

Derivation of Two-Dimensional (2-D) Conduction Equation in Generalized Coordinates With Constant and Anisotropic Physical Properties

Paul J. Conroy

ARL-MR-219 May 1995

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute endorsement of any commercial product.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blan	k) 2. REPORT DATE May 1995	3. REPORT TYPE AND DATE Final, January 1993-Au		
4. TITLE AND SUBTITLE		5. FU	NDING NUMBERS	
	nal (2-D) Conduction Equation Anisotropic Physical Properties	s	: 1L162618A1FL	
6. AUTHOR(S)				
Paul J. Conroy				
7. PERFORMING ORGANIZATION NA	AME(S) AND ADDRESS(ES)		RFORMING ORGANIZATION PORT NUMBER	
U.S. Army Research Laborator ATTN: AMSRL-WT-PA	у		RL-MR-219	
Aberdeen Proving Ground, MI	21005-5066			
9. SPONSORING/MONITORING AGE	NCY NAME(S) AND ADDRESS(ES)		ONSORING/MONITORING SENCY REPORT NUMBER	
11. SUPPLEMENTARY NOTES				
12a. DISTRIBUTION / AVAILABILITY	STATEMENT	12b. C	DISTRIBUTION CODE	
Approved for public release; di	istribution is unlimited.			
13. ABSTRACT (Maximum 200 word	(s)			
The purpose of this paper is to provide a working report for potential future modifications to existing heat conduction codes. A generalized form of the two-dimensional (2-D) arbitrary geometry axisymmetric heat conduction equation has been derived from first principles. This has been further generalized by allowing nonidealized anisotropic behavior of the material properties.				
14. SUBJECT TERMS			15. NUMBER OF PAGES	
heat conduction, potential functi transformations (mathematics)	ion, variable properties, arbitrary	geometry, heat transfer,	23 16. PRICE CODE	
	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION	20. LIMITATION OF ABSTRACT	
OF REPORT UNCLASSIFIED	OF THIS PAGE UNCLASSIFIED	OF ABSTRACT UNCLASSIFIED	UL	

ACKNOWLEDGMENT

Appreciation is given to Mr. Nathan Gerber, U.S. Army Research Laboratory (ARL), for his explanation of the variable property form of the energy storage term.

TABLE OF CONTENTS

		Page
	ACKNOWLEDGMENT	iii
1.	INTRODUCTION	1
2.	DERIVATION OF 2-D HEAT CONDUCTION EQUATION	1
3.	TRANSFORMATION TO GENERALIZED COORDINATES	3
4.	DERIVATION OF 2-D AXISYMMETRIC ARBITRARY GEOMETRY CONDUCTION EQUATION FOR ANISOTROPIC MATERIALS	8
5.	SUMMARY	11
	DISTRIBUTION LIST	13

INTENTIONALLY LEFT BLANK.

1. INTRODUCTION

This report concerns the derivation of the two-dimensional (2-D) heat conduction equation in generalized axisymmetric coordinates for both constant and nonidealized anisotropic material properties. The purpose of this report is to provide a working paper for potential future modifications to existing heat conduction codes.

2. DERIVATION OF 2-D HEAT CONDUCTION EQUATION

Beginning with a control volume description in normal coordinates as shown in Figure 1 and applying the typical Taylor series expansion to Fourier's heat conduction law over the control volume enables one to preform the energy balance. The cross-sectional areas and volume of the control volume in the axisymmetric coordinate system are

Figure 1. Energy balance control volume.

$$dA_r = rd\theta dz$$
,

$$dA_z = rd\theta dr$$
,

$$dV = rd\theta drdz . (1)$$

Balancing the energy produces the cylindrical heat conduction equation through the following steps.

Balancing the stored energy with the difference in the flux across the boundaries produces

$$dV \frac{\partial u}{\partial t} = kdA_{r} \frac{\partial T}{\partial r} + kdA_{z} \frac{\partial T}{\partial z} - kdA_{z} \frac{\partial T}{\partial z} - kdA_{r} \frac{\partial T}{\partial r}$$

$$- \frac{\partial}{\partial r} \left(-kdA_{r} \frac{\partial T}{\partial r} \right) dr - \frac{\partial}{\partial r} \left(-kdA_{z} \frac{\partial T}{\partial z} \right) dz ,$$

$$= \frac{\partial}{\partial r} \left(krd\theta dz \frac{\partial T}{\partial r} \right) dr + \frac{\partial}{\partial z} \left(krd\theta dr \frac{\partial T}{\partial z} \right) dz ,$$

$$= \frac{\partial}{\partial r} \left(krd\theta dz \right) \left(\frac{\partial T}{\partial r} \right) dr + krd\theta dz dr \frac{\partial^{2} T}{\partial r^{2}}$$

$$+ \frac{\partial}{\partial z} \left(krd\theta dr \right) \left(\frac{\partial T}{\partial z} \right) dz + krd\theta dr dz \frac{\partial^{2} T}{\partial z^{2}} , \qquad (2)$$

where

$$\frac{\partial U}{\partial t} = \frac{\partial U}{\partial T} \frac{\partial T}{\partial t} = \rho C_p \frac{\partial T}{\partial t} . \tag{3}$$

Assuming constant properties reduces this to

$$\rho C_{p} d\theta dz dr \frac{\partial T}{\partial t} = k d\theta dz dr \left(\frac{\partial T}{\partial r}\right) dr + k r d\theta dz dr \frac{\partial^{2} T}{\partial r^{2}} + k r d\theta dr dz \frac{\partial^{2} T}{\partial z^{2}}.$$
 (4)

Dividing through by kdV produces the familiar constant property cylindrical heat conduction equation

$$\frac{1}{\alpha} \frac{\partial \Gamma}{\partial t} = \frac{1}{r} \frac{\partial \Gamma}{\partial r} + \frac{\partial^2 \Gamma}{\partial r^2} + \frac{\partial^2 \Gamma}{\partial z^2}, \qquad (5)$$

where the diffusivity, α , is

$$\alpha = \frac{k}{\rho C_p} \,. \tag{6}$$

3. TRANSFORMATION TO GENERALIZED COORDINATES

Transformation of the orthogonal cylindrical coordinate system to a more generalized coordinate system with body geometry included is preformed to allow for a body-contoured grid scheme while maintaining orthogonality for computational purposes. Demonstrated in Figure 2 is a generalized axisymmetric body with global coordinate system of r and z as well as the local body coordinate system of η and ξ . The inner and outer surfaces are defined by $R_i(z)$ and $R_o(z)$ respectively.

Figure 2. General axisymmetric body.

The transformations from r, z, θ , to η, ξ, ϕ are

$$\eta = \frac{r - R_i(z)}{R_o(z) - R_i(z)}, \qquad (7)$$

$$\xi = z \tag{8}$$

and

$$\phi = \theta . \tag{9}$$

The local thickness of the body is represented as

$$tk = R_0(z) - R_i(z)$$
 (10)

Writing out the chain rule for each of the diffusion terms of equation (5) in the transformed region with Ψ being a scaler potential function (for instance, temperature is a scaler potential function) produces the following terms:

$$\frac{\partial \Psi}{\partial r} = \frac{\partial \Psi}{\partial \eta} \frac{\partial \eta}{\partial r} + \frac{\partial \Psi}{\partial \xi} \frac{\partial \xi}{\partial r} , \qquad (11)$$

$$\frac{\partial \Psi}{\partial z} = \frac{\partial \Psi}{\partial \eta} \frac{\partial \eta}{\partial z} + \frac{\partial \Psi}{\partial \xi} \frac{\partial \xi}{\partial z} , \qquad (12)$$

$$\frac{\partial^{2}\Psi}{\partial r^{2}} = \frac{\partial}{\partial r} \left(\frac{\partial \Psi}{\partial \eta} \frac{\partial \eta}{\partial r} \right) + \frac{\partial}{\partial r} \left(\frac{\partial \Psi}{\partial \xi} \frac{\partial \xi}{\partial r} \right)
= \frac{\partial^{2}\eta}{\partial r^{2}} \frac{\partial \Psi}{\partial \eta} + \frac{\partial \eta}{\partial r} \frac{\partial}{\partial r} \left(\frac{\partial \Psi}{\partial \eta} \right) + \frac{\partial \Psi}{\partial \xi} \frac{\partial^{2}\xi}{\partial r^{2}} + \frac{\partial \xi}{\partial r} \frac{\partial}{\partial r} \left(\frac{\partial \Psi}{\partial \xi} \right)
= \frac{\partial^{2}\eta}{\partial r^{2}} \frac{\partial \Psi}{\partial \eta} + \left(\frac{\partial \eta}{\partial r} \right)^{2} \frac{\partial^{2}\Psi}{\partial \eta^{2}} + \frac{\partial \eta}{\partial r} \frac{\partial \xi}{\partial r} \frac{\partial}{\partial \xi} \left(\frac{\partial \Psi}{\partial \eta} \right) + \frac{\partial \Psi}{\partial \xi} \frac{\partial^{2}\xi}{\partial r^{2}}
+ \left(\frac{\partial \xi}{\partial r} \right)^{2} \frac{\partial^{2}\Psi}{\partial \xi^{2}} + \frac{\partial \eta}{\partial r} \frac{\partial \xi}{\partial r} \frac{\partial}{\partial \eta} \left(\frac{\partial \Psi}{\partial \xi} \right), \tag{13}$$

$$\frac{\partial^{2}\Psi}{\partial z^{2}} = \frac{\partial}{\partial z} \left(\frac{\partial \Psi}{\partial \eta} \frac{\partial \eta}{\partial z} \right) + \frac{\partial}{\partial z} \left(\frac{\partial \Psi}{\partial \xi} \frac{\partial \xi}{\partial z} \right)
= \frac{\partial^{2}\eta}{\partial z^{2}} \frac{\partial \Psi}{\partial \eta} + \frac{\partial \eta}{\partial z} \frac{\partial}{\partial z} \left(\frac{\partial \Psi}{\partial \eta} \right) + \frac{\partial \Psi}{\partial \xi} \frac{\partial^{2}\xi}{\partial z^{2}} + \frac{\partial \xi}{\partial z} \frac{\partial}{\partial z} \left(\frac{\partial \Psi}{\partial \xi} \right)
= \frac{\partial^{2}\eta}{\partial z^{2}} \frac{\partial \Psi}{\partial \eta} + \left(\frac{\partial \eta}{\partial z} \right)^{2} \frac{\partial^{2}\Psi}{\partial \eta^{2}} + \frac{\partial \eta}{\partial z} \frac{\partial \xi}{\partial z} \frac{\partial}{\partial \xi} \left(\frac{\partial \Psi}{\partial \eta} \right) + \frac{\partial \Psi}{\partial \xi} \frac{\partial^{2}\xi}{\partial z^{2}}
+ \left(\frac{\partial \xi}{\partial z} \right)^{2} \frac{\partial^{2}\Psi}{\partial \xi^{2}} + \frac{\partial \eta}{\partial z} \frac{\partial \xi}{\partial z} \frac{\partial}{\partial \eta} \left(\frac{\partial \Psi}{\partial \xi} \right).$$
(14)

The following simplifications are used to reduce the transformed terms

$$\frac{\partial \eta}{\partial r} = \frac{1}{tk} \,, \tag{15}$$

$$\frac{\partial \xi}{\partial r} = 0 , \qquad (16)$$

$$\frac{\partial^2 \eta}{\partial r^2} = 0$$

$$\frac{\partial \eta}{\partial z} = 1 , \qquad (17)$$

$$\frac{\partial \eta}{\partial z} = -\frac{1}{tk} \left(\frac{dR_i}{dz} + \eta \frac{d(tk)}{dz} \right), \tag{18}$$

$$\frac{\partial^2 \eta}{\partial z^2} = \frac{L}{tk^2} \frac{d(tk)}{dz}$$

$$-\frac{1}{tk} \left(\frac{d^2 R_i}{dz^2} + \eta \frac{d^2(tk)}{dz^2} - \frac{L}{tk} \frac{d(tk)}{dz} \right). \tag{19}$$

For consolidation, let

$$L = \left(\frac{dR_i}{dz} + \eta \frac{d(tk)}{dz}\right). \tag{20}$$

Substituting the previous terms into equations (11) through (14) results in the following transformed diffusion terms:

$$\frac{\partial \Psi}{\partial r} = \frac{1}{tk} \frac{\partial \Psi}{\partial n} , \qquad (21)$$

$$\frac{\partial^2 \Psi}{\partial r^2} = \frac{1}{tk^2} \frac{\partial^2 \Psi}{\partial \eta^2} \,, \tag{22}$$

$$\frac{\partial \Psi}{\partial z} = \frac{\partial \Psi}{\partial \xi} - \frac{L}{tk} \frac{\partial \Psi}{\partial \eta},$$

$$\frac{\partial^2 \Psi}{\partial z^2} = \frac{\partial^2 \Psi}{\partial \xi^2} + \frac{d}{dz} \left(\frac{-L}{tk} \right) \left(\frac{\partial \Psi}{\partial \eta} \right)$$

$$+ \frac{L^2}{tk^2} \frac{\partial^2 \Psi}{\partial \eta^2} - \frac{L}{tk} \left[\frac{\partial}{\partial \eta} \left(\frac{\partial \Psi}{\partial \xi} \right) + \frac{\partial}{\partial \xi} \left(\frac{\partial \Psi}{\partial \eta} \right) \right],$$
(23)

$$= \frac{\partial^{2}\Psi}{\partial\xi^{2}} + \frac{L}{tk^{2}} \frac{d(tk)}{dz} + \frac{-1}{tk} \left(\frac{d^{2}R_{i}}{dz^{2}} + \eta \frac{d^{2}(tk)}{dz^{2}} - \frac{L}{tk} \frac{d(tk)}{dz} \right) \frac{\partial\Psi}{\partial\eta} + \frac{L^{2}}{tk^{2}} \frac{\partial^{2}\Psi}{\partial\eta^{2}} - \frac{L}{tk} \left[\frac{\partial}{\partial\eta} \left(\frac{\partial\Psi}{\partial\xi} \right) + \frac{\partial}{\partial\xi} \left(\frac{\partial\Psi}{\partial\eta} \right) \right]. \tag{24}$$

Substituting diffusion terms, equations (21) through (24), into the original conduction equation results in the following transformed conduction equation with temperature as the potential function. This relation is valid for any arbitrary axisymmetric shape with constant material properties, where $0 \le \eta \le 1$.

$$\frac{1}{\alpha} \frac{\partial T}{\partial t} = \frac{\partial^{2}T}{\partial \xi^{2}} + \frac{L}{tk^{2}} \frac{d(tk)}{dz} \left(\frac{\partial T}{\partial \eta} \right)$$

$$- \frac{1}{tk} \left(\frac{d^{2}R_{i}}{dz^{2}} + \eta \frac{d^{2}(tk)}{dz^{2}} - \frac{L}{tk} \frac{d(tk)}{dz} \right) \frac{\partial T}{\partial \eta}$$

$$+ \frac{L^{2}}{tk^{2}} \frac{\partial^{2}T}{\partial \eta^{2}} - \frac{L}{tk} \left[\frac{\partial}{\partial \eta} \left(\frac{\partial T}{\partial \xi} \right) + \frac{\partial}{\partial \xi} \left(\frac{\partial T}{\partial \eta} \right) \right]$$

$$+ \frac{1}{tk^{2}} \frac{\partial^{2}T}{\partial \eta^{2}} + \frac{1}{tk \left((\eta)tk + R_{i} \right)} \frac{\partial T}{\partial \eta} . \tag{25}$$

Regrouping the right-hand side in terms of the temperature derivatives, replacing the variable, transforming ζ to Z, L, and noting that the cross derivatives are the same for a well-behaved function leaves the following (relatively) concise form

$$\frac{1}{\alpha} \frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial z^2}$$

$$- \frac{1}{tk} \left(\frac{d^2 R_i}{dz^2} + \eta \frac{d^2(tk)}{dz^2} - \frac{2}{tk} \left(\frac{dR_i}{dz} + \eta \frac{d(tk)}{dz} \right) \frac{d(tk)}{dz} - \frac{1}{\left((\eta)tk + R_i\right)} \right) \frac{\partial T}{\partial \eta}$$

$$+ \frac{1}{tk^2} \left(1 + \left(\frac{dR_i}{dz} + \eta \frac{d(tk)}{dz} \right)^2 \right) \frac{\partial^2 T}{\partial \eta^2} - \frac{2}{tk} \left(\frac{dR_i}{dz} + \eta \frac{d(tk)}{dz} \right) \frac{\partial}{\partial \eta} \left(\frac{\partial T}{\partial z} \right). \tag{26}$$

This function is valid for both normal axisymmetric geometries in which the superfluous terms drop out as well as arbitrary axisymmetric geometries.

4. DERIVATION OF 2-D AXISYMMETRIC ARBITRARY GEOMETRY CONDUCTION EQUATION FOR ANISOTROPIC MATERIALS

Equation 1, rewritten here, is general enough to use as the starting point for this derivation.

$$dV \frac{\partial U}{\partial t} = \frac{\partial}{\partial r} \left((krd\theta dz) \frac{\partial T}{\partial r} \right) dr + krd\theta drdz \frac{\partial^2 T}{\partial r^2} + \frac{\partial}{\partial z} \left((krd\theta dr) \frac{\partial T}{\partial z} \right) dz + kd\theta drdz \frac{\partial^2 T}{\partial z^2}, \qquad (27)$$

The principle difference from the previous derivation is that now the conductivity is functionally dependent, which disallows it to be simply pulled out of the spacial derivatives. Expanding the newly dependent portions of the diffusion terms reveals the difference,

$$\frac{\partial}{\partial z} \left(kr d\theta dz \right) = r d\theta dz \frac{\partial k}{\partial z} ,$$

$$\frac{\partial}{\partial r} \left(kr d\theta dz \right) = r d\theta dz \frac{\partial k}{\partial r} + k d\theta dz . \tag{28}$$

The conductivity could be assumed to be only temperature dependent at this point and the chain rule applied to transform the spacial gradients of the conductivity to temperature gradients. This would enable some simplification but may reduce the generality and treatable anisotropic behavior of certain materials. Generality will be maintained by directly substituting these terms into equation (27) without the aforementioned assumption which results in

$$rd\theta drdz \frac{\partial U}{\partial T} \frac{\partial T}{\partial t} = \left(rd\theta dz \frac{\partial k}{\partial r} + kd\theta dz \right) \left(\frac{\partial T}{\partial r} \right) dr + krd\theta drdz \frac{\partial^2 T}{\partial r^2} + rd\theta dr \frac{\partial k}{\partial z} \frac{\partial T}{\partial z} dz + kd\theta drdz \frac{\partial^2 T}{\partial z^2}.$$
(29)

Dividing through by the volume and the conductivity leaves

$$\frac{\rho C_p}{k} \frac{\partial T}{\partial t} = \frac{1}{k} \frac{\partial k}{\partial r} \frac{\partial T}{\partial r} + \frac{1}{k} \frac{\partial k}{\partial z} \frac{\partial T}{\partial z} + \frac{\partial^2 T}{\partial z^2} + \frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r}.$$
 (30)

This is essentially the same function as before except for the obvious addition of the first two terms on the right-hand side. Transforming these terms into generalized coordinates requires the use of the derivatives defined in the previous section

$$\frac{\partial k}{\partial r} \frac{\partial T}{\partial r} = \left(\frac{1}{ik}\right)^2 \frac{\partial k}{\partial \eta} \frac{\partial T}{\partial \eta} ,$$

and

$$= \left(\frac{L}{ik}\right)^2 \frac{\partial k}{\partial \eta} \frac{\partial T}{\partial \eta} + \frac{\partial k}{\partial \xi} \frac{\partial T}{\partial \xi} - \frac{L}{ik} \left(\frac{\partial k}{\partial \xi} \frac{\partial T}{\partial \eta} + \frac{\partial k}{\partial \eta} \frac{\partial T}{\partial \xi}\right). \tag{31}$$

Inserting these terms transformed using equation (8) into the right-hand side of equation (26) produces the following generalized 2-D axisymmetric conduction equation with variable physical properties

$$\frac{1}{\alpha} \frac{\partial T}{\partial t} = \frac{\partial^{2}T}{\partial z^{2}} + \frac{L}{tk^{2}} \frac{d(tk)}{dz} \left(\frac{\partial T}{\partial \eta}\right)$$

$$- \frac{1}{tk} \left(\frac{d^{2}R_{i}}{dz^{2}} + \eta \frac{d^{2}(tk)}{dz^{2}} - \frac{L}{tk} \frac{d(tk)}{dz}\right) \frac{\partial T}{\partial \eta}$$

$$+ \left(\frac{L}{tk}\right)^{2} \frac{\partial^{2}T}{\partial \eta^{2}} - \frac{L}{tk} \left[\frac{\partial}{\partial \eta} \left(\frac{\partial T}{\partial z}\right) + \frac{\partial}{\partial z} \left(\frac{\partial T}{\partial \eta}\right)\right]$$

$$+ \left(\frac{1}{tk}\right)^{2} \frac{\partial^{2}T}{\partial \eta^{2}} + \frac{1}{tk(\eta)tk + R_{i}} \frac{\partial T}{\partial \eta}$$

$$+ \left(\frac{L}{tk}\right)^{2} \frac{\partial k}{\partial \eta} \frac{\partial T}{\partial \eta} + \frac{\partial k}{\partial z} \frac{\partial T}{\partial z} - \frac{L}{tk} \left(\frac{\partial k}{\partial z} \frac{\partial T}{\partial \eta} + \frac{\partial k}{\partial \eta} \frac{\partial T}{\partial z}\right). \tag{32}$$

Substituting in L and regrouping produces

$$\begin{split} &\frac{1}{\alpha} \frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial z^2} \\ &- \frac{1}{tk} \left(\frac{d^2 R_i}{dz^2} + \eta \frac{d^2(tk)}{dz^2} - \frac{2}{tk} \left(\frac{dR_i}{dz} + \eta \frac{d(tk)}{dz} \right) \frac{d(tk)}{dz} - \frac{1}{\left((\eta)tk + R_i \right)} \right) \frac{\partial T}{\partial \eta} \\ &+ \frac{1}{tk^2} \left(1 + \left(\frac{dR_i}{dz} + \eta \frac{d(tk)}{dz} \right)^2 \right) \frac{\partial^2 T}{\partial \eta^2} - \frac{2}{tk} \left(\frac{dR_i}{dz} + \eta \frac{d(tk)}{dz} \right) \frac{\partial}{\partial \eta} \left(\frac{\partial T}{\partial z} \right) + \frac{\partial k}{\partial z} \frac{\partial T}{\partial z} \\ &+ \frac{1}{tk^2} \left(\frac{dR_i}{dz} + \eta \frac{d(tk)}{dz} \right)^2 \frac{\partial k}{\partial \eta} \frac{\partial T}{\partial \eta} - \frac{1}{tk} \left(\frac{dR_i}{dz} + \eta \frac{d(tk)}{dz} \right) \left(\frac{\partial k}{\partial z} \frac{\partial T}{\partial \eta} + \frac{\partial k}{\partial \eta} \frac{\partial T}{\partial z} \right). \end{split}$$
(33)

It is understood that the conductivity k and the specific heat are usually functions of temperature. However, given new material processing practices, gradient or grossly anisotropic properties may result. This form of the equation is general enough to handle either thermal or spacial deviations of the conductivity and specific heat.

5. SUMMARY

A generalized form of the 2-D arbitrary geometry axisymmetric heat conduction equation has been derived from first principles. This has been further generalized by allowing anisotropic and temperature dependent behavior of the material properties. The relation provided could be incorporated into current and future heat conduction models in ARL. Extension of this derivation to three dimensions requires the addition of the azimuthal spacial term and expanding, with proper substitutions similar to the radial terms.

INTENTIONALLY LEFT BLANK.

NO. OF COPIES ORGANIZATION

- 2 ADMINISTRATOR
 ATTN DTIC DDA
 DEFENSE TECHNICAL INFO CTR
 CAMERON STATION
 ALEXANDRIA VA 22304-6145
- 1 DIRECTOR
 ATTN AMSRL OP SD TA
 US ARMY RESEARCH LAB
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145
- 3 DIRECTOR
 ATTN AMSRL OP SD TL
 US ARMY RESEARCH LAB
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145
- 1 DIRECTOR
 ATTN AMSRL OP SD TP
 US ARMY RESEARCH LAB
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND

5 DIR USARL ATTN AMSRL OP AP L (305)

NO. OF COPIES	ORGANIZATION	NO. OF COPIES	ORGANIZATION
1	HQDA ATTN SARD TR MS K KOMINOS PENTAGON WASHINGTON DC 20310-0103	1	PM PEO ARMAMENTS ATTN AMCPM TMA TANK MAIN ARMAMENT SYSTEM PCNTY ARSNL NJ 07806-5000
1	HQDA ATTN SARD TR DR R CHAIT PENTAGON WASHINGTON DC 20310-0103	1	PM PEO ARMAMENTS ATTN AMCPM TMA 105 TANK MAIN ARMAMENT SYSTEM PCNTY ARSNL NJ 07806-5000
1	CHAIRMAN DOD EXPLOSIVES SAFETY BD HOFFMAN BLDG 1 RM 856 C 2461 EISENHOWER AVE ALEXANDRIA VA 22331-0600	1	PM PEO ARMAMENTS ATTN AMCPM TMA 120 TANK MAIN ARMAMENT SYSTEM PCNTY ARSNL NJ 07806-5000
1	HQS US ARMY MATERIEL CMD ATTN AMCICP AD M FISETTE 5001 EISENHOWER AVE ALEXANDRIA VA 22333-0001	1	PM PEO ARMAMENTS ATTN AMCPM TMA AS H YUEN TANK MAIN ARMAMENT SYSTEM PCNTY ARSNL NJ 07806-5000
1	US ARMY BMDS CMD ADVANCED TECHLGY CTR PO BOX 1500 HUNTSVILLE AL 35807-3801	2	CDR US ARMY ARDEC ATTN SMCAR CCH V C MANDALA E FENNELL PCNTY ARSNL NJ 07806-5000
1	OFC OF THE PRODUCT MGR ATTN SFAE AR HIP IP MR R DE KLEINE 155MM HOWITZER M109A6 PALADIN PCNTY ARSNL NJ 07806-5000	1	
3	PM ADV FIELD ARTLRY SYSTEM ATTN SFAE ASM AF E LTC A ELLIS	1	CDR US ARMY ARDEC ATTN SMCAR CCS PCNTY ARSNL NJ 07806-5000
	T KURIATA J SHIELDS PCNTY ARSNL NJ 07801-5000	1	CDR US ARMY ARDEC ATTN SMCAR AEE J LANNON PCNTY ARSNL NJ 07806-5000
1	PM ADV FIELD ARTLRY SYSTEM ATTN SFAE ASM AF Q W WARREN PCNTY ARSNL NJ 07801-5000	11	CDR US ARMY ARDEC ATTN SMCAR AEE B A BEARDELL D DOWNS
1	CDR US ARMY ARDEC ATTN AMSMC PBM A SIKLOSI PROD BASE MODERNIZATION AGENCY PCNTY ARSNL NJ 07806-5000		S EINSTEIN S WESTLEY S BERNSTEIN J RUTKOWSKI B BRODMAN
1	CDR US ARMY ARDEC ATTN AMSMC PBM E L LAIBSON PROD BASE MODERNIZATION AGENCY PCNTY ARSNL NJ 07806-5000		P O'REILLY R CIRINCIONE P HUI J O'REILLY PCNTY ARSNL NJ 07806-5000

NO. OF NO. OF COPIES ORGANIZATION COPIES ORGANIZATION COMMANDER 1 COMMANDER ATTN SMCAR AEE WW ATTN SMCAR FSN N K CHUNG M MEZGER US ARMY ARDEC J PINTO PCNTY ARSNL NJ 07806-5000 **D WIEGAND** P LU **DIR BENET WEAPONS LABS** C HU ATTN SMCAR CCB RA US ARMY ARDEC G P O'HARA PCNTY ARSNL NJ 07806-5000 G A PFLEGL **WATERVLIET NY 12189-4050** COMMANDER ATTN SMCAR AES S KAPLOWITZ 1 **DIR BENET WEAPONS LABS** US ARMY ARDEC ATTN SMCAR CCB RT S SOPOK PCNTY ARSNL NJ 07806-5000 **WATERVLIET NY 12189-4050** COMMANDER **DIR BENET WEAPONS LABS** ATTN SMCAR HFM E BARRIERES ATTN SMCAR CCB S F HEISER US ARMY ARDEC **WATERVLIET NY 12189-4050** PCNTY ARSNL NJ 07806-5000 CDR US ARMY RSRCH OFC COMMANDER ATTN TECHNICAL LIBRARY ATTN SMCAR FSA T M SALSBURY D MANN US ARMY ARDEC PO BOX 12211 PCNTY ARSNL NJ 07806-5000 RSCH TRI PK NC 27709-2211 1 COMMANDER 1 CDR USACECOM ATTN SMCAR FSA F LTC R RIDDLE ATTN ASONC ELC IS L R MYER CENTER US ARMY ARDEC **R&D TECHNICAL LIBRARY** PCNTY ARSNL NJ 07806-5000 FORT MONMOUTH NJ 07703-5301 **COMMANDER** CMDT US ARMY AVIATION SCHOOL 1 1 ATTN SMCAR FSC G FERDINAND ATTN AVIATION AGENCY US ARMY ARDEC FORT RUCKER AL 36360 PCNTY ARSNL NJ 07806-5000 1 PM US TANK AUTOMOTIVE CMD COMMANDER ATTN AMCPM ABMS T DEAN 1 ATTN SMCAR FS T GORA WARREN MI 48092-2498 US ARMY ARDEC PCNTY ARSNL NJ 07806-5000 PM US TANK AUTOMOTIVE CMD 1 ATTN SFAE ASM BV FIGHTING VEHICLE SYSTEMS **COMMANDER** ATTN SMCAR FS DH J FENECK WARREN MI 48397-5000 US ARMY ARDEC PCNTY ARSNL NJ 07806-5000 PM ABRAMS TANK SYSTEM ATTN SFAE ASM AB WARREN MI 48397-5000 3 COMMANDER ATTN SMCAR FSS A DIR HQ TRAC RPD R KOPMANN 1 **B MACHEK** ATTN ATCD MA L PINDER FORT MONROE VA 23651-5143 US ARMY ARDEC PCNTY ARSNL NJ 07806-5000

NO. OF	ODG AND A TOOM	NO. OF	OD CLANET ASSOCIA
COPIES	ORGANIZATION	COPIES	ORGANIZATION
1	COMMANDER ATTN STRBE WC US ARMY BELVOIR R&D CTR	1	CDR NAVAL AIR SYSTEMS CMD ATTN AIR 954 TECH LIBRARY WASH DC 20360
	FORT BELVOIR VA 22060-5006	4	CDR NAVAL RSRCH LAB
1	DIRECTOR ATTN ATRC L MR CAMERON US ARMY TRAC FT LEE FORT LEE VA 23801-6140	·	ATTN TECHNICAL LIBRARY CODE 4410 K KAILASANATE J BORIS
1	COMMANDANT US ARMY CMD & GEN STAFF COLLEGE		E ORAN WASH DC 20375-5000
1	FORT LEAVENWORTH KS 66027 COMMANDANT	1	OFFICE OF NAVAL RSRCH ATTN CODE 473 R S MILLER 800 N QUINCY STREET
	ATTN REV AND TRNG LIT DIV US ARMY SPECIAL WARFARE SCHOOL FORT BRAGG NC 28307	1	ARLINGTON VA 22217-9999 OFFICE OF NAVAL TECHLGY
1	COMMANDER	1	ATTN ONT 213 D SIEGEL 800 N QUINCY ST
	ATTN SMCAR QA HI LIB RADFORD ARMY AMMUNITION PLANT		ARLINGTON VA 22217-5000
	RADFORD VA 24141-0298	1	CDR NAVAL SURFACE WARFARE CTR ATTN CODE 730
1	COMMANDER ATTN AMXST MC 3		SILVER SPRING MD 20903-5000
	US ARMY FRGN SCIENCE & TECHLGY CTR 220 SEVENTH STREET NE CHRLTTESVLLE VA 22901-5396	1	CDR NAVAL SURFACE WARFARE CTR ATTN CODE R 13 R BERNECKER SILVER SPRING MD 20903-5000
1	COMMANDANT ATTN ATSF CD COL T STRICKLIN US ARMY FIELD ARTLRY CTR & SCHOOL FT SILL OK 73503-5600	7	CDR NAVAL SURFACE WARFARE CTR ATTN T C SMITH K RICE S MITCHELL S PETERS
1	COMMANDANT ATSF CN P GROSS US ARMY FIELD ARTLRY CTR & SCHOOL FT SILL OK 73503-5600		J CONSAGA C GOTZMER TECHNICAL LIBRARY INDIAN HEAD MD 20640-5000
1	CMDT US ARMY ARMOR SCHOOL ATTN ATZK CD MS M FALKOVITCH ARMOR AGENCY FORT KNOX KY 40121-5215	1	CDR NAVAL SURFACE WARFARE CTR ATTN CODE G30 GUNS & MUNITIONS DIV DAHLGREN VA 22448-5000
2	CDR NAVAL SEA SYSTEMS CMD ATTN SEA 62R SEA 64	1	CDR NAVAL SURFACE WARFARE CTR ATTN CODE G32 GUNS SYSTEMS DIV DAHLGREN VA 22448-5000
	WASH DC 20362-5101	1	CDR NAVAL SURFACE WARFARE CTR ATTN CODE G33 T DORAN DAHLGREN VA 22448-5000

NO. OF	ORGANIZATION	NO. OF	ODC AND ATTON
COFIES	ORGANIZATION	COPIES	ORGANIZATION
1	CDR NAVAL SURFACE WARFARE CTR	2	NASA LANGLEY RSRCH CTR
	ATTN CODE E23 TECHNICAL LIBRARY		ATTN M S 408
	DAHLGREN VA 22448-5000		W SCALLION
			D WITCOFSKI
2	CDR NAVAL AIR WARFARE CTR		HAMPTON VA 23605
	ATTN CODE 388		
	C F PRICE	1	CENTRAL INTELLIGENCE AGENCY
	T BOGGS		OFC OF THE CENTRAL REFERENCES
	CHINA LAKE CA 93555-6001		DISSEMINATION BRANCH
			ROOM GE 47 HQS
2	CDR NAVAL AIR WARFARE CTR		WASHINGTON DC 20502
	ATTN CODE 3895		
	T PARR	1	CENTRAL INTELLIGENCE AGENCY
	R DERR		ATTN J BACKOFEN
	CHINA LAKE CA 93555-6001		NHB ROOM 5N01
			WASHINGTON DC 20505
1	CDR NAVAL AIR WARFARE CTR		
	INFORMATION SCIENCE DIV	1	SDIO TNI
	CHINA LAKE CA 93555-6001		ATTN L H CAVENY
			PENTAGON
1	COMMANDING OFFICER		WASHINGTON DC 20301-7100
	ATTN CODE 5B331 TECHL LIBRARY		
	NAVAL UNDERWATER SYSTEMS CTR	1	SDIO DA
	NEWPORT RI 02840		ATTN E GERRY
			PENTAGON
1	AFOSR NA		WASHINGTON DC 21301-7100
	ATTN J TISHKOFF		
	BOLLING AFB DC 20332-6448	2	HQ DNA
			ATTN D LEWIS
1	OLAC PL TSTL		A FAHEY
	ATTN D SHIPLETT		6801 TELEGRAPH RD
	EDWARDS AFB CA 93523-5000		ALEXANDRIA VA 22310-3398
3	AL LSCF	1	DIR SANDIA NATL LABS
	ATTN J LEVINE		ATTN M BAER
	L QUINN		DEPARTMENT 1512
	T EDWARDS		PO BOX 5800
	EDWARDS AFB CA 93523-5000		ALBUQUERQUE NM 87185
1	WL MNAA	1	DIR SANDIA NATL LABS
	ATTN B SIMPSON		ATTN R CARLING
	EGLIN AFB FL 32542-5434		COMBUSTION RSRCH FACILITY
			LIVERMORE CA 94551-0469
1	WL MNME		
	ENERGETIC MATERIALS BR	1	DIR SANDIA NATL LABS
	2306 PERIMETER RD		ATTN 8741 G A BENEDITTI
	STE 9		PO BOX 969
	EGLIN AFB FL 32542-5910		LIVERMORE CA 94551-0969
1	WL MNSH		
	ATTN R DRABCZUK		

EGLIN AFB FL 32542-5434

NO. OF NO. OF COPIES ORGANIZATION COPIES ORGANIZATION **DIR LAWRENCE LIVERMORE NATL LAB** 1 CALIF INSTITUTE OF TECHLGY **ATTN L 355** ATTN L D STRAND MS 125 224 A BUCKINGHAM JET PROPULSION LAB M FINGER 4800 OAK GROVE DRIVE PO BOX 808 PASADENA CA 91109 LIVERMORE CA 94550-0622 CALIF INSTITUTE OF TECHLGY DIR LOS ALAMOS SCIENTIFIC LAB ATTN F E C CULICK ATTN T3 D BUTLER 204 KARMAN LAB PO BOX 1663 MAIN STOP 301 46 LOS ALAMOS NM 87544 1201 E CALIFORNIA STR PASADENA CA 91109 DIR LOS ALAMOS SCIENTIFIC LAB ATTN M DIVISION B CRAIG 3 GEORGIA INSTITUTE OF TECHLGY PO BOX 1663 SCHOOL OF AEROSPACE ENGRG LOS ALAMOS NM 87544 ATTN B T ZIM E PRICE BATTELLE W C STRAHLE ATTN TWSTIAC ATLANTA GA 30332 V LEVIN **505 KING AVENUE** UNIV OF ILLINOIS COLUMBUS OH 43201-2693 ATTN H KRIER R BEDDINI BATTELLE PNL DEPT OF MECH INDUSTRY ENGRG ATTN MR MARK GARNICH 144 MEB 1206 N GREEN ST PO BOX 999 URBANA IL 61801-2978 RICHLAND WA 99352 UNIV OF MASSACHUSETTS THE UNIV OF AUSTIN TEXAS ATTN K JAKUS ATTN T M KREHNE **DEPT OF MECHANICAL ENGRG** INSTITUTE FOR ADVANCED TECHLGY AMHERST MA 01002-0014 4030 2 W BRAKER LANE AUSTIN TX 78759-5329 1 UNIV OF MINNESOTA ATTN E FLETCHER 2 CPIA JHU DEPT OF MECHANICAL ENGRG ATTN H J HOFFMAN MINNEAPOLIS MN 55414-3368 T CHRISTIAN 10630 LITTLE PATUXENT PARKWAY PENNSYLVANIA STATE UNIV SUTTE 202 ATTN V YANG COLUMBIA MD 21044-3200 K KUO C MERKLE AFELM THE RAND CORP G SETTLES ATTN LIBRARY D DEPT OF MECHANICAL ENGRG 1700 MAIN STREET UNIVERSITY PARK PA 16802-7501 **SANTA MONICA CA 90401-3297** RENSSELAER POLYTECHNIC INSTITUTE **BRIGHAM YOUNG UNIV** DEPT OF MATHEMATICS

TROY NY 12181

ATTN M BECKSTEAD

PROVO UT 84601

DEPT OF CHEMICAL ENGRG

NO. OF COPIES	ORGANIZATION	NO. OF COPIES	ORGANIZATION
1	STEVENS INSTITUTE OF TECHLGY ATTN R MCALEVY III DAVIDSON LABORATORY CASTLE POINT STATION	1	GENERAL APPLIED SCIENCES LAB ATTN J ERDOS 77 RAYNOR AVE RONKONKAMA NY 11779-6649
1	HOBOKEN NJ 07030-5907 RUTGERS UNIVERSITY	1	GENERAL ELECTRIC COMPANY ATTN J MANDZY
1	ATTN S TEMKIN DEPT OF MECH AND AEROSPACE ENGRG UNIVERSITY HEIGHTS CAMPUS NEW BRUNSWICK NJ 08903		TACTICAL SYSTEM DEPT 100 PLASTICS AVE PITTSFIELD MA 01201-3698
1	UNIV OF UTAH ATTN A BAER DEPT OF CHEMICAL ENGRG SALT LAKE CITY UT 84112-1194	1	IITRI ATTN M J KLEIN 10 W 35TH STREET CHICAGO IL 60616-3799
1	WASHINGTON STATE UNIV ATTN C T CROWE DEPT OF MECHANICAL ENGRG PULLMAN WA 99163-5201	4	HERCULES INC ATTN L GIZZI D A WORRELL W J WORRELL C CHANDLER
1	ARROW TECHLGY ASSOC INC ATTN W HATHAWAY		RADFORD ARMY AMMO PLANT RADFORD VA 24141-0299
	PO BOX 4218 SOUTH BURLINGTON VT 05401-0042	2	HERCULES INC ATTN WILLIAM B WALKUP THOMAS F FARABAUGH
	AAI CORPORATION ATTN J FRANKLE D CLEVELAND PO BOX 126 HUNT VALLEY MD 21030-0126	1	ALLEGHENY BALLISTICS LAB PO BOX 210 ROCKET CENTER WV 26726 HERCULES INC
8	ALLIANT TECHSYSTEMS INC ATTN R E TOMPKINS J KENNEDY J BODE		ATTN R CARTWRIGHT AEROSPACE 100 HOWARD BLVD KENVILLE NJ 07847
	C CANDLAND L OSGOOD R BURETTA R BECKER M SWENSON	1	HERCULES INC ATTN B M RIGGLEMAN HERCULES PLAZA WILMINGTON DE 19894
1	600 SECOND ST NE HOPKINS MN 55343 ELI FREEDMAN AND ASSOCIATES ATTN E FREEDMAN	1	MARTIN MARIETTA ARMAMENT SYSTEMS ATTN JIM TALLEY ROOM 1309 LAKESIDE AVENUE BURLINGTON VT 05401
	2411 DIANA RD BALTIMORE MD 21209-1525	1	MBR RESEARCH INC ATTN DR MOSHE BEN REUVEN 601 EWING ST SUITE C 22 PRINCETON NJ 08540

NO. OF COPIES ORGANIZATION

- 1 OLIN CORPORATION
 ATTN F E WOLF
 BADGER ARMY AMMO PLANT
 BARABOO WI 53913
- 3 OLIN ORDNANCE
 ATTN E J KIRSCHKE
 A F GONZALEZ
 D W WORTHINGTON
 PO BOX 222
 ST MARKS FL 32355-0222
- OLIN ORDNANCE
 ATTN H A MCELROY
 10101 9TH STREET NORTH
 ST PETERSBURG FL 33716
- 1 PAUL GOUGH ASSOC INC ATTN P S GOUGH 1048 SOUTH ST PORTSMOUTH NH 03801-5423
- 1 PHYSICS INTERNATIONAL LIBRARY
 ATTN H WAYNE WAMPLER
 PO BOX 5010
 SAN LEANDRO CA 94577-0599
- 1 PRINCETON COMBUSTION RSRCH LABS INC ATTN N A MESSINA PRINCETON CORPORATE PLAZA 11 DEERPARK DR BLDG IV SUITE 119 MONMOUTH JUNCTION NJ 08852
- 3 ROCKWELL INTRNTNL
 ATTN BA08
 J FLANAGAN
 J GRAY
 R B EDELMAN
 ROCKETDYNE DIV
 6633 CANOGA AVE
 CANOGA PARK CA 91303-2703
- 2 ROCKWELL INTRNTNL SCIENCE CTR ATTN DR S CHAKRAVARTHY DR S PALANISWAMY 1049 CAMINO DOS RIOS PO BOX 1085 THOUSAND OAKS CA 91360

NO. OF COPIES ORGANIZATION

- 1 SCIENCE APPLICATIONS INTRNTNL CORP ATTN M PALMER 2109 AIR PARK RD ALBUQUERQUE NM 87106
- SOUTHWEST RSRCH INSTITUTE
 ATTN J P RIEGEL
 6220 CULEBRA ROAD
 PO DRAWER 28510
 SAN ANTONIO TX 78228-0510
- SVERDRUP TECHLGY INC
 ATTN DR JOHN DEUR
 2001 AEROSPACE PARKWAY
 BROOK PARK OH 44142
- 3 THIOKOL CORPORATION
 ATTN R WILLER
 R BIDDLE
 TECH LIBRARY
 ELKTON DIVISION
 PO BOX 241
 ELKTON MD 21921-0241
- 1 VERITAY TECHLGY INC
 ATTN E FISHER
 A CRICKENBERGER
 J BARNES
 4845 MILLERSPORT HWY
 EAST AMHERST NY 14501-0305
- 1 UNIVERSAL PROPULSION COMPANY ATTN H J MCSPADDEN 25401 NORTH CENTRAL AVE PHOENIX AZ 85027-7837
- 1 SRI INTERNATIONAL
 ATTN TECH LIBRARY
 PROPULSION SCIENCES DIV
 333 RAVENWOOD AVE
 MENLO PARK CA 94025-3493

NO. OF

COPIES ORGANIZATION

ABERDEEN PROVING GROUND

- 1 CDR USACSTA ATTN STECS LI R HENDRICKSEN
- 32 DIR USARL

ATTN AMSRL WT P A HORST

AMSRL WT PA

T MINOR

T COFFEE

G WREN

A BIRK

J DE SPIRITO

A JUHASZ

J KNAPTON

C LEVERITT

M MCQUAID

W OBERLE

P TRAN

K WHITE

L-M CHANG

J COLBURN

P CONROY (5 CP)

G KELLER

D KOOKER

M NUSCA

T ROSENBERGER

AMSRL WT PB

E SCHMIDT

M BUNDY

B GUIDOS

AMSRL WT PC

R FIFER

J VANDERHOFF

R BEYER

M MILLER

AMSRL WT PD B BURNS

INTENTIONALLY LEFT BLANK.

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory under to the items/question	akes a continuing effort to improve the quality of the reports it publishes. Your comments/answebelow will aid us in our efforts.	ers
1. ARL Report Num	er <u>ARL-MR-219</u> Date of Report <u>May 1995</u>	
2. Date Report Rece	red	
	isfy a need? (Comment on purpose, related project, or other area of interest for which the repo	ort
	is the report being used? (Information source, design data, procedure, source of ideas, etc	c.)
	in this report led to any quantitative savings as far as man-hours or dollars saved, operating cost achieved, etc? If so, please elaborate	sts
	s. What do you think should be changed to improve future reports? (Indicate changes content, format, etc.)	to
	Organization	
CURRENT	Name	
ADDRESS	Street or P.O. Box No.	
	City, State, Zip Code	
7. If indicating a Cha Old or Incorrect addr	ge of Address or Address Correction, please provide the Current or Correct address above and the below.	he
	Organization	
OLD	Name	
ADDRESS	Street or P.O. Box No.	
	City, State, Zip Code	
	(Remove this sheet fold as indicated tane closed and mail)	

(DO NOT STAPLE)

DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO 0001,APG,MD

POSTAGE WILL BE PAID BY ADDRESSEE

DIRECTOR
U.S. ARMY RESEARCH LABORATORY
ATTN: AMSRL-WT-PA
ABERDEEN PROVING GROUND, MD 21005-5066

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES