Université Mohamed Khider Biskra	Probabilités
Faculté des FSENV	$2^{\grave{e}me}$ Année.
Département de Mathématiques	2019/2020.

T.D.
$$N^{\circ} - 3$$

Exercice-§1

On appelle probabilité conditionnelle de A sachant B l'application

$$\mathbb{P}_{B}\left(\cdot\right) = \frac{\mathbb{P}\left(\cdot \cap B\right)}{\mathbb{P}\left(B\right)}.$$

- (1) Montrer que \mathbb{P}_B (.) est une probabilité sur (Ω, \mathcal{F}) .
- (2) Montrer que $\mathbb{P}_{B}(\varnothing) = 0$ et $\mathbb{P}_{B}(A^{c}) = 1 \mathbb{P}_{B}(A)$.
- (3) Soient A_1, A_2 deux événements de $(\Omega, \mathcal{F}, \mathbb{P})$. Montrer que

$$\mathbb{P}_{B}\left(A_{1} \cup A_{2}\right) = \mathbb{P}_{B}\left(A_{1}\right) + \mathbb{P}_{B}\left(A_{2}\right) - \mathbb{P}_{B}\left(A_{1} \cap A_{2}\right).$$

(4) Montrer que $\mathbb{P}_B(A_1 - A_2) = \mathbb{P}_B(A_1) - \mathbb{P}_B(A_1 \cap A_2)$.

Exercice-§2

On considère trois urnes \mathbf{U}_1 , \mathbf{U}_2 et \mathbf{U}_3 . la premiere \mathbf{U}_1 contient 9-boules blanches , 4-rouges et 2- noires. La deuxième contient 8-boules blanches , 5-rouges et 2- noires. La troisième contient. 6-boules blanches , 4-rouges et 5- noires. On choisit l'une de trois urnes au hasard, puis on tire 3-boules simultanement de cette urne.

Sachant que les trois boules tirées sont: "2-blanche et 1-rouges",

- (1) Calculer la probabilité qu'elles proviennent de l'urne U_2 .
- (2) Calculer la probabilité qu'elles ne proviennent pas de l'urne \mathbf{U}_1 .

Sachant que les trois boules tirées sont: "1-blanche et 1-rouges et 1-noires",

- (3) Calculer la probabilité qu'elles proviennent de l'urne \mathbf{U}_1 .
- (4) Calculer la probabilité qu'elles ne proviennent pas ni de \mathbf{U}_1 ni de \mathbf{U}_3 .

Exercice-§3_

Une urne \mathbb{U}_1 contient a_1 boules rouges et a_2 boules noires, une autre urne \mathbb{U}_2 contient b_1 boules rouges et b_2 boules noires. On tire une boule de \mathbb{U}_1 et on la met dans \mathbb{U}_2 , on désing par \mathbf{E} l'evenement "la boule tirée de \mathbb{U}_1 est rouge" et par \mathbf{F} l'evenement "la boule tirée de \mathbb{U}_2 est rouge" et par \mathbf{E} et \mathbf{F} les évenements contriares.

- (1) Calculer les probabilités $\mathbb{P}(E)$, $\mathbb{P}(\overline{E})$, $\mathbb{P}(F/E)$, $\mathbb{P}(F/\overline{E})$.
- (2) Calculer les probabilités $\mathbb{P}(F)$, $\mathbb{P}(E/F)$, $\mathbb{P}(\overline{E}/F)$.

Exercice-§4

Dans une urne \mathcal{U} contient 6-boules blaches, 4-boules rouges et 5-boules vertes. On tire trois boules par les méthodes suivantes:

Methode A: l'une aprés l'autre avec remise de la boule tirée.

Methode B: l'une aprés l'autre sans remise de la boule tirée.

Calculer la probabilité d'obtenir:

- 1) Trois boules rouges
- 2) Une premier boule blanche, une deuxième blanche et une dernière verte.
- 3) Trois boules de meme couleurs.

Exercice- $\S5$ _

Soient A, B deux événements de $(\Omega, \mathcal{F}, \mathbb{P})$. Montrer que si A et B sont indépendants, alors:

- (1) A et B^c sont aussi indépendants.
- (2) A^c et B sont aussi indépendants.
- (3) A^c et B^c sont aussi indépendants.
- (4) Donner un exemple.