HAOTIAN HANG

July, 2025

Contact Information

Mobile: (213)462-5919 Address: 920 Downey way, Los Angeles, CA 90089

Social media: O in R⁶ 3

Education

2020 - 2025 University of Southern California, Los Angeles, CA

Doctor of Philosophy, Mechanical Engineering, (defense date: 2025/3/14)

Master of Science, Computer Science (High Performance Computing track), Dec 2023

2015 - 2019 Shanghai Jiao Tong University, Shanghai, China

B.S. Aeronautics and Astronautics Engineering, June 2019 (Average Score: 89.22/100)

Employment

2020 - Research Assistant, Bio-Inspired Motion Lab at USC, PI: Prof. Eva Kanso

2023/6 - 8 Quantitative Analyst Intern, Corporate Model Risk, Wells Fargo, Manager: Dr. Nengfeng Zhou,

Dr. Harry Zhang

Evaluate robustness of machine learning models

Discover the contribution of each input feature on robustness metrics and overfitting

Compare different perturbation schemes in robustness testing

Develop nonlinear variance inflation factor (VIF) to evaluate the nonlinear correlation in dataset

2019/9 - 12 Intern Algorithmic Engineer, Shanghai Hongpu Information Technology Co., Ltd.

Conduct flaw detection on images of photovoltaic cell using Faster R-CNN and yolov3

2016 - 2019 Research Assistant, J.C.Wu Center for Aerodynamics, PI: Prof. Hong Liu

Publications

2025 13. Cheng, H., **Hang, H.**, Huang, C., Barnett, A., & Kanso, E.* (in preparation) Collective transitions in bi-chamber domain

- 12. **Hang, H.**[#], Shen, Y.[#], Zhu, V.[#],*, Li, M., Cruz, J. (in preparation) Chitchat with AI: understand the supply chain carbon disclosure of companies worldwide through Large Language Model
- 11. **Hang, H.**, Huang, C., Barnett, A., & Kanso, E.* (in preparation) Chaotic Mixing in Large Schools of Fish
- 10. Linot, A.*, **Hang, H.**, Kanso, E., Taira, K. (under review) Hierarchical equivariant graph neural networks for forecasting collective motion in vortex clusters and microswimmers
- 9. **Hang, H.**, Huang, C., Barnett, A., & Kanso, E.* (under review) Self-reorganization and Information Transfer in Massive Schools of Fish
- 8. **Hang, H.**, Jiao, Y., Merel, J. & Kanso, E.* (under review). Flow Currents Support Simple and Versatile Trail-Tracking Strategies
- 7. Jiao, Y.**, **Hang, H.****, Merel, J., & Kanso, E.* (2025). Sensing flow gradients is necessary for learning autonomous underwater navigation. Nature Communications, 16(1), 3044.
- 6. Heydari, S.*, **Hang, H.***, & Kanso, E.* (2024). Mapping spatial patterns to energetic benefits in groups of flow-coupled swimmers. Elife, 13, RP96129.
 - 5. **Hang, H.**, Heydari, S. & Kanso, E.* (2024). Feedback control of uncoordinated flapping swimmers to maintain school cohesion. American Control Conference (ACC)
- 4. Qin, S., **Hang, H.**, Xiang, Y.* & Liu, H. (2023). Reynolds-number scaling analysis on lift generation of a flapping and passive rotating wing with an inhomogeneous mass distribution. Chinese Journal of Aeronautics, 37(2), 259-269
- 3. Hang, H., Heydari, S., Costello, J., & Kanso, E.* (2022). Active tail flexion in concert with passive hydrodynamic forces improves swimming speed and efficiency. Journal of Fluid Mechanics, 932, A35.
- 2021 2. Xiang, Y., **Hang, H.**, Qin, S.*, & Liu, H. (2021). Scaling analysis of the circulation growth of leading-edge vortex in flapping flight. Acta Mech. Sin, 37(10), 1530-1543.
- 2020 1. **Hang, H.**, Yu, B., Xiang, Y., Zhang, B.*, & Liu, H. (2020). An objective-adaptive refinement criterion based on modified ridge extraction method for finite-time Lyapunov exponent (FTLE) calculation. Journal of Visualization, 23(1), 81-95.
 - # equal contribution, * corresponding author

_			
Pа	+-	120	+-
Γа	1.6		1.5

Single-wing aircraft with rotor wing mode and fixed wing flight mode and mode switching method ZL.201811222322.5

Talks/Presentations

2025	APS March Meeting, Fish schooling at extreme scales
2020	Dynamics Day, Fish schooling at extreme scales
0004	· · · · · · · · · · · · · · · · · · ·
2024	APS Division of Fluid Dynamics Meeting, Fish schooling at extreme scales
	APS March Meeting, Learning to track flows
2023	APS Division of Fluid Dynamics Meeting, Flow-coupled swimmers self-organize into energetically
	cooperative or greedy spatial patterns
	So Cal Fluids XVI, Active tail flexion in concert with passive hydrodynamic forces improves swimming
	speed and efficiency
2022	APS Division of Fluid Dynamics Meeting, Learning to blindly follow hydrodynamic trails
	So Cal Fluids XV, Learning to blindly follow hydrodynamic trails
2021	APS Division of Fluid Dynamics Meeting, Active tail flexion in concert with passive hydrodynamic
	forces improves swimming speed and efficiency
2020	APS Division of Fluid Dynamics Meeting, Flowtaxis in the wakes of oscillating airfoils
2018	APS Division of Fluid Dynamics Meeting, Passive rotation of a flapping wing with an inhomoge-
	neous mass distribution

Research Interests/Experience

Fish schooling at extreme scales and in complex geometry, supervised by *Prof. Eva Kanso*, *Prof. Alex Barnett*

Employ Boundary Element method (BEM) to model the hydrodynamic interaction between fish school and arbitrary geometry

Scale agent-based simulation to the order of 10⁴ and analyze the data based on continuum description

2021 - **School cohesion and energetic benefits of fish school**, supervised by *Prof. Eva Kanso*, *Prof. Matt McHenry*

Develop efficient parallelized code using fast multipole method (FMM) to simulate emergent formation of hydordynamically-coupled siwmmers

Evaluate the energetic benefit and stability of fish schools of different different spatial patterns Design control laws to stabilize fish schools that are passively unstable

Study the dynamically-changing real fish schools using graph neural network

2020 - Underwater navigation using deep reinforcement learning, supervised by *Prof. Eva Kanso*, Dr. Josh Merel

Employ reinforcement learning to track vortical wakes based on local flow sensory and to navigate through unsteady adversarial background flow

Find the importance of the wake's periodicity and traveling wave characteristic in both tasks

Analyze the wake-trac king policy in a simplified signal field and prove that stability of the controller depends on the location of sensor

Explain neural-network-based policy in observation space, and link it to the generalizability of the policy

2020 - Fluid-structure interaction of biologically-inspired flexible propulsor, supervised by *Prof. Eva Kanso, Prof. John H. Costello*

Analyze the role of active and passive flexion on swimming speed and efficiency of a self-propelling pitching plate using vortex sheet method

Parametric study on effects of flexion phase, flexion angle and flexion ratio on swimming performance Find overlap between biological data and the region we proposed to have hydrodynamic benefits in parameter space

2016 - 2019 **High lift generation mechanisms of insects' flight**, supervised by *Prof. Hong Liu*, *Prof. Yang Xiang* and *Dr. Suyang Qin*

Conduct experimental study using robotic flapping wing models in glycerin with Reynolds number similar to insects

Measure flow field using particle image velocimetry (PIV) and measure force and torque using 6-axis force sensor, analogue filter and NI data acquisition system

Study formation of leading edge vortex(LEV) for different kinematic modes, and find advanced rotation can generate a lager LEV because of wake capture

Find a scaling law between passive rotation and active translation in flapping wing model

2016 - 2019	AMR for FTLE calculation, supervised by Prof. Hong Liu, Prof. Bin Zhang, Bin Yu and Prof. Yang Xiang Develop a physics-based adaptive refinement method for finite-time Lyapunov exponent calculation
2015 - 2016	VTOL pitch-changed quadrotor , supported by National Students' Platform for Innovation and Entrepreneurship Training, supervised by <i>Prof. Junqi Wu</i> Lead a team to make a quadrotor and implement pitch-changed technique and VTOL technique in terms of both mechanical and control
Teaching Expen	rience
2021 Spring	at University of Southern California Teaching Assistant, AME-526, Introduction to mathematical methods in engineering II, Prof. Niema Pahlevan
2020 Fall	Teaching Assistant , AME-404, Computational Solutions to Engineering Problems, <i>Prof. Takahiro Sakai</i>
Open Source P	rojects
2023- 2024 2021- 2024	Field-Oriented Control (FOC) on STM32 Q Github Link Inferring unknown parameters of partially-observable system using Physics-informed-DeepONet Q Github Link
2021 - 2022	Parallel C++ Implementation of Proximal Policy Optimization (PPO) ${\bf \Omega}$ Github Link
Student Mente	es
2023 - 2024	at University of Southern California Ziyan Zhu, M.S. student Ali Khokhar, M.S. student
2023	Donghun (Calvin) Moon, undergraduate at Columbia University
Service	
2025	Reviewer, ICLR-AI4Mat 2025, Physics of Fluids, ICMI 2025
2024	Reviewer, Physics of Fluids, PNAS Nexus, NeurIPS-AI4Mat 2024
	Judge, Undergraduate Symposium for Scholarly and Creative Work Session Chair, APS March Meeting DFD IX session
2023	Reviewer, American Control Conference (ACC) 2024
	Judge, Undergraduate Symposium for Scholarly and Creative Work
2022	AME 441 project mentor, Robotic fish with artificial lateral line
/.	Judge, Undergraduate Symposium for Scholarly and Creative Work
Honor/Awards	
2025	The William F. Ballhaus Jr. Prize for Excellence in Graduate Engineering Research (Viterbi School 2025 Best Dissertation Award) Dynamics Days US 2025 travel grant
2022	USC Three Minute Thesis (3MT) competition Finalist Link
2020	USC Viterbi fellowship
2017-2018 2016	Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research Endowment of SJTU Honeywell Star Project Second Place, Parts of the National College Students Physics Competition
2014	Third Place, Chinese College Students' Mathematics Competition First Place, Chinese Chemistry Olympiad First Place, Shanghai Adolescents Science and Technology Innovation Contest

Professional Society Memberships

- American Physical Society (APS)
- Institute of Electrical and Electronics Engineers (IEEE)

Graduate Coursework

	at University of Southern California
2024	AME-530b, Dynamics of Incompressible Fluids, Prof. Mitul Luhar
2023	CSCI-575, Quantum Computing and Quantum Cryptography, Prof. Ming-Deh Huang
	CSCI-599, An Introduction to Programming Languages, Prof. Mukund Raghothaman
2022	EE-587, Nonlinear Control Systems, Prof. Mihailo Jovanovic
	CSCI-561, Foundations of Artificial Intelligence, Prof. Wei-Min Shen
	CSCI-567, Machine Learning, Prof. Victor Adamchik
	CSCI-653, High Performance Computing and Simulations, Prof. Aiichiro Nakano
2021	PHYS-516, Methods of Computational Physics, Prof. Aiichiro Nakano
	EE-556, Stochastic Systems and Reinforcement Learning, Prof. Rahul Jain
	CSCI-570, Analysis of Algorithms, Prof. Victor Adamchik
	AME-508, Machine Learning and Computational Physics, Prof. Assad Oberai
	CSCI-596, Scientific Computing and Visualization, Prof. Aiichiro Nakano
2020	AME-525, Engineering Analysis, Prof. Eva Kanso
	AME-526, Introduction to Mathematical Methods in Engineering II, Prof. Niema Pahlevan
	AME-511, Compressible Gas Dynamics, Prof. Iván Bermejo-Moreno
	PHYS-760, Selected Topics in Computational Physics, Prof. Satish Kumar Thittamaranahalli
	AME-451, Linear Control Systems I, Prof. Henryk Flashner
	AME-541, Linear Control Systems II, Prof. Néstor O. Pérez-Arancibia
	AME-535A, Introduction to Computational Fluid Mechanics, Prof. Alejandra Uranga
	AME-530A, Dynamics of Incompressible Fluids, Prof. Carlos Pantano
	· · · · · · · · · · · · · · · · · · ·

Online Coursework

2024	Minds and Machines, MITx Online
2022	C++ Nanodegree, Udacity
	Qiskit Global Summer School 2022, IBM
2021	Build a Modern Computer from First Principles: From Nand to Tetris (Project-Centered Course),
	Coursera
2019	Specialization, DeepLearning.AI TensorFlow Developer, Coursera (containing 4 courses)
	Specialization, Deep Learning, Coursera (containing 5 courses)
	Machine Learning, Coursera
2014	General Chemistry, Coursera

Technical Skills

Programming Language: Python, C/C++, Matlab, Fortran

Machine learning framework: Pytorch, Tensorflow

Micro controller: Arduino, Raspberry Pi, Pixhawk, stm32

Other softwares/ tools: Solidworks, Fusion 360, ROS/ROS2, Gazebo, GitHub, LATEX, Docker,

Ansys Fluent, Linux, MPI, OpenMP, cuda, KiCAD