Introduction to Discrete Math

Felipe P. Vista IV

Intro to Discrete Structure

Reminder

- Everybody, make sure that your name in ZOOM is in the following format:
 - Ex: 202054321 Juan Dela Cruz

Not changing your name to this format

* you will be marked Absent * → absent?

Course Outline

- Mathematical Thinking
 - Convincing Arguments, Find Example, Recursion, Logic, Invariants
- Probability & Combinatronics
 - Counting, Probability, Random Variables
- Graph Theory
 - Graphs (cycles, classes, parameters)
- Number Theory & Cryptography
 - Arithmetic in modular form
 - Intro to Cryptography

Mathematical Thinking – Combinatronics & Probability Advanced Counting

PROBLEMS IN COMBINATRONICS

Probability & Combinatronics – Advanced Counting

- Distributing Assignments to People
- Distribution of Candies to Kids
- Numbers with Fixed Sum of Digits
- Numbers with Non-Increasing Digits
- Splitting into Working Groups

Distributing Assignments to People

Problem

Distributing Assignments to People

Problem

Suppose there are 4 people and 9 different assignments. Each person should receive one assignment. Assignments for different people should be different. How many ways are there to do it?

We have count selections of assignments for 4 people

Distributing Assignments to People

Problem

- We have count selections of assignments for 4 people
- In this problem, people are different, so selection is ordered

Distributing Assignments to People

Problem

- We have count selections of assignments for 4 people
- In this problem, people are different, so selection is ordered
- No assignment given to two persons simultaneously, so no repetitions

Distributing Assignments to People

Problem

- We have count selections of assignments for 4 people
- In this problem, people are different, so selection is ordered
- No assignment given to two persons simultaneously, so no repetitions
- Hence, we are dealing with k-permutations

Distributing Assignments to People

Problem

Distributing Assignments to People

Problem

Persons	1	2	3	4
Number of options				

Distributing Assignments to People

Problem

Persons	1	2	3	4
Number of options	9			

Distributing Assignments to People

Problem

Persons	1	2	3	4
Number of options	9	8		

Distributing Assignments to People

Problem

Persons	1	2	3	4
Number of options	9	8	7	

Distributing Assignments to People

Problem

Persons	1	2	3	4
Number of options	9	8	7	6

Combinations W/ Repetitions

Distributing Assignments to People

Problem

Combinations W/ Repetitions

Distributing Assignments to People

Problem

Suppose there are 4 people and 9 different assignments. Each person should receive one assignment. Assignments for different people should be different. How many ways are there to do it?

• Answer is 9x8x7x6 = 3,024

Combinations W/ Repetitions

Distributing Assignments to People

Problem

- Answer is 9x8x7x6 = 3,024
- Need to count permutations

Distributing Assignments to People

Problem

There are 4 people & 9 different assignments. Need to distribute all assignments among them. No assignment should be assigned to two people. Every person can be given arbitrary number of assignments from 0 to 9. How many ways are there to do it?

Distributing Assignments to People

Problem

There are 4 people & 9 different assignments. Need to distribute all assignments among them. No assignment should be assigned to two people. Every person can be given arbitrary number of assignments from 0 to 9. How many ways are there to do it?

* arbitrary – random choice, no reason or system

Each person receives several assignments

Distributing Assignments to People

Problem

There are 4 people & 9 different assignments. Need to distribute all assignments among them. No assignment should be assigned to two people. Every person can be given arbitrary number of assignments from 0 to 9. How many ways are there to do it?

- Each person receives several assignments
- Can try to look at persons one by one

Distributing Assignments to People

Problem

There are 4 people & 9 different assignments. Need to distribute all assignments among them. No assignment should be assigned to two people. Every person can be given arbitrary number of assignments from 0 to 9. How many ways are there to do it?

- Each person receives several assignments
- Can try to look at persons one by one
- The first person assigned arbitrary subset

Distributing Assignments to People

Problem

There are 4 people & 9 different assignments. Need to distribute all assignments among them. No assignment should be assigned to two people. Every person can be given arbitrary number of assignments from 0 to 9. How many ways are there to do it?

- Each person receives several assignments
- Can try to look at persons one by one
- The first person assigned arbitrary subset
 - we know how to count number of subsets

Distributing Assignments to People

Problem

There are 4 people & 9 different assignments. Need to distribute all assignments among them. No assignment should be assigned to two people. Every person can be given arbitrary number of assignments from 0 to 9. How many ways are there to do it?

- Each person receives several assignments
- Can try to look at persons one by one
- The first person assigned arbitrary subset
 - we know how to count number of subsets
- For second person, the number of options left

Distributing Assignments to People

Problem

There are 4 people & 9 different assignments. Need to distribute all assignments among them. No assignment should be assigned to two people. Every person can be given arbitrary number of assignments from 0 to 9. How many ways are there to do it?

- Each person receives several assignments
- Can try to look at persons one by one
- The first person assigned arbitrary subset
 - we know how to count number of subsets
- For second person, the number of options left
 - depends on what we chose for the first person

Distributing Assignments to People

Problem

Distributing Assignments to People

Problem

There are 4 people & 9 different assignments. Need to distribute all assignments among them. No assignment should be assigned to two people. Every person can be given arbitrary number of assignments from 0 to 9. How many ways are there to do it?

Seems tricky

Distributing Assignments to People

Problem

- Seems tricky
- Idea: Look from the other point of view

Distributing Assignments to People

Problem

- Seems tricky
- Idea: Look from the other point of view
- Do not give assignments to people

Distributing Assignments to People

Problem

- Seems tricky
- Idea: Look from the other point of view
- Do not give assignments to people
 - Assign people to assignments instead

Distributing Assignments to People

Problem

Distributing Assignments to People

Problem

Assign ment	1	2	ಌ	4	5	6	7	8	9
Number of options									

Distributing Assignments to People

Problem

Assign ment	1	2	ဢ	4	5	6	7	8	9
Number of options	4								

Distributing Assignments to People

Problem

Assign ment	1	2	ಌ	4	15	6	7	8	9
Number of options	4	4							

Distributing Assignments to People

Problem

Assign ment	1	2	ဢ	4	15	6	7	8	9
Number of options	4	4	4						

Distributing Assignments to People

Problem

Assign ment	1	2	က	4	15	6	7	8	9
Number of options	4	4	4	4					

Distributing Assignments to People

Problem

Assign ment	1	2	က	4	55	6	7	8	9
Number of options	4	4	4	4	4				

Distributing Assignments to People

Problem

Assign ment	1	2	ဢ	4	15	6	7	8	9
Number of options	4	4	4	4	4	4			

Distributing Assignments to People

Problem

Assign ment	1	2	ဢ	4	15	6	7	8	9
Number of options	4	4	4	4	4	4	4		

Distributing Assignments to People

Problem

Assign ment	1	2	3	4	15	6	7	8	9
Number of options	4	4	4	4	4	4	4	4	

Distributing Assignments to People

Problem

Assign ment	1	2	က	4	15	6	7	8	9
Number of options	4	4	4	4	4	4	4	4	4

Distributing Assignments to People

Problem

Distributing Assignments to People

Problem

There are 4 people & 9 different assignments. Need to distribute all assignments among them. No assignment should be assigned to two people. Every person can be given arbitrary number of assignments from 0 to 9. How many ways are there to do it?

• So the answer is $4^9 = 262 \ 144$

Distributing Assignments to People

Problem

- So the answer is $4^9 = 262 \ 144$
- Just needed to count tuples

Distributing Assignments to People

Problem

- So the answer is $4^9 = 262 \ 144$
- Just needed to count tuples
- But need also to look from the other side

Probability & Combinatronics – Advanced Counting

- Distributing Assignments to People
- Distribution of Candies to Kids
- Numbers with Fixed Sum of Digits
- Numbers with Non-Increasing Digits
- Splitting into Working Groups

Distribution of Candies to Kids

Problem

There are 15 identical candies. How many ways are there to distribute them among 7 kids?

Given each candy, we choose one of 7 kids

Distribution of Candies to Kids

Problem

- Given each candy, we choose one of 7 kids
- Repetitions are allowed

Distribution of Candies to Kids

Problem

- Given each candy, we choose one of 7 kids
- Repetitions are allowed
 - Same kid can receive a candy several times

Distribution of Candies to Kids

Problem

- Given each candy, we choose one of 7 kids
- Repetitions are allowed
 - Same kid can receive a candy several times
- Candies are identical

Distribution of Candies to Kids

Problem

- Given each candy, we choose one of 7 kids
- Repetitions are allowed
 - Same kid can receive a candy several times
- Candies are identical
 - Order do not matter

Distribution of Candies to Kids

Problem

- Given each candy, we choose one of 7 kids
- Repetitions are allowed
 - Same kid can receive a candy several times
- Candies are identical
 - Order do not matter
- We are dealing in combinations with repetitions!

Introduction to Discrete Math

Problems in Combinatronics

Distribution of Candies to Kids

Problem

Distribution of Candies to Kids

Problem

There are 15 identical candies. How many ways are there to distribute them among 7 kids?

Number of candies is the size of a combination

Distribution of Candies to Kids

Problem

- Number of candies is the size of a combination
- Number of kids is the number of options

Distribution of Candies to Kids

Problem

- Number of candies is the size of a combination
- Number of kids is the number of options
- Hence, answer is:

Distribution of Candies to Kids

Problem

- Number of candies is the size of a combination -
- Hence, answer is:

$$\begin{pmatrix} k+n-1 \\ n-1 \end{pmatrix} \qquad \begin{array}{c} |5+3-| \\ |5+1 \rangle \\ |5-| \end{array}$$

Distribution of Candies to Kids

Problem

- Number of candies is the size of a combination
- Number of kids is the number of options
- Hence, answer is:

$$\binom{15+(7-1)}{(7-1)} = \binom{21}{6} = 54,264$$

Distribution of Candies to Kids

Problem

Distribution of Candies to Kids

Problem

There are 15 identical candies. How many ways are there to distribute them among 7 kids in such a way that each kid receives at least 1 candy?

Previous solution does not work, we have additional restriction

Distribution of Candies to Kids

Problem

- Previous solution does not work, we have additional restriction
- But we can reduce this problem to the previous one

Distribution of Candies to Kids

Problem

- Previous solution does not work, we have additional restriction
- But we can reduce this problem to the previous one
- We have to give each kid at least one candy

Distribution of Candies to Kids

Problem

- Previous solution does not work, we have additional restriction
- But we can reduce this problem to the previous one
- We have to give each kid at least one candy
- So, let us just do it!

Distribution of Candies to Kids

Problem

There are 15 identical candies. How many ways are there to distribute them among 7 kids in such a way that each kid receives at least 1 candy? $41:15 \rightarrow 7$ $41:15 \rightarrow 7$

- Now, we are left with 15 7 = 8 candies
- We can distribute them same as previous problem!
- Combination with repetitions, k = 15
 - Combination size: 8; Options size: 7
- So, answer is

$$\begin{pmatrix} 8+(7-1) \\ (7-1) \end{pmatrix} = \begin{pmatrix} 14 \\ 6 \end{pmatrix} = 3,003$$

Distribution of Candies to Kids

Problem

• So, answer is:
$$\binom{8+(7-1)}{(7-1)} = \binom{14}{6} = 3{,}003$$

Distribution of Candies to Kids

Problem

- So, answer is: $\binom{8+(7-1)}{(7-1)} = \binom{14}{6} = 3{,}003$
- Compare answer to previous problem: 54,264

Distribution of Candies to Kids

Problem

- So, answer is: $\binom{8+(7-1)}{(7-1)} = \binom{14}{6} = 3{,}003$
- Compare answer to previous problem: 54,264
- Lots of ways to share candies that will leave some of the kids without a candy

- Distributing Assignments to People
- Distribution of Candies to Kids
- Numbers with Fixed Sum of Digits
- Numbers with Non-Increasing Digits
- Splitting into Working Groups

Numbers with Fixed Sum of Digits

Problem

How many non-negative integer numbers are there below 10,000 such that their sum of digits is equal to 9?

Numbers with Fixed Sum of Digits

Problem

How many non-negative integer numbers are there below 10,000 such that their sum of digits is equal to 9?

Consider numbers as sequences of 4 digits

Numbers with Fixed Sum of Digits

Problem

How many non-negative integer numbers are there below 10,000 such that their sum of digits is equal to 9?

- Consider numbers as sequences of 4 digits
- We can look at the problem from the side of numbers

Numbers with Fixed Sum of Digits

Problem

- Consider numbers as sequences of 4 digits
- We can look at the problem from the side of numbers
- None options for the first one

Numbers with Fixed Sum of Digits

Problem

- Consider numbers as sequences of 4 digits
- We can look at the problem from the side of numbers
- None options for the first one
 - But already unclear for the second one

Numbers with Fixed Sum of Digits

Problem

- Consider numbers as sequences of 4 digits
- We can look at the problem from the side of numbers
- None options for the first one
 - But already unclear for the second one
- Idea: Look from the other side

Numbers with Fixed Sum of Digits

* * * *

• There are four positions

Numbers with Fixed Sum of Digits

* * * *

- There are four positions
- We split the weight 9 among them

Numbers with Fixed Sum of Digits

 $oldsymbol{0} \qquad oldsymbol{0} \qquad oldsymbol{0} \qquad oldsymbol{0}$

- There are four positions
- We split the weight *9* among them
- Assume they are " θ " in the beginning, then add "1" nine times

Numbers with Fixed Sum of Digits

 $oldsymbol{0}$

- There are four positions
- We split the weight 9 among them
- Assume they are "0" in the beginning, then add "1" nine times
- Each time we pick one of the digits to increase

Numbers with Fixed Sum of Digits

* * * *

- There are four positions
- We split the weight 9 among them
- Assume they are "0" in the beginning, then add "1" nine times
- Each time we pick one of the digits to increase
- Order does not matter, there are repetitions
- We have combinations of size 9 among 4 options
- The answer is $\binom{9+(4-1)}{(4-1)} = \binom{12}{3} = 220$

Numbers with Fixed Sum of Digits

- * * * *
- There are four positions
- We split the weight 9 among them
- Assume they are "0" in the beginning, then add "1" nine times
- Each time we pick one of the digits to increase
- Order does not matter, there are repetitions

Numbers with Fixed Sum of Digits

* * * *

- There are four positions
- We split the weight 9 among them
- Assume they are " θ " in the beginning, then add "1" nine times
- Each time we pick one of the digits to increase
- Order does not matter, there are repetitions
- We have combinations of size 9 among 4 options

Numbers with Fixed Sum of Digits

* * * *

- There are four positions
- We split the weight 9 among them
- Assume they are "0" in the beginning, then add "1" nine times
- Each time we pick one of the digits to increase
- Order does not matter, there are repetitions
- We have combinations of size *9* among *4* options
- The answer is

Numbers with Fixed Sum of Digits

- There are four positions
- We split the weight 9 among them
- Assume they are " θ " in the beginning, then add "1" nine times
- Each time we pick one of the digits to increase
- Order does not matter, there are repetitions
- We have combinations of size 9 among 4 options
- The answer is $\binom{9+(4-1)}{(4-1)} = \binom{12}{3} = 220$

Numbers with Fixed Sum of Digits

Problem

Numbers with Fixed Sum of Digits

Problem

How many non-negative integer numbers are there below 10,000 such that their sum of digits is equal to 10?

This looks very similar to the previous one

Numbers with Fixed Sum of Digits

Problem

- This looks very similar to the previous one
- Distribute ten ones between four positions

Numbers with Fixed Sum of Digits

Problem

- This looks very similar to the previous one
- Distribute ten ones between four positions
- Combinations of size 10 from 4 options

Numbers with Fixed Sum of Digits

Problem

- This looks very similar to the previous one
- Distribute ten ones between four positions
- Combinations of size 10 from 4 options
- The answer is

Numbers with Fixed Sum of Digits

Problem

- This looks very similar to the previous one
- Distribute ten ones between four positions
- Combinations of size 10 from 4 options
- The answer is $\binom{10+(4-1)}{(4-1)} = \binom{13}{3} = 286$

Numbers with Fixed Sum of Digits

Problem

- This looks very similar to the previous one
- Distribute ten ones between four positions
- Combinations of size 10 from 4 options
- The answer is $\binom{10+(4-1)}{(4-1)} = \binom{13}{3} = 286$
- Is everything ok? Let's check!

Numbers with Fixed Sum of Digits

The following code searches through all combinations:

```
import itertools as it
count = 0
for d in it.product(range(10), repeat = 4):
    if sum(d) == 10:
        count += 1
print(count)
```

Numbers with Fixed Sum of Digits

The following code searches through all combinations:

```
import itertools as it
count = 0
for d in it.product(range(10), repeat = 4):
    if sum(d) == 10:
        count += 1
print(count)
// OUTPUT
282
```

Numbers with Fixed Sum of Digits

The following code searches through all combinations:

```
import itertools as it
count = 0
for d in it.product(range(10), repeat = 4):
    if sum(d) == 10:
        count += 1
print(count)
// OUTPUT
282
```

Answer is off by 4

Numbers with Fixed Sum of Digits

The following code searches through all combinations:

```
import itertools as it
count = 0
for d in it.product(range(10), repeat = 4):
    if sum(d) == 10:~ ( )
        count += 1
print(count)

// OUTPUT
282
Answer is off by 4
What went wrong?
```

Numbers with Fixed Sum of Digits

Problem

Numbers with Fixed Sum of Digits

Problem

How many non-negative integer numbers are there below 10,000 such that their sum of digits is equal to 10?

• With our approach, we can assign all ten ones to the same position

Numbers with Fixed Sum of Digits

Problem

- With our approach, we can assign all ten ones to the same position
- But digits should be at most 9

Numbers with Fixed Sum of Digits

Problem

- With our approach, we can assign all ten ones to the same position
- But digits should be at most 9
- What should we know

Numbers with Fixed Sum of Digits

Problem

- With our approach, we can assign all ten ones to the same position
- But digits should be at most 9
- What should we know
- Just subtract the number of things that we should not have counted

Numbers with Fixed Sum of Digits

* * * *

What we should not have counted

Numbers with Fixed Sum of Digits

* * * *

- What we should not have counted
- Assignments of all ten ones to the same digit

Numbers with Fixed Sum of Digits

* * * *

- What we should not have counted
- Assignments of all ten ones to the same digit
- But there are just 4 of them!

Numbers with Fixed Sum of Digits

10 0 0 0

- What we should not have counted
- Assignments of all ten ones to the same digit
- But there are just 4 of them!

Numbers with Fixed Sum of Digits

 $0 \quad 10 \quad 0 \quad 0$

- What we should not have counted
- Assignments of all ten ones to the same digit
- But there are just 4 of them!

Numbers with Fixed Sum of Digits

0 0 10 0

- What we should not have counted
- Assignments of all ten ones to the same digit
- But there are just 4 of them!

Numbers with Fixed Sum of Digits

0 0 0 10

- What we should not have counted
- Assignments of all ten ones to the same digit
- But there are just 4 of them!

Numbers with Fixed Sum of Digits

 $0 \quad 0 \quad 0 \quad 10$

- What we should not have counted
- Assignments of all ten ones to the same digit
- But there are just 4 of them!
- So our previous answer was off by just 4

Numbers with Fixed Sum of Digits

* * * *

- What we should not have counted
- Assignments of all ten ones to the same digit
- But there are just 4 of them!
- So our previous answer was off by just 4
- The correct answer is 286 4 = 282

Probability & Combinatronics – Advanced Counting

- Distributing Assignments to People
- Distribution of Candies to Kids
- Numbers with Fixed Sum of Digits
- Numbers with Non-Increasing Digits
- Splitting into Working Groups

Numbers with Non-Increasing Digits

Problem

Numbers with Non-Increasing Digits

Problem

How many four-digit numbers are there such that their digits are not increasing? Three-digit numbers are also four-digit, they just start with 0.

If we try to count options for each position and apply product rule,
 there are problems

Numbers with Non-Increasing Digits

Problem

- If we try to count options for each position and apply product rule,
 there are problems
- Ten options for first position

Numbers with Non-Increasing Digits

Problem

- If we try to count options for each position and apply product rule,
 there are problems
- Ten options for first position
 - but number of options for second number depends on first number

Numbers with Non-Increasing Digits

Problem

- If we try to count options for each position and apply product rule,
 there are problems
- Ten options for first position
 - but number of options for second number depends on first number
- Idea: Look from the other side

Numbers with Non-Increasing Digits

* * * *

• We pick digits from 0 to 9 to be in our number

Numbers with Non-Increasing Digits

* * * *

- We pick digits from 0 to 9 to be in our number
- Once we pick four digits, our number is uniquely determined

Numbers with Non-Increasing Digits

* * * *

We picked 3, 4, 3, 7

- We pick digits from 0 to 9 to be in our number
- Once we pick four digits, our number is uniquely determined

Numbers with Non-Increasing Digits

We picked 3, 4, 3, 7

- We pick digits from 0 to 9 to be in our number
- Once we pick four digits, our number is uniquely determined
- Order of picks do not matter, repetition is allowed

Numbers with Non-Increasing Digits

* * * *

- We pick digits from 0 to 9 to be in our number
- Once we pick four digits, our number is uniquely determined
- Order of picks do not matter, repetition is allowed
- We have combinations of size 4 from 10 options

Numbers with Non-Increasing Digits

* * * *

- We pick digits from 0 to 9 to be in our number
- Once we pick four digits, our number is uniquely determined
- Order of picks do not matter, repetition is allowed
- We have combinations of size 4 from 10 options
- The answer is

Numbers with Non-Increasing Digits

- We pick digits from 0 to 9 to be in our number
- Once we pick four digits, our number is uniquely determined
- Order of picks do not matter, repetition is allowed
- We have combinations of size 4 from 10 options
- The answer is $\begin{pmatrix} 4+(10-1) \\ (10-1) \end{pmatrix} = \begin{pmatrix} 13 \\ 9 \end{pmatrix} = 715$

Probability & Combinatronics – Advanced Counting

- Distributing Assignments to People
- Distribution of Candies to Kids
- Numbers with Fixed Sum of Digits
- Numbers with Non-Increasing Digits
- Splitting into Working Groups

Splitting into Work Groups

Problem

There are 12 students in the class. How many ways are there to split them into working groups of size 2 to work on the same assignment?

Splitting into Work Groups

Problem

There are 12 students in the class. How many ways are there to split them into working groups of size 2 to work on the same assignment?

This problem is more tricky

Splitting into Work Groups

Problem

There are 12 students in the class. How many ways are there to split them into working groups of size 2 to work on the same assignment?

- This problem is more tricky
- There are several ways to solve it

Splitting into Work Groups

Problem

There are 12 students in the class. How many ways are there to split them into working groups of size 2 to work on the same assignment?

- This problem is more tricky
- There are several ways to solve it
- But we need to combine several ideas!

Splitting into Work Groups

• One solution goes by looking from the position of working groups

9 12 \$ = 2 6/1 \ P

- One solution goes by looking from the position of working groups
- We have to pick 2 people out of 12 in a working group

- One solution goes by looking from the position of working groups
- We have to pick 2 people out of 12 in a working group
- Order in the group do not matter, so combinations, $\binom{12}{2}$ ways to do it

- One solution goes by looking from the position of working groups
- We have to pick 2 people out of 12 in a working group
- Order in the group do no matter, so combinations, $\binom{12}{2}$ ways to do it
- For second group, there are 10 people left, so there are $\binom{10}{2}$ options

- One solution goes by looking from the position of working groups
- We have to pick 2 people out of 12 in a working group
- Order in the group do no matter, so combinations, $\binom{12}{2}$ ways to do it
- For second group, there are 10 people left, so there are $\binom{10}{2}$ options
- And so on...

- One solution goes by looking from the position of working groups
- We have to pick 2 people out of 12 in a working group
- Order in the group do no matter, so combinations, $\binom{12}{2}$ ways to do it
- For second group, there are 10 people left, so there are $\binom{10}{2}$ options
- And so on...
- Overall, we have $\binom{12}{2} \times \binom{10}{2} \times \binom{8}{2} \times \binom{6}{2} \times \binom{4}{2} \times \binom{2}{2}$ options

- One solution goes by looking from the position of working groups
- We have to pick 2 people out of 12 in a working group
- Order in the group do no matter, so combinations, $\binom{12}{2}$ ways to do it
- For second group, there are 10 people left, so there are $\binom{10}{2}$ options
- And so on...
- Overall, we have $\binom{12}{2} \times \binom{10}{2} \times \binom{8}{2} \times \binom{6}{2} \times \binom{4}{2} \times \binom{2}{2}$ options
- Are we done? No!

Splitting into Work Groups

$${3, 7}, {1, 5}, {6, 9}, {11, 2}, {8, 12}, {4, 10}$$

Enumerate people as numbers 1 to 12

$${3, 7}, {1, 5}, {6, 9}, {11, 2}, {8, 12}, {4, 10}$$

- Enumerate people as numbers 1 to 12
- For example, we count this splitting into groups

$$\longrightarrow$$
 $\{3, 7\}, \{1, 5\}, \{6, 9\}, \{11, 2\}, \{8, 12\}, \{4, 10\}$

$$\{1,5\},\{3,7\},\{6,9\},\{11,2\},\{8,12\},\{4,10\}$$

- Enumerate people as numbers 1 to 12
- For example, we count this splitting into groups

$$\{3, 7\}, \{1, 5\}, \{6, 9\}, \{11, 2\}, \{8, 12\}, \{4, 10\}$$
$$\{1, 5\}, \{3, 7\}, \{6, 9\}, \{11, 2\}, \{8, 12\}, \{4, 10\}$$

- Enumerate people as numbers 1 to 12
- For example, we count this splitting into groups
- Order between groups also do not matter

- Enumerate people as numbers 1 to 12
- For example, we count this splitting into groups
- Order between groups also do not matter
- What to do?

- Enumerate people as numbers 1 to 12
- For example, we count this splitting into groups
- Order between groups also do not matter
- What to do?
- Apply old idea!

$$\{3, 7\}, \{1, 5\}, \{6, 9\}, \{11, 2\}, \{8, 12\}, \{4, 10\}$$

 $\{1, 5\}, \{3, 7\}, \{6, 9\}, \{11, 2\}, \{8, 12\}, \{4, 10\}$

- Enumerate people as numbers 1 to 12
- For example, we count this splitting into groups

- Apply old idea!
 - We have counted each splitting 6! times, for each permutation of 6 groups

Splitting into Work Groups

• In our first attempt, the answer was:

Splitting into Work Groups

• In our first attempt, the answer was:

$$\binom{12}{2} \times \binom{10}{2} \times \binom{8}{2} \times \binom{6}{2} \times \binom{4}{2} \times \binom{2}{2}$$

Splitting into Work Groups

• In our first attempt, the answer was:

$$\binom{12}{2} \times \binom{10}{2} \times \binom{8}{2} \times \binom{6}{2} \times \binom{4}{2} \times \binom{2}{2}$$

• Then, we count each splitting 6! times

Splitting into Work Groups

• In our first attempt, the answer was:

$$\binom{12}{2} \times \binom{10}{2} \times \binom{8}{2} \times \binom{6}{2} \times \binom{4}{2} \times \binom{2}{2}$$

- Then, we count each splitting 6! times
- Hence, the right answer is

Splitting into Work Groups

In our first attempt, the answer was:

$$\binom{12}{2} \times \binom{10}{2} \times \binom{8}{2} \times \binom{6}{2} \times \binom{4}{2} \times \binom{2}{2} =$$

- Then, we count each splitting 6! times
- Hence, the right answer is

$$= \binom{12}{2} \times \binom{10}{2} \times \binom{8}{2} \times \binom{6}{2} \times \binom{4}{2} \times \binom{2}{2} \times \frac{1}{6!}$$

$$= \frac{12 \times 11}{2} \times \frac{10 \times 9}{2} \times \frac{8 \times 7}{2} \times \frac{6 \times 5}{2} \times \frac{4 \times 3}{2} \times \frac{2 \times 1}{2} \times \frac{1}{6!}$$

$$= \frac{12!}{2^6 \times 6!} = 10 \ 395$$

Splitting into Work Groups

• In our first attempt, the answer was:

$$\binom{12}{2} \times \binom{10}{2} \times \binom{8}{2} \times \binom{6}{2} \times \binom{4}{2} \times \binom{2}{2}$$

- Then, we count each splitting 6! times
- Hence, the right answer is

$$= \binom{12}{2} \times \binom{10}{2} \times \binom{8}{2} \times \binom{6}{2} \times \binom{4}{2} \times \binom{2}{2} \times \frac{1}{6!}$$

$$= \frac{12 \times 11}{2} \times \frac{10 \times 9}{2} \times \frac{8 \times 7}{2} \times \frac{6 \times 5}{2} \times \frac{4 \times 3}{2} \times \frac{2 \times 1}{2} \times \frac{1}{6!}$$

$$= \frac{12!}{2^6 \times 6!} = 10 \ 395$$

Summary

- We have discussed several standard settings in Combinatronics
- Vast majority of counting problems we meet in practice fall into these setting
- There are more complicated situations that we have not discussed
- There are situations that are so complicated, they stay unresolved
- Next topic, we proceed to Probability

Thank you.