Practise problems 5

Note that for all the problems $\tilde{\mathbf{a}}_k$ denotes the k-th column of A or of [A:I] as the case may be.

 N_{i}^{T} gives the *i* th row of N^{T} .

1. Let (P) be a problem of the form,

Maximize
$$\mathbf{c}^T \mathbf{x} \quad (\mathbf{c} \neq \mathbf{0})$$

subject to $A_{m \times n} \mathbf{x} \leq \mathbf{b}, \ \mathbf{x} \geq \mathbf{0}.$

- (a) If every extreme point of Fea(P) lies in exactly n hyperplanes defining Fea(P) then how many optimal solutions can the dual of (P) have?
- (b) If for any $\mathbf{x} \in Opt(P)$ and $\mathbf{y} \in Opt(D)$, $x_i = 0$ implies $(A^T\mathbf{y})_i > c_i$ for i = 1, 2, ..., n, and $y_j = 0$ implies $(A\mathbf{x})_j < b_j$ for j = 1, 2, ..., m, then how many optimal solutions will (P) and the dual (D) of (P) have?
- (c) If for some $\mathbf{x} \in Opt(P)$, $\mathbf{y} \in Opt(D)$ and exactly one $k \in \{1, ..., n\}$, $x_k = 0$ and $(A^T\mathbf{y})_k = c_k$, but for any j = 1, 2, ..., m, $y_j = 0$ implies $(A\mathbf{x})_j < b_j$, then what can you say about the number of optimal solutions of (P) and the dual (D) of (P)?
- (d) If for some $\mathbf{x} \in Opt(P)$, $\mathbf{y} \in Opt(D)$ and some $i \in \{1, ..., n\}$ and some $j \in \{1, ..., m\}$, $x_i = 0$ and $(A^T\mathbf{y})_i = c_i$, and $y_j = 0$ and $(A\mathbf{x})_j = b_j$, then what can you say about the number of optimal solutions of (P) and the dual (D) of (P)?

(e) If
$$n = 3, m = 3$$
 and $\mathbf{d}_1 = [2, 1, -1, 0, 0, 3]^T$ is of the form $\begin{bmatrix} -B^{-1}\tilde{\mathbf{a}}_j \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$ where B is

the basis matrix corresponding to the BFS $[\mathbf{x}_0^T, \mathbf{s}_0^T]^T$, then can you guess the basic and the nonbasic variables of this BFS and the variable which corresponds to the index j? Also give (indicate) the hyperplane/s which will finally obstruct movement from $[\mathbf{x}_0^T, \mathbf{s}_0^T]^T$ along the positive direction of \mathbf{d}_1 .

2. Consider a problem (P) of the form:

$$\mathrm{Min}~\mathbf{c}^T\mathbf{x}$$

subject to
$$A_{3\times 5}\mathbf{x} = \mathbf{b}_{3\times 1}, \ \mathbf{x} \geq \mathbf{0}, \ rank(A) = 3.$$

Given that S = Fea(P) is nonempty, check the correctness of the following statements.

(a) If $\mathbf{x}_0 = [1, 0, 3, 0, 0]^T$ and $\mathbf{y}_0 = [3, 0, 1]^T$ are optimal solutions of (P) and (D) respectively and if we change \mathbf{c} to $\mathbf{c}' = \mathbf{c} + [0, 1, 0, 2, 0]^T$, (everything else in (P) remaining

1

- same) then \mathbf{x}_0 and \mathbf{y}_0 will again be optimal solutions for the changed (P) and its dual, respectively.
- (b) If \mathbf{u} and \mathbf{v} are two (distinct) adjacent extreme points of S, and if \mathbf{d} be such that $\mathbf{u} = \mathbf{v} + \alpha \mathbf{d}$ for some $\alpha > 0$, then the vector \mathbf{d} has a zero component, a positive component and a negative component.
- (c) If every nonzero $\mathbf{d} \in \mathbb{R}^5$ is orthogonal to the normals of at most 4 hyperplanes defining Fea(P) then in any (simplex) table all the columns corresponding to nonbasic variables will have all nonzero entries.
- (d) If \mathbf{x}_0 is optimal for (P) and \mathbf{c} is changed \mathbf{c}' such that \mathbf{x}_0 is no longer optimal for the new problem then $\mathbf{c}^T\mathbf{x}_0$ is greater than equal to the optimal value (if there is one) of the new problem.
- (e) If \mathbf{x}_0 is optimal for (P) and \mathbf{b} is changed \mathbf{b}' such that $[(B^{-1}\mathbf{b}')^T, 0^T]^T$ is no longer feasible for the new problem then $\mathbf{c}^T\mathbf{x}_0$ is greater than equal to the optimal value (if there is one) of the new problem.
- (f) If every $\mathbf{d} \in \mathbb{R}^5$ which is orthogonal to at least 4 LI hyperplanes defining Fea(P) has at least one negative component and a positive component, then Fea(P) is bounded.
- (g) If \mathbf{x}_0 is optimal for (P) and \mathbf{c} is changed \mathbf{c}' such that $c'_1 z'_1 < 0$ but for all $j = 2, \ldots, 5$ $c'_j z'_j \ge 0$, then x_1 will be a basic variable for an optimal solution to the new problem (if there is an optimal solution).