Inferência Estatística II

Prof. Fernando de Souza Bastos fernando.bastos@ufv.br

Departamento de Estatística Programa de Pós-Graduação em Estatística Aplicada e Biometria Universidade Federal de Viçosa Campus UFV - Viçosa

Sumário

- Teoremas Sobre Convergência
 - Teorema de Slutsky
- 2 Momentos de Uma Variável Aleatória

3 Função Geradora de Momentos

Teorema 1

Se $X_n \stackrel{P}{\to} X$, então $X_n \stackrel{D}{\to} X$.

Teorema 1

Se $X_n \stackrel{P}{\to} X$, então $X_n \stackrel{D}{\to} X$.

Demonstração do Teorema 1

Seja x um ponto de continuidade de $F_X(x)$, a função de distribuição acumulada (FDA) de X. Queremos mostrar que $F_{X_n}(x) \to F_X(x)$ à medida que $n \to \infty$, onde $F_{X_n}(x)$ é a FDA de X_n .

Dividimos o evento $\{X_n \leq x\}$ em dois subconjuntos: um onde $|X_n - X| < \varepsilon$ e outro onde $|X_n - X| \geq \varepsilon$. Assim, podemos reescrever:

$$F_{X_n}(x) = P(X_n \le x)$$

$$= P(\{X_n \le x\} \cap \{|X_n - X| < \varepsilon\})$$

$$+ P(\{X_n \le x\} \cap \{|X_n - X| \ge \varepsilon\})$$

$$\le P(X \le x + \varepsilon) + P(|X_n - X| \ge \varepsilon)$$

Essa é uma decomposição da probabilidade em duas partes: uma onde X_n está "perto" de X (a diferença é menor que ε) e outra onde X_n está "longe" de X (a diferença é maior ou igual a ε).

• Quando $|X_n-X|<\varepsilon$, sabemos que X_n está perto de X, então $X_n\leq x$ implica que $X\leq x+\varepsilon$.

- Quando $|X_n X| < \varepsilon$, sabemos que X_n está perto de X, então $X_n \le x$ implica que $X \le x + \varepsilon$.
- O segundo termo, $P(\{X_n \leq x\} \cap \{|X_n X| \geq \varepsilon\})$, é menor ou igual a $P(|X_n - X| \ge \varepsilon)$, que é simplesmente a probabilidade de X_n estar longe de X.

 $P(|X_n-X|\geq \varepsilon)\to 0$ conforme $n\to\infty$, pois $X_n\to X$ em probabilidade. Portanto, podemos concluir:

$$\lim_{n \to \infty} F_{X_n}(x) \le F_X(x + \varepsilon)$$

Isso nos dá a estimativa superior (upper bound) da função de distribuição acumulada de X_n .

Agora, para obter a **estimativa inferior**, começamos reescrevendo $P(X_n \le x)$ utilizando o complemento:

$$P(X_n \le x) = 1 - P(X_n > x)$$

Dividimos a probabilidade $P(X_n > x)$ em dois pedaços:

$$P(X_n > x) = P(\lbrace X_n > x \rbrace \cap \lbrace |X_n - X| < \varepsilon \rbrace) + P(\lbrace X_n > x \rbrace \cap \lbrace |X_n - X| \ge \varepsilon \rbrace)$$

Como $P(\{X_n > x\} \cap \{|X_n - X| < \varepsilon\})$ é menor que $P(X > x - \varepsilon)$, podemos usar a seguinte desigualdade:

$$P(X_n > x) \le P(X \ge x - \varepsilon) + P(|X_n - X| \ge \varepsilon)$$

• O primeiro termo, $P(X \ge x - \varepsilon)$, é a probabilidade de X ser maior ou igual a $x - \varepsilon$. Isso é uma aproximação para lidar com o fato de que X_n está próximo de X.

Como $P(\{X_n > x\} \cap \{|X_n - X| < \varepsilon\})$ é menor que $P(X > x - \varepsilon)$, podemos usar a seguinte desigualdade:

$$P(X_n > x) \le P(X \ge x - \varepsilon) + P(|X_n - X| \ge \varepsilon)$$

- O primeiro termo, $P(X \ge x \varepsilon)$, é a probabilidade de X ser maior ou igual a $x-\varepsilon$. Isso é uma aproximação para lidar com o fato de que X_n está próximo de X.
- O segundo termo, $P(|X_n X| > \varepsilon)$, representa a probabilidade de X_n estar distante de X (mais de ε).

Assim, podemos expressar $P(X_n \le x)$ como:

$$P(X_n \le x) = 1 - P(X_n > x)$$

Substituímos o limite que encontramos para $P(X_n > x)$:

$$P(X_n \le x) \ge 1 - P(X \ge x - \varepsilon) - P(|X_n - X| \ge \varepsilon)$$

Ou, de forma mais compacta:

$$F_{X_n}(x) \ge F_X(x - \varepsilon) - P(|X_n - X| \ge \varepsilon)$$

Sabemos que, como $X_n \to X$ em probabilidade, temos $P(|X_n - X| \ge \varepsilon) \to 0$ conforme $n \to \infty$. Assim, no limite:

$$\lim_{n \to \infty} F_{X_n}(x) \ge F_X(x - \varepsilon)$$

Agora, combinamos as duas estimativas (superior e inferior) que obtivemos:

$$F_X(x-\varepsilon) \le \lim_{n\to\infty} F_{X_n}(x) \le F_X(x+\varepsilon)$$

Finalmente, fazendo $\varepsilon \to 0$, chegamos à conclusão desejada:

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$

Outros Teoremas Importantes:

Teorema 2

Se $X_n \stackrel{D}{\to} a$, então $X_n \stackrel{P}{\to} a$, a constante.

Outros Teoremas Importantes:

Teorema 2

Se $X_n \stackrel{D}{\to} a$, então $X_n \stackrel{P}{\to} a$, a constante.

Teorema 3

Se $X_n \xrightarrow{D} X$ e $Y_n \xrightarrow{P} 0$ então $X_n + Y_n \xrightarrow{D} X$.

Outros Teoremas Importantes:

Teorema 2

Se $X_n \stackrel{D}{\to} a$, então $X_n \stackrel{P}{\to} a$, a constante.

Teorema 3

Se $X_n \stackrel{D}{\to} X$ e $Y_n \stackrel{P}{\to} 0$ então $X_n + Y_n \stackrel{D}{\to} X$.

Teorema 4

Se $X_n \stackrel{D}{\to} X$ e g é uma função contínua no suporte de X, então

$$g(X_n) \stackrel{D}{\to} g(X).$$

Teorema de Slutsky

Teorema 5

Sejam X_n , A_n e B_n , variáveis aleatórias com $X_n \stackrel{D}{\to} X$, $A_n \stackrel{P}{\to} a$ e $B_n \stackrel{P}{\to} b$, a,b constantes reais. Então,

$$A_n X_n + B_n \stackrel{D}{\to} aX + b.$$

Para 🏠

Exercícios 5.2.2, 5.2.3, 5.2.6, 5.2.12, 5.2.15, 5.2.17, 5.2.19 e 5.2.20

Momentos de Ordem k

Definição 1

Para $k=1,2,\ldots$, o momento de ordem k da variável X é definido por $E(X^k)$, desde que essa quantidade exista. Se $E(X)=\mu<\infty$, definimos o momento central de ordem k por $E[(X-\mu)^k]$, sempre que essa quantidade exista. De modo similar, o momento absoluto de ordem k da variável aleatória X é definido por $E(|X|^k)$.

Considerando $X \sim \Gamma(\alpha, \beta)$, calcule seus momentos.

$$E(X^k) = \int_0^\infty x^k \cdot \frac{\beta^\alpha x^{\alpha - 1} \cdot e^{-\beta x}}{\Gamma(\alpha)} dx$$
$$= \frac{\beta^\alpha}{\Gamma(\alpha)} \int_0^\infty x^{\alpha + k - 1} \cdot e^{-\beta x} dx$$

Sabe-se que

$$\int_0^\infty x^{p-1} \cdot e^{-qx} \, dx = \Gamma(p) \cdot q^{-p}$$

Aplicando essa propriedade à integral, obtemos:

$$\int_0^\infty x^{\alpha+k-1} \cdot e^{-\beta x} \, dx = \Gamma(\alpha+k) \cdot (\beta)^{-(\alpha+k)}$$

Substituindo na expressão original:

$$E(X^k) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \cdot \Gamma(\alpha + k) \cdot (\beta)^{-(\alpha+k)}$$

$$E(X^k) = \frac{\Gamma(\alpha + k)}{\Gamma(\alpha)} \cdot \beta^{-k} = \frac{\alpha(\alpha + 1) \cdots (\alpha + k - 1)}{\beta^k}$$

Esse é o valor esperado $E(X^k)$ em termos das funções Gama e do parâmetro $\beta.$

Observe que se $\alpha=1,\ X$ tem distribuição exponencial de parâmetro $\beta>0$ e, assim,

$$E(X^k) = \frac{k!}{\beta^k}$$

Se fizermos k=1, obtemos a média desta variável que é $\frac{1}{\beta}.$

Sabendo que $X \stackrel{\text{iid}}{\sim} B(n,p)$. Encontre o momento central de ordem 1 e 2 desta variável.

$$E(X^{2}) = \sum_{i=0}^{n} i^{2} \binom{n}{i} p^{i} (1-p)^{n-i}$$

$$= \sum_{i=0}^{n} [i(i-1)+i] \binom{n}{i} p^{i} (1-p)^{n-i}$$

$$= \sum_{i=2}^{n} i(i-1) \binom{n}{i} p^{i} (1-p)^{n-i} + E(X)$$

$$= n(n-1) \sum_{i=2}^{n} \binom{n-2}{i-2} p^{i} (1-p)^{n-i} + E(X)$$

$$E(X^{2}) = n(n-1)p^{2} \sum_{j=0}^{n-2} {n-2 \choose j} p^{j} (1-p)^{(n-2)-j} + E(X)$$

$$= n(n-1)p^{2} [p+(1-p)]^{(n-2)} + np$$

$$= n^{2}p^{2} + np(1-p)$$

$$E(X^{2}) = n(n-1)p^{2} \sum_{j=0}^{n-2} {n-2 \choose j} p^{j} (1-p)^{(n-2)-j} + E(X)$$

$$= n(n-1)p^{2} [p+(1-p)]^{(n-2)} + np$$

$$= n^{2}p^{2} + np(1-p)$$

Assim,
$$Var(X) = E(X - E(X))^2 = E(X^2) - (E(X))^2 = np(1-p)$$

Função Geradora de Momentos

Definição 2

A função geradora de momentos de uma variável aleatória X é definida por $M_X(t) = E(e^{tX}), t \in \mathbb{R}$

Função Geradora de Momentos

Definição 2

A função geradora de momentos de uma variável aleatória X é definida por $M_X(t)=E(e^{tX}),\ t\in {\rm I\!R}$

Observação Importante:

O momento de ordem k de uma variável aleatória X pode ser encontrado utilizando a função geradora de momentos. Para encontrar o momento de ordem k, derivamos k vezes em relação a t a função geradora de momentos $M_X(t)$ e então avaliamos em t=0:

$$\mathbb{E}[X^k] = \frac{d^k}{dt^k} M_X(t) \bigg|_{t=0}$$

Teorema 6

Seja $\{X_n\}_{n\geq 1}$ uma sequência de variáveis aleatórias com fgm $M_{X_n}(t)$ que existe para |t|< h para todo n. Seja X uma variável aleatória com fgm $M_X(t)$, que existe para $|t|\leq h_1\leq h$. Se $\lim_{n\to\infty}M_{X_n}(t)=M_X(t)$ para $|t|\leq h_1$, então $X_n\stackrel{D}{\to} X$.

Teorema 6

Seja $\{X_n\}_{n\geq 1}$ uma sequência de variáveis aleatórias com fgm $M_{X_n}(t)$ que existe para |t|< h para todo n. Seja X uma variável aleatória com fgm $M_X(t)$, que existe para $|t|\leq h_1\leq h$. Se $\lim_{n\to\infty}M_{X_n}(t)=M_X(t)$ para $|t|\leq h_1$, então $X_n\stackrel{D}{\to} X$.

Observação importante na resolução de exercícios:

$$\begin{array}{llll} \mathrm{Se} & \lim\limits_{n \to \infty} \left(1 + \frac{b}{n} + \frac{\psi(n)}{n}\right)^{cn}, & \mathrm{em} & \mathrm{que} & b & \mathrm{e} & c & \mathrm{n\~{a}o} & \mathrm{de-pendem} & \mathrm{de} & n & \mathrm{e}, & \mathrm{em} & \mathrm{que}, & \lim\limits_{n \to \infty} \psi(n) = 0. & & \mathrm{Ent\~{a}o}, \\ & \lim\limits_{n \to \infty} \left(1 + \frac{b}{n} + \frac{\psi(n)}{n}\right)^{cn} = \lim\limits_{n \to \infty} \left(1 + \frac{b}{n}\right)^{cn} = e^{bc}. \end{array}$$

$$\lim_{n \to \infty} \left(1 - \frac{t^2}{n} + \frac{t^2}{n^{3/2}}\right)^{-n/2} = \lim_{n \to \infty} \left(1 - \frac{t^2}{n} + \frac{t^2/\sqrt{n}}{n}\right)^{-n/2}$$

$$\lim_{n \to \infty} \left(1 - \frac{t^2}{n} + \frac{t^2}{n^{3/2}} \right)^{-n/2} = \lim_{n \to \infty} \left(1 - \frac{t^2}{n} + \frac{t^2/\sqrt{n}}{n} \right)^{-n/2}$$
$$= \lim_{n \to \infty} \left(1 - \frac{t^2}{n} \right)^{-n/2}$$
$$= e^{t^2/2}$$

Aqui,
$$b=-t^2$$
, $c=-\frac{1}{2}$ e $\psi(n)=\frac{t^2}{\sqrt{n}}$.

exemplo, $p_n=\frac{1}{n+1}, \lim_{n\to\infty}np_n=1$). Então, $X_n\stackrel{D}{\to}X$, em que $X\sim {\sf Poisson}(\lambda)$. Considere $X_n \sim Binomial(n, p_n)$ e suponha $\lim_{n \to \infty} np_n = \lambda > 0$ (por

Considere $X_n \sim Binomial(n,p_n)$ e suponha $\lim_{n\to\infty} np_n = \lambda > 0$ (por exemplo, $p_n=rac{1}{n+1}, \ \lim_{n o \infty} np_n=1$). Então, $X_n \stackrel{D}{ o} X,$ em que $X \sim \mathsf{Poisson}(\lambda)$.

Demonstração

Temos que,

$$\begin{split} M_{X_n}(t) &= E(e^{tX_n}) = \sum_{k=0}^n e^{tk} \binom{n}{k} p_n^k (1-p_n)^{n-k} \\ &= \left(1-p_n+p_n e^t\right)^n = \left(1+\frac{np_n}{n}(e^t-1)\right)^n \\ \text{(para n grande)} &= \left(1+\frac{\lambda}{n}(e^t-1)\right)^n \xrightarrow[n\to\infty]{} \exp\left\{\lambda(e^t-1)\right\} \end{split}$$

Logo. $X_n \stackrel{D}{\to} X \sim \mathsf{Poisson}(\lambda)$.

Quando a quantidade np_n se estabiliza em um valor $\lambda>0$, estamos essencialmente controlando a média da binomial. À medida que $n\to\infty$ e p_n diminui de forma controlada, mantemos np_n constante, aproximando o comportamento da binomial ao de uma distribuição Poisson com parâmetro λ . A essência é que estamos explorando o comportamento assintótico da binomial, com p_n diminuindo à medida que n cresce, mas de modo que np_n permaneça fixo e igual a λ . Isso faz com que a média e variância da binomial "convirjam" para os parâmetros de uma Poisson.

Referências I

Hogg, RV, J McKean e AT Craig (2019). *Introduction to Mathematical Statistics*.