CONTENTS

SUMMARY	1 1/A5
INTRODUCTION	1 1/A5
SYMBOLS	3 1/A7
PATH OF THE JET	4 1/AB
APPARATUS	5 1/A9
TEST PROCEDURES AND CONDITIONS	6 1/A10 6 1/A10 7 1/A11 7 1/A11 8 1/A12
EXPERIMENTAL RESULTS Scope of Present Investigation Measurements in Symmetry Plane Jet center line Vortex curve Discussion of measurements Measurements in Jet Cross Sections Measurements in Vertical Sections	9 1/A13 10 1/A14 10 1/A14 11 1/B1 12 1/B2 13 1/B6
SUMMARY OF RESULTS	17 1/B7
REFERENCES	19 1/B9
TABLES	22 1/812
FIGURES	29 1/05
APPENDIX A - CALIBRATION OF A YAW-PITCH PROBE	64 1/E12
APPENDIX B - WIND-TUNNEL POSITIONING OF THE RAKE OF YAW-PITCH PROBES	72 1/ F6
ADDENDIY C _ FYDERIMENTALLY DETERMINED UPLOCITIES AND DEESSURES	75 1/F9

111 7 1978

NASA Technical Paper 1087

Induced Velocity Field of a Jet in a Crossflow

Richard L. Fearn and Robert P. Weston

MAY 1978

NASA

1/1/2

Stenc 830-4-15. NAS1.60:1087

NASA Technical Paper 1087

Induced Velocity Field of a Jet in a Crossflow

Richard L. Fearn University of Florida Gainesville, Florida and Robert P. Weston Langley Research Center Hampton, Virginia

Scientific and Technical Information Office

SUMMARY

An experimental investigation of a subsonic round jet exhausting perpendicularly from a flat plate into a subsonic crosswind of the same temperature has been conducted in the Langley V/STOL tunnel. Velocity and pressure measurements were made in planes perpendicular to the path of the jet for ratios of jet velocity to crossflow velocity ranging from 3 to 10. The results of these measurements are presented in tabular and graphical forms. A pair of diffuse contrarotating vortices is identified as a significant feature of the flow, and the characteristics of the vortices are discussed.

INTRODUCTION

During the transition between hover and wing-borne flight, a significant part of the lift of a VTOL aircraft is furnished by direct engine thrust. This injection of a high velocity jet of air at almost right angles to the crossflow caused by the forward motion of the aircraft produces a complicated flow field which affects the aerodynamic characteristics of the aircraft. Several wind-tunnel tests have been conducted to measure these jet-induced effects on the pressure loading and aerodynamic coefficients for specific aircraft configurations. (See refs. 1 to 9.)

Traditionally, investigators have attempted to study this complicated flow field by concentrating on a simplified model in which a subsonic round jet exhausts perpendicularly through a large flat plate into a subsonic crossflow. These studies have application to areas other than V/STOL aerodynamics such as the process of cooling combustion gases in gas-turbine combustors or the discharge of an effluent into a waterway. For several decades experiments have been conducted on certain aspects of this jet in a crossflow problem, namely, the path of the jet (refs. 10 to 17) and the pressure distribution on the flat plate (refs. 15 and 18 to 25). However, the pair of contrarotating vortices, which constitutes one of the dominant features of the velocity field, has only recently received detailed attention (refs. 15, 16, 17, 26, and 27). An extensive bibliography for work done prior to 1969 is given in reference 28.

One motivation for studying a jet in a crossflow is to develop an analytical description of the pressure distribution on the flat plate through which the jet exhausts. It is this aspect of the problem which has direct application to the design of VTOL aircraft. The aerodynamic characteristics of VTOL aircraft could be predicted by incorporating a mathematical model for calculating the pressure distribution on the flat plate into a lifting-surface computer program. Attempts to formulate such models have been hampered by an inadequate description of the flow field for a jet in a crossflow (ref. 29). Only the trajectory of the jet has been conveniently available to those attempting to formulate such models. The models have usually consisted of placing potential flow singularities along the jet center line to model mass entrainment and the vortex pair.

The strengths of these singularities are varied to obtain a best fit to experimentally determined pressure distributions (ref. 30). A description of the physical properties of the vortex pair associated with a jet in a crossflow would represent a significant increase in the information available for the construction of models for calculating the pressure distribution on the flat plate.

In order to avoid wind-tunnel wall effects, most previous experiments have been restricted to jets with rather small diameters of 0.6 to 2.5 cm (0.25 to 1.0 in.). For the present study the large test section of the Langley V/STOL tunnel permitted the use of a relatively large 10.16-cm-diameter (4.0-in.) air jet. The test-section size expressed in jet diameters is comparable with those used by other investigators and wall effects should be negligible over the experimental range of ratios of jet velocity to crossflow velocity (designated "velocity ratio" herein).

The primary purpose of the present study is to provide extensive data suitable for the quantitative description of the flow field associated with a jet in a crossflow. The flow-field properties most clearly display symmetry and other simplifying features when they are studied in jet cross sections. Consequently, most of the velocity and pressure measurements of the present study were made in this manner. Measurements of the three components of velocity and the total and static pressures in the flow field are presented in tabular form. These tables present measurements in numerous cross sections for velocity ratios of 3, 4, 5, 6, 7, 8, and 10 and from 2 to 45 jet diameters downstream of the jet orifice. Measured velocities are used to determine the jet center line and vortex curves over the experimental range of velocity ratios. Selected cross-section measurements of velocity and pressure are displayed in graphical form and the noteworthy features they exhibit are discussed.

The velocity measurements presented in this report have been utilized in two models which infer the properties of the pair of contrarotating vortices from selected velocity measurements and the results have been reported (ref. 27). One model represents the vortices as filaments and yields a measure of lateral spread and strength; the other model additionally accounts for the diffuseness of the vortices. Reference 17 represents the first attempt to provide a quantitative description of the flow-field vorticity for a wide range of velocity ratios.

Three appendixes to the present report are presented. Appendix A by Thomas Trovillion of the University of Florida, Gainesville, Florida, describes the calibration scheme developed for the rake of seven yaw-pitch probes used in the present study for velocity measurements. Appendix B discusses the inaccuracies involved in positioning the rake of probes. Tables of the experimentally determined velocities and pressures for all conditions studied are presented in appendix C.

SIMBOLS

Values are given both in SI Units and U.S. Customary Units. The measurements and calculations were made in U.S. Customary Units.

area of jet orifice, m2 (ft2) jet exit area corrected for nozzle boundary-layer thickness, m2 (ft2) Aj a,b,c curve fitting parameters static-pressure coefficient, (p - p_)/q_ C_{D} total-pressure coefficient, (pt - pt.m)/qm Cp.t D jet diamster, cm (in.) М Mach number static pressure, Pa (lb/ft2) P total pressure, Pa (1b/ft2) Pt. dynamic pressure, Pa (1b/ft2) P R effective velocity ratio defined by equation (1) arc distance along a jet path, m (ft) U,V,W X, Y, and Z components of velocity; denotes components in windtunnel system when no subscript is used, m/sec (ft/sec) U¢ jet center-line speed, m/sec (ft/sec) Ui speed of jet fluid at jet orifice, m/sec (ft/sec) X,Y,Z Cartesian coordinate system denotes wind-tunnel coordinate system when no subscript is used (see fig. 1) distances along X, Y, and Z axes, m (ft) x,y,z strength of each vortex, m2/sec (ft2/sec) Γ angle of inclination of rake sting with respect to adapter sting as θ_s shown in figure 4, deg mass density, kg/m3 (slugs/ft3) P angle between Z axis and probe, deg ΦB

angle between Z and Z_C axes (see fig. 2), deg

 ϕ_{c}

 φ_V angle between Z and Z_V axes (see fig. 2), deg

ω vorticity, sec-1

ωmax maximum vorticity of each diffuse vortex, sec-1

Subscripts:

- B refers to probe
- c refers to jet center line
- j refers to condition at jet orifice
- v refers to vortex curve
- ∞ refers to crossflow condition

An arrow over a symbol denotes a vector.

PATH OF THE JET

Flow visualization is the most convenient method for determining the path of a jet in a crossflow. The jet can be seeded with smoke or water vapor, and the result photographed for a range of velocity ratios. The stippled area shown in figure 1 represents the observed smoke plume for a velocity ratio in the range of 7 to 8 (ref. 14). Note that fitting a curve through such a broad plume of smoke presents some problems in judgment.

A more reliable method of describing the path of the jet is to follow the maximum of the axial component of the jet velocity as the jet is deflected by the crossflow. Called the jet center line, this curve has been defined (ref. 12) as the locus of points of maximum velocity in the plane of symmetry of the flow (XZ plane, fig. 1). By use of this definition, it is possible to obtain a well-defined curve from the jet orifice to the region where the local axial component of the jet velocity has decayed to such a degree that it is experimentally difficult to locate a maximum. This usually occurs around 15 jet diameters downstream of the jet orifice.

Another method of describing the jet path is based on the vortex pair associated with a jet in a crossflow. Such a description, called the vortex curve, may be defined as the projection of the center of either vortex onto the symmetry plane. The location of the vortex curve relative to the jet center line and smoke plume is shown in figure 1. In the region between the two vortices there is constructive interference of the induced velocities that produces an "upwash" velocity component in the plane of the cross section. This "upwash" velocity has a maximum in the symmetry plane along the line joining the two vortex centers and can be used to locate the vortex curve experimentally. The vortex curve is as easily determined experimentally as the jet center line. Since the vortices have been found to be the most persistent feature of the flow, the vor-

tex curve can be determined much farther downstream of the jet orifice than the jet center line. In fact, the definition of the jet center line must be used with care because in some cross-sections the velocity induced by the vortex pair can be comparable with or greater than the local jet center-line speed.

The jet center line and vortex curve are two well-defined curves to describe the path of a jet in a crossflow. Both descriptions are useful and both will be utilized in this report. A plane perpendicular to the jet center line will be called a jet center-line cross section, likewise, for a vortex curve cross section. Figure 2 is a sketch of the two curves and their associated coordinate systems. In general discussion, when it is not desirable to refer to either of these descriptions specifically, the terms jet path and jet cross section will be used.

APPARATUS

This experiment was conducted in the Langley V/STOL wind tunnel which is a closed return atmospheric tunnel with a test section 4.42 m by 6.63 m (14.50 ft by 21.75 ft). Test-section airspeeds for this investigation ranged from 15 m/sec to 62 m/sec (49 ft/sec to 203 ft/sec), or free-stream Mach numbers of 0.04 to 0.18. Jet Mach numbers ranged from 0.32 to 0.93.

The flat plate was originally constructed from a 1.22-m by 2.44-m (4-ft by 8-ft) sheet of 1.91-cm (0.75-in.) plywood with an overlay of 1.59-mm-thick (0.0625-in.) formica on the upper surface. (1.22-m by 2.44-m measurements correspond to 12D by 24D.) A hole for the nozzle was centered midway between the long sides of the plate and 6D aft of its leading edge. Sheet metal fairing was used on the underside of the flat plate to protect the pressure leads and to streamline the jet nozzle-plenum assembly.

The measured velocities presented in this report are the results of two tunnel tests. For the first test, the flat plate was mounted 3D above the tunnel floor. During the second test, a full-span 3D leading-edge extension was added to the flat plate and the plate was mounted 4.5D above the tunnel floor. The purpose of these changes in geometry was to reduce a slight static-pressure gradient which occurred in the vicinity of certain static-pressure ports on the flat plate (ref. 25). The geometry changes had a negligible effect on the velocity field.

The jet of air was formed by using a plenum chamber and a 20:1 convergent nozzle designed to provide a flat velocity profile at the 10.16-cm-diameter (4.00-in.) nozzle exit (ref. 31). In order to measure the static pressure in the jet as close to the plane of the plate as possible, a small ring was installed at the jet orifice with four static-pressure ports spaced equally around the inside surface of this jet exit ring 0.64 cm (0.25 in.) from the exit plane. When the plate was mounted 4.5D above the tunnel floor, a constant-diameter cylindrical extension was used to extend from the convergent nozzle to the jet exit ring. Figure 3 is a sketch of the nozzle-plenum assembly with the extension in place. Supply air for the jet was heated so that the temperature at the jet orifice would be approximately the same as that of the crossflow. A

venturi flowmeter in the air supply line was used to measure the mass flow rate of the jet.

Velocity measurements were made with a rake of seven parallel yaw-pitch probes mounted 5.08 cm (2.00 in.) apart on the leading edge of an airfoil as shown in figure 4. This figure also shows the rake of probes mounted on a 2.54-cm-diameter (1.00-in.) rake sting which could be pivoted and secured at 50 increments with respect to a 5.08-cm-diameter (2.00-in.) adapter sting. Each probe was 20.32 cm (8.00 in.) long and 0.64 cm (0.25 in.) in diameter. Five pressure orifices were located on the hemispherical tip of each probe, and a ring of six interconnected static-pressure ports were located 5.08 cm (2.00 in.) aft of the probe tip. (See fig. 5.) A photograph of the apparatua installed in the wing turnel is shown in figure 6. A remotely driven lead screw was installed in the 15.2-cm-diameter (6.0-in.) wind-tunnel sting to provide about 41 cm (16 in.) of longitudinal movement for the adapter sting rake with respect to the wind-tunnel sting. In figure 6, the adapter sting is in the fully retracted position.

Two boundary-layer survey devices were used to measure the boundary layer on the flat plate. One was comprised of a static-pressure probe and a bank of 6 total-pressure probes spanning 0.4 cm (0.16 in.); the other had 19 total-pressure probes and spanned 4.2 cm (1.65 in.).

All pressures were measured with pressure transducers which were calibrated with water or mercury manometers. The leads from the pressure ports on the probes were connected by plastic tubing to a pressure scanning device mounted inside the wind-tunnel sting. Each device consisted of a single pressure transducer which could be connected sequentially to each of 48 pressure tubes. The output of each pressure transducer was fed into a low pass filter to attenuate fluctuations in the transducer output signal. One second after each static-pressure port was connected to the pressure transducer, the signal from the filter was sampled and recorded on magnetic tape.

TEST PROCEDURES AND CONDITIONS

Jet Nozzle Characteristics

The characteristics of the jet nozzle exhausting into still air were investigated prior to the wind-tunnel experiment. Velocity determinations were made in the exit plane of the jet by separate surveys with a pitot tube and with a static-pressure probe. Velocity distributions were also determined at several jet cross sections downstream of the exit plane by surveys with a pitot-static probe. These studies were made at jet Mach numbers of 0.3, 0.5, 0.8, and 1.0.

P. Saha (ref. 32) has compared the measured velocity distribution for the jet nozzles used in the present experiment with the results of Albertson, Dai, Jensen, and Rouse for a free jet (ref. 33). Reference 33 presents a descriptive model for the free jet based on an assumed Gaussian distribution for the axial velocity component. The experimentally determined parameter in their model is evaluated from the measured jet center-line decay. Figure 7 compares the jet center-line decay of the nozzle used in the present experiment with the results

of reference 33. The present results for $M_{\rm j}$ = 0.3 coincide with those of reference 33, where jet Mach numbers were less than 0.2. There is a noticeable variation in the center-line decay characteristics with jet Mach number. The length of the jet core increases, and the center-line speed decays less rapidly, with increasing Mach number.

Outside of the nozzle boundary layer, the exit plane velocity profile was flat to within 0.5 percent of the velocity measured at the center of the jet. The boundary-layer displacement thickness of the nozzle at the exit plane (without nozzle extensions) was determined experimentally to be $(2.8 \pm 0.5) \times 10^{-3}$ D. There was no noticeable variation of the boundary-layer profile with jet Mach number.

Effective Velocity Ratio

Early investigators (refs. 12 and 13) expressed the properties of a jet in a crossflow in terms of the ratio of jet velocity to crossflow velocity. This is appropriate under certain simplifying conditions; however, in general, it is the ratio of the momentum flux across the jet orifice to the momentum flux of the crossflow over an equal area that is the significant dimensionless parameter. In order to be consistent with the terminology of the early investigations, it is convenient to define an effective velocity ratio as the square root of this ratio of momentum fluxes

$$R = \left(\frac{\int_{A} \rho_{j} U_{j}^{2} dA}{\rho_{\infty} U_{\infty}^{2} A_{j}}\right)^{1/2}$$
(1)

If the density of the two fluids is the same and if U_4 is constant over the jet orifice, then equation (1) reduces to the ratio of jet velocity to crossflow velocity. It should be noted that the reciprocal of equation (1) is used by some investigators and is usually referred to by the same name.

Other useful equations for the effective velocity ratio can be obtained from equation (1). Some of these variations and their application to the present investigation are discussed in reference 25. For presentation of results in this report, the appropriate simplification of equation (1) is $R = M_{\hat{j}}/M_{\infty}$. This relationship results from the assumption of a jet with flat velocity profile expanding isentropically from plenum total pressure to the crossflow static pressure. It also provides consistent comparison with data from the other investigators who calculate their velocity ratios in a similar way.

Calibration of Yaw-Pitch Probes

Large angles (over 45°) were encountered between individual probes and the direction of local airflow when the rake of probes was positioned in planes perpendicular to the jet path. A separate wind-tunnel test was conducted to provide calibration data for a large range of flow angularity. Figure 8 is a photograph of the rake of probes and sting arrangement for the calibration test. The U-shaped sting allowed the probes to remain in the same tunnel location as

the vertical sting was rotated about its axis to provide a range of tunnel yaw angles. The roll position of the rake could be changed manually by rotating the rake airfoil with respect to the rake sting. This rotation enabled the tunnel yaw degree of freedom to be used for both yaw and pitch sweeps of the rake. Data for flow angles in the range of -65° to +65° in both yaw and pitch were taken. Additionally, selected measurements were taken over a tunnel yaw range for intermediate roll positions of the rake. This was done to check the calibration scheme developed from the rake yaw and pitch data. Most of the measurements were made at a tunnel airspeed of 40 m/sec (131 ft/sec) but selected measurements were repeated at an airspeed of 68 m/sec (223 ft/sec) to verify that the calibration did not depend on tunnel airspeed.

A calibration scheme based on potential-flow theory is presented in appendix A. In this scheme, the potential-flow solution for uniform flow over a sphere is generalized to provide equations relating the pressure distribution on the hemispherical tip of each probe to the flow velocity. The undetermined parameters in these equations are evaluated from the calibration data. Based on the results of the calibration experiment, it is estimated that errors in determining flow angularity are usually less than a degree or two, errors in determining airspeed rarely exceed 5 percent, and errors in determining static and total pressure are usually less than 10 percent. These error estimates are for uniform flow with flow angularity within the range of the calibration experinent. They do not include the effects of high turbulent intensity such as are encountered throughout the jet plume or of large velocity gradients such as are encountered near the jet orifice. No estimates of the errors due to these effects have been made. However, in an attempt to reduce the errors due to large pressure gradients in the flow, only pressure measurements from the probe tip have been used in this calibration scheme.

Data Acquisition in Jet Cross Sections

Flow-field measurements for a jet in a crossflow most clearly display identifiable characteristics and other simplifying features when they are made in cross-section planes through the jet plume. For this reason, most of the velocity and pressure measurements of the present study were made in this manner. Table 1 summarizes the extent of the flow-field measurements of the present study and for three other experiments in tunnels of various sizes. All have emphasized data acquisition in jet cross sections for a range of velocity ratios and represent a range of jet diameters from 0.64 to 10.16 cm.

The decision to measure velocities in planes perpendicular to the jet path placed stringent requirements on the location and orientation of the rake of probes. These requirements had to be reconciled with the realities of the experimental arrangement in such a way that the test could be performed in a reasonable length of time. The types of motion available through the tunnel sting system had to be augmented by equipment designed specifically for this experiment. The problem of positioning the rake of probes and the errors in probe placement due to compromises made to utilize available equipment are presented in appendix B. Based on the results of this analysis, it is estimated that the inaccuracy in probe placement in any direction rarely exceeded 0.1D.

EXPERIMENTAL RESULTS

Scope of Present Investigation

The data presented in this report were taken during two wind-tunnel tests. The primary purpose of the first test was to acquire enough velocity measurements in each of a few jet cross sections to describe the local properties of the pair of contrarotating vortices associated with a jet in a crossflow for effective velocity ratios of 4 and 8. These measurements represented one of the first attempts to describe these vortices quantitatively. Velocity measurements were taken at approximately 1350 locations in eight jet cross sections. The vortices were found to be much more diffuse than aircraft wing-tip vortices, and only the four largest cross sections of this test were extensive enough to include the entire region of significant vorticity. The results of this test made clear the magnitude of the task of providing a straightforward numerical description of the vortex pair as it develops from one cross section to another and for a range of effective velocity ratios. Also included in the first test were velocity measurements in several vertical sections in the jet-wake region.

After conducting the first experiment, it was apparent that further progress depended on the development of a scheme for inferring the vortex properties from a relatively small sample of velocity measurements. Two models were developed to accomplish this: one assumed that the contrarotating vortices behave like vortex filaments, and the other, that they behave like diffuse vortices with a specific distribution of vorticity (ref. 27). The location, strength, and diffuseness (for the diffuse vortex model) of the vortices were to be determined at a cross section by selected velocity measurements in that cross section. The vortex filament model required only a few velocity measurements in the plane of flow symmetry; whereas the diffuse vortex model required additional velocity measurements out of the symmetry plane.

The primary purpose of the second test was to acquire sufficient velocity measurements to infer the properties of the vortex pair at several cross sections for each of a series of effective velocity ratios. In this second test, a distinction was made between data acquired to determine the location and decay of the jet center line and data acquired to infer the properties of the vortex pair. Results of the first test and the work of Thompson (ref. 15) were used to estimate the location of the vortex curve. During the second test, velocity measurements were made at approximately 1150 locations in 26 cross sections for use in the diffuse vortex model. The velocity was also measured in the symmetry plane in an additional 61 cross sections for use in the vortex filament model. These velocity measurements were made for effective velocity ratios of 3, 4, 5, 6, 7, 8, and 10. Additional velocity measurements were made in the symmetry plane to verify the location of the jet center line for each velocity ratio. The extent and conditions for these two tests are presented in table 2.

The measured velocities, static pressures, and total pressures for these two tests are presented in appendix C (tables C1 to C4).

Measurements in Symmetry Plane

Jet center line.— Determination of the jet center line has been one of the primary objectives of many theoretical and experimental studies of a jet in a crossflow. Its determination is included in the present study to supplement the description of the vortex pair associated with the jet and to provide a means of comparison with the results of other experiments.

An experimental determination of the jet center line is straightforward. As the jet is deflected by the crossflow, the velocity in the jet decays rapidly to values comparable with the crossflow velocity. This deflection and decay of the axial component of velocity in the jet can be detected by suitable placement of velocity measuring probes in the plane of flow symmetry (XZ plane). An initial estimate of the jet center line, obtained from the results of other experiments (ref. 14), was used to position the rake of probes for the wind-tunnel experiment. The value and location of the maximum axial component of velocity at each rake location can be determined by fairing a curve through the measured values of $U_{\rm B}/U_{\infty}$. The locus of points of these maxima for a given velocity ratio determines the jet center line.

An iterative process was utilized in which this curve serves as a first approximation to the jet center line. The axial components of the measured velocities in cross sections to this curve were used to define a second approximation to the jet center line. Such a process could be continued until negligible changes in the curve resulted. However, because of the nature of the velocity field in the region of the jet center line, the first approximation was found to provide an adequate description of the jet center line.

Table 3 presents the results of the jet center-line study. The location and orientation of the rake, the location of the jet center line, the final cross-section angle, and the maximum axial velocity are presented for each cross section studied. For cross sections sufficiently far from the jet orifice, measurements from all seven probes are used to determine the center-line properties. For cross sections close to the jet orifice $(x/D \le 2)$, large velocity gradients are encountered for which the probe spacing is sometimes too great to provide a precise description of the velocity profile in the vicinity of the center line. However, it is thought that the three probes closest to the maximum measured velocity provide an adequate description of the center-line properties. For most of the cross sections, information from four or more probes is used to determine the jet center-line properties.

The jet center-line decay properties are indicated in figure 9. In this figure, the quantity $(U_{\xi}-U_{\infty}\cos\phi_{C})/(U_{j}-U_{\infty}\cos\phi_{C})$ is plotted against are distance along the jet center-line curve. This curve represents an attempt to display the jet center-line decay in a manner which would be compatible with a coflowing jet in the limit as ϕ_{C} approaches zero. Figure 9(a) compares the results of the present study with the results of Kamotani (ref. 17) for an effective velocity ratio of 8. Also shown in figure 9 are the center-line decay properties of the jet when there is no crossflow (free jet). The effect of jet Mach number on the decay properties which is apparent with no crossflow (see fig. 7) is considered to be secondary to the effect of the velocity ratio for a jet in a crossflow. Selected measurements at different jet Mach numbers support this

assumption. Figure 9(b) presents the decay of the jet center-line speed for effective velocity ratios of 3, 6, and 10. The trend of the data shows an increased amount of jet decay as effective velocity ratio decreases. The results for velocity ratios of 3 and 10 serve as an envelope for the decay properties of the intermediate velocity ratios of the present study.

<u>Vortex curve.</u> The vortex curve partially describes the location of the vortex system associated with a jet in a crossflow. The diffuse contrarotating vortices which form near the jet orifice are carried downstream along trajectories which depend on the velocity ratio. The vortex pair induces a velocity field in the plane of a vortex cross section which is easily detected experimentally (ref. 16). Along the line of intersection of the symmetry plane with a vortex curve cross section (Z_V axis, fig. 2), the W_V velocity distribution induced by the vortices exhibits a maximum at the point of intersection of the vortex curve with the cross section as indicated in sketch (a).

This symmetry plane behavior provides a simple experimental means of determining vortex position at a particular rake location. In practice, self-consistent results were achieved with an iterative technique similar to that used to determine the jet center line. To obtain the velocity measurements needed in this approach, an initial estimate of the vortex curve was used to position the rake of probes. The point at which the velocity component along the initial $Z_{\rm V}$ axis reached a maximum supplied a first approximation to the vortex position. The locus of these points for a given effective velocity ratio defined a new vortex curve. The measured velocities were next projected into a coordinate system defined by the revised vortex curve and this process was continued until there was a negligible change in the location of the vortex curve. The results of the vortex curve determination are shown in table 4. The location and crientation of the rake, the location of the vortex curve, the arc length along the vortex curve, and the final cross-section angle are presented for each condition that resulted in useful information.

<u>Discussion of measurements.-</u> Both the jet center line and the vortex curve can be described adequately by an equation of the form

$$z/D = aR^b(x/D)^c$$
 (2)

The parameters a, b, and c can be determined by fitting this equation in a least-squares sense to values for the center-line and vortex-curve locations from tables 3 and 4, respectively. For a given velocity ratio, only location values for a single crossflow velocity were used in determining the parameters. In the tables, the superscript b denotes supplemental data at alternate crossflow velocities and at positions for which the velocity measurements yielded locations of marginal reliability. The parameter values which resulted are $a_{\rm C}=0.9751$, $b_{\rm C}=0.9095$, $c_{\rm C}=0.3385$, $a_{\rm V}=0.3515$, $b_{\rm V}=1.122$, and $c_{\rm V}=0.4293$. The root-mean-square deviations of the points used to determine the parameters from the resulting center line and vortex curves are 0.19D and 0.26D, respectively. The slight differences between parameter values listed for equation (2) and those presented in reference 27 are due primarily to a minor improvement in the probe calibration scheme.

Figure 10 provides a visual indication of the quality of the fit of the equation to the tabular values. The results of the center-line and vortex-curve determinations are presented for effective velocity ratios of 3, 4, 5, 6, 7, 8, and 10. Also included are Margason's curves for the jet center line (ref. 14) which were used as a guide in positioning the rake of probes for the present study. In figure 11, the scales of the ordinates are dimensioned so that the experimentally determined jet center lines or vortex curves for all effective velocity ratios each collapse to a single curve. (See eq. (2).) This figure is used to compare the results of the present study with the results of other experiments. Agreement among the results of Harms (ref. 26), Thompson (ref. 15), Kamotani and Greber (ref. 16), and the present experiment are good. These four experiments represent a range of jet diameters from slightly over 0.5 cm (0.3 in.) to about 10 cm (4 in.) and a variety of test conditions and velocity measuring apparatus.

Some appreciation for the information contained in the symmetry plane data and for the shortcomings of the present study can be inferred from figure 12. Shown in this figure are some of the measured velocities displayed as vectors in the plane of flow symmetry for effective velocity ratios of 4 and 8. The velocity was measured twice at each point; whenever the arrows for the two measurements are resolvable in the figure, they are drawn separately. One of the first things to note from this figure is that in most cases the velocity measurements are repeatable to a reasonable degree. Variations large enough to show up in this figure occur mainly for cross sections in regions of large velocity gradients near the jet orifice. As one approaches the jet orifice, the pressure and velocity gradients become large enough to cause one or more of the following difficulties: (1) the probe spacing becomes too large to define the velocity profile adequately for determining the center-line or vortex-curve location at a cross section; (2) appreciable errors are introduced in the iterative technique used to determine the center line and vortex curve; and (3) errors in the velocity determination itself are introduced because of significant pressure changes over distances comparable with the physical dimensions of the probe head. Some evidence of the first two difficulties is encountered for low velocity ratios at

cross sections near x/D = 2. In the region from $x/D \approx 2$ to $x/D \approx 12$, the pressure gradients are not too severe for the apparatus and techniques used in the present study. The properties determining the jet center line and vortex curve are apparent: the axial velocity in the jet is noticeably larger than the crossflow speed, and the change in direction of the velocity vectors is discernible in the vicinity of the vortex curve. In this region, the span of the rake is large enough and the probe spacing small enough to adequately describe the velocity profile determining either curve if the rake is well placed. For the region x/D > 12, the axial velocity of the jet in the vicinity of the jet center line has decayed to such a degree that it is difficult to determine the center-line location. Although the change in the direction of the velocity due to the contrarotating vortices is still evident, the span of the rake of probes is not large enough to provide an adequate description of the velocity profile locating the vortex curve. In addition to the broadening of the velocity profile used in determining the vortex curve, the initial placement of the rake of probes was not very accurate because of a lack of prior knowledge about the vortex structure. Although the present study attempted to detect the vortex curve location to x/D = 45, the results in this region are sketchy. The difficulties encountered in this region could be corrected by forming larger cross sections by multiple placement of the rake of probes.

Measurements in Jet Cross Sections

The results of velocity measurements in the plane of flow symmetry are useful in determining the jet center-line and vortex curves which serve to locate the jet plume as a function of the effective velocity ratio. A more detailed description of the flow structure of a jet in a crossflow requires additional velocity and pressure measurements out of the plane of flow symmetry. Table C3 presents velocity and pressure measurements for 45 cross sections over a range of velocity ratios from 3 to 10.

The results of extensive measurements in two cross sections for an effective velocity ratio of 4.0 and in three cross sections for an effective velocity ratio of 8.0 are presented in figures 13 to 17. Each figure presents a graphical description of the flow field at a given cross section in four parts: (a) contours of constant total pressure, (b) contours of constant velocity component perpendicular to the cross section superimposed with a vector plot of the projections of measured velocities onto the cross section, (c) contours of constant vorticity, and (d) contours of constant static pressure. This series of figures represents the results of measurements in the five largest cross sections of the present study. These cross sections were obtained by multiple sweeps (in lateral direction) with the rake of seven yaw-pitch probes. Each cross section in figures 13 to 17 is located by specifying the location of one point of measurement in the plane y = 0 and the angle of inclination of the cross section. The reference point chosen is the location of the center probe of the rake for the lowest sweep of the cross section. Although most measurements were made in the half-plane $y \ge 0$, some measurements were made for y < 0to verify that y = 0 is a plane of mirror symmetry for the flow. Figure 12 provides a visual indication of the locations of these multiple sweep cross sections. Included are cross sections relatively near the jet orifice where gradients are large, and one cross section sufficiently far downstream that the jet

center-line speed has decayed to such a degree that locating the jet center line would be difficult.

Since many of the properties of the jet appear to be functions of arc length along the jet center line or vortex curve, it is convenient to locate each cross section by its intersection with one of these curves. The following table provides this information:

Figure	Effective velocity	Cross- section	locat	rence		ersecti n cente line		with	ersecti vorte curve		u _ę /u _∞
	ratio	angle, deg	x/D	z/D	x/D	z/D	s _c /D	x/D	z/D	s _v /D	
13 14 15 16 17	4.0 4.0 8.0 8.0 8.0	32 15 42 30 20	4.16 9.22 7.60 10.00 15.18			9.74	12.1 10.7 14.2	9.07 5.20 8.34		10.6 9.6 13.1	

Each of the physical quantities presented in this series of figures provides a partial description of the structure of a jet in a crossflow. It is useful to discuss the type of information to be gained from each quantity.

The total-pressure coefficient is the easiest flow parameter to measure and the description of the jet developing into a characteristic kidney shape is based on the shape of contours of constant total pressure in the neighborhood of the jet center line. (See refs. 12 and 13.) These contours can serve to locate the jet center line (highest value) and the wake region (negative values). The region unaffected by viscous effects of the jet would be characterized by a constant zero value of the total-pressure coefficient. In this region a potential flow model for the far-field effects of the jet would be applicable.

Measuring the three-dimensional velocity field in a cross section is considerably more difficult than measuring the total pressure. The attempt to display the velocity field for several cross sections represents a major effort of the present investigation. The velocity component perpendicular to a cross section is presented as contours of the dimensionless velocity $U_B/U_{\tilde{q}}$, where $U_{\tilde{q}}$ is the jet center-line speed for that cross section. (See table 3.) These contours can be used to determine the jet center-line location, and their shape in the neighborhood of the jet center line also exhibits the characteristic kidney shape attributed to a jet in a crossflow. The component of the free-stream velocity perpendicular to the cross section is represented by the contour $(U_{\infty}/U_{\tilde{q}})$ cos ϕ_B and can be used to identify the region where the jet has negligible effect on this component of the velocity. Values of this quantity for the large cross sections are

Figure	13	14	15	16	17
$(U_{\infty}/U_{\xi}) \cos \phi_B$	0.52	0.83	0.38	0.59	0.85

Projections of the velocity onto the cross section for each point of measurement are presented as arrows. The arrow plots show very clearly that the vorticity is a significant feature of the flow; one that is not evident from total-pressure measurements and consequently was overlooked or ignored in many early studies of a jet in a crossflow. The presence of an "upwash" along the line y=0, which serves to locate the intersection of the vortex curve with each cross section, is also apparent.

The role of vorticity in describing the structure of a jet in a crossflow is clarified by calculating the component of vorticity perpendicular to a cross section and displaying this information as contours of constant vorticity. In these figures the vorticity is nondimensionalized by the maximum value encountered in each cross section. In terms of the vorticity contour plots, the region of interest is shifted from the neighborhood of the center line to the region near the vortex curve. The shape of the jet in a crossflow as characterized in this manner is simply a pair of contrarotating vortices which are rather diffuse in nature.

The measurements of static pressure are presented as contours of constant static-pressure coefficient. These contours provide still a different representation of the structure of a jet in a crossflow.

Some specific observations on the structure of a jet in a crossflow can be made from the information presented in figures 13 to 17. The decay and diffusion of the various properties from one cross section to another for a given velocity ratio are apparent. Total pressure, static pressure, and normal velocity component all decay much more rapidly than the vorticity. At the location of the cross section presented in figure 17, there is little effect other than that produced by the pair of diffuse vortices.

With the exception of figure 17, there is a well-defined wake region as evidenced by negative total-pressure coefficients. For both velocity ratios this region extends toward the flat plate as far as measurements were taken. The lateral extent of the wake region appears to be about two jet diameters to either side of the symmetry plane for an effective velocity ratio of 4 and somewhat less for a velocity ratio of 8. The wake regions in figures 13 and 15 are characterized by a small region of retarded flow between the intersections of the center line and vortex curve with the cross section. For figure 13 (R = 4), the fluid speed in this region is about one-half the free-stream speed and for figure 15 (R = 8), it is approximately equal to the free-stream speed. This could be the remnant of a dead air or backflow region caused by separation of the flow around the jet boundary near the flat plate.

The presence of a pair of contrarotating vortices is evident from the arrow plots and vorticity contours for all five cross sections. Figure 17 shows that these vortices are the most persistent feature of a jet in a crossflow. They are clearly in evidence in that figure whereas the other properties have decayed to a degree that it is difficult to detect their deviation from free-stream values. The vortices are stronger for an effective velocity ratio of 8 than for a velocity ratio of 4, as indicated by comparing figures 14 and 16. In figures 15, 16, and 17, there is evidence of an axial flow in the core of each

vortex which decays less rapidly than the center-line speed. This axial speed in the vortex core actually exceeds the center-line speed in figures 16 and 17. The vortex core is also characterized by negative static-pressure coefficients in all three cross sections for R=8. For an effective velocity ratio of 4, the vortices are apparently not as well developed. There is no evidence of axial flow in the vortex core for either cross section (figs. 13(b) and 14(b)). The negative static pressure associated with the vortex core is apparent in figure 13 but not in figure 14. The strengths of the vortices at each cross section can be estimated by calculating the flux of vorticity through the half-plane $y \ge 0$. This calculation yields the following results:

Figure	13	14	15	16	17
Γ/2DU _∞	1.7	1.1	5.0	4.8	3.1

Such a direct calculation from measured velocities has the disadvantage that the extent of measurements may not be large enough to account for all the vorticity. With the exception of figure 17, these cross sections appear to be large enough to account for almost all the vorticity. The direct calculations indicate that the vortex strength is a function not only of effective velocity ratio, but also of cross-section location.

Although the information presented in figures 13 to 17 provides some insight into the nature of the flow for a jet in a crossflow, the figures fall far short of providing a usable quantitative description of the flow for a range of effective velocity ratios. These figures do serve, however, to identify the distribution of vorticity as both the simplest and most persistent feature of a jet in a crossflow.

Measurements in Vertical Sections

In an attempt to learn something about the wake region velocity and pressure distribution, measurements were made in a few vertical sections for effective velocity ratios of 4 and 8. The rake of probes was positioned so that the lowest probe was 0.25D above the flat plate. In particular, evidence was being sought for a pair of relatively weak vortices that extend downstream from the jet orifice and remain quite close to the plate. (See ref. 34.) Measurements were made in the vertical sections x/D = 4, 6, and 8 for both velocity ratios and at x/D = 12 for an effective velocity ratio of 8. The measured velocities and pressures are presented in appendix C. (See table C3.)

Figures 18 and 19 present the results of measurements in the vertical section x/D=4 for effective velocity ratios of 4 and 8. The information is presented as contour and arrow plots as described in the previous section with the exception that the vorticity and C_p contour plots are omitted due to their lack of information. The proximity of the jet plume to the flat plate for R=4 appears to cause significant qualitative differences in the wake region in comparison with the wake region for R=8. For R=4, the vortex curve intersects the vertical section at z/D=3.1 ($z_B/D=1.3$) as shown in fig-

ure 18. For R=8, however, the vortex curve intersects the vertical section at z/D=6.6 which is considerably above the region of measurement shown in figure 19.

The wake region, as evidenced by negative total-pressure coefficients, extends to the flat plate as shown in the (a) parts of figures 18 and 19. In the vicinity of the symmetry plane, the wake region for an effective velocity ratio of 4 is characterized by more negative values of the total-pressure coefficient than for a velocity ratio of 8. For R=4, the contours of constant total pressure are approximately vertical from about 0.5D above the plate to the region influenced by the vortex pair. This result implies a very small vertical gradient of total pressure in this region. The wake appears to spread laterally in the region immediately above the plate as evidenced by the outward curve of total-pressure contours as they approach the plate. For R=5, there are noticeable vertical gradients of the total pressure. A spreading of the wake near the plate similar to that for R=4 is observed, but the total pressure continues to increase with increasing vertical distance throughout the region of measurement. This condition can be characterized as a pinching of the wake region between the flat plate and the vortex system.

The velocity induced by the contrarotating vortex pair is seen clearly from the arrow plots in the (b) parts of figures 18 and 19. Calculation of the x-component of the vorticity from the measured velocities indicates no significant vorticity other than that due to the vortex pair near the top of figure 18(b) for R=4. For R=8, the region of significant vorticity lies a few jet diameters above the region of measurement. The bottom row of arrows for each figure, however, suggests the possibility of a very weak and very small vortex system near the symmetry plane (y=0) and within D/4 of the flat plate. It is important to note that in neither figure does the region of measurable vorticity extend to the immediate vicinity of the flat plate. For the purposes of calculating the flat-plate pressure distribution, it should, therefore, be possible to account for the effect of the diffuse vortex pair by treating them as vortex filaments.

The measurements from other vertical sections in the wake region are qualitatively similar to those presented in figures 18 and 19. As one would expect, there is a gradual recovery in total pressure and in the x-component of the velocity, but the deficit in each remains measurable.

SUMMARY OF RESULTS

The purpose of the present investigation is to make available a detailed description of the flow field induced by a jet in a crossflow and to provide a quantitative description of the vortex system which forms a prominent and persistent feature of the flow field. To accomplish this, velocity measurements were made in numerous cross sections for a range of velocity ratios. From these measurements the simplifying features of the vorticity distribution were noted and modeled. The inferred vortex properties are presented in a paper by the authors (AIAA J., vol. 12, no. 12, 1974). By using these models, the distribution of vorticity could be determined in a given cross section by a relatively

small number of velocity measurements. The specific results of the present study are:

- 1. The jet center-line location and the decay of the jet center-line speed are determined for a range of velocity ratios from 3 to 10. These are well-established properties of a jet in a crossflow and the agreement between the results of the present study and those of other experiments is satisfactory.
- 2. An alternate means of locating the jet plume, called the vortex curve, is presented. This curve locates the trajectory of the vortex pair associated with the jet, and it is experimentally detectable farther downstream than the jet center line. The vortex curve lies between the center line and the flat plate.
- 3. Measured values of total pressure, static pressure, and velocity are presented for 188 jet cross sections over a range of velocity ratios from 3 to 10 and from 2 to 45 jet diameters downstream of the jet orifice. Vertical sections near the flat plate are presented at an additional seven locations for velocity ratios of 4 and 8.
- 4. Extensive measurements in two cross sections for a velocity ratio of 4 and in three cross sections for a velocity ratio of 8 illustrate clearly the presence of a pair of diffuse contrarotating vortices which decrease in strength with increasing distance from the jet orifice. At a given downstream location the strength of one of the vortices for a velocity ratio of 8 is four to five times as strong as for a velocity ratio of 4. There is a measurable low static pressure in the cores of the vortices for a velocity ratio of 8 and also an axial flow in the vortex core which exceeds that of the region outside the core.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
November 9, 1977

REFERENCES

- Otis, James H., Jr.: Induced Interference Effects on a Four-Jet VTOL Configuration With Various Wing Planforms in the Transition Speed Range. NASA TN D-1400, 1962.
- Vogler, Raymond D.: Interference Effects of Single and Multiple Round or Slotted Jets on a VTOL Model in Transition. NASA TN D-2380, 1964.
- Hickey, David H.; Kirk, Jerry V.; and Hall, Leo P.: Aerodynamic Characteristics of a V/STOL Transport Model With Lift and Lift-Cruise Fan Power Plants. Conference on V/STOL and STOL Aircraft, NASA SP-116, 1966, pp. 81-96.
- Spreeman, Kenneth P.: Free-Stream Interference Effects on Effectiveness of Control Jets Near the Wing Tip of a VTOL Aircraft Model. NASA TN D-4084, 1967.
- Margason, Richard J.; and Gentry, Garl L., Jr.: Aerodynamic Characteristics
 of a Five-Jet VTOL Configuration in the Transition Speed Hange. NASA
 TN D-4812, 1968.
- Barrack, Jerry P.; and Kirk, Jerry V.: Low-Speed Characteristics of High-Performance Lift-Engine V/STOL Aircraft. [Preprint] 680644, Soc. Automot. Eng., Oct. 1968.
- 7. Winston, Matthew M.: Wind-Tunnel Data From a 0.16-Scale V/STOL Model With Direct-Lift and Lift-Cruise Jets. NASA TM X-1748, 1969.
- Carter, Arthur W.: Effects of Jet-Exhaust Location on the Longitudinal Aerodynamic Characteristics of a Jet V/STOL Model. NASA TN D-5333, 1969.
- Mineck, Raymond E.; and Margason, Richard J.: Pressure Distribution on a Vectored-Thrust V/STOL Fighter in the Transition-Speed Range. NASA TM X-2867, 1974.
- Callaghan, Edmund E.; and Ruggeri, Robert S.: Investigation of the Penetration of an Air Jet Directed Perpendicularly to an Air Stream. NACA TN 1615, 1948.
- 11. Ruggeri, Robert S.; Callaghan, Edmund E.; and Bowden, Dean T.: Penetration of Air Jets Issuing From Circular, Square, and Elliptical Orifices Directed Perpendicularly to an Air Stream. NACA TN 2019, 1950.
- Jordinson, R.: Flow in a Jet Directed Normal to the Wind. R. & M. No. 3074, Brit. A.R.C., 1958.
- Keffer, J. F.; and Baines, W. D.: The Round Turbulent Jet in a Cross-Wind. J. Fluid Mech., vol. 15, pt. 4, Apr. 1963, pp. 481-497.
- 14. Margason, Richard J.: The Path of a Jet Directed at Large Angles to a Subsonic Free Stream. NASA TN D-4919, 1968.

- Thompson, A. M.: The Flow Induced by Jets Exhausting Normally From a Plane Wall Into an Airstream. Ph. D. Thesis, Univ. of London, 1971.
- Kamotani, Yasuhiro, and Greber, Isaac: Experiments on a Turbulent Jet in a Cross Flow. AIAA J., vol. 10, no. 11, Nov. 1972, pp. 1425-1429.
- Kamotani, Yasuhiro, and Greber, Isaac: Experiments on a Turbulent Jet in a Cross Flow. FTAS/TR-71-62 (NASA Grant NGR-36-027-008), Case Western Reserve Univ., June 1971. (Available as NASA CR-72893.)
- 18. Vogler, Raymond D.: Surface Pressure Distributions Induced on a Flat Plate by a Cold Air Jet Issuing Perper Jicularly From the Plate and Normal to a Low-Speed Free-Stream Flow. NASA TN D-1629, 1963.
- Bradbury, L. J. S.; and Wood, M. N.: The Static Pressure Distribution Around a Circular Jet Exhausting Normally From a Plane Wall Into an Airstream. C.P. No. 822, Brit. A.R.C., 1965.
- 20. Gelb, G. H.; and Martin, W. A.: An Experimental Investigation of the Flow Field About a Subsonic Jet Exhausting Into a Quiescent and a Low Velocity Air Stream. Can. Aeronaut. & Space J., vol. 12, no. 8, Oct. 1966, pp. 333-342.
- 21. Wu, J. C.: McMahon, H. M.; Mosher, D. K.; and Wright, M. A.: Experimental and Analytica. Investigations of Jets Exhausting Into a Deflecting Stream. J. Aircraft, vol. 7, no. 1, Jan.-Feb. 1970, pp. 44-51.
- 22. Soullier, A.: Testing at S1.MA for Basic Investigations on Jet Interactions. Distribution of Pressures and Velocities in the Jet Using the Ideal Standard Nozzle (in Unheated State). NASA TT F-14072, 1972.
- 23. Soullier, A.: Testing at S1.MA for Basic Investigations on Jet Interactions Distribution of Pressures Around the Jet Orifice. NASA TT F-14066, 1972.
- 24. Ousterhout, Donald S.: An Experimental Investigation of a Cold Jet Emitting From a Body of Revolution Into a Subscric Free Stream. NASA CR-2089, 1972.
- 25. Fearn, Richard; and Weston, Robert P.: Induced Pressure Distribution of a Jet in a Crossflow. NASA TN D-7916, 1975.
- 26. Harms, L.: Experimental Investigation of the Flow Field of a Hot Turbulent Jet With Lateral Flow. Part II. NASA TT F-15706, 1974.
- 27. Fearn, Richard; and Weston, Robert P.: Vorticity Associated With a Jet in a Cross Flow. AIAA J., vol. 12, no. 12, Dec. 1974, pp. 1666-1671.
- 28. Margason, Richard J.; and Fearn, Richard: Jet-sake Characteristics and Their Induced Aerodynamic Effects on V/STOL Aircraft in Transition Flight. Analysis of a Jet in a Subsonic Crosswind, NASA SP-218, 1969, pp. 1-18.

- Rubbert, P. E.; and Saaris, G. R.: A General Three-Dimensional Potential-Flow Method Applied to V/STOL Aerodynamics. [Preprint] 680304, Soc. Automot. Eng., Apr.-May 1968.
- Wooler, P. T.; Kao, H. C.; Schwendemann, M. F.; Wasson, H. R.; and Ziegler, H.: V/STOL Aircraft Aerodynamic Prediction Methods. Vol. I - Thoretical Developments of Prediction Methods. AFFDL-TR-72-26, Vol. I, U.S. Air Force, Jan. 1972.
- Smith, Richard H.; and Wang, Chi-Teh: Contracting Cones Giving Uniform Throat Speed. J. Aeron. Sci., vol. 11, no. 4, Oct. 1944, pp. 356-360.
- Saha, Pranab: Characteristics of a Round Turbulent Free Jet. M.S. Thesis, University of Florida, 1975.
- Albertson, M. L.; Dai, Y. B.; Jensen, R. A.; and Rouse, Hunter: Diffusion of Submerged Jets. Paper No. 2409, Trans. American Civil Eng., vol. 115, 1950, pp. 639-644.
- 34. Flows With Large Velocity Fluctuations. ONERA Film No. 575.

TABLE 1.- SOME RECENT EXPERIMENTS WITH MEASUREMENTS

IN JET CROSS SECTIONS

Investigators	Jet diameters, cm	Tunnel test-section size, D				Number of cross sections	Approximate number of velocity and pressure determinations		gr si	10	al
Kamotani and Greber, 1971 (refs. 16 and 17) ^a	0.64	112	×	112	4 6 8	3 3	100 150 150		1	×	1
Thompson, 1971 (ref. 15)	2.54	48	×	60	2 4 8	5 5 4	650 800 700		2	×	1 2
Harms, 1973 (ref. 26)a	5.0	60	×	60	8	2	500	1	2	×	1
Presen⁺ ⊿tudy	10.16	44	×	65	3 4 6 8 10	3 13 6 9	119 700 217 1358 126		2	×	1/2

^aHot jets studied also but are not reflected in this table.

TABLE 2.- SUMMARY OF TEST CONDITIONS FOR PRESENT STUDY

R	U _m ,	Mj		etry plane s sections		nded cross ections	Vertical section		
	m/sec		Number	Measurements	Number	Measurements	Number	Measurements	
				F	irst te	st			
4	39	0.48	0	0	5	413	3	175	
8	39	.93	0	0	3	945	4	364	
				Second test					
3	34	0.33	4	28	С	0			
3 4	53	.50	15	105	3	119			
4	25	.32	3	21	0	0			
4	39	.48	22	154	8	287			
4	62	.76	3	21	0	0	1		
5	50	.76	3 9 3	56	0	0			
5	26	.48	3	21	U	0	1		
6	42	.75	19	133	6	217			
6	51	.93	19 4	28	0	0	1		
7 8 8	0.5	.93	8	56	0	0			
8	19	.47	3	21	1	49			
8	31	.75	7	49	0	0			
8	39	.93	24	168	6	413			
10	25	.75	4	28	2	126			
10	31	.93	13	91	3	126			

TABLE 3 .- JET CENTER-LINE DETERMINATION

		Rake	locat	ion	Je	et cent	ter 1	ine			Rake	locat	ion	Je	et cent	ter 1	ine
R	U _w , m/sec	x/D	z/D	ΨB, deg	x/D	z/D	φ _C , deg (a)	uę/u"	R	U _∞ , m/sec	x/D	z/D	φ _B , deg	x/D	z/D	φ _c , deg (a)	u _¢ /u _∞
								R	= 3								
b3.2 3.2 3.2 3.2	51 52	1.98 2.00 3.85 5.96	3.25 3.25 4.24 4.25	28.0 16.0	1.92 1.91 3.81 5.75	3.41	31.8	2.16	3.2 3.2 3.2 3.2	53 53 53 53	7.84 9.50 12.08 14.12	5.22 5.50 7.00 7.50	11.0 10.0 9.0 8.0	7.71 9.36 12.11 14.16	6.28	12.2	1.14 1.08 1.05 1.06
								R	= 4								4.
b4.1 4.2 b4.0 4.1 b4.0 4.2	38 38 39 39 39 39	1.97 2.00 2.66 3.88 5.20 5.82	4.25 4.63 5.00 5.81	28.0 33.0 31.8 20.0 21.3 17.0	1.89 2.61 3.73	4.41 4.72 5.41 5.98	26.5	1.95 1.62 1.53 1.28	4.1 b4.0 4.1 4.1 b4.0 4.1	40 39 40 40 39 39	7.87 8.44 12.05 14.00 15.78 18.01	6.78 8.00 8.25 8.60	10.5	7.83 8.41 12.07 13.95 15.82 17.98	6.93 7.90 3.53 8.38	15.9 12.9 11.8 10.6	1.21 1.16 1.11 1.06 1.05 1.04
								R	= 5								
5.1 5.1	49 49	1.97			1.99 5.63		42.6 24.3		5.1 5.1	51 51	9.71 14.12		15.0 13.0	9.90 14.06			1.17
								R	= 6								
6.0 6.0 6.1 6.0 6.1	41 41 41 42 42	1.89 3.91 6.10 7.75 9.63	6.50 7.50 9.00 10.49 11.50	28.0 24.0 20.0		7.82	27.4	1.53 1.38 1.26	6.0 6.0 6.1 6.1	42 42 42 53	11.93 14.02 18.08	11.50 13.50	15.0 14.0	11.96 13.86 18.51 13.88	12.09 11.77	16.5	1.08

See footnotes at end of table, p. 25.

TABLE 3.- Concluded

- (

R		Rake	locati	ion	Je	t cent	ter li	ine	R	,,	Rake	locat	tion	Je	t cent	ter li	ine
ĸ	U _∞ , m/sec	x/D	z/D	ΨB, deg	x/D	z/D	φ _c , deg (a)	u _¢ /u _∞		U _∞ , m/sec	x/D	z/D	ΨB, deg	x/D	z/D	φ _c , deg (a)	u _¢ /u _∞
								R :	: 7								
7.0 7.0	44 44	1.95 5.95	7.00 10.00		1.91 5.68	7.04 10.53			7.0 7.0	45 45	9.92 13.88	12.48 13.95			12.59 14.03	23.0 18.8	1.16 1.10
								R :	: 8								
b8.0 b8.0 b8.0 b8.1 b8.0 b8.1 8.0 b8.0	31 31 32 38 38 39 38 39	1.80 2.00 14.00 2.03 2.00 2.00 2.00 3.69	7.95 6.75 15.30 6.75 6.75 8.00 8.00 9.41	44.7 20.0 45.0 44.7 51.9 52.2	1.91 1.51 13.87 1.45 1.44 1.92 1.89 3.40	7.87 7.25 15.65 7.33 7.31 8.06 8.09 9.74	59.9 59.8 55.1 55.1	2.81 1.13 2.98 2.91 2.63 2.65	8.0 8.1 b8.0 8.1 8.0 8.1 8.0 b8.0	38 38 39 39 39 39 39	6.53 7.69 9.96		30.0 30.0 26.0 23.0 21.0 20.0	5.65 6.18 7.39 9.69 11.68	15.96	35.1 33.2 30.5 25.9 23.5 21.1	1.22 1.20 1.11
								R :	: 10								
b _{10.0} b _{10.1} 10.0 10.0	25 25 31 31	2.00 14.03 2.00 4.00	9.50 17.50 9.50 11.48	25.0 57.4	1.82 13.83 1.82 3.54		60.9	1.23 3.21	10.0 10.0 10.0 510.0 10.0	31 31 31 31 32		16.50	31.0 28.0 25.0	7.52 9.40 11.5	14.20 15.29 16.89 17.7 19.33	35.1 31.3 28.0	1.44

aCalculated from equation (2) for jet center line.

bNot used to determine parameters in equation (2) for jet center line.

TABLE 4.- VORTEX-CURVE DETERMINATION

R	U _∞ ,	Rake	loca	tion	V	ortex	curve				Rake	loca	tion	V	ortex	curve	
_	m/sec	x/D	z/D	φ _B , deg	x/D	z/D	s/D	φ _V , deg (a)	R	U _∞ , m/sec	x/D	z/D	φ _B , deg	x/D	z/D	s/D	φ _V , deg (a)
								R =	: 3			_			_		[(a)
b3.2 b3.2 b3.2 b3.2 3.2 3.2 3.2	34 34 34 34 51 52 53	6.00 8.00 14.00 2.00 4.00	3.00 3.00 4.50 2.00 2.50	13.0 8.0 22.0	6.06 7.98 14.11 2.18 4.07	1.56	7.02 8.95 15.14 2.90 4.95		3.2 3.2 3.2 3.2 3.2 53.2	53 53 53 53 53 53 53 52	8.00 9.48 12.00 14.00 18.00	3.48 3.75 4.00 4.50 5.00	8.0	8.07 9.56	3.63 3.88 4.23	9.05 10.55 13.07 15.12 19.14	9.2 9.2 8.1 6.3 5.3 4.3
04.1 04.2 04.2 4.1 4.1 4.2 4.1 4.2	25 25 26 38 39 38 40 40	2.03	4.00 6.00 2.50 3.25 4.00 4.50	10.5 28.0 20.0 17.0 14.0	6.08	5.02 2.35 3.09 3.85 4.14	7.61 15.83 3.36	31.8 13.6 7.4 31.8 18.6 13.6 11.1	b4.0 4.1 4.1 b4.1 b4.1 b4.1 b4.1	39 39 62 62	14.00 18.00 35.00 2.03 6.00	6.00 6.50 8.50 2.50 4.00	10.2 6.3 28.0 17.0	14.18 18.15 35.18	5.05 5.67 6.84 2.18 3.79	19.82	

See footnotes at end of table, p. 28.

TABLE 4.- Continued

		Rake	loca	tion	Ve	ortex	curve		R	,,	Rake	locat	ion	1	ortex	curve	
R	U _w , m/sec	x/D	z/D	φ _B , deg	x/D	z/D	s/D	φ _V , deg (a)	"	U _∞ , m/sec	x/D	z/D	φ _B , deg	x/D	z/D	s/D	φ _V , deg (a)
									= 5								
5.0 5.1 5.1	50 49 49	2.05	3.00	32.6 33.0 20.0	2.17	2.88 2.81 4.80	3.79	41.2 40.6 17.5	5.1 5.1	51 51	9.68 14.00	5.98 7.00				11.98 16.43	
								R	= 6								
6.0 6.0 6.0 6.0 6.0	42 42	6.00 14.00 2.00 4.00 6.00 8.00 9.48	3.50 5.00 6.00 7.00 8.00	38.0 24.0 15.0 38.0 28.0 24.0 20.0 18.0 17.0	6.01 14.01 2.02 4.03 6.01 8.18 9.74	3.48 4.95 5.98 6.51 7.19	8.95 17.27 4.22 6.71 8.92	47.3 28.9 21.7 17.7 15.6	6.0 6.1 6.0 b6.1 b6.0 b6.0 b6.1 b6.1 b6.1	43 42 42 42 42 42 42 51 51 53	35.00 35.00	8.50 10.00 11.00 13.00 13.00 14.75 3.50 6.00 8.50	14.0 10.0 9.3 9.5 8.1 38.0 24.0	25.18 35.15	9.06 10.09 12.11 11.43 14.39	38.74 48.80 4.22	21.
								R	= 7								
7.0 7.0 7.0	## ## ##	2.00	4.00	41.6 42.0 27.0	2.04	4.04 3.96 7.20	4.65	55.2 55.2 26.8	7.0 7.0	45 45	9.88 14.00	8.98 10.45				14.00 18.34	19. 15.

See footnotes at end of table, p. 28.

TABLE 4.- Concluded

		Rake	locati	ion	V	ortex	curve		R	п	Rake	locati	ion	,	ortex	curve	
R	U _∞ , m/sec	x/D	z/D	φ _B , deg	x/D	z/D	s/D	φ _V , deg	l n	U _∞ , m/sec	x/D	z/D	φB, deg	x/D	z/D	s/D	φ _V , deg
								(a)									(a)
								R =	8								
b8.2	19	2.00	5.00	45.0	2.11	4.89	5.53	51.2	b8.0	39	5.63	7.13	41.9	5.20	7.60	9.64	33.0
b8.3	19	6.00	8.00		5.99	8.01	10.60		8.1	39	6.00	8.00	30.0	5.90	8.17	10.53	30.6
b8.0	20	~ ~ ~ ~	11.98	_	15.42		20.52		8.1	39	8.00	9.00	26.0	7.88	9.25	12.76	26.2
									b8.0	39	8.81	8.31	30.0	8.34	9.12	13.12	25.6
b8.0	31	2.00	5.00	45.0	2.17	4.83	5.51	51.2	8.0	39	9.80	10.00	23.0	9.76	10.10	14.79	23.2
b8.0		2,00	6.75	44.7	2.79	5.95	6.76	44.2	8.0	39	12.00	11.00		11.97			20.7
b8.1	31	6.00	8.00		6.02	7.96	10.54	30.6	8.0	39	15.18	11.98	20.0	15.20	11.91	20.51	18.1
b8.0	32		11.98		15.26	11.73	20.51	18.1	8.0	39	18.00	13.00		18.13			16.4
									8.0	39	25.00	16.00	15.2	25.30	14.88	31.02	13.4
8.1	39	2.00	5.00	45.0	2.10	4.90	5.53	51.2	8.1	39	35.00			35.23			11.0
8.0	38	4.00	6.98		4.01	6.97	8.31	37.2	8.0	39	45.00	19.50	10.7	45.13	18.81	51.22	9.5
								R =	10						,		
b10.0	25	2.00	6.00	52.0	2.15	5.88	6.47	61.9	9.9	31	4.00	8.48		4.03	8.44		43.9
b10.0	25	2.03	6.00	51.9	2.13	5.92	6.49	61.8	10.0	31	6.00		34.8	5.98	10.00	12.21	
b10.1	25	6.00	9.98		5.97	10.01	12.23	34.8	10.0	31	8.00					14.45	
b10.1	25	14.00	14.00	25.0	14.20	13.56	21.32	20.4	10.0	31	10.00	11.98				16.71	
									10.0	31	12.08	13.50	25.0			19.27	
10.0	31	2.03	6.00	51.9	2.14	5.92	6.49	61.8	10.0	32	14.00	14.00	25.0			21.24	
b10.0		2.00	8.00	52.2	3.19	7.08	8.11	52.0	10.0	31	18.00	16.00	22.0	18.26	15.37	25.76	17.2
					1	1		1	11	ž.							

aCalculated from equation (2) for vortex curve.

bNot used to determine parameters in equation (2) for vortex curve.

Figure 1.- Sketch of a jet in a crossflow.

Figure 2.- Jet center line and vortex curve with associated coordinates systems.

Figure 3.- Jet nozzle and plenum.

Figure 4.- Rake of yaw-pitch probes.

Figure 5.- Yaw-pitch probe.

Figure 6.- Experimental arrangement in V/STOL tunnel for jet in a crossflow experiment.

Figure 7.- Measured decay of jet center line velocity with no crossflow.

Figure 8.- Experimental ε rangement in V/STOL tunnel for probe calibration.

(a) Comparison with Kamotani, R = 8.

Figure 9.- Decay of jet center-line speed.

(b) Effect of velocity ratio.
Figure 9.- Concluded.

Figure 10.- Jet center lines and vortex curves.

Figure 11.- Jet center line and vortex curve, comparison with other experiments.

Figure 12.- Symmetry plane velocities.

(a) Total-pressure coefficient Cp,t.

Figure 13.- Jet cross section for R = 4.0, x/D = 4.16, z/D = 2.03, and ϕ_B = 32°.

(b) Measured velocities, $U_B/U_{\tilde{q}}$ and $(\vec{V}_B + \vec{W}_B)/U_{\tilde{q}}$.

Figure 13.- Continued.

(c) Vorticity ω/ωmax.

Figure 13.- Continued.

(d) Static-pressure coefficient C_p.
Figure 13.- Concluded.

(a) Total-pressure coefficient Cp,t.

Figure 14.- Jet cross section for R = 4.0, x/D = 9.22, z/D = 3.88, and ϕ_B = 15°.

(b) Measured velocities, U_B/U_{ξ} and $(\vec{v}_B + \vec{w}_B)/U_{\xi}$. Figure 14.- Continued.

(c) Vorticity ω/ω_{max} .

Figure 14.- Continued.

(d) Static-pressure coefficient C_p.
Figure 14.- Concluded.

Figure 15.- Jet cross section for R = 8.0, x/D = 7.60, z/D = 4.81, and ϕ_B = 420.

(b) Measured velocities, U_B/U_ξ and $(\vec{V}_B + \vec{W}_B)/U_\xi$. Figure 15.- Continued.

□ Vortex curve location

(c) Vorticity ω/ω_{max} .

Figure 15.- Continued.

(d) Static-pressure coefficient C_p.
Figure 15.- Concluded.

Figure 16.- Jet cross section for R = 8.0, x/D = 10.00, z/D = 5.31, and ϕ_B = 30°.

(b) Measured velocities, U_B/U_ξ and $(\vec{V}_B + \vec{W}_B)/U_\xi$. Figure 16.- Continued.

(c) Vorticity ω/ω_{max} .

Figure 16.- Continued.

Figure 16.- Concluded.

(a) Total-pressure coefficient Cp,t.

Figure 17.- Jet cross section for R = 8.0, x/D = 15.18, z/D = 11.98, and $\phi_B \approx 20^{\circ}.$

(b) Measured velocities, U_B/U_ξ and $(\vec{V}_B + \vec{W}_B)/U_\xi$. Figure 17.- Continued.

(c) Vorticity ω/ωmax.

Figure 17.- Continued.

(d) Static-pressure coefficient C_p.
Figure 17.- Concluded.

□ Vortex curve location

(a) Total-pressure coefficient Cp,t.

(b) Measured velocities, U_B/U_∞ and $(\vec{v}_B + \vec{w}_B)/U_\infty$.

Figure 18.- Vertical section for R = 4.0, x/D = 4.00, and z/D = 1.75.

(a) Total-pressure coefficient $C_{p,t}$.

(b) Measured velocities, U_B/U_∞ and $(\vec{V}_B + \vec{W}_B)/U_\infty$. Figure 19.- Vertical section for R = 8.0, x/D = 4.00, z/D = 1.75.

CALIBRATION OF A YAW-PITCH PROBE

Thomas A. Trovillion, Jr. University of Florida Gainesville, Florida

The calibration of a yaw-pitch probe and the symbols used in calibration are presented in this appendix.

Symbols

Values are given both in SI Units and U.S. Customary Units. The measurements and calculations were made in U.S. Customary Units.

B C D E F	calibration constants defined by equations (A6), (A7), and (A8)
fi	dimensionless pressure on port i defined as $(p_1 - p_8)/Q$
Pi	pressure at port i, see figure A1, Pa (lb/ft ²)
Pa	static pressure of flow, Pa (lb/ft ²)
q	dynamic pressure of flow, Pa (1b/ft ²)
٩p	quantity defined by equation (A2), Pa ($1b/ft^2$)
v	velocity of flow at surface of sphere, m/sec (ft/sec)
U_	free-stream velocity of flow, m/sec (ft/sec)
a	pitch angle of total-pressure port to stagnation point, deg
a _o	pitch angle of sting when $\;\Delta p_{\alpha}\;$ equals zero, deg
α•	pitch angle of tunnel flow, deg
α _●	difference in pitch between calculated angle and tunnel sting setting; superscripted to denote probe pitch or yaw calibration data set (e.g., α_e^{α} or α_e^{β}), deg
ß	yaw angle of total-pressure port to stagnation point, deg

- β_{0} yaw angle of sting when Δp_{β} equals zero, deg
- β* yaw angle of tunnel flow, deg
- difference in yaw between calculated angle and tunnel sting setting; superscripted to denote probe pitch or yaw calibration data set (e.g., β_a^{α} or β_a^{β}), deg
- Δp_α difference in pressure between pitch ports, Pa (1b/ft²)
- Δpg difference in pressure between yaw ports, Pa (1b/ft²)
- θ total angle of total port to stagnation point, deg
- θ_{O} total angle where q_{p} becomes zero, singularity of equation (A5), deg
- θ_1 angle between ith port and stagnation point, deg
- o density, kg/m³ (slug/ft³)
- ψ roll angle at total pressure port from lower α port to stagnation point, deg
- ψo fixed roll-angle error between probe calculation and sting, deg

Calibration Scheme

<u>Probe description.</u> The probe to be calibrated is a yaw-pitch probe with a total-pressure port at the forward point of a hemispherical tip and a ring of six interconnected static ports approximately eight probe diameters from the tip. To measure the angle of the velocity vector, four ports are placed at approximately 450 to the total-pressure port in the directions of yaw and pitch. The total-pressure port and static-pressure port are numbered ports 1 and 2, respectively. When the probe is lined up with the local velocity vector, the difference between these pressures gives the standard incompressible measurement of the dynamic pressure. When looking upwind, the right and left ports are called the beta ports and are labeled 3 and 4, respectively. These will give the angle of yaw, which is the angle β . The top and bottom ports are called the alpha ports and are labeled 5 and 6, respectively. These will give the angle of pitch, which is the angle α .

Coordinate system. To specify the orientation of the velocity vector with respect to the probe, the usual coordinates used are the Euler angles α and β , as shown in figure A1. For a complete solution of the calibration problem to large angles, it is more convenient to use the angles θ and ψ . Since the pressures on the hemispherical tip are assumed to be symmetrical about the stagnation point, the significant angle is the total angle θ the probe makes with the velocity vector. To specify the direction of the velocity vector relative to the probe, a polar angle ψ is taken about the probe and referenced to the

Figure A1.- Probe coordinate system.

lower alpha port. Spherical trigonometry gives the following conversion between the two coordinate systems:

 $\tan \alpha = \tan \theta \cos \psi$

 $\sin \beta = \sin \theta \sin \psi$

Calibration based on potential flow over a sphere. The pressure on a sphere is a function only of the total angle θ from the stagnation point. A nondimensional quantity f_i may be defined as the pressure p_i on port i minus the static pressure p_s , divided by the dynamic pressure q

$$f_i(\theta_i) = \frac{p_i - p_s}{q}$$

This quantity can be determined theoretically by using the potential flow theory for uniform flow over a sphere. If axisymmetric flow is assumed, the superposition of a free stream and a doublet flow gives the velocity on the surface of the sphere as

$$V(\theta) = \frac{3}{2} U_{\infty} \sin \theta$$

Bernoulli's equation is then used to obtain the pressure distribution on the sphere

$$p_1 + \frac{1}{2} \rho V^2 = p_s + \frac{1}{2} \rho U_{\infty}^2$$

By using this equation and the definition of f_i , one obtains

$$f_i(\theta_i) = \frac{9}{4} \cos^2 \theta_i - \frac{5}{4}$$

The most important quantities are the differences in pressure between the two alpha ports and the two beta ports. These are labeled Δp_{α} and Δp_{β} , respectively, with the convention that they are positive in the $\alpha-$ and $\beta-$ directions. From the definition of f_{i} , the following relations are obtained:

$$\Delta p_{\alpha} = q(f_6 - f_5)$$

$$\Delta p_{\rm g} = q(f_3 - f_4)$$

By using the functional form of f_i one obtains the relations:

$$\Delta p_{\alpha} = \frac{9}{\mu} q(\cos^2 \theta_6 - \cos^2 \theta_5)$$

$$\Delta p_{\beta} = \frac{9}{4} q(\cos^2 \theta_3 - \cos^2 \theta_4)$$

These relations can be converted to functions of $\,\theta\,$ and $\,\psi\,$ by reference to figure A1. The law of cosines for spherical triangles gives

$$\cos \theta_6 = \cos \theta \cos 45^{\circ} + \sin \theta \sin 45^{\circ} \cos \psi$$

$$\cos \theta_5 = \cos \theta \cos 45^\circ - \sin \theta \sin 45^\circ \cos \psi$$

$$\cos \theta_{4} = \cos \theta \cos 45^{\circ} - \sin \theta \sin 45^{\circ} \sin \psi$$

$$\cos \theta_3 = \cos \theta \cos 45^{\circ} + \sin \theta \sin 45^{\circ} \sin \psi$$

By substituting these equations into the equations for Δp_{CL} and $\Delta p_{\text{B}},$ one obtains

$$\Delta p_{\alpha} = \frac{9}{\mu} q \sin 2\theta \cos \psi$$

$$\Delta p_{\beta} = \frac{9}{\mu} q \sin 2\theta \sin \psi$$

The dependence on θ and ψ can be separated by taking the ratio and the square root of the sum of the squares of these two equations

$$\frac{\Delta p_{\beta}}{\Delta p_{\alpha}} = \tan \Psi$$

$$(\Delta p_{\alpha}^2 + \Delta p_{\beta}^2)^{1/2} = \frac{9}{4} q \sin 2\theta$$

The square-root quantity may be nondimensionalized by dividing by the quantity q_p , defined as the pressure on port 1 minus the average of the pressures on the four angle ports. This relation can be written in terms of the f_1 as

$$q_p = q \left[f_1 - \frac{1}{4} (f_3 + f_4 + f_5 + f_6) \right]$$
 (A2)

By using the * etical pressure distribution, equation (A2) reduces to

$$q_p = q\left(\frac{27}{32}\cos 2\theta + \frac{9}{32}\right) \tag{A3}$$

The square-root quantity then becomes

$$\frac{\left(\Delta p_{\alpha}^2 + \Delta p_{\beta}^2\right)^{1/2}}{q_p} = \frac{\frac{9}{4} \sin 2\theta}{\frac{27}{32} \cos 2\theta + \frac{9}{32}}$$
 (A4)

It should be noted that this has a singularity at 54.7° . The scheme given here does not use the measurements made on the static-pressure ports which can be greatly in error at large angles to the velocity. But the static pressure can be calculated from the quantity f_1 once the dynamic pressure q and the total angle θ are known, by using the following formula:

$$p_1 - p_s = q \left(\frac{9}{4} \cos^2 \theta - \frac{5}{4} \right)$$
 (A5)

Equations (A1), (A3), (A4), and (A5) determine the primary quantities from which the angles θ and ψ , and the pressures q and p_8 can be found.

Generalization of calibration scheme.— For a number of reasons the potential flow calibration may not be satisfactory for a given yaw-pitch probe. The decrease in pressures with θ given by the potential flow theory is only the ideal, and so differs from experimental values at large distances from the stagnation point. The placement of the ports may also be in error, which means there will be fixed errors in the $\alpha-$ and $\beta-$ directions, in the rotation angle $\psi,$ and in the sums and differences of the pressures on the alpha and beta ports. For these reasons the theoretical calibration is generalized to include some experimentally determined parameters. While maintaining the same form, the constants of the θ dependence are made arbitrary so that equations (A3), (A4), and (A5) are generalized to

$$\frac{\left(\Delta p_{\alpha}^2 + \Delta p_{\beta}^2\right)^{1/2}}{q_{p}} = A \frac{\sin 2\theta}{\cos 2\theta - \cos 2\theta_{0}} \tag{A6}$$

$$q_p = q \Big[B(\cos 2\theta - \cos 2\theta_0) + C(\cos \theta - \cos \theta_0) \Big]$$
 (A7)

$$p_1 - p_3 = q(D \cos 2\theta + E \cos \theta + F) \tag{48}$$

The calculation for ψ is kept the same. The constant θ_0 is the singularity point of equation (A6) and must be the same for equation (A7) to determine correct values for q.

Determination of the Calibration Constants

The calibration scheme described has been used with good results to calibrate a rake of seven yaw-pitch probes. Two sets of calibration data were available for these probes. One set was taken entirely in the pitch direction and the other in the yaw direction. Each set had both positive and negative values to angles of 65° with 5° increments between values. Each set of data was then used to determine a set of calibration constants. The experimental data were reduced by calculating the angles and pressures by each set of constants and averaging them on the basis of the calculated value of ψ according to the following formula:

Average parameter = (
$$\alpha$$
 value) $\cos^2 \psi + (\beta \text{ value}) \sin^2 \psi$

The calibration constants can be determined from the data in various ways. The method presented here determines the calibration constants in such a manner that the calibration scheme provides a best fit to the calibration data in a least-squares sense. By using an initial guess of A, θ_0 , and ψ_0 with equations (A1) and (A6), values of θ and ψ are obtained from which α and β are determined for each point of the data set. The pitch and yaw angles at which the probe is set with respect to the tunnel are known. The difference between these two coordinate systems is just the pitch and yaw angles α_0 and β_0 , and includes the probe angle errors and the flow angularity of the tunnel. As long as all the calibration data are taken at the same point in the tunnel and the probes are not rotated on the sting (a condition which was true for each set of the data separately), the values of α_0 and β_0 should be constant for all points in the data set. The initial guess for the constants A, θ_0 , and ψ_0 are varied incrementally to determine the values that give the most nearly constant α_0 and β_0 in the least-squares sense over the entire data set.

The α_{\bullet} and β_{\bullet} are then used to determine the values of the probe errors (α_{0},β_{0}) and also the tunnel flow angularity $(\alpha^{\bullet},\beta^{\bullet})$. Since it is desired to know the lower angles more closely than the high angles, the α_{\bullet} and β_{\bullet} values for the data points with total angles less than 12° are averaged to obtain the values used and these are superscripted to reference the data set they are derived from. How the probe errors are separated from these values depends on how the data sets were obtained. The present calibration data were taken by varying the yaw angles and then rotating the probe 90° and varying the same tun-

APPENDIX A

nel referenced angles to obtain the set of pitch data. The α_0 and β_0 values are then determined as follows:

$$\alpha_0 = \frac{1}{2}(\alpha_0^{\alpha} + \beta_0^{\alpha} + \alpha_0^{\beta} - \beta_0^{\beta})$$

$$\beta_0 = \frac{1}{2}(-\alpha_\bullet^\alpha + \beta_\bullet^\alpha + \alpha_\bullet^\beta + \beta_\bullet^\beta)$$

The tunnel angularity is found similarly by the formulas

$$\alpha^{\bullet} = \frac{1}{2}(-\alpha_{\bullet}^{\alpha} - \beta_{\bullet}^{\alpha} + \alpha_{\bullet}^{\beta} + \beta_{\bullet}^{\beta})$$

$$\beta \bullet = \frac{1}{2}(\alpha_{\bullet}^{\alpha} - \beta_{\bullet}^{\alpha} - \alpha_{\bullet}^{\beta} + \beta_{\bullet}^{\beta})$$

The determination of the constants A and θ_0 completes the calibration of the total angle θ . It is then a simple matter to fit the q and p_8 calibration constants to the calculated values of θ in the least-squares sense. It was found that the low angle values were not fitted as well as the intermediate values. To improve these calculations for angles less than 12°, a separate method was used, where q was calculated as a constant multiple of q_p , and p_8 was found by subtracting q from p_1 .

The following table gives the maximum and minimum values of the calibration constants from equations (A6) to (A8) that were found for the seven probes used in this report, and a comparison with the theoretical values predicted from potential flow theory:

	A	В	С	D	Е	F	ao	βo	Ψο	θο
Theoretical	2.67	0.84	0.00	1.13	0.00	-0.13	0.00	0.00	0.00	54.7
Experimental maximum	3.66	.64	1.37	.52	3.37	-1.87	.42	.89	2.11	57.4
Experimental minimum	2.63	.04	.51	.22	2.46	-2.64	-1.43	86	-4.40	50.1

The principal part of the difference between the experimental and theoretical values is due to errors in the port placement. The average angle of the yaw and pitch ports was found not to be at 45° as was specified on the construction drawings, but was typically at about 38°.

The calibration data, as well as other data taken at combined yaw and pitch angles, were reduced to determine the errors associated with the scheme. The

APPENDIX A

total angle θ was found to be accurate within 1° and the roll angle ψ within 3°. The dynamic pressure q was accurate within about 2.5 percent for angles less than 25° and 5 percent elsewhere. The static pressure p_8 was accurate within about 2 percent for angles less than 25° and 4 percent elsewhere. These are rough averages for all the probes; some probes exceeded these values in some instances. The most serious of these exceptions was in the dynamic pressure calculation which occasionally had errors of 8 to 10 percent but never exceeded this value in the region of interest.

APPENDIX B

WIND-TUNNEL POSITIONING OF THE RAKE OF YAW-PITCH PROBES

The decision to measure velocities in planes perpendicular to the jet path placed stringent requirements on the location and orientation of the rake of probes. These requirements had to be reconciled with the types and ranges of motion available for the rake in such a way that the test could be conducted in a reasonable length of time. A knowledge of the motions available for the rake and of the relative positions of the jet and sting system are necessary to understand the compromises that were made.

The types of motion available for the rake of the probes can be divided into two categories: those motions provided by the wind-tunnel sting system and those which were used specifically for this experime . Three types of motion were available for the wind-tunnel sting system: pitch, yaw, and height. Figure B1 is a schematic of the wind-tunnel sting system illustrating the movements of pitch and height. Yaw was accomplished by rotation about the vertical axis noted in figure B1. Pitch, yaw, and height of the tunnel sting could be changed and monitored from the control room, and their values were automatically recorded on magnetic tape for each point of data. Longitudinal motion in the tunnel was achieved in one of two ways. The bolts clamping the 15-cm-diameter (6-in.) pipe in the sleeve could be loosened and the pipe moved in the sleeve to a new location. This was a task which required about 1/2 hour to perform. Additionally, a rather small range of longitudinal mction (approximately 4D) was provided by a lead screw apparatus between the adapter sting and the 15-cm (6-in.) pipe. The position of the lead screw was controlled and monitored from the control room, and its position was recorded on magnetic tape for each point of data. Finally, the angle between the rake sting and the adapter sting could be changed in 50 increments. (See figs. 4 and 6.) The roll position of the rake on the rake sting was such that the plane of the rake airfoil was vertical when the tunnel pitch and yaw angles were zero. The rake sting angle ϕ_R , X4, and Z4 were manually entered in the data acquisition system and recorded on magnetic tape for each point of data.

The jet was laterally offset 33.8 cm (13.3 in.) from the tunnel center line because of a large beam under the tunnel floor. The yaw angle necessary to locate the rake in the XZ plane ranged from 2.5° if the probe tips were at the center of the jet orifice to 6.3° for the probes located 45D downstream of the orifice.

To acquire a series of velocity measurements which were approximately in a given jet cross section, the following procedure was used: The angle between the rake sting and adapter sting was set to the 5° increment nearest the desired angle of inclination of the plane and secured with a tapered pin and bolt through holes in the bracket. (See fig. 4.) The wind-tunnel sting pitch was then used to set the rake sting at the desired angle as measured by an inclinometer. The tip of probe 4 of the rake was positioned in the jet symmetry plane at the desired values of X and Z as physically measured in the tunnel. Yaw of the tunnel sting system was used to move the rake to positions out of the

Appendix B

Figure B1.- Schematic of rake positioning system.

jet symmetry plane. This produced a cross section with a small amount of curvature. In the $y \ge 0$ half-plane where most of the data were taken, this curvature resulted in a maximum out-of-plane movement of 0.07D at the jet orifice to 0.18D at 45D downstream. The larger value downstream is offset by the smaller change in conditions in the X-direction there.

Errors in tunnel position were mainly due to shifts in the position of the yaw table on which the tunnel sting system was mounted. (See fig. 6.) The inaccuracy in Y-position had the largest magnitude, inaccuracies rarely exceeding 0.1D. The X-position was repeatable to within 0.04D, and the Z-position was repeatable to within 0.01D.

APPENDIX C

EXPERIMENTALLY DETERMINED VELOCITIES AND PRESSURES

Presentation of Results

The basic results of this investigation are the measured pressures and the velocities determined from them. For presentation these measurements are arranged in three major groupings: (1) jet center-line data which consist of measurements in the plane of flow symmetry for the purpose of establishing the jet center line, (2) vortex curve data which also consist of measurements in the plane of flow symmetry but for the purpose of establishing the vortex curve and for use in the vortex filament model, and (3) extended cross sections which contain measurements taken out of the plane of flow symmetry. For each of these groups of data, the location of a cross section is given by the location of the tip of probe 4 of the rake in the wind-tunnel coordinate system (x/D, y/D, and z/D) and the inclination of the rake with the Z-axis, PHI. For the tables of symmetry plane data, y/D is zero. The locations of points within a cross section are given by their coordinates (XB, YB, and ZB) in a system obtained by rotating the wind-tunnel coordinate system through an angle PHI and locating the origin at the tip of probe 4 of the rake of seven yaw-pitch probes. (See sketch (b).)

All coordinates are nondimensionalized by the jet diameter D. The velocity determined at each location in a cross section is specified by the three components (UB, VB, and WB) relative to the coordinate system (XB, YB, and ZB) and is nondimensionalized by the crossflow speed, UINF. The static and total pressures are presented as dimensionless coefficients CP and CPT which are defined as

APPENDIX C

$$C_{p} = CP = \frac{p - p_{\infty}}{q_{\infty}}$$

$$C_{p,t} = CPT = \frac{p_{t} - p_{t,\infty}}{q_{\infty}}$$
(C1)

The following annotation is used throughout the tables:

\$ denotes points outside probe calibration range

Index to Tables

An index to the tables of this appendix follows:

Table C1.- Symmetry plane velocities and pressures, jet center line

(a)
$$R = 3$$
; $U_m = 53$ m/sec; $x/D = 2.0$, 3.9, 6.0, 7.8, 9.5, 12.1, 14.1

(b)
$$R = 4$$
; $U_{\infty} = 39 \text{ m/sec}$; $x/D = 2.0, 2.7, 3.9, 5.2, 5.8, 7.9, 8.4, 12.1, 14.0, 15.8, 18.0$

(c)
$$R = 5$$
; $U_{m} = 50 \text{ m/sec}$; $x/D = 2.0, 6.0, 9.7, 14.1$

(d)
$$R = 6$$
; $U_{\infty} = 42 \text{ m/sec}$; $x/D = 1.9$, 3.9, 6.1, 7.8, 9.6, 11.9, 14.0, 18.1 $R = 6$; $U_{\infty} = 51 \text{ m/sec}$; $x/D = 14.0$

(e)
$$R = 7$$
; $U_m = 44 \text{ m/sec}$; $x/D = 2.0, 6.0, 9.9, 13.9$

(f)
$$R = 8$$
; $U_{\infty} = 31 \text{ m/sec}$; $x/D = 1.8, 2.0, 14.0$
 $R = 8$; $U_{\infty} = 39 \text{ m/sec}$; $x/D = 2.0, 3.7, 3.8, 6.1, 6.5, 7.7, 10.0, 12.0, 14.0, 18.1$

(g) R = 10;
$$U_{\infty}$$
 = 25 m/sec; x/D = 2.0, 14.0
R = 10; U_{∞} = 31 m/sec; x/D = 2.0, 4.0, 6.1, 8.0, 10.2, 12.1, 14.0

Table C2.- Symmetry plane velocities and pressures, vortex curve

(a)
$$R = 3$$
; $U_{\infty} = 34$ m/sec; $x/D = 2.0$, 6.0, 8.0, 14.0
 $R = 3$; $U_{\infty} = 53$ m/sec; $x/D = 2.0$, 4.0, 6.0, 8.0, 9.5, 12.0, 14.0, 18.0, 25.0

(c)
$$R = 5$$
; $U_{\infty} = 50 \text{ m/sec}$; $x/D = 2.0, 2.1, 6.0, 9.7, 14.0$

APPENDIX C

- (d) R = 6; U_m = 26 m/sec; x/D = 2.0, 6.0, 14.0 R = 6; U_m = 42 m/sec; x/D = 2.0, 4.0, 6.0, 8.0, 9.5, 12.0, 14.0, 18.0, 25.0, 35.0, 45.0 R = 6; U_m = 51 m/sec; x/D = 2.0, 6.0, 14.0
- (e) R = 7; $U_m = 44 \text{ m/sec}$; x/D = 2.0, 6.0, 9.9, 14.0
- (f) R = 8; U_m = 19 m/sec; x/D = 2.0, 6.0, 15.2 R = 8; U_m = 31 m/sec; x/D = 2.0, 6.0, 15.2 R = 8; U_m = 39 m/sec; x/D = 2.0, 4.0, 5.6, 6.0, 8.0, 8.8, 9.8, 12.0, 15.2, 18.0, 25.0, 35.0, 45.0
- (g) R = 10; U_{∞} = 25 m/sec; x/D = 2.0, 6.0, 14.0 R = 10; U_{∞} = 31 m/sec; x/D = 2.0, 4.0, 6.0, 8.0, 10.0, 12.1, 14.0, 18.0

Table C3.- Cross-section velocities and pressures

- (a) R = 3; U_{∞} = 53 m/sec; x/D = 2.0, 6.0, 8.0 z/D = 2.0, 3.0, 3.0
- (b) R = 4; U_{∞} = 39 m/sec; x/D = 2.0, 2.0, 2.7, 4.2, 4.7, 5.2, 6.0, 8.4 z/D = 2.5, 4.3, 4.6, 2.0, 2.0, 5.8, 4.0, 6.8 R = 4; U_{∞} = 39 m/sec; x/D = 9.2, 14.0, 14.0, 15.8, 35.0, 45.0 z/D = 3.9, 6.0, 8.3, 8.6, 8.5, 9.8
- (c) R = 6; $U_{\infty} = 42 \text{ m/sec}$; x/D = 2.0, 6.0, 14.0, 14.0, 35.0, 45.0z/D = 3.5, 6.0, 8.5, 11.5, 13.0, 14.8
- (d) R = 8; U_{∞} = 39 m/sec; x/D = 2.0, 2.0, 3.7, 5.6, 7.6, 6.0, 6.5, 8.8 z/D = 5.0, 6.8, 9.4, 7.1, 4.8, 8.0, 11.4, 8.3 R = 8; U_{∞} = 39 m/sec; x/D = 10.0, 11.9, 12.1, 13.1, 14.0, 15.2, 35.0, 15.0 z/D = 5.3, 2.3, 17.0, 14.2, 15.3, 12.0, 18.0, 19.5 R = 8; U_{∞} = 20 m/sec; x/D = 14.0; z/D = 15.3
- (e) R = 10; U_{∞} = 25 m/sec; x/D = 2.0, 1.8 z/D = 6.0, 7.7 R = 10; U_{∞} = 31 m/sec; x/D = 2.0, 2.0, 6.0 z/D = 6.0, 7.8, 10.0

Table C4.- Vertical section velocities and pressures

- (a) R = 4; $U_{m} = 39 \text{ m/sec}$; z/D = 1.75; x/D = 4.0, 6.0, 8.0
- (b) R = 8; U_{∞} = 39 m/sec; z/D = 1.75; x/D = 4.0, 6.0, 8.0, 12.0

7857	284		7475	\neg
CONDITIONS	-1.5 -1.0 -0.5 0.0	0.5 1.0 1.5	-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 COMO[TIOMS	_
R. 3.17 UZMF- 51.3 M/SEC	.47 .48 .43 :.80			*/SEC
2/0- 1.49	.73 .39 .66 .20		**/Ulw ./5 .10 .02070814 1/0* 7.64 CP272721191067 1/0* 5.22	- 1
PHI- 22.0 DE6	-1.15 -1.24 -1.85 -1.31		CPT -,74 -,77 -,44 -,68 .16 .88 .82 PMI= 11.8	ues
01W- 51.3 W/SEC	.41 .195 .41 1.80 87 .8101 .81		UNIVERS .80 .81 .80 1.00 1.13 1.00 1.01 6* 3.16 8* 3.1	P/166
1/0- 1.90	.67 .61 .14 .21	.171329	*#/UINF .20 .120204056714 1/00 7.04	
2/0+ 3,25 P=1+ 22,4 004	07 -1.35 -1.05 -1.25		CP25322429171204 2/0* 5.27 CP774655388 .13 .08 .01 Pml* 11.0	C
7.10 (2.0 000		, ,21 -,02 .03		
No. 3,18	.57 .35 .36 1.91		98/4187 .76 .79 .89 .99 1.10 1.00 1.02 20 3.18 98/4187 .0505 .01 .00 .01 .0200 UIM • 52.9	
1/0- 2.00	.72 .54 .03 .00		08.0 07.1 (1 18 08 18. 18. 19. 1/0· 9.50	-, 300
1/0- 1,25	-1.0095 -1.03 -1.30	01. 60, 80,-	CP10101013130001 2/0+ 5.50	
Pets 28.8 006	-1.15 -1.54 -1.98 1.	.49 .01 .03	CP154553515 .09 .08 .08 PMI* 10.0	06.0
ee 3,10	.50 .00 .21	19 .92 .97	UB/UINF .82 .75 .98 1.00 1.07 1.07 1.02 Re 3.10	
UTHF - 51.0 M/SEC	100512	60. 69. 60	98.94 *** 19 .090204040515 1/0* 9.59 1/0***	P/5EC
2/0+ 2.00	-1.00 -1.1000 -1.5	.042333	CP22101712040704 2/0* 5.50	
PHI- 28.5 DEG	-1.70 -1.00 -1.70 1.11		CP151613417 .08 .10 .03 PM1* 10.0	DES
Re 3.16	.40 .40 .50 1.40	1.25 1.03 .99	UB/UINF .05 1.01 1.05 1.04 1.02 1.01 1.00 00 5.17	
UIM* \$1.6 4/5EC	0000 .01 .01		VB/UIN0007 .00 .01 .00 .01 .00 UIN- 5/.0	N/SEC
1/D= 3.65 2/D= 4.24	.48 .198881		##/blaf	- 1
PMS= 16.0 DES	-1.07 -1.3001 .90		CPT2010 .00 .03 .010000 Pmls 9.0	930
0.0 3.16	.51 .29 .40 1.41	1.24 1.00 .99	00/Ules .40 1.05 1.05 1.05 (.41 1.01 1.01 44 3.17	
UINFO 51.7 M/SEC	.00 .03 .00		98.94 * Mar. St 10 .00 .00 .00 .00 .00 .00 .00 .00 .00	N/MC
1/0- 1.05	.53 .3365 .61		CP15170808080505 7/04 7.88	- 1
PHI: 16.0 DEG	-1.01 -1.25 70 .51		CPT34100302030101 PMI* 9.0	050
2. 3.10	.76 .63 .62 .81		UR PUT UP 1.00 1.07. 1.03 1.07 1.02 1.01 We 3.10	- 1
UT- 57.0 */SEC	.03080601		0.52 - MIU 10. 10. 10. 10. 10. 10. 10. 10. 10. WIUNEY	M/SEC
2/0= 5.96	.96 .98 .1361		CP13171209080808 2/0: 7.50	
Pm2+ 12.4 006	77959761		CPT2288 .8481818282 Phis 8.6	04.6
Re 3,17	.71 .55 .00 .00		UB/UINF 1.02 1.00 1.00 1.02 1.02 1.01 40 3.17	
UINF - 52.4 R/SEC	.02000001		98/UNF .8101 .01 .00 .00 .01 UNF \$2.0 \$1.01 0.0000101110 1/00 10.15	m/sec
2/0- 4,25	35323631		CP15141009080900 1/00 7.50	- 1
PHI - 12.9 DEG	-,74 -,88 -,98 -,66	.01 .19 .09	(P?2310 .04 .010102 PM] - 0.0	066

TABLE C1.- SYMMETRY PLANE VELOCITIES AND PRESSURES, JET CENTER LINE

(a) R = 3.

						28/0								28/0						
CD-011			-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5		-1.5	-1.0	-8.5	0.0	0.5	1.0	1.5	COMOI		
	.1		.41			1.96	1.31	.04			.49	.82	1.05	1.33	1.15	1.05	.93	4.	3,90	
UINF.	36.2 4	/MC	.00		.05	.07	.00	17		VB/UIM	02	.02	.01	.62	07	05	.02		36.8	M/SEC
2/0=	4.25	- 1	-1.32		-1.31	-1.37	45	.17	31	CP VB/UIW	55	00	14	13	12	15	26	2/0=	5.20	
Pale	24.0 00	E 6	-1.71	-	-1.50	1.50	.29	00	.05		-1.05	00	34	37	14	10	.02		21.3	DEG
8.	4,13		.31		1.10	1.94	1.30	.90		UB/UIM	.64	.01	1.05	1.28	1.27	1.01	.90	**		
1/0-	38.3 */	MC	00		.03	.03	.05	.03		V8/U1M	.01	.00	.01	.01	.00	00	.03		30.0	M/SEC
2/0=	4.25		.62	-1.70	-1.30	-1-27	50	18	32	CP CP	49	50	13	13	12	10	26	8/00	5.20	
	20.0 DI	to		-2.01		1.64	.23	04	.00	CPT	-1.04	05	35	.35	15	.01	.05	Phi:	21.3	DEG
••.	4.15		.44		.09	2.00	1.98	.90		UB/U14F	.07	.63	.**	1.10	1.20	1.13	1.00	**	*.19	
1/0-	30.3 =	ME	07			.00	.03	.00	.00	VB/UIM	10	04	.00	.01	.02	.01	.00		36.4	M/SEC
2/0=	4.25				-1.39	.00	70	.00	36	-B/UINF	.33	.21	01	05	05	00	16	1/04	5.02	
PHI.	33.0 00	69			-1.59	1.07	.02	05	.03	CPT		-1.10	52	52	36	.04	15	PHI:	17.0	DES
	+.15		.41	.250	73	1.00	1.44	. 69	.02	UB/UIW	.44	.74	. 70	1.04	1.29	1.22	1.05		27	
		/SEC	63	.09			.09	.05		V8/U1M	. 62	.00	.01	01	.01	. 67	. 02		30.0	M/SEC
2/0+	2.00		61	.72		. *1	.06	22	34	#8/UIM	.20	.20	.00	04	07	06	17		5.47	
Pale	33.0 00	63	-,94		-1.74	1.47	43	00	02	CPT	-1.10	-1.00	54	52	1	22	13	PRI:	17.0	086
			.+0		1.17	1.70	1.24		.03	UB/U197	.75	. **	1.07	1.25	1.12	1.04	1.01	4+	•.15	
		/SEC	.00		00	01	05	03		VB/UTM	.01	05	.05	.02	.63	.02	.02		39.5	M/SEC
	2.44		-,73	77	18	10	10	20	36		-17	02	09	BA	12	11	10		7.87	
PHIO	31.0 0	0.0	-1.31		47	1.38	21	.01	.10	CP1	01	47	35	35	19	12	01	PHI:	14.0	u€6
				.46	1.10	1.09	1.10	. 89	.01	v8/u19f	.*2		1.11	1.23	1.14	1.6e	1.07		1+	
UIM .	38.7 8/	/SEC	01	64	. 03	01	03	04		VB/UIM	63	.01	02	.00	.01	50.	.02	U[Mfe	34.5 .	M/SEC
	2.66	- 1		.23	12	07	00	20		#8/UIN	.07	01	08	07	87	10	19		7.07	
	31.0 00	81	-1.23	-1.43	42	1.22	10	.23	.10	CPT	75	38	33	31	73	13	09	PRI:	14.0	4.6
	4.13		.39	.90	.73	1.23	1.53	1.10	. **	UB/UIW	.78	1.03	1.27	1.19	1.10	1.00	1.00		4.00	
	38,7 %	/SEC	.05	.07	.01	.01	.05	02	00	VB/U1M	.0.2		0.7	.01	67	01	03		30,0	M/SEC
2/0=	3.60		.01	.29	.00	01	.04	01	17	#B/U[W	.89	.02	63	6/	0.	00	13		.,	
	28.8 DE	01	-1.03	-1.55	-1.59	? 3	57	21	01	CP1	77	29	10	83	10	10	.01	7/U*	11.0 (030
	4.13			.97	.00	1.37	1.50	1.18	.**	UB CUINT	.70	.40	1.11	1.10	1.19	1.04	.90		4.05	
Ulas a	38.7 .	PEC	-,05		03	00	.00	.04	02	VB/UIN	00	04	03	03	01	01	01		24.0	4/51.C
1/0*	3,66		.53	.27	.04	01	.04	01	17	wa/ulw	.10	00	03	00	84	00	13	1/00	8.44	
	20.0 00	. 1	67	-1.49	79	77	50	24	03	CP	30	31	27	25	15		.03	2/00	0.70	
			-1110	-10-4	-1014	*10	200	*10	03	CPT	74	91	04	.11	.14	.04	.01	del.	11.0 1	M.e.

TABLE C1.- Continued

(b) R = 4.

									_							
				28/0		1						78/0				TEST
TEST				-						-1 0	-8.8		0.5	1.0	1.5	CONDITIONS
CUMDITIONS	-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5		-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5	111005
							_		_	_			_			
	.67			1.15	1.02	1	1.03	UB/UIW	.53	.55	1.37	2.17	1.32	.02	.01	8* 5.05
UINF 39.0 M/SEC	.03	1-10	1.11	.01	.01	01	.01	VB/UINF	13	.04	.09	.00	.05	.03	.04	UINF - 49.4 M/SEC
1/D+ 12.65	07	08	14	12	15	14	19	we/ulw	.04	.46	.09	.36	.79	20	32	1/0: 1.97
2/0+ 8,00	26	21	19	19	07	00	05	CP	-1.41	-1.42	-1.56	-1.33		.13	.23	2/6: 5.25
PHI: 12.0 DEG	31	.01	.00	.19	.00	01	.05	CPT	-1.41	-1.90	46	2.03	.37	16	.00	PMI: 33.0 DE6
12.00					•											
@ 4.13	.91	. 95	1.00	1.10	1.00	1.02	. **	UB/U1M	.58	.48	1.35	2.19	1.20	.*3	.77	R* 5.06
U195 . 39.6 M/SEC	01	.02	01		.01	.01	.01	VR/UINF		05	.00	.04	01	.01	-02	UINF . 49.4 M/SEC
E/D= 12.05	10	15	13	11	15	14	20	MB/UINF	.82		.12	. 32	. 2.	10	33	1/0= 1.47
2/0= 4.00	22	10	17	11	09	03	01	CP		-1.32			29	.13	.29	2/0= 5.25
PHI: 12.0 DEG	0.37	71	.02	.11	.05	.02	.05	CPT	-1.47	-1.06	71	2.43	.21	15	01	PHI: 33.0 DEG
																80 No.10
R* 4,14	.43	1.01	1.00	1.00	1.06	1.03	1.00	UR/UTM	.73	.00	.92	1.25	1.33	1.24	1.09	UINF . 49.2 M/SEC
UINF# 34.5 M/SEC	01	.04	00	.02	.03	. 62	.00	V8/U1W		03	.00	.03	02	05	14	1/0= 0.03
A/D= 14.00	07	12	11	11	13	15	17	CP CP	.38	.22	57	53	39	25	20	2/0= 7.25
2/0- 4.25	13	11	04	05	04	.01	.04	CPT		01	72	.00	. • 1	.32	.03	PM1 20.0 DE6
PMI = 10.5 DEG	25	00	.02	.09	-10	.09	.00	CFI	61			.00				7
				1.06	1.05	1.05	1.02	UB/U19F		.79	.99	1.10	1.39	1.24	1.04	9. 5.09
81 4,14	.91	1.03	1.03	.00	.00	50.	.02	VB/UINF	09	02	02	.01	.01	.02	.02	UINF . 49.7 M/SEC
UINF . 39.5 M/SEC	09	02	10	09	13	12	17	wB/UINF	.30	.23	.00	01	03	00	15	1/0: 6.63
X/D+ 14.00		13	05	07	01	02	.03	CP	63	54	57	0	42		14	7/0- 7.25
2/0+ 6.25 Pm1+ 10.5 DEG	11	05	.02	.11	.11	.11	.10	CPT	63	00	54	03	.52	. 33	02	PHI: 20.0 DEG
10.5 000		05	***	***												
80 3.00	1.00	1.00	1.05	1.00	1.04	. 99	.95	UB/UINF	1.00	1.14	1.15	1.07	1.01	. **	.98	R* 5.06
UINF . 38.9 W/SEC	.01	.00	.01	01	01	01	.02	VB/UINF	.02	01	.00	.00	00	.01	.00	UINF . 51.1 W/SEC
1/De 15,78	11	10	17	11	11	12	14	#8/UINF	00	00	87	09	15	17	55	1/0= 9.71
2/0+ 6,40	17	11	00	00	05	.00	.09	CP.	31	20	19	12	07	03	.00	2/0= 9.78
PHI: 10.0 DEG	15	10	.07	.09	. 95	.01	.02	CPT	13	.04	.10	.04	02	02	.01	PHI: 15.0 DEG
80 4,02	1.09	1.05	1.04	1.07	1.04	. 00	. 46	UB/UIN/	1.00	1.10	1.10	1.10	1.03	. **	. 47	R* 5.00
U1MF 30.6 #/SEC	01	.01	00	01	02	00	.01	VB/U1N/	02	. 62	.01	01	00	. 62	.00	UINF - 51.1 M/SEC
1/0= 15.78	08	12	12	17	11	12	16	WB/UINF	04	06	07	10	14	17	- 22	2/0= 9.78
2/0- 4.60	13	13	05	01	05	.01	.07	CPT	10	27	16	11	.02	02	.01	PMI - 15.0 DEG
P=1 = 10.0 DEG	*.11	01	.02	.05	.05	.01	.03	(2)		012			0.05	-405		
							1.01	UB/UINF	.91	. 94	1.07	1.09	1.09	1.01	1.00	80 5.05
Ro 4,12	30.	1.05	1.03	1.00	1.03	1.01	.01	VE/UTHE	03	01	01	.02	.01	.03	.02	UINF - SI.2 M/SEC
U]M# 38.8 4/5EC	.00	.03	.02	.02	00	14	15	*B/UINF	.01	07	04	10	13	10	15	1/0= 14.12
A/C+ 18.81	09	10	17	14	13	09	00	CP	20	17	10	17	12	00	03	2/0- 10.00
2/00 4.75	15	22	09	00	05	00	04	CPT	37	29	01	.0.	.00	01	00	PHI- 13.0 DEG
PH1: 10.2 DEG	30		-,		-0.09	-100				-						
90 4,13	. 95	.98	1.02	1.00	1.02	. 00	1.00	UB/UINF	.00	1.00	1.00	1.04	1.00	1.04	. **	8* 5.05
UINF# 38.9 P/SEC	.02	00	.02	.04	.00	.01	.02	VB/U1NF	-,62	04	.01	01	.02	.01	.01	UINF . 51.2 M/SEC
a/0= 18,01	12	12	13	13	16	11	15	#8/UINF	03	05	10	11	12	13	17	1/0- 112
2/Do A.75	20	19	10	13	00	07	05	CP	73	24	19	13	16	09	04	2/0- 10.00
PHI: 10.2 DEG	27	21	10	04	01	00	03	CPT	-,43	22	06	07	.04	.02	02	PHI- 13.0 DE6
	-00.		-0.0													

TABLE C1.- Continued

(b) Concluded.

(c) R = 5.

				24/0								ZP/D				
CONDITIONS	-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5		-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5	CONDITIONS
8= 6.02		1.28	2.15	1.61	1.06	.76	.68	UB/UINF	1.11	1.29	1.16	1.09	1.01	1.00	.96	R= 6.05
UINF= 41.4 M/SEC	13	-	.10	.07	.05	.11	.07		02	.01	.01	.01	.01	.01	.02	UINF = 42.3 M/SEC
1/0= 1.89	.70	-1.66	.25	.35	03	26	40		.01	03	07	-,08	14	16	55	1/0= 9.63
Z/D= 6.50 PHI= 38.0 DEG	-1.29	98	2.23	1.47	07	11	01	CP	27	38	14	15	03	03	00	Z/D= 11.50 PHI= 18.0 DEG
-HI- 36.0 DEG	-1				0.			CFI				.05	.00	00		10.0 000
H= 6.04		1.17	2.06	1.90	1.:2	.75	.72		1.04	1.16	1.12	1.02	1.03	.98	.95	R* 6.05
UINF# 41 3 M/SEC		0.	.09	.09	.04	.06	.0.		.04	.02	.00	.00	.01	.01	-02	UINF . 42.3 M/SEC
1/0= 1.89	.72		.23	.31	00	29	38		.01	07	08	00	13	10	23	1/0: 9.63
2/0= 6.50		-1.57			23	.27	.32	CP	25	27	19	04	~-07	01	.05	2/0: 11.50
PHI: 38.0 DEG	-1.1*	-1.17	1.45	1.67	.03	09	02	CPT	15	.08	.03	04	.03	01	.01	PHI- 18.0 DEG
R= 6.04	.91	.62	1.10	1.54	1.45	1.24	. 47	U8/U14F	.97	1.05	1.13	1.10	1.10	1.03	1.00	R= 6.04
UINF= 41.2 M/SEC	09	-	.05	.05	.03	.06	.04	VB/UINF	05	01	03	.01	.00	.00	.00	UINF # 42.2 M/SEC
1/0= 3.91	.66	.57	.55	.16	.20	.0.	16	wB/UINF	.06	.01	06	10	11	14	20	1/0= 11.93
2/0= 7.50	98	75	42	83	46	26	04	CP	30		19	27	14	07	02	2/0= 11.50
PHI: 28.0 DEG	67	75	56	.00	.68	.29	05	CPT	35	1•	.09	.13	.10	.01	.02	PHI: 17.0 DEG
H= 6.03	.76	.73	1.01	1.53	1.52	1.33	.91	UB/UINF	1.00	1.00	1.03	1.14	1.07	.99	.94	P# 6.04
UINF = 41.2 M/SEC	03		.02	.02	.05	.61	.02	YB/UINF	.01	01	03	.03	.01	01	.00	UINF = 42.2 M/SEC
1/0= 3.91	.77	.54	.22	.16	-15	.07	13	29.01		02	•. 1	08	07	15	20	1/0- 11.93
2/0= 7.50 Pml= 2#.0 DEG	47	67	76	73	55	24	13	CP	32	20		20	11	04	02	2/0: 11.50
PHIS PH.O DEG			59			. 53	13	CPT	10	12	10	.10	.05	0+	.00	PHI- 17.0 DEG
#= 6.06	. 42		1.15	1.45	1.31	1.09	.94	UB/UINF	.52	1.01	.99	1.05	1.05	1.00	1.07	R= 6.04
UINF = 41.0 M/SEC	.01	. 12	.04	.05	.03	.05	.01		07	.02	01	03		.02	01	UIM . 42.4 M/SEC
1/0= 6.10	.40	.1.	.01	.01	.00	09	22		-11	.07	03	0.		09	15	1/0= 14.02
Z/C= 9.00 PHI= 20.0 DEG	57	59	40	- 54	31	09	.11	CP CPT	17	25	20	1A	15	07	07	7/0= 11.50 PM1= 15.0 DEG
C. O. C.C.O.	****	****	07	•	1	.10		CPI	40	22	21	06	03	.00		15.0 000
Rs 6.06	.66	1.02	1.25	1.39	1.33	1.13	.97	UB/UINF	.88	1.09	1.05	1.06	1.09	1.00	1.06	R* 6.04
UINF = 41.2 W/SEC	.03	.0>	.01	.07	.05	.03	.02		04	01	04	05	05	01	.00	UINF . 42.5 M/SEC
1/0: 6.10	.33	.20	.05	.01	00	05	20	-8/UINF	-14	.00	.01	08	07	03	14	1/0: 14.02
2/0= 4.00	60	57	41	46	24	06	.06	CP	21	28	21	12	15	05	06	7/0= 11.50 PHI= 15.0 DEG
PHIS 24.0 DEG			.1"	•-0	,	. 63	.00	()	40	04		.01	.00			13.0 000
HE 6.04	1.00	1.00	1.23	1.20	1.02	.90	. 94	UB/UINF		1.00	1.00	1.03	1.00	1.01	.99	R* 6.05
UINFO 47.2 W/SFC	.02	02	.00	.01	01	02	.05	VH/UINF	01	.02	.05	02	.00	00	.00	UINF : 41.9 M/SEC
1/C= 7.75	.09	.00	01	02	13	16	23		04	05	10	12	15	15	20	1/00 18.0A
2/0= 10.49	37		24	21	06	03	05	CP		11	15	08	.01	01	.02	2/0: 13.50 PHI: 14.0 UEG
PHIE 20.0 DEG	14	11	.27	.25	02	03	02		07		.04	.00	.04	.05		
ws 6.0*	1.11	1.00	1.00	1.20	1.05	1.00		UB/UINF		1.03	1.02	1.03		1.00	. 48	H* 6.05
UINF = 47.7 M/SFC	.05	. 01	.04	.04	00	.01	.01	VB/UINF		02	.01		01	02	01	UINF . 41.9 M/SEC
1/0= 7.75	.07		05	01	08	16	22		02	07	08	12	14	13	20	1/0= 18.08
//D= 10.49	19	47	29	24	10	04	01			10	07	05	04	01	.03	2/0= 13.50 PHI= 14.0 DEG
PHI: 20.0 DEG	14	+13		***	* " "	00		(-1	-,09	-403	06	.00	03	***		14.0 000

TABLE C1.- Continued

(d) R = 6.

				7970								74/0						
TEST CONDITIONS	-1.5	-1.0	-0.5	0.0	6.5	1.0	1.5		-1.5	-1.0	-0.5	0.0	0.5	1.6	1.6	COMDIT		
e 6.08	.98	.89	1.02	1.07	1.08	1.04	1.03	UB/UINF	.93	.86	1.72	2.53		1.00	.62	es Ulefe	7.04	
UINF = 52.7 M/SFC	05	02	06	03	03	01	12	VB/UINF	1.13	03	03	.04	05	.07	32	1/6=		
Z/D= 11.50	31	26	24	72	13	16	08	CP		-1.34				22	.37	2/0=		
PHI= 15.0 DEG	28	45	19	07	.04	.02	.01	CPT	-,65	-1.01	.13	3.+1	1.93	04	15	PHI:	42.0	DEG
6.06	.94	1.01	1.04	1.15	1.10	1.09	1.07	UR/UINF	1.05	.97	1.69	2.35	2.04	.94	.68	R.	7.04	
UINF = 52.8 M/SEC	07	02	03	07	07	00	01	VB/UINF	1.05	00	07	.07	.01	.15	31	1/0=		
Z/D= 11.50	29	29	25	35	15	15	11	CP		-1.61			98	11	.36	2/0=		
HI. 15.0 DEG	36	24	16	03	.06	.05	.05	CPT	01	-1.11	.00	2.96	2.47	20	08	PHI:	42.0	DEG
								UB/UINF	1.02	.79	1.13	1.79	1.36	1.35	1.27	Ha	7.04	
								WH/UINF	04	07	05	01	04	01	01	M/D=		
								CP		42	50	- 57		34	25	2/0=	-	
								CPT	44	61	21	.17	.49	.50	.24	PHI	27.0	Dt G
								UB/UINF	1.08	1.12	1.15	1.32	1.42	1.30	1.20	R=	6.97	
								VB/UINF	.01	12	03	04	04	00	.02	A/b=		M/SEC
								CP	95	88	61	57	46	07	05	2/0=		
								CPT	59	49	25	.23	.59	.53	.21	PHI*		
								U8/U1NF	. 97	1.09	1.06	1.15	1.16	1.10	1.01	No.	7.03	
								V8/UINF	02	.01	.01	00	01	61	.01	UINF		
								CP CP	36	43	25	00	02	00	16	2/6=		
								CPT	35	22	11	.10	.22	.00	02	PHI:		
								UR/UINF	.99	1.04	1.15	1.18	1.14	1.06	1.01	R-	7.03	
								VB/UINF	05	06	.02	.03		.04	.01	UINF		
								WR/UINF	47	37	11	02	05	10	10	7/0=		
								CPT	47	26	.01	.12	.15	.07	.03	PHI		DEG
								UB/UINF	.48	1.05	1.08	1.04	1.05	1.08	1.05	H=	7.01	
								VB/UINF	06	04	01	04	03	.02	00	Ulnf =		M/SEC
								CP CP	28	24	01	03	08	10	10	2/0=		
								CPT	27	17	05	03	02	.04	.07	PHI		DEG
								UB/UINF	1.00	.99	1.13	1.12	1.13	1.03	.98	R*	7.01	
								VH/UINF	05	04	.00	.00	02	.01	00	UINF .		#/SEC
								w8/UINF	31	14	07	04	05	10	18	2/00		
											- 4 5 3		- 1 1 7	0 -		2700	19.43	DŁG

TABLE C1.- Continued

(d) R = 6. Concluded.

(e) R = 7.

						76/0								ZP/0						
CONDIT			-1.5	-2.0	-0,5	0.0	0.5	1.0	1.5		-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5	CONUIT		
A.	8.01			1.34				.76	.49			.91			2.58		1.00	**	*.03	
	~	M/SEC		02		.15		.03	.11	VB/UINF		-	19	.10	.06	.00	.08	U [MF =		M/SE
1/D• 2/D•			.00			.26	.20	11	42				1.08	.55	.72	.70	.45	1/0=		
PH1.			-,70		2.27			57	15	CPT CPT	-1.05				3.79	5.03	.00	Phis	44.7	DE 6
R=	8.01		1.05				1.73	. 83	.49	UB/UINF		1.10		1.34	2.70	2.72	1.43	R.	*.02	
		M/SEC	.13			.15	.20	.02	.01			16				.13	.04	UINF =		
1/D= 2/D=			.90	-26	-2.31	.26	.22	02	47	WB/UINF					.67	.77	.46		2.00	
PHI		DEG			2.60		.90	16	11	CPT					4.33	5.00	.74	2/0= PH1=	6.75	DEG
R=	8.02		.83	. 34	.89		2.73		1.54	UB/UINF	1.43	1.31	1.72	2.59	2.26	1.21	.45		n.05	
		M/SEC		23		.19	-12	.13	.08	VB/UINF	01	02	.13		.00	.08	.07	UINF		*/5 8
1/D= 2/D=			1.29		1.09	.51	.67	.76		*B/UINF	.45	.54	.20	.1*	.29	.04	46	1/0*		
PHI.		DEG	- 58	05			4.12	-7.69	-1.02	CPT CPT		-1.43	-1.67	3.74		56	14	2/0s PH[s		0.66
	8.01		.86	.92		1.60	2.65	2.70	1.25	UB/UINF	1.41	1.10	1.42	7.43	2.1*	1.10	.46	4=	#.O6	
		M/SEC	-	08	.03		.10	.12	.11	VB/UINF	12	01	.01	.06	.02	.03	.05	UINF	38.0	M/51
1/0-			1.33	1.41		.58	.60	.80	.39	WB/UINF	.84	.64	.71	-19	.20	01	34		2.00	
Z/D= PH[=		DEG			75		3.52	4.95	76	CPT	-2.28	-1.64	-1.94	3.89	2.01	27	24	2/Us PH1s	51.9	DEG
	A.04		1.06	.99		1.18	1.07	1.00	1.03	UB/UINF	1.15	1.22	1.74	2.50	2.40	1.39	.64	н.	8.03	
		M/SEC	.03	.05	.00	02	01	-	.01	VB/UINF	.09	.10	.15	.10	.06	.09	-12	UINF =	30.4	P/51
1/0= 1			.24	.19	.07	.03	00	08		#8/UINF	.00	.70	.13	.19	.71		26		2.00	
7/D= 1 PHI=		DEG	40	30	21	.00	21	05	13	CPT		-1.55	-1.77	1.54		67	34		52.2	LeG
	A.05		.93	.91	1.13	1.07	1.17	1.04	1.04	UB/UINF	1.11	1.22	1.76	2.65	2.29	1.00	.52		F.03	
		M/SEC	.00	06	05	01	03	.00	.00	VB/UINF	13	.00	.11	.00		.08	.04	U [NF =		P/51
1/0= 1			.20	.23	.03	.03	03	11	13	w8/UINF	.91	.59	.53	.17	.2-	.12	40	1/0=		
HI.		DEG	43	39	12	10	29	13	08	CPT	-1.49	-1.54	-2.03		-1.56	43	23	2/0= PH[=	52.2	LE G
	8.06		1.05	.42	1.02	1.28	2.70	2.43	1.73	UNZUINF	1.30	1.10	1.26	1.82	2.03	1.73	1.18	4.	6.05	
		M/SEC	03	07			05	.00	.05	VB/UINF	11	05	04		03	06	.02	UINF		m/5
1/0=			1.27		1.04	.64	.60	.71	7	WE/UINF	.12	.55	.61	.00	.00	-11	04		3.69	
1/0= HI=		D€G	59		-1.08	-1.63	4.02	5.65	-1.33	CPT	-1.38	-1.10	15		2.07	1.47	-13		41.4	LEG
	8.05		.94	1.12	.97	1.30	2.45	2.78	1.65	UNZUINF	1.26	1.12	1.00	1.74	1.44	1.50	.91	#8	m.03	
		M/SEC	.09		24	05	. 115	.05	.04	VH/UINF	07	05	07		04	00	04	UINFE		F/5
1/0=			1.30		1.13	.46	.61	. ~ 2	.42	WB/UINF		.52	.24	.04	.10	.05	11		3.69	
2/D=							-2.19		47	CP	-1.52		47	99	-	65	.01		4.41	
PH [=	•>•0	04.0	35	93	57.	P7	3.27		. 46	CPT	43			1.0=	1.60	.09	15	hw] a	.1.4	DE 6

TABLE C1.- Continued

(f) R = 8.

TEST				7+10		1						7H/D				TEST
CONDITIONS	-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5		-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5	CONDITIONS
R= 4.04	.00	.90	1.25	1.72	1.71	1.47	.91	UB/UINF	.90	1.02	1.02	1.27	1.14		1.10	R= 8.04
UIAF = 38.0 M/SE		.02	00	.00	02	.07	.04	VB/UINF	.00	02	06	02	00	.01	.02	UINF = 39.3 M/SE
1/0= 3.79 2/0= 9.47	.*1	.58	.27	.22	.29	-12	12	WA/UINF	.57	.25	.28	.07	.05	01	09	Z/D= 9.96 Z/D= 13.50
PHI: 35.0 DE6	-1.10	73	34	1.10	1.21	.76	0.	CP CPT	43	35	34	39	25	22	17	PHI= 23.0 DEG
e #.04		1.00	1.41	1.74	1.+2	1.32	.99	UB/UINF	1.02	1.00	1.01	1.07	1.14	1.22	1.13	R= 8.03
11NF = 38.1 W/SEC	04	.05	.09	.05	.02	.07	.01	VB/UINF	00	08	.01	.01	.00	02	02	UINF = 39.3 H/SE
1/0= 3.79	.05	.52	.74	.74	.25	.1*	07	w8/UINF	.49	. 35	.23	.07	04	00	01	x/U= 9.96
2/0= 9.97	00	-			-1.0-	0	12	CP		48	37	33	33	24	23	Z/0= 13.50
PHIS 35.0 DEG	36	68	.03	1.1*	1.39	0	[•	CPT	25	19	30	17	.07	.27	.04	PHI 23.0 DEG
8= 6.05	1.02	1.07	1.01	1.27	1.43	1.44	1.20	UB/UINF	1.07	1.06	1.06	.96	1.11	1.25	1.09	H= 8.05
JINF = 34.4 4/5EC		62	07	.03	.02	.06	.0*	V8/UINF		05	.02	07	.01	02	.04	UINF = 3A.9 M/SE
1/0= A.05	.71	.50	. 34	-14	-11	.16	.00	#B/UINF	.44	.51	.32	.17	.10	.00	07	X/U= 11.96
2/04 11.00 PHI: 30.0 DEG	65	04	74	35	11	15	04	CP	63	12		23	32	32	19	Z/U= 14.00 PMI= 21.0 DEG
1= #.08)[NF= 38.3 P/St(1.13	1.04	.00	1.19	1.57	1.55	1.34	UH/UINF	1.02	1.02	1.00	1.1.	1.16	1.20	1.09	WE 6.06
1/be 4.05	.67	.51	.31	.22	.03	.11	.11	VB/UINF	.02	.01	04	.07	01	.01	01	X/0= 11.98
7/0= 11.00	72	- 59	32	35	51	31	31	CP	70	49		• 1	38	26	16	2/0- 14.00
941s 30.0 DF6	.05	14	03	.12	1.00	1.15	.51	CPT	35	23	23	07	03	.18	.04	PH1= 21.0 DEG
e= m.0.	1.15	1.01	1.04	1.13	1.46	1.40	1.04	UB/UINF	1.03	1.00	.99	1.05	1.14	1.16	1.07	P= 8.07
11 NF = 38.9 M/SEC		01	.03	.0.	.04	.01	01	VE/UINF	01	04	04	04	01	.01	03	UINF = 39.4 M/SE
1/U# 6.53	.50	.48	. ? •	-11	.05	.03	0-	we/UINF	.31	.20	.63	.01	.01	03	09	X/U= 14.00
2/00 11.35 Pels 30.0 CFG	94	66	0		45	38	0-	CP		79	33	78	24	25	19	7/0= 15.30
70.0 LtG	29	1	45	15		.54	.1•	CPT	32	20	34	18	.02	.11	03	PHI= 20.0 DEG
a.01	1.09	.93	1.07	1.34	11	1.44	1.23	UB/UINF	.95	1.06	1.06	1.11	1.11	1.03	1.0A	H= 8.92
pine 34.7 m/sec		.04	01	.01	03	0-	05	VH/UINF	04	05	04	00	03	01	.03	UINF = 39.4 M/SE
1/0= 6.53	-58		.24	.04	01	.01	05	w8/UINF	.29	.23	.10	.04	03	08	12	1/U= 14.00
7/0= 11.35 H=1= 30.0 DFG	33	36	41	54	50	.77	17	CP	43	25	35	05	23	17	23	Z/D= 15.30 PHI= 20.0 DEG
e e.os	1.02	1.00	1.07	1.23	1.47	1.25	1.24	UB/UINF	1.05	.86	1.01	1.00	1.07	1.09	1.07	R= 8.04
INF = 39.0 4/5EC		05	02	.02	03	.04	.01	VB/UINF	.01	04	01	01	02	-02	00	UINF = 34.0 M/SE
1/0= 7.69	.54	. 33	.18	.10	.07	.05	04	#B/UINF	.76	.10	.13	.00		07	08	X/U= 18.14
700 17.49	69	68	3	40		38	20	CP	28	13	13	11	04	07	05	2/0= 16.50
m1= 26.0 DtG	15	*. 45	36	.00	. 54	.20	. 30	CPT	11	35	DA	10	.15	.13	.10	PHI= 18.0 DEG
e #.05	1.00	.93	1.00	1.22	1.34	1.24	1.21	UB/UINF		1.03	.95	.46	1.11	1.09	1.00	H= 8.04
11%F = 39.0 4/5FC		10	05	01	0+	.02	00	VH/UINF	00	03	06	07	03	04	01	UINF = 39.0 M/SE
/D= 7.69 /D= 12.49	14.		.22	.12	.00	01	00	wB/UINF	.31	.15	.14	01	.02	05	11	X/0= 18.14
MIS 26.0 DEG	67	36	55	52	41	29	34	CP	32	21	04	04	16	08	07	7/0= 16.50
64.00 DED	1	121	- 4 75		***	00.3	*1.7	CPT	16	11	10	11	.08	.12	. 0 =	PHI= 18.0 DEG

TABLE C1.- Continued

(f) R = 8. Concluded.

				78/0							•	ZB/D				
CONDITIONS	-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5		-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5	CONDITIONS
R= 10.03	1.86	1.60	2.24	3.12	2.97	2.00	.94	UB/UINF	1.15	1.14	1.26	1.41	1.69	1.85	1.56	R= 9.99
UINF - 24.5 M/SEC	.07	.12	.24	.25	.21	.23	.00	V8/UINF	11	.06	.05	.11	.00	.09	.11	UINF= 30.6 M/SEC
x/0= 2.00	.52	.42	.10	.20	. 33	.36	12	WB/UINF	.55	.44	.26	.17	.16	.17	.05	X/D= 6.06
Z/0= 9.50 Pml= 57.4 DEG	-2.75	-2.65	1.54	5.66	5.60	1.56	57	CP	-1.20			-1.00		86	87	2/0= 13.50
PHI: 57.4 DEG	"1	00	1.70	7.00	5.60	1.50	66	CPT	55	57	12	.04	.91	1.64	.60	Phis 34.8 DEG
R= 10.03	1.51	1.67	2.03	3.02	3.02	1.95	1.10	UB/UINF	1.06	1.15	1.23	1.40		1.70	1.59	R= 10.00
UINF= 24.5 M/SEC	.08	.15	.12	.21	.14	.15	-17	VH/UINF	02	.07	.07	.02		.04	.16	UINF = 30.7 M/SEC
1/0: 7.00	.72	.50	.08	.1.	.29	.24	.00	w8/UINF	.50	. 48	.32	.16	.13	-11	.05	X/0= 6.06
Z/L= 9.50 PHI: 57.4 DEG	73	-2.41	.00	5.48	5.50	1.36	47	CP	-1.13	37	89	.18	1.24	98	.71	Z/0= 13.50 PHI= 34.8 DEG
57.4 DES	/3	,,	.00	2,00	7.7*	1.30		CFI		31	20	.10	1.24	. 43	• • •	74,0 000
Ws 10.0e	1.03	. 97		1.19	1.17	1.21		UB/UINF	1.10	1.04	.98	1.28		1.59	1.44	R= 9.99
UINF = 25.2 M/SEC	.05	.06	.04	.04	.13	.11	.02	V8/UINF	.15	.01	.08	.02	.04	.03	.05	UINF = 31.3 M/SEC
x/0= 14.03	. 32	.14	-11	-05	01	01		W8/UINF	.54	.51	.45	-1A	.05	.10	.04	1/0= 7.99
7/6= 17.50 PHI= 25.0 0t6	60	47	51	03	34	36	02	CP CPT	-1.14	70	42	70	57	61	55	7/0= 14.50 PHI= 31.0 DEG
23.0 010				03		• • • •	•	CFI		30		03	. 20		•	3110 000
a= 10.07	.97	1.01	1.04	1.17	1.31	1.10		UB/UINF		1.03		1.20		1.54	1.47	H= 9.99
JINF = 25.2 M/SEC	11	.0=	.13	.10	.04	.13	.05	VB/UINF	02	03		.04	.05	.07	.04	UINF= 31.3 M/SEC
4/0= 14.03 2/0= 17.50	•56	56	.13	.00	04	25	13		.55	.52	.30	.16	73	.08	52	2/0= 7.99 2/0= 14.50
PHI: 25.0 DEG	43	51	0	05	.26	.11	00	CP CPT	36	06	35	59	.87	60	.65	PHI: 31.0 DEG
21.0 00.0			- • • •	•	•	• • • •	• • • •	()	36	33	,,,		• ***		.03	7
90 4.99	1.61	1.27	2.04	2.48	3.00	1.69	. 45	UH/UINF	1.08	1.11	1.11	.97		1.33	1.44	и» 9.98
UINF " 30.4 W/SEC	.18	.15	.21	.24	.14	.15	.00	VB/UINF	04	.03	.01	-11	-11	.03	.07	UINF = 31.4 M/SEC
2/0= 2.00	.76	-1.82	-2.01	-12	-7.34	.32	.08	#B/UINF	.59	.40	.76	.25	-14	56	03	X/0= 10.16 Z/0= 15.47
PHI 57.4 DEG	24	64	.76	4.49	5.20	.57	13	CP	85	74	75	37	59	.23	.45	PHI: 28.0 DEG
			•			•		()	32	30	,	3"			•••	70.0 000
RE 9.99	1.39	1.40	1.95	3.03	3.13		1.18	UBJUINF	1.04	1.05	1.06	1.13		1.39	1.44	R= 9.98
UINF = 30.6 M/SEC	.05	.10	.16	.74	. 25.	.17	.19	VB/UINF	.03	06	.06	.07	.04	.05	01	UINF : 31.4 M/SEC
1/0= 2.00	.90	.55	.23	-11	.27	.29	.03	#B/UIM	.57	.40	.31	-16	.04	.04	-02	1/0: 10.16
2/0= 9.50 PHI: 57.4 DEG	-2.08	-2.04	.74	5.47	0.10	1.03	43	CP	92	74	59	77	45	50	61	7/0= 15.47 PHI= 28.0 DEG
					0.14	1.00		(-1	51	•	37		13	•••		50'0 PER
40.4	1.44	1.36	1.50	1.00	2.20	2.15		UB/UINF	1.01	.88	.97	1.15	1.30	1.19	1.40	R= 9.97
UINF# 30.5 M/SEC	07	.09	04	.07	.03	.12	03	V8/UINF	02	06	.02	.04	.09	.08	.02	UINF . 31.3 M/SEC
4/0= 4.00	.77		?	. 31	. 33	. 31	. 37	#8/UINF	.53	.39	.27	.16	.03	.01	02	#/0= 12.11
2/L= 11.4H PHI: 41.0 DEG	-1.43	-1.44	06	1.01	2.42	2.45	.77	CP	55	49	0	47	2	29	45	7/0= 16.50
	3		-,	1.01			• • •	CPT	25	56	39	12	.28	.15	.53	PHI: 25.0 DEG
40 4,44	1.38	1.07	1.42		2.71		1.69	UB/UINF	.93		1.00	1.20	1.18	1.31	1.33	R= 9.98
UINF# 30.4 M/5+C	11	.22	.01	.07	.03	.09	.04	VA/UINF	.03	.07	.03	.08	.11	.03	.02	UINF - 31.3 M/SEC
4/0= 4.00	.77	.74		. 14	. 90	. 35	.14	*B/UINF	.65	.51	.20	.12	.0.	.01	07	x/0= 12.11
2/0= 11.48		-1.23				-1.50		CP	43	51	53	45	30	36	48	2/0= 10.50
PHI: 41.0 UEG	71	53	48	. 6.7	2.47	2.04	.76	CPT	15	35	32	.01	.11	. 36	.30	PHI 25.0 DEG

TABLE C1.- Continued

(g) R = 10.

TEST				ZF/D				
CONDITIONS	-1.5	-1.0	-0,5	0.0	0.5	1.0	1.5	
R= 9.99	1.00	1.14	.98	1.05	1.11	1.10	1.22	UB/UINF
UINF = 31.6 M/SEC	.06	.10	.01	.07	04	.01	01	VB/UINF
1/0- 14.03	.44	.24	.20	.07	.01	05	11	WB/UINF
2/0= 17.50	53	64	29	32	30	21	40	CP
PHI: 25.0 DEG	33	20	29	70	07	.01	.10	CPT
R= 10.00	1.07	.98	.96	1.09	1.17	1.10	1.21	UB/UINF
UINF# 31.7 M/SEC	04	.02	01	.02	.04	.01	.04	VB/UINF
K/D= 14.03	.37	.38	.20	.12	.04	06	00	WB/UINF
2/0= 17.50	59	27	33	24		43	24	CP
PHI = 25.0 DEG	31	35	36	03	07	03	.19	CPT

TABLE C1.- Concluded

(g) R = 10. Concluded.

				14/0		1			I			26/0						
TEST CONDITIONS	-1.5	-1.0	-0.5	0.0	0,5	1.0	1.5		-1.5	-1.0	-0.5	6.0	0.5	1.0	1.5	CONDI		
3.20	.78	.53	.49	.47	.32	1.93•	1.38*	UB/UINF	.74	.62	.45	.30	.31	1.87*	1.64*	R-	3.18	
JINF = 33.5 M/SEC	.10	.01	09	.03	01	.12	.05	VB/UINF	.16	.07	04	12			.05	UINF.		
1/0= 2.00	.10	.60	1.03	.64	.30	.32	. 42	WR/UINF	.13	.69	.94	.55	.20	.30	.33	X/D=	2.00	
2/0= 2.00	42	49				-1.77	57	CP	44	85			-1.26	-1.74	76	Z/D=		
PHI= 22.0 DEG	76	58	50	-1.76	-1.88	1.10	.52	CPT	64	98	85	-1.97	-2.12	.9.	1.07	PHI.	55.0	DEG
3.17	.60	.52	.57	.30	.20		1.45		.00	.61	.43	.21			1.39*	R.	3.14	
INF = 33.5 M/SEC	.04	05	.09	.00	13	.10	.08	VB/UINF	-14	.07	17		17	.07	.09	UINF =		
00.5 = 0/S	-17	.80	.41	.59	.39	.31	.46	CP CP	-17	.67	.76	.71	-1.15	.32	.36	Z/D=	2.00	
030 0.55 =1mg	85		-1.51			1.12	52	CPT	98			-1.43		1.21	46	PHI=		
3.23	.81	.98	.77	.68	.52	.69	1.03	UB/UINF	.67	.66	.67	.57	. 34	.67	1.40*		3.17	
INF = 34.4 M/SEC	50.	.12	.01	05	01	.04	.00	VB/UINF	.10	.12	.04		05		.05	UINF .		
K/D= 6.00	.13	.23	0	.35	.24	.15	00	WB/UINF	.04	.30	.65			.0.	03	X/D=		
2/0= 3.00	10	39	42	49	34	36	41	CP	24	35	**	81	56	66	92	Z/0=	2.50	
PHI: 17.9 DEG	43	36	66	89	-1.00	00	35	CPT	46	76	57	-1.25	-1.31	-1.20	.25	PH1=	16.0	DEG
3.20	.77	.84	.77	.73	.63	.67	.99	U8/U1NF	.87	.76	.73	.52			1.36.	R=	3.15	
INF = 34.4 M/SEC	-11	.00	.00	03	02	02	.04	VB/UINF	-17	.05	.00	.02		-	.03	UINF.		
1/0= 6.00	-13	.55		.38	.24	.14	04	*B/UINF	.09	.37	.51	.57	-	-14	03	X/0=		
7/0= 3.00 PHI= 12.9 DEG	10	55	26	47	42	35	43	CF	27	58	60		-1.26		74	Z/D=	16.0	
9= 3.16	.90	.93	.85	.77	.75	.71	.67	UB/UINF	. 49	7	.78	.63	.+1	.71	1.08		3.19	
UINF : 34.4 M/SEC	.05	.02	.05	.02	.01	01	04	VB/UINF	.08	.05	.00	00		-	01	UINF :		
1/D= 8.00	02	.09	.25	.35	.28	.24	.10	WB/UINF	.06	.27	.33	.38	.25	.09	04	X/0=		
2/0= 3.00	15	16	13	17	78	31	21	CP	17	28	42	38	35	45	44	2/0=	3.00	
PHI= 13.0 DEG	40	30	34	45	+3	74	75	CPT	31	**	69	*3	-1.11	94	25	PHI.	12.9	DEG
3.14	.98	1.01	.90	.74	.76	.08	.88	U8/UINF	.88	.82	.81	.67	.59	.65	1.00	R=	3.17	
INF = 34.5 M/SEC	.07	.01	.02	.0.	00	01	.01	VB/UINF	.00	.08	.05	08	.00	-	02	UINF.		
/D= 8.00	02	.04	.22	.34	.20	.10	.00	WB/UINF	•15	.20	. 35	.31	.24	.03	05	X/D=		
7/0= 3.00 PHI= 13.0 DEG	12	26	16	17	70	76	59	CPT	20	46	33	93	39	93	37	Z/D=		
					/ 0							-			-		16.4	250
3.71	.95	.90	. 67*		. 41	.90	.94	UB/UINF	.91	.00		.75	.73	.66	.78	R.	3.15	
INF : 34.4 W/SEC	.09	.12	.01	.06	00	02	.03	VB/UINF	.08	.07	01	01	04	02	01	U[NF .		
/D= 14.00	-13	-14	.07	.12	.05	.01	02	CP CP	00	- 11	.21	.37	.22	-11	.01	X/0.		
HI= 4.0 OEG	20	10	21	23	10	20	20	CPT	12	11	18	17	55	26	26	2/f)*	-	DEC
4.0 DEO		(5)	44	44	50	,•				31	3		64	81	65		13.0	UE G
3.20	.97	.01	.89	.79	.49	.93	.95	UB/UINF	.92	.90	.92	.74	.73	.65	.85.		3.19	
INF = 34.5 M/SEC	.06	.12	.02	04	.02	.03	.00	VR/UINF	.07	.08	.05	.06	01	02	.00	UINF =		M/5
1/0= 14.00	•11	.16	.13	.11	.07	.03	08	WB/UINF	03	.05	.55	.27	.25	.1.	.06	X/D=	8.00	
1/D: 4.50	23	06	25	20	27	20	17	CP	1*	21	23	51	20	26	32	2/0=	3.00	
HIA B.O DEG	26	37	44	.,56	-,48	34	27	CPT	20	39	35	58	-,06	62	60	PH1-	13.0	DEG

TABLE C2.- SYMMETRY PLANE VELOCITIES AND PRESSURES, VORTEX CURVE

(a) R = 3.

						ZB/0								78/0					
CONDIT			-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5		-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5	CONDITIONS	
R.	3.16		.85	.87	.79	.76	.68	.79	.94	UB/UINF	.93	.88	.86	.90	.90	.93	1.00	R= 3.17	
	52.8	M/SEC	.05	.06	01	02	05	00	00	VB/UINF	.02	.03	.00	03	03	.02	.01	UINF = 51.8	M/SE
	0.00		.13	.20	-25	21	.21	.05	07	WB/UINF	.07	.09	.11	.06	.03	02	07	1/0- 18.00	
	3.48		13	24	20	- 34	26	29	24	CP	09	13	13	12	13	12	13	Z/D= 5.00 PHI= 7.1	DEG
PH[=	11.0	DEG	38	44	60	72	75	66	35	CPT	22	35	38	30	31	25	11		
A.	3.16		.62	.01	.87	.76	.71	.71	1.07		.93	.95	.88	.86	.88	.89	1.01-	R= 3.16 UINF= 51.9	H / E F
		M/SEC	.07	.02	.01	.01	02	02	.00	VB/UINF	.02	.01	03	03	02	00	01	I/D= 18.00	-/30
1/0-	8.00		.13	.22	.32	.30	.23	.03	07		.07	.08	.09	.06	.02	04	16	2/0= 5.00	
	3.48	DEG.	09	24	29	31	26	23	35	CP	13	15	12	12	11	27	13	PHI: 7.1	DEG
	11.0	010	39	37	•3	64	70	73	20	CPI	25	23	34	3/	,-				
R.	3.18		.94	.91	. 05	.78	.74	.82	.91	UB/UINF	.95	.90		.89	.92	03	01	R= 3.15 UINF= 52.2	
		M/SEC	.04	.08	.01	.01	02	.01	.00	VB/UINF	.03		01	01	07	09	13	X/0= 25.00	,
1/D= 2/D=	9.48		20	21	26	23	24	22	05	CP CP	03	06	04	08	10	10	08	Z/0= 6.00	
	10.0	DEG	31	33	48	60	69	54	36	CPT	20	27		28	25	13	12	PHI- 10.0	DEG
	3.10		.94	.43	.62	.76	.75	.85	.86	UB/UINF	.97	.96	.91	.90	.89	.94	1.020	R= 3.15	
-		M/SEC	.05	.05	.01	03	02	00	.01	VB/UINF	.01	.01	.00	03	01	01	.00	UINF - 52.2	H/5
	9.48		.13	.23	.25	.23	.15	.01	04	WB/UINF	04	01	06	03	06	12	11	X/D= 25.00	
	3.75	i	16	11	19	17	17	22	13	CP	15	16	10	17	06	09	11	2/0= 6.00	
PH [.	10.0	D€G	24	36	46	53	5A	48	39	CPT	20	23	27	31	26	18	06	PHI= 10.0	OF 6
	3.17		.97	.86	. 65	.83	.75		.90	UB/UINF									
		M/SEC	.05	.05	.02	07	01	01	01	VB/UINF									
X/D= 1		- 1	.00	.17	-18	.23	.13	07	05	WB/UINF									
2/0=			15	11	17	10	16	16	19	CP									
PH [.	9.0	08.6	21	33	41	41	57	-,45	36	CPT									
R =	3.17		.93	.94	.88	.83	. 79	. 91	. 89	UB/UINF									
		M/SEC	.05	.03	.01	.01	03	02	01	VB/UINF									
X/D= 1			.07	-15	-14	.19	.08	.0.	04	wB/UINF									
2/D= PHI=	9.0	DEG	14	20	21	17	14	14	15	CP									
	3.17						***												
		M/SEC	.90	.02	03	02	01	03	01	UB/UINF									
1/D= 1		-, 31.6	-12	.14	.19	.13	00	.00	04	wa/UINF									
2/0=			13	11	19	20	12	13	18	CP									
	A.0	DEG	31	37	40	47	49	-, 44	27	CPT									
a a	3.10		1.00	.90.	.88	.00	.00	. #9	. 95	UBZUINF									
INF	52.7	M/SEC	.05	.01	.01	02	03	00	.01	VB/UINF									
1/0= 1		1	.09	.04	.15	-12	-11	.0.	00	WB/UINF									
2/0=	-	1	22	20	20	20	14	17	1A	CP									
PH I m	A.0	DEG	21	37	40		9	37	28	CPT									

TABLE C2.- Continued

(a) R = 3. Concluded.

						ZA/D								ZR/D						
CONDIT			-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5		-1.5	-1.0	-0.5	0.0	6.5	1.0	1.5	CONDI		
R.	•.13		.89	.67	.32	.36	.22	1.39	2.36.	UB/UINF	.115	.49	.60	.37	.59	.54	1.09*	#=	*.1*	
UINF=			.08	10	09	11	.11	.13		VB/UINF	40	.04	01	.00	01	03	.03	UINF =	38.5	F/SE
	2.03		.00	-	-	.73	.50	.09		WB/UINF	.20	.31	.66	.69	.37	.05	01	X/0=	4.00	
	2.50								-5.13	CP	26	76	57		-1.05	86	00	7/0=	3.25	
PH[=	28.0	DEG	-1.26	-1.76	-1.63	-2.15	-2.09	-1.11	3.03	CPT	-1.04	-1.42	78	01	-1.56	-1.59	68	PH]=	20.0	DEG
Re	4.13		.95	-		.291				UR/UINF	.67	.75	.58	.49	.+6	.00	1.27.	R*	4.13	
		M/SEC		19	-		-11	.13		VB/UINF	.08	.02	.07				.04	UINF =		
	2.03		.12		-	.77	. • 1	.18	.65	w8/UINF	05	.24	.52	.52	.49	.17		X/U=		
2/D= PH[=	2.50								-2.57	CP	87	85	73	88	86			7/0=	3.25	
	28.0	060	-1.24	-1.33	-1.65	-1.65	-2.1-	-1.60	3.37	CPT	-1.42	-1.21	-1.17	-1.37	-1.42	-1.45	34	PHI:	20.0	DE G
R=	4.21		.54	.63	.68		.59	.79	1.14*		.77	.59	.60	.52	.75	.56	.42	R=	4.00	
UINF=	6.00	×/5€C	.08	00	.05	05	.07	00	.09	VB/UINF	04	.07	.04	.03	-11	.05	02	UINF =		
	4.00		38	29	52	53	50	54	57	WB/UINF	40	24	12	.15	.33	.52	.52	1/0*	*.16	
	17.0	DEG	-1.08	73	94		-1.06	91	25	CP CPT	-	-1.19	-1.27	65	78	-1.23	-1.29	Z/U=		
				• • •	• • • •							-1.14	-1.27	-1.35	-1.04	-1.23	-1.67		31.0	DE.U
**	4.23		.41	.70	.51	.59•	-	1.01	1.01.	00,01.	.31	.72	.78	.69	.74	.53	.50	He	4.01	
UINF.		M/SEC	06	.01	.09	.03	.01	.00	.06	VB/UINF	10	.08	-12	.05	.04	.09		UINF =		
1/D= 2/D=	6.00		34	54	40	.27	.31	.65	01	WB/UINF	58	50	14	.14	. 35	.63	.45	X/D=	4.16	
PHI=		DEG	-1.14	-1.02	98	-1.08	92	63	43	CPT	.03	63	64	63	76	59	-1.43	2/D=	31.8	
		2.0				-1.0		03		()	~.53	-1.03	-1.00	-1.12	-1.11	90	-13		31.0	DEG
	4.19		.59		.77	-	.88	.96	1.06	UB/UINF	.65	.61	.61	.60	.64	.76	. 91	Re	4.20	
INF		M/SEC	.01	.01	.04	.00	.04	.02	.04	VB/UINF	. 36	.10	.05	.02	00	03	01	UINF		
1/0= 1			.10	.05	05	.00	02	.01	10	WB/UINF	.10	.20	.26	.43	.24	.00	05	X/D=	6.00	
2/D.		DEG	03	21	19	20	21	16	20	CP	54	57	47	43	57	54	43	7/U=		
	10.3	560	07	3+		,-	,		05	(0)	-1.11	86	-1.02		-1.09	96	59	F-11-	17.0	UE 0
	4.16		.87	.82	.88	.78	.79	.95	1.01	UR/UINF	.76	.77	.70	.62	.61		1.06	H=	4.18	
INF .		M/SEC	.03	05	.06	01	03	.06	-02	VB/UINF	.03	.10	.15	01	07	.01	01	UINF =		
1/0= 1			05	24	26	16	07	03	16	WB/UINF	.07	.13	.31	.35	.21	-11	06	7/0=	6.00	
PHI.		DEG	47	57		55	44	20	07	CPT	-1.03	65	59	46	-1.16	60	51		17.0	
						5"					-1.03	-1.0-	-,	+6	-1.10		,,			06.0
	4.13		.77	.66	.45	.251		1.30	2.49.	UB/UINF	.85	.77	.61	. 65	.67	.95	1.14	No.	4.01	
INF .	~~~	M/SEC	.01	.13	07	.01	01	.07	.11	V8/UINF	.04	.02	00	.01	05	.03	.02	UINF =		
	2.03		.10	.47	.89	.01	.78	.21	.61	W8/UINF	.05	.10	.19	.20	-11	01	08	X/U=		
	2.50	DEG		-1.56					3.34	CPT	46	41		40	37		4?	Z/D=	4.50	
41.	29.0	020	-1.67	-1.04	-1.70	-2.04	-1.34	-11	3.34	CPT	75	79	76	94	90	56	11		14.0	DEG
	4.14		.49	.61	.49	. 4 1		1.04	2.38.	UB/UINF	.70	.54	.75	.644	.65	. #2	1.00*	H=	4.14	
INF		M/SEC	.19	.07	03		10	.05	.06	VB/UINF	.03	.03	07	03	.01	04	00	UINF	39.0	M/5
	2.03		.06	.58	.83	.80	.65	. 22	.63	#8/UINF	.10	.17	.20	.12	•10	.06	.00	X/0=	8.00	
2/0=									-2.18	CP	37	33	**	45	43	0	45	2/0=	4.50	
HIE	28.0	DEG	-1.84	-1.51	-1.75	-2.04	-1.70	-1.74	3.02	CPT	A7	06	83	-1.03	99	72	44	PHI:	14.0	DEG

TABLE C2.- Continued.

(b) R = 4.

	$\overline{}$			Z8/D					T			ZR/D						
CONDITIONS	-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5		-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5	CONDITI		
	1 .74	.79	.69	.74	.76	.90	1.00	U8/UINF	.91	.92	.92	.94	.91	.90•	.55		.13	
UINF : 39.7 M/SEC	1 .06	.07	.06	.01	05	.00	.05	VB/UINF	.03	.02	.01	.03	00	.01	.02	UINF : 1		M/SE
1/0- 9.10	.04	.10	.12	.13	.13	.06	06	WB/UINF	08	09	08	10	12	16	16	1/0a 55		
2/0= 4.75	46	3:		**	43	43	42	CPT	14	14	14	13	05	03	04	2/0= 1		
PHI - 13.0 DEG	92	71	93	**	83	02	40	1	-,31		28	23	23	14		PH1 = 1	10.0	DE 0
. 4.17	.73	.76	.77	.68			1.07	UB/UINF	.84	.85	.90	.87*	.98	1.04	1.03	R* 4	.12	
INF . 39. ? M/SEC	.01	.02	02	03	02	.01	.02	VB/UINF	.05	.02	00	.01	.02	.02	.02	UINF = 1	10.86	M/SE
L/D. 9. 1	.10	.13	.13	.22	.12	- 05	05	WB/UINF	07	11	09	14	14	10	14	X/D= 25		
2/0. 6.75	39	* *	42	41	39		45	CP	09	10	13	03	10	16	12	2/0= 1		
PHI: 13.0 DEG	85	-,85	80	89	84	66	29	CPT	-,38	36	31	25	11	.00	34	PHI: 1	10.0	DE 6
R= 4.00	.73	.75	.85	.74	.55	.78	. 54	UB/UINF	. 944	.97		1.00	.95	.98	.99		.12	
UINF . 38.6 M/SEC	.06	.10	.03	.02	.07	.01	.0.	VB/UINF	.01	.01	.00	.01	.02	00	.00	UINF = 3	99.1	M/SE
1/0= 9.22	10	05	00	.06	.20	.11	.05	#8/UINF	05	00	10	06	06	0e	08	X/D= 35		
2/0- 3.68	27	27	33	30	17	32	12	CP	07	11	09	11	05	00	00	2/0= 6		
PHI: 15.0 DEG	72	69	59	75	83	70	71	CPT	18	10	20	10	13	10	09	PHI-	6.3	D€6
. 4.01	. #1	.80	.82	.78	.76	.75	. 78	UR/UINF	.95	.93	. 94	.97	1.02	. *3*	1.03	R* 4	.13	
JINF = 39.0 M/SEC	.06	.03	.09	.03	00	.08	.03	VB/UINF	.01	.00	.00	.01	.01	01	.00	UINF = 3	99.2 1	M/SE
1/0= 9.22	11	05	.02	.09	.11	.11	.02	*8/UINF	07	06	06	00	09	01	00	1/0= 35		
2/0- 3.88	34	31	29	29	28	28	26	CP	12	11	09	11	13	.06	12	7/0.		
PHI: 15.0 DEG	67	66	61	66	69	70	65	CPT	20	24	21	16	09	07	04	PHI.	6.3	DE G
R* 4.13	.92	.02	.78	. 85	.94	1.01	1.03*		.96		.98	. 99	1.00	.93	1.03		.15	
UINF# 39.6 M/SET	.03	.01	.02	.02	.01	.02	.03	VE/UINF	.00	00	.02	00	.00	01	.02	UINF : 1		-/SE
X/D= 14.00	01	.07	.04	.04	08	09	11	WA/UINF	06	07	0+	09	04	08	10	1/0* 45		
Z/D= 6.00	19	21	19	19	21	16	15	CP	10	06	09	0*	06	03	10	2/0* 9		DE B
PH1 = 10.5 DEG	34	54	58	47	31	12	07	CPI	17	17	12	09	06	15	03	bH[=	3.0 1	DE 0
R= 4.13	.76	.85	.83	.90	.93	. 44	1.02	U8/U1NF	.97	.95	. 44	1.01	.98	. 93	1.01		.16	_
UINF . 39.7 M/SEC	01	.03	.03	02	01	.01	.03	VB/UINF	00	07	02	.00	02	02	.00	UINF .		1/SE
K/D= 14.00	.08	.08	.01	01	08	10	14	#8/UINF	06	08	00	07	02	01	0#	1/D= 45		
Z/D= 6.00	13	26	20	30	19	19	3	CP	08	04	01	07	07	.05	05	2/0× 4		
PHI: 10.5 DEG	54	54	51	49	32	30	10	()	12	13	13	03	00	09	02	P-11	3.0	DE 6
4.13	.83	.01	.83	.90	.93	.89		UB/U1NF	.58	.61	. 324			1.37	2.440		.05	
UINF . 38.7 M/SEC	.04	.03	01	00	.01	.01	.03	VB/UINF	01	-19	.05	.03	.05	.03	.06	UINF		M/5E
x/0= 18.00	00	04	05	04	11	09	10	MB/UINF	.16	.71	.91	.62		.10	.55	1/00 2		
7/0 * 6.50	20	18	17	23	17	12	20	CPT				-1.54				2/0= 2		200
PHI: 10.2 D€G	50	51	48	47	>#	30	06	CPI	-1.43	-1.14	-1.00	-1.03	-6.69	-1.13	3.83	PHI: 7		DE 0
4.12	.04	.88	.83		.98*			UB/UINF	,79	.49	. 35.			1.30	2.45.		.00	
INF . 38.7 M/SEC	.01	.02	.01	.02	.01	.04	.01	VB/UINF	.00	.10	04	01	00	.02	.00	UINF		1/5E
1/0= 18.00	05	02	0.	07	05	13	13	WB/UINF	.33	.65	.93	.70		.25	.62		.03	
2/0 6.50	24	21	20	16	22	22	17	CP.				-1.89			-1.86	2/00 2		
PHI. 10.2 DEG	35		51	45	26	25	12	CPT	-1.05	-1,14	-1.37	-/./4	-6.70	-1-14	3.91	PHI: 2		of 0

TABLE C2.- Continued

(b) R = 4. Continued.

TEST						78/0				
CONDITTO	345		-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5	
Q	.06		.78	.74	.64	.61	.68	.71	1.04*	U8/U1NF
UINF . 62	2.5	m/SEC	.01	.05	05	01	.01	01	.02	VP/UINF
	.00		00	.27	.37	. 35	.23	.07	07	WB/UINF
	.00		49	50	47	57	50	54	62	CP
PHI: 17	.0	DEG	87	89	91	-1.02	-1.07	-1.02	51	CPT
	.07		.69	.76		.50	.63	.79	1.14*	UR/UINF
UINF . 62		M/SEC	.05	.03	.04	00	04	.01	.02	VB/UINF
	.00		.09	.12	. 31	.28	.20	.02	03	WB/UIN
	.00		-,48	59	56	59	45	56	07	CP
PHIS 17	. 0	DEG	-,00	-1.00	-1.05	-1.17	-1.21	93	34	CPT
Re 4.	.05		.02	. 82	.87	.87	.90	.93	1.07	U8/U1NF
UINF - 64		W/SEC	.03	.00	.02	.01	.03	03	.00	VB/UINF
1/D= 14.	.00		.01	.07	00	00	07	07	17	WB/UIN
	.00		16	15	20	10	17	15	16	CP
PHI 11	.5	DES	48	47	45	42	34	28	.01	CPT
He 4.	05		.46	.86	. = 7		. 92	1.01	1.00	UB/UIN
UINF# 64	.5	M/SEC	.05	01	.00	04	01	.02	.02	VB/UIN
K/D: 14.			.03	.03	.05	03	04	11	13	WB/UIN
	.00		22	10	24	14	11	10	10	CP
PHIS 10	.5	D€G	-,48		47	46	25	12	08	CPT

TABLE C2.- Continued

(b) R = 4. Concluded.

						28/0								28/0				
CONDI			-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5	1		-1.0						TEST
\vdash			-							-	-1.5	-1.0	-0.7	0.0	0.5	1.0	1.5	COMDITIONS
	5.04		.66		-					UB/UINF	.00	.84	.86	.05	. 45	.92	1.02	80 5.05
UINF.			.07		15					VB/UIM	.03	01	.00	01	01	02	02	UINF - 51.1 M/SEC
2/0=						-2.03	-1.72	-2.43	-1.13	CP CP	-11	.19	-17	.10	-15	.03	03	1/D= 14.00
PHI.			-1.51	-1.29	-1.43	-1.30	-1.84	-2.27	4.55	CPT		52	32	55	33	26	33	Z/D= 7.00
	5.04		.79	.76	.57	-421	5 .42	1.12	2.944	UB/UINF								PHI- 13.0 DES
		M/SEC	.10	05		17	-	01	.15	VB/UINF	.86	.03	-	. ***		. 67	1.00	8. 5.05
K/D=			.25			1.32	.91	.31	.76	WB/UINF	.13	.13	.02	01	01	01	01	UIMF . 51.2 M/SEC
7/0.			93	-1.51	-1.72	-1.56	-1.88	-5.31	-3.49	CP		33	20		32	11	01	E/D= 14.00 Z/D= 7.00
PHI:	32.0	DEG	-1.20	-1.62	* 24	+8	-1.07	-1.95	5.25	CPT		57			51		32	PHI- 13.0 DEG
R.	5.06		.77		.56	7	.51	. 86	2.720	UB/UINF								
UINF .		M/SEC	.22			0#		.07	.12	YB/UINF								
Z/D=			.50	.74	1.17	1.25	.90	.34	.77	WB/UINF								
PHIO		OF G				-2.17				CP								
		000		-1.00	00	-1.37	-2.02	-2.40	•••	CPT								
	5.0%		. 50	.61	.00	.56	. 341			UB/UINF								
ulwf.	2.05	M/SEC	.15	.10	-12	.09	33	.03	.10	VB/UINF								
2/0:			74	. 75	1.09	1.00	. 92	. 36	.70	98701W								
Pels		DEG	-1.24	95		-2.18				CP								
					-,	-2.11	-1.67	-2.30	*.56									
	5.05		. 75	.73	.70	.74	.74	.00	1.00	URZUINE								
U [NF =		₩/5EC	01	.07	03	04	03	.01	.01	VB/UINF								
X/0:		- 1	.18	.34	. 45		5	.22	.00	*B/UINF								
PHIS		046	67	55	00	67	64	00	69	CP								
	20.0	000	-1.02	85	47	#7	49	99	68	CPT								
	5.00		.71	. 49	. 45	.74	. 65	.00	. 42	UB/UINF								
UINFO		M/SEC	01	02	0.	00	03	01	00	VR/UINF								
2/0=		- 1	.76					.25	.03	WB/UINF								
PHIS		080	97	01	73		57			CP								
	20.0	0.0		:	0		91	96	78	CPT								
Re :	5.05	- 1	.90		. 05	. 89	.81	. **	.92	UB/UINF								
UINFE		#/SFC	.07	.10	.03	03	"1	.01	.01	CREUINF								
K/D=		- 1	.17	.30	.25	.29	.28	.22	.05	#8/UINF								
2/D= '			42	23	* *	49)	+0	CP								
Pm [a	15.0	56.0	59	63		6.	. *0	43	54	CPT								
Re I	5.05		.80	.87	. 66	.71		.40	.89	U8/U19F								
UINF .		=/5EC	.07	.05	.02	01	02	03	02	VB/UINF								
1/0=	0.66		.15	.27	. 32	.33	. 34	.17	.03	we ruinf								
2/00			41	36	42	30	37	- 39	30	CP								
Pw]s	19-0 1	0.6.6	60	53	56	49		12	59	CPT								

TABLE C2.- Continued.

(c) R = 5.

																			_
					19/0								29/0						
1651										١							761		
CONDITIONS		-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5	1	-1.5	-1.0	*6*9	0.0	0.5	1.0	1.5	COMDIT	11000	
1																	ł		
E- 4.09		.49	.60	.57	-94	.511	.60	2.420	UR/U14	.4.3	.71	. 75	. 20	.79	.70	1.21	61	0.53	
UINF# 25.7	■/SEC	.10				03		.00	VB/U157	.00	05	.01	17	27	03	-10	U[M .		8/58℃
1/D: 7.00		.25	.00			1.30	.64	.00	*87U1W		.05	.03	1.03	. 61		.30	4.7D*		
2/0. 3.50		**50	43	-1.12		-2.05	-2.50	-4.67	CP		64	-1.19	91	-1.49	-1.21	-1.30	2/0=	5.00	
Pml: 38.0	D€6	-1.74	67	20	-7.50	-1.11	-1.94	3.64	CPT	-, 55	71	47	24	-1.13	-1.17	40	Pm] e	20.0	06.0
										l									
UINF - 75.7			.72		.50	.67	1.07	3.00*	UR/U14/	.76	.00	.74	.03	. 65	. 20	1.10	E4	6.62	m/SEC
4/D= 2.00	-7566	.23	18		1.25	1.13	.63	00	*8/U1*F	.29	.76	.00	06	- 91	.03	. 34	1/D*		-, 200
2/04 3.50				-1.50					Ce	01			-1.00		-			5.00	
Pml = 38.0	DEn		-1.37				-2.42	4.09	CP1	43	37	79	97		-1.23	60	Pm] e	20.0	616
										1	-								
Re 0.17		.75	. #2		.00	. 44	.03	. 46	UBPUINE	.91	.89	. 77	.91		.43	. 90		0.03	
UINF = 25.7	m/SEC	34	.00			04	.07	.07	VD/U19F	.05	.09	09		10	.00	.01			m/SEC
E/D: 6.00		,	.59	.76	. 74	. 62	. 68	. 47	*B/U[N	. 34	.51	.01	.70)	. 30			
Z/D= 6.00		27	43		71	97	00		CP	50	01	62	2	61	77	(6	1/0=		
PHI: 24.0	DEC	51	!	33	48	00		53	CP1	-,50	55	-,64	47	3		7.	Pm[s	20.0	DA C
0. 6.14		.92	.85	.74	.79	.75	1.15		UB/UINF	.42	. 94	.47	.90	. 79	. 48	. 73		4.05	
UIM# 25.8	m/SEC	.07	.12		07	20.	. 64	10	VB/U1%F	01	01	03	07	.09	.07	.00	ulw.		B/SEC
E/D= 6.00		0	.50	. 77	.80	.00		. 30	*9/UINF	.37	.50	.72	. 75		.50	. 35	1/00	-	
2/0: 6.00		46	38	48	50		-1.03	90	CP		72	59	69	73	49	30	2/0=		
PHI: 24.0	Df G	45	33	33	22	30	50	03	CPT	65	50	18	50	64	57	70	Pm1 =		DEG
										l		-							
8. 6.05		.98	.67	. 93	.05	.98	, 56	1.07	UBJUINF	.00	. 65	.95	.91	.01	.99	. 60	@ a		
E/De 14.//0	-7516	.07	.03	.63	01	.02	.03	02	VA/U[NF	.09	00	03	.05	09	.02	09	1/00	~ ~ ~	₩/5EC
2/0= 0.50		34	20	25	34	33	31	35	•8/U[№ CP	08	51	70	71	-,61		50	1/00		
PHIS 14.0	DE 6	24	36	18	24	21	20	15	CPT	67	50	90	+0		63	50		20.0	0.00
										- 0	- 0 - 0	- 6 - 0		- 0 - 0				2000	
B+ 6.07		1.00	. 75	1.03	.90	. #9	. 42	. 94	UB/UIW	. #1	.01	.10	.09	. 844	.85	1.10	**	0.04	
UINF . 26.9	M/SEC	.07	01	00	03	.01	02	02	VB/U19F	.00		01	09	03	02	09	U[NF *	1.50	M/SEC
E/D= 14.00		.22	. 4.2	. 32	.40	. 34	. 32	.22	#B/U[W		.55	.53	.50	.91	.70	.22	8/De		
2/0- 4.50		37	0+		-,34	76	20	27	Ch	-,43		61	67	92	-, 40	61	1/0.		
Pm1: 15.0	DEG	19	30	31	24	-, 34	33	32	CP1	57	57	50	00	-,	79	34	PH e	20.0	DER
		.70	.01	. * 2	.95	. 50		3.170	UB/U19F	.01	.93	. 69	.97	. **	.45	1.00			
UINF 1.1	M/SEC	.23	.24	.71	.04	87	05	.04	ABLATAR.	02	.00	.01	.00	-,04	0.9	03	u[M*	-	B/55.
E/De 2.00	300	.19	. 6.6	1.11	1.30	1.19	50.	.85	*B/U1%F			. 40		.74	.10	.02	1/00		- 30.6
2/0- 3.50			-	-1.94					CP		51				94	01	1/00	A. 00	
PHIR 30.0	D€G	92	80	-1.28	-2.10	-1.45	-2.40	9.39	CPT	41	41	42	0	42	99	23	Per] e	10.0	DF 6
			_																
8. 6.01			.7.	.62	.95	.91				. 4%	. 97	. 93	. 41	. 99	.69	1.05	**		
UINF - 41.1	-/5fC	04	.07			10	.01	.09	18/01%	02	.05	.06	03	. 67	*.01	07			m/SEC
1/0. 2.00		-19	.71		1.39	1.71		. 46	48/UINF	.50				.26	.10	.05	1/00	9.48	
Z/D: 3.50 PHI: 38.0	DEG	81		-1.00				5.04	CPT	-,36	44	91	93	47	39	30	2/00	10.0	DE G
I- 30'0	0.50	-1.50	-, -,	-1:00	-1.00	-10-1	-6.11	2000	CPT		-,	- (- 1	*,53	-,-1	-,-3	-0.75	Sul.	10.00	- E -

TABLE C2.- Continued

(d) R = 6.

				78/0								29/0				TEST
TEST CO-0171045	-1.5	-1.0	-0.5		0.5	1.0	1.5		-1.5	-1.0	-0.5		0.5	1.0	1.5	COMDITIONS
	.94	.96	.97		.95	.97	1.06	UB/UIW	. 40	.98	1.00	.45	. **	1.02	1.01	R- 0.04
UTMF + 42.4 M/SEC	.00	.00	00	.01	04	01	01	VB/U1NF	.01	07	01	03	01	04	01	UINF . 41.9 M/SE
1/0- 12.00	. 35	. 34	. 38	. 34	.20	.15	.05	w8. 414	.07	.64	.00	.05	.01	14	82	Z/D= 35.00 Z/D= 13.00
1/0 0.50	43	41	47	38	42	40	46	CP1	13	17	20	15	10	10	11	PHI: 9.3 DEG
M1. 17.0 DE6	1	36	37	46	43	-,**	27	CPT	17	20	10					
	. 99	.93	. 97	.95	. **	. 95		UB/UINF	1.00	1.01	. 97	1.01	1.02	. **	1.01	UINF - 41.6 M/55
INF . 42.4 M/SEC	.01	.03		02	01			VB/U1M	.01	01	.01	01	01	01	07	1/D= 35,00
1/0+ 12.00 1/0+ A.50	.31	37	**	44	42	30	00	CP	04	23	15	21	21	15	20	2/0= 13.00
PHI - 17.8 DEG	36	33	****	4?	30	-,44	36	CPT	21	20	22	19	10	19	17	PHI: 4.3 FF6
													. 99	. 95	. 47	0. 0.02
11MF + 42.4 */SEC	.00	.03	.93	00	1.05	. 91	00	VB/U1NF	1.01	1.03	.01	1.02	07	01	.02	UINF . 44.3 H/SI
1/0= 14.00	.29	.29	.38	79	.29	.20		#8/UINF	.07	.01	.03	.03	03	02	05	1/0= 35.00
Z/D= 8.50	-, 30	30	37	2.10		29	30	CP	14	14	10	17	11	07	00	Z/D= 13.00
MI. 15.0 200	0	+0	41	37		30	27	CPT	11	08	10	09	13	16	11	PHI: 4.5 LEG
		. 99	. 95	1.00	.87	. 97	1.02	ue ruine	1.00	.90	.97	.00	1.03	1.04	.98	8. 5.98
18F# 42.4 M/SEC	.03	02	.02	03	00	02		VE/UINF	02	05	00	03	01	.00	02	UINF . 41.6 P/SI
1/0: 14.00	.27	.30	.20	. 20	. 29	.25	.12	#8/U1M	.00	.05	.04	.01	04	05	10	1/D: 35.00
1/0- 0.50	35	30	40	36	20	37	41	CP	09	07	07	00	08	00	02	2/0- 13.00
PMI* 15.0 DFG	29	32	42	73		-,36	35	CPT	04	1•	13	00	02	.0.	04	PHI: 9,5 DE6
	.00		1.02*	. 95	.93	. 92	1.03	UB/U1W		. 90	. 97	.99	. 90	.97	1.00	We 0.04
11MF = 41.9 M/SEC	.01	.02	01	.00	01	00	01	VB/U1NF	02	01	02	3	04	01	01	UINF . 42.3 M/SI
1/D+ 14.00	*55	.10	.20	.20	.10	.07	.03	*8/U[Nf	.05	.02	.03	.03	.01	.02	04	1/0- 45.00
1/D= 10.00 PHI= 14.0 DEG	23	25	14	74	20	17	23	CP	09	10	11	13	18	07	10	790: 14.75
14.0 DEO		55		,-	32	50		CPT	70	23	16	15	20	12	04	771. 6,1 016
. 6.05	. 95	1.00	. 20	.00	. 00	.97	1.03	UB/UINF	.04	1.00	. 46	. 98*	1.01	. 95	1.00	#* A,83
1 W 1 . 9 -/SEC	.00	.01	04	.01	04	03	.02	VB/U1%	07	.00	02	-	01	02	02	U[M+ +2.2 #/5]
1/0+ 18,00	.74	. 2%	.10	.16	. 14	.00	00	*97U1W	.01	.07	.64		00	01	07	1/00 45.00
1/0. 10.00	20	29	27	/1	20	20	19	CPT	15	20	12		15	04	12	2/00 14.79 PMI: 0.1 MG
m]* 14.0 DEG	/3	22	29	/:	21			CPT	75	21	20	*.15	13	1•		e,1 tate
. 0.07	.07	. 95	. 66	.04	1.05	1.01*		UB/U1M	.47	. 6.7	.59	. 301		1.00	3.240	## n.11
M . 4 . 6 . 4 / SEC	.04	.01	04	04	01	02	03	V8/U1NF	.03	03	07		07		.10	U[M . 50.9 M/5
1/0. 29.02	-14	-14	.14	.15	.10	.02	02	*9/U1W	. 32	. 71	1.12		1.24	. 63	.63	1/0= 2.00
7/0+ 11.01	21	19	13	19	29	19	15	CPT	31				-10		5.73	PHI: 38.0 DEG
Pale 18.0 DEG	24	25	19	97	13		-068	(5)	1 "	-,	-1,33	-6.44	-10	-2.44	2013	3-14 040
10.0	.874		.99*		.91	.90	1.01*		.50		.53		. 389		1.01.	H= 6,09
11MF 1.6 #/SFC	-,06	.03	.02		05	04	.02	VB/U1%	13	.09	01		07		.00	UIM - 50.0 4/50
1/0. 25.02	.20	.10	.11	-15	.10	.07	.04	#8/U1WF	. 32	.70	1.10		1.23	.00	. 9.6	1/0° 2.00 2/0° 3.50
2/D* 11.00	09	23	20	17	30	13	22	CPT	37	07			-2.13		5.72	PHI: 38,0 DEG
PMI = 10.0 DEG	78	27		-031	- 0 20	- 0 20	-950	(0)	-,-9	- 4 - 1	0		-116.3	-2 1 2 5	24.4	THE PERSON NAMED IN

TABLE C2.- Continued

(d) R = 6. Continued.

TE	c +		1			28/0				
CONDI			-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5	
R=	6.09		.92	.89	.90	.89•	.88	.91	.85	UB/UINF
UINF=	50.8	M/SEC	.05	.05	.00	02	07	.01	03	VB/UINF
X/D=	6.00		.29	.50	.67	.69	.74	.60	.45	WB/UINF
2/0=	6.00		43	58	71	93	70	79	62	CP
PHI=	24.0	DEG	49	53	44	66	35	59	69	CPT
R=	6.12		.80	.89	.84	.83	.97	.82	.93	UB/UINF
JINF=		M/SEC	.07	.02	.03	.04	03	.04	03	VB/UINF
1/0=	6.00		.35	.47	.68	.75	.73	.60	.43	WB/UINF
2/0=	6.00		33	45	67	72	87	73	70	CP
PHI=	24.0	DEG	55	43	49	45	37	69	66	CPT
?=	6.07		.97	.920	.92	.91	.96	.020	.99	UB/UINF
JINF =		M/SEC	.05	.04	.03	.03	02	02	07	VB/UINF
	14.00		.31	.33	.41	. 40	.30	.37	.19	WB/UINF
2/0=	8.50		29	27	32	33	44	36	36	CP
PH [=	15.0	DEG	23	31	30	34	42	16	34	CPT
=	6.07		.90	.97	.93	1.02	.94	1.01	.94	UB/UINF
JINF =	52.5	M/SEC	.07	.06	.06	.05	.01	01	04	VB/UINF
	4.00		•35	.35	.41	.39	.38	.32	.26	WB/UINF
Z/D=	8.50		23	29	3A	40	38	38	29	CP
HI=	15.0	DEG	31	21	33	20	35	24	33	CPT

TABLE C2.- Continued

(d) R = 6. Concluded.

				78/D								ZB/D				
CONDITIONS	-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5		-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5	TEST CONDITIONS
R= 7.02 UINF= 44.1 M/SE	.60				.53		3.320		.96	.99	.93	.98	.92	.96	1.01	R= 7.02
x/D= 2.00	.10			1.37	08	.02	.08	WB/UINF	.03	.07	.04	.01	04	07	09	UINF= 45.2 M/SE
Z/D= 4.00	34				-3.04			CP	.48	.53 37	.54	.53	• 45	.38	.27	X/D= 14.00
PHI = 41.6 DEG	97				-1.72			CPT	17	10	41	48	46	33	38	Z/D= 10.45 PHI= 17.5 DEG
R= 7.03	1 .44		-	.489				UB/UINF	.98	1.00	.98	.93	.94	1.00	1.05	R= 7.01
UINF= 44.1 M/SE X/D= 2.00				.00	10	.06	.08	VB/UINF	.07	. C 4	.05	03	05	00	01	UINF= 45.3 M/SE
X/D= 2.00 Z/D= 4.00	19				1.59	.93	-4 47	WB/UINF CP	.48	.49	.54	.53	.48	.37	.26	X/D= 14.00
PHI= 41.6 DEG	89				43		4.37	CPT .	33	41	50	39	32	43	43	Z/D= 10.45 PHI= 17.5 DEG
P= 7.03	.70	. 25	5 .46	5 .489	.60	1.13	3.43*	UB/UINF								
UINF = 43.9 M/SE					08	.14	.08	VB/UINF	l							
x/D= 2.00	.26	.96			1.37	.76	.84	WB/UINF	1							
Z/D= 4.00 PHI= 42.0 DEG	80				-3.09			CP								
	1			-7.41	-1.84	-2.41	6.75									
H= 7.03	.68	.57	.54		.501		3.31.									
UINF = 43.9 M/SE					08	.03	.08	VB/UINF	l							
Z/D= 4.00	31	.79		1.34	-3.06	.81	.94	WB/UINF CP	1							
PHI= 42.0 DEG	81				-1.79		6.48	CPT								
7.02	.94	.84	.85	.85	.86	.91		UB/UINF								
JINF = 43.8 M/SE		.13	.05	05	01	14	02	VB/UINF	1							
X/D= 6.00 Z/D= 7.00	.40	.61 51	75	.94	.98	.88	.47	WB/UINF CP								
PHI= 27.0 OEG	33	41	33	21	78 07	15	97 65	CPT								
R= 7.04	.86	1.12	.89	.950	.980	.95	1.16	UB/UINF								
JINF= 43.8 M/SE	.12	.08	.04	04	.12	01	03	VB/UINF								
x/:= 6.00	.38	.50	.82	.86	. 44	.84	.52	W8/UINF								
7/0= 7.00 PHI= 27.0 DEG	43	89	39	-1.15	-1.16	85	-1.07	CP CPT								
R= 7.04	.92	.98	.96	1.12	1.00	.93	1.15	UB/UINF								
JINF = 45.1 M/SE	.03	.04	.10	.03	.04	.06	02	VB/UINF								
(/D= 9.88	.50	.58	.69	.66	.62	.53	.33	WB/UINF								
7/D= 8.98 PHI= 20.0 DEG	35	59	59	87	67	56 41	76	CP								
7.02	.97	.96	.90	.97	.98	.95	1.02	UBJUINE								
INF = 45.3 M/SEC	.10	.08	.07	.04	.02	.03	04	VBZUINF								
(/D= 9.88	.44	.60	.73	.65	.61	.53	.42	WB/UINF								
//D= 8.48	48	55	52	75	62	61	54	CP								
PHI= 20.0 DEG	29	26	16	38	27	43	31	CPT								

TABLE C2.- Continued

(e) R = 7.

*50-				Z8/D								78/0					
CONDITIONS	-1.5	-1.0	-0.5	0.0	0.5	1.0	1,5		-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5	CONDIT	
R= 8.16	.95	.385		.79	.58			UB/UINF			.89				1.54*		8.02
UINF= 19.2 M/SEC X/D= 2.00	.01		1.41	1.58	1.36	.17	1.31	WB/UINF		23	.13	.19	.12		.08		30.8 M/S
Z/D= 5.00	53			-2.68				CP		1.39	1.09	.51 AS.5-	-2 94	.78	-1 03		2.00 6.75
PHI= 45.0 DEG	39	.57	.06		29	62		CPT		05	76				.56		44.7 DEG
R= A.15	.75		.77	.83				UB/UINF	.86		.42				1.250		8.01
UINF= 19.3 M/SEC	17		23	21		.25	.11	VB/UINF		08	.03	.10	.16	.12	.11		30.9 M/S
X/D= 2.00 Z/D= 5.00	46		1.27	1.32	1.13	-6.08		WB/UINF CP	1.33		1.11	-2.33	- 66	.80	78		2.00
PHI= 45.0 DEG	79			-2.00			10.28	CPT	30		75	40	3.52		05	2/0= PHI=	44.7 DEG
R= 8.25	.68	1.11	1.10	.94	1.05	.98		UB/UINF	.86	1.00	.94	.84	1.23	1.10	1.15	H=	8.08
UINF= 19.3 M/SEC	04	10	15	00	13	.05	.02	VB/UINF	05	12	08	05	.00	.14	.10		30.9 M/S
X/D= 6.00	.68	.70	.79	.93	.94	.76	.55	WB/UINF	.64	.74	.97	1.05	.81	. 7.4	.49		6.00
Z/D= 8.00 PHI= 30.0 DEG	.90	.76	21	.79	16 .86	.05	03 -50	CP CPT	06	48	65	80	-1.13	75 .03	73 15		8.00 30.0 DEG
R= 8.25	.82	.88	.96	1.20	. 93	1.05	1.18	UB/UINF	. 82	.90	.88	1.02	.68	.94	.73	R=	8.03
UINF= 19.3 M/SEC	.09	35	25	08	06	01	.07	VB/UINF	.09	14	17	16	07	.04	.07		30.9 M/S
X/D= 6.00	.51	.83	.91	.78	.99	.80	.51	WB/UINF	.69	.79	1.00	.96	1.15	.88	.59		6.00
Z/D= 8.00 PHI= 30.0 DEG	.69	1.46	.02	76	.95	25 .49	04	CP CPT	.26	31 -15	.35	-1.17	19	44	18		8.00 30.0 DEG
R= 8.03	.91	.97	1.01	1.21	.89	.97	1.08	UB/UINF	1.00	1.04	1.02	1.01	1.06	1.13	.99	H=	8.03
UINF= 19.8 M/SEC	.09	.05	.05	05	03	.09	05	VB/UINF	.04	.04	.13	.07	.07	03	.00		31.6 M/S
x/D= 15.18	.50	.60	.53	.58	.46	.31	.32	WB/UINF	.49	.47	.56	.62	.50	.54	.28	X/D= 1	
Z/D= 11.98 PHI= 20.0 DEG	93	85	72	-1.26	89	-1.04	81	CP	57 33	74	76 38	67	73 35	76	57	Z/U= 1 PHI=	1.98 20.0 DEG
R= 7.99	.92	.92	1.01	.86	1.14	.86	.88	UB/UINF	1.02	.99	.98	1.13	.96	.91	.84	H=	8.02
UINF = 19.8 M/SEC	.03	07	.10	.07	06	00	.10	VB/UINF	.02	06	.05	.03	02	.03	.09		31.6 M/S
x/0= 15.18	.51	.58	.52	.54	.46	.34	.30	WB/UINF	.47	.51	.63	.55	.58	.37	.41	X/D= 1	
Z/D= 11.98 PHI= 20.0 DEG	81	84	-1.13 83	93	-1.20	91	72	CP CPT	55 29	65 41	63 27	92	70	62	43	Z/U= 1 PHI=	1.98 20.0 DEG
R= 8.03	.58	.82	.71	.79	.97	2.35	3.82*	UB/UINF	.80	.70	.68	.59	.67	2.27	3.70*	R=	H.06
UINF = 30.9 M/SEC	28	.04	05	49	.04	.21	.12	VB/UINF	06	02	12	04	.04	.10	.09		38.4 M/S
x/D= 2.00	.51		1.47	1.54	1.01	.70	1.37	WH/UINF	.40		1.36	1.64	1.29	.69	1.20	X/0=	
Z/D= 5.00 PHI= 45.0 DEG	68	-1.09	-2.12	-3.08			10.46	CP CPT	48			-3.09 -1.03		.01	9.98		5.00 45.0 DEG
R= 8.03	.69	.58	.78	.77	.86	2.27	3.84*	UE /UINF	.65	.69	.67	.585	.70	2.00	3.760	R= .	8.06
UINF= 31.0 M/SEC	16		44		00	.21	.19	VB/UINF	.13	.09	15		23	.02	.06		38.6 M/S
x/D= 2.00	.60	1.09	1.38	1.59	1.15	.68		WB/UINF	.50	1.01	1.39		1.55		1.19		2.00
2/0= 5.00	47			-5.96				CP				-2.76					.00
PHI= 45.0 DEG	60	21	91	77	-1.65	.59	10.61	CPT	36	55	-1.48	51	-1.64	15	10.18	PHI=	5.0 DEG

TABLE C2.- Continued

(f) R = 8.

TE						ZB/D								ZB/D				
CONDI			-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5		-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5	CONDITIONS
R=	8.02		.95	.97	.86	.91	1.18	1.02	1.52	UB/UINF	.98	.81	1.02	1.01	.91	1.17	1.17	R= 8.04
		M/SEC	00	08	.07	00	03		.01	VB/UINF	.09	.06	.12	.02	.01	.08	04	UINF= 38.5 M/SE
X/D= Z/D=	6.98		.56	-1.43	1.10	1.24	1.00	.84	.41	WB/UINF	.12	.29	.46	.61	.76	.72	.65	X/D= 8.81
PHI=	35.0	DEG	42	91	73		83	-1.56 81	-1.88	CP	07	.07 18	27	45	34	-1.02	-1.01	Z/U= 8.31 PHI= 30.0 DEG
R=	8.04		.83	.80	.83	.76	.91	.84	1.35	UB/UINF	.92	.99	.99	1.00	.99	1.09	.90	R= 8.03
		M/SEC	07	.06	00	09	04	.02	04	VB/UINF	.06	.05	.02	.11	07	.02	01	UINF = 38.6 M/SE
	4.00		.63	.86	1.19	1.33	1.27	1.02	.52	WB/UINF	.09	.32	. 40	.61	.71	.74	.78	X/D= 8.81
	6.98 35.0	DEG	43	-,60	-1.56	-1.19	-1.54	-1.04	-1.68	CP	05	05	20	40	61	79	36	7/D= 8.31 PHI= 20.0 DEG
R=	8.05		83	.90	1.09	1.08	1.09	1.17	1.14	UB/UINF	.98	1.01	1.00	.91	.95	1.05	1.03	H= 8.01
		M/SEC	.09	02	07	.07	05	.09	09	VB/UINF	-14	.17	.13	.09	04	.03	.01	UINF = 39.2 M/SE
X/D=,			.03	.35	.56	.83	.84	.83	.70	WB/UINF	.53	.70	.75	.81	.85	.73	.52	X/D= 9.80
Z/D= PHI=		DEG	15	48	90	-1.15	53	-1.61	-1.21	CP	12	44	85	80	73	84	65	Z/D= 10.00 PHI= 23.0 DEG
2=	8.01		.97	.97	1.16	1.06	1.18	1.27	1.12	UB/UINF	.95	.94	.86	.93	.95	.94	1.23	H= 8.05
		M/SEC	.06	.13	.04	.15	.07	.00	05	VB/UINF	.06	.04	01	.04	.02	02	.01	UINF = 39.3 H/SE
	5.63		.13	.38	.58	.78	.83	.82	.68	WB/UINF	.52	.66	.79	.84	.83	.85	.53	X/U= 9.80
Z/D= PHI=		DEG	29	29	88	-1.06	-1.41	-1.66	-1.21	CP	36	52	58	81	70	63 03	-1.00	Z/D= 10.00 PHI= 23.0 DEG
=	8.05		.87	.82	.85	1.07*	.78	1.00	.92	UB/UINF	1.04	1.00	1.04	.94	.93	1.04	1.08	R= A.03
	38.6	M/SEC	.04	.03	.04	.09	00	.11	07	VB/UINF	01	04	.08	03	.02	08	00	UINF = 39.0 M/SE
	6.00		.59	.82	1.00	.93	1.25	.84	.83	WB/UINF	.54	.62	.72	.77	.74	.64	.57	X/D= 12.00
	30.0	DEG	03	12	53	-1.28	16	90	49	CP	48	63	59	67	57	74	66	Z/D= 11.00 PHI= 21.0 DEG
=	8.06		.80	.84	1.03	.960		1.03	1.00	UB/UINF	.94	1.02	1.05	. 98	.93	1.12	.82	
		M/SEC	03	09	.00	10	13	.01	08	VB/UINF	.08	.06	.08	.04	.01	.02	16	N= 8.06 UINF= 39.1 M/SE
(/D=	6.00		.56	.84	.90	1.01	1.16	.83	.71	WB/UINF	.55	.59	.67	.76	.72	.62	.56	X/D= 12.00
	8.00		.10		-1.04		52	89	46	CP	30	65	72	67	64	71	27	Z/D= 11.00
HI=	30.0	DEG	.06	.55	15	07	.58	13	.07	CPT	12	25	16	12	25	07	26	PHI= 51.0 DEG
	8.06		.95	.93	.87	.88	.91	1.08	1.11	UB/UINF	.98	1.00	.97	1.02	.99	1.04	.96	R= 8.04
INF=		M/SEC	.07	.16	.15	.05	03	.01	02	VB/UINF	.02	.03	.11	07	01	.05	04	UINF= 39.2 M/SE
	9.00		30	51	.89	.95	.98	-82	.63	WB/UINF CP	40	.57	.63	-65	.54	.57	.51	X/D= 15.18
	26.0	DEG	18	23	60	75	12	-1.09	47	CPT	21	09	14	52	37	50	17	Z/D= 11.98 PHI= 20.0 DEG
	8.07		.96	.81	.97	.92	.94	.92	.93	UB/UINF	.99	.48	1.06	1.12	.83	1.00	1.07	R= 8.03
		M/SEC	.08	.13	.01	00	.02	.04	14	VB/UINF	01	06	.13	.03	13	01	.03	UINF = 39.2 M/SE
	9.00		.47	.71	.81	. 27	.97	.82	.74	WB/UINF	.53	.56	.57	.65	.65	.54	.39	X/D= 15.18
	9.00	DEG	32	32	80	94	93	-1.05	74	CP	37	43	68	76	41	57	70	Z/D= 11.98
		010			-161	33	10	36	-164	CF I	11	10	20	11	26	27	40	PHI= 20.0 DEG

TABLE C2.- Continued

(f) R = 8. Continued.

TEST				78/0								28/0				
CONDITIONS	-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5		-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5	CONDITIONS
R= 8.03	.98	.97	1.03	1.04	1.11	.96	1.13	U8/UINF	1.04	1.02	1.04	1.05	.98	.96	1.06	R= 8.03
UINF = 39.0 M/SEC	00	.08	00	.01	00	.00	04	VB/UINF	04	.01	01	05	.01	02	00	UINF= 39.1 M/SEC
x/D= 18.00	.49	.54	.60	.54	.47	.44	.58	WEZUINE	.27	.30	.27	.27	.21	.22	.14	X/D= 45.00
2/D= 13.00	21	30	37	49	4A	39	56	CP	13	15	18	18	17	17	21	2/0= 19.50
PHI= 1H.0 DEG	01	05	.06	11	02	28	19	CPT	.04	01	02	01	17	20	06	PHI= 10.7 DEG
H= 8.03	.94	1.02	.97	1.06	.92	1.06	.97	UB/UINF								
UINF = 34.0 M/SEC	.01	.10	.04	.03	.05	.01	07	V8/UINF								
X/D= 18.00 Z/D= 13.00	.52	.50	.62	.55	.53	.51	.41	WB/UINF								
PHI= 18.0 DEG	15	3A	25	35	34	33	18	CP								
-41- 14.0 050	.01	07	.08	.08	20	.05	06	CPT								
R= 8.03	1.03	1.02	1.01	1.07	1.02	1.02	1.03	UB/UINF								
UINF = 38.6 M/SEC	.05	.05	05	00	07	08	03	VB/UINF								
X/D= 25.00 Z/D= 16.00	.45	.45	.43	.34	. 25	.19	.07	WB/UINF								
PHI= 15.2 DEG	34	33	32	38	34		29	CP								
15.2 000	08	09		11	55	13	23	CPI								
R= A.04	1.01	1.10	1.07	1.06	1.02	1.09	1.01	UB/UINF								
UINF= 38.7 M/SEC	.07	05	03	03	06	03	09	VB/UINF								
x/D= 25.00	.45	.41	. 40	. 36	.27	.18	.13	WB/UINF								
Z/D= 16.00	37	42	42	44	27	-	55	CP								
PHI= 15.2 DEG	14	04	11	18	16	13	18	CPT								
R= A.05	1.04	1.00*		1.05	1.01	1.03	1.09	UB/UINF								
UINF = 38.7 M/SEC	.01	00	04	05	03	04	04	VB/UINF								
K/D= 35.00	.30	.28	.33	.28	.17	.16	.11	WB/UINF								
Z/D= 18.00 PHI= 14.4 DEG	23	14	22	23	15	21	26	CP								
PHI- 14. V DEG	06	06	00	05	09	11	05	CPT								
R= 9.07	1.04	1.06	1.07	1.02	1.07	1.08*		UB/UINF								
UINF= 34.6 M/SEC	.02	01	01	04	02	00	06	VB/UINF								
X/D= 35.00 Z/D= 18.00	.32	.32	.32	• 32	.20	.07	.10	WB/UINF								
PHI= 14.9 DEG	23	21	26	15	23	21	26	CP								
	04	• 01	00	00	04	04	15	CPT								
R= 8.05	1.06	1.050	1.06	1.09	1.02	1.02	1.06	UB/UINF								
UINF= 38.8 M/SEC	01	01	01	02	03	01	04	VB/UINF								
X/0= 35.00	.33	.27	.31	.27	.18	.18	.06	WB/UINF								
Z/D= 1A.00	18	23	18	29	50	19	23	CP								
PHI= 14.9 DEG	.06	04	.03	03	12	11	10	CPT								
R= 8.04	1.04	1.02	1.05	1.03	1.00	1.03*	1.05	UB/UINF								
UINF = 39.0 M/SEC	01	.00	03	01	02	.01	02	VB/UINF								
X/D= 45.00	. 26	. 28	.29	.29	.25	.06	.11	WB/UINF								
7/0= 19.50	14	20	17	12	12	15	14	CP								
PHI= 10.7 DEG	.03	07	.02	.03	07	08	02	CPT								

TABLE C2.- Continued

(f) R = 8. Concluded.

*F **	Γ^-			ZH/D								Z8/0						
CONDITIONS	-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5		-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5	CONDI	-	
R= 10.03 UINF= 24.6 M/SEC		.79			1.19		4.6:	UB/UINF							4.72*	R=		
X/D= 2.00	.55			1.52			1.40	VB/UINF	00	13		1.70		-14	1.26	UINF =		
2/0= 6.00		-1.16	-1.69	-3.62	-4.14	-6.32	-9.20	CP		-				-5.63		Z/D=		
PHI= 52.0 DEG	64	98	04	-1.07	-5.50	.58	13.76	CPT	53	67	67	47	94	46	14.70	PHI=	51.9	DEG
R= 10.01 UINF= 24.5 M/SEC	.62	.95	.78	.90		2.55	.06	UB/UINF	.86	.61					4.45*	R=		
x/0= 2.00	.59			1.54			1.48	WB/UINF	.19			1.55		.08	1.35	UINF=		M/SEC
2/0= 6.00							-7.44	CP	39					-5.43		Z/D=		
PHI= 52.0 DEG	-,46	85	•11	-1.06	-2.47	.30	14.21	CPT	51	20	.08	-1.20	-2.01	70	13.49	PHI=	51.9	DEG
R= 10.04 UINF= 24.7 M/SEC	06	09	.87		1.02	2.26	5.000	UB/UINF		1.43			2.97	3.59			10.02	
x/D= 2.03	.37			1.62			1.17	VB/UINF		1.13	1.18	.60	.61	.20	.15	UINF=		M/SEC
Z/0= 6.00	67			-3.53					-2.14							Z/D=		
PHI= 51.9 DEG	67	.37	-,94	73	-1.06	39	15.47	CPT			63		4.62		4.45	PHI=		DEG
R= 10.05 UINF= 24.7 M/SEC	09	.93	.81	.90	1.15		4.61*	UB/UINF			1.24		2.81	3.55	2.84	R=	9.99	
x/D= 2.03	.48		1.38		1.35		1.30	VB/UINF		1.24	.04	.16	.14	.19	.76	UINF= X/D=		M/SEC
2/0= 6.00		-1.28				-6.20	-9.50		-1.71							Z/D=		
PHI= 51.9 DEG	88	70	10	01	-1.41	64	13.21	CPT				76		9.29	4.73	PHI=		DEG
R= 10.05 UINF= 24.5 M/SEC	.95	1.03	1.00	1.13		1.17		UB/UINF	.83	1.13	1.02	.86	1.23	1.09	1.83	R=	9.95	
X/D= 6.00	13	09	.98	25		07	.05	VB/UINF		12		18		.04	.05	UINF=		H/SEC
2/0= 9.98		-1.03						WB/UINF CP				1.39		-1.98	-3.44	X/D= Z/D=		
PHI= 34.8 DEG	42	18	47	56	.31		52	CPT		77				78	.04	PHI=		DEG
R= 10.05	.95	.99		1.12		1.13	.730	UB/UINF	.69	1.03	.97	1.07	1.21	1.29	1.68	R=	9.94	
UINF= 24.5 M/SEC X/D= 6.00	10	12	38		1.03	.11	.08	VB/UINF		52		.05		03	.03	UINF=		M/SEC
Z/D= 9.98		-1.07						WB/UINF CP	.75	.87		1.20		-2.29	-3.41	X/D= Z/D=		
PHI= 34.8 DFG	66			-1.10			53	CPT						83		PHI=		DEG
R= 10.05	.950	-	1.19		1.22		1.15	UB/UINF	.87		1.00	.99		1.22		R=	9.99	
UINF= 25.3 M/SEC X/D= 14.00	.05	02	.01	04		.08	03	V8/UINF	07					04		UINF =		M/SEC
Z/O= 14.00		59	85	85	82	86	77	WB/UINF CP	57	83		1.08		-1-67	-1.23	X/D= Z/D=		
PHI= 25.0 DEG	13	38	14	40		-	35	CPT						57		PHI=		CEG
R= 10.07	1.09	.96	1.07			1.04		UB/UINF	.91					1.18	1.30	R=	9.97	
UINF= 25.1 M/SEC X/D= 14.00	.11	16	07	12	.04	02	04	VB/UINF				17		08	.06	UINF=		M/SEC
Z/U= 14.00	47	55	94	18	93	-	55	WB/UINF CP	48			1.01		-1.77		X/D= Z/D=		
PHI= 25.0 DEG		27	-				18	CPT	21		34					PHI=		DEG

TABLE C2.- Continued

(g) R = 10.

****				ZR/D				
TEST CONDITIONS	-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5	
R= 9.96	.95	1.08	1.03	1.09	1.04	1.01	.70	UB/UINF
UINF = 31.3 M/SEC	.06	08	06	.15	18	02	.10	VB/UINF
x/D= 8.00	.62	.64	.77	.91	.88	.84	.90	WB/UINF
Z/D= 11.00	21	80	-1.00	-1.34	-1.23	-1.11	16	CP
PHI= 31.0 DEG	.08	21			-,33			
R= 10.00	.98	1.10	.91	.93	.80	1.06	1.23	UH/UINF
JINF = 31.4 M/SEC	08	.04	.07				.08	
x/D= 8.00	.51	.61		1.02	1.12			
Z/D= 11.00	29	93	68				-1.23	CP
PHI= 31.0 DEG	06	33	.01					
9.98	.94	.98	1.04	1.05	. 69	1.09	1.08	UB/UINF
JINF = 31.4 M/SEC	08	.14	08			.03		
(/D= 10.00	.51	.62		.81		. 75		WB/UINF
7/0= 11.98	45	67		-1.05			89	
PHI= 28.0 DFG	29	29				38		CPT
9.96	1.04	1.02	1.07	1.05	. #7	.90	1.14	UB/UINF
JINF = 31.4 M/SEC	06	02					.09	VB/UINF
(/D= 10.00			.78	.82		.83		
Z/D= 11.98	54		-1.00				-1.08	
PHI= 28.0 DEG	24	19	23	08	.01	40	48	
9.99	.94	.93	.99	1.08	1.244	1.03	1.20	UB/UINF
JINF = 31.2 M/SEC	02	.93	11				01	VB/UINF
x/D= 12.08	.67	.79				.62		
Z/D= 13.50	43	49	72				89	
PHI= 25.0 DEG	10	00	10				33	
a= 10.01	1.10	.93	.99	.62	1.18	.98	.91	UB/UINF
JINF = 31.2 M/SEC	09	02	02	04	02		08	VB/UINF
17.08	.58	.72	.75	.89	.72	.59		
7/D= 13.50	75	64	69	39	88	65	41	
PHI= 25.0 DEG	19	25	14	.09	.03	33	27	
= 9.97	1.05	.98	.97	1 100	1.09	1.04	.85	UB/UINF
INF = 31.6 M/SEC	.02	09	.04		05	.00	04	VB/UINF
1/0= 14.01	.54	.67	.64	-58	.67	.60	.51	WB/UINF
/D= 14.00	40	45	65	89	77	78	36	CP
PHI= 25.0 DEG	01	02	30	32	14	33	38	
e 9.98	1.03	1.02	1.03	.94	1.01	1.12	1.12	UB/UINF
INF = 31.5 M/SEC	.05	.03	.01	01		.03	.02	
/D= 14.00	.52	.64	.62	.67	.66	.59	.52	
1/0= 14.00	44	50		74	7A	82	72	
HI= 25.0 DEG	11	04	21	39	32	20	20	CPT
					. 25			67.1

TABLE C2.- Concluded

(g) R = 10. Concluded.

7A/0

-.02

.68

-.04

.07

.95

.06

.58

-.39

-.14

0.5

.03

.99

.00

.45

-.32

-.14

.43

-.58

.80 * 1.16 1.03 1.02

1.0 1.5

-.01 -.05

-.39 -.31

.92 1.090

-.29 -.39

-.30 -.03

.39

-.17

.03

.37

.30

-.18

.03

.42

-1.5 -1.0 -0.5 0.0

.97 1.05

.04

.60

-.46

1.13

.04

.53

.01

-.56

.02

-.02

.59

-.27

.01

1.09

.01

.57

-.43

.09

1.03

-.05

.58

-.34

.07

1.07

.10

.51

-.49

-.07

TEST

CONDITIONS

x/D= 18.00

x/U= 18.00

Z/D= 16.00

R=

R=

9.99

Z/D= 16.00 PHI= 22.0 DEG

9.98

PHI= 22.0 DEG

UINF = 31.3 M/SEC

UINF = 31.3 M/SEC

	/U = 2.00 /U = 2.00		R = 3.16			UINF = 51.2 M/SEC PHI = 22.0 DEG			1/D = 2/D =	6.00 3.00	R = 3.18				UINF = 52.7 M/S PHI = 12.9 DE6		
Z8/0	0.00	.26	.50	.75	1.01	1.25	1.51		Z8/0	0.00	.51	1.03	1.54	2.04			
	1.53	1.51	1.29	1.18	1.07	.89	.92	UB/UINF		1.04	1.05	1.14	1.15	1.07	UB/UINF		
	.07	.19	.26	.28	.37	.35	.31	VO/UINF	11	01	.12	.19	.20		VB/UINF		
1.5	.34	.32	.28	.04	10	27	33	WB/UINF	1.5	04	10	14	19		WB/UINF		
	61	70	34	45	28	02	00	CF		40	40	35	28	16			
	.87	.75	.50	.04	.03	05	.05	CPT		31	28	.01	.12	.11			
	1.89	1.96	1.87	1.95	1.84	1.40	1.07	UB/UINF		.68	.73	.89	1.11	1.13	UB/UINF		
	.09	.19	.29	.36	.43	.45	.43	VH/UINF	11	06	.06	.13	.14	.10	VB/UINF		
1.0	.31	.30	.28	.24	.18	08	34	WB/UINF	1.0	.06	.04	08	19		WB/UINF		
	-1.69	-1.71	-1.59	-1.37	-1.24	AO	35	CP		41	35	47	40	30			
	1.07	1.36	1.14	1.71	1.45	.42	.12	CPT		94	81	64	11	.09			
	.23	.33	.26	.72	1.36	1.69		UB/UINF		.51	.59	.67	.86	1.08	UB/UINF		
	05	01	.01	.12	.19	.41	.39	VB/UINF		01	.03	.12	.11	.14	VB/UINF		
.5	.55	.11	01	0A	12	12	27	WE/UINF	.5	.25	. 29	06	23	34	WB/UINF		
	-1.22	-1.28	-1.32	-1.48	-1.67	-1.46	-1.04	CP		37	41	48	46	32	CP		
	-5.15	-2.15	-2.25	-1.94	74	.62	.31	CPT		-1.06	97	-1.01	64	01			
	.24	.215				1.05	1.38			.65	.65	.64	.80		UB/UINF		
	01	00	09	.03	04	.14	.21	VB/UINF		04	.01	.04	02	.02	VB/UINF		
0.0	.64	.63	.61	.24	19	43	46		0.0	.34	.31	.02	27	37	WB/UINF		
	-1.20	-1.16	-1.05	-1.46	-1.53	-1.50	-1.28	CP		43	43	52	38	41	CP		
	-1.73	-1.72	-1.64	-2.40	-2.31	-1.18	10	CPT		89	90	-1.11	66	06	CPT		
	.44	.47	.42	.50	.45	1.09	1.17			.80	.80	.88	.85		UB/UINF		
	10	.06	21	39	38	55	08	VB/UINF		.05	08	13	16		VB/UINF		
5	.87	.00	• 65	.27	09	43	66		5	.34	. 35	.01	27		WB/UINF		
	-1.10	-1.19	-1.46	-1.51	-1.44	-1.45	-1.04	CP		37	35	43	36	27			
	-1.14	-1.19	-1.66	-2.03	-2.0A	-1.01	20	CPT		62	57	63	52	03	CPT		
	.62	.66	.78	.78	.75	1.06		UB/UINF		.85	.81	.92	1.02		UB/UINF		
	.07	15	26	43	52	37	39	VH/UINF	1	.07	13	17	14		VB/UINF		
1.0	.68	.63	.46	.55	25	46	54		-1.0	.28	.55	03	55		WB/UINF		
	78	73	-1.00	99	A4	89	58	CP		26	55	33	36	19			
	93	87	-1.12	-1.14	95	42	01	CPT		46	49	44	23	02	CPT		
	.70	.70	. 91	1.01	1.00	1.04		UB/UINF		.89	.87	.98	.97		UB/UINF		
	-15	18	19	34	41	39	33		1	.08	14	18	23		VB/UINF		
1.5	.15	.14	.05	13	26	44		WB/UINF	-1.5	.09	.10	08	21		WB/UINF		
	46	42	52	55	40	40	34	CP	1	19	11	17	13	12			
	91	88	66	40	16	.03	.03	CPT		38	33	17	08	04	CPT		

TABLE C3.- CROSS-SECTION VELOCITIES AND PRESSURES

(a) R = 3.

8.00	R =	3.17	UINF	=	52.8	M/SEC	
3.00			PHI	=	13.0	DEG	

PINF = .100E.06 N/M.2 Q = .171E.04 N/M.2

X/D =

	3.00					
Y8/D Z8/D	0.00	.49	1.00	1.49	1.99	
	.81	.83	.90	.97	1.10	UB/UINF
I .	00	.06	.14	.16	.15	VB/UINF
1.5	.03	05	16	20	26	WH/UINF
	29	27	28	26	27	CP
	63	57	42	25	.04	CPT
	.65	.71	.70	.75	.97	UB/UINF
	02	.06	.09	.11	.15	VR/UINF
1.0	.12	.03	02	21	29	WB/UINF
	26	27	24	22	23	CP
	82	77	75	60	17	CPT
	.73	.83	.68	.86	.98	UB/UINF
1	02	.06	. 05	.07	.06	VB/UINF
.5	.23	.18	.00	19	32	WB/UINF
	24	39	29	35	26	CP
	65	66	82	56	21	CPT
	.75	.61	.86	.87	1.05	UB/UINF
l .	.02	.04	04	04	03	VH/UINF
0.0	.32	.22	.02	18	29	WH/UINF
	19	32	36	32	35	CP
	53	61	62	53	15	CPT
	.88	.84	.89	.97	.93	UB/UINF
	.02	07	08	09	13	V8/UINF
-,5	.55	.21	02	12	30	WB/UINF
	21	21	23	27	13	CP
	38	45	42	30	14	CPT
	.89	.88	1.02	.97	.97	UB/UINF
	.08	07	08	20	15	VH/UINF
-1.0	.08	.08	03	16	29	WB/UINF
	16	10	25	12	11	CP
	35	32	20	10	06	CPT
	.91	.98	1.01	1.02	.98	UB/UINF
	.08	05	07	14	14	VB/UINF
-1.5	02	02	09	20	25	WB/UINF
	13	15	13	09	04	CP
	29	18	09	.01	.01	CPT

TABLE C3.- Continued

(a) R = 3. Concluded.

Z/D =			UINF = 38.2 M/SEC PHI = 28.0 DEG				X/D = 1.97 Z/D = 4.25			R = 4.14					
Z8/0	0.00	.26	.50	.75	1.00	1.25	1.50		ZH/0	0.00	.26	.50	.75	1.00	
	2.44	2.26	5.55	1.93	1.59	1.06	.99	UB/UINF		.86	.86	.85	.85	.85	UH/UINF
	.09	.24	. 39	.44	.46	.50	.48	VB/UINF		.05	.09	.10	.14		VH/UINF
1.5	.62	.60	.50	.46	.26	18	31	WB/UINF	1.5	31	31	30	33	35	WH/UINF
	-2.29	-1.83	-1.96	-1.55	-1.25	57	45	CP		.21	.20	.20	.19	.21	CP
	3.18	2.78	2.47	1.62	.59	17	14	CPT		.06	.04	.03	.04	.08	CPT
	1.17	1.33	1.62	1.94	2.18	1.90		UB/II NF		.88	.88	.89	.84	.87	UHZUINE
	.06	.15	.30	.29	.39	. 6.3	.64	VB/UINF		.03	.10	.12	.14	.17	VH/UINF
1.0	.51	.13	.19	.26	.23	.13	09	WB/UINF	1.0	17	19	52	25	28	WH/UINF
	-2.04	-2.17	-2.19	-2.35	-2.43	-1.61	-1.30	CP		.14	.15	.13	.16	.17	CP
	-1.62	-1.35	43	.61	1.60	1.47	.64	CPT		05	04	00	.04	.03	CPT
	.185		.115		1.18	1.92	1.93	UB/UINF		1.31	1.31	1.19	1.06	.98	UB/UINF
_	05	.12	.32	.23	.18	.44	.52	VB/UINF		.03	.12	.52	.27	.29	VU/UINF
.5	.72	.41	.37	04	08	.03		WB/UINF	.5	.13	.06	.01	06	20	WB/UINF
	-1.08	-1.68	-1.64	-2.14	-5.55	-5.41	-2.04	CP		47	47	30	20	11	CP
	-1.52	-2.46	-2.39	-2.51	-1.78	.53	1.04	CPT		.26	.28	.17	.00	03	CPT
	.33	.255		.46	1.16	1.58		UH/UINF		1.95	1.97	1.82	1.79	1.53	UB/UINF
	07	.05	07	.01	09	.21	.25	VB/UINF	1	.05	.17	.23	. 37	.43	VB/UINF
0.0	.80	1.00	.50	.49	06	23		WU/UINF	0.0	.50	.19	.23	.19	.09	WB/UINF
	-1.82	-1.29	-2.19	-5.04	-2.50	-2.40	-2.38	CP		-1.32	-1.43	-1.19	-1.12	87	
	-2.06	-1.24	-2.81	-5.65	-2.14	44	06	CPT	- 1 1	1.61	1.58	1.28	1.28	.68	CPT
	.46	.41	.77	.96	1.10	1.35		UB/UINF	1 1	.99	1.11	1.20	1.72		UB/UINF
_	05	38	39	-,46	27	19		VB/UINF		.04	.09	.14	.27		VH/UINF
5	. 86	.84	.49	• 35	04	45	50	MR/UINF	-,5	.01	01	07	05		#8/UINF
	-1.59	-1.43	-2.16	-5.01	-5.04	-1.97	-1.69	CP		-1.34	-1.44	-1.38	-1.5A	-1.50	
	-1.63	-1.42	-2.18	-1.75	-1.75	90	-,53	CPT	1 1	-1.35	-1.19	90	.44	.66	CPT
	.63	.51	1.02	.84	1.13	1.16	1.08	UB/UINF		.165	-	.38	.72		UB/UINF
	.10	35	37	45	47	41	47	VH/UINF		00	.10	.16	-14		VB/UINF
-1.0	.53	.48	.31	.07	06	40		WH/UINF	-1.0	.52	.35	.12	17		WH/UINF
	-1.40	-1.33	-1.47	-1.09	-1.24	-1.08	84	CP		-1.04	-1.31	-1.44	-1.57	-1.61	
	-1.71	-1.71	-1.19	-1.16	72	40	16	CPT	- 1 - 1	-1.74	-2.06	-5.56	-1.99	-1.39	CPT
	.64	.71	.81	.72	.98	.99	.80	UB/UINF		. 35	.51	.36	.50		UB/UINF
	.08	24	33	46	3A	37	43	VH/UINF	1	03	.06	15	12		VB/UINF
1.5	.13	-11	05	09	30	45		WH/UINF	-1.5	.75	.59	.68	.16		WH/UINF
	-1.22	-1.13	90	61	65	44	19	CP		-1.10	-1.58	-1.27	-1.57	-1.70	
	-1.78	-1.55	-1.13	-,87	-,44	11	07	CPT		-1.41	-1.96	-1.66	-2.28	-1.64	CPT

TABLE C3.- Continued

(b) R = 4.

X/D = Z/D =	2.66					UINF = 38.7 M/SEC PHI = 31.8 DEG					
Z8/0	-2.67	-1.13	62	10	•41	.93	1.44	1.96	2.48		
	.84	.84	.82	.82	.83	.63	.81	.80	.81	UB/UIN	
	03	05	02	00	.06	.13	.14	.15		VB/UIN	
1.5	50	43	41	37	37	38	42	45		WB/UIN	
	.26	.33	. 35	. 32	.28	.27	.27	.26	.25		
	•55	.55	.19	.14	.11	.12	.13	.14	.16		
	.86	.87	.89	.88	.90	.87	.86	.86	.84	UBZUIN	
	08	13	11	04	.06	.15	.15	.16	-	VB/UIN	
1.0	49	39	33	27	26	33	40	43		WB/UIN	
	.19	. 25	.23	.20	.16	.21	.21	.20	.19		
	.16	.17	.14	.06	.05	.10	.13	.15	.16		
	.87	.94	1.10	1.21	1.19	1.03	.91	.86	. 86	UBZUIN	
	12	21	17	04	-11	.21	.21	.22		Ve/UIA	
.5	53	35	22	09	12	22	37	47		WB/UIN	
	.17	.06	08	20	24	10	.05	.15	.13		
	.23	.13	.20	.28	.19	.06	.07	.17	.15		
	.85	1.30	1.59	1.72	1.76	1.62	1.17	.99	. 83	UB/UIN	
	14	30	16	01	.11	.26	.33	. 30	. 22	Vb/UIN	
0.0	57	27	14	08	08	11	20	48		WB/UIN	
	.15	29	62	71	78	73	33	02	.13	CP	
	.23	.57	.96	1.27	1.36	1.01	.24	.10	-18	CPT	
	.84	1.51	1.32	1.18	1.28	1.53	1.46	1.01	. 85	UBZUIN	
	13	21	07	.01	.09	.30	.35	.36	.22		
5	63	32	30	15	23	25	31	50		WB/UIN	
	.09	71	80	86	89	80	72	28	02	CP	
	.20	.75	.05	45	17	.72	.64	.12	.14	CPT	
	.80	1.31	.78	.42	.44	.97	1.37	1.18	.89	UBZUIN	
	07	08	06	02	.11	.15	.22	.31	.20	VB/UIN	
1.0	71	35	11	.21	.01	26	37	52	66	WB/UIN	
	.00	87	85	73	A5	96	90	53	16	CP	
	.53	01	-1.22	-1.51	-1.65	93	.18	.25	•11	CPT	
	.89	.98	.57	.42	.48	.70	1.16	1.18	.81	UBZUIN	
	04	01	.01	.03	.08	00	.11	.13	.11	VH/UIN	
1.5	68	34	.13	.50	. 35	18	46	60	75	WH/UIN	
	17	90	94	70	92	-1.01	99	72	17	CP	
- 1	.10	A3	-1.59	-1.28	-1.56	-1.49	41	.05	.08	CPT	

TABLE C3.- Continued

(b) R = 4. Continued. (This table is for upper part of cross section shown in fig. 13.)

	4.16 2.03		R z i	.00			1.8 DEG			
ZH/D	-2.54	-1.03	53	02	.48	.98	1.49	1.99	2.50	
	.76	.47	.56	.46	.43	.57	1.06	1.07	.84	UE/UIN
	.05	.08	.02	02	.02	.03	.11	.20	-16	VE/UIN
1.5	73	29	.20	.49	.39	08	43	-,63	72	WB/UIN
	.01	-1.05	-1.02	81	89	-1.08	95	53	25	
	-11	-1.01	-1.66	-1.36	-1.55	-1.62	62	.06	.01	
	.42	.88	.78	.54	.62	.69	.97	.98	.85	UBZUIN
	.09	.18	.18	.07	13	11	04	.03		VE/UIN
1.0	72	29	.20	.5H	.37	01	40	67		WE/UIN
	18	-1.04	-1.05	71	93	-1.00	90	54	29	
	.04	-1.15	-1.36	-1.08	-1.39	-1.52	78	13	01	CPT
	.84	.94	.77	.75	.73	.85	.95	.94	.87	UH/UIN
	.18	.30	.31	.08	21	21	21	20	15	VB/UIN
.5	65	30	.18	.33	.21	09	49	67		WE/UIN
	17	68	76	77	81	84	68	48	21	CP
	.01	60	-1.05	-1.10	-1.19	-1.07	50	11	.08	CPT
	.85	.94	.89	.61	.76	.89	. 94	.91	.87	UB/UIN
	.23	. 37	.27	.04	16	28	30	28	22	VB/UIN
0.0	61	24	03	.17	.01	18	48	60	64	WE/TIN
	09	41	65	64	04	46	37	27	14	CP
	.06	32	77	-1.24	-1.03	55	17	.01	.09	CPT
	.82	.83	.77	.70	.77	.86	.86	.89	.83	UB/UIN
	. 25	.33	.23	.08	17	27	32	2A	20	VB/UIN
5	58	38	28	13	15	35	49	58	61	WH/UIN
	01	19	40	64	46	23	12	09	02	CP
	.07	23	67	-1.13	81	29	04	.11	-10	CPT
	.86	.81	.72	.66	.75	.07	.86	.88	.88	UB/UINF
	.55	. 25	.16	.07	11	18	23	23	19	VB/UINF
1.0	53	45	31	24	30	38	49	51	54	WB/UINF
	.00	06	33	62	42	23	05	03	02	CP
	.08	14	68	-1.11	76	29	01	.06	.08	CPT
	.88	.81	.66	. 55	.65	.77	.86	.65	.87	UB/UINF
1	.18	.19	.13	09	15	16	19	20		VH/UINF
1.5	49	45	38	46	47	48	48	52	52	WB/UINF
- 1	01	21	39	29	35	11	06	.01	00	CP
- 1	.05	30	79	77	72	26	06	.04	.07	CPT

TABLE C3.- Continued

(b) R = 4. Continued. (This table is for lower half of cross section shown in fig. 13.)

	2.03	P = 4.01	PHI			M/SEC DEG
--	------	----------	-----	--	--	--------------

							1.0 000			
28/0	-2.50	-1.00	~.50	0.00	.50	1.00	1.50	2.00	2.50	
	.71	.85	.60	.57	.62	.68	.85	1.03	.80	UB/UIN
	.05	.10	.18	.08	.03	01	.06	.13		VB/UIN
1.5	77	23	.24	.49	.33	07	46	63		WB/UIN
	.09	82	75	68	87	97	65	50	12	
	-19	-1.03	-1.30	-1.11	-1.39	-1.45	71	02	.09	
	.86	.97	. 79	.68	.63	.88	.97	.94	. 85	UB/UIN
	.12	.19	.18	.10	15	09	07	03		VH/UIN
1.0	69	21	.13	.36	.24	03	41	65	-	WB/UIN
	20	80	84	74	75	88	71	45	23	
	.02	78	-1.16	-1.15	-1.26	-1.09	60	14	.01	-
	.87	.98	.89	.69	.76	.42	.93	.90	. 85	UB/UINF
	.19	.31	.24	.03	16	18	23	23		VE/UIN
.5	65	24	.06	.25	.10	14	44	66		WB/UINF
	14	52	70	63	66	65	55	29	16	CP
	.08	39	85	-1.09	-1.05	75	43	00	.07	CPT
	.84	.92	.75	. 66	.80	.89	.94	.88		UB/UINF
	.25	.32	.24	.02	14	26	79	27		VS/UINF
0.0	60	31	06	.07	07	22	44	- 59		WB/UINF
	01	28	47	58	57	34	- 24	13	07	
	-11	53	85	-1.15	91	43	07	.07	.09	CP
	.84	.8	.70	.57	.80	.88	.87	.85		
	.23	.26	.20	.03	09	23	27	27		UB/UINF VB/UINF
5	55	37	26	23	31	35	46	- 54		
	.01	17	41	51	47	21	08			WB/UINF
	.07	24	81	-1.15	6R	26	03	01	00	CPT
	.85	.83	.83	.67	.72	.84	.87			
	.19	.22	.06	.01	13	16	21	.88		UB/UINF
-1.0	51	41	34	33	- 32	45	47	19		VB/UINF
	.04	07	48	52	37	12	01			WB/UINF
	.07	17	67	96	73	10	-02	.01	.10	CP
	.84	.77	.57	.57	.63	.82	.86	.86		im outre
	.17	.23	.12	02	11	13	17	19		UB/UINF
-1.5	51	44	46	50	50	49	49	50		VH/UINF
	.06	10	28	33	20	13	01	.04		WE/UINF
	.06	25	72	75	- 54	19	.00	.07	.04	Ch
			• • •			-114	.00	.07	.08	CPT

TABLE C3.- Continued

(b) R = 4. Continued. (This table is an extension of cross section shown in fig. 13.)

X/D = 2/D •	5.20		R = ;	3.99		UINF = 38 PHI = 21	4.8 M/SEC 1.3 DEG		x/0 = Z/D =
Z8/0	,99	50	0.00	•50	.99				ZB/0
1.5	.95 04 29 .09	01 28 .13	.94 .02 26 .07	.93 .04 27 .12	.94 .11 28 .08	UB/UINF VE/UINF WB/UINF CP CPT			1.5
1.0	1.00 08 25 .00	06 22 .00	1.03 01 17 08	1.01 .05 20 03 .03	.99 .10 21 02	UB/UINF VB/UINF WB/UINF CP CPT			1.0
.5	1.14 11 21 15	1.17 05 16 19	1.21 01 12 20 .29	1.17 .05 16 16	1.11 .12 15 18	UR/UINF VB/UINF WB/UINF CP CPT			.5
0.0	1.20 16 19 24	1.32 07 15 30	1.31 .02 13 32	1.29 .07 13 37	1.20 .12 18 26	UH/UINF VH/UINF WH/UINF CP CPT			0.0
5	1.27 11 18 45	1.17 10 14 43 03	1.05 .01 14 48 34	1.10 .07 13 43	1.27 .12 20 45	UH/UINF VR/UINF WB/UINF CP CPT		1	 5
-1.0	1.06 06 21 45 27	.88 06 10 48 70	.81 .01 .00 49	.86 .06 07 48 72	.93 .13 17 41	UB/UINF VB/UINF WR/UINF CP CPT			-1.0
-1.5	94 07 20 56 63	.75 04 .04 56 -1.00	.67 00 .17 52 -1.05	.66 .16 .05 51 -1.05	.87 .07 09 54 77	UB/UINF VH/UINF WB/UINF CP CPT			-1.5

10	=	6.00	£ =	4.1
/D	=	4.00		

UINF	=	38.4	M/SEC
PHI	=	17.0	DEG
		\neg	

ZB/D	0.00	.44	.46	1.48	1.99	
1.5	01 06 53 55	1.25 .13 06 69 10	1.08 .22 14 44 20	1.35 .20 16 65	1.21 .25 29 36	CP
1.0	.78 01 .10 57 95	.92 .02 .06 60	.93 .15 08 55 66	1.07 .20 21 51 27	.17 24 56	UR/UINF VB/UINF WB/UINF CP CPT
•5	.63 03 .22 58 -1.13	.75 01 .19 64 -1.03	.92 .04 04 64 78	1.02 .09 18 61 51	.13	
0.0	.61 .00 .39 45 93	.65 15 .21 59 -1.09	.72 04 .05 59	1.00 .04 19 65 61	1.18 .04 32 57 08	
5	.66 .10 .29 53 -1.00	.62 11 .27 48 -1.01	12 .02 55 82	1.12 11 12 64 35	06 37 43	
-1.0	.79 .10 .17 61	.78 18 .13 53 87	.97 17 .01 45 47	1.06 16 17 41 24	.96 19 42 24 10	VH/UINF WH/UINF CP
-1.5	.71 .04 .08 58 -1.07	.50 22 .16 24 91	.89 22 06 32	.97 22 15 20 18	1.01 22 29 24 08	UB/UINF VB/UINF WB/UINF CP CPT

TABLE C3.- Continued

X/D = Z/D =	8.44 6.78		R = 4	.00		INF = 3	1.0 DEG					
28/D		-2.54	-1.02	51	0.00	.51	1.02	1.53	2.04	2.55	3.56	
	.99	.99	.97	.98	.99	.99	.99	.99	.97	.98	.98	UB/UINF
1	04	05	05	04	02	.01	.03	.05	.06	.06	.04	VB/UINF
1.5	21	19	14	14	13	14	14	15	16	18	20	WB/UINF
1	.01	• 02	.03	.03	.02	01	.00	.01	.03	.01	.01	CP
1	.04	.05	.01	.02	.05	.00	.01	.01	• 0 1	.05	.01	CPT
	1.00	1.00	1.04	1.02	1.05	1.07	1.03	1.03	.98	.98	.96	UB/UINF
1	04	06	07	05	01	.01	.03	.07	.09	.08	.07	VB/UINF
1.0	20	17	10	08	07	08	10	12	14	17	18	WE/UINF
	00	00	07	04	08	09	06	05	01	.01	.00	CP
1	.03	.03	.04	.01	.04	.06	.02	.04	01	00	01	CPT
	1.02	1.00	1.09	1.09	1.13	1.11	1.10	1.09	1.03	.99	.99	UB/UINF
	05	08	08	06	01	.02	.06	.10	.08	.11	.08	VB/UINF
.5	19	19	10	05	04	06	06	08	12	15	19	WB/UINF
1	04	01	13	11	13	09	10	12	06	03	03	CP
	.03	.04	.08	.10	.15	.15	.12	.09	.03	00	00	CPT
	1.01	1.03	1.14	1.14	1.17	1.20	1.17	1.15	1.09	1.01	1.02	UB/UINF
1	06	08	09	05	01	.02	.07	.10	.12	.13	.09	VB/UINE
0.0	20	21	07	03	01	.01	03	07	11	15	21	WB/UINF
	04	07	21	21	24	23	20	19	15	09	06	CP
1	.03	.04	.10	.11	.15	.55	.19	.15	.08	02	.03	CPT
1	1.00	1.04	1.12	1.11	1.09	1.13	1.07	1.19	1.14	1.07	.99	UB/UINF
1	06	09	09	02	03	.07	.09	.10	-12	.16	.10	VB/UINF
5	24	23	08	05	03	04	04	09	11	18	23	WA/UINF
	02	06	24	25	25	22	22	24	19	14	03	CP
	.04	.08	.03	01	07	.07	07	.20	.14	.07	.02	CPT
	1.01	1.06	1.08	.89	.96	.91	.96	1.02	1.15	1.09		URZUINE
	04	08	06	05	03	.03	.11	.12	•15	.11	1.00	VA/UINF
-1.0	24	24	09	06	.01	.01	- 04	08	13	20	25	WE/UINE
	06	13	34	24	33	29	29	55	25	18	05	CP
	.03	.06	16	44	40	46	35	15	.11	.06	.03	CPT
	1.00	1.05	.93	.83	.75	.77	40	0.6	0.2			
	01	09	04	02	.03	.05	.04	.95	.97	1.12	1.01	UB/UINF
-1.5	27	26	07	01	.09	.10	02	05	.11	.12	.08	VR/UINF
	04	12	32	29	33	32	34	32	18	18	28	CP
	.02	.07	45	59	76	71	55	39	21	23	07	CPT
		• • •	•••	• • • •			-,55	34	22	• 0 /	.04	CPI

TABLE C3.- Continued

(b) R = 4. Continued. (This table is for upper half of cross section shown in fig. 14.)

x/D = 9.22 R = 4.01 UINF = 38.9 M/SEC 210 = 3.88 PHI = 15.0 DEG YH/D -3.51 -2.51 -1.00 -.50 0.00 .50 1.00 1.51 2.01 3.51 28/0 .84 .94 1.00 .96 .91 .72 . 42 .89 . 95 1.07 .94 UB/UINF -.00 -.03 .15 -.01 .03 .02 .05 .12 .08 VB/UINF .14 .14 -,35 -.35 -.05 1.5 -,15 .04 .00 -.09 -.17 -.25 -.28 -. 36 WB/UINF .10 .01 -.35 -.25 .07 -.19 -.30 -.19 -.26 -.07 -.10 CH .09 .11 .13 -.31 -.52 -.6A -.53 -.35 CPT -.62 -.07 .15 .77 .75 .83 . 99 UB/UINF .96 1.64 . 98 .83 .79 1.02 1.06 .01 -.03 .00 .02 .05 .10 .04 .08 .06 .08 .06 VB/UINF 1.0 -.36 -.08 -.36 .01 -.17 .11 .09 .03 -.24 -.29 -. 36 WB/UINF .04 -.06 -.29 -.25 -.34 -.27 -.04 -.31 -.31 -.23 -.17 CP .15 -.70 .04 .09 .09 -.37 -.60 -.70 CPT -.68 -.53 -.11 .97 1.02 .93 .91 . 81 .66 .74 .78 1.03 1.03 .99 UB/UINF .04 .03 .04 .02 .08 -.07 .02 .03 VB/UINF -.01 -.02 .04 .07 .17 .5 -.36 -.34 -.06 .15 .03 -.08 -.33 -. 38 WB/UINF -.22 .03 -.07 -.34 -.29 -.23 -.30 -.01 -.28 -.33 -.19 -.13 CP .09 .09 -.46 -.62 -.77 -.70 -.69 -.48 -.07 CPT .04 .12 .98 1.00 . 48 .82 .84 . 49 .96 UB/UINF .76 . 41 1.00 .93 .07 .09 -.08 .06 .11 .02 -.03 -.06 -.07 -. 01 VB/UINF -.06 .02 .08 .09 -. 37 WH/UINF 0.0 -.34 -.31 -.07 -.01 -.08 -.19 -.33 -.29 .01 .01 -.07 -.29 -.28 -.43 -.29 -.28 -.23 -.10 CP .09 .03 -.31 -.60 -.71 -.59 -.57 -.28 -.19 .06 CPT -.12 .94 .98 .84 .74 .92 .94 . 97 .81 . 96 .99 .97 UB/UINF .06 .08 .11 -.05 -. 0 B -. 07 VB/UINF .15 .13 -.11 -.11 -.12 .01 -. 36 WB/UINF -.5 -.32 -.32 -.06 -.01 -.04 -.03 -.09 -.17 -.32 .02 .02 -.21 -.25 -.31 -.26 -.27 -.22 -.13 -.08 .02 CP -.58 .09 .03 -.24 -.60 -.72 -.41 -.31 -.17 .02 .11 CPT .97 . 88 .78 .93 .99 .97 .98 .80 . 87 .98 .97 UR/UINF .14 .11 .06 .17 -. 09 VB/UINF .11 -.07 -.08 -.13 -.15 -.12 -1.0 -.05 -. 34 WB/ INF -.31 -.30 -.11 -.11 -.06 -.05 -.17 -.24 -.29 .02 .03 .01 -.19 -.27 -.29 -.24 -.17 -.09 -.07 -.04 CP .09 CPT .07 -.20 -.46 -. 68 -.58 -.40 -.17 -.02 .03 .09 .96 .96 .49 .89 .97 .98 .82 .77 .93 . 47 .95 UB/UINF .13 .05 .06 .08 .14 -.07 -.08 -.08 -. 07 VB/UINF -.13 -.11 -1.5 -.30 -.2A -.14 -.17 -.10 -.10 -.12 -.20 -.23 -.2R -. 31 WH/UINF .03 .02 -.15 -.26 -.30 -.2A -.17 -.12 -.03 .00 .05 CP -.19 -.35 .07 .09 -.55 -.70 .07 CPT -.48 -.21 -.02 .03

TABLE C3.- Continued

(b) R = 4. Continued. (This table is for lower half of cross section shown in fig. 14.)

x/0 = 1 2/0 =	-		R = 4	.14		UINF = 39 PHI = 10	x/0 = 1 2/0 =			R = 4	.15		INF = :
Z9/0	51	0.00	.49	1.00	1.50		Z8/0	48	0.00	.50	1.02	1.52	
	1.02	1.02	1.05	1.04	1.13	UB/UINF	-	1.00	1.01	1.00	1.01	1.00	UB/UIN
	03	.03	.05	.03	.08	VE/UINF	1	01	.01	.02	.05	.05	VB/UIN
1.5	13	12	12	15	16	WB/UINF	1.5	17	17	15	15	16	WB/UIN
	10	14	13	11	17	CP	1	.06	.04	.04	.02	.04	CP
	04	07	01	.00	.14	CPT	1	.09	.09	.07	.07	.07	CPT
	.97	.98	.96	1.01	1.03	UB/UINF		1.02	1.04	1.02	1.02	1.02	UB/UIN
	.01	.01	.02	.05	.05	VB/UINF		.00	.02	.04	.03	.05	VB/UIN
1.0	06	10	07	12	10	WH/UINF	1.0	14	13	14	14	15	MRANIN
	15	17	16	11	12	CP		.01	00	.01	.00	.03	CP
	21	21	22	06	04	CPT		.08	.10	.08	.06	.09	CPT
	1.00	.94	.93	.88	1.03	UB/UINF		1.09	1.05	1.08	1.08	1.03	UB/UIN
	03	.00	.04	.06	.08	VB/UINF		01	.02	.03	.05	.07	VB/UIN
.5	05	08	02	09	12	WB/UINF	.5	12	13	12	14	15	MRANIN
	26	20	17	13	17	CP		02	03	05	01	.03	CP
	25	32	29	34	04	CPT		.19	.11	.14	.18	.13	CPT
	.88	.87	.85	.94	1.03	UB/UINF		1.07	1.06	1.09	1.08	1.06	UB/UIN
	.01	00	01	.03	.05	VH/UINF	1	01	.01	.03	.04	.07	ARAMINI
0.0	05	.05	.04	09	11	WB/UINF	0.0	11	10	12	12	14	MB/UIN
	19	25	20	55	50	CP		05	04	07	06	02	CP
	40	48	48	32	12	CPT		.11	.10	.14	.13	.13	CPT
	.82	.80	.86	.43	. 95	UB/UINF		1.04	1.04	1.06	1.04	1.03	UB/UIN
	03	.05	01	00	.04	VB/UINF	1 -	.01	.01	.05	.07	.09	VB/UINF
5	.00	.02	.01	04	06	WB/UINF	5	12	10	12	12	13	WB/UINF
	50	19	17	19	16	CP		08	07	06	07	03	CP.
	52	55	42	31	26	CPT	1	.02	.02	.07	.04	.05	CPT
	.88	.83	. 87	.82	.89	UB/UINF	1	.95	1.02	.94	1.05	1.04	UB/UINF
, ,	.06	.02	01	07	05	VE/UINF		02	.01	.03	.05	.06	VB/UIN
1.0	03	.07	01	03	11	WB/UINF	-1.0	10	13	13	13	13	MRANINE
- 1	23	24	19	15	16	CP	1	06	12	04	13	09	CP
	45	54	43	4A	34	CPT		15	06	14	01	.01	CPT
	.84	.85	.87		.99	UB/UINF	1	.92	.92	.93	.98	1.04	UB/UINF
	.06	.01	.02	05	00	VB/UINF	1	.01	00	.04	.06	.05	VB/UINF
1.5	.06	.03	02	06	08	WB/UINF	-1.5	09	08	10	11	13	WB/UIN
	18	16	23	20	15	CP		12	12	11	13	11	CP
	47	44	47	41	16	CPT		25	26	22	15	01	CPT

TABLE C3.- Continued

(b) R = 4. Continued.

	= 8,60 PHI = 1		UINF = 38 PHI = 10	X/D = Z/D =			P = 4	.14	UINF = 39.1 M/SEC PHI = 6.3 DEG					
ZB/0	98	49	0.00	.49	.99		ZB/D	51	01	.48	.97	1.46	1.96	
	.95	.97	.96	.98	.96	UB/UINF		1.01	1.01	1.00	1.01	.99	1.02	URZUINE
1.5	01	.05	.01	.02	.04	VB/UINF		00	.00	00	01	.03	.02	VH/UINF
1.5	17	16	15	16	17	WB/UINF	1.5	08	08	07	07	09	10	WR/UINF
1	.10	.06	.08	.05	.08	CP	- 1	10	10	10	07	07	09	CF
1	.03	.03	.02	.03	.04	CPT	- 1	07	07	10	05	07	04	CPT
1	.99	1.00	.99	.99	1.00	UB/UINF		.95	.96	.99	.97	.98	.93	UHZUINE
1	05	02	00	.01	.05	VB/UINF		00	00	.00	.01	.02	.03	VH/UINF
1.0	14	14	12	13	12	WB/UINF	1.0	00	04	04	03	02	00	WE/UINF
1	.02	.01	.01	.00	01	CP		02	00	07	.03	01	.04	CP
1	.02	.03	.01	.01	.02	CPT	- 1	11	08	09	04	05	09	CPT
	1.00	1.04	1.04	1.05	1.03	UB/UINF	1	.97	.99	.98	.98	1.00	1.01	UR/UINF
1	02	02	01	.01	.05	VB/UINF	- 1	.01	.01	.00	.01	.02	.02	VA/UINF
.5	16	13	11	12	13	WB/UINF	.5	07	08	10	08	07	09	WA/UINE
1	00	03	05	03	01	CP		09	09	10	03	10	10	CP
	.03	.06	.05	.08	.07	CPT		14	11	12	07	10	06	CPT
1	1.02	1.04	1.04	1.03	1.05	UB/UINF		.97	.98	.98	.98	.48	.97	URZUINE
1	05	03	01	.00	.00	VB/UINF	- 1	00	.01	.02	.03	.00	.01	VH/UINF
0.0	12	11	12	13	13	WB/UINF	0.0	05	06	07	09	08	08	WE /UINF
1	03	05	03	05	04	CP		12	11	09	04	10	07	CP
	.03	.05	.07	.04	. 0 A	CPT	1	18	13	12	07	12	12	CPT
	1.02	1.05	1.05	1.05	1.07	UB/UINF		.94	.94	.94	.96	1.00	1.00	UHZUINE
	04	02	.01	.00	.01	VB/UINF		.01	.00	.01	.01	.03	.01	VHZUINF
5	12	11	12	09	10	WB/UINF	5	07	08	09	06	09	09	WB/UINF
	05	07	07	07	07	CP		10	09	12	06	11	09	CP
İ	.01	.05	.04	.06	.09	CPT	1	21	20	23	12	10	08	CPT
	1.05	1.02	1.02	.99	.98	UB/UINF		.92	.95	.97	.96	0.7	3.0	
1	01	02	.00	.04	00	VB/UINF		.00	.01	.00	01	.01	.98	UH/UINF
-1.0	11	11	13	12	12	WB/UINF	-1.0	04	06	09	07	09	00	VH/UINF WH/UINF
	09	10	12	07	06	CP		08	11	13	04	12		CP
	.02	05	06	07	08	CPT		55	20	18	12	16	11 13	CPT
	1.01	1.02	1.00	.98	.92	UB/UINF		0.7	0.6	0.3				
ı	03	01	00	.02	.05	VB/UINF		.92	.95	.93	•95	.97	1.02	HAZUINE
-1.5	13	09	10	09	13	WB/UINF	-1.5	- 01	.01	01	.01	.02	.01	VH/UINF
	13	14	15	12	07	CP	-1.5	07	06	07	07	08	07	WH/UINF
	08	09	13	15	20	CPT		10	09	12	07	12	09	CP
		-,0,	-113		20	CPI		24	19	26	16	17	04	CPT

TABLE C3.- Continued

UINF = 39.5 M/SEC PINF = .102E+06 N/M**2
PHI = 5.8 DEG Q = .965E+03 N/M**2

ZB/D	-1.01	51	0.00	.51	1.01	
1.5	1.00 01 08 06 04	1.01 01 09 06	1.02 .01 09 08 03	1.00 01 09 07 05	.98 .01 09 05	CP1
1.0	03 01 .01	.97 00 01 .01	.93 01 05 .01	- 01 - 04 - 01 - 06	1.00 .01 03 05	UB/UINF VH/UINF CP CPT
.5	.95 03 05 02 11	1.01 00 06 06	01 03 04	.99 00 05 05	.99 .01 06 05	UB/UINF VB/UINF WB/UINF CP CPT
0.0	.92 03 07 03	.95 02 07 04 13	1.00 00 08 08	.99 .00 07 09	.94 .00 08 06	UBJUINF VOJUINF WBJUINF CP CPT
•.5	.97 01 06 08	.99 00 06 07	.96 .00 06 05	.98 .02 06 10	.99 .03 07 11	UBJUINF VBJUINF WBJUINF CP CPT
-1.0	.93 01 08 08	.94 .04 09 07	.95 01 07 05	.92 .00 04 08	.92 .00 05 04	UHZUINF VHZUINF CP CPT
-1.5	.97 02 06 11 18	.94 .00 06 06	.97 00 06 09	.87 02 06 02	.97 .00 08 09	UB/UINF VB/UINF WH/UINF CP CPT

TABLE C3.- Continued

(b) R = 4. Concluded.

x/D = Z/O =	2.00 3.50			x/D = Z/O =	6.00		R = 6	.05	UINF = 41.1 M/SEC PHI = 24.0 DEG							
ZH/D AH/D	0.00	•52	.19	1.05	1.30	1.56	2.09		ZH/0	0.00	.48	.95	1.43	1.91	2.39	
	3.14	3.14	3.07	2.54	1.61	.97		UH/U1NF		.82	1.16	1.18	1.35	1.33		UB/UINF
1.5	.07	.46	.58	.73	.80	.75		VB/UINF		.00	•15	.31	. 36	.44		VB/UINF
1.5	-4.58	-4.25	.78	.44	.10	44		WB/UINF	1.5	.35	.16	.07	15	29		WB/UINF
1	5.60	6.19	5.49	-3.39	-2.16	-1.24	46			74	95	83	90	68	93	
	1.05	1.66	2.39	2.82	2.58	1.84	.87	U8/U1NF		.91	.99	1.03	1.35	1.38	1.35	UB/UINF
1	02	.45	.57	.75	.83	.83		VA/UINF		.04	.16	.23	.26	.34		VH/UINF
1.0	.54	.38	.32	.42	.20	27		WB/UINF	1.0	.50	.35	.17	12	34		WE/UINF
	-2.72	-3.67	-4.11	-4.23	-3.30	-2.45	-1.03			81	87	96	-1.08	81	69	
	-2.30	-1.52	1.19	3.77	3.33	.24	21			73	73	81	15	.36	.47	
	.51	1.02	1.40	1.85	2.57	2.27		UB/UINF		.81	.93	1.20	1.21	1.44	1,35	UB/UINF
	12	.45	.00	.5H	.66	.74		VB/UINF		03	.01	.16	.29	.27	.31	VB/UINF
.5	1.50	.88	.55	07	09	-,43		W8/UINF	.5	.67	.57	.55	11	31	51	WB/UINF
	-2.16	-3.43	-3.92	-3.62	-4.34	-3.68	-1.74	CP	1	78	87	-1.19	-1.10	-1.18	86	CP
	-1.43	-2.40	-2.53	64	1.93	1.33	34	CPT	- 1	67	67	67	-,53	.08	. 34	CPT
	•55	1.38	1.45	2.14	2.38	5.55		UBZUINE		.91	.98	1.20	1.55	1.30		UB/UINF
	01	39	55	09	.24	. 26		VB/UINF		05	07	.03	.07	.15		VB/UINF
0.0	1.35	1.03	•55	21	41	64		WB/UINF	0.0	.73	.60	.34	05	39		WE/UINF
	-2.99	-4.42	-4.45	-4.71	-4.36	-4.04	-2.07			85	88	-1.07 51	-1.45	87	87	
	.61	1.24	1.71	1.86	1.86	1.56	1.00	UR/UINF		.79	1.06	1.27	1.36	1.45	1 21	UB/UINF
	00	90	- 84	69	48	32		VAZUINE	- 1	06	06	11	02	.01		VB/UINF
5	1.15	.85	.40	18	56	90	-	#B/UINF	5	.67	.56	.24	12	40		WB/UINF
	-1.92	-2.29	-3.42	-3.64	-3.29	-2.94	-1.51		1	70	93	90	-1.00	-1.12	86	CP
	-1.21	19	56	59	21	56	18			62	49	21	13	.17	.00	CPT
	.67	.95	1.03	1.20	1.20	1.21	.95	UBZUINE		.91	1.04	1.15	1.35	1.23	1.21	UB/UINF
	.17	50	75	A3	76	72	57	VB/UINF	1	.01	16	30	25	25		VH/UINF
-1.0	.70	.45	.29	09	43	60	82	WH/UINF	-1.0	.50	.46	.24	15	42		WH/UINF
	88	97	97	-1.23	-1.41	-1.48	87	CP		67	59	68	-1.02	75	81	CP
	91	60	25	09	19	14	.04	CPT		58	25	20	10	.03	.01	CPT
	.68	.76	.92	.96	.89	.99		UBZUINE		.86	1.00	1.06	1.03	1.07	1.01	UB/UINF
	.07	37	38	47	59	55	-	VB/UINF		.02	14	34	46	40	33	VH/UINF
-1.5	.50	.09	03	17	37	51		W8/UINF	-1.5	.36	.32	.13	14	38		WH/UINF
	67	33	33	42	28	47	42			48	47	42	31	44	39	
	-1.16	61	-,33	25	.02	.07	. OH	CPT		61	34	15	.00	.03	.06	CPT

TABLE C3.- Continued

(c) R = 6.

X/D = Z/O =			P = 6	.03			2.6 M/SEC 15.0 DEG	$\frac{x}{0} = 1$			R = 6	.04			2.5 M/SEG
78/0	50	01	.49	.99	1.49	1.98		ZH/D	49	.01	.52	1.03	1.55	2.01	
	.89	1.03	.99	1.07	1.11	1.08	UM/UINF		1.02	1.07	1.03	.99	.98	1.02	UH/UINF
1	10	02	.04	.12	.19	.22	VH/UINF		04	01	.03	.07	.12	.13	V8/UINF
1.5	.10	.14	.13	.09	04	07	WE/UINF	1.5	-,15	15	14	16	19	18	WD/UINF
1	19	39	34	44	45	38	CP		02	06	02	01	02	05	CP
	39	31	35	27	18	16	CPT		.06	.10	.06	.00	.01	.04	CPT
	.94	.94	1.02	.96	1.04	1.04	UH/UINF		1.08	1.06	1.13	1.06	1.05	1.01	UB/UINF
1	09	02	.05	.16	.17	.21	VIJUINF		05	.01	.03	.10	.11	.13	VE/UINF
1.0	.17	.27	.14	.12	-11	05	WH/UINF	1.0	10	06	09	08	13	15	WH/UINF
1	32	33	43	40	40	35	CF		05	06	12	08	07	05	CP
1	39	37	35	43	27	55	CPT		•12	.07	.16	.07	.07	.01	CPT
1	.93	.97	.90	.97	1.01	.99	14/UINF		1.08	1.07	1.15	1.05	1.12	1.04	UB/UINF
1	06	03	01	.07	.16	.16	VH/UINF		06	02	.06	. 67	.13	.16	VB/UINF
.5	.30	.29	.33	.19	.08	06	W6/UINF	.5	08	07	08	07	07	12	WE/UINF
1	41	38	27	41	39	39	CP		12	15	17	09	10	09	CP
1	45	-,36	35	43	32	38	CPT		.06	.02	.16	.03	.17	.04	CPT
	1.01	1.00	.97	1.11	.95	1.13	UH/UINF		1.07	1.06	1.06	1.01	1.08		UB/UINF
	03	02	04	.05	.06	.09	VH/UINF	1	06	03	.06	.04	.12	.19	VH/UINF
0.0	.55	• 35	.31	.23	.15	.05	WE/UINF	0.0	06	06	06	07	07	11	WE/UINF
1	50	40	40	49	34	47	CP	1	15	15	13	09	19	15	CP
1		30	35	20	40	18	CPT		.02	03	00	06	.01	02	CPT
	.93	. 44	1.01	1.08	1.11	1.09	UN/UINF		.99	1.02	.97	1.02	1.05	.99	UH/UINF
1	.07	• 05	03	01	.05	• 0 •	VO/UINF		0A	03	.05	.10	* 1 5	.19	VO/UINF
5	.40	. 28	.37	.23	.11	01	WH/UINF	5	03	01	01	02	06	08	WB/UINF
1	24	38	38	43	51	47	CP		20	20	20	19	17	15	CP
1	71	42	55	20	26	27	CPT		20	16	25	13	05	12	CPT
1	1.03	.96	.99	1.03	1.14	1.02	UH/UINF		.96	1.05	.97	.95	1.02	1.07	UB/UINF
1	.07	.03	00	10	03	07	VH/UINF	1	12	.00	.03	.12	.13	.55	VH/UINF
-1.0	.24	.30	.31	.24	.13	OA	WD/UINF	-1.0	01	.04	.08	.06	06	11	WB/UINF
1	37	3A	-,44	31	41	26	CP		23	26	58	23	71	56	CP
	23	36	35	18	0P	21	CPT		29	16	33	30	16	06	CPT
	.98	.95	.95	.96	1.09	1.12	U9/U14F		.92	.85	.97	1.07	.99		UB/UINF
	.08	• 03	04	08	OA	09	VH/UINF		08	06	.06	.11	.18	.22	VH/UINF
-1.5	.31	.58	.28	.26	.14	04	#H/UINF	-1.5	.10	•13	.18	.06	.01	10	WH/UINF
1	25	33	32	16	32	33	Ch		28	19	26	37	30	24	CP
1	19	35	33	16	10	06	CPT	1	41	44	29	21	29	11	CPT

TABLE C3.- Continued

(c) R = 6. Continued.

X/D = 1			R = 6	.01		-	1.4 M/SEC 9.5 DEG		= 35.00 = 13.00		0 = 6	.05		INF = 4 HI =	1.8 M/ 9.3 DE	
28/D	50	0.00	.50	1.00	1.49	1.99	2.49	ZH./	50	0.00	.49	.46	1.46	1.96	2.45	
	.97	.98	1.02	.98	.98	1.03	.99 UH/		.99	1.01	1.01	1.03	1.01	1.07	1.04	UB/UINF
	03	00	.01	.01	.06	.07	.09 VH/	INF	05	02	.01	.05	.07	.09	.09	VH/UINF
1.5	06	08	09	08	OR	09	13 WA/	INF 1.	04	02	04	06	03	06	08	WH/UINF
	01	05	08	04	03	11	05 C		15	16	10	17	16	21	19	CP
1	07	08	03	06	06	03	03 C	'	17	14	OH	19	13	05	09	CPT
	1.03	1.00	.99	1.02	1.04	.98	1.00 114/		.96	1.00	.91	. 45	1.00	1.02	.47	UB/UINF
1	05	00	01	.03	.04	.06	.10 VH/		03	03	.01	.00	.07	.06	.09	VB/UINF
1.0	03	03	03	03	04	08	OH WH/			.01	.05	.02	.00	.02	02	WH/UINF
1	07	06	08	11	10	05	06 C		18	15	04	07	13	15	07	CP
	01	06	10	06	02	07	04 C	'	26	14	21	17	13	11	11	CPT
	1.00	1.01	.98	1.03	1.04	.97	1.01 08/		.94	1.01	1.02	1.02	.93	1.04	1.02	UB/UINF
	03	02	.02	.04	.05	.06	.12 Ve/		04	01	.03	.03	. 0.B	.07		VB/IIINF
.5	04	03	.01	.05	03	06	04 WE/	INF .		.01	02	.01	.06	03	04	
	04	09	09	14	13	04	08 C	.	10	20	18	17	12	16	20	CP
	03	07	12	07	04	09	03 C	'	21	18	13	12	25	08	15	CPT
	.95	1.00	1.00	1.00	.95	1.00	1.00 UH/		1.02	.98	. 95	1.00	1.02	1.00		UB/UINF
	05	02	.01	.02	.06	.07	.09 VH/		02	02	.01	.03	.06	.04		VH/UINF
0.0	.00	.02	01	.03	06	.00	07 WH/	INF 0.0		•06	01	.05	.03	.03	-	WH/UINF
	04	09	09	12	02	11	05 C	.	25	18	14	14	17	12	18	CP
	13	08	09	10	10	09	05 C	'	21	21	??	12	13	13	14	CPT
	01	.96	1.03	1.00	.96	1.00	1.88 UR/		.97	.99	1.02	.94	1.00	.99		UH/UINF
5	.03	.03	.03	.07	.05	. 05	03 WH/		04	00	.00	.02	.06	.07		VB/UINF
1	13	09	13	12	05	09	13 C	INF 5		.05	.07	.06	.07	• 0 1		WH/UINF
	14	15	07	12	12	08	.06 C	,	19	18	14	09	12	19	16	CP
	.92	.99	.98	.98	1.06	1.06	.99 UH/	14.5								
	05	05	.00	.04	.01	.08	.36 VH/		.97	.99	.99	1.06	1.05	1.02		UB/UINF
-1.0	.06	.03	.06	.08	.04	.05	06 WH/		00	02	.01	.03	.04	.03		VB/UINF
1	04	11	12	09	26	19	04 C			,.06	.10	.06	. OF	•01		wd/UINF
	18	11	15	11	13	06	06 C	,	18	20	17	22	22	14	23	CP
									-,	- • 1: 0		,		- 0 0 9	00	
1	.96	1.01	.97	1.04	.98	1.03	1.03 1111/		.98	. 44	. 44	.93	1.00	. 94	1.02	UB/UINF
	05	.00	.02	02	.01	.03	.04 VB/		02	• 0 1	01	. 0.0	.04	.03		VB/UINF
-1.5	.01	.07	.13	.04	.00	.03	.03 WH/	INF -1.5		.05	.14	.0.	.03	.01		WH/UINF
1 1	07	12	11	15	OA	09	10 C	.	15	17	16	10	16	16	19	CP
	14	10	15	07	11	04	04 C	<u> </u>	17	19	19	23	16	1H	15	CPT

TABLE C3.- Continued

(c) R = 6. Continued. (These two tables are for same cross section. They could serve as means for determining actual variations in measured quantities.)

Z8/D	-1.00	50	00	.50	1.00	
1.5	1.01 03 07 15 12	.96 06 05 07 15	1.00 01 06 11	1.01 .00 05 12	1.02 .01 06 12	UB/UINF VB/UINF WB/UINF CP CPT
1.0	.95 07 01 06 15	.91 04 .01 04	.96 01 .01 06 13	.94 .02 .01 04	.97 01 .01 01	UB/UINF VB/UINF WB/UINF CF CPT
.5	04 04 11 12	02 02 14	02 .00 13	1.00 .01 04 09	.99 .02 00 08	UB/UINF VB/UINF WB/UINF CP CPT
0.0	.96 06 02 13	.97 03 03 14	03 .00 12	00 02 11	1.01 .01 01 15	UB/UINF VB/UINF WB/UINF CP CPT
5	.94 07 .02 12	04 00 18	.97 02 .04 12	1.00 01 01 13 13	1.01 .02 .02 12	UB/UINF VB/UINF WB/UINF CP CPT
-1.0	.94 05 .00 14 25	.98 04 01 17 22	.01 .02 18	.99 .01 .05 15	.97 .00 .01 09	UB/UINF VB/UINF WB/UINF CP CPT
-1.5	.94 04 .03 14 26	.96 04 .06 13 19	.94 02 .03 12	1.01 00 .04 11	-01 -00 10	UB/UINF VB/UINF WB/UINF CP CPT

TABLE C3.- Continued

(c) R = 6. Concluded.

f

x/0 = 2.00 H = 8.06 UINF = 38.4 M/SEC Z/D = 5.00 PHI = 45.0 DEG YH/D .75 .01 .49 1.00 1.25 1.49 1.75 2.00 28/0 3.73 3.78 3.41 2.87 1.86 1.28 .80 .56 .51 UB/UINF .07 .54 .68 .75 .61 .89 .71 .57 .36 VB/UINF 1.5 1.20 1.05 1.17 .72 .15 -.41 -.66 -.92 -. 99 WB/UINF -5.13 -6.03 -4.30 -4.10 -3.12 -2.1A -1.36 -.64 -.17 CP 9.56 10.0P .07 -.79 8.74 4.52 -.56 -.15 15. CPT 2.29 2.14 3.08 3.37 3.02 1.89 1.44 1.00 .73 UB/UINF .47 .06 .75 .90 . 65 . 85 1.01 .51 .35 VB/UINF 1.0 .69 .77 -.49 .68 .65 .44 -.08 -.97 -1.09 WB/UINF -4.34 -4.50 -4.33 -5.10 -5.06 -3.00 -2.58 -1.92 -. 7A CP -.36 .68 4.62 6.86 5.17 .69 -.52 -.69 .08 CPT .68 1.30 1.62 2.49 3.07 2.72 2.31 1.40 .75 UB/UINF .63 .70 -.09 .37 .63 .88 .67 .67 .25 VB/UINF .18 .03 .5 1.26 1.00 -.42 -.95 .53 -.11 -1.27 WB/UINF -2.49 -3.78 -.98 -4.43 -5.35 -5.28 -4.66 -4.34 -2.77 CP -1.94 54.1--2.09 .45 3.97 2.77 .73 -.41 .29 CPT .5A\$ 1.36 2.19 2.49 2.82 2.86 2.21 1.41 .82 UB/UINF -.18 .30 -.21 -.14 .47 .49 .09 .35 . 04 VB/UINF 0.0 .71 1.66 1.37 .14 -.33 -.48 -.74 -1.12 -1.19 WB/UINF -2.94 -4.38 -5.80 -5.81 -5.05 -5.00 -4.14 -3.14 -1.80 CP -1.57 -.79 -1.40 -.45 2.42 2.84 .65 -.79 -.70 CPT .68 1.43 2.14 2.6A 2.40 2.29 1.87 1.36 .84 UB/UINF -.13 -.89 -.73 -.64 -.34 -. 19 VB/UINF -.14 -.05 -.21 -.5 1.37 1.27 ,83 .21 -.27 -.97 -.71 -1.25 -1.36 WB/UINF -2.98 -3.16 -4.55 -5.14 -4.87 -4.58 -3,83 -2.84 -1.29 CP -1.60 .30 .33 . 36 .37 1.68 1.23 -.32 -.35 CPT .69 1.12 1.25 1.60 1.79 1.67 1.30 1.17 .87 UB/UINF -.82 .04 -.67 -.99 -.74 -.42 VB/UINF -.66 -.70 -.63 -1.0 .99 .86 .65 -.88 -.97 .16 -.33 -.67 -1.11 WH/UINF -1.06 -1.20 -1.67 -3.03 -2.42 -3.14 -2.46 -2.10 -1.04 CP -.60 .27 .03 .19 -.25 -.47 -.32 -.38 .15 CPT .89 .72 1.03 1.03 1.10 1.08 1.08 .92 .94 UB/UINF -.43 -.75 .03 -.56 -.70 -.85 -.63 -.63 -. 44 VB/UINF -.70 -1.5 .45 . 34 .22 .08 -.54 -.74 -.85 -. 91 WB/UINF -.17 -.12 -.39 -.50 -.85 -.87 -1.01 -.66 -.75 CP -.45 -.02 .03 .06 -.03 .33 .34 .18 .13 CPT

TABLE C3.- Continued

(d) R = 8.

X/D	=	2.03	R =	8.04	UINF	=	38.5	M/SEC
210	=	6.75			PHI			

-										
ZH/D	.01	•51	.75	1.00	1.25	1.49	1.75	2.00	2.50	
	1.69	1.39	.95	.78	.49	.55	.44	.57	.54	UB/UINF
1	.04	.43	.59	.68	.66	.55	.55	.47	.38	VB/UINF
1.5	.45	.35	.06	23	35	60	67	68	73	wd/UINF
	-1.15	91	54	25	.14	.12	.46	.15	.17	CP
	.94	. 34	27	12	06	.08	.41	.16	.15	CPT
	2.86	2.44	1.95	1.78	1.22	.79	.67	.66	.61	UB/UINF
	.07	.44	.61	.76	.65	.01	.64	.57		VB/UINF
1.0	.76	.70	.63	.12	24	34	62	75		W8/UINF
	-2.36	-2.09	-1.54	-1.90	-1.11	64	44	17	06	
	5,66	3.67	2.11	.90	12	25	20	.15	.10	
	2.63	2.61	2.80	2.63	2.08	1.79	1.37	.84	. 45	UB/UINF
1	00	.39	.64	.68	.77	.71	.74	.79		VB/UINF
.5	.61	.68	.52	.36	.22	07	42	61		WH/UINF
	-2.81	-2.56	-2.69	-2.83	-2.37	-2.32	-2.00	-1.01	46	
	3.64	4.04	5.11	3.86	1.70	.43	36	30		CPT
	1.29	1.72	2.19	2.43	2.55	2.13	1.67	1.55	. 73	UB/UINF
	10	.45	.60	.73	.82	.93	.88	.71		VB/UINF
0.0	.65	.45	.33	.29	.10	03	32	59		WB/UINF
	-1.98	-2.58	-3.05	-3.15	-3.19	-2.64		-2.60	81	
	86	20	1.31	2.53	3.16	1.84	.36	30		CPT
	.99	1.29	1.49	2.11	2.42	2.34	2.16	1.72	1.00	UB/UINF
	21	.40	.54	.65	.74	.71	.77	.71		VA/UINF
5	1.09	1.00	.41	.07	21	26	43	68		WB/UINF
• •	-2.06	-2.34	-2.97	-3.56	-3.24	-3.15	-2.98	-2.58	-2.01	
	84	48	-1.27	.39	2.36	2.04	1.55	.39	76	
	.96	1.38	1.82	2.12	2.26	2.33	2.20	1.84	97	UR/UINF
	08	21	.07	.26	.34	.58	.54	.40		VHZUINF
-1.0	1.38	1.17	.55	01	33	53	66	65		WB/UINF
	-2.28	-2.74	-3.39	-3.75	-3.86	-3.22	-3.31	-3.21	-2.01	
	42	39	72	11	.56	1.93	1.35	.13		CFT
	.99	1.37	1.94	2.26	2.48	2.35	1.98	1.83	1.03	
	.03	43	31	12	.01	.17	.13	.04		UB/UINF
-1.5	1.29	1.09	.69	-16	24					
-11.7	-2.16	-2.74	-3.16	-3.58	-3.77	-3.52	-3.14	-3.40		WB/UINF
	49	43	.23	.66	1.55	1.50	.54	15	-1.73	
		3	• € 3	• 00	1.00	1.70		12	06	CPI

TABLE C3. - Conti ued

X/0 =	3.69	R = 8.03	UINF	=	3A.A	M/SEC
2/0 =	9.41		PHI	=	41.9	D€ G

	_													
28/0		-2.64	-1.10	59	09	.42	.93	1.44	1.95	2.45	2,96	3.47	5.00	
	.66	.65	.82	.78	1.05	.93	.89	.64	.75	.57	.61	.63	.66	UBZUINE
	07	24	34	20	00	.13	.26	.31	.33	.37	.30	.27	.17	VE/UIN
1.5	71	61	31	18	10	15	16	3b	39	52	58	02	68	WH/UIN
	.11	.22	.06	.08	14	01	.01	.05	.06	.30	.25	.23	.11	CP
	.06	.08	06	55	02	11	10	01	12	.03	.05	.0×	.0.	CPT
	.71	.57	1.25	1.52	1.63	1.40	1.23	1.18	.77	.78	.04	.64	.71	UB/UINF
	09	41	39	18	06	.55	.41	.41	.42	. 38	.32	.24	.13	VHZUINE
1.0	70	69	16	01	.08	.10	.01	13	40	54	69	67	70	WB/UINE
	03	.26	48	60	61	60	50	56	14	06	.10	.05	. 61	CP
	03	.24	.27	.76	1.00	.44	.20	.03	21	05	.11	.09	.02	CPT
	.75	.66	1.52	1.91	1.95	1.95	1.94	1.49	1.27	.86	.67	.71	.00	UB/UINF
	11	0	45	16	05	.24	.39	.55	.50	.58	. 34	.31	.13	VB/UINF
.5	73	72	12	.02	.10	.07	01	11	35	47	66	68	75	wb/UINF
	11	07	67	-1.14	-1.04	-1.05	-1.03	87	71	33	08	15	01	CH
	.01	.05	.89	1.57	1.84	1.88	1.92	.65	.27	02	04	10	.04	CPT
	.74	.83	1.62	1.84	1.78	1.71	1.88	1.73	1.50	1.14	.87	.73	.70	UBZUINE
	12	45	-,38	15	05	. 26	.47	.58	.70	.64	.40	.33	.16	VH/UINF
0.0	76	63	11	.02	.05	-11	02	13	31	55	70	74	7t	WH/UINE
	11	47	-1.08	-1.30	-1.09	-1.05	-1.24	-1.18	-1.05	61	44	34	05	CH
	.04	17	1.43	1.14	1.12	.97	1.55	1.20	.82	.41	.02	13	.00	CPT
	.71	1.08	1.56	1.33	1.16	1.31	1.38	1.74	1.68	1.24	.98	.73	.71	UBZUINE
	11	46	48	28	05	. 35	.56	.57	.62	.54	.41	.38	.11	VH/UINF
5	79	75	15	.12	. 22	.22	07	28	40	68	78	81	79	WH/UINF
	15	89	-1.16	-1.10	91	94	-1.16	-1.37	-1.29	-1.05	90	54	17	CP
	02	.07	.54	24	51	05	.07	1.08	1.11	.26	15	10	02	CPT
	.69	1.09	1.47	1.26	1.11	1.17	1.35	1.70	1.75	1.46	.98	.75	-65	UH/UINF
	10	46	42	34	05	. 34	.57	.54	.63	.60	.46	.17	. 09	VH/UINE
1.0	81	86	08	.26	.54	.46	05	34	61	74	91	- 94	86	WE/UINF
	19	-1.02	-1.47	-1.24	-1.36	-1.17	-1.52	-1.79	-1.66	-1.37	82	71	11	CP
	03	.12	11	45	55	45	36	.55	1.23	.68	.19	22	.07	CPT
	.69	1.09	1.47	1.29	1.28	1.26	1.50	1.45	1.64	1.47	1.05	.84	.70	UHZUINE
	OR	41	40	18	09	.17	. 35	.48	. 55	.38	.33	-12	01	VE/UINF
1.5	87	98	09	.40	.71	.63	.08	48	62	79	-1.01	-1.00	87	WH/UINF
	17	-1.10	-1.77	-1.63	-1.45	-1.49	-1.90	-1.40	-4.61	-1.72	-1.18	90	29	CP
	.07	.24	54	76	28	47	51	.13	.80	.23	.07	23	04	CPT

TABLE C3.- Continued

X/D		5.63	P =	8.03	UINF	=	38.7	M/SEC
ZID	=	7.13			PHI	=	41.9	DEG

78/D		-2.47	-,99	49	01	.49	.99	1.48	1.98	2.47	2.47	3.46	4.94	
	.60	1.28	1.38	1.37	1.13	1.25	1.34	1.58	1.66	1.63	1.18	.82	.62	UB/UIN
	.03	31	30	14	07	.13	.24	0	.44	.50	.42	.32	.11	VB/UIN
1.5	87	85	.14	.43	.69	.67	.24	25	56	77	88	97	86	WH/UIN
	.08	-1.15	-1.49	-1.65	-1.71	-1.43	-1.78	-1.69	-1.68	-1.61	-1.16	78	05	CP
	.21	.33	47	54	-,45	39	87	13	.68	.93	.18	04	.09	CPT
	.68	1.45	1.58	1.17	1.22	1.27	1.63	1.74	1.73	1.63	1.27	.69		UB/UIN
	.04	55	09	.05	.04	03	.08	.16	.28	.28	.28	.15	03	VR/UIN
1.0	86	84	.08	.63	.63	.77	.39	20	58	62	97	-1.06		WA/UIN
	13	-1.81	-1.72	-1.55	-1.64	-1.68	-2.09	-2.10	-1.97	-1.82	-1.57	94	36	CP
	.08	.11	20	78	45	-,45	26	.03	.49	.64	.07	00	16	CPT
	.67	1.32	1.71	1.57	1.14	1.32	1.56	1.83	1.76	1.56	1.24	.84		U8/U1N
	.08	06	02	.12	.01	25	21	12	.07	.05	.07	04	03	VH/UIN
.5	88	95	.10	.54	.84	.72	.38	11	65	85	99	-1.06	85	WH/UIN
	14	-1.64	-2.00	-1.97	-1.43	-1.72	-1.96	-2.04	-5.08	-1.88	-1.60	-1.07	33	CP
	.08	.01	05	18	43	38	32	.38	.56	.37	04	13	09	CPT
	.69	1.28	1.46	1.26	1.07	1.10	1.42	1.60	1.62	1.36	1.09	.86	.75	UH/UIN
	.13	.30	.29	. 20	.11	27	34	28	25	53	28	55	04	VA/UIN
0.0	86	80	.13	.67	.01	.75	.32	13	55	83	96	98	85	#8/UIN
	18	-1.62	-1.75	-1.20	-1.10	-1.03	-1.68	-5.03	-1.91	-1.75	-1.35	94	31	CP
	.06	27	49	12	28	19	44	32	.13	13	14	23	01	CPT
	.74	.98	1.34	1.14	1.13	1.07	1.24	1.32	1.32	1.17	. 47	.80	.70	UB/U1N
	.16	.37	.50	. 26	01	26	46	49	45	44	42	45		VH/UIM
5	82	94	.09	.44	. 6.7	.50	.31	14	54	81	89	94	66	WA/UIN
	23	-1.03	-1.26	86	69	78	-1.05	-1.35	-1.59	-1.38	-1.09	63	70	CP
	.05	07	20	28	29	31	19	32	33	13	17	.11	.08	CPT
	.70	1.07	1.16	1.04	.93	1.07	1.09	1.17	1.10	1.01	.93	.82	.75	UH/UINF
	.55	.47	.54	.74	.00	23	-,44	54	64	57	46	41	55	VB/UINE
-1.0	82	66	.06	.76	.37	.29	.16	13	46	62	75	81	80	WB/UINE
	12	-1.05	68	35	35	38	40	77	77	83	87	56	23	CP
	.08	55	03	13	34	10	03	OH	.06	10	22	05	.03	CPT
	.76	.88	1.02	1.04	.90	.92	.96	1.01	.99	.84	.83	.77	.74	UH/UINF
	.50	.53	.42	.23	.07	18	-,35	53	59	56	50	48	25	VH/UINF
-1.5	79	67	05	.10	.11	.0+	01	55	47	63	75	76	74	WB/UINF
	17	48	22	18	20	14	07	23	35	18	29	16	12	CP
	.08	.04	01	03	37	25	02	.11	.15	.25	.23	.22	.12	CPT

TABLE C3.- Continued

x/0 =	7.60	₩ :	=	B.04	UINF	=	38.8	M/SEC
Z/0 =	4.81				PHI	=	42.0	DEG

ZH/D		-2.51	-1.01	50	0.00	.50	1.01	1.51	2.01	2.52	3.02	3,53	5.04	
	.61	.80	1.00	.95	.83	.80	.96	.98	.90	.82	.75	.71	.67	UB/UINF
1	.26	.52	.47	.30	.09	13	31	46	53	52	49	33		VB/UINF
1.5	78	69	02	.00	.15	.07	01	17	+1	61	75	77	61	WB/UINF
1	03	36	34	15	18	04	07	18	25	23	12	24	07	CP
	.05	.04	10	16	47	38	05	.02	• 0 1	.10	.23	03	.06	1
	.70	.79	.91	.93	.84	.87	.93	.90	.90	.83	.81	.79	.76	UB/UINF
1	.25	.51	.39	.24	.11	10	24	38	47	47	41	38	24	VB/UINF
1.0	76	60	21	16	02	08	17	26	39	54	64	68	73	WB/UINF
1	15	22	06	05	16	05	.03	.02	10	14	24	25	23	CP
	03	.03	04	04	44	27	00	.05	.09	.07	.00	01	06	CPT
	.78	.77	.90	.87	.89	.85	.88	.88	.87	.85	.83	.80	.61	UB/UINF
l	.22	.43	. 32	.18	.06	07	20	29	36	37	36	32		VH/UINF
.5	70	58	29	20	19	16	26	33	42	51	60	67		WB/UINF
1	21	13	00	97	11	08	.08	.07	01	07	14	17	24	CP
	06	02	00	24	28	33	03	.04	.06	.06	.04	.02	03	
	.78	.82	.84	.78	.86	.83	.87	.85	.45	.83	.85	.61		UB/UINF
1	.24	.40	.26	.14	.06	04	15	21	27	31	32	31		VB/UINF
0.0	67	53	36	32	25	29	34	39	48	50	56	62		WB/UINF
	23	11	.02	06	10	01	.07	.11	.07	.00	09	10	21	CP
	11	.00	08	33	30	23	03	.03	.08	.05	.04	.04	04	CPT
	.76	.75	.79	.82	.01	.90	.82	.84	.81	.79	.81	.78	77	UB/UINF
	.21	.30	.19	.10	.08	04	13	18	23	27	26	27		VB/UINF
5	68	55	43	34	36	32	39	44	49	55	57	62		
	17	04	.04	06	02	04	.06	.08	.09	.06	03	07		WB/UINF
	04	09	12	27	22	29	10	.01	.05	.06	.03	.01	17	
	.73	.77	.81	.82	.77	.77	.01	.81	.83	.61	.79	.80		
	15.	.26	.15	.12	.05	03	08	13	18	19	21	23		UB/UINF
-1.0	68	•.55	46	41	40	40	43	48	50	54	58	61		VB/UINF
	11	05	.02	05	05	01	.05	.09	.04	.01	00	08		WE/UINF
	06	08	09	19	29	26	12	01	.01	.01	00	01	12	CP CPT
	.72	.78	.81	.80	.74	.77	.80	.79	9.1	.78	77	76		
	.17	.20	.14	.07	.03	03	07	11	.81		.77	.78		UB/UINF
-1.5	70	57	48	45	46	45	47		16	19	21	21		VB/UINF
1.0	06	06	05	13	04	01	01	52	53	57	60	62		WB/UINF
	02	08	10	28	27	01	15	03	01	.04	00	05	17	CP
			- • • •	- 0 6 -3			13	03	01	• 0 1	00	02	08	CPT

TABLE C3.- Continued

X/D	=	6.00	B = 8	.05	UINF	=	38.6	M/SEC
2/0	=	8.00			PHI	=	30.0	DEG

PINF = .102E+06 N/M++2 Q = .950E+03 N/M++2

ZB/D AB\D	0.00	.50	.99	1.51	1.99	2.49	
1.5	.96 08 .77 48	1.18 .32 .57 77	1.34 .46 .22 98	1.72 .49 07 -1.47	1.67 .55 18 -1.12 1.03	1.46 .66 47 83	WH/UINF CP
1.0	1.01 .06 .83 90	1.17 .17 .70 -1.05	1.41 .29 .28 -1.24	1.71 .36 04 -1.51	1.82 .48 26 -1.26	1.62 .51 48 -1.16	WB/UINF CP
.5	.81 07 1.19 34 .75	1.17 04 .86 -1.06	1.50 .18 .48 -1.40	1.72 .25 .03 -1.56	1.67 .34 42 -1.41	1.72 .34 50 -1.48	CP
0.0	1.01 00 .97 -1.17 19	1.19 00 .88 -1.10	1.64 06 .49 -1.47	1.80 .06 .01 -1.64	1.79 .19 40 -1.63	.20	
-,5	.94 .02 .95 80	1.09 07 .92 86	1.52 10 .47 -1.42	1.68 15 03 -1.60	1.78 13 36 -1.78		
-1.0	.83 03 .83 16	1.01 44 .79 11	1.38 34 .32 -1.19 05	1.62 35 17 -1.58 .23	1.54 28 44 -1.50	22 71 -1.01	
-1.5	.83 .01 .58 .03	1.03 31 .53 17 .27	1.18 40 .25 62	1.22 49 09 76 03	1.29 46 34 -1.03 02	52	UB/UINF VB/UINF WF/UINF CP CPT

TABLE C3.- Continued

1.5	UB/UINF VB/UINF WB/UINF
-13 -23 -20 -12 -01 13 20 24 30 33 27 27 27 24 20 18 14 -54 -41 -14 -06 -05 02 -15 -14 -25 -29 -37 -44 50 -49 -52 -53 -16 0.8 0.2 -11 -12 -21 -03 -15 -10 08 .05 .13 .22 .15 .15 .11 .09 .03 .09 .08 .24 .34 .07 .00 -04 .00 -04 .07 .07 .06 .07 .07 -82 .98 1.23 1.27 1.42 1.37 1.27 1.32 1.15 1.09 .91 .86 .84 .83 .83 .86 -15 -36 -19 -14 -00 .12 .22 .32 .33 .37 .31 .32 .25 .19 .17 .11 1.0 -56 -32 -08 -01 .02 .02 -08 -08 -17 -26 .39 -44 -49 -53 -53 -54 .03 -14 -38 -36 -39 -43 -27 -48 -30 -31 -12 -03 -01 .06 .06 .00 .04 .06 .18 .28 .64 .47 .41 .40 .17 .09 -05 .00 .00 .07 .06 .05 -81 1.06 1.43 1.42 1.47 1.44 1.46 1.37 1.26 1.15 .99 .91 .83 .88 .86 .84 -18 -43 -23 -12 -01 .17 .26 .31 .34 .44 .36 .37 .27 .20 .20 .12 -58 -37 -06 -00 .02 .04 -02 -04 -20 -34 -44 -50 -53 -53 -55 -56 .02 -25 -51 -60 -49 -56 -58 -51 -40 -28 -19 -10 -03 -05 .08 .04 -84 1.27 1.35 1.39 1.28 1.20 1.49 1.40 1.27 1.26 1.10 .00 .05 .08 .04 -84 1.27 1.35 1.39 1.28 1.20 1.49 1.40 1.27 1.26 1.06 .96 .82 .85 .86 .88 .88 .86 .88 .88 .86 .84 .27 .37 .28 .37 .37 .32 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06	V8/UINF
1.5	
16	WE/UINF
.09 .03 .09 .08 .24 .34 .07 .0004 .0004 .07 .07 .08 .07 .07 .08 .07 .07 .08 .07 .07 .08 .07 .07 .08 .07 .07 .08 .07 .07 .08 .07 .07 .08 .07 .07 .08 .07 .07 .08 .07 .07 .08 .07 .07 .08 .07 .07 .08 .07 .07 .08 .07 .07 .08 .07 .07 .08 .07 .07 .08 .07 .07 .08 .08 .08 .08 .08 .08 .08 .08 .08 .08	
.82 .98 1.23 1.27 1.42 1.37 1.27 1.32 1.15 1.09 .91 .86 .64 .83 .83 .86 .84 .85 .85 .86 .86 .32 .36 .37 .31 .32 .25 .19 .17 .11 .11 .02 .05 .08 .06 .19 .14 .30 .12 .22 .37 .33 .37 .31 .32 .25 .19 .17 .11 .11 .02 .05 .08 .06 .19 .28 .27 .48 .30 .31 .31 .32 .25 .19 .17 .11 .11 .02 .05 .08 .06 .19 .28 .27 .48 .30 .31 .12 .03 .01 .06 .06 .00 .00 .00 .07 .06 .05 .05 .28 .37 .27 .20 .20 .12 .38 .38 .38 .38 .38 .38 .38 .38 .38 .38	1
1.0	CPT
1.0	UHZUINE
.03143836394327483031120301 .06 .06 .00 .00 .04 .06 .18 .28 .64 .47 .41 .40 .17 .0905 .00 .00 .00 .07 .06 .05 .05	VH/UINF
.04 .06 .18 .28 .64 .47 .41 .40 .17 .0905 .00 .00 .07 .06 .05 .81 1.06 1.43 1.42 1.47 1.44 1.46 1.37 1.26 1.15 .99 .91 .83 .88 .86 .84 1843231201 .17 .26 .31 .34 .44 .36 .37 .27 .20 .20 .12 .558370600 .02 .0402042034445053535556 .02255160495658514028191003050100 .06 .19 .61 .45 .69 .57 .62 .47 .35 .35 .11 .11 .02 .05 .08 .04 .84 1.27 1.35 1.39 1.28 1.20 1.49 1.40 1.27 1.26 1.06 .96 .82 .85 .86 .88 17432513 .01 .18 .29 .36 .48 .42 .39 .4 .31 .21 .19 .11 0.0613505 .07 .07 .02 .01122332415060595757 01685960524475564557433206060605 .09 .25 .31 .37 .14 .05 .58 .55 .46 .30 .0203 .07 .06 .05 .06	WE/UINF
.81 1.06 1.43 1.42 1.47 1.44 1.46 1.37 1.26 1.15 .99 .91 .83 .88 .86 .86 .84 .85 .85 .86 .86 .84 .86 .84 .86 .84 .86 .84 .86 .87 .27 .20 .20 .12 .87 .88 .86 .86 .84 .86 .84 .86 .87 .27 .28 .28 .28 .28 .28 .28 .28 .28 .28 .28	
-1843231201 .17 .26 .31 .34 .44 .36 .37 .27 .20 .20 .12 .58370600 .02 .0402042034445053535556 .02255160495658514028191003050100 .04 .06 .19 .61 .45 .69 .57 .62 .47 .35 .35 .11 .11 .02 .05 .08 .04 .48 1.27 1.35 1.39 1.28 1.20 1.49 1.40 1.27 1.26 1.06 .96 .82 .85 .86 .8817432513 .01 .18 .29 .36 .48 .42 .39 .4 .31 .21 .19 .11 .00 .05 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06	CPT
-1843231201 .17 .26 .31 .34 .44 .36 .37 .27 .20 .20 .1258370600 .02 .0402042034445053535556 .02255160495658514028191003050100 .06 .19 .61 .45 .69 .57 .62 .47 .35 .35 .11 .11 .02 .05 .08 .04 .48 1.27 1.35 1.39 1.28 1.20 1.49 1.40 1.27 1.26 1.06 .96 .82 .85 .86 .8817432513 .01 .18 .29 .36 .48 .42 .39 .4 .31 .21 .19 .11 .00 .05 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06	UHZUINE
-58370600 .02 .0402042034445053535556 .02255160495656514028191003050100 .06 .19 .61 .45 .69 .57 .62 .47 .35 .35 .11 .11 .02 .05 .08 .04 .48 .42 .39 .4 .31 .21 .19 .11 .10 .02 .05 .08 .04 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10	VH/UINF
0.0	WB/UINF
.84 1.27 1.35 1.39 1.28 1.20 1.49 1.40 1.27 1.26 1.06 .96 .82 .85 .86 .88 .88 .88 .89 .89 .89 .89 .89 .89 .89	CP
17432513 .01 .18 .29 .36 .48 .42 .39 4 .31 .21 .19 .11613505 .07 .07 .02 .0112233241506059575701685960524475564557433206060605 .09 .25 .31 .37 .14 .05 .58 .55 .46 .30 .0203 .07 .06 .05 .06 86 1.30 1.20 1.08 1.07 1.07 1.26 1.34 1.35 1.38 1.32 1.02 .87 .82 .84 .8313462812 .01 .16 .35 .39 .49 .44 .43 .45 .34 .24 .18 .11	CPT
17432513 .01 .18 .29 .36 .48 .42 .39 4 .31 .21 .19 .11613505 .07 .07 .02 .0112233241506059575701685960524475564557433206060605 .09 .25 .31 .37 .14 .05 .58 .55 .46 .30 .0203 .07 .06 .05 .06 86 1.30 1.20 1.08 1.07 1.07 1.26 1.34 1.35 1.38 1.32 1.02 .87 .82 .84 .8313462812 .01 .16 .35 .39 .49 .44 .43 .45 .34 .24 .18 .11	UH/UINF
-01 -68 -59 -60 -52 -44 -75 -56 -45 -57 -43 -32 -06 -06 -06 -06 -05 -09 -25 -31 -37 -14 -05 -58 -55 -46 -30 -02 -03 -07 -06 -05 -05 -06 -05 -05 -06 -05 -05 -05 -05 -05 -05 -05 -05 -05 -05	VH/UINE
.09 .25 .31 .37 .14 .05 .58 .55 .46 .30 .0203 .07 .06 .05 .06 .86 1.30 1.20 1.08 1.07 1.07 1.26 1.34 1.35 1.38 1.32 1.02 .87 .82 .84 .83 13462812 .01 .16 .35 .39 .49 .44 .43 .45 .34 .24 .18 .11	WH/UINF
.86 1.30 1.20 1.08 1.07 1.07 1.26 1.34 1.35 1.38 1.32 1.02 .87 .82 .84 .8313462812 .01 .16 .35 .39 .49 .44 .43 .45 .34 .24 .18 .11	CH
-13 -46 -78 -12 .01 .16 .35 .39 .49 .44 .43 .45 .34 .24 .18	CPT
11. 81. 46262812 .01 .16 .35 .39 .49 .44 .43 .45 .34 .24 .18	UH/UINF
	VB/UINF
56541 .06 .15 .27 .17 .04122034445568676261	WH/UINF
13675152565972686977673918110805	CP
.06 .42 .01323739 .00 .30 .41 .46 .47 .17 .16 .07 .05 .02	CPT
.87 1.24 1.26 1.14 1.00 1.03 1.21 1.40 1.41 1.43 1.22 1.0H .96 .83 .84 .80	UB/UINF
09463224 .04 .26 .36 .43 .47 .43 .40 .27 .38 .16 .13 .09	VH/UINF
-1.0 664210 .30 .44 .40 .10113039566162696664	WB/UINF
2264 -1.0279595097 -1.1196 -1.07857049201701	CP
02 .293035402135 .08 .37 .32 .130605 .00 .00 .05	CPT
.85 1.22 1.34 1.16 1.15 1.15 1.20 1.24 1.43 1.52 1.12 1.16 .90 .82 .82 .83	UB/UINF
10442515 .00 .22 .25 .37 .39 .35 .36 .31 .27 .12 .08 .05	VHZUINE
-1.57153 .15 .43 .53 .39 .090340556869777165	WB/UINF
2266 -1.13 -1.0091 -1.00 -1.15 -1.06 -1.12 -1.30828339292112	
.02 .32244430476438 .26 .44 .28 .11 .13000200	CPT

TABLE C3.- Continued

X/D = 8.81 R = 8.03 Z/D = 8.31

R = 8.03 UINF = 38.5 M/SEC PHI = 30.0 DEG

	8.31					1 = 3	0.0 UEG										
Z8/0	-5.09	-2.58	-1.07	57	06	.45	.95	1.46	1.96	2.47	2.98	3.48	3.99	4.49	5.00	6.01	
		1 40	1.23	1.09	1.04	1.00	1.15	1.48	1.48	1.31	1.31	1.23	1.06	.86	.70		UB/UINF
1	.75	1.40	13	07	03	03	00	.15	.22	.30	.28	.29	.22	.19	.15		VA/UINF
	.05	21	.31	.59	.71	.70	.51	.55	14	56	69	74	77	78	83		WB/UINF
1.5	74	54	-	51	71	56	80	-1.25	-1.18	65	52	60	36	18	.23	.55	CP
	.16	93	73 11	.04	11	05	22	.03	.10	.49	.76	.56	. 41	.55	.43	.27	CPT
1	.28	.34		• 0 -	-•••	• • •									***		
1	.83	1.45	1.44	1.26	1.13	1.07	1.35	1.45	1.65	1.60	1.45	1.25	1.07	.94	.79		UB/UINF
1	.02	03	.04	01	.05	14	08	02	.02	.07	.15	.08	.03	.06	02		VB/UINF
1.0	74	59	.18	.62	.73	.77	.48	.14	20	49	64	76	82	79	77	66	WH/UINF
1.0	02	95	92	-1.01	91	80	-1.15	-1.30	-1.38	-1.26	-1.04	81	60	35	01	.04	CP
1	.23	.53	.55	04	09	03	06	18	. 39	.58	.53	.35	.22	.16	.55	.19	CPT
1	1.63		•	•							. 20		1 04	.42	.80	. 84	UB/UINF
1	.85	1.38	1.41	1.08	.95	1.13	1.25	1.46	1.52	1.48	1.39	1.20	1.04	12	11		VH/UINF
1	.10	.04	.21	.11	03	14	19	19	13	08	05	07	-	81	76		WB/UINF
.5	70	53	.26	.63	.74	.69	.50	.16	16	53	67	76	84	55	01	.03	CP
	08	-1.00	-1.16	62	48	73	98	-1.15	-1.22	-1.06	97	79		.30	.23	.18	CPT
	.14	.19	05	04	02	.05	12	.05	.16	. 44	.43	.50	.30	• 30	• 63	.10	
1	1										1.27	1.13	1.05	.89	.91	. 88	UHZUINE
1	.88	1.25	1.35	1.24	1.00	1.04	1.15	1.29	1.44	1.42	27	21	10	18	16		VB/UINF
1	.14	.25	.23	.12	.06	09	29	35	31	23		76	79	77	12		WH/UINF
0.0	69	61	.24	.50	.61	.56	.49	.19	21	43	67	61	51	17	12	.00	
	09	74	-1.06	72	-,43	59	61	82	98	-1.03	76	.30	.23	.27	.25	.21	CPT
	.20	.26	12	.09	04	17	.04	.00	.24	.24	.37	. 30	• 6 3	•••	•••	•••	
						.96	1.10	1.15	1.23	1.20	1.14	1.02	.91	.80	.86	.85	UR/UINF
1	.89	1.08	1.19	1.08	1.00		33	41	45	44	40	34	34	33	23	15	V8/UINF
	.15	.39	. 36	.25	.07	12	.33	.17	18	42	60	71	73	77	68	63	WA/UINF
5	65	54	.21	.36	.43	25	41	55	72	68	61	46	24	00	02	.06	CF
1	09	48	35	24	24	11	.03	02	.03	.14	.55	.19	.25	.34	.23	.21	CPT
1	.15	.14	.26	.12	03		• 0 3	• • • •	•••								
1		0.0	1 07	1.06	.90	.97	1.06	1.04	1.08	1.07	1.04	.93	. 41	. 40	.89		UB/UINF
1	.87	.99	1.07	.15	.06	13	26	42	47	51	41	43	34	33	24		VH/UINF
	.55	.41	.33	.31	.31	.27	.22	.06	15	37	53	61	67	06	65		WB/UINF
-1.0	-,63	52	.23		.01	06	12	15	29	38	34	19	11	01	.00	.10	
1	02	24	07	10	08	02	.12	.12	•12	.18	.19	.25	.29	.34	.29	.55	CPT
	.19	.18	.23	•12	00	02	• • • •	• • •									
	.80	.98	1.02	.99	.95	.92	.95	.99	.97	1.02	.98	.86	. 88	.84	.80		UB/UINF
1	.24	.46	.25	.20	.07	17	22	35	42	46	46	41	32	31	23		V8/UINF
-1.5	63	43	04	.09	.11	.05	.08	02	18	35	46	57	59	63	-,66	_	WHYUINF
-1.5	63	07	.02		.00	.04	.08	.03	03	09	07	.04	.02	.05	.17	.06	
1	.23	-			07	09	.05	.15	.13	.28	.31	.58	.25	.26	.30	.24	CPT

TABLE C3.- Continued

X/D = 10.00 $\theta = 8.02$ Z/D = 5.31

UINF = 38.6 M/SEC PHI = 30.0 DEG

ZH/D AH/D		-2.47	-1.00	-,50	0.00	•50	1.00	1.48	1.98	2.48	2.98	3.47	3,47	4.46	4,96	5.95	
	.79	.94	.98	.88	.07	.88	.93	.94	.95	.95	.88	.87	.+6	.82	.69		UB/UINF
l	.55	.45	.30	.23	.06	07	22	31	37	40	37	34	25	21	20		VB/UINF
1.5	60	34	01	.10	.04	.07	01	09	23	37	47	55	59	62	67		WB/UINF
1	.12	06	.03	•12	00	.03	.09	.07	.02	02	.05	.02	.00	. 05	.26	.09	
	.15	.16	.08	04	15	18	.00	.00	.13	.16	.20	.21	.16	.15	.55	.14	CPT
	.87	.94	.95	.97	.95	.93	.94	. 45	.92	.90	.92	.89	.87	.90	.85	. 85	UB/UINF
	.21	.42	.56	.15	.06	08	19	27	32	37	37	33	29	26	24		VB/UINF
1.0	54	34	14	05	02	03	08	15	24	36	39	49	52	54	55	57	
	.03	00	.16	.07	00	05	.05	.09	10	.09	.03	.02	.02	02	.05	.06	
	.14	.18	.15	.05	10	16	02	.08	•11	.16	.17	.17	.14	.15	.13	.13	
	.89	.92	.91	.86	.92	.89	.93	. 94	.94	.93	.93	.92	.90	.92	.89	80	UB/UINF
1	.23	.31	.19	• 10	. 05	10	15	21	27	28	29	30	27	27	55		VB/UINF
.5	52	34	20	13	11	14	16	23	28	34	39	43	47	50	56		WB/UINF
	.04	• 0 A	.16	.10	.01	.01	.06	.10	.12	.10	.07	.04	.06	.01	.03	.03	
	.16	.15	.07	10	13	17	02	.08	.16	.16	.16	.17	.10	.18	.18	.13	
	.92	.91	.89	.89	. 84	.99	.93	.93	.92	. 42	.90	.91	.88	96			
	.23	. 25	.16	.11	.02	08	10	17	21	23	26	25	23	.85	.89		UB/UINF
0.0	50	35	26	22	21	10	23	26	31	35	34	43	47	23	18		VB/UINF
	.03	.12	.16	.14	.04	.02	.06	.11	.14	.12	.14	.09			52		WB/UINF
	-18	.14	.05	.00	20	15	01	.07	.13	.14	.18	.17	.11	.11	.16	.17	CP
	.86	.90	.90	.89	.85	.83	.90	.91	.91	.90	.90						
	.20	.23	.15	.10	.02	04	08	13	17	20		.84	.88	.84	.89		UB/UINF
5	49	37	30	26	27	28	29	30	34	37	22	24	21	21	21		VB/UINF
	.09	.12	.18	.13	.07	.07	.07	.10	.15	.15	40	43	45	49	50		WB/UINF
	.12	.12	.10	.00	13	15	03	.04	.13	.15	.14	.12	.13	.11	.06	.10	CP
	.90	.91	.91	.87	.83	.87	.87	.91	.90		0.1	04					
	.19	.20	.12	.08	.02	04	07	11		.87	.91	.89	.90	.88	.86		UB/UINF
-1.0	47	3A	33	30	28	29	31	33	14	16	17	19	18	17	17		VB/UINF
	.09	.14	.15	.10	.05	.03	.06	.10	36	39	40	43	45	47	49		WB/UINF
	.16	.16	.10	05	17	12	08	.05	.14	.17	.15	.12	.10	.10	.12	.05	CP
	.87	.88	.88	0.7	0.3		0.6						•••	•••	•16	.13	CFI
	.17	.16	.10	.87	.83	.A3	.85	.67	.89	.89	.88	.88	. 67	.88	. 68	.86	UB/UINF
-1.5	49	40		.04	.01	02	07	10	13	14	16	16	18	16	16	14	VB/UINF
-1.0	.08	_	33	31	31	32	35	37	38	41	42	45	44	48	49		WB/UINF
	.10	-16	.10	.06	.06	-02	.05	.10	.12	.14	.15	.12	.11	.09	.07	.10	CP
	•10	.12	00	07	15	19	09	.01	.08	.12	.13	.12	.11	.13	.11	.10	CPT

TABLE C3.- Continued

X/D = 11.91Z/D = 2.28

p = 8.03

HINF = 38.5 M/SEC PHI = 30.0 DEG

ZH/D	-5.01	-2.52	-1.00	50	0.00	•50	1.01	1.51	2.01	2.51	3,02	3.52	4.03	4.53	5.03	6.03	
	.84	.82	.84	.75	.78	.79	.79	.86	.84	.82	.84	.83	.84	.83	.85		U8/UINF
1.5	.18	.19	.13	.09	.06	.03	01	03	07	08	08	10	09	11	09		VR/UINF
1.5	49	44	40	34	38	35	43	40	41	45	45	47	48	48	49		WE/UINF
1	.12	.20	.16	.17	.15	.09	.23	.15	.51	.55	.18	.19	.50	.16	.14	.14	
	-11	• 10	.03	10	10	16	.04	.04	.09	.10	.10	.12	.13	.10	.11	.11	CPT
1	.87	.88	. 68	.82	.85	.85	.84	.89	.83	.86	.88	.89	. 67	.88	.87	.85	UR/UINF
1	.14	.15	.08	.05	.03	00	05	06	06	08	09	10	11	13	10	10	VH/UINF
1.0	47	42	40	39	37	36	40	40	43	43	43	44	46	46	47	49	WH/UINF
1	.07	.10	.11	.05	.05	.08	.15	. 0 H	.15	.15	.09	.10	.13	.07	.10	.09	CP
	.06	.09	.05	12	08	07	01	.03	.03	.07	.00	.10	.11	.08	.09	.07	CPT
	.89	.91	.87	.85	.82	.84	.83	.88	.90	.89	.90	.89	.67	.90	.91	.91	UB/UINF
	.15	.11	.08	.04	.03	.02	03	07	06	09	08	11	10	11	11		VH/UINF
.5	48	43	40	41	40	39	41	42	44	44	43	45	46	47	48		WB/UINF
	.05	.06	.07	.00	.07	.06	.06	.08	.07	.11	.07	.08	.11	.00	.05	.04	
1	.04	.08	00	05	10	07	07	.05	. O.A.	.11	.09	.09	.10	.11	.11	.11	
1	.92	.90	. 87	.00	.80	.84	.86	.84	.88	.90	.90	.90	.87	.90	.90	. 40	UB/UINF
	.16	.14	.06	.03	.05	01	02	05	06	08	10	09	10	14	10		VB/UINF
0.0	46	44	42	46	41	38	38	43	45	45	44	45	47	46	47		W8/UINF
	00	.06	.06	.10	.07	.02	.01	.07	.06	.08	.08	.07	.14	.05	.05	.07	
	.09	.09	01	05	12	13	10	05	.05	.10	.10	.09	.14	.10	.04	.10	
	.86	. 47	.93	.00	.74	. 00	.79	.84	.87	.86	.87	.87	.40	.88	.88		USZUINE
1	.15	.10	.07	.02	.03	02	02	04	05	07	08	10	10	09	11		V8/UINF
5	48	-,45	46	44	43	45	44	44	45	46	46	47	45	47	47		WH/UINF
	.08	.10	.10	.03	.06	.12	.08	.05	.07	.10	.08	.04	.09	.06	.05	.07	CP
	.0A	.07	.01	13	12	04	09	04	.04	.06	.05	.06	.11	.07	.06	.08	
	.87	.87	.83	.75	.63	.74	.63	.75	.87	. 86	.87	. 40	.86	. 68	. 88		UH/UINF
l .	.16	•11	.07	.05	.03	.01	03	06	06	06	09	06	07	10	11		VH/UINF
-1.0	49	44	- 44	49	44	48	39	49	45	47	47	46	4H	47	47		WH/UINF
	.04	.05	.04	.11	.05	.13	03	.15	.02	.09	.00	.03	.12	.07	.04	.03	
	.06	.03	07	08	06	03	10	04	00	.04	.08	.06	.11	.07	.06	.05	
	.79	. 87	.81	.77	.78	.90	.78	.83	.79	.03	.86	. 85	. 85	.84	.81		
1	iii	.09	.03	.07	.00	03	01	05	04	06	07	00	08				UHZUINE
-1.5	5H	46	47	48	48	47	48	45	48	49	46	48	08	11	08		VB/UINF
1	.08	.04	0.5	.06	.0.0	.05	.11	.02	.07	.10	.00	.04	.10	.07	50		WA/UINF
	.06	.03	07	10	08	09	06	0B	08	.03	.03	.00	.07	.04	02	05	
		•		- • • •	- • 04.	- • • •	01.		- • 00	• 03	• 9.3	• 00	• 0 7	.04	05	05	CPT

TABLE C3.- Continued

X/D = 12.10 Z/D = 16.97 R = 8.03

UINF = 38.5 M/SEC PHI = 20.0 DEG

VH/0	-5.28	-2.67	-1.10	5A	05	.47	1.01	1.52	2.05	2.57	3,10	3.62	•.15	4.67	5,21	6.25	
28/0																	
	.90	.92	.92	.90	.90	.91	.91	.91	.90	.40	.42	.90	.84	.40	.91	.91	UR/UINF
1.5	06	06	02	01	.01	.01	.04	.06	.07	.10	.04	-11	.12	-12	.11	.11	VH/UINF
1.5	.17	-17	26	25	25	25	25	26	27	27	28	30	30	30	31	33	WH/UINF
1	.10	.09	.17	.19	.23	.24	.21	.20	.50	.20	.17	.19	.50	.16	.16	.15	CP
	.10	.09	.09	.07	.10	.13	.11	.10	.09	.09	.11	.10	.10	.09	.04	.10	CPT
	.93	.94	.95	.94	.95	.95	.94	.93	.93	.97	.44	.45	.43	.94	. 43	.94	UF/UINF
	10	09	07	03	01	.01	.04	.05	.07	.07	.09	.04	.10	.10	.10		VH/UINF
1.0	31	25	22	22	21	21	20	22	23	24	26	28	24	+5	30		ME/UINF
1 1	.13	.12	.12	.10	.14	.17	.16	.17	.16	.09	.13	.12	.12	.11	.11	.07	
	-11	.08	.08	.04	.09	.12	.08	.09	.09	.09	.10	.11	.04	.09	.09	.06	
1 1	.95	.96	.94	.95	. 97	.95	.95	.94	.96	.96	.94	.94	.95	.95	.95	***	UR/UINF
1 1	11	11	06	06	03	00	.02	.06	.00	10	.09	.10	.11	.11	.11		VE/UINF
.5	31	24	20	20	19	20	19	20	23	23	25	20	20	30	30		WR/UINF
1 1	.08	.09	.11	.10	.10	.17	.14	.11	.11	.11	.12	.13	.12	.11	.09	.08	
1 1	.09	.08	.04	.06	.08	.11	.07	.05	.00	.10	. On	.10	.11	.11	.10	.12	
1 1	.95	.98	.99	.92	.96	.47	.95	. 95	.97	.95	.95	.94	414				
1 1	13	15	07	06	03	.03	.05	.08	.08	.11	.14	.12	.45	.12	.95		UH/UINF
0.0	33	23	17	15	17	16	17	17	21	23	- 24	25	24	30	-12		VB/UINF
	.10	.05	. 05	.10	.08	.13	-12	.10	.05	.12	.13	.04	.00	.09	30	.07	CP CP
1	.14	.09	.06	02	.03	.10	.06	.03	.06	.00	.11	.06	.10	.08	.07	.10	
	.95	.97	1.02	1.00	.90	.96	.98	6+60	D.u.	0.4	form						
1 1	13	17	10	08	03	.02	.06	.00	.13	.96	.98	. 94	. 94	. 94	. **		UHZUINF
5	33	22	13	12	11	16	14	13	20	21	23	26	.15	.15	.14		VHZUINF
	.07	.06	04	.00	.07	.09	.10	.04	.08	.08	.07	-11	26	31	32		WH/UINF
1 1	.12	.09	.04	.04	.04	.05	.09	.05	.11	.08	.11	.09	.08	.10	.10	.10	CPT
	0.3		1 44														
1 1	.93	1.01	1.05	1.06	1.04	1.07	1.07	1.01	1.01	1.02	.98	. 47	. 46	.43	. 94	. 45	UH/UINF
-1.0	16	15	11	07	00	.04	.07	.12	-14	.15	.15	.15	.16	.15	.14		VH/UINF
1-1.0	.11	.00	11	05	10	09	13	11	13	20	55	24	24	30	33		MAZUINE
1 1	.13	.09	.08	.00	03	01	02	01	05	-02	.05	.05	.06	.05	.00	.05	
i I	.13	.04	. 00	.0"	.06	.15	.16	.03	.05	.12	.08	.07	.11	.05	.08	.08	CPT
1 1	.92	1.02	1.04	1.09	1.09	1.11	1.11	1.13	1.05	1.04	.99	. 48	. 46	. 45	. 46	.42	URZUINE
1	16	50	13	07	02	.04	.04	.13	.17	.21	.20	.21	.16	.17	.16		VH/UINF
-1.5	37	24	11	06	05	08	10	04	15	15	23	26	31	33	35		WH/UINF
I	.08	01	03	05	06	.01	05	11	08	07	.02	.03	.03	.05	.03	.06	CP
	.09	.13	.09	.16	.14	.25	.20	.20	.07	.10	.04	.11	.09	.09	.10	.05	CFT

TABLE C3.- Continued

x/0 = 13.10 Z/0 = 14.16

R = 8.03 UINF = 38.5 M/SEC PHI = 20.0 DEG

ZH/D	-5.15	-2.58	-1.04	-,53	0.00	.52	1.03	1.55	2.07	2.58	3,10	3.62	*.1*	4.65	5.17	6.20	
1.5	.92 12 38 .16	1.03 20 22 02	1.07 09 09 00	1.06	1.15 .01 06 14	1.11 .08 06 05	1.14 .12 06 08	1.07 .19 12 07	1.06 .19 16 12	1.03 .27 19 04 .13	.93 .25 21 .03	.94 .24 28 .04	.91 .23 31 .07	.96 .22 33 .01	.90 .17 35 .12	.16	
1.0	.93 15 36 .04	1.14 19 16 14	1.05 15 08 07	1.13 07 02 16	1.12 .02 .00 15	1.11 .10 .01 13	1.15 .12 05 16	1.12 .20 11 18	1.09 .19 11 21	1.14 .21 16 17	1.06 .24 20 16	.99 .26 26 02	1.00 .23 26 07	.97 .22 33 01	.94 .19 35 .04	.16	
۰.	17 41 .05	1.16	1.10 18 .00 20	1.06 13 .04 17 01	1.06 03 .03 14	1.04 .11 .03 22	1.15 .14 01 21	1.09 .20 00 31 07	1.13 .22 14 28	1.17 .26 1H 26	1.12 .30 22 17	1.05 .28 28 16	1.02 .24 32 13	1.01 .26 34 09	.95 .20 37 01	.14	UB/UINF VB/UINF WC/UINF CP CPT
0.0	.93 21 42 .05	1.18 28 17 26	1.08 21 .00 24	.97 0H .06 21	1.06 02 .11 21	1.04 .13 .10 27 17	1.00 .14 .12 21	1.05 .23 01 29	1.09 .30 11 33	1.15 .31 20 33	1.12 .33 25 21	1.09 .35 29 20	.99 .31 36 04	1.02 .24 36 13	1.01 .24 40 09	.15	
5	22 44 05	1.06 33 20 19	1.12 21 .10 43	1.01 12 .23 25	1.04 02 .23 32	1.04 .14 .17 35	1.01 .20 .11 36	1.15 .32 .03	1.06 .36 14 35 07	1.19 .31 19 43	1.11 .31 28 35	1.07 .31 32 22	1.13 .31 36 26	1.03 .23 41 20	.97 .25 42 10	.13	
-1.0	.96 20 49 05	1.07 29 23 42 14	1.05 26 .26 40 15	1.09 06 .27 48 22	1.03 01 .35 43	.96 .16 .28 22	.9H .23 .19 42 36	1.05 .29 .12 42	1.10 .32 .03 46	1.12 .33 22 53	1.18 .31 28 48	1.10 .33 37 30 .17	1.06 .30 39 25	1.09 .25 41 32	.98 .24 50 07	.14	UH/UINF VH/UINF WB/UINF CP CPT
-1.5	.93 19 56 08 .15	1.16 30 22 55 06	1.05 21 .22 46 27	.87 17 .45 24 25	1.08 01 .43 49 13	.98 .14 .38 41	1.04 .15 .3H 46	1.11 .28 .14 60 27	1.21 .2A 04 80 24	1.12 .34 29 58 13	1.21 .27 24 57	1.16 .30 49 45	1.08 .27 47 35	1.0A .22 51 26 .23	.47 .20 52 19	.14	

TABLE C3.- Continued

X/D = 14.00 P = H.03 GINF = 39.3 M/SEC Z/D = 15.30 PHI = 20.0 DEG

ZH/0	51	01	.49	.94	1.49	1.98	2.48	2.98	3.48	3.98	4,48	
	1.01	1.08	1.06	.48	1.05	.99	. 47	.97	.95	.94	.94	UB/UINF
	09	00	.06	.10	.14	.14	.18	.19	.20	.20	.21	VA/UINF
1.5	12	11	12	12	16	18	21	22	26	30	31	WB/UINF
	OF	21	16	11	19	15	10	12	OR	05	07	CP
	04	03	03	12	05	12	07	09	07	03	05	CPT
	1.06	1.10	1.10	1.03	1.05	1.04	.99	.97	.97	.94	.96	UB/UINF
	05	00	.07	.10	.15	.15	.20	.20	.21	.24	.19	VA/UINF
1.0	08	05	10	07	07	12	18	24	23	30	30	WH/UINF
	18	21	17	13	21	19	15	13	13	08	10	CP
	04	.00	.06	05	08	08	09	04	07	05	04	CPT
	1.16	1.12	1.16	1.0=	1.09	1.07	1.07	1.03	1.06	.98	.97	UB/UINF
	06	02	.07	.1.	.17	.22	.22	.28	.23	.25	.22	VH/UINF
. 5	05	01	04	04	07	13	15	22	25	30	31	W9/UINF
	32	25	24	24	22	24	27	14	52	10	14	CP
	.05	.02	.06	10	.01	03	05	.05	.03	.01	00	CPT
	1.10	1.00	1.08	1.08	1.00	1.13	1.13	1.13	1.05	.95	.95	UH/UINF
	10	04	.06	.16	.20	. 22	.26	.25	.27	.27	.26	V8/UINF
0.0	.04	.02	.02	.04	02	04	15	19	2.	28	35	WA/UINF
	34	24	18	27	34	34	32	35	19	13	13	CP
	11	12	01	07	12	.00	.05	.03	.05	08	03	CPT
	1.05	1.03	1.00	1.04	1.07	1.11	1.06	1.11	1.03	1.06	1.03	UH/UINF
	15	04	.12	.15	.21	.27	.28	.25	.30	.26	.26	VB/UINF
5	.02	.07	.10	.05	02	03	10	20	26	30	34	WH/UINF
	3h	34	30	33	33	32	36	31	28	28	26	CP
	23	2H	26	27	13	01	15	.04	07	.01	01	CPT
1	1.02	1.03	1.00	1.08	1.04	1.07	1.25	1.09	1.09	1.11	. 98	UB/UINF
	13	04	.11	.20	.20	. 34	.28	. 34	.32	.30	.28	VA/UINF
-1.0	.19	.25	.17	.09	.07	00	09	27	33	37	40	WH/UINF
	-,45	37	37	52	39	65	62	39	36	40	19	CP
	35	23	33	29	25	18	.03	.00	.04	.02	.03	CPT
	1.06	.94	1.00	.44	1.07	1.20	1.13	1.08	1.09	1.08	1.08	UB/UINF
	15	02	.10	.24	.29	.32	. 34	.39	.37	.30	.26	VB/UINF
-1.5	.30	. 30	.33	.24	.10	.05	12	23	35	36	42	WA/UINF
	51	45	33	75	53	56	53	43	38	42	42	CP
	27	37	21	34	28	02	12	05	. 0 A	03	00	CPT

TABLE C3.- Continued

A/D = 15.1A R = 8.03 UINF = 39.3 M/SFC PH1 = 20.0 DEG

28/0	49	0.00	.51	.99	1.48	1.98	2.48	2.45	3,45	3.94	٠.٠٠	
	1.24	1.02	.93	1.05	1.14	1.12	1.18	1.18	1.15	1.10	1.03	UB/UIN
	14	00	01	.53	.30	. 35	.40	.39	.33	.30	.26	
1.5	.34	.45	.43	.41	.21	07	22	24	40	44	47	
	64	54	51	48	66	71	71	71	55	54	37	
	17	30	45	16	77	32	11	10	.04	03	02	
	1.00	1.02	1.03	.97	1.07	1.23	1.20	1.23	1.19	1.23	1.10	UB/UIN
	04	.02	.12	.15	.26	. 26	.22	.31	.27	.27	.26	
1.0	.48	.56	.54	.45	.37	.01	17	30	0	47	51	WB/UIN
	63	53	61	55	67	84	- 84	77	68	65	44	
	39	18	24	38	32	26	31	06	03	.17	.10	CP
	1.00	.91	1.04	1.13	1.23	1.38	1.22	1.25	1.27	1.30		
	07	07	.09	00	.20	-18	.24	.26	.20	.17		UBZUINE
.5	.54	.60	.59	.45	. 36	.08	09	39	37		.20	VH/UIL
	67	54	00	75	87	-1.07	81	70	97	46	57	MR\nIN
	37	34	16	25	16	11	25	.09	17	62	49	CPT
	1.04	1.07	1.14	1.16	1.21	1.39	1.43	1 17				
	.05	02	.03	01	.12	.13	.09	1.17	1.18	1.22	1.11	
0.0	.56	.64	.59	.55	-25	.04	12		.14	•11	.10	
	66	64	• . 7	70	88	- 48		42	43	52	56	
	24	08	08	05	34	01	-1.05	68	79	72	45	CPT
	1.16	1.02	1.13	1.12	1.27	1.49	1.34	1 40	1 20			
	.04	-12	04	-02	02	.01	.04	.02	1.29	1.25		UR/UINF
5	.51	.60	.56	54	.31	.03	15		.06	.05	.07	VB/UINF
	77	54	71	81	76	-1.23		40	52	53		WE/UINF
	16	18	11	25	05	01	-1.05	88	69	77	.03	CP
	1.02	.99	1.09	1.0#	1.28	1.37	1.47	1.39				
	.19	02	03	13	13	12	04	07	1.17	1.14		UB/UINF
1.0	.47	-56	.55	.52	.28	.02	21		02	03		VB/UINF
	51	43	54	45	87	84	-1.11	38	51	56		WA/UINF
	19	13	04	00	11	.07	.11	78	6H	.19	58	CP
	1.06	.98	1.10	1.12	1.26	1.31	1.34	1.32	1.33	1 10	1 10	
	.15	.01	07	12	17	17	10	16		1.19		UB/UINF
1.5	.45	.50	. 47	.47	.24	0.6	16	30	04	05		VH/UINF
	46	39	47	- 52	81	63	73	74	44	53		WH/UINF
	09	16	03	05	11	-13	.13	-	81	61	54	CP
						* 1 6	• 1 3	.14	.17	.10	.00	CPT

TABLE C3.- Continued

X/D = 3 Z/D = 1	-		W = A				4.9 DEG		
Y8/D Z8/D	49	0.00	.50	.99	1.47	1.97	2.46	2.94	
	1.03	1.07	1.07	1.04	1.06	1.00	1.05	1.01	UHZUIA
	07	05	.00	•11	.16	.16	.21	.26	VH/UIN
1.5	.04	.09	.09	.06	.03	.01	04	16	wn/UIN
	17	25	20	21	27	14	27	13	CF
	09	10	05	12	12	10	12	01	LP1
	1.07	1.05	1.01	1.10	1.00	1.03	1.05	1.00	UNZUIN
	03	02	.05	.07	-12	.14	15.	.20	VIVUIN
1.0	.13	.1.	.1.	.07	.07	.03	05	57	WH/UIN
	23	20	16	32	22	25	26	2 1	CP
	05	09	12	09	07	16	10	00	
	1.04	1.03	1.01	.99	1.07	1.06	1.11	1.05	UMZUIN
	12	03	.04	.00	.15	.17	.10	.23	Vn/UIN
.5	.19	.10	.19	.20	.10	.00	02	08	wn/bin
	14	19	20	18	25	19	36	29	CP
	01	10	13	14	06	02	09	14	CPT
	1.05	1.05	1.08	1.10	1.12	1.10	1.10	1.07	UHZUIN
	07	02	.02	.09	-10	.15	. 15	.23	VEZUIN
0.0	.15	.29	.20	.19	.16	.13	.03	13	#H/UIN
1	24	22	31	31	37	35	46	29	CP
- 1	11	03	11	05	08	10	09	00	CPT
- 1	1.02	1.06	1.05	1.05	1.09	1.07	1.02	1.03	UNZUIN
	07	62	.03	.06	.10	.15	-12	.17	Vr/UIN
5	.26	.32	.27	.22	.13	.05	.00	02	wn/ulni
	17	22	26	24	21	30	27	32	CP
	06	.01	06	06	.00	12	21	23	CFT
	1.02	1.04	1.11	1.06	1.01	1.08	1.11	1.11	UNZUIN
- 1	04	01	.01	.05	.09	.08	.15	.07	Vn/Ultd
1.0	.26	.29	.33	.28	.17	.03	.08	02	Wh/UIM
	21	20	33	28	25	21	33	39	CP
- 1	10	03	.03	07	19	04	06	15	CPT
	1.05	1.05	1.05	1.02	1.09	1.12	1.15	1.11	UDZUINE
	01	.01	.07	05	04	.04	.07	.07	V=/UIN
1.5	.30	.31	.27	.27	.17	.15	.06	07	wa/ultif
- 1	21	22	20	20	30	41	38	37	CP
- 1	.00	02	02	07	06	13	05	12	CPT

TABLE C3.- Continued

X/0 = 4 Z/0 =			B = 8	.03		DHI = 10		D = 14			9 = 9	.06		INF = 19	0.0 DE	
28/0	-1.01	51	00	.50	1.01		28.	16\D	51	01	.49	.99	1.49	1.48	2.48	
	1.04	1.01	1.06	1.02		UB/UINF			.93	.96	1.03	1.14	1.12	.93	.95	UB/UINF
1.5	.09	.11	.12	.07	.06		1.	.5	05	18	19	14	-11	22	25	WH/UINF
	15	14	18	10	18	CP	1 .	.	12	07	07	24	20	02	04	CP
1	05	10	04	06	04	CPT			23	11	.04	.09	.06	09	04	CPT
	1.01	.99	.98	1.10		UB/UINF			1.08	1.11	1.08	1.06	1.08	1.07	1.03	UBZUINF
	08	08	01	.03	.06	VB/UINF			.05	.04	.11	.10	.04	.18		VB/UINF
1.0	07	.19	.13	.22	•13	WB/UINF	1.1	.0	11	06	08	11	07	11	16	WB/UINF
1	03	11	16	04	26	CP CPT	1		19	22	12	17	20	21	09	CP
					• 00	CPI	1	1	02	.01	. 06	.00	02	03	.03	CPT
	.98	.99	.99	1.00	.90	UB/UINF	1	- 1	1.03	1.07	1.12	1.21	1.14	1.05	1.06	UB/UINF
	10	09	01	-01	.10	VB/UINF	- 1		11	.01	.04	+11	.17	.19	.18	VH/UINF
.5	09	.10	.22	.23	.21	WB/UINF	1 .	.5	OH	05	13	10	08	08	15	WH/UINF
	09	13	15	11	12	CP		- 1	24	23	27	27	28	20	27	CP
	04	10	16	05	11	CPT			15	0e	.01	. 21	.06	05	10	CPT
i l	1.05	.98	1.04	1.03	.99	UBZUINE	- 1	- 1	1.09	1.15	1.17	1.15	1.10	1.15	1.03	UB/UINF
	08	05	03	.05	.02	VH/UINF			04	00	.05	.12	.12	.23	.21	VH/UINF
0.0	.24	.27	.28	.20	.71	WH/UINF	0.	.0	.02	03	06	.05	03	07	16	WH/UINF
	17	12	15	21	17	CP	1		36	32	23	40	26	31	23	CP
	.01	04	.01	09	13	CPT		- 1	17	00	.15	03	-,04	. D.H	10	CPT
1 1	1.01	1.06	1.05	1.0A	1.02	UB/UINF	1	- 1	1.09	. 95	1.00	.94	1.05	1.13	1.06	UH/UINF
	10	04	02	01		Ve/UINF	1	_ 1	07	00	.04	.14	.19	.23	.27	VB/UINF
*.5	.26	.26	45.	.27	.26	#8/UINF	1	.5	.07	.00	.00	. O.M	205	00	17	WH/UINF
1 1	14	19	18	21	12	CP	1	- 1	41	29	04	31	29	33	21	CP
	03	.00	.00	.05	01	CPT	- 1		20	36	.10	31	14	00	.02	CPT
	1.00	1.00	1.02	1.00		UH/UINF	1		1.00	1.01	1.06	1.09	1.06	1.10		UB/UINF
	09	04	.01	• 0 5	.05	VH/(ITNF			07	.03	.07	* 1 th	.24	.14	.24	
-1.0	.29	.30	.29	.29	.25	##/UINF	-1.	.0	.18	•11	.05	.01	10	.05	17	
1 1	15	07	18	11	12	CPT	- 1	- 1	33	10	32	36	34	1	40	CP
	* . 0 7		04	01	09	(1)	1		29	30	19	15	15	20	15	CPT
	1.00	1.04	1.04	1.10	1.04	UB/UINF			1.09	.00	.77	1.11	.99	.99	1.21	UB/UINF
	.91	01	03	05	07	VH/UINF			10	14	.13	.1"	.27	. 24		VH/UINF
-1.5	.55	.26	.21	.30	.23	WB/IINF	-1.	.5	.10	. 27	.19	.14	* n 7	.00	16	WH/UINF
1 1	55	18	13	19	17	CP		1	44	19	19	46	-,44	-, 35	44	CP
	16	02	.03	•11	03	CPT			22	46	•.55	15	19	31	.16	CPT

TABLE C3.- Continued

(d) R = 8. Concluded.

1.5			•			
1.5	0.2	76 1	2.	1.52 1.77	2.03 2.53	
1.5	79	50 3		1.81 1.28	.77 .51	UB/UINF
-8.32 -9.58 -8.67 -7.07 -7.17 -4.10 -3.73 -1.8791 13.98 16.28 13.44 8.21 3.2976 -2.126030 (3.24	89	65		1.02 .79	.80 .39	VE/UINF
13.98 16.28 13.44 8.21 3.29 76 -2.12 60 30 (2.62 3.00 4.29 3.67 3.79 2.95 1.81 1.24 .58 .59 .74 .67 1.09 .96 .71 .29 .75 .76 .76 .54 .33 31 73 -1.21 .75 .66 -6.38 -7.12 -7.32 -6.10 -4.52 -4.06 -1.57 .62 2.47 10.49 8.37 7.46 3.06 -1.15 -2.48 68 .68 .76 .77 .76 .76 .76 .76 .76 .76 .76 .76 .76 .76 .76 .77 .76 .76 .76 .76 .77 .76 .76 .76 .76 .77 .76 .76 .76 .77 .76 .76 .77 .76 .76 .77 .76 .76 .77 .76 .76 .77 .76 .77 .76 .77 .76 .77 .76 .77 .76 .77 .76 .77 .76 .77 .77 .77 .77 .77 .78 .77 .78 .77 .78 .77 .78 .78 .77 .78 .78 .77 .78 .78 .77 .78 .78 .77 .78	P7	32	-1.	1858	-1.02 -1.09	BB/UINF
1.0	07	67 -7	-1.	-4.10 -3.73	-1.8791	CP
1.0	21	44 6		76 -2.12	6030	CPT
1.0	e 7	29 3	1.	2.95 1.81	1.24 .58	UB/UINF
-6.17 -6.46 -8.38 -7.12 -7.32 -6.10 -4.52 -4.06 -1.57 .42 2.47 10.49 8.37 7.46 3.06 -1.15 -2.48 -68 (6) .42 2.47 10.49 8.37 7.46 3.06 -1.15 -2.48 -68 (6) .42 2.47 10.49 8.37 7.46 3.06 -1.15 -2.48 -68 (6) .42 2.47 10.49 8.37 7.46 3.06 -1.15 -2.48 -68 (6) .42 2.47 10.49 8.37 7.46 3.06 -1.15 -2.48 -68 (7) .42 2.48 -6.81 .94 .72 .36 88 .78 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	74	59		1.09 .98	.71 .29	VH/UINF
-6.17 -6.46 -8.38 -7.12 -7.32 -6.10 -4.52 -4.06 -1.57 .42 2.47 10.49 8.37 7.46 3.06 -1.15 -2.48 -68 (6) .42 2.47 10.49 8.37 7.46 3.06 -1.15 -2.48 -68 (6) .42 2.47 10.49 8.37 7.46 3.06 -1.15 -2.48 -68 (6) .42 2.47 10.49 8.37 7.46 3.06 -1.15 -2.48 -68 (6) .42 2.47 10.49 8.37 7.46 3.06 -1.15 -2.48 -68 (7) .42 2.48 -6.81 .94 .72 .36 88 .78 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	76	78		.3331	73 -1.21	WE/UINF
1.37 1.71 2.87 3.37 3.23 3.23 2.15 1.69 .91 UH. 11 .34 .31 .51 .68 .81 .94 .72 .36 VB. 1.08 1.04 .57 .27 .01 -11 -63 -1.12 -1.46 wB. -4.50 -4.91 -6.76 -7.08 -6.58 -6.42 -4.70 -4.16 -1.92 .60 .20 .20 .20 .20 .20 .20 .20 .20 .20 .2		38 -7	-4.	-6.10 -4.52	-4.06 -1.57	CP
-11	31	49 8	-2.	3.06 -1.15	-2.4868	CPT
-11	37	87	1.	3.23 2.15	1.69 .91	UH/UINF
1.08 1.04 .57 .27 .01 -1163 -1.12 -1.46 we had a second and a secon						
-4.50 -4.91 -6.76 -7.08 -6.56 -6.22 -4.70 -4.16 -1.92 -2.44 -1.76 1.01 3.77 3.50 3.87 .2550 .17 (.97 2.03 2.07 2.77 2.82 3.01 2.73 1.88 1.08 UH/ -33 -45 -37 -26 .15 .15 .35 .09 .08 UH/ -349 -6.06 -6.08 -5.75 -6.27 -7.05 -6.80 -4.79 -2.88 -1.08 -1.55 -2.27 1.10 .94 1.35 .14 -1.25 -1.23 (.77 1.32 1.81 2.17 2.08 2.10 2.25 1.37 .87 UH/ -4.596 -1.14875846453355 VH/ -1.59 -3.56 -3.76 -5.82 -5.22 -5.11 -5.08 -3.27 -1.80 (.0394 .45 -1.34 -1.4188 .038523 (.87 .86 1.11 1.39 1.45 1.49 1.29 .98 .76 UH/ -0.07 -7482878791858462 VH/ -1.2360 -1.14 -2.11 -2.32 -2.29 -2.36 -1.52 -1.07 (.94 .13 .143937 .135300 .24 (.55 .85 .77 .84 .99 .96 1.01 .88 .78 VH/ -003755666469686672 VH/ -003755666469686672 VH/ -003755666469686672 VH/		-				
-2,44 -1.76 1.01 3.77 3.50 3.87 .2550 .17 (.97 2.03 2.07 2.77 2.82 3.01 2.73 1.88 1.08 1.08 1.08 1.535556575657565958 1.5758 1.5758 1.5758 1.5758 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1						
0.0						
0.0	71	07 7	1.	3.01 2.73	1.68 1.08	UH/UINF
0.0						
-3,49 -6.06 -6.08 -5.75 -6.27 -7.05 -6.80 -4.79 -2.88 (-1.08 -1.55 -2.27 1.10 .94 1.35 .14 -1.25 -1.23 (.77 1.32 1.81 2.17 2.08 2.10 2.25 1.37 .87 UB4596 -1.14875846453355 VB1.59 -3.56 -3.76 -5.82 -5.22 -5.11 -5.08 -3.27 -1.80 (.0394 .45 -1.34 -1.4188 .038523 (.87 .86 1.11 1.39 1.45 1.49 1.29 .98 .76 UB077482878791858462 VB1.2360 -1.14 -2.11 -2.32 -2.29 -2.36 -1.52 -1.07 (94 .13 .143937 .135300 .24 (.55 .85 .77 .84 .99 .96 1.01 .88 .78 VB003755666469686672 VB.						
-1.08 -1.55 -2.27 1.10 .94 1.35 .14 -1.25 -1.23 (.77 1.32 1.81 2.17 2.08 2.10 2.25 1.37 .87 UB4596 -1.14875846453355 VB5 1.34 .97 .78 .04327489 -1.19 -1.22 WB1.59 -3.56 -3.76 -5.82 -5.22 -5.11 -5.08 -3.27 -1.80 (.0394 .45 -1.34 -1.4188 .038523 (.87 .86 1.11 1.39 1.45 1.49 1.29 .98 .76 UB077482878791858462 VB1.2360 -1.14 -2.11 -2.32 -2.29 -2.36 -1.52 -1.07 (.94 .13 .143937 .135300 .24 (.55 .85 .77 .84 .99 .96 1.01 .88 .78 VB003755666469686672 VB.			-			
5						
5	17	A1 :	1.	2.10 2.25	1.37 .87	UNZUINE
5						
-1.59 -3.56 -3.76 -5.92 -5.22 -5.11 -5.08 -3.27 -1.80 (0.01						
-1.094 .45 -1.34 -1.4188 .038523 (.87 .86 1.11 1.39 1.45 1.49 1.29 .98 .76 UB. 077482878791858462 VB. -1.0 .73 .66 .61 .0827616692 -1.16 WB. -1.2360 -1.14 -2.11 -2.32 -2.29 -2.36 -1.52 -1.07 .94 .13 .143937 .135300 .24 (.55 .85 .77 .84 .99 .96 1.01 .88 .78 UB. .003755666469686672 VB.						
-1.07482878791858462 VB/ -1.0 .73 .66 .61 .0827616692 -1.16 .86 .1.2360 -1.14 -2.11 -2.32 -2.29 -2.36 -1.52 -1.0794 .13 .143937 .135300 .24						
-1.07482878791858462 VB/ -1.0 .73 .66 .61 .0827616692 -1.16 .86 .1.2360 -1.14 -2.11 -2.32 -2.29 -2.36 -1.52 -1.0794 .13 .143937 .135300 .24	35	11		1.49 1.29	.98 .76	UH/UINF
-1.0						
-1.2360 -1.14 -2.11 -2.32 -2.29 -2.36 -1.52 -1.07 (94 .13 .143937 .135300 .24 (.55 .85 .77 .84 .99 .96 1.01 .88 .78 UB, .003755666469686672 VB,						
94 .13 .143937 .135300 .24 (
.003755666469686672 Ve.						
.003755666469686672 Ve.	R4	77		.96 1.01	.88 .78	UB/UINF
				5163	7780	
	-		_			

TABLE C3.- Continued

(e) R = 10.

x/D = Z/D =	7.70		0 = 1(0.06			24.6 M/1			
28/0	0.00	.50	.76	1.02	1.27	1.52	1.77	2.03	2.53	
	2.52	1.73	1.35	1.16	.84	.57	.38	.48	.39	UB/UINF
1.5	-11	.61	.71	.76	.77	.77	.50	.56	.48	
. * 2	.90	.88	.36	.29	11	58	91	70	86	
	-2.86	-1.55	-5.05	-1.50	-1.39	62	11	60	01	
	3.39	1.93	55	62	-1.09	36	.10	56	-11	
	3.56	3.30	3.08	2.67	1.63	1.31	.08	.76		
	.12	.59	.71	.83	1.04	.95	1.11		.57	
1.0	1.17	.96	.86	.41	.23	21		.66	.33	
	-3.A2	-3.80	-3.21	-3.63	-2.75	-2.22	-, 39	5A	92	
	9.50	7.54	6.70	3.47	.78		-1.29	-1.88	92	
					• 10	56	13	-1.52	63	CPT
	3.35	3.49	3.68	3.59	7.98	2.50	1.78			
	-10	.45	6.0	0.7		£ . 90		1.13	. 94	UR/UINF

.87

. 44

-5.75

7.40

3.50

. 75

.39

-5.5H

6.64

2.60

.70

.17

-4.9R

1.34

2.52

.08

.13

. 94

2.10

-.43

. 34

-4.19

-.45

-4.49

.PR

.3A

-4.78

4.15

3.11

.78

.30

-4.92

4.63

7.90

.58

.02

-5.42

2.43

1.91

.32

-.02

-3.95

-1.17

2.57

-.34

-.36

.53

-5.30

1.06

-3.33

3.13

2.97

.98

.10

-5.15

3.75

2.89

.70

-.29

-5.50

2.46

2.54

. 32

-.43

.60

1.92

-.00

-.60

-4.23

-1.16 -1.01

-5.20

.12

.68

.70

-5.58

6.19

2.76

.63

.46

-4.69

2.84

2.25

.50

.57

.39

2.24

-.24

.31

-4.50

-.30

2.03

-.71

.50

-4.12

-.21

-4.20

.10

. 64

-4.66

6.45

1.90

.21

.70

-3.54

-.36

1.51

-.13

.99

-3.28

-. 49

1.36

-.07

1.20

-3.27

-.96

1.10

-.30

1.19

-2.17

-.43

.5

0.0

-.5

-1.0

-1.5

.45

. 88

-3.97

8.41

2.63

.54

.50

-4.53

1.97

1.49

.33

.90

-3.49

-1.31

1.53

-.40

.97

-3.77

-1.30

1.38

-.92

. 66

-7.50

-.30

.50

-.92

-2.37

-1.38

-2.51

-3.54

-1.43

-.02

-1.26

-3.01

-1.51

-2.36

-.13

-.44 -1.12

. 81

-.11

-3.83

-.96

1.97

.92

-.03

-.06

1.77

1.32

-.31

-3.23

.77

2.38

.56

-.67

-4,35

1.11

1.78

-.19

-.86

-3,9E

-3.82

.83

-.53

-2.79

-1.54

2.01

.71

..62

-4.39

2.37

.69

-.50

.36

-5.04

1.06

-1.05

-3.45

-.12

1.10

.27

-1.46

-1.92

.69

.60

VH/UINF

we/UINF

CP

CHT

.94 UR/UINF

.46 VH/UINF

CP

CPT

CP

CPT

VH/UINF

WE/UINF

CFT

CP

CP

CPT

-1.13 WH/UINF

1.25 UR/UINF

.33 V8/UINF

. 74 UH/UIM

1.09 UH/UINF

-. 06 VB/UINF

-1.42 .W8/UINF

-1.20 w# / Link

TABLE C3.- Continued

(e) R = 10. Continued.

136

X/D =	2.03 6.00		R = 10	.01	-	INF = 3 HI = 5	1.9 DEG			
Z8/0	0.00	.51	.75	1.01	1.76	1.52	1.77	2.01	2.52	
	4.58	4.52	4.39	3.97	2.82	2.03	.94	.94	.55	UB/UINF
	.12	.48	.67	.87	.90	.90	. 95	.69	.32	VH/UINF
1.5	1.30	1.29	1.21	.84	.40	18	75	83	-1.06	WH/UINF
	-8.84	-8.08	-7.40	-7.34	-5.32	-4.69	-2.25	-2.55	-1.28	CH
	14.07	14.37	13.79	9.56	2.80	68	90	-1.48	73	CPT
1	2.30	3.60	3.54	3.82	3.61	3.15	2.24	1.48	.61	UE/UINF
	.11	.36	.52	.84	.91	.91	.78	.79	.48	VB/UINF
1.0	.76	.70	.75	.59	.34	.22	27	74	-1.26	WH/UINF
	-5.53	-7.06	-7.28	-6.63	-6.63	-5.82	-5.51	-3.91	-1.25	CF
	58	5.97	5.49	8.55	6.76	4.22	75	-1.53	05	CPT
İ	1.03	1.93	2.28	3.25	3.32	3.06	2.59	1.99	1.05	UB/UINF
1	25	.15	.40	.53	.59	.72	.58	.46	.19	VR/UINF
.5	1.33	.87	.65	.22	.09	23	60	81	-1.17	WH/UINF
1	-3.52	-5.53	-6.07	-6.26	-6.96	-6.06	-6.21	-4.98	-3.00	CP
1	-1.60	-1.97	-1.21	3.87	7.6A	3.08	.32	-1.10	-1.49	CPT
	.82	1.87	2.38	2.72	3.16	2.87	2.47	1.91	.99	UB/UINF
1	31	48	28	15	.24	.32	.22	.27	.10	VB/UINF
0.0	1.63	1.27	.76	.39	25	45	75	-1.03	-1.36	NH/UINF
1	-3.30	-5.31	-5.40	-6.26	-6.27	-6.11	-6.14	-4.90	-2.55	CP
	85	91	.04	.46	3.07	1.60	33	-1.07	70	CHT
	.76	1.36	2.03	2.41	2.42	2.21	1.72	1.48	.96	UH/UINF
1	24	74	-1.01	A2	61	36	23	27	37	VHZUINE
5	1.45	1.22	.66	.25	25	60	-1.01	-1.12	-1.26	WH/UINF
	-2.09	-3.25	-4.36	-5.12	-4.96	-5.22	-4.46	-3.86	-5.56	CP
	32	32	.29	.53	.41	TA	-1.38	-1.30	59	CPT
	.67	.84	1.24	1.29	1.47	1.50	1.48	.97	.79	UB/UINF
	.09	76	90	95	89	85	61	63	58	VH/UINF
-1.0	.94	.81	.53	.38	26	55	75	-1.10	-1.10	BH/UINF
	87	76	-1.51	-1.91	-2.74	-2.91	-3.14	-1.98	-1.44	CP
	53	.18	.11	19	70	61	-1.00	41	28	CPT
	.87	.82	.90	.94	.87	.99	.87	.93	.82	UB/UINF
	.09	43	52	70	7A	86	71	68	57	VHZUINF
-1.5	.40	.24	.21	. 0 A	24	45	72	73	91	WB/UINF
	47	25	31	34	56	81	76	-1.00	85	CP
l l	55	34	18	.04	14	.13	.03	12	02	CPT

TABLE C3.- Continued

(e) R = 10. Continued.

X/D = Z/D =	2.01 7.75		R = 1	10.04	UINF PHI	= 30.8 = 51.9	X/D = 2/0 =	6.00		P = 1	0.02			30.8 M/SE 34.8 DEG
ZB/0	0.00	•51	.75	5			ZH/0	.00	•50	.98	1.49	1.98	2.47	
1.5	2.97 .17 .93 -3.27 5.63	2.35 .57 .68 -2.50 2.90	.73				1.5	1.19 .09 .73 -1.28 32	1.54 .32 .49 -1.86 13	1.51 .33 .50 -1.55	2.00 .58 .21 -2.11 1.33	2.05 .61 15 -2.04	.70	WH/UINF CP
1.0	3.61 .04 .99 -4.04 9.39	3.38 .58 .86 -3.62 8.23	.71	WB/UINF CP			1.0	1.22 05 .84 -1.76 56	1.19 .23 .89 -1.57	1.81 .30 .46 -2.26	2.10 .55 .12 -2.67	1.94 .64 12 -2.09	1.91 .57 43 -2.18	UB/UINF VB/UINF WB/UINF CP
.5	2.64 06 .65 -3.72 2.80	3.56 .48 .61 -5.10 7.55	.73	UB/UINF VB/UINF WB/UINF CP CPT			.5	1.05 12 1.05 -1.60 36	1.19 02 .86 -1.84 69	1.73 .14 .52 -2.43	2.04 .33 .19 -2.50	2.15 .36 17 -2.50	1.67 .50 56 -1.97	UB/UINF VB/UINF
0.0	1.67 .01 .75 -3.29	2.21 .39 .54 -4.03	.59	UB/UINF VB/UINF WB/UINF CP CPT			0.0	1.03 11 1.07 -1.60 36	1.17 32 .93 -1.56 22	1.85 14 .46 -2.73	2.04 .06 .20 -2.72	2.08 .23 27 -2.96		UH/UINF VB/UINF WH/UINF CP CPT
5	1.19 09 1.25 -2.94 94	2.01 .12 .82 -4.05	.38	UB/UINF VB/UINF WB/UINF CP CPT			5	.99 25 .97 -1.42 43	1.25 26 .75 -2.02	1.46 43 .47 -2.40	1.72 15 .17 -2.58	1.86 .09 34 -2.71	1.74	UB/UINF VB/UINF WB/UINF CP CPT
-1.0	1.02 27 1.33 -2.46 56	2.17 13 .85 -4.51	12	UB/UINF VB/UINF WB/UINF CP CPT			-1.0	.96 08 .87 86 18	1.19 39 .61 -1.36 41	1.28 54 .53 -1.67	1.43 53 .08 -1.96 63	1.63 45 12 -2.69 79	1.54	UHZUINF VHZUINF WHZUINF CP CPT
-1.5	1.10 .06 1.22 -2.33	1.64 67 .80 -3.17 37	50	UBZUINF VBZUINF WBZUINF CP CPT			-1.5	.94 .00 .61 62 35	1.04 26 .49 75 35	1.06 58 .35 82	1.29 61 .06 -1.47 43	1.40 57 30 -1.71	50	UH/UINF VH/UINF WH/UINF CP CPT

TABLE C3.- Concluded

(e) R = 10. Concluded.

X/D =	1.75		R = 3	.98	_	INF = 3	9.6 M/S .8 DEG			
28/D	-2.52	-1.02	50	0.00	.52	1.01	1.52	2.02	2.53	
1.5	1.06 .06 24 18	.82 .12 .28 78	.37 .19 .54 62 -1.16	.30 .13 .62 76 -1.27	.35 13 .59 65 -1.16	.60 06 .18 96 -1.57	1.10 02 .09 86 63	1.22 .06 05 64	1.08 .02 26 27	VB/UINF WB/UINF CP
1.0	1.07 .15 20 24	.93 .24 .33 87	.56 .22 .54 90	.30 .09 .72 61	-10 -48 -1.00 -1.51	.75 22 .39 83 -1.06	1.04 14 .06 82 71	1.11 09 11 59 33	1.11 11 23 28	VB/UINF WB/UINF CF
.5	1.05 .21 16 19 01	.95 .37 .33 54	.74 .20 .46 81	.40 .07 .65 58	.63 15 .51 87 -1.19	.88 29 .31 71 75	1.01 31 .03 59	1.13 24 15 42 06	1.09 20 19 24	VA/UINF WB/UINF CP
0.0	1.05 .23 09 17 01	.90 .43 .23 31	.75 .36 .39 48	.41 .05 .61 49	62 33 .49 48 74	.90 31 .29 35 36	1.05 35 .03 36	1.06 29 11 22	1.09 23 12 22	#A/UINF
•.5	1.00 .22 05 06 01	.96 .32 .16 20	.64 .26 .27 46 91	.55 .01 .37 55	.75 16 .22 55 92	.89 28 .18 20 29	1.01 35 .04 16	1.05 27 06 14	22	UB/UINF VB/UINF WB/UINF CP CPT
-1.0	1.03 .19 03 12 01	.95 .25 .04 21	.71 .16 .22 34 76	.41 .05 .09 57 -1.39	.90 11 .11 54 70	.93 -28 .05 -20	1.05 25 .04 15	24 02 07	1.00 20 00 06	UB/UINF VB/UINF WB/UINF CP CPT
-1.5	.97 .20 01 03	.91 .20 04 26 38	.65 .16 04 47 -1.02	.39 .07 .07 55 -1.39	.79 15 12 46 79	.91 17 .01 23 37	22 00 13 19	1.01 19 .05 16	16	UBZUINF VBZUINF WBZUINF CP CPT

TABLE C4.- VERTICAL SECTION VELOCITIES AND PRESSURES

(a) R = 4.

X/0	=	6.00
2/0	=	1.75

ZH/0	-1.13	62	10	••1	.93	
1.5	.78 .19 .28 29	.61 .25 .46 23	.61 .06 .44 54	.68 02 .45 57 90	.71 10 .35 47 83	UHZUINF VHZUINF WHZUINF CP CPT
1.0	1.09 .21 .20 44 15	.84 .22 .34 45	.63 .17 .45 44	64 01 31 56 -1.06	.77 17 .37 39	UH/UINF VH/UINF WH/UINF CP CPT
.5	.94 .25 .19 23	.85 .27 .29 36	.64 .09 .33 50	.71 12 .28 45	.91 20 .25 39	UBZUINF VBZUINF WBZUINF CP CPT
0.0	.95 .25 .14 18	.91 .17 .24 27 36	.56 .04 .29 39	63 09 -14 43	.93 13 .17 32	UR/UINF VH/UINF WH/UINF CP CPT
5	.91 .18 .07 14	.90 .15 .10 33	.66 .06 .10 45	12 -21 37 97	.97 15 .09 17 30	UB/UINF VB/UINF WB/UINF CP CPT
-1.0	.94 .16 .03 14	.94 .13 .01 33	.77 .03 .12 49	.79 07 .06 35 72	08 02 27 38	UB/UINF VB/UINF WB/UINF CP CPT
-1.5	.95 .11 03 17 25	.85 .11 .01 27 53	.73 .09 01 40 86	64 61 60 35 94	11 04 23 48	UB/UINF VB/UINF WB/UINF CP CPT

TABLE C4.- Continued

X/D = Z/D =	8.00		B = 3	.49		INF = 3 HI =	8.9 M/S .7 DEG					
Z8/0 Z8/0	-3.00	-2.50	-1.00	50	0.00	.50	1.00	1.50	2.00	2.50	3,00	
	.98	1.00	.98	.00	.71	.60	.80	.86	1.01	.98	.95	UB/UINF
	.14	.18	.20	.16	.07	11	14	16	10	11		VR/UINF
1.5	12	12	.22	.26	.31	. 35	.24	.16	.01	12		WH/UINF
	01	07	31	39	37	19	24	16	23	11	00	
	01	02	25	66	76	70	52	39	20	11	06	
	1.01	1.01	.91	.86	.71	.78	.85	.97	.99	1.02	1.01	UH/UINF
	•15	.16	.17	.15	.03	03	13	16	18	16		VR/UINF
1.0	09	07	.16	.15	.26	.20	.18	.14	.01	08		WH/UINF
	06	09	23	45	34	40	31	20	16	11	06	
	01	04	35	67	78	75	53	20	14	04	02	
	1.00	1.00	.95	.93	.77	.87	.81	1.01	1.01	.49	1.02	URZUINE
	•13	.17	.16	.12	.03	01	17	16	15	15		VH/UINF
.5	05	04	.06	.11	.11	.12	.16	.10	01	06		WH/UINF
	03	06	27	36	49	43	15	16	12	06	06	
	00	02	34	47	89	66	43	10	08	04	.01	
	1.00	.98	.99	.77	.75	.70	.81	.96	1.01	.98	1.00	URZUINE
	.14	.15	.12	.11	.05	04	07	10	14	13	10	VB/UINF
0.0	03	01	.04	.1A	.09	.17	.12	.06	.05	00	03	WH/UINF
	03	01	25	29	36	29	21	15	08	00	04	CP
	.00	01	28	64	80	77	53	21	04	02	02	CPT
- 1	1.00	1.00	.98	.78	.84	.85	.89	.96	.99	1.00	1.00	URZUINE
. 1	.11	.15	.13	.00	.05	.00	08	09	13	10		VE/UINF
5	01	01	.05	.06	.08	.06	.05	.01	.01	00		WH/UINF
- 1	02	04	19	28	34	27	20	10	06	04	01	CP
	00	02	21	66	62	54	39	17	06	01	01	CPT
	1.00	.99	. #0	.91	. 47	. 98	.86	.94	.99	1.00	.98	URZUINE
	.13	.14	.14	.06	.02	03	07	12	11	10		VEZUINE
-1.0	.00	00	01	-02	02	.00	07	04	.00	01		WB/UINE
	05	02	08	28	34	32	21	09	05	04	.00	CP
	.01	01	42	45	67	54	46	18	06	02	02	CPT
	.94	. 95	.40	.87	.76	.74	.83	.95	.91	1.00	.47	UBZUINE
	.09	.11	.11	.14	.02	01	05	05	06	05	05	VA/UINF
-1.5	.01	.00	04	03	04	04	03	02	02	00		WAZUINE
1	.05	04	19	30	31	26	17	14	04	05	03	CH
	0A	13	37	42	72	71	48	24	21	05	08	CPT

TABLE C4.- Continued

(a) R = 4. Concluded.

Z8/0		-2.52	-1.01	-,50	0.00	.51	1.01	1.50	2.02	2,53	3.54
	1.04	1.01	.78	.71	.51	.75	.72	.85	.92	1.00	1.05 UF/UINF
	.32	.41	. 34	.21	06	18	32	3H	38	35	27 Vb/UINF
1.5	01	.04	.35	.45	.49	.43	.39	.27	.16	.07	02 WH/UINF
	13	08	. 25	.19	.05	.04	.33	.20	.08	04	09 CF
	.05	.11	.10	05	44	18	.10	.14	.10	.10	.10 CPT
	1.04	1.03	.88	.75	.60	.74	.84	.91	1.01	1.05	1.08 UB/UINF
	.29	.34	.27	.18	.02	15	22	29	31	31	26 VH/UINF
1.0	.01	.09	.27	.34	0	.33	.29	.23	.14	.08	01 WH/((INF
	14	11	.10	.17	07	02	.17	.12	02	09	15 CP
	.04	.06	.08	12	56	35	.01	.09	.12	.12	.10 CPT
	1.64	1.03	.90	.87	.61	.81	.89	.94	1.00	1.03	1.06 UB/UINF
	.27	.32	.24	.12	.05	10	20	21	28	27	23 VE/UINF
.5	.02	.08	.20	.27	.33	.26	.25	.19	.14	.09	.03 WE/UINF
	12	07	.14	.07	01	05	.12	.11	.01	05	10 CP
	.04	.10	.05	07	52	32	.02	.10	•11	.10	.08 CFT
	1.04	1.00	.92	.70	.65	.#3	.96	. 45	1.01	1.04	1.05 UB/UINF
	.23	.28	.21	.20	.01	10	14	18	23	23	21 V6/UINF
0.0	.03	.07	.18	.22	. 25	.18	.16	.15	.12	.07	.02 08/UINF
	10	05	.10	.13	05	09	.06	.10	.04	05	11 CP
	.04	.05	.02	29	57	36	.02	.07	.13	.10	.04 CPT
	1.04	1.01	.92	.80	.69	.73	. 43	. 46	1.02	1.03	1.05 UH/UINF
	.22	.23	.19	.19	.02	10	14	16	20	21	19 VB/UINF
5	.02	.05	.12	.12	.12	.13	.09	.10	.09	.07	.03 .8/UINF
	10	03	.04	.04	09	07	.01	.06	.00	02	08 CP
	.03	.04	05	26	59	51	10	.05	.09	.09	.00 CPT
	1.03	1.04	.95	.88	.70	.00	.88	.97	1.00	1.01	1.04 UH/UINF
	.23	.23	.20	.14	.07	06	12	16	17	17	17 VE/UINF
1.0	.00	.04	.0.	.04	.02	.03	.03	.05	.06	.04	.01 WH/UINF
	09	07	03	09	07	12	01	.00	.00	01	06 CP
	.03	.06	08	2A	57	47	21	02	.04	.05	.05 CPT
	1.02	.98	.80	.71	.60	. 64	.81	.83	.98	1.01	1.02 U6/U1NF
	.20	.20	.10	.03	.06	08	10	11	14	15	18 VH/UINF
1.5	00	.01	02	07	06	06	03	.01	.01	.01	.01 .6/UINF
	06	.01	05	05	09	07	08	.00	03	03	04 CP
	.03	.02	39	54	71	65	41	29	05	.02	.03 CPT

TABLE C4.- Continued

(b) R = 8.

2/0 . 1.75 PHI = .7 DEG YB/D .93 -5.23 -2.66 -1.13 -.61 -.10 .43 1.45 1.97 2.48 3.00 3.51 5.06 28/0 1.01 .97 .71 .80 .86 .63 .85 .89 .94 .95 1.00 .98 1.01 UB/UINF .20 .23 .12 .28 -.14 -.17 -.20 .03 -.10 -.20 -.23 -.21 -. 16 VA/UINF .24 .27 .30 .05 -.02 WB/UINF 1.5 -.03 .08 .52 .23 .19 .13 .08 .02 -.03 .19 .08 .19 -.05 .17 -.01 -.02 CP .07 .12 .08 .06 .01 .01 -.07 .01 -.10 -.45 -.00 .03 .02 CPT -.28 .03 .01 .05 .02 .89 .88 .93 .86 .83 .83 .96 1.02 1.03 .96 1.01 .98 1.05 UR/UINF .09 .24 .15 -.11 -.19 .17 .06 -.05 -.14 -.19 -.20 -. 17 VB/UINF -.21 .09 .01 .15 1.0 .20 .18 .55 .05 .20 .16 .13 .09 .07 -. 00 WH/UINF -.09 .05 .04 -.08 .08 .09 -.01 -.03 -.05 .07 -.03 -.04 -.10 CP .05 .01 -.01 -.11 -.16 -.36 -.30 -.10 .01 .04 .03 -.02 .02 CPT .91 .97 1.03 .99 .99 .82 .91 .92 1.01 .95 .96 .98 1.03 UR/UINF .19 .14 -.07 -.11 .21 .09 .07 -.12 -.17 -.19 -.14 -.18 -. 15 VH/UINF .12 .1. .14 .5 .00 .09 .06 .05 .08 .13 .13 .14 .03 .00 WB/UINF -.09 .02 -.02 -.05 -.09 -.02 .06 -.06 .01 -.02 -.09 CP -.06 .05 .00 -.07 .00 .01 .00 -.09 -.39 -.21 -.11 -.01 -.03 -.01 -.02 CPT .99 1.03 .94 .86 .79 .85 .97 .99 .82 . 95 .99 1.00 1.0. UR/UINF .22 .10 .04 -.03 -.11 .21 .16 -.10 -.17 -.14 -.15 -.18 -. 15 VH/UINF .09 .14 .11 .10 .06 .05 .04 .00 WH/UINF 0.0 .01 .07 .09 .11 .08 -.04 .00 -.03 -.10 -.01 -.10 -.08 -.00 .01 .03 -.10 CF -.02 -.01 -.01 -.08 -.25 .00 -.45 ..25 -.+0 -.02 -.01 .00 .01 -.03 -.00 CPT .85 1.03 .99 .91 .89 .. 85 .94 .99 .99 .80 .99 1.01 1.05 UB/UINE .22 .18 .13 .10 .06 -.04 -.05 -.12 -.11 -.14 -.16 -.15 -. 14 VH/UINF -.5 .05 .01 . 08 .05 .05 .02 -.01 .04 .03 .06 .0701 WH/UINF -.03 -.00 -.07 -.04 -.04 -.03 -.11 .01 -.02 -.01 -.01 -.02 -.10 CP -.00 -.01 -.15 -.23 -.41 -.31 -.29 -.08 -.02 -.01 .01 .02 .02 CPT .94 .90 .88 1.04 .92 .85 .84 .92 .98 1.01 . 96 1.02 1.04 UP/UINF .09 -.07 .02 -.05 .21 .20 .17 -.12 -. 12 VB/UINF -.11 -. OA -.15 -.13 .04 .01 -.01 -1.0 -.05 .00 .01 -.02 .01 .03 .01 .03 .02 -.02 wa/UINF -.09 -.08 -.02 -.13 -.02 -.07 -.05 -.06 -.03 -.03 -.06 -.0. -. 08 CP -.00 .00 -.23 -.23 -.37 -.34 -.27 -.16 -.09 -.05 -,01 .01 .01 CPT .99 1.02 .86 .65 .72 .74 .76 .80 .85 .93 .48 1.02 1.04 UR/UINF .11 .10 .11 .04 -.05 .08 -.01 -.05 -.12 V4/UINF -.07 -.09 -.11 -.12 -1.5 -.11 .01 -.02 -.04 -.03 -.05 -.02 -.04 -.02 .00 .00 .00 -.07 -.04 -.01 -.07 -.11 -.05 -.08 -.02 -.03 -.10 -.06 -.04 -.10 CP -.32 -.04 -.04 -.59 -.51 -.54 -.48 -.32 -.32 -.17 -.03 -.01 -.00 CPT

UINF = 38.8 M/SEC

X/0 = 6.00

P = 8.03

TABLE C4.- Continued

X/D	=	A.00	W = 8.03	UINF	=	38.8	M/SEC
210	=	1.75		PHI	æ	.7	DEG

2410		-2.50	-1.00	51	0.00	.50	1.00	1.50	2.00	2.50	3.00	4.00	
	.99	.45	.43	.79	.00	.91	.40	.94	.94	.94	.96	.97	UB/UIN
	.21	.20	.12	.09	.01	03	09	09	13	14	10	15	VB/UIN
1.5	.03	.08	.15	.13	.20	.16	.13	.13	.10	.07	.05	.02	WH/UIN
	00	.07	.05	.06	.02	02	.10	.08	.09	.10	.07	.03	CP
	•05	.03	04	2#	29	17	07	.00	.00	.01	.02	01	CPT
	1.00	.98	.93	.95	.86	.88	.87	.95	.97	.99	.98	1.00	UHZUIN
	.19	.16	.10	.00	.05	04	09	09	12	13	14	13	VH/UIN
1.0	• 0.5	.0e	.12	.14	.13	.12	.11	.10	.09	.07	.06	.03	BH/UIN
	04	.01	.03	06	De	07	.02	.06	.04	.01	.02	03	CP
	.01	.01	08	13	26	27	20	01	00	.01	.01	00	CPT
	1.01	.48	.93	.83	.85	.89	. 40	.93	.95	.98	1.00	1.01	UB/UIN
	.18	.1R	.09	.09	.01	.01	06	09	08	13	14	14	VH/UIN
.5	.03	.06	.09	.09	.10	.09	.09	.09	.08	.05	.03	.02	WH/UIN
	04	.01	.03	01	06	05	.04	.05	.05	.04	00	02	
	.01	.01	09		32	26	13	07	03	.01	.02	.01	CPT
	1.01	. 48	.91	.92	.90	.88	.92	.94	.97	1.00	.99	1.01	UB/UIN
	.17	.16	.11	.07	.04	01	02	08	10	10	11	13	VH/UIN
0.0	.02	.05	.07	.04	.10	.05	.06	.06	.06	.04	.05	.01	WH/UIN
	03	.03	.00	03	07	01	03	.02	.04	00	.01	04	CP
	.02	.01	14	18	25	24	18	08	01	.01	.02	.00	CPT
	1.00	.98	.95	.90	.88	.90	.89	.93	.99	.97	1.00	1.01	URZUIN
	.16	.15	.11	.03	.03	03	07	06	08	11	08	11	VB/UIN
5	.00	.04	.01	.04	.03	.02	.04	.04	.03	.03	.03		MH/UIN
	01	.03	02	04	07	04	03	.02	01	.04	.01	05	CP
	.01	.01	11	23	PA	23	23	10	01	01	.02	00	CPT
	1.00	1.01	.89	.95	. #9	. #7	.94	.90	.96	.99	.97	1.01	UBZUIN
	.17	.13	.10	.06	.04	03	01	09	07	09	08	11	VH/UIN
1.0	.00	.03	.01	.01	00	02	01	02	.00	.02	.02	.01	
	02	07	03	08	06	04	04	.02	02	.00	.02	03	CP
	.07	.05	72	17	26	27	15	16	04	01	03	.01	CPT
	1.07	.92	.77	.85	.77	.90	.80	.80	.85	.89	.93	1.00	UB/UIN
	.14	.14	.02	.02	.04	02	.01	01	.01	06	09	10	VH/UIN
1.5	00	01	04	02	04	0.	04	02	03	02	.00	01	
	04	01	.01	05	02	06	03	05	.00	.03	.00	03	CP
	.02	13	40	32	42	41	38	+0	28	16	11	01	CPT

TABLE C4.- Continued

144

x/0 = 12.00 2/0 = 1.75 B = 8.02

UINF - 39.5 M/SEC PHT = 0.0 DEG

28/0 1.5 .0 .0 1.0	97 .9 17 .1 02 .0 04 .0	3 .10 6 .08 9 .04 206 8 .95 0 .05 7 .06	50 .90 .06 .10 .04 13	.90 .03 .07 01 20	.50 .91 .02 .06 06 22	1.00 -9- -04 -09 -10	1.51 05 07 05 08	2.01 .95 05 .07 .06	2.51 96 07	3.01 .95 09	3.51 94 10	4.02 08 03	.99	5.02 97 10	08	UB/UINF VB/UINF
1.5	17 .1 02 .0 04 .0 02 .0 00 .9 12 .1 02 .0	3 .10 6 .08 9 .04 206 8 .95 0 .05 7 .06	.06 .10 .04 13	.03 .07 01 20	.06 -06 22	.04 .09 .00 10	05 .07	05 .07	07	09	10	08	11	10	08	VB/UINF
1.5	17 .1 02 .0 04 .0 02 .0 00 .9 12 .1 02 .0	3 .10 6 .08 9 .04 206 8 .95 0 .05 7 .06	.10 .04 13	.07 01 20	.06 -06 22	.09	.07	.07	.05							
1.5	02 .0 02 .0 02 .0 00 .4 12 .1 02 .0	9 .04 206 8 .95 0 .05 7 .06	.04 13 .93 .07	01	06	10	.05	.06		.05	- 05	- 0.3	0.1	0.1	- 00	
1.0	00 .00 .00 .00 .00 .00	206 8 .95 0 .05 7 .06	13 .93 .07	20	72	10			0.4				. 01	.01		WB/UINF
1.0	00 .9	8 .95 0 .05 7 .06	.93	.90	.91		08	- 03	.06	.08	.09	.06	.01	.05	.03	
1.0 .0	12 .1	0 .05	.07			0.0		03	.00	01	01	00	00	.01	.00	CPT
1.0	0. 50	7 .06		.04		.88	.97	.97	.98	.99	.99	.99	1.01	1.01		UB/UINF
.0	00 .0		.05		03	02	05	08	08	09	09	12	10	10		VB/UINF
		3 .04		.07	.06	.09	.07	.05	.08	.03	.04	.03	.02	.02		WB/UINF
.0	0. 50		01	03	03	01	.00	.02	.02	.01	.00	00	03	03	05	
		205	13	21	20	23	05	03	00	.01	.00	00	.00	.01	.00	CPT
1.0	01 .9	8 .94	.88	.94	.90	.91	.98	.97	.97	.98	1.00	1.00	1.01	1.00	1.01	UB/UINF
'.1			.05	.02	.04	03	04	07	06	08	09	09	10	11	10	VB/UINF
	02 .0	5 .06	.06	.06	.06	.04	.05	.05	.05	.03	.04	.02	.02	.02	.02	WB/UINF
0	01 .0	3 .03	.01	0e	07	03	03	.01	.04	.03	01	00	03	03	04	CP .
			20	16	25	20	06	03	00	.01	.01	.01	00	01	.00	CPT
1 1.0	01 .9	8 .90	.91	.91	.91	.92	.92	1.01	.99	1.00	.99	1.00	1.00	.99	1.00	UB/UINF
'.i			.06	.02	.01	04	05	04	00	07	09	07	09	11	7.9	VH/UINF
0.0 .0			.05	.04	.00	.03	.04	.0.	.04	.04	.03	.02	.02	.02	.04	WB/UINF
0			.00	03	02	03	.00	05	.02	01	.02	.00	02	.01	33	CP
.0	02 .0	114	17	19	18	18	15	03	.00	.01	.01	.00	00	.00	00	CPT
1.0	01 .9	7 .92	. 93	.94	.40	.90	.96	.96	. 97	. 97	. 44	1.00	1.01	.99	1.00	UB/UINF
'			.05	.03	.02	02	02	04	06	07	08	08	07	09	10	VB/UINF
50		-	.02	.01	.01	.01	.01	.07	.03	.03	.02	. 63	.00	00	.02	WB/UINF
0		-	00	03	02	04	02	02	.00	.03	.03	00	63	01	05	CP
.0		214	13	15	20	23	09	09	06	02	.02	.00	01	02	05	CPT
1 1.0	03 .9	6 .90	.86	. 92	.88	.95	.99	.94	.98	.99	1.00	. 99	.93	.97	.91	UB/UINF
1 1			.03	.04	.00	00	01	03	04	04	05	05	05	08		VB/UINF
-1.0 0			.00	.01	01	02	.00	02	00	.01	.02	.01	02	02	.04	WB/UINF
0			.03	07	04	0+	06	02	01	03	01	01	.00	09	05	CP
.0			23	22	26	14	07	13	04	04	00	02	15	13	21	CPT
1 1.0	01 .6	я .я.	. 42	. 63	.71	.81	. 82	.79	. 85	.85	. 95	.94	. 95	.92	.77	UB/UINF
1			50.	0.3	01	.02	01	.00	.01	01	.01	03	00	.02		VH/UINF
-1.50			02	03	03	03	03	03	03	01	02	02	02	04		WH/UINF
0			01	03	.02	03	.00	.02	00	.01	0.	01	01	05	04	
"."			33	33	47	38	31	36	20	24	14	12	12	19	45	

TABLE C4.- Concluded

(b) R = 8. Concluded.

4 Title and Subtitle INDUCED VELOCITY FIELD OF A JET IN A CROSSFLOW 5 Report Date May 1978 6. Performing Organization Code 7 Author(s) Richard L. Fearn and Robert P. Weston 9 Performing Organization Name and Address NASA Langley Research Center Hampton, VA 23665 12 Supproving Agency Name and Address National Aeronautics and Space Administration Washington, DC 20546 13 Type of Report and Period Covered Technical Paper 14 Sponsoring Agency Code 15 Supplementary Notes Richard L. Fearn: University of Florida, Gainesville, Florida. Robert P. Weston: Langley Research Center, Hampton, Virginia. Appendix A by Thomas A. Trovillion, Jr., University of Florida, Gainesville, Florida 16 Abstract An experimental investigation of a subsonic round jet exhausting perpendicularl from a flat plate into a subsonic crosswind of the same temperature has been conducted in the Langley V/STOL tunnel. Velocity and pressure measurements were made
7 Author(s) Richard L. Fearn and Robert P. Weston 9 Performing Organization Name and Address NASA Langley Research Center Hampton, VA 23665 11 Contract or Grant No. 12 Seconsoring Agency Name and Address National Aeronautics and Space Administration Washington, DC 20546 15 Supplementary Notes Richard L. Fearn: University of Florida, Gainesville, Florida. Robert P. Weston: Langley Research Center, Hampton, Virginia. Appendix A by Thomas A. Trovillion, Jr., University of Florida, Gainesville, Florida, Gainesville, Florida and Space Administration appendix A by Thomas A. Trovillion, Jr., University of Florida, Gainesville, Florida appendix A by Thomas A. Trovillion, Jr., University of Florida, Gainesville, Florida and Experimental investigation of a subsonic round jet exhausting perpendicularly from a flat plate into a subsonic crosswind of the same temperature has been con-
Richard L. Fearn and Robert P. Weston 9 Performing Organization Name and Address NASA Langley Research Center Hampton, VA 23665 11 Contract or Grant No. 12 Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, DC 20546 13 Type of Report and Period Covered Technical Paper 14 Sponsoring Agency Code 15 Supplementary Notes Richard L. Fearn: University of Florida, Gainesville, Florida. Robert P. Weston: Langley Research Center, Hampton, Virginia. Appendix A by Thomas A. Trovillion, Jr., University of Florida, Gainesville, Florid 16 Abstract An experimental investigation of a subsonic round jet exhausting perpendicularl from a flat plate into a subsonic crosswind of the same temperature has been con-
9 Performing Organization Name and Address NASA Langley Research Center Hampton, VA 23665 12 Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, DC 20546 13 Type of Report and Period Covered Technical Paper 14 Sponsoring Agency Code 15 Supplementary Notes Richard L. Fearn: University of Florida, Gainesville, Florida. Robert P. Weston: Langley Research Center, Hampton, Virginia. Appendix A by Thomas A. Trovillion, Jr., University of Florida, Gainesville, Florida 16 Abstract An experimental investigation of a subsonic round jet exhausting perpendicularl from a flat plate into a subsonic crosswind of the same temperature has been con-
NASA Langley Research Center Hampton, VA 23665 11 Contract or Grant No. 12 Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, DC 20546 13 Type of Report and Period Covered Technical Paper 14 Sponsoring Agency Code 15 Supplementary Notes Richard L. Fearn: University of Florida, Gainesville, Florida. Robert P. Weston: Langley Research Center, Hampton, Virginia. Appendix A by Thomas A. Trovillion, Jr., University of Florida, Gainesville, Florida 16 Abstract An experimental investigation of a subsonic round jet exhausting perpendicularl from a flat plate into a subsonic crosswind of the same temperature has been con-
Hampton, VA 23665 12 Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, DC 20546 13 Type of Report and Period Covered Technical Paper 14 Sponsoring Agency Code 15 Supplementary Notes Richard L. Fearn: University of Florida, Gainesville, Florida. Robert P. Weston: Langley Research Center, Hampton, Virginia. Appendix A by Thomas A. Trovillion, Jr., University of Florida, Gainesville, Florid 16 Abstract An experimental investigation of a subsonic round jet exhausting perpendicularl from a flat plate into a subsonic crosswind of the same temperature has been con-
12 Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, DC 20546 14 Sponsoring Agency Code 15 Supplementary Notes Richard L. Fearn: University of Florida, Gainesville, Florida. Robert P. Weston: Langley Research Center, Hampton, Virginia. Appendix A by Thomas A. Trovillion, Jr., University of Florida, Gainesville, Florida 16 Abstract An experimental investigation of a subsonic round jet exhausting perpendicularl from a flat plate into a subsonic crosswind of the same temperature has been con-
National Aeronautics and Space Administration Washington, DC 20546 14 Sponsoring Agency Code 15 Supplementary Notes Richard L. Fearn: University of Florida, Gainesville, Florida. Robert P. Weston: Langley Research Center, Hampton, Virginia. Appendix A by Thomas A. Trovillion, Jr., University of Florida, Gainesville, Florid 16 Abstract An experimental investigation of a subsonic round jet exhausting perpendicularl from a flat plate into a subsonic crosswind of the same temperature has been con-
15 Supplementary Notes Richard L. Fearn: University of Florida, Gainesville, Florida. Robert P. Weston: Langley Research Center, Hampton, Virginia. Appendix A by Thomas A. Trovillion, Jr., University of Florida, Gainesville, Florid 16 Abstract An experimental investigation of a subsonic round jet exhausting perpendicularl from a flat plate into a subsonic crosswind of the same temperature has been con-
Richard L. Fearn: University of Florida, Gainesville, Florida. Robert P. Weston: Langley Research Center, Hampton, Virginia. Appendix A by Thomas A. Trovillion, Jr., University of Florida, Gainesville, Florid Abstract An experimental investigation of a subsonic round jet exhausting perpendicularl from a flat plate into a subsonic crosswind of the same temperature has been con-
An experimental investigation of a subsonic round jet exhausting perpendicularl from a flat plate into a subsonic crosswind of the same temperature has been con-
in planes perpendicular to the path of the jet for ratios of jet velocity to cross- flow velocity ranging from 3 to 10. The results of these measurements are presente in tabular and graphical forms. A pair of diffuse contrarotating vortices is iden- tified as a significant feature of the flow, and the characteristics of the vortice are discussed.
17 Key Words (Suggested by Author(s)) Jet in a crossflow Velocity field Subscript and Support Statement Unclassified - Unlimited
Subsonic crossflow Jet plume Subject Category 3
19 Security Classif (of this report) 20 Security Classif (of this page) 21 No. of Pages 22 Price*
Unclassified Unclassified 146 \$7.25