

Tutorial: Bayesian Coin

• Bayesian Coin

- Chemical Shift: Example
- Posterior Predictive Checks
- Groups Comparison

Chemical Shift

- Nuclear magnetic resonance (NMR)
 - Used to study molecules of living things
 - Measures observable quantities related to unobservable molecular properties (e.g., chemical shift)
- Data looks Gaussian with a couple of outliers

Use of Gaussians in Statistics

- Aka "normal" distribution
- Gaussians are easy to work with and abundant in nature
- Pros:
 - Average of large sample size tends to be Gaussian (by Central Limit Theorem)
 - Many phenomena approximated using Gaussians (since they are average of effects)
 - Conjugate prior of Gaussian is Gaussian
- Cons:
 - Not robust to outliers
 - Important to relax assumption of Gaussianity

Chemical Shift: Example

- Assume Gaussian is a decent approximation of the data
- The **likelihood** $y|\mu, \sigma$ comes from a normal distribution:

$$Y \sim N(\mu, \sigma)$$

- Priors for mean and sigma of Y
 - Mean from uniform distribution U(I, h):

$$\mu \sim U(I,h)$$

- Set μ larger than data range, e.g., [40, 70]
- Std dev from half-normal distribution (i.e., a regular normal, but restricted to non-negative values):

$$\sigma \sim \mathsf{HalfNormal}(\mathsf{0}, \sigma_\sigma)$$

• If unknown, set $\sigma_{\sigma} = 10$

Chemical Shift: PyMC

Sampling 4 chains, 0 divergences -

```
[87]: with pm.Model() as model_g:
    # The mean is Uniform in [40, 70] (which is larger than the data).
    mu = pm.Uniform("mu", lower=40, upper=70)
    # The std dev is half normal with a large value (which is a large value based on the data).
    sigma = pm.HalfNormal("sigma", sigma=10)
    # The model is M(mu, sigma).
    y = pm.Normal("y", mu=mu, sigma=sigma, observed=data)
    # Sample.
    idata_g = pm.sample(1000)

Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [mu, sigma]
```

Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 1 seconds.

• The PyMC code is **one-to-one with the model**:

$$\begin{cases} \mu \sim \textit{U}(\textit{I} = 40, \textit{h} = 70) \\ \sigma \sim \textit{HalfNormal}(0, \sigma_{\sigma} = 10) \\ Y \sim \textit{N}(\mu, \sigma) \end{cases}$$

• Get 1000 samples from the posterior

- 100% 0:00:00 / 0:00:00

Chemical Shift: PyMC

- Compute 4 traces for 2 variables μ , σ
- Results are well-formed
- $\mu \in [52.55, 54.45]$
- $\sigma \in [2.86, 4.23]$
- Is the model good?

55.0

55.5

mu

[94]: # Report a summary of the inference.
az.summary(idata_g, kind="stats").round(2)

94]:		mean	sd	hdi_3%	hdi_97%
	mu	53.50	0.51	52.55	54.46
	sigma	3.55	0.38	2.86	4.23

52.0 52.5 53.0 53.5 54.0 54.5

- Chemical Shift: Example
- Posterior Predictive Checks
- Groups Comparison

Samples from Posterior Distribution

• Given a posterior distribution $Pr(\theta|y)$, you can generate predictions \tilde{y} based on the data y and the estimated parameters $\hat{\theta}$:

$$\mathsf{Pr}(ilde{m{y}}|\mathtt{y}) = \int_{ heta} \mathsf{Pr}(ilde{y}| heta) \, \mathsf{Pr}(heta|y) d heta = \int \mathsf{model} imes \mathsf{posterior}$$

- This is called the "posterior predictive distribution" as it predicts future data using the posterior distribution
- Conceptually:
 - Sample a value of θ from the posterior $Pr(\theta|y)$
 - Feed the value of θ to the likelihood $Pr(y|\theta)$
 - Obtain \tilde{y}
- This process has two sources of uncertainty:
 - Parameter uncertainty
 - Captured by the posterior $Pr(\theta|y)$
 - Sampling uncertainty
 - Captured by the likelihood $\Pr(y|\theta)$

Posterior Predictive Check (PPC)

- Intuition: can the model reproduce observed data?
- PPC approach:
 - Generate predictions \tilde{y} with observed data y
 - Check consistency between predicted values and observed data
- Models should always be checked
- Differences can arise by:
 - Mistakes
 - Limitations of the model
 - E.g., the model works well for average behavior but fails to predict rare values
 - Limitations of the data

Bayesian Workflow Using PPC

1. Given a process

• True distribution of the process is unknown / unknowable

2. Sample the process

- Get finite sample y through sampling
- E.g., experiment, survey, simulation

3. Inference

- Build probabilistic model using prior $Pr(\theta)$ and likelihood $Pr(y|\theta)$ to get posterior distribution $Pr(\theta|y)$
- Posterior distribution: distribution of model parameters θ given data

4. Predictive distribution

- Compute predictions from posterior distribution (i.e., posterior predictive distribution)
- Posterior predictive distribution is the distribution of predicted samples averaged over posterior distribution

5. Validation

• Validate model by comparing original samples vs predicted samples

Chemical Shift Example: PPC

- Sample the posterior
- Apply the model
- Get predictive posterior distribution (dashed orange distribution)
- Compare to data (black distribution)
- Is the PPC model good?
- No
 - Posterior mean is more to the right than data
 - Posterior std dev is larger

Chemical Shift: Model Critique

Problem

- Two data points on the tails of the distribution
- The normal distribution is "surprised" by these points and "reacts" by adjusting the mean towards them and increasing the standard deviation

Solution

- Declare points as outliers and discard
 - E.g., equipment malfunction (need evidence)
- Change the model
- Bayesians prefer to encode assumptions into the model (e.g., priors, likelihoods)
 - Rather than ad-hoc heuristics (e.g., outlier removal rules)

Student's t-distribution: Recap

- Student's t-distribution has 3 params:
 - 1. Mean μ
 - It doesn't always exist
 - 2. Scale σ
 - Similar to std dev, but it doesn't always exist
 - 3. Degrees of freedom $\nu \in [0, \infty]$
 - Aka "normality parameter", since it controls how "normal" is the distribution
 - With $\nu=1$: heavy tails and no mean (Cauchy)
 - With $\nu \to \infty$ we recover the Gaussian
- Heavy tails (high kurtosis) means "values are more likely to be far from the mean compared to a Normal"

Chemical Shift: Use Student's t-dist (1/3)

 Use Student's t-distribution model instead of Normal

$$\begin{cases} \mu \sim \textit{U(I, h)} \\ \sigma \sim \textit{HalfNornal}(0, \sigma) \\ \nu \sim \textit{Exp}(\lambda) \\ y \sim \textit{StudentT}(\mu, \sigma, \nu) \end{cases}$$

Chemical Shift: Use Student's t-dist (2/3)

- Outliers decrease v (less Gaussian) instead of increasing mean and standard deviation
 - μ similar to Gaussian estimate
 - σ smaller
 - $\nu \approx 5$ (not very Gaussian)
- Estimation more robust; outliers have less effect

2.95 9.20

Chemical Shift: Use Student's t-dist (3/3)

- PPC (posterior predictive check) fits better than Normal model
- Plot is "hairy" because KDE is estimated only in data interval and 0 outside

- Chemical Shift: Example
- Posterior Predictive Checks
- Groups Comparison

Group Comparison

- **Group comparison** tests for statistically significant results between "treatment" and "control group"
- E.g., ⊀
 - How well do patients respond to a new drug vs a placebo?
 - Is there a reduction in car accidents after new traffic regulation?
 - Does college student performance improve without cellphones at school?
- Effect size quantifies the difference between two groups
 - Moves from "does it work?" (hypothesis testing) to "how well does it work?" (estimate effect size)

Bogus Control Groups

- When something is claimed to be harder/better/faster/stronger, ask for the baseline used for comparison
 - E.g.,
 - Sell sugary yogurts to boost the immune system by comparing it to using milk
 - A better control group would be a less sugary yogurt
- Placebo is a psychological phenomenon where a patient experiences improvements after receiving an inactive treatment
 - Using a placebo is better than "no treatment"
 - Shows difficulty in accounting for all factors in an experiment

Group Comparison Bayesian-Style

- Frequentist approach
 - Compare p-value of difference of means in each group
- Bayesian approach
 - Compare posterior distribution of means between groups using:
 - Plot of posterior
 - · Cohen's d
 - Probability of superiority

Sample Size Effect

- Sample size effect is the impact of the number of observations on statistical results (e.g., p-values, confidence intervals)
 - Small sample: Large mean difference might not be statistically significant (low p-value)
 - Large sample: Tiny mean difference can be highly significant (small p-value) but meaningless
 - E.g., Cohen's d

Cohen's d

• Cohen's d is the difference of means relative to pooled standard deviation

$$\frac{\mu_2 - \mu_1}{\sqrt{(\sigma_1^2 + \sigma_2^2)/2}}$$

- Normalizes effect by variability for pooled std dev
- Bayesian analysis estimates actual std dev
- Variability of each group normalizes mean difference
 - Similar to a Z-score, number of std dev values differ
- · Compute posterior distribution of means and std
- Compute distribution of Cohen's d or use formula

