Recap

eap Chap 5

Deterministic oblivious adversary. W.l.o.g., the entire "cost table" $(c_t(a): a \in [K], t \in [T])$ is chosen before round 1. The best arm is naturally defined as $\operatorname{argmin}_{a \in [K]} \operatorname{cost}(a)$, and regret is defined as

$$R(T) = \operatorname{cost}(\operatorname{ALG}) - \min_{a \in [K]} \operatorname{cost}(a), \tag{5.1}$$

Rauchon adaptive

> Algorithm 5.2: Hedge algorithm for online learning with experts

parameter: $\epsilon \in (0, \frac{1}{2})$

Initialize the weights as $w_1(a) = 1$ for each arm a.

For each round t:

Let $p_t(a) = \frac{w_t(a)}{\sum_{a'=1}^K w_t(a')}$. Sample an arm a_t from distribution $p_t(\cdot)$.

Observe cost $c_t(a)$ for each arm a.

For each arm a, update its weight

$$w_{t+1}(a) = w_t(a) \cdot (1 - \epsilon)^{c_t(a)}$$

Theorem 5.9. Consider online learning with experts, with a randomizedoblivious adversary. Assume the costs are independent across rounds. Assume upper bound (5.11) for some μ and σ known to the algorithm. Then Hedge with parameter $\epsilon = \sqrt{\ln K/(3T(\mu^2 + \sigma^2))}$ has regret

$$\mathbb{E}[\mathrm{cost}(\mathtt{ALG}) - \mathrm{cost}^*] < 2\sqrt{3} \cdot \sqrt{T(\mu^2 + \sigma^2) \ln K}.$$

Thm 5.

Theorem 6.1. Consider online learning with N experts. Consider adaptive adversary and regret R(T) relative to the best-observed expert. Algorithm Hedge with parameter $\epsilon = \epsilon_U := \sqrt{\ln K/(3U)}$ satisfies

$$\mathbb{E}[R(T)] \le 2\sqrt{3} \cdot \sqrt{UT \log N},$$

where U is a number known to the algorithm such that

- (a) $c_t(e) \leq U$ for all experts e and all rounds t,
- (b) $\mathbb{E}[G_t] \leq U$ for all rounds t, where $G_t = \sum_{\text{experts } e} p_t(e) c_t^2(e)$.

We will need to distinguish between "experts" in the full-feedback problem and "actions" in the bandit problem. Therefore, we will consistently use "experts" for the former and "actions/arms" for the latter.

Problem protocol: Adversarial bandits with expert advice

Given: K arms, N experts, T rounds.

In each round $t \in [T]$:

- 1. adversary picks cost $c_t(a)$ for each arm a,
- 2. each expert e recommends an arm $a_{t,e}$,
- 3. algorithm picks arm a_t and receives the corresp. $\cot c_t(a_t)$.

Algorithm 6.1: Reduction from bandit feedback to full feedback

Given: set \mathcal{E} of experts, parameter $\epsilon \in (0, \frac{1}{2})$ for Hedge. In each round t,

- 1. Call Hedge, receive the probability distribution p_t over \mathcal{E} .
- 2. Draw an expert e_t independently from p_t .
- 3. Selection rule: use e_t to pick arm a_t (TBD).
- 4. Observe the cost $c_t(a_t)$ of the chosen arm.
- 5. Define "fake costs" $\hat{c}_t(e)$ for all experts $x \in \mathcal{E}$ (TBD).

(105t)

time

CLYM

6. Return the "fake costs" to Hedge.

* deterministic oblivious adversary

* experts do not learn over time

Fectowwedness of the state of t

Using these probabilities, we define the fake costs on each arm as follows:

$$\hat{c}_t(a) = \begin{cases} \frac{c_t(a_t)}{q_t(a_t)} & a_t = a, \\ 0 & \text{otherwise.} \end{cases}$$

The fake cost on each expert e is defined as the fake cost of the arm chosen by this expert: $\hat{c}_t(e) = \hat{c}_t(a_{t,e})$.

Algorithm 6.2: Algorithm Exp4 for adversarial bandits with experts advice

Given: set \mathcal{E} of experts, parameter $\epsilon \in (0, \frac{1}{2})$ for Hedge, exploration parameter $\gamma \in [0, \frac{1}{2})$.

In each round t,

- 1. Call Hedge, receive the probability distribution p_t over \mathcal{E} .
- 2. Draw an expert e_t independently from p_t .
- 3. Selection rule: with probability 1γ follow expert e_t ; else pick an arm a_t uniformly at random.
- 4. Observe the cost $c_t(a_t)$ of the chosen arm.
- 5. Define fake costs for all experts e:

$$\hat{c}_t(e) = \begin{cases} \frac{c_t(a_t)}{\Pr[a_t = a_{t,e} | \vec{p_t}]} & a_t = a_{t,e}, \\ 0 & \text{otherwise.} \end{cases}$$

6. Return the "fake costs" $\hat{c}(\cdot)$ to Hedge.

Hedre: - > mperts - > anns

Improved analysis of EXP4

We obtain a better regret bound by analyzing the quantity

$$\widehat{G}_t := \sum_{e \in \mathcal{E}} p_t(e) \ \widehat{c}_t^2(e).$$