More iterative algorithms

Outline

- Minimum Spanning Tree (MST)
 - Optimization

- The Greedy Approach
 - Marginal Gain/Loss
 - Correctness and runtime
 - Optimal for MST

Outline

- Minimum Spanning Tree (MST)
 - Optimization

- The Greedy Approach
 - Marginal Gain/Loss
 - Correctness and runtime
 - Optimal for MST

Learning objectives:

You are able to

- explain the concepts of an optimization problem and marginal gain
- describe the MST problem and the greedy algorithm for the MST problem
- analyze the runtime and correctness of Kruskal's algorithm

Task:

A swiss valley with *n* villages. We need a transport (cable car) network that connects the villages.

Building and maintaining cable car lines is expensive. We want to minimize the costs.

Task:

A swiss valley with *n* villages. We need a transport (cable car) network that connects the villages.

Task:

A swiss valley with n villages. We need a transport (cable car) network that connects the villages.

Costs are not uniform. Some villages might not even be possible to (pairwise) connect.

Task:

A swiss valley with *n* villages. We need a transport (cable car) network that connects the villages.

Costs are not uniform. Some villages might not even be possible to (pairwise) connect.

Reminder: Subgraphs and Trees

Subgraph: G' = (V', E') of G = (V, E)

- $V' \subseteq V, E' \subseteq E$.
- *G'* does not need to be connected.
- Sometimes we write: $G' \subseteq G$

Cycle: C = (V, E)

- *C* is a connected graph
- For all $v \in V$, $\deg(v) = 2$

Tree: T = (V, E)

- T is a graph
- *T contains* no cycles, i.e., no subgraph of *T* is a cycle

Bold edges form a cycle. This graph is not a tree

This graph is a tree.

Task:

A swiss valley with *n* villages. We need a transport (cable car) network that connects the villages.

Spanning Tree:

A connected subtree that contains (spans) all nodes.

Input:

A graph G = (V, E) of n nodes and m edges.

Each edge $e \in E$ is assigned a positive integer weight w(e).

Output:

A subgraph that connects all nodes and has the smallest possible weight.

Observation:

The minimum weight spanning subgraph is a tree.

Observation:

The minimum weight spanning subgraph is a tree.

Suppose that the minimum weight spanning subgraph G' is not a tree.

By definition, G' contains a cycle

Suppose that the minimum weight spanning subgraph G' is not a tree.

By definition, G' contains a cycle

Suppose that the minimum weight spanning subgraph G' is not a tree.

By definition, G' contains a cycle

Consider any edge *e* on the cycle

Remove edge e:

Subgraph gets lighter, stays connected and still spans all nodes.

Contradiction.

Outline

- Minimum Spanning Tree (MST)
 - Optimization

- The Greedy Approach
 - Marginal Gain/Loss
 - Correctness and runtime
 - Optimal for MST

Input:

A graph G = (V, E) of n nodes and m edges.

Every edge $e \in E$ is assigned a positive integer weight w(e).

Output:

A subtree that connects all nodes and has the smallest possible weight.

Minimize x

Objective function f(x)

Subject to

Constraints $g_1(x)$ $g_2(x)$... g_m

Weight of the tree w(T)

Minimize *T*

$$f(T) = \Sigma_{e \in T} w(e)$$

Subject to

T is a spanning tree of input graph G.

Specify that the solution must be valid

Outline

- Minimum Spanning Tree (MST)
 - Optimization

- The Greedy Approach
 - Marginal Gain/Loss
 - Correctness and runtime
 - Optimal for MST

Start with $T = \emptyset$

Marginal gain of *e*:

$$f(T) - f(T \cup e) = -w(e)$$

Iteratively add the edge with the largest marginal gain.

Don't add edges that create cycles

A very typical iterative algorithm

Or "loss"

Start with $T = \emptyset$

Marginal gain of e:

$$f(T) - f(T \cup e) = -w(e)$$

Iteratively add the edge with the largest marginal gain.

Don't add edges that create cycles

A very typical iterative algorithm

Or "loss"

Read:

Add the best edge that makes sense

Start with $T = \emptyset$

Marginal gain of e:

$$f(T) - f(T \cup e) = -w(e)$$

Iteratively add the edge with the largest marginal gain.

Don't add edges that create cycles

A very typical iterative algorithm

Input edge list *E*

Forest $F = (V, \emptyset)$

- 1. Find the edge $e \in E$ with smallest w(e)
- 2. If $F \cup e$ is a forest, $F := F \cup e$
- 3. Remove e from E

Forest:

Tree that *might* not be connected. A tree is a forest.

Input edge list *E*

Forest $F = (V, \emptyset)$

- 1. Find the edge $e \in E$ with smallest w(e)
- 2. If $F \cup e$ is a forest, $F := F \cup e$
- 3. Remove e from E

Lemma:

Kruskal's algorithm returns a minimum weight spanning tree.

Lemma:

The runtime of Kruskal's algorithm is $O(|E| \log |E|)$

Optimal!

Lemma:

The runtime of Kruskal's algorithm is $O(|E| \log |E|)$

Denote #edges by m

Lemma:

The runtime of Kruskal's algorithm is $O(m \log m)$

Lemma:

The runtime of Kruskal's algorithm is $O(m \log m)$

Input edge list *E*

Forest $F = (V, \emptyset)$

- 1. Find the edge $e \in E$ with smallest w(e)
- 2. If $F \cup e$ is a forest, $F := F \cup e$
- 3. Remove e from E

Lemma:

The runtime of Kruskal's algorithm is $O(m \log m)$

Naïve is bad:

- While loop $\Omega(m)$ times
- Checking the "while" condition takes $\Omega(n)$ time.
- Search takes $\Omega(m)$ time
- Forest check takes $\Omega(n)$ time
- Leads to $\Omega(m^2)$

Input edge list *E*

Forest $F = (V, \emptyset)$

- 1. Find the edge $e \in E$ with smallest w(e)
- 2. If $F \cup e$ is a forest, $F := F \cup e$
- 3. Remove e from E

Lemma:

The runtime of Kruskal's algorithm is $O(m \log m)$

Naïve is bad:

- While loop $\Omega(m)$ times
- Checking the "while" < condition takes $\Omega(n)$ time.
- Search takes $\Omega(m)$ time
- Forest check takes $\Omega(n)$ time
- Leads to $\Omega(m^2)$

Input edge list *E*

Forest $F = (V, \emptyset)$

- 1. Find the edge $e \in E$ with smallest w(e)
- **2**. If $F \cup e$ is a forest, $F := F \cup e$
- 3. Remove e from E

Lemma:

The runtime of Kruskal's algorithm is $O(m \log m)$

Naïve is bad:

- While loop $\Omega(m)$ times
- Checking the "while" condition takes $\Omega(n)$ time.
- Search takes $\Omega(m)$ time
- Forest check takes $\Omega(n)$ time
- Leads to $\Omega(m^2)$

Input edge list *E*

Forest $F = (V, \emptyset)$

- 1. Find the edge $e \in E$ with smallest w(e)
- 2. If $F \cup e$ is a forest, $F := F \cup e$
- 3/. Remove e from E

Smarter implementation:

Use Union-Find data structure (e.g., with UNION by size).

FIND(v): Returns (an identifier of) the component of v in time $O(\log n)$.

UNION(u, v): Merges the components of u and v into a single component in time $O(\log n)$.

Smarter implementation:

Use Union-Find data structure (e.g., with UNION by size).

FIND(v): Returns (an identifier of) the component of v in time $O(\log n)$.

UNION(u, v): Merges the components of u and v into a single component in time $O(\log n)$.

Every node of the merged component agree on the identifier of the component

Smarter implementation:

Use Union-Find data structure (e.g., with UNION by size).

FIND(v): Returns (an identifier of) the component of v in time $O(\log n)$.

UNION(u, v): Merges the components of u and v into a single component in time $O(\log n)$.

```
Input edge list E
Sort E ascending according to weight
Forest F = (V, \emptyset)
Iterate in ascending order \{u, v\} \in E
If(FIND(u) \neq FIND(v))
F := F \cup \{u, v\}
UNION(FIND(u), FIND(v))
```

Smarter implementation:

Use Union-Find data structure (e.g., with UNION by size).

FIND(v): Returns (an identifier of) the component of v in time $O(\log n)$.

UNION(u, v): Merges the components of u and v into a single component in time $O(\log n)$.

Input edge list ESort E ascending according to weight
Forest $F = (V, \emptyset)$ Iterate in ascending order $\{u, v\} \in E$ If(FIND $(u) \neq FIND(v)$) $F \coloneqq F \cup \{u, v\}$ UNION(FIND(u), FIND(v))

Runtime:

Sorting takes $O(m \log m)$ For-loop requires $O(m \log n)$

```
Input edge list E

Sort E ascending according to weight

Forest F = (V, \emptyset)

Iterate in ascending order \{u, v\} \in E

If(FIND(u) \neq FIND(v))

F \coloneqq F \cup \{u, v\}

UNION(FIND(u), FIND(v))
```



```
Input edge list E

Sort E ascending according to weight

Forest F = (V, \emptyset)

Iterate in ascending order \{u, v\} \in E

If(FIND(u) \neq FIND(v))

F := F \cup \{u, v\}

UNION(FIND(u), FIND(v))
```



```
Input edge list E

Sort E ascending according to weight

Forest F = (V, \emptyset)

Iterate in ascending order \{u, v\} \in E

If(FIND(u) \neq FIND(v))

F := F \cup \{u, v\}

UNION(FIND(u), FIND(v))
```



```
Input edge list E

Sort E ascending according to weight

Forest F = (V, \emptyset)

Iterate in ascending order \{u, v\} \in E

If(FIND(u) \neq FIND(v))

F := F \cup \{u, v\}

UNION(FIND(u), FIND(v))
```



```
Input edge list E

Sort E ascending according to weight

Forest F = (V, \emptyset)

Iterate in ascending order \{u, v\} \in E

If(FIND(u) \neq FIND(v))

F := F \cup \{u, v\}

UNION(FIND(u), FIND(v))
```



```
Input edge list E

Sort E ascending according to weight

Forest F = (V, \emptyset)

Iterate in ascending order \{u, v\} \in E

If(FIND(u) \neq FIND(v))

F \coloneqq F \cup \{u, v\}

UNION(FIND(u), FIND(v))
```



```
Input edge list E

Sort E ascending according to weight

Forest F = (V, \emptyset)

Iterate in ascending order \{u, v\} \in E

If(FIND(u) \neq FIND(v))

F \coloneqq F \cup \{u, v\}

UNION(FIND(u), FIND(v))
```


Don't connect two nodes of same color

```
Input edge list E

Sort E ascending according to weight

Forest F = (V, \emptyset)

Iterate in ascending order \{u, v\} \in E

If(FIND(u) \neq FIND(v))

F := F \cup \{u, v\}

UNION(FIND(u), FIND(v))
```



```
Input edge list E

Sort E ascending according to weight

Forest F = (V, \emptyset)

Iterate in ascending order \{u, v\} \in E

If(FIND(u) \neq FIND(v))

F \coloneqq F \cup \{u, v\}

UNION(FIND(u), FIND(v))
```



```
Input edge list E

Sort E ascending according to weight

Forest F = (V, \emptyset)

Iterate in ascending order \{u, v\} \in E

If(FIND(u) \neq FIND(v))

F := F \cup \{u, v\}

UNION(FIND(u), FIND(v))
```


Idea Recap

Minimum Spanning Tree:

Start with isolated nodes as components.

Greedily merge components.

Union-Find:

Check if nodes in the same component and perform merging in $O(\log m)$ time

Union-Find Exercise:

Details of Union-Find in the tutorial exercise

Challenge (?): Can you implement it without checking the literature?

Outline

- Minimum Spanning Tree (MST)
 - Optimization

- The Greedy Approach
 - Marginal Gain/Loss
 - Correctness and runtime
 - Optimal for MST

Lemma:

Kruskal's algorithm returns a minimum weight spanning tree.

Lemma:

Kruskal's algorithm returns a minimum weight spanning tree.

Optimal!

Lemma:

Kruskal's algorithm returns a minimum weight spanning tree.

Simplification:

Suppose that the weights are unique

Suppose for a contradiction that Kruskal's does not give a minimum spanning tree.

Let *T* be the spanning tree returned by Kruskal's.
Order the edges according to when they are selected.

Edge $\hat{e} \in T$ is the first edge not in T^* . Removing \hat{e} from T divides T into two disjoint components T_1 and T_2 .

There must be a path in T^* that connects nodes u and v. On this path, there is at least one edge $e^* \in T^*$ with one endpoint in T_1 and the other in T_2 .

Since Kruskal's did not pick e^* , it must be the case that $w(e^*) > w(\hat{e})$.

Edge $\hat{e} \in T$ is the first edge not in T^* . Removing \hat{e} from T divides T into two disjoint components T_1 and T_2 .

There must be a path in T^* that connects nodes u and v. On this path, there is at least one edge $e^* \in T^*$ with one endpoint in T_1 and the other in T_2 .

Since Kruskal's did not pick e^* , it must be the case that $w(e^*) > w(\hat{e})$.

Removing e^* from T^* and adding \hat{e} to T^* reduces its weight.

Edge $\hat{e} \in T$ is the first edge not in T^* . Removing \hat{e} from T divides T into two disjoint components T_1 and T_2 .

There must be a path in T^* that connects nodes u and v. On this path, there is at least one edge $e^* \in T^*$ with one endpoint in T_1 and the other in T_2 .

Since Kruskal's did not pick e^* , it must be the case that $w(e^*) > w(\hat{e})$.

Proof Recap

Consider first greedy edge $\hat{e} = \{u, v\}$ that is not in the optimal spanning tree T^* .

Without \hat{e} , nodes u and v are disconnected. In T^* , there is an edge e^* that connects the components of u and v.

Swapping \hat{e} and e^* creates a spanning tree that is cheaper than the optimum which is a contradiction.

Lemma:

Kruskal's algorithm returns a minimum weight spanning tree.

Lemma:

The runtime of Kruskal's algorithm is $O(|E| \log |E|)$

Wrap-up

MST:

Cheapest connecting structure.

