영석 : 03 중간고사(1학년 1학기) 대비 개념 요약

April 18, 2015

Contents

1	다항식의 연산					
	1.1	다항식	2			
	1.2	다항식의 덧셈과 뺄셈	2			
	1.3	다항식의 곱셈	3			
	1.4	다항식의 나눗셈	4			
2	항등식과 나머지 정리 5					
	2.1	항등식	5			
	2.2	나머지 정리와 인수정리	7			
	2.3	조립제법	8			
3	인수분해					
4	복소	<u>수</u>	11			
	4.1	복소수	11			
	4.2	복소수의 사칙연산	12			
5	이차방정식 13					
	5.1	이차방정식	13			
	5.2	이차방정식의 풀이	14			
	5.3	판별식	17			
	F 1	근과 계수와의 관계	19			

6	이차방정식과 이차함수			
	6.1	이차함수	19	
	6.2	이차함수의 그래프와 x 축 사이의 위치관계	24	
	6.3	이차함수의 그래프와 직선 사이의 위치관계	24	
	6.4	이차함수의 최대와 최소	26	
7	· 고차방정식		27	
8	연립방정식			

1 다항식의 연산

1.1 다항식

정의 1) 다항식

 $2x^2 + 3x - 1$, x + 1, x^3 , $x^2 + 2xy + 2y^2$ 등의 형태의 식을 **다항식**이라고 한다. 특히 항의 개수가 한 개인 다항식을 **단항식**이라고 한다. 예를 들어 x^3 는 단항식이지만 $2x^2 + 3x - 1$, x + 1는 단항식이 아니다.

다항식

$$2x^2 + 3x - 1 \tag{1}$$

에서 $2x^2$, 3x, -1를 **항**이라고 한다.

각 항의 문자 앞에 붙는 숫자를 계수라고 한다. $2x^2$ 의 계수는 2이고 3x의 계수는 3이다. 숫자로만 되어있는 항을 **상수항**이라고 한다. 각 항들에 대해 문자가 곱해진 개수를 **차수**라고 한다. $2x^2$ 의 차수는 2차이고, 3x의 차수는 1차이다. 다항식의 차수는 각 항들 중 가장 높은 항의 차수를 말한다. $2x^2+3x-1$ 의 차수는 2차이다.

(1) 에서처럼 다항식을 차수가 높은 항부터 나열하는 방식을 **내림차순**이라고 한다. 반대로 (2) 와 같이 차수가 낮은 항부터 나열하는 방식을 **오름차순**이라고 한다.

$$-1 + 3x + 2x^2 \tag{2}$$

1.2 다항식의 덧셈과 뺄셈

다항식을 더하고 뺄 때에는 동류항을 묶어서 계산하면 된다. 실수와 마찬가지로 덧셈과 곱셈에 대해 교환법칙과 결합법칙, 분배법칙이 성립한다.

정리 2) 다항식의 연산법칙

A, B, C가 다항식이면

$$A + B = B + A$$
, $AB = BA$ (교환법칙)

$$(A+B)+C=A+(B+C), \quad (AB)C=A(BC)$$
 (결합법칙)

$$A(B+C) = AB + AC$$
 (분배법칙)

이 성립한다.

예시 3)

예를 들어 $2x^2 + 3x + 2$ 와 $x^2 - 2x + 1$ 을 더하면

$$(2x^2 + 3x + 2) + (x^2 - 2x + 1) = (2x^2 + x^2) + (3x - 2x) + (2 + 1)$$
$$= 3x^2 + x + 3$$

이다.

또 $x^2 + y^2$ 과 $2x^2 + 2xy - 4y^2$ 을 빼면

$$(x^{2} + y^{2}) - (2x^{2} + 2xy - 4y^{2}) = (x^{2} - 2x^{2}) - 2xy + (y^{2} - (-4y^{2}))$$
$$= -x^{2} - 2xy + 5y^{2}$$

이다.

1.3 다항식의 곱셈

다항식을 곱할 때에는 분배법칙을 잘 적용해 곱하면 된다. 또한 다음 공식들을 사용할 수 있다.

정리 4) 곱셈공식

(1)
$$(a+b)^2 = a^2 + 2ab + b^2$$

(2)
$$(a-b)^2 = a^2 - 2ab + b^2$$

(3)
$$(a-b)(a+b) = a^2 - b^2$$

(4)
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)$$

(5)
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

(6)
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

(7)
$$(a+b)(a^2-ab+b^2) = a^3+b^3$$

(8)
$$(a-b)(a^2+ab+b^2) = a^3-b^3$$

예시 5)

(1) 예를 들어 $(2x+1)^2$ 을 전개하려면 정리 4의 (1)에 $a=2x,\,b=1$ 을 대입하여

$$(2x+1)^2 = (2x)^2 + 2 \times (2x) \times 1 + 1^2 = 4x^2 + 4x + 1$$

을 얻을 수 있다.

 $(2) (x-2)^3$ 을 전개하려면 정리 4의 (6)에 a=x, b=2를 대입하여

$$(x-2)^3 = x^3 - 3 \times x^2 \times 2 + 3 \times x \times 2^2 - 2^3 = x^3 - 6x^2 + 12x - 27$$

을 얻을 수 있다.

1.4 다항식의 나눗셈

예시 6)

만약 $2x^3 + 7x^2 + 3$ 을 $x^2 + 2x + 2$ 로 나누려면 다음과 같은 계산을 한다.

$$\begin{array}{r}
2x + 3 \\
x^2 + 2x + 2)2x^3 + 7x^2 + 3 \\
2x^3 + 4x^2 + 4x \\
3x^2 - 4x + 3 \\
3x^2 + 6x + 6 \\
-10x - 3
\end{array}$$

따라서 몫이 2x+3이고 나머지가 -10x-3이다. 이 나눗셈 결과를 다음과 같이 표현한다.

$$2x^3 + 7x + 3 = (x^2 + 2x + 2)(2x + 3) + (-10x - 3)$$

이다.

일반적으로 A를 B로 나눈 몫이 Q이고 나머지가 R이면

$$A=BQ+R$$

이라고 쓴다. 여기서 A, B, Q, R은 모두 다항식이며, 각각 **피제수**, **제수**, **몫**, **나머지**라고 부른다. 또 R의 차수는 B보다 항상 작다. 위의 예에서도 나머지 (=-10x-3)의 차수가 제수 $(=x^2+2x+2)$ 의 차수보다 낮다는 것을 확인할 수 있다.

2 항등식과 나머지 정리

2.1 항등식

정의 7) 항등식

항등식이란, 문자에 어떤 값을 대입해도 항상 성립하는 등식을 말한다. 항등식에서 아직 정해지지 않은 경우의 계수를 미정계수라고 부른다. 항등식이 아닌 등식을 방정식이라고 한다.

예시 8)

예를 들어 $x^2+2x=x^2+2x$ 는 x에 어떤 값을 대입하더라도 성립하기 때문에 항등식이다. 마찬가지로 2x=2x, x+1-x=1 등도 항등식이다. 하지만 2x+2=0은 x=-1일 때는 성립하지만 $x\neq -1$ 일 때에는 성립하지 않으므로 항등식이 아니고 방정식이다.

정리 9) 항등식의 성질

- (1) ax + b = 0이 항등식이면 a = 0, b = 0이다.
- (2) $ax^2 + bx + c = 0$ 이 항등식이면 a = 0, b = 0, c = 0이다.
- (3) ax + by + c = 0이 항등식이면 a = 0, b = 0, c = 0이다.
- (4) ax + b = a'x + b'가 항등식이면 a = a', b = b'이다.
- (5) $ax^2 + bx + c = a'x^2 + b'x + c'$ 이 항등식이면 a = a', b = b', c = c'이다.
- (6) ax + by + c = a'x + b'y + c'이 항등식이면 a = a', b = b', c = c'이다.
- (1)-(6)의 역도 성립한다.

증명). (1)과 (4)만 증명하겠다.

(1) ax + b = 0가 항등식이라고 하자. x에 대한 항등식이므로 x에 어떤 값을 대입하더라도 성립한다. x = 0을 대입하면 a = 0을 얻는다. 이제 원래 식은 b = 0이 되었고 이는 성립해야 한다. 따라서 a = 0이고 b = 0이다.

반대로 a = 0, b = 0 이라고 하자. 그러면 본 식은 0 = 0이 되어 항등식이다.

(4) ax+b=a'x+b' 가 항등식이라고 하자. 그러면 모든 항을 좌변으로 이항한 식인

$$(a - a')x + (b - b') = 0$$

은 항등식이다. (1)에 의해 a - a' = 0이고 b - b' = 0이다.

반대로 a=a', b=b'이라고 하자. 그러면 본 식은 ax+b=ax+b가 되어 x에 어떤 값을 넣더라도 항상 성립한다. 따라서 항등식이다.

예시 10)

(1) 항등식

$$(a-2)x + (b+3) = 0$$

에서 미정계수 a, b를 구해보자. 정리 9의 (1)에 의해 a-2=0, b+3=0이다. 따라서 a=2, b=-3이다.

(2) 항등식

$$(a+1)x - by + (c+1) = 0$$

에서 미정계수 a, b, c를 구해보자. 정리 9의 (3)에 의해 a+1=0, -b=0, c+1=0이다. 따라서 a=-1, b=0, c=-1이다.

(3) 항등식

$$-2x^2 - ax + 3 = bx^2 + 5x - c + 1$$

에서 미정계수 a,b,c를 구해보자. 정리 9의 (5)에 의해 -2=b,-a=5,3=-c+1이다. 따라서 $b=-2,\,a=-5,\,c=-2$ 이다.

예시 11)

(1) 항등식

$$a(x+1) + b(x-1) = 3x + 1$$

의 미정계수 a, b를 구할 때에는 좌변을 전개하여

$$(a+b)x + (a-b) = 3x + 1$$

를 얻고, 정리 9의 (4)를 이용해 연립방정식

$$a+b=3$$

$$a - b = 1$$

을 풀어 $a=2,\,b=1$ 이라는 결과를 얻을 수도 있으나 이 경우에는 다른 방법을 사용하는 것이 더 간편할 수 있다.

원래 식인

$$a(x+1) + b(x-1) = 3x + 1$$

에 x=1을 넣으면 2a=4를 얻고 x=-1을 넣으면 -2b=-2를 얻으므로 한번에 $a=2,\,b=1$ 을 얻을 수 있기 때문이다.

(2) 마찬가지로 항등식

$$ax(x+1) + bx(x-1) + c(x+1)(x-1) = 2x^2 - 3x + 3$$

의 미정계수 a,b,c를 구할 때에도 x에 값들을 대입하는 방법이 더 효율적이다. x=0을 대입하면 -c=3를 얻고, x=1을 대입하면 2a=2를 얻으며, x=-1를 대입하면 2b=8을 얻는다. 따라서 c=-3,a=1,b=4이다.

정의 12)

항등식에서 미정계수를 구할 때에 예시 10에서 사용한 방법을 **계수비교법**, 예시 11에서 사용한 방법을 **수치대입법**이라고 한다.

정리 13)

다항식 f(x)를 다항식 g(x)로 나누었을 때의 몫을 Q(x), 나머지를 R(x)라고 하면,

$$f(x) = g(x)Q(x) + R(x)$$

가 성립하며 이 때의 등식은 항등식이다.

정의 14)

정리 13에서 R(x)=0이면 f(x)가 g(x)로 나누어 떨어진다고 말한다. 혹은 g(x)가 f(x)의 인수라고 말한다.

2.2 나머지 정리와 인수정리

정리 15) 나머지 정리

다항식 f(x)를 $x - \alpha$ 로 나눈 나머지는 $f(\alpha)$ 이다.

증명). f(x)를 $x-\alpha$ 로 나누었을 때의 몫을 Q(x)라고 하고 나머지를 R(x)라고 하자. R(x)의 차수는 피제수인 $x-\alpha$ 의 차수보다 작으므로, R(x)는 상수항이다. 따라서 R(x)=R이라고 쓰자. 그러면

$$f(x) = (x - \alpha)Q(x) + R$$

은 항등식이다. 이 항등식에 $x=\alpha$ 를 대입하면 $f(\alpha)=R$ 을 얻는다. 따라서 이 나눗셈의 나머지는 $f(\alpha)$ 이다.

예시 16)

예시 6에서 이용한 방법을 사용해 $f(x)=x^2+1$ 을 x+1로 나누면 $x^2+1=(x+1)(x-1)+2$ 이다. 따라서 f(x)를 x+1로 나누었을 때의 나머지는 2이다. 정리 15를 사용해 f(x)를 x+1로 나눈 나머지를 계산하려면 x+1=x-(-1)이므로 $\alpha=-1$ 이고, 따라서 나머지는 f(-1)이어야 한다. 실제로 $f(-1)=(-1)^2+1=2$ 이다.

마찬가지로 $g(x)=x^2+2x+2$ 를 x-1로 나눈 나머지는 $g(1)=1^2+2\cdot 1+2=5$ 이고 $h(x)=-x^2+3x+1$ 을 x-2로 나눈 나머지는 $h(2)=-2^2+3\cdot 2+1=3$ 이다.

정리 17) 인수정리

다항식 f(x) 가 $x-\alpha$ 로 나누어떨어지면 $f(\alpha)=0$ 이고, $f(\alpha)=0$ 이면 f(x) 가 $x-\alpha$ 로 나누어떨어진다.

증명). f(x)를 $x-\alpha$ 로 나누었을 때의 나머지를 R 이라고 하면 나머지 정리에 의해 $R=f(\alpha)$ 이다. f(x)가 $x-\alpha$ 로 나누어떨어지면 R=0이다. 따라서 $f(\alpha)=0$ 이다. 반대로 $f(\alpha)=0$ 이면 R=0이다. 따라서 f(x)는 $x-\alpha$ 로 나누어떨어진다.

예시 18)

 $f(x)=x^3-3x+2$ 라고 하자. x=1을 대입하면 $f(1)=1^3-3\cdot 1+2=0$ 이므로 x-1은 f(x)의 인수이다. x=2를 대입하면 $f(2)=2^3-3\cdot 2+2\neq 0$ 이므로 x-2는 f(x)의 인수가 아니다.

예시 19)

2.3 조립제법

다항식의 나눗셈에서 제수가 일차식이면 **조립제법**을 활용하면 쉽게 몫과 나머지를 구할 수 있다. 다음은 $-x^4+3x^3+6x^2-6x-5$ 를 x+2로 나누는 과정을 나타낸 것이다.

이 나눗셈에서 몫은 $-x^3 + 5x^2 - 4x + 2$ 이고, 나머지는 -9이다. 따라서

$$-x^4 + 3x^3 + 6x^2 - 6x - 5 = (x+2)(-x^3 + 5x^2 - 4x + 2) - 9$$

이다.

3 인수분해

정의 20) 전개와 인수분해

(x+1)(x+2)를 전개하면 x^2+3x+2 이고 x^2+3x+2 를 인수분해하면 (x+1)(x+2)가 된다. 이처럼 **전개**란 곱셈으로 묶여있는 다항식을 푸는 과정을 뜻하며 **인수분해**란 풀어져 있는 다항식을 곱셈으로 묶는 과정을 뜻한다.

정리 21) 인수분해공식

정리 4의 곱셈공식의 좌변과 우변을 바꿔 다음과 같은 인수분해 공식들을 얻는다.

(1)
$$a^2 + 2ab + b^2 = (a+b)^2$$

(2)
$$a^2 - 2ab + b^2 = (a - b)^2$$

(3)
$$a^2 - b^2 = (a - b)(a + b)$$

(4)
$$a^2 + b^2 + c^2 + 2(ab + bc + ca) = (a + b + c)^2$$

(5)
$$a^3 + 3a^2b + 3ab^2 + b^3 = (a+b)^3$$

(6)
$$a^3 - 3a^2b + 3ab^2 - b^3 = (a - b)^3$$

(7)
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

(8) $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

예시 22)

(1)

$$x^2 - 2x + 1$$

를 인수분해해보자. 정리 21의 (2)에 a=x,b=1를 넣으면

$$x^2 - 2x + 1 = (x - 1)^2$$

를 얻는다. 따라서 x^2-2x+1 를 인수분해하면 $(x-1)^2$ 이다.

(2)

$$x^2 - 9$$

을 인수분해해보자. $9 = 3^2$ 이므로 정리 21의 (3)에 a = x, b = 3를 넣으면

$$x^{2} - 9 = x^{2} - 3^{2} = (x+3)(x-3)$$

를 얻는다. 따라서 $x^2 - 9$ 를 인수분해하면 (x+3)(x-3)이다.

(3)

$$x^3 + 6x^2 + 12x + 27$$

을 인수분해해보자. 정리 21의 (5)에 a = x, b = 3를 넣으면

$$x^{3} + 6x^{2} + 12x + 27 = x^{3} - 3 \cdot 2x^{2} + 3 \cdot 2^{2}x + 3^{3} = (x+3)^{3}$$

를 얻는다. 따라서 $x^3 + 6x^2 + 12x + 27$ 를 인수분해하면 $(x+3)^3$ 이다. (4)

$$x^3 - 8$$

을 인수분해해보자. $8 = 2^3$ 이므로 정리 21의 (8)에 a = x, b = 2를 넣으면

$$x^3 - 8 = x^3 - 2^3 = (x - 2)(x^2 + 2x + 4)$$

를 얻는다. 따라서 $x^3 - 8$ 를 인수분해하면 $(x - 2)(x^2 + 2x + 4)$ 이다.

예시 23) 조립제법을 이용한 인수분해

$$f(x) = x^3 - 3x + 2$$

를 인수분해해보자. 예시 18에서 f(1) = 0이므로 x - 1이 f(x)의 인수임을 확인 하였다. 따라서 $x^3 - 3x + 2$ 를 x - 1로 나누면 조립제법에 의해

$$x^3 - 3x + 2 = (x - 1)(x^2 + x - 2)$$

를 얻는다. x^2+x-2 는 더 인수분해될 수 있다. 즉 $x^2+x-2=(x+2)(x-1)$ 이다. 따라서

$$x^{3} - 3x + 2 = (x - 1)(x + 2)(x - 1) = (x - 1)^{2}(x + 2)$$

이다.

4 복소수

4.1 복소수

정의 24) 허수단위

제곱해서 -1 이 되는 수를 i 라고 쓴다. 따라서 $i^2 = -1$ 이고 $i = \sqrt{-1}$ 이다.

정의 25) 복소수

실수 a, b에 대해 a + bi 꼴로 이루어진 수를 **복소수**라고 한다. 예를 들어 1 + i, 2 - 3i, -2i, 3 등은 모두 복소수이다. 이때 a를 **실수부분**, b를 **허수부분**이라고 부른다. 예를 들어 2 - 3i의 실수부분은 2이고, 허수부분은 -3이다.

복소수 중에서 $b \neq 0$ 인 수를 **허수**라고 한다. 예를 들어 1+i, 2-3i, -2i는 허수이다. 반면 3은 실수이다. 허수 중에서 a=0 인 수를 **순허수**라고 한다. 예를 들어 -2i는 순허수이다. 반면 1+i, 2-3i는 순허수가 아닌 허수이다.

정의 26) 켤레복소수

복소수 a+bi에 대해서 a-bi를 a+bi의 **켤레복소수**라고 한다. 예를 들어 1+i의 켤레복소수는 1-i이고 2-3i의 켤레복소수는 2+3i이다. 또 -2i의 켤레복소수는 2i이고 3의 켤레복소수는 3이다.

정의 27)

두 복소수 a + bi, c + di에 대해서 a = c, b = d이면

$$a + bi = c + di$$

이다.

예시 28)

(1)

$$x + yi = 3 + 2i$$

가 성립하면 x = 3, y = 2이다.

(2)

$$2x + 2i = -4 + yi$$

가 성립하면 2x = -4, 2 = y이다. 따라서 x = -2, y = 2이다.

(3)

$$(x+y) + (x-y)i = 2+4i$$

가 성립하면 x + y = 2, x - y = 4이다. 따라서 x = 3, y = -1이다.

4.2 복소수의 사칙연산

복소수를 더하거나 빼거나 곱하거나 나눌 때에는 실수에서와 똑같이 교환법칙과 결합법칙, 분배법칙을 잘 적용해나가면서 $i^2 = -1$ 를 주의하면서 계산하면 된다.

예시 29)

2+i와 3+2i에 대해 우선 덧셈과 뺄셈, 곱셈을 해보자.

$$(2+i) + (3+2i) = 2+i+3+2i = 5+3i$$

$$(2+i) - (3+2i) = 2+i-3-2i = -1-i$$

$$(2+i) \times (3+2i) = 6+4i+3i+2i^2$$

$$= 6+4i+3i-2$$

$$= 4+7i$$

이다.

나눗셈을 할 때에는, 분모를 실수로 만들어줘야 한다. 이를 위해 분모의 켤레 복소수를 분모와 분자에 각각 곱해줘야 한다. 이 과정을 **분모의 실수화**라고 한다.

$$(2+i) \div (3+2i) = \frac{2+i}{3+2i}$$

$$= \frac{(2+i)(3-2i)}{(3+2i)(3-2i)}$$

$$= \frac{6-4i+3i-2i^2}{9-6i+6i-4i^2}$$

$$= \frac{6-4i+3i+2}{9-6i+6i+4}$$

$$= \frac{8-i}{13}$$

$$= \frac{8}{13} - \frac{1}{13}i.$$

정의 30) 음수의 제곱근

a > 0일 때,

$$\sqrt{-a} = \sqrt{a}i$$

이다.

예시 31)

- (1) $\sqrt{-3} = \sqrt{3}i$.
- (2) $\sqrt{-4} = \sqrt{4}i = 2i$.
- $(3) \sqrt{-12} = \sqrt{12}i = 2\sqrt{3}i$

5 이차방정식

5.1 이차방정식

정의 32) 이차방정식

a, b, c가 실수이고 $a \neq 0$ 일 때,

$$ax^2 + bx + c = 0$$

꼴로 변형될 수 있는 방정식을 이차방정식이라고 한다.

예시 33)

- $(1) 2x^2 3x + 1 = 0$ 은 a = 2, b = 3, c = -1이므로 이차방정식이다.
- (2) $x^2 + 1 = 0$ 은 a = 1, b = 0, c = 1 이므로 이차방정식이다.
- (3) $x^2 = -x$ 는 $x^2 + x = 0$ 으로 변형될 수 있고 이 때 a = 1, b = 1, c = 0 이므로 이차방정식이다.
 - (4) 2x + 1 = 0은 a = 0, b = 2, c = 1 이므로 이차방정식이 아니다.
- (5) $x^2 + 2x + 1 = x^2 + 2x + 1$ 은 0 = 0으로 변형될 수 있고 이때 a = 0, b = 0, c = 0 이므로 이차방정식이 아니다. 이 경우 이 식은 항등식이다.
- (6) $x^2 + 3x + 2 = (x+1)^2$ 은 2x + 1 = 0으로 변형될 수 있고 이때 a = 0, b = 2, c = 1 이므로 이차방정식이 아니다.

정의 34) 이차방정식의 근

이차방정식 $ax^2 + bx + c = 0$ 에서 x의 값에 따라 등식

$$ax^2 + bx + c = 0$$

이 성립하기도 하고 성립하지 않기도 한다. 등식 $ax^2 + bx + c = 0$ 을 성립하도록 만드는 x의 값을 이 **이차방정식의** 근(또는 해) 이라고 한다.

또 이차방정식의 근을 구하는 과정을 이차방정식을 푼다고 말한다.

예시 35)

이차방정식

$$2x^2 - 3x + 1 = 0$$

에 x = 0을 넣으면 $0 - 0 + 1 \neq 0$ 이다. 따라서 0은 이 이차방정식의 근이 아니다. x = 1을 넣으면 2 - 3 + 1 = 0이다. 따라서 1은 이 이차방정식의 근이다.

5.2 이차방정식의 풀이

정리 36) 이차방정식의 근의 공식

이차방정식 $ax^2 + bx + c = 0$ 의 근은

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

이다.

예시 37) 이차방정식의 풀이(1)

이차방정식

$$x^2 + 2x - 3 = 0$$

을 풀어보자.

(1) 인수분해를 이용한 방법: 좌변을 인수분해하면

$$(x+3)(x-1) = 0$$

이 된다. 따라서 x+3=0 이거나 x-1=0 이다. 그러므로 x=-3 이거나 x=1 이다.

(2) 완전제곱식을 이용한 방법 : 2px = 2x 이므로 p = 1 이다.

$$(x+1)^2 = x^2 + 2x + 1$$

이므로 원래 식의 상수항을 우변으로 옮기고 정리하면

$$x^{2} + 2x = 3$$

$$x^{2} + 2x + 1 = 3 + 1$$

$$(x+1)^{2} = 4$$

$$x+1 = \pm \sqrt{4}$$

$$x+1 = \pm 2$$

$$x = -1 \pm 2$$

이다. 따라서 x = -1 + 2 = 1 이거나 x = -1 - 2 = -3 이다.

(3) 근의 공식을 이용한 방법 : $a=1,\,b=2,\,c=-3$ 이므로

$$x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-3)}}{2 \cdot 1}$$
$$= \frac{-2 \pm \sqrt{16}}{2}$$
$$= \frac{-2 \pm 4}{2}$$

이다. 따라서 $x=\frac{-2+4}{2}=\frac{2}{2}=1$ 이거나 $x=\frac{-2-4}{2}=\frac{-6}{2}=-3$ 이다.

예시 38) 이차방정식의 풀이(2)

이차방정식

$$x^2 + 6x + 9 = 0$$

을 풀어보자.

(1) 인수분해를 이용한 방법 : 좌변을 인수분해하면

$$(x+3)^2 = 0$$

이 된다. 따라서 x+3=0이다. 그러므로 x=-3이다.

(2) 완전제곱식을 이용한 방법 : 2px = 6x 이므로 p = 3 이다.

$$(x+3)^2 = x^2 + 6x + 9$$

이므로 원래 식의 상수항을 우변으로 옮기고 정리하면

$$x^{2} + 6x = -9$$

$$x^{2} + 6x + 9 = -9 + 9$$

$$(x+3)^{2} = 0$$

$$x + 3 = \pm \sqrt{0}$$

$$x + 3 = \pm 0$$

$$x + 3 = 0$$

$$x = -3$$

이다.

(3) 근의 공식을 이용한 방법 : $a=1,\,b=6,\,c=9$ 이므로

$$x = \frac{-6 \pm \sqrt{6^2 - 4 \cdot 1 \cdot 9}}{2 \cdot 1}$$

$$= \frac{-6 \pm \sqrt{0}}{2}$$

$$= \frac{-6 \pm 0}{2}$$

$$= \frac{-6}{2}$$

$$= -3$$

이다.

예시 39) 이차방정식의 풀이(3)

이차방정식

$$x^2 - 2x + 3 = 0$$

을 풀어보자.

- (1) 인수분해를 이용한 방법 : 인수분해가 쉽게 되지 않는다. 따라서 인수분해를 이용한 방법을 사용할 수 없다.
 - (2) 완전제곱식을 이용한 방법 : 2px = -2x 이므로 p = -1 이다.

$$(x-1)^2 = x^2 - 2x + 1$$

이므로 원래 식의 상수항을 우변으로 옮기고 정리하면

$$x^{2} - 2x = -3$$

$$x^{2} - 2x + 1 = -3 + 1$$

$$(x - 1)^{2} = -2$$

$$x - 1 = \pm \sqrt{-2}$$

$$x - 1 = \pm \sqrt{2}i$$

$$x = 1 \pm \sqrt{2}i$$

이다. 따라서 $x=1+\sqrt{2}i$ 이거나 $x=1-\sqrt{2}i$ 이다.

(3) 근의 공식을 이용한 방법 : $a=1,\,b=-2,\,c=3$ 이므로

$$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$= \frac{2 \pm \sqrt{-8}}{2}$$

$$= \frac{2 \pm \sqrt{8}i}{2}$$

$$= \frac{2 \pm 2\sqrt{2}i}{2}$$

이다. 따라서 $x=\frac{2+2\sqrt{2}i}{2}=\frac{2}{2}+\frac{2\sqrt{2}}{2}i=1+\sqrt{2}i$ 이거나 $x=\frac{2-2\sqrt{2}i}{2}=\frac{2}{2}-\frac{2\sqrt{2}}{2}i=1-\sqrt{2}i$ 이다.

이 경우 근은 실수가 아니라 허수이다. 이처럼 허수인 근을 **허근**이라고 하고, 반면에 예제 37, 38에서처럼 실수인 근을 **실근**이라고 한다.

5.3 판별식

예제 37, 38, 39에서 보듯, 이차방정식의 해는 실수가 될 수도 있고 허수가 될 수도 있다. 또 해의 갯수가 두 개 일 수도 있고 한 개일 수도 있다. 이런 차이가 발생하는 까닭은 근의 공식에서 $\sqrt{b^2-4ac}$ 의 값이 0이 될 수도 있고 0이 아닌

실수가 될 수도 있고 허수가 될 수도 있기 때문이다. 따라서 판별식 D를 다음과 같이 정의하고 이차방정식의 실수인 근의 갯수를 판별하는 용도로 쓴다.

정의 40) 판별식

이차방정식 $ax^2 + bx + c = 0$ 에 대한 판별식은

$$D = b^2 - 4ac$$

이다.

정리 41) 이차방정식의 근의 판별

이차방정식 $ax^2 + bx + c = 0$ 에서

- (1) D > 0 이면 이차방정식은 두 실근을 가진다(예제 37).
- (2) D = 0 이면 이차방정식은 한 실근을 가진다(예제 38).
- (3) D < 0 이면 이차방정식은 두 허근을 가진다(예제 39).
- (1)의 경우 의미를 강조하기 위해 "서로 다른 두 실근을 가진다"라고 말하기도 한다. 또 (2)의 경우에는 '중복된 근'이라는 의미에서 "중근을 가진다"고 말하기도 한다.

예시 42)

예제 37에서 이차방정식 $x^2+2x-3=0$ 은 두 실근 1,-3을 가졌다. 실제로 판별식을 계산해보면 $a=1,\,b=2,\,c=-3$ 이므로

$$D = 2^2 - 4 \cdot 1 \cdot (-3) = 16 > 0$$

이다. 따라서 두 실근을 가지는 것이 맞다.

예제 38에서 이차방정식 $x^2+6x+9=0$ 은 한 실근 -3을 가졌다. 실제로 판별식을 계산해보면 $a=1,\,b=6,\,c=9$ 이므로

$$D = 6^2 - 4 \cdot 1 \cdot 9 = 0$$

이다. 따라서 한 실근을 가지는 것이 맞다.

예제 39에서 이차방정식 $x^2+2x+3=0$ 은 두 허근 $1+\sqrt{2}i,\ 1-\sqrt{2}i$ 를 가졌다. 실제로 판별식을 계산해보면 $a=1,\ b=2,\ c=3$ 이므로

$$D = 2^2 - 4 \cdot 1 \cdot 3 = -8 < 0$$

이다. 따라서 두 허근을 가지는 것이 맞다.

5.4 근과 계수와의 관계

이차방정식 $ax^2+bx+c=0$ 의 두 근을 α 와 β 라고 하자. 정리 41에 의해 D>0이면 두 근은 실수이고 $\alpha\neq\beta$ 이다. D=0이면 두 근은 실수이고 $\alpha=\beta$ 이다. D<0이면 두 근은 허수이고 $\alpha\neq\beta$ 이다. 이때 α , β 와 a, b, c 사이에 다음 관계가 성립한다.

정리 43)

$$\alpha + \beta = -\frac{b}{a}, \quad \alpha\beta = \frac{c}{a}$$

증명). 근의 공식에 의해

$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \quad \beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

이다(또는 그 반대이다). 이를 바탕으로 $\alpha + \beta$ 와 $\alpha\beta$ 를 계산하면 된다.

6 이차방정식과 이차함수

6.1 이차함수

정의 44) 이차함수

함수 f 가

$$f(x) = ax^2 + bx + c$$

꼴로 정의되어 있으면 $(a \neq 0)$ f 를 이차함수라고 부른다.

$$f(x) = ax^2 + bx + c$$
를 가끔씩은

$$y = ax^2 + bx + c$$

로 쓰기도 한다.

예시 45)

- (1) $f(x) = 3x^2 + 2x + 1$ 은 a = 3, b = 2, c = 1인 이차함수이다.
- (2) $y = 2x^2 1$ 은 a = 2, b = 0, c = -1 인 이차함수이다.
- (3) f(x) = 4x + 1은 a = 0, b = 4, c = 1이므로 이차함수가 아니다.
- (4) y = 3은 a = 0, b = 0, c = 3이므로 이차함수가 아니다.

정의 46) 이차함수의 그래프

이차함수 $y = ax^2 + bx + c$ 의 그래프는

$$y = ax^2 + bx + c$$

을 만족하는 점 (x,y)들의 집합을 말한다.

예시 47)

 $y = x^2$ 의 그래프는

$$y = x^2$$

을 만족하는 점 (x,y)들의 집합을 말한다.

예를 들어 (0,0)은 $0=0^2$ 을 만족하므로 $y=x^2$ 의 그래프의 일부이다. 또 $(1,1),\,(2,4)$ 도 $1=1^2,\,4=2^2$ 을 만족하므로 $y=x^2$ 의 그래프의 일부이다. 반면 (1,2)는 $2\neq 1^2$ 이므로 $y=x^2$ 의 그래프의 점이 아니다.

그래프 위에 있는 점들은 대략

$$(0,0),(1,1),(-1,1),(2,4),(-2,4),(3,9),(-3,9),(4,16),(-4,16),\cdots$$

등이므로 좌표 평면 위에 $y = x^2$ 의 그래프를 나타내면

이다.

정리 48)

모든 이차함수

$$y = ax^2 + bx + c$$

는

$$y = a(x - p)^2 + q$$

꼴로 바꿀 수 있고 이때 이 이차함수의 그래프는 (p,q)를 꼭지점으로 하는 포물선 이다. a>0 이면 그래프는 아래로 볼록이고, a<0 이면 그래프는 위로 볼록이다.

예시 49)

이차함수

$$y = x^2 + 4x + 2$$

의 그래프를 그려보자.

$$2px = 4x$$

이므로 p=2이고

$$(x+2)^2 = x^2 + 4x + 4$$

이다. 따라서

$$y = x^{2} + 4x + 2$$
$$= (x^{2} + 4x + 4) - 4 + 2$$
$$= (x + 2)^{2} - 2$$

이고 $a=1,\,p=-2,\,q=-2$ 이다. 그러므로 그래프의 꼭지점은 (-2,-2)이고, a>0이므로 아래로 볼록이다.

예시 50)

이차함수

$$y = 2x^2 + 8x + 8$$

의 그래프를 그려보자. 최고자항 $2x^2$ 의 계수 2로 묶으면

$$y = 2x^2 + 8x + 8$$
$$= 2(x^2 + 4x) + 8$$

이다.

$$2px = 4x$$

이므로 p=2이고

$$(x+2)^2 = x^2 + 4x + 4$$

이다. 따라서

$$y = 2(x^{2} + 4x) + 8$$

$$= 2(x^{2} + 4x + 4 - 4) + 8$$

$$= 2(x^{2} + 4x + 4) - 8 + 8$$

$$= 2(x + 2)^{2}$$

이고 $a=2,\,p=-2,\,q=0$ 이다. 그러므로 그래프의 꼭지점은 (-2,0)이고, a>0이므로 아래로 볼록이다.

예시 51)

이차함수

$$y = -2x^2 + 4x - 3$$

의 그래프를 그려보자. 최고자항 $-2x^2$ 의 계수 -2로 묶으면

$$y = -2x^{2} + 4x - 3$$
$$= -2(x^{2} - 2x) - 3$$

이다.

$$2px = -2x$$

이므로 p = -1이고

$$(x-1)^2 = x^2 - 2x + 1$$

이다. 따라서

$$y = -2(x^{2} - 2x) - 3$$

$$= -2(x^{2} - 2x + 1 - 1) - 3$$

$$= -2(x^{2} - 2x + 1) + 2 - 3$$

$$= -2(x - 1)^{2} - 1$$

이고 $a=-2,\ p=1,\ q=-1$ 이다. 그러므로 그래프의 꼭지점은 (1,-1) 이고, a<0 이므로 위로 볼록이다.

6.2 이차함수의 그래프와 x축 사이의 위치관계

정리 52)

이차함수 $y=ax^2+bx+c$ 에 대해서 $D=b^2-4ac$ 이라고 하자. 그러면

- (1) D > 0 이면 이 이차함수의 그래프와 x축 사이의 교점은 두 개이다.
- (2) D=0이면 이 이차함수의 그래프와 x축 사이의 교점은 한 개이다(접한다).
- (3) D < 0 이면 이 이차함수의 그래프와 x축 사이의 교점은 없다.

예시 53)

예제 49의

$$y = x^2 + 4x + 2$$

에서 $a=1,\,b=4,\,c=2$ 이다. 따라서 $D=4^2-4\cdot 1\cdot 2=8>0$ 이다. 정리 52 의 (1)에 따르면 이 함수의 그래프와 x축과의 교점이 두 개여야 한다. 실제로 그래프와 x축 사이의 교점도 두 개이다.

예제 50의

$$y = 2x^2 + 8x + 8$$

에서 $a=2,\,b=8,\,c=8$ 이다. 따라서 $D=8^2-4\cdot2\cdot8=0$ 이다. 정리 52의 (2)에 따르면 이 함수의 그래프와 x축과의 교점이 한 개여야 한다. 실제로 그래프와 x축 사이의 교점도 한 개이다.

예제 51의

$$y = -2x^2 + 4x - 3$$

에서 a=-2, b=4, c=-3이다. 따라서 $D=4^2-4\cdot(-2)\cdot(-3)=16-24=-8<0$ 이다. 정리 52의 (3)에 따르면 이 함수의 그래프와 x축과의 교점이 없어야한다. 실제로 그래프와 x축 사이의 교점은 없다.

6.3 이차함수의 그래프와 직선 사이의 위치관계

정리 54)

이차함수 $y=ax^2+bx+c$ 의 그래프와 직선 y=mx+n을 생각하자. 두 식을 연립해서 얻어지는 방정식

$$ax^2 + (b-m)x + c - n = 0$$

에 대해

$$D = (b-m)^2 - 4a(c-n)$$

라고 할 때,

- $(1) \ D > 0$ 이면 이 이차함수의 그래프와 직선 사이의 교점은 두 개이다.
- (2) D = 0 이면 이 이차함수의 그래프와 직선 사이의 교점은 한 개이다(접한다).
- (3) D < 0이면 이 이차함수의 그래프와 직선 사이의 교점은 없다.

예시 55)

이차함수

$$y = x^2 + 4x + 2$$

와 세 개의 직선

$$y = 2x \tag{1}$$

$$y = 2x + 1 \tag{2}$$

$$y = 2x + 2 \tag{3}$$

을 생각하자.

(1)

$$x^2 + 4x + 2 = 2x$$

의 우변을 좌변으로 이항하면

$$x^2 + 2x + 2 = 0$$

이고 $D=2^2-4\cdot 1\cdot 2<0$ 이다. 따라서 이차함수의 그래프와 직선 y=2x 사이의 교점은 없다.

(2)

$$x^2 + 4x + 2 = 2x + 1$$

의 우변을 좌변으로 이항하면

$$x^2 + 2x + 1 = 0$$

이고 $D=2^2-4\cdot 1\cdot 1=0$ 이다. 따라서 이차함수의 그래프와 직선 y=2x+1 사이의 교점은 한 개이다.

(3)

$$x^2 + 4x + 2 = 2x + 2$$

의 우변을 좌변으로 이항하면

$$x^2 + 2x = 0$$

이고 $D=2^2-4\cdot 1\cdot 0>0$ 이다. 따라서 이차함수의 그래프와 직선 y=2x+2 사이의 교점은 두 개이다.

실제로 그래프들을 모두 그려보면 이므로 위 결론들이 모두 성립한다는 것을

알 수 있다.

6.4 이차함수의 최대와 최소

예시 56)

이차함수
$$y = 2x^2 - 4x - 1$$
은

$$y = 2x^2 - 4x - 1$$
$$= 2(x^2 - 2x) - 1$$

이고
$$-2x=2px$$
, $p=-1$, $(x-1)^2=x^2-2x+1$ 이므로
$$y=2(x^2-2x)-1$$

$$=2(x^2-2x+1-1)-1$$

$$=2(x^2-2x+1)-2-1$$

$$=2(x-1)^2-3$$

이다.

따라서 y는 최솟값 -3을 가진다.

이 함수의 최댓값은 없다.

7 고차방정식

예시 57)

고차방정식 $x^3-3x+2=0$ 을 풀어보자. 예시 23에서 x^3-3x+2 가 $(x-1)^2(x+2)$ 로 인수분해 될 수 있음을 확인했으므로

$$(x-1)^2(x+2) = 0$$

이다. 따라서 x-1=0 이거나 x+2=0 이다. 즉 x=1 이거나 x=-2 이다.

예시 58)

고차방정식 $x^3 - 3x^2 - x + 3 = 0$ 을 풀어보자.

에 의해

$$x^{3} - 3x^{2} - x + 3 = (x - 1)(x^{2} - 2x - 3)$$
$$= (x - 1)(x + 1)(x - 3) = 0$$

이다.

따라서 x = 1, x = -1, x = 3이다.

고차방정식 $x^3 - 1 = 0$ 을 풀어보자. 정리 21의 (8)에 의해

$$(x-1)(x^2 + x + 1) = 0$$

이다. 따라서 x-1=0 이거나 $x^2+x+1=0$ 이다. x-1=0 이면 x=1 이고 $x^2+x+1=0$ 이면 근의 공식에 의해 $x=\frac{-1\pm\sqrt{3}i}{2}$ 이다.

8 연립방정식

예시 59)

연립방정식

$$x - y + z = 1 \tag{1}$$

$$x + 2y - z = 2 \tag{2}$$

$$-2x + y - 3z = -4 (3)$$

을 풀어보자.

(1)+(2)를 하면

$$2x + y = 3 \tag{4}$$

이다. $3 \times (1) + (3)$ 을 하면

$$x - 2y = -1 \tag{5}$$

이다. 2×(4)+(5) 를 하면

$$5x = 5$$

가 되어 x=1이다. 이것을 다시 (4)에 대입하면 y=1이다. 또 x=1과 y=1을 (1)에 대입하면 z=1을 얻는다.

따라서 x = 1, y = 1, z = 1이다.

예시 60)

연립방정식

$$x + y = 1 \tag{1}$$

$$x^2 + y^2 = 13 (2)$$

을 풀어보자. (1) 에서

$$y = 1 - x \tag{3}$$

이다. 이를 (2)에 대입하면

$$x^{2} + (1 - x)^{2} = 13$$

$$x^{2} + (x^{2} - 2x + 1) = 13$$

$$2x^{2} - 2x - 12 = 0$$

$$x^{2} - x - 6 = 0$$

$$(x - 3)(x + 2) = 0$$

이므로 x=-2 이거나 x=3 이다. x=-2 이면 (3) 에 의해 y=1-(-2)=3 이고 x=3 이면 y=1-3=-2 이다.

따라서 x = -2, y = 3이거나 x = 3, y = -2이다.