6. Синтез автоматов на RS- и JK- тригтер 6.1 Особенности синтеза автоматов на RSтриггерах

том случае, если элементами памяти автомата являются RSтриггеры, при синтезе автомата необходимо учесть особенности логики работы таких триггеров. Главная особенность RS-триггера по сравнению с D-триггером заключается в том, что RS-триггер имеет два информационных входа. Информационные входы RS-триггера

обозначаются буквами S (SET) и R (RESET). Вход S используется для установки триггера в состояние "1", вход R -для установки триггера в состояние "0". Обычно в таких триггерах активным является сигнал "1", т.е. для записи в триггер как символа "1", так и символа "0" на соответствующие входы триггера нужно подавать сигнал "1".

Условное графическое обозначение синхронного RS-триггера и его таблица переходов (при C=1) показаны на рис.6.1.

Входы		Состояния		
S	R	0	1	
0	0	0	1	
0	1	0	0	
1	0	1	1	
1	1	-	-	

Рис. 6.1

Как видно из таблицы переходов, комбинация сигналов S=0 и R=0 соответствует режиму хранения, при котором триггер сохраняет свое состояние. Если на вход триггера подается комбинация сигналов S=0 и R=1, триггер переходит в состояние "0" (или остается в нем). При поступлении сигналов S=1 и R=0 триггер переходит в состояние "1" (или остается в нем). Напомним, что комбинация входных сигналов S=1 и S=1 для S=1

Характеристическая таблица RS-триггера составляется по таблице переходов и имеет вид табл.6.1.

Таблица 6.1.

Состояния		Входы		
Q_t	Q_t Q_{t+1}		R	
0	0	0	-	
0	1	1	0	
1	0	0	1	

1	1	-	0

Из характеристической таблицы можно записать логическую функцию, описывающую значение сигнала S для перевода триггера в состояние $Q_{t+1}=1$:

$$S = \overline{Q}_t \; Q_{t+1}$$
 .

C учетом того, что при $Q_t = Q_{t+1} = 1$ значение сигнала S является неопределенным, эту функцию можно упростить следующим образом:

$$S = \overset{-}{Q_t} Q_{t+1} \rightarrow Q_t Q_{t+1} = Q_{t+1}$$

Таким образом, для установки RS-триггера в состояние 1 на вход S следует подать сигнал 1.

Аналогичным образом может быть получена логическая функция для сигнала R:

$$R \; = \; \stackrel{-}{Q_t} \stackrel{-}{Q_{t+1}} \to \; \stackrel{-}{Q_t} \stackrel{-}{Q_{t+1}} = \stackrel{-}{Q_{t+1}} \; .$$

6.2. Пример синтеза автомата на RS-триггерах

В качестве примера рассмотрим автомат, синтез которого приведен в 5.2. При этом автомат был синтезирован с использованием Т-триггеров.

Кодированная таблица переходов и выходов этого автомата имеет вид табл.6.2. (см. таблицу 5.4).

Таблица 6.2

			1			
Dwar	Состояния и выходы					
Вход	Q_0	Q_1	Q_2			
a	$q^1_t q^2_t$	q^1_t q^2_t	$q^1_t q^2_t$			
	0 ^α 0	0^{β} 1	1^{χ} 0			
0	$0^{\alpha} 0 \ , 0$	$1^{\beta} 0, 0$	0^{χ} 0, 0			
1	0 1, 0	0 1, 0	0 0, 1			

Синтез проведем в обычной последовательности, начиная с выбора типа элементов памяти.

Выбор типа элементов памяти. В качестве элементов памяти используются RS-триггеры.

Преобразование таблицы переходов и выходов в таблицу функций возбуждения RS-триггеров. Преобразование заключается в том, что для каждого элемента памяти каждой паре состояний Q_t и Q_{t+1} ставится в соответствие значения сигналов S и R, заданные в характеристической таблице. Полученная таким образом таблица функций возбуждения RS-триггеров имеет вид табл.6.3.

В таблице 6.3 полужирным шрифтом и индексом выделены пары состояний $q^1_t = 0$ и $q^1_{t+1} = 0$ (столбец Q_0), $q^1_t = 0$ и $q^1_{t+1} = 1$ (столбец Q_1), $q^1_t = 0$

1 и $q^1_{t+1} = 0$ (столбец Q_2). Соответствующие значения входных сигналов RSтриггеров также выделены в таблице функций возбуждения (табл. 6.3).

					Табл	ица 6.3
	Состояния и выходы					
Вход	ход Q		Q_0 Q_1		Q_2	
		_				
	q^{1}_{t}	q^2_t	q^{1}_{t}	q^2_t	q^1_t	q^2_t
a	0	0	0	0	0	0
	$S_1 R_1$	$S_2 R_2$	$S_1 R_1$	$S_2 R_2$	$S_1 R_1$	$S_2 R_2$
0	0α -α	0 -	$1^{\beta} 0^{\beta}$	0 1	0 χ χ	0 -
1	0 -	1 0	0 -	- 0	0 1	0 -

Запись функций возбуждения и выходов в СДНФ. Функции возбуждения RSтриггеров имеют следующий вид:

$$\begin{split} S_1 &= \overline{aq^1}q^2; & R_1 &= \overline{aq^1}\overline{q^2} \ v \ aq^1\overline{q^2}; \\ S_2 &= a\overline{q^1}\overline{q^2}; & R_2 &= \overline{aq^1}q^2 \cdot \end{split}$$

Функция выхода записывается по кодированной таблице переходов и выходов:

$$Y = aq^{1}\overline{q}^{2};$$

Минимизация функций возбуждения и выхода. Если не проводить доопределение, то минимизировать можно только функцию R_1 . Для минимизации используем метод Карно (рис.6.2.).

Рис.6.2

Выбор типа логических элементов. Заданы элементы типа И-НЕ.

Преобразование функций возбуждения триггеров и выхода. Преобразование выполняется путем двойной инверсии.

Функции возбуждения ЈК-триггеров:

$$S_{1} = \overline{\overline{aq^{1}q^{2}}};$$

$$S_{2} = \overline{aq^{1}q^{2}};$$

$$R_{1} = \overline{\overline{q^{1}q^{2}}};$$

$$R_{2} = \overline{aq^{1}q^{2}}.$$

$$R_{2} = \overline{aq^{1}q^{2}}.$$

Построение функциональной схемы автомата. Функциональная схема автомата строится в соответствии с общей структурой автомата Мили, а также

функциями возбуждения триггеров и функцией выхода. Функциональная схема автомата приведена на рис. 6.3. При построении схемы необходимо учесть, что функции возбуждения S_1 и R_2 совпадают. Поэтому эти функции могут быть реализованы при помощи одних и тех же логических элементов.

Проверка правильности работы автомата. Для проверки правильности работы автомата рассмотрим случай, когда автомат находится в состоянии Q_1 и на его вход поступает сигнал a = 0. Тогда:

$$Q_t = Q_1$$
, т.е. $q_t^{-1} = 0$ и $q_t^{-2} = 1$ (см. кодирование состояний), $a = 0$.

Значения сигналов на входах элементов схемы для этого случая показаны на рис. 6.3. В соответствии с логикой работы элементов схемы на выходе автомата формируется сигнал Y=0 и элементы памяти переходят в состояние $q_{t+1}^{-1}=1$ и $q_{t+1}^{-2}=0$, т.е. автомат переходит в состояние Q_2 . Таким образом, работа автомата соответствует таблице переходов и выходов.

При сравнении полученной в данном примере схемы со схемой, выполненной на Т-триггерах (см. 5.2), можно сделать вывод, что комбинационные схемы автомата при использовании RS- триггеров имеют более простую структуру.

6.3. Особенности синтеза автомата на JKтриггерах

ЈК-триггер имеет два информационных входа, которые обозначаются буквами Ј и К. Логика работы ЈК-триггера во многом совпадает с логикой работы RS- триггера. При этом назначение входов Ј и К аналогично назначению входов Ѕ и R соответственно. Условное графическое обозначение синхронного ЈК-триггера и его таблица переходов (при C=1) показаны на рис.6.4.

Входы		Состояния		
J	K	0	1	
0	0	0	1	
0	1	0	0	
1	0	1	1	
1	1	1	0	

Рис. 6.4

Как видно из таблицы переходов, JK-триггер отличается от RS-триггера тем, что для JK-триггера допускаются любые комбинации входных сигналов.

При поступлении на входы JK-триггера сигналов J=1 и K=1 триггер изменяет свое состояние. Характеристическая таблица ЈК-триггера составляется по таблице переходов и имеет вид табл.6.4.

Из характеристической таблицы можно записать логическую функцию,

Состоя н и я Входы Q_{t+1} 0 0 1 1

Таблица 6.4

описывающую значение сигнала J для перевода триггера в состояние $Q_{t+1} = 1$:

$$J \ = \stackrel{-}{Q}_t \ Q_{t+1} \ .$$

C учетом того, что при $Q_t = Q_{t+1} = 1$ значение сигнала J является неопределенным, эту функцию можно упростить следующим образом:

$$J \; = \overset{-}{Q}_t \; Q_{t+1} \; \vee \; \; Q_t \; Q_{t+1} = \; Q_{t+1} \; . \label{eq:J}$$

Таким образом, для установки ЈК-триггера в состояние 1 на вход Ј следует подать сигнал 1.

Аналогичным образом может быть получена логическая функция для сигнала К:

$$K \; = \; \overset{-}{Q_t} \, \overset{-}{Q_{t+1}} \vee \; \; Q_t \, \overset{-}{Q_{t+1}} = \; \overset{-}{Q_{t+1}} \; .$$

Полученные выражения для функций Ј и К совпадают с аналогичными выражениями для функций S и R соответственно (см. п. 6.2).

Последовательность синтеза автомата на ЈК-триггерах та же, что и при синтезе автомата на RS-триггерах. Если выполнять синтез автомата, заданного в п 6.2, с использованием ЈК-триггеров, то из таблицы переходов и выходов (табл. 6.2) можно получить таблицу функций возбуждения ЈК-триггеров, имеющую вид табл.6.5.

Таблица 6.5

Состояния и выходы						
Вход	Q_0		Q_1		Q_2	
		_				_
	q^{1}_{t}	q^2_t	q^{1}_{t}	q^2_t	q^{1}_{t}	q_t^2
a	0	0	0	0	0	0
	$J_1 K_1$	$J_2 K_2$	$J_1 K_1$	$J_2 K_2$	$J_1 K_1$	$J_2 K_2$
0	0α -α	0 -	$1^{\beta} 0^{\beta}$	0 1	0 2 1 2	0 -
1	0 -	1 0	0 -	- 0	0 1	0 -

Функции возбуждения ЈК-триггеров имеют следующий вид:

$$\begin{split} J_1 &= aq^1q^2; & K_1 &= aq^1q^2 \ \lor \ aq^1q^2; \\ J_2 &= a\overline{q^1}\overline{q^2}; & K_2 &= \overline{aq^1}q^2; \end{split}$$

Функция выхода: $Y = aq^1\overline{q^2}$.

Если не проводить доопределения, то минимизировать можно только функцию K_1 . При этом выражения для функций J_1 , K_1 , J_2 , K_2 и Y полностью совпадают с выражениями, полученными в подразделе 12.2 для функций S_1 , R_1 , S_2 и R_2 . Таким образом, при синтезе рассматриваемого автомата на RS- и ЈК-тригтерах схема автомата получается одинаковой. Далее будет показано, что при минимизации с доопределением логических функций схемы могут отличаться друг от друга.

Контрольные вопросы

- 🖺 Опишите логику работы RS-триггера.
- 🔓 Составьте таблицу переходов RS-триггера.
- 🖺 Как составить таблицу функций возбуждения для автомата на RS-триггерах?
- На Чем JK-триггер отличается от RS-триггера?
- Опишите логику работы ЈК-триггера.
- Составьте таблицу переходов ЈК-триггера.
- Как составить таблицу функций возбуждения для автомата на JK-триггерах?
- В Почему функции возбуждения для автомата на RS- и JK-триггерах могут совпадать?
- В каком порядке проводится проверка работоспособности автомата Мили?
- Что происходит с синхронным JK-триггером, если на его входы поступают сигналы J=1, K=1 и C=0?