

2013 年全国硕士研究生入学统一考试

数学二试题答案

一、选择题: 1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求 的,请将所选项前的字母填在答题纸指定位置上.

- (1) 设 $\cos x 1 = x \sin \alpha(x)$, 其中 $|\alpha(x)| < \frac{\pi}{2}$, 则当 $x \to 0$ 时, $\alpha(x)$ 是()
- (A) 比x 高阶的无穷小

- (B) 比 x 低阶的无穷小
- (C) 与x 同阶但不等价的无穷小
- (D) 与x等价的无穷小

【答案】(C)

【解析】因为
$$\lim_{x\to 0} \frac{\sin \alpha(x)}{x} = \lim_{x\to 0} \frac{\cos x - 1}{x^2} = -\frac{1}{2}$$
,所以 $\lim_{x\to 0} \sin \alpha(x) = 0$,

因此当 $x \to 0$ 时, $\alpha(x) \to 0$,所以 $\sin \alpha(x) \sim \alpha(x)$,所以 $\lim_{x \to 0} \frac{\sin \alpha(x)}{x} = \lim_{x \to 0} \frac{\alpha(x)}{x} = -\frac{1}{2}$

所以 $\alpha(x)$ 是与x同阶但不等价的无穷小。

(2) 设函数
$$y = f(x)$$
 由方程 $\cos(xy) + \ln y - x = 1$ 确定,则 $\lim_{n \to \infty} n \left[f(\frac{2}{n}) - 1 \right] = ($)

(A) 2 (B) 1 (C) -1 (D) -2 【答案】(A) 【解析】由于
$$f(0)=1$$
,所以 $\lim_{n\to\infty} n \left[f(\frac{2}{n}) - 1 \right] = \lim_{n\to\infty} 2 \left[\frac{f(\frac{2}{n}) - f(0)}{\frac{2}{n}} \right] = 2f'(0)$,

对此隐函数两边求导得 $-(y+xy')\sin(xy)+\frac{y'}{y}-1=0$,所以f'(0)=1,故 $\lim_{n\to\infty}n\left[f(\frac{2}{n})-1\right]=2$ 。

(3) 设函数
$$f(x) = \begin{cases} \sin x, & 0 \le x < \pi \\ 2, & \pi \le x \le 2\pi \end{cases}$$
, $F(x) = \int_0^x f(t)dt$, 则 ()

- (A) $x = \pi$ 是函数 F(x) 的跳跃间断点 (B) $x = \pi$ 是函数 F(x) 的可去间断点
- (C) F(x)在 $x = \pi$ 处连续但不可导
- (D) F(x)在 $x = \pi$ 处可导

【答案】(C)

【解析】
$$F(x) = \int_0^x f(t)dt = \begin{cases} \int_0^x \sin t dt = 1 - \cos x, & 0 \le x < \pi \\ \int_0^\pi \sin t dt + \int_{\pi}^x 2 dt = 2(x - \pi + 1), & \pi \le x \le 2\pi \end{cases}$$

9P 沪江网校·考研

由于 $\lim_{x\to \pi^-} F(x) = \lim_{x\to \pi^+} F(x) = 2$, 所以 F(x) 在 $x = \pi$ 处连续;

$$\lim_{x \to \pi^{-}} \frac{F(x) - F(\pi)}{x - \pi} = \lim_{x \to \pi^{+}} \frac{-1 - \cos x}{x - \pi} = 0, \quad \lim_{x \to \pi^{+}} \frac{F(x) - F(\pi)}{x - \pi} = \lim_{x \to \pi^{+}} \frac{2(x - \pi)}{x - \pi} = 2,$$

所以F(x)在 $x = \pi$ 处不可导。

(4) 设函数
$$f(x) = \begin{cases} \frac{1}{(x-1)^{\alpha-1}}, & 1 < x < e \\ \frac{1}{x \ln^{\alpha+1} x}, & x \ge e \end{cases}$$
, 若反常积分 $\int_{1}^{+\infty} f(x) dx$ 收敛,则() (A) $\alpha < -2$ (B) $\alpha > 2$ (C) $-2 < \alpha < 0$ (D) $0 < \alpha < 2$

【答案】(D)

【解析】
$$f(x) = \begin{cases} \frac{1}{(x-1)^{\alpha-1}}, & 1 < x < e \\ \frac{1}{x \ln^{\alpha+1} x}, & x \ge e \end{cases}$$

因为
$$\int_1^{+\infty} f(x)dx = \int_1^e f(x)dx + \int_e^{+\infty} f(x)dx$$
,

$$\stackrel{\text{def}}{=} 1 < x < e \text{ Priv}, \quad \int_{1}^{e} f(x) dx = \int_{1}^{e} \frac{1}{(x-1)^{\alpha-1}} dx = \lim_{\varepsilon \to 1^{+}} \int_{\varepsilon}^{e} \frac{1}{(x-1)^{\alpha-1}} dx = \lim_{\varepsilon \to 1^{+}} \left[\frac{1}{2-\alpha} \frac{1}{(\varepsilon-1)^{\alpha-2}} \right] - \frac{1}{2-\alpha} \frac{1}{(e-1)^{\alpha-2}},$$

要使 $\lim_{\varepsilon \to 1^+} \left[\frac{1}{2-\alpha} \frac{1}{(\varepsilon-1)^{\alpha-2}} \right]$ 存在, 需满足 $\alpha-2<0$;

$$\stackrel{\text{def}}{=} x \ge e \text{ prior}, \quad \int_{e}^{+\infty} \frac{1}{x \ln^{\alpha+1} x} dx = \int_{e}^{+\infty} \frac{d \ln x}{\ln^{\alpha+1} x} = \lim_{\lambda \to \infty} \left(-\frac{1}{\alpha} \frac{1}{\ln^{\alpha} \lambda} \right) + \frac{1}{\alpha},$$

要使 $\lim_{\lambda \to \infty} \left(-\frac{1}{\alpha} \frac{1}{\ln^{\alpha} \lambda}\right)$ 存在,需满足 $\alpha > 0$; 所以 $0 < \alpha < 2$ 。

(5) 设
$$z = \frac{y}{x} f(xy)$$
, 其中函数 f 可微, 则 $\frac{x}{y} \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = ($

- (A) 2yf'(xy) (B) -2yf'(xy) (C) $\frac{2}{x}f(xy)$ (D) $-\frac{2}{x}f(xy)$

【答案】(A)

【解析】已知
$$z = \frac{y}{x} f(xy)$$
,所以 $\frac{\partial z}{\partial x} = -\frac{y}{x^2} f(xy) + \frac{y^2}{x} f'(xy)$,

所以
$$\frac{x}{y}\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \left[-\frac{1}{x}f(xy) + yf'(xy)\right] + \left(\frac{1}{x}f(xy) + yf'(xy)\right) = 2yf'(xy)$$
。

(6) 设
$$D_k$$
是圆域 $D = \{(x,y) | x^2 + y^2 \le 1\}$ 在第 k 象限的部分,记 $I_k = \iint_{D_k} (y-x) dx dy (k = 1,2,3,4)$,则

(A)
$$I_1 > 0$$
 (B) $I_2 > 0$ (C) $I_3 > 0$ (D) $I_4 > 0$

(B)
$$I_2 > 0$$

(C)
$$I_3 > 0$$

(D)
$$I_4 > 0$$

【答案】(B)

【解析】令 $x = r\cos\theta$, $y = r\sin\theta$, 则有

$$I_{k} = \iint_{D_{k}} (y - x) dx dy \int r_{\alpha}^{\beta} dr \quad \text{sign} \quad - \cos s \theta) = \frac{1}{3} \qquad (\text{ex o-is} \quad \Big|_{\alpha}^{\beta}$$

故当
$$k=2$$
 时, $\alpha=\frac{\pi}{2},\beta=\pi$,此时有 $I_2=\frac{2}{3}$ >0 . 故正确答案选 B。

- (7) 设矩阵 A,B,C 均为 n 阶矩阵, 若 AB = C, 且 B 可逆, 则 ()
- (A) 矩阵 C 的行向量组与矩阵 A 的行向量组等价
- (B) 矩阵 C 的列向量组与矩阵 A 的列向量组等价
- (C) 矩阵 C 的行向量组与矩阵 B 的行向量组等价
- (D) 矩阵 C 的行向量组与矩阵 B 的列向量组等价

【答案】(B)

【解析】由C = AB 可知 C 的列向量组可以由 A 的列向量组线性表示,又 B 可逆,故有 $A = CB^{-1}$,从而 A 的列向量组也可以由 C 的列向量组线性表示,故根据向量组等价的定义可知正确选项为(B)。

(8) 矩阵
$$\begin{pmatrix} 1 & a & 1 \\ a & b & a \\ 1 & a & 1 \end{pmatrix}$$
 与 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 相似的充分必要条件为

(A)
$$a = 0, b = 2$$

(B)
$$a=0,b$$
为任意常数

(C)
$$a = 2, b = 0$$

(D)
$$a = 2, b$$
为任意常数

【答案】(B)

【解析】由于
$$\begin{pmatrix} 1 & a & 1 \\ a & b & a \\ 1 & a & 1 \end{pmatrix}$$
为实对称矩阵,故一定可以相似对角化,从而 $\begin{pmatrix} 1 & a & 1 \\ a & b & a \\ 1 & a & 1 \end{pmatrix}$ 与 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 相似的

充分必要条件为
$$\begin{pmatrix} 1 & a & 1 \\ a & b & a \\ 1 & a & 1 \end{pmatrix}$$
的特征值为 $2,b,0$ 。

二、填空题: 9-14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.

(9)
$$\lim_{x\to 0} \left[2 - \frac{\ln(1+x)}{x}\right]^{\frac{1}{x}} = \underline{\hspace{1cm}}$$

【答案】 $e^{\frac{1}{2}}$

$$\lim_{\substack{\lim \\ \text{ [m]}}} \frac{\ln(1+1-\frac{\ln(1+x)}{x})}{x}$$

$$\lim_{x \to 0} \frac{\ln(1+1-\frac{\ln(1+x)}{x})}{x} = \lim_{x \to 0} \frac{1-\frac{\ln(1+x)}{x}}{x} = \lim_{x \to 0} \frac{1-(1-\frac{1}{2}x+o(x))}{x} = \frac{1}{2}$$

因此答案为 $e^{\frac{1}{2}}$.

①此音采为
$$e$$
 . (10) 设函数 $f(x) = \int_{-1}^{x} \sqrt{4^{t}} e$,则 $y = f(x)$ 的反函数 $x = f^{-1}(y)$ 在 $y = 0$ 处的导数

$$\left. \frac{dx}{dy} \right|_{y=0} = \underline{\hspace{1cm}}$$

【答案】
$$\frac{1}{\sqrt{1-e^{-1}}}$$

【解析】
$$\frac{dy}{dx} = \sqrt{1 - e^x}$$
, $\therefore \frac{dx}{dy} = \frac{1}{\sqrt{1 - e^x}}$, $\frac{dx}{dy}|_{y=0} = \frac{1}{\sqrt{1 - e^x}}|_{x=-1} = \frac{1}{\sqrt{1 - e^{-1}}}$

(11) 设封闭曲线 L 的极坐标方程为 $r = \cos 3\theta \left(-\frac{\pi}{6} \le \theta \le \frac{\pi}{6}\right)$, 则 L 所围成的平面图形的面积为______.

【答案】
$$\frac{\pi}{12}$$

【解析】所围图形的面积是
$$S = \frac{1}{2} \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \cos^2 3\theta d\theta = \int_{0}^{\frac{\pi}{6}} \frac{1 + \cos 6\theta}{2} d\theta = \frac{\pi}{12}$$

(12) 曲线
$$\begin{cases} x = \arctan t \\ y = \ln \sqrt{1 + t^2} \end{cases}$$
 上对应于 $t = 1$ 的点处的法线方程为______.

ም 沪江网校·考研

【答案】
$$y + x - \frac{\pi}{4} - \ln \sqrt{2} = 0$$

【解析】
$$\frac{dy}{dx} = \frac{\frac{1}{\sqrt{1+t^2}} \cdot \frac{t}{\sqrt{1+t^2}}}{\frac{1}{1+t^2}} = t$$
 , $\frac{dy}{dx} \Big|_{t=1} = 1$,

当
$$t = 1$$
时, $x = \frac{\pi}{4}$, $y = \ln \sqrt{2}$, 故法线方程为 $y + x - \frac{\pi}{4} - \ln \sqrt{2} = 0$.

(13) 已知 $y_1 = e^{3x} - xe^{2x}$, $y_2 = e^x - xe^{2x}$, $y_3 = -xe^{2x}$ 是某二阶常系数非齐次线性微分方程的 3 个解,

该方程满足条件 $y|_{x=0} = 0$ $y'|_{x=0} = 1$ 的解为 $y = _____.$

【答案】
$$y = e^{3x} - e^x - xe^{2x}$$

【解析】由题意知: e^{3x} , e^{x} 是对应齐次方程的解, $-xe^{2x}$ 是非齐次方程的解,

故非齐次的通解为 $y = C_1 e^{3x} + C_2 e^x - x e^{2x}$, 将初始条件代入, 得到 $C_1 = 1, C_2 = -1$,

故满足条件的解为 $y = e^{3x} - e^x - xe^{2x}$ 。

(14) 设 $A = (a_{ij})$ 是三阶非零矩阵,|A| 为 A 的行列式, A_{ij} 为 a_{ij} 的代数余子式,若

$$a_{ij} + A_{ij} = 0(i, j = 1, 2, 3), \text{IV}|A| =$$

【解析】

由
$$a_{ij} + A_{ij} = 0$$
可知, $A^T = -A^*$

$$\begin{aligned} |A| &= a_{i1}A_{i1} + a_{i2}A_{i2} + a_{i3}A_{i3} = a_{1j}A_{1j} + a_{2j}A_{2j} + a_{3j}A_{3j} \\ &= -\sum_{i=1}^{3} a_{ij}^{2} = -\sum_{i=1}^{3} a_{ij}^{2} < 0 \end{aligned}$$

从而有 $|A| = |A^T| = |-A^*| = -|A|^2$,故|A| = -1.

三、解答题: 15—23 小题, 共 94 分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分10分)

当 $x \to 0$ 时, $1 - \cos x \cdot \cos 2x \cdot \cos 3x = ax^n$ 为等价无穷小,求 n = a 的值。

【解析】因为当 $x \to 0$ 时, $1 - \cos x \cdot \cos 2x \cdot \cos 3x = ax^n$ 为等价无穷小

所以
$$\lim_{x\to 0} \frac{1-\cos x \cdot \cos 2x \cdot \cos 3x}{ax^n} = 1$$

又因为:

 $1-\cos x \cdot \cos 2x \cdot \cos 3x$

$$=1-\cos x+\cos x-\cos x\cdot\cos 2x+\cos x\cdot\cos 2x-\cos x\cdot\cos 2x\cdot\cos 3x$$

$$=1-\cos x + \cos x(1-\cos 2x) + \cos x \cdot \cos 2x(1-\cos 3x)$$

$$\mathbb{E}\lim_{x\to 0} \frac{1-\cos x \cdot \cos 2x \cdot \cos 3x}{ax^n} = \lim_{x\to 0} \frac{1-\cos x + \cos x(1-\cos 2x) + \cos x \cdot \cos 2x(1-\cos 3x)}{ax^n}$$

$$= \lim_{x \to 0} \left(\frac{1 - \cos x}{ax^n} + \frac{\cos x(1 - \cos 2x)}{ax^n} + \frac{\cos x \cdot \cos 2x(1 - \cos 3x)}{ax^n} \right)$$

$$= \lim_{x \to 0} \left(\frac{\frac{1}{2}x^2 + o(x^2)}{ax^n} + \frac{\frac{1}{2}(2x)^2 + o(x^2)}{ax^n} + \frac{\frac{1}{2}(3x)^2 + o(x^2)}{ax^n} \right)$$

所以
$$n=2$$
 且 $\frac{1}{2a} + \frac{4}{2a} + \frac{9}{2a} = 1 \Rightarrow a = 7$

(16) (本题满分10分)

设D是由曲线 $y=x^{\frac{1}{3}}$,直线x=a(a>0)及x轴所围成的平面图形, V_x,V_y 分别是D绕x轴,y轴旋转一周所得旋转体的体积,若 $V_y=10V_x$,求a的值。

【解析】由题意可得:

$$V_x = \pi \int_0^a (x^{\frac{1}{3}})^2 dx = \frac{3}{5} \pi a^{\frac{5}{3}}$$

$$V_{y} = 2\pi \int_{0}^{a} x \cdot x^{\frac{1}{3}} dx = \frac{6\pi}{7} a^{\frac{7}{3}}$$

因为:
$$V_y = 10V_x$$
 所以 $\frac{6\pi}{7}a^{\frac{7}{3}} = 10 \cdot \frac{3}{5}\pi a^{\frac{5}{3}} \Rightarrow a = 7\sqrt{7}$

(17) (本题满分10分)

设平面内区域 D 由直线 x = 3y, y = 3x 及 x + y = 8 围成.计算 $\iint_{\Omega} x^2 dx dy$ 。

【解析】
$$\iint_D x^2 dx dy = \iint_{D_1} x^2 dx dy + \iint_{D_2} x^2 dx dy$$

$$= \int_0^2 x^2 dx \int_{\frac{x}{3}}^{3x} dy + \int_2^6 x^2 dx \int_{\frac{x}{3}}^{8-x} dy$$

$$=\frac{416}{3}$$

(18) (本题满分10分)

设奇函数 f(x) 在 [-1,1] 上具有二阶导数,且 f(1) = 1.证明:

(I) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 1$; (II) 存在 $\eta \in (0,1)$, 使得 $f''(\eta) + f'(\eta) = 1$ 。

罗沪江网校·考研

【解析】(1) 令
$$F(x) = f(x) - x$$
, $F(0) = f(0) = 0$, $F(1) = f(1) - 1 = 0$,

则 ∃ ξ ∈ (0,1) 使得 $F'(\xi)$ = 0,即 $f'(\xi)$ = 1

(2)
$$\diamondsuit$$
 G(*x*) = e^{x} ($f'(x)$ −1), \bigcup *G*(ξ) = 0,

又由于 f(x) 为奇函数, 故 f'(x) 为偶函数, 可知 $G(-\xi) = 0$,

则
$$\exists \eta \in (-\xi, \xi) \subset (-1,1)$$
 使 $G'(\xi) = 0$,

$$\mathbb{H} e^{\eta} [f'(\eta) - 1] + e^{\eta} f''(\eta) = 0, \quad \mathbb{H} f''(\eta) + f'(\eta) = 1$$

(19) (本题满分11分)

求曲线 $x^3 - xy + y^3 = 1(x \ge 0, y \ge 0)$ 上的点到坐标原点的最长距离与最短距离。

【解析】本题本质上是在条件 $x^3 - xy + y^3 = 1(x \ge 0, y \ge 0)$ 下求函数 $f(x, y) = \sqrt{x^2 + y^2}$ 的最值。

故只需求出 $\sqrt{x^2+y^2}$ 在条件 $x^3-xy+y^3=1$ 下的条件极值点,再将其与曲线端点处((0,1),(1,0))的函数值比较,即可得出最大值与最小值。

由于函数 $\sqrt{x^2+y^2}$ 与 x^2+y^2 的增减性一致,故可以转化为求 x^2+y^2 的条件极值点:

构造拉格朗日函数 $L(x,y,\lambda) = x^2 + y^2 + \lambda(x^3 - xy + y^3 - 1)$, 求其驻点得

$$\begin{cases} \frac{\partial L}{\partial x} = 2x + 3\lambda x^2 - \lambda y = 0\\ \frac{\partial L}{\partial y} = 2y + 3\lambda y^2 - \lambda x = 0\\ \frac{\partial L}{\partial \lambda} = x^3 - xy + y^3 - 1 = 0 \end{cases}$$

为了求解该方程组,将前两个方程变形为 $\begin{cases} 2x = \lambda y - 3\lambda x^2 \\ 2y = \lambda x - 3\lambda y^2 \end{cases}$

进一步有
$$\begin{cases} 2xy = \lambda y^2 - 3\lambda x^2 y \\ 2xy = \lambda x^2 - 3\lambda x y^2 \end{cases}$$
, 故 $\lambda x^2 - 3\lambda x y^2 = \lambda y^2 - 3\lambda x^2 y$

即
$$\lambda(x-y)(x+y+3xy)=0$$
。 则有 $\lambda=0$ 或 $x-y=0$ 或 $x+y+3xy=0$ 。

当 $\lambda = 0$ 时,有x = y = 0,不可能满足方程 $x^3 - xy + y^3 - 1 = 0$;

当x+y+3xy=0,由于 $x\geq 0$, $y\geq 0$,也只能有x=y=0,不可能满足第三个方程;

罗沪江网校·考研

故必有 x-y=0,将其代入 $x^3-xy+y^3-1=0$ 得 $2x^3-x^2-1=0$,解得 x=1,y=1。

可知(1,1)点是唯一的条件极值点。

由于 $f(1,1)=\sqrt{2}$, $f(0,1)=f(1,0)=\sqrt{2}$, 故曲线 $x^3-xy+y^3=1(x\geq 0,y\geq 0)$ 上的点到坐标原点的最长距离为 $\sqrt{2}$ 与最短距离为 1 。

(20)(本题满分11分)

设函数
$$f(x) = \ln x + \frac{1}{x}$$
,

- (I) 求 f(x) 的最小值
- (II) 设数列 $\{x_n\}$ 满足 $\ln x_n + \frac{1}{x_{n+1}} < 1$, 证明 $\lim_{n \to \infty} x_n$ 存在,并求此极限.

【解析】(I) $f'(x) = \frac{1}{x} - \frac{1}{x^2} = \frac{x-1}{x^2}$,则当 $x \in (0,1)$ 时,f'(x) < 0;当 $x \in (1,+\infty)$ 时,f'(x) > 0。

可知 f(x) 在(0,1]上单调递减,在 $[1,+\infty)$ 上单调递增。故 f(x) 的最小值为 f(1)=1。

(2)、由于
$$\ln x_n + \frac{1}{x_n} \ge 1$$
,则 $\frac{1}{x_{n+1}} < \frac{1}{x_n}$,即 $x_{n+1} > x_n$,故 x_n 单调递增。

又由于 $\ln x_n < \ln x_n + \frac{1}{x_{n+1}} < 1$,则 $x_n < e$,故 x_n 有上界,则由单调有界收敛定理可知, $\lim_{n \to \infty} x_n$ 存在。令

$$\lim_{n \to \infty} x_n = a$$
, $\lim_{n \to \infty} \left(n x_n + \frac{1}{x_n} \right) = \ln a + \frac{1}{a}$, $\text{diff} \ln x_n + \frac{1}{x_n + 1} < 1$, III

$$\ln a + \frac{1}{a} \le 1, \quad \text{id} \lim_{n \to \infty} x_n = a = 1.$$

(21)(本题满分11分)

设曲线 L 的方程为 $y = \frac{1}{4}x^2 - \frac{1}{2}\ln x$ $(1 \le x \le e)$,

- (1) 求L的弧长;
- (2) 设D是由曲线L, 直线x=1, x=e及x轴所围平面图形, 求D的形心的横坐标。

【解析】(1) 由弧长的计算公式得 L 的弧长为

$$\int_{1}^{e} \sqrt{1 + \left[\left(\frac{1}{4} x^{2} - \frac{1}{2} \ln x \right)^{1} \right]^{2}} dx = \int_{1}^{e} \sqrt{1 + \left(\frac{x}{2} - \frac{1}{2x} \right)^{2}} dx$$

$$= \int_{1}^{e} \sqrt{1 + \frac{x^{2}}{4} + \frac{1}{4x} - \frac{1}{2}} dx$$

$$= \int_{1}^{e} \sqrt{\left(\frac{x}{2} + \frac{1}{2x}\right)^{2}} dx$$

$$= \frac{e^{2} + 1}{4}$$

(2) 由形心的计算公式可得,D的形心的横坐标为

$$\frac{\int_{1}^{e} x \left(\frac{1}{4}x^{2} - \frac{1}{2}\ln x\right) dx}{\int_{1}^{e} \left(\frac{1}{4}x^{2} - \frac{1}{2}\ln x\right) dx} = \frac{3(e^{4} - 2e^{2} - 3)}{4(e^{3} - 7)}$$

(22) (本题满分 11 分)

设 $A = \begin{pmatrix} 1 & a \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & b \end{pmatrix}$, 当 a,b 为何值时,存在矩阵 C 使得 AC - CA = B,并求所有矩阵 C 。

【解析】由题意可知矩阵 C 为 2 阶矩阵,故可设 $C = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$,则由 AC - CA = B 可得线性方程组:

$$\begin{cases}
-x_2 + ax_3 = 0 \\
-ax_1 + x_2 + ax_4 = 1 \\
x_1 - x_3 - x_4 = 1 \\
x_2 - ax_3 = b
\end{cases}$$
(1)

$$\begin{pmatrix}
0 & -1 & a & 0 & 0 \\
-a & 1 & 0 & a & 1 \\
1 & 0 & -1 & -1 & 1 \\
0 & 1 & -a & 0 & b
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & -1 & -1 & 1 \\
-a & 1 & 0 & a & 1 \\
0 & -1 & a & 0 & 0 \\
0 & 1 & -a & 0 & b
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & -1 & -1 & 1 \\
0 & 1 & -a & 0 & 1+a \\
0 & 1 & -a & 0 & 1+a \\
0 & 0 & 0 & 0 & 1+a \\
0 & 0 & 0 & 0 & b & 1 & a
\end{pmatrix}$$

由于方程组(1)有解,故有1+a=0,b-1-a=0,即a=-1,b=0,从而有

从而有
$$C = \begin{pmatrix} k_1 + k_2 + 1 & -k_1 \\ k_1 & k_2 \end{pmatrix}$$

(23) (本题满分 11 分)

设二次型
$$f(x_1, x_2, x_3) = 2(a_1x_1 + a_2x_2 + a_3x_3)^2 + (b_1x_1 + b_2x_2 + b_3x_3)^2$$
, 记 $\alpha = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$, $\beta = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ 。

- (I) 证明二次型 f 对应的矩阵为 $2\alpha^T\alpha + \beta^T\beta$;
- (II) 若 α, β 正交且均为单位向量,证明二次型f在正交变化下的标准形为二次型 $2y_1^2 + y_2^2$ 。

【解析】(1)

$$f = (2\vec{q} + b_1^2) x_1^2 + (2\vec{q} + b_2^2) x_2^2 + (2\vec{q} + b_3^2) x_3^2 + (4q a_2 2b_1 a_2 b_3 x_1 x_2 a_3 b_2 b_3 x_2 x_3$$

(2) 令A=
$$2\alpha\alpha^T + \beta\beta^T$$
,则 $A\alpha = 2\alpha\alpha^T\alpha + \beta\beta^T\alpha = 2\alpha$, $A\beta = 2\alpha\alpha^T\beta + \beta\beta^T\beta = \beta$,则 1,2 均为 A 的特征值,又由于 $r(A) = r(2\alpha\alpha^T + \beta\beta^T) \le r(\alpha\alpha^T) + r(\beta\beta^T) = 2$,故 0 为 A 的特征值,则三阶矩阵 A 的特征值为 2,1,0,故 f 在正交变换下的标准形为 $2y_1^2 + y_2^2$