Université d'Évry Val d'Essonne 2009-2010

M54 algèbre et arithmétique

Devoir surveillé

Exercice 1. On considère $\mathbf{Z}[\sqrt{2}] = \{a + b\sqrt{2}, \ a \in \mathbf{Z}, b \in \mathbf{Z}\}.$

- 1. Rappeler brièvement pourquoi $\mathbf{Z}[\sqrt{2}]$ est un sous-anneau de \mathbf{R} .
- 2. Décrire $(\mathbf{Z}[\sqrt{2}])^{\times}$. (On ne cherchera pas à résoudre l'équation obtenue.)
- 3. Montrer que l'application

$$\phi \colon \mathbf{Z}[\sqrt{2}] \to \mathbf{Z}/7\mathbf{Z}$$

$$a + b\sqrt{2} \mapsto \overline{a + 3b}$$

est un morphisme d'anneaux surjectif.

4. Montrer que les seuls carrés dans $\mathbb{Z}/7\mathbb{Z}$ sont 0, 1, 2 et 4. En déduire qu'il n'existe pas de morphisme d'anneau $\mathbb{Z}[\sqrt{3}] \to \mathbb{Z}/7\mathbb{Z}$.

Exercice 2. Le but de l'exercice est d'étudier les ideaux d'un anneaux produit. On commence par l'exemple de $\mathbf{Z}^2 = \mathbf{Z} \times \mathbf{Z}$.

1. Soit $d \in \mathbb{N}$ un entier supérieur ou égal à 2. On considère l'ensemble

$$A_d = \{(x, y) \in \mathbf{Z}^2 \text{ tels que } x \equiv y \mod d\}$$
.

Montrer que c'est un sous-anneau (unitaire) de \mathbb{Z}^2 .

2. Montrer que A_d n'est pas un idéal de \mathbb{Z}^2 .

Soient A et B deux anneaux commutatifs unitaires non nuls.

- 3. Soient I un idéal de A et J un idéal de B; montrer que $I \times J$ est un idéal de $A \times B$.
- 4. Réciproquement, soit K un idéal de $A \times B$. On pose

$$I = \{ x \in \mathbf{Z} \text{ tq } (x, 0) \in K \}$$
$$J = \{ y \in \mathbf{Z} \text{ tq } (0, y) \in K \} .$$

Montrer que I est un idéal de A et J un idéal de B, et que $K = I \times J$.

- 5. Montrer que l'idéal $\{(0,0)\}$ n'est jamais premier dans $A \times B$.
- 6. Si I est un idéal premier de A, montrer que $I \times B$ est un idéal premier de B.
- 7. Si I est un idéal maximal de A, montrer que $I \times B$ est un idéal maximal de B.
- 8. Quels sont les idéaux premiers de $A \times B$. Lesquels sont maximaux?