



# **Model Optimization and Tuning Phase Template**

| Date          | 20 June 2025             |
|---------------|--------------------------|
| Team ID       | SWTID1749709635          |
| Project Title | Mental Health Prediction |
| Maximum Marks | 10 Marks                 |

## **Model Optimization and Tuning Phase**

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

### **Hyperparameter Tuning Documentation (6 Marks):**

| Model                   | Tuned Hyperparameters  | Optimal Values                        |
|-------------------------|------------------------|---------------------------------------|
| Logistic<br>Regression  | max_iter, random_state | max_iter = 1000,<br>random_state = 42 |
| K- Nearest<br>Neighbors | n_neighbors            | n_neighbors = 5 (default value)       |
| Decision Tree           | random_state           | random_state = 42                     |
| Random Forest           | random_state           | random_state = 42                     |
| Naïve Bayes             | None                   | GaussianNB uses default               |





| Support Vector<br>Machines | probability, random_state                    | probability = True,<br>random_state = 42                                    |
|----------------------------|----------------------------------------------|-----------------------------------------------------------------------------|
| Extreme Gradient Boosting  | use_label_encoder, eval_metric, random_state | use_label_encoder = False,<br>eval_metric = 'logloss',<br>random_state = 42 |
| Adaptive<br>Boosting       | random_state                                 | random_state = 42                                                           |
| Gradient Boosting          | random_state                                 | random_state = 42                                                           |

# **Performance Metrics Comparison Report (2 Marks):**

| Model                   | Baseline Metric   | Optimized Metric  |
|-------------------------|-------------------|-------------------|
| Logistic Regression     | Accuracy = 0.7035 | Accuracy = 0.7559 |
| K- Nearest<br>Neighbors | Accuracy = 0.6786 | Accuracy = 0.7165 |
| Decision Tree           | Accuracy = 0.8087 | Accuracy = 0.8504 |
| Rnadom Forest           | Accuracy = 0.8644 | Accuracy = 0.9213 |
| Naïve Bayes             | Accuracy = 0.7093 | Accuracy = 0.7205 |





| Support Vector<br>Machines | Accuracy = 0.7416 | Accuracy = 0.7795 |
|----------------------------|-------------------|-------------------|
| Extreme Gradient Boosting  | Accuracy = 0.8370 | Accuracy = 0.8701 |
| Adaptive Boosting          | Accuracy = 0.7062 | Accuracy = 0.7480 |
| Gradient Boosting          | Accuracy = 0.8059 | Accuracy = 0.8386 |

# **Final Model Selection Justification (2 Marks):**

| Final Model   | Reasoning                                                                                                                                                                                                                                                                                               |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Random Forest | Random Forest was chosen as the final model because it achieved the highest accuracy (92%) after hyperparameter tuning. It also offers robust handling of categorical and numerical features, resistance to overfitting, interpretability through feature importances, and fast prediction performance. |
|               |                                                                                                                                                                                                                                                                                                         |