

Data Modeling in Power B1

Akriti Lal

What is a "DATA MODEL"?

These are Independent tables loaded to Power BI. This is not a DATA MODEL.

 So, if we try to visualize Orders and Returns by Product, we will get repetition of values for all the Products, because the data does not have the capability to work as interlinked/ or as one.

ProductName	OrderQuantity	ReturnQuantity
All-Purpose Bike Stand	84,174	1,828
AWC Logo Cap	84,174	1,828
Bike Wash - Dissolver	84,174	1,828
Cable Lock	84,174	1,828
Chain	84,174	1,828
Classic Vest, L	84,174	1,828
Classic Vest, M	84,174	1,828
Classic Vest, S	84,174	1,828
Fender Set - Mountain	84,174	1,828
Total	84,174	1,828

What is a "DATA MODEL"?

When the tables are connected through relationships, based on the common field, then it is a DATA MODEL. Once the tables have relationship then tables know how to filter using fields from each other.

ProductName	OrderQuantity	ReturnQuantity
All-Purpose Bike Stand	234	8
AWC Logo Cap	4,151	46
Bike Wash - Dissolver	1,706	25
Classic Vest, L	182	4
Classic Vest, M	182	7
Classic Vest, S	157	8
Fender Set - Mountain	3,960	54
Half-Finger Gloves, L	840	18
Half-Finger Gloves, M	918	16
Total	84,174	1,828

Primary & Foreign Key

Primary Key

This uniquely identify each row of a table. E.g. Product ID in Products table.

Foreign Key

Contains multiple instances of each value and are used to match with Primary key in related lookup table. E.g. Product ID in Returns Table.

Data table structure

De- Normalized Data:

Here the data is in an open structure. All the information comes in multiple columns from a Table. This table has multiple lds.

Normalized Data:

Here each business category holds an individual table. For eg: Product Table, Customer Table, Calendar Table. Each table has an unique key or an Id. This has a Fact & Dim structure.

Creating Star Schema

The Star Schema is the optimized data model for reporting. In Star schema, everything is one join away.

Creating Snowflakes Schema

When a Dimension table has a primary key which doesn't exist as foreign key in a Data table but in another dim table, which in turn is connected to the data table, the relationship formed between the dim tables called a "Snowflake" schemas.

Manage and Edit Relationship

The "Manage Relationships" dialog box allows you to add, edit, or delete table relationships

Editing tools allow you to activate/deactivate relationships, view cardinality, and modify the cross filter direction (stay tuned!)

Active and Inactive Relationship

The Sales_Data table contains two date fields (*OrderDate* & *StockDate*), but there can only be one *active* relationship to the Date field in the Calendar table

Double-click the relationship line, and check the "Make this relationship active" box to toggle (note that you have to deactivate one in order to activate another)

Cardinality In Relationship

Cardinality refers to the uniqueness of values in a column. All relationships in the data model should follow a "one-to-many" cardinality; one instance of each primary key in the dim table, but many instances of each foreign key in fact table

For e.g: One Id in the Territory table will have many instances / rows of that Id in Fact_Sales table

