



## ОПЫТНО-ПРОМЫШЛЕННАЯ УСТАНОВКА ПОЛУЧЕНИЯ ВОДОРОДА (8000 нм³/год по Н2)

Установка запитывается от баллона с метаном, вода заливается в расходную емкость, установка подключается к сети электропитания и линии подачи воды на теплообменник.

На первой стадии метан направляется в Риформер где, смешиваясь с паром (произведенным из воды нагретой топочными газами парового риформинга) при температуре порядка 700 оС превращается в синтез-газ, ( $H_2$  — 73 % об., CO —12 % об.,  $CO_2$  — 10-12 % об.,  $CH_4$  –1,5 % об.).

Далее поступает на стадию Реакции «водяного сдвига» реализованную в корпусе этого же реактора комбинированного типа, для преобразования СО в доп. количество водорода ( $H_2 - 78,1 \%$  об., CO - 0,1 % об.,  $CO_2 - 20,5 \%$  об.,  $CH_4 - 1,5 \%$  об.)

После чего направляется на очистку в блок полиметаллических мембран для очистки H<sub>2</sub> до 99,998 %

После очистки водород сжимается компрессором до давления 250 кгс/см<sup>2</sup> и направляется в систему хранения объемом 25 литров, с возможностью раздачи до 650 кгс/см<sup>2</sup>.



## Опытно-промышленная установка производства водорода

| Габариты, дшв, м    | 1,8x2x1 |
|---------------------|---------|
| Масса установки, кг | 300     |
| Чистота водорода, % | 99,998  |

## Прогонизируемые результаты при эксплуатации двигателей АЛ-31СТ на метано-водородной смеси

| Снижение расхода топливной смеси 5 %     |  |
|------------------------------------------|--|
| Снижение CO – 20 мг/м <sup>3</sup>       |  |
| Снижение выбросов CO <sub>2</sub> на 7 % |  |