AI Vibrancy EDA

Taylor Boeckman

4/22/2020

```
aiVibrancyIndicators2019 = read.csv("2019indicators.csv")
aiVibrancyIndicators2019.df <- aiVibrancyIndicators2019</pre>
aiVibrancyIndicators2019.tib <- as_tibble(aiVibrancyIndicators2019.df) %>%
  mutate( female_ai_authors = as.double( female_ai_authors ) ) %>%
  mutate( female_ai_skill_penetration = as.double( female_ai_skill_penetration ) )
aiVibrancyIndicators2019.tib %>%
  count( income.group ) %>%
  mutate( pct = n / sum(n),
          pctlabel = paste0( round( pct*100 ), "%" ) ) %>%
  ggplot( aes( x = reorder( income.group, -pct ),
               y = pct ) ) +
      geom_col( fill = "indianred3",
                color = "black" ) +
      geom_text( aes( label = pctlabel ),
                      vjust = -0.25) +
      scale_y_continuous( labels = scales::percent ) +
      labs( x = "Income Group",
           y = "Percent",
            title = "Countries Included on Stanford AI Vibrancy Index By Income Group" )
```

Countries Included on Stanford Al Vibrancy Index By Income Group

Private Investment in AI by Country

Private Investment in AI Per Capita by Country

Number of AI Confe

Number of AI Confere

Number of Al Conference Papers by Country by Year

Number of Al Conference Papers Per Capita by Country by '

Number of Al Confe

Number of AI Confe

Number of Al Conference Citations by Country by Year

Number of Al Conference Citations Per Capita by Country by

country

country

country


```
gower_dist <- daisy( aiVibrancyIndicators2019.tib %>% select( -country ),
                       metric = "gower",
                       type = list( logratio = 3 )
gower.summ <- summary( gower_dist )</pre>
gower_mat <- as.matrix(gower_dist)</pre>
closest.tib <-</pre>
aiVibrancyIndicators2019.tib[
        which( gower_mat == min(gower_mat[ gower_mat != min(gower_mat)]),
                 arr.ind = TRUE)[1, ], ]
farthest.tib <-
aiVibrancyIndicators2019.tib[
      which(gower_mat == max(gower_mat[gower_mat != max(gower_mat)]),
              arr.ind = TRUE)[1, ], ]
k.vec <- 1:15
get_pam_silwidth <- function( k, dist )</pre>
 pam.clust <- pam( dist, diss=TRUE, k=k )</pre>
 return( pam.clust$silinfo$avg.width )
```

```
sil_width.vec <- map_dbl( k.vec[ -1 ],</pre>
  get_pam_silwidth,
dist=gower_dist
pam_sil.tib <- tibble( k = k.vec,</pre>
 sil = c( 0, sil_width.vec )
sil_max <- with( pam_sil.tib,</pre>
which( sil == max( sil ) )
pam.clust <- pam( x = gower_dist,</pre>
 k = sil_max,
 diss = TRUE
aiVibrancyIndicators2019.tib <- aiVibrancyIndicators2019.tib %>%
    mutate(p3 = factor( pasteO( 'p', pam.clust$clustering ) ) )
aiVibrancyIndicators2019_vars.vec <-</pre>
  c("country", "num_AIconf_papers", "num_AIconf_papers_pc", "num_AIconf_citation", "num_AIconf_citation_
aiVibrancyIndicators2019.famd <-
  FAMD( aiVibrancyIndicators2019.tib %>%
          select(all_of(aiVibrancyIndicators2019_vars.vec)), ncp = 6, graph = FALSE )
( aiVibrancyIndicators2019.scree.ggplot <-</pre>
 fviz_screeplot( aiVibrancyIndicators2019.famd ) %>%
labs( title = "Scree Plot") )
```

[[1]]

FAMD Variables Contributions to the Dimensions

Sampled IPs Quality of Representation


```
( pam_sil.ggplot <- pam_sil.tib %>%
    ggplot( mapping = aes( x = k, y = sil ) ) +
        geom_line() +
        geom_vline( xintercept = sil_max,
        linetype="dashed", color="blue" ) +
        theme_minimal() +
        scale_x_continuous( breaks = k.vec ) +
        labs( title = "PAM Silhouette Widths" ) +
        ylab( "silhouette width" ) )
```

PAM Silhouette Widths


```
aiVibrancyIndicators2019.tib <- aiVibrancyIndicators2019.tib %>%
  mutate( famd_dim1 = aiVibrancyIndicators2019.famd$ind$coord[, 1],
          famd_dim2 = aiVibrancyIndicators2019.famd$ind$coord[, 2]
pam_clusters_guide = "PAM\nClusters"
pam_cluster_colors.vec <- brewer.pal( sil_max, name="Set1" )</pre>
names(pam_cluster_colors.vec) <- paste0( 'p', 1:sil_max )</pre>
quali_ind.tib <- tibble( var = rownames( aiVibrancyIndicators2019.famd$quali.var$coord ),</pre>
                         dim1 = aiVibrancyIndicators2019.famd$quali.var$coord[, 1],
                         dim2 = aiVibrancyIndicators2019.famd$quali.var$coord[, 2]
                       )
(aiVibrancyIndicators2019.ggplot <- aiVibrancyIndicators2019.tib %>%
  ggplot( mapping = aes( x = famd_dim1, y = famd_dim2) ) +
   geom_vline( xintercept = 0 ) +
    geom_hline( yintercept = 0 ) +
    geom_point( mapping = aes( color = p3 ),
                alpha = .5) +
    geom_text(aes(label= country),hjust=0, vjust=0, alpha = .7) +
    geom_encircle( mapping = aes( group = p3, color = p3 ),
                   linetype = "dotted", s_shape = 0.95 ) +
   theme minimal() +
    coord_cartesian(xlim = c(-2.5, 20), ylim = c(-5, 15)) +
```

