Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2019

Instructor: Dr. Sateesh Mane © Sateesh R. Mane 2019

Quiz 2 Thursday March 28, 2019 Sunday March 31, 2019 11:59 pm (take home)

• For the take home version of this quiz, plesse submit your solution via email, as a zip archive, to Sateesh.Mane@qc.cuny.edu.

The zip archive should have either of the naming formats:

```
studentid_first_last_CS361_quiz2_Spring2019.zip
studentid_first_last_CS761_quiz2_Spring2019.zip
```

Acceptable file types are docx/pdf.

- <u>NOTE</u>: It is the policy of the Computer Science Department to issue a failing grade to any student who either gives or receives help on any test.
- A student caught cheating on any question in an exam, project or quiz will fail the entire course.
- This is an open-book test.
- Once you leave the classroom, you cannot come back to the test.
- Any problem to which you give two or more (different) answers receives the grade of zero automatically.
- Submit your solution in the envelope provided, with your name and student id on the cover.
- Write your name and student id on the cover of the solution blue book provided to you.
- Write the question number clearly at the start of each solution to a problem.
- Answers must be written in legible handwriting.
- A failing grade will be awarded if the examiner is unable to decipher your hand-writing.

1 Question 1

• You are given the following integral (β is a real number):

$$I(\beta) = \int_0^1 \frac{1}{\sqrt{1 - \beta x^2}} dx$$
.

- Calculate the value of $I(\beta)$ numerically using Simpson's rule and n=10 steps.
- Find a value β_* such that:

$$0.69 < I(\beta_*) < 0.71$$
.

- State your value for β_* to one decimal place.
- State your value for $I(\beta_*)$ to three decimal places.
- You may employ any method you wish to find the value of β_* . You are not obligated to use bisection or Newton-Raphson, etc.
- You may code using C++ or Java or employ Excel, etc. You are NOT required to submit your code as part of your answer.

2 Question 2

- You are given a function f(x) of a real-valued variable x.
- You are also given a real number h > 0.
- Define three values $x_{-h} = -h$, $x_0 = 0$ and $x_h = h$.
- Let the corresponding values of f(x) be f(-h), f(0) and f(h), respectively.
- Define a quadratic function q(x) as follows (a, b and c are constants):

$$q(x) = ax^2 + bx + c.$$

• Let the quadratic q(x) be equal to f(x) at the three values x_{-h} , x_0 and x_h :

$$q(-h) = f(-h),$$

$$q(0) = f(0),$$

$$q(h) = f(h).$$

• Derive expressions for a, b, c in terms of h and f(-h), f(0), f(h).

```
a = \{\text{expression in terms of } h \text{ and } f(-h), f(0), f(h)\},

b = \{\text{expression in terms of } h \text{ and } f(-h), f(0), f(h)\},

c = \{\text{expression in terms of } h \text{ and } f(-h), f(0), f(h)\}.
```

• Derive an expression for the value of the integral of the quadratic in terms of h and a, b, c.

$$I_q = \int_{-h}^{h} q(x) dx = \{\text{expression in terms of } h \text{ and } a, b, c\}.$$

• Using the expressions for a, b and c in terms of h and f(-h), f(0), f(h) that you derived above, derive an expression for the value of the integral of the quadratic in terms of h and f(-h), f(0) and f(h).

$$I_q = \{\text{expression in terms of } h \text{ and } f(-h), f(0), f(h)\}.$$

3 Question 3

- You are given a function f(x) of a real-valued variable x.
- You are also given steps h_1 and h_2 , where $h_1 \neq h_2$ in general.
- Derive a finite difference approximation for the first derivative f'(x) in terms of $f(x+h_1)$ and $f(x-h_2)$, such that the leading order error term is O(f'''(x)).

$$f'(x) = \{\text{function of } f(x+h_1) \text{ and } f(x-h_2)\} + O(f'''(x)) + \cdots$$
 (no term in $f''(x)$).

• Derive a finite difference approximation for the second derivative f''(x) in terms of $f(x+h_1)$ and $f(x-h_2)$, such that the leading order error term is O(f'''(x)).

$$f''(x) = \{\text{function of } f(x+h_1) \text{ and } f(x-h_2)\} + O(f'''(x)) + \cdots$$