

Índice

- Winged Edges
- 2. Half Edges
- 3. Voronoi Diagram


```
struct Edge {
 Vertex *v;
 Face *f;
  Edge *prev, *next;
  Edge *sym;
```



```
struct Edge {
   Vertex *v;
   Face *f;
   Edge *prev, *next;
   Edge *sym;
   ...
};

struct Vertex { Edge *e;...};
struct Face {Edge *e; ...};
```


Iterar sobre las aristas de la cara f

Iterar sobre las aristas de la cara f

```
Edge *start = f->e;
Edge *e = start;
do {
  visit(e);
  e = e->next; // CCW order
} while (e != start);
```


Calcule la normal de la cara f

Calcule la normal de la cara f

```
f->norm = Vec3(0,0,0);
Edge *start = f->e;
Edge *e = start;
do {
    const Vec3& v = e->v->pos; // vertex position
    const Vec3& vnext = e->next->v->pos;
    f->norm.x += (v.y - vnext.y)*(v.z + vnext.z);
    f->norm.y += (v.z - vnext.z)*(v.x + vnext.x);
    f->norm.z += (v.x - vnext.x)*(v.y + vnext.y);
    e = e->next;
} while (e != start);
f->norm.normalize();
```


Calcule la normal del vértice v

Calcule la normal del vértice v

```
v->norm = Vec3(0,0,0);
Edge *e, *start;
e = start = v->e;
do {
    v->norm += e->f->norm;
    e = e->prev->sym;
} while (e != start);
v->norm.normalize();
```


Vertex-Edge table

VERTEX	Χ	Υ	Z	ESTART
V ₁	X ₁	Y ₁	Z ₁	E ₁
V ₂	X_2	Y ₂	Z_2	E ₂
V ₃	X_3	Y ₃	Z ₃	E ₃
V ₄	X_4	Y_4	Z_4	E ₄
V ₅	X ₅	Y ₅	Z ₅	E ₅
V ₆	X ₆	Y ₆	Z ₆	E ₆
V_7	X ₇	Y ₇	Z_7	E ₇
V ₈	X ₈	Y ₈	Z ₈	E ₈

Face-Edge table

FACE	ESTART
F ₁	E ₁
F ₂	E ₅
F ₃	E ₁₁
F ₄	E ₉
F ₅	E ₄
F ₆	E ₈

Edge-Edge relation

EDGE	VSTART	VEND	EPCW	ENCW	EPCCW	ENCCW	FCW	FCCW
E ₁	V ₁	V_2	E ₄	E ₂	E ₁₀	E ₉	F ₁	F ₄
E ₂	V ₂	V_3	E ₁	E ₃	E ₁₁	E ₁₀	F ₁	F ₆
E ₃	V ₃	V_4	E ₂	E_4	E ₁₂	E ₁₁	F ₁	F ₃
E ₄	V ₄	V ₁	E_3	E ₁	E ₉	E ₁₂	F ₁	F ₅
E ₅	V ₅	V ₆	E ₈	E ₆	E ₉	E ₁₀	F ₂	F ₄
E ₆	V ₆	V_7	E ₅	E ₇	E ₁₂	E ₉	F ₂	F ₅
E ₇	V ₇	V_8	E ₆	E ₈	E ₁₁	E ₁₂	F ₂	F ₃
E ₈	V ₈	V_5	E ₇	E ₅	E ₁₀	E ₁₁	F ₂	F ₆
E ₉	V ₁	V_6	E ₁	E ₅	E ₆	E ₄	F ₄	F ₅
E ₁₀	V ₅	V_2	E ₅	E ₁	E ₂	E ₈	F ₄	F ₆
E ₁₁	V ₃	V ₈	E ₃	E ₇	E ₈	E ₂	F ₃	F ₆
E ₁₂	V ₇	V_4	E ₇	E ₃	E ₄	E ₆	F ₃	F ₅

Vertex	Coordinate	Incident edge
v_1	(1, 4, 0)	e_0
v_2	(3, 4, 0)	e_5
v_3	(0, 2, 0)	e_1
v_4	(2, 2, 0)	e_2
v_5	(4, 2, 0)	e_8
v_6	(1, 0, 0)	e_{10}
v_7	(3, 0, 0)	e_{14}

Face	Half-edge
f_0	e_0
f_1	e_3
f_2	e_6
f_3	e_9
f_4	e_{12}
f_5	e_{15}

Half-edge	Origin	Twin	Incident face	Next	Prev
e_0	v_1	<i>e</i> ₁₈	f_0	e_1	e_2
e_1	v_3	e_{11}	f_0	e_2	e_0
e_2	v_4	e ₃	f_0	e_0	e_1
e_3	v_1	e_2	f_1	e_4	e ₅
e_4	$ u_4$	e_6	f_1	e_5	e_3
e_5	v_2	e_{19}	f_1	e_3	e_4
e_6	v_2	e_4	f_2	e_7	e ₈
e_7	$ u_4$	e_{17}	f_2	e ₈	e_6
e_8	v_5	e_{20}	f_2	e_6	e_7
e_9	v_3	e_{21}	f_3	e_{10}	e_{11}
e_{10}	v_6	e_{12}	f_3	e_{11}	e_9
e_{11}	$ u_4$	e_1	f_3	e_9	e_{10}
e_{12}	$ u_4$	e_{10}	f_4	e_{13}	e_{14}
e_{13}	v_6	e_{22}	f_4	e_{14}	e_{12}
e_{14}	v_7	e_{15}	f_4	e_{12}	e_{13}
e_{15}	v_4	e_{14}	f_5	<i>e</i> ₁₆	e_{17}
e_{16}	v_7	e_{23}	f_5	e_{17}	e_{15}
e_{17}	v_5	e ₇	f_5	e ₁₅	e_{16}
e_{18}	v_3	e_0	Ø	e_{19}	e_{21}
e_{19}	v_1	e ₅	Ø	e_{20}	e_{18}
e_{20}	v_2	e ₈	Ø	e ₂₃	e_{19}
e_{21}	ν_6	e 9	Ø	<i>e</i> ₁₈	e_{22}
e_{22}	v_7	e_{13}	Ø	e_{21}	e_{23}
e_{23}	v_5	e_{16}	Ø	e_{22}	e ₂₀

https://jerryyin.info/geometry-processing-algorithms/half-edge/

Línea equidistante a los dos puntos

Punto equidistante a los tres puntos

Distancia Euclideana

