CISC 372 Advanced Data Analytics L7 – Decision Tree

https://l1nna.com/372

Last week

- Underfitting vs. Overfitting
- Hyper-parameter tuning & Experimental Protocol
- KDD Process
 - Iterative
 - Data lifecycle
- Data Attributes
 - Numeric/Nominal/Binominal/Ordinal
- Data Types:
 - Relational records
 - Data Metric
 - Document Data
 - Graph Data
 - Structured vs unstructured data
- Data Characteristics
 - Dimensionality/Sparsity
- Data Preprocessing
 - Normalization/Standardization/Encoding/OOV/Discretization/

Last Week

- Ensemble Method
 - Bias-Variance decomposition
 - Bagging
 - Boosting

Evaluating Classification Methods

- Accuracy
 - classifier accuracy: predicting class label
 - predictor accuracy: guessing value of predicted attributes
- Speed (efficiency)
 - time to construct the model (training time)
 - time to use the model (classification/prediction time)
- Robustness: handling noise and missing values
- Scalability: efficiency in disk-resident databases
- Interpretability
 - knowledge and insight provided by the model
- Other measures, e.g., goodness of rules, such as decision tree size or compactness of classification rules

Decision Tree Induction: Training Dataset

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Decision Tree for Classification

A Magical Black Box

		Data	ı table	Class Attrib
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Output: A Decision Tree for "buys_computer"

Output: A Decision Tree for "buys computer"

Output: A Decision Tree for "buys computer"

Output: A Decision Tree for "buys_computer"

Output: A Decision Tree for "buys computer"

Output: A Decision Tree for "buys_computer"

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Training examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

What is in the box?

The chosen attribute should carry **more information than** the others w.r.t. the **class attribute**.

Then how can we measure information?

Entropy – a measure of disorder

Source: http://www.organizingfabulously.com/blog/2015/03/02/messy-vs-tidy-desks

buys_computer
yes
no
yes
yes
no
no
yes
yes
yes
no
no
no
yes
yes

buys_computer
yes

buys_computer
yes
no
yes
yes
no
no
yes
yes
yes
no
no
no
yes
yes

buys_computer
no
no
no
yes
no
yes
no

We need a quantitative measure of information (i.e. disorder).

Logarithm

How many of one number do we multiply to get another number?

Example: How many 2s do we multiply to get 8?

Answer: $2 \times 2 \times 2 = 8$, so we needed to multiply 3 of the 2s to get 8

So the logarithm to base 2 of 8 is 3

$$a^{\times} = y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

$$10^? = 10000$$

$$\log_{10}(10000) = 4 = \log(10000)$$

$$log_x(y) = \frac{log_{10}(y)}{log_{10}(x)} = \frac{log(y)}{log(x)}$$

$$\log_2(32) = \frac{\log(32)}{\log(2)} = 5$$

$$\log(1) = 0$$

$$\log(0) \text{ non-existed}$$

Entropy – a measure of disorder (impurity in class attribute)

Information needed (i.e. entropy) to classify a random record in D

m is all the unique values for the *class attribute*

The probability of seeing *i* $Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$

Loop for each unique value i

Binominal class attribute: 'Yes' or 'No'

Let:

- x denotes the count of 'Yes'
- y denotes the count of 'No'

$$p('yes') = \frac{x}{x+y}$$
 $p('no') = \frac{y}{x+y}$

$$Info(D) = -\left[p('yes')\log_2(p('yes')) + p('no')\log_2(p('no'))\right]$$

$$Info(D) = I(x,y) = -\frac{x}{x+y}\log_2\left(\frac{x}{x+y}\right) - \frac{y}{x+y}\log_2\left(\frac{y}{x+y}\right)$$

Entropy – a measure of disorder (impurity in class attribute)

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

$$Info(D) = I(x,y)$$

$$= -\frac{x}{x+y} \log_2\left(\frac{x}{x+y}\right) - \frac{y}{x+y} \log_2\left(\frac{y}{x+y}\right)$$

buys_co	omputer
y€	es
ye	es
ye	es
ye	es

buys_computer
no

$$x = 14, y = 0$$

$$Info(D) = I(14,0) = -\frac{14}{14}\log_2(\frac{14}{14}) - \frac{0}{14}\log_2(\frac{0}{14}) = -1 \times 0 - 0 \times 0 = 0$$

Entropy – a measure of disorder (impurity in class attribute)

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

$$Info(D) = I(x,y)$$

$$= -\frac{x}{x+y} \log_2\left(\frac{x}{x+y}\right) - \frac{y}{x+y} \log_2\left(\frac{y}{x+y}\right)$$

$$Info(D) = I(7,7) = -\frac{7}{14}\log_2(\frac{7}{14}) - \frac{7}{14}\log_2(\frac{7}{14})$$
$$= (-0.5 \times \log_2 0.5) - (0.5 \times \log_2 0.5) = (-0.5 \times -1) - (0.5 \times -1) = 1$$

buys_computer	buys_computer
yes	no
no	no
yes	no
yes	yes
no	yes
no	yes
yes	yes
yes	yes
yes	yes
no	yes
no	yes
no	no
yes	yes
no	no

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14})$$

$$= (-0.643 \times \log_2 0.643) - (0.357 \times \log_2 0.357)$$

$$=(-0.643\times-0.637)-(0.357\times-1.485)$$

$$=0.410 - (-0.531) = 0.940$$

Conditional Entropy (Weighted Average)

age		buys_computer
<=30		no
<=30		no
<=30	- 1	no
<=30	- 1	yes
<=30		yes

age		buys_computer
3140	:	yes
3140	:	yes
3140	:	yes
3140		yes

age		buys_computer
>40	- 1	no
>40	- 1	no
>40	- 1	no
>40		yes
>40		yes

Conditional Entropy (Weighted Average)

age		buys_computer
<=30		no
<=30		no
<=30	- 1	no
<=30	- 1	yes
<=30		yes

age		buys_computer
3140	:	yes
3140	:	yes
3140		yes
3140		yes

age	 buys_computer
>40	 no
>40	 no
>40	 no
>40	 yes
>40	 yes

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

age	yes	no	total	I(yes,no)
<=30	2	3	5	I(2,3)=0.971
3140	4	0	4	I(4,0)=0
>40	3	2	5	I(2,3)=0.971

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$$

$$+\frac{5}{14}I(3,2) = 0.694$$

$$+\frac{5}{14}I(3,2) = 0.694$$
 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's.

Information Gain

age		buys_computer
<=30		no
<=30		no
<=30	- 1	no
<=30		yes
<=30		yes

age		buys_computer
3140		yes
3140	:	yes
3140		yes
3140		yes

age	 buys_computer
>40	 no
>40	 no
>40	 no
>40	 yes
>40	 yes

Entropy (information need) before splitting

Entropy (information needed) after splitting with attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

The amount of reduced entropy if we split on attribute **A**.

i.e. the amount of information we can gain from attribute age w.r.t. buys_computers.

 buys_computer
 no
 no
 no
 yes
 no
 yes
 no

Information Gain

age	yes	no	total	I(yes,no)
Any	တ	5	14	0.94
<=30	2	3	5	0.971
3140	4	0	4	0
>40	3	2		0.971

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

$$Info(D) = I(x, y)$$

$$= -\frac{x}{x+y} \log_2\left(\frac{x}{x+y}\right) - \frac{y}{x+y} \log_2\left(\frac{y}{x+y}\right)$$

$$Info_A(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j)$$

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14})$$

$$= 0.410 - (-0.531) = 0.940$$

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$$

$$+\frac{5}{14}I(3,2) = 0.694$$

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

What is in the box?

Class Attribute Data table income student credit_rating buys_computer age <=30 fair high no no <=30 high excellent BOX no no 31...40 fair high yes no fair >40 medium no yes >40 fair low yes yes >40 low excellent yes no 31...40 low excellent yes yes fair <=30 medium no no <=30 fair low yes yes >40 medium fair yes Calculate information gain for each yes <=30 medium excellent yes yes feature. 31...40 medium excellent no yes 31...40 high fair yes yes Pick the feature that has highest >40 excellent medium no no information gain.

A Decision Tree for "buys computer" (1st level)

$$I(x, y) = -\frac{x}{x+y} \log_2(\frac{x}{x+y}) - \frac{y}{x+y} \log_2(\frac{y}{x+y})$$

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$$

$$+\frac{5}{14}I(3,2) = 0.694$$

$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0$.940				
14 14 14	age	income	student	credit_rating	buys_computer
5 4	<=30	high	no	fair	no
$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$	<=30	high	no	excellent	no
14 14 14	3140	high	no	fair	yes
	>40	medium	no	fair	yes
5	>40	low	yes	fair	yes
+-I(3,2)=0.694	>40	low	yes	excellent	no
$+\frac{5}{14}I(3,2) = 0.694$ $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3	3140	low	yes	excellent	yes
$\frac{5}{100}$ $\frac{1}{100}$ $\frac{1}$	<=30	medium	no	fair	no
$-1(2,3)$ means age \sim 30 mas 3 out of	<=30	low	yes	fair	yes
14	>40	medium	yes	fair	yes
14 samples, with 2 yes es and 3	<=30	medium	yes	excellent	yes
	3140	medium	no	excellent	yes
no's.	3140	high	yes	fair	yes
	>40	medium	no	excellent	no

$Gain(age) = Info(D) - Info_{age}$	$_{e}(D) = 0.246$
------------------------------------	-------------------

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit_rating) = 0.048$$

age	yes	no	I(yes,no)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

A Decision Tree for "buys_computer" (2nd level)

	age	•	incom	е	studen	t credit_rating	buys_computer
<=30 I		high		no	fair	no	
	<=30		high		no	excellent	no
	314	0	high		no	fair	yes
	>40		mediur	n	no	fair	yes
	>40		low		yes	fair	yes
	>40		low		yes	excellent	no
	314	0	low y		yes	yes excellent	yes
	<=30		mediur	n	no	fair	no
	<=30		low		yes	fair	yes
	>40		mediur	n	yes	fair	yes
	<=30		mediur	n	yes	excellent	yes
	314	0	mediur	n	no	excellent	yes
	314	0	high		yes	fair	yes
	>40		mediur	n	no	excellent	no
2	age i		come	st	udent	credit_rating	buys_computer
=;	30	hiç	gh	n no		fair	no
=;	30	hiç	gh		no	excellent	no

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
<=30	medium	yes	excellent	yes

income	yes	no	I(yes,no)
low	1	0	0
medium	1	1	1
high	0	2	0

A Decision Tree for "buys_computer" (2nd level)

Info.	(D[age]	<= 30]) =	= ()
III) O student	Dlage	 30]) -	- 0

$$Info_{credit_rating}(D[age \le 30])$$

$$= \frac{3}{5}I(1,2) + \frac{2}{5}I(1,1) = \frac{3}{5} \times 0.918 + \frac{2}{5} \times 1 = 0.951$$
student yes no l(yes,no)
yes 2 0 0
fair

age	income	student	credit_rating	buys_compute
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
<=30	medium	yes	excellent	yes

credit_rating	yes	no	I(yes,no)
fair	1	2	0.918
exceller	1	1	1

A Decision Tree for "buys_computer" (2nd level)

$$Info_{income}(D[age \le 30]) = 0.4$$
 $Gain(income) = 0.971 - 0.4 = 0.571$ $Info_{student}(D[age \le 30]) = 0$ $Gain(student) = 0.971 - 0 = 0.971$

$$Info_{credit_rating} (D[age \le 30]) = 0.951 \frac{Gain(credit_rating)}{Gain(credit_rating)} = 0.971 - 0.951 = 0.02$$

buys_computer

no

no

yes

yes

yes

no

yes

no

yes

yes

yes

yes

yes

no

buys computer

no

no

no

yes

yes

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples

Overfitting and Tree Pruning

- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"