Introduction à la finance mathématique TD 5, 16/5/2018

Exercice 1 (Temps d'atteinte d'une double barrière). Soit a < 0 < b et :

$$T := T_{a,b} := \inf \{ t \ge 0 : W_t \in \{a,b\} \}.$$

L'objectif de cet exercice est de calculer la transformée de Laplace de T. On définit $T_x := \inf\{t \geq 0 : W_t = x\}$ pour $x \in \mathbb{R}$.

- 1. Montrer que T est un temps d'arrêt par rapport à la filtration $\mathcal F$ du mouvement brownien et que $\mathbb P[T<+\infty]=1$.
- 2. Montrer que le processus $M_t^{\lambda} := \exp\left(\lambda W_t \frac{\lambda}{2}t\right)$ est une \mathcal{F} -martingale pour tout $\lambda \in \mathbb{R}$.
- 3. En appliquant le théorème d'arrêt de Doob, montrez que

$$e^{\lambda b} \mathbb{E}\left[e^{-\frac{\lambda^2 T}{2}} \mathbf{1}_{\{T=T_b\}}\right] + e^{\lambda a} \mathbb{E}\left[e^{-\frac{\lambda^2 T}{2}} \mathbf{1}_{\{T=T_a\}}\right],$$

et que

$$e^{-\lambda b}\mathbb{E}\left[e^{-\frac{\lambda^2T}{2}}\mathbf{1}_{\{T=T_b\}}\right]+e^{-\lambda a}\mathbb{E}\left[e^{-\frac{\lambda^2T}{2}}\mathbf{1}_{\{T=T_a\}}\right].$$

4. En déduire que

$$\begin{pmatrix}
\mathbb{E} \left[\exp\left(-\frac{\lambda^2 T}{2}\right) \mathbf{1}_{T=T_b} \right] \\
\mathbb{E} \left[\exp\left(-\frac{\lambda^2 T}{2}\right) \mathbf{1}_{T=T_a} \right] \end{pmatrix} = \begin{pmatrix}
\frac{\sinh(-\lambda a)}{\sinh(\lambda(b-a))} \\
\frac{\sinh(\lambda b)}{\sinh(\lambda(b-a))}
\end{pmatrix},$$

et conclure que

$$\mathbb{E}\left[\exp\left(-\frac{\lambda^2 T}{2}\right)\right] = \frac{\cosh(\lambda(a+b)/2)}{\cosh(\lambda(a-b)/2)}.$$

Exercice 2 (Intégrale de Wiener). Soit f telle que $\int f^2(t)dt$ est finie. On considère le processus $(X_t)_{t\in[0,1]}$ défini par :

$$X_t = \int_0^t f(u)dW_u$$

où $(W_t)_{t\geq 0}$ est un Mvt Brownien Standard et (\mathcal{F}_t) sa filtration naturelle.

1. Montrer qu'une limite dans $L^2(\Omega)$ d'une suite de variable aléatoires Gaussienne est nécessairement Gaussienne.

2. En déduire que le processus $(X_t)_{t\in[0,1]}$ est un processus Gaussien caractérisé par:

$$\operatorname{cov}\left(\int_0^t f(s)dB_s, \int_0^u g(s)dB_s\right) = \int_0^{t \wedge u} f(s)g(s)ds.$$

- 3. Montrer que X est un processus aux accroissements indépendants.
- 4. Quelle est la loi de X_1 ?

Exercice 3 (Formule d'Itô).

- 1. Calculer $\int_0^t W_s dW_s$.
- 2. Calculer la dynamique de $X_t = \frac{W_t^3}{3} tW_t$.
- 3. Calculer la dynamique de $X_t = xe^{aW_t + bt}$.

Exercice 4 (Solution de l'EDS de Black Scholes). Soit B un Mouvement Brownien Standard. On considère l'équation différentielle de Black Scholes:

$$dS_t = S_t(\mu dt + \sigma dW_t)$$
 et $S_0 = x$.

1. A l'aide de la formule d'Itô montrer que l'unique solution de cette équation est :

$$S_t = xe^{(\mu - \sigma^2/2)t + \sigma W_t}.$$

- 2. Calculer $\mathbb{E}[S_t]$.
- 3. Soit $u \in C^{1,2}([0,T] \times \mathbb{R}_+)$. Montrer que la formule d'Itô pour $u(t,S_t)$ s'écrit

$$du(t, S_t) = \frac{\partial u}{\partial t}dt + \frac{\partial u}{\partial S}\mu S_t dt + \frac{\partial u}{\partial S}\sigma S_t dW_t + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial^2 u}{\partial S^2} dt.$$

- 4. Pour $\alpha \geq 2$, déterminez la dynamique de S_t^{α} .
- 5. En déduire $\mathbb{E}[S_t^{\alpha}]$ pour $\alpha \geq 2$.

Exercice 5 (Représentation des solutions d'EDP). Soit $u \in C^{1,2}([0,T) \times \mathbb{R}) \cap C([0,T] \times \mathbb{R})$ une solution de l'EDP de la chaleur

$$\frac{\partial u}{\partial t} + \frac{1}{2}\sigma^2 \frac{\partial^2 u}{\partial x^2} = 0, \quad 0 \le t < T, \quad x \in \mathbb{R}, \qquad u(T,x) = g(x), \quad x \in \mathbb{R}.$$

On suppose que u et $\frac{\partial u}{\partial x}$ sont à croissance polynomiale en x: il existe des constantes constante $C<\infty$ et $p<\infty$ telles que

$$|u(t,x)| < C(1+|x|^p), \quad 0 < t < T, \quad x \in \mathbb{R}.$$

1. Appliquez la formule d'Itô à $u(t+s, x+W_s)$.

2. En déduire que pour tout $\varepsilon < T - t$,

$$u(t,x) = \mathbb{E}[u(T-\varepsilon, x + W_{T-t-\varepsilon})].$$

3. En utilisant le théorème de convergence dominée, en déduire une représentation probabiliste pour u:

$$u(t,x) = \mathbb{E}[g(x+W_{T-t})].$$