Relational Database Design

Relational Database Design

- First Normal Form
- Pitfalls in Relational Database Design
- Functional Dependencies
- Decomposition
- Boyce-Codd Normal Form
- Third Normal Form
- Multivalued Dependencies and Fourth Normal Form
- Overall Database Design Process

First Normal Form

- Domain is atomic if its elements are considered to be indivisible units
 - Examples of non-atomic domains:
 - Set of names, composite attributes
 - Identification numbers like CS101 that can be broken up into parts
- A relational schema R is in first normal form if the domains of all attributes of R are atomic
- Non-atomic values complicate storage and encourage redundant (repeated) storage of data
 - E.g. Set of accounts stored with each customer, and set of owners stored with each account

First Normal Form (Contd.)

• Atomicity is actually a property of how the elements of the domain are used.

For example:

- Strings would normally be considered indivisible
- Suppose that students are given roll numbers which are strings of the form *CSO012* or *EE1127*
- If the first two characters are extracted to find the department, the domain of roll numbers is not atomic

Pitfalls in Relational Database Design

- Relational database design requires that we find a "good" collection of relation schemas. A bad design may lead to
 - Repetition of Information.
 - Inability to represent certain information.
- Design Goals:
 - Avoid redundant data
 - Ensure that relationships among attributes are represented
 - Facilitate the checking of updates for violation of database integrity constraints.

Example

Consider the relation schema:

lending-schema = (branch-name, branch-city, assets, customer-name, loan-number, amount)

			customer-	loan-	
branch-name	branch-city	assets	name	number	amount
Downtown	Brooklyn	9000000	Jones	L-17	1000
Redwood	Palo Alto	2100000	Smith	L-23	2000
Perryridge	Horseneck	1700000	Hayes	L-15	1500
Downtown	Brooklyn	9000000	Jackson	L-14	1500

Redundancy:

- Data for branch-name, branch-city, assets are repeated for each loan
- Complicates updating, introducing possibility of inconsistency of assets value

Null values

- Cannot store information about a branch if no loans exist
- Can use null values, but they are difficult to handle.

Redundancy - Drawbacks

branch-name	branch-city	assets	customer- name	loan- number	amount
Downtown	Brooklyn	9000000	Jones	L-17	1000
Redwood	Palo Alto	2100000	Smith	L-23	2000
Perryridge	Horseneck	1700000	Hayes	L-15	1500
Downtown	Brooklyn	9000000	Jackson	L-14	1500

- Redundancy Storage: Downtown repeated
- **Update Anomalies:** update assets where customer-name=Jones

• Insertion Anomalies: without loan-number cannot insert

• Deletion Anomalies: delete Smith record

Decomposition

• Decompose the relation schema *Lending-schema* into:

```
Branch-schema = (branch-name, branch-city, assets)

Loan-info-schema = (customer-name, loan-number, branch-name, amount)
```

• All attributes of an original schema (R) must appear in the decomposition (R_1 , R_2):

$$R = R_1 \cup R_2$$

• Lossless-join decomposition: instances For all possible relations r on schema R

$$r = \prod_{R1} (r) \bowtie \prod_{R2} (r)$$

• Dependency-Preservation: constraints

Example of Non Lossless-Join Decomposition

• Decomposition of R = (A, B) $R_2 = (A)$ $R_2 = (B)$

$$\prod_{A}(r)\bowtie\prod_{B}(r)$$

Decomposition of R = (A, B, C): $R_2 = (A, B)$ and $R_2 = (B, C)$

Α	В	С

Goal — Devise a Theory for the Following

- Decide whether a particular relation R is in "good" form.
- In the case that a relation R is not in "good" form, decompose it into a set of relations $\{R_1, R_2, ..., R_n\}$ such that
 - each relation is in good form
 - the decomposition is a lossless-join decomposition
- Our theory is based on:
 - functional dependencies
 - multivalued dependencies

Functional Dependencies

- Constraints on the set of legal relations.
- Require that the value for a certain set of attributes determines uniquely the value for another set of attributes.
- A functional dependency is a generalization of the notion of a *key*.

Functional Dependencies (Cont.)

- Let R be a relation schema $\alpha \subseteq R$ and $\beta \subseteq R$
- Functional dependency $\alpha \to \beta$ holds on R if and only if for any legal relations r(R), whenever any two tuples t_1 and t_2 of r agree on the attributes α , they also agree on the attributes β . That is, $t_1[\alpha] = t_2[\alpha] \implies t_1[\beta] = t_2[\beta]$
- Example: Consider r(A, B) with the following instance of r.

• On this instance, $A \to B$ does **NOT** hold, but $B \to A$ does hold.

Functional Dependencies

• Example: R = (A, B, C, D)

Α	В	С	D

Functional Dependencies (Cont.)

- *K* is a super-key for a relation schema *R* if and only if $K \to R$
- K is a candidate key for R if and only if
 - $K \rightarrow R$, and
 - for no $\alpha \subset K$, $\alpha \to R$
- Functional dependencies allow us to express constraints that cannot be expressed using superkeys.

Consider the schema:

```
Loan-info-schema = (customer-name, loan-number, branch-name, amount)
```

We expect this set of functional dependencies to hold:

```
loan-number \rightarrow amount loan-number \rightarrow branch-name
```

but would not expect the following to hold:

```
loan-number \rightarrow customer-name
```

Use of Functional Dependencies

- We use functional dependencies to:
 - test relations to see if they are legal under a given set of functional dependencies.
 - If a relation *r* is legal under a set *F* of functional dependencies, we say that *r* satisfies *F*.
 - specify constraints on the set of legal relations
 - We say that *F* holds on *R* if all legal relations on *R* satisfy the set of functional dependencies *F*.
- **Note:** A specific instance of a relation schema may satisfy a functional dependency even if the functional dependency does not hold on all legal instances.

For example, a specific instance of *Loan-schema* may, by chance, satisfy $loan-number \rightarrow customer-name$

Functional Dependencies (Cont.)

- A functional dependency is trivial if it is satisfied by all instances of a relation
 - *E.g.*
 - customer-name, loan-number \rightarrow customer-name
 - customer-name \rightarrow customer-name
 - In general, $\alpha \to \beta$ is trivial if $\beta \subseteq \alpha$

BREAK

Closure of a Set of Functional Dependencies

- Given a set *F*, set of functional dependencies, there are certain other functional dependencies that are logically implied by *F*.
 - E.g. If $A \to B$ and $B \to C$, then we can infer that $A \to C$
- Set of all functional dependencies logically implied by *F* is the *closure* of *F*.
- We denote the *closure* of F by F^+ .
- We can find all of F⁺ by applying Armstrong's Axioms:
 - if $\beta \subseteq \alpha$, then $\alpha \to \beta$ (reflexivity)
 - if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$ (augmentation)
 - if $\alpha \to \beta$, and $\beta \to \gamma$, then $\alpha \to \gamma$ (transitivity)
- These rules are
 - sound (generate only functional dependencies that actually hold) and
 - complete (generate all functional dependencies that hold).

Example

•
$$R = (A, B, C, G, H, I)$$

 $F = \{A \rightarrow B$
 $A \rightarrow C$
 $CG \rightarrow H$
 $CG \rightarrow I$
 $B \rightarrow H \}$

- some members of F^+
 - $\bullet A \longrightarrow H$
 - by transitivity from $A \rightarrow B$ and $B \rightarrow H$
 - \bullet $AG \rightarrow I$
 - by augmenting $A \to C$ with G, to get $AG \to CG$ and then transitivity with $CG \to I$
 - $CG \rightarrow HI$
 - from $CG \rightarrow H$ and $CG \rightarrow I$: "union rule" can be inferred from
 - definition of functional dependencies, or
 - Augmentation of $CG \rightarrow I$ to infer $CG \rightarrow CGI$, augmentation of $CG \rightarrow H$ to infer $CGI \rightarrow HI$, and then transitivity

Procedure for Computing F⁺

• To compute the closure of a set of functional dependencies F:

```
• F^+ = F

repeat

for each functional dependency f in F^+

apply reflexivity and augmentation rules on f

add the resulting functional dependencies to F^+

for each pair of functional dependencies f_1 and f_2 in F^+

if f_1 and f_2 can be combined using transitivity

then add the resulting functional dependency to F^+

until F^+ does not change any further
```

NOTE: We will see an alternative procedure for this task later

Closure of Functional Dependencies (Cont.)

- We can further simplify manual computation of F^+ by using the following additional rules.
 - If $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds, then $\alpha \to \beta \gamma$ holds (union)
 - If $\alpha \to \beta \gamma$ holds, then $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds (decomposition)
 - If $\alpha \to \beta$ holds and $\gamma \not \beta \to \delta$ holds, then $\alpha \gamma \to \delta$ holds (pseudotransitivity)

The above rules can be inferred from Armstrong's axioms.

Closure of Attribute Sets

• Given a set of attributes α , define the *closure* of α under F (denoted by α^+) as the set of attributes that are functionally determined by α under F:

$$\alpha \to \beta$$
 is in $F^+ \iff \beta \subseteq \alpha^+$

• Algorithm to compute α^+ , the closure of α under F

```
result := \alpha;

while (changes to result) do

for each \beta \rightarrow \gamma in F do

begin

if \beta \subseteq result then result := result \cup \gamma

end
```

Example of Attribute Set Closure

- R = (A, B, C, G, H, I)
- $F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H \}$
- \bullet $(AG)^+$
 - 1. result = AG
 - 2. result = ABCG $(A \rightarrow C \text{ and } A \rightarrow B)$
 - 3. result = ABCGH $(CG \rightarrow H \text{ and } CG \subseteq AGBC)$
 - 4. result = ABCGHI $(CG \rightarrow I \text{ and } CG \subseteq AGBCH)$

- Is AG a candidate key?
 - 1. Is AG a super key?
 - 1. Does $AG \rightarrow R$?
 - 2. Is any subset of AG a superkey?
 - 1. Does $A^+ \rightarrow R$?
 - 2. Does $G^+ \to R$?

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

- Testing for superkey:
 - To test if α is a superkey, we compute α^{+} , and check if α^{+} contains all attributes of R.
- Testing functional dependencies
 - To check if a functional dependency $\alpha \to \beta$ holds (or, in other words, is in F^+), just check if $\beta \subseteq \alpha^+$.
 - That is, we compute α^+ by using attribute closure, and then check if it contains β .
 - Is a simple and cheap test, and very useful
- Computing closure of F
 - For each $\gamma \subseteq R$, we find the closure γ^+ , and for each $S \subseteq \gamma^+$, we output a functional dependency $\gamma \to S$.

THANK YOU

Reference (Textbook):

 Silberschatz, H. Korth & S. Sudarshan, Database System Concepts, McGraw-Hill Education, 6th Edition, 2010