Phan Ngọc Hạnh Nhi MSSV: 2131209002

Assignment 1

1. Truth table:

EN	A1	A0	D0	D1	D2	D3
0	X	X	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

2. Design the 2-4 decoder's logic diagram:

D0 = ENA1'A0'

D1 = ENA1A0

D2 = ENA1A0

D3 = ENA1A0

Lines A1, A0: Bus A[1..0]

Lines D3, D2, D1, D0: Bus D[3..0]

3. Simulate the circuit:

Assignment 2

- 1. Create the 32-4 RAM (32 by 4):
- 2. Use the RAM32 4:

3. We now initialise the memory contents of our RAM:

Addı	+0	+1	+2	+3	+4	+5	+6	+7	ASCII
0	1	2	3	9	10	0	0	0	
8	0	0	15	15	15	15	15	15	
16	15	15	15	15	15	15	15	15	
24	0	0	0	0	0	0	0	0	

4. Simulate the circuit:

Assignment 3

1. Truth table:

EN	A2	A1	A0	D0	D1	D2	D3	D4	D5	D6	D7
0	X	X	X	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0	0	0
1	0	1	0	0	0	1	0	0	0	0	0
1	0	1	1	0	0	0	1	0	0	0	0
1	1	0	0	0	0	0	0	1	0	0	0
1	1	0	1	0	0	0	0	0	1	0	0
1	1	1	0	0	0	0	0	0	0	1	0
1	1	1	1	0	0	0	0	0	0	0	1

2. Design the 3 - 8 decoder's logic diagram:

D0 = ENA2'A1'A0'

D1 = ENA2'A1'A0

D2 = ENA2'A1A0'

D3 = ENA2'A1A0

D4 = ENA2A1'A0'

D5 = ENA2A1'A0

D6 = ENA2A1A0

D7 = ENA2A1A0

Lines A2, A1, A0: Bus A[2..0]

Lines D7, D6, D5, D4, D3, D2, D1, D0: Bus D[7..0]

Assignment 4

1. Design the 1-bit 8-1 multiplexer's logic diagram:

2. Simulate the circuit:

Assignment 5

1. Design a logic diagram to implement 8-bit 8-1 multiplexer:

Assignment 6

1. Design the logic diagram of the register:

Assignment 7

1. Design a logic diagram of a 32 x 8 RAM using two 32 x 4 RAM chips:

Assignment 8

- 1. Design a logic diagram of a 64 x 4 RAM using two 32 x 4 RAM chips:
 - Mux21_4:

- Logic diagram of a 64 x 4 RAM using two 32 x 4 RAM chips

