Алгоритм прямого симплексметода

1. Приведение математической модели

 A_{n+m}

задачи к каноническому виду и представление её в векторной форме. Для этого вводятся, со знаком плюс,

дополнительные переменные, преобразующие неравенства в равенства. Получаем каноническую форму системы ограничений (расширенную модель ЗЛП).

$$\begin{split} f(x_1,x_2,\dots,x_n,x_{n+1},\dots,x_{n+m}) &= c_1x_1 + c_2x_2 + \dots + c_nx_n + 0x_{n+1} + \dots + 0x_{n+m} \to opt, \\ a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + 1x_{n+1} + 0x_{n+2} + \dots + 0x_{n+m} &= b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + 0x_{n+1} + 1x_{n+2} + \dots + 0x_{n+m} &= b_2, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + 0x_{n+1} + 0x_{n+2} + \dots + 1x_{n+m} &= b_{m1}. \end{split}$$

2. Построение таблицы. Каноническая форма ЗЛП помещается в так называемую симплекс-таблицу, а в качестве начального базиса выбираются вектора, соответствующие дополнительным

переменным: 0 0 C_n c_{j} c_1 $C_{\mathcal{B}}$ Базис A_0 A_{n+1} A_{n+m} A_1 b_1 A_{n+1} a_{11} a_{1n} 0 0 0 A_{n+2}

0

 δ_{n+1}

 a_{mn}

1

 δ_{n+n}

3. Расчёт симплекс-разностей. Эти	
величины определяются как:	

текущее значение целевой функции

 a_{m1}

 $b_{\underline{m}}$

 δ_0

 δ

 $oldsymbol{\delta}_0 = \sum_{i=1}^m C_{i,\mathcal{B}} imes a_{i,o}$ • j-е симплекс-разности

$$\delta_{j} = \sum_{i=1}^{m} C_{i,E} \times a_{i,j} - c_{j}$$

i=1

будет в столбце A0.

• при решении задачи на максимум, когда все j-е симплекс-разности

больше либо равны нулю;

неположительных значениях всех j-х симплекс-разностей. Задача не разрешима при заданных

при решении задачи на минимум при

параметрах (область ограничений не замкнута в направлении оптимизации)

• при решении задачи на максимум

 при решении задачи на максимум существуют столбцы с отрицательными j-ми симплекс-разностями, и в этих

столбцах все элементы неположительные при решении задачи на минимум

существуют столбцы с положительными ј-ми симплексразностями, а в этих столбцах все элементы неположительные