WHAT IS CLAIMED IS:

1	1. A light-weight golf club shaft comprising:
2	a first angled layer;
3	a first straight layer formed on said first angled layer;
4	a second angled layer formed on said first straight layer;
5	a second straight layer formed on said second angled layer;
6	said shaft having a length along a longitudinal direction;
7	each of said layers extend over said length of said shaft and includes fiber-
8	reinforced composite material, said fiber-reinforced composite material containing
9	reinforcing fibers;
10	said reinforcing fibers of said second angled layer being oriented at an
11	angle relative to said longitudinal direction of said shaft; and
12	said second angled having at least one of said angle and a thickness
13	effective provide said shaft with a torsional strength of at least 120
14	kgf×m×degrees and a weight of from \$0 to/40 g.
1	2. A light-weight golf club shaft according to claim 1, wherein said
2	reinforcing fibers of said second angled layer are oriented at an angle in a range
3	of from 35 to 75 degrees relative to said longitudinal direction of said shaft.
1	3. A light-weight golf club shaft according to claim 1, wherein said
2	reinforcing fibers of said second angled layer are oriented at an angle in a range
3	of from 60 to 75 degrees relative to said longitudinal direction of said shaft.
1	4. A light-weight golf club shaft according to claim 1, wherein said
2	reinforcing fibers of said second angled layer are oriented at an angle in a range

from 65 to 70 degrees relative to said longitudinal direction of said shaft.

3

	PATENT		26		M2009-9
1	5. A I	ight-weight	golf club shaft acco	ording to c	laim 1, wherein said layers
2	\				ength of at least 10 kg/10
3	mm.				
1	6. A	light-weight	golf club shaft acc	cording to	claim 1, wherein:
2	said r	einforcing fi	bers of said second	l angled la	yer are oriented at an angle
3	in a range of	from 35 to 7	5 degrees relative	to said lon	gitudinal direction of said
4	shaft; and				
5	said la	yers are eff	ective to provide sa	aid shaft v	vith a crushing strength of
6	at least 10 kg/	/10 mm.			
1	7. A1	ight-weight	golf dub shaft acc	ording to	claim 1, wherein:
2	said re	inforcing fil	bers of said second	angled lay	ver are oriented at an angle
3	in a range of t	from 60 to 7	5 degrees relative t	to said lon	gitudinal direction of said
4	shaft; and	•			
5	said la	yers are effe	ective to provide sa	aid shaft w	rith a crushing strength of
6	at least 10 kg/	'10 mm.	\	/ /	
1	8. A1	ight-weight	golf club shaft acc	ording to	claim 1, wherein:
2	said re	inforcing fil	pers of said second	angled lay	er are oriented at an angle
3	in a range fro	m 65 to 70	degrees relative to	said long	itudinal direction of said
4	shaft; and				
5	said la	yers are effe	ective to provide sa	hd shaft w	ith a crushing strength of
6	at least 10 kg/	10 mm.			
1	9 A	light-weight	t golf club shaft a	ccording	to claim 1 wherein said

second angled layer has a thickness in a range of from 0.04 to 0.1 mm.

	PATENT	27	M2009-9
1	10. A light-	weight golf club shaft according to	claim 1, wherein:
2	said reinforc	ing fibers of said second angled lay	er are oriented at an angle
3	in a range of from 3	5 to 75 degrees relative to said lon	gitudinal direction of said
4	shaft; and		·
5	said second a	angled layer has a thickness in a ran	ge of from 0.04 to 0.1 mm.
1	11. A light-	weight golf club shaft according to	claim 1, wherein:
2	said reinforci	ing fibers of said second angled lay	er are oriented at an angle
3	in a range of from 60	0 to 75 degrees relative to said long	gitudinal direction of said
4	shaft; and		
5	said second a	ingled layer has a thickness in a rang	ge of from 0.04 to 0.1 mm.
1	12. A light-v	weight golf club shaft according to	claim 1, wherein:
2	said reinforci	ing fibers of said second angled lay	er are oriented at an angle
3	in a range of from 65	5 to 70 degrees relative to said long	gitudinal direction of said
4	shaft; and		•
5	said second a	ngled layer has a thickness in a rang	ge of from 0.04 to 0.1 mm.
1	13. A light-v	weight golf club shart according to	claim 1, wherein:
2	said layers ar	re effective to provide said shaft w	ith a crushing strength of
3	at least 10 kg/10 mm	ı; and	
4	said second a	ngled layer has a thickness in a rang	ge of from 0.04 to 0.1 mm.
1	14. A light-v	veight golf club shaft according to	claim 1, wherein:
2	said reinforci	ng fibers of said second angled lay	er are oriented at an angle
3	in a range of from 35	to 75 degrees relative to said long	gitudinal direction of said
4	shaft;	\	\
5	said layers ar	e effective to provide said shaft w	ith a crushing strength of
6	at least 10 kg/10 mm	; and	

	PATENT	28	M2009-9
1	SE	aid second angled layer has a thickness in a range	of from 0.04 to 0.1 mm.
1		5.\A light-weight golf club shaft according to c	
2		aid reinforcing fibers of said second angled layer	
3		e of from 60 to 75 degrees relative to said longit	_
4	shaft;		
5	sa	id layers are effective to provide said shaft with	a crushing strength of
6	at least 10	0 kg/10 mm; and	· ·
7 .	sa	id second angled layer has a thickness in a range	of from 0.04 to 0.1 mm.
1	16	5. A light-weight golf club shaft according to cl	aim 1, wherein:
2	sa	id reinforcing fibers of said second angled layer	are oriented at an angle
3	in a range	of from 65 to 70 degrees relative to said longitude	udinal direction of said
4	shaft;		·
5	sa	id layers are effective to provide said shaft with	a crushing strength of
6	at least 10	kg/10 mm; and	
7	sa	id second angled layer has a thickness in a range,	of from 0.04 to 0.1 mm.
1	17	. A light-weight golf club shaft according to cl	aim 1, wherein:
2	sa	id shaft has a small-diameter end and a large-di	meter end;
3	sai	id first angled layer has a first thickness near said	small-diameter end of
4	said shaft;	;	
5	sai	id first angled layer has a second thickness near s	aid large-diameter end
6	of said sha	aft; and	
7	sai	d first thickness is substantially twice said seco	nd thickness.
1	18	. A light-weight golf club shaft according to	claim \ wherein said
2	reinforcing	g fibers include organic, inorganic and metal re-	inforcing fibers.

1	19 \ A light-weight golf club shaft, said shaft having a length along a
2	longitudinal direction, comprising:
3	a first angled layer;
4	a first straight layer formed on said first angled layer;
5	a second angled layer formed on said first straight layer;
6	a second straight layer formed on said second angled layer;
7	each of said layers extend over said length of said shaft and include fiber-
8	reinforced composite material, said fiber-reinforced composite material containing
9	reinforcing fibers;
10	said reinforcing fibers of said second angled layer oriented at an angle in
11	a range of from 35 to 75 degrees relative to said longitudinal direction of said
12	shaft;
13	said second angled layer has a thickness in a range of from 0.04 to 0.1 mm;
14	said shaft has a small-diameter end and a large-diameter end;
15	said first angled layer has a first thickness near said small-diameter end of
16	said shaft;
17	said first angled layer has a second thickness near said large-diameter end
18	of said shaft;
19	said first thickness is substantially twice said second thickness; and
20	said layers are effective to provide said shaft with a torsional strength of
21	at least 120 kgf × m × degrees and a weight of from 30 - 40 g.
1	20. A method for forming a golf club shaft around a mandrel having a
2	length along a longitudinal axis, the steps comprising:
3	forming a first reinforcement layer from a first fiber material, said first
4	fiber material having fibers aligned along a single direction;

forming a first angled layer from second and third fiber material, said second and third materials having fibers aligned along a single direction;

bonding said second and third materials together to form said first angled layer, such that said fibers of said second material form a first angle with said fibers of said third material;

forming a first straight layer from a fourth fiber material, said fourth fiber material having fibers aligned along a single direction;

forming a second angled layer from fifth and sixth fiber material, said fifth and sixth materials having fibers aligned along a single direction;

bonding said fifth and sixth fiber materials together to form said second angled layer, such that said fibers of said fifth and sixth material form a second angle in the range of from 70-150 degrees and said second angled layer has a thickness in the range of from 0.04 to 0.1 mm;

forming a second straight layer from a seventh fiber material, said seventh fiber material having fibers aligned along a single direction;

forming a second reinforcement layer from an eighth fiber material, said fiber material having fibers aligned along a single direction;

wrapping said first reinforcement layer around said mandrel such that said fibers of said first reinforcement layer are aligned 90 degrees with respect to said longitudinal axis;

wrapping said first angled layer around said first reinforcement layer such that said first angle of said fiber material of said first angled layer is bisected by said longitudinal axis;

wrapping said first straight layer around said first angled layer such that said fibers of said first straight layer are aligned with said longitudinal axis;

G:\USERS\BRETT\WPDATA\M2009\M2009-

	PATENT	31	M2009-9
30	S. Wrapp	ing said second angled layer around said fir	st straight layer such tha
31	said second a	ngle of said fiber material of said second an	gled layer is bisected by
32	said longitudi	nal axis;	·
33	wrapp	ing said second straight layer around said s	econd angled layer such
34	that said fiber	s of said second straight layer are aligned wit	h said longitudinal axis;
35	wrapp	ing second reinforcement layer around said	second straight layer to
36	form a layered	d wrap, such that said fibers of said second	reinforcement layer are
37	aligned with	aid longitudinal axis;	
38	curing	said layered wrap in an oven to form a cur	ed shaft;
39	remov	ing said mandrel from said cured shaft; and	i
	trimm	ing ends said cured shaft to produce said go	olf club shaft.

GAUSERS/BRETT/WPDATA/M2009/M2009-9