Teoria dos Grafos

Berilhes

■ Em 1920 o matemático Otakar Borůvka foi contratado para projetar uma rede elétrica eficiente para uma região do sul da república Checa.

- Em 1920 o matemático Otakar Borůvka foi contratado para projetar uma rede elétrica eficiente para uma região do sul da república Checa.
- BORŮVKA modelou o problema como sendo um problema em grafos,

- Em 1920 o matemático Otakar Borůvka foi contratado para projetar uma rede elétrica eficiente para uma região do sul da república Checa.
- BORŮVKA modelou o problema como sendo um problema em grafos,
- no qual cada vértice representa uma cidade que deve ser alimentada pela rede elétrica,

- Em 1920 o matemático Otakar Borůvka foi contratado para projetar uma rede elétrica eficiente para uma região do sul da república Checa.
- BORŮVKA modelou o problema como sendo um problema em grafos,
- no qual cada vértice representa uma cidade que deve ser alimentada pela rede elétrica,
- e cada aresta e = (u, v) possui um custo ou peso associado c(e) que representa o custo de conectar as cidades u e v, por cabos de distribuição.

Definição

UMA ÁRVORE GERADORA para um grafo conectado G é um subgrafo de G que é uma árvore contendo todo vértice de G. Se G não é conectado, um conjunto consistindo de uma árvore geradora para cada componente é chamado de FLORESTA GERADORA.

Definições

Definições

(**Peso de uma árvore**) O peso de uma árvore é asoma dos pesos de suas arestas.

Definições

(**Peso de uma árvore**) O peso de uma árvore é asoma dos pesos de suas arestas.

(Árvore geradora mínima) Uma árvore geradora mínima é uma árvore geradora de peso mínimo.

Algoritmo Genérico

 Todos os algoritmos apresentados utilizam uma abordagem gulosa e

- Todos os algoritmos apresentados utilizam uma abordagem gulosa e
- podem ser entendidos como sendo instâncias algoritmo genérico.

Todos os algoritmos	${\it apresentados}$	utilizam	uma	abordagem
gulosa e				

podem s	ser	entendidos	como	sendo	instâncias	algoritmo
genérico						

- Todos os algoritmos apresentados utilizam uma abordagem gulosa e
- podem ser entendidos como sendo instâncias algoritmo genérico.

```
\begin{array}{ll} \operatorname{MST-Gen\acute{e}Rico}(G) \\ 1 & T \leftarrow \emptyset \\ 2 & \textit{Candidatas} \leftarrow E \\ 3 & \textbf{while} \ (|T| \neq |V| - 1) \\ 4 & \operatorname{Escolha} \ \operatorname{uma} \ \operatorname{aresta} \ \operatorname{segura} \ e \in \textit{Candidatas} \\ 5 & T \leftarrow T \cup \{e\} \\ 6 & \textit{Candidatas} \leftarrow \textit{Candidatas} - \{e\} \end{array}
```

Algoritmo Genérico

■ Como nós encontramos uma aresta segura?

- Como nós encontramos uma aresta segura?
- Cada vez que nós adicionamos uma aresta nos estamos conectando dois conjuntos de vértices que anteriormente não estavam conectados.

- Como nós encontramos uma aresta segura?
- Cada vez que nós adicionamos uma aresta nos estamos conectando dois conjuntos de vértices que anteriormente não estavam conectados.
- Caso contrário nós formaríamos um ciclo.

- Como nós encontramos uma aresta segura?
- Cada vez que nós adicionamos uma aresta nos estamos conectando dois conjuntos de vértices que anteriormente não estavam conectados.
- Caso contrário nós formaríamos um ciclo.
- Um algoritmo guloso pode tentar manter os custos pequenos escolhendo a aresta de menor custo que conecta dois vértices não conectados.

Definições

(Conjunto Corte) S é um conjunto corte de um grafo conectado G se S é um conjunto minimal de arestas de G tal que G-S é desconectado.

Definições

(Conjunto Corte) S é um conjunto corte de um grafo conectado G se S é um conjunto minimal de arestas de G tal que G-S é desconectado.

(Corte) V_1 e V_2 dois conjuntos distintos de V tal que $V_1 \cup V_2 = V$. Então o conjunto de arestas tendo uma extremidade em V_1 e outra em V_2 é chamado de corte de G.

Definições

(Conjunto Corte) S é um conjunto corte de um grafo conectado G se S é um conjunto minimal de arestas de G tal que G-S é desconectado.

(Corte) V_1 e V_2 dois conjuntos distintos de V tal que $V_1 \cup V_2 = V$. Então o conjunto de arestas tendo uma extremidade em V_1 e outra em V_2 é chamado de corte de G.

(Respeita) Um corte respeita um conjunto de arestas T sss nenhuma aresta de T cruza o corte.

Definições

(Conjunto Corte) S é um conjunto corte de um grafo conectado G se S é um conjunto minimal de arestas de G tal que G-S é desconectado.

(Corte) V_1 e V_2 dois conjuntos distintos de V tal que $V_1 \cup V_2 = V$. Então o conjunto de arestas tendo uma extremidade em V_1 e outra em V_2 é chamado de corte de G.

(Respeita) Um corte respeita um conjunto de arestas T sss nenhuma aresta de T cruza o corte.

(Aresta leve) Uma aresta (u, v) é uma aresta leve cruzando um corte sss seu peso é mínimo dentre todas as arestas cruzando o corte.

Teorema

Assuma que G = (V, E) é um grafo, T é um subconjunto de alguma MST para G, e (S, V - S) é um corte que respeita T, e (u, v) é uma aresta leve cruzando o corte (V, V - S). Então (u, v) é uma aresta segura para T.

Teorema

Assuma que G = (V, E) é um grafo, T é um subconjunto de alguma MST para G, e (S, V - S) é um corte que respeita T, e (u, v) é uma aresta leve cruzando o corte (V, V - S). Então (u, v) é uma aresta segura para T.

Demonstração.

Algoritmo de BORŮVKA (cont.)

Algoritmo de BORŮVKA (cont.)

A Ideia

O algoritmo de Borůvka baseia-se na seguinte observação extremamente simples:

A árvore geradora mínima para G deve conter a aresta de peso mínima (v, w) que é a aresta de peso mínimo incidente no vértice v.

Algoritmo de BORŮVKA (cont.)

A Ideia

O algoritmo de Borůvka baseia-se na seguinte observação extremamente simples:

A árvore geradora mínima para G deve conter a aresta de peso mínima (v, w) que é a aresta de peso mínimo incidente no vértice v.

Algoritmo de Borůvka (cont.)

 Contração é o processo de colapsar os dois pontos extremos de uma aresta em um único vértice

- Contração é o processo de colapsar os dois pontos extremos de uma aresta em um único vértice
- que tem todas as arestas incidentes em ambos os vértices, auto-laços são eliminados.

- Contração é o processo de colapsar os dois pontos extremos de uma aresta em um único vértice
- que tem todas as arestas incidentes em ambos os vértices, auto-laços são eliminados.
- Contração pode criar arestas múltiplas entre alguns vértices mas somente a aresta de peso mínimo necessita ser mantida.

- Contração é o processo de colapsar os dois pontos extremos de uma aresta em um único vértice
- que tem todas as arestas incidentes em ambos os vértices, auto-laços são eliminados.
- Contração pode criar arestas múltiplas entre alguns vértices mas somente a aresta de peso mínimo necessita ser mantida.
- A ideia do algoritmo de Borůvka é contrair simultaneamente as arestas de peso mínimo incidentes sobre cada vértice em G.

- Contração é o processo de colapsar os dois pontos extremos de uma aresta em um único vértice
- que tem todas as arestas incidentes em ambos os vértices, auto-laços são eliminados.
- Contração pode criar arestas múltiplas entre alguns vértices mas somente a aresta de peso mínimo necessita ser mantida.
- A ideia do algoritmo de Borůvka é contrair simultaneamente as arestas de peso mínimo incidentes sobre cada vértice em G.
- O processo de contrair a aresta peso mínimo incidente em cada vértice é chamado de *fase de* Borůvka.

Árvore Geradora Mínima Algoritmo de BORŮVKAL (cont.)

Algoritmo de Borůvkal (cont.)

BORUVKA(G, w) $T \leftarrow \emptyset$ // Cada iteração do laço while é chamado de uma Fase while G contém mais de um componente Marque as arestas com peso mínimo incidentes em cada vértice. Adicione estas arestas à T Identifique os componentes conectados das arestas marcadas Substitua cada componente conectado por um vértice Elimine todos os auto-laços. Elimine todas as arestas múltiplas entre os pares de vértices, exceto a aresta de menor peso. return T

Algoritmo de Borůvka (cont.)

■ O grafo obtido G' obtido da fase de Borůvka tem no máximo n/2 vértices.

- O grafo obtido G' obtido da fase de BORŮVKA tem no máximo n/2 vértices.
- Assim o número de arestas marcadas para contração é pelo menos n/2 .

- O grafo obtido *G'* obtido da fase de BORŮVKA tem no máximo *n*/2 vértices.
- Assim o número de arestas marcadas para contração é pelo menos n/2 .
- Portanto existirão somente $O(\lg n)$ fases de Borůvka.

- O grafo obtido *G'* obtido da fase de BORŮVKA tem no máximo *n*/2 vértices.
- Assim o número de arestas marcadas para contração é pelo menos n/2 .
- Portanto existirão somente $O(\lg n)$ fases de Borůvka.
- Cada fase pode ser implementada em tempo O(m+n). Assim o tempo total do algoritmo é $O(m \lg n)$.

Algoritmo de Borůvka (cont.)

Vantagens de Borůvka:

• O algoritmo frequentemente executa mais rápido que $O(m \log n)$ no pior caso.

Algoritmo de Borůvka (cont.)

Vantagens de Borůvka:

- O algoritmo frequentemente executa mais rápido que $O(m \log n)$ no pior caso.
- O algoritmo permite um grau significativo de paralelismo

Algoritmo de Borůvka (cont.)

Vantagens de Borůvka:

- O algoritmo frequentemente executa mais rápido que $O(m \log n)$ no pior caso.
- O algoritmo permite um grau significativo de paralelismo
- Vários algoritmos recentes são generalizações do algoritmo de Borůvka.

Algoritmo de Kruskal

A Ideia

O algoritmo de Kruskal inspeciona todas as arestas em ordem crescente de peso, se uma aresta é segura, ela é então adicionada à F.

Algoritmo de Kruskal

A Ideia

O algoritmo de Kruskal inspeciona todas as arestas em ordem crescente de peso, se uma aresta é segura, ela é então adicionada à F.

■ Uma aresta é segura se e somente se suas extremidades estão em componentes diferentes na floresta *F*

Árvore Geradora Mínima Algoritmo de Kruskal (cont.)

Algoritmo de Kruskal (cont.)

```
KRUSKAL(V, E, w)
 A \leftarrow \emptyset
  for cada vértice v \in V
       FacaConjunto(v)
  ordene as arestas de E em ordem não decrescente de custo w
  for cada aresta (u, v) tomada em ordem
       if Conjunto(u) \neq Conjunto(v)
            Unir(Conjunto(u), Conjunto(v))
            A \leftarrow A \cup \{(u, v)\}
   return A
```


Algoritmo de Kruskal

■ Os conjuntos são os componentes de *F*.

- Os conjuntos são os componentes de *F*.
- O algoritmo de Kruskal executa O(m) operações Encontrar, duas para cada aresta no grafo,

- Os conjuntos são os componentes de F.
- O algoritmo de KRUSKAL executa *O*(*m*) operações ENCONTRAR, duas para cada aresta no grafo,
- lacksquare e O(n) operações Unir, uma para cada aresta na árvore geradora mínima.

- Os conjuntos são os componentes de F.
- O algoritmo de Kruskal executa *O*(*m*) operações Encontrar, duas para cada aresta no grafo,
- e O(n) operações Unir, uma para cada aresta na árvore geradora mínima.
- Pode-se executar cada operação Encontrar e Unir em tempo $O(\alpha(m,n))$.

- Os conjuntos são os componentes de *F*.
- O algoritmo de KRUSKAL executa O(m) operações ENCONTRAR, duas para cada aresta no grafo,
- e O(n) operações Unir, uma para cada aresta na árvore geradora mínima.
- Pode-se executar cada operação Encontrar e Unir em tempo $O(\alpha(m, n))$.
- Assim ignorando o custo de ordenar as arestas, o tempo de execução do algoritmo de Kruskal é $O(m\alpha(m.n))$.

- Os conjuntos são os componentes de *F*.
- O algoritmo de KRUSKAL executa O(m) operações ENCONTRAR, duas para cada aresta no grafo,
- e O(n) operações Unir, uma para cada aresta na árvore geradora mínima.
- Pode-se executar cada operação Encontrar e Unir em tempo $O(\alpha(m, n))$.
- Assim ignorando o custo de ordenar as arestas, o tempo de execução do algoritmo de KRUSKAL é $O(m\alpha(m.n))$.
- O tempo para ordenar as arestas é $O(m \log m) = O(m \log n)$.

- Os conjuntos são os componentes de F.
- O algoritmo de KRUSKAL executa O(m) operações ENCONTRAR, duas para cada aresta no grafo,
- e O(n) operações Unir, uma para cada aresta na árvore geradora mínima.
- Pode-se executar cada operação Encontrar e Unir em tempo $O(\alpha(m, n))$.
- Assim ignorando o custo de ordenar as arestas, o tempo de execução do algoritmo de KRUSKAL é $O(m\alpha(m.n))$.
- O tempo para ordenar as arestas é $O(m \log m) = O(m \log n)$.
- O algoritmo de Kruskal executa em tempo $O(m \lg n)$.

Algoritmo de Prim

Algoritmo de Prim

A Ideia

Repetidamente adicione uma aresta segura à \mathcal{T} .

Algoritmo de Prim

A Ideia

Repetidamente adicione uma aresta segura à \mathcal{T} .

No algoritmo de Prim, a floresta F contem somente um componente \mathcal{T} , todos os outros componentes são vértices isolados.

Algoritmo de Prim

A Ideia

Repetidamente adicione uma aresta segura à \mathcal{T} .

- No algoritmo de Prim, a floresta F contem somente um componente \mathcal{T} , todos os outros componentes são vértices isolados.
- \blacksquare No começo, ${\mathcal T}$ consiste de um vértice arbitrário do grafo.

Árvore Geradora Mínima Algoritmo de Prim (cont.)

```
PRIM(G, w, s)
 1 Q \leftarrow G.V
 2 for cada u \in Q
            ii. chave \leftarrow \infty
 4 s. chave \leftarrow 0
 5 s. pai \leftarrow NIL
     while Q \neq \emptyset
            u \leftarrow \text{ExtrairMinimo}(Q)
            for cada vértice v \in u.Adj
                  if v \in Q e w(u, v) < u.chave
10
                        v.pai ← u
                        v.chave \leftarrow w(u, v)
11
```


Algoritmo de PRIM (cont.)

Algoritmo de PRIM (cont.)

lacktriangle Para implementar o algoritmo de Prim nós mantemos todas as arestas adjacentes à ${\cal T}$ em um fila com prioridade.

Algoritmo de PRIM (cont.)

- Para implementar o algoritmo de Prim nós mantemos todas as arestas adjacentes à \mathcal{T} em um fila com prioridade.
- Quando nós retiramos a aresta de menor peso da fila com prioridade, nós primeiro verificamos se os dois pontos extremos da aresta estão em \mathcal{T} .

Algoritmo de PRIM (cont.)

- Para implementar o algoritmo de Prim nós mantemos todas as arestas adjacentes à \mathcal{T} em um fila com prioridade.
- Quando nós retiramos a aresta de menor peso da fila com prioridade, nós primeiro verificamos se os dois pontos extremos da aresta estão em T.
- Se não, nós adicionamos a aresta à \mathcal{T} e então adicionamos as novas arestas adjacentes à \mathcal{T} a fila com prioridade.

- Para implementar o algoritmo de Prim nós mantemos todas as arestas adjacentes à \mathcal{T} em um fila com prioridade.
- Quando nós retiramos a aresta de menor peso da fila com prioridade, nós primeiro verificamos se os dois pontos extremos da aresta estão em T.
- Se não, nós adicionamos a aresta à \mathcal{T} e então adicionamos as novas arestas adjacentes à \mathcal{T} a fila com prioridade.
- Se nós implementamos o algoritmo dessa forma, o tempo de execução é $O(m \lg m) = O(m \lg n)$.