RandSent

General layout of this presentation of Wieting et Kiela (2019) :

► A word on sentence embeddings

8

No training required?Evaluation results

How to train a sentence representation?

- ► Landmark paper for the 'opaque' approach : Skipthought by Kiros et al. (2015)
 - train a GRU seq2seq model to generate the surrounding sentences; the output of the encoder is the representation for that sentence.
- InferSent (Conneau et al., 2017)
 - consider this problem as twofold : 1/ 'what architecture?', 2/ 'how to train it?' and settle for a BiLSTM trained on natural language inference.
- Quickthought (Logeswaran et Lee, 2018)
 - ▶ reformulate Kiros et al. (2015) as a classification problem (do encoded sentences appear in the same context?) rather than a generation problem (knowing sentence, generate context).
- Universal Sentence Encoder (Cer et al., 2018)
 - train a Transformer in a multi-task framework, including NLI, context generation and conversation-based generation (also test a deep averaging network).

How to train a sentence representation?

Another approach focuses on mimicking compositional semantics so as to make composition 'transparent' :

- ▶ Baroni et Zamparelli (2010) suggest that "words are vectors, adjectives are matrices; ie. of different types.
- ► Grefenstette et al. (2013) propose to use tensors and vectors to model functions and arguments
- Paperno, Pham et Baroni (2014) treat functions of arity n as tensors of rank n, and learn different representations for each words based on their usage
- ▶ Hill et al. (2016) et Hill, Cho et Korhonen (2016) use dictionaries to propose a rational supervised objective for composition; thus taking a middle ground between the 'opaque' and 'transparent' approaches

Composition?

- ▶ All these architectures entail that you need a "composition function".
- however compositional distributional semantics is still an open problem (Lenci, 2018, ao.); simple summations or element-wise products (Mitchell et Lapata, 2008) don't really cut it
- As a side note, these models also questions linguistic theories on composition, as they try to combine distributional semantics (Wittgenstein, 1921; Quine, 1960) with Frege's compositionality principle (Frege, 1892).

Analyzing sentence encoders

- Circumventing all that, recent work has focused on putting sentence representations to the test
 - most notable is SentEval (Conneau et Kiela, 2018) which lists an array of tasks with which sentence representations should help.
 - ► another popular benchmark is **GLUE** (Wang et al., 2018), the "General Language Understanding Evaluation benchmark"
 - Adi et al. (2016) propose to train classifiers on low-level sentence properties (length, word content, word order...)
 - Conneau et al. (2018) suggest to probe sentence representations for linguistic properties
 - Linzen, Dupoux et Goldberg (2016) study whether sentence encoder are able to work out long-term syntactic dependencies like agreement the way humans do.
- ► Today's paper is related to this last trend: Wieting et Kiela (2019) study whether sentence encoders do better than randomly initialized architectures.

The main insight is drawn from Cover (1965) :

A complex pattern-classification problem, cast in a high-dimensional space nonlinearly, is more likely to be linearly separable than in a low-dimensional space, provided that the space is not densely populated

Therefore, to evaluate sentence encoders, one needs to tease apart what is to be attributed to the nonlinear high-dimension projection from what is due to the training regimen

Why so random?

Teasing these two factors apart is crucial for multiple reasons :

- Sentence encoders require extensive resources for training
- Raw word-embeddings with simple pooling mechanisms already perform quite well (Shen et al., 2018)
- Such studies shed light on whether some architectures are sounder models than others

What do you mean, random?

The proposed methodology is the following:

- take pre-trained word embeddings
- ▶ initialize a composition function, don't (fully) train it
- train a linear classifier on top of the untrained composed representation for each senteval task
- compare results

Random models

Wieting et Kiela (2019) suggest two random models, with values initialized in $[-\frac{1}{\sqrt{d}},\frac{1}{\sqrt{d}}]$ where d is the size of the input embeddings :

- 1. a random linear transformation (BOREP : "bag of random embedding projections") : $h_i = We_i$, with an optional reLU non-linearity (max(0, h))
- 2. a BiLSTM, as used in InferSent (Conneau et al., 2017)

as well as three 'pooling' mechanisms

- 1. summation : sentence = $\sum h$
- 2. max-pooling : sentence = max(h)
- 3. mean-pooling : sentence = $|h|^{-1} \sum h$

Random models

▶ Wieting et Kiela (2019) also study a bidirectional Echo State Network (Jaeger, 2001), which assigns a representation \hat{y}_i to each embedding e_i of a sequence based on a gating mechanism :

$$\begin{split} \tilde{h}_i &= \mathsf{pool}(W^i e + W^h h_{i-1} + b^i) \\ h_i &= (1-\alpha)h_{i-1} + \alpha \tilde{h}_i \\ \hat{y}_i &= W^o(e_i \oplus h_i) + b^o \end{split}$$

- ▶ Contrarily to the two previous models, the output linear transformation parameters W^o and b^o are learned. A sentence representation is derived using max-pooling over all predicted outputs \hat{y}_i .
- An additional property, called 'echo state property', required of this model is that the intermediary representations h_i must be uniquely determined by the input history of the ESN. This property is guaranteed by specific initialization procedures for W^h and W^i

Recap

- ▶ Wieting et Kiela (2019) are teasing apart effects of high-dimensionality projection and training procedures
- ► They compare results on SentEval (Conneau et Kiela, 2018), by training a classifier on top of sentence representations
- ▶ They compare randomly or partially randomly initialized models to existing sentence encoders, namely Skipthought (Kiros et al., 2015) and InferSent (Conneau et al., 2017)

Results SentEval

SentEval (Conneau et Kiela, 2018) is a benchmark composed of multiple sentence-level tasks :

- Sentiment analysis: MR (movie reviews, Pang et Lee (2005)), CR (customer reviews, Hu et Liu (2004)), MPQA (opinion polarity, Wiebe, Wilson et Cardie (2005)), and SST (movie review, Socher et al. (2013))
- Semantic properties: TREC (question type, Voorhees et Tice (2000)), STSB (relatedness, Cer et al. (2017)), SICK-R (relatedness, Marelli et al. (2014)), SICK-E (entailment, Marelli et al. (2014)), SNLI (entailment, Bowman et al. (2015)), SUBJ (subjectivity/objectivity classification, Pang et Lee (2004)) and MRPC (paraphrases, Dolan, Quirk et Brockett (2004))

Results

Comparing on 4096 dimensions

Model	Dim	MR	CR	MPQA	SUBJ	SST2	TREC	SICK-R	SICK-E	MRPC	STSB
BOE	300	77.3(.2)	78.6(.3)	87.6(.1)	91.3(.1)	80.0(.5)	81.5(.8)	80.2(.1)	78.7(.1)	72.9(.3)	70.5(.1)
BOREP RandLSTM	4096 4096	77.4(.4) 77.2(.3)	79.5(.2) 78.7(.5)	88.3(.2) 87.9(.1)	91.9(.2) 91.9(.2)	81.8(.4) 81.5(.3)	88.8(.3) 86.5(1.1)	85.5(.1) 85.5(.1)	82.7(.7) 81.8(.5)	73.9(.4) 74.1(.5)	68.5(.6) 72.4(.5)
ESN	4096	78.1 (.3)	80.0(.6)		92.6(.1)		87.9(1.0)	86.1(.1)	83.1(.4)	73.4(.4)	74.4(.3)
InferSent-1 = paper, G	4096	81.1	86.3	90.2	92.4	84.6	88.2	88.3	86.3	76.2	75.6
InferSent-2 = fixed pad, F	4096	79.7	84.2	89.4	92.7	84.3	90.8	88.8	86.3	76.0	78.4
InferSent-3 = fixed pad, G	4096	79.7	83.4	88.9	92.6	83.5	90.8	88.5	84.1	76.4	77.3
Δ InferSent-3, BestRand	-	1.6	3.4	0.4	0.0	0.5	2.0	2.4	1.0	2.3	2.9
ST-LN	4800	79.4	83.1	89.3	93.7	82.9	88.4	85.8	79.5	73.2	68.9
Δ ST-LN, BestRand	-	1.3	3.1	0.8	1.1	-0.1	0.5	-0.3	-3.6	-0.9	-5.5

Table 1: Performance (accuracy for all tasks except SICK-R and STSB, for which we report Pearson's r) on all ten downstream tasks where all models have 4096 dimensions with the exception of BOE (300) and ST-LN (4800). Standard deviations are show in parentheses. InferSent-1 is the paper version with GloVe (G) embeddings, InferSent-2 has fixed padding and uses FastText (F) embeddings, and InferSent-3 has fixed padding and uses GloVe embeddings. We also show the difference between the best random architecture (BestRand) and InferSent-3 and ST-LN, respectively. The average performance difference between the best random architecture and InferSent-3 and ST-LN is 1.7 and -0.4 respectively.

Comparing on 4096 dimensions

- ▶ We already see that random models constitute a strong baseline :
 - ▶ In other words, InferSent does not improve that much over random models
 - ► On average, SkipThought performs worse than random models.
- Lower results from SkipThought might be due to the fact it uses older embeddings,
- Higher results from ESN might be due to the wider number of hyperparameters available
- what happens for even higher dimensionalities?

Comparing on even more dimensions

Comparing on even more dimensions

Model	MR	CR	MPQA	SUBJ	SST2	TREC	SICK-R	SICK-E	MRPC	STSB
BOE	77.3(.2)	78.6(.3)	87.6(.1)	91.3(.1)	80.0(.5)	81.5(.8)	80.2(.1)	78.7(.1)	72.9(.3)	70.5(.1)
BOREP RandLSTM ESN	78.2(.2)	79.9(.4) 79.9(.4) 80.2(.3)	88.2(.2)	92.8(.2)	83.2(.4)		85.9(.0) 86.6(.1) 87.2(.1)	83.0(.9)	73.7(.9) 74.7(.4) 75.3(.6)	73.6(.4)
InferSent-3 4096×6 ST-LN 4096×6	79.7 75.2	83.9 80.8	89.1 86.8	92.8 92.7	82.4 80.6	90.6 88.4	79.5 82.9	85.9 81.3	75.1 71.5	75.0 67.0

Table 2: Performance (accuracy for all tasks except SICK-R and STSB, for which we report Pearson's r) on all ten downstream tasks. Standard deviations are show in parentheses. All models have 4096×6 dimensions. ST-LN and InferSent-3 were projected to this dimension with a random projection.

- Performance of random models increases with dimensionality
- Random projections of sentence encoders is detrimental to their performance

Recap

Recap

Random systems are a very strong baseline

- Dimensionality matters, especially to downstream classifications
- Random projections of embeddings and random initialization are strong and cheap baselines

There's more in the paper : the authors also tested their random models on the probing tasks from Conneau et al. (2018)

References I

- Adi, Yossi et al. (2016). « Fine-grained Analysis of Sentence Embeddings Using Auxiliary Prediction Tasks ». In: CoRR abs/1608.04207. arXiv: 1608.04207. url: http://arxiv.org/abs/1608.04207.
- Baroni, Marco et Roberto Zamparelli (2010). « Nouns Are Vectors, Adjectives Are Matrices: Representing Adjective-noun Constructions in Semantic Space ». In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. EMNLP '10. Cambridge, Massachusetts: Association for Computational Linguistics, p. 1183–1193. url: http://dl.acm.org/citation.cfm?id=1870658.1870773.
- Bowman, Samuel R. et al. (2015). « A large annotated corpus for learning natural language inference ». In: CoRR abs/1508.05326. arXiv: 1508.05326. url: http://arxiv.org/abs/1508.05326.
- Cer, Daniel et al. (2018). « Universal Sentence Encoder ». In: CoRR abs/1803.11175. arXiv: 1803.11175. url: http://arxiv.org/abs/1803.11175.
- Cer, Daniel M. et al. (2017). « SemEval-2017 Task 1 : Semantic Textual Similarity -Multilingual and Cross-lingual Focused Evaluation ». In: CoRR abs/1708.00055. arXiv: 1708.00055. url: http://arxiv.org/abs/1708.00055.

References II

- Conneau, Alexis et Douwe Kiela (2018). « SentEval : An Evaluation Toolkit for Universal Sentence Representations ». In : CoRR abs/1803.05449. arXiv : 1803.05449. url : http://arxiv.org/abs/1803.05449.
- Conneau, Alexis et al. (2017). « Supervised Learning of Universal Sentence Representations from Natural Language Inference Data ». In: CoRR abs/1705.02364. arXiv: 1705.02364. url: http://arxiv.org/abs/1705.02364.
- Conneau, Alexis et al. (2018). « What you can cram into a single vector: Probing sentence embeddings for linguistic properties ». In: CoRR abs/1805.01070. arXiv: 1805.01070. url: http://arxiv.org/abs/1805.01070.
- Cover, Thomas M. (1965). « Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition ». In: *IEEE Trans. Electronic Computers* 14.3, p. 326–334. doi: 10.1109/PGEC.1965.264137. url: https://doi.org/10.1109/PGEC.1965.264137.
- Dolan, Bill, Chris Quirk et Chris Brockett (2004). « Unsupervised Construction of Large Paraphrase Corpora: Exploiting Massively Parallel News Sources ». In: COLING 2004: Proceedings of the 20th International Conference on Computational Linguistics. url: http://aclweb.org/anthology/C04-1051.
- Frege, Gottlob (1892). « Über Sinn und Bedeutung ». In : Zeitschrift für Philosophie und philosophische Kritik 100, p. 25–50.

References III

- Grefenstette, Edward et al. (2013). « Multi-Step Regression Learning for Compositional Distributional Semantics ». In: *IWCS*.
- Hill, Felix, Kyunghyun Cho et Anna Korhonen (2016). « Learning Distributed Representations of Sentences from Unlabelled Data ». In: CoRR abs/1602.03483. arXiv: 1602.03483. url: http://arxiv.org/abs/1602.03483.
- Hill, Felix et al. (2016). « Learning to Understand Phrases by Embedding the Dictionary ». In: Transactions of the Association for Computational Linguistics 4, p. 17–30. issn: 2307-387X. url: https://transacl.org/ojs/index.php/tacl/article/view/711.
- Hu, Minqing et Bing Liu (2004). « Mining and summarizing customer reviews ». In : KDD.
- Jaeger, Herbert (2001). « The "Echo State" Approach to Analysing and Training Recurrent Neural Networks ». In: GMD-Report 148, German National Research Institute for Computer Science.
- Kiros, Ryan et al. (2015). « Skip-Thought Vectors ». In: CoRR abs/1506.06726. arXiv: 1506.06726. url: http://arxiv.org/abs/1506.06726.
- Lenci, Alessandro (2018). « Distributional models of word meaning ». In: Annual review of Linguistics 4, p. 151–171.

References IV

- Linzen, Tal, Emmanuel Dupoux et Yoav Goldberg (2016). « Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies ». In: CoRR abs/1611.01368. arXiv: 1611.01368. url: http://arxiv.org/abs/1611.01368.
- Logeswaran, Lajanugen et Honglak Lee (2018). « An efficient framework for learning sentence representations ». In: International Conference on Learning Representations. url: https://openreview.net/forum?id=rJvJXZbOW.
- Marelli, Marco et al. (2014). « A SICK cure for the evaluation of compositional distributional semantic models ». In: Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014). Reykjavik, Iceland: European Language Resources Association (ELRA). url: http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf.
- Mitchell, Jeff et Mirella Lapata (2008). « Vector-based models of semantic composition ». In: In Proceedings of ACL-08: HLT, p. 236–244.
- Pang, Bo et Lillian Lee (2004). « A sentimental education : Sentiment analysis using subjectivity ». In: *Proceedings of ACL*, p. 271–278.
- (2005). « Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales ». In: p. 115–124.

References V

- Paperno, Denis, Nghia The Pham et Marco Baroni (2014). « A practical and linguistically-motivated approach to compositional distributional semantics ». In: ACL.
- Quine, William Van Ormann (1960). Word And Object. MIT Press.
- Shen, Dinghan et al. (2018). « Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms ». In: CoRR abs/1805.09843. arXiv: 1805.09843. url: http://arxiv.org/abs/1805.09843.
- Socher, R et al. (2013). « Recursive deep models for semantic compositionality over a sentiment treebank ». In: *EMNLP* 1631, p. 1631–1642.
- Voorhees, Ellen M. et Dawn M. Tice (2000). « Building a Question Answering Test Collection ». In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR '00. Athens, Greece: ACM, p. 200–207. isbn: 1-58113-226-3. doi: 10.1145/345508.345577. url: http://doi.acm.org/10.1145/345508.345577.
- Wang, Alex et al. (2018). « GLUE : A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding ». In : CoRR abs/1804.07461. arXiv : 1804.07461. url : http://arxiv.org/abs/1804.07461.

References VI

- Wiebe, Janyce, Theresa Wilson et Claire Cardie (2005). « Annotating Expressions of Opinions and Emotions in Language ». In: Language Resources and Evaluation 1.2, p. 0. url: http://www.cs.pitt.edu/\~{}wiebe/pubs/papers/lre05withappendix.pdf.
- Wieting, John et Douwe Kiela (2019). « No Training Required : Exploring Random Encoders for Sentence Classification ». In : International Conference on Learning Representations. url : https://openreview.net/forum?id=BkgPajAcY7.
- Wittgenstein, Ludwig (1921). *Tractatus Logico-Philosophicus*. Sous la dir. de Wilhelm Ostwald. Annalen der Naturphilosophie, 14.