2020 年秋考

- 1. 已知集合 $A = \{1, 2, 4\}, B = \{2, 4, 5\}, \, \text{则 } A \cap B = \underline{\hspace{1cm}}$
- 2. 计算: $\lim_{n \to \infty} \frac{n+1}{3n-1} =$ ______.
- 3. 已知复数 z = 1 2i(i 为虚数单位), 则 |z| =
- 4. 已知函数 $f(x) = x^3$, 则其反函数为
- 5. 已知 x, y 满足 $\begin{cases} x + y 2 \ge 0, \\ x + 2y 3 \le 0, \quad \text{则 } z = y 2x \text{ 的最大值为}_{----}. \end{cases}$
- 6. 已知行列式 $\begin{vmatrix} 1 & a & b \\ 2 & c & d \\ 3 & 0 & 0 \end{vmatrix} = 6$, 则行列式 $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = _____.$
- 7. 已知等差数列 $\{a_n\}$ 的首项 $a_1 \neq 0$, 且满足 $a_1 + a_{10} = a_9$, 则 $\frac{a_1 + a_2 + \cdots + a_9}{a_{10}} = _____$
- 8. 已知有四个数 1, 2, a, b, 这四个数的中位数为 3, 平均数为 4, 则 $ab = ___$
- 9. 从6个人选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共 有_____ 种安排情况.
- 10. 已知椭圆 $C: \frac{x^2}{4} + \frac{y^2}{3} = 1$, 直线 l 经过椭圆右焦点 F, 交椭圆 C 于 P,Q 两点 (点 P 在第二象限), 若 Q 关 于 x 轴对称的点为 Q', 且满足 $PQ \perp FQ'$, 则直线 l 的方程为
- 11. 已知 $a \in \mathbf{R}$, 若存在定义域为 \mathbf{R} 的函数 f(x) 同时满足下列两个条件, ① 对任意 $x_0 \in \mathbf{R}$, $f(x_0)$ 的值为 x_0 或 x_0^2 ; ② 关于 x 的方程 f(x) = a 无实数解; 则 a 的取值范围为______
- 12. 已知 $\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{b_1}, \overrightarrow{b_2}, \cdots, \overrightarrow{b_k} \ (k \in \mathbf{N}^*)$ 是平面内两两互不相等的向量,满足 $|\overrightarrow{a_1} \overrightarrow{a_2}| = 1$,且 $|\overrightarrow{a_i} \overrightarrow{b_j}| \in \{1, 2\}$ (其 中 $i = 1, 2, j = 1, 2, \dots, k$), 则 k 的最大值为___
- 13. 下列不等式恒成立的是().

A
$$a^2 + b^2 < 2ab$$

$$R a^2 + b^2 > -2a$$

C.
$$a + b > 2\sqrt{|ab|}$$

A.
$$a^2 + b^2 \le 2ab$$
 B. $a^2 + b^2 \ge -2ab$ C. $a + b \ge 2\sqrt{|ab|}$ D. $a + b \ge -2\sqrt{|ab|}$

14. 已知直线方程 3x + 4y + 1 = 0 的一个参数方程可以是(

A.
$$\begin{cases} x = 1 + 3t, \\ y = -1 + 4t \end{cases}$$

B.
$$\begin{cases} x = 1 - 4t, \\ y = -1 - 3t \end{cases}$$

C.
$$\begin{cases} x = 1 - 3t, \\ y = -1 + 4t \end{cases}$$

A.
$$\begin{cases} x = 1 + 3t, \\ y = -1 + 4t \end{cases}$$
B.
$$\begin{cases} x = 1 - 4t, \\ y = -1 - 3t \end{cases}$$
C.
$$\begin{cases} x = 1 - 3t, \\ y = -1 + 4t \end{cases}$$
D.
$$\begin{cases} x = 1 + 4t, \\ y = -1 - 3t \end{cases}$$

- 15. 在棱长为 10 的正方体 $ABCD A_1B_1C_1D_1$ 中,P 为左侧面 ADD_1A_1 上一点, 已知点 P 到 A_1D_1 的距离为 3, P 到 AA_1 的距离为 2, 则过点 P 且与 A_1C 平行的直线相交的面是 ().
 - A. ABCD

- B. BB_1C_1C C. CC_1D_1D D. AA_1B_1B

16. 命题 p : 存在 $a \in \mathbf{R}$ 且 $a \neq 0$, 对任意的 $x \in \mathbf{R}$, 均有 $f(x+a) < f(x) + f(a)$ 恒成立. 已知命题 q_1 : $f(x)$ 单调递减, 且 $f(x) > 0$ 恒成立; 命题 q_2 : $f(x)$ 单调递增, 且存在 $x_0 < 0$ 使得 $f(x_0) = 0$. 则下列说法正确的是	
().	
$A. q_1$ 、 q_2 都是 p 的充分条件	B. 只有 q_1 是 p 的充分条件
C . 只有 q_2 是 p 的充分条件	D. q_1 、 q_2 都不是 p 的充分条件
2019 年秋考	
1. 已知集合 $A=(-\infty,3), B=(2,+\infty),$ 则 $A\cap B=_$	
2. 已知 $z \in \mathbb{C}$. 若 $\frac{1}{z-5} = i(i 为虚数单位)$, 则 $z =$.	
3. 已知向量 $\overrightarrow{a} = (1,0,2), \ \overrightarrow{b} = (2,1,0), \ \emph{则} \ \overrightarrow{a} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
4. 在二项式 $(2x+1)^5$ 的展开式中, x^2 的系数是	
5. 已知 x,y 满足 $\begin{cases} x \geq 0, \\ y \geq 0, \end{cases}$ 则 $2x - 3y$ 的最小值为	
5. 已知 x, y 满足 $\begin{cases} y \geq 0, \\ y \geq 0, \end{cases}$ 则 $2x - 3y$ 的最小(
$x + y \le 2,$	
6. 已知函数 $f(x)$ 的周期为 1 , 当 $0 < x \le 1$ 时, $f(x) = \log_2 x$, 则 $f\left(\frac{3}{2}\right)$ 的值为	
7. 已知 $x, y \in \mathbf{R}^*$, 且满足 $\frac{1}{x} + 2y = 3$, 则 $\frac{y}{x}$ 的最大值为	
8. 已知数列 $\{a_n\}$ 的前 n 项和为 S_n , 且满足 $S_n + a_n = 2$, 则 $S_5 = $	
9. 过曲线 $y^2=4x$ 的焦点 F 并垂直于 x 轴的直线分别与曲线 $y^2=4x$ 交于 A 、 B , A 在 B 的上方, M 为抛物 线上一点, $\overrightarrow{OM}=\lambda\overrightarrow{OA}+(\lambda-2)\overrightarrow{OB}$, 则 $\lambda=$	
10. 某三位数密码, 每位数字可在 0 至 9 这 10 个数字中任选一个, 则该三位数密码中, 恰有两位数字相同的概率	
是	
11. 已知数列 $\{a_n\}$ 满足 $a_n < a_{n+1} \ (n \in \mathbb{N}^*)$,若 $P_n(n,a_n) \ (n \geq 3)$ 均在双曲线 $\frac{x^2}{2} - \frac{y^2}{6} = 1$ 上,则	
$\lim_{n \to \infty} P_n P_{n+1} = \underline{\qquad}.$	
12. 已知 $f(x) = \left \frac{2}{x-1} - a \right \ (x > 1, \ a > 0), \ f(x)$ 的图像与 x 轴的交点为 A , 若对于 $f(x)$ 的图像上任意一点 P ,	
在其图像上总存在另一点 $Q(P \triangleleft Q$ 异于 $A)$, 满足 $AP \perp AQ$, 且 $ AP = AQ $, 则 $a = \underline{\hspace{1cm}}$.	
13. 已知直线 l 的方程为 $2x-y+c=0$, 则 l 的一个方向向量 \overrightarrow{d} 可以是 ().	
A. $(2,-1)$ B. $(2,1)$	C. $(-1,2)$ D. $(1,2)$
14. 一个直角三角形的两直角边长分别为 1 和 2, 将该三角形分别绕其两直角边所在直线旋转, 得到的两个圆锥的体积之比为 ().	

C. 4

D. 8

B. 2

A. 1

15. 已知 $\omega \in \mathbf{R}$, 函数 $f(x) = (x-6)^2 \cdot \sin(\omega x)$. 若存在常数 $a \in \mathbf{R}$, 使得 f(x+a) 为偶函数, 则 ω 的值可能为 ().

A. $\frac{\pi}{2}$

B. $\frac{\pi}{3}$

C. $\frac{\pi}{4}$

D. $\frac{\pi}{5}$

16. 已知 $\tan \alpha \tan \beta = \tan(\alpha + \beta)$, 有下列两个结论: ① 存在 α 在第一象限, β 在第三象限; ② 存在 α 在第二象限, β 在第四象限; 则 ().

A. (1)(2)均正确

- B. (I)(2)均错误
- C. ①对②错
- D. ①错②对
- 17. 如图, 在长方体 $ABCD A_1B_1C_1D_1$ 中, M 为 BB_1 上一点, 已知 BM = 2, CD = 3, AD = 4, $AA_1 = 5$.
 - (1) 求直线 A_1C 与平面 ABCD 的夹角;
 - (2) 求点 A 到平面 A_1MC 的距离.

- 18. 已知 $f(x) = ax + \frac{1}{x+1}$, $a \in \mathbf{R}$.
 - (1) 已知 a = 1 时, 求不等式 f(x) + 1 < f(x+1) 的解集;
 - (2) 若 f(x) 在 $x \in [1, 2]$ 时有零点, 求 a 的取值范围.
- 19. 如图, A-B-C 为海岸线, AB 为线段, $\stackrel{\frown}{BC}$ 为四分之一圆弧. BD=39.2km, $\angle BDC=22^\circ$, $\angle CBD=68^\circ$, $\angle BDA=58^\circ$.
 - (1) 求 BC 的长度;
 - (2) 若 AB = 40km, 求 D 到海岸线 A B C 的最短距离 (精确到 0.001km).

- 20. 已知椭圆 $\frac{x^2}{8} + \frac{y^2}{4} = 1$, F_1 、 F_2 为左、右焦点, 直线 l 过 F_2 , 交椭圆于 A、B 两点.
 - (1) 若直线 l 垂直于 x 轴,求 |AB|; (2) 当 $\angle F_1AB = 90^\circ$, A 在 x 轴上方时,求 A、B 的坐标; (3) 若直线 AF_1 交 y 轴于 M, 直线 BF_1 交 y 轴于 N, 是否存在直线 l, 使得 $S_{\triangle F_1AB} = S_{\triangle F_1MN}$? 若存在,求出直线 l 的方程; 若不存在,说明理由.

- 21. 数列 $\{a_n\}$ $(n=1,2,3,\cdots,100)$ 有 100 项, $a_1=a$, 且对任意 $n=2,3,\cdots,100$, 存在 $a_n=a_i+d$, $i=1,2,\cdots,n-1$. 若 a_k 与前 k-1 项中某一项相等, 则称 a_k 具有性质 P.
 - (1) 若 $a_1 = 1$, d = 2, 求 a_4 的所有可能的值;
 - (2) 若 $\{a_n\}$ 不是等差数列, 求证: 数列 $\{a_n\}$ 中存在某些项具有性质 P;
 - (3) 若 $\{a_n\}$ 中恰有三项具有性质 P, 这三项之和为 c, 请用 a,d,c 表示 $a_1 + a_2 + \cdots + a_{100}$.

2018 年秋考

- 1. 行列式 | 4 1 | 的值为_____.
- 2. 双曲线 $\frac{x^2}{4} y^2 = 1$ 的渐近线方程为______.
- 3. 在 $(1+x)^7$ 的二项展开式中, x^2 项的系数为 (结果用数值表示).
- 4. 设常数 $a \in \mathbb{R}$, 函数 $f(x) = \log_2(x+a)$. 若 f(x) 的反函数的图像经过点 (3,1), 则 a =_____.
- 5. 已知复数 z 满足 (1+i)z = 1 7i(i 是虚数单位), 则 $|z| = _____.$
- 6. 记等差数列 $\{a_n\}$ 的前 n 项和为 S_n . 若 $a_3 = 0$, $a_6 + a_7 = 14$, 则 $S_7 =$ ______.
- 7. 已知 $\alpha \in \left\{-2, -1, -\frac{1}{2}, \frac{1}{2}, 1, 2, 3\right\}$. 若幂函数 $f(x) = x^{\alpha}$ 为奇函数, 且在 $(0, +\infty)$ 上递减, 则 $\alpha =$ ______.
- 8. 在平面直角坐标系中, 已知点 A(-1,0)、B(2,0), E、F 是 y 轴上的两个动点, 且 |EF|=2, 则 $\overrightarrow{AE} \cdot \overrightarrow{BF}$ 的最小值为______.
- 9. 有编号互不相同的五个砝码, 其中 5 克、3 克、1 克砝码各一个, 2 克砝码两个. 从中随机选取三个, 则这三个 砝码的总质量为 9 克的概率是______(结果用最简分数表示).
- 10. 设等比数列 $\{a_n\}$ 的通项公式为 $a_n=q^{n-1}\;(n\in \mathbf{N}^*),$ 前 n 项和为 S_n . 若 $\lim_{n\to\infty}\frac{S_n}{a_{n+1}}=\frac{1}{2},$ 则 q=______.
- 11. 已知常数 a>0,函数 $f(x)=\frac{2^x}{2^x+ax}$ 的图像经过点 $P\left(p,\frac{6}{5}\right)$, $Q\left(q,-\frac{1}{5}\right)$.若 $2^{p+q}=36pq$,则 a=______.
- 12. 已知实数 x_1 、 x_2 、 y_1 、 y_2 满足: $x_1^2 + y_1^2 = 1$, $x_2^2 + y_2^2 = 1$, $x_1x_2 + y_1y_2 = \frac{1}{2}$, 则 $\frac{|x_1 + y_1 1|}{\sqrt{2}} + \frac{|x_2 + y_2 1|}{\sqrt{2}}$ 的最大值为______.
- 13. 设 P 是椭圆 $\frac{x^2}{5}+\frac{y^2}{3}=1$ 上的动点, 则 P 到该椭圆的两个焦点的距离之和为 ().
 - A. $2\sqrt{2}$

 $R 2\sqrt{3}$

 $C = 2\sqrt{5}$

D. $4\sqrt{2}$

- 14. 已知 $a \in \mathbb{R}$, 则 "a > 1" 是 " $\frac{1}{a} < 1$ " 的 ().
 - A. 充分非必要条件

B. 必要非充分条件

C. 充要条件

- D. 既非充分又非必要条件
- 15. 《九章算术》中, 称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马. 设 AA_1 是正六棱柱的一条侧棱, 如图. 若阳马以该正六棱柱的顶点为顶点、以 AA_1 为底面矩形的一边, 则这样的阳马的个数是 ().

16. 设 D 是含数 1 的有限实数集, f(x) 是定义在 D 上的函数. 若 f(x) 的图像绕原点逆时针旋转 $\frac{\pi}{6}$ 后与原图像 重合,则在以下各项中, f(1) 的可能取值只能是 ().

A. $\sqrt{3}$ B. $\frac{\sqrt{3}}{2}$ C. $\frac{\sqrt{3}}{3}$

- 17. 已知圆锥的顶点为 P, 底面圆心为 O, 半径为 2.
 - (1) 设圆锥的母线长为 4, 求圆锥的体积;
 - (2) 设 PO=4, OA、OB 是底面半径, 且 $\angle AOB=90^\circ$, M 为线段 AB 的中点, 如图, 求异面直线 PM 与 OB 所成的角的大小.

- 18. 设常数 $a \in \mathbb{R}$, 函数 $f(x) = a \sin 2x + 2 \cos^2 x$.
 - (1) 若 f(x) 为偶函数, 求 a 的值; (2) 若 $f\left(\frac{\pi}{4}\right) = \sqrt{3} + 1$, 求方程 $f(x) = 1 \sqrt{2}$ 在区间 $[-\pi, \pi]$ 上的解.
- 19. 某群体的人均通勤时间, 是指单日内该群体中成员从居住地到工作地的平均用时. 某地上班族 S 中的成员仅以自驾或公交方式通勤. 分析显示: 当 S 中 x% $(0 \le x \le 100)$ 的成员自驾时, 自驾群体的人均通勤时间为

$$f(x) = \begin{cases} 30, & 0 < x \le 30, \\ 2x + \frac{1800}{x} - 90, & 30 < x < 100 \end{cases}$$
 (单位: 分钟),

而公交群体的人均通勤时间不受 x 影响, 恒为 40 分钟. 试根据上述分析结果回答下列问题:

- (1) 当 x 在什么范围内时, 公交群体的人均通勤时间少于自驾群体的人均通勤时间;
- (2) 求该地上班族 S 的人均通勤时间 g(x) 的表达式; 讨论 g(x) 的单调性, 并说明其实际意义.
- 20. 设常数 t > 2. 在平面直角坐标系 xOy 中, 已知点 F(2,0), 直线 l: x = t, 曲线 $\Gamma: y^2 = 8x \ (0 \le x \le t, \ y \ge 0)$. l = x 轴交于点 A、与 Γ 交于点 B. P、Q 分别是曲线 Γ 与线段 AB 上的动点.
 - (1) 用 t 表示点 B 到点 F 的距离;
 - (2) 设 t=3, |FQ|=2, 线段 OQ 的中点在直线 FP 上, 求 $\triangle AQP$ 的面积;
 - (3) 设 t=8, 是否存在以 FP、FQ 为邻边的矩形 FPEQ, 使得点 E 在 Γ 上? 若存在, 求点 P 的坐标; 若不存在, 说明理由.
- 21. 给定无穷数列 $\{a_n\}$, 若无穷数列 $\{b_n\}$ 满足: 对任意 $n \in \mathbb{N}^*$, 都有 $|b_n a_n| \le 1$, 则称 $\{b_n\}$ 与 $\{a_n\}$ "接近".
 - (1) 设 $\{a_n\}$ 是首项为 1, 公比为 $\frac{1}{2}$ 的等比数列, $b_n = a_{n+1} + 1$, $n \in \mathbb{N}^*$. 判断数列 $\{b_n\}$ 是否与 $\{a_n\}$ 接近,

并说明理由;

- (2) 设数列 $\{a_n\}$ 的前四项为: $a_1=1,\ a_2=2,\ a_3=4,\ a_4=8,\ \{b_n\}$ 是一个与 $\{a_n\}$ 接近的数列, 记集合 $M=\{x|x=b_i,\ i=1,2,3,4\},$ 求 M 中元素的个数 m;
- (3) 已知 $\{a_n\}$ 是公差为 d 的等差数列. 若存在数列 $\{b_n\}$ 满足: $\{b_n\}$ 与 $\{a_n\}$ 接近, 且在 $b_2-b_1,b_3-b_2,\cdots,b_{201}-b_{200}$ 中至少有 100 个为正数, 求 d 的取值范围.

2017 年秋考

- 1. 已知集合 $A = \{1, 2, 3, 4\}, B = \{3, 4, 5\}, 则 A \cap B = _____.$
- 2. 若排列数 $P_6^m = 6 \times 5 \times 4$, 则 $m = _____$.
- 3. 不等式 $\frac{x-1}{x} > 1$ 的解集为______.
- 4. 已知球的体积为 36π,则该球主视图的面积等于_____
- 5. 已知复数 z 满足 $z + \frac{3}{z} = 0$, 则 $|z| = _____.$
- 6. 设双曲线 $\frac{x^2}{9} \frac{y^2}{b^2} = 1 \ (b > 0)$ 的焦点为 F_1 、 F_2 ,P 为该双曲线上的一点,若 $|PF_1| = 5$,则 $|PF_2| =$ ______.
- 7. 如图, 以长方体 $ABCD A_1B_1C_1D_1$ 的顶点 D 为坐标原点, 过 D 的三条棱所在的直线为坐标轴, 建立空间 直角坐标系. 若 $\overrightarrow{DB_1}$ 的坐标为 (4,3,2), 则 $\overrightarrow{AC_1}$ 的坐标是______.

- 8. 定义在 $(0, +\infty)$ 上的函数 y = f(x) 的反函数为 $y = f^{-1}(x)$. 若 $g(x) = \begin{cases} 3^x 1, & x \leq 0, \\ f(x), & x > 0 \end{cases}$ 为奇函数,则 $f^{-1}(x) = 2$ 的解为
- 9. 已知四个函数: ① y=-x, ② $y=-\frac{1}{x}$, ③ $y=x^3$, ④ $y=x^{\frac{1}{2}}$. 从中任选 2 个,则事件"所选 2 个函数的图像有且仅有一个公共点"的概率为______.
- 10. 已知数列 $\{a_n\}$ 和 $\{b_n\}$, 其中 $a_n=n^2,\ n\in {\bf N}^*,\ \{b_n\}$ 的项是互不相等的正整数. 若对于任意 $n\in {\bf N}^*,\ \{b_n\}$ 的第 a_n 项等于 $\{a_n\}$ 的第 b_n 项,则 $\frac{\lg(b_1b_4b_9b_{16})}{\lg(b_1b_2b_3b_4)}=$ ______.
- 11. 设 $\alpha_1, \alpha_2 \in \mathbf{R}$, 且 $\frac{1}{2+\sin\alpha_1} + \frac{1}{2+\sin(2\alpha_2)} = 2$, 则 $|10\pi \alpha_1 \alpha_2|$ 的最小值等于______.
- 12. 如图, 用 35 个单位正方形拼成一个矩形, 点 P_1, P_2, P_3, P_4 以及四个标记为 " \blacktriangle " 的点在正方形的顶点处, 设集 合 $\Omega = \{P_1, P_2, P_3, P_4\}$, 点 $P \in \Omega$. 过 P 作直线 l_P , 使得不在 l_P 上的 " \blacktriangle " 的点分布在 l_P 的两侧. 用 $D_1(l_P)$ 和 $D_2(l_P)$ 分别表示 l_P 一侧和另一侧的 " \blacktriangle " 的点到 l_P 的距离之和. 若过 P 的直线 l_P 中有且只有一条满足 $D_1(l_P) = D_2(l_P)$, 则 Ω 中所有这样的 P 为_______.

- 13. 关于 x、y 的二元一次方程组 $\begin{cases} x+5y=0,\\ 2x+3y=4 \end{cases}$ 的系数行列式 D 为 (). A. $\begin{vmatrix} 0 & 5 \\ 4 & 3 \end{vmatrix}$ B. $\begin{vmatrix} 1 & 0 \\ 2 & 4 \end{vmatrix}$ C. $\begin{vmatrix} 1 & 5 \\ 2 & 3 \end{vmatrix}$

- 14. 在数列 $\{a_n\}$ 中, $a_n = \left(-\frac{1}{2}\right)^n$, $n \in \mathbf{N}^*$, 则 $\lim_{n \to \infty} a_n$ ().
 - A. 等于 $-\frac{1}{2}$
- B. 等于 0 C. 等于 $\frac{1}{2}$
- D. 不存在
- 15. 已知 a,b,c 为实常数, 数列 $\{x_n\}$ 的通项 $x_n=an^2+bn+c,\ n\in {\bf N}^*,$ 则 "存在 $k\in {\bf N}^*,$ 使得 $x_{100+k},x_{200+k},x_{300+k},$ 成等差数列"的一个必要条件是().
 - A. $a \ge 0$
- B. b < 0
- C. c = 0
- D. a 2b + c = 0
- 16. 在平面直角坐标系 xOy 中,已知椭圆 $C_1: \frac{x^2}{36} + \frac{y^2}{4} = 1$ 和 $C_2: x^2 + \frac{y^2}{9} = 1$. P 为 C_1 上的动点,Q 为 C_2 上的动点,W 是 $\overrightarrow{OP} \cdot \overrightarrow{OQ}$ 的最大值. 记 $\Omega = \{(P,Q)|P$ 在 C_1 上,Q在 C_2 上,且 $\overrightarrow{OP} \cdot \overrightarrow{OQ} = w\}$,则 Ω 中的元素有 ().
 - A. 2 个

B. 4 个

C. 8 个

- D. 无穷个
- 17. 如图, 直三棱柱 $ABC A_1B_1C_1$ 的底面为直角三角形, 两直角边 AB 和 AC 的长分别为 4 和 2, 侧棱 AA_1 的长为 5.
 - (1) 求三棱柱 $ABC A_1B_1C_1$ 的体积;
 - (2) 设 M 是 BC 中点, 求直线 A_1M 与平面 ABC 所成角的大小.

- 18. 已知函数 $f(x) = \cos^2 x \sin^2 x + \frac{1}{2}, \ x \in (0, \pi).$
 - (1) 求 f(x) 的单调递增区间;
 - (2) 设 $\triangle ABC$ 为锐角三角形, 角 A 所对的边 $a = \sqrt{19}$, 角 B 所对的边 b = 5, 若 f(A) = 0, 求 $\triangle ABC$ 的面 积.
- 19. 根据预测, 某地第 n $(n \in \mathbb{N}^*)$ 个月共享单车的投放量和损失量分别为 a_n 和 b_n (单位: 辆), 其中 a_n = $1 \le n \le 3$, $b_n = n + 5$, 第 n 个月底的共享单车的保有量是前 n 个月的累计投放量与累计损

失量的差.

- (1) 求该地区第 4 个月底的共享单车的保有量;
- (2) 已知该地共享单车停放点第 n 个月底的单车容纳量 $S_n = -4(n-46)^2 + 8800(单位: 辆). 设在某月底, 共$ 享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?
- 20. 在平面直角坐标系 xOy 中,已知椭圆 Γ : $\frac{x^2}{4}+y^2=1$,A 为 Γ 的上顶点,P 为 Γ 上异于上、下顶点的动点. M 为 x 正半轴上的动点.
 - (1) 若 P 在第一象限, 且 $|OP| = \sqrt{2}$, 求 P 的坐标;
- 21. 设定义在 R 上的函数 f(x) 满足: 对于任意的 $x_1, x_2 \in \mathbb{R}$, 当 $x_1 < x_2$ 时, 都有 $f(x_1) \le f(x_2)$.
 - (1) 若 $f(x) = ax^3 + 1$, 求 a 的取值范围;
 - (2) 若 f(x) 是周期函数, 证明: f(x) 是常值函数;
 - (3) 设 f(x) 恒大于零. g(x) 是定义在 R 上的、恒大于零的周期函数, M 是 g(x) 的最大值. 函数 h(x) = f(x)g(x). 证明: "h(x) 是周期函数"的充要条件是"f(x) 是常值函数".