Project 2 - Singapore Housing Data and Kaggle Challenge

Presented by: Tan Jun Jie, Timothy Chan and Kho Guan Guo

Presented on: 03 March 2023

Agenda

- Problem statement
- Factors for resale price
- Analysis of features affecting resale price
- Modelling: Methodology and Findings
- Model Conclusions
- Model Limitations
- Recommendations

Introduction: Backdrop

- 1. Singapore's HDB resale market is becoming increasingly competitive.
- 2. Buyer, seller and real estate agents are all competing for information.
- 3. Accurate information is important for decision making.

Problem Statement

Real Estate company needs a model for their agents to

 Help themselves and clients better understand the key features that affect pricing.

2. Help **selling clients** know what to expect in terms of pricing in order to **list**.

3. Help **buying clients budget** in terms of what features they want from their purchase.

Factors Affecting Resale Price

1. Size

2. Location

3. Age

4. Amenities

Analysis of features

affecting resale price

```
resale price
                          postal-
                   full_flat_type 0.74
                 bus stop name 0.68
                 floor_area_sqm 0.66
                   max_floor_lvl- 0.49
                  planning area 0.38
                     mid_storey 0.35
count_of_convenience_within_1km 0.13
      bus stop nearest distance 0.034
                    pri_sch_rank -0.0035
        pri_sch_nearest_distance--0.013
        hawker_nearest_distance -0.015
          average dist amenities -0.062
                   sec_sch_rank -0.076
           mrt nearest distance -0.13
             total_dwelling_units -0.15
             distance_to_cityhall -0.25
                       hdb_age -0.35
```

Strongest +ve corr: location, type of flats, size

Strongest -ve corr: age and distance to CBD

Resale Price vs Floor Area

Average Resale Price vs HDB age

Resale Price vs Distance to City Hall

Resale Price vs Distance to Nearest Hawker

Resale Price vs Distance to Nearest MRT

Avg Resale Price vs Number of Levels

Avg Resale Price vs Level Of Unit Sold

Modelling

Linear Regression Model Benchmarking

Model	Number_of_ Features	training_ RMSE	baseline_ RMSE	RidgeCV_ RMSE	LassoCV_ RMSE	Polynomial_4 _train_RMSE	Polynomial_4 _baseline_ RMSE	Number_of_ Poly_Feature s	Recommend
1	18	\$ 54,860	\$ 54,630	\$ 54,834	\$ 54,859	\$ 37,760	\$ 37,766	7,315	Yes
2	21	\$ 54,849	\$ 54,609	\$ 54,821	\$ 54,849	-	-	-	
3	28	\$ 54,571	\$ 54,314	\$ 54,550	\$ 54,571	-	-	-	

^{*}All model feature inputs have been standard-scaled

^{*}RMSE - root mean squared error

Simplicity or Accuracy?

	Simple Model	Complex Model		
Number of Features	18	7,315		
Model Type	Ordinary Linear Regression	OLS with polynomial degree=4		
Interpretability	Intuitive	Only a machine can!		
Average Accuracy Score [^]	± 10% error	± 7% error		
Types of features	Location, size, amenities, age factors	Location, size, amenities, age, plus interaction features up to a combination of *four features		
Utility	Sufficiently Simple	Accuracy		

[^]Average accuracy score is based on the R-squared score of each model

^{*}The optimal polynomial degree that produces the minimum error based on the set of 18 features is 4.

Housing Price Premia Ranking

Ranking the 18 features, it turns out that total_dwelling_units and bus_stop_nearest_distance are least significant.

Model Robustness

- No overfitting with consistent out-of-sample testing results
- High accuracy value that explains at least 80-90% of resale_price
- 18-feature model is simple to use and understand
- Captures the most important features from the four key factors of housing prices
 - Location
 - Size
 - Amenities
 - Age

Model Conclusions

- Location is not King! SIZE IS KING!
- Size > Location > Age > Amenities
- Locations closer to city centre ("City Hall") are more expensive and taller!
- Locations in the West tend to command a higher premium
- Among the Amenities, proximity to MRT has the biggest premium
- Proximity to good schools is a bonus, not a primary consideration for most

Model Limitations

- Trained on historical data from 2012-2022. Model will need to be retrained on the new market regime.
- The Simple model with just 18 features does not capture sufficient value-add from feature interaction.
- The Complex polynomial model is unintuitive with 7,315 features despite its accuracy.
- Model can only capture 80-90% of price variation meaning clients still have 10-20% buffer with which they will need to budget for.

Recommendations

- 1. Use simple 18 feature OLS model
- Clients can expect +/- \$55,000 on the predicted price.
- Simple and easy to use.
- Accurately captures the predictive value of the 4 mentioned factors.

2. Accurate budgeting for Buy/Sell advice can be given based on the model. (80-90% accuracy)

Agents can advise clients based on a structure given in this model. Size > Location > Age >
 Amenities.

4. Use the 4 main features to help client narrow down search or listing parameters for the best results.