LECTURE 2

COMP 3760 - Fall 2019

Today's plan

- Attendance quiz (on Learning Hub do it NOW)
- Finish/review last time
- Common functions in algorithm analysis
- "Order of growth"
- Big-Oh notation

Today's objectives

SWBAT:

- Recognize commonly-seen functions from the world of algorithm analysis
- Rank functions by "order of growth"
- Recite the definition of Big-oh notation
- Express the order of growth of an algorithm (expressed in pseudocode) in Big-oh notation
- Explain the difference between best case, worst case, and average case.
- Given a function, provide an example of an algorithm (either by common name or expressed in pseudocode) whose order of growth is Big-oh of that function

What did we learn last lesson?

- 1. Efficiency of an algorithm depends on input size
- 2. Efficiency of an algorithm also depends on basic operation
- 3. Efficiency can be expressed by counting the basic operation


```
1. Loops(A[0..n-1])
```

- 2. for $i \leftarrow 1$ to n-1 do
- 3. $v \leftarrow A[i]$
- 4. $i \leftarrow i-1$
- 5. while j≥0 and A[j]>v do
- 6. $A[j+1] \leftarrow A[j]$
- 7. $j \leftarrow j-1$
- 8. $A[j+1] \leftarrow v$

$$C(n) = \sum_{i=1}^{n-1} \sum_{j=0}^{i-1} 1 = \frac{n(n-1)}{2} = \frac{n^2}{2} - \frac{n}{2} \approx \frac{n^2}{2}$$

- Problem: find the max element in a list
- Input size measure:
 - Number of list items, i.e. n
- Basic operation:
 - Comparison

```
ALGORITHM MaxElement(A[0..n-1])

maxval \leftarrow A[0]

for i \leftarrow 1 to n-1 do

if A[i] > maxval

maxval \leftarrow A[i]

return maxval
```


$$C(n) = \sum_{i=1}^{n-1} 1 = n-1$$

- Problem: Multiplication of two matrices
- Input size measure:
 - Matrix dimension (elements per row/col)
- Basic operation:
 - Multiplication of two numbers

```
ALGORITHM Matrix Multiplication(A[0..n-1, 0..n-1], B[0..n-1, 0..n-1])

for i \leftarrow 0 to n-1 do

for j \leftarrow 0 to n-1 do

C[i,j] \leftarrow 0.0

for k \leftarrow 0 to n-1 do

C[i,j] \leftarrow C[i,j] + A[i,k] * B[k,j]
return C
```

$$C(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} 1 = n^3$$

- Problem: calculating an unusual sum
- Input size measure:
 - Number n
- Basic operation:
 - Addition

```
    Example3(n)
    sum ← 0
    i ← n
    while i ≥ 1
    sum ← sum +1
    i ← i/2
    return sum
```


$$C(n) = \log n$$

- Problem: Searching for key in a list of n items
- Input size measure:
 - Number of list items, i.e. n
- Basic operation:
 - Key comparison

$$C_{\text{worst}}(n) = n$$

 $C_{\text{best}}(n) = 1$

Which to use: best, worst, average?

- We will focus on worst-case analysis in this course
 - Unless otherwise specified, you should always analyze the worst case

- There are many situations where best case = worst case
 - Example: find the largest element in an unordered array

Practice problems

For each of the following algorithms determine:

- a) its basic operation
- b) basic operation count
- c) if basic op count depends on input form
- 1. Computing the sum of a set of numbers
- 2. Computing n! (n factorial)
- 3. Checking whether all elements in a given array are distinct

Counts you might see

- C(n) = n(n-1)/2
- $C(n) \approx 0.5n^2$
- $\mathbf{C}(n) = \log n + 5$
- C(n) = n!
- Which one is the better algorithm?

Desmos time

www.desmos.com

Order of growth

Order of growth

- What we really care about:
 - Order of growth as $n \rightarrow \infty$

Orders of Growth

TABLE 2.1 Values (some approximate) of several functions important for analysis of algorithms

these represent possible functions that classify basic ops counts

n	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2^n	n!
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10 ²	10 ³	10 ³	$3.6 \cdot 10^6$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^2$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^3	10	10^{3}	$1.0 \cdot 10^4$	10^{6}	10 ⁹	5 Sec.	Ď.
10^{4}	13	10^{4}	$1.3 \cdot 10^5$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^6$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2.0 \cdot 10^7$	10^{12}	10^{18}		

1.5x10¹³³
years on the world's fastest supercomputer

Orders of Growth

Base Efficiency Classes (part 1)

Class	Name	Comments
1	constant	Short of best-case efficiencies, very few reasonable examples can be given since an algorithm's running time typically goes to infinity when its input size grows infinitely large.
log n	logarithmic	Typically, a result of cutting a problem's size by a constant factor on each iteration of the algorithm (see Section 5.5). Note that a logarithmic algorithm cannot take into account all its input (or even a fixed fraction of it): any algorithm that does so will have at least linear running time.
n	linear	Algorithms that scan a list of size n (e.g., sequential search) belong to this class.
$n \log n$	"n-log-n"	Many divide-and-conquer algorithms (see Chapter 4), including mergesort and quicksort in the average case, fall into this category.

Base Efficiency Classes (part 2)

2 .		TT ' 11 1
n^{ω}	quadratic	Typically, characterizes efficiency of algorithms with
		two embedded loops (see the next section). Elemen-
.*		tary sorting algorithms and certain operations on
		<i>n</i> -by- <i>n</i> matrices are standard examples.
n^3	cubic	Typically, characterizes efficiency of algorithms with
		three embedded loops (see the next section). Several
		nontrivial algorithms from linear algebra fall into this
		class.
2^n	exponential	Typical for algorithms that generate all subsets of an
II.	Swa)	<i>n</i> -element set. Often, the term "exponential" is used
		in a broader sense to include this and larger orders of
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		growth as well.
	<i>c</i> 1	
n!	factorial	Typical for algorithms that generate all permutations
		of an <i>n</i> -element set.

General Strategy for Analysis of Non-recursive Algorithms

This strategy is taken from page 62 of your textbook:

- 1. Decide on a parameter indicating the input's size.
- 2. Identify the algorithm's basic operation.
- Check whether the number of times the basic operation is executed depends only on the size of the input.
 - If it depends on some other property, the best/worst/average case efficiencies must be investigated separately
- 4. Set up a sum expressing the number of times the basic operation is executed.
- 5. Use standard formulas and rules of sum manipulation to find a closed form formula c(n) for the sum from step 4 above.
- 6. Determine the efficiency class of the algorithm using asymptotic notations

Asymptotic order of growth

A way of comparing functions

- Big O (Big Oh)
- Big Ω
- Big Θ

Big-Oh in Pictures

Set of all functions whose *rate of growth* is the same as or lower than that of g(n).

Big-Oh in Pictures

 $f(n) \le c * g(n)$, for all $n \ge n_0$

Big-Oh (formal definition)

Definition:

■ a function f(n) is in the set O(g(n)) [denoted: f(n) $\in O(g(n))$] if there is a constant c and a positive integer n_0 such that

```
f(n) \le c * g(n), for all n \ge n_0
```

ie: f(n) is bounded above by some constant multiple of g(n)

■ Is $f(n) = 2n+6 \in O(n)$?

- Definition:
 - Need to find a constant c and a constant n_0 such that $f(n) \le cg(n)$ for $n > n_0$
- \bullet c = 4 and n_0 =3
- \rightarrow f(n) is O(n)

Big-Oh

Simple Rule: Drop lower order terms and constant factors

```
1. 50n^3 + 20n + 4 \in O(n^3)
```

2.
$$4n^2 + 10 \in O(n^2)$$

3.
$$n(2n + 1) \in O(n^2)$$

4.
$$3\log n + 1 \in O(\log n)$$

5.
$$3\log n + n \in O(n)$$

6.
$$1 + \log 6 \in O(1)$$

7.
$$5! + 3^2 \in O(1)$$

Kahoot time!

Big Omega

 $\Omega(g(n))$

Set of all functions whose *rate of growth* is the same as or higher than that of g(n).

Big Omega

 $f(n) \ge c * g(n)$, for all $n \ge n_0$

Big Omega

Definition:

a function f(n) is in the set $\Omega(g(n))$ [denoted: $f(n) \in \Omega(g(n))$] if there is a constant c and a positive integer n_0 such that

$$f(n) \ge c * g(n)$$
, for all $n \ge n_0$

 \blacksquare ie: f(n) is bounded below by some constant multiple of g(n)

Big Theta

Big Theta

 $c_2 g(n) \le f(n) \le c_1 g(n)$, for all $n \ge n_0$

Big Theta

Definition:

a function f(n) is in the set $\Theta(g(n))$ [denoted: $f(n) \in \Theta(g(n))$] if there is some constants c_1 and c_2 , and a positive integer n_0 such that

$$c_2 g(n) \le f(n) \le c_1 g(n)$$
, for all $n \ge n_0$

 \blacksquare ie: f(n) is bounded both above and below by constant multiples of g(n)

Summary of Notations

In general...

- We will usually focus on Big-Oh
- Why?
 - Focuses on worst case efficiency
 - Most common when people talk about algorithms
 - If you understand one, then the rest are basically the same

What is the order of the following functions?

- 10*n* O(n)
- $= 5n^2 + 20$ O(n²)
- \blacksquare 10000n + 2ⁿ $O(2^n)$

- Problem: find the max element in a list
- Input size measure:
 - Number of list items, i.e. n
- Basic operation:
 - Comparison

ALGORITHM MaxElement(A[0..n-1]) $maxval \leftarrow A[0]$ $for i \leftarrow 1 to n - 1 do$ if A[i] > maxvab $maxval \leftarrow A[i]$ $return \ maxval$

$$C(n) = \sum_{i=1}^{n-1} 1 = n - 1 \in O(n)$$

- Problem: *Multiplication of two matrices*
- Input size measure:
 - Matrix dimensions or total number of elements
- Basic operation:
 - Multiplication of two numbers

ALGORITHM
$$Matrix Multiplication(A[0..n-1, 0..n-1], B[0..n-1, 0..n-1])$$

for $i \leftarrow 0$ to $n-1$ do

$$C[i, j] \leftarrow 0.0$$

for $k \leftarrow 0$ to $n-1$ do

$$C[i, j] \leftarrow C[i, j] + A[i, k] + B[k, j]$$
return C

$$C(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} 1 = n^3 \in O(n^3)$$

Example 5: Element uniqueness problem

```
ALGORITHM UniqueElements (A[0..n-1])

//Determines whether all the elements in a given array are distinct
//Input: An array A[0..n-1]

//Output: Returns "true" if all the elements in A are distinct
// and "false" otherwise

for i \leftarrow 0 to n-2 do

for j \leftarrow i+1 to n-1 do

if A[i] = A[j] return false

return true
```

ALGORITHM UniqueElements (A[0..n-1])//Determines whether all the elements in a given array are distinct
//Input: An array A[0..n-1]//Output: Returns "true" if all the elements in A are distinct
// and "false" otherwise

for $i \leftarrow 0$ to n-2 do

for $j \leftarrow i+1$ to n-1 do

if A[i] = A[j] return false

return true

Parameter for input size:

n, the size of the array

Basic operation:

Comparison in the innermost loop

Worst case efficiency count... nested loop:

$$\begin{split} \sum_{i=0}^{n-2} \sum_{J=i+1}^{n-1} 1 &= \sum_{i=0}^{n-2} (n-1-i-1+1) \\ &= \sum_{i=0}^{n-2} (n-1-i) \\ &= \sum_{i=0}^{n-2} n - \sum_{i=0}^{n-2} 1 - \sum_{i=0}^{n-2} i \\ &= n(n-1) - (n-1) - (n-2)(n-1)/2 \\ &= n^2 - n - n + 1 - n^2/2 + 3n/2 - 1 \\ &= n^2/2 - n/2 \in O(n^2) \end{split}$$

Practice problems

- 1. Chapter 2.1, page 50, question 2
- 2. Chapter 2.2, page 60, question 5
- 3. Chapter 2.3, page 68, question 5,6