

Mathematical definitions of the basic properties of the relation *R* on the set *A*:

Let **R** be a relation on **A**, then

- (1) R is *reflexive* on A if and only if $I_A \subseteq R$ R at least contains all reflexive pairs (x,x)
- (2) R is *irreflexive* on A if and only if $R \cap I_A = \emptyset$ R does not contain any (x,x)
- (3) R is symmetric on A if and only if $R=R^{-1}$
- (4) R is antisymmetric on A if and only if $R \cap R^{-1} \subseteq I_A$ R and its inverse relation contains only reflexive pairs $\langle x, x \rangle$
- (5) R is transitive on A if and only if $R \circ R \subseteq R$

▶ Proof of Reflexivity of *R* on *A*

- To prove that *R* is reflexive on *A*:
 - Proof Pattern:

For any
$$x$$
, $x \in A \Rightarrow \dots \Rightarrow \langle x, x \rangle \in R$
Assume easoning process Conclusion

Example: Prove that if $I_A \subseteq R$, then R is reflexive on A.

Proof: For any x,

$$x \in A \Rightarrow \langle x, x \rangle \in I_A \Rightarrow \langle x, x \rangle \in R$$

Therefore, R is reflexive on A.

Proof of symmetric of R on A

- To prove that R is symmetric on A:
 - Proof Pattern:

For any
$$\langle x, y \rangle$$

 $\langle x, y \rangle \in R \Rightarrow \dots \dots \dots \Rightarrow \langle y, x \rangle \in R$
Assumption Reasoning process Conclusion

Example: Prove that if $R=R^{-1}$, then R is symmetric on A.

$$\langle x, y \rangle \in R \Rightarrow \langle y, x \rangle \in R^{-1} \Rightarrow \langle y, x \rangle \in R$$

Therefore, *R* is symmetric on *A*.

▶ Proof of antisymmetric of *R* on *A*

- To prove that R is antisymmetric on A:
 - Proof Pattern:

For any
$$\langle x, y \rangle$$

 $\langle x, y \rangle \in R \land \langle y, x \rangle \in R \Rightarrow \dots \Rightarrow x = y$
Assumption Reasoning process Conclusion

Example: Prove that if $R \cap R^{-1} \subseteq I_A$, then R is antisymmetric on A.

Proof: For any
$$\langle x, y \rangle$$

 $\langle x, y \rangle \in R \land \langle y, x \rangle \in R \Rightarrow \langle x, y \rangle \in R \land \langle x, y \rangle \in R^{-1}$
 $\Rightarrow \langle x, y \rangle \in R \cap R^{-1} \Rightarrow \langle x, y \rangle \in I_A \Rightarrow x = y$
Therefore, R is antisymmetric on A .

Proof of transitive of R on A

- To prove that **R** is transitive on **A**:
 - Proof Pattern:

For any
$$\langle x, y \rangle$$
, $\langle y, z \rangle$
 $\langle x, y \rangle \in R \land \langle y, z \rangle \in R \Rightarrow \dots \Rightarrow \langle x, z \rangle \in R$
Assumption Reasoning process Conclusion

Example 7: Prove that if $R \circ R \subseteq R$, then R is transitive on A.

Proof: Let
$$< x, y>, < y, z>$$

$$\langle x, y \rangle \in R \land \langle y, z \rangle \in R \Rightarrow \langle x, z \rangle \in R \Rightarrow \langle x, z \rangle \in R$$

Therefore, **R** is transitive on **A**.

Relation Properties	Express ion	Definition	Relation Matrix	Relation Diagram	
Reflexivity	I _A ⊆R	∀ <i>x</i> ∈ <i>A</i> , ∃< <i>x</i> , <i>x</i> >∈ <i>R</i>	Main diagonal elements are 1	Every vertex has a loop	
Irreflexivity	R ∩I _A =Ø	∀ <i>x∈A</i> , ∃< <i>x</i> , <i>x</i> >∉ <i>R</i>	Main diagonal elements are 0	No loops at any vertex	
Symmetry	R=R −1	lf <x,y>∈R, then<y,x>∈R</y,x></x,y>	The matrix is a symmetric matrix	If there is an edge between two vertices, it must be a directed edge (no undirected edge)	

└ Comparison Table of Properties of Relation *R* (cont.)

Relation Properties	Express ion	Definition	Relation Matrix	Relation Diagram	
Antisymmet ry	R∩R ⁻¹ ⊆ I _A	If Expression <x,y>∈R and x≠y, then <y,x>∉R</y,x></x,y>	<i>If</i> r_{ij} =1, and $i≠j$, Then r_{ji} =0	If there is an edge between two points, it must be a directed edge (no bidirectional edges)	
Transitivity	R∘R <u>⊂</u> R	If $\langle x,y \rangle \in R$ and $\langle y,z \rangle \in R$, then $\langle x,z \rangle \in R$	$M_{ij}^2=1\Rightarrow M_{ij}=1, \forall i,j$	If there is an edge from vertex x_i to x_j , and an edge from x_j to x_k , then there is also an edge from x_i to x_k .	

▶ Determine the Relation Based on the Relation Diagram (e.g.

- (a) Neither reflexive nor antireflexive; symmetric, not antisymmetric; not transitive.
- (b) Antireflexive, not reflexive; antisymmetric, not symmetric; transitive.
- (c) Reflexive, not antireflexive; antisymmetric, not symmetric; not transitive.

4 Relation Between Operations and Properties

	Reflexivity	Irreflexivity	Symmetry	Antisymmetry	Transitivity
R_1^{-1}		$\sqrt{}$	V		V
$R_1 \cap R_2$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
$R_1 \cup R_2$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	×	×
R_1-R_2	×	$\sqrt{}$	$\sqrt{}$		×
$R_1 \circ R_2$		×	×	×	×

4.3 Properties of Relations

- 4.3.1 Definition and Determination of Relation Properties
 - Reflexivity and Irreflexivity
 - Symmetry and Antisymmetry
 - Transitivity
- 4.3.2 Closure of Relations
 - Definition of Closure
 - Closure Calculation
 - Warshall's Algorithm

Definition 4.17: r(R), s(R) and t(R)

Let *R* be a relation on a non-empty set *A*. The **reflexive** (symmetric or transitive) closure of *R* is a relation *R'* on *A*, such that *R'* satisfies the following conditions:

- R'is reflexive (symmetric or transitive).
- *R*⊆*R*′
- For any reflexive (symmetric or transitive) relation R'' on A that contains R, we have $R' \subseteq R''$.

The reflexive closure of R is usually denoted by r(R), the symmetric closure by s(R), and the transitive closure by t(R).

▶ Construction of the Transitive Closure of Relation *R*

- For a relation R on a non-empty set A, the reflexive closure r(R), symmetric closure s(R), and transitive closure t(R) can be constructed.
- The *reflexive closure R'* of *R* is a relation obtained by adding all necessary pairs to ensure reflexivity, and it is the smallest superset. It can be defined as: $R'=R \cup \{(a,a) \mid a \in A\}$
- The *symmetric closure R'* of R is a relation obtained by adding all necessary pairs to ensure symmetry, and it is the smallest superset. It can be defined as: $R'=R \cup \{(b,a) \mid (a,b) \in R\}$

The *transitive closure R'* of *R* is a relation obtained by adding all necessary pairs to ensure transitivity, and it is the smallest superset. It can be defined as:

For each pair of elements a, $c \in A$, if there exist one or more elements $b_1, b_2, ..., b_n$ such that $(a,b_1), (b_1,b_2), ..., (b_{n-1},b_n), (b_n,c)$ are all in R, then (a,c) should be in R'.

Closure Theorem of Relations

Theorem 4.7: Closure Theorem of Relations.

Let *R* be a relation on *A*, then we have:

- (1) $r(R)=R\cup R^0$
- (2) $s(R) = R \cup R^{-1}$
- (3) $t(R)=R\cup R^2\cup R^3\cup...$

(i) Explanation:

- For a finite set A (where |A|=n), the union in (3) will have at most \mathbb{R}^n .
- If R is reflexive, then r(R)=R; If R is symmetric, then s(R)=R; If R is transitive, then t(R)=R.

4.3.2 Closure of Relations • Proof of Closure Theorem

- Proof of Theorem 4.7 (Proving (1)).
 - Proof of (1) $r(R)=R\cup R^0$, It is sufficient to show that $R\cup R^0$ satisfies the closure definition.
 - Proof that $R \cup R^0$ is a reflexive relation Since $R \cup R^0$ contains R, and by $I_A \subseteq R \cup R^0$, we can conclude that $R \cup R^0$ is reflexive on A.
 - Proof that $R \cup R^0$ is the smallest reflexive relation containing R. We need to show that no reflexive relation smaller than $R \cup R^0$ exists that contains R.

Assume R' is a reflexive relation that contains R and and is smaller than $R \cup R^0$ $I_A \subseteq R'$, $R \subseteq R'$. Therefore, we have $R \cup R^0 = I_A \cup R \subseteq R'$. which contradicts the assumption that R' is smaller than $R \cup R^0$.

▶ Proof of Closure Theorem(cont.)

- Proof of (3) $t(R)=R \cup R^2 \cup R^3 \cup ...$
 - Consider arbitrary pairs <x,y> and <y,z>

$$\langle x,y\rangle\in R\cup R^2\cup R^3\cup....\wedge\langle y,z\rangle\in R\cup R^2\cup R^3\cup....$$

$$\Rightarrow \langle x,z \rangle \in R \cup R^2 \cup R^3 \cup$$

Therefore, by the transitivity of $R \cup R^2 \cup R^3 \cup ...$ We have

$$t(R) \subseteq R \cup R^2 \cup R^3 \cup ...$$

• Next, we prove by induction that $R^n \subseteq t(R)$.

For n=1, the statement is obviously true. Assume it holds for n=k.

For any $\langle x,y \rangle$, we have

$$\langle x,y\rangle\in R^{k+1} \Rightarrow \langle x,y\rangle\in R^k\circ R \Rightarrow \exists t \ (\langle x,t\rangle\in R^k\land\langle t,y\rangle\in R)$$

$$\Rightarrow \exists t \ (\langle x,t\rangle \in t(R) \land \langle t,y\rangle \in t(R)) \Rightarrow \langle x,y\rangle \in t(R) \ (t(R) \ \text{transitive})$$

Thus,
$$R \cup R^2 \cup R^3 \cup ... \subseteq t(R)$$

Closure Matrix Representation

Let the relation matrices of R, r(R), s(R), t(R) be M, M_r , M_s and M_t , respectively. Then, we have:

$$M_r = M + E$$

$$M_s = M + M'$$

$$M_t = M + M^2 + M^3 + \dots$$

- where E is the identity matrix of the same order as M, and M is the transpose of M.
- Note: In the above equations, the matrix elements are added using logical addition.

Google Operations on Relation Graphs

- Let the relation graphs of R, r(R), s(R), t(R) be denoted by G, G_r , G_s , G_t , respectively.
 - **Then**, the vertex sets of G_r , G_s , G_t are the same as the vertex set of G.
- In addition to the edges of G, new edges are added in the following ways:
 - For each vertex in G, if there is no cycle, add a cycle. The resulting graph is G_r .
 - For each directed edge $x_i \to x_j$, (with $i \neq j$), add a reverse edge $x_i \to x_j$. The resulting graph is G_s .
 - For each vertex x_i in G, examine all paths starting from x_i , If there is no edge from x_i to any node x_j in the path, add the corresponding edge. After checking all vertices, the resulting graph is G_t .

Example: Let $A = \{a,b,c,d\}$, $R = \{\langle a,b\rangle,\langle a,c\rangle,\langle b,c\rangle,\langle c,d\rangle,\langle d,c\rangle\}$, R and r(R), s(R), t(R) the relation graph is shown.

r(R)

- Algorithm Idea: Consider a sequence of matrices M_0 , M_1 , ..., M_n of size n+1, where the element in the i-th row and j-th column of matrix M_k is denoted as $M_k[i,j]$. For k=0,1,...,n, $M_k[i,j]=1$ if and only if there exists a path from x_i to x_j in the relation graph of R, and this path passes through only the vertices in $\{x_1, x_2, ..., x_k\}$ except for the endpoints. It is easy to prove that MOM_0MO is the relation matrix of R, and M_n corresponds to the transitive closure of R.
- Warshall Algorithm: Starting from M_0 , calculate M_1 , M_2 , ..., until M_n . From $M_k[i,j]$ to compute $M_{k+1}[i,j]$: $i,j \in V$. The vertex set $V_1 = \{1,2,...,k\}$, $V_2 = \{k+2,...,n\}$, $V = V_1 \cup \{k+1\} \cup V_2$, $M_{k+1}[i,j] = 1 \Leftrightarrow$ There exists a path i to j. that only passes through the points in $V_1 \cup \{k+1\}$.

- These paths are divided into two categories:
 - •Category 1: Paths that only pass through the points in V_1
 - •Category 2: Paths that pass through point k+1

For Category 1 paths: $M_k[i,j]=1$

For Category 2 paths:

$$M_k[i,k+1]=1 \land M_k[k+1,j]=1$$

■ Algorithm 4.1: Warshall Algorithm

Input: **M** (relation matrix of **R**)

Output: M_t (relation matrix of t(R))

- 1. $M_t \leftarrow M$
- 2. for $k \leftarrow 1$ to n do
- 3. for $i \leftarrow 1$ to n do
- 4. for $j \leftarrow 1$ to n do
- 5. $M_t[i, j] \leftarrow M_t[i, j] + M_t[i, k] \cdot M_t[k, j]$

Time Complexity: $T(n)=O(n^3)$

4.3 Properties of Relations Brief summary

Objective:

Key Concepts:

