60-265-01 Project

by Kim Ficara (104491133) and Zach Shaver (104425444)

1) Implementation

This circuit will take a 4-bit binary number as input and convert it and display as gray code, then convert and display as BCD and 7-segment. It can be very easily expanded to any number of bits.

<u>Assumptions</u>

Gray Code:
$$W \times Y \times Z$$
 $(MSB) \times Y \times Z$
 (LSB)

BCD: $B_3 B_2 B_1 B_0$
 $(MSB) \times Z \times Z$
 $(LSB) \times Z$
 $(LSB) \times Z \times Z$
 $(LSB) \times Z$
 $($

This circuit is built for an assumed 4-bit binary input. A 4-bit binary number (1111) produces a 4 bit gray code (1000). which is converted to 5 bit BCD number (1 0101), which produces a 2 digit 7-segment display. If we want a larger amount of bits, we just need to increase the size of the decoder and priority encoder, as well as repeat the MUX arrays for each additional bit or digit produced.

2) Circuit Design

Circuit Design Choices

To satisfy the requirements of the project, we have drawn k-maps and found minimized expressions for a circuit that converts Binary to Grey Code & 7 Segment display. However, our final circuit uses only multiplexers, decoders and encoders to meet the bonus requirement. Skip to page 5 for the final circuit design.

<u>Initial Truth Tables for a Hard-coded Design using Gates</u>

		INP	UTS										OUTF	PUTS								
		Bin	ary			Gray	Code							7 S	egmei	nt (2 d	igit)					
											L	eft dig	it					Ri	ight di	git		
Dec.	Α	В	С	D	W	Х	Υ	Z	$\mathbf{a}_{_1}$	$\mathbf{b_1}$	C ₁	d_1	e ₁	f ₁	$g_{_1}$	$\mathbf{a}_{\scriptscriptstyle 0}$	b _o	C ₀	d_{o}	$\mathbf{e}_{\scriptscriptstyle{0}}$	f ₀	g_{o}
0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	1	1	1	1	1	0
1	0	0	0	1	0	0	0	1	1	1	1	1	1	1	0	0	1	1	0	0	0	0
2	0	0	1	0	0	0	1	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1
3	0	0	1	1	0	0	1	0	1	1	1	1	1	1	0	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	1	1	1	1	1	1	0	0	1	1	0	0	1	1
5	0	1	0	1	0	1	1	1	1	1	1	1	1	1	0	1	0	1	1	0	1	1
6	0	1	1	0	0	1	0	1	1	1	1	1	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	0	1	0	0	1	1	1	1	1	1	0	1	1	1	0	0	0	0
8	1	0	0	0	1	1	0	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	0	0	1	1
10	1	0	1	0	1	1	1	1	0	1	1	0	0	0	0	1	1	1	1	1	1	0
11	1	0	1	1	1	1	1	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0
12	1	1	0	0	1	0	1	0	0	1	1	0	0	0	0	1	1	0	1	1	0	1
13	1	1	0	1	1	0	1	1	0	1	1	0	0	0	0	1	1	1	1	0	0	1
14	1	1	1	0	1	0	0	1	0	1	1	0	0	0	0	0	1	1	0	0	1	1
15	1	1	1	1	1	0	0	0	0	1	1	0	0	0	0	1	0	1	1	0	1	1

Minterm Expressions:

Gray Code

W= Σ (8, 9, 10, 11, 12, 13, 14, 15)

X= Σ (4, 5, 6, 7, 8, 9, 10, 11)

 $Y = \Sigma (2, 3, 4, 5, 10, 11, 12, 13)$

Z= Σ (1, 2, 5, 6, 9, 10, 13, 14)

7 Segment

Left digit

 $\mathbf{a_1} = \Sigma (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)$

 $b_1 = 1$

 $c_1 = 1$

 $\mathbf{d_1} = \sum (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)$

 e_1 = Σ (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

 $\mathbf{f_1} = \Sigma (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)$

 $\mathbf{g_1} = 0$

Right digit

 \mathbf{a}_0 = Σ (0, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 15)

 $\mathbf{b}_0 = \Sigma (0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14)$

 $\mathbf{c_0} = \Sigma (0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15)$

 $\mathbf{d_0} = \Sigma (0, 2, 3, 5, 6, 8, 10, 12, 13, 15)$

 $e_0 = \Sigma (0, 2, 6, 8, 10, 12)$

 $\mathbf{f_0} = \Sigma (0, 4, 5, 6, 8, 9, 10, 14, 15)$

 $\mathbf{g_0} = \Sigma (2, 3, 4, 5, 6, 8, 9, 12, 13, 14, 15)$

K-Maps

7 Segment K-Maps

$\mathbf{a}_{_0}$				
AB\CD	00	01	11	10
00	1		1	1
01		1	1	1
11	1	1	1	
10	1	1		1

b _o				
AB\CD	00	01	11	10
00	1	1	1	1
01	1		1	
11	1	1		1
10	1	1	1	1

W				
AB\CD	00	01	11	10
00				
01				
11	1	1	1	1
10	1	1	1	1

Gray Code K-Maps

$\mathbf{c}_{_{0}}$				
AB\CD	00	01	11	10
00	1	1	1	
01	1	1	1	1
11		1	1	1
10	1	1	1	1

00	01	11	10
1		1	1
	1		1
1	1	1	
1			1
	1	1 1 1 1	1 1 1 1 1

X				
AB\CD	00	01	11	10
00				
01	1	1	1	1
11				
10	1	1	1	1

$\mathbf{e}_{_{0}}$				
AB\CD	00	01	11	10
00	1			1
01				1
11	1			
10	1			1

00	01	11	10
1			
1	1		1
		1	1
1	1		1
	1	1 1	1 1 1 1 1

Υ				
AB\CD	00	01	11	10
00			1	1
01	1	1		
11	1	1		
10			1	1

$\mathbf{g}_{\scriptscriptstyle{0}}$				
AB\CD	00	01	11	10
00			1	1
01	1	1		1
11	1	1	1	1
10	1	1		

Z				
AB\CD	00	01	11	10
00		1		1
01		1		1
11		1		1
10		1		1

$\mathbf{a}_{_1}$, d ₁ , e ₁ ,	f ₁		
AB\CD	00	01	11	10
00	1	1	1	1
01	1	1	1	1
11				
10	1	1		

$\mathbf{b}_{1}, \mathbf{c}_{1} = 1$	Always on
$g_1 = 0$	Always off

Simplified Expressions

Gray Code

$$W = A$$

$$X = A'B + AB' = A \oplus B$$

$$Y = BC' + B'C = B \oplus C$$

$$Z = C'D + CD' = C \oplus D$$

7 Segment

$$\{a_1, d_1, e_1, f_1\} = A' + B'C'$$

 $\{b_1, c_1\} = 1$
 $g_1 = 0$
 $a_0 = B'D' + AC' + A'C + BD$
 $b_0 = D' + AC' + C'D' + A'CD + ACD'$
 $c_0 = D + A'C' + A'B + AB' + AC$
 $d_0 = B'D' + AC'D' + ABD + BC'D + A'CD' + A'B'C$
 $e_0 = A'B'D' + AC'D' + AB'D' + A'CD'$
 $f_0 = A'C'D' + A'BC' + AB'C' + BCD' + ACD' + ABC$
 $g_0 = A'B'C + BD' + BC' + AC' + AB$

Final Circuit Design

To meet the bonus requirements, as well as make our circuit more flexible, we have decided to use a MUX/decoder/encoder only design instead of the circuit produced by the above K-maps.

Binary to Gray Code Converter

Using a multiplexer for each bit, binary is converted to gray code.

INPL	JTS		OUTPUTS											
Bina	ary		Gray Code											
				<u>ми</u> х		<u>MU</u> X		<u>ми</u> х		<u>ми</u> х				
В	С	D	W	F	Х	F	Υ	F	Z	F				
0	0	0	0	0	0	0	0	0	0	D				
0	0	1	0	U	0	"	0	U	1					
0	1	0	0	0	0	0	1	1	1	~D				
0	1	1	0	U	0	U	1		0	٦٦				
1	0	0	0	0	1	1	1	1	0	D				
1	0	1	0	U	1		1		1					
1	1	0	0	0	1	1	0	0	1	~D				
1	1	1	0	0	1	+	0	"	0					
0	0	0	1	1	1	1	0	0	0	D				
0	0	1	1		1		0	U	1	ש				
0	1	0	1	1	1	1	1	1	1					
0	1	1	1	1	1	1	1	1	0	~D				
1	0	0	1	1	0	0	1	1	0	D				
1	0	1	1	1	0	U	1		1					
1	1	0	1	1	0		0		1	- D				
1	1	1	1	1	0	0	0	0	0	~D				

Gray Code to BCD Decoder/Encoder

The gray code produced above is sent into a 4-16 decoder. Due to the way decoders work, the bits will be decoded as if the gray code was in regular binary form (d_0 =0000, d_1 =0001, ..., d_{14} =1110, d_{15} =1111). Then we use a priority encoder to "unscramble" the gray code. One 32-to-5 priority encoder is effectively used as two separate 16-4 encoders (one for each BCD number). The first 16 encoder inputs are used for first 9 decoded outputs, and the next 16 inputs are used for 10-19. In this way we can expand the decoder/encoder combination to however many bits we need, and the patterns stay the same.

4-to-16 Decoder:

	INP	UTS									OUT	PUTS							
	Gray	Code			Decoded Gray Code														
Α	В	С	D	d_{o}	d_{1}	d_2	d ₃	d_4	d ₅	d_6	d ₇	d ₈	d ₉	d ₁₀	d ₁₁	d ₁₂	d ₁₃	d ₁₄	d ₁₅
0	0	0	0	1															
0	0	0	1		1														
0	0	1	1				1												
0	0	1	0			1													
0	1	1	0							1									
0	1	1	1								1								
0	1	0	1						1										
0	1	0	0					1											
1	1	0	0													1			
1	1	0	1														1		
1	1	1	1																1
1	1	1	0															1	
1	0	1	0											1					
1	0	1	1												1				
1	0	0	1										1						
1	0	0	0									1							

32-to-5 Priority Encoder:

	INPUTS													OUTPUTS								
							Decod	ed Gra	ay Cod	е							Encoded BCD					
e ₂₁	e ₂₀	e ₁₉	e ₁₈	e ₁₇	e ₁₆	e ₁₅₋₁₀	\mathbf{e}_{9}	e ₈	e ₇	e ₆	e ₅	e ₄	e ₃	e ₂	e ₁	e _o	B_3	B_3	B_2	$B_{\scriptscriptstyle 1}$	\mathbf{B}_{0}	
						X										1	0	0	0	0	0	
						X									1	Χ	0	0	0	0	1	
						X								1	Х	Х	0	0	0	1	0	
						X							1	Х	Х	Х	0	0	0	1	1	
						X						1	Х	Х	Х	Х	0	0	1	0	0	
						X					1	Х	Χ	Х	Χ	Χ	0	0	1	0	1	
						X				1	Х	Х	Χ	Х	Χ	Х	0	0	1	1	0	
						X			1	Х	Х	Х	Χ	Х	Χ	Χ	0	0	1	1	1	
						X		1	Х	Х	Х	Х	Χ	Х	Χ	Χ	0	1	0	0	0	
						X	1	Х	Х	Х	Х	Х	Χ	Х	Χ	Χ	0	1	0	0	1	
					1	X	Χ	Χ	Х	Х	Х	Х	Χ	Х	Χ	Χ	1	0	0	0	0	
				1	Χ	X	Χ	Χ	Х	Х	X	X	Χ	X	Χ	Χ	1	0	0	0	1	
			1	Х	Χ	X	Χ	Χ	Х	Х	Х	Х	Χ	Х	Χ	Χ	1	0	0	1	0	
		1	Х	Χ	Х	X	Χ	Χ	Х	Х	Χ	Х	Х	Χ	Χ	Χ	1	0	0	1	1	
	1	Χ	Х	Χ	Х	X	Χ	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	1	0	1	0	0	
1	Х	Х	Х	Х	Χ	X	Χ	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	1	0	1	0	1	

From the decoder and encoder truth tables, connections are made as follows:

Do → Eo	D4 → E7	D8 → E21	D12 → E8
D1 → E1	D5 → E6	D9 → E20	D13 → E9
D2 → E3	D6 → E4	D10 → E18	D14 → E17
D3 → E2	D7 → E5	D11 → E19	D15 → E16

```
ex. Dec Gray Code BCD

0 D0 (0000) = E0 (00000)

. . .
2 D3 (0011) = E2 (00010)

. . .
13 D11 (1011) = E19 (10011)

. . .
```

BCD to 7-Segment Converter

Using a multiplexer for each bit, the BCD is converted to 7 segment display. The exact same design is used for each additional digit. Since there are 5 bits of BCD for 4 bits of grey code, the four least significant BCD bits produce the 10° digit, and the MSB (B4) becomes the LSB for the next digit (10¹) and is padded with zeros (labelled "Unused BCD" in circuit). If there are more BCD digits, there is simply less padding but the design is the same; the LSB is used as the data bit for the MUXs.

	INP	JTS		OUTPUTS													
	Bin	ary			7 Segment												
					<u>м и</u> х		<u>ми</u> х		<u>ми</u> х		<u>ми</u> х		<u>ми</u> х		<u>ми</u> х		<u>м и</u> х
B_3	B ₂	B ₁	B ₀	$\mathbf{a}_{\scriptscriptstyle 0}$	F	$\mathbf{b_0}$	F	C ₀	F	d_0	F	e _o	F	f _o	F	$\mathbf{g}_{\scriptscriptstyle{0}}$	F
0	0	0	0	1	~B。	1	1	1	1	1	~R	1	~B ₀	1	~B。	0	0
0	0	0	1	0	0	1		1		0	~ B ₀	0	o	0	0	0	U
0	0	1	0	1	1	1	1	0	B _o	1	1	1	~B ₀	0	0	1	1
0	0	1	1	1	1	1			1		0	o	0	J	1	_	
0	1	0	0	0	B _o	1	~B₀	1	1	0	B₀	0	0	1	1	1	1
0	1	0	1	1	0	0	0 1	1		1	o o	0	U	1		1	
0	1	1	0	1	1	0	B _o	1	1	1	~B₀	1	~B ₀	1	~B ₀	1	~B ₀
0	1	1	1	1		1	0	1		0	0	0	0	0	D ₀	0	0
1	0	0	0	1	1	1	1	1	1	1	~B₀	1	~B ₀	1	1	1	1
1	0	0	1	1		1		1		0	٥	0	<u>_</u>	1		1	
Χ	Χ	Χ	Χ	Х		Х		Х		Χ		Х		Х		Х	

3) Circuit Diagram

Below are snapshots of the final implementation of our circuit. The first is Logisim's exported image, and the second is a "print screen" of the circuit in action – displaying a 14 in gray code, BCD and 7-segment – with some added colour to highlight the functional areas outlined above. A copy of the circuit file for Logisim is attached (Bin-to-GC-to-BCD-to-7seg Logisim.circ), so that it may be tested.

Operation of circuit:

A binary number is input from the user in the top left of the circuit. Logical constants of 1 and 0 are also sent in for use by multiplexers. Multiplexers convert this input to a gray code, which is displayed by LEDs located center-top.

The gray code is split off to a decoder/encoder to be converted to a higher bit BCD number. This BCD number is displayed by LEDs located bottom-right.

Each BCD (4-bit) number is then sent to multiplexers to be converted to a 7-segment display. If there are less than 4 BCD digits, they are padded with o's for the MUX selection. The combined 7-segment number is displayed in the bottom-left.

