. Summary of Findings

• Brief recap of the key findings.

6.2. Conclusions Drawn

Main conclusions based on the research questions or hypotheses.

We create a MIRUKU sensational news headlines dataset for future research and complete a ground-breaking research by using machine leaning and natural language processing methods in identifying sensational language in news headline. This research illustrates the complexity of human language and emotion since we can't simply choose a features to effectively decide if the news headline is sensational or not. We combine lexical features, syntactic features, semantic features, readability feature, and stylistic features to obtain a robust model. We verified that negative sentiment is one of the key features to arouse the emotion and capture attention and identify important features in SHAP analysis, paving the way to the research of sensational language in explainable AI.

References

Astari, R., Perawironegoro, D., Faturrahman, M.I. and Kistoro, H.C.A., 2023. Indonesian
 Muslim society's reception of sensation language and invitation to polygamy on social media.
 Indonesian Journal of Islam and Muslim Societies, 13(2), pp.369-397. Available at:
 https://doi.org/10.18326/ijims.v13i2.369-397

- Arbaoui, B., De Swert, K. and van der Brug, W., 2020. Sensationalism in news coverage: A comparative study in 14 television systems. Communication Research, 47(2), pp.299-320.
 Available at: https://doi.org/10.1177/0093650216663364
- 3. Arlim, N., Kushadiani, S.K., Riyanto, S., Rodiah, R., Arianty, R., Maukar, M., Al Hakim, S. and Maulana, A.H.A., 2022. Sarcasm Detection in Indonesian Tweets Using Hyperbole Features. In: Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications. IC3INA '22. Association for Computing Machinery, pp.130-134. Available at: https://dl.acm.org/doi/10.1145/3575882.3575908
- Basera, J., 2023. AN ANALYSIS OF SENSATIONALISM IN NEWS. Journal of the Asiatic Society of Mumbai, XCV(45), pp.168-177. Available at: https://www.researchgate.net/publication/374812735_AN_ANALYSIS_OF_SENSATIONALIS M_IN_NEWS
- 5. Bell, M.A., 2015. The Effects of Sensational Language in News on Memory and Attitudes. Unpublished thesis. Texas State University. Available at: https://hdl.handle.net/10877/5545
- Bergstra, J. and Bengio, Y., 2012. Random Search for Hyper-Parameter Optimization. The Journal of Machine Learning Research, 13, pp.281-305. Available at: https://dl.acm.org/doi/10.5555/2188385.2188395
- 7. Bharti, S.K., Vachha, B., Pradhan, R.K., Babu, K.S. and Jena, S.K., 2016. Sarcastic sentiment detection in tweets streamed in real time: a big data approach. Digital Communications and Networks, 2(3), pp.108-121. Available at: https://doi.org/10.1016/j.dcan.2016.06.002
- 8. Biyani, P., Tsioutsiouliklis, K. and Blackmer, J., 2016. 8 amazing secrets for getting more clicks': detecting clickbaits in news streams using article informality. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. AAAI'16. AAAI Press, pp.94-100. Available at: https://dl.acm.org/doi/10.5555/3015812.3015827

- 9. Bourgonje, P., Schneider, J.M. and Rehm, G., 2017. From Clickbait to Fake News Detection: An Approach based on Detecting the Stance of Headlines to Articles. In: Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism. Association for Computational Linguistics, pp.84-89. Available at: https://doi.org/10.18653/v1%2FW17-4215
- 10. Brosco, D.M. and Ionescu, R.T., 2023. A Novel Contrastive Learning Method for Clickbait Detection on RoCliCo: A Romanian Clickbait Corpus of News Articles. In: Findings of the Association for Computational Linguistics: EMNLP 2023. Association for Computational Linguistics, pp.9547-9555. Available at: http://dx.doi.org/10.18653/v1/2023.findings-emnlp.640
- 11. Brown, D.K., Harlow, S., García-Perdomo, V. and Salaverría, R., 2018. A new sensation? An international exploration of sensationalism and social media recommendations in online news publications. Journalism, 19(11), pp.1497-1516. Available at:

 https://doi.org/10.1177/1464884916683549
- 12. Buschmeier, K., Cimiano, P. and Klinger, R., 2014. An Impact Analysis of Features in a Classification Approach to Irony Detection in Product Reviews. In: Proceedings of the 5th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis. Association for Computational Linguistics, pp.42-49. Available at: https://doi.org/10.3115/v1/W14-2608
- 13. Cano Mora, L., 2009. All or nothing: A semantic analysis of hyperbole. Revista de Lingüística y Lenguas Aplicadas, 4, pp.25-35. Available at: http://dx.doi.org/10.4995/rlyla.2009.731
- 14. Chakraborty, A., Paranjape, B., Kakarla, S. and Ganguly, N., 2016. Stop Clickbait: Detecting and preventing clickbaits in online news media. In: Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. ASONAM '16. IEEE Press, pp.9-16. Available at: https://dl.acm.org/doi/10.5555/3192424.3192427

- 15. Davis, H. and McLeod, S.L., 2003. Why humans value sensational news: An evolutionary perspective. Evolution and Human Behavior, 24(3), pp.208-216. Available at: https://doi.org/10.1016/S1090-5138(03)00012-6
- 16. Dor, D., 2003. On newspaper headlines as relevance optimizers. Journal of Pragmatics, 35(5), pp.695-721. Available at: https://doi.org/10.1016/S0378-2166(02)00134-0
- 17. Hallman, P., 2016. All and every as quantity superlatives. In: Proceedings of SALT 26. Linguistic Society of America, pp.506-525. Available at: http://dx.doi.org/10.3765/salt.v26i0.3798
- 18. Hendriks Vettehen, P. and Kleemans, M., 2017. Proving the Obvious? What Sensationalism Contributes to the Time Spent on News Video. Electronic News, 12(2), pp.113-127. Available at: http://dx.doi.org/10.1177/1931243117739947
- Hendriks Vettehen, P. and Peeters, A., 2008. Explaining Effects of Sensationalism on Liking of Television News Stories: The Role of Emotional Arousal. Communication Research, 35(3), pp.319-338. Available at: http://dx.doi.org/10.1177/0093650208315960
- Hoffmana, S.J. and Justicz, V., 2016. Automatically quantifying the scientific quality and sensationalism of news records mentioning pandemics: validating a maximum entropy machinelearning model. Journal of Clinical Epidemiology, 75, pp.47-55. Available at: https://doi.org/10.1016/j.jclinepi.2015.12.010
- 21. Imran, A.A., Shovon, M.S.H. and Mridha, M.F., 2024. BaitBuster-Bangla: A comprehensive dataset for clickbait detection in Bangla with multi-feature and multi-modal analysis. Data in Brief, 53, p.110239. Available at: https://doi.org/10.1016/j.dib.2024.110239
- 22. Indurthi, V., Oota, S.R., Gupta, M. and Varma, V., 2018. Believe it or not! Identifying bizarre news in online news media. In: Proceedings of the ACM India Joint International Conference on Data Science and Management of Data. CODS-COMAD '18. Association for Computing Machinery, pp.257-264. Available at: https://dl.acm.org/doi/10.1145/3152494.3152524

- 23. Joy, S.S., Aishi, T.D., Nodi, N.T. and Rasel, A.A., 2023. BanglaClickBERT: Bangla Clickbait Detection from News Headlines using Domain Adaptive BanglaBERT and MLP Techniques. In: Proceedings of the 21st Annual Workshop of the Australasian Language Technology Association. Association for Computational Linguistics, pp.1-10. Available at: https://aclanthology.org/2023.alta-1.1/
- 24. Karoui, J., Benamara, F., Moriceau, V., Patti, V., Bosco, C. and Aussenac-Gilles, N., 2017.
 Exploring the Impact of Pragmatic Phenomena on Irony Detection in Tweets: A Multilingual
 Corpus Study. In: Proceedings of the 15th Conference of the European Chapter of the
 Association for Computational Linguistics: Volume 1, Long Papers. Association for
 Computational Linguistics, pp.262-272. Available at: http://dx.doi.org/10.18653/v1/E17-1025
- 25. Kleemans, M. and Hendriks Vettehen, P., 2009. Sensationalism in television news: A Review.
 In: R.P. Konig, P.W.M. Nelissen and F.J.M. Huysmans, eds. Meaningful media: Communication research on the social construction of reality. Ubbergen: Tandem Felix, pp.226-243. Available at: https://hdl.handle.net/2066/74717
- Liu, T., Yu, K., Wang, L., Zhang, X., Zhou, H. and Wu, X., 2022. Clickbait detection on WeChat: A deep model integrating semantic and syntactic information. Knowledge-Based Systems, 245, p.108605. Available at: https://doi.org/10.1016/j.knosys.2022.108605
- 27. Molek-Kozakowska, K., 2013. Towards a pragma-linguistic framework for the study of sensationalism in news headlines. Discourse & Communication, 7(2), pp.173-197. Available at: https://doi.org/10.1177/1750481312471668
- 28. Molina, M.D., Sundar, S.S., Rony, M.M.U., Hassan, N., Le, T. and Lee, D., 2021. Does Clickbait Actually Atract More Clicks? Three Clickbait. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. CHI '21. Association for Computing Machinery, pp.1-19. Available at: https://dl.acm.org/doi/10.1145/3411764.3445753

- 29. Oraby, S., Harrison, V., Reed, L., Hernandez, E., Riloff, E. and Walker, M., 2016. Creating and Characterizing a Diverse Corpus of Sarcasm in Dialogue. In: Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue. Association for Computational Linguistics, pp.31-41. Available at: https://doi.org/10.18653/v1/W16-3604
- 30. Sangwan, S.R. and Bhatia, M.P.S., 2020. D-BullyRumbler a safety rumble strip to resolve online denigration bullying using a hybrid flter-wrapper approach. Multimedia Systems, 28, pp.1987-2003. Available at: https://doi.org/10.1007/s00530-020-00661-w
- Singh, V. (1996). News Clickbait Dataset. Kaggle. Available at:
 https://www.kaggle.com/datasets/vikassingh1996/news-clickbait-dataset [Accessed 29 August 2024].
- 32. Uribe, R. and Gunter, B., 2007. Are 'Sensational' News Stories More Likely to Trigger Viewers' Emotions than Non-Sensational News Stories: A Content Analysis of British TV News. European Journal of Communication, 22(2), pp.207-228. Available at: http://dx.doi.org/10.1177/0267323107076770
- 33. Vista, A., 2014. Mass media, the 'sensational message', and metamorphic truths. Telematics and Informatics, 32(2), pp.416-423. Available at: https://doi.org/10.1016/j.tele.2014.05.005
- 34. Volkova, S., Shaffer, K., Jang, J.Y. and Hodas, N., 2017. Separating Facts from Fiction: Linguistic Models to Classify Suspicious and Trusted News Posts on Twitter. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Association for Computational Linguistics, pp.647-653. Available at: https://doi.org/10.18653/v1/P17-2102
- 35. William, A. and Sari, Y., 2020. CLICK-ID: A novel dataset for Indonesian clickbait headlines.

 Data in Brief, 32, p.106231. Available at: https://doi.org/10.1016/j.dib.2020.106231
- 36. Wuy, C., Wuz, F., Qiy, T. and Huang, Y., 2020. Clickbait Detection with Style-aware Title Modeling and Co-attention. In: Proceedings of the 19th Chinese National Conference on

- Computational Linguistics. Chinese Information Processing Society of China, pp.1143-1154.

 Available at: https://aclanthology.org/2020.ccl-1.106/
- 37. Yang, F., Mukherjee, A. and Dragut, E., 2017. Satirical News Detection and Analysis using Attention Mechanism and Linguistic Features. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, pp.1979-1989. Available at: https://doi.org/10.18653/v1/D17-1211
- 38. Zhang, C. and Clough, P.D., 2020. Investigating clickbait in Chinese social media: A study of WeChat. Online Social Networks and Media, 19, p.100095. Available at: https://doi.org/10.1016/j.osnem.2020.100095
- 39. Zheng, J., Yu, K. and Wu, X., 2021. A deep model based on Lure and Similarity for Adaptive Clickbait Detection. Knowledge-Based Systems, 214, p.106714. Available at: http://dx.doi.org/10.1016/j.knosys.2020.106714