Adresace v internetu IPv4, cesta datagramu v síti

Datagram

- Jednotka pro přepravování v sítích
- Datagram (model OSI/ISO)

Značení portů na aktivních propojovacích prvcích (př. CISCO)

- Rozhraní na switchy **interfaces**, jsou hlavně fyzické porty a VLANy (přesněji virtuální interfaces pro VLANu Switch Virtual Interface SVI)
- Vedle toho však existuje celá řada dalších, např. EtherChannel (port-channel), sériová linka (seriál), konzole (console), asynchronní linka (TTY), síťový terminál (VTY) telnet
- Fyzické porty switche se označují (adresují)
 - o Typem:

 \bigcirc

- FastEthernet (stačí f)
- GigabitEthernet (stačí g)
- TenGigbitThernet (stačí t)
- Číslem portu
 - Řetězec, který má tvar podle typu switche
- Nejčastější je {slot}/{port} nebo {stack}/{slot}/{port}
- Běžné (nemodulární) switche jsou brány, jako by byli ve slotu 0, takže například adresace (třeba pro switch C2960) je f0/1 a je jím označen FastEthernet (100Mbit/s) port číslo 1
- Stohovatelné switche (podporují stack), jako je třeba Catalyst 3750, adresujeme například g1/0/1, což označuje GigabitEthernet (1Gbit/s) port, který je na prvním switchy ve stacku (nebo samostatném), ve slotu 0, port číslo 1

MAC adresa

- Media Access Control
- Jedinečný identifikátor síťového zařízení, který používají různé protokoly druhé (spojové) vrstvy
 OSI
- Přiřazována síťové kartě NIC bezprostředně při její výrobě
- 48 bitů (tři skupiny čtyř hexadecimálních čísel)

- Častěji se ale píše jako šestice dvojciferných hexadecimálních čísel oddělených pomlčkami nebo dvojtečkami (např. 01-23-45-67-89-ab nebo 01:23:45:67:89:ab)
- Dvě poloviny (prnví polovinu musí výrobce požádat centrálního správce adresního prostoru, výrobce pak každé vyrobené kartě či zařízení přiřazuje jedinečnou hodnotu druhé poloviny adresy)
- Všesměrová (broadcast) -> (ff:ff:ff:ff:ff)
- **Skupinová (multicast) ->** Skupinové adresy mají v nejméně významném bitu prvního bajtu jedničku (01 při zápisu adresy)
- **Lokálně spravovaná ->** Lokálně spravované adresy mají nastaven druhý nejméně významný bit prvního bajtu (02 v zápisu adresy)

IP Třídy adres

				Tříd	ly IP adres	:			
Třída	_	ačátek (bin)	1. bajt	standardní maska	bitů sítě	bitů stanice	sítí	st	anic v každé síti
A	0		0–127	255.0.0.0	7	24	2 ⁷ = 12	8	2 ²⁴ -2 = 16 777 214
В	10		128–191	255.255.0	.0	14	16 214 = 16	6384	2 ¹⁶ –2 = 65 53
С	110	0	192–223	255.255.255	.0	21	8 2 097	2 ²¹ =	28-2 = 25
D	1110		224–239	multicast					
E	111	11	240–255	vyhrazeno jako rezerva					
			R	ozsahy IP	adres	a masky	/ sítě		
Třída		1. bajt		minimum	maximum		ma	maska podsítě	
Α		0–127		0.0.0.0	127.25	55.255.2	55 255	255.0.0.0	
B 12		128-	-191	128.0.0.0	191.25	55.255.2	55 255	255.255.0.0	
C 192–		-223	192.0.0.0	223.25	55.255.2	55 255	5.2	55.255.0	
D 224-		-239	224.0.0.0	239.25	55.255.2	55 255	5.2	55.255.255	
E 240-		-255	240.0.0.0	255 25	55.255.2	55 —			

Vyhrazené adresy

- Nejnižší adresa v sítu (s nulovou adresou stanice) slouží jako označení celé sítě (např. síť 192.168.24.0)
- Nejvyšší adresa v síti (adresa stanice obsahuje samé binární jedničky) slouží jako adresa pro všesměrové vysílání (broadcast)
- Adresy 127.x.x.x (localhost)
- Link-local adresy
 - o V rozsahu adres 169.254.0.0 až 169.254.255.255 (169.254.0.0/16)
 - Mohou být automaticky přiřazeny k lokálnímu operačnímu systému v prostředí, kde není k dispozici nastavení IP
- TEST-NET adresy
 - Blok adresy 192.0.2.0 do 192.0.2.255 (192.0.2.0/24) je vyhrazen pro výuku a studijní účely

- Experimentální adresy
 - Adresy v bloku 240.0.0.0 až 255.255.255.254
 - V současné době se tyto adresy mohou použít pro výzkumné a experimentální účely, ale nemohou být použity v síti IPv4
- Privátní adresy

Označení RFC1918	Rozsah IP adres	Počet adres	Největší CIDR blok (maska podsítě)	Pro síťové rozhraní
24-bitový blok	10.0.0.0 – 10.255.255.255	16,777,216	10.0.0.0/8 (255.0.0.0)	24 bitů
20-bitový blok	172.16.0.0 – 172.31.255.255	1,048,576	172.16.0.0/12 (255.240.0.0)	20 bitů
16-bitový blok	192.168.0.0 – 192.168.255.255	65,536	192.168.0.0/16 (255.255.0.0)	16 bitů

Veřejné adresy

0

- Za jednou veřejnou IP adresou se může skrývat celá "vnitřní" síť
- o To umožňuje vlastnost s názvem překlad adres (NAT)

Získání adresy

- Nejvyšší autoritou v Internetu je The Internet Assigned Numbers Authority (IANA)
- IANA jednoznačně rozděluje intervaly čísel pro IP-adresy, AS atd. a přiděluje tyto intervaly jednotlivým regionálním IR (Internet Registries)
- Svět je tak geografický rozdělen mezi regionální IR
- Území pokrývané jedním regionálním IR je rozděleno mezi lokálním IR
- Lokální IR jsou zpravidla poskytovatelé internetu (ISP)

ARP protokol

- Address Resolution Protocol (Protokol vyhodnocující adresy)
- Umožňuje překlad IP adresy na fyzickou hardwarovou adresu

0

- Pohyby paketů v síti LAN řídí datová vrstva (vrstva 2) -> rozumí pouze fyzickým hardwarovým adresám, proto překlad
- Je-li dána cílová IP adresa, umožní ARP protokol hostiteli nalézt fyzickou adresu ve stejné fyzické síti
- Je vyslán speciální paket všem hostitelům v LAN a vyžaduje odpověď od vlastníka určité IP adresy
- Poté vlastník příslušné IP adresy odpoví tazateli svou fyzickou adresou
- Ostatní hostitelé vysílání ignorují
- Nyní tazatel použije přijatou fyzickou adresu k přímému odeslání paketů cílovému hostiteli
- IPv6 -> MD objevování okolí, objevuje všechny

Vytváření podsítí

FLSM (Fixed Length Subnet Mask)

• Všechny sítě jsou stejně velké

VLSM (Variable Length Subnet Mask)

- Design podsítě používá více než jednu masku ve stejné síti, což znamená, že pro různé podsítě jedné třídy A, B, C nebo sítě
- Používá se ke zvýšení použitelnosti podsítí, protože mohou mít různou velikost

Implementace

- Velikost bloku se určuje na základě požadavku, takže podsíťování je vyžadováno vícekrát
- Předpokládejme, že je správce, který má čtyři oddělení ke správě
 - o Prodejní a nákupní oddělení se 120 počítači
 - Vývojové oddělení s 50 počítači
 - Účetní oddělení s 26 počítači
 - Oddělení správy s 5 počítači
- IP: 192.168.1.0/24

Kroky

1. Pro každý segment vyberte velikost bloku, která je buď větší nebo rovna skutečnému požadavku, kterým je součet: hostitelských adres, broadcast adresy a síťové adresy

SLASH	NOTATION	HOSTS/SUBNETS
	/24	254
	/25	126
	/26	62
	/27	30
	/28	14
	/29	6
	/30	2

2. Uspořádejte všechny segmenty v sestupném pořadí podle velikosti bloku, který je od nejvyššího po nejnižší požadavek

Sales and Purchase: 120
Development: 50
Accounts: 26
Management: 5

- 3. Nejvyšší dostupná IP adresa musí být přidělena nejvyšším požadavkům, takže prodejní a nákupní oddělení získalo 192.168.1.0/25, které má 126 platných adres, které mohou být snadno dostupné pro 120 hostitelů. Použitá maska podsítě je 255.255.255.128
- 4. Následující segment vyžaduje IP pro zpracování 50 hostitelů. IP podsíť se síťovým číslem 192.168.1.128/26 je další nejvyšší, kterou lze přiřadit 62 hostitelů, čímž splňuje požadavek vývojového oddělení. Použitá maska je 255.255.255.192
- 5. Podobně další podsíť IP 192.168.1.192/27 může splnit požadavky účetního oddělení, protože má 30 platných hostitelů IP, které lze přiřadit 26 počítačům. Použitá maska je 255.255.255.224
- 6. Poslední segment vyžaduje 5 platných hostitelů IP, které lze splnit podsítí 192.168.1.224/29, která má masku jako 255.255.255.248, je vybrána podle požadavku. Lze zvolit IP s maskou 255.255.250, ale má 14 platných IP adres hostitelů a požadavek je ve srovnání menší, takže je vybrána ta, která je srovnatelná s požadavkem

Výhody VLSM

- V FLSM jsou všechny podsítě stejné velikosti a mají stejný počet hostitelů, ale ve VLSM je velikost proměnlivá a může mít proměnlivý počet hostitelů, což zefektivňuje adresování IP povolením směrovaného systému různá délka masky podle požadavků
- Ve FLSM dochází k plýtvání IP adres, ale ve VLSM dochází k minimálnímu plýtvání IP adres
- FLSM je preferován pro soukromé IP adresy, zatímco pro veřejné IP adresy je VLSM nejlepší volbou

Porty

- Rozlišování jednotlivých služeb v rámci jednoho počítače
- Tři typy portů
 - o (dobře) známé porty
 - Porty v rozsahu 0 až 1023
 - Vyhrazené pro nejběžnější služby
 - Registrované porty
 - V rozsahu 1024 až 49151
 - Použití portu by se mělo registrovat u ICAANN
 - Dynamické a soukromé porty
 - V rozsahu 49152 až 65535
 - Vyhrazené pro dynamické přidělování a soukromé využití
 - Nejsou pevně přiděleny žádné aplikaci

Čísla portů

- 20 FTP (data), 21 FTP (příkazy)
- 22 SSH

- 23 Telnet
- 25 SMTP
- 53 DNS
- 69 TFTP
- 80 http
- 110 POP3