Graph Concepts

Facebook 7 Code storywith MIK

(Twitter) > CSwith MIK

codestorywith MIK >

(V)otivation:-

The one who keeps trying despite every failure is the one who will ultimately emerge victorious.

one day...

"Diameter of an undixected Graph" 1245. Tree Diameter Google, Meta

Given an undirected tree, return its diameter: the number of edges in a longest path in that tree.

The tree is given as an array of edges where edges[i] = [u, v] is a bidirectional edge between nodes u and v. Each node has labels in the set $\{0, 1, \ldots, \text{edges.length}\}$.

Output = 2

If you choose a random node (U)

and find the fauthest node (V) from (U),

then this node (V) will always be

one end of the Diameter of the graph.

 $\frac{d(U,V)}{d(U,N)} \rightarrow \frac{d(U,B)}{d(U,N)}$

 $d(v,A) \leq d(v,B)$

d(U,A)+d(U,B) <= 2* d(U,B)

 $d(A,B) \qquad \qquad \zeta = 2 \# d(U,B)$

& (A,B)

& (A,B) = diameter

BFS /DFS.

$$n=2$$

$$\int T \cdot C = O(V + E)$$

$$S \cdot C = O(N) + O(V + E)$$