

Goal

• Predicting the probability distribution of animal categories based on **image** data and **tabular** data using different NN architectures.

Data

- Image data: CIFAR-10 animal images, 32x32 colour images in six classes, with 6'000 images per class.
- **Tabular data:** Randomly generated weight from uniform distribution with reasonable lower and upper bounds for each animal type.

Estimated Conditional Probability Distribution for an Observation

Model:

CNN (image) + Tabular (weight)

Models to compare

Model Name	Architecture Brief Summary*	Inputs
Model 1 - CNN	"Classic" Image CNN	Images
Model 2 - 1LfcNN-b	Single-Layer fcNN. Contains weights only, softmax activation function without bias	Weights
Model 3 - 1LfcNN	Single-Layer fcNN. Contains weights only, softmax activation function with bias	Weights
Model 4 - Deep-fcNN	Deep fcNN. Contains weights only, ReLu kern with bias	Weights
Model 5 - CNN + 1LfcNN	CNN + Single-Layer fcNN	Images and weights
Model 6 - CNN + Deep-fcNN	CNN + Deep fcNN	Images and weights

^{*}Always softmax activation at output nodes

Model 5 Architecture (CNN + linearNN)

Training Workflow

- 1. Imput Normalisation and One-hot encoding for classes
- Model compilation with NLL (loss = "loss_categorical_crossentropy", optimizer = optimizer adam(), metrics = c("accuracy"))
- Initialize Early Stopping parameters (callback_early_stopping(monitor = "val_loss", patience = 3, restore_best_weights = TRUE))
- 4. Model training: epochs = 100, batch_size = 64, validation_split = 0.2, callbacks = list(early_stopping)

Multiple model initialisation did not make any significant difference for the model accuracy. As an example - validation loss about two digits after comma. It shows that the model is robust for the chosen data.

Deviations on "classical settings", sometimes quite big, like using only half of the nodes, did not brought any significant results.

"Thumb Rule" for our models and our problems: 10 Epochs for the run is enough.

Test Results

Model	Accuracy	Loss
CNN	0.674	0.902
1LfcNN-b	0.167	1.766
1LfcNN	0.446	1.451
Deep-fcNN	0.757	0.537
CNN + 1LfcNN	0.713	0.792
CNN + Deep-fcNN	0.871	0.344

- Single-Layer NN has too low accuracy
- Deep NN allow to capture the features needed for proper categorisation
- Already one layers of fcNN that allows to process tabular data, can significantly increase the accuracy
- Best results shows combination of CNN and Deep fcNN

Conclusions

- Combination of different types of input data by training of DeepNN tools allows to increase the recognition efficiency for the low-weight solutions
- For data without significant preprocessing a NN hast to have sufficient capacity to store the features

