Continuum Mechanics Equation Sheet

Name	Purpose	Symbols	Tensor Notation	Indicial Notation	Units	Notes
Initial Particle Position	_	X	X	X_i	length	Given
Current Particle Position	-	x	$x = \underbrace{F}_{\sim} \cdot X + c$	$x_i = F_{ij}X_j + c_i$		The vector \underline{c} is the displacement vector
Deformation Gradient	Describes local volume, orientation, and shape changes	E	$E = \frac{\partial x}{\partial X} = x \overleftarrow{\nabla}_0 = E \cdot U = V \cdot E$	$F_{ij} = \frac{\partial x_i}{\partial X_i} = R_{ik} U_{kj} = V_{ik} R_{kj}$	1	Invertible; Work conjugate with $P \to \frac{1}{\rho_0} P : \dot{P}$
Jacobian	Describes local volume changes	J	$J = \det(\mathcal{E}) = \det(\mathcal{U}) = \det(\mathcal{V}) = \frac{V}{V_0} = \frac{\rho_0}{\rho}$	-	1	Always positive nonzero; 'Jacobian of the motion'
Rotation Tensor	Describes local rotation	R	~ ~ ~ ~ ~ ~ ~ ~ ~	$R_{ij} = F_{ik} U_{kj}^{-1}$	1	Orthogonal; Unique; Pure rotation $(\det(\underbrace{R}) = 1)$; 'Polar rotation
		$\frac{R}{\widetilde{z}}$	$R = E \cdot U^{-1}$		1	tensor' Symmetric; Positive Definite; Unique
Left stretch	Spatial stretch measure	<u>V</u> ~	$\underbrace{V}_{\approx} = \underbrace{F}_{\approx} \cdot \underbrace{R}^{T}$	$V_{ij} = F_{ik}R_{jk}$	1	Symmetric; Positive Definite; Unique; Unaffected by superim-
Right stretch	Reference stretch measure	$\dfrac{ ilde{\mathcal{U}}}{ ilde{z}}$	$ \underbrace{U} = \underbrace{\mathcal{R}}^T \cdot \underbrace{\mathcal{F}}_{\infty} $	$U_{ij} = R_{ki} F_{kj}$	1	posed rotation; 'Reference stretch'
Left Cauchy-Green Tensor	Reference stretch measure	$\overset{\mathcal{B}}{\widetilde{z}}$	$ \underbrace{\mathcal{B}}_{\widetilde{\mathcal{C}}} = \underbrace{\mathcal{E}}_{\widetilde{\mathcal{C}}} \cdot \underbrace{\mathcal{E}}^T = \underbrace{\mathcal{V}}_{\widetilde{\mathcal{C}}}^2 $	$B_{ij} = F_{ik}F_{jk} = V_{ik}V_{kj}$	1	Symmetric; Positive Definite; 'Finger Tensor'; Inverse called 'Cauchy deformation tensor' $\widetilde{\underline{\mathcal{B}}}$; 'Spatial stretch'
Right Cauchy-Green Tensor	Spatial stretch measure	$\overset{C}{\widetilde{z}}$	$\overset{C}{\widetilde{\mathcal{L}}}=\overset{C}{\widetilde{\mathcal{L}}}^T\cdot \overset{C}{\widetilde{\mathcal{L}}}=\overset{U}{\widetilde{\mathcal{L}}}^2$	$C_{ij} = F_{ki}F_{kj} = U_{ik}U_{kj}$	1	Symmetric; Positive Definite; Unaffected by superimposed rotation
Euler Strain	Measure of spatial strain	ę	$\underbrace{\varepsilon} = \frac{1}{2}(\underbrace{I} - \underbrace{B}^{-1}) = \frac{1}{2}(\underbrace{I} - \underbrace{E}^{-T} \cdot \underbrace{E}^{-1})$	$e_{ij} = \frac{1}{2}(\delta_{ij} - B_{ij}^{-1}) = \frac{1}{2}(\delta_{ij} - F_{ki}^{-1}F_{kj}^{-1})$	1	Symmetric; Seth-Hill parameter $\kappa = -2$; 'Alamansi-Hamel strain tensor'; 'Eulerian strain tensor'
Logarithmic Strain	Measure of reference strain	~ &	$arepsilon = \ln(U)$	<u> </u>	1	Symmetric; Seth-Hill parameter $\kappa \to 0$; 'Hencky strain tensor'
Lagrange Strain	Measure of reference strain	$\overset{\sim}{{\it E}},\overset{arepsilon}{{\it \epsilon}}$	$\underline{\mathcal{E}} = \frac{1}{2}(\underline{\mathcal{C}} - \underline{\mathcal{L}}) = \frac{1}{2}(\underline{\mathcal{E}}^T \cdot \underline{\mathcal{E}} - \underline{\mathcal{L}})$	$E_{ij} = \frac{1}{2}(C_{ij} - I_{ij}) = \frac{1}{2}(F_{ki}F_{kj} - I_{ij})$	1	Symmetric; Seth-Hill parameter $\kappa=2$; Unaffected by superimposed rotation; Work conjugate with $\underbrace{\mathcal{S}}_{\rho_0} \to \frac{1}{\rho_0} \underbrace{\mathcal{S}}_{\varepsilon}$: $\underbrace{\dot{\mathcal{E}}}_{\varepsilon}$; 'Green strain tensor'; 'Green-St. Venant strain tensor'
Velocity Gradient		L	$ \underline{L} = \underline{v} \overleftarrow{\nabla}_x = \left(\overrightarrow{\nabla}_x \underline{v} \right)^T = \frac{\partial \underline{v}}{\partial \underline{x}} = \dot{\underline{E}} \cdot \underline{E}^{-1} $	$L_{ij} = \frac{\partial v_i}{\partial x_i} = \dot{F}_{ik} F_{kj}^{-1}$	$\frac{1}{Second}$	'Spatial velocity gradient'
Symmetric Part of the Velocity Gradient	Strain rate approximation	~ D	$\widetilde{Q} = \frac{1}{2}(\widetilde{L} + \widetilde{L}^T) = \operatorname{sym}(\widetilde{L})$	$D_{ij} = \frac{1}{2}(L_{ij} + L_{ji}) = \frac{1}{2}(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk})L_{kl}$	1	Generally not a true rate; If $\underbrace{\tilde{U}}(t)$ is diagonal, $\underbrace{\tilde{D}}_{\approx} = \underbrace{\dot{\tilde{\varepsilon}}^{log}}_{\approx}$; Work
		<u>D</u>			1	conjugate with $\underset{\sim}{\underline{\sigma}} \to \frac{1}{\rho} \underset{\sim}{\underline{\sigma}} : \underset{\sim}{\underline{\mathcal{D}}} $; 'Deformation rate'
Vorticity Tensor	Measure of 'tumble'	$\underbrace{\underline{W}}_{}$	$\underbrace{\underline{W}}_{\underline{L}} = \frac{1}{2} (\underbrace{\underline{L}}_{\underline{L}} - \underbrace{\underline{L}}_{\underline{L}}^T) = \operatorname{skw}(\underbrace{\underline{L}}_{\underline{L}})$	$W_{ij} = \frac{1}{2}(L_{ij} - L_{ji}) = \frac{1}{2}(\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk})\underbrace{\mathcal{L}_{kl}}_{\mathcal{Z}_{kl}}$	$\frac{1}{time}$	Skew; 'Spin Tensor' Axial vector of $W \rightarrow W_{V} = -\varepsilon_{VV} w$
Vorticity Vector	Measure of 'tumble'		$w = -\frac{1}{2} \underbrace{\varepsilon}_{\widetilde{\varepsilon}} : \underbrace{W} = \frac{1}{2} \overrightarrow{\nabla} \times v$	$w_i = -\frac{1}{2}\varepsilon_{ijk}W_{jk} = \frac{1}{2}\varepsilon_{ijk}\frac{\partial v_k}{\partial x_j}$	Forms	Axial vector of $\underbrace{\widetilde{W}}_{ij} \to W_{ij} = -\varepsilon_{ijk}w_k$
Cauchy Stress	Current force per unit deformed area	$\overset{\mathcal{Q}}{pprox}$	-	-	$\frac{Force}{Area}$	Symmetric; Work conjugate with $\underset{\sim}{D} \to \frac{1}{\rho} \underset{\sim}{\underline{\sigma}} : \underset{\sim}{\underline{D}}$; Defined by $\underline{t} = \underset{\sim}{\underline{\sigma}} : \underline{\eta}$ 'Nominal stress tensor'; 'Lagrangian stress tensor'; Work conju-
First Piola-Kirchhoff Stress	Current force per unit undeformed area	$\underbrace{\mathcal{P}}_{\sim},\underbrace{\mathcal{t}}_{\sim}$	$\underbrace{\mathcal{P}}_{\sim} = \underbrace{\mathcal{Q}}_{\sim} \cdot \underbrace{\mathcal{E}}_{\sim}^{c} = J \underbrace{\mathcal{Q}}_{\sim} \cdot \underbrace{\mathcal{E}}_{\sim}^{-T}$	$P_{ij} = \sigma_{ik} F_{kj}^c = J \sigma_{ik} F_{jk}^{-1}$	$\frac{Force}{Area}$	gate with $\underbrace{\widetilde{F}}_{\rho_0} \to \frac{1}{\rho_0} \underbrace{\widetilde{F}}_{\rho_0} : \underbrace{\dot{F}}_{\rho_0} : \underbrace{\dot{F}}_$
Second Piola-Kirchhoff Stress	Transformed (unrotated) current force per unit undeformed area	$\mathop{\mathcal{S}}_{\widetilde{\approx}}$	$\underline{S} = \underline{E}^{-1} \cdot \underline{P} = J\underline{E}^{-1} \cdot \underline{\sigma} \cdot \underline{E}^{-T}$	$S_{ij} = F_{ik}^{-1} P_{kj} = J F_{ik}^{-1} \sigma_{kl} F_{lj}^{-T}$	$rac{Force}{Area}$	Symmetric; Work conjugate with $\underbrace{\tilde{E}}_{\rho_0} \rightarrow \frac{1}{\rho_0} \underbrace{\tilde{E}}_{\rho_0} : \underbrace{\dot{\tilde{E}}}_{\rho_0}$; Unaffected by superimposed rotation
Ct: Ct.	Constitution relation		∂g C	$\sigma = \partial \sigma_{ij}$	Force	For symmetric $\underset{\sim}{\underline{\sigma}}$ and $\underset{\sim}{\underline{\varepsilon}}$, $\underset{\sim}{\underline{C}}$ is minor symmetric; 'Elastic tangent
Stiffness	Constitutive relation	C, \mathbb{E}	$\frac{C}{\widetilde{z}} = \frac{\partial \underline{x}}{\partial \widetilde{z}}$	$C_{ijkl} = \frac{\partial \sigma_{ij}}{\partial \varepsilon_{kl}}$	$\frac{Force}{Area}$	stiffness'
Compliance	Constitutive relation	$\overset{S}{\widetilde{z}}, \overset{H}{\widetilde{\widetilde{z}}}$	$S_{\widetilde{\widetilde{z}}} = rac{\partial arepsilon}{\partial \widetilde{\widetilde{z}}}$	$S_{ijkl} = \frac{\partial \varepsilon_{ij}}{\partial \sigma_{kl}}$	$rac{Area}{Force}$	For symmetric $\underset{\sim}{\widetilde{z}}$ and $\underset{\sim}{\widetilde{z}}$, $\underset{\sim}{\widetilde{z}}$ is minor symmetric
Specific Kinetic Energy	-	k	$k = \frac{1}{2} \mathcal{U} \cdot \mathcal{U}$	$k = \frac{1}{2} \nu \cdot \nu$	$\frac{Length^2}{Second^2}$	$\underline{v} \cdot \underline{a} = \underline{v} \cdot \dot{\underline{v}} = \dot{k}$
Isotropic Stress	Measure of 'average' stress	$iso \underbrace{\mathcal{A}}_{\widetilde{\approx}}$	$iso \underbrace{\mathcal{A}}_{\widetilde{lpha}} = rac{1}{3} tr(\underbrace{\mathcal{A}}_{\widetilde{lpha}})$	$iso \underbrace{\mathcal{A}}_{\widetilde{\widetilde{\omega}}} = \frac{1}{3} tr(\underbrace{\mathcal{A}}_{\widetilde{\widetilde{\omega}}})$	_	A.K.A. 'Spherical Stress', 'Hydrostatic Stress'
Deviatoric Stress	Measure of 'shear' stress	$dev \underbrace{A}_{\widetilde{z}}$	$dev \underbrace{\mathcal{A}}_{\approx} = \underbrace{\mathcal{A}}_{\approx} - iso \underbrace{\mathcal{A}}_{\approx} = \underbrace{\mathcal{A}}_{3} - \frac{1}{3} tr \underbrace{\mathcal{A}}_{\approx}$	$dev \underbrace{\mathcal{A}}_{\approx} = \underbrace{\mathcal{A}}_{\approx} - iso \underbrace{\mathcal{A}}_{\approx} = \underbrace{\mathcal{A}}_{\approx} - \frac{1}{3}tr \underbrace{\mathcal{A}}_{\approx}$	_	-
Spherical Deformation	-	-	$\underset{\approx}{E} = \alpha \underset{\approx}{L}$	$\underset{\sim}{E} = \alpha \underset{\sim}{L}$	-	Volume change without shape change
Isochoric Deformation		-	$J = \det \widetilde{E} = 1$	$J = \det \underbrace{F}_{\approx} = 1$	-	Shape change without volume change
Hooke's Law	Relate stress to strain	-	$\underline{\underline{\sigma}} = \lambda(tr\underline{\underline{\varepsilon}})\underline{\underline{\mathcal{L}}} + 2G\underline{\underline{\varepsilon}}$	$\underline{\underline{\sigma}} = \lambda(tr\underline{\underline{\varepsilon}})\underline{\underline{L}} + 2G\underline{\underline{\varepsilon}}$	-	$\lambda = \text{Lam\'e constant}, G = \text{Shear modulus}, K = \lambda + \frac{2}{3}G = \text{Bulk modulus}$
Reynolds Transport	-	-	$\frac{D}{Dt} \int_{\Omega} f \rho dV = \int_{\Omega} \dot{f} \rho dV$	$\frac{D}{Dt} \int_{\Omega} f \rho dV = \int_{\Omega} \dot{f} \rho dV$	-	$\dot{\phi} = \frac{D\phi}{Dt} = (\frac{\partial\phi}{\partial t})_{\widetilde{X}}$ Lagrange rate
Material Velocity (Lagrangian)	-	y(X,t)	$ u = (\frac{\partial x}{\partial t})_{X} $	$ u = (\frac{\partial x}{\partial t})\chi $	$\frac{Length}{Second}$	This is the Lagrangian (particle tracking) velocity $\underline{v}(\underline{X},t)$
Material Velocity (Eulerian)	-	y(x,t)	$\chi = (\frac{\partial x}{\partial t})_{\mathcal{X}}$, Substitute $\mathcal{X}(x,t)$ for \mathcal{X}	$ \chi = (\frac{\partial x}{\partial t})_{\chi}, \text{ Substitute } \chi(x,t) \text{ for } \chi $	$\frac{Length}{Second}$	This is Eulerian (stationary observer) velocity $\underline{v}(\underline{x},t)$
Reference Backward Gradient	Alternate method to find $\dot{\tilde{E}}$	$v\overleftarrow{\nabla_0}$		$v\overleftarrow{\nabla_0} = (\frac{\partial v}{\partial x})_t = \dot{E}$	$\frac{1}{Second}$	Use the Lagrange material velocity $\underline{v}(\underline{X},t)$
Spatial Backward Gradient	Alternate method to find the velocity gradient (\underline{L})	$v\overleftarrow{\nabla}$	$ u \overleftarrow{\nabla} = (\frac{\partial v}{\partial \overline{x}})_t = \underbrace{\overline{L}}_{} $	$ u \overleftarrow{\nabla} = (\frac{\partial u}{\partial x})_t = \underbrace{\mathcal{L}}_{\widetilde{\omega}} $	$\frac{1}{Second}$	Use the Lagrange material velocity $\underline{v}(\underline{X},t)$
Polar Decomposition	Decomp $\underset{\approx}{\widetilde{E}}$ into a 'stretch' and 'rotate'	-	$ \widetilde{\mathcal{E}} = \widetilde{\mathcal{R}} \cdot \widetilde{\mathcal{U}} = \widetilde{\mathcal{V}} \cdot \widetilde{\mathcal{R}} $	$ \widetilde{E} = \widetilde{E} \cdot \widetilde{U} = \widetilde{V} \cdot \widetilde{E} $	-	
Right Stretch Tensor	Used in polar decomposition	$\overset{U}{\widetilde{z}}$	$ \widetilde{\underline{U}} = \widetilde{\underline{C}}^{\frac{1}{2}} $	$ \overset{U}{\widetilde{\mathcal{L}}} = \overset{C}{\widetilde{\mathcal{L}}}^{\frac{1}{2}} $	1	$\underbrace{U}_{\widetilde{\widetilde{\mathcal{L}}}} = \underbrace{R}^T \cdot \underbrace{F}_{\widetilde{\widetilde{\mathcal{L}}}}$
Left stretch tensor	Used in polar decomposition	$ \underbrace{\mathcal{V}}_{\widetilde{\Xi}} $	$ \underbrace{V}_{\widetilde{\Sigma}} = \underbrace{\mathcal{B}}^{\frac{1}{2}} $	$ \underbrace{V}_{\widetilde{\Sigma}} = \underbrace{B}^{\frac{1}{2}} $	1	$\underbrace{V}_{\approx} = \underbrace{F}_{\approx} \cdot \underbrace{R}^{T}$
		$\mathop{\underline{H}}_{\widetilde{\sim}}$	$\underbrace{\mathcal{H}}_{\cong} = u \overleftarrow{\nabla_0} = (\frac{\partial u}{\partial \underline{X}})_t$	$\underbrace{H}_{\widetilde{\Sigma}} = u \overleftarrow{\nabla_0} = (\frac{\partial u}{\partial X})_t$	1	$ \underline{u} = \underline{x} - \underline{X}, \ \underline{\widetilde{E}} = \frac{1}{2} (\underline{H} + \underline{H}^T + \underline{H}^T \cdot \underline{H}) $
		$rac{b}{\widetilde{z}}$	$\underline{\underline{h}} = u \overleftarrow{ abla} = (\frac{\partial u}{\partial \underline{x}})_t$		1	$\underline{u} = \underline{x} - \underline{X}, \ \underline{\overset{e}{\approx}} = \frac{1}{2}(\underline{\overset{h}{\approx}} + \underline{\overset{h}{\approx}}^T - \underline{\overset{h}{\approx}}^T \cdot \underline{\overset{h}{\approx}})$
Spatial Gradient	S.G. of scalar field	$\overrightarrow{\nabla}\phi$	$\overrightarrow{ abla}\phi=rac{\partial\phi}{\partial x}$	$\overrightarrow{\nabla}\phi=rac{\partial\phi}{\partial x}$	-	
Spatial Gradient	S.G. of vector field	$\overrightarrow{\nabla} \phi, \phi \overleftarrow{\nabla}$	$(\overrightarrow{\nabla}\phi)_{ij} = \frac{\partial\phi_j}{\partial x_i}, \ (\phi\overleftarrow{\nabla})_{ij} = \frac{\partial\phi_i}{\partial x_j}$	$(\overrightarrow{\nabla}\phi)_{ij} = \frac{\partial\phi_j}{\partial x_i}, (\phi\overleftarrow{\nabla})_{ij} = \frac{\partial\phi_i}{\partial x_j}$	-	$\overrightarrow{\nabla}r = \frac{x}{\widetilde{r}}, \ \overrightarrow{\nabla}\underline{\phi} = (\underline{\phi}\overleftarrow{\nabla})^T$
Divergence	Measures magnitude of outward flux of a vector field	$\overrightarrow{\nabla} \cdot \underline{\phi} = \underline{\phi} \overleftarrow{\nabla}$	$(\overrightarrow{\nabla} \cdot \underline{\phi}) = (\underline{\phi} \overleftarrow{\nabla}) = \frac{\partial \phi_i}{\partial x_i}$	$(\overrightarrow{\nabla} \cdot \phi) = (\phi \overleftarrow{\nabla}) = \frac{\partial \phi_i}{\partial x_i}$	-	
Curl	Describes the 'rotation' of a vector field	$\overrightarrow{\nabla} \times \phi$	$(\overrightarrow{\nabla} \times \underline{\phi})_i = \varepsilon_{ijk} \frac{\partial \phi_k}{\partial x_j}, (\underline{\phi} \times \overleftarrow{\nabla})_i = \varepsilon_{ijk} \frac{\partial \phi_j}{\partial x_k}$	$(\overrightarrow{\nabla} \times \underline{\phi})_i = \varepsilon_{ijk} \frac{\partial \phi_k}{\partial x_j}, (\underline{\phi} \times \overleftarrow{\nabla})_i = \varepsilon_{ijk} \frac{\partial \phi_j}{\partial x_k}$	-	$\overrightarrow{\nabla} \times \underline{\phi} = -(\underline{\phi} \times \overleftarrow{\nabla})$
Direction Cosine Matrix	Basis transformation	$\underbrace{L}_{\widetilde{\mathbb{Z}}}$	$L_{ij} = e_i^A e_j^B = \cos \theta_{ij}^{AB}$	$L_{ij} = e_i^A e_j^B = \cos \theta_{ij}^{AB}$	1	$\underbrace{\widetilde{\widetilde{L}}}_{\sim} = \underbrace{\widetilde{\widetilde{L}}}^T$
Cayley-Hamilton Theorem	-	-	$\underbrace{\underline{\mathcal{A}}^3 - I_1 \underline{\underline{\mathcal{A}}^2} + I_2 \underline{\underline{\mathcal{A}}} - I_3 \underline{\underline{\mathcal{L}}} = \underline{\underline{0}}}_{=\underline{\underline{0}}}$	$A_{ik}A_{kl}A_{lj} - I_1A_{ik}A_{kj} + I_2A_{ij} - I_3\delta_{ij} = 0_{ij}$	-	$\lambda^3 - I_1 \lambda^2 + I_2 \lambda - I_3 = 0$
Internal Dissipation		\mathcal{D}	$\mathcal{D}=\mathcal{P}_s+ heta\dot{\eta}-\dot{e}$	$\mathcal{D} = \mathcal{P}_s + heta \dot{\eta} - \dot{e}$	1	$\mathcal{D} \geq 0$ and η is entropy per mass if A_{ijkl} is minor symmetric $\beta = \gamma$
Isotropic Tensors Isotropic Function	Second and fourth order	-	$A_{ij} = \alpha I_{ij}, A_{ijkl} = \alpha \delta_{ij} \delta_{kl} + \beta \delta_{ik} \delta_{jl} + \gamma \delta_{il} \delta_{jk}$	$A_{ij} = \alpha I_{ij}, A_{ijkl} = \alpha \delta_{ij} \delta_{kl} + \beta \delta_{ik} \delta_{jl} + \gamma \delta_{il} \delta_{jk}$	-	For tensors $\phi(\widehat{Q} \cdot \underbrace{T}_{\widetilde{Z}} \cdot \widehat{Q}^T)$
		- D	$\phi(\underbrace{\widehat{Q}} \cdot \underline{v}) = \phi(\underline{v}) forall \underbrace{\widehat{Q}} = \underbrace{\widehat{Q}}^{-T}$	$\phi(\underbrace{\widehat{Q}} \cdot \underline{v}) = \phi(\underline{v}) for all \underbrace{\widehat{Q}} = \underbrace{\widehat{Q}}^{-T}$	Watt	1)Product Rule 2)use equation of motion $\underline{\sigma} \cdot \overleftarrow{\nabla} = \rho \underline{a} - \rho \underline{b}$
Stress Power Mechanical Power		$rac{\mathcal{P}_s}{\mathcal{P}_m}$	$\mathcal{P}_s = rac{1}{ ho} \underline{\widetilde{g}} : \underline{\widetilde{\mathcal{L}}} = rac{1}{ ho_0} \underline{\widetilde{g}} : \underline{\widetilde{\mathcal{E}}}$ $\mathcal{P}_m = \int \underline{t} \cdot v dS + \int \underline{b} \cdot v ho dV$	$\mathcal{P}_{s} = \frac{1}{\rho} \underbrace{\boldsymbol{g}}_{\boldsymbol{\omega}} : \underbrace{\boldsymbol{L}}_{\boldsymbol{\omega}} = \frac{1}{\rho_{0}} \underbrace{\boldsymbol{S}}_{\boldsymbol{\omega}} : \underbrace{\boldsymbol{E}}_{\boldsymbol{\omega}}$ $\mathcal{P}_{m} = \int \boldsymbol{t} \cdot \boldsymbol{v} dS + \int \boldsymbol{b} \cdot \boldsymbol{v} \rho dV$	$\frac{\frac{Watt}{kg}}{\frac{Watt}{kg}}$	1)1 Toduct Trule 2) use equation of motion $\frac{\partial}{\partial x} \cdot \mathbf{v} = \rho \underline{u} - \rho \underline{v}$
Nanson's Relation	Tracks area	· m	$d\mathcal{A} = JE^{-T} \cdot d\mathcal{A}_0 dAn = JE^{-T} \cdot NdA_0$	$dA = JE^{-T} \cdot dA_0 dAn = JE^{-T} \cdot NdA_0$		let $\underline{u} = d\underline{X}^1$ and $\underline{v} = d\underline{X}^2$, $(\underline{u} \times \underline{v}) = d\underline{A}_0$
Local Equation of Motion	Tracks area Continuum analog of $F = ma$	-	$\frac{dA = J \underbrace{\mathcal{E}}_{\sim} \cdot dA_0 dA_{\mathcal{R}} = J \underbrace{\mathcal{E}}_{\sim} \cdot \underbrace{\mathcal{N}} dA_0$ $\overrightarrow{\nabla} \cdot \underbrace{\mathcal{G}}_{\sim} + \rho \underbrace{b}_{\sim} = \rho \underbrace{a}$	$\frac{dA = JE^{-1} \cdot dA_0 dA_0 = JE^{-1} \cdot NdA_0}{\overrightarrow{\nabla} \cdot \mathbf{g} + \rho b = \rho a}$		(surface forces) + (body forces) = (rate of momentum)
Continuity	Local form of conservation of mass		$\dot{\rho} + \rho \overrightarrow{\nabla} \cdot y = 0$	$\dot{\rho} + \rho \overrightarrow{\nabla} \cdot y = 0$		alternate form: $\rho_{,t} + \overrightarrow{\nabla} \cdot (\rho \underline{v}) = 0$
First Law of Thermodynamics	Conservation of energy	-	$\dot{e} = \frac{1}{\rho} \underbrace{\alpha}_{\sim} : \underbrace{\mathcal{Q}}_{\sim} + \xi - \frac{1}{\rho} \overrightarrow{\nabla} \cdot q$	$\dot{e} = \frac{1}{\rho} \underbrace{\sigma}_{\varphi} : \underbrace{D}_{\varphi} + \xi - \frac{1}{\rho} \overrightarrow{\nabla} \cdot \underline{q}$	_	ξ = 'microwave heat', e = internal energy per mass, \underline{q} = heat flux
Second Law of Thermodynamics - Local Form			$\dot{\eta} \geq rac{\xi}{ heta} - rac{1}{ ho} \overrightarrow{ abla} \cdot (rac{q}{ heta})$	$\dot{\eta} \geq rac{\xi}{ heta} - rac{1}{ ho} \overrightarrow{ abla} \cdot (rac{q}{ heta})$		A.K.A. Clausius-Duhem Inequality
Traction	-	t_{-}	$t = \underbrace{\sigma}_{\rho} \cdot n$	$t = \underbrace{\varepsilon} \cdot n$	$rac{Force}{Area}$	Cauchy Tetrahedron Argument proves \underline{t} is linear
Eulerian Rate	Rate seen by fixed observer (optical sensor)	$\phi_{,t}$	$\phi_{,t}=(rac{\partial\phi}{\partial t})_{\!\scriptscriptstyle\mathcal{X}}$	$\phi_{,t} = (\frac{\partial \phi}{\partial t})_{\mathcal{X}}$	$\frac{1}{Second}$	$(\frac{\partial \phi}{\partial t})_{\widetilde{X}} = (\frac{\partial \phi}{\partial t})_{\widetilde{x}} + (\frac{\partial \phi}{\partial \widetilde{x}})_t \cdot (\frac{\partial \widetilde{x}}{\partial t})_{\widetilde{X}}$
Lagrange Rate/Material Rate	Rate as experienced by discrete particles	$\dot{\phi}$	$\dot{\phi} = rac{D\phi}{Dt} = (rac{\partial\phi}{\partial t})_{X}$	$\dot{\phi} = rac{D\phi}{Dt} = (rac{\partial\phi}{\partial t})\chi$	$\frac{1}{Second}$	Lagrange rates are the 'usual' rates
Leibniz Theorem	Lemma for Reynold's Transport	_	$\frac{d}{dt} \int f(x,t)dV = \int \frac{\partial f(x,t)}{\partial t}dV + \int f(x,t)y_x \cdot y_x dS \frac{d}{dt}$	$\int f(x,t)dV = \int \frac{\partial f(x,t)}{\partial t}dV + \int f(x,t)v_x \cdot ndS$		Rate of an integral over a time varying domain. $dS = \text{surface}$ velocity.
Material Rate		Ė	$\dot{E} = (\frac{\partial E}{\partial t})_{X}$	$\dot{\underline{F}} = (\frac{\partial \underline{F}}{\partial t})_{\underline{X}}$	1	This is the Lagrangian rate (as X is constant)
		£. ~	$\mathcal{E} = (\frac{1}{\partial t})\chi$ Created by M. Scot Swan, 2017	$\approx - \left(\frac{\partial t}{\partial t}\right) \chi$	$\frac{1}{Second}$	