Matematiske metoder (MM 529)

Stephan Brandt

Syddansk Universitet, Odense

29. 10. 2013

Geometric interpretation of directional derivatives

Tangent space of f at a point a.

In which direction is the largest ascent?

Solution: Find the direction ${\bf v}$ in which the directional derivative $D_{\bf v} f({\bf a})$ is largest.

$$D_{\mathbf{v}}f(\mathbf{a}) = \lim_{h \to 0+} \frac{f(\mathbf{a} + h\mathbf{v_0}) - f(\mathbf{a})}{h} = \mathbf{v_0} \cdot \nabla f(\mathbf{a})$$

largest, if $\mathbf{v_0} \cdot \nabla f(\mathbf{a})$ is largest. But:

$$\mathbf{v_0} \cdot \nabla f(\mathbf{a}) = |\mathbf{v_0}| \cdot |\nabla f(\mathbf{a})| \cdot \cos \theta$$
$$= 1 \cdot |\nabla f(\mathbf{a})| \cdot \cos \theta$$

largest, if $\theta=0$ (provided the gradient $\nabla f(\mathbf{a}) \neq (0,0,\ldots,0)$). Conclusion: The gradient points in the direction of the largest ascent in \mathbf{a} , and $|\nabla f(\mathbf{a})|$ is the slope (directional derivative) in this direction.

Example: Saddle surface

$$f(x,y) = x^{2} - y^{2},$$

$$(a,b) = (2,1).$$

$$\nabla f(x,y) = (2x, -2y),$$

$$\nabla f(2,1) = (4, -2).$$

Largest ascent in direction (4, -2), slope: $|(4, -2)| = \sqrt{4^2 + 2^2} = \sqrt{20} = 2\sqrt{5}$.

 $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$. Find local extrema in the interior $D\setminus\partial D$ of D. Extrema on the boundary $\partial D\cap D$ have to be determined separately.

Local maxima and minima

 $f(\mathbf{a})$ is a local maximum (minimum, resp.) at point \mathbf{a} , if there exists $\delta > 0$ such that $f(\mathbf{a}) \geq f(\mathbf{x})$ for all $\mathbf{x} \in B_{\delta}(\mathbf{a})$ ($f(\mathbf{a}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in B_{\delta}(\mathbf{a})$, resp.).

If tangent space at \mathbf{a} exists (which is the case if f is continuous and all partial derivatives exist and are continuous in \mathbf{a}): Candidates for local extrema: points \mathbf{a} where $\nabla f(\mathbf{a}) = (0, 0, \dots, 0)$ (critical points).

Otherwise there are points with larger function value in the direction of $\nabla f(\mathbf{a})$ and points with smaller function value in the direction of $-\nabla f(\mathbf{a})$.

Is a critical point **a** (with $\nabla f(\mathbf{a}) = (0, 0, \dots, 0)$) an extreme point?

Example: Saddle surface

$$f(x,y) = x^2 - y^2$$
.
Critical points:
 $\nabla f(x,y) = (2x, -2y) = (0,0)$, if and only if $(x,y) = (0,0)$.

Is (0,0) an extreme point? No! For g(x) = f(x,0) and h(y) = f(0,y), $g''(x) = f_{xx}(x,0) = 2$ and $h''(y) = f_{yy}(0,y) = -2$, so g is convex and h is concave. In (x,y) = (0,0), g has a minimum and h has a maximum (f has a saddle point).

Finding maxima and minima

 $f: D \to \mathbb{R}$. Find local extrema in the interior $D \setminus \partial D$ of $D \subseteq \mathbb{R}^n$, if f is continuous and partially differentiable with continuous partial derivatives on D.

Answer only for the case n = 2 (for general n more mathematics is needed: determinants of matrices).

 $f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$ two times partially differentiable and f and all first and second order partial derivatives are continuous (in particular, Schwarz' Theorem gives that $f_{yx} = f_{xy}$).

If
$$f_{xx}(\mathbf{a})f_{yy}(\mathbf{a}) - (f_{xy}(\mathbf{a}))^2$$

- > 0, then **a** is an extreme point,
- < 0, then **a** is a saddle point.

If **a** is an extreme point and $f_{xx}(\mathbf{a})$

- > 0, then $f(\mathbf{a})$ is a local minimum,
- < 0, then $f(\mathbf{a})$ is a local maximum.

$$f(x,y) = x^3 + y^3 - 3xy$$
 satisfies $f_x(x,y) = 3x^2 - 3y$ and $f_y(x,y) = 3y^2 - 3x$. $f_x = 0$ if and only if $x^2 = y$, $f_y = 0$ if and only if $y^2 = x$. $\nabla f(x,y) = (0,0)$ if and only if $(x,y) = (0,0)$ or $(x,y) = (1,1)$ (critical points). Are they extreme points or saddle points? $f_{xx} = 6x$, $f_{yy} = 6y$, $f_{xy} = f_{yx} = -3$. $f_{xx}(0,0)f_{yy}(0,0) - (f_{xy}(0,0))^2 = 0 - 9 < 0$ therefore $(0,0)$ saddle point. $f_{xx}(1,1)f_{yy}(1,1) - (f_{xy}(1,1))^2 = 36 - 9 > 0$ therefore $(1,1)$ extreme point. $f_{xx}(1,1) = 6 > 0$ therefore $f(1,1) = -1$ is a local minimum.

Integration

Two seemingly unrelated topics:

Definite integral

Measure the area between the graph of a function f and the x-axis. If f(x) is negative on an interval, then the contribution of this interval to the area is negative.

Result: a real number.

Notation: For $f:[a,b]\to\mathbb{R}$ the area is $A=\int_a^b f(x)\,dx$.

Antiderivative

Given a function f, for which function(s) F does the following relation hold: F' = f?

Result: a function F, called an antiderivative of f.

Notation: $\int f(x) dx$ denotes the set of all functions F with this property.

Mean value theorems

Mean value theorem of differentiation

If f is continuous on the interval [a,b] and differentiable on the open interval (a,b) then there is a $c \in (a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

There is a value c, where the tangent line has the same slope as the straight line through (a, f(a)), (b, f(b)).

Mean value theorem for the area

If f is continuous on the open interval (a, b) then there is a $c \in (a, b)$ such that the area under f on [a, b] is

$$A = f(c)(b - a).$$

Mean value theorems

Piecewise continuous function

A function $f:[a,b]\to\mathbb{R}$ is piecewise continuous if there are only finitely many points in [a,b] where f is not continuous.

Partition of [a, b]

A set P of points $\{x_0, x_1, \ldots, x_n\}$ with

 $a = x_0 < x_1 < x_2 < \ldots < x_n = b$ is called a partition of [a, b].

The width of $[x_{i-1}, x_i]$ is denoted $\Delta x_i = x_i - x_{i-1}$.

The norm of the partition is $||P|| = \max_{1 \le i \le n} \Delta x_i$.

Mean value theorem for the area

If f is continuous on the open interval (a, b) then there is a $c \in (a, b)$ such that the area under f is A = f(c)(b - a).

Area under f

If f is piecewise continuous on [a,b] and P is a partition of [a,b] containing all points where f is discontinuous then there are $c_i \in (x_{i-1},x_i)$ such that the area under f is

$$A = \sum_{i=1}^{n} f(c_i) \Delta x_i.$$

Problem: How to find the correct values c_i ?

Solution: Not necessary, take any $c_i \in [x_{i-1}, x_i]$ and keep refining the partition and take the limit.

Riemann sum

Let f be a function on [a, b] and P_k be a partition of [a, b] and $c_i \in [x_{i-1}, x_i]$. Then the Riemann sum is

$$S_k = \sum_{i=1}^n f(c_i) \Delta x_i.$$

(Depends on f, the partition P_k and the choice of the c_i .)

Example: $f(x) = x^2$, [a, b] = [0, 2], $P_1 = \{0, 1, 2\}$, $c_1 = \frac{1}{2}$, $c_2 = \frac{3}{2}$:

$$S_1 = \sum_{i=1}^2 f(c_i) \Delta x_i = \frac{1}{4} \cdot 1 + \frac{9}{4} \cdot 1 = \frac{5}{2} = 2.5.$$

Refine the partition: $P_2 = \{0, \frac{1}{2}, 1, \frac{3}{2}, 2\}, c_i = \frac{x_i + x_{i-1}}{2}$:

$$S_2 = \sum_{i=1}^4 f(c_i) \Delta x_i = \frac{1}{2} \left(\frac{1}{16} + \frac{9}{16} + \frac{25}{16} + \frac{49}{16} \right) = \frac{21}{8} = 2.625.$$

The definite integral

Let f be a function on [a,b] and $(P_k)_{k\in\mathbb{N}}$ be a sequence of partitions of [a,b]. If $\lim_{k\to\infty}||P_k||=0$ then the definite integral of f is

$$\int_a^b f(x) dx = \lim_{k \to \infty} S_k,$$

if the limit exists. The value of the limit is independent of the choice of the partitions P_k and the intermediate points c_i .

Example: $f(x) = \lceil x \rceil$ on [a, b] = [0, 2]. Take $P_1 = \{0, 1, 2\}$ and $c_1 = \frac{1}{2}$, $c_2 = \frac{3}{2}$. Then

$$S_1 = \sum_{i=1}^2 f(c_i) \Delta x_i = 1 \cdot 1 + 2 \cdot 1 = 3.$$

The definite integral, example

Example: $f(x) = \lceil x \rceil$ on [a, b] = [0, 2]. Take $P_1 = \{0, 1, 2\}$ and $c_1 = \frac{1}{2}$, $c_2 = \frac{3}{2}$. Then

$$S_1 = \sum_{i=1}^2 f(c_i) \Delta x_i = 1 \cdot 1 + 2 \cdot 1 = 3.$$

Different choice $c_1 = 0$, $c_2 = 1$ (left end of the intervals):

$$S_1 = \sum_{i=1}^2 f(c_i) \Delta x_i = 0 \cdot 1 + 1 \cdot 1 = 1.$$

Refining the partition with $||P_k|| \to 0$, the contribution of the (≤ 3) intervals containing x=0 and x=1 becomes arbitrarily small.

Precisely: $3 - 3||P_k|| \le S_k \le 3 + 3||P_k||$. Therefore

$$\int_0^2 f(x) dx = \lim_{k \to \infty} S_k = 3.$$

The definite integral

Let f be a function on [a,b] and $(P_k)_{k\in\mathbb{N}}$ be a sequence of partitions of [a,b]. If $\lim_{k\to\infty}||P_k||=0$ then the definite integral is

$$\int_{a}^{b} f(x) dx = \lim_{k \to \infty} S_{k},$$

if the limit exists.

Existence of the definite integral

If f is piecewise continuous on [a,b] and there exists an $M \in \mathbb{R}$ such that $|f(x)| \leq M$ (f is bounded) then $\int_a^b f(x) \, dx$ exists.

Agreement:
$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$
.