

Факультет компьютерных наук Департамент программной инженерии Курсовая работа

Программа скелетная анимация

Выполнил студент группы 151БПИ Абрамов Артем Михайлович Научный руководитель: доцент департамента программной инженерии, к.т.н Ахметсафина Римма Закиевна

Предметная область

3-х мерная компьютерная анимация - вид мультипликации, создаваемый при помощи компьютера.

В отличии от 2-х мерной анимаци, художник не рисует каждый кадр, а работает с моделью для которой последовательно задает различные позы.

Отображение анимации - одна из наиболее актуальных задач в производственной, научной и деловой сферах, а также в области развлечений.

Рис.: Создание анимации в программе Blender

2016

Основные определения

Цели и задачи работы

Цель работы - реализовать программу, обеспечивающую просмотр анимации из файла предназначенного для неявных систем скелетной анимации.

Задачи работы

- 1. Загрузка анимации из файла (содержание описанно в Т.3).
- 2. Рассчет кадров анимации.
- 3. Воспроизведение анимации на экране средствами OpenGL.

Различные подходы

Для 3-х мерной анимации не существует оптимального подхода. Все системы балансируют между методами с большим количеством вычислений, и методами требующими большого объема памяти.

Неявные системы используются когда действия персонажа связанны с другими предметами и нельзя предугадать все возможные варианты анимации. Например, для того чтобы ставить ступню параллельно поверхности при движении по неровной земле.

Предпочтение явным системам отдается когда необходимо анимировать большие группы людей или животных.

Рис.: Шкала подходов к анимации, и отображающая позицию метода скелетной анимации

Явные системы анимации

Явная система - хранение отдельной модели для каждого кадра. После записи, существует много методов для воспроизведения анимации. Такие методы легко реализуются и требуют лишь элементарной математики. Однако храние моделей занимает много памяти, типичный MD3 файл с записю одного трэка анимации для одного персонажа занимает около 10МВ памяти.

Рис.: Каждому кадру соответствует своя модель

Неявные системы анимации

Неявная система - хранение не моделей, а более высокоуровневого описания движения. В частности системы скелетной анимации содержат описание (в углах поворота) для каждой кости, как например локоть, плечо, шея. В реальном времени эти описания применяются к неанимированной модели для рассчета следующего кадра анимации. Эти рассчеты обычно требуют сложной математики с матрицами и тригонометрией. А следовательно и много CPU времени.

Рис.: Слева: анимированный персонаж; справа: скелет для данного кадра

Уже существующие решения

Blender, Maya, Cinema4D. Дорогие (кроме blender). Сложные в использовании.

Описание системы, общие блоки

Вручную упрощенная диаграмма классов и кто за что отвечает. Entity.cs, Animator.cs, SceneWrapper.cs, Entity.cs

Описание системы, блок чтения файла

Заполнение структур данными из файла.

С помощью библиотеки Assimp производим чтение из файла. Для оптимальной работы мы переводим данные в свои структуры. Другие функции этой библиотеки не используются.

```
public void LoadScene(byte[] filedata)
    using (MemoryStream fs = new MemoryStream(filedata))
        _cur_scene = new SceneWrapper(ReadAssimpScene(fs, "dae"));
        _action = new Animator(_cur_scene.Animations[0]);
       BoneNode bones = _cur_scene.BuildBoneNodes("Armature");
       Node mesh = _cur_scene.FindNode("Mesh");
        ActionState state = new ActionState();
        _enttity = new Entity(_cur_scene, mesh, bones, state);
```

Описание системы, блок ActionState

Хранит состояние анимации. Наиболее важные поля:

- Название трэка анимации.
- Настоящий момент времени в секундах.
- Индексы всех ключевых кадров и время каждого кадра.

Есть функция SetTime(...) для перехода к определенному моменту времени. Она находит интервал между ключевыми кадрами, подсчитывает величину интерполяции.

Описание системы, блок SceneWrapper

Работает со скелетом и моделью. Реализует функции поиска костей в скелете или подмоделей в модели.

Функция BuildBones строит скелет по данным из модели (скелет как отдельный класс не существует, он определяеться корневой костью).

```
class BoneNode
{
  public string Name;
  public Matrix4 GlobalTransform;
  public Matrix4 LocalTransform;

public BoneNode Parent;
  public List<BoneNode> Children;
  public BoneNode(Node assimp_node) { ... }
}
```

Рис.: Класс описывающий кость скелета

Описание системы, блок Animator

Применяет данные описывающие (в матрицах поворота) новую позицию для каждой кости к костям из скелета. То есть деформирует скелет в соответствии с моментом времени в анимации.

На вход блока подается класс ActionState содержащий информацию о времени и корневая кость скелета.

Описание системы, блоки DrawMesh

Загружает данные о модели в OpenGL.

Запрашивает OpenGL об отводе буферов памяти под вершины, нормали, цвета вершин и массив индексов.

Применяет свойства материала, например: цвет, коэффициент рассеивания света, коэффициент свечения и т.д.

Позволяет запросить у OpenGL указатель на созданные буфера памяти, для их модификации.

Описание системы, блок Entity

Объединяет компоненты необходимые для анимации одного персонажа. Хранит ссылки на скелет (корневую кость), состояние анимации (ActionState), на саму модель и на класс отрисовки модели (MeshDraw)

В частности блок Entity применяет трансформации из скелета к вершинам модели (взвешивая действие каждой кости на вершину) и модифицирует данные в буфере данных OpenGL, что и создает эффект анимации.

Технологии и инструменты реализации

Библиотека Assimp v3.1 (http://assimp.org/) для чтения файлов в формате collada (.dae).

Библиотека OpenTK v1.1.4 (http://www.opentk.com/) для вызова функций OpenGL из C# и предоставления базовых классов, например: Matrix4, Vector3.

Язык программирования С#

Результаты работы

Демонстрация

Выводы по работе

Пути дальнейшей работы:

- 1. Загрузка нескольких моделей
- 2. Наложение матрицы трансформации на отдельные модели
- 3. Выбор из нескольких трэков анимации
- 4. Нанесение текстур
- 5. Изменение положения костей пользователем

Список использованных источников

Список

Нумерованный список

- 1. Первый пункт:
 - подпункт 1;
 - подпункт 2.
- 2. Второй пункт
 - 2.1 нумерованный подпункт.
- 3. Третий пункт

Список

Маркированный список

- Первый пункт:
 - подпункт 1;
 - подпункт 2.
- Второй пункт
 - 1. нумерованный подпункт.
- Третий пункт

Слайд с двумя колонками текста

- 1. Первый пункт:
 - подпункт 1;
 - подпункт 2.
- 2. Второй пункт
 - 2.1 нумерованный подпункт.
- 3. Третий пункт

- Первый пункт:
 - подпункт 1;
 - подпункт 2.
- Второй пункт
 - 1. нумерованный подпункт.
- Третий пункт

Слайд с картинкой

2014 года в ВШЭ было порядка 40 факультетов и отделений. Весной 2014 года начаты структурные реформы: в университете создаются «большие» факультеты («мегафакультеты»).

Ректор Высшей школы экономики — Ярослав Иванович Кузьминов

Абрамов Артем 151 БПИ 2016 23 / 25

Блоки

Теорема (Пифагора)

Если а и b — длины катетов прямоугольного треугольника, а с — длина гипотенузы, то $a^2 + b^2 = c^2$.

Блок с красным заголовком

Содержимое.

Блок с зеленым заголовком

Содержимое.

Спасибо за внимание!

Факультет компьютерных наук Департамент программной инженерии Курсовая работа

Выполнил студент группы 151БПИ Абрамов Артем Михайлович Научный руководитель: доцент департамента программной инженерии, к.т.н

Ахметсафина Римма Закиевна

2016