Álgebra Lineal I

Usando Beamer (nunca ppt)

William Carlos Echegaray Castillo

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

7 de diciembre de 2020

Transformaciones Lineales

Cálculo de la inversa mediante operaciones elementales Sea $A \in \mathbb{K}(n,n)$ una matriz inversible y deseamos encontrar su inversa, Para ello consideremos la matriz de orden $n \times 2n$

$$[A \mid I],$$

donde I es la matriz identidad de orden $n \times n$.

Luego procedemos a multiplicar, por la izquierda, por matrices elementales E_1, E_2, \cdots, E_k , tales que

$$\left[\begin{array}{c|c} E_k E_{k-1} \cdots E_1 A & E_k E_{k-1} \cdots E_1 \end{array}\right],$$

nos produzca $E_k E_{k-1} \cdots E_1 A = I$, y por tanto

$$A^{-1}=E_kE_{k-1}\cdots E_1.$$

Ejemplo

Sea la matriz

$$A = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix},$$

halle su inversa. Para ello procedamos como sigue:

$$\left[\begin{array}{c|cccc}A & I\end{array}\right] = \begin{bmatrix}3 & 4 & | & 1 & 0\\5 & 6 & | & 0 & 1\end{bmatrix}.$$

Multiplicamos la primera fila por -2 y luego la sumamos a la segunda

$$\stackrel{E_{21}(-2)}{\longrightarrow} \left[\begin{array}{ccc|c} 3 & 4 & 1 & 0 \\ -1 & -2 & -2 & 1 \end{array} \right].$$

ahora, multiplicamos la segunda fila por 2 y luego la sumamos a la primera.

$$\stackrel{E_{12}(2)}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 0 & | & -3 & 2 \\ -1 & -2 & | & -2 & 1 \end{array} \right].$$

ahora, multiplicamos la primera fila por 1 y luego la sumamos a la segunda.

$$\stackrel{E_{21}(1)}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 0 & | & -3 & 2 \\ 0 & -2 & | & -5 & 3 \end{array} \right].$$

Finalmente, multiplicamos por -0,5 la segunda fila

$$\stackrel{E_2(-0,5)}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 0 & | & -3 & 2 \\ 0 & 1 & | & \frac{5}{2} & -\frac{3}{2} \end{array} \right].$$

De donde la inversa de la matriz A, resulta

$$A^{-1} = \left[\begin{array}{cc} -3 & 2\\ \frac{5}{2} & -\frac{3}{2} \end{array} \right]$$

Proposición

Una matriz $A \in \mathbb{K}(n, n)$ es inversible si, y solo si sus vectores columnas son linealmente independientes

Prueba:

Sean a^1, \dots, a^n los vectores columnas de $A, L_A : \mathbb{K}(n, 1) \longrightarrow \mathbb{K}(n, 1)$ la transformación lineal definida

$$L_A(x) = \sum_{i=1}^n x_i a^i, \quad x = (x_1, x_2, \dots, x_n)^t$$

 \Rightarrow) Supongamos que A es inversible, y que existe $x \in \mathbb{K}(n,1)$ tal que

$$\sum_{i=1}^{n} x_{j} a^{j} = \mathbf{0}, \quad x = (x_{1}, x_{2}, \dots, x_{n})^{t},$$

entonces $L_A(x) = \mathbf{0}$, esto implica que $Ax = \mathbf{0}$, luego

$$x = Ix = A^{-1}(Ax) = A^{-1}\mathbf{0} = \mathbf{0},$$

de donde $x_1 = x_2 = \cdots = x_n$.

Por tanto a^1, a^2, \dots, a^n son linealmente independientes.

 \Leftarrow) Si $L_A(x) = \sum_{j=1}^n x_j a^j = \mathbf{0}$, y como los vectores columnas de A son linealmente independientes, entonces $x = \mathbf{0}$. Por tanto L_A es inyectiva y por el primer corolario de la proposcicón se tiene que A es inversible.

Proposición

Una matriz $A \in \mathbb{K}(n, n)$ es inversible si, y solo si los vectores fila son linealmente independientes.

Prueba:

 \Rightarrow) Supongamos que A es inversible. Sean a^1, \dots, a^n los vectores columnas de A y

$$\mathcal{F}(A) = \mathcal{L}(\{a^1, a^2, \cdots, a^n\})$$

es espacio de filas de A.

Note que las operaciones elementales fila sobre A, produce una de los siguientes efectos:

aⁱ es cambiado

- 1) por λa^i , con $\lambda \neq 0$,
- 2) por $a^i + \lambda a^j \operatorname{con} j \neq i$, ó
- 3) por intercambio con a^j , donde $j \neq i$.

Esto significa, el espacio fila $\mathcal{F}(A)$ no es modificado por ninguna de las operaciones elementales, es decir

(para toda matriz elemental
$$E$$
) $(E\mathcal{F}(A) = \mathcal{F}(A))$. (1)

Dado que A es inversible, existen matrices elementales E_j tales que

$$E_k E_{k-1} \cdots E_1 A = I.$$

Aplicamos en forma sucesiva (1) obteniéndose

$$\mathcal{F}(A) = E_k E_{k-1} \cdots E_1 \mathscr{L}(A) = \mathcal{F}(\lbrace e^1, e^2, \cdots, e^n \rbrace) = \mathbb{K}(1, n),$$

donde $\{e^1, e^2, \dots, e^n\}$ es la base canónica de $\mathbb{F}(1, n)$, con ello tenemos que las filas $\{a^1, a^2, \dots, a^n\}$ de A generan $\mathbb{F}(1, n)$ y por tanto es una base, es decir, que estos vectores son linealmente independientes.

 \Leftarrow) Supongamos que los vectores fila $\{a^1, a^2, \cdots, a^n\}$ de A son linealmente independientes.

Luego estos vectores constituyen una base para $\mathbb{K}(1, n)$, entonces podemos expresar los vectores canónicos j, $j = 1, \dots, n$ como

$$e^j = \sum_{k=1}^n \beta_{jk} a^k, \quad j = 1, \cdots, n.$$

Definamos la matriz $B = [\beta_{ij}]$, de donde BA = I, es decir, A es inversible.

Estas matrices tienen la facilidad de transformar una matriz para su mayor facilidad de operar.

Definición

Una matriz de orden $m \times n$ es escalonada reducida si

- 1. El primer **elemento no nulo** de un fila no nula es 1. Este se denomina 1—**capital**.
- 2. Toda fila cuyas componentes son todos ceros está por debajo de aquellas filas no nulas.
- 3. En cada columna donde aparece el 1—capital, sus demás componentes son ceros.
- 4. Si son r filas no nulas, y si el 1—capital de la i—ésima fila está en la columna k_i , entonces $k_1 < k_2 < \cdots < k_r$.

Proposición

Dada una matriz $A \in \mathbb{K}(m, n)$, existen matrices elementales $E_j \in \mathbb{K}(m, m)$ tales que

$$E_r E_{r-1} \cdots E_1 A = A_0$$

es una matriz escalonada reducida

Prueba:

Usaremos inducción sobre m.

- m=1, en este caso se tiene que $A\in \mathbb{K}(1,n)$ posee una única fila, entonces
 - 1. todos sus elementos son ceros, ó
 - 2. sea $c \neq 0$ el primer elemento no nulo, entonces $E_1(c^{-1})A$.

En cualquier caso tenemos una matriz escalonada reducida

- Supongamos que hasta *m* el enunciado es válido (**H I**)
- Veamos para m+1:

Sea c el primer elemento no nulo del primer vector columna de A, que se encuentra en la fila j.

Luego c estará en la primera fila si $E_1A = E_{j1}A$, de donde al multiplicar por $E_2 = E_1(c^{-1})$ se tiene

$$E_2E_1A = egin{bmatrix} 0 & 1 & * & \cdots & * \ 0 & * & & & \ dots & dots & & \ 0 & * & & & * \ \end{pmatrix},$$

donde * representa cualquier elemento de \mathbb{K} .

En forma sucesiva multiplicamos las matrices $E_{j1}(*)$ se convierten en cero los elementos debajo del primer 1—capital y con ello tenemos

$$E_k E_{k-1} \cdots E_2 E_1 A = \begin{bmatrix} 0 & 1 & * & \cdots & * \\ 0 & 0 & & & \\ \vdots & \vdots & & C & \\ 0 & 0 & & & \end{bmatrix}, \text{ con } C \in \mathbb{K}(m.n-1).$$

Por hipótesis de inducción, existen matrices elementales F_j de orden m tales que

$$F_sF_{s-1}\cdots F_1C=C_0$$

es una matriz escalonada reducida. Las matrices elementales

$$E_j^{'}=egin{bmatrix}0&1&0&\cdots&0\0&&&&\dots&&&F_j&\0&&&&\end{bmatrix},\;\;j=1,\cdots,s$$

son tales que

$$E_s' \cdots E_1' E_k \cdots E_1 = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & & & \\ \vdots & \vdots & & C_0 & \\ 0 & 0 & & & \end{bmatrix}.$$

Finalmente, mediante operaciones elementales adecuadas, se anulan los elementos de la primera fila que se hallan en las columnas de los 1—capital de \mathcal{C}_0 .

Por tanto la proposición es válida.

Corolario

Si $A \in \mathbb{K}(n, n)$ es inversible, entonces A_0 , la matriz elemental reducida a A, obtenida en la proposición anterior, es la matriz identidad I.

Prueba:

Como A es inversible, entonces $E_r E_{r-1} \cdots E_1 A = A_0$ también lo es. Luego las n filas de A_0 son linealmente independiente, esto es cierto, debido a que solo existen n 1—capitales, uno en cada fila.

Por tanto $A_0 = I$.

Definición

Dos matrices $A, B \in \mathbb{K}(m, n)$ son **equivalentes por filas**, si existe una matriz inversible $P \in \mathbb{K}(m, m)$ tal que

$$B = PA$$

En el corolario anterior, hacemos $P = E_r E_{r-1} \cdots E_1$ el cual es una matriz inversible, y B = I, entonces A e I son equivalentes por filas. La equivalencia por filas es una relación de equivalencia sobre $\mathbb{K}(m, m)$.

La penúltima proposición nos indica que toda matriz $A \in \mathbb{K}(m, n)$ es equivalente por filas a la matriz elemental reducida A_0 .

Probaremos que A_0 no depende de A, sino de la clase de equivalencia a la que pertenece A. Además, probaremos que A_0 es la única matriz elemental reducida que existe en dicha clase. Dada $A \in \mathbb{K}(n, n)$, sean a^1, a^2, \dots, a^n los vectores filas de A y

$$\mathcal{F}(A) = \mathscr{F}(\{a^1, a^2, \cdots, a^n\})$$

su espacio de filas.

Entonces, tenemos uno de los tres casos.

1.
$$E(a^{i}) = a^{j}$$
, $E(a^{j}) = a^{i}$, $E(a^{l}) = a^{l}$ para $l \neq i, j$

2.
$$E(a^i) = a^i + \lambda a^j$$
, $E(a^l) = A^l$ para $l \neq i$.

3.
$$E(a^i) = \lambda a^i$$
, $E(a^j) = a^j$ para $j \neq i$, $\lambda \neq 0$.

Notamos que el espacio de filas A y EA son iguales, para toda matriz elemental E.

Al repetir este proceso un número finito de veces, se tiene que A y $E_k \cdots, E_1 A = A_0$ poseen el espacio de filas.

Proposición

Si $A, B \in \mathbb{K}(m, n)$ son equivalentes por filas, entonces $\mathcal{F}(A) = \mathcal{F}(B)$.

En particular $\mathcal{F}(A) = \mathcal{F}(A_0)$, además las filas no nulas forman una base de $\mathcal{F}(A)$.

Proposición

La matriz escalonada reducida, equivalente por filas a una matriz $A \in \mathbb{K}(m, n)$ es única.

Prueba:

Sean A_0 y B_0 dos matrices escalonadas reducidas asociadas a la matriz $A \in \mathbb{K}(m, n)$.

Sabemos que ls filas no nulas de A_0 y B_0 forman una base de $\mathcal{F}(A)$, entonces esta matrices tienen el mismo número de filas no nulas.

Sean v^1, \dots, v^r y w^1, \dots, w^r las filas no nulas de A_0 y B_0 respectivamente.

Además, supongamos que los 1—capitales de A_0 están en las columnas h_1, \dots, h_r , y los de B_0 en las columnas. k_1, \dots, k_r

Veamos que $v^j=w^j$, para $j=1,\cdots,r$ lo cual implica que $A_0=B_0$: Usaremos inducción sobre r.

ullet r=1, entonces en este caso tenemos $\{v^1\}$, $\{w^1\}$, luego

$$v^1 = (\underbrace{0, \cdots, 0, 1}_{k_1}, *, \cdots), \quad w^1 = (\underbrace{0, \cdots, 0, 1}_{h_1}, *, \cdots),$$

como las filas no nulas de A_0 , respectivamente las de B_0 forman una base para $\mathcal{F}(A)$, entonces se tiene que $v^1=\lambda w^1$, de donde $\lambda=1$ y $k_1=h_1$.

Por tanto $v^1 = w^1$.

• Supongamos ahora r > 1.

Afirmamos que $h_r = k_r$ y $v^r = w^r$

En efecto: supongamos que $h_r < k_r$, entonces

$$v' = \lambda_1 w^1 + \dots + \lambda_r w^r, \tag{2}$$

luego las componentes de v^r son ceros en las posiciones h_1, h_2, \cdots, h_r , y en el segundo miembro se tiene $\lambda_1, \cdots, \lambda_r$ en tales posiciones.

Entonces $\lambda_1 = \cdots = \lambda_r = 0$, lo cual implica que $v^r = \mathbf{0}$ y esto es una contradicción, dado que $v^r \neq \mathbf{0}$, entonces $h_r < k_r$ no puede ser.

De manera similar $k_r < h_r$ también no es posible.

Entonces tenemos que $h_r = k_r$.

De la expresión (2) se tiene que las componentes de v^r en las posiciones h_1, \dots, h_{r-1} son cero, dado que $h_r = k_r$, y en el segundo miembro se tiene que $\lambda_1, \dots, \lambda_{r-1}$ como dichas componentes también son cero, por tanto

$$v^r = \lambda_r w^r$$

Luego v^r y w^r tienen 1-capital en la posición $h_r = k_r$, de donde $\lambda_r = 1$, entonces $v^r = w^r$.

Ahora veamos que

$$\mathscr{L}(\lbrace v^1, \cdots, v^{r-1} \rbrace) = \mathscr{L}(\lbrace w^1, \cdots, w^{r-1} \rbrace) \tag{3}$$

En la expresióm

$$v^j = \lambda_1 w^1 + \cdots + \lambda_r w^r, \quad j = 1, \cdots, r$$

observamos que v^j tiene componentes en la posición k_r , mientras que en el segundo miembro tiene componente λ_r (esto es debido a que $h_r = k_r$), entonces $\lambda_r = 0$ '

Por tanto

$$v^{j} = \lambda_{1}w^{1} + \cdots + \lambda_{r}w^{r-1}, \quad j = 1, \cdots, r-1,$$

de donde la relación (3) se satisface.

Por hipótesis inductiva aplicada a (3), se tiene

$$v^j = w^j$$
 para $j = 1, 2, \cdots, r-1$.

Por tanto la proposición es válida.

Corolario

Sean $A, B \in \mathbb{K}(m, n)$ tales que $\mathcal{F}(A) = \mathcal{F}(B)$, entonces $A \ y \ B$ son equivalentes por filas.

Prueba: Ejercicio.

Ejemplo

Halle la matriz escalonada reducida asociada a

$$A = \left[\begin{array}{rrr} 2 & -1 & 1 \\ 1 & 1 & 2 \\ -1 & 2 & 1 \end{array} \right]$$

y la base asociada de su espacio fila.

Aplicamos matrices elementales para transforma A a su forma reducida

$$A \to \begin{array}{c} \xrightarrow{E_{13}(2)} \\ \xrightarrow{E_{23}(1)} \\ \xrightarrow{\longrightarrow} \end{array} \left[\begin{array}{cccc} 0 & 3 & 3 \\ 0 & 3 & 3 \\ -1 & 2 & 1 \end{array} \right] \xrightarrow{E_{21}(-1)} \left[\begin{array}{cccc} 0 & 3 & 3 \\ 0 & 0 & 0 \\ -1 & 2 & 1 \end{array} \right] \xrightarrow{\longrightarrow} \cdots \xrightarrow{} \left[\begin{array}{cccc} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array} \right].$$

Observamos que la última matriz es la forma reducida, y por tanto tenemos $\{(1, -1, 0), (0, 1, 1)\}$ es la base del espacio fila de A

Base Canónica

Todo subespacio $V \subset \mathbb{K}^n$ está determinado por una o más ecuaciones lineales homogéneas, o simplemente está generado por un conjunto finito de vectores.

En cualquier caso tenemos que $dim(V) = r \le n$. Supongamos que $\{v^1, \dots, v^r\}$ es una base de V, luego

$$A = \begin{bmatrix} v^1 \\ \vdots \\ v^r \end{bmatrix}$$

es la matriz fila, en este caso todas las filas son no nulas y por tanto la matriz elemental reducida A_0 asociada de A, conforman una base canónica para el espacio fila.

Como historia tenemos que el estudio de el sistema de ecuaciones lineales da lugar a uno de los principales temas del **Álgebra Lineal**. Supongamos que tenemos un sistema de m ecuaciones con n incógnitas dada de por

donde a_{ij} , b_i son datos, mientras que los x_j son las **incógnitas**. Si $b_1 = b_2 = \cdots = b_m = 0$, entonces el sistema (4) es llamado **homogéneo**, caso contrario se llama **no homogéneo**.

La matriz $A = [a_{ij}] \in \mathbb{K}(m, n)$ se llama **matriz asociada** al sistema (4). Consideremos $b = [b_1 \cdots b_m]^t$, $x = [x_1 \cdots x_n]^t$

Entonces el sistema (4) puede escribirse de la forma

$$Ax = b. (5)$$

Note que (4) y (5) representan el mismo problema.

Definición

Una n—ada ordenada de números $\{\lambda_1, \cdots, \lambda_n\}$ se llama solución del sistema (4) si

$$a_{i1}\lambda_1 + a_{i2}\lambda_2 + \cdots + a_{in}\lambda_n = b_i$$
, $i = 1, 2, \cdots, m$.

Una forma de resolver un sistema de la forma (5), es usando matrices elementales sobre las filas de A. Esto significa,

$$E(Ax) = (EA)(x)$$
, para toda matriz $E \in \mathbb{K}(m, m)$,

luego EA es el resultado de una operación elemental sobre las filas de A, y de esta forma, tenemos (EA)x = Eb.

Aplicando un número finito de operaciones elementales obtenemos

$$A_0x=b_0, (6)$$

donde A_0 es la matriz elemental reducida asociada a la matriz A. Observar que toda solución del sistema (5) es solución del sistema (6).

Definición

Dos sistemas de ecuaciones lineales

$$Ax = b$$
, $A'x = b'$, donde $A, A' \in \mathbb{K}(m, n)$, $b, b' \in \mathbb{K}(n, 1)$

son **equivalentes** si existe una matriz inversible $P \in \mathbb{K}(m, m)$ tal que A' = PA y b' = Pb.

Note que de acuerdo a la última definición, los sistemas (5) y (6) son sistemas equivalentes.

Definición

Se llama **conjunto solución del sistema** Ax = b, al conjunto total de sus soluciones.

Verifique que dos sistemas de ecuaciones lineales equivalentes tienen el mismo conjunto solución.

Se llama matriz aumentada del sistema Ax = b a la matriz $[A \mid b]$.