Работа 2.1.6

Эффект Джоуля-Томсона

Андрей Киркича, Б01-202, МФТИ, 2023

Цель работы: определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры; вычисление по результатам опытов коэффициентов Ван-дер-Ваальса

В работе используются: трубка с пористой перегородкой; труба Дьюара; термостат; термометры; дифференциальная термопара; микровольтметр; балластный баллон; манометр

Теоретичские сведения

Эффект Джоуля-Томсона - изменение температуры газа. медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции.

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right)$$
 (1)

$$H_1 - H_2 = \frac{1}{2}\mu(v_2^2 - v_1^2)$$
(2)

$$\Delta T = \frac{\mu}{2C_p} (v_2^2 - v_1^2)$$
 (3)

$$\mu_{\text{Дж-T}} = \frac{\Delta T}{\Delta P} \approx \frac{\frac{a}{RT} - b}{C_p}$$
(4)

$$T_{\text{\tiny HHB}} = \frac{2a}{Rb} \tag{5}$$

$$T_{\text{\tiny KP}} = \frac{2a}{Rb}$$

$$T_{\text{\tiny KP}} = \frac{8a}{27Rb}$$

$$(5)$$

Методика измерений

В работе исследуется изменение температуры углекислого газа при медленном его течении по трубе с пористой перегородкой.

Рисунок 1: схема экспериментальной установки

Углекислый газ под повышенным давлением поступает в трубку через змеевик 5 из балластного баллона 6. Медный змеевик омывается водой и нагревает протекающий через него газ. Температура воды измеряется термометром $T_{\rm B}$, размещённым в термостате. Требуемая температура воды устанавливается и поддерживается при помощи контактного термометра $T_{\rm K}$. Давление газа в трубке измеряется манометром M и регулируется вентилем B. Манометр измеряет разность между давлением внутри трубки и наружным (атмосферным), то есть непосредственно разность $\Delta P = P_1 - P_2$. Разность температур газа измеряется термопарой медь-константан. Для уменьшения теплоотвода трубка с пористой перегородкой помещена в трубу Дьюара 3, стенки которой посеребрены для уменьшения теплоотдачи, связанной с излучением. Для

уменьшения теплоотдачи за счёт конвекции один конец трубы Дьюара уплотнён кольцом 4, а другой закрыт пробкой 10 из пенопласта.

Результаты измерений

Было проделано три серии измерений разности температур и разности давлений газа на концах трубки при различных температурах воды в термостате. Результаты представлены ниже.

Pисунок 2: график зависимости разности температуры от разности давлений при температуре 20 ° C

Pисунок 3: график зависимости разности температуры от разности давлений при температуре 30 ° C

Pисунок 4: график зависимости разности температуры от разности давлений при температуре 50 ° C

$s, \frac{MKB}{K}$	T , o C	ΔP , $\frac{\text{kpc}}{\text{cm}^2}$	ΔP , atm	U_0 , мВ	U, мВ	ΔU , мкВ	ΔT , K	$\mu_{\text{Дж-T}}, \frac{\text{K}}{\text{atm}}$
39.8	20	-4.1	-4.0	0.011	-0.159	-170	-4.27	1.17 ± 0.09
		-3.7	-3.6		-0.141	-152	-3.82	
		-3.3	-3.2		-0.121	-132	-3.32	
		-2.9	-2.8		-0.096	-107	-2.69	
		-2.4	-2.4		-0.088	-99	-2.49	
40.7	30	-4.1	-4.0	0.018	-0.143	-161	-3.96	1.02 ± 0.02
		-3.7	-3.6		-0.127	-145	-3.56	
		-3.3	-3.2		-0.109	-127	-3.12	
		-2.9	-2.8		-0.092	-110	-2.70	
		-2.4	-2.4		-0.076	-94	-2.31	
42.5	50	-4.1	-4.0	0.025	-0.095	-120	-2.82	0.77 ± 0.03
		-3.7	-3.6		-0.081	-106	-2.49	
		-3.3	-3.2		-0.066	-91	-2.14	
		-2.9	-2.8		-0.054	-79	-1.86	
		-2.4	-2.4		-0.043	-68	-1.60	

Таблица 1: результаты измерений

Затем по полученным данным можно рассчитать константы a и b в уравнении Ван-дер-Ваальса. используя формулу (4) и взяв две разные температуры для решения полученной системы.

$$\begin{cases} a = \frac{(\mu_1 - \mu_2)C_PRT_1T_2}{2(T_2 - T_1)} \\ b = \frac{C_P(\mu_2T_2 - \mu_1T_1)}{T_1 - T_2} \end{cases}$$

В работе эти величины были посчитаны для двух пар температур - 20-30 $^o\mathrm{C}$ и 30-50 $^o\mathrm{C}.$ $C_P=4R.$

Пара температур, °С	$a, \frac{\text{H} \cdot \text{M}^4}{\text{м оль}^2}$	b
20-30	1.7 ± 0.3	990 ± 190
30-50	1.8 ± 0.3	1090 ± 190

По формуле (5) получаем температуру инверсии:

$$T_{\text{инв}} = (400 \pm 100) \text{ K}$$

Расчёт погрешностей

- R, C_P, s считаем константами без погрешности
- $\sigma_T = 0.3 \, {}^{o}\text{C}$
- $\sigma_{\Delta P} = 0.1 \frac{\text{KPC}}{\text{cm}^2}$
- $\sigma_U = 0.001 \text{ MB}$
- $\sigma_{\Delta U} = \sigma_U \sqrt{2} \approx 1.4 \text{ MKB}$
- $\sigma_{\Delta T} = \Delta T \cdot \frac{\sigma_{\Delta U}}{\Delta U} \approx 1\%$ of ΔT
- $\sigma_{\mu_{\text{Дж-T}}}$ рассчитывается программно методом наименьших квадратов

•
$$\sigma_a = a\sqrt{\frac{\sigma_{\mu_1}^2 + \sigma_{\mu_2}^2}{(\mu_1 - \mu_2)^2} + \left(\frac{\sigma_{T_1}}{T_1}\right)^2 + \left(\frac{\sigma_{T_2}}{T_2}\right)^2 + \frac{\sigma_{T_1}^2 + \sigma_{T_2}^2}{(T_1 - T_2)^2}}$$

$$\bullet \ \sigma_b = b\sqrt{\frac{\sigma_{T_1}^2 + \sigma_{T_2}^2}{(T_1 - T_2)^2} + \frac{(\mu_1 T_1)^2 (\varepsilon_{\mu_1}^2 + \varepsilon_{T_1}^2) + (\mu_2 T_2)^2 (\varepsilon_{\mu_2}^2 + \varepsilon_{T_2}^2)}{(\mu_2 T_2 - \mu_1 T_1)^2}}$$

•
$$\sigma_{T_{\mathtt{MHB}}} = T_{\mathtt{MHB}} \cdot \sqrt{\left(\frac{\sigma_a}{a}\right)^2 + \left(\frac{\sigma_b}{b}\right)^2}$$

Вывод

Коэффициенты уравнения Ван-дер-Ваальса для углекислого газа и температура инверсии в пределах погрешности не сходятся. Это связано с тем, что разность давлений в эксперименте была слишком большой, эффект не был дифференциальным. Также могли повлиять потери энергии в трубке, но несущественно. Стоит использовать более точные методы для измерения температуры, чтобы снимать показания с малой разностью давлений. Коэффициент Джоуля-Томсона в данной работе имел место быть, так как снятые зависимости разности давлений от разности температур были линейными. В процессе газ охлаждался.