MA1101R Cheatsheet 19/20 Semester 1 Final by Howard Liu

Matrices

Theorem 1.2.7. If augmented matrices of two systems of linear equations are row equivalent, then the two systems have the same set of solutions. (* Even for two homogeneous linear systems, we still need to say that $(A \mid 0)$ is row equivalent to $(B \mid 0)$, not that A is row equivalent to B.)

Example 1.4.10. Suppose augmented matrix R is in (R)REF:

- 1. LS has no solution \Leftrightarrow Last column of R is pivot.
- 2. LS has one unique solution \Leftrightarrow **Only** last column of R is non-pivot.
- 3. LS has infinite number of solution
 - \Leftrightarrow At least one column other than the last one is non-pivot
 - \Leftrightarrow Number of variables > Number of non-zero rows in R
 - (* # non-pivot columns in (R)REF -1 = # unique solutions)

Theorem 6.1.8. *A* is invertible when:

- 1. $\exists B \text{ s.t. } AB = I \lor BA = I$
- 2. Refer to **Theorem 2.4.7.2** below
- 3. $\operatorname{rref}(\boldsymbol{A}) = \boldsymbol{I}$
- 4. \boldsymbol{A} is a product of elementary matrices
- 5. $\det(\mathbf{A}) \neq 0$
- 6. Rows of \boldsymbol{A} is a basis of \mathbb{R}^n
- 7. Columns of \mathbf{A} is a basis of \mathbb{R}^n
- 8. 0 is not an eigenvalue of A

Remark 2.3.4 (Cancellation Laws for Matrices). Let A be an invertible $m \times m$ matrix,

- (a) If B_1 and B_2 are $m \times n$ matrices with $AB_1 = AB_2$, then $B_1 = B_2$
- (b) If C_1 and C_2 are $n \times m$ matrices with $C_1 A = C_2 A$, then $C_1 = C_2$

Theorem 2.4.7.2 (generalised). Relationship between singularity of Aand the number of solutions of a linear system Ax = b:

- 1. **A** is singular $\Leftrightarrow Ax = b$: has ∞ solutions (only case for homogeneous LS) or no solutions
- 2. A is invertible $\Leftrightarrow Ax = b$: has one unique solution (trivial solution for homogeneous LS)

Definition 2.5.2. Let $A = (a_{ij})$ be an $n \times n$ matrix. Let M_{ij} be an $(n-1)\times(n-1)$ matrix obtained from **A** by deleting the *i*th row and the jth column. Then the determinant of A is defined as

$$\det(\mathbf{A}) = \begin{cases} a_{11} & \text{if } n = 1\\ a_{11}A_{11} + \dots + a_{1n}A_{1n} & \text{if } n > 1 \end{cases}$$

where

$$A_{ij} = (-1)^{i+j} \det \left(\mathbf{M}_{ij} \right)$$

 $A_{ij}=(-1)^{i+j}\det\left(\pmb{M}_{ij}\right)$ The number A_{ij} is called the (i,j)-cofactor of $\pmb{A}.$

Theorem 2.5.8. The determinant of a triangular matrix is equal to the product of its diagonal entries.

Theorem 2.5.12 (added-on). The determinant of a square matrix is 0

- 1. it has two identical rows, or
- 2. it has two identical columns
- 3. any row/column of its (R)REF is zero

Theorem 2.5.15. Let A be a square matrix. k is a non-zero constant.

- 1. $A \xrightarrow{k\mathbf{R}_i} \mathbf{B} \Rightarrow \det(\mathbf{B}) = k \det(\mathbf{A})$
- 2. $A \xrightarrow{\mathbf{R}_i \leftrightarrow \mathbf{R}_j} \mathbf{B} \Rightarrow \det(\mathbf{B}) = -\det(\mathbf{A})$
- 3. $A \xrightarrow{\mathbf{R}_i + k\mathbf{R}_j} \mathbf{B} \Rightarrow \det(\mathbf{B}) = \det(\mathbf{A})$
- 4. Let E be an elementary matrix of the same size as A. Then $\det(\mathbf{E}\mathbf{A}) = \det(\mathbf{E})\det(\mathbf{A}).$

Remark 2.5.18. Since $det(\mathbf{A}) = det(\mathbf{A}^T)$, theorem 2.5.15 holds if "rows" are changed to "columns".

Theorem 2.5.22. Let A and B are two square matrices of order n and cis a scalar. Then

- 1. $\det(c\mathbf{A}) = c^n \det(\mathbf{A})$
- 2. $det(\mathbf{AB}) = det(\mathbf{A}) det(\mathbf{B})$
- 3. if **A** is invertible, $\det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})}$

Definition 2.5.24. Let A be a square matrix of order n. Then the (classical) adjoint of **A** is the $n \times n$ matrix

$$\mathbf{adj}(\mathbf{A}) = (A_{ij})_{n \times n}^{T}$$

where A_{ij} is the (i, j)-cofactor of \mathbf{A} .

Theorem 2.5.27 (Cramer's Rule). Suppose Ax = b is a linear system where \boldsymbol{A} is an $n \times n$ matrix. Let $\boldsymbol{A_i}$ be the matrix obtained from \boldsymbol{A} be replacing the ith column of A by b. If A is invertible, then the system has only one solution

$$x = \frac{1}{\det(A)} \begin{pmatrix} \det(A_1) \\ \vdots \\ \det(A_n) \end{pmatrix}$$

Mixed Notes 1. A^{-1} is able to be computed by:

- 1. Find \boldsymbol{B} s.t. $\boldsymbol{A}\boldsymbol{B} = \boldsymbol{I} \vee \boldsymbol{B}\boldsymbol{A} = \boldsymbol{I}$
- 2. Find using **Theorem 2.5.25**: $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$
- 3. Find using: $(A \mid I) \xrightarrow{GJE} (I \mid A^{-1})$

Mixed Notes 2. det(A) is able to be computed by:

- 1. Using **Theorem 2.5.2**
- 2. Using cross multiplication (for 2×2 and 3×3 matrices only)
- 3. Doing some ERO (e.g. GE, consider Theerem 2.5.15) and making it triangular then using Theorem 2.5.8 or making it have properties in Theorem 2.5.12
- 4. Using **Theorem 2.5.22**

Mixed Notes 3. Some random notes:

- 1. In \mathbb{R}^n where $n \geq 2$, a set with 1 parameter is a line and that with 2 parameters is a space.
- 2. $M^2 + M = I \Rightarrow M(M + I) = I$ (Don't put that I to be scalar 1!)
- 3. Two matrices have same RREF ⇔ They are row equivalent
- In exam, express a matrix in the form $\mathbf{A} = (a_{ij})_{m \times n}$. **DO NOT** use dots form
- 5. When using ERO $\mathbf{R}_i = \frac{1}{k} \mathbf{R}_j$, discuss whether k is 0 when necessary

Mixed Notes 4. Generally, for (square) matrices A and B,

- 1. $AB \neq BA$
- 2. $(AB)^2 \neq A^2B^2$
- 3. $\mathbf{AB} = 0 \Rightarrow \mathbf{A} = 0 \lor \mathbf{B} = 0$
- 4. $A^2 = I \Rightarrow A = \pm I$ (For example: 2 EMs of 2nd type ERO)

Mixed Notes 5. When expanding a row/column with cofactors of the other row/column, 0 will be yielded:

$$\sum_{m=1}^{n} a_{im} A_{jm} = \sum_{m=1}^{n} a_{mi} A_{mj} = 0, \text{ for some } i \neq j$$

Euclidean Spaces

Discussion 3.2.5. Given $S = \{v_1, v_2, \dots, v_m\} \subseteq \mathbb{R}^n\}$, show span(S) =

Consider $\mathbf{v_i} = (v_{i1}, \dots, v_{in})$

$$egin{pmatrix} v_{11} & \dots & v_{m1} \ dots & \ddots & dots \ v_{1m} & \dots & v_{mn} \end{pmatrix} \stackrel{GE}{\longrightarrow} R$$

 $\operatorname{span}(S) = \mathbb{R}^n \Leftrightarrow \mathbf{R} \text{ has no zero rown}$

Theorem 3.2.7. If |S| < n, span $(S) \neq \mathbb{R}^n$.

Theorem 3.2.10. Let $S_1 = \{u_1, ..., u_k\}$ and $S_2 = \{v_1, ..., v_m\}$ be subsets of \mathbb{R}^n . Then, $\operatorname{span}(S_1) \subseteq \operatorname{span}(S_2) \Leftrightarrow \forall i = 1, 2, \dots, k, u_i \in$ $\operatorname{span}\{v_1,\ldots,v_m\}.$

Definition 3.3.2. Let V be a subset of \mathbb{R}^n . Then V is called a subspace of \mathbb{R}^n if V = span(S) where $S = \{u_1, \dots, u_k\}$ for some vectors $oldsymbol{u_1},\ldots,oldsymbol{u_k}\in\mathbb{R}^n.$

More precisely, V is called the subspace spanned by S (or the subspacespanned by u_1, \ldots, u_k). We also say that S spans (or u_1, \ldots, u_k span) the subspace V.

By contraposition, $V = \operatorname{span}(S) \Rightarrow \mathbf{0} \in V \equiv \mathbf{0} \notin V \Rightarrow V \neq \operatorname{span}(S)$. (* i.e., If **0** is not in V, V is not a subspace of \mathbb{R}^n)

Theorem 3.3.6. If $V = \{x | Ax = 0\}$, V is a subspace of \mathbb{R}^n .

Remark 3.3.8. Let V be a non-empty subset of \mathbb{R}^n . Then V is a subspace of \mathbb{R}^n if and only if

for all $\mathbf{u}, \mathbf{v} \in V$ and $c, d \in \mathbb{R}, c\mathbf{u} + d\mathbf{v} \in V$

(* This checks whether V is **closed** under addition and scalar multiplication)

Definition 3.4.2/4. Consider $u_1, u_2, ..., u_k$ which are column vectors, set $S = u_1, u_2, ..., u_k$ is **Linear Indepedent** iff. any of:

- 1. $(u_1u_2...u_k)x = 0$ has only trivial solution.
- 2. No vectors in S can be written as a linear combination of other vectors in S.
- 3. S is a subset of a **Linear Independent** set.

Definition 3.5.4/Theorem 3.6.7. A set S is a basis of a vector space if:

- 1. $S \subseteq V$
- 2. Any 2 of the 3 below:
 - 2.1. S is Linear Independent
 - 2.2. S spans V
 - 2.3. $|S| = \dim(V)$

Definition 3.5.8. Let $S = u_1, u_2, ..., u_k$ be a basis for a vector space V and v is a vector in V. By T3.5.7, v is expressed uniquely as a LC:

$$\boldsymbol{v} = c_1 \boldsymbol{u_1} + c_2 \boldsymbol{u_2} + \dots + c_k \boldsymbol{u_k}$$

Then we shall have the **coordinate vector** of v relative to the basis S: $(v)_S = (c_1, c_2, \ldots, c_k) \in \mathbb{R}^k$ (assuming vectors in S are in fixed order).

Remark 3.5.10/Theorem 3.5.11. Let S be a basis for a vector space V,

- 1. $\forall \boldsymbol{u}, \boldsymbol{v} \in V, \boldsymbol{u} = \boldsymbol{v} \Leftrightarrow (\boldsymbol{u})_S = (\boldsymbol{v})_S$
- 2. Coordinate vectors are closed under scalar multiplication and addition
- 3. Let $v_1, v_2, \ldots, v_r \in V$, they are LI iff. $(v_1)_S, (v_2)_S, \ldots, (v_k)_S$ are LI
- 4. span $v_1, v_2, \dots, v_r = V \Leftrightarrow \operatorname{span}(v_1)_S, (v_2)_S, \dots, (v_k)_S = \mathbb{R}^{|S|}$

Theorem 3.6.9. Let U be a subspace of V, then $\dim(U) \leq \dim(V)$. Furthermore, if $U \neq V$, then $\dim(U) < \dim(V)$.

Definition 3.7.3. Let $S = u_1, u_2, ..., u_k$ and T be two bases for a vector space. The square matrix $P = \begin{pmatrix} [u_1]_T & [u_2]_T & \dots & [u_k]_T \end{pmatrix}$ is called the **transition matrix** from S to T.

Mixed Theorem 6. Consider S and T are two bases for vector space V and P is the transition matrix from S to T. If A and B are matrices with elements of S and T respectively as columns, we have BP = A.

Mixed Theorem 7. ERO preserves row space (T4.1.7), and we have:

- (R4.1.9) R is RREF of A. Non-empty rows in R forms the basis of row space of A.
- \bullet (T4.2.1) Row space and column space of a matrix have the same dimension.

Remark 4.2.5. Regarding rank(A):

- 1. For m*n matrix A, rank $(A) \leq \min m, n$. If rank $(A) = \min m, n, A$ is said to have **full rank**.
- 2. A square matrix \boldsymbol{A} have full rank iff. it is invertible.
- 3. $rank(\mathbf{A}) = rank(\mathbf{A}^T)$.

Theorem 4.3.6. Suppose linear system Ax = b has solution v, then the solution set of this system is given by:

$$M = \{ \boldsymbol{u} + \boldsymbol{v} | \boldsymbol{u} \in \text{nullspace}(\boldsymbol{A}) \}$$

Orthogonality

Definition 5.1.2.3/4. For two vectors u and v:

 $d(\boldsymbol{u},\boldsymbol{v}) = \|\boldsymbol{u} - \boldsymbol{v}\|.$

Angle between \boldsymbol{u} and \boldsymbol{v} is:

$$\cos^{-1}(\frac{\boldsymbol{u}\cdot\boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|})$$

Theorem 5.2.4. If S is an orthogonal set of non-zero vectors in a vector space, S is \mathbf{LI} .

Theorem 5.2.8. Consider $S = \{u_1, u_2, ..., u_k\}$ is a basis for a vector space V, then for any vector w in V:

1. If S is orthogonal, we have

$$(w)_S = (\frac{w \cdot u_1}{u_1 \cdot u_1} u_1, \frac{w \cdot u_2}{u_2 \cdot u_2} u_2, \dots, \frac{w \cdot u_k}{u_k \cdot u_k} u_k)$$

2. If S is orthonomal, we have

$$(\boldsymbol{w})_S = (\boldsymbol{w} \cdot \boldsymbol{u_1}, \boldsymbol{w} \cdot \boldsymbol{u_2}, \dots, \boldsymbol{w} \cdot \boldsymbol{u_k})$$

T5.2.15: $(\boldsymbol{w})_S$ is the projection of \boldsymbol{w} onto V if $\boldsymbol{w} \in \mathbb{R}^n \wedge V$ is a subspace of \mathbb{R}^n (condition of \boldsymbol{w} changed but same formula applies).

Theorem 5.2.19 (Gram-Schmidt Process). Let u_1, u_2, \ldots, u_k be a basis for a vector space V. Let

$$egin{aligned} v_1 &= u_1, \ v_2 &= u_2 - rac{u_2 \cdot v_1}{v_1 \cdot v_1} v_1, \ u_3 &= u_3 - rac{u_3 \cdot v_1}{v_1 \cdot v_1} v_1 - rac{u_3 \cdot v_2}{v_2 \cdot v_2} v_2, \ dots \end{aligned}$$

Then v_1, v_2, \dots, v_k is an orthogonal basis for V. Normalize all vectors in it then we have a orthonormal basis for V.

Definition 5.3.6. Let Ax = b be a linear system where A is an m * n matrix. A vector $u \in \mathbb{R}^n$ is called a **least squares solution** to the linear system if $\forall u \in \mathbb{R}^n, ||b - Au|| \le ||b - Av||$.

Theorem 5.3.8. Continuing **D5.3.6**, let p be the projection of b onto the column space of A. u is the least squares solution iff. Au = p.

Theorem 5.3.10. Continuing **D5.3.6**, u is the least squares solution iff. u is a solution to $A^TAx = A^Tb$.

D5.4.3/R5.4.4/T5.4.6. \boldsymbol{A} is a square matrix of order \boldsymbol{n} . The following are equivalent:

- 1. \boldsymbol{A} is orthogonal
- 2. $A^{-1} = A^T$
- 3. $\mathbf{A}\mathbf{A}^T = \mathbf{A}^T\mathbf{A} = \mathbf{I}$
- 4. The rows of **A** form an **orthonormal** basis for \mathbb{R}^n
- 5. The columns of A form an **orthonormal** basis for \mathbb{R}^n

Theorem 5.4.7. Let S and T be two **orthonormal** bases for a vector space and let P be the transition matrix from S to T. Then P is orthogonal and P^T is the transition matrix from T to S.

Diagonalization

Definition 6.1.3. A is a square matrix of order n. $u \in \mathbb{R}^n$ is an non-zero column vector that satisfies:

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$

for some scalar λ . λ is called an **eigenvalue** of A. u is said to be an **eigenvector** of A associated with the eigenvalue λ .

Theorem 6.1.9. If A is triangular, the eigenvalues of A are the diagonal entries of A.

Remark 6.2.5. Suppose the characteristic polynomial of the matrix \boldsymbol{A} can be factorized as

$$\det(\lambda \mathbf{I} - \mathbf{A}) = (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \dots (\lambda - \lambda_k)^{r_k}$$

where $\lambda_1, \lambda_2, \dots, \lambda_k$ are distinct eigenvalues of \boldsymbol{A} . Then for each eigenvalue λ_k

$$\dim(E_{\lambda_i}) \le r_i$$

Furthermore, **A** is diagonalizable iff. $\forall 1 \leq i \leq k, \dim(E_{\lambda_i}) = r_i$.

Definition 6.3.2/T*.4. A square matrix A is said to be orthogonally diagonalizable iff. there exists an orthogonal matrix P such that P^TAP is diagonal.

A square matrix is orthogonally diagonalizable iff. it is **symmetric**.

Algorithm 6.3.5. Similar to the process for the normal matrix, orthogonal matrix P can be found by using vectors of T as **its columns** where $T = T_{\lambda_1} \cup T_{\lambda_2} \cup \cdots \cup T_{\lambda_k}$ and T_{λ_i} is transformed from S_{λ_1} using Gram-Schmidt Process.

Linear Transformation

Theorem 7.1.4. Let T be a linear transformation, we have:

- 1. $T(\mathbf{0}) = \mathbf{0}$
- 2. T is closed under scalar multiplication and addition

Discussion 7.1.8. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with the standard matrix A. Let $\{e_1, e_2, \ldots, e_n\}$ be the standard basis for \mathbb{R}^n . We then have:

$$A = (T(e_1) \quad T(e_2) \quad \dots \quad T(e_n))$$

Theorem 7.2.4. Continuing D7.1.8. We have:

 $R(T)=\operatorname{span}\{T(\boldsymbol{e_1}),T(\boldsymbol{e_2}),\ldots,T(\boldsymbol{e_n})\}=\text{the column space of }\boldsymbol{A}$ which is a subspace of \mathbb{R}^m

D7.2.5/T7.2.9/D7.2.10/T7.2.12. Continuing T7.2.4. We have:

- $\operatorname{rank}(T) = \dim(R(T)) = \operatorname{rank}(\mathbf{A})$
- $\operatorname{nullity}(T) = \operatorname{nullity}(A)$
- rank(T) + nullity(T) = n
- $\ker(T)$ = the nullspace of \boldsymbol{A}