Institute for Theoretical Physics

Heidelberg University

PD Dr. Falko Ziebert

Nonlinear dynamics

Summer term 2024

Assignment 8

Handout 10.06.2024 - Return 17.06.2024 - Discussion 20./21.06.2024

Exercise 1 [6 points]: A global bifurcation

Consider the following dynamical system with $x, y \in \mathbb{R}$:

$$\dot{x} = y,
\dot{y} = -\epsilon y + x - x^5.$$
(1)

- 1. First consider the case $\epsilon = 0$ (what is the meaning of ϵ ?). Determine the fixed points and their stability. (2 points)
- 2. Determine the homoclinic path through the origin and encircling the other fixed points. Give an implicit formula for the homoclinic path and sketch it. (2 points)
- 3. Now consider varying ϵ . How does the stability of the fixed points change? Sketch the cases $\epsilon < 0$ and $\epsilon > 0$ and compare to $\epsilon = 0$. (2 points)

Exercise 2 [9 points]: Amplitude equation for the SH model without $\pm u$ -symmetry

Consider the Swift-Hohenberg (SH) equation discussed in the lecture with an additional quadratic nonlinearity ($\alpha > 0$)

$$\partial_t u = \left[\epsilon - (q_0^2 + \partial_x^2)^2\right] u + \alpha u^2 - u^3.$$

Derive the amplitude equation.

Is the amplitude equation qualitatively different from the one in the absence of the u^2 -term?

HINT: In order $\mathcal{O}(\epsilon)$, you will get a contribution from the quadratic nonlinearity that is not resonantly driving but makes u_1 different from u_0 . You hence have to calculate a particular solution for u_1 . In turn, u_1 will lead to new contributions in $\mathcal{O}\left(\epsilon^{3/2}\right)$, including new resonant terms contributing to the amplitude equation.