Solutions for Questions in Chapter 6

Thien Huu Nguyen

Compute Science Department New York University thien@cs.nyu.edu

1 Question 6.1

1.1 Solution

As there are 2 classes (*pos* and *neg*) in this problem and the prior probabilities for each class is equal, we have:

$$P(pos) = P(neg) = 0.5$$

For the given sentence S = "I always like foreign films.", the class that the Naive bayes classifier would assign to S is computed by:

$$\begin{split} \hat{c} &= \mathrm{argmax}_{c \in \{pos, neg\}} P(c) \prod_{i \in \text{positions of } S} P(w_i | c) \\ &= \mathrm{argmax}_{c \in \{pos, neg\}} P(c) P(\mathbf{I} | c) P(\text{always} | c) P(\text{like} | c) P(\text{foreign} | c) P(\text{films} | c) \end{split} \tag{1}$$

Note that we ignore the dot "." in the end of the sentence S as it does not appear in the vocabulary in this case.

For c = pos, we have:

$$P(pos)P(I|pos)P(always|pos)P(like|pos)P(foreign|pos)P(films|pos)$$

$$= 0.5 \times 0.09 \times 0.07 \times 0.29 \times 0.04 \times 0.08$$

$$= 2.9232 \times 10^{-06}$$
(2)

For c = neg, we have:

$$P(neg)P(I|neg)P(always|neg)P(like|neg)P(foreign|neg)P(films|neg)$$

$$= 0.5 \times 0.16 \times 0.06 \times 0.06 \times 0.15 \times 0.11$$

$$= 4.752 \times 10^{-06}$$
(3)

From equations (1), (2) and (3), we conclude that the Naive bayes classifier would assign the "neg" class to the given sentence.

2 Question 6.2

2.1 Solution

There are two classes for classification in this problem, i.e, "comedy" and "action" for movie reviews. In order to compute the most likely class for the new document D using the naive Bayes classifier, we

first build the vocabulary from the training documents and then compute likelihood for each word in the vocabulary (using the add-1 smoothing).

By taking the union of all the words occurring in the training documents, our vocabulary includes the 7 following words:

fun, couple, love, fast, furious, shoot, fly

From the training documents, the frequencies of the vocabulary words with respect to different classes (count(word, class)) are shown in the following table:

	count(*, comedy)	count(*, action)
fun	3	1
couple	2	0
love	2	1
fast	1	2
furious	0	2
shoot	0	4
fly	1	1
Total	9	11

Table 1: Word Frequencies with Respect to Different Classes

Using the add-1 smoothing, the likelihoods of the words with respect to the classes are shown below:

	$\hat{P}(* comedy)$	$\hat{P}(* action)$
fun	$\frac{3+1}{9+7} = \frac{4}{16}$	$\frac{1+1}{11+7} = \frac{2}{18}$
couple	$\frac{2+1}{9+7} = \frac{3}{16}$	$\frac{0+1}{11+7} = \frac{1}{18}$
love	$\frac{2+1}{9+7} = \frac{3}{16}$	$\frac{1+1}{11+7} = \frac{2}{18}$
fast	$\frac{1+1}{9+7} = \frac{2}{16}$	$\frac{2+1}{11+7} = \frac{3}{18}$
furious	$\frac{0+1}{9+7} = \frac{1}{16}$	$\frac{2+1}{11+7} = \frac{3}{18}$
shoot	$\frac{0+1}{9+7} = \frac{1}{16}$	$\frac{4+1}{11+7} = \frac{5}{18}$
fly	$\frac{1+1}{9+7} = \frac{2}{16}$	$\frac{1+1}{11+7} = \frac{2}{18}$

Table 2: Word Likelihoods with Respect to Different Classes

Regarding the priors, there are 3 examples of "action" and 2 examples of "comedy" in the training data, so:

$$P(action) = \frac{3}{5}$$
 and $P(comedy) = \frac{2}{5}$

The most likely class for D = "fast, couple, shoot, fly" using the naive Bayes would be:

$$\begin{split} \hat{c} &= \operatorname{argmax}_{c \in \{action, comedy\}} P(c) \prod_{i \in \text{positions of } D} P(w_i | c) \\ &= \operatorname{argmax}_{c \in \{action, comedy\}} P(c) P(\operatorname{fast}|c) P(\operatorname{couple}|c) P(\operatorname{shoot}|c) P(\operatorname{fly}|c) \end{split} \tag{4}$$

Now, for c = action,

$$\begin{split} &P(action)P(\text{fast}|action)P(\text{couple}|action)P(\text{shoot}|action)P(\text{fly}|action)\\ &=\frac{3}{5}\times\frac{3}{18}\times\frac{1}{18}\times\frac{5}{18}\times\frac{2}{18}\\ &\approx 1.715\times 10^{-4} \end{split} \tag{5}$$

For c = comedy, we have:

$$\begin{split} &P(comedy)P(\text{fast}|comedy)P(\text{couple}|comedy)P(\text{shoot}|comedy)P(\text{fly}|comedy)\\ &=\frac{2}{5}\times\frac{2}{16}\times\frac{3}{16}\times\frac{1}{16}\times\frac{2}{16}\\ &\approx 0.7324\times 10^{-4} \end{split} \tag{6}$$

From equations (4), (5) and (6), we conclude that the most likely class for D using the naive Bayes classifier is "action.