Постановка задачи.

Система уравнений вязкого газа:

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0$$

$$\frac{\partial \rho u}{\partial x} + \frac{\partial \rho u^2}{\partial x} + \frac{\partial p}{\partial x} = \mu \frac{\partial^2 u}{\partial x^2} + \rho f$$

$$p = p(\rho)$$

где μ – коэффициент вязкости газа ($\mu \in [0.1; 0.001]$), p – давление газа, f – вектор внешних сил (в нашей задаче считается равным нулю).

В начальный момент времени задаются функции, значения которых являются плотностью и скоростью газа в точках отрезка [0;X]

$$(\rho, u)|_{t=0} = (\rho_0, u_0), x \in [0; X]$$

Простейшими граничными условиями являются условия непротекания

$$u(t,0) = u(t,X) = 0, t \in [0; T]$$

В этом случае граничные условия на плотность газа не ставятся.

Схема с центральными разностями плотность-импульс (последовательная).

Для поиска численного решения задачи можно использовать разностную схему, в которой при апроксимации конвективных членов используюся центральные разности, а уравнения решаются последовательно методом "прогонки"

$$H_t + \frac{1}{2}(V\hat{H}_{\hat{x}} + (V\hat{H})_{\hat{x}} + HV_{\hat{x}}) = 0, \quad x \in \omega_h$$
 (1)

$$H_{t,0} + \frac{1}{2}((V\hat{H})_{x,0} + H_0V_{x,0}) - \frac{1}{2}h((HV)_{x\bar{x},1} - \frac{1}{2}(HV)_{x\bar{x},2} + H_0(V_{x\bar{x},1} - \frac{1}{2}V_{x\bar{x},2})) = 0$$
(2)

$$H_{t,M} + \frac{1}{2}((V\hat{H})_{x,M} + H_M V_{x,M}) + \frac{1}{2}h((HV)_{x\bar{x},M-1} - \frac{1}{2}(HV)_{x\bar{x},M-2} + H_0(V_{x\bar{x},M-1} - \frac{1}{2}V_{x\bar{x},M-2})) = 0 \quad (3)$$

$$(HV)_t + \frac{2}{3}(\hat{H}V\hat{V})_{\hat{x}} + \frac{2}{3}\hat{H}V\hat{V}_{\hat{x}} + \frac{V^2}{3}\hat{H}_{\hat{x}} + p(\hat{H})_{\hat{x}} = \mu\hat{V}_{x\bar{x}} + \hat{H}f, \quad x \in \omega_h$$
(4)

В качестве значений разностного решения на нулевом слое берутся проекции на сетку $\bar{\omega}_h$ функций ρ_0 и u_0 :

$$H_m^0 = \rho_{0_m}, \ V_m^0 = (u_0)_m, \ m = 0, 1, \dots, M$$

Граничные значения функции скорости равны нулю:

$$V_0^n = V_M^n = 0, \qquad n = 1, \dots, N$$

Формулы для заполния матриц и нахождения векторов на текущем слое.

Используемое обозначение: $\gamma = \frac{\tau}{h}$

Преобразуем первую формулу:

$$H_t + 0.5(V\hat{H}_{x}^{\circ} + (V\hat{H})_{x}^{\circ} + HV_{x}^{\circ}) = (f_1)_{m}^{n}, \ x \in \omega_h$$

$$\frac{H_m^{n+1} - H_m^n}{\tau} + \frac{1}{2} * \frac{1}{2h} \left(V_m^n H_{m+1}^{n+1} - V_m^n H_{m-1}^{n+1} + V_{m+1}^n H_{m+1}^{n+1} - V_{m-1}^n H_{m-1}^{n+1} + H_m^n V_{m+1}^n - H_m^n V_{m-1}^n \right) = (f_1)_m^n$$

После домножения на τ получим:

$$H_m^{n+1} - H_m^n + \frac{\gamma}{4} \left(V_m^n H_{m+1}^{n+1} - V_m^n H_{m-1}^{n+1} + V_{m+1}^n H_{m+1}^{n+1} - V_{m-1}^n H_{m-1}^{n+1} + H_m^n V_{m+1}^n - H_m^n V_{m-1}^n \right) = \tau(f_1)_m^n$$

В таком случае, для заполения трехдиагональной матрицы, необходимой для вычисления вектора H на следующем слое, будут использоваться следующие формулы:

$$\begin{split} H.a[m] &= 1 \\ H.b[m] &= \frac{\gamma}{4}(V_m^n + V_{m+1}^n) \\ H.c[m-1] &= -\frac{\gamma}{4}(V_m^n + V_{m-1}^n) \\ H.rhs[m] &= H_m^n(1 - \frac{\gamma}{4}(V_{m+1}^n - V_{m-1}^n)) + \tau(f_1)_m^n \end{split}$$

для $m=1\dots M-1$, где a – главная диагональ, b – диагональ над главной и c – диагональ под главной, а rhs – правая часть.

Преобразование второй формулы даст нам возможность заполнить нулевую строку матрицы. Итак приступим:

$$H_{t,0} + \frac{1}{2}((V\hat{H})_{x,0} + H_0V_{x,0}) - \frac{1}{2}h((HV)_{x\bar{x},1} - \frac{1}{2}(HV)_{x\bar{x},2} + H_0(V_{x\bar{x},1} - \frac{1}{2}V_{x\bar{x},2})) = (f_1)_0^n$$

Домножим на τ и распишем сокращения:

$$\begin{split} H_0^{n+1} - H_0^n + \frac{\gamma}{2} (V_1^n H_1^{n+1} - V_0^n H_0^{n+1} + H_0^n (V_{m+1}^n - V_{m-1}^n)) - \\ - \frac{\gamma}{2} (H_2^n V_2^n - 2H_1^n V_1^n + H_0^n V_0^n - \frac{1}{2} (H_3^n V_3^n - 2H_2^n V_2^n + H_1^n V_1^n) + \\ + H_0^n (V_2^n - 2V_1^n + V_0^n - \frac{1}{2} (V_3^n - 2V_2^n + V_1^n))) = (f_1)_0^n \end{split}$$

Принимая во внимание, что $V_0^n=V_M^n=0$, получим следующие формулы для элементов матрицы:

$$\begin{split} &H.a[0]=1\\ &H.b[0]=\frac{\gamma}{2}V_1^n\\ &H.rhs[0]=H_0^n-\frac{\gamma}{2}H_0^nV_1^n+\frac{\gamma}{2}(H_2^nV_2^n-2H_1^nV_1^n+H_0^nV_0^n-\frac{1}{2}(H_3^nV_3^n-2H_2^nV_2^n+H_1^nV_1^n)\\ &+H_0^n(V_2^n-2V_1^n+V_0^n-\frac{1}{2}(V_3^n-2V_2^n+V_1^n)))+\tau(f_1)_0^n \end{split}$$

Аналогично из третьей формулы найдем последнюю строку матрицы:

$$\begin{split} H.a[M] &= 1 \\ H.c[M-1] &= -\frac{\gamma}{2}V_{M-1}^n \\ H.rhs[M] &= H_M^n + \frac{\gamma}{2}H_M^nV_{M-1}^n - \frac{\gamma}{2}(H_{M-2}^nV_{M-2}^n - 2H_{M-1}^nV_{M-1}^n \\ &- \frac{1}{2}(H_{M-3}^nV_{M-3}^n - 2H_{M-2}^nV_{M-2}^n + H_{M-1}^nV_{M-1}^n) \\ &+ H_M^n(V_{M-2}^n - 2V_{M-1}^n - \frac{1}{2}(V_{M-3}^n - 2V_{M-2}^n + V_{M-1}^n))) + \tau(f_1)_M^n \end{split}$$

Для нахождения вектора скорости преобразуем четвертую формулу:

$$(HV)_t + \frac{2}{3}(\hat{H}V\hat{V})_{\hat{x}} + \frac{2}{3}\hat{H}V\hat{V}_{\hat{x}} + \frac{V^2}{3}\hat{H}_{\hat{x}} + p(\hat{H})_{\hat{x}} = \mu\hat{V}_{x\bar{x}} + (f_2)_m^n$$

Домножим на τ и распишем сокращения:

$$\begin{split} H_{m}^{n+1}V_{m}^{n+1} - H_{m}^{n}V_{m}^{n} + \frac{\gamma}{3}(H_{m+1}^{n+1}V_{m+1}^{n}V_{m+1}^{n+1} - H_{m-1}^{n+1}V_{m-1}^{n}V_{m-1}^{n+1}) + \\ + \frac{\gamma}{3}H_{m}^{n+1}V_{m}^{n}(V_{m+1}^{n+1} - V_{m-1}^{n+1}) + \frac{\gamma(V_{m}^{n})^{2}}{6}(H_{m+1}^{n+1} - H_{m-1}^{n+1}) + \frac{\gamma}{2}(p(H_{m+1}^{n+1}) - p(H_{m-1}^{n+1})) = \\ = \mu \frac{\gamma}{h}(V_{m+1}^{n+1} - 2V_{m}^{n+1} + V_{m-1}^{n+1}) + \tau(f_{2})_{m}^{n} \end{split}$$

Отсюда получаем следующие формулы для элементов матрицы:

$$\begin{split} V.a[m] &= H_m^{n+1} + 2\mu \frac{\gamma}{h}; \quad m = 1, \dots, M-1 \\ V.b[m] &= \frac{\gamma}{3} (H_{m+1}^{n+1} V_{m+1}^n + H_m^{n+1} V_m^n) - \mu \frac{\gamma}{h}; \quad m = 1, \dots, M-2 \\ V.c[m-1] &= -\frac{\gamma}{3} (H_m^{n+1} V_m^n + H_{m-1}^{n+1} V_{m-1}^n) - \mu \frac{\gamma}{h}; \quad m = 2, \dots, M-1 \\ V.rhs[m] &= H_m^n V_m^n - \frac{\gamma (V_m^n)^2}{6} (H_{m+1}^{n+1} - H_{m-1}^{n+1}) - \frac{\gamma}{2} (p(H_{m+1}^{n+1}) - p(H_{m-1}^{n+1})) + \tau (f_2)_m^n; \quad m = 1, \dots, M-1 \end{split}$$

Так как для заполнения матрицы V нам требуются значения плотности на этом слое, то сначала мы заполняем матрицу для поиска плотности, находим вектор плотности на текущем слое, а затем заполнем матрицу для нахождения скорости и находим вектор скорости на текущем слое.

Расчет точного гладкого решения.

Зададим функции на $X \times T = [0;\ 10] \times [0;\ 1]$

$$\tilde{u}(x,t) = \cos(2\pi t)\sin(\pi(x/10)^2)$$

$$\tilde{\rho}(x,t) = e^t(\cos(\pi x/10) + 1.5)$$

Для заполенения матриц найдем f_0 и f_1 по следующим формулам:

$$f_{0} = \frac{\partial \tilde{\rho}}{\partial t} + \frac{\tilde{\rho}\tilde{u}}{\partial x}$$

$$f_{1} = \tilde{\rho}\frac{\partial \tilde{u}}{\partial t} + \tilde{\rho}\tilde{u}\frac{\partial \tilde{u}}{\partial x} + \frac{\partial p}{\partial x} - \mu\frac{\partial^{2}\tilde{u}}{\partial x^{2}}$$

Расчеты проводились при $p(\rho)=\rho,\,\mu=0.01$

$ H- ho _{C_h}$					
$N \setminus M$	100	200	400	800	
100	2.369643e-02	2.369226e-02	2.369143e-02	2.369111e-02	
200	1.187204e-02	1.186753e-02	1.186639e-02	1.186611e-02	
400	5.945114e-03	5.939676e-03	5.938521e-03	5.938237e-03	
800	2.978460e-03	2.971911e-03	2.970733e-03	2.970453e-03	

$ H- ho _{L_2}$					
$N \setminus M$	100	200	400	800	
100	4.954153e-02	4.965180e-02	4.970748e-02	4.973541e-02	
200	2.479344e-02	2.484790e-02	2.487561e-02	2.488954e-02	
400	1.240351e-02	1.242960e-02	1.244333e-02	1.245026e-02	
800	6.205456e-03	6.216402e-03	6.223076e-03	6.226516e-03	

$ H - \rho _2^1$				
$N \setminus M$	100	200	400	800
100	7.038012e-02	7.037671e-02	7.037608e-02	7.037604e-02
200	3.522238e-02	3.521940e-02	3.521895e-02	3.521887e-02
400	1.762122e-02	1.761773e-02	1.761728e-02	1.761720e-02
800	8.816315e-03	8.811181e-03	8.810639e-03	8.810557e-03

$ V-u _{C_h}$					
$N \setminus M$	100	200	400	800	
100	2.883807e-03	3.015712e-03	3.048364e-03	3.056555e-03	
200	1.477556e-03	1.607387e-03	1.639804e-03	1.647965 e-03	
400	6.834158e-04	8.123565e-04	8.446643e-04	8.527364e-04	
800	2.637307e-04	3.922701e-04	4.244919e-04	4.325330e-04	

		$ V - u _L$	2	
N \ M	100	200	400	800
100	4.194082e-03	3.015712e-03	4.426948e-03	4.438615e-03
200	2.150503e-03	2.334999e-03	2.381276e-03	2.392855e-03
400	9.977376e-04	1.180719e-03	1.226769e-03	1.238298e-03
800	3.904288e-04	5.707971e-04	6.166695e-04	6.281692e-04

		$ V - u _2^1$	<u>l</u> 2	
$N \setminus M$	100	200	400	800
100	5.931328e-03	3.015712e-03	6.260649e-03	6.277150e-03
200	3.041271e-03	3.302188e-03	3.367633e-03	3.384008e-03
400	1.411014e-03	1.669789e-03	1.734914e-03	1.751218e-03
800	5.521498e-04	8.072290e-04	8.721024e-04	8.883654e-04

$ H-\rho _{C_h}$					
$N \setminus M$	100	200	400	800	
100	2.373699e-02	2.372286e-02	2.371908e-02	2.371815e-02	
200	1.189865e-02	1.188341e-02	1.187975e-02	1.187883e-02	
400	5.965465e-03	5.949121e-03	5.945382e-03	5.944460e-03	
800	2.996514e-03	2.978371e-03	2.974528e-03	2.973608e-03	

$ H- ho _{L_2}$					
$N \setminus M$	100	200	400	800	
100	4.942110e-02	4.952153e-02	4.957401e-02	4.960083e-02	
200	2.473765e-02	2.478321e-02	2.480829e-02	2.482140e-02	
400	1.238063e-02	1.239842e-02	1.240979e-02	1.241605e-02	
800	6.198893e-03	6.202136e-03	6.206602e-03	6.209437e-03	

$ H - \rho _2^1$				
$N \setminus M$	100	200	400	800
100	7.020378e-02	7.018908e-02	7.018565e-02	7.018485e-02
200	3.514090e-02	3.512632e-02	3.512290e-02	3.512208e-02
400	1.758792e-02	1.757288e-02	1.756943e-02	1.756860e-02
800	8.806903e-03	8.790673e-03	8.787143e-03	8.786301e-03

$ V-u _{C_h}$					
$N \setminus M$	100	200	400	800	
100	3.289399e-03	3.385291e-03	3.409478e-03	3.415431e-03	
200	1.698012e-03	1.792865e-03	1.816662e-03	1.822564e-03	
400	8.153622e-04	9.096826e-04	9.332562e-04	9.391309e-04	
800	3.526412e-04	4.464609e-04	4.699194e-04	4.757802e-04	

$ V - u _{L_2}$					
$N \setminus M$	100	200	400	800	
100	4.882495e-03	5.020037e-03	5.054505e-03	5.063127e-03	
200	2.523426e-03	2.659552e-03	2.693720e-03	2.702271e-03	
400	1.215182e-03	1.350086e-03	1.384071e-03	1.392582e-03	
800	5.302152e-04	6.632458e-04	6.970846e-04	7.055722e-04	

$ V - u _2^1$					
$N \setminus M$	100	200	400	800	
100	6.904891e-03	7.099404e-03	7.148149e-03	7.160343e-03	
200	3.568663e-03	3.761174e-03	3.809495e-03	3.821588e-03	
400	1.718527e-03	1.909310e-03	1.957373e-03	1.969409e-03	
800	7.498376e-04	9.379711e-04	9.858265e-04	9.978298e-04	

Расчеты для известной гладкой функции, разбиение $100 \times 100, \, p = \rho$

Норма \ μ	0.1	0.01	0.001
$ H-\rho _{C_h}$	2.373290e-02	2.373699e-02	2.369669e-02
$ H-\rho _{L_2}$	4.939531e-02	4.942110e-02	4.954413e-02
$ H-\rho _2^1$	7.016759e-02	7.020378e-02	7.038374e-02
$ V - u _{C_h}$	3.230236e-03	3.289399e-03	2.888754e-03
$ V - u _{L_2}$	4.797702e-03	4.882495e-03	4.201631e-03
$ V - u _2^1$	6.784975e-03	6.904891e-03	5.942003e-03

Расчеты для известной гладкой функции, разбиение 100 × 100, $p=\rho^{1.4}$

Норма \ μ	0.1	0.01	0.001
$ H-\rho _{C_h}$	2.369364e-02	2.369643e-02	2.373739e-02
$ H-\rho _{L_2}$	4.951550e-02	4.954153e-02	4.942368e-02
$ H-\rho _2^1$	7.034413e-02	7.038012e-02	7.020744e- 02
$ V - u _{C_h}$	2.830095e-03	2.883807e-03	3.295416e-03
$ V - u _{L_2}$	4.114713e-03	4.194082e-03	4.890734e-03
$ V - u _2^1$	5.819083e-03	5.931328e-03	6.916543e-03

Расчет негладкой задачи.

Зададим две начально-краевых задачи для системы, начальные и граничные условия которых определяются следующим образом:

$$ho_0(x) = 1, \quad x < 4,5$$
 или $x > 5,5,$

$$ho_0(x) = 2, \quad x \in [4,5;5,5],$$

$$ho_0(x) = 0, \quad x \in [0,10],$$

$$u_0(x) = 0, \quad x < 4,5$$
 или $x > 5,5,$
 $u_0(x) = 1, \quad x \in [4,5;5,5],$
 $\rho_0(x) = 1, \quad x \in [0,10],$
 $u(t,0) = u(t,10) = 0, \quad t \in [0;1]$

Расчеты выполнялись при разбиении $100 \times 100, \, \mu = 0.1$

Графики плотности для задачи 1

Графики скорости для задачи 1

Проверка закона сохранения массы и стабилизация задачи 1

	Macca (100 × 100)				
время $\setminus \mu$	0.1	0.01	0.001		
0.0	11.000000	11.000000	11.000000		
0.2	10.999007	10.997799	10.997505		
0.4	10.997539	10.995165	10.994546		
0.6	10.996275	10.992405	10.990963		
0.8	10.995108	10.989832	10.987597		
1.0	10.994224	10.987638	10.984432		

Условия стабилизации:

1.
$$||V||_{L_2} < 1e - 02$$

2.
$$|H_{max} - H_{min}| < 1e - 02$$

	$h = 0.02, \tau = 0.01$		$h = 0.005, \tau = 0.005$			
μ	m_{stab}	t_{stab}	$m-m_{stab}$	m_{stab}	t_{stab}	$m-m_{stab}$
0.1	10.976490	2.1895e + 02	0.023510	10.988639	1.9914e + 02	0.011361
0.01	10.830242	9.8838e+02	0.169758	10.903868	1.1833e+03	0.096132
0.001	7.081537	3.1819e+03	3.918463	9.245517	5.0898e + 03	1.754483

где, m_{stab} — масса газа после стабилизации, t_{stab} — время стабилизации, а $m-m_{stab}$ — разность между начальной массой и массой после стабилизации. Размер шагов указан в шапке таблицы.

Графики плотности для задачи 2

Проверка закона сохранения массы и стабилизация задачи 2

	$\mathbf{Macca} \ (100 \times 100)$				
время $\setminus \mu$	0.1	0.01	0.001		
0.0	10.00000	10.00000	10.00000		
0.2	9.995934	9.994281	9.993867		
0.4	9.994461	9.990567	9.989085		
0.6	9.993572	9.987937	9.985334		
0.8	9.992647	9.984684	9.980101		
1.0	9.991644	9.981014	9.974222		

Условия стабилизации:

1.
$$||V||_{L_2} < 1e - 02$$

2.
$$|H_{max} - H_{min}| < 1e - 02$$

	$h = 0.02, \tau = 0.01$		$h = 0.005, \tau = 0.005$			
μ	m_{stab}	t_{stab}	$m-m_{stab}$	m_{stab}	t_{stab}	$m-m_{stab}$
0.1	9.972256	5.3424e+02	0.027744	9.984941	5.3439e+02	0.015059
0.01	9.783715	2.7881e + 03	0.216285	9.881044	$2.9657\mathrm{e}{+03}$	0.118956
0.001	7.967778	8.7630e + 03	2.032222	8.652557	1.3922e+04	1.347443

где, m_{stab} — масса газа после стабилизации, t_{stab} — время стабилизации, а $m-m_{stab}$ — разность между начальной массой и массой после стабилизации. Размер шагов указан в шапке таблицы.

Линеаризация схемы

В полученных ранее уравнениях сделаем замену $(V, H) \Rightarrow (V + W, H + R)$. После стабилизации скорость газа в системе равна нулю, а плотность есть константа c. Принимая это во внимание для формулы скорости получим:

$$\frac{p(c)R_{m+1} - p(c)R_{m-1}}{2} = \frac{\mu}{h}W_{m-1} + \frac{2\mu}{h}W_m + \frac{\mu}{h}W_{m+1}$$

Для плотности:

$$-4W_0 + 7W_1 - 4W_2 + W_3 = 0$$
$$-2W_{m-1} + 2W_{m+1}$$
$$4W_M - 7W_{M-1} + 4W_{M-2} - W_{M-3} = 0$$

При $\mu=0.01$ и M=10 получим следующие собственные значения:

При $\mu = 0.01$ и M = 50 получим следующие собственные значения:

При $\mu=0.01$ и M=100 получим следующие собственные значения:

