Unit 7 Maximum-Margin Classification and the Support Vector Machine

Prof. Phil Schniter

ECE 5307: Introduction to Machine Learning, Sp23

Learning objectives

- Gain experience with linear classification of images
 - representing images, displaying images, classifying images
- Understand the geometry of the linear classification boundary:
 - orthogonality to \boldsymbol{w} , offset b, margin $1/\|\boldsymbol{w}\|$
- Understand the margin-maximizing classifier
- Understand the support vector classifier (SVC)
- Understand the support vector machine (SVM)
- Understand how to implement the SVC and SVM with sklearn

2/34

Outline

- Motivating Example: Recognizing Handwritten Digits
- Maximum-Margin Classification
- The Support Vector Classifier
- The Support Vector Machine

MNIST digit classification

- Goal: Handwriting recognition
- Dataset: MNIST
 - Only digits 0–9
 - 28x28 images (grayscale)
 - 70,000 examples
 - Collected by American Census Bureau in 1980s
- Why use it?
 - Simple
 - Widely accessible
 - Many benchmarks

```
from sklearn.datasets import fetch_openml
mnist = fetch_openml('mnist_784', version=1, cache=True)
mnist.data.shape
```

```
(70000, 784)
```

MNIST benchmarks

- In this unit, we focus on the support vector machine (SVM).
- Not state-of-the-art, but quite good, and widely used in machine learning

Type \$	Classifier ÷	Distortion +	Preprocessing \$	Error rate -
Convolutional neural network	Committee of 20 CNNS with Squeeze-and-Excitation Networks ^[35]	None	Data augmentation	0.17 ^[36]
Random Multimodel Deep Learning (RMDL)	10 NN-10 RNN - 10 CNN	None	None	0.18 ^[25]
Convolutional neural network	Committee of 5 CNNs, 6-layer 784-50-100-500-1000-10-10	None	Expansion of the training data	0.21[22][23]
Convolutional neural network	Committee of 35 CNNs, 1-20-P-40-P-150-10	Elastic distortions	Width normalizations	0.23 ^[15]
Convolutional neural network (CNN)	13-layer 64-128(5x)-256(3x)-512-2048-256-256-10	None	None	0.25 ^[20]
Convolutional neural network	6-layer 784-50-100-500-1000-10-10	None	Expansion of the training data	0.27 ^[34]
Convolutional neural network (CNN)	6-layer 784-40-80-500-1000-2000-10	None	Expansion of the training data	0.31[33]
Deep neural network	6-layer 784-2500-2000-1500-1000-500-10	Elastic distortions	None	0.35 ^[32]
K-Nearest Neighbors	K-NN with non-linear deformation (P2DHMDM)	None	Shiftable edges	0.52[26]
Support-vector machine (SVM)	Virtual SVM, deg-9 poly, 2-pixel jittered	None	Deskewing	0.56 ^[30]
Deep neural network	2-layer 784-800-10	Elastic distortions	None	0.7 ^[31]
Boosted Stumps	Product of stumps on Haar features	None	Haar features	0.87 ^[27]
Deep neural network (DNN)	2-layer 784-800-10	None	None	1.6 ^[31]
Random Forest	Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC) ^[28]	None	Simple statistical pixel importance	2.8 ^[29]
Non-linear classifier	40 PCA + quadratic classifier	None	None	3.3 ^[10]
Linear classifier	Pairwise linear classifier	None	Deskewing	7.6 ^[10]

 $\verb|https://en.wikipedia.org/wiki/MNIST_database|$

Representing images in Numpy

- Each pixel is a value between 0 (black) and 255 (white)
- Images can be represented as matrices or vectors

• In Numpy, vectorization is done by stacking rows, but in most papers/books it is done by stacking columns:

$$m{X} = egin{bmatrix} x_1 & x_{29} & \cdots & x_{757} \ x_2 & x_{30} & \cdots & x_{758} \ dots & dots & dots \ x_{28} & x_{56} & \cdots & x_{784} \end{bmatrix} = \max(m{x}), \qquad m{x} = egin{bmatrix} x_1 \ x_2 \ dots \ x_{784} \end{bmatrix} = \mathrm{vec}(m{X})$$

lacksquare Basically, Numpy works with X^{T} and x^{T} for the X and x defined above

Phil Schniter (OSU) Unit 7 ECE 5307

6 / 34

Displaying images with matplotlib

- plt.imshow is the main plot command
- We randomly permute the sample indices using Iperm
 - Else training set might include different digits than testing set
 - Do this for any dataset!
- A random sample of 4 MNIST digits:

A human could easily classify these

```
def plt digit(x):
    nrow = 28
    ncol = 28
    xsq = x.reshape((nrow,ncol))
    plt.imshow(xsq,
                     cmap='Greys r')
    plt.xticks([])
    plt.yticks([])
# Convert data to a matrix
X = mnist.data
y = mnist.target.astype(np.int8) # fetch ope
# Select random digits
nplt = 4
nsamp = X.shape[0]
Iperm = np.random.permutation(nsamp)
# Plot the images using the subplot command
for i in range(nplt):
    ind = Iperm[i]
    plt.subplot(1,nplt,i+1)
    plt digit(X[i,:])
```

Try multinomial logistic regression (MLR)

- Train and test on 10000 samples
 - Using more samples leads to better results but takes more time
- Select a fast solver (lbfgs)
 - Even this may take several minutes

```
ntr = 10000
nts = 10000
Xs = X/255.0*2 - 1 # convert to range [-1,1]
# careful: 2*X/255.0 will fail if X is uint8
Xtr = Xs[Iperm[:ntr],:]
ytr = y[Iperm[:ntr]
Xts = Xs[Iperm[ntr:ntr+nts],:]
yts = y[Iperm[ntr:ntr+nts]]
```

Performance of MLR

- Accuracy = 90% (not very good)
- Most of the errors MLR made would be obvious to a human, for example:

- What went wrong?
- Can we do better?

Review of MLR

- lacktriangleright To classify a test vector x (e.g., an MNIST image), we do the following:
- For each class hypothesis $k = 1, \dots, K$,
 - design weights b_k and $w_k = [w_{k1}, \dots, w_{kd}]^\mathsf{T}$ that classify x as in-k or not-in-k
 - lacktriangle compute a linear score $z_k = b_k + oldsymbol{x}^\mathsf{T} oldsymbol{w}_k$

then classify as $\widehat{y} = \arg\max_{k} \underbrace{\Pr\{y = k \mid x\}}_{\text{probability of } x \text{ in class } k} = \arg\max_{k} \underbrace{\frac{e^{z_k}}{\sum_{l=1}^{K} e^{z_l}}}_{\text{softmax}} = \arg\max_{k} z_k$

What weights does MLR learn?

- Intuitively, we want $z_k = b_k + x^\mathsf{T} w_k$ to be large when x is from class k, and small otherwise. This should happen when w_k looks like the kth digit
- Let's visualize the learned w_k for $k = 0, \dots, 4$ by plotting them as images:

MLR struggles to match all the training examples from each class due to variations across that class, especially when number of training samples is large!

Outline

- Motivating Example: Recognizing Handwritten Digits
- Maximum-Margin Classification
- The Support Vector Classifier
- The Support Vector Machine

Hyperplane geometry

In binary linear classification, the decision boundary is z=0 or

$$\{\boldsymbol{x}: b + \boldsymbol{x}^\mathsf{T} \boldsymbol{w} = 0\}$$

which is a hyperplane

- This hyperplane is orthogonal to w:
 - For any $\{\boldsymbol{x}_1, \boldsymbol{x}_2\}$ on the hyperplane, $b + \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w} = 0$ for i = 1, 2.
 - Thus $(\boldsymbol{x}_1 \boldsymbol{x}_2)^\mathsf{T} \boldsymbol{w} = 0$

From the figure, the signed distance from a point
$$x_i$$
 to the hyperplane is γ_i :

$$0 = b + \left(\boldsymbol{x}_i - \gamma_i \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|} \right)^{\mathsf{T}} \boldsymbol{w} = b + \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{w} - \gamma_i \|\boldsymbol{w}\| \quad \Rightarrow \quad \boxed{\gamma_i = \frac{b + \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{w}}{\|\boldsymbol{w}\|}}$$

■ The classifier $(\alpha b, \alpha w)$ is equivalent to the classifier (b, w) for all $\alpha > 0$

Review of linear separability

- Assume binary ± 1 training data $\{(x_i, y_i)\}_{i=1}^n$
- The data is "linearly separable" if there exists (b, \boldsymbol{w}) and $\epsilon > 0$ such that

$$\begin{aligned} b + \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w} \geq \epsilon & \text{whenever } y_i = 1 \\ b + \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w} \leq -\epsilon & \text{whenever } y_i = -1 \\ \text{or, more compactly, } y_i(b + \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}) \geq \epsilon & \forall i \end{aligned}$$

- Because (b, w) equivalent to $(\frac{b}{\epsilon}, \frac{w}{\epsilon})$, linearly separable means $\exists (b, \boldsymbol{w}) : y_i(b + \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}) \geq 1 \ \forall i$
- If separable, the distance γ_i from the boundary to datapoint x_i obeys $|y_i\gamma_i \ge 1/||w|| \triangleq \gamma$, $\forall i$.
- The "margin" γ is a lower bound on the minimum distance from any training x_i to the boundary

linear separability:

margin maximizing w:

Maximum-margin classification

- To make the classifier robust, we should maximize the margin!
 - lacksquare We can do this by minimizing $\|w\|$ under the linear-separability constraint
- lacktriangle The hard-margin classifier is defined as the $(b, oldsymbol{w})$ that solves

$$\min_{b, \boldsymbol{w}} \frac{1}{2} \| \boldsymbol{w} \|^2$$
 s.t. $y_i(b + \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}) \geq 1 \ \forall i = 1, \dots, n$

- Of all the $\{b, \boldsymbol{w}\}$ satisfying $y_i(b + \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}) \geq 1 \ \forall i$, the one yielding the widest "street" is the one with the smallest $\|\boldsymbol{w}\|^2$
- The orientation of its boundary depends only on a few samples x_i near the boundary:
 - Called the support vectors
 - More on this later . . .

■ Problem: The hard-margin classifier requires the data to be linearly separable!

Outline

- Motivating Example: Recognizing Handwritten Digits
- Maximum-Margin Classification
- The Support Vector Classifier
- The Support Vector Machine

The support vector classifier

■ To handle data that is *not* linearly separable, we replace the hard constraint

$$y_i(b+\boldsymbol{x}_i^\mathsf{T}\boldsymbol{w}) \geq 1 \ \forall i \quad \Leftrightarrow \quad 0 \geq 1-y_i(b+\boldsymbol{x}_i^\mathsf{T}\boldsymbol{w}) \ \forall i$$
 with the cost term
$$\sum_{i=1}^n \max\left\{0,1-y_i(b+\boldsymbol{x}_i^\mathsf{T}\boldsymbol{w})\right\}$$

=0 if linearly separable, >0 otherwise

■ This results in the soft-margin classifier or support-vector classifier (SVC):

$$\min_{b, \boldsymbol{w}} \left\{ C \sum_{i=1}^n \max \left\{ 0, 1 - y_i(b + \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}) \right\} + \frac{1}{2} \| \boldsymbol{w} \|^2 \right\} \text{ with tunable parameter } C > 0$$

- $lue{C}$ trades off between margin size $1/\|oldsymbol{w}\|$ and number of margin violations
 - \blacksquare Larger C penalizes violations more and thus yields a smaller margin $1/\|{\boldsymbol w}\|$
 - \blacksquare For linearly separable data and sufficiently large C, soft-margin \Leftrightarrow hard-margin

Effect of SVC penalty C

C controls the margin $\frac{1}{\|\mathbf{w}\|}$, and thus the number of support vectors

- Larger C: smaller margin, fewer support vectors
 - More sensitive to datapoints close to hyperplane: Lower bias, higher variance
- Smaller C: larger margin, more support vectors
 - Less sensitive to data: Higher bias, lower variance

Support vectors are circled

Support vectors are the x_i with distance $y_i \gamma_i$ that is $\leq \frac{1}{\| y_i \|}$ from boundary

Note: Increasing C beyond a certain value will have no effect: You will reach the minimum # of support vectors and the boundary won't change.

The SVC and hinge loss

■ Recalling L2-regularized logistic regression:

$$\min_{\boldsymbol{w},b} \left\{ \sum_{i=1}^{n} \underbrace{\left(\ln[1 + e^{z_i}] - \frac{y_i + 1}{2} z_i \right)}_{\text{"logistic loss"}} + \frac{1}{2C} \|\boldsymbol{w}\|^2 \right\} \text{ for } z_i = b + \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}$$

we see that the SVC looks similar, but with a different loss:

$$\min_{\boldsymbol{w},b} \left\{ \sum_{i=1}^{n} \underbrace{\max\left\{0,1-y_{i}z_{i}\right\}}_{\text{"hinge loss"}} + \frac{1}{2C} \|\boldsymbol{w}\|^{2} \right\} \text{ for } z_{i} = b + \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{w}$$

- Comparison of loss functions:
 - hinge loss places *no penalty* on samples obeying the margin (i.e., $y_i z_i > 1$)
 - thus, the SVC boundary determined only by x_i that cause $y_i z_i \le 1$, called "support vectors"
 - logistic loss penalizes all samples

A closer look at the SVC

lacktriangle We just saw that the SVC solution $(oldsymbol{w}_*,b_*)$ minimizes the cost

$$J_{\mathsf{svc}}(\boldsymbol{w}, b) \triangleq C \sum_{i=1}^{n} \max \left\{ 0, 1 - y_{i} \underbrace{\left(b + \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_{i} \right)}_{z_{i}} \right\} + \frac{1}{2} \|\boldsymbol{w}\|^{2}$$

■ The gradient (where defined) must equal zero at (w_*, b_*) :

$$0 = \frac{\partial}{\partial b} J(\boldsymbol{w}_*, b_*) = -C \sum_{i=1}^n \alpha_i y_i \text{ for } \alpha_i = \begin{cases} 1 & y_i(b_* + \boldsymbol{w}_*^\mathsf{T} \boldsymbol{x}_i) < 1 \\ ? & y_i(b_* + \boldsymbol{w}_*^\mathsf{T} \boldsymbol{x}_i) = 1 \\ 0 & y_i(b_* + \boldsymbol{w}_*^\mathsf{T} \boldsymbol{x}_i) > 1 \end{cases}$$

$$\mathbf{0} = \nabla_{\boldsymbol{w}} J(\boldsymbol{w}_*, b_*) = -C \sum_{i=1}^{n} \alpha_i y_i \boldsymbol{x}_i + \boldsymbol{w}_*$$

which implies
$$m{w}_* = C \sum_{i=1}^n lpha_i y_i m{x}_i$$
 and $\sum_{i=1}^n lpha_i y_i = 0$

■ The equation for w_* shows that it depends only on the support vectors $\{x_i: y_i(b_* + x_i^\mathsf{T} w_*) \leq 1\}$

Alternate form of the SVC

■ The SVC is often written using "slack variables" $\xi_i \triangleq \max\{0, 1 - y_i z_i\}$:

$$\min_{b, \boldsymbol{w}} \left\{ C \sum_{i=1}^n \xi_i + \frac{1}{2} \|\boldsymbol{w}\|^2 \right\} \text{ s.t. } \xi_i \geq 0 \text{ and } \xi_i \geq 1 - y_i (b + \boldsymbol{x}_i^\mathsf{T} \boldsymbol{w}) \text{ for all } i$$

- lacksquare ξ_i measures violation of the margin
 - $\xi_i = 0$: sample outside "street" (on correct side of hyperplane)
 - $\xi_i \in (0,2)$: sample in "street"
 - $\xi_i > 1$: sample misclassified (wrong side of hyperplane)
- Any $\xi_i > 0$ is considered a violation

Applying the SVC to test data

lacksquare Given a test vector x, the SVC computes the score

$$z = b_* + oldsymbol{w}_*^\mathsf{T} oldsymbol{x} \quad ext{with} \quad oldsymbol{w}_* = C \sum_{i=1}^n lpha_i y_i oldsymbol{x}_i$$

where $\alpha_i = 0$ for all \boldsymbol{x}_i that are not support vectors

■ The resulting score

$$z = b_* + C \sum_{i=1}^n \alpha_i y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{x}$$
 used for $\widehat{y} = \mathrm{sgn}(z)$

is a weighted linear combination of the inner products $x_i^\mathsf{T} x$ between x and each support vector x_i .

- When classifying x, the SVC uses only $\{x_i\}$ that are support vectors, whereas logistic regression uses all the training samples $\{x_i\}$
- The SVC tries to focus on what is most important when making a decision

Multiclass SVC

lacktriangleright In multiclass linear classification with K classes, we compute the score vector

$$oldsymbol{z}_i = egin{bmatrix} z_{i1} \ dots \ z_{iK} \end{bmatrix} = egin{bmatrix} b_1 \ dots \ b_K \end{bmatrix} + egin{bmatrix} oldsymbol{w}_1^\mathsf{T} \ dots \ oldsymbol{w}_K^\mathsf{T} \end{bmatrix} oldsymbol{x}_i = oldsymbol{b} + oldsymbol{W}^\mathsf{T} oldsymbol{x}_i \in \mathbb{R}^K$$

- lacktriangle One option is to *separately* train one-vs-rest binary SVCs $\{(b_k, m{w}_k)\}_{k=1}^K$
- lacksquare Another is to *jointly* train $(oldsymbol{b}, oldsymbol{W})$ via the Crammer-Singer approach

$$\min_{\boldsymbol{b}, \boldsymbol{W}} \left\{ \sum_{i=1}^{n} \sum_{j \neq y_i} \max \left\{ 0, 1 + z_{ij} - z_{i, y_i} \right\} + \frac{1}{2C} \|\boldsymbol{W}\|_F^2 \right\}$$

■ Note that, when K=2, we get (using $j,y_i \in \{-1,1\}$ for convenience)

$$\sum_{j \neq y_i} \max \left\{ 0, 1 + z_{ij} - z_{i,y_i} \right\} = \max \left\{ 0, 1 + z_{i,-y_i} - z_{i,y_i} \right\}$$
$$= \max \left\{ 0, 1 - y_i(z_{i,1} - z_{i,-1}) \right\}$$
$$= \max \left\{ 0, 1 - y_i(b + \boldsymbol{w}^\mathsf{T} \boldsymbol{x}_i) \right\}$$

for $b \triangleq b_1 - b_{-1}$ and $m{w} \triangleq m{w}_1 - m{w}_{-1}$, which matches our earlier binary SVC

Implementing the SVC in sklearn

- The SVC is easy to implement in sklearn using svm.LinearSVC
 - The parameter C penalizes the slack variables
 - As we discussed, larger C means fewer support vectors (up to a point)

```
from sklearn import svm
svc = svm.LinearSVC(loss='hinge', C=1e-2, multi_class='crammer_singer'
svc.fit(Xtr,ytr)
yhat_ts = svc.predict(Xts)
acc = np.mean(yhat_ts == yts)
print('Accuracy = {0:f}'.format(acc))
[LibLinear]Accuracy = 0.907300
```

- \blacksquare The SVC outperforms logistic regression by 0.5% on this MNIST dataset
 - good, but not a huge improvement
- Note that the SVC can also be implemented using svm.SVC with kernel='linear', but it's slower, especially with many training samples

Outline

- Motivating Example: Recognizing Handwritten Digits
- Maximum-Margin Classification
- The Support Vector Classifier
- The Support Vector Machine

Support vector machine

- Support vector classifier (SVC)
 - works very well when the features are nearly linearly separable
- Support vector machine (SVM)
 - SVC plus ...
 - 1) a feature transformation $x \mapsto \phi(x)$ to enhance linear separability
 - 2) the "kernel trick" for fast implementation

Feature transformations

- lacktriangle We want a feature transformation $x\mapsto \phi(x)$ that leads to linear separability
- Usually we do this by mapping to an appropriate higher-dimensional space
- Example: For the $\boldsymbol{x} = [x_1, x_2]^\mathsf{T}$ data below, which is not linearly separable, we can use $\phi(\boldsymbol{x}) = [x_1, x_2, x_1^2 + x_2^2]^\mathsf{T}$ to get linear separability!

Phil Schniter (OSU) Unit 7 ECE 5307 27 / 34

The problem of dimensionality

lacksquare In principle, given transformed features $\phi(x)$, we could train via

$$(\boldsymbol{w}_*, b_*) = \min_{\boldsymbol{w}, b} \left\{ C \sum_{i=1}^n \max \left\{ 0, 1 - y_i z_i \right\} + \frac{1}{2} \|\boldsymbol{w}\|^2 \right\} \text{ for } z_i = b + \boldsymbol{w}^\mathsf{T} \boldsymbol{\phi}(\boldsymbol{x}_i)$$

and classify a test vector $oldsymbol{x}$ via

$$\widehat{y} = \operatorname{sgn}(z) = \operatorname{sgn}\left[b_* + C\sum_{i=1}^n \alpha_i y_i \phi(x_i)^\mathsf{T} \phi(x)\right]$$

- But what if the dimension of $\phi(x)$ is very high?
 - lacktriangle We would need a very high dimensional w
 - Leads to computational issues and overfitting!
- And what if $\phi(x)$ is infinite-dimensional?
 - lacksquare This might sound crazy, but—as we'll see—it's true for popular $\phi(\cdot)$
 - lacktriangle We're stuck; we can't handle infinite dimensional w

The Lagrangian dual formulation of the SVC

• We can avoid the high-dimensional w_* space using the "Lagrangian dual" form of the SVC. First, find the Lagrange multipliers $\{\lambda_i\}$ that solve

$$\min_{\pmb{\lambda}} \left\{ \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j y_i y_j \boldsymbol{x}_i^\mathsf{T} \boldsymbol{x}_j \right\} \text{ s.t. } \lambda_i \in [0,C] \text{ and } \sum_{i=1}^n \lambda_i y_i = 0,$$

after which one could optionally compute

$$\boldsymbol{w}_* = \sum_{i=1}^n \lambda_i y_i \boldsymbol{x}_i \quad \text{and} \quad b_* = \boldsymbol{w}_*^\mathsf{T} \boldsymbol{x}_{i_*} - y_{i_*} \quad \text{for any } i_* \text{ s.t. } \lambda_{i_*} > 0$$

- The derivation is outside the scope of this course

 See Sec. 12.2 of Hastie. Tibshirani. Friedman. The Elements of Statistical Learning. 2nd Ed., 2009
- But note the similarity to our gradient analysis on page 20 (using $\lambda_i = C\alpha_i$)
- Given λ , we can directly compute the decision \widehat{y} as follows (without w_*):

$$\widehat{y} = \operatorname{sgn}\left(b_* + \sum_{i=1}^n \lambda_i y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{x}\right) \text{ where } b_* = \sum_{i=1}^n \lambda_i y_i \boldsymbol{x}_i^\mathsf{T} \boldsymbol{x}_{i_*} - y_{i_*}$$

The kernel trick

lacktriangle Now consider the dual-form SVC with x replaced by the transformation $\phi(x)$:

$$\widehat{y} = \operatorname{sgn}\left(b_* + \sum_{i=1}^n \lambda_i y_i \boldsymbol{\phi}(\boldsymbol{x}_i)^\mathsf{T} \boldsymbol{\phi}(\boldsymbol{x})\right) \text{ where } b_* = \sum_{i=1}^n \lambda_i y_i \boldsymbol{\phi}(\boldsymbol{x}_i)^\mathsf{T} \boldsymbol{\phi}(\boldsymbol{x}_{i_*}) - y_{i_*}$$

where i_* is any support index, and where $\{\lambda_i\}$ solve

$$\min_{\boldsymbol{\lambda}} \left\{ \sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \lambda_j y_i y_j \boldsymbol{\phi}(\boldsymbol{x}_i)^{\mathsf{T}} \boldsymbol{\phi}(\boldsymbol{x}_j) \right\} \text{ s.t. } \left\{ \lambda_i \in [0, C] \atop \sum_{i=1}^{n} \lambda_i y_i = 0 \right\}$$

■ The transformed features appear only in the form of a "kernel" function

$$\kappa(\boldsymbol{x}, \boldsymbol{x}') \triangleq \phi(\boldsymbol{x})^\mathsf{T} \phi(\boldsymbol{x}')$$

- lacksquare Often, directly computing $\kappa(x,x')$ is easier than computing $\phi(x)$ and $\phi(x')$
- lacksquare For both learning and inference, we only need to compute the kernel (not $\phi(x)$)!
- Called the "kernel trick"

Popular kernels

- Popular kernels include:
 - lacktriangledown radial basis function (RBF): $\kappa(m{x},m{x}') = \exp(-\gamma \|m{x}-m{x}'\|^2)$ for "width" $\gamma>0$
 - **polynomial**: $\kappa(x, x') = (\gamma x^\mathsf{T} x' + r)^d$ where $\gamma > 0$, $r \ge 0$, and often d = 2
 - sigmoidal: $\kappa(x, x') = \tanh(\gamma x^\mathsf{T} x' + r)$ for some $\gamma > 0$ and r > 0
 - lacktriangle linear: $\kappa(m{x},m{x}')=m{x}^{\mathsf{T}}m{x}'\dots$ corresponds to trivial transformation $\phi(m{x})=m{x}$
- lacksquare Each kernel measures a "similarity" between x and x'
- Note: The feature space of the RBF kernel is infinite dimensional!

$$\exp(-\frac{1}{2}\|\boldsymbol{x} - \boldsymbol{x}'\|^2) = \exp(-\frac{1}{2}\|\boldsymbol{x}\|^2) \exp(-\frac{1}{2}\|\boldsymbol{x}'\|^2) \sum_{j=0}^{\infty} \frac{(\boldsymbol{x}^{\mathsf{T}}\boldsymbol{x}')^j}{j!}$$

- lacksquare Can't implement the RBF kernel via $\phi(x)$ since infinite dimensional
- But can implement RBF efficiently using the kernel trick!

Implementing the SVM in sklearn

- The SVM is easy to implement in sklearn using svm.SVC
 - Choose from several kernels: rbf (default), poly, sigmoid, linear, or custom
 - Specify the kernel width $\gamma > 0$
 - Control number of support vectors via C > 0
 - Ideally, you should optimize all parameters via cross-validation
 - See example in sklearn documentation
 - Using MNIST settings from https://martin-thoma.com/svm-with-sklearn/:

```
from sklearn import svm
svm = svm.SVC(probability=False, kernel="rbf", C=2.8, gamma=.0073, verbose=1)
svm.fit(Xtr,ytr)
yhat_ts = svm.predict(Xts)
acc = np.mean(yhat_ts == yts)
print('Accuracy = {0:f}'.format(acc))
```

```
[LibSVM]Accuracy = 0.971900
```

- The SVM significantly outperforms both MLR and SVC!
 - Could do even better with more training samples and tweaked parameters

Multiclass SVM

There are several ways to train an SVM for K > 2 classes:

One-versus-rest:

- lacktriangle For each class k, separately train a binary 1-vs-rest classifier $(b_k, oldsymbol{w}_k)$
- This is implemented in svm.LinearSVC, but only for the <u>linear</u> kernel (i.e., SVC)

Crammer-Singer:

- Jointly train a K-ary classifier $(\boldsymbol{b}, \boldsymbol{W})$
- This is implemented in svm.LinearSVC, but only for the <u>linear</u> kernel (i.e., SVC)
- It gives slightly better accuracy than the above OVR, but is slower

One-versus-one:

- For each unique class pair (k, k') such that $k \neq k'$, separately train a binary classifier $(b_{k,k'}, \boldsymbol{w}_{k,k'})$. There are K(K-1)/2 such pairs
- This is implemented in svm.SVC for a variety of kernels (i.e., SVM), but it's slower than svm.LinearSVC
- ullet svm.NuSVC gives an equivalent formulation, but instead of using C it uses $u \in (0,1]$, which is a lower bound on the fraction of support vectors

Learning objectives

- Gain experience with linear classification of images
 - representing images, displaying images, classifying images
- Understand the geometry of the linear classification boundary:
 - orthogonality to w, offset b, margin 1/||w||
- Understand the margin-maximizing classifier
- Understand the support vector classifier (SVC)
- Understand the support vector machine (SVM)
- Understand how to implement the SVC and SVM with sklearn