Structure of matter: Homework to exercise 4

## **Electrical and optical properties of continuous media**

Due on November 2nd 2023 at noon

Please indicate your name on the solution sheets and send it to your seminar leader!

1. Multiple-choice test: Please tick the box(es) with the correct answer(s)! (correctly ticked box: +1/2 point; wrongly ticked box: -1/2 point)

| The wavenumber $v = 5000 \text{cm}^{-1}$ corresponds to a | 5000nm                    |   |
|-----------------------------------------------------------|---------------------------|---|
| wavelength ,                                              | 2000nm                    |   |
| V= = > = = = = = = = = = = = = = = = = =                  | <sup>^</sup> 2μm          |   |
| The refractive index of a material is                     | dimensionless             | V |
|                                                           | given in s <sup>-1</sup>  |   |
|                                                           | given in cm <sup>-1</sup> |   |

2. True or wrong? Make your decision!

(2 points): 1 point per correct decision, 0 points per wrong or no decision

| Assertion                                                         | true | wrong |
|-------------------------------------------------------------------|------|-------|
| In linear optics, electromagnetic energy dissipation occurs when  |      |       |
| the imaginary part of the dielectric function is larger than zero |      |       |
| All dielectrics have negative refractive indices.                 |      |       |

- 3. Let a material have the absorption coefficient  $\alpha$ . Which path must be travelled by the electromagnetic wave in order to reduce its intensity down to 10%? (2 points)
- 4. Find an expression for the electric field inside a homogeneously polarized dielectric sphere located in vacuum!
  - Note: The task is easily solved when regarding the single polarized sphere as a superposition of two homogeneously charged spheres with slightly shifted central points. (6 points)
- 5. Find an expression for the <u>static polarizability</u> of a spherical particle located in vacuum with radius R, built from a dielectric material with the static dielectric constant  $\varepsilon_{\text{stat}}$ . Also, consider the case of a metal sphere, formally replacing  $\varepsilon_{\text{stat}}$  by  $\varepsilon \to -\infty$ . Basing on the expression for the static polarizability of the metal sphere, estimate the polarizability of a fictive atom, assuming the latter as a sphere with a radius equal to 0.05nm. (6 points)

Then:

$$\hat{j} = q N e V_0 \qquad M = 63.5 \quad u = \frac{63.5}{V_0} \quad g = 13.5 \times 1.66 \times 10^{-24} g$$

$$2 = A x^2 \hat{j}^2 = 2 x^2 q N e V_0 \qquad N e = \frac{f}{m} = \frac{8.9^3 g (cm^3)}{63.5 \times 1.66 \times 10^{-24} g}$$

$$6. \Rightarrow V_0 = \frac{1}{2} \frac{A \cdot f_3 \cdot x \cdot 1.66 \times 10^{-24} g}{7!4 \times 0.0815^2 cm^2 \cdot 1.602 \times 10^{-19} A \cdot s \cdot 8.93 g \cdot cm^3} = 353.28 \times 10^5 \text{ m/s}$$

$$= 3.5328 \times 10^5 \text{ m/s}$$

Assume a current I = 1A flowing through a copper wire with a diameter d of 1.63mm. Estimate the drift velocity of the electrons, assuming that there is approximately 1 free electron per copper atom, a mass density of  $\rho$ =8.93gcm<sup>-3</sup>, and a mass number of copper of 63.5. Note that the Roman snail in the figure moves with a velocity of approximately 3 meters per hour. Is the drift velocity of the conduction electron higher or smaller than the propagation velocity of the Roman snail?(6 points)



= 3.5328 ×10°m/s ≈ 0.127 m/h 16 < Vsnai[= 3m/h

5.

$$d = \xi_0 | \text{Stat} | \text{Enviro} \qquad | \text{Vd} = P = N_{\xi_0} | \text{Stat} | \text{Enviro} |$$

$$Enviro = E - \text{Esphone} = E + \frac{P}{3\xi_0}$$

$$\Rightarrow | P - N_{\xi_0} | \text{Stat} | E + \frac{N_{\xi_0} | \text{Stat} | P}{3\xi_0}$$

$$\Rightarrow | P - N_{\xi_0} | \text{Stat} | E + \frac{N_{\xi_0} | \text{Stat} | P}{3\xi_0}$$

$$\Rightarrow | P - N_{\xi_0} | \text{Stat} | P - N_{\xi_0} | \text{Stat} | P - \xi_0 |$$

Oriental Polarization  $Dde s = l + \frac{y_{stat}}{y_{stat}} - 2 lody e^{s} \quad formula$   $Dm(s) = \frac{1}{\pi} V P \int_{-\infty}^{\infty} \frac{c_{fesslar} - 1}{w_{s-w}} dw \rightarrow \text{browners kronig relation}$  V(a) clays principle function  $W_2 = 3 \quad Peslar) - l = \frac{y_{stat}}{y_{stat}} \quad 2 los (w) = -\frac{y_{stat}}{\pi} V P \int_{-\infty}^{\infty} \frac{ds}{(3 - w)(1 + 3 + 5)}$   $x = t^{\frac{3}{2}} \Rightarrow 2 los (w) = -\frac{y_{stat}}{\pi} V P \int_{-\infty}^{\infty} \frac{ds}{(x - w)(1 + 3 + 5)} \int_{-\infty}^{\infty} \frac{ds}{(x - w)(1 + 3 + 5)} \int_{-\infty}^{\infty} \frac{ds}{(x - w)(1 + 3 + 5)} \frac{ds}{(x - w)(1 + 3 + 5)} \int_{-\infty}^{\infty} \frac{ds}{(x - w)(1 + 3 + 5)} \int_{-\infty}^{\infty} \frac{ds}{(x - w)(1 + 3 + 5)} \frac{ds}{(x - w)(1 + 3 + 5)} \int_{-\infty}^{\infty} \frac{ds}{(x - w)(1 + 3 + 5)} \frac{ds}{(x - w)(1 + 3 + 5)} \int_{-\infty}^{\infty} \frac{ds}{(x - w)(1 + 3 + 5)} \frac{ds}{(x - w)(1 + 3 + 5)} \int_{-\infty}^{\infty} \frac{ds}{(x - w)(1 + 3 + 5)} \frac{ds}{(x - w)(1 + 3 + 5)} \int_{-\infty}^{\infty} \frac{ds}{(x - w)(1 + 3 + 5)} \frac{ds}{(x - w)(1 + 3 + 5)} \int_{-\infty}^{\infty} \frac{ds}{(x - w)(1 + 3 + 5)} \frac{ds}{(x - w)(1 + 3 + 5)} \frac{ds}{(x - w)(1 + 3 + 5)} \int_{-\infty}^{\infty} \frac{ds}{(x - w)(1 + 3 + 5)} \frac{ds}{(x - w)(1 + 3 + 5)} \frac{ds}{(x - w)(1 + 3 + 5)} \int_{-\infty}^{\infty} \frac{ds}{(x - w)(1 + 3 + 5)} \int_{-\infty}^{\infty} \frac{ds}{(x - w)(1 + 3 + 5)} \frac{ds}{(x - w)($ 

$$Vph = \frac{h}{k} Vg = \frac{dh}{dk}$$

$$P = \left| \frac{n_1 - n_2}{n_1 + n_2} \right|^2 = \frac{Vz - Vz}{Vz + Vz}$$