

Welcome to

Big Data & Hadoop

An Introductory Session

Please introduce yourselves using Questions Window while others are joining us.

Session I

Hadoop

WELCOME TO SESSION I

- Session 3 hours Duration
 - First Half: Understanding Big Data
 - 10 mins. break
 - Second Half: Hadoop Architecture
- Session is being recorded & Recording & presentation will be shared
- Asking Questions?

Hadoop

- Every one except Instructor is muted
- Please ask questions by typing in Questions Window
- · Instructor will read out the questions before answering
- To get better answers, keep your messages short and avoid chat language
- This is Session I out of I2 sessions on Big Data & Hadoop course. It suffices as an intro to Big Data Tech.

WELCOME - KNOWBIGDATA

- Expert Instructors
- CloudxLab
- ☐ Lifetime access to LMS
 - Presentations
 - Class Recording
 - Assignments + Quizzes
 - Project Work

- Real Life Project
- Course Completion Certificate
- 24x7 support
- ☐ KnowBigData Alumni
 - Jobs
 - ☐ Stay Abreast (Updated Content,
 - Complimentary Sessions)
 - Stay Connected

COURSE CONTENT

	Understanding BigData, Hadoop Architecture			
II	Cluster Setup, ETL, Project Environment			
III	MapReduce framework			
IV	Adv MapReduce & Testing			
V	Analytics using Pig			
VI	Hive			
VII	NoSQL & HBase			
VIII	ZooKeeper, Flume			
IX	Sqoop, Oozie			
X	Spark			
XI	Storm, Mahout			
XII	Comparisons of No SQLs, Project Assignment			

About Instructor?

2015	CloudxLab	A big data platform.		
2014	KnowBigData	Founded		
2014	Amazon	Built High Throughput Systems for <u>Amazon.com</u> site using in-house NoSql.		
2012	InMobi	Built Recommender that churns 200 TB		
2011	tBits Global	Founded tBits Global Built an enterprise grade Document Management System		
2006	D.E.Shaw	Built the big data systems before the term was coined		
2002	IIT Roorkee	Finished B.Tech.		

Hadoop

TODAY'S CLASS

- ☐ What/why of Big Data?
- ☐ Why Now?
 - Examples Customers
- ☐ What is Hadoop?

- Components Hadoop
- ☐ Further Reading/Assignment

WHAT IS BIG DATA?

WHAT IS BIG DATA?

- Simply: Data of Very Big Size
- Can't process with usual tools
- Distributed Architecture Needed
- Structured / Unstructured

DATA VARIETY

SEMI-STRUCTURED

 ∀ Fields

UN-STRUCTURED

DISTRIBUTED COMPUTING

- I. Groups of networked computers
- 2. Interact with each other
- 3. To achieve a common goal.

Characterstics of BIG DATA

VOLUME

Data At Rest

VELOCITY

Data In Motion

VARIETY

Data in Many Forms

of huge data reliably.
e.g. Storage of Logs of a
website, Storage of data by
gmail.

FB: 300 PB. 600TB/ day

Hadoop

Problems Involving the handling of data coming at fast rate.

e.g. Number of requests being received by Facebook, Youtube streaming, Google Analytics Problems involving complex data structures e.g. Maps, Social Graphs, Recommendations

How many bytes in a petabyte?

Hadoop

How many bytes in a petabyte?

1.1259×10¹⁵

How many bytes in a petabyte?

1.1259×10¹⁵

Kilo	1024	Bytes	1024^	Bytes
Mega	1024	KB	1024 ^{^2}	Bytes
Giga	1024	MB	1024^3	Bytes
Tera	1024	GB	1024^4	Bytes
Peta	1024	Tera	1024^5	Bytes
Exa	1024	Peta	1024^6	Bytes
Zeta	1024	Exa	1024^ ⁷	Bytes
Yotta	1024	Zeta	1024^8	Bytes

I byte = 8 bit = can store 256 states

Is I PetaByte Big Data?

If you have to count just vowels in I Petabyte data everyday, do you need distributed system?

Is I PetaByte Big Data?

Yes.

Most of the existing systems can't handle it.

Time taken to read I TB from HDD?

Time taken to read I TB from HDD?

Around 6 hours.

WHY BIG DATA

WHY IS IT IMPORTANT NOW?

Smart Phones

Connectivity:
Internet Of Things

Connectivity: Social Networks

4.6 billion mobile-phones.1 - 2 billion people accessing the internet.

Facebook: 1.06 bn monthly active users, 30 billion pieces shared monthly.

~175 million tweets every day

The connectivity improved.

The devices became cheaper, faster and smaller.

Which components impact the speed computing?

- A. CPU
- B. Memory
- C. Memory Read Speed
- D. Disk Speed
- E. Disk Size
- F. Network Speed
- G. All of Above

Hadoop

Which components impact the speed computing?

- A. CPU
- B. Memory
- C. Memory Read Speed
- D. Disk Speed
- E. Disk Size
- F. Network Speed
- **/**
 - G. All of Above

BIG DATA PROBLEM

I. CPU Speed

To process & store data we need

4. Network

2. RAM - Speed & Size

3. Disk Size + Speed

BIG DATA PROBLEM

I. CPU Speed

To process & store data we need

And at least one of these become bottle neck

4. Network

Disk Size + Speed

EXAMPLE BIG DATA CUSTOMERS

Web and e-commerce

- Recommendation Engines
- 2. Search Quality
- 3. Sentiment Analyses
- 4.A/B testing

Telecommunications

- L. Customer Churn Prevention
- 2. Network Performance Optimization
- 3. Calling Data Record (CDR) Analysis
- 4. Analyzing Network to Predict Failure

EXAMPLE BIG DATA CUSTOMERS

Government

- Fraud Detection
- 2. Cyber Security Welfare
- 3. Justice

Healthcare & Life Sciences

- I. Health information exchange
- 2. Gene sequencing
- 3. Healthcare improvements
- 4. Drug Safety

Break of 10 mins. back by 9:42pm IST.

Recommendations

Jealous-21 Women's Plain T-

Jealous-21 Women's Plain T-

Women's

Maggy London Women's Cap Sleeve Draped Dress

Be the first to review this item

Price: \$53.10 & FREE Shipping. Details

List Price: \$98.00 You Save: \$44.90 (45%)

Size:

Select \$ Sizing info

Color: lawn

- 95% Polyester/5% Spandex
- Imported
- Hand Wash
- Top lined in tricot; skirt unlined
- No zipper

Wear it With

Miss Chase Women's

Regular Fit T-Shirt

what movie should i watch tonight?

Recommendations

Recommendations

Recommendations - How?

USER ID	MOVIE ID	RATING
KUMAR	matrix	4.0
KUMAR	Ice age	3.5
GIRI	apocalypse now	3.6
GIRI	Ice age	3.5

USER ID	MOVIE ID	RATING
KUMAR	apocalypse now	3.6
GIRI	matrix	4.0

Hadoop

Sentiment Analysis

twitter

II COMMON MYTHS

BIG DATA

- I. Always means data above or in range of TB
- 2. Is always about social media. Doesn't apply to me.
- 3. Will replace EDW [Enterprise data warehouse]
- 4. Is just a buzzword. No Practical Applications
- 5.Is New Concept
- 6. Will be future.
- 7. Is Expensive
- 8. Is only for data scientists. Or is magic.
- 9. We have enough hardware. Don't need any more.
- 10. We will build it when we need it.
- Big Data is about Hadoop.

SALARY TRENDS

Source:Indeed.com

BIG DATA SOLUTIONS

- Apache Hadoop
 - Apache Spark
- 2. Cassandra
- 3. Mongo DB

Hadoop

4. Google Compute Engine

Lightning-Fast Cluster Computing

cassandra

WHAT IS HADOOP?

- A. Created by Doug Cutting (of Yahoo) and Mike Cafarella
- B. Based on GFS, GMR & Google Big Table
- C. Built for Nutch search engine project
- D. Named after Toy Elephant
- E. Open Source Apache
- F. Power, Popular & Supported
- G. Framework to handle Big Data
- H. For reliable, scalable, distributed computing
 - I. Written in Java

COMPONENTS - HDFS

NoSQL Datastore

Import unstructed data

Import Structured

Data

Hadoop

Workflow

SQL Inteface

Compute Engine

NoSQL Datastore

Main Component

WHAT IS CLOUDXLABSTM?

- For Real Life Experience
- An online cluster of servers
- With all required tools installed
- Accessible globally
- Do not require high end configuration

ASSIGNMENT / PRE-WORK

- Go through Cloud Labs:
 - Admin Console (Ambari) http://hadoopl.knowbigdata.com:8080
 - Hue http://hadoopl.knowbigdata.com:8000
 - SSH
- 2.Go through LMS: http://www.knowbigdata.com/my-courses
- 3. Setup Hadoop (optional) Environment based on the VM
- 4. Finish the quiz from LMS
- 5. See Assignment section on LMS

FURTHER READING

http://en.wikipedia.org/wiki/Apache_Hadoop

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

FULL COURSE

www.KnowBigData.com

- Second Session onwards
 - 10 Apr 8pm IST
- 2. Sat-Sun 3 hours
- 3.33 hrs 3 hr x 12 classes
- 4.Includes CloudLabs + Support + LMS
- 5. Every class is recorded.

```
+1 419 665 3276 (US)
+91 803 959 1464 (IN)
```

reachus@KnowBigData.com

Big Data & Hadoop

Thank you.

+1 419 665 3276 (US)

+91 803 959 1464 (IN)

reachus@knowbigdata.com

Subscribe to our Youtube channel for latest videos - https://www. youtube.com/channel/UCxugRFe5wETYA7nMH6VGyEA

About Instructor?

TYPES OF COMPUTING

DISTRIBUTED

- I. Groups of networked computers
- 2.Interact with each other
- 3. To achieve a common goal.

PARALLEL

Memory

WHAT IS BIG DATA?

Terabytes to exabytes of existing data to process

Velocity

Data in Motion

Streaming data, milliseconds to seconds to respond

Variety

Data in Many Forms

Structured, unstructured, text, multimedia

Veracity*

Data in Doubt

Uncertainty due to data inconsistency & incompleteness, ambiguities, latency, deception, model approximations

Facebook: 500TB /day Boeing737: 240 TB / flight

Clickstreams:Im events / sec

Geospatial data
3D data
audio & video
Unstructured text

AND MANY MORE...

DISTRIBUTED COMPUTING

Take the code to the data.

Not data to the code. Data is very big as compared to size of code.

