Electra House, 32 Southtown Road Great Yarmouth, Norfolk NR31 0DU, England Telephone +44 (0)1493 602602 Email:sales@midasdisplays.com www.midasdisplays.com

MDE0213B1S-BW		122 x 250	E-Ink Module		
(MDE0213A122250BW)			Specification		
Version:	1		Date: 23/01/2021		
Revision					
	1 20	6/01/2021	First Issue.		

Display F	eatures		
Display Size	2.13"		
Resolution	122 x 250		
Orientation	Portrait		1
Appearance	Black, White		110
Logic Voltage	3.3V		OHS ompliant
Interface	SPI		mpliant
Touchscreen	N/A	1 00	mphant
Module Size	29.20 x 59.20 x 0.90 mm		
Operating Temperature	0°C ~ +50°C		
Pinout	24 - Way FFC	Box Quantity	Weight / Display
Pitch	0.5mm		

* - For full design functionality, please use this specification in conjunction with the SSD1680 specification.(Provided Separately)

Display Accessories							
Part Number	Description						

Optional Variants							
Appearances	Voltage						
Black, White and Red							
Black, White and Yellow							
,							

1.General Description

MDE0213B1S-BW is an Active Matrix Electrophoretic Display (AMEPD), with interface and a reference system design. The 2.13" active area contains 122×250 pixels, and has 1-bit B/W full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM and border are supplied with each panel.

2.Features

- 122×250 pixels display
- High contrast
- High reflectance
- Ultra wide viewing angle
- Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape, portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Low voltage detect for supply voltage
- High voltage ready detect for driving voltage
- Internal temperature sensor
- 10-byte OTP space for module identification
- Waveform stored in On-chip OTP
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- I2C signal master interface to read external temperature sensor/built-in temperature sensor

3.Application

Electronic Shelf Label System

4.Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	2.13	Inch	
Display Resolution	122(H)×250(V)	Pixel	Dpi:130
Active Area	23.7(H)×48.55(V)	mm	
Pixel Pitch	0.194×0.194	mm	
Pixel Configuration	Rectangle		
Outline Dimension	29.2(H)×59.2 (V) ×0.9(D)	mm	Without masking film
Weight	3±0.5	g	

5. Mechanical Drawing of EPD module

6.Input/Output Terminals

Pin#	Single	Description	Remark
1	NC	No connection and do not connect with other NC pins	Keep Open
2	GDR	N-Channel MOSFET Gate Drive Control	
3	RESE	Current Sense Input for the Control Loop	
4	NC	No connection and do not connect with other NC pins	Keep Open
5	VSH2	Positive Source driving voltage	
6	TSCL	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I ² C Interface to digital temperature sensor Data pin.	
8	BS1	Bus selection pin	Note 6-5
9	BUSY	Busy state output pin	Note 6-4
10	RES#	Reset signal input.	Note 6-3
11	D/C#	Data /Command control pin	Note 6-2
12	CS#	The chip select input connecting to the MCU.	Note 6-1
13	SCL	Serial clock pin for interface.	
14	SDA	Serial data pin for interface.	
15	VDDIO	Power input pin for the Interface.	
16	VCI	Power Supply pin for the chip	
17	VSS	Ground (Digital)	
18	VDD	Core logic power pin	
19	VPP	Power Supply for OTP Programming	lty
20	VSH1	Positive Source driving voltage	
21	VGH	Power Supply pin for Positive Gate driving voltage and VSH	
22	VSL	Negative Source driving voltage	
23	VGL	Power Supply pin for Negative Gate driving voltage, VCOM and VSL	
24	VCOM	VCOM driving voltage	

Note 6-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication: only when CS# is pulled LOW.

Note 6-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data will be interpreted as data. When the pin is pulled LOW, the data will be interpreted as command.

Note 6-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 6-4: This pin (BUSY) is Busy state output pin. When Busy is High ,the operation of chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busy pin High when the driver IC is working such as:

- Outputting display waveform;
- Communicating with digital temperature sensor

Note 6-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected.

7.MCU Interface

7.1 MCU interface selection

The MDE0213B1S-BW can support 3-wire/4-wire serial peripheral interface. In the Module, the MCU interface is pin selectable by BS1 pins shown in table 7-1.

Table 7-1: Interface pin assignment for different MCU interfaces

	Pin name						
MCU Interface	BS1	RES#	CS#	D/C#	SCL	SDA	
4-wire serial peripheral interface (SPI)	L	RES#	CS#	D/C#	SCL	SDI	
3-wire serial peripheral interface (SPI) - 9 bits SPI	Н	RES#	CS#	L	SCL	SDI	

Note:

(1) L is connected to VSS H is connected to VDDIO

7.2 MCU Serial Peripheral Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 7-2 and the write procedure 4-wire SPI is shown in table 7-2.

Table 7-2: Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	L	L
Write data	1	Data bit	H	L

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal
- (3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ...D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

Figure 7-1 Write procedure in 4-wire SPI mode

In the read operation (Command 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). After CS# is pulled low, the first byte sent is command byte, D/C# is pulled low. After command byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pulled high. An 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.

Figure 7-2 Read procedure in 4-wire SPI mode

7.3MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 6-3. In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

 Function
 SCL pin
 SDI pin
 D/C# pin
 CS# pin

 Write command
 ↑
 Command bit
 Tie LOW
 L

 Write data
 ↑
 Data bit
 Tie LOW
 L

Table 7-3: Control pins status of 3-wire SPI

Note:

- (1) L is connected to V_{SS} and H is connected to V_{DDIO}
- (2) ↑ stands for rising edge of signal

Figure 7-3 Write procedure in 3-wire SPI mode

In the read operation (command 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). SDA data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command byte, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1. After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-4 shows the read procedure in 3-wire SPI.

Figure 7-4 Read procedure in 3-wire SPI mode

design • manufacture • supply

8. Temperature sensor operation

Following is the way of how to sense the ambient temperature of the module. First, use an external temperature sensor to get the temperature value and converted it into HEX format with below mapping table, then send command 0x1A with the HEX temperature value to the module thru the SPI interface.

The temperature value to HEX conversion is as follow:

1. If the Temperature value MSByte bit D11 = 0, then

The temperature is positive and value (DegC) = + (Temperature value) / 16

2. If the Temperature value MSByte bit D11 = 1, then

The temperature is negative and value (DegC) = \sim (2's complement of Temperature value) /16

Table 8-1 : Example of 12-bit binary temperature settings for temperature ranges

12-bit binary (2's complement)	Hexadecimal Value	TR Value [DegC]	
0111 1111 1111	7FF	128	
0111 1111 1111	7FF	127.9	
0110 0100 0000	640	100	
0101 0000 0000	500	80	
0100 1011 0000	4B0	75	
0011 0010 0000	320	50	
0001 1001 0000	190	25	
0000 0000 0100	004	0.25	
0000 0000 0000	000	0	
1111 1111 1100	FFC	-0.25	
1110 0111 0000	E70	-25	
1100 1001 0000	C90	-55	

9.COMMAND TABLE

R/W# D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description	.[8:0] + 1).
0 1 A ₇ A ₆ A ₅ A ₄ A ₃ A ₂ A ₁ A ₀ 0 1 0 0 0 0 0 0 A ₈ 0 1 0 0 0 0 B ₂ B ₁ B ₀ B[2:0] = 000 [POR]. Gate scanning sequence an B[2]: GD Selects the 1st output Gate	.[8:0] + 1).
0 1 A ₇ A ₆ A ₅ A ₄ A ₃ A ₂ A ₁ A ₀ 0 1 0 0 0 0 0 0 A ₈ 0 1 0 0 0 0 B ₂ B ₁ B ₀ B[2:0] = 000 [POR]. Gate scanning sequence an B[2]: GD Selects the 1st output Gate	.[8:0] + 1).
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d direction
Gate scanning sequence an B[2]: GD Selects the 1st output Gate	d direction
B[2]: GD Selects the 1st output Gate	a direction
Selects the 1st output Gate	
Selects the 1st output Gate GD=0 [POR]	
	and mate
G0 is the 1st gate output charge output sequence is G0,G1, C	-
GD=1,	12, 03,
G1 is the 1st gate output cha	nnel, gate
output sequence is G1, G0,	33, G2, ···
B[1]: SM	
Change scanning order of ga	ite driver.
SM=0 [POR],	
G0, G1, G2, G3···295 (left a	nd right gate
interlaced) SM=1,	
G0, G2, G4 ···G294, G1, G3	···G295
	, 0_00
TB = 0 [POR], scan from G0 TB = 1, scan from G295 to G	
1B = 1, Scan IIOIII G295 to G	U.
0 0 03 0 0 0 0 0 1 1 Gate Driving voltage Set Gate driving voltage	
0 1 0 0 A ₄ A ₃ A ₂ A ₁ A ₀ Control A[4:0] = 00h [POR]	
VGH setting from 10V to 20V	1
A[4:0] VGH A[4:0]	VGH
	15
03h 10 0Eh	15.5
04h 10.5 0Fh	16
05h 11 10h	16.5
06h 11.5 11h 07h 12 12h	17
07h 12 12h 08h 12.5 13h	17.5 18
061 12.3 1311 07h 12 14h	18.5
08h 12.5 15h	19
09h 13 16h	19.5
0Ah 13.5 17h	20
0Bh 14 Other	NA
0Ch 14.5	

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	04	0	0	0	0	0	1	0	0	Source Driving voltage	Set Source driving voltage
0	1		A ₇	A 6	A 5	A ₄	Аз	A ₂	A ₁	A ₀		A[7:0] = 41h [POR], VSH1 at 15V
0	1		В	B ₆	B ₅	B ₄	Вз	B ₂	Вı	Bo		B[7:0] = A8h [POR], VSH2 at 5V. C[7:0] = 32h [POR], VSL at -15V
0	1		C ₇	C ₆	C 5	C ₄	Сз	C ₂	C ₁	C ₀		Remark: VSH1>=VSH2

A[7]/B[7] = 1, VSH1/VSH2 voltage setting from 2.4V to 8.8V

A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2
8Eh	2.4	AFh	5.7
8Fh	2.5	B0h	5.8
90h	2.6	B1h	5.9
91h	2.7	B2h	6
92h	2.8	B3h	6.1
93h	2.9	B4h	6.2
94h	3	B5h	6.3
95h	3.1	B6h	6.4
96h	3.2	B7h	6.5
97h	3.3	B8h	6.6
98h	3.4	B9h	6.7
99h	3.5	BAh	6.8
9Ah	3.6	BBh	6.9
9Bh	3.7	BCh	7
9Ch	3.8	BDh	7.1
9Dh	3.9	BEh	7.2
9Eh	4	BFh	7.3
9Fh	4.1	C0h	7.4
A0h	4.2	C1h	7.5
A1h	4.3	C2h	7.6
A2h	4.4	C3h	7.7
A3h	4.5	C4h	7.8
A4h	4.6	C5h	7.9
A5h	4.7	C6h	8
A6h	4.8	C7h	8.1
A7h	4.9	C8h	8.2
A8h	5	C9h	8.3
A9h	5.1	CAh	8.4
AAh	5.2	CBh	8.5
ABh	5.3	CCh	8.6
ACh	5.4	CDh	8.7
ADh	5.5	CEh	8.8
AEh	5.6	Other	NA

A[7]/B[7] = 0, VSH1/VSH2 voltage setting from 9V to 17V

A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2
23h	9	3Ch	14
24h	9.2	3Dh	14.2
25h	9.4	3Eh	14.4
26h	9.6	3Fh	14.6
27h	9.8	40h	14.8
28h	10	41h	15
29h	10.2	42h	15.2
2Ah	10.4	43h	15.4
2Bh	10.6	44h	15.6
2Ch	10.8	45h	15.8
2Dh	11	46h	16
2Eh	11.2	47h	16.2
2Fh	11.4	48h	16.4
30h	11.6	49h	16.6
31h	11.8	4Ah	16.8
32h	12	4Bh	17
33h	12.2	Other	NA
34h	12.4		
35h	12.6		
36h	12.8		
37h	13		
38h	13.2		
39h	13.4		
3Ah	13.6	~	
3Bh	13.8	1 ± 2	

C[7] = 0, VSL setting from -5V to -17V

C[7:0]	VSL
0Ah	-5
0Ch	-5.5
0Eh	-6
10h	-6.5
12h	-7
14h	-7.5
16h	-8
18h	-8.5
1Ah	-9
1Ch	-9.5
1Eh	-10
20h	-10.5
22h	-11
24h	-11.5
26h	-12
28h	-12.5
2Ah	-13
2Ch	-13.5
2Eh	-14
30h	-14.5
32h	-15
34h	-15.5
36h	-16
38h	-16.5
3Ah	-17
Other	NA

0	0	08	0	0	0	0	1	0	0		OTP Program	Program Initial Code Setting The command required ENABLE CLOCK SIGNAL. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	09	0	0	0	0	1	0	0	1	Write Register for Initial	Write Register for Initial Code Setting
0	1		A ₇	A 6	A 5	A_4	Аз	A ₂	A ₁	A_0		Selection
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B_2	Вı	Bo		A[7:0] ~ D[7:0]: Reserved Details refer to Application Notes of Initial
0	1		C ₇	C ₆	C ₅	C ₄	С3	C_2	C ₁	Co		Code Setting
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		
0	0	0A	0	0	0	0	1	0	1		Read Register for Initial Code Setting	Read Register for Initial Code Setting

D	R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
O	0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	Booster Enable v	vith Phase 1, Phase 2 and Phase 3
O	0	1		1	A 6	A 5	A ₄	Аз	A ₂	A 1			for soft start curre	ent and duration setting.
0	0	1											A[7:0] -> Soft sta	rt setting for Phase1
0	0	1		1	C ₆	C 5	C ₄	Сз	C ₂	C ₁	Co		= 8Bh [POR]
Description of each byte: Alexandrian setting Description of each byte: Alexandrian setting Description of each byte: Alexandrian setting of Selection Description of each byte: Alexandrian setting of Selection Description of each byte: Alexandrian setting of Selection Description of each byte: Description of each byte: Alexandrian setting of Selection Description of each byte: Description													= 9Ch [POR]
D(7:0) > Duration setting = (PCR)		'		U	U	Do	D 4	D ₃	D ₂	D ₁	Do		C[7:0] -> Soft sta = 96h [rt setting for Phase3
Bit Description of each byte: A(6:0) / B(6:0) / C(6:0):: Bit(6:4) Driving Strength Selection 000													D[7:0] -> Duration	n setting
A[6:0] / B[6:0] / C[6:0]; Bit[6:4] Driving Strength Selection													= 0Fh [PORJ
Selection O00													Bit Descript A[6:0] / B[6	:0] / C[6:0]:
000													Bit[6:4]	
010 3 011 4 100 5 101 6 110 7 111 8(Strongest)													000	1
O11													001	2
100 5 101 6 110 7 111 8(Strongest)													010	3
101 6 110 7 111 8(Strongest)													011	4
110 7 111 8(Strongest)													100	5
Bit[3:0] Min Off Time Setting of GDR Time unit													101	6
Bit[3:0] Min Off Time Setting of GDR [Time unit]													110	
Sig.3) [Time unit]													111	8(Strongest)
0000													Bit[3:0]	Min Off Time Setting of GDR
0011 0100 2.6 0101 3.2 0110 3.9 0111 4.6 1000 5.4 1001 6.3 1010 7.3 1011 8.4 1100 9.8 1101 11.5 1110 13.8 1111 16.5 1110 13.8 1111 16.5 1110 15.4 duration setting of phase 3 D[5.4]: duration setting of phase 2 D[1:0]: duration setting of phase 2 D[1:0]: duration setting of phase 1 Bit[1:0] Duration of Phase [Approximation] 00 10ms 01 20ms													0000	
0101 3.2 0110 3.9 0111 4.6 1000 5.4 1001 6.3 1010 7.3 1011 8.4 1100 9.8 1101 11.5 1110 13.8 1111 16.5 1110 13.8 1111 16.5 1110 13.8 1111 16.5 1110 13.8 1111 16.5 1110 13.8 1111 16.5 1110 13.8 1111 16.5 1110 13.8 1111 16.5 1110 13.8 1111 16.5 1110 13.8 1111 16.5 1110 13.8 1111 16.5 1110 13.8 13.2 1													0011	NA
0110 3.9 0111 4.6 1000 5.4 1001 6.3 1010 7.3 1011 8.4 1100 9.8 1101 11.5 1110 13.8 1111 16.5 1111 16.5 1110 13.8 1111 16.5 1110 13.8 1111 16.5 1110 13.8 1111 16.5 1110 13.8 1111 16.5 1110 13.8 1111 16.5 1110 13.8 1111 16.5 1110 13.8 1111 16.5 1110 13.8 1111 16.5 1110 13.8 1111 16.5 1110 13.8					4.							oufocture.	0100	2.6
0111				(u t	5	9				d I	luidetui t	0101	3.2
1000 5.4 1001 6.3 1010 7.3 1011 8.4 1100 9.8 1101 11.5 1110 13.8 1111 16.5 1111													0110	3.9
1001 6.3 1010 7.3 1011 8.4 1100 9.8 1101 11.5 1110 13.8 1111 16.5 1111													0111	
1010 7.3 1011 8.4 1100 9.8 1101 11.5 1110 13.8 1111 16.5 111														
1011														
1100 9.8 1101 11.5 1110 13.8 1111 16.5														
1101														
1110													l	
1111 16.5														
D[5:0]: duration setting of phase D[5:4]: duration setting of phase 3 D[3:2]: duration setting of phase 2 D[1:0]: duration setting of phase 1 Bit[1:0] Duration of Phase [Approximation] 00 10ms 01 20ms 10 30ms														
D[5:4]: duration setting of phase 3 D[3:2]: duration setting of phase 2 D[1:0]: duration setting of phase 1 Bit[1:0]													1111	10.5
Bit[1:0] Duration of Phase [Approximation] 00 10ms 01 20ms 10 30ms													D[5:4]: dui D[3:2]: dui	ration setting of phase 3 ration setting of phase 2 ration setting of phase 1
01 20ms 10 30ms													Bit[1:0]	Duration of Phase [Approximation]
10 30ms														
													11	40ms

R/W#	D/C#	Hav	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
IX/VV#	D/C#	пех	וט	DO	DJ	D4	DS	DZ	וט	DU	Command	Description
0 0	0	10	0	0	0	1 0	0	0	0 A1	O Ao	Deep Sleep mode control	Deep Sleep mode Control: A[1:0]: Description 00 Normal Mode [POR] 01 Enter Deep Sleep Mode 1 11 Enter Deep Sleep Mode 2 After this command initiated, the chip will enter Deep Sleep Mode, BUSY pad will keep output high. Remark: To Exit Deep Sleep mode, User required to send HWRESET to the driver
0	0	11	0	0	Λ	1	0	0	Λ	1	Data Entry mode setting	Define data entry sequence
0	1	11	0	0	0	1 0	0	A ₂	0 A1	Ao	Data Entry mode setting	Define data entry sequence A[2:0] = 011 [POR] A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 - Y decrement, X decrement, 01 - Y decrement, X increment, 10 - Y increment, X decrement, 11 - Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A6	A ₅	A4	0	A2	A ₁	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.
0	Ο	15	Λ	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	0 1	15	0	0	0	0	0	1 A ₂	0 A ₁	Ao	Pula Ciur	A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect A[2:0] VCI level 011 2.2V 100 2.3V 101 2.4V 110 2.5V 111 2.6V Other NA The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection
0	1		A ₇	A 6	A 5	A ₄	Аз	A ₂	A ₁	A ₀	Control	A[7:0] = 0x48[POR], external temperature sensor A[7:0] = 0x 80 Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1		A ₁₁	A ₁₀	A 9	A 8	A ₇	A ₆	A 5	A ₄	Control (Write to	A[7:0] = 0x 7F [POR]
0	1		Аз	A ₂	A ₁	A ₀	0	0	0	0	temperature register)	

R/W#	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.
1	1		A ₁₁	A ₁₀	A 9	A ₈	A ₇	A ₆	A 5	A ₄	Control (Read from	
1	1		Аз	A_2	A ₁	A_0	0	0	0	0	temperature register)	
0	Ι ο	10	0	0	0	1	1	1	0	Ι ο	Tomporatura Canaar	Write Command to External temperature
0	0	1C	0 A ₇	0 A ₆	0 A ₅	1 A ₄	1 Аз	1 A ₂	0 A ₁	0 A ₀	Temperature Sensor Control (Write Command	Write Command to External temperature sensor.
	'										to External temperature	A[7:0] = 00h [POR],
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀	sensor)	B[7:0] = 00h [POR],
0	1		C ₇	C ₆	C 5	C ₄	Сз	C_2	C ₁	Co		C[7:0] = 00h [POR],
												A[7:6] A[7:6] Select no of byte to be sent 00 Address + pointer Address + pointer + 1st parameter 10 Address + pointer + 1st parameter + 2nd pointer 11 Address A[5:0 - Pointer Setting B[7:0] - 1 St parameter C[7:0] - 2 ^{TU} parameter The command required ENABLE CLOCK SIGNAL Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature sensor starts. BUSY pad will output high during operation.
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence The Display Update Sequence Option is located at R22h. BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.
0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option for Display Update
0	1		A ₇	A ₆	A 5	A ₄	Аз	A ₂	A ₁	A ₀	1	A[7:0] = 00h [POR]
			Г	^	_	^	_	^	^	_	-	B[7:0] = 00h [POR]
0	1		B ₇	0	0	0	0	0	0	0		A[7:4] RED RAM option
												0000 Normal
												0100 Bypass RAM content as 0
												1000 Inverse RAM content
												A[3:0] BW RAM option 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content B[7] Source Output Mode
												0 Available Source from S0 to S175
												1 Available Source from S8 to S167

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	22	0	0	1	0	0	0	1	0	Display Update	Display Update Sequence Option:	
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Αo	Control 2	Enable the stage for Master Activation A[7:0]= FFh (POR)	
												II ()norating soguence I	meter Hex)
												Enable clock signal 8	30
												Disable clock signal	01
												Enable Analog	C0
												Disable Analog Disable clock signal	03
												Disable clock signal	91
												Enable clock signal Load LUT with DISPLAY Mode 2 Disable clock signal	99
												Enable clock signal Load temperature value Load LUT with DISPLAY Mode 1 Disable clock signal	31
												Enable clock signal Load temperature value Load LUT with DISPLAY Mode 2 Disable clock signal	39
											a a su fa a tuur	Enable clock signal Enable Analog Display with DISPLAY Mode 1 (Disable Analog Disable OSC	C7
					E	\bigcap					diluiactuii	Enable clock signal Enable Analog	CF
												Enable clock signal Enable Analog Load temperature value DISPLAY with DISPLAY Mode 1 Disable Analog Disable OSC	=7
												Enable clock signal Enable Analog Load temperature value DISPLAY with DISPLAY Mode 2 Disable Analog Disable OSC	FF
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entries will written into the BW RAM until anothe command is written. Address pointer advance accordingly	er
												For Write pixel: Content of Write RAM(BW) = 1 For Black pixel: Content of Write RAM(BW) = 0	

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For RED pixel: Content of Write RAM0x26 = 1 For non- RED pixel [Black or White]: Content of Write RAM0x26 = 0
											<u> </u>	The second second
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly. The 1 st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold
0	0	20	0	0	0	5	9		0			for duration defined in command 0x29 before reading VCOM value. The sensed VCOM voltage is stored in register The command required ENABLE CLOCK SIGNAL and ENABLE ANALOG. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
												operation:
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration	Stabling time between entering VCOM
0	1		0	1	0	0	Аз	A ₂	A ₁	Ao		sensing mode and reading acquired. A[3:0] = 0x 9, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
0	U	ZA	U	U	ı	U	1	U	1	U	r iogiaili voolvi o i P	The command required ENABLE CLOCK SIGNAL. Refer to Register 0x22 for detail. BUSY pad will output high during operation.

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descrip	tion		
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register	Write VC	COM registe	er from M	ICU interface
0	1		A ₇	A ₆	A 5	A ₄	Аз	A ₂	A ₁	A ₀	J		00h [PÖR]		
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA
_	_														
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read R	Register for	Display (Option:
1	1		A ₇	A ₆	A 5	A ₄	Аз	A ₂	A ₁	Ao	Display Option	A[7:0].	VCOM OTI	2 Selectio	าท
1	1		B ₇	B ₆	B 5	B ₄	Вз	B ₂	B ₁	Bo			and 0x37,		J11
1	1		C ₇	C_6	C 5	C ₄	Сз	C_2	C ₁	C_0		`		,	
1	1		D ₇	D_6	D 5	D ₄	Дз	D_2	D ₁	D_0			VCOM Reg	gister	
1	1		E ₇	E ₆	E ₅	E ₄	Ез	E ₂	E ₁	Εo	anutactur	(Comm	and 0x2C)		
1	1		F ₇	F ₆	F ₅	F ₄	Fз	F ₂	F ₁	F₀		C[7:0]~	G[7:0]: Dis	play Mod	е
1	1		G ₇	G_6	G ₅	G ₄	Gз	G ₂	G₁	Go			and 0x37,		
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H1	H₀		[5 bytes	s]		
1	1		I ₇	l 6	I 5	I 4	l ₃	l 2	l ₁	Ιo		H[7:0]~	.K[7:0]: Wa	veform \/	ereion
1	1		J_7	J_6	J 5	J_4	J ₃	J_2	J ₁	J ₀			nand 0x37,		
1	1		K ₇			K ₄			K ₁	K ₀		[4 bytes		,	, ,
				•							<u> </u>	, ,,,,,	-		
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 10) Byte User	ID store	d in OTP:
1	1		A ₇	A ₆	A 5	A ₄	Аз	A2	A ₁	A ₀				ID (R38,	Byte A and
1	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		Byte J)	[10 bytes]		
1	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co					
1	1		D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	Do					
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Εo					
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀					
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go					
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H₁	Ho					
1	1		l ₇	l ₆	I 5	I ₄	l ₃	l ₂	I ₁	lo					
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	J ₀					
<u> </u>	•		٠,	J 0	•	J	J 0	U 2	<u> </u>	5 0	I	1			

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
			0	0	1	0	1	1	1	1	Status Bit Read	•
1	0	<u>2</u> F	0	0	1 A ₅	0 A ₄	0	0	1 A ₁	Ao	Status Bit Read	Read IC status Bit [POR 0x01] A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by
									A			command 0x14 and command 0x15 respectively.
	Λ.	37	0	0	4	1	0	1	1	4	Write Pegieter for Display	Write Pegieter for Dienley Ontion
0	0	31	0 A ₇	0	0	0	0	0	0		Write Register for Display Option	Write Register for Display Option A[7] Spare VCOM OTP selection
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo	Ориоп	0: Default [POR]
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		1: Spare
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do		B[7:0] Display Mode for WS[7:0]
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Εo		C[7:0] Display Mode for WS[15:8]
0	1		0	F ₆	0	0	F ₃	F ₂	F ₁	Fo		D[7:0] Display Mode for WS[23:16] E[7:0] Display Mode for WS[31:24]
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀	anutactur	F[3:0 Display Mode for WS[35:32]
0	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H₁	Ho		0: Display Mode 1
0	1		I ₇	I 6	I ₅	I ₄	I ₃	l ₂	I ₁	l o		1: Display Mode 2
0	1		J ₇	J 6	J ₅	J ₄	Jз	J ₂	J ₁	J ₀		F[6]: PingPong for Display Mode 2 0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable
												G[7:0]~J[7:0] module ID /waveform version.
												Remarks:
												1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support for Display Mode 1
0	0	38	0	0	1	1	1	0	0		Write Register for User ID	Write Register for User ID A[7:0]]~J[7:0]: UserID [10 bytes]
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		Remarks: A[7:0]~J[7:0] can be stored in
0	1		C ₇	C ₆	C₅	C ₄	C ₃	C ₂	C ₁	C ₀		OTP by command 0x36
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		
0	1		F ₇	 F ₆	F 5	F4	F ₃	F ₂	F ₁	F ₀		
0	1		G 7	G ₆	G ₅	G ₄	G ₃	G 2	G ₁	G ₀		
	- '	l	Οí	<u> </u>	L Oo	J 4	O 3	J 2	5	J	<u> </u>	

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	1		H ₇	H ₆	Н₅	H ₄	Нз	H ₂	H₁	H₀			
0	1		I ₇	l 6	I 5	I 4	lз	l 2	I 1	lo			
0	1		J_7	J_6	J 5	J_4	Jз	J_2	J ₁	J ₀			
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control		er waveform for VBD
0	1		A ₇	A 6	A_5	A_4	0	A_2	A ₁	A ₀	1		[POR], set VBD as HIZ.
													ect VBD option
												A[7:6]	Select VBD as
												00	GS Transition, Defined in A[2] and
													A[1:0]
												01	Fix Level,
													Defined in A[5:4]
												10	VCOM
												11[POR]	HiZ
												Λ [E, 4] Γ': ! ·	ovel Catting for VPD
												A[5:4] FIX L6	evel Setting for VBD VBD level
												00	VSS
												01	VSH1
												10	VSL
												11	VSH2
													-
												• •	nsition control
													S Transition control
													ollow LUT Output VCOM @ RED)
											· ·		ollow LUT
						SI	\cap r	h		\sim	anutactur		ollow EG1
							\supset				4114140	A [1:0] GS T	ransition setting for VBD
												A[1:0]	VBD Transition
												00	LUT0
												01	LUT1
												10	LUT2
J												11	LUT3
	_ T	11		4	0		^	_	^	4	Dood DAM Ontice	Dood DAM	Ontion
0	0	41	0	1	0	0	0	0	0		Read RAM Option	Read RAM (A[0]= 0 [POF	
0	1		0	0	0	0	0	0	0	A o			M corresponding to RAM0x24
													M corresponding to RAM0x26
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address		start/end positions of the
0	1		0	0	A_5	A ₄	Аз	A_2	Αı	A_0	Start / End position		ress in the X direction by an
0	1		0	0	B ₅	B ₄	Вз	B ₂	Вı	Bo	1	address unit	for RAM
												Δ[5·0]· YQΛ[5:0], XStart, POR = 00h
													5:0], XEnd, POR = 15h
						<u> </u>	<u> </u>		<u> </u>]	I	1.[2.2]. / (= / ([
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify the s	start/end positions of the
0	1		A ₇	A ₆	A 5	A ₄	Аз	A ₂	A ₁		Start / End position		ress in the Y direction by an
0	1		0	0	0	0	0	0	0	A ₈		address unit	
								_		1	-	A FO 01 3 CO 1	0.01.1/0/ / 505
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀			8:0], YStart, POR = 000h
0	1		0	0	0	0	0	0	0	B ₈		R[8:0]: YEA[8:0], YEnd, POR = 127h

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on		
0	0	46	0	1	0	0	0	1	1	0	Auto Write RAM0x26 for	Auto Write	RAM0x2	6 for Regi	ular Pattern
0	1		A ₇	A ₆	A 5	A ₄	0	A ₂	A ₁	A ₀	Regular Pattern	A[7:0] = 0	0h [POR]		
													ep Height,	POR= 00	
												to Gate A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												000	16	101	256
												010	32	110	296
												011	64	111	NA
												A[2:0]: Ste Step of all to Source A[2:0]			on according Width
												000	8	100	128
												000	16	101	176
												010	32	110	NA
												011	64	111	NA
												BUSY pac operation.		ut high du	ring
0	0	47	0	1	0	0	0	_ 1	_1	_1_	Auto Write RAM0x24 for	Auto Write	RAM0x2	4 for Regi	ular Pattern
0	1		A ₇	A ₆	A 5	A ₄	0	A ₂	A ₁	A ₀	Regular Pattern	A[7:0] = 0	0h [POR]	pty	
												A[7]: The A[6:4]: Ste Step of alt to Gate	1st step va ep Height, ter RAM in	POR= 000 Y-direction	on according
												A[6:4]	Height 8	A[6:4] 100	Height 128
												000	16	101	256
												010	32	110	296
												011	64	111	NA
												A[2:0]: Step of alto Source A[2:0] 000 001 010 011 During ophigh.	Width 8 16 32 64	A[2:0] 100 101 110 111	Width 128 176 NA NA

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initial settings for the RAM X
0	1		0	0	A 5	A ₄	Аз	A ₂	A ₁	A ₀	counter	address in the address counter (AC) A[5:0]: 00h [POR].
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initial settings for the RAM Y
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A_2	A ₁	A ₀	counter	address in the address counter (AC)
0	1		0	0	0	0	0	0	0	A 8	1	A[8:0]: 000h [POR].
												•
0	0	7F	0	1	1	1	1	1	1	1	NOP	This command is an empty command; it does not have any effect on the display module. However it can be used to terminate Frame Memory Write or Read Commands.

design • manufacture • supply

10.Data Entry Mode Setting (11h)

This command has multiple configurations and each bit setting is described as follows:

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1						AM	ID1	IDO
PO	R	0	0	0	0	0	0	1	1

ID[1:0]: The address counter is automatically incremented by 1, after data is written to the RAM when ID[1:0] = "01". The address counter is automatically decremented by 1, after data is written to the RAM when ID[1:0] = "00". The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. The direction of the address when data is written to the RAM is set by AM bits.

AM: Set the direction in which the address counter is updated automatically after data are written to the RAM. When AM = "0", the address counter is updated in the X direction. When AM = "1", the address counter is updated in the Y direction. When window addresses are selected, data are written to the RAM area specified by the window addresses in the manner specified with ID[1:0] and AM bits.

The pixel sequence is defined by the ID [0],

	ID [1:0]="00" X: decrement	D [1:0]="01" X: increment
AM="0" X-mode	Y: decrement	Y: decrement

11. Reference Circuit

CON1 24Pin

Figure. 11-1

Part Name	Value /requirement/Reference Part				
C1—C9	1uF/0603;X5R;Voltage Rating: 25V				
C10	1uF/0603;X7R;Voltage Rating: 25V				
D1—D3	MBR0530				
	1) Reverse DC voltage≥30V				
	2) Forward current≥500mA				
	3)Forward voltage≤430mV				
R2	2.2 Ω/0603: 1% variation				
Q1	NMOS:Si1304BDL/NX3008NBK				
	1) Drain-Source breakdown voltage ≥30V				
	2) $Vgs (th) = 0.9 (Typ), 1.3V (Max)$				
	3) Rds on $\leq 2.1 \Omega$ @ Vgs=2.5V				
L1	47uH/NRH3010T470MN				
	Maximum DC current~420mA				
	Maximum DC resistance~650m Ω				
CON24Pin	0.5mm ZIF Socket 24Pins,0.5mm pitch				

12. ABSOLUTE MAXIMUM RATING

Table 12-1: Maximum Ratings

	_ -					
Symbol	Parameter	Rating	Unit	Humidity	Unit	Note
V_{CI}	Logic supply voltage	-0.5 to +6.0	V	-	1	
T_{OPR}	Operation temperature range	0 to 50	°C	35 to 70	%	
Tttg	Transportation temperature range	-25 to 60	°C	-	-	Note12-2
Tstg	Storage condition	0 to 40	°C	35 to 70	%	Maximum storage time: 5 years

Note 12-1:Maximum ratings are those values beyond which damages to the device may occur.

Functional operation should be restricted to the limits in the Electrical Characteristics chapter.

Note12-2: Tttg is the transportation condition, the transport time is within 10 days for -25 °C ~0 °C or 50 °C ~60 °C

13.DC CHARACTERISTICS

The following specifications apply for: VSS=0V, VCI=3 V, T_{OPR}=25°C.

Table 13-1: DC Characteristics

Symbol	Parameter	Test Condition	Applicable pin	Min.	Тур.	Max.	Unit
VCI	VCI operation voltage		VCI	2.5	3	3.7	V
VIH	High level input voltage		SDA, SCL, CS#, D/C#, RES#,	0.8VDDIO			V
VIL	Low level input voltage		BS1			0.2VDDI O	V
VOH	High level output voltage	IOH = -100uA	BUSY	0.9VDDIO			V
VOL	Low level output voltage	IOL = 100uA				0.1VDDI O	V
Iupdate	Module operating current			-	3	-	mA
Isleep	Deep sleep mode	VCI=3.3V	nuracture	• SU	0,0	3	uA

The Typical power consumption is measured using associated 25°C waveform with following pattern transition: from horizontal scan pattern to vertical scan pattern. (Note 13-1)

- The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by Midas Displays.
- Vcom value will be OTP before in factory or present on the label sticker.

Note 13-1

The Typical power consumption

14. Serial Peripheral Interface Timing

The following specifications apply for: VSS=0V, VCI=2.5V to 3.7V, $T_{OPR}\!\!=\!\!25\,^{\circ}\!\!\text{C}$, CL=20pF

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
fSCL	SCL frequency (Write Mode)			20	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	60			ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	65			ns
tCSHIGH	Time CS# has to remain high between two transfers	100			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	25			ns
tSCLLOW	Part of the clock period where SCL has to remain low	25			ns
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tSIHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
fSCL	SCL frequency (Read Mode)			2.5	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	100			ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	50			ns
tCSHIGH	Time CS# has to remain high between two transfers	250			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	180			ns
tSCLLOW	Part of the clock period where SCL has to remain low	180			ns
tSOSU	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
tSOHLD	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

Figure 14-1: SPI timing diagram

15. Power Consumption

Parameter	Symbol	Conditions	TYP	Max	Unit	Remark
Panel power consumption during update	-	25℃	ı	20	mAs	-
Deep sleep mode	-	25℃	-	3	uA	-

16.Typical Operating Sequence

16.1 Normal Operation Flow

17.Optical characteristics

17.1 Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detection is perpendicular unless otherwise specified.

 $T=25\pm3^{\circ}C$, VCI=3.0V

SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР.	MAX	UNIT	Note
R	Reflectance	White	30	35	1	%	Note 17-1
Gn	2Grey Level	-	-	KS+(WS-KS)×n(m-1)	-	L*	-
CR	Contrast Ratio	-	-	10	-	-	-
IZ C	Black State L* value	-	-	18	-	-	Note 17-1
KS	Black State a* value	A- 0	-	0.2	-	-	Note 17-1
WS	White State L* value	-	-	67	-	-	Note 17-1
Donal	Image Update	Storage and transportation	-	Update the white screen	<u></u>	-	-
Panel	Update Time	Operat <mark>io</mark> n	-	Suggest Updated once a day	-	-	-

WS: White state, KS: Black State,

Note 17-1: Luminance meter: i - One Pro Spectrophotometer

Note 17-2: We guarantee display quality from $0^{\circ}\text{C} \sim 30^{\circ}\text{C}$ generally, If operation ambient temperature from $0^{\circ}\text{C} \sim 50^{\circ}\text{C}$, will offer special waveform by Midas Displays.

17.2 Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (R1) and the reflectance in a dark area (Rd)():

R1: white reflectance

Rd: dark reflectance

CR = R1/Rd

17.3 Reflection Ratio

The reflection ratio is expressed as:

 $R = Reflectance Factor_{white board}$ $x (L_{center} / L_{white board})$

L $_{center}$ is the luminance measured at center in a white area (R=G =B=1). L $_{white\ board}$ is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

18. HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS

WARNING

The display module should be kept flat or fixed to a rigid, curved support with limited bending along the long axis. It should not be used for continual flexing and bending. Handle with care. Should the display break do not touch any material that leaks out. In case of contact with the leaked material then wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Mounting Precautions

- (1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.
- (2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.
- (3) You should adopt radiation structure to satisfy the temperature specification.
- (4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.
- (5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)
- (6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.
- (7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

	Data sheet status
Product specification	The data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

Product Environmental certification

ROHS

REMARK

All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.

design • manufacture • supply

19. Reliability test

19.1 Reliability test items

	TEST	CONDITION	REMARK		
1	High-Temperature Operation	T=40℃, RH=35%RH, For 240Hr			
2	Low-Temperature Operation	T = 0°C for 240 hrs			
3	High-Temperature Storage	T=60℃ RH=35%RH For 240Hr	Test in white pattern		
4	Low-Temperature Storage	T = -25°C for 240 hrs	Test in white pattern		
5	High Temperature, High- Humidity Operation	T=40°C, RH=90%RH, For 168Hr			
6	High Temperature, High- Humidity Storage	T=60°C, RH=80%RH, For 240Hr	Test in white pattern		
7	Temperature Cycle	-25°C(30min)~70°C(30min), 100 Cycle	Test in white pattern		
8	Package Vibration	1.04G,Frequency : 20~200Hz Direction : X,Y,Z Duration: 30 minutes in each direction	Full packed for shipment		
9	Package Drop Impact	Drop from height of 100 cm on Concrete surface Drop sequence:1 corner, 3edges, 6face One drop for each.	Full packed for shipment		
10	UV exposure Resistance	765 W/m² for 168hrs,40°C			
11	Electrostatic discharge	Machine model: +/-250V,0 Ω ,200pF			

Actual EMC level to be measured on customer application.

Note1: Stay white pattern for storage and non-operation test.

Note2: Operation is black/white pattern, hold time is 150S.

Note3: The function, appearance, opticals should meet the requirements of the test before and after the test.

Note4: Keep testing after 2 hours placing at $20^{\circ}\text{C}-25^{\circ}\text{C}$.

19.2 Product life time

The EPD Module is designed for a 5-year life-time with 25 $^{\circ}$ C/50%RH operation assumption. Reliability estimation testing with accelerated life-time theory would be demonstrated to provide confidence of EPD lifetime.

19.3 Product warranty

Warranty conditions have to be negotiated between Midas Displays and individual customers.

Midas Displays provides 12+1(one month delivery time) months warranty for all products which are purchased from Midas Displays.

20. Block Diagram

21. PartA/PartB specification

22. Point and line standard

Shipment Inspection Standard										
Equipment: Electrical test fixture, Point gauge										
Outline dimension	29.2(H)×59.2(V)×0.9(D)	Unit: mm	Part-A	Active area	Part-B	Border area				
Engine	Temperature	Humidity	Illuminance	Distance	Time	Angle				
Environment	19℃~25℃	55% ±5% RH	800~1300Lux	300 mm	35Sec					
Defect type	Inspection method	Standard		Part-A		Part-B				
		D≤0.25 mm		Ignore		Ignore				
Spot	Electric Display	0.25 mm < D ≤ 0.4 mm		N≤4		Ignore				
		D>0.4 mm		Not Allow		Ignore				
Display unwork	Electric Display	Not Allow		Not Allow		Ignore				
Display error	Electric Display	Not Allow		Not Allow		Ignore				
	Visual/Film card	L≤2 mm,W≤0.2 mm		Ignore		Ignore				
Scratch or line defect(include dirt)		2.0mm <l≤5.0mm,0.2<w≤ 0.3mm,</l≤5.0mm,0.2<w≤ 		N≤2		Ignore				
		L>5 mm,W>0.3 mm		Not Allow		Ignore				
		D≤0.2mm		Ignore		Ignore				
PS Bubble	Visual/Film card	0.2mm≤D≤0.35mm		N≤4		Ignore				
		D>0.35 mm		Not Allow		Ignore				
Side Fragment	Visual/Film card	$X \le 6$ mm, $Y \le 0.4$ mm, Do not affect the electrode circuit (Edge chipping) $X \le 1$ mm, $Y \le 1$ mm, Do not affect the electrode circuit (Corner chipping) Ignore								
_		· · · · · · · · · · · · · · · · · · ·								
Remark	1. Appearance defect should not cause electrical defects;									
	2. Appearance defects should not cause dimensional accuracy problems									
	L=long W=wide D=point size N=Defects NO									

