First Order Logic: A Brief Introduction

Supratik Chakraborty IIT Bombay

Notation

- Variables: x, y, z, ...
 - Represent elements of an underlying set
- Constants: a, b, c, ...
 - Specific elements of underlying set
- Function symbols: f, g, h, \ldots
 - Arity of function: # of arguments
 - 0-ary functions: constants
- Relation (predicate) symbols: P, Q, R, ...
 - Hence, also called "predicate calculus"
 - Arity of predicate: # of arguments
- Fixed symbols:
 - Carried over from prop. logic: \land , \lor , \neg , \rightarrow , \leftrightarrow , (,)
 - New in FOL: ∃, ∀ ("quantifiers")

Equality in FOL

- A special binary predicate, used widely in maths
- Represented by special predicate symbol "="
- Semantically, binary identity relation (more on this later ...)
- First-order logic with equality
 - Different expressive power vis-a-vis first-order logic
 - Most of our discussions will assume availability of "="
 - Refer to as "first-order logic" unless the distinction is important

Syntax of FOL

Two classes of syntactic objects: terms and formulas

Terms

- Every variable is a term
- If f is an m-ary function, $t_1, \ldots t_m$ are terms, then $f(t_1, \ldots t_m)$ is also a term

Constants are also terms

in are terms, then

0-ary function

Atomic formulas

- If R is an n-ary predicate, $t_1, \ldots t_n$ are terms, then $R(t_1, \ldots t_m)$ is an atomic formula
- Special case: $t_1 = t_2$

Syntax of FOL

- Primitive fixed symbols: ∧, ¬, ∃
 - Other choices also possible: E.g., ∨, ¬, ∀

Rules for formuling formulas

- Every atomic formula is a formula
- If φ is a formula, so are $\neg \varphi$ and (φ)
- If φ_1 and φ_2 are formulas, so is $\varphi_1 \wedge \varphi_2$
- If φ is a formula, so is $\exists x \varphi$ for any variable x
- Formulas with other fixed symbols definable in terms of formulas with primitive symbols.
 - $\varphi_1 \vee \varphi_2 \triangleq \neg(\neg \varphi_1 \wedge \neg \varphi_2)$
 - $\varphi_1 \to \varphi_2 \triangleq \neg \varphi_1 \vee \varphi_2$
 - $\varphi_1 \leftrightarrow \varphi_2 \triangleq (\varphi_1 \to \varphi_2) \land (\varphi_2 \to \varphi_1)$
 - $\forall x \varphi \triangleq \neg(\exists x \neg \varphi)$

FOL formulas as strings

- Alphabet (over which strings are constructed):
 - Set of variable names, e.g. $\{x_1, x_2, y_1, y_2\}$
 - Set of constants, functions, predicates, e.g. $\{a, b, f, =, P\}$
 - Fixed symbols $\{\neg, \lor, \land, \rightarrow, \leftrightarrow, \exists, \forall\}$
- Well-formed formula: string formed according to rules on prev. slide
 - $\forall x_1(\forall x_2(((x_1 = a) \lor (x_1 = b)) \land \neg (f(x_2) = f(x_1))))$ is well-formed
 - $\forall (\forall x_1(x_1 = ab) \neg ()x_2)$ is not well-formed
- Well-formed formulas can be represented using parse trees
 - Consider the rules on prev. slide as production rules in a context-free grammar

Vocabulary

- Alphabet (over which strings are constructed):
 - Set of variable names, e.g. $\{x_1, x_2, y_1, y_2\}$
 - Set of constants, functions, predicates, e.g. $\{a, b, f, =\}$: Vocabulary
 - Fixed symbols $\{\neg, \lor, \land, \rightarrow, \leftrightarrow, \exists, \forall\}$

Vocabulary

- Alphabet (over which strings are constructed):
 - Set of variable names, e.g. $\{x_1, x_2, y_1, y_2\}$
 - Set of constants, functions, predicates, e.g. $\{a, b, f, =\}$: Vocabulary
 - Fixed symbols $\{\neg, \lor, \land, \rightarrow, \leftrightarrow, \exists, \forall\}$
- Smallest vocabulary to generate $\forall x_1(\forall x_2(((x_1=a)\vee(x_1=b))\wedge \neg(f(x_2)=f(x_1))))?$

Vocabulary

- Alphabet (over which strings are constructed):
 - Set of variable names, e.g. $\{x_1, x_2, y_1, y_2\}$
 - Set of constants, functions, predicates, e.g. $\{a, b, f, =\}$: Vocabulary
 - Fixed symbols $\{\neg, \lor, \land, \rightarrow, \leftrightarrow, \exists, \forall\}$
- Smallest vocabulary to generate

$$\forall x_1(\forall x_2(((x_1=a)\lor(x_1=b))\land \neg(f(x_2)=f(x_1))))?$$

• $\{a, b, f, =\}$

Free variables are those that are not quantified in a formula. Let free(φ) denote the set of free variables in φ

- If φ is an atomic formula, free $(\varphi) = \{x \mid x \text{ occurs in } \varphi\}$
- If $\varphi = \neg \psi$ or $\varphi = (\psi)$, free $(\varphi) = \text{free}(\psi)$
- If $\varphi = \varphi_1 \wedge \varphi_2$, free $(\varphi) = \text{free}(\varphi_1) \cup \text{free}(\varphi_2)$
- if $\varphi = \exists x \, \varphi_1$, free $(\varphi) = \text{free}(\varphi_1) \setminus \{x\}$

Free variables are those that are not quantified in a formula. Let free(φ) denote the set of free variables in φ

- If φ is an atomic formula, free $(\varphi) = \{x \mid x \text{ occurs in } \varphi\}$
- If $\varphi = \neg \psi$ or $\varphi = (\psi)$, free $(\varphi) = \text{free}(\psi)$
- If $\varphi = \varphi_1 \wedge \varphi_2$, free $(\varphi) = \text{free}(\varphi_1) \cup \text{free}(\varphi_2)$
- if $\varphi = \exists x \, \varphi_1$, free $(\varphi) = \text{free}(\varphi_1) \setminus \{x\}$
- What is free($(\exists x P(x,y)) \land (\forall y Q(x,y))$)?

Free variables are those that are not quantified in a formula. Let free(φ) denote the set of free variables in φ

- If φ is an atomic formula, free $(\varphi) = \{x \mid x \text{ occurs in } \varphi\}$
- If $\varphi = \neg \psi$ or $\varphi = (\psi)$, free $(\varphi) = \text{free}(\psi)$
- If $\varphi = \varphi_1 \wedge \varphi_2$, free $(\varphi) = \text{free}(\varphi_1) \cup \text{free}(\varphi_2)$
- if $\varphi = \exists x \, \varphi_1$, free $(\varphi) = \text{free}(\varphi_1) \setminus \{x\}$
- What is free($(\exists x P(x,y)) \land (\forall y Q(x,y))$)?
 - = free(($\exists x P(x,y)$)) \cup free($\forall y Q(x,y)$)
 - = free $(P(x,y)) \setminus \{x\} \cup \text{free}(Q(x,y)) \setminus \{y\}$
 - $\bullet = \{x,y\} \setminus \{x\} \cup \{x,y\} \setminus \{y\} = \{x,y\}$

Free variables are those that are not quantified in a formula. Let free(φ) denote the set of free variables in φ

- If φ is an atomic formula, free $(\varphi) = \{x \mid x \text{ occurs in } \varphi\}$
- If $\varphi = \neg \psi$ or $\varphi = (\psi)$, free $(\varphi) = \text{free}(\psi)$
- If $\varphi = \varphi_1 \wedge \varphi_2$, free $(\varphi) = \text{free}(\varphi_1) \cup \text{free}(\varphi_2)$
- if $\varphi = \exists x \, \varphi_1$, free $(\varphi) = \text{free}(\varphi_1) \setminus \{x\}$
- What is free($(\exists x P(x,y)) \land (\forall y Q(x,y))$)?
 - = free(($\exists x P(x, y)$)) \cup free($\forall y Q(x, y)$)
 - = free $(P(x,y)) \setminus \{x\} \cup \text{free}(Q(x,y)) \setminus \{y\}$
 - = $\{x,y\} \setminus \{x\} \cup \{x,y\} \setminus \{y\} = \{x,y\}$

If φ has free variables $\{x,y\}$, we write $\varphi(x,y)$

A formula with no free variables is a **sentence**, e.g. $\exists x \forall y \ f(x) = y$

Bound Variables in a Formula

Bound variables are those that are quantified in a formula. Let $bnd(\varphi)$ denote the set of bound variables in φ

- ullet If arphi is an atomic formula, $\operatorname{bnd}(arphi)=\emptyset$
- If $\varphi = \neg \psi$ or $\varphi = (\psi)$, $\operatorname{bnd}(\varphi) = \operatorname{bnd}(\psi)$
- If $\varphi = \varphi_1 \wedge \varphi_2$, $\operatorname{bnd}(\varphi) = \operatorname{bnd}(\varphi_1) \cup \operatorname{bnd}(\varphi_2)$
- if $\varphi = \exists x \, \varphi_1$, $\mathsf{bnd}(\varphi) = \mathsf{bnd}(\varphi_1) \cup \{x\}$

Bound Variables in a Formula

Bound variables are those that are quantified in a formula. Let $bnd(\varphi)$ denote the set of bound variables in φ

- ullet If arphi is an atomic formula, $\operatorname{bnd}(arphi)=\emptyset$
- If $\varphi = \neg \psi$ or $\varphi = (\psi)$, $\operatorname{bnd}(\varphi) = \operatorname{bnd}(\psi)$
- If $\varphi = \varphi_1 \wedge \varphi_2$, $\operatorname{bnd}(\varphi) = \operatorname{bnd}(\varphi_1) \cup \operatorname{bnd}(\varphi_2)$
- if $\varphi = \exists x \varphi_1$, $bnd(\varphi) = bnd(\varphi_1) \cup \{x\}$
- What is $bnd((\exists x P(x,y)) \land (\forall y Q(x,y)))$?

Bound Variables in a Formula

Bound variables are those that are quantified in a formula. Let $bnd(\varphi)$ denote the set of bound variables in φ

- ullet If arphi is an atomic formula, $\operatorname{bnd}(arphi)=\emptyset$
- If $\varphi = \neg \psi$ or $\varphi = (\psi)$, $\operatorname{bnd}(\varphi) = \operatorname{bnd}(\psi)$
- If $\varphi = \varphi_1 \wedge \varphi_2$, $\mathsf{bnd}(\varphi) = \mathsf{bnd}(\varphi_1) \cup \mathsf{bnd}(\varphi_2)$
- if $\varphi = \exists x \, \varphi_1$, $\operatorname{bnd}(\varphi) = \operatorname{bnd}(\varphi_1) \cup \{x\}$
- What is $bnd((\exists x P(x,y)) \land (\forall y Q(x,y)))$?
 - = bnd(($\exists x P(x, y)$)) \cup bnd($\forall y Q(x, y)$)
 - $\bullet = \operatorname{bnd}(P(x,y)) \cup \{x\} \cup \operatorname{bnd}(Q(x,y)) \cup \{y\}$
 - $\bullet = \emptyset \cup \{x\} \cup \emptyset \cup \{y\}$
 - $\bullet = \{x\} \cup \{y\} = \{x,y\} !!!!$
- free (φ) and bnd (φ) are not complements!

Substitution in FOL

Suppose $x \in \text{free}(\varphi)$ and t is any term.

We wish to replace every free occurrence of x in φ with t, such that free variables in t stay free in the resulting formula.

Term t is free for x in φ if no free occurrence of x in φ is in the scope of $\forall y$ or $\exists y$ for any variable y occurring in t.

- $\varphi \triangleq \exists y \ R(x,y) \lor \forall x \ R(z,x)$, and t is f(z,x)
- f(z,x) is free for x in φ , but f(y,x) is not

 $\varphi[t/x]:$ Formula obtained by replacing each free occurrence of x in φ by t, if t is free for x in φ

ullet For φ defined above,

 $\varphi[f(z,x)/x] \triangleq \exists y \, R(f(z,x),y) \, \vee \, \forall x \, R(z,x)$ with number of the problem