1 House Prices: Advanced Regression Techniques

1.1 Description

Ask a home buyer to describe their dream house, and they probably won't begin with the height of the basement ceiling or the proximity to an east-west railroad. But this playground competition's dataset proves that much more influences price negotiations than the number of bedrooms or a white-picket fence.

With 79 explanatory variables describing (almost) every aspect of residential homes in Ames, Iowa, this competition challenges you to predict the final price of each home.

1.2 Acknowledgments

The Ames Housing dataset was compiled by Dean De Cock for use in data science education. It's an incredible alternative for data scientists looking for a modernized and expanded version of the often cited Boston Housing dataset.

1.3 Data set ¶

Here's a brief version of what you'll find in the data description file.

- SalePrice the property's sale price in dollars. This is the target variable * that you're trying to predict.
- MSSubClass: The building class
- MSZoning: The general zoning classification
- · LotFrontage: Linear feet of street connected to property
- LotArea: Lot size in square feet
- Street: Type of road access
- Alley: Type of alley access
- LotShape: General shape of property
- LandContour: Flatness of the property
- Utilities: Type of utilities available
- LotConfig: Lot configuration
- LandSlope: Slope of property
- · Neighborhood: Physical locations within Ames city limits
- Condition1: Proximity to main road or railroad
- Condition2: Proximity to main road or railroad (if a second is present)
- BldgType: Type of dwelling
- HouseStyle: Style of dwelling
- OverallQual: Overall material and finish quality
- OverallCond : Overall condition rating
- YearBuilt: Original construction date
- YearRemodAdd: Remodel date
- RoofStyle: Type of roof
- RoofMatl: Roof material
- Exterior1st: Exterior covering on house
- Exterior2nd: Exterior covering on house (if more than one material)
- MasVnrType: Masonry veneer type
- MasVnrArea : Masonry veneer area in square feet
- ExterQual: Exterior material quality

- ExterCond : Present condition of the material on the exterior
- Foundation: Type of foundation
- BsmtQual: Height of the basement
- BsmtCond : General condition of the basement
- BsmtExposure: Walkout or garden level basement walls
- BsmtFinType1: Quality of basement finished area
- BsmtFinSF1: Type 1 finished square feet
- BsmtFinType2 : Quality of second finished area (if present)
- BsmtFinSF2: Type 2 finished square feet
- BsmtUnfSF: Unfinished square feet of basement area
- TotalBsmtSF: Total square feet of basement area
- Heating: Type of heating
- HeatingQC : Heating quality and condition
- CentralAir: Central air conditioning
- Electrical: Electrical system
- 1stFlrSF: First Floor square feet
- 2ndFlrSF: Second floor square feet
- LowQualFinSF: Low quality finished square feet (all floors)
- GrLivArea : Above grade (ground) living area square feet
- BsmtFullBath: Basement full bathrooms
- BsmtHalfBath: Basement half bathrooms
- FullBath: Full bathrooms above grade
- HalfBath: Half baths above grade
- Bedroom: Number of bedrooms above basement level
- Kitchen: Number of kitchens
- KitchenQual: Kitchen quality
- TotRmsAbvGrd: Total rooms above grade (does not include bathrooms)
- Functional: Home functionality rating
- Fireplaces: Number of fireplaces
- FireplaceQu: Fireplace quality
- GarageType : Garage location
- GarageYrBlt: Year garage was built
- GarageFinish: Interior finish of the garage
- GarageCars : Size of garage in car capacity
- GarageArea: Size of garage in square feet
- GarageQual: Garage quality
- GarageCond : Garage condition
- PavedDrive: Paved driveway
- WoodDeckSF: Wood deck area in square feet
- OpenPorchSF: Open porch area in square feet
- EnclosedPorch: Enclosed porch area in square feet
- 3SsnPorch : Three season porch area in square feet
- ScreenPorch: Screen porch area in square feet
- PoolArea: Pool area in square feet
- PoolQC : Pool quality
- Fence : Fence quality
- MiscFeature : Miscellaneous feature not covered in other categories
- MiscVal: USD Value of miscellaneous feature
- MoSold : Month Sold
- YrSold: Year Sold
- SaleType: Type of sale
- SaleCondition: Condition of sale

1.4 Goal

Predict sales prices and practice feature engineering, RFs, and gradient boosting Type: supervised machine learning - regression

2 Exploratory Analysis¶

In [1]:

- 1 **import** numpy **as** np
- 2 import pandas as pd
- 3 import matplotlib.pyplot as plt
- 4 import seaborn as sns

In [2]:

- 1 from sklearn.preprocessing import StandardScaler, MinMaxScaler
- 2 from sklearn.model selection import train test split

In [3]:

- 1 # keep only relevant imports based on the regresssion or classification goals
- 2 **from** sklearn.metrics **import** mean squared error
- 3 from sklearn.model selection import cross val score, GridSearchCV, RandomizedSe

In [4]:

- 1 # common classifiers
- 2 | #from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
- 3 #from sklearn.linear model import LogisticRegression, SGDClassifier
- 4 **from** sklearn.svm **import** SVC, LinearSVC

In [5]:

- 1 **import** xgboost **as** xgb
- 2 **import** lightgbm **as** lgbm

In [6]:

- 1 # common regresssors
- 2 from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet, SG
- 3 **from** sklearn.ensemble **import** RandomForestRegressor, GradientBoostingRegressor,
- 4 **from** sklearn.svm **import** SVR

In [7]:

1 **from** sklearn.pipeline **import** Pipeline

In [8]:

```
# skip future warnings and display enough columns for wide data sets
import warnings
warnings.simplefilter(action='ignore') #, category=FutureWarning)
pd.set_option('display.max_columns', 100)
```

2.1 Data set first insight

Let's see wath the data set looks like

In [9]:

```
1  df = pd.read_csv('../input/train.csv', index_col='Id')
2  df.head()
```

Out[9]:

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utiliti
ld									
1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllF
2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	AIIF
3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	AIIF
4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	AIIF
5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	AIIF
4									•

Number of samples (lines) and features (columns including the target)

In [10]:

```
1 df.shape
```

Out[10]:

(1460, 80)

Basic infos

1 df.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1460 entries, 1 to 1460
Data columns (total 80 columns):
MSSubClass
                 1460 non-null int64
                 1460 non-null object
MSZonina
LotFrontage
                 1201 non-null float64
                  1460 non-null int64
LotArea
                 1460 non-null object
Street
Alley
                 91 non-null object
                 1460 non-null object
LotShape
LandContour
                 1460 non-null object
Utilities
                 1460 non-null object
LotConfig
                 1460 non-null object
LandSlope
                 1460 non-null object
Neighborhood
                 1460 non-null object
Condition1
                 1460 non-null object
Condition2
                 1460 non-null object
                  1460 non-null object
BldgType
                 1460 non-null object
HouseStyle
                  1460 non-null int64
OverallOual
OverallCond
                  1460 non-null int64
YearBuilt
                  1460 non-null int64
YearRemodAdd
                 1460 non-null int64
RoofStyle
                 1460 non-null object
RoofMatl
                 1460 non-null object
Exterior1st
                 1460 non-null object
Exterior2nd
                 1460 non-null object
MasVnrType
                 1452 non-null object
MasVnrArea
                 1452 non-null float64
ExterQual
                 1460 non-null object
ExterCond
                 1460 non-null object
Foundation
                 1460 non-null object
BsmtOual
                 1423 non-null object
                 1423 non-null object
BsmtCond
                 1422 non-null object
BsmtExposure
BsmtFinType1
                  1423 non-null object
                 1460 non-null int64
BsmtFinSF1
BsmtFinType2
                 1422 non-null object
                 1460 non-null int64
BsmtFinSF2
                  1460 non-null int64
BsmtUnfSF
TotalBsmtSF
                  1460 non-null int64
Heating
                  1460 non-null object
HeatingQC
                  1460 non-null object
CentralAir
                  1460 non-null object
Electrical
                  1459 non-null object
1stFlrSF
                  1460 non-null int64
2ndFlrSF
                  1460 non-null int64
                 1460 non-null int64
LowQualFinSF
GrLivArea
                  1460 non-null int64
                  1460 non-null int64
BsmtFullBath
BsmtHalfBath
                  1460 non-null int64
FullBath
                 1460 non-null int64
                  1460 non-null int64
HalfBath
BedroomAbvGr
                 1460 non-null int64
KitchenAbvGr
                  1460 non-null int64
                  1460 non-null object
KitchenQual
TotRmsAbvGrd
                  1460 non-null int64
```

Functional 1460 non-null object Fireplaces 1460 non-null int64 FireplaceQu 770 non-null object GarageType 1379 non-null object GarageYrBlt 1379 non-null float64 GarageFinish 1379 non-null object 1460 non-null int64 GarageCars GarageArea 1460 non-null int64 GarageQual 1379 non-null object 1379 non-null object GarageCond PavedDrive 1460 non-null object WoodDeckSF 1460 non-null int64 OpenPorchSF 1460 non-null int64 EnclosedPorch 1460 non-null int64 3SsnPorch 1460 non-null int64 ScreenPorch 1460 non-null int64 PoolArea 1460 non-null int64 7 non-null object PoolQC 281 non-null object Fence MiscFeature 54 non-null object 1460 non-null int64 MiscVal 1460 non-null int64 MoSold YrSold 1460 non-null int64 SaleType 1460 non-null object SaleCondition 1460 non-null object 1460 non-null int64 SalePrice dtypes: float64(3), int64(34), object(43)

memory usage: 923.9+ KB

Number of columns for each type of data

In [12]:

```
1 df.dtypes.value counts()
```

Out[12]:

object 43 int64 34 float64 3 dtype: int64

Unique values for each type of data

```
In [13]:
```

df.select_dtypes('object').apply(pd.Series.nunique, axis = 0)

Out[13]:

5 MSZoning 2 Street 2 Alley 4 LotShape 4 LandContour 2 Utilities 5 LotConfig 3 LandSlope Neighborhood 25 Condition1 9 8 Condition2 BldgType 5 HouseStyle 8 6 RoofStyle RoofMatl 8 Exterior1st 15 16 Exterior2nd MasVnrType 4 4 ExterQual ExterCond 5 Foundation 6 4 **BsmtQual** BsmtCond 4 4 BsmtExposure BsmtFinType1 6 BsmtFinType2 6 6 Heating HeatingQC 5 2 CentralAir 5 Electrical 4 KitchenQual 7 Functional 5 FireplaceQu GarageType 6 GarageFinish 3 5 GarageQual 5 GarageCond 3 PavedDrive 3 PoolQC 4 Fence 4 MiscFeature 9 SaleType SaleCondition 6

Ratio of missing values by column

dtype: int64

In [14]:

```
1
   def missing values table(df):
2
            """Function to calculate missing values by column# Funct // credits Wil
3
4
            # Total missing values
5
           mis val = df.isnull().sum()
6
7
            # Percentage of missing values
           mis val percent = 100 * df.isnull().sum() / len(df)
8
9
10
            # Make a table with the results
           mis val table = pd.concat([mis val, mis val percent], axis=1)
11
12
13
            # Rename the columns
           mis val table ren columns = mis val table.rename(
14
15
            columns = {0 : 'Missing Values', 1 : '% of Total Values'})
16
            # Sort the table by percentage of missing descending
17
18
           mis val table ren columns = mis val table ren columns[
19
                mis val table ren columns.iloc[:,1] != 0].sort values(
20
            '% of Total Values', ascending=False).round(1)
21
22
            # Print some summary information
            print ("Le jeu de données a " + str(df.shape[1]) + " colonnes.\n"
23
24
                "Il y a " + str(mis val table ren columns.shape[0]) +
                  " colonnes avec des valeurs manquantes.")
25
26
27
            # Return the dataframe with missing information
            return mis val table ren columns
28
```

In [15]:

```
1 missing_values = missing_values_table(df)
2 missing_values.head(10)
```

Le jeu de données a 80 colonnes.

Il y a 19 colonnes avec des valeurs manquantes.

Out[15]:

Missing Values % of Total Values **PoolQC** 1453 99.5 **MiscFeature** 1406 96.3 93.8 Alley 1369 **Fence** 1179 8.08 **FireplaceQu** 690 47.3 LotFrontage 259 17.7 GarageType 81 5.5 GarageYrBlt 81 5.5 GarageFinish 81 5.5 GarageQual 81 5.5

In [16]:

```
1 cat_feat = list(df.select_dtypes('object').columns)
2 num_feat = list(df.select_dtypes(exclude='object').columns)
```

2.2 Data Visualization

informations on the target

In [17]:

```
plt.figure(figsize=(8, 4))
sns.kdeplot(df.SalePrice, shade=True)
plt.show()
```


In [18]:

```
plt.figure(figsize=(10, 6))
for zone in list(df.MSZoning.unique()):
    sns.distplot(df[df.MSZoning==zone].SalePrice, label=zone, hist=False)
plt.show()
```


In [19]:

```
plt.figure(figsize=(10, 6))
for ms_sub_class in list(df.MSSubClass.unique()):
    sns.distplot(df[df.MSSubClass==ms_sub_class].SalePrice, label=ms_sub_class,
plt.show()
```


In [20]:

```
plt.figure(figsize=(10, 6))
for qual in list(df.0verallQual.unique()):
    sns.distplot(df[df.0verallQual==qual].SalePrice, label=qual, hist=False)
plt.show()
```


In [21]:

```
1 df.SalePrice.describe()
```

Out[21]:

count	1460.000000	
mean	180921.195890	
std	79442.502883	
min	34900.000000	
25%	129975.000000	
50%	163000.000000	
75%	214000.000000	
max	755000.000000	
Nama:	SalaPrica dtyna:	f

Name: SalePrice, dtype: float64

2.3 Correlations

In [22]:

```
corr = df.corr()
2
   corr
3
4
   # Generate a mask for the upper triangle
5
   mask = np.zeros like(corr, dtype=np.bool)
6
   mask[np.triu indices from(mask)] = True
7
8
   # Set up the matplotlib figure
9
   f, ax = plt.subplots(figsize=(14, 12))
10
   # Generate a custom diverging colormap
11
12
   cmap = sns.diverging palette(220, 10, as cmap=True)
13
   # Draw the heatmap with the mask and correct aspect ratio
14
15
   sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0, square=True, linewid
```

Out[22]:

<matplotlib.axes. subplots.AxesSubplot at 0x7fbbf318cfd0>

Top 50% Corralation train attributes with sale-price

In [23]:

```
top_feature = corr.index[abs(corr['SalePrice']>0.5)]
plt.subplots(figsize=(12, 8))
top_corr = df[top_feature].corr()
sns.heatmap(top_corr, annot=True)
plt.show()
```


OverallQual is highly correlated with target feature of saleprice by near 80%

In [24]:

1 sns.barplot(df.OverallQual, df.SalePrice)

Out[24]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fbbf16a0550>

In [25]:

- 1 plt.figure(figsize=(18, 8))
 - sns.boxplot(x=df.OverallQual, y=df.SalePrice)

Out[25]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fbbf1335a20>

In [26]:

```
1 col = ['SalePrice', 'OverallQual', 'GrLivArea', 'GarageCars', 'TotalBsmtSF', 'F
2 sns.pairplot(df[col], height=3, kind='reg')
```

Out[26]:

<seaborn.axisgrid.PairGrid at 0x7fbbf1668898>

In [27]:

```
print("Most postively correlated features with the target")
corr = df.corr()
corr.sort_values(['SalePrice'], ascending=False, inplace=True)
corr.SalePrice
```

Most postively correlated features with the target

Out[27]:

SalePrice	1.000000
OverallQual	0.790982
GrLivArea	0.708624
GarageCars	0.640409
GarageArea	0.623431
TotalBsmtSF	0.613581
1stFlrSF	0.605852
FullBath	0.560664
TotRmsAbvGrd	0.533723
YearBuilt	0.522897
YearRemodAdd	0.507101
GarageYrBlt	0.486362
MasVnrArea	0.477493
Fireplaces	0.466929
BsmtFinSF1	0.386420
LotFrontage	0.351799
WoodDeckSF	0.324413
2ndFlrSF	0.319334
OpenPorchSF	0.315856
HalfBath	0.284108
LotArea	0.263843
BsmtFullBath	0.227122
BsmtUnfSF	0.214479
BedroomAbvGr	0.168213
ScreenPorch	0.111447
PoolArea	0.092404
MoSold 3SsnPorch	0.046432 0.044584
BsmtFinSF2 BsmtHalfBath	-0.011378 -0.016844
MiscVal	-0.021190
LowQualFinSF	-0.021190
YrSold	-0.028923
OverallCond	-0.020925
MSSubClass	-0.084284
EnclosedPorch	
KitchenAbvGr	-0.135907
	e, dtype: float64
	-,,,

3 Data preparation & feature engineering

3.1 Dealing with abnormal values

Not relevant here, we can assume that all values are been well integrated.

3.2 Data cleaning & Label encoding of categorical features

No duplicated rows

```
In [28]:
```

```
1 df.duplicated().sum()
Out[28]:
0
```

Let's remove columns with a high ratio of missing values

We don't have much samples, so instead of removing rows with nan, missing values are then replaced by the median

In [29]:

```
1 from sklearn.preprocessing import LabelEncoder
```

In [30]:

```
def prepare data(dataframe):
2
 3
        dataframe = dataframe.drop(columns=['PoolQC', 'MiscFeature', 'Alley', 'Fend
 4
 5
        cat feat = list(dataframe.select dtypes('object').columns)
        num feat = list(dataframe.select dtypes(exclude='object').columns)
6
 7
8
        dataframe[num feat] = dataframe[num feat].fillna(dataframe[num feat].median
9
        dataframe[cat feat] = dataframe[cat feat].fillna("Not communicated")
10
        for c in cat feat:
11
12
            lbl = LabelEncoder()
            lbl.fit(list(dataframe[c].values))
13
14
            dataframe[c] = lbl.transform(list(dataframe[c].values))
15
        return dataframe
16
```

At first sight, there isn't any value in the wrong type / format

Those features can't be used as they are (in string format), this is why we need to convert them in a numerical way...

```
In [31]:
```

```
1 df = prepare_data(df)
```

3.3 Creation of new features

- In this case, it's complicated to add features from an other dataset because no information is provided with the CSV file we're using.
- All columns except the id (used as index) seems to be relevant, so all of them are kept at first.
- We can also combine features to create new ones but in this case it doesn't seem to be really usefull.

3.4 Standardization / normalization

Not needed here

```
In [32]:
```

```
1 #df[num_feat] = MinMaxScaler().fit_transform(df[num_feat])
```

3.5 Feature selection & and data preparation for models

```
In [33]:
```

```
1  y = df['SalePrice']
2  X = df.drop(columns=['SalePrice'])
3  X.shape, y.shape
```

```
Out[33]:
((1460, 74), (1460,))
```

Let's split the data into a train and a test set

```
In [34]:
```

```
1 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
2 X_train.shape, X_test.shape, y_train.shape, y_test.shape
Out[34]:
```

```
((1168, 74), (292, 74), (1168,), (292,))
```

3.6 Feature importance

Top 10 most important features:

In [35]:

```
1    rnd_reg = RandomForestRegressor(n_estimators=500, n_jobs=-1)
2    rnd_reg.fit(X, y)
3
4    feature_importances = pd.DataFrame(rnd_reg.feature_importances_, index = X.colucolumns=['importance']).sort_values('importance')
```

In [36]:

1 feature_importances[:10]

Out[36]:

	importance
OverallQual	0.578202
GrLivArea	0.109874
TotalBsmtSF	0.039231
2ndFlrSF	0.035708
BsmtFinSF1	0.029386
1stFlrSF	0.022536
GarageCars	0.020744
GarageArea	0.015562
LotArea	0.013600
YearBuilt	0.009355

Graph with features sorted by importance

```
In [37]:
```

```
plt.figure(figsize=(10, 14))
sns.barplot(x="importance", y=feature_importances.index, data=feature_importance
plt.show()
```


4 Training models and results

4.1 Baselines - first selection of models

```
In [38]:
```

```
# f1_score binary by default
def get_rmse(reg, model_name):
    """Print the score for the model passed in argument and retrun scores for t

y_train_pred, y_pred = reg.predict(X_train), reg.predict(X_test)
    rmse_train, rmse_test = np.sqrt(mean_squared_error(y_train, y_train_pred)),
    print(model_name, f'\t - RMSE on Training = {rmse_train:.0f} / RMSE on Tes

return rmse_train, rmse_test
```

In [39]:

```
model_list = [
LinearRegression(), Lasso(), SVR(),
RandomForestRegressor(), GradientBoostingRegressor(), Ridge(), ElasticNet()
BayesianRidge(), ExtraTreesRegressor()
]
```

In [40]:

```
1 model_names = [str(m)[:str(m).index('(')] for m in model_list]
2 rmse_train, rmse_test = [], []
```

In [41]:

```
1 model_names
```

Out[41]:

```
['LinearRegression',
'Lasso',
'SVR',
'RandomForestRegressor',
'GradientBoostingRegressor',
'Ridge',
'ElasticNet',
'LinearSVC',
'BayesianRidge',
'ExtraTreesRegressor']
```

In [42]:

```
for model, name in zip(model list, model names):
 2
        model.fit(X_train, y_train)
 3
        sc train, sc test = get rmse(model, name)
 4
        rmse train.append(sc train)
 5
        rmse test.append(sc test)
                          - RMSE on Training = 31163 / RMSE on Test =
LinearRegression
32162
Lasso
         - RMSE on Training = 31163 / RMSE on Test = 32158
         - RMSE on Training = 79338 / RMSE on Test = 90251
SVR
RandomForestRegressor
                         - RMSE on Training = 14748 / RMSE on Test =
30100
GradientBoostingRegressor
                                   - RMSE on Training = 13689 / RMSE on
Test = 26783
         - RMSE on Training = 31176 / RMSE on Test = 32091
Ridae
ElasticNet
                 - RMSE on Training = 32547 / RMSE on Test = 33122
                 - RMSE on Training = 94350 / RMSE on Test = 105986
- RMSE on Training = 31599 / RMSE on Test = 31864
LinearSVC
BavesianRidge
```

Results comparison chart

ExtraTreesRegressor

In [43]:

- RMSE on Training = 0 / RMSE on Test = 3002

The LinearSVC model isn't performing well because data haven't been scaled before, let's do it with a pipeline:

In [44]:

```
svm_reg = Pipeline([
          ("scaler", StandardScaler()),
          ("svm_regresssor", LinearSVC())

svm_reg.fit(X_train, y_train)
          _, _ = get_rmse(svm_reg, "svr_rbf")
```

```
svr_rbf - RMSE on Training = 2158 / RMSE on Test = 70136
```

That's much better, although it seems the linear kernel is the best option here:

In [45]:

```
1 svr_rbf = SVR(kernel = 'rbf')
2 svr_rbf.fit(X_train, y_train)
3 _, _ = get_rmse(svr_rbf, "svr_rbf")
```

```
svr_rbf - RMSE on Training = 79338 / RMSE on Test = 90251
```

In [46]:

```
1
   svm reg = Pipeline([
2
        ("scaler", StandardScaler()),
3
        ("svm regresssor", SVR())
   ])
4
5
   svm reg.fit(X train, y train)
   _, _ = get_rmse(svm_reg, "svr_rbf")
7
8
   svm reg = Pipeline([
9
        ("scaler", StandardScaler()),
10
        ("svm regresssor", SVR(kernel="poly"))
   ])
11
12
   svm_reg.fit(X_train, y_train)
   _, _ = get_rmse(svm_reg, "svr_poly")
13
14
15
   sqd req = Pipeline([
16
        ("scaler", StandardScaler()),
17
        ("sgd_regresssor", SGDRegressor())
   ])
18
19
   sgd_reg.fit(X_train, y_train)
   , = get rmse(sgd reg, "sgd reg")
20
```

The same remark comes true also for the SGD Regressor model

Let's try XGBoost!

In [47]:

```
1 xgb_reg = xgb.XGBRegressor()
2 xgb_reg.fit(X_train, y_train)
3 _, _ = get_rmse(xgb_reg, "xgb_reg")
```

```
xgb reg - RMSE on Training = 14601 / RMSE on Test = 27209
```

Looks promissing, here we can conclude that RandomForestRegressor, GradientBoostingRegressor and XGBoost seems to be the models we'll keep for hyperparameters tuning!

4.2 Model optimisation

4.2.1 RandomForrestReg

In [48]:

```
from sklearn.model selection import GridSearchCV
2
3
   rf = RandomForestRegressor()
5
   param_grid = {
        'n estimators': [80, 100, 120],
6
7
        'max features': [14, 15, 16, 17],
8
        'max depth' : [14, 16, 18]
9
   }
10
11
12 rfc cv = GridSearchCV(estimator=rf, param grid=param grid, cv=5, n jobs=-1)
   rfc_cv.fit(X_train, y_train)
   print(rfc cv.best params )
14
   _, _ = get_rmse(rfc_cv, "rfc_reg")
```

```
{'max_depth': 18, 'max_features': 17, 'n_estimators': 100} rfc req - RMSE on Training = 11404 / RMSE on Test = 29079
```

4.2.2 GradientBoostingReg

In [49]:

```
gb = GradientBoostingRegressor()
   param grid = {
3
        'n estimators': [100, 400],
        'max_features': [14, 15, 16, 17],
4
5
        'max_depth' : [1, 2, 8, 14, 18]
6
   }
7
8
9 | gb cv = GridSearchCV(estimator=gb, param_grid=param_grid, cv=5, n_jobs=-1)
10 | gb_cv.fit(X_train, y_train)
11 | print(gb_cv.best_params_)
   _, _ = get_rmse(gb_cv, "gb_cv")
```

```
{\text{'max\_depth': 8, 'max\_features': 15, 'n\_estimators': 100}} \\ {\text{gb\_cv}} - {\text{RMSE on Training}} = 1180 / {\text{RMSE on Test}} = 25624
```

4.2.3 XGBoostReg

```
In [50]:
```

```
xq = xqb.XGBRegressor()
2
   param_grid = {
3
        'n estimators': [100, 400],
        'max_features': [10, 14, 16],
4
        'max_depth' : [1, 2, 8, 18]
5
6
   }
7
8
   xg cv = GridSearchCV(estimator=xg, param grid=param grid, cv=5, n jobs=-1)
9
10 xg cv.fit(X train, y train)
11 | print(xg_cv.best_params_)
   _, _ = get_rmse(xg_cv, "xg_cv")
```

```
{'max_depth': 8, 'max_features': 10, 'n_estimators': 100}
xg cv - RMSE on Training = 2478 / RMSE on Test = 28332
```

4.3 Combination of the best models & submission

In [51]:

```
1 df_test = pd.read_csv('../input/test.csv', index_col='Id')
2 df_test.head()
```

Out[51]:

MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Ut

ld									
1461	20	RH	80.0	11622	Pave	NaN	Reg	Lvl	,
1462	20	RL	81.0	14267	Pave	NaN	IR1	Lvl	1
1463	60	RL	74.0	13830	Pave	NaN	IR1	Lvl	1
1464	60	RL	78.0	9978	Pave	NaN	IR1	Lvl	1
1465	120	RL	43.0	5005	Pave	NaN	IR1	HLS	1
4									•

```
In [52]:
```

```
1 df_test = prepare_data(df_test)
2 df_test.shape
```

Out[52]:

(1459, 74)

In [53]:

```
1 rfc_sub, gb_sub, xg_sub = rfc_cv.predict(df_test), gb_cv.predict(df_test), xg_c
```

In [54]:

```
sub = pd.DataFrame()
sub['Id'] = df_test.index
sub['SalePrice'] = np.mean([rfc_sub, gb_sub, xg_sub], axis=0) / 3
sub.to_csv('submission.csv',index=False)
```

If you found this notebook helpful or you just liked it , some upvotes would be very much appreciated - That will keep me motivated to update it on a regular basis :-)