			1	
f(t)	$\mathcal{F}\{f(t)\} = F(s)$	f(t)	$\mathcal{F}\{f(t)\} = F(s)$	
1.1	$\frac{1}{s}$	20. e ^{nt} senh kt	(5-a)2-k2	
2. 1	$\frac{1}{s^2}$	21. e'' cosh kt	5-a 6-a2-k2	
3. r*	$\frac{n!}{s^{n+1}}$, n es un entero positivo	22. t sen kt	2KS (52+K2)2	
4;3r-1/2	$\sqrt{\frac{\pi}{s}}$	23. 1 cos kt	S²-k²- (s²+k²)²-	
5. t ^{1/2}	$\frac{\sqrt{\pi}}{2s^{3/2}}$	24. $\sin kt + kt \cos kt$	2kg2 (52+k2)2	15
6. t ^a	$\frac{\Gamma(\alpha+1)}{s^{\alpha+1}}, \ \alpha > -1$	25. $\sin kt - kt \cos kt$	$\frac{2k^3}{(s^2+k^2)^2}$	464
7. sen kt	$\frac{k}{s^2 + k^2}$	26. <i>t</i> senh <i>kt</i>	$\frac{2ks}{(s^2-k^2)^2}$	18
8. cos kt	$\frac{\mathbf{A}}{s^2 + k^2}$	27. t cosh kt	$\frac{s^2 + k^2}{(s^2 - k^2)^2}$	b
9. sen²kt	$\frac{2k^2}{s(s^2+4k^2)}$	$28. \frac{e^{at}-e^{bt}}{a-b}$	$\frac{1}{(s-a)(s-b)}$	154
10. cos²kt	$\frac{s^2 + 2k^2}{s(s^2 + 4k^2)}$	$29. \frac{ae^{at}-be^{bt}}{a-b}$	$\frac{s}{(s-a)(s-b)}$	2434
11	$\frac{1}{s-a}$	$30. 1 - \cos kt$	$\frac{k^2}{s(s^2+k^2)}$	+
12. senh kr	$\frac{k}{s^2-k^2}$	31. $kt - \operatorname{sen} kt$	$\frac{k^3}{s^2(s^2+k^2)}$	5
13. cosh kt	$\frac{\Delta}{s^2-k^2}$	32. $\frac{a \operatorname{sen} b t - b \operatorname{sen} a t}{a b (a^2 - b^2)}$	$\frac{1}{(s^2 + a^2)(s^2 + b^2)}$	4+1
14. senh ² kt	$\frac{2k^2}{s(s^2-4k^2)}$	$33. \frac{\cos bt - \cos at}{a^2 - b^2}$	$\frac{s}{(s^2 + a_s^2)(s^2 + b^2)}$	108
15. cosh ² kt	$\frac{s^2 - 2k^2}{s(s^2 - 4k^2)}$	34. sen ki senh ki	$\frac{2k^2s}{s^4 + 4k^4}$	il
16. te ^{ut}	$\frac{1}{(s-a)^2}$	35. sen ki cosh ki	$\frac{k(s^2+2k^2)}{s^4+4k^4}$	F
17. t*e**	$\frac{n!}{(s-a)^{n+1}}, n \text{ es un entero positivo}$	36. cos kt senh kt	$\frac{k(s^2-2k^2)}{s^4+4k^4}$	1+20
18. e'' sen ki	$\frac{k}{(s-a)^2+k^2}$	37. cos kt cosh kt	$-\frac{x^3}{x^4+4k^4}$	1
CONAT	$\frac{s-a}{(s-a)^2+k^2}$	38. J ₀ (kt)	$\frac{1}{\sqrt{n^2 + \lambda^2}}$	1)(1+x)

$$\frac{1}{(s-a)^2} = \frac{1}{a^2 s} + \frac{-1}{a^2 (s-a)^2} + \frac{1}{a(s-a)^2}$$

$$\frac{1}{(s-a)(s-b)^2} = \frac{1}{(b-a)^2 (s-a)} - \frac{1}{(b-a)^2 (s-b)^2} + \frac{1}{(b-a)(s-b)^2}$$

39.
$$\frac{e^{ht}-e^{at}}{t}$$

40.
$$\frac{2(1-\cos kt)}{t}$$

41.
$$\frac{2(1-\cosh kt)}{t}$$

43.
$$\frac{\operatorname{sen} at \cos bt}{t}$$

44.
$$\frac{1}{\sqrt{\pi i}}e^{-a^2/4i}$$

45.
$$\frac{a}{2\sqrt{\pi t^3}}e^{-a^2/4t}$$

46.
$$\operatorname{erfc}\left(\frac{a}{2\sqrt{t}}\right)$$

47.
$$2\sqrt{\frac{t}{\pi}}e^{-a^2/4t} - a \operatorname{erfc}\left(\frac{a}{2\sqrt{t}}\right)$$

48.
$$e^{ab}e^{b^2t}\operatorname{erfc}\left(b\sqrt{t}+\frac{a}{2\sqrt{t}}\right)$$

49.
$$-e^{ab}e^{b^2t}\operatorname{erfc}\left(b\sqrt{t} + \frac{a}{2\sqrt{t}}\right)$$

+ $\operatorname{erfc}\left(\frac{a}{2\sqrt{t}}\right)$

51.
$$\delta(t-t_0)$$

53.
$$f(t-a)^{n}U(t-a)$$

$$57. \int_0^t f(\tau)g(t-\tau) d\tau$$

$$\ln \frac{s-a}{s-b}$$

$$\ln \frac{s^2 + k^2}{s^2}$$

$$\ln \frac{s^2 - k^2}{s^2}$$

$$\arctan \left(\frac{a}{s}\right)$$

$$\frac{1}{2}\arctan \frac{a+b}{s} + \frac{1}{2}\arctan \frac{a-b}{s}$$

$$\frac{e^{-a\sqrt{s}}}{\sqrt{s}}$$

$$e^{-a\sqrt{s}}$$

$$\frac{e^{-a\sqrt{s}}}{s\sqrt{s}}$$

$$\frac{e^{-a\sqrt{s}}}{\sqrt{s}(\sqrt{s}+b)}$$

$$\frac{be^{-a\sqrt{s}}}{s(\sqrt{s}+b)}$$

$$e^{-st_0}$$

$$F(s-a)$$

$$e^{-as}F(s)$$

$$\frac{e^{-as}}{s}$$

$$s^nF(s) - s^{(n-1)}f(0) - \cdots - f^{(n-1)}(0)$$

$$(-1)^n \frac{d^n}{ds^n}F(s)$$

$$F(s)G(s)$$

$$\frac{\Delta}{\sqrt{(3^{2}+1)^{2}}} = \frac{1}{4} \left(\frac{1}{\Delta+1} + \frac{\Delta}{\Delta^{2}+1} + \frac{2\Delta}{(3^{2}+1)^{2}} - \frac{\Delta^{2}-1}{(3^{2}+1)^{2}} \right)$$