IN THE CLAIMS

1. (currently amended) A method of oxidizing an oxidizable substrate which comprises bringing an oxidizable substrate into contact with Use of at least one metal complex of formula (1)

$$[L_n Me_m X_p]^z Y_q$$
 (1),

wherein

Me is manganese; titanium; iron; cobalt; nickel or copper,

X is a coordinating or bridging radical,

n and m are each independently of the other an integer having a value of from 1 to 8,

p is an integer having a value of from 0 to 32,

z is the charge of the metal complex,

Y is a counter-ion,

q = z/(charge of Y), and

L is a ligand of formula (2)

wherein

Q₁ is N or CR₁₀,

Q₂ is N or CR₁₁,

 R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} and R_{11} are each independently of the others hydrogen; unsubstituted or substituted C_1 - C_{18} alkyl or unsubstituted or substituted aryl; cyano; halogen; nitro; - $COOR_{12}$ or $-SO_3R_{12}$ wherein

R₁₂ is in each case hydrogen, a cation or unsubstituted or substituted C₁-C₁₈alkyl or unsubstituted or substituted aryl;

-SR₁₃; -SO₂R₁₃ or -OR₁₃ wherein

R₁₃ is in each case hydrogen or unsubstituted or substituted C₁-C₁₈alkyl or unsubstituted or substituted aryl;

 $-NR_{14}R_{15}$; $-(C_1-C_6alkylene)-NR_{14}R_{15}$; $-N^{\oplus}R_{14}R_{15}R_{16}$; $-(C_1-C_6alkylene)-N^{\oplus}R_{14}R_{15}R_{16}$;

- $-N(R_{13})-(C_1-C_6alkylene)-NR_{14}R_{15}; -N[(C_1-C_6alkylene)-NR_{14}R_{15}]_2;$
- $-N(R_{13})-(C_1-C_6alkylene)-N^{\oplus}R_{14}R_{15}R_{16}; -N[(C_1-C_6alkylene)-N^{\oplus}R_{14}R_{15}R_{16}]_2; -N(R_{13})-N-R_{14}R_{15} \ or \ -N(R_{13})-N^{\oplus}R_{14}R_{15}R_{16}, \ wherein$

R₁₃ is as defined above and

 R_{14} , R_{15} and R_{16} are each independently of the other(s) hydrogen or unsubstituted or substituted C_1 - C_{18} alkyl or unsubstituted or substituted aryl, or

 R_{14} and R_{15} , together with the nitrogen atom linking them, form an unsubstituted or substituted 5-, 6- or 7-membered ring which may contain further hetero atoms, as catalysts for oxidation reactions with organic peroxy acids and/or precursors of organic peroxy acids and H_2O_2 and or a precursor of H_2O_2 .

- 2. (currently amended) A method Use according to claim 1, wherein Me is manganese, which is in oxidation state II, III, IV or V.
- **3.** (currently amended) A method Use according to either claim 1-or claim-2, wherein X is CH₃CN, H₂O, F⁻, Cl⁻, Br⁻, HOO⁻, O₂⁻², O²-, R₁₇COO⁻, R₁₇O⁻, LMeO⁻ or LMeOO⁻, wherein R₁₇ is hydrogen or unsubstituted or substituted C₁-C₁₈alkyl or aryl, and L and Me are as defined in claim 1.
- **4.** (currently amended) <u>A method</u> Use according to any one of claim [[s]] 1-to-3, wherein Y is R₁₇COO⁻, ClO₄⁻, BF₄⁻, PF₆⁻, R₁₇SO₃⁻, R₁₇SO₄⁻, SO₄², NO₃⁻, F⁻, Cl⁻, Br⁻ or l⁻, wherein R₁₇ is hydrogen or unsubstituted or substituted C₁-C₁₈alkyl or aryl.
- 5. (currently amended) A method Use according to any one of claim [[s]] 1 to 4, wherein n is an integer having a value of from 1 to 4, especially 1 or 2.
- **6.** (currently amended) A method Use according to any one of claim[[s]] 1 to 5, wherein m is an integer having a value of 1 or 2, especially 1.
- 7. (currently amended) A method Use according to any one of claim [[s]] 1-to-6, wherein p is an integer having a value of from 0 to 4, especially 2.
- 8. (currently amended) A method Use according to any one of claim[[s]] 1-to-7, wherein

z is an integer having a value of from 8- to 8+.

9. (currently amended) A method Use according to claim 1-to-8, wherein

R₅ is C₁-C₁₂alkyl; phenyl unsubstituted or substituted by C₁-C₄alkyl, C₁-C₄alkoxy, halogen, cyano, nitro, carboxy, sulfo, hydroxy, amino, N-mono- or N,N-di-C₁-C₄alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety, N-phenylamino,

N-naphthylamino, phenyl, phenoxy or by naphthyloxy; cyano; halogen; nitro; -COOR₁₂ or -SO₃R₁₂

wherein R_{12} is in each case hydrogen, a cation, C_1 - C_{12} alkyl, unsubstituted phenyl or phenyl substituted as indicated above; -SR₁₃, -SO₂R₁₃ or -OR₁₃

wherein R₁₃ is in each case hydrogen, C₁-C₁₂alkyl, unsubstituted phenyl or phenyl substituted as indicated above;

-N(R₁₃)-NR₁₄R₁₅

wherein R_{13} is as defined above and R_{14} and R_{15} are each independently of the other hydrogen, unsubstituted or hydroxy-substituted C_1 - C_{12} alkyl, unsubstituted phenyl or phenyl substituted as indicated above,

or R_{14} and R_{15} , together with the nitrogen atom linking them, form an unsubstituted or C_1 - C_4 alkyl-substituted pyrrolidine, piperidine, piperazine, morpholine or azepane ring; -N $R_{14}R_{15}$ or -N $^{\oplus}R_{14}R_{15}R_{16}$ wherein R_{14} , R_{15} and R_{16} are each independently of the other(s) hydrogen, unsubstituted or hydroxy-substituted C_1 - C_{12} alkyl, unsubstituted phenyl or phenyl substituted as indicated above.

or R_{14} and R_{15} , together with the nitrogen atom linking them, form an unsubstituted or C_1 - C_4 alkyl-substituted pyrrolidine, piperidine, piperazine, morpholine or azepane ring; N-mono- or N,N-di- C_1 - C_4 alkyl- $N^{\oplus}R_{14}R_{15}R_{16}$ unsubstituted or substituted by hydroxy in the alkyl moiety, wherein R_{14} , R_{15} and R_{16} are each independently of the others hydrogen, unsubstituted or hydroxy-substituted C_1 - C_{12} alkyl, unsubstituted phenyl or phenyl substituted as indicated above, or R_{14} and R_{15} , together with the nitrogen atom linking them, form a pyrrolidine, piperidine, piperazine, morpholine or azepane ring which is unsubstituted or substituted by at least one C_1 - C_4 alkyl or by at least one unsubstituted C_1 - C_4 alkoy and/or substituted C_1 - C_4 alkyl, wherein the nitrogen atom may be quaternised; N-mono- or N,N-di- C_1 - C_4 alkyl-NR₁₄R₁₅ unsubstituted or substituted by hydroxy in the alkyl moiety, wherein R_{14} and R_{15} may have any one of the above meanings.

10. (currently amended) A method Use according to claim 1-to-9, wherein L have the following formula (3)

$$R'_{3} \xrightarrow{A}_{N} \xrightarrow{R'_{5}} R'_{7}$$

$$(3)$$

wherein

R'₃ and R'₇ are independently from each other hydrogen; C₁-C₄alkoxy; hydroxy; N-mono- or N,N-di-C₁-C₄alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety, wherein the nitrogen atoms, especially the nitrogen atoms that are not bonded to one of the rings A, B and/or C, may be quaternised; or a pyrrolidine, piperidine, piperazine, morpholine or azepane ring unsubstituted or substituted by at least one C₁-C₄alkyl, wherein the amino groups may be quaternised, R'₅ is C₁-C₄alkoxy; hydroxy; N-mono- or N,N-di-C₁-C₄alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety, wherein the nitrogen atoms, especially the nitrogen atoms that are not bonded to one of the rings A, B and/or C, may be quaternised; or a pyrrolidine, piperidine, piperazine, morpholine or azepane ring unsubstituted or substituted by at least one C₁-C₄alkyl, wherein the amino groups may be quaternised.

11. (currently amended) A method Use according to claim 1 to 10, wherein L have the following formula (3)

$$R'_{3} \xrightarrow{A}_{N} \xrightarrow{R'_{5}} R'_{7}$$

$$(3)$$

wherein

R'₃ and R'₇ are independently from each other hydrogen; C₁-C₄alkoxy; hydroxy; N-mono- or N,N-di-C₁-C₄alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety, wherein the nitrogen atoms, especially the nitrogen atoms that are not bonded to one of the rings A, B and/or C, may be quaternised; or a pyrrolidine, piperidine, piperazine, morpholine or azepane ring unsubstituted or substituted by at least one C₁-C₄alkyl, wherein the amino groups may be quaternised,

R'₅ is C₁-C₄alkoxy; hydroxy; N-mono- or N,N-di-C₁-C₄alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety, wherein the nitrogen atoms, especially the nitrogen atoms that are not bonded to one of the rings A, B and/or C, may be quaternised; or a pyrrolidine, piperidine, piperazine, morpholine or azepane ring unsubstituted or substituted by at least one C₁-C₄alkyl, wherein the amino groups may be quaternised,

with the proviso that

(i) at least one of the substituents R'₃, R'₅ and R'₇ is one of the radicals

$$- (CH_2)_{\overline{0.4}} N N R_{15} - C_1 - C_4 \\ R_{16} - C_1 - C_4 \\ R_{16}$$

wherein R_{15} and R_{16} are independently from each other hydrogen or unsubstituted or substituted C_{1-}

C₁₈alkyl or unsubstituted or substituted aryl and wherein the unbranched or branched alkylene group

wherein the unbranched or branched alkylene group may be unsubstituted or substituted, and wherein the C₁-C₄alkyl groups, which are branched or unbranched independently of one another, may be unsubstituted or substituted and wherein the piperazine ring may be unsubstituted or substituted.

12. (currently amended) A method Use according to claim 1-to 9, wherein L have the following formula (4) and/or (5)

$$R'_{3} \xrightarrow{A} N \xrightarrow{R'_{5}} R'_{7} (4) \qquad R'_{3} \xrightarrow{A} N \xrightarrow{R'_{5}} N \xrightarrow{R'_{5}} R'_{7} (5)$$

wherein

R'₅ is C₁-C₄alkoxy; Cl; hydroxy; phenyl; phenyl substituted by OC₁-C₂alkyl, OH or C₁-C₄alkyl; N-mono- or N,N-di-C₁-C₄alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety; or -NR₁₄R₁₅; -(C₁-C₆alkylene)-NR₁₄R₁₅;

 $-N(R_{13})-(C_1-C_6alkylene)-NR_{14}R_{15}$; $-N[(C_1-C_6alkylene)-NR_{14}R_{15}]_2$; or $-N(R_{13})-N-R_{14}R_{15}$, wherein

R₁₃ is hydrogen; C₁-C₁₂alkyl or unsubstituted phenyl or phenyl substituted by (substituted in the alkyl moiety by hydroxy) N-mono- or

 $N,N-di-C_1-C_4$ alkylamino-, N-phenylamino-, N-naphthylamino-, phenyl-, phenoxy- or naphthyloxy, and

 R_{14} and R_{15} are each independently of the other hydrogen, unsubstituted or hydroxy-substituted C_1 - C_{12} alkyl, unsubstituted phenyl or phenyl substituted as indicated above, or

 R_{14} and R_{15} , together with the nitrogen atom linking them, form a pyrrolidine, piperidine, piperazine, morpholine or azepane ring that is unsubstituted or substituted by at least one unsubstituted C_1 - C_4 alkyl and/or substituted C_1 - C_4 alkyl, especially a pyrrolidine, piperidine, piperazine, morpholine or azepane ring, and

R'₃ and R'₇ are each independently of the other hydrogen; C_1 - C_4 alkoxy; CI; hydroxy; phenyl; phenyl substituted by OC_1 - C_2 alkyl, OH or C_1 - C_4 alkyl; N-mono- or N,N-di- C_1 - C_4 alkylamino substituted by hydroxy in the alkyl moiety; or -NR₁₄R₁₅; -(C_1 - C_6 alkylene)-NR₁₄R₁₅; -N[(C_1 - C_6 alkylene)-NR₁₄R₁₅]₂; or -N(R_{13})-N- R_{14} R₁₅, wherein

 R_{13} is hydrogen; C_1 - C_{12} alkyl or unsubstituted phenyl or phenyl substituted by (substituted in the alkyl moiety by hydroxy) N-mono- or N,N-di- C_1 - C_4 alkylamino-, N-phenylamino-, N-naphthylamino-, phenyl-, phenoxy- or naphthyloxy, and R_{14} and R_{15} are each independently of the other hydrogen; unsubstituted or hydroxy-substituted C_1 - C_{12} alkyl, unsubstituted phenyl or phenyl substituted as indicated above, or

 R_{14} and R_{15} , together with the nitrogen atom linking them, form a pyrrolidine, piperidine, piperazine, morpholine or azepane ring that is unsubstituted or substituted by at least one unsubstituted C_1 - C_4 alkyl and/or substituted C_1 - C_4 alkyl, especially a pyrrolidine, piperidine, piperazine, morpholine or azepane ring.

13. (currently amended) A method Use according to claim 121 to 9, wherein L have the following formula (4) and/or (5)

$$R'_{3} \xrightarrow{A_{N}} R'_{5} \xrightarrow{R'_{7}} (4) \qquad R'_{3} \xrightarrow{A_{N}} R'_{N} \xrightarrow{R'_{5}} (5)$$

wherein R'₃ and R'₇ are independently from each other hydrogen; C₁-C₄alkoxy; CI; hydroxy; phenyl; phenyl substituted by OC₁-C₂alkyl, OH or C₁-C₄alkyl; N-mono- or N,N-di-C₁-C₄alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety, wherein the nitrogen atoms, especially the nitrogen atoms that are not bonded to one of the rings A, B and/or C, may be quaternised; or a pyrrolidine, piperazine, morpholine or azepane ring unsubstituted or substituted by at least one C₁-C₄alkyl, wherein the amino groups may be quaternised.

 R'_5 is C_1 - C_4 alkoxy; CI; hydroxy; phenyl; phenyl substituted by OC_1 - C_2 alkyl, OH or C_1 - C_4 alkyl; N-monoor N,N-di- C_1 - C_4 alkylamino unsubstituted or substituted by hydroxy in the alkyl moiety, wherein the nitrogen atoms, especially the nitrogen atoms that are not bonded to one of the rings A, B and/or C, may be quaternised; or a pyrrolidine, piperidine, piperazine, morpholine or azepane ring unsubstituted or substituted by at least one C_1 - C_4 alkyl, wherein the amino groups may be quaternised, with the proviso that

(i) at least one of the substituents R'3, R'5 and R'7 is one of the radicals

wherein R_{15} and R_{16} are independently from each other hydrogen or unsubstituted or substituted C_{1-} C_{18} alkyl or unsubstituted or substituted anyl and

wherein the unbranched or branched alkylene group may be unsubstituted or substituted, and wherein the C₁-C₄alkyl groups, which are branched or unbranched independently of one another, may be unsubstituted or substituted and wherein the piperazine ring may be unsubstituted or substituted.

- **14.** (currently amended) A method Use according to any of the preceding claim [[s]] 1 wherein at least one mono- or poly-peroxy acid having at least 1 to 20 carbon atoms in the alkyl chain and/or its corresponding precursor and H_2O_2 is used.
- **15.** (currently amended) A method Use according to any of the preceeding claim [[s]] 14 wherein at least one

organic peroxy acids of formula $R_{18}^{O} = C - O - OM$ wherein

M signifies hydrogen or a cation,

 R_{18} signifies unsubstituted C_1 - C_{18} alkyl; substituted C_1 - C_{18} alkyl; unsubstituted aryl; substituted aryl; - $(C_1$ - C_6 alkylene)-aryl, wherein the alkylene and/or the <u>arylalkyl</u> group may be substituted; and phthalimido C_1 - C_8 alkylene, wherein the phthalimido and/or the alkylene group may be substituted is used.

- **16.** (currently amended) <u>A method</u>Use according to any of the preceeding-claim[[s]] <u>15</u>, wherein CH₃COOOH or epsilon-phthalimido peroxy hexanoic acid or a alkali salt thereof is used.
- **17.** (currently amended) A method Use according to any of the preceeding claim [[s]] 1, wherein TAED and/or NOBS as precursors of peroxy acids and sodium percarbonate and/or sodium perborate are used.
- **18.** (currently amended) <u>A method</u> Use according to any one of claim [[s]] 1 to 17 for the bleaching of stains, [[or]] <u>bleaching</u> of soiling on textile material, [[or]] for the prevention of redeposition of migrating dyes, or for the cleaning of hard surfaces.
- **19.** (currently amended) A method Use according to any one of claim [[s]] 1-to 17, wherein the metal complex compounds of formula (1) are used as catalysts for reactions using peroxo acids or their precursors for bleaching in the context of paper making.
- **20.** (currently amended) <u>A method</u> according to <u>any one of claim</u> [s] 1 to 17, wherein the metal complex compounds of formula (1) are used in detergent, cleaning, disinfecting or bleaching compositions.
- 21. (currently amended) A method Use according to any one of claim [s] 1-to-17, wherein the metal complex compounds of formula (1) are used in automatic dishwasher formulations.
- **22.** (currently amended) A method Use according to claim 20, wherein the metal complex compounds of formula (1) are formed *in situ* in the detergent, cleaning, disinfecting or bleaching composition.

- 23. (currently amended) A detergent, cleaning, disinfecting or bleaching composition containing
- I) from 0 to 50 wt-%, preferably from 0 to 30 wt-%, A) of at least one anionic surfactant and/or B) of a non-ionic surfactant,
- from 0 to 70 wt-%, preferably from 0 to 50 wt-%, C) of at least one builder substance,
 1 99 wt-%, preferably 1 50 wt-%, D) of at least one peroxy acid and/or at least one precursors of peroxy acid, the latter in combination with hydrogen peroxide and/or a precursor of hydrogen peroxide as defined in claims 14, 15, 16 and 17,
- IV) E) at least one metal complex compound of formula (1) as defined in claim[[s]] 1—13 in an amount that, in the liquor, gives a concentration of from 0.5 to 100 mg/litre of liquor, preferably from 1 to 50 mg/litre of liquor, when from 0.5 to 20 g/litre of the detergent, cleaning, disinfecting or bleaching agent are added to the liquor, and
- V) water ad 100 wt-%, wherein the percentages are in each case percentages by weight, based on the total weight of the composition.
- 24. (currently amended) A solid formulation containing
- a) from 1 to 99 wt-%, preferably from 1 to 40 wt-%, especially from 1 to 30 wt-%, of at least one metal complex compound of formula (1) as defined in claim 1[[13]] and at least one organic peroxy acid and/or at least one precursor of an organic peroxy acid and H₂O₂ as defined in claims 14, 15, 16 and 17,
- b) from 1 to 99 wt-%, preferably from 10 to 99 wt-%, especially from 20 to 80 wt-%, of at least one binder,
- c) from 0 to 20 wt-%, especially from 1 to 20 wt-%, of at least one encapsulating material,
- d) from 0 to 20 wt-% of at least one further additive and
- e) from 0 to 20 wt-% water.
- 25. (original) A solid formulation according to claim 24, which is in the form of granules.