9. Topologie-Übung

Joachim Breitner

19. Dezember 2007

Aufgabe 1

Sei $K := \overline{B_1(0)} \subseteq \mathbb{R}^2$.

Behauptung: Jede stetige Abbildung $G:K\to K$ hat mindestens einen Fixpunkt.

Wir nehmen an, G habe keinen Fixpunkt, also $\forall x \in K : G(x) \neq x$.

Für $x \in K$ definiere $\lambda_x \in \mathbb{R}_{>0}$ als die eindeutig bestimmte Zahl, für die gilt: $G(x) + \lambda_x(x - G(x)) \in S^1$. Behauptung: $\lambda : K \to \mathbb{R}_{>0}$, $x \mapsto \lambda_x$, stetig. Dann ist auch $F : K \to S^1$, $x \mapsto G(x) + \lambda_x(x - G(x))$ stetig und $F|_{S^1} = \mathrm{id}_{S^1}$, was laut Vorlesung nicht geht.

 λ ist stetig: Schreibe $G(x)=(\begin{smallmatrix}G_1\\G_2\end{smallmatrix}), x=(\begin{smallmatrix}x_1\\x_2\end{smallmatrix}).$ Es ist

$$||G(x) + \lambda_x(x - G(x))|| = 1 \iff ||\binom{G_1}{G_2} + \lambda_x \binom{x_1 - G_1}{x_2 - G_2}||$$
$$= (G_1 + \lambda_x(x_1 - G_1))^2 + (G_2 + \lambda_x(x_2 - G_2))^2 = 1$$

eine quadratische Gleichung mit Lösung λ_x , also hängt λ_x stetig von x und G(x) ab.

Behauptung: Das gilt auch für jeden zu K homöomorphen Raum X.

Sei $H: K \to X$ ein Homöomorphismus und $G: X \to X$ stetig. Zu zeigen ist: $\exists x \in X: G(x) = x$. Sei $f := H \circ G \circ H^{-1}: K \to K$. f ist stetig, also gibt es ein $a \in K$: mit $f(a) = a \iff H \circ G \circ H^{-1}(a) = a \iff G(H^{-1}(a)) = H^{-1}(a)$. Also ist $x := H^{-1}(a)$ ein Fixpunkt von G.

Aufgabe 2

Sei $\gamma:[0,1]\to\mathbb{R}^2$ eine stetige geschlossene Kurve, $x\in\mathbb{R}^2$.

Behauptung: $\chi(\gamma, x)$ hängt stetig von $x \in \mathbb{R}^2 \setminus \gamma([0, 1])$ ab.

Zur Erinnerung: Sei $\sigma: [0,1] \to S^1$, dann gibt es genau ein $\lambda: [0,1] \to \mathbb{R}$, so dass $\sigma = \pi \circ \lambda$, wobei $\pi: t \mapsto (\cos(2\pi t), \sin(2\pi t))$ gilt. Die Umlaufzahl von σ umd 0 ist dann definiert als $\lambda(1) - \lambda(0)$.

Sei $\gamma:[0,1]\to\mathbb{R}^1\setminus\{0\}$ eine stetige geschlossene Kurve, dann ist

$$\gamma(t) = \|\gamma(t)\| \cdot \underbrace{\frac{\gamma(t)}{\|\gamma(t)\|}}_{\text{=:a}}$$

und $\chi(\gamma, 0) := \lambda(1) - \lambda(0)$.

Für $\lambda: [0,1] \to \mathbb{R}^2$, $x \in \mathbb{R}^2 \setminus \gamma([0,1])$, definiere die Umlaufzahl $\chi(\gamma,x) \coloneqq \chi(\tilde{\gamma},0)$, wobei $\tilde{\gamma}(t) \coloneqq \gamma(t) - x$.

Sei (x_n) eine Folge in $\mathbb{R}^2 \setminus \gamma([0,1])$ mit $x_n \to x$ für $n \to \infty$. Zu zeigen: $\chi(\gamma, x_n) \to \chi(\gamma, x)$. Definiere $\Gamma : [0,1] \times [0,1] \to \mathbb{R}^2 \setminus \gamma([0,1])$ stetig mit $\Gamma(0,t) = \gamma(t) - x \coloneqq \tilde{\gamma}_0(t)$ und $\Gamma(1,t) = \gamma(t) - x_n \coloneqq \tilde{\gamma}_1(t)$. Laut Vorlesung gilt in diesem Fall: $\chi(\tilde{\gamma}_1,0) = \chi(\tilde{\gamma}_0,0) = \chi(\gamma,x) = \chi(\gamma,x_n)$.

Definiere also $\Gamma(r,t) := \gamma(t) - ((1-r) \cdot x + rx_n) \in \mathbb{R}^2 \setminus \{0\}$. Für n groß genug ist das die gesuchte Abbildung. Für alle $n \geq N_0$ gilt dann: $\chi(\tilde{\gamma}_1,0) = \chi(\tilde{\gamma}_0,0) \Longrightarrow \forall n \geq N_0 : \chi(\gamma,x_n) = \chi(\gamma,x) \Longrightarrow \chi(\gamma,x_n) \to \chi(\gamma,x) \Longrightarrow \text{Behauptung.}$

Behauptung: Es gibt eine Zusammenhangskomponente, auf der die Umlaufzahl von γ Null ist.

 $\gamma([0,1])$ ist kompakt, also gibt es ein $r \in \mathbb{R}$, so dass $\gamma([0,1]) \subseteq B_r(0)$). Sei $x \in \mathbb{R}^2$ mit $||x|| \ge 2r$. Sei

$$\tilde{\gamma}(t) = \|\tilde{\gamma}(t)\| \cdot \underbrace{\frac{\tilde{\gamma}(t)}{\|\tilde{\gamma}(t)\|}}_{=:\sigma(t)}$$

Es ist $\chi(\gamma, x) = \chi(\tilde{\gamma}, 0) = 0$, denn:

Angenommen $\gamma(1) \neq \gamma(0) \implies \text{Bild}(\pi \circ \gamma) = S^1$, im Widerspruch zur Skizze an der Tafel.

Aufgabe 4

Sei X ein topologischer Raum, $x \in X$ und $A \subseteq X$.

Behauptung: $x \in \bar{A}$ genau dann, wenn es einen Filter \mathcal{F} gibt mit $A \in \mathcal{F}$ und $\mathcal{F} \to x$.

" \Longrightarrow ": Sei $x \in \bar{A}$. Die Obermengen der Mengen $\{U \cap A \mid U \text{ Umgebung von } x\}$ bilden einen Filter mit $A \in \mathcal{F}$, der gegen X konvergiert. $\emptyset \notin \mathcal{F}$, da jede Umgebung von $x \in \bar{A}$ nichtleeren Schnitt mit A hat.

" \Leftarrow —": Sei \mathcal{F} ein Filter mit $A \in \mathcal{F}$, der gegen x konvergiert. Also liegen alle Umgebungen U von x in \mathcal{F} . $U \cap A \neq \emptyset$ (sonst wäre $\emptyset \in \mathcal{F}$). Ist $x \in A$, so ist $x \in \bar{A}$ sowieso. Ist $x \notin A$, so gilt für jede Umgebung U von x: $U \cap A \neq \emptyset$ und $U \cap (X \setminus A) \neq \emptyset$, also ist $x \in \partial A \subseteq \bar{A}$.

Behauptung: Es gibt einen toplogischen Raum X, $A \subseteq X$ und $x \in \overline{A}$, so dass keine Folge (x_n) in A gegen x konvergiert.

Setzte $X := \mathbb{N}_0 \times \mathbb{N}_0$, definiere Topologie J durch $A \in J \iff (0,0) \neq A$, oder $\{n \in \mathbb{N}_0 \mid (n,m) \notin A\}$ ist endlich für fast alle M. (X,J) ist ein topologischer Raum. $A := X \setminus \{(0,0)\}$. Es gibt keine Folge in A, die gegen (0,0) konvergiert, aber $(0,0) \in X = \overline{A}$:

Sei $(x_i)_{i\in\mathbb{N}} =: (n_i, m_i)_{i\in\mathbb{N}}$ eine Folge in A.

- 1. Fall: Es gibt ein $m \in \mathbb{N}_0$, so dass $m_i = m$ für unendlich viele $i \in \mathbb{N}$. Dann ist $U := X \setminus \{(n,m) \mid n \in \mathbb{N}_0\} \cup \{(0,0)\}$ ist eine Umgebung von (0,0), in der mehr als endlich viele Elemente der Folge nicht liegen, also konverigiert die Folge nicht.
- 2. Fall: Für alle $m \in \mathbb{N}_0$ gilt: $m_i = m$ für endlich viele i. Dann ist $U := X \setminus \{x_i | i \in \mathbb{N}\}$ ist Umgebung von (0,0), in der keine Folgenglieder liegen, also konvergiert auch hier die Folge nicht.