

BVRIT HYDERABADCollege of Engineering for Women

Department of Computer Science and Engineering

Automated Steel Surface Defect Detection Using Deep Learning

Under the Guidance of:

Dr. M. Shanmuga Sundari Assistant Professor **Team No: C5**

G. Akshara - 22WH1A05E3

V. Swathi - 22WH1A05E5

G. Srujana - 22WH1A05H8

CONTENTS

- Problem Statement
- Abstract
- Motivation
- References

PROBLEM STATEMENT

Steel surface defects impact product quality, and manual inspection is inefficient. Existing automated methods lack accuracy and adaptability. A real-time, high-precision deep learning system is needed for effective defect detection in steel manufacturing.

1/03/25

ABSTRACT

- Problem: Steel surface defects affect quality and durability.
- Challenge: Manual inspection is slow and inaccurate; existing automated models lack real-time efficiency.
- Objective: Develop a real-time, high-accuracy deep learning model for defect detection.

ABSTRACT

Approach:

- 1. Use YOLO-based models (YOLOv8, YOLOv5 variants).
- 2. Apply adaptive model compression (pruning, quantization) for efficiency.
- 3. Integrate ECA, SPDG, and SIoU loss for better feature extraction

Expected Outcomes:

- 1. Improved detection accuracy and reduced false positives.
- 2. Real-time processing for industrial scalability.
- 3.A feedback-driven learning system for continuous improvement.

REAL WORLD APPLICATIONS

- Automotive Industry
- Aerospace & Defense
- Construction & Infrastructure
- Factory Automation & Smart Manufacturing
- Cost & Waste Reduction

REFERENCES

- Maojie Sun, Fang Dong, Zhaowu Huang, and Junzhou Luo, "Adaptive Model Compression for Steel Plate Surface Defect Detection: An Expert Knowledge and Working Condition-Based Approach," Tsinghua Science and Technology, Vol. 29, No. 6, 2024. [DOI: 10.26599/TST.2024.9010039]. <u>Link here</u>
- Tinglin Zhang, Huanli Pang, and Changhong Jiang, "GDM-YOLO: A Model for Steel Surface Defect Detection Based on YOLOv8s," IEEE Access, Vol. 12, 2024. [DOI: 10.1109/ACCESS.2024.3476908]. <u>Link here</u>
- Fei Ren, Jiajie Fei, Hongsheng Li, and Bonifacio T. Doma Jr., "Steel Surface Defect Detection
 Using Improved Deep Learning Algorithm: ECA-SimSPPF-SIoU-Yolov5," IEEE Access, Vol. 12,
 2024. [DOI: 10.1109/ACCESS.2024.3371584]. <u>Link here</u>

THANK YOU