Facit laboration 4, SDA 2

Mona Sfaxi

Vi börjar med att ladda alla paket som kommer användas och skriver #| output: false så att man inte ser några störande meddelanden då paketen laddas.

```
library(glmnet)
library(sda123)
library(tidyverse)
```

Del 0 - Testdata och träningsdata

Vi laddar datasetet och spanar in det:

	dteday	season	yr	mnth	holiday	weekday	workingday	weathersit	temp
1	2011-01-01	1	0	1	0	6	0	2	0.344167
2	2011-01-02	1	0	1	0	0	0	2	0.363478
3	2011-01-03	1	0	1	0	1	1	1	0.196364
4	2011-01-04	1	0	1	0	2	1	1	0.200000
5	2011-01-05	1	0	1	0	3	1	1	0.226957
6	2011-01-06	1	0	1	0	4	1	1	0.204348
	hum wi	indspeed	l nI	Rides					
1	0.805833 0.	.1604460)	985					
2	0.696087 0.	. 2485390)	801					
3	0.437273 0.	. 2483090)	1349					
4	0.590435 0	.1602960)	1562					
5	0.436957 0.	. 1869000)	1600					
6	0.518261 0.	. 0895652	2	1606					

Jag använder ett seed på 459. Sedan delar vi in dataetet i tränings- och testdata, där 50 observationer av 731 blir vårt testdata och resten blir träningsdata.

De första observationerna i testdata ges av

head(bike_test)

	dteday	season	yr	${\tt mnth}$	holiday	weekday	workingday	weathersit	temp
281	2011-10-08	4	0	10	0	6	0	1	0.521667
365	2011-12-31	1	0	12	0	6	0	1	0.410000
521	2012-06-04	2	1	6	0	1	1	1	0.597500
638	2012-09-29	4	1	9	0	6	0	1	0.542500
299	2011-10-26	4	0	10	0	3	1	2	0.484167
322	2011-11-18	4	0	11	0	5	1	1	0.274167
	hum wi	indspeed	nF	Rides					
281	0.701250 0	.0454042		5409					
365	0.615833 0	.2201540		2485					
521	0.487083 0	.2848330		6998					
638	0.542917 0	.2276040		8555					
299	0.720417 0	.1486420		3894					
322	0.410000 0	.1685330		3392					

Och för träningsdata ges de fr
sta observationerna av

head(bike_train)

	dteday	season	yr	mnth	holiday	weekday	workingday	weathersit	temp
2	2011-01-02	1	0	1	0	0	0	2	0.363478
3	2011-01-03	1	0	1	0	1	1	1	0.196364
4	2011-01-04	1	0	1	0	2	1	1	0.200000
5	2011-01-05	1	0	1	0	3	1	1	0.226957
6	2011-01-06	1	0	1	0	4	1	1	0.204348
7	2011-01-07	1	0	1	0	5	1	2	0.196522
	hum w	indspeed	nI	Rides					
2	0.696087 0	. 2485390		801					
3	0.437273 0	. 2483090		1349					
4	0.590435 0	.1602960		1562					
5	0.436957 0	. 1869000		1600					
6	0.518261 0	.0895652		1606					
7	0.498696 0	.1687260		1510					

Del 1 - En fruktansvärd regressionsmodell

Del 1a - Skattning

De första 7 variablerna i datasetet (om vi inte tittar på datumvariabeln i kolumn 1) bör egetligen tolkas som kategoriska variabler. yr är egentligen år men vi fokuserar inte på att det finns en tidsaspekt här. Låt oss använda variablerna season, yr, weekday, weathersit, temp, hum och windspeed. Vi kan koda om de kategoriska variabler som inte redan är dummyvariabler som factors. Några av variablerna är väldigt lika såsom exempelvis mnth och season och mäter lite liknande saker. Sen behöver man kanske inte ha med alla variablerna: holiday, weekday och workingday i modellen. Det kanske räcker med exempelvis weekday då den säger ganska mycket. Vi bildar även polynom av de numeriska variablerna temp, hum och windspeed.

Den skattade modellen ges av:

reg_summary(fit1a)

df	of variance 	 MS	F	Pr(>F)
~-			=	7.0474e-296
•	291493293		20	
Total 680	2568164479			
Maagurag (of model fit	_		
Measures (of model fit	t 		
Measures o		t R2-adj		
Root MSE		R2-adj		

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1665.951	723.989	2.30107	2.1698e-02
yr	1915.601	52.416	36.54625	1.0048e-160
factor(season)2	712.488	100.083	7.11899	2.8465e-12
factor(season)3	975.337	128.955	7.56342	1.3212e-13
factor(season)4	1258.757	86.596	14.53590	9.8411e-42
factor(weekday)1	60.565	95.378	0.63500	5.2565e-01
factor(weekday)2	265.014	95.782	2.76684	5.8187e-03
factor(weekday)3	339.488	97.818	3.47062	5.5308e-04
factor(weekdav)4	367.517	96.348	3.81446	1.4929e-04

factor(weekday)5	421.747	96.944	4.35043	1.5739e-05
factor(weekday)6	466.861	96.663	4.82975	1.7008e-06
factor(weathersit)2	-337.995	70.810	-4.77326	2.2339e-06
factor(weathersit)3	-1487.573	193.177	-7.70057	4.9697e-14
<pre>poly(temp, 3, raw = TRUE)1</pre>	-15206.571	2735.632	-5.55870	3.9478e-08
<pre>poly(temp, 3, raw = TRUE)2</pre>	63581.279	6006.349	10.58568	2.7078e-24
<pre>poly(temp, 3, raw = TRUE)3</pre>	-53840.456	4123.318	-13.05755	7.9574e-35
<pre>poly(hum, 3, raw = TRUE)1</pre>	4332.926	3100.159	1.39765	1.6269e-01
<pre>poly(hum, 3, raw = TRUE)2</pre>	-5972.867	5483.953	-1.08915	2.7648e-01
<pre>poly(hum, 3, raw = TRUE)3</pre>	594.322	3156.543	0.18828	8.5071e-01
<pre>poly(windspeed, 2, raw = TRUE)1</pre>	-500.252	1393.171	-0.35907	7.1965e-01
<pre>poly(windspeed, 2, raw = TRUE)2</pre>	-6648.891	3095.287	-2.14807	3.2072e-02

Vi ser att de flesta variablerna är signifikanta, förutom hum-polynomen, och ett par andra variabler.

Del 1b - Utvärdering

Vi beräknar RMSE för testdata och får ett värde på:

[1] 652.4319

Del 2 - L2-regularisering (Ridge regression)

Del 2a - Skattning

Innan vi använder funktionen cv.glmnet() behöver vi skapa en matris med alla prediktorer, vilket kan göras med model.matrix() funktionen. Om man vill så kan man innan skapa dummyvariabler för alla kategriska variabler för hand, då kan man också välja vilka kategorier som kommer vara referenskategorier, eller så kan man också använda funktionen factor precis som innan.

Om man skriver 0 till höger om ~ tecknet i model.matrix funktionen så kommer funktionen inte att skapa ett intercept i matrisen, men det är okej eftersom glmnet() funktionen lägger till ett intercept ändå. Har man alltså inte med 0 i model.matrix så kommer man att få två intercept i sin skattade modell och det är helt okej eftersom värdet för det ena interceptet kommer försvinna ändå men det kan se lite konstigt ut bara.

Sedan kan matrisen skapas och vi kan exempelvis välja ut vilka variabler vi vill ha, och ta bort alla som inte är aktuella. Vi väljer samma variabler som i uppgift 1 för att göra en rättvis jämförelse.

Nu kan vi äntligen skatta vår modell. Jag sätter ett seed till 459:

21 x 1 sparse Matrix of class "dgCMatrix"

	s0	
(Intercept)	-838.98609	
yr	1904.80782	
temp	9566.11666	
temp2	4445.88401	
temp3	-11874.19465	
hum	1456.93504	
hum2	-1058.10347	
hum3	-1761.12108	
windspeed	-892.19301	
windspeed2	-5664.90221	
season_2	863.79467	
season_3	1050.00128	
season_4	1214.10637	
day_6	438.89126	
day_1	88.12578	
day_2	262.75244	
day_3	340.53559	
day_4	360.47435	
day_5	379.91348	
${\tt weathersit_2}$	-370.32781	
${\tt weathersit_3}$	-1583.84255	

Koefficienterna skiljer sig lite från del 1.

Vi fortsätter och använder nu korsvalidering för att hitta det mest optimala värdet på vårt λ . Dvs där parametern λ används för att regularisera vår modell för att hindra modellen från överanpassning. Har vi alltså väldigt många β parametrar i modellen så är det lätt hänt att modellen kommer anpassa sig alldeles för bra till träningsdata men när den sedan får se nya data så kommer prediktionerna att vara dåliga. Vi är ju egentligen intresserade av hur bra modellen presterar för nya data. Är modellen bra så innebär det att den skulle ge bra prognoser i framtiden.

21 x 1 sparse Matrix of class "dgCMatrix"

s1
(Intercept) 1077.17007
yr 1840.38735
temp 4904.38658
temp2 1588.31540
temp3 -2113.57880
hum 144.90129
hum2 -432.77946

hum3	-853.03564
windspeed	-1490.24951
windspeed2	-3591.69381
season_2	934.18360
season_3	734.38978
season_4	1262.68857
day_6	313.39090
day_1	22.43222
day_2	182.06504
day_3	244.27739
day_4	285.19690
day_5	294.95604
weathersit_2	-354.97797
weathersit_3	-1609.09354

Vi kan se att inga koefficienter har försvunnit, vilket det inte kommer göra med L2-regularisering heller, men många har krympt sedan originalmodellen i 1a. Det verkar som om den senaste modellen har krympt mer än den första modellen med Ridge.

Del 2b - Utvärdering

Nu kan vi skapa våra prediktioner och räkna ut RMSE för den nya modellen i 2a. I predict funktionen lägger vi in det optimala värdet på λ från korsvalideringen som vi körde innan. Vi behöver alltså inte skatta om modellen återigen med det nya optimala λ -värdet, det räcker att vi lägger in detta värde i funktionen **predict**. Vi har att välja mellan det minimala λ -värdet och λ 1 standardavvikelse ifrån det minimala. Vi väljer den som är 1 standardavvikelse ifrån för att försäkra oss om att vi inte har använt ett överanpassat värde på λ här. Värdet kan fås från den skattade modellens lista likt nedan:

mod_ridge\$lambda.1se

[1] 162.5418

Därefter kan RMSE beäknas för testdata:

[1] 731.8199

Vi ser att L2-regularisering har lett till ett litet större RMSE än originalmodellen. Men detta kan också bara bero på slumpen, dvs i hur vi har valt ut träningsdata och testdata.

Del 3 - L1-regularisering (LASSO)

Del 3a - Skattning

Vi fortsätter på liknande vis med LASSO

```
21 x 1 sparse Matrix of class "dgCMatrix"
(Intercept)
              -600.1882
              1891.9049
yr
temp
             11749.5844
temp2
             -8724.5198
temp3
hum
hum2
hum3
             -1683.8540
             -626.2782
windspeed
windspeed2
           -6245.4910
season_2
               744.6587
season_3
               895.0380
season_4
              1129.7007
day_6
               310.7548
day_1
day_2
               128.8212
day_3
               207.2297
day 4
               229.1834
day_5
               250.0928
weathersit_2 -335.2939
weathersit_3 -1568.1628
```

Det är svårt att säga exakt hur det skiljer sig från tidigare modeller. Vi ser att några koefficienter har försvunnit och de flesta verkar ha krympt lite mer jämfört med Ridge modellen.

Vi fortsätter med att använda oss av korsvalidering för att välja λ

21 x 1 sparse Matrix of class "dgCMatrix"

s1
(Intercept) 416.95643
yr 1904.21331
temp 1092.95146
temp2 25876.78453
temp3 -27619.47680

hum	494.59868
hum2	
hum3	-2212.60670
windspeed	-493.48825
windspeed2	-6687.51129
season_2	752.90023
season_3	988.40758
season_4	1193.25733
day_6	405.75984
day_1	31.22146
day_2	214.79916
day_3	293.97549
day_4	312.23695
day_5	349.59469
weathersit_2	-350.61818
weathersit_3	-1554.69189

Vi kan se att de flesta skattade koefficienterna verkar ha blivit lite större i den nya Lasso-modellen än i den gamla, och fler koeficienter finns också kvar nu. Så det optimala λ som vi fick från korsvalidering verkar inte leda till lika aggressiv regularisering som i den första Lasso-modellen.

Som bonus kan vi titta på hur stort vårt λ är nu:

mod_lasso\$lambda.1se

[1] 2.907302

Del 3b - Utvärdering

Slutligen så gör vi out-of sample prediktioner och beräknar RMSE på vårt testdata.

[1] 640.2259

Detta är lägre jämfört med Ridge och den vanliga regressionsmodellen, så Lasso verkar fungera lite bättre i det här fallet. Men det kan också bero lite på slumpen, speciellt när vi jämför detta värde med den vanliga regressionsmodellen, som ligger ganska nära.

Del 4 - Visualisering

Vi skapar linjediagram med residualerna från de tre olika modellerna

Figur 1: Resiualer för de tre olika modellerna

Utvecklingen ser inte ut att skilja sig så jätte mycket mellan de tre modellerna men Ridge ser ut att skilja sig lite mer från Lasso och den "vanliga" regressionsmodellen.