Prénom : Nom de famille : Matricule :

MAT1720 – INTRODUCTION AUX PROBABILITÉS – HIVER 2020 MINI-TEST 2

Enseignant : Thomas Davignon Date : lundi 3 février 2020

Durée: 20 minutes

Consignes: Documentation/calculatrice non-permise.

Écrire proprement. Justifier ses démarches.

Répondre directement sur la feuille.

Utilisez du papier supplémentaire au besoin. Identifiez clairement

toutes les feuilles supplémentaires utilisées.

Il y a une questions au verso!!

Question 1 (1 point par bonne réponse.). Choix multiples. Encerclez la réponse. Pas besoin de justifier.

1. Soient A, B et C trois événements, tous avec probabilité strictement positive. Parmi les expressions suivantes, trouver celle qui n'est pas égale aux trois autres.

(a) $\mathbb{P}\left\{A \cap B \mid C\right\}$

(c) $\frac{\mathbb{P}\left\{A \cap B \cap C\right\}}{\mathbb{P}\left\{C\right\}}$

(b) $\mathbb{P}\left\{A \mid B \cap C\right\} \mathbb{P}\left\{B \cap C\right\}$

(d) $\mathbb{P}\left\{A \mid C\right\} \mathbb{P}\left\{B \mid C \cap A\right\}$

 $\textbf{Explication:} \ \mathbb{P}\left\{A \mid B \cap C\right\} \mathbb{P}\left\{B \cap C\right\} = \mathbb{P}\left\{A \cap B \cap C\right\} \neq \mathbb{P}\left\{A \cap B \mid C\right\} = \frac{\mathbb{P}\left\{A \cap B \cap C\right\}}{\mathbb{P}\left\{C\right\}}.$

- 2. Soient A et B deux événements avec $0 < \mathbb{P}\{A\}, \mathbb{P}\{B\} < 1$. Parmi les énoncés suivants, tous sont faux en général, sauf un. Lequel?
 - (a) Si $\mathbb{P}\{A \mid B\} = \mathbb{P}\{B \mid A\}$, alors $\mathbb{P}\{A\} = \mathbb{P}\{B\}$.
 - (b) Si A et B sont disjoints, alors A et B sont indépendants.
 - (c) Si A^c et B^c sont indépendants, alors A et B sont indépendants.
 - (d) Si un événement C est indépendant de A, et est aussi indépendant de B, alors C est indépendant de $A \cap B$.

Explication : Puisque A, B ont probabilité entre 0 et 1, par une proposition vue en classe, si A^c et B^c sont indépendants, alors A^c et $(B^c)^c = B$ sont indépendants, mais alors $(A^c)^c = A$ et B sont indépendants.

Toutes les autres affirmations sont fausses. Si A et B sont disjoints, alors $\mathbb{P}\{A\mid B\}=0\neq\mathbb{P}\{A\}$ et A et B ne sont pas indépendants. Mais $\mathbb{P}\{A\mid B\}=\mathbb{P}\{B\mid A\}=0$ quand même, et on pourrait très bien avoir $\mathbb{P}\{A\}\neq\mathbb{P}\{B\}$.

Nous avons aussi vu en classe que si $C \perp A$ et $C \perp B$, on ne peut pas automatiquement conclure que $C \perp (A \cap B)$. Le contre exemple est le suivant : pour un lancer de deux dés équilibrés à six faces, $A = \{\text{Le premier dé donne 2}\}, B = \{\text{Le second dé donne 5}\}, C = \{\text{La somme des dés donne 7}\}.$

3. Soit $(\Omega, \mathcal{E}, \mathbb{P})$ un espace de probabilités, et $X: \Omega \to \mathbb{R}$ une variable aléatoire.

Parmi les expressions suivantes, identifier celle qui n'a pas de sens.

- 2
- (a) $\mathbb{P}\left\{\omega \in \Omega : X(\omega) = 4\right\}$

(c) $\mathbb{E}[X=4]$

(b) $\mathbb{P}\{X=4\}$

(d) $\mathbb{E}\left[\mathbb{1}_{\{X=4\}}\right]$

Explication: On calcule la TOUJOURS

- la PROBABILITÉ d'un ÉVÉNEMENT;
- l'ESPÉRANCE d'une VARIABLE ALÉATOIRE.
- « X=4 » **n'est pas** une variable aléatoire. $\{X=4\}$ est un événement. La variable $\mathbb{1}_{\{X=4\}}$ est la variable indicatrice de l'événement $\{X=4\}$.
- 4. Vrai ou faux ? Soit X une variable aléatoire à valeurs entières non-négatives (0, 1, 2, 3, ...). Alors si $p_X(0) = 0$, $\mathbb{E}[X] \ge 1$.
 - (a) Vrai

(b) Faux

Explications: On a que

$$\mathbb{E}\left[X\right] = \sum_{k=0}^{\infty} k p_X(k).$$

Si $p_X(0) = 0$, alors il suffit de sommer pour $k \ge 1$, et puisque $k \ge 1$:

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} k p_X(k) \ge \sum_{k=1}^{\infty} p_X(k) = 1.$$

Question 2 (6 points). Thomas possède quatre jupes et une paire de jeans, deux cols-roulés et sept T-shirts, ainsi que quatre coton-ouatés. Pour s'habiller, il respecte les règles suivantes :

- Il choisit équiprobablement entre chacune de ses jupes ou ses jeans.
- Il porte toujours un T-shirt s'il met des jeans; sinon, il choisit équiprobablement parmi ses chandails.
- Il porte toujours un coton-ouaté s'il porte un T-shirt; sinon, il tire à pile ou face pour décider s'il portera un coton ouaté.

En vous servant des événements $J = \{\text{Thomas porte une jupe}\}, T = \{\text{Thomas porte un T-shirt}\}\$ et $C = \{\text{Thomas porte un coton ouaté}\}$, répondez aux questions suivantes :

(a) (2 points) Quelle est la probabilité qu'il porte un coton-ouaté?

Solution : Par la formule de probabilités totale :

$$\mathbb{P}\left\{C\right\} = \mathbb{P}\left\{C \mid T\right\} \mathbb{P}\left\{T\right\} + \mathbb{P}\left\{C \mid T^c\right\} \mathbb{P}\left\{T^c\right\}.$$

Selon l'énoncé, $\mathbb{P}\left\{C\mid T\right\}=1$ et $\mathbb{P}\left\{C\mid T^c\right\}=\frac{1}{2}$.

Par la formule de probabilités totale :

$$\mathbb{P}\left\{T\right\} = \mathbb{P}\left\{T \mid J\right\} \mathbb{P}\left\{J\right\} + \mathbb{P}\left\{T \mid J^c\right\} \mathbb{P}\left\{J^c\right\}.$$

Par l'énoncé, $\mathbb{P}\{T\mid J\}$, la probabilité qu'il porte un T-shirt sachant qu'il porte une jupe est de $\frac{7}{9}$. $\mathbb{P}\{T\mid J^c\}=1$. $\mathbb{P}\{J\}=\frac{4}{5}$ et $\mathbb{P}\{J^c\}=\frac{1}{5}$.

Finalement, $\mathbb{P}\left\{T^c \mid J\right\} = \frac{2}{9}$, $\mathbb{P}\left\{T^c \mid J^c\right\} = 0$ et on a donc

$$\begin{split} \mathbb{P}\left\{C\right\} &= \mathbb{P}\left\{C \mid T\right\} \mathbb{P}\left\{T\right\} + \mathbb{P}\left\{C \mid T^c\right\} \mathbb{P}\left\{T^c\right\} \\ &= \mathbb{P}\left\{C \mid T\right\} \left(\mathbb{P}\left\{T \mid J\right\} \mathbb{P}\left\{J\right\} + \mathbb{P}\left\{T \mid J^c\right\} \mathbb{P}\left\{J^c\right\}\right) \\ &+ \mathbb{P}\left\{C \mid T^c\right\} \left(\mathbb{P}\left\{T \mid J\right\} \mathbb{P}\left\{J\right\} + \mathbb{P}\left\{T \mid J^c\right\} \mathbb{P}\left\{J^c\right\}\right) \\ &= 1 \cdot \left(\frac{7}{9} \cdot \frac{4}{5} + 1 \cdot \frac{1}{5}\right) + \frac{1}{2} \cdot \left(\frac{2}{9} \cdot \frac{4}{5} + 0 \cdot \frac{1}{5}\right) \\ &= \frac{41}{45} \end{split}$$

Alternativement, (et c'était beaucoup plus rapide), on pouvait calculer la probabilité qu'il ne porte pas de coton-ouaté :

$$\mathbb{P}\left\{C^{c}\right\} = \mathbb{P}\left\{J\right\} \mathbb{P}\left\{T^{c} \mid J\right\} \mathbb{P}\left\{C^{c} \mid T^{c}\right\} = \frac{4}{5} \cdot \frac{2}{9} \cdot \frac{1}{2} = \frac{4}{45},$$

ce qui donne finalement bien le résultat attendu :

$$\mathbb{P}\{C\} = 1 - \mathbb{P}\{C^c\} = \frac{41}{45}$$

(b) (2 points) Quelle est la probabilité qu'il porte une jupe sachant qu'il porte un coton-ouaté?

Solution: On utilise la formule de Bayes:

$$\mathbb{P}\left\{J\mid C\right\} = \frac{\mathbb{P}\left\{C\mid J\right\}\mathbb{P}\left\{J\right\}}{\mathbb{P}\left\{C\right\}}.$$

Il faut trouver $\mathbb{P}\{C \mid J\}$, la probabilité qu'il porte un coton-ouaté sachant qu'il porte une jupe. Par la formule de probabilité totale pour les probabilités conditionnelles, c'est :

$$\mathbb{P}\left\{C\mid J\right\} = \mathbb{P}\left\{C\mid J\cap T\right\}\mathbb{P}\left\{T\mid J\right\} + \mathbb{P}\left\{C\mid J\cap T^c\right\}\mathbb{P}\left\{T^c\mid J\right\}.$$

On a que $\mathbb{P}\left\{C\mid J\cap T\right\} = \mathbb{P}\left\{C\mid T\right\} = 1$. De plus on a que $\mathbb{P}\left\{C\mid J\cap T^c\right\} = \mathbb{P}\left\{C\mid T^c\right\} = \frac{1}{2}$. Donc,

$$\mathbb{P}\left\{C \mid J\right\} = 1 \cdot \frac{7}{9} + \frac{1}{2} \cdot \frac{2}{9} = \frac{8}{9}.$$

Finalement,

$$\mathbb{P}\{J \mid C\} = \frac{\mathbb{P}\{C \mid J\} \mathbb{P}\{J\}}{\mathbb{P}\{C\}} = \frac{\frac{8}{9} \cdot \frac{4}{5}}{\frac{41}{45}} = \frac{32}{41}.$$

(c) $(1 \ point)$ Si X est le nombre de vêtements dans l'ensemble porté par Thomas une journée donnée, quel est le support de X?

Solution : Soit Thomas porte 2 vêtements (si il n'a pas de coton-ouaté) ou 3 (si il a un coton-ouaté). Donc, le support de X est l'ensemble $\{2,3\}$.

(d) (1 point) Quelle est $\mathbb{E}[X]$?

Solution : On a que $\mathbb{P}\{X=2\}$ est la probabilité que Thomas ne porte pas de coton ouaté. Donc $\mathbb{P}\{X=2\}=\mathbb{P}\{C^c\}=\frac{4}{45}$. De l'autre côté, $\mathbb{P}\{X=3\}=\mathbb{P}\{C\}=\frac{41}{45}$.

Finalement,

$$\mathbb{E}[X] = 2 \cdot \mathbb{P}\{X = 2\} + 3 \cdot \mathbb{P}\{X = 3\} = \frac{131}{45} \approx 2,9111...$$