DAEs

Jan Heiland

2021-04-19

Contents

\mathbf{P}	reface	5
1	Introduction 1.1 Examples	
2	Basic Definitions and Notions 2.1 Solution Concept	14
3	Linear DAEs with Constant Coefficients 3.1 Basic Notions and Definitions	
4	Linear DAEs with Time-varying Coefficients	23
5	Numerical Approximation of DAEs	31
6	Construction and Analysis of RKM for nonlinear DAEs 6.1 General RKM for Semi-Explicit Strangeness-free DAEs 6.2 Collocation RKM for Implicit Strangeness-free DAEs	
7	Examples 7.1 Semi-discrete Navier-Stokes equations	41
8	Exercises 8.1 II.C.1	43
9	Numerical Analysis and Software Overview	45

4 CONTENTS

Preface

This is a writeup of the introduction and, maybe, some other aspects of my lectures on DAEs at the OVGU Magdeburg.

Fixes and feature requests can be submitted to the github-repo.

6 CONTENTS

Introduction

Differential-algebraic equations (DAEs) are coupled differential- and algebraic equations. DAEs often describe dynamical processes – here are the *differential equations* – that are subject to constraints: the *algebraic equations*.

Let's start with a few examples.

1.1 Examples

Free fall vs. the pendulum

Figure 1.1: Free fall of a point mass.

Here, the laws of the free fall - a special case of Newton's second law - applies:

force equals mass times acceleration

In 2D, the x, y coordinates of a point of mass m:

$$m\ddot{x} = 0$$
$$m\ddot{y} = -mg$$

where g is the gravity; see Figure 1.1.

The Pendulum

The same point mass attached to a string.

Figure 1.2: A pendulum.

Again, we have force = mass*acceleration but also the conditions that the mass moves on a circle:

$$(x(t)-c_x)^2+(y(t)-c_y)^2=l^2,$$

where (c_x, c_y) are the coordinates of the center and l is the length of the string; see Figure 1.2.

We use the Lagrangian function to derive the Euler-Lagrange equations of motion. For the pendulum, we have the kinetic energy

$$T = \frac{1}{2}m(\dot{x}(t)^2 + \dot{y}(t)^2),$$

the potential

$$U = mgy$$

and the constraint

$$h = (x(t) - c_x)^2 + (y(t) - c_y)^2 - l^2. \label{eq:hamiltonian}$$

Thus, with

$$L := U - T - \lambda h$$

1.1. EXAMPLES 9

and the requirement that

$$\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}}) - \frac{\partial L}{\partial q} = 0$$

for all of the generalized coordinates $q=x,\ y,\ \lambda,$ one obtains a system of equations:

Generalized coordinate	Equation
$q \leftarrow x \\ q \leftarrow y \\ q \leftarrow \lambda$	$\begin{array}{c} m\ddot{x}(t) + 2\lambda(t)(x(t) - c_x) = 0 \\ m\ddot{y}(t) + mgy + 2\lambda(t)(y(t) - c_y) = 0 \\ (x(t) - c_x)^2 + (y(t) - c_y)^2 - l^2 = 0 \end{array}$

Example 1.1 (The Pendulum). After an order reduction via the new variables $u := \dot{x}$ and $v = \dot{y}$ the overall system reads

$$\begin{split} \dot{x} &= u \\ \dot{y} &= v \\ m\dot{u} &= -2\lambda(x-c_x) \\ m\dot{v} &= -2\lambda(y-c_y) - mgy \\ 0 &= (x-c_x)^2 + (y-c_y)^2 - l^2, \end{split} \tag{1.1}$$

where we have omitted the time dependence.

Equation (1.1) is a canonical example for a DAE with combined differential and algebraic equations.

Electrical Circuits

Another class of DAEs arises from the modelling electrical circuits. We consider the example of *charging a conductor through a resistor* as illustrated in Figure 1.3.

We formulate the problem in terms of the potentials x_1, x_2, x_3 , that are assumed to reside in the wires between a source U and a resistor R, the resistor R and the capacitor C, and the capacitor and the source.

A model for the circuit is given through the following principles and considerations.

Model principle	Equation
The source defines the difference in the neighboring	$x_1 - x_3 - U = 0$
potentials:	
The current I_R that is induced by the potentials	$I_R = \frac{x_1 - x_2}{R}$
neighboring the resistor is is defined through <i>Ohm's</i>	10
law:	

Model principle	Equation
The current I_C that is induced by the potentials	$I_C = C(\dot{x}_3 - \dot{x}_2)$
neighboring the capacitor is described through:	
Everywhere in the circuit the currents sum up to	$I_C + I_R =$
zero. (This is <i>Kirchhoff's law</i>):	$C(\dot{x}_3 - \dot{x}_2) + \frac{\dot{x}_1 - \dot{x}_2}{B} = 0$
To fix the potential, one can set a ground potential	$x_3 = 0$
- here we choose x_3 . (note that so far all equations	
only consider differences in the potential).	

Example 1.2. Summing all up, the equations that model the circuit are given as

$$\begin{split} C(\dot{x}_3 - \dot{x}_2) &= -\frac{x_1 - x_2}{R} \\ 0 &= x_1 - x_3 - U \\ 0 &= x_3. \end{split} \tag{1.2}$$

Navier-Stokes Equations

The Navier-Stokes equations (NSE) are commonly used to model all kind of flows. They describe the evolution of the velocity v of the fluid and the pressure p in the fluid. Note that the flow occupies a spatial domain, say in \mathbb{R}^3 so that v and p are functions both of the time variable t and a space variable t:

$$v: (t,\xi) \mapsto v(t,\xi) \in \mathbb{R}^3$$
 and $p: (t,\xi) \mapsto p(t,\xi) \in \mathbb{R}$.

The NSE:

$$\begin{split} \frac{\partial v}{\partial t} + (v \otimes \nabla_\xi) v - \Delta_\xi v + \nabla_\xi p &= 0, \\ \nabla_\varepsilon \cdot v &= 0, \end{split}$$

with \otimes denoting the outer product and ∇_{ξ} and Δ_{ξ} denoting the gradient and the *Laplace* operator. If we only count the derivatives with respect to time, as postulated in the introduction, the NSE can be seen as an (abstract) DAE.

With *dynamical systems*, we focus on the evolution of time. That's why the time derivative is relevant for defining DAEs.

Automatic Modelling or Engineers vs. Mathematicians

If a system, say an engine, consists of many interacting processes, it is convenient and common practice to model the dynamics of each particular process and to couple the subprocesses through interface conditions.

Figure 1.3: Electrical circuit with a source, a resistor, and a conductor.

This coupling is done through equating quantities so that the overall model will consist of dynamical equations of the subprocesses and algebraic relations at the interfaces – which makes it a DAE.

In fact, tools like modelica for automatic modelling of complex processes do exactly this.

The approach of *automatic modelling* is universal and convenient for engineers. However, the resulting model equations will be DAEs which, as we will see, pose particular problems in their analytical and numerical treatment.

1.2 Why are DAEs difficult to treat

Firstly, DAEs do not have the smoothing properties of ODEs, where the solution is one degree smoother than the right hand side. Secondly, the algebraic constraints are essential for the validity of the model. Thus, a numerical approximation may render the model infeasible.

Non-smooth Solutions

Example 1.3. Consider the equation

$$\begin{split} \dot{x}_1(t) &= x_2(t) \\ 0 &= x_2(t) - g(t) \end{split}$$

where g can be a nonsmooth function like

$$g(t) = \begin{cases} 0, & \text{if} \quad t < 1\\ 1, & \text{if} \quad t \ge 1 \end{cases}$$

In this case the solution part $x_1=const.+\int_0^tg(s)ds$ will be a smooth function and the solution part $x_2=g$ will have jumps.

Even worse, the solution of a DAE may depend on derivatives of the right hand sides.

This observation indicates that certain difficulties will arise since

- numerical approximation schemes require smoothness of the solutions
- differentiation is numerically ill-posed unlike numerical integration

Numerical Solution Means Approximation

Imagine the equations (1.1) that describe the pendulum are solved approximately. Then, the algebraic constraint will be violated, i.e. the point mass will leave the circle and the obtained numerical solution becomes infeasible.

Thus, special care has to be taken of the algebraic constraints when the equations of motions are numerically integrated.

Basic Definitions and Notions

In a very general form, a DAE can be written as

$$F(t, x(t), \dot{x}(t)) = 0$$
 (2.1)

with $F \colon \mathbb{I} \times D_x \times D_{\dot{x}} \to \mathbb{R}^m$ and with a time interval $\mathbb{I} = [t_0, t_e) \subset \mathbb{R}$ and state spaces $D_x, D_{\dot{x}} \subset \mathbb{R}^n$ and the task to find a function

$$x \colon \mathbb{I} \to \mathbb{R}^n$$

with time derivative $\dot{x} \colon \mathbb{I} \to \mathbb{R}^n$ such that (2.1) is fulfilled for all $t \in I$.

A dynamical process that evolves in time needs an initial state. Thus, one can expect a unique solution to the DAEs only if an initial value is prescribed

$$x(t_0) = x_0 \in \mathbb{R}^n. \tag{2.2}$$

The form of $F(t, x(t), \dot{x}(t))$ is a very formal way to write down a system of differential and algebraic equations. **X**: Write down the equations of the previous examples in this form – i.e. define suitable functions F, x, and \dot{x} .

2.1 Solution Concept

In order to talk of solutions, we need to define what we understand as a solution.

Definition 2.1.

- 1. A function $x \in \mathcal{C}^1(\mathbb{I}, \mathbb{R}^n)$ is called a solution to the DAE (2.1), if $F(t, x(t), \dot{x}(t)) = 0$ holds for all $t \in \mathbb{I}$.
- 2. A function $x \in \mathcal{C}^1(\mathbb{I}, \mathbb{R}^n)$ is called a *solution to the initial value problem* (2.1) and (2.2), if, furthermore, $x(t_0) = x_0$ holds.
- 3. An initial condition (2.2) is called consistent for the DAE (2.1), if there exists at least one solution as defined in 2.

Some remarks

- The requirement that $x \in \mathcal{C}^1$ could be relaxed. Compare Example 1.3, where certain components of the solution where smoother than others.
- Consistency of initial values is a major issue in the treatment of DAEs.
 See the pendulum...

2.2 Initial Conditions and Consistency

We consider again the equations of motions of the pendulum (Example 1.1)

$$\begin{split} \dot{x}(t) &= u(t) \\ \dot{y}(t) &= v(t) \\ m\dot{u}(t) &= -2\lambda(t)(x(t) - c_x) \\ m\dot{v}(t) &= -2\lambda(t)(y(t) - c_y) - mgy(t) \end{split}$$

with the constraint

$$0 = (x(t) - c_x)^2 + (y(t) - c_y)^2 - l^2. \tag{2.3}$$

To use this model to predict the time evolution of the system, a starting point needs to be known, say for t=0. This means initial positions and initial velocities:

$$\begin{bmatrix} x(0) \\ y(0) \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} u(0) \\ v(0) \end{bmatrix} = \begin{bmatrix} u_0 \\ v_0 \end{bmatrix}.$$

The constraint (2.3) needs to be fulfilled at all times and also at t = 0, which gives the constraint for the initial positions:

$$(x_0 - c_x)^2 + (y_0 - c_y)^2 - l^2 = 0.$$

Moreover, if a constraint h(x(t), y(t)) = 0 holds for all t, then, necessarily, $\frac{d}{dt}h = 0$. For the pendulum this means that

$$2(x(t) - c_x)u(t) + 2(y(t) - c_y)v(t) = 0 (2.4)$$

must hold for all t and in particular at t=0 which gives constraints on the initial velocities u_0 and v_0 :

$$2(x_0-c_x)u_0+2(y_0-c_y)v_0=0.$$

Some remarks on consistency, constraints, and derivations:

- The so-called *consistency conditions* on (x_0, y_0, u_0, v_0) have the physical interpretation that the initial positions lie on the prescribed circle and that the velocities are tangent to this circle.
- One can show that the variable λ is completely defined in terms of x and y and their derivatives. Thus, in the formulation (1.1), both in the analysis and in the numerical treatment, there is no need for an initial value for λ. However, as we will see, DAEs can be reformulated as ODEs through differentiation and substitutions. In such an ODE formulation, a necessary initial condition for λ will have to fulfill similar consistency conditions as (x₀, y₀, u₀, v₀).

Condition (2.4) is an example for a *hidden-constraint* – an algebraic constraint to the system that is not explicit in the original formulation. In theory, condition (2.3) can be replaced by (2.4). Moreover, through differentiation and elimination of constraints, a DAE can be brought into the form of an ODE: in the case of the circuit of Example 1.2 one only needs to replace the constraints by their derivatives:

$$\begin{split} C(\dot{x}_3 - \dot{x}_2) &= -\frac{x_1 - x_2}{R} \\ \dot{x}_1 - \dot{x}_3 &= \dot{U} \\ \dot{x}_3 &= 0. \end{split} \tag{2.5}$$

Note that (2.5) can be written as $B\dot{x} = Ax + f$ with an invertible matrix B and, thus, is an ODE.

For an ODE there is no constraint on the initial values. However, a solution to (2.5) only solves the original DAE (1.2), if the initial values are consistent with the DAE. In this case, this means $x_3(t_0)=0$ and $x_1(t_0)-x_3(t_0)=U(t_0)$.

2.3 Additional Remarks

• It just took a single derivation to turn the circuit model into an ODE (2.5). For the *pendulum* this wouldn't be that easy.

- The extend of how much algebraic and differential parts are intertwined is measured by *indices* which is **the classifier** for DAEs.
- There are many indices. We will learn about some of the concepts. But first we will introduce some more theory.

A low index means that differential and algebraic parts are relatively well separated. (The circuit example is of $index\ 1$). A high index means that the structure is more involved. (The pendulum is of $index\ 3$).

Linear DAEs with Constant Coefficients

3.1 Basic Notions and Definitions

Consider the DAE in the form

$$E\dot{x}(t) = Ax(t) + f(t), \tag{3.1}$$

where $E,\,A\in\mathbb{R}^{m,n}$ and $f\in\mathcal{C}(\mathbb{I},\mathbb{R}^m)$ with, possibly, an initial condition

$$x(t_0) = x_0 \in \mathbb{R}^n. \tag{3.2}$$

For utmost generality, we consider the case that $m \neq n$, i.e. the number of equations does not meet the number of unknowns, but we will turn to the square case of m = n soon.

3.1.1 Scalings and State Transformations

One can confirm that if x is a solution to (3.1) and $P \in \mathbb{R}^{n,n}$ is invertible, then x is a solution to

$$PE\dot{x}(t) = PAx(t) + Pf(t).$$

This is a scaling of the equations.

Similarly, if $Q \in \mathbb{R}^{n,n}$ is invertible, then $\tilde{x} := Q^{-1}x$ solves

$$EQ\dot{\tilde{x}}(t) = AQ\tilde{x}(t) + f(t).$$

This is a state transformation of the system.

Thus, when talking of solvability of (3.1), one may equivalently consider any regular $Q \in \mathbb{R}^{m,m}$, $P \in \mathbb{R}^{m,m}$ and the scaled and transformed system

$$\tilde{E}\dot{\tilde{x}}(t) = \tilde{A}\tilde{x}(t) + \tilde{f}(t), \quad \tilde{x}(0) = Q^{-1}x_0, \tag{3.3}$$

where $\tilde{E} = PEQ$, $\tilde{A} = PAQ$, $\tilde{f} = Pf$, and $x = Q\tilde{x}$.

To characterize all scalings and state transformations, we define these operations as relations of matrix pairs:

3.1.2 Strong Equivalence and Canonical Forms

Definition 3.1. Two pairs of matrices (E_1,A_1) and (E_2,A_2) , with E_1,A_1 , $E_2,A_2\in\mathbb{R}^{m,n}$, are called *strongly equivalent*, if there exist regular matrices $P\in\mathbb{R}^{m,m},\,Q\in\mathbb{R}^{n,n}$ such that

$$E_2 = PE_1Q, \quad A_2 = PA_1Q.$$

In this case, we write

$$(E_1, A_1) \sim (E_2, A_2).$$

Lemma 3.1. The relation \sim defined in Definition 3.1 defines an equivalence relation¹.

Proof. Exercise.
$$\Box$$

For a given equivalence relation on a set, one can define *equivalence classes* by considering all members that are equivalent to each other as basically the same. And for each class one may choose a representative, preferably in *canonical form*, i.e. a form that, e.g.,

- 1. comes with an simple or characteristic representation and
- 2. that allows for easy determination or analysis of quantities of interest.

There can be infinitely many canonical forms. For our purposes and for the *strong equivalence* of matrix pairs, we will use the *Kronecker Canonical Form*.

Theorem 3.1. Let $E, A \in \mathbb{C}^{m,n}$. Then there exist nonsingular matrices $P \in$

¹Equivalence relation – **RST.** Reflexive: $A \sim A$. Symmetric: $A \sim B$, then $B \sim A$. Transitive: $A \sim B$ and $B \sim C$, then $A \sim C$.

19

 $\mathbb{C}^{m,m}$, $Q \in \mathbb{C}^{n,n}$ such that for all $\lambda \in \mathbb{C}$

$$P(\lambda E-A)Q = \begin{bmatrix} \mathcal{L}_{\epsilon_1} & & & & & & & & & \\ & \mathcal{L}_{\epsilon_p} & & & & & & & \\ & & \mathcal{M}_{\eta_1} & & & & & & \\ & & & \mathcal{M}_{\eta_q} & & & & & \\ & & & & \mathcal{J}_{\rho_r} & & & & \\ & & & & & \mathcal{N}_{\sigma_1} & & \\ & & & & & \mathcal{N}_{\sigma_s} \end{bmatrix}$$
 Where the block entries are as follows:

Where the block entries are as follows:

1. Every entry \mathcal{L}_{ϵ_i} is bidiagonal of size $\epsilon_j \times (\epsilon_j + 1)$, $\epsilon_j \in \mathbb{N} \cup \{0\}$ of the form

$$\lambda \begin{bmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 & & \\ & \ddots & \ddots & \\ & & 1 & 0 \end{bmatrix}$$

2. Every entry \mathcal{M}_{η_i} is bidiagonal of size $(\eta_j + 1) \times \eta_j$, $\eta_j \in \mathbb{N} \cup \{0\}$ of the form

$$\lambda \begin{bmatrix} 1 & & \\ 0 & \ddots & \\ & \ddots & 1 \\ & & 0 \end{bmatrix} - \begin{bmatrix} 0 & & \\ 1 & \ddots & \\ & \ddots & 0 \\ & & 1 \end{bmatrix}$$

 $3. \ \ \textit{Every entry \mathcal{J}_{ρ_j} is a Jordan block of size $\rho_j \times \rho_j$, $\rho_j \in \mathbb{N}$ } \ \{0\}, \ \lambda_j \in \mathbb{C} \ \ \textit{of exception} \ \ \text{of the property of the$ the form

$$\lambda \begin{bmatrix} 1 & & & \\ & \ddots & & \\ & & \ddots & \\ & & & 1 \end{bmatrix} - \begin{bmatrix} \lambda_j & 1 & & \\ & \ddots & \ddots & \\ & & & 1 \\ & & & \lambda_j \end{bmatrix}$$

4. Every entry \mathcal{N}_{σ_j} is a nilpotent block of size $\sigma_j \times \sigma_j, \ \sigma_j \in \mathbb{N}$ $\{0\}$, of the form

$$\lambda \begin{bmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & & 1 \\ & & & 0 \end{bmatrix} - \begin{bmatrix} 1 & & & \\ & \ddots & & \\ & & & 1 \end{bmatrix}$$

The Kronecker Canonical Form is uniquely defined up to permutations of the blocks.

Proof. Very technical. Can be found, e.g., in the book: Gantmacher (1959) The Theory of Matrices II. Algorithm for computations exist² but the computation is notoriously ill posed.

3.2 Regularity and Solvability

In what follows we will consider the regular case with, among others, E and A as square matrices.

Like for solving general equation systems, one can expect well posedness for the case that the numbers of equations equals the number of unknowns. Here *squareness* of the system is a necessary condition. For sufficiency one further needs that there are no redundant equations or incompatible equations. This is encoded in the *regularity*.

Definition 3.2. Let $E, A \in \mathbb{C}^{n,n}$. The matrix pair (E, A) is called *regular*, if the *characteristic polynomial* p, defined via

$$p(\lambda) = \det(\lambda E - A),$$

is not identically zero. If such a matrix pair is not regular, it is called singular.

Is not identically zero means that there exists a λ_0 such that $p(\lambda_0) = \det(\lambda_0 E - A) \neq 0$, i.e. $\lambda_0 E - A$ is invertible.

Since a characteristic polynomial has but a finite numbers of roots (unless it is the zero polynomial), is not identically zero means that $p(\lambda) \neq 0$ for all but a few λ .

Next we show, that regularity is invariant under strong equivalence. This is needed, since we will translate regularity of (E, A) to regularity of the associated DAE and we need to ensure that regular scalings and state transformations do not affect regularity.

Lemma 3.2. Let E, $A \in \mathbb{C}^{n,n}$. If (E,A) is strongly equivalent to a regular matrix pair, then (E,A) is regular.

Proof. Let $E_1, A_1 \in \mathbb{C}^{n,n}$ be similar to (E,A). By definition, there exist invertible $P, Q \in \mathbb{C}^{n,n}$ such that $\lambda E - A = P(\lambda E_1 - A_1)Q$ for all λ . Thus,

$$\det(\lambda E - A) = \det P \det(\lambda E_1 - A_1) \det Q$$

is not identically zero, since $\det Q$ and $\det P$ are not zero and $\det(\lambda E_1 - A_1)$ is not the zero polynomial.

With that we can derive a canonical form for strongly equivalent matrix pairs.

Theorem 3.2. Let $E, A \in \mathbb{C}^{n,n}$ and (E, A) be regular. Then

$$(E,A) = \begin{pmatrix} \begin{bmatrix} I_{n_1} & \\ & N \end{bmatrix}, \begin{bmatrix} J & \\ & I_{n_2} \end{bmatrix} \end{pmatrix}, \tag{3.4}$$

 $^{^2\}mathrm{Paul}$ v. Dooren The Computation of Kronecker's Canonical Form of a Singular Pencil

- where n_1 , $n_2 \in \mathbb{N}$ such that $n = n_1 + n_2$,
- where I_{n_1} and I_{n_2} denote the identity matrices of size $n_1 \times n_1$ and $n_2 \times n_2$, respectively,
- where $J \in \mathbb{C}^{n_1,n_1}$ is in Jordan canonical form,
- and where $N \in \mathbb{C}^{n_2,n_2}$ is a nilpotent matrix.
- Moreover, it is allowed that the one or the other block is not present, i.e.,
 n₁ or n₂ can be zero.

Recall that the *Jordan canonical form* can be achieved for any square matrix $M \in \mathbb{C}$ by a similarity transformation.

Definition 3.3. A matrix $M \in \mathbb{C}^{n,n}$ is called *nilpotent*, if there is an index $\nu \in \mathbb{N}$ such that $N^{\nu} = 0$ whereas $N^{\nu-1} \neq 0$. In this case, the number ν is called the index of nilpotency.

With the convention that $\mathbf{0}^0 = I$, the zero matrix $\mathbf{0} \in \mathbb{R}^{n,n}$ is of (nilpotency) index 1.

Proof. To be provided.

The relation of solvability and regularity of DAEs becomes evident in the canonical form of Theorem 3.2. In fact, it states that through regular scalings and state transforms, any DAE

$$E\dot{x}(t) = Ax(t) + f(t)$$

can be equivalently transformed and split into

$$\dot{x}_1(t) = x_1(t) + f_1(t) \tag{3.5}$$

and

$$N\dot{x}_2(t) = x_2(t) + f_2(t), \tag{3.6}$$

i.e

- into an **ODE** (3.5) that already is in *Jordan canonical form*
- and a separated(!) **DAE** (3.5) of a particular type.

Since linear ODEs always have a unique solution for any initial value, solvability of a general linear DAE with constant, regular coefficients will be completely defined by solvability of the special DAE part (3.5).

Linear DAEs with Time-varying Coefficients

Theorem 4.1. Let $E, A \in \mathbb{C}^{m,n}$ and let

$$T, Z, T', V \tag{4.1}$$

be

Matrix	as the basis of
\overline{T}	$\ker \operatorname{l} E$
Z	$\operatorname{corange} E = \operatorname{kernel} E^H$
T'	$\operatorname{cokernel} E = \operatorname{range} E^H$
V	$corange(Z^HAT)$

 $then\ the\ quantities$

$$r, a, s, d, u, v$$
 (4.2)

 $defined\ as$

$\overline{Quantity}$	Definition	Name
\overline{r}	$\operatorname{rank} E$	rank
a	$\operatorname{rank}(Z^H AT)$	algebraic part
s	$\operatorname{rank}(V^H Z^H A T')$	strangeness
d	r-s	differential part
u	n-r-a	undetermined variables
v	m-r-a-s	vanishing equations

are invariant under local equivalence transformations and (E,A) is locally equivalent to the canonical form

$$\left(\begin{bmatrix}
I_s & 0 & 0 & 0 \\
0 & I_d & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & I_a & 0 \\
I_s & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}\right),$$
(4.3)

where all diagonal blocks are square, except maybe the last one.

Some remarks on the spaces and how the names are derived for the case $E\dot{x} = Ax + f$ with constant coefficients. The ideas are readily transferred to the case with time-varying coefficients.

Let

$$x(t) = Ty(t) + T'y'(t),$$

where y denotes the components of x that evolve in the range of T and y' the respective complement. (Since [T|T'] is a basis of \mathbb{C}^n , there exist such y and y' that uniquely define x and vice versa). With T spanning ker E we find that

$$E\dot{x}(t) = ET\dot{y}(t) + ET'\dot{y}'(t)$$

so that the DAE basically reads

$$ET'\dot{y}'(t) = ATy(t) + AT'y'(t) + f,$$

i.e. the components of x defined through y are, effectively, not differentiated. With Z containing exactly those v, for which $v^H E = 0$, it follows that

$$Z^{H}ET'\dot{y}'(t) = 0 = Z^{H}ATy(t) + Z^{H}AT'y'(t) + Z^{H}f,$$

or

$$Z^H A T y(t) = -Z^H A T' y'(t) - Z^H f,$$

so that rank Z^HAT indeed describes the number of purely algebraic equations and variables in the sense that it defines parts of y (which is never going to be differentiated) in terms of algebraic relations (no time derivatives are involved).

With the same arguments and with $V = \text{corange } Z^H AT$, it follows that

$$V^H Z^H A T' y'(t) = -V^H Z^H A T y(t) - V^H Z^H f = -V^H Z^H f,$$

is the part of $E\dot{x}=Ax+f$ in which those components y' that are also differentiated are algebraically equated to a right-hand side. This is the strangeness (rather in the sense of skewness) of DAEs that variables can be both differential and algebraic. Accordingly, rank V^HZ^HAT' describes the size of the skewness component.

Outlook: If there is no strangeness, the DAE is called strangeness-free. Strangeness can be eliminated through iterated differentiation and substitution. The needed number of such iterations (that is independent of the the size s of the strange block here) will define the strangeness index.

Example 4.1. With basic scalings and state transforms, one finds for the coefficients of Example 1.2 that:

$$(E,A) \backsim \left(\begin{bmatrix} I_2 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & I_1 \end{bmatrix} \right).$$

We compute the subspaces as defined in (4.1):

Matrix	as the basis of/computed as
$T = \begin{bmatrix} 0 \\ I_1 \end{bmatrix}$	$\operatorname{kernel} \begin{bmatrix} I_2 & 0 \\ 0 & 0 \end{bmatrix}$
$Z = \begin{bmatrix} 0 \\ I_1 \end{bmatrix}$	$\operatorname{corange} \begin{bmatrix} I_2 & 0 \\ 0 & 0 \end{bmatrix} = \operatorname{kernel} \begin{bmatrix} I_2 & 0 \\ 0 & 0 \end{bmatrix}_H^H$
$T' = \begin{bmatrix} I_2 \\ 0 \end{bmatrix}$	$\operatorname{cokernel} \begin{bmatrix} I_2 & 0 \\ 0 & 0 \end{bmatrix} = \operatorname{range} \begin{bmatrix} I_2 & 0 \\ 0 & 0 \end{bmatrix}^H$
$Z^HAT=I_1$	$\begin{bmatrix} 0 \\ I_1 \end{bmatrix}^H \begin{bmatrix} 0 & 0 \\ 0 & I_1 \end{bmatrix} \begin{bmatrix} 0 \\ I_1 \end{bmatrix}$
V = 0	$\operatorname{corange}(Z^HAT) = \operatorname{kernel} I_1^H$
$Z^H A T' = 0_{2 \times 1}$	$\begin{bmatrix} 0 \\ I_1 \end{bmatrix}^H \begin{bmatrix} 0 & 0 \\ 0 & I_1 \end{bmatrix} \begin{bmatrix} I_2 \\ 0 \end{bmatrix}$

and derive the quantities as defined in (4.2):

Name	Value	Derived from
rank	r=2	$\operatorname{rank} E = \operatorname{rank} \begin{bmatrix} I_2 & 0 \\ 0 & 0 \end{bmatrix}$
algebraic part	a = 1	$\operatorname{rank} Z^H A T = \operatorname{rank} I_1$
strangeness	s = 0	$\operatorname{rank} V^H Z^H A T' = \operatorname{rank} 0_{2 \times 1}$
differential part	d=2	d = r - s = 2 - 0
undetermined	u = 0	u=n-r-a=3-2-1
variables		

Name	Value	Derived from
vanishing equations	v = 0	v = m - r - a - s = 3 - 2 - 1 - 0

Example 4.2. With more involved scalings and state transforms, one finds for the coefficients of the linearized and spatially discretized Navier-Stokes equations (see Exercise I) that:

$$(\mathcal{E},\mathcal{A}) = \left(\begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} A & B^H \\ B & 0 \end{bmatrix} \right) \backsim \left(\begin{bmatrix} I_{n_1} & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} A_{11} & A_{12} & I_{n_1} \\ A_{21} & A_{22} & 0 \\ I_{n_1} & 0 & 0 \end{bmatrix} \right).$$

We compute the subspaces as defined in (4.1):

Matrix	as the basis of/computed as		
$T = \begin{bmatrix} 0 \\ 0 \\ I_{n_1} \end{bmatrix}$	$\text{kernel} \begin{bmatrix} I_{n_1} & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & 0 \end{bmatrix}$		
$Z = \begin{bmatrix} 0 \\ 0 \\ I_{n_1} \end{bmatrix}$	$ \text{corange} \begin{bmatrix} I_{n_1} & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & 0 \end{bmatrix} $		
$T' = \begin{bmatrix} I_{n_1} & 0\\ 0 & I_{n_2}\\ 0 & 0 \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$Z^HAT=0_{n_1}$	$\begin{bmatrix} 0 \\ 0 \\ I_{n_1} \end{bmatrix}^H \begin{bmatrix} A_{11} & A_{12} & I_{n_1} \\ A_{21} & A_{22} & 0 \\ I_{n_1} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ I_{n_1} \end{bmatrix}$		
$V=I_{n_1}$	$\operatorname{corange}(Z^HAT) = \operatorname{kernel} 0^H_{n_1}$		
$Z^HAT' = \\ \begin{bmatrix} I_{n_1} & 0_{n_1 \times n_2} \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ I_{n_1} \end{bmatrix}^H \begin{bmatrix} A_{11} & A_{12} & I_{n_1} \\ A_{21} & A_{22} & 0 \\ I_{n_1} & 0 & 0 \end{bmatrix} \begin{bmatrix} I_{n_1} & 0 \\ 0 & I_{n_2} \\ 0 & 0 \end{bmatrix}$		

and derive the quantities as defined in (4.2):

Name	Value	Derived from
rank	$r = n_1 + n_2$	$\operatorname{rank} E = \operatorname{rank} \begin{bmatrix} I_{n_1} & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & 0 \end{bmatrix}$
algebraic part	a = 0	$\operatorname{rank} Z^H AT = \operatorname{rank} 0_{n_1}$
strangeness	$s=n_1$	$\begin{aligned} \operatorname{rank} Z^H A T &= \operatorname{rank} 0_{n_1} \\ \operatorname{rank} V^H Z^H A T' &= \operatorname{rank} \begin{bmatrix} I_{n_1} & 0_{n_1 \times n_2} \end{bmatrix} \end{aligned}$

Name	Value	Derived from
differential part	$d = n_2$	$d = r - s = (n_1 + n_2) - n_1$
undetermined variables	$u = n_1$	u = n - r - a =
vanishing equations	v = 0	$(n_1 + n_2 + n_1) - (n_1 + n_2) - 0$ n = m - r - a - s = 0
vanishing equations	v = 0	$(n_1 + n_2 + n_1) - (n_1 + n_2) - n_1$

Theorem 4.2 (see Kunkel/Mehrmann, Thm. 3.9). Let $E \in \mathcal{C}^l(I, \mathbb{C}^{m,n})$ with rank E(t) = r for all $t \in I$. Then there exist smooth and pointwise unitary (and, thus, nonsingular) matrix functions U and V, such that

$$U^H E V = \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix}$$

with pointwise nonsingular $\Sigma \in \mathcal{C}^l(I, \mathbb{C}^{r,r})$.

Theorem 4.3. Let $E, A \in \mathcal{C}^l(I, \mathbb{C}^{m,n})$ be sufficiently smooth and suppose that

$$r(t) = r, \quad a(t) = a, \quad s(t) = s$$
 (4.4)

for the local characteristic values of (E(t), A(t)). Then (E, A) is globally equivalent to the canonical form

$$\left(\begin{bmatrix}
I_{s} & 0 & 0 & 0 \\
0 & I_{d} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & A_{12} & 0 & A_{14} \\
0 & 0 & 0 & A_{24} \\
0 & 0 & I_{a} & 0 \\
I_{s} & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}\right).$$
(4.5)

All entries are again matrix functions on I and the last block column in both matrix functions of (4.5) has size u = n - s - d - a.

Proof. In what follows, we will tacitly redefine the block matrix entries that appear after the global equivalence transformations. The first step is the continous

SVD of E; see Theorem 4.3.

where the final equivalence holds, if Q_2 is chosen as the (unique and pointwise invertible) solution of the linear matrix valued ODE

$$\dot{Q}_2 = A_{22}(t)Q_2, \quad Q_2(t_0) = I_d.$$

Then, A_{22} vanishes because of the special choice of Q_2 and E_{22} becomes I_d after scaling the second block line by Q_2^{-1} .

30 CHAPTER 4. LINEAR DAES WITH TIME-VARYING COEFFICIENTS

Numerical Approximation of DAEs

In order to analyse the approximation error of the RKM $(\mathcal{A}, \beta, \gamma)$ applied to a regular linear DAE with constant coefficients

$$E\dot{x} = Ax + f(t).$$

Without loss of generality, we can assume that

- (E,A) is in Kronecker Canonical Form \leftarrow RKM are invariant under equivalence transformation
- $(E, A) = (N, I) \leftarrow$ the regular part can be treated by ODE theory
- $E=N=N_{\nu}$ consists of a single Jordan block \leftarrow otherwise consider each Jordan block separately

Thus, we can consider the special DAE

$$\begin{bmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ & & & & 0 \end{bmatrix} \dot{x} = x + f(t), \tag{5.1}$$

where

$$x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_{\nu}(t) \end{bmatrix} \quad \text{and} \quad f(t) = \begin{bmatrix} f_1(t) \\ f_2(t) \\ \vdots \\ f_{\nu}(t) \end{bmatrix}$$

Theorem 5.1. The local error of an RKM with A invertible applied to (5.1) behaves like

$$x(t_{i+1}) - x_{i+1} = \mathcal{O}(h^{\kappa_{\nu} - \nu + 2} + h^{\kappa_{\nu-1} - \nu + 3} + \dots + h^{\kappa_1 + 1})$$

where κ_i is the maximum number such that

Condition	$range \ of \ k$
a.) $\beta^T \mathcal{A}^{-k} e = \beta^T \mathcal{A}^{-j} \gamma^{j-k} / (j-k)!$ b.) $\beta^T \mathcal{A}^{-j} \gamma^k = k! / (k-j+1)!$	$k = 1, 2, \cdots, j - 1$ $k = j, j + 1, \cdots$

for all $k \leq \kappa_j$ and for $j = 1, \dots, \nu$.

Proof. Since we consider the pure consistency error, we can assume that $x_i = x(t_i)$. With that and with the definition of the RKM, the error is given as

$$\tau = x(t_{i+1}) - x_{i+1} = -h \sum_{i=1}^s \beta_j \dot{X}_{ij} + \sum_{k \geq 1} \frac{h^k}{k!} x^{(k)}(t_i).$$

Because of the special structure of the DAE, we can concentrate on the first error component $\tau_1 \leftarrow$ the error component τ_2 is the *first* component of the problem of index $\nu-1$. For τ_1 we have the formula

$$\tau_1 = x_1(t_{i+1}) - x_{i+1,1} = h\beta^T \sum_{i=1}^{\nu} (h\mathcal{A})^{-j} Z_{ij} + \sum_{k \geq 1} \frac{h^k}{k!} x_1^{(k)}(t_i).$$

One may confirm directly, or by means of the solution formula for $N\dot{x} = x + f$, that the ℓ -th component of x is defined as

$$x_\ell(t) = -\sum_{j=\ell}^\nu f_j^{(j-\ell)}(t).$$

The componentwise Taylor expansion of $Z_{i,\ell}$ reads

$$\begin{split} Z_{i\ell} &= \begin{bmatrix} x_{i,\ell} + f_{\ell}(t_i + \gamma_1 h) \\ x_{i,\ell} + f_{\ell}(t_i + \gamma_2 h) \\ \vdots \\ x_{i,\ell} + f_{\ell}(t_i + \gamma_s h) \end{bmatrix} = \begin{bmatrix} x_{i,\ell} + f_{\ell}(t_i) + \sum_{k \geq 1} \frac{h^k}{k!} f_{\ell}^{(k)}(t_i) \gamma_1^k \\ x_{i,\ell} + f_{\ell}(t_i) + \sum_{k \geq 1} \frac{h^k}{k!} f_{\ell}^{(k)}(t_i) \gamma_2^k \\ \vdots \\ x_{i,\ell} + f_{\ell}(t_i) + \sum_{k \geq 1} \frac{h^k}{k!} f_{\ell}^{(k)}(t_i) \gamma_s^k \end{bmatrix} \\ &= x_{i,\ell} e + \sum_{k \geq 0} \frac{h^k}{k!} f_{\ell}^{(k)}(t_i) \gamma^k \end{split}$$

With that and with $x_i = x(t_i)$, we expand the error τ_1 as follows:

$$\begin{split} \tau_1 &= \beta^T \sum_{j=1}^{\nu} (h\mathcal{A})^{-j} Z_{ij} + \sum_{k \geq 1} \frac{h^k}{k!} x_1^{(k)}(t_i) \\ &= \beta^T \sum_{j=1}^{\nu} h^{-j+1} \mathcal{A}^{-j} \big[x_j(t_i) e + \sum_{k \geq 0} \frac{h^k}{k!} f_j^{(k)}(t_i) \gamma^k \big] \\ &\quad + \sum_{k \geq 1} \frac{h^k}{k!} x_1^{(k)}(t_i) \\ &= \beta^T \sum_{j=1}^{\nu} h^{-j+1} \mathcal{A}^{-j} \big[- \sum_{k=j}^{\nu} f_k^{(k-j)}(t_i) e + \sum_{k \geq 0} \frac{h^k}{k!} f_j^{(k)}(t_i) \gamma^k \big] \\ &\quad - \sum_{k \geq 1} \frac{h^k}{k!} \sum_{j=1}^{\nu} f_j^{(j-1+k)}(t_i) \\ &= - \sum_{j=1}^{\nu} \sum_{k=j}^{\nu} h^{-j+1} \beta^T \mathcal{A}^{-j} e f_k^{(k-j)}(t_i) + \sum_{j=1}^{\nu} \sum_{k \geq 0} \frac{h^{k-j+1}}{k!} \beta^T \mathcal{A}^{-j} \gamma^k f_j^{(k)}(t_i) \\ &\quad - \sum_{k \geq 1} \sum_{j=1}^{\nu} \frac{h^k}{k!} f_j^{(j-1+k)}(t_i), \end{split}$$

which, with $\sum_{j=1}^{\nu} \sum_{k=j}^{\nu} g(j,k) = \sum_{k=1}^{\nu} \sum_{j=1}^{k} g(j,k) = \sum_{k=1}^{\nu} \sum_{j=1}^{k} g(k,j)$, becomes

$$\begin{split} \tau_1 &= \sum_{j=1}^{\nu} \bigl[-\sum_{k=1}^{j} h^{-k+1} \beta^T \mathcal{A}^{-k} e f_k^{(j-k)}(t_i) \\ &+ \sum_{k \geq 0} \frac{h^{k-j+1}}{k!} \beta^T \mathcal{A}^{-j} \gamma^k f_j^{(k)}(t_i) \\ &- \sum_{k \geq 1} \frac{h^k}{k!} f_j^{(j-1+k)}(t_i) \bigr] \\ &= \sum_{j=1}^{\nu} \bigl[-\sum_{k=1}^{j} h^{-k+1} \beta^T \mathcal{A}^{-k} e f_k^{(j-k)}(t_i) \\ &+ \sum_{k=0}^{j-1} \frac{h^{k-j+1}}{k!} \beta^T \mathcal{A}^{-j} \gamma^k f_j^{(k)}(t_i) + \sum_{k \geq j} \frac{h^{k-j+1}}{k!} \beta^T \mathcal{A}^{-j} \gamma^k f_j^{(k)}(t_i) \\ &- \sum_{k \geq 1} \frac{h^k}{k!} f_j^{(j-1+k)}(t_i) \bigr]. \end{split}$$

A shift of indices, $\sum_{k=0}^{j-1}g(k)=\sum_{k=1}^{j}g(j-k)$ and $\sum_{k\geq 1}g(k)=\sum_{k\geq j}g(k-j+1),$

then gives:

$$\begin{split} \tau_1 &= \sum_{j=1}^{\nu} \big[-\sum_{k=1}^{j} h^{-k+1} \beta^T \mathcal{A}^{-k} e f_k^{(j-k)}(t_i) + \sum_{k=1}^{j} \frac{h^{-k+1}}{(j-k)!} \beta^T \mathcal{A}^{-j} \gamma^{j-k} f_j^{(j-k)}(t_i) \\ &+ \sum_{k \geq j} \frac{h^{k-j+1}}{k!} \beta^T \mathcal{A}^{-j} \gamma^k f_j^{(k)}(t_i) - \sum_{k \geq j} \frac{h^{k-j+1}}{(k-j+1)!} f_j^{(k)}(t_i) \big]. \end{split}$$

Construction and Analysis of RKM for nonlinear DAEs

Now we consider RKM for nonlinear DAEs. We start with a DAE in *semi* explicit strangeness-free form and give general results on how to write down a general RKM for it and how to analyse the global error. Then, we consider general strangeness-free nonlinear DAEs and show that a certain class of RKM applies well – namely those that can be constructed by collocation with Lagrange polynomials over the *Radau*, *Lobatto*, or *Gauss* quadrature points.

6.1 General RKM for Semi-Explicit Strangenessfree DAEs

A semi explicit strangeness-free DAE is of the form

$$\dot{x} = f(t, x, y) \tag{6.1}$$

$$0 = g(t, x, y) \tag{6.2}$$

with the Jacobian of g with respect to y, i.e.

$$\partial_y \otimes g(t,x(t),y(t)) =: g_y(t,x(t),y(t)),$$

being invertible for all t along the solution (x, y).

Some observations:

- this system is strangeness-free
- under certain assumptions, any DAE can be brought into this form
- in the linear case $E\dot{z}=Az+f,$ with z=(x,y), the assumptions basically mean that

$$E = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} * & * \\ * & A_{22} \end{bmatrix},$$

with $A_{22}(t)$ invertible for all t.

• The condition g_y invertible means that, locally, one could consider

$$\dot{x} = f(t, x, R(t, x)), \text{ with } R \text{ such that } y = R(t, x).$$

However, this is not practical for numerical purposes.

The general strategy to get a suitable formulation of a time discretization of system (6.1)-(6.2) by any RKM is to consider the perturbed version

$$\dot{x} = f(t, x, y),$$

$$\varepsilon \dot{y} = g(t, x, y),$$

which is an ODE, formulate the RKM, and then let $\varepsilon \to 0$. In the Hairer/Wanner Book, this approach is called ε -embedding.

This is, consider

Table 6.1: RKM applied to semi-explicit DAEs

i.e., the RKM applied to an ODE in the variables (x, y), and replace (*) by

$$\dot{X}_{ij} = f(t_i + \gamma_j h, X_{ij}, Y_{ij}), \quad 0 = g(t_i + \gamma_j h, X_{ij}, Y_{ij}), \quad j = 1, 2, \cdots, s. \label{eq:def_Xij}$$

Theorem 6.1 (Kunkel/Mehrmann Thm. 5.16). Consider a semi-explicit, strangeness-free DAE as in (6.1)-(6.2) with a consistent initial value (x_0, y_0) . The time-discretization by a RKM,

- with \mathcal{A} invertible and $\rho := 1 \beta^T \mathcal{A}^{-1} e$,
- applied as in Table 6.1 with $\varepsilon = 0$,
- that is convergent of order p for ODEs
- and fulfills the Butcher condition C(q) with $q \ge p + 1$

leads to an global error that behaves like

$$\|\mathfrak{X}(t_N) - \mathfrak{X}_N\| = \mathcal{O}(h^k),$$

where

- k = p, if $\rho = 0$,
- $k = \min\{p, q+1\}, if -1 \le \rho < 1$
- $k = \min\{p, q 1\}, if \rho = 1.$

If $|\rho| > 1$, then the RKM – applied to (6.1)–(6.2) – does not converge.

Some words on the conditions on p, q, and ρ :

- For stiffly accurate methods, $\beta^T \mathcal{A}^{-1} e = 1$ and, thus, $\rho = 0 \to \text{no}$ order reduction for strangeness free or index-1 systems
- For the *implicit midpoint rule* also known as the 1-stage Gauss method:

$$\begin{array}{c|c} \frac{1}{2} & \frac{1}{2} \\ \hline & 1 \end{array}$$

- the convergence order for ODEs is p=2
- but $1 \beta^T \mathcal{A}^{-1} e = 1 1 \cdot \left(\frac{1}{2}\right)^{-1} 1 = -1$, so that $\min\{p 1, q\} = k \le 1$, depending on q.
- in fact k = 1 as

$$C(q): \quad \sum_{\ell=1}^s \alpha_{j\ell} \gamma_\ell^{\bar{k}-1} = \frac{1}{\bar{k}} \gamma_j^{\bar{k}}, \quad \bar{k}=1,\cdots,q, \quad j=1,\cdots,s$$

in the present case of $s=1,\ \alpha_{11}=\gamma_1=\frac{1}{2}$ is fulfilled for $\bar{k}=1:\frac{1}{2}=\frac{1}{2}$

– it is not relevant here, but for $\bar{k} = 2$: $\frac{1}{2} \cdot \frac{1}{2} \neq \frac{1}{2} \cdot \frac{1}{4}$

6.2 Collocation RKM for Implicit Strangenessfree DAEs

The general form of a strangeness-free DAE is given as

$$\hat{F}_1(t,x,\dot{x}) = 0 \tag{6.3}$$

$$\hat{F}_2(t,x) = 0 \tag{6.4}$$

where the strangeness-free or index-1 assumption is encoded in the existence of implicit functions \mathcal{L} , \mathcal{R} such that, with $x=(x_1,x_2)$, the implicit DAE (6.3)–(6.4) is equivalent to the semi-explicit DAE

$$\dot{x}_1 = \mathcal{L}(t, x_1, x_2)$$
$$0 = \mathcal{R}(t, x_1) - x_2$$

In what follows we show that a *collocation* approach coincides with certain RKM discretizations so that the convergence analysis of the RKM can be done via approximation theory.

Regression (Collocation): – If one looks for a function $x\colon [0,1]\to \mathbb{R}$ that fulfills F(x(t))=0 for all $t\in [0,1]$, one may interpolate x by, say, a polynomial $x_p(t)=\sum_{\ell=0}^k x_\ell t^\ell$ and determine the k+1

coefficients x_{ℓ} via the solution of the system of (nonlinear) equations $F(x_p(t_{\ell})) = 0, \ \ell = 0, 1, \dots, k$, where the $t_{\ell} \in [0, 1]$ are the k+1 collocation points.

Concretely, we parametrize s collocation points via

$$0 < \gamma_1 < \gamma_2 < \dots < \gamma_s = 1 \tag{6.5}$$

and define two sets of $Lagrange\ polynomials$

$$L_\ell(\xi) = \prod_{j=0, j \neq \ell}^s \frac{\xi - \gamma_j}{\gamma_\ell - \gamma_j} \quad \text{and} \quad \tilde{L}_\ell(\xi) = \prod_{m=1, m \neq \ell}^s \frac{\xi - \gamma_m}{\gamma_\ell - \gamma_m},$$

with $\ell \in \{0, 1, \dots, s\}$.

Let \mathbb{P}_k be the space of polynomials of degree $\leq k-1$. We define the collocation polynomial $x_{\pi} \in \mathbb{P}_{s+1}$ via

$$x_{\pi}(t) = \sum_{\ell=0}^{s} X_{i\ell} L_{\ell}(\frac{t - t_{i}}{h})$$
 (6.6)

designed to compute the stage values $X_{i\ell}$, where $X_{i0}=x_i$ is already given.

The stage derivatives are then defined as

$$\dot{X}_{ij} = \dot{x}_{\pi}(t_i + \gamma_j h) = \frac{1}{h} \sum_{\ell=0}^{s} X_{i\ell} \dot{L}_{\ell}(\gamma_j). \tag{6.7}$$

To obtain $x_{i+1}=x_{\pi}(t_{i+1})=X_{is}$, we require the polynomial to satisfy the DAE (6.3)–(6.4) at the collocation points $t_{ij}=t_i+\gamma_j h$, that is

$$\hat{F}_1(t_i + \gamma_j h, X_{ij}, \dot{X}_{ij}) = 0, \quad \hat{F}_2(t_i + \gamma_j h, X_{ij}) = 0, \quad j = 1, \dots, s.$$
 (6.8)

Now we show that this collocation defines a RKM discretization of (6.3)–(6.4). Since $\tilde{L} \in \mathbb{P}_s$, it holds that

$$P_{\ell}(\sigma) := \int_{0}^{\sigma} \tilde{L}_{\ell}(\xi) d\xi \in \mathbb{P}_{s+1}$$

that is, by Lagrange interpolation, it can be written as

$$P_{\ell}(\sigma) = \sum_{j=0}^{s} P_{\ell}(\gamma_j) L_j(\sigma).$$

If we differentiate P_l , we get

$$\dot{P}_\ell(\sigma) = \sum_{j=0}^s P_\ell(\gamma_j) \dot{L}_j(\sigma) = \sum_{j=0}^s \int_0^{\gamma_j} \tilde{L}_\ell(\xi) d\xi \dot{L}_j(\sigma) =: \sum_{j=0}^s \alpha_{j\ell} \dot{L}_j(\sigma)$$

6.2. COLLOCATION RKM FOR IMPLICIT STRANGENESS-FREE DAES39

where define simply define

$$\alpha_{j\ell} = \int_0^{\gamma_j} \tilde{L}_{\ell}(\xi) d\xi.$$

Moreover, by definition of P_{ℓ} (and the fundamental theorem of calculus), it holds that

$$\dot{P}_{\ell}(\sigma) = \tilde{L}_{\ell}(\sigma),$$

which gives that $\dot{P}_{\ell}(\gamma_m) = \delta_{\ell m}$ that is

$$\dot{P}_{\ell}(\gamma_m) = \sum_{j=1}^s \alpha_{j\ell} \dot{L}_j(\gamma_m) = \begin{cases} 1, & \text{if } \ell = m \\ 0, & \text{otherwise} \end{cases}.$$

for $\ell, m = 1, \dots, s$.

Accordingly, if we define $\mathcal{A} := \left[\alpha_{j\ell}\right]_{j,\ell=1,\dots,s} \in \mathbb{R}^{s,s}$ and

$$V := \left[v_{mj}\right]_{m,j=1,\dots,s} = \left[\dot{L}_j(\gamma_m)\right]_{m,j=1,\dots,s} \in \mathbb{R}^{s,s},$$

it follows that $V = \mathcal{A}^{-1}$.

Moreover, since,

$$\sum_{j=0}^s L_j(\sigma) \equiv 1, \quad \text{so that} \quad \sum_{j=0}^s \dot{L}_j(\sigma) \equiv 0,$$

we have that

$$\sum_{j=0}^s \dot{L}_j(\gamma_m) = 0 = \sum_{j=0}^s v_{mj}$$

and, thus,

$$v_{m0} = -\sum_{i=1}^{s} \dot{L}_{j}(\gamma_{m}) = -e_{m}^{T} V e.$$

With these relations we rewrite (6.7) as

$$h\dot{X}_{im} = \sum_{\ell=0}^s X_{i\ell}\dot{L}_\ell(\gamma_m) = v_{m0}x_i + \sum_{\ell=1}^s v_{m\ell}X_{i\ell}.$$

and $h \sum_{m=1}^{s} \alpha_{\ell m} \dot{X}_{im}$ as

$$\begin{split} h \sum_{m=1}^{s} \alpha_{\ell m} \dot{X}_{im} &= \sum_{m=1}^{s} \alpha_{\ell m} v_{m0} x_{i} + \sum_{j,m=1}^{s} \alpha_{\ell m} v_{mj} X_{ij} \\ &= -e_{\ell}^{T} \mathcal{A} V e x_{i} + \sum_{j=1}^{s} e_{\ell}^{T} \mathcal{A} V e_{j} X_{ij} \\ &= -x_{i} + X_{i\ell}, \end{split} \tag{6.9}$$

which, together with (6.8), indeed defines a RKM.

Some remarks:

40CHAPTER 6. CONSTRUCTION AND ANALYSIS OF RKM FOR NONLINEAR DAES

- the preceding derivation shows that the collocation (6.6) and (6.8) is equivalent to the RKM scheme (6.9) and (6.8)
- \bullet convergence of these schemes applied to (6.3)–(6.3) is proven in Kunkel/Mehrmann Theorem 5.17
- with fixing $\gamma_s=1,$ the obtained RKM is stiffly accurate
- the remaining s-1 $\gamma {\rm s}$ can be chosen to get optimal convergence rates \to RadauIIa schemes
- if also γ_s is chosen optimal in terms of convergence, the Gauss schemes are obtained

Examples

7.1 Semi-discrete Navier-Stokes equations

By scalings and state transforms, we find that the coefficients of the spatially discretized Navier-Stokes equations are equivalent to:

$$\begin{split} (\mathcal{E},\mathcal{A}) &= \begin{pmatrix} \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} A & B^H \\ B & 0 \end{bmatrix} \end{pmatrix} \\ &\sim \begin{pmatrix} \begin{bmatrix} M^{-1/2} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} A & B^H \\ B & 0 \end{bmatrix} \begin{bmatrix} M^{-1/2} & 0 \\ 0 & I \end{bmatrix} \end{pmatrix} \\ &\sim \begin{pmatrix} \begin{bmatrix} Q^H & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} M^{-1/2}AM^{-1/2} & M^{-1/2}B^H \\ BM^{-1/2} & 0 \end{bmatrix} \begin{bmatrix} Q & 0 \\ 0 & I \end{bmatrix} \end{pmatrix} \\ &\sim \begin{pmatrix} \begin{bmatrix} I & 0 \\ 0 & R^{-H} \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} M^{-1/2}AM^{-1/2} & \begin{bmatrix} R \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & R^{-1} \end{bmatrix} \end{pmatrix} \\ &= \begin{pmatrix} \begin{bmatrix} I_{n_1} & 0 & 0 \\ 0 & I_{n_2} & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} A_{11} & A_{12} & I_{n_1} \\ A_{21} & A_{22} & 0 \\ I_{n_1} & 0 & 0 \end{bmatrix} \end{pmatrix}. \end{split}$$

where we have used a QR-decomposition:

$$M^{-1/2}B^H = Q \begin{bmatrix} R \\ 0 \end{bmatrix}$$

with unitary Q and invertible R in the third step.

Exercises

8.1 II.C.1

Let $E, A \in \mathbb{C}^{n,n}$ satisfy EA = AE. Then $\ker E \cap \ker A = \{0\}$ implies that (E, A) is regular.

Assume that $\ker A \neq \{0\}$ is of dimension $k \geq 1$. The case that k=0 is trivial, since $\lambda E - A$ is regular for $\lambda = 0$. Let V_0 be the matrix whose columns span $\ker A$ and let V_{\perp} be the matrix that consists of all eigenvectors of A that are associated with the nonzero eigenvalues.

It holds that,

$$AV_0 = 0$$
 and $AV_{\perp} = V_{\perp}L_{\perp}$

with an $L_{\perp} \in C^{n-k,n-k}$ which is invertible. This a consequence of V_{\perp} spanning the A-invariant subspaces with respect to the nonzero eigenvalues.

Because of $ABV_0 = BAV_0 = 0$, it follows that span $BV_0 \subset \ker A = \operatorname{span} V_0$, i.e., V_0 is a B-invariant subspace which means that there is a $K_0 \in \mathbb{C}^{k,k}$ such that $BV_0 = V_0K_0$.

Moreover, because of $\ker E \cap \ker A = \{0\}$, the matrix K_0 has no zero eigenvalues. In fact K_0 has the same eigenvalues as $B' := B\big|_{V_0} \colon V_0 \to V_0$, and if B' had a zero eigenvalue this would mean that the associated eigenvector would be in V_0 and, thus, in the kernel of A.

Moreover, since $ABV_{\perp}=BAV_{\perp}=BVL_{\perp}$ meaning that BV_{\perp} is in the A-invariant subspace related to the nonzero eigenvalues of A, i.e., $BV_{\perp}\subset V_{\perp}$, it follows that V_{\perp} is a B-invariant subspace and, thus, $BV_{\perp}=V_{\perp}K_{\perp}$ for some matrix $K_{\perp}\in\mathbb{C}^{n-k,n-k}$.

With $V:=[V_0|V_\perp]$ and the observation that V is invertible, since its columns span all of $\mathbb{C}^n=\operatorname{span} V_0\oplus\operatorname{span} V_\perp$, it follows that

$$\begin{split} \lambda E - A &= (\lambda E - A)VV^{-1} = (\lambda E[V_0|V_\perp] - A[V_0|V_\perp])V^{-1} \\ &= ([V_0K_0|V_\perp K_\perp]\lambda - [0|V_\perp L_\perp])V^{-1} \\ &= [V_0|V_\perp] \begin{bmatrix} \lambda K_0 \\ \lambda K_\perp - L_\perp \end{bmatrix} V^{-1} \end{split}$$

and that

$$\det(\lambda E - A) = \det(\lambda K_0) \det(\lambda K_\perp - L_\perp)$$

is not identically zero, since K_0 and L_\perp are invertible.

Numerical Analysis and Software Overview

9.1 Theory: RKMs and BDF for DAEs

Table 9.1: Overview of convergence results of RKM/BDF schemes for DAEs $\,$

	DAEs
unstructured, linear	$E(t)\dot{x} = A(t)x + f(t)$
semi-linear	$E(t)\dot{x} = f(t,x)$
unstructured	$F(t, \dot{x}, x) = 0$
unstructured,strangeness-free/index-1	$\begin{cases} \hat{F}_1(t, \dot{x}, x) = 0 \\ \hat{F}_1(t, \dot{x}, x) = 0 \\ \hat{F}_2(t, x) = 0 \\ \begin{cases} \dot{x} = f(t, x, y) \\ 0 = g(t, x, y) \\ \dot{x} = f(t, x, y) \\ 0 = g(t, y) \end{cases}$
semi-explicit, strangeness-free/index-1	$\begin{cases} \dot{x} = f(t, x, y) \\ 0 = g(t, x, y) \end{cases}$
semi-explicit, index-2	$\begin{cases} \dot{x} = f(t, x, y) \\ 0 = g(t, y) \end{cases}$

	Description	Reference
a	RKM, linear constant coefficients	KM Thm. 5.12
b	RKM, nonlinear,	KM Thm 5.16 / HW Thm.
	strangeness-free/index-1,	VI.1.1
	semi-explicit	
\mathbf{c}	RKM, nonlinear, strangeness-free	KM Thm. 5.18
d	BDF, linear constant coefficients	KM Thm. 5.24

	Description	Reference
e	BDF(⊂ MSM), nonlinear, strangeness-free/index-1, semi-explicit	KM Thm. 5.26 (\subset HW Thm. VI.2.1)
f	BDF, nonlinear, strangeness-free/index-1	KM Thm. 5.27
g	RKM, nonlinear, index-2, semi-explicit	HW Ch. VII.4
h	BDF, nonlinear, index-2, semi-explicit	HW Thm. VII.3.5
i	half-explicit RKM, nonlinear, index-2, semi-explicit	HW Thm. VII.6.2
HW	Ernst Hairer, Gerhard Wanner (1996)	Solving ordinary differential equations. II: Stiff and differential-algebraic problems
KM	Peter Kunkel, Volker Mehrmann (2006)	Differential-Algebraic Equations. Analysis and Numerical Solution

9.2 Solvers

As can be seen from the table above, generally usable discretization methods for unstructured DAEs are only there for index-1 problems. However, the solvers GELDA/GENDA include an automated reduction to the strangeness-free form so that they apply for any index; see Lecture Chapter 4++.

9.2.1 Multi purpose

DAEs	Methods	h/p	Langu	ıaRemark	Avail
GELDA-μ-*	BDF/RK	M*/*	F-77		*/·
GENDAn- μ -	BDF	*/*	F-77		/.
*					
DASSLn- ν -	BDF	*/*	F-77	base for $Sundials\ IDA$ – the	*/
1				base of many DAE solvers	
LIMEXsl- ν -	x-SE-	*/*	F-77		/
1	Eul				
RADA G l- ν -	RKM	*/*	F-77		*/
1					

Notes:

9.3. SOFTWARE 47

Table 9.2: Overview of convergence results of BDF/RKM schemes for DAEs of various index and, possibly, semi-explicit structure. Here, we equate *index-1* and *strangeness-free*. A \cdot indicates that this case is included in a result for a more general case *located* left or above in the table.

		RKM				BDF						
	unstructured		semi-explicit		unstructured		semi-explicit					
Problem / Index	*	2	1	*	2	1	*	2	1	*	2	1
nonlinear			С		g,i	b			f		h	e
linear TV			•									
linear CC	a	•			•	•	d				•	•

	Explanation
DAEs	l-linear, sl-semilinear, nl-nonlinear
	classification: μ -strangeness index, ν -differentiation index
	*-includes index reduction
h/p	time step control / order control
	y code for download / licence provided(*) or other statement(\cdot) x-SE-Eul: extrapolation based on semiexplicit Euler

9.2.2 Application specific

Furthermore, there are solvers for particularly structured DAEs.

DAEs	Resources
Navier-Stokes (nl-se-2)	See, e.g., Sec. 4.3 of our preprint on definitions of different schemes
Multi-Body (nl-se-3)	See, e.g., the code on Hairer's homepage

9.3 Software

Many software suits actually wrap SUNDIALS IDA.

DAEs Routines			MethoRemark			
Matlabin 1	nd-	ode15{i,s}	BDF			
Python-	_			no built-in functionality, DASSL/IDA wrapped in the modules scikit-odes, assimulo, pyDAS, DAEtools		
Julia in	nd-	DifferentialEquations.	BIDF	calls SUNDIALS IDA		