Actividades

Dadas las gráficas de las rectas siguientes halla: un punto de la misma, su pendiente, el vector director y una determinación lineal de la recta.

Halla la ecuación vectorial, continua, punto—pendiente y explícita de la recta que pasa por el punto \vec{A} y tiene la dirección de \vec{u} .

a)
$$A(2, 3), \vec{u} = (-1, 2)$$

b)
$$A(2, -4), \vec{u} = (3, 9)$$

c)
$$A(-2, -2), \vec{u} = (1, -1)$$

d)
$$A(1, -1), \vec{u} = (6, 3)$$

Halla las ecuaciones vectorial, continua, punto-pendiente y explícita de la recta que pasa por el punto *A* y tiene pendiente *m*.

a)
$$A(1, 2), m = 3$$

b)
$$A(4, -3), m = \frac{1}{5}$$

c)
$$A(0, -3), m = 4$$

d)
$$A(1, 0), m = -2$$

- **4** Dados los puntos *A*(0, 3), *B*(4, 4), *C*(4, 0) y *D*(0, 0) halla:
 - a) Las ecuaciones generales de las rectas que pasan por A y B, B y C, C y D y D y A.
 - b) Un vector director de cada recta.
 - c) La pendiente de cada recta.
- **5** Dadas las rectas *r* y *s* siguientes determina su posición relativa:

a)
$$r: (x, y) = (2, -1) + t(1, 2),$$

s:
$$y - 3 = -\frac{1}{2}(x - 1)$$

b)
$$r: y = x + 3, s: y - 3 = 2(x - 4)$$

c)
$$r: y + 2 = 3(x - 4), s: y - 1 = 3(x - 4)$$

d)
$$r: x - 2y + 2 = 0$$
, $s: y + 3 = \frac{1}{2}(x + 8)$

- Dada la recta r de ecuación 8x 4y + 4 = 0:
 - a) Dibuja su gráfica.

- b) Halla los puntos de corte con los ejes .
- c) La pendiente.
- d) La posición relativa con 4x + 2y 2 = 0

23

Ecuaciones de la recta

Solución de las actividades

- **1** a) $A(0, 2), m = 0, \vec{u} = (1, 0), ((0, 2), (1, 0)).$
 - **b)** $A(2, 0), m = 1, \vec{u} = (1, 1), ((2, 0), (1, 1)).$
- 2 a) (x, y) = (2, 3) + t(-1, 2); $\frac{x-2}{-1} = \frac{y-3}{2};$ y-3 = -2(x-2); y = -2x + 7
 - **b)** $(x, y) = (2, -4) + t(3, 9); \frac{x-2}{3} = \frac{y+4}{9};$ y+4 = 3(x-2); y = 3x - 10
 - c) (x, y) = (-2, -2) + t(1, -1); $\frac{x+2}{1} = \frac{y+2}{-1};$ y+2 = -(x+2); y = -x-4
 - **d)** $(x, y) = (1, -1) + t(6, 3); \frac{x 1}{6} = \frac{y + 1}{3}, y + 1 = \frac{1}{2}(x 1); y = \frac{1}{2}x \frac{3}{2}$
- 3 a) (x, y) = (1, 2) + t(1, 3); $\frac{x-1}{1} = \frac{y-2}{3};$ y-2 = 3(x-1); y = 3x 1
 - **b)** $(x, y) = (4, -3) + t(5, 1); \frac{x 4}{5} = \frac{y + 3}{1};$ $y + 3 = \frac{1}{5}(x - 4); y = \frac{1}{5}x - \frac{19}{5}$
 - c) (x, y) = (0, -3) + t(1, 4); $\frac{x}{1} = \frac{y+3}{4};$ y+3=4x; y=4x-3
 - d) $(x, y) = (1, 0) + t(1, -2); \frac{x 1}{1} = \frac{y}{-2};$ y = -2(x - 1); y = -2x + 2

4 a) Recta de A y B: $\frac{x}{4} = \frac{y-3}{1} \Rightarrow y-3 = \frac{x}{4} \Rightarrow x-4y+12=0$

Recta de B y C: $x=4 \Rightarrow x-4=0$

Recta de C y D: y = 0

Recta de D y A: x = 0

- **b)** $\overrightarrow{AB} = (4, 1), \overrightarrow{BC} = (0, -4), \overrightarrow{CD} = (-4, 0) \text{ y}$ $\overrightarrow{DA} = = (0, 3)$
- c) La pendiente de cada recta. $m_{AB} = \frac{1}{4}$, $m_{BC} = \infty$, $m_{CD} = 0$ y $m_{DA} = \infty$.
- **5** a) $m_r = 2$, $m_s = \frac{-1}{2} \Rightarrow$ secantes
 - **b)** $m_r = 1$, $m_s = 2 \Rightarrow$ secantes
 - c) $m_r = m_s = 3, p_r = 1, p_s = \frac{7}{2} \Rightarrow \text{paralelas}$
 - d) $m_r = m_s = \frac{1}{2}$, $p_r = p_s = 1 \Rightarrow$ coincidentes
- 6 a) Despejamos y para obtener la explícita: y = 2x+1.

- **b)** Con el eje $X \Rightarrow y = 0 \Rightarrow 2x + 1 = 0 \Rightarrow$ $\Rightarrow x = -\frac{1}{2}. \text{ Corte con } X\left(-\frac{1}{2}, 0\right), \text{ con } Y\left(0, 1\right)$
- c) De la explícita: m=2
- d) La explícita de 4x + 2y 2 = 0 es y = -2x + 1. Son secantes