Директна сума на подпространства. Представяне на подпространства от наредени *n*-торки като решения на хомогенна система линейни уравнения

Определение 1. Сума на подпространства $V_1 + \ldots + V_n$ е директна, ако всеки вектор $v \in V_1 + \ldots + V_n$ има единствено представяне $v = v_1 + \ldots + v_n$ като сума на вектори $v_i \in V_i$. Бележим с $V_1 \oplus \ldots \oplus V_n$ директната сума на подпространства.

Твърдение 2. Сума на подпространства $V_1 + \ldots + V_n$ е директна тогава и само тогава, когато за всяко $1 \le i \le n$ е в сила

$$V_i \cap \left(\sum_{\forall j \neq i} V_j\right) = \{\overrightarrow{\mathcal{O}}\}.$$

 \mathcal{A} оказателство. Ако сумата $V_1 \oplus \ldots \oplus V_n$ е директна и $v_i = \sum_{\forall j \neq i} v_j \in V_i \cap \left(\sum_{\forall j \neq i} V_j\right)$, то $\sum_{\forall j \neq i} v_j + (-v_i) = \overrightarrow{\mathcal{O}}$. От единствеността на представянето на $\overrightarrow{\mathcal{O}}$ като вектор от $V_1 \oplus \ldots \oplus V_n$

получаваме $v_i = \overrightarrow{\mathcal{O}},$ откъдето $V_i \cap \left(\sum_{\forall j \neq i} V_j\right) = \{\overrightarrow{\mathcal{O}}\}.$

Обратно, нека $V_i \cap \left(\sum_{\forall j \neq i} V_j\right) = \{\overrightarrow{\mathcal{O}}\}$ и $v = \sum_{i=1}^n v_i = \sum_{i=1}^n v_i'$ са две представяния на вектор $v \in V_1 + \ldots + V_n$ като сума на вектори $v_i, v_i' \in V_i$. Тогава за всяко $1 \leq i \leq n$ имаме

$$V_i \ni v_i - v_i' = \sum_{\forall j \neq i} v_j' - v_j \in V_i \cap \left(\sum_{\forall j \neq i} V_j\right) = \{\overrightarrow{\mathcal{O}}\},$$

откъдето $v_i=v_i'$ и двете представяния съвпадат. Това доказва директността на сумата $V_1\oplus\ldots\oplus V_n$.

Твърдение 3. (Съответствие между разбиванията на базис и разлаганията в директна сума:) *Нека V е крайномерно линейно пространство*.

- (i) Ако e_1, \ldots, e_n е базис на V, то за всяко $1 \le k \le n$ е в сила разлагане $V = l(e_1, \ldots, e_k) \oplus l(e_{k+1}, \ldots, e_n)$ в директна сума на подпространства.
- (ii) Ако $V = U \oplus W$ е директна сума на ненулеви подпространства U и W, e_1, \ldots, e_k е базис на U и e_{k+1}, \ldots, e_n е базис на W, то $e_1, \ldots, e_k, e_{k+1}, \ldots, e_n$ е базис на V.

Доказателство. (i) Ако e_1, \ldots, e_n е базис на V, то

$$V = l(e_1, \dots, e_n) = l(e_1, \dots, e_k) + l(e_{k+1}, \dots, e_n).$$

От произволен вектор

$$v = \sum_{i=1}^{k} x_i e_i = \sum_{j=k+1}^{n} x_j e_j \in l(e_1, \dots, e_k) \cap l(e_{k+1}, \dots, e_n)$$

получаваме линейна комбинация

$$\sum_{i=1}^{k} x_i e_i + \sum_{j=k+1}^{n} (-x_j) e_j = \overrightarrow{\mathcal{O}}$$

на базисните вектори e_1,\ldots,e_n , представяща нулевия вектор $\overrightarrow{\mathcal{O}}$. Съгласно линейната независимост на e_1,\ldots,e_n , оттук следва $x_i=0$ за всички $1\leq i\leq n$. Това доказва, че $l(e_1,\ldots,e_k)\cap l(e_{k+1},\ldots,e_n)=\{\overrightarrow{\mathcal{O}}\}$ и сумата $V=l(e_1,\ldots,e_k)\oplus l(e_{k+1},\ldots,e_n)$ е директна. (ii) Ако $V=U\oplus W$ е разлагане на V в директна сума на ненулеви подпространства $U,W,\ e_1,\ldots,e_k$ е базис на U и e_{k+1},\ldots,e_n е базис на W, то от $U=l(e_1,\ldots,e_k)$ и $W=l(e_{k+1},\ldots,e_n)$ следва

$$V = U \oplus W = l(e_1, \dots, e_k) \oplus l(e_{k+1}, \dots, e_n) = l(e_1, \dots, e_k, e_{k+1}, \dots, e_n).$$

Произволна линейна комбинация $\sum\limits_{i=1}^n x_i e_i = \overrightarrow{\mathcal{O}}$ дава вектор

$$\sum_{i=1}^{k} x_i e_i = \sum_{i=k+1}^{n} (-x_i) e_i \in l(e_1, \dots, e_k) \cap l(e_{k+1}, \dots, e_n) = U \cap W = \{\overrightarrow{\mathcal{O}}\},\$$

откъдето

$$\sum_{i=1}^{k} x_i e_i = \overrightarrow{\mathcal{O}} \quad \text{и} \quad \sum_{i=k+1}^{n} x_i e_i = \overrightarrow{\mathcal{O}}.$$

Линейната независимост на базиса e_1, \ldots, e_k на U изисква $x_i = 0$ за всички $1 \le i \le k$. Аналогично, линейната независимост на базиса e_{k+1}, \ldots, e_n на W води до $x_i = 0$ за всички $k+1 \le i \le n$. Това доказва, че векторите e_1, \ldots, e_n са линейно независими, а оттам и базис на V.

Твърдение 4. Нека V е n-мерно линейно пространство, а U е k-мерно подпространство на V за някои естествени числа k < n. Тодажа съществува (n-k)-мерно подпространство W на V, така че $V = U \oplus W$. Всяко такова подпространство се нарича допълнение на U до V.

Доказателство. Избираме произволен базис e_1, \dots, e_k на U и го допълваме до базис $e_1, \dots, e_k, e_{k+1}, \dots, e_n$ на V. Тогава

$$V = l(e_1, \dots, e_k, e_{k+1}, \dots, e_n) = l(e_1, \dots, e_k) \oplus l(e_{k+1}, \dots, e_n) = U \oplus l(e_{k+1}, \dots, e_n)$$

съгласно Твърдение 3 (i). Полагаме $W:=l(e_{k+1},\ldots,e_n)$ и забелязваме, че W е подпространство на V с размерност n-k, защото векторите e_{k+1},\ldots,e_n са линейно независими като част от линейно независимата система $e_1,\ldots,e_k,e_{k+1},\ldots,e_n$. Това доказва съществуването на допълнение W на произволно собствено подпространство U на V.

Допълнението на подпространство W към V не е единствено. Например, ако $V=\mathbb{R}^3$ и W е права през началото в \mathbb{R}^3 , то произволна равнина U през началото, не съдържаща W е допълнение на W до \mathbb{R}^3 , т.е. $W \oplus U = \mathbb{R}^3$. Ако $V = \mathbb{R}^3$ и W е равнина през началото, то произволна права през началото, нележаща в W е допълнение на W до $\mathbb{R}^3 = W \oplus U$.

Система линейни уравнения

$$\begin{vmatrix} a_{11}x_1 & +a_{12}x_2 & +\dots & +a_{1n}x_n & = 0 \\ a_{21}x_1 & +a_{22}x_2 & +\dots & +a_{2n}x_n & = 0 \\ \dots & \dots & \dots & \dots \\ a_{m1}x_1 & +a_{m2}x_2 & +\dots & +a_{m,n}x_n & = 0 \end{vmatrix}$$
(1)

с нулеви свободни членове се наричат хомогенни

Лема 5. Елементарните преобразувания по редове към матрица

$$A = \begin{pmatrix} a_1 \\ a_2 \\ \dots \\ a_m \end{pmatrix}$$

не променят линейната обвивка $L = l(a_1, \ldots, a_m)$ на вектор-редовете a_1, \ldots, a_m на A.

Доказателство. Нека L' е линейната обвивка на вектор-редовете на матрица ', получена от A чрез елементарно преобразувание R по редове. Достатъчно е да проверим, че $L' \subseteq L$. Понеже A е получава от A' чрез обратното елементарно преобразувание по редове R^{-1} , оттук следва $L \subseteq L'$ и L = L'.

Ако $R = R_{i,j}(p)$ е умножение на j-ти ред с $p \in F$ и прибавяне към i-ти ред, то единственият ред на A', който не се среща в A е $a_i + pa_j \in L$. За умножение $R_i(q)$ на i-ти ред с $q \in F \setminus \{0\}$ имаме $qa_i \in L$, откъдето $L' \subseteq L$. При размяна $R_{i,j}$ на i-ти и j-ти ред линейната обвивка на вектор-редовете на A не се променя и L = L'.

Гаус-Жордановият вид на хомогенната система линейни урвнения (1) има матрица от коефициенти

$$A' = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 & a_{1,r+1} & \dots & a_{1,n} \\ 0 & 1 & \dots & 0 & 0 & a_{2,r+1} & \dots & a_{2,n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & 0 & a_{r-1,r+1} & \dots & a_{r-1,n} \\ 0 & 0 & \dots & 0 & 1 & a_{r,r+1} & \dots & a_{r,n} \end{pmatrix}$$
 (2)

след подходяща пермутация на променливите. Линейната обвивка $l(a'_1,\ldots,a'_r)$ на вектор-редовете a'_1,\ldots,a'_r на A е с размерност $\dim l(a'_1,\ldots,a'_r)=r$, защото ако $\lambda_1a'_1+\ldots+\lambda_ra'_r=(0,\ldots,0)\in M_{n\times 1}(F)$, то сравняването на първите r омпоненти дава $\lambda_1=\ldots=\lambda_r=0$ и доказва линейната независимост на a'_1,\ldots,a'_r . Съгласно Лема 5, линейната обвивка $l(a_1,\ldots,a_m)$ на вектор-редовете $a_i=(a_{i,1},\ldots,a_{i,n}), 1\leq i\leq m$ на A съвпада с $l(a'_1,\ldots,a'_r)$ и $\dim l(a_1,\ldots,a_m)=\dim l(a'_1,\ldots,a'_r)=r$.

Твърдение 6. Нека (1) е хомогенна система линейни уравнения с п неизвестни, чиято матрица от коефициенти

$$A = \begin{pmatrix} a_1 \\ a_2 \\ \dots \\ a_m \end{pmatrix}$$

има вектор-редове $a_1, \ldots, a_m \in M_{n \times 1}(F)$. Тогава множеството от решения $U \subseteq F^n$ на (1) е подпространство на F^n с размерност $\dim U = n - \dim l(a_1, \ldots, a_m)$.

Доказателство. Ако $u=(u_1,\ldots,u_n), v=(v_1,\ldots,v_n)\in U\subseteq F^n$ са решения на (1) и $\alpha\in F$, то за всяко $1\leq i\leq m$ е в сила

$$\sum_{j=1}^{n} a_{ij}(u_j + v_j) = \sum_{j=1}^{n} a_{ij}u_j + \sum_{j=1}^{n} a_{ij}v_j = 0 + 0 = 0 \quad \text{и}$$

$$\sum_{j=1}^{n} a_{ij}(\alpha u_j) = \alpha \left(\sum_{j=1}^{n} a_{ij} u_j\right) = \alpha.0 = 0$$

и $u+v=(u_1+v_1,\ldots,u_n+v_n),$ $\alpha u=(\alpha u_1,\ldots,\alpha u_n)\in U$ са решения на (1). Това доказва, че U е подпространство на F^n .

Ако матрицата $A = \mathbb{O}_{m \times n}$ е нулева, то $a_1 = \ldots = a_m = \mathbb{O}_{1 \times n}$ и $\dim l(a_1, \ldots, a_m) = \dim \{\overrightarrow{\mathcal{O}}\} = 0$. Множеството от решения $U = F^n$ на (1) е с размерност $\sim U = \dim F^n = n - \dim l(a_1, \ldots, a_m)$.

Отсега нататък, $r:=\dim l(a_1,\ldots,a_m)\in\mathbb{N}$ и Гаус-Жордановият вид на (1) има матрица от коефициенти (2) след подходяща пермутация на променливите. За всяко $r+1\leq j\leq n$ нека $u^{(j)}=(u_1^{(j)},\ldots,u_r^{(j)},u_{r+1}^{(j)},\ldots,u_n^{(j)})\in U$ е решението с $u_j^{(j)}=1,u_i^{(j)}=0$ за всички $i\in\{r+1,\ldots,n\}$ и $u_1^{(j)},\ldots,u_r^{(j)}\in F$, пресметнати от уравненията

$$x_i = -\sum_{i=r+1}^n a_{i,j} x_j \quad \text{3a} \quad 1 \le i \le r.$$
 (3)

Твърдим, че $u^{(r+1)}, \ldots, u^{(n)} \in U$ е базис на U. Ако

$$(0,\ldots,0) = \lambda_{r+1}u^{(r+1)} + \ldots + \lambda_n u^{(n)}$$

за някакви $\lambda_{r+1}, \ldots, \lambda_n \in F$, то сравняването на компонентите с номера от r+1 до n дава $\lambda_{r+1} = \ldots = \lambda_n = 0$ и доказва линейната независимост на $u^{(r+1)}, \ldots, u^{(n)}$. За произволно решение $s = (s_1, \ldots, s_r, s_{r+1}, \ldots, s_n) \in U$ разглеждаме решението

$$s' := s - s_{r+1}u^{(r+1)} - \dots - s_nu^{(n)} \in U$$

има анулиращи се компоненти с номера от r+1 до n. Компонентите на s' с номера от 1 до r се пресмятат по формулите (3) и се анулират. Това доказва, че $s'=(0,\ldots,0)$ е нулевата n-торка и $s=s_{r+1}u^{(r+1)}+\ldots+s_nu^{(n)}\in l(u^{(r+1)},\ldots,u^{(n)})$, така че $u^{(r+1)},\ldots,u^{(n)}$ е базис на U и $\dim U=n-r=n-\dim l(a_1,\ldots,a_m)$.

Твърдение 7. За всяко подпространство $U \subseteq F^n$ от наредени n-торки съществува хомогенна система линейни уравнения с пространство от решения U.

 \mathcal{A} оказателство. Ако $U = \{(0, \dots, 0)\}$ е нулевото пространство, то U съвпада с пространството от решения на хомогенната система линейни уревнения

$$\begin{vmatrix} x_1 &=0\\ \dots & \dots\\ x_n &=0 \end{vmatrix}$$

Отсега нататък $U \neq \{(0,\ldots,0)\}$ и съществува базис $a_i = (a_{i,1},\ldots,a_{i,n}), 1 \leq i \leq k$ на U. Образуваме система линейни уравнения с матрица от коефициенти

$$A = \begin{pmatrix} a_1 \\ a_2 \\ \dots \\ a_k \end{pmatrix}. \tag{4}$$

Пространството от решения $U_1 \subseteq F^n$ на (4) е с размерност n-k. Ако $b_1, \ldots, b_{n-k} \in U_1 \subset F^n$ е базис на U_1 , твърдим че U съвпада с пространството от решения U_2 на хомогенната система линейни уравнения с матрица от коефициенти

$$B = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_{n-k} \end{pmatrix}. \tag{5}$$

От $b_1, \ldots, b_{n-k} \in U_1$ следва $\sum_{s=1}^n a_{i,s} b_{j,s} = 0$ за всички $1 \leq i \leq k$ и $1 \leq j \leq n-k$. Следователно $a_1, \ldots, a_k \in U_2$ и $U = l(a_1, \ldots, a_k) \subseteq U_2$. Размерностите на U и U_2 съвпадат и са равни на $\dim U_2 = n - (n-k) = k = \dim U$, откъдето и подпространствата $U = U_2$ съвпадат.