CS 154

coNP, Oracles,
Space Complexity

What's next?

A few possibilities...

CS161 – Design and Analysis of Algorithms

CS254 – Complexity Theory (next year)

CS354 – Topics in Circuit Complexity

VOTE VOTE VOTE

For your favorite course on automata and complexity

Please complete the online course evaluation

Definition: $coNP = \{ L \mid \neg L \in NP \}$

What does a coNP computation look like?

In NP algorithms, we can use a "guess" instruction in pseudocode: Guess string y of $|x|^k$ length... and the machine accepts if some y leads to an accept state

In coNP algorithms, we can use a "try all" instruction:

Try all strings y of $|x|^k$ length...

and the machine accepts if every y leads to an accept state

Definition: A language B is coNP-complete if

- 1. $B \in coNP$
- 2. For every A in coNP, there is a polynomial-time reduction from A to B(B is coNP-hard)

UNSAT = $\{ \phi \mid \phi \text{ is a Boolean formula and } no \text{ variable assignment satisfies } \phi \}$

Theorem: UNSAT is coNP-complete

Proof: UNSAT \in **coNP because** \neg **UNSAT** \approx **SAT**

(2) UNSAT is coNP-hard:

Let $A \in coNP$. We show $A \leq_P UNSAT$

On input w, transform w into a formula ϕ using the Cook-Levin Theorem and an NP machine N for $\neg A$

$$\mathbf{w} \in \neg \mathbf{A} \Rightarrow \mathbf{\phi} \in \mathbf{SAT}$$

$$\mathbf{w} \notin \mathbf{A} \Rightarrow \phi \notin \mathbf{UNSAT}$$

$$\mathbf{w} \not\in \neg \mathbf{A} \Rightarrow \mathbf{\phi} \not\in \mathbf{SAT}$$

$$w \in A \Rightarrow \phi \in UNSAT$$

UNSAT = $\{ \phi \mid \phi \text{ is a Boolean formula and } no \text{ variable assignment satisfies } \phi \}$

Theorem: UNSAT is coNP-complete

TAUTOLOGY =
$$\{ \phi \mid \phi \text{ is a Boolean formula and} \}$$

 $every \text{ variable assignment satisfies } \{ \phi \mid \neg \phi \in \text{UNSAT} \}$

Theorem: TAUTOLOGY is coNP-complete

- (1) TAUTOLOGY \in coNP (already shown)
- (2) TAUTOLOGY is coNP-hard:

UNSAT \leq_{p} TAUTOLOGY: Given formula ϕ , output $\neg \phi$

Every NP-complete problem has a coNP-complete counterpart

NP-complete problems:

SAT, 3SAT, CLIQUE, VC, SUBSET-SUM, ...

coNP-complete problems:

UNSAT, TAUTOLOGY, NOCLIQUE, ...

Is $P = NP \cap coNP$?

THIS IS AN OPEN QUESTION!

An Interesting Problem in NP ∩ coNP

FACTORING

= { (m, n) | m > n > 1 are integers,
 there is a prime factor p of m where n ≤ p < m }</pre>

If FACTORING ∈ P, then we could break most public-key cryptography currently in use!

Theorem: FACTORING \in NP \cap coNP

To show that FACTORING \in NP \cap coNP, we'll use

PRIMES = {n | n is a prime integer}

PRIMES is in P

Manindra Agrawal, Neeraj Kayal and Nitin Saxena Ann. of Math. Volume 160, Number 2 (2004), 781-793.

Abstract

We present an unconditional deterministic polynomialtime algorithm that determines whether an input number is prime or composite.

FACTORING

= { (m, n) | m, n > 1 are integers,
 there is a prime factor p of m where n ≤ p < m }</pre>

Theorem: FACTORING \in NP \cap coNP

Proof:

The prime factorization p_1^{e1} ... p_k^{ek} of m can be used to efficiently prove that either (m,n) is in FACTORING or (m,n) is not in FACTORING:

First *verify* each p_i is prime and p_1^{e1} ... $p_k^{ek} = m$ If there is a $p_i \ge n$ then (m,n) is in FACTORING If for all i, $p_i < n$ then (m,n) is not in FACTORING

Polynomial Time With Oracles

*We do not condone smoking. Don't do it. It's bad. Kthxbye

How to Think about Oracles?

Think in terms of Turing Machine pseudocode!

An oracle Turing machine M with oracle $B \subseteq \Gamma^*$ lets you include the following kind of branching instructions:

"if (z in B) then <do something>
else <do something else>"

where z is some string defined earlier in pseudocode. By definition, the oracle TM can always check the condition (z in B) in one step

This notion makes sense even if B is not decidable!

Some Complexity Classes With Oracles

P^B = { L | L can be decided by some polynomial-time TM with an oracle for B }

PSAT = the class of languages decidable in polynomial time with an oracle for SAT

PNP = the class of languages decidable by some polynomial-time oracle TM with an oracle for some B in NP

Is
$$P^{SAT} \subseteq P^{NP}$$
?

Yes! By definition...

Is
$$P^{NP} \subseteq P^{SAT}$$
?
Yes!

Every NP language can be reduced to SAT!

For every poly-time TM M with oracle $B \in NP$, we can simulate every query z to oracle B by reducing z to a formula ϕ in poly-time, then asking an oracle for SAT instead

PB = { L | L can be decided by a polynomial-time TM with an oracle for B }Suppose B is in P.

Is
$$P^B \subseteq P$$
?

Yes!

For every poly-time TM M with oracle $B \in P$, we can simulate every query z to oracle B by simply running a polynomial-time decider for B.

The resulting machine runs in polynomial time!

Is $NP \subseteq P^{NP}$? Yes!

Just ask the oracle for the answer!

For every $L \in NP$ define an oracle TM M^L which asks the oracle if the input is in L.

Is $coNP \subseteq P^{NP}$?

Yes!

Again, just ask the oracle for the answer!

For every $L \in coNP$ we know $\neg L \in NP$

Define an oracle TM M^{¬L} which asks the oracle if the input is in ¬L accept if the answer is no, reject if the answer is yes

In general, we have $P^{NP} = P^{coNP}$

P^{NP} = the class of languages decidable by some polynomial-time oracle TM M^B for some B in NP

Informally: P^{NP} is the class of problems you can solve in polynomial time, assuming SAT solvers work

NP^B = { L | L can be decided by a polynomial-time nondeterministic TM with an oracle for B }

coNP^B = { L | L can be decided by a poly-time co-nondeterministic TM with an oracle for B }

Is $NP = NP^{NP}$?

Is $coNP^{NP} = NP^{NP}$?

THESE ARE OPEN QUESTIONS!

It is believed that the answers are NO

Logic Minimization is in coNP^{NP}

Two Boolean formulas ϕ and ψ over the variables $x_1,...,x_n$ are equivalent if they have the same value on every assignment to the variables

Are x and $x \lor x$ equivalent? Yes

Are x and $x \lor \neg x$ equivalent? No

Are $(x \lor \neg y) \land \neg(\neg x \land y)$ and $x \lor \neg y$ equivalent? Yes

A Boolean formula ϕ is minimal if no smaller formula is equivalent to ϕ

MIN-FORMULA = $\{ \phi \mid \phi \text{ is minimal } \}$

Theorem: MIN-FORMULA ∈ coNP^{NP}

Proof:

Define NEQUIV = $\{ (\phi, \psi) \mid \phi \text{ and } \psi \text{ are not equivalent } \}$

Observation: $NEQUIV \in NP$ (Why?)

Here is a coNP^{NEQUIV} machine for MIN-FORMULA:

Given a formula ϕ ,

Try all formulas ψ smaller than ϕ :

If $(\phi, \psi) \in NEQUIV$ then accept else reject

MIN-FORMULA is not known to be in coNP!

Space Complexity

Measuring Space Complexity

We measure *space* complexity by looking at the largest tape index reached during the computation

Let M be a deterministic TM.

Definition: The space complexity of M is the function $S: \mathbb{N} \to \mathbb{N}$, where S(n) is the largest tape index reached by M on any input of length n.

Definition: SPACE(S(n)) = { L | L is decided by a Turing machine with O(S(n)) space complexity}

Theorem: $3SAT \in SPACE(n)$

"Proof": Try all possible assignments to the (at most n) variables in a formula of length n. This can be done in O(n) space.

Theorem: NTIME(t(n)) is in SPACE(t(n))

"Proof": Try all possible computation paths of t(n) steps for an NTM on length-n input. This can be done in O(t(n)) space. The class SPACE(s(n)) formalizes the class of problems solvable by computers with *bounded memory*.

Fundamental (Unanswered) Question: How does time relate to space, in computing?

SPACE(n²) problems could potentially take much longer than n² steps to solve!

Intuition: You can always re-use space, but how can you re-use time?

Time Complexity of SPACE(S(n))

Let M be a halting TM that on input x, uses S space How many time steps can M(x) possibly take? Is there an upper bound?

The number of time steps is at most the total number of possible *configurations*!

(If a configuration repeats, the machine is looping.)

A configuration of M specifies a head position, state, and S cells of tape content. The total number of configurations is at most: $S |Q| |\Gamma|^S = 2^{O(S)}$

Corollary: Space S(n) computations can be decided in 2^{O(S(n))} time

$$\begin{aligned} \text{SPACE}(s(n)) \subseteq & \bigcup_{c \in N} \mathsf{TIME}(2^{c \cdot s(n)}) \end{aligned}$$

Idea: After 2^{O(s(n))} time steps, a s(n)-space bounded computation must have repeated a configuration, so then it will never halt...

$$\begin{array}{c}
\mathsf{PSPACE} = \bigcup_{k \in \mathbb{N}} \mathsf{SPACE}(\mathsf{n}^k) \\
\mathbf{k} \in \mathbb{N}
\end{array}$$

EXPTIME =
$$\bigcup_{k \in \mathbb{N}} \text{TIME}(2^{n^k})$$

PSPACE

EXPTIME

Is P PSPACE? YES

Is NP ⊆ PSPACE? YES

Is NP^{NP} ⊆ PSPACE? YES

Thank you!

For being a great class!