

EXERCICES DE TRAITEMENT DU SIGNAL Sciences du Numérique - Première année

TD1: Signaux et spectres

Exercice 1 : Etude du secteur

On considère dans cet exercice différents modèles du secteur et on étudie la densité spectrale de puissance des signaux obtenus à l'aide de ces modèles.

1. Dans une première approche, on utilise le modèle :

$$X(t) = A_0 \cos(2\pi f_0 t)$$

où $f_0 = 50Hz$ et $A_0 = 220\sqrt{2}V$. Préciser la classe à laquelle appartient le signal X(t) puis déterminer sa fonction d'autocorrélation $R_X(\tau)$ et sa densité spectrale de puissance $S_X(f)$.

2. On considère ensuite le modèle suivant :

$$X(t) = A_0 \cos(2\pi f_0 t + \theta)$$

 θ étant une variable aléatoire uniformément répartie sur l'intervalle $[0, 2\pi[$, $f_0 = 50Hz$ et $A_0 = 220\sqrt{2}V$. Préciser la classe à laquelle appartient le signal X(t) puis déterminer sa moyenne, sa fonction d'autocorrélation $R_X(\tau)$ et sa densité spectrale de puissance $S_X(f)$.

3. La fréquence du courant électrique n'est jamais exactement $f_0 = 50Hz$. Afin de modéliser les variations en fréquence, on considère le modèle :

$$X(t) = A_0 \cos(2\pi f t + \theta)$$

f étant une variable uniformément répartie sur l'intervalle $[f_0 - \Delta f, f_0 + \Delta f]$ indépendante de θ . Calculer alors la moyenne, la fonction d'autocorrélation et la densité spectrale de puissance de X(t).

Exercice 2: Modulation d'amplitude

Soit A(t) un signal aléatoire stationnaire, réel, de fonction d'autocorrélation $R_A(\tau)$ et de densité spectrale de puissance $S_A(f)$ définie par :

$$S_A(f) = \begin{cases} \alpha, & \text{si } |f| \le F \\ 0, & \text{sinon.} \end{cases}$$

On considère le signal $X(t) = A(t)\cos(2\pi f_0 t + \theta)$, avec $F \ll f_0$ et θ une variable aléatoire uniformément répartie sur l'intervalle $[0, 2\pi[$ indépendante de A(t).

- 1. Montrer que X(t) est un signal aléatoire stationnaire. Déterminer et représenter graphiquement sa densité spectrale de puissance.
- 2. Afin de retrouver le signal A(t) à partir de X(t), on construit le signal $Y(t) = X(t) \cos(2\pi f_0 t + \theta)$.
 - (a) Déterminer et tracer la densité spectrale de puissance de Y(t).
 - (b) Quel traitement doit-on utiliser pour retrouver A(t) à partir de Y(t)?

TD2: Echantillonnage

Exercice 1 : Effet de l'échantillonnage

Soit le signal suivant : $x(t) = \cos(2\pi f_0 t)$, $f_0 = 10$ kHz.

- 1. Tracer la transformée de Fourier de x(t): X(f).
- 2. Est-il possible d'échantillonner x(t) sans perte d'information? Si oui à quelle condition?
- 3. Tracer, entre 0 et F_e , la transformée de Fourier de x(t) échantillonné à $T_e=1/F_e$ quand :
 - (a) $F_e = 30 \text{ kHz}.$
 - (b) $F_e = 8 \text{ kHz}.$
- 4. A partir des échantillons nous souhaitons reconstruire x(t) par filtrage passe-bas à $F_e/2$. Quels seront les signaux obtenus pour chaque fréquence d'échantillonnage précédente?

Exercice 2: Echantillonneur moyenneur

L''échantillonneur moyenneur est une méthode pratique d'échantillonnage qui consiste à calculer, toutes les T_e secondes (période d'échantillonnage), la valeur moyenne du signal pendant un intervalle de temps θ ($\theta << T$) et à affecter cette valeur moyenne à l'échantillon discrétisé :

$$y(kT_e) = \frac{1}{\theta} \int_{kT_e-\theta}^{kT_e} x(u) du$$
$$x_{ech}(t) = \sum_{k} y(kT_e) \, \delta(t - kT_e)$$

1. Démontrer que le signal échantillonné $x_{ech}(t)$ peut se mettre sous la forme :

$$x_{ech}(t) = \frac{1}{\theta} \left[\Pi_{\theta} \left(t \right) * x \left(t - \frac{\theta}{2} \right) \right] . \, \text{III}_{T_e} \left(t \right)$$

où $\Pi_{\theta}(t)$ et $\coprod_{T_e}(t)$ représentent respectivement la fenêtre rectangulaire de largeur θ et le peigne de Dirac de période T_e .

- 2. En déduire la transformée de Fourier correspondante $X_{ech}(f)$.
- 3. En considérant un signal à support spectral borné $2\Delta f$ et en prenant en compte que la fonction $sinc(\pi\theta f)$ peut être supposé constante sur l'intervalle $\left[-\frac{1}{3\theta},\frac{1}{3\theta}\right]$

$$sinc(\pi\theta f) = \frac{\sin(\pi\theta f)}{\pi\theta f} \approx 1$$
pour $f \in \left[-\frac{1}{3\theta}, \frac{1}{3\theta} \right]$

- (a) quelle(s) condition(s) doit vérifier θ pour que le signal x(t) puisse être restitué par filtrage de $x_{ech}(t)$?
- (b) Dans ces conditions peut-on échantillonner à la fréquence de Shannon?

TD3 : Filtrage linéaire

Exercice 1 : Filtre moyenneur à mémoire finie

Le filtre moyenneur à mémoire finie est un système défini par la relation entrée-sortie suivante :

$$y(t) = \frac{1}{T} \int_{t-T}^{t} x(u) du,$$

où x(t) représente l'entrée du filtre et y(t) la sortie.

- 1. Montrer que ce filtre moyenneur à mémoire finie est un filtre linéaire et calculer sa réponse impulsionnelle.
- 2. Ce filtre est-il réalisable?

Exercice 2 : Calcul d'un Rapport Signal sur Bruit (RSB) en sortie d'un filtre linéaire

Considérons un filtre linéaire de réponse en fréquence :

$$H(f) = \frac{1}{\theta + j2\pi f}$$

On applique à l'entrée de ce filtre un processus aléatoire X(t) constitué de la somme d'un signal sinusoïdal $s(t) = A \sin{(2\pi f_0 t)}$, où f_0 et A sont des constantes et d'un bruit blanc stationnaire réel B(t), de densité spectrale de puissance $s_B(f) = \frac{N_0}{2} \forall f$:

$$X(t) = s(t) + B(t)$$

Le filtre étant linéaire, la sortie du filtre s'écrit :

$$Y(t) = Y_s(t) + Y_B(t)$$

où $Y_s(t)$ représente la réponse du filtre à l'entrée s(t) et $Y_s(t)$ représente la réponse du filtre à l'entrée B(t).

1. Donner l'expression du rapport Signal sur Bruit à la sortie du filtre :

$$RSB = \frac{P_{Y_s}}{P_{Y_B}}$$

où P_{Y_s} représente la puissance du signal $Y_s(t)$ et P_{Y_B} la puissance du signal $Y_B(t)$.

2. Montrer qu'il est maximal pour $\theta = 2\pi f_0$.

Remarque: Le rapport Signal sur Bruit en décibels (dB) est défini par : $RSB = 10 \log_{10} \left(\frac{P_{Y_s}}{P_{YB}}\right)$ (dB). On le note aussi SNR (Signal to Noise Ratio).

Exercice 3 : Filtrage non linéaire de type exponentiel

On considère un filtre non linéaire de type exponentiel. Si X(t) est l'entrée du filtre, la sortie Y(t) s'écrit :

$$Y(t) = \exp(X(t))$$

L'entrée du filtre est un bruit gaussien, réel, centré, de variance σ^2 .

- 1. Calculez la moyenne du signal en sortie du filtre.
- 2. Calculez la variance du signal en sortie du filtre.
- 3. Calculez la fonction d'autocorrélation du signal en sortie du filtre en fonction de celle du signal à l'entrée.

Remarque: Si la variable aléatoire Z suit une loi normale $\mathcal{N}(m,\sigma^2)$ et u est une constante alors on a:

$$E\left[e^{uZ}\right] = \exp\left(mu + \frac{\sigma^2}{2}u^2\right)$$

Rappels

Propriétés générales

	T.F.	
ax(t) + by(t)	\Rightarrow	aX(f) + bY(f)
$x(t-t_0)$	\rightleftharpoons	$X(f)e^{-i2\pi ft_0}$
$x(t)e^{+i2\pi f_0 t}$	\rightleftharpoons	$X(f-f_0)$
$x^*(t)$	\rightleftharpoons	$X^*(-f)$
$x(t) \cdot y(t)$	\rightleftharpoons	X(f) * Y(f)
x(t) * y(t)	\rightleftharpoons	$X(f) \cdot Y(f)$
x(at+b)	\rightleftharpoons	$\frac{1}{ a }X\left(\frac{f}{a}\right)e^{i2\pi\frac{b}{a}f}$
$\frac{dx^{(n)}(t)}{dt^n}$	\rightleftharpoons	$(i2\pi f)^n X(f)$
$\left(-i2\pi t\right)^n x(t)$	\rightleftharpoons	$\frac{dX^{(n)}(f)}{df^n}$

Formule de Parseval	Série de Fourier	
$\int_{\mathbb{R}} x(t)y^*(t)dt = \int_{\mathbb{R}} X(f)Y^*(f)df$	$\sum_{n \in \mathbb{Z}} c_n e^{+i2\pi n f_0 t} \rightleftharpoons \sum_{n \in \mathbb{Z}} c_n \delta\left(f - n f_0\right)$	
$\int_{\mathbb{R}} x(t) ^2 dt = \int_{\mathbb{R}} X(f) ^2 df$		

Table de Transformées de Fourier

	T.F.	
1	\Rightarrow	$\delta\left(f ight)$
$\delta\left(t\right)$	\rightleftharpoons	1
$e^{+i2\pi f_0 t}$	\rightleftharpoons	$\delta\left(f-f_0 ight)$
$\delta\left(t-t_{0} ight)$	\rightleftharpoons	$e^{-i2\pi f t_0}$
$\coprod_{T} (t) = \sum_{k \in \mathbb{Z}} \delta(t - kT)$	\rightleftharpoons	$\frac{1}{T}\coprod_{1/T}(f)$
$\cos\left(2\pi f_0 t\right)$	\rightleftharpoons	$\frac{1}{2}\left[\delta\left(f-f_{0}\right)+\delta\left(f+f_{0}\right)\right]$
$\sin\left(2\pi f_0 t\right)$	\rightleftharpoons	$\frac{1}{2i} \left[\delta \left(f - f_0 \right) - \delta \left(f + f_0 \right) \right]$
$e^{-a t }$	\rightleftharpoons	$ \frac{\frac{2a}{a^2+4\pi^2f^2}}{e^{-\pi f^2}} $
$e^{-\pi t^2}$	\rightleftharpoons	$e^{-\pi f^2}$
$\Pi_{T}\left(t ight)$	\rightleftharpoons	$T\frac{\sin(\pi Tf)}{\pi Tf} = T\sin c \left(\pi Tf\right)$
$\Lambda_{T}\left(t ight)$	\rightleftharpoons	$T\sin c^2\left(\pi Tf\right)$
$B\sin c\left(\pi Bt\right)$	\rightleftharpoons	$\Pi_{B}\left(f ight)$
$B\sin c^2\left(\pi Bt\right)$	\rightleftharpoons	$\Lambda_{B}\left(f ight)$

!!!!!! Attention!!!!!

 $\Pi_{T}(t)$ note une fenêtre rectangulaire de support égal à T.

 $\Lambda_T(t)$ note une fenêtre triangulaire de support égal à 2T (de demi-base égale à T).

$$\Pi_{T}(t) * \Pi_{T}(t) = T \Lambda_{T}(t)$$