Lecture 14

Regression with Quantitative and Qualitative Predictors & Polynomial Regression

STAT 8020 Statistical Methods II September 20, 2019 Regression with Quantitative and Qualitative Predictors & Polynomial Regression

Regression with Both Quantitative and Qualitative Predictors

Polynomial Regression

Whitney Huang Clemson University

Agenda

Regression with Quantitative and Qualitative Predictors & Polynomial Regression

Quantitative and Qualitative Predictors

Polynomial Regres

Regression with Both Quantitative and Qualitative Predictors

CLEMS#N UNIVERSITY

Quantitative and
Qualitative Predictors

Polynomial Regression

Multiple Linear Regression

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{p-1} X_{p-1} + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \sigma^2)$$

 $X_1, X_2, \cdots, X_{p-1}$ are the predictors.

Question: What if some of the predictors are qualitative (categorical) variables?

 \Rightarrow We will need to create **dummy (indicator) variables** for those categorical variables

Example: We can encode Gender into 1 (Female) and 0 (Male)

The 2008-09 nine-month academic salary for Assistant Professors, Associate Professors and Professors in a college in the U.S. The data were collected as part of the on-going effort of the college's administration to monitor salary differences between male and female faculty members.

Regression with Quantitative and Qualitative Predictors & Polynomial Regression

Quantitative and Qualitative Predictors

Olymorniai riegiessii

> head(Salaries)

-						
	rank	$\hbox{\tt discipline}$	yrs.since.phd	yrs.service	sex	salary
1	Prof	В	19	18	Male	139750
2	Prof	В	20	16	Male	173200
3	AsstProf	В	4	3	Male	79750
4	Prof	В	45	39	Male	115000
5	Prof	В	40	41	Male	141500
6	AssocProf	В	6	6	Male	97000

> summary(Salaries)

rank	aiscipline	yrs.sı	nce.pna	yrs.s	ervice
AsstProf : 67	A:181	Min.	: 1.00	Min.	: 0.00
AssocProf: 64	B:216	1st Qu	.:12.00	1st Qu	.: 7.00
Prof :266		Median	:21.00	Median	:16.00
		Mean	:22.31	Mean	:17.61
		3rd Qu	.:32.00	3rd Qu	.:27.00
		Max.	:56.00	Max.	:60.00

ad a color of discours and a color of such

sex salary

Female: 39 Min. : 57800 Male :358 1st Qu.: 91000 Median :107300

Mean :113706 3rd Qu::134185 Max. :231545

We have three categorical variables, namely, ${\tt rank},$ ${\tt discipline},$ and ${\tt sex}.$

Regression with Quantitative and Qualitative Predictors & Polynomial Regression

Quantitative and Qualitative Predictors

roiyiloililai negii

For binary categorical variables:

$$X_{\text{sex}} = \begin{cases} 0 & \text{if sex = male,} \\ 1 & \text{if sex = female.} \end{cases}$$

$$X_{\text{discip}} = \begin{cases} 0 & \text{if discip} = \mathbf{A}, \\ 1 & \text{if discip} = \mathbf{B}. \end{cases}$$

For categorical variable with more than two categories:

$$X_{\mathrm{rank1}} = \begin{cases} 0 & \text{if } \mathrm{rank} = \mathrm{Assistant} \ \mathrm{Prof}, \\ 1 & \text{if } \mathrm{rank} = \mathrm{Associated} \ \mathrm{Prof}. \end{cases}$$

$$X_{\mathrm{rank2}} = \begin{cases} 0 & \text{if } \mathrm{rank} = \mathrm{Associated\ Prof}, \\ 1 & \text{if } \mathrm{rank} = \mathrm{Full\ Prof}. \end{cases}$$

Regression with Quantitative and Qualitative Predictors & Polynomial Regression

Quantitative and Qualitative Predictors

r orymormal r rogi occion

Design Matrix

> head(X)

	(Intercept)	rankAssocProt	rankProt	disciplineB	yrs.since.phd
1	1	0	1	1	19
2	1	0	1	1	20
3	1	0	0	1	4
4	1	0	1	1	45
5	1	0	1	1	40
6	1	1	0	1	6
	yrs.service sexMale				
1	18	1			

2	16	1
3	3	1
4	39	1
_		_

5 41 1 6 6 1

With the design matrix ${m X}$, we can now use method of least squares to fit the model ${m Y}={m X}{m \beta}+{m \varepsilon}$

Regression with Quantitative and Qualitative Predictors & Polynomial Regression

Quantitative and Qualitative Predictors

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
              70738.7
(Intercept)
                          3403.0
                                 20.787 < 2e-16 ***
rankAssocProf
              12907.6
                          4145.3
                                  3.114 0.00198 **
rankProf
              45066.0
                          4237.5 10.635 < 2e-16 ***
disciplineB
              14417.6
                          2342.9 6.154 1.88e-09 ***
yrs.since.phd
                535.1
                           241.0 2.220 0.02698 *
yrs.service
               -489.5
                           211.9
                                  -2.310 0.02143 *
sexFemale
              -4783.5
                          3858.7
                                  -1.240 0.21584
```

0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1 Sianif. codes:

Residual standard error: 22540 on 390 degrees of freedom Multiple R-squared: 0.4547, Adjusted R-squared: 0.4463 F-statistic: 54.2 on 6 and 390 DF, p-value: < 2.2e-16

Question: Interpretation of these dummy variables (e.g.

 $\beta_{\text{rankAssocProf}}$?

Regression with Qualitative Predictors & Polynomial Regression

 ${\tt lm}({\tt salary} \sim {\tt sex} * {\tt yrs.since.phd})$

10

20

30

yrs.since.phd

40

50

Regression with Quantitative and Qualitative Predictors & Polynomial Regression

Regression with Both Quantitative and Qualitative Predictors

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \dots + \beta_p X_i^p + \varepsilon$$

Quantitative and Qualitative Predictors

We can treat polynomial regression as a special case of multiple linear regression. In specific, the design matrix takes the following form:

$$\boldsymbol{X} = \begin{pmatrix} 1 & X_1 & X_1^2 & \cdots & X_1^p \\ 1 & X_2 & X_2^2 & \cdots & X_2^p \\ \vdots & \cdots & \ddots & \vdots & \vdots \\ 1 & X_n & X_n^2 & \cdots & X_n^p \end{pmatrix}$$

Housing Values in Suburbs of Boston Data Set

Regression with Quantitative and Qualitative Predictors & Polynomial Regression

Regression with Both
Quantitative and
Qualitative Predictors

Polynomial Regression Fits

Regression with Quantitative and Qualitative Predictors & Polynomial Regression

Regression with Both Quantitative and Qualitative Predictors

Potential Topics for Next Lecture

- Nonlinear Regression
- Non-Parametric Regression
- Regression Tree
- Ridge Regression
- Least Absolute Shrinkage and Selection Operator (LASSO)

Regression with Quantitative and Qualitative Predictors & Polynomial Regression

Quantitative and Qualitative Predictors