#### Содержание

| 1 | Самый животрепещущий вопрос: как будут считать рейтинг                                                                                    | 1 |
|---|-------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2 | Летнее задание                                                                                                                            | 2 |
| 3 | Занятие коронавирусгеометрии-1, 7 сентября 2020, Задачи по теме "фундаментальная группа и накрытия"                                       | 2 |
| 4 | 14 сентября                                                                                                                               | 3 |
| 5 | 21 сентября                                                                                                                               | 4 |
| 6 | 28 сентября                                                                                                                               | 5 |
|   | Последнее обновление 27 сентября 2020 г. актуальная версия этого файла лежит по адресу http://mathcenter.spb.ru/nikaan/2020/topology3.pdf |   |

# Топология и геометрия-3, практика, СПбГУ 2020, факультет математики и компьютерных наук

Никита Сергеевич Калинин, Нина Дмитриевна Лебедева, Евгений Анатольевич Фоминых Для всех групп: 201,202,203

## 1 Самый животрепещущий вопрос: как будут считать рейтинг

Вместо рейтинга каждый предмет номинирует примерно 1/3 студентов как *отмичных* студентов, примерно 1/3 студентов как *хороших* студентов. Быть *отмичным* студентом раза в два-три почётнее, чем быть *хорошим* студентом. И ещё есть какие-то правила, что тройки и двойки на экзаменах получать плохо.

Итого, ваша стратегия, если хочется стипендию: не получать троек на экзаменах, по всем предметам желательно быть хорошим студентом, и по как можно большему числу любимых предметов быть отличным студентом.

На геометрии и топологии, разделение на отличных, хороших и остальных студентов будет основываться на ваших успехах в течение семестра. Нет никакой формулы. Учитывается ваша активность на занятиях, какие задачи вы решили в группе, какие задачи рассказали, какие сделали в дз, насколько сложные задачи решили. Может быть будут контрольные.

Общее правило: чем более сложные задачи вы решаете, тем лучше (тогда мы поверим, что простые задачи вам очевидны). Чем лучше вы их записываете или рассказываете, тем лучше (про плохо записанные/рассказанные задачи мы поставим плюсик, но для себя запишем, что человек не старался). Если вы решаете в группе, то предпо-

лагается, что любой участник группы может рассказать решение любой задачи из **решённых группой.** Мы будем это проверять.

Практика у нас по понедельникам, задачи с конкретного практического занятия можно сдавать в понедельник и на следующих день — вторник. Задачи со звёздочкой можно сдавать в течение недели — до воскресенья. Сдавать задачи нужно либо устно во время занятия, либо присылать письменное решение (там где удобно преподавателю — например, в Slack или в Microsoft teams, по ходу решим). Преподаватель может попросить устно рассказать то, что вы прислали письменно.

Если вы решили задачу в составе группы – пишите состав группы, когда присылаете решение. Никакого штрафа за совместное решение нет (но мы можем попросить кого-то из участников группы рассказать решение, и если человек не справится, то вся группы не получает плюсик за эту задачу).

В целом – занимайтесь, решайте сложные задачи, и всё будет хорошо.

Где-то в октябре мы скажем, каковы были бы рекомендации (кто хороший, а кто отличный) на этот момент, чтобы дать обратную связь.

## 2 Летнее задание

Задачи из летного задания надо сдавать в **Microsoft Teams до 27 сентября** (включительно), проверяет EA Фоминых.

Задача 9. Докажите, что любое линейно связное трёхточечное пространство односвязно. Задача 10. Рассмотрим топологическое пространство  $X = \{a, b, c, d\}$ , в котором база топологии состоит из множеств  $\{a\}, \{c\}, \{a, b, c\}$  и  $\{a, c, d\}$ .

- 1. (2 балла) Докажите, что пространство X неодносвязно;
- 2. (3 балла) Найдите  $\pi_1(X)$ .
- **Задача 11.** Пусть  $X \subset \mathbb{R}^4$  множество симметричных  $(2 \times 2)$ -матриц с отрицательным определителем. Докажите, что пространство X гомотопически эквивалентно  $S^1$ .
- **Задача 12.** Докажите, что фундаментальная группа любой топологической группы коммутативна. Топологической группой называется множество G на котором заданы как топологическая, так и групповая структура. При этом требуется, чтобы отображения  $G \times G : (x,y) \to xy$  и  $G \to G : x \to x^{-1}$  были непрерывны.
- **Задача 13.** Пусть  $\ell$  простая замкнутая кривая на стандартно вложенном в  $\mathbb{R}^3$  торе, поднятие которой в универсальное накрытие тора задается уравнением pu=qv, где p и q взаимно простые натуральные числа. Выпишите задание фундаментальной группы пространства  $\mathbb{R}^3 \setminus \ell$ .
- **Задача 14.** Докажите, что к краю стандартно вложенной в  $\mathbb{R}^3$  ленты Мёбиуса нельзя приклеить диск, который не пересекает эту ленту Мёбиуса.
- Занятие коронавирусгеометрии-1, 7 сентября 2020, Задачи по теме "фундаментальная группа и накрытия"

**Задача 1.** Представьте сферу  $S^n$  как клеточное пространство: а) содержащее 2 клетки; б) чтобы его k-остовом для всякого целого неотрицательного k < n была стандартная сфера  $S^k \subset S^n$ .

**Задача 2.** Представьте  $\mathbb{R}P^n$  как клеточное пространство, состоящее из n+1 клеток. Опишите приклеивающие отображения этих клеток.

**Задача 3.** Докажите, что  $S^2 \times S^2$  — конечное клеточное пространство.

Pasбop: https://youtu.be/DWVg-KQGAC4

Задача 4. а) Если X и Y — локально конечные клеточные пространства (т.е. любая точка в X обладает окрестностью, пересекающейся лишь с конечным числом клеток), то топологическое пространство  $X \times Y$  может быть естественным образом наделено структурой клеточного пространства. б)\*\*\*Останется ли верным это утверждение, если не требовать локальной конечности клеточных пространств X и Y?

Разбор: задача 42.3- 42.4 в книге Виро-Иванов-Нецветаев-Харламов, разобрана на странице 343.

**Задача 5.** Пусть A — конечное клеточное пространство. Через  $c_i(A)$  обозначим число его i-мерных клеток. Эйлеровой характеристикой пространства A называется альтернированная сумма чисел  $c_i(A)$ :

$$\chi(A) = \sum_{i=0}^{\infty} (-1)^i c_i(A).$$

Докажите, что эйлерова характеристика мультипликативна в следующем смысле. Если X и Y — конечные клеточные пространства, то  $\chi(X \times Y) = \chi(X)\chi(Y)$ .

Факт (не доказываем, но пользуемся). Эйлерова характеристика является инвариантом клеточного топологического пространства, то есть не зависит от способа представления в виде клеточного пространства.

Задача 6. Какое наименьшее число клеток необходимо для представления в виде клеточного пространства следующих пространств: а) ленты Мёбиуса; б) сферы с р ручками; в) сферы с q пленками?

Pasбop: https://youtu.be/6FbGB-kEdiIиhttp://mathcenter.spb.ru/nikaan/2020/zadacha6.pdf

**Задача 7.** Вычислите  $\pi_1(\mathbb{R}P^n)$ .

Разбор: можно двулистно накрыть  $S^n$ , которое односвязно, значит  $\mathbb{Z}_2$ . Ещё можно взять двумерный остов (от которого только и зависит  $\pi_1$ ), это  $\mathbb{R}P^2$ , представить его в виде склейки квадрата, получается группа  $< a|a^2 = e>$  то есть  $\mathbb{Z}_2$ .

### 4 14 сентября

Задачи из летного задания надо сдавать в **Microsoft Teams до 27 сентября** (включительно), проверяет EA Фоминых.

**Задача 8.** Пространство X получается приклейкой к тору  $S^1 \times S^1$  двух дисков: одного вдоль его параллели  $S^1 \times \{1\}$ , второго вдоль меридиана  $\{1\} \times S^1$ . а) Вычислите  $\pi_1(X)$ ; б)Докажите, что X гомотопически эквивалентно сфере  $S^2$ .

**Задача 9.** Пусть  $p: X \to B$  — накрытие, причем  $x_0 \in X, b_0 \in B, p(x_0) = b_0$  и пространства X, B линейно связны). Постройте естественную биекцию множества  $p^{-1}(b_0)$  на множество правых смежных классов фундаментальной группы базы этого накрытия по группе накрытия.

**Задача 10.** Чему могут равняться числа листов накрытия: а) ленты Мёбиуса кольцом  $S^1 \times I$ ; б) ленты Мёбиуса лентой Мёбиуса?

Задача 11. Чему могут равняться числа листов накрытия бутылки Клейна плоскостью?

**Задача 12.** Опишите с точностью до эквивалентности все накрытия окружности  $S^1$ .

**Задача 13.** Накрытие  $p: X \to B$  ( $x_0 \in X, b_0 \in B, p(x_0) = b_0$ ), где пространства X, B "хорошие", называется регулярным, если  $p_*(\pi_1(X, x_0))$  нормальная подгруппа в  $\pi_1(B, b_0)$ . Является ли регулярным накрытие  $S^1 \to S^1, z \to z^n$ ?

Задача 14. Докажите, что следующие условия эквивалентны:

- накрытие регулярно;
- все группы  $p_*(\pi_1(X,x))$  с  $x \in p^{-1}(b_0)$  совпадают;
- ullet группа автоморфизмов накрытия действует в слое  $p^{-1}(b_0)$  транзитивно.

Задача 15. Докажите, что любое связное двулистное накрытие: а) обладает нетривиальным автоморфизмом; б) регулярно.

**Задача 16.** Докажите, что трёхлистное накрытие букета двух окружностей графом с тремя вершинами (см. рис. ниже) не является регулярным.



Задача 17. \*\*\*Докажите, что всякое конечное клеточное пространство метризуемо.

### 5 21 сентября

Задача 18. Вокруг некоторой точки O окружности радиуса a вращается луч. На этом луче по обе стороны от точки A его пересечения с окружностью откладываются отрезки  $AM_1$  и  $AM_2$  длины 2b. Составьте параметрическое уравнение кривой, описываемой точками  $M_1$  и  $M_2$  (улитка Паскаля; в частности, при a = b — кардиоида).

Задача 19. Найдите кривую, образ которой есть пересечение сферы радиуса R и кругового цилиндра диаметра R, одна из образующих которого проходит через центр сферы. Эта кривая называется кривой Вивиани.

**Задача 20.** а) Выразить производные следующих функций через данную вектор-функцию  $\mathbf{r}(t)$  и ее производные:  $\mathbf{r}^2(t)$ ;  $\mathbf{r}(t) \times \mathbf{r}'(t)$ ;  $|\mathbf{r}(t)|$ ;  $|\mathbf{r}(t)|$ ;  $|\mathbf{r}(t)|$ .

- b) Доказать, что  $|\mathbf{r}(t)| = \text{const}$ , экви  $\mathbf{r}(t) \cdot \mathbf{r}'(t) = 0$ .
- с) Доказать, что кривая  $\mathbf{r}(t)$  лежит в фиксированной плоскости с нормалью n, экви  $\mathbf{r}'(t) \cdot \mathbf{n} = 0$ .

**Задача 21.** Доказать, что: a) если  $\mathbf{r}' = \text{const}$ , то  $\mathbf{r}(t)$  задает прямую,

- b) если  $t \in [a, b]$ , а  $\mathbf{r}(a)$  и  $\mathbf{r}(b)$  лежат по разные стороны от данной плоскости, то кривая пересекает эту плоскость,
- c) если  $\mathbf{r}(a)$  и  $\mathbf{r}(b)$  лежат по одну сторону и на одинаковом расстоянии от данной плоскости, то некоторая касательная этой кривой параллельна данной плоскости.

**Задача 22.** Вывести из определения эллипса, что вектор  $\mathbf{r}_1/|\mathbf{r}_1| + \mathbf{r}_2/|\mathbf{r}_2|$  является нормалью к эллипсу, где  $\mathbf{r}_1, \mathbf{r}_2$  — фокальные радиусы-векторы.

Задача 23. Составьте натуральную параметризацию кривой

- а)  $y = a \operatorname{ch}(x/a)$  (цепная линия).
- b)  $\mathbf{r}(t) = (a\cos t, a\sin t, bt)$  (винтовая линия).

**Задача 24.** Доказать, что кривая  $\gamma(t) = (t, t \sin \pi/t), t \neq 0, \gamma(0) = (0, 0)$  имеет бесконечную длину на интервале [0, 1].

**Задача 25.** \*\*\* Пусть параметризация (не обязательно натуральная) гладкой кривой  $\gamma: [a,b] \to \mathbb{R}^2$  такова, что длина хорды  $|\gamma(t)-\gamma(s)|$  зависит только от t-s. Доказать, что кривая является подмножеством прямой либо окружности.

#### 6 28 сентября

Эволюта кривой — это кривая, образованная её центрами кривизны.

**Задача 26.** Составьте уравнения и начертите эволюту эллипса  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ .

Задача 27. Найдите точки экстремума кривизны параболы и эллипса. Найдите радиусы кривизны в этих точках.

**Задача 28.** Для плоской кривой  $\gamma(t)$  и фиксированной точки  $q\in\mathbb{R}^2$  рассмотрим функцию  $S(t)=|\gamma(t)-q|^2$ . Докажите, что

- 1. q лежит на нормали к кривой  $\gamma(t) \Leftrightarrow S'(t) = 0$ ;
- 2. q является центром кривизны кривой  $\gamma(t) \Leftrightarrow S'(t) = S''(t) = 0$ ;
- 3. q является точкой нулём производной функции кривизны  $\Leftrightarrow S'(t) = S''(t) = S'''(t) = 0$ .

**Задача 29.** Докажите, что модуль кривизны имеет строгий локальный максимум в  $t_0$  эквивалентно условию, что для некоторого  $\varepsilon > 0$  участок кривой  $\gamma[t_0 - \varepsilon, t_0 + \varepsilon]$  "лежит между" соприкасающейся окружностью и касательной и имеет с этой окружностью только одну общую точку  $\gamma(t_0)$ .

**Задача 30.** Пусть простая замкнутая кривая  $\gamma: S^1 \to R^2$  ограничивает замкнутую область F. Будем говорить, что окружность вписана в  $\gamma$ , если она содержится в F и имеет с  $\gamma$  более одной общей точки. Кривизну будем считать положительной, если нормаль направлена внутрь F.

- 1. Доказать, что если для последовательности окружностей, вписанных в кривую, точки касания  $p_n, q_n \to \gamma(t_0)$ , то эти окружности сходятся к соприкасающейся окружности в точке  $\gamma(t_0)$ .
- 2. Доказать, что для множества точек касания  $K_1$  и  $K_2$  двух вписанных окружностей множество  $K_2$  лежит в одной компоненте связности множества  $\gamma(S^1) \setminus K_1$ .
- 3. Доказать, что для вписанной окружности с множеством точек касания  $K_1$  каждая связная компонента  $\gamma(S^1)\setminus K_1$  содержит точку максимума кривизны.
- 4. Используя предыдущий пункт, доказать теорему о четырех вершинах: простая замкнутая кривая  $\gamma:S^1\to R^2$  имеет по-крайней мере 4 точки экстремума кривизны.

**Задача 31.** Доказать, что если простая замкнутая плоская кривая кривизны |k| < 1 ограничивает фигуру F, то F содержит диск радиуса 1.

(Подсказка: использовать предыдущую задачу.)

Задача 32. \*\*\*Срединная ось простой замкнутой плоской кривой это замыкание множества центров вписанных окружностей. Доказать, что найдется сколь угодно близкая во втором порядке кривая, для которой срединная ось - конечное дерево.