#### МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Московский физико-технический институт (государственный университет) Кафедра вакуумной электроники

## Автоэлектронная эмиссия

Лабораторная работа по курсу вакуумная электроника

> Выполнил: студент 654гр. Нехаев А.С.

г. Долгопрудный 2018 год

# Содержание

| 1. | Цель работы          | 2 |
|----|----------------------|---|
| 2. | Теоретическая часть  | 3 |
| 3. | Техника эксперимента | 3 |
| 4. | Практическая часть   | 4 |
| 5. | Вывод                | 6 |

## 1. Цель работы

- 1) Изучить особенности автоэлектронной эмиссии и её применения.
- 2) Ознакомиться с техникой автоэлектронной микроскопии и областями её применения, а также методикой получения острий для автоэмиссионных микроскопов.
- 3) Исследовать автоэмиссионные свойства катода из углеродных волокон и причины нестабильности автоэмиссионного тока в нем.

### 2. Теоретическая часть

Автоэлектронная эмиссия - это явление испускания электронов в вакуум под воздействием сильного электрического поля порядка  $10^7~\rm B/cm$  с поверхности твердого поля. Для уменьшения необходимого напряжения катоду придают форму тонкого острия. Суть явления состоит в туннелировании электронов сквозь потенциальный барьер в результате его искривления под воздействием электрического поля.

Для нахождения плотности тока автоэлектронной эмиссии используется формула Фаулера-Нордгейма

$$j = \frac{A'E^2}{\varphi} \cdot e^{-\frac{B' \cdot \varphi^{\frac{3}{2}}}{E}},\tag{1}$$

где  $A'=\frac{e^3}{8\pi h}e^{0.739\cdot\frac{8\pi}{3e}\left(2m\varphi^3\right)^{\frac{1}{2}}},\,B'=0.965\cdot\frac{\frac{8\pi}{3e}\left(2m\varphi^3\right)^{\frac{1}{2}}}{hE}.$  Эта формула выведена для T=0, но так как при комнатной температуре  $\varphi\gg kT$  применима и в нашем случае. Также, построив ВАХ в координатах Фаулера-Нордгейма возможно вычислить форм-фактор катода по формуле

$$\tan(\alpha) = -0.683 \cdot \frac{\varphi^{\frac{3}{2}}}{\beta},\tag{2}$$

где  $\alpha$  — угол наклона получившейся кривой. Основными механизмами нестабильности автоэлектронной эмиссии являются: разрушение поверхности катода ионами остаточных газов, абсорбция и десорбция атомов остаточных газов, разрушение катода пондеромоторными силами, смещение элементов катода за счет электростатического отталкивания.

#### 3. Техника эксперимента

В качестве катода выступал пучок углеродных волокон, стравленный предварительно коронным разрядом, в результате электрическое поле для всех волокон пучка было почти одинаковым. Исследуемые автокатоды находились в отпаянной стеклянной лампе. На анод подавалось высокое напряжение, а катод заземлялся.

## 4. Практическая часть

1) Сняли зависимость автоэмиссионного тока катода из углеродных трубок от приложенного напряжения



Рис. 1: График зависимости автоэмиссионного тока от напряжения

По графику можно определить, что BAX системы отличалась при возрастании и убывании напряжения.

2) Построили полученную зависимость в координатах Фаулера-Нордгейма



Рис. 2: График зависимости давления от времени

По полученным кривым можно выяснить, что основную роль в нестабильности тока имело изменение размеров эмиссионных центров, так как значение величины A +

 $2\ln(B)$ , где A – смещение кривой  $\Phi H$ , а B - её коэффициент наклона, осталось почти постоянным в течение снятия BAX.

Форм фактор для возрастания и убывания соответственно равен  $\beta=-\frac{0.683\varphi^{\frac{3}{2}}}{\tan(\alpha)}$ 

## 5. Вывод

- 1) Изучили особенности автоэлектронной эмиссии и её применения.
- 2) Ознакомились с техникой автоэлектронной микроскопии и областями её применения, а также методикой получения острий для автоэмиссионных микроскопов
- 3) Исследовали автоэмиссионные свойства катода из углеродных волокон и определили причину нестабильности автоэмиссионного тока такого катода.