Zhou Yi, Signals and Systems Have Fun!	Properties	$\begin{split} \mathcal{F}\{x_{1}(t) * x_{2}(t)\} &= X_{1}(j\omega) X_{2}(j\omega), \\ \mathcal{F}\{x_{1}(t) x_{2}(t)\} &= \frac{1}{2\pi} X_{1}(j\omega) * X_{2}(j\omega) \end{split}$	2.5 Sampling
	$\mathcal{FS}\{x(t)\} = c_k, \mathcal{FS}\{x(t-t_0)\} = c_k e^{-jk\omega_0 t_0}$	2.3 DT FT	
1 LTI CT DE	$\mathcal{FS}(x(t)) = c_k, \mathcal{FS}(x^*(t)) = c_{-k}*$ $x(t) = \sum_{k=0}^{\infty} \frac{c_k + c_{-k}}{2} e^{jk\omega_0 t} + j\sum_{k=0}^{\infty} \frac{c_k - c_{-k}}{2i} e^{jk\omega_0 t}$	$X(e^{j\omega}) = \sum_{n} x[n]e^{-j\omega n} = X(e^{j(\omega + 2\pi)}) \ (*)$	
	$\mathcal{FS}\{x(t)y(t)\} = \sum_{l} c_{l} d_{k-l} = c_{k} * d_{k}$	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$	
$\sum_{k=0}^{N} a_k \frac{\mathrm{d}^k y(t)}{\mathrm{d}^{t^k}} = \sum_{k=0}^{M} b_k \frac{\mathrm{d}^k x(t)}{\mathrm{d}^{t^k}}$	$\mathcal{FS}\{x'(t)\} = jk\omega_0 c_k$	-72.	Impulse
$\sum_{k=0}^{N} a_k x^k = a_N \prod_{i=1}^{p} (x - x_i)^{n_i}$	$\mathcal{FS}{y(t)} = \int_0^t x(\tau) d\tau, (0 < t < T), y(t) = y(t+T)$	Examples	
$y_h(t) = \sum_{i=1}^{p} (\sum_{j=0}^{n_i-1} A_{i,j} t^j) e^{x_i t}$	$y(t) = \sum_{k \neq 0} \frac{c_k}{jk\omega_0} (e^{jk\omega_0 t} - 1) + c_0 t$		
If $x(t) = \sum_{k=0}^{m} C_k t^k e^{x_i t}$ $y_p(t) = (\sum_{k=0}^{m} B_k t^k) t^{n_i} e^{x_i t}, n_i \ge 0$	2.1 DT FS $x[n] = x[n+N]$	$\mathcal{F}\{[n \le N_1]\} = \frac{\sin \omega (N_1 + \frac{1}{2})}{\sin(\frac{\omega}{2})}$	
Determine constants.	$x[n] = \sum_{k=0}^{N-1} c_k e^{\frac{j2\pi kn}{N}}, 0 \le n < N$	$\mathcal{F}\left\{\frac{\sin(Wn)}{\pi n}\right\} = [u(\omega + W) - u(\omega - W)](\text{Periodic}, T = 2\pi)$	
DT DE $\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$	$c_k = \frac{1}{N} \sum_{l=0}^{N-1} x[l] e^{-\frac{j2\pi kl}{N}} = c_{k+N}$	$x[n] = \begin{cases} 1, n \ge 0 \\ -1, n < 0 \end{cases}$	
$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$ $\sum_{k=0}^{N} a_{N-k} x^k = a_0 \prod_{i=1}^{p} (x-x_i)^{n_i}$	14 1-0	$\mathcal{F}\{x[n]\} = \frac{2}{1 - e^{-j\omega}}$	$p(t) = \nabla^{+\infty} - S(t - tT)$
$y_h[n] = \sum_{i=1}^{p} (\sum_{j=0}^{n_i - 1} A_{i,j} n^j) x_i^n$	Examples	$\mathcal{F}\{u[n]\} = \frac{1}{1 - e^{-j\omega}} + \pi \sum_{k=-\infty}^{+\infty} \delta(\omega - 2k\pi)$	$p(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT)$ $P(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta(\omega - k\omega_s), \omega_s = \frac{2\pi}{T}$
if $x[n] = \sum_{i=0}^{m} C_i n^i s^n$	$x[n] = \begin{cases} 1, n <= N_1 \\ 0, N_1 < n <= \frac{N}{2} \end{cases} ,$	$\mathcal{F}\{e^{j\omega_0 n}\} = \sum_{n=-\infty}^{+\infty} e^{-j(\omega-\omega_0)n} = 2\pi \sum_{n=-\infty} \delta(\omega - \omega_0 - 2k\pi)$	$x_p(t) = x(t)p(t), X_p(j\omega) = \frac{1}{T} \sum_k X(j(\omega - k\omega_s))$ (copy and pas-
$y_p[n] = (\sum_{k=0}^m B_k n^k) n^{n_i} x_i^n, n_i \ge 0$ Special: $x_i = 1$	$x[n] = \begin{cases} 0, N_1 < n < \frac{N}{2} \end{cases}$	$J(e^{-\omega_0}) - Z_{n=-\infty}e^{-\omega_0}$	te) If $X(j\omega) = 0(\omega > \omega_M)$, No overlap in freq domain if
Unit Impulse Resp	$\mathcal{FS}\{x[n]\} = \begin{cases} \frac{\sin[(2\pi k/N)(N_1 + \frac{1}{2})]}{N\sin(2\pi k/2N)}, k \neq tN \\ \frac{2N_1 + 1}{N}, k = tN \end{cases}$	Periodic Signals	$\omega_s > 2\omega_M$
$h_p(t) = 0$	\ 1¥		lowpass filter $\omega_c \in (\omega_M, \omega_s - \omega_M)$ to restore signal
Matching $\delta^{(k)}(t), \delta^{(k-1)}(t), \delta^{(k-2)}(t)$ (Only singularity part)	$\mathcal{FS}\{e^{j\omega_0n}\} = \begin{cases} 1, k = m + tN \\ 0, otherwise \end{cases}, \omega_0 = \frac{2\pi m}{N}$	$x[n] = x[n+N]$, Fourier Series $x[n] = \sum_{k=0}^{N-1} c_k e^{\frac{j2\pi kn}{N}}$	
\int_{0-}^{0+} to determine coefficient	2.2 CT FT	$c_k = \frac{1}{N} \sum x[l] e^{-\frac{j2\pi kl}{N}} = c_{k+N}$	
$y(t) = \int_{\tau} x(\tau)h(t - \tau)$	$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$	$\mathcal{F}\{x(t)\} = \sum_{k=0}^{N-1} c_k \mathcal{F}\{e^{\frac{j2\pi kn}{N}}\} = \sum_{k=-\infty}^{+\infty} 2\pi c_k \delta(\omega - \frac{2k\pi}{N})$	
2 Fourier Analysis	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$		
CT FS	Evamples	CT FS and DT FT	
$x(t) = x(t+T), \omega_0 = \frac{2\pi}{T}$	Examples	$X(e^{j\omega}) = \sum_{n} x[n]e^{-j\omega n} = X(e^{j(\omega + 2\pi)})$	
$c_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$	$\mathcal{F}\{x(t) = a\left[u(t + \frac{\tau}{2}) - u(t - \frac{\tau}{2})\right]\} = a\tau Sa(\frac{\omega\tau}{2})$	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$	
$\tilde{x}(t) = \sum_{k=-\infty}^{+\infty} c_k e^{jk\omega_0 t} = \begin{cases} x(t) \\ \frac{x(t+)+x(t-)}{2} \end{cases}$	$\mathcal{F}\{x(t) = e^{-\alpha t}u(t), (\alpha > 0)\} = \frac{1}{\alpha + j\omega}$	$c_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$	
(2	$\mathcal{F}\{\delta(t)\} = 1, \mathcal{F}\{1\} = 2\pi\delta(\omega)$ $\mathcal{F}\{e^{j\omega_0 t}\} = 2\pi\delta(\omega - \omega_0)$	$x(t) = \sum_{k=-\infty}^{+\infty} c_k e^{jk\omega_0 t}$	
Real Signals	$\mathcal{F}\{\operatorname{sgn}(t)\} = \frac{2}{160}$	$x[n] = c_{-n} \to x(t) = X(e^{j\omega_0 t})$	
	(3 ()) [[[]]		
When $c_k *= c_{-k}$	Periodic Signals	Properties	
$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t))$	_	(*[*,/k] *,/k = 7	
k=1	$x(t) = \sum_{k=-\infty}^{+\infty} c_k e^{jk\omega_0 t}$ $\mathcal{F}\{x(t)\} = \int_{-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} c_k e^{jk\omega_0 t} e^{-j\omega t} dt$	$x_k[n] = \begin{cases} x[n/k], n/k \in \mathbb{Z} \\ 0, otherwise \end{cases}$	
$=A_0 + \sum_{k=1}^{\infty} A_k \cos(k\omega_0 t + \phi_k)$	$F(x(t)) = \int_{-\infty}^{\infty} \sum_{k=-\infty}^{\infty} c_k e^{-i\omega t} e^{-i\omega t} dt$ $= 2\pi \sum_{k=-\infty}^{+\infty} c_k \delta(\omega - k\omega_0)$	$\mathcal{F}\{x_k[n]\} = X(e^{jk\omega})$	
	$\sum_{k=-\infty}^{\infty} c_k \sigma(a)$	$\mathcal{F}\{x[n] - x[n-1]\} = (1 - e^{-j\omega})X(e^{jk\omega})$	
$ c_k ^2 = c_{-k} ^2 = \frac{a_k^2 + b_k^2}{4}$	Parseval Theorem	$\mathcal{F}\{nx[n]\} = j\frac{\mathrm{d}X(e^{j\omega})}{\mathrm{d}\omega}$	Zero-Order Holding
	$\int_{-\infty}^{+\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) ^2 d\omega$	$\mathcal{F}\{\sum_{k\leq n}x[k]\} = \frac{X(e^{j\omega})}{(1-e^{-j\omega})} + \pi X(e^{j0}) \sum \delta(\omega - 2k\pi)$	
Examples	27.5 60	$\mathcal{F}\{x[n]y[n]\} = \frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	
$x(t) = a\left[u\left(t + \frac{\tau}{2}\right) - u\left(t - \frac{\tau}{2}\right)\right]$	Properties	2.4 DFT	
$c_0 = a \frac{\tau}{T}$	$\mathcal{F}\{x(t)\} = X(j\omega), \mathcal{F}\{X(jt)\} = 2\pi x(j^2\omega)$	$X[k] = X(e^{\frac{j2\pi k}{N}})$ (sampling DT FT)	
$c_k = \frac{a\tau}{T} Sa(\frac{k\omega_0 \tau}{2})$	$\mathcal{F}\{x(t-\tau)\} = X(j\omega)e^{-j\omega\tau}$	Distortionless	
$Sa(t) = \begin{cases} \frac{\sin(t)}{t}, t \neq 0\\ 1, t = 0 \end{cases}$	$\mathcal{F}\{x(\alpha t)\} = \frac{1}{ \alpha } X(\frac{j\omega}{\alpha})$	$Y(j\omega) = X(j\omega)H(j\omega) = AX(j\omega)e^{-j\omega\tau}$ $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega}) = AX(e^{j\omega})e^{-j\omega n_0}$	
(1,t=0)	$\mathcal{F}\{x^*(t)\} = X^*(-j\omega)$	$I(e^{-r}) = \Lambda(e^{-r})\Pi(e^{-r}) = \Lambda\Lambda(e^{-r})e^{-r-r}$	$x_0(t) = \sum_{k=-\infty}^{+\infty} x(kT)p_0(t-kT) = x(t)p(t) * p_0(t), p_0(t) =$
	$\mathcal{F}\{x'(t)\} = j\omega X(j\omega), \mathcal{F}\{tx(t)\} = j\frac{\mathrm{d}X(j\omega)}{\mathrm{d}\omega}$	Group Delay	$u(t) - u(t - T)$ $j\omega^T$
Parseval Theorem	$\mathcal{F}\left\{\int_{-\infty}^{t} x(\tau) d\tau\right\} = \frac{X(j\omega)}{j\omega} + \pi X(0)\delta(\omega)$	• •	$P(j\omega) = Te^{-\frac{j\omega T}{2}} Sa(\frac{\omega T}{2})$ $i\omega T$
$\frac{1}{T} \int_{T} x(t) ^{2} dt = \sum_{k} c_{k} ^{2} = A_{0}^{2} + \frac{1}{2} \sum_{k \ge 1} A_{k}^{2}$	$\mathcal{F}\left\{-\frac{x(t)}{it} + \pi x(0)\delta(t)\right\} = \int_{-\infty}^{\omega} X(j\eta) d\eta$	$\tau(\omega) = -\frac{\mathrm{d}}{\mathrm{d}\omega}\phi(H(j\omega))$	$X_0(j\omega) = \sum_{k=-\infty}^{+\infty} e^{-\frac{j\omega T}{2}} Sa(\frac{\omega T}{2}) X(j(\omega - k\omega_s))$