MATLAB

高级编程与工程应用 (第一讲)

谷源涛 清华大学电子工程系 2024年7月

课程定位

- 实验课
- "电路"和"信号与系统"系列
- 课程目的
 - 熟练掌握MATLAB;
 - 复习和巩固"信号与系统";
 - 初步了解电子信息工程领域的典型应用;
 - 培养动手能力,迎接后续的课程作业和毕业设计。

基础课和专业课之间实践的桥梁

程 用 应 语音 数字 现代 自动 数字 信号 通信 图像 信号 控制 处理 外理 原理 原理 处理

MATLAB高级编程与工程应用

信号与系统

教材

- 《信号与系统-MATLAB综合实验》
 - 谷源涛 应启珩 郑君里,高等教育出版社,2008

综合实验一 音乐合成

钢琴键盘和对应频率

综合实验二 语音合成

综合实验三 图像处理

图像压缩编码

信息隐藏

人脸检测

综合实验四 连连看

教学计划

- 课堂讲授(罗姆楼三楼报告厅)
 - 第一周周一 9:00-12:00
 - 第一周周二 9:00-12:00
 - 第一周周三 18:30-21:30
- 上机练习(主楼九楼机房)
 - 第一周/第二周 周一至周五
 - 第十周(最后一周) 周一至周四
 - 8:00-17:00, 主楼918&916实验室

考核方式

上机考试40分

• 9月6日(第十周最后一周周五上午),主楼九楼机房

• 提交报告

大作业一 8月4日 20分

• 综合实验一、二里任选一个

大作业二 9月8日 40分

• 综合实验三、四里任选一个

助教和答疑

- 群聊: MATLAB2024

- 金澄
- 张振威
- 刘子源
- 张家炜

该二维码7天内(7月7日前)有效,重新进入将更新

注意事项

- 上机须带学生卡
- 综合实验一和二需要音箱或耳机,综合实验四的选做部分需要独立的摄像头
- 按时提交作业
- 作业格式
 - 命名:作业序号_学号_姓名.pdf/doc/docx
 - 内容: 题号、解决方法、客观结果、主观认识、报告最后附所有源程序并注释所有函数/文件的功能和主要变量的含义

注意事项—关于版本(1)

目的

- 减少"版本"对预期教学效果的影响,发挥主观能动性, 提倡独立思考,鼓励动手实践
- 培养诚信意识和良好的科研素养

措施

- 鼓励同学不借鉴任何版本,不相互讨论,独立思考并完成作业
- 如果提交的作业中含有非原创内容,必须逐一按等级注明

注意事项—关于版本(2)

- 非原创内容包括但不限于
 - 前人"版本"
 - 同学之间相互讨论结果
 - 除教材和MATLAB HELP外的其他参考资料(如网上的源代码)等

注意事项—关于版本(3)

- 非原创等级
 - 完全参考。目的仅为保证作业的完整性。完全参考包括 复制被参考内容、对被参考内容没有任何改动的重现、 对被参考内容没有实质性改动的重现(如更换变量名)
 - 借鉴参考。借鉴参考是指结合自己的思考,理解被参考 内容的思路,重新完整地实现。借鉴参考的内容必须写 出自己的理解和思路
 - 改进参考。改进参考是指结合自己的思考,对被参考内容进行实质性的优化改进后实现。可优化的方面包括但不限于:算法优化、代码优化、代码风格优化等。改进参考必须明确指出对被参考内容进行改进的部分、改进的思路以及改进后的效果

注意事项—关于版本(4)

- 如果出现非原创内容未注明的情况,视未注明的 严重程度
 - 直接后果为该次作业该得分点记0分到该次作业记0分
 - 间接后果为上机考试部分考题取材作业,对作业理解不 深会影响考试成绩

1. MATLAB基础知识

- 简介
- 数据结构、数据类型、函数和命令
- 数值、比较和逻辑运算
- 符号计算
- M 文件
- 常用MATLAB 命令

1.1 简介

- MATLAB即MATrix LABoratory;
- 七十年代后期, Cleve Moler教授为学生减负, 用Fortran编写了一组"通俗易用"的数学函数, 作为免费的教学辅助软件广泛流传;
- 1984年Cleve Moler和John Little等人成立MathWorks公司, 用C语言编写内核,新增图形功能;
- 几年后迫使若干专业计算软件以其为基础重写;
- 主要产品为MATLAB Product Family和Simulink Product Family, 最新版本为R2024a/b;
- 教学用版本为R2023b。

MATLAB = MATrix + LABoratory

- 一个可交互的计算程序;
- 提供一个字符界面的控制台;
- 有许多功能强大的命令;
- 有便于使用的二、三维图形工具;
- 有许多相当专业的工具包;
- 可以与其他开发工具一起使用。

为什么学MATLAB?

- 做作业
 - 数值运算
 - 符号运算
- 写报告
 - 绘制图形
- 搞科研
 - 快速地仿真一个问题,或者验证一个猜想

MATLAB语言的特点

- 甚高级语言
 - 强大的数值(矩阵)运算能力
 - 丰富的符号运算功能
 - 运算符和库函数异常得多
- 简洁紧凑、语法宽松、程序设计自由、容错可靠
- 图形功能强大
 - 计算结果的可视化功能
- 界面友好、开发效率高
- 信息量丰富的联机检索和帮助功能

MATLAB Product Family

- Math and Optimization
- Statistics and Data Analysis
- Control System Design and Analysis
- Signal Processing and Communications
- Image Processing
- Test & Measurement
- Computational Biology
- Financial Modeling and Analysis
- Application Deployment
- Application Deployment Targets
- Database Connectivity and Reporting
-

Simulink Product Family

- Fixed-Point Modeling
- Event-Based Modeling
- Physical Modeling
- Simulation Graphics
- Control System Design and Analysis
- Signal Processing and Communications
- Code Generation
- Rapid Prototyping and HIL Simulation
- Embedded Targets
- Verification, Validation, and Testing
-

MATLAB界面

- 命令窗口
- 命令历史记录
- 工作空间
- 编辑/调试窗口
- 绘图窗口
- 设置当前路径
- 当前路径窗口

MATLAB常用命令

- 查询变量
 - who, whos, whos a*, exist('x')
- 清除变量
 - clear, clear x, clear a*
- 保存和载入变量
 - save, save filename, save filename a
 - load, load filename
- 清除命令窗口
 - clc

MATLAB常用命令

命令	功能	命令	功能
cd	显示或改变工作目录	clc	清除命令窗口
clear	清除内存变量	clf	清除图形窗口
copyfile	复制文件	delete	删除文件或图形对象
demos	运行示例程序	dir, Is	显示当前目录下文件
disp	显示变量内容	echo	命令窗口信息显示开关
load	载入文件中的数据	movefile	移动文件
open	打开文件供编辑	pack	整理内存碎片
pwd	显示当前工作路径	save	保存变量到文件中
type	显示文件内容	who	显示当前内存中变量

1.2 数据结构、数据类型、函数和

命令

- 数据类型
 - 有数值(numeric)、逻辑(logical)、字符(char)、符号 (symbol)和函数指针(function handle)等,一般可相互 转化
- 数据结构
 - 矩阵、数组、结构(struct)、单元数组(cell)和表格(table)等
- 函数和命令
 - 调用方式不同,实质相同

1.3 数值、比较和逻辑运算

• 以矩阵或数组为基本运算单位

名称	说明	名称	说明
+ -	矩阵加,矩阵减	*	矩阵乘
/ \	矩阵右除,矩阵左除	^	矩阵求幂
.* .^	数组乘,数组求幂	./ .\	数组右除,数组左除
, ,	共轭转置,转置	=	赋值

1.3 数值、比较和逻辑运算

• 比较运算符和逻辑运算符

名称	说明	名称	说明
==	等于	~=	不等于
> >=	大于,大于等于	< <=	小于, 小于等于
&	与	1	或
~	非	xor(a,b)	a和b做异或
any(a)	a中有元素非零则为真	all(a)	a中所有元素都非零则为真

信号的数值表示和数值运算

• 数值表示

连续时间信号和离散时间信号的界限已经消失,统一以抽样信号的形式用矢量表示,抽样间隔越小,信号连续性越强。

● 数值运算

对信号的描述和处理通过对矢量和矩阵的定义和操作实现。

例题

例1. 1 己知 $x(t) = sin(2\pi t)u(t), y(t) = e^{-t}u(t)$ 。 试计算 $t \in [-1,2]$ 区间的 $z_1(t) = 2x(t)$ $z_2(t) = x(t-0.5)$ $z_3(t) = x(2t), z_4(t) = x(t) + y(t), z_5(t) = x(t)y(t)$ 。

1.4 符号计算

- 用var = sym(str) 或syms var1 var2 ... 定义符号 变量。
- 符号计算和数值计算几乎完全相同
- 符号表达式到数值变量的转换可以用subs(f, x, y) 完成, 意为用y替换掉表达式f中的x

例1.2 用符号计算的方法重做例1.1。

1.5 M文件

- 操作MATLAB的最简单途径是在命令窗口中直接 输入命令行,以即时交互的方式编写程序。
- 如果待处理的问题复杂且容易出错时,单纯使用 命令行的方法会严重地降低工作效率。
- 此时就需要将一行行的命令写在文件中,即M文件。
- MATLAB是一门解释性的语言,因而M文件本身 不能运行,必须有MATLAB环境的支持。

脚本(Script)和函数(Function)

- M文件分为脚本和函数两种。
- 脚本式M文件是用户在命令窗口中输入的命令的简单集合,它的运行效果和用户在命令窗口中逐一的输入命令完全相同。
- 函数文件可以自带参数和返回值,因而比脚本文件复杂。函数文件的第一行用以声明这是一个函数文件,并且指定函数名、参数和返回值,

function rvalue = functionname(param1, ...)

一般取functionname和该函数文件的文件名相同。

程序控制命令

- 顺序执行
- 分支
 - if elseif else end
 - switch case otherwise –end
- 循环
 - for continue break end
 - while continue break end
- 捕获错误事件
 - try catch end

1.6 实时脚本和实时函数

- 代码、说明文本和运行结果的融合
- 运行结果显示在代码下方或右侧
- 说明文本支持简易排版和字体设置
- 支持用控件动态更改常量
 - 并同步更新运行结果
- 支持用任务完成模块化的处理工作
- 可导出为pdf, word, html, latex

1.7 阶跃信号和冲激信号

- Heaviside
- Dirac

MATLAB的重要常量和特殊变量

名称	说明	名称	说明
ans	默认保存结果的变量名	pi	圆周率
eps	浮点数的相对误差	inf	无穷大
NaN, nan	非数	i, j	虚数单位
realmin, realmax	最小/最大浮点数	bitmax	最大正整数

2. MATLAB绘图

- 基本绘图
- 句柄图形
- 交互式绘图

2.1 基本绘图

● figure 生成新图框

• plot, subplot 绘图, 在子窗口绘图

字符	类型	意义
b/g/r/c/m/y/k	颜色	蓝/绿/红/蓝绿/紫红/黄/黑
./x/+/h/*/s/d/v /^//p/o	点型	点/x/+/六角星/星号/方形/菱形/下三角/上三角/左三角/右三角/正五边形/圆圈
-/://	线型	实线/点线/点划线/虚线

hold on/off 打开/关闭保持模式

title 显示标题

xlabel, ylabel 显示横纵坐标说明

legend 生成图例

2.1 基本绘图

- 绘制离散时间信号
 - stem
- 绘制符号函数
 - 先用subs函数计算抽样时刻的抽样值,然后用plot函数 绘制
 - 更简单的方法: ezplot

2.2 句柄图形

MATLAB 的数据可视化建立在对象的基础上,即一幅图的每个组成部分(如坐标轴、线、注释文本等)都是对象,可以通过对象的唯一标示句柄(Handle)访问其属性,改变各个组成部分的视觉效果。

核心(Core)对象包括 坐标轴(axes)、图像 (image)、光源(light)、 线条(line)、填充的多 边形(patch)、矩形 (rectangle)、曲面 (surface)和文本(text)。

2.2 句柄图形

- 获取和修改句柄属性
 - gcf, gca, gco, gcbf, gcbo 获取当前……的句柄
 - get, set 访问句柄属性
- 举例
 - get(gca)
 - set(gca, 'XLim', [0, 100])
 - get(gca, 'XLim')

2.3 交互式绘图

- View菜单下
 - Figure Toolbar, Camera Toolbar, Plot Edit Toolbar
 - Figure Palette, Plot Browser, Property Editor
- 在Workspace中直接操作数据
- 输出图形
 - Copy Figure
 - Save as
 - Generate Code

控制系统举例

• 例: 倒立摆的比例一微分反馈控制

小球质量m,杆长L,偏离垂线角度 θ ,风吹扰动角加速度x;为保证倒立摆不倒,对小车施加比例一

微分反馈控制其加速度a

$$a(t) = K_1 \theta(t) + K_2 \dot{\theta}(t)$$

求 K_1 和 K_2 满足系统稳定的条件

• 解:

$$L\ddot{\theta}(t) = g \sin \left[\theta(t)\right] - a(t) \cos \left[\theta(t)\right] + Lx(t)$$

• 线性化近似

$$L\ddot{\theta}(t) = g\theta(t) - a(t) + Lx(t)$$

控制系统演示

• 选择状态变量

$$\begin{cases} \lambda_1 = \theta \\ \lambda_2 = \dot{\theta} \\ \lambda_3 = d \\ \lambda_4 = v \end{cases}$$

• 写出状态方程

$$\begin{bmatrix} \dot{\lambda}_{1}(t) \\ \dot{\lambda}_{2}(t) \\ \dot{\lambda}_{3}(t) \\ \dot{\lambda}_{4}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \frac{g}{L} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \lambda_{1}(t) \\ \lambda_{2}(t) \\ \lambda_{3}(t) \\ \lambda_{3}(t) \\ \lambda_{4}(t) \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & -\frac{1}{L} \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x(t) \\ a(t) \end{bmatrix}$$

控制系统演示

$$K_1 = 10, K_2 \text{ vs } 2\sqrt{1(10-9.8)} = 0.8944$$

$$K_1 = 10$$
$$K_2 = 0$$

$$K_1 = 10$$
$$K_2 = 0.2$$

$$K_1 = 10$$
$$K_2 = 1$$

3. 连续时间系统的时域分析

- 引言
- 微分方程式的建立与求解
- 零输入响应与零状态响应
- 冲激响应与阶跃响应
- 卷积

3.1 引言

- 连续时间系统的研究方法包括输入一输出法(端口描述法)和系统状态变量分析法。
- 输入一输出法
 - LTI 系统可以用一元高阶微分方程描述。

例3.1 描述如下系统

$$\frac{\mathrm{d}^3}{\mathrm{d}t^3}r(t) + 7\frac{\mathrm{d}^2}{\mathrm{d}t^2}r(t) + 12r(t) = e(t)$$

3.1 引言

• 状态变量描述法

一个一元高阶微分方程,必然可以化成两个多元一阶微分方程组,即状态方程和输出方程

例3.2 描述如下系统

状态方程
$$\begin{bmatrix} \dot{\lambda}_1 \\ \dot{\lambda}_2 \\ \dot{\lambda}_3 \end{bmatrix} = \begin{bmatrix} -2 & 0 & -1 \\ 0 & -3 & 3 \\ 2 & -2 & 0 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & -3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} e_1(t) \\ e_2(t) \end{bmatrix}$$

输出方程
$$r(t) = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{vmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{vmatrix} + \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} e_1(t) \\ e_2(t) \end{bmatrix}$$

3.2 微分方程式的建立与求解

微分方程的解包括齐次解和特解两部分。齐次解 即系统特征方程的根,用roots函数计算。

例3.3 求微分方程
$$\frac{d^3}{dt^3}r(t)+7\frac{d^2}{dt^2}r(t)+16\frac{d}{dt}r(t)+12r(t)=0$$
的齐次解。

特解即系统(采用微分方程表示)在给定信号激励下的输出。用Isim函数进行仿真。

例3.4 给定微分方程
$$\frac{d^2r(t)}{dt^2} + 2\frac{dr(t)}{dt} + 3r(t) = \frac{de(t)}{dt} + e(t)$$
,如果已知 $(1)e(t) = t^2$; $(2)e(t) = e^t$,分别求两种情况下此方程的特解。

知识点(1)多项式

Help polyfun

- roots Find polynomial roots.
- poly Characteristic polynomial or Convert roots to polynomial.
- polyval Evaluate polynomial.
- polyvalm Evaluate polynomial with matrix argument.
- residue Partial-fraction expansion (residues).
- polyfit Fit polynomial to data.
- polyder Differentiate polynomial.
- polyint Integrate polynomial analytically.
- conv Multiply polynomials.
- deconv Divide polynomials.

3.3 零输入响应与零状态响应

- Isim 函数还可以对带有非零起始状态的LTI 系统 进行仿真, y = Isim(sys, u, t, x0)
- 注意:若用Isim 函数仿真非零起始状态响应,则 该系统必须用状态方程描述(对传递函数描述的 LTI系统,Isim函数无法仿真非零起始状态响应)。

3.3 零输入响应与零状态响应

例3.5 给定下图所示电路,t < 0开关S处于1的位置,而且已经达到稳态,将其看做起始状态,当t = 0时,S由1转向2。分别求t > 0时i(t)的零输入响应和零状态响应。

3.3 零输入响应与零状态响应

- 解: 两种方法
 - 第一种:首先仿真2V电压en作用足够长时间(10秒) 后系统进入稳态,从而得到稳态的状态变量值x0,再以 其作为初始值仿真4V电压e作用下的输出rf,即是系统 的完全响应。这种方法可以得到零状态响应rzs和零输 入响应rzi。
 - 第二种:构造一个激励信号,先保持2V足够长时间 (10秒)再跳变为4V,然后即可以零初始状态一次仿 真得到系统的完全响应r1。

知识点(2)解微分方程组

例3.6 绘制地球卫星的运行轨道。以卫星轨道为坐标平面,地球位置为坐标原点,定义卫星的二维运动状态 $\mathbf{s} = \begin{bmatrix} x, y, v_x, v_y \end{bmatrix}^{\mathrm{T}}$,其中x, y表示位置, v_x, v_y 表示速度,可知运动方程为

$$\mathbf{S} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{v}_{x} \\ \dot{v}_{y} \end{bmatrix} = \begin{bmatrix} v_{x} \\ v_{y} \\ -GM_{E} \frac{x}{(x^{2} + y^{2})^{\frac{3}{2}}} \\ -GM_{E} \frac{y}{(x^{2} + y^{2})^{\frac{3}{2}}} \end{bmatrix} \\ \stackrel{\text{其中}}{\mathbb{5}}$$

其中引力常数 $G = 6.672 \times 10^{-11}$,地球质量 $M_e = 5.97 \times 10^{24}$,假设初值 $x(0) = -4.2 \times 10^7$,y(0) = 0, $v_x(0) = 0$, $v_y(0) = 4 \times 10^3$ 。

3.4 冲激响应与阶跃响应

- 如果分别用冲激信号和阶跃信号作激励, Isim 函数可仿真出冲激响应和阶跃响应。
- MATLAB 专门提供了impulse(sys) 和step(sys)两个函数直接产生冲激响应和阶跃响应。

例3.7 对上题图示电路,分别求电流 i(t)对激励 $e(t) = \delta(t)$ 和 e(t) = u(t)的冲激响应h(t)和阶跃响应g(t)。

解: 先求得电路的微分方程表示

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}i(t) + 7\frac{\mathrm{d}}{\mathrm{d}t}i(t) + 10i(t) = \frac{\mathrm{d}^2}{\mathrm{d}t^2}e(t) + 6\frac{\mathrm{d}}{\mathrm{d}t}e(t) + 4e(t)$$

知识点(3)关于返回值

- 很多函数被重载
- 不指定返回值时, "主动"用返回值做一些操作

3.5 卷积

● 卷积运算的数值近似

$$f(t) = \int_{-\infty}^{\infty} f_1(\tau) f_2(t - \tau) d\tau$$

$$f(nT) = \sum_{m=-\infty}^{\infty} \int_{mT}^{mT+T} f_1(\tau) f_2(nT-\tau) d\tau$$

$$f(nT) \approx T \sum_{m} f_1(mT) f_2(nT - mT)$$

MATLAB 提供了w = conv(u,v) 函数实现卷积和

$$w(n) = \sum_{m} u(m)v(n+1-m)$$

3.5 卷积

例3.8 已知某系统冲激响应为 h(t) = t/2, 0 < t < 2 以 -0.5开始,宽度为1.5秒,幅度为1的矩形脉冲 e(t)激励该系统,求输出信号r(t)。

知识点(4)连续时间信号的数值计算

- 自然界中绝大部分物理量是连续的,数字计算机 处理连续信号必须做近似,计算精度取决于算法 和数字表示的位数。
- 例如积分运算的简单数值计算方法是分段求和

$$F(a,b) = \int_{a}^{b} f(t) dt \approx \frac{b-a}{N} \sum_{n=0}^{N-1} f\left(a+n\frac{b-a}{N}\right)$$

- 复杂数值计算方法包括插值、拟合等等
 - help interp, resample, polyfit, ...

4. 傅里叶变换

- 傅里叶变换
- 周期信号的傅里叶级数分析
- 卷积特性(卷积定理)

4.1 傅里叶变换

- 符号方法
 - MATLAB 提供了符号函数fourier 和ifourier 实现傅里叶变换和逆变换

例4.1计算tu(t)和 $\sin(t)$ 的傅里叶变换; 计算 $\delta(\omega)$ 的傅里叶逆变换。

 工程应用中经常需要对抽样数据做傅里叶分析, 这种情况下往往无法得到信号的解析表达式,因 而数值计算方法是应用傅里叶变换的主要途径。

4.1 傅里叶变换

将傅里叶变换写成离散表示形式

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt = \int_{t_1}^{t_2} f(t) e^{-j\omega t} dt$$

$$F(\omega) = \frac{T}{N} \sum_{n=0}^{N-1} f(t_1 + n\Delta t) e^{-j\omega(t_1 + n\Delta t)}$$

$$F(\omega_1 + k\Delta \omega) = \frac{T}{N} \sum_{n=0}^{N-1} f(t_1 + n\Delta t) e^{-j(\omega_1 + k\Delta \omega)(t_1 + n\Delta t)}$$

● 同理写出逆变换

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega = \frac{\Omega}{2\pi K} \sum_{k=0}^{K-1} F(\omega_1 + k\Delta\omega) e^{j(\omega_1 + k\Delta\omega)t}$$
$$f(t_1 + n\Delta t) = \frac{\Omega}{2\pi K} \sum_{k=0}^{K-1} F(\omega_1 + k\Delta\omega) e^{j(\omega_1 + k\Delta\omega)(t_1 + n\Delta t)}$$

4.1 傅里叶变换

例4.2请绘制矩形脉冲

$$f(t) = \begin{cases} 1 & |t| < \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$

的波形($t \in [-1,1]$)和频谱 $F(\omega)(\omega \in [-8\pi, 8\pi])$,并利用计算得到的频谱恢复时域信号 $f_s(t)$ 比较和原信号f(t)的差别。

• 三种方法

- 二重循环
- 循环+矢量相乘
- 矩阵相乘

矢量计算法

$$F(\omega_1 + k\Delta\omega) = \frac{T}{N} \begin{bmatrix} e^{-j(\omega_1 + k\Delta\omega)t_1} & e^{-j(\omega_1 + k\Delta\omega)(t_1 + \Delta t)} & \cdots & e^{-j(\omega_1 + k\Delta\omega)(t_2 - \Delta t)} \end{bmatrix} \begin{bmatrix} f(t_1) \\ f(t_1 + \Delta t) \\ \vdots \\ f(t_2 - \Delta t) \end{bmatrix}$$

$$f(t_1 + n\Delta t) = \frac{\Omega}{2\pi K} \left[e^{j\omega_1(t_1 + n\Delta t)} e^{j(\omega_1 + \Delta \omega)(t_1 + n\Delta t)} \cdots e^{j(\omega_2 - \Delta \omega)(t_1 + n\Delta t)} \right] \begin{bmatrix} F(\omega_1) \\ F(\omega_1 + \Delta \omega) \\ \vdots \\ F(\omega_2 - \Delta \omega) \end{bmatrix}$$

矩阵相乘法

知识点(5)程序优化技巧

- 主要有
 - 用矩阵运算代替循环
 - 变量预定义(提升越来越不明显)
- 举例
 - 计算sin(n), n=1,2,...,10^7
- 时间函数
 - Help timefun
- 统计各个模块运行时间
 - Help Profile

4.2 周期信号的傅里叶级数分析

• 和傅里叶变换的数值计算方法相似

例4.3 绘制周期 $T_1 = 1$,幅度E = 1的对称方波的前 10项傅里叶级数的系数(三角函数形式),并用前 5项恢复原信号。

知识点(6)生成周期性连续信号

- 生成任意周期T、占空比p、延时tau的矩形波
 - x = cos((t-tau-T*p/2)*2*pi/T)>cos(pi*p)
- (自学)
 - square
 - sawtooth
 - pulstran

4.3 卷积特性(卷积定理)

• 验证卷积定理: 时域卷积对应于频域相乘。

例4.4已知

$$f(t) = \begin{cases} E\left(1 - \frac{2|t|}{\tau}\right) & |t| \le \frac{\tau}{2}, \\ 0 & |t| > \frac{\tau}{2} \end{cases}$$

利用卷积定理求三角脉冲的频谱。

知识点(7)提高函数的稳健性

- 考察MATLAB库函数
 - open conv

学习方法

- MATLAB帮助
 - 联机帮助或在线帮助
 - http://www.mathworks.com/
- 亲自编程练习
 - 借助大语言模型,学会并记住
 - 独立调试很关键
- B站

作业

- 运行并理解所有讲过的例程
- 按需要浏览MATLAB帮助文档

谢谢同学们认真听讲

- 有问题请在微信群或网络学堂提出
- 或者联系
 - 谷源涛 gyt@tsinghua.edu.cn
 - 金澄 jinc21@mails.tsinghua.edu.cn