Tutorial 2

Question 1

A 60hp four cylinder internal combustion engine is used to drive a medium-shock brick making machine under a schedule of 2 shifts per day. the drive consists of two 26 inch sheaves about 12 feet apart, with a sheave speed of 400rpm. Select a Gates Rubber V-belt D360 arrangement.

medium shock

 $H_{nom}=60 {
m hp}$

D360 V-belt

 $d=D=26\mathsf{in}$

n=400rpm

Part a.

Determine the number of belts required

$$N_b \geq rac{H_d}{H_a}$$

From table 17-11: $L_p=360+3.3=363.3$ this is the pitch length of our belt From equation 17-16b:

$$c = 0.25 \left \lceil \left(L_p - rac{\pi}{2}
ight) (D+d) + \sqrt{L_p - rac{\pi}{2} (D+d)^2 - 2(D-d)^2}
ight
ceil$$

$$\implies c = 140.8 \text{in} \approx 12 \text{ft}$$

From table 17-15: $K_s = 1.4$

From equation 17-19: $H_d = H_{nom}K_sn_d, \quad n_d = 1$

 $H_d = 60 \cdot 1.4 = 84 \text{hp}$

From equation 17-17: $H_a = K_1K_2H_{tab}$

 $K_1 \equiv$ wrap angle correction factor

 $K_2 \equiv$ belt length correction factor

From table 17-13: $K_1=1.00$ since the wrap angle is 180°

From table 17-14: $K_2 = 1.1$

$$v=rac{\pi dn}{12}=2722.7rac{ ext{ft}}{ ext{min}}$$

From table 17-12:

at 3000fpm: $H_{tab} = 18.1$ hp

at 2000fpm: $H_{tab}=13.9$ hp

Therefore $H_{tab}=16.94$ hp

$$H_a = (1)(1.1)(16.94) = 18.63 \mathrm{hp}$$
 per belt

$$N_b = rac{H_d}{H_a} = 4.5$$
 so we will use 5 belts :D

Part b.

Estimate the taut side tension, slack tension, and pre-tension values. What is the factor of safety?

From equation 17-22: Force transmitted per belt

$$\Delta F = rac{\left(63025\cdotrac{H_d}{N_b}
ight)}{n\cdotrac{d}{2}} = rac{\left(63025\cdotrac{84}{5}
ight)}{rac{400\cdot26}{2}} = 203.6$$
lbf per belt

From equation 17-21: centrifugal tension

$$F_c = K_c \left(rac{v}{1000}
ight)^2$$

From table 17-16: $K_c = 3.498$

$$F_c = 3.498 \cdot \left(rac{2722.7}{1000}
ight)^2 = 25.93$$
lbf per belt

From equation 17-23: taut side tension

$$F_1 = F_c + rac{\Delta F e^{f\phi}}{e^{f\phi}-1}$$

From page 902 Shigleys (manufacturer) f=0.5123

$$\phi=\pi$$

 $F_1=280.4$ lbf per belt

From Equation 17-24: slack side tension

$$F_2 = F_1 - \Delta F$$

 $F_2 = 76.83$ lbf per belt

From Equation 17-25: pre-tension

$$F_i=rac{F_1+F_2}{2}-F_c$$

 $F_i=152.7$ lbf per belt

wtf is this class man I am in belt hell

From equation 17-26: $n_{fs}=rac{H_aN_b}{H_{nom}K_s}=1.1$

Part c.

Estimate the life in passes, hours, and days

From equation 17-28: $t=rac{N_pL_p}{720v}$ $N_p\equiv$ number of passes

From equation 17-27

$$N_p = \left[\left(rac{K}{T_1}
ight)^{-b} + \left(rac{K}{T_2}
ight)^{-b}
ight]^{-1}$$

From table 17-17: Durability parameters

$$\text{D-belt} = \begin{cases} K = 18726 \\ b = 11.105 \end{cases}$$

Pg 906

$$T_1 = F_1 + rac{K_b}{d}$$

From table 17-16: $K_b = 5680$

$$T_1 = 498$$
lbf

$$\implies N_p = 9.6 \cdot 10^9 > 10^9$$
 so for some fucking reason $N_p = 10^9$

$$\implies t > rac{10^9(363.3)}{720(2722.7)} = 185325 ext{hrs} = 16 ext{hrs/day}$$

 $\implies t > 31.7$ years

Question 2

Do the same shit from the last question but with Gates Heavy Duty V-Belt Design Manual

Part a.

Pg B2

Table B1 $K_s=1.5$

$$H_d = H_{nom} K_s = 90 \mathsf{hp}$$

Pg B3 Choose CP belt

Table B3 d > 12 so lets pick d = 13 because we are like that

Pg B191-Table B23

We are going to select a CP330 belt based off the table

$$c = 145 > 144$$

This also gives us our horsepower correction factor also or service factor $K_s = 1.2$

$$v=rac{\pi dn}{12}=1361~ ext{fpm}$$

$$H_a = K_s H_{tab}$$

Pg B230 - Table B33: $H_{tab}=23.3 \mathrm{hp}$

$$\implies H_a = 1.2 \cdot 23.3 = 27.96 \mathrm{hp}$$

$$\implies N_b = rac{H_d}{H_a} = rac{90}{27.96} = 3.22$$
 so we use 4 belts

Part b.

What is the factor of safety? Estimate the taut side tension, slack tension, and pretension values

All of this is the same as what was done in Question 1

$$n_{fs}=rac{H_aN_b}{H_{nom}K_s}=1.29$$

Use C-blet parameters

 $\Delta F = 545.2$ lbf per belt

 $F_c=3.18$ lbf per belt

 $F_i = 409$ lbf per belt

 $F_1=684.9$ lbf per belt

 $F_2=139.5 \mathsf{lbf}$ per belt

Part c.

static tension - T_{st}

Pg D24 - TableD27

$$M = 1.6 \quad Y = 89$$

Pg D24 - Formula D19

$$T_{st} = 15 \left(rac{2.5 - K_\phi}{K_\phi}
ight) \left(rac{ ext{motor hp} \cdot 10^3}{N_b v}
ight) + rac{M v^2}{10^6}$$

Pg D24 - Table D26

$$K_\phi=1$$

$$T_{st}=250.9 \ \mathsf{lbf}$$

DO NOT USE EQUATION D25

Formula D35: span length $= t = c \left[1 - 0.125 \left(rac{D-d}{2}
ight)^2
ight]$

$$t=c=145\mathsf{in}$$

 $\text{deflection} = \tfrac{t}{64} = 2.25$

From equation F20: $F_{min}=\frac{1.4T_{st}+Y}{16}=27.5$ lbf From equation F21: $F_{max}=\frac{1.5T_{st}+Y}{16}=29.1$ lbf