EigenGWAS theory and application

Guo-Bo Chen [chen.guobo@foxmail.com] 2018-11-30

Contents

4 CONTENTS

Chapter 1

EigenGWAS basis

This project is dedicated to EigenGWAS, a linear model analysis approach for eigenvectors on genomic data, which can be represented as \mathbf{X} the $n \times m$ genotype matrix. Without loss of generality, x_{jl} is a genotype code for the i^{th} sample at the l^{th} biallic locus. The data matrix \mathbf{X} can be generated from genotyping chips, NGS, or GBS.

1.1 Genetic relatedness matrix G

We can construct the $n \times n$ genetic relatedness matrix as

$$\mathbf{G} = \tilde{\mathbf{X}}\tilde{\mathbf{X}}^T$$

in which $\tilde{\mathbf{X}}$ is the scaled form of \mathbf{X} . However, upon the mating type of the species, \mathbf{G} should be constructed accordingly. For a random mating population, x_l is scaled as $\tilde{x}_l = \frac{x_l - 2p_l}{\sqrt{2p_lq_l}}$, whereas for inbred population, $\tilde{x}_l = \frac{x_l - 2p_l}{\sqrt{4p_lq_l}}$, and $q_l = 1 - p_l$ the frequency for the alternative allele.

So for individual i and j,

$$G_{ij} = \frac{1}{\tilde{m}} \sum_{l}^{\tilde{m}} \frac{(x_{il} - 2p_l)(x_{jl} - 2p_l)}{2(1+F)p_l q_l}$$
(1.1)

in which \tilde{m} is the number of genotyped loci at both individal i and j, and F the inbreeding coefficient takes value of 0 for random mating population and 1 for inbred population.

1.1.1 Statistical properties of G

Given G, we can define two population parameters, n_e , the effective population size, and m_e , the effective number of markers.

Let \mathbf{G}_o denote the off diagonal elements of \mathbf{G} , then we have

$$n_e = \frac{-1}{mean(\mathbf{G}_o)} \tag{1.2}$$

 n_e reflects true relatedness between any pair of samples;

$$m_e = \frac{1}{Var(\mathbf{G}_o)} \tag{1.3}$$

The ratio between $\frac{m_e}{m}$ reflects the average linkage disequilibrium between the any pair of markers, and alternatively m_e can be expressed as

$$m_e = \frac{\sum_{l_1=1}^m \sum_{l_2=1}^m \rho_{l_1 l_2}^2}{m^2} = \bar{\rho}^2$$
 (1.4)

in which $\rho_{l_1l_2}$ is Pearson's correlation between a pair of SNPs, see Appendix ??. It is an important parameter to describe the evolutionary process of a population of study.

1.2 EigenGWAS linear model

Given eigenanalysis (see more its details in wikipedia) of \mathbf{X} , we have \mathbf{E} and $\mathbf{\Lambda}$, in which $\mathbf{\Lambda}$ is an $n \times n$ diagonal matrix for eigenvalues and \mathbf{E} is an $n \times n$ matrix for the eigenvectors. \mathbf{E}_k is the k^{th} eigenvector associated with the k^{th} largest eigenvalue. Regressing \mathbf{E}_k against the l^{th} marker, we have the model below

$$\mathbf{E}_k = a + \beta_l \mathbf{x}_l + e \tag{1.5}$$

It consequently generates m estimates of $\hat{\beta}$, $\hat{\sigma}_{\beta}$, and their corresponding p values.

In particular, the one-degree-of-freedom χ_1^2 has approximation as

$$4\frac{\frac{n_1 n_2}{n} \frac{(p_{1,l} - p_{2,l})^2}{2p_l q_l} = 4n\omega_1 \omega_2 F_{st}^N = nF_{st}^W$$
(1.6)

in which n_1 and n_2 are the numbers of samples at the left and right side of "0" on the eigenvector, see the figure below, and $\omega_g = \frac{n_g}{n}$ the proportion of a subgroup in the sample. g=2 in EigenGWAS analysis. $p_{1,l}$ and $p_{2,l}$ are the frequencies of the reference allele in two subgroups, respectively. $F_{st}^N = \frac{(p_{1,l}-p_{2,l})^2}{2p_lq_l}$ and $F_{st}^W = 2\frac{\sum_{g=1}^2 \omega_g(p_{g,l}-p_l)^2}{p_lq_l}$.

[1] 100 1000

[1] "Ne= 100 Me= 1080.91076380488 given N= 100 and M= 1000"

1.2.1 λ_{GC} correction

We can define $\lambda_{GC} = \chi^2_{1,median(p)}/\chi^2_{1,0.5}$, in which $\chi^2_{1,0.5} = 0.455$. We further use subscript k to denote λ_{GC_k} the one that is estimated from the EigenGWAS analysis of \mathbf{E}_k , as shown (??).

After technical correction, correspondingly

$$\tilde{\chi}_1^2 = \chi_1^2 / \lambda_{GC_k} \tag{1.7}$$

a correction of the test statistic. Compared with its original form, the correction has several implications

- Statistically, as (??) has its response variable from X, the correction removes its overfitting.
- Genetically, it corrects for genetic drift such as soaked in \mathbf{E}_1 . Here the quantity of the genetic drift is measured by the median of the $m \chi_1^2$ values observed.