上海交通大學

SHANGHAI JIAO TONG UNIVERSITY

机械动力学课程项目

MECHANICAL DYNAMICS COURSE PROJECT

报告题目:	混沌双摆的动力学建模、	仿真与优化
学生姓名:	杨涵	
课程教师:	陈根良	
课程助教:		
扣上叶间	2022 (22	

目录

	MECHANICAL DYNAMICS COURSE PROJECT	1
—、	引言	3
	1 混沌摆的特性	3
	2 本文研究对象	3
_,	动力学建模方法	4
三、	系统动力学方程建立过程	5
	1 拉格朗日方程推导	5
	2 混沌双摆具体方程导出	6
四、	系统动力学方程求解与动画仿真	7
	1 求解方法与工具	7
	2 动画仿真	7
五、	关节位置优化	8
	1 终止条件设定	8
	2 优化方法	9
	3 优化结果与分析	10
六、	阻尼对摆动时间影响	11
	1 实验结果	11
	2 结果分析	11
七、	参考文献	12

一、引言

非线性系统的混沌行为是自然界普遍和重要的物理现象, 混沌动力学性质也是数学和物理学关注的研究前沿课题之一。[1]在实验中, 混沌摆是演示非线性系统混沌等动力学特性最直接的实验装置。[2]

1 混沌摆的特性

混沌摆是一种特殊的摆,具有不规则的运动规律,能够展现出混沌状态。在物理学和数学中,在动力系统领域,双摆是一个摆连接在另一个摆的末端,是一个简单的物理系统,具有丰富的动态特性,对初始条件具有很强的敏感性。^③双摆的运动由一组耦合的常微分方程控制并且是混沌的。混沌摆也很好的展示了非线性系统的混沌特性。

图 1 混沌摆表现出对初始状态很强的敏感性

2 本文研究对象

本文研究对象是两自由度有阻尼混沌双摆,模型如下图所示。本文将对双摆进行动力学建模与仿真,推导出双摆系统动力学方程,求解方程制作仿真动画,并在阻尼不变条件下进行转动关节(C、D)位置的优化,使得摆动时间最长,最后本文将探究最优关节位置条件下阻尼对摆动时间的影响。

二、动力学建模方法

牛顿第二定律是研究动力学的基础。但是,直接用牛顿第二定律或达朗贝尔原理研究多自由度机械系统动力学问题较为不便。用牛顿-欧拉方法进行分析时,是按照单个刚体的运动来建立方程的,例如对多杆机构,需要写出每一个构件的运动微分方程,方程中必须包含各个运动副的未知支反力。而在正动力学分析中,只研究机械的运动与所受外力之间的关系,并不需要求出各运动副的支反力。[4]

拉格朗日方程是从能量观点上统一建立起来的系统动能、势能和功之间的标量关系,不包含运动副中未知的支反力。而且拉格朗日方法采用广义坐标的方式,克服了牛顿-欧拉方法中在直角坐标中分析的繁琐,因此,本文动力学建模方法采用拉格朗日方法。 广义坐标定义如下:

图 3 系统广义坐标q1, q2定义

各物理量与数值见下表:

1 100-2 2 2001-201		
物理量	物理意义	数值
l1	DC 长度	0.05m
12	DG 长度	0.025m
<i>l</i> 3	DE 长度	0.15m
l4	GF 长度	0.1m
<i>m</i> 1	杆 DE 质量	0.6kg
<i>m</i> 2	杆 GF 质量	0.5kg
J1	杆 DE 相对质心转动惯量	$0.001125kg\cdot m^2$
J2	杆 GF 相对质心转动惯量	$0.0004167kg\cdot m^2$
c	C与D关节处阻尼系数	$0.05N \cdot m/(rad/s)$
qi	广义坐标	初始0
qι	广义速度	初始0
Ϋι	广义加速度	初始0
vi	质心速度	初始0

表 1 系统动力学模型物理量

三、系统动力学方程建立过程

1 拉格朗日方程推导

下面给出从动力学普遍方程推导拉格朗日方程的过程, 带虚位移的动力学普遍方程如下, 将其拆分为两项

$$\sum_a \left(oldsymbol{F}_{\pm}^{(a)} - m^{(a)} \ddot{oldsymbol{r}}^{(a)}
ight) \cdot \delta oldsymbol{r}^{(a)} = 0$$

$$\sum_i \left(F_{i\pm} - m_i \ddot{r}_i
ight) \delta r_i = \sum_i F_{i\pm} \, \delta r_i + \sum_i \left(-m_i \ddot{r}_i
ight) \delta r_i$$

第一项是主动力的贡献。

$$\sum_i F_{i\pm} \, \delta r_i = \sum_i \left(F_{i\pm} \, \sum_j rac{\partial r_i}{\partial q_j} \delta q_j
ight) = \sum_j \left(\sum_i F_{i\pm} rac{\partial r_i}{\partial q_j}
ight) \delta q_j = \sum_j Q_j \delta q_j$$

第二项是惯性力的贡献。

$$\begin{split} \sum_{i} \left(-m_{i}\ddot{r}_{i} \right) \delta r_{i} &= \sum_{i} \left[\left(-m_{i}\ddot{r}_{i} \right) \sum_{j} \frac{\partial r_{i}}{\partial q_{j}} \delta q_{j} \right] \\ &= -\sum_{j} \left(\sum_{i} m_{i} \ddot{r}_{i} \frac{\partial r_{i}}{\partial q_{j}} \right) \delta q_{j} \\ &= -\sum_{j} \left(\sum_{i} m_{i} \frac{\mathrm{d}\dot{r}_{i}}{\mathrm{d}t} \frac{\partial r_{i}}{\partial q_{j}} \right) \delta q_{j} \\ &= -\sum_{j} \left\{ \sum_{i} \left[m_{i} \frac{\mathrm{d}}{\mathrm{d}t} \left(\dot{r}_{i} \frac{\partial r_{i}}{\partial q_{j}} \right) - m_{i} \dot{r}_{j} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial r_{i}}{\partial q_{j}} \right) \right] \right\} \delta q_{j} \\ &= -\sum_{j} \left\{ \sum_{i} \left(m_{i} \frac{\mathrm{d}}{\mathrm{d}t} \left(\dot{r}_{i} \frac{\partial \dot{r}_{i}}{\partial \dot{q}_{j}} \right) - m_{i} \dot{r}_{j} \frac{\partial \dot{r}_{i}}{\partial q_{j}} \right) \right\} \delta q_{j} \\ &= -\sum_{j} \left\{ \frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{\partial}{\partial \dot{q}_{j}} \left(\sum_{i} \frac{1}{2} m_{i} \dot{r}_{i}^{2} \right) \right] - \frac{\partial}{\partial q_{j}} \left(\sum_{i} \frac{1}{2} m_{i} \dot{r}_{i}^{2} \right) \right\} \delta q_{j} \\ &= -\sum_{j} \left[\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} \right] \delta q_{j} \end{split}$$

联合上述主动力项和惯性力项, 得到

$$\sum_{j} \left[Q_{j} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) + \frac{\partial T}{\partial q_{j}} \right] \delta q_{j} = 0$$

又因为广义坐标可以任选,所以整个中括号里的内容必须为零。再移项,便得到了动能表示 的拉格朗日方程式

$$rac{\mathrm{d}}{\mathrm{d}t}igg(rac{\partial T}{\partial \dot{q}_j}igg) - rac{\partial T}{\partial q_j} = Q_j$$

同理也可以再将主动力区分为保守力和非保守力,并引入拉格朗日量L = T - V,得到

$$rac{\mathrm{d}}{\mathrm{d}t}igg(rac{\partial L}{\partial \dot{q}_j}igg) - rac{\partial L}{\partial q_j} = Q_j$$

2 混沌双摆具体方程导出

以C点为笛卡尔坐标原点,AOB平面为零势能面。

$$L = kinetic energy - potential energy$$

$$L = T - V$$

$$L = \frac{1}{2}m1v1^2 + \frac{1}{2}m2v2^2 + \frac{1}{2}J1\dot{q}1^2 + \frac{1}{2}J2\dot{q}2^2 - m1g(y1+5) - m2g(y2+5)$$

$$x1 = 0.025cosq1, y1 = 0.025sinq1$$

$$x2 = -0.05\cos q1 + 0.025\cos q2, y2 = -0.05\sin q1 + 0.025\sin q2$$

$$vx1 = -0.025\dot{q}1sinq1, vy1 = 0.025\dot{q}1cosq1$$

$$vx2 = 0.05\dot{q}1sinq1 - 0.025\dot{q}2sinq2, vy2 = -0.05\dot{q}1cosq1 + 0.025\dot{q}2cosq2$$

$$v1^2 = vx1^2 + vy1^2, v2^2 = vx2^2 + vy2^2$$

$$v1^2 = (0.025\dot{q}1)^2, v2^2 = (0.05\dot{q}1)^2 + (0.025\dot{q}2)^2 - 0.05^2\dot{q}1\dot{q}2\cos(q1-q2)$$

$$Q_{j \neq l} = -c\dot{q}_{J}$$

由拉格朗日方程分量形式,设t1 = 0.025, t2 = 0.05将上式带入

$$\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_j}) - \frac{\partial L}{\partial q_j} = Q_{j\#}$$

得到系统动力学方程

$$\left(m1t1^{2}+m2t2^{2}+J1\right)\ddot{q}_{1}-\left(\frac{1}{2}m2t2^{2}\cos(q1-q2)\right)\ddot{q}_{2}-\frac{1}{2}m2t2^{2}\sin(q1-q2)\,\dot{q}_{2}^{2}+(m1t1-m2t2)gcosq1=-c\dot{q}_{1}^{2}+cd^{2}+c$$

$$(m2t1^2+J2)\ddot{q}_2-\left(\frac{1}{2}m2t2^2\cos(q1-q2)\right)\ddot{q}_1+\frac{1}{2}m2t2^2\sin(q1-q2)\,\dot{q}_1^{\ 2}+m2t1gcosq2=-c\dot{q}_2$$

计算后化为四元一阶微分方程组

$$\dot{q}_1 = \omega_1$$

$$\dot{q}_2 = \omega_2$$

$$\dot{\omega}_{1} = \frac{\frac{5}{22} \cos(q1-q2) \left[\frac{6.25}{10000} \sin(q1-q2) \,\omega_{2}^{\ 2} + 0.098 cosq1 + 0.05 \omega_{1} \right] - 0.05 \omega_{2} - 0.1225 cosq2 - \frac{6.25}{10000} \sin(q1-q2) \,\omega_{1}^{\ 2}}{\frac{3646}{3125 \cos(q1-q2)} - \frac{5\cos(q1-q2)}{22}}$$

$$+\frac{5}{22}\sin(q1-q2)\omega_2^2+\frac{392}{11}\cos q1-\frac{200}{11}\omega_1$$

$$\dot{\omega}_{2} = \frac{\frac{5}{22}\cos(q1-q2)\left[\frac{6.25}{10000}\sin(q1-q2)\,\omega_{2}^{\ 2} + 0.098cosq1 + 0.05\omega_{1}\right] - 0.05\omega_{2} - 0.1225cosq2 - \frac{6.25}{10000}\sin(q1-q2)\omega_{1}^{\ 2}}{\frac{7292}{10000} - \frac{cos^{2}(q1-q2)}{7040}}$$

四、系统动力学方程求解与动画仿真

1 求解方法与工具

系统动力学方程为二阶非线性微分方程组。这类方程一般无法用解析法求显式解,需要采用数值法近似求解。^[5,6]常用的数值方法为四阶龙格-库塔法。

数值求解工具采用 MATLAB 中的 Simulink 仿真工具。源码见 src 文件夹中 double_pendulum.slx。Simulink 框图如下

图 4 系统动力学方程求解框图

2 动画仿真

参数设置为 I1 = 0.05m, I2 = 0.025m, C = 0.05N·m/(rad/s),时间步长设置为 1/60s,模拟前 20s 的摆动。源码见 simulate.m。

图 5 I1 = 0.05m, I2 = 0.025m, c = 0.05N·m/(rad/s)

图 6 E、F 两点位置、速度、加速度随时间变化的图像

五、关节位置优化

1 终止条件设定

根据题目,判断摆动达到终止的条件设定为初始位置 AOB 所在平面为零势能基准,系统机械能达到最小机械能的 100.1%时视为终止。

最小机械能所处系统状态如下, $M_{min}=T+V=0+V_{min}$,不难看出最小势能还是双摆几何参数的函数,由于摆长不变,故有 $V_{min}=f(l1,l2)$,由于在最小机械能条件下,S1 相对于 D 关节的位置总是要在 D 关节的下方,因此l2相对关节 D 位置对最小机械能没有影响,不需要对l2进行分类讨论。

图 7 最小机械能对应的系统状态

对于不同的11还需要分类讨论, 推导过程如下

②
$$l_1 \leq \frac{l_{DE}}{2}$$
可能有 $\begin{cases} V_{min_1} = m_1 g(s + \frac{l_{DE}}{2} - l_1) + m_2 g[s - (l_1 + \frac{O.1}{2} - l_2)] \\ V_{min_2} = m_1 g[s - (\frac{l_{DE}}{2} - l_1)] + m_2 g[s + l_1 - (\frac{o.1}{2} - l_2)] \\ \oplus V_{min_1} < V_{min_2} = m_1 g[s - (\frac{l_{DE}}{2} - l_1)] + m_2 g[s + l_1 - (\frac{o.1}{2} - l_2)] \end{cases}$

图 8 最小势能与l1的关系

由上述推导我们可以得到最小势能对于11的分段函数

 $V_{min} =$

$$\begin{split} & m1g\left(5 + \frac{LDE}{2} - l1\right) + m2g\left(5 + l2 - l1 - \frac{LGF}{2}\right), \frac{1}{\frac{m2}{m1} + 1} * \frac{LDE}{2} < l1 \leq LDE \\ & m1g\left(5 + l1 - \frac{LDE}{2}\right) + m2g\left(5 + l1 + l2 - \frac{LGF}{2}\right), \qquad 0 \leq l1 \leq \frac{1}{\frac{m2}{m1} + 1} * \frac{LDE}{2} \end{split}$$

2 优化方法

采取的算法为遍历,将需要优化的参数 $l1\ l2\ c$ 从工作区导入 simulink 中。M 为系统机械能计算。

图 8 优化参数 simulink 程序框图

在 $0 \le l1 \le 0.15$ 和 $0 \le l2 \le 0.05$ 范围中取 $\Delta l = 0.005$ 为步长,l2最大为 0.05 是由于关节 D 位置相对质心具有对称性,故不需要考虑 0.05 到 0.1 范围。程序见 optimization.m。 摆动过程中系统机械能衰减如下图所示,

图 9 l1 = 0.05m, l2 = 0.025m, c = 0.05N·m/(rad/s) 系统机械能衰减以下是摆动时间关于l1和l2的三维图,由于计算机性能限制,没有获得更小 Δl 的结果。

图 10 Z 轴为摆动时间, x 轴 (右) 为l2相对大小, y 轴 (左) 为l1相对大小

3 优化结果与分析

下图为摆动时间数据

	1	2	3	4	5	6	7	8	9	10	11
1	94.0306	85.7806	83.7506	81.7706	71.9106	69.5506	67.4106	54.4906	37.9506	12.2006	0.6906
2	94.0804	92.3604	83.7905	81.8205	79.9706	69.6106	67.4707	54.5508	38.0163	12.2663	0.6864
3	94.1454	92.4155	90.7756	81.8858	80.0360	78.4462	67.5464	54.6167	38.0770	12.3372	0.6173
4	100.3954	92.4856	90.8558	89.3560	80.1163	78.5267	67.6172	66.0778	52.2383	33.0887	0.5689
5	100.4955	99.1058	97.8561	89.4565	88.2071	78.6178	77.5286	66.1796	52.3574	33.2385	0.7189
6	106.8060	105.7563	98.0068	96.9875	88.3445	87.5159	77.6578	66.3001	52.4826	33.3933	0.9944
7	113.2223	105.9931	105.1441	104.6055	96.5473	87.7073	87.6414	77.8116	66.6060	33.5877	1.5146
8	119.9241	119.5553	119.4937	112.5165	113.0044	105.6806	97.8317	89.4566	66.8749	53.9001	2.8965
9	133.8240	134.3401	135.2339	136.6682	138.9004	134.2256	129.6139	125.4551	110.2208	74.7310	19.3076
10	132.9192	133.2234	127.0907	127.9608	121.6675	115.0615	108.1711	89.8944	81.0262	54.0764	4.2236
11	119.9174	119.5220	119.4517	112.4509	104.9466	105.5802	97.7028	77.9940	66.7172	53.6609	1.8491
12	119.6429	112.7280	112.2478	104.7751	104.6713	96.5517	87.6627	77.7680	66.4872	33.4653	1.1440
13	113.2977	112.5616	105.1784	104.6101	96.5104	87.6371	77.7032	66.2732	52.4026	33.2916	0.8008
14	113.1907	105.9374	105.0688	97.0952	96.3942	87.5151	77.5976	66.1707	52.2882	33.1401	0.6097
15	106.9264	105.8508	104.9691	97.0102	88.3087	87.4195	77.4986	66.0664	52.1787	33.0080	0.5178
16	106.8606	105.7758	97.9859	96.9334	88.2363	78.5770	77.4089	65.9779	52.0872	12.2968	0.6767
17	106.8034	99.2011	97.9254	89.4668	88.1755	78.5182	67.5374	54.5468	37.9764	12.2207	0.6907
18	100.5732	99.1522	97.8749	89.4241	88.1175	78.4570	67.4766	54.4862	37.9106	12.1605	0.6905
19	100.5237	99.1133	97.8229	89.3769	80.0666	78.4063	67.4261	54.4306	37.8605	12.0904	0.7404
20	100.4921	99.0664	90.8663	89.3262	80.0261	78.3560	67.3806	54.3805	37.8005	12.0305	0.9004
21	100.4559	99.0259	90.8359	89.2859	79.9859	69.5406	67.3306	54.3306	37.7506	11.9806	0.9406
22	100.4255	92.4756	90.7957	89.2457	79.9506	69.5106	67.2807	54.2807	37.7007	11.9208	0.9908
23	100.3954	92.4455	90.7657	81.8205	79.9106	69.4707	57.4208	54.2409	37.6510	11.8710	1.1910
24	94.1854	92.4256	90.7405	81.7907	79.8808	69.4409	57.3810	42.7811	37.6012	11.8213	1.2613
25	94.1656	92.4005	90.7107	81.7708	79.8510	69.4111	57.3513	42.7514	23.3015	11.7716	1.3216
26	94.1406	92.3708	90.6809	81.7411	79.8212	69.3814	57.3216	42.7117	23.2618	11.7219	1.5319
27	94.1208	92.3510	83.7412	81.7213	71.8015	69.3517	57.2919	42.6820	23.2322	11.6723	1.6423
28	94.1011	92.3313	83.7215	81.6916	71.7718	69.3220	57.2622	42.6524	23.2025	11.6326	1.7227
29	94.0814	92.3116	83.7018	81.6720	71.7522	69.3024	57.2426	42.6328	23.1729	11.5830	1.9531
30	94.0618	85.7719	83.6921	81.6523	71.7325	69.2728	57.2130	42.6032	23.1533	11.5434	2.0735

图 11 摆动时间计算数据

从数据表格中可以得出,l2越短,即关节 D 越靠近杆 GF 的末端,摆动时间越长。从下 图中可以看出,当l1=0.04附近时摆动时间最大。由于 0.04 十分靠近最小势能计算分界值 $\frac{1}{\frac{m^2}{m_1}+1}*\frac{LDE}{2}=0.0409$,猜想此分界处可使摆动时间最大,用 3/11*LDE 代入程序验证得到摆动时间为 138.7s。故最后得到摆动时间最长的杆件几何参数:l1=0.0409,l2=0。

图 12 摆动时间与l1的关系

六、阻尼对摆动时间影响

1 实验结果

设置杆件几何参数为l1=0.0409, l2=0,阻尼步长 $\Delta c=0.01$,范围设置从 0.01 到 5,结果如下

图 13 摆动时间随阻尼系数变化曲线

2 结果分析

由图 13 可以看出,随着阻尼系数的增大,摆动时间先快速减小,然后线性增大。根据机械振动相关知识可知,阻尼系数小时系统为欠阻尼状态,杆件来回摆动缓慢衰减,此时摆动时间很长;阻尼系数增大系统达到临界阻尼状态^[7],此时系统响应时间最短,很快达到稳定状态,故摆动时间最小;阻尼系数再次增大,系统为过阻尼状态,释放后受到关节阻尼力很大,加速度小,故虽然不产生震荡的现象,但是摆动时间加大。

七、参考文献

- [1] GITTERMAN M. The Chaotic Pendulum [M]. World Scientific, 2010.
- [2] 唐有绮, 陈立群. 混沌摆的建模和仿真 [J]. 力学与实践, 2014, 36(4): 493-6.
- [3] LEVIEN R B, TAN S M. Double pendulum: An experiment in chaos [J]. American Journal of Physics, 1993, 61(11): 1038-44.
- [4] 张策. 机械动力学 [M]. 第 2 版 ed.: 高等教育出版社, 2008.
- [5] 朱桂萍, 王健. 混沌摆系统的动力学分析和数值模拟 [J]. 扬州大学学报(自然科学版), 2008, 11(3): 27-30,4.
- [6] STACHOWIAK T, OKADA T. A numerical analysis of chaos in the double pendulum [J]. Chaos, Solitons & Fractals, 2006, 29(2): 417-22.
- [7] WANG R, JING Z. Chaos control of chaotic pendulum system [J]. Chaos, Solitons & Fractals, 2004, 21(1): 201-7.