

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL) $A cademic\ Year\ 2008/09-3^{rd}\ Year\ Examination-Semester\ 6$

IT6503: Computer Systems II Structured Question Paper 13th September, 2009

	TWO) <i>HO</i>	URS				
	To be completed by the candidate						
	BIT Examination Index No:						
ļ	Important Instructions:						
	• The duration of the paper is 2 (Two) hours.						
	• The medium of instruction and questions is E	Englis	h.				
	• This paper has 4 questions and pages.						
	 Answer all 4 questions: . 						
	• Write your answers in English using the spa	ace pr	ovided in	n this qu	estion p	aper.	
	 Do not tear off any part of this answer book. unused, be removed from the Examination H sides of the paper. If a page is not printed, ple 	all by	a candid	late. Note	that qu	estions appea	
	Non-programmable calculators may be use	ed.					
	Questions Answered Indicate by a cross (x), (e.g X) the number	ers of	the quest	tions ans	wered.		
	To be completed by the candidate by marking a cross (x).	1	2	3	4		
	To be completed by the examiners:						

1) (a) Draw the block diagram of a 4:1 multiplexer. Clearly identify the inputs $D_{0,}$ D_{1},D_{2},D_{3} , select lines S_{0} and S_{1} and the output F.

(b) Write down the truth table for the multiplexer.

(Marks 3)

SWER	IN THIS B	<u>XOX</u>		
F				
	S_0	S_1	F	
	0	0	$\mathbf{D_0}$	
	0	1	$\begin{array}{c} D_0 \\ D_1 \\ D_2 \\ D_3 \end{array}$	
	1	0	$\mathbf{D_2}$	
	1	1	\mathbf{D}_3	
L				

	 	 	 	_	 	_	-	-	 _	 	_	_	 	_	_			_	_	_			_		_	_	_	_		_	_		_	_		_	_		_	_		_	_		_	_			_		_	 				
 	 	 	 	_	 	-			 	 		_	 		-	-	 	-	-	-			-	-	-	-	 -	-	 	-	-	 	 -	-		-	-	 	-	-	 	-	-	 	-	-	-	 	-	-	-	 	 		 	
 	 	 	 	-	 				 	 		-	 		-	-	 	-	-	-			-	-	-	-	 -	-	 		-	 	 -	-			-	 	-	-	 	-	-	 		-	-	 		_	-	 	 		 	
 	 	 	 	-	 	-		-	 	 		-	 		-	-	 -	-	-	-	-	-	-	-	-	-	 -	-	 	-	-	 -	 -	-	-	-	-	 	-	-	 	-	-	 -	-	-	-	 	-	-	-	 	 -	-	 -	

(c) A three variable 'majority function' logic circuit is to be designed where the output will be logic 1 if the majority of inputs are logic 1, or the output will be logic 0, if the majority of inputs are logic 0. Write down the truth table for the majority function logic circuit.

(Marks 4)

					(Marks 4)
ANSW	ER IN TH	IIS BOX			
	a	b	С	f	
	0	0	0	0	\dashv
	0	0	1	0	
	0	1	0	0	
	$egin{bmatrix} 0 \\ 1 \end{bmatrix}$	1 0	1 0	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	
	1	0	1	1	
	1	1	0	1	
	1	1	1	1	

	 	 	 	 _	 		 	_	 	_	 -	 	-	 	-	-	 	-	-	 -	 	-	 	_	 	-	 	-	 	-	 	_	 -	 	-	 	-	 	-	-	 	_	 	-	_	 -	_	 	
-	 	 	 	 -	 	-	 -	-	 -	-	 -	 	-	 	-	-	 	-	-	 -	 -	-	 -	-	 -	-	 -	-	 	-	 	-	 -		-	 	-	 	-	-	 -	-	 -	-	-	 -	-	 -	-
ľ	 	 	 	 _	 	-	 -	-	 	-	 -	 	-	 	-	-	 -	-	-	 -	 -	-	 -	-	 	-	 -	-	 	-	 -	-	 -	 	-	 -	-	 	-	-	 	-	 -	-	-	 -	-	 	

(d) Obtain the simplified Boolean expression for the majority function logic circuit.

(Marks 3)

(e) Draw the combinational logic diagram that corresponds to the expression in (d). (Marks 3)

(f) A multiplexer may be effectively used to replace the combinational logic in many instances. Implement the majority function logic circuit of (c) using a 4: 1 multiplexer and a minimum of extra logic.

	 	_	_		 	_		 _		 	 	 _	 	_		 	 	 	 	 _	 	_	 	 	 	 	 _	 	_	 _	_	 						

(a) Fill in the blanks in the table with the most suitable option given within brackets.

(Marks 6)

			(Marks 0)
ANSWER IN THIS BOX			
CPU architecture property	Load/Store (risc)	Register/Memory (cisc)	stack
Size of general purpose register set (small, large, none)	Large	Small	None
Instruction length (constant, variable)	Constant	Variable	Variable
Compiler complexity (low, high)	High	Low	Low
Performance of general purpose applications (low, high)	High	Low	low

(b) (i) The cisc (register-memory) machine instruction SWAP <code>[M1],[M2]</code> exchanges the contents of memory locations M_1 and M_2 . Write down the equivalent risc (Load/Store) machine instructions to this cisc instruction.

(Marks 3)

ANSWER IN THIS BOX	
$LD R_1,M_1[R_0]$	
$LD R_2, M_2[R_0]$	
$\mathrm{ST}\mathrm{M}_1[\mathrm{R}_0],\mathrm{R}_2$	
$ST M_2 [R_0], R_1$	
Where $\mathbf{R}_0 = 0$ assumed	

rite down the sc instruction	sequence of equivalent risc machin.	ne instruction to the following
ADD R2, 10	0 [R1++]	(Monks 3
ANSWER IN	I THIS BOX	(Marks 3
<u></u>		
LD 1	R ₃ , 100[R1]	
ADΓ	O R ₁ , R ₁ , # 1	
ADL	$\mathbf{R}_{2},\mathbf{R}_{2},\mathbf{R}_{3}$	
-		_
	high level language code fragment f risc machine instructions.	is compiled it produces the
loop:	SUB R1, R1, #1 BEQZ R1, label	
	ADD R2, R2, #1	
	JMP loop	
label:		
	R2 have been assigned for variables	p and q, write down the hig
ming R1 and F	e that corresponds to the above mac	
	that corresponds to the above mae	(Marks 4)

(c) The block diagram of a typical computer system is shown in Fig. 1.

(Fig. 1)

(i) With reference to Fig.1, and the two level memory consisting of a cache with latency 1.5nsec and a hit ratio of 0.95, and a main memory with an access time of 1.5 μ sec, calculate the average memory access time of the combined memory.

(Marks 4)

ANSWER IN THIS BOX	
t avg = hc tc + (1 - hc)(tc + tm)	
= $0.95 \times 1.5 \text{ ns} + 0.05 \times (1.5 \text{ ns} + 1.5 \mu \text{ s})$	

As shown in Fig. 1,a data item can reside in one nain memory(M) and the secondary memory ause memory inconsistency.	
ANSWER IN THIS BOX	(Marks 3
1. CPU update only cache via write u	_
2. via DMA, main memory update S	or, vice versa
Compare the effects of a cache miss against a	page fault on an executing proce (Marks 2)
ANSWER IN THIS BOX	(2.202.22
 cache miss does not stop executing, pr from M to C page fault causes executing, process to 	

-	
-	
-	
L	
it a	A programmer writes a parallel algorithm for a certain computational task and a on a 4, 8 and 16 node multiprocessor respectively. He does not observe a x4, and x16 fold performance gain compared to the serial code as he expected, in the configurations. Give two reasons for this observation.
Г	ANSWER IN THIS BOX
	ANSWER IN THIS BOX
_	
L	
iı	i) By the use of instruction pipelining a processor aims to achieve a (cycles penstruction) CPI of 1. To improve the CPU performance further, should one ecrease or increase the CPI?
iı	nstruction) CPI of 1. To improve the CPU performance further, should one
ii d	ecrease or increase the CPI?
in d	nstruction) CPI of 1. To improve the CPU performance further, should one ecrease or increase the CPI? (Marks 2) ANSWER IN THIS BOX
in d	nstruction) CPI of 1. To improve the CPU performance further, should one ecrease or increase the CPI? (Marks 2)
in d	nstruction) CPI of 1. To improve the CPU performance further, should one ecrease or increase the CPI? (Marks 2) ANSWER IN THIS BOX
in d	nstruction) CPI of 1. To improve the CPU performance further, should one ecrease or increase the CPI? (Marks 2) ANSWER IN THIS BOX

			 -		 -	 -	 	-	 	-		-	 	-	 		-		 			-				-	-	-			-	-	-	-	-			-	-	-		 	-		 -	-		-				-	-	 	-	 	-	 	-	-	 	-		-			
	-	-	 	-	 -	 -	 	-	 -	-	-	-	 	-	 	-	-	-	 -	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	 -	-	-	 -	-	-	-	-	-	-	-	-	 -	-	 -	-	 	-	-	 -	-	-	-	-		
		_	 		 _	 _	 	_	 		_		 		 		_	_	 							_	_	_	_			_	_	_				_	_	_	_	 		_	 	_	_	_	_				_	 	_	 	_	 	_	_	 	_		_			
ı																																																																			
																			_			_	_				_			_	_			_	_															_																_	-

(ii) What architectural feature change will enable the CPU performance to be enhanced?

Marks 3)

ANSWER IN THIS BOX

multiple issue pipelines (super scaling)

(c)(i) Draw a sketch of a typical 5-stage risc instruction pipeline and identify (by marking) the stage(s) where memory access is made.

(ii) Identify and mark in a typical 5-stage risc pipeline, the stages that are active during the execution of an risc arithmetic/logic instruction.

(iii) The following Load/Store (risc) code executes in a 5-stage pipeline. Draw a space-time diagram and show the instances where there can be data hazards.

LD R1, 100[R2]
ADD R1, R1, R3
ST 100[R2], R1
ADDI R2, R2, #4
SUB R4, R5, R2
BNEZ R4, loop

(Marks 6)

l			
sing a suitable d a muti – tasking	agram show the process s	states and the	r transitions, that
i a muti – tasking	Kernei.		(6 m
ANSWER IN 1	HIS BOX		
Process st	atec:		
1100055	ates.		
			. •
Running:	Instructions of process an	re being exec	uted.
Waiting:	Instructions of process and the process is waiting for appletion or reception of a	some event t	
Waiting:	- Γhe process is waiting for	some event t signal)	o occur (such as
Waiting: an I/O con	The process is waiting for npletion or reception of a	some event to a signal to a	o occur (such as
Waiting: an I/O con	The process is waiting for mpletion or reception of a ne process is waiting to be	some event to a signal to a	o occur (such as
Waiting: an I/O con Ready: Ti Terminat	The process is waiting for mpletion or reception of a ne process is waiting to be	some event to a signal to a	o occur (such as
Waiting: an I/O con	The process is waiting for mpletion or reception of a ne process is waiting to be	some event to a signal to a	o occur (such as
Waiting: an I/O con Ready: Ti Terminat	The process is waiting for mpletion or reception of a ne process is waiting to be	some event to a signal to a	o occur (such as
Waiting: an I/O con Ready: Ti Terminat	The process is waiting for mpletion or reception of a ne process is waiting to be	some event to a signal to a	o occur (such as
Waiting: an I/O con Ready: Ti Terminat	The process is waiting for mpletion or reception of a ne process is waiting to be	some event to a signal to a	o occur (such as
Waiting: an I/O con Ready: Ti Terminat	The process is waiting for mpletion or reception of a ne process is waiting to be	some event to a signal to a	o occur (such as
Waiting: an I/O con Ready: Ti Terminat	The process is waiting for mpletion or reception of a ne process is waiting to be	some event to a signal to a	o occur (such as

Evnlai	n the result of executing a fork() statement in a running process.	
Lapiai	(2 m	ar
ANS	WER IN THIS BOX	
lis	will create a new process that will be added to the existing process t in the computer. That process will start execution the rest of the	
co	de in the program after the fork(statement).	L
		-
(i) Ex	plain what is meant by a "deadlock" in a multitasking operating system.	
	(3 mar	
	WER IN THIS BOX	
	WER IN THIS BOX When a process requests a resource, if that resource is not	
	When a process requests a resource, if that resource is not available at that time, the process enters a "wait" state. It may	
	WER IN THIS BOX When a process requests a resource, if that resource is not available at that time, the process enters a "wait" state. It may happen that a waiting process will never change that wait state,	
	When a process requests a resource, if that resource is not available at that time, the process enters a "wait" state. It may happen that a waiting process will never change that wait state, because the resource that it requested is held by another waiting process that is waiting for a resource that is presently held by the	
	When a process requests a resource, if that resource is not available at that time, the process enters a "wait" state. It may happen that a waiting process will never change that wait state, because the resource that it requested is held by another waiting	
	When a process requests a resource, if that resource is not available at that time, the process enters a "wait" state. It may happen that a waiting process will never change that wait state, because the resource that it requested is held by another waiting process that is waiting for a resource that is presently held by the	
	When a process requests a resource, if that resource is not available at that time, the process enters a "wait" state. It may happen that a waiting process will never change that wait state, because the resource that it requested is held by another waiting process that is waiting for a resource that is presently held by the	
	When a process requests a resource, if that resource is not available at that time, the process enters a "wait" state. It may happen that a waiting process will never change that wait state, because the resource that it requested is held by another waiting process that is waiting for a resource that is presently held by the	
	When a process requests a resource, if that resource is not available at that time, the process enters a "wait" state. It may happen that a waiting process will never change that wait state, because the resource that it requested is held by another waiting process that is waiting for a resource that is presently held by the	
	When a process requests a resource, if that resource is not available at that time, the process enters a "wait" state. It may happen that a waiting process will never change that wait state, because the resource that it requested is held by another waiting process that is waiting for a resource that is presently held by the	
	When a process requests a resource, if that resource is not available at that time, the process enters a "wait" state. It may happen that a waiting process will never change that wait state, because the resource that it requested is held by another waiting process that is waiting for a resource that is presently held by the	

Describe the four necessary conditions that must h occur.	(5 mark
ANSWER IN THIS BOX	
Mutual exclusion	
Hold and wait	
No preemption	
Circular wait	
) With respect to the above conditions (that you	
operating system prevent the occurrence of a deadle	ock? (1 mark
ANSWER IN THIS BOX	
By ensuring that at least one of the condition the OS can prevent deadlocks from occurr	
the OS can prevent deadlocks from occur	ing.

Ĺ	
l)	Describe "round robin" process scheduling.
	(3 marks)
	ANSWER IN THIS BOX
	Here each process is given a time quantum to run on the computer.
	After a process has run its quantum, another READY process is
	chosen to run and is given its quantum. Similarly all the READY
	processes are given a quantum each to run on the computer.
	However, the processes are free to release the CPU voluntarily before
	its full quantum is run.
)	Including the terms "pages", "frames" and "page tables", explain the concept of
	"virtual memory".
	(4 marks)
	ANSWER IN THIS BOX
	The concept of virtual memory let programs that are bigger than the
	The concept of virtual memory let programs that are bigger than the
	physical memory of a computer run on it.
	The physical memory of a computer is divided into equal fixed-size chunks
	called "frames" and each process is also divided into small fixed-size chunks
	of the same size called "pages". Then the pages are assigned to available

frames in memory. A list of free frames is maintained by the OS. OS also maintains page tables for each process. The "page table" shows the frame location for each page of the process.

there a li	mit to the si	ze of a virtua	al memory	of a comr	outer? Evol	lain	
mere a m	init to the siz	Le of a virtua	ai ilicilioi y	or a comp	outer: Lap		(1 ma
		·					(1 1116
ANSW	<u>ER IN THI</u>	<u>S BOX</u>					
2 11 1 0 1 1 1							
Yes. It	will be lim	ited by the	e maximui	m virtual	address t	that the c	ombi
		ited by the	e maximu	m virtual	address t	that the c	comp
		ited by the	e maximui	m virtual	address t	that the c	compi
Yes. It		ited by the	e maximu	m virtual	address t	that the c	comp
		ited by the	e maximui	m virtual	address t	that the c	compu
		ited by the	e maximui	m virtual	address t	that the c	compi
		ited by the	e maximui	m virtual	address t	that the c	compi
		ited by the	e maximui	m virtual	address t	that the c	compi
		ited by the	e maximui	m virtual	address t	that the c	comp
		ited by the	e maximui	m virtual	address t	that the c	comp
		ited by the	e maximu	m virtual	address t	that the c	compi
		ited by the	e maximui	m virtual	address t	that the c	compi
		ited by the	e maximui	m virtual	address t	that the c	compt
		ited by the	e maximu	m virtual	address t	that the c	comp u
		ited by the	e maximu	m virtual	address t	that the c	compi
		ited by the	maximui	m virtual	address t	that the c	compt
		ited by the	e maximui	m virtual	address t	that the c	compt
		ited by the	e maximu	m virtual	address t	that the c	compi
		ited by the	e maximui	m virtual	address t	that the c	compt
		ited by the	e maximui	m virtual	address t	that the c	compt
		ited by the	e maximui	m virtual	address t	that the c	compt
		ited by the	e maximu	m virtual	address t	that the c	compt