2CJ4 - Laboratory Experiments (Set 1)

1.

a. 200mV with $+V_{cc} = 5\text{V}$ and $-V_{cc} = -5\text{V}$. When the output is greater than the V_{cc} , we are in the saturation region; however, when the output is less than the V_{cc} , we are in the linear active region.

b. 2V with $+V_{cc} = 5V$ and $-V_{cc} = -5V$. When the output is greater than the V_{cc} , we are in the saturation region; however, when the output is less than the V_{cc} , we are in the linear active region.

c. 5V with $+V_{cc} = 5V$ and $-V_{cc} = -5V$. When the output is greater than the V_{cc} , we are in the saturation region; however, when the output is less than the V_{cc} , we are in the linear active region.

a. 200 mV with $+V_{cc} = 5 \text{V}$ and $-V_{cc} = -5 \text{V}$

2.

b. 2V with $+V_{cc} = 5V$ and $-V_{cc} = -5V$. We cannot calculate the gain in this scenario because of the characteristics of an op-amp. The gain is present; however, it results in an output voltage greater than the amplitude. The calculations result in an inaccurate gain.

c. 5V with $+V_{cc} = 5V$ and $-V_{cc} = -5V$. We cannot calculate the gain in this scenario because of the characteristics of an op-amp. The gain is present; however, it results in an output voltage greater than the amplitude. The calculations result in an inaccurate gain.

a. 200mV with $+V_{cc} = 2.5V$ and $-V_{cc} = -2.5V$. When the output is greater than the V_{cc} , we are in the saturation region; however, when the output is less than the V_{cc} , we are in the linear active region. The gain is also the same regardless of the value of the values of $+-V_{cc}$ as it is not taken into consideration when performing calculations.

b. 2V with $+V_{cc} = 2.5V$ and $-V_{cc} = -2.5V$. When the output is greater than the V_{cc} , we are in the saturation region; however, when the output is less than the V_{cc} , we are in the linear active region. Again, we cannot calculate the gain in this scenario because of the characteristics of an op-amp. The gain is present; however, it results in an output voltage greater than the amplitude. The calculations result in an inaccurate gain. The gain is also the same regardless of the value of the values of $+-V_{cc}$ as it is not taken into consideration when performing calculations.

c. 5V with $+V_{cc} = 2.5V$ and $-V_{cc} = -2.5V$. When the output is greater than the V_{cc} , we are in the saturation region; however, when the output is less than the V_{cc} , we are in the linear active region. We cannot calculate the gain in this scenario because of the characteristics of an op-amp. The gain is present; however, it results in an output voltage greater than the amplitude. The calculations result in an inaccurate gain. The gain is also the same regardless of the value of the values of $+-V_{cc}$ as it is not taken into consideration when performing calculations.

iii) 5V?

experiment: $A = V_0 = 5.9033V$ $V_{in} = 10.087V$ $V_{in} = 0.585$ Calculations: $V_0 = \frac{47K\Omega}{10K\Omega} \times 5V = 23.5V$ $A = \frac{23.5V}{45.5V} = \frac{47}{4.7}$ $V_0 = \frac{47.40.525}{4.7}$ $V_0 = \frac{47.40.525}{4.7}$ $V_0 = \frac{47.40.525}{4.7}$ $V_0 = \frac{47.40.525}{4.7}$