Problem Set 1 – Arithmetic Geometry, Frank Thorne (thorne@math.sc.edu)

Due Friday, September 20, 2024

- (1) Adapting the solution to the Gauss circle problem, compute an asymptotic for the number of lattice points within the ellipse $x^2 + 5y^2 = N$. Obtain an explicit bound on the error term without any O-notation.
- (2) Recall that Minkowski's second theorem states that the successive minima λ_i of a complete lattice Λ in \mathbb{R}^n satisfy

$$\frac{2^n}{n!}\operatorname{Covol}(\Lambda) \le \lambda_1 \lambda_2 \cdots \lambda_n \cdot \operatorname{Vol}(B(0,1)) \le 2^n \operatorname{Covol}(\Lambda).$$

Prove either of these two inequalities, either as stated, or with any other constant depending only on n. (Aim for a short and easy solution, rather than the best possible constant.)

- (3) Let α be a root of $f(x) := x^3 4x 1$, and write $K := \mathbb{Q}(\alpha)$.
 - (a) Verify that K has ring of integers $\mathbb{Z}[\alpha]$ and discriminant 229, and is totally real.
 - (b) Explicitly write down the Minkowski embedding of \mathcal{O}_K into \mathbb{R}^3 . Use a calculator or computer to write everything down in terms of decimal approximations, to at least three decimal places.
 - (c) If $1, \alpha, \alpha^2$ were vectors whose lengths are the successive minima, would this be consistent with Minkowski's second theorem?
 - (d) (Optional) You may wish to try to compute the successive minima, provably or not. This is in general a *highly* nontrivial problem, and you may be interested to poke around the Internet to see what you can learn about this.
- (4) Suppose, contrary to fact, that the Riemann zeta function was absolutely bounded by some constant M in the region

$$\{z \in \mathbb{C} : \Re(z) \ge \frac{1}{2}, |z-1| > \frac{1}{10}\}.$$

Moreover, define the k-divisor function $d_k(n)$ to be the number of ways to write n as a product of k natural numbers.

(a) Prove the identity

$$\sum_{n} d_k(n)^s = \zeta(s)^k,$$

valid when $\Re(s) = 1$.

(b) By Perron's formula we have

$$\sum_{n < X} d_k(n) = \frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} \zeta(s)^k X^s \frac{ds}{s},$$

whenever X is a positive real number, not an integer. By shifting a portion of the contour left of the line $\Re(s) = 1$, obtain an asymptotic formula for $\sum_{n < X} d_k(n)$ with a power saving error term. You should give *some* description of all the constants in front of your main terms, although it need not be a simplified one.

(Answer this relative to our counterfactual assumption.)

(c) Now, suppose instead of our counterfactual bound, we have a bound

$$|\zeta(\sigma + it)| \ll (1 + |t|)^{\alpha}$$

for some $\alpha > 0$. Repeat the previous question, obtaining an error term which is presumably worse, but still saves a power of X.

(Note: we can take any $\alpha>\frac{1}{4}$ by the so-called 'convexity bound', any $\alpha>\frac{32}{205}$ by more intricate work of Huxley, and any $\alpha>0$ if the Riemann Hypothesis is true.)