PMATH 365: Differential Geometry

Instructor Stephen New LATEXer Iris Jiang

Winter 2021

Contents

1	Curves	. 2
1.1	Curves in \mathbb{R}^n	2
1.2	Curves in \mathbb{R}^2	6
1.3	Curves in \mathbb{R}^3	11
	Index	15

1. Curves

1.1 Curves in \mathbb{R}^n

Definition 1.1 — curve, tangent vector, smooth, regular.

A (parametrized) **curve** in \mathbb{R}^n is a continuous map $\alpha : I \subseteq \mathbb{R} \to \mathbb{R}^n$ where I is a nonempty interval. We can write $\alpha(t) = (x_1(t), x_2(t), \cdots, x_n(t))$ where each $x_k : I \subseteq \mathbb{R} \to \mathbb{R}$ is continuous.

When $a \in I$ and $\alpha'(a) = (x_1'(a), \dots, x_n'(a))$ exists, $\alpha'(a)$ is called the **tangent vector** to α at t = a.

We say that α is \mathcal{C}^k when the k^{th} order derivative of α exists and is continuous on I, we say that α is **smooth** or \mathcal{C}^{∞} when α is \mathcal{C}^k for all $k \in \mathbb{Z}^+$, and we say that α is **regular** when α is \mathcal{C}^1 with $\alpha'(t) \neq 0$ for all $t \in I$.

Unless otherwise stated, we shall always assume curves are smooth and regular.

■ Example 1.2 The curve $\alpha: \mathbb{R} \to \mathbb{R}^2$ given by $\alpha(t) = (t, |t|)$ is not regular because $\alpha'(0)$ does not exist. The curve $\beta: \mathbb{R} \to \mathbb{R}^2$ given by $\beta(t) = (t^3, t^2)$ is not regular because $\beta'(0) = 0$. The curve $\gamma: \mathbb{R} \to \mathbb{R}^2$ given by $\gamma(0) = (0, 0)$ and $\gamma(t) = (t, t^2 \sin \frac{1}{t})$ for $t \neq 0$ is differentiable but not regular because γ' is not continuous at t = 0.

Theorem 1.3

Every regular curve in \mathbb{R}^n is locally injective.

Proof. Let $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^n$ be a regular curve, write $\alpha(t) = (x_1(t), \dots, x_n(t))$, and let $a \in I$. Since $\alpha'(a) \neq 0$ we have $x_k'(a) \neq 0$ for some index k, say $x_k'(a) > 0$ (the case that $x_k'(a) < 0$ is similar). Since α' is continuous, x_k' is continuous. Since x_k' is continuous and

 $x_k'(a) > 0$ we can choose $\delta > 0$ so that $|t - a| < \delta \implies x_k'(t) > 0$. Then x_k is increasing, hence injective, in the interval $(a - \delta, a + \delta) \cap I$, and so α is injective in the same interval.

- **Example 1.4** The curves $\alpha, \beta, \gamma : \mathbb{R} \to \mathbb{R}^2$ from Example 1.2 are not regular, but they are all injective, so a curve does not necessarily need to be regular in order to be injective.
- Example 1.5 The alpha curve $\alpha: \mathbb{R} \to \mathbb{R}^2$ which is given by $\alpha(t) = (t^2 1, t(t^2 1))$, the circle $\beta: \mathbb{R} \to \mathbb{R}^2$ which is given by $\beta(t) = (\cos t, \sin t)$, and the limcon $\gamma: \mathbb{R} \to \mathbb{R}^2$ which is given by $\gamma(t) = ((1 + 2\cos t)\cos t, (1 + 2\cos t)\sin t)$, are all regular, so they are all locally injective, but they are not (globally) injective (the alpha curve crosses itself with $\alpha(1) = \alpha(-1) = (0,0)$, the circle is periodic with $\beta(t + 2\pi k) = \beta(t)$ for all $k \in \mathbb{Z}$, and the limcon is periodic and crosses itself).
- Example 1.6 The curve $\alpha : \mathbb{R} \to \mathbb{R}^2$ given by $\alpha(0) = 0$ and $\alpha(t) = \left(t^2, t^2 \sin \frac{1}{t}\right)$ for $t \neq 0$ is differentiable, but not regular since $\alpha'(0) = 0$, and (as you can verify) it is not locally injective at t = 0.

Definition 1.7 — length, rectifiable.

For a curve $\alpha:[a,b]\subseteq\mathbb{R}\to\mathbb{R}^n$, the **length** of α on [a,b] is

$$L = L_{\alpha}([a, b]) = \sup \left\{ \sum_{j=1}^{p} \left| \alpha(t_j) - \alpha(t_{j-1}) \right| \mid a = t_0 < t_1 < t_2 < \dots < t_p = b \right\}$$

(which can be infinite) and we say that α is **rectifiable** on [a,b] when $L_{\alpha}([a,b])$ is finite.

Theorem 1.8

Let $\alpha:[a,b]\subseteq\mathbb{R}\to\mathbb{R}^n$ be a regular curve. Then α is rectifiable with length

$$L = L_{\alpha}([a, b]) = \int_{a}^{b} |\alpha'(t)| dt.$$

Proof. For a partition $P = (t_0, t_1, \dots, t_p)$, where $a = t_0 < t_1 < \dots < t_p = b$, let us write

$$L(\alpha, P) = \sum_{j=1}^{p} |\alpha(t_j) - \alpha(t_{j-1})|$$
 and $S(\alpha, P) = \sum_{j=1}^{p} |\alpha'(t_j)| (t_j - t_{j-1})$

so $L(\alpha, P)$ is the sum which approximates $Length(\alpha)$ and $S(\alpha, P)$ is the Riemann sum (using right endpoints) which approximates the integral $\int_a^b |\alpha'(t)| dt$. First note that

$$L(\alpha, P) = \sum_{j=1}^{p} |\alpha(t_j) - \alpha(t_{j-1})| \le \sum_{j=1}^{p} \sum_{k=1}^{n} |x_k(t_j) - x_k(t_{j-1})| = \sum_{j=1}^{n} \sum_{k=1}^{p} |x_k'(c_{j,k}) (t_j - t_{j-1})|$$

$$\le \sum_{j=1}^{n} \sum_{k=1}^{p} M(t_j - t_{j-1}) = \sum_{j=1}^{n} M(b - a) = nM(b - a)$$

where we used the Mean Value Theorem to choose points $c_{j,k}$ between t_{j-1} and t_j such that $(x_k(t_j) - x_k(t_{j-1})) = x_k'(c_{j,k})(t_j - t_{j-1})$ and we let $M = \max\{|x_k'(t)| | 1 \le k \le n, t \in [a,b]\}$. This shows that $L = L_{\alpha}([a,b])$ is finite.

Note that if $P=(t_0,t_1,\cdots,t_p)$ is a partition of [a,b], and Q is a partition which is obtained by adding one more point, say $Q=(t_0,t_1,\cdots,t_{j-1},s,t_j,\cdots,t_p)$, then we have $L(\alpha,P)\leq L(\alpha,Q)$ because $|\alpha(t_j)-\alpha(t_{j-1})\leq |\alpha(t_j)-\alpha(s)|+|\alpha(s)-\alpha(t_{j-1})|$. It follows (by induction) that when Q is any partition with $P\subseteq Q$ we have

$$L(\alpha, P) \le L(\alpha, Q) \le L.$$

Also note that for any partition P, with $c_{i,k}$ chosen as above, we have

$$\begin{aligned} \left| L(\alpha, P) - S(\alpha, P) \right| &= \left| \sum_{j=1}^{p} \left| \alpha(t_{j}) - \alpha(t_{j-1}) \right| - \sum_{j=1}^{p} \left| \alpha'(t_{j}) \right| (t_{j} - t_{j-1}) \right| \\ &= \left| \sum_{j=1}^{p} \left| \left(x_{1}(t_{j}) - x_{1}(t_{j-1}), \cdots, x_{n}(t_{j}) - x_{n}(t_{j-1}) \right| - \sum_{j=1}^{p} \left| \alpha'(t_{j}) \right| (x_{j} - t_{j-1}) \right| \\ &= \left| \sum_{j=1}^{p} \left| \left(x_{1}'(c_{j,1}), \cdots, x_{n}'(c_{j,n}) \right) \right| (t_{j} - t_{j-1}) - \sum_{j=1}^{p} \left| \left(x_{1}'(t_{j}), \cdots, x_{n}'(t_{j}) \right) \right| (t_{j} - t_{j-1}) \right| \\ &\leq \sum_{j=1}^{p} \left| \left(x_{1}'(c_{j,1}), \cdots, x_{n}'(c_{j,n}) \right) \right| - \left| \left(x_{1}'(t_{j}), \cdots, x_{n}'(t_{j}) \right) \right| \left| (t_{t} - t_{j-1}) \right| \\ &\leq \sum_{j=1}^{p} \left| \left(x_{1}'(c_{j,1}) - x_{1}'(t_{j}), x_{n}'(c_{j,n}) - x_{n}'(t_{j}) \right) \right| (t_{j} - t_{j-1}) \\ &\leq \sum_{j=1}^{p} \sum_{k=1}^{n} \left| x_{k}'(c_{j,k}) - x_{k}'(t_{j}) \right| (t_{j} - t_{j-1}). \end{aligned}$$

Let $\epsilon > 0$. Since each x_k' is continuous (hence uniformly continuous) on [a,b] and since $|\alpha'|$ is continuous (hence Riemann integrable) on [a,b], we can choose $\delta > 0$ such that for all $s,t \in [a,b]$ with $|s-t| < \delta$ we have $|x_k'(s) - x_k'(t)| < \frac{\epsilon}{3n(b-a)}$ for all k, and such that for every partition $P = (t_0,t_1,\cdots,t_p)$ with $|P| < \delta$ we have $|\int_a^b |\alpha'(t)| \, dt - S(\alpha,P)| < \frac{\epsilon}{3}$ where |P| is the size of the partition P, that is $|P| = \max \left\{ t_j - t_{j-1} \, \middle| \, 1 \le j \le p \right\}$. Choose a partition P_1 with $|P_1| < \delta$ and choose a partition P_2 such that $|L - L(\alpha,P_2)| < \frac{\epsilon}{3}$ then let $P = P_1 \cup P_2$. Since $P_2 \subseteq P_1$ we have $L(\alpha,P_1) \le L(\alpha,P) \le L$ so that $|L - L(\alpha,P)| \le |L - L(\alpha,P_1)| < \frac{\epsilon}{3}$. Since $|P| \le |P_1| < \delta$ we have $|\int_a^b |\alpha'(t)| \, dt - S(\alpha,P)| < \frac{\epsilon}{3}$. Also since $|P| < \delta$, for all of the points $c_{j,k}$ we have $|c_{j,k} - t_j| < \delta$ so that $|x_k'(c_{j,k}) - x_k'(t_j)| < \frac{\epsilon}{3n(b-a)}$

and hence (as shown above) $|L(\alpha, P) - S(\alpha, P)| \le \sum_{j=1}^{p} \sum_{k=1}^{n} |x_k'(c_{j,k}) - x_k'(t_j)| (t_j - t_{j-1}) < \infty$

 $\frac{\epsilon}{3}$. Thus

$$\left| L - \int_{a}^{b} \left| \alpha'(t) \right| dt \right| \le \left| L - L(\alpha, P) \right| + \left| L(\alpha, P) - S(\alpha, P) \right| + \left| S(\alpha, P) - \int_{a}^{b} \left| \alpha'(t) \right| dt \right|$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Since $\epsilon > 0$ was arbitrary, it follows that $L = \int_a^b |\alpha'(t)| \, dt$, as required.

Example 1.9 A curve which is differentiable, but not \mathcal{C}^1 , can have infinite length. For example, consider the curve $\alpha:[0,1]\to\mathbb{R}^2$ given by $\alpha(t)=(x(t),y(t))$ where x(t)=t $y(t)=t^2\cos\frac{\pi}{t^2}$ when $t\neq 0$ with y(0)=0. Note that x(y) and y(t) are both differentiable (with y'(0)=0) but y'(t) is not continuous at 0 (as you can check).

Let P be the partition $P = (t_0, t_1, \dots t_p)$ with $t_0 = 0$ and $t_j = \frac{1}{\sqrt{p-j+1}}$, that is let $P = \left(0, \frac{1}{\sqrt{p}}, \frac{1}{\sqrt{p-1}}, \dots, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{2}}, 1\right)$. We have $y(t_j) = \frac{1}{p-j+1} \cos(p-j+1)\pi = \frac{(-1)^{p-j+1}}{p-j+1}$ for $1 \le j \le p$, and hence $|y(t_j) - y(t_{j-1})| = \left|\frac{1}{p-j+1} + \frac{1}{p-j+2}\right| \ge \frac{2}{p-j+2}$ for $2 \le j \le p$. Letting $\ell = p - j + 2$ we have

$$\sum_{j=1}^{p} \left| \alpha'(t_j) - \alpha'(t_{j-1}) \right| \ge \sum_{j=2}^{p} \left| y(t_j) - y_j(t_{j-1}) \right| \ge \sum_{j=2}^{p} \frac{2}{p-j+2} = \sum_{\ell=2}^{p} \frac{2}{\ell}.$$

Since $\sum_{\ell=0}^{\infty} \frac{1}{\ell}$ diverges, it follows that $L_{\alpha}([a,b]) = \infty$.

Definition 1.10 — reparameterisation, change of parameter, regular, preserves direction, parameterised by arclength.

When $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^n$ is a continuous curve and $s: I \subseteq \mathbb{R} \to J \subseteq \mathbb{R}$ is a homomorphism with inverse t = t(s), the curve $\beta: J \subseteq \mathbb{R} \to \mathbb{R}^n$ defined by $\beta(s) = \alpha(t(s))$ is called a **reparameterisation** of α , and the map s is called a **change of parameter** (or a **change of coordinates**).

When s is C^1 with $s'(t) \neq 0$ for all t, we say that s is **regular**.

By the Inverse Function Theorem, if s = s(t) is smooth (or C^k) and regular then so is its inverse t = t(s).

When s'(t) > 0 for all t we say s **preserves direction** and when s'(t) < 0 for all t we say s **reverses direction**.

When α and s are both smooth (or \mathcal{C}^k) and regular, so is β , and for t=t(s) we have $\beta'(s)=\alpha'\left(t(s)\right)t'(s)=\frac{\alpha'(t)}{s'(t)}$.

When $|\beta'(s)| = 1$ for all $s \in J$, we say that β is **parameterised by arclength**. Unless otherwise stated, we shall assume that any change of coordinates is smooth and regular.

Theorem 1.11

Every regular curve can be reparameterised by arclength, using a regular direction-preserving change of coordinates.

Proof. Let $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^n$ be a regular curve. Let $a \in I$ and define $s(t) = \int_a^t \left| \alpha'(r) \right| dr$. Note that $s'(t) = \left| \alpha'(t) \right| > 0$ so s(t) is regular and strictly increasing, and it maps the interval I to an interval J, and if α is \mathcal{C}^k then so is s = s(t). By the inverse function t = t(s) satisfies $t'(s) = \frac{1}{s'(t)} = \frac{1}{|\alpha'(t)|}$. The reparameterised curve $\beta: J \to \mathbb{R}^n$ given by $\beta(s) = \alpha(t(s))$ satisfies $\beta'(s) = \alpha'(t(s)) t'(s) = \frac{\alpha'(t(s))}{|\alpha'(t(s))|}$ so that $|\beta'(s)| = 1$ for all $s \in J$.

1.2 Curves in \mathbb{R}^2

Definition 1.12 — unit tangent vector, unit normal vector, signed curvature, scalar curvature.

Let $\beta: J \subseteq \mathbb{R} \to \mathbb{R}^2$ be a smooth regular curve parameterised by arclength. For a vector $u = (x, y) \in \mathbb{R}^2$, write $u^{\times} = (-y, x)$ and note that $|u^{\times}| = |u|$. The **unit tangent vector** and the **unit normal vector** of β at s are the vectors

$$T(s) = T_{\beta}(s) = \beta'(s),$$

$$N(s) = N_{\beta}(s) = T(s)^{\times}.$$

Since β is parametrized by arclength, $|T(s)| = |\beta'(s)| = 1$ and $|N(s)| = |\beta'(s)^{\times}| = 1$ for all s. For all s we have $\beta'(s) \times \beta'(s) = |\beta'(s)|^2 = 1$. By differentiation both sides we obtain $\frac{d}{ds}(\beta'(s) \times \beta'(s)) = 0$, that is $2\beta'(t) \times \beta''(t) = 0$. Thus $\beta''(s)$ is orthogonal to $\beta'(s) = T(s)$, and so $\beta''(s)$ lies in the span of $T(s)^{\times} = N(s)$.

We define the **signed curvature** of β at s to be the real number $k(s) = k_{\beta}(s)$ such that

$$\beta''(s) = k(s) N(s) = k_{\beta}(s) N_{\beta}(s).$$

Since $|N_{\beta}(s)| = 1$ we have $|\beta''(s)| = |k_{\beta}(s)|$.

The scalar curvature of β at s is

$$\kappa(s) = \kappa_{\beta}(s) = |k(s)| = |\beta''(s)|.$$

When $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^2$ is a smooth regular curve we first reparametrize by arclength by choosing $a \in I$ and letting $\beta(s) = \alpha(t(s))$ where $s(t) = \int_a^t |\alpha'(r)| dr$, and then we define $T(t) = T_{\alpha}(t) = T_{\beta}(s(t))$, $N(t) = N_{\alpha}(t) = N_{\beta}(s(t))$, $k(t) = k_{\alpha}(t) = k_{\beta}(s(t))$ and $\kappa(t) = \kappa_{\alpha}(t) = \kappa_{\beta}(s(t))$, and we call these the unit tangent vector, the unit normal vector, the signed curvature, and the scalar curvature, of α at t. The following theorem shows that these are well-defined, that is they do not depend on the choice of $a \in I$.

Theorem 1.13

For a smooth regular curve $\alpha = \alpha(t)$ we have

$$T = \frac{\alpha'}{|\alpha'|}, \ N = \left(\frac{\alpha'}{|\alpha'|}\right)^{\times}$$

$$k = \frac{\det_2(\alpha', \alpha'')}{|\alpha'|^3} = \frac{(\alpha' \times \alpha'') \times e_3}{|\alpha'|^3} = \frac{\det_3(\alpha', \alpha'', e_3)}{|\alpha'|^3}$$

$$\kappa = \frac{\left|\det_2(\alpha', \alpha'')\right|}{|\alpha'|^3} = \frac{|\alpha' \times \alpha''|}{|\alpha'|^3}$$

where $\det_2(\alpha', \alpha'')$ is the determinant of the 2×2 matrix with columns $\alpha', \alpha'' \in \mathbb{R}^2$, and where we identify $\alpha', \alpha'' \in \mathbb{R}^2$ with $\begin{pmatrix} \alpha' \\ 0 \end{pmatrix}, \begin{pmatrix} \alpha'' \\ 0 \end{pmatrix} \in \mathbb{R}^3$ so that $\alpha' \times \alpha''$ is the cross product of two vectors $\begin{pmatrix} \alpha' \\ 0 \end{pmatrix}, \begin{pmatrix} \alpha'' \\ 0 \end{pmatrix} \in \mathbb{R}^3$ and $\det_3(\alpha', \alpha'', e_3)$ is the determinant of the 3×3 matrix whose first two columns are $\begin{pmatrix} \alpha' \\ 0 \end{pmatrix}, \begin{pmatrix} \alpha'' \\ 0 \end{pmatrix} \in \mathbb{R}^3$ and whose last column is the 3^{rd} standard basis vector e_3 .

Proof. First verify (easily) that when we identify $u, v \in \mathbb{R}^2$ with $\binom{u}{0}, \binom{v}{0} \in \mathbb{R}^3$ we have

$$u^{\times} \cdot v = \det_2(u, v) = (u \times v) \cdot e_3 = \det_3(u, v, e_3)$$

and $|\det_2(u,v)| = |u \times v|$.

Peparametrize by arclength by choosing $a \in I$ and letting $\beta(s) = \alpha(t(s))$ where $s(t) = \int_a^t |\alpha'(r)| dr$. We have $T_{\beta}(s) = \beta'(s)$ and $N_{\beta}(s) = \beta'(s)^{\times}$. Let us find formulas for $k_{\beta}(s)$ and $\kappa_{\beta}(s)$. By definition, $k_{\beta}(s)\beta'(s)^{\times} = k_{\beta}(s)N_{\beta}(s) = \beta''(s)$. Take the dot product of both sides with $\beta'(s)^{\times}$ to get

$$k_{\beta}(s) = \beta'(s)^{\times} \times \beta''(s)$$

$$\kappa_{\beta}(s) = |k_{\beta}(s)| = |\beta'(s) \times \beta''(s)|.$$

Now let us find formulas for $T(t) = T_{\alpha}(t) = T_{\beta}(s(t))$, $N(t) = N_{\alpha}(t) = N_{\beta}(s(t))$, $k(t) = k_{\alpha}(t) = k_{\beta}(s(t))$ and $\kappa(t) = \kappa_{\alpha}(t) = \kappa_{\beta}(s(t))$. We have $\alpha(t) = \beta(s(t))$ so that $\alpha'(t) = \beta'(s(t))s'(t)$. Since $|\beta'(s(t))| = 1$ and s'(t) > 0, it follows that $|\alpha'(t)| = s'(t)$. Since $|\beta''(s)| = k_{\beta}(s)N_{\beta}(s)$ and $|N_{\beta}(s)| = |T_{\beta}(s)| = 1$, we have $|\beta''(s)| = |k_{\beta}(s)| = \kappa_{\beta}(s)$. Since $|\beta''(s)| = |\beta''(s)| = |\beta''(s)|$

$$\alpha(t) = \beta(s(t))$$

$$\alpha'(t) = \beta'(s(t))s'(t)$$

$$\alpha''(t) = \beta''(s(t))s'(t)^{2} + \beta'(s(t))s''(t)$$

$$\alpha'(t) \times \alpha''(t) = (\beta'(s(t)) \times \beta''(s(t))) (s')^{3}.$$

Since $|\alpha'(t)| = s'(t)$ this gives

$$\frac{\alpha'(t)}{|\alpha'(t)|} = \beta'(s(t)) = T_{\beta}(s(t)) = T(t) \quad , \quad \left(\frac{\alpha'(t)}{|\alpha'(t)|}\right)^{\times} = T_{\beta}(s(t))^{\times} = N_{\beta}(s(t)) = N(t)$$

$$\frac{\alpha'(t) \times \alpha''(t)}{|\alpha'(t)|^3} = \beta'(s(t)) \times \beta''(s(t)) = k_{\beta}(s(t)) = k(t)$$

$$\frac{|\alpha'(t) \times \alpha''(t)|}{|\alpha'(t)|^3} = \left|\beta'(s(t)) \times \beta''(s(t))\right| = \kappa_{\beta}(s(t)) = \kappa(t) .$$

Theorem 1.14

For a smooth regular curve α in \mathbb{R}^2 , the curvature of α is identically zero if and only if (the image of) α lies on a straight line.

Proof. Let $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^2$ be a smooth regular curve. Choose $a \in I$ and reparametrize α by arclength by setting $\beta(s) = \alpha(t(s))$ where $s(t) = \int_a^t |\alpha'(t)| \, dt$. Suppose that $\kappa(t) = 0$ for all t. Then we have $0 = \kappa(t(s)) = |\beta''(s)|$ for all s so that $\beta''(s) = 0$ for all s. By integrating once we obtain $\beta'(s) = u$ for some $u \in \mathbb{R}^2$ since $|\beta'(s)| = 1$, u is a unit vector) and by integrating again we obtain $\beta(s) = p + su$ for some $p \in \mathbb{R}^2$. Thus $\alpha(t) = p + s(t)u$ for all t so that α lies on the line through p in the direction of u.

Suppose, conversely, that (the image of) α lies on a straight line, say the line p+su where $p,u\in\mathbb{R}^2$ and |u|=1. Then for every $t\in I$ there is a (unique) s=s(t) such that $\alpha(t)=p+s(t)u$. We remark that taking the dot product with u gives $s(t)=(\alpha(t)-p)$ for all t so we see that s(t) is smooth. Since $\alpha(t)=p+tu$, we have $\alpha'(t)=s'(t)u$ and $\alpha''(t)=s''(t)u$ so that $\alpha(t)\times\alpha''(t)=s'(t)s''(t)u\times u=0$ and kence $\kappa(t)=0$ for all t.

Definition 1.15 — osculating circle.

Let $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^2$ be a smooth regular curve, let $a \in I$, and suppose that $\kappa(a) \neq 0$. We define the **osculating circle** (or the **best-fit circle**) of α at t = a as follows. Let $p = \alpha(a), T = T(a), N = N(a), k = k(a)$ and $\kappa = \kappa(a)$. Reparametrize by arclength, letting $\beta(s) = \alpha(t(s))$ where $s(t) = \int_a^t |\alpha'(r)| dr$ so that we have $\beta(0) = p$. $\beta'(0) = T$ and $\beta''(0) = kN$. The osculating circle at t = a is the circle given by

$$\sigma(s) = \left(p + \frac{1}{k}N\right) - \frac{1}{k}\cos(ks)N + \frac{1}{k}\sin(ks)T$$
$$\sigma'(s) = \sin(ks)N + \cos(ks)T$$
$$\sigma''(s) = k\cos(ks)N - k\sin(ks)T$$

which is the circle of radius $R = \frac{1}{\kappa}$ centered at $p + \frac{1}{k}N$, parametrized by arclength (since $|\sigma'(s)| = 1$ for all s), such that $\sigma(0) = p = \beta(0)$, $\sigma'(0) = T = \beta'(0)$ and $\sigma''(0) = kN = \beta''(0)$.

Note 1.16 When α is a smooth regular curve, the scalar curvature at t = a is equal to the reciprocal of the radius of the best-fit circle at t = a.

Theorem 1.17 — Polar Coordinates.

Let $I \subseteq \mathbb{R}$ be an interval with $a \in I$, let $p \in \mathbb{R}^2$, and let $\alpha : I \subseteq \mathbb{R} \to \mathbb{R}^2$ be a continuous curve in \mathbb{R}^2 with $\alpha(t) \neq p$ for any $t \in I$. Let $r_0 = |\alpha(a) - p|$ and choose $\theta_0 \in \mathbb{R}$ such that $\alpha(a) - p = r_0(\cos \theta_0, \sin \theta_0)$ (θ_0 is unique up to an integer multiple of 2π). Then there exist unique continuous functions $r, \theta : I \to \mathbb{R}$ with $r(a) = r_0$ and $\theta(a) = \theta_0$ such that

$$\alpha(t) = p + r(t) (\cos \theta(t), \sin \theta(t))$$

for all $t \in I$. Moreover, if α is smooth (or \mathcal{C}^k) then so are the functions r and θ .

Proof. We omit the proof, but we remark that it is surprisingly involved.

Definition 1.18 — winding number, turning number.

For a continuous curve $\alpha:[a,b]\subseteq\mathbb{R}\to\mathbb{R}^2$ with $\alpha(t)\neq p$ for any t, we define the **winding number** Wind (α,p) of α about p as follows. We let $r_0=|\alpha(a)-p|$ and choose $\theta_0\mathfrak{g}[0,2\pi)$ so that $\alpha(a)=p+r_0(\cos\theta_0,\sin\theta_0)$, then we let $r,\theta:[a,b]\subset\mathbb{R}\to\mathbb{R}^2$ be the unique continuous maps such that $\alpha(t)=p+r(t)(\cos\theta(t),\sin\theta(t))$ for all $t\in[a,b]$, and then we define

Wind
$$(\alpha, p) = \frac{1}{2\pi} (\theta(b) - \theta(a))$$
.

When α is regular, we define the **turning number** of α to be

$$\operatorname{Turn}(\alpha) = \operatorname{Wind}(\alpha', 0).$$

Theorem 1.19

Let $\alpha: [a,b] \subseteq \mathbb{R} \to \mathbb{R}^2$ be a curve in \mathbb{R}^2 and write $\alpha(t) = (x(t),y(t))$.

(1) If α is a \mathcal{C}^1 curve with $\alpha(t) \neq 0$ for any $t \in [a, b]$ then

Wind
$$(\alpha, 0) = \frac{1}{2\pi} \int_a^b \frac{x(t)y'(t) - y(t)x'(t)}{x(t)^2 + y(t)^2} dt.$$

(2) If α is C^2 regular curve then

$$\operatorname{Turn}(\alpha) = \frac{1}{2\pi} \int_{a}^{b} k(\alpha(t)) |\alpha'(t)| dt.$$

Proof. To prove Part 1, write α in polar coordinates as $\alpha(t) = r(t) (\cos \theta(t), \sin \theta(t))$, that is write $x = r \cos \theta$ and $y = r \sin \theta$ where r = r(t) and $\theta = \theta(t)$ are continuous with r(t) > 0 for all $t \in [a, b]$ and $\theta(a) \in [0, 2\pi)$. Then

$$\int_{a}^{b} \frac{x y' - y x'}{x^{2} + y^{2}} dt = \int_{a}^{b} \frac{(r \cos \theta) (r' \sin \theta + r \cos \theta \theta') - (r \sin \theta) (r' \cos \theta - r \sin \theta \theta')}{r^{2} \cos^{\theta} + r^{2} \sin^{2} \theta} dt$$
$$= \int_{a}^{b} \frac{r^{2} \cos^{2} \theta \theta' + r^{2} \sin^{2} \theta \theta'}{r^{2}} dt = \int_{a}^{b} \theta' dt$$
$$= \theta(b) - \theta(a) = 2\pi \operatorname{Wind}(\alpha, 0).$$

To prove Part 2, write $\alpha'(t)$ in polar coordinates as $\alpha'(t) = |\alpha'(t)| (\cos \theta(t), \sin \theta(t))$ with $\theta(a) \in [0, 2\pi)$. Since α is \mathcal{C}^2 and regular, we note that α' is \mathcal{C}^1 with $\alpha'(t) \neq 0$ for all $t \in [a, b]$. Reparametrize α by arclength letting $\beta(s) = \alpha(t(s))$ where $s(t) = \int_a^t |\alpha'(t)| dt$, then write $\beta'(s)$ in polar coordinates as $\beta'(s) = |\beta'(s)| (\cos \phi(s), \sin \phi(s))$ with $\phi(0) \in [0, 2\pi)$. Since $|\beta'(s)| = 1$ we have $(\cos \phi(s(t)), \sin \phi(s(t))) = \beta'(s(t)) = \frac{\alpha'(t)}{|\alpha'(t)|} = (\cos \theta(t), \sin \theta(t))$ for all $t \in [a, b]$, and hence $\phi(s(t)) = \theta(t)$ for all $t \in [a, b]$ (by the uniqueness of the polar representation). Since $\beta'(s) = (\cos \phi(s), \sin \phi(s))$, we have

$$\beta''(s) = \left(-\sin\phi(s)\,\phi'(s),\cos\phi(s)\,\phi'(s)\right) = \phi'(s)\left(-\sin\phi(s),\cos\phi(s)\right) = \phi'(s)\,\beta'(s)^{\times}$$

By the definition of k(s) we see that $k(s) = \phi'(s)$. Thus

$$\int_{a}^{b} k(t) |\alpha'(t)| dt = \int_{a}^{b} k(s(t))s'(t) dt = \int_{s(a)}^{s(b)} k(s) ds = \int_{s(a)}^{s(b)} \phi'(s) ds$$
$$= \phi(s(b)) - \phi(s(a)) = \theta(b) - \theta(a) = 2\pi \operatorname{Wind}(\alpha', 0) = 2\pi \operatorname{Turn}(\alpha)$$

Theorem 1.20 — The Fundamental Theorem for Plane Curves.

Let $I \subseteq \mathbb{R}$ be an interval with $a \in I$, let $p, u \in \mathbb{R}^2$ with |u| = 1, and let $\ell : I \subseteq \mathbb{R} \to \mathbb{R}$ be a smooth function. Then there exists a unique smooth regular curve $\beta : I \subseteq \mathbb{R} \to \mathbb{R}^2$ with $|\beta'(s)| = 1$ for all $s \in I$ such that $\beta(a) = p$ and $\beta'(a) = u$ and $k(s) = \ell(s)$ for all $s \in I$.

Proof. Suppose that such a curve β exists. Since $|\beta'(s)| = 1$ for all s, we can write β' in polar coordinates as $\beta'(s) = (\cos \theta(s), \sin \theta(s))$ with $\theta(a) \in [0, 2\pi)$. Then we have $\beta''(s) = (-\sin \theta(s)\theta'(s), \cos \theta(s)\theta'(s)) = \theta'(s)\beta'(s)^{\times}$ so that $\theta'(s) = k(s) = \ell(s)$. We can integrate to get $\theta(s) = \theta(a) + \int_a^s \ell(t) dt$. Since $\beta'(s) = (\cos \theta(s), \sin \theta(s))$ we can integrate again to get

$$\beta(s) = p + \left(\int_{a}^{s} \cos \theta(t) dt, \int_{a}^{s} \sin \theta(t) dt \right).$$

This shows that $\beta(s)$ is uniquely determined and gives us a formula for $\beta(s)$.

Conversely, we can choose $\theta_0 \in [0, 2\pi)$ so that $(\cos \theta_0, \sin \theta_0) = u$, and then define $\theta(s) = \theta_0 + \int_a^s \ell(t) \, dt$ so that $\theta(a) = \theta_0$ and $\theta'(s) = \ell(s)$ for all $s \in I$, and then define $\beta(s) = p + \left(\int_a^s \cos \theta(t) \, dt, \int_a^s \sin \theta(t) \, dt\right)$ so that $\beta'(s) = (\cos \theta(s), \sin \theta(s))$ for all $s \in I$. Then $|\beta'(s)| = 1$ for all s and $\beta(a) = p$ and $\beta'(a) = (\cos \theta(a), \sin \theta(a)) = (\cos \theta_0, \sin \theta_0) = u$ and $\beta''(s) = \theta'(s)\beta'(s)^{\times}$ so that $k(s) = \theta'(s) = \ell(s)$ for all $s \in I$, as required.

1.3 Curves in \mathbb{R}^3

Definition 1.21 — unit tangent vector, curvature vector, scalar curvature, principal normal vector, binormal vector, torsion.

Let $\beta: I \subseteq \mathbb{R} \to \mathbb{R}^3$ be a smooth regular curve in \mathbb{R}^3 parametrized by arclength (so $|\beta'(s)| = 1$ for all $s \in I$). The **unit tangent vector** of β at s is the unit vector $T(s) = T_{\beta}(s) = \beta'(s)$. The vector $\beta''(s)$ iis called the **curvature vector** of β at s. The **scalar curvature** of β at s is given by $\kappa(s) = \kappa_{\beta}(s) = |\beta''(s)|$.

If $\beta''(s) \neq 0$ then we define the **principal normal vector** of β at s to be the unit vector $P(s) = P_{\beta}(s) = \frac{\beta''(s)}{|\beta''(s)|}$, and we define the **binormal vector** of β at s to be the unit vector $B(s) = B_{\beta}(s) = T(s) \times P(s)$. Note that $\{T(s), P(s), B(s)\}$ is a positive ordered orthonormal basis for \mathbb{R}^3 . Since $B = T \times P$ and $P = \frac{T'}{|T'|}$, we have

$$B' = T' \times P + T \times P' = |T'| P \times P + T \times P' = T \times P'.$$

Notice that B' is orthogonal to both T and B (itisorthogonal to Tbecause B'=T×P' and it is orthogonal to B because we have $B(s)(s) = |B(s)|^2 = 1$ for all s so taking the derivative on both sides gives $2B' = 0.Since\{T, P, B\}isanorthonormal basis for <math>\mathbb{R}^3$ and B' is orthogonal to both T and B, we have B' = (B')P. We define the **torsion** of β at s to be $\tau(s) = \tau_{\beta}(s) = -B'(s)(s)$ so that $B'(s) = -\tau(s)P(s)$ for all s (the negative sign is included so that the torsion of the right-handed helix is positive).

To summarize the above definitions, when $\beta: I \subseteq \mathbb{R} \to \mathbb{R}^3$ is a smooth regular curve, parametrized by arclength, with non-zero curvature vector $\beta''(s) \neq 0$, the **unit tangent vector**, the **principal normal vector**, the **binormal vector**, the **scalar curvature** and the **torsion** of β at s are given by

$$T(s) = T_{\beta}(s) = \beta'(s),$$

$$P(s) = P_{\beta}(s) = \frac{\beta''(s)}{|\beta''(s)|},$$

$$B(s) = B_{\beta}(s) = T(s) \times P(s),$$

$$\kappa(s) = \kappa_{\beta}(s) = |\beta''(s)|,$$

$$\tau(s) = \tau_{\beta}(s) = -B'(s)(s).$$

and $\{T,(s)P(s),B(s)\}$ is a positive ordered orthonormal basis for \mathbb{R}^3 for every $s\in I$. From the definition of P and κ we have $T'=\kappa P$, and as explained above, we defined $\tau=-B'$ so that $B'=-\tau P$. Since $P=B\times T$ we also have

$$P' = B' \times T + B \times T' = -\tau P \times T + \kappa B \times P = \tau B - \kappa T.$$

Thus the derivatives T', P' and B' satisfy the following matrix identity which gives a system of three equations called the **Frenet-Seret Formulas**

$$\begin{pmatrix} T' \\ P' \\ B' \end{pmatrix} = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} T \\ P \\ B \end{pmatrix}.$$

When $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^3$ is a smooth regular curve in \mathbb{R}^3 , we reparametrize by arclength by choosing $a \in I$ and letting $\beta(s) = \alpha(t(s))$ where $s(t) = \int_a^t |\alpha'(r)| dr$, then we define the **unit tangent vector** of α at t to be $T(t) = T_{\alpha}(t) = T_{\beta}(s(t))$, and if $\beta''(s(t)) \neq 0$, we

define the **principal normal vector**, the **binormal vector**, the **scalar curvature** and the **torsion** of α at t to be given by $P(t) = P_{\alpha}(t) = P_{\beta}(s(t))$, $B(t) = B_{\alpha}(t) = B_{\beta}(s(t))$, $\kappa(t) = \kappa_{\alpha}(t) = \kappa_{\beta}(s(t))$ and $\tau(t) = \tau_{\alpha}(t) = \tau_{\beta}(s(t))$. The following theorem shows that these are all well-defined, that is they do not depend on the choice of $a \in I$.

Theorem 1.22

Let $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^3$ be a smooth regular curve. For all $t \in I$ for which $\alpha'(t) \times \alpha''(t) \neq 0$, we have

$$T = \frac{\alpha'}{|\alpha'|} , \quad P = \frac{T'}{|T'|} , \quad B = T \times P$$
$$\kappa = \frac{|\alpha' \times \alpha''|}{|\alpha'|^3} , \quad \tau = \frac{\det_3(\alpha', \alpha'', \alpha''')}{|\alpha' \times \alpha''|^2}.$$

Proof. Choose $a \in I$ and let $\beta(s) = \alpha(t(s))$ where $s(t) = \int_a^t |\alpha'(r)| dr$. Then $\alpha(t) = \beta(s(t))$ and so for all $t \in I$

$$\alpha'(t) = \beta'(s(t))s'(t),$$

$$\alpha''(t) = \beta''(s(t))s'(t)^{2} + \beta'(t)s''(t),$$

$$\alpha'''(t) = \beta'''(s(t))s'(t)^{3} + 3\beta''(s(t))s'(t)s''(t) + \beta'(t)s'''(t),$$

$$\alpha'(t) \times \alpha''(t) = (\beta'(s(t)) \times \beta''(s(t))) s'(t)^{3},$$

$$(\alpha'(t) \times \alpha''(t)) \times \alpha'''(t) = ((\beta'(s(t)) \times \beta''(s(t))) \beta'''(s(t))) s'(t)^{6}.$$

Since $\alpha' \times \alpha'' = (\beta' \times \beta'')(s')^3$, we have $\alpha' \times \alpha'' = 0 \iff \beta' \times \beta'' = 0$. Since $|\beta'(s)| = 1$ for all s, it follows (bytakingthederivative of $1 = \beta'(s)\beta'(s)$ that β' and β'' are orthogonal, and so we have $|\beta' \times \beta''| = |\beta'| |\beta''| = |\beta''|$ so that $\beta' \times \beta'' = 0 \iff \beta'' = 0$. Since $T_{\alpha}(t) = \beta'(s(t))$ we have $T_{\alpha}'(t) = \beta''(s(t))s'(t)$ so that $T_{\alpha}'(t) = 0 \iff \beta''(s(t)) = 0$. Thus

$$\alpha'(t) \times \alpha''(t) = 0 \iff \beta'(s(t)) \times \beta''(s(t)) = 0 \iff \beta''(s(t)) = 0 \iff T_{\alpha}'(t) = 0.$$

Suppose that $\alpha'(t) \times \alpha''(t) \neq 0$. Since $T_{\alpha'}(t) = \beta''(s(t))s'(t)$ and $s'(t) = |\alpha'(t)| > 0$ we have

$$\frac{T_{\alpha}'(t)}{\left|T_{\alpha}'(t)\right|} = \frac{\beta''(s(t))s'(t)}{\left|\beta''(s(t))s'(t)\right|} = \frac{\beta''(s(t))}{\left|\beta''(s(t))\right|} = P_{\beta}(s(t)) = P_{\alpha}(t) \text{ and}$$

$$B_{\alpha}(t) = B_{\beta}(s(t)) = T_{\beta}(s(t)) \times P_{\beta}(s(t)) = T_{\alpha}(t) \times P_{\alpha}(t).$$

Since $\alpha' \times \alpha'' = (\beta' \times \beta'')(s')^3$ and $|\beta' \times \beta''| = |\beta''|$ and $s' = |\alpha'|$, we have

$$\frac{|\alpha'(t) \times \alpha''(t)|}{|\alpha'(t)|^3} = |\beta''(s(t))| = \kappa_{\beta}(s(t)) = \kappa_{\alpha}(t).$$

To simplify notation, write β for $\beta(s(t))$ and similarly for β' and β'' , and write T for $T_{\beta}(s(t)) = T_{\alpha}(t)$ and similarly for P and B, and write κ for $\kappa_{\beta}(s(t)) = \kappa_{\alpha}(t)$ and similarly for τ . Since $\beta' = T$, using the Frenet-Serre formulas and the fact that $\{T, P, B\}$ is a positive ordered orthonormal basis for \mathbb{R}^3 , we have

$$(\beta' \times \beta'')\beta'' = (T \times T')'' = (T \times (\kappa P)) \times (\kappa P)' = (T \times (\kappa P)) \times (\kappa' P + \kappa P')$$
$$= \kappa^2 (T \times P)' = \kappa^2 (T \times P)(-\kappa T + \tau B) = \kappa^2 \tau.$$

Since we have $\det_3(\alpha', \alpha'', \alpha''') = (\alpha' \times \alpha'') \times \alpha''' = ((\beta' \times \beta'')\beta''')(s')^6 = \kappa^2 \tau |\alpha'|^6$ and we have $|\alpha' \times \alpha''| = \kappa |\alpha'|^3$, it follows that

$$\frac{\det_3\left(\alpha'(t),\alpha''(t),\alpha'''(t)\right)}{\left|\alpha'(t)\times\alpha''(t)\right|^2} = \frac{\kappa_\alpha(t)^2\tau_\alpha(t)\left|\alpha'(t)\right|^6}{\kappa_\alpha(t)^2\left|\alpha'(t)\right|^6} = \tau_\alpha(t).$$

■ Example 1.23 The curve $\alpha: \mathbb{R} \to \mathbb{R}^3$ given by $\alpha(t) = (a\cos t, a\sin t, bt)$ is called a (right-handed) helix. We have

$$\alpha'(t) = (-s\sin t, a\cos t, b),$$

$$\alpha''(t) = (-a\cos t, -a\sin t, 0),$$

$$\alpha'''(t) = (a\sin t, -a\cos t, 0) \text{ and }$$

$$\alpha'(t) \times''(t) = (ab\sin t, -ab\cos t, a^2,)$$

and so

$$\left|\alpha'(t)\right| = (a^2 + b^2)^{1/2},$$
$$\left|\alpha'(t) \times \alpha''(t)\right| = a(a^2 + b^2)^{1/2} \text{ and }$$
$$(\alpha'(t) \times \alpha''(t))\alpha'''(t) = a^2b,$$

and hence

$$\kappa(t) = \frac{|\alpha'(t) \times \alpha''(t)|}{|\alpha'(t)|^3} = \frac{a}{a^2 + b^2} \text{ and}$$
$$\tau(t) = \frac{(\alpha'(t) \times \alpha''(t))\alpha'''(t)}{|\alpha'(t)|^3} = \frac{b}{a^2 + b^2}.$$

We note that the scalar curvature and the torsion of the helix are constant.

Theorem 1.24

Let $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^3$ be a smooth regular curve in \mathbb{R}^3 .

- (1) The curvature of α is identically zero if and only if (the image of) α lies on a line.
- (2) If α has non-vanishing curvature (so its torsion is defined) then the torsion of α is identically zero if and only if (the image of) α lies in a plane.

Proof. The proof of Part 1 is the same as the proof of the analogous theorem for plane curves (Theorem 1.14). To prove part 2, suppose that $\kappa_{\alpha}(t) \neq 0$ for all $t \in I$. Choose $a \in I$ and let $\beta(s) = \alpha(t(s))$ where $s(t) = \int_a^t |\alpha'(r)| dr$.

Suppose $\tau_{\alpha}(t) = 0$ for all t. Then $\tau_{\beta}(s) = \tau_{\alpha}(t(s)) = 0$ for all s. Write $\tau(s) = \tau_{\beta}(s)$. We have $B'(s) = -\tau(s)P(s) = 0$ for all s, so B(s) is constant, say $B(s) = b \in \mathbb{R}^3$ for all s and note that |b| = |B(s)| = 1. Note that $\frac{d}{ds}(\beta(s)) = \beta'(s) = T(s)(s) = 0$ for all s, and so $\beta(s)$ is constant, say $\beta(s) = c \in \mathbb{R}$. Thus we have $\alpha(t) = \beta(s(t)) = c$ for all t and so (the image of) α lies on the plane in \mathbb{R}^3 given by x = c.

Suppose, conversely, that (the image of) α lies on a plane in \mathbb{R}^3 , say $\alpha(t) = c$ for all $t \in I$ where $b, c \in \mathbb{R}^3$ with |b| = 1. Then $\beta(s) = \alpha(t(s)) = c$ for all s. Take the derivative to get $\beta'(s) = 0$ and $\beta''(s) = 0$ for all s, that is T(s) = 0 and $\kappa(s)P(s) = 0$ for all s. Since we are assuming that $\kappa_{\alpha}(t) \neq 0$ for all t, hence $\kappa(s) = \kappa_{\beta}(s) \neq 0$ for all s, it follows that P(s) = 0 for all s. Since $\{T(s), P(s), B(s)\}$ is orthonormal and T(s) = P(s) = 0 and |b| = 1, it follows that $B(s) = \pm b$ for all s. Since B(s) is continuous, either we have

•

B(s) = b for all s or we have B(s) = -b for all s and, in either case, B'(s) = 0 for all s. Since $0 = B'(s) = -\tau(s)P(s)$ with |P(s)| = 1, we have $\tau(s) = 0$, that is $\tau_{\beta}(s) = 0$, for all s, and hence $\tau_{\alpha}(t) = \tau_{\beta}(s(t)) = 0$ for all t.

Definition 1.25 — osculating plane, osculating circle.

Let $\alpha:I\subseteq\mathbb{R}\to\mathbb{R}^3$ be a smooth regular curve in \mathbb{R}^3 , let $a\in I$, and suppose that $\kappa(a)\neq 0$ (and hence $\tau(a)$ is defined). We define the **osculating plane** of α at t=a to be the plane through $\alpha(a)$ parallel to T(a) and P(a), that is the plane $(x-\alpha(a))(a)=0$. We define the **osculating circle** (or the **best-fit circle**) of α at t=a as we did for a planar curve (in Definition 1.15). Let $p=\alpha(a), T=T(a), P=P(a),$ and $\kappa=\kappa(a)$. Reparametrize by arclength, letting $\beta(s)=\alpha(t(s))$ where $s(t)=\int_a^t |\alpha'(t)|\,dr$ so that we have $\beta(0)=p$. $\beta'(0)=T$ and $\beta''(0)=\kappa P$. The osculating circle at t=a is the circle given by

$$\sigma(s) = \left(p + \frac{1}{\kappa}P\right) - \frac{1}{\kappa}\cos(\kappa s)P + \frac{1}{\kappa}\sin(\kappa s)T$$
$$\sigma'(s) = \sin(\kappa s)P + \cos(\kappa s)T$$
$$\sigma''(s) = \kappa\cos(ks)P - \kappa\sin(\kappa s)T$$

which is the circle of radius $R = \frac{1}{\kappa}$ centered at $p + \frac{1}{\kappa}P$, parametrized by arclength (since $|\sigma'(s)| = 1$ for all s), such that $\sigma(0) = p = \beta(0)$, $\sigma'(0) = T = \beta'(0)$ and $\sigma''(0) = \kappa P = \beta''(0)$.

Note 1.26 When α is a smooth regular curve, the scalar curvature at t = a is equal to the reciprocal of the radius of the osculating circle at t = a.

Theorem 1.27 — The Fundamental Theorem for Space Curves.

Given $p, u, v \in \mathbb{R}^3$ with |u| = |v| = 1 and given smooth functions $c, d : I \subseteq \mathbb{R} \to \mathbb{R}$ where I is an interval with $0 \in I$ and c(s) > 0 for all $s \in I$, there exists a unique smooth regular curve $\beta : I \to \mathbb{R}^3$ with $\beta(0) = p$, T(0) = u, P(0) = v and $\kappa(s) = c(s)$ and $\tau(s) = d(s)$ for all $s \in I$.

Proof. We want to have $T' = \kappa P$, $P' = -\kappa T + \tau B$ and $B' = -\tau P$, so we solve the system of linear first order differential equations

$$X' = cY$$

$$Y' = -cX + dZ$$

$$Z' = -dY$$

with the initial conditions X(0) = u, Y(0) = v and $Z(0) = u \times v$ (such a system always has a unique solution). We claim that $\{X(s), Y(s), Z(s)\}$ is a positive ordered orthonormal basis for \mathbb{R}^3 for all s (this is true when s = 0 from the initial conditions). Write $X_1 = X$, $X_2 = Y$ and $X_3 = Z$ and define $F_{k,\ell}: I \to \mathbb{R}$ by $F_{k,\ell}(s) = X_k(s)_{\ell}(s)$ for $1 \le k \le \ell \le 3$.

Then the functions $F_{k,\ell}$ satisfy the system of differential equations

$$\frac{d}{ds}F_{1,1} = \frac{d}{ds}(X) = 2X' = 2(cY) = 2cF_{1,2}$$

$$\frac{d}{ds}F_{1,2} = \frac{d}{ds}(X) = X' + X' = cY + X(-cX + dZ) = -cF_{1,1} + dF_{1,3} + cF_{2,2}$$

$$\frac{d}{ds}F_{1,3} = \frac{d}{ds}(X) = X' + X' = cY + X(-dY) = -dF_{1,2} + cF_{2,3}$$

$$\frac{d}{ds}F_{2,2} = \frac{d}{ds}(Y) = 2Y' = 2(-cX + dZ) = -2cF_{1,2} + 2dF_{2,3}$$

$$\frac{d}{ds}F_{2,3} = \frac{d}{ds}(Y) = Y' + Y' = (-cX + dZ) + Y(-dY) = -cF_{1,3} - dF_{2,2} + dF_{3,3}$$

$$\frac{d}{ds}F_{3,3} = \frac{d}{ds}(Z) = 2Z' = 2(-dY) = -2F_{2,3}$$

with the initial conditions $F_{k,k}(0)=1$ and $F_{k,\ell}(0)=0$ when $k\neq \ell$. Again, such a system has a unique solution, and the unique solution to this system is easily seen to be given by the constant functions $F_{k,k}(s)=1$ and $F_{k,\ell}(s)=0$ for all $s\in I$ and all $k\neq \ell$. Thus $\{X(s),Y(s),Z(s)\}$ is an orthonormal system for all $s\in I$, as claimed. To get $\beta'(s)=T(s)=X(s)$ with $\beta(0)=p$ we must choose $\beta(s)=p+\int_0^s X(t)\,dt$. Then we have T=X and $\kappa(s)=|\beta''(s)|=|T'|=|X'|=|cY|=c$ and $P=\frac{1}{\kappa}T'=\frac{1}{c}X'=\frac{1}{c}(cY)=Y$ and $B=T\times P=X\times Y=Z$ and $\tau=-B'=-Z'=(dY)=d$, as required.

Index

В	S	
best-fit circle	scalar curvature 6, 11 signed curvature 6 smooth 2	
С		
change of parameter .5 curvature vector .11 curve .2	tangent vector	
length	U	
0	unit normal vector	
osculating circle	W	
Р	winding number	
parameterised by arclength		
R		
rectifiable 3 regular 2, 5 reparameterisation 5		