(b) Prove that $2 + 2^2 + 2^3 + \ldots + 2^n = 2^{n+1} - 2$ for all $n \in \mathbb{N}$.

I. We have $2 = 2^{1+1} - 2$, which proves the assertion for n = 1.

II.Assume $2 + 2^2 + 2^3 + \dots + 2^k = 2^{k+1} - 2$. Now we must prove

$$2+2^2+2^3+\ldots+2^k+2^{k+1}=2^{(k+1)+1}-2$$
. We have
$$2+2^2+2^3+\ldots+2^k+2^{k+1}=(2^{k+1}-2)+2^{k+1} \text{ (by inductive hyp.)}$$

$$=2(2^{k+1})-2$$

$$=2^{k+2}-2,$$

so the assertion is true for n = k + 1 if it is true for n = k. Thus

$$2+2^2+2^3+\ldots+2^n=2^{n+1}-2$$
 for all $n \in \mathbb{N}$.

(c) Let h > -1 be a fixed real number. Prove that $1 + h^n \ge 1 + nh$ for all $n \in \mathbb{N}$.

I. We have $(1+h)^1 \ge 1+1h$, so the inequality is true for n=1.

II. Let us assume $(1+h)^k \ge 1 + kh$. We want to prove that

$$(1+h)^{k+1} \ge 1 + (k+1)h$$
. We have
$$(1+h)^{k+1} = (1+h)^k (1+h)$$
 $\ge (1+kh)(1+h)$ (by inductive hyp. and $1+h>0$)
$$= 1+h+kh+kh^2$$

$$\ge 1+h+kh+0$$

$$= 1+(k+1)h$$

so the inequality is true for n = k + 1 if it is true for n = k. By the principle of mathematical induction,

$$1 + h^n \ge 1 + nh$$
 for all $n \in \mathbb{N}$.

Sometimes it is convenient to use the principle of mathematical induction in a slightly different form. We assume (not only q_k , but rather) each one of $q_1, q_2, q_3, \ldots, q_k$ is true and then conclude that q_{k+1} is true. This establishes the truth of q_n for all $n \in \mathbb{N}$, as the following lemma shows.

4.4 Lemma: Let q_n be a statement involving a natural number n. Assume that i. q_1 is true,

ii. for all $k \in \mathbb{N}$, if $q_1, q_2, q_3, \ldots, q_k$ are true, then q_{k+1} is true.

Then q_n is true for all $n \in \mathbb{N}$.