Лавинно-стримерный переход

Пек Борис

Постановка задачи

- Обобщение результатов моделирования стримеров в газовой смеси азота и кислорода, полученных на семинарах в прошлом семестре.
- Рассмотрены модели стримера в однородном и неоднородном полях.

Общие параметры моделей

Газовая смесь: 76% N₂ и 24% O₂. В модели учитывались следующие реакции (всего 45):

Для азота:

- Упругое столкновение N_2 с электроном
- Ионизация молекулярного азота: 15.64 эВ
- Диссоциативная рекомбинация молекулярного иона в основное состояние: -5.85 эВ $(N_2^+ + e \to 2N)$
- Диссоциация молекулы азота: 9.8 эВ
- 8 реакций возбуждения электронных уровней [эВ]: 6.17, 7, 7.35, 7.36, 7.8, 8.16, 8.4, 8.55
- 8 реакций возбуждения колебательных уровней [эВ]: 0.29, 0.59, 0.88, 1.17, 1.47, 1.76, 2.06, 2.35

Ион-ионная рекомбинация:

•
$$O_2^+ + O^- \rightarrow O_2 + O$$

•
$$O_2^+ + O_2^- \rightarrow 2O_2^-$$

•
$$O_2^{-1} + N_2^{-1} \rightarrow O_2 + N_2$$

$$\bullet \ O^{\scriptscriptstyle -} + \ N_2^{\ +} \to O + \ N_2$$

Отлипание:

•
$$O + O^{-} \rightarrow O_{2} + e$$

•
$$0^{-} + O_{2}^{*} \rightarrow O_{2} + O + e$$

•
$$O_2 + O_2^- \rightarrow 2O_2 + e$$

•
$$O_2^* + O_2^- \rightarrow 2O_2 + e$$

Для кислорода:

- Упругое столкновение O₂ с электроном
- Ионизация молекулярного кислорода: 12.1 эВ
- Диссоциативная рекомбинация молекулярного иона в основное состояние: -6.97 эВ

$$(O_2^+ + e \rightarrow 2O)$$

- Диссоциация молекулы кислорода: 5.17 эВ $(O_2 + e \rightarrow 2O + e)$
- 5 реакций возбуждения электронных уровней [эВ]: 0.98, 1.63, 4, 6.17, 9.96
- 4 реакции возбуждения колебательных уровней [эВ]: 0.193, 0.383, 0.57, 0.754
- Прилипание: -0.5, 3.64 и -0.5 эВ

$$(2O_2 + e \rightarrow O_2 + O_2)$$

$$(O_2 + e \rightarrow O + O^-)$$

$$(O_2 + N_2 + e \rightarrow O_2^- + N_2)$$

Система уравнений

CFD-ACE – конечноэлементный пакет, решающий плоские, осесимметричные и трехмерные задачи.

Для решения задач о разрядных процессах в газах использовалась следующая система уравнений, решаемых совместно:

Уравнение Пуассона для электрического потенциала ф с учетом объемного заряда.

Уравнения Нернста-Планка для ионов, атомов и молекул. Y_i – массовая доля i-го типа частиц.

Кинетическое уравнение для электронов в приближении энергетического спектра.

Через функцию распределения по координатам и энергии f_0 выражается концентрация электронов $n_{\rm e}$

Функции источника кинетического уравнения для реакций ионизации, рекомбинации и возбуждения.

$$\Delta \varphi = \frac{1}{\varepsilon \varepsilon_0} \left(\sum_i q_i Y_i \frac{\rho_{\varepsilon a3}}{m_i} + q_e n_e \right)$$

$$\frac{\partial Y_i}{\partial t} + div(\mu_i Y_i \nabla \varphi - D_i \nabla Y_i) = S_i$$

$$\begin{cases} V\frac{\partial f_0}{\partial t} - \nabla \cdot \left[\chi \left(\nabla f_0 + \nabla \varphi \frac{\partial f_0}{\partial E} \right) \right] - \frac{\partial}{\partial E} \left[\chi \nabla \varphi \cdot \left(\nabla \varphi \frac{\partial f_0}{\partial E} + \nabla f_0 \right) \right] = VS \\ \vec{f}_1 = -\frac{V}{v} \nabla f_0 - \left(\nabla \varphi \right) \frac{V}{v} \frac{\partial f_0}{\partial E} \end{cases}$$
 дрейфовое
$$\chi = \frac{V^3}{3v}$$
 диффузионное
$$E = \frac{m_e V^2}{2e}$$

$$\begin{split} S_{ion} &= -\nu_{ion}(E) f_0(E, \vec{r}, t) + 2\nu_{ion}(2E + u_{ion}) f_0(2E + u_{ion}, \vec{r}, t) \\ S_{\text{det}} &= \delta(E) I_{\text{det}}(\vec{r}, t) \\ S_{rec} &= -\nu_{rec}(E) f_0(E, \vec{r}, t) \qquad S_{adh} = -\nu_{adh}(E) f_0(E, \vec{r}, t) \\ S_{exc} &= -\nu_{exc}(E) f_0(E, \vec{r}, t) + \nu_{exc}(E + u_{exc}) f_0(2E + u_{exc}, \vec{r}, t) \end{split}$$

Модели

В однородном поле

Размеры цилиндрической области:

- радиус 0.5 мм
- длина 1.02 мм

Температура атомов и молекул: 300 К.

Начальные условия:

- 10¹⁶ 1/м³ в небольшой • Концентрация электронов (10х20мкм) области возле катода.
- В остальной части модели начальная концентрация электронов нулевая.

Решено 2 задачи:

- U = 5 kB => E_{co} ≈ 49 kB/cm
- U = 10 kB => E_{co} ≈ 98 kB/cm

В неоднородном поле

Система электродов: сфера-сфера

Температура атомов и молекул: 300 К. Начальные условия аналогичны модели с однородным полем. Лавина и стример распространяются лишь в узкой области вблизи оси симметрии, и можно рассчитывать сектор круга вместо полного сечения.

$$\varphi(x,y) = U \cdot \left(\frac{R_1}{\sqrt{x^2 + y^2}} - 1\right)$$
 Аналитическая формула распределения потенциала от заряженной сферы.

от заряженной сферы.

Решено 2 задачи:

- $R_1 = 1 \text{ MM}, R_2 = 2.01 \text{ MM}, U = 10 \text{ kB} =>$ $E_{co} \approx 49.5 \text{ kB/cm}, \text{ K} \approx 2$
- $R_1 = 50$ мкм, $R_2 = 520$ мкм, U = 2 кВ => $E_{co} \approx 38 \text{ kB/cm}, \text{ K} \approx 10$

Здесь К – коэффициент неоднородности поля.

ГУ на ФР электронов по энергиям:

(1)
$$f_0(E) = \exp\left(-\frac{E}{0.1}\right)$$
 (2) $\frac{\partial f_0}{\partial n} = 0$

$$(2) \quad \frac{\partial f_0}{\partial n} = 0$$

Расчетные сетки

0.5 x 1.02 мм Элементов: 3358 Узлов: 3478

 R_1 = 50 мкм R_2 = 0.52 мм Элементов: 2142

Узлов: 2236

 $R_1 = 1$ мм $R_2 = 2.01$ мм Элементов:1491

Узлов: 1584

Концентрация электронов, распределения заряда и электрического поля

Концентрация электронов, распределения заряда и электрического поля (линейные графики вдоль оси симметрии)

Концентрация положительных ионов N_2^+ и O_2^+

Концентрация отрицательных ионов O_2^- и O^-

Концентрация ионов N_2^+ , O_2^+ , O_2^- и O_2^-

Интенсивности ионизации N_2 и O_2

Интенсивность ионизации N_2

Серия контурных графиков в разные моменты времени для более подробного анализа процесса лавинно-стримерного перехода.

Интенсивности реакций отлипания

U = 5 kB

Интенсивности реакций ионизации и отлипания

Интенсивность свечения

$$I = const \cdot \sum_{i} R_{i} E_{i}$$

I – интенсивность свечения [Вт/см 3]

i – номер реакции возбуждения

 R_i – интенсивность реакции возбуждения [кмоль/м 3 с]

 E_i – энергия реакции возбуждения [эВ]

const - размерная константа

const = 6.02e26*1.6e-19*1e-6

6.02e26 кмоль \rightarrow 1 1.6e-19 эВ \rightarrow Дж 1e-6 м³ \rightarrow см³

 E_i в инфракрасном диапазоне [эВ]: 0.193, 0.29, 0.383, 0.57, 0.59, 0.754, 0.88, 0.98

 E_i в оптическом диапазоне [эВ]: 1.17, 1.47, 1.63, 1.76

 E_i в ультрафиолетовом диапазоне [эВ]: 2.06, 2.35, 4, 6.17, 6.19, 7, 7.35, 7.36, 7.8, 8.16, 8.4, 8.55, 9.96, 11

Реакции перехода возбужденных частиц в основное состояние в модели не учитывались, поэтому для анализа используются реакции возбуждения.

Интенсивность ионизации N_2

Серия контурных графиков в разные моменты времени для подробного анализа процесса лавинно-стримерного перехода.

Интенсивность ионизации N_2

Распределения заряда и электрического поля

Интенсивность свечения

Концентрация электронов

U = 10 κB, K ≈ 2

Задача 3

Электрическое поле

Прорастание положительного стримера от анода к катоду.

Электрическое поле

Интенсивность свечения (видимый свет)

Концентрация электронов

Концентрация электронов

Объемный заряд

Электрическое поле

Электрическое поле

Интенсивность свечения

Выводы:

- Подробно рассмотрен процесс лавинно-стримерного перехода в рассчитанных моделях.
- Все стримеры, полученные в результате моделирования, являются либо положительными (катодонаправленными), либо присутствуют оба стримера, причем у отрицательного (анодонаправленного) стримера интенсивность реакций ионизации на два порядка меньше.
- У положительного стримера головка сужается в процессе прорастания, а у отрицательного

 расширяется.
- У положительного стримера есть четко выраженный плазменный канал, поле в котором сильно понижено.
- Скорость прорастания положительного стримера, образовавшегося в межэлектродном промежутке меньше скорости прорастания отраженного стримера, прорастающего от анода навстречу лавине. Из-за того, что в последнем случае концентрация свободных электронов в межэлектродном промежутке в направлении прорастания стримера значительно выше.