TERCEIRO TESTE

Universidade Federal de Goiás (UFG) - Regional Jataí Bacharelado em Ciência da Computação Teoria da Computação Esdras Lins Bispo Jr.

25 de janeiro de 2018

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 06 (seis) componentes que formarão a média final da disciplina: quatro testes, uma prova e exercícios;
- \bullet A média final (MF) será calculada assim como se segue

$$MF = MIN(10, S)$$

 $S = (\sum_{i=1}^{4} 0, 2.T_i) + 0, 2.P + EB$

em que

- -S é o somatório da pontuação de todas as avaliações,
- $-T_i$ é a pontuação obtida no teste i,
- P é a pontuação obtida na prova, e
- -EB é a pontuação total dos exercícios-bônus.
- O conteúdo exigido desta avaliação compreende o seguinte ponto apresentado no Plano de Ensino da disciplina: (3) Problemas Decidíveis e (4) Problemas indecidíveis.

Nome:

Terceiro Teste

- 1. (5,0 pt) [Sipser 4.11] Seja $A = \{ \langle M \rangle \mid M \text{ \'e um AFD que n\~ao} \text{ aceita nenhuma cadeia contendo um n\'umero \'impar de 1s} \}$. Mostre que A 'e decid'ivel.
 - R É possível criar o AFD B de forma que $L(B) = \{\omega \mid \omega \text{ tem um número impar de 1s}\}$ (porque L(B) é regular). É necessário verificar se $L(M) \cap L(B) = \emptyset$. Isto é possível, pois é possível construir o AFD C de forma que $L(C) = L(M) \cap L(B)$ (Teorema 1.49.1) e testar se $\langle C \rangle$ é membro de V_{AFD} (Teorema 4.4).

Diante disto, será construído a seguir um decisor M_A para A:

 M_A = "Sobre a entrada $\langle M \rangle$, em que M é um AFD, faça:

- (a) Construa os AFDs B e C conforme descritos anteriormente;
- (b) Construa a MT X que decide V_{AFD} (Teorema 4.4);
- (c) Rode X sobre $\langle C \rangle$;
 - i. Se X aceita, aceite;
 - ii. Caso contrário, rejeite.

A linguagem A é decidível pois foi possível construir uma máquina de Turing que a decide (Definição 3.6) \blacksquare

- 2. (5,0 pt) Seja \mathcal{C} o conjunto de todas as sequências infinitas sobre os símbolos $\{a,b,c\}$. Mostre que \mathcal{C} é incontável, usando uma prova por diagonalização.
 - R Vamos supor, por um momento, que \mathcal{C} seja contável. Sendo contável, seja $f: \mathbb{N} \to \mathcal{C}$ a suposta bijeção existente entre \mathbb{N} e \mathcal{C} (tendo em vista que \mathcal{C} não é finito Definição 4.14). Logo, todos os elementos de \mathcal{C} deveriam participar de f. Entretanto, é possível construir $s \in \mathcal{C}$, a partir de f, que não participa da suposta bijeção.

Seja g(n,d) a função que retorna o d-ésimo dígito da sequência infinita f(n). Sejam $x,y \in \{a,b,c\}$ dois dígitos quaisquer. Definimos como $x \circ y$ a concatenação dos dígitos x e y, nesta ordem. Também definimos next(x) da forma como se segue

$$next(x) = \begin{cases} b & \text{se } x = a, \\ a & \text{caso contrário.} \end{cases}$$

Logo, é possível construir a sequência infinita s da seguinte forma:

$$s = next(g(1,1)) \circ next(g(2,2)) \circ next(g(3,3)) \circ next(g(4,4)) \dots$$

Como é possível construir s, concluímos que a suposta bijeção f não existe. Logo $\mathcal C$ é incontável \blacksquare

Teoremas Auxiliares

Definição 1.16: Uma linguagem é chamada de uma linguagem regular se algum autômato finito a reconhece.

Teorema 1.25: A classe de linguagens regulares é fechada sob a operação de união.

Teorema 1.26: A classe de linguagens regulares é fechada sob a operação de concatenação.

Teorema 1.26.1: A classe de linguagens regulares é fechada sob a operação de complemento.

Teorema 1.39: Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Teorema 1.49: A classe de linguagens regulares é fechada sob a operação estrela.

Teorema 1.49.1: A classe de linguagens regulares é fechada sob a operação de intersecção.

Teorema 1.54: Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Definição 3.5: Chame uma linguagem de Turing-reconhecível se alguma máquina de Turing a reconhece.

Definição 3.6: Chame uma linguagem de Turing-decidível ou simplesmente decidível se alguma máquina de Turing a decide.

Teorema 3.13: Toda máquina de Turing multifita tem uma máquina de Turing que lhe é equivalente.

Teorema 3.16: Toda máquina de Turing não-determinística tem uma máquina de Turing determinística que lhe é equivalente.

Teorema 3.21: Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Teorema 4.1: A_{AFD} é uma linguagem decidível.

Teorema 4.2: A_{AFN} é uma linguagem decidível.

Teorema 4.3: A_{EXR} é uma linguagem decidível.

Teorema 4.4: V_{AFD} é uma linguagem decidível.

Teorema 4.5: EQ_{AFD} é uma linguagem decidível.

Teorema 4.9: Toda linguagem livre-de-contexto é decidível.

Teorema 4.11: A_{MT} é uma linguagem indecidível.

Definição 4.14: Um conjunto A é contável se é finito ou tem o mesmo tamanho que N.