Дискретни разпределения

Дискретна случайна величина = която приема краен брой или изброимо много стойности

Ред на разпределение на дискретна сл.в.= съвкупност от стойности+вероятности; може да бъде във формата на

• таблица

стойност (x)	X 1	X 2	 Xn
вероятност (р)	$P(X=x_1)$	$P(X=x_2)$	 $P(X=x_n)$

• математическа формула

Свойства на реда на разпределение

стойност (x)	X ₁	X 2	 Xn
вероятност (р)	$P(X=x_1)$	$P(X=x_2)$	 P(X=x _n)

Свойство 1.

$$x_i \neq x_k$$

Свойство 2.

$$\sum_{i} p_{i} = 1$$

$$0 \le p_i = P(X = x_i) \le 1$$

Функция на разпределение

$$F(x) = \begin{cases} 0 & npu & x < x_1 \\ p_1 & npu & x_1 < x \le x_2 \\ p_1 + p_2 & npu & x_2 < x \le x_3 \\ p_1 + p_2 + p_3 & npu & x_3 < x \le x_4 \\ \vdots & \vdots & \vdots \\ 1 & npu & x > x_n \end{cases}$$

$$F(x) = P(X < x) = \sum_{j; x_j < x} p_j$$

Опит: Хвърляне на монета един път

Х={брой лица}

Ү={брой гербове}

стойност (х)	0	1
вероятност (р)	0.5	0.5

		при	$x \le 0$
$F(x) = \langle$	0,5	npu	$0 < x \le 1$
	$\lfloor 1$	при	x > 1

1

5/7

Опит: Хвърляне на зар един път

Х={брой точки върху зара}

X	1	2	3	4	5	6
р	1/6	1/6	1/6	1/6	1/6	1/6

Y={брой лицеви страни с точно една точка}

Х	0	1
Р	5/6	1/6

0

2/7

Χ

$$F(x) = \begin{cases} 0 & npu & x \le 0 \\ 5/6 & npu & 0 < x \le 1 \\ 1 & npu & x > 1 \end{cases}$$

Опит: Случайно се избира топче от кутия с 5 червени и 2 сини топчета

Х={брой червени топчета измежду избраните}

Може ли следната таблица да е ред на разпределение на сл.в.?

X	0	1	2	3
Р	0.4	0.6	0.3	0.1

не

X	0	1	2	3
Р	0.4	0.35	0.1	- 0.15

не

X	0	1	2	3
Р	0.4	0.35	0.1	0.15

да

X	0	1	2	3
Р	.4	.6	3.0	.1

не

Опит: Хвърляне на зар два пъти

Х={максималните точки, които се появяват на зара в двете хвърляния}

Стойности на X=> 1,2,3,4,5,или 6

$$(1,1)$$
 $(2,1)$ $(1,2)$, $(2,2)$

(3,1) (1,3), (3,2) (2,3), (3,3)

X	1	2	3	4	5	6
р	1/36	3/36	5/36	7/36	9/36	11/36

/={минималните точки които се

У={минималните точки, които се появяват на зара в двете хвърляния}

	0	npu	$x \le 1$
	1/36	при	$1 < x \le 2$
	4/36	при	$2 < x \le 3$
$F(x) = \langle$	9/36	при	$3 < x \le 4$
	16/36	npu	$4 < x \le 5$
	16/36 25/36	при	$5 < x \le 6$
	$\lfloor 1$		pu x > 6

Стойности на У=> 1,2,3,4,5,или 6

X	1	2	3	4	5	6
р	11/36	9/36	7/36	5/36	3/36	1/36

Задача. Сл. в. X има ф.р.

	0		ри	<i>x</i> ≤	≤-1
	0,02	2 np	ои	-1.	$< x \le 0$
	0,08	8 nn	11.	0 < .	$x \le 3$
$F(x) = \langle$	0,1	при	3 <	< <i>x</i> ≤	7
	0,3	при		< <i>x</i> ≤	
	0,6	при	10	< x	≤16
	$\lfloor 1 -$		np	u	<i>x</i> > 16

Какъв тип е сл.в.?

Дискретен

Стойности: -1; 0; 3; 7; 10; 16

Ред на разпределение

x	-1	0	3	7	10	16
р	0,02	0,06	0,02	0,2	0,3	0,4

CPCARA CTONHOCT (MATCHATHUCCKO OVAKBAHC) $EX = x_1 p_1 + x_2 p_2 + ... + x_n p_n$

Средната стойност дава информация за средата на стойностите на случайната величина.

Пример

Опит: Хвърляне на монета един път

стойнос	0	1
Т ероятнос	0.5	0.5

Х={брой лица}

EX=0(0.5)+(1)(0.5)=0.5

$$E(c) = c$$

$$E(cX)=c(EX)$$

$$E(X+Y) = EX + EY$$

E(X.Y) = EX.EY ako $Xu \ Y$ са независими

Иоделиране на хазартни итру

Том и Ники играят игра: Том хвърля зар един път. Ако се паднат 5 точки, Том плаща 1 лев на Ники, в противен случай Ники плаща 1 лев на Том. Колко е очакваната печалба на Том?

Нека Х={печалба на Том}

стойност(х)	- 1	1
(лв) вероятност (р)	1/6	5/6

EX= (-1) (1/6)+(1) (5/6)=4/6=.6666

Интерпретация: Ако двете момчета играят тази игра много пъти, то в някои от тях Том ще плати 1 лв, в някои ще получи 1 лв, но в крайна сметка средната му печалба ще бъде 67 ст.

Пример

Полица"Живот" осигурява плащането на определена сума при смърт на притежателя на полица. Нека например, застраховка "Живот" за 49 годишен мъж е 35 лв за година, като в случай на злополука се изплащат 25 000 лв. Ако е известно, че смъртността при 49-годишните мъже в съответния регион е 135 на 100 000, пресметнете очакваната печалба на застрахователната компания.

Нека X={печалба на компанията}

Стойности на Х: 35 и (35-25 000)

стойност(x) (лв)	35	-24965
вероятност (р)	0,99865	0,00135

EX=35(0,99865)-24965(0,00135)=1,25 лв. печалба от всеки застрахован

Пример

Ако вероятността да има наводнение следващата година е р, то колко трябва да се плаща за застроховка, за да може застрахователната компания да има печалба поне 10% от евенталната сума, която се изплаща в случай на наводнение.

Сумата, която евентуално ще се изплати: А

Стойността на застраховката: В

Нека Х={печалба на компанията}

Стойности на Х: В и (В-А)

стойност(x) (лв)	В	B-A
вероятност	1-р	р

B
$$\ge$$
 (0,1+p) A

Lakbahe Ha Covhkuk

Нека X е дискретна случайна величина в ред на разпределение

X	X 1	X 2	 Xn
р	$P(X=x_1)$	P(X=x ₂)	 P(X=xn)

g(x) е реална функция

$$Eg(X) = g(x_1)p_1 + g(x_2)p_2 + ... + g(x_n)p_n$$

Опит: Хвърляне на зар един път

Ү={брой л

	X	U	_1
пицеви страни с точно една точка}	Р	5/6	1/6
5 1 1			

$$E(X^2) = 0^2 \frac{5}{6} + 1^2 \frac{1}{6} = \frac{1}{6}$$

Специален пример

X

X	0
p	1

EX=0

Y

X	- 1	1
р	0,5	0,5

EY=0

Z

X	- 100	100
р	0,5	0,5

EZ=0

Харктеристика, която ги разграничава

$$\sigma^{2} = E(X - EX)^{2}$$

$$\sigma^{2} = \sum_{i} (x_{i} - EX)^{2} p_{i}$$

Дисперсията измерва степента на разсейване на стойностите на разпределението.

$$\sigma^2(c) = 0$$

$$\sigma^2(c) = 0 \qquad \sigma^2(cX) = c^2 \quad \sigma^2(X)$$

$$\sigma^2(X+Y) = \sigma^2(X) + \sigma^2(Y)$$
 ако $X u Y ca$ независими

Стандартно отклонение = квадратен корен от σ^{2}

$$\sigma^2 = E(X^2) - (EX)^2$$

Опит: Хвърляне на монета един път

Х={брой лица}

стойност (х)	0	1
Вероятност	0.5	0.5

$$\sigma^2 = (0 - 0.5)^2 \cdot 0.5 + (1 - 0.5)^2 \cdot 0.5$$

Опит: Хвърляне на монета 3 пъти

Х={брой лица}

Брой лица	вероятност
X	P(x)
0	1/8
1	3/8
2	3/8
3	1/8

Видове дискретни разпределения

Pabhomepho Anckpetho

стойност (х)	X 1	X ₂	 X n
вероятност (р)	1/n	1/n	 1/n

Matematnyecko oyakbahe

$$EX = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Средно аритметично Пример: Хвърляне на зарче един път.

Х={брой паднали се точки}

Бернулиево разпределение

Опит: Два възможни изхода : У (успех) и Н(неуспех)

$$P(Y)=p$$
 $P(H)=1-p$

Х=брой успехи

случай на величина

стойност	0	1
вероятност	1-р	p

Дисперсия = p(1-p)

Пример: Избор на карта от колода от 52 карти.

стойност	0	1
вероятност	48/52=12/13	4/52=1/13

Брой дами измежду избраните

Дисперсия = 12/169

Задача.

Нека X приема само стойности а и в с вероятности р и 1-р съответно. а/ Докажете, че У=(X-в)/(a-в) е Бернулиево разпределена

а/ Намерете дисперсията на У

Дисперсия на У= р(1-р)

Биилмил пазпледеление Bi(n,p)

Разглеждаме n опити на Бернули:

1. Опитите са независими.

- 2. Всеки опит има само два възможни изходи, У и Н.
- 3. Вероятността за успех във всеки отделен опит е постоянна: Р(У)=р

Х=брой успехи при тези опити

Х	0	1	2	3	 n
р	p ₀	p ₁	p ₂	рз	 Рп

$$p_k = P(S_n = k) = \frac{n!}{(n-k)!k!} p^k (1-p)^{n-k}, \quad k = 0,1,...,n$$

X = брой успехи при к-тия опит

$$X = X_1 + X_2 + ... + X_n$$

$$EX=EX_1+EX_2+...+EX_n=p+p+...+p=np$$

Дисперсия=
$$p(1-p)+p(1-p)+...+p(1-p)=np(1-p)$$

Бернулиево разпределение

Пример: Зарче се подхвърля 5 пъти.

Х=брой паднали се "2 точки" при тези опити

Биномно разпределение

Х	0	1	2	3	4	5
р	p _o	p ₁	p ₂	рз	P 4	p ₅

$$p_0 = P(S_5 = 0) = \left(\frac{1}{6}\right)^0 \left(\frac{5}{6}\right)^5 = \frac{3125}{7776}$$

$$p_1 = P(S_5 = 1) = \frac{5}{1} \left(\frac{1}{6}\right)^1 \left(\frac{5}{6}\right)^4 = \frac{3125}{7776}$$

$$p_2 = P(S_5 = 2) = \frac{5(4)}{2!} \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^3 = \frac{1250}{7776}$$

$$p_3 = P(S_5 = 3) = \frac{5(4)(3)}{3!} \left(\frac{1}{6}\right)^3 \left(\frac{5}{6}\right)^2 = \frac{250}{7776}$$

$$p_4 = P(S_5 = 4) = \frac{5(4)(3)(2)}{4!} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^1 = \frac{25}{7776}$$

$$p_5 = P(S_5 = 5) = \frac{5(4)(3)(2)(1)}{5!} \left(\frac{1}{6}\right)^5 \left(\frac{5}{6}\right)^0 = \frac{1}{7776}$$

EX=np=5(1/6)=5/6

Дисперсия= np(1-p)= 5(1/6(5/6)=25/36

Станд. Откл.= 5/6

Поасоново разпределение

 $Po(\lambda)$

Случайната величина X е Поасоново разпределена, ако

Х	0	1	2	 n	
р	p_0	p ₁	p ₂	 рп	

$$p_k = e^{-\lambda} \frac{\lambda^k}{k!}$$

λ е параметър

Примери:

- брой печатни грешки на страница
- брой клиенти, влизащи в даден офис на определен ден
- •брой дефектни изделия, измежду произведените определен ден във фирма
- смъртност за даден период в даден регион
- брой земетресения в даден регион през определен период

Известно е, че средно 3,5 урагана преминават през даден регион. Каква е вероятността следващата година да има поне два урагана в този регион?

Х=брой урагани през следващата годинат

Поасоново разпределена

$$P(X\geq 2)= P(X=2)+ P(X=3)+ P(X=4)+....$$

$$P(X \ge 2) = 1 - P(X < 2) = 1 - P(X = 0) - P(X = 1)$$

$$EX=3,5=\lambda$$

$$p_k = e^{-3.5} \frac{3.5^k}{k!}$$

$$P(X \ge 2) = 1 - e^{-3.5} \frac{3.5^{0}}{0!} - e^{-3.5} \frac{3.5^{1}}{1!} = 1 - e^{-3.5} (1 + 3.5) = 0.86$$

Връзка между Биномно и Поасоново разпределение

При n опити по схемата на Бернули

X={ *брой успехи* } е биномно разпределена Bi(n,p)

При n голямо и р достатъчно малко: $\lambda = np$ и $X \sim Po(\lambda)$

Пример: Х=брой новородени в дадена област, които са по-дълги от 58 см.

X е биномно разпределена с n=брой новородени в областта

Долколкото n е голямо, а p е малко, то $X \sim Po(\lambda)$

Пример: Х=брой печеливши билети в една лотария

Пример: Х=брой печатни грешки в един документ

Пример: X=брой жители на даден регион , по-възрастни от 90 години

Атомите на радиоактивните елементи се разпадат случайно. Ако всеки грам от даден елемент разпада 3,9 алфа частици за секунда, то каква е вероятността през следващата секунда не повече от 1 алфа- частица да се разпадне от един грам (emitt)

Всеки грам съдържа голям брой атоми.

Успех=разпадането на алфа-частицата през следващата секунда

Х= брой разпаднали се алфа-частици през следващата секунда

Bi(n, p) \longrightarrow EX=3,9 \longrightarrow np=3,9

Доколкото n е голямо => p е малко

Можем да използваме Ехр(λ=3,9)

$$P(X \le 1) = (P(X = 0) + P(X = 1)) = \frac{(3.9)^{0} e^{-3.9}}{0!} + \frac{(3.9)^{1} e^{-3.9}}{1!} = e^{-3.9} (1 + 3.9) = 0.099$$

