Scalable and Validated Variant Calling Work in the Bioinformatics Core

Brad Chapman Bioinformatics Core, Harvard Chan School

https://github.com/chapmanb/bcbio-nextgen http://bcb.io

http://j.mp/bcbiolinks

6 February 2015

Bioinformatics Core

What we do

- Project design
- Analysis and consulting
- Teaching and training
- Infrastructure

Find us

FXB 202B

http://hsphbio.ghost.io

http://bioinformatics.hms.harvard.edu

Summary

- What is bcbio?
- Validation
- Support
- Scaling

Human whole genome sequencing

http://ensembl.org/Homo_sapiens/Location/Genome

High throughput sequencing

Variant calling

http://en.wikipedia.org/wiki/SNV_calling_from_NGS_data

Scale: exome to whole genome

The haploid human genome sequence

https://www.flickr.com/photos/119980645@N06/

White box software

Overview

https://github.com/chapmanb/bcbio-nextgen

- Aligners: bwa-mem, novoalign, bowtie2
- Variantion: FreeBayes, GATK, Platypus, MuTecT, scalpel, SnpEff, VEP, GEMINI, Lumpy, Delly
- RNA-seq: Tophat, STAR, cufflinks, HTSeq
- Quality control: fastqc, bamtools, RNA-SeQC
- Manipulation: bedtools, bcftools, biobambam, sambamba, samblaster, samtools, vcflib

Provides

- Community collected set of expertise
- Validation
- Scaling
- Multi-architecture parallel processing

Complex, rapidly changing pipelines

Whole genome, deep coverage v1

Warning: the material on this page is considered out of date by the GSA team.

Best Practice Variant Detection with the GATK v2

Warning: the material on this page is considered out of date by the GSA team.

RETIRED: Best Practice Variant Detection with the GATK v3

Best Practice Variant Detection with the GATK v4, for release 2.0 [RETIRED]

July 2012 edited February 4 | The Best Practices have been updated for GATK version 3. If you are running an older version, you should seriously consider upgrading. For more details

Quality differences between methods

Variant Calling Test

We compare combinations of variant calling pipelines across different data sets. Browse our public facing reports to see how various aligner + variant caller combinations perform against each other. Test your own combination of tools by creating your own report. Below is a sample conconcordance view on our "Illumina 100bp Paired End 30x Coverage" data set.

http://www.bioplanet.com/gcat

Benefits of improved filtering

http://j.mp/cancervalpre

Solution

http://www.amazon.com/Community-Structure-Belonging-Peter-Block/dp/1605092770

Community: contribution

https://github.com/chapmanb/bcbio-nextgen

Community: documentation

https://bcbio-nextgen.readthedocs.org

Community

Contributors

- Miika Ahdesmaki, AstraZeneca
- Luca Beltrame, IRCCS "Mario Negri" Institute for Pharmacological Research, Milan, Italy
- Alla Bushoy, AstraZeneca
- Guillermo Carrasco, Science for Life Laboratory, Stockholm
- Nick Carriero, Simons Foundation
- Brad Chapman, Harvard Chan Bioinformatics Core
- Saket Choudhary, University Of Southern California
- Peter Cock, The James Hutton Institute
- Matt Edwards, MIT
- Mario Giovacchini, Science for Life Laboratory, Stockholm
- Karl Gutwin, Biogen
- · Jeff Hammerbacher, Icahn School of Medicine at Mount Sinai
- John Kern
- Rory Kirchner, Harvard Chan Bioinformatics Core
- Jakub Nowacki, AstraZeneca
- John Morrissey, Harvard Chan Bioinformatics Core
- Lorena Pantano, Harvard Chan Bioinformatics Core
- Brent Pedersen, University of Colorado Denver
- James Porter, The University of Chicago
- Valentine Svensson, Science for Life Laboratory, Stockholm
- · Paul Tang, UCSF
- · Roman Valls, Science for Life Laboratory, Stockholm
- Kevin Ying, Garvan Institute of Medical Research, Sydney, Australia

Community: GEMINI

Validation

Tests for implementation and methods

- Family/population calling
- Structural variations
- Cancer tumor/normal

Reference materials

http://www.genomeinabottle.org/

Joint variant calling definitions

- Single sample calling
- Pooled calling
- Joint calling
- Squaring off/backfilling

http://j.mp/bcbiojoint

Squared off VCF

http://gatkforums.broadinstitute.org/discussion/4150/should-i-analyze-my-samples-alone-or-together

Scaling and analysis flexibility

- Parallelize: call samples individually
- Add single new sample to analysis
- Combine existing populations
- Inform calls based on previously known variants

Implementation

- GATK HaplotypeCaller gVCFs
- FreeBayes recalling
- Platypus recalling
- samtools 1.x recalling

https://github.com/chapmanb/bcbio.variation.recall

Multiple approaches work well

Joint vs batch vs single

Structural variations

- Goal: identify regions with potential issues
- Rough boundaries for additional analysis
- Ensemble: union of all calls
- Understand sensitivity and precision

http://j.mp/bcbiosv

Structural variant callers

- LUMPY https://github.com/arq5x/lumpy-sv
- Delly https://github.com/tobiasrausch/delly
- Cn.mops http://www.bioconductor.org/packages/ release/bioc/html/cn.mops.html
- CNVkit http://cnvkit.readthedocs.org/
- WHAM https://github.com/jewmanchue/wham

Structural variant evaluation

Making bcbio easy to use

The trepidation of opening an INSTALL file. "Please say ./configure; make; make install... please say ./configure; make; make install..."

♠ Reply ★ Retweet ★ Favorite ••• More

Automated Install

We made it easy to install a large number of biological tools. Good or bad idea?

Need a consistent support environment

Docker lightweight containers

http://docker.com

Docker benefits

- Fully isolated
- Reproducible store full environment with analysis (1Gb)
- Improved installation single download + data

bcbio + Docker + Amazon Web Services

- Ready to run
- Easy interface to start/stop clusters
- Pull/push data from encrypted S3
- Lustre and encrypted NFS filesystems

http://bcb.io/2014/12/19/awsbench/

Harvard HPC

Odyssey at FAS
https://rc.fas.harvard.edu/

Orchestra at HMS
https://rc.hms.harvard.edu/

Scaling: Start point

- Initial pipeline scales with exomes
- 50 whole genomes = 3 months
- Next project: 1500 whole genomes

Scaling: End point

1500 whole genome scale – 110Tb

```
$ du -sh alz-p3f_2-g5/final
3.4T alz-p3f_2-g5/final
$ ls -lhd *alz* | wc -l
31
```

Scaling: network bandwidth

1 GigE to Infiniband

Dell Genomic Data Analysis Platform; Glen Otero

http://www.dell.com/learn/us/en/555/hpcc/

high-performance-computing-life-sciences?c=us&l=en&s=biz&cs=555

Scaling: shared filesystem

480 cores, 30 samples

Step	Lustre	NFS
alignment	4.5h	6.1h
alignment post-processing	7.0h	20.7h

James Cuff, John Morrissey (FAS) Kristina Kermanshahche (Intel)

Scaling: avoid intermediates

```
("{bwa} mem -M -t {num_cores} -R '{rg_info}' -v 1 "
   " {ref_file} {fastq_file} {pair_file} "
   "| {samblaster} "
   "| {samtools} sort -@ {cores} -m {mem} -T {tmp_file}"
   " -o {tx_out_file} /dev/stdin")
```

Scaling: Parallel by genome

Selection of genome regions for parallel processing

Scaling: AWS benchmarking

	AWS (Lustre)
Total	4:42
genome data preparation	0:04
alignment preparation	0:12
alignment	0:29
callable regions	0:44
alignment post-processing	0:13
variant calling	2:35
variant post-processing	0:05
prepped BAM merging	0:03
validation	0:05

100X cancer tumor/normal exome on 64 cores (2 c3.8xlarge)

Scaling: Resource usage plots

Summary

- bcbio community built variant calling and RNA-seq analyses
- Validation measure quality = good science
- Support AWS and local HPC
- Scaling diverse teams

https://github.com/chapmanb/bcbio-nextgen