Cloud Networking Network Virtualization Case Study: VL2

P. Brighten Godfrey and Ankit Singla Department of Computer Science

Key Needs

Agility

Location independent addressing

Performance uniformity

Security

Network semantics

Case Study

VL2: A Scalable and Flexible Data Center Network

Albert Greenberg Srikanth Kandula David A. Maltz James R. Hamilton Changhoon Kim Parveen Patel

Microsoft Research

Navendu Jain Parantap Lahiri Sudipta Sengupta

[ACM SIGCOMM 2009]

Influenced architecture of Microsoft Azure

VL2 > Azure Clos Fabrics with 40G NICs Scale-out, active-active Data Center Spine T2-1-1 T2-1-2 ... T2-1-8 Outcome of >10 years of history, with major revisions every six months Microsoft

[From Albert Greenberg keynote at SIGCOMM 2015: http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/keynote.pdf]

Increasing internal traffic is a bottleneck

• Traffic volume between servers is 4x external traffic

Unpredictable, rapidly-changing traffic matrices (TMs)

Increasing internal traffic is a bottleneck

• Traffic volume between servers is 4x external traffic

Unpredictable, rapidly-changing traffic matrices (TMs)

[Greenberg et al.]

Increasing internal traffic is a bottleneck

• Traffic volume between servers is 4x external traffic

Unpredictable, rapidly-changing traffic matrices (TMs)

Design result: Nonblocking fabric

High throughput for any TM that respects server NIC rates

Failure characteristics

- Analyzed 300K alarm tickets, 36M error events
- 0.4% of failures were resolved in over one day
- 0.3% of failures eliminated all redundancy in a device group (e.g. both uplinks)

Design result: Clos topology

"Scale out" instead of "scale up"

VL2 physical topology

Traditional VL2

Routing in VL2

Unpredictable traffic

Difficult to adapt

Design result: "Valiant Load Balancing"

- Route traffic independent of current traffic matrix
- Spreads arbitrary traffic pattern so it's uniform among top layer switches

Routing Implementation

Routing Implementation

Routing Implementation

Similar effect to ECMP to each rack

Smaller forwarding tables at most switches

Virtualization

"All problems in computer science can be solved by another level of indirection."

David Wheeler

App / Tenant layer

- Application Addresses (AAs): Location independent
- Illusion of a single big Layer 2 switch connecting the app

Virtualization layer

- Directory server: Maintain AA to LA mapping
- · Server agent: Query server, wrap AAs in outer LA header

Physical network layer

- Locator Addresses (LAs): Tied to topology, used to route
- Layer 3 routing via OSPF

Intermediate switch decapsulates

Did we achieve agility?

Location independent addressing

AAs are location independent

L2 network semantics

Agent intercepts and handles L2 broadcast, multicast

 Both of the above require "layer 2.5" shim agent running on host; but, concept transfers to hypervisor-based virtual switch

Did we achieve agility?

Performance uniformity

- Clos network is nonblocking (non-oversubscribed)
- Uniform capacity everywhere
- ECMP provides good (though not perfect) load balancing
- But, performance isolation among tenants depends on TCP backing off to rate destination can receive
- Leaves open the possibility of fast load balancing

Security

- Directory system can allow/deny connections by choosing whether to resolve an AA to a LA
- But, segmentation not explicitly enforced at hosts

Where's the SDN?

Directory servers: Logically centralized control

- Orchestrate application locations
- Control communication policy

Host agents: dynamic "programming" of data path