ECN 2025

Encadré par :

Diana MATEUS et Oriane THIERY

Fait par:

Ilyes LAMSSALAK et Maria VALLE

Apprentissage de caractéristiques d'images médicales non redondantes pour la fusion multimodale

PETvsCLin

Sommaire

Contexte et objectifs

4

Nos Travaux

2 Bibliographie

Validation expérimentale

3 Méthodologie Conclusion et perspectives

Contexte et objectifs

Patients atteints de cancer lymphatique (DLBCL)

Identification par déscripteurs de texture et forme (Radiomiques)

Hand Crafted Radiomics (HCR)

Non-redondantes

Deep Learning Radiomics (DLR)

Non-redondance?

Indépendance statistique

Des variables aléatoires x1 et x2 sont dites statistiquement indépendants ssi P(x1,x2) = P(x1).P(x2)

Mesure:

Divergence de Kullback-Leibler

$$D_{\mathrm{KL}}(P \parallel Q) = \sum_{x} P(x) \log \left(\frac{P(x)}{Q(x)} \right)$$

Information Mutuelle

$$D_{\mathrm{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \log \left(\frac{P(x)}{Q(x)} \right) \quad I(X;Y) = D_{\mathrm{KL}} \left(P_{(X,Y)} \parallel P_X \otimes P_Y \right)$$
 Loi conjointe Lois marginales

Bibliographie

Variational Autoencoder (VAE)

Contrastive Variational Autoencoder (cVAE)

Les articles

Où notre projet s'insère

— Identification de patients de haut risque de cancer

Thiery, Oriane, et al. "Graph-based multimodal multi-lesion DLBCL treatment response prediction from PET images." Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, 2023

D'où vient l'idée

6

Vétil, Rebeca, et al. "Non-redundant combination of hand-crafted and deep learning radiomics: Application to the early detection of pancreatic cancer." MICCAI Workshop on Cancer Prevention through Early Detection, 2023

Le point de départ

—— Codes disponibles

Louiset, Robin, et al. "SepVAE: a contrastive VAE to separate pathological patterns from healthy ones." ICML 3rd Workshop on Interpretable Machine Learning in Healthcare (IMLH), 2023

Méthodologie

Extraction des radiomiques

D_λ Discriminator

Classificateur Indépendant

Density-Ratio Trick

$$KL[q(h,d) \mid q(h)q(d)] = \mathbb{E}_{q(h,d)} \left[\log \frac{q(h,d)}{q(h)q(d)} \right] \approx \sum_{i} \text{ReLU} \left(\left[\log \frac{\mathcal{D}_{\lambda}(h_{i},d_{i})}{1 - \mathcal{D}_{\lambda}(h_{i},d_{i})} \right] \right)$$

Vétil, Rebeca, et al. "Non-redundant combination of hand-crafted and deep learning radiomics: Application to the early detection of pancreatic cancer." MICCAI Workshop on Cancer Prevention through Early Detection, 2023

À partir du code de :

Étapes—

Louiset, Robin, et al. "SepVAE: a contrastive VAE to separate pathological patterns from healthy ones." ICML 3rd Workshop on Interpretable Machine Learning in Healthcare (IMLH), 2023

- Compréhension et démarrage du code
- Par Recherche des base de donnés
- Adaptations du code (fonction de côut et structure)
- 4 Validation de l'apprentissage

Structure du espace latent (PCA, LDA)

Classification (Régréssion Logistique, SVM, Random Forest)

Reconstruction

Visualisation de la fonction de côut

Fonction de Côut du code original

$$\mathcal{LVAE} = -\mathbb{E}_{c,s \sim q_{\phi_c},q_{\phi_s}(c,s|x,y)} \left[\log p_{\theta}(x|c,s,y) \right] + \text{KL} \left(q_{\phi_c}(c|x) || p_{\theta}(c) \right)$$

Reconstruction

Commum Prior

+ KL
$$(q(c,s)||q(c)q(s))$$
- $\mathbb{E}_{s\sim q_{\phi_s}(s|x,y)}$ [log $p_{\theta}(y|s)$] + KL $(q_{\phi_s}(s|x,y)||p_{\theta}(s|y))$

Mutual Information

Classification (salient)

Salient Prior

Fonction de Côut

- $x \in \mathbb{R}^V$: Image
- $y \in \{0,1\}$: Labels binaire
- $x^* = x \times y$: Image masquée
- $h \in \mathbb{R}^{N_h}$: Ensemble des HCR
- $d \in \mathbb{R}^{N_d}$: Ensemble des DLR
- $p_{\theta}(x^*|y,h,d)$: Modèle génératif supposé pour reconstruire x^*
- $q_{\phi}(d|x^*)$: Approximation de la distribution a posteriori de d

$$\mathcal{LVAE} = -\mathbb{E}_{q_{\phi}(h,c|x^*)} \left[\log p_{\theta}(x^*|y,h,d) \right] + \text{KL} \left[q_{\phi}(d|x^*) || p(d) \right]$$

Reconstruction

DLR Prior

+
$$\kappa \text{KL}\left[q(h,d)||q(h)q(d)\right]$$
 + $\mathbb{E}_{q_{\theta}(d,h|x^*)}\left[\log p_{\theta}(y|h,d)\right]$

Discriminateur ← Mutual Information

Classification

Données

Space latent Influence de la dimension

HCR seule				HCR + DLR	
Н8	H32	D16	D32	HD24	HD64
0	0	0			
DIRE EXPERIENCE FAIT					AUC (%)

Space latent Choix des hyperparamètres

```
# hyper-parameter
hyperparams = {
    "learning_rate" : 8*1e-4,
    "factor_learning_rate" :1e-4,
    "alpha": 1 , # Paramètres de régularisation L2
    "beta c": 1e-2, # Poids de la divergence de KL entre la distribution latente des DLR et d'u
    "kappa": 50, # Poids de l'erreur mutuelle information provenant du factor classifier
    "gamma": 1, # Poids de l'erreur de classification dans l'entraînement du C-VAE
    "fader param": 1e-2,
    "reconstruction param" : 1,
    "dlr_size": 18,
    "hcr size": 10,
    "epochs":10,
```

Space latent Analyse des hyperparamètres

Poids du vecteur de la régression linéaire incoming

Ces slides vont êtres retravaillées

Space latent Analyse de la Structure

PCA Données Originales 2D

Space latent

Fonction de côut

Qualité de l'entrainement

Références

[1] Thiery, Oriane, et al. "Graph-based multimodal multi-lesion DLBCL treatment response prediction from PET images." Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, 2023

[2] Vétil, Rebeca, et al. "Non-redundant combination of hand-crafted and deep learning radiomics: Application to the early detection of pancreatic cancer." MICCAI Workshop on Cancer Prevention through Early Detection, 2023

[3] Louiset, Robin, et al. "SepVAE: a contrastive VAE to separate pathological patterns from healthy ones." ICML 3rd Workshop on Interpretable Machine Learning in Healthcare (IMLH), 2023

Merci pour votre écoute

Éleves:

Ilyes LAMSSALAK : <u>Ilyes.Lamssalak@eleves.ec-nantes.fr</u>

Maria Clara VALLE : <u>Maria-Clara.Valle@eleves.ec-nantes.fr</u>

2025