Dynamic Design

ECU 1

1- State Machine Diagram for Each ECU Component

1.1- CAN

1.2- Port

1.3- ADC

Not Finished

1.5- Door Sensor

1.6- Speed Sensor

Not Finished

1.7- Door State Task

1.8- Speed State Task

Important Note:

Communication Manager, Handler and DIO modules are NOT finite state machines as they don't hold any internal data that affects their behavior.

2- State Machine Diagram for The ECU Operation

Assume That the Tasks Execution Time Are equal and = 1ms

$$U = \frac{E_1 + E_2 + E_3}{H} = \frac{1 * 1 + 1 * 2 + 1 * 4}{20} * 100 = 35\%$$

4- The Sequence Diagram for the ECU

ECU2

1- State Machine Diagram for Each ECU Component

1.1. CAN

1.2. Port

1.3. Buzzer

1.4. Lights

Important Note:

Communication Manager, Handler and DIO modules are NOT finite state machines as they don't hold any internal data that affects their behavior.

2- State Machine Diagram for The ECU Operation

3- CPU load for the ECU:

Assume That the Task Execution Time = 2ms

$$U = \frac{E_1}{H} = \frac{2 * 1}{5} * 100 = 40\%$$

For Bus Load: Assume: Frame = 32 bit & bitrate =50 kb/s

So:
$$t_{frame} = Frame * \frac{1}{bitrate} = 32b * \frac{1}{50000} = 640us$$

 $\# of \frac{Frames}{second} = \frac{1000}{5} + \frac{1000}{10} + \frac{1000}{20} = 350f/s so,$
 $BusLoad = 350 * 640us * 100 = 22.4\%$

4- The Sequence Diagram for the ECU

