

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 August 2001 (09.08.2001)

PCT

(10) International Publication Number
WO 01/57244 A1

(51) International Patent Classification⁷: C12Q 1/48, 1/70

Microbiology and Immunology, Penn State College of Medicine, Hersey Medical Center, 500 University Drive, Hersey, PA 17033 (US).

(21) International Application Number: PCT/AU01/00098

(74) Agents: HUGHES, Edward, John, Langford et al.; Davies Collison Cave, Level 3, 303 Coronation Drive, Milton, Queensland 4064 (AU).

(22) International Filing Date: 2 February 2001 (02.02.2001)

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(25) Filing Language: English

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(26) Publication Language: English

Published:

— with international search report

(30) Priority Data:
60/179,948 3 February 2000 (03.02.2000) US

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(71) Applicants (for all designated States except US): MELBOURNE HEALTH [AU/AU]; 10th Floor, Connibere Building, The Royal Melbourne Hospital, Flemington Road, Parkville, Victoria 3052 (AU). THE PENN STATE RESEARCH FOUNDATION [US/US]; 304 Old Main, University Park, PA 16802 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DELANEY, William, IV [US/US]; 1217 Palm Avenue, San Mateo, CA 94402 (US). LOCARNINI, Stephen, Alister [AU/AU]; 13 Carlisle Avenue, St Kilda East, Victoria 3183 (AU). CHEN, Robert, Yung, Ming [AU/AU]; 28 Shields Street, Flemington, Victoria 3031 (AU). BARTHOLOMEUSZ, Angeline [AU/AU]; 64 Miller Street, Carnegie, Victoria 3163 (AU). ISOM, Harriet [US/US]; Department of

A1

(54) Title: AN ASSAY FOR DETECTING VARIANT HAPATITIS B VIRUSES (HBVs) WHICH EXHIBIT ALTERED SENSITIVITY TO AGENTS

WO 01/57244

(57) Abstract: The present invention relates generally to an assay for detecting variant Hepatitis B viruses (HBVs) which exhibit altered sensitivity to agents. The variant HBVs are delivered to cells using a baculovirus vector. The same agents generally have a particular effect or absence of effect on a reference HBV. The altered sensitivity is in relation to the effects of the agent on one or more stages of infection, replication, assembly or release of virus or virus-like particles including any intermediary steps during the processes of viral infection, replication, assembly and/or release. The identification of variant HBVs with altered sensitivities to anti-HBV agents provides a means of monitoring cross resistance, or the development of new therapeutics effective against variant HBVs with altered sensitivities to other anti-HBV agents, as well as monitoring therapeutic protocols which may then need to be modified to ensure the appropriate anti-HBV agent is administered or that the appropriate therapeutic protocol is instituted. The present invention further provides variant HBVs detected by the assay of the present invention and to components thereof as well as recombinant, chemical analogue, homologue and derivative forms of such components.

- 1 -

An assay for detecting variant Hepatitis B viruses (HBVs) which exhibit altered sensitivity to agents

FIELD OF THE INVENTION

5 The present invention relates generally to an assay for detecting variant Hepatitis B viruses (HBVs) which exhibit altered sensitivity to agents. The variant HBVs are delivered to cells using a baculovirus vector. The same agents generally have a particular effect or absence of effect on a reference HBV. The altered sensitivity is in relation to the effects of the agent on one or more stages of infection, replication, assembly or release of virus or virus-like particles including any intermediary steps during the processes of viral infection, replication, assembly and/or release. The identification of variant HBVs with altered sensitivities to anti-HBV agents provides a means of monitoring cross resistance, or the development of new therapeutics effective against variant HBVs with altered sensitivities to other anti-HBV agents, as well as monitoring therapeutic protocols which may then
10 need to be modified to ensure the appropriate anti-HBV agent is administered or that the appropriate therapeutic protocol is instituted. The present invention further provides variant HBVs detected by the assay of the present invention and to components thereof as well as recombinant, chemical analogue, homologue and derivative forms of such components.

15

20

BACKGROUND OF THE INVENTION

Reference to any prior art in this specification is not, and should not be taken as, an acknowledgment or any form of suggestion that this prior art forms part of the common
25 general knowledge in Australia or any other country.

Bibliographic details of the publications numerically referred to in this specification are collected at the end of the description.

30 Specific mutations in amino acid sequence are represented herein as "Xaa₁nXaa₂" where Xaa₁ is the original amino acid residue before mutation, n is the residue number and Xaa₂

- 2 -

is the mutant amino acid. The abbreviation "Xaa" may be the three letter or single letter amino acid code. A mutation in single letter code is represented, for example, by X₁nX₂ where X₁ and X₂ are the same as Xaa₁ and Xaa₂, respectively. The amino acid residues for Hepatitis B virus DNA polymerase are numbered with the residue methionine in the motif

- 5 "Tyr Met Asp Asp (YMDD)," being residue number 550.

The reference HBV is considered herein to comprise a composite or consensus nucleotide or amino acid sequence from HBV genotypes A through G (1, 2).

- 10 The rapidly increasing sophistication of recombinant DNA technology is greatly facilitating advances in the medical and allied health fields. This is particularly the case with the generation of therapeutic compositions and recombinant vaccines. Recombinant technology is providing the genetic bases for screening or identifying useful components for therapeutic compositions.

15

Hepatitis B virus (HBV) can cause debilitating disease conditions ranging from subclinical infection to chronic active hepatitis and can lead to acute liver failure or fulminant hepatitis.

- 20 Most patients will suffer an acute hepatitis during which time the virus is eliminated. In fulminant hepatitis, patients have acute liver failure and this frequently leads to patient death. About 5% of patients in North America and Europe fail to eliminate the virus, whereas in West Africa, up to 15% of infected patients fail to clear HBV (3). Persistent HBV infection predisposes the host to chronic liver disease and hepatocellular carcinoma

25 (4).

- The HBV genome comprises a series of overlapping genes in a circular, partially double-stranded DNA molecule (5) [see also Figure 1]. These genes encode for four overlapping open reading frames. For example, the gene encoding the DNA polymerase overlaps the
- 30 viral envelope genes (Pre-S1, Pre-S2 and S) and partially overlaps the X and core genes. The protein component of the small HBV surface protein is generally referred to as the

- 3 -

HBV surface antigen (HBsAg) and is encoded by the S gene sequence. The Pre-S1 and Pre-S2 gene sequences encode the other envelope components (6). The core open reading frame encodes for both the hepatitis B core protein (HBcAg) and HBeAg, which starts from a precore initiation codon. HBV variants can have single or multiple mutations in one
5 or more of the overlapping genes.

The HBV DNA polymerase is a reverse transcriptase (i.e. an RNA dependent DNA polymerase) and also has DNA dependent DNA polymerase as well as primase and RNase H activity. Nucleoside analogues have been used to inhibit HBV DNA replication.
10 However, mutations have arisen in the gene encoding the HBV DNA polymerase resulting in the development of HBV variants resistant to the nucleoside analogues. Resistance may occur to a single nucleoside analogue or cross-resistance may also occur to an entire family of nucleoside analogues. Furthermore, when the mutation occurs in a region overlapping with the gene encoding HBsAg, alterations may occur to the HBsAg itself leading to the
15 development of vaccine escape mutants.

Some precore variants of HBV result in hepatitis B e antigen (HBeAg)-negative hepatitis B. Seven to 30% of patients with chronic HBV infection worldwide are HBeAg-negative and are positive for HBV DNA by hybridisation using commercial tests. One such variant
20 is unable to synthesize HBeAg. A single base substitution (G-to-A) at nucleotide 1896 (A₁₈₉₆; numbering from the unique EcoRI site) gives rise to a translational stop codon in the second last codon (codon 28) of the precore gene. Other precore and basal core promoter (BCP) mutations are listed in Table 1. Since the core gene itself is not affected, synthesis of the core protein proceeds normally enabling production of virions. Precore
25 A₁₈₉₆ mutations occur in both anti-HBe-positive patients with mild disease and those with high level viraemia and severe chronic hepatitis, suggesting that there is not a direct causal association with chronic progressive disease. However, infection with precore mutant virus has been associated with fulminant hepatitis and in the transplantation setting, graft failure (15).

- 4 -

The HBsAg comprises an antigenic region referred to as the "a" determinant (7). The "a" determinant is complex, conformational and dependent upon disulphide bonding among highly conserved cysteine residues. Genetic variation leading to changes in the "a" determinant has been implicated in mutants of HBV which escape the immunological response generated to conventional vaccines (8-12). One particularly common mutation is a glycine (G) to arginine (R) substitution at amino acid position 145 (G145R) of HBsAg. This mutation affects the "a" epitope region.

- 5 The increasing reliance on chemical and immunological intervention in treating or preventing HBV infection is resulting in greater selective pressure for the emergence of variants of HBV which are resistant to the interventionist therapy. Due to the overlapping genomic structure of HBV, HBV variants, may be directly or indirectly selected for by the use of chemical agents or vaccines.
- 10
- 15 It is important to be able to detect variant HBVs so that appropriate steps can be taken to modify a therapeutic protocol. This is also particularly important in the development of new therapeutic agents to be effective against known resistant variants of HBV and also when cross resistance develops within a family of chemically related anti-viral agents.
- 20 HBV baculovirus mediated HBV replication is a transient system and does not require integration of the HBV viral genome. This system was recently described by Delaney *et al.* (13, 14). The HBV baculovirus system has a number of advantages over standard transient transfection systems and cell lines expressing HBV.
- 25 In the study of HBV replication and the development of therapeutic agents directed against HBV, some cell lines have been developed which are capable of expressing HBV DNA. However, these cell lines were developed using HBV DNA sequences under the control of heterologous promoters or heterologous regulatory sequences which are unlikely to mimic the situation in a naturally infected cell.

- 5 -

Furthermore, cell lines commonly used to study HBV contain multiple copies of integrated HBV DNA. Hepadnavirus genomes are maintained in the nucleus of infected cells *in vivo* as a pool of episomal, covalently closed circular (CCC) DNA molecules. Although the integration of HBV DNA in human liver has been reported, it is not an obligatory part of
5 the HBV lifecycle and integration is not required for HBV replication. In addition, when integrated HBV DNA is found, it is frequently rearranged and is often transcriptionally silent. Because HBV expressing cell lines contain stably integrated HBV DNA, viral gene expression and replication is continuous; therefore, it is not possible to experimentally control the time or conditions under which these processes are initiated. Stable HBV
10 expressing cell lines contain fixed numbers of integrated typically head-to tail orientated HBV genomes and, as such, HBV gene expression and replication levels cannot be regulated and are restricted to the number of integrated copies which each cell line contains. Consequently, it is not possible to study the effects of increasing or decreasing the copy number of integrated HBV genomes without transfecting the cell line and/or
15 selecting new cell lines.

HBV baculovirus infection, even at high multiplicities, is not toxic to cells such as HepG2 or Huh-7. HBV expression can be enhanced or prolonged in a population of HBV baculovirus infected cells simply by superinfection of the cultures.
20

One major difference between baculovirus-mediated gene transfer of HBV to HepG2 cells and stably transfected cell lines is the ability to synchronously initiate the replication process. In a stably transfected HBV cell line, such as a derivative of the HepG2 cell line referred to as "2.2.15", each cell contains virus at all phases of the replication cycle. In
25 contrast, HBV baculovirus infection can be used to synchronously start HBV replication in, for example, HepG2 cells because these cells contain no viral products before infection. In HBV baculovirus infected HepG2 cells, it is possible to follow the time course for secretion of both HBsAg and HBeAg with time after infection using the appropriate recombinant HBV baculovirus.

- 6 -

There is a need, therefore, to develop a baculovirus system to screen for specific HBV variants having altered sensitivities to particular agents.

SUMMARY OF THE INVENTION

Throughout this specification, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element or integer or group of elements or integers but not the exclusion of any other element or integer or group of elements or integers.

Nucleotide and amino acid sequences are referred to by a sequence identifier, i.e. <400>1, <400>2, etc. A sequence listing is provided after the claims.

10

The present invention relates generally to an assay for detecting a variant HBV which exhibits altered sensitivity to agents. In particular, the assay comprises the use of a baculovirus system to screen for sensitivities of HBV variants to particular agents. The agents contemplated herein include chemical agents such as nucleotide and nucleoside analogues and non-nucleoside analogues, immunological agents such as antibodies and cytokines as well as other therapeutic molecules. These agents generally but not exclusively have a known effect against a reference HBV such as inhibiting or reducing HBV infection, replication and/or assembly or release of virus or virus-like particles. The assay generally comprises detecting a variant HBV which exhibits an altered sensitivity to an agent by first generating a genetic construct comprising a replication competent amount of the genome from the HBV variant contained in or fused to an amount of baculovirus genome capable of infecting cells. Before, during or after the cells are infected, an agent to be tested is brought into contact with the cells. There is an optional further step where the cells are again infected with the same construct or a genetic construct comprising the genome of an HBV wild-type or other HBV variant. The cells are then cultured for a time and under conditions sufficient for the variant HBV to replicate, express genetic sequences and/or assembly and/or release virus or virus-like particles if resistant to the agent. The cells, cell lysates or culture supernatant fluid are then subjected to viral- or viral-component-detection means to determine whether or not the HBV variant has replicated, expressed genetic material and/or assembly and/or has been released in the presence of an

- 8 -

agent. The presence or absence of the detectable components provides an indication of resistance or sensitivity to the agent.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1A is a diagrammatic representation showing overlapping genome of HBV.

- 5 **Figure 1B** is a diagrammatic representation showing examples of the major mutations detected in the precore, envelope and polymerase genes.

10 **Figure 2** is a representation of the amino acid consensus sequence from HBV DNA polymerase proteins encompassing regions which are conserved in the RNA polymerase protein. These regions are shown as domains A-E and are underlined. In the consensus sequence the M in the YMDD motif is designated as amino acid number 550. The amino acids which are subject to mutation during 3TC and/or FCV treatment are shown in bold. An asterisk (*) indicates greater than three amino acid possibilities at this position of the consensus sequence. The HBsAg major hydrophilic region containing the neutralisation domain is indicated by a double line and the polymerase mutations which alter the HBsAg are indicated in italics.

20 **Figure 3** is a representation of the nucleotide sequence from various strains of HBV encoding the surface antigen. The amino acid sequence of the surface antigen beginning at amino acid 108 is shown above the nucleotide sequence.

Figure 4A is a diagrammatical representation of pBBHVB1.28 carrying the HBV 1.28 genome.

25 **Figure 4B** is a diagrammatical representation of pBBHVB1.5 carrying the HBV 1.5 genome.

Figure 5A is the representation of the nucleotide sequence of HBV 1.28 genome.

30 **Figure 5B** is the representation of the nucleotide sequence of HBV 1.5 genome.

- 10 -

Figures 6A and 6B are graphical representations of antiviral testing performed with wild-type HBV baculovirus using A, 3TC; B, PMEA.

5 **Figure 6C** is a photographic representation of a Southern blot showing the effect of PCV on wild-type HBV baculovirus.

Figures 7A to 7C are graphical representations of antiviral testing performed with L526M HBV baculovirus using A, 3TC; B, PMEA; C, PCV.

10 **Figures 8A to 8C** are graphical representations of antiviral testing performed with L526M/M550V HBV baculovirus using A, 3TC; B, PMEA; C, PCV.

Figures 9A to 9C are graphical representations of antiviral testing performed with M550I HBV baculovirus using A, 3TC; B, PMEA; C, PCV.

15 **Figure 10** is a graphical representation showing the competition of radio-labelled [$\alpha^{32}\text{P}$]-dCTP by cold dCTP using the endogenous polymerase assay with particles prepared from baculovirus infected cells.

20 **Figures 11A to 11C** are photographic representations showing Southern blot of the intracellular and extracellular HBV DNA production from HepG2 cells transduced with wildtype (WT) and precore (G1896A) recombinant HBV-baculovirus exposed to increasing concentrations of (A) adefovir, (B) lamivudine and (C) penciclovir. IC, intracellular; EC, extracellular; RC, relaxed circular HBV DNA; DS, linear double-stranded HBV DNA; SS, single-stranded HBV DNA.

25 **Figure 12** is a photographic representation showing Southern blot of intracellular and extracellular HBV DNA production from HepG2 cells transduced with various recombinant HBV-baculovirus M550I, precore/M550I, L526M/M550V and 30 precore/L526M/M550V.

- 11 -

Figures 13A to 13F are photographic representations showing Southern blot of intracellular and extracellular HBV DNA production from HepG2 cells transduced with recombinant HBV-baculovirus [M550I and precore/M550I (Figures 13A, 13C, 13E) L526M/M550V and precore/L526M/M550V (Figures 13B, 13D, 13F)] exposed to various 5 concentrations of adefovir, or lamivudine, or penciclovir. The extracellular virus production from cells transduced with L526M/M550V was too low to be measured. IC, intracellular; EC, extracellular; RC, relaxed circular HBV DNA; DS, linear double-stranded HBV DNA; SS, single-stranded HBV DNA.

- 12 -

The following abbreviations are used in the subject specification:

Abbreviations	Definitions
3TC, LAM	(-)-b-L-2',3'-dideoxy-3'-thiacytidine
PMEA	9-(2-phosphonylmethoxyethyl)adenine
PCV	9-[4-hydroxy-3-(hydroxymethyl)but-1-yl]guanine
YMDD	Amino acid motif from HBV DNA polymerase; Try Met Asp Asp; the Met is residue 550
HBV	Hepatitis B virus
Xaa	Any amino acid
Pre-S1, Pre-S2, S	Viral envelope genes; S encodes HBsAg
HBsAg	HBV surface antigen
CCC DNA	Covalently closed circular DNA
moi	Multiplicity of infection
pfu	plaque forming units
DNA	Deoxyribonucleic acid
HBeAg	hepatitis B e antigen
RNA	Ribonucleic acid
PCR	Polymerase Chain Reaction
ELISA	Enzyme Linked Immunosorbent Assay
p.i.	Post infected
P	Polymerase gene
IC	intracellular
EC	extracellular
RC	Relaxed circular HBV DNA
DS	Linear double stranded HBV DNA
SS	Single-stranded HBV DNA
LDH	lactate dehydrogenase
FCV	Famciclovir

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention provides an assay using variant HBV baculovirus to screen for the sensitivities of HBV variants to particular agents. These agents generally but not exclusively have a known effect against a reference HBV such as inhibiting or reducing HBV infection, replication and/or assembly and/or release of virus or virus-like particles.

5 The present invention provides an assay to screen for the sensitivities of HBV variants to particular agents. These agents generally but not exclusively have a known effect against a reference HBV such as inhibiting or reducing HBV infection, replication and/or assembly and/or release of virus or virus-like particles.

10

The present invention is predicated in part on the identification of HBV variants which have altered sensitivity to agents which would, under standard conditions, have a particular effect or absence of effect on a reference HBV.

15

Generally, although not exclusively, the agent inhibits or reduces HBV infection, replication and/or assembly and/or release of virus or virus-like particles. The assay determines whether the agent has the same effect on a particular variant HBV. The assay is also useful in determining the extent of cross resistance within a group of chemically or functionally related anti-viral agents. In one embodiment, the variant HBV is an escape mutant. The present invention extends, however, to the case where an agent has little effect on a reference HBV but is effective against the variant HBV. For the present purposes, a "reference" HBV is conveniently regarded as a "wild-type" HBV.

20

25 The term "variant" is used in its broadest context and includes mutants, derivatives, modified and altered forms of an HBV relative to a reference HBV. A variant generally contains a single or multiple nucleotide substitution, addition and/or deletion or truncation mutation in the viral genome and a corresponding single or multiple amino acid substitution, addition and/or deletion or truncation in a viral peptide, polypeptide or protein.

30

- 14 -

Accordingly, one aspect of the present invention contemplates a method for detecting a variant HBV which exhibits an altered sensitivity to an agent, said method comprising:-

generating a genetic construct comprising a replication competent amount
5 of the genome from said variant HBV contained in or fused to an amount of a baculovirus genome capable to infect cells, and then infecting said cells with said construct;

contacting said cells, before, during and/or after infection, with the agent to be tested;

10

optionally further infecting said cells with the same genetic construct or a genetic construct comprising the genome of HBV wild-type or another HBV variant;

culturing said cells for a time and under conditions sufficient for the variant
15 HBV to replicate, express genetic sequences and/or assemble and/or release virus or virus-like particles if resistant to said agent; and

subjecting the cells, cell lysates or culture supernatant fluid to viral- or viral-component-detection means to determine whether or not the variant virus has
20 replicated, expressed genetic material and/or assembled and/or been released in the presence of said agent.

Preferably, the altered sensitivity includes an effect on viral infection, replication and/or assembly and/or release of virus or virus-like particles or an effect on intermediary steps
25 during the processes of infection, replication, assembly and/or release. In a particularly preferred embodiment, the identification of whether the HBV variant is resistant to an agent is determined. Resistance to an agent includes resistance to two or more chemically or functionally related agents as may occur during the development of cross resistance.

30. Accordingly, another aspect of the present invention provides a method for detecting a variant HBV which is capable of infecting, replicating, assembly and/or release in the

- 15 -

presence of an agent which inhibits or reduces infection, replication, assembly and/or release of a reference HBV said method comprising:-

generating a genetic construct comprising a replication competent amount
5 of said variant HBV genome contained in or fused to an amount of a baculovirus genome
capable to infect cells and then infecting cells with said construct;

contacting said cells, before and/or during and/or after infection, with the
agent to be tested;

10

optionally further infecting said cells with the same genetic construct or a
genetic construct comprising the genome of HBV wild-type or another HBV variant;

culturing said cells for a time and under conditions sufficient for the variant
15 HBV to replicate, express genetic material and/or assemble and/or release virus or virus-
like particles if resistant to said agent; and

subjecting the cells or cell lysates to viral- or viral component-detection
means to determine whether or not the variant virus has replicated, expressed genetic
20 material or assembled and/or been released in the presence of said agent.

The optional step referred to above encompasses testing of the effects of co-infection by
the same or other HBVs.

25 Accordingly, another aspect of the present invention provides a method for detecting a
variant HBV which is capable of infecting, replicating, assembly and/or release in the
presence of an agent which inhibits or reduces infection, replication, assembly and/or
release of a reference HBV said method comprising:-

generating a genetic construct comprising a replication competent amount of said variant HBV genome contained in or fused to an amount of a baculovirus genome capable to infect cells and then infecting cells with said construct;

- 5 contacting said cells, before and/or during, and/or after infection, with the
agent to be tested;

- optionally further infecting said cells with the same genetic construct or a
genetic construct comprising the genome of HBV wild-type or another HBV variant at one
10 or more times after the initial infection;

- culturing said cells for a time and under conditions sufficient for the variant HBV to replicate, express genetic material and/or assemble and/or release virus or virus-like particles if resistant to said agent; and

- 15 subjecting the cells or cell lysates to viral- or viral component-detection means to determine whether or not the variant virus has replicated, expressed genetic material or assembled and/or been released in the presence of said agent.

- 20 The optional step referred to above encompasses testing of the effects of superinfection by the same or other HBVs.

The detection of HBV or its components in cells, cell lysates and culture supernatant fluid may be by any convenient means. For example, total HBV DNA or RNA may be determined, replicative intermediates may be detected or HBV-specific products or gene transcripts may be determined. Suitable assay means includes PCR, nucleic acid hybridization protocols such as northern blots and Southern blots and antibody procedures such as ELISA and Western blot may be employed.

- 30 An example of an HBV variant of the present invention is a variant obtained following selective pressure in the clinical setting. One form of selective pressure is chemical

- 17 -

pressure (e.g. *via* nucleoside analogues) directed to the HBV DNA polymerase which selects for a mutation in the gene encoding HBV DNA polymerase. Due to the overlapping nature of the HBV genome, a corresponding mutation may also occur in the gene encoding HBsAg (see Figure 1B). Accordingly, a mutation in one or more nucleotides encoding
 5 HBV DNA polymerase may have an effect on the nucleotide sequence encoding HBsAg.

A viral variant may, in accordance with the present invention, carry a mutation only in the DNA polymerase or the surface antigen or may carry a mutation in both genes. The term "mutation" is to be read in its broadest context and includes a silent mutation not
 10 substantially affecting the normal function of the DNA polymerase or surface antigen or may be an active mutation having the effect of selection of nucleoside analogue resistance or a vaccine escape mutant phenotype. Where multiple mutations occur in accordance with the present invention or where multiple phenotypes result from a single mutation, at least one mutation must be active or the virus must exhibit at least one altered phenotype such
 15 as nucleoside analogue resistance or reduced immunological interactivity of anti-HBs to the surface antigen of a reference HBV.

The present invention extends to assaying any HBV mutant carrying a single or multiple substitution, addition and/or deletion or truncation in the amino acid sequence of the
 20 catalytic region of the HBV DNA polymerase as compared to the amino acid sequence set forth in Formula I which is considered herein to define a reference HBV:-

FORMULA I

25 S Z₁ L S W L S L D V S A A F Y H Z₂ P L H P A A M P H L L Z₃ G S S G L Z₄ R Y V A
 R L S S Z₅ S Z₆ Z₇ X N Z₈ Q Z₉ Z₁₀ X X X Z₁₁ L H Z₁₂ Z₁₃ C S R Z₁₄ L Y V S L Z₁₅ L L
 Y Z₁₆ T Z₁₇ G Z₁₈ K L H L Z₁₉ Z₂₀ H P I Z₂₁ L G F R K Z₂₂ P M G Z₂₃ G L S P F L L A Q
 F T S A I Z₂₄ Z₂₅ Z₂₆ Z₂₇ Z₂₈ R A F Z₂₉ H C Z₃₀ Z₃₁ F Z₃₂ Y M* D D Z₃₃ V L G A Z₃₄ Z₃₅
 Z₃₆ Z₃₇ H Z₃₈ E Z₃₉ L Z₄₀ Z₄₁ Z₄₂ Z₄₃ Z₄₄ Z₄₅ Z₄₆ L L Z₄₇ Z₄₈ G I H L N P Z₄₉ K T K R W G
 30 Y S L N F M G Y Z₅₀ I G

wherein:

- X is any amino acid;
- 5 Z₁ is N or D;
- Z₂ is I or P;
- Z₃ is I or V;
- Z₄ is S or D;
- Z₅ is T or N;
- 10 Z₆ is R or N;
- Z₇ is N or I;
- Z₈ is N or Y or H;
- Z₉ is H or Y;
- Z₁₀ is G or R;
- 15 Z₁₁ is D or N;
- Z₁₂ is D or N;
- Z₁₃ is S or Y;
- Z₁₄ is N or Q;
- Z₁₅ is L or M;
- 20 Z₁₆ is K or Q;
- Z₁₇ is Y or F;
- Z₁₈ is R or W;
- Z₁₉ is Y or L;
- Z₂₀ is S or A;
- 25 Z₂₁ is I or V;
- Z₂₂ is I or L;
- Z₂₃ is V or G;
- Z₂₄ is C or L;
- Z₂₅ is A or S;
- 30 Z₂₆ is V or M;
- Z₂₇ is V or T;

- 19 -

- Z₂₈ is R or C;
- Z₂₉ is F or P;
- Z₃₀ is L or V;
- Z₃₁ is A or V;
- 5 Z₃₂ is S or A;
- Z₃₃ is V or L or M;
- Z₃₄ is K or R;
- Z₃₅ is S or T;
- Z₃₆ is V or G;
- 10 Z₃₇ is Q or E;
- Z₃₈ is L or S or R;
- Z₃₉ is S or F;
- Z₄₀ is F or Y;
- Z₄₁ is T or A;
- 15 Z₄₂ is A or S;
- Z₄₃ is V or I;
- Z₄₄ is T or C;
- Z₄₅ is N or S;
- Z₄₆ is F or V;
- 20 Z₄₇ is S or D;
- Z₄₈ is L or V;
- Z₄₉ is N or Q;
- Z₅₀ is V or I; and
- M* is amino acid 550.

25

Accordingly, another aspect of the present invention provides an assay for detecting an HBV variant having an altered sensitivity to an agent, said variant HBV comprising a single or multiple amino acid substitution, addition and/or deletion or truncation compared to the amino acid sequence set forth in Formula I and wherein the variant HBV is selected
30 for by a nucleoside analogue of the HBV DNA polymerase said method comprising:-

- 20 -

generating a genetic construct comprising a replication competent amount of the genome from said variant HBV contained in or fused to an amount of a baculovirus genome capable to infect cells and infecting said cells with said construct;

5 contacting said cells, before and/or during, and/or after infection, with the agent to be tested;

optionally further infecting said cells with the same genetic construct or a genetic construct comprising the genome of HBV wild-type or another HBV variant;

10 culturing said cells for a time and under conditions sufficient for the variant HBV to replicate, express genetic sequences and/or assemble and/or release virus or virus-like particles if resistant to said agent; and

15 subjecting the cells, cell lysates or culture supernatant fluid to viral- or viral-component-detection means to determine whether or not the variant virus has replicated, expressed genetic material or assembled and/or been released in the presence of said agent.

20 In a related embodiment the present invention is directed to an assay for an HBV variant, in which the HBV variant exhibits reduced sensitivity to an agent which otherwise inhibits or reduces infection, replication or assembly and/or release by a reference HBV, said variant HBV comprising a single or multiple amino acid substitution, addition and/or deletion or truncation compared to the amino acid sequence set forth in Formula I, said
25 method comprising:-

generating a genetic construct comprising a replication competent amount of said variant HBV genome contained in or fused to an amount of a baculovirus genome capable to infect cells and then infecting cells with the construct;

30

- 21 -

contacting said cells, before, and/or during, and/or after infection, with the agent to be tested;

5 optionally further infecting said cells with the same genetic construct or a genetic construct comprising the genome of HBV wild-type or another HBV variant;

culturing said cells for a time and under conditions sufficient for the variant HBV, express genetic material and/or assemble and/or release virus or virus-like particles if resistant to said agent; and

10

subjecting the cells or cell lysates to viral- or viral component-detection means to determine whether or not the variant virus has replicated, expressed genetic material or assembled and/or been released in the presence of said agent.

15 Another HBV variant contemplated by the present invention is in the precore or the basal core promoter sequences. Precore mutations contemplated by the present invention include those listed in Table 1 and include. Particular precore gene and basal core promoter (BCP) mutations include A1814T, C1856T, G1896A, G1897A, G1898A, G1899A, G1896A/G1899A, A1762T/ G1764A, T1753C, G1757A and C1653T (where the numbering is from
20 the unique *EcoR1* site in HBV).

Accordingly, another aspect of the present invention provides an assay for an HBV variant with an altered sensitivity to an agent, said variant HBV comprising a nucleotide sequence containing a single or multiple nucleotide substitution, addition and/or deletion to the
25 precore nucleotide sequence, said method comprising:-

generating a genetic construct comprising a replication competent amount of the genome from said variant HBV contained in or fused to an amount of a baculovirus genome capable to infect cells and infecting said cells with said construct;

30

- 22 -

contacting said cells, before and/or during, and/or after infection, with the agent to be tested;

optionally further infecting said cells with the same genetic construct or a
5 genetic construct comprising the genome of HBV wild-type or another HBV variant;

culturing said cells for a time and under conditions sufficient for the variant HBV to replicate, express genetic sequences or assemble if resistant to said agent; and

10 subjecting the cells, cell lysates or culture supernatant fluid to viral- or viral-component-detection means to determine whether or not the variant virus has replicated, expressed genetic material or assembled in the presence of said agent.

Preferably, the HBV variant according to this aspect of the present invention has a precore
15 gene or a BCP mutation as listed in Table 1. In a particularly preferred embodiment, the precore or a BCP mutation is selected from A1814T, C1856T, G1896A, G1897A, G1898A, G1899A, G1896A/G1899A, A1762T/ G1764A, T1753C, G1757A and C1653T (where the numbering is from the unique *EcoR1* site in HBV).

20 In a related embodiment, the present invention contemplates an assay for an HBV variant which exhibits reduced sensitivity to an agent which otherwise inhibits or reduces infection, replication or assembly and/or release by a reference HBV, said variant HBV comprising a nucleotide sequence comprising a single or multiple nucleotide substitution, addition and/or deletion to the precore nucleotide sequence, said method comprising:-

25

generating a genetic construct comprising a replication competent amount of the genome from said variant HBV contained in or fused to an amount of a baculovirus genome capable to infect cells and infecting said cells with said construct;

30 contacting said cells, before, and/or during, and/or after infection, with the agent to be tested;

optionally further infecting said cells with the same genetic construct or a genetic construct comprising the genome of HBV wild-type or another HBV variant;

5 culturing said cells for a time and under conditions sufficient for the variant HBV to replicate, express genetic sequences or assemble if resistant to said agent; and

10 subjecting the cells, cell lysates or culture supernatant fluid to viral- or viral-component-detection means to determine whether or not the variant virus has replicated, expressed genetic material or assembled in the presence of said agent.

In another embodiment, the HBV variant comprises a precore mutation together with a mutation in the DNA polymerase or the corresponding mutation in the hepatitis B surface antigen (HBsAg). Preferred mutations according to this embodiment result from resistance 15 to lamivudine (LAM) such as but are limited to a precore mutation together with L526M+M550V [M195I] or a precore mutation together with M550I [W196L, W196S or W196STOP]. The mutations given in parenthesis are the corresponding HBsAg mutations following a mutation in the HBV DNA polymerase gene. Preferred precore gene and BCP mutations are A1814T, C1856T, G1896A, G1897A, G1898A, G1899A, G1896A/G1899A, 20 A1762T/G1764A, T1753C, G1757A, G1653T (Table 1).

Accordingly, another aspect of the present invention provides an assay for an HBV variant with an altered sensitivity to LAM or another agent, said variant HBV comprising a nucleotide sequence comprising a single or multiple nucleotide substitution, addition 25 and/or deletion to the precore nucleotide sequence, and the DNA polymerase gene and optionally the overlapping HBsAg nucleotide sequence said method comprising:-

generating a genetic construct comprising a replication competent amount of the genome from said variant HBV contained in or fused to an amount of a baculovirus 30 genome capable to infect cells and infecting said cells with said construct;

- 24 -

contacting said cells, before and/or during, and/or after infection, with the agent to be tested;

optionally further infecting said cells with the same genetic construct or a
5 genetic construct comprising the genome of HBV wild-type or another HBV variant;

culturing said cells for a time and under conditions sufficient for the variant HBV to replicate, express genetic sequences or assemble if resistant to said agent; and

10 subjecting the cells, cell lysates or culture supernatant fluid to viral- or viral-component-detection means to determine whether or not the variant virus has replicated, expressed genetic material or assembled in the presence of said agent.

In a related embodiment, the present invention contemplates an assay for an HBV variant
15 which exhibits reduced sensitivity to LAM or another agent and which otherwise inhibits or reduces infection, replication or assembly and/or release by a reference HBV, said variant HBV comprising a nucleotide sequence encoding a single or multiple nucleotide substitution, addition and/or deletion to the precore nucleotide sequence, and in the DNA polymerase gene and optionally the HBsAg nucleotide sequence said method comprising:-

20

generating a genetic construct comprising a replication competent amount of the genome from said variant HBV contained in or fused to an amount of a baculovirus genome capable to infect cells and infecting said cells with said construct;

25

contacting said cells, before, and/or during, and/or after infection, with the agent to be tested;

optionally further infecting said cells with the same genetic construct or a genetic construct comprising the genome of HBV wild-type or another HBV variant;

30

- 25 -

culturing said cells for a time and under conditions sufficient for the variant HBV to replicate, express genetic sequences or assemble if resistant to said agent; and

subjecting the cells, cell lysates or culture supernatant fluid to viral- or
5 viral-component-detection means to determine whether or not the variant virus has replicated, expressed genetic material or assembled in the presence of said agent.

Preferably, the HBV variants according to these aspects of the present invention has a precore gene and BCP mutation as listed in Table 1. In a particularly preferred
10 embodiment, the precore or a BCP mutation is selected from A1814T, C1856T, G1896A, G1897A, G1898A, G1899A, G1896A/ G1899A, A1762T/ G1764A, T1753C, G1757A and C1653T (where the numbering is from the unique *EcoR1* site in HBV). Preferably, the mutation of the DNA polymerase gene [and HBsAg] is L526M+M550V [M195I] or M550I [W196L, W196S or W196STOP].

15

Another example of a variant to be tested in accordance with the present invention is one with an altered immunological profile. Such a variant would substantially not be affected by a neutralizing immune response directed to a conventional HBV vaccine such as a vaccine comprising a reference HBV or a surface component thereof. Similarly, the variant
20 HBV may substantially not be affected at the infection, replication, assembly or release level or another level during the life cycle of the HBV by an agent which is capable of inhibiting or reducing infection, replication, assembly or release of a reference HBV. The expression "substantially not affected" includes reduced susceptibility to the immune response generated by a vaccine or reduce susceptibility to chemical agents such as
25 nucleoside analogues which target HBV genes such as the DNA polymerase. Due to the overlapping nature of reading frames for DNA polymerase and certain viral surface components, an altered surface component may have a corresponding alteration in the DNA polymerase.

30 A preferred surface component of the HBV of the present invention is HBsAg. It is proposed in accordance with this aspect of the present invention that the HBsAg of the

- 26 -

HBV variants exhibit an altered immune profile relative to an HBsAg from a reference HBV. For the purposes of the present invention, a reference HBV conveniently comprises an HBsAg with an amino acid sequence substantially as set forth by Norder *et al.* (1) and Stuyver *et al.* (2) which encompasses all known genotypes of HBV (currently A through G). The assay of the present invention can be used to screen for the effect of the altered HBsAg on the sensitivity of a variant HBV to a particular agent.

The present invention extends, therefore, to any single or multiple amino acid substitution, addition and/or deletion or truncation in the amino acid sequence of HBsAg relative to the 10 amino acid sequence set forth in Formula II below as defined by a single or multiple amino acid substitution, addition and/or deletion to the catalytic region of the HBV DNA polymerase set forth above in Formula I.

The amino acid sequence of an HBsAg and which is considered to define a reference HBV 15 is set forth below in Formula II:-

FORMULA II

M X₁ X₂ X₃ X₄ S G X₅ L X₆ P L X₇ V L Q A X₈ X₉ F X₁₀ L T X₁₁ I X₁₂ X₁₃ I P X₁₄ S L
20 X₁₅ S W W T S L N F L G X₁₆ X₁₇ X₁₈ X₁₉ C X₂₀ G X₂₁ N X₂₂ Q S X₂₃ X₂₄ S X₂₅ H X₂₆ P
X₂₇ X₂₈ C P P X₂₉ C X₃₀ G Y R W M C L X₃₁ R F I I F L X₃₂ I L L L C L I F L L V L L D
X₃₃ Q G M L X₃₄ V C P L X₃₅ P X₃₆ X₃₇ X₃₈ T T S X₃₉ X₄₀ X₄₁ C X₄₂ T C X₄₃ X₄₄ X₄₅ X₄₆
Q G X₄₇ S X₄₈ X₄₉ P X₅₀ X₅₁ C C X₅₂ K P X₅₃ X₅₄ G N C T C I P I P S X₅₅ W A X₅₆ X₅₇
X₅₈ X₅₉ L W E X₆₀ X₆₁ S X₆₂ R X₆₃ S W L X₆₄ LLX₆₅X₆₆ F V Q X₆₇ X₆₈ X₆₉ X₇₀ L X₇₁ P
25 X₇₂ V W X₇₃ X₇₄ X₇₅ I W X₇₆ X₇₇ W X₇₈ W X₇₉ P X₈₀ X₈₁ X₈₂ X₈₃ I X₈₄ X₈₅ P F X₈₆ P L L
P I F X₈₇ X₈₈ L X₈₉ X₉₀ X₉₁ I

wherein:

- 30 X₁ is E or G or D;
X₂ is N or S or K;

- X₃ is I or T;
- X₄ is T or A;
- X₅ is F or L;
- X₆ is G or R;
- 5 X₇ is L or R;
- X₈ is G or V;
- X₉ is F or C;
- X₁₀ is L or S or W;
- X₁₁ is R or K;
- 10 X₁₂ is L or R;
- X₁₃ is T or K;
- X₁₄ is Q or K;
- X₁₅ is D or H;
- X₁₆ is G or E or A;
- 15 X₁₇ is S or A or V or T or L;
- X₁₈ is P or T;
- X₁₉ is V or R or T or K or G;
- X₂₀ is L or P;
- X₂₁ is Q or L or K;
- 20 X₂₂ is S or L;
- X₂₃ is P or Q;
- X₂₄ is T or I;
- X₂₅ is N or S;
- X₂₆ is S or L;
- 25 X₂₇ is T or I;
- X₂₈ is S or C;
- X₂₉ is I or T;
- X₃₀ is P or A;
- X₃₁ is R or Q;
- 30 X₃₂ is F or C;
- X₃₃ is Y or C;

- X₃₄ is P or H or S;
X₃₅ is I or L;
X₃₆ is G or R;
X₃₇ is S or T;
5 X₃₈ is T or S;
X₃₉ is T or V or A;
X₄₀ is G or E or Q;
X₄₁ is P or A or S;
X₄₂ is K or R;
10 X₄₃ is T or M;
X₄₄ is T or I or S or A;
X₄₅ is P or T or A or I or L;
X₄₆ is A or V;
X₄₇ is N or T;
15 X₄₈ is M or K or L;
X₄₉ is F or Y or I;
X₅₀ is S or Y;
X₅₁ is C or S;
X₅₂ is T or I or S;
20 X₅₃ is T or S;
X₅₄ is D or A;
X₅₅ is S or T;
X₅₆ is F or L;
X₅₇ is A or G or V;
25 X₅₈ is K or R or T;
X₅₉ is Y or F;
X₆₀ is W or G;
X₆₁ is A or G;
X₆₂ is V or A;
30 X₆₃ is F or L;
X₆₄ is S or N;

- X₆₅ is V or A;
- X₆₆ is P or Q;
- X₆₇ is W or C or S;
- X₆₈ is F or C;
- 5 X₆₉ is V or D or A;
- X₇₀ is G or E;
- X₇₁ is S or F;
- X₇₂ is T or I;
- X₇₃ is L or P;
- 10 X₇₄ is S or L;
- X₇₅ is A or V;
- X₇₆ is M or I;
- X₇₇ is M or I;
- X₇₈ is Y or F;
- 15 X₇₉ is G or E;
- X₈₀ is S or N or K;
- X₈₁ is L or Q;
- X₈₂ is Y or F or H or C;
- X₈₃ is S or G or N or D or T;
- 20 X₈₄ is V or L;
- X₈₅ is S or N;
- X₈₆ is I or M or L;
- X₈₇ is F or C;
- X₈₈ is C or Y;
- 25 X₈₉ is W or R;
- X₉₀ is V or A; and
- X₉₁ is Y or I or S.

Accordingly, another aspect of the present invention provides a method for detecting a
30 variant HBV having an altered sensitivity to an agent, the said variant HBV comprising a surface antigen having an amino acid sequence with a single or multiple amino acid

- 30 -

substitution, addition and/or deletion or a truncation compared to a surface antigen from a reference HBV such that an antibody generated to the reference surface antigen exhibits altered capacity for neutralizing said HBV variant said method comprising:

5 generating a genetic construct comprising a replication competent amount of the genome from said variant HBV contained in or fused to an amount of a baculovirus genome capable to infect cells and then infecting said cells with said construct;

10 contacting said cells, before, and/or during, and/or after infection, with the agent to be tested;

culturing said cells for a time and under conditions sufficient for the variant HBV to replicate, express genetic sequences or assemble if resistant to said agent; and

15 subjecting the cells, cell lysates or culture supernatant fluid to viral- or viral-component-detection means to determine whether or not the variant virus has replicated, expressed genetic material or assembled in the presence of said agent.

The amino acid sequence of the HBsAg of the reference HBV is as set forth in Formula II
20 above.

Generally, the method of the present invention is capable of detecting an HBV variant which may be regarded as an escape mutant which it is substantially incapable of being adversely effected by chemical therapy directed against the HBV polymerase or vaccine
25 therapy directed against the surface antigen. The term "escape" mutant also encompasses reduced susceptibility to chemical or vaccine therapy directed to the reference HBV.

More particularly, another aspect of the present invention provides a method for detecting a variant HBV which is capable of replicating in the presence of an agent which inhibits or
30 reduces replication of a reference HBV, said reference HBV comprising a surface antigen having an amino acid sequence with a single or multiple amino acid substitution, addition

and/or deletion or a truncation compared to a surface antigen from a reference HBV such that an antibody generated to the reference surface antigen exhibits altered capacity for neutralizing said HBV variant said method comprising:-

5 generating a genetic construct comprising a replication competent amount of said variant HBV genome contained in or fused to an amount of a baculovirus genome capable to infect cells and then infecting cells with the construct;

10 contacting said cells, before and/or during, and/or after infection, with the agent to be tested;

culturing said cells for a time and under conditions sufficient for the variant HBV to replicate, express genetic material or assemble if resistant to said agent; and

15 subjecting the cells or cell lysates to viral- or viral component-detection means to determine whether or not the variant virus has replicated, expressed genetic material or assembled in the presence of said agent.

The present invention also extends to changes in the HBsAg following immunological
20 selection based on vaccines comprising HBsAg or a derivative thereof or an HBV comprising same and wherein the HBsAg comprises an amino acid sequence substantially as set forth in Formula II.

An "agent" therefore extends to a chemical agent (e.g. nucleotide and nucleoside
25 analogues and non-nucleoside analogues), an immunological agent (e.g. antibodies or cytokines) or other therapeutic molecule. One group of agents contemplated by the present invention are non-nucleoside analogue reverse transcriptase inhibitors (such as but not limited to AT-61 a phenylpropenamide derivative; 16) and non-nucleoside analogue DNA dependent DNA polymerase inhibitors. A group of nucleoside analogues contemplated
30 herein comprises 3TC, PMEA and PCV and related molecules.

Reference to an altered immunological profile in accordance with the present invention in relation to the surface antigen includes reference to an altered humoral or T cell response. Examples of an altered immunological profile include altered specificity to antibodies, altered amino acid sequences of an epitope or within the "a" determinant, an altered capacity to induce proliferation of T cells primed to an HBsAg from a reference HBV. Preferably, the altered immunological profile means that neutralizing antibodies which are capable of substantially neutralising or otherwise reducing serum or blood levels of the reference HBV are substantially incapable of or exhibit reduced capacity to neutralize and/or clear the variant HBV.

10

The HBsAg mutations of the present invention may also be defined in terms of a corresponding mutation in the HBV DNA polymerase. A mutation in the HBV DNA polymerase may be in amino acids 421-431, 426-436, 431-441, 436-446, 441-451, 446-456, 451-461, 456-466, 461-471, 466-476, 471-481, 476-486, 481-491, 486-496, 491-501, 15 496-506, 501-511, 506-516, 511-521, 516-526, 521-531, 526-536, 531-541, 536-546, 541-551, 546-556, 551-561, 556-566, 561-571, 566-576, 571-581, 576-586, 581-591, 586-596, 591-601, 596-601 (referring to the amino acid numbering in Figure 2).

Preferred HBV DNA polymerase mutations include L426I/V, L428I/V, Q476, N480G, 20 N485K, K495R, R499Q, G499E, W499Q, F512L, I515L, V519L, L526M, M550V, M550I, V553I, S565P. Useful multiple mutants include L526M/M550I, L526M/M550V, V519L/L526M/M550V and V519L/L526M/M550I.

Preferred mutations in the amino acid sequence of HBsAg are amino acid substitutions, 25 deletions and/or additions or truncations in amino acids 1-10, 5-15, 10-20, 15-25, 20-30, 25-35, 30-40, 35-45, 40-50, 45-55, 50-60, 55-65, 60-70, 65-75, 70-80, 75-85, 80-90, 85-95, 90-100, 95-105, 100-110, 105-115, 110-120, 115-125, 120-130, 125-135, 130-140, 135-145, 140-150, 145-155, 150-160, 155-165, 160-170, 165-175, 170-180, 175-185, 180-190, 185-195, 190-200, 195-205, 200-210, 205-215, 210-220, 215-225, 220-226 (referring to 30 the numbering of Formula II) of HBsAg. Particularly useful mutations are G112R, T123P

- 33 -

Y/F134S, D144E, G145R, A157D, E164D, F170L, M195I, W196L, W196S, W196STOP, M198I, W199S, S204T and S210R. The term "stop" means a stop codon.

Even more preferred mutations are D144E, G145R, A157D, E164D, M195I, W196L,
5 W196S, W196STOP, M198I, W199S and S210R.

Particularly preferred precore gene and BCP mutations are selected from A1814T, C1856T, G1896A, G1897A, G1898A, G1899A, G1896A/ G1899A, A1762T/ G1764A, T1753C, G1757A and C1653T (where the numbering is from the unique *Eco*R1 site in
10 HBV).

The present invention extends to combinations of two or more of the above mutations such as but not limited to a precore mutation and a mutation in the DNA polymerase and optionally the overlapping HBsAg nucleotide sequences resulting in, for example, reduce
15 sensitivity to LAM. Examples of the latter include but are not limited to a precore mutation such as G1896A with L526M+M550V [M195I] or M550I [W196L, W196S or W196STOP].

The altered HBsAg molecules of the HBV variants of the present invention may also be
20 defined at the nucleotide level. The nucleotide sequence encoding the HBsAg from a reference HBV is set forth below in Formula III:-

FORMULA III

25 A C N₁ A A A C C T N₂ N₃ G G A N₄ G G A A A N₅ T G C A C N₆ T G T A T T C C C
A T C C C A T C N₇ T C N₈ T G G G C T T C G N₉ A A N₁₀ A T N₁₁ C C T A T G G G
A G N₁₂ G G G C C T C A G N₁₃ C C G T T T C T C N₁₄ T G G C T C A G T T A C T
A G T G C C A T T G T T C A G T G G T T C G N₁₅ A G G G C T T C C C C A C
T G T N₁₆ T G G C T T C A G N₁₇ T A T A T G G A T G A T G T G G T N₁₈ T T G G
30 G G G C C A A G T C T G T A C A N₁₉ C A T C N₂₀ T G A G T C C C T T N₂₁ T N₂₂

C C N₂₃ C T N₂₄ T T A C C A A T T T T C T T N₂₅ T G T C T N₂₆ T G G G N₂₇ A T A C
A T T

wherein:

5

- N₁ is A or C;
- N₂ is T or A;
- N₃ is C or T;
- N₄ is C or T;
- 10 N₅ is C or T;
- N₆ is C or T;
- N₇ is A or G;
- N₈ is T or C;
- N₉ is C or G;
- 15 N₁₀ is G or A;
- N₁₁ is T or A;
- N₁₂ is T or G;
- N₁₃ is T or C;
- N₁₄ is C or T;
- 20 N₁₅ is T or C;
- N₁₆ is T or C;
- N₁₇ is T or C;
- N₁₈ is A or T;
- N₁₉ is A or G;
- 25 N₂₀ is T or G;
- N₂₁ is A or T;
- N₂₂ is A or G;
- N₂₃ is T or G;
- N₂₄ is A or G;
- 30 N₂₅ is T or C;
- N₂₆ is T or C; and

N₂₇ is T or C.

Accordingly, another aspect of the present invention provides an assay for an HBV variant which an altered sensitivity to an agent, said variant HBV comprising a nucleotide sequence comprising a single or multiple nucleotide substitution, addition and/or deletion to the nucleotide sequence set forth in Formula III and which HBV variant has a surface antigen exhibiting an altered immunological profile relative to a surface antigen defined by Formula II said method comprising:-

10 generating a genetic construct comprising a replication competent amount of the genome from said variant HBV contained in or fused to an amount of a baculovirus genome capable to infect cells and infecting said cells with said construct;

15 contacting said cells, before, and/or during, and/or after infection, with the agent to be tested;

optionally further infecting said cells with the same genetic construct or a genetic construct comprising the genome of HBV wild-type or another HBV variant;

20 culturing said cells for a time and under conditions sufficient for the variant HBV to replicate, express genetic sequences or assemble if resistant to said agent; and

25 subjecting the cells, cell lysates or culture supernatant fluid to viral- or viral-component-detection means to determine whether or not the variant virus has replicated, expressed genetic material or assembled in the presence of said agent.

Generally, the effective amount of HBV genome required to be inserted into the baculovirus genome is functionally equivalent to but comprises more than 100% of an HBV genome. For example, constructs containing approximately 1.05, 1.1, 1.2, 1.28, 1.3, 30 1.4, 1.5 and 1.6-1.9, 2.0 and 3.0 times the HBV genome are particularly useful.

Any cells which are capable of infection by baculovirus may be used in the practice of the present invention. The hepatoblastoma cell line, HepG2, or its derivatives, is particularly useful and is capable of *in vitro* cell culture. Huh-7 cells may also be used. Alternatively, any hepatocyte cell line and primary hepatocyte cell culture may be used.

5

For convenience, a genetic construct comprising an HBV genome and an infection effective amount of baculovirus genome is referred to herein as "HBV baculovirus", "recombinant HBV baculovirus" and "HBV baculovirus vector". Recombinant HBV baculovirus is an efficient vector for the delivery of HBV genetic information to human 10 cells and can be used to initiate HBV gene expression and replication in the cells. HBV transcripts, intracellular and secreted HBV antigens are produced and replication occurs as evidenced by the presence of high levels of intracellular, replicative intermediates and protected HBV DNA in the medium. Viral CCC DNA can be detected indicating that, in this system, HBV core particles are capable of delivering newly synthesized HBV 15 genomes back into the nucleus of infected cells. Strong HBV gene expression can be detected as early as one day post-infected (p.i.) High levels of HBV replicative intermediates, extracellular DNA, and CCC DNA persist through at least 11 days p.i. Endogenous HBV enhancers and promoters may be used to obtain high levels of HBV expression and replication in the cells.

20

The level of HBV expression and replication in the cells infected with HBV baculovirus can be altered over a considerable range simply by changing the moi.

Furthermore, co-infection or superinfection may occur using the genomes from two or 25 more types of HBV such as two or more HBV variants or a variant and a wild-type strain. In this regard, a number of quasi-species of HBV are generally isolated from subjects infected with HBV which consists of two or more HBV variants, or a variant (or variants) and a wild-type strain. It is important, in some circumstances, to test for these quasi species and to determine the altered sensitivity or resistance of the quasi-species to the therapeutic 30 agents. Nucleic acid or antibody detection systems may be used to detect relative amounts of the different HBVs. This is important for the development of therapeutic protocols

which will need to be effective against HBV variants of a single species as well as multiple HBV variants including the wild type strain.

Reference to "HBV" or its "components" in relation to the detection assay includes 5 reference to the presence of RNA, DNA, antigenic molecules or HBV-specific activities. Conveniently, the assay is conducted quantitatively, partially quantitatively or qualitatively. Most preferably, total HBV RNA or DNA is detected which provides an amount of RNA or DNA in the presence of a particular agent. When the HBV variant is more resistant to a 10 particular agent relative to a wild-type strain, then a graphical representation of total RNA or DNA *versus* concentration of agent is likely to result in a reduced gradient of inhibition and/or an increase in the concentration of agent required before inhibition of RNA or DNA generation.

Another aspect of the present invention provides a method for the detection of polymerase 15 activity from HBV particles isolated from variant HBV baculovirus infected cells and determining the sensitivity of said polymerase to nucleoside triphosphate analogues or non-nucleoside analogues reverse transcriptase inhibitors or non-nucleoside analogues DNA dependent DNA polymerase inhibitors. The HBV particles can be collected from variant HBV cell culture fluid, cell lysates or infected cells. This assay will determine the 20 effect of the said nucleoside triphosphate analogues or non-nucleoside analogues reverse transcriptase inhibitors or non-nucleoside analogues DNA dependent DNA polymerase inhibitors on the reference HBV and variant HBV.

Accordingly, this aspect of the present invention provides a method for detecting a variant 25 HBV comprising DNA polymerase which exhibits an altered sensitivity to an agent, said method comprising:-

generating a genetic construct comprising a replication competent amount of the genome from said variant HBV contained in or fused to an amount of a baculovirus 30 genome capable to infect cells and then infecting said cells with said construct;

- 38 -

optionally further infecting said cells with the same genetic construct or a genetic construct comprising the genome of HBV wild-type or another HBV variant;

culturing said cells for a time and under conditions sufficient for the variant
5 HBV to replicate, express genetic sequences and/or assemble and/or release virus or virus-like particles; and

subjecting the cells, cell lysates or culture supernatant fluid or HBV particles purified therefrom to a HBV DNA polymerase assay in the presence or absence
10 of nucleoside triphosphate analogues or non-nucleoside analogues reverse transcriptase inhibitors or non- nucleoside analogues DNA dependent DNA polymerase inhibitors.

A further aspect of the present invention provides a method for detecting a variant HBV comprising DNA polymerase which exhibits an altered sensitivity to an agent said method
15 comprising:-

generating a genetic construct comprising a replication competent amount of the genome from said variant HBV contained in or fused to an amount of a baculovirus genome capable to infect cells and then infecting said cells with said construct;
20

optionally contacting said cells, before and/or after infection, with the agent to be tested;

optionally further infecting said cells with the same genetic construct or a
25 genetic construct comprising the genome of HBV wild-type or another HBV variant;

culturing said cells for a time and under conditions sufficient for the variant HBV to replicate, express genetic sequences and/or assemble and/or release virus or virus-like particles if resistant to said agent; and

subjecting the cells, cell lysates or culture supernatant fluid or virus purified therefrom to HBV DNA polymerase assay in the presence or absence of nucleoside triphosphate analogues or non-nucleoside analogues reverse transcriptase inhibitors or non-nucleoside analogues DNA dependent DNA polymerase inhibitors.

5

Yet a further aspect of the present invention contemplates a method of detecting DNA polymerase activity in the presence of an antiviral agent, said method comprising:-

generating a genetic construct comprising a replication competent amount
10 of a genome from said an HBV capable of producing said DNA polymerase, said genome contained in or fused to an amount of a baculovirus genome capable to infect cells and then infecting said cells with said construct;

contacting said cells, before and/or after infection, with the antiviral agent
15 to be tested;

optionally further infecting said cells with the same genetic construct or a genetic construct comprising the genome of HBV wild-type or another HBV strain;

20 culturing said cells for a time and under conditions sufficient for the HBV to replicate, express genetic sequences and/or assemble and/or release virus or virus-like particles if resistant to said strain; and

subjecting the cells, cell lysates or culture supernatant fluid or virus purified
25 therefrom to HBV DNA polymerase assay in the presence or absence of nucleoside triphosphate analogues or non-nucleoside analogues reverse transcriptase inhibitors or non-nucleoside analogues DNA dependent DNA polymerase inhibitors.

The present invention is further described by the following non-limiting Examples.

- 40 -

EXAMPLE 1

Overlapping genome of HBV

The overlapping genome of HBV is represented in Figure 1. The gene encoding DNA polymerase (P), overlaps the viral envelope genes, Pre-S1 and Pre-S2, and partially overlaps the X and core (C) genes. The HBV envelope comprises small, middle and large HBV surface antigens. The large protein component is referred to as the HBV surface antigen (HBsAg) and is enclosed by the S gene sequence. The Pre-S1 and Pre-S2 gene sequences encode the other envelope components.

10

EXAMPLE 2

Amino acid consensus sequence of HBV DNA polymerase

The amino acid consensus sequence for HBV DNA polymerase protein from genotypes A through G is shown in Figure 2.

EXAMPLE 3

Consensus sequence of HBsAg

20 The nucleotide sequence from various strains of HBV encoding the surface antigen is shown in Figure 3. The amino acid sequence of the surface antigen beginning at amino acid 108 is shown above the nucleotide sequence.

EXAMPLE 4

HBV variants produced by site directed mutagenesis

Table 1 provides a summary of some of the HBV variants produced by site directed mutagenesis.

TABLE 1 *HBV variants produced by site directed mutagenesis*

Nucleotide analogue selected polymerase mutations		Corresponding surface (S) mutation
1.	L426V	No change
2.	L426I	No change
3.	G499E (B domain)	D144E
4.	W499Q (B domain)	G145R
5.	F512L (B domain)	A157D
6.	V519L (B domain)	E164D
7.	L526M (B domain)	No change
8.	M550V (C domain)	M195I
9.	M550V (C domain)	M196L
10.	M550I (C domain)	W196S
11.	V553I (C domain)	M198I
12.	V55EI (C domain)	W199S
13.	S565P	S210R
Double polymerase mutations		Corresponding surface (S) mutation
14.	L526M/M550V	M195I
15.	L526M/M550I	W196S
16.	L426I/M550I	W196S
17.	L426V/M550I	W196S
Triple polymerase mutations		Corresponding surface (S) mutation
18.	V519L/L526M/M550V	E164D/M195I/W196L
19.	V519L/L526M/M550I	E164D/W196S
20.	L426I/L526M/M550I	W196S
21.	L426V/L526M/M550I	W196S
Precore and basal core promoter mutations (number from the unique EcoR1 site)		
A1814T		
C1856T		
G1896A		
G1897A		
G1898A		
G1899A		
G1896A/G1899A		
A1762T/G1764A		

- 42 -

Precore and basal core promoter mutations (number from the unique <i>EcoR</i> 1 site) continued	
T175C	
G1757A	
G1653T	

EXAMPLE 5

Cell culture

5

Sf21 insect cells were maintained in supplemented Grace's insect medium further supplemented with 10% v/v heat-inactivated fetal bovine serum (Gibco BRL, Gaithersburg, MD) in humidified incubator at 28°C with CO₂. HepG2 cells were maintained in minimal essential medium supplemented with 10% v/v heat-inactivated fetal 10 bovine serum (MEM-FBS). HepG2 cells were grown in humidified 37°C incubators at 5% v/v CO₂.

EXAMPLE 6

PREPARATION OF BACULOVIRUS TRANSFER VECTOR

15

A recombinant transfer vector was created by excising a fragment containing the required amount of variant HBV genome construct and cloning it into the multiple cloning region of a baculovirus vector such as pBlueBac4.5 (Invitrogen, Carlsbad, CA). Figures 4A and 4B show a representation of the plasmid encoding the recombinant transfer vector 1.28 and the 20 1.5 HBV genome construct, respectively. Similar baculovirus transfer vectors may also be constructed from an HBV 1.3 construct. A diagrammatic representation of the recombinant transfer vector HBV 1.3 is shown in Figure 1 of International Patent Application No. PCT/US99/01153 [WO 99/37821]. Analysis of recombinant transfer vector by restriction mapping demonstrated the presence of only one copy of the HBV genome portion in the 25 construct. The nucleotide sequence of the plasmid and the point mutations generated by site directed mutagenesis were confirmed by sequencing using the ABI Prism Big Dye

- 43 -

Terminator Cycle Sequencing Ready Reaction Kit according to the manufacturer's specifications (Perkin Elmer, Cetus Norwalk, CT).

EXAMPLE 7

5 *The sequence of 1.28 HBV genome and the 1.5 HBV genome*

The sequence of the 1.28 and the 1.5 HBV genome (Figures 5A and 5B, respectively) were elucidated using the ABI Prism Big Dye Terminator Cycle Sequencing Ready Reaction Kit according to the manufacturer's specifications (Perkin Elmer, Cetus Norwalk, CT).

10

EXAMPLE 8

*Generation of recombinant baculoviruses containing the
1.28, 1.5 or 1.3 HBV construct*

- 15 Purified recombinant transfer vector and linear AcMNPV baculovirus DNA were co-transfected into Sf21 cells using the BacNBlue transfection kit from Invitrogen (Carlsbad, CA); recombinant viruses were isolated by plaque assay according to the manufacturer's instructions. A series of recombinant viruses were amplified from isolated plaques by infecting 100-mm dishes of Sf21 cells. Viral DNA was extracted from amplified viruses
- 20 using standard procedures. Purified viral DNA was digested with restriction enzymes and then fractionated by electrophoresis in a 1.0% v/v agarose gel. Southern blotting was performed to determine which virus isolates contained the intact 1.28, 1.5 or 1.3 HBV construct. A Boehringer Mannheim Random Prime DNA Labeling kit (Indianapolis, IN) was used to generate [P^{32}]-radiolabeled probes. A full-length double-stranded HBV
- 25 genome was used as a template for all radiolabeled probes. Viral DNA sequence was confirmed by PCR amplification of the polymerase catalytic region using the sense primer 5'-GCC TCA TTT TGT GGG TCA CCA TA-3' [<400>1], (nucleotide 1408 to 1430 according to HBV Genebank Accession number M38454) and the antisense primer 5'-TCT CTG ACA TAC TTT CCA AT-3' [<400>2] (nucleotides 2817 to 2798 according to HBV
- 30 Genebank Accession number M38454). The following primers were utilized for the sequencing of internal regions 5'-TGC ACG ATT CCT GCT CAA-3' [<400>3]

(nucleotides 2345-2362 according to HBV Genbank Accession number M38454) and 5'-TTT CTC AAA GGT GGA GAC AG-3' [<400>4] (nucleotides 1790-1810 according to HBV Genbank Accession number M38454).

5

EXAMPLE 9***Preparative baculovirus amplification and purification***

Baculoviruses were amplified by infecting suspension cultures of Sf21 cells in log phase at a multiplicity of infection (moi) of 0.5 pfu/cell. Infections were allowed to proceed until a
10 majority of the cells in the flasks showed visible signs of infection (four to five days). Virions were concentrated from infected Sf21 medium by centrifugation at 80,000 x g and purified through a 20-60% w/v sucrose gradient. Purified virus was titrated in quadruplicate in Sf21 cells by end-point dilution. An aliquot of each high titre stock was used for DNA extraction. The polymerase gene was amplified and sequenced to confirm
15 the presence of the site-directed mutagenesis as in Example 8.

EXAMPLE 10***Infection of HepG2 cells with recombinant HBV expressing baculovirus***

20 HepG2 cells were seeded at approximately 20-40% confluence and then were grown for 16-24 hours before infection. On the day of infection, triplicate plates of cells were trypsinized, and viable cell number was determined with a hemocytometer using Trypan blue exclusion. Average cell counts were calculated and used to determine the volume of high-titer viral stock necessary to infect cells at the indicated moi. HepG2 cells were
25 washed one time with serum-free MEM to remove traces of serum. Baculovirus was diluted into MEM without serum to achieve the appropriate moi using volumes of 1.0, 0.5, and 0.25 ml to infect 100-mm, 60 mm, and 35-mm dishes, respectively. Baculovirus was adsorbed to HepG2 cells for one hour at 37°C with gentle rocking every 15 minutes to ensure that the inoculum was evenly distributed. The inoculum was then aspirated and
30 HepG2 cells were washed two times with phosphate-buffered saline and refed MEM-FBS with or without various concentrations of agents.

- 45 -

EXAMPLE 11

Analysis of secreted HBV antigens

Detection of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) was
5 performed by radioimmunoassay and microparticle enzyme immunoassay using kits purchased from Abbott Laboratories (Abbott Park, IL). Medium from HepG2 cells was collected, centrifuged at 6,000 g to remove cellular debris, transferred to clean tubes, and stored at 20°C until analysis. HBsAg amounts were calculated from a standard curve constructed using known amounts of HBsAg (provided with the kit). HBeAg values are
10 expressed as fold of positive control. Medium samples were diluted appropriately so that radioimmunassay results were within the standard curve (HBsAg) or below positive control values (HBeAg).

EXAMPLE 12

Detection of intracellular replicative intermediates

HBV core particles were isolated from the cytoplasmic fraction of HepG2 cells lysed in 0.5% w/v NP-40. Cytoplasmic extracts were adjusted to 10 mmol/l McC12 and unprotected DNA was removed by an incubation to 500 µg/ml Proteinase K for 1.5 hours
20 at 37°C. Following sequential phenol and chloroform extractions, nucleic acids were recovered by ethanol precipitation. Nucleic acids were resuspended in 50 µl/1 TE (10 mmol/l Tris, 1 mmol/l ethylenediaminetetraacetic acid), normalized by OD260, and digested with 100 µg/ml RNase (Boehringer Mannheim, Indianapolis, IN) for one hour at 37°C before analysis by electrophoresis and Southern blotting. A BioRad GS-670 imaging
25 densitometer and the Molecular Analyst software (BioRad, Hercules California) was used to analyze suitable exposures of Southern blots. Densitometry data was fitted to logistic dose response curves using the TableCurve2D software package from Jandel Scientific. Logistic dose response equations were used to calculate IC₅₀ and IC₉₀ values and coefficients of variation.

EXAMPLE 13*Extracellular HBV DNA analysis*

Conditioned medium was collected from HepG2 cells and subjected to centrifugation at 5 6,000 g for five minutes to remove cellular debris. HBV particles were precipitated with 10% w/v PEG 8000 and were concentrated by centrifugation at 12,000 xg. Viral pellets were resuspended in 1 ml of MEM-FBS and divided into two aliquots. One set of aliquots was treated with 750 µg/ml Pronase for one hour and then with 500 mg/ml DNase 1 for one hour. Both sets of aliquots were then digested with Proteinase K, and extracted with 10 phenol and chloroform. DNA was precipitated with 0.1 volume of 3 mol/l sodium acetate and 1 volume of isopropanol. Ten micrograms of transfer RNA was added as a carrier during precipitation. Pellets were resuspended in 25 µl of TE and digested with 0.5 mg/ml RNase for one hour. DNA was then analyzed by electrophoresis and Southern blotting.

15

EXAMPLE 14*3TC, PMEA and PCV treatments*

3TC and PCV were a gift from Klaus Esser, SmithKline Beecham, Collegeville, PA. PMEA was obtained from Gilead (Foster City, California). 3TC was resuspended in sterile water, aliquoted, and frozen at -20°C to avoid repeated freezing and thawing of the drug. 20 PMEA was resuspended in sterile water after the pH was adjusted to 7.0 with NaOH. PCV was resuspended in dimethyl sulphoxide. Medium containing 3TC was prepared daily as needed using fresh aliquots of 3TC. In experiments in which 3TC treatment was initiated after viral infection, HepG2 cells were exposed to the indicated concentration of 3TC 25 immediately after infection with HBV baculovirus. In experiments utilizing pretreatment with 3TC, cells were fed medium containing 3TC 16 hours prior to HBV baculovirus infection, HBV baculovirus infection was also carried out in medium containing 3TC, and cells were refed fresh medium containing 3TC immediately after completion of the infection and washing procedures. Treatment with PMEA and PCV were conducted in a 30 similar manner.

- 47 -

EXAMPLE 15

1. *Antiviral testing performed with wild-type HBV baculovirus*

- 5 The dose effect of 3TC and PMEA, on wild-type HBV is shown graphically in Figure 6
(A, B,) and a Southern Blot of intracellular HBV replicative intermediates and
extracellular virus produced by HepG2 cells transduced with wild-type HBV-baculovirus
in the presence of increasing concentrations of PCV is shown in Figure 6C and the IC₅₀ for
each antiviral agent is shown in Table 2. 3TC had the most pronounced effect whereas
10 PCV had a modest effect on wild-type HBV replication.

- 48 -

2. *Antiviral testing with L526M HBV baculovirus*

Figure 7A shows a pronounced resistance of L526M to 3TC compared to the wild-type in Figure 1A in which there was >0.5 log shift in the IC₅₀. No significant change was
5 observed with PMEA or PCV (Figures 7B, 7C).

3. *Antiviral testing with L526M/M550V HBV baculovirus*

Figure 8A shows that L526M/M550V is completely resistant to 3TC. There was no
10 substantial change to PMEA or PCV (Figures 8B, 8C).

4. *Antiviral testing with M550I HBV baculovirus*

M550I is completely resistant to 3TC (Figure 9A). The M550I HBV baculovirus had a
15 similar sensitivity to PMEA as the wild-type virus as in Figure 9B.

- 49 -

TABLE 2 Sensitivity of replication of wt and mutant HBV to inhibition by Lamivudine, Penciclovir and Adefovir

HBV	Equation Parameters			Correlation (r ²)	Inhibition at 1 μM	Sensitivity Parameters		Resistance Factor
	a	b	c			IC ₅₀ (μM)		
<i>Lamivudine</i>								
wt	185±8	0.004±0.001	1.10±0.07	1.0	99.6	0.009	1	
526	102±18	0.027±0.04	0.51±0.27	0.89	85.8	0.03	3	
550	186±48	0.35±0.64	0.42±0.26	0.93	26.7	3.8	422	
dual	127±10	41.5±31	0.60±0.4	0.90	(-15)*	86.2	9578	
<i>Penciclovir</i>								
wt	101±2	11.2±0.95	1.0±0.06	1.0	7.0	11.5	1	
526	100±7	103±12	4.8±7.3	0.93	(-3.0)	103	9	
550	124±6	0.0007	—*	0.73	(-24)	1217***	106	
dual	111±7	0.002	—*	0.86	(-10)	370	32	
<i>Adefovir</i>								
wt	170±16	0.025±0.001	0.80±0.07	1.0	91.6	0.08	1	
526	203±49	0.014±0.01	0.61±0.08	1.0	86.2	0.09	1	
550	159±24	0.078±0.05	0.57±0.1	1.0	70.0	0.31	4	
dual	155±8	0.039±0.009	0.53±0.02	1.0	77.0	0.16	2	

- 50 -

Footnote to Table 2

Measurements were made by assessing the image density of the ds HBV DNA bands in each autoradiograph and expressing the result as a percentage of the mean density of untreated controls.

Logistic dose response (LDR) equations did not accurately describe these data sets; instead the *a* and *b* parameters are for a single exponential decay equation $y = a^{(-bx)}$.

Values given are means or means \pm standard errors. In several cases, low concentrations of inhibitor stimulated HBV replication, reflected by *a* values $>100\%$. The percentage inhibition which occurs at a drug concentration of 1 μM has been estimated from each fitted curve plot; negative values (**) represent stimulation of replication relative to controls.

*** Extrapolated value.

The "Resistance Factor" is the factor (to the nearest integer) by which IC₅₀ estimated for the mutants differ from the corresponding estimate for wt, calculated by dividing the mutant IC₅₀ by wt IC₅₀.

EXAMPLE 16*1. Preparation of HBV particles from HBV baculovirus infected cells*

5 HepG2 cells were infected with 1.5 HBV baculovirus at an moi of 50-200. Starting on day
three post infection, conditioned medium was collected from infected cells, centrifuged at
3000 x g to remove cellular debris, and stored frozen at -20°C. HBV particles were
concentrated from conditioned medium by ultra-centrifugation in an SW28 rotor at 27,000
rpm for 5 hours. Pelleted virus was resuspended in a small volume phosphate-buffered
10 saline, aliquoted and frozen at -20°C.

*2. Endogenous polymerase assay using HBV particles prepared from HBV
baculovirus infected cells*

15 Aliquots of virus were thawed and brought to a final concentration of 0.5% NP-40, 2.5
mM Tris pH 7.5, and 6 mM DTT for 10 minutes at room temperature to disrupt the viral
envelope. The virus solution was then brought to 150 mM NaCl, 10 mM MgCl₂, 20 mM
KCL and 10 mM dATP, dGTP and dTTP. 10 mC of ³²P-labeled dCTP (approximately 0.2
mM) was added and the reaction was incubated at 37°C for 40 minutes to allow the HBV
20 polymerase to extend the viral DNA genome. In order to stop the reaction it was adjusted
to 0.5% SDS, 25 mM Tris, and 10 mM EDTA. The reaction mixture was digested with 500
μg/ml of proteinase K overnight at 37°C and HBV DNA was purified from by one
extraction with 1:1 phenol:chloroform followed by ethanol precipitation. DNA pellets were
resuspended in a small volume of water and electrophoresed through 1% w/v agarose gels
25 for 2 hours. Gels were dried using a Biorad gel dryer and autoradiography of the dried gels
was performed to visualize the amount of ³²P-labelled dCTP incorporated into HBV
genomes by HBV polymerase.

3. *An assay to measure the competition of radio-labelled [$\alpha^{32}P$]-dCTP incorporation by cold dCTP using the endogenous polymerase assay using HBV PARTICLES prepared from baculovirus infected cells*

- 5 Polymerase assays were performed as described above except that cold dCTP was added to each reaction to compete with the incorporation of labelled dCTP. In separate reactions, concentrations of 0.1, 1, 10, 100, and 1000 mM were added at the same time as labelled dCTP and the polymerase reactions were allowed to proceed. After an extraction of viral DNA and analysis by gel electrophoresis and autoradiography, the amount of labelled DNA from each reaction was quantified by densitometry of the audioradiogram.
- 10 Densitometry data were fitted to logistic dose response curves using Tablecurve2D software. Figure 10 shows the effect of the competition of cold dCTP on ^{32}P -labelled dCTP.
- 15 4. *An assay which can be used to measure the efficacy of an antiviral agents in an endogenous polymerase assay, using HBV particles prepared from baculovirus infected cells*

In an analogous manner, to that described in the above example, the efficacy of antiviral agents such as nucleotide triphosphates and non-nucleoside analogue polymerase inhibitors in inhibiting the catalytic activity of the HBV polymerase can be tested using this assay. The nucleoside triphosphates includes compounds such as 3TC-triphosphate, PMEA-triphosphate or PCV- triphosphate. Polymerase assays can be performed as described in Example 20 part (2), except that various concentrations of an antiviral agent can be added to each reaction to compete with the incorporation of labelled dCTP or another radiolabelled deoxynucleotide triphosphate. In separate reactions, various concentrations of the agents are added at the same time as labelled dCTP and the polymerase reactions are allowed to proceed. After an extraction of viral DNA and analysis by gel electrophoresis and autoradiography, the amount of labelled DNA from each reaction is quantified by densitometry of the audioradiogram. Densitometry data is fitted to logistic dose response curves using Tablecurve2D software.

EXAMPLE 17**1. Antiviral testing of the precore mutant (G1869A) HBV baculovirus**

5 In this study, comparable HBV DNA production by wild-type (1.3 x genomic length HBV) and the precore mutant HBV was found using the recombinant HBV-baculovirus system. The dose effect of lamivudine, adefovir, and penciclovir on the wild-type HBV /baculovirus virus and the precore mutant (G1869A) HBV are shown in Figure 11 (A, B, C) and the calculated IC₅₀ is shown in Table 3. HBV with the specific mutation of
10 G1869A seemed to be at least as sensitive for adefovir, and may be more sensitive to lamivudine and penciclovir compared with wild type HBV.

2. Antiviral testing with the precore mutant (G1869A), and L526M/M550V or M550I HBV baculovirus

15

Intracellular HBV DNA and extracellular virus produced by HepG2 cells transduced with various recombinant HBV/baculovirus (including L526M/M550V, precore/L526M/L550V, M550I and precore/M550I) are shown in Figure 12. The HBV DNA yield from the various mutants showed that wild-type and precore mutant were
20 comparable, the M550I and L526M/M550V mutants showed much lower HBV DNA production than wild-type, and the precore/M550I and precore/L526M/552V mutants had similar levels of DNA production (both intracellular and extracellular) as the precore mutant. The presence of M550I and L526M/M550V changes did not seem to diminish their replication fitness compared to the precore mutant.

25

Intracellular HBV DNA and extracellular virus produced by HepG2 cells transduced with various recombinant HBV-baculovirus (including M550I, precore/M550I, L526M/M550V and precore/L526M/L550V) in the presence of adefovir, or lamivudine or penciclovir are shown in Figure 13 (A-F) and the calculated IC₅₀ for adevoir is shown in Table 4. The
30 adefovir concentration required to inhibit HBV replication (intracellular single-stranded DNA) by 50% (IC₅₀) was 0.94 μM and 0.93 μM for the recombinant HBV-baculovirus

mutants M550I and L526M/M550V respectively, and 0.28 μM and 0.47 μM for precore/M550I and precore/L526M/M550V respectively. The Southern blots of intracellular HBV replicative intermediates and extracellular virus produced by HepG2 cells transduced with respective recombinant HBV-baculovirus showed that for any 5 HBV/baculovirus variant encoding the mutations at M550I or L526M/M550V changes conferred a high degree of resistance to lamivudine and penciclovir and no dose response could be plotted.

TABLE 3 *IC₅₀ of adefovir, lamivudine and penciclovir for wild-type (WT) or precore 10 (G1896A) recombinant HBV-baculovirus*

Drugs		WT	Precore
adefovir IC ₅₀ (μM)	IC SS ⁱ EC RC ^j	0.235 ^a 0.0535 ^c	0.195 ^b 0.025 ^d
lamivudine IC ₅₀ (μM)	IC SS EC RC	0.0697 ^e 0.018 ^g	0.0207 ^f 0.011 ^h
penciclovir IC ₅₀ (μM)	IC SS EC RC	226 23	85 6

^a average of 2 experiments (0.25 and 0.22 μM)

^b average of 2 experiments (0.20 and 0.19 μM)

15 ^c average of 2 experiments (0.06 and 0.047 μM)

^d average of 2 experiments (0.02 and 0.03 μM)

^e average of 3 experiments (0.067, 0.085 and 0.0572 μM)

^f average of 3 experiments (0.014, 0.014 and 0.032 μM)

^g average of 3 experiments (0.022, 0.0293 and 0.0095 μM)

20 ^h average of 3 experiments (0.012, 0.01 and 0.01 μM)

ⁱ intracellular single-stranded HBV DNA

^j extracellular relaxed circular HBV DNA

- 55 -

TABLE 4 *IC₅₀ of adefovir, lamivudine and penciclovir for recombinant HBV-baculovirus encoding changes conferring lamivudine resistance with or without the precore (G1896A) mutation*

5

Recombinant HBV-baculovirus		adefovir IC ₅₀ (μM)	lamivudine IC ₅₀ (μM)	penciclovir IC ₅₀ (μM)
M550I	IC SS	0.94	NDR	NDR
	EC RC	*	*	*
L526M/M550V	IC SS	0.93	NDR	NDR
	EC RC	*	*	*
Precore/M550I	IC SS	0.28	NDR	NDR
	EC RC	0.09	NDR	NDR
Precore/L526M/M550V	IC SS	0.47	NDR	NDR
	EC RC	1.0	NDR	NDR

NDR no dose response

* HBV DNA production too low to be measured.

- 10 IC SS intracellular single-stranded HBV DNA
 EC RC extracellular relaxed circular HBV DNA

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood 15 that the invention includes all such variations and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.

- 56 -

BIBLIOGRAPHY

1. Norder *et al.* *J. Gen. Virol.* 74: 341-1348, 1993.
2. Stuyver *et al.*, A new genotype of hepatitis B virus: complete genome and phylogenetic relatedness. *J Gen Virol.* 81: 67-74, 2000.
3. Ryder *et al.* *Lancet ii(8400)*: 449-52, 1984.
4. Beasley *et al.* *Lancet ii*; 1159-63, 1981
5. Tiollais *et al.* *Nature* 317: 489-495, 1985.
6. Gerlich *et al.* *Viral Hepatitis and Liver Disease*. F.B. Hollinger *et al.* eds Williams-Wilkens, Baltimore, MD, pp121-134, 1991.
7. Carman *et al.* *Gastroenterology* 102: 711-719, 1992.
8. Carman *et al.* *Lancet* 336: 325-329, 1990.
9. Okamoto *et al.* *Paediatric Research* 32: 264-268, 1992.
10. McMahon *et al.* *Hepatology* 15: 757-766, 1992.
11. Fujii *et al.* *Biochem. Biophys. Res. Commun.* 184: 1152-1157, 1992.
12. Harrison *et al.* *J. Hepatol.* 13: 5105-5107, 1991.
13. Delaney and Isom HC, *Hepatology* 28: 1134-46, 1998
14. Delaney *et al.* *Antimicrob Agents Chemother* 43: 2017-26, 1999

- 57 -

15. Angus *et al.*, *Hepatology* 21: 14-8, 1995
16. King *et al.*, *Antimicrob Agents Chemother.* 42: 3179-86, 1998

CLAIMS

1. A method for detecting a variant HBV which exhibits an altered sensitivity to an agent said method comprising:-

generating a genetic construct comprising a replication competent amount of the genome from said variant HBV contained in or fused to an amount of a baculovirus genome capable to infect cells and then infecting said cells with said construct;

contacting said cells, before, and/or during, and/or after infection, with the agent to be tested;

optionally further infecting said cells with the same genetic construct or a genetic construct comprising the genome of HBV wild-type or another HBV variant;

culturing said cells for a time and under conditions sufficient for the variant HBV to replicate, express genetic sequences and/or assemble and/or release virus or virus-like particles if resistant to said agent; and

subjecting the cells, cell lysates or culture supernatant fluid to viral- or viral-component-detection means to determine whether or not the variant virus has replicated, expressed genetic material and/or assembled and/or been released in the presence of said agent.

2. A method according to Claim 1 wherein the variant HBV is capable of replicating in the presence of an agent which inhibits or reduces infection, replication or assembly of a reference HBV.
3. A method according to Claim 2 wherein the agent is a nucleoside analogue or a non-nucleoside analogue.

4. A method according to Claim 3 wherein the agent is a non-nucleoside analogue reverse transcriptase inhibitor and/or a non-nucleoside analogue DNA dependent DNA polymerase inhibitor.
5. A method according to Claim 3 wherein the nucleoside analogue is 3TC, PMEA or PCV.
6. A method according to Claim 2 wherein the agent is an immunointeractive molecule.
7. A method according to Claim 6 wherein the immunointeractive molecule is an antibody.
8. A method according to any one of Claims 1 to 7 wherein the variant HBV comprises an altered HBV DNA polymerase.
9. A method according to Claim 7 wherein the altered HBV DNA polymerase is selected from L426I/V, L428I/VN480G, N485K, K495R, R499Q, G499E, W499Q, F512L, I515L, V519L, L526M, M550V, M550I, V553I, S565P.
10. A method according to any one of Claims 1 to 7 wherein the altered HBV is a multiple mutant selected from L526M/M550I, L526M/M550V, V519L/L526M/M550V and V519L/L526M/M550I.
- 11 A method according to any one of Claims 1 to 7 wherein the variant HBV comprises an altered HBV precore gene or basal core promoter.
12. A method according to Claim 11 wherein the altered HBV precore promoter or basal core promoter is selected from A1814T, C1856T, G1896A, G1897A, G1898A, G1899A, G1896A/ G1899A, A1762T/ G1764A, T1753C, G1757A and C1653T (where the numbering is from the unique *EcoR1* site in HBV).

13. A method according to any one of Claims 1 to 7 wherein the variant HBV comprises an altered HBsAg.
14. A method according to Claim 13 wherein the altered HBsAg is selected from G112R, T123P Y/F134S, D144E, G145R, A157D, E164D, F170L, M195I, W196L, W196S, W196STOP, M198I, W199S, S204T, S210R.
15. A method according to Claim 14 wherein the altered HBsAg is selected from D144E, G145R, A157D, E164D, M195I, W196L, W196S, W196STOP, M198I, W199S and S210R.
16. A method according to any one of Claims 1 to 7 or any one of Claims 8 to 12 wherein the variant HBV comprises an altered HBV precore promoter or basal core promoter and an altered HBV DNA polymerase.
17. A method according to any one of Claims 1 to 7 or any one of Claims 11 or 12 or any one of Claims 13 to 15 wherein the variant HBV comprises an altered HBV precore promoter or basal core promoter and an altered HBV HBsAg.
18. A method according to any one of Claims 1 to 7 or any one of Claims 8 to 10 or any one of Claims 13 to 15 wherein the variant HBV comprises an altered HBV HBsAg and an altered HBV DNA polymerase.
19. A method according to any one of Claims 1 to 7 or any one of Claims 8 to 15 wherein the variant HBV comprises an altered HBV precore promoter or basal core promoter, an altered HBV HBsAg and an altered HBV DNA polymerase.
20. An HBV variant or a recombinant or derivative form thereof or a chemical equivalent thereof or a recombinant or chemical equivalent of a component thereof detected by the method according to any one of Claims 1 to 19.

21. A method according to any one of Claims 1 to 7 or any one of Claims 8 to 19 wherein the cells are co-infected with multiple combinations of the variant HBV comprises an altered HBV precore promoter or basal core promoter and/or an altered HBV HBsAg and/or an altered HBV DNA polymerase or combinations thereof.

22. A method according to any one of Claims 1 to 7 or any one of Claims 8 to 19 wherein the cells are superinfected with multiple combinations of the variant HBV comprising an altered HBV precore promoter or basal core promoter and/or an altered HBV HBsAg and/or an altered HBV DNA polymerase or combinations thereof.

23. A method for detecting a variant HBV comprising DNA polymerase which exhibits an altered sensitivity to an agent said method comprising:-

generating a genetic construct comprising a replication competent amount of the genome from said variant HBV contained in or fused to an amount of a baculovirus genome capable to infect cells and then infecting said cells with said construct;

contacting said cells, before and/or after infection, with the agent to be tested;

optionally further infecting said cells with the same genetic construct or a genetic construct comprising the genome of HBV wild-type or another HBV variant;

culturing said cells for a time and under conditions sufficient for the variant HBV to replicate, express genetic sequences and/or assemble and/or release virus or virus-like particles if resistant to said agent; and

subjecting the cells, cell lysates or culture supernatant fluid or virus purified therefrom to HBV DNA polymerase assay in the presence or absence of nucleoside

triphosphate analogues or non-nucleoside analogues reverse transcriptase inhibitors or non-nucleoside analogues DNA dependent DNA polymerase inhibitors.

24. A method for detecting DNA polymerase activity in the presence of an antiviral agent said method comprising:-

generating a genetic construct comprising a replication competent amount of a genome from an HBV capable of producing said DNA polymerase, said genome contained in or fused to an amount of a baculovirus genome capable to infect cells and then infecting said cells with said construct;

contacting said cells, before and/or after infection, with the antiviral agent to be tested;

optionally further infecting said cells with the same genetic construct or a genetic construct comprising the genome of HBV wild-type or another HBV strain;

culturing said cells for a time and under conditions sufficient for the HBV and to replicate, express genetic sequences and/or assemble and/or release virus or virus-like particles if resistant to said agent; and

subjecting the cells, cell lysates or culture supernatant fluid or virus purified therefrom to HBV DNA polymerase assay in the presence or absence of nucleoside triphosphate analogues or non-nucleoside analogues reverse transcriptase inhibitors or non-nucleoside analogues DNA dependent DNA polymerase inhibitors.

1/42

Figure 1A

Figure 1B

3/42

(421) 430 440 450

422 438

SNDLSWLSDL VSAAFYHI_PPL HPAAMPHLLIV GSSGLD_SRYVA

Domain A

<u>HBSAg G112R</u>	<u>T123P</u>	<u>Y/F134S</u>	<u>D144E G145R</u>
460	470	480	490
464 466	477	488	499
RLSST _N SR _N NI*N N _{YH} Q _{YH} G _R ***D _N LH D _N Y _S CSR _D QLYVS LL _M LLYK _Q T _{YF} GR _W			

<u>HBSAg</u>	<u>A157D</u>	<u>E164D</u>	<u>F170L</u>
500	510	520	530
	512	519 523/524/526/528/530	
KLHL _Y L _S _A HPII _V LGFRKI _L PMGV _G GLSPFLLAQF TSAIC _L _S _A V _M V _T R _C R			

Domain B

	<u>W196L</u>	<u>W199S</u>	
<u>HBSAg</u>	<u>M195I/S196W M198I S204T</u>		<u>S210R</u>
540	550	560	
546	550 553	559	565
AFF _P HCL _V A _V FS _A Y MDDV _L _M VLGAK _R _S _T V _G O _E H _L S _R E _S _F L _Y _F T _A _S _A			

Domain C

	<u>575</u>	
	I _V _T _C _N _S _F _V LLL _S _D _L _V GI HLNPN _Q KTKRW GYSLNFMGYI _V I G	
570	580	590
	Domain D	Domain E

Figure 2

*329616/HPBADR1CG
221499/HPBADW3
221500/HPBCG
62280/XXHEFAV
59439/HBVAYWE
59429/HBVAYWC
59418/HBVADW2
59408/HBVADRM
59404/HBVADR4
329640/HPBAYW
313780/HBVAYMCG
2229417/HPBADW1

*329616/HPBADR1CG
*221499/HPBADW3
*221500/HPBCG
622280/XXHEPAV
59439/HBVAYWE
59429/HBVAYWC
59418/HBVADW2
59408/HBVADRM
59404/HBVADR4
329640/HPBAYW
313780/HBVAYWMCG
2229417/HPBADW1

Figure 3

*329616/HPBADR1CG
221499/HPBADW3
221500/HPBCG
62280/XXHEPAV
59439/HBVAYWE
59429/HBVAYWC
59418/HBVADW2
59408/HBVADRM
59404/HBVADR4
329640/HPBAYW
313780/HBVAYWMCG
222941/HPBADW1

Figure 3 continued

*329616/HPBADR1CG
 221499/HPBADW3
 221500/HPBCG
 62280/XXHEPAV
 59439/HBVAYWE
 59429/HBVAYWC
 59418/HBVADW2
 59408/HBVADRM
 59404/HBVADR4
 329640/HPBAYW
 313780/HBVAYWMCG
 229417/HPBADW1

*329616/HPBADR1CG
 221499/HPBADW3
 221500/HPBCG
 62280/XXHEPAV
 59439/HBVAYWE
 59429/HBVAYWC
 59418/HBVADW2
 59408/HBVADRM
 59404/HBVADR4
 329640/HPBAYW
 313780/HBVAYWMCG
 229417/HPBADW1

Figure 3 continued

*329616/HPBADR1CG
*2221499/HPBADW3
*2221500/HPBCCG
622280/XXHEPAV
59439/HBVAYWE
59429/HBVAYWC
59418/HBVADW2
59408/HBVADRM
59404/HBVADR4
329640/HPBAYYW
313780/HBVAYWMCG
2229417/HPBADW1

3299616/HPBADR1CG
221499/HPBADW3
2221500/HPBCG
522280/XXHEPAV
59439/HBVAYWE
59429/HBVAYWC
59418/HBVADW2
59408/HBVADRM
59404/HBVADR4
3299640/HPBAYW
313780/HBVAYWMC
2229417/HPBADW1

Figure 3 continued

*329616/HPBADR1CG
2221499/HPBADW3
221500/HPBCG
62280/XXHEPAV
59439/HBVAYWE
59429/HBVAYWC
59418/HBVADW2
59408/HBVADRM
59404/HBVADR4
329640/HPBAYW
313780/HBVAYWMCG
2229417/HPBADW1

*3299616/HPBADR1CG
221499/HPBADW3
221500/HPBCG
622880/XXHEPAV
59439/HBVAYWE
59429/HBVAYWC
59418/HBVADW2
59408/HBVADRM
59404/HBVADR4
329640/HPBAYW
313780/HBVAYWMCG
229417/HPBADW1

Figure 3 continued

9/42

*329616/HPBADR1CG
 221499/HPBADW3
 221500/HPBCG
 62280/XXHEPAV
 59439/HBVAYWE
 59429/HBVAYWC
 59418/HBVADW2
 59408/HBVADRM
 59404/HBVADR4
 329640/HPBAYW
 313780/HBVAYWMCG
 229417/HPBADW1

Figure 3 continued

10/42

pBBHBV1.28**Figure 4A**

11/42

pBBHBV1.5**Figure 4B**

12/42

Sequence Range: 1 to 4084

10	20	30	40	50
GGACGACCCCTCGCGGGGCCGCTTGGGACTCTCTCGTCCCCTCTCCGTC				
60	70	80	90	100
TGCCGTTCCAGCCGACCACGGGGCGCACCTCTCTTACGCGGTCTCCCCG				
110	120	130	140	150
TCTGTGCCTTCTCATCTGCCGGTCCGTGTGCACTCGCTTACACCTCTGCA				
160	170	180	190	200
CGTTGCATGGAGACCACCGTGAACGCCATCAGATCCTGCCAAGGTCTT				
210	220	230	240	250
ACATAAGAGGACTCTTGGACTCCCAGCAATGTCAACGACCGACCTTGAGG				
260	270	280	290	300
CCTACTTCAAAGACTGTGTGTTAAGGACTGGGAGGAGCTGGGGAGGAG				
310	320	330	340	350
ATTAGGTTAAAGGTCTTGTATTAGGAGGCTGTAGGCATAAATTGGTCTG				
360	370	380	390	400
CGCACCAAGCACCATGCAACTTTTACCTCTGCCTAACATCTCTTGAC				
410	420	430	440	450
ATGTCCCACGTCAAGCCTCCAAGCTGTGCCCTGGGTGGCTTGGGCA				
460	470	480	490	500
TGGACATTGACCCCTATAAAGAATTGGAGCTACTGTGGAGTTACTCTCG				
510	520	530	540	550
TTTTGCCTCTGACTTCTTCCCGTCAGAGATCTCCTAGACACCCG				
560	570	580	590	600
CTCAGCTCTGTATCGAGAAGCCTTAGAGTCTCCTGAGCATTGCTCACCTC				
610	620	630	640	650
ACCATACTGCACTCAGGCAAGCCATTCTCTGCTGGGGGAATTGATGACT				
660	670	680	690	700
CTAGCTACCTGGGTGGTAATAATTGGAAGATCCAGCATTCCAGGGATCT				

Figure 5A

13/42

710	720	730	740	750
AGTAGTCAATTATGTTAATACTAACATGGGTTAAAGATCAGGCAACTAT				
760	770	780	790	800
TGTGGTTCATATATCTTGCTTACTTTGGAAGAGAGACTGTACTTGAA				
810	820	830	840	850
TATTGGTCTCTTCGGAGTGTGGATCGCACTCCCTCCAGCCTATAGACC				
860	870	880	890	900
ACCAAATGCCCTATCTTATCAACACACTCCGGAAACTACTGTTAGAC				
910	920	930	940	950
GACGGGACCGAGGCAGGTCCCTAGAAGAAGAACTCCCTCGCCTCGCAGA				
960	970	980	990	1000
CGCAGATCTCAATGCCCGCGTCGCAGAAGATCTCAATCTCGGAAATCTCA				
1010	1020	1030	1040	1050
ATGTTAGTATTCTGGACTCATAAGGTGGAACTTTACGGGGCTTTAT				
1060	1070	1080	1090	1100
TCCTCTACAGTACCTATCTTAATCCTGAATGGCAAACCTCCCTTCC				
1110	1120	1130	1140	1150
TAAGATTCAATTACAAGAGGACATTATTAATAGGTGTCAACAAATTGTGG				
1160	1170	1180	1190	1200
GCCCTCTCACTGTAAATGAAAAGAGAAGATTGAAATTAAATTATGCCTGCT				
1210	1220	1230	1240	1250
AGATTCTATCCTACCCACACTAAATATTGCCCTTAGACAAAGGAATTAA				
1260	1270	1280	1290	1300
ACCTTATTATCCAGATCAGGTAGTTAACATTACTTCCAAACCAGACATT				
1310	1320	1330	1340	1350
ATTACATACTCTTGGAGGCTGGTATTCTATATAAGAGGGAAACCACA				
1360	1370	1380	1390	1400
CGTAGCGCATCATTGCGGGTCACCATATTCTGGAAACAAGAGCTACA				
1410	1420	1430	1440	1450
GCATGGGAGGTTGGTCATAAAACCTCGCAAAGGCATGGGACGAATCTT				

Figure 5A continued

14/42

1460	1470	1480	1490	1500
TCTGTTCCCAACCCTCTGGGATTCTTCCCGATCATCAGTTGGACCCCTGC				
1510	1520	1530	1540	1550
ATTCGGAGCCA ACTCAAACAATCCAGATTGGGACTTCAACCCC ATCAAGG				
1560	1570	1580	1590	1600
ACCACTGGCCAGCAGCCAACCAGGTAGGAGTAGGGAGCATTGGGCCAGGG				
1610	1620	1630	1640	1650
CTCACCCCTCCACACGGCGGTATTTGGGGTGGAGCCCTCAGGCTCAGGG				
1660	1670	1680	1690	1700
CATATTGACCACAGTGTCAACAATTCCCTCCTGCCTCCACCAATCGGC				
1710	1720	1730	1740	1750
AGTCAGGAAGGCAGCCTACTCCCATCTCTCCACCTCTAAGAGACAGTCAT				
1760	1770	1780	1790	1800
CCTCAGGCCATGCAGTGGATTCCACTGCCTTCCACCAAGCTCTGCAGGA				
1810	1820	1830	1840	1850
TCCCAGAGTCAGGGGTCTGTATCTTCCTGCTGGTGGCTCCAGTTCAAGGAA				
1860	1870	1880	1890	1900
CAGTAAACCCCTGCTCCGAATATTGCCTCTCACATCTCGTCAATCTCCGCG				
1910	1920	1930	1940	1950
AGGACTGGGGACCCTGTGACGAACATGGAGAACATCACATCAGGATTCC				
1960	1970	1980	1990	2000
AGGACCCCTGCTCGTGTACAGGCAGGGTTTTCTTGTGACAAGAACATCC				
2010	2020	2030	2040	2050
TCACAATACCGCAGAGTCTAGACTCGTGGTGGACTTCTCTCAATTCTCA				
2060	2070	2080	2090	2100
GGGGGATCTCCCGTGTGTCTGGCCAAAATT CGCAGTCCCCAACCTCCAA				
2110	2120	2130	2140	2150
TCACTCACCAACCTCCTGTCCATTTGTCTGGTTATCGCTGGATGT				
2160	2170	2180	2190	2200
GTCTGCGGCGTTTATCATATTCCCTTTCATCCTGCTGCTATGCCTCATC				

Figure 5A continued

15/42

2210	2220	2230	2240	2250
TTCTTATTGGTTCTTCTGGATTATCAAGGTATGTTGCCGTTGTCCTCT				
2260	2270	2280	2290	2300
AATTCCAGGATCAACAAACAACCAGTACGGGACCATGCAAAACCTGCACGA				
2310	2320	2330	2340	2350
CTCCTGCTCAAGGCAACTCTATGTTCCCTCATGTTGCTGTACAAAACCT				
2360	2370	2380	2390	2400
ACGGATGGAAATTGCACCTGTATTCCCATCCCATCGTCCTGGCTTTCGC				
2410	2420	2430	2440	2450
AAAATACCTATGGGAGTGGGCCTCAGTCGTTCTGGCTCAGTTAC				
2460	2470	2480	2490	2500
TAGTGCCATTGTTCACTGGTCAGTGGCTAGGGCTTCCCCACTGTTGGCTT				
2510	2520	2530	2540	2550
TCAGCTATATGGATGATGTGGTATTGGGGCCAAGTCTGTACAGCATCGT				
2560	2570	2580	2590	2600
GAGTCCCTTATACCGCTGTTACCAATTCTTTGTCTGGTATAACA				
2610	2620	2630	2640	2650
TTTAAACCCCTAACAAAACAAAAAGATGGGTTATTCCCTAAACTCATGG				
2660	2670	2680	2690	2700
GCTACATAATTGGAAGTTGGGAACCTTGCCACAGGATCATATTGTACAA				
2710	2720	2730	2740	2750
AAGATCAAACACTGTTTAGAAAACCTCCTGTTAACAGGCCTATTGATTG				
2760	2770	2780	2790	2800
GAAAGTATGTCAAAGAATTGTGGTCTTGGCTTGCTGCCATTAA				
2810	2820	2830	2840	2850
CACAAATGTGGATATCCTGCCTTAATGCCTTGTATGCATGTATAAGCT				
2860	2870	2880	2890	2900
AAACAGGCTTCACTTCTGCCAACCTACAAGGCCTTCTAAGTAAACA				
2910	2920	2930	2940	2950
GTACATGAACCTTACCCGTTGCTCGGCAACGGCCTGGTCTGTGCCAAG				

Figure 5A continued

16/42

2960 2970 2980 2990 3000
 TGTTGCTGACGCAACCCCCACTGGCTGGGCTTGGCCATAGGCCATCAG

3010 3020 3030 3040 3050
 CGCATGCGTGGAACCTTGCTGGCTCCTCTGCCGATCCATACTGCGGAAC

3060 3070 3080 3090 3100
 CCTAGCCGCTTGTGCTCGCAGCCGGCTGGAGCAAAGCTCATCGGAA

3110 3120 3130 3140 3150
 CTGACAATTCTGTCGTCCCTCGCGGAAATATAACATCGTTCCATGGCTG

3160 3170 3180 3190 3200
 CTAGGCTGTACTGCCAAGTGGATCCTCGCGGGACGTCCCTTGTACGT

3210 3220 3230 3240 3250
 CCCGTCGGCGCTGAATCCCGCGGACGACCCCTCGCGGGCCGCTGGGAC

3260 3270 3280 3290 3300
 TCTCTCGTCCCCCTCTCCGTCTGCCGTTCCAGCCGACCACGGGGCGCAC

3310 3320 3330 3340 3350
 TCTCTTTACGCGGTCTCCCCGTCTGTGCCTTCTCATCTGCCGGTCCGTGT

3360 3370 3380 3390 3400
 GCACTTCGCTTCACCTCTGCACGTTGCATGGAGACCACCGTGAACGCCA

3410 3420 3430 3440 3450
 TCAGATCCTGCCAAGGTCTTACATAAGAGGACTCTGGACTCCCAGCAA

3460 3470 3480 3490 3500
 TGTCAACGACCGACCTTGAGGCCTACTTCAAAGACTGTGTGTTAAGGAC

3510 3520 3530 3540 3550
 TGGGAGGGAGCTGGGGGAGGAGATTAGGTTAAAGGTCTTGTATTAGGAGG

3560 3570 3580 3590 3600
 CTGTAGGCATAAAATTGGTCTGCGCACCAAGCACATGCAACTTTTACCT

3610 3620 3630 3640 3650
 CTGCCTAATCATCTCTGTACATGTCCCAGTCAAGCCTCCAAGCTGT

3660 3670 3680 3690 3700
 GCCTTGGGTGGCTTGGGCATGGACATTGACCCTATAAAGAATTGGA

Figure 5A continued

17/42

3710 3720 3730 3740 3750
GCTACTGTGGAGTTACTCTCGTTTGCCTCTGACTTCTTCCTCCGT

3760 3770 3780 3790 3800
CAGAGATCTCCTAGACACCGCCTCAGCTCTGTATCGAGAAGCCTAGAGT

3810 3820 3830 3840 3850
CTCCTGAGCATTGCTCACCTCACCACTGCACTCAGGCAAGCCATTCTC

3860 3870 3880 3890 3900
TGCTGGGGGAATTGATGACTCTAGCTACCTGGGTGGTAATAATTGGA

3910 3920 3930 3940 3950
AGATCCAGCATCCAGGGATCTAGTAGTCAATTATGTTAATACTAACATGG

3960 3970 3980 3990 4000
GTTTAAAGATCAGGCAACTATTGTGGTTCATATATCTTGCCTTACTTT

4010 4020 4030 4040 4050
GGAAGAGAGACTGTACTTGAATATTGGTCTTTCGGAGTGTGGATTG

4060 4070 4080
CACTCCTCCAGCCTATAGACCACCAAATGCCCT

Figure 5A continued

18/42

Sequence Range: 1 to 4496

10	20	30	40	50
GATATCCTGCCTTAATGCCTTGATGCATGTATAACAAGCTAACAGGGCT				
60	70	80	90	100
TTCACTTCTGCCAACTTACAAGGCCTTCTAAGTAAACAGTACATGAA				
110	120	130	140	150
CCTTTACCCCGTTGCTCGGCAACGGCCTGGTCTGTGCCAAGTGTGCTG				
160	170	180	190	200
ACGCAACCCCCACTGGCTGGGCTTGGCCATAGGCCATCAGCGCATGCGT				
210	220	230	240	250
GGAACCTTGCTGGCTCCTCTGCCGATCCATACTGCGGAACTCCTAGCCGC				
260	270	280	290	300
TTGTTTGCTCGCAGCCGGCTGGAGCAAAGCTCATCGGAAC TGACAATT				
310	320	330	340	350
CTGTCGT CCTCTCGCGGAAATATA CATCGTTCCATGGCTGCTAGGCTGT				
360	370	380	390	400
ACTGCCAACTGGATCCTCGCGGGACGTCCCTTGTACGTCCCCTCGGC				
410	420	430	440	450
GCTGAATCCCGCGGACGACCCCTCGCGGGCCGCTGGGACTCTCTCGTC				
460	470	480	490	500
CCCTTCTCCGTCTGCCGTTCCAGCCGACCACGGGGCGCACCTCTCTTAC				
510	520	530	540	550
GCGGTCTCCCCGTCTGTGCCTTCTCATCTGCCGGTCCGTGTGCACTTCGC				
560	570	580	590	600
TTCACCTCTGCACGTTGCATGGAGACCACCGTGAACGCCATCAGATCCT				
610	620	630	640	650
GCCCAAGGTCTTACATAAGAGGGACTCTGGACTCCCAGCAATGTCAACGA				
660	670	680	690	700
CCGACCTTGAGGCCTACTTCAAAGACTGTGTGTTAAGGACTGGGAGGAG				

Figure 5B

19/42

710 720 730 740 750
 CTGGGGGAGGAGATTAGGTTAAAGGTCTTGTATTAGGAGGCTGTAGGCA

760 770 780 790 800
 TAAATTGGTCTGCGCACCAAGCACCATGCAACTTTTCACCTCTGCCTAAT

810 820 830 840 850
 CATCTCTTGTACATGTCCCCTGTTCAAGCCTCCAAGCTGTGCCTGGGT

860 870 880 890 900
 GGCTTGGGCATGGACATTGACCCTTATAAAGAATTGGAGCTACTGTG

910 920 930 940 950
 GAGTTACTCTCGTTTGCCCTCTGACTTCTTCCTCCGTAGAGATCT

960 970 980 990 1000
 CCTAGACACCGCCTCAGCTCTGTATCGAGAACGCTTAGAGTCTCCTGAGC

1010 1020 1030 1040 1050
 ATTGCTCACCTCACCATACTGCACTCAGGCAAGCCATTCTCTGCTGGGG

1060 1070 1080 1090 1100
 GAATTGATGACTCTAGCTACCTGGGTGGTAATAATTGGAAGATCCAGC

1110 1120 1130 1140 1150
 ATCCAGGGATCTAGTAGTCATTATGTTAACTAACATGGTTAAAGA

1160 1170 1180 1190 1200
 TCAGGCAACTATTGTGGTTCATATATCTGCCTACTTTGGAAGAGAG

1210 1220 1230 1240 1250
 ACTGTACTTGAATATTGGTCTCTTCGGAGTGTGGATTGCACCTCC

1260 1270 1280 1290 1300
 AGCCTATAGACCACCAAATGCCCTATCTTATCAACACTCCGGAAACTA

1310 1320 1330 1340 1350
 CTGTTGTTAGACGACGGGACCGAGGCAGGTCCCCCTAGAAGAAGAACTCCC

1360 1370 1380 1390 1400
 TCGCCTCGCAGACGCAGATCTCAATGCCCGTCCGAGAAGATCTCAATC

1410 1420 1430 1440 1450
 TCGGGAAATCTCAATGTTAGTATTCCCTGGACTCATAGGTGGAAACTTT

Figure 5B continued

1460 1470 1480 1490 1500
 ACGGGGCTTATTCCCTACAGTACCTATCTTAATCCTGAATGGCAAAC.

1510 1520 1530 1540 1550
 TCCTTCCTTCCTAAGATTCAAAAGAGGACATTATTAATAGGTGTC

1560 1570 1580 1590 1600
 AACAAATTGTGGGCCCTCACTGTAAATGAAAAGAGAAGATTGAAATTA

1610 1620 1630 1640 1650
 ATTATGCCTGCTAGATTCTATCCTACCCACACTAAATATTGCCCTTAGA

1660 1670 1680 1690 1700
 CAAAGGAATTAAACCTTATTATCCAGATCAGGTAGTTAACATTACTTCC

1710 1720 1730 1740 1750
 AAACCAGACATTATTACATACTCTTGAGGCTGGTATTCTATATAAG

1760 1770 1780 1790 1800
 AGGGAAACCACACGTAGCGCATCTTGCAGGTACCCATATTCTGGGA

1810 1820 1830 1840 1850
 ACAAGAGCTACAGCATGGGAGGTTGGTCATCAAAACCTCGCAAAGGCATG

1860 1870 1880 1890 1900
 GGGACGAATCTTCTGTTCCAACCCCTGAGGATTCTTCCGATCATCA

1910 1920 1930 1940 1950
 GTTGGACCCCTGCATTCGGAGCCAACCTCAAACAATCCAGATTGGGACTTCA

1960 1970 1980 1990 2000
 ACCCCATCAAGGACCCTGGCCAGCAGCCAACCAAGGTAGGAGTGGGAGCA

2010 2020 2030 2040 2050
 TTGGGCCAGGGCTCACCCCTCCACACGGCGGTATTTGGGTGGAGCCC

2060 2070 2080 2090 2100
 TCAGGCTCAGGGCATATTGACCACAGTGTCAACAATTCCCTCCTGCCT

2110 2120 2130 2140 2150
 CCACCAATCGGCAGTCAGGAAGGCAGCCTACTCCCACCTCTCCACCTCTA

2160 2170 2180 2190 2200
 AGAGACAGTCATCCTCAGGCCATGCAGTGGAAATTCCACTGCCTTCCACCA

Figure 5B continued

21/42

2210	2220	2230	2240	2250
AGCTCTGCAGGATCCCAGAGTCAGGGGTCTGTATCTCCTGCTGGTGGCT				
2260	2270	2280	2290	2300
CCAGTTCAGGAACAGTAAACCCCTGCTCCGAATATTGCCTCTCACATCTCG				
2310	2320	2330	2340	2350
TCAATCTCCGCGAGGACTGGGGACCCTGTGACGAACATGGAGAACATCAC				
2360	2370	2380	2390	2400
ATCAGGATTCCCTAGGACCCCTGCTCGTGTACAGGCAGGGTTTTCTTGT				
2410	2420	2430	2440	2450
TGACAAGAATCCTCACAAATACCGCAGAGTCTAGACTCGTGGTGGACTTCT				
2460	2470	2480	2490	2500
CTCAATTCTAGGGGGATCTCCCGTGTGTCTGGCCAAAATTCGCAGTC				
2510	2520	2530	2540	2550
CCCAACCTCCAATCACTCACCAACCTCCTGTCCCTCCAATTGTCCTGGTT				
2560	2570	2580	2590	2600
ATCGCTGGATGTGTCTGCCGGCTTTATCATATTCCCTTCCATCCTGCTG				
2610	2620	2630	2640	2650
CTATGCCTCATCTTCTTATTGGTTCTCTGGATTATCAAGGTATGTTGCC				
2660	2670	2680	2690	2700
CGTTTGTCCCTCTAATTCCAGGATCAACACAACCAGTACGGGACCATGCA				
2710	2720	2730	2740	2750
AAACCTGCACGACTCCTGCTCAAGGCAACTCTATGTTCCCTCATGTTGC				
2760	2770	2780	2790	2800
TGTACAAAACCTACGGATGGAAATTGCACCTGTATTCCCATCCATCGTC				
2810	2820	2830	2840	2850
CTGGGCTTCGCAAAATACCTATGGGAGTGGGCCTCAGTCCGTTCTCTT				
2860	2870	2880	2890	2900
GGCTCAGTTACTAGTGCCATTGTTCAAGTGGTTCGTAGGGCTTCCCCC				
2910	2920	2930	2940	2950
ACTGTTGGCTTCAGCTATGGATGATGTGGTATTGGGGCCAAGTCT				

Figure 5B continued

22/42

2960	2970	2980	2990	3000
GTACAGCATCGTGAGTCCCTTATACCGCTGTTACCAATTCTTTGTC				
3010	3020	3030	3040	3050
TCTGGGTATACTTAAACCCTAACAAAACAAAAAGATGGGGTTATTCCC				
3060	3070	3080	3090	3100
TAAACTCATGGGCTACATAATTGGAAGTTGGGAACTTGCCACAGGAT				
3110	3120	3130	3140	3150
CATATTGTACAAAAGATCAAACACTGTTAGAAAACCTCCTGTTAACAG				
3160	3170	3180	3190	3200
GCCTATTGATTGAAAGTATGTCAAAGAATTGTGGGTCTTGGCTTG				
3210	3220	3230	3240	3250
CTGCTCCATTACACAATGTGGATATCCTGCCTTAATGCCTTGTATGCA				
3260	3270	3280	3290	3300
TGTATAACAAGCTAACAGGCTTCACTTCTGCCAACTACAAGGCCTT				
3310	3320	3330	3340	3350
TCTAAGTAAACAGTACATGAACCTTACCCGTTGCTCGGCAACGGCCTG				
3360	3370	3380	3390	3400
GTCTGTCCAAGTGTGCTGACGCAACCCCCACTGGCTGGGCTTGGCC				
3410	3420	3430	3440	3450
ATAGGCCATCAGCGCATGCGTGGAACCTTGTGGCTCCTCTGCCGATCCA				
3460	3470	3480	3490	3500
TACTGCGGAACTCCTAGCCGCTTGTGCTCGCAGCCGGTCTGGAGCAA				
3510	3520	3530	3540	3550
AGCTCATCGGAACTGACAATTCTGTCGTCCCTCGCGGAAATATACATCG				
3560	3570	3580	3590	3600
TTTCCATGGCTGCTAGGCTGTACTGCCAAGTGGATCCTCGCGGGACGTC				
3610	3620	3630	3640	3650
CTTTGTTACGTCCCGTCGGCGCTGAATCCCGGGACGACCCCTCGCGGG				
3660	3670	3680	3690	3700
GCCGCTTGGGACTCTCGTCCCCTCTCCGTCTGCCGTTCCAGCCGACC				

Figure 5B continued

23/42

3710	3720	3730	3740	3750
ACGGGGCGCACCTCTCTTACGCGGTCTCCCCGTCTGCCTTCATCT				
3760	3770	3780	3790	3800
GCCGGTCCGTGTGCACCTCGCTCACCTCTGCACGTTGCATGGAGACCAC				
3810	3820	3830	3840	3850
CGTGAACGCCCATCAGATCCTGCCAAGGTCTTACATAAGAGGACTCTG				
3860	3870	3880	3890	3900
GACTCCCAGCAATGTCAACGACCGACCTTGAGGCCTACTTCAAAGACTGT				
3910	3920	3930	3940	3950
GTGTTAACCGACTGGGAGGAGCTGGGGAGGAGATTAGGTAAAGGTCTT				
3960	3970	3980	3990	4000
TGTATTAGGAGGCTGTAGGCATAAATTGGTCTGCGCACCGCACCATGCA				
4010	4020	4030	4040	4050
ACTTTTCACCTCTGCCTAACATCTCTGTACATGTCCCAGTCAAG				
4060	4070	4080	4090	4100
CCTCCAAGCTGTGCCTGGGTGGCTTGGGCATGGACATTGACCCATT				
4110	4120	4130	4140	4150
AAAGAATTGGAGCTACTGTGGAGTTACTCTCGTTTGCCTCTGACTT				
4160	4170	4180	4190	4200
CTTCCCTCCGTCAGAGATCTCCTAGACACCGCCTCAGCTCTGTATCGAG				
4210	4220	4230	4240	4250
AAGCCTTAGAGTCTCCTGAGCATTGCTCACCTACCATACTGCACTCAGG				
4260	4270	4280	4290	4300
CAAGCCATTCTCTGCTGGGGGAATTGATGACTCTAGCTACCTGGGTGGG				
4310	4320	4330	4340	4350
TAATAATTGGAAGATCCAGCATCCAGGGATCTAGTAGTCAATTATGTTA				
4360	4370	4380	4390	4400
ATACTAACATGGTTAAAGATCAGGCAACTATTGTGGTTCATATATCT				
4410	4420	4430	4440	4450
TGCCTTACTTTGGAAAGAGAGACTGTACTTGAATATTGGTCTTCGG				
4460	4470	4480	4490	
AGTGTGGATTCGCACTCCTCCAGCCTATAGACCACCAATGCCCT				

Figure 5B continued

24/42

Figure 6A**Figure 6B**

25/42

Figure 6C

26/42

Rank 2 Eqn 8076 [LgstdoseRsp] $y=a/(1+(x/b)^c)$

Figure 7A

Rank 2 Eqn 8076 [LgstdoseRsp] $y=a/(1+(x/b)^c)$

Figure 7B

27/42

Figure 7C

28/42

Figure 8A**Figure 8B**

29/42

Figure 8C

30/42

Figure 9A**Figure 9B**

31/42

Figure 9C

32/42

Cold dCTP Competition

Rank 2 Eqn 8076 [LgstcDoseRsp] $y=a/(1+(x/b)^c)$

Figure 10

Figure 11A

34/42

Figure 11B

35/42

Figure 11C

36/42

Figure 12

37/42

M550I**Pre-core/M550I****Figure 13A**

38/42

Figure 13B

39/42

Figure 13C

40/42

Figure 13D

41/42

M550I
Pre-core/M550I

Figure 13E

42/42

Figure 13F

- 1 -

SEQUENCE LISTING

<110> Melbourne Health AND The Penn State Research Foundation

<120> An assay

<130> 2363808/EJH

<140> International

<141> 2001-02-02

<150> 60/179948

<151> 2000-02-03

<160> 4

<170> PatentIn Ver. 2.1

<210> 1

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer

<400> 1

gcctcatttt gtgggtcacc ata

23

<210> 2

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer

- 2 -

<400> 2

tctctgacat actttccaat

20

<210> 3

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer

<400> 3

tgcacgattc ctgctcaa

18

<210> 4

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer

<400> 4

tttctcaaag gtggagacag

20

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU01/00098

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl. ?: C12Q 1/48 C12Q 1/70

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

CA, WPIDS

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
SEE ELECTRONIC DATABASES

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Medline, CA, WPIDS (Hepatitis, Hepatitis B Virus, HBV, Baculovir#, Polymerase, Detect#, Assay, Test#, Diagnos#, Select#)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 9937821 A (THE PENN STATE RESEARCH FOUNDATION) 29 July 1999. See abstract and p. 5 Line 14-31, p.6 Line 26-33, p.9 Line 25 - p.10 Line 31, p.13 Line 10-19, Examples 1 and 13.	1-5, 23
Y	See whole document Xiong, X. <i>et al.</i> Mutations in Hepatitis B DNA polymerase associated with resistance to Lamivudine do not confer resistance to Adefovir <i>in vitro</i> . Hepatology, 1998, Vol. 28, No. 6, pp 1669-1673.	1-3, 5, 23, 24
X	See whole document	1-5, 8, 20, 23, 24
Y	See whole document	9-14

Further documents are listed in the continuation of Box C See patent family annex

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search

20 March 2001

Date of mailing of the international search report

22 March 2001

Name and mailing address of the ISA/AU

AUSTRALIAN PATENT OFFICE
 PO BOX 200, WODEN ACT 2606, AUSTRALIA
 E-mail address: pct@ipaaustralia.gov.au
 Facsimile No. (02) 6285 3929

Authorized officer

TERRY MOORE

Telephone No : (02) 6283 2632

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU01/00098

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	Putlitz, J. <i>et al.</i> Properties of monoclonal antibodies directed against Hepatitis B virus polymerase protein. <i>Journal of Virology</i> , 1999, Vol. 73, No. 5, pp 4188-4196. See Abstract, p.4193-4194 "Inhibition of in vitro priming with Pol MAbs" and p.4195 column 1.	1, 2, 6, 7, 23, 24
Y	Chen, W. N. <i>et al.</i> Human Hepatitis B virus mutants: significance of molecular changes. <i>FEBS Letters</i> , 1999, Vol. 453, No. 3, pp 237-242. See whole document.	1-5, 8-14, 23, 24
Y	Fu, L. <i>et al.</i> Sensitivity of L-(-)2', 3'-Dideoxythiacytidine resistant Hepatitis B virus to other antiviral nucleoside analogues. <i>Biochemical Pharmacology</i> , 1999, Vol. 57, No. 12, pp 1351-1359. See Abstract and p.1351-1352.	1-5, 8-10, 23, 24
Y	Delaney IV, W. E. <i>et al.</i> Use of the Hepatitis B virus recombinant baculovirus HepG2 system to study the effects of (-)-β-2', 3'-dideoxy-3'-Thiacytidine on replication of Hepatitis B virus and accumulation of covalently closed circular DNA. <i>Antimicrobial Agents and Chemotherapy</i> , 1999, Vol. 43, No. 8, pp 2017-2026. See Abstract, p.2018 column 1 and p.2023 column 2.	1-5
Y	WO 9610649 A (SOUTHWEST FOUNDATION FOR BIOMEDICAL RESEARCH) 11 April 1996. See Abstract, Claim 19, p.11 Lines 9 - 28, p.16 Line 33 - p.17 Line 17, p.30 Line 5 - p.31 Line 2 and p.32 Line 35 - p.34 Line 12.	1-4, 23, 24
A	Hussain, M. <i>et al.</i> Mutations in the Hepatitis B virus polymerase gene associated with antiviral treatment for Hepatitis B. <i>Journal of Viral Hepatitis</i> , 1999, Vol. 6, pp 183-194.	1-24
A	Delaney IV, W. E. <i>et al.</i> Hepatitis B virus replication in human HepG2 cells mediated by Hepatitis B virus recombinant baculovirus. <i>Hepatology</i> , 1998, Vol. 28, No. 4, pp 1134-1146.	1-24

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.
PCT/AU01/00098

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Document Cited in Search Report				Patent Family Member			
WO	9937821	AU	24602/99	AU	9527152	EP	698467
		JP	8099341				

WO	9610649	NONE
----	---------	------

END OF ANNEX