Introduction to Video Classification Using Deep Learning

Waseem Gharbieh

Outline

- Introduction
- Datasets
- Approaches
- Transfer Learning

Introduction

Why Video?

- Most general way to perceive the world
- Temporal reasoning

Computation (Depends on the number of frames)

Data

Computation (Depends on the number of frames)

Data

Computation (Depends on the number of frames)

Data

Progress

- Computation (Depends on the number of frames)
- Data

Progress

- Computation (Depends on the number of frames)
- Data

- Progress
- A lot of applications do not require temporal reasoning

- Computation (Depends on the number of frames)
- Data

Progress

- A lot of applications do not require temporal reasoning
- Some applications that seem to require temporal reasoning can be solved using images

Datasets

HMDB-51

- A dataset of 6,766 videos collected from commercial movies as well as YouTube
- Contains 51 human motion classes
- Released November 2011 by Brown University

UCF-101

- A dataset of 13,320 videos collected from YouTube
- Contains 101 human actions classes
- Released November 2012 by University of Central Florida

Kinetics

- A dataset of 306,245 videos collected from YouTube
- Contains 400 human action classes
- Released May 2017 by Deepmind

Something-something

- A dataset of 108,499 videos collected using crowd workers
- Contains 174 common sense classes
- Released June 2017 by TwentyBN

Approaches

LSTM

- ConvNet is Inception-V1
- LSTM aggregates video frames
- Only the output of the last frame is considered

Input is 25 224x224 images sampled 5 frames apart

3D-ConvNet

- 3D ConvNet based on work done by Du Tran, et al. 2015
- Input is 16 consecutive 112x112 images

Two-Stream

- ConvNet is based on work done by Simonyan and Zisserman, 2014 (ImageNet pretrained)
- Input is a 224x224 image + its 10 consecutive optical flow features

3D-Fused Two-Stream

ConvNet is Inception-V1

• Input is 5 224x224 images sampled 10 frames apart + 10 consecutive

optical flow features for each image (so 50 in total)

 3D ConvNet is 3x3x3 convolution with 512 channels followed by 3x3x3 maxpooling

Two-Stream 3D-ConvNet

- 3D ConvNet is inflated Inception-V1
- Input is 64 consecutive 224x224 images + their optical flow features

Results

miniKinetics: Early version of Kinetics containing 213 classes with 120,000 videos

	UCF-101			HMDB-51			miniKinetics		
Architecture	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow
(a) LSTM	81.0	_	-	36.0	_	_	69.9	_	_
(b) 3D-ConvNet	51.6	_	_	24.3	_	_	60.0	_	_
(c) Two-Stream	83.6	85.6	91.2	43.2	56.3	58.3	70.1	58.4	72.9
(d) 3D-Fused	83.2	85.8	89.3	49.2	55.5	56.8	71.4	61.0	74.0
(e) Two-Stream I3D	84.5	90.6	93.4	49.8	61.9	66.4	74.1	69.6	78.7

Transfer Learning

Concept

Transfer Learning From MiniKinetics

		UCF-101		HMDB-51			
Architecture	Original	Fixed	Full-FT	Original	Fixed	Full-FT	
(a) LSTM	81.0 / 54.2	88.1 / 82.6	91.0 / 86.8	36.0 / 18.3	50.8 / 47.1	53.4 / 49.7	
(b) 3D-ConvNet	-/51.6	-/76.0	-/79.9	-/24.3	-/47.0	-/49.4	
(c) Two-Stream	91.2 / 83.6	93.9 / 93.3	94.2 / 93.8	58.3 / 47.1	66.6 / 65.9	66.6 / 64.3	
(d) 3D-Fused	89.3 / 69.5	94.3 / 89.8	94.2 / 91.5	56.8 / 37.3	69.9 / 64.6	71.0 / 66.5	
(e) Two-Stream I3D	93.4 / 88.8	97.7 / 97.4	98.0 / 97.6	66.4 / 62.2	79.7 / 78.6	81.2 / 81.3	

Effect Of Dataset Size on Transfer Learning

Model	UCF-101	HMDB-51
RGB-I3D, miniKinetics pre-training	91.8	66.4
RGB-I3D, Kinetics pre-training	95.4	74.5
Flow-I3D, miniKinetics pre-training	94.7	72.4
Flow-I3D, Kinetics pre-training	95.4	74.6
Two-Stream I3D, miniKinetics pre-training	96.9	76.3
Two-Stream I3D, Kinetics pre-training	97.9	80.2

Transfer Learning From One Task to Another

- Encoder Pretrained to perform classification
- Model was then tuned with 0.1 * Classification Loss + 0.9 * Captioning Loss

Demo

Thank You!

References

- 1. H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. Hmdb: A large video database for human motion recognition, ICCV, 2011.
- 2. K. Soomro, A. R. Zamir, and M. Shah. UCF101: A dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012
- 3. Kay, Will, et al. "The kinetics human action video dataset." arXiv preprint arXiv:1705.06950 (2017).
- 4. R. Goyal, et al. The" something something" video database for learning and evaluating visual common sense, ICCV, 2017.
- 5. Carreira, Joao, and Andrew Zisserman. "Quo vadis, action recognition? a new model and the kinetics dataset." CVPR, 2017.
- 6. Szegedy, Christian, et al. "Going deeper with convolutions." CVPR, 2015.
- 7. Tran, Du, et al. "Learning spatiotemporal features with 3d convolutional networks." ICCV, 2015.
- 8. Simonyan, Karen, and Andrew Zisserman. "Two-stream convolutional networks for action recognition in videos." NIPS. 2014.