AD A046587

DRSAR/SA/N-68

SYSTEMS ANALYSIS DIRECTORATE ACTIVITIES SUMMARY JUNE 1977

TECHNICAL

JULY 1977

Approved for public release; distribution unlimited.

US ARMY ARMAMENT MATERIEL READINESS COMMAND

Systems Analysis Directorate
ROCK ISLAND, ILLINOIS 61201

DISPOSITION

Destroy this report when no longer needed. Do not return it to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position.

WARNING

Information and data contained in this document are based on input available at the time of preparation. Because the results may be subject to change, this document should not be construed to represent the official position of the US Army Development & Readiness Command unless so stated.

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM		
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
DRSAR/SA/N-68			
4. TITLE (and Subtitle)		S. TYPE OF REPORT & PERIOD COVERED	
CHOTTE ANALYSIS DEPRESONATE		Note - Final	
SYSTEMS ANALYSIS DIRECTORATE ACTIVITIES SUMMARY - JUNE 1977		6. PERFORMING ORG. REPORT NUMBER	
MOTIVITIES SOMETHING SOME 2777			
7. AUTHOR(s)		B. CONTRACT OR GRANT NUMBER(s)	
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
US Army Armament Materiel Readine			
Systems Analysis Directorate (DRS.	AR-SA)		
Rock Island, IL 61201		12. REPORT DATE	
11. CONTROLLING OFFICE NAME AND ADDRESS US Army Armament Materiel Readine	ee Command	July 1977	
Systems Analysis Directorate (DRS.		13. NUMBER OF PAGES	
Rock Island, IL 61201		135	
14. MONITORING AGENCY NAME & ADDRESS(If differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)	
		UNCLASSIFIED	
	•	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
		SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report)			
Approved for public release; dist	ribution unlimit	o.d.	
Approved for public release, dist		eu •	
17. DISTRIBUTION STATEMENT (of the ebstract antered in Block 20, if different from Report)			
į			
18. SUPPLEMENTARY NOTES Add to one or d	.1	esses to/from the distribution	
18. SUPPLEMENTARY NOTES Additions or deletions of addresses to/from the distribution list are invited and should be forwarded to the address below.			
Inquiries pertinent to specific i	tems of interest	may be forwarded to Commander,	
ATTN: DRSAR-SA, Rock Island, IL 61201 (AUTOVON 793-4483/4628).			
19. KEY WORDS (Continua on reversa sida if necassary a			
Billet Crane Simulation		=	
COPPERHEAD	M188E1 Propel	ling Charge	
EXBAL	Wear-Out		
ZOT.14/ZOT.15 Guidance Simulation	System		
20. ABSTRACT (Continue on reverse side if necessary and This monthly publication contains	Memoranda for R	ecord (MFR's) and other tech-	
This monthly publication contains Memoranda for Record (MFR's) and other technical information that summarize the activities of the Systems Analysis direct			
torate, US Army Materiel Readines	s Command, Rock	Island, IL. (The most signi-	
ficant MFR's and other data will	be published as	notes or reports at a later	
date.)		5 D	
The subjects dealt with are Exte	rior Ballistics	of Boosted Kockets (EXBAL),	
SHAPE Technical Center, COPPERHEA		ermitation, trovisioning	
System, M551 Sheridan, M188E1 Prop	pelling Unarge.		

CONTENTS*

P.	Page
COPPERHEAD	
User's Guide for the Computer Program: Exterior Ballistics of Boosted Rockets (EXBAL)	5
Information for SHAPE Technical Center Relative to ZOT.14/ZOT.15	65
Computer Simulation Study of the Relationship of the COPPERHEAD Footprint to Ceiling and Gun-to-Target Range	73
MISCELLANEOUS	
Scranton Billet Crane Simulation	85
Analysis of the Provisioning System	93
M551 Sheridan Wear Out	101
Statistical Methods Pertinent to a Potential Ignition Problem in the M188El Propelling Charge	109
DISTRIBUTION LIST	132

*Memoranda for Record and other technical information are grouped according to subject when applicable, and in chronological order.

MEMORANDUM FOR RECORD

SUBJECT: User's Guide for the Computer Program: Exterior Ballistics of Boosted Rockets (EXBAL)

1. References:

- a. Technical Report, DRSAR/SA/R-12, April 76, title: Dynamics of Liquid-Filled Projectiles.
- b. MFR, DRSAR-SAM, 20 Apr 77, subject: An Improved Algorithm for the Glide Mode of Copperhead Used in a 3 DOF Flight Simulation.
- 2. A general purpose, point-mass (3 DOF) flight simulation program, EXBAL, has been used by DRSAR-SA and others for many years for a variety of applications. A recent special application is noted in Ref a. Each application has special requirements which often entail modifications to the basic program. Consequently, the program documentation must be updated frequently.
- 3. The purpose of this memorandum is to update EXBAL for the program user. Recent changes that were incorporated to treat the glide mode of Copperhead (Ref b) are discussed here. In Annex 1 (Incl 1) to this memo are contained the following: background, program structure, theory pertinent to recent changes, input and output data definition and format, flow charts for the major subprograms, and bibliographic citations. Annex 2 (Incl 2) contains the source program listing in Fortran 4 with an example.

2 Incl

GEORGE SCHLENKER Operations Research Analyst Methodology Division Systems Analysis Directorate

Surge Schlinger

ANNEX 1

DESCRIPTION OF THE COMPUTER PROGRAM: EXTERIOR BALLISTICS OF BOOSTED ROCKETS (EXBAL)

1. General

This program is a multi-purpose, point-mass flight simulation. It was conceived as a means of simulating trajectories for spin- and fin-stabilized projectiles and rockets in three-space. The principal intended application is to systems which can be assumed aerodynamically stable so that trailing or following behavior of fin-stabilized systems is exhibited and so that the equilibrium yaw of repose for spin-stabilized systems is quickly achieved. Important considerations in developing the program were:

- a. operating efficiency or speed of execution
- b. ease of use by unsophisticated users
- c. minimal input data requirements
- d. ability to generate multiple trajectories under program control for parametric analysis
- e. ability to treat a variety of system types via data changes and option switches
- f. modularity for ease of program modification.

The following sections will treat potential program applications, subprograms employed, execution options, input variables, output variables, and flow charts.

Documentation for most of the theory is supplied in BRL Memorandum Report No. 1617, September 1964 [2] and BRL Report No. 1314, March 1966 [4].

2. Applications

This program was originally developed to analyze conceptual systems such as fin-stabilized gun-boosted

Jud 1

rockets in which the principal interest was in achievable range. However, subsequent applications involved conventional, purely ballistic systems in which significant variables were range, maximum ordinate, deflection due to spin, and time of flight. Other applications explored differential effects for error analysis associated with projectile inertial properties, meteorological conditions, and launch conditions. Recently, program changes were made to treat projectiles having wings, fins, and controls for a glide mode of flight.

3. Subprograms

The program is organized modularly into subprograms each of which performs a separate, discrete function.

The MAIN program performs such executive functions as input, control of plotting and printing output, change in time step as required, stepping thru parameter loops, and termination of run.

Subprogram RUNGE contains a fourth-order Runge-Kutta integration algorithm. The order of the equations is specified as is the number of independent variables in an entry point RUNGEL. The initial values of higher derivatives are computed on the occasion of the first call. Subsequent subroutine calls are made to entry point RUNGE2 at which the system state is updated from t to t + dt.

Subprogram SOUND contains all atmospheric data. This program generates the local speed of sound, local gravitational acceleration (exclusive of centrifugal acceleration), air density and viscosity.

Subprogram FLIGHT contains the differential equations

of flight which are evaluated by sequential calls from RUNGE.

Subprogram CDRAG develops the aerodynamic coefficient of drag and the drag increment due to wings (or other aerodynamic surfaces) deployed during flight. For accurate simulation of a specific system, tables of Mach number and coefficient of drag are read by MAIN and transferred thru COMMON to CDRAG. If a tabular drag coefficient is not provided as input, the program defaults to an internally supplied function.

Subprogram ACOEFS develops all the aerodynamic coefficients exclusive of drag necessary for treating spin-stabilized projectiles. An internally-supplied coefficient is used whenever tabular data for that coefficient is not entered as input. The coefficient values used in default are functional fits to the 155 mm (BAP) projectile T387.

4. Options

To be able to treat a variety of applications conveniently a number of program options are provided -- both explicitly as option switches and implicitly as parameter values of input variables. For example, a binary switch IOPTY is required as input. If this parameter value is omitted or set to 0 (zero), the program bypasses the computation of normal-body forces required for accurate simulation of spin-stabilized projectiles. Additionally, the program does not expect or read the input parameters needed for computing projectile spin and yaw. A considerable savings in execution time is obtained by omitting the spin option. If the spin option is desired, IOPTY is set to 1 and the values of

certain (required) variables are provided to implement this option.

Another major option is the choice of purely ballistic flight or flight with midcourse glide. This option is exercised by setting the switch IGLIDE to 1. The default option with IGLIDE set to 0 (zero) is ballistic flight. If IGLIDE is set to 1, several suboptions are provided/required. Since midcourse glide or body altitude hold applies exclusively (at present) to the Copperhead projectile, default tables of aerodynamic coefficients characterizing this system in glide are provided in a BLOCK DATA subroutine. To override these entries a switch IDFUFO is provided. With IDFUFO set to 1, the program expects user-supplied aero data; otherwise internal data are used. Several alternative means are provided for simulating the start of glide.

In suboption 1 a desired glide angle (GLIDE) is provided and the program calculates the body angle of attack required to hold body attitude after reaching the desired glide angle. A value of the tolerance, & (EPSTHE) relative to the desired glide angle is also entered for this option. See Attachment 1 for details. Before altitude hold of the body is initiated an initial angle of attack is calculated such that the lift force equals the gravitational force normal to the velocity vector at that point in the flight. This option is useful when timer settings are unavailable.

In suboption 2 a time TENABL (in secs) is provided and GLIDE is set to -90 degrees. With this option the calculations for angle of attack to hold body attitude

start at TENABL. A value of TENABL equal to that at which the velocity angle θ = GLIDE produces a trajectory identical to that of suboption 1. Both suboptions 1 and 2 are exercised by omitting (or setting to zero) the value of MMCSW.

Suboption 3 requires the program user to provide time $T_{\rm O}$, called TMOMMC in the program. This is the time from launch at which the internal (MMC) timer sequence starts. This option is exercised by setting the switch MMCSW to unity and setting GLIDE to -90 degrees. Although internal degrees of freedom within the projectile are not simulated with a three-degree-of-freedom model, it is important to properly treat their kinematic effect. In contrast to other suboptions, suboption 3 faithfully simulates the effect of the events which occur after $T_{\rm O}$. These events are tabulated below:

SEQUENCE OF EVENTS IN COPPERHEAD TIMER

Event No.	Time (s)	Description
1.	То	timer sequence starts (main power at + 30v)
2.	T ₀ + 2	roll control starts
3.	T ₀ + 3	seeker gyro spinup initiated
4.	T ₀ + 4	attitude-hold enable switch is closed
5.	T _o + 5	start to extend wings, apply g bias, and free gyro

As far as projectile kinematics are concerned, the projectile remains ballistic until event number 4. When event number 4 occurs at T_0 + 4(s), a control surface deflection in pitch, δ_p , is calculated continuously and

applied throughout the interval between events 4 and 5. This algorithm bases the calculation of δ_p upon the equilibrium behavior of the projectile airframe and autopilot between events 4 and 5. This behavior is approximately one in which pitch deflection of the fins and the associated trim angle of attack are proportional to the average turning rate of the velocity vector, $\hat{\theta}$. Thus,

$$\delta_{p} = K \theta$$
 (K, a constant).

The turning rate θ is calculated continuously by

$$\theta = (xy - yx)/v^2.$$

An average value of θ is calculated by exponential smoothing. This, of course, assumes that this system exhibits nearly first-order dynamics between the events 4 and 5. Specifically,

$$\theta = \frac{\theta}{1 + \tau s},$$

with τ a time constant (0.2 sec) and s the Laplace differential operator. Using exponential smoothing, this equation is solved implicitly by the recursive procedure:

$$\theta_{i} = c_{0}\theta_{i-1} + c_{1}\theta_{i}$$

with

$$c_0 = e^{-h/\tau}$$

$$c_1 = 1 - c_0$$

where h is the integration time step, i.e.,

$$t_1 = t_{i-1} + h .$$

For accurate simulation of this portion of the system h < 0.1 sec.

Having calculated δ_p , the trim angle of attack (α_t) is obtained by linear interpolation in the following table.

TRIM ATTACK* VERSUS MACH NUMBER AND CONTROL DEFLECTION Entries are $\alpha_{\mathbf{t}}$ (deg)

Mach		δ (deg)	
Number	0	5	10	15
0.5	0	7.4	12.1	17.7
0.8	0	7.2	11.8	17.2
0.9	0	7.4	11.6	17.1
- 1.0	0	7.1	11.3	17.1

With all program options the normal body force is calculated from the normal force coefficient at trim. This coefficient is a function of Mach number, M, and trim attack, α_t , i.e.,

$$C_N = C_N(M, \alpha_t)$$
.

Values of $\mathbf{C}_{\mathbf{N}}$ are obtained by two-way linear interpolation in a table as explained in Attachment 1.

^{*} Reference: Wind Tunnel Data Analysis of 3/4 Scale Model for the XM712 Projectile, 27 Feb 76, pp. 72-75.

5. Input Variables

Program data input is supplied by punched cards whose content is described below in sequential order.

CARD	FORMAT	COLS	VARIABLE	CONTENT
1	SOUT	1 - 80	TITLE	description of aero- dynamic data, option- ally supplied
2	212	1 - 2	NTBL	number of entries in drag table
		3 - 4	NARTBL	number of entries in each sero coefficient table. A zero or blank exercises default.
2a	8F10.0	110	XMTBL(1)	first entry in table
-		11 - 20	XMTBL(2)	of Mach numbers asso- ciated with drag. Points entered low to high.
		71 - 80	XMTBL(8)	
2b	8F10.0	1 - 10	XMTBL(9)	continuation of Mach no. table
		•		
			XMTBL (NTBL) last entry
2c	8F10.0	1 - 10	CDTBL(1)	first entry in coef. of drag table
		71 - 80	CDTBL(8)	
2d	8F10.0	1 - 10	CDTBL(9)	continuation of drag table
	,	•		
			CDTBL (NTBL) last entry in drag table
2e	8F10.0	1 - 10	COTBL(1)	first entry in table of drag increment due to wings
2 f	8F10.0	1 - 10	COTBL(9)	continuation of table of drag increments
			COTBL (NTBL) last entry in drag increment table

CARD FORMAT COLS VARIABLE CONTENT

If NARTBL \neq 0, additional cards must be supplied for each of the aerodynamic coefficients listed below.

TMACH(I) table of Mach numbers used for the additional aero data. Each table must have NARTBL entries with blank cards supplied for missing data. All aerodynamic coefficient values in the following tables are the ballisticians' values based upon caliber squared. TKA(I) table of spin damping moment coefficient TKDYAW(I) table of yaw drag coefficient TKL(I) table of lift force (derivative) coefficient TKM(I) table of overturning moment (derivative) coefficient TCP(I) table of center of pressure (in calibers aft of nose) TKF(I) table of Magnus force coefficient TKT(I) table of Magnus moment coefficient TKH(I) table of damping moment coefficient TKS(I) table of pitching force coefficient

3F10.0

1

3I1,7X,

IGLIDE

switch for glide option

CARD	FORMAT	COLS	VARIABLE	CONTENT
		2	IDFUFO	switch to input aero data for glide
		3	MMCSW	switch for glide suboption 3
	T .	11 - 20	TMOMMC	timer setting, (sec), for suboption 3
	•"	21 - 30	GLIDE	desired glide angle, (deg). Entered as a negative value.
		31 - 40	EPSTHE	tolerance in the de- sired glide angle, (deg)

If IDFUFO = 1, additional cards must be supplied for each of the aerodynamic coefficients listed below.

3a	4F10.0		TFMACH(I)	table of Mach numbers used to interpolate for normal body force during the midcourse glide phase of flight
3b	4F10.4		ALTRMM(I)	table of values of maximum trim angle of attack, (deg)
3c	4F10.4		AALTRM(I)	argument values of angle of attack, (deg), in table of normal force coefficient versus Mach number and trim angle of attack
3d	4F10.4	v.	TCN(I,J)	table of normal force coefficient with I indexed over Mach numbers and J indexed over trim angles of attack, (deg)
4	20A4	1 - 80	TITLE	description of run set
5	8F10.0	1 - 10	D	caliber or refer- ence diameter, (mm)
		11 - 20	EMO	<pre>initial projectile mass, (lb)</pre>

CARD	FORMAT	COLS	VARIABLE	CONTENT
		21 - 30	EMB	burnt or final mass, (1b)
		31 - 40	FC	nominal thrust, (1b)
		41 - 50	SPI	<pre>specific impulse, (sec)</pre>
	-	51 - 60	DELT	rise time of thrust to nominal value, (sec)
		61 - 70	VO	<pre>initial velocity, (f/s)</pre>
		71 - 80	VWF	velocity of constant headwind, (f/s)
6	7F10.0, 3I3	1 - 10	НО	altitude ASL of launch point, (f)
		11 - 20	HTERM	altitude ASL of impact point, (f)
		21 - 30	FFCTR	form factor or ratio of ref. area used in est. aero. coefs. to ref. area used in input data
		31 - 40	QEO	initial value of quadrant elevation in parameter set, (deg)
		41 - 50	DQE	increment in QE, (deg)
		51 - 60	STEP	time step supplied for numerical integration, (sec)
		61 - 70	TM	time programmed for start of thrust, (sec)
		71 - 73	NQE	number of steps in QE desired
		74 - 76	NPRINT	number of time steps per printout
	5.0	77 – 80	IOPTY	switch for spin option

CARD	FORMAT	COLS	VARIABLE	CONTENT
7	4F10.0	1 - 10	CADENS	correction factor for air density relative to NASA std. atmos.
		11 - 20	VCW	velocity of cross- wind from right to left facing down- range, (f/s)
		21 - 30	TENABL	time at which mid- course glide is en- abled, (sec)
		31 - 40	THID	thrust-induced-drag factor applied dur- ing burning. Set to unity for stan- dard case.
If IOPTY i	s zero, follo	owing cards	are not red	quired.
7a	6F10.0 I2	1 - 10	SPINO	initial spin, (rad/sec)
		11 - 20	XCG	position of the center of gravity aft of nose, (cal)
		21 - 30	CLONG	<pre>length of projectile, (cal)</pre>
		31 - 40	AMOM	axial moment of iner- tia, (kg/m ²)
		41 - 50	BMOM	trasverse moment of inertia thru cg, (kg/m ²)
		51 - 60	WTAREA	ratio of wetted area to reference area
		61 - 62	ISEP	switch for separate computation of skin friction drag
7b .	6F10.0	1 - 10	VHXF	velocity of the launcher in the X-direction in inertial space, (f/s)
		11 - 20	VHYF	velocity of the launcher in the Y- (vertical) direction in inertial space, (f/s)
				(1/0)

CARD	FORMAT	COLS	VARIABLE	CONTENT
	′	21 - 30	RCW	scale coefficient in rangewise windshear
		31 - 40	XCW	scale coefficient in

6. Output Variables
The definition of program outputs and echoed inputs is listed below.

FORTRAN NAME	UNITS	DESCRIPTION
TENABL -	sec	time at which midcourse glide is enabled
THID	nondimensiona]	thrust induced drag factor (nominally unity)
CADENS	nondimensional	correction factor to air den- sity (nominally unity)
FFCTR	nondimensional	factor used to adjust drag coefficient for non-standard conditions, for example, when aero. coefs. were developed for a different reference area than that used for a run
70	f/s	initial (muzzle) velocity
EM O	lb _m	initial mass of projectile
EMB .	lb _m	final or burnt mass of pro- jectile
)	mm	caliber or reference diameter of projectile
Œ	deg	quadrant elevation or launch angle with respect to launcher
T	sec	integration time step
C	lb _f	nominal, constant level of thrust
PI	lbfsec/lbm	specific impulse of rocket
WF	f/s	velocity of headwind
0	m .	initial altitude above mean sea level (MSL)
TERM	m	terminal or target altitude above MSL
CW	f/s	velocity of crosswind (from right to left facing downrange)

FORTRAN NAME	UNITS	DESCRIPTION
RWC	nondimensional	scale factor for windshear function for headwinds
XWC .	nondimensional	scale factor for windshear function for crosswinds
Т	sec	time after launch
χ -	m	rangewise projectile coordinate
HAG	m	height above ground impact
Z	m	crosstrack or deflection co- ordinate
XD	m/s	X-component of projectile velocity (Earth coordinates)
YD	m/s	Y-component of projectile velocity
V	m/s	projectile speed in the X-Y-Z inertial frame
CMACH	nondimensional	Mach number of projectile
RESIS	lb _f	drag force
THETA	deg	attitude of velocity vector of projectile in vertical plane
YAWDEG	deg	angle of attack (generalized yaw) of the projectile Zero is returned for IOPTY = 0.
SPIN	rad/s	projectile spin Zero is returned for IOPTY = 0.
DMY		Dummy variable is provided for convenience of user.
SUPVEL	m/s	maximum speed of the projectile
RANGE	m and nautical mile	range of projectile relative to s surface of Earth
SUPALT	m.	maximum altitude relative to MSI
PITCH	deg	pitch-plane angle of attack
BODYA	deg	pitch-plane body attitude in Earth coordinates

FLOW CHART FOR EXTERIOR

BALLISTICS OF BOOSTED ROCKETS

- Read in constants and params.
- 2. Compute auxiliary constants and redimension input data.
- 3. Set constants for QE loop.
- 4. Start QE loop.
- 5. Print and label variables.
- 6. Set initial conditions for time loop, e.g., ISW = $0 \& t,x,y,\dot{x},\dot{y}$.
- 7. Call RUNGE 1.
- 8. Initialize NPLØT.
- 9. Call subroutine of flight equations, FLIGHT, for evaluation of initial conditions.
- 10. Initialize a counter LINE for counting lines on a page for proper labeling of output at top of each page.
- 11. Skip to 16 and print initial conditions.
- 12. Start time loop.
- 13. Start print loop.
- 14. Test if burning has begun; if so set TØ = TIME and bypass 14 in future.
- 15. Call RUNGE 2 for solving flight equations.
- 16. Count lines printed and check if time to skip to new page and label.
- 17. Print time and dependent variables.

- 18. Increment NPLØT and store position of projectile in XPLØT and YPLØT. Save projectile position.
- 19. Check if time to stop integrating. Stop when y goes thru YTERM. If y>YTERM, return to step 12.
- 20. If y<YTERM, use past values of dependent variables to interpolate linearly for their values at YTERM.
- 21. Print out final values of dependent variables.
- 22. Call the plotting subroutine PPLØT and ask for a plot of the trajectory, represented by the x,y pairs saved in XPLØT and YPLØT. Label the plot with the run description, the quadrant elevation, initial velocity and nominal thrust level.
- 23. Return to 1 for another parameter set, otherwise
- 24. Stop.

Flow Chart for Subroutine FLIGHT

- 1. Test if ISW = 1.
- 2. a. If ISW = 0, omit thrust terms.
 - b. If ISW = 1, include thrust terms.
- 3. a. If ISW = 0, use initial mass EM = EMO.
 - b. If ISW = 1, call subroutine BURN. CALL BURN(TIME, XMASS, THRUST).

This generates the projectile mass in pounds mass and thrust in pounds force. Conversion of units occurs in the differential equations.

4. CALL SOUND (Y, A, G, RHO).

This generates speed of sound (A), gravity (G), and air density (RHO).

- 5. Relative wind speed computed: VREL = SQRT((XDOT+VW)**2 + YDOT**2 + (ZDOT+VCW)**2)
- 6. CMACH = VREL/A
- 7. a. If IOPTY = 0, omit spin and normal force calculations.
 - b. If IOPTY = 1, call ACOEFS and calculate spin and normal force derivatives.
- 8. a. If ISEP = 0, set FRICT to zero.
 - b. If ISEP = 1, compute skin friction drag (FRICT).

The subroutine CDRAG(CMACH, DRAG, CAD) generates the uncorrected coefficient of drag, DRAG, and the drag increment due to wings, CAD.

- 9. COFDRG = FFCTR * DRAG + XKDYAW * YAWSQ + FRICT + CAD.
- 10. a. If IGLIDE = 1 and NABLE = 1, compute normal force terms in GLIDE mode.
 - b. Otherwise, omit GLIDE calculations.
- 11. Solve differential equations for second derivatives of state variables.
- 12. Return.

REFERENCES

- 1. Barnhart, William. The Standard Atmosphere Used by BRL for Trajectory Computations, BRL Memorandum Report No. 1766, Ballistic Research Laboratories, Aberdeen Proving Ground, Md., June 1966.
- 2. Lieske, Robert F. and Mc Coy, Robert L. <u>Accuracy</u>
 <u>Analysis for a 155MM Rocket Boosted Artillery System</u>,
 Memo. Report No. 1617, Ballistic Research Laboratories,
 September 1964.
- 3. Lieske, Robert F. and Mc Coy, Robert L. Equations of

 Motion of a Rigid Projectile, Report No. 1244, Ballistic

 Research Laboratories, March 1964.
- 4. Lieske, Robert F. and Reiter, Mary L. <u>Equations of</u>

 <u>Motion for a Modified Point Mass Trajectory</u>, Report No.

 1314, Ballistic Research Laboratories, March 1966.
- 5. Gorn, S. and Juncosa, M. L. On the Computational

 Procedures for Firing and Bombing Tables, Report No. 889,

 Ballistic Research Laboratories, January 1954.
- 6. Nielsen, J. N. <u>Missile Aerodynamics</u>, Mc Graw Hill, Inc., c. 1960.
- 7. Page, Leigh. <u>Introduction to Theoretical Physics</u>, D. Van Nostrand, Inc., c. 1935.
- 8. Rosser, J. B., Newton, R. R., and Gross, G. L. <u>Mathematical</u>

 Theory of Rocket Flight, Mc Graw Hill, Inc. c. 1947.

- 9. Sutton, George P. Rocket Propulsion Elements, John Wiley and Sons, Inc., c. 1956.
- 10. Design Engineering Handbook Series of AMC Pamphlets, Headquarters, U.S. Army Materiel Command,
 - (1) AMCP 706-242, Design for Control of Projectile Flight Characteristics, September 1966.
 - (2) ORDP 20-246, Section 3, Design for Control of Flight Characteristics, May 1957.
 - (3) AMCP 706-247, Section 4, Design for Projection, July 1964.
 - (4) AMCP 706-280, Design of Aerodynamically Stabilized Free Rockets, July 1968.

ATTACHMENT 1

Algorithm for Attitude-Hold Logic in Copperhead 3DOF Simulation

For simulations in which a preset-time option is not used, the program determines the time for commencement of attitude hold. Initially the glide angle θ will approach the desired glide angle θ_0 algebraically from above. (θ_0 is negative) When $\theta-\theta_0 \leq \epsilon$ (\$\epsilon\$ positive), an initial angle of attack, α_0 , is computed such that the associated lift component equals the component of gravity normal to the velocity vector, ie, such that

$$F_L = M_p g \cos \theta$$

with

$$F_{L} = F_{N} \cos \alpha_{o}$$

and

$$F_N = C_N(0)$$
 Aq

with projectile mass M_{p} and reference area A and dynamic pressure q.

Since α_0 is small--typically less than 10° --an iterative procedure is employed in which the first iteration assumes that $F_I = F_N$ so that

$$c_{N}^{(1)}(0) = \frac{M_{p} g \cos \theta}{Aq}$$

The value of $\alpha_0^{(1)}$ is obtained by interpolation in the tabular function $C_N(M, \alpha_t)$ with α_t the trim angle of attack.

Thus,

$$C_{N}^{(1)}(0) = C_{N}(M^{*}, \alpha_{o}^{(1)}),$$

where M^* is the local Mach number. The interpolation procedure is described below.

Then, form the second iterate for the normal force coefficient:

$$c_{N}^{(2)} = \frac{M_{p} g \cos \theta}{Aq \cos \alpha_{o}^{(1)}}$$

The value of α_0 obtained by requiring that $C_N = C_N^{(2)}$ is taken as the initial trim angle of attack at the start of attitude hold.

Interpolation Procedure

To calculate α_0 , interpolate on Mach number in the $C_N(M, \alpha_t)$ table obtaining $C_N(M^*, \alpha_t)$ at the local Mach number M^* for values of $\alpha_t = \{0, 5, 10, 15 \text{ (deg)}\}$. Then, α_0 is obtained by linearly interpolating with $C_N(0)$ as argument in this table.

The value of initial body attitude is given by

$$\theta_b(0) = \theta + \alpha_o$$
.

For subsequent calculations during the attitude-hold trajectory, the value of angle of attack, α , is calculated which preserves body attitude, ie, for which $\theta_b = \theta_b(0)$.

Thus,

$$\alpha = \theta_{h}(0) - \theta$$
.

If the above value of a satisfies

 $\alpha < \alpha_{\mbox{tm}}(M),$ the maximum trim angle at M the instantaneous value of Mach number, the lift force is computed as

$$F_L = C_N(\alpha, M)$$
 Aq cos α

with ${\rm C}_{N}$ obtained by two-way interpolation. Otherwise, α is limited to $\alpha_{\rm tm}({\rm M})$ and lift is calculated as

$$F_L = C_N(\alpha_{tm}, M)$$
 Aq cos α_{tm} .

Induced drag due to lift is calculated as

$$F_{DT} = -C_N(\alpha, M)$$
 Aq sin α .

TABLE 1. MAXIMUM TRIM ANGLE OF ATTACK VERSUS MACH NUMBER (AT δ = 12°)

Mach Number	α _t (max) (deg)	
0.5	14.3	
0.8	14.0	
0.9	13.8	
1.0	13.6	

TABLE 2. NORMAL FORCE COEFFICIENT VERSUS MACH NUMBER AT TRIM ATTACK $C_N^{(M, \alpha_t)}$

Mach	α _t (deg)				
Number	0	5	10	15	
0.5	0	1.1	2.1	3.1	
0.8	0	1.2	2.1	2.9	
0.9	0	1.3	2.2	3.0	
1.0	0	1.3	2.5	3.7	

ANNEX 2

SOURCE PROGRAM LISTING WITH EXAMPLE

FOR THE COMPUTER PROGRAM:

EXTERIOR BALLISTICS OF

BOOSTED ROCKETS (EXBAL)

```
C
                                                                            00000100
C
      EXTERIOR BALLISTICS OF BOOSTED ROCKETS
                                                                            00000200
C
      A THPEE-DEGREE-OF-FREEDOM MODEL APPLICABLE WHERE
                                                                            00000300
C
      TRAILING OR FOLLOWING BEHAVIOR CAN BE ASSUMED
                                                                            00000400
C
                                                                            00000500
                                                                            00000600
      REAL RS(401), TS(401), VS(401), CURT(11), CUVT(11)
                                                                            00000700
      DIMENSION TITLE (20) +U(12) +WP(48) +XMTHL(12) +CDTBL(12) +COTBL(12)
                                                                            00000800
     1, THACH(11), TKA(I1), TKDYAW(11), TKL(11), TKM(II), TKF(11),
                                                                            00000900
     2 TKT(11),TKH(11),TKS(11),TCP(11),TFMACH(4),ALTRMM(4),AALTRM(4),
                                                                            00001000
     3 TCN(4,4),WTCN(4)
                                                                            0000II00
      DIMENSION TCAD1(4), TCAD2(4), TDEL(4), TAT(4,4), WTAT(4)
                                                                            00001200
      INTEGER *2 CHAR(1)/ ** 1/
                                                                            00001300
      DATA RF/6.378E6/, OMEGA/0.72915E-4/
                                                                            00001400
      DATA DTORAD/57.29578/
                                                                            00001500
      DATA IMCONG/0.2/
                                                                            00001600
C
      ASSIGN CONSTANTS NEEDED BY DIFFERENTIAL EQUATIONS TO COMMON
                                                                            00001700
C
                                                                            00001800
      COMMON EMO, EMP, SPI, FC, BRATE, DELT, TO, TB, ISW, V, THETA, FFCTR, CALSQ,
                                                                            00001900
     1 VW. VCW. ALT. R. IEND. CMACH. REYNLD. RESIS, CAL. DLONG, IOPTY, YAW, AMOM,
                                                                            00002000
     2 BMOM.PSI.WTAREA, ISEP, MARLE, IGLIDE, WING, TENABL, AVTHD, CDEFL,
                                                                            00002100
     3 MMCSW, TMOMMC
                                                                            0002200
      COMMON /SRCOM/IM
                                                                            00002300
      COMMONICOFCOMIXCG. SMARG. EM, THID. PRNU , ALTRIM. CNATRM. GLIDE, EPSTHE
                                                                            00002400
     I .STAFAC.YAWNU.TKA.TKDYAW.TKL.TKM.TKF.TKT.TKH.TKS.TCF.TMACH.
                                                                            00002500
     2 NARTBL . TEMACH, ALTRMM . AALTRM . TCN . WT LIN . TCADI . TCADZ . TDEL . TAT . WTAT
                                                                            00002600
      COMMON/WINCOM/RWC, XWC
                                                                            00002700
      CUMMON/DRGCOM/
                          XMTSL, CDTBL, COTBL, NTBL
                                                                            00002800
      COMMON/SNDCOM/CADENS
                                                                            00002900
                                                                            00003000
C**** TABLES OF AERODYNAMIC COEFFICIENTS 15 PARAM. SET INPUT SET -1.
                                                                            00003100
C*** IF PARAMETERS NTPL AND NARTBL ARE BOTH ZERO, ENDOGENOUS
                                                                            00003200
C*** FUNCTIONAL FITS TO THE AERODYNAMIC TABLES (WITH THE T387 FORM)
                                                                            00003300
C*** WILL BE USED. SEE SUBROUTINE ACOEFS.
                                                                            00003400
C*** IF ONLY NARTEL IS ZERO, THE ZERO-LIFT DRAG TABLE IS REQUIRED
                                                                            00003500
C**** WITHOUT PEQUIRING TABLES FOR THE OTHER AERO COEFFICIENTS.
                                                                            00003600
C**** IF CERTAIN AERO COEFFICIENTS ARE DEFINED (KNOWN), THESE
                                                                            00003700
C*** CAN HE HEAD WITH THE OTHERS LEFT BLA K. THE PROGRAM WILL
                                                                            0000-300
C*** USF THE TABULATED CORFFICIENTS AND DEFAULT TO THE ENDOGENOUS
                                                                            00003900
C*** FUNCTIONS FOR THOSE ENTERED AS ZERO.
                                                                            00004000
      D=PROJECTILE CALIBER, MILLIMETERS
C
                                                         PARAMETER INPUT 1 00004100
      EMO=INITIAL PROJECTILE MASS. LBM
                                                                    INPUT 2 00004200
C
C
      EMB=RURNI MASS, LBM
                                                                    INPUT 3 00004300
C
      FC=NOMINAL THRUST LEVEL. LBF
                                                                    INPUT 4 00004400
C
      SPI=SPECIFIC IMPULSE OF ROCKET PROPELLANT, LBF/LBM/SEC
                                                                    INPUT 5 00004500
C
                                                       ENDOGENOUS VARIABLE00004600
      BRATE=PROPELLANT HURNING RATE, LBM/SEC
С
      DELT=THRUST RISE TIME, SEC
                                                                   INPUT 6 00004700
C
      TO=IGNITION TIME FOR RUCKET MOTOR
                                                       ENDOGENOUS VARIABLE00004800
C
      IN SUBROUTINE 'BURN' THE THRUST DECAY TIME IS ASSUMED
                                                                            00004900
C
      EQUAL TO THE THRUST RISE TIME. A TYPICAL VALUE = 0.1 SEC.
                                                                            00005000
C
      TB=EFFECTIVE NURNING INTERVAL, SEC
                                                       ENDOGENOUS VARIABLE0005100
      ISW = A SWITCH SIGNALING COMMENCEMENT OF BURNING
C
                                                             ENDO. VARIABLE00005200
С
      IEND=A SWITCH SIGNALING END OF BURNING
                                                             ENDO. VARIABLE0005300
```

00011500

```
1F (NTBL.EQ.0) GO TO 255
                                                                               00011600
       READ (5,250) (XMTBL(1), I=1, NTBL)
                                                                               00011700
       READ (5,250) (CDTBL(I), I=1, NTBL)
       READ (5,250) (COTBL(I), I=1, NTBL)
                                                                               00011800
                                                                               00011900
   250 FORMAT (8F10.0)
                                                                               00012000
       WRITE (6,252) TITLE
                                                                              00012100
   252 FORMAT (1H1, 20A4/1H0, 10H MACH NO, 10H COEF DRAG, 10H DRAG INCR)
                                                                              00012200
       DO 253 I=1.NTHL
                                                                              00012300
       WRITE (6,254) XMTBL(I), CDTSL(I), COTBL(1)
                                                                              00012400
   253 CONTINUE
                                                                              00012500
       1F (NARTBL.EQ.0)
                           GO TO 255
                                                                              00012600
       READ (5,250) (TMACH(I),I=1,NARTBL)
                                                                              00012700
       READ (5.250) (TKA(I), I=1, NARTBL)
                                                                              00012800
       READ (5.250) (TKOYAW(1), I=1, NARTBL)
                                                                              00012900
       READ (5,250) (TKL(I),1=1,NARTBL)
                                                                              00013000
       READ (5+250) (TKM(I)+I=1+NART8L)
                                                                              00013100
       READ (5,250) (TCP(I), I=1, NARTBL)
                                                                              00013200
       READ (5,250) (TKF(I), I=1, NARTHL)
                                                                              00013300
       READ (5+250) (TKT(I), I=1+NARTBL)
                                                                              00013400
       READ (5,250) (TKH(I), I=1, NARTHL)
                                                                              00013500
       READ (5.250) (TKS(1).1=1.NARTBL)
                                                                              00013600
  254 FURMAT(1H +3F10.4)
                                                                              00013700
       WRITE (6,272)
                                                                              00013800
  272 FORMAT (1HO + 10H
                       MACH NO.8X, 2HKA, 5X, 5HKDYAW,
                                                                              00013900
      1 8X+2HKL+8X+2HKM+10H
                              CP + CAL)
                                                                              00014000
       DO 257 I=1.MARTBL
                                                                              00014100
       WRITE (6,251) T™ACH(I),TKA(I),TKDYAW(I;,TKL(I),TKM(I),TCP(I)
                                                                              00014200
  251 FORMAT(1H +6F10.5)
                                                                              00014300
  257 CONTINUE
                                                                              00014400
  255 CONTINUE
                                                                              00014500
C
                                                                              00014600
C
                                                                              00014700
      GLIDE - FUFO - GLIDE - FUFO - GLIDE - FUFO - GLIDE - FUFO - GLIDE 00014800
C*** ATTITUDE HOLD LOGIC FOR NEARLY CONSTANT GLIDE ANGLE AP77
C**** THE SWITCH IGLIDE MUST BE SET TO 1 LOR AN ATTITUDE-HOLD TRAJECTORY00015000 C**** THE SWITCH IDEUFO MUST BE SET TO 1 IF NORMAL FORCE AERO IS TO 00015100
C*** BE PROVIDED FOR GLIDE . OTHERWISE, DEFAULT AERO DATA ARE USED.
                                                                              00015200
C*** THE PARAMETER MMCSW IS A SWITCH TO BE SET TO 1 WHEN AN ATTITUDE-HOODO15300
C**** OR GLIDE TRAJECTORY IS TO HE SIMULATED USING TIMER DATA SUPPLIED BOO015400
C*** THE MARTIN MARIETTA CORP. (MMC) . I: USING THIS OPTION
C*** THE TIME PARAMETER THOMMC HEPRESENTS THE TIME IN SECS FROM
                                                                              00015500
C*** LAUNCH AT WHICH THE 30 VOLT POWER BECOMES AVAILABLE.
                                                                              00015600
                                                                              00015700
C*** SURSEQUENT EVENTS IN SEQUENCE ARE TREATED IN SUBROUTINE FLIGHT.
                                                                              00015800
  101 CONTINUE
                                                                              00015900
      READ (5.264. END=30) IGLIDE. IDFUFU, MMCSW, TMOMMC, GLIDE, EPSTHE
                                                                              00016000
  264 FORMAT (311,7X,3F10.0)
                                                                              00016100
      WRITE (6,1264) IGLIDE, IDFUFO, MMCSW, TMOMMC, GLIDE, EPSTHE
 1264 FORMAT (1H0,4X,6HIGLIDE,4X,6HIDFUFO,5X,5HMMCSW ,10H TOMMC (S),
                                                                              00016200
                                                                              00016300
     1 10H GLIDE (D),11H EPSTHE (D)/3(9X,111),3F10.4)
                                                                              00016400
      IF (IDFUFO.NE.1) GO TO 1300
                                                                              00016500
      READ (5+1265) (TFMACH(1)+1=1+4)
                                                                              00016600
 1265 FORMAT (4F10.0)
                                                                             00016700
      READ (5,1265) (ALTRMM(1), I=1,4)
                                                                             00016800
```

	DE-D (E 12/E) (11/17/17) I-1 (1	
	READ (5,1265) (AALTRM(I), I=1,4)	00016900
	READ (5+1266) ((TCN(I+J)+J=1+4)+1=1+4)	00017000
	FORMAT (4F10.0)	00017100
1300	CONTINUE	00017200
	IF (IGLIDE.NE.1) GO TO 1	00017300
240	WRITE (6,268)	00017400
268	FORMAT (1H0.8X. MACH NO MAX TRIM (D))	00017500
	WRITE (6,269) (TFMACH(I), ALTRMM(I), I=1,4)	00017600
269	FORMAT (1H .2F15.5)	00017700
270	wkITE (6,270)	00017800
	FORMAT(1H0.10X, NORMAL FORCE COEFS AT TRIM ATTACK!	00017900
	1 1H0.8X,25HMACH NO JRIM ATTACK (D): 1H0,14X,1H5,13X,2H10,13X,	00018000
4	2 2H15) WRITE (6,271)	00018100
271	FORMAT(1H ,F15.5,4X,4F15.5)	00018200 00018300
	READ (5,2,END=30) TITLE,D,EMO,EM8,FC,SPI,DELT,VO,VWF,HO,HTERM,	00018300
	1 FFCTR-QEG. DQE, STEP. TM. NQE. NPRINT, 10PTY	00018500
	FORMAT(20A4/8F10.0/7F10.0.3I3)	00018600
	SWITCH NABLE IS SET FROM 0 TO 1 AT TIME TENABL	00018700
	READ (5.260) CADENS. VCW. TENABL. THID	00018800
	FORMA! (4F10.0)	00018900
200	WRITE (6.262) TENABL. THID. CADENS	00019000
262	FORMAT (1HO.14HENABLE TIME = .F10.4.5x,	00019100
	1 21HTHRUST DRAG FACTOR = .F10.4.5x, bhair DENS FACTOR = .F10.4)	00019200
	IF (INPTY-NE-1) GO TO 25	00019200
	REAU 26. SPINO. XCG. CLONG. AMOM. BMOM. WT. REA. ISEP	00019400
	READ 26. VHXF. VHYF. RWC. XWC	00019500
26	FORMAT(6F10.0.12)	00019600
	GO TO 27	00019700
25	SPINO=0.0	00019800
	XCG=0.	00019900
	CLONG=0.	00020000
	$\Delta M()M=0$.	00020100
	BMGM=0.	00020200
	WTAMEA=0.	00020300
	ISEP=0	00020400
	VHXF=0.0	00020500
	VHYF = 0 • 0	00020600
	RWC=0.0	00020700
	XwC=0.0	008020800
	SMARG=0.0	00020900
	STAFAC=0.0	00021000
	YAWW!=0.0	00021100
	PRNU=0.0	00021200
	PSI=0.0	00021300
^	DMY=0.0	00021400
C 27	START QUAD-ELEV LOOP	00021500
21	QE=QEO-DQE SDD-0-0	00021600
	SDD=0.0 CAL=0*1.E-3	00021700 0 0021800
	DO 3 IQE=1.NQE	00021900
	QE = QF + DQE	00022000
	THETA=0E/57.29578	00022100
	1100 170 170 2010	OUCLEIO

MAIN

	TO=1.E10	00022200
	EM=EMO	00022300
С	IEND IS A SWITCH SIGNALLING END OF BURNING	00022400
C	IEND=0	00022500
С	ASSIGN TIME INCREMENT FOR INTEGRATION.	00022600
C	ASSIGN TIPE INCHESCOVE TO VICE SEASON I	00022700
C		00022800
С	IWING IS A SWITCH INDICATING DEPLOYMENT OF WINGS	00022900
C	1WING=0	00023000
С	NABLE IS A SWITCH SIGNALING CONTROLS DEPLOYED FOR GUIDED FLIGHT.	00023100
C	NABLE=0	00023200
^	NADLE-U	00023300
C C	GLIDE - FUFO - GLIDE - FUFO - GLIDE	00023400
Cunu	* CALCULATE WEIGHT CONSTANTS USED IN SMOOTHING THE PITCH RATE	00023500
CAAA	* USED IN G-BIAS COMPUTATIONS	00023600
CABA		00023650
	SNLSTP=0.1	00023700
	WTOUT 1=EXP (-SMLSTP/TMCONG)	00023800
	WIIN1=1.0-WTOUT1	00023900
	TOGH=TMUMMC+3.9	00024000
	AVTHD=0.0	00024020
	TN3=IMOMMC+3.0	00024040
	NTMSTP=61	00024060
	KIM=0 PRINT AND LABEL RUN DESCRIPTION: CONSTANTS: AND	00024100
C	PRIME AND LABEL RUN DESCRIPTION CONSTANTS AND	00024200
С	INITIAL CONDITIONS PRINT 9.TITLE.FFCTR.VO.EMO.EMB.D.QE.DT.FC.SPI.VWF.HO.HTERM.VCW	00024300
		00024400
	1.RWC.XVC 9 FORMAT(1H120A4/1H010X5HFFCTR13X2HV013X2HM013X2HMB14X1HD/	00024500
		00024600
	1 1H 5F15.6/1H0. 2 6X9HQUAD ELEV8X7HTM STEP9X6HTHRUST5X10HSP IMPULSE9X6HV=WIND/	00024700
	3 1H 5F15.6/1H04x11HIMIT ALT, FT4x11H[ERM ALT, FT15H VEL XWIND, FT/S,	
	4 12X,3HR%C.12X,3HX%C,/1H 5F15.6)	00024900
		00025000
0.1	PRINT 91. VHXF. VHYF FORMAT(/8H VHXF = ,F12.2.20H FT/SEC VHYF = ,F12.2.7H FT/SEC.	
91	1/)	00025200
	PRINT 92.0ELT.TM	00025300
	22 FORMAT (1H 19HTHRUST RISE TIME = +F12+4+5H SEC+8H TM = +F12+4+	
7	1 5H SEC)	00025500
C 1	1 30 3507	00025600
C		00025700
C	YO=INITIAL ALTITUDE, M	00025800
Č	HO=ALTITUDE READ IN IN FT	00025900
Č	YTERMETERMINAL ALTITUDE • M	00026000
Č	HTERMETERMINAL ALTITUDE READ IN IN FT	00026100
C	IF (IOPTY.NE.1) GO TO 29	00026200
	PRINT 28.XCG.CLONG, AMUM, BMUM	00026300
	28 FORMAT(1H0.11HLOC OF CG =.E10.4.2X.3HCAL.14H PROJ LENGTH =.E10.4.	00026400
•	1 2X.3HCAL.15H AXIAL M OF I =. E11.5. 2X.7HKG M##2.	00026500
	2 15H TRANS M OF I = E11.5.2X,7HKG M**2)	00026600
	29 IF(SPI.EQ.0.0) GO TO 60	00026700
	BRATE=FC/SPI	00026800
	IF (BRATE.EQ.0.0) GO TO 60	00026900
	TR=(EMO-EMB)/BRATE	00027000

C

INITIALIZE COUNTER FOR DETERMINING NUMBER OF POINTS TO BE PLOTTED 00032300

00035926

00036000

00036100

00036200 00036300

44 CONTINUE

С

C

CALL RUNGES (T.DT)

00041100

00041200

00041300

00041400

00041500

00041600

MAIN

53 IPRINT=-NPRINT

4 LINE=LINE+1

DMY=THD#DTORAD

C

C

C

ADVANCE LINES COUNTER AND CHECK IF TIME TO EJECT PAGE AND LABEL.

MAIN

```
C**** FOR COPPERHEAD FLIGHTS THE DUMMY VARIABLE IS THE ANGULAR
                                                                              00041700
                                                                              00041800
C**** PITCH RATE IN DEGREES/SEC.
C*** DMY IS A DUMMY VARIABLE USED FOR OUTPUT OF CHOICE
                                                                              00041900
                                                                              00042000
      IF (LINE.LE.O) GO TO 6
                                                                              00042100
      LINE=-50
                                                                              00042200
      IF (IGLIDE.EQ.1) GO TO 116
                                                                              00042300
      WRITE (6,7) TITLE
                                                                              00042400
      GO TO 6
                                                                              00042500
  116 WRITE (6:117) TITLE
  117 FORMAT (1H120A4/1H0.9HTIME.SECS.7X3HX.M.5X.5HHAG.M.7X.3HZ.M.2X.
                                                                              00042600
     1 8HXDOT, M/S, 2X8HYDOT, M/S, 5X5HV, M/S1X8HMACH NO. 2X7HDRAG, LB,
                                                                              00042700
     2 9H THETA D , 9H PITCH , D , 9H DELTA , D , 9H BODYA , D , 9H DTHE , D/S)
                                                                              00042800
    7 FORMAT (1H120A4/1H0,9HTIME, SECS, 7X3HX, M5X5HHAG, M, 7X, 3HZ, M2X,
                                                                              00042900
     1 8HXDUT.M/S2X8HYDOT.M/S5X5HV.M/S1X8HMACH NO.2X7HDRAG.LB.
                                                                              00043000
                          YAW.D.9H SPIN.R/5.9H STA FAC .8H DUMMY V)
                                                                              00043100
     2 9H THETA D + 9H
                                                                              00043200
    6 CONTINUE
                                                                              00043300
      HAG=ALT-YTERM
       PRINT 8.T, X. HAG, Z. XD, YD. V. CMACH, RESIS, THETA, YAWDEG, SPIN, STAFAC, DMY00043400
                                                                              00043500
     8 FORMAT (IH 1F9.3.3F10.1,3F10.1,F9.2, 2+9.2,4F9.2)
                                                                              00043600
       IF (T.GT.300.) GO TO 30
       RULE FOR STOPPING SOLUTION - STOP WHEN PROJECTILE HITS GROUND.
                                                                              00043700
C
                                                                              00043800
C
                                                                              00043900
   52 IF(.MOT. (R.LE.RTERM.AND.THETA.LT.0.0)) GO TO 5
                                                                              00044000
       INTERPOLATE SOLUTION VARIABLES FOR KERTERM
C
                                                                              00044100
C
                                                                              00044200
       YE=YTERM
                                                                              00044300
       TE=T-DT# (R-RTERM) / (R-RP)
                                                                              00044400
       DEL=(T-TE)/DT
                                                                              00044500
       XE=X-DFL# (X-XP)
                                                                              00044600
       ZE=Z-DEL*(Z-ZP)
                                                                              00044700
       XDE=XD-DEL*(XD-XDP)
                                                                               00044800
       YDE=YD-DEL*(YD-YDP)
                                                                               00044900
       VE=V-DEL* (V-VP)
                                                                               00045000
       THE TAE=THETA-DEL* (THETA-THETAP)
                                                                               00045100
       CMACHE=CMACH+DEL*(CMACH+CMACHP)
                                                                               00045200
       RESISE=RESIS-DEL*(RESIS-RESISP)
                                                                               00045300
       YAWE = YAWD G-DEL * (YAWDEG-YAWP)
                                                                               00045400
       SPINF=SPIN-DEL*(SPIN-SPINP)
                                                                               00045500
       STAFAE=STAFAC-DEL*(STAFAC-STAFAP)
                                                                               00045600
       SMARGE=SMARG-DEL* (SMARG-SMARGP)
                                                                               00045700
       PSIE=PSI-DEL*(PSI-PSIP)
                                                                               00045800
       SPINGE = SRNG-DEL * (SRNG-SRNGP)
                                                                               00045900
       YF = YF - YTERM
                                                                               00046000
       XPLOT (NPLOT) = XE
 С
                                                                               00046100
 С
       YPLOT(1,NPLOT) = YE
                                                                               00046200
 C
                                                                               00046300
       PRINT OUT SOLUTION VARIABLES FOR Y=YTERM.
 C
                                                                               00046400
 C
                                                                               00046500
       PRINT 8, TE, XE, YE, ZE, XDE, YDE, VE, CMACHE, RESISE, THETAE, YAWE,
                                                                               00046600
      1 SPINE, STAFAE, SRNGE
                                                                               00046700
 C
                                                                               00046800
       SUPVEL=SUPVEL/0.3048
                                                                               00046900
       RANGE=SURT (XE##2+ZE##2)
```

G LI	EVEL	21	MAIN	DATE =	77143	17/22/29	
			I*(1.+(RANGE/RE)**2/6.)			00	047000
С			MUM VELOCITY, RANGE, AN	ND ALTITUDE.		0.0	047100
		PRINT 90,	SUPVEL, RANGE, SUPALT				047200
	90	FORMAT (1HO	.20HMAX PROJ VELOCITY =	- 15.4,4H	F/S,	0.0	047300
]	1 3X . IZHMAX	RANGE = +F15.4+11H NAU	IT MILES, 3X,	10HMAX ALT		047400
	ã	2 F15.4.8H	METERS)				047500
С							047600
С		PLOT THE T	RAJECTORY JUST COMPUTEL) 。		00	047700
С						00	047800
C		LABEL PLOT	WITH TITLE, QE AND VO.	1		0.0	047900
000000						0.00	048000
C						0.0	048100
		PRINT 10.T				0.00	048200
			015X2044/4H QE=F5.1,10H	DEG, VO=F	6.1.4H F/S)	0.0	048300
_	3	CONTINUE				0.0	048400
C		****	****	*****	***	****	048500
0		CALL POLFI	T(RS.TS.NPLOT.3.0.CURT.	G.G. TRUE.,	SDEV,	000	048600
0 0 0	1		TIME VS RANGE)			0.00	048700
C		CALL POLFI	T(RS.VS.NPLOT.3.0.CJVT,	H.HINV. TRU	E. , SDEV,	000	048800
C	•		VEL. VS. RANGE)	•		000	048900
C		RETURN FOR	ANOTHER CASE.			000	049000
C		0000000000	******************	****	***	****	049100
	3.0	60 Tu 101				000	049200
	30	CALL EXIT				000	049300
		E. ND				0.00	049400

SOUND

```
SUBROUTINE SOUND (A.G. RHO. VISCO)
                                                                             00049500
      COMMON EMO.EMB.SPI.FC.BRATE.DELT.TO.TB.ISW.V.THETA.FFCTR.CALSQ.
                                                                             00049600
     1 VW. VCW. ALT. R. IEND. CM-CH. REYNLD, RESIS. CAL. DLONG. IOPTY. YAW. AMOM.
                                                                             00049700
     2 BMOM . PSI . WTAREA . ISEP . NABLE . IGLIDE . IWING . TENABL . AVTHD . CDEFL .
                                                                             00049800
      3 MMCSW . TMOMMC
                                                                             00049900
      COMMON/SNUCOM/CADENS
                                                                             00050000
      EQUIVALENCE (Y.ALT)
                                                                             00050100
C
                                                                             00050200
C
      SUBROUTINE COMPUTES THE SPEED OF SOUND IN MISEC
                                                                             00050300
C
      VERSUS ALTITUDE IN METERS. ALSO COMPUTED IS THE ACCELERATION DUE TO GRAVITY IN M/SEC/SEC AND THE
                                                                             00050400
C
                                                                             00050500
C
      AIR GENSITY IN KG/M**3 AND THE ABSOLUTE VISCOSITY
                                                                             00050600
C
      OF THE AIR IN KG/M/SEC. NOTE THAT LLYNOLD'S NUMBER
                                                                             00050700
      PER METER IS GIVEN BY A*PHO*EMACH/VISCO.
C**** REFERENCE: BARNHART. W. THE STANDARD ATMOSPHERE USED BY BRL
                                                                             00050800
                                                                             00050900
C*** FOR TRAJECTORY COMPUTATIONS, MEMO. KEPORT NO. 1766, JUNE 1966.
                                                                             00051000
C**** DATA FOR THE FOLLOWING EQUATIONS WERE EXTRACTED FROM THE
                                                                             00051100
C#### U.S. STANDARD ATMOSPHERE, 1962.
                                                                             00051200
                                                                             00051300
      G=9.826*(6.378E6/(6.378E6+Y)) **2
                                                                             00051400
      D=6.356766E6+Y
                                                                             00051500
      IF (Y.LE.11019.07) 60 TO 1
                                                                             00051600
      IF (Y.LE.20063.12) GO TO 2
                                                                             00051700
      IF(Y.LE.32161.9) GO TO 3
                                                                             00051800
      IF (Y.LE. 47350.09) GO TO 4
                                                                             00051900
      IF (Y.LE.52428.88) GO TO 5
                                                                             00052000
      IF (Y.LE.f 1591.03) GO TO 6
                                                                             00052100
      IF (Y.LE.79994.14) GO TO 7
                                                                             00052200
      RHO=0.4636*EXP(-0.12207E-3*Y)
                                                                             00052300
С
      T=TEMPERATURE IN DEGREES KELVIN
                                                                             00052400
      T=180.65
                                                                             00052500
    8 A=20.053#SQRT(T)
                                                                             00052600
      RHO=RHO*CADENS
                                                                             00052700
      VISCO=0.00467#(T+110.)#(T/217.78)##1.5
                                                                             00052800
C
      THIS IS THE SUTHERLAND VISCOSITY LAW.
                                                                             00052900
      RETURN
                                                                             00053000
    1 RHO=1.224999+Y*(-.1176033E-3+Y*(.433719E-8+Y*(-.7461659E-13
                                                                             00053100
     1 +Y*(.5537603E-18-.9572727E-24*Y))))
                                                                             00053200
      T=(I.831702E9-4.103083E4*Y)/D
                                                                             00053300
      GO TO 8
                                                                             00053400
    2 RH()=1.990142+Y*(-.2940114E-3+Y*(.1993974E-7+Y*(-.7637263E-12
                                                                             00053500
     1 +Y*(.1615921E-I6-.1476764E-2I*Y))))
                                                                             00053600
      T = 216.65
                                                                             00053700
      GO TO 8
                                                                             00053800
   3 RHO=1.81561+Y*(-.235749E-3+Y*(.I30807E-7+Y*(-.381965IE-12
                                                                             00053900
     1 +Y*(.5798729E-17-.3626654E-22*Y)))
                                                                             00054000
      T=(I.250058E9+6.553416E3*Y)/D
                                                                             00054100
      GO TO 8
                                                                             00054200
   4 RHO=1.10944+Y*(-.1140029E-3+Y*(.4817401E-8+Y*(-.1039241E-12
                                                                             00054300
    1 +Y*(.1I38793E-I7-.5052135E-23*Y))))
                                                                             00054400
     T=(8.839083E9+1.7938E4#Y)/D
                                                                             00054500
      GO TO 8
                                                                             00054600
   5 RHO=.8974979E-1+Y*(-.417905E-5+Y*(.3529753E-I0+Y*(.1177144E-14
                                                                             00054700
```

1 +Y*(2567072E-19+.1449113E-24*Y))))	00054800
T=270.65	00054900
GO TO 8	00055000
6 RHO=.1029082E-1+Y*(.1081853E-5+Y*(8523619E-10+Y*(.2075003E-14	00055100
1 +Y*(2184824E-19+.860425E-25*Y))))	00055200
T=(2.381562E9-1.233888E4*Y)/D	00055300
GO TO 8	00055400
7 RHO=0.4636*EXP(-0.12207E-3*Y)	00055500
T=(3.157088E9-2.493041E4*Y)/D	00055600
GO TO 8	00055700
END	00055800

```
SUBROUTINE FLIGHT (TIME, U, KUTTA)
                                                                                00055900
       DIMENSION U(12)
                                                                                00056000
       DIMENSION TMACH(11), TKA(11), TKDYAW(11), TKL(11), TKM(11),
                                                                                00056100
      1 TKF (11) + TKT (11) + TKH (11) + TKS (11) + TCM + 11)
                                                                                00056200
       DIMENSION TEMACH(4) , ALTRMM(4) , AALTRM (4) , TCN (4,4) , WTCN (4)
                                                                                00056300
       DIMENSION TCAD1 (4) .TCAD2 (4) .TDEL (4) .TAT (4.4) .WTAT (4)
                                                                                00056400
       DATA GGA1N/0.50/, DT4AH/4.00/, DT5AH/5.00/
                                                                                00056500
       DATA DTORAD/57.29578/
                                                                                00056600
       DATA RE/6.378E6/, OMEGA/0.72915E-4/, Plofor/.7853981/, TWOG/19.58418/00056700
       RE=NOMINAL RADIUS OF THE EARTH AT THE EQUATOR IN METERS
                                                                                00056800
C
       OMEGA=ANGULAR VELOCITY OF THE EARTH IN RADIANS/SFC
                                                                                00056900
С
                                                                                00057000
C
       TABLE OF EQUIVALENCES
                                                                                00057100
С
       U(1) = X
                                                                                00057200
       U(2) = Y
OOOOOOO
                                                                                00057300
       U(3) = Z
                                                                                00057400
       U(4) = SPIN
                                                                                00057500
       U(5) = XDOT
                                                                                00057600
       U(6) = YDOT
                                                                                00057700
       U(7) = ZDOT
                                                                                00057800
       U(8) = SPIND
                                                                                00057900
С
       U(9) = XDBL
                                                                                00058000
С
       U(10) = YDBL
                                                                                00058100
C
      U(11) = ZDHL
                                                                                00058200
      U(12) = DUMMY
                                                                                00058300
      EXTERNAL CORAG
                                                                                00058400
      COMMON EMOTEMB. SPITEC. BRATE DELT. TO. TO. ISW. V. THETA. FFCTR. CALSQ.
                                                                                00058500
     1VWO.VXW.ALT.R.JEND.CMACH.REYNLD.RESIS.CAL.DLONG.JOPTY.YAW.AMOM.
                                                                                00058600
     2 BMOM.PSI.WTAREA.ISEP.NABLE.IGLIDE, IWING, TENABL, AVTHD.CDEFL.
                                                                                00058700
     3 MMCSW. TMOMMC
                                                                                00058800
      COMMON/COFCOM/XCG.SMARG.EM.THID.PRNU .ALTRIM.CNATRM.GLIDE.EPSTHE
                                                                                00058900
     1 ,STAFAC, YAWNU, TKA, TKDYAW, TKL, TKM, TKF, TKT, TKH, TKS, TCP, TMACH,
                                                                                00059000
     2 NARTBL . TEMACH . ALTRM . AALTRM . TCN . WTCH . TCAD1 . TCAD2 . TDEL . TAT . WTAT
                                                                                00059100
      COMMON/WINCOM/RWC.XWC
                                                                                00059200
      IF (15W.EQ.0) GO TO 10
                                                                                00059300
      IF (TIME.GT.TO+TB+DELT) GO TO 9
                                                                                00059400
      CALL BURN (TIME + XMASS + THRUST)
                                                                                00059500
      EM=XMASS
                                                                                00059600
       THRUST-INDUCED DRAG
C
                                                                                00059700
      FFC=FFCTR*TH1D
                                                                                00059800
      H=4.44823*THRUST
                                                                                00059900
      TERMX=H&U(5)
                                                                                00060000
      TERMY=H#U(6)
                                                                                00060100
   12 VSQ=U(5) 442+U(6) 442+U(7) 442
                                                                                00060200
      V=SURT(VSQ)
                                                                                00060300
      UP=RE+U(2)
                                                                                00060400
      XSQ=U(1)##2
                                                                                00060500
      YSQ=UP##2
                                                                                00060600
      ZSQ=U(3) ##2
                                                                               00060700
      R=SORT (XSQ+YSQ+ZSQ)
                                                                               00060800
C
                                                                               00060900
C
      ALT=R-RE
                                                                               00061000
      ALT=U(2) +XSQ/2./RE
                                                                               00061100
```

```
00061200
      DRCOSX=U(1)/R
                                                                            00061300
      DRCOSY=UP/R
                                                                            00061400
      DRCOSZ=U(3)/R
                                                                            00061500
      CALL SOUND (A+G+RHO+VISCO)
C
                                                                            00061600
      THIS GENERATES SPEED OF SOUND, GRAVITY, AIR DENSITY, AND VISCOSITY. 00061700
C
                                                                            00061800
      IF (V.EQ.0.0) GO TO 13
      TERMX=TERMX/V
                                                                            00061900
                                                                            00062000
      TERMY=TERMY/V
C****COMPUTE VELOCITY OF WIND AS A FUNCTION OF ALTITUDE.
                                                                            00062100
                                                                            00062200
C
      HARG=1.000#U(2)
Ç
      VW=VWO+RWC*VWC(HARG)
                                                                            00062300
                                                                            00062400
C
      VCW=VXW+XWC*VWC(HARG)
                                                                            00062500
      VW=VWO
      VCW=VXW
                                                                            00062600
                                ((U(5)+VW)+#2+U(6)+#2+(U(7)+VCW)+#2)
                                                                            00062700
      VRELSQ=
                                                                            00062800
      VREL=SQRT (VRELSQ)
                                                                            00062900
      CMACH=VRE.L/A
      COMPUTE REYNOLD'S NUMBER AND SKIN FRICTION COEFFICIENT (SFC).
C
                                                                            00063000
                                                                            00063100
      FRICI=0.0
                                                                            00063200
      IF (DLONG.E0.0.0) GO TO 48
      REYNLD=DLONG # A * RHO * CHACH/VISCO
                                                                            00063300
                                                                            00063400
      ALR=ALOGIO (REYNLD)
                                                                            00063500
      PWR=0.05#ALR
      SFC=0.455/ALR**2.58/(1.+0.2*CMACH**4) **PWR
                                                                            00063600
                                                                            00063700
      IF (ISEP.ED.0) GO TO 48
                                                                            00063800
      FRICT=WTAREA#SFC
                                                                            00063900
C
      DENOM=MASS OF PROJECTILE IN KG.
                                                                            00064000
   48 DENOM=0.4536#EM
      DYNPRS=0.5#RHO#VRELSQ
                                                                            00064100
      IF (IOPTY.EQ.1) GO TO 20
                                                                            00064200
                                                                            00064300
      YAW=0.0
                                                                             00064400
      YAWSQ=0.0
                                                                             00064500
      XKDYAW=0.0
                                                                             00064600
      XTERMS=0.0
                                                                             00064700
      YTERMS=0.0
                                                                             00064800
      ZTERMS=0.0
                                                                             00064900
      U(8) = 0.0
                                                                             00065000
   21 CALL CDRAG(CMACH+DRAG+CAD)
      COFDRG=FFC*DRAG+XKNYAW*YAWSQ+FRICT+CAD
                                                                             00065100
      THIS GENERATES THE CURRECTED COEFFICIENT OF DRAG
                                                                             00065200
C
                                                                             00065300
C
                                                                             00065400
      DIFFERENTIAL EQUATIONS
   SS CONTINUE
                                                                             00065500
      FORM=PIOFOR#CALSU#DYNPRS
                                                                             00065600
                                                                             00065700
      DRG=-COFDRG*FORM
                                                                             00065800
C
                                                                             00065900
      RESIS IS AIR RESISTANCE IN POUNDS.
С
                                                                             00066000
      RESIS=DRG
                              14.44823
                                                                             00066100
C*** GLIDE - FUFO - GLIDE - FUFO - GLIDE -
                                                                             00066200
                                                                             00066300
      IF (IGLIDE.NE.1) GO TO GO
C*** ATTITUDE HOLD LOGIC FOR COPPERHEAD AP77
                                                                             00066400
```

	THE - RETAINING A CONTROL OF D	****
	THE=ARSIN(U(6)/V) *DTORAD	00066500
	1F (MMCSW.NE.1) GO TO 1260	00066600
Canan	NOTE THAT OTHER OPTIONS FOR MECHANIZING ATTITUDE-HOLD	00066700
Coons	CALCULATIONS MAY BE EMPLOYED. THESE ARE FOUND AFTER LOC. 1260.	00066800
	T4AH=TMOMMC+OT4AH	00066900
Canan	14AH IS THE TIME AT WHICH THE ATTITUDE-HOLD SWITCH IS THROWN.	00067000
	1F(TIME.LT.T4AH) GO TO 60	00067100
	1F(NABLE.EQ.1) GO TO-1390	00067200
	T5AH=TMOMMC+DT5AH	00067300
Cnnnn	TSAH IS THE TIME AT WHICH THE GYRO IS FREED, WINGS	00067400
CAAAA	ARE EXTENDED. AND THE BODY IS COMMANUED TO FOLLOW THE GYRO.	00067500
	IF (T1ME.LT.T5AH) GO TO 1200	00067600
	NABLE=1	00067700
	I w 1 NG = 1	00067800
	TENABL=T5AH	00067900
	GO TO 1390	00068000
1200	CONTINUE	00068100
Canana	CALCULATION OF CONTROL DEFLECTION FOR G BIAS	00068200
	CDEFL=GGAIN#ABS (AVTHD) #DTORAD	00068300
Caaaaa	SET UP INTERPOLATION ARRAYS TO DETERMINE TRIM ATTACK FOR GIVEN	
	1F(CMACH.LT.TFMACH(1)) GO TO 1230	00068500
	DO 1210 I=2,4	00068600
	IF (CMACH.LT.TFMACH(I)) GO TO 1220	00068700
1210	CONTINUE	00068800
	LOCAL MACH NUMBER IS BEYOND THE TABLE	00068900
	TRIMMX=A', TRMM(4)	00069000
С	CAD1=TCAD1 (4)	00069100
С	CAD2=TCAD2(4)	00069200
	DO 1212 J=1,4	00069300
	WIAT(J) = TAT(4,J)	00069400
	WTCN(J) = TCN(4,J)	00069500
1212	CONTINUE	00069600
	GO TO 1244	00069700
1220	FRACT=(CMACH-TENACH(I-1))/(TEMACH(I)-TEMACH(I-1))	00069800
	DO 1214 J=1,4	00069900
	WTAT(J) = TAT(I-1,J) + FRACT+(TAT(I,J) - TAT(I-1,J))	00070000
	WTCN(J)=TCN(I-1,J)+FRACT+(TCN(I,J)-TCN(I-1,J))	00070100
1214	CONTINUE	00070200
	TRIPMX=ALTEMM(I-1) +FRACT*(ALTEMM(I) -ALTEMM(I-1))	00070300
C	CAD1 = TCAD1(1-1) + FRACT*(TCAD1(I) - TCAD1(I-1))	00070400
C	CADZ=TCADZ(I-1)+FRACT*(TCADZ(I)-TCADZ(I-1))	00070500
	GO TO 1244	00070600
1230	TRIMMX=ALTRMM(1)	00070700
С	CAD1=TCAD1(1)	00070800
C	CADZ=TCADZ(1)	00070900
	D0 1240 J=1,4	00071000
	WTAT(J) = TAT(1,J)	00071100
	$\forall TCN(J) = TCN(1 \cdot J)$	00071200
1240	CONTINUE	00071300
	CONTINUE	00071400
	BEGIN INTERPOLATION FOR TRIM ATTACK	00071500
	DO 1246 J=2.4	00071600
1	1F(CPEFL.LT.TDEL(J)) GO TO 1250	00071700
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	00011100

1246	CONTINUE	00071800
CARRA	CONTROL SURFACE DEFLECTION REQUIRED EXCEEDS CAPABILITY.	00071900
Casas	WRITE ERROR MESSAGE.	00072000
	MOTTE (6.1248)	00072100
1248	FORMAT (140, ERROR: CONTROL DEFL. CALCULATED FROM G BIAS EXCEEDS	00072200
	LIMIT!)	00072300
	CALL EXIT	00072400
	CONTINUE	00072500
1230	FRACTS=(CDEFL-TDEL(U-1))/(TDEL(U)-TDEL(U-1))	00072600
	ALTRIM=WTAT (J-1) +FRACTZ* (WTAT (J) -WTAT (J-1))	00072700
0888	CALCULATE THE NORMAL FORCE COEFFICIENT	00072800
C	DO 1252 J=2,4	00072900
	IF (ALTRIM.LT.AALTRM(J)) GO TO 1256	00073000
1252	CONTINUE	00073100
1606	TRIM ANGLE CALCULATED IS BEYOND THE TABLE. WRITE ERROR	00073200
	MESSAGE AND STOP.	00073300
CHHHH		00073400
125/	WRITE (6,1254) FORMAT(1H0, ERROR: TRIM ANGLE CALCULATED IS BEYOND THE TABLE!)	00073500
1234	CALL FXIT	00073600
1066		00073700
1520	CONTINUE FRACT3=(ALTRIM-AALTRM(J-1))/(AALTRM(J)-AALTRM(J-1))	00073800
	CM=WTCN(J-1)+FRACT3*(WTCN(J)-WTCN(J-1))	00073900
~ * * * * * *	UPDATE INITIAL BODY ATTITUDE	00074000
Cacac	ABODYO=THE+ALTRIM	00074100
C H H H H	GO CALCULATE AERO FORCES	00074200
Canaa	GU TO 1500	00074300
1260		00074400
1260	CONTINUE IF (TIME.LT.TENABL) GO TO 66	00074500
	IF (NABLE.NE.1) GO TO 1300	00074600
		00074700
	GO TO 1390	00074800
	CONTINUE	00074900
CARAA	TIME .GE. TENABL IF(NABLE.EQ.1) GO TO 1390	00075000
		00075100
	GPEPS=GLIDE+EPSTHE IF(THE.GT.GPEPS) GO TO 60	00075200
	CALCULATION FOR INITIAL COMDITIONS FOR ATTITUDE HOLD	00075300
CABAB	ATTITUDE HOLD STARTS WITH ENABLE SET TO 1. ENTER ONLY ONCE FOR	IC00075400
		00075500
	NABLE=1 FIRST ITERATE FOR CNO AND ALTRIM	00075600
Cann		00075700
	KOUNT1=1 CNO=DENOM*TWOG*U(5)/V/2.0/FORM	00075800
C 16 11 16 16	THIS IS THE REQUIRED NORMAL FORCE COEF. TO PRESERVE GLIDE ANGLE.	00075900
CARAA	COMPUTE MAX TRIM ANGLE	00076000
CHHHM	75 10 10 1 T TOURCH (1) \ 60 TO 1330	00076100
	UO 1310 I=2,4	00076200
	IF(CMACH.LT.TFMACH(I)) GO TO 1320	00076300
1210	CONTINUE	00076400
1210	LOCAL MACH NUMBER IS BEYOND THE TABLE	00076500
C * * * *	TRIMMX=ALTRMM(4)	00076600
С	CADI=TCADI(4)	00076700
C	CADZ=TCADZ(4)	00076800
	DO 1312 J=1.4	00076900
	WTCN(J) = TCN(4.J)	00077000
	#101107 10111707	

00082000

00082200

00082300

FRACT3=(ALTRIM-WTAT(J-1))/(WTAT(J)-WTAT(J-1))

CDEFL =TDEL (J-1) +FRACT3*(TDEL(J) -TDEL(J-1))

KOUNT1=KOUNT1+1

IF (KOUNT1.GT.2) GO TO 1375

FLIGHT

		00.07700
	FRACT2=(ALTRIM-AALTRM(J-1))/(AALTRM(J)-AALTRM(J-1))	00:87700
	CN=WTCN(J-1) +FRACT2*(WTCN(J)-WTCN(J-1))	00087800
	CONTINUE	00087900
Canaa	INTERPOLATE FOR CONTROL SURFACE DEFLECTION	00088000
	DO 1476 J=2,4	00088100
	IF (ALTRIM.LT.WTAT (J)) GO TO 1478	00088200
1476	CONTINUE	00088300
CAAAA	ALTRIM IS BEYOND THE TABLE. WRITE ERROR MESSAGE AND STOP.	00088400
C	WRITE (6:1377)	00088500
	CALL EXIT	00088600
1/70		00088700
1478	CONTINUE	00088800
	FRACT3=(ALTRIM-WIAT(J-1))/(WTAT(J)-WTAT(J-1))	00088900
	COEFL=TOEL (J-1) +FRACT3* (TOEL (J) -TOEL (J-1))	00089000
CANAA	END OF NORMAL FORCE COEFFICIENT CALCULATIONS	00089100
	PROGRAM REENTRY FOR ATTITUDE-HOLD CALCULATIONS	
	CONTINUE	00089200
Canan	CONVERT ANGLE TO RADIANS	00089300
	CDEFL=CDEFL/DTOPAD	00089400
	ALTRIM=ALTRIM/OTORAD	00089500
Cann	PLACE TRIM ANGLE IN YAW POSITION FOR PRINTOUT.	00089600
	YAW=ALTRIM	00089700
	FN=CN#FORM	00089800
	SINAL=SIN(ALTRIM)	00089900
	CUSAL=CUS(ALTRIM)	00090000
C####	CALCULATE AXIAL FORCE INCREMENT PRODUCED BY FIN DEFLECTION AT	TRIM00090100
С	DELCA=CAD1*(0.4*ALTRIM-CDEFL)**2-CAD2**LTRIM**3	00090200
	DELCA=CDEFL/6.0	00090300
	FDI2=DELCA#FORM	00090400
	FL=FN*COSAL-FDI2*SINAL	00090500
	FDI=-FN*SINAL-FDI2*COSAL	00090600
	SINTH=U(6)/V	00090700
	COSTH=U(5)/V	00090800
	TERMX=TERMX=FL *SINTH+FDI *COSTH	00090900
	TERMY=TERMY+FL *COSTH+FDI*SINTH	00091000
60	CONTINUE	00091100
•	IF (NABLE.EQ.1) IWING=1	00091200
C####	END OF ATTITUDE-HOLD CALCULATIONS	00091300
Č	EW W ATTION AND ONE OF THE PROPERTY OF THE PRO	00091400
Č		00091500
C	U(10) = (DRG*U(6) / VREL + TERMY) / DENOM-G*URCOSY+0.53166E-8*UP	00091600
	1 +2.*OMEGA*U(7)+YTERMS	00091700
	U(9) = (DRG*(U(5)+VW)/VREL +TERMX)/DENOM-G*DRCOSX+XTERMS	00091800
	U(11) = -2. *OMEGA*U(6) -G*DRCOSZ+ZTERMS+DRG*(U(7)+VCW)/VREL/DENOM	
	U(12)=0.0	00092000
С	AC IS THE ACCELERATION OF THE PROJECTILE ALONG THE TRAJECTORY.	
C	AC=(U(5)*U(9)+U(6)*U(10)+U(7)*U(11))/V	00092200
C	IF (10PTY.EQ.0) GO TO 14	00092300
	U(8)==RHO*CALSQ**2/AMOM*XKA*U(4)*V	00092400
1 /	IF (KUTTA.EQ.4) THETA=ARSIN(U(6)/V) \$57.29578	00092500
14	RETURN	00092600
י ו		00092700
13	U(9)=0.	00092800
	U(10) = -G	00092900
	THETA=90.	990,200

		XKLVSQ=XKL*VRLSQ	00098300
		RDSQ=RHO*CALSQ/DENOM	00098400
		XTERMS=RDSQ# (XKLVSQ#ALPHAX+DKFN# (ALPHAY#VZRL-ALPHAZ#U(6)))	00098500
		YTERMS=ROSQ*(XKLVSQ*ALPHAY+DKFN*(ALPMAZ*VXRL-ALPHAX*VZRL))	00098600
		ZTERMS=RDSQ*(XKLVSQ*ALPHAZ+DKFN*(ALPHAX*U(6)-ALPHAY*VXRL))	00098700
		XKDYAW=2.54647*XKDYAW	00098800
С		\$\$\$\$\$\$\$\$\$\$\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\	00098900
C		IF (YAW.LT.0.69) GO TO 21	00099000
		PRINT 55. RHO. XTERMS. YTERMS. ZTERMS	00099100
	==	FORMAT (1H .1P4E10.5)	00099200
С	ככ	\$	00099300
C		GO TO 21	00099400
	25	PRINT 26. STAFAC	00099500
		FORMAT (1HO, 40HUNSTABLE PROJECTILE STABILITY FACTOR = ,F10.4)	00099600
	2.0	CALL EXIT	00099700
		END	00099800

0000

	SUBROUTINE CDRAG(EMACH+DRAG+CAD)	06099900
	SORROOT THE CONTOCEMENT OF THE C	00100000
	PROGRAM COMPUTES THE COEFFICIENT OF DRAG VERSUS MACH NUMBER	00100100
	PROGRAM COMPONES THE COEFFICIENT OF WINGS	00100200
	AND THE COEFFICIENT INCREMENT DUE TO WINGS.	00100300
;	DIMENSION XMTBL (12) +CDTBL (12) +COTBL (12)	00100400
	DIMENSION AMERICIZATION DE CARACTERISTA DE CAR	00100500
	DATA CDOKD/2.546479/ COMMON EMO, EMB. SPI.FC. HRATE. DELT. TO. TB. ISW. V. THETA, FFCTR. CALSO,	00100600
	1 VW.VCW.ALT.R.IEND.CMACH.REYNLD.RESIS.CAL.DLONG.10PTY.YAW.AMOM.	00100700
	2 BMON.PSI.WTAREA.ISEP.MABLE.IGLIDE.IWING, TENABL, AVTHD, COEFL,	00100800
		00100900
	3 MMCSW.TMOMMC COMMON/DRGCOM/ XMTBL.CDTBL.COTBL.NTBL	00101000
		00101100
	CAD=0.0 1F(NTBL.NE.0) GO TO 5	00101200
	IF (MACH.LE.0.80) GO TO 1	00101300
	1F (EMACH-LE-10-60 FO TO 3	00101400
	IF (EMACH-LE-3.0) GO TO 4	00101500
	EM3=EMACH-3.0	00101600
	DRAG=0.09+EM34(+0.02+0.0024EM3)	00101700
	DRAG=CNOKD*DRAG	00101800
	RETURN	00101900
	1 DPAG=0.0589	00102000
	DRAG=CDOKD*DKAG	00102100
	RETURN	00102200
	3 C=10.*(ENACH=0.8)	00102300
	DRAG=0.07736*C**3*EXP(-C)+0.0589	00102400
	DRAG=CDOKD#DRAG	00102500
	RETURN	00102600
	4 DRAG=0.21547+EMACH*(-0.05134+0.00317*EMACH)	00102700
	DRAG=CDOKD*DHAG	00102800
	RETURN	00102900
	5 DO 6 J=1.NTBL	00103000
	IF (EMACH.LT.XMTHL(J)) GO TO B	00103100
	6 CONTINUE	00103200
	8 JL=J-1	00103300
	IF (.01 F-0.) 60 TO 12	00103400
	FRAC=(FMACH-XMT6L(JL))/(XMTBL(J)-XMT6L(JL))	00103500
	CD=CDTHL(JL)+(CDTHL(J)+CDTHL(JL))*FRAC	00103600
	$CAO = 0 \cdot 0$	00103700
	IF (1W1NG.NE.1) GO TO 10	00103800
	CAO=COTBL (JL) + (COTBL (J) +COTBL (JL)) *FRAC	00103900
	10 CONTINUE	
	DRAG=CD ·	00104100 00104200
	CAD=CAO	00104200
	RETURN	00104400
	12 CONTINUE	00104420
	DPAG=CDTHL(1)	00104450
	CAD = 0.	00104500
	IF (IWING.EQ.1) CAD = COTBL(1)	00104700
	RETURN	00104800
	END	

```
SUBROUTINE ACCEFS (EMACH, YAW, XKA, XKDYAW, XKL, XKM, XKF, XKT, XKH, XKS, XCP00104900
                                                                             00105000
     1)
     DIMENSION TMACH(11) ,TKA(11) ,TKDYAW(11) ,TKL(11) ,TKM(11) ,TKF(11) ,
                                                                             00105100
                                                                             00105200
     1 [KT(11),TKH(11),TKS(11),TCP(11)
                                                                             00105300
      OIMENSION TCAU1(4) .TCAD2(4) .TDEL(4) .TAT(4,4) .WTAT(4)
      COMMON/COFCOM/XCG.SMARG.EM.THID.PRNU .ALTRIM.CNATRM.GLIDE.EPSTHE
                                                                             00105400
     1 .SIAFAC.YAWAU.TKA.TKDYA.JIKL.TKM.TKF.TKT.TKH.TKS.TCP.TMACH.
                                                                             00105500
     2 NARIBL, TEMACH, ALTRMM, AALTRM, TCN, WTCN, TCAD1, TCAD2, TDEL, TAT, WTAT
                                                                             00105600
                                                                             00105700
      EMACH = MACH NUMBER
                                                                             00105800
      XKA = SPIN DAMPING MOMENT COEFFICIENT
С
                                                                             00105900
      XKDYAW = YAW DRAG COFFFICIENT
C
                                                                             00106000
      XKL = LIFT FORCE COEFFICIENT
C
                                                                             00106100
      XKM = OVERTURNING MOMENT COEFFICIENT
C
                                                                             00106200
      XKF = MAGNUS FORCE COEFFICIENT
С
                                                                             00106300
      XKT = MAGNUS MOMENT COEFFICIENT
C
                                                                             00106400
      XKH = DAMPING MOMENT COEFFICIENT
С
                                                                             00106500
      XKS = PITCHING FORCE COEFFICIENT
С
                                                                             00106600
      XCP = CENTER OF PRESSURE AFT OF NOSE IN CALIBERS
C
                                                                             00106700
С
      FOR DEPENDENCE OF ACCEFS UPON YAW SEE BRE MEMO. RPT. NO. 2023
                                                                             00106800
C
                                                                             00106900
      RELATIVE TO T387 TYPE PROJECTILE.
C
                                                                             00107000
      XKT=-0.14+0.0576# (EMACH-1.25) ##2
                                                                             00107100
      XKT=0.0
                                                                              00107200
      XKF = 0.157
                                                                              00107300
      SYAW=SIM(YAW) ++2
                                                                              00107400
      GO TO 50
                                                                              00107500
   51 CONTINUE
                                                                              00107600
      DO 60 J=1, NARTHL
                                                                              00107700
       IF (EMACH.LT.TMACH(J)) GO TO 70
                                                                              00107800
   60 CONTINUE
                                                                              00107900
   70 JL=J-1
                                                                              00108000
      FRAC=(EMACH-TMACH(JL))/(TMACH(J)-TMACH(JL))
                                                                              00108100
       IF (TKA(J) .EQ. 0.0) GO TO 52
                                                                              00108200
       XKA=TKA(JL)+(TKA(J)-TKA(JL))*FRAC
                                                                              00108300
   52 IF (TKDYAW (J) . EQ. n. 0) GO TO 53
                                                                              00108400
       XKDYAW=TKDYAW(JL)+(TKDYAW(J)-TKDYAW(JL))*FRAC
                                                                              00108500
   53 IF (THL (J) . EQ . 0 . 0) GO TO 54
                                                                              00108600
       XKL=TKL(JL)+(TKL(J)-TKL(JL))*FRAC
                                                                              00108700
   54 IF (TKM (J) . EQ . 0 . 0) GO TO 55
                                                                              00108800
       XKM=TKM(JL)+(TKM(J)-TKM(JL)) *FRAC
                                                                              00108900
   55 IF (TKF (J) . E0.0.0) GO TO 56
                                                                              00109000
       XKF=TKF(JL)+(TKF(J)-TKF(JL))*FRAC
                                                                              00109100
   56 IF(TKT(J).EQ.0.0) GO TO 57
                                                                              00109200
       XKT=TKT(JL)+(TKT(J)-TKT(JL))*FRAC
                                                                              00109300
    57 IF (TKH(J) .E().0.0) GO TO 58
                                                                              00109400
       XKH=TKH(JL)+(TKH(J)-TKH(JL))*FRAC
                                                                              00109500
    58 IF (TKS(J) . EQ. 0.0) GO TO 59
                                                                              00109600
       XKS=TKS(JL)+(TKS(J)-TKS(JL))*FRAC
                                                                              00109700
    59 IF (TKM(J) . EQ. 0.0) GO TO 62
                                                                              00109800
       IF (XKL.EQ.O.O) CALL EXIT
                                                                              00109900
       SMARG=-XKM/XKL
                                                                              00110000
       XCP=XCG+SMARG
                                                                              00110100
       RETURN
```

G	LEVEL	21	ACOEFS	DATE =	77143	17/22/29
	62	IF (TCP(J).EQ.0.0) GO	TO 63			0^110200
		XCP=TCP(JL)+(TCP(J)-				00110300
	63	SMARG=XCP-XCG				00110400
	00	XKM=-XKL#SMARG				00110500
		RETURN				00110600
	50	CONTINUE				00110700
		IF (EMACH.LE.0.8) GO	TO 10			00110800
		IF (EMACH.LE.0.9) 60				00110900
		IF (EMACH.LE.1.0) GO				00111000
		IF (EMACH.LE.1.1) GO	TO 35			00111100
		IF (EMACH.LE.1.30) GO	TO 40			00111200
		IF (EMACH.GT.1.5) GO				00111300
	С	VALID FOR EMACH GTR				00111400
		XKA=0.0038+0.0024EXP				00111500
	С	VALID FOR EMACH GTR	0 • 9			00111600
	6	EM9=EMACH=0.9				00111700
		HOLD=1EXP(-5.*EM9)				00111800
		XKL=0.5507+0.4*HOLD				00111900
		XKL=XKL+6.6*SYAW XCP=0.237+1.57*HOLD				00112000
	С	VALID FOR EMACH GTR	1 0			00112100
		XKS=-4.0+1.78* (EMACH				00112200 00112300
	c ,	VALID FOR EMACH GTR			•	00112400
	C	λκυγλ w=1.5+2.38*EXP(00112500
	С	VALID FOR EMACH GTR				00112600
	·	XKH=3.7				00112700
	С	VALID FOR ALL EMACH				00112800
		SMARG=XCP-XCG				00112900
		XKM=+XKL#SMARG				00113000
		IF (NARTHL.NE.O) GO T	0 51			00113100
		RETURN				00113200
	10	XK4=0.0058				00113300
		XKDYAW=1.5				00113400
	11	XKL=0.62-0.077#EMACH				00113500
		XKL=XKL+4.3#SYAW				00113600
		XCP=1.2-1.07*EMACH				00113700
		XKS=-4.0				00113800
	13	XKH=0.71+2.3*EMACH GO TO 9	•			00113900
	20	EM8=EMACH=0.8				00114000 00114100
	٤٥	XKA=0.0038+0.002#EXP	(=1.58EM9)			00114200
		XKDYAW=1.5+2.5*SIN(6				00114200
		GO TO 11	1205 200,			00114400
	30	EM8=EMACH=0.8				00114500
		XKA=0.0038+0.002*EXP	(-1.5*EM8)			00114600
		XKDYAW=1.5+2.5#SIN(6	.2H3#EM8)			00114700
		EM9=EMACH-0.9				00114800
		HOLD=1EXP(-5.*FM9)				00114900
		XKL=0.5507+0.4*HOLD				00115000
		XKL=XKL+5.5*SYAW				00115100
		XCP=0.237+1.57*HOLD	ı			00115200
	25	GO TO 12				00115300
	35	EM8=EMACH-0.8				00115400

G LE	VEL	21 .	ACOEFS	DATE = 77143	17/22/29
		XKA=0.0038+0.00	2#EXP(=1.5#EM8)		00115500
		XKDYAW=1.5+2.54	SIN (6.283#EHB)		00115600
		EM9=EMACH-0.9	artiovens engine		
		HOLD=1EXP(-5.	PFMQ)		00115700
		XKL=0 5507+0.44		•	00115800
		XKL=XKL+5.5#SYA			00115900
		XCP=0.237+1.57#			00116000
					00116100
		XKS=-5.78+1.784	MACH		00116200
		GO TO 13			00116300
	40	EM8=FMACH-0.8			00116400
		XKA=0.0038+0.00		•	00116500
			EXP(-2.72(EMACH	-1.1))	00116600
		LM9=EMACH-0.9			00116700
		HOLD=1EXP(-5.	₽EM9)		00116800
		XKL=0.5507+0.44	40 L D		00116900
		XKL=XKL+6.645YA	•		00117000
		XCP=0.237+1.57#	HOLD		00117100
		XKS=-5.78+1.78*	EMACH		00117200
		GO TO 13			00117200
			2 *EXP (-1.5 * (EMACH	-n.8))	00117300
		GO TO 6	C. T.	V	
		END			00117500
		CIAD			00117600

G	LEVEL	21	VWC	DATE =	77143	1	7/22/	29
		FUNCTION VACC	Y)					00121500
		IF (Y.GE.6700.) GOTO3					00121600
		VWC=5.1816+4.	972E-5#Y+1.3494E-7#	Y#Y				.00121700
		RETURN						00121800
	3	VWC=10.058+3.	9624 COS (. 42946E-3#	(Y-9448.8))		100	4	00121900
		IF (Y.GT.13700						00122000
		RETURN						00122100
	1	FORMAT (28H AL	TITUDE ABOVE 13700	METERS)			4	00122200
		END						00122300

	SUBROUTINE BURN (TIME, XMASS, THRUST)	00122400
С	SUBROUTINE COMPUTES PROJECTILE MASS IN POUNDS MASS AND	00122500
c	ROCKET THRUST IN POUNDS FORCE	00122600
č	TO=TIME AT WHICH BURNING COMMENCES .	00122700
Ċ	EMO=INITIAL MASS. LBM	00122800
Č	FMB=BURNT MASS. LBM	00122900
C C	TIME=TIME AFTER LAUNCH +SEC	00123000
C	SPI=SPECIFIC IMPULSE, LBF/LBM/SEC	00123100
C	FC=CONSTANT NOMINAL THRUST LEVEL , LBF	00123200
С	IBURN= INDICATOR OF COMMENCEMENT OF BURNING(IBURN=1)	00123300
C	DELT-RISE TIME OF THRUSTASSUMED EQUAL TO DECAY TIME , SEC	00123400
C	BRATF=FC/SPI=BURNING RATE, LBM/SEC	00123500
CCC	TB=(EMO-EMB)/BRATE=EFFECTIVE BURNING TIME, SEC	00123600
C		00123700
	COMMON EMO, EMB, SPI, FC, BRATE, DELT, TO, TB, ISW, V, THETA, FFCTR, CALSO,	00123800
	1 VW.VCW.ALT.R.IEND.CHACH.REYNLD.RESIS.CAL.DLONG.IOPTY.YAW.AMOM.	00123900
	2 BMOM, PSI, WTARFA, ISEP, NABLE, IGLIDE, LWING, TENABL, AVTHD, CDEFL,	00124000
	3 MMCSW,TMOMMC	00124100
	IF (TIME.LE.TO) GO TO 1	00124200
	IF(TIME.LE.TO+DELT) GO TO 2	00124300
•	T2=T0+T8	00124400
	IF (TIME .LE.T2) GO TO 3	00124500
	IF (TIME.LT.12+DELT) GO TO 4	00124600
	THRUST=0.	00124700
	XMASS=EMB	00124800
	RETURN	00124900
1	XMASS=EMO	00125000
	THRUST=0.	00125100
	RETURN	00125200
2	XMASS=EMO-BRATE*(TIME-TO)**2/(2.*DELT)	00125300
	THRUST=(TIME-TO)/DELT*FC	00125400
	RETURN	00125500
3	XMASS=EMO-BRATE*(TIME-TO-DELT/2.)	00125600
	THRUST=FC	00125700
	RETURN	00125800
4	XMASS=EMO-BRATE*((TB-DELT/2.)+(TIME-T2)*(1(TIME-T2)/DELT/2.))	00125900
	THRUST=FC+(1(TIME-T2)/DELT)	00126000
	RETURN	00126100
	END	00126200

G	LEVEL	21		IBURN	DAT	E = 77143	17/22/2	9
		FUNCTION	J TRUPN(TIN	E . ALT . DE . VI	ELO)	•		00126300
	_	1000110						00126400
	С	CHICTION	DOCUMES	INDICATION	OF COMMENCEM	FNT OF		00126500
	C			INDICATION	OF COMPLETE	LITT OF		00126600
	C		IBUFN=1.	DEGINE		•		00126700
	C	IBURN=0	UNTIL BURN	ON CHORENT	TIME OR ALT	(ALTITUDE)	OR	00126800
•	С	USER CHO	JUSES 10 FF	CLEVATION	OR VELO (VE	CACTIVOLE		00126900
	С			ELEVALION) OK ACTO (AC	LUCITI		00127000
			/SRCOM/TM	/ 1.W711/0 0	,			00127100
				./,VMIN/0.0	,			00127200
		IF (TIME	•GE •TM) GO	10 3				00127300
		IF (ALT.	GE.ALTMAX)	60 10 3				00127400
		IF (VELO	·LE.VMIN)	50 10 3				00127500
	С		T.45.0) GO	10 2		•		00127600
		IBURN=0						00127700
•		RETURN						00127800
			T.46.0) GO	TO 3				00127900
		IBURH=0						• •
	С	RETUPN					•	00128000
	3	IBURN=1			•			00128100
		RETURN						00128200
		END						00128300

COPPERHEAD AERO DATA USED BY RODMAN LABS (MAY 77)

MACH NO COEF DRAG DRAG INCR

0.3250 0.3286 0.3300 0.3650

0.0350 0.0374 0.0400 0.0420 0.0420 0.0850 0.1130

0.4420 0.4950 0.6120 0.6900

0.0 0.5000 0.7000 0.8000 0.9400 1.0000

0.0943

0.7280 0.7107

1.0400

							1.0000
				15	3.10000	3.00000	AIR DENS FACTOR =
	PSTHE (D) 0.0			10	2.10000 2.10000	2.20000	1.0000 AIR D
	MMCSW TOMMC (S) GLIDE (D) EPSTHE (D) 16.5000 -90.0000 0.0		ATTACK	ſ	1.10000	1.30000	THRUST DRAG FACTOR =
0.0770		TKIM (D) 14.30000 14.00000 13.80000	CE COEFS AT TRIM ATTACK	ATTACK (D): 0	0 • 0	0.0	
1.3000 0.7280 2.0000 0.6480	IGLIDE IDFUFO.	MACH NO MAX 0.50000 0.90000 1.00000	NORMAL FORCE	MACH NO TRIM A	0.50000	0.90000 1.00000	ENABLE TIME = 100.0000
		•	52				ENAB

SPECIAL COPPERHEAD GLIDE FLIGHT FOR ROD. LABS. 20 MAY MV=1538 F/S

D 155.000000	O-0	XWC 0 • 0		
MB 137.199997	SP_IMPULSE 0.0	RWC 0.0	0.0 FI/SEC	200.0000 SEC
MO 137.199997	THAUST 0.0	TERM ALT, FT VEL XWIND, FT/S	VHYF =	SEC TM #
VO 1538.00000	TM STEP 0.200000	TERM ALT, FT 4010,00000	0.0 FT/SEC	0.0
FFCTR 0.970000	QUAD ELEV 22.500000	INIT ALT, FT 4010,00000	VHXF = 0.0	THRUST RISE TIME

SPECIAL COPPERHEAD GLIDE FLIGHT FOR ROD. LABS. 20 MAY MV=1538 F/3

DTHE, D/S	00.0	-1.26	-1.42	-1.58	-1.72	-1.84	-1.93	-2.01	-2.06	-2.09	-2.09	-1.62	-1.34	-0.78	-0.46	-0.28	-0.15	-0.07	-0.04	-0.03	9320.83	1
BODYA,D C	0.0	20,13	17.45	14.44	11,14	7.58	3,80	-0.14	-4.21	-8,35	-11.90	-13,06	-14.05	-14.05	-14.05	-14.05	-14.05	-14.05	-14.05	-14.05	-14.05	
DELTA . D	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.60	96.0	1.66	2.08	2,33	2.50	5.64	2.71	2.74	2,75	7 METERS
PITCH,D	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.86	1,36	2.40	3.01	3,37	3,62	3.82	3.92	3.98	3.99	2324,9587
THETA,0	22,50	20.13	17,45	14.44	11,14	7.58	3.80	-0.14	-4.21	-8,35	-11.90	-13.92	-15.41	-16.45	-17.06	-17.42	-17.67	-17.87	-17.97	-18.03	-18.04	H
DRAG.LB	-352,55	-274.45	-214.97	-164.83	-112,29	-84.74	-71.03	-62,35	-56.38	-52.45	-50.87	-50.38	-55.64	-55,16	-54.70	-54.23	-53.67	-52.76	-51.90	-51.08	-50.82	S MAX AL
MACH NO.	1.40	1.25	1,13	1.03	96.0	0.91	0.87	0.84	0.82	09.0	0.79	0.79	0.78	0.78	0.17	0.77	0.76	0.75	0.74	0.73	0.73	NAUT MILES
V, M/S	468.8	417.1	375.9	343.4	319.6	302.6	289.6	279.5	271.7	266.1	262.7	261,3	260.0	258.6	257.1	255.6	253.8	250.8	247.9	242.5	244.3	5.0328
YDUT, M/S	179.4	143.6	112.7	9.58	61.7	34.9	19.2	10.7	-19.9	-38.7	-54.2	8-29-	-69.1	-73.2	4.61-	-76.5	77.0	-71.0	-76.5	-75.9	-15.7	n
XDOT.M/S	433.1	391.6	358.6	332.5	313,6	549.9	289.0	279.5	271.0	263,3	257.1	253.6	250.7	248.0	245. A	243.8	241.8	238.7	235.8	233.1	232.3	MAX RANGE
M . Z	0.0	0.0-	-0.5	-0.3	9.0-	8.0-	-1:1	-1,3	-1.5	-1.8	-1.9	-2.0	-2.1	-2.5	-2.2	-2.3	-2.3	-2.3	-2.3	-2.3	-2.2	995 F/S
HAG.M	0.0	322.0	577.7	775.8	952.9	1024.6	1083.9	1102.7	1082.4	1024.2	1.546	897.3	821,5	750.4	676.2	600.5	508.6	355,1	202.3	20.6	0.0	1537,9995
× ×	0.0	823.1	1572.0	2262.1	2907.0	3519,9	4108.5	4676.6	5226.9	5761.0	6203.3	6458.6	6710.7	6.6569	7206.7	7451.5	7742.9	8223,3	8697.8	9166.7	9320.8	.0CITY =
TIME.SECS	0.0	2.000	000.4	000.9	8.000	10.000	12.000	14.000	16.000	18.000	19.700	20.700	21.700	22.700	23.700	24.700	55.899	27.899	29.899	31,899	32,562	MAX PROJ VELOCITY

SPECIAL COPPERHEAD GLIDE FLIGHT FOR ROD. LABS. 20 MAY MV=1538 F/S V0=1538.0 F/S QE= 22.5 DEG.

2 2 JUN 1977

MEMORANDUM FOR RECORD

SUBJECT: Information for SHAPE Technical Center Relative to ZOT.14/

- 1. Reference is made to Technical Note, DRSAR/SA/N-58, Description of a Computer Program (ZOT.14) for Guidance Simulation of Cannon-Launched Guided Projectiles (AD #A036663), Jan 77.
- 2. DRSAR-SA is preparing, for transmittal to SHAPE Technical Center, a set of data including the source program for ZOT.15, the guidance simulation program currently used by DRSAR-SAM. This memorandum provides a guide to use of this program.
- 3. User information required for use of this program may be classified as (a) information relative to conversion of the source from IBM S-360 extended FORTRAN to ANS FORTRAN for UNIVAC, and (b) methodological background with input/output descriptions.
- 4. Relative to the first category (conversion), the following items need be pointed out:
- a. Precision need not be double in the UNIVAC version due to longer word length. IMPLICIT statements are to be deleted, and variables declared simply REAL or INTEGER.
- b. Certain I/O formats will require change--fields specified as D should be changed to E, literal (Hollerith) fields should be rewritten in H-format (the "quote" format has been used), and the lengths of some A-formatted fields may require change (A8 has been used).
- c. Numeric literals (constants) written D-format throughout the program should be changed to E- or F-format as required.
- d. Multiple-entry subroutines may not be allowed. If not, such a subroutine may be separated into several subroutines sharing common storage, or alternatively, may be converted to a single-entry subroutine with a parameter in the call list specifying which segment is to be performed (DODGER is an example).
- e. Subroutine RANDMM is the pseudo-random number generator used in this program. It is a slight re-code of RANDU of the IBM S-360 Scientific

DRSAR-SAM

SUBJECT: Information for SHAPE Technical Center Relative to ZOT.14/ ZOT.15

Subroutine Package (SSP). This code is applicable only to the 360 and must be replaced by code applicable to whatever machine is to be used.

5. Relative to the second category (methodology and I/O), the referenced technical note provides the basis for understanding the present program. The key difference between the two programs is in subroutine TRACK, which was totally changed, in order to provide a more faithful representation of the logical states of the seeker. Other changes are generally of the nature of an added option. These are discussed in the input guide, attached (Incl 1), which also describes the input data required to run the program.

1 Incl as

Ruhard D. Heido RICHARD D. HEIDER

Operations Research Analyst

Methodology Division

Systems Analysis Directorate

USER'S INPUT GUIDE TO ZOT.15

The following input list is provided as an amendment to the corresponding list found in Appendix A of the tech note referenced in the body of this memorandum.

CARD 1: Identical to CARD 1 of ZOT.14 CARD 2: Identical to CARD 2 of ZOT.14 CARD 3: Identical to CARD 3 of ZOT.14

CARD 4, required, format (8F10.0), contents by field:

(1) THETGY elevation angle of gyro (optical) axis [deg], ignored unless IGLIDE is equal to 2 (see CARD 9)

Remaining fields are not used.

CARD 5: First seven fields identical to corresponding fields of CARD 4 of ZOT.14. Field (8) contains

(8) CANT gyro (optical) axis cant or lookdown angle [deg], applicable to ballistic mode. (Do not use this variable to account for hangoff as suggested with ZOT.14, since this effect is now properly modeled.)

CARD 6: Identical to CARD 5 of ZOT.14 CARD 7: Identical to CARD 6 of ZOT.14

CARD 8, required, format (8F10.0), contents by field:

- (1) CSMA1 as in ZOT.14
- (2) CSMA2 as in ZOT.14
- (3) ROLRAT as in ZOT.14
- (4) CTERM control parameter--specify 0.0 to terminate the run upon any impact for which acquisition had failed to occur; specify 1.0 to continue the run to the next replication regardless.
- (5) TMAX control variable--specify 0.0 to exercise the internally-defined time limit (standard with ZOT.14); specify a positive clock time [sec] (greater than maximum expected impact time) to exercise option of user-specified time limit.
- (6) KLDOT as in ZOT.14 except that it is now applicable to both glide and ballistic modes.

Incl I

- range of gimbal angle (abs. val.) within which the (7) GSBAR gimbal saver output is zero [deq] (8) KGS gain of gimbal saver [dimensionless] CARD 9, required, format (7F10.0, 2I2, 2I3), contents by field: (1-7)identical to corresponding fields of CARD 8 of ZOT.14 (8) IGLIDE projectile mode control parameter--0 for ballistic, 1 for glide trim, 2 for attitude-hold with user-specified attitude. Note: 1 and 2 are both glide options--IGLIDE = 1 causes projectile and gyro attitudes to be internally defined such that the initial acceleration of the projectile lateral to the velocity is zero (standard with ZOT.14), while IGLIDE = 2 causes projectile and gyrc attitude to be as specified by THETGY on CARD 4 (9) ICAGE gyro cage control parameter for action of gyro after loss of acquisition--ICAGE = 0 for free gyro or 1 for caged gyro (10)NLAST output option--NLAST = 0 to ignore, or 1 to 100 to average the positions of the last NLAST spots and compute and report the miss distance with respect to this average position in addition to the miss distance with respect to the nominal aimpoint (pitch, yaw, and modulus)
- CARD 10, optional, format (1615), contents by field:

(11)

NEWAER

option parameter for vector VMACH--N1 = 0 for no change,
N1 = 1 thru 7 for a changed vector VMACH having NMACH =
N1 elements

ify 1 if any changes are to be made.

new aero option--specify 0 to use the aero tables currently stored (defined by BLOCK DATA, if this is the first run of the job, or by input from a previous run), or spec-

- (2) N2 similar parameter for VMCAO, NMCAO
- (3) N3 similar parameter for VDELTA, NDELTA
- (4) N4 similar parameter for VALPHA, NALPHA
- (5) Il option parameter for table TKA--Il = 0 for no change, l for change

- (6) I2 similar parameter for TCNA
- (7) I3 similar parameter for TCND
- (8) I4 similar parameter for TCAD
- (9) I5 similar parameter for TXSM
- (10) I6 similar parameter for TCAO

Remaining fields are not used.

CARDS 11-i, optional, format (8F10.0), contents: Each vector or table for which a change is required is punched in the order of mention in the above description of CARD 10; each vector or table begins a new card; for tables TKA and TCNA, mach number varies before varying alpha or delta, as appropriate. See the listing of subroutine AEROIN for further information on using this option.

CARD 12: Identical to CARD 9 of ZOT.14

CARD 13: Identical to CARD 10 of ZOT.14

CARD 14: Identical to CARD 11 or ZOT.14

CARD 15, required, format (8F10.0), contents by field:

- (1) BMDIVG as in ZOT.14
- (2) AGCLD same as DYRANG of ZOT.14
- (3-7) identical to corresponding fields of CARD 12 of ZOT.14
- (8) KC gyro electrical cage gain [sec⁻¹]

CARD 16, required, format (8F10.0), contents by field:

- (1) AGCSR max rate [db/pulse] at which detector automatic gain control (AGC) can shift (up or down)
- (2) WLE nominal width of loading edge of detector glimpse gate [microsec]. This is the time between opening of the gate and expected arrival of the pulse from the target.
- (3) WGATE(1) width of gate during correlation sequence [microsec]. Time from opening to closing of gate if no pulse is received.
- (4) WGATE(2) width of gate <u>after</u> correlation is established (during tracking).

- (5) WTRUNC time from reception of first pulse in gate to gate closure [microsec]. Supersedes closure time scheduled by WGATE
- (6) GATESR max rate [microsec/pulse interval] at which the leading edge (opening) of the glimpse gate can be shifted relative to nominal pulse period.
- (7) SLOPE slope of intrapulse dynamic threshold [db/microsec]
- (8) not used

CARD 17, required, format (8F10.0), contents by field:

- (1-5) identical to corresponding fields of CARD 13-1 of ZOT.14
- (6) XINCR if CRELOC = 0.0, XINCR is the x-wise increment as defined for ZOT.14; if CRELOC = 1.0, XINCR is the standard deviation of a circular-normal distribution of target locations [m;ft]
- (7) ZINCR if CRELOC = 0.0, ZINCR is as defined for ZOT.14; if CRELOC = 1.0, XINCR is a positive odd integer value used as the seed for random target relocation (number of digits should be less than the number of significant decimal places allowed by machine word size for a real variable of the precision used).
- (8) CRELOC option code as explained above.

CARD 18: Identical to CARD 13-2 of ZOT.14

CARD 19: Identical to CARD 14 of ZOT.14

CARDS 20: Identical to CARDS 15 of ZOT.14

CARD 21, optional, format (8F10.0)--used only when MODESM = 3--contents by field:

- (1) RDB distance [m] from designator to nearest point of background, which is modeled as a vertical plane of infinite extent
- (2) AZDB azimuth [deg] from designator to the same point
- (3) AZDES azimuthal direction [deg] of designator's beam
- (4) ELDES elevation [deg] of the same
- (5) REFL2 reflectivity of background

CARD 22: Identical to CARD 16 of ZOT.14

CARD 23, optional, format (9X,5F8.2)—used only if MODESM = 2 or 3, then NSPOTS cards required—contents by field:

- (1) YV(1) as in ZOT.14
- (2) YV(2) as in ZOT.14
- (3) YV(3) as in ZOT.14
- (4) CROSS same as BRITE of ZOT.14
- (5) PCTEBG percent of beam energy spilling over onto background.

This completes the data deck.

		4
		*

MEMORANDUM FOR RECORD

SUBJECT: Computer Simulation Study of the Relationship of the COPPERHEAD Footprint to Ceiling and Gun-to-Target Range

1. References:

- a. Conversation between Mr. George Schlenker, DRSAR-SAM, and COL Robert Nulk, DRCPM-CAWS-GP, 24 Mar 77, subject as above.
- b. Memorandum for Record, DRSAR-SAM, 31 Jul 76, subject: Computer Simulation Study of COPPERHEAD (CLGP) for Guidance Accuracy and Footprint.
- c. Technical Report, Rodman Lab, R-TR-77-007, Jan 77, title: A Comprehensive Digital Flight Simulation of the Cannon Launched Guided Projectile.

2. Introduction.

This memorandum documents a study performed by the undersigned, with the guidance of G. Schlenker, during Apr-Jun 77 at the request of COL Nulk (Ref la), to further explore the dependence of footprint size upon the ceiling and the gun-to-target range (GTR). The most recent previously-developed estimates of footprints for COPPERHEAD (Ref lb) included two levels of ceiling (3000 and 2000 feet) and three GTR's (6, 12, 18 kilometers). The intent of this study was to generate footprints for unlimited ceiling and for ceilings from 3000 feet to zero, by decrements of 500 feet, for the same set of three GTR's. At the same time, certain of the projectile's design parameters were to be updated, in order that the estimates might be as current as possible.

3. Parameter Changes.

Many of the seeker and autopilot parameters were altered since the previous study (Ref lb). Those which one might expect to affect the footprint include: K_B , K_C , K_A , K_{GS} and \overline{GS} .* In addition, flight tests performed in Mar 77 indicated a larger drag coefficient than previously estimated.

^{*}These parameters are:

 K_B gain of g-bias computation circuit K_{GS} gain of gimbal saver K_C gain of gyro electrical cage circuit K_{GS} threshold of gimbal saver K_Δ gain of attitude-hold circuit

DRSAR-SAM

SUBJECT: Computer Simulation Study of the Relationship of the COPPERHEAD Footprint to Ceiling and Gun-to-Target Range

4. Procedures.

a. Zoning Solutions

The EXBAL exterior ballistic program was used to generate unguided trajectories for the projectile using new aerodynamic drag estimates. From this set, appropriate trajectories for the three GTR's were selected (Table 1).

b. Footprint Definition

The ZOT.15 guidance simulation* was then used to generate the footprints shown in Figures 1-3 and listed in Table 2.

c. Experiments for Stretch Range Dependence

Further ZOT.15 experiments were performed to define the stretch range of COPPERHEAD, given the stated 12-km trajectory, as a function of ceiling and meteorological visibility. Results are displayed graphically in Figures 4 and 5.

Figure 4 shows the dependence upon visibility, and Figure 5 shows the dependence upon ceiling. For any given combination of ceiling and visibility, the stretch range is the lesser of the two stretch ranges indicated from these figures.

Analysis of Results.

Generally, the dependence of the footprint upon ceiling and upon GTR is similar to that seen previously (Ref lb). For low ceilings, however, the size of the footprint shrinks extremely rapidly, due to the very short time available for proportional-navigation (PN) guidance. Note that the footprint has, for all practical purposes, vanished at the 1000-foot level. In fact, before reaching the 500-foot level, the footprint vanishes totally, because the time remaining to impact is insufficient for the seeker to sequence to PN guidance or to arm the warhead. The fly-to-seeker guidance (FTS) is inadequate for purposes of hitting the target; an interval of several seconds of PN guidance is essential.

The footprints generated during these experiments agreed well with those of Ref lb except in the stretch, which is significantly reduced in

^{*}This program is the successor to ZOT.14, documented in Technical Note DRSAR/SA/N-58 (AD# AO 36663), January 1977, Description of a Computer Program (ZOT.14) for Guidance Simulation of Cannon-Launched Guided Projectiles. The supplementary documentation for the current ZOT.15 is contained in MFR, DRSAR-SAM, 22 Jun 77, subject: Information for SHAPE Technical Center Relative to ZOT.14/ZOT.15.

SUBJECT: Computer Simulation Study of the Relationship of the COPPERHEAD Footprint to Ceiling and Gun-to-Target Range

each case. Further experiments were performed using ZOT.15 to identify the parameter responsible for the reduction, with the result that the gimbalsaver circuit was isolated as the cause. ZOT.15 estimates of miss distance vs range with and without the gimbal-saver are displayed in Figure 6. The reason for the degraded performance is that the gimbal-saver effectively reduces the navigation gain whenever the projectile axis is steered more than $\overline{\text{GS}}$ away from the gyro axis.

6. Verification of Gimbal-Saver Effect.

It was desired to cross-check between simulation models on the validity of the effect of the gimbal-saver upon the stretch range as indicated by ZOT.15. Therefore, a series of runs of the Rodman six-degree-of-freedom model (Ref 1c) were made for DRSAR-SAM for a slightly different 12-km nominal GTR trajectory (Rodman aero being slightly different from that used in the preceding portion of this study). ZOT.15 matching runs were produced using exact-match inputs, with the results displayed in terms of miss distance vs range displayed in Figure 7. These results do verify the existence of the effect of the gimbal-saver, but there is a disagreement between the two simulation models as to the stretch point, which is presently unexplained. However, there is adequate agreement between these models as to the tuck point. Further analysis* of differences is required.

7. Conclusions and Recommendations.

- a. For ceilings much below 2000 feet, an adequate footprint is not achievable using the desired 20-degree glide; a shallower glide might provide the required footprint, but one must accept decreased lethality if that approach is taken. Trade-off studies along this line are recommended.
- b. The effect of the gimbal-saver requires further study, preferably using all available flight models. Eased upon the results of this study, I recommend a review of the choice of the parameter values of the gimbalsaver with a view to restoring the gimbal-saver to its original design or its possible elimination.

SIGNED

9 Incl 1-7. Figures 8. Table 1

9. Table 2

RICHARD HEIDER Operations Research Analyst Methodology Division Systems Analysis Division

^{*}Additional runs would be required of the Rodman model, but at present the turnaround would be excessive due to the demands imposed by the transferof-function process currently underway.

TABLE 1 SCENARIO FOR DRSAR-SAM APRIL 1977 FOOTPRINTS

SEA LEVEL	10 KM	7.84 MM/KM	100 mJ/PuLse	3 KM	FRONT VIEW (0°)	25°	6, 12, 18 KM	1061, 1918, 1918 FPS	26.0, 26.75, 44.0°	(BAL,), -20, -20	INCREASED OVER	
GROUND PLANE ALTITUDE	VISIBILITY RANGE	PRECIPITABLE WATER VAPOR CONCENTRATION 7	LASER POWER	DESIGNATION RANGE	DESIGNATION ASPECT	GUN-TARGET-DESIGNATOR ANGLE	GUN-TARGET RANGES	MUZZLE VELOCITY	QUADRANT ELEVATION	GLIDE ANGLE (NOMINAL)	PROJECTILE DESIGN - CURRENT (APR 77) EXCEPT DRAG INCREASED OVER	NULL IN

Incl 8

TABLE 2 FOOTPR∜NT AREAS (SQ KM)

	18	0	0,02	0.21	0,61	0,96	1 1	1,37	1 1	2,72
NOMINAL GTR (KM)	12	0	0.02	0.91	1,65	2,23	1	2,70	3,93	3,93
	9	0	00.00	0,18	2.21	2.92	2,92	2,92	2,92	2,92
CEILING	(FT)	200	1000	1500	2000	2500	2700+	3000	4544+	5800+

Incl 9

MEMORANDUM FOR RECORD

SUBJECT: Scranton Billet Crane Simulation

- 1. After the Scranton billet crane simulation project was completed in August 1976, Chamberlain Manufacturing Corporation obtained a copy of the report and wrote a letter to ARRCOM listing their objections to the assumptions made in the study. The letter was forwarded to this office for comments. Several of their objections were judged valid. At the request of DRSAR-IMB changes were made in the program and the simulation was rerun to answer the valid objections. This memo details the changes made and the analysis performed.
- 2. In summary, the simulation results indicate that the 200 feet-per-minute maximum velocity recommended by the Corps of Engineers for the Scranton AAP billet crane is adequate.
- 3. The following new information was supplied by DRSAR-IMB:

a.	billet <u>size</u>	mult wt.	number mults/mo.
	5 1/4"	107 1bs	147,000
	6 3/4"	172 1bs	21,000
	7 3/8"	220 1bs	63,000

- b. An automatic squaring table is being procured.
- c. The crane has a hoist speed of 90 ft/min.
- d. The maximum stacking height is 15 ft.
- 4. The following information was obtained from Chamberlain's letter or from phone conversations with Mr. Bernie White, Scranton AAP:

a.	billet size_	bille weigh			billets charge
	5 1/4"	1874 11	os 170		10
	6 3/4"	3091 11	os 103		8
	7 3/8"	3698 11	os 87	ì.	6

SUBJECT: Scranton Billet Crane Simulation

- b. The average load per rail car is 60 tons.
- c. There are 500 work hours per month, including coffee and shift breaks.
- d. Rail car delivery is restricted to 16 hours per day.
- e. Breaker line capacity is 340 mults/line/hr.
- 5. The following is an explanation of the changes made in the assumptions and data inputs used by the simulation. Most of the data used in the simulation was collected at the time of the original study.
- a. Assumption 5. Billets are stored and charged into the feeders in heats which are assumed to be groups of 170, 103, and 87 each for 5 1/4", 6 3/4", and 7 3/8" billets, respectively.
- b. Assumption 12. The crane operator has sufficient skill and is allowed to operate the crane at maximum speed. He could, thus, begin x and y movement of the crane simultaneously, after lifting the load above the rail car sides or bay stock-piles.
- c. The random number generator has been changed to use a separate string of random numbers for each stochastic item. Therefore, the first six input cards contain 42 seeds in an 8I10 format.
- d. Item 1. Chamberlain states that under mobilization conditions they will work 500 hours per month, including coffee and shift breaks. Since there are 45 minutes of breaks plus 35 minutes for lunch per 8 hour shift, the actual number of work hours per month is:

$$(500 \text{ hr/mo})(\frac{480 \text{ min/shift} - 35 \text{ min lunch} - 45 \text{ min break}}{480 \text{ min/shift} - 35 \text{ min lunch}}) = 449.44 \text{ hrs/mo}$$

The mean time between charges for the 5 1/4" billets is determined by:

= 17 mults/billets

mean time between charges =

(17 mults/billet)(10 billets/chg)(449.44 hrs/mo)(60 min/hr) (147,000 mults/mo)

= 31.19 min/chg

SUBJECT: Scranton Billet Crane Simulation

To create some manufacturing variability, it will be assumed that this 31.19 minutes between charges is the mean of a normal distribution having 95% of its area within 15% of its mean. Thus, the standard deviation is:

$$\sigma = \frac{(.15)(31.19)}{1.96}$$

= 2.39

Cut-offs are set at 3 std dev or 24.02 minutes and 38.36 minutes.

e. Item 2. The distribution of the time between charges for the 6 3/4" billet table is as follows:

number of mults per billet =
$$\frac{3091 \text{ lbs/billet}}{172 \text{ lbs/mult}}$$

mean time between charges =

= 184.91 min/chg

$$\sigma = \frac{(.15)(184.91)}{(1.96)}$$

= 14.15

limits = 142.46 minutes, 277.36 minutes

f. Item 3. The distribution of the time between charges for the 7 3/8" billet table is as follows:

number of mults per billet = $\frac{3698 \text{ lbs/billet}}{220 \text{ lbs/mult}}$

= 16 mults/billet

mean time between charges =

(16 mults/billet)(6 billets/chg)(449.44 hr/mo)(60 min/hr)
(63,000 mults/mo)

= 41.09 min/chg

SUBJECT: Scranton Billet Crane Simulation

$$\sigma = \frac{(.15)(41.09)}{1.96}$$
$$= 3.14$$

limits = 31.67 minutes, 50.51 minutes

g. Item 4. Since the arrival of heats is not affected by breaks, it must be based on the number of hours per month that the plant is operating:

$$(500 \text{ hr/mo})(\frac{480 \text{ min/shift}}{480 \text{ min/shift} - 35 \text{ min Tunch}}) = 539.33 \text{ hr/mo}$$

The mean time between arrivals of 5 1/4" heats is determined by:

Since most arrivals are Poisson, it will be assumed that this arrival is also Poisson distributed. Further, since these arrivals are not completely random, cut-offs at 3 standard deviations will be employed. For a Poisson distribution, the standard deviation is equal to the square root of the mean. Thus the limits are 560.52 and 711.86. Chamberlain indicated that rail cars are delivered during a 16 hour period each day and heats arriving during the remaining 8 hours are delayed. The program has been changed to delay any arrivals which occur in the last 8 hours of any 24 hour period.

h. Item 5. Arrival of 6 3/4" heats.

SUBJECT: Scranton Billet Crane Simulation

$$\frac{(539.33 \text{ hrs/mo})(60 \text{ min/mo})}{(11.33 \text{ hts/mo})} = 2856.91 \text{ min/ht}$$

$$2856.91 + 3(2856.91)^{\frac{1}{2}} = 2692.56, 3017.26$$

Thus the limits are 2692.96 and 3017.26.

i. Item 6. Arrival of 7 3/8" heats.

Thus the limits are 634.78 and 795.22.

- j. Item 11. The time required to pick billets out of a rail car is entered as a triangular distribution having a minimum time of .40 minutes, a maximum time of 1.65 minutes, and a most-likely time of .90 minutes. This is an increase of 9 seconds to insure that the load is lifted clear of the car sides, i.e., tolift an additional 13.5 feet.
- k. Item 15. The number of 5 1/4" billets picked out of a rail car per unit pick is entered as a triangular distribution having 1 as the minimum, 12 as the maximum, and 10 as the most-likely number of billets.
- 1. Item 16. The number of 6 3/4" billets picked out of a rail car is entered as a triangular distribution with 1, 8, and 6 as the minimum, maximum, and most-likely number of billets, respectively.
- m. Item 17. The number of 7 3/8" billets picked out of a rail car is entered as a triangular distribution with 1, 8, and 6 as the minimum, maximum, and most-likely number of billets, respectively.
- n. Item 22. The time required to pick billets off of the storage pile in the bays was entered as a triangular distribution, having a minimum time of .40 minutes, a maximum time of 1.15 minutes and a most-likely time

7 JUN 1977

DRSAR-SAL

SUBJECT: Scranton Billet Crane Simulation

of .65 minutes. This is an increase of 9 seconds to insure that the load can be lifted clear of the bay stacks.

- o. <u>Items 23-25</u>. The number of 5 1/4", 6 3/4", and 7 3/8" billets picked off of a storage pile. Since the billets are not processed in any manner while in the storage bays, the distributions are assumed to be identical to items 15-17 respectively.
- p. Item 29. DRSAR-IMB has indicated that automatic squaring tables are being procured. Therefore, the crane is not used for squaring and the time required is entered as a constant zero.
- q. Item 36. The size of a typical 5 1/4" heat is entered as a constant 170 billets.
- r. Item 37. The size of a typical 6 3/4" heat is entered as a constant
- s. Item 38. The size of a typical 7 3/8" heat is entered as a constant 87 billets.
- t. Item 39. The typical number of 5 1/4" billets on a rail car is entered as a constant 60 billets.
- u. Item 40. The typical number of 6 3/4" billets on a rail car is entered as a constant 32 billets.
- v. Item 41. The typical number of 7 3/8" billets on a rail car is entered as a constant 32 billets.
- 6. A bay priority scheme in which those bays which are closest to the work areas are used most, was established. This tends to minimize the overall distance traveled by the crane, and thus allows more time for other operations. The simulation was run three times with different seeds for the random number generators. Each run was for 400,000 minutes. The variation in travel, idle, and billet handling times from the three runs was determined, and in all cases the maximum variation was less than .5% of its mean. This indicates that 400,000 minutes is long enough to establish a steady state condition for the time percentages. The results of these runs indicate that the crane would be idle at least 33% of the time with a certainty of .995+. This does not include coffee, shift, and lunch breaks which constitutes an additional fedured to assure that the feed tables are never empty are 9.97 minutes.

 16.66%. In addition, there is a .99 probability that the maximum lead times required to assure that the feed tables are never empty are 9.97 minutes.

 18.92 minutes, and 8.83 minutes for the 5 1/4", 6 3/4", and 7 3/8" billet

SUBJECT: Scranton Billet Crane Simulation

- 7. A bad bay priority scheme, i.e., the bays which are used the most are located at the far end of the yard from the work areas, was then established and the simulation was again repeated three times. The variability between runs was less than 3% and the results indicate that the crane would be idle at least 9% of the time with a probability of .995+. The .99 probability lead times required by the feed tables are 11.13 minutes, 12.97 minutes, and 14.88 minutes for the 5 1/4", 6 3/4", and 7 3/8" billet tables respectively.
- 8. Chamberlain objected to the distributions used for the time between charges, because they did not allow for peaks of activity. Therefore, one run was made with these distributions changed to consist of a peak at the mean time between charges when the lines were operating at 340 mults-per-hour and a tail to the right to account for downtime. The results indicated that the idle time of the crane dropped from 33% to 31%. A single run was judged to be sufficient since the previous multiple runs had shown less than 3% variation in the results.
- 9. Additional sensitivity analysis was performed by varying the maximum speed of the crane. These runs were made with both good and bad bay priority schemes, normally distributed time between charges, and constant acceleration at 1 foot per second squared. The maximum velocity was varied from 80 feet per minute to 400 feet per minute, and the results are plotted in Figure 1. If a good bay priority scheme is used, then top speeds in excess of 200 feet-per-minute only increase the reserve capability from 33% to 41%. Figure 2 is a plot of the average speed of the crane as a percentage of its maximum speed. With a good bay priority scheme, the maximum usage of the crane's capabilities occurs at approximately 160 ft/minute and with a bad bay priority scheme, the maximum occurs around 240 ft/minute. Outside of this range, the percent utilization of the crane's speed capability drops off.
- 10. The third case reported in the original report, i.e., shock-loading the rail car queue with a month's supply of billets and determining the time required to unload it, was not performed since this is clearly a situation in which both cranes would be used and the computer model does not have provisions for simultaneous operation of the two cranes.

DAVID HOEHN

Operations Research Analyst

Oavid Hochn

Logistics Systems Analysis Division

DRSAR-SAA DRSAR-MA DRSAR-MM

Analysis of the Provisioning System DRSAR-SA

7 HAN 1977

CPT Krueger/jls/6370

1. Reference:

- a. MFR, DRSAR-MA to DRSAR-SA, 9 Feb 76, subject: VADS PIP Provisioning.
- b. FONECONS between DRSAR-MM, Mr. Crouch, DRSAR-MA, Mr. Stehn, and DRSAR-SA, CPT Krueger, Mar 76 Dec 76, subject as above.
 - c. MFR, DRSAR-MM, 10 Mar 76, subject: Initial Provisioning.
- 2. The Systems Analysis Directorate was tasked (ref la) to analyze the provisioning system as applied at HQ, ARRCOM. The attached MFR (Incl 1) contains the analysis of the provisioning system. An estimate of the provisioning time was developed in March 1976 (ref 1b) and used to validate the developed simulation. A summary of the various time frames simulated is shown below:

	SIMULATION	DAYS	DIFFERENCE
a.	Current Process	265	-
b.	Increase Provisioning Personnel	261	-4
c.	Reduce DLSC and DSA/GSA Time	179	-86
d.	LSA	235	-30
e.	Combinatoriel (b&d)	230	-30

The time estimates provided by provisioning and cataloging personnel (ref 1b and 1c) were used as input for the simulation. Even though the above changes to the current process show reductions in processing time, they should not be implemented until cost savings can be identified.

Point of contact is CPT Krueger, extension 6370.

SIGNED

l Incl

M. RHIAN

Director, Systems Analysis Directorate

MEMORANDUM FOR RECORD 2 JUN 1977

SUBJECT: Analysis of the Provisioning System as Applied at HQ, ARRCOM

1. Reference:

- a. Minutes of CG, ARRCOM Weekly Staff Meeting, 29 Jan 76.
- b. DRSAR-MA MFR to DRSAR-SA, subject: / VAD\$ PIP Provisioning, 9 Feb 76
- c. Army Regulation 700-18, Provisioning of US Army Equipment, 21 Sep /3.
- d. Technical Manual 38-715-1, Provisioning Techniques, Oct 65.
- e. Commodity Command Standard System Operating Instructions, Vol /1, No. 18-700-13, Provisioning System, Oct 75
- f. Standard Operating Procedure No. 700-MA-26, Commodity Command Standard System Provisioning System, 9 Dec 74.
 - g. DRSAR-MM MFR, subject: Initial Provisioning, 10 Mar 76.
- h. Numerous FONECONs between Mr. Crouch, DRSAR-MM, Mr. Stehn, DRSAR-MA, and CPT Krueger, DRSAR-SAA, subject: Ref la, above, period of time Mar 76 through Dec 76.
- i. SAO Note 2, "Secondary Items Administrative Lead Time Simulation Study, Mr. R. Banash, etal, June 74.
 - j. Military Standard No. 1388-1, Logistical Support Analysis, 15 Oct 73.
- 2. Introduction. This Directorate was tasked initially (ref la) to analyze the VULCAN Air Defense System (VADS) Product Improvement Program (PIP) provisioning effort. This tasking was subsequently broadened to become an analysis of the overall provisioning system as applied at HQ, ARRCOM, (ref lb).
- 3. <u>Background</u>. Provisioning is the process for determining and acquiring the range and quantity of support items (repair parts, special tools, technical manuals, etc) necessary to operate and maintain a weapon system for an initial period of service. Provisioning planning begins early in the life cycle of a new system or early in the design phase for product

DRSAR-SAA
SUBJECT: Analysis of the Provisioning System as Applied at HQ, ARRCOM/

improvements. However, adequate guidelines for starting this planning and establishing the sensitivity of the provisioning process to procedural factors in the system are unknown. The purpose of this study was to analyze and simulate the provisioning system as prescribed in references lc+1g and perform a sensitivity analysis on identified system factors.

- 4. Methodology. The procedures for accomplishing provisioning actions were described in a procedural flow format utilizing major contributions from the Maintenance and Materiel Management Directorates (ref lg and lh). The network developed related activities and decision points within the provisioning process. This network was then simulated using the General Purpose Simulation System (GPSS) developed by the Science Research Associates, Inc., a subsidiary of IBM. The purpose of this step was to obtain an automated representation of the provisioning process in order to quantitatively assess the current process. After verification of the process simulation, proposed changes and identified problem areas were analyzed. All results have been rounded to whole days, and the days refer to calendar days.
- 5. Discussion of Data. No historical data existed for times to complete a provisioning process; however, a generalized time estimate was developed in March 1976 by the provisioning and cataloging personnel of the Maintenance and Materiel Management Directorates (ref lg). This estimate was later refined (ref lh). This refined estimate was used to verify the simulation results. It should be noted that this study covered the provisioning process from the point in time that the Maintenance Directorate receives the initial provisioning input from the developer until that point in time that all National Stock Numbers (NSN) are assigned. A separate study (ref li) simulated the administrative lead time (ALT) for the procurement of secondary items.
- 6. <u>Current Process Analysis</u>. The current process was simulated using the GPSS computer program. GPSS utilizes three basic entities: Facilities, Storages, and Queues. A facility is an entity that can handle only one transaction at a time, for example, the Configuration Control Board reviews only one Engineering Change Proposal at a time. A storage entity is one that can handle up to and including a specified number of transactions at one time, for example, the provisioning branch can handle as many transactions as it has personnel available. The final entity, Queues, is an entity in which a transaction waiting to enter a facility or storage resides until space is available for it to be processed.

These three entities were combined in a logical manner that described the actual flow process for provisioning transactions. The system simulation was allowed to reach a steady state to reflect the average number of days to complete a transaction. Table 1 compares the simulation results with the original March 76 estimate.

SUBJECT: Analysis of the Provisioning System as Applied at HQ, ARRCOM

TABLE 1

Current Process

Simulation

265 (Calendar Days)

Estimate (March 1976)

239

Difference

26

The 26 day difference between the simulation result and the original estimate was discussed with the concerned representatives (ref lh). It was concluded that the March 76 estimate did not fully allow for the time needed to correct errors noted when the Provisioning Master Data Record was received from the ALPHA system and reviewed. Also, the possible resubmission to the Defense Logistics Service Center (DLSC) and Defense Supply Agency/General Services Administration DSA/GSA for NSN's was not fully taken into account. It was felt, therefore, that the simulation run was a more viable time estimate and would serve as the standard against which the sensitivity analyses would be compared.

- 7. <u>Sensitivity Analyses</u>. The sensitivity of the following system factors to change was investigated.
- a. Six unfilled positions in the Provisioning Branch of the Maintenance Directorate had been identified. The opinion was that this shortage created a backlog situation.
- b. A reduction of the minimum required process time at DLSC (DSA/GSA) from 60 to 30 days was investigated.
 - c. Exclusive use of LSA, Logistical Support Analysis was investigated.
- d. A combination of using LSA and increasing the number of provisioning to personnel by six was investigated.

No increase in the number of personnel in the Cataloging Division was considered since no unfilled positions were indicated and no queue time developed in the simulation that would indicate the possible need to increase personnel.

- 8. Sensitivity Results.
- a. <u>Increase of the Number of Personnel in the Provisioning Branch.</u>
 The Chief of the Provisioning Branch reported six unfilled slots existed

DRSAR-SAA
SUBJECT: Analysis of the Provisioning System as Applied at HQ, ARRCOM

within his organization. This fact, coupled with existence of Queue time for his organization, indicated that an increase in personnel may have a potential to decrease the provisioning time frame. The number of personnel for the Provisioning Branch was increased by six for this simulation run and no other changes were made to the simulation process. The results of the run are shown in Table 2.

TABLE 2

Increased Number of Provisioning Personnel

Current Process	- E-A	265	(Calendar	Days
Increased Number .		261		
Difference	9 8	4		

While the addition of six personnel to the Provisioning Branch did decrease the time frame by four days, it is doubtful that the additional personnel would be warranted. To further substantiate this, the increased number of personnel was varied from six down to two and the reduction in provisioning time was only changed from four days to three. The addition of only one person resulted in a reduction of approximately one day.

b. Reduction in DLSC and DSA/GSA Process Time. It was pointed out that DLSC and DSA/GSA are allowed 60 days to process requests for stock numbers. This is virtually a fixed time delay and if some stock number data were found to be in error, an additional 60 days would be allowed DLSC or DSA/GSA upon resubmission of the data. While a reduction in this time frame is not within HQ, ARRCOM's control, the results shown in Table 3 may assist in causing revision of this 60 day allowance. The reduction used in this simulation was a cut of one-half, 60 to 30 days, and all other portions of the simulation remained unchanged.

TABLE 3

Reduced Process Time DLSC and DSA/GSA

Current Process

265

(Calendar Days)

Reduced DLSC and DSA/GSA Time 179

Difference

86

The reduced times made a significant contribution to reducing the time required to properly provision a weapon system. If the 60 day limit is absolute, time still could be saved in provisioning if error resubmission could be placed in a category that waived the mandatory 60 day process time.

DRSAR-SAA SUBJECT: Analysis of the Provisioning System as Applied at HQ, ARRCOM

c. Logistical Support Analysis (LSA). A Logistical Support Analysis (LSA) was to be required on all newly developed weapon systems and major modifications. This requirement, however, is not being fully implemented because of some difficulties in the bridging program that converts the LSA input to the CCSS format, and because of the need to thoroughly familiarize personnel with the use of LSA, i.e., a developer (military and civilian) personnel and provisioning and cataloging personnel. The procedures to use LSA in the provisioning process were simulated and the results are shown in Table 4.

TABLE 4 Use of Logistical Support Analysis

Current Process	1303	265	(Calendar	Days)
LSA Process		235		
Difference		30		2

The use of LSA is completely within ARRCOM's control to implement and training in the use of LSA is available. If cost savings can be identified with this 30 day reduction, then this alternative may warrant implementation.

d. <u>Combinatorial</u>. The use of LSA and an increase of six in the current number of provisioning personnel was simulated next. This combination was chosen because of the ability of HQ, ARRCOM to readily implement these changes.

TABLE 5 Combinatorial

Current Process			265 (Calendar	Days))
Combinatorial		11	235	* :	1 1	
Difference		,	 30	₩		

The results of this simulation run are identical with just using LSA. Further investigation revealed that the Provisioning Branch realized no queue time under just LSA procedures and the processes needed to conduct a provisioning effort still require the same amount of time. Thus, increasing the available number of personnel when no backlog exists would not create a reduction in time.

9. <u>Summary</u>. The above results indicate that the least effective means of reducing provisioning time frames is to fill all or a portion of the unfilled positions in the Provisioning Branch. The most effective means of reducing the provisioning time is to have DLSC and DSA/GSA's mandatory time frame reduced; however, this is not an immediate solution, since

DRSAR-SAA JUN 19
SUBJECT: Analysis of the Provisioning System as Applied at HQ, ARRCOM

it is an action required at DOD level. The combinatorial alternative is not a reasonable solution since the addition of personnel resulted in no change over using LSA alone. The most viable solution is to use LSA. To do this may require special effort to insure the bridging program problems are solved and that the largest possible number of personnel are trained to use LSA.

LARRY W. KRUEGER

CPT, OrdC

Systems Assessment Division
Systems Analysis Directorate

DRSAR-SAA DRSAR-MA DRSAR-IM

M551 Sheridan Wear-Out DRSAR-SA

8 JUN 1977 CPT Krueger/ils/6370

1. Reference:

- a. DF w/incl, DRSAR-MA to DRSAR-SA, 1 Nov 76, subject: Trip Report USAREUR Visit 11-25 Oct 76, DCG, Dir of Maintenance and Ch, DRSAR-MMP, Part II.
 - b. Demand Return Disposal Files, 15 Dec 74 15 Dec 76.
 - Order of Merit List, 11551 Sheridan, 6 Oct 76.
- 2. The Systems Analysis Directorate was tasked (ref la) to conduct a failure rate analysis on European based Sheridans and additionally, to determine if the component buy policy for ARRCOM managed 11551 Sheridan components and repair parts need to be revised to accommodate a rapidly increasing wear-out rate. As discussed in the attached MFR (Incl 1), no rapidly increasing wear-out rate was indicated. As a result, this study indicates that no alteration of the component buy policy is needed.
- In regard to the processes for collecting data on parts demand history, two important changes need to be made. First, the Demand Return Disposal Files (ref 1b) only contain the past two years demand history. The number of years of demand history retained at HQ, ARRCON on magnetic tapes needs to be extended to a minimum of at least four years. Second, the weapons codes (per AR 725-50) used in the DRD files are not used in Europe and are not a required entry of CONUS. The lack of these codes hinders the use of the DRD files as an accurate data base. The feasibility of making the use of those weapons codes prescribed in AR 725-50 a mandatory Army wide entry should be investigated.
- 4. Point of contact is CPT Krueger, extension 6370.

DINED

1 Incl as

M. RHIAN Director, Systems Analysis Directorate

Incl 1 SHIF

101

MEMORANDUM FOR RECORD

SUBJECT: M551 Sheridan Wear-Out

1. Reference:

- a. DRSAR-MA DF w/incl to DRSAR-SA, 1 Nov 76, subject: Trip Report USAREUR Visit 11-25 Oct 76, DCG, Dir of Maintenance and Ch, DRSAR-MMP, Part II.
 - b. Demand Return Disposal Files, 15 Dec 74-15 Dec 76.
 - c. Order of Merit List, M551 Sheridan, 6 Oct 76.
- 2. <u>Introduction</u>. The Systems Analysis Directorate was tasked to conduct a failure rate analysis on European-based Sheridans and additionally, to determine if the component buy policy for ARRCOM managed Sheridan related items need be revised to reflect an accelerated failure rate for Sheridan turret components and repair parts.
- 3. Background. During a visit to USAREUR (ref la), it was reported to the DCG, ARMCOM that the age of the Sheridans in USAREUR was a factor causing a rapidly increasing component wear-out rate. This study was approached from the viewpoint that if the European-based Sheridans, all having varied ages, were, in fact, wearing out at a rapid rate, the component buy policy should be adjusted accordingly.
- 4. Discussion of Data. In order to show that the varied aged Sheridans were wearing out rapidly, it would be necessary to group the Sheridans by age and then identify specific failure rates by age group. This data was not available in a processible form. Thus, the study focused on reviewing the available demand history files (ref lb). The required demand data was requested from the ALPHA system; however, the system could not provide the needed information. Copies of the December 1976 ALPHA Demand Return Disposal (DRD) files were obtained. The files are on seven magnetic tapes and contain the past two years' demand history (15 Dec 74-15 Dec 76) for all ARRCOM managed NSN's. The DRD files presented an additional problem. The European Materiel Management Center does not use the Weapon Systems codes listed in AR 725-50. For that matter, it is not a required entry for CONUS based units. This necessitated using the Sheridan Weapon System Order of Merit List (OML) dated 6 Oct 76 (ref lc) to obtain all Sheridan Stock Numbers and then screen the DRD files for those NSNs to obtain the required information.

SUBJECT: M551 Sheridan Wear-Out

5. Methodology. The rationale for using the DRD files was that if the variably-aged Sheridans were rapidly wearing out, this would be reflected in a corresponding rapid increase in the number of demands and/or quantities demanded. A COBOL program was written that would first screen the DRD files for the stock numbers obtained from the OML and then further screen the remaining stock numbers for recurring European-generated demands. This last screening process reduced the stock numbers to be analyzed to as close to the using unit level as possible.

The resultant European-identified Sheridan stock numbers were then subjected to four analyses to determine if a rapid increase had occurred in the number of demands and/or quantity demanded.

- a. The stock numbers were first ordered by total cost per NSN from high to low. The top 90% of the cumulative total cost were then subjected to a trend analysis. This trend analysis consisted of comparing first and second year demands.
- b. The total demands per month and total quantity demanded per month were each graphed (Incl 1 & 2) and again a trend analysis performed on the data.
- c. The average quantity per demand was graphed (Incl 3) by month and again a trend analysis was performed on the data.
- d. The average cumulative quantity demanded per month was calculated, graphed (Incl 4) and a trend analysis performed.

6. Results of Analyses.

a. After the European stock numbers were identified and subsequently ranked by cost from high to low, the stock numbers comprising the top 90% of the total cost were separated for analysis. The number of NSN's in this category was 111 or 11.6% of all the stock numbers considered. In addition, these stock numbers accounted for 35.4% of the total demands for all stock numbers considered. The number of demands for the first and second years for each stock number was determined and a linear regression performed in order to determine the trend from the first year to the second year. The linear regression yielded a positive slope which would indicate an increase from one year to the other and the correlation factor (a measure of how close the data points conform to a straight line) was moderately high, which indicates a close fit. However, it was felt that further investigation was warranted. This need became more obvious when a closer examination of the data was made. First, the demands were grouped by years as opposed to months, in addition, there were many anamolies in the data, i.e., demands greatly increased or decreased from the first to the second year. Second, upon examination of specific stock numbers that exhibited a large increase in demands for the second year, it was found

SUBJECT: M551 Sheridan Wear-Out

1 JUN 1977

that this increase was due a great extent to Maintenance Letters that had been sent to the field directing various maintenance or inspection actions. These letters invariably lead to a temporary increase in demands. In addition, almost all the increased second year demand stock numbers were included in pending Engineering Change Proposals (ECPs) for the Sheridan. In all, no conclusions could be made as to any indication of rapid wear-out.

- b. The total demands and total quantity demanded were graphed by month in an attempt to determine where and when the above noted fluctuations occurred and also to gain a better insight into the nature of the demands i.e., was there a rapid increase in demands. Because this data was a time series analysis, the series was decomposed to eliminate many of the anamolies described above, such as the seasonal and cyclical fluctuations in order to arrive at the secular trend (the secular trend indicates the long-run growth or decline of the series). Upon analyzing the secular trend, no indication of rapid increase was detected.
- c. The average quantity per demand was plotted by month and again a secular trend analysis was made to determine if a rapid rise was indicated. This attempt again failed to indicate anything other than a slight increase.
- d. The average cumulative quantity demanded per month was calculated and graphed. This was another means of trying to discern a rapid increase in demand for parts. Upon reviewing the results, again there was no indication of rapid rise in demands or quantity demanded.

7. Summary.

- a. All attempts to demonstrate that the European-based Sheridans were wearing out rapidly failed to indicate any such pattern. A gradual increase was detected; however, this increase is basically inconclusive because of the availability of only two years of demand data to analyze. The largest benefit to be realized from this effort is that the DRD files are a source of excellent data provided the following two conditions are met. First, more than just two continuous years of demand history is needed and second, that all weapons codes, as assigned in AR 725-50, be a required entry on all requisitions originating in CONUS and from OCONUS.
- b. From the analysis above there appears to be (based on available data) no need to alter the current component buy policy. However, with at least four years of demand data, the above analyses may be able to adequately predict when changes may be needed before problems arise.

4 Incl

as

LARRY W. KRUEGER

CPT, OrdC

Systems Assessment Division

(MONTHS) QUANTITY DEMANDED BY MONTH 000 [

```
24
                                                                                                                               (MONTHS)
                                                                                                                          23
                                                                                                                          22
                                                                                                                          23
                                                                                                                          , 20.
                                                                                                                          19
                                                                                                                          16
                                                                                                                                QUANTITY DEMANDED/NUMBER OF REQUISITIONS
                                                                                                                          15
                                                                                                                          14
                                                                                                                           10
Incl 3
      QUANTITY/DEMANDS.
                                                  107
                                                                                                      2
                                         8
```


MEMORANDUM FOR RECORD

SUBJECT: Statistical Methods Pertinent to a Potential Ignition Problem in the M188El Propelling Charge

1. References:

a. MFR, STEAP-MT-G, 11 Apr 77, subject: M188E1 Charge--Max Negative ΔP Results.

b. Letter, DRDAR-LCU-E-P, 24 May 77, subject: Test Program Request ADEP 2061 Charge Propelling 8-Inch M188E1.

2. Background

The author was asked by the PM-110E2 to review a potential safety problem in the M110A1 SP howitzer when using the M188E1 propelling charge. During development testing of this charge, pressure is measured simultaneously at two locations: near the breechface and at the forward end of the chamber (toward the muzzle). After proper ignition and throughout the interior ballistic cycle, the pressure is generally higher at the breech than at the base of projectile. However, during ignition reverse pressure gradients, i.e., a larger pressure forward, can occur. The magnitude of the negative pressure differential, measured in the manner indicated above, has been found to correlate positively with the peak chamber pressure subsequently experienced during the interior ballistic cycle. Thus, a large absolute pressure differential, Δp , is accompanied by a large value of $p_{\rm max}$, the peak chamber pressure.

3. Statement of the Problem

Because p_{max} must be limited to a value consistent with projectile and cannon allowable stresses, it follows that the associated value of Δp must be limited by some safe value. The Δp limit is determined in part by the relationship between p_{max} and Δp . Presently this relationship is poorly defined and may, in fact, depend upon other variables such as propellant temperature. Even if the safe limit of Δp were well defined, the risk of exceeding this limit depends upon the probability distribution function of the random variable Δp , which itself may depend upon propellant temperature, among other variables. Data analyzed in Ref a. indicate that the probability distribution of Δp is affected by large changes in propellant temperature.

DRSAR-SAM 2 8 JUN 1977

SUBJECT: Statistical Methods Pertinent to a Potential Ignition Problem in the M188El Propelling Charge

During safety tests of the M110 system, the M188E1 propelling charge had been subjected to a sequence of rough handling operations and subsequently temperature conditioned to -50 degrees F. Several of the rounds fired with this treatment experienced Δp values in excess of 2 ksi and displayed values of p_{max} which generally increased with Δp . Furthermore, tests of M188E1 charges with intentionally malconstructed igniters when subjected to -50 degree F conditioning have displayed extremely large (>5 ksi) values of Δp and anomolously large values of p_{max} .

5. In the light of these results STEAP-MT has begun a series of tests (Ref. b) whose general purpose is to better quantify the factors to be considered in estimating the risk of a catastrophic malfunction of the M188E1 propelling charge. Since the anomolously large chamber pressures accompany improper ignition at low temperature, it is important to define the effect of temperature on the probability distribution of Δp in unmodified charges following anticipated operational rough handling.

6. A Particular Issue

In this connection an immediate question is whether the probability distribution of Δp has a temperature dependence for temperatures below zero degrees F. To answer the question of temperature dependence as efficiently as possible, one requires powerful statistical tests and should, of course, make use of all applicable existing data. With these things in mind, I have prepared some statistical methods which may be helpful in:

- a. selecting a statistical sample to provide an adequate degree of discrimination between propelling charge treatments.
- b. estimating the value of Δp which would be exceeded at a given risk (a percentile of the distribution of Δp) and an associated confidence interval for this estimate.
- 7. The derivation of some pertinent statistical tests and the presentation of their operating characteristics for several sample sizes are given in Attachment 1 (Incl 1). The treatment is not intended to be exhaustive but rather to define the power of some parametric and non-parametric tests for this particular application. Computer programs are presented in Attachment 2 (Incl 2).

2 Incl

GEORGE SCHLENKER
Operations Research Analyst
Methodology Division
Systems Analysis Directorate

George Schlinker

ATTACHMENT 1

SOME STATISTICAL METHODS PERTAINING TO THE IGNITION PROBLEM IN THE M188E1 PROPELLING CHARGE

Background

) . . (

At low temperatures following sequential rough handling tests of the XM188 propelling charge, some unusually large maximum absolute values of negative pressure differential have been experienced within the combustion chamber of the eight-inch M201 cannon. Typically, a large value of the maximum absolute pressure differential, Δp , accompanies a large peak chamber pressure during the interior ballistic period. Several tests have been proposed to investigate this problem, which is regarded as potentially serious because of possibly unsafe peak chamber pressures.

In one series of tests it is proposed to fire sets of these charges conditioned at several temperatures, in order to determine the effect of temperature on the probability distribution of Δp produced during ignition of the charge.

Parametric Methods

Available data on the XM188 charge indicate that at both low (-50°F) temperatures and high temperatures (145°F) a two-parameter Weibull distribution is a reasonable statistical model for Δp^* . These data suggest that the shape parameter, β , is nearly unity-the high-temperature distribution having a value of β only slightly in excess of 1, and the low-temperature distribution having a β slightly less than 1. However, due to the limited sample these distributions are not statistically distinguishable from the (negative) exponential distribution which corresponds to a Weibull with β = 1. Therefore, in the following analysis the exponential model is assumed. Because of its relationship to risk, the first topic addressed is percentile estimation.

Variance of Percentile Estimates for Exponential Random Variables

The 100p th percentile, x_p , of an exponential distribution with parameter θ is given by

^{*}MFR, STEAP-MT-G, 11 Apr 77, subject: M188E1 Charge--Max Neg ΔP Results.

$$p = 1 - \exp - x_p/\theta$$
 (1.1)

$$x_{p} = -\theta \ln(1 - p)$$
 (1.2)

Thus with p chosen, x_p is proportional to the parameter θ . The maximum likelihood estimate of θ , $\hat{\theta}$, obtained from a sample of n: $\{X_i, i = 1, n\}$ is, simply,

$$\hat{\theta} = \sum_{j=1}^{n} X_{j}/n \qquad (1.3)$$

To obtain an estimate of the variance of $\boldsymbol{x}_{\text{D}}$, one notes that, from (1.2),

$$Var(x_p) = Var(\hat{\theta}) \ln^2(1 - p)$$
 (1.4)

Now, a well known result for the exponential distribution is that the parameter $2n\theta/\theta$ has a chi-squared (x^2) distribution with 2n degrees of freedom. Further,

$$Var(\frac{\chi^2}{2n}) = 4n$$
, (1.5)

so that

$$Var(\hat{\theta}) = \theta^2/n$$
.

Thus, from (1.4) and (1.6),

$$Var(x_p) = \theta^2 \ln^2(1 - p)/n$$
 (1.7)

or, with (1.2),

$$Var(x_p) = x_p^2/n$$
. (1.8)

Note that the distribution of $2n\hat{x}_p/x_p$ is also $\frac{x^2}{y^2}$ with 2n degrees of freedom since x_{D} and θ are proportional.

Detecting a Difference Between Two Samples

Suppose that \underline{two} samples of n each are used to estimate the x_p th percentile (and parameter θ), producing $\hat{\theta}$ and $\hat{\theta}_0$. Making use of the Central Limit Theorem, for n greater than about 10 the following statistic is approximately standard normal:

$$\zeta = \frac{\hat{\theta} - \hat{\theta}_0 - (\theta - \theta_0)}{\left[Var(\hat{\theta}) + Var(\hat{\theta}_0)\right]^{1/2}}$$
 (1.9)

Alternatively, with

$$f = \theta/\theta_0 , \qquad (1.10)$$

$$\zeta = \frac{(\hat{\theta} - \hat{\theta}_0)\sqrt{n}}{[\theta^2 + \theta_0^2]^{1/2}} - \frac{(f - 1)\sqrt{n}}{(f^2 + 1)^{1/2}}.$$
 (1.11)

One hypothesizes that H_0 : $\theta = \theta_0$, with the alternative H_1 : $\theta > \theta_0$. With the gaussian assumption,

$$P\{\zeta < 1.65\} = 0.95. \tag{1.12}$$

Consequently, at a risk of only 5% of the declaring H_0 false if true, one can accept H_1 if

$$\frac{(\hat{e} - \hat{e}_0)\sqrt{n}}{\sqrt{\hat{e}^2 + \hat{e}_0^2}} > 1.65.$$
 (1.13)

Notationally, let $\beta = P\{\text{accept } H_1\}$ Then,

$$\beta = P\{\frac{(\hat{\theta} - \hat{\theta}_0)\sqrt{n}}{\sqrt{\hat{\theta}^2 + \hat{\theta}_0^2}} - 1.65 > 0\}$$
 (1.15)

Using the expected value of the denominator in (1.15), approximately,

$$\beta = P\{\zeta + \frac{(f-1)\sqrt{n}}{(f^2+1)^{1/2}} - 1.65 > 0\}$$

or

$$\beta = \Phi(\sqrt{n}(f-1)(f^2+1)^{-1/2}-1.65), \qquad (1.16a)$$

with

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-x^{2/2}} dx . \qquad (1.16b)$$

Plots of $\beta(f)$ for various values of n, calculated from (1.16), are displayed in Figure 1.

These operating characteristics or OC curves indicate the value of the fractional shift f which must occur to detect a shift in the parameter θ between samples. The rule used to detect a shift is given by (1.13) with $\hat{\theta}$ and $\hat{\theta}_0$ calculated using equation (1.3). The results of several experiments can be compared by applying the above test to all possible pairs, where the basic parameter θ_0 is estimated from the sample whose population parameter θ is expected to be minimal on physical grounds. However, if the number of sets of samples at, say, different temperatures is large, pairwise comparison is not the most powerful statistical method to detect a temperature effect. If the number of experiments is greater than about 3, regression of $\hat{\theta}$ on temperature appears preferable.

The use of parametric methods to discriminate between treatments requires an assumption concerning the form of the distribution function. If the nature of the distribution function is seriously in doubt, particularly for large values of the argument Δp , as is the case here, it is preferable to use non-parametric methods. In the next section a specific non-parametric statistic is suggested for detecting the effect of treatment when three treatments are applied to three samples. To facilitate comparisons between the operating characteristics of the above parametric test and the non-parametric tests, we display in Figure 2 the relationship between f --as defined in (1.10)-- and a probability used in the non-parametric tests, namely, the proportion of the population of Δp lieing above 2000 psi.

Non-Parametric Methods

To detect whether the experimental treatment affects the distribution of Δp (the variable of interest), one can examine some non-parametric measure such as the number of occasions in a sample of n in which Δp exceeds a specified value. This reduces the analysis of each experiment to counting the number of such "successes" over Bernoulli trials. The discrimination between treatments is based upon a comparison of the number of successes. If one is merely interested in whether any sort of change occurs in the probability of success over the three sets of Bernoulli trials, one possible test statistic is the (discrete) binomial range or extreme spread* in the number of successes. This statistic has the virtue that it combines the results of all experiments into one index value. In the following derivations the distribution function for the binomial range is developed and used to formulate a test to detect departures from constancy in the probability of success over the three sets of Bernoulli trials, i.e., to detect $\pi_1 \neq \pi_2 \neq \pi_3$. The operating characteristic of this test is calculated. In this context the operating characteristic is the probability of detecting a departure from constancy as a function of the magnitude of the departure.

The Distribution for the Discrete Range of Successes in Three Sets of Bernoulli Trials

Given the event $E_r(i)$: during the i th experiment, there are r rounds which have a Δp in excess of, say, 2 ksi, given n rounds per experiment are fired with the probability equal to π_i that for any round of the i th set Δp will exceed 2 ksi. Then,

$$P\{E_{r}(i)\} = \lambda_{r}(i) = \binom{n}{r} \pi_{i}^{r} (1 - \pi_{i})^{n-r}, \qquad (2.1)$$

 $0 \leq r \leq n$.

The expected number of rounds in the i th experiement with "success," i.e., having a Δp in excess of 2 ksi, is n π_i .

^{*} The extreme spread of a random variable is defined as the difference between the largest and smallest values of a sample.

The range or maximum spread (s) of the observed successes from all of the three experiments has a probability density (p.d.f.) dependent upon n: $p_s(n)$, with s a member of the discrete set S, $S = \{0, 1, \ldots, n\}$. (2.2)

The p.d.f. for the range is derived as follows. Let r be a dummy variable for the number of successes in the first experiment. Then,

 $P\{\text{spread is exactly s}\} = p_s$

The expression for p_s is developed by exhaustively enumerating the events which produce a maximum spread s and then writing the probabilities of these events and taking their sum.

$$\begin{split} P_{S} &= \Sigma_{r=0}^{n} P\{E_{r}(1)\} [P\{E_{r-s}(2) \text{ or } E_{r+s}(2), \text{ given } r+s \in S\} \cdot \\ & \Sigma_{q} P\{E_{q}(3)\} + P\{E_{r-s}(3) \text{ or } E_{r+s}(3), \text{ given } r+s \in S\} \Sigma_{q} P\{E_{q}(2)\} \\ & - P\{E_{r-s}(2) \text{ or } E_{r+s}(2), \text{ given } r+s \in S\} \cdot \\ & P\{E_{r-s}(3) \text{ or } E_{r+s}(3), \text{ given } r+s \in S\} \}, \end{split}$$

where the limits of q are

$$q_{\min} = \max (0, r - s)$$

$$q_{max} = min (n, r + s)$$
.

In evaluating the second factor within the sum on the r.h.s. of (2.3) only events for which the indices are in the set S are evaluated.

Example: n = 3

$$p_{0} = \lambda_{0}(1)\lambda_{0}(2)\lambda_{0}(3) + \lambda_{1}(1)\lambda_{1}(2)\lambda_{1}(3) + \lambda_{2}(1)\lambda_{2}(2)\lambda_{2}(3) + \lambda_{3}(1)\lambda_{3}(2)\lambda_{3}(3)$$
(2.4)

A numerical evaluation of (2.4) thru (2.7) with $\pi_1 = \pi_2 = \pi_3 = 0.1$ produces the following distribution of binomial range:

s 	p _s	$\Sigma_{i=1}^{s} p_{i}$
0	0.4018	0.4018
1	0.5315	0.9332
2	0.0644	0.9976
3	0.0024	1.0000

Summary statistics are:

mean =
$$\Sigma_{i=1}^{n} i p_i$$
 = 0.66735
std. dev. = $[\Sigma_{i=1}^{n} i^2 p_i - \text{mean}^2]^{1/2}$ = 0.60418
coefficient of variation = std. dev./mean
= 0.90535

Test for Constancy of π_i

The distribution for the discrete binomial range was evaluated, using (2.3), for several sets of values of the parameters n, π_1 , π_2 , π_3 . These results are shown in Table 1. One notes that a progressive departure from constancy of the π 's in the manner indicated in Table 1 is accompanied by a shift in the distribution of the binomial range to the right, i.e., in the direction of larger values. Further, even though the standard deviation also increases with increasing π_2 or π_3 (π_1 being fixed), the coefficient of variation decreases. Thus, the distribution becomes relatively less disperse.

These characteristics of the distribution of binomial range, s, suggest a simple test of constancy of the π 's. Specifically, for a given sample size (n), select a value of s for which the π 's would be declared identical. Call this the acceptance number a. For values of s greater than a, one would accept the alternative hypothesis, viz., the π 's are not all identical. That is, if s > a, the treatment is declared to affect the value of π , the probability that Δp exceeds 2 ksi.

In selecting the acceptance number a for a given n, one must decide what risk will be accepted in declaring the π 's different if they are in fact not. For example for n = 10 and a = 2, from Table 1, the risk is about 10%. Similarly, for n = 20 and a = 3 this risk is about 11%, and for n = 30 and a = 4 the risk is approximately 9%.

If a sample (n) of 30 and an acceptance number (a) of 4 were chosen, the probability of detecting a shift of π_3 and π_4 from 0.1 to 0.4 would exceed 98% (from Table 1). It is of interest to compare the power of this test to that of the previous parametric test on the difference $\hat{\theta} - \hat{\theta}_0$. To facilitate the comparison, note from Figure 2 that the value of f corresponding to an ordinate of 0.4 (= π) is 2.513. Then, using this value of f and assigning the same risk of mistaking a shift of π as in the

non-parametric test, viz. 0.0927, the parametric test would yield a 96% probability of detecting this shift. In this case the non-parametric test is actually more discriminating. The reason for the better discrimination of the non-parametric test is that it takes information from all three experiments rather than from simply a pair as does the parametric test.

Operating Characteristic of the Non-Parametric Test

Using the results in Table 1 (with equal values of π_2 and π_3), one can develop the operating characteristics of three non-parametric tests using the binomial range with values of n = 10, 20, 30 and corresponding values of a = 2, 3, 4. The probability of accepting the alternate hypothesis (H₁) that the π 's are different is shown in Figure 3 as a function of π_2 and π_3 . In constructing Figure 3, it is assumed that the values of π_2 and π_3 are the same. In this case the probability of accepting H₁ has only a single argument. However, this assumption is somewhat restrictive. In general, P{accept H₁} depends upon two arguments-- π_2 and π_3 , which may be different. The latter relation is shown in Figure 4, an isometric graph. It is noted that the region in the domain of π_2 and π_3 for which the probability of accepting H₁ is less than 0.5 is approximately bounded by the circular arc:

$$(\pi_2 - 0.1)^2 + (\pi_3 - 0.1)^2 = (0.25 - 0.1)^2$$
,

for the case in which n = 30 and a = 4.

TABLE 1. SUMMARY STATISTICS FROM THE DISTRIBUTION OF THE DISCRETE RANGE FROM THREE SETS OF BERNOULLI TRIALS

Description of	Sample				Statistics	cs		
Stat. Populations: (T1, T2, T3)	Size	Mean	Standard Deviation	Coef. of Variation	P{range > 2}	P{range > 3}	P{range > 4}	P{range > 5}
0.1, 0.1, 0.1	10	1.408	0.867	0.615	0.1028	0.0181	0.0023	0.0002
	20	2.031	1.183	0.582	0.3007	0.1113	0.0329	0.0079
	30	2,503	1.432	0.572	0.4426	0.2202	0.0927	0.0334
0.1, 0.15, 0.15	10	1.682	0.997	0.592	0.1866	0.0474	0.0086	0.0011
	20	2.516	1.433	0.570	0.4484	0.2260	0.0948	0.0330
	30	3.222	1.803	0.560	0.6055	0.3912	0.2244	0.1137
0.1, 0.2, 0.2	10	2.038	1.158	0.568	0.3096	0.1101	0.0282	0.0052
7	20	3.274	1.743	0.532	0.6308	0.4138	0.2330	0.1107
	30	4.437	2.233	0.503	0.7876	0.6289	0.4609	0.3054
0.1, 0.3, 0.3	10	2.913	1.429	0.490	0.5881	0.3295	0.1371	0.0410
	20	5.186	2.142	0.413	0.8916	0.7764	0.6175	0.4362
	30	7.422	2.669	0.360	0.9685	0.9286	0.8618	0.7624
0.1, 0.4, 0.4	10	3.891	1.570	0.404	9908.0	0.5956	0.3491	0.1525
	20	7.231	2.274	0.314	0.9810	0.9493	0.8858	0.7787
	30	10.507	2.788	0.265	0.9979	0.9939	0.9843	0.9640
0.1, 0.6, 0.6	10	5.863	1.567	0.267	0.9804	0.9310	0.8127	0.6061
0.1, 0.2, 0.3	20	4.468	2.098	0.470	0.8140	0.6535	0.4724	0.3018
	30	6.388	2.697	0.422	0.9287	0.8525	0.7459	0.6141
0.1, 0.3, 0.4	20	6.461	2.316	0.358	0.9578	0.8994	0.8000	0.6580
-	30	9.429	2.893	0.307	0.9929	0.9812	0.9576	0.9148
					,	and an	The second secon	-

Two-Dimensional Operating Characteristic for a Non-Parametric Test Using the Binomial Range from Three Sets of Bernoulli Trials (Sample Size 30) Figure 4.

ATTACHMENT 2

COMPUTER SOURCE PROGRAMS FOR OBTAINING THE PROBABILITY DISTRIBUTION FUNCTION OF THE DISCRETE BINOMIAL RANGE FOR THREE SETS OF BERNOULLI TRIALS

Three source programs are given: an executive program for I/O and subprogram calls, MAIN; a subroutine for computing the distribution of binomial range, BINRNG; and a function for calculating the binomial probability, PBERN. All programs are written in FORTRAN 4 for the IBM 360 computer.

Input requirements are: (1) an alphameric title card and (2) a card specifying the sample size and binomial probability parameters for each of the three experiments. Output echoes input and lists the p.d.f., c.d.f., and upper tail probabilities for the discrete range. An example is provided.

```
C
C
     MAIN PROGRAM TO DEVELOP A SET OF DISTRIBUTION FUNCTIONS
C
     FOR THE RANGE OF OUTCOMES FROM THREE EXPERIMENTS. FACH
C
     CONSIGTING OF N BERNOULLI PIALS
IMPLICIT REAL+8 (A-H, 0-Z)
     DIMENSION TITLE (20), PS(100), CDF(100), PMEAN(3), NSAMP(3)
    1 CONTINUE
     READ (5:100:END=30) TITLE: NSAMP(1): NSAMP(2): NSAMP(3):
     1 PNEAN(1), PMEAN(2), PMEAN(3)
  100 FORMAT (20A4/313.1X.3F10.0)
     WRITE (6,200) TITLE. NSAMP(1), NSAMP(2), NSAMP(3).
     1 PMFAN(1) .PMEAN(2) .PMEAN(3)
  200 FORMAT (1H1,20A4/1H0, 'SAMPLE SIZES ARE: ',3(3x,13),
     1 * VITH TRIAL PROBS.: *, 3(2X,F10.4))
     H=MAXO (NSAMP (1) . NSAMP (2) . NSAMP (3))
     NP1=N+1
C
C
     WHITE HEADINGS
C
     WRITE (6,300)
  300 FORMAT (1H0,7X,3HNO.,3X,7HDFNSITY,11H CUMUL. PR.,9H REM. PR.)
     CALL RINKING (NSAMP.PMEAN.PS.CDF.100)
     DO 7 1=1.NP1
     I \cap I = I - 1
     RUF = 1 . 000 - CUF (I)
     WRITE (6,400) IM1,PS(I),CDF(I),RDF
 400 FORMAT (/X, 13, 3F10.4)
   7 CONTIGUE
     SUM1=0.000
     SUH2=0.000
     00 5 I=1,MP1
     FI=DFLOAT(I-1)
     SUM1=SUM1+FI*PS(I)
     ·SUNZ=SUMZ+FI#FI#PS(I)
   5 CONTINUE
     VARS=SUM2-SUD1442
     STDDV=DSQRT (VARS)
     COF VA = STODV/SUM1
     WRITE (6.10) SUELL-STODY.COEVN
  10 FORMAT (1HO + 9X + 6HMEAN . R + 10X + 5HSTDDV , 8x , 7HCOF VAR/3F15.5)
     GO TO 1
  30 CONTINUE
     CALL EXIT
     STOP
     ENO
```

```
SUBROUTINE BINRNG (NSAMP, PMEAN, PS, CDF, NDIM)
C
C
      ************
C
      SUPROUTINE TO OBTAIN THE DISTRIBUTION FUNCTION OF THE RANGE OF A
      BINOLIAL VARIABLE FROM THREE INDEPENDENT EXPERIMENTS, EACH
      OF WHICH CONSISTS OF N BERNOULLI THIALS WITH PROB. PMEAN.
      ******************
      IMPLICIT REAL #8 (A-H+0-Z)
      INTEGER R.S
      DINENSION PS (NDIM) + CDF (NUIM) + PMEAN (3) + NSAMP (3)
C
               SAMPLE SIZE OF THE I TH EXPERIMENTAL SET
      N MIX SAMPLE SIZE OF BERNOULLI EXPERIMENTS
               PROBABILITY DENSITY FUNCTION OF THE RANGE FROM THREE EXPINTS
      PS(IIS)
               THE CUMULATIVE DISTRIBUTION FUNCTION OF THE ABOVE RANGE
      CDF (T'S)
C
      PRESENCE (K. M. PATEAN) IS A FUNCTION WHICH CALCULATES THE BINOMIAL
      P. U. F. FUR AMBUNENT K WITH PARAMETERS N--THE SAMPLE SIZE --
C
      AND PMEAN--THE PROBABILITY OF THE EVENT (SUCCESS) ON A SINGLE TRIAL.
C
      K IS A MEMBER OF THE SET (0.N).
C
      ORDER SAMPLE SIZE FROM LARVEST TO SMALLEST
      Du 20 1=1.2
      IP1=1+1
      DO 30 II=IF1.3
      IF (MSAMP(1).GE. MSAMP(II)) GO TO 31
      NH=NSAMP(I)
      NSAMP (I) = NSAMP (II)
      NSAM (II) =NH
      HULL ( = PHE AN ( I )
      PMEAR(I) = PREAM(II)
      PHEAT (II) =HOLD
   31 CONTINUE
   30 CONTINUE
   20 CONTINUE
      N=NSAMP(1)
C
C
      INITIALIZE THE HANGE-ARGUMENT (NS) LUOP
C
      OGO.O=JATOT
      NP1=1:+1
C
      START NS LOOP
      DO 1 NS=1.NP1
      S=1.S-1
      PSUM=0.000
      START SUMMATION LOOP
      19N - 1 - NP1
      R = NK - 1
C
     CALCULATE THE FIRST FACTOR
C
     FI=PEERH (R, N, PMEAN (1))
C
```

```
-C
       SELECT THE TERMS OF THE SECOND FACTUR
       K1=2-5
       K2=P+S
       1F(K1.LT.0) 60 TO 3
       T1=PPERN(K1+NSAMP(2),PMEAN(2))
       TT1=FUERN(K1.NSAMP(3).PMEAN(3))
      GO TO 4
    3 T1=0.00
       TT1=0.000
    4 IF (K2.GT.N.UR.S.EQ.O) GO TO 5
      TZ=PPERN (KZ+1SAMP(Z) , PMEAN(Z))
      TTZ=PBERH(KZ+HSAMP(3)+PMEAN(3))
      GO TO 6
    5 T2=0.00
      0.00.0=STT
    6 CONTINUE
      F2=T1+T2
      FF2=TT1+TT2
C C C
      DEFINE THE RANGE LIMITS OF THE THIRD FACTOR
      LLOW=MAXO(0,R-S)
      LUPR=51NO(N+K+S)
      IF (LLOW.EQ.O.AML'.LUPR.EU.N) GO TO 8
      F3=0.00
      FF3=0.000
      LLO=LLOx+1
      LUP=LUPR+1
      DO 7 MELLOGLUP
      K3 = K - 1
      F3=F3+PHERN(K3, HSAMP(3), PMEAN(3))
      FF3=FF3+PBERGI(K3+NSAMP(2)+PMEAN(2))
    7 CONTINUE
      GU TO 9
    8 F3=1.000
      FF3=1.000
    9 CONTINUE
      F1=F1*1.020
      F2=F2#1.020
      F3=F3*1.020
      FF2=FF2#1.020
      FF3=FF3*1.020
      PSUM=PSUM+F1*(F2*F3+FF2*FF3-F2*FF2)
    2 CONTINUE
C
C
      END OF SUMMATION LOOP; FILL THE PROPABILITY DENSITY VECTOR PS.
C
      PS(NS)=PSUM#1.D-60
      TOTAL = TOTAL + FS (NS)
      IF (1.000-TOTAL.LE.1.00-5) GO TO 11
    1 CONTINUE
   11 CONTINUE
```

```
NSP1=MS+1
[0 18 I=MSP1+MP1
PS(I)=0.0[0

8 CONTI UE

END OF RANGE-ARGUMENT LOOP; DEVELOP THE CUMULATIVE DISTRIBUTION FUNCTION

CDF(1)=PS(1)
DO 10 I=2+MP1
CDF(1)=CDF(I-1)+PS(I)

CONTINUE
RETURN
END
```

```
C--
    FUNCTION: SUBMOUTINE TO CALCULATE THE VALUE OF THE BINOMIAL PROBA-
С
    BILITY
C
        BINGMIAL COEFFICIENT (N.K)
                                  (P) ##K
                                            (1-P) ** (N-K)
     FUNCTION PSEKN (K+H+P)
     IMPLICIT REAL *8 (A-H+U-Z)
     PEER11=0.000
     IF (K.GT.N) RETURN
     Q = 1.00 - P
     PHERM = UMMI.
     IF (K.EU.0)
                 RETURN
     Do 10 I=1.K
  10 PEERS = PBERN * (UFLOAT (N-I+1)*P) /
                                       (DFLOAT(I) # 0)
     RETURN
     ENO
```

DISTRIBUTION OF THE DISCHETE PANGE FROM THREE SETS OF BERNOULLE TRIALS

SAMPLE	SIZES	ARE:	40 30	30	WITH	TRIAL	. PROBS.:	0.1000	0.1000	0.2500
	NO.	DENSITY	CUMUL. PR.	REM.	PR.					
	t)	0.0065	0.0065	0.9	935					
	ì	0.0562	0.0626		374					
	2	0.1233	0.1560	(J. H	140					
	3	0.1768	0.3627	0.6	373					
	4	0.1865	0.5493	0.4	507					
	5	U.15dl	0.7073	6.2	927					
	6	0.1163	0 236	0.1	764					
	7	0.0777	0.4013		987					
	3	0.0477	0.0496	0.0	510					
	9	0.0268	0.4758		242					
	10	0.0137	0.9895	0.0	105					
	11	0.0063	0.4959	0.0	041					
	12	0.0027	0. 1985	0.0	015					_
	13	0.0010	0.4995	0.0	005					
	14	0.0003	0.4409	0.0	0.01					
	15	0.0001	1.0000	U • ')	000					
	16	0.0000	1.0000	(1.0)	000					
	17	0.0	1.0000	0.0	000			•		
	18	0.0	1.0000	0.0	000					
	19	0.0	1.0000		000					
	20	0.0	1.0000	0.0	000					
	21	0.0	1.0000	0.0	0.00					
	22	0.0	1.0000	(1.0	000					
	23	0.0	1.0000	0.0	000					
	24	9.0	1.0000	$\theta \bullet 0$	000					
	25	0.0	1.000	6.0	000					
	25	0.0	1.0000		0.00					
	27	0.0	1.0000		0.00				·	
	28	0.0	1.0000	0.0	0.00					
	29	u .0	1.0000	0.0	000					
	30	0.0	1.0000		000					
	31	0.0	1.0000		000					
	32.	0.0	1.6000		000					
	33	0.0	1.0000	-	0.00		٠.			
	34	0.0	1.6600		000					
	35	0.0	1.0000		000					
	30	0.0	1.0000		000					
	37	0.0	1.0000		600					
	36	0.0	1.0000		000					
	39	0.0	1.0000		0000					
	40	0.0	1.0000	0.0	(100					
	MEA	N.∙R	STIDOV		COF	VAR				
	4.492		2.21294		0.492					

DISTRIBUTION LIST

Copy No.

	Commander
	US Army Materiel Development and Readiness Command
1	
1	ATTN: DRCRE
1	DRCPA-S
	5001 Eisenhower Avenue
	Alexandria, VA 22333
	Alexandia, VA 22555
	Commander
	US Army Armament Materiel Readiness Command
1	ATTN: DRSAR-CG
1	DRSAR-DCG
1	
	DRSAR-LC
1	DRSAR-LE
1	DRSAR-CP
21	DRSAR-SA
1	DRSAR-PA
1	
	DRSAR-PC
1	DRSAR-PD
1	DRSAR-IM
1	DRSAR-OP
1	DRSAR-QA
1	DRSAR-IS
1	
	DRSAR-MM
1	DRSAR-MA
1	DRSAR-AS
1	DRSAR-SF
	Rock Island, IL 61201
	ROCK ISIAIM, IL 01201
1	0 1
1	Commander
	US Army Armament Research and Development Command
	ATTN: DRDAR-SEA
	Dover, NJ 07801
1	Commander
1	
	US Army Test and Evaluation Command
	ATTN: DRSTE-SY
	Aberdeen Proving Ground, MD 21005
	•
1	Commander
-	US Army Electronics Command
	ATTN: DRSEL-SA
	Fort Monmouth, NJ 07703
1	Commander
	US Army Missile Materiel Readiness Command
	ATTN: DRSMI-D
	Redstone Arsenal, AL 35809

DISTRIBUTION LIST (Cont)

Copy No.

- 1 Commander
 US Army Missile Research and Development Command
 ATTN: DRDMI-DS
 Redstone Arsenal, AL 35809
- 1 Commander
 US Army Tank-Automotive Materiel and Readiness Command
 ATTN: DRSTA-S
 Warren, MI 48090
- 1 Commander
 US Army Tank-Automotive Research and Development Command
 ATTN: DRDTA-V
 Warren, MI 48090
- 1 Commander
 HQ, US Army Aviation Systems Command
 ATTN: DRSAV-D
 P.O. Box #209, Main Office
 St. Louis, MO 64502
- Commander
 US Army Troop Support Command
 ATTN: DRSTS-G
 St. Louis, MO 63120
- Project Manager for Cannon Artillery Weapons Systems ATTN: DRCPM-CAWS
 Dover, NJ 07801
- Commander
 US Army Development and Readiness Command
 Office of the Project Manager for Selected Ammunition
 ATTN: DRCPM-SA
 Dover, NJ 07801
- Project Manager for M110E2
 ATTN: DRCPM-M110E2
 Rock Island, IL 61201
- Project Manager for Air Defense Gun Systems
 ATTN: DRCPM-ADG
 Rock Island, IL 61201
- Product Manager for Production Base Modification and Expansion ATTN: DRCPM-PBM Dover, NJ 07801

DISTRIBUTION LIST (Cont)

Co	ру	No	

- Product Manager for Advanced Attack Helicopter Systems
 US Army Aviation Systems Command
 St. Louis, MO 63166
- Product Manager for AH-1 Cobra Series Aircraft
 US Army Development and Readiness Command
 P.O. Box #209
 St. Louis, MO 63166

Commander

Rock Island Arsenal

- 1 ATTN: SARRI-CO
- 1 SARRI-ADL

Rock Island, IL 61201

- 1 Commander
 Watervliet Arsenal
 ATTN: SARWV-CO
 Watervliet, NJ 12189
- Commander
 Picatinny Arsenal
 ATTN: SARPA-PA-S
 Dover, NJ 07801
- Commander
 Edgewood Arsenal
 ATTN: SAREA-DE-N
 Aberdeen Proving Ground, MD 21010
- Commander
 Human Engineering Laboratories
 ATTN: <u>DRXHE-D</u>
 Aberdeen Proving Ground, MD 21005
- 1 Commander
 US Army Materiel Systems Analysis Activity
 ATTN: DRXSY-D
 Aberdeen Proving Ground, MD 21005
- 1 Commandant
 US Army Field Artillery Center
 Fort Sill, OK 73503

DISTRIBUTION LIST (Cont)

Copy No.

- 1 Commandant
 US Army Infantry School
 Fort Benning, GA 31905
- 1 Commander
 US Army Missile and Munitions Center and School
 Redstone Arsenal, AL 35809
- 1 Commandant
 US Army Air Defense School
 Fort Bliss, TX 79916
- Director
 US Army Management Engineering Training Agency
 ATTN: DRXOM-QA
 Rock Island, IL 61201
- Commander
 US Army TRADOC Systems Analysis Activity
 White Sands Missile Range
 White Sands, NM 88002
- Director
 Advanced Research Projects Agency
 1400 Wilson Boulevard
 Arlington, VA 22209
- 1 Commander
 Defense Logistics Studies Information Exchange
 Fort Lee, VA 23801
- 1 Commander
 US Army Logistics Management Center
 ATTN: DRXMC-LS
 Fort Lee, VA 23801
- 1 Commander
 US Army Logistics Center
 ATTN: ATCL-S
 Fort Lee, VA 23801
- 12 Defense Documentation Center Cameron Station Alexandria, VA 22314