Deep Learning

Basic Backpropagation 1

Learning goals

- Forward and backward passes
- Chain rule
- Details of backprop

BACKPROPAGATION: BASIC IDEA

We would like to optimize ERM using gradient descent (GD) on:

$$\mathcal{R}_{emp}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right).$$

Backprop training of NNs runs in 2 alternating steps, for one x:

- Forward pass (FP): Inputs flow through model to outputs. We then compute the observation loss (see previous chapters).
- Backward pass (BP): Loss flows backwards to update weights so error is reduced, as in GD.

We will see: This is simply (S)GD in disguise, cleverly using the chain rule, so we can reuse a lot of intermediate results.

Bernd Bischl Deep Learning - 1/19

XOR EXAMPLE

- As activations (hidden and outputs) we use the sigmoid function.
- We run one FP and BP on $\mathbf{x} = (1, 0)^T$ with y = 1.
- We use L_2 loss between 0-1 labels and the predicted probabilities. This is a bit uncommon, but computations become simpler.

Note: We will only show rounded decimals.

- We will divide the FP into four steps:
 - the inputs of z_i: **z**_{i,in}
 - the activations of z_i: z_{i,out}
 - the input of f: fin
 - and finally the activation of f: fout

Bernd Bischl Deep Learning - 3 / 19

$$z_{1,in} = \mathbf{W}_{1}^{\mathsf{T}} \mathbf{x} + b_{1} = 1 \cdot (-0.07) + 0 \cdot 0.22 + 1 \cdot (-0.46) = -0.53$$

 $z_{1,out} = \sigma(z_{1,in}) = \frac{1}{1 + \exp(-(-0.53))} = 0.3705$

Bernd Bischl Deep Learning - 4 / 19

$$z_{2,in} = \mathbf{W}_{2}^{T} \mathbf{x} + b_{2} = 1 \cdot 0.94 + 0 \cdot 0.46 + 1 \cdot 0.1 = 1.04$$

 $z_{2,out} = \sigma(z_{2,in}) = \frac{1}{1 + \exp(-1.04)} = 0.7389$

Bernd Bischl Deep Learning - 5 / 19

$$f_{in} = \mathbf{u}^T \mathbf{z} + c = 0.3705 \cdot (-0.22) + 0.7389 \cdot 0.58 + 1 \cdot 0.78 = 1.1122$$

 $f_{out} = \tau (f_{in}) = \frac{1}{1 + \exp(-1.1122)} = 0.7525$

Bernd Bischl Deep Learning - 6 / 19

- The FP predicted $f_{out} = 0.7525$
- Now, we compare the prediction $f_{out} = 0.7525$ and the true label y = 1 using the L_2 -loss:

$$L(y, f(\mathbf{x})) = \frac{1}{2} (y - f(\mathbf{x}^{(i)} \mid \theta))^2 = \frac{1}{2} (y - f_{out})^2$$
$$= \frac{1}{2} (1 - 0.7525)^2 = 0.0306$$

 The calculation of the gradient is performed backwards (starting from the output layer), so that results can be reused.

Bernd Bischl Deep Learning - 7/19

The main ingredients of the backward pass are:

- to reuse the results of the forward pass (here: z_{i,in}, z_{i,out}, f_{in}, f_{out})
- reuse the intermediate results from the chain rule
- the derivative of the activations and some affine functions

Bernd Bischl Deep Learning - 8 / 19

• Let's start to update u_1 . We recursively apply the chain rule:

$$\frac{\partial L(y, f(\mathbf{x}))}{\partial u_1} = \frac{\partial L(y, f(\mathbf{x}))}{\partial f_{out}} \cdot \frac{\partial f_{out}}{\partial f_{in}} \cdot \frac{\partial f_{in}}{\partial u_1}$$

Figure: Snippet from our NN, with backward path for u_1 .

• 1st step: The derivative of L₂ loss is easy; we know f_{out} from FP.

$$\frac{\partial L(y, f(\mathbf{x}))}{\partial f_{out}} = \frac{d}{\partial f_{out}} \frac{1}{2} (y - f_{out})^2 = \underbrace{(y - f_{out})}_{\hat{=}residual}$$
$$= -(1 - 0.7525) = -0.2475$$

Bernd Bischl Deep Learning - 10 / 19

• 2nd step. $f_{out} = \sigma(f_{in})$, use rule for σ' , use f_{in} from FP.

$$\frac{\partial f_{out}}{\partial f_{in}} = \sigma(f_{in}) \cdot (1 - \sigma(f_{in}))$$
= 0.7525 \cdot (1 - 0.7525) = 0.1862

Bernd Bischl Deep Learning - 11 / 19

• 3rd step. Derivative of the linear input is easy; use $z_{1,out}$ from FP.

$$\frac{\partial f_{in}}{\partial u_1} = \frac{\partial (u_1 \cdot z_{1,out} + u_2 \cdot z_{2,out} + c \cdot 1)}{\partial u_1} = z_{1,out} = 0.3705$$

Bernd Bischl Deep Learning - 12 / 19

Plug it together:

$$\frac{\partial L(y, f(\mathbf{x}))}{\partial u_1} = \frac{\partial L(y, f(\mathbf{x}))}{\partial f_{out}} \cdot \frac{\partial f_{out}}{\partial f_{in}} \cdot \frac{\partial f_{in}}{\partial u_1}$$
$$= -0.2475 \cdot 0.1862 \cdot 0.3705 = -0.0171$$

• With LR $\alpha = 0.5$:

$$u_1^{[new]} = u_1^{[old]} - \alpha \cdot \frac{\partial L(y, f(\mathbf{x}))}{\partial u_1}$$

= $-0.22 - 0.5 \cdot (-0.0171) = -0.2115$

Bernd Bischl Deep Learning - 13 / 19

• Now for W_{11} :

$$\frac{\partial L(y, f(\mathbf{x}))}{\partial W_{11}} = \frac{\partial L(y, f(\mathbf{x}))}{\partial f_{out}} \cdot \frac{\partial f_{out}}{\partial f_{in}} \cdot \frac{\partial f_{in}}{\partial z_{1,out}} \cdot \frac{\partial z_{1,out}}{\partial z_{1,in}} \cdot \frac{\partial z_{1,in}}{\partial W_{11}}$$

• We know $\frac{\partial L(y, f(\mathbf{x}))}{\partial f_{out}}$ and $\frac{\partial f_{out}}{\partial f_{in}}$ from BP for u_1 .

Bernd Bischl Deep Learning - 14 / 19

• $f_{in} = u_1 \cdot z_{1,out} + u_2 \cdot z_{2,out} + c \cdot 1$ is linear, easy and we know u_1 :

$$\frac{\partial \mathit{f}_{in}}{\partial z_{1,out}} = \mathit{u}_1 = -0.22$$

Bernd Bischl Deep Learning - 15 / 19

• Next. Use rule for σ' and FP results:

$$\frac{\partial z_{1,out}}{\partial z_{1,in}} = \sigma(z_{1,in}) \cdot (1 - \sigma(z_{1,in}))$$

$$= 0.3705 \cdot (1 - 0.3705) = 0.2332$$

Bernd Bischl Deep Learning - 16 / 19

• $z_{1,in} = x_1 \cdot W_{11} + x_2 \cdot W_{21} + b_1 \cdot 1$ is linear and depends on inputs:

$$\frac{\partial z_{1,in}}{\partial W_{11}} = x_1 = 1$$

Bernd Bischl Deep Learning - 17 / 19

• Plugging together:

$$\frac{\partial L(y, f(\mathbf{x}))}{\partial W_{11}} = \frac{\partial L(y, f(\mathbf{x}))}{\partial f_{out}} \cdot \frac{\partial f_{out}}{\partial f_{in}} \cdot \frac{\partial f_{in}}{\partial z_{1,out}} \cdot \frac{\partial z_{1,out}}{\partial z_{1,in}} \cdot \frac{\partial z_{1,in}}{\partial W_{11}}$$

$$= (-0.2475) \cdot 0.1862 \cdot (-0.22) \cdot 0.2332 \cdot 1$$

$$= 0.0024$$

Full SGD update:

$$W_{11}^{[new]} = W_{11}^{[old]} - \alpha \cdot \frac{\partial L(y, f(\mathbf{x}))}{\partial W_{11}}$$

= -0.07 - 0.5 \cdot 0.0024 = -0.0712

RESULT

• We can do this for all weights:

$$W = \begin{pmatrix} -0.0712 & 0.9426 \\ 0.22 & 0.46 \end{pmatrix}$$
 , $b = \begin{pmatrix} -0.4612 \\ 0.1026 \end{pmatrix}$,

$$u = \begin{pmatrix} -0.2115 \\ 0.5970 \end{pmatrix}$$
 and $c = 0.8030$.

- Yields $f(\mathbf{x} \mid \boldsymbol{\theta}^{[new]}) = 0.7615$ and loss $\frac{1}{2}(1 0.7615)^2 = 0.0284$.
- Before, we had $f(\mathbf{x} \mid \boldsymbol{\theta}^{[old]}) = 0.7525$ and higher loss 0.0306.

Now rinse and repeat. This was one training iter, we do thousands.

Bernd Bischl Deep Learning - 19 / 19