What is the voltage across a $4.5-\mu F$ capacitor if the charge on one plate is 0.12 mC? How much energy is stored?

Answer: 26.67 V, 1.6 mJ.

Practice Problem 6.2

If a $10-\mu F$ capacitor is connected to a voltage source with

$$v(t) = 75 \sin(2,000t) \text{ V}$$

determine the current through the capacitor.

Answer: $1.5 \cos(2,000t) \text{ V}.$

Practice Problem 6.3

The current through a $100-\mu\text{F}$ capacitor is $i(t) = 50 \sin 120\pi t \text{ mA}$. Calculate the voltage across it at t = 1 ms and t = 5 ms. Take v(0) = 0.

Answer: 93.14 mV, 1.736 V.

Practice Problem 6.4

An initially uncharged 1-mF capacitor has the current shown in \Box Fig. 6.11 across it. Calculate the voltage across it at t=2 ms and t=5 ms.

Figure 6.11
For Practice Prob. 6.4.

Answer: 100 mV, 400 mV.

Under dc conditions, find the energy stored in the capacitors in Fig. 6.13.

Figure 6.13
For Practice Prob. 6.5.

Answer: 20.25 mJ, 3.375 mJ.

Practice Problem 6.6

Find the equivalent capacitance seen at the terminals of the circuit in Fig. 6.17.

Answer: $40 \,\mu\text{F}$.

Figure 6.17 For Practice Prob. 6.6.

Practice Problem 6.7

Find the voltage across each of the capacitors in Fig. 6.20.

Answer: $v_1 = 45 \text{ V}, v_2 = 45 \text{ V}, v_3 = 15 \text{ V}, v_4 = 30 \text{ V}.$

Figure 6.20 For Practice Prob. 6.7.

If the current through a 1-mH inductor is $i(t) = 60 \cos(100t)$ mA, find the terminal voltage and the energy stored.

Answer: $-6 \sin(100t) \text{ mV}$, $1.8 \cos^2(100t) \mu \text{J}$.

Practice Problem 6.9

The terminal voltage of a 2-H inductor is v = 10(1 - t) V. Find the current flowing through it at t = 4 s and the energy stored in it at t = 4 s. Assume i(0) = 2 A.

Answer: −18 A, 324 J.

Practice Problem 6.10

Determine v_C , i_L , and the energy stored in the capacitor and inductor in the circuit of \Box Fig. 6.28 under dc conditions.

Figure 6.28 For Practice Prob. 6.10.

Answer: 15 V, 7.5 A, 450 J, 168.75 J.

Practice Problem 6.11

Calculate the equivalent inductance for the inductive ladder network in Fig. 6.32.

Figure 6.32 For Practice Prob. 6.11.

Answer: 25 mH.

In the circuit of Fig. 6.34, $i_1(t) = 600e^{-2t}$ mA. If i(0) = 1.4 A, find: (a) $i_2(0)$; (b) $i_2(t)$ and i(t); (c) $v_1(t)$, $v_2(t)$, and v(t).

Figure 6.34

For Practice Prob. 6.12.

Answer: (a) 800 mA, (b) $\left(-0.4 + 1.2e^{-2t}\right)$ A, $\left(-0.4 + 1.8e^{-2t}\right)$ A, (c) $-36e^{-2t}$ V, $-7.2e^{-2t}$ V, $-28.8e^{-2t}$ V.