04 - Binomial model 01

Bayesian Statistics Spring 2022-2023

Josep Fortiana

Matemàtiques - Informàtica UB

Monday, March 06, 2023

04 - Binomial model 01

Estimating a probability

Which is the least informative prior?

04 - Binomial model 01

Estimating a probability

Which is the least informative prior?

Bayesian Bernoulli model

Sample: $X = (X_1, \ldots, X_n)$ iid $\sim Ber(\theta)$.

Estimate the probability $\theta \in \Theta = (0, 1)$.

Prior distribution for θ : if no previous information, assume Unif(0, 1):

$$p(\theta) = 1$$
, $0 < \theta < 1$.

Non-Informative Prior (NIP).

A family of prior distributions

More generally: prior pdf of θ is Beta(α , β):

$$p(t; \alpha, \beta) = \frac{1}{B(\alpha, \beta)} t^{\alpha-1} (1-t)^{\beta-1}, \quad 0 < t < 1,$$

where $B(\alpha, \beta)$, $\alpha > 0$, $\beta > 0$, is the Beta function.

In particular, Beta(1, 1) = Unif(0, 1).

J. Fortiana (Mat-Inf UB) 04 - Binomial model 01 2023-03-06

J. Fortiana (Mat-Inf UB) 04 - Binomial model 01 2023-03-06

J. Fortiana (Mat-Inf UB) 04 - Binomial model 01 2023-03-06 14 / 65

Likelihood

We observe n values $X_i = x_i$, $1 \le i \le n$.

The *likelihood* is the joint pmf of $X = (X_1, ..., X_n)$, conditional to a given θ , is:

$$p(x \mid \theta) = \theta^{n_1} (1 - \theta)^{n - n_1},$$

where $n_1 = \sum_{i=1}^{n} x_i$ is the absolute frequency of ones.

A function of the sufficient statistic, n_1 .

Marginal pmf of X

$$p(x) = \int_{\Theta} p(x \mid \theta) p(\theta) d\theta$$

$$= \int_{0}^{1} \frac{1}{B(\alpha, \beta)} t^{\alpha+n_{1}-1} (1-t)^{\beta+n-n_{1}-1} dt$$

$$= \frac{1}{B(\alpha, \beta)} B(\alpha+n_{1}, \beta+n-n_{1}).$$

Prior predictive pdf

p(x) is also called Prior predictive pmf of X.

Prior predictive pdf

p(x) is also called Prior predictive pmf of X.

Why?

Prior predictive pdf

p(x) is also called Prior predictive pmf of X.

Why?

p(x) averages $p(x \mid \theta)$ over all possible θ , each with a relative weight *proportional to the prior* $p(\theta)$.

The Beta-Binomial distribution

For real numbers α , $\beta > 0$, and integer n > 0, the pmf:

$$p(k; n, \alpha, \beta) = \binom{n}{k} \cdot \frac{B(\alpha + k, \beta + n - k)}{B(\alpha, \beta)},$$

defines the Beta-binomial distribution,

r.v. with support on the set of nonnnegative integers k such that 0 < k < n.

Moments of the Beta-Binomial distribution

For a r.v. $Y \sim \text{Beta-Binom}(n, \alpha, \beta)$

$$\mathsf{E}(Y) = n \cdot \frac{\alpha}{\alpha + \beta},$$

$$\operatorname{var}(Y) = n \cdot \frac{\alpha \beta (\alpha + \beta + n)}{(\alpha + \beta)^2 (\alpha + \beta + 1)}.$$

Posterior pdf of θ

Bayes' formula
$$\rightarrow p(\theta \mid x)$$

$$= \frac{p(x \mid \theta) p(\theta)}{f(x)}$$

$$= \frac{1}{B(\alpha + n_1, \beta + n - n_1)} \theta^{\alpha + n_1 - 1} (1 - \theta)^{\beta + n - n_1 - 1}.$$

A conjugate family

The resulting pdf is another Beta distribution,

Beta
$$(\alpha + n_1, \beta + n - n_1)$$
.

The pair

Bernoulli likelihood / Beta prior

is a conjugate pair.

Posterior expectation of θ

$$E[\theta \mid X = x] = \frac{\alpha + n_1}{\alpha + \beta + n}.$$

Can be written as a convex combination

$$\mathsf{E}[\theta \mid X = x] = \lambda \cdot \frac{n_1}{n} + (1 - \lambda) \cdot \frac{\alpha}{\alpha + \beta},$$

where
$$\lambda = \frac{n}{\alpha + \beta + n}$$
.

Posterior expectation of θ

$$\frac{n_1}{n}$$
 = empirical probability. $\frac{\alpha}{\alpha + \beta}$ = prior expectation.

Think of prior expectation as the result of a previous experiment, α successes out of $\alpha + \beta$ realizations.

Posterior expectation of θ

The coefficient in the convex combination:

$$\lambda = \frac{n}{\alpha + \beta + n}$$

is the ratio of sizes,

actually observed sample

vs. a previous "virtual" sample.

Posterior predictive distribution

The Posterior predictive distribution for a new observation \tilde{x} , given the observed x, is the average of the pmf $p(x \mid \theta)$ over all possible values of θ , where now relative weights of θ are given by the posterior pdf.

We integrate with respect to θ , the product of the pmf Binom (n, θ) times the posterior pdf Beta $(\alpha + x, \beta + n - x)$.

Posterior predictive distribution

The result is again a Beta-Binomial distribution:

$$\rho(\tilde{x}) = \frac{1}{B(\alpha + x, \beta + n - x)} \times B(\alpha + x + \tilde{x}, \beta + n - x + \tilde{n} - \tilde{x}) \begin{pmatrix} \tilde{n} \\ \tilde{x} \end{pmatrix}.$$

[To allow for the case when the new observation \tilde{x} comes from a different number \tilde{n} of Bernoulli experiment repetitions, $\tilde{x} \sim \text{Binom}(\tilde{n}, \theta)$.]

Summary: Beta-Binomial (Bernoulli) model

- ▶ Prior distribution of θ : A Beta pdf,
- ▶ Prior predictive of x: A Beta-Binomial pdf,
- ▶ Posterior of θ , given x: A Beta pdf,
- ▶ Posterior predictive of \tilde{x} , given x: A Beta-Binomial pdf.

04 - Binomial model 01

Estimating a probability

Which is the least informative prior?

How does choice of prior reflect on the posterior?

With a Bernoulli likelihood, it is not obvious that Unif(0, 1) is "the" Non-Informative Prior (NIP).

Beta priors, plus improper Beta distributions of the form:

$$p(\theta) \propto \theta^{\alpha-1} \cdot (1-\theta)^{\beta-1}, \qquad \alpha, \beta \in \mathbb{R}.$$

Zhu, Mu; Lu, Arthur Y. (2004), The Counter-Intuitive Non-informative Prior for the Bernoulli Family, Journal of Statistics Education, 12 (2).

Useful formulas (1)

With a Beta(α , β) prior pdf, the marginal pmf of x is a Beta-binomial:

$$p(x) = \frac{1}{B(\alpha, \beta)} B(\alpha + n_1, \beta + n - n_1),$$

where
$$n_1 = \sum_{i=1}^n x_i$$
.

Useful formulas (2)

The expectation and variance of $U \sim \text{Beta}(\alpha, \beta)$ are:

$$\mathsf{E}(\mathsf{U}) = \frac{\alpha}{\alpha + \beta},$$

$$var(U) = \frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}.$$

Useful formulas (3)

The posterior pdf of θ , given x:

$$p(\theta \mid x) = \frac{p(x \mid \theta) \cdot p(\theta)}{p(x)}$$

$$= \frac{1}{B(\alpha + n_1, \beta + n - n_1)} \theta^{\alpha + n_1 - 1} (1 - \theta)^{\beta + n - n_1 - 1},$$

is a Beta $(\alpha + n_1, \beta + n - n_1)$ distribution.

Posterior expectation and variance

For the posterior pdf, a Beta $(\alpha + n_1, \beta + n - n_1)$,

$$\mathsf{E}(\theta \mid x) = \frac{\alpha + n_1}{\alpha + \beta + n},$$

$$\operatorname{var}(\theta \mid x) = \frac{(\alpha + n_1)(\beta + n - n_1)}{(\alpha + \beta + n)^2(\alpha + \beta + n + 1)}.$$

NIP 1: The uniform law

$$p_1(heta) \sim \mathsf{Unif}[0,1] = \mathsf{Beta}(1,1).$$
 $\mathsf{E}(heta \mid x) = rac{n_1+1}{n+2},$ $\mathsf{var}(heta \mid x) = rac{(n_1+1)\,(n-n_1+1)}{(n+2)^2\,(n+3)}.$

NIP 2: Jeffreys' prior

$$p_2(\theta) \sim \text{Beta}(1/2, 1/2).$$

Drawback is, its appearance is not "non-informative": probability concentrates near 0 and 1.

J. Fortiana (Mat-Inf UB) 04 - Binomial model 01 2023-03-06 49 / 65

Probability density function of Jeffreys' prior

NIP 2: Jeffreys' prior

With Jeffreys' prior,

$$\mathsf{E}(\theta \mid x) = \frac{n_1 + 1/2}{n+1},$$
 $\mathsf{var}(\theta \mid x) = \frac{(n_1 + 1/2)(n - n_1 + 1/2)}{(n+1)^2(n+2)}.$

The Beta(c, c) subfamily

For the Beta subfamily with $\alpha = \beta = c$, where both Jeffreys' and uniform belong:

$$\mathsf{E}(\theta \mid \mathsf{x}) = \frac{n_1 + c}{n + 2c},$$

$$var(\theta \mid x) = \frac{(n_1 + c)(n - n_1 + c)}{(n + 2c)^2(n + 2c + 1)}.$$

The Beta(c, c) subfamily

A Beta(c, c) prior is equivalent to adding 2c virtual observations to the sample, c zeros and c ones.

Writing:
$$N = n + 2c$$
, $N_1 = n_1 + c$,
$$\mathsf{E}(\theta \mid x) = \frac{N_1}{N}, \qquad \mathsf{var}(\theta \mid x) = \frac{N_1 \left(N - N_1\right)}{N^2 \left(N + 1\right)}.$$

Comparing Jeffreys' and uniform prior

Jeffreys' prior is less influential than the uniform,

It meddles less in the experiment, contributing only one *virtual observation*, evenly distributed between 0 and 1,

The uniform adds two virtual observations, one of each.

Within this subfamily,

What happens with a very large or a very small c?

For c = 2, 3, 4, 5, 10, 20, 50,

If $c \to \infty$, the Beta(c, c) law tends to a degenerate (constant) distribution, with:

$$P\{\theta = 1/2\} = 1.$$

Then the posterior is this same degenerate law.

In agreement with the interpretation above, this is the *dogmatic estimator.*

The *a priori* information is so strong that it overrules any experimental evidence.

For c = 1, 0.995, 0.95,

In the opposite direction, if $c \to 0$, the less influential prior should be the limit c = 0,

$$p(\theta) \propto \theta^{-1} \cdot (1-\theta)^{-1}, \quad \theta \in (0,1),$$

for which,

$$E(\theta \mid x) = \frac{n_1}{n} = f_1$$
, relative frequency of ones,

The classical ML estimator.

Haldane's prior

This Beta(0, 0) pdf can be derived by applying the change of variable formula to the (improper) uniform law:

$$p(\eta) = 1, \quad \eta \in (-\infty, \infty),$$

for the log-odds ratio $\eta = \log\left(\frac{\theta}{1-\theta}\right)$, the natural Bernoulli parameter (as a regular exponential family).

For
$$c=0$$
,
$$\mathsf{var}(\theta\mid x) = \frac{n_1\left(n-n_1\right)}{n^2\left(n+1\right)} = \frac{1}{n+1}f_1(1-f_1).$$

Smaller than $var_{\theta}(f_1) = \frac{1}{n} \theta (1 - \theta)$, the CR bound. !?

Not a contradiction, the variance of an estimator $\hat{\theta}(x)$ and the posterior variance of the parameter θ itself are entirely different concepts.

The $c \to 0$ limit, Beta(0, 0), is the discrete law:

$$P[\theta = 0] = P[\theta = 1] = 1/2,$$

In a sense, the opposite case to setting P = 1 at θ = 0.5: now there is a maximum indeterminacy between the two extreme possible θ values.

Summary

Jeffreys' prior should appear as reasonably non informative, the *aurea mediocritas* between both "radical" priors.