Practice Problems

Problem 12.3:

A sample of twenty observations yielded the following least squares model:

$$\hat{y} = 3 + 2x_1 + 3x_2 - 1.25x_3$$

where $R^2 = 0.85$ and $s_{\hat{\beta}_3} = 0.55$.

(a) Is there evidence to indicate that the overall model is useful? Test at $\alpha = 0.05$.

(b) Is there evidence to indicate that the variable x_3 is important in this model? Test at $\alpha = 0.05$.

Problem 12.4: (Continuation of Problem 12.1)

SAS Printout for Problem 12.4

Model: MODEL1

Dependent Variable: Y Weight Loss (Y)

Analysis of Variance

		Sur	n of	Me	ean		
Source		DF Squa	ares	Squa	are	F Value	Prob>F
Model		2 31.12	2417	15.562	6208 104.13		0.0001
Error		9 1.34	4500 0.1		1944		
C Total		11 32.46	5917				
Root MSE		0.38658	R-square		0.9586		
Dep Mean		5.50833	Adj R-sq		0.9494		
C.V.		7.01810	1810				
Parameter Estimates							
		Parameter	Standard		T for H0:		
Variable	\mathtt{DF}	Estimate		Error	Parame	ter=0	Prob > T
INTERCEP	1	0.666667	0.694	23219		0.960	0.3620
X1	1	1.316667	0.099	81464	1	3.191	0.0001
X2	1	-8.00000	1.366	76829	-	5.853	0.0002
		Variable					
Variable	DF	Label					
INTERCEP	1	Intercept					
X1	1	Exposure Time	(X1)				

(a) Interpret the value of R^2 .

1 Relative Humidity (X2)

(b) Is the model of any use in predicting y? Test the null hypothesis that $E(y) = \beta_0$, that is, test H_0 : $\beta_1 = \beta_2 = 0$ against the alternative hypothesis H_a : At least one $\beta_i \neq 0$, i = 1, 2. ($\alpha = 0.05$)