Об алгебраической топологии

Ещё один способ определения эквивалентности

Теорема

 $f:A o B,\,g:B o A$ и $f\circ g=id_B,\,g\circ f=id_A$ тогда и только тогда, когда f биективна и $f^{-1}=g$

Доказательство.

- f инъективна, поскольку если найдутся $x_1 \neq x_2$: $f(x_1) = f(x_2)$, то и $g(f(x_1)) = g(f(x_2))$, значит, $id_A(x_1) = id_A(x_2)$.
- f сюръективна, поскольку если найдётся $y \in B$, что нет x: f(x) = y, то $f(g(y)) \neq y$, т.е. $id_B(y) \neq y$.
- $f^{-1} = g$, поскольку если f(x) = y, то g(f(x)) = x.

Обратное утверждение очевидно из разбора определения.

Гомеоморфизм

Определение

Топологические пространства X и Y гомеоморфны $(X \simeq Y)$, если найдётся непрерывная биективная $f: X \to Y$, для которой f^{-1} также непрерывна.

Теорема

Гомеоморфизм сохраняет мощность и компактность.

Пример

- ► Если пространства с дискретной топологией равномощны, то они гомеоморфны (очевидно).
- \triangleright [0,1] не гомеоморфен $\mathbb R$ (не сохраняется компактность).
 - (0,1) гомеоморфен \mathbb{R} : пусть $f(x) = tg(\pi(x-0.5))$.

Бублик гомеоморфен чашке

Классическая шутка (файл с Wikimedia Commons, Topology_joke.jpg, Keenan Crane and Henry Segerman):

Гомотопия

Определение

Будем говорить, что непрерывные функции $f_0, f_1: X \to Y$ гомотопны $(f_0 \sim f_1)$, если существует непрерывная функция $h: X \times [0,1] \to Y$, что $h(x,0) = f_0$ и $h(x,1) = f_1$. Иначе ещё будем обозначать $h_t(x) := h(x,t)$.

Пример

Эти петли гомотопны, $h_t(x) = t(sin2\pi x, cos2\pi x)$:

$$h_1(x) = (\sin 2\pi x, \cos 2\pi x)$$

$$h_{0.5}(x) = \frac{1}{2}(\sin 2\pi x, \cos 2\pi x)$$

$$h_0(x) = 0(\sin 2\pi x, \cos 2\pi x)$$

Гомотопическая эквивалентность пространств

Определение

Будем называть топологические пространства X и Y гомотопически эквивалентными, если найдутся непрерывные функции функции $f: X \to Y$ и $g: Y \to X$, что $g \circ f \sim id_X$ и $f \circ g \sim id_Y$.

$$f: [-1,1] \sim \{0\}$$
 $f: [-1,1] \sim \{0\}:$ возьмём $f(x) := 0, g(x) := 0$. Очевидно, что $f(g(y)) \sim id_Y$: возьмём $h_t^{\leftarrow}(y) = 0$. В обратную сторону: $h_t^{\rightarrow}(x) = x \cdot (t)$. Тогда $h_0^{\rightarrow}(x) = 0 = g(f(x))$, и $h_1^{\rightarrow}(x) = x = id_X$

Связности

Определение

Пример

 $m{\mathcal{E}} = \{z \in \mathbb{R}^2 \mid |z| < 1\}$ стягиваемо. Пусть f — некоторая петля и g(z) = (0,0). Тогда $h_t(z) = (1-t) \cdot f(z)$ покажет, что $f \sim g$.

Определение

Пространство линейно связно, если любые две точки соединены путём. Пространство односвязно, если оно линейно связно и стягиваемо.

Определение

$$S^k := \{ x \in \mathbb{R}^{k+1} \mid |x| = 1 \}$$

Пример

Пример
$$\mathbb{R}^2\setminus\{\langle 0,0\rangle\}\sim S^1$$
: пусть $f(\langle x,y\rangle)=\frac{\langle x,y\rangle}{|\langle x,y\rangle|}$, и $g(\langle x,y\rangle)=\langle x,y\rangle$.

Произведение петель

Определение

Рассмотрим пространство X с отмеченной точкой $x_0 \in X$ и петли f и g, что $f(0) = f(1) = g(0) = g(1) = x_0$. Тогда

$$fg(x) = \begin{cases} f(2x), & x < 0.5\\ g(2x-1), & x \ge 0.5 \end{cases}$$

Теорема

Если f,g,h — петли в пространстве $\langle X, x_0 \rangle$, то

- 1. $f(gh) \sim (fg)h$
- 2. Если $e(x) := x_0$, то $fe \sim ef \sim f$
- 3. Если $f^{-1}(x) := f(1-x)$, то $ff^{-1} \sim f^{-1}f \sim e$.

Фундаментальная группа

Определение

Группа петель в пространстве $\langle X, x_0
angle - \phi$ ундаментальная группа $\pi_1(X, x_0)$.

Теорема

Если пространство X линейно-связно, то $\pi_1(X, x_0)$ изоморфна $\pi_1(X, x_1)$ при любом выборе x_0 и x_1 .

Ветви функции

Теорема

Множество неперерывных отображений $\varphi:S^1\to S^1$ и множество непрерывных функций $f:[0,1]\to\mathbb{R}$, что f(0)=0 и $f(1)\in\mathbb{Z}$ находятся во взаимно-однозначном соответствии.

Доказательство.

так и φ по f :

Рассмотрим некоторое отображение $arphi:S^1 o S^1$ и рассмотрим

• $\alpha(t) = (sin2\pi t, cos2\pi t)$. Заметим, что уравнение $\alpha(f(x)) = \varphi(\alpha(x))$ позволяет как выразить f по φ с точностью до прибавления целого значения, $\alpha^{-1}(t) \in [0,1)$:

$$f(x) = \alpha^{-1}(\varphi(\alpha(x))) + C_1(x)$$

$$c_0 = \alpha(f(\alpha^{-1}(a)))$$

Однако, поскольку f(0)=0 и функция непрерывна, мы можем доопределить $\mathcal{C}_1(x)$ единственным образом.

Фундаментальная группа S^1

Теорема

 Φ ундаментальная группа S^1 эквивалентна группе целых чисел, $\mathbb Z$.

Доказательство.

Возьмём петлю $\phi(t)=(\sin 2\pi t,\cos 2\pi t)$. Тогда $\psi:S^1\to S^1$ сопоставим петлю $\psi(\phi(t))$.

По теореме выше каждому отображению $\psi: S^1 \to S^1$ можно сопоставить $f_\psi: [0,1] \to \mathbb{R}$. Тогда определим отображение группы петель на целые числа так:

$$|\psi|=\mathit{f}_{\psi}(1)$$
. Найдём $|\psi\xi|$:

$$|\psi\xi|: \\ f_{\psi\xi}(x) = \left\{ \begin{array}{ll} f_{\psi}(2x), & x < 0.5 \\ f_{\xi}(2x-1) + f_{\psi}(1), & x \geqslant 0.5 \end{array} \right. \\ \\ \text{прерывна и удовлетворяет граничным условиям,} \\ \end{array}$$

Заметим, что $f_{\psi\xi}$ непрерывна и удовлетворяет граничным условиям, $f_{\psi\xi}(x) = \alpha^{-1}(\psi\xi(\alpha(x))) + C(x)$. Такая функция единственна, значит, это функция, соответствующая $\psi\xi$. Поэтому $|\psi\xi| = |\psi| + |\xi|$. Значит, мы задали изоморфизм групп.

$$S^1 \not\sim [0,1]$$

Теорема

Если $X \sim Y$, то $\pi_1(X) = \pi_1(Y)$.

Теорема

 $S^1 \not\sim [0,1]$

Доказательство.

 $\pi_1(S^1)=\mathbb{Z}$, однако $\pi_1([0,1])=\{0\}$, так как [0,1] стягиваемо.

Теорема

 S^1 не односвязна.

dixer tiderediza

π_1 в Аренде

```
\instance Aut \{A : \1-Type\} (a : A) : Group (a = a)
  | ide => idp
  | * => *> - Koam. ~ graver
  | ide-left => idp_*>
  | ide-right _ => idp
  | *-assoc => *>-assoc
  | inverse => inv
  | inverse-left => inv *>
  | inverse-right => *>_inv
\func pi1-1 (X : \1-Type) (x : X) => Aut x
\func pi1Mult \{X : \1-Type\} \{x : X\} (a b : pi1-1 X x) => a * b
```

Отображение наматывания

```
\data Sphere1
  base1
  | loop : base1 = base1
  \where \func ploop => path loop
| pos 0 => idp
  | pos (suc n) => wind (pos n) *> path loop
  \mid neg (suc n) => wind (neg n) *> inv (path loop)
\func code (x : Sphere1) : \Set0
 | base1 => Int
| loop i => iso isuc ipred ipred_isuc isuc_ipred i
\func encode (x : Sphere1) (p : base1 = x) : code x \Rightarrow transport code p 0
```

Аксиома унивалентности

```
Определение A \simeq B, \ ecли \ найдутся \ f: A \to B, \ g: B \to A, \ f \circ g = id_B, \ g \circ f = id_A Аксиома унивалентности: (A \simeq B) \simeq (A = B) \func Equiv (A B : \Type) => \Sigma (f : A -> B) \qquad (\Pi (x : A) -> g (f x) = x) \qquad (\Pi (y : B) -> f (g y) = y)
```

Из равенства легко получить эквивалентность:

```
\func equality=>equivalence (A B : \Type) (p : A = B) : Equiv A B =>
transport (Equiv A) p (\lam x => x, \lam x => x, \lam x => idp, \lam x => idp)
```

Обратное же постулирует аксиома унивалентности:

```
\func equivalence=>equality (A B : \Type) (e : Equiv A B) : A = B => path (iso e.1 e.2 e.3 e.4)
```

Доказательство $\pi_1(\mathcal{S}^1)=\mathbb{Z}$

\func Loop S1 : (base1 = base1) = Int =>

 $f: S^1 \to Int, g: Int \to S^1$, причём g(fx) = x и f(gx) = x.

```
\func encode_decode {x : Sphere1} (p : base1 = x) : decode x (encode x p) =
  | idp => idp

\func encode_wind (x : Int) : encode base1 (wind x) = x
  | ...
```

path (iso (encode base1) wind encode_decode encode_wind)