# EE2331 Data Structures and Algorithms

Merge sort

#### Merge Sort

Is it faster or slower than insertion sort?

#### **Daily Life Example**

■ The idea of merging



# Merging

- To merge 2 sorted lists
- ■It takes 2 input arrays *A*[] & *B*[], 1 output array *C*[] and 3 counters (*i*, *j*, *k*) for the arrays respectively
- The smaller of A[i] and B[j] is copied to C[k], then the counters are advanced
- If either A[] or B[] finishes first, the reminder of the other array is copied to C[]

### Merge Sort Example



### Merge Sort Example



# The Algorithm

- Initially the input list is divided into N sublists of size 1
- Adjacent pairs of lists are merged to form larger sorted sublists
- The merging process is repeated until there is only one list



### Merge Adjacent Lists



```
void merge(int data[], int first, int mid, int last) {
   int temp[SIZE], i = first, j = mid + 1, k = 0;
   while (i \leq mid && j \leq last) {
                                                 Compare A[i] and B[j], copy
                                                 the smaller one to temp[k]
     if (data[i] <= data[i]) ←
                                                 A is data[first...mid]
        temp[k++] = data[i++];
                                                 B is data[mid+1...last]
     else
                                                 C is temp[...]
        temp[k++] = data[j++];
  while (i <= mid) temp[k++] = data[i++]; \leftarrow The remaining A or B will
  while (j <= last) temp[k++] = data[j++];*
                                                       be copied into temp
  i = 0;
   while (i < k) data[first+i] = temp[i++]; The sorted temp. array is
                                                     copied back to data 8
}
      What is the running time complexity?
```

#### Divide-and-Conquer

- This algorithm is a classic divide-andconquer strategy
- Very powerful use of recursion
- The problem is divided into smaller problems and solved independently and recursively
- The conquering phase consists of merging together the sorted lists

#### Divide-and-Conquer

- Recursive structure
  - Step1: Divide the problem into a number of sub-problems
  - Step 2: Conquer the sub-problem by solving them recursively. If the subproblem sizes are small enough, solve the subproblem in a straightforward way
  - Step 3: Combine the solutions to the subproblems into the solution for the original problem.

#### **Dividing Phase**

Divide the list into halves



Divide again and again until only one single element left in the list

# **Conquering Phase**



# Merge Sort (Using Recursion)

```
void mergesort(int data[], int first, int last) {
   int mid = (first + last) / 2;
   if (first >= last) return;  //base case: size = 1
   mergesort(data, first, mid); //recursion: divide the list into halves
   mergesort(data, mid+1, last);//recursion: divide the list into halves
   merge(data, first, mid, last); //start merging the list: conquer
}
                                     In-class exercise:
int main(...) {
                                     Write all the called mergesort() functions
                                     and the parameters of mergesort.
   int data[] = \{8, 5, 9, 6, 3\};
   mergesort(data, 0, 4);
                                     For example, the first called mergesort
                                     function is mergesort(data, 0, 4).
   return 0;
```

#### Merge Sort (Using Recursion)

```
void mergesort(int data[], int first, int last) {
  int mid = (first + last) / 2;
  if (first >= last) return; //base case: size = 1
  mergesort(data, first, mid); //recursion: divide the list into halves
  mergesort(data, mid+1, last);//recursion: divide the list into halves
  merge(data, first, mid, last); //start merging the list: conquer
}
                                             In-class exercise:
int main(...) {
                                             Write all the called mergesort() functions
  int data[] = \{8, 5, 9, 6, 3\};
                                             and the parameters of mergesort.
  mergesort(data, 0, 4);
  return 0;
                                             For example, the first called mergesort
                                             function is mergesort(data, 0, 4).
```

```
The following functions are called by the given order.

Mergesort(data, 0,4), mergesort(data,0,2), mergesort(data,0,1),

mergesort(data,0,0), mergesort(data,1,1),

merge(data,0,0,1),mergesort(2,2),merge(data,0,1,2),mergesort(data,3,4),m

ergesort(data,3,3),mergesort(data,4,4),merge(data,3,3,4),merge(data,0,2,4)
```

```
void mergesort(int data[], int first, int last) {
   int mid = (first + last ) / 2;
   if (first >= last) return;
   mergesort(data, first, mid);
   mergesort(data, mid+1, last);
   merge(data, first, mid, last);
}
int main(...) {
   int data[] = {8, 5, 9, 6, 3};
   mergesort(data, 0, 4);
   return 0;
}
```

```
void merge(int data[], int first, int mid, int last) {
  int temp[SIZE], i = first, j = mid + 1, k = 0;
  while (i <= mid && j <= last) {
    if (data[i] <= data[j])
        temp[k++] = data[i++];
    else
        temp[k++] = data[j++];
}

while (i <= mid) temp[k++] = data[i++];
while (j <= last) temp[k++] = data[j++];
i = 0;
while (i < k) data[first+i] = temp[i++];
}</pre>
```

### Running Time Analysis

```
void mergesort(int data[], int first, int last) { T(n) if (first >= last) return; \Theta(1) mergesort(data, first, (first + last ) / 2); T(\frac{n}{2}) // (first + last ) / 2 is the mid-point mergesort(data, (first + last ) / 2+1, last); T(\frac{n}{2}) 4 merge(data, first, mid, last); \Theta(n) }
```

$$T(n) = \begin{cases} \Theta(1) + 2 \cdot T(\frac{n}{2}) + \Theta(n) &, otherwise \\ 1, &, when n = 1 \end{cases}$$

### Running Time Analysis

$$T(n) = 1 + 2 \cdot T(\frac{n}{2}) + n$$

$$= 1 + 2 + 4 \cdot T(\frac{n}{4}) + n + n$$

$$= 4 \cdot T(\frac{n}{4}) + 2n + 1 + 2$$

$$= 4 + 8 \cdot T(\frac{n}{8}) + n + 2n + 1 + 2$$

$$= 8 \cdot T(\frac{n}{8}) + 3n + 1 + 2 + 4$$

$$T(x) = 1 + 2 \cdot T(\frac{x}{2}) + x$$

$$T(\frac{x}{2}) = 1 + 2 \cdot T(\frac{x}{4}) + \frac{x}{2}$$

$$2T(\frac{x}{2}) = 2 + 4 \cdot T(\frac{x}{4}) + x$$

$$T(\frac{x}{4}) = 1 + 2 \cdot T(\frac{x}{8}) + \frac{x}{4}$$

$$4T(\frac{x}{4}) = 4 + 8 \cdot T(\frac{x}{8}) + x$$
.....

. . . . . .

= 
$$2^k \cdot T(\frac{n}{2^k}) + kn + (2^0 + 2^1 + 2^2 + \dots + 2^{k-1})$$

. . . . . .

until 
$$\frac{n}{2^k} = 1 \Rightarrow k = \log_2 n$$

# Running Time Analysis

```
When k=\log_2 n,

T(n)=2^k \cdot T(\frac{n}{2^k})+kn+(2^0+2^1+2^2+\cdots+2^{k-1})

=2^{\log_2 n} \cdot T(1)+n\log_2 n+(2^0+2^1+\cdots+2^{\log_2 n-1})

=n+n\log_2 n+n-1=n\log_2 n+2n-1

=O(n\log_2 n) merge # of statement 1 (testing whether the input size=1)
```

$$S = 2^{0} + 2^{1} + \dots + 2^{\log_{2} n - 1}$$

$$2S = 2^{1} + 2^{2} + \dots + 2^{\log_{2} n}$$

$$S = 2S - S = 2^{\log_{2} n} - 2^{0} = n - 1$$

### **Complexity Analysis**

- Merge sort goes through the same steps independent of the data
  - Best case = Worst case = Average case
- For each runs, it requires O(n) time to finish
- There are log<sub>2</sub>n runs in total
- The time complexity is  $O(n\log n)$
- Faster than insertion sort!
- The trade-off is it needs extra memory to hold the temporary sorted result
- Space complexity = O(n)
- Improvement to the merge algorithm:
  - Instead of merging each set of lists from data[] to temp[] and then copy temp[] back to data[], alternate merge passes can be performed from data[] to temp[] and from temp[] to data[].

# Summary

