ESCUELA COLOMBIANA DE INGENIERÍA LÓGICA CALCULATORIA

Taller

Herramientas Proposicionales

Considere las sustituciones:

$$\begin{array}{lcl} F_1 & = & \{p \mapsto (p \equiv q), q \mapsto (r \rightarrow s), r \mapsto false\} \\ F_2 & = & \{p \mapsto (p \equiv q)\} \\ F_3 & = & \{r \mapsto false\} \\ F_4 & = & \{p \mapsto (p \equiv q), q \mapsto (r \rightarrow s)\} \\ F_5 & = & \{q \mapsto (r \rightarrow s), r \mapsto false\} \end{array}$$

- 1. Calcular $\overline{F_1}(\phi)$, $\overline{F_2}(\phi)$, $\overline{F_3}(\phi)$, $\overline{F_4}(\phi)$ y $\overline{F_5}(\phi)$ para cada una de las siguientes proposiciones ϕ :
 - $\phi = ((p \land (\neg q)) \to r)$
 - $\phi = (p \to (q \to p))$
 - $\bullet \ \phi = (\neg((r \land (r \leftarrow (p \lor s))) \equiv (\neg((p \rightarrow q) \lor (r \land (\neg r))))))$
- 2. Calcular:
 - $(\overline{F_1} \circ \overline{F_2})((p \wedge (\neg q)) \to r)$
 - $(\overline{F_3} \circ \overline{F_4})(p \to (q \to p))$
 - $(\overline{F_5} \circ \overline{F_1})(\neg((r \land (r \leftarrow (p \lor s))) \equiv (\neg((p \to q) \lor (r \land (\neg r))))))$
 - $(\overline{F_2} \circ \overline{F_3})((p \wedge (\neg q)) \to r)$
 - $(\overline{F_4} \circ \overline{F_5})(p \to (q \to p))$
 - $(\overline{F_1} \circ \overline{F_3})(\neg((r \land (r \leftarrow (p \lor s))) \equiv (\neg((p \to q) \lor (r \land (\neg r))))))$
- 3. Calcular:
 - $(\overline{F_1} \circ \overline{F_2} \circ \overline{F_3})((p \wedge (\neg q)) \to r)$
 - $(\overline{F_4} \circ \overline{F_5} \circ \overline{F_1})(p \to (q \to p))$
 - $\bullet \ (\overline{F_2} \circ \overline{F_3} \circ \overline{F_4}) (\neg ((r \land (r \leftarrow (p \lor s))) \equiv (\neg ((p \to q) \lor (r \land (\neg r))))))$
 - $(\overline{F_5} \circ \overline{F_1} \circ \overline{F_2})((p \wedge (\neg q)) \to r)$
 - $(\overline{F_3} \circ \overline{F_4} \circ \overline{F_5})(p \to (q \to p))$
 - $(\overline{F_5} \circ \overline{F_3} \circ \overline{F_1})(\neg((r \land (r \leftarrow (p \lor s))) \equiv (\neg((p \to q) \lor (r \land (\neg r)))))))$
- 4. Considere la sustitución $F = \{p \mapsto (p \equiv q), q \mapsto (r \rightarrow s), r \mapsto false\}$. Determine la proposición correspondiente a la sustitución textual de F en cada una de las siguientes proposiciones:
 - $((p \land (\neg q)) \to r)$
 - $(p \rightarrow (q \rightarrow p))$
 - $(\neg((r \land (r \leftarrow (p \lor s))) \equiv (\neg((p \rightarrow q) \lor (r \land (\neg r))))))$
- 5. Para cada una de las siguientes proposiciones encuentre una sustitución F tal que la proposición resultante de la sustitución textual bajo F sea una tautología:
 - $(p \equiv r)$
 - $((p \land q) \lor ((\neg p) \land (\neg q)))$
 - $((p \lor r) \leftarrow (p \land q))$
- 6. Sean p, q, r variables proposicionales distintas $y \phi, \psi, \tau$ proposiciones tales que r no aparece en ϕ ni en ψ . Demuestre que si $\gamma = \psi$ [q := r], entonces: ϕ [$p, q := \psi, \tau$] = ϕ [$p := \gamma$][$q := \tau$][r := q].

- 7. Considere la siguiente afirmación: Tome dos variables proposicionales p y q tales que: q sea distinta a p y esta no aparezca ni en ϕ ni en ψ . Con base en esta afirmación:
 - $\bullet\,$ Explique por qué es posible encontrar variables proposicionales p y q bajo las condiciones dadas.
 - Suponga que p y q son tales que satisfacen las condiciones en la afirmación anterior, excepto que q puede aparecer en ϕ o en ψ . Explique por qué, en cualquiera de estos casos, la siguiente igualdad puede fallar: $((\phi \to \psi) \equiv ((\neg \phi) \lor \psi)) = ((p \to q) \equiv ((\neg p) \lor q))[p := \phi][q := \psi].$