$$F = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2k} & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix}$$

donde $\rho(F) = \rho(A)$ y $\nu(F) = \nu(A)$. Ahora es obvio que si i > k, entonces $F\mathbf{e}_i = \mathbf{0}$,* de manera que $E_k = \{\mathbf{e}_{k+1}, \mathbf{e}_{k+2}, \dots, \mathbf{e}_n\}$ es un conjunto linealmente independiente de n-k vectores de N_F . Ahora se demostrará que E_k genera N_F . Sea $\mathbf{x} \in N_F$ un vector de la forma

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \\ \vdots \\ x_n \end{pmatrix}$$

Entonces

$$\mathbf{0} = F\mathbf{x} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1k}x_k \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2k}x_k \\ \vdots & \vdots & \vdots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kk}x_k \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

El determinante de la matriz del sistema homogéneo de $k \times k$ dado es diferente de cero, ya que los renglones de esta matriz son linealmente independientes. De esta forma, la única solución al sistema es $x_1 = x_2 = \cdots = x_k = 0$. Entonces x tiene la forma

$$(0, 0, \dots, 0, x_{k+1}, x_{k+2}, \dots, x_n) = x_{k+1} \mathbf{e}_{k+1} + x_{k+2} \mathbf{e}_{k+2} + \dots + x_n \mathbf{e}_n$$

Esto significa que E_k genera N_F , de manera que $\nu(F) = n - k = n - \rho(F)$, lo que completa la prueba.

Nota. Se sabe que $\rho(A)$ es igual al número de pivotes n de la forma escalonada por renglones de A y es igual al número de columnas de la forma escalonada por renglones de A que contienen pivotes. Entonces, del teorema 5.7.7, $\nu(A) =$ número de columnas de la forma escalonada por renglones de A que no contienen pivotes.

EJEMPLO 5.7.8 Illustración de que $\rho(A) + \nu(A) = n$

Para $A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & -1 & 3 \end{pmatrix}$ se calculó (en los ejemplos 5.7.1 y 5.7.3) que $\rho(A) = 2$ y $\nu(A) = 1$; esto ilustra que $\rho(A) + \nu(A) = n(=3)$.

^{*} Recuerde que **e** ;es el vector con un uno en la posición *i* y cero en las otras posiciones.