Lógica Computacional

LEI, 2023/2024 FCT UNL

Aula Prática 2

Semântica da Lógica Proposicional:

Álgebra de Boole, tabelas de verdade, e noção de consequência semântica.

- 1. Prove os seguintes resultados sobre álgebras de Boole.
 - (a) $b \oplus (\ominus b) = 1$, para qualquer $b \in \mathcal{B}$
 - (b) A multiplicação é comutativa.
 - (c) A adição é associativa.
 - (d) A multiplicação e a adição são mutuamente distributivas, à esquerda e à direita.
- 2. Construa tabelas de verdade para indicar a natureza das seguintes fórmulas, sabendo que $\{p,q,r\}\subseteq P$
 - (a) $p \vee \neg p$
 - (b) $p \to (p \lor q)$
 - (c) $(p \lor p) \to p$
 - (A) $(p \wedge q) \rightarrow p$
 - (c) $p \wedge \neg p$
 - (F) $p \rightarrow (q \rightarrow p)$
 - $(g) \neg (p \lor q) \to \neg p$
 - (n) $\neg p \rightarrow (p \rightarrow q)$
 - $(q \to r) \to ((p \land q) \to r)$
 - (i) $p \wedge q$
 - (k) $(p \rightarrow q) \rightarrow (p \rightarrow (q \lor r))$
 - $(p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$
 - $(\mathbf{m}) ((p \to q) \land \neg q) \to \neg p$
 - (a) $(p \to (q \to r)) \to ((p \to q) \to (p \to r))$
 - (o) $p \lor (q \land r)$
 - $(p) p \leftrightarrow \neg \neg p$
 - (q) $(p \to q) \leftrightarrow (\neg q \to \neg p)$
 - (r) $(p \leftrightarrow q) \rightarrow ((p \land r) \leftrightarrow (q \land r))$
 - (s) $\neg (p \land q) \leftrightarrow (\neg p \lor \neg q)$
 - $(p \rightarrow q) \land (p \land \neg q)$
 - (u) $\neg (p \lor q) \leftrightarrow (\neg p \land \neg q)$

- $(p \lor (q \land r)) \leftrightarrow ((p \lor q) \land (p \lor r))$
- (w) $(p \lor q) \to q$
- (x) $(p \land (q \lor r)) \leftrightarrow ((p \land q) \lor (p \land r))$
- (y) $(p \land q) \land \neg p$
- 3. Verifique se são verdadeiras ou falsas as afirmações seguintes.
 - $(\nearrow) \{ \neg (p \land q), p \} \models \neg q$
 - (b) $\{\neg(p \lor q), p\} \models \neg q + / \neg$ refazer
 - $\{ \neg (p \rightarrow q), \neg q \} \models q$
 - (d) $\{\neg(p \to q), \neg q\} \models \neg p$
 - (e) $\{p \to q, \neg p \to q\} \models q$
 - (f) $\{p \to q\} \models (r \land p) \to q$
 - (g) $\{p \to q\} \models p \to (r \land q)$
 - (h) $\{p \to q, q \to r\} \models r$
 - (i) $\{p \to q, q \to r\} \models p \to r$
 - (j) $\{p \lor q, p \to r, q \to s\} \models r \land s$
 - (k) $\{p \lor q, p \to r, q \to s\} \models r \lor s$
 - (1) $\{p \to q\} \models \neg p \lor q$
 - (m) $\{\neg p \lor q\} \models p \to q$
 - (n) $\{p \to (r \land q), (s \lor q) \to r\} \models r \to p$