

- 연구단 구성
- 주요연구개발 내용 3 / 6세부 (UAV)
- 주요연구개발 내용 1세부 (UGV)
- 주요연구개발 내용 2세부 / 5세부 (USV)
- 주요연구개발 내용 4세부 (통신)
- 기타 이슈사항

주요 연구개발내용(2세부) – 과제 개요

2세부과제

사업명 / 발주기관

무인이동체 원천기술 개발사업 / 과학기술정보통신부

과 제 명

자율협력형 무인선 개발

주관기관 /위탁과제 2세부과제: 선박해양플랜트연구소 (KRISO)

위탁과제 1 : 한국해양대학교 (우주현)

연구 목표

다수·이종 무인이동체 자율협력운용 시스템 구성 및 통합 운용, 임무 실증을 위한 자율협력형 무인선 시스템 및 자율운항 핵심

알고리즘 개발

2 주요 연구개발내용(2세부) - 연구목표

□ 연구 목표 및 내용

최종목표	다수·이종 무인이동체 자율협력운용 시스템 구성 및 통합 운용, 임무 실증을 가능하게 하기 위해 자율협력형 무인선 시스템 및 자율운항 핵심 알고리즘 개발				
세부목표	1. 자율협력형 무인선 시스템 기본 설계 2. 다수·이종 무인이동체 자율협력을 위한 무인선 자율제어 알고리즘 개발 3. 인공지능 기반 자율운항 핵심기술 개발 4. 자율협력 무인이동체 실증 시나리오 검증				
연차별목표	o 1차년도: 자율협력형 무인선 시스템 기본 설계 o 2차년도: 인공지능 기반 자율운항 핵심기술 개발 o 3차년도(단계)*: 인공지능 기반 자율운항 핵심기술 고도화 o 4차년도: 무인선 자율운항 시스템 성능시험 및 평가 o 5차년도: 해공 무인이동체 자율협력 연동시험 o 6차년도: 육해공 무인이동체 자율협력 연동시험 o 7,8차년도(최종): 육해공 무인이동체 자율협력 임무 시나리오 실증 시험 * 해양복합연구단 무인선 플랫폼 설계안 도입 후 시제선 건조(3차년도)				

2 주요 연구개발내용(2세부) - 연구목표

최종 연구목표

- ❖ 최대속도 10 knots, 운항시간 5시간 이상, 전기배터리 추진 시스템
- ❖ Sea state 2 이상, DP 위치오차 3 m 이하, UAV 2대 이상 탑재

2 주요 연구개발내용(2세부) - 개발 일정

세부 일정

주요 연구개발내용(2세부) - 개발 일정

4차년도 연구계획

- ❖ 연구개발 목표 : 무인선 자율운항 시스템 성능시험 및 평가
- ❖ 연구개발 내용 및 방법
 - 무인선 자율항법 알고리즘 탑재 및 성능시험 평가
 - 자율제어 소프트웨어 모듈/장애물인식 소프트웨어 무인선 탑재
 - 무인선 자율운항 성능 시험평가
 - 무인기 협력운용을 위한 이착륙 패드 제작 및 검증
 - ▶ 무인선 DP 성능시험
 - ▶ UVINet 인터페이스 통합 및 연동

개발 내용		2	3	4	5	6	7	8	9	10	11	12
자율제어 알고리즘 탑재												
장애물 인식 알고리즘 탑재												
무인선 탑재/관제 시스템 및 알고리즘 통합												
무인기 이착륙패드 제작 및 기본성능 검증												
무인선 DP 시스템 실해역 성능검증 기술 지원												
무인선 자율운항 성능시험 평가												

세부목표별 연구내용

세부목표	연구 내용						
무인선 자율항법	자율제어 소프트웨어 모듈 무인선 탑재						
알고리즘 탑재 및	장애물인식 소프트웨어 무인선 탑재						
성능시험 평가	무인선 자율운항 성능 시험평가						
무인기 협력운용을 위한	이착륙패드 시제품 제작*						
이착륙패드제작및검증	모션 플랫폼(3세부 제작품) 연동을 통한 무인기 이착륙 지상시험 수행**						
	동적 DP 성능 시험						
무인선 DP 성능시험***	시뮬레이션을 통한 기술 확보 후 무인선 실선시험을 통한 검증						
UVINet 인터페이스 통합 및 연동	총괄 시스템과의 연동을 위한 통신시스템 UVINet 인터페이스 연동						

- * 이착륙패드 설계 수정 및 제작은 5세부에서 진행
- ** 3세부 주관 및 모션 플랫폼 운동 관련하여 참여
- *** DP 알고리즘은 해양복합연구단 결과물 도입 및 실선 실해역 시험을 통한 검증

- □ 무인선 자율항법 알고리즘 탑재 및 무인선 단독운용 시스템 구축
 - ❖ 자율제어 알고리즘

〈 경로추종 알고리즘 [경로오차 제어 포함] >

□ 무인선 자율항법 알고리즘 탑재 및 무인선 단독운용 시스템 구축

❖ 자율제어 알고리즘

< VO 기반 충돌회피 알고리즘 >

- □ 무인선 자율항법 알고리즘 탑재 및 무인선 단독운용 시스템 구축
 - ❖ 자율제어 알고리즘

< DP 제어 알고리즘(해양복합연구단 결과 활용) >

- □ 무인선 자율항법 알고리즘 탑재 및 무인선 단독운용 시스템 구축
 - ❖ 장애물 인식 알고리즘

레이다 기반 장애물 탐지

Raw radar data

Without landmass

Obstacle detection results

- □ 무인선 자율항법 알고리즘 탑재 및 무인선 단독운용 시스템 구축
 - ❖ 장애물 인식 알고리즘

라이다 기반 장애물 탐지

무인선 자율항법 알고리즘 탑재 및 무인선 단독운용 시스템 구축

❖ 장애물 인식 알고리즘

장애물 인식 추적 필터

√ System model

$$\dot{x} = f(x) + w \quad \bullet \quad w \sim N(0, \sigma_w^2)$$

$$x = \begin{bmatrix} x_0 \\ y_0 \\ \psi_0 \\ V_0 \\ V_0 \\ x_T \\ y_T \\ \psi_T \\ V_T \\ V_T \\ I_T \end{bmatrix}, \dot{x} = \begin{bmatrix} \dot{x}_0 \\ \dot{y}_0 \\ \dot{y}_0 \\ \dot{\psi}_0 \\ \dot{\psi}_$$

✓ Measurement model

$$z = h(x) + v \quad \bullet \quad v \sim N(0, \sigma_v^2)$$

$$z = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \\ z_5 \\ z_6 \\ z_7 \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \\ \psi_0 \\$$

✓ Data association

· Rectangular gates

$$|y_l - \hat{y}_l| = |\tilde{y}_l| \le K_{Gl} \sigma_r$$

Ellipsoidal gates

$$d^{2} = \tilde{y}' S^{-1} \tilde{y} \sim \chi_{n}^{2}$$

= $[z - \hat{z}(k+1|k)]' S^{-1} [z - \hat{z}(k+1|k)]$

· Global nearest neighbor (GNN)

$$G_{ML} = 2ln \left[\frac{P_D}{(1 - P_D) 2\pi^{\frac{M}{2}} \beta \sqrt{|S|}} \right]$$

□ 무인선 자율운항 알고리즘 탑재 및 무인선 운용 시스템 구축

- ❖ 무인선 자체 운용을 위한 USV 관제시스템 고도화
 - 자율운항 임무를 부여하기 위한 기능 구현
- ❖ 무인선 자율운항 시스템과 연동하여 무인선 운용 시스템 구축
 - 실제 탑재되는 시스템을 활용하여 실내 연동테스트를 통해 검증

< 무인선 자체 운용을 위한 USV 관제시스템 >

< 실내 연동테스트 >

- 무인선 자율운항 알고리즘 탑재 및 무인선 운용 시스템 구축
 - ❖ 구축된 자율운항 시스템과 시뮬레이션 시스템 연동

무인선 자율운항 성능 시험평가

- ❖ 무인선 선체 기본성능 확인을 위한 시험 실시
 - 속도시험, 조종시험(지그재그, 선회시험)
- ❖ 이를 통해 무인선 동역학 식별 및 자율제어 시 파라메터 튜닝에 활용

< 속도시험 >

< 조종시험(우현선회) >

무인선 자율운항 성능 시험평가

- ❖ 무인선 선체 기본성능 확인을 위한 시험 실시
 - 속도시험, 조종시험(지그재그, 선회시험)
- ❖ 이를 통해 무인선 동역학 식별 및 자율제어 시 파라메터 튜닝에 활용

< 속도시험 결과 >

< 시뮬레이션을 위한 동역학 식별 >

- 무인선 자율운항 성능 시험평가
 - ❖ 무인선 자율운항 성능 1차 시험 실시를 통한 자율운항 알고리즘 성능 확인
 - ▶ 침로제어, 경로추종제어, 충돌회피 및 DP 성능시험 실시

< 침로제어시험(관제영상) >

- 무인선 자율운항 성능 시험평가
 - ❖ 무인선 자율운항 성능 1차 시험 실시를 통한 자율운항 알고리즘 성능 확인
 - ▶ 침로제어, 경로추종제어, 충돌회피 및 DP 성능시험 실시

< 경로추종시험(관제영상) >

무인선 자율운항 성능 시험평가

- ❖ 무인선 자율운항 성능 1차 시험 실시를 통한 자율운항 알고리즘 성능 확인
 - ▶ 침로제어, 경로추종제어, 충돌회피 및 DP 성능시험 실시

< 충돌회피시험(관제영상) >

무인선 자율운항 성능 시험평가

- ❖ 무인선 자율운항 성능 1차 시험 실시를 통한 자율운항 알고리즘 성능 확인
 - ▶ 침로제어, 경로추종제어, 충돌회피 및 DP 성능시험 실시

< DP시험(관제영상) >

2 5차년도 연구계획(2세부) – 연구 목표 및 내용

□ 연구목표

❖ 해공 무인이동체 자율협력 연동시험

□ 연구내용

- ❖ 자율협력형 무인선 자율운항 기술 안정화
 - ▶ 장애물 운동정보 추정을 위한 추적필터 성능개선
 - 무인기 자동착륙 지원을 위한 고정밀 상대 위치 정보 추정 기술
- ❖ 자동이착륙 연동 및 통합시험
 - 무인기-무인선 선상 이착륙패드 자동착륙 통합시험
- ❖ 자율협력용 통신 시스템 도입 및 연동
 - 육해공 무인이동체 정보 송수신을 위한 통신 시스템 통합 및 연동
- ❖ UVINet 인터페이스 통합 및 연동

2 5차년도 연구계획(2세부) – 개발 일정

5차년도 연구개발 일정

년/월

자율협력형 무인선 자율운항 기술 안정화

자율협력 / 통신 시스템 연동

시험/검증

2 5차년도 연구계획(2세부) - 자율운항 기술 안정화

□ 자율협력형 무인선 자율운항 기술 안정화

- ❖ 장애물 운동정보 추정을 위한 추적필터 성능개선
 - ▶ 장애물 형상정보(크기) 추정가능한 추적필터 설계 및 구현
- ❖ 무인기 자동착륙 지원을 위한 고정밀 상대 위치 정보 추정 기술

< 장애물 형상정보(크기) 추정 > < 무인기 자동착륙 지원을 위한 상대위치 추정 >

2 5차년도 연구계획(2세부) - 자율협력 / 통신 시스템 연동

□ 자율협력 / 통신 시스템 연동

- ❖ 무인기-무인선 선상 이착륙패드 자동착륙 통합시험
- ❖ 육해공 무인이동체 정보 송수신을 위한 통신 시스템 통합 및 연동

