Лабораторная работа 3.3.4 Эффект Холла в полупроводниках

Симанкович Александр Б01-104

07.09.2022

Цель работы

Проверка эффекта Холла в полупроводниках. Измерение подвижности и концентрации носителей заряда в полупроводниках.

Оборудование и приборы

Электромагнит с регулируемым источником питания GPR-11H30D; вольтметр B7-78/1; миллиамперметр M2020; милливеберметр M119 и миллитесламетр AKTAKOM ATE-8702; источник питания (1,5 B); образцы легированного германия.

Теоретическое введение

Во внешнем магнитном поле В на заряды действует сила Лоренца:

$$F = qE + qu \times B.$$

Эта сила вызывает движение носителей, направление которого в общем случае не совпадает с E. Действительно, траектории частиц будут либо искривляться, либо, если геометрия проводника этого не позволяет, возникнет дополнительное электрическое поле, компенсирующее магнитную составляющую силы Лоренца. Возникновение поперечного току электрического поля в образце, помещённом во внешнее магнитное поле, называют эффектом Холла.

Рис. 1: Схема мостика Холла

В данной работе для проверки эффекта Холла будем использовать мостик Холла (см. рис. 1).

Для поперечного (холловского) напряжения получаем:

$$U_{\perp} = E_y a = \rho_{yx} \cdot j_x a = \frac{j_x B}{nq}.$$

Учитывая, что $j_x = \frac{I}{ah}$, получаем:

$$U_{\perp} = \frac{B}{nqh} \cdot I = R_H \cdot \frac{B}{h} \cdot I, \tag{1}$$

где $R_H = \frac{1}{nq}$ – постоянная Холла.

Для продольной составляющей напряжения:

$$U_{\parallel} = E_x l = j_x / \sigma_0 l = I R_0,$$

где $R_0 = \frac{l}{\sigma_0 ah}$.

$$\sigma_0 = \frac{I \cdot l}{U_{35} \cdot h \cdot a}.\tag{2}$$

Экспериментальная установка

Рис. 2: Схема установки для исследования эффекта Холла в полупроводниках

В зазоре электромагнита (см. рис. 2) создаётся постоянное магнитное поле, величину которого можно менять с помощью регулятора источника питания электромагнита. Ток питания электромагнита измеряется амперметром A_1 .

Градуировка электромагнита проводится при помощи милливеберметра и миллитесламетра. Прямоугольный образец из легированного германия, смонтированный в специальном держателе (см. рис. 2), подключается к источнику питания ($\approx 1,5$ В). При замыкании ключа K_2 вдоль длинной стороны образца (контакты 3, 5) течёт ток, величина которого регулируется реостатом R_2 и измеряется миллиамперметром A_2 .

В образце с током, помещенном в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра.

Контакты 3 и 4 вследствие неточности подпайки могут не лежать на эквипотенциали, для устранения этого эффекта будем измерять начальное значение напряжения U_0 (при выключенном магните) в каждой серии измерений.

Ход работы

Градуировка электромагнита

Проведем градуировку электромагнита. Для этого измерим зависимость B(I), где B – модуль вектора индукции магнита, I_M – ток, протекающий через обмотки магнита. Измерения проведем милливеберметром М119 и миллитесламетром АКТАКОМ АТЕ-8702. Погрешности данных приборов:

$$\varsigma_{\text{Вб}} = 0.15 \text{ мВб} \quad \varepsilon_{\text{Тл}} = 0.06$$

Точность измерения I_M определяется точностью A_1 , встроенного в лабораторный блок питания GPR-11H30D:

$$\varsigma_{A_1} = 0.005 \text{ A}$$

	Вебермет	Тесламетр			
I_M , A	Ф, мВб	B, м T л	I_M , A	B, м T л	
0.15	0.9	120	0.15	154	
0.30	1.7	227	0.30	280	
0.45	2.4	320	0.45	403	
0.60	3.2	427	0.60	533	
0.75	4.0	533	0.75	653	
0.90	4.8	640	0.90	809	
1.05	5.4	720	1.05	964	
1.20	5.9	787	1.20	1083	
1.35	6.2	827	1.35	1145	
1.50	6.5	867	1.50	1180	

Таблица 1: Результаты измерений индукции магнита

Построим графики B(I) по результатам милливеберметра и миллитесламетра.

Рис. 3: $B(I_M)$

ЭДС Холла

Проведем измерения $U_{34}(I_M)$ для различных I. Рассчитаем значения B и занесем в таблицу. Измерения I делаются миллиамперметром A_2 , модель M2020: $\varsigma_{A_2}=5$. Измерения U проводятся вольтметром V_1 , модель B7-78/1: $\varsigma_{V_1}=3.5$ мкВ. В измерениях учитывается U_0 – сдвиг напряжения при нулевом магнитном поле.

							I,	мА						
	0	.14	0	.30	0	.45	0	.60	0	.75	0	.90	1	.00
I_{I}	$_{M},\mathrm{A}$	U, мкВ	I_M , A	U, мкВ										
(0.15	-12	0.15	-29	0.15	-44	0.15	-57	0.15	-70	0.15	-84	0.15	-96
(0.30	-26	0.30	-60	0.30	-90	0.30	-119	0.30	-147	0.30	-178	0.30	-203
(0.45	-40	0.45	-92	0.45	-138	0.45	-185	0.45	-229	0.45	-279	0.45	-307
(0.60	-55	0.60	-123	0.60	-185	0.60	-245	0.60	-305	0.60	-371	0.60	-411
(0.75	-67	0.75	-151	0.75	-227	0.75	-305	0.75	-378	0.75	-459	0.75	-509
(0.90	-81	0.90	-178	0.90	-267	0.90	-360	0.90	-448	0.90	-543	0.90	-597
1	.05	-91	1.05	-201	1.05	-302	1.05	-406	1.05	-505	1.05	-608	1.05	-676
1	.20	-98	1.20	-218	1.20	-328	1.20	-439	1.20	-546	1.20	-660	1.20	-732
1	.35	-104	1.35	-231	1.35	-346	1.35	-464	1.35	-578	1.35	-698	1.35	-773
1	.50	-109	1.50	-241	1.50	-361	1.50	-485	1.50	-606	1.50	-730	1.50	-809

Таблица 2: Результаты измерений $U_{34}(I_M)$

Пересчитаем I_M в B с помощью результатов калибровки. Погрешность перевода будем считать $\varepsilon_B \approx \Delta a/a \approx 0.05$.

						I,	мА						
0.	14	0.	30	0.	45	0	.60	0.	75	0.	90	1.	00
B, м T л	U, мкВ												
154	-12	154	-29	154	-44	154	-57	154	-70	154	-84	154	-96
280	-26	280	-60	280	-90	280	-119	280	-147	280	-178	280	-203
404	-40	404	-92	404	-138	404	-185	404	-229	404	-279	404	-307
531	-55	531	-123	531	-185	531	-245	531	-305	531	-371	531	-411
655	-67	655	-151	655	-227	655	-305	655	-378	655	-459	655	-509
808	-81	808	-178	808	-267	808	-360	808	-448	808	-543	808	-597
965	-91	965	-201	965	-302	965	-406	965	-505	965	-608	965	-676
1083	-98	1083	-218	1083	-328	1083	-439	1083	-546	1083	-660	1083	-732
1145	-104	1145	-231	1145	-346	1145	-464	1145	-578	1145	-698	1145	-773
1180	-109	1180	-241	1180	-361	1180	-485	1180	-606	1180	-730	1180	-809

Таблица 3: $U_{34}(B)$

Рис. 4: Зависимость холловского напряжения от индукции магнитного поля

По методу наименьших квадратов рассчитаем параметры графиков, считая зависимость линейной (y=ax+b). Воспользуемся угловым коэффициентом $K=\frac{\Delta \mathcal{E}_H}{\Delta B}$ для каждого графика. Построим график K(I) и рассчитаем его параметры.

Рис. 5: Зависимость углового коэффициента от тока через образец

Выясним знак носителей заряда в легированном германии. Мы знаем, что электрическое поле направлено от 4 к 3,5 из знака напряжения на вольтметре V1. Воспользовавшись правилом буравчика и правилом левой руки выясняем, что сила Лоренца направлена от 4 к 3,5

I, мА	$ K $, $\frac{MKB}{MTJ}$	ΔI , мА	$\Delta K , \frac{\text{MKB}}{\text{MTJ}}$
0.140	0.091	0.005	0.003
0.300	0.199	0.005	0.007
0.450	0.298	0.005	0.011
0.600	0.402	0.005	0.015
0.750	0.502	0.005	0.018
0.900	0.604	0.005	0.023
1.000	0.667	0.005	0.024

Таблица 4: K(I)

\overline{x}	σ_x^2	\overline{y}	σ_y^2	r_{xy}	a	Δa	b	Δb
5.914e-01	8.516e-02	0.395	3.851e-02	5.726e-02	0.672	0.002	-0.003	0.002

Таблица 5: Параметры графика K(I)

для обоих знаков зарядов. Следовательно, носитель заряда в легированном германии имеет положительный заряд (дырочная проводимость).

Рис. 6: Пробная катушка и ее положение относительно магнита

Определим R_H по формуле (1):

$$R_H = h \frac{U_{\perp}}{BI} = h \cdot a_K = 1.0 \text{ mm} \cdot 0.672 \frac{\text{B}}{\text{B6} \cdot \text{A}} = (6.7 \pm 0.4) \cdot 10^{-4} \frac{\text{m}^3}{\text{K}_{\text{J}}}$$

Определим концентрацию n:

$$n = \frac{1}{R_H e} = (9.3 \pm 0.4) \cdot 10^{21} \frac{1}{\text{M}^3}$$

Альтернативный метод обработки

Также для определения параметров можно воспользоваться тем, что:

$$\mathcal{E}_H = \frac{R_H}{h} \cdot BI$$

Построим график $\mathcal{E}_H(BI)$ и определим его параметры.

Рис. 7: Зависимость холловского напряжения от произведения индукции поля и тока в образце

\overline{x}	σ_x^2	\overline{y}	σ_y^2	r_{xy}	a	Δa	b	Δb
$4.261\mathrm{e}{+02}$	$9.836\mathrm{e}{+04}$	301.357	4.697e + 04	$6.775\mathrm{e}{+04}$	0.689	0.007	7.898	3.623

Таблица 6: Параметры графика $\mathcal{E}_H(IB)$

Определим R_H по формуле (1):

$$R_H = h \frac{U_{\perp}}{BI} = h \cdot a_{IB} = 1.0 \text{ mm} \cdot 0.689 \frac{B}{B6 \cdot A} = (6.9 \pm 0.4) \cdot 10^{-4} \frac{M^3}{K_{\Pi}}$$

Определим концентрацию n:

$$n = \frac{1}{R_H e} = (9.1 \pm 0.5) \cdot 10^{21} \frac{1}{\text{M}^3}$$

Удельная проводимость

Измерим $U_{35}(I)$ в образце.

Построим график $U_{35}(I)$ и рассчитаем его параметры.

<i>I</i> , мА	U_{35}, MB
0.14	0.544
0.30	1.203
0.45	1.800
0.60	2.395
0.75	3.007
0.90	3.623
1.00	4.025

Таблица 7: Результаты измерений $I(U_{35})$

Рис. 8: Зависимость вынуждаещего напряжения от основного тока

$\overline{\overline{x}}$	σ_x^2	\overline{y}	σ_y^2	r_{xy}	a	Δa	b	Δb
5.91e-01	8.52e-02	2.37	1.39e+00	3.44e-01	4.04	0.01	-0.02	0.01

Таблица 8: Параметры графика $U_{35}(I)$

Рассчитаем σ_0 :

$$\sigma_0 = \frac{I \cdot l}{U_{35} \cdot h \cdot a} = \frac{5.0 \text{ mm}}{4.04 \text{ Om} \cdot 1.0 \text{ mm} \cdot 4.0 \text{ mm}} = (309 \pm 27) \frac{1}{\text{Om} \cdot \text{m}}$$

Рассчитаем b:

$$b = \frac{\sigma_0}{en} = (2230 \pm 220) \frac{\text{cm}^2}{\text{B} \cdot \text{c}}$$

Вывод

Данная работа подтверждает существование эффекта Холла в полупроводниках.

В работе оценено значение концентрации носителей тока в образце $n=(8.7\pm0.4)\cdot 10^{21}\,\frac{1}{{}_{\rm M}^3},$ удельная проводимость $\sigma_0=(309\pm27)\,\frac{1}{{}_{\rm OM\cdot M}},$ подвижность носителей $b=\frac{\sigma_0}{en}=(2230\pm220)\,\frac{{}_{\rm CM}^2}{{}_{\rm B\cdot C}},$ (зависит от легирования, для германия $\approx 2000\,\frac{{}_{\rm CM}^2}{{}_{\rm B\cdot C}}).$