

Greedy Color Completion

- Given
 - \circ Intervals I = { I1 \sqsubset ... \sqsubset I2k },
 - $\circ \omega(I) \leq k$
 - \circ c': prefix \sqsubset I(lk) \rightarrow [k] be a proper k-coloring on prefix \sqsubset I(lk)
- Task is to assign color to next k intervals
- Observation
 - Let $I = \{II \sqsubset ... \sqsubset Im\}$ be a multiset of unit intervals. If $\omega(I) < m$, then the extremal intervals are disjoint, i.e., II < Im.

Greedy Color Completion

- Algorithm
 - Let J = { Il,Il+1,...Ik }, intervals that intersects Ik
 - \circ Number of elements in J = k-(l-1)
 - Coloring of J requires k-(l-1) colors.
 - Now color next l-1 intervals with the other (l-1) colors, i.e. infix \sqsubseteq I(lk+1, lk+l-1)
 - Now set c(li) = c(li-k) for $i \in \{k + l,...,2k\}$ because by observation 1 intervals li and li-k do not intersect.
- Hence we colored 2k intervals from given k coloring.

3

Modulo Color Completion

- Given
 - on Intervals
 - $\circ \omega(I) \leq k$,
 - Coloring of starting K intervals
 - K intervals assumes proper coloring
- Task is to assign color to every interval
- Algorithm
 - Apply Greedy Color Completion Algorithm on next K intervals recursively till no intervals are left.