Федеральное государственное автономное образовательное учреждение

высшего образования

«Национальный исследовательский университет ИТМО» Факультет Программной Инженерии и Компьютерной Техники

Вариант №9 Лабораторная работа №4

по теме

Аппроксимация функции методом наименьших квадратов по дисциплине

Вычислительная математика

Выполнил Студент группы Р3212 **Кобелев Р.П.**к. т. н. Преподаватель: **Наумова Н.А.**

Содержание

1	Цель работы		
2	Порядок выполнения работ	2	
3	Вычислительная реализация задачи	3	
	3.1 Табулирование функции	3	
	3.2 Линейное и квадратичное приближения	3	
	3.2.1 Линейное приближение	3	
	3.2.2 Квадратичное приближение	3	
	3.2.3 Нахождение СКО	4	
	3.2.4 Расчет и Сравнение СКО		
	3.3 Выбор наилучшего приближения	4	
	3.4 Построение графиков		
	3.5 Вывод	5	
4	Программная реализация задачи	6	
	4.1 Листинг программы	9	
	4.2 Пример работы программы	14	
5	Github	14	
6	Вывол	14	

1 Цель работы

Найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

2 Порядок выполнения работ

Программная реализация задачи: Для исследования использовать:

- линейную функцию,
- полиномиальную функцию 2-й степени,
- полиномиальную функцию 3-й степени,
- экспоненциальную функцию,
- логарифмическую функцию,
- степенную функцию.

Методика проведения исследования:

- 1. Вычислить меру отклонения: $S = \sum_{i=1}^n [\varphi(x_i) y_i]^2$ для всех исследуаемых функций;
- 2. Уточнить значения коэффициентов эмпирических функций, минимизируя функцию S;
- 3. Сформировать массивы предполагаемых эмпирических зависимостей $(\varphi(x_i), \varepsilon_i)$;
- 4. Определить среднеквадратичное отклонение для каждой аппроксимирующей функции. Выбрать наименьшее значение и, следовательно, наилучшее приближение;
- 5. Построить графики полученных эмпирических функций.

3 Вычислительная реализация задачи

3.1 Табулирование функции

Первым делом сформируем таблицу значений функции $y = \frac{4x}{x^4+9}$ на интервале [0;2] с шагом h = 0.2.

x	y
0.0	0.000
0.2	0.0888
0.4	0.1772
0.6	0.2628
0.8	0.34
1.0	0.4
1.2	0.4334
1.4	0.436
1.6	0.4114
1.8	0.3692
2.0	0.32

3.2 Линейное и квадратичное приближения

Теперь найдем линейное (первой степени) и квадратичное (второй степени) приближения для этой функции, используя метод наименьших квадратов. Приближения будут иметь вид y = ax + b для линейного и $y = ax^2 + bx + c$ для квадратичного.

3.2.1 Линейное приближение

Для линейного приближения мы используем формулу метода наименьших квадратов:

$$na + \left(\sum x_i\right)b = \sum y_i$$
$$\left(\sum x_i\right)a + \left(\sum x_i^2\right)b = \sum x_iy_i$$

Подставляем реальные значения:

$$11a + (11)b = 3.2338$$

 $11a + 15.4b = 4.0096$

Решая систему, находим a и b. a = 0.17631, b = 0.11766

3.2.2 Квадратичное приближение

Аналогично, для квадратичного приближения найдем коэффициенты a, b, и c, решив соответствующую систему уравнений.

Приступим к вычислениям коэффициентов:

$$na + \left(\sum x_i\right)b + \left(\sum x_i^2\right)c = \sum y_i$$
$$\left(\sum x_i\right)a + \left(\sum x_i^2\right)b + \left(\sum x_i^3\right)c = \sum x_iy_i$$
$$\left(\sum x_i^2\right)a + \left(\sum x_i^3\right)b + \left(\sum x_i^4\right)c = \sum x_i^2y_i$$

Сначала вычислим необходимые суммы:

$$-S_x = 11$$

$$-S_{x^2} = 15.4$$

$$-S_{x^3} = 24.2$$

$$-S_{x^4} = 40.5328$$

-
$$S_y = 3.2338$$

$$-S_{xy} = 4.0096$$

$$-S_{x^2y} = 5.75136$$

Мы можем подставить их в систему уравнений для квадратичного приближения: 11x+11y+15.4z=3.2338 11x+15.4y+24.2z=4.0096 15.4x+24.2y+40.5328z=5.75136

$$11a + 11b + 15, 4c = 3.2338$$
$$11a + 15.4b + 24.2c = 4.0096$$
$$15.4a + 24.2b + 40.5328c = 5.75136$$

Эту систему уравнений можно решить, чтобы найти коэффициенты а, b, и с. Решение системы дает:

- $-a \approx -0.2386$
- $b \approx 0.6535$
- $c \approx -0.0255$

Результаты

Коэффициенты линейного приближения получились как y = 0.17631x + 0.11766, а коэффициенты квадратичного приближения как $y = -0.2386x^2 + 0.6535x - 0.0255$.

3.2.3 Нахождение СКО

Для линейного приближения у нас есть формула $\hat{y}_i = 0.17631x + 0.11766$. СКО вычисляется как:

$$CKO = \sqrt{\frac{1}{n} \sum (y_i - \hat{y}_i)^2}$$

Для квадратичного приближения формула выглядит как $\hat{y}_i = -0.2386x^2 + 0.6535x - 0.0255$. Процесс аналогичен линейному приближению, но с использованием этой формулы. '

3.2.4 Расчет и Сравнение СКО

После выполнения этих шагов для всех точек интервала, мы получаем СКО для линейного и квадратичного приближений:

СКО (линейное приближение) ≈ 0.086

СКО (квадратичное приближение) ≈ 0.015

Эти расчеты показывают, что квадратичное приближение обеспечивает меньшее среднеквадратическое отклонение, что говорит о его более высокой точности по сравнению с линейным приближением для данной функции и заданного интервала.

Это означает, что квадратичное приближение лучше аппроксимирует данную функцию на выбранном интервале, так как имеет меньшее среднеквадратическое отклонение.

3.3 Выбор наилучшего приближения

На основе среднеквадратических отклонений, наилучшим приближением является квадратичное, так как его СКО меньше.

3.4 Построение графиков

Теперь построим графики исходной функции и аппроксимаций.

Где красный график - оригинальная функция, синия - линейная, а зелёная - квадратичная

3.5 Вывод

На основе среднеквадратического отклонения мы определили, что квадратичное приближение лучше подходит для аппроксимации данной функции, поскольку оно дает меньшее значение СКО.

4 Программная реализация задачи

4.1 Листинг программы

Approximation.py

```
1 import numpy as np
 2 from enum import Enum
 3 from dataclasses import dataclass
   ACCURACY = 0.001
 5
 6
 7
 8 class Function(str, Enum):
9
      Polynomial = '0'
      Exponential = '3'
10
      Logarithmic = '4'
11
      Power = '5'
12
13
14
15 @dataclass
16 class ApproximationCalculator:
      function: Function
17
18
      x: []
19
      y: []
20
      coefficients: []
21
      m: int = -1
22
      def calculate_coefficients(self):
23
24
         self.coefficients = approximation_calculation(
             self.function, len(self.x), self.x, self.y, m = self.m
25
         )
26
27
         return self.coefficients
28
29
      def calculate_differences(self):
30
         return differences_calculation(
             self.function, len(self.x), self.coefficients, self.x, self.y
31
```

```
)
32
33
       def calculate_standard_deviation(self):
34
35
         diffs = self.calculate_differences()
          return standard_deviation_calculation(diffs, len(self.x))
36
37
38
      def calculate_pearson_correlation(self):
39
         n = len(self.x)
40
          sum_x = np.sum(self.x)
          sum_y = np.sum(self.y)
41
42
          sum_xy = np.sum(
             self.x[i] * self.y[j] if i = j else 0
43
44
             for i in range(len(self.x))
             for j in range(len(self.y))
45
         )
46
47
         sum_x_squared = np.sum(x**2 for x in self.x)
         sum_y_squared = np.sum(y**2 for y in self.y)
48
49
50
         numerator = n * sum_xy - sum_x * sum_y
51
         denominator = (
52
             (n * sum_x_squared - sum_x**2) * (n * sum_y_squared - sum_y**2)
53
         ) ** 0.5
54
55
         if denominator = 0.0:
             return [False, "Division by zero деление( наноль)"]
56
57
         r = numerator / denominator
58
59
60
         if abs(r) < 0.8:
61
             return [False, "No strong linear dependency линейная( зависимость)
                → detected."1
62
63
         return [True,r]
64
65
      def qet_phi_values(self):
66
         return np.array(
             [get_function_value(self.function, self.coefficients, x) for x in self.x]
67
68
          )
69
70
      def get_epsilon_values(self):
71
         return self.y - self.get_phi_values()
72
73
      def print_function(self):
         if self.function = Function.Polynomial:
74
75
             terms = []
76
             for i, coeff in enumerate(self.coefficients):
                if coeff = 0 and i \neq 0:
77
78
                   continue
79
                term = (
80
                   f"{coeff:.10f}"
81
                   if i = 0 or not terms
                   else f"{'+' if coeff ≥ 0 else ''}{coeff:.10f}"
82
83
84
                if i = 1:
                   term += "x"
85
86
                elif i > 1:
```

```
term += f"x^{i}"
 87
 88
                 terms.append(term)
 89
              if not terms:
                 terms.append("0")
 90
              return "".join(terms)
 91
           elif self.function = Function.Exponential:
 92
 93
              return f"{self.coefficients[0]:.10f}e^{self.coefficients[1]:+.10f}x"
 94
           elif self.function = Function.Logarithmic:
 95
              return f"{self.coefficients[0]:.10f} + {self.coefficients[1]:+.10f}ln(x)"
           elif self.function = Function.Power:
 96
 97
              return f"{self.coefficients[0]:.10f}x^{self.coefficients[1]:+.10f}"
 98
 99
100
    def approximation_calculation(f, n, x, y, m=1):
       if f = Function.Polynomial:
101
           b = np.zeros(m)
102
103
           matrix = np.zeros((m, m))
104
105
           for i in range(m):
              b[i] = np.sum(x[k] ** i * y[k] for k in range(n))
106
107
              for j in range(m):
                 matrix[i, j] = np.sum(x[k] ** (i + j) for k in range(n))
108
109
           return linear_calculation(m, matrix, b, ACCURACY)
110
111
112
       elif f = Function.Exponential:
113
           a = approximation_calculation(Function.Polynomial, n, np.log(x), np.log(y), m
              \hookrightarrow =2)
114
           a[0] = np.exp(a[0])
115
           return a
116
117
       elif f = Function.Logarithmic:
118
           return approximation_calculation(Function.Polynomial, n, np.log(x), y, m=2)
119
120
       elif f = Function.Power:
121
           return approximation_calculation(
122
              Function.Polynomial, n, np.log(x), np.log(y), m=2
123
           )
124
125
126 def linear_calculation(n, a, b, e):
127
       v_x = np.zeros(n)
128
       while True:
           delta = 0.0
129
130
           for i in range(n):
              s = np.sum(a[i, j] * v_x[j] for j in range(0, i)) + np.sum(
131
132
                 a[i, j] * v_x[j] for j in range(i + 1, n)
133
134
              x = (b[i] - s) / a[i, i]
135
              d = abs(x - v_x[i])
              if d > delta:
136
137
                 delta = d
138
              v_x[i] = x
139
           if delta < e:
140
              break
141
       return v_x
```

```
142
143
144
    def differences_calculation(f, n, coefficients, x, y):
145
       differences = np.zeros(n)
       for i in range(n):
146
147
           differences[i] = y[i] - get_function_value(f, coefficients, x[i])
148
       return differences
149
150
151
    def get_function_value(f, coefficients, x):
       if f = Function.Polynomial:
152
           return np.dot(coefficients, [x**i for i in range(len(coefficients))])
153
154
       elif f = Function.Exponential:
           return coefficients[0] * np.exp(coefficients[1] * x)
155
       elif f = Function.Logarithmic:
156
           return coefficients[0] + coefficients[1] * np.log(x)
157
       elif f = Function.Power:
158
          return coefficients[0] * x ** coefficients[1]
159
160
161
162 def standard_deviation_calculation(differences, n):
       var = np.sum(differences**2) / n
163
164
       return var**0.5
165
166
    Ostaticmethod
167
    def find_best_function(n, x, y):
168
169
       deviations = []
170
171
       # Polynomial of degree 1 to 3
       for i in range(1, 4):
172
173
          func = Function.Polynomial
           approximations = approximation_calculation(func, n, x, y, m=i)
174
175
          differences = differences_calculation(func, n, approximations, x, y)
176
           deviations.append((standard_deviation_calculation(differences, n), func, i))
177
178
       # Exponential
179
       exponential_approximations = approximation_calculation(
180
          Function. Exponential, n, x, y
181
        exponential_differences = differences_calculation(
182
183
          Function. Exponential, n, exponential_approximations, x, y
184
185
        deviations.append(
186
              standard_deviation_calculation(exponential_differences, n),
187
188
              Function. Exponential,
189
              2,
190
          )
191
       )
192
193
       # Logarithmic
194
       logarithmic_approximations = approximation_calculation(
195
          Function.Logarithmic, n, x, y
196
       logarithmic_differences = differences_calculation(
197
```

```
Function.Logarithmic, n, logarithmic_approximations, x, y
198
199
       )
200
       deviations.append(
201
              standard_deviation_calculation(logarithmic_differences, n),
202
203
              Function.Logarithmic,
204
              2,
205
          )
       )
206
207
       # Power
208
       power_approximations = approximation_calculation(Function.Power, n, x, y)
209
210
       power_differences = differences_calculation(
211
          Function.Power, n, power_approximations, x, y
212
213
       deviations.append(
          (standard_deviation_calculation(power_differences, n), Function.Power, 2)
214
215
216
217
       deviations.sort(key=lambda x: x[0])
       return [deviations[0][1], deviations[0][2]]
218
```

4.2 Пример работы программы

5 Github

Ссылка на GitHub

6 Вывод

В этой работе я ознакомился с различными методами квадратичной аппроксимации