

Department of Computer Science

CS1002 – Programming Fundamentals FALL 2021

Instructor Name: Aamina Batool TA Name: Salman Muzammil

Email address: Amina.batool@nu.edu.pk Email address: limailto:line.nu.edu.pk

Office Location/Number: M-107
Office Hours: TBA

Course Information

Program: BS (CS) Credit Hours: 3 + 1 (Lab) Course Type: Core

Class Meeting Time: 1:00 pm – 2:20 pm (Monday & Wednesday)

Class Venue: CS-11

Course Description/Objectives/Goals:

To introduce the notion of algorithms.

To develop problem solving and logic building skills in students.

• To introduce the basic concepts of programming in C++, including basic data types, expressions, iterations, functions and arrays.

Course Learning Outcomes (CLOs):

At the end of the course students will be able to:	Domain	BT* Level
Understand basic problem solving steps and logic constructs	С	2
Apply basic programming concepts	С	3
Design and implement algorithms to solve real world problems and should be able to translate a problem statement into pseudo-code/C++ code	С	3

^{*} BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective domain

Bloom's taxonomy Levels: 1. Knowledge, 2. Comprehension, 3. Application, 4. Analysis, 5. Synthesis, 6. Evaluation

Course Textbook

- 1. C++ Programming: Program Design Including Data Structures, by D. S. Malik (8th Edition)
- 2. C++: How to Program? by Deitel & Deitel (9th Edition)

Additional references and books related to the course:

- 1. Theory and Problems of Programming with C++ by John R. Hubbard, 2nd Edition
- 2. Programming and Problem Solving with C++, Nell Dale
- 3. www.learncpp.com

Tentative Weekly Schedule

Terrialive weekiy		1
Week 1	Lecture 1	Lecture 2
Problem Solving and	Course introduction and logistics	A brief introduction of programming
Programming		languages and the idea of compiling,
Introduction	Introduction to Computers,	linking and loading.
	Basic Computer architecture with an	
	overview of memory as consisting of	Introduction of some fundamental
	addressable storage locations for keeping	operations provided by a Basic/C++ like
	data and program.	programming language with/without
		getting into exact C++ program structure
	A program as a sequence of instructions and	details.
	the Fetch-Decode-Execute cycle	
Week 2	Lecture 3	Lecture 4
Simple C++	The structure of a C++ program with a single	Introduction of logical operations and the
Programs	main function and very brief explanation of	use of logical operation for conditional
	#include and named spaces.	execution (IF statements).
	A high level description of some built in C++	C++ Operators (Arithmetic, Logical, and
	datatypes (int, float, double, char, bool),	Relational) Use of operators for different
	variables declaration, assignment operator,	datatypes.
	input, output.	
		Translating programs written using
		pseudocode or a flowchart into working
		C++code.
Week 3	Lecture 5	Lacture 6
		Lecture 6
Simple C++	Translating programs written using	Programming exercises.
Programs	pseudocode or a flowchart into working	Writing clean code using indentation and
	C++code continued.	comments.
	A basic introduction of operator precedence	
	and writing complex expressions as a	
	sequence of simple intermediate expressions.	
	sequence of simple intermediate expressions.	
Week 4	Lecture 7	Lecture 8
Simple C++	Using a Nested selection structure.	Programs with nested if/else statements
Programs If/Else	Programs with if/else statements	
Week F	Lecture 9	Locking 10
Week 5		Lecture 10
Repetition	Repetitions using while, for and do while	Problem solving using repetition structures
Structures(Loops)	Lastina 11	Lastura 13
Week 6	Lecture 11	Lecture 12
Nested Control	Problem solving nested repetition structures	Problem solving using nested repetition
Structures	Lecture 13	structures
Week 7 Functions		Lecture 14
FullCuolis	Function definition and calling:	Function Parameters: Pass by value and
	parameters and return types;	pass by reference. Stack rolling and
	Global and local variables scope and life time.	unrolling.
Week 8	Lecture 15	Lecture 16
Functions	Top-Down Design of a program and its	Function Overloading.
	implementation using functions	Functions with Default Parameters.
	Built-in functions	

Week 9	Lecture 17			
File Handling	I/O from simple text Files			
Week 9	Lecture 18			
Arrays Introduction	Define and use fixed sized arrays.			
and Repetition	Array organization in memory and element access using Array name and index.			
structure	Initialization using member initializer list, and by using loops.			
Week 10	Lecture 19	Lecture 20		
Arrays Processing	Printing data, taking input,	Passing arrays to functions.		
	Processing by index and by elements	Design different functions for input,		
	Find Min, Max, Avg, Equilibrium Index	output, search, reverse,		
	Reverse: All Elements, odd/eve elements and	Shifting and Rotation of elements: right		
	indices	and left		
	Search: Linear and Binary	Insert and delete elements from ordered		
March 44	La store 24	list using shifting.		
Week 11	Lecture 21 Passing arrays to functions use of const.	Lecture 22		
Arrays Processing	Sorting: Bubble Sort, Selection Sort	Sorting: Insertion Sort, Even/odd Sort Merging sorted arrays.		
	Softing. Bubble Soft, Selection Soft	Application: Sets, Union, Intersection,		
		difference.		
Week 12	Lecture 23	Lecture 24		
CStrings and	I/O from simple text Files in arrays.	Functions design:		
character Arrays	Difference between Null terminated CStrings	Find String length, Compare strings,		
Processing	and character arrays.	Find substring and replace,		
	Storage of CStrings in character arrays and	Calculate frequency of specific characters		
	aggregate I/O.	Remove specific characters.		
Week 13	Lecture 25	Lecture 26		
2D Arrays	Using built in CSrting functions.	Application: Store and process Students		
Processing	Use of built-in rand () function.	Quiz marks.		
	2-Dimensional Array and how it is organized	Find Min, Max, Avg, column and row wise.		
	in memory in row/col major order.	Sorting: row wise or column wise,		
	Initialization using member initializer list, and	complete array by specific column or row.		
	by using loops.			
	I/O and processing of elements in row/col			
Week 14	major order. Lecture 27	Lecture 28		
2D Arrays	Passing 2D arrays to functions: Complete,	Application: Matrices storage and		
Processing	individual rows, or elements.	processing		
	Processing diagonals: reverse elements, print	Addition, Subtraction, Multiplication,		
	data of whole array.	Transpose,		
	,	Check for Upper and lower triangular.		
		Use of graphic libraries functions.		
		Designing header files for user defined		
		functions.		
Week 15	Lecture 29			
2D CStrings	Storage and processing of CStrings in 2D Arrays	5.		
Processing	Bitwise operators			
	Binary files I/O			
	Application: Data compression.			
Week 16	Lecture 30	Lecture 31		
Structures	Introduction and using structs	Arrays of Structs,		
	Passing and returning from functions	Application of structs		
Final Exam				

(Tentative) Grading Criteria:

1. Assignments + Homework (10 %)

Quizzes (10 %)
 Midterms (25 %)
 Project (10 %)
 Final Exam (45 %)

- Grading scheme for this course is **Absolute** under application of CS department's grading policies.
- o Minimum requirement to pass this course is to obtain at least 50% absolute marks

Course Policies:

- All assignments and homework must be done individually.
- o Late Submissions of assignments will not be accepted.
- No re-take of quizzes.
- Plagiarism in any work (Quiz, Assignment, Midterms, Project and Final Exam) from any source, Internet or a Student will result in deduction of absolute marks or F grade.
- Minimum 80% attendance is required for appearing in the Final exams.