Table S6: Simulation study results summary with independent working correlation matrix

				Mean rel	ative bia	as (%)		Coverage (%)					Mean SE					MCSD				
k	$ ho_O$	$ ho_M$	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE	CRA- GEE	A-CRA- GEE	W- GEE	CW- GEE	MMI- GEE
10	0.05	0	-2.4	3.2	0.0	0.0	0.6	89.8	82.6	91.5	91.5	95.4	0.268	0.218	0.276	0.276	0.294	0.291	0.298	0.299	0.299	0.294
		0.1	-2.2	3.0	0.0	0.7	0.3	91.8	84.4	92.8	89.8	95.3	0.267	0.215	0.274	0.283	0.295	0.283	0.291	0.289	0.316	0.287
		0.3	-1.3	3.2	0.4	1.8	0.5	91.0	83.1	91.6	85.7	95.1	0.268	0.217	0.274	0.301	0.301	0.292	0.301	0.296	0.388	0.297
		0.5	-1.1	3.0	0.1	2.8	0.3	91.7	82.8	91.5	79.2	96.1	0.270	0.217	0.274	0.314	0.309	0.291	0.299	0.295	0.456	0.296
	0.1	0	-2.6	2.9	-0.3	-0.3	0.5	91.0	76.1	91.3	91.1	94.6	0.314	0.215	0.320	0.321	0.333	0.344	0.353	0.348	0.348	0.348
		0.1	-2.3	2.8	-0.2	0.5	0.3	90.6	75.5	91.5	88.7	94.7	0.315	0.214	0.320	0.333	0.335	0.337	0.345	0.343	0.376	0.337
		0.3	-1.2	3.2	0.4	2.1	0.6	91.4	74.8	91.3	83.9	93.9	0.318	0.216	0.322	0.357	0.342	0.345	0.354	0.348	0.465	0.347
		0.5	-0.9	3.0	0.2	3.5	0.3	91.4	73.8	91.5	78.4	95.4	0.321	0.216	0.324	0.373	0.349	0.349	0.358	0.352	0.548	0.349
	0.2	0	-2.7	2.5	-0.4	-0.5	0.5	91.3	64.8	91.6	91.7	92.5	0.392	0.211	0.395	0.395	0.402	0.431	0.441	0.432	0.433	0.435
		0.1	-2.1	2.8	-0.2	0.8	0.3	90.4	64.7	90.9	88.5	92.5	0.398	0.213	0.401	0.417	0.408	0.436	0.447	0.438	0.482	0.435
		0.3	-1.1	3.1	0.4	3.4	0.4	90.3	64.2	91.1	84.1	92.9	0.403	0.214	0.405	0.451	0.414	0.448	0.459	0.446	0.599	0.440
		0.5	-0.7	3.1	0.2	5.8	0.1	90.2	62.5	90.6	77.5	92.9	0.408	0.214	0.409	0.473	0.421	0.455	0.466	0.454	0.705	0.442
25	0.05	0	-2.7	2.9	-0.3	-0.3	0.6	93.4	85.5	93.7	93.8	96.1	0.175	0.142	0.180	0.180	0.185	0.178	0.182	0.186	0.186	0.179
		0.1	-2.6	2.5	-0.7	-0.8	0.2	93.9	85.9	94.4	93.2	96.3	0.175	0.141	0.180	0.193	0.187	0.177	0.182	0.181	0.200	0.180
		0.3	-1.9	2.6	-0.4	-0.0	0.1	93.9	85.3	94.0	90.5	94.8	0.177	0.142	0.181	0.224	0.190	0.183	0.187	0.186	0.252	0.185
		0.5	-1.3	2.7	-0.4	0.8	0.0	92.9	85.3	92.9	87.2	95.7	0.179	0.142	0.181	0.250	0.193	0.186	0.189	0.187	0.305	0.189
	0.1	0	-2.8	2.7	-0.6	-0.6	0.5	93.2	76.3	93.6	93.7	95.0	0.206	0.140	0.210	0.210	0.213	0.212	0.216	0.218	0.218	0.214
		0.1	-2.6	2.5	-0.7	-0.8	0.2	94.1	78.9	94.8	93.8	95.4	0.208	0.140	0.211	0.227	0.214	0.212	0.217	0.215	0.238	0.214
		0.3	-1.9	2.6	-0.4	0.2	0.1	93.5	78.5	93.7	89.8	95.1	0.211	0.141	0.213	0.265	0.218	0.218	0.223	0.220	0.302	0.218
		0.5	-1.3	2.6	-0.3	1.3	0.2	93.5	76.7	94.1	87.1	94.9	0.214	0.142	0.215	0.297	0.222	0.222	0.226	0.222	0.367	0.221
	0.2	0	-3.0	2.2	-1.0	-1.0	0.3	94.5	66.6	94.3	94.2	95.2	0.260	0.138	0.262	0.262	0.265	0.264	0.269	0.267	0.268	0.265
		0.1	-2.8	2.1	-1.1	-1.2	0.2	93.4	64.6	93.6	93.1	94.2	0.263	0.137	0.263	0.285	0.265	0.275	0.282	0.275	0.304	0.276
		0.3	-2.1	2.1	-0.8	-0.2	-0.0	92.6	65.4	92.6	91.0	93.9	0.267	0.139	0.267	0.335	0.268	0.281	0.288	0.280	0.383	0.278
		0.5	-1.4	2.3	-0.5	1.6	0.0	93.1	63.7	92.7	87.7	94.1	0.271	0.139	0.271	0.376	0.271	0.287	0.293	0.285	0.466	0.285
50	0.05	0	-2.6	2.8	-0.4	-0.4	0.6	93.4	87.2	94.9	94.9	95.1	0.125	0.101	0.129	0.129	0.131	0.125	0.127	0.128	0.128	0.126
		0.1	-2.3	2.7	-0.3	-0.2	0.4	93.5	84.4	94.4	93.0	95.3	0.126	0.101	0.129	0.141	0.131	0.131	0.134	0.135	0.150	0.131
		0.3	-1.6	2.8	-0.1	0.3	0.5	93.0	83.2	94.4	91.5	95.8	0.127	0.101	0.129	0.171	0.133	0.135	0.137	0.137	0.190	0.135
		0.5	-0.9	3.0	0.1	0.9	0.5	93.5	83.7	94.1	90.1	95.5	0.129	0.101	0.130	0.198	0.135	0.136	0.138	0.138	0.227	0.135
	0.1	0	-2.7	2.6	-0.7	-0.7	0.5	93.8	80.7	94.4	94.5	95.8	0.148	0.100	0.151	0.151	0.151	0.147	0.150	0.149	0.149	0.148
		0.1	-2.4	2.6	-0.5	-0.4	0.3	93.5	78.6	93.7	94.2	95.3	0.149	0.099	0.151	0.165	0.152	0.153	0.156	0.156	0.173	0.152
		0.3	-1.6	2.7	-0.2	0.4	0.4	93.2	77.2	95.0	91.7	96.4	0.151	0.100		0.202	0.154	0.157	0.161	0.159	0.221	0.156
		0.5	-1.0	2.8	-0.1	1.1	0.4	93.4	76.6	94.5	90.6	94.9	0.153	0.100		0.235	0.156	0.159	0.162	0.160	0.266	0.156
	0.2	0	-2.8	2.2	-0.9	-0.9	0.4	94.3	69.8	94.7	94.7	96.0	0.186	0.098		0.187	0.188	0.184	0.187	0.183	0.183	0.185
		0.1	-2.4	2.3	-0.7	-0.6	0.4	93.4	66.3	94.4	93.6	95.0	0.188	0.098		0.207	0.189	0.193	0.197	0.193	0.216	0.191
		0.3	-1.7	2.4	-0.4	0.6	0.3	94.2	63.5	94.8	92.2	94.9	0.192	0.098		0.254	0.191	0.198	0.203	0.198	0.281	0.194
		0.5	-1.1	2.5	-0.2	1.4	0.4	94.2	63.1	94.1	90.5	95.7	0.196	0.099	0.195	0.297	0.194	0.203	0.207	0.202	0.342	0.196

Note: k = # clusters per arm; ρ_O is the ICC of the (conditional) outcome model (see Eqn. 6 in the manuscript text); ρ_M is the ICC of the probability of missing (POM) model (see Eqn. 7B in the manuscript text); MCSD = Monte Carlo standard deviation. Note that all GEE models converged except for 5 W-GEE and approximately 100 for CW-GEE across all simulations, with almost all issues in the small sample case (i.e. k=10).