Progetto Basi di Dati

Taulant Arapi, Francesco Scarrone

Settembre 2022

Indice

1	roduzione	3	
2	Pro	gettazione concettuale	4
	2.1	Dizionario delle entità	4
	2.2	Dizionario delle relazioni	8
3	Rist	trutturazione	12
	3.1	Eliminazione delle generalizzazioni	12
		3.1.1 Lavoro	12
		3.1.2 Materiale	12
		3.1.3 Misura	12
		3.1.4 Vano	13
	3.2	Eliminazione degli attributi multivalore	13
	3.3	Analisi ed eventuale eliminazione delle ridondanze	14
	3.4	Partizionamento e accorpamento ER	14
		3.4.1 Gestione attributi composti	14
		3.4.2 Gestione tipologia misura	
4	Pre	stazioni del DB e ridondanze	15
	4.1	Tavola dei Volumi	15
	4.2	Ridondanze individuate	
5	Ope	erazioni sui dati	19
	5.1	Analisi ridondanze	19
		5.1.1 QuantitàRimasta	
		5.1.2 CostoLavori	
		5.1.3 Progettazione	

	5.2	Analis	si operazioni	28
		5.2.1	Superficie di un edificio	28
		5.2.2	Costo lavori di un edificio	30
		5.2.3	Calcolo stipendio operai	32
		5.2.4	Inserimento turno	34
		5.2.5	Edifici in costruzione / in ristrutturazione / completati	36
		5.2.6	Quale stadio di avanzamento è più in ritardo	38
		5.2.7	Data una parete, trova colore e data lavoro	40
		5.2.8	Dato un istante elenca operai al lavoro e relativi edifici	42
6	Pro	gettaz	cione logica	44
	6.1	_	izione dello schema logico	44
	6.2		si dipendenze funzionali e normalizzazione	45
	6.3		ntica delle aree dello schema	46
		6.3.1	Area Calamità	46
		6.3.2	Area Gestione Personale	47
		6.3.3	Area Gestione Lavori	48
		6.3.4	Area Materiali	51
		6.3.5	Area Planimetrie	54
		6.3.6	Area Sensoristica	56
	6.4	Vinco	li	57
		6.4.1	Vincoli di tupla	57
		6.4.2	Vincoli di integrità referenziale	58
		6.4.3	Vincoli di integrità generici	59
7	Dar	nni		61
	7.1	Stato	dell'edificio	61
		7.1.1	Stato Struttura	61
		7.1.2	Stato Muri	62
		7.1.3	Stato Ambiente	62
	7.2	Calan	aità	64
8	Dat	a anal	lytics	66
	8.1		gli di intervento	66
		8.1.1	Struttura	66
		8.1.2	Muri	66
		8.1.3	Ambiente	67
	8.2	Stima	dei danni	67

1 Introduzione

Si vuole realizzare una Base di Dati di una azienda di Smart Buildings, cioè un sistema che memorizza e gestisce i dati di costruzione, ristrutturazione, e monitoraggio di edifici utilizzando i sensori installati negli stessi.

Il sistema utilizza tecniche di data analytics per aumentare la sicurezza degli abitanti grazie alla valutazione del rischio e manutenzione mirata.

Il gestore del sistema può inserire la struttura delle planimetrie degli edifici, pianificare lavori generali o su parti di essi, descrivendo la suddivisione dei lavori, gli operai, i turni richiesti e i materiali utilizzati. La composizione di ogni elemento dell'edificio può essere aggiornata separatamente, così come la tipologia e la disposizione dei sensori. Per gestire i rischi geologici il territorio di interesse viene suddiviso in aree geografiche con caratteristiche comuni.

Le aree tematiche nello schema ER sono caratterizzate dal bordo dei blocchi un colore specifico:

- Area Calamità
- Area Gestione Personale
- Area Gestione Lavori
- Area Materiali
- Area Planimetrie
- Area Sensoristica

Le relazioni ridondanti sono indicate nello schema ER con blocchi con sfondo grigio, mentre gli attributi ridondanti sono indicati con il nome di colore rosso, come anche il collegamento con le relative entità.

2 Progettazione concettuale

2.1 Dizionario delle entità

Entità	Attributi	Identificatore	Descrizione
Accelerazio- ne*	x, y, z	Misura(Timestamp), Sensore (FK)	Specializzazione di misura, lettura dei tre assi di un accelerome- tro
Alert	-	Misura (FK)	Alert per misura che supera la soglia
Allunga- mento*	Valore	Misura(Timestamp), Sensore (FK)	Specializzazione di misura, lettura da un estensimetro
Apertura	Posizione (Destra, Sinistra, Sopra, Sot- to), Tipo	Posizione, Muro (FK)	Porta, finestra o varco attraverso un muro. Situata a partire dalla distanza "Sinistra" fino alla distanza "Destra" dal primo vertice del muro e dall'altezza "Sotto" fino all'altezza "Sopra" rispetto al pavimento
Calamità	Data, Tipo, Intensità, Coordinate (Latitudine, Longitudine)	Data, Tipo	Specifico evento calamitoso (es: terremoto, alluvione, frana)
Capo- Cantiere	CodiceFiscale, Cognome, Nome, MaxOperai	CodiceFiscale	Supervisore di uno specifico lavoro, con un numero massimo di operai che può supervisionare
Edificio	ID, Coordinate (Latitudine, Longitudine)	ID	Un edificio gestito dal- l'azienda
Impiego	Inizio	Inizio, Operaio (FK)	Gestione degli impie- ghi degli operai attra- verso il sistema di tur- nazione

Entità	Attributi	Identificatore	Descrizione
Intonaco*	Colore, Tipo	Materiale(Codice- Lotto)	Intonaco per muri
Lavoro	ID, Descrizione, DataInizio, DataFine, MaxOperaiInsieme	ID	Singolo lavoro da svolgere su un edificio o una parte di esso
Lavoro- Generale*	-	Lavoro(ID)	Lavoro che coinvolge l'edificio nel suo complesso, come ad esempio la realizzazione delle fondamenta
Lavoro- Parete*	-	Lavoro(ID)	Lavoro che coinvolge le pareti dell'edificio
Lavoro- Pavimento*	-	Lavoro(ID)	Lavoro che coinvolge il pavimento di un vano dell'edificio
Materiale	CodiceLotto, Copertura ¹ , CostoUnitario, DataAcquisto, Fornitore, Pavimentabile ² , Portante ³ , QuantitàAcquistata, QuantitàRimasta	CodiceLotto	Materiale edilizio acquistato dall'azienda oppure utilizzato da altri soggetti per la realizzazione di parte di un edificio
Materiale- Generico*	Descrizione, Funzione, Dimensioni (x, y, z)	Materiale(Codice- Lotto)	Materiale edilizio generico, con attributi generici
Mattone*	Alveolatura, Composizione, Dimensioni (x, y, z)	Materiale(Codice- Lotto)	Mattone per la costru- zione di muri
Misura*	Timestamp	Timestamp, Sensore (FK)	Valore misurato da un sensore installato, generalizzazione delle misure dei diversi sen- sori

¹Booleano, indica se può essere usato come copertura di un muro, ad esempio: intonaco, piastrelle, pietre.

²Booleano, indica se può essere usato per pavimentare un vano, ad esempio: parquet, piastrelle.

 $^{^3 \}mbox{Booleano},$ indica se può essere usato come struttura portante di un muro, ad esempio: mattoni, pietre.

Entità	Attributi	Identificatore	Descrizione
Misura- Generica*	Valore	Misura(Timestamp), Sensore (FK)	Specializzazione di misura, lettura da un generico sensore, diverso da quelli previsti dalle altre specializzazioni di misura
Muro	ID, Coordinate (x_0, y_0, x_1, y_1)	ID	Muro della casa con estremi da (x_0, y_0) a (x_1, y_1)
Operaio	CodiceFiscale, Cognome, Nome, PagaOraria	CodiceFiscale	Lavoratore dell'azien- da
Parquet*	TipoLegno	Materiale(Codice- Lotto)	Legno per la pavimentazione a parquet
Piano	Numero	Numero, Edificio (FK)	Un piano di un dato edificio
Piastrella*	Dimensione, Disegno, Fuga, Numero-Lati, Tipo	Materiale(Codice- Lotto)	Piastrella per pavi- mentazione o rivesti- mento estetico dei mu- ri
Pietra*	Tipo, Dimensioni (x, y, z)	Materiale(Codice- Lotto)	Pietra per costruzione o per fini estetici
Precipita- zione*	Valore	Misura(Timestamp), Sensore (FK)	Specializzazione di misura, lettura da un pluviometro
Progetto- Edilizio	ID, CostoLavori	ID	Progetto di costruzio- ne o ristrutturazione di un Edificio
Rischio- Geologico	Tipologia, CoefficienteRischio	Tipologia, ZonaGeografica (FK)	Un tipo di rischio che può affliggere un'area geografica
Rotazione*	x, y, z	Misura(Timestamp), Sensore (FK)	Specializzazione di misura, lettura dei tre assi di un giroscopio
Sensore*	ID, Soglia, Coordinate (x, y, z)	ID	Sensore per la misura di grandezze di inte- resse installato in un Edificio

Entità	Attributi	Identificatore	Descrizione
StadioAvan- zamento	ID, DataInizio, Data- FineStimata	ID	Sottodivisione del progetto in lavori affini
Zamento	T IIIe Julilata		0
Tempera-	77.1	Misura(Timestamp),	Specializzazione di
tura*	Valore	Sensore (FK)	misura, lettura da un
		,	termometro
		Misura(Timestamp),	Specializzazione di
Umidità*	Valore	Sensore (FK)	misura, lettura da un
		Delisore (FTY)	igrometro
	ID, Funzione, Di-		Una stanza, o comun-
Vano*	mensione (Lunghez-	ID	que un'area delimita-
	za, Larghezza)		ta, di un edificio
			Una zona esterna
VanoEsterno*	-	Vano(ID)	all'edificio, come ad
			esempio un terrazzo
			Stanza interna all'edi-
VanoInterno*	AltezzaMax	Vano(ID)	ficio con una specifica
			funzione
Zona-			Area geografica per la
	Nome	Nome	suddivisione del terri-
Geografica			torio considerato

Le entità indicate con "*" sono specializzazioni, generalizzazioni o altre entità che sono state modificate durante la ristrutturazione.

In particolare durante la ristrutturazione sono state eliminate le seguenti entità: LavoroGenerale, LavoroParete, LavoroPavimento, VanoEsterno, VanoInterno, Accelerazione, Allungamento, MisuraGenerica, Precipitazione, Rotazione, Temperatura e Umidità.

Le altre sono state modificate come segue (le motivazioni sono spiegate nel dettaglio nella sezione $3)^4$.

Entità	Attributi	Identificatore
Intonaco	Colore, Tipo	Materiale (FK)
MaterialeGenerico	Descrizione, Funzione, Dimensioni (x, y, z)	Materiale (FK)

⁴Non sono state riportate le entità per cui l'unico cambiamento è stato la separazione degli attributi composti

Entità	Attributi	Identificatore	
Mattone	Alveolatura, Composizione,	Materiale (FK)	
Mattone	Dimensioni (x, y, z)	whateriale (FK)	
Misura	Timestamp, xOppureUnico,	Timestamp, Sensore (FK)	
Misura	y, z	Timestamp, Sensore (FR)	
Parquet	TipoLegno	Materiale (FK)	
Piastrella	Dimensione, Disegno, Fuga,	Materiale (FK)	
1 lastrena	NumeroLati, Tipo	Wateriale (FIX)	
Pietra	Tipo, Dimensioni (x, y, z)	Materiale (FK)	
Sensore	ID, Soglia, Tipo, x, y, z	ID	
	ID, AltezzaMax, Funzione,		
Vano	Dimensione (Lunghezza, Lar-	ID	
	ghezza)		

2.2 Dizionario delle relazioni

Relazione	Entità 1	Entità 2	Attributi
Appartenen- zaPiano Appartenen- zaVano	Edificio (1,n) Ogni piano è composto da più piani Piano (1,n) Ogni piano è composto da	Piano (1,1) Ogni piano appartiene ad uno ed un solo edificio Vano (1,1) Ogni vano appartiene ad	-
Confinante	più vani Muro (1,2) Ogni muro confina con 2 vani se è interno o 1 vano se è esterno	uno ed un solo piano Vano (1,n) Un vano è un poligono i cui lati sono i muri	-
Danneggia- mento	Calamità (0,n) Una calamità può colpire più zone	ZonaGeografica (0,n) Una zona può essere colpi- ta da più calamità	_

Relazione	Entità 1	Entità 2	Attributi
Direzione-	CapoCantiere (0,n)	Lavoro (1,1)	
Lavori	Ogni capo può controllare	Ogni lavoro ha uno e un so-	Compenso
Lavoii	più lavori	lo responsabile	
	Sensore (1,1)	Vano (0,n)	
Installazione	Ogni sensore è installato in	In ogni vano ci possono es-	-
	una e una sola posizione	sere più sensori	
	StadioAvanzamento (1,1)	ProgettoEdilizio (1,n)	
Lavoro-	Ogni stadio appartiene ad	Ogni progetto è composto	
Progetto	uno e un solo ProgettoEdi-	da più stadi di avanzamen-	_
	lizio	to	
Larrana	LavoroGenerale (1,1)	Edificio (0,n)	
Lavoro-	Ogni lavoro si riferisce ad	Su ogni edificio ci possono	-
SuEdificio*	un singolo edificio	essere diversi lavori	
т	LavoroParete (1,1)	Muro (0,n)	C
Lavoro-	Ogni lavoro si riferisce ad	Su ogni muro ci possono	Spessore,
SuMuro*	un singolo muro	essere diversi lavori	Lato
	LavoroPavimento (1,1)	Vano (0,n)	
Lavoro-	Ogni lavoro si riferisce ad	Su ogni vano ci possono es-	_
SuVano*	un singolo vano	sere diversi lavori	
	RischioGeologico (1,1)	ZonaGeografica (0,n)	
Pericolosità	Il rischio è relativo alla sin-	Ogni area è affetta da più	_
	gola zona	rischi	
	ProgettoEdilizio (1,1)	Edificio (0,n)	
Progettazione	Ogni progetto si riferisce	Per ogni edificio ci possono	_
	ad un singolo edificio	essere più progetti	
		Lavoro (1,1)	
Gruppo-	StadioAvanzamento (1,n)	Ogni lavoro appartiene ad	
Lavori	Ogni stadio è composto da	uno ed un solo stadio di	-
	più lavori	avanzamento	
	T (4.4)	Lavoro (1,n)	
Lavoro-	Impiego $(1,1)$	Ogni lavoro può richiedere	
Impiego	Ogni unità di impiego si ri-	più turnazioni di più ope-	-
r sos	ferisce ad un solo lavoro	rai	
T	Sensore (0,n)	Misura (1,1)	
Lettura-	Ogni sensore produce più	Ogni misura è generata da	_
Sensore	misure	un solo sensore	
	Impiego (1,1)	Operaio (0,n)	
Operaio-	Ogni unità di impiego si ri-	Ogni operaio può essere ri-	_
Impiego	ferisce ad un solo operaio	chiesto per più impieghi	
	Torrisco del dir boto operato	omosto per più impiesin	

Relazione	Entità 1	Entità 2	Attributi
Superamento- Soglia	Misura (0,1) Ogni misura può generare o meno un alert a seconda se supera la soglia	Alert (1,1) Ogni alert è generato dal superamento della soglia da parte di una lettura di un sensore	-
Ubicazione	Edificio (1,1) Ogni edificio si trova in un'area geografica	ZonaGeografica (0,n) In ogni area geografica ci possono essere più edifici	-
Utilizzo- Materiale	Lavoro (0,n) Ogni lavoro può richiedere o meno più materiali	Materiale (0,n) Ogni materiale può essere utilizzato o meno per più lavori	Quantità

Le relazioni indicate con "*" coinvolgono direttamente entità che sono specializzazioni di altre entità più generiche; con la ristrutturazione del diagramma ER tali relazioni sono state modificate.

Durante la ristrutturazione (descritta nel dettaglio alla sezione 3) sono state modificate o aggiunte le seguenti relazioni.

Relazione	Entità 1	Entità 2	Attributi
Informazione- Intonaco	Materiale (0,1) Ogni materiale può essere o meno un intonaco	Intonaco (1,1) L'informazione si riferisce ad un singolo lotto di in- tonaco	-
Informazione- Generico	Materiale (0,1) Ogni materiale può essere o meno un materiale gene- rico	MaterialeGenerico (1,1) L'informazione si riferisce ad un singolo lotto di ma- teriale generico	-
Informazione- Mattone	Materiale (0,1) Ogni materiale può essere o meno un mattone	Mattone (1,1) L'informazione si riferisce ad un singolo lotto di mat- toni	-
Informazione- Parquet	Materiale (0,1) Ogni materiale può essere o meno un parquet	Parquet (1,1) L'informazione si riferisce ad un singolo lotto di par- quet	_

Relazione	Entità 1	Entità 2	Attributi
Informazione- Piastrella	Materiale (0,1) Ogni materiale può essere o meno una piastrella	Piastrella (1,1) L'informazione si riferisce ad un singolo lotto di pia- strelle	-
Informazione- Pietra	Materiale (0,1) Ogni materiale può essere o meno una pietra	Pietra (1,1) L'informazione si riferisce ad un singolo lotto di pie- tra	-
Lavoro- SuCasa	Lavoro (0,1) Ogni lavoro si può riferire al massimo ad un singolo edificio	Edificio (0,n) Su ogni edificio ci possono essere diversi lavori	-
Lavoro- SuMuro	Lavoro (0,1) Ogni lavoro si può riferire al massimo ad un singolo muro	Muro (0,n) Su ogni muro ci possono essere diversi lavori	Lato, Spessore
Lavoro- SuVano	Lavoro (0,1) Ogni lavoro si può riferisce al massimo ad un singolo vano	Vano (0,n) Su ogni vano ci possono es- sere diversi lavori	-

3 Ristrutturazione

3.1 Eliminazione delle generalizzazioni

3.1.1 Lavoro

L'entità Lavoro è specializzata in LavoroGenerale, LavoroPavimento e LavoroParete per distinguere la porzione della casa coinvolta dall'attività. Essi non hanno attributi propri, possiamo quindi accorpare tale generalizzazione nell'entità base Lavoro mantenendo il vincolo che ogni lavoro venga associato con la sola porzione di edificio coinvolta.

3.1.2 Materiale

L'entità Materiale è specializzata in Intonaco, Mattone e Parquet, Piastrella, Pietra e MaterialeGenerico per distinguere i diversi materiali edilizi utilizzati, che presentano elementi caratterizzanti differenti.

Considerato che le quantità di materiali nelle diverse categorie si assume confrontabile, l'eterogeneità degli attributi delle singole categorie e l'ipotesi di un accesso relativamente raro alle proprietà specifiche del singolo materiale si è scelto di eliminare la generalizzazione trasformando le specializzazioni in entità e introducendo delle relazioni tra esse e l'entità Materiale.

3.1.3 Misura

L'entità Misura è specializzata in Accelerazione, Rotazione, Temperatura, Umidità, Precipitazione, Allungamento e MisuraGenerica per distinguere la diversa tipologia dell'entità misurata.

Per valutare l'eliminazione della generalizzazione tra i diversi tipi di misura abbiamo calcolato il volume orario dalle entità coinvolte (coerentemente con i volumi mostrati alla sezione 4.1) per un singolo edificio.

Entità	N° Sensori	N° Valori	Frequenza	Volume Orario
Accelerazione	1	3	2 / secondo	7200
Rotazione	1	3	2 / secondo	7200
Temperatura	5	1	1 / ora	5
Umidità	5	1	1 / ora	5
Precipitazione	1	1	1 / ora	1
Allungamento	5	1	1 / ora	5
MisuraGenerica	3	1	1 / ora	3
	14419			

Da cui si può osservare che le registrazione di sensori che riportano una terna di valori quali accelerometri e giroscopi creano un volume di dati molto maggiore confrontato alla somma di tutti i sensori che restituiscono un singolo valore.

Per cui ipotizzando una registrazione continua (anche se limitata nel tempo) di tali sensori si è ritenuto trascurabile lo spreco di memoria che si ottiene unendo le specializzazioni in una sola entità Misura con tre attributi, essi verranno interamente utilizzati dai sensori che restituiscono una terna di valori, mentre per i sensori a singolo valore due attributi verranno posti a NULL.

Questa scelta implementativa causa solo il 0.3% di attributi NULL sul totale dei record.

Per distinguere il tipo della misura rilevata è stato aggiunto un attributo "Tipo" all'entità sensore che genera le misurazioni.

3.1.4 Vano

L'entità Vano è specializzata in VanoInterno e VanoEsterno, con l'unica distinzione che per le stanze interne è prevista la memorizzazione dell'altezza massima, mentre per quelli esterni non è assegnato tale attributo, non essendoci un soffitto. Considerata un'abitazione media il numero di vani esterni (come ad esempio i balconi) è molto inferiore al numero di vani interni, per questo si è ritenuto opportuno accorpare la specializzazione nell'entità Vano, aggiungendo l'attributo AltezzaMax che sarà posto a NULL per i pochi vani esterni.

3.2 Eliminazione degli attributi multivalore

Non sono presenti attributi multivalore.

3.3 Analisi ed eventuale eliminazione delle ridondanze

L'analisi delle ridondanze al fine di ottimizzare le operazioni sui dati è discussa in dettaglio alla sezione 5.1.

L'entità Alert indica le misurazioni che hanno superato la soglia di sicurezza impostata per ogni sensore e potrebbe apparire una ridondanza in quanto tali valori vengono memorizzati come Misure, ma è stato deciso di mantenere questa entità perché non costituisce una ridondanza in quanto i dati delle misure possono essere cancellati periodicamente, ma è necessario mantenere i valori che hanno superato i limiti imposti. Inoltre se viene modificata la soglia di sicurezza per un sensore, ad esempio a seguito di una modifica edilizia o una diversa configurazione del sensore, tale intervento non deve avere effetto retroattivo sulle misure del sensore in questione.

3.4 Partizionamento e accorpamento ER

3.4.1 Gestione attributi composti

Gli attributi composti Muro.Coordinate, Sensore.Coordinate, ZonaGeo-grafica.Coordinate, Vano.Dimensione, Apertura.Posizione e le dimensioni dei materiali rappresentano proprietà che raramente saranno uguali per più istanze distinte delle relative entità, per cui è stato ritenuto opportuno accorpare tali attributi composti sull'entità a cui si riferiscono.

3.4.2 Gestione tipologia misura

Dopo l'eliminazione della generalizzazione di Misura mantenendo tre attributi delle specializzazioni sull'entità generalizzata, come descritto nella sezione 3.1.3, si deve aggiungere anche un attributo a tale entità per distinguere la tipologia della misurazione.

Come accennato nella precedente sezione si è deciso di assegnare questo attributo all'entità Sensore, poiché sarebbe stato ridondante ad ogni misurazione, in quanto determinato dal tipo di sensore stesso.

4 Prestazioni del DB e ridondanze

4.1 Tavola dei Volumi

Concetto	Tipo	Volume	Nota
Alert	E	263	Si assume che ad ogni evento ca- lamitoso ogni sensore abbia una probabilità di 0.01 di generare un alert
Apertura	Е	3000	Si assume una media di 0.6 porte, finestre o passaggi per ogni muro
Appartenen- zaPiano	R	100	Cardinalità (1,1) con Piano
Appartenen- zaVano	R	2000	Cardinalità (1,1) con Vano
Calamità	E	50	Assunzione iniziale
CapoCantiere	Е	5	Si assume un totale di 100 di cui il 5% sono responsabili di lavoro
Confinante	R	9000	Si assume che il 20% dei muri componga il perimetro esterno della casa
Danneggia- mento	R	175	Si considera che in media ogni Ca- lamità coinvolga il 70% delle zone geografiche
Direzione- Lavori	R	60000	Cardinalità (1,1) con Lavoro
Edificio	Е	25	Assunzione iniziale
Gruppo- Lavori	R	60000	Cardinalità (1,1) con Lavoro
Impiego	Е	1440000	Si assume che per ogni lavoro sia- no richiesti in media 2 operai e che il lavoro richieda in media 12 turni
Informazione- Generico	R	375	Cardinalità (1,1) con Materiale - Generico
Informazione- Intonaco	R	125	Cardinalità (1,1) con Intonaco
Informazione- Mattone	R	50	Cardinalità (1,1) con Mattone

Concetto	Tipo	Volume	Nota
Informazione- Parquet	R	13	Cardinalità (1,1) con Parquet
Informazione- Piastrella	R	50	Cardinalità (1,1) con Piastrella
Informazione- Pietra	R	13	Cardinalità (1,1) con Pietra
Installazione	R	525	Cardinalità (1,1) con Sensore
Intonaco	Е	125	Si assume l'acquisto di 5 nuovi lotti per ogni edificio
Lavoro	E	60000	Considerando come operazioni che richiedono più lavori distin- ti quelle sui muri e stimando una media di 12 lavori per ogni muro
Lavoro- Impiego	R	1440000	Cardinalità (1,1) con Impiego
Lavoro- Progetto	R	150	Cardinalità (1,1) con Stadio- Avanzamento
Lavoro- SuCasa	R	600	Si assume che di tutti i lavori svolti, 1% siano lavori generali sull'intero edificio (es. fondamenta, tetto)
Lavoro- SuMuro	R	48000	Si assume che di tutti i lavori svolti, 80% siano lavori specifici su un muro (es. costruzione, rivestimento o intonacatura)
Lavoro- SuVano	R	11400	Si assume che di tutti i lavori svolti, 19% siano lavori specifici su un vano (es. pavimentazione)
Lettura- Sensore	R	60480000	Cardinalità (1,1) con Misura
Materiale	Е	625	Si assume l'utilizzo di 25 materiali di lotti distinti per ogni edificio: intonaco (5), mattoni (2), parquet (0.5), piastrelle (2), pietre (0.5) e materiale generico (15)
Materiale- Generico	Е	375	Si assume l'acquisto di 15 nuovi lotti per ogni edificio
Mattone	Е	50	Si assume l'acquisto di 2 nuovi lotti per ogni edificio

Concetto	Tipo	Volume	Nota
Misura	Е	60480000	I sensori a bassa frequenza di campionamento sono irrilevanti rispetto a quelli ad alta frequenza, come gli accelerometri, si assume quindi una media di 2 sensori con 2 campionamenti al secondo per ogni edificio. Si suppone anche di conservare i dati di tali sensori solo degli ultimi 7 giorni (oltre ai dati durante i terremoti, considerati trascurabili)
Muro	E	5000	Si stima una media di 2.5 muri per ogni vano di ogni edificio (si ricorda che ogni muro, ad esclu- sione di quelli esterni, è condiviso da due vani)
Operaio	E	95	Si assume un totale di 100 di cui il 95% sono operai
Operaio- Impiego	R	1440000	Cardinalità (1,1) con Impiego
Parquet	Е	13	Si assume l'acquisto di 0.5 nuovi lotti per ogni edificio
Pericolosità	R	15	Cardinalità (1,1) con Rischio- Geologico
Piano	Е	100	Si assume una media di 4 piani per ogni edificio
Piastrella	Е	50	Si assume l'acquisto di 2 nuovi lotti per ogni edificio
Pietra	Е	13	Si assume l'acquisto di 0.5 nuovi lotti per ogni edificio
Progettazione	R	40	Cardinalità (1,1) con Proget- toEdilizio
Progetto- Edilizio	Е	40	Si assume una media di 1.6 progetti per ogni edificio (considerata la costruzione stessa ed eventuali ristrutturazioni)

Concetto	Tipo	Volume	Nota
Rischio- Geologico	E	15	Si assume che ogni area geografica abbia in media il 60% di tutti i possibili rischi geologici (stimati in 5)
Sensore	Е	525	Si assume una media di 21 sensori per ogni edificio ⁵
StadioAvan- zamento	E	150	Considerando in media 6 stadi di avanzamento per ogni edificio, principalmente per la costruzione ed eventuali ristrutturazioni
Superamento- Soglia	R	263	Cardinalità (1,1) con Alert
Ubicazione	R	25	Cardinalità (1,1) con Edificio
Utilizzo- Materiale	R	90000	Si assume l'utilizzo di 1.5 materiali per ogni lavoro svolto
Vano	Е	2000	Si assume una media di 20 vani per ogni piano di ogni edificio
Zona- Geografica	Е	5	Assunzione iniziale

4.2 Ridondanze individuate

In vista delle operazioni mostrate nella sezione 5.2 sono state introdotte le ridondanze: CostoLavori, QuantitàRimasta e Progettazione.

L'analisi dettagliata dei costi e dei vantaggi legati a tali ridondanze è riportata alla sezione 5.1.

⁵Abbiamo stimato i seguenti sensori per ogni edificio: termometri (5), igrometri (5), accelerometri (1), giroscopi (5), pluviometri (1), estensimetri (5) e sensori generici di altro tipo (3).

5 Operazioni sui dati

5.1 Analisi ridondanze

5.1.1 QuantitàRimasta

Se si vuole calcolare la quantità di materiale rimasto per un dato lotto si può valutare l'introduzione dell'attributo ridondante **QuantitàRimasta** che deve essere aggiornato ad ogni utilizzo del materiale.

Di seguito è riportata la frequenza annuale delle attività che coinvolgono tale ridondanza.

Azione	FrequenzaAnnuale	Nota
		Si considera che i 90000 utilizzi
UtilizzoMateriale	15 000	del materiale presenti nel databa-
Utilizzowateriale	15000	se vengano generati nell'arco di 6
		anni
		Si assume di voler produrre pe-
Inventario	12	riodicamente un inventario con le
		quantità di tutti i materiali pre-
		senti nel database

Volumi coinvolti (tratti dalla tavola dei volumi alla sezione 4.1)

Concetto	Costrutto	Volume
Materiale	E	625
UtilizzoMateriale	R	90 000

Tavola degli accessi annuali senza la ridondanza

Concetto	Costrutto	Accessi	Tipo	Nota
Materiale	E	22 500	R	Bisogna accedere in lettura ogni volta che si vuole calco- lare la quantità rimasta di un materiale; questo avviene una volta per ogni nuovo Utilizzo- Materiale e 12 volte per tutti i materiali nel database
UtilizzoMateriale	R	3 240 000	R	In media si hanno 144 utilizzi per ogni materiale, bisogna dunque leggere la quantità utilizzata per ogni accesso a Materiale
Accessi Totali Annuali		3 262 5	500	Si sommano gli accessi in let- tura precedentemente calcolati

Tavola degli accessi annuali con la ridondanza

Concetto	Costrutto	Accessi	Tipo	Nota
Materiale	Е	22 500	R	Bisogna accedere in lettura ogni volta che si vuole leggere l'attributo ridondante di un materiale; questo avviene una volta per ogni nuovo Utilizzo-Materiale e 12 volte per tutti i materiali nel database
Materiale	Е	15 000	W	Bisogna accedere in scrittura una volta per ogni nuovo Uti- lizzoMateriale per aggiornare la ridondanza
Accessi Totali Annuali		52 50	00	Si sommano gli accessi calcolati, contando come doppi quelli in scrittura

Si è quindi deciso di mantenere la ridondanza.

5.1.2 CostoLavori

Se vuole calcolare il costo di costruzione e ristrutturazione coinvolti in un determinato progetto edilizio (inteso come somma dei costi per materiale e manodopera per i lavori appartenendi ad esso) si può valutare l'introduzione dell'attributo ridondante **CostoLavori** che deve essere aggiornato al termine di un lavoro.

Di seguito è riportata la frequenza annuale delle attività che coinvolgono tale ridondanza.

Azione	FrequenzaAnnuale	Nota
		Si considera che per ogni edificio
		venga calcolato il costo di un suo
Calcolo Costo	100	progetto edilizio in media 4 vol-
Carcolo Costo		te l'anno (si avrà tendenzialmen-
		te una frequenza maggiore duran-
		te la costruzione)
		Si considera che i 60000 lavori
Nuovi Lavori	10 000	presenti nel database vengano ge-
		nerati nell'arco di 6 anni

Volumi coinvolti (tratti dalla tavola dei volumi alla sezione 4.1)

Concetto	Costrutto	Volume
DirezioneLavori	R	60000
GruppoLavori	R	60000
Impiego	E	1440000
Lavoro	Е	60000
LavoroImpiego	R	1440000
LavoroProgetto	R	150
Materiale	E	625
Muro	Е	5000
Operaio	Е	95
OperaioImpiego	R	1440000
ProgettoEdilizio	Е	40
StadioAvanzamento	E	150
UtilizzoMateriale	R	90000

Una volta ottenuto l'ID del lavoro richiesto osserviamo che trovare il suo costo complessivo di manodopera (escluso il compenso del capocantiere) e materiale richiede i seguenti accessi.

Concetto	Costrutto	Accessi	Tipo	Nota
UtilizzoMateriale	R	1.5	R	Si cercano i materiali utilizzati nel lavoro in questione (mediamente si usano 1.5 materiali per ogni lavoro) e la quantità utilizzata
Materiale	E	1.5	R	Si accede ai materiali utilizzati per ottenere il costo unitario
Impiego	Е	1 440 000	R	Si cercano le associazioni tra orari, operai e lavori dove l'ID di lavoro è quello cerca- to, poiché lavoro non è chiave si deve visitare l'intera tabella
Operaio	Е	2	R	Si legge la paga oraria dell'o- peraio (mediamente un lavoro richiede 2 operai)
Totale AccessiLavoro		1 440 (005	Si sommano gli accessi precedentemente calcolati

Poiché tali operazioni vengono riprese nei calcoli successivi, per semplicità ci riferiremo ad essi come AccessiLavoro nel loro complesso (rappresentano gli accessi complessivi per trovare il costo di un singolo lavoro, in media, escluso il compenso del capocantiere).

Tavola degli accessi annuali senza la ridondanza

Concetto	Costrutto	Accessi	Tipo	Nota
StadioAvanzamento	E	15 000	R	Per trovare i lavori del proget- to edilizio è necessario cercare tutta la tabella, perché non è un attributo chiave
Lavoro	Е	6 000 000	R	Per trovare tutti i lavori appartenenti al progetto edilizio (mediamente 1500) bisogna leggere l'intera tabella perché l'attributo non è chiave
AccessiLavoro	Misto	216 000 750 000		Per tutte le richieste di calco- lo del costo bisogna calcolare il costo complessivo del lavoro (con gli accessi calcolati in pre- cedenza come AccessiLavoro)
Accessi Totali Annuali		216 006 765 000		Si sommano gli accessi precedentemente calcolati

Tavola degli accessi annuali con la ridondanza

Concetto	Costrutto	Accessi	Tipo	Nota
ProgettoEdilizio	E	100	R	Bisogna accedere in lettura ogni volta che si vuole legge- re l'attributo ridondante di un determinato progetto
Lavoro	Е	10 000	R	Per tutti i lavori conclusi biso- gna leggere il compenso del ca- pocantiere
AccessiLavoro	Misto	14 400 050 000	R	Per tutti i 10000 lavori an- nuali bisogna calcolare il costo complessivo del lavoro (con gli accessi calcolati in precedenza come AccessiLavoro)
StadioAvanzamento	E	10 000	R	Per ogni lavoro bisogna ricer- care a quale stadio appartiene per trovare il progetto edilizio

Concetto	Costrutto	Accessi	Tipo	Nota
ProgettoEdilizio	E	10 000	R	Per aggiornare la ridondanza bisogna prima legge il valore precedente
ProgettoEdilizio	Е	10 000	W	Per aggiornare la ridondanza bisogna poi sovrascrivere il va- lore con quello aggiornato
Accessi Totali Annuali		14 400 100	100	Si sommano gli accessi prece- dentemente calcolati, contan- do come doppi quelli in scrit- tura

Si è quindi deciso di mantenere la ridondanza.

5.1.3 Progettazione

All'inserimento di nuovi lavori si deve controllare che coinvolgano componenti dello stresso edificio degli altri lavori nello stesso progetto edilizio; a tale fine si può valutare di introdurre la relazione ridondante **Progettazione** tra Progetto Edilizio e Edificio.

Di seguito è riportata la frequenza annuale delle attività che coinvolgono tale ridondanza.

Azione	FrequenzaAnnuale	Nota
Nuovi Lavori	10 000	Si considera che i 60000 lavori presenti nel database vengano ge- nerati nell'arco di 6 anni

Volumi coinvolti (tratti dalla tavola dei volumi alla sezione 4.1)

Concetto	Costrutto	Volume
AppartenenzaPiano	R	100
AppartenenzaVano	R	2000
Confinante	R	9000

Concetto	Costrutto	Volume
Edificio	E	25
GruppoLavori	R	60000
Lavoro	E	60000
LavoroProgetto	R	150
LavoroSuCasa	R	600
LavoroSuMuro	R	48000
LavoroSuVano	R	11400
Muro	E	5000
Progettazione	R	40
ProgettoEdilizio	E	40
StadioAvanzamento	E	150
Vano	Е	2000

Una volta ottenuto l'ID del lavoro richiesto osserviamo che trovare l'edificio a cui è riferito richiede diversi passaggi a seconda che esso sia un lavoro sull'intero edificio, su un vano o su un muro; in particolare i primi due ci permettono di ottenere l'ID dell'edificio con una sola lettura della relativa relazione, mentre un lavoro su un muro richiede la lettura del vano con cui confina per ricavare l'edificio. Dati i volumi mostrati in precedenza quest'ultima eventualità è molto più probabile delle altre due sommate, ma allo stesso tempo è anche il caso che avvantaggia maggiormente l'utilizzo della ridondanza. Per questo motivo è stato deciso di effettuare i calcoli considerando un solo accesso per ottenere l'ID dell'edificio, in questo modo se la ridondanza risulta fondata allora lo sarà anche nel caso reale.

Tavola degli accessi annuali senza la ridondanza

Concetto	Costrutto	Accessi	Tipo	Nota
CalcoloEdificio ⁶	-	10 000	R	Bisogna trovare l'edificio a cui è associato ogni nuovo lavoro aggiunto
Lavoro	E	10 000	R	Si deve cercare a quale Sta- dioAvanzamento appartiene il lavoro
StadioAvanzamento	E	10 000	R	Si deve cercare a quale Proget- toEdilizio appartiene lo stadio di avanzamento e dunque il la- voro
StadioAvanzamento	E	1 500 000	R	Si cerca un lavoro appartenen- te allo stesso ProgettoEdilizio, per cui è necessario scansiona- re l'intera tabella
Lavoro	Е	600 000 000	R	Si cerca un lavoro appartenen- te allo stesso StadioAvanza- mento trovato in precedenza, per cui è necessario scansiona- re l'intera tabella
CalcoloEdificio ⁶	-	10 000	R	Bisogna trovare l'edificio a cui è associato il lavoro già precedentemente inserito che è stato trovato. Questo viene fatto una volta per ogni nuovo lavoro. Se tale ID è coerente con quello ottenuto dal lavoro appena aggiunto si può procedere all'inserimento
Accessi Totali Annuali		601 540 000		Si sommano gli accessi precedentemente calcolati

 $[\]overline{\,^6\mathrm{Si}}$ faccia riferimento alle assunzioni nel paragrafo precedente la tabella (sezione 5.1.3)

Tavola degli accessi annuali con la ridondanza

Il valore ridondante viene inserito alla creazione del progetto edilizio e non deve essere modificato successivamente, per cui non ci sono costi per l'aggiornamento della ridondanza.

Concetto	Costrutto	Accessi	Tipo	Nota
CalcoloEdificio ⁷	-	10 000	R	Bisogna trovare l'edificio a cui è associato ogni nuovo lavoro aggiunto
Lavoro	Е	10 000	R	Si deve cercare a quale Sta- dioAvanzamento appartiene il lavoro
StadioAvanzamento	E	10 000	R	Si deve cercare a quale Proget- toEdilizio appartiene lo stadio di avanzamento e dunque il la- voro
ProgettoEdilizio	Е	10 000	R	Si cerca la tupla corrispondente al progetto edilizio ricercato per accedere all'attributo ridondante dell'ID dell'edificio a cui è collegato (che rappresenta la relazione Progettazione). Se tale ID è coerente con quello ottenuto dal lavoro si può procedere all'inserimento
Accessi Totali Annuali		40 00	00	Si sommano gli accessi precedentemente calcolati

Si è quindi deciso di mantenere la ridondanza.

 $^{{\}rm ^7Si}$ faccia riferimento alle assunzioni nel paragrafo precedente le due tabelle (sezione 5.1.3)

5.2 Analisi operazioni

5.2.1 Superficie di un edificio

Input: ID dell'edificio di cui si vuole calcolare la superficie

Output: superficie dell'edificio in metri quadrati Frequenza stimata: 1 volta l'anno per edificio

Figura 1: Diagramma ER coinvolto dall'operazione 1

Si è scelto di utilizzare un algoritmo noto che permette di calcolare la superficie di un poligono avendo come dati le coordinate dei suoi vertici. Questa situazione si adatta alla rappresentazione della planimetria degli edifici nella base di dati, in quanto i vani sono memorizzati come un insieme chiuso di muri, che a loro volta sono memorizzati con le coordinate dei loro estremi.

Tavola dei volumi coinvolti

Concetto	Tipo	Volume
Edificio	Е	25
Muro	Е	5000
Piano	Е	100
Vano	Е	2000

Per il calcolo della superficie di un singolo edificio sono richiesti i seguenti accessi

N°	Concetto	Costrutto	Tipo	Accessi	Nota
1	Vano	E	R	2 000	Si devono cercare i vani che appartengono all'edificio in questione, quindi di deve scansio-
2	Muro	R	R	5 000	nare l'intera tabella Si devono cercare i muri esterni che confinano con uno dei vani precedentemente trovati, quin- di di deve scansionare l'intera
	Acces	ssi Totali		7 000	tabella Si sommano gli accessi in lettura precedentemente calcolati

Annualmente si hanno quindi 175 000 accessi.

5.2.2 Costo lavori di un edificio

Input: ID dell'edificio

Output: costo complessivo dei lavori sull'edificio (inclusa manodopera, costo ma-

teriali e compensi capocantiere)

Frequenza stimata: 4 volte all'anno per edificio

Figura 2: Diagramma ER coinvolto dall'operazione 2

Dato un edificio si può sfruttare la relazione ridondante Progettazione (discussa nella sezione 5.1.3) per trovare i progetti edilizi che lo coinvolgono e successivamente utilizzare l'attributo ridondante CostoLavori (discusso alla sezione 5.1.2) per ottenere il costo dei lavori di ogni progetto edilizio.

Tavola dei volumi coinvolti

Concetto	Tipo	Volume
Edificio	Е	25
Progettazione	R	40
Progetto- Edilizio	Е	40

Per un singolo calcolo del costo dei lavori di un singolo edificio sono richiesti i seguenti accessi

N°	Concetto	Costrutto	Tipo	Accessi	Nota	
1	ProgettoEdilizio	E	R	40	Si devono cercare i progetti edilizi che si riferiscono al- l'edificio in questione, quin- di di deve scansionare l'inte- ra tabella	
Accessi Totali				40	Si sommano gli accessi in lettura precedentemente calcolati	

Annualmente si hanno quindi $4\,000\,$ accessi.

5.2.3 Calcolo stipendio operai

Input: anno e mese di cui calcolare gli stipendi

Output: resultset Operaio, Stipendio calcolato sull'anno e mese forniti

Frequenza stimata: 12 volte all'anno

Figura 3: Diagramma ER coinvolto dall'operazione 3

L'operazione calcola lo stipendio dovuto ad ogni operaio in base alla propria paga oraria e alle ore lavorate secondo la turnazione presente nel database.

Tavola dei volumi coinvolti

Concetto	Tipo	Volume
Impiego	Е	1440000
Operaio	Е	95

Per il calcolo degli stipendi dovuti in un singolo mese sono richiesti i seguenti accessi

N°	Concetto	Costrutto	Tipo	Accessi	Nota	
1	Operaio	E	R	95	Si devono cercare le paghe orarie di tutti i lavoratori	
2	Impiego	Е	R	20 000	Si devono ricercare i turni di tutti gli operai, vengono pre- si in considerazione solo im- pieghi svolti in un mese e si suppone che i lavori siano di- stribuiti in un arco temporale di 6 anni	
Accessi Totali				20 095	Si sommano gli accessi in let- tura precedentemente calcola- ti	

Annualmente si hanno quindi $241\,140\,$ accessi.

5.2.4 Inserimento turno

Input: inizio e fine del turno, CF dell'operaio e ID del lavoro

Output: nessuno e inserisce il turno nel database se l'inserimento è andato a buon

fine, un errore altrimenti

Frequenza stimata: 2 volte al giorno per operaio

Figura 4: Diagramma ER coinvolto dall'operazione 4

Per ogni turno aggiunto attraverso l'apposita procedura si deve controllare se sono presenti troppi operai nelle fasce orarie necessarie, vengono poi associate le fasce orarie al lavoratore e al lavoro utilizzando l'entità Impiego.

Tavola dei volumi coinvolti

Concetto	Tipo	Volume
CapoCantiere	Е	5
Impiego	Е	1440000
Lavoro	Е	60000
Operaio	Е	95

Per una singola esecuzione dell'operazione sono richiesti i seguenti accessi:

N°	Concetto	Costrutto	Tipo	Accessi	Nota
1	Impiego	E	R	1 440 000	Si percorre l'intera tabella per controllare il vincolo sul numero massimo di sottopo- sti al capocantiere per lavo- ro
2	Impiego	E	R	1 440 000	Si percorre l'intera tabella per controllare il vincolo sul numero massimo di lavora- tori in ogni istante
3	Lavoro	E	R	1	Si ricava il capocantiere del lavoro specificato
4	Capocantiere	E	R	1	Si ricava il numero massi- mo di operai per lavoro che il capocantiere ottenuto può coordinare
5	Impiego	E	W	24	Si inseriscono le fasce orarie di 5 minuti comprese tra ini- zio e fine del turno ⁸
	Accessi Totali				Si sommano gli accessi pre- cedentemente calcolati, con- tando come doppi quelli in scrittura

Quotidianamente si hanno quindi 547 209 500 accessi.

⁸Si considerano spezzoni di turni della durata media di 2 ore. Si assume inoltre che il turno sia interamente nuovo e non contenga turni già assegnati allo stesso lavoratore allo stesso lavoro; in questo caso, infatti, si avrebbero meno inserimenti nel database, in quanto verrebbero aggiunte le sole fasce non assegnate in precedenza.

5.2.5 Edifici in costruzione / in ristrutturazione / completati

Input: data rispetto cui calcolare lo stato di costruzione

Output: numero di edifici da costruire, finiti, in costruzione e in ristrutturazione

Frequenza stimata: 1 volta a settimana

Figura 5: Diagramma ER coinvolto dall'operazione 5

Tavola dei volumi coinvolti

Concetto	Tipo	Volume
Lavoro	Е	60000
ProgettoEdilizio	Е	40
StadioAvanzamento	Е	150

Per una singola esecuzione dell'operazione sono richiesti i seguenti accessi.

N°	Concetto	Costrutto	Tipo	Accessi	Nota
1	Lavoro	E	R	60 000	Si percorre l'intera tabella per confrontare le date di inizio e fine lavoro con la da- ta fornita in input
2	StadioAvanzamento	E	R	150	Si ricercano i progetti edilizi associati agli stadi di avan- zamento coinvolti dai prece- denti lavori
3	3 ProgettoEdilizio E R			40	Si ricercano edifici associa- ti ai progetti edilizi coinvolti dai precedenti stadi di avan- zamento
Accessi Totali				60 190	Si sommano gli accessi in lettura precedentemente calcolati

Si hanno quindi $60\,190\;$ accessi alla settimana.

5.2.6 Quale stadio di avanzamento è più in ritardo

Input: data rispetto a cui considerare il ritardo (utilizza la data corrente se tale parametro è null)

Output: resultset *ID*, *GiorniRitardo* corrispondenti all'ID dello stadio di avanzamento in ritardo e il relativo numero di giorni di ritardo (mostra più tuple in caso di parimerito)

Frequenza stimata: 1 volta al giorno

Figura 6: Diagramma ER coinvolto dall'operazione 6

L'operazione mostra gli stadi di avanzamento con lavori ancora non terminati (ovvero con data di fine null) e maggiormente in ritardo rispetto alla fine stimata.

Tavola dei volumi coinvolti

Concetto	Tipo	Volume
Lavoro	Е	60000
StadioAvanzamento	Е	150

Per una singola esecuzione dell'operazione sono richiesti i seguenti accessi

N°	Concetto	Costrutto	Tipo	Accessi	Nota
1	Lavoro	E	R	60 000	Si cercano i lavori non con-
	Lavoro		10		clusi
					Si confrontano le date sti-
2	Stadio- Avanzamento ⁹	Е	R	150	mate di fine per ottenere lo
					stadio maggiormente in ri-
					tardo
					Si sommano gli accessi in
	Accessi Totali				lettura precedentemente
					calcolati

Quotidianamente si hanno quindi 60 150 accessi.

⁹Potenzialmente si può accedere ai soli stadi di avanzamento con lavori non completati, ma non essendo un dato noto a priori consideriamo il caso peggiore in cui si ogni stadio non è completato

5.2.7 Data una parete, trova colore e data lavoro

Input: ID del muro in questione e parete (0 per lato destro, 1 per lato sinistro) Output: colore o materiale della facciata e data dell'ultima modifica (errore se alla parete non sono associati lavori)

Frequenza stimata: 2 volte al giorno

Figura 7: Diagramma ER coinvolto dall'operazione 7

Tavola dei volumi coinvolti

Concetto	Tipo	Volume
Intonaco	Е	125
Lavoro	Е	60000
LavoroSuMuro	Е	48000
Materiale	Е	625
UtilizzoMateriale	R	90000

Per una singola esecuzione dell'operazione sono richiesti i seguenti accessi (si suppone che la query venga eseguita su un muro effettivamente costruito e intonacato).

N°	Concetto	Costrutto	Tipo	Accessi	Nota
1	Lavoro- SuMuro	E	R	48 000	Devono essere ricercati i la- vori che coinvolgono la pare- te scelta (ricerca su attributo non chiave)
2	Lavoro	E	R	6	Per ogni lavoro trovato si cer- cano le relative informazioni; data una parete si ipotizza una media di 6 lavori che la coinvolgono
3	Utilizzo- Materiale	R	R	1	Per il lavoro più recente si ri- cava il materiale utilizzato
4	Intonaco ¹⁰	E	R	1	Si ottiene il colore dell'into- naco utilizzato
	Accessi Totali				Si sommano gli accessi in let- tura precedentemente calco- lati

Quotidianamente si hanno quindi 96 016 accessi.

Nell'implementazione di questa procedura sono stati considerati i lavori con quantità positive di materiale come lavori additivi (ad esempio applicazione di uno strato di intonaco o di piastrelle), mentre quantità nulle (o negative) rappresentano un lavoro di rimozione di vecchi strati di materiale o la demolizione del muro stesso (a seconda della componente del muro coinvolta).

¹⁰Vengono trascurati gli accessi alle tabelle di materiali specifici diversi dall'intonaco, come piastrelle e pietre, in quanto hanno tipicamente frequenze molto limitate e comunque coinvolgerebbero solamente un accesso sulla chiave primaria del materiale stesso

5.2.8 Dato un istante elenca operai al lavoro e relativi edifici

Input: timestamp rispetto al quale effettuare l'operazione

Output: resultset Operaio, Edificio che associa ogni operaio in turno all'edificio

a cui sta lavorando

Frequenza stimata: 60 volte al giorno

Figura 8: Diagramma ER coinvolto dall'operazione 8

Tavola dei volumi coinvolti

Concetto	Tipo	Volume
Impiego	Е	1440000
Lavoro	Е	60000
ProgettoEdilizio	Е	40
StadioAvanzamento	Е	150

Per una singola esecuzione dell'operazione sono richiesti i seguenti accessi

N°	Concetto	Costrutto	Tipo	Accessi	Nota
1	Impiego	E	R	41	Si assume che il totale di impieghi sia generato in 6 anni e che la finestra di interesse sia la sola giornata lavorativa di 16 ore
2	Lavoro	Е	R	41	Si devono cercare gli stadi di avanzamento di lavori otte- nuti da Impiego
3	Stadio- Avanzamento	E	R	41	Si devono cercare i progetti a cui appartengono gli stadi di avanzamento ottenuti da La- voro
4	Progetto- Edilizio	E	R	41	Si devono cercare gli edifici a cui si riferiscono i progetti ot- tenuti da StadioAvanzamen- to
Accessi Totali				164	Si sommano gli accessi in let- tura precedentemente calco- lati

Quotidianamente si hanno quindi 9 840 accessi.

6 Progettazione logica

6.1 Descrizione dello schema logico

Traducendo lo schema concettuale nello schema logico, otteniamo le tabelle:

```
Edificio(ID, Latitudine, Longitudine, ZonaGeografica)
Piano(Numero, Edificio)
Vano(<u>ID</u>, Piano, Edificio, Lunghezza, Larghezza, AltezzaMax, Funzione)
Muro(ID, x0, y0, x1, y1, Vano1, Vano2)
Apertura (Muro, Sopra, Sotto, Sinistra, Destra, Tipo)
ProgettoEdilizio(ID, CostoLavori_rid, Edificio_rid)
StadioAvanzamento(ID, Progetto, DataInizio, DataFineStimata)
Lavoro(ID, CodiceStadio, DataInizio, DataFine, Descrizione, CapoCantiere,
CompensoCapoCantiere)
LavoroSuEdificio(Lavoro, Edificio)
LavoroSuVano(<u>Lavoro</u>, Vano)
LavoroSuMuro(<u>Lavoro</u>, Muro, Spessore, Lato)
CapoCantiere(CodiceFiscale, Nome, Cognome, MaxOperai)
Impiego(Inizio, Operaio, Lavoro)
Operaio(CodiceFiscale, Nome, Cognome, PagaOraria)
UtilizzoMateriale (Materiale, Lavoro, Quantita)
Materiale (CodiceLotto, QuantitaAcquistata, CostoUnitario, DataAcquisto,
Fornitore, QuantitaRimasta_rid, Copertura, Pavimentabile, Portante)
MaterialeGenerico(Materiale, Descrizione, Funzione, x, y, z)
Intonaco(Materiale, Tipo, Colore)
Mattone(Materiale, Alveolatura, Composizione, x, y, z)
Pietra(Materiale, Tipo, x, y, z)
Parquet(Materiale, TipoLegno)
Piastrella (Materiale, Tipo, Disegno, Dimensione, NumeroLati, Fuga)
ZonaGeografica(Nome)
RischioGeologico(Zona, Tipologia, CoefficienteRischio)
Danneggiamento (DataCalamita, TipoCalamita, ZonaGeografica)
Calamita(Data, Tipo, Latitudine, Longitudine, Intensita)
Sensore(ID, Vano, Tipo, Soglia, x, y, z)
Misura(Timestamp, Sensore, xOppureUnico, y, z)
Alert(Timestamp, Sensore)
```

6.2 Analisi dipendenze funzionali e normalizzazione

Per tutte queste tabelle, ad eccezione di Muro, Edificio e Sensore, la chiave è unica e non ci sono dipendenze funzionali non banali (banale: "la chiave implica tutto" oppure "X implica un sottoinsieme di X"). Esse sono quindi in BCNF.

Nella tabella Muro abbiamo le seguenti dipendenze funzionali:

- ID → L'intera tupla
 È la chiave primaria
- x0, y0, x1, y1, Vano1 → ID, Vano2
 L'implicante costituisce un'altra chiave di Muro, dato che a confinare con un certo vano (e quindi in un dato edificio / piano) e nella stessa posizione può esserci un solo muro

Visto che per tutte le dipendenze non banali l'implicante è una chiave, Muro è in BCNF.

Nella tabella Edificio abbiamo le seguenti dipendenze funzionali:

- ID → L'intera tupla
 È la chiave primaria
- Latitudine, Longitudine → ID, ZonaGeografica
 L'implicante costituisce un'altra chiave di Edificio: alle stesse coordinate
 globali possiamo avere un solo edificio

Visto che per tutte le dipendenze non banali l'implicante è una (super)chiave, anche Edificio è in BCNF.

Nella tabella Sensore abbiamo le seguenti dipendenze funzionali:

- ID → L'intera tupla
 È la chiave primaria
- x, y, z, Vano, Tipo → ID, Soglia
 L'implicante costituisce un'altra chiave di Sensore: in uno stesso vano, nella stessa posizione all'interno di esso, c'è un solo sensore di una data tipologia (quest'ultima precisazione è doverosa se si considerano anche sensori compatti che misurano diverse grandezze fisiche contemporaneamente, che di fatto vengono memorizzati come sensori distinti nella stessa posizione)

Visto che per tutte le dipendenze non banali l'implicante è una (super)chiave, anche Sensore è in BCNF.

Tutte le tabelle sono quindi in BCNF.

6.3 Semantica delle aree dello schema

6.3.1 Area Calamità

Indicata nello schema ER con bordi di colore uguale.

Calamità

Per calamità si intende un evento naturale che rappresenta un rischio per gli edifici e può danneggiarli più o meno gravemente in base all'intensità, alla distanza e dalla tipologia dell'evento. Ogni evento può colpire più zone geografiche che devono essere inserite manualmente, in quanto la conformazione geografica del territorio può influenzare fortemente gli effetti causati.

- Data [DATETIME] e Tipo [VARCHAR] sono chiave dell'entità in quanto si assume che non si possano verificare due eventi calamitosi rilevanti, della stessa tipologia e nello stesso momento.
- Latitudine [DECIMAL(9,6)] e Longitudine [DECIMAL(9,6)] rappresentano le coordinate del luogo cui avviene l'evento, vengono utilizzate per calcolare la distanza dalle zone geografiche colpite e dunque stimare l'effetto distruttivo provocato su di esse.
- Intensità [FLOAT] rappresenta la gravità dell'evento nel punto in cui si verifica. Viene misurato su una scala da 0 a infinito, dove 0 corrisponde alla gravità nulla (ovvero tale evento non arreca danni indipendentemente dalla distanza) e la distruzione degli edifici aumenta all'aumentare dell'intensità. Il valore dell'intensità può essere considerato approssimativamente in scala Mercalli.

ZonaGeografica

Si suddivide il territorio in zone geografiche tali per cui gli edifici in una stessa area geografica possono essere considerati soggetti agli stessi coefficienti di rischio per gli stessi eventi calamitosi.

• Nome [VARCHAR] è chiave dell'entità; è stato pensato come un nome userfriendly utilizzato solamente per distinguere facilmente le diverse aree geografiche

Danneggiamento

Associazione tra Calamità e ZonaGeografica, senza attributi propri.

• DataCalamita [DATETIME] e TipoCalamita [VARCHAR] si riferiscono alla calamità. C'è un vincolo di integrità referenziale tra questi due attributi e Calamita.(Data, Tipo).

• ZonaGeografica [VARCHAR] si riferisce alla zona geografica. C'è un vincolo di integrità referenziale tra questo attributo e ZonaGeografica.Nome.

RischioGeologico

Ogni ZonaGeografica può essere caratterizzata da più rischi che vengono considerati nella valutazione del rischio e dello stato generale degli edifici.

- Zona [VARCHAR] si riferisce a ZonaGeografica. Nome e fa parte della chiave.
- Tipologia [VARCHAR] insieme alla chiave esterna su ZonaGeografica è chiave dell'entità; definisce il tipo di rischio interessato, ad esempio terremoto, franamento, esondazione, ecc..
- CoefficienteRischio [FLOAT] caratterizza la propagazione degli eventi calamitosi della relativa tipologia e di conseguenza l'impatto del singolo rischio geologico nel calcolo del danno complessivo degli edifici ubicati nella zona coinvolta. È un valore su una scala da 0 (escluso) a infinito, dove 0 corrisponde alla gravità nulla (ovvero tale evento calamitoso non arreca nessun danno agli edifici, indipendentemente dall'intensità dello stesso) e infinito corrisponde ad un'attenuazione nulla (ovvero ogni punto ha intensità massima e pari all'epicentro). La distruzione delle strutture aumenta all'aumentare del coefficiente (a parità di intensità).

6.3.2 Area Gestione Personale

Indicata nello schema ER con bordi di colore uguale.

CapoCantiere e DirezioneLavori

Ad ogni Lavoro è assegnato un responsabile che si occupa della gestione del personale impiegato in tale lavoro.

- CodiceFiscale [CHAR(16)] identifica in modo univoco una persona ed è quindi chiave dell'entità.
- Nome [VARCHAR] e Cognome [VARCHAR] del capocantiere.
- OperaiMax [INT] è il numero massimo di operai che può coordinare: per ogni lavoro coordinato dal capocantiere il numero complessivo di operai che vi lavorano non può superare tale valore.

Impiego

La gestione della turnazione è effettuata associando lavoro da svolgere, fascia oraria in questione e operaio addetto a lavorare in tale fascia oraria al lavoro specificato. Per l'inserimento dei turni è previsto l'utilizzo dell'apposita procedura inserimento_turno (inizio, fine, cf_operaio, lavoro).

- Inizio [DATETIME] fa parte della chiave e definisce l'inizio della fascia oraria della durata, scelta arbitrariamente, di 5 minuti. L'inizio viene arrotondato per difetto ad un multiplo di tale intervallo.
- Operaio [CHAR(16)] si riferisce a Operaio.CodiceFiscale e insieme a Inizio costituisce la chiave.
- Lavoro [INT] si riferisce a Lavoro.ID.

Operaio

È il lavoratore che svolge concretamente la costruzione degli edifici.

- CodiceFiscale [CHAR(16)] identifica in modo univoco una persona ed è quindi chiave dell'entità.
- Nome [VARCHAR] e Cognome [VARCHAR] dell'operaio.
- PagaOraria [DECIMAL(8,2)] è la retribuzione oraria che ottiene il lavoratore per lo svolgimento del lavoro a lui assegnato secondo il sistema di turnazione. Rientra tra le spese sostenute per il lavoro.

6.3.3 Area Gestione Lavori

Indicata nello schema ER con bordi di colore uguale.

Per l'inserimento dei lavori su edifici, vani e muri è previsto l'utilizzo delle apposite procedure insert_lavoro_edificio (input: stadio, inizio, descrizione, capo, compenso_capo, max_operai, edificio; output: id), insert_lavoro_vano (input: stadio, inizio, descrizione, capo, compenso_capo, max_operai, vano; output: id) e insert_lavoro_muro (input: stadio, inizio, descrizione, capo, compenso_capo, max_operai, muro, lato, spessore; output: id) rispettivamente.

Lavoro

Rappresenta un lavoro svolto su un edificio o parte di esso. Viene associato mediante il sistema di turnazione agli operai che vi lavorano. Viene distinto in LavoroSuEdificio, LavoroSuVano e LavoroSuMuro a seconda delle entità coinvolte dal lavoro e quindi le relazioni in cui è presente il lavoro stesso.

• ID [INT] è un progressivo ed è chiave dell'entità.

- CodiceStadio [INT] indica l'ID dello stadio di avanzamento a cui appartiene il lavoro. Ha un vincolo di integrità referenziale su StadioAvanzamento.ID.
- DataInizio [DATETIME] indica l'inizio del lavoro.
- DataFine [DATETIME] indica la data effettiva di termine del lavoro, se il lavoro non è ancora terminato viene posto a NULL.
- Descrizione [VARCHAR] descrizione human-friendly del lavoro.
- CapoCantiere [CHAR(16)], il codice fiscale del capo cantiere, ha un vincolo di integrità referenziale su CapoCantiere.CodiceFiscale.
- CompensoCapoCantiere [DECIMAL(8, 2)] è il compenso (una tantum) che il capo cantiere riceverà alla fine del lavoro.
- MaxOperaiInsieme [INT] indica il numero massimo di operai che possono lavorare contemporaneamente in ogni istante al lavoro in questione.

LavoroSuMuro

La relazione tra i muri dell'edificio e i lavori su di essi (dunque di conseguenza anche i materiali utilizzati) permette di ricostruire la costituzione dei singoli strati dello stesso.

- Lavoro [INT] è la chiave. Ha un vincolo di integrità referenziale su Lavoro.ID.
- Muro [INT] indica il muro su cui si lavora. Ha un vincolo di integrità referenziale su Muro.ID.
- Spessore [DECIMAL(4,2)] è un parametro del rivestimento di un muro (tipicamente intonaco, con eventualmente piastrelle o pietre in vista) e permettono di memorizzare lo spessore (in mm) di uno specifico strato di intonaco applicato. In particolare si è in grado di ricostruire la composizione esatta della copertura del muro in base all'ordine di applicazione degli strati di intonaco.
- Lato [TINYINT] definisce quale dei due lati dal muro è coinvolto dal lavoro (eventualmente anche nessuno o entrambi) secondo la seguente codifica
 - -0 (00₂) corrisponde ad un lavoro strutturale, che quindi non coinvolge nessuna delle due superfici del muro
 - -1 (01₂) corrisponde ad un lavoro di intonacatura o posa di pietre o piastrelle decorative sulla faccia destra del muro (considerato come segmento orientato da (x_0, y_0) a (x_1, y_1))

- -2 (10₂) corrisponde ad un lavoro di intonacatura o posa di pietre o piastrelle decorative sulla faccia sinistra del muro (considerato come segmento orientato da (x_0, y_0) a (x_1, y_1))
- 3 (11₂) corrisponde ad un lavoro che coinvolge entrambe le superfici del muro

LavoroSuVano

Relazione tra il lavoro e il vano su cui viene eseguito.

- Lavoro [INT] è la chiave. Ha un vincolo di integrità referenziale su Lavoro.ID.
- Vano indica il vano su cui si lavora. Ha un vincolo di integrità referenziale su Vano.ID.

LavoroSuEdificio

Relazione tra il lavoro e l'edificio su cui viene eseguito.

- Lavoro [INT] è la chiave. Ha un vincolo di integrità referenziale su Lavoro.ID.
- Edificio indica l'edificio su cui si lavora. Ha un vincolo di integrità referenziale su Edificio.ID.

StadioAvanzamento

Ogni Lavoro deve appartenere ad uno StadioAvanzamento che raggruppa lavori affini al fine di pianificare e monitorare meglio il lavoro.

- ID [INT] è un progressivo ed è chiave dell'entità.
- Progetto [INT] indica il progetto edilizio a cui questo StadioAvanzamento appartiene. Ha un vincolo di integrità referenziale su ProgettoEdilizio.ID.
- DataInizio [DATE] è la data considerata come inizio dello stadio in considerazione, può essere diversa dal primo turno degli operai appartenente a tale stadio di avanzamento, in quanto potrebbe essere richiesta una fase di lavoro di organizzazione da parte del capocantiere, non rappresenta dunque una ridondanza.
- DataFineStimata [DATE] è la data stimata per la fine dell'ultimo lavoro appartenente a tale stadio di avanzamento.

ProgettoEdilizio

Ogni Stadio Avanzamento deve appartenere ad un progetto edilizio che raggruppa lavori affini.

• ID [INT] è un progressivo ed è chiave dell'entità.

- CostoLavori [DECIMAL(10,2)] rappresenta la somma dei costi di ciascun lavoro svolto all'edificio. È dunque un attributo ridondante (discusso nella sezione 5.1 di analisi delle ridondanze).
- Edificio [INT] rappresenta l'edificio a cui il progetto è riferito. Ha un vincolo di integrità referenziale su Edificio.ID. Dato che si potrebbe ricavare dai lavori, è anch'esso un attributo ridondante (discusso nella sezione 5.1 di analisi delle ridondanze).

6.3.4 Area Materiali

Indicata nello schema ER con bordi di colore uguale.

Materiale

È l'elemento utilizzato per la costruzione e che compone le diverse parti dell'edificio. Non è richiesto conoscere l'unità di misura del materiale, ma è necessario che essa sia coerente in tutte le occorrenze del database; è compito dell'utente garantire la coerenza di tale informazione.

- CodiceLotto [VARCHAR] è il codice univoco per ogni lotto di materiale prodotto ed è chiave dell'entità.
- CostoUnitario [DECIMAL(8,2)] è il prezzo del materiale, viene utilizzato per calcolare il costo complessivo del lavoro.
- DataAcquisto [DATE] è la data dell'acquisto del lotto di materiale in questione.
- Quantità Acquistata [FLOAT] è la quantità del lotto di materiale acquistato in unità del prodotto.
- Fornitore [VARCHAR] è il nome del fornitore del prodotto.
- QuantitàRimasta [FLOAT] è la quantità del lotto di materiale rimasto all'azienda in unità del prodotto; è ridondante in quanto può essere calcolato come differenza tra QuantitàAcquistata e materiale usato per i lavori (discusso nella sezione 5.1 di analisi delle ridondanze).
- Copertura [BOOL], Pavimentabile [BOOL], Portante [BOOL] indicano se il materiale in questione può essere utilizzato come rivestimento per muri (come intonaco, pietre e piastrelle), per una pavimentazione (come piastrelle) e per costruzioni portanti (come mattoni, pietre e cemento) rispettivamente. In

alcuni casi il tipo BOOLEAN viene sostituito con TINYINT, che occupa ugualmente 1 byte.

UtilizzoMateriale

Associazione tra Lavoro e Materiale, indica quali materiali sono stati utilizzati per i singoli lavori.

- Materiale [VARCHAR] ha un vincolo di integrità referenziale su Materiale.CodiceLotto ed è parte della chiave.
- Lavoro [INT] ha un vincolo di integrità referenziale su Lavoro.ID e insieme a Materiale costituisce la chiave.
- Quantità [FLOAT] indica la quantità di materiale utilizzato per il lavoro in questione in unità del materiale stesso.

Intonaco

Costituisce il rivestimento di un muro; tipicamente vengono applicati tre strati di intonaco di un determinato spessore, memorizzato come illustrato in precedenza.

- Materiale [VARCHAR] è la chiave (esterna). Ha un vincolo di integrità referenziale su Materiale.CodiceLotto.
- Tipo [VARCHAR] indica la tipologia dell'intonaco, come ad esempio premiscelato, a calce e cementizio.
- Colore [VARCHAR] indica il nome del colore dell'intonaco.

Mattone

Utilizzato per la costruzione di elementi portanti.

- Materiale [VARCHAR] è la chiave (esterna). Ha un vincolo di integrità referenziale su Materiale.CodiceLotto.
- Alveolatura [VARCHAR] descrive l'alveolatura del mattone (di diversa forma e riempimento).
- x [FLOAT], y [FLOAT] e z [FLOAT] indicano le dimensioni del mattone lungo i tre assi (in mm).
- Materiale [VARCHAR] descrive il materiale utilizzato per la fabbricazione del mattone.

Parquet

Lastre di legno per la pavimentazione.

- Materiale [VARCHAR] è la chiave (esterna). Ha un vincolo di integrità referenziale su Materiale.CodiceLotto.
- TipoLegno [VARCHAR] descrive il tipo di legno utilizzato.

Piastrella

Utilizzate per la pavimentazione oppure a scopo decorativo.

- Materiale [VARCHAR] è la chiave (esterna). Ha un vincolo di integrità referenziale su Materiale.CodiceLotto.
- Dimensione [FLOAT] è la lunghezza (in mm) del lato della piastrella poligonale.
- Disegno [VARCHAR] descrive il disegno rappresentato sulla piastrella.
- Fuga [FLOAT] è lo spazio (in mm) tra due piastrelle dopo essere state posizionate sul pavimento.
- NumeroLati [INT] è il numero di lati della piastrella poligonale.
- Tipo [VARCHAR] descrive la composizione della piastrella.

Pietra

Utilizzata per elementi portanti o per scopi decorativi.

- Materiale [VARCHAR] è la chiave (esterna). Ha un vincolo di integrità referenziale su Materiale.CodiceLotto.
- Tipo [VARCHAR] descrive la tipologia di pietra utilizzata.
- x [FLOAT], y [FLOAT] e z [FLOAT] indicano le dimensioni della pietra lungo i tre assi (in mm).

MaterialeGenerico

Materiale che non è assimilabile a quelli precedentemente descritti. Viene caratterizzato da parametri generici.

- Materiale [VARCHAR] è la chiave (esterna). Ha un vincolo di integrità referenziale su Materiale.CodiceLotto.
- Descrizione [VARCHAR] descrive l'aspetto del materiale.
- Funzione [VARCHAR] descrive la funzione tipica del materiale.
- x [FLOAT], y [FLOAT] e z [FLOAT] se pertinenti indicano le dimensioni del materiale lungo i tre assi (in mm), altrimenti vengono poste a NULL.

6.3.5 Area Planimetrie

Indicata nello schema ER con bordi di colore uguale.

Edificio

Rappresenta un complesso o un'unità abitativa, è composto da un insieme di piani. Tutte le coordinate utilizzate per descrivere le posizioni interne ad uno stesso edificio devono avere la stessa origine e tutti i sistemi di coordinate utilizzati hanno l'asse x rivolto verso EST e l'asse y rivolto verso NORD.

- ID [INT] è un progressivo ed è chiave dell'entità.
- Latitudine [DECIMAL(9,6)] e Longitudine [DECIMAL(9,6)] rappresentano le coordinate dell'edificio, vengono utilizzate per calcolare la distanza dagli eventi calamitosi e dunque stimare l'effetto distruttivo provocato su di esso.
- ZonaGeografica [VARCHAR] indica la zona in cui si trova l'edificio. Ha un vincolo di integrità referenziale su ZonaGeografica.Nome.

Piano

Rappresenta il piano di un edificio, è composto da un insieme di vani.

- Numero [INT] è il numero del piano e insieme all'edificio a cui appartiene è chiave dell'entità.
- Edificio [INT] è l'edificio a cui il piano appartiene. Ha un vincolo di integrità referenziale su Edificio.ID.

Vano

È una porzione di edificio delimitata da muri.

- ID [INT] è un progressivo ed è chiave dell'entità.
- Piano [INT] e Edificio [INT] indicano il numero del piano e l'edificio a cui appartiene il vano. Hanno un vincolo di integrità referenziale su Piano.Numero e Piano.Edificio (Edificio.ID)
- Funzione [VARCHAR] descrive la funzione principale del vano (ad esempio cucina, camera da letto o salotto).
- Lunghezza [INT] e Larghezza [INT] indicano le dimensioni (in mm) del vano considerato.

VanoInterno e VanoEsterno

Costituiscono una specializzazione di Vano. Un vano interno è caratterizzato da un soffitto e dunque possiede un'altezza, a differenza dei vani esterni (come balconi o terrazzi). Un vano interno è sempre delimitato da una linea spezzata chiusa di

muri, mentre un vano esterno può essere generato da un muro singolo (come ad esempio un terrazzo), in tal caso l'estensione del vano esterno è determinata da Lunghezza e Larghezza, una delle quali deve coincidere con la lunghezza del muro da cui è generato.

• AltezzaMax [INT] indica l'altezza massima (in mm) del vano interno considerato

Muro

È l'entità alla base della struttura della planimetria, viene definito come un segmento che congiunge due punti dati. I muri di uno stesso edificio non si possono intersecare. Un muro può essere condiviso al più da due vani (uno per lato), per convenzione si considera il Vano1 come vano a destra del muro orientato da (x_0, y_0) a (x_1, y_1) , mentre Vano2 è quello a sinistra (eventualmente posto a NULL si tratta di un muro esterno).

- ID [INT] è un progressivo ed è chiave dell'entità.
- x_0 [INT], y_0 [INT], x_1 [INT], y_1 [INT] sono le coordinate (in mm) degli estremi del muro rispetto ad un sistema di coordinate coerente con l'edificio. Il muro è un segmento orientato che congiunge il punto (x_0, y_0) al punto (x_1, y_1) .
- Vano1 [INT] e Vano2 [INT] indicano i vani delimitati dal muro. Hanno entrambi un vincolo di integrità referenziale su Vano.ID (due record diversi).

Apertura

Rappresenta una porta, una finestra o semplicemente un'apertura in un muro. L'orientamento dell'apertura può essere ricavato dalle coordinate del muro. Si assume che, per le aperture che hanno un verso (come porte esterne e finestre), se la coordinata Sinistra è minore della coordinata Destra allora il Vano1 del muro corrispondente è quello interno; viceversa se Sinistra è maggiore di Destra allora il vano interno è Vano2.

- Muro [INT] indica il muro su cui si trova l'apertura. Ha un vincolo di integrità referenziale su Muro.ID e insieme ai 4 attributi seguenti costituisce la chiave.
- Destra [INT], Sinistra [INT], Sotto [INT], Sopra [INT] descrivono il posizionamento dell'apertura sul muro e la sua dimensione (tali distanze sono espresse in mm). In particolare l'apertura si estende orizzontalmente a partire dalla distanza "Sinistra" fino alla distanza "Destra" da (x_0, y_0) del muro su cui è posizionata. Verticalmente si estende da una distanza "Sotto" ad una distanza "Sopra" dal pavimento.
- Tipo [VARCHAR] descrive il tipo dell'apertura (ad esempio porta o finestra).

6.3.6 Area Sensoristica

Indicata nello schema ER con bordi di colore uguale.

Sensore

È un dispositivo che acquisisce dati riguardanti una specifica grandezza fisica.

- ID [INT] è un progressivo ed è chiave dell'entità.
- Vano [INT] è il vano in cui si trova il sensore. Ha un vincolo di integrità referenziale su Vano.ID.
- Soglia [FLOAT] è il valore della lettura che viene considerato allarmante e potenzialmente pericoloso.
- x [INT], y [INT] e z [INT] sono le coordinate del sensore in un sistema di riferimento con assi paralleli a quelli del sistema che descrive le coordinate interne dell'edificio. L'origine è posta ad ascissa pari alla minore delle ascisse dei vertici del vano in cui è installato il sensore e la sua ordinata è pari alla minore delle ordinate dei vertici del vano. La coordinata z=0 è posta in corrispondenza del piano del pavimento.

In seguito alla ristrutturazione e alla conseguente eliminazione della generalizzazione di Misura è stato aggiunto l'attributo Tipo per definire la tipologia del sensore e di conseguenza della grandezza fisica misurata.

Misura

Memorizza la lettura del sensore in un dato istante. Viene distinta in diversi tipi a seconda del sensore che la rileva. Prima della ristrutturazione c'erano diverse generalizzazioni per i vari tipi di misura, che poi sono state accorpate in questa unica tabella (si veda la sezione 3.1.3).

- Timestamp [DATETIME(3)] è la data e l'ora a cui è stata registrata la misurazione e fa parte della chiave.
- Sensore [INT] è il sensore che ha registrato la misurazione. Ha un vincolo di integrità referenziale su Sensore. ID e insieme al timestamp costituisce la chiave.
- xOppureUnico [FLOAT], y [FLOAT] e z [FLOAT] sono i valori letti dal sensore. Se la misura è scalare, y e z sono nulli.

Temperatura, Umidità, Precipitazione, Allungamento e MisuraGenerica

Letture da sensori che restituiscono una grandezza scalare. Accorpate in Misura.

• Valore [FLOAT] è il valore letto dal sensore in un dato istante. È misurato nell'unità di misura base della grandezza interessata (°C per la temperatura, % per l'umidità, mm per l'allungamento).

Accelerazione e Rotazione

Letture da sensori che restituiscono una grandezza vettoriale. Accorpate in Misura.

• x [FLOAT], y [FLOAT] e z [FLOAT] è il valore letto dal sensore in un dato istante scomposto nei suoi tre assi. È misurato nell'unità di misura base della grandezza interessata (g per l'accelerazione e rad per la rotazione).

Alert

Rappresenta le misure che al momento della registrazione superano la soglia impostata per il sensore che l'ha generata. Questo permette di eliminare vecchie misurazioni non più rilevanti, pur mantenendo quelle considerate potenzialmente rischiose o rilevanti per le operazioni in futuro (in particolare vengono preservate le letture antecedenti e successive ad un alert entro un determinato intervallo temporale); inoltre permette di non avere effetti retroattivi nel caso di variazioni della soglia di sicurezza di un sensore. Per non inserire più record relativi allo stesso evento e migliorare le prestazioni, l'alert viene inserito soltanto se non è già presente un altro alert proveniente dallo stesso sensore nei due minuti precedenti.

In questa entità è presente la sola chiave esterna (Timestamp, Sensore) riferita a Misura (Timestamp, Sensore).

6.4 Vincoli

6.4.1 Vincoli di tupla

Tutti gli attributi che fanno parte delle chiavi primarie hanno il vincolo NOT NULL. Lo stesso vale per gli attributi con un vincolo di integrità referenziale, descritti nella sottosezione successiva, tranne per Muro (Vano2) che può essere NULL per indicare l'esterno. Oltre ai suddetti attributi, i seguenti attributi hanno il vincolo NOT NULL:

Edificio (Latitudine, Longitudine)

Vano (Lunghezza, Larghezza, Funzione)

Muro (x0, y0, x1, y1)

Apertura (Tipo)

LavoroSuMuro (Lato)

StadioAvanzamento (DataInizio, DataFineStimata)

Lavoro (DataInizio, Descrizione, CompensoCapoCantiere, MaxOperaiInsieme)

CapoCantiere (Nome, Cognome, MaxOperai)

Operaio (Nome, Cognome, PagaOraria)

UtilizzoMateriale (Quantita)

Materiale (QuantitaAcquistata, Copertura, Pavimentabile, Portante)

MaterialeGenerico (Descrizione)

Intonaco (Tipo)

Mattone (Alveolatura, Composizione, x, y, z)

Pietra (Tipo, x, y, z)

Parquet (TipoLegno)

Piastrella (Tipo, Disegno, Dimensione, NumeroLati, Fuga)

RischioGeologico (CoefficienteRischio)

Calamita (Latitudine, Longitudine, Intensita)

Sensore (Tipo, x, y, z)

Misura (xOppureUnico)

Altri vincoli di tupla sono i seguenti:

LavoroSuMuro (Spessore) può essere NULL, ma se ha un valore questo deve essere maggiore o uguale a zero.

Apertura (Sopra) > Apertura (Sotto)

Edificio (Latitudine) BETWEEN -90 AND +90, Edificio (Longitudine) BETWEEN -180 AND +180

Calamita (Latitudine) BETWEEN -90 AND +90, Calamita (Longitudine) BETWEEN -180 AND +180

Calamita (Intensita) ≥ 0

L'attributo Lato di un LavoroSuMuro deve essere compreso tra 0 e 3. Se è 0, il lavoro è sulla parte interna; se è 1, sulla facciata destra; se è 2; su quella sinistra e se è 3, su entrambe le facciate.

Piastrella (NumeroLati) ≥ 3 , (Fuga) ≥ 0 (Dimensione) ≥ 0

Rischio
Geologico (Coefficiente Rischio) > 0

6.4.2 Vincoli di integrità referenziale

L'attributo	ha un vincolo su
Edificio(ZonaGeografica)	ZonaGeografica(Nome)
Piano(Edificio)	Edificio(ID)
Vano(Piano, Edificio)	Piano(Numero, Edificio)
ProgettoEdilizio(Edificio_rid)	Edificio(ID)
StadioAvanzamento(Progetto)	ProgettoEdilizio(ID)
Lavoro(CodiceStadio)	StadioAvanzamento(ID)

Lavoro(CapoCantiere)	CapoCantiere(CodiceFiscale)
Sensore(Vano)	Vano(ID)
Misura(Sensore)	Sensore(ID)
Alert(Sensore, Timestamp)	Misura(Sensore, Timestamp)
Muro(Vano1)	Vano(ID)
Muro(Vano2)	Vano(ID)
Apertura(Muro)	Muro(ID)
RischioGeologico(ZonaGeografica)	ZonaGeografica(Nome)
Danneggiamento (DataCalamita, TipoCalamita)	Calamita(Data, Tipo)
Danneggiamento(ZonaGeografica)	ZonaGeografica(Nome)
Impiego(Operaio)	Operaio(CodiceFiscale)
Impiego(Lavoro)	Lavoro(ID)
UtilizzoMateriale(Materiale)	Materiale(CodiceLotto)
UtilizzoMateriale(Lavoro)	Lavoro(ID)
Mattone(Materiale)	Materiale(CodiceLotto)
MaterialeGenerico(Materiale)	Materiale(CodiceLotto)
Intonaco(Materiale)	Materiale(CodiceLotto)
Pietra(Materiale)	Materiale(CodiceLotto)
Parquet(Materiale)	Materiale(CodiceLotto)
Piastrella(Materiale)	Materiale(CodiceLotto)
LavoroSuEdificio(Lavoro)	Lavoro(ID)
LavoroSuEdificio(Edificio)	Edificio(ID)
LavoroSuVano(Lavoro)	Lavoro(ID)
LavoroSuVano(Vano)	Vano(ID)
LavoroSuMuro(Lavoro)	Lavoro(ID)
LavoroSuMuro(Muro)	Muro(ID)

6.4.3 Vincoli di integrità generici

- Il numero di un piano è zero oppure esistono i piani intermedi.
- Un muro ha una lunghezza maggiore di zero, collega esattamente due vani dello stesso piano e non interseca altri muri.
- Un'apertura non supera gli estremi del muro a cui appartiene e deve avere dimensioni maggiori di zero.
- Tutti i lavori di uno stesso progetto edilizio devono essere sullo stesso edificio.

- Un lavoro di costruzione di un muro richiede un materiale portante, mentre per un lavoro sulle pareti è necessario un materiale di copertura.
- Un muro non può essere ricoperto se non è stato costruito.
- La copertura di un muro deve essere fatta con un materiale alla volta.
- Gli operai non possono svolgere più lavori allo stesso tempo.
- Il numero totale di operai che contribuiscono a un lavoro è limitato da CapoCantiere(OperaiMax).
- Il numero di operai che svolgono lo stesso lavoro allo stesso tempo è limitato da Lavoro(MaxOperaiInsieme).
- Il turno lavorativo deve occupare almeno una fascia di 5 minuti.
- Non è possibile usare più materiale di quello rimasto.
- Ogni sensore deve trovarsi dentro un vano; quelli di allungamento devono trovarsi su un muro

7 Danni

7.1 Stato dell'edificio

Lo stato dell'edificio è determinato da 3 parametri che vengono calcolati dai valori letti dai sensori e opportunamente analizzati. La media pesata (con opportuni coefficienti p_s , p_m e p_a) di questi tre valori determina lo stato generale dell'edificio.

$$S = \frac{p_s \cdot S_s + p_m \cdot S_m + p_a \cdot S_a}{p_s + p_m + p_a} \tag{1}$$

Per uniformare la gravità dello stato tra letture di sensori diversi (e dunque con unità di misura diverse) si sono introdotte delle costanti per riscalare i valori letti dai sensori, si è inoltre deciso che il valore al di sopra del quale un parametro viene considerato potenzialmente rischioso è 10.

Di seguito sono illustrati nel dettaglio i tre parametri di stato.

7.1.1 Stato Struttura

Questo parametro (S_s) determina lo stato di danneggiamento dell'edificio dovuto a rapide sollecitazioni meccaniche, come nel caso di calamità sismiche, e considera dunque le letture di accelerometri e giroscopi.

$$S_s = k_a \cdot m_a + k_q \cdot m_q \tag{2}$$

Il valore di questo parametro S_s è determinato dalla media delle 300 letture più alte e sopra la soglia, registrate tra tutti i sensori dello stesso tipo installati nell'edificio $(m_a e m_s per accelerometri e giroscopi rispettivamente) moltiplicate per le relative costanti <math>k_a e k_s$. Le costanti moltiplicative devono essere opportunamente calibrate per uniformare la gravità del parametro alla scala definita nell'introduzione di questa sezione.

Si ritiene che la media dei soli valori più alti sia una misura adeguata della gravità del danneggiamento dell'edificio in quanto solitamente le scosse più intense determinano il danno massimo arrecato ad un edificio, inoltre non considerando la media di tutti i valori si evitano comportamenti errati, come ad esempio il fatto che una successiva sollecitazione di minore intensità migliori lo stato della struttura.

Poiché i dati di accelerometri e giroscopi sono misurati con un sistema di 3 assi, al fine della determinazione del parametro è stato considerato il modulo di ogni lettura calcolato come $l = \sqrt{l_x^2 + l_y^2 + l_z^2}$.

Si noti, infine, che questo parametro non può diminuire nel tempo in quanto i danneggiamenti (anche non visibili) dovuti alle massime vibrazioni vengono considerati fino a quando non si verificano sollecitazioni ancora più intense.

7.1.2 Stato Muri

Questo parametro (S_m) determina lo stato di danneggiamento dei muri dovuto a sollecitazioni di vario tipo e considera dunque le letture dei sensori di allungamento.

È stato implementato un modello predittivo di regressione lineare semplice sulle ultime letture dei sensori, in modo da determinare la gravità in base all'andamento degli stessi nell'ultimo periodo. In particolare, date le coppie (x_i, y_i) , dove x_i rappresenta la differenza (in secondi) tra il momento rispetto al quale viene eseguito il calcolo e l'istante in cui è stata registrata la lettura e y_i rappresenta il valore misurato, vengono calcolati i valori

$$q = \bar{y} - m \cdot \bar{x} \tag{3}$$

$$m = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
(4)

con \bar{x} e \bar{y} valori medi di x_i e y_i rispettivamente.

La retta y = mx + q può essere usata, con buona approssimazione, per seguire l'andamento lineare dei campioni e stimare i valori attesi nel futuro.

Nell'implementazione sono stati considerati i valori letti nell'ultima settimana, vengono poi sommati i valori previsti a distanza di una settimana che superano il valore di soglia del sensore e moltiplicati per il relativo coefficiente.

7.1.3 Stato Ambiente

Questo parametro (S_a) considera le letture dei sensori di temperatura e umidità. Sebbene elevati valori di umidità, temperatura ed escursione termica possano velocizzare il degrado dei materiali edilizi, l'impatto è chiaramente inferiore rispetto

ai parametri mostrati in precedenza, per questo motivo il peso p_a sarà relativamente piccolo. Può essere invece utile per consigliare interventi per migliorare la vivibilità dell'edificio.

Per calcolare questo parametro per ogni sensore viene considerata la media delle letture nell'ultima settimana e successivamente viene calcolata la media tra i valori che superano la soglia (separatamente per tipologia di sensore). Viene inoltre calcolata l'escursione termica massima nell'ultima settimana.

$$S_a = k_{temp} \cdot m_{temp} + k_{hum} \cdot m_{hum} + f(esc_{max}) \cdot k_{esc}$$
 (5)

I tre valori vengono infine moltiplicati per opportuni coefficienti e sommati per ottenere il parametro aggregato come mostrato nell'equazione 5, dove:

- k_{temp} , k_{hum} e k_{esc} sono le costanti moltiplicative dei parametri di temperatura, umidità e escursione massima rispettivamente
- m_{temp} e m_{hum} sono rispettivamente la media delle temperature e umidità medie sopra la soglia per ogni sensore
- esc_{max} è la differenza tra la temperatura massima e la temperatura minima misurata tra tutti i sensori di temperatura dell'edificio
- f(x) funzione che sottrae l'offset impostato per l'escursione (impostato a priori) se x è maggiore dell'offset stesso, altrimenti ritorna zero; definita come segue

$$f(x) = \begin{cases} x - \text{offset} & \text{if } x > \text{offset} \\ 0 & \text{if } x \le \text{offset} \end{cases}$$
 (6)

7.2 Calamità

Quando si verifica un evento calamitoso esso viene registrato nel database, fornendo la data dell'avvenimento e le coordinate del punto di massima gravità. Le aree geografiche coinvolte dall'evento devono essere opportunamente inserite dall'utente.

Il valore della gravità di una calamità ne descrive il potenziale distruttivo e viene automaticamente calcolato dal server. Considerato che, in genere, l'evento calamitoso rilascia energia in tutte le direzioni (in particolare per terremoti ed esplosioni), l'intensità $I \propto \frac{1}{r^2}$ (approssimativamente), con r distanza dal centro dell'evento; in dettaglio l'implementazione calcola l'intensità in un punto a distanza r (in km) come

$$I(r) = \frac{I_0}{(\frac{r}{k} + 1)^2} \tag{7}$$

in cui la costante k è il coefficiente di rischio dell'area geografica colpita riferito al tipo di evento e I_0 è l'intensità nel punto di massimo.

Vogliamo poi associare un indice legato ai danni provocati dalla calamità, come la scala Mercalli, alla sua intensità. È possibile convertire tra le due scale attraverso dati empirici, che associano i valori della scala Mercalli all'accelerazione rilevata dai sensori (PGA).

Figura 9: Correlazione PGA-Mercalli

In questa figura si osserva che i dati sperimentali (traccia blu) si possono descrivere con buona approssimazione dell'espressione analitica (traccia rossa). Questo

permette di ottenere un parametro proporzionale al livello di distruzione degli edifici.

L'espressione che si ottiene è la seguente:

$$Mercalli(x) = 8.869 \cdot x^{0.1935117}$$
 (8)

da cui si ottiene la formula inversa

$$P(x) = \left(\frac{x}{8.869}\right)^{5.1676462} \tag{9}$$

Dalle equazioni 7, 8 e 9 si può ottenere una stima dell'intensità in un punto qualunque dell'area geografica e in particolare l'intensità I_0 nell'epicentro, utilizzando le misurazioni (PGA_r) degli accelerometri nell'edificio a distanza r.

$$I_0 = Mercalli\left(PGA_r \cdot \left(\frac{r}{k} + 1\right)^2\right) \tag{10}$$

Per avere una stima più accurata questo calcolo viene effettuato per ogni edificio delle aree geografiche colpite e alla calamità viene assegnato il valore medio dell'intensità così calcolata. Inoltre la PGA per un singolo edificio viene calcolata come la media tra le letture più elevate dagli accelerometri, per evitare che una singola misura possa influenzare eccessivamente il risultato finale.

8 Data analytics

8.1 Consigli di intervento

Per consigliare gli interventi da attuare si applicano modelli distinti per ogni tipo di sensore, simili a quelli mostrati nella sezione 7.1.

Per ogni consiglio di intervento viene mostrato un indice di urgenza, il tipo di intervento da effettuare (ad esempio consolidamento o ricostruzione in base alla gravità del danno), il tipo di elemento coinvolto (ad esempio un muro, un vano o l'intera struttura), l'ID univoco dell'elemento coinvolto (se pertinente), la stima del costo da sostenere per la ricostruzione in caso di crollo (calcolato in base al costo di costruzione totale) e l'ID del sensore che ha generato il suggerimento (se pertinente).

8.1.1 Struttura

Per valutare il danneggiamento generale della struttura (ad esempio microfratture non visibili e danni permanenti) viene considerata, come nella sezione 7.1.1, la media dei valori più elevati delle misurazioni di accelerometri e giroscopi, separatamente, e viene consigliata la ricostruzione totale se viene superato un livello di gravità superiore a 50.

Essendo coinvolto l'intero edificio non viene fornito l'ID né dell'elemento né del sensore che ha generato l'intervento. Il costo in caso di crollo è calcolato come il costo complessivo di costruzione dell'edificio.

8.1.2 Muri

Per ogni sensore di allungamento presente sui muri degli edifici viene calcolata la misura prevista nella settimana successiva (con lo stesso algoritmo mostrato alla sezione 7.1.2) e moltiplicato per il coefficiente opportuno. Se il valore di gravità supera 50 viene suggerita la ricostruzione totale, altrimenti si consiglia un consolidamento.

Viene inoltre fornito l'ID del muro e del sensore annesso.

Se un sensore di allungamento si trova all'intersezione di due muri (e misura dunque una crepa tra essi) il costo in caso di crollo è calcolato come la somma dei costi di costruzione dei muri adiacenti.

8.1.3 Ambiente

Come nella sezione 7.1.3 vengono considerate separatamente le grandezze di temperatura, umidità ed escursione termica, ognuna con il proprio fattore di scala.

Per ogni sensore di temperatura viene calcolato il valore medio delle letture nell'ultima settimana e se supera il valore di soglia viene suggerita l'installazione di un sistema di climatizzazione. Viene inoltre calcolata la differenza tra la temperatura massima e minima (massima escursione termica) e se essa supera il valore costante salvato nel database viene suggerito di migliorare l'isolamento termico del vano.

Per ogni sensore di umidità viene calcolato il valore medio delle letture nell'ultima settimana e se supera il valore di soglia viene suggerita l'installazione di un sistema di deumidificazione.

Se un sensore genera un consiglio di intervento viene fornito il suo ID insieme all'ID del vano in cui esso è installato.

8.2 Stima dei danni

Il modello di stima dei danni consente di stimare la larghezza di una crepa monitorata da un sensore di allungamento a seguito di una ipotetica sollecitazione sismica (di cui è nota l'intensità e la posizione dell'epicentro).

L'algoritmo considera i terremoti precedentemente registrati nel database e le relative letture dei sensori per ottenere una coppia $(PGA, \Delta s)$ per ogni evento, dove la PGA è calcolata dalle misure degli accelerometri come illustrato nelle sezioni precedenti e Δs è la differenza tra la lettura del sensore di allungamento dopo e prima del terremoto.

Le coppie così ottenute vengono approssimate con una relazione lineare del tipo $\Delta s = m \cdot PGA + q$ come mostrato alla sezione 7.1.2.

Il valore stimato viene quindi calcolato come

$$s = m \cdot \frac{PGA(I)}{(\frac{r}{k} + 1)^2} + q + s_0 \tag{11}$$

con s_0 dimensione iniziale della crepa e I intensità dell'ipotetico terremoto e r distanza tra l'epicentro e l'edificio.