

FCC TEST REPORT

47 CFR FCC Part 15 Subpart B

Report Reference No....... JTT20150500106

FCC ID...... 2AEP7N451

Compiled by

(position+printed name+signature)..: File administrators Kevin Liu

Supervised by

(position+printed name+signature)..: Project Engineer Kevin Liu kevim Lin kevim Lin Eric Wang

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue....: May 18, 2015

Representative Laboratory Name .: SHENZHEN JIETONG INFORMATION TECHNOLOGY CO., LTD

No.12 Building Shangsha, Innovation & Technology Park, Futian Address:

District, Shenzhen, P.R.China

Testing Laboratory Name **Shenzhen Academy of Metrology and Quality Inspection**

No.4 TongFa Road, Xili TownNanshan District, Shenzhen, China Address:

Applicant's name..... **Noblex Argentina S.A.**

Jaramillo 3670 - CIUDAD AUTONOMA DE BUENOS AIRES -Address

ARGENTINA

Test specification:

Standard 47 CFR FCC Part 15 Subpart B - Unintentional Radiators

ANSI C63.4: 2009

TRF Originator...... SHENZHEN JIETONG INFORMATION TECHNOLOGY CO., LTD

SHENZHEN JIETONG INFORMATION TECHNOLOGY CO., LTD All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the SHENZHEN JIETONG INFORMATION TECHNOLOGY CO., LTD as copyright owner and source of the material. SHENZHEN JIETONG INFORMATION TECHNOLOGY CO., LTDtakess no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: **Smart Phone**

Trade Mark: **NOBLEX**

Manufacturer..... **AMER MOBILE CO., LIMITED**

Model/Type reference...... N451

Listed Models N/A

Rating DC 3.70V

Hardware version: G316_MAIN_PCB_V2.2

Software version: Newsan NOBLEX AR SW V1.0 HW V1.0 20150421

Result....: **PASS** Page 2 of 16 Report No.: JTT20150500106

TEST REPORT

Test Report No. :	JTT20150500106	May 18, 2015
	31120130300100	Date of issue

Equipment under Test : Smart Phone

Model /Type : N451

Listed Models : N/A

Applicant : Noblex Argentina S.A.

Address : Jaramillo 3670 – CIUDAD AUTONOMA DE BUENOS

AIRES – ARGENTINA

Manufacturer AMER MOBILE CO.,LIMITED

Address : Room A30, 9th floor, Silvercorp International Tower No

707-713, Nathan Road, mongkok, Kowloon, Hong Kong

Test Result: PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: JTT20150500106

Contents

1.	TEST STANDARDS	4
_		
<u>2.</u>	SUMMARY	5
2.1.	General Remarks	5
2.2.	Product Description	5
2.3.	Equipment under Test	5
2.4.	Short description of the Equipment under Test (EUT)	6
2.5.	EUT operation mode	6
2.6.	Related Submittal(s) / Grant (s)	6
2.7.	Internal Identification of AE used during the test	6
2.8.	Modifications	6
2.9.	EUT configuration	6
2.10.	Configuration of Tested System	7
2.11.	NOTE	7
<u>3.</u>	TEST ENVIRONMENT	8
3.1.	Address of the test laboratory	8
3.2.	Test Facility	8
3.3.	Environmental conditions	8
3.4.	Statement of the measurement uncertainty	8
3.5.	Equipments Used during the Test	9
<u>4.</u>	TEST CONDITIONS AND RESULTS	. 10
4.1.	Conducted Emissions Test	10
4.2.	Radiated Emission Test	12
5.	TEST SETUP PHOTOS OF THE EUT	. 16

1. TEST STANDARDS

The tests were performed according to following standards:

47 CFR FCC Part 15 Subpart B - Unintentional Radiators

<u>ANSI C63.4: 2009</u> – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz

Page 5 of 16 Report No.: JTT20150500106

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Apr 20, 2015
Testing commenced on	:	Apr 21, 2015
Testing concluded on	:	May 20, 2015

2.2. Product Description

The **Noblex Argentina S.A.**'s Model: N451 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	Smart Phone
Model Number	N451
Modilation Type	GMSK for GSM/GPRS/EDGE, 8-PSK for EDGE only
Modilation Type	Downlink,QPSK for UMTS
Antenna Type	Internal
UMTS Operation Frequency Band	Device supported UMTS FDD Band II and FDD Band V
	IEEE 802.11b:2412-2462MHz
WLAN FCC Operation frequency	IEEE 802.11g:2412-2462MHz
WEAR FOO Operation frequency	IEEE 802.11n HT20:2412-2462MHz
	IEEE 802.11n HT40:2422-2452MHz
BT FCC Operation frequency	2402MHz-2480MHz
HSDPA Release Version	Release 10
HSUPA Release Version	Release 6
DC-HSUPA Release Version	Not Supported
WCDMA Release Version	R99
	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)
WLAN FCC Modulation Type	IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)
WEART GO Modulation Type	IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)
	IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
BT Modulation Type	GFSK (BT 4.0)/GFSK,8DPSK,π/4DQPSK(BT 3.0+EDR)
Hardware version	G316_MAIN_PCB_V2.2
Software version	Newsan_NOBLEX_AR_SW_V1.0_HW_V1.0_20150421
Android version	Android 4.4.2
GPS function	Supported
WLAN	Supported 802.11b/802.11g/802.11n
Bluetooth	Supported BT 4.0/BT 3.0+EDR
GSM/EDGE/GPRS	Supported GSM/GPRS/EDGE
GSM/EDGE/GPRS Power Class	GSM900:Power Class 4/DCS1800:Power Class 1
GSM/EDGE/GPRS Operation Frequency	GSM900 :880MHz-915MHz/DCS1800:1710MHz-1785MHz
GSM/EDGE/GPRS Operation Frequency	GSM900/DCS1800/GPRS900/ GPRS
Band	1800/EDGE900/EDGE1800
GSM Release Version	R99
GPRS/EDGE Multislot Class	GPRS/EDGE: Multi-slot Class 12
Extreme temp. Tolerance	-30°C to +50°C
Extreme vol. Limits	3.40VDC to 4.20VDC (nominal: 3.70VDC)
GPRS operation mode	Class B

2.3. Equipment under Test

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
			Other (specified in blank below))

DC 3.70V

2.4. Short description of the Equipment under Test (EUT)

2.4.1 General Description

N451 is subscriber equipment in the WCDMA/GSM system. The HSPA/UMTS frequency band is Band II, Band V; The GSM/GPRS/EDGE frequency and includes GSM850 and GSM900 and DCS1800 and PCS1900, but only Band II and Band V and GSM850 and PCS1900 bands test data included in this report. The Smart Phone implements such functions as RF signal receiving/transmitting, HSPA/UMTS and GSM/GPRS/EDGE protocol processing, voice, video MMS service, GPS, AGPS and WIFI etc. Externally it provides micro SD card interface, earphone port (to provide voice service) and SIM card interface. It also provides Bluetooth module to synchronize data between a PC and the phone, or to use the built-in modem of the phone to access the Internet with a PC, or to exchange data with other Bluetooth devices.

NOTE: Unless otherwise noted in the report, the functional boards installed in the units shall be selected from the below list, but not means all the functional boards listed below shall be installed in one unit.

2.4.2 Test Environments

NOTE: The values used in the test report maybe stringent than the declared.

Environment Parameter	Selected Values During Te	Selected Values During Tests			
NTNV	Temperature	Voltage	Relative Humidity		
	Ambient	3.7VDC	Ambient		

2.5. EUT operation mode

The EUT has been tested under typical operating condition.

2.6. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AEP7N451** filling to comply with the FCC Part 15, Subpart B Rules.

2.7. Internal Identification of AE used during the test

AE ID*	Description
AE1	Charger

AE1

Model: S005UA0500100

INPUT: 100-240V 50/60Hz 0.15A OUTPUT: DC 5.0V,1000mAh

*AE ID: is used to identify the test sample in the lab internally.

We not used AE2 when for FCC Part 15B test.

2.8. Modifications

No modifications were implemented to meet testing criteria.

2.9. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- - supplied by the lab

0	Power Cable	Length (m):	1
		Shield :	1
		Detachable :	1
0	Multimeter	Manufacturer:	1
		Model No. :	1

2.10. Configuration of Tested System

Configuration of Tested System

Equipment Used in Tested System

No.	Equipment	Manufacturer	Model No.	Serial No.	Length	shielded/unshielded	Notes
1	PC	Lenovo	R4900D	1RNN42X	1	1	DOC
2	PC	Lenovo	R4900D	1RNN89X	/	1	DOC
3	Printer	HP	C3990	C3990A	1	1	DOC
4	Mouse	DELL	MO56UO A	G0E02SY7	1.00m	unshielded	DOC
5	Keyboard	DELL	L100	CNRH656658907 26009L	1	1	DOC
6	USB Cable (EUT to PC)	Genshuo	USB 2.0	N/A	0.60m	unshielded	N/A
7	USB Cable (Printer to PC)	Genshuo	USB 2.0	N/A	1.20m	unshielded	N/A
8	Power line	1	/	N/A	1.00m	unshielded	N/A
9	Adapter	HIPRO	HP- A0904A3	F1120709016S40 4	1.50m	unshielded	DOC

2.11. NOTE

1. The EUT is a Mobile Phone with WCDMA/GSM/GPRS/EDGE, WiFi and Bluetooth function, The functions of the EUT listed as below:

	Test Standards	Reference Report
GSM/GPRS/EDGE	FCC Part 22/FCC Part 24	JTT20150500201
WCDMA	FCC Part 22/FCC Part 24	JTT20150500202
Bluetooth	FCC Part 15 C 15.247	JTT20150500203
BLE	FCC Part 15 C 15.247	JTT20150500204
WiFi	FCC Part 15 C 15.247	JTT20150500205
USB Port	FCC Part 15 B	JTT20150500206
SAR	FCC Part 2 §2.1093	JTT20150500207

Page 8 of 16 Report No.: JTT20150500106

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Academy of Metrology and Quality Inspection

No.4 TongFa Road, Xili TownNanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2003) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration information:

Shenzhen Academy of Metrology and Quality Inspection No.4 TongFa Road, Xili TownNanshan District, Shenzhen, China Test Firm FCC Registration number: 806614

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Academy of Metrology and Quality Inspection National Digital Electronic Product Testing Center quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Academy of Metrology and Quality Inspection National Digital Electronic Product Testing Center is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.5 dB	(1)
Radiated Emission	1~18GHz	4.6 dB	(1)
Conducted Disturbance	0.009~30MHz	3.5 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.5. Equipments Used during the Test

Conducted Disturbance Test Equipment

No.	Equipment	Manufacturer	Model No.	LAST CALIB	Period
SB3319	EMI Test Receiver	R&S	ESCS30	Dec.20,2014	1 Year
SB4357	AMN	R&S	ENV216	Oct.14,2014	1 Year
SB3321	AMN	R&S	ESH2-Z5	Jan.19,2015	1 Year

Radiated Disturbance Test Equipment

No.	Equipment	Manufacturer	Model No.	LAST CALIB	Period		
SB3436	EMI Test Receiver	Rohde & Schwarz	ESI26	Dec.29,2014	1 Year		
SB5472/02	Bilog Antenna	SCHWARZBECK	VULB9163	Jan.18,2015	1 Year		
SB9422/16	Horn Antenna	Rohde & Schwarz	HF907	May.19.2015	1Year		
SB3345	Loop Antenna	Schwarzbeck	FMZB1516	Jan.20, 2015	1Year		
N/A	EMI TEST Software	Rohde&Schwarz	ESK1	N/A	N/A		

The Cal. Interval was one year

4. TEST CONDITIONS AND RESULTS

4.1. Conducted Emissions Test

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4-2009.
- 2. Support equipment, if needed, was placed as per ANSI C63.4-2009.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4-2009.
- 4. The EUT received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

CONDUCTED POWER LINE EMISSION LIMIT

For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following:

Eroguanav	Maximum RF Line Voltage (dBμV)						
Frequency - (MHz) -	CLA	SS A	CLA	SS B			
(IVITIZ)	Q.P.	Ave.	Q.P.	Ave.			
0.15 - 0.50	79	66	66-56*	56-46*			
0.50 - 5.00	73	60	56	46			
5.00 - 30.0	73	60	60	50			

^{*} Decreasing linearly with the logarithm of the frequency

TEST RESULTS

Note: We tested the playing video Mode, Data transmission (connected PC) Mode, camera Mode and so on, and recorded the worst case at the playing video Mode.

Fraguenay	QP	QP	AV	AV	QP	AV	Factor	QP	AV	Phase
Frequency	level	Limit	level	Limit	read	read	racioi	margin	margin	Phase
0.166	40.9	65.2	25.0	55.2	31.2	15.3	9.7	24.3	30.2	LINE
0.374	38.8	58.4	30.1	48.4	29.1	20.4	9.7	19.6	18.3	LINE
1.798	40.1	56	30.6	46	30.3	20.8	9.8	15.9	15.4	LINE
2.598	39.2	56	28.1	46	29.3	18.2	9.9	16.8	17.9	LINE
20.724	38.8	60	29.1	50	28.6	18.9	10.2	21.2	20.9	LINE
21.512	38.8	60	26.2	50	28.6	16	10.2	21.2	23.8	LINE

Fraguenay	QP	QP Limit	AV	AV	QP	AV	Factor	QP	AV	Phase
Frequency	level	QF LIIIII	level	Limit	read	read	racioi	margin	margin	Filase
0.166	37.9	65.2	24.9	55.2	28.2	15.2	9.7	27.3	30.3	NEUTRAL
0.418	33.1	57.5	28.7	47.5	23.4	19.0	9.7	24.4	18.8	NEUTRAL
1.694	35.4	56.0	24.0	46	25.6	14.2	9.8	20.6	22.0	NEUTRAL
1.786	35.4	56.0	21.7	46	25.6	11.9	9.8	20.6	24.3	NEUTRAL
2.41	34.6	56.0	21.8	46	24.7	11.9	9.9	21.4	24.2	NEUTRAL
15.264	31.6	60.0	19.3	50	21.7	9.4	9.9	28.4	30.7	NEUTRAL

4.2. Radiated Emission Test

TEST CONFIGURATION

Frequency range: 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- The maximum operation frequency was 1.2GHz, the radiated emission test frequency from 30 MHz to 6GHz.

8. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-6GHz	Double Ridged Horn Antenna	3

9. Setting test receiver/spectrum as following table states:

Page 13 of 16

Report No.: JTT20150500106

Test Frequency range	Test Receiver/Spectrum Setting	Detector
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	Peak
10Hz 60Hz	Sweep time=Auto	(Receiver)
1GHz-6GHz	Average Value: RBW=1MHz/VBW=3MHz,	Average
	Sweep time=Auto	(Receiver)

FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)		
RA = Reading Amplitude	AG = Amplifier Gain		
AF = Antenna Factor			

For example

Frequency	FS	RA	AF	CL	AG	Transd
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300.00	40	58.1	12.2	1.6	31.90	

Transd=AF +CL-AG

RADIATION LIMIT

For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	300	20log(2400/F(KHz))+80	2400/F(KHz)
0.49-1.705	30	20log(24000/F(KHz))+40	24000/F(KHz)
1.705-30	30	20log(30)+40	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

For 30MHz-1GHz

Frequency (MHz)	Polarity	cable loss (dB)	Antenna factor (dB)	Readings (dBuV/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
166.072	Horizontal	1.5	8.7	36.4	29.2	43.5	14.3
232.164	Horizontal	1.7	11.2	37.6	28.1	46.0	17.9
364.348	Horizontal	2.2	14.3	47.2	35.1	46.0	10.9
432.384	Horizontal	2.5	15.5	42.9	29.9	46.0	16.1
599.595	Horizontal	3.1	16.6	49.6	36.1	46.0	9.9
632.6305	Horizontal	3.2	18.5	51.2	35.9	46.0	10.1
41.663	Vertical	0.7	13.6	39.1	26.2	40.0	13.8
45.551	Vertical	0.8	13.6	33.2	20.4	40.0	19.6
166.072	Vertical	1.5	8.7	32.6	25.4	43.5	18.1
366.292	Vertical	2.2	14.3	43.2	31.1	46.0	14.9
751.182	Vertical	3.5	18.8	50.2	34.9	46.0	11.1
764.789	Vertical	3.6	18.8	49.9	34.7	46.0	11.3

For 1GHz-6GHz

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Ant. Polar. H / V	
						Peak & AV	H & V	ì

Remark:

- 1. Emission level (dBuV/m) =Reading Value (dBuV) + Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value- Emission level.
- 5. The average measurement was not performed when the peak measured data under the limit of average detection.
- 6. "---" states at least 20dB lower than limit, not record any values.

5. Test Setup Photos of the EUT

.....End of Report.....