COS221 L01 - Overview to Databases

(Chapter 1 - Editions 6 and 7)

Linda Marshall

22 February 2023

Databases and Database Users

Why are databases needed?

Database types

- Traditional
- Multimedia
- Geographic
- ▶ Data warehouse and Online Analytical Processing (OLAP)
- ► Real-time and Active
 - **.**..

Definitions

- 1. A database is a collection of data.
- 2. Data is recorded known facts with implicit meaning.
- 3. Database Management System (DBMS) is a collection of programs used to create and maintain a database.

Definitions - Database

- ► A database comprises of *files* which stores *data records* comprising of *data elements*.
- implicit properties of a data base:
 - representation of an aspect of the real world (mini-world)
 - logically coherent data with implicit meaning
 - designed, built and populated with related data

Definitions - Database Management Systems (DBMS)

- Defines datatypes, structures and constraints of the data in the database
- Provides a construction process to store data on storage media
 - An application program sends queries or requests to the DBMS
 - A query is used to retrieve data
 - Atransaction reads and writes data to the DBMS
- Querying and updating the database to reflect changes in the mini world
- ► Generating report results in the *manipulation* of the database
- By sharing the database, multiple users can access and manipulate the database simultaneously
- Protects against malfunction (hardware and software) and malicious access
- ▶ Maintains the system by allowing it to evolve over years

Definitions - Database Management Systems (DBMS)

Database + DBMS = Database System

Figure 1.1
A simplified database system environment.

An Example

Data Elements

An Example

- ▶ Each data element has a data type associated with it
- Relationships exist between data records

An Example - Meta-data

RELATIONS

Relation_name	No_of_columns
STUDENT	4
COURSE	4
SECTION	5
GRADE_REPORT	3
PREREQUISITE	2

COLUMNS

Column_name	Data_type	Belongs_to_relation
Name	Character (30)	STUDENT
Student_number	Character (4)	STUDENT
Class	Integer (1)	STUDENT
Major	Major_type	STUDENT
Course_name	Character (10)	COURSE
Course_number	XXXXNNNN	COURSE
Prerequisite_number	XXXXNNNN	PREREQUISITE

Note: Major_type is defined as an enumerated type with all known majors.

XXXXNNNN is used to define a type with four alpha characters followed by four digits.

Figure 1.3

An example of a database catalog for the database in Figure 1.2.

An Example - Meta-data

- Meta-data is stored in the catalog
- Using a catalog promotes program-data independence
- Program-data independence is as a result of data abstraction
- A DBMS provides users with a conceptual representation

An Example - Meta-data

Data Item Name	Starting Position in Record	Length in Characters (bytes)
Name	1	30
Student_number	31	4
Class	35	1
Major	36	4

Figure 1.4 Internal storage format for a STUDENT record, based on the database catalog in Figure 1.3.

▶ A data model is a data abstraction that is used to provide the conceptual representation and hides the internal representation.

An Example - Views

TR/		

Student_name	Student_transcript				
Student_name	Course_number	Grade	Semester	Year	Section_id
Smith	CS1310	С	Fall	08	119
	MATH2410	В	Fall	08	112
	MATH2410	Α	Fall	07	85
Brown	CS1310	Α	Fall	07	92
	CS3320	В	Spring	08	102
	CS3380	Α	Fall	08	135

(a)

COURSE_PREREQUISITES

	Course_name	Course_number	Prerequisites
	Database	CS3380	CS3320
)		C53360	MATH2410
	Data Structures	CS3320	CS1310

(b)

Figure 1.5

Two views derived from the database in Figure 1.2. (a) The TRANSCRIPT view. (b) The COURSE_PREREQUISITES view.

- Multiple views can be derived from the database.
- A view may contain data derived from the database but not explicitly stored. This is referred to as *virtual data*.

Multiuser support

- ▶ DBMS must include concurrency control, especially for OnLine Transaction Processing (OLTP) type applications, e.g. aircraft ticket reservations
- ▶ The DBMS enforces the following properties on transactions
 - isolation all transactions appear to execute in isolation
 - atomicity all transactions execute or none do

Actors on the Scene

- Database Administrator
- Database Designers
 - Requirements specification and analysis
 - ► Conceptual design (e.g. ER diagrams)
 - Logical design (e.g. Relational model)
 - Physical design (implementation of the design in a DBMS)
- End Users
 - casual
 - naive/parametric
 - sophisticated
 - standalone
- Systems Analysts and application programmers use the database

Workers behind the Scene

- ► DBMS designers and implementers
- ▶ Tool developers
- Operators and maintenance typically do not use the database

Advantages of using a DBMS

- Controlling redundancy Normalisation, denormalisation and controlled redundancy.
- Restricting unauthorised access Security and authorisation subsystem. Access to privileged software.
- Persistent storage of widgets
- Providing storage structures and search techniques for query processing - Indexing, buffering, caching ... optimisation of query processing.
- Backup and Recovery
- Multiple user interfaces
- Representation of complex relationships
- ► Enforcement of integrity constraints Referential integrity, key/uniqueness, business rules and semantics.

Advantages of using a DBMS, cont.

- Permitting inferencing and actions using rules Deductive and Active databases make use of declarative/complex rules to extract information. Triggers are used to activate rules
- Enforcing standards
- Reduction in application development time
- ► Flexibility
- Availability of up-to-date information
- Economies of scale