

УДК 66.0.631

ПРОЦЕСС ИСПОЛЬЗОВАНИЯ МИКРОЭЛЕМЕНТОСОДЕРЖАЩЕЙ ВУЛКАНИТОВОЙ ЗОЛЫ ПРИ ПРОИЗВОДСТВЕ СУПЕРФОСФАТА

••••

THE PROCESS OF USING MICROELEMENT-CONTAINING VULCANITE ASH IN THE PRODUCTION OF SUPERPHOSPHATE

Газвини Камаля Адил кызы

ассистент, Азербайджанский государственный университет нефти и промышленности gazvini@bk.ru

Аннотация. Данная исследовательская работа посвящена выявлению некоторых кинетических закономерностей процесса получения суперфосфата с применением микроэлементосодержащей вулканитовой золы. В этом направлении проведена определенная исследовательская работа, получены положительные результаты, данные обобщены.

Ключевые слова: вулканитовая зола, датолит, аппарат, турмалин, сточные воды, гранулированныйсуперфосфат, молибден.

Gazvini Kamala Adil qizi

Assistant.

Azerbaijan State Oil and Industry University gazvini@bk.ru

Annotation. This research work is devoted to the identification of some kinetic regularities of the process of obtaining superphosphate with the use of microelement-containing volcanic ash. Some research has been carried out in this direction, positive results have been obtained, and the data has been summarized.

Keywords: volcanic ash, datolite, apparatus, tourmaline, waste water, granulated superphosphate, molybdenum.

различных отраслей предполагает наличие огромного количества золы и почв вулканного происхождения. В настоящее время известно их применение в различных отраслях, таких как производство цемента, стекла, получение элементарных микроэлементов и т.д. Получения микроэлементо содержащего суперфосфата, в основном, использованы датолит, аппарат, турмалин, сточные воды, обогащённые цинком, молибденом и в тоже время, микроэлементами [1].

Получение простого гранулированного суперфосфата модифици- рованного микроэлементами с использованием вулканитовой золы. Источником микроэлементосодержащего сырья является вулканитовая зола или воды из вулканитовой золы, которые содержат $0.06 \div 4.0 \%$ бора. В работе также использованы:

Апатитовый концентрат (Апк.): 39,4 % P_2O_5 , 3,1 % F:

Отработанная серная кислота (ОСК-1 и 2) 30-65 ÷ 88-94 % H₂SO₄.

Для получения суперфосфората, было определено количество микроэлементов, переходящие из вулканитовой золы в кислоту. Эти исследования проводились следующим образом. В стеклянный реактор объёмом 0,6–1,0 литр заливается серная кислота. Смеситель запускается в работу и серная кислота нагревается до 55–65 % С.

Расчетное количество золы подается в реактор в течение 30 минут. Со временем, из пульпы берётся проба и анализируется, определяется количество микроэлементов, переходящие из золы в раствор. Затем полученный раствор используется для получения суперфосфата из Апк.

С целью выяснения сути кинетики процесса перехода микроэлементов, переходящие из вулканитовой золы в кислотный раствор, нужно было определить влияние на процесс других параметров. Причина переходов микроэлементов определенного количества из вулканитовой золы в раствор выявлены недостаточно. И, поэтому необходимо изучить влияние других факторов.

Отработанная концентрированная серная кислота смешивается с микроэлементосодержащим раствором, а затем получают суперфосфат традиционным методом [2].

Полученный суперфосфат высушивали в сушильном шкафе в течение 1,5–2,0 часов и нейтрализовали ракушечником. В полученном простом суперфосфате определены усвояемый, свободный P_2O_5 ; влажность; выход продукта и прочность гранул. Кроме этого, во второй части исследования, вулканитовая зола введена в сухом виде. Количество вулканитовой золы вводили в количестве 1–15 м.ч. на 100 м.ч. Апк.

Результаты представлены в таблице 1.

Экспериментально определено, что предварительное растворение вулканитовой золы в отработанной кислоте является более полезным. Во-первых, содержание микроэлементов в вулканитовой золы полностью распределяются по всей массе суперфосфата. Во-вторых, имеющие микро и макроэлементы в составе вулканитовой золы с серной кислотой образуют различные соли. Как уже отмечено, эти соли увеличивают скорость реакции и положительно влияют на рост объема кристаллов $CaSO_4 \cdot H_2O$.

Таблица 1 – Показатели полученного суперфосфата

Количество	Основные показатели гранулированного % суперфосфата						
вулканитовой золы на 100 м.ч. Апк.	Количество микроэлементов	P ₂ O ₅ ycв.	P ₂ O ₅ CB.	H ₂ O	Фтор	Выход прод.	Прочность гранул, мПа
1	0,09	18,3	3,3	3,2	1,3	75,5	1,6
2	0,10	18,5	3,3	3,2	1,2	76,6	1,8
3	0,11	18,7	2,9	3,2	0,9	77,3	1,9
4	0,13	18,7	2,8	3,1	0,9	78,5	2,2
5	0,14	19,1	2,8	3,1	0,9	82,3	2,3
6	0,15	19,2	2,8	3,1	0,9	88,3	2,4
7	0,16	19,4	2,8	3,1	0,85	88,8	2,4
8	0,19	19,5	2,8	3,1	0,84	88,9	2,5
9	0,19	20,1	2,5	3,1	0,83	89,9	2,5
10	0,20	20,3	2,5	3,1	0,83	89,9	2,4
11	0,21	20,4	2,5	3,1	0,82	89,9	2,5
12	0,23	20,4	2,5	3,1	0,84	90,1	2,4
13	0,23	20,4	2,5	3,1	0,84	90,1	2,4
14	0,23	20,4	2,6	3,2	0,83	90,2	2,4
15	0,25	20,5	2,7	3,2	0,83	90,6	2,4
_	_	17,9	3,5	3,3	1,5	73,5	1,5

В то же время увеличивается степень разложения Апк и это способствует отделению фтористых газов.

Выводы

Результаты опытов показывают, что количество микроэлементов в составе вулканитовой золы достаточно для получения гранулированного суперфосфата модифицированного микроэлементами. Также экономится расходуемый апатитовый концентрат в производстве суперфосфата. Создается условие для увеличения кристаллов $CaSO_4$, образованные в результате взаимодействия серной кислоты и апатитового концентрата. При участии микроэлементов на первом этапе реакции между элементами, имеющиеся в составе фосфата и H_2SO_4 , а также между H_2PO_4 , полученной на этом же этапе, образуются различные соли. Полученные соли снижают pH среды во время реакции. Известно, что снижение pH среды увеличивает скорости реакции, т.е. увеличивается активность ионов свободного водорода (H^+).

Литература:

- 1. Алосманов М.С., Асуда Атеш, Шафак Крал // Журнал Дога. 2006. № 3. С. 37–45.
- 2. Газвини К.А., Ибрагимов Ч.Ш., Атаев М.Ш. Исследования кинетики процесса разложения фосфоросо-держащих, минеральных соединений // XIX Международная аучная конференция «Теория и практика современной науки». М., 2015. С. 19–23.

References:

- 1. Alosmanov M.S., Asuda Atesh, Shafak Kral // Journal Doga, 2006, № 3, P. 37–45.
- 2. Gazvini K.A., Ibragimov C.S., Ataev M.S. Research of kinetics of process of decomposition of phosphorus-containing, mineral compounds // XIX International scientific conference «Theory and practice of modern science». M., 2015. P. 19–23.