Telecom ParisTech Teacher: Aslan Tchamkerten

ACCQ204, Coding Theory December 2017

ASSIGNMENT 2 - SOLUTIONS

Exercise 1 (A(n, d), extending, puncturing, expurgating). Define the intersection of length n binary vectors x and y to be the vector $x * y = (x_1y_1, x_2y_2, \dots, x_ny_n)$.

1. Show that

$$wt(x+y) = wt(x) + wt(y) - 2wt(x*y)$$

- 2. Show that $A(n,d) \leq A(n-1,d-1)$. Hint: consider 'puncturing', that is removing a common coordinate from every codeword.
- 3. Show that A(n, 2r 1) = A(n + 1, 2r) where A(n, d) denotes the largest number of lenth n codewords with minimum distance d. Hint: consider 'extending' codewords by adding a parity check bit, i.e., x_1, x_2, \ldots, x_n becomes $x_1, x_2, \ldots, x_n, \sum x_i$.
- 4. Show that $A(n,d) \leq 2A(n-1,d)$. Hint: consider dividing codewords into two classes, those beginning with a 0 and those beginning with a 1.

Solution. 1. Immediate

- 2. If we delete a coordinate from an (n, M, d) code (n refers to the codeword length, M to the number of codewords, and 2r-1 to the minimum distance), we get an $(n-1, M, \ge d-1)$ code, hence $A(n, d) \le A(n-1, d-1)$.
- 3. Let $\mathcal C$ be an (n,M,2r-1) code. By adding an overall parity check bit we get an (n+1,M,2r) code since the minimum distance must be even by 1. and that adding a parity check cannot increase the minimum distance my more than 1. Therefore $A(n,2r-1) \leq A(n+1,2r)$. Conversely, deleting one coordinate gives an $(n,M,d\geq 2r-1)$ code (see 2.), hence $A(n,2r-1)\geq A(n+1,2r)$.
- 4. Consider and (n, M, d) code. Using the hint, consider removing the smallest of the two classes. The remaining class has at least M/2 codewords and its minimum distance is at least d. Therefore $A(n, d)/2 \le A(n-1, d)$.

Exercise 2. Determine the parameters (n, k, d) of the binary code

$$C = \{00001100, 00001111, 01010101, 11011101\}$$

Solution.
$$n = 8, k = 3, d = 2$$

1

Exercise 3. For each of the following codes

$$C_1 = \{00000, 01010, 00001, 01011, 01001\}$$

$$C_2 = \{000000, 101000, 001110, 100111\}$$

$$C_3 = \{0000, 1100, 1010, 1001, 0110, 0101, 0011, 1111\}.$$

tell if it is linear and evaluate the parameters (n, k, d).

Exercise 4. The dual of an $[n, k]_q$ code \mathcal{C} is the set

$$\mathcal{C}^{\perp} = \{ c \in \mathbb{F}_q^n : \langle x, y \rangle = 0 \text{ for all } y \in \mathcal{C} \}$$

 $(\langle \cdot, \cdot \rangle)$ denotes the standard "scalar" product).

Show that if G and H are the generator and parity matrices, respectively, of C, then H and G are the generator and parity matrices, respectively, of C^{\perp} .

Solution. For any x, x' in the message spaces of \mathcal{C} and \mathcal{C}^{\perp} , respectively, we have

$$\langle xG, x'H \rangle = xGH^Tx' = 0$$

since $GH^T=0$ (see Lemma in the course). Therefore H is the generator matrix of \mathcal{C}^\perp and G its generator matrix (since $HG^T=(HG^T)^{TT}=(GH^T)^T=0$ by the same lemma). \square

Exercise 5. Let C_1 and C_2 be an $[n, k_1, d_1]$ and an $[n, k_2, d_2]$ code, respectively. Let $C_1|C_2$ be the code consisting of all codewords of the form

$$(u, u + v) = (u_1, u_2, \dots, u_n, u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$$

with $u=(u_1,u_2,\ldots,u_n)\in C_1$ and $v=(v_1,v_2,\ldots,v_n)\in C_2$. Show that $C_1|C_2$ is an $[2n,k_1+k_2,\min\{2d_1,d_2\}]$ code. Hint. consider the cases v=v' and $v\neq v'$. For the second case use the triangle inequality.

Solution. That $C_1|C_2$ has length 2n and dimension $k_1 + k_2$ is obvious. Let us consider the minimum distance. If a = u, u + v and b = u', u' + v' are different codewords then d(a, b) = d(u, u') + d(u + v, u' + v'). Using this we get

- If v = v' then $d(a, b) \ge 2d_1$
- If $v \neq v'$ then

$$d(a,b) = wt(u - u') + wt(u + v - u' - v')$$

$$= wt(u' - u) + wt(u + v - u' - v')$$

$$\geq wt(u - u' + u + v - u' - v')$$

$$= wt(v - v')$$

$$\geq d_2$$

This shows that the minimum distance of $C_1|C_2$ is $\geq \min\{2d_1, d_2\}$ and it is easy to check that this bound is indeed achievable.

Exercise 6. In this exercise we show the existence of linear codes over [q], $q \ge 2$, which achieve the Gilbert-Varshamov bound. To that aim we show the existence of a full rank generator matrix G of dimension $k \times n$ such that

$$k = (1 - H_q(\delta) - \varepsilon)n$$

and such that

for any $m \in \mathbb{F}_q^k$.

- 1. Pick G randomly such that each of its elements is independently chosen with the uniform distribution over [q]. Fix $m \neq 0$. We first show that for such a random G, mG is a uniformly chosen vector over $[q]^n$.
 - (a) Let X_i denote the *i*-th symbol of the *n*-vector mG. Show that X_i is independent of X_j for $i \neq j$.
 - (b) Let $X_i = \sum_{j=1}^k m_j G_{ji}$. Since $m \neq 0$, at least one of its elements is non-zero. Say m_ℓ is the first non-zero element. Thus we can write $X_i = m_\ell G_{\ell i} + \sum_{j=\ell+1}^k m_j G_{ji}$. Using this, show that X_i is uniformly distributed over [q] by conditioning over the possible realizations of $G_{\ell+1,i}, G_{\ell+2,i}, \ldots, G_{k,i}$.
- 2. Deduce that

$$Pr[wt(mG) < d] \le \frac{q^{nH_q(\delta)}}{a^n}.$$

Hint. $Vol_q(d-1,n) \leq q^{nH_q(\delta)}$.

- 3. Deduce that $Pr(\exists m: wt(mG) < d) \le q^{-\varepsilon n}$ for some appropriate choice of k.
- 4. Conclude the proof.

Solution. 1. (a) Holds since X_i and X_j involve different columns of G and that these columns are independent.

(b) We have

$$P(X_{\ell} = x) = \frac{1}{q^{k-\ell}} \sum_{\substack{(g_{\ell+1,i}, g_{\ell+2,i}, \dots, g_{k,i})}} P(X_{\ell} = x | (G_{\ell+1,i}, G_{\ell+2,i}, \dots, G_{k,i}) = (g_{\ell+1,i}, g_{\ell+2,i}, \dots, g_{k,i}))$$

$$= \frac{1}{q^{k-\ell}} \sum_{\substack{(g_{\ell+1,i}, g_{\ell+2,i}, \dots, g_{k,i})}} \frac{1}{q}$$

$$= \frac{1}{q}.$$

2. Holds because of 1.

- 3. Holds by a union bound over m and by letting $k=(1-H_q(\delta)-\varepsilon)n$.
- 4. By the previous step, and because the matrix G is uniformly distributed, as $n \to \infty$ the fraction of the matrices satisfying the desired property tends to one.

Exercise 7. Is the code $C = \{000, 110, 011, 101\}$ MDS?

Solution. n = 3, k = 2, d = 2, hence d = n - k + 1 and it is an MDS code.

Exercise 8. Suppose we are in \mathbb{F}_2 . Find

- 1. $gcd(x^4 + x^2 + 1, x^2 + 1)$
- 2. $gcd(x^6 + x^5 + x^3 + x + 1, x^4 + x^2 + 1)$
- 3. $gcd(x^6 + x^5 + x^3 + x + 1, x^4 + x^3 + x + 1)$

Solution. 1. 1

- 2. $x^4 + x^2 + 1$
- 3. $x^2 + x + 1$

Exercise 9. Show that a Reed-Solomon code with 1 message symbol and n codeword symbols is an n times repetition code.

Solution. If we have a 1 message symbol, encoding polynomials are of degree zero (i.e., are constants) and evaluated n times.