

Skript Lineare Algebra I.

Mitschrift der Vorlesung "Lineare Algebra I." von Prof. Dr. Arthur Bartels

Jannes Bantje

8. März 2015

Aktuelle Version verfügbar bei

⇔GitHub

GitHub ist eine Internetplattform, auf der viele OpenSource-Projekte gehostet werden. Diese Plattform nutzen wir zur Zusammenarbeit, also findet man hier neben den PDFs auch die TFX-Dateien. Außerdem ist über diese Plattform auch direktes Mitarbeiten möglich, siehe nächste Seite.

Sciebo die Campuscloud

https://uni-muenster.sciebo.de/public.php?service=files&t=965ae79080a473eb5b6d927d7d8b0462

Sciebo ist ein Dropbox-Ersatz der Hochschulen in NRW, der von der Uni Münster in leitender Position auf Basis der OpenSource-Software Owncloud aufgebaut wurde. Wenn man auf den Link klickt, kann man die Freigabe zum eigenen Speicher hinzufügen und hat dann immer automatisch die aktuellste Version.

Bittorrent Sync B6WH2DISQ5QVYIRYIEZSF4ZR2IDVKPN3I

BTSync ist ein peer-to-peer Dateisynchronisations-Tool. Dabei werden die Dateien nur auf den Computern der Teilnehmer an einer Freigabe gespeichert. Ein Mini-Computer ist permanent online, sodass jederzeit die aktuellste Version verfügbar ist. Clients 🗗 gibt es für jedes Betriebssystem. Zugang ist über das obige "Secret" bzw. den QR-Code möglich

Vorlesungshomepage

http://wwwmath.uni-muenster.de/reine/u/topos/lehre/WS2012-2013/LineareAlgebra1/ Hier ist ein Link zur offiziellen Vorlesungshomepage.

Vorwort — Mitarbeit am Skript

Dieses Dokument ist eine Mitschrift aus der Vorlesung "Lineare Algebra I., WiSe 2012", gelesen von Prof. Dr. Arthur Bartels. Der Inhalt entspricht weitestgehend dem Tafelanschrieb. Für die Korrektheit des Inhalts übernehme ich keinerlei Garantie! Für Bemerkungen und Korrekturen – und seien es nur Rechtschreibfehler – bin ich sehr dankbar. Korrekturen lassen sich prinzipiell auf drei Wegen einreichen:

- Persönliches Ansprechen in der Uni, Mails an ⊠j.bantje@wwu.de (gerne auch mit annotieren PDFs) oder Kommentare auf https://github.com/JaMeZ-B/latex-wwu♂.
- Direktes Mitarbeiten am Skript: Den Quellcode poste ich auf GitHub (siehe oben), also stehen vielfältige Möglichkeiten der Zusammenarbeit zur Verfügung: Zum Beispiel durch Kommentare am Code über die Website und die Kombination Fork + Pull Request. Wer sich verdient macht oder ein Skript zu einer Vorlesung, die ich nicht besuche, beisteuern will, dem gewähre ich gerne auch Schreibzugriff.
 - Beachten sollte man dabei, dass dazu ein Account bei github.com notwendig ist, der allerdings ohne Angabe von persönlichen Daten angelegt werden kann. Wer bei GitHub (bzw. dem zugrunde liegenden Open-Source-Programm "git") verständlicherweise Hilfe beim Einstieg braucht, dem helfe ich gerne weiter. Es gibt aber auch zahlreiche empfehlenswerte Tutorials im Internet.¹
- Indirektes Mitarbeiten: T_FX-Dateien per Mail verschicken.

Dies ist nur dann sinnvoll, wenn man einen ganzen Abschnitt ändern möchte (zB. einen alternativen Beweis geben), da ich die Änderungen dann per Hand einbauen muss! Ich freue mich aber auch über solche Beiträge!

Hinweis

Verglichen mit den neueren Mitschriften ist dieses Skript in einem deutlich schlechteren Zustand, hauptsächlich in technischer Hinsicht, aber auch die inhaltliche Fehlersuche war bei weitem nicht so intensiv ...damals hatte ich gerade erst angefangen mich mit LEX zu beschäftigen.

Ich plane nicht, daran in näherer Zukunft etwas zu verändern, da dies ziemlich viel Zeit in Anspruch nehmen würde, die anderweitig besser investiert ist. Sollte jemand Lust dazu haben, wäre die wichtigste Baustelle das Inhaltsverzeichnis, in dem kurze Beschreibungen der Sätze, Lemmata, etc. fehlen. Außerdem müssen die Labels eindeutig werden. Wie man dies handhaben kann, sieht man gut in den Dateien der späteren Semester.

¹ zB. https://try.github.io/levels/1/challenges/1 🗗, ist auf Englisch, aber dafür interaktives LearningByDoing

Inhaltsverzeichnis

1	Linea	re Gleichungsysteme in 2 Unbekannten 1
	1.1	Beispiel
	1.2	Fragen:
	1.3	Allgemein
	1.4	Rechenregeln für Vektoren und Matrizen
	1.5	Lemma
	1.6	Beweis
	1.7	Proposition
	1.8	Beweis
	1.9	Lemma
	1.10	Beweis
	1.11	Definition
	1.12	Bemerkung
	1.12	Demending
2	Elem	entare Umformungen von Gleichungssystem und Matrizen 4
3	Das (Gauß'sche Verfahren 6
	3.1	Beispiel 1
	3.2	Beispiel 2
	3.3	Beispiel 3
1	Meno	gen und Abbildungen 9
-	1.1	Definition
	1.2	Beispiel
	1.3	Definition
	1.4	Definition
	1.5	Beispiel
	1.6	Definition
	1.7	Bemerkung
	1.8	Definition
	1.9	Definition
	1.10	Beispiel
	1.11	Bemerkung
	1.12	Definition
	1.13	Beispiel
	1.14	Definition
	1.15	Bemerkung
	1.16	
	1.17	Warnung!
2	Кöгр	
	2.1	Definition
	2.2	Definition
	2.3	Lemma
	2.4	Beweis
	2.5	Beispiele
	2.6	Bemerkung
	2.7	lemma 14

20	Definition		15
			15
2.10	Definition		15
2.11	Bemerkung		16
2.12	Lemma		16
2 13			16
	·		17
	<u> </u>		
			17
2.17	Lemma		17
Vekto	orräume		18
3.1	Definition		18
3.2	Bemerkung		18
3.3	<u> </u>		18
			18
	·		
			19
			19
3.7	Beispiel		19
3.8	Beispiel		21
3.9	Beispiel		21
3.10	·		21
			22
	·		22
	·		
	· ·		22
			23
			24
3.16	Bemerkung		24
3.17	Frage		24
3.18	Beispiel		24
Basis	und Dimension		25
4.1	Definition		25
4.2			25
	·		25
			25
	·		
4.7	0		25
4.8	·		25
4.9	Beispiel		26
4.10	Definition		26
4.11	Lemma		26
4 12	Bemerkung		- 26
4.12 4.13	Bemerkung		26
4.13	Beispiele		27
4.13 4.14	Beispiele		27 27
4.13 4.14 4.15	Beispiele		27 27 27
4.13 4.14 4.15 4.16	Beispiele		27 27 27 27
4.13 4.14 4.15	Beispiele		27 27 27 27 27
4.13 4.14 4.15 4.16	Beispiele		27 27 27 27
4.13 4.14 4.15 4.16 4.17	Beispiele		27 27 27 27 27
	2.12 2.13 2.14 2.15 2.17 Vekto 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 Basis 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	2.9 Definition 2.10 Definition 2.11 Bemerkung 2.12 Lemma 2.13 Beispiel 2.14 Bemerkung 2.15 Bemerkung 2.17 Lemma 3.1 Definition 3.2 Bemerkung 3.3 Lemma 3.4 Beispiel 3.5 Definition 3.6 Definition 3.7 Beispiel 3.8 Beispiel 3.9 Beispiel 3.10 Beispiel 3.11 Beispiel 3.12 Beispiel 3.13 Bemerkung 3.14 Satz 3.15 Definition 3.16 Bemerkung 3.17 Frage 3.18 Beispiel 4.1 Definition 4.2 Beispiel 4.3 Bemerkung 4.4 Definition 4.5 Beispiel 4.6 Beispiel 4.7	2.9 Definition 2.10 Definition 2.11 Bemerkung 2.12 Lemma 2.13 Beispiel 2.14 Bemerkung 2.15 Bemerkung 2.17 Lemma Vektorräume 3.1 Definition 3.2 Bemerkung 3.3 Lemma 3.4 Beispiel 3.5 Definition 3.6 Definition 3.7 Beispiel 3.8 Beispiel 3.10 Beispiele 3.11 Beispiel 3.12 Beispiel 3.13 Bemerkung 3.14 Satz 3.15 Definition 3.16 Bemerkung 3.17 Frage 3.18 Beispiel 4.2 Beispiel 4.3 Bemerkung 4.4 Definition 4.5 Beispiel 4.6 Beispiel 4.7 Frage 4.8 <

5	4.21 4.22 4.23 4.24 4.25 4.26 4.27 4.28 4.29 4.30	Beispiel Korollar Korollar Beispiel Bemerkung Bemerkung Satz	
5	5.1	Konstruktion	33
	5.2		33
	5.3	Satz 3	
	5.4	Bemerkung	
	5.5	Fundamentalsatz der Algebra	34
_		A1171	
6	6.1		34 34
	6.2		34 34
	6.3	'	34 34
	6.4		35
	6.5		35
	6.6		35
	6.7		35
	6.8		35
	6.9	0	36
	6.10	!	37
	6.11	·	37
	6.12		37
	6.13		38
	6.14		38
	6.15		39
	6.16		39
	6.17		40
	6.18		41
	6.19	·	41
7	•		42
	7.1		42
	7.2		42
	7.3		43
	7.4		43
	7.5	!	43
	7.6	8	44
	7.7		44
	7.8	8	44
	7.9		44
	7.10		45
	7.11	lemma	45

	7.12	Definition	45
	7.12	Lemma	46
	7.13		46
	7.14	·	46
	7.15	o de la companya de	46
	7.16		47
	7.17		47
	7.18	o de la companya de	47
	1.10	Suiz	71
8	Matri	zen	48
	8.1	Definition	48
	8.2		48
	8.3	0	48
	8.4		49
	8.5		49
	8.6		50
	8.7	9	50
	8.8		50
	8.9	, ,	51
	8.10		51
	8.11		52
	8.12		52
	8.13		52
	8.14	0	53
	8.15	·	53
	8.16	·	53
	8.17	<u> </u>	53
	8.18		53
	8.19		53
	8.20		54
	8.21		54
	8.22		54
	8.23	o de la companya de	54
	8.24	6	54
	8.25		55
	8.26		55
	8.27		55
	8.28		56
	8.29		56
	8.30	9	56
	8.31		56
	8.32	•	56
	8.33		56
	8.34		56
	8.35		57
	8.36		57
	8.37	9	58
	8.38	9	58
	8.39	·	58
	8.40	Beispiel	59

9	Die S	DUT 5	9
	9.1		9
	9.2		9
	9.3		60
	9.4		60
	9.5		60
	9.6	8	60
	9.7	•	60
	J.1	3002	
10	Permi	utationen 6	1
	10.1	Definition	51
	10.2		61
	10.3		51
	10.4	·	51
	10.5		52
	10.6	0	52
	10.7		52
	10.8	· ·	52
	10.9	0	52
			3
	10.11		3
			3
		o contract of the contract of	3
			54
	10.14	NOTOLIAI)4
11	Deter	minanten 6	4
•	11.1		54
	11.2		55
	11.3	'	55
	11.4	· ·	66
	11.5		57
	11.6		57
	11.7		8
	11.8		8
	11.9		8
			59
			59
			59
		•	70
		·	70
			70
		<u> </u>	'1
			'1
		•	'1
			<u>1</u> 2
		· · · · · · · · · · · · · · · · · · ·	'2
		·	'3
			J
12	Invers	sion von Matrizen 7	'3
	12.1		'3
	12.2	Beispiel	'3

	12.3	Definition						 	 	 	 	 			 	. , , ¬
	12.4	Satz						 	 	 	 	 			 	. 74
	12.5	Korollar						 	 	 	 	 			 	. 74
	12.6	Bemerkung .						 	 	 	 	 			 	. 74
13	Eigen															75
	13.1	Motivation						 	 	 	 	 				. 75
	13.2	Definition						 	 	 	 	 				. 75
	13.3	Bemerkung .						 	 	 	 	 				. 75
	13.4	Defintion						 	 	 	 	 			 	. 75
	13.5	Lemma						 	 	 	 	 				. 75
	13.6	Proposition .						 	 	 	 	 			 	. 76
	13.7	Beispiel														
	13.8	Bemerkung .														
	13.9	Beispiel														
	13.10	Bemerkung .														
		Satz														
		Korollar														
		Bemerkung .														
		Definition														
		Bemerkung .														
		Satz														
		Beispiel														
		Satz														
	13.19	Satz			• •	• •	• •	 	 	 	 	 • •	• •	• •	 •	. 79
14	Fuklic	lische und unit	äre	Vek	torr	äur	ne									ี 21
14		lische und unit														81 នា
14	14.1	Bemerkung .														. 81
14	14.1 14.2	Bemerkung . Bemerkung .						 	 	 	 	 				81
14	14.1 14.2 14.3	Bemerkung . Bemerkung . Definition						 	 	 	 	 			 	81 81 82
14	14.1 14.2 14.3 14.4	Bemerkung . Bemerkung . Definition Lemma		 	 	 		 	 	 	 	 			 •	81 81 82 83
14	14.1 14.2 14.3 14.4 14.5	Bemerkung . Bemerkung . Definition Lemma Satz						 	 · · · · · · · · · · · · · · · · · · ·	 	 	 	 	 	 	81 81 82 83
14	14.1 14.2 14.3 14.4 14.5 14.6	Bemerkung . Bemerkung . Definition Lemma Satz Definition						 · · · · · · · · · · · · · · · · · · ·	 · · · · · · · · · · · · · · · · · · ·	 	 	 			 	81 81 82 83 83 84
14	14.1 14.2 14.3 14.4 14.5 14.6 14.7	Bemerkung . Bemerkung . Definition Lemma Satz Definition Lemma						 	 	 	 	 				81 82 83 83 84 84
14	14.1 14.2 14.3 14.4 14.5 14.6 14.7	Bemerkung . Bemerkung . Definition Lemma Satz Definition Lemma Satz						 	 	 	 	 				81 81 82 83 83 84 84
14	14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9	Bemerkung . Bemerkung . Definition Lemma Satz Definition Lemma Satz Korollar							 	 	 	 				81 82 83 83 84 84 85
14	14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9	Bemerkung . Bemerkung . Definition Lemma Satz Definition Lemma Satz Korollar Lemma							 		 	 				81 82 83 83 84 84 85 85
14	14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10	Bemerkung . Bemerkung . Definition Satz Definition Lemma Satz Lemma Satz Definition							 		 	 				81 82 83 83 84 84 85 85 85
14	14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 14.11	Bemerkung . Bemerkung . Definition Lemma Satz Definition Lemma Satz Corollar Lemma Definition Satz							 			 				81 82 83 83 84 84 85 85 85 85
14	14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 14.11 14.12 14.13	Bemerkung . Bemerkung . Definition Lemma Definition Lemma Satz Korollar Lemma Definition Definition							 							81 82 83 83 84 84 85 85 85 85 86
14	14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 14.11 14.12 14.13 14.14	Bemerkung . Bemerkung . Definition Lemma Satz Definition Lemma Satz Definition Satz Emma Definition Definition Satz Definition Satz							 							81 81 82 83 83 84 84 85 85 85 85 86 86
14	14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 14.11 14.12 14.13 14.14	Bemerkung . Bemerkung . Definition Lemma Definition Lemma Satz Korollar Lemma Definition Definition							 							81 81 82 83 83 84 84 85 85 85 85 86 86
	14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 14.11 14.12 14.13 14.14	Bemerkung . Bemerkung . Definition Lemma Satz Definition Lemma Satz Definition Satz Corollar Lemma Definition Satz Definition Satz Definition Satz Bemerkung .							 							81 81 82 83 83 84 84 85 85 85 85 86 86 86 86 87
	14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 14.11 14.12 14.13 14.14 14.15	Bemerkung . Bemerkung . Definition Lemma Satz Definition Lemma Satz Definition Satz Emma Definition Satz Bemerkung														81 81 82 83 83 84 84 85 85 85 85 86 86 86 87
	14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 14.11 14.12 14.13 14.14 14.15 Selbst 15.1	Bemerkung . Bemerkung . Definition Lemma Satz Definition Lemma Satz Korollar Lemma Definition Satz Befinition Satz Definition Satz Definition Satz Definition Satz Definition														81 81 82 83 83 84 84 85 85 85 85 86 86 86 87
	14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 14.11 14.12 14.13 14.14 14.15 Selbst 15.1 15.2	Bemerkung . Bemerkung . Definition Lemma Satz Definition Lemma Satz Emma Satz Korollar Lemma Definition Satz Bemerkung . Cadjungierte Endinition Definition Lemma														811 811 822 833 844 844 855 855 856 866 866 877 877 877 877 877 877 877 87
	14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 14.11 14.12 14.13 14.14 14.15 Selbsi 15.1 15.2 15.3	Bemerkung . Bemerkung . Definition Lemma Satz Definition Lemma Satz Morollar Lemma Definition Definition Definition Bemerkung Eadjungierte Er Definition Beispiel														811 822 833 844 844 855 855 856 866 866 877 877 878 878 878 888
	14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 14.11 14.12 14.13 14.14 14.15 Selbsi 15.1 15.2 15.3 15.4	Bemerkung . Bemerkung . Definition Lemma Satz Definition Lemma Satz Definition Satz Korollar Lemma Definition Satz Definition Satz Definition Satz Definition Satz Bemerkung . cadjungierte Er Definition Lemma Beispiel Lemma														81 81 82 83 83 84 84 85 85 85 85 86 86 86 87 87 87 87 88 88 88
	14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 14.11 14.12 14.13 14.14 14.15 Selbsi 15.1 15.2 15.3	Bemerkung . Bemerkung . Definition Lemma Satz Definition Lemma Satz Definition Satz Korollar Lemma Definition Satz Befinition Satz Definition Satz Bemerkung . cadjungierte Er Definition Lemma Beispiel Lemma Satz														81 81 82 83 83 84 84 84 85 85 85 85 86 86 87 87 87 87 88 88 88 88 88 88 88 88 88
	14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 14.11 14.12 14.13 14.14 14.15 Selbsi 15.1 15.2 15.3 15.4	Bemerkung . Bemerkung . Definition Lemma Satz Definition Lemma Satz Definition Satz Korollar Lemma Definition Satz Definition Satz Definition Satz Definition Satz Bemerkung . cadjungierte Er Definition Lemma Beispiel Lemma														81 81 82 83 83 84 84 84 85 85 85 85 86 86 87 87 87 87 87 88 88 88 88 88 88 88 88

Abbildungsverzeichnis

Α

1 Lineare Gleichungsysteme in 2 Unbekannten

1.1 Beispiel

$$2x + 3y = 3$$

$$4x - 6y = -2$$

$$(*)$$

Addition 1te Gleichung mit $-\frac{1}{2}$ 2te Gleichung liefert:

$$6y = 4$$

$$4x - 6y = -2$$

$$(**)$$

Dann ist (x,y) genau dann eine Lösung von (*), wenn (x,y) eine Lösung von (**) ist. Weiter hat (**) genau eine Lösung:

$$y = \frac{4}{6} = \frac{2}{3}$$
 , $x = \frac{1}{4}(-2 + 6y) = \frac{1}{4}(-2 + 4) = \frac{1}{2}$

1.2 Fragen:

- 1. Ist jedes solches Gleichungssystem lösbar?
- 2. Sind die Lösungen immer eindeutig?
- 3. Wie können wir die Lösungen finden?

1.3 Allgemein

heißt Lineares Gleichungssystem von m Gleichungen in n Unbekannten.

Die $a_{ij}(i=1,\dots,m\ j=1,\dots,n)$ sind Koeffizienten des Gleichungssystems. Wir schreiben sie oft als $m\times n$ -Matrix:

$$A := \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Ebenso fassen wir die $b_i (i=1,\dots,m)$ zu einem m-Tupel von Zahlen (oder: "Spaltenvektor") zusammen.

$$b := \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

Genauso werden die Unbekannten $x_j (j=1,\dots,n)$ zu einem n-Tupel zusammengefasst.

$$x := \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

1.4 Rechenregeln für Vektoren und Matrizen

1. Addition von m-Tupeln:

$$\begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix} + \begin{pmatrix} d_1 \\ \vdots \\ d_m \end{pmatrix} := \begin{pmatrix} c_1 + d_1 \\ \vdots \\ c_m + d_m \end{pmatrix}$$

2. Multiplikation eines m-Tupels mit einer Zahl:

$$a \cdot \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix} := \begin{pmatrix} ac_1 \\ \vdots \\ ac_m \end{pmatrix}$$

3. Multiplikation eines n-Tupels mit einer $m \times n$ -Matrix:

$$\underbrace{A}_{m\times n} \cdot x := \begin{pmatrix} a_{11}x_1 & + \ldots + & a_{1n}x_n \\ \vdots & & \vdots \\ a_{m1}x_1 & + \ldots + & a_{mn}x_n \end{pmatrix} \quad Ax \text{ ist ein } m\text{-Tupel}$$

Unser Gleichungssystem ist dann Ax = b

1.5 Lemma

Sei A eine $m \times n$ -Matrix und x, x' seien m-Tupel. Dann gilt:

$$A(x+x') = Ax + Ax'$$

1.6 Beweis

Seien
$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad x' = \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix}$$

$$A(x+x') = \begin{pmatrix} x_1 + x_1' \\ \vdots \\ x_n + x_n' \end{pmatrix} = \begin{pmatrix} a_{11}(x_1 + x_1') & + \dots + & a_{1n}(x_n + x_n') \\ \vdots & & \vdots \\ a_{m1}(x_1 + x_1') & + \dots + & a_{mn}(x_n + x_n') \end{pmatrix}$$

$$= \begin{pmatrix} a_{11}x_1 + a_{11}x_1' & + \dots + & a_{1n}x_n + a_{1n}x_n' \\ \vdots & & \vdots \\ a_{m1}x_1 + a_{m1}x_1' & + \dots + & a_{mn}x_n + a_{mn}x_n' \end{pmatrix}$$

$$= \begin{pmatrix} a_{11}x_1 & + \dots + & a_{1n}x_n & + & a_{11}x_1' & + \dots + & a_{1n}x_n' \\ \vdots & & \vdots & & \vdots \\ a_{m1}x_1 & + \dots + & a_{mn}x_n & + & a_{m1}x_1' & + \dots + & a_{mn}x_n' \end{pmatrix}$$

$$= \begin{pmatrix} a_{11}x_1 & + \dots + & a_{1n}x_n \\ \vdots & & & \vdots \\ a_{m1}x_1 & + \dots + & a_{mn}x_n \end{pmatrix} + \begin{pmatrix} a_{11}x_1' & + \dots + & a_{1n}x_n' \\ \vdots & & & \vdots \\ a_{m1}x_1' & + \dots + & a_{mn}x_n' \end{pmatrix}$$

$$= Ax + Ax'$$

Wir schreiben auch 0 für das **Null**-n-**Tupel** $0 = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$.

Es gilt:

1.
$$x + 0 = x = 0 + x$$
 für jedes m -Tupel x

2.
$$A \cdot 0 = 0$$
 für jede $m \times n$ -Matrix A

Ein Gleichungssystem heißt homogen, falls b=0, andernfalls inhomogen. (0 ist immer eine Lösung wenn homogen)

1.7 Proposition

Sei x eine Lösung des Gleichungssystems Ax = b.

Dann sind alle weiteren Lösungen von Ax = b von der Form x + y, wobei y eine Lösung des entsprechenden homogenen Gleichungssystems Ay = 0 ist.

1.8 Beweis

Sei x' eine weitere Lösung des inhomogenen Gleichungssystems, also Ax' = b.

Sei
$$y := x' - x$$

Dann gilt:

$$Ay = A(x' - x) = Ax' - Ax = 0$$

$$\downarrow b \qquad \downarrow b$$

Weiter ist

$$x' = x' + x - x = x + \underbrace{x' - x}_{y} = x + y$$

Sei L die Menge aller Lösungen des homogenen Gleichungssystems Ay=0. Seien y_1,y_2 n-Tupel und aeine Zahl. Dann gilt:

$$y_1, y_2 \in L \Longrightarrow y_1 + y_2 \in L$$

 $y_1 \in L \Longrightarrow ay_1 \in L$

1.10 Beweis

$$A(y_1 + y_2) = Ay_1 + Ay_2 = 0 + 0 = 0$$
$$A(a \cdot y_1) = a \cdot Ay_1 = a \cdot 0 = 0$$

1.11 Definition

Eine Menge U von n-Tupeln heißt <u>Unterraum</u> (des Raumes aller n-Tupel) falls gilt:

- (ii) $y_1, y_2 \in U \Longrightarrow y_1 + y_2 \in U$
- (iii) $y \in U$, a ist eine Zahl $\Longrightarrow ay \in U$

1.12 Bemerkung

Betrachte ein inhomogenes Gleichungssystem Ax = b

- (i) Die Lösungsmenge L des homogenen Gleichungssystems Ay=0 ist ein Unterraum
- (ii) Gilt $L = \{0\}$, dann gibt es höchstens eine Lösung für Ax = b

2 Elementare Umformungen von Gleichungssystem und Matrizen

Ein lineares Gleichungssystem

wird durch seine erweiterte Koeffizientenmatrix eindeutig bestimmt:

$$\underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}}_{m \times (n+1)\text{-Matrix}}$$

Zur Lösung von linearen Gleichsungssystemen verwendet man folgende Umformungen:

- I. Addition eines Vielfachen einer Gleichung zu einer anderen Gleichung
- II. Vertauschung von Gleichungen

Für eine erweiterte Koeffizientenmatrix entsprechen die Umformungen den folgenden Zeilenumformungen;

- I. Addition eines Vielfachen einer Zeile zu einer anderen
- II. Vertauschung zweier Zeilen

Nützlich sind auch:

- III. Multiplikation einer Zeile mit einer Zahl $\neq 0$
- IV. Vertauschung zweier Spalten, aber nicht der letzten!

Die Operationen I-III ändern die Lösungsmenge nicht. Die Operation IV entspricht einer Umnummerierung der Variablen x_1,\dots,x_n

3 Das Gauß'sche Verfahren

Sei

$$\tilde{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

die erweiterte Koeffizientenmatrix des Gleichungssystems Ax=b (Es ist dann $\tilde{A}=(Ab)$)

Sind alle $a_{ij}=0$, also A=0, so ist das Gleichungssystem genau dann lösbar, wenn b=0 ist und dann sind alle n-Tupel $x=\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ eine Lösung.

Wir können also $A \neq 0$ annehmen

Durch Vertauschung von Zeilen und Spalten erhalten wir:

$$\tilde{A}' = \begin{pmatrix} a'_{11} & a'_{12} & \cdots & a'_{1n} & b'_{1} \\ \vdots & \vdots & & \vdots & \vdots \\ a'_{m1} & a'_{m2} & \cdots & a'_{mn} & b'_{m} \end{pmatrix} \quad \text{wobei } a'_{11} \neq 0$$

Nun können wir für $i=2,\ldots,m$ das $\frac{a'_{i1}}{a'_{11}}$ -fache der ersten Zeile von der i-ten Zeile abziehen. Zusätzlich multiplizieren wir die erste Zeile mit $\frac{1}{a'_{11}}$. Wir erhalten eine neue Matrix der Form

$$\tilde{A}'' = \begin{pmatrix} 1 & a_{12}'' & \cdots & a_{1n}'' & b_{1}'' \\ 0 & a_{22}'' & \cdots & a_{2n}'' & b_{2}'' \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & a_{m2}'' & \cdots & a_{mn}'' & b_{m}'' \end{pmatrix} = \begin{pmatrix} 1 & \cdots & \cdots & \cdots \\ 0 & & & \\ \vdots & \hat{A} & & | \hat{b} \\ 0 & & & \end{pmatrix}$$

Falls $\hat{A} = 0$ so endet das Verfahren.

Falls $\hat{A} \neq 0$ so wenden wir das Verfahren nun auf $(\hat{A}\hat{b})$ an.

Schließlich erhalten wir eine Matrix der folgenden Form:

$$\begin{pmatrix} 1 & c_{12} & \cdots & \cdots & \cdots & c_{1n} & \hat{b}_1 \\ 0 & 1 & & & \vdots & \vdots \\ \vdots & & \ddots & & & \vdots & \vdots \\ 0 & \cdots & \cdots & 1 & c_{r\,r+1} & \cdots & c_{rn} & \hat{b}_r \\ 0 & \cdots & \cdots & 0 & 0 & \cdots & 0 & \hat{b}_{r+1} \\ \vdots & & & \vdots & \vdots & & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & 0 & \cdots & 0 & \hat{b}_m \end{pmatrix} = (C\hat{b})$$

Das Gleichungssystem $Cx=\hat{b}$ ist nun genau dann lösbar, wenn $\hat{b}_{r+1}=\hat{b}_{r+2}=\ldots=\hat{b}_m=0$. In diesem Fall erhalten wir alle Lösungen indem wir x_{r+1},\ldots,x_n beliebig wählen und schrittweise x_r,x_{r-1},\ldots,x_1 berechnen.

(z.B.
$$x_r = \hat{b}_r - c_{r\,r+1}x_{r+1} - \ldots - c_{rn}x_n$$
)

6

3.1 Beispiel 1

$$\begin{array}{c} x_1 + 2x_2 + 3x_3 = 14 \\ x_1 + x_2 + x_3 = 6 \\ x_1 + x_2 - x_3 = 0 \\ x_2 + 3x_3 = 10 \end{array}$$

Das Gleichungssystem 1 ist nicht lösbar!

3.2 Beispiel 2

$$\begin{array}{c} x_1 + 2x_2 + 3x_3 = 14 \\ x_1 + x_2 + x_3 = 6 \\ x_1 + x_2 - x_3 = 0 \end{array}$$

$$\begin{pmatrix} 1 & 2 & 3 & 14 \\ 1 & 1 & 1 & 6 \\ 1 & 1 & -1 & 0 \end{pmatrix} \underset{(||)}{\longleftrightarrow} \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & -1 & -2 & -8 \\ 0 & -1 & -4 & -14 \end{pmatrix} \underset{(|||)}{\longleftrightarrow} \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & 1 & 2 & 8 \\ 0 & 1 & 4 & 14 \end{pmatrix} \underset{(||)}{\longleftrightarrow} \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & 1 & 2 & 8 \\ 0 & 0 & 2 & 6 \end{pmatrix}$$

$$\underset{(||||)}{\longleftrightarrow} \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & 1 & 2 & 8 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$

Das Gleichungssystem ist eindeutig lösbar. Die Lösung ist:

$$x_3 = 3$$

 $x_2 = 8 - 2x_3 = 8 - 6 = 2$
 $x_1 = 14 - 3x_3 - 2x_2 = 14 - 9 - 4 = 1$

3.3 Beispiel 3

$$\begin{aligned} x_1 + 2x_2 + 3x_3 &= 14 \\ x_1 + x_2 + x_3 &= 6 \end{aligned}$$

$$\begin{pmatrix} 1 & 2 & 3 & 14 \\ 1 & 1 & 1 & 6 \end{pmatrix} \underset{\text{(i)}}{\sim} \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & -1 & -2 & -8 \end{pmatrix} \underset{\text{(iii)}}{\sim} \begin{pmatrix} 1 & 2 & 3 & 14 \\ 0 & 1 & 2 & 8 \end{pmatrix}$$

Das Gleichungssystem ist lösbar. Die Menge aller Lösungen ist:

$$\left\{ \begin{pmatrix} -2+x_3 \\ 8-2x_3 \\ x_3 \end{pmatrix} \middle| x_3 \text{ beliebig} \right\} = \left\{ \begin{pmatrix} -2 \\ 8 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \middle| t \text{ beliebig} \right\}$$

3 Das Gaußsche Verfahren

$$x_2 = 8 - 2x_3$$

 $x_1 = 14 - 2x_2 - 3x_3 = 14 - 2(8 - 2x_3) - 3x_3 = -2 + x_3$

8 3 Das Gaußsche Verfahren

1 Mengen und Abbildungen

1.1 Definition

Eine Menge ist eine Zusammenfassung gewisser Objekte, der sogenannten Elemente der Menge. Ist X eine Menge, so schreiben wir $x \in X$ falls x ein Element von X ist. Andernfalls $x \notin X$.

1.2 Beispiel

II.
$$\{1,3,5\}$$
 III.
$$\mathbb{N}:=\{0,1,2,3,\ldots\}\quad \text{die Menge der natürlichen Zahlen}$$
 III.
$$\mathbb{Z}:=\{\ldots,-2,-1,0,1,2,\ldots\}\quad \text{die Menge der ganzen Zahlen}$$
 IV.
$$\mathbb{Q}:=\left\{\frac{p}{q}\mid p,q\in\mathbb{Z},q\neq0\right\}\quad \text{die Menge der rationalen Zahlen}$$
 V.
$$\mathbb{R}\quad \text{die Menge der reellen Zahlen}$$
 VI.
$$\emptyset\quad \text{die leere Menge}$$
 VII.
$$\{n\in\mathbb{N}\mid n \text{ ist gerade}\}$$

1.3 Definition

Seien X und Y Mengen. Ist jedes Element von X auch ein Element von Y. So sagen wir X ist eine Teilmenge von Y und schreiben $X\subseteq Y$. Ist auch $X\neq Y$, so schreiben wir $X\subsetneq Y$.

1.4 Definition

Sei X eine Menge. Die Menge aller Teilmengen von X, $P(X) = \{X_0 \mid X_0 \subseteq X\}$ heißt <u>Potenzmenge</u> von X.

1.5 Beispiel

I.
$$\{1,3,5\}\subseteq\mathbb{N}$$
 II.
$$\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}$$
 III.
$$\mathcal{P}\Big(\{1,2\}\Big)=\Big\{\{1\},\{2\},\{1,2\},\emptyset\Big\}$$
 IV.
$$\mathbb{N}_{>0}:=\{1,2,3,\ldots\}\subsetneq\mathbb{N}$$
 Bemerkung: Es gilt $X\subseteq Y$ und $Y\subseteq X\Leftrightarrow X=Y$

1 Mengen und Abbildungen

1.6 Definition

Seien X_0 und X_1 Teilmengen von X

- a) $X_0 \cup X_1 := \{x \in X \mid x \in X_0 \lor x \in X_1\}$ heißt die Vereinigung von X_0 und X_1
- b) $X_0\cap X_1:=\{x\in X\mid x\in X_0\wedge x\in X_1\}$ heißt der <u>Durchschnitt</u> von X_0 und X_1

1.7 Bemerkung

Es gelten die folgenden Rechenregeln

- a) $(X_0 \cup X_1) \cup X_2 = X_0 \cup (X_1 \cup X_2) =: X_0 \cup X_1 \cup X_2$
- b) $(X_0 \cap X_1) \cap X_2 = X_0 \cap (X_1 \cap X_2) =: X_0 \cap X_1 \cap X_2$
- c) $X_0 \cap (Y_1 \cup Y_2) = (X_0 \cap Y_1) \cup (X_0 \cap Y_2)$
- d) $X_0 \cup (Y_1 \cap Y_2) = (X_0 \cup Y_1) \cap (X_0 \cup Y_2)$

Beweis von c):

(1) Zu zeigen:

$$X_0 \cap (Y_1 \cup Y_2) \subseteq (X_0 \cap Y_1) \cup (X_0 \cap Y_2)$$

Sei $x\in X\cap (Y_1\cup Y_2)$. Es folgt $x\in X_0$ und $(x\in Y_1\vee x\in Y_2)$ Entweder gilt $x\in Y_1$ oder $x\in Y_2$

Gilt $x \in Y_1$ so folgt $x \in X_0 \cap Y_1 \subseteq (X_0 \cap Y_1) \cup (X_0 \cap Y_2)$

Gilt $x \in Y_2$ so folgt $x \in X_0 \cap Y_2 \subseteq (X_0 \cap Y_1) \cup (X_0 \cap Y_2)$

(2) Zu zeigen:

$$(X_0 \cap Y_1) \cup (X_0 \cap Y_2) \subseteq X_0 \cap (Y_1 \cup Y_2)$$

Sei $x\in (X_0\cap Y_1)\cup (X_0\cap Y_2)$. Es gilt also $x\in (X_0\cap Y_1)$ oder $x\in (X_0\cap Y_2)$ Gilt $x\in (X_0\cap Y_1)$ so folgt $x\in X_0$ und $x\in Y_1$. Insbesondere folgt $x\in X_0$ und $x\in Y_1\cup Y_2$ Also $x\in X_0\cap (Y_1\cup Y_2)$

Gilt $x \in (X_0 \cap Y_2)$ so folgt $x \in X_0$ und $x \in Y_2$. Insbesondere folgt $x \in X_0$ und $x \in Y_1 \cup Y_2$ Also $x \in X_0 \cap (Y_1 \cup Y_2)$

Bemerkung: $X_0 \cup X_1 \subseteq X_0 \Leftrightarrow X_1 \subseteq X_0$ **Beispiel:** $\{1, 2, 3\} \cup \{3\} = \{1, 2, 3, 3\} = \{1, 2, 3\}$

1.8 Definition

Seien X_1, \ldots, X_n Mengen. Dann heißt

$$X_1 \times X_2 \times \ldots \times X_n := \{(x_1, x_2, \ldots, x_n) \mid x_1 \in X_1, x_2 \in X_2, \ldots, x_n \in X_n\}$$

das **karthesische Produkt** der Mengen X_1, \ldots, X_n .

Die Elemente von $X_1 \times X_2 \times \ldots \times X_n$ heißen n-Tupel.

Oft schreiben wir $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ statt (x_1, \dots, x_n) .

Ist $X_1 = X_2 = \ldots = X_n = X$ so schreiben wir auch

$$X^n = \underbrace{X \times X \times \ldots \times X}_n$$

1.9 Definition

Seien X und Y Mengen. Eine **Abbildung** von X nach Y, geschrieben $f: X \to Y$, ist eine Vorschrift die jeden $x \in X$ ein $f(x) \in Y$ zuordnet.

1.10 Beispiel

- a) Sei X eine Menge. Dann definiert $\mathrm{id}_X(x)=x$ die Identitätsabbildung $\mathrm{id}_X:X\to X$
- b) $f: \mathbb{N} \to \mathbb{N}$, f(n) = 3n
- c) $g: \mathbb{N} \to \mathbb{Q}$, $g(n) = \frac{n}{3}$
- d) $\min: \mathcal{P}(\mathbb{N}) \setminus \{\emptyset\} \to \mathbb{N}$, $\min(X) = \text{die kleinste Zahl in } X$

1.11 Bemerkung

Durch $\min(Y) := \text{Die kleinste Zahl in } Y \text{ wird } \underline{\text{keine}} \text{ Abbildung } \mathcal{P}(\mathbb{R}) \setminus \{\emptyset\} \to \mathbb{R} \text{ definiert!}$

1.12 Definition

Sei $f: X \to Y$ eine Abbildung

- a) f heißt **injektiv** falls für $x, x' \in X$ aus f(x) = f(x') stets x = x' folgt
- b) f heißt **surjektiv** falls es zu jedem $y \in Y$ ein $x \in X$ gibt mit f(x) = y
- c) Ist f injektiv und surjektiv, so sagen wir f ist **bijektiv**
- d) $f(X) := \{f(x) \mid x \in X\} \subseteq Y \text{ heißt } \underline{\mathbf{Bild}} \text{ von } f$

1.13 Beispiel

	injektiv?	surjektiv?	bijektiv?	Bild
$f: \mathbb{N} \to \mathbb{N}$	$ja\ 3n = 3m$	nein, es gibt kein $n \in$	nein	$Bild\; f =$
f(n) = 3n	$\Rightarrow n = m$	\mathbb{N} mit		alle durch 3 teilbaren
		3n = 11		$n \in \mathbb{N}$
$g: \mathbb{N} \to \mathbb{Q}$	$ \begin{array}{c} \text{ja } \frac{n}{3} = \frac{m}{3} \\ \Rightarrow n = m \end{array} $	nein, es gibt kein $n \in$	nein	Bild g
$g: \mathbb{N} \to \mathbb{Q}$ $g(n) = \frac{n}{3}$	$\Rightarrow n = m$	\mathbb{N} mit $\frac{n}{3} = \frac{4}{5}$		$\left\{ \frac{n}{3} \mid n \in \mathbb{N} \right\}$
$\min \mathcal{P}(\mathbb{N})$	nein,	$ja,\ n = \min(\{n\})$	nein	$Bild(min) = \mathbb{N}$
$\{\emptyset\} o \mathbb{N}$	$\min\{1, 2, 3\} = \min\{1\}$			
	aber $\{1,2\} \neq \{1\}$			
$\operatorname{id}_X X \to X$	ja	ja	ja	$Bild\;(\mathrm{id}_X) = X$
$h:\mathbb{Q} \to \mathbb{Q}$	ja	ja	ja	$Bild\;(h)=\mathbb{Q}$
$h(q) = \frac{1}{q}$				

1.14 Definition

Seien $f:X\to Y$ und $g:Y\to Z$ Abbildungen. Ihre **Komposition** $g\circ f:X\to Z$ wird durch

$$g \circ f(x) := g(f(x))$$

erklärt.

1.15 Bemerkung

Für Abbildungen $f: X \to Y, g: Y \to Z, h: Z \to V$ gilt:

$$h \circ (g \circ f) = (h \circ g) \circ f$$

wir schreiben dafür kurz

$$h \circ g \circ f$$

1.16 Beispiel

Sei $A=\begin{pmatrix} a_{11}&\cdots&a_{1n}\\ \vdots&&\vdots\\ a_{m1}&\cdots&a_{mn}\end{pmatrix}$ eine $m\times n$ -Matrix von reellen Zahlen $(a_{ij}\in\mathbb{R})$. Dann erhalten wir eine Abbildung $f:\mathbb{R}^n\to\mathbb{R}^m$ durch

$$f_A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} := A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{pmatrix}$$

a) Es gilt $b \in f_A(\mathbb{R}^n)$ genau dann, wenn das Gleichungssystem Ax = b lösbar ist

$$b \in f_A(\mathbb{R}^n) \Longleftrightarrow \text{es gibt } x \in \mathbb{R}^n \text{ mit } f_A(x) = b$$

- b) Es gilt f_A ist surjektiv genau dann, wenn für jedes $b \in \mathbb{R}^m$ das Gleichungssystem Ax = b lösbar ist.
- c) Es gilt f_A ist injektiv genau dann, wenn für jedes $b \in \mathbb{R}^m$ das Gleichungssystem Ax = b höchstens eine Lösung hat.
- d) Es gilt f_A ist bijektiv genau dann, wenn für jedes $b \in \mathbb{R}^m$ das Gleichungssystem Ax = b eine eindeutige Lösung hat.

1.17 Warnung!

Die Bildung von Mengen ist Restriktionen unterworfen!

Beispielsweise gibt es keine Menge aller Mengen. Andernfalls entsteht das Paradox von Russel: Ist $\mathfrak M$ die Menge aller Mengen so betrachte

$$\mathfrak{M}_0 = \{ M \in \mathfrak{M} \mid M \not\in M \}$$

Gilt $\mathfrak{M}_0 \in \mathfrak{M}_0$ so folgt aus der Definition von \mathfrak{M}_0 : $\mathfrak{M}_0 \notin \mathfrak{M}_0$. Gilt $\mathfrak{M}_0 \notin \mathfrak{M}_0$ so folgt aus der Definition von \mathfrak{M}_0 : $\mathfrak{M}_0 \in \mathfrak{M}_0$.

Es kann aber nicht $\mathfrak{M}_0 \in \mathfrak{M}_0$ und $\mathfrak{M}_0 \not\in \mathfrak{M}_0$ wahr sein.

2 Körper

2.1 Definition

Eine Verknüpfung einer Menge G ist eine Abbildung

$$m: G \times G \to G$$

Oft notieren wir die Verknüpfung abgekürzt als Multiplikation $m(a,b)=:a\cdot b=ab$

2.2 Definition

Eine **Gruppe** G ist eine Menge mit einer Verknüpfung $G \times G \to G, (a,b) \mapsto a \cdot b$, die die folgenden Axiome erfüllt:

(a) Assoziativität

Für alle $a, b, c \in G$ gilt

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

(b) neutrales Element

Es gibt ein neutrales Element in G d.h. ein $e \in G$, sodass für alle $a \in G$ gilt

$$a \cdot e = a = e \cdot a$$

(c) **Inverse**

Zu jedem Element $a \in G$ gibt es ein inverses Element, d.h. ein $b \in G$ mit

$$b\cdot a=e=a\cdot b$$

(Oft schreiben wir a^{-1} für das inverse Element zu a)

(d) Eine Gruppe heißt **kommutativ** oder **abelsch**, falls für alle $a,b \in G$ gilt

$$a\cdot b=b\cdot a$$

2.3 Lemma

Sei G eine Gruppe

- a) Das neutrale Element ist eindeutig bestimmt.
- b) Zu jedem $a \in G$ ist das Inverse zu a eindeutig bestimmt.

2.4 Beweis

a) Seien e und e' beide neutrale Elemente. Dann folgt:

$$e = e \cdot e' = e \cdot e'$$
 da e' ein neutrales Element da e' da e' ein neutrales Element

b) Seien b und b' beide inverse Elemente zu einem a

$$b = b \cdot e = b \cdot (a \cdot b') = (b \cdot a) \cdot b' = b' \cdot e = b'$$

2.5 Beispiele

- a) $(\mathbb{Z}, +)$
- b) $(\mathbb{Q}, +)$
- c) $(\mathbb{R},+)$
- d) $(\mathbb{Q}^x := \mathbb{Q} \setminus \{0\}, \cdot)$
- e) $(\mathbb{R}^x = \mathbb{R} \setminus \{0\}, \cdot)$
- f) $(\mathbb{R}^n, +)$
- g) Sei X eine Menge $S_X := \Big\{ f: X \to X \mid f \text{ ist bijektiv} \Big\}$ Dann ist (S_X, \circ) eine Gruppe.

2.6 Bemerkung

Für kommutative Verknüpfungen benutzen wir oft (aber nicht immer!) die additive Schreibweise

$$m(a,b) = a + b$$

Das Inverse zu a schreiben wir als -a.

2.7 Lemma

Sei G eine Gruppe. Dann gilt für $a,b,c\in G$

i)
$$ab = ac \Longrightarrow b = c$$

ii)
$$ac = bc \Longrightarrow a = b$$

iii)
$$(a^{-1})^{-1} = a$$

iv)
$$(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$$

Beweis:

i)
$$ab = ac \Longrightarrow \underbrace{a^{-1}a}_e b = \underbrace{a^{-1}a}_e c \Longrightarrow b = eb = ec = c$$

- ii) analog
- iii) Zu zeigen ist, dass a das Inverse zu a^{-1} ist, also dass

$$a^{-1}a = e = aa^{-1}$$

Dies gilt da a^{-1} das Inverse zu a ist.

iv) Zu zeigen:

$$(ab)(b^{-1}a^{-1}) = e = (b^{-1}a^{-1})(ab)$$

(1)
$$(ab)(b^{-1}a^{-1}) = ((ab)b^{-1})a^{-1} = \underbrace{\left(a\underbrace{(b \cdot b^{-1})}_{=e}\right)}_{=a} a^{-1} = a \cdot a^{-1} = e$$

(2)
$$(b^{-1}a^{-1})(ab) = b^{-1}\underbrace{(a^{-1}a)}_{=e}b = b^{-1}b = e$$

2.8 Definition

Sei G ein Gruppe. Eine Teilmenge $U\subseteq G$ heißt eine **Untergruppe** von G falls gilt

- i) $e \in U$
- ii) $a \in U \Rightarrow a^{-1} \in U$
- iii) $a, b \in U \Rightarrow a \cdot b \in U$

Wir schreiben dann $U \leq G$

Bemerkung: Ist U eine Untergruppe, so ist U auch eine Gruppe.

Beispiel:

$$(\mathbb{Z}, +) \le (\mathbb{Q}, +)$$
$$\{n \in \mathbb{Z} \mid 2|n\} \le (\mathbb{Z}, +)$$

2.9 Definition

Eine Abbildung $f:G\to H$ zwischen Gruppe G und H heißt ein **Gruppenhomomorphismus** falls für alle $a,b\in G$ gilt

$$f(a \cdot b) = f(a)f(b)$$

Beispiele für Gruppenhomomorphismen

$$\begin{split} \operatorname{id}_{\mathbb{Z}} : (\mathbb{Z}, +) &\to (\mathbb{Z}, +) \\ f : G &\to H \ \operatorname{mit} \ f(g) = e \quad \forall g \in G \\ g : (\mathbb{Z}, +) &\to (\mathbb{Z}, +) \ \operatorname{mit} \ f(n) = 17n \end{split}$$

2.10 Definition

Ein **Körper** ist eine Menge K zusammen mit zwei Verknüpfungen

$$a:K\times K\to K\quad (x,y)\to x+y,\ \ \text{genannt Addition}$$

$$m:K\times K\to K\quad (x,y)\to x\cdot y,\ \ \text{genannt Multiplikation}$$

Dabei müssen die folgenden Axiome erfüllt sein

- i) (K, +) ist eine **abelsche Gruppe** mit dem neutralen Element 0
- ii) $(K\setminus\{0\},\cdot)$ ist eine **abelsche Gruppe** mit dem neutralen Element 1
- iii) **Distributivgesetz** Für alle $a, b, c \in K$ gilt

$$a(b+c) = ab + ac$$

2 Körper 15

2.11 Bemerkung

In iii) haben wir schon benutzt

- den Multiplikationspunkt lassen wir oft weg
- es gilt Punkt- vor Strichrechnung

genauer wäre $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$

2.12 Lemma

Sei K ein Körper. Für $a,b\in K$ gilt dann

- i) $0 \cdot a = 0$
- ii) a(-b) = -ab
- iii) (-a) + (-b) = ab
- iv) $a \cdot b = 0 \longrightarrow a = 0 \lor b = 0$

Beweis

- i) $0 \cdot a = (0+0)a = 0 \cdot a + 0 \cdot a$ möglich wegen Lemma 2.7
- ii) Übung!
- iii) Übung!
- iv) Übung!

2.13 Beispiel

- i) N ist kein Körper
- ii) $\ensuremath{\mathbb{Z}}$ ist kein Körper
- iii) $\mathbb Q$ ist ein Körper
- iv) \mathbb{R} ist ein Körper
- $\mathsf{v)} \ \mathbb{Q}[\sqrt{2}] := \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\} \subseteq \mathbb{R}$
- vi) Es gibt auch Körper mit endlich vielen Elementen z.B.

$$\mathbb{F}_2 := \{0, 1\}$$

vii) Der in mancher Hinsicht wichtigste Körper ist der Körper $\mathbb C$ der **komplexen Zahlen**.

16

2.14 Bemerkung

Viele Ausdrücke und Regeln, die vom Rechnen mit reellen Zahlen vertraut sind, lassen sich auf beliebige Körper übertragen

i) Für
$$n \in \mathbb{N}, a \in K$$
 gilt $n \cdot a := \underbrace{a + a + \ldots + a}_{n \cdot \text{mal}}$

ii) Für
$$n\in\mathbb{N}_{\geq 0}, a\in K$$
 gilt $a^n:=\underbrace{a\cdot a\cdot \ldots\cdot a}_{n\text{-mal}}$

iii) Für $a,b\in K$ gilt

$$(a+b)^{2} = a^{2} + 2ab + b^{2},$$
$$(a-b)^{2} = a^{2} - 2ab + b^{2},$$
$$(a-b)(a+b) = a^{2} - b^{2}$$

$$\begin{tabular}{|c|c|c|c|}\hline & & \\ & \bullet & \\ \hline & & \\ \hline$$

2.15 Bemerkung

Die Ordnungsrelation " \leq " ist eine besondere Struktur von $\mathbb R$. In beliebigen Körpern ist " $a \leq b$ " keine sinnvolle Aussage.

2.16

Wurzeln sind in beliebigen Körpern keine sinnvollen Ausdrücke. Problem: Schon $\sqrt{-1}$ beschreibt keine reelle Zahl...

2.17 Lemma

$$\sqrt{2} \notin \mathbb{Q}$$

Beweis: Durch Widerspruch

Angenommen:

$$\sqrt{2} \in \mathbb{Q}$$

Dann gibt es teilerfremde ganze Zahlen p,q mit $q\neq 0$ und $\sqrt{2}=\frac{p}{q}$. Es folgt:

$$2 = \frac{p^2}{q^2}$$
$$2a^2 = p^2$$

Also ist p gerade, also p=2p' für ein $p'\in\mathbb{Z}$. Es folgt aus $2q^2=p^2$ nun

$$2q^2 = (2p')^2 = 4p'^2$$

und daraus

$$q^2 = 2p'^2$$

Daher ist auch q gerade. Dies ist ein Widerspruch zur Teilerfremdheit von p und q. Folglich ist die Annahme $\sqrt{2} \in \mathbb{Q}$ falsch.

Es folgt $\sqrt{2} \not \in \mathbb{Q}$

3 Vektorräume

3.1 Definition

Ein **Vektorraum** über einem Körper K besteht aus einer Menge V und zwei Abbildungen

$$a: V \times V \to V \quad (v,w) \mapsto v + w,$$
 genannt Addition (von Vektoren) $m: K \times V \to V \quad (\lambda,v) \mapsto \lambda \cdot v,$ genannt Multiplikation (mit Skalaren)

Dabei müssen die folgenden Axiome erfüllt sein:

- i) (V,+) ist eine abelsche Gruppe
- ii) Für $\lambda_1, \lambda_2 \in K$ und $v \in V$ gilt $\lambda_1 \cdot (\lambda_2 \cdot v) = (\lambda_1 \cdot \lambda_2) \cdot v$
- iii) Für $\lambda \in K$ und $v_1, v_2 \in V$ gilt $\lambda \cdot (v_1 + v_2) = \lambda v_1 + \lambda v_2$
- iv) Für $\lambda_1, \lambda_2 \in K$ und $v \in V$ gilt $(\lambda_1 + \lambda_2) \cdot v = \lambda_1 v + \lambda_2 v$
- v) Für $1 \in K$ und $v \in V$ gilt $1 \cdot v = v$

Die Elemente von V heißen **Vektoren**, die von K heißen oft **Skalare**.

3.2 Bemerkung

- i) Sowohl das neutrale Element von V bezüglich + als auch die Null in K werden mit 0 bezeichnet. Wenn wir ganz genau sind, schreiben wir für 0_V für das neutrale Element in V und 0_K für die Null in K. Da $0_K \cdot v = 0_V$ für alle $v \in V$ und $\lambda 0_V = 0_V$ für alle $\lambda \in K$ gilt, ist es bequem 0_V und 0_K nicht zu unterscheiden.
- ii) Das Inverse von $v \in V$ bezüglich + schreiben wir als -v. Wir schreiben auch

$$v - w := v + (-w)$$

3.3 Lemma

Sei V ein Vektorraum.

Für $\lambda \in K$, $v, w \in V$ gelten

i)
$$0_K \cdot v = 0_V$$

ii)
$$\lambda \cdot 0_V = 0_V$$

iii)
$$(-\lambda)v = \lambda(-v) = -(\lambda v)$$

Beweis:

i)
$$0_K v = (0_K + 0_K)v = 0_K v + 0_K v \Rightarrow 0_V = 0_K v$$

3.4 Beispiel

i) Sei K ein Körper. Dann wird K^n durch

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix} \quad \text{und} \quad \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ \vdots \\ \lambda x_n \end{pmatrix}$$

zu einem K-Vektorraum. Er heißt auch der **Standardvektorraum** der Dimension n.

18 3 Vektorräume

ii) Sei X eine Menge und K ein Körper. Sei K^X eine Menge aller Abbildungen $X \to K$. Durch

$$(f_1 + f_2)(x) := f_1(x) + f_2(x)$$
 für $x \in X$, $f_1, f_2 \in K^X$

und

$$(\lambda f)(x) := \lambda f(x) \quad \text{für} \quad x \in X, \ \lambda \in K, \ f \in K^X$$

wird K^X zu einem Vektorraum.

3.5 Definition

Seien V und W K-Vektorräume.

Eine Abbildung $f: V \to W$ heißt K-linear, falls gilt:

i) Für
$$v_1, v_2 \in V$$
 ist $f(v_1 + v_2) = f(v_1) + f(v_2)$

ii) Für
$$v \in V$$
, $\lambda \in K$ ist $f(\lambda v) = \lambda (f(v))$

Die Menge aller K-linearen Abbildungen von V nach W bzeichnen wir mit

$$hom_K(V, W)$$

3.6 Definition

Sei V ein K-Vektorraum.

Eine Teilmenge $U \subseteq V$ heißt ein **Untervektorraum** von V (oder ein Unterraum) falls gilt:

i)
$$0_V \in U$$

ii) Für
$$v_1, v_2 \in U$$
 gilt $v_1 + v_2 \in U$

iii) Für
$$\lambda \in K$$
, $v \in U$ gilt $\lambda v \in U$

Dann ist U auch ein K-Vektorraum (vermöge der Einschränkung von Vektoraddition und Skalarmultiplikation von V auf U)

3.7 Beispiel

Betrachte das folgende homogene Gleichungssystem über $\mathbb R$

(1)

$$2x + 3y = 0$$

$$4x - 6y = 0$$

Die Lösungsmenge

$$L = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid \begin{array}{l} 2x + 3y = 0 \\ 4x - 6y = 0 \end{array} \right\}$$

bildet einen Unterraum von \mathbb{R}^2

Vergleich mit 3.6:

i)
$$0 \in L$$

ii) Sei

$$v_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, v_2 = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \in L$$

dann gilt auch:

$$v: v_1 + v_2 = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix} \in L$$

Denn

$$2(x_1 + x_2) + 3(y_1 + y_2) = \underbrace{2x_1 + 3y_1}_{=0 \text{ da } v_1 \in L} + \underbrace{2x_2 + 3y_2}_{=0 \text{ da } v_2 \in L} = 0$$

$$4(x_1 + x_2) - 6(y_1 + y_2) = \dots = 0$$

iii) Sei

$$v = \begin{pmatrix} x \\ y \end{pmatrix} \in L, \lambda \in \mathbb{R}$$

dann gilt auch

$$\lambda \cdot v = \begin{pmatrix} \lambda x \\ \lambda y \end{pmatrix} \in L$$

Denn

$$2(\lambda x) + 3(\lambda y) = \lambda \underbrace{(2x + 3y)}_{=0 \text{ da } v \in L} = 0$$
$$4(\lambda x) - 6(\lambda y) = \lambda \underbrace{(4x - 6y)}_{=0 \text{ da } v \in L} = 0$$

(2) Definiere $f: \mathbb{R}^2 \to \mathbb{R}^2$ durch

$$f\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) := \begin{pmatrix} 2x + 3y \\ 4x - 6y \end{pmatrix}$$

Dann ist $f \mathbb{R}$ -linear

i)

$$\begin{split} f\Bigg(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \Bigg) &= f\Bigg(\begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \end{pmatrix} \Bigg) = \begin{pmatrix} 2(x_1 + x_2) + 3(y_1 + y_2) \\ 4(x_1 + x_2) - 6(y_1 + y_2) \end{pmatrix} \\ &= \begin{pmatrix} (2x_1 + 3y_1) + (2x_2 + 3y_2) \\ (4x_1 - 6y_1) + (4x_2 - 6y_2) \end{pmatrix} \\ &= \begin{pmatrix} (2x_1 + 3y_1) \\ (4x_1 - 6y_1) \end{pmatrix} + \begin{pmatrix} (2x_2 + 3y_2) \\ (4x_2 - 6y_2) \end{pmatrix} \\ &= f\Bigg(\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \Bigg) + f\Bigg(\begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \Bigg) \end{split}$$

ii)

$$f\left(\lambda \begin{pmatrix} x \\ y \end{pmatrix}\right) = \dots = \lambda f\left(\begin{pmatrix} x \\ y \end{pmatrix}\right)$$

Es gilt

$$L = \{v \in \mathbb{R}^2 \mid f(v) = 0\} =: \mathsf{Kern}(f)$$

20

3.8 Beispiel

Sei K ein Körper.

Sei

ein homogenes Gleichungssystem über K (also $a_{ij} \in K$ für $i=1,\ldots,m$ $j=1,\ldots,n$)

(1)

$$L := \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \right\} \in K \mid x_1, \dots, x_n \text{ ist L\"osung von } (\star)$$

ist ein Unterraum von K^n

(2) Die Abbildung $f:K^n\to K^n$, die erklärt wird durch

$$f\left(\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}\right) = \begin{pmatrix} a_{11}x_1 & + \dots + & a_{1n}x_n \\ \vdots & & \vdots \\ a_{m1}x_1 & + \dots + & a_{mn}x_n \end{pmatrix}$$

ist K-linear und es gilt $L = \{v \in K^n \mid f(v) = 0\} =: \operatorname{Kern} f$

3.9 Beispiel

Sei K ein Körper. Dann ist

$$\left\{ f \in K^{\mathbb{N}} \mid f(n) + f(n+1) = f(n+2) \forall n \in \mathbb{N} \right\}$$

ein Unterraum von $K^{\mathbb{N}}$.

3.10 Beispiele

Seien U_1 und U_2 Unterräume von V. Dann ist auch $U_1 \cap U_2$ ein Unterraum von V.

- (i) $0 \in U_1 \cap U_2$ da $0 \in U_1$ und $0 \in U_2$
- (ii) Seien $v,w\in U_1\cap U_2$. Dann $v+w\in U_1$ und $v+w\in U_2$, da U_1 und U_2 Unterräume von V sind. Also $v+w\in U_1\cap U_2$
- (iii) Sei $\lambda \in K, v \in U_1 \cap U_2$. Dann $\lambda v \in U_1$ und $\lambda v \in U_2$, da U_1 und U_2 Unterräume von V sind. Also $\lambda v \in U_1 \cap U_2$

3.11 Beispiel

Den \mathbb{R} -Vektorraum \mathbb{R}^2 können wir als die 2-dimensionale Ebene veranschaulichen.

Es gibt in \mathbb{R}^2 drei Klassen von Unterräumen:

- $U=\{0\}$ den Nullraum
- Geraden durch 0: für $a,b\in\mathbb{R}$

$$U = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \mid ax + by = 0 \right\}$$

$$-U=\mathbb{R}^2$$

 \mathbb{R}^3 können wir als den 3-dimensionalen Raum veranschaulichen. Es gibt in \mathbb{R}^3 vier Arten von Unterräumen.

$$-U = \{0\}$$

$$- \text{ Geraden durch 0 } U = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid \begin{matrix} ax + by + cz = 0 \\ \alpha x + \beta y + \gamma z = 0 \end{matrix} \right\} \text{ für } a,b,c,\alpha,\beta,\gamma \in \mathbb{R}$$

– Ebenen, die 0 enthalten
$$U=\left\{\begin{pmatrix}x\\y\\z\end{pmatrix}\mid ax+by+cz\right\}$$
 für $a,b,c\in\mathbb{R}$

$$-U=\mathbb{R}^3$$

3.12 Beispiel

Seien U_1 und U_2 Unterräume eines K-Vektorraums V. Dann ist $U_1 \cup U_2$ nicht notwendig ein Unterraum. Aber $U_1 + U_2 := \{v_1 + v_2 \mid v_1 \in U_1, v_2 \in U_2\}$ ist ein ein Unterraum von V

(Man kann sich hier in Anlehnung an 3.11 zwei Geraden vorstellen)

3.13 Bemerkung

Es gilt

$$(U_1 + U_2) + U_3 = U_1 + (U_2 + U_3) = \{v_1 + v_2 + v_3 \mid v_1 \in U_1, v_2 \in U_2, v_3 \in U_3\}$$

Allgemein schreiben wir für Unterräume U_1, \ldots, U_n von V

$$U_1 + \ldots + U_n := \{v_1 + v_2 + \ldots + v_n \mid v_1 \in U_1, \ldots, v_n \in U_n\}$$

22 3 Vektorräume

3.14 Satz

Seien U_1, \ldots, U_n Unterräume des K-Vektorraums V Folgende Aussagen sind äquivalent:

- (1) Jeder Vektor $v \in V$ besitzt eine eindeutige Darstellung der Form $v = v_1 + \ldots + v_n$ mit $v_i \in U_i$ für $i = 1, \ldots, n$
- (2) $V = U_1 + \ldots + U_n$ und für jedes $j \in \{1, \ldots, n\}$ gilt

$$U_i \cap (U_1 + \ldots + U_{i-1} + U_{i+1} + \ldots + U_n) = \{0\}$$

Beweis: " $(1) \Rightarrow (2)$ ":

Seien U_1, \ldots, U_n Unterräume, dass (1) gilt.

Es folgt $V = U_1 + \ldots + U_n$ da sich jeder Vektor $v \in V$ schreiben lässt als

$$v = v_1 + \ldots + v_n$$
 mit $v_i \in U_i$ für $i = 1, \ldots, n$

Sei
$$j \in \{1, \dots, n\}$$
 fest.

Sei
$$v \in U_j \cap (U_1 + \ldots + U_{j-1} + U_{j+1} + \ldots + U_n)$$

Wir müssen zeigen: v=0

Da
$$v \in (U_1 + ... + U_{j-1} + U_{j+1} + ... + U_n)$$
 ist, gibt es

$$v_i \in U_i$$
 für $i = 1, \dots, j - 1, j + 1, \dots, n$

mit

$$v=v_1+\ldots+v_{j-1}+0+v_{j+1}+\ldots+v_n$$
 Andererseits ist auch $v=0+\ldots+0+v+0+\ldots+0$

Nach Vorraussetzung sind solche Darstellungen für \boldsymbol{v} eindeutig. Es folgt

$$v_1 = 0, \dots, v_{j-1} = 0, 0 = v, v_{j+1} = 0, \dots, v_n = 0.$$

Insbesondere ist v=0

Beweis: " $(1) \Rightarrow (2)$ "

Seien U_1,\ldots,U_n Unterräume von V für die (2) gilt.

Da $V=U_1+\ldots+U_n$ lässt sich jeder Vektor $v\in V$ schreiben als

$$v = v_1 + \ldots + v_n$$
 mit $v_i \in U_i$ für $i = 1, \ldots, n$

Wir müssen noch zeigen, dass diese Darstellung eindeutig ist.

Seien also $v_1, V_1' \in U_1, \dots, v_n, v_n' \in U_n$ mit

$$(\star) \begin{array}{ccccc} v & = & v_1 & + \ldots + & v_n \\ v' & = & v'_1 & + \ldots + & v'_n \end{array}$$

Wir müssen noch zeigen

$$v_j = v_j'$$
 für alle $j \in \{1, \dots, n\}$

Sei $j \in \{1, \dots, n\}$ fest

$$(\star) \Rightarrow \underbrace{v_{j} - v'_{j}}_{\in U_{j}} = \underbrace{(v_{1} - v'_{1})}_{\in U_{1}} + \dots + \underbrace{(v_{j-1} - v'_{j-1})}_{\in U_{j-1}} + \underbrace{(v_{j+1} - v'_{j+1})}_{\in U_{j+1}} + \dots + \underbrace{(v_{n} - v'_{n})}_{\in U_{n}}$$

Also

$$v'_j - v_j \in U_j \cap (U_1 + \ldots + U_{j-1} + U_{j+1} + \ldots + U_n) = \{0\}$$

$$\Rightarrow v'_j - v_j = 0$$
$$\Rightarrow v'_j = v_j \qquad \Box$$

3.15 Definition

Sei U ein Unterraum des K-Vektorraumes V.

Ein Unterraum U' von V heißt ein **Komplement** zu U falls V = U + U' und $U \cap U' = \{0\}$.

3.16 Bemerkung

Ist U' ein Komplement zu U, so ist auch U ein Komplement zu U'. Wir schreiben dann auch $V=U\oplus U'$

3.17 Frage

Gibt es zu jedem Unterraum ein Komplement?

3.18 Beispiel

Seien V und W K-Vektorräume.

Dann wird das karthesische Produkt $V \times W$ zu einem K-Vektorraum durch

$$(v, w) + (v', w') := (v + v', w + w')$$
$$\lambda(v, w) := (\lambda v, \lambda w)$$

zu einem K-Vektorraum. Wir schreiben $V\oplus W$ für diesen Vektorraum. Er besitzt Unterräume $V imes\{0\},\{0\} imes W$ und es gilt

$$V \oplus W = (V \times \{0\}) \oplus (\{0\} \times W)$$

$$\text{Beispiel: } K^n = \underbrace{K \oplus \ldots \oplus K}_{n\text{-mal}}$$

24 3 Vektorräume

4 Basis und Dimension

4.1 Definition

Sei S eine Teilmenge des K-Vektorraum V. Der Durchschnitt aller Unterräume von V, die S enthalten

$$\mathcal{L}(S) := \bigcap_{S \subseteq U} U$$

heißt die **lineare Hülle** von S

Gilt $\mathcal{L}(S) = V$ so sagen wir S erzeugt V oder S ist ein Erzeugendensystem (EZS) von V

4.2 Beispiel

$$\mathcal{L}(\emptyset) = \{0\}$$

4.3 Bemerkung

$$\mathcal{L}(S) = \{\lambda_1 v_1 + \ldots + \lambda_n v_n \mid n \in \mathbb{N}, v_1, \ldots, v_n \in S, \lambda_1, \ldots, \lambda_n \in K\}$$

4.4 Definition

Für $v_1, \ldots, v_n \in V, \lambda_1, \ldots, \lambda_n \in K$ heißt $\lambda_1 v_1 + \ldots + \lambda_n v_n$ ein **Linearkombination** von v_1, \ldots, v_n . Falls mindestens ein $\lambda_i \neq 0$ ist, so heißt die Linearkombination **nicht trivial**.

4.5 Beispiel

Sei

$$e_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \in K^n \text{ für } i = 1, \dots, n$$

Dann ist

$$\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = \lambda_1 e_1 + \ldots + \lambda_n e_n$$

Also ist $\{e_1,\ldots,e_n\}$ ein EZS für K^n

4.6 Beispiel

Jeder Vektorraum V besitzt ein EZS S=V. Dann ist $\mathcal{L}(S)=V$

4.7 Frage

Besitzt jeder Vektorraum ein endliches Erzeugungssystem?

4.8 Beispiel

Sind U_1, \ldots, U_n Unterräume von V, so gilt

$$\mathcal{L}(U_1 \cup \ldots \cup U_n) = U_1 + \ldots + U_n$$

4 Basis und Dimension 25

4.9 Beispiel

Betrachte das homogene Gleichungssystem über \mathbb{R} :

äguivalent zu:

Der Lösungsraum ist

$$= \left\{ \begin{pmatrix} \lambda \\ -2\lambda \\ \lambda \end{pmatrix} \mid \lambda \in \mathbb{R} \right\} = \mathcal{L} \left(\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \right)$$

Also ist
$$\left\{ \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \right\}$$
 ein EZS für L

4.10 Definition

Sei V ein K-Vektorraum und $S \leq V$. Die Menge S heißt **linear unabhängig**, falls für jedes $v \in S$ gilt:

$$v \notin \mathcal{L}(S \setminus \{v\})$$

Anderfalls heißt S linear abhängig.

4.11 Lemma

Sei V ein K-Vektorraum und $S=\{v_1,\ldots,v_n\}\subseteq V$, wobei $v_i\neq v_j$ für $i\neq j$. Dann ist $S=\{v_1,\ldots,v_n\}$ genau dann linear unabhängig, wenn gilt

(*) Ist
$$\lambda_1 v_1 + \ldots + \lambda_n v_n = 0$$
 mit $\lambda_1, \ldots, \lambda_n \in K$, so folgt $\lambda_1 = \ldots = \lambda_n = 0$

4.12 Bemerkung

Für (\star) sagen wir auch, $\{v_1,\ldots,v_n\}$ erfüllt keine nicht triviale lineare Relation.

Beweis von 4.11

"⇒"

Sei S linear unabhängig. Seien $\lambda_1,\dots,\lambda_n\in K$ mit $\lambda_1v_1+\dots+\lambda_nv_n=0$ Zu zeigen:

$$\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$$

Angenommen $\lambda_i \neq 0$, dann folgt

$$v_i = -(\lambda_1^{-1})(\lambda_1 v_1 + \ldots + \lambda_{i-1} v_{i-1} + \lambda_{i+1} v_{i+1} + \ldots + \lambda_n v_n) \in \mathcal{L}(S \setminus \{v\})$$

im Widerspruch zur linearen Unabhängigkeit von S. Also $\lambda_i=0$

26 4 Basis und Dimension

erfülle S nun keine nicht triviale lineare Relation. Angenommen S wäre linear abhängig.

Dann gibt es $v \in \{1, \dots, n\}$ mit $v_i \in \mathcal{L}(S \setminus \{v_i\})$. Also ist v_i eine Linearkombination von $v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_n$. Es gilt also $\lambda_1, \dots, \lambda_{i-1}, \lambda_{i+1}, \dots, \lambda_n \in K$ mit

$$v_i = \lambda_1 v_1 + \ldots + \lambda_{i-1} v_{i-1} + \lambda_{i+1} v_{i+1} + \ldots + \lambda_n v_n$$

Es folgt

$$0 = \lambda_1 v_1 + \ldots + \lambda_{i-1} v_{i-1} + \lambda_{i+1} - v_i + v_{i+1} + \ldots + \lambda_n v_n$$

Dies ist eine nicht triviale lineare Relation $\frac{1}{2}$

4.13 Beispiele

(i) $\{e_1, \ldots, e_n\} \subseteq K^n$ aus 4.5 ist linear unabhängig

(ii)
$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 0\\1\\2 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\} \subseteq \mathbb{R}^3$$
 ist linear unabhängig

(iii)
$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 0\\1\\2 \end{pmatrix}, \begin{pmatrix} 2\\3\\4 \end{pmatrix} \right\} \subseteq \mathbb{R}^3$$
 ist linear abhängig

- (iv) Ist $0 \in S$, so ist S linear abhängig
- (v) $\{v\}$ ist linear unabhängig $\Leftrightarrow v \neq 0$

4.14 Bemerkung

Eine Folge v_1,\ldots,v_n von Vektoren heißt linear unabhängig, wenn sie aus paarweise verschiedenen Vektoren besteht und die Menge $\{v_1,\ldots,v_n\}$ linear unabhängig ist. Dies ist äquivalent dazu, dass v_1,\ldots,v_n keine nicht triviale lineare Relation erfüllen. Ist

$$\lambda_1 v_1 + \ldots + \lambda_n v_n = 0 \text{ mit } \lambda_1, \ldots, \lambda_n \in K$$

so gilt:

$$\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$$

4.15 Definition

Eine Teilmenge B eines Vektorraumes V heißt eine **Basis**, wenn B linear unabhängig ist und V erzeugt.

4.16 Bespiel

 $\{e_1, \dots, e_n \subseteq K^n\}$ aus 4.5 ist eine Basis von K^n und heißt <u>Standardbasis</u> des K^n . e_i heißt der der i-te **Standardvektor** des K^n .

4 Basis und Dimension 27

4.17 Basisergänzungssatz

Sei V ein K-Vektorraum. Seien $M\subseteq S\subseteq V$, wobei S ein EZS von V sei und M linear unabhängig sei. Dann gibt es eine Basis B mit $M\subseteq B\subseteq S$. Insbesondere besitzt jeder Vektorraum eine Basis.

Beweis: (für den Fall, dass S endlich ist)

Unter allen linear unabhängigen Teilmengen X von V mit $M\subseteq X\subseteq S$ wählen wir ein maximales X aus, etwa

$$B = \{b_1, \dots, b_n\}$$

Es genügt nun $\mathcal{L}(B) = V$ zu zeigen. Dazu genügt es $S \subseteq \mathcal{L}(B)$ zu zeigen:

Sei $x \in S$. Ist $x \in B$ so folgt $x \in \mathcal{L}(B)$. Andernfalls ist $B \cup \{x\}$ linear abhängig. Daher (Lemma 4.11 + 2.12) gibt es eine nicht triviale lineare Relation

$$\mu x + \lambda_1 b_1 + \ldots + \lambda_n b_n = 0$$
 mit $\mu, \lambda_1, \ldots, \lambda_n \in K$ und nicht alle 0

Wäre $\mu=0$, so wären auch $\lambda_1,\dots,\lambda_n=0$, da b_1,\dots,b_n linear unabhängig ist. Also $\mu\neq 0$

$$x = \mu^{-1}(-\lambda_1 b_1 - \ldots - \lambda_n b_n) \in \mathcal{L}(B)$$

4.18 Bemerkung

Für ein unendliches S funktioniert der Beweis unter Benutzung des **Zorn'schen Lemmas** aus der Mengenlehre genauso.

4.19 Definition

Sei X eine endliche Menge. Die Anzahl der Elemente von X nennen wir die <u>Mächtigkeit</u> von X. Wir schreiben auch |X| für die Mächtigkeit von X.

Bsp:
$$|\{0, 1, \dots, n\}| = n + 1$$

4.20 Dimensionssatz

Sei V ein K-Vektorraum, der ein endliches EZS S besitzt. Dann haben je zwei Basen dieselbe Mächtigkeit.

4.21 Austauschsatz von Steinitz

Sei V ein K-Vektorraum. Sei S eine endliche linear unabhängige Menge in V und T ein endliches Erzeugendensystem von V.

Dann gilt $|S| \leq |T|$ und S lässt sich durch |T| - |S| Elemente von T zu einem Erzeugendensystem ergänzen.

4.22 Definition

Sei V ein K-Vektorraum. Die **<u>Dimension</u>** von V über K ist die Mächtigkeit einer (und damit jeder) Basis von V.

Wir schreiben auch $\dim_K V$ für die Dimension.

4.23 Bemerkung

Gibt es kein endliches EZS für V, so gilt $\dim_K V = \infty$

28 4 Basis und Dimension

4.24 Beispiel

 $\dim K^n=n$

4 Basis und Dimension 29

Beweis des Austauschsatzes

Durch Induktion über die Mächtigkeit |S| von S

Induktionsanfang:

Sei |S|=0, dann ist $S=\emptyset$

Dann können wir S durch alle (also |T| = |T| - |S| viele) Elemente von T zu einem EZS ergänzen.

Induktionsschritt:

Sei $|S|=n\geq 1$. Sei $b\in S$ und $S'=S\backslash\{b\}$

Dann |S'|=n-1. Wir können also die Induktionsannahme auf S' anwenden und finden $T'\subseteq T$ mit |T'|=|T|-|S'| so dass $S'\cup T'$ ein EZS für V ist.

Nun lässt sich b als Linearkombination der Elemente von $S' \cup T'$ schreiben:

$$b = \sum_{x \in S' \cup T'} \lambda_x \cdot x \quad \mathsf{mit} \ \lambda_x \in K$$

Behauptung (*):

$$(\star) \quad \exists x_0 \in T' \text{ mit } \lambda_{x_0} \neq 0$$

Angenommen dies gilt nicht, dann $\lambda_{x_0}=0$ für alle $x\in T'.$ Dann

$$b = \sum_{x \in S'} \lambda_x \cdot x$$

im Widerspruch zur linearen Unabhängigkeit von $S=S'\cup\{b\}$

Mit (⋆) folgt:

$$x_0 = (\lambda_{x_0})^{-1} \left(b - \sum_{x \in S' \cup (T' \setminus \{x_0\})} \lambda_x x \right) \in \mathcal{L}(S \cup T_0)$$

Sei $T_0 = T' \backslash \{x_0\}$ Es folgt

$$\mathcal{L}(S \cup T_0) = \mathcal{L}(S \cup T') = V$$

$$\supseteq S' \cup T'$$

Also ist $S \cup T_0$ ein EZS.

Weiter ist

$$|T_0| = |T'| - 1 = |T| - |S'| - 1 = |T| - \underbrace{(|S'| + 1)}_{|S|} = |T| - |S|$$

30 4 Basis und Dimension

Beweis des Dimensionssatzes Seien B und B' endliche Basen von V. Mit dem Austauschsatz für S=B und T=B' folgt

$$|B| = |S| \le |T| = |B'|$$

umgekehrt folgt auch $|B'| \leq |B|$. Also |B| = |B'|

4.25 Korollar

Sei V ein n-dimensionaler K-Vektorraum und $S\subseteq V$ eine Teilmenge mit |S|=n. Dann gilt

- (i) Ist S linear unabhängig, so ist S eine Basis
- (ii) Ist S ein EZS, so ist S eine Basis

Beweis:

- (i) Nach dem Basisergänzungssatz lässt sich S zu einer Basis B ergänzen. Nach dem Dimensionssatz gilt |B|=n. Da $S\subseteq B$ und |S|=n folgt S=B. Damit ist S eine Basis
- (ii) Nach dem Basisergänzungssatz finden wir eine Basis B von V mit $B \subseteq S$. Nach dem Dimensionssatz gilt |B| = n. Da $S \subseteq B$ und |S| = n folgt S = B. Damit ist S eine Basis.

4.26 Korollar

Sei U ein Unterraum des K-Vektorraums V.

Dann ist

$$\dim_K U \leq \dim_K V$$

Beweis:

Jede Basis B_0 von U lässt sich nach dem Basisergänzungssatz zu einer Basis B von V ergänzen. Also

$$\dim U = |B_0| \le |B| = \dim V$$

4.27 Beispiel

Sei L der Lösungsraum des folgenden homogenen linearen Gleichungssystems über $\mathbb R$

$$\begin{array}{cccccc} x_1 & +2x_2 & +3x_3 & +4x_4 & = 0 \\ x_1 & -x_2 & +x_3 & -x_4 & = 0 \\ 4x_1 & -x_2 & +6x_3 & +x_4 & = 0 \end{array}$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & -1 & 1 & -1 \\ 4 & -1 & 6 & 1 \end{pmatrix} \overset{\text{(II)}}{\sim} \begin{pmatrix} 1 & -1 & 1 & -1 \\ 1 & 2 & 3 & 4 \\ 4 & -1 & 6 & 1 \end{pmatrix} \overset{\text{(I)}}{\sim} \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 3 & 2 & 5 \\ 0 & 3 & 2 & 5 \end{pmatrix} \overset{\text{(I)}}{\sim} \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & \frac{2}{3} & \frac{5}{3} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Also:

$$L = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \middle| \begin{array}{c} x_3, x_4 \in \mathbb{R} \\ x_2 = -\frac{2}{3}x_3 - \frac{5}{3}x_4 \\ x_1 = x_2 - x_3 + x_4 = -\frac{5}{3}x_3 - \frac{2}{3}x_4 \end{array} \right\}$$

oder:

$$L = \left\{ \lambda \begin{pmatrix} -\frac{2}{3} \\ -\frac{5}{3} \\ 0 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} -\frac{5}{3} \\ -\frac{2}{3} \\ 1 \\ 0 \end{pmatrix} \middle| \lambda, \mu \in \mathbb{R} \right\}$$

4 Basis und Dimension 31

Damit ist

$$B = \left\{ \begin{pmatrix} -\frac{2}{3} \\ -\frac{5}{3} \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -\frac{5}{3} \\ -\frac{2}{3} \\ 1 \\ 0 \end{pmatrix} \right\}$$

eine Basis von L (da B linear unabhängig) Es folgt also:

$$\dim L = 2$$

4.28 Bemerkung

Sei B eine endliche Basis des K-Vektorraums V. Schreibe

$$B = \{b_1, b_2, \dots, b_n\} \quad (\mathsf{mit}\ b_i \neq b_i\ \mathsf{für}\ i \neq j)$$

Wir nennen das n-Tupel (b_1,b_2,\ldots,b_n) von Vektoren eine **geordnete Basis** von V. Jeder Vektor $v\in V$ hat dann eine Darstellung als

$$v = \lambda_1 b_1 + \lambda_2 b_2 + \ldots + \lambda_n b_n$$

da B ein EZS ist. Da B auch linear unabhängig ist, sind alle v durch λ_i auch auch eindeutig dargestellt. Denn aus

$$\lambda_1 b_1 + \lambda_2 b_2 + \ldots + \lambda_n b_n = \mu_1 b_1 + \mu_2 b_2 + \ldots + \mu_n b_n$$

 $\Rightarrow (\lambda_1 - \mu_1) b_1 + (\lambda_2 - \mu_2) b_2 + \ldots + (\lambda_n \mu_n) b_n = 0$

folgt

$$\lambda_1 = \mu_1, \lambda_2 = \mu_2, \dots, \lambda_n = \mu_n$$

da B linear unabhängig

4.29 Bemerkung

Die Beobachtung aus 4.28 lässt sich auch wie folgt formulieren:

Sei (b_1,b_2,\ldots,b_n) eine geordnete Basis von V. Definiere

$$\varphi_B:K^n\to V\quad \text{durch }\varphi_B\begin{pmatrix}\lambda_1\\\vdots\\\lambda_n\end{pmatrix}:=\lambda_1b_1+\lambda_2b_2+\ldots+\lambda_nb_n$$

Dann ist φ_B eine lineare Abbildung. Da B ein EZS ist, ist φ_B surjektiv. Da B linear unabhängig ist, ist φ_B injektiv. Also ist φ_B bijektiv.

4.30 Satz

Sei U ein Unterraum des K-Vektorraums V. Dann gibt es eine Komplement W zu U, also einen Unterraum W von V mit $V=U\oplus W$

Beweis:

Sei B_0 eine Basis von U. Nach dem Basisergänzungssatz können wir B_0 zu einer Basis von V ergänzen.

32 4 Basis und Dimension

Sei $B_1 := B \setminus B_0$ und $W := \mathcal{L}(B_1)$

Behauptung: $V = U \oplus W$

zu zeigen:

- (1) $U \cap W = \{0\}$
- (2) U + W = V

zu(1):

Sei $v \in U \cap W$. Da $v \in U$ gibt es $b_1, \ldots, b_n \in B_0$ und $\lambda_1, \ldots, \lambda_n \in K$ mit $v = \sum_{i=1}^n \lambda_i b_i$

Da auch $v \in W$ gibt es $b_1', \ldots, b_n' \in B_1$ und $\mu_1, \ldots, \mu_n \in K$ mit $v = \sum_{i=1}^n \mu_i b_i'$

Es folgt:

$$\lambda_1 b_1 + \lambda_2 b_2 + \ldots + \lambda_n b_n - \mu_1 b_1' - \mu_2 b_2' - \ldots - \mu_n b_n' = 0$$

Da $b_1, b_2, \ldots, b_n, b'_1, b'_2, \ldots b'_n \subseteq B$ und somit linear unabhängig über K ist, folgt:

$$\lambda_1 = \ldots = \lambda_n = \mu_1 = \ldots = \mu_n = 0$$

Damit ist auch v = 0

zu(2):

 $\overline{\mathsf{Es}}\ \mathsf{ist}\ V = \mathcal{L}(B)\ \mathsf{da}\ B\ \mathsf{Basis}\ \mathsf{von}\ V\ \mathsf{ist.}\ \mathsf{Es}\ \mathsf{gilt}\ \mathsf{weiter}$

$$B = B_0 \cup B_1 \subseteq U \cup W \subseteq U + W = V$$

Also $\mathcal{L}(B) \subseteq U + W$. Damit folgt $V \subseteq U + W$. Da auch $U + W \subseteq V$ gilt, folgt U + W = V

5 Die komplexen Zahlen

5.1 Konstruktion

Betrachte den \mathbb{R} -Vektorraum $\mathbb{C} := \mathbb{R}^2$.

Setze $1_{\mathbb{C}} := \binom{1}{0}$ und $i_{\mathbb{C}} := \binom{0}{1}$. Dann ist $\{1_{\mathbb{C}}, i_{\mathbb{C}}\}$ eine \mathbb{R} -Basis von \mathbb{C} .

Jedes $z\in\mathbb{C}$ lässt sich eindeutig schreiben als $z=\alpha 1_{\mathbb{C}}+\beta i_{\mathbb{C}}$ mit $\alpha,\beta\in\mathbb{R}$. Dabei heißt $\alpha=\operatorname{Re} z$ der **Realteil** von z und $\beta=\operatorname{Im} z$ der **Imaginärteil** von z. Fast immer schreiben wir $1=1_{\mathbb{C}}, i=i_{\mathbb{C}}$ und $\alpha+\beta i=\alpha\cdot 1_{\mathbb{C}}+\beta\cdot i_{\mathbb{C}}$.

Das Produkt komplexer Zahlen $z=\alpha+\beta i$ und $z'=\alpha'+\beta' i$ wird definiert durch

$$z \cdot z' = (\alpha + \beta i) \cdot (\alpha' + \beta' i) := (\alpha \alpha' - \beta \beta') + (\alpha \beta' + \beta \alpha') i$$

Zu einer komplexen Zahl $z=\alpha+\beta i$ heißt $\bar{z}:=\alpha-\beta i$ das Konjugierte zu z. Die Abbildung $\mathbb{C}\to\mathbb{C},z\mapsto \bar{z}$ ist \mathbb{R} -linear.

5.2 Bemerkung

Merken muss man sich nur $i \cdot i = -1$. Alles andere ergibt sich aus den vertrauten Rechenregeln:

$$(\alpha + \beta i) \cdot (\alpha + \beta i) = \alpha(\alpha' + \beta' i) + \beta i(\alpha' + \beta' i)$$

$$= \alpha \alpha' + \alpha \beta' i + \beta i \alpha' + \beta i \beta' i$$

$$= \alpha \alpha' + \alpha \beta' i + \beta \alpha' i + \beta \beta' i^{2}$$

$$= \alpha \alpha' + \alpha \beta' i + \beta \alpha' i + \beta \beta' (-1)$$

$$= (\alpha \alpha' - \beta \beta') + (\alpha \beta' + \beta \alpha') i$$

5.3 Satz

Die komplexen Zahlen C bilden einen Körper

Beweis:

Wir zeigen nur die Existenz eines multiplikativen Inversen und lassen alles andere als Übung. Sei $z=\alpha+\beta i\in\mathbb{C}$. Dann gilt

$$z \cdot \bar{z} = \alpha^2 + \beta^2$$

Ist $z \neq 0$ so sind nicht α und β Null. Insbesondere gibt es $\frac{1}{\alpha^2 + \beta^2} \in \mathbb{R}$. Das mulitplikativ Inverse zu z ist nun

$$z^{-1} := \frac{1}{\alpha^2 + \beta^2} (\alpha - \beta i) = \frac{\alpha}{\alpha^2 + \beta^2} - \frac{\beta}{\alpha^2 + \beta^2} i \qquad \Box$$

5.4 Bemerkung

Jede komplexe Zahl $z=\alpha+\beta i$ besitz eine Wurzel in $\mathbb C.$ (Übung!)

5.5 Fundamentalsatz der Algebra

Jedes nicht-konstante Polynom über $\mathbb C$ besitzt eine Nullstelle in $\mathbb C$.

6 Lineare Abbildungen

6.1 Erinnerung

Seien V und W K-Vektorräume. Eine Abbildung $f:V\to W$ heißt K-linear, falls gilt:

- (i) $\forall \lambda \in K \ \forall v \in V : f(\lambda v) = \lambda f(v)$
- (ii) $\forall v, v' \in V : f(v + v') = f(v) + f(v')$

Die Menge aller K-linearen Abbildungen $V \to W$ bezeichnen wir mit $\hom_K(V,W)$

6.2 Beispiel

- (i) $f:\mathbb{R}^3 \to \mathbb{R}$ mit $f\left(\left(x_1 \atop x_2 \atop x_3 \right) \right) = 3x_1 + 2x_2 + x_3$ ist linear
- (ii) $g:\mathbb{R}^3 \to \mathbb{R}$ mit $g\left(\left(egin{matrix} x_1 \\ x_2 \\ x_3 \end{matrix} \right) \right) = 3x_1 + 2x_2 + x_3 + 4$ ist nicht linear
- (iii) $h:\mathbb{R}^3 \to \mathbb{R}$ mit $h\left(\binom{x_1}{x_2}{x_3}\right)=3x_1+2x_2+x_3^2$ ist nicht linear
- (iv) Sei X eine Menge und K^X der K-Vektorraum aller Abbildungen $F:X\to K$. Sei $x\in X$. Sei $ev_x:K^X\to K$ mit $ev_x(f)=f(x)$. Dann ist ev_x K-linear.

6.3 Bemerkung

- (i) Seien $f:V\to W$ und $g:W\to U$ K-linear. Dann ist auch $g\circ f:V\to U$ K-linear
- (ii) Seien $f,g:V \to W$ K-linear. Dann ist auch $f+g:V \to W$ mit (f+g)(v):=f(v)+g(v) K-linear
- (iii) Sei $f: V \to W$ K-linear und $\lambda \in K$. Dann ist auch $\lambda f: V \to W$ mit $(\lambda \cdot f)(v) := \lambda \cdot f(v)$ K-linear

6.4 Bemerkung

 $\hom_K(V,W)$ wird durch 6.3(ii) und (iii) ein K-Vektorraum.

6.5 Bemerkung

Ist $f:V \to W$ K-linear, so gilt:

(i)
$$f(0) = 0 \text{ denn } f(0) = f(0+0) = f(0) + f(0)$$

(ii)
$$f(-v) = -f(v)$$

6.6 Definition

Eine K-lineare Abbildung $f:V\to W$ heißt:

- Epimorphismus falls f surjektiv
- Monomorphismus falls f injektiv
- Isomorphismus falls f bijektiv

6.7 Lemma

Sei $f:V\to W$ ein Isomorphismus.

Dann ist die inverse Abbildung $f^{-1}:W\to V$ zu f auch ein Isomorphismus, insbesondere K-linear.

Beweis:

Bijektivität von f^{-1} folgt aus der Bijektivität von f

Zu f^{-1} ist K-linear:

Die Abbildung $f^{-1}:W \to V$ wird charakterisiert durch die Gleichung

$$f(f^{-1}(w)) = w$$

für alle $w \in W$.

Seien $w, w' \in W$. Dann gilt:

$$f(f^{-1}(w) + f^{-1}(w')) = f(f^{-1}(w)) + f(f^{-1}(w'))$$

= $w + w'$

Also ist $f^{-1}(w) + f^{-1}(w') = f^{-1}(w + w')$.

Sei $w \in W, \lambda \in K$. Dann gilt:

$$f(\lambda \cdot f^{-1}(w)) = \lambda \cdot f(f^{-1}(w)) = \lambda \cdot w$$

Also ist $f^{-1}(\lambda w) = \lambda f^{-1}(w)$

6.8 Bemerkung

Sei $f: V \to W$ K-linear.

Dann ist $\operatorname{Bild}(f) = \{f(v) \mid v \in V\}$ ein Unterraum von W. Ebenso ist $\operatorname{Kern}(f) = \{v \in V \mid f(v) = 0\}$ ein Unterraum von V.

$$rg(f) := dim Bild(f)$$

heißt der Rang von f

6.9 Beispiel

(i) Sei $A=\left(egin{array}{ccc} a_{11}&\cdots&a_{1n}\\ \vdots&&\ddots\\ a_{m1}&\cdots&a_{mn} \end{array}
ight)$ eine $m\times n$ -Matrix über K. (Also $a_{ij}\in K$ für $i=1,\ldots,m$ $j=1,\ldots,n$) Dann wird durch

$$f_A\left(\begin{array}{c} x_1 \\ \dot{x}_n \end{array}\right) := Ax = \left(\begin{array}{c} \sum\limits_{j=1}^n a_{1j} x_j \\ \vdots \\ \sum\limits_{j=1}^n a_{mj} x_j \end{array}\right) \in K^m$$

eine lineare Abbildung $f_A:K^n \to K^m$ definiert. Es gilt dann:

- (1) Kernf ist der Raum der Lösungen des homogenen Gleichungssystems Ax=0
- (2) $\operatorname{Bild} f$ besteht genau aus den $b \in K^m$ für die das Gleichungssystem Ax = b lösbar ist
- (ii) Sei C eine $m \times n$ -Matrix über K der Form

$$C = \begin{pmatrix} c_{11} & c_{12} & \cdots & \cdots & c_{1n} \\ 0 & c_{22} & \cdots & \cdots & c_{2n} \\ \vdots & & \ddots & & \vdots \\ 0 & \cdots & 0 & c_{rr} & \cdots & c_{rn} \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & & & & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix}$$

mit $c_{11}, \ldots, c_{rr} \in K \setminus \{0\}$

Behauptung: $rg(f_C) = r$

Beweis:

Sei e_1,\ldots,e_n die Standardbasis des K^n . Sei $\hat{e}_1,\ldots,\hat{e}_m$ die Standardbasis des K^m

Es ist $\operatorname{Bild}(f_C)\subseteq\mathcal{L}ig(\{\hat{e}_1,\ldots,\hat{e}_r\}ig)$. Daher ist $\operatorname{rg}(f_C)\leq r$ Es genügt zu zeigen $\hat{e}_1,\ldots,\hat{e}_r\in\operatorname{Bild}(f_C)$. Wir zeigen dies durch Induktion nach $k=1,\ldots,r$

I.A:

$$\hat{e}_1 = f_C(c_{11}^{-1} \cdot e_1) \in \mathsf{Bild}(f_C)$$

I.S. :

$$< k \mapsto k$$

Seien $\hat{e}_1,\ldots,\hat{e}_{k-1}\in\mathsf{Bild}(f_C)$. Es ist

$$f_C(e_k) = c_{1k}\hat{e}_1 + \ldots + c_{kk}\hat{e}_k$$

Also

$$\hat{e}_k = c_{kk}^{-1} \Big(f_C(e_k) - \underset{\in \operatorname{Bild} f_C}{c_{1k}} \hat{e}_1 - \ldots - c_{(k-1)k} \hat{e}_{k-1} \Big) \in \operatorname{Bild} f_C$$

6.10 Proposition

Sei $f: V \to W$ K-linear. Dann ist f genau dann injektiv, wenn gilt Kern $f = \{0\}$

Beweis:

Sei f injektiv, sei $v \in \text{Kern } f$. Dann f(v) = 0 = f(0). Da f injektiv, folgt v = 0. Also $\text{Kern } f = \{0\}$

Sei Kern $f=\{0\}$. Sei also $v,v'\in V$ mit f(v)=f(v'). Dann f(v-v')=f(v)-f(v')=0

Also
$$v-v'\in \operatorname{Kern} f=\{0\}.$$
 Also $v-v'=0$ Daher $v=v'.$ Somit ist f injektiv

6.11 Bemerkung

Sei $f: V \to W$ K-linear. Seien $x \in V, b \in W$ mit f(x) = b. Daher gilt:

$$\{y \in V \mid f(y) = b\} = \{x + v \mid v \in \mathsf{Kern} f\} =: x + \mathsf{Kern} f$$

Beweis:

"⊂"

Sei $y \in V$ mit f(y) = b. Dann

$$f(y-x) = f(y) - f(x) = b - b = 0$$

Also $v = y - x \in \operatorname{Kern} f$ und $y = x + v \in x + \operatorname{Kern} f$

.,⊃'

Sei $v \in \text{Kern} f$. Dann gilt

$$f(x+v) = f(x) + f(v) = b$$

Also ist

$$x + v \in \{y \in V \mid f(y) = b\}$$

6.12 Satz

Sei $f:V\to W$ linear. Sei b_1,\ldots,b_n eine Basis von Kernf. Seien $a_1,\ldots,a_m\in V$ sodass $f(a_1),\ldots,f(a_m)$ eine Basis von $\operatorname{Bild} f$ ist.

Dann ist $b_1, \ldots, b_n, a_1, \ldots, a_m$ eine Basis von V.

Beweis:

Sei $v \in V$. Da $f(a_1), \ldots, f(a_m)$ Basis von Bild f, gibt es $\lambda_1, \ldots, \lambda_m$ mit

$$f(v) = \sum_{i=1}^{m} \lambda_i f(a_i) = f\left(\sum_{i=1}^{m} \lambda_i a_i\right)$$

Es folgt

$$v - \sum_{i=1}^m \lambda_i a_i \in \mathsf{Kern} f$$

Da b_1,\ldots,b_n Basis von Kernf ist, gibt es $\mu_1,\ldots,\mu_n\in K$ mit

$$v - \sum_{i=1}^{m} \lambda_i a_i = \sum_{j=1}^{n} \mu_j b_j$$

Also

$$v = \sum_{j=1}^{n} \mu_j b_j + \sum_{i=1}^{m} \lambda_i a_i$$

Damit ist $b_1, \ldots, b_n, a_1, \ldots, a_m$ ein EZS.

Es bleibt zu zeigen $b_1,\ldots,b_n,a_1,\ldots,a_m$ ist linear unabhängig Seien $\lambda_1,\ldots,\lambda_m\in K$ und $\mu_1,\ldots,\mu_n\in K$ mit

$$\mu_1 b_1 + \ldots + \mu_n b_n + \lambda_1 a_1 + \ldots + \lambda_m a_m = 0$$

Es folgt:

$$\lambda_1 f(a_1) + \ldots + \lambda_m f(a_m) = 0$$

$$\xrightarrow{f(a_1),\dots,f(a_m) \text{ ist l.u.}} \lambda_1 = \lambda_2 = \dots = \lambda_m = 0$$

$$\Longrightarrow \mu_1 b_1 + \ldots + \mu_n b_n = 0$$

$$\xrightarrow{b_1,\dots,b_n \text{ ist l.u.}} \mu_1 = \mu_2 = \dots = \mu_n = 0$$

Damit ist auch $b_1, \ldots, b_n, a_1, \ldots, a_m$ linear unabhängig

6.13 Dimensionsformel

Sei $f:V\to W$ linear, wobei $\dim V<\infty$. Dann gilt

$$\dim \operatorname{Kern} f + \dim \operatorname{Bild} f = \dim V$$

Beweis folgt aus 6.12

6.14 Korollar

Sei $f: V \to W$ linear, wobei $\dim V = \dim W < \infty$. Dann sind äquivalent:

- (1) $Kern f = \{0\}$
- (2) $\operatorname{Bild} f = W$
- (3) f ist bijektiv

Beweis:

•
$$(1)\Rightarrow (2)$$

Sei $\operatorname{Kern} f=\{0\}$

$$\xrightarrow{\operatorname{Dimensionsformel}} \underbrace{\dim \operatorname{Kern} f}_{0} + \dim \operatorname{Bild} f = \dim V$$
Also $\dim \operatorname{Bild} f = \dim V < \infty.$ Da aus $\operatorname{Bild} f \subseteq W$ folgt $\operatorname{Bild} f = W$

• $(2)\Rightarrow (3)$ Sei $\mathrm{Bild}f=W.$ Dann ist f surjektiv. Mit der Dimensionsformel folgt

$$\dim \mathsf{Kern} f = \dim V - \dim \mathsf{Bild} f$$

$$= \dim V - \dim W$$

$$= 0$$

Damit ist $Kern f = \{0\}$. Mit 6.10 folgt die Injektivität von f. Also ist f bijektiv.

• (3)
$$\Rightarrow$$
 (1)
 $f \text{ bijektiv} \Rightarrow f \text{ injektiv} \stackrel{6.10}{\Rightarrow} \text{Kern} f = \{0\}$

6.15 Bemerkung

Sei A eine $m \times n$ -Matrix über K. Sei $f_A: K^n \to K^m, f_A(x) = A \cdot x$. Dann gelten

- (i) f injektiv $\Rightarrow n \leq m$
- (ii) f surjektiv $\Rightarrow n \geq m$
- (iii) f bijektiv $\Rightarrow n = m$

(n = #Variablen, m = #Gleichungen)

6.16 Lemma

Sei b_1,\dots,b_n eine Basis von V und $w_1,\dots,w_n\in W$. Dann gibt es genau eine lineare Abbildung $f:V\to W$ mit $f(b_i)=w_i$ für $i=1,\dots,n$

6 Lineare Abbildungen

Beweis:

Existenz von f

 $\overline{\text{Zu }v\in V \text{ gibt}}$ es eindeutige $\lambda_1,\ldots,\lambda_n\in K$ mit $v=\lambda_1b_1+\ldots+\lambda_nb_n$. Setze:

$$f(v) = \lambda_1 w_1 + \ldots + \lambda_n w_n = \sum_{i=1}^n \lambda_i w_i$$

f ist linear

(i) Sei $\lambda \in K$ und $v = \sum\limits_{i=1}^n \lambda_i b_i \in V$. Dann ist

$$\lambda v = \lambda \cdot \sum_{i=1}^{n} \lambda_i b_i = \sum_{i=1}^{n} (\lambda \lambda_i) b_i$$

Also

$$f(\lambda v) = \sum_{i=1}^{n} (\lambda \lambda_i) w_i = \lambda \sum_{i=1}^{n} \lambda_i w_i = \lambda \cdot f(v)$$

(ii) Seien $v=\sum\limits_{i=1}^n\lambda_ib_i$, $v'=\sum\limits_{i=1}^n\lambda_i'b_i\in V.$ Dann

$$v + v' = \sum_{i=1}^{n} \lambda_i b_i + \sum_{i=1}^{n} \lambda'_i b_i = \sum_{i=1}^{n} (\lambda_i + \lambda'_i) b_i$$

Also

$$f(v+v')\sum_{i=1}^{n}(\lambda_i+\lambda_i')w_i = \sum_{i=1}^{n}\lambda_i w_i + \sum_{i=1}^{n}\lambda_i' w_i = f(v) + f(v')$$

Eindeutigkeit von f

Sei $g: V \to W$ eine zweite lineare Abbildung mit $g(b_i) = w$ für $i = 1, \dots, n$.

Sei
$$v=\sum\limits_{i=1}^n\lambda_ib_i\in V$$
. Dann

$$f(v) = f\left(\sum_{i=1}^{n} \lambda_i b_i\right) = \sum_{i=1}^{n} \lambda_i f(b_i) = \sum_{i=1}^{n} \lambda_i g(b_i) = g\left(\sum_{i=1}^{n} \lambda_i b_i\right) = g(v)$$

6.17 Satz

Seien V,W K-Vektorräume mit $\dim V<\infty$ und $\dim W<\infty$. Dann sind äquivalent

- (1) Es gibt einen Isomorphismus $f:V\to W$
- (2) $\dim V = \dim W$

Beweis: $(1) \Rightarrow (2)$

Sei $f:V\to W$ linear und bijektiv. Dann $\mathrm{Kern} f=\{0\}$ und $\mathrm{Bild} f=W$ Mit der Dimensionsformel folgt

$$\dim W = \dim \operatorname{Bild} f = \dim V - \dim \operatorname{Kern} f = \dim V$$

40

$$(2) \Rightarrow (1)$$

Sei $\dim V = \dim W = n$. Wähle Basen b_1, \ldots, b_n von V und a_1, \ldots, a_n von W.

$$\stackrel{6.16}{\Rightarrow}$$
 Es gibt $f: V \to W$ mit $f(b_i) = a_i$

Es gilt
$$\{a_1,\ldots,a_n\}\subseteq \operatorname{Bild} f$$
. Da $W=\mathcal{L}(\{a_1,\ldots,a_n\})$. Es folgt

$$\operatorname{Bild} f = W$$

Wegen 6.14 ist f dann schon bijektiv, also ein Isomorphismus.

6.18 Beispiel

Sei $V=U\oplus W$ (also $U,W\leq V$, U+W=V , $U\cap W=\{0\}$). Zu $v\in V$ gibt es dann einen eindeutigen Vektor (vgl. 3.14)

$$\pi(v) \in U \text{ mit } v - \pi(v) \in W$$

Wir erhalten eine Abbildung $\pi: V \to U$

π ist linear:

(i) Sei $\lambda \in K, v \in V$. Dann

$$\lambda v - \lambda \pi(v) = \lambda (v - \pi(v)) \in W$$

Also

$$\pi(\lambda v) = \lambda \pi(v)$$

(ii) Sei $v, v' \in V$. Dann

$$(v + v') - (\pi(v) + \pi(v')) = \underbrace{(v - \pi(v))}_{\in W} + \underbrace{(v' - \pi(v'))}_{\in W} \in W$$

Also

$$\pi(v + v') = \pi(v) + \pi(v')$$

Da $\pi(u)=u$ für $u\in U$ ist π surjektiv. Also $\operatorname{Bild}\pi=U$. Weiter ist Kern $\pi=W$. Ist $\dim V<\infty$ so folgt mit der Dimensionsformel

$$\dim V = \dim U + \dim W$$

6.19 Lemma

Sei V ein K-Vektorraum, $u \in V$ ist $0 \neq u$. Dann gibt es $f: V \to K$ linear mit f(u) = 1

Beweis:

Sei $U = \{\lambda u \mid \lambda \in K\}$. Sei W ein Komplement von U in V. Also $V = W \oplus U$

$$\Rightarrow \exists \pi: V \to U \text{ mit } \pi(u) = u$$

Sei $\varphi(\lambda u) = \lambda$. Sei $f := \varphi \circ \pi$. Dann

$$f(u) = \varphi(\pi(u)) = \varphi(u) = 1$$

7 Äquivalenzrelationen

7.1 Definition

Eine <u>Relation</u> auf einer Menge M ist eine Teilmenge $R \subseteq M \times M$. Wir schreiben oft $a \sim b$ für $(a,b) \in R$. Eine Relation heißt eine **Äquivalenzrelation**, falls gilt:

- (i) Reflexivität Für alle $a \in M$ gilt $a \sim a$
- (ii) Symmetrie $a \sim b \Leftrightarrow b \sim a$
- (iii) $\frac{\text{Transitivit\"at}}{a \sim b \text{ und } b \sim c \Rightarrow a \sim c}$

Für $a \in M$ heißt $[a] = [a]_\sim := \big\{b \in M \mid b \sim a\big\}$ die Äquivalenzklasse von a. Für die Menge $\{[a] \mid a \in M\}$ aller Äquivalenzklassen (Teilmenge der Potenzmenge) schreiben wir oft M/\sim

7.2 Beispiel

(i) Auf \mathbb{Z} wird durch

$$a \sim b :\Leftrightarrow b - a$$
 ist gerade

eine Äquivalenzrelation erklärt

$$\begin{array}{lcl} [3]_{\sim} &=& \{b\in\mathbb{Z}\mid b-3 \text{ gerade}\} &= \{\text{ungerade ganze Zahlen}\}\\ [42]_{\sim} &=& \dots &= \{\text{gerade ganze Zahlen}\} \end{array}$$

Bezüglich der Äquivalenzrelation gibt es zwei Äquivalenzklassen: Die geraden ganzen Zahlen und die ungeraden ganzen Zahlen

(ii) Sei $N \in \mathbb{N}_{>0}$. Auf \mathbb{Z} wird durch

$$a \sim_N b :\Leftrightarrow N \text{ teilt } b - a$$

eine Äquivalenzrelation erklärt. Oft schreiben wir auch

$$a \equiv b(N)$$
 für $a \sim_N b$

und sagen "a und b sind kongruent modulo N"

- (iii) Die Relation " \leq " auf $\mathbb Z$ ist reflexiv und transitiv, aber nicht symmetrisch.
- (iv) Sei $f:X \to Y$ eine Abbildung. Dann definiert

$$x \sim_f x' : \Leftrightarrow f(x) = f(x')$$

eine Äquivalenzrelation auf X.

42 7 Äquivalenzrelationen

7.3 Satz

Sei \sim eine Äquivalenzrelation auf M. Für $a,b\in M$ sind äquivalent

- (i) $a \sim b$
- (ii) [a] = [b]
- (iii) $[a] \cap [b] \neq \emptyset$

Beweis: (i)⇒ (ii)

Sei $a \sim b$. Sei $x \in [a]$. Also $x \sim a$. Da $a \sim b$ folgt mit der Transitivität von $\sim x \sim b$. Also $x \in [b]$. Also gilt $[a] \subseteq [b]$. Wegen Symmetrie von \sim gilt auch $b \sim a$ und es folgt $[b] \subseteq [a]$. Also [a] = [b]

(ii)⇒(iii)

Falls [a] = [b]. Da $a \in [a]$ folgt $a \in [a] \cap [b]$. Also $[a] \cap [b] \neq \emptyset$

(iii)⇒(i)

Sei $x \in [a] \cap [b]$. Dann $x \sim a, x \sim b$. Dann gilt auch (Symmetrie) $a \sim x$ $\Longrightarrow a \sim b$

7.4 Korollar

Sei \sim eine Äquivalenzrelation auf M. Dann ist M die disjunkte Vereinigung der Äquivalenzklassen von M.

7.5 Beispiel

Sei $B:=\mathbb{Z}\times \big(\mathbb{Z}\backslash\{0\}\big)$. Dann definiert $(z,n)\sim (z',n'):\Leftrightarrow zn'=z'n$ eine Äquivalenzrelation auf B. Sei $Q={}^B/\!\!\sim$. Dann können wir auf Q wie folgt eine Summe erklären. Seien $a_1,a_2\in Q$. Wähle $(z_1,n_1),(z_2,n_2)\in B$ mit

$$q_1 = [(z_1, n_1)]$$
 $q_2 = [(z_2, n_2)]$

Nun setze

$$q_1 + q_2 := \Big[(z_1 n_2 + z_2 n_1 \, , \, n_1 n_2) \Big]$$

 $\fbox{!}$ Wir müssen zeigen, dass dies wohldefiniert ist, also q_1+q_2 unabhängig von der Wahl von $(z_1,n_1),(z_2,n_2)\in B$ ist.

Sei

$$q_1 = \begin{bmatrix} (z_1, n_1) \end{bmatrix} = \begin{bmatrix} (z_1', n_1') \end{bmatrix} \quad \text{und} \quad q_2 = \begin{bmatrix} (z_2, n_2) \end{bmatrix} = \begin{bmatrix} (z_2', n_2') \end{bmatrix}$$

Zu zeigen:

$$\left[\left(z_{1}n_{2}+z_{2}n_{1}\,,\,n_{1}n_{2}\right)\right]=\left[\left(z_{1}'n_{2}'+z_{2}'n_{1}'\,,\,n_{1}'n_{2}'\right)\right]$$

Es ist $z_1n'_1=z'_1n_1$ und $z_2n'_2=z'_2n_2$. Damit folgt

$$(z_1n_2 + z_2n_1)n'_1n'_2 = z_1n_2n'_1n'_2 + z_2n_1n'_1n'_2$$

= $z'_1n_2n_1n'_2 + z'_2n_1n'_1n_2$
= $(z'_1n'_2 + z'_2n'_1)n_1n_2$

Also

$$\left[\left(z_1 n_2 + z_2 n_1 \,,\, n_1 n_2 \right) \right] = \left[\left(z_1' n_2' + z_2' n_1' \,,\, n_1 n_2 \right) \right]$$

7.6 Bemerkung

7.5 liefert eine Konstruktion der rationalen Zahlen. Es gilt nämlich

$$(z,n) \sim (z',n') :\Leftrightarrow \frac{z}{n} = \frac{z'}{n'} \in \mathbb{Q}$$

Also $Q=\mathbb{Q}$

7.7 Beispiel

- (i) Sei H eine Untergruppe der Gruppe G. Dann definiert $g \sim_H g' : \Leftrightarrow \exists h \in H \text{ mit } gh = g'$ eine Äquivalenzrelation auf G
 - reflexiv:

$$g \sim g : h := e \quad g \cdot e = g$$

symmetrisch:

$$g \sim g', gh = g' : g'h' = g \quad \text{mit } h' := h^{-1}$$

transitive

$$g \sim g' \text{ mit } gh = g' \text{ mit } g' \sim g'' \text{ mit } g'h' = g'' \Rightarrow g \sim g'' \text{ } ghh' = g''$$

Die Äquivalenzklassen bezüglich \sim_H heißen die **Linksnebenklassen** von H. Es gilt

$$[g]_{\sim_H} = \big\{ gh \mid h \in H \big\} =: gH$$

Die Menge der Äquivalenzklassen von \sim_H bezeichnet man auch mit $^G/_H:= ^G/_{\sim_H}$

(ii) Sei $H \leqslant G$. Dann definiert $g_H \sim g' : \Leftrightarrow \exists h \in H \ hg = g'$ eine Äquivalenzrelation auf G. Die Äquivalenzklassen bezüglich $H \sim h$ eißen die **Rechtsnebenklassen** von H. Es gilt

$$[g]_{H^{\sim}} = \{hg \mid h \in H\} =: Hg \ H \setminus G = G/_{H^{\sim}}$$

7.8 Bemerkung

Ist G abelsch, so gilt:

(i)
$$g_H \sim g \Leftrightarrow g \sim_H g$$

(ii)
$$gH = Hg$$

Benutzen wir die additive Schreibweise + in G, so schreiben wir auch:

$$g+H=\left\{g+h\mid h\in H\right\}=[g]_{\sim_H}$$

7.9 Beispiel

Sei $U\subseteq V$ ein Untervektorraum. Dann definiert

$$v \sim_U v' :\Leftrightarrow v - v' \in U$$

eine Äquivalenzrelation auf ${\cal V}$

(Trasitivität
$$v-v',v'-v''\in U \Rightarrow (v-v')+(v'-v'')=v-v''\in U$$
)

Dann gilt für ein $v \in V$

$$[v]_U = \{v + u \mid u \in U\} =: v + U$$

Die Menge aller Äquivalenzklassen von \sim_U bezeichnet man auch mit V/U

7.10 Bezeichnung

Sei V ein K-Vektorraum

(i) Für Teilmengen $S, S' \subseteq V$ setzen wir

$$S + S' := \{s + s' \mid s \in S, s' \in S'\}$$

(ii) Für $\lambda \in K$ und $S \subseteq V$ Teilmenge setzen wir

$$\lambda \cdot S := \{ \lambda s \mid s \in S \}$$

7.11 Lemma

Sei $U \subseteq V$ ein Untervektorraum

(i) Für
$$v, v' \in V$$
 gilt $(v + U) + (v' + U) = (v + v') + U$

(ii) Für
$$\lambda \in K, v \in V$$
 gilt $\lambda \cdot (v + U) = (\lambda v) + U$

Beweis:

(i)

$$\begin{array}{ll} (v+U) + (v'+U) & \stackrel{\mathsf{Def \, von} \, \sim_U}{=} & \{v+u \mid u \in U\} + \{v+u' \mid u' \in U\} \\ & \stackrel{\mathsf{Def \, 7.10}}{=} & \{(v+u) + (v'+u') \mid u, u' \in U\} \\ & \overset{(V,+) \mathsf{abelsch}}{=} & \{v+v'+u+u' \mid u, u' \in U\} = \{v+v'+u'' \mid u'' \in U\} \\ & \stackrel{\mathsf{Def \, von} \, \sim_U}{=} & (v+v') + U \end{array}$$

(ii)

$$\begin{split} &\lambda(v+U) \stackrel{\mathsf{Def} \; \mathsf{von} \; \sim_{U}}{=} \; \lambda\{v+u \mid u \in U\} \stackrel{7.10}{=} \{\lambda(v+u) \mid u \in U\} \\ &= \{\lambda v + \lambda u \mid u \in U\} = \{\lambda v + u' \mid u' \in U\} \stackrel{\mathsf{Def} \; \sim_{U}}{=} (\lambda v) + U \end{split}$$

7.12 Definition

Sei $U\leqslant V$ ein Untervektorraum. Dann ist V/U mit der in 7.10 definierten Addition und Multiplikation ein K-Vektorraum. Er heißt **Quotientenvektorraum** von V nach U. Es gilt

$$0_{V/U} = 0_V + U = \{0 + u \mid u \in U\} = U$$

und

$$-(v+U) = (-v) + U$$

7 Äquivalenzrelationen 45

7.12 Lemma

$$\pi: V \to V/U \quad v \mapsto v + U \quad \text{ ist linear }$$

Beweis:

- 1) Für $\lambda \in K, v \in V$ ist $\pi(\lambda v) = (\lambda \cdot v) + U \stackrel{\text{7.11(ii)}}{=} \lambda v + U = \lambda \pi(v)$
- 2) Für $v, v' \in V$ ist

$$\pi(v + v') = ((v + v') + U) = (v + U) + (v' + U)$$
$$= \pi(v) + \pi(v')$$

 $\fbox{!}$ Sei G eine Gruppe und $H\subseteq G$ Untergruppe. Dann ist G/H im Allgemeinen keine Gruppe.

7.13 Beispiel

Für $n \in \mathbb{N}, n \geqslant 2$ ist

$$n\mathbb{Z} = \{n \cdot k \mid k \in \mathbb{Z}\} = \{z \in \mathbb{Z} \mid z \text{ ist ein Vielfaches von } n\}$$

eine Untergruppe der abelsche Gruppe \mathbb{Z} .

Auf

$$\mathbb{Z}/n\mathbb{Z} = \{k + n\mathbb{Z} \mid k \in \mathbb{Z}\}\$$

erhalten wir durch

$$(k+n\mathbb{Z})+(k'+n\mathbb{Z}):=(k+k')+n\mathbb{Z}\quad \text{und}\quad (k+n\mathbb{Z})\cdot (k'+n\mathbb{Z}):=(k\cdot k')+n\mathbb{Z}$$

eine wohldefnierte Addition und Multiplikation.

7.14 Bemerkung

Es gelten

$$(k+n\mathbb{Z}) + (k'+n\mathbb{Z}) = \{a+a' \mid a \in k+n\mathbb{Z}, a' \in k'+n\mathbb{Z}\}\$$

und

$$(k+n\mathbb{Z})\cdot(k'+n\mathbb{Z})\supseteq\{a\cdot a'\mid a\in k+n\mathbb{Z}, a'\in k'+n\mathbb{Z}\}$$

Aber

$$(2+4\mathbb{Z}) \cdot (2+4\mathbb{Z}) = 4+4\mathbb{Z} \supseteq \{a \cdot a' \mid a, a' \in 2+4\mathbb{Z}\}\$$

7.15 Definition

Eine **Halbgruppe** ist eine Menge H mit einer Verknüpfung $\cdot: H \times H \to H$, so dass folgendes gilt:

- (i) Assoziativität $\forall a, b, c \in H : a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- (ii) neutrales Element $\exists e \in H : \forall a \in H : e \cdot a = a = a \cdot e$

H heißt abelsch, falls für alle Elemente $a,b\in H$ gilt $a\cdot b=b\cdot a$

Bemerkung:

- $(\mathbb{Z}/n\mathbb{Z},\cdot)$ ist abelsche Halbgruppe
- $(\mathbb{Z}\setminus\{0\},\cdot)$ ist abelsche Halbgruppe

7.16 Definition

Ein **kommutativer Ring** ist eine Menge R mit zwei Verknüpfungen

$$+: R \times R \to R \quad (r,s) \mapsto r + s$$

 $\cdot: R \times R \to R \quad (r,s) \mapsto r \cdot s$

so dass die folgenden Axiome erfüllt sind

- (i) (R,+) ist eine abelsche Gruppe mit neutralem Element 0
- (ii) (R,\cdot) ist eine abelsche Halbgruppe mit neutralem Element 1
- (iii) Es gilt das Distributivgesetz $\forall r,s,t\in R$ gilt

$$r \cdot (s+t) = r \cdot s + r \cdot t$$

7.17 Bemerkung

- Jeder Körper ist ein kommutativer Ring (zB $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_2$)
- ullet $\mathbb Z$ ist ein kommutativer Ring, aber kein Körper
- $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ ist ein kommutativer Ring

Beispiel:

$$\mathbb{Z}/4\mathbb{Z} = \{0 + 4\mathbb{Z}, 1 + 4\mathbb{Z}, 2 + 4\mathbb{Z}, 3 + 4\mathbb{Z}\}\$$

 $1+4\mathbb{Z}$ hat ein multiplikativ Inverses, nämlich sich selbst

$$(1+4\mathbb{Z})\cdot(1+4\mathbb{Z})=1+4\mathbb{Z}$$

- $(2+4\mathbb{Z})$ hat kein multiplikativ Inverses, nachrechnen!
- $(3+4\mathbb{Z})$ hat ein multiplikativ Inverses, da

$$(3+4\mathbb{Z}) \cdot (3+4\mathbb{Z}) = 9+4\mathbb{Z} = (1+4\mathbb{Z})$$

7.18 Satz

Ist p eine Primzahl, so ist $\mathbb{F}_p:=\mathbb{Z}/p\mathbb{Z}$ ein Körper mit p Elementen

Beweis:

Es ist

$$\mathbb{Z}/p\mathbb{Z} = \{0 + p\mathbb{Z}, 1 + p\mathbb{Z}, 2 + p\mathbb{Z}, \dots, (p-1) + p\mathbb{Z}\}\$$

Also hat \mathbb{F}_p p Elemente. Noch zu zeigen: Jedes $a+p\mathbb{Z}\in\mathbb{F}_p$ hat ein multiplikativ Inverses.

Sei $a+p\mathbb{Z}\in\mathbb{Z}/p\mathbb{Z}\backslash(0+p\mathbb{Z}).$ Betrachte $f_a:\mathbb{Z}/p\mathbb{Z}\to\mathbb{Z}/p\mathbb{Z}$

$$b + p\mathbb{Z} \mapsto ab + p\mathbb{Z} = (a + p\mathbb{Z}) \cdot (b + p\mathbb{Z})$$

Behauptung: f_a ist injektiv

Sei $f_a(b+p\mathbb{Z})=f_a(b'+p\mathbb{Z})$. Dann ist

$$(a + p\mathbb{Z})(b + p\mathbb{Z}) = (a + p\mathbb{Z})(b' + p\mathbb{Z})$$

Also:

$$ab + p\mathbb{Z} = ab' + p\mathbb{Z} \Longrightarrow \underbrace{ab - ab'}_{=a(b-b')} \in p\mathbb{Z} \Longrightarrow a(b-b') = k \cdot p$$

Also teilt p entweder a oder (b-b'). Da $a+p\mathbb{Z}\neq 0+p\mathbb{Z}$ teilt p nicht a, also teilt p (b-b'). In anderen Worten $(b-b')\in p\mathbb{Z}$. Also

$$b + p\mathbb{Z} = b' + p\mathbb{Z}$$

Da f_a eine injektive Selbstabbildung einer endlichen Menge ist, ist f_a damit auch surjektiv. Folglich gibt es

$$b+p\mathbb{Z}\in\mathbb{Z}/p\mathbb{Z}\backslash\{0+p\mathbb{Z}\}\quad\text{mit}\quad 1+p\mathbb{Z}=f_a(b+p\mathbb{Z})=(a+p\mathbb{Z})(b+p\mathbb{Z})$$

Damit ist $(b + p\mathbb{Z})$ multiplikativ Inverses von $a + p\mathbb{Z}$.

8 Matrizen

8.1 Definition

Seien $n,n\in\mathbb{N}$. Sei K ein Körper. Eine $m\times n$ -Matrix A mit Koeffizienten in K ist ein System von Elementen $a_{ij}\in K$ $i=1,\ldots,m$ $i=1,\ldots,n$

$$A = (a_{ij})_{\substack{i=1,\dots,m\\j=1,\dots,n}} = \begin{pmatrix} a_{11} & \cdots & a_{1n}\\ \vdots & & \vdots\\ a_{1m} & \cdots & a_{mn} \end{pmatrix}$$

Die Menge aller $m \times n$ -Matrizen bezeichnen wir auch mit $K^{m \times n}$. Sie ist mit eintragsweiser Addition und Multiplikation ein K-Vektorraum.

8.2 Wiederholung

• (siehe Beispiel 6.9) Sei $A=(a_{ij})\in K^{m\times n}$. Dann ist $f_A:K^n\to K^m$ $f_A(v)=A\cdot v$ wobei

$$A \cdot v = A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^n a_{1j} x_j \\ \vdots \\ \sum_{j=1}^n a_{mj} x_j \end{pmatrix}$$

eine lineare Abbildung ist.

• (siehe Satz 6.12) Zu $w_1,\ldots,w_n\in W$ gibt es **genau** eine lineare Abbildung $f:V\to W$ mit $f(b_i)=w_i$ für $1\leqslant i\leqslant n$ wobei b_1,\ldots,b_n Basis von V.

8.3 Satz

Die Abbildung $\varphi: K^{m \times n} \to \hom_K(K^n, K^m)$, $A \mapsto f_A$ ist ein Isomorphismus von Vektorräumen

Beweis:

48 Matrizen

- 0) φ ist K-linear (bleibt als Übung)
- 1) φ ist injektiv.

Sei
$$A \in K^{m \times n}$$
 mit $\phi(A) = f_A = 0$, das heißt

$$\forall v \in K^n \text{ ist } f_A(v) = 0 \in K^m$$

Dann ist insbesondere

$$0=f_A(e_i)=A\cdot e_i=\begin{pmatrix}a_{1i}\\\vdots\\a_{mi}\end{pmatrix}\quad \text{also}\quad a_{ji}=0 \text{ für } 1\leqslant j\leqslant m, i=1,\dots,n$$

Also A=0

2) φ ist surjektiv:

Sei $f\in \hom_K(K^n,K^m)$. Sei $\{e_j\mid j=1,\dots,n\}$ die Standardbasis des K^n und $\{\hat{e}_i\mid 1=1,\dots,m\}$ die Stadardbasis des K^m . Dann lassen sich die $f(e_j)$ als Linearkombination der \hat{e}_i schreiben. Für $j=1,\dots,n$ ist

$$f(e_j) = \sum_{i=1}^m a_{ij} \hat{e}_i$$
 für gewisse $a_{ij} \in K$

Setze

$$A = (a_{ij})_{\substack{i=1,\dots,m\\j=1,\dots,n}} \in K^{m \times n}$$

Es gilt dann

$$f(e_j) = \sum_{i=1}^m a_{ij} \hat{e}_i \overset{\text{Def von } A}{=} A \cdot e_j \overset{\text{Def von } f_A}{=} f_A(e_j) \quad \text{für } 1 \leqslant j \leqslant n$$

$$(6.12) \Rightarrow f = f_A$$

8.4 Definition

Das Produkt zweier Matrizen $A=(a_{ij})\in K^{m\times n}$ und $B=(b_{jk})\in K^{n\times l}$ ist die Matrix

$$A \cdot B := \left(\sum_{j=1}^{n} a_{ij} b_{jk}\right)_{\substack{i=1,\dots,m\\k=1,\dots,l}}$$

Beispiel: (n=m=l=2)

$$\begin{pmatrix} 1 & 2 \\ 4 & 4 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 1 \cdot 0 + 2 \cdot 2 & 1 \cdot 1 + 2 \cdot 0 \\ 3 \cdot 0 + 4 \cdot 2 & 3 \cdot 1 + 4 \cdot 0 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 8 & 3 \end{pmatrix}$$

8.5 Lemma

Für $A \in K^{m \times n}$ und $B \in K^{n \times l}$ gilt

$$f_A \circ f_B = f_{A \cdot B}$$

Beweis:

Sei $e_k \in K^l$ der k-te Vektor der Standardbasis. Dann

$$(f_A \circ f_B)(e_k) = f_A\Big(f_B(e_k)\Big) = f_A\left(\sum_{j=1}^n b_{jk}e_j\right) \stackrel{\text{linear}}{=} \sum_{j=1}^n b_{jk}f_A(e_j)$$

$$= \sum_{j=1}^n b_{jk}\left(\sum_{i=1}^m a_{ij}e_i\right) = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij}b_{jk}\right)e_i$$

$$= f_{A:B}(e_k)$$

8 Matrizen 49

Es folgt mit (6.12), dass $f_A \circ f_B = f_{A \cdot B}$

8.6 Bemerkung

Der Isomorphismus $K^{m \times n} \to \hom_K(K^n, K^m)$ ist **kanonisch**, das heißt er hängt nicht von weiteren Wahlen ab. Daher und wegen (8.5) ist es nicht notwendig streng zwischen A und f_A zu unterscheiden. Wir werden also $m \times n$ -Matrizen auch als lineare Abbildung $K^n \to K^m$ auffassen.

8.7 Konstruktion

Seien V und W K-Vektorräume von endlicher Dimension. Auch dann können wir linearen Abbildungen $f:V\to W$ Matrizen zuordnen. Allerdings gibt es jetzt keine kanonische Wahl von Basen von V und W mehr. Und wir müssen die Wahl der Basen in unserer Konstruktion berücksichtigen. Sei $B=(b_1,\ldots,b_n)$ eine geordnete Basis von V und $C=(c_1,\ldots,c_m)$ eine geordnete Basis von W.

Sei $f: V \to W$ linear. Dann schreiben wir für $j = 1, \dots, n$

$$f(b_j) = \sum_{i=1}^m a_{ij}c_i \text{ mit } a_{ij} \in K$$

und wir setzen

$$m_B^C(f) := \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \cdot & & \cdot \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \in K^{m \times n}$$

Beispiel

•
$$V=W=\mathbb{R}^2$$
 , $finom{x_1}{x_2}=inom{x_1}{2x_2}$, insbesondere

$$f(e_1) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $f(e_2) = \begin{pmatrix} 0 \\ 2 \end{pmatrix} = 2 \cdot e_2$

 $B=C=\{e_1,e_2\}$ Standardbasis des $\mathbb{R}^2: \leadsto m_B^C(f)=\left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}\right)$

•
$$B'=B$$
 , $C'=\left(\begin{smallmatrix}1&0\\0&2\end{smallmatrix}\right) \leadsto m_{B'}^{C'}(f)=\left(\begin{smallmatrix}1&0\\0&1\end{smallmatrix}\right)$

8.8 Notation/Bemerkung

Jeder Vektor $w \in W$ lässt sich nach der Basis C eindeutig in Koordinaten schreiben:

$$w = \sum_{i=1}^{m} x_i c_i \ , \ x_i \in K$$

Schreiben wir $\kappa_C(w) := \left(egin{array}{c} x_1 \\ \vdots \\ x_m \end{array} \right)$ so erhalten wir

$$m_B^C(f) = \left(\kappa_C(f(b_1)), \dots, \kappa_C(f(b_n))\right)$$

 $\kappa_C:W\to K^m$ heißt Koordinatenabbildung bezüglich C und ist ein Isomorphismus (Inverse von κ ist φ aus 4.29)

50 8 Matrizen

8.9 Satz

Sind V,W K-Vektorräume , $\dim V=n$, $\dim W=m$. Sei B Basis von V und C Basis von W. Dann ist

$$m_B^C : \text{hom}_K(V, W) \to K^{m \times n}$$
 , $f \mapsto m_B^C(f)$

ein Isomorphismus von K-Vektorräumen. Yeahhh!

Beweis:

Linearität

(i) Sei
$$\lambda \in K.$$
 Ist $f(b_j) = \sum\limits_{i=1}^m a_{ij}c_i$ so folgt

$$(\lambda f)(b_j) = \lambda(f(b_j)) = \lambda \sum_{i=1}^m a_{ij}c_i = \sum_{i=1}^m \lambda a_{ij}c_i$$

Also
$$m_B^C(\lambda f) = \lambda m_B^C(f)$$

(ii) Für
$$f, f' \in \hom_K(V, W)$$
 mit $f(b_j) = \sum\limits_{i=1}^m a_{ij}c_i$ und $f'(b_j) = \sum\limits_{i=1}^m a'_{ij}c_i$ gilt

$$(f + f')(b_j) = \sum_{i=1}^{m} (a_{ij} + a'_{ij})c_i$$

Also

$$m_B^C(f + f') = m_B^C(f) + m_B^C(f')$$

• m_B^C ist injektiv

 $\overline{\text{Sei }m_B^C(f)=0}.$ Dann

$$f(b_j) = \sum_{i=1}^{m} a_{ij}c_i = \sum_{i=1}^{m} 0 \cdot c_i = 0$$

Da B Basis ist, ist f = 0 (injektiv $\Leftrightarrow \text{Kern}(f) = 0$)

• m_B^C ist surjektiv

Sei
$$A=(a_{ij})\in K^{m\times n}$$
. Für $i=1,\ldots,n$ sie $w_j:=\sum\limits_{i=1}^m a_{ij}c_i$. Dann gibt es

$$f \in \text{hom}_K(V, W) \text{ mit } f(b_j) = w_j \text{ für } j = 1, \dots, n$$

Es folgt $m_B^C(f) = A$

8.10 Bemerkung

Die Konstruktion von $m_{B}^{C}(f)$ lässt sich auch in folgendem Diagramm zusammenfassen:

$$\begin{array}{ccc} V & \xrightarrow{f} & W \\ \kappa_B \downarrow \cong & \cong \downarrow \kappa_C \\ K^n & \xrightarrow{m_B^C(f)} & K^m \end{array}$$

Dabei gilt

$$m_B^C(f) = \kappa_C \circ f \circ \kappa_B^{-1} \qquad \overset{\text{aquivalent dazu ist}}{\Longleftrightarrow} \qquad m_B^C(f) \circ \kappa_B = \kappa_C \circ f$$

(Ein Diagramm von Abbildungen mit dieser Eigenschaft heißt kommutativ)

8.11 Korollar

$$\dim_K \hom_K(V, W) = \dim_K V \cdot \dim_K W$$

Beweis:

Ist $\dim V=n$, $\dim W=m$ so gilt nach 8.9

$$\dim \hom_K(V, W) = \dim K^{m \times n} = m \cdot n = \dim W \cdot \dim V$$

8.12 Satz

Seien V, W, U K-Vektorräume mit geordneten Basen

$$B = (b_1, \dots, b_n)$$

$$C = (c_1, \dots, c_m)$$

$$D = (d_1, \dots, d_l)$$

Für $f:V \to W$, $f':W \to U$ linear gilt

$$m_B^D(f' \circ f) = m_C^D(f') \cdot m_B^C(f)$$

Beweis: mit 8.10

$$\begin{array}{cccc} V & \xrightarrow{f} & W & \xrightarrow{f'} & U \\ \kappa_B \downarrow \cong & \cong \downarrow \kappa_C & \cong \downarrow \kappa_D \\ K^n & \xrightarrow{m_B^C(f)} & K^m & \xrightarrow{m_C^D(f')} & K^l \end{array}$$

Also

$$\begin{split} m_B^D(f \circ f') &= \kappa_D \circ (f \circ f') \circ \kappa_B^{-1} \\ &= (\kappa_D \circ f' \circ \kappa_C^{-1}) \circ (\kappa_C \circ f \circ \kappa_B^{-1}) \\ &= m_C^D(f') \cdot m_B^D(f) \end{split}$$

8.13 Bemerkung

Sowohl die Komposition

$$\operatorname{hom}_K(W, U) \times \operatorname{hom}_K(V, W) \to \operatorname{hom}_K(V, U) \qquad (f, f') \mapsto f' \circ f$$

als auch das Produkt von Matrizen

$$K^{l \times m} \times K^{m \times n} \to K^{l \times n} \qquad (A, A') \mapsto A' \cdot A$$

sind bilinear, das heißt es gelten

(i)
$$f' \circ (f_1 + f_2) = f' \circ f_1 + f' \circ f_2$$

(ii)
$$(f_1' + f_2') \circ f = f_1' \circ f + f_2' \circ f$$

(iii)
$$(\lambda f') \circ f = \lambda (f' \circ f) = f' \circ (\lambda f)$$

(iv)
$$A' \cdot (A_1 + A_2) = A' \cdot A_1 + A' \cdot A_2$$

(v)
$$(\lambda A') \cdot A = \lambda (A' \cdot A) = A' \cdot (\lambda A)$$

8.14 Beispiel

Eine Matrix $A=(a_{ij})\in K^{m\times n}$ heißt eine Diagonalmatrix, falls $a_{ij}=0$ für $i\neq j$. Also

$$A = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \\ \vdots & \vdots & & \ddots \end{pmatrix} \qquad \text{mit } \lambda_1 = a_{11}, \lambda_2 = a_{22}, \dots, \lambda_n = a_{nn}$$

Wir schreiben dann auch $A = \text{Diag } (\lambda_1, \dots, \lambda_n)$. Ist

$$B = \begin{pmatrix} \mu_1 & 0 & 0 \\ 0 & \mu_2 & 0 \\ 0 & 0 & \mu_3 \\ \vdots & \vdots & & \ddots \end{pmatrix}$$

eine zweite Diagonalmatrix, so gilt

$$A \cdot B = \text{Diag}(\lambda_1 \mu_1, \dots, \lambda_n \mu_n)$$

8.15 Beispiel

$$I_n = \operatorname{Diag}(1, \dots, 1) \in K^{n \times n}$$

heißt die Einheitsmatrix. Es gilt

$$I_n \cdot A = A = A \cdot I_n$$
 für jedes $A \in K^{n \times n}$

8.16 Bemerkung

 $K^{n \times n}$ ist ein Ring dessen Eins die Einheitsmatrix I_n und dessen Null die Nullmatrix 0 ist. (Ist n=0 so ist $I_n=0$ und $K^{n \times n}$ kein Ring im Sinne von 7.16)

8.17 Definition

Eine Matrix $A=(a_{ij})\in K^{n\times n}$ heißt eine <u>obere Dreiecksmatrix</u>, falls $a_{ij}=0$ für i>j. Also

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & \ddots & & \vdots \\ \vdots & 0 & \ddots & \vdots \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix}$$

Ist B eine zweite obere Dreiecksmatrix, dann ist auch $A \cdot B$ eine obere Dreiecksmatrix.

8.18 Definiton

Eine Matrix $A \in K^{n \times n}$ heißt <u>invertierbar</u> (oder regulär), wenn es $B \in K^{n \times n}$ gibt mit $AB = BA = I_n$. Die Menge Gl(n,K) aller invertierbaren $n \times n$ -Matrizen bildet eine Gruppe, die **allgemeine lineare Gruppe**.

8.19 Frage

Seien B und B' geordnete endliche Basen von V und C und C' geordnete endliche Basen von W. Welche Beziehung besteht zwischen $m_{B'}^{C'}$ und m_{B}^{C} ?

8 Matrizen 53

8.20 Koordinatenwechsel

 $\mathrm{Sei} f:V o W$ linear. Wir erhalten

$$\begin{array}{cccc} K^n & \stackrel{\kappa_B}{\longleftarrow} & V & \stackrel{\kappa_{B'}}{\longrightarrow} & K^n \\ m^C_B(f) \downarrow & & \downarrow f & & \downarrow m^{C'}_{B'}(f) \\ K^m & \stackrel{\kappa_C}{\longleftarrow} & W & \stackrel{\kappa_{C'}}{\longrightarrow} & K^m \end{array}$$

Seien

$$S := \kappa_{B'} \circ \kappa_B^{-1} : K^n \to K^n \quad S \in K^{n \times n}$$

und

$$T := \kappa_{C'} \circ \kappa_C^{-1} : K^m \to K^m \quad T \in K^{m \times m}$$

Es folgt

$$\begin{split} m_{B'}^{C'} &= \kappa_{C'} \circ f \circ \kappa_{B'}^{-1} \\ &= \kappa_{C'} \circ \left(\kappa_C^{-1} \circ m_B^C(f) \circ \kappa_B\right) \circ \kappa_{B'}^{-1} \\ &= \left(\kappa_{C'} \circ \kappa_C^{-1}\right) \circ m_B^C(f) \circ \left(\kappa_B \circ \kappa_{B'}^{-1}\right) \\ &= T \circ m_B^C(f) \circ S^{-1} \end{split}$$

8.21 Defintion

Seien B und B^\prime endliche geordnete Basen von V. Dann heißt

$$S := \kappa_{B'} \circ \kappa_B^{-1} \in K^{n \times n}$$

die Basiswechselmatrix für den Basiswechsel von B nach B^\prime

8.22 Bemerkung

Es gilt
$$S = m_B^{B'}(\mathrm{id}_V)$$

8.23 Bemerkung

Lineare Abbildungen $f:V\to V$ heißen **Endomorphismen** von V. In diesem Fall wählt man nur eine Basis B von V und ordnet f die Matrix $\overline{m_B^B(f)}$ zu. Wählt man eine andere Basis B' so gilt mit $S:=\kappa_{B'}\circ\kappa_B^{-1}$

$$m_{B'}^{B'}(f) = S \circ m_B^B(f) \circ S^{-1}$$

8.24 Definition

- (i) Zwei $n \times n$ -Matrizen $A, B \in K^{n \times n}$ heißen <u>ähnlich</u> (oder <u>konjugiert</u>) falls es $S \in GL(n,K)$ gibt mit $A = SBS^{-1}$
- (ii) Zwei $m \times n$ -Matrizen $A, B \in K^{m \times n}$ heißen **äquivalent** falls es

$$S \in GL(n, K), T \in GL(m, K)$$

gibt mit
$$A = TBS^{-1}$$

54 8 Matrizen

8.25 Defintion

- (i) $\operatorname{Der} \mathbf{Zeilenrang}$ einer $\operatorname{Matrix} A \in K^{m \times n}$ ist die Dimension des von den Zeilen von A aufgespannten Unterraumes von K^n
- (ii) Der **Spaltenrang** von $A \in K^{m \times n}$ ist die Dimension des von den Spalten von A aufgespannten Unterraums von K^m

8.26 Satz

Sei $f:V\to W$ linear, $A=m_B^C(f)$ wobei B und C geordnete Basen von V und W sind. Dann

$$\dim(\mathsf{Bild}\ f) = \mathsf{Spaltenrang}\ (A)$$

Beweis:

Betrachte:

$$\begin{array}{ccc}
V & \xrightarrow{f} & W \\
\kappa_B \downarrow \cong & \cong \downarrow \kappa_C \\
K^n & \xrightarrow{A} & K^m
\end{array}$$

Es ist $\kappa_C(\text{Bild } f) = \text{Bild } A$. Da κ_C ein Isomorphismus ist, folgt

$$\dim \operatorname{Bild} f = \dim \operatorname{Bild} A$$

Die Spalten von A erzeugen Bild A (vgl. 8.8(ii)).

Damit gilt

Spaltenrang $A = \dim \operatorname{Bild} A = \dim \operatorname{Bild} f$

8.27 Satz

Sei $f:V\to W$ linear. Seien $r:=\dim \operatorname{Bild} f, n=\dim V, m=\dim W.$ Dann gibt es geordnete Basen $B=(b_1,\ldots,b_n)$ von V und $C=(c_1,\ldots,c_m)$ von W mit

$$f(b_i) = \begin{cases} c_i, & \text{ für } 1 \leqslant i \leqslant r \\ 0, & \text{ für } r < i \leqslant n \end{cases} \quad m_B^C(f) = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

Beweis:

Sei (c_1,\ldots,c_r) eine Basis von Bild f. Diese ergänzen wir zu einer Basis $C=(c_1,\ldots,c_r,\ldots,c_m)$ von W. Wähle $b_1,\ldots,b_r\in V$ mit $f(b_i)=c_i$ für $i=1,\ldots,r$. Dann ist b_1,\ldots,b_r linear unabhängig, da c_1,\ldots,c_r linear unabhängig ist.

(*) Behauptung:

$$V = \mathcal{L}(\{b_1, \dots, b_r\}) + \mathsf{Kern}\ f$$

Beweis der Behauptung:

Sei $v \in V$. Da Bild $f = \mathcal{L}(\{c_1, \dots, c_r\})$ gibt es $v_0 \in \mathcal{L}(\{b_1, \dots, b_r\})$ mit $f(v_0) = f(v)$. Daher $v - v_0 \in Kern \ f$ und

$$v = \underbrace{v_0}_{\in \mathcal{L}(\{b_1, \dots, b_r\})} + \underbrace{\left(v - v_0\right)}_{\in \text{ Kern } f} \in \mathcal{L}(\{b_1, \dots, b_r\}) + \text{ Kern } f$$

Wegen (\star) können wir b_1,\ldots,b_r durch Elemente von Kern f zu einer Basis

$$b_1,\ldots,b_r,\ldots,b_n$$

ergänzen. Die Basen B und C haben die gewünschte Eigenschaft.

55

8.28 Korollar

Jede Matrix $A \in K^{m \times n}$ ist äquivalent zu einer Matrix der Form $\left(\begin{smallmatrix} I_r & 0 \\ 0 & 0 \end{smallmatrix} \right)$ mit r = Spaltenrang A

Beweis:

 $\overline{\text{Wende}}$ (8.27) auf $f_A:K^n\to K^m,v\mapsto A\cdot v$ an. Also gibt es Basen B von K^n und C von K^m mit

$$m_B^C(f_A) = \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix}$$

Bezüglich der Standardbasen E_n von K^n , E_m von K^m gilt

$$m_{E_n}^{E_m}(f_A) = A$$

Nach (8.20) sind A und $\left(\begin{smallmatrix}I_r&0\\0&0\end{smallmatrix}\right)$ ähnlich. Es gilt

Spaltenrang
$$A = \dim \ \mathsf{Bild} \ f_A = \mathsf{Spaltenrang} \ \left(\begin{smallmatrix} I_r & 0 \\ 0 & 0 \end{smallmatrix} \right) = r$$

8.29 Bemerkung

Sind A und B ähnlich, so gilt

$${\it Spaltenrang}\ A = {\it Spaltenrang}\ B$$

8.30 Satz

Für jede Matrix stimmen Zeilen- und Spaltenrang überein.

8.31 Definition

Zu $A=(a_{ij})\in K^{m\times n}$ erhält man die **transponierte** Matrix $A^t\in K^{n\times m}$ indem man die Zeilen und Spalten vertauscht. Genauer ist

$$A^t = (b_{ij}) \text{ mit } b_{ij} = a_{ji}$$

8.32 Beispiel

$$\begin{pmatrix} 2 & 3 & 4 \\ 4 & 5 & 6 \end{pmatrix}^t = \begin{pmatrix} 2 & 4 \\ 3 & 5 \\ 4 & 6 \end{pmatrix}$$

8.33 Bemerkung

Zeilenrang A^t =Spaltenrang A Spaltenrang A^t =Zeilenrang A

8.34 Bemerkung

Es gelten folgende Rechenregeln:

(i)
$$(\lambda A)^t = \lambda A^t$$

(ii)
$$(A+B)^t = A^t + B^t$$

(iii)
$$(A \cdot B)^t = B^t \cdot A^t$$

56 8 Matrizen

Beweis von 8.30:

Sei $A \in K^{m \times n}$. Wegen (8.28) gibt es $S \in Gl(n,K), T \in Gl(m,K)$ mit

$$A = T \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} S^{-1}$$

Es folgt
$$A^t=(S^{-1})^t\begin{pmatrix}I_r&0\\0&0\end{pmatrix}T^t$$
 Mit S und T sind auch S^t und T^t invertierbar mit

$$(S^t)^{-1} = (S^{-1})^t \quad \text{und} \quad (T^t)^{-1} = (T^{-1})^t$$

Also sind A^t und $\left(\begin{smallmatrix}I_r&0\\0&0\end{smallmatrix}\right)$ äquivalent. Also

Spaltenrang
$$A = \operatorname{Spaltenrang} \, \left(\begin{smallmatrix} I_r & 0 \\ 0 & 0 \end{smallmatrix} \right) = \operatorname{Spaltenrang} \, A^t = \operatorname{Zeilenrang} \, A$$

8.35 Definition

Der Rang einer Matrix ist ihr Zeilenrang (=Spaltenrang).

8.36 Defintion

Die folgenden $n \times n$ -Matrizen heißen Elementarmatrizen

I. Für
$$i \neq j \in \{1,\ldots,n\}, \lambda \in K$$

$$E(i,j;\lambda) = \begin{array}{c} i \cdot \begin{pmatrix} 1 & 0 & \vdots & 0 \\ --- \cdot \cdot \cdot & \lambda & \vdots & 0 \\ & & \ddots & 0 \\ 0 & & & 1 \end{pmatrix}$$

II. Für
$$i \neq j$$

III. Für
$$i \in \{1, \dots, n\}, \lambda \neq 0 \in K$$

$$E(i,\lambda) = i \cdot \begin{pmatrix} 1 & i & i \\ 1 & i & i \\ \vdots & \ddots & \ddots & \vdots \\ & & 1 & 1 \end{pmatrix}$$

8.37 Bemerkung

a) seien z_1,\dots,z_m die Zeilen der $m \times n$ -Matrix A. Also $A = \begin{pmatrix} z_1 \\ \cdot \\ z_n \end{pmatrix}$. Dann gelten

I)
$$E(i,j;\lambda)A= \begin{pmatrix} z_1\\ \vdots\\ z_i+\lambda z_j\\ \vdots\\ z_j\\ \vdots\\ z_m \end{pmatrix}$$

II)
$$T(i,j)\cdot A=\begin{pmatrix} z_1\\ \cdot\\ z_j\\ \cdot\\ z_i\\ \cdot\\ z_m \end{pmatrix}$$

III)
$$E(i,\lambda) \cdot A = \begin{pmatrix} z_1, \\ \cdot \\ \lambda z_i \\ \cdot \\ z_m \end{pmatrix}$$

Die elementaren Umformungen von Gleichungssystemen entsprechen also der Linksmultiplikation mit Elementarmatrizen. Für Matrizen nennen wir diese (elementaren) **Zeilenumformungen**

b) Seien also $s_1,\dots,s_n\in K^m$ die Spalten der $m\times n$ -Matrix A. Also $A=(s_1,\dots,s_n)$. Dann gelten

I)
$$A \cdot E(i, j; \lambda) = (s_1, \dots, s_j + \lambda s_i, \dots, s_n)$$

II)
$$A \cdot T(i,j) = (s_1 \dots s_j \dots s_i \dots s_n)$$

III)
$$A \cdot E(i, \lambda) = (s_1 \dots \lambda s_i \dots s_n)$$

Diese Umformungen nennen wir für Matrizen (elementare) Spaltenumformungen.

8.38 Bemerkung

Die Elementarmatrizen sind invertierbar

$$E(i,j;\lambda)^{-1} = E(i,j;-\lambda)$$
$$T(i,j)^{-1} = T(i,j)$$
$$E(i,\lambda)^{-1} = E(i,\lambda^{-1})$$

8.39 Proposition

Seien $A,B\in K^{m\times n}$ geht B aus A durch elementare Zeilen- und Spaltenumformungen hervor, so sind A und B äquivalent. Insbesondere gilt

$$Rang A = Rang B$$

58 Matrizen

Beweis:

Es git elementare Matrizen E_1, \ldots, E_N F_1, \ldots, F_M mit

$$B = E_N \cdot \ldots \cdot E_2 \cdot E_1 \cdot A \cdot F_1 \cdot F_2 \cdot \ldots \cdot F_M$$

Also

$$S = (F_1 \cdot \ldots \cdot F_M)^{-1} \in GL(n, K), T_i = E_N \cdot \ldots \cdot E_1 \in GL(m.K)$$

$$\min B = T \cdot A \cdot S^{-1}$$

8.40 Beispiel

Betrachte $A=\begin{pmatrix}1&2&3\\2&3&4\\3&4&5\end{pmatrix}$ Durch elementare Umformungen erhalten wir:

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \\ 0 & -2 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Also Rang $A = \operatorname{Rang} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 2$

9 Die Spur

9.1 Defintion

Die **Spur** einer quadratischen Matrix $A=(a_{ij})\in K^{n\times n}$ ist

$$Sp(A) := \sum_{i=1}^{n} a_{ii}$$

Beispiel: $\operatorname{Sp}(I_r) = r$, $\operatorname{Sp}\left(\begin{smallmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{smallmatrix}\right) = 9$

9.2 Lemma

$$Sp(AB) = Sp(BA)$$

Beweis:

 $\overline{\text{Seien } A} = (a_{ij}), B = (b_{ji}) \in K^{n \times n}$

$$\operatorname{Sp}(AB) = \sum_{i=1}^n (i,i)$$
 Eintrag von $A \cdot B = \sum_{i=1}^n \sum_{j=1}^n a_{ij} b_{ji}$

$$= \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} b_{ji} = \sum_{j=1}^{n} \sum_{i=1}^{n} b_{ji} a_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{n} (j,j) \text{-Eintrag von } B \cdot A = \operatorname{Sp}(B \cdot A)$$

9.3 Korollar

Die Spuren ähnlicher Matrizen stimmen überein.

Beweis:

 $\overline{\text{Sind } A, B} \in K^{n \times n}$ ähnlich so gibt es $S \in Gl(n, K)$ mit

$$S \cdot A \cdot S^{-1} = B$$

Damit folgt

$$Sp(B) = Sp((SA)S^{-1}) \stackrel{9.2}{=} Sp(S^{-1}SA) = Sp(A)$$

9.4 Defintion

Sei $f:V\to V$ ein Endomorphismus eines K-Vektorraumes endlicher Dimension. Die Spur von f ist dann $\mathrm{Sp}(f):=\mathrm{Sp}(m_B^B(f))$ für eine Basis B von V

9.5 Bemerkung

Die Spur von f hängt nicht von der Wahl von B ab: Ist C eine zweite Basis von V so sind $m_B^B(f)$ und $m_C^C(f)$ ähnlich und daher gilt

$$\operatorname{Sp}(m_B^B(f)) = \operatorname{Sp}(m_C^C(f))$$

(siehe 9.3)

9.6 Bemerkung

$$\operatorname{Sp} A = \operatorname{Sp} A^t$$

9.7 Satz

Sei $T: K^{n \times n} \to K$ eine linear Abbildung mit der Eigenschaft

$$T(A \cdot B) = T(B \cdot A)$$
 für alle $A, B \in K^{n \times n}$

Dann ist T ein skalares Vielfaches von Sp . Es gibt also $\lambda \in K$ mit

$$T(A) = \lambda \operatorname{Sp}(A)$$
 für alle $A \in K^{n \times n}$

Beweis:

Sei

$$E_{ij} = \begin{pmatrix} 0 & \cdots & \cdots & \cdots & 0 \\ \vdots & \ddots & & & \vdots \\ & & 1 & & \\ \vdots & & & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}$$

die Matrix, die an der Stelle (i,j) eine 1 hat und sonst Nullen. Die E_{ij} bilden eine Basis von $K^{n\times n}$. Es gilt

$$E_{ij}E_{kl} = \begin{cases} E_{il}, & \text{falls } j = k \\ 0, & \text{falls } j \neq k \end{cases}$$

Für $i \neq l$ ist daher

$$E_{ij}E_{il} - E_{il}E_{ij} = E_{il}$$

und folglich

$$T(E_{jl}) = T(E_{ij}E_{jl} - E_{jl}E_{ij})$$

$$T(E_{jl}) = T(E_{ij}E_{jl} - E_{jl}E_{ij})$$

= $T(E_{ij}E_{jl}) - T(E_{jl}E_{ij})$
= $T(E_{ij}E_{jl}) - T(E_{ij}E_{jl}) = 0$

Wegen

$$E_{ij}E_{ji} - E_{ji}E_{ji} = E_{ii}E_{jj}$$

gilt

$$T(E_{ii}) = T(E_{jj})$$

Es folgt für $A=(a_{ij})=\sum\limits_{i,j=1}^{n}a_{ij}E_{ij}$

$$T(A) = \sum_{i,j=1}^{n} a_{ij} T(E_{ij}) = \sum_{i=1}^{n} a_{ii} T(E_{11}) = T(E_{11}) \cdot \operatorname{Sp}(A)$$

Also

$$T = \lambda \operatorname{Sp} \ \operatorname{mit} \lambda = T(E_{11})$$

10 Permutationen

10.1 Definition

Sei $n \in \mathbb{N}$ $S_n = \{\sigma: \{1,\dots,n\} \to \{1,\dots,n\} \mid \sigma \text{ ist bijektiv}\}$ heißt die **symmetrische Gruppe** zum Index n. Elemente von S_n heißen **Permutationen**.

10.2 Notation

Oft schreibt man

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

10.3 Beispiel

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \in S_3 \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \in S_4 \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 2 \end{pmatrix} \not \in S_4$$

10.4 Notation

Seien $i,j\in\{1,\dots,n\}$ mit $i\neq j$. Dann schreibt man (i,j) für Permutationen $\sigma\in S_n$ mit

$$\sigma(k) = \begin{cases} i, & \text{falls } k = j \\ j, & \text{falls } k = i \\ k, & \text{sonst} \end{cases}$$

Permutationen dieser Form heißen Transpositionen

61

10.5 Bemerkung

- (i) S_1 ist die neutrale Gruppe
- (ii) S_2 besteht genau aus zwei Elementen: Der Identität und der Transposition (1,2)
- (iii) S_3 ist nicht abelsch.

$$(1,2)(2,3) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$
 $(2,3)(1,2) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$

Genauso ist S_n für $n \geqslant 3$ nicht abelsch

10.6 Defintion

Sei $\sigma \in S_n$. Sei k die Anzahl der zwei-elementiger Teilmengen $\{i,j\}\subseteq \{1,\dots,n\}$ mit i< j und $\sigma(i)>\sigma(j)$. Dann heißt

$$\operatorname{sgn}(\sigma) := (-1)^k$$

Das **Signum** von σ

10.7 Beispiel

Ist σ eine Transposition, so ist

$$\operatorname{sgn}(\sigma) = -1$$

10.8 Bemerkung

(i)

$$\mathrm{sgn}(\sigma) = \prod_{1 \leqslant i < j \leqslant n} \frac{\sigma(j) - \sigma(i)}{j - i}$$

(ii) Sei P die Menge aller Paare (i,j) mit $i,j\in\{1,\ldots,n\}, i\neq j$. Ein **Halbsystem** ist eine Teilmenge von P, die von den Paaren (i,j) und (j,i) jeweils genau eins enthält. Dann gilt für jedes Halbsystem

$$\mathrm{sgn}(\sigma) = \prod_{(i,j) \in H} \frac{\sigma(j) - \sigma(i)}{j - i}$$

(iii) Ist H ein Halbsystem und $\tau \in S_n$ so ist auch $\tau H := \left\{ \left(\tau(i), \tau(j) \right) \mid (i,j) \in H \right\}$ ein Halbsystem und es gilt

$$\operatorname{sgn}(\sigma) = \prod_{(i,j)\in\tau H} \frac{\sigma(j) - \sigma(i)}{j - i} = \prod_{(i,j)\in H} \frac{\sigma(\tau(j)) - \sigma(\tau(i))}{\tau(j) - \tau(i)}$$

10.9 Lemma

$$sgn: S_n \to \{\pm 1\}$$

ist ein Gruppenhomomorphismus, das heißt $\sigma, \tau \in S_n$ ist

$$\operatorname{sgn}(\sigma\tau) = \operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\tau)$$

Beweis:

$$\operatorname{sgn}(\sigma\tau) = \prod_{(i,j)\in H} \frac{\sigma(\tau(j)) - \sigma(\tau(i))}{j-i}$$

$$= \prod_{(i,j)\in H} \frac{\sigma(\tau(j)) - \sigma(\tau(i))}{\tau(j) - \tau(i)} \cdot \frac{\tau(j) - \tau(i)}{j-i}$$

$$= \prod_{(i,j)\in H} \frac{\sigma(\tau(j)) - \sigma(\tau(i))}{\tau(j) - \tau(i)} \cdot \prod_{(i,j)\in H} \frac{\tau(j) - \tau(i)}{j-i}$$

$$= \operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\tau)$$

10.10 Definition

$$A_n := \Big\{ \sigma \in S_n \mid \operatorname{sgn}(\sigma) = 1 \Big\} = \mathsf{Kern}(\operatorname{sgn})$$

heißt die **alternierende Gruppe** vom Index n.

10.11 Satz

$$|S_n| = n!$$

10.12 Bezeichnung

Sei H eine Untergruppe von G. Dann heißt $[G:H]=|G/H|\in\mathbb{N}\cup\{\infty\}$ der **Index** von H in G.

10.13 Satz von Lagrange

Sei H eine Untergruppe der endlichen Gruppe G Dann gilt:

$$|G| = [G:H] \cdot |H|$$

Beweis:

G ist die disjunkte Vereinigung der Linksnebenklassen gH. Für jede Linksnebenklasse ist $h\mapsto gh$ eine bijektive Abbildung $H\to gH$ Insbesondere |H|=|gH|. Es folgt

$$|G| = \left| \bigcup_{gH \in G/H} \cdot gH \right| = \sum_{gH \in G/H} |gH| = \sum_{gH \in G/H} |H| = |G/H| \cdot |H| = [G:H] \cdot |H|$$

Beweis von 10.11:

Durch Induktion nach n:

I.A.: Für n = 1 ist $|S_1| = 1 = 1!$

I.S.: $(n-1)\mapsto n$ Die Untergruppe $H=\{\sigma\in S_n\mid \sigma(n)=n\}$ ist isomorph zu S_{n-1}

Nach Induktionsannahme gilt:

$$|H| = |S_{n-1}| = (n-1)!$$

Für $\sigma, \tau \in S_n$ gilt $\sigma H = \tau H$ genau dann wenn $\tau^{-1}\sigma \in H$. Es gilt

$$\tau^{-1}\sigma \in H \quad \Leftrightarrow \quad \tau^{-1}\sigma(n) = n \quad \Leftrightarrow \quad \sigma(n) = \tau(n)$$

Es folgt $[S_n:H]=n$

$$\overset{\text{Lagrange}}{\Rightarrow} |S_n| = [S_n : H] \cdot |H| = n \cdot (n-1)! = n!$$

Satz

Jede Permutation $\sigma \in S_n$ lässt sich als Produkt von Transpositionen schreiben.

Beweis: durch Induktion nach n

I.A.: $n = 1, S_1 = \{id\}$ id ist das leere Produkt von Transpositionen.

I.S.: $(n-1)\mapsto n$. Sei $H=\{\sigma\in S_n\mid \sigma(n)=n\}\cong S_{n-1}$. Per Induktionsannahme ist jedes Element von H ein Produkt von Transpositionen.

Sei $\sigma \in S_n$. Ist $\sigma \in H$ so sind wir fertig.

Ist $\sigma \not\in H$ so $\sigma(n) \neq n$. Sei $\tau = (n\sigma(n)) \in S_n$ Dann gilt $\tau \circ \sigma \in H$. Also gibt es Transpositionen τ_1, \dots, τ_l mit

$$\tau \cdot \sigma = \tau_1 \cdot \ldots \cdot \tau_n$$

Dann ist auch $\sigma= au^{-1} au_1\dots au_n= au au_1\dots au_n$ ein Produkt von Transpositionen.

10.14 Korollar

Für $\sigma \in S_n$ gilt $\mathrm{sgn}(\sigma) = 1$ genau dann, wenn σ ein Produkt einer gerade Zahl von Transpositionen ist und $\mathrm{sgn}(\sigma) = -1$ genau dann, wenn σ ein Produkt einer ungeraden Zahl von Transpositionen ist.

11 Determinanten

11.1 Definition

Sei V ein Vektorraum. Eine Abbildung $D:V^n\to K$ heißt $\underline{n\text{-linear}}$ oder eine $\underline{n\text{-Linearform}}$, wenn sie in jeder Variable linear ist, wenn also immer gilt:

$$D(v_1, \dots, v_i + v_i', \dots, v_n) = D(v_1, \dots, v_i, \dots, v_n) + D(v_1, \dots, v_i', \dots, v_n)$$
$$D(v_1, \dots, \lambda v_i, \dots, v_n) = \lambda D(v_1, \dots, v_i, \dots, v_n)$$

Eine n-Linearform heißt **alternierend**, wenn aus $v_i = v_j$ mit $i \neq j$ immer

$$D(v_1,\ldots,v_i,\ldots,v_j,\ldots,v_n)=0.$$

folgt.

Sei $\mathrm{Alt}^n(V)$ die Menge der alternierenden n-Linearformen auf V. $\mathrm{Alt}^n(V)$ wird durch Addition und skalare Multiplikation der Funktionswerte zu einem Vektorraum.

$$(D+D')(v_1,\ldots,v_n) = D(v_1,\ldots,v_n) + D'(v_1,\ldots,v_n)$$
$$(\lambda D)(v_1,\ldots,v_n) = \lambda D(v_1,\ldots,v_n)$$

64

11 Determinanten

11.2 Propositon

Sei $D \in \operatorname{Alt}^n(V)$

(i) Ist $i \neq j$, $\lambda \in K$ so gilt

$$D(v_1, \dots, v_i, \dots, v_j, \dots, v_n) = D(v_1, \dots, v_i + \lambda v_j, \dots, v_j, \dots, v_n)$$

(ii) Ist $i \neq j$ so gilt

$$D(v_1, \dots, v_i, \dots, v_j, \dots, v_n) = -D(v_1, \dots, v_i, \dots, v_i, \dots, v_n)$$

(iii) Ist v_1, \ldots, v_n linear abhängig, so gilt

$$D(v_1,\ldots,v_n)=0$$

Beweis:

Um die Notation zu vereinfachen, nehmen wir für (i) und (ii) an. n=2, i=1, j=2

(i)
$$D(v_1 + \lambda v_2, v_2) = D(v_1, v_2) + D(\lambda v_2, v_2) = D(v_1, v_2) + \lambda \underbrace{D(v_2, v_2)}_{=0} = D(v_1, v_2)$$

(ii)
$$0 = D(v_1 + v_2, v_1 + v_2) = D(v_1, v_1 + v_2) + D(v_2, v_1 + v_2) = \underbrace{D(v_1, v_1)}_{=0} + D(v_1, v_2) + D(v_2, v_1) + \underbrace{D(v_2, v_2)}_{=0}$$

Also
$$0 = D(v_1, v_2) + D(v_2, v_1)$$

Also $D(v_1, v_2) = -D(v_2, v_1)$

(iii) Ist $v_i = \sum\limits_{i \neq j} \lambda_j v_j$ so folgt

$$D(v_1, \dots, v_i, \dots, v_n) = D(v_1, \dots, \sum_{i \neq j} \lambda_j v_j, \dots, v_n) = \sum_{i \neq j} \lambda_j \overbrace{D(v_1, \dots, v_j, \dots, v_n)}^{=0} = 0$$

11.3 Beispiel

 $V = K^m$

(i) $D:(K^m)^n\to K$ mit

$$D\left(\begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix}, \dots, \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix}\right) = a_{i1} \cdot a_{i2} \cdot \dots \cdot a_{in}$$

ist für $i \in \{1, \dots, m\}$ eine n-Linearform

(ii) Sei $f:\{1,\ldots,n\} o \{1,\ldots,n\}$ eine Abbildung. Sei $\sigma \in S_n$. Dann ist

$$D: (K^n)^n \to K \quad \text{mit} \quad D\left(\begin{pmatrix} a_{11} \\ \vdots \\ a_{n1} \end{pmatrix}, \dots, \begin{pmatrix} a_{1n} \\ \vdots \\ a_{nn} \end{pmatrix}\right) = a_{1\sigma(1)} \cdot a_{2\sigma(2)} \cdot \dots \cdot a_{n\sigma(n)}$$

eine n-Linearform

65

$$D: (K^n)^n \to K \text{ mit } D = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) D_\sigma$$

ist eine alternierende n-Linearform. Seien $r,s\in\{1,\ldots,n\}$, $r\neq s$ mit $\begin{pmatrix} a_{1r}\\ \vdots\\ a_{nr} \end{pmatrix} = \begin{pmatrix} a_{1s}\\ \vdots\\ a_{ns} \end{pmatrix}$.

Sei $\tau = (r, s) \in S_n$. Dann gilt

$$D_{\sigma}\left(\begin{pmatrix} a_{11} \\ \vdots \\ a_{n1} \end{pmatrix}, \dots, \begin{pmatrix} a_{1n} \\ \vdots \\ a_{nn} \end{pmatrix}\right) = D_{\tau \circ \sigma}\left(\begin{pmatrix} a_{11} \\ \vdots \\ a_{n1} \end{pmatrix}, \dots, \begin{pmatrix} a_{1n} \\ \vdots \\ a_{nn} \end{pmatrix}\right)$$

Da S_n die disjunkte Vereininung von A_n mit τA_n ist, folgt und $\mathrm{sgn}(\sigma) = -\,\mathrm{sgn}(\tau\sigma)$

$$D\left(\begin{pmatrix} a_{11} \\ \vdots \\ a_{n1} \end{pmatrix}, \dots, \begin{pmatrix} a_{1n} \\ \vdots \\ a_{nn} \end{pmatrix}\right)$$

$$= \sum_{\sigma \in A_n} D_{\sigma} \left(\begin{pmatrix} a_{11} \\ \vdots \\ a_{n1} \end{pmatrix}, \dots, \begin{pmatrix} a_{1n} \\ \vdots \\ a_{nn} \end{pmatrix}\right) - \sum_{\sigma \in A_n} D_{\tau \circ \sigma} \left(\begin{pmatrix} a_{11} \\ \vdots \\ a_{n1} \end{pmatrix}, \dots, \begin{pmatrix} a_{1n} \\ \vdots \\ a_{nn} \end{pmatrix}\right)$$

$$= \sum_{\sigma \in A_n} (D_{\sigma} - D_{\tau \circ \sigma}) \left(\begin{pmatrix} a_{11} \\ \vdots \\ a_{n1} \end{pmatrix}, \dots, \begin{pmatrix} a_{1n} \\ \vdots \\ a_{nn} \end{pmatrix}\right) = 0$$

$$D\left(\begin{pmatrix} a_{11} \\ \vdots \\ a_{n1} \end{pmatrix}, \dots, \begin{pmatrix} a_{1n} \\ \vdots \\ a_{nn} \end{pmatrix}\right) := \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \cdot \dots \cdot a_{n\sigma(n)}$$

Für die Standardbasis e_1, \ldots, e_n von K^n gilt

$$D(e_1, \dots, e_n) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \delta_{1\sigma(i)} \cdot \dots \cdot \delta_{n\sigma(n)} = 1 \text{ für } \sigma = \text{id} = 1$$

wobei $\delta_{1\sigma(1)},\dots,\delta_{n\sigma(n)}=egin{cases} 1,&\text{falls }\sigma=\mathrm{id}\\ 0,&\text{sonst} \end{cases}$ mit

$$\delta_{ij} = egin{cases} 1, & \text{falls } i = j \ 0, & \text{falls } i
eq j \end{cases} \qquad e_i = egin{pmatrix} \delta_{i1} \ dots \ \delta_{in} \end{pmatrix}$$

hier fehlt noch was...

11.4 Bemerkung

Ist $\dim V < n$ so ist $\mathrm{Alt}^n(V) = 0$ wegen 11.2 (iii)

11.5 Satz

Ist $\dim V = n$ so ist $\dim \operatorname{Alt}^n(V) = 1$

Beweis:

Sei $D \in \mathrm{Alt}^n(V)$. Sei b_1, \ldots, b_n eine Basis von V. Dann schreiben wir

$$v_i = \sum_{j=1}^n \lambda_{ij} b_j \quad \text{ mit } \lambda_{ij} \in K$$

Es folgt

$$D(v_1, \dots, v_n) = D\left(\sum_{j=1}^n \lambda_{1j} b_j, \dots, \sum_{j=1}^n \lambda_{nj} b_j\right)$$
$$= \sum_{j_1, \dots, j_n \in \{1, \dots, n\}} \lambda_{1j_1} \cdot \lambda_{2j_2} \cdot \dots \cdot \lambda_{nj_n} D(b_{j_1}, \dots, b_{j_n})$$

Ist $j_i=j_k$ für $i\neq k$ so ist $D(b_{j_1},\ldots,b_{j_n})=0$. Daher ist $\begin{pmatrix} 1 & 2 & \cdots & n \\ j_1 & j_2 & \cdots & j_n \end{pmatrix}$ eine Permutation wenn $D(b_{j_1},\ldots,b_{j_n})\neq 0$ ist. Wir erhalten

$$D(v_1, \dots, v_n) = \sum_{\sigma \in S_n} \lambda_{1\sigma(1)} \cdot \dots \cdot \lambda_{n\sigma(n)} \cdot D(b_{\sigma(1)}, \dots, b_{\sigma(n)})$$
$$= \sum_{\sigma \in S_n} \lambda_{1\sigma(1)} \cdot \dots \cdot \lambda_{n\sigma(n)} \cdot \operatorname{sgn}(\sigma) \cdot D(b_1, \dots, b_n)$$

Daher ist D durch seinen Wert auf (b_1, \ldots, b_n) eindeutig festgelegt und es folgt

$$\dim(\operatorname{Alt}^n(V)) \leqslant 1$$

etwas formaler: Betrachte $\varphi: \mathrm{Alt}^n(V) \to K$ mit $\varphi(D) := D(b_1, \ldots, b_n)$. Dies ist eine lineare Abbildung und die obige Überlegung zeigt, dass φ injektiv ist. Also $\dim \mathrm{Alt}^n(V) \leqslant 1$

Es bleibt zu zeigen $\mathrm{Alt}^n(V) \neq \{0\}$. Für $V = K^n$ haben wir schon $D \neq 0$ in 11.3 (iii) konstruiert. Ist nun

$$\kappa: V \to K^n$$

ein Isomorphismus, so wird durch $\tilde{D}(v_1,\ldots,v_n):=D(\kappa(v_1),\ldots,\kappa(v_n))$ ein nicht-triviales Element in $\mathrm{Alt}^n(V)$ definiert.

11.6 Satz

Sei $f: V \to V$ K-linear, wobei $\dim_K V = n$. Dann gibt es ein eindeutiges $\lambda \in K$, so dass

$$D(f(v_1), \ldots, f(v_n)) = \lambda \cdot D(v_1, \ldots, v_n)$$

für alle $v_1, \ldots, v_n \in V$, $D \in \operatorname{Alt}^n(V)$

Beweis:

Wir schreiben f^*D für die alternierende n-Form $(v_1, \ldots, v_n) \mapsto D(f(v_1), \ldots, f(v_n))$.

11 Determinanten 67

Wähle $D \neq 0$ in $\mathrm{Alt}^n(V)$. Da $\mathrm{dim}\,\mathrm{Alt}^n(V) = 1$ ist D schon eine Basis von $\mathrm{Alt}^n(V)$. Daher gibt es ein eindeutiges $\lambda \in K$ mit

$$f^*D = \lambda D$$

Sei nun $D' \in \mathrm{Alt}^n(V)$ beliebig. Da D Basis von $\mathrm{Alt}^n(V)$, gibt es $\mu \in K$ mit $D' = \mu D$. Es folgt

$$D'(f(v_1), \dots, f(v_n)) = \mu D(f(v_1), \dots, f(v_n))$$

$$= \mu(f^*D(v_1, \dots, v_n))$$

$$= \mu \cdot \lambda \cdot D(v_1, \dots, v_n)$$

$$= \lambda \mu D(v_1, \dots, v_n) = \lambda D'(v_1, \dots, v_n)$$

11.7 Definition

 λ aus 11.6 heißt die **Determinante** von f, geschrieben

$$\det(f)$$

Beispiel:

$$\det(\mathrm{id}_V) = 1 \qquad \det(0) = 0$$

11.8 Satz

Sei $\dim V = n$. Dann gilt für $f, g \in \operatorname{End}_K(V)$

$$\det(f \circ g) = \det(f) \cdot \det(g)$$

Beweis:

Für $D \in \mathrm{Alt}^n(V)$, $v_1, \ldots, v_n \in V$ gilt

$$D(f \circ g(v_1), \dots, f \circ g(v_n)) = D(f(g(v_1)), \dots, f(g(v_n)))$$

$$= \det(f) \cdot D(g(v_1), \dots, g(v_n))$$

$$= \det(f) \cdot \det(g) \cdot D(v_1, \dots, v_n)$$

Also

$$\det(f \circ g) = \det(f) \cdot \det(g)$$

11.9 Korollar

Sei $\dim V = n$. Für $f \in \operatorname{End}_K(V)$ sind äquivalent

- (i) $\det(f) \neq 0$
- (ii) f ist invertierbar

In diesem Fall gilt $\det(f^{-1}) = \det(f)^{-1}$

Beweis:

$$1 = \det(\mathrm{id}_V) = \det(f \circ f^{-1}) = \det(f) \cdot \det(f^{-1})$$

68

11 Determinanten

Es folgt $\det(f^{-1}) \neq 0$, genauer gilt

$$\det(f^{-1}) = \det(f)^{-1}$$

"
$$\neg ii) \Rightarrow \neg i$$
"

Sei f nicht invertierbar. Dann ist

$$\dim \operatorname{Bild} f < n$$

Insbesondere ist für $v_1, \ldots, v_n \in V$ $f(v_1), \ldots, f(v_n)$ linear abhängig. Dann gilt für $D \in \mathrm{Alt}^n(V)$

$$D(f(v_1),\ldots,f(v_n))=0$$

Das heißt det(f) = 0

11.10 Definition

Sei $A\in K^{n\times n}$. Die Determinante von A ist die Determinante der zugehörigen Abbildung $f_A:K^n\to K^n$, $v\mapsto A\cdot v$

$$det(A) := det(f_A)$$

11.11 Proposition

Seien $A, B \in K^{n \times n}$

- (i) $det(AB) = det(A) \cdot det(B)$
- (ii) A ist genau dann invertierbar, wenn $\det A \neq 0$ In diesem Fall ist

$$\det(A^{-1}) = (\det A)^{-1}$$

(iii) Sind A und B ähnlich, so ist $\det A = \det B$

Beweis:

- (i) folgt aus 11.8, da $f_{A \cdot B} = f_A \circ f_B$
- (ii) folgt aus 11.9, da $(f_A)^{-1} = f_{A^{-1}}$
- (iii) folgt aus (i) und (ii): A und B ähnlich $\Rightarrow \exists S \in Gl(n, K)$ mit

$$A = SBS^{-1}$$

Also

$$\det A = \det(SBS^{-1}) = \det S \cdot \det B \cdot \underbrace{\det(S^{-1})}_{=(\det S)^{-1}} = \det B$$

11.12 Proposition

Sei $D\in \mathrm{Alt}^n(K^n)$ wie in 11.3 (iii). Seien $s_1,\ldots,s_n\in K^n$ die Spalten von $A\in K^{n\times n}$. Also $A=(s_1,\ldots,s_n)$. Dann gilt

$$\det(A) = D(s_1, \dots, s_n)$$

Beweis:

Sei e_1, \ldots, e_n die Standardbasis von K^n . Da $D(e_1, \ldots, e_n) = 1$ (siehe 11.3 (iii)) folgt

$$\det A = \det AD(e_1, \dots, e_n) = D(Ae_1, \dots, Ae_n) = D(s_1, \dots, s_n)$$

11.13 Proposition

 $\det: K^{n \times n} \to K$ ist die eindeutige Abbdildung die eine alternierende n-Form in den Spalten ist und $\det(I_n) = 1$ erfüllt.

Beweis:

Wegen 11.12 ist $\det: K^{n \times n} \to K$ eine alternierende n-Form in den Spalten und erfüllt $\det(I_n) = 1$. Der Vektorraum $\operatorname{Alt}^n(V)$ ist 1-dimensional. Da außerdem $\det(I_n) = 1$, legt dies die Determinante \det eindeutig fest.

11.14 Bezeichnung

Für $A\in K^{n\times n}$ bezeichne A_{ik} die aus A durch Streichen der i-ten Zeile und k-ten Spalte entstehende $(n-1)\times (n-1)$ -Matrix

Zeichnung eventuell

11.15 Entwicklung nach der k-ten Zeile

Für $A=(a_{ij})\in K^{n\times n}$, $k\in\{1,\ldots,n\}$ gilt

$$\star \det A = \sum_{i=1}^{n} (-1)^{j+k} a_{kj} \det A_{kj}$$

Beweis:

Definiere $D:K^{n\times n}\to K$ durch die rechte Seite von (\star) . Wegen 11.13 genügt es zu zeigen, dass

- a) $\det(I_n) = 1$
- b) D ist n-linear
- c) D ist alternierend

 $\frac{\operatorname{zu} \operatorname{a})}{\operatorname{Sei} I_n} = (\delta_{ij}).$ Dann

$$D(I_n) = \sum_{j=1}^{n} (-1)^{j+k} \delta_{jk} \det((I_n)_{kj}) = (-1)^{2k} \det(I_{n-1}) = 1$$

zu b)

 \overline{D} ist linear da $A \mapsto a_{jk} \cdot \det(A_{jk})$ n-linear ist.

zu c)

 $\overline{\text{Sei }A} = (s_1, \dots, s_n) \text{ mit } s_r = s_t \text{ für } r < t. \text{ Für } j \notin \{r, t\} \text{ ist } \det(A_{kj}) = 0 \text{ da } A_{kj} \text{ zwei gleiche Spalten hat. Also}$

$$D(A) = (-1)^{r+k} a_{kr} \det(A_{kr}) + (-1)^{t+k} a_{kt} \det(A_{kt})$$

$$= \underset{a_{kr} = a_{kt}}{(-1)^k} a_{kr} \left((-1)^r \det A_{kr} + (-1)^t \det A_{kt} \right)$$

Ist t=r+1, so ist $A_{kr}=A_{kt}$. Andernfalls entsteht A_{kt} durch t-r-1 Spaltenvertauschungen aus A_{kr} und es folgt

$$\det(A_{kt}) = (-1)^{t-r-1} \det(A_{kr})$$

Damit erhalten wir

$$D(A) = (-1)^k a_{kr} \det(A_{kr}) \Big((-1)^r + (-1)^t \cdot (-1)^{t-r-1} \Big) = 0$$

11.16 Beispiel

(i)
$$n = 1$$
, $det(a) = a$

(ii)
$$n=2$$
, $\det(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}) = a \det(d) - b \det(c) = ad - bc$

(iii)
$$n = 3$$

$$\det\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = 1 \det\begin{pmatrix} 5 & 6 \\ 8 & 9 \end{pmatrix} - 2 \det\begin{pmatrix} 4 & 6 \\ 7 & 9 \end{pmatrix} + 3 \det\begin{pmatrix} 4 & 5 \\ 7 & 8 \end{pmatrix}$$
$$= (45 - 48) - 2(36 - 42) + 3(32 - 35)$$
$$= -3 + 12 - 9 = 0$$

11.17 Beispiel

(i)

$$\det \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix} = \lambda_1 \det \begin{pmatrix} \lambda_2 \\ & \lambda_n \end{pmatrix} = \dots = \lambda_1 \cdot \dots \cdot \lambda_n$$

(ii)
$$\det(E(i,j;\lambda)) = \det(I_n) = 1$$

(iii)
$$\det(T(i,j)) = -1 \det(I_n) = -1$$
 (da nur Vertauschen von Spalten)

(iv)
$$det(E(i; \lambda)) = \lambda$$

11.18 Satz

Für $A \in K^{n \times n}$ ist $det(A) = det(A^t)$.

Beweis:

A ist genau dann invertierbar, wenn die transponierte Matrix A^t invertierbar ist. Daher ist $\det A=0$ genau dann, wenn $\det A^t=0$. Wir können also annehmen, dass A invertierbar ist. Dann können wir A als Produkt von Elementarmatrizen schreiben.

$$A = E_1 \cdot \ldots \cdot E_N$$

Es folgt

$$A^t = E_N^t \cdot \ldots \cdot E_1^t$$

Für die E_i gilt $\det E_i = \det E_i^t$ nach 11.11. Also

$$\det A = \det E_1 \cdot \ldots \cdot \det E_N = \det(E_1^t) \cdot \ldots \cdot \det(E_N^t)$$
$$= \det E_N^t \cdot \ldots \cdot \det E_1^t$$
$$= \det(E_N^t \cdot \ldots \cdot E_1^t) = \det A^t$$

11.19 Entwicklung nach der k-ten Spalte

Für $A=(a_{ij})\in K^{n\times n}$, $k\in\{1,\ldots,n\}$ gilt

$$\det A = \sum_{i=1}^{n} (-1)^{i+k} a_{ik} \det(A_{ik})$$

Beweis:

Folgt mit 11.18 aus 11.15

11.20 Proposition

Seien $A \in K^{n \times n}, B \in K^{k \times k}, C \in K^{k \times n}$. Dann gilt für die Blockmatrix $M = \left(\begin{smallmatrix} A & 0 \\ C & B \end{smallmatrix} \right) \in K^{n+k \times n+k}$

$$\det M = \det A \cdot \det B$$

Korollar:

$$\det\begin{pmatrix} \lambda_1 & 0 \\ \ddots & \\ 0 & \lambda_n \end{pmatrix} = \lambda_1 \cdot \ldots \cdot \lambda_n$$

Beweis:

Sei $M=(m_{ij})$. Dann ist $m_{ij}=0$ falls $i\leqslant n$ und $j\geqslant n+1$. Daher ist

$$m_{1\sigma(1)} \cdot m_{2\sigma(2)} \cdot \ldots \cdot m_{n+k\sigma(n+k)} = 0$$

falls

$$\sigma(\{1,\ldots,n\})\cap\{n+1,\ldots,n+k\}\neq\emptyset$$

Ist $\sigma \in S_{n+k}$ mit $\sigma(\{1,\ldots,n\}) \subseteq \{1,\ldots,n\}$ so gilt schon

$$\sigma(\{1,\ldots,n\}) = \{1,\ldots,n\}$$

und

$$\sigma(\{n+1,...,n+k\}) = \{n+1,...,n+k\}$$

Zu einer solchen $\sigma \in S_{n+k}$ gibt es $\sigma' \in S_n$ und $\sigma'' \in S_k$ mit

$$\sigma(i) = \sigma'(i)$$
 für $i \in \{1, \dots, n\}$

$$\sigma(n+i) = n + \sigma''(i) \text{ für } i \in \{1, \dots, k\}$$

Es folgt

$$\det M = \sum_{\sigma \in S_{n+k}} \operatorname{sgn}(\sigma) m_{1\sigma(1)} \cdot \ldots \cdot m_{n+k\sigma(n+k)}$$

$$= \sum_{\substack{\sigma' \in S_n \\ \sigma'' \in S_k}} \operatorname{sgn}(\sigma') \operatorname{sgn}(\sigma'') m_{1\sigma'(1)} \cdot \ldots \cdot m_{n\sigma'(n)} m_{n+1\sigma''(n+1)} \cdot \ldots \cdot m_{n+k\sigma''(n+k)}$$

$$= \left(\sum_{\sigma' \in S_n} \operatorname{sgn}(\sigma') m_{1\sigma'(1)} \cdot \ldots \cdot m_{n\sigma'(n)} \right) \cdot \left(\sum_{\sigma'' \in S_k} \operatorname{sgn}(\sigma'') m_{n+1\sigma''(n+1)} \cdot \ldots \cdot m_{n+k\sigma''(n+k)} \right)$$

$$= \det A \cdot \det B$$

72 11 Determinanten

11.21 Proposition

Sei $f \in \operatorname{End}_K(V)$. Sei $B = b_1, \dots, b_n$ eine Basis von V. Dann gilt:

$$\det f = \det m_B^B(f)$$

Beweis:

$$\begin{array}{ccc} V & \xrightarrow{f} & V \\ \kappa_B \downarrow \cong & \cong \downarrow \kappa_B \\ K^n & \xrightarrow{m_B^B(f)} & K^n \end{array}$$

Sei $\kappa_B:V o K^n$ der Isomorphismus mit $\kappa_B(b_i)=e_i$. Es gilt

$$\kappa_B \circ f = m_B^B(f) = \kappa_B$$

Sei $D\in \mathrm{Alt}^n(K^n)$. Sei $\kappa_B^*D\in \mathrm{Alt}^n(V)$ mit $(\kappa_B^*D)(v_1,\ldots,v_n)=D(\kappa_Bv_1,\ldots,\kappa_Bv_n)$ Es folgt für $x_1,\ldots,x_n\in K^n$

$$\begin{split} D(m_B^B(f)x_1,\dots,m_B^B(f)x_n) &= D(\kappa_b \circ f \circ \kappa_B^{-1}(x_1),\dots,\kappa_B \circ f \circ \kappa_B^{-1}(x_n)) \\ &= (\kappa_B^*D)(f(\kappa_B^{-1}(x_1)),\dots,f(\kappa_B^{-1}(x_n))) \\ &= \det f(\kappa_B^*D)(\kappa_B^{-1}(x_1),\dots,\kappa_B^{-1}(x_n)) \\ &= \det fD(x_1,\dots,x_n) \end{split}$$

Def von $\det m_B^B(f) \Rightarrow \det m_B^B(f) = \det f$

12 Inversion von Matrizen

12.1 Invertierung durch Zeilen- und Spaltenumformungen

Sei $A\in K^{n\times n}$. Durch Zeilenumformungen können wir A zu $(\begin{smallmatrix}I_r&0\\0&0\end{smallmatrix})$ wobei $r=\mathsf{Rang}A$. Es gibt also (vgl. 8.37) Elementarmatrizen E_1,\ldots,E_N mit

$$E_N \cdot \ldots \cdot E_1 \cdot A = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

A ist invertierbar genau dann, wenn r=n (vgl. Blatt 10 A1). In diesem Fall folgt

$$A = E_1^{-1} \cdot \ldots \cdot E_N^{-1}$$

Insbesondere ist

$$A^{-1} = E_N \cdot \ldots \cdot E_1$$

Praktikabel ist es die Zeilenumformungen gleichzeitig auf A und I_n anzuwenden. Dann wird I_n zu A^{-1} umgeformt, wenn A zu I_n umgeformt wird.

12.2 Beispiel

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{pmatrix}$$

12 Inversion von Matrizen 73

$$\begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 3 & 4 & 0 & 1 & 0 \\ 3 & 4 & 6 & 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -1 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -3 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 2 & -2 & -1 & 0 \\ 0 & 0 & 1 & 1 & -2 & 1 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 2 & -2 & -1 & 0 \\ 0 & 0 & 1 & 1 & -2 & 1 \end{pmatrix}$$

12.3 Definition

Sei $A \in K^{n \times n}$. Sei $a_{ij}^\# := (-1)^{i+j} \det(A_{ji})$. Die Matrix $A^\# := (a_{ij}^\#)$ heißt die <u>Adjunkte</u> von A

12.4 Satz

$$A^{\#} \cdot A = A \cdot A^{\#} = \det(A) \cdot I_n$$

Beweis:

 $\overline{\mathrm{Der}\;(i,i)}$ -te Eintrag von $A\cdot A^{\#}$ ist

$$\sum_{j=1}^{n} a_{ij} \cdot a_{ji}^{\#} = \sum_{j=1}^{n} a_{ij} (-1)^{i+j} \det(A_{ij}) \stackrel{\text{11.15}}{=} \det A$$

Sei nun $i \neq j$ und $A_{i \to j}$ die Matrix, die aus A entsteht indem die j-te Zeile durch die i-te Zeile ersetzt wird. Dann $\det A_{i \to j} = 0$. Der (i,j)-te Eintrag von $A \cdot A^\#$ ist

$$\sum_{k=0}^{n} a_{ik} a_{kj}^{\#} = \sum_{k=0}^{n} a_{ik} (-1)^{j+k} \det A_{jk} \stackrel{11.15}{=} \det A_{i \to j} = 0$$

12.5 Korollar

Ist $\det A \neq 0$ so gilt

$$A^{-1} = (\det A)^{-1} \cdot A^{\#}$$

Beweis:

Folgt aus (11.20) und (12.4)

12.6 Bemerkung

Ist $A \in GL(2, K)$, so gilt:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

13 Eigenwerte

13.1 Motivation

$$\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}^N = \begin{pmatrix} \lambda_1^N & 0 \\ 0 & \lambda_2^N \end{pmatrix} \qquad \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix}^N = ???$$

Angenommen $\exists S \in \mathsf{GL}(2,K)$ mit

$$\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} = S \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} S^{-1}$$

Dann ist

$$\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix}^N = S \begin{pmatrix} \lambda_1^N & 0 \\ 0 & \lambda_2^N \end{pmatrix} S^{-1}$$

Frage: \exists so ein S? Und wenn ja, wie finden wir es?

13.2 Definition

Ein Endomorphismus $f:V\to V$ eines endlich-dimensionalen Vektorraumes heißt <u>diagonalisierbar</u>, falls es eine Basis B von V gibt, so dass $m_B^B(f)$ eine Diagonalmatrix ist.

13.3 Bemerkung

Sei $A \in K^{n \times n}$. Dann ist $f_A : K^n \to K^n$ genau dann diagonalisierbar, falls A ähnlich zu einer Diagonalmatrix ist.

13.4 Defintion

Sei $f \in \operatorname{End}_K(V)$. $\lambda \in K$ heißt **Eigenwert** von f, falls es $v \in V \setminus \{0\}$ gibt mit $f(v) = \lambda v$. In diesem Fall heißt v ein **Eigenvektor**. (zum Eigenwert λ) von f.

13.5 Lemma

 $f \in \operatorname{End}_K(V)$, $\dim V < \infty$, B Basis von V. Sei $v \neq 0$, $\lambda \in K$. Dann ist äquivalent:

- (i) v ist ein Eigenvektor zum Eigenwert λ von f
- (ii) $\kappa_B(v)$ ist Eigenvektor zum Eigenwert λ von $m_B^B(f)$.

Beweis:

Beides folgt da

$$\begin{array}{ccc}
V & \xrightarrow{f} & V \\
\kappa_B \downarrow \cong & \cong \downarrow \kappa_B \\
K^n & \xrightarrow{m_B^B(f)} & K^n
\end{array}$$

kommutiert.

13 Eigenwerte 75

13.6 Proposition

Sei $f \in \operatorname{End}_K(V)$, $\dim V < \infty$. Dann sind äquivalent:

- (i) f ist diagonalisierbar.
- (ii) V besitzt eine Basis aus Eigenvektoren von f

Beweis:

$$(i) \Rightarrow (ii)$$
:

Sei f diagonalisierbar. Dann gibt es eine Basis $B=\{b_1,\ldots,b_n\}$ mit $m_B^B(f)=\operatorname{diag}(\lambda_1,\ldots,\lambda_n)$ mit $\lambda_i\in K$. Aus (13.5) folgt damit

$$f(b_i) = \lambda_i b_i$$
 für $1 \leqslant i \leqslant n$

Damit ist B eine Basis aus Eigenvektoren von f.

(ii) \Rightarrow (i):

Sei $B=\{b_1,\ldots,b_n\}$ eine Basis aus Eigenvektoren. Dann gibt es $\lambda_1,\ldots,\lambda_n\in K$ mit

$$f(b_i) = \lambda_i b_i$$
 für $1 \le i \le n$

Damit ist $m_B^B(f) = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ und f diagonalisierbar.

13.7 Beispiel

 $f:K^2 o K^2$ mit $f{x\choose y}={y\choose 0}.$ Ist $\lambda\in K$ ein Eigenwert von f mit Eigenvektor $v={v_1\choose v_2}$ so gilt

$$\lambda \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} v_2 \\ 0 \end{pmatrix}$$

also $v_2=\lambda v_1$ und $\lambda v_2=0.$ Wäre $\lambda \neq 0$, so folgt $v_2=0=v_1$, also v=0

Also ist $\lambda=0$. Dann folgt $v_2=0$. Andererseit ist $f{x\choose 0}$, also ist $x\ne 0$ eien Eigenvektor zum Eigenwert 0. Die Menge $x\ne 0$ sind alle Eigenvektoren von $x\ne 0$. Insbesondere ist $x\ne 0$ nicht diagonalisierbar.

13.8 Bemerkung

Ist $B=(e_1,e_2)$ Standardbasis von K^2 und f wie in (13.7), so ist

$$m_B^B(f) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

13.9 Beispiel

(i) $A=\begin{pmatrix}0&1\\-1&0\end{pmatrix}\in\mathbb{R}^{2 imes 2}$. Sei $\lambda\in\mathbb{R},v=\begin{pmatrix}x_1\\x_2\end{pmatrix}\in\mathbb{R}^2$ mit $Av=\lambda v$. Dann gilt

$$Av = \begin{pmatrix} x_2 \\ -x_1 \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \end{pmatrix}$$

Also ist $x_1=-\lambda x_2=-\lambda^2 x_1$. Da $1\neq -\lambda^2$ für alle $\lambda\in\mathbb{R}$ folgt $x_1=0$. Dann ist $x_2=0$. Insbesondere besitz $A\in\mathbb{R}^{2\times 2}$ keine Eigenwerte.

$$\text{(ii)} \ \ A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in \mathbb{C}^{2 \times 2}. \ \text{Dann sind} \ \begin{pmatrix} 1 \\ i \end{pmatrix} \ \text{und} \ \begin{pmatrix} 1 \\ -i \end{pmatrix} \ \text{Eigenvektoren von} \ A$$

$$A\begin{pmatrix}1\\i\end{pmatrix}=\begin{pmatrix}i\\-1\end{pmatrix}=i\begin{pmatrix}1\\i\end{pmatrix}\ ,\ A\begin{pmatrix}1\\-i\end{pmatrix}=\begin{pmatrix}-i\\-1\end{pmatrix}=-i\begin{pmatrix}1\\-i\end{pmatrix}$$

Da $\begin{pmatrix} 1 \\ i \end{pmatrix}, \begin{pmatrix} 1 \\ -i \end{pmatrix}$ linear unabhängig in \mathbb{C}^2 ist, ist $A \in \mathbb{C}^{2 \times 2}$ diagonalisierbar.

Ausdrucksweise:

(i)
$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 besitzt über $\mathbb R$ keine Eigenwerte

(ii)
$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 ist über $\mathbb C$ diagonalisierbar.

13.10 Bemerkung

Sei $f: V \to V$ linear und $\lambda \in K$. Dann ist $V_{\lambda} = \{v \in V \mid f(v) = \lambda v\}$ ein Unterraum von V.

(i)
$$0 \in V_{\lambda}$$
 da $f(0) = 0 = \lambda 0$

(ii)
$$v, v' \in V_{\lambda}$$
, $f(v+v') = f(v) + f(v') = \lambda v + \lambda v' = \lambda (v+v')$. Also $v+v' \in V_{\lambda}$

(iii)
$$v \in V_{\lambda}, \mu \in K, f(\mu v) = \mu f(v) = \mu \lambda v = \lambda(\mu v)$$
. Also $\mu v \in V_{\lambda}$

Es gilt

 $V_{\lambda} = \{v \mid v \text{ ist Eigenvektor von } f \text{ zum Eigenwert } \lambda\} \cup \{0\}.$

 V_{λ} heißt **Eigenraum** von f zum Eigenwert λ .

13.11 Satz

Sei $f \in \operatorname{End}_K(V)$. Sind $v_1, \dots, v_r \in V$ Eigenvektoren zu paarweise verschiedenen Eigenwerten von f, so ist v_1, \ldots, v_r linear unabhängig.

Beweis per Induktion nach r:

Induktionsanfang: r = 0 (die leere Menge ist linear unabhängig)

Induktionsschritt: $r-1\mapsto r$ Sei $\alpha_1,\dots,\alpha_r\in K$ mit $\sum\limits_{i=1}^r\alpha_iv_i=0$. Dann

$$0 = f\left(\sum_{i=1}^{r} \alpha_i v_i\right) = \sum_{i=1}^{r} \alpha_i f(v_i) = \sum_{i=1}^{r} \alpha_i \lambda_i v_i$$

Da auch $\sum_{i=1}^{r} \alpha_i \lambda_r v_i = 0$, folgt:

$$0 = \sum_{i=2}^{r} \alpha_i (\lambda_i - \lambda_r) v_i = \sum_{i=1}^{r-1} \alpha_i (\lambda_i - \lambda_r) v_i$$

Induktionsvorraussetzung $\Rightarrow \alpha_i(\lambda_i - \lambda_r) = 0$ für $i = 1, \dots, r - 1$.

Da $\lambda_1, \ldots, \lambda_r$ paarweise verschieden sind, ist

$$\lambda_1 - \lambda_r \neq 0, \dots, \lambda_{r-1} - \lambda_r \neq 0$$

Es folgt $\alpha_1,\ldots,\alpha_{r-1}=0$. Nun folgt auch $\alpha_r v_r=0$. Da v_r Eigenvektor und damit $v_r\neq 0$ ist, folgt $\alpha_r=0$.

77 13 Eigenwerte

13.12 Korollar

Sei $f \in \operatorname{End}_K(V), \dim_K V = n$

- (i) f besitzt höchstens n verschiedene Eigenwerte
- (ii) besitzt f n verschiedene Eigenwerte, so ist f diagonalisierbar.

Beweis:

- (i) folgt aus 13.11
- (ii) folgt aus 13.11 und 13.5 und 13.6

13.13 Bemerkung

Sei $f \in \operatorname{End}_K(V)$, $\lambda \in K$. Der Eigenraum V_{λ} ist der Kern von $(f - \lambda \operatorname{id}_V) \in \operatorname{End}_K(V)$.

13.14 Definition

Sei $f \in \operatorname{End}_K(V)$, $\dim_K V < \infty$. Dann heißt χ_f definiert durch

$$\chi_f(\lambda) := \det(\lambda \operatorname{id}_V - f)$$

das charakteristische Polynom von f.

13.15 Bemerkung

Wir fassen χ_f als eine Abbildung $\chi_f:K\to K$ auf. Diese Abbildung wird immer durch ein normiertes Polynom

$$X^{n} + a_{n-1}X^{n-1} + \ldots + a_{1}X + a_{0}$$

mit $a_{n-1},\ldots,a_0\in K$ beschrieben. Dies wird in der LA II wichtig sein...

13.16 Satz

Sei $f\in \operatorname{End}_K(V)$, $\dim_K V=<\infty$. Dann ist $\lambda\in K$ genau dann ein Eigenwert von f, wenn λ eine Nullstelle von χ_f ist, also $\chi_f(\lambda)=0$ gilt.

Beweis:

$$\chi_f(\lambda) = 0 \Leftrightarrow \det(\lambda \operatorname{id}_V - f) = 0 \Leftrightarrow \lambda \operatorname{id}_V - f$$
 ist nicht invertierbar

 $\overset{\dim V<\infty}{\Longrightarrow}$

$$\operatorname{Kern}(\lambda \operatorname{id}_V - f) \neq 0 \Leftrightarrow V_{\lambda} \neq 0 \Leftrightarrow \lambda \text{ ist Eigenwert von } f$$

13.17 Beispiel

(i)
$$A = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}$$

$$\chi_A(\lambda) = \det(\lambda I_2 - A) = \det\begin{pmatrix} \lambda - 1 & -4 \\ -1 & \lambda - 1 \end{pmatrix} = (\lambda - 1)^2 - 4$$

Also $\chi_A(\lambda)=0 \Leftrightarrow \lambda \in \{3,-1\}$. Damit ist A diagonalisierbar.

(ii)
$$B=\begin{pmatrix} 1 & -1 \ 1 & 1 \end{pmatrix} K=\mathbb{R}$$

$$\chi_B(\lambda) = \det \begin{pmatrix} \lambda - 1 & 1 \\ -1 & \lambda - 1 \end{pmatrix} = (\lambda - 1)^2 + 1$$

Über $\mathbb R$ besitzt χ_B keine Nullstelle und B keine Eigenwerte.

(iii)
$$B=\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, K=\mathbb{C}.$$
 Über $\mathbb C$ besitzt χ_B die Nullstellen $1-i$ und $1+i.$

$$(\lambda - 1)^2 = -1 \Leftrightarrow \lambda - 1 = i \lor \lambda - 1 = -i$$

Insbesondere ist B über $\mathbb C$ diagonalisierbar.

(iv)
$$C = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$\chi_C(\lambda) = \det \begin{pmatrix} \lambda - 1 & -1 \\ 0 & \lambda - 1 \end{pmatrix} = (\lambda - 1)^2$$

1 ist der einzige Eigenwert von ${\cal C}.$ (Wir wissen aber schon: ${\cal C}$ ist diagonalisierbar)

(v)
$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\chi_{I_2}(\lambda) = \det \begin{pmatrix} \lambda - 1 & 0 \\ 0 & \lambda - 1 \end{pmatrix} = (\lambda - 1)^2$$

1 ist der einzige Eigenwert von I_2 , natürlich ist I_2 diagonalisierbar, da I_2 schon eine Diagonalmatrix ist.

13.18 Satz

Sei $f\in \operatorname{End}_K(V), \Lambda\subseteq K$ die Menge der Eigenwerte von f. Sei $V_\Lambda=\sum_{\lambda\in\Lambda}V_\lambda.$ Dann gilt

$$V_{\Lambda} = \bigoplus_{\lambda \in \Lambda} V_{\lambda}$$

Beweis:

$$\overline{\text{Sei}\sum_{i=1}^r v_i}=0 \text{ mit } v_i \in V_{\lambda_i} \text{ , } \lambda_i \in \Lambda \text{ , } \lambda_i \neq \lambda_j \text{ für } i \neq j.$$

7u zeigen:

$$v_i = 0$$
 für $1 = 1, \ldots, n$

Dies folgt aus 13.11.

13.19 Satz

Seien f, Λ, V_{Λ} wie in 13.18. Sei weiter $\dim_K V < \infty$. Dann sind äquivalent

- (i) f ist diagonalisierbar
- (ii) $V = V_{\Lambda}$

Beweis:

"(i) \Rightarrow (ii)":

Nach 13.5 besitzt V eine Basis B aus Eigenvektoren. Sei $B_\lambda=B\cap V_\lambda$. Dann ist

$$B = \bigcup_{\lambda \in \Lambda} B_{\lambda} \quad , \quad B_{\lambda} \subseteq V_{\lambda}$$

Also

$$B \subseteq \sum_{\lambda \in \Lambda} V_{\lambda} = V_{\Lambda}$$

Also $V_{\Lambda} = V$

"(ii) \Rightarrow (i)":

Sei $V=V_\Lambda$. Sei B_λ eine Basis von V_λ . Dann ist $B=\bigcup_\Lambda B_\lambda$ eine Basis von $V=V_\Lambda$ da nach 13.18

$$V_{\Lambda} = \bigoplus_{\lambda \in \Lambda} V_{\lambda}$$

Nun ist B eine Basis aus Eigenvektoren von f und damit f diagonaliserbar.

80 13 Eigenwerte

14 Euklidische und unitäre Vektorräume

14.1 Bemerkung

Für $v = \binom{x}{y} \in \mathbb{R}^2$ ist der Abstand von 0 zu v nach Pythagoras $\sqrt{x^2 + y^2}$.

Für $w=\left(egin{array}{c} x_1 \\ \dot{x}_n \end{array}\right)\in\mathbb{R}^n$ ist der Abstand von 0 zu w (nach Phytagoras)

$$\sqrt{x_1^2 + \ldots + x_n^2}$$

 $\binom{x_1}{x_n}\mapsto \sqrt{x_1^2+\ldots+x_n^2}$ ist nicht linear. Wir können aber die folgende Bilinearform auf \mathbb{R}^n betrachten

$$b: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \ , \ b\left(\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}\right) = \sum_{i=1}^n x_i y_i$$

Oft schreiben wir $\left\langle \left(\begin{smallmatrix} x_1 \\ \dot{x}_n \end{smallmatrix} \right) \mid \left(\begin{smallmatrix} y_1 \\ \dot{y}_n \end{smallmatrix} \right) \right\rangle$ für $b\left(\left(\begin{smallmatrix} x_1 \\ \dot{x}_n \end{smallmatrix} \right), \left(\begin{smallmatrix} y_1 \\ \dot{y}_n \end{smallmatrix} \right) \right)$. Diese Bilinearform heißt das **Standardskalarprodukt** auf \mathbb{R}^n . Für $v \in \mathbb{R}^n$ ist der Abstand von v zu 0 gegeben durch

$$\sqrt{\langle v \mid v \rangle} = |v|$$

Für den \mathbb{C} -Vektorraum \mathbb{C}^n benutzen wir

$$b: \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C} \ , \ b\left(\begin{pmatrix} z_1 \\ z_n \end{pmatrix}, \begin{pmatrix} w_1 \\ w_n \end{pmatrix}\right) := \sum_{i=1}^n z_i \overline{w_i}$$

Wieder schreiben wir oft $\left\langle \left(egin{array}{c} z_1 \\ z_n \end{array} \right) \mid \left(egin{array}{c} w_1 \\ w_n \end{array} \right) \right\rangle := b \left(\left(egin{array}{c} z_1 \\ z_n \end{array} \right) \mid \left(egin{array}{c} w_1 \\ w_n \end{array} \right) \right).$ Für $n=1, z=x+iy, x,y \in \mathbb{R}$ ist dann

$$\langle z \mid z \rangle = z \cdot \overline{z} = x^2 + y^2 \in \mathbb{R}_{\geq 0}$$

 $\sqrt{\langle z\mid z\rangle}$ ist der Abstand von z zu 0 in $\mathbb{C}=\mathbb{R}^2$. Wieder wird diese Abbildung das **Standardskalarprodukt** auf \mathbb{C}^n genannt.

14.2 Bemerkung

Ist $\mathbb{K}=\mathbb{R}\vee\mathbb{C}$ so bezeichnen wir mit \overline{z} die zu z konjugiert komplexe Zahl. (Für z=x+iy, $x,y\in\mathbb{R}$, $\overline{z}=x-iy$). Ist $\mathbb{K}=\mathbb{R}$ ist immer $z=\overline{z}$. Dann hat $\langle\ |\ \rangle:\mathbb{K}^n\times\mathbb{K}^n\to\mathbb{K}$ folgende Eigenschaften

1)
$$\forall v, v', w \in \mathbb{K}^n$$

$$\langle v + v' \mid w \rangle = \langle v \mid w \rangle + \langle v' \mid w \rangle$$

2)
$$\forall v, w, w' \in \mathbb{K}^n$$

$$\langle v \mid w + w' \rangle = \langle v \mid w \rangle + \langle v \mid w' \rangle$$

3) $\forall v,w \in \mathbb{K}^n$, $\lambda \in \mathbb{K}$

$$\langle \lambda v \mid w \rangle = \lambda \langle v \mid w \rangle$$

4) $\forall v, w \in \mathbb{K}^n$, $\lambda \in \mathbb{K}$

$$\langle v \mid \lambda w \rangle = \overline{\lambda} \langle v \mid w \rangle$$

Dann: $\overline{\lambda z} = \overline{\lambda} \cdot \overline{z}$

5) $\forall v, w \in \mathbb{K}^n$

$$\langle v \mid w \rangle = \overline{\langle w \mid v \rangle}$$

 $\Rightarrow \langle v \mid v \rangle \in \mathbb{R}$ sogar: $\langle v \mid v \rangle \geqslant 0$

6) $\forall v \in \mathbb{K}^n$

$$\langle v \mid v \rangle > 0 \Leftrightarrow v \neq 0$$

14.3 Definition

Sei $\mathbb{K}=\mathbb{R}$ oder \mathbb{C} . Sei V ein \mathbb{K} -Vektorraum. Eine Abbidlung $\langle -\mid -\rangle:V\times V\to\mathbb{K}$ mit den Eigenschaften 1) bis 6) aus 14.2 heißt ein **Skalarprodukt**. Ist $\mathbb{K}=\mathbb{R}$, so heißt das Paar $(V,\langle\,|\,\rangle)$ ein **euklidischer Vektorraum**. Ist $\mathbb{K}=\mathbb{C}$ so heißt das Paar $(V,\langle\,|\,\rangle)$ ein **unitärer Vektorraum**. Für $v\in V$ heißt

$$|v| := \sqrt{\langle v \mid v \rangle}$$

die **Norm** oder die **Länge** von v. Für $v, w \in V$ heißt |v - w| der Abstand zwischen v und w.

Gilt $\langle v \mid w \rangle = 0$, so heißen v und w **orthogonal** zueinander. Vektoren der Länge 1 heißen **Einheitsvektoren**.

$$\begin{array}{rcl} \langle v \mid w \rangle & = & 0 \\ \langle w \mid w \rangle & = & \langle e_1 - e_2 \mid e_1 - e_2 \rangle \\ & = & \langle e_1 \mid e_1 \rangle - \langle e_1 \mid e_2 \rangle + \langle e_2 \mid e_1 \rangle + \langle e_2 \mid e_2 \rangle \\ & = & 2 \end{array}$$

$$\begin{array}{rcl} \langle v \mid e_1 \rangle & = & \langle e_1 \mid e_1 \rangle + \langle e_2 \mid e_1 \rangle = 1 \\ \langle v \mid v \rangle & = & 2 \end{array}$$

14.4 Lemma

Sind v und w orthogonal, so gilt

$$|v + w|^2 = |v|^2 + |w|^2$$

Beweis:

$$|v+w|^2 = \langle v+w \mid v+w \rangle = \langle v \mid v \rangle + \underbrace{\langle v \mid w \rangle + \langle w \mid v \rangle}_{=0 \text{ da } v \mid w} + \langle w \mid w \rangle = |v|^2 + |w|^2$$

14.5 Satz

Für $v,w\in V$ gilt

(i)
$$|\langle v \mid w \rangle| \leq |v| \cdot |w|$$

(ii)
$$|v + w| \le |v| + |w|$$

Beweis:

(i) Ist v=0 so ist $|\langle v\mid w\rangle|=0\leqslant 0=|v||w|$. Sei also $v\neq 0$. Setze $\lambda:=\frac{\langle v|w\rangle}{\langle v|v\rangle}$, $w':=w-\overline{\lambda}v$. Dann ist

$$\langle v \mid w' \rangle = \langle v \mid w \rangle - \langle v \mid \overline{\lambda}v \rangle = \langle v \mid w \rangle - \lambda \, \langle v \mid v \rangle = \langle v \mid w \rangle - \langle v \mid w \rangle = 0$$

Also: $v \perp w'$. Also

$$|w|^{2} = |\overline{\lambda}v + w'|^{2} \underset{\overline{\lambda}v \perp w'}{=} |\overline{\lambda}v|^{2} + |w'|^{2} = |\lambda|^{2}|v|^{2} + |w'|^{2}$$

$$\geqslant |\lambda|^{2}|v|^{2}$$

$$= \frac{|\langle v \mid w \rangle|^{2}}{|\langle v \mid v \rangle|^{2}}|v|^{2}$$

$$= \frac{|\langle v \mid w \rangle|^{2}}{\frac{|v|^{4}}{|v|^{2}}} = \frac{|\langle v \mid w \rangle|^{2}}{|v|^{2}}$$

Es folgt $|w|^2|v|^2\geqslant |\langle v\mid w\rangle|^2$ also auch $|w|\cdot |v|\geqslant |\langle v\mid w\rangle|$

(ii)

$$\begin{split} |v+w|^2 &= \langle v+w \mid v+w \rangle = \langle v \mid v \rangle + \langle w \mid v \rangle + \langle v \mid w \rangle + \langle w \mid w \rangle \\ &\leqslant |v|^2 + |w|^2 + \underbrace{\langle w \mid v \rangle + \overline{\langle w \mid v \rangle}}_{2|\langle v|w \rangle| \leqslant 2|v||w|} \\ &\leqslant |v|^2 + 2|v||w| + |w|^2 \\ &= (|v| + |w|)^2 \end{split}$$

Es folgt

$$|v + w| \leqslant |v| + |w|$$

14.6 Definition

Sei $M\subseteq V\setminus\{0\}$. Dann heißt M ein **Orthogonalsystem**, wenn $\langle v\mid w\rangle=0$ für alle $v,w\in M$, $v\neq w$. Ein Orthogonalsystem aus Einheitsvektoren heißt ein **Orthonormalsystem**. Eine Basis die auch ein Orthonormalsystem ist, heißt eine **Orthonormalbasis** (ONR).

14.7 Lemma

Sei M ein Orthogonalsystem. Dann ist M linear unabhängig.

<u>Beweis</u>:

Seien b_1,\ldots,b_n paarweise verschiedene Elemente von M und $\lambda_1,\ldots,\lambda_n\in\mathbb{K}$ mit

$$\lambda_1 b_1 + \ldots + \lambda_n b_n = 0$$

Für $i \in \{1,\dots,n\}$ ist dann

$$\begin{split} 0 &= \langle \lambda_1 b_1 + \ldots + \lambda_n b_n \mid b_i \rangle = \lambda_1 \underbrace{\langle b_1 \mid b_i \rangle}_{=0} + \ldots + \lambda_i \left\langle b_i \mid b_i \right\rangle + \ldots + \lambda_n \underbrace{\langle b_n \mid b_i \rangle}_{=0} \\ &= \lambda_i \underbrace{\langle b_i \mid b_i \rangle}_{\neq 0 \text{ da } b_i \neq 0} \end{split}$$

Also
$$\lambda_i = 0$$

14.8 Satz

Sei $M=\{x_1,\ldots,x_n\}\subseteq V$ linear unabhängig. Dann gibt es ein Orthogonalsystem $\{e_1,\ldots,e_n\}$ sodass für alle $r\in\{1,\ldots,n\}$ gilt:

$$\mathcal{L}(e_1,\ldots,e_r) = \mathcal{L}(x_1,\ldots,x_r)$$

Beweis:

Die Vektoren e_1,\ldots,e_n werden induktiv definiert $e_1:=\frac{x_1}{|x_1|}$ ist ein Einheitsvektor. Sind e_1,\ldots,e_r orthonormal, so ist der Vektor $b_{r+1}:=x_{r+1}-\sum\limits_{j=1}^r \left\langle x_{r+1}\mid e_j\right\rangle e_j$ orhtogonal zu e_1,\ldots,e_r . Ist $\mathcal{L}(e_1,\ldots,e_r)=\mathcal{L}(x_1,\ldots,x_r)$, so ist e_1,\ldots,e_r linear unabhängig und insbesondere $b_{r+1}\neq 0$. Nun setze

$$e_{r+1} := \frac{b_{r+1}}{|b_{r+1}|}$$

Dann ist $\{e_1,\ldots,e_{r+1}\}$ ein Orthonormalsystem und es gilt

$$\mathcal{L}(e_1,\ldots,e_{r+1}) = \mathcal{L}(x_1,\ldots,x_{r+1})$$

14.9 Korollar

Ist $\dim V < \infty$, so besitzt V eine Orthonormalbasis.

14.10 Lemma

Ist e_1,\dots,e_n eine Orthonormalbasis von V gilt für jedes $v\in V$

$$v = \sum_{j=1}^{n} \langle v \mid e_j \rangle e_j$$

Beweis:

Aus $v = \sum_{j=1}^{n} \lambda_{j} e_{j}$ folgt

$$\langle v \mid e_{j_0} \rangle = \left\langle \sum_{j=1}^n \lambda_j e_j \mid e_{j_0} \right\rangle = \sum_{j=1}^n \lambda_j \underbrace{\left\langle e_j \mid e_{j_0} \right\rangle}_{\substack{=1 \text{ falls } j = j_0 \\ -0 \text{ falls } i \neq j_0}} = \lambda_{j_0}$$

14.11 Definition

Sei $U \leqslant V$ ein Unterraum. Dann heißt

$$U^{\perp} := \Big\{ v \in V \mid v \bot u \text{ für alle } u \in U \Big\}$$

das orthogonale Komplement zu U.

85

14.12 Satz

Ist $\dim U < \infty$ so gilt $V = U \oplus U^{\perp}$.

Beweis:

Ist $v \in U^{\perp} \cap U$ so gilt $\langle v \mid v \rangle = 0$, also v = 0. Daher $U \cap U^{\perp} = \{0\}$. Sei e_1, \dots, e_n eine Orthonormalbasis von U. Für $v \in V$ liegt dann

$$W := v - \sum_{j=1}^{n} \langle v \mid e_j \rangle e_j$$

in U^{\perp} . Denn für $j_0 = 1, \ldots, n$ gilt:

$$\langle w \mid e_{j_0} \rangle = \left\langle v - \sum_{j=1}^n \left\langle v \mid e_j \right\rangle e_j \mid e_{j_0} \right\rangle = \left\langle v \mid e_{j_0} \right\rangle - \underbrace{\sum_{j=1}^n \left\langle v \mid e_j \right\rangle \left\langle e_j \mid e_{j_0} \right\rangle}_{\left\langle v \mid e_{j_0} \right\rangle} = 0$$

Also $e \perp e_j$ für $j=1,\ldots,n$. Dann gilt auch $w \perp u$ für jedes $u=\sum\limits_{j=1}^n \lambda_j e_j \in U$.

(Denn:
$$\langle w \mid u \rangle = \left\langle w \mid \sum\limits_{j=1}^n \lambda_j e_j \right\rangle = \sum\limits_{j=1}^n \overline{\lambda_j} \left\langle w \mid e_j \right\rangle = 0$$
)

Also

$$v = \underset{\in U^{\perp}}{w} + \underbrace{\sum_{j=1}^{n} \langle v \mid e_j \rangle e_j}_{\in U} \in U + U^{\perp}$$

Damit gilt $V = U + U^{\perp}$

14.13 Definition

Eine **Projektion** ist eine lineare Abbildung $p:V\to V$ mit $p\circ p=p$. Sie heißt **orthogonale Projektion** auf \overline{U} falls

$$U = \operatorname{Bild} p \quad , \quad U^\perp = \operatorname{Kern} p$$

14.14 Satz

Sei $U \leqslant V$, $\dim U < \infty$. Dann gilt:

(i) Es gibt genau eine orthogonale Projektion auf ${\cal U}$

(ii) Ist $p:V\to V$ die orthogonale Projektion auf U, so gilt für $u\in U,v\in V$ immer

$$|u-v| \geqslant |p(v)-v|$$

Aus
$$|p(v) - v| = |u - v|$$
 folgt $u = p(v)$

Beweis:

(i) Es ist $V=U\oplus U^\perp$. Also hat jeder Vektor $v\in V$ eine eindeutige Darstellung v=u+u' mit $u\in U, u'\in U^\perp$. Dann definiert $v\mapsto u$ eine orthogonale Projektion auf U. Ist $p:V\to V$ eine orthogonale Projektion auf U, so gilt

$$p(v) = p(u + u') = \underbrace{p(u)}_{\in U} + \underbrace{p(u')}_{u' \in U^{\perp} = \ker p}$$

(ii) Es gilt

$$|u-v|^2 = |p(u)-v|^2 = \left| (p(u)-p(v)) + (p(v)-v) \right|^2 = |p(u)-p(v)|^2 + |p(v)-v|^2 \geqslant |p(v)-v|^2 = |p(u)-p(v)|^2 + |p(v)-v|^2 > |p(v)-v|$$

Gilt
$$|u-v|=|p(v)-v|$$
 so folgt $|p(u)-p(v)|=0$. Also $p(v)=p(u)=u$

Hinweis:

$$pv - v \in \ker p \text{ da } p(pv - v) = p(p(v)) - p(v) = 0$$

14.15 Bemerkung

Sei $B=e_1,\ldots,e_n$ eine Orthonormalbasis von V und $f:V\to V$ linear. Dann gilt $m_B^B(f)=(a_{ij})\in\mathbb{K}^{n\times n}$ mit $a_{ij}=\langle f(e_i)\mid e_j\rangle$, da

$$f(e_i) = \sum_{j=1}^{n} \langle f(e_i) \mid e_j \rangle e_j$$

ist.

15 Selbstadjungierte Endomorphismen

15.1 Definition

Sei V ein euklididscher oder unitärer Vektorraum. Ein Endomorphismus heißt <u>selbstadjungiert</u>, falls für alle $v,w\in V$ gilt

$$\langle f(v) \mid w \rangle = \langle v \mid f(w) \rangle$$

15.2 Lemma

Sei $B=e_1,\ldots,e_n$ eine Orthonormalbasis von V. Dann ist $f:V\to V$ genau dann selbstadjungiert, wenn für $(a_{ij})=m_B^B(f)$ gilt $a_{ij}=\overline{a_{ji}}$

Beweis:

Nach 14.15 ist $a_{ij} = \langle f(e_i) \mid e_i \rangle$. Ist f selbstadjungiert, so folgt

$$a_{ij} = \langle f(e_i) \mid e_j \rangle = \langle e_i \mid f(e_j) \rangle = \overline{\langle f(e_j) \mid e_i \rangle} = \overline{a_{ji}}$$

Ist umgekehrt $a_{ij}=\overline{a_{ji}}$ so folgt für $v,w\in V$

$$\begin{split} \langle f(v) \mid w \rangle &= \left\langle f\left(\sum_{i=1}^{n} \left\langle v \mid e_{i} \right\rangle e_{i}\right) \mid \sum_{j=1}^{n} \left\langle w \mid e_{j} \right\rangle e_{j} \right\rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \left\langle v \mid e_{i} \right\rangle \overline{\left\langle w \mid e_{j} \right\rangle} \underbrace{\left\langle f(e_{i}) \mid e_{j} \right\rangle}_{=a_{ij} = \overline{a_{ji}} = \overline{\left\langle f(e_{i}) \mid e_{i} \right\rangle} = \left\langle e_{i} \mid f(e_{j}) \right\rangle}_{=a_{ij} = \overline{a_{ji}} = \overline{\left\langle f(e_{i}) \mid e_{i} \right\rangle} = \left\langle e_{i} \mid f(e_{j}) \right\rangle \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} \left\langle v \mid e_{i} \right\rangle \overline{\left\langle w \mid e_{j} \right\rangle} \left\langle e_{i} \mid f(e_{j}) \right\rangle \\ &= \left\langle \sum_{i=1}^{n} \left\langle v \mid e_{i} \right\rangle e_{i} \right| f\left(\sum_{j=1}^{n} \left\langle w \mid e_{j} \right\rangle e_{j}\right) \\ &= \left\langle v \mid f(w) \right\rangle \end{split}$$

15.3 Beispiel

(i) Sei $A=(a_{ij})\in\mathbb{R}^{n\times n}$. Dann ist

$$f_A: \mathbb{R}^n \to \mathbb{R}^n$$
 , $v \mapsto Av$

genau dann selbstadjungiert (bzgl. dem Standardskalarprodukt auf dem \mathbb{R}^n) wenn

$$A = A^t$$

In diesem Fall heißt A symmetrisch.

(ii) Sei $A=(a_{ij})\in\mathbb{C}^{n\times n}$. Dann ist

$$f_A: \mathbb{C}^n \to \mathbb{C}^n \ , \ v \mapsto Av$$

genau dann selbstadjungiert (bzgl. dem Standardskalarprodukt auf dem \mathbb{C}^n) wenn

$$A = \overline{A}^t$$
 also für $A = (a_{ij})$ $(a_{ij}) = \overline{a_{ji}}$ gilt

In diesem Fall heißt A hermitesch.

15.4 Lemma

Sei $f: V \to V$ selbstadjungiert. Dann gilt:

- (i) Alle Eigenwerte sind reell
- (ii) Eigenvektoren zu verschiedenen Eigenwerten sind orthogonal
- (iii) Ist $U \leqslant V$ ein Unterraum mit $f(U) \subseteq U$, so gilt auch $f(U^{\perp}) \subseteq U^{\perp}$

Beweis:

(i) Sei $\lambda \in \mathbb{C}$ ein Eigenwert. Dann gibt es $v \neq 0 \in V$ mit $f(v) = \lambda v$ (v ist Eigenvektor zu λ). Dann ist

$$\lambda \langle v \mid v \rangle = \langle \lambda v \mid v \rangle = \langle f(v) \mid v \rangle = \langle v \mid f(v) \rangle = \langle v \mid \lambda v \rangle = \overline{\lambda} \langle v \mid v \rangle$$

Da mit $v \neq 0$ auch $\langle v \mid v \rangle \neq 0$ ist, folgt $\lambda = \overline{\lambda}$. Also ist λ reell.

(ii) Seien $f(v) = \lambda v$, $f(w) = \mu w$ mit $v, w \in V, \lambda \neq \mu \in \mathbb{K}$. Es folgt

$$\lambda \left\langle v \mid w \right\rangle = \left\langle \lambda v \mid w \right\rangle = \left\langle f(v) \mid w \right\rangle = \left\langle v \mid f(w) \right\rangle = \left\langle v \mid \mu w \right\rangle = \overline{\mu} \left\langle v \mid w \right\rangle = \mu \left\langle v \mid w \right\rangle$$

Also
$$(\lambda - \mu) \langle v \mid w \rangle = 0 \stackrel{\lambda \neq \mu}{\Longrightarrow} \langle v \mid w \rangle = 0$$

(iii) Sei $v \in U^{\perp}$. Zu zeigen: $\forall u \in U$ gilt $\langle f(v) \mid u \rangle = 0$

$$\langle f(v) \mid u \rangle = \left\langle \begin{array}{c} v \\ \in U^{\perp} \mid f(u) \\ \in U \end{array} \right\rangle = 0$$

15.5 Satz

Jeder selbstadjungierte Endomorphismus eines endlich dimensionalen euklidischen oder unitären Vektorraumes ist diagonalisierbar.

Beweis: für $\mathbb{K} = \mathbb{C}$

Zu zeigen: ∃ Basis aus Eigenvektoren.

Induktion nach $n:=\dim V$ Induktionsanfang: $n=0\surd$ Induktionsschritt: $n-1\mapsto n$

Nach dem Fudamentalsatz der Algebra ($\mathbb{K}=\mathbb{C}$!) hat χ_f eine Nullstelle $\lambda\in\mathbb{C}$. Also ist λ ein Eigenwert von f. Sei $v\in V$ ein zugehöriger Eigenvektor. Sei $U:=\mathcal{L}(v)^\perp=\{\mu\cdot c\mid \mu\in\mathbb{C}\}^\perp$. Dann

$$V = \mathcal{L}(\{v\}) \oplus U$$

also $\dim U = \dim V - \dim \mathcal{L}(\{v\}) = n - 1$. Da

$$f\Big(\mathcal{L}\big(\{v\}\big)\Big) = \mathcal{L}\big(\{f(v)\}\big) = \mathcal{L}\big(\{\lambda \cdot v\}\big) \subseteq \mathcal{L}\big(\{\cdot v\}\big)$$

folgt mit 15.4 (iii) $f(U)\subseteq U$. also ist $f\big|_U:U\to U$ ein selbstadjungierter Endomorphismus von U. Induktionsannahme $\Rightarrow f\big|_U$ ist diagonalisierbar, also gibt es eine Basis von U b_1,\dots,b_{n-1} aus Eigenvektoren von f. Nun ist v,b_1,\dots,b_{n-1} eine Basis aus Eigenvektoren für f

15.6 Korollar

Symmetrische und hermitesche Matrizen sind diagonalisierbar. (Dabei sind alle Eigenwerte reell)

Beweis (15.6):

15.7 Lemma

Sei $f:V\to V$ selbstadjungiert, wobei V ein euklidischer endlich dimensionaler Vektorraum ist. Dann besitzt f einen Eigenwert

Beweis:

Sei B eine Basis Orthonormalbasis von V ($\dim V=n$). Sei $A=m_B^B(f)\in\mathbb{R}^{n\times n}$. Da f selbstadjungiert ist (und B eine ONB), ist A symetrisch, also $A=A^t$. Nun ist $f_A:\mathbb{C}^n\to\mathbb{C}^n$ ein selbstadjungierter Endomorphismus von \mathbb{C}^n und besitzt einen reellen Eigenwert λ .

Da
$$\chi_f = \chi_A = \chi_{f_A}$$
 ist λ eine Nullstelle von $\chi_{f_A} = \chi_f$ also auch ein Eigenwert von f .

Abbildungsverzeichnis

Abbildungsverzeichnis A