

F/G

FIG. 3B.

FIG. 4.

aggngangtrofficatgagofficgnpaggtgaaccaacqaaccacaappatcccpsipsoffitipsoffictgaaagstpapappactgi TCAGCATGAGCITTCGTGCAAGGTGAAGTCTAACGACAAGATCCCAGTIJGGATTAGGGCTGAAAGAGAAGAALCTGT ATGGFTCCGAPCCGCTGCACTGCACTACCGTCTGCGTGACGAACAGCAGAAAAAGCC Σ Σ

<u> Gccppaagaagarggagaagcgrtrcgrpgrypaacaagarpgapagrpaa</u> cogaagaacaagarccajcaaccgrттсспдттцаасадсатцса<u>са</u>нца M GACCCTICCALA

.TAACACTCCGGTCAGGATATCATCGACTTC teccenteceles de la contra dela contra del la con м ссбраствот по по поста по по се по се по се по по се по по се п cclahaciregracatchetrachtretreaacagaathuliseererefreeri

FIG. 5A.

USSN 10/623,036 Filed: July 18, 2003 Docket No: 0100.227US

7/15

FIG. 5B.

☑ RABBIT

FIG. 8.

11/15

CELL	Tet COLONIES	Amp COLONIES	COLONY PCR				
TG-I	131	21	3/3 AT I KB				
JC8679	123	31	4/4 AT I KB				
VECTOR CONTROL	51	0					

FIG. 9.

CELL	Tet COLONIES	Amp COLONIES	COLONY PCR				
TG-I	28	54	7/7 AT 1 KB				
JC8679	149	117	3/3 AT 1 KB				
VECTOR CONTROL	51	0					

FIG. 10.

USSN 10/623,036 Filed: July 18, 2003 Docket No: 0100.227US

	ı				•												13/	/15	5	
						_											. 0,		·.	
	COMMENT	EFFICIENT INSERTION BY	HOMOLOGOUS RECOMBINATION	WITH CO-ELECTROPORATED VECTOR	100x LESS EFFICIENT THAN	1 FRAGMENT		HOMOLOGOUS INSERTION	DEPENDS ON FREE ENDS		IF VECTOR IS IN CELLS ALREADY,	HIGH EFFICIENCY OCCURS EVEN	THROUGH VECTOR IS UNCUT		-CONTROL: NON-HOMOLOGOUS	INSERTION INTO CHROMOSOME		-CONTROL: NO AMP BACKGROUND		
\$ HOMOLOGOUS	RECOMBINATION	100% (N=14)			100% (N=2)			-			708 (N=7)	-		•						V 17 ツゴ
AMP TET	COLONIES	1,500			16			0			10,000			0	•		0	*	*,	
AMP	COLONIES	4,000			2,000			16			5,000		i-Sfi	2,000			N.D.		• •	
	APPROACH	1-CUT VECTOR	1 INSERT	JC8679	2-CUT VECTOR	2 INSERTS	. JC8679	3-UNCUT VECTOR	1 INSERT	JC8679	4-NO VECTOR	1 INSERT	JC8679::pUCSfi-Sfi	5-NO VECTOR	1 INSERT	JC8679	6-CUT VECTOR	NO INSERT	JC8679	

FIG. 11A.

HOMOLOGOUS RECOMBINATION COLONY PCR: 2480

-1G. 11B.

FIG. 12.

15/15

Ol	RIS			DRUGR			P	ROMOTE	RS	•	
A	-PUC	_B	В	AMPICILL	C	D_		LACO	LA	CP	E
A=	- PUC	_B	B	AMPICILLI	C	D_	LA	CILAC	0 L	ACP	<u>-</u> E
A	-PBR	_B	B <u>-</u>	TETRACYCLIN	C	D_	LA	CI ^Q LA	<u> 20 l</u>	ACP	<u>-</u> E
A	-PBR	_B	B	TETRACYCLIN		D_				LACP	<u></u> E
AORI	- PAT	_B	D_==	CHLORAMPHEN		D _		LACUV	S <u>—</u>	•• •	E
A ORI	- PAT	_B	B	CHLORAMPHEN	<u> </u>	D _		PH	DA	P	E
*	e .		B	KANAMYCII		D _		TA(P	· '	E
			B	KANAMYCII	NR C	D_	. (ARABA)	ARAP	<u></u> E
			B <u></u>	STREPTOMYC	NR C	0_		TRP	P		E
			8	STREPTOMYC	INR —C	D_		λPR-	, .		E
						D	<u>Cl</u> 85	7 _λ Ρ	L -		E
	INATORS			SINGLE PEPTI	DES	-	•				
F	113	_G	E _	OMPF	F	D.	CI	λP	L -	_	E
E0	K174	_G	E_	PHOA	F	_	٠.	• •			
F P22	200P	_G -	E_	OMPA	F	D		λF	Դլ .		E
F1	TRP.	_G	E_	SSTII	F					<u> </u>	
F	310	_G	E_	PELB	F						
SS D	NA ORI	_	E_	BLA	F						,
	113	_			•						

FIG. 13.