Math 624: Problem set 5

1. Let μ be a signed (or complex measure) on (X, \mathcal{M}) . Show that for any $E \in \mathcal{M}$

$$|\nu|(E)| = \sup \left\{ \sum_{j=1}^{n} |\nu(E_j)| : n \ge 1, E_1, \dots E_n \text{ disjoint }, E = \bigcup_{j=1}^{n} E_j \right\}$$
 (1)

$$= \sup \left\{ \sum_{j=1}^{\infty} |\nu(E_j)| : E_1, E_2, \dots \text{ disjoint }, E = \bigcup_{j=1}^{\infty} E_j \right\}$$
 (2)

$$= \sup \left\{ \left| \int_{E} f d\nu \right| : |f| \le 1 \right\} . \tag{3}$$

Hint: Prove that $(1) \leq (2) \leq (3) \leq (1)$.

- 2. Let F be of bounded variation on [a,b] and let $G(x) = |\mu_F|([a,x])$. Show that $|\mu_F| = \mu_{T_F}$ by showing that $G = T_F$. To do this prove
 - (a) From the definition of T_F , we have $T_F \leq G$.
 - (b) $|\mu_F(E)| \leq \mu_{T_F(E)}$ for any Borel set E. (Consider first an interval.)
 - (c) Using the previous problem we have $|\mu_F| \leq \mu_{T_F}$ and hence $G \leq T_F$.
- 3. Consider a linear map $A: \mathbf{C}^d \to \mathbf{C}^d$, i.e., a $n \times n$ matrix $A = (a_{ij})_{i,j=1}^d$. Define

$$||A||_p = \sup_{x \neq 0} \frac{||Ax||_p}{||x||_p},$$

i.e., $||A||_p$ is the operator norm of A as an operator on the Banach \mathbb{C}^n equipped with $||\cdot||_p$. Show that

$$||A||_1 = \max_j \sum_i |a_{ij}| \quad ||A||_{\infty} = \max_i \sum_j |a_{ij}|.$$

and that $||A||_2$ is the square root of the largest eigenvalue of A^*A .

- 4. Let k be an integer and let $C^k([0,1])$ denote the space of functions which have continuous derivatives up to order k, including one-sided derivatives at the endpoints.
 - (a) Show that if $f \in C[0,1]$, then $f \in C^k([0,1])$ if and only if f is k-times continuously differentiable on (0,1) and $\lim_{x\to 0+} f^{(j)}(x) \lim_{x\to 1-} f^{(j)}(x)$ exists for $j \leq k$. (Use the mean-value Theorem).

- (b) Show that if $\{f_n\}$ is a sequence in $C^1([0,1])$ such that $f_n \to f$ uniformly and $f'_n \to g$ uniformly then $f \in C^1([0,1])$ and f' = g. (Show that $f(x) f(y) = \int_y^x g(s)ds$.)
- (c) Show that $||f||_{C^k} \equiv \sum_{j=0}^k ||f^{(j)}||_{\infty}$ is a norm on $C^k([0,1])$ and that, with this norm $C^k([0,1])$ is a Banach space. (Use (b) and induction on k).
- 5. Let $0 < \alpha \le 1$ and let $H_{\alpha}([0,1])$ denote the space of all functions satisfying a Lipschitz condition with exponent α , i.e., if $f \in H_{\alpha}([0,1])$ there exists a constant M such that $|f(x) f(y)| \le M|x y|^{\alpha}$ for all $x, y \in [0,1]$. Define

$$||f||_{H_{\alpha}} \equiv \sup_{x \in [0,1]} |f(x)| + \sup_{\substack{x,y \in [0,1]\\x \neq y}} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}.$$

Show that H_{α} with $\|\cdot\|_{H_{\alpha}}$ is a Banach space.

- 6. Let X be a Banach space and let $\mathcal{L}(X)$ be the set of all bounded operator from X to X.
 - (a) Let $T \in \mathcal{L}(X)$ and suppose that ||I T|| < 1 (here I is the identity operator, i.e. Ix = x). Show that T is invertible with inverse $T^{-1} = \sum_{n=0}^{\infty} (I T)^n$.
 - (b) Let $T \in \mathcal{L}(X)$ be invertible and suppose that $S \in \mathcal{L}(X)$ satisfies $||S T|| \le ||T^{-1}||^{-1}$, then S is invertible.
- 7. **Integral operators I.** Let C([0,1]) be the Banach space of continuous functions on [0,1] equipped with the uniform norm $||f||_u = \sup_{t \in [0,1]} |f(t)|$.

Let $k \in C([0,1] \times [0,1])$ be a continuous function. Define $A: C([0,1]) \to C([0,1])$ by

$$Af(t) = \int_0^1 k(t,s)f(s) ds.$$

Show that A is a bounded operator and $||A|| = \max_{t \in [0,1]} \int_0^1 |k(t,s)| ds$. Compute the operator A^* .

8. Integral Operators II Let (X, \mathcal{M}, μ) be a σ -finite measure space and let $K(\cdot, \cdot)$ be a measurable function on $X \times X$ equipped with the product σ -algebra. Suppose that there exists a constant C such that

$$\int |K(x,y)| d\mu(x) \, \leq \, C \text{ for a.e } y \, , \quad \int |K(x,y)| d\mu(y) \, \leq \, C \text{ for a.e } x \, .$$

Let $1 \leq p \leq \infty$ and $f \in L^p(\mu)$. Show

- (a) The integral $Tf(x) = \int K(x,y)f(y)d\mu(y)$ converges absolutely for a.e. x, i.e. $\int |K(x,y)f(y)|d\mu(y) < \infty$ for a.e. x.
- (b) The function Tf defined in (a) is in $L^p(\mu)$ and $||Tf||_p \le C||f||_p$ for all $f \in L^p(\mu)$.
- (c) Suppose $1 \leq p < \infty$. Compute the adjoint operator T^* .
- 9. Suppose X is a Banach space and X^* its dual space. Show that if X^* is separable then X is separable.

Hint: Let $\{l_n\}$ be a countable dense subset in X^* . Pick $x_n \in X$ such that $||x_n|| = 1$ and $|l_n(x_n)| \ge \frac{1}{2} ||l_n||$. Show that the linear combinations of x_n spans X.

10. Weak convergence. A sequence $\{x_n\}$ is said to converge weakly if

$$\lim_{n \to \infty} l(x_n) = l(x)$$

for any $l \in X^*$.

- (a) Show that convergence implies weak convergence.
- (b) Suppose X = H is a Hilbert space and $\{x_n\}$ is an orthonormal basis of H. Show that x_n converges weakly to 0 but it does not converge strongly, in fact x_n has no convergent subsequence. *Hint: Bessel inequality*
- (c) Suppose $X = l^1$, then if $\{x_n\}$ converges weakly in l^1 then it converges in l^1 . Hint: What is the dual of l^1 ?
- (d) Consider $X = L^2([0, 2\pi])$ and $f_n = \cos(nx)$. Show that that f_n converges weakly to 0 but that f_n does not converge to 0 or in measure.
- (e) Let $f_n = n\chi_{(0,\frac{1}{n})}$. Show that f_n converges to 0 in measure and a.e. but that f_n does not converge to 0 weakly in L^p for any p.