Nandini Bajaj 18CY20020

Lab Assignment 3

```
1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 from sklearn.metrics import r2_score as r2

1    df = pd.read_csv("/content/Dataset-Lab3.xlsx - Sheet1 (1).csv")
2    df
```

	Compounds	w (Xi)	logP (Xi)	pLC50 (expt.) (Yi)
0	1	3.68	5.70	6.38
1	2	3.02	4.75	5.85
2	3	2.68	4.16	5.00
3	4	2.63	4.04	4.89
4	5	2.33	3.57	4.56
5	6	2.36	3.57	4.30
6	7	2.27	3.45	4.40
7	8	1.95	2.56	3.77
8	9	1.92	3.01	3.89
9	10	1.87	3.35	4.33
10	11	1.40	3.14	4.21
11	12	1.44	3.14	3.82
12	13	1.42	3.09	3.48
13	14	1.53	2.64	3.32
14	15	1.60	2.14	3.40

```
1 \operatorname{arr}_{x} = \operatorname{df}['w (Xi)']
 2 \operatorname{arr_y} = \operatorname{df}['pLC50 (expt.) (Yi)']
 3 y1 = np.zeros(15)
 4 cpx=[]
 5 cpy=[]
 6 for i in range(14):
 7
   cpx = list(arr_x)
     cpy = list(arr_y)
 8
 9
10
     np.delete(cpx, i)
      np.delete(cpy, i)
11
12
```

```
13  m, b = np.polyfit(cpx, cpy, 1)
14  y1[i] = b + (m*arr_x[i])

1 plt.plot(arr_y, y1, 'o')
2 plt.plot(arr_y, m*arr_y + b)
3 plt.xlabel("Y experimental")
4 plt.ylabel("Y calculated (X=w)")
5 one = r2(y1,arr_y)
```


1 one

0.5235898331343869

```
1 \operatorname{arr} x = \operatorname{df}['\log P(Xi)']
 2 \operatorname{arr}_y = \operatorname{df}['\operatorname{pLC50}(\operatorname{expt.})(\operatorname{Yi})']
 3 y2 = np.zeros(15)
 4 cpx=[]
 5 cpy=[]
 6 for i in range(14):
 7
     cpx = list(arr x)
 8
      cpy = list(arr_y)
 9
10
     np.delete(cpx, i)
11
     np.delete(cpy, i)
12
13
     m, b = np.polyfit(cpx, cpy, 1)
14
     y2[i] = b + (m*arr_x[i])
15
 1 plt.plot(arr_y, y2, 'o')
 2 plt.plot(arr_y, m*arr_y + b)
 3 plt.xlabel("Y experimental")
 4 plt.ylabel("Y calculated (X=logP)")
 5 \text{ two} = r2(y2, arr_y)
```

1

1

2

C→

df

		Compounds	W (Xi)	logP (Xi)	pLC50 (expt.) (Yi)	Y calc(with X=w)	Y calc(with X=logP)
	0	1	3.68	5.70	6.38	6.263574	6.453216
	1	2	3.02	4.75	5.85	5.453471	5.560226
	2	3	2.68	4.16	5.00	5.036145	5.005633
	3	4	2.63	4.04	4.89	4.974774	4.892834
	4	5	2.33	3.57	4.56	4.606545	4.451039
	5	6	2.36	3.57	4.30	4.643368	4.451039
	6	7	2.27	3.45	4.40	4.532899	4.338240
	7	8	1.95	2.56	3.77	4.140122	3.501650
1							
	ษ	ΤO	Τ.δ.	ა.აⴢ	4.33	4.041927	4.244241
	10	11	1.40	3.14	4.21	3.465036	4.046844
	11	12	1.44	3.14	3.82	3.514133	4.046844
	12	13	1.42	3.09	3.48	3.489584	3.999844
	13	14	1.53	2.64	3.32	3.624601	3.576849
	14	15	1.60	2.14	3.40	0.000000	0.000000

✓ 0s completed at 4:19 PM

×