

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 9701/42

Paper 4 Structured Questions

May/June 2010

1 hour 45 minutes

Candidates answer on the Question Paper.

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Section A

Answer all questions.

Section B

Answer all questions.

You may lose marks if you do not show your working or if you do not use appropriate units.

A Data Booklet is provided.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
Total	

This document consists of 17 printed pages and 3 blank pages.

Answer all questions in the spaces provided.

1 Phenacyl chloride has been used as a component of some tear gases. Its lachrymatory and irritant properties are due to it reacting with water inside body tissues to produce hydrochloric acid.

It undergoes a nucleophilic substitution reaction with NaOH(aq).

(a) Write the formulae of the products of this reaction in the two boxes above.

[2]

When the rate of this reaction was measured at various concentrations of the two reagents, the following results were obtained.

experiment number	[phenacyl chloride]	[NaOH]	relative rate
1	0.020	0.10	1.0
2	0.030	0.10	1.5
3	0.025	0.20	2.5

(i)	What is meant by the term <i>order of reaction</i> ?
(ii)	Use the above data to deduce the order with respect to each reactant. Explain your reasoning.
(iii)	Write the overall rate equation for the reaction.

© UCLES 2010 9701/42/M/J/10

(b)

	(iv)	Describe the mechanism for this reaction that is consistent with your overall rate equation. You should show all intermediates and/or transition states and partial charges, and you should represent the movements of electron pairs by curly arrows.	For aminer's Use
		[7]	
(c)	(i)	Describe an experiment that would show that CH ₃ COC <i>l</i> reacts with water at a much faster rate than phenacyl chloride. Include the reagents you would use, and the observations you would make with each chloride.	
	(ii)	Suggest an explanation for this difference in reactivity.	
		[4]	
		[Total: 13]	

aov	vn the group.		
			[3]
	_	enthalpy changes for ma	agnesium and strontium
	enthalpy change	value for magnesium /kJ mol ⁻¹	value for strontium /kJ mol ⁻¹
ent	halpy of M (OH) ₂	-2993	-2467
lpy c	change of hydration of M ²⁺ (g)	-1890	-1414
lpy c	change of hydration of OH ⁻ (g)	-550	- 550
(1)			
	Sr(OH) ₂	$\Delta H_{\text{solution}}^{\Theta} = \dots$	kJ mol ⁻¹
		$\Delta H_{\text{solution}}^{\Theta} = \dots$	kJ mol ⁻¹
		$\Delta H_{\text{solution}}^{\Theta} = \dots$	kJ mol ⁻¹
(ii)		$\Delta H_{ m solution}^{ m \Theta} = \dots$ $\Delta H_{ m solution}^{ m \Theta} = \dots$ est whether $ m Sr(OH)_2$ is more	kJ mol ⁻¹
(ii)	Sr(OH) ₂ Use your results in (i) to sugge	$\Delta H_{ m solution}^{ m \Theta} = \dots$ $\Delta H_{ m solution}^{ m \Theta} = \dots$ est whether $ m Sr(OH)_2$ is more	kJ mol ⁻¹
(ii)	Sr(OH) ₂ Use your results in (i) to sugge	$\Delta H_{ m solution}^{ m \Theta} = \dots$ $\Delta H_{ m solution}^{ m \Theta} = \dots$ est whether $ m Sr(OH)_2$ is more	kJ mol ⁻¹
(ii)	Sr(OH) ₂ Use your results in (i) to sugge	$\Delta H_{ m solution}^{ m e}=$	kJmol ⁻¹ kJmol ⁻¹ re or less soluble in water
	Use your results in (i) to sugge than is Mg(OH) ₂ . State any ass	$\Delta H_{ m solution}^{ m e}=$	kJmol ⁻¹ kJmol ⁻¹ re or less soluble in water
1	e ent	The following table lists some excompounds. enthalpy change enthalpy of $M(OH)_2$ alpy change of hydration of $M^{2+}(g)$ alpy change of hydration of $OH^{-}(g)$ (i) Use the above data to calculate	enthalpy change value for magnesium $/kJ \text{mol}^{-1}$ enthalpy of $\textbf{\textit{M}}(\text{OH})_2$ -2993 alpy change of hydration of $\textbf{\textit{M}}^{2+}(g)$ -1890 alpy change of hydration of $\text{OH}^{-}(g)$ -550

(c)	Cal	cium hydroxide, Ca(OH) ₂ , is slightly soluble in water.	For
	(i)	Write an expression for $K_{\rm sp}$ for calcium hydroxide, and state its units.	Examiner's Use
		$K_{\rm sp}$ = units	
	(ii)	$25.0\rm cm^3$ of a saturated solution of Ca(OH) $_2$ required 21.0 cm 3 of 0.0500 mol dm $^{-3}$ HC l for complete neutralisation.	
		Calculate the [OH ⁻ (aq)] and the [Ca ²⁺ (aq)] in the saturated solution, and hence calculate a value for $K_{\rm sp}$.	
		[OH ⁻ (aq)] =	
		[Ca ²⁺ (aq)] =	
		K _{sp} =	
	(iii)	How would the solubility of ${\rm Ca(OH)_2}$ in 0.1 mol dm $^{-3}$ NaOH compare with that in water? Explain your answer.	
		[6]	
		[Total: 14]	

Ou;	ggest a reason f	or this difference.		
				[1]
-	edict whether or appropriate col	_	will have an overall dipole. Pla	ce a tick in
	compound	molecule has an overall dipole	molecule does not have an overall dipole	
	BCl ₃			
	PCl ₃			
	CCl ₄			
	SF ₆			
	I			_ [2]
	react with water	r, whereas BC $l_{ m 3}$ and SiC $l_{ m 4}$ son for this difference in rea		•
	Construct oqui	ations showing the reaction	of these two chlorides with ar	excess of
(ii)	water.			
(ii)	water.			

(d)	When reacted with a small quantity of water, $SiCl_4$ produces an oxychloride X , $Si_xCl_vO_2$.
	The mass spectrum of X shows peaks at mass numbers of 133, 149, 247, 263 and 396.
	(You should assume that the species responsible for all these peaks contain the ¹⁶ O,
	the ³⁵ Cl and the ²⁸ Si isotopes only.)

(i) Use these data to deduce the molecular formula of X.

molecular formula

(ii) Suggest the structures of the fragments responsible for the peaks at the following mass numbers.

mass number	structure
133	
247	
263	

(iii) Hence suggest the displayed formula of X.

[5]

4

(a)	Complete the electronic structures of the Cr ³⁺ and Mn ²⁺ ions.				
		Cr ³⁺	1s ² 2s ² 2p ⁶		
		Mn ²⁺	1s ² 2s ² 2p ⁶ [2]]	
(b)	(i)	Describe values of the slowly and a large except of the slowly and a large except of the slowly and the slowly are slowly are slowly and the slowly are slowly	what observations you would make when dilute $KMnO_4(aq)$ is addect with shaking to an acidified solution of $FeSO_4(aq)$ until the $KMnO_4$ is incess.	t 1	
	(ii)	Construct	an ionic equation for the reaction that occurs.		
		•••••	[4 _]]	
(c)	Fe ²	†(aq) are re	levant E^{Θ} data from the <i>Data Booklet</i> explain why acidified solutions of latively stable to oxidation by air, whereas a freshly prepared precipitate eadily oxidised to Fe(OH) ₃ under alkaline conditions.		
	rele	vant E ^e val	ues and half equations		
				ı	
	exp	lanation			
			[4 _]]	

(d) Predict the organic products of the following reactions and draw their structures in the boxes below. You may use structural or skeletal formulae as you wish.

For Examiner's Use

[4]

(e) ${\rm KMnO_4}$ and ${\rm K_2Cr_2O_7}$ are the reagents that can be used to carry out the following transformation.

- (i) Draw the structure of intermediate **E** in the box above.
- (ii) Suggest reagents and conditions for the following.

reaction I	
reaction II	
	[3]

[Total: 17]

(a)	(i)	Briefly explain why the benzene molecule is planar.
	(ii)	Briefly explain why all the carbon-carbon bonds in benzene are the same length.
		[2]
(b)		zene can be nitrated by warming it with a mixture of concentrated sulfuric and c acids.
	(i)	By means of an equation, illustrate the initial role of the sulfuric acid in this reaction.
	(ii)	Name the type of reaction and describe the mechanism for the nitration reaction, including curly arrows showing the movement of electrons and all charges.
		type of reaction
		mechanism
		[4]
		ניז
(c)	Stat	e the reagents and conditions needed to convert benzene into chlorobenzene.

(d) Nitrobenzene undergoes further substitution considerably more slowly than chlorobenzene. In nitrobenzene the incoming group joins to the benzene ring in the 3-position, whereas in chlorobenzene the incoming group joins to the benzene ring in the 4-position.

For Examiner's Use

(i) Use these ideas to suggest the structures of the intermediate compounds Y and Z in the following synthesis of 4-chlorophenylamine.

(ii) Suggest the reagents and conditions needed for reaction III in the above synthesis.

.....

(iii) Suggest the structural formulae of the products **A**, **B**, **C** and **D** of the following reactions. If no reaction occurs write "no reaction" in the relevant box.

[Total: 15]

Section B

For Examiner's Use

Answer all questions in the spaces provided.

6	Human hair and silk both consist of proteins. Proteins are described as having three major levels of structure: primary, secondary and tertiary.					
	(a)	Outline what is meant by the terms <i>primary structure</i> and <i>tertiary structure</i> of a protein.				
		primary structure				
		tertiary structure				
		[2]				
	(b)	In hair, the secondary structure consists of α -helices which are cross-linked by disulfide bonds. The amino acid responsible for this cross-linking is cysteine, $H_2NCH(CH_2SH)CO_2H$.				
		(i) Show by means of a diagram how the disulfide cross-links are formed.				
		(ii) What type of reaction is this?				

	(iii)	State three other interactions that stabilise the tertiary structure of proteins.
		[4]
(c)		β -pleated sheet is a different form of secondary structure found in proteins, such as e in silk.
	(i)	What type of bonding is responsible for stabilising the β -pleated sheet in silk?
	(ii)	On the diagram below, draw a second polypeptide strand and show how bonds would be formed that stabilise this β -pleated sheet.
		R H O R H O
		[3]
(d)	acid such	cysteine-containing protein in hair is called α -keratin. A similar sequence of amino s can produce β -keratin proteins found in the scales, claws and shells of reptiles as tortoises. In β -keratin the secondary structure of the protein is in the form of a eated sheet.
		gest what makes the β -pleated sheet in β -keratin so much less flexible than the eated sheet in silk.
		[1]
		[Total: 10]

7 A mixture of amino acids may be separated using electrophoresis. A typical practical set-up is shown in the diagram.

For Examiner's Use

(a)	When the power supply is switched on, some amino acids may not move, but remain stationary. Suggest an explanation for this observation.
	[2]
(b)	The amino acid glycine has the formula $H_2NCH_2CO_2H$. Identify the species formed on the filter paper if glycine moves to the left (positive) end of the filter paper.
	[1]

(c) The following result was obtained from another electrophoresis. What can be deduced about the relative sizes of, and charges on, the amino acid species A, B and C?

amino acid	relative size	charge
A		
В		
С		

[3]

(d)		The sequence of amino acids in a polypeptide may be determined by partial hydrolysis of the chain into smaller pieces, often tripeptides.				drolysis		
	(i)	(i) Following such a partial hydrolysis, the following tripeptides were obtained from given polypeptide.					d from a	
		ala-gly-asp	gly-ala-gly	lys-va	al-ser	ser-ala-gly	val-ser-ala	
	Given that the N-terminal amino acid is lysine (lys) suggest the amino acid s of the shortest polypeptide that would give the above tripeptides.				quence			
	The	e structural forn	nulae of the a	mino a	acids in	the polypepti	ide are given below.	
		abbreviation	amino ac	id		structura	al formula	
		ala	alanine		H ₂ N0	CH(CH ₃)CO ₂	Н	-
		asp	aspartic a	cid	H ₂ NCH(CH ₂ CO ₂ H)CO ₂ H]	
		gly	glycine		H ₂ N0	CH ₂ CO ₂ H		
	lys		lysine		H ₂ N0	CH(CH ₂ CH ₂ C	CH ₂ CH ₂ NH ₂)CO ₂ H	1
		ser	serine		H ₂ N0	CH(CH ₂ OH)C	CO ₂ H	
		val	valine		H ₂ N(CH(CH(CH ₃) ₂	₂)CO ₂ H	1
	(ii) (iii)	Which of the second Select one a side-chain at	mino acid fro			··········	able which contains	an ionic
	···· <i>)</i>							101

[4]

For Examiner's Use

[Total: 10]

		16
The	des	gn and development of batteries has been a major research area in recent years.
(a)	seri mas	d-acid batteries, used in cars, are made up of a number of rechargeable cells in es, and were first developed in 1860. They have the disadvantage of a relatively high s compared to the energy stored. During discharge, the electrode reactions in the of these batteries are as follows.
		I Pb + $SO_4^{2-} \rightarrow PbSO_4 + 2e^-$
		II PbO ₂ + 4H ⁺ + SO ₄ ²⁻ + 2e ⁻ \rightarrow PbSO ₄ + 2H ₂ O
		e which of these reactions occurs at the positive electrode in a lead-acid cell during narge, explaining your answer.
		[1
(b)		the Data Booklet and the equations I and II above to calculate the voltage produced lead-acid cell under standard conditions.
		[2
(c)	incr can oxo	el-metal hydride batteries were developed in the 1980s and have become easingly common particularly for small devices such as mobile phones and digital eras that need near-constant sources of electrical energy. These cells use nicken bydroxide (NiO(OH)) as one electrode and a hydrogen-absorbing alloy such as LiNine other electrode.
	One	reaction that takes place in these batteries is
		$NiO(OH) + H_2O + e^- \rightleftharpoons Ni(OH)_2 + OH^-$
	(i)	State the oxidation state of nickel in NiO(OH).
	(ii)	Suggest a likely advantage of these batteries compared with lead-acid batteries.

[2]

© UCLES 2010 9701/42/M/J/10

8

(d)	pow	Hydrogen fuel cells have been suggested as the next major advance in electrically powered vehicles. In these fuel cells hydrogen is oxidized to produce water, using a catalyst and inert electrodes.					
	(i)	Suggest a material for the electrodes.					
	(ii)	Use your knowledge of hydrogen to suggest a disadvantage of these fuel cells in powering vehicles.					
		[2]					
(e)	(e) Many of the world's countries are developing ways of recycling materials which valuable or which require large amounts of energy to produce.						
	For each of the following recyclable materials, state whether recycling of this material i important in saving energy or in saving resources. Use your knowledge of chemistry to explain each choice.						
	glas	SS					
	stee	el					
	plas	stics					
	•••••	[3]					
		[Total: 10]					

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.