In [2]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [92]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\c7_used_cars.csv")
a
```

Out[92]:

	Unnamed: 0	model	year	price	transmission	mileage	fuelType	tax	mpg	engineSiz
0	0	T-Roc	2019	25000	Automatic	13904	Diesel	145	49.6	2.
1	1	T-Roc	2019	26883	Automatic	4562	Diesel	145	49.6	2.
2	2	T-Roc	2019	20000	Manual	7414	Diesel	145	50.4	2.
3	3	T-Roc	2019	33492	Automatic	4825	Petrol	145	32.5	2.
4	4	T-Roc	2019	22900	Semi-Auto	6500	Petrol	150	39.8	1.
99182	10663	A3	2020	16999	Manual	4018	Petrol	145	49.6	1.
99183	10664	A3	2020	16999	Manual	1978	Petrol	150	49.6	1.
99184	10665	A3	2020	17199	Manual	609	Petrol	150	49.6	1.
99185	10666	Q3	2017	19499	Automatic	8646	Petrol	150	47.9	1.
99186	10667	Q3	2016	15999	Manual	11855	Petrol	150	47.9	1.

99187 rows × 11 columns

4

In [93]:

```
a=a.head(90000)
a
```

Out[93]:

	Unnamed: 0	model	year	price	transmission	mileage	fuelType	tax	mpg	engineSiz	
0	0	T-Roc	2019	25000	Automatic	13904	Diesel	145	49.6	2.	
1	1	T-Roc	2019	26883	Automatic	4562	Diesel	145	49.6	2.	
2	2	T-Roc	2019	20000	Manual	7414	Diesel	145	50.4	2.	
3	3	T-Roc	2019	33492	Automatic	4825	Petrol	145	32.5	2.	
4	4	T-Roc	2019	22900	Semi-Auto	6500	Petrol	150	39.8	1.	
89995	1476	Q3	2016	16450	Manual	31000	Diesel	30	60.1	2.	
89996	1477	A4	2017	15498	Manual	62140	Diesel	145	64.2	2.	
89997	1478	Q2	2019	26998	Semi-Auto	156	Diesel	150	46.3	2.	
89998	1479	A1	2019	17690	Manual	8396	Petrol	150	50.4	1.	
89999	1480	Q3	2014	17998	Semi-Auto	23340	Petrol	260	36.7	2.	
90000	90000 rows × 11 columns										

90000 TOWS A TT COIGITIES

In [94]:

```
from sklearn.linear_model import LogisticRegression
```

In [95]:

```
a.columns
```

Out[95]:

	Unnamed: 0	year	mileage	price	tax	mpg	engineSize	Make
0	0	2019	13904	25000	145	49.6	2.0	VW
1	1	2019	4562	26883	145	49.6	2.0	VW
2	2	2019	7414	20000	145	50.4	2.0	VW
3	3	2019	4825	33492	145	32.5	2.0	VW
4	4	2019	6500	22900	150	39.8	1.5	VW
89995	1476	2016	31000	16450	30	60.1	2.0	Audi
89996	1477	2017	62140	15498	145	64.2	2.0	Audi
89997	1478	2019	156	26998	150	46.3	2.0	Audi
89998	1479	2019	8396	17690	150	50.4	1.0	Audi
89999	1480	2014	23340	17998	260	36.7	2.0	Audi

90000 rows × 8 columns

```
In [97]:
```

```
c=b.iloc[:,0:5]
d=b.iloc[:,-1]
```

```
In [98]:
```

```
c.shape
```

Out[98]:

(90000, 5)

In [99]:

```
d.shape
```

Out[99]:

(90000,)

In [100]:

```
from sklearn.preprocessing import StandardScaler
```

In [101]:

```
fs=StandardScaler().fit_transform(c)
```

```
In [102]:
from sklearn.linear_model import LogisticRegression
In [103]:
logr=LogisticRegression()
logr.fit(fs,d)
Out[103]:
LogisticRegression()
In [104]:
e=[[2,5,77,7,88]]
In [105]:
prediction=logr.predict(e)
prediction
Out[105]:
array(['BMW'], dtype=object)
In [106]:
logr.classes_
Out[106]:
array(['Audi', 'BMW', 'VW', 'ford', 'hyundi', 'merc', 'skoda', 'toyota',
       'vauxhall'], dtype=object)
In [107]:
logr.predict_proba(e)[0][0]
Out[107]:
2.6224968197307055e-21
In [108]:
logr.predict_proba(e)[0][1]
Out[108]:
```

0.999999999637039

In [109]:

```
import re
from sklearn.datasets import load_digits
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
```

In [110]:

```
digits=load_digits()
digits
  'pixel_0_4',
  'pixel_0_5',
  'pixel_0_6',
  'pixel_0_7'
  'pixel_1_0',
  'pixel_1_1',
  'pixel_1_2',
  'pixel_1_3',
  'pixel_1_4',
  'pixel_1_5',
  'pixel_1_6',
  'pixel_1_7',
  'pixel_2_0',
  'pixel_2_1',
  'pixel_2_2',
  'pixel_2_3',
  'pixel_2_4',
  'pixel_2_5',
  'pixel_2_6',
  'nival 2 7'
```

In [111]:

```
plt.figure(figsize=(20,4))
for index,(image,label)in enumerate(zip(digits.data[0:5],digits.target[0:5])):
    plt.subplot(1,5,index+1)
    plt.imshow(np.reshape(image,(8,8)),cmap=plt.cm.gray)
    plt.title('Number:%i\n'%label,fontsize=15)
```


In [112]:

```
x_train,x_test,y_train,y_test=train_test_split(digits.data,digits.target,test_size=0.30)
```

```
In [113]:
```

```
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)

(1257, 64)
(540, 64)
(1257,)
```

In [114]:

(540,)

```
logre=LogisticRegression(max_iter=10000)
logre.fit(x_train,y_train)
```

Out[114]:

LogisticRegression(max_iter=10000)

In [115]:

```
logre.predict(x_test)
```

Out[115]:

```
array([5, 2, 9, 7, 8, 1, 0, 0, 2, 4, 0, 3, 2, 4, 3, 8, 4, 6, 8, 0, 2, 8,
       7, 8, 6, 0, 9, 5, 2, 4, 6, 9, 2, 9, 8, 3, 1, 1, 2, 2, 4, 7, 9, 2,
      6, 2, 9, 6, 9, 2, 5, 2, 5, 7, 9, 3, 2, 3, 7, 0, 5, 6, 8, 7, 6, 0,
      9, 8, 4, 8, 5, 1, 0, 8, 1, 4, 0, 3, 3, 6, 3, 4, 5, 7, 4, 3, 3, 4,
      9, 9, 6, 3, 1, 0, 1, 8, 1, 9, 8, 5, 8, 4, 6, 4, 8, 8, 1, 6, 4, 2,
      0, 2, 4, 0, 5, 1, 7, 2, 8, 5, 1, 1, 8, 0, 6, 4, 3, 3, 8, 3, 7, 0,
      1, 0, 5, 4, 3, 2, 9, 3, 1, 4, 0, 3, 2, 0, 0, 8, 4, 3, 1, 9, 1, 8,
      6, 5, 1, 2, 9, 5, 8, 7, 1, 7, 4, 9, 4, 9, 1, 4, 9, 5, 3, 2, 2, 7,
       7, 3, 0, 2, 9, 1, 0, 8, 0, 3, 5, 1, 1, 9, 9, 5, 3, 8, 7, 1, 4, 0,
      1, 7, 9, 0, 0, 8, 7, 0, 7, 4, 4, 2, 9, 7, 7, 7, 2, 9, 6, 6, 8, 6,
       2, 8, 9, 7, 4, 4, 6, 4, 8, 1, 6, 2, 2, 7, 6, 1, 2, 8, 8, 6, 5, 3,
      6, 7, 4, 1, 8, 1, 8, 8, 9, 5, 8, 7, 8, 0, 9, 2, 9, 2, 4, 4, 0, 0,
       3, 0, 6, 2, 0, 4, 3, 3, 3, 9, 5, 0, 6, 2, 6, 9, 4, 5, 6, 2, 1, 2,
       3, 7, 5, 9, 6, 9, 7, 4, 7, 4, 9, 9, 5, 6, 6, 6, 5, 8, 3, 4, 9, 3,
      7, 8, 3, 2, 4, 3, 5, 3, 0, 9, 5, 5, 0, 4, 9, 8, 0, 5, 5, 4, 8, 0,
       1, 4, 4, 2, 2, 3, 4, 7, 7, 0, 9, 0, 3, 7, 3, 3, 5, 8, 2, 9, 2, 0,
      2, 5, 1, 2, 7, 1, 7, 6, 6, 5, 8, 3, 6, 3, 3, 9, 3, 9, 5, 8, 7, 6,
      5, 1, 3, 3, 8, 4, 1, 4, 2, 5, 2, 7, 4, 2, 4, 1, 1, 7, 0, 1, 0, 3,
      8, 8, 7, 0, 5, 6, 8, 9, 5, 8, 1, 3, 0, 2, 6, 6, 7, 9, 4, 2, 8, 4,
      0, 9, 1, 7, 2, 6, 4, 2, 1, 9, 7, 4, 2, 2, 5, 7, 1, 7, 3, 8, 3, 8,
       7, 7, 7, 2, 6, 9, 9, 7,
                               5, 3, 4, 1, 1, 2, 9, 7, 1, 4, 1, 3, 0, 3,
      3, 1, 5, 5, 0, 6, 7, 5, 8, 5, 2, 8, 7, 0, 9, 0, 3, 2, 9, 0, 9, 6,
      4, 0, 8, 4, 4, 2, 2, 1, 2, 7, 2, 6, 6, 8, 2, 5, 8, 0, 4, 6, 2, 5,
      7, 6, 2, 7, 0, 6, 2, 9, 3, 7, 5, 3, 4, 2, 5, 0, 5, 8, 3, 2, 3, 1,
      6, 5, 4, 4, 1, 8, 5, 1, 7, 7, 6, 6
```

In [116]:

```
logre.score(x_test,y_test)
```

Out[116]:

0.9611111111111111

In []:			