L^0 , convergence in measure, equi-integrability, the Vitali convergence theorem, and the de la Vallée-Poussin criterion

Jordan Bell

June 10, 2015

1 Measurable spaces

Let $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$, with the order topology. We assign \mathbb{R} the Borel σ -algebra. It is a fact that for $E \subset \overline{\mathbb{R}}$, $E \in \mathscr{B}_{\overline{\mathbb{R}}}$ if and only if $E \setminus \{-\infty, \infty\} \in \mathscr{B}_{\mathbb{R}}$.

Theorem 1. Let (Ω, Σ) be a measurable space. If f_j is a sequence of measurable functions $\Omega \to \overline{\mathbb{R}}$, then for each k,

$$g_k(x) = \sup_{j \ge k} f_j(x), \qquad h_k(x) = \inf_{j \ge k} f_j(x),$$

are measurable $\Omega \to \overline{\mathbb{R}}$, and

$$g(x) = \limsup_{j \to \infty} f_j(x), \qquad h(x) = \liminf_{j \to \infty} f_j(x),$$

are measurable $\Omega \to \overline{\mathbb{R}}$.

Proof. Let $a \in \mathbb{R}$. For each $j, f_j^{-1}(a, \infty] \in \Sigma$, so

$$\bigcup_{j=k}^{\infty} f_j^{-1}(a, \infty] \in \Sigma.$$

For each $j \geq k$,

$$f_j^{-1}(a,\infty] \subset \left\{ x \in \Omega : \sup_{i > k} f_i(x) > a \right\},$$

so

$$\bigcup_{j=k}^{\infty} f_j^{-1}(a, \infty] \subset \left\{ x \in \Omega : \sup_{i \ge k} f_i(x) > a \right\}.$$

If $y \notin \bigcup_{j=k}^{\infty} f_j^{-1}(a, \infty]$, then for each $j \ge k$, $f_j(y) \le a$, hence $g_k(y) \le a$, which means that $y \notin \{x \in \Omega : g_k(x) > a\}$. Therefore,

$$\bigcup_{j=k}^{\infty} f_j^{-1}(a,\infty] = \left\{ x \in \Omega : g_k(x) > a \right\},\,$$

and thus $g_k^{-1}(a,\infty] \in \Sigma$. Because this is true for all $a \in \mathbb{R}$ and $\mathscr{B}_{\overline{\mathbb{R}}}$ is generated by the collection $\{(a,\infty]: a \in \mathbb{R}\}$, it follows that $g_k: \Omega \to \overline{\mathbb{R}}$ is measurable.

That h_k is measurable follows from the fact that if $f: \Omega \to \overline{\mathbb{R}}$ is measurable then $-f: \Omega \to \overline{\mathbb{R}}$ is measurable, and that $h_k(x) = \inf_{j \geq k} f_j(x) = -\sup_{j > k} (-f_j(x))$.

For $x \in \Omega$,

$$g(x) = \inf_{k \ge 1} g_k(x),$$

and because each g_k is measurable it follows that g is measurable. Likewise,

$$h(x) = \sup_{k \ge 1} h_k(x),$$

and because each h_k is measurable it follows that h is measurable.

2 Convergence in measure

Let (Ω, Σ, μ) be a probability space. Let $L^0(\mu)$ be the collection of equivalence classes of measurable functions $\Omega \to \mathbb{C}$, where \mathbb{C} has the Borel σ -algebra, and where two functions f and g are equivalent when

$$\mu\{x \in \Omega : f(x) \neq g(x)\} = 0.$$

 $L^0(\mu)$ is a vector space. For $f,g\in L^0(\mu)$ we define

$$\rho(f,g) = \int_{\Omega} \frac{|f-g|}{1+|f-g|} d\mu.$$

This is a metric on $L^0(\mu)$, and one proves that with this metric $L^0(\mu)$ is a topological vector space. We call the topology induced by ρ the **topology of convergence in measure**.¹

Theorem 2. Suppose that f_n is a sequence in $L^0(\mu)$. $f_n \to 0$ in the topology of convergence in measure if and only if for each $\epsilon > 0$,

$$\lim_{n \to \infty} \mu\left(\left\{x \in \Omega : |f_n(x)| \ge \epsilon\right\}\right) = 0.$$

Proof. Suppose that $f_n \to 0$ in the topology of convergence in measure and let $\epsilon > 0$. For each n, let

$$A_n = \left\{ x \in \Omega : |f_n(x)| \ge \epsilon \right\} = \left\{ x \in \Omega : \frac{|f_n(x)|}{1 + |f_n(x)|} \ge \frac{\epsilon}{1 + \epsilon} \right\}.$$

Because $\frac{\epsilon}{1+\epsilon}\chi_{A_n} \le \frac{|f_n|}{1+|f_n|}$,

$$\int_{\Omega} \frac{\epsilon}{1+\epsilon} \chi_{A_n} d\mu \leq \int_{\Omega} \frac{|f_n|}{1+|f_n|} d\mu = \rho(f_n,0),$$

¹Charalambos D. Aliprantis and Kim C. Border, *Infinite Dimensional Analysis: A Hitch-hiker's Guide*, third ed., p. 480, Lemma 13.40.

i.e. $\mu(A_n) \leq \frac{1+\epsilon}{\epsilon} \rho(f_n, 0)$, which tends to 0 as $n \to \infty$. Let $\epsilon > 0$ and for each n, let

$$A_n = \left\{ x \in \Omega : |f_n(x)| \ge \epsilon \right\} = \left\{ x \in \Omega : \frac{|f_n(x)|}{1 + |f_n(x)|} \ge \frac{\epsilon}{1 + \epsilon} \right\}.$$

Suppose that $\mu(A_n) \to 0$ as $n \to \infty$. There is some n_{ϵ} such that $n \ge n_{\epsilon}$ implies that $\mu(A_n) < \epsilon$. For $n \ge n_{\epsilon}$,

$$\rho(f_n, 0) = \int_{A_n} \frac{|f_n|}{1 + |f_n|} d\mu + \int_{\Omega \setminus A_n} \frac{|f_n|}{1 + |f_n|} d\mu$$

$$\leq \int_{A_n} 1 d\mu + \int_{\Omega \setminus A_n} \frac{\epsilon}{1 + \epsilon} d\mu$$

$$= \frac{1 + \epsilon}{1 + \epsilon} \mu(A_n) + \frac{\epsilon}{1 + \epsilon} \mu(\Omega \setminus A_n)$$

$$= \frac{1}{1 + \epsilon} \mu(A_n) + \frac{\epsilon}{1 + \epsilon} (\mu(A_n) + \mu(\Omega \setminus A_n))$$

$$= \frac{1}{1 + \epsilon} \mu(A_n) + \frac{\epsilon}{1 + \epsilon}$$

$$< \frac{1}{1 + \epsilon} \cdot \epsilon + \frac{\epsilon}{1 + \epsilon}$$

$$< 2\epsilon.$$

This shows that $f_n \to 0$ in the topology of convergence in measure.

We now prove that if a sequence in $L^0(\mu)$ converges almost everywhere to 0 then it converges in measure to $0.^2$

Theorem 3. Suppose that f_n is a sequence in $L^0(\mu)$ and that for almost all $x \in \Omega$, $f_n(x) \to 0$ as $n \to \infty$. Then $f_n \to 0$ in the topology of convergence in measure.

Proof. Let $\epsilon > 0$ and let $\eta > 0$. Egorov's theorem tells us that there is some $E \in \Sigma$ with $\mu(E) < \eta$ such that $f_n \to 0$ uniformly on $\Omega \setminus E$. So there is some n_0 such that if $n \ge n_0$ and $x \in \Omega \setminus E$ then $|f_n(x)| < \epsilon$. Thus for $n \ge n_0$,

$$\mu(\{x \in \Omega : |f_n(x)| \ge \epsilon\}) \le \mu(E) + \mu(\{x \in \Omega \setminus E : |f_n(x)| \ge \epsilon\})$$

$$= \mu(E)$$

$$< \eta.$$

Then $\mu(\lbrace x \in \Omega : |f_n(x)| \geq \epsilon \rbrace) \to 0$ as $n \to \infty$, namely, $f_n \to 0$ in measure. \square

Theorem 4. If f_n is a sequence in $L^1(\mu)$ that converges in $L^1(\mu)$ to 0, then f_n converges in measure to 0.

²Charalambos D. Aliprantis and Kim C. Border, *Infinite Dimensional Analysis: A Hitch-hiker's Guide*, third ed., p. 479, Theorem 13.37.

Proof. Let $\epsilon > 0$ and let $A_n = \{x \in \Omega : |f_n(x)| \ge \epsilon\}$. By Chebyshev's inequality,

$$\mu(A_n) \le \frac{1}{\epsilon} \|f_n\|_1,$$

hence $\mu(A_n) \to 0$ as $n \to \infty$, namely, f_n converges to 0 in measure.

The following theorem shows that a sequence in $L^0(\mu)$ that converges in measure to 0 then it has a subsequence that almost everywhere converges to 0.3

Theorem 5. Suppose that f_n is a sequence in $L^0(\mu)$ that converges in measure to 0. Then there is a subsequence $f_{a(n)}$ of f_n such that for almost all $x \in \Omega$, $f_{a(n)}(x) \to 0$.

Proof. For each n, with $\epsilon = \frac{1}{n}$, there is some a(n) such that $m \geq a(n)$ implies that

$$\mu\left(\left\{x\in\Omega:|f_m(x)|\geq\frac{1}{n}\right\}\right)<\frac{1}{2^n}.$$

For each n, let

$$E_n = \left\{ x \in \Omega : |f_{a(n)}(x)| \ge \frac{1}{n} \right\},\,$$

for which $\mu(E_n) < \frac{1}{2^n}$. Let

$$E = \bigcap_{n=1}^{\infty} \bigcup_{m=n} E_m,$$

and for each n,

$$\mu(E) \le \mu\left(\bigcup_{m=n}^{\infty} E_m\right) \le \sum_{m=n}^{\infty} \mu(E_m) < \sum_{m=n}^{\infty} \frac{1}{2^m} = \frac{1}{2^n} \cdot 2 = 2^{1-n}.$$

Because this is true for all $n, \mu(E) = 0$. If $x \in \Omega \setminus E$, then there is some n_x such that $x \notin \bigcup_{m=n_x}^{\infty} E_m$. This means that for $m \ge n_x$ we have $x \notin E_m$, i.e. $|f_{a(m)}(x)| < \frac{1}{m}$. This implies that for $x \notin E$, $f_{a(n)}(x) \to 0$ as $n \to \infty$, showing that for almost all $x \in \Omega$, $f_{a(n)}(x) \to 0$ as $n \to \infty$.

We now prove that ρ is a complete metric, namely that $L^0(\mu)$ with this metric is an F-space.⁴

Theorem 6. ρ is a complete metric on $L^0(\mu)$.

³Charalambos D. Aliprantis and Kim C. Border, *Infinite Dimensional Analysis: A Hitch-hiker's Guide*, third ed., p. 479, Theorem 13.38.

⁴Charalambos D. Aliprantis and Kim C. Border, *Infinite Dimensional Analysis: A Hitchhiker's Guide*, third ed., p. 481, Theorem 13.41; Gerald B. Folland, *Real Analysis: Modern Techniques and Their Applications*, second ed., p. 61, Theorem 2.30.

Proof. Suppose that f_n is a Cauchy sequence in $L^0(\mu)$. To prove that f_n is convergent it suffices to prove that f_n has a convergent subsequence. If (X,d) is a metric space and x_n is a Cauchy sequence in X, for any N let a_N be such that $n, m \geq a_N$ implies that $d(x_n, x_m) < \frac{1}{N}$ and a fortiori $d(x_n, x_m) < \frac{1}{a_N}$. Thus we presume that f_n itself satisfies $\rho(f_n, f_m) < \frac{1}{n}$ for $m \geq n$.

Let

$$A_{k,m}(\epsilon) = \left\{ x \in \Omega : |f_k(x) - f_m(x)| \ge \epsilon \right\} = \left\{ x \in \Omega : \frac{|f_k(x) - f_m(x)|}{1 + |f_k(x) - f_m(x)|} \ge \frac{\epsilon}{1 + \epsilon} \right\},$$

for which

$$\frac{\epsilon}{1+\epsilon} \chi_{A_{k,m}(\epsilon)} \le \frac{|f_k(x) - f_m(x)|}{1+|f_k(x) - f_m(x)|}$$

If $m \geq k$,

$$\mu(A_{k,m}(\epsilon)) \le \frac{1+\epsilon}{\epsilon} \int_{\Omega} \frac{|f_k - f_m|}{1 + |f_k - f_m|} d\mu = \frac{1+\epsilon}{\epsilon} \rho(f_k, f_m) < \frac{1+\epsilon}{\epsilon} \frac{1}{k}.$$
 (1)

For n=1 and $\epsilon_1=\frac{1}{2^1}$, let k_1 be such that $\frac{1+\epsilon_1}{\epsilon_1}\frac{1}{k_1}\leq \frac{1}{2^1}$, i.e. $k_1\geq 2^1\cdot \frac{1+\epsilon_1}{\epsilon_1}$. For $n\geq 1$ and $\epsilon_n=\frac{1}{2^n}$, assume that k_n satisfies $\frac{1+\epsilon_n}{\epsilon_n}\frac{1}{k_n}\leq \frac{1}{2^n}$ and $k_n>k_{n-1}$. For $\epsilon_{n+1}=\frac{1}{2^{n+1}}$, let k_{n+1} be such that $\frac{1+\epsilon_{n+1}}{\epsilon_{n+1}}\frac{1}{k_{n+1}}\leq \frac{1}{2^{n+1}}$ and $k_{n+1}>k_n$. For any n we have, because $k_n\geq n$, $\frac{1+\epsilon_n}{\epsilon_n}\frac{1}{k_n}\leq \frac{1}{2^{k_n}}$. Then using (1) with $m\geq k_n$,

$$\mu\left(A_{k_n,m}\left(\frac{1}{2^n}\right)\right) < \frac{1+\epsilon_n}{\epsilon_n} \frac{1}{k_n} \le \frac{1}{2^{k_n}}.$$
 (2)

Let $g_n = f_{k_n}$ and let

$$E_n = \left\{ x \in \Omega : |g_{n+1}(x) - g_n(x)| \ge \frac{1}{2^n} \right\},$$

for which, by (2), $\mu(E_n) < \frac{1}{2^n}$. Let

$$F_n = \bigcup_{r=n}^{\infty} E_n,$$

which satisfies

$$\mu(F_n) \le \sum_{r=n}^{\infty} \mu(E_n) < \sum_{r=n}^{\infty} 2^{-r} = 2^{-n+1}.$$

Hence $F = \bigcap_{n=1}^{\infty} F_n$ satisfies $\mu(F) = 0$.

If $x \notin F$, then there is some n for which $x \notin F_n$, i.e. for each $r \ge n$ we have $x \notin E_r$, i.e. for each $r \ge n$ we have $|g_{r+1}(x) - g_r(x)| < 2^{-r}$. This implies that for $k \ge n$ and for any positive integer p,

$$|g_{k+p}(x) - g_k(x)| \le |g_{k+p}(x) - g_{k+p-1}(x)| + \dots + |g_{k+1}(x) - g_k(x)|$$

$$< 2^{-k-p+1} + \dots + 2^{-k}$$

$$< 2^{-k+1}.$$

so if $j \geq k$ then

$$|g_i(x) - g_k(x)| < 2^{-k+1}. (3)$$

This shows that if $x \notin F$ then $g_k(x)$ is a Cauchy sequence in \mathbb{C} , and hence converges. We define $g: \Omega \to \mathbb{C}$ by

$$g(x) = \chi_{\Omega \setminus F}(x) \limsup_{k \to \infty} g_k(x), \qquad x \in \Omega,$$

and by Theorem 1, $g \in L^0(\mu)$. For $x \notin F_k$ we have $x \notin F$ and so $g_l(x) \to g(x)$ as $l \to \infty$. Then for $x \notin F_k$ and $j \ge k$, using (3) we have

$$|g_j(x) - g(x)| \le |g_j(x) - g_l(x)| + |g_l(x) - g(x)| < 2^{-k+1} + |g_l(x) - g(x)| \to 2^{-k+1}$$

as $l \to \infty$, so $|g_j(x) - g(x)| < 2^{-k+1}$. For $\epsilon > 0$, let k be such that $2^{-k+1} \le \epsilon$. Then

$$\mu(\{x \in \Omega : |g_k(x) - g(x)| \ge \epsilon\})$$

$$\leq \mu(F_k) + \mu(\{x \in \Omega \setminus F_k : |g_k(x) - g(x)| \ge \epsilon\})$$

$$< 2^{-k+1} + \mu(\{x \in \Omega \setminus F_k : |g_k(x) - g(x)| \ge 2^{-k+1}\})$$

$$= 2^{-k+1},$$

which tends to 0 as $k \to \infty$, showing that g_k converges to g in measure, and because g_k is a subsequence of f_k this completes the proof.

3 Equi-integrability

Let (Ω, Σ, μ) be a probability space. A subset \mathscr{F} of $L^1(\mu)$ is said to be **equi-integrable** if for every $\epsilon > 0$ there is some $\delta > 0$ such that for all $E \in \Sigma$ with $\mu(E) \leq \delta$ and for all $f \in \mathscr{F}$,

$$\int_{E} |f| d\mu \le \epsilon.$$

In other words, to say that \mathscr{F} is equi-integrable means that

$$\lim_{\mu(E)\to 0} \sup_{f\in \mathscr{F}} \int_E |f| d\mu = 0.$$

The following theorem gives an equivalent condition for a bounded subset of $L^1(\mu)$ to be equi-integrable.⁵

Theorem 7. Suppose that \mathscr{F} is a bounded subset of $L^1(\mu)$. Then the following are equivalent:

- 1. F is equi-integrable.
- 2. $\lim_{C \to \infty} \sup_{f \in \mathscr{F}} \int_{\{|f| > C\}} |f| d\mu = 0.$

 $^{^{5} \}mathrm{Fernando}$ Albiac and Nigel J. Kalton, Topics in Banach Space Theory, p. 105, Lemma 5.2.6.

Proof. Let $K = \sup_{f \in \mathscr{F}} \|f\|_1 < \infty$ and suppose that \mathscr{F} is equi-integrable. For $f \in \mathscr{F}$, Chebyshev's inequality tells us

$$\mu(\{|f| > M\}) \le \frac{\|f\|_1}{M} \le \frac{K}{M}.$$

Because $\mu(\{|f|>M\})\to 0$ as $M\to\infty$ and ${\mathscr F}$ is equi-integrable,

$$\lim_{M\to\infty}\sup_{f\in\mathscr{F}}\int_{\{|f|>M\}}|f|d\mu=0.$$

Suppose now that

$$\lim_{M \to \infty} \sup_{f \in \mathscr{F}} \int_{\{|f| > M\}} |f| d\mu = 0. \tag{4}$$

For $E \in \Sigma$ and $f \in \mathscr{F}$, if M > 0 then

$$\begin{split} \int_E |f| d\mu &= \int_{E \cap \{|f| \leq M\}} |f| d\mu + \int_{E \cap \{|f| > M\}} |f| d\mu \\ &\leq M \mu(E) + \int_{\{|f| > M\}} |f| d\mu \\ &\leq M \mu(E) + \sup_{g \in \mathscr{F}} \int_{\{|g| > M\}} |g| d\mu, \end{split}$$

hence

$$\sup_{f \in \mathscr{F}} \int_{E} |f| d\mu \le M\mu(E) + \sup_{g \in \mathscr{F}} \int_{\{|g| > M\}} |g| d\mu. \tag{5}$$

Let $\epsilon > 0$. By (4) there is some M such that $\sup_{g \in \mathscr{F}} \int_{\{|g| > M\}} |g| d\mu \leq \frac{\epsilon}{2}$. For $\delta = \frac{\epsilon}{2M}$, if $E \in \Sigma$ and $\mu(E) \leq \delta$ then (5) yields

$$\sup_{f \in \mathscr{F}} \int_{E} |f| d\mu \le M\delta + \frac{\epsilon}{2} = \epsilon,$$

showing that \mathcal{F} is equi-integrable.

Theorem 8 (Absolute continuity of Lebesgue integral). Suppose that $f \in L^1(\mu)$. If $\epsilon > 0$ then there is some $\delta > 0$ such that for any $E \in \Sigma$ with $\mu(E) \leq \delta$,

$$\int_{E} |f| d\mu \le \epsilon.$$

Proof. For $n \geq 1$, define

$$g_n(x) = \min\{|f(x)|, n\}, \quad x \in \Omega.$$

Then g_n is a sequence in $L^1(\mu)$ such that for each $x \in \Omega$, $g_n(x)$ is nondecreasing and $g_n(x) \to |f(x)|$, and thus the monotone convergence theorem tells us that

$$\lim_{n \to \infty} \int_{\Omega} g_n d\mu = \int_{\Omega} |f| d\mu.$$

Then there is some N for which

$$0 \le \int_{\Omega} |f| d\mu - \int_{\Omega} g_N d\mu \le \frac{\epsilon}{2}.$$

For $\delta = \frac{\epsilon}{2N}$ and $E \in \Sigma$ with $\mu(E) \leq \delta$,

$$\int_{E} |f| d\mu = \int_{E} (|f| - g_{N}) d\mu + \int_{E} g_{N} d\mu$$

$$\leq \frac{\epsilon}{2} + \int_{E} g_{N} d\mu$$

$$\leq \frac{\epsilon}{2} + N\mu(E)$$

$$\leq \frac{\epsilon}{2} + N\delta$$

$$= \epsilon.$$

The following is the Vitali convergence theorem.⁶

Theorem 9 (Vitali convergence theorem). Suppose that $f \in L^0(\mu)$ and f_n is a sequence in $L^1(\mu)$. Then the following are equivalent:

1. $\{f_n\}$ is equi-integrable, $\{f_n\}$ is bounded in $L^1(\mu)$, and $f_n \to f$ in measure.

2.
$$f \in L^1(\mu)$$
 and $f_n \to f$ in $L^1(\mu)$.

Proof. Suppose that $\{f_n\}$ is equi-integrable and $f_n \to f$ in measure. Because $f_n \to f$ in measure, there is a subsequence $f_{a(n)}$ of f_n that converges almost everywhere to f and so $|f_{a(n)}|$ converges almost everywhere to |f|. Let $K = \sup_{n \ge 1} \|f_{a(n)}\|_1 < \infty$. Fatou's lemma tells us that $|f| \in L^1(\mu)$ and

$$||f||_1 \le \liminf_{n \to \infty} ||f_{a(n)}||_1 \le K.$$

Because $f \in L^0(\mu)$ and $|f| \in L^1(\mu)$, $f \in L^1(\mu)$. To show that f_n converges to f in $L^1(\mu)$, it suffices to show that any subsequence of f_n itself has a subsequence that converges to f in $L^1(\mu)$. (Generally, a sequence in a topological space converges to f if and only if any subsequence itself has a subsequence that converges to f.) Thus, let f0 be a subsequence of f1. Because f1 converges to f1 in measure, the subsequence f2 converges to f3 in measure and so there is

 $^{^6\}mathrm{V.}$ I. Bogachev, Measure Theory, volume I, p. 268, Theorem 4.5.4.

a subsequence $g_{a(n)}$ of g_n that converges almost everywhere to f. Let $\epsilon > 0$. Because $\{f_n\}$ is equi-integrable, there is some $\delta > 0$ such that for all $E \in \Sigma$ with $\mu(E) \leq \delta$ and for all n,

$$\int_{E} |g_{a(n)}| d\mu \le \epsilon.$$

If $E \in \Sigma$ with $\mu(E) \leq \delta$, then $\chi_E g_{a(n)}$ converges almost everywhere to $\chi_E f$, and $\sup_{n\geq 1} \|\chi_E g_{a(n)}\|_1 \leq \epsilon$, so by Fatou's lemma we obtain

$$\int_{E} |f| d\mu = \|\chi_{E} f\|_{1} \le \liminf_{n \to \infty} \|\chi_{E} g_{a(n)}\|_{1} \le \epsilon.$$

But because $g_{a(n)}$ converges almost everywhere to f, by Egorov's theorem there is some $E \in \Sigma$ with $\mu(E) \leq \delta$ such that $g_{a(n)} \to f$ uniformly on $\Omega \setminus E$, and so there is some n_0 such that if $n \geq n_0$ and $x \in \Omega \setminus E$ then $|g_{a(n)}(x) - f(x)| \leq \epsilon$. Thus for $n \geq n_0$,

$$\int_{\Omega} |g_{a(n)} - f| d\mu = \int_{\Omega \setminus E} |g_{a(n)} - f| d\mu + \int_{E} |g_{a(n)} - f| d\mu$$

$$\leq \mu(\Omega \setminus E)\epsilon + \int_{E} |g_{a(n)}| d\mu + \int_{E} |f| d\mu$$

$$\leq \epsilon + \epsilon + \epsilon,$$

which shows that $g_{a(n)} \to f$ in $L^1(\mu)$. That is, we have shown that for any subsequence g_n of f_n there is a subsequence $g_{a(n)}$ of g_n that converges to f in $L^1(\mu)$, which implies that the sequence f_n converges to f in $L^1(\mu)$.

Suppose that $f \in L^1(\mu)$ and $f_n \to f$ in $L^1(\mu)$. First, because the sequence f_n is convergent in $L^1(\mu)$ the set $\{f_n\}$ is bounded in $L^1(\mu)$. Second, $f_n \to f$ in $L^1(\mu)$ implies that $f_n \to f$ in measure. Third, for $\epsilon > 0$, let n_0 such that $n \ge n_0$ implies that $||f_n - f||_1 \le \epsilon$. For each $1 \le n < n_0$, by Theorem 8 there is some $\delta_{f_n} > 0$ such that for $E \in \Sigma$ and $\mu(E) \le \delta_{f_n}$,

$$\int_{E} |f_n| d\mu \le \epsilon,$$

and likewise there is some δ_f such that for $E \in \Sigma$ and $\mu(E) \leq f$,

$$\int_{E} |f| d\mu \le \epsilon.$$

Let $\delta > 0$ be the minimum of $\delta_{f_1}, \ldots, \delta_{f_{n-1}}, \delta_f$. Thus if $E \in \Sigma$ and $\mu(E) \leq \delta$, then for $1 \leq n < n$,

$$\int_{E} |f_n| d\mu \le \epsilon,$$

and for for $n \geq n_0$,

$$\int_{E} |f_n| d\mu \le \int_{E} |f_n - f| d\mu + \int_{E} |f| d\mu \le ||f_n - f||_1 + \int_{E} |f| d\mu \le \epsilon + \epsilon.$$

This shows that $\{f_n\}$ is equi-integrable, completing the proof.

The following is the de la Vallée-Poussin criterion for equi-integrability.⁷

Theorem 10 (de la Vallée-Poussin criterion). Suppose that $\mathscr{F} \subset L^1(\mu)$. \mathscr{F} is bounded and equi-integrable if and only if there is a there nonnegative nondecreasing function G on $[0,\infty)$ such that

$$\lim_{t \to \infty} \frac{G(t)}{t} = \infty \quad and \quad \sup_{f \in \mathscr{F}} \int_{\Omega} G(|f(x)|) d\mu(x) < \infty, \tag{6}$$

and if there is a nonnegative nondecreasing function G satisfying (6) then there is a convex nonnegative nondecreasing function G satisfying (6).

Proof. Suppose that G is a nonnegative nondecreasing function on $[0,\infty)$ satisfying (6). Let

$$\sup_{f \in \mathscr{X}} \int_{\Omega} G(|f(x)|) d\mu(x) \le M < \infty.$$

For $\epsilon>0$, there is some C such that $t\geq C$ implies that $\frac{G(t)}{t}\geq \frac{M}{\epsilon}$, and hence, for $f\in \mathscr{F},$ if $x\in \Omega$ and $|f(x)|\geq C$ then $\frac{G(|f(x)|)}{|f(x)|}\geq \frac{M}{\epsilon},$ i.e. $|f(x)|\leq \frac{\epsilon}{M}G(|f(x)|),$ which yields

$$\int_{\{|f|\geq C\}}|f|d\mu\leq \int_{\{|f|\geq C\}}\frac{\epsilon}{M}G(|f(x)|)d\mu(x)\leq \frac{\epsilon}{M}\cdot M=\epsilon.$$

Therefore by Theorem 7, ${\mathscr F}$ is bounded and equi-integrable.

Suppose that \mathscr{F} is bounded and equi-integrable. For $f \in \mathscr{F}$ and $j \geq 1$, let

$$\mu_j(f) = \mu(\{x \in \Omega : |f(x)| > j\}) \in \Sigma.$$

By induction, because \mathscr{F} is bounded and equi-integrable there is a strictly increasing sequence of positive integers C_n such that for each n,

$$\sup_{f \in \mathscr{F}} \int_{\{|f| > C_n\}} |f| d\mu \le 2^{-n}. \tag{7}$$

For $f \in \mathscr{F}$ and $n \geq 1$,

$$\int_{\{|f|>C_n\}} |f| d\mu = \sum_{j=C_n}^{\infty} \int_{\{j<|f|\leq j+1\}} |f| d\mu$$

$$\geq \sum_{j=C_n}^{\infty} j\mu(\{x \in \Omega : j < |f(x)| \leq j+1\})$$

$$= \sum_{j=C_n}^{\infty} j(\mu_j(f) - \mu_{j+1}(f))$$

$$= \sum_{j=C_n}^{\infty} \mu_j(f).$$

⁷V. I. Bogachev, *Measure Theory*, volume I, p. 272, Theorem 4.5.9.

Using this and (7), for $f \in \mathcal{F}$,

$$\sum_{n=1}^{\infty} \sum_{j=C_n}^{\infty} \mu_j(f) \le \sum_{n=1}^{\infty} \int_{\{|f| > C_n\}} |f| d\mu$$

$$\le \sum_{n=1}^{\infty} 2^{-n}$$

$$= 1.$$

For $n \geq 0$ we define

$$\alpha_n = \begin{cases} 0 & n < C_1 \\ \max\{k : C_k \le n\} & n \ge C_1. \end{cases}$$

It is straightforward that $\alpha_n \to \infty$ as $n \to \infty$. We define a step function g on $[0,\infty)$ by

$$g(t) = \sum_{n=0}^{\infty} \alpha_n \chi_{(n,n+1]}(t), \qquad 0 \le t < \infty,$$

and we define a function G on $[0, \infty)$ by

$$G(t) = \int_0^t g(s)ds, \qquad 0 \le t < \infty.$$

It is apparent that G is nonnegative and nondecreasing. For $t_1, t_2 \in [0, \infty)$, $t_1 \leq t_2$, by the fundamental theorem of calculus,

$$G'(t_1)(t_2-t_1) = g(t_1)(t_2-t_1) \le G(t_2) - G(t_1),$$

showing that G is convex. The above inequality also yields that for t>0, $\frac{G(t)}{t}\geq \frac{g(t/2)}{2}$, and $g(t/2)\to\infty$ as $t\to\infty$ so we get that $\lim_{t\to\infty}\frac{G(t)}{t}=\infty$. For $f\in\mathscr{F}$, using G(0)=0, G(1)=0, and for $n\geq 1$,

$$G(n+1) \le g(1) + g(2) + \dots + g(n+1) = \alpha_0 + \alpha_1 + \dots + \alpha_n = \alpha_1 + \dots + \alpha_n$$

we get

$$\begin{split} \int_{\Omega} G(|f(x)|) d\mu(x) &= \int_{\{|f|=0\}} G(|f(x)|) d\mu(x) + \sum_{n=0}^{\infty} \int_{\{n < |f| \le n+1\}} G(|f(x)|) d\mu(x) \\ &\leq \sum_{n=0}^{\infty} \int_{\{n < |f| \le n+1\}} G(n+1) d\mu(x) \\ &= \sum_{n=1}^{\infty} (\mu_n(f) - \mu_{n+1}(f)) G(n+1) \\ &\leq \sum_{n=1}^{\infty} (\mu_n(f) - \mu_{n+1}(f)) \sum_{j=1}^{n} \alpha_j \\ &= \sum_{n=1}^{\infty} \mu_n(f) \alpha_n \\ &= \sum_{n=1}^{\infty} \sum_{j=C_n}^{\infty} \mu_j(f) \\ &< 1, \end{split}$$

showing that $\sup_{f\in\mathscr{F}}\int_{\Omega}G(|f(x)|)d\mu(x)<\infty$, which completes the proof.