

Inferência Estatística

O que é? Quando se utiliza? Para que serve?

- É um processo de raciocínio indutivo, em que se procura tirar conclusões indo do particular, para o geral. É um tipo de raciocínio contrário ao tipo de raciocínio matemático, essencialmente dedutivo.
- Utiliza-se quando se pretende estudar uma população, estudando só alguns elementos dessa população, ou seja, uma amostra.
- Serve para, a partir das propriedades verificadas na amostra, inferir propriedades para a população.

Inferência Estatística

- Como tirar conclusões/tomar decisões a partir de informação parcial / incompleta (amostra) projetando /generalizando resultados para um universo mais vasto (população) do qual a amostra foi extraída
- Objetivos:
 - controlar e quantificar erros de inferência
 - tirar o melhor partido possível (minimizando erros) da informação disponível
 - dimensionar a informação necessária para garantir níveis de erro préespecificados
 - regular os processos de recolha de informação
- Tipos de inferências:
 - Estimação de parâmetros
 - Testes de hipóteses

Inferência Estatística

Conjunto de técnicas que permite tirar conclusões sobre a população, com base numa amostra.

Intervalos de confiança/Testes de hipóteses

- Os intervalos de confiança são hoje rotineiramente usados na comunicação social e na divulgação de resultados. Qualquer sondagem rigorosa indica, para além das estimativas pontuais que fazem os grandes títulos, uma ficha técnica em que os intervalos de confiança são indicados.
- Uma hipótese estatística é uma afirmação acerca de uma população, que pode ser testada mediante a extração de uma amostra aleatória.

Funções de distribuição com utilização frequente em inferência

- É necessário definir modelos probabilísticos para descrever a população e a sua relação com a amostra que vai permitir concluir sobre a população com base na informação de uma amostra extraída dessa população.
- Identificam-se as distribuições contínuas mais usadas na inferência estatística:
 - Distribuição normal ou gaussiana
 - Distribuição χ^2
 - Distribuição t-Student
 - Distribuição F de Fisher
- A distribuição gaussiana é a distribuição contínua mais usada, a tal ponto que o seu nome clássico é "distribuição normal". A sua popularidade deve-se a inúmeras razões, entre as quais:
 - simplicidade de uso
 - simplicidade de modelação

A distribuição normal é representada

- graficamente por uma curva em forma de sino. • A família de gaussianas X \sim N(μ , σ 2) e parametrizada pelo valor medio μ e pelo desvio padrão σ .
- A cada par de valores μ e σ corresponde uma curva normal.
- E simétrica em relação a media.
- O valor medio, a moda e a mediana são iguais.
- Tem como assintota o eixo dos xx.
- Metade dos valores estão distribuídos a esquerda da media e os restantes à direita.
- Caudas leves

Padronização da distribuição normal

Por uma simples transformação linear, é imediato passar de uma gaussiana de média μ e variância σ^2 , $X \sim N(\mu, \sigma^2)$ a uma gaussiana padrão ou standard $Z \sim N(0,1)$.

$$Z = \frac{X - \mu}{\rho}$$

Nível de significância

Normalmente, estabelece-se um limite superior para a probabilidade de ocorrer um erro de 1ª espécie. A esse limite dá-se o nome de nível de significância (n.s.) do teste e representa-se por α ($\alpha \in (0; 1)$). Assim sendo, o teste é delineado de modo a que $P(Rejeitar H_0 | H_0 \text{ \'e verdadeira}) \leq 0$.

- Qualquer decisão deverá basear-se na informação recolhida, muito em particular, no valor esperado daquilo a que chamaremos estatística de teste.
- Os valores mais comuns para o n.s. são 10%, 5% e 1%. Na prática, costuma adotarse um nível de significância de 0.05 ou 0.01.
- Se, ao delinearmos um teste, escolhermos, por exemplo, um nível de significância de 0.05, ou 5%, isso significa que, em cerca de 5 vezes em 100, rejeitaríamos a hipótese nula quando ela deveria ter sido ser aceite.

Teorema do Limite Central

■ O Teorema do Limite Central estabelece que, em condições muito gerais, a soma de um grande número de variáveis aleatórias independentes e bem aproximada por uma gaussiana.

Testes de Hipóteses

bilateral	unilateral à direita	unilateral à esquerda
H_0 : $\theta = \theta_0$	H_0 : $\theta = \theta_0$	H_0 : $\theta = \theta_0$
H_1 : $\theta \neq \theta_0$	H_1 : $\theta > \theta_0$	H_1 : $\theta < \theta_0$

Exemplo:

Pretende-se testar se a proporção de parafusos defeituosos produzidos numa fábrica é maior do que 5%, a partir de uma amostra de 100 peças.

Seja X a v.a. que representa o número de parafusos defeituosos nessa amostra. Considere as hipóteses

 $H_0: p = 0.05$ $H_1: p > 0.05$

Analise o significado estatístico de aceitar ou rejeitar HO, se:

- x = 6
- x = 10

Testes de Hipóteses

Resolução

Admitindo que H₀ é verdadeira, a probabilidade do número de parafusos defeituosos ser, no mínimo, 6 é dada por:

$$P(X \ge 6 | p = 0.05) = 0.38$$

- que é relativamente elevada. Logo não há evidência suficiente para rejeitar H₀ (e, portanto, aceitar H₁). Mas também não há evidência suficiente para rejeitar H₁. Por isso, o teste diz-se inconclusivo.
- Admitindo que H₀ é verdadeira, a probabilidade do número de parafusos defeituosos ser, no mínimo, 10 é dada por:

$$P(X \ge 10 | p = 0.05) = 0.03$$

 que é reduzida. Logo há evidência suficiente para rejeitar H₀ (e, portanto, aceitar H₁). Por isso, o teste diz-se conclusivo.

Testes de Hipóteses

- Dada uma afirmação, pretende-se identificar a hipótese nula, a hipótese alternativa e expressar ambas numa forma simbólica.
- Dada uma afirmação e uma amostra, calcular o valor da estatística de teste.
- Dado um nível de significância, identificar o valor crítico ou a região de rejeição da hipótese nula.
- Dado o valor da estatística de teste, identificar o p-value
- Indicar a conclusão do teste de hipóteses de uma forma simples e com termos não demasiado técnicos.

Redução de α e β (à medida que α diminui, β aumenta).

- Há uma analogia interessante: no julgamento de um crime, pede-se ao júri que decida entre a hipótese H0 (o acusado é inocente) e a hipótese H1 (o acusado é culpado).
- Comete-se um erro tipo I, condenando-se um inocente e um erro tipo II absolvendo- se um culpado.
- A advertência do juiz ao júri de que o crime "deve ser provado além de qualquer dúvida razoável" significa que α deve ser muito pequeno.
- Tem havido muitas reformas legais (por exemplo, limitar o poder da polícia para obter uma confissão) elaboradas a fim de reduzir α, a probabilidade de um inocente ser condenado. Mas essas mesmas reformas têm contribuído para aumentar β, a probabilidade de um culpado ser absolvido.
- Não há meios de reduzir α a 0 (impossibilidade total de condenar um inocente) sem elevar β a 1 (tender a libertar todos os culpados, invalidando o julgamento).
- \blacksquare A única maneira de reduzir α e β , é aumentar a evidência ou, voltando ao nosso exemplo estatístico, aumentar o tamanho da amostra.

Intervalos de confiança/testes t para a média bilaterais

■ Um intervalo de confiança para a média μ com uma confiança de (1 – α) x 100% é dado por:

$$IC_{(1-\alpha)100\%} = \left(\overline{x} - \frac{s}{\sqrt{n}}t_{1-\alpha/2}(n-1), \overline{x} + \frac{s}{\sqrt{n}}t_{1-\alpha/2}(n-1)\right)$$

- Um intervalo de confiança pode ser considerado como o conjunto de hipóteses aceitáveis.
- Qualquer hipótese que fique fora do intervalo de confiança pode ser considerada rejeitável.
- Qualquer hipótese que fique dentro do intervalo de confiança pode ser considerada aceitável.
- A vantagem dos testes de hipóteses relativamente aos intervalos de confiança tem a ver com o valor de prova, pois este valor quantifica precisamente a menor probabilidade de cometer um erro ao rejeitar a hipótese nula.

Testes de Hipóteses

- Um teste de hipóteses ou teste estatístico é um processo estatístico usado para se tirar uma conclusão do tipo sim ou não sobre o parâmetro (ou parâmetros) de uma (ou mais) populações, a partir de uma (ou mais) amostras dessas populações.
- Uma hipótese estatística é uma conjetura sobre a distribuição de uma ou mais populações.
- O teste de hipóteses consiste em formular duas hipóteses sobre esse(s) parâmetro(s) e averiguar se são ou não aceitáveis:
 - Ho: Hipótese nula é a hipótese que julgamos inverosímil (geralmente, contém =).
 - H₁: Hipótese alternativa é a hipótese que julgamos verosímil e que se pretende verificar (geralmente, contém >, < ou ≠).
- É sobre a hipótese nula (ou fundamental) que vamos tomar a decisão de rejeição ou não.

Erros cometidos nos testes de hipóteses

- Um erro de inferência consiste em tirar a conclusão errada num teste estatístico a partir da informação contida na amostra. São dois os tipos de erros que podemos cometer na realização de um teste de hipóteses:
 - Rejeitar a hipótese nula H₀ quando ela é verdadeira.
 - Não rejeitar a hipótese nula H₀, quando ela é falsa.
- Se a hipótese nula H₀ for verdadeira e não rejeitada ou falsa e rejeitada, a decisão estará correta. No entanto, se a hipótese nula H₀ for rejeitada sendo verdadeira, ou se não for rejeitada sendo falsa, a decisão estará errada. O primeiro destes erros é chamado de Erro do Tipo I e a probabilidade de cometê-lo é denotada pela letra grega α; o segundo é chamado de Erro do Tipo II e a probabilidade de cometê-lo é denotada pela letra grega β. Assim temos,
- O nível de significância α (0 < α < 1) é a probabilidade ou risco de se cometer um erro de tipo I, isto é,
 - α = P(erro tipo I) = P(rejeitar H₀ | H₀ verdadeira).
- A potência do teste 1 β (0 < β < 1) é a probabilidade ou risco de rejeitar H_0 quando H_0 é falsa, isto é,
 - $1 \beta = P(rejeitar H_0 | H_0 falsa).$

Ou a probabilidade de rejeitar a hipótese nula quando a hipótese alternativa é verdadeira (= 1- β).

	Aceitar H ₀ Rejeitar H	
H ₀ verdadeira	Decisão correta	Erro do tipo I
H₀ falsa	Erro do tipo II	Decisão correta

Testes de Hipóteses

Valor de prova

- O valor de prova (p-value) é o menor nível de significância com que HO é rejeitada. Por outras palavras, é a probabilidade de obter o valor observado na amostra ou outro ainda mais extremo, se H₀ for verdadeira.
- Valor de prova (p-value) = P(obter o valor observado ou outro mais extremo, se H₀ for verdadeira).
- O valor de prova é o menor nível de significância que nos conduz à rejeição de HO com a amostra observada.
- Se o teste tem nível de significância α , então:
 - se p-value $\leq \alpha$, então rejeitamos H_0 com um nível de significância α
 - se $p > \alpha$, então não rejeitamos H_0 com um nível de significância α

Testes de hipóteses

- Testes de hipóteses correspondem ao uso da estatística para determinar a probabilidade de uma determinada hipótese ser verdadeira. O processo usual dos testes de hipóteses compreende 4 passos:
 - Formular a hipótese nula H₀ e a hipótese alternativa H₁.
 - Identificar uma estatística teste que possa ser usada para avaliar a veracidade da hipótese nula.
 - Calcular o valor de prova (p-value), que é uma medida da credibilidade de H₀.
 Quanto menor o valor de prova, maior é a evidência contra a hipótese nula.
 - Comparar o valor de prova com o nível de significância α do teste. Se p-value ≤ α , devemos rejeitar H_0 .

Metodologia dos testes

Podem ser usadas três metodologias para realizar um teste de hipóteses:

- Com base na região de rejeição (Região Crítica)
 - Rejeitar H₀ se o valor t_{obs} encontra-se na RC
 - (t_{obs} o valor da estatística do teste para os dados observados)
- Através do valor de prova (p-value)
 - Rejeitar H_0 se p-value $\leq a$
- Através de intervalos de confiança (válido apenas para testes bilaterais)
 - Rejeitar H₀ se o valor do parâmetro especificado em H₀ não pertencer ao intervalo de confiança

Amostras emparelhadas/amostras independentes

Amostras emparelhadas

- Se as amostras são constituídas usando os mesmos indivíduos, tendo como base algum critério unificador dos elementos das amostras
- Amostras em que a mesma variável é medida antes e depois de determinado tratamento nos mesmos sujeitos. Os elementos da amostra estão propositadamente relacionados.

Amostras independentes

Senão existe nenhum tipo de relação ou fator unificador entre os elementos das amostras. Assim a probabilidade teórica de um determinado sujeito pertencer a mais do que uma amostra é nula.

Testes paramétricos/Testes não-paramétricos

■ Testes paramétricos

 São aqueles que especificam a distribuição de onde provêm os dados e a hipótese nula incide sobre um parâmetro dessa distribuição.

■ Testes não-paramétricos

 São aqueles em que não se assumem hipóteses sobre a distribuição de onde provêm os dados.

Testes da normalidade

- H₀: Os dados provem de uma distribuição normal.
- H₁: Os dados não provem de uma distribuição normal.

	Parâmetros conhecidos	Parâmetros desconhecidos	
n>30	Teste de Kolmogorov- Smirnov	Teste de Kolmogorov- Smirnov (correção Lilliefors)	
n≤30		Teste de Shapiro-Wilk	

Teste t_student

- Os testes t de Student permitem testar hipóteses sobre médias para:
 - uma amostra
 - duas amostras emparelhadas
 - duas amostras independentes.

Teste para o parâmetro:	Pressupostos	Estatística de Teste	Observações	Comando no R
Teste Z Ho: $\mu = \mu_0$	População Normal 1 amostra de qualquer dimensão σ^2 conhecida	$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$	$Z \sim N(0,1)$ Pode ser usado S	mean(x)- media/(desvio/s qrt(n))
Teste t Ho: $\mu = \mu_0$	População Normal 1 amostra de qualquer dimensão σ^2 desconhecida	$t = \frac{\overline{X} - \mu}{S / \sqrt{n}}$	$T \sim t_{n-1}$	t.test(x)

Testes Paramétricos

- Testes para o valor médio de 1 população.
- Testes á igualdade de variâncias de 2 populações.
- Testes para a diferença de valores médios de 2 populações (independentes ou emparelhadas, com variâncias conhecidas ou desconhecidas, iguais ou diferentes).
- Teste ANOVA para a igualdade de valores médios de 3 ou mais populações.
- Testes de comparação múltipla de médias.
- Teste para a proporção binomial.
- Teste para a diferença de proporção de 2 populações.
- Teste de correlação de Pearson

Z e t tests

- Os testes Z e t permitem testar hipóteses sobre as **médias** de uma variável **quantitativa** em um ou dois grupos, formados a partir de uma variável **qualitativa**.
- Considera-se que a probabilidade de significância do teste (p_value) é o menor valor a partir do qual se rejeita H₀.
- Este valor representa o erro que se comete quando se rejeita H₀ e queremos que esse valor seja pequeno.
- Assim, num teste bilateral rejeita-se H₀ se p_value < nível de significância definido.
- Para efetuar estes testes é necessário testar a normalidade dos dados.

-	Feste para o parâmetro:	Pressupostos	Estatística de Teste	Observações	Comando no R
ŀ	Teste Z Ho: $\mu = \mu_0$	População Normal 1 amostra de qualquer dimensão σ² conhecida	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	$Z \sim N(0,1)$ Pode ser usado \$	mean(x)- media/(desvio/s qrt(n))
	Teste t Ho: $\mu = \mu_0$	População Normal 1 amostra de qualquer dimensão σ² desconhecida	$t = \frac{\overline{X} - \mu}{S / \sqrt{n}}$	$T \sim t_{n-1}$	t.test(x)

Pressupostos não verificados?

- Distribuições não simétricas, distribuições multimodais, variáveis qualitativas, poucas observações.
 - Transformar as observações (a transformação mais comum é a logarítmica)
 - Métodos não-paramétricos (não assumem distribuições normais)

Testes Não Paramétricos

- Testes não paramétricos são menos exigentes quanto às hipóteses, permitindo fazer os testes quando são violadas as hipóteses dos testes t
- Podem por vezes aplicar-se a dados de nível ordinal com pelo menos duas categorias
- Exemplos:
 - Teste de Mann-Whitney para duas amostras independentes
 - Testes de Sinal e de Wilcoxon para amostras emparelhadas

Vantagens dos testes não-paramétricos

- Podemos usá-los em muitas mais situações do que as aproximações paramétricas
 - Distribuições não-normais, poucas observações, dados ordinais...
- São muito úteis e mais fáceis do que as abordagens paramétricas correspondentes, em termos de cálculos numéricos
- Sempre que as hipóteses de aplicação de um teste paramétrico se verificarem, esse deve ser o teste a usar.

Referências

- Slides Ana Moura, 6. Testes de Hipóteses, Estatística, Licenciatura em Engenharia e Gestão Industrial, ISEP, 2017/2018.
- Slides Sandra Ramos, Curso de Especialização em Análise Quantitativa de Dados com SPSS, ISEP, 2013.
- João Marôco, Análise Estatística com o SPSS Statistics, 5ª edição, ReportNumber, 2011