

| Semester: VI          |                                    |         |  |                     |   |                  |
|-----------------------|------------------------------------|---------|--|---------------------|---|------------------|
| BIG DATA TECHNOLOGIES |                                    |         |  |                     |   |                  |
|                       | Category: Professional Core Course |         |  |                     |   |                  |
|                       | (Theory & Practice)                |         |  |                     |   |                  |
| <b>Course Code</b>    | :                                  | AI362IA |  | CIE                 | : | 100 +50Marks     |
| Credits: L:T:P        | :                                  | 3:0:1   |  | SEE                 | : | 100 + 50Marks    |
| <b>Total Hours</b>    | :                                  | 45L+30P |  | <b>SEE Duration</b> | : | 3.00+ 3.00 Hours |

The Hadoop Distributed File system

**The Design of HDFS** - HDFS Concepts – Blocks, Name nodes and Data nodes, HDFS Federation, HDFS High Availability

Data Flow – Anatomy of a File Read, Anatomy of a File Write

Unit – II 09 Hrs

**Map Reduce – Distributed Processing Framework-** A Weather Dataset – Data format, Analysing the data with Unix Tools, Analyzing the Data with Hadoop – Java MapReduce, Scaling Out

Working of Map Reduce - Anatomy of a Map Reduce Job Run, Failures, Shuffle and Sort, Task Execution

Unit –III 09 Hrs

**Hive** - Configuring Hive, Hive Services ,The Metastore

**Comparison with Traditional Databases** -Schema on Read Versus Schema on Write, Updates, Transactions, and Indexes ,SQL-on-Hadoop Alternatives

**HiveQL** - Data Types, Operators and Functions

**Tables** -Managed Tables and External Tables, Partitions and Buckets, Storage Formats, Importing Data, Altering Tables, Dropping Tables,

Querying Data -Sorting and Aggregating, Map Reduce Scripts, Joins, Subqueries, Views

Unit –IV 09 Hrs

**Flume** - Installing Flume, **Transactions and Reliability** -Batching ,**The HDFS Sink** -Partitioning and Interceptors File Formats

Fan Out-Delivery Guarantees, Replicating and Multiplexing Selectors

Distribution: Agent Tiers-, Delivery Guarantees,

Sink Groups - Integrating Flume with Applications, Component Catalog

Unit –V 09 Hrs

Spark Applications- Jobs, Stages, and Tasks, A Scala Standalone Application,

Resilient Distributed Datasets - Creation, Transformations and Actions, Persistence, Serialization

Shared Variables -Broadcast Variables, Accumulators

Anatomy of a Spark Job Run - Job Submission, DAG Construction, Task Scheduling, Task Execution

|                                                 | Lab Component                                                                           |  |  |  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|--|
| Expt. No                                        | Programs                                                                                |  |  |  |
| 1.                                              | Map Reduce Program on Counting                                                          |  |  |  |
|                                                 | a) Write a Java Program using Mapper and Reducer function to find the number of records |  |  |  |
|                                                 | in the give dataset                                                                     |  |  |  |
|                                                 | b) Submit the job to cluster                                                            |  |  |  |
|                                                 | c) Track the job information                                                            |  |  |  |
| 2.                                              | Map Reduce Program using Temperature Dataset                                            |  |  |  |
|                                                 | 1. Write a Java program for finding Maximum recorded temperature by the year from       |  |  |  |
|                                                 | Weather Dataset                                                                         |  |  |  |
|                                                 | 2. Submit the job to cluster                                                            |  |  |  |
|                                                 | 3. Find the status of the Job and terminate it                                          |  |  |  |
| 3. Programs on Pig Script Using movie lens data |                                                                                         |  |  |  |
|                                                 | a) List all the movies and the number of ratings                                        |  |  |  |
|                                                 | b) List all the users who have rated the same movie and find the number of ratings      |  |  |  |



|          | c) List all the Users who have rated the movies (Users who have rated at least one movie)                                                                                                                                                                                                     |  |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|          | d) Find the count of the Movie which has the ratings more than 3                                                                                                                                                                                                                              |  |  |  |
|          | e) Find the max, min, average ratings for all the movie                                                                                                                                                                                                                                       |  |  |  |
| 4.       | Program on Advanced Concepts in Pig                                                                                                                                                                                                                                                           |  |  |  |
|          | a) Group by Year and dump the result in a bag                                                                                                                                                                                                                                                 |  |  |  |
|          | b) Write a pig script to find the maximum temperature                                                                                                                                                                                                                                         |  |  |  |
|          | c) Write a pig Script to find the average temperature of a state for 3 years and store the result in                                                                                                                                                                                          |  |  |  |
|          | HDFS                                                                                                                                                                                                                                                                                          |  |  |  |
| 5.       | Extract facts using Hive on movie lens data                                                                                                                                                                                                                                                   |  |  |  |
|          | a) Write a query to select only those records which correspond to starting, browsing, completing, or purchasing movies. Use a CASE statement to transform the RECOMMENDED column into integers where 'Y' is 1 and 'N' is 0. Also, ensure GENREID is not null. Only include the first 25 rows. |  |  |  |
|          | b) Write a query to select the customer ID, movie ID, recommended state and most recent rating for each movie.                                                                                                                                                                                |  |  |  |
|          | PART - B                                                                                                                                                                                                                                                                                      |  |  |  |
| Group    | of two students belongs to same batch are required to implement a problem statement which makes                                                                                                                                                                                               |  |  |  |
| use of s | treaming data using Apache Spark.                                                                                                                                                                                                                                                             |  |  |  |
|          | es: Identifying Credit Card Fraud, Identifying prospective customers on a commerce website, real-time                                                                                                                                                                                         |  |  |  |

| stock trades, up-to-the minute inventory management, fake-news detection, etc. |                                                                                                                                        |  |  |  |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Course                                                                         | Course Outcomes: After completing the course, the students will be able to:-                                                           |  |  |  |
| CO1                                                                            | Understand and apply the different building blocks of Big Data Technologies to a given problem                                         |  |  |  |
| CO2                                                                            | Articulate the programming aspect of Big Data Technologies to obtain solution to the problem through lifelong learning                 |  |  |  |
| CO3                                                                            | Exhibit effective communication to represent the analytical aspects of Big Data Technologies for obtaining solution to the problems    |  |  |  |
| CO4                                                                            | Demonstrate solutions for societal and environmental concern problems using modern engineering tools through writing effective reports |  |  |  |
| CO5                                                                            | Appraise the knowledge of Big Data Technologies as an Individual /as a team member to manage multidisciplinary projects                |  |  |  |

| Refe | Reference Books                                                                                          |  |  |  |
|------|----------------------------------------------------------------------------------------------------------|--|--|--|
| 1.   | Hadoop – The Definitive Guide; Storage and Analysis at Internet scale, Tom White ,4th Edition, 2015,     |  |  |  |
|      | O'Reilly, Shroff Publishers & Distributers Pvt. Ltd., ISBN – 978-93-5213-067-2                           |  |  |  |
| 2.   | DT Editorial Services, Big Data – Black Book, Dreamtech Press, 1st Edition – 2015, ISBN - 978-93-511-9-  |  |  |  |
|      | 757-7                                                                                                    |  |  |  |
| 3.   | Hadoop for Dummies, Dirk deRoos, Paul C. Zikopoulos, Roman B. Melnyk, Bruce Brown, Rafael Coss,          |  |  |  |
|      | 2014, John Wiley & Sons, Inc., ISBN: 978-1-118-60755-8 (pbk); ISBN 978-1-118-65220-6 (ebk); ISBN         |  |  |  |
|      | 978-1-118-70503-2 (ebk)                                                                                  |  |  |  |
| 4.   | Big Data Principles and best practices of scalable real-time data systems ,Nathan Marz and James Warren, |  |  |  |
|      | 1 <sup>st</sup> Edition, 2015, ISBN 9781617290343                                                        |  |  |  |



|    | RUBRICFOR THE CONTINUOUS INTERNAL EVALUATION                                                                                                                                                                                                                                                                                                                                             |       |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| #  | COMPONENTS                                                                                                                                                                                                                                                                                                                                                                               | MARKS |  |
| 1. | <b>QUIZZES:</b> Quizzes will be conducted in online/offline mode. <b>TWO QUIZZES</b> will be conducted & Each Quiz will be evaluated for 10 Marks. Each quiz is evaluated for 10 marks adding up to 20 MARKS                                                                                                                                                                             | 20    |  |
| 2. | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). <b>TWO tests will be conducted</b> . Each test will be evaluated for <b>50Marks</b> , adding upto 100 Marks. <b>FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.</b> | 40    |  |
| 3. | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) Designing & Modeling (10) Phase 2 will be done in the exhibition mode (Demo/Prototype/any outcome). ADDING UPTO 40 MARKS.    | 40    |  |
| 4. | LAB: Conduction of laboratory exercises, lab report, observation, and analysis (20 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (20 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE 50 MARKS                                                                                                                                           | 50    |  |
|    | MAXIMUM MARKS FOR THE CIE(THEORY+LAB)                                                                                                                                                                                                                                                                                                                                                    | 150   |  |

| 0.10   | RUBRIC FOR SEMESTER END EXAMINATION (THEORY)         |       |  |  |
|--------|------------------------------------------------------|-------|--|--|
| Q.NO.  | CONTENTS                                             | MARKS |  |  |
|        | PART A                                               |       |  |  |
| 1      | Objective type of questions covering entire syllabus | 20    |  |  |
|        | PART B                                               | -     |  |  |
|        | (Maximum of THREE Sub-divisions only)                |       |  |  |
| 2      | Unit 1 : (Compulsory)                                | 16    |  |  |
| 3 & 4  | Unit 2: Question 3 or 4                              | 16    |  |  |
| 5 & 6  | Unit 3: Question 5 or 6                              | 16    |  |  |
| 7 & 8  | Unit 4: Question 7 or 8                              | 16    |  |  |
| 9 & 10 | Unit 5: Question 9 or 10                             | 16    |  |  |
|        | TOTAL                                                | 100   |  |  |

| RUBRIC FOR SEMESTER END EXAMINATION (LAB) |                               |       |  |
|-------------------------------------------|-------------------------------|-------|--|
| Q.NO.                                     | CONTENTS                      | MARKS |  |
| 1                                         | Write Up                      | 10    |  |
| 2                                         | Conduction of the Experiments | 20    |  |
| 3                                         | Viva                          | 20    |  |
|                                           | TOTAL                         | 50    |  |