Stabilisateur actif d'image – Corrigé

Mines Ponts 2018 - PSI

C1-01

C2-03

Mise en situation

Objectif

Vérifier l'exigence 1.1 « déplacer la caméra ».

Travail demandé

Question 1 Avec $K_mA = 1$, calculer la fonction de transfert en boucle ouverte (FTBO) et la fonction de transfert en boucle fermée (FTBF) du schéma (modèle 1).

Correction

Attention au signe du comparateur de la boucle inbriquée!

On définit la FTBO par FTBO $(p) = \frac{\varepsilon(p)}{\mathrm{Mes}\varphi(p)}$ avec $\varepsilon(p)$ la sortie du premier comparateur.

On a d'une part
$$G(p) = \frac{\frac{K_m A}{1 + \tau_m p}}{1 - \frac{K_m A K_D}{1 + \tau_m p}} = \frac{K_m A}{1 + \tau_m p - K_m A K_D}$$
. On a alors FTBO(p) =

$$\frac{K_m A K_P}{p \left(1 + \tau_m p - K_m A K_D\right)}$$

Si on définit la FTBF par FTBF(p) =
$$\frac{\varphi(p)}{\varphi^*(p)}$$
, on a FTBF(p) = $A_i(p) \frac{\frac{K_m A K_P}{p (1 + \tau_m p - K_m A K_D)}}{1 + \frac{K_m A K_P}{p (1 + \tau_m p - K_m A K_D)}}$

$$= A_{i}(p) \frac{K_{m}AK_{p}}{p(1 + \tau_{m}p - K_{m}AK_{D}) + K_{m}AK_{p}}.$$
Au final, FTBO(p) = $\frac{K_{p}}{p(1 + \tau_{m}p - K_{D})}$ et FTBF(p) = $A_{i}(p) \frac{K_{p}}{p(1 + \tau_{m}p - K_{D}) + K_{p}}.$

Dans un premier temps en mode pilotage, on s'intéresse au comportement de l'axe de tangage sans le filtre passe bas : $A_i(p) = 1$.

Question 2 Quelle est la valeur maximale de K_D pour que la commande de l'axe de tangage soit strictement stable? Préciser le(s) critère(s) de stabilité appliqué(s).

Correction

Pour que le système soit stable, tous les coefficients du dénominateur D(p) de la FTBF doivent être de même signe (ainsi toutes les racines sont à partie réelle négative). On a $D(p) = p(1 + \tau_m p - K_D) + K_P = \tau_m p^2 p + (1 - K_D) p + K_P$ et donc nécessairement, $1 - K_D > 0$ et $K_D < 1$.

Question 3 Lorsque $A_i(p) = 1$, le comportement est-il compatible avec l'exigence 1.1.1 « Maîtriser les déplacements »?

Correction

On a : FTBF(
$$p$$
) = $\frac{K_P}{p + \tau_m p^2 - K_D p + K_P}$ = $\frac{K_P}{\frac{\tau_m}{K_P} p^2 + p \frac{1 - K_D}{K_P} + 1}$.
On a alors $\omega_0 = \sqrt{\frac{K_P}{\tau_m}}$ et $\xi = \frac{1 - K_D}{K_P} \frac{\sqrt{\frac{K_P}{\tau_m}}}{2} = \frac{1 - K_D}{2\sqrt{K_P \tau_m}} = \frac{0.5}{2\sqrt{2}} < 1$. Il y a donc du dépassement. L'exigence n'est pas vérifiée.

Question 4 Avec le « modèle 2 » calculer la fonction de transfert $Stab(p) = \frac{Com(p)}{Pe(p)}$ qui lie la commande à la perturbation.

Correction

On a
$$\varepsilon_{2}(p) = -\operatorname{Mes}(\varphi(p)) = -\varphi(p) = -\varepsilon_{1}(p)\frac{1}{p}$$
. Par ailleurs, $\varepsilon_{1}(p) = \operatorname{Pe}(p) + \varepsilon_{3}(p)\frac{AK_{m}}{1 + \tau_{m}p}$. Enfin, $\varepsilon_{3}(p) = K_{P}\varepsilon_{2}(p) + K_{D}\varepsilon_{1}(p) \Leftrightarrow \varepsilon_{3}(p) = \varepsilon_{1}(p)\left(K_{D} - \frac{K_{P}}{p}\right) \Leftrightarrow \varepsilon_{1}(p) = \varepsilon_{3}(p)\frac{1}{K_{D} - \frac{K_{P}}{p}}$. On a donc $\varepsilon_{3}(p)\frac{1}{K_{D} - \frac{K_{P}}{p}} = \operatorname{Pe}(p) + \varepsilon_{3}(p)\frac{AK_{m}}{1 + \tau_{m}p} \Leftrightarrow \varepsilon_{3}(p)\left(\frac{p}{pK_{D} - K_{P}} - \frac{AK_{m}}{1 + \tau_{m}p}\right) = \operatorname{Pe}(p)$. $\Leftrightarrow \varepsilon_{3}(p)\frac{p(1 + \tau_{m}p) - AK_{m}(pK_{D} - K_{P})}{(pK_{D} - K_{P})(1 + \tau_{m}p)} = \operatorname{Pe}(p)$. On a donc $\operatorname{Stab}(p) = \frac{\operatorname{Com}(p)}{\operatorname{Pe}(p)} = \frac{(pK_{D} - K_{P})(1 + \tau_{m}p)}{p(1 + \tau_{m}p) - AK_{m}(pK_{D} - K_{P})}$.

Question 5 Avec le modèle 2 et une entrée Pe(p) échelon unitaire, déterminer la limite quand t tend vers l'infini de la commande : com(t). Quel sens physique donner à ce résultat?

Correction

On a
$$\lim_{t\to\infty} \text{com}(t) = \lim_{p\to 0} p \text{Com}(p) = \lim_{p\to 0} p \text{Stab}(p) \text{Pe}(p)$$

$$= \lim_{p\to 0} p \frac{1}{p} \frac{(pK_D - K_P)(1 + \tau_m p)}{p(1 + \tau_m p) - AK_m (pK_D - K_P)} = \lim_{p\to 0} \frac{-K_P}{AK_m K_P} = -1 \text{ si } AK_m = 1.$$
Ainsi, pour une perturbation angulaire dans un autre sens, le système commande les moteurs avec une consigne dans le sens opposé.

Question 6 Avec le modèle 2 déterminer la FTBO $\frac{\mathrm{Mes}\varphi(p)}{\varepsilon_2(p)}$ de ce schéma puis calculer la fonction de transfert liant la perturbation et la sortie $\mathrm{Pert}(p) = \frac{\varphi(p)}{\mathrm{Pe}(p)}$.

Correction

On a
$$\frac{\operatorname{Mes}\varphi(p)}{\varepsilon_2(p)} = \frac{K_m A K_P}{p \left(1 + \tau_m p - K_m A K_D\right)}$$
 (c'est la même que pour le premier modèle).

On a vu que $\varepsilon_2(p) = -\varphi(p) = -\varepsilon_1(p) \frac{1}{p}$, $\varepsilon_1(p) = \operatorname{Pe}(p) + \varepsilon_3(p) \frac{A K_m}{1 + \tau_m p}$ et $\varepsilon_3(p) = \varepsilon_1(p) \left(K_D - \frac{K_P}{p}\right)$.

En conséquences,
$$\varepsilon_1(p) = \operatorname{Pe}(p) + \varepsilon_3(p) \frac{AK_m}{1 + \tau_m p} \iff \varepsilon_1(p) = \operatorname{Pe}(p) + \varepsilon_1(p) \left(K_D - \frac{K_P}{p}\right) \frac{AK_m}{1 + \tau_m p}$$

$$\Leftrightarrow \varepsilon_1(p) \left(1 + \left(\frac{K_P}{p} - K_D\right) \frac{AK_m}{1 + \tau_m p}\right) = \operatorname{Pe}(p) \Leftrightarrow p\varphi(p) \left(1 + \left(\frac{K_P}{p} - K_D\right) \frac{AK_m}{1 + \tau_m p}\right) = \operatorname{Pe}(p)$$
et donc $\operatorname{Pert}(p) = \frac{1}{p\left(1 + \left(\frac{K_P}{p} - K_D\right) \frac{AK_m}{1 + \tau_m p}\right)} = \frac{1}{p\left(1 + \frac{K_P - pK_D}{p} \frac{AK_m}{1 + \tau_m p}\right)} = \frac{1}{p\left(1 + \tau_m p\right) + (K_P - pK_D) AK_m}.$

Question 7 Déterminer la valeur lorsque *t* tend vers l'infini de la réponse temporelle de ce système à une perturbation de type échelon unitaire. Quel sens physique donner à ce résultat?

Correction
$$\begin{array}{lll} & & & \\ & & & \\ & & & \\ & &$$

Question 8 On désire une marge de gain de $M_G \ge 5\,\mathrm{dB}$ et une marge de phase $M\varphi \ge 20^\circ$ (exigence 1.1.3 « Stabilité de la commande »). Déterminer la valeur maximale de K_P en utilisant les données ci-dessous.

Correction

Pour une marge de de phase de 20°, la phase doit être de -160° lorsque le gain est nul. Or en -160° le gain est de -3 dB. Pour respecter la marge de phase, il faut donc déterminer K_P tel que $20 \log K_P = 3$ soit $K_P < 10^{\frac{3}{20}} \simeq 1,41$. Le système étant d'ordre 2, la marge de gain sera forcément infinie.

Question 9 Analyser ce tracé par rapport à l'exigence 1.1.2 « Perturbations » et justifier le tracé de Com(t) relativement à Pe(t) en utilisant le résultat de la question 5.

Correction

La commande s'oppose à la perturbation (comme évoqué question 5). Le stabilisateur a au final un mouvement sinusoïdal dont les valeurs maximales et minimales sont voisines de 0.1° et -0.1° .

Question 10 Analyser comparativement ce nouveau tracé.

Correction

Dans ce cas, les mouvements du porteur sont inférieurs à 0,1 degres (en valeur absolue).

Synthèse

Question 11 En utilisant la figure suivante, faire le bilan des travaux réalisés. Quel bilan

faire au vu des écarts observés entre les performances obtenues et les performances modélisées.

