Midway Hot Pots Resorts: Schneiter's - Ritters - Homestead 1886 Simon Schneiter bot Farm from samuel Istompson 1886 Simon Schneitter started a 2-Story Hotel ("Virging 4 a swinning Pool. Schneiter Schneiters Hot Pots Thomas Monks leased (Ran Tyrs) Schneitters (held horse Jacob Schneiter purchased schneiter's (Music by Brass Band by Robert Krebs) Tumber Fried Chicken W_ W- Ritter Ritter's Hot Pots Peter Kureller ("Dutch Pete") Pan it for 4 yrs Schneitter's Schnei Her's Schneitters Hot Pots 1878 Limon Schneiter & Fannie 1886 " " built Hotel + pool Thomas monks

Thomas Monks

Frank Monks

Schne; Hers

1952 Homestead

Ferrin W Whitaker

Berlin

Scott

Judge

Del Wallengren

WASATCH COUNTY, STATE OF UTAH

25 North Main • Heber City, Utah 84032 • Phone (801) 654-3211

LORIN E. ALLRED, CHAIRMAN

BOARD OF COUNTY COMMISSIONERS
PETE A. COLEMAN

LARRY B. DUKE

January 25, 1988

We are enclosing "Affidavit of Personal Property" for the year 1988, which is to be completed and returned to this office not later than March 1, 1988.

Please fill out the affidavit as completely as possible. All information as to make, model, year and cost must be entered. Please read the instructions on the back of the Affidavit carefully.

If you need further information on this affidavit, please feel free to call Wasatch County Assessor's Office at 654-3211, Ex. 302.

Thank you for your co-operation in this matter and for the prompt return of the completed affidavit.

Sincerely,

Dean H. Moulton,

Wasatch County Assessor

Homestead Picture Acquisition 11 Photo Contest 1998 11 Essay 11 1997 Contact Mindy Hotch & Homestead

$$y + 2 = \frac{1+2}{-2+4} (2+4)$$

$$1 + 2 = \frac{3}{2}(x + 4)$$

$$1 + 2 = \frac{3}{2}x + \frac{3}{2}x^{2}$$

$$1 + 2 = \frac{3}{2}x + \frac{3}{2}x^{2}$$

$$y = \frac{3}{2}x + 4$$
 is in required equation.

$$y + 4 = \frac{-3 + 4}{4 - 2} (x - 2)$$

$$\frac{y+4}{y+4} = \frac{1}{2}x - \frac{1}{2}xz$$

$$y = \frac{1}{2}x - 5$$
is an required equal