Домашняя работа по ТРЯП $N_{ m 2}6$

Автор - Айвазов Денис из 671 группы 11 октября 2017

1 Грамматика по автомату

Сразу напрашивается такой алгоритм построения:

- Начальное состояние q_0 будет выделяться переходом вида $S \to Q_0$.
- Для каждого состояния q_i создадим нетерминал Q_i , а правила вывода будут аналогичны правилам перехода, т.е.: каждому переходу по букве х в автомате $q_i \to_x q_j$ будет соответствовать правило вывода $Q_i \to xQ_j$. Эпсилон переходы работают как смены нетерминалов $Q_0 \to Q_1$.
- Принимающие состояния будут дополнительно иметь правила вывода в эпсилон. Т.е. если q_i принимающее, то добавляем правило вывода $Q_i \to \varepsilon$ (т.к. справа теперь нет нетерминалов, то это слово становится выводимым грамматикой)

В итоге получим грамматику: $\Gamma = G(N,T,P,S)$, где $N = \{S,Q_0,Q_1,Q_2,Q_3,Q_4\}$, $T = \{a,b\},\ P = \{S \to Q_0,Q_0 \to Q_1,Q_0 \to aQ_3,Q_1 \to bQ_3,Q_1 \to aQ_2,Q_2 \to aQ_3,Q_2 \to \varepsilon,Q_3 \to bQ_4,Q_4 \to aQ_0,Q_4 \to Q_0,Q_4 \to \varepsilon\}$ и S - аксиома. Теперь докажем корректность:

 $if\ \omega\in L\ then\ \exists q_0\to_{\omega_1}q_i\cdots\to_{\omega_{|\omega|}}q_f$ - последовательность переходов по состояниям, которая приводит нас в принимающее. А по алгоритму как раз существует последовательность выводов $S\to Q_0\to_{\omega_1}\omega_1Q_i\cdots\to_{\omega_{|\omega|}}|\omega|Q_f\to\varepsilon$ которая и выводит это слово.

Теперь покажем, что этот алгоритм не избыточен (т.е. что он не принимает слова, не принадлежащие языку): слово принимается автоматом значит, что он закончил работу в принимающем состоянии. А для принимающих состояний у нас было правило вывода $Q_i \to \varepsilon$, что и означало

окончание работы (с учетом того, что слева в правилах вывода у нас есть только нетерминалы). А в этом переходе справа нетерминалов нет, и значит мы закончили работу в принимающем состоянии для принадлежащих. Если же слово не принадлежит, то такого исхода не произойдет и мы не выведем эпсилон-слово. Т.к. вместо обычного слова наша грамматика породит сентенсиальную форму с нетерминалом на конце. Это и будет значить непринимаемость слова.

2 Автомат по грамматике

Дана грамматика. По ней надо построить автомат $G: S \to abaA|abB|\varepsilon, A \to aB|aa, B \to bA|aS$ Заметим, что приведенный и доказанный в прошлой задаче работает в обе стороны. С некоторыми особенностями и разъяснениями применим его обращение к грамматике G. Будем брать каждое правило вывода за переход в "полуфабрикатном" автомате (схема ниже). Каждому нетерминалу I поставим в соответствие состояние Q_I . В аксиому (нетерминал S) будет вести внешняя стрелка (обозначающая, что это состояние начальное). Выводы, в которых в правой части одни терминалы (в т.ч. и ε) будут принимающими (т.к. порождение слова на них заканчивается). Таким образом, посередине процесса у нас есть он:

А теперь нам надо просто раскрыть переходы по словам (aba, aa, ab) через переходы по буквам, создав пару новых состояний: Функционально ничего не изменилось, кроме того, что построенную конструкцию теперь смело можно назвать ДКА. таким образом мы построили ДКА по грамматике.

3 Является ли грамматика однозначной?

Грамматика не является однозначно по определению, т.к. для слова $\omega = abbaa \; \exists \;$ два различных вывода:

$$S \Rightarrow abB \Rightarrow abbA \Rightarrow abbaa$$

$$S \Rightarrow abB \Rightarrow abbA \Rightarrow abbaB \Rightarrow abbaaS \Rightarrow abbaa$$

4 Язык задан КСГ

4.1 L - регулярный?

Язык L задан КСГ: $S \to aSa|aSb|bSa|bSb|a$. Сразу докажем взаимное включение грамматики и языка слов нечетной длины с а посередине. По индукции докажем, что Γ порождает язык L: база - слово а. Шаг: каждый раз используя 1-4 правило вывода мы получаем, что число букв слева и число букв справа от нетерминала увеличиваются на 1. А затем на нужном шаге мы просто заменяем S на а и получаем слово, с буквой а посередине.

В обратную сторону (от хвоста к голове): возьмем слово длины 2n+3. Оно могло получиться 4мя разными способами (нужный выберем) из слова длины 2n+1. И т.д. пока n>0. А когда n=0 слово из языка L (всех слов четной длины, с а посередине) будет содержать только букву а. А это эквивалентно переходу $S \to a$ в обратную сторону. Взаимное включение доказано. Покажем, что язык нерегулярен по т. Майхилла-Нероуда: Регулярность языка значила бы, что все слова разбивались бы на счетное число классов эквивалентности по L. Но тогда посмотрим на b^ia и b^ja при i < j. Если мы допишем к ним b^i , то первое слово станет приниматься, а второе - нет. Это и значит, что они по определению лежат в разных классах эквивалентности. А число пар i,j счетно (эквивалетно $\mathbb{N} \times \mathbb{N}$),

4.2 Дополнение к L - регулярный?

значит этих классов счетное число, а не конечное. ч.т.д.

Нет. регулярные языки замкнуты относительно дополнения. Значит если допустить, что \overline{L} регулярный, то его дополнение(сам язык L) тоже был бы регулярным. Но обратное доказано в предыдущем пункте, значит и L и \overline{L} нерегулярные языки.

5 Построить грамматику, порождающую язык

Язык: $L=\{a^nb^m\mid n\leq m\leq 2n\}$ Вот наша контекстно-свободная грамматика: $\Gamma=G(N,T,P,S)$, где $N=\{S,A\},\,T=\{a,b\};\,$, $P=\{S\to aSb\mid aSAb\mid \varepsilon;\,\,A\to b\mid \varepsilon\},\,$ S=S;

Докажем по индукции, что Г порождает язык L.

База: $S\Rightarrow \varepsilon\in L$. Шаг: слово с n буквами апринадлежит языку. Тогда мы на k-ом шаге имеем вывод вида $S\Rightarrow aSAb\Rightarrow \cdots\Rightarrow a^nSA^nb^n$. Тогда либо мы еще раз применяем вывод $S\Rightarrow aSAb$, либо (если S закончились. т.е. мы использовали $S\Rightarrow \varepsilon$) А либо на b либо на ε . Таким образом из n нетерминалов мы можем получить $b^k: 0\leq k\leq n$ и в итоге у нас не останется нетерминалов. Таким образом, мы получили слова вида $a^nb^kb^n=a^nb^m: n\leq m\leq 2n$ т.е. породили язык L.

В обратную сторону: Γ не порождает слова не из L. Очевидно, что из правил вывода буквы b не могут стоять в начале. Кроме того, очевидно что не будут порождаться слова вида a*b*(a|b)(a|b)* ведь, после последовательности букв b у нас ничего не может быть выведено. Так же из предыдущей индукции видно, что не может оказаться, что $k \geq n$ ведь каждым из п выводов вида $S \Rightarrow aSAb$ мы порождаем $a^nSA^nb^n$ и терминалы A потом либо исчезают $(A \Rightarrow \varepsilon)$, либо заменяются на буквы b $A \Rightarrow b$, которых получится не более n штук. ч.т.д.