# Valid Inequalities for the Cumulative Constraint and the Cumulative Job Shop Scheduling Problem

Tallys Yunes <sup>1</sup> Dimitris Magos <sup>2</sup> Ioannis Mourtos <sup>3</sup>

- Dept. of Management Science, University of Miami tallys@miami.edu
- <sup>2</sup> Dept. of Informatics, Technological Educational Institute of Athens dmagos@teiath.gr
- <sup>3</sup> Dept. of Mgmt. Science and Technology, Athens Univ. of Econ. & Business mourtos@aueb.gr

## **Problem Description**

Given n jobs ( $p_j$  = processing time,  $c_j$ =resource consumption) and a single machine with capacity C, the constraint

$$\mathsf{cumulative}((s_1,\ldots,s_n),(p_1,\ldots,p_n),(c_1,\ldots,c_n),C)$$

states that the job start times  $s_j \in [r_j,d_j-p_j]$  must be such that the machine capacity is never exceeded

## **Problem Description**

Given n jobs ( $p_j$  = processing time,  $c_j$ =resource consumption) and a single machine with capacity C, the constraint

$$\mathsf{cumulative}((s_1,\ldots,s_n),(p_1,\ldots,p_n),(c_1,\ldots,c_n),C)$$

states that the job start times  $s_j \in [r_j,d_j-p_j]$  must be such that the machine capacity is never exceeded

| j | $p_j$ | $c_{j}$ | $r_{j}$ | $d_{j}$ |
|---|-------|---------|---------|---------|
| 1 | 5     | 1       | 0       | 5       |
| 2 | 3     | 3       | 0       | 5       |
| 3 | 4     | 2       | 1       | 7       |



# Problem Description (cont.)

## Many applications:

- Production planning and scheduling
- Resource-constrained project scheduling
- Berth allocation at container ports



# Problem Description (cont.)

## Many applications:

- Production planning and scheduling
- Resource-constrained project scheduling
- Berth allocation at container ports
- Baking (pizza, cakes, cookies,...)



# Problem Description (cont.)

## Many applications:

- Production planning and scheduling
- Resource-constrained project scheduling
- Berth allocation at container ports
- Baking (pizza, cakes, cookies,...)



As the number of jobs and the time horizon (especially) get larger, optimizing with even a single cumulative can be challenging for both MIP and CP

A library of single-machine Cumulative Scheduling Problems: CuSPLIB:  $http://moya.bus.miami.edu/\sim tallys/cusplib$ 

## Outline

- Problem Description and Related Work
- Revisiting Identical Jobs
- Arbitrary Resource Consumption
- Cumulative Job-Shop Scheduling
- Preliminary Experiments
- Conclusion

### Some Related Work

Mostly disjunctive, rather than cumulative, with a few exceptions:

- Queyranne and Schulz '95: parallel machines with non-stationary speeds;  $p_j=1$ ; generalization of our problem
- Hooker and Yan '01: facet-defining inequalities for identical jobs; valid inequalities for the general case
- Hooker '07: valid inequalities for the general case
- Hardin, Nemhauser, and Savelsbergh '08:  $r_j = 0$ ,  $d_j = \infty$ , arbitrary  $c_j$ ,  $p_j$ ;  $x_{jt}$  variables; lifted cover-clique inequalities (some computation: 25 instances with 15 jobs each)

## **Basic Definitions**

Jobs are indexed by  $N = \{1, \dots, n\}$ 

 $r_{j}^{lb}$ : earliest release date  $r_{j}^{ub}$ : latest release date  $p_{j}$ : processing time  $c_{j}$ : resource consumption

capacity of the resource

## **Basic Definitions**

Jobs are indexed by  $N = \{1, \ldots, n\}$ 

 $r_{j}^{lb}$ : earliest release date  $r_{j}^{ub}$ : latest release date  $p_{j}$ : processing time  $c_{j}$ : resource consumption C: capacity of  $\mathbf{r}^{t}$ 

capacity of the resource

Let  $s_i$  denote the start time of job  $j \in N$ , such that

$$\sum_{j \in N_t} c_j \le C, \ \forall t \tag{1}$$

$$r_j^{lb} \le s_j \le r_j^{ub} (= d_j - p_j), \ \forall j \in N$$
 (2)

where  $N_t = \{ j \in N : s_i \le t < s_i + p_i \}$ 

We initially assume that all  $j\in N$  are identical, i.e.  $r_j^{lb}=r_0,\ r_j^{ub}=r_1,\ p_j=p_0,\ c_j=c_0$ 

We initially assume that all  $j \in N$  are identical, i.e.

$$r_j^{lb} = r_0$$
,  $r_j^{ub} = r_1$ ,  $p_j = p_0$ ,  $c_j = c_0$ 

Given 
$$K \subseteq N$$
, let  $s(K) = \sum_{j \in K} s_j$ 

We initially assume that all  $j \in N$  are identical, i.e.

$$r_j^{lb} = r_0, r_j^{ub} = r_1, p_j = p_0, c_j = c_0$$

Given 
$$K \subseteq N$$
, let  $s(K) = \sum_{j \in K} s_j$ 

Let  $\lambda = \left| \frac{C}{c_0} \right| = \text{maximum number of jobs running at a time}$ 

We initially assume that all  $j \in N$  are identical, i.e.

$$r_j^{lb} = r_0, r_j^{ub} = r_1, p_j = p_0, c_j = c_0$$

Given 
$$K \subseteq N$$
, let  $s(K) = \sum_{j \in K} s_j$ 

Let  $\lambda = \left\lfloor \frac{C}{c_0} \right\rfloor = \text{maximum number of jobs running at a time}$ 

Let 
$$ho(K) = \left\lceil \frac{|K|}{\lambda} \right\rceil - 1 = \text{periods required to run } |K| \text{ jobs, minus } 1$$

We initially assume that all  $j \in N$  are identical, i.e.

$$r_j^{lb} = r_0, \ r_j^{ub} = r_1, \ p_j = p_0, \ c_j = c_0$$

Given 
$$K \subseteq N$$
, let  $s(K) = \sum_{j \in K} s_j$ 

Let  $\lambda = \left| \frac{C}{c_0} \right| = \text{maximum number of jobs running at a time}$ 

Let 
$$ho(K) = \left\lceil \frac{|K|}{\lambda} \right\rceil - 1 = \text{periods required to run } |K| \text{ jobs, minus } 1$$

$$s(K) \ge f(K) = |K|r_0 + p_0 \rho(K) \left(|K| - \frac{\lambda}{2}(\rho(K) + 1)\right)$$

We initially assume that all  $j \in N$  are identical, i.e.  $r_i^{lb} = r_0$ ,  $r_i^{ub} = r_1$ ,  $p_i = p_0$ ,  $c_i = c_0$ 

Given 
$$K \subseteq N$$
, let  $s(K) = \sum_{i \in K} s_i$ 

Let  $\lambda = \left| \frac{C}{c_0} \right| = \text{maximum number of jobs running at a time}$ 

Let 
$$ho(K) = \left\lceil \frac{|K|}{\lambda} \right\rceil - 1 = \text{periods required to run } |K| \text{ jobs, minus } 1$$

$$s(K) \ge f(K) = |K|r_0 + p_0 \rho(K) \left(|K| - \frac{\lambda}{2}(\rho(K) + 1)\right)$$

$$s(K) \le g(K) = |K|r_1 - p_0\rho(K)\left(|K| - \frac{\lambda}{2}(\rho(K) + 1)\right)$$

# Graphical Intuition Behind f(K)





$$f(K) =$$

# Graphical Intuition Behind f(K)





$$f(K) = \sum_{i=0}^{\rho(K)-1} (r_0 + ip_0)\lambda$$

# Graphical Intuition Behind f(K)

$$\lambda = \left\lfloor \tfrac{C}{c_0} \right\rfloor$$



$$f(K) = \sum_{i=0}^{\rho(K)-1} (r_0 + ip_0)\lambda + (r_0 + \rho(K)p_0)(|K| - \lambda \rho(K))$$

f is supermodular and g is submodular on  $2^{N}$ 

f is supermodular and g is submodular on  $2^{N}$ 

The lower problem polyhedron of start times ( $r_0$  finite,  $r_1 = \infty$ ) is the extended contrapolymatroid associated with f:

$$EP(f) = \{ s \in \mathbb{R}^n : s(K) \ge f(K), \forall K \subseteq N \}$$
  
$$B(f) = \{ s \in EP(f) : s(N) = f(N) \}$$

f is supermodular and g is submodular on  $2^{N}$ 

The lower problem polyhedron of start times  $(r_0 \text{ finite, } r_1 = \infty)$  is the extended contrapolymatroid associated with f:

$$EP(f) = \{ s \in \mathbb{R}^n : s(K) \ge f(K), \forall K \subseteq N \}$$
  
$$B(f) = \{ s \in EP(f) : s(N) = f(N) \}$$

The upper problem polyhedron start times ( $r_0 = -\infty$ ,  $r_1$  finite) is the extended polymatroid associated with g:

$$EP(g) = \{ s \in \mathbb{R}^n : s(K) \le g(K), \forall K \subseteq N \}$$
  
$$B(g) = \{ s \in EP(g) : s(N) = g(N) \}$$

#### Theorem

For  $j \in N$ ,  $s_j \ge r_0$  define extreme rays of EP(f) and, for  $|K| > \lfloor C/c_0 \rfloor$ ,  $s(K) \ge f(K)$  define facets of EP(f)

#### **Theorem**

For  $j \in N$ ,  $s_j \ge r_0$  define extreme rays of EP(f) and, for  $|K| > \lfloor C/c_0 \rfloor$ ,  $s(K) \ge f(K)$  define facets of EP(f)

#### **Theorem**

B(f) is completely described by  $s_j=r_0\ (j\in N)$  and the inequalities  $s(K)\geq f(K)$  when  $|K|>\lfloor C/c_0\rfloor$  and either |K|=|N|-1 or

$$\frac{|N|}{\left\lfloor \frac{C}{c_0} \right\rfloor} > \left\lfloor \frac{|K|}{\left\lfloor \frac{C}{c_0} \right\rfloor} \right\rfloor + 1$$

#### **Theorem**

For  $j \in N$ ,  $s_j \ge r_0$  define extreme rays of EP(f) and, for  $|K| > \lfloor C/c_0 \rfloor$ ,  $s(K) \ge f(K)$  define facets of EP(f)

#### **Theorem**

B(f) is completely described by  $s_j=r_0\ (j\in N)$  and the inequalities  $s(K)\geq f(K)$  when  $|K|>\lfloor C/c_0\rfloor$  and either |K|=|N|-1 or

$$\frac{|N|}{\left\lfloor \frac{C}{c_0} \right\rfloor} > \left\lfloor \frac{|K|}{\left\lfloor \frac{C}{c_0} \right\rfloor} \right\rfloor + 1$$

#### **Theorem**

When  $r_1 \ge r_0 + \rho(N)p_0$ , the convex hull of all feasible schedules  $P = EP(f) \cap EP(g)$  is a generalized polymatroid

 $\bullet$  Can optimize a linear function of s over EP(f) and EP(g) in polynomial time

- Can optimize a linear function of s over EP(f) and EP(g) in polynomial time
  - Greedy algorithm:

$$s_{\pi(j)} = f(\{\pi(1), \dots, \pi(j)\}) - f(\{\pi(1), \dots, \pi(j-1)\})$$

- Can optimize a linear function of s over EP(f) and EP(g) in polynomial time
  - Greedy algorithm:

$$s_{\pi(j)} = f(\{\pi(1), \dots, \pi(j)\}) - f(\{\pi(1), \dots, \pi(j-1)\})$$

lacksquare  $O(n \log n)$  separation: sort  $s_j$ 's in non-decreasing order

- $\bullet$  Can optimize a linear function of s over EP(f) and EP(g) in polynomial time
  - Greedy algorithm:  $s_{\pi(j)} = f(\{\pi(1), \dots, \pi(j)\}) f(\{\pi(1), \dots, \pi(j-1)\})$
  - $lacksquare O(n\log n)$  separation: sort  $s_j$ 's in non-decreasing order
- However, inequalities  $s(K) \ge f(K)$  and  $s(K) \le g(K)$  can still be useful for problems with multiple cumulative constraints!

- $\bullet$  Can optimize a linear function of s over EP(f) and EP(g) in polynomial time
  - Greedy algorithm:  $s_{\pi(j)} = f(\{\pi(1), \dots, \pi(j)\}) f(\{\pi(1), \dots, \pi(j-1)\})$
  - $lacksquare O(n\log n)$  separation: sort  $s_j$ 's in non-decreasing order
- However, inequalities  $s(K) \ge f(K)$  and  $s(K) \le g(K)$  can still be useful for problems with multiple cumulative constraints!
- Hold that thought...

For all  $j\in N$ ,  $r_j^{lb}=r_0$ ,  $r_j^{ub}=\infty$ ,  $p_j=p_0$ , but  $c_j$  arbitrary

For all  $j\in N$ ,  $r_j^{lb}=r_0$ ,  $r_j^{ub}=\infty$ ,  $p_j=p_0$ , but  $c_j$  arbitrary

#### Definition

Given  $K \subseteq N$ , the ordered tuple  $Q = (J_1, ..., J_q)$ , with  $J_i \subset K$ , is a feasible partition of K if

- (i)  $\bigcup_{i=1}^{q} J_i = K;$
- (ii)  $J_{i_1} \cap J_{i_2} = \emptyset$ , for any  $i_1 \neq i_2 \in \{1, \dots, q\}$ ;
- (iii)  $\sum_{j \in J_i} c_j \leq C$ , for all  $i \in \{1, \dots, q\}$ .

For all  $j\in N$ ,  $r_j^{lb}=r_0$ ,  $r_j^{ub}=\infty$ ,  $p_j=p_0$ , but  $c_j$  arbitrary

#### Definition

Given  $K \subseteq N$ , the ordered tuple  $Q = (J_1, ..., J_q)$ , with  $J_i \subset K$ , is a feasible partition of K if

- (i)  $\bigcup_{i=1}^{q} J_i = K;$
- (ii)  $J_{i_1} \cap J_{i_2} = \emptyset$ , for any  $i_1 \neq i_2 \in \{1, \dots, q\}$ ;
- (iii)  $\sum_{j \in J_i} c_j \leq C$ , for all  $i \in \{1, \dots, q\}$ .

If Q satisfies  $|J_1| \ge |J_2| \ge \cdots \ge |J_q|$ , it is called a decreasing feasible partition

It's feasible to assign  $s_j = r_0 + (i-1)p_0$  for all  $J_i \in Q$ , which yields

$$\sum_{j \in K} s_j = \sum_{i=1}^q (r_0 + (i-1)p_0)|J_i| = h(K, Q)$$

It's feasible to assign  $s_j = r_0 + (i-1)p_0$  for all  $J_i \in Q$ , which yields

$$\sum_{j \in K} s_j = \sum_{i=1}^q (r_0 + (i-1)p_0)|J_i| = h(K, Q)$$

#### Lemma

Given  $K \subseteq N$ , the following inequality is valid for the cumulative scheduling polyhedron

$$\sum_{j \in K} s_j \ge \min_{Q \in \mathfrak{P}(K)} h(K, Q)$$

where  $\mathfrak{P}(K)$  is the set of all decreasing feasible partitions of K

### Facets for Cumulative Scheduling with Arbitrary $c_j$

$$\sum_{j \in K} s_j \ge \min_{Q \in \mathfrak{P}(K)} h(K, Q) = \min_{Q \in \mathfrak{P}(K)} \sum_{i=1}^{|Q|} (r_0 + (i-1)p_0)|J_i|$$

#### **Theorem**

Given  $K \subseteq N$ , let  $Q^* = (J_1, \ldots, J_q) = \operatorname{argmin}_{Q \in \mathfrak{P}(K)} h(K, Q)$ . The resulting inequality defines a facet of the cumulative scheduling polyhedron if

(i) 
$$q \geq 2$$

(ii) 
$$\sum_{j \in J_i} c_j - \min_{j \in J_i} c_j + \min_{j \in J_{i+1}} c_j \le C, \ \forall i = 1, \dots, q-1$$

(iii) Either 
$$|J_q|=1$$
 or  $\sum_{j\in J_q}c_j-\min_{j\in J_q}c_j+c_{j^*}\leq C$ , for some  $j^*\in\bigcup_{i=1}^{q-1}J_i$ 

$$\sum_{j \in K} s_j \ge \min_{Q \in \mathfrak{P}(K)} h(K, Q) = \min_{Q \in \mathfrak{P}(K)} \sum_{i=1}^{|Q|} (r_0 + (i-1)p_0)|J_i|$$

$$\sum_{j \in K} s_j \ge \min_{Q \in \mathfrak{P}(K)} h(K, Q) = \min_{Q \in \mathfrak{P}(K)} \sum_{i=1}^{|Q|} (r_0 + (i-1)p_0)|J_i|$$

#### Definition

Let  $Q=(J_1,\ldots,J_q)$  and  $Q'=(J'_1,\ldots,J'_q)$  be two elements of  $\mathfrak{P}(q,K).$  Q' is said to majorize Q (denoted  $Q'\succ Q$ ) if  $\sum_{i=1}^v |J'_i| \geq \sum_{i=1}^v |J_i|$ , for all  $v\in\{1,\ldots,q-1\}$ , and  $\sum_{i=1}^q |J'_i| = \sum_{i=1}^q |J_i|$ . Moreover, Q' is called a majorizer of  $\mathfrak{P}(q,K)$  if  $Q'\succ Q$  for all  $Q\in\mathfrak{P}(q,K)$ . The set of all majorizers of  $\mathfrak{P}(q,K)$  is denoted by  $\mathfrak{P}^\succ(q,K)$ 

#### What Kind of Partition Minimizes h(K, Q)?

$$\sum_{j \in K} s_j \ge \min_{Q \in \mathfrak{P}(K)} h(K, Q) = \min_{Q \in \mathfrak{P}(K)} \sum_{i=1}^{|Q|} (r_0 + (i-1)p_0)|J_i|$$

#### Definition

Let  $Q=(J_1,\ldots,J_q)$  and  $Q'=(J'_1,\ldots,J'_q)$  be two elements of  $\mathfrak{P}(q,K).$  Q' is said to majorize Q (denoted  $Q'\succ Q$ ) if  $\sum_{i=1}^v |J'_i| \geq \sum_{i=1}^v |J_i|$ , for all  $v\in\{1,\ldots,q-1\}$ , and  $\sum_{i=1}^q |J'_i| = \sum_{i=1}^q |J_i|$ . Moreover, Q' is called a majorizer of  $\mathfrak{P}(q,K)$  if  $Q'\succ Q$  for all  $Q\in\mathfrak{P}(q,K)$ . The set of all majorizers of  $\mathfrak{P}(q,K)$  is denoted by  $\mathfrak{P}^\succ(q,K)$ 

#### Proposition

Given  $K\subseteq N$  and a fixed partition size q, the value of h(K,Q) is minimized by a majorizer of  $\mathfrak{P}(q,K)$ 

Intuitive guess: A majorizer with minimum size  $q^*$ ?

Intuitive guess: A majorizer with minimum size  $q^*$ ?

Smaller  $q \not\Rightarrow$  smaller h(K, Q):

Intuitive guess: A majorizer with minimum size  $q^*$ ?

Smaller 
$$q \not\Rightarrow$$
 smaller  $h(K,Q)$ :  $K = \{1, \ldots, 10\}, \ r_0 = 1, \ p_0 = 1, \ C = 10, \ c = (1,1,1,1,1,1,1,5,6)$ 

Intuitive guess: A majorizer with minimum size  $q^*$ ?

Smaller  $q \not\Rightarrow$  smaller h(K,Q):  $K = \{1, \dots, 10\}, r_0 = 1, p_0 = 1, C = 10, c = (1,1,1,1,1,1,1,1,5,6)$   $Q_1 = (\{1,2,3,4,9\}, \{5,6,7,8,10\}), Q_2 = (\{1,2,3,4,5,9\}, \{6,7,8,10\})$ 

Intuitive guess: A majorizer with minimum size  $q^*$ ?

Smaller  $q \not\Rightarrow$  smaller h(K,Q):  $K = \{1, \dots, 10\}, r_0 = 1, p_0 = 1, C = 10, c = (1,1,1,1,1,1,1,1,5,6)$   $Q_1 = (\{1,2,3,4,9\}, \{5,6,7,8,10\}), Q_2 = (\{1,2,3,4,5,9\}, \{6,7,8,10\})$  $Q_2 \succ Q_1, h(K,Q_2) = 14$ 

Intuitive guess: A majorizer with minimum size  $q^*$ ?

```
\begin{array}{l} {\sf Smaller} \ q \not \Rightarrow {\sf smaller} \ h(K,Q) \colon \\ K = \{1,\dots,10\}, \ r_0 = 1, \ p_0 = 1, \ C = 10, \ c = (1,1,1,1,1,1,1,1,5,6) \\ Q_1 = (\{1,2,3,4,9\},\{5,6,7,8,10\}), \ Q_2 = (\{1,2,3,4,5,9\},\{6,7,8,10\}) \\ Q_2 \succ Q_1, \ h(K,Q_2) = 14 \\ {\sf But} \ Q_3 = (\{1,\dots,8\},\{9\},\{10\}) \ {\sf yields} \ h(K,Q_3) = 13 \end{array}
```

Intuitive guess: A majorizer with minimum size  $q^*$ ?

```
\begin{array}{l} {\sf Smaller} \ q \not \Rightarrow {\sf smaller} \ h(K,Q) \colon \\ K = \{1,\dots,10\}, \ r_0 = 1, \ p_0 = 1, \ C = 10, \ c = (1,1,1,1,1,1,1,1,5,6) \\ Q_1 = (\{1,2,3,4,9\}, \{5,6,7,8,10\}), \ Q_2 = (\{1,2,3,4,5,9\}, \{6,7,8,10\}) \\ Q_2 \succ Q_1, \ h(K,Q_2) = 14 \\ {\sf But} \ Q_3 = (\{1,\dots,8\}, \{9\}, \{10\}) \ {\sf yields} \ h(K,Q_3) = 13 \end{array}
```

Intuitive guess: A majorizer with minimum size  $q^*$ ?

#### Smaller $q \not\Rightarrow$ smaller h(K,Q):

$$K=\{1,\ldots,10\},\ r_0=1,\ p_0=1,\ C=10,\ c=(1,1,1,1,1,1,1,1,5,6)$$
 
$$Q_1=(\{1,2,3,4,9\},\{5,6,7,8,10\}),\ Q_2=(\{1,2,3,4,5,9\},\{6,7,8,10\})$$
 
$$Q_2\succ Q_1,\ h(K,Q_2)=14$$
 But 
$$Q_3=(\{1,\ldots,8\},\{9\},\{10\})$$
 yields 
$$h(K,Q_3)=13$$

$$K = \{1, \dots, 9\}, \ C = 8, \ c = (1, 1, 1, 1, 3, 3, 3, 3, 3), \ q^* = 3$$

Intuitive guess: A majorizer with minimum size  $q^*$ ?

#### Smaller $q \not\Rightarrow$ smaller h(K, Q):

$$K=\{1,\ldots,10\},\ r_0=1,\ p_0=1,\ C=10,\ c=(1,1,1,1,1,1,1,1,5,6)$$
 
$$Q_1=(\{1,2,3,4,9\},\{5,6,7,8,10\}),\ Q_2=(\{1,2,3,4,5,9\},\{6,7,8,10\})$$
 
$$Q_2\succ Q_1,\ h(K,Q_2)=14$$
 But 
$$Q_3=(\{1,\ldots,8\},\{9\},\{10\})$$
 yields 
$$h(K,Q_3)=13$$

$$K = \{1,\ldots,9\},\ C=8,\ c=(1,1,1,1,3,3,3,3,3),\ q^*=3$$
 
$$Q_1 = (\{1,2,3,4,5\},\{6,7\},\{8,9\})$$

Intuitive guess: A majorizer with minimum size  $q^*$ ?

#### Smaller $q \not\Rightarrow \text{smaller } h(K, Q)$ :

$$K=\{1,\ldots,10\},\ r_0=1,\ p_0=1,\ C=10,\ c=(1,1,1,1,1,1,1,1,5,6)$$
 
$$Q_1=(\{1,2,3,4,9\},\{5,6,7,8,10\}),\ Q_2=(\{1,2,3,4,5,9\},\{6,7,8,10\})$$
 
$$Q_2\succ Q_1,\ h(K,Q_2)=14$$
 But 
$$Q_3=(\{1,\ldots,8\},\{9\},\{10\})$$
 yields 
$$h(K,Q_3)=13$$

$$K = \{1, \dots, 9\}, C = 8, c = (1, 1, 1, 1, 3, 3, 3, 3, 3), q^* = 3$$

$$Q_1 = (\{1, 2, 3, 4, 5\}, \{6, 7\}, \{8, 9\})$$

$$Q_2 = (\{1, 2, 5, 6\}, \{3, 4, 7, 8\}, \{9\})$$

Intuitive guess: A majorizer with minimum size  $q^*$ ?

#### Smaller $q \not\Rightarrow$ smaller h(K,Q):

$$K=\{1,\ldots,10\},\ r_0=1,\ p_0=1,\ C=10,\ c=(1,1,1,1,1,1,1,1,5,6)$$
 
$$Q_1=(\{1,2,3,4,9\},\{5,6,7,8,10\}),\ Q_2=(\{1,2,3,4,5,9\},\{6,7,8,10\})$$
 
$$Q_2\succ Q_1,\ h(K,Q_2)=14$$
 But 
$$Q_3=(\{1,\ldots,8\},\{9\},\{10\}) \text{ yields } h(K,Q_3)=13$$

$$\begin{array}{l} K=\{1,\ldots,9\},\ C=8,\ c=(1,1,1,1,3,3,3,3,3),\ q^*=3\\ Q_1=(\{1,2,3,4,5\},\{6,7\},\{8,9\})\\ Q_2=(\{1,2,5,6\},\{3,4,7,8\},\{9\})\\ \text{Neither }Q_1\succ Q_2,\ \text{nor }Q_2\succ Q_1 \end{array}$$

Intuitive guess: A majorizer with minimum size  $q^*$ ?

#### Smaller $q \not\Rightarrow$ smaller h(K,Q): $K = \{1, \dots, 10\}, r_0 = 1, p_0 = 1, C = 10, c = (1, 1, 1, 1, 1, 1, 1, 1, 5, 6)$

$$Q_1 = (\{1, 2, 3, 4, 9\}, \{5, 6, 7, 8, 10\}), Q_2 = (\{1, 2, 3, 4, 5, 9\}, \{6, 7, 8, 10\})$$
  
 $Q_2 \succ Q_1, h(K, Q_2) = 14$ 

$$Q_2 \succ Q_1, \ h(K, Q_2) = 14$$

But 
$$Q_3 = (\{1,...,8\},\{9\},\{10\})$$
 yields  $h(K,Q_3) = 13$ 

#### A majorizer may not exist:

$$K = \{1, \dots, 9\}, C = 8, c = (1, 1, 1, 1, 3, 3, 3, 3, 3), q^* = 3$$

$$Q_1 = (\{1, 2, 3, 4, 5\}, \{6, 7\}, \{8, 9\})$$

$$Q_2 = (\{1, 2, 5, 6\}, \{3, 4, 7, 8\}, \{9\})$$

Neither 
$$Q_1 \succ Q_2$$
, nor  $Q_2 \succ Q_1$ 

No majorizer of size 3 exists.

Intuitive guess: A majorizer with minimum size  $q^*$ ?

## $\begin{array}{l} {\sf Smaller} \ q \not \Rightarrow {\sf smaller} \ h(K,Q) \colon \\ K = \{1,\dots,10\}, \ r_0 = 1, \ p_0 = 1, \ C = 10, \ c = (1,1,1,1,1,1,1,1,5,6) \\ Q_1 = (\{1,2,3,4,9\}, \{5,6,7,8,10\}), \ Q_2 = (\{1,2,3,4,5,9\}, \{6,7,8,10\}) \\ Q_2 \succ Q_1, \ h(K,Q_2) = 14 \\ {\sf But} \ Q_3 = (\{1,\dots,8\}, \{9\}, \{10\}) \ {\sf yields} \ h(K,Q_3) = 13 \end{array}$

#### A majorizer may not exist:

$$\begin{split} K &= \{1,\ldots,9\},\ C = 8,\ c = (1,1,1,1,3,3,3,3,3,3),\ q^* = 3\\ Q_1 &= (\{1,2,3,4,5\},\{6,7\},\{8,9\})\\ Q_2 &= (\{1,2,5,6\},\{3,4,7,8\},\{9\})\\ \text{Neither } Q_1 \succ Q_2,\ \text{nor } Q_2 \succ Q_1\\ \text{No majorizer of size 3 exists.} \end{split}$$

We suspect it is NP-Hard (GAP), but no proof yet

#### A Lower Bound on h(K, Q)

Let 
$$K = \{1, \dots, |K|\} \subseteq N$$
 
$$\min \sum_{j=1}^{|K|} \sum_{t=1}^{|K|} \frac{(r_0 + (t-1)p_0)}{c_j} y_{jt}$$
 
$$\sum_{t=1}^{|K|} y_{jt} = c_j, \ \forall \ j \in K$$
 
$$\sum_{j=1}^{|K|} y_{jt} \le C, \ \forall \ t \in K$$
 
$$y_{jt} \in \{0, c_i\}, \ \forall \ j, t \in K$$

where  $y_{jt} = \text{resource consumption of } j$  at time t

#### A Lower Bound on h(K, Q)

Let 
$$K = \{1, \dots, |K|\} \subseteq N$$
 
$$\min \sum_{j=1}^{|K|} \sum_{t=1}^{|K|} \frac{(r_0 + (t-1)p_0)}{c_j} y_{jt}$$
 
$$\sum_{t=1}^{|K|} y_{jt} = c_j, \ \forall \ j \in K$$
 
$$\sum_{j=1}^{|K|} y_{jt} \le C, \ \forall \ t \in K$$
 
$$y_{jt} \in \{0, c_i\}, \ \forall \ j, t \in K$$

where  $y_{it}$  = resource consumption of j at time t

The LP relaxation of this model is a transportation problem

#### A Lower Bound on h(K,Q) (cont.)

#### Recall previous example:

$$K=\{1,\ldots,10\},\ r_0=1,\ p_0=1,\ C=10,\ c=(1,1,1,1,1,1,1,5,6)$$
 
$$Q_3=(\{1,\ldots,8\},\{9\},\{10\}) \text{ yields minimum } h(K,Q_3)=13$$

#### A Lower Bound on h(K,Q) (cont.)

#### Recall previous example:

$$K=\{1,\ldots,10\},\ r_0=1,\ p_0=1,\ C=10,\ c=(1,1,1,1,1,1,1,1,5,6)$$
 
$$Q_3=(\{1,\ldots,8\},\{9\},\{10\}) \text{ yields minimum } h(K,Q_3)=13$$

#### The transportation problem relaxation gives:

$$y_{11} = y_{21} = \dots = y_{81} = 1$$
  
 $y_{91} = 2, y_{92} = 3$   
 $y_{10,2} = 6$ 

For a value of 11.6, which can be rounded up to 12

#### Traditional job-shop:

- m disjunctive machines, n jobs
- $s_{ij} = \text{start time of job } j \text{ on machine } i$
- Each job visits (all) machines in a specific order

#### Traditional job-shop:

- m disjunctive machines, n jobs
- $s_{ij} = \text{start time of job } j \text{ on machine } i$
- Each job visits (all) machines in a specific order

Known Fact:  $J3|p_{ij}=1|C_{\mathsf{max}}$  or  $\sum C_j$  is NP-Hard

#### Traditional job-shop:

- m disjunctive machines, n jobs
- $s_{ij} = \text{start time of job } j \text{ on machine } i$
- Each job visits (all) machines in a specific order

Known Fact:  $J3|p_{ij}=1|C_{\mathsf{max}}$  or  $\sum C_j$  is NP-Hard

#### Cumulative job-shop:

- m cumulative machines, n jobs, same  $s_{ij}$  variables
- Each job visits (all) machines in a specific order
- Jobs have identical  $c_{ij}$  on each machine, but may differ across machines

#### Sample instance:

$$m = 5$$
:  $C_i = (3, 5, 11, 4, 2)$   
 $n = 10$ :  $c_i = (1, 2, 3, 2, 1)$ 

#### Machine sequences:

Job 1: 1, 2, 3, 4, 5 Job 2: 5, 1, 3, 2, 4 Job 3: 2, 5, 1, 4, 3 Job 4: 2, 4, 5, 3, 1 Job 5: 3, 5, 4, 1, 2 Job 6: 4, 3, 2, 5, 1 Job 7: 5, 1, 2, 4, 3 Job 8: 1, 3, 2, 5, 4 Job 9: 2, 3, 1, 4, 5

# Cumulative Job-Shop: $p_{ij} = 1$ , $\min \sum s_{ij}$ How to use $s(K) \ge f(K)$ and $s(K) \le g(K)$ cuts: 10

10

How to use  $s(K) \ge f(K)$  and  $s(K) \le g(K)$  cuts:

 Machine sequencing constraints impose initial release dates on jobs:  $r_{ij}$ 

| 8  | 7   |    | 9 | 6        |   |    |    |
|----|-----|----|---|----------|---|----|----|
| 1  | 2   | 3  | 5 | 4        |   |    |    |
|    |     |    |   |          |   |    | _  |
|    |     |    |   |          |   |    |    |
|    | i – |    |   | <u> </u> | i |    |    |
|    |     |    |   |          |   |    |    |
| 4  | 9   | 8  | 7 | 10       |   |    |    |
|    |     |    |   |          |   |    |    |
|    |     |    |   |          |   |    |    |
| 3  | 1   | 6  | 2 | 5        | : |    | -  |
|    |     |    |   |          |   |    |    |
|    | -   |    |   |          |   |    |    |
|    |     |    |   |          |   |    |    |
|    |     |    | Ì |          |   |    |    |
|    |     |    |   |          |   |    |    |
|    |     |    |   |          |   |    |    |
|    |     | 9  |   |          |   |    |    |
|    |     |    |   |          |   |    |    |
|    |     |    |   |          |   |    |    |
|    |     |    |   |          |   |    |    |
| 10 | 8   | 2  |   |          | i |    |    |
|    |     |    |   |          |   |    |    |
|    |     |    |   |          |   |    |    |
| 5  | 6   | 1  | 4 | 3        |   | 7  |    |
|    |     |    |   |          |   |    |    |
|    | İ   | İ  |   |          |   |    |    |
|    |     |    |   |          |   |    |    |
|    | 10  |    | 3 | 9        | 7 |    |    |
|    |     |    |   |          |   |    |    |
| 6  | 4   | 5  | 1 | 8        | 2 |    |    |
|    |     |    |   |          |   |    | ^  |
|    | i – |    |   | :<br>    |   |    |    |
| 7  | 5   | 10 | 8 |          |   | i  |    |
| 2  | 3   | 4  | 6 | 1        | 9 |    |    |
|    |     |    |   |          |   | 21 | ıĪ |

How to use  $s(K) \geq f(K)$  and  $s(K) \leq g(K)$  cuts:

- Machine sequencing constraints impose initial release dates on jobs:  $r_{ij}$ 
  - Job 1: 1, 2, 3, 4, 5

Job 2: 5, 1, 3, 2, 4 Job 3: 2, 5, 1, 4, 3

Job 4: 2, 4, 5, 3, 1

Job 5: 3, 5, 4, 1, 2

Job 6: 4, 3, 2, 5, 1

Job 7: 5, 1, 2, 4, 3

Job 8: 1, 3, 2, 5, 4 Job 9: 2, 3, 1, 4, 5

JOD 9. 2, 3, 1, 4, 3

Job 10: 3, 4, 5, 1, 2

| 8  | 7  |    | 9 | 6  |   |    |   |
|----|----|----|---|----|---|----|---|
| 1  | 2  | 3  | 5 | 4  |   |    |   |
|    |    |    |   |    |   |    | _ |
|    |    |    |   |    |   |    |   |
|    |    |    |   |    |   |    |   |
|    |    |    |   |    |   |    |   |
|    |    |    |   |    |   |    |   |
| 4  | 9  | 8  | 7 | 10 |   |    |   |
|    |    |    |   |    |   |    |   |
|    |    |    |   |    |   |    |   |
| 3  | 1  | 6  | 2 | 5  |   |    | _ |
|    |    |    |   |    |   |    |   |
|    | :  |    |   |    |   |    |   |
|    |    |    |   |    |   |    |   |
|    |    |    |   |    |   |    |   |
|    |    |    | İ |    |   |    |   |
|    |    |    |   |    |   |    |   |
|    |    |    |   |    |   |    |   |
|    |    |    |   |    |   |    |   |
|    |    | 9  |   |    |   |    |   |
|    |    |    |   |    |   |    |   |
|    |    |    |   |    |   |    |   |
|    |    |    |   |    |   |    |   |
| 10 | 8  | 2  |   |    |   |    |   |
| 5  | 6  | 1  | 4 | 3  |   | 7  |   |
|    |    |    |   |    |   |    |   |
|    |    |    |   |    |   |    |   |
|    |    |    |   |    |   |    |   |
|    | 10 |    | 3 | 9  | _ |    |   |
|    | 10 |    | 3 | 9  | 7 |    |   |
|    |    |    |   |    |   |    |   |
| _  |    | _  |   |    | 2 |    |   |
| 6  | 4  | 5  | 1 | 8  | 2 |    | > |
|    |    |    |   |    |   |    |   |
| 7  | -  | 10 |   |    |   |    |   |
| 7  | 5  | 10 | 8 |    |   |    |   |
| 2  | 3  | 4  | 6 | 1  | 9 |    | _ |
|    |    |    |   |    |   | 0. |   |

How to use  $s(K) \ge f(K)$  and  $s(K) \le g(K)$  cuts:

• Machine sequencing constraints impose initial release dates on jobs:  $r_{ij}$ 

Job 1: 1, 2, 3, 4, 5 Job 2: 5, 1, 3, 2, 4

Job 3: 2, 5, 1, 4, 3

Job 4: 2, 4, 5, 3, 1 Job 5: 3, 5, 4, 1, 2

Job 6: 4, 3, 2, 5, 1 Job 7: 5, 1, 2, 4, 3

Job 8: 1, 3, 2, 5, 4 Job 9: 2, 3, 1, 4, 5

Job 10: 3, 4, 5, 1, 2



7 9 6 2 3 5 4

How to use  $s(K) \geq f(K)$  and  $s(K) \leq g(K)$  cuts:

• Machine sequencing constraints impose initial release dates on jobs:  $r_{ij}$ 

Job 1: 1, 2, 3, 4, 5 Job 2: 5, 1, 3, 2, 4 Job 3: 2, 5, 1, 4, 3 Job 4: 2, 4, 5, 3, 1 Job 5: 3, 5, 4, 1, 2 Job 6: 4, 3, 2, 5, 1

Job 6: 4, 3, 2, 5, 1 Job 7: 5, 1, 2, 4, 3 Job 8: 1, 3, 2, 5, 4

Job 9: 2, 3, 1, 4, 5

Job 10: 3, 4, 5, 1, 2

• At machine i, jobs with  $r_{ij} = r$  form class r



How to use  $s(K) \ge f(K)$  and  $s(K) \le g(K)$  cuts:

 Machine sequencing constraints impose initial release dates on jobs:  $r_{ij}$ 

Job 1: 1, 2, 3, 4, 5 Job 2: 5, 1, 3, 2, 4 Job 3: 2, 5, 1, 4, 3 Job 4: 2, 4, 5, 3, 1 Job 5: 3, 5, 4, 1, 2 Job 6: 4, 3, 2, 5, 1 Job 7: 5, 1, 2, 4, 3

Job 8: 1, 3, 2, 5, 4 Job 9: 2, 3, 1, 4, 5

Job 10: 3, 4, 5, 1, 2

- At machine i, jobs with  $r_{ij} = r$  form class r
- Separate  $s(K) \ge f(K)$  for each class



How to use  $s(K) \geq f(K)$  and  $s(K) \leq g(K)$  cuts:

• If infeasible:



How to use  $s(K) \geq f(K)$  and  $s(K) \leq g(K)$  cuts:

• If infeasible:

Either 3, 4, or 10 must have  $r_{5j} < 2\,$ 



How to use  $s(K) \ge f(K)$  and  $s(K) \le g(K)$  cuts:

• If infeasible: Either 3, 4, or 10 must have  $r_{5j} < 2$  Say it's job 3



How to use  $s(K) \ge f(K)$  and  $s(K) \le g(K)$  cuts:

• If infeasible:

Either 3, 4, or 10 must have  $r_{5j} < 2$  Say it's job 3

Branch:  $s_{53} \leq 1$  and  $s_{53} \geq 2$ 



# Cumulative Job-Shop: $p_{ij} = 1$ , $\min \sum s_{ij}$

How to use  $s(K) \ge f(K)$  and  $s(K) \le g(K)$  cuts:

• If infeasible:

Either 3, 4, or 10 must have  $r_{5j} < 2$  Say it's job 3

Branch:  $s_{53} \leq 1$  and  $s_{53} \geq 2$ 

Update:  $r_{53}^{ub}=1$  and  $r_{53}^{lb}=2$ 



# Cumulative Job-Shop: $p_{ij}=1$ , $\min\sum s_{ij}$

How to use  $s(K) \geq f(K)$  and  $s(K) \leq g(K)$  cuts:

- If infeasible:
  - Either 3, 4, or 10 must have  $r_{5j} < 2$  Say it's job 3

Branch:  $s_{53} \le 1$  and  $s_{53} \ge 2$ 

Update:  $r_{53}^{ub} = 1$  and  $r_{53}^{lb} = 2$ 

- Branching alters job classes: allows cuts to remove violations
- 10

# Cumulative Job-Shop: $p_{ij}=1$ , $\min\sum s_{ij}$

How to use  $s(K) \ge f(K)$  and  $s(K) \le g(K)$  cuts:

- If infeasible:
  - Either 3, 4, or 10 must have  $r_{5j} < 2$  Say it's job 3

Branch:  $s_{53} \le 1$  and  $s_{53} \ge 2$ Update:  $r_{53}^{ub} = 1$  and  $r_{53}^{lb} = 2$ 

- Branching alters job classes: allows cuts to remove violations
- Branching imposes upper bounds on  $s_{ij}$ : separate  $s(K) \leq g(K)$  as well



# Cumulative Job-Shop: $p_{ij}=1$ , $\min\sum s_{ij}$

How to use  $s(K) \ge f(K)$  and  $s(K) \le g(K)$  cuts:

- If infeasible:
  - Either 3, 4, or 10 must have  $r_{5j} < 2$  Say it's job 3

Branch:  $s_{53} \le 1$  and  $s_{53} \ge 2$ Update:  $r_{53}^{ub} = 1$  and  $r_{53}^{lb} = 2$ 

- Branching alters job classes: allows cuts to remove violations
- Branching imposes upper bounds on  $s_{ij}$ : separate  $s(K) \leq g(K)$  as well
- How to pick violation and job to branch on?
   Still experimenting with this...







Potential Branching Heuristic:

# Potential Branching Heuristic:

Have generic problem  ${\mathcal P}$ 

## Potential Branching Heuristic:

Have generic problem  ${\mathcal P}$ 

Have family  ${\mathcal F}$  of cuts that work when  ${\mathcal P}$  is restricted to satisfy certain conditions  ${\mathcal R}$ 

### Potential Branching Heuristic:

Have generic problem  ${\mathcal P}$ 

Have family  ${\mathcal F}$  of cuts that work when  ${\mathcal P}$  is restricted to satisfy certain conditions  ${\mathcal R}$ 

Bias branching on  ${\mathcal P}$  to bring it closer to satisfying  ${\mathcal R}$  during search

# Potential Branching Heuristic:

Have generic problem  ${\mathcal P}$ 

Have family  ${\mathcal F}$  of cuts that work when  ${\mathcal P}$  is restricted to satisfy certain conditions  ${\mathcal R}$ 

Bias branching on  ${\mathcal P}$  to bring it closer to satisfying  ${\mathcal R}$  during search

Separate  ${\mathcal F}$  cuts when violated

### Potential Branching Heuristic:

Have generic problem  ${\mathcal P}$ 

Have family  ${\mathcal F}$  of cuts that work when  ${\mathcal P}$  is restricted to satisfy certain conditions  ${\mathcal R}$ 

Bias branching on  ${\mathcal P}$  to bring it closer to satisfying  ${\mathcal R}$  during search

Separate  $\mathcal F$  cuts when violated

### Initial set of instances generated by hand:

- Number of machines m = 5 and  $C_i = (3, 5, 11, 4, 2)$
- Number of jobs  $n \in \{10, 15, 20, 25, 30, 35, 40, 50, 60\}$
- Resource consumption  $c_i = (1, 2, 3, 2, 1)$
- $p_{ij} = 1$  and time horizon T = 30

### Initial set of instances generated by hand:

- Number of machines m = 5 and  $C_i = (3, 5, 11, 4, 2)$
- Number of jobs  $n \in \{10, 15, 20, 25, 30, 35, 40, 50, 60\}$
- Resource consumption  $c_i = (1, 2, 3, 2, 1)$
- $p_{ij} = 1$  and time horizon T = 30

#### Solution methods:

• Default CPLEX 12.2 with typical  $x_{ijt}$  formulation

### Initial set of instances generated by hand:

- Number of machines m = 5 and  $C_i = (3, 5, 11, 4, 2)$
- Number of jobs  $n \in \{10, 15, 20, 25, 30, 35, 40, 50, 60\}$
- Resource consumption  $c_i = (1, 2, 3, 2, 1)$
- $p_{ij} = 1$  and time horizon T = 30

- Default CPLEX 12.2 with typical  $x_{ijt}$  formulation
- B&C with  $s_{ij}$  variables, classed f and g cuts, and 2 branching strategies:

### Initial set of instances generated by hand:

- Number of machines m = 5 and  $C_i = (3, 5, 11, 4, 2)$
- Number of jobs  $n \in \{10, 15, 20, 25, 30, 35, 40, 50, 60\}$
- Resource consumption  $c_i = (1, 2, 3, 2, 1)$
- $p_{ij} = 1$  and time horizon T = 30

- Default CPLEX 12.2 with typical  $x_{ijt}$  formulation
- B&C with  $s_{ij}$  variables, classed f and g cuts, and 2 branching strategies:
  - EFC = Earliest violation, first candidate job
  - ESDFF = Earliest viol., smallest  $s_{ij}$  domain, fractional  $s_{ij}$  first

### Initial set of instances generated by hand:

- Number of machines m = 5 and  $C_i = (3, 5, 11, 4, 2)$
- Number of jobs  $n \in \{10, 15, 20, 25, 30, 35, 40, 50, 60\}$
- Resource consumption  $c_i = (1, 2, 3, 2, 1)$
- $p_{ij} = 1$  and time horizon T = 30

- Default CPLEX 12.2 with typical  $x_{ijt}$  formulation
- B&C with  $s_{ij}$  variables, classed f and g cuts, and 2 branching strategies:
  - EFC = Earliest violation, first candidate job
  - **ESDFF** = Earliest viol., smallest  $s_{ij}$  domain, fractional  $s_{ij}$  first
- Latest violation seems to perform worse than earliest

| n  | Solution | Best    | Nodes | Time    | Best    | Nodes | Time    |
|----|----------|---------|-------|---------|---------|-------|---------|
| 10 | 54       |         | 1     | 0.1     |         | 1     | 0.1     |
| 15 | 98       |         | 4K    | 57      |         | 733   | 7       |
| 20 | 154      |         | 12K   | 122     |         | 3K    | 26      |
| 25 | 225      |         | 51K   | 4K      |         | 17K   | 817     |
| 30 | 306      |         | 83K   | 11K     |         | 233K  | 79K     |
| 35 | 402      | 414     | 131K  | $2K^m$  | 405     | 161K  | $43K^m$ |
| 40 | 508      | 525     | 91K   | $4K^m$  | 516     | 108K  | $8K^m$  |
| 50 | 760*     | 791     | 114K  | $3K^m$  | 784     | 89K   | $15K^m$ |
| 60 | 1,062*   | no sol. | 90K   | $13K^m$ | no sol. | 67K   | $44K^m$ |

CPLEX 1-Thread

CPLEX Default

Optimal

| -  | Optim   | al   | CPLEX Default |     |     | ault  | :     | CPLEX 1-Thread |                    |                  |  |
|----|---------|------|---------------|-----|-----|-------|-------|----------------|--------------------|------------------|--|
| n  | Solutio | on   | Best          | No  | des | Ti    | me    | Best           | Nodes              | Time             |  |
| 10 | 54      |      |               |     | 1   |       | 0.1   |                | 1                  | 0.1              |  |
| 15 | 98      |      |               |     | 4K  |       | 57    |                | 733                | 7                |  |
| 20 | 154     |      |               | 1   | .2K |       | 122   |                | 3K                 | 26               |  |
| 25 | 225     |      |               | 5   | i1K |       | 4K    |                | 17K                | 817              |  |
| 30 | 306     |      |               |     | 3K  |       | .1K   |                | 233K               | 79K              |  |
| 35 | 402     |      | 414           | _   | 31K |       | $K^m$ | 405            |                    | $43K^m$          |  |
| 40 | 508     |      | 525           |     | 1K  |       | $K^m$ | 516            | 108K               | $8K^m$           |  |
| 50 | 760*    |      | 791           | 11  | .4K |       | $K^m$ | 784            | 89K                | $15K^m$          |  |
| 60 | 1,062   | * n  | o sol.        | 9   | 0K  | 13    | $K^m$ | no sol.        | 67K                | 44K <sup>m</sup> |  |
|    |         |      | Е             | FC  |     |       |       | ESDF           | F                  | _                |  |
|    | n       | Bes  | t No          | des | Tim | ne    | Best  | t Node:        | s Time             |                  |  |
|    | 10      |      |               | 15  | 0   | .1    |       | 15             | 5 0.1              |                  |  |
|    | 15      |      | 39            | 93K | 2   | K     |       | 10k            | 31                 |                  |  |
|    | 20      |      |               | 221 |     | 1     |       | 8k             | 30                 |                  |  |
|    | 25      |      | 1:            | 19K | 25  | K     |       | 1k             |                    |                  |  |
|    | 30      |      |               | 2K  |     | 32    |       | 11k            |                    |                  |  |
|    | 35      |      |               | 38K | 26  |       |       | 21k            |                    |                  |  |
|    | 40      |      |               | 14K | 72  |       |       | 7k             |                    |                  |  |
|    | 50      | 76   | 2 1           | 59K | 24ł |       | 762   | 2 77k          |                    |                  |  |
|    | 60      | 1,09 | 7 (           | 56K | 24  | $h^t$ | 1108  | 3 68k          | ( 24h <sup>t</sup> |                  |  |

### Modified job-shop instances from OR-Library

- 81 instances taken from 6 articles from 1988 to 1992
- Number of jobs  $n \in \{10, 15, 20, 30, 50\}$
- Number of machines  $m \in \{5, 10, 15, 20\}$
- Modifications:
  - $p_{ij} = 1$
  - C=6 for all machines
  - $c_i$  can be 2 or 3 (randomly chosen)

### Modified job-shop instances from OR-Library

- 81 instances taken from 6 articles from 1988 to 1992
- Number of jobs  $n \in \{10, 15, 20, 30, 50\}$
- Number of machines  $m \in \{5, 10, 15, 20\}$
- Modifications:
  - $p_{ij} = 1$
  - ightharpoonup C = 6 for all machines
  - $lue{c}_i$  can be 2 or 3 (randomly chosen)

#### Solution methods:

• Default CPLEX 12.2 with typical  $x_{ijt}$  formulation

### Modified job-shop instances from OR-Library

- 81 instances taken from 6 articles from 1988 to 1992
- Number of jobs  $n \in \{10, 15, 20, 30, 50\}$
- Number of machines  $m \in \{5, 10, 15, 20\}$
- Modifications:
  - $p_{ij} = 1$
  - ightharpoonup C = 6 for all machines
  - $lue{c}_i$  can be 2 or 3 (randomly chosen)

- Default CPLEX 12.2 with typical  $x_{ijt}$  formulation
- B&C with  $s_{ij}$  variables, classed f and g cuts, and 4 branching strategies:

### Modified job-shop instances from OR-Library

- 81 instances taken from 6 articles from 1988 to 1992
- Number of jobs  $n \in \{10, 15, 20, 30, 50\}$
- Number of machines  $m \in \{5, 10, 15, 20\}$
- Modifications:
  - $p_{ij} = 1$
  - ightharpoonup C = 6 for all machines
  - $lue{c}_i$  can be 2 or 3 (randomly chosen)

- Default CPLEX 12.2 with typical  $x_{ijt}$  formulation
- B&C with  $s_{ij}$  variables, classed f and g cuts, and 4 branching strategies:
  - EFC = Earliest violation, first candidate job
  - **ESDFF** = Earliest viol., smallest  $s_{ij}$  domain, fractional  $s_{ij}$  first
  - ESDFL = Earliest viol., smallest  $s_{ij}$  domain, fractional  $s_{ij}$  last
  - SODE = Smallest overall  $s_{ij}$  domain, earliest viol. first if tied

|         | CPLEX |      | CPLEX B&C best t. Nodes Time Nodes Time |      | B&C   | avg. |
|---------|-------|------|-----------------------------------------|------|-------|------|
| # inst. | Nodes | Time | Nodes                                   | Time | Nodes | Time |
|         |       |      |                                         |      |       |      |
|         |       |      |                                         |      |       |      |
|         |       |      |                                         |      |       |      |
|         |       |      |                                         |      |       |      |

|       |         | CPL   | EX   | B&C   | best | B&C avg. |      |
|-------|---------|-------|------|-------|------|----------|------|
|       | # inst. | Nodes | Time | Nodes | Time | Nodes    | Time |
| m = 5 | 4       | 1     | 0.10 | 37    | 0.08 | same     | same |
| m = 5 | 1       | 1     | 0.09 | 1,079 | 1.7  | same     | same |

|        |         | CPLEX |      | B&C    | best | B&C avg. |      |
|--------|---------|-------|------|--------|------|----------|------|
|        | # inst. | Nodes | Time | Nodes  | Time | Nodes    | Time |
| m = 5  | 4       | 1     | 0.10 | 37     | 0.08 | same     | same |
| m - s  | 1       | 1     | 0.09 | 1,079  | 1.7  | same     | same |
| m = 10 | 16      | 32    | 0.52 | 82     | 0.25 | 97       | 0.28 |
| m - 10 | 2       | 423   | 6.70 | 57,163 | 140  | 81,951   | 212  |

CPLEX found all 15 optimal solutions B&C methods found all 15, but didn't prove one of them

CPLEX found all 15 optimal solutions B&C methods found all 15, but didn't prove one of them

|         | CPLEX |      | B&C b | est  | B&C avg. |      |  |
|---------|-------|------|-------|------|----------|------|--|
| # inst. | Nodes | Time | Nodes | Time | Nodes    | Time |  |
|         |       |      |       |      |          |      |  |
|         |       |      |       |      |          |      |  |
|         |       |      |       |      |          |      |  |
|         |       |      |       |      |          |      |  |
|         |       |      |       |      |          |      |  |
|         |       |      |       |      |          |      |  |

CPLEX found all 15 optimal solutions B&C methods found all 15, but didn't prove one of them

|     |         | CPLEX |      | B&C b   | est  | B&C a   | vg.  |
|-----|---------|-------|------|---------|------|---------|------|
|     | # inst. | Nodes | Time | Nodes   | Time | Nodes   | Time |
| -   | 4       | 243   | 1.05 | 189     | 0.56 | 270     | 0.76 |
| m=5 | 1       | 41    | 0.77 | 146,162 | 388  | 166,955 | 446  |

CPLEX found all 15 optimal solutions B&C methods found all 15, but didn't prove one of them

|        |         | CPLEX |      | B&C b         | est  | B&C avg.             |      |  |
|--------|---------|-------|------|---------------|------|----------------------|------|--|
|        | # inst. | Nodes | Time | Nodes         | Time | Nodes                | Time |  |
| m = 5  | 4       | 243   | 1.05 | 189           | 0.56 | 270                  | 0.76 |  |
| m = 5  | 1       | 41    | 0.77 | 146,162       | 388  | 166,955              | 446  |  |
| 222 10 | 4       | 310   | 2.89 | 639           | 2.52 | 676                  | 2.64 |  |
| m = 10 | 1       | 600   | 2.95 | $508,659^{m}$ |      | 509,876 <sup>m</sup> |      |  |

CPLEX found all 15 optimal solutions B&C methods found all 15, but didn't prove one of them

|        |         | CPLEX |      | B&C b       | est  | B&C avg.             |      |
|--------|---------|-------|------|-------------|------|----------------------|------|
|        | # inst. | Nodes | Time | Nodes       | Time | Nodes                | Time |
| m — 5  | 4       | 243   | 1.05 | 189         | 0.56 | 270                  | 0.76 |
| m = 5  | 1       | 41    | 0.77 | 146,162     | 388  | 166,955              | 446  |
| m - 10 | 4       | 310   | 2.89 | 639         | 2.52 | 676                  | 2.64 |
| m = 10 | 1       | 600   | 2.95 | $508,659^m$ |      | 509,876 <sup>m</sup> |      |
| m — 15 | 4       | 194   | 2.51 | 208         | 1.21 | 211                  | 1.22 |
| m = 15 | 1       | 150   | 1.94 | 73,346      | 366  | 75,161               | 375  |
|        |         |       |      |             |      |                      |      |

Instances with n = 20:  $m \in \{5, 10, 15, 20\}$ , 28 total

# Instances with n = 20: $m \in \{5, 10, 15, 20\}$ , 28 total

No method ran out of time; always found opt. or feasible solutions

No method ran out of time; always found opt. or feasible solutions

| # Instances  | m=5 | m = 10 | m = 15 | m = 20 | Total |
|--------------|-----|--------|--------|--------|-------|
| Tied         |     |        |        |        |       |
| CPLEX better |     |        |        |        |       |
| ESDFF better |     |        |        |        |       |
| Total        |     |        |        |        | 28    |

No method ran out of time; always found opt. or feasible solutions

| # Instances  | m=5 | m = 10 | m = 15 | m = 20 | Total |
|--------------|-----|--------|--------|--------|-------|
| Tied         |     |        | $1^a$  |        | 1     |
| CPLEX better |     |        |        |        |       |
| ESDFF better |     |        |        |        |       |
| Total        |     |        |        |        | 28    |

a: neither method found optimum

No method ran out of time; always found opt. or feasible solutions

| # Instances  | m=5            | m = 10 | m = 15 | m = 20 | Total |
|--------------|----------------|--------|--------|--------|-------|
| Tied         |                |        | $1^a$  |        | 1     |
| CPLEX better | 3 <sup>b</sup> |        |        |        |       |
| ESDFF better |                |        |        |        |       |
| Total        |                |        |        |        | 28    |

a: neither method found optimum

b: one 20x faster; one optimum ESDFF didn't find

No method ran out of time; always found opt. or feasible solutions

| # Instances  | m=5            | m = 10          | m = 15 | m = 20 | Total |
|--------------|----------------|-----------------|--------|--------|-------|
| Tied         |                |                 | $1^a$  |        | 1     |
| CPLEX better | 3 <sup>b</sup> | 10 <sup>c</sup> |        |        |       |
| ESDFF better |                |                 |        |        |       |
| Total        |                | 10              |        |        | 28    |

a: neither method found optimum

b: one 20x faster; one optimum ESDFF didn't find

c: one non-optimal: loses to EFC: value of 269 vs. 266

No method ran out of time; always found opt. or feasible solutions

| # Instances  | m=5            | m = 10          | m = 15    | m = 20 | Total |
|--------------|----------------|-----------------|-----------|--------|-------|
| Tied         |                |                 | $1^a$     |        | 1     |
| CPLEX better | 3 <sup>b</sup> | 10 <sup>c</sup> | 4 <u></u> |        |       |
| ESDFF better |                |                 |           |        |       |
| Total        |                | 10              |           |        | 28    |

a: neither method found optimum

b: one 20x faster; one optimum ESDFF didn't find

c: one non-optimal: loses to EFC: value of 269 vs. 266

d: one 3x faster; one optimum found by neither

No method ran out of time; always found opt. or feasible solutions

| # Instances  | m=5            | m = 10          | m = 15    | m = 20 | Total |
|--------------|----------------|-----------------|-----------|--------|-------|
| Tied         |                |                 | $1^a$     |        | 1     |
| CPLEX better | 3 <sup>b</sup> | 10 <sup>c</sup> | 4 <u></u> | 1      | 18    |
| ESDFF better |                |                 |           |        |       |
| Total        |                | 10              |           |        | 28    |

a: neither method found optimum

b: one 20x faster; one optimum ESDFF didn't find

c: one non-optimal: loses to EFC: value of 269 vs. 266

d: one 3x faster; one optimum found by neither

No method ran out of time; always found opt. or feasible solutions

| # Instances  | m=5            | m = 10          | m = 15  | m = 20 | Total |
|--------------|----------------|-----------------|---------|--------|-------|
| Tied         |                |                 | $1^a$   |        | 1     |
| CPLEX better | 3 <sup>b</sup> | 10 <sup>c</sup> | $4^{d}$ | 1      | 18    |
| ESDFF better | 3 <sup>e</sup> |                 |         |        |       |
| Total        | 6              | 10              |         |        | 28    |

a: neither method found optimum

b: one 20x faster; one optimum ESDFF didn't find

c: one non-optimal: loses to EFC: value of 269 vs. 266

d: one 3x faster; one optimum found by neither

e: two 10x faster

No method ran out of time; always found opt. or feasible solutions

| # Instances  | m=5            | m = 10          | m = 15         | m = 20 | Total |
|--------------|----------------|-----------------|----------------|--------|-------|
| Tied         |                |                 | $1^a$          |        | 1     |
| CPLEX better | 3 <sup>b</sup> | 10 <sup>c</sup> | $4^{d}$        | 1      | 18    |
| ESDFF better | 3 <sup>e</sup> |                 | 3 <sup>f</sup> |        |       |
| Total        | 6              | 10              | 8              |        | 28    |

a: neither method found optimum

b: one 20x faster; one optimum ESDFF didn't find

c: one non-optimal: loses to EFC: value of 269 vs. 266

d: one 3x faster; one optimum found by neither

e: two 10x faster

f: two optima found by neither

No method ran out of time; always found opt. or feasible solutions

| # Instances  | m=5            | m = 10   | m = 15         | m = 20                | Total |
|--------------|----------------|----------|----------------|-----------------------|-------|
| Tied         |                |          | $1^a$          |                       | 1     |
| CPLEX better | 3 <sup>b</sup> | $10^{c}$ | 4 <sup>d</sup> | 1                     | 18    |
| ESDFF better | 3 <sup>e</sup> |          | 3 <sup>f</sup> | 3 <sup><i>g</i></sup> | 9     |
| Total        | 6              | 10       | 8              | 4                     | 28    |

a: neither method found optimum

b: one 20x faster; one optimum ESDFF didn't find

c: one non-optimal: loses to EFC: value of 269 vs. 266

d: one 3x faster; one optimum found by neither

e: two 10x faster

f: two optima found by neither

g: all 2x faster

Instances with n = 30, m = 10

Originally: S. Lawrence, GSIA Tech. Report, 1984

## Instances with n = 30, m = 10

Originally: S. Lawrence, GSIA Tech. Report, 1984

|       | CPLEX |          | EFC  |      | ESDFF |      | ESDFL |      | SODE  |      |       |
|-------|-------|----------|------|------|-------|------|-------|------|-------|------|-------|
| Inst. | Best  | Nodes    | Time | Best | Nodes | Best | Nodes | Best | Nodes | Best | Nodes |
| la31  | 411   | 132K     | 24h  | 426  | 192K  | 428  | 203K  | 428  | 189K  | -    | 191K  |
| la32  | 402*  | 130K     | 38K  | 418  | 196K  | 415  | 194K  | 425  | 179K  | 409  | 190K  |
| la33  | 410   | $132K^m$ | 45K  | 411  | 192K  | 407  | 186K  | 407  | 351K  | 412  | 189K  |
| la34  | 409   | $138K^m$ | 76K  | 401  | 193K  | 399  | 534K  | 404  | 190K  | 400  | 195K  |
| la35  | 392*  | 124K     | 52K  | 419  | 191K  | 419  | 188K  | 420  | 192K  | 420  | 192K  |

All four B&C algorithms ran out of memory (4GB)

## Instances with n = 50, m = 10

Originally: Storer, Wu, and Vaccari, Management Science, 1992

## Instances with n = 50, m = 10

Originally: Storer, Wu, and Vaccari, Management Science, 1992

|       |      | CPLEX                   | (      |               | ESDFF    |      |        |
|-------|------|-------------------------|--------|---------------|----------|------|--------|
| Inst. | Best | Nodes                   | Time   | Best          | Nodes    | Time | TTFF   |
| swv11 | _    | 58K <sup><i>m</i></sup> | 7,015  | 1115 (10.3%)  | 93K      | 24h  | 43     |
| swv12 | -    | $59K^m$                 | 8,565  | 1206 (16.25%) | 91K      | 24h  | 41     |
| swv13 | _    | $54K^m$                 | 16,530 | 1108 (9.84%)  | 98K      | 24h  | 15     |
| swv14 | -    | $55K^m$                 | 12,510 | 1119 (11.53%) | 74K      | 24h  | 265    |
| swv15 | _    | $62K^m$                 | 2,904  | 1118 (10.29%) | 91K      | 24h  | 45     |
| swv16 | -    | $61K^m$                 | 2,734  | -             | $140K^m$ |      | -      |
| swv17 | -    | $54K^m$                 | 16,961 | 967 (8.79%)   | $116K^m$ |      | 51     |
| swv18 | _    | $56K^m$                 | 12,082 | 960 (6.25%)   | $134K^m$ |      | 16,759 |
| swv19 | _    | $51K^m$                 | 55,676 | 940 (5.74%)   | $98K^m$  |      | 288    |
| swv20 | -    | $51K^m$                 | 38,033 | 934 (6.10%)   | $136K^m$ |      | 1,402  |

TTFF = time till first feasible solution (in seconds)

Complete characterization of simple cumulative polytopes

- Complete characterization of simple cumulative polytopes
- Inequalities remain valid (though not strong) for general case

- Complete characterization of simple cumulative polytopes
- Inequalities remain valid (though not strong) for general case
  - use  $r_0 = \min r_j$ ,  $p_0 = \min p_j$ ,  $c_0 = \min c_j$  in f(K)

- Complete characterization of simple cumulative polytopes
- Inequalities remain valid (though not strong) for general case
  - use  $r_0 = \min r_j$ ,  $p_0 = \min p_j$ ,  $c_0 = \min c_j$  in f(K)
- Facet-defining inequalities for arbitrary  $c_j$  (untested)

- Complete characterization of simple cumulative polytopes
- Inequalities remain valid (though not strong) for general case
  - use  $r_0 = \min r_j$ ,  $p_0 = \min p_j$ ,  $c_0 = \min c_j$  in f(K)
- Facet-defining inequalities for arbitrary  $c_i$  (untested)
- Preliminary experiments show some promise

- Complete characterization of simple cumulative polytopes
- Inequalities remain valid (though not strong) for general case
  - use  $r_0 = \min r_j$ ,  $p_0 = \min p_j$ ,  $c_0 = \min c_j$  in f(K)
- Facet-defining inequalities for arbitrary  $c_i$  (untested)
- Preliminary experiments show some promise
  - $lue{}$  especially as n increases

- Complete characterization of simple cumulative polytopes
- Inequalities remain valid (though not strong) for general case
  - use  $r_0 = \min r_j$ ,  $p_0 = \min p_j$ ,  $c_0 = \min c_j$  in f(K)
- Facet-defining inequalities for arbitrary  $c_i$  (untested)
- Preliminary experiments show some promise
  - $\blacksquare$  especially as n increases
- To do: find heuristic separation for arbitrary- $c_j$  facets

- Complete characterization of simple cumulative polytopes
- Inequalities remain valid (though not strong) for general case
  - use  $r_0 = \min r_j$ ,  $p_0 = \min p_j$ ,  $c_0 = \min c_j$  in f(K)
- Facet-defining inequalities for arbitrary  $c_j$  (untested)
- Preliminary experiments show some promise
  - $\blacksquare$  especially as n increases
- To do: find heuristic separation for arbitrary- $c_j$  facets
- To do: continue with cumulative job-shop experiments

- Complete characterization of simple cumulative polytopes
- Inequalities remain valid (though not strong) for general case
  - use  $r_0 = \min r_j$ ,  $p_0 = \min p_j$ ,  $c_0 = \min c_j$  in f(K)
- Facet-defining inequalities for arbitrary  $c_i$  (untested)
- Preliminary experiments show some promise
  - $\blacksquare$  especially as n increases
- To do: find heuristic separation for arbitrary- $c_j$  facets
- To do: continue with cumulative job-shop experiments
- To do: find other applications with multiple cumulative constraints

- Complete characterization of simple cumulative polytopes
- Inequalities remain valid (though not strong) for general case
  - use  $r_0 = \min r_j$ ,  $p_0 = \min p_j$ ,  $c_0 = \min c_j$  in f(K)
- Facet-defining inequalities for arbitrary  $c_i$  (untested)
- Preliminary experiments show some promise
  - $\blacksquare$  especially as n increases
- To do: find heuristic separation for arbitrary- $c_j$  facets
- To do: continue with cumulative job-shop experiments
- To do: find other applications with multiple cumulative constraints
- ullet To do: allow other parameters to differ:  $r_j$ ,  $p_j$

## The End

Thank You!

Any Questions?