Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

ФАКУЛЬТЕТ АЭРОФИЗИКИ И КОСМИЧЕСКИХ ТЕХНОЛОГИЙ

Группа Б03-908

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ - 3

Численное вычисление интегралов

Выполнил:	/	/	/
	(nodnucb)	(∂ama)	
Агеев Рамиль Наильевич			

Долгопрудный 2021г.

Содержание

1	Усло	овие задачи	 	 	3
2	Teop	ретические сведения	 	 	3
	2.1	Подготовка к решению	 	 	3
	2.2	Общая Теория	 	 	3
	2.3	Метод Средних Прямоугольников	 	 	4
		Метод Правых Прямоугольников			
	2.5	Метод Трапеций	 	 	5
	2.6	Метод Симпсона	 	 	5
3	Отве	вет	 	 	5
4	Выво	вод	 	 	5

1 Условие задачи

Требуется найти значение интеграла вида:

$$\ln\left(1+x^{\frac{2}{3}}\right)/x\tag{1}$$

, на отрезке [a,b], где a=0,b=1. Заданная точность $\epsilon=10^{-4}$.

Решить требуется 4-мя методами:

- 1. Прямоугольный Средний;
- 2. Прямоугольный Правый;
- 3. Метод Трапеций;
- 4. Метод Симпсона.

2 Теоретические сведения

2.1 Подготовка к решению

Для начала стоит заметить, что в интеграле есть особая точка в a=0. Для того, чтобы избавиться от этой "неприятности" следует разделить интеграл на две части:

$$\int_{0}^{\delta} \ln{(1+x^{\frac{2}{3}})}/xdx \, \, \text{и} \int_{\delta}^{1} \ln{(1+x^{\frac{2}{3}})}/xdx$$

Первый интеграл с помощью разложения по Маклорену приводится упрощенному и там же находится нужный $\delta=10^{-6}/4$. И найденный интеграл равен 0.000059

Второй интеграл легко находится с помощью методов численного интегрирования, приведенными ниже.

2.2 Общая Теория

Для начала опишем общие переменные и концепции, которые будут использоваться в каждом методе.

 h_n — шаг интегрирования, который в рамках нашей задачи будет постоянен.

$$f_{n+\frac{1}{2}} = f(x + \frac{h_n}{2})$$

$$f_n = f(x_n)$$

$$f_{n+1} = f(x_{n+1})$$

$$I = \int_a^b x^2 dx$$

$$I = \sum_{n=0}^{N-1} \int_{x_n}^{x_{n+1}} f(x) dx$$

В концепции каждого метода применяется идея о том, чтобы разделить график функции на N частей, которые будут суммироваться с шагом h.

Во всех методах я пользовался шагом, определенным для метода средних прямоугольников $h=10^{-5}$, так как данный шаг по точности будет точно подходить и для других методов. Определил я его методом Рунге, который будет описан ниже. Причиной явился тот факт, что численно точно оказалось невозможным посчитать максимальные значения функции на данном отрезке. В связи с этим формулы для определения погрешностей, пройденные на занятиях, не удалось применить (но общий принцип также будет описан ниже).

Метод Рунге

Выбираем h и 2h, потом смотрим, чтобы разница оказалась меньше заданной точности.

$$I_{ ext{точный}}= ilde{I}_h+2^p*ch^4,$$
 обозначим за В
$$I_{ ext{точный}}= ilde{I}_{2h}+2^pch^4 \ | ilde{I}_{2h}- ilde{I}_h|pprox (2^p-1)ch^4 \ I_T- ilde{I}_hpprox rac{B}{2^p-1}$$

Формула оценки погрешностей для разных методов

$$|\tilde{I} - I| \le \frac{M_i * (b - a) * h}{2^p}$$

Где $M_i = \max |f'|$ на [a, b].

2.3 Метод Средних Прямоугольников

Формула и ответ

$$I = \sum_{n=0}^{N-1} h_n f_{n+\frac{1}{2}}$$

```
def aver_rectangle(f, h, a):
    n = int((b - a) / h)
    res = 0
    for i in range(n):
        res += (h * f.subs(x, (a + h/2) + i*h))
    return res
```

С помощью этого метода получили значение 1.23362

2.4 Метод Правых Прямоугольников

Формула и ответ

$$I = \sum_{n=0}^{N-1} h_n f_{n+1}$$

```
def right_rectangle(f, h, a):
    n = int((b - a) / h)
    res = 0
    for i in range(n):
```

```
res += (h * f.subs(x, a + i * h))
return res
```

С помощью этого метода получили значение 1.23353

2.5 Метод Трапеций

Формула и ответ

$$I = \sum_{n=0}^{N-1} \frac{h_n}{2} (f_{n+1} + f_n)$$

```
def trapezoidal(f, a, b, h):
    n = int((b - a) / h)
    result = 0.5*f.subs(x, a) + 0.5*f.subs(x, b)
    for i in range(n):
        result += f.subs(x, a + i*h)
    result *= h
    return result
```

С помощью этого метода получили значение 1.23366

2.6 Метод Симпсона

Формула и ответ

$$I = \sum_{n=0}^{N-1} \frac{h_n}{6} (f_{n+1} + 4f_{n+\frac{1}{2}} + f_n)$$

С помощью этого метода получили значение 1.23345

3 Ответ

В итоге, наиболее точным методом оказался Метод Симпсона (точное значение равно 1.2334).

4 Вывод

В данной задаче мы воспользовались формулой Маклорена для нахождения одной из частей интеграла и 4-мя численными методами интегрирования для нахождения второго. В каждом из методов получилось не выйти за рамки заданной точности, что можно считать успехом!