

Tech Refresh at Dell Technologies

Ehtesham Sana, Ganesh Apparaju, Lin Liu, Ronald Chiang, Snigdha Pilli

Current Inventory

Open Orders for Next Year

Abstract

Optimize Dell's Tech Refresh process by integrating data analysis and enhancing the spare parts inventory for warranty services. The goal is to align sales strategies with inventory needs, focusing on high-demand, lowinventory parts.

Problem Statement

Introduction

Assumptions

Part lifecycle = 10 years

Product value < \$50

Positive deficit

Planning yield capped at 1

Proposed Solution

Cost Avoidance = Total Value – Initial Cost(Original Monetary Value)

Best Value Parts High Planning Yield High Unit Cost Medium Deficit

One Time Use Low Planning Yield **Low Unit Cost Low Deficit**

Bread and Butter Medium Planning Yield **Low Unit Cost** High Deficit

Customer Demand for Next Year Open Orders for Next Year

Customer Demand for Next Year

Unlocking Value through Part Reuse:

Two Avenues for Reuse

Return Percent (90%) * Repair Percent (80%) = 72%

- Customer returns and reutilising parts
- Sustainable and cost efficient

Measuring Reusability

- **Reusability Factor** = Return Rate x Repair Rate
- Assess the effectiveness of reuse strategies

Repair and Reuse

Repairing the salvageable parts significantly cuts the new order placement costs

Value Calculation

- Total Value $\stackrel{10}{=} \sum_{i=1}^{10} (Part)$ A Units_i) x (Part A Cost per Piece_i)
- Assuming cost per piece doesn't change between 1 to 10 years.

Overall Scatter Plot Cluster 1 Cluster 2

Results & Recommendations

Silhouette Score(Quality of Cluster): High

Best Value Parts \$88.94Million

One Time Use \$2.27 Million

Bread and Butter \$29.02Million

Conclusion

Experimental model predicts critical parts nearing end-oflife, enabling targeted customer outreach for Tech Refresh Program, enhancing service provision and product updates.

Scalable, robust, adaptive ranking algorithm

\$120.23 Million in savings

Enhanced decision making

References **GPT 4 and Dell experts**