Exploratory Data Analysis

Data: Red Wine

MUJAHID RAZA

EDA With Red Wine Data

Information

Additional Information

The two datasets are related to red and white variants of the Portuguese "Vinho Verde" wine. Due to privacy and logistic issues, only physicochemical (inputs) and sensory (the output) variables are available (e.g. there is no data about grape types, wine brand, wine selling price, etc.).

These datasets can be viewed as classification or regression tasks. The classes are ordered and not balanced (e.g. there are many more normal wines than excellent or poor ones). Outlier detection algorithms could be used to detect the few excellent or poor wines. Also, we are not sure if all input variables are relevant. So it could be interesting to test feature selection methods.

Attribute Information

Input variables (based on physicochemical tests): 1 - fixed acidity 2 - volatile acidity 3 - citric acid 4 - residual sugar 5 - chlorides 6 - free sulfur dioxide 7 - total sulfur dioxide 8 - density 9 - pH 10 - sulphates 11 - alcohol Output variable (based on sensory data): 12 - quality (score between 0 and 10) In [1]: import pandas as pd df= pd.read_csv('winequality-red.csv')

In [2]:

```
df.head()
```

Out[2]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulpha
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	(
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	(
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	(
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	(
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	(
4										•

In [3]:

```
# summery of the dataset
```

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

```
In [4]:
```

```
# Descriptive summary of the dataset
df.describe()
```

Out[4]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfu dioxid
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.00000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.87492
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.46015
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.00000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.00000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.00000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.00000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.00000
4						>

In [5]:

```
# Shape of the dataset

df.shape
```

Out[5]:

(1599, 12)

In [6]:

```
# List down the columns

df.columns
```

Out[6]:

In [7]:

```
df['quality'].unique()
```

Out[7]:

```
array([5, 6, 7, 4, 8, 3], dtype=int64)
```

```
In [8]:
# Conclusion -- Imbalanced Dataset
df['quality'].value_counts()
Out[8]:
5
     681
     638
6
     199
4
      53
8
      18
3
      10
Name: quality, dtype: int64
In [9]:
# Missing Values
df.isnull().sum()
Out[9]:
fixed acidity
volatile acidity
                         0
citric acid
                         0
residual sugar
                         0
chlorides
                         0
free sulfur dioxide
                         0
total sulfur dioxide
                         0
density
                         0
рΗ
                         0
sulphates
                         0
alcohol
                         0
quality
                         0
dtype: int64
In [10]:
# To check duplicate records
df.duplicated()
Out[10]:
0
        False
        False
1
2
        False
3
        False
         True
        . . .
1594
       False
```

False

True

False

False Length: 1599, dtype: bool

1595 1596

1597

1598

In [11]:

```
df[df.duplicated()]
```

Out[11]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	su
4	7.4	0.700	0.00	1.90	0.076	11.0	34.0	0.99780	3.51	
11	7.5	0.500	0.36	6.10	0.071	17.0	102.0	0.99780	3.35	
27	7.9	0.430	0.21	1.60	0.106	10.0	37.0	0.99660	3.17	
40	7.3	0.450	0.36	5.90	0.074	12.0	87.0	0.99780	3.33	
65	7.2	0.725	0.05	4.65	0.086	4.0	11.0	0.99620	3.41	
1563	7.2	0.695	0.13	2.00	0.076	12.0	20.0	0.99546	3.29	
1564	7.2	0.695	0.13	2.00	0.076	12.0	20.0	0.99546	3.29	
1567	7.2	0.695	0.13	2.00	0.076	12.0	20.0	0.99546	3.29	
1581	6.2	0.560	0.09	1.70	0.053	24.0	32.0	0.99402	3.54	
1596	6.3	0.510	0.13	2.30	0.076	29.0	40.0	0.99574	3.42	

240 rows × 12 columns

→

In [12]:

```
# Remove the duplicate records

df.drop_duplicates(inplace=True)
```

In [13]:

df.shape

Out[13]:

(1359, 12)

In [14]:

df.corr()

Out[14]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide
fixed acidity	1.000000	-0.255124	0.667437	0.111025	0.085886	-0.140580	-0.103777
volatile acidity	-0.255124	1.000000	-0.551248	-0.002449	0.055154	-0.020945	0.071701
citric acid	0.667437	-0.551248	1.000000	0.143892	0.210195	-0.048004	0.047358
residual sugar	0.111025	-0.002449	0.143892	1.000000	0.026656	0.160527	0.201038
chlorides	0.085886	0.055154	0.210195	0.026656	1.000000	0.000749	0.045773
free sulfur dioxide	-0.140580	-0.020945	-0.048004	0.160527	0.000749	1.000000	0.667246
total sulfur dioxide	-0.103777	0.071701	0.047358	0.201038	0.045773	0.667246	1.000000
density	0.670195	0.023943	0.357962	0.324522	0.193592	-0.018071	0.078141
рН	-0.686685	0.247111	-0.550310	-0.083143	-0.270893	0.056631	-0.079257
sulphates	0.190269	-0.256948	0.326062	-0.011837	0.394557	0.054126	0.035291
alcohol	-0.061596	-0.197812	0.105108	0.063281	-0.223824	-0.080125	-0.217829
quality	0.119024	-0.395214	0.228057	0.013640	-0.130988	-0.050463	-0.177855
4							•

In [15]:

```
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(10,6))
sns.heatmap(df.corr(),annot=True)
```

Out[15]:

<Axes: >

In [16]:

```
df.quality.value_counts()
```

Out[16]:

5 577

6 535

7 167

4 53

8 17

3 10

Name: quality, dtype: int64

In [17]:

df.quality.value_counts().plot(kind='bar')

Out[17]:

<Axes: >

In [18]:

sns.displot(df['fixed acidity'])

Out[18]:

<seaborn.axisgrid.FacetGrid at 0x178a037f970>

In [19]:

```
sns.histplot(df['fixed acidity'],kde=True)
```

Out[19]:

<Axes: xlabel='fixed acidity', ylabel='Count'>

In [20]:

for i in df.columns:
 sns.histplot(df[i],kde=True)

In [21]:

```
# Categorical plot
sns.catplot(x= 'quality',y= 'alcohol',data=df,kind='box')
```

Out[21]:

<seaborn.axisgrid.FacetGrid at 0x178a015ee30>

In [22]:

```
sns.scatterplot(x='alcohol', y= 'pH',hue= 'quality', data=df)
```

Out[22]:

<Axes: xlabel='alcohol', ylabel='pH'>

In [23]:

```
sns.catplot(x= 'quality',y= 'citric acid',data=df,kind='box')
```

Out[23]:

<seaborn.axisgrid.FacetGrid at 0x1789cdf3550>

In [24]:

```
sns.catplot(x= 'quality',y= 'free sulfur dioxide',data=df,kind='box')
```

Out[24]:

<seaborn.axisgrid.FacetGrid at 0x178a06b10c0>

In [26]:

```
sns.catplot(x= 'quality',y= 'residual sugar',data=df,kind='box')
```

Out[26]:

<seaborn.axisgrid.FacetGrid at 0x178a26d52d0>

In []: