11. {至,+} 是函期?
1. HAR WarasEZ, arasEZ
>. 治信律, Yanazaz EZ, (antaz) +as = antazhaz)
3. 3.7. DEZ J Y A EZ , O + A = A+O = A
4. 逆, Yafz, Jai=-acz_ a-a=0cz
之, {N,+3 为郡, 原因同上
3 <u>老江市量</u> 又乘励 新教性质
1. 科闭性 VX,YEV_ XXTEV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7 V783 X + T = [0 - X3 X3] [X7] = [-X8/2 + X2/3] F=R F=R [-X2 Xn 0] [-X3] = [-X3/4 - X1/3] -X3/1 + X1/3]
满足对风性
2. 及效性: (ax+by) x Z = a(xxz)+b(xxz) ^
(跟据矩阵又乘降后)
[Z, ax+br]= a[Z,x]+ b[Z,r]
3. 同反性: Y× EV [0 -X3 X2] 「**
-X2 X1 0 X2d
₹ Ø
4. 稻甲比新:[又.[7.27]+[宁.[2,又]]+[足,汉宁]]
= 又x早x至+子,至次十至,又x子
$\overrightarrow{Z} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad \overrightarrow{Z} = \begin{bmatrix} \overline{Z}_1 \\ \overline{Z}_2 \\ \overline{Z}_3 \end{bmatrix}$
$\begin{bmatrix} x_3 \end{bmatrix} \begin{bmatrix} y_3 \end{bmatrix} \begin{bmatrix} z_3 \end{bmatrix}$

4. 松寻SE(3)的指数映射 贺 E= [P中]TE Sel3) 它的指数映射为 $e_{\varphi}(\xi^{h}) = \frac{\sum_{n=0}^{\infty} \frac{1}{(n+1)!} (\varphi^{h})^{n} \rho}{\sum_{n=0}^{\infty} \frac{1}{(n+1)!} (\varphi^{h})^{n} \rho}$ $--e\varphi(\xi^{\prime})=e\varphi(\left[\begin{matrix} \overline{0}^{\prime} & \rho \\ \overline{0}^{\dagger} & \alpha \end{matrix}\right]$ $\begin{bmatrix} 6a^{1} & 7 \end{bmatrix}^{2} = \begin{bmatrix} 9a^{1} & 7 \end{bmatrix} \begin{bmatrix} 6a^{1} & 7 \end{bmatrix} = \begin{bmatrix} 9a^{2} & 6a^{2} \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} \partial \alpha^{\prime} & \rho \end{bmatrix}^{3} = \begin{bmatrix} \partial^{2} \alpha^{\prime} \alpha^{\prime} & \beta \rho \alpha^{\prime} \end{bmatrix} \begin{bmatrix} \partial \alpha^{\prime} & \rho \end{bmatrix} = \begin{bmatrix} \partial^{3} \alpha^{\prime} \alpha^{\prime} \alpha^{\prime} & \delta^{2} \rho \alpha^{\prime} \alpha^{\prime} \\ \sigma^{T} & \sigma \end{bmatrix} \begin{bmatrix} \sigma^{T} & \sigma \end{bmatrix} \begin{bmatrix} \sigma^{T} & \sigma \end{bmatrix} = \begin{bmatrix} \partial^{3} \alpha^{\prime} \alpha^{\prime} \alpha^{\prime} & \delta^{2} \rho \alpha^{\prime} \alpha^{\prime} \\ \sigma^{T} & \sigma \end{bmatrix}$ $\begin{bmatrix} G\hat{\alpha} & P \end{bmatrix}^{n} = \begin{bmatrix} G^{n}(\alpha^{x})^{n} & \Theta^{n-1}P(\alpha^{x})^{n-1} \\ \sigma^{T} & \sigma \end{bmatrix}$ $\frac{1}{2} \int_{\mathbb{R}^{2}} \frac{\partial a^{2}}{\partial t} \left[\frac{\partial a^{2}}{\partial t} \right] = \frac{1}{2} \int_{\mathbb{R}^{2}} \frac{\partial a^{2}}{\partial t} \left[\frac{\partial a^{2}}{\partial t} \right] \left[\frac{\partial a^{$ 5 hi(ea) = I + ba + 1, ba a + 1, ba a a ... = a^a^ +I + Singa - Gsgaran = (1-Gsb) a'a + I + Smea = CosoI+ (1-Cose) aa7 + Snea^ 易知 经就是没数程产的条处