DOMANDE ESERCIZIO1:

Considerando un problema di ricerca di soluzione in uno spazio degli stati, che cosa differenzia un algoritmo informato da uno non informato ?

- a. L'utilizzo di una funzione costo
- b. L'utilizzo di un modello
- c. L'utilizzo di una funzione euristica

Risposta: C

Quale fra i seguenti algoritmi è il più efficiente in termini di tempo per risolvere CSP?

- a. Ricerca con backtracking che sfrutta la commutatività
- b. Back-jumping
- c. Backward chaining
- d. test and set

Risposta: B

Quale fra i seguenti algoritmi è il meno in termini di tempo per risolvere CSP?

- a. Ricerca con backtracking che sfrutta la commutatività
- b. Backjumping
- c. Generate and test

Risposta: C

Quale delle seguenti è la definizione di soluzione in un CSP?

- a. Una soluzione di un CSP è un assegnamento di costo minimo che porta dal nodo iniziale a un nodo target
- b. Una soluzione di un CSP è un assegnamento di un valore variabile definita nel problema
- c. Una soluzione di un CSP è un assegnamento completo che rispetta i vincoli

Risposta: C

Cos'è la soluzione di un CSP (problema soddisfacimento vincoli)?

- a. Un assegnamento consistente
- b. Una sequenza di passi che permette di raggiungere il goal minimizzando il costo
- c. un assegnamento di tutte le variabili che soddisfa i vincoli

Risposta: C

Il test di turing dice che un computer è intelligente se:

- a. Comprende le domande che gli vengono poste
- b. Imita il comportamento umano nel rispondere alle domande
- c. Risponde correttamente alle domande che gli vengono poste
- d. è in grado di manifeste emozioni

Risposta: B

Considerando una matrice di confusione , quale delle seguenti distribuzione dei valori al suo interno denota una prestazione ottimale?

- a. Diagonale principale che somma al numero delle istanze elaborate, 0 in tutte le altre celle
- b. Distribuzione uniforme del numero di istanze elaborate su tutte le celle
- c. Ogni cella contiene il numero di istanze della classe in questione diviso l'entropia della classe

Risposta: A

In quale parte di una matrice di confusione vorremo veder concentrati i valori in essa contenuti?

- a. Prima colonna
- b. Diagonale principale
- c. Distribuzione uniforme su ciascuna riga

Risposta: B

Quale tipo di errore non può essere calcolata tramite una matrice di confusione?

- a. Numero dei falsi positivi
- b. Overfitting
- c. Error rate

Risposta: B

Quale delle seguenti misure non può essere calcolata tramite una matrice di confusione?

- a. Accuratezza
 - b. Entropia
 - c. Error rate

Risposta: B

Quale delle seguenti misure viene calcolata tramite una matrice di confusione?

- a. Information gain
- b. Error rate
- c. Accuratezza

Risposta: C

Date due euristiche ammissibili h1 e h2, quando h1 è dominante su h2?

- a. Per ogni nodo n, h1(n)≥h2(n) [h1 maggiore o uguale a h2(n)]
- b. Per almeno un nodo n, $h1(n) \ge h2(n)$ [h1 maggiore o uguale a h2(n)]
- c. Per almeno un nodo n, $h1(n) \le h2(n)$ [h1 maggiore o uguale a h2(n)]

Risposta: A

Cosa significa che un'euristica è ammissibile?

- a. Approssima h*(n) in maniera ottimale
- b. È sempre minore di h*(n)
- c. Fa stime conservative

Risposta: B

Quale delle seguenti euristiche non guida l'algoritmo di ricerca a identificare una soluzione?

- a. A distanza in linea d'aria
- b. Funzione costante zero
- c. Distanza di Manhattan

Risposta: B

Indicare quale delle seguenti è la definizione di unificatore di due formule espresse nella logica del prim'ordine:

- a. Sostituzione delle variabili che rende identiche le due formule
- b. Associazione fra i concetti affini di due KB differenti
- c. Regola di inferenza che, date due clausole, restituisce il loro risolvente

Risposta: A

Cosa si intende per frame problem?

- a. Il fatto che solo alcuni concetti di un'ontologia hanno un corrispondente in un'altra affine
- b. L'impossibilità di sapere quali proprietà di una situazione si preservano dopo l'applicazione di un'azione
- c. L'imposizione di un orizzonte alla ricerca di una soluzione in uno spazio degli stati per tener conto dei vincoli di tempo in cui produrre la soluzione

Risposta: B

Il frame è:

- a. Un dominio applicativo del back-jumping
- b. un errore di generalizzazione nel ragionamento per induzione
- c. Il problema di non riuscire a inferire i fluenti che non cambiano a seguito dell'applicazione di un'azione

Risposta: C

Per frame si intende :

- a. ... un problema che ha posto in luce i limiti dei perceptron quale test lineare
- b. ... l'incapacità di sapere quali proprietà di una situazione si preservano dopo l'applicazione di un'azione
- c. ... l'imposizione di un orizzonte alla ricerca di una soluzione in uno spazio degli stati

Risposta: B

Sulla base di cosa l'algoritmo K Nearest Neighbour restituisce la classe di appartenenza di un'istanza?

- a. Combinazione lineare dei pesi delle varie connessioni moltiplicati per i relativi input.
- b. Soddisfacimento dell'antecedente di una regola indotta dal learning set
- c. Somiglianza dell'istanza a k istanze memorizzate, le più simili ad essa

Risposta: C

I valori dei nodi interni di un albero minimax con alpha-beta pruning vengono calcolati:

- a. Risalando verso la radice
- b. Quando viene creato il nodo utilizzando la funzione utilità
- c. Discendendo verso le foglie

Risposta: A

- a. Per i nodi foglia
- b. Per i nodi interni dell'albero
- c. Per la radice dell'albero

Risposta: A

In minimax con alpha-beta pruning l'utilità viene calcolata :

- a. per la radice
- b. ... per le foglie
- c. ... per i nodi interni

Risposta: B

L'algoritmo minimax ...:

- a. Costruisce un percorso che porta il giocatore Max a vincere
- b. Costruisce in percorso che porta il giocatore Min a perdere
- c. Sceglie la prossima mossa che il giocatore Max dovrebbe eseguire

Risposta: C

Il test di Turing dice che un computer è intelligente se:

- a. Imita il comportamento umano
- b. È in grado di manifestare emozioni
- c. Comprende le domande che gli vengono proposte

Risposta: A

Sulla base di cosa l'algoritmo K Nearest Neighbour restituisce la classe di appartenenza di un'istanza?

- a. Combinazione lineare di pesi delle varie connessioni moltiplicanti per i relativi input
- b. Soddisfacimento dell'antecedente di una regola indotta dal learning set
- c. Somiglianza dell'istanza a k istanze memorizzate, le più simili ad essa

Risposta: C

Indicare quale delle seguenti è la definizione di unificatore di due formule espresse nella logica del prim'ordine :

- a. Associazione fra i concetti affini di due KB differenti
- b. Sostituzione delle variabili che rende identiche le due formule
- c. Regola di inferenza che, date due clausole, restituisce il loro risolvente

Risposta: B

Quale fra i seguenti algoritmi per risolvere CSP è il più efficiente in termini di tempo :

- a. Test and set
- b. Back-jumping
- c. Ricerca con backtracking che sfrutta la commutatività

Risposta: B

Nella costruzione di alberi di decisione con pre-pruning quale dei seguenti può essere un criterio per decidere che un nodo sarà una foglia :

- a. Il numero di istanze propagate al nodo è minore di una certa soglia
- b. La funzione di valutazione restituisce un valore maggiore di una certa soglia
- c. L'entropia restituisce 1

Risposta: A

Che cosa differenzia un problema di ricerca di una soluzione informato da uno non informato?:

- a. La presenza di un modello
- b. La presenza di una funzione costo
- c. La presenza di una funzione euristica

Risposta: C

L'esperimento della camera cinese di Searle illustra come:

- a. La produzione della risposta giusta richieda comprensione della domanda
- b. Non si calcolano perché sono dati
- c. L'imitazione di un comportamento intelligente non implichi intelligenza

Risposta: C

Un algoritmo di inferenza si dice completo quando:

- a. Kb I- P allora Kb \models P
- b. Kb I= P allora Kb I- P
- c. Kb I= P allora Kb I= P

Risposta: B

Nella costruzione di alberi di decisione con pre-pruning quale dei seguenti può essere un criterio per decide che un nodo sarà una foglia ?

- a. Il numero di istanze propagate al nodo è minore di una certa soglia
- b. La funzione di valutazione restituisce un valore maggiore di una certa soglia
- c. L'entropia restituisce 1

Risposta: A

Su cosa si basa il situation calculus?

- a. Fluente
- b. Azione
- c. Situazione

Risposta: B

Quale dei seguenti criteri può essere usato come criterio di terminazione nella costruzione di alberi di decisione?

- a. Il valore della funzione di valutazione calcolata nel nodo è maggiore di una certa soglia
- b. Il nodo presenta overfitting
- c. Il numero delle istanza associate al nodo è minore di una certa soglia

Risposta: C

Quale fra i seguenti algoritmi è il più efficiente in termini di spazio?

- a. Algoritmo di ricerca a costo minore
- b. algoritmo di ricerca a costo uniforme
- c. Ricerca in ampiezza
- d. Algoritmo di ricerca in profondità

Risposta: D

Un'algoritmi di ricerca di una soluzione in uno spazio è ottimo quando :

- a. Restituisce sempre una soluzione che minimizza il valore di h
- b. Restituisce sempre una soluzione nel minor numero di passi
- c. Restituisce sempre una soluzione a costo minimo

Risposta: C

Cosa misura l'information gain?

- a. Il grado di purezza di un insieme di dati
- b. La riduzione di overfitting comportata dal pruning
- c. La riduzione di entropia prodotta da uno split

Risposta: A

Cosa misura l'entropia?

- a. Il grado di purezza di un learning set
- b. La stima del costo per raggiungere un nodo target
- c. Il grado di somiglianza di due ontologie

Risposta: A

Quale dei seguenti elementi non fa parte della definizione di un'azione nel situation calculus?

- a. Proprietà che devono valere per applicare l'azione
- b. Proprietà atemporali
- c. Proprietà che l'applicazione dell'azione modifica

Risposta: C

Quale dei seguenti potrebbe essere un modello nella logica proposizionale?

- a. X vale Giovanni, Y vale Riccardo
- b. X vale true, Y vale False
- c. X vale 4, Y vale 2

Risposta: B

Quale dei seguenti meccanismi non serve per indurre regola di classificazione?

- a. K nearest neighbour
- b. Specific to general
- c. General to specific

Risposta: A

Quali delle seguenti regole di inferenza permette di implementare la dimostrazione per refutazione?

- a. Eliminazione del doppio negato
 - b. Risoluzione
 - c. Modus ponens

Risposta: B In quale contesto abbiamo parlato di relazione "is-a"? a. Logica del prim'ordine b. Ontologie c. Situation calculus Risposta: B Quale dei seguenti problemi è stato rilevante nello studio del perceptron? a. Problema dell'or esclusivo b. Problema della colorazione della mappa dell'Australia c. Anomalia di Sussman Risposta: A Considerando RDF(resource description framework) quale delle sequenti affermazioni è vera? a. La conoscenza è costituita la triple <soggetto, predicato, oggetto> b. La conoscenza è costituita da relazioni IS-A e Member c. La conoscenza è costituita da clausole di Horn Risposta: A il back-dumping è : a. Un algoritmo di ricerca informato b. Un algoritmo per la soluzione di problemi con vincoli c. Un'euristica ottimale Risposta: B In quale contesto abbiamo parlato di post-pruning? a. Problemi di soddisfacimento dei vincoli b. Apprendimento automatico c. Problemi con avversario Risposta: B quali delle seguenti affermazioni è corretta quando si parla di tassonomia? a. L'insieme delle categorie è una partizione b. Le sottocategorie di una categoria costituiscono una partizione c. Le sottocategorie di ciascuna categoria costituiscono una partizione Risposta: C Un algoritmo di inferenza si dice corretto quando: a. Kb I- P allora Kb \models P b. Kb I= P allora Kb I- P c. Kb I= P allora Kb I= P Risposta: A **ESERCIZI ASSOCIARE:** Associa i seguenti meccanismi logici ai tipi di ragionamento che supportano: a. ragionamento per refutazione in FOL b. foward chaining CSP c. traduzione di una KB FOL in Logica proposizionale d. conseguenza logica e. foward chaining FOL model checking modus ponens generalizzato -> proposizionalizzazione -> modus ponens binary resolution/risoluzione -> Soluzione: model checking -> d. conseguenza logica modus ponens generalizzato -> e. foward chaining FOL proposizionalizzazione --> c. traduzione di una KB FOL in Logica proposizionalemodus ponens--> b. foward chaining CSP binary resolution/risoluzione --> a. ragionamento per refutazione in FOL

- a. apprendimento regole
- b. ricerca di una soluzione in uno spazio degli stati
- c. inferenza da una KB in clausole di Horn
- d. nessuna di queste
- e. ricerca di una soluzione per un CSP

foward checking e test-and-set d general-to-specific а foward chaining C ricerca bidirezionale -> b

Soluzione:

foward checking e. ricerca di una soluzione per un CSP ->

test-and-set d. nessuna di queste -> general-to-specific -> a. apprendimento regole c. inferenza da una KB in clausole di Horn

ricerca bidirezionale -> b. ricerca di una soluzione in uno spazio degli stati

Associa correttamente gli algoritmi elencati ai compiti che svolgono:

- a. risoluzione in CSP
- b. suggerimento della prossima mossa in un problema con avversario
- c. costruzione di alberi di decisione
- d. classificazione senza un modello
- e. riduzione dello spazio di ricerca in un gioco con avversario
- f. apprendimento di regole
- g. ricerca di una soluzione in uno spazio degli stati

algoritmo di Hunt С K-NN -> d back-jumping -> а RBFS -> g specie-to-general f alpha-beta-pruning -> е minimax b

Soluzione:

algoritmo di Hunt c. costruzione di alberi di decisione K-NN d. classificazione senza un modello

back-jumping -> a.risoluzione in CSP

RBFS g.ricerca di una soluzione in uno spazio degli stati **-->**

specie-to-general —> f.apprendimento di regole

alpha-beta-pruning —> e.riduzione dello spazio di ricerca in un gioco con avversario

minimax b.suggerimento della prossima mossa in un probl. con

avvers.

Associa correttamente gli algoritmi elencati ai compiti che svolgono:

c

- a. trova una soluzione per il CSP
- b. verifica se un goal è derivabile da una KB e certi fatti
- c. apprendimento supervisionato
- d. verifica se una formula è derivabile da una KB
- e. trova una soluzione in uno spazio degli stati

back-jumping ->	a
ricerca bidirezionale—>	е
risoluzione ->	d
backward chaining ->	b

Soluzione:

K-NN apprendimento supervisionato back-jumping trova una soluzione per il CSP

ricerca bidirezionale -> trova una soluzione in uno spazio degli stati -> verifica se una formula è derivabile da una KB risoluzione backward chaining verifica se un goal è derivabile da una KB e certi fatti

L'euristiche giocano un ruolo molto importante in diversi ambiti dell'intelligenza artificiale. Effettua le combinazioni corrette:

- a. facilita il fallimento precoce
- b. identifica una variabile coinvolta in molti vincoli
- c. è ottimistica
- d. approssima meglio h*(n)
- e. garantisce l'ottimalità nella ricerca su grafo

un'euristica dominante d un'euristica ammissibile С l'euristica minimum remaining values → е l'euristica di grado b Un'euristica monotona

Soluzione:

un'euristica dominante → approssima meglio h*(n)

un'euristica ammissibile \rightarrow è ottimistica

 \rightarrow garantisce l'ottimalità nella ricerca su grafo l'euristica minimum remaining values l'euristica di grado ightarrow identifica una variabile coinvolta in molti vincoli

Un'euristica monotona \rightarrow facilita il fallimento precoce

ESERCIZI ASSOCIAZIONI:

<u>Data un'ontologia relativa agli autoveicoli, effettua Le corrette associazioni (CT456XY è un numero di targa):</u>

- a. una categoria è componente di un'altra
- b. proprietà di classe
- c. decomposizione esaustiva rispetto a veicolo
- d. relazione errata
- e. relazione di istanza

CT456XY is a automobile →	d
CT456XY member automobile →	е
member(X, automobile) => velocitàMax(50) →	b
carrozzeria part-of automobile →	а
{mezziDaLavoro, mezziPersonali} →	С

Soluzione:

CT456XY **is a** automobile \rightarrow relazione errata CT456XY **member** automobile \rightarrow relazione di istanza member(X, automobile) => velocitàMax(50) \rightarrow proprietà di classe carrozzeria **part-of** automobile \rightarrow una categoria è componente di un'altra {mezziDaLavoro, mezziPersonali} \rightarrow decomposizione esaustiva rispetto a veicolo

Data un'ontologia che cattura concetti di ambito astronomico, effettuare corrette associazioni:

- a. relazione di sottoclasse
- b. partizione
- c. proprietà di classe
- d. relazione di istanza
- e. relazione di composizione

Soluzione:

Mercurio member pianeta	ightarrow relazione di istanza	
member(X, pianeta) => sferoidale	ightarrow proprietà di classe	
astrometria isa astronomia	ightarrow relazione di sottoclasse	
{solare,extrasolare,interstellare} rispetto a pianeta \rightarrow partizione		
magnetosfera part-of pianeta	ightarrow relazione di composizione	

Data un'ontologia che cattura concetti di ambito musicale ,effettuare corrette associazioni:

- a. relazione di sottoclasse
- b. insieme disgiunto
- c. relazione di istanza
- d. proprietà di classe
- e. una categoria è componente di un'altra

```
\begin{array}{lll} \text{timpano member percussione} & \to & \text{c} \\ \text{haPlettro(Y)} => \text{cordofono(Y)} & \to & \text{d} \\ \text{timpano isa percussione} & \to & \text{a} \\ \text{archi, legni, percussioni} \} & \to & \text{b} \\ \text{ottone part-of orchestra} & \to & \text{e} \\ \end{array}
```

Soluzione:

timpano **member** percussione haPlettro(Y) => cordofono(Y) timpano **isa** percussione {archi, legni, percussioni} ottone **part-of** orchestra → relazione di istanza→ proprietà di classe

 \rightarrow relazione di sottoclasse

 \rightarrow insieme disgiunto

ightarrow una categoria è componente di un'altra

ESERCIZI FORMULE:

Si consideri le due formule riportate e si indichi per ciascuna delle affermazioni se è vera o falsa (x è una variabile, IDO una costante:

A) not Predicato1(x) or Predicato2(x) or not Predicato3(x)

B) Predicato(ID0)

La formula A) è una clausola	VERO
Il foward chaining è applicabile	FALSO
La formula A) è una clausola di Horn	VERO
La risoluzione è applicabile	VERO
Il modus ponens è applicabile	FALSO

Si consideri le seguenti formule in logica di prim'ordine dove Asso è costante e x,y sono variabili e immagina di applicare il modus ponens generalizzato:

A) Cane(Asso)

B) Custode(Proprietario(x,x)

C) Cane(x) and Custode(y, x) implica Responsabile(y)

Il modus ponens generalizzato non è applicabile	FALSO
Sostituzione: x/Asso, z/z, y/Proprietario(Asso)	FALSO
Risultato: Cane(Asso) and Custode(y,Asso)	FALSO
Risultato: Responsabile(Proprietario(Asso))	VERO
Sostituzione: x/Asso, z/Asso, y/Proprietario(Asso)	VERO

Si consideri le seguenti formule in logica di prim'ordine dove IDO è costante e immagina di applicare la regola di risoluzione:

- A) not Ottone(x) or Percussione(x) or not Arco(x)
- B) Ottone(ID0)

L'unificatore è {2 ID0}	VERO
La risoluzione non è applicabile	FALSO
Risolvente: Ottone(ID0)	FALSO
Risolvente: Percussione(ID0) or not Arco(ID0)	VERO
Risolvente: Percussione(x) or not Arco(x)	FALSO

Si consideri le tre formule riportate e si indichi per ciascuna delle affermazioni se è vera o falsa (x è una variabile, IDO e ID1 costanti):

- A) Alfa(ID1) or not Beta(x) or Gamma(x)
- B) Alfa(ID0)
- C) Beta(ID1)

La formula A) è una clausola di Horn	FALSO
Il foward chaining è applicabile	FALSO
La formula A) è una clausola	VERO
Si può derivare Gamma(ID1)	FALSO
Il modus ponens generalizzato è applicabile	FALSO

Si consideri le tre formule riportate e si indichi per ciascuna delle affermazioni se è vera o falsa (x è una variabile, IDO costante) :

- A) not Álfa(x) or Beta(x) or not Gamma(x)
- B) Alfa(ID0)
- C) Gamma(ID0)

La formula A) è una clausola di Horn	VERO
Il foward chaining è applicabile	VERO
La formula A) è una clausola	VERO
La risoluzione è applicabile	VERO
Il modus ponens generalizzato è applicabile	VERO