J.29 MRC-66....

Communication Central

COMMUNICATION CENTRAL AN/MRC-66() (CENTRAL EQUIPMENT)

BOOK 2 OF 2

SEPTEMBER 1, 1957

CONTRACT NO. DA 36-039 SC-72346

JARTUEO MOITADINAMOO ANNAMO (1880-066) (CENERAL EQUIENENT)

NEST FREER LISSY

S 35 S NOOE

CONTRACT NO. DA 36-039 SC-72346

2000 VOLTS

WARNING

HIGH VOLTAGE
IS USED IN THE OPERATION
OF THIS EQUIPMENT

DEATH ON CONTACT
MAY RESULT IF OPERATING PERSONNEL
FAIL TO OBSERVE SAFETY PRECAUTIONS

2000 VOLTS

SOOD VOLTS

HIGH VOLTAGE IS USED IN THE OPERATION OF THIS EQUIPMENT

DEATH ON CONTACT
MAY RESULT IF OPERATING PERSONNEL
FAIL TO OBSERVE SARETY PRECAUTIONS

2000 VOLTS

TABLE OF CONTENTS

			Page
CHAPTER	1.	INTRODUCTION	1
Section	I.	GENERAL	1
	1.	Scope	1
Section	II.	DESCRIPTION AND DATA	1
	2.	Purpose of Equipment	1
	3.	System Application	1
	4.	Technical Characteristics	2
	5.	List of Components	2
	6.	Additional Equipment Required	3
	7.	General System Description	3
	8.	V.H.F. Receiver Cabinet	3
	9.	Low Frequency Receiver Cabinet	3
	10.	Transmitter Cabinet	3
	11.	Single Sideband Generator Cabinet	6
	12.	Hybrid Cabinet	6
	13.	Signalling Cabinet	6
	14.	Manual Telephone Switchboard (SB-86/P, Modified)	6
	15.	Modified)	6
	16.	Low Voltage Power Supply, Transmitter	7
	17.	High Voltage Power Supply, Transmitter	7
	18.	Control Panel, Main Power	7
	19.	Antennas, Receiving and Transmitting	7
	20.	Miscellaneous Equipment	7
	21.	Running Spares	7
CHAPTER	2.	OPERATING INSTRUCTIONS	8
Section	Ι.	MODES OF OPERATION	8
	22.	Monitoring	8
	23.	Calling.	8
	24.	Answering a Call	8
	25.	Busy Signalling	8
	26.	Duplex Operation	8
	27.	Conference Calls	8
	28.	Subscriber Netting	9
Section	II.	CONTROLS AND INSTRUMENTS	9
	29.	General	9
	30.	Manual Telephone Switchboard (SB-86/P	9
	31.	Signalling Unit	9
	7.0		
Section	III.	OPERATION	9
	32.	Operational Procedure	9

STREET, OF STREET

	10 .1"	
or Presidents Received Capturet		
	E SI	
(4/88-58) brandbyive brodgetel (85-86/P)		
		3

TABLE OF CONTENTS (cont)

			Page
CHAPTER	3.	THEORY OF OPERATION	12
Section	I.	INTRODUCTION	12
	33.	Scope	12
	34.	Basic System Block Diagram	12
	35.	System Diagrams	12
Section	II.	POWER DISTRIBUTION AND CONTROL CIRCUITS	16
	36.	General Description	16
CHAPTER	4.	MAINTENANCE	17
Section	I.	TROUBLE SHOOTING	17
	37.	General	17
Section	II.	ALIGNMENT PROCEDURES	17
	38.	General	17
	39.	Special Equipment	17
	40.	Hybrid Balance	20
	41.	Receiver AGC Adjustment	21
	42.	Hybrid Drop Adjustment	21
	43.	Sideband Generator Balance	22
	44.	Average SSB Output to Peak SSB Output	
		Ratio	22
	45.	Base Station Signalling Alignment	22
Section	III.	SPARE PARTS LIST.	64

TABLE OF CONTENTS (cont)

	HOTTASEGO TO VECEN	
	MINODUCTION.	
01	OWSE DISTRIBUTION AND CONTROL CIRCUITS	
	NORTH SHOOTING	
	LICAMENT MEGGENURES. Decial Equipment phrid Balanie. phrid Drop Adjustment ideband Generator Belance. rerage SEU Output to Peak SEB Output actor. Actor. Starton Signalling Allgoment	

LIST OF ILLUSTRATIONS

Figure		Page
1.1	Central Equipment, (Communication Central AN/MRC-66C)	vii
1.2	System Application, (AN/MRC-66C)	viii
1.3	Communication Central Frequency	4
1.4	Subscriber Assignment and Vibrasponder	
	Assignment (Chart)	5
2.1	Calling Operation	11
3.1	Radio Central System (Block Diagram)	13
3.2	Receiving System (Block Diagram)	15
4.1	Inter Cabinet Cabling Diagram (Power)	18
4.2A	Inter Cabinet Cabling Diagram (Signal)	23
4.2B	Base Station Signalling Alignment	24
4.3A	VHF Receiver Cabinet (Top View)	25
4.3B	VHF Receiver Cabinet (Bottom View)	26
4.3C 4.4	VHF Receiver Cabinet (Schematic Diagram)	27 28
4.5A	VHF Receiver (Schematic Diagram)	29
4.5B	Low Frequency Receiver Cabinet (Top View)	30
4.5C	Low Frequency Receiver Cabinet (Schematic	30
1.00	Diagram)	31
4.6	Reference IF(Schematic Diagram)	32
4.7	Exalted Carrier Detector (Schematic Diagram)	33
4.8A	Transmitter Cabinet (Top View)	34
4.8B	Transmitter Cabinet (Bottom View)	35
4.8C	Transmitter Cabinet (Schematic Diagram)	36
4.9	Low Power RF Driver (Schematic)	37
4.10	Power Amplifier (Schematic)	38
4.11A	SSB Generator Cabinet (Top View)	39
4.11B	SSB Generator Cabinet (Bottom View)	40
4.11C	SSB Generator Cabinet (Schematic)	41
4.12	SSB Generator (Schematic)	42
4.13A	Hybrid Cabinet (Top View)	43
4.13B 4.13C	Hybrid Cabinet (Sobanatia)	44
4.14	Hybrid Cabinet (Schematic)	46
4.15A	Signalling Cabinet (Front View)	47
4.15B	Signalling Cabinet (Rear View)	47
4.15C	Signalling Cabinet (Schematic)	48
4.16A	Tone Oscillator Unit (Top View)	49
4.16B	Tone Oscillator Unit (Bottom View)	49
4.16C	Tone Oscillator Unit (Schematic)	50
4.17A	Busy Tone Commutator (Top View)	51
4.17B	Busy Tone Commutator (Bottom View)	51
4.17C	Busy Tone Commutator (Schematic)	52

LIST OF ILLUSTRATIONS (cont)

Figure	Title	Page
4.18A	Power Supply, Timer and Call Tone Switching	~ 0
	Unit (Top View)	53
4.18B	Power Supply, Timer and Call Tone Switching	
	Unit (Bottom View)	53
4.18C	Power Supply, Timer and Call Tone Switching	
	Unit (Schematic)	54
4.19A	Receiver Power Supply Cabinet (Front View)	55
4.19B	Receiver Power Supply Cabinet (Top View)	56
4.19C	Receiver Power Supply Cabinet (Bottom View)	56
4.19D	Receiver Power Supply Cabinet (Schematic)	57
4.20A	Transmitter LV Power Supply Cabinet (Front View) .	58
4.20B	Transmitter LV Power Supply Cabinet (Top View)	59
4.20C	Transmitter LV Power Supply Cabinet (Bottom View).	59
4.20D	Transmitter LV Power Supply Cabinet (Schematic)	60
4.21A	Transmitter HV Power Supply Cabinet (Front View) .	61
4.21B	Transmitter HV Power Supply Cabinet (Top View)	62
4.21C	Transmitter HV Power Supply Cabinet (Bottom View).	62
4.21D	Transmitter HV Power Supply Cabinet (Schematic)	63

FIGURE 1.1 CENTRAL EQUIPMENT

FIGURE 1.2 SYSTEM APPLICATION, AN/MRC-66 ().

CHAPTER 1

INTRODUCTION

Section I. GENERAL

1. Scope

- a. This technical manual contains instructions for the operation and maintenance of the Central Equipment, Communication Central AN/MRC-66 (). (Figure 1.1). The information is intended for operators, and maintenance personnel of engineering level.
- b. The Central station is designed to operate with sixteen Subscriber stations. The Subscriber equipments are described in Book One.

Section II. DESCRIPTION AND DATA

2. Purpose of Equipment

- a. The purpose of the COMMUNICATION CENTRAL AN/MRC-66 () is to provide a switched telephone service via Radio circuits. The objective is to furnish essentially the same type of telephone service that is normally provided with wire lines but to provide it to subscribers that are mobile and cannot be served with wire lines. See figure 1.2
- b. The CENTRAL equipment described in this manual will be installed in a three-quarter ton truck equipped with a trailer and gasoline driven motor generator.
- c. Eight, full duplex channels are provided for subscriber use. These channels are on a party-line basis.
- d. A Conference channel is provided for the subscribers.

 The Central station operates as an automatic relay station for this channel.

3. System Application

a. A system consists of sixteen Subscriber stations and one Central station A representative display of a portion of this network is shown in Figure 1.2.1

and the second of the second o

- b. A MAIN and an ALTERNATE channel is provided to each Subscriber station. Subscribers operate through the Central station switchboard to communicate with other Subscribers.
- c. Full duplex operation is provided, also call and busy signalling.
- d Use of the Conference channel is arranged through the Central operator. The Central operator is not included in the conference and retransmission through the central station is automatic.
- e. The NET channel provided to the Subscriber stations is not included in the Central station.

4. Technical Characteristics

Type of transmission and reception
Frequency range
Operational facilities

Type of tuning Communication range

Total power drain

Voice, calling and busy signalling
Semi-fixed V.H.F.
Full duplex, monitoring, call and busy signalling, party line channel, and a conference channel.
Pre-set.
10 miles over average terrain.
20 amperes at 120 volts 60 cycle AC.

5. List of Components.

- 1. Mounting Rack
- 1. Transmitter Cabinet
- 1. SSB Generator Cabinet
- 1. Hybrid Cabinet
- 1. VHF Receiver Cabinet
- 2. LF Receiver Cabinets
- 1. LV Power Supply Cabinet (Transmitter)
- 1. Control Panel, Main Power
- 1. Power Supply (Receiver)
- 1. Power Supply, High Voltage
- 1. Signalling Cabinet
- 1. Switchboard, SB-86P GFP
- 1. Switchboard Mounting Rack GFP
- 1. Headset/Handset GFP
- 1. Switchboard Power Supply GFP
- 1. Gasoline Generator GFP
- 1. Antenna Mast GFP

- 1. Microphone (M29) GFP
- 1. Headset GFP
- 1. Speaker GFP
- 1. Antenna Assembly
 Cable Assemblies
 Miscellaneous Equipment
 Running Spares
- 6. Additional Equipment Required
 - a. One, three quarter ton truck with trailer.
- 7. General System Description
 - a. A complete Communication Central AN/MRC-66 () system consists of: one Central station and sixteen Subscriber stations
 - b. The voice frequency channels, busy, and ringing tones have been pre-set in the stations. For details of frequency allocation see Figure 1.3.1 For Subscriber channels and vibrasponder assignments see Figure 1.4.1

8. VHF Receiver Cabinet

- a. The VHF receivers in the two Central units are very similar in structure, function, and detailed circuit and mechanical arrangement. They differ from each other only in their operating frequencies and in those components which determine the frequencies.
- b. Receiver characteristics pertinent to system operation are displayed in Figure 1.3.
- c. Schematic diagram of the receivers is displayed in the Maintenance Section of this manual. (Figure 4.3c)
- 9 Low Frequency Receiver Cabinets
 - a. Two Low Frequency Receiver Cabinets are provided with each Central Station.
 - b. Each receiver passes the AGC, audio, and squelch control for four subscriber channels.
 - c. Schematic diagram is in the Maintenance Section of this manual. (Figure 4.5c)
- 10. Transmitter Cabinet
 - a. The transmitters in the two Central Stations are

SUBSCRIBER NUMBER	CHANNEL 1	CHANNEL 2	CONFERENCE LINE XTAL	BUSY TONE VIERAS	SPONDER-DECODER Z4 Z5		HRASPONDER-DECODER
1		В 362Кс				Z2	Z1
1 2	A 368Kc	B 362kc			$ \begin{array}{cccc} 7.2 & 473.2 \\ \hline 7.2 & 473.2 \end{array} $	100	110.9
3	B 362kc	C 356kc			7.2 473.2 1.0 473.2	100	123.0
4	B 362kc	C 356kc					136.5
5		D 350kc			1.0 473.2	100	151.4
					4.3 473.2	100	167.9
6	C 356kc	D 350kc			4.3 473.2	100	186.2
7	D 350kc	E 344kc			6.1 473.2	110.	
8	D 350kc	E 344kc			6.1 473.2	110.	
9	E 344kc	F 338kc				110.	
11	F 338kc					110.	
					2.1 473.2	110.	
12	F 338kc	G 332kc			2.1 473.2	110.	
13	G 332kc	H 326kc			4.8 473.2	123.	
14	G 332kc	H 326kc			4.8 473.2	123.	
15	H 326kc	A 368kc				123.	
16	H 326kc	A 368kc	N 374kc	524.8 1084	4.0 473.2	123.	0 151.4
17	A 368kc	B 362kc	N 374kc	1084.0 97	7.2 473.2	123.	0 167.9
18	A 368kc	B 362kc	N 374kc	1084.0 97	7.2 473.2	123.	0 186.2
19	B 362kc	C 356kc	N 374kc	977.2 88	1.0 473.2	136.	5 100.0
20	B 362kc	C 356kc	N 374kc	977.2 88	1.0 473.2	136.	5 110.9
21	C 356kc	D 350kc	N 374kc	881.0 794	4.3 473.2	136.	5 123.0
22	C 356kc	D 350kc	N 374kc	881.0 794	4.3 473.2	136.	5 151.4
23	D 350kc	E 344kc	N 374kc	794.3 710	6.1 473.2	136.	5 167.9
24	D 350kc	E 344kc	N 374kc		6.1 473.2	136.	5 186.2
25	E 344kc	F 338kc	N 374kc	716.1 648	5.7 473.2	151.	4 100.0
26	E 344kc	F 338kc	N 374kc	716.1 64	5.7 473.2	151.	4 110.9
27	F 338kc	G 332kc			2.1 473.2	151.	
28	F 338kc	G 332kc			2.1 473.2	151.	
29	G 332kc	H 326kc			4.8 473.2	151.	
30	G 332kc	Н 326кс			4.8 473.2	151.	
31	H 326kc	A 368kc	1			167.	
32	Н 326кс	A 368kc				167.	

SUBSCRIBER CHANNEL AND VIBRASPONDER ASSIGNMENTS
FIGURE 1.4

identical in structure, function, and detailed circuit and mechanical arrangement. They differ from each other only in their operating frequencies and the components that determine these frequencies.

b. Schematic diagram of the transmitter is displayed in the Maintenance Section of this manual. (Figure 4.8c)

11. Single Sideband Generator Cabinet

- a. The SSB Generator Cabinet contains nine single sideband generators for the channels A through H and channel N.
- b. Schematic Diagram of the SSB Generator Cabinet is displayed in the Maintenance Section of this manual. (Figure 4.11c)

12. Hybrid Cabinet

- a. The Hybrid Cabinet contains nine hybrid units for the channels A through H and channel N.
- b. Schematic Diagram of the Hybrid Cabinet is displayed in the Maintenance Section of this manual. (Figure 4.13c)

13. Signalling Cabinet

- a. The Signalling Cabinet contains the tone oscillators, busy-tone commutator, and the power supply, timer and call tone switching unit.
- b. The Schematic Diagram of this cabinet is displayed in the Maintenance Section of this manual. (Figure 4.15c).

14. Manual Telephone Switchboard (SB-86/P)

a. Operation and Technical Data for this unit will be found in military manual: Instruction Book for Manual Telephone Switchboard SB-86P. Order number 1669-P-51 dated 24 September 1954.

15 Power Supply, Receiver

- a. The Receiver Power Supply provides the heater voltages and plate voltages for the VHF receiver and the two LF receivers.
- b. Circuit details are displayed in the Maintenance Section of this manual. (Figure 4.19D)

- 16. Low Voltage Power Supply, Transmitter
 - a. This power supply provides filament voltage and plate voltage to the transmitter. High voltage to the final amplifier is provided by another power supply.
 - b. Details of circuitry and layout are displayed in the Maintenance Section of this manual. (Figure 4.20A, B, C and D)
- 17. High Voltage Power Supply, Transmitter
 - a. This power supply provides a regulated 300 V DC and an unregulated 2000 V DC to the transmitter.
- 18. Control Panel, Main Power
 - a. This panel controls the main power source with associated meters and time clock.
- 19. Antennas, Receiving and Transmitting
 - a. The receiving and transmitting antennas are mounted on a crossbar This bar is elevated and lowered by a "crank-up" antenna mast.
- 20. Miscellaneous Equipments
 - a. Miscellaneous equipments consist of: cables, wire, hardware etc.
- 21. Running Spares
 - a. A list of the Running Spares provided will be found in the back of this manual

CHAPTER 2

OPERATING INSTRUCTIONS

Section I. MODES OF OPERATION

22. Monitoring

a. The Central operator can monitor any occupied channel by pressing the associated switch to the forward position. Both sides of the conversation will be monitored by the Central operator.

23. Calling

a. To call a Subscriber, the Central operator selects the proper drop jack and inserts an operator's plug in this jack. He then presses the associated switch lever forward. This series of operations connects the Central operator to the Subscriber channel. The Central operator presses the appropriate button on the Signalling Unit to call the Subscriber.

24. Answering a Call

a. An incoming call is indicated by a drop on the switch-board. The Central operator plugs an operator's cord into the jack and presses the associated operator's key forward. Full duplex conversation can then be carried on.

25. Busy Signalling

- a. Busy signalling is not required from the Central station.
- b. Busy signalling from the Subscriber is in the form of a 2000 cycle tone.

26 Duplex Operation

- a. Full duplex operation is provided on the main and auxiliary channels.
- b. Duplex operation is not provided on the Conference and Netting channels.

27. Conference Calls

a. Conference calls are arranged by the Central operator and Subscribers are directed to the Conference channel.

28. Subscriber Netting

- a. Subscriber netting is a provision in the Subscriber stations only.
- b. Netting is used when the Central station is inoperative or under other emergency conditions.

Section II. CONTROLS AND INSTRUMENTS

29. General

- a. All of the normal operational controls are located on the Switchboard and Signalling Unit.
- b. The controls associated with frequency etc., are located in the cabinets. These controls are pre-set and require no manipulation by the operator.

30. Manual Telephone Switchboard SB-86 P

a. Operating instructions for this switchboard are contained in the military manual titled: INSTRUCTION BOOK for MANUAL TELEPHONE SWITCHBOARD SB-86 P.

31. Signalling Unit

- a. The operating controls on the signalling unit consist of an ON/OFF switch and thirty-two push-buttons.
- b. The power switch will remain in the ON position except for the removal or repair of this unit.
- c. Operation of the CALL buttons will be described in Section III.

Section III. OPERATION

32. Operational Procedure

- a. Operation of the Central Units involves the following procedures:
 - (1) Main Power Switch in OFF position.
 - (2) Start generator and set voltage level at 117V.
 - (3) Raise antenna to desired elevation.
 - (4) Assure that all CABINET power switches are in ON position.
 - (5) Place MAIN power switch in ON position. (After one minute, time delay relay will energize).

(6) Operate as directed under sub-heading 23.
Paths of operation are displayed in Figure 2.1.

CHANNEL A SUBSCRIBER #I

MOBILE RADIO CENTRAL

SUBSCRIBER #5

FIGURE 2.1

CALLING OPERATION

CHAPTER 3

THEORY OF OPERATION

Section I. INTRODUCTION

33. Scope

- a. System theory is presented to provide an understanding of how the several units are inter-related in the various operations of the radio sets. Such an understanding is an effective aid in trouble shooting the equipment to isolate a defective unit.
- b. Detailed circuit theory of individual units is not discussed, except insofar as the units are interconnected in a common circuit. Most of the information presented in this chapter is concerned with system application of the several units. Schematic and layout details on the individual units are published in the MAINTENANCE section.

34 Basic System Block Diagram

- a. Basically each of the central sets consists of: a VHF receiver cabinet, two LF receiver cabinets, a transmitter cabinet, a single sideband generator cabinet, a hybrid cabinet, a signalling cabinet, and a manual telephone switchboard. These basic units are the essentials of the system. The power supplies, cables, mountings and miscellaneous equipment are supplied to make the basic units perform their function of transmitting and receiving.
- b. A typical basic system block diagram of the Radio Central System is displayed in Figure 3.1.

35. System Diagrams

- a. Figure 3.2 is the block diagram for the Central set.
- b. Figures 4.1 and 4.2 are the cabling diagrams. Power and Signal respectively.
- c. Figures 4.3A, 4.3B and 4.3C display the VHF receiver cabinet.
- d. Figure 4.4 displays the VHF Receiver Schematic Diagram.
- e. Figures 4.5A, B and C display the Low Frequency Receiver Cabinet. Figure (A) is top view, (B) is

- bottom view, and (C) is schematic diagram of intraunit wiring.
- f. Figures 4.6 displays the Low Frequency Receiver Schematic Diagram.
- g. Figure 4.7 displays the Exalted Carrier Detector Schematic Diagram.
- h. Figures 4.8A, B, and C display the Transmitter Cabinet. Figures A and B are top and bottom views respectively. Figure C is the Schematic Diagram of intra-unit wiring.
- i. Figure 4.9 displays the Low Power RF Driver Schematic Diagram.
- j. Figure 4.10 displays the Power Amplifier Schematic Diagram.
- k Figures 4.11A, B, and C display the Single Sideband Generator Cabinet. Figure A is top view, B is bottom view and C is the Schematic Diagram of intraunit wiring.
- 1. Figure 4.12 displays the Single Sideband Generator Schematic Diagram.
- m. Figures 4.13A, B, and C display the Hybrid Cabinet. Figures A and B are the top and bottom views respectively. Figure C is the Schematic Diagram of intra-unit wiring.
- n. Figure 4.14 displays the Hybrid Unit Schematic Diagram.
- o Figures 4.15A, B, and C display the Signalling Cabinet. Figure A is the front view, Figure B is the rear view and Figure C is the Schematic Diagram of intra-unit wiring.
- p Figures 4.16A, B, and C display the Tone Oscillator Unit. Figures A and B are the top and bottom views respectively. Figure C is the Schematic Diagram.
- q. Figures 4.17A, B, and C display the Busy Tone Commutator Unit. Figures A and B are the top and bottom views respectively. Figure C is the Schematic Diagram.
- r. Figures 4.18A, B, and C display the Power Supply,
 Timer and Call Tone Switching Unit. Figures A and B

- are the top and bottom views respectively. Figure C is the Schematic Diagram.
- s. Figures 4.19A, B, C, and D display the Receiver Power Supply Cabinet. Figures A, B, and C are the front view, top view and bottom view respectively. Figure D is the Schematic Diagram.
- t. Figures 4.20A, B, C, and D display the Transmitter
 Low Voltage Power Supply. Figures A, B, and C are the
 front view, top view and bottom view respectively.
 Figure D is the Schematic Diagram.
- u. Figures 4.21A, B, C, and D display the Transmitter High Voltage Power Supply. Figures A, B, and C are the front view, top view and bottom view respectively. Figure D is the Schematic Diagram.

Section II. POWER DISTRIBUTION AND CONTROL CIRCUITS

36. General Description

- a. The source of power for this equipment is a generator, driven by a gasoline engine and mounted in a trailer.
- b. Power from this generator is delivered to the Control Panel, Main Power for further distribution.
- c. Details of power distribution is displayed in Figure 4.1.
- d. Details of signal distribution is displayed in Figure 4.2.

CHAPTER 4

MAINTENANCE

Section I TROUBLE SHOOTING

37. General

- a. Trouble-shooting of this equipment is expected to be handled by engineers or highly competent technicians.
- b. These units are factory adjusted with special laboratory equipment. (See Section II). Readjustment in the field should not be attempted without this special equipment.
- c. Primary trouble-shooting information is graphically displayed in photographs, charts and schematic diagrams. See Chapter 3, Section I, paragraph 35 for listings.
- d. The basic schematic is shown in Figure 4.1 and proceeds through the drawings indicated in this figure.

Section II. ALIGNMENT PROCEDURES

38. General

While most of the alignment and adjustments of the COMMUNICATION CENTRAL equipment is largely conventional, some special equipment and procedures are required. The special equipment and procedures are described in paragraph 39 through paragraph 45 of this section

39. Special Equipment

A Special Single Sideband Signal Generator has been designed and fabricated by Motorola. It is used to supply functions as outlined below.

(1) Subscriber testing

- a. Reference carrier output. (156.260 mc or 156.326 mc)
- b. O frequency channel marker for any two channels
- c. 1000 cycle channel tone for any two channels
- d. Provisions for injection of an external generator to provide additional tones as desired. The external generator can also be used to replace the carrier. Amplitude modulation can be used to simulate signalling.

e. Level set adjustments are provided to that the relative level of carriers and tones can be varied, if desired.

(2) CENTRAL STATION testing

- a Carriers for any two channels.
- b. Tones for any two channels.
- c. Provisions for external generator to substitute for carriers or tones.
- d Independently adjustable amplitude of carrier and tones.

(3) Zero Beat Indicator

- (a) Can be used with internal 480 kc oscillator to set APC to center frequency when correction is locked out.
- (b) Can be used with any other oscillator in the 400 kc range by disconnecting the 480 kc oscillator and substituting the desired unit

(4) General

- (a) R.F leakage out of the generator is negligible as determined by measurements with an R220/URR receiver and also by comparison with the HP 608 generator.
- (b) The output attenuator calibration has been set up by comparison with a commercial signal generator which was calibrated at a lower frequency. The attenuator output was then compared with other generators in the lab as a second check of the calibration.
- (c) When generating two signals with the generator, sum and difference spurious signals are produced that are down 30 db from the desired signal.
- (d) The 149 mc oscillators output is down about 48 db on subscriber test position and about 60 db on base test position.

40. Hybrid Balance

- a. Connect audio oscillator to channel A audio input terminal on front panel of Hybrid.
- b. Connect channel A on Switchboard to any other channel.

- c. Manually drop channel A drop.
- d. Set audio oscillator frequency to 1800 cycles.
- e. Set oscillator output to .5V, with 400-D.
- f. Connect 400-D to audio output terminals on front panel of Hybrid.
- g. Adjust channel A "null adjust" R2 on channel A hybrid for minimum voltages on 400-D.
- h. Repeat steps A through G for channels B through H.
- i. Adjust channel N to maximum counterclockwise position.
- j. Adjust drops as indicated in Hybrid drop adjustment.

41. Receiver AGC Adjust

- a. Connect Motorola SSB Signal Generator to VHF receiver antenna input.
- b. Calibrate Signal Generator on channel N.
- c. Set Signal Generator output to .25 uv with attenuator dial.
- d. Adjust AGC voltage to 1 V with AGC adjust pot on channel N LF receiver IF amplifier R2.
- e. Repeat steps B through D for channel A through H.

42. Hybrid Drop Adjustment

- a. Connect Motorola SSB Signal Generator to UHF receiver antenna input.
- b. Calibrate signal on channel N.
- c. Set Signal Generator to .25 uv with attenuator dial.
- d. Adjust R 11 on channel N Hybrid until white flag just shows on switchboard.
- e. Decrease Signal Generator output to 1 uv and observe if white flag changes to black.
- f. Adjust R 13 and then R 11 until white flag on switchboard operates on below .25 uv and off above .1 uv and yet will not oscillate.

g. Repeat steps B through F for channels A through H.

43. Sideband Generator Balance

- a. Remove all coaxes from SSB Generators.
- b. Connect 400-D (terminals shunted with 10 MH) through coax to channel N SSB Generator.
- c. Adjust R 19 to maximum clockwise position.
- d. Adjust R13 and C 10 for minimum voltage on 400-D.
- e. Adjust R 19 to maximum counterclockwise position.
- f. Repeat step B through E on SSB Generator channels A through H.

44. Average SSB Output to Peak SSB Output Ratio

- a. Connect Audio oscillator to a pair of lines on the switchboard.
- b. Connect 400-D to audio oscillator.
- c. Connect oscilloscope to T.P. on SSB Generator channel N.
- d. Connect audio oscillator at switchboard to channel N at switchboard.
- e. Increase audio output (to approximately 1.25 V) until audio wave form on oscilloscope begins to clip on both sides.
- f. Adjust R 19 on SSB Generator for 150 W on wattmeter connected to power amplifier output.
- g. Decrease audio oscillator output to .25 V.
- h. Adjust audio output control R 7 on Hybrid to 15 watts on wattmeter.
- i. Repeat A through H until no more adjustment can be made.
- j Repeat steps A through I for channels A through H.

45. Base Station Signalling Alignment

All controls in the signalling cabinet are present and checked at the time of manufacture. These controls should not be tampered with unless conditions clearly

indicate a malfunction of the signalling system.

a. Modulation Adjustment: Disconnect the channel drop plug from the busy tone commutator chassis and pull out all channel plugs from the switchboard. No signals should be present at the output of the signalling cabinet.

Insert an 800 cycle tone on T.P. 1 of power supply chassis (lower deck of signalling cabinet); measure the output signal with an oscilloscope and VTVM. Adjust the level to just below the clipping level. Mark this voltage to a convenient scale on the oscilloscope. Using another oscilloscope to monitor the modulation patterns of the 300 - 500 KC amplifier in the transmitter, adjust the modulation level to 30% by the crest and trough method. See the block diagram of Figure 4.2B.

b. Adjustment of Tones: Remove the 800 cycle oscillation from TP 1.

Connect the channel drop simulation chassis to the channel drop jack on the busy tone commutator chassis. Switch channel A on and adjust Z9 for the equivalent just below the clipping level as marked on the oscilloscope. Adjust channels B to N in a similar manner. Check only one tone at a time. All tones coming out should be at the same level and should modulate the transmitter 30% each time.

The call tones may be adjusted in a similar manner except the output of each stage should be jumpered from TP 1 on the power supply chassis to each test point on the tone oscillator chassis. For example to adjust the 100 cycle - jumper TP 16 to TP 1. Adjust Z16 for the equivalent just below the clipping level as previously. Adjust each tone in a similar manner.

c. Call Tone Pulse Length: Adjust oscilloscope for one second sweep time across scope face.

Trigger scope by running a jumper from trigger input to TP e on power supply chassis. Press pushbutton 1 and observe duration of each of the two pulses. Pulse one should be 0.7 seconds long. Pulse two should be 0.3 seconds long. Make these adjustments by varying R 11 and R 15.

2T OF

BLOCK DIAGRAM SHOWING METHOD OF SIGNALING SYSTEM ALIGNMENT

FIGURE 4.2B

FIGURE 4.3A. VHF RECEIVER CABINET (TOP VIEW)

FIGURE 4.3B. VHF RECEIVER CABINET (BOTTOM VIEW)

FIGURE 4.5A. LOW FREQUENCY RECEIVER CABINET (TOP VIEW)

FIGURE 4.5B. LOW FREQUENCY RECEIVER CABINET (BOTTOM VIEW)

INDICATED; IRE IN OHMS, ±5%, V2WATT, ARE IN UF, ARE IN MH.

JACKS AND PLUG, NATIONS ARE 7200 TO REFERENCE READ RI AS

ACITANCE OF THIS CRITICAL.
N TO BE 7±.25

A THRU H AND N, LLY IDENTICAL ON OF VALUES OF

FIGURE 4.6 -37 REFERENCE IF

FIGURE 4.6 -32 REFERENCE IF

FLI. SEE TABLE I

FIGURE 4.7
L.F. RCVR EXALTED CARRIER DETECTER

498.611 KC

OUT

EN

FIGURE 4.7
L.F. RCVR EXALTED CARRIER DETECTER

FIGURE 4.8A. TRANSMITTER CABINET (TOP VIEW)

FIGURE 4.8B. TRANSMITTER CABINET (BOTTOM VIEW)

FIGURE 4.11A. SINGLE SIDEBAND GENERATOR CABINET (TOP VIEW)

FIGURE 4.11B. SINGLE SIDEBAND GENERATOR CABINET (BOTTOM VIEW)

NOTES

- I. UNLESS OTHERWISE IN DICATED; ALL RESISTORS ARE IN OHMS, ALL CAPACITORS ARE IN UUF.
- 2. WITH THE EXCEPTION OF JACKS, REFERENCE DESIGNATIONS ARE ABBREVIATED. ADD 10100 TO REFERENCE NUMBERS, THAT IS; READ RI AS RIO101.
- *3. NINE SINGLE SIDEBAND UNITS A THRU H ANDN ARE SCHEMATICALY IDENTICAL WITH THE EXCEPTION OF VALUES OF YIAND FLI; SEE TABLE I.
 - 4. (TP) INDICATES TEST POINT AND IS NOT A REFERENCE DESIGNATION.

SINGLE SIDEBAND GENERATOR CHANNEL *

FIGURE 4.12 SINGLE-SIDEBAND GENERATOR -42-

FIGURE 4.13A. HYBRID CABINET, (TOP VIEW)

FIGURE 4.13B. HYBRID CABINET, (BOTTOM VIEW)

FIGURE 4.14 HYBRID UNIT

FIGURE 4.14 HYBRID UNIT

FIGURE 4.15A. SIGNALING CABINET, (FRONT VIEW)

FIGURE 4.15B. SIGNALING CABINET, (REAR VIEW)

FIGURE 4.16A. TONE OSCILLATOR UNIT, (TOP VIEW)

FIGURE 4.16B. TONE OSCILLATOR UNIT, (BOTTOM VIEW)

582.1 CPS TONE TOSCILLATORI STAGE

G45.7CP5 TONE IOSCILLATORI STAGE

716.1 CPS TONE IOSCILLATORI STAGE

TONE OSCILLATORI STAGE

BBI.OCPS TONE JOSCILLATOPI STAGE

1084.0 CPS TONE OSCILLATOR STAGE

TONE OSCILLATORS

977.2 CPS TONE OSCILLATOR STAGE

25 330K

VIB

524.8 CPS TONE LOSCILLATORI STAGE

C 4 650UUF

R2 3.3 MEG

1.5 ME 6 - .02

i.5MEG

IOOK

1 osc I VIA 15963

1

NOTES

- 1. UNLESS OTHERWISE INDICATED; ALL RESISTORS ARE IN OHMS, ± 5 %, 1/2 WATTS. ALL CAPACITORS ARE IN UF.
- 2 WITH EXCEPTION TO JACKS, REFERENCE DESIGNATIONS ARE ABBREVIATED. ADD 12100 TO REFERENCE NUMBERS, THAT IS; READ RI AS RISIOI.
- 3. WITH THE EXCEPTION OF 21 (SEE TABLE I), TONE OSCILLATOR STAGES I THEU 16 ARE SCHEMATICALLY IDENTICAL AS SHOWN IN STAGE I. REFERENCE DESIGNATIONS ARE OBTAINED BY POSTFIXING A HYPHEN AND THE APPROPRIATE STAGE NUMBER TO THE PEFERENCE DESIGNATIONS, THAT IS; READ RIZIOI AS RIZIOI.

FIGURE 4.17A. BUSY TONE COMMUTATOR, (TOP VIEW)

FIGURE 4.17B. BUSY TONE COMMUTATOR, (BOTTOM VIEW)

NOTES

- LUULESS OTHERWISE INDICATED: ALL RESISTORS ARE IN OHMS ±5%,1/2 WATT; ALL CAPACITORS ARE IN UUF.
- 2.WITH EXCEPTION OF JACKS, REFERENCE DESIGNATIONS ARE ABBREVIATED. ADD 12.200 TO REFERENCE NUMBERS, THAT 15; READ RI AS R12201.
- 3. COMMUTATOR STAGES I THRU 9
 ARE SCHEMATICALLY IDENTICAL
 AS SHOWN, IN STAGE I REFERENCE
 DESIGNATIONS ARE OBTAINED
 BY POST-FIXING A HYPHEN
 AND THE APPROPRIATE
 STAGE NUMBER TO REFERENCE
 DESIGNATIONS, THAT IS; READ
 RIZZ3O AS RIZZ3O-I.

CHAN C

FIGURE 4.18A. POWER SUPPLY, TIMER AND SWITCHING UNIT, (TOP VIEW)

FIGURE 4.18B. POWER SUPPLY, TIMER AND SWITCHING UNIT, (BOTTOM VIEW)

PULSE 2

FIGURE 4.18C POWER SUPPLY TIMER AND CALL TONE SWITCHING UNIT

-54-

FIGURE 4.19A. RECEIVER POWER SUPPLY (FRONT VIEW)

FIGURE 4.19B. RECEIVER POWER SUPPLY (TOP VIEW)

FIGURE 4.19C. RECEIVER POWER SUPPLY (BOTTOM VIEW)

FIGURE 4.20A. TRANSMITTER L.V. POWER SUPPLY (FRONT VIEW)

FIGURE 4.20B. TRANSMITTER L.V. POWER SUPPLY (TOP VIEW)

FIGURE 4.20C. TRANSMITTER L.V. POWER SUPPLY (BOTTOM VIEW)

FIGURE 4.21A. TRANSMITTER H.V. POWER SUPPLY (FRONT VIEW)

FIGURE 4.21B. TRANSMITTER H.V. POWER SUPPLY (TOP VIEW)

FIGURE 4.21C. TRANSMITTER H.V. POWER SUPPLY (BOTTOM VIEW)

SPARE PARTS LIST

CENTRAL STATION

ITEM	MANUFACTURER AND PART NUMBER	QUA NT I TY
Tube	6BH6	17
Tube	6201	6
Tube	6AL5	2
Tube	6AK5	4
Tube	6Y6	2
Tube	Amperite 6360	1
Tube	OA 2	3
Tube	6X4	1
Tube	12AX7	1
Tube	5963	3
Tube	SU4	2
Tube	Eimac 4CX300A	2
Tube	3B28	1
Connector	Cannon, DPD28-33S-1G	1
Connector	Cannon, DPD28-34P-1G	1
Connector	Cannon, DPD232C-33S-1G	1
Connector	Cannon, DPD232C-34P-1G	1
Connector	Cannon, DB25P	. 1
Connector	Cannon, DB25S	1
Connector	Cannon, DA 15P	1
Connector	Cannon, DA15S	. 1
Connector	Continental C9-20P	.1
Connector	Continental C9-20S	1
Connector	Continental C7-20P	1
Connector	Continental C7-20S	1
Phono Pin Plug		1
GS02-14S-6P- 301	Ampheno1	1
GS02-14S-6S- 301	Amphenol	1
Connector	IPC, UG/556/U	1
Connector	IPC, UG/932/U	1
Connector	IPC, #27025	1
Connector	IPC, UG/1094	1
Connector	IPC, UG/909/U	1
Connector	IPC, UG/88/U	1
Connector	Cannon, DIC 3069	. 2
Connector	Cannon, DIC 3068	2
Power Plug	Amphenol	1
Switch, DPDT	Arrow-Hart and Hegeman	1
Center off		
Switch, DPDT	Arrow-Hart and Hegeman	1
Heavy duty		
Switch, DPDT	Arrow-Hart and Hegeman	1

ITEM	MANUFACTURER AND PART NUMBER	QUANTITY
Permakay Filter	Motorola, 6686Kc 1020	1
Permakay Filter	Motorola, 8530Kc 1024	1
Mechanical Filter	Motorola, 420Kc	1
Mechanical Filter	Motorola, 426Kc	1
Mechanical Filter	Motorola, 432Kc	1
Mechanical Filter	Motorola, 438Kc	1
Mechanical Filter	Motorola, 444Kc	1
Mechanical Filter	Motorola, 450Kc	1
Mechanical Filter	Motorola, 456Kc	1
Mechanical Filter	Motorola, 462Kc	1
Mechanical Filter	Motorola, 468Kc	1
Variable Capacitor	E. F. Johnson, 30M8	2 1
Variable Capacitor	E. F. Johnson, 9M11	1
Variable Capacitor Variable	E. F. Johnson, 5MB11 E. F. Johnson, 25LB15	1
Capacitor Variable	Hammarlund, MAPC75	1
Capacitor Pilot Light	General Cement	1
bulb #313 Pilot Light	General Cement	1
bulb 6W-		
Fuse	Little Fuse, 3AG5A	2
Fuse	Little Fuse, 3AG 1/8A	2
Fuse	Little Fuse, 3AG 1/4A	5
Fuse	Little Fuse, 3AG 10A	3
Fuse	Little Fuse, 3AG 15A	2
Fuse	Little Fuse, 3AG 1A	2 2
Fuse	Little Fuse, 3AG 2A	2
Fuse	Little Fuse, 3AG 3A	2
Fuse	Little Fuse, 3AG 1/2A	5
Relay Relay	Elgin, VGG2C26.5 VDC North Electric, 226ACC804A	5
nelay	NOI OH EIGCUIC, ZZONCCOUIN	

ITEM	MANUFACTURER AND PART NUMBER	QUANTITY
Relay	Guardian, Overload X300-ER	1
Relay	Guardian, SPDT 6.3v and Coil #200 MI	1
Relay	Advance, PC/K/115A SPDT	1
Relay	Curtiss-Wright, 117-40-DF	î
Crystal Oven	Hunt	î
24v	AIW HA E	
Crystal Oven	Motorola	5
24v		
Coil	Motorola, 450Kc	2
Coil	Motorola, 450K Balanced Mod.	2
Coil	Motorola, 156Mc	1
Regohm 6v	Electric Regulator Corp.	1
Diode	Motorola, MN14	1
Diode	Transitron, 1N341	1
Diode	Hughes Aircraft, HD2149	10
Diode	Raytheon, 1N432A	7
Diode	Raytheon, 1N303A	1 pr.
Transistor	General Electric, 2N167	1
Transistor	Western Electric, 2N110	2
Transistor	Raytheon, 2N64	1
Transistor	General Electric, 2N43	1
Vibrasender	Motorola, 473.2 cycles	1
Vibrasender	Motorola, 524.8 cycles	1
Vibrasender	Motorola, 582.1 cycles	1 1 1 1
Vibrasender	Motorola, 645.7 cycles	1
Vibrasender	Motorola, 716.1 cycles	1
Vibrasender	Motorola, 749.3 cycles	1
Vibrasender	Motorola, 881.0 cycles	1
Vibrasender	Motorola, 977.2 cycles	. 1
Vibrasender	Motorola, 1084.0 cycles	1
Vibrasender	Motorola, 100.0 cycles	1
Vibrasender	Motorola, 110.9 cycles	1
Vibrasender	Motorola, 123.0 cycles	1
Vibrasender	Motorola, 136.5 cycles	1
Vibrasender	Motorola, 151.4 cycles	
Vibrasender	Motorola, 167.9 cycles	1
Vibrasender	Motorola, 186.2 cycles	1
Crystals	Tedford, 6.6288 mc CR-36/U	i
Crystals	Tedford, 8.0815 mc CR-36/U	1
Crystals	Tedford, 29.93920 mc CR-32/U	i
Crystals	Tedford, 29.92560 mc CR-32/U Monitor, 420 Kc CR-47/U	1
Crystals		1 1 1 1 1
Crystals Crystals	Monitor, 426 Ke CR-47/U Monitor, 432 Ke CR-47/U	1
Crystals	Monitor, 438 Kc CR-47/U	1
Crystals	Monitor, 444 Kc CR-47/U	î
Crystals	Monitor, 450 Ke CR-47/U	î
Crystals	Monitor, 456 Kc CR-47/U	i
Crystals	Monitor, 462 Kc CR-47/U	î
Crystals	monteol, and Re-Ch-41/0	-

MANUFACTURER AND PART NUMBER	QUANTITY
Monitor, 468 Kc CR-47/U	1
Monitor, 342 Kc CR-47/U	1
Monitor, 392.593 Kc CR-47/U	1
Monitor, 398.148 Kc CR-47/U	1
Monitor, 404.166 Kc CR-47/U	1
Monitor, 409.722 Kc CR-47/U	1
Monitor, 416.666 Kc CR-47/U	1
Monitor, 481.944 Kc CR-47/U	1
Monitor, 487.500 Kc CR-47/U	1
Monitor, 494.444 Kc CR-47/U	1
Monitor, 498.611 Kc CR-47/U	1
	Monitor, 468 Kc CR-47/U Monitor, 342 Kc CR-47/U Monitor, 392.593 Kc CR-47/U Monitor, 398.148 Kc CR-47/U Monitor, 404.166 Kc CR-47/U Monitor, 409.722 Kc CR-47/U Monitor, 416.666 Kc CR-47/U Monitor, 481.944 Kc CR-47/U Monitor, 487.500 Kc CR-47/U Monitor, 494.444 Kc CR-47/U

