Helmet and Number Plate Detection

Using YOLOv8

Introduction

Project Goal:

To detect helmets and number plates using the YOLOv8 model.

Why YOLOv8?

YOLO (You Only Look Once) is a state-of-the-art model for real-time object detection, widely known for its speed and accuracy.

Environment Setup

System Configuration:

The NVIDIA GPU which is crucial for efficiently running deep learning models like YOLO.

Example setup:

Tesla T4 GPU on Google Colab.

Model Overview

About YOLOv8:

- Developed by Ultralytics, YOLOv8 introduces new features and improvements for enhanced performance, flexibility, and efficiency.
- Supports multiple vision AI tasks: detection, segmentation, pose estimation, tracking, and classification.

Why Ultralytics?

Mission: Simplifying AI model development and deployment.

Versatility: YOLOv8's adaptability across various applications and domains.

→ Why Use Roboflow?

Dataset Management: Streamline the process of organizing, labeling, and versioning datasets.

Preprocessing: Automatically handle tasks like resizing, augmentation, and format conversion.

Seamless YOLOv8 Integration: Easily export datasets in YOLOv8 format for quick model training.

How It's Used in This Project: API integration to fetch and download the dataset.

Roboflow Integration

What is Roboflow?

Roboflow is a powerful tool for managing computer vision datasets, training models, and deploying projects.

It simplifies the workflow by providing an interface for labeling, preprocessing, and exporting datasets compatible with various models.

Implementation Details

Key Points:

Basic commands:

"Here, we load the YOLOv8 nano model and perform predictions on sample images."

Emphasize dataset integration with Roboflow.

Training setup:

"We trained the model with 25 epochs and image size of 640x640 for optimal accuracy."

Model Evaluation and Results

Performance Metrics:

F1 Score Curve: Shows confidence vs. F1 score.

PR Curve: Precision-recall performance.

Recall Curve: Sensitivity of the model across classes.

Confusion Matrix: Visualization of classification performance (e.g., correct vs. misclassified

predictions).

Sample Predictions: Visualization of predictions on test images.

Confusion Matrix

→ PR Curve

→ F1 Score Curve

Gradio Interface Setup

Objective:

Create a user-friendly interface for uploading images and receiving predictions.

How it Works:

Users upload images via the interface.YOLOv8 processes the images, and results are displayed instantly.

Fast Api Interface Setup

Objective:

Create a user-friendly interface for uploading images and receiving predictions.

How it Works:

Users upload images via the interface.YOLOv8 processes the images, and results are displayed instantly.

Key Insights and Conclusion

Overall, YOLOv8 provided reliable detection of helmets and number plates with strong accuracy The integration with Gradio and Roboflow made the process smooth and user-friendly. This solution could be integrated into real-world systems for road safety, automated monitoring, and compliance enforcement.

Model Performance:

The model provides accurate detection of helmets and number plates, with detailed visualizations to evaluate its performance.

Ease of Use:

With Gradio, the project becomes accessible to non-technical users, offering real-time interaction with the detection model.

Thanks

Jazak Allah Khair