Contents

0.1	Raisin	aising and lowering indices	
	0.1.1	Metric inverse	
	0.1.2	Raising and lowering indices of tensors	
	0.1.3	Tensor contraction	

0.1 Raising and lowering indices

We showed that the inner product between two vectors with the same basis can be written as:

$$\langle v, w \rangle = \langle \sum_i e_i v^i, \sum_j f_j w^j \rangle$$

$$\langle v, w \rangle = v^i \overline{w^j} \langle e_i, e_j \rangle$$

Defining the metric as:

$$g_{ij} := \langle e_i, e_j \rangle$$

$$\langle v, w \rangle = v^i \overline{w^j} g_{ij}$$

0.1.1 Metric inverse

We can use this to define the inverse of the metric.

$$g^{ij} := (g_{ij})^{-1}$$

We can use this to raise and lower vectors.

$$v_i := v^j g_{ij}$$

0.1.2 Raising and lowering indices of tensors

If we have tensor:

$$T_{ij}$$

We can define:

$$T_i^k = T_{ij}g^{jk}$$

$$T^{il} = T_{ij}g^{jk}g^{kl}$$

0.1.3 Tensor contraction

If we have:

$$T_{ij}x^j$$

We can contract it to:

$$T_{ij}x^j = v_i$$

Similarly we can have:

$$T^{ij}x_j = v^i$$