Vehicle Energy Capture

By: Mason Ciari, Trey Gohlmann, Shawn Laikupu, Roman West

Introduction

• Harness energy from turbulent flow around moving vehicles

Background

- Every Vehicle Experience Drag
 - Avg. Drag Coefficient is .4 for modern vehicles
 - Rear and Front
 - Turbulent and Laminar
- Aerodynamics of the Vehicle
 - o Impacts Factors such as grip, stability, handling, efficiency, etc.

Objective Tree

<u>Problem</u>: Cars waste energy as they move and push through air

Why it matters: This limits how far they can go and makes cars bigger to hold batteries

<u>Solution</u>: Put a wind turbine inside the car to catch fast-moving air

<u>Goals</u>: Make the car use less energy and create extra electricity

<u>How</u>: Guide air smoothly through the car and use a smart fan design

Results: Less air drag, more power made, and longer driving range

Testing Method

Two Parts

- 1. Test turbine blades and designs
- 2. Test selected turbine system on a moving RC Car

Turbine Background and Designs

Multi-blade turbine

Toroidal turbine

Vertical turbine

What do we want in a fan?

- Blade length
- Surface area
- Blade count 3-5
- Low noise generation

Data Collection Instruments

- Adafruit INA219
- Raspberry Pi
 - Hotspot SSH Capabilities
- PiSugar S Plus

Python Code Aspects

- Utilized libraries:
 - Adafruit_ina219 (Sensor Reading)
 - Openpyxl (Excel Recording)
 - Busio/Board (I2C Configuration)
 - DateTime/Time (1 hz)
 - OS (Save File)
- 12C bus configuration.
- ADC Resolution Configuration (32 samples of 12 bits)
- Calibration: match voltage and current from a DC power supply
- Repeat for 10 min:
 - Read sensor data
 - Write and display sensor data
 - Pause so the whole process takes 1 sec
- Save file, and close

```
wb.save(filepath)
ws - wb.create sheet(title-sheet name)
   for timestamp in range(600): #roughly 10 min
       rcVoltage = abs(rcSensor.bus voltage - 0.872)*10
       rcCurrent = abs(rcSensor.current/3500)
       rcPower - rcVoltage * rcCurrent
       genVoltage = abs(genSensor.bus voltage - 0.868)*10
        genCurrent = abs(genSensor.current/1000)
       genPower = genVoltage*genCurrent
       print("Timestamp: ",timestamp)
       print("Voltage: {:6.3f}V".format(genVoltage), "Current: {:7.4f}A".format(genCurrent), "Power: {:6.3f}W".format(genPower)
       ws.append([timestamp,rcVoltage,rcCurrent,rcPower,"",genVoltage,genCurrent,genPower])
       time.sleep(0.25)
```

Design Specifications

Final Generator Mount

- Toroidal Fan designEnclosed
 - Enclosed tips
 - 5 blades
 - Propulsion
 - Inertial rotation

Attachable Generator Mount

Mounting Specifications

Final Holding Concept

Elastic Holding Concept

Protective Design Specifications

Original Raspberry Casing

Redesign Raspberry Pi Casing

Electrical Specifications

Ideal Electrical Diagram

Physical Testing Electrical Diagram

Design Changes and Challenges

- Securing to the Platform
- Raspberry Pi Holder
- Existing RC Car Structure
- Motor Stalling
 - Resistor blown on INA 219
- Testing in Real Conditions

Results: Baseline

Category	RC Voltage	RC Current (Amps)	RC Power (watt*second)
Average	3.1440	0.4564	1.5775
Standard Deviation	1.8547	0.3843	1.6853
95% CI (-)	-0.5653	-0.3122	-1.7930
95% CI (+)	6.8533	1.2249	4.9481

RC Car without Turbine Assembly, Low Power

Category	RC Voltage	RC Current (Amps)	RC Power (watt*second)
Average	3.0987	0.4920	1.6021
Standard Deviation	1.7024	0.3842	1.6174
95% CI (-)	-0.3061	-0.2764	-1.6326
95% CI (+)	6.5036	1.2603	4.8369

RC Car without Turbine Assembly, High Power

Results: With Turbine Assembly

		RC Current	RC Power		Fan Current	Fan Power
Category	RC Voltage	(Amps)	(watt*second)	Fan Voltage	(Amps)	(watts*second)
Average	3.4108	0.5021	1.8136	1.0705	0.1508	0.1619
Standard Dev	1.8833	0.3799	1.7416	0.3925	0.0079	0.0606
95% CI (-)	-0.3558	-0.2577	-1.6696	0.2855	0.1350	0.0406
95% CI (+)	7.1775	1.2619	5.2968	1.8555	0.1666	0.2831
Efficiency (Fan Input/RC Output)=	8.9253%					

		RC Current	RC Power		Fan Current	Fan Power
Category	RC Voltage	(Amps)	(watt*second)	Fan Voltage	(Amps)	(watts*second)
Average	4.1274	0.8851	3.6504	1.9055	0.2252	0.4262
Standard Dev	0.6207	0.0552	0.5847	0.6423	0.0149	0.1334
95% CI (-)	2.8861	0.7746	2.4810	0.6209	0.1953	0.1593
95% CI (+)	5.3688	0.9956	4.8199	3.1901	0.2551	0.6931
Efficiency (Fan Input/RC Output)=	11.6752%					

Overall Results

- 3.65 1.6 = 2.05 watts, an increase in power due to drag
- .43/2.05 = 0.21, 21% returned from the turbine
- Consumer Point of View:
 - o 3.65 0.43 = 3.22
 - 1.6/3.22 = 0.497
- Turbine was a successful in capturing energy from turbulent air
- Turbine failed to produce enough power for consumer market

Future Improvements

- Testing with actual vehicle designs
 - Electric vehicles
- Increase in scale
- Testing using realistic conditions
 - Increase in speed
 - Natural winds
 - Difference in terrains

Bill of Materials

- Cost Per Unit: \$206.49
- Initial Budget \$500

EGR Capstone: Scale RC Car Model						
Item	Qty.	PP Qty.	Vendor	Total Cost (USD)		
Hatchbox 3D Filament 1kg	345g	\$25.99	Amazon	\$8.97		
Auoshi RC Car	1	\$89.99	Walmart	\$89.99		
Raspberry Pi Gen 3	1	\$47.85	Amazon	\$47.85		
Hp Deskjet 5550 Carriage Assembly Motor	1	\$9.99	Missingcord	\$9.99		
PiSugar S Plus Portable Battery	1	\$29.99	Amazon	\$29.99		
USB Thumb Drive	1	\$6.99	Amazon	\$6.99		
Notebook M2*8 Screws	8	\$0.02	Amazon	\$0.16		
HiLetgo INA219 Sensor Module x2	1	\$8.19	Amazon	\$8.19		
Socket Cap 8-32 Screw	4	\$0.23	Bolt Depot	\$0.92		
Hex Nuts 8-32	4	\$0.07	Bolt Depot	\$0.28		
Washer	8	\$0.07	Bolt Depot	\$0.56		
Machine Screws 10-32 1/8"	8	\$0.12	Bolt Depot	\$0.96		
½" Magnets	4	\$15.99	Amazon	\$1.28		
24-gauge wire	4ft	\$8.99	Amazon	\$0.36		
*	Total Cost Per Unit					

Assembly

Questions