Chapter 1

El dominio fundamental de $\Gamma_0(15)$

La siguente imagen es el dominio fundamental de la acción $\Gamma_0(15) \curvearrowright \mathbb{H}$:

1.1 Una transformada de Fourier

En esta seccón calculamos la transformada de Fourier de ϕ que aparece en la sección . Definimos $\phi(z;s)=z^{-1-s}\bar{z}^{-1}$ para $z=x+iy\in\mathbb{H}$ y en particular

$$\phi_{y,s}(x) := \phi(x+iy;s) = \frac{1}{(x+iy)^{1+s}(x-iy)^s}.$$

En (??) vimos que para y > 0 y que para $\Re(s) > 0$ tenemos que $\phi_{y,s}$ es absolutamente integrable y admite una transformada de Fourier:

$$\hat{\phi}_{y,s}(t) = \int_{-\infty}^{\infty} \phi_{y,s}(x)e^{-2\pi itx}dx \qquad (y > 0, \Re(s) > 0).$$
(1.1)

Teorema 1. Para $\Re(s) > 1$ tenemos la siguiente fórmula:

$$\hat{\phi}_{y,s}(t) = \begin{cases} 2\pi i (2\pi t)^{2s} e^{-2\pi yt} \Gamma(s)^{-1} \Gamma(s+1)^{-1} \sigma(4\pi yt; s, s+1) & (t>0) \\ 2\pi i \Gamma(2s) (2y)^{-2s} \Gamma(s)^{-1} \Gamma(s+1)^{-1} & (t=0) & (\Re(s)>1) \end{cases}$$
(1.2)
$$2\pi i (2\pi t)^{2s} e^{-2\pi y|t|} \Gamma(s)^{-1} \Gamma(s+1)^{-1} \sigma(4\pi y|t|; s+1, s) & (t<0)$$

donde

$$\sigma(z;\alpha,\beta) = \int_0^\infty e^{-zw} (w+1)^{\alpha-1} w^{\beta-1} dw \qquad (\Re(z), \Re(\beta) > 0, \alpha \in \mathbb{C}),$$

es una representación integral de la función hipergeométrica confluente (cf. 1.2)

Proof. Para calcular la integral (1.1), hay que expresar los dos factores del denominador,como transformadas de Fourier de otras funciones. Más precisamente, definimos $f(x) := (y + ix)^{-s-1}$ y define

$$g(w) := \begin{cases} e^{-yw} w^s & (0 < w) \\ 0 & (w \le 0) \end{cases}$$

donde $g(w) \in L^1(\mathbb{R})$ porque y > 0 y $\Re(s) > \frac{1}{2}$. Si calculamos su transformada de Fourier, obtenemos:

$$\hat{g}\left(\frac{x}{2\pi}\right) = \int_{-\infty}^{\infty} e^{-iwx} g(w) dw = \int_{0}^{\infty} e^{-(y+ix)w} w^{s} dw = (y+ix)^{-s-1} \Gamma(s+1)$$

$$\therefore f(x) = \frac{1}{\Gamma(s+1)} \hat{g}\left(\frac{x}{2\pi}\right)$$
(1.3)

porque la función gamma cumple

$$\int_{0}^{\infty} e^{-zt} t^{v-1} dt = \int_{0}^{\infty} e^{-z'} \left(\frac{z'}{z}\right)^{v-1} \frac{dz'}{z} = z^{-v} \int_{0}^{\infty} e^{-z'} (z')^{v-1} dz'$$

$$\therefore z^{-v} \Gamma(v) = \int_{0}^{\infty} e^{-zt} t^{v-1} dt \qquad (\Re(z), \Re(v) > 0)$$
(1.4)

(por ejemplo [?, §5.2.5]). En general y de manera similar, tenemos:

$$\frac{1}{(y \pm ix)^s} = \frac{1}{\Gamma(s)} \int_0^\infty e^{-(y \pm ix)w} w^{s-1} dw \qquad (\Re(s) > 0)$$
 (1.5)

Si aplicamos la transformada de Fourier a (1.3) obtenemos

$$\frac{2\pi}{\Gamma(s+1)}g(-2\pi w) = \hat{f}(w) := \int_{-\infty}^{\infty} \frac{e^{-2\pi iwx} dx}{(y+ix)^{s+1}}$$
(1.6)

donde hemos usado la fórmula de inversión de Fourier, ie. $\hat{g}(x) = g(-x)$ y como se modifica la transformada de Fourier bajo homotecias, ie. $\widehat{g(\delta u)}(x) = \delta^{-1}g(\delta^{-1}x)$ (por ejemplo (cita)).

Queremos usar (1.6) para calcular (1.1), pero hay que hacer dos cosas antes de poderlo hacer. Primero debemos intercambiar los roles de x y y multiplicando por i, más precisamente como

$$(x+iy)^{s}(x-iy)^{s+1} = (i(y-ix))^{s}(-i(y+ix))^{s+1} \stackrel{*}{=} -i(y-ix)^{s}(y+ix)^{s+1},$$

donde (*) es válido porque $\Re(y \pm ix) > 0$, entonces:

$$\hat{\phi}_{y,s}(t) = i \int_{-\infty}^{\infty} \frac{e^{-2\pi i u x} dx}{(y - ix)^s (y + ix)^{s+1}}.$$
(1.7)

Sustituimos la fórmula (1.5) en (1.7) para obtener:

$$\hat{\phi}_{y,s}(t) = \frac{i}{\Gamma(s)} \int_{-\infty}^{\infty} \frac{e^{-2\pi i t x}}{(y+ix)^{s+1}} \left(\int_{0}^{\infty} e^{-(y-ix)w} w^{s-1} dw \right) dx.$$

Como el valor absoluto del integrando es $e^{-yw}w^{\Re(s)-1}|x+iy|^{-\Re(s)-1}$, la integral anterior es absolutamente integrable cuando $\Re(s)>0$ o en particular cuando $\Re(s)>\frac{1}{2}$). En este caso podemos intercambiar el orden de integración (Teorema de Fubini) para obtener:

$$\hat{\phi}_{y,s}(t) = \frac{i}{\Gamma(s)} \int_0^\infty w^{s-1} e^{-yw} \left(\int_{-\infty}^\infty \frac{e^{-2\pi i x \left(t - \frac{w}{2\pi}\right)}}{(y + ix)^{s+1}} dx \right) dw$$

$$\stackrel{(1.6)}{=} \frac{i}{\Gamma(s)} \int_0^\infty w^{s-1} e^{-yw} \left(\frac{2\pi}{\Gamma(s+1)} g\left(-2\pi t + w\right) \right) dw.$$
(1.8)

Por la definición de g tenemos que $g(w-2\pi u)\neq 0$ cuando $w>2\pi u$ y así tenemos:

$$\hat{\phi}_{y,s}(t) = \frac{2\pi i}{\Gamma(s)\Gamma(s+1)} \int_{2\pi t}^{\infty} e^{-2y(w-\pi t)} w^{s-1} (w - 2\pi t)^s dw.$$

Hacemos el cambio de variable $w - \pi t \mapsto w$ para obtener

$$\hat{\phi}_{y,s}(t) = \frac{2\pi i}{\Gamma(s)\Gamma(s+1)} \int_{\pi t}^{\infty} e^{-2yw} (w+\pi t)^{s-1} (w-\pi t)^s dw \qquad (\Re(s) > 0).$$

Calcular el caso t = 0 es simplemente una aplicación de la fórmula integral de la función gamma (c.f. ecuación 1.4):

$$\hat{\phi}_{y,s}(0) = \frac{2\pi i}{\Gamma(s)\Gamma(s+1)} \int_0^\infty e^{-2yw} w^{s-1} w^s dw = \frac{2\pi i \Gamma(2s)}{(2y)^{2s} \Gamma(s)\Gamma(s+1)}.$$

Si t > 0 entonces hacemos el cambio de variable $w \mapsto \pi t w$ seguido del cambio $w \mapsto w + 1$ y por último hacemos $w \mapsto 2w$:

$$\hat{\phi}_{y,s}(t) = \frac{2\pi i}{\Gamma(s)\Gamma(s+1)} \int_{1}^{\infty} e^{-2\pi y t w} (\pi w t + \pi t)^{s-1} (\pi w t - \pi t)^{s} (\pi t) dw$$

$$= \frac{2\pi i (\pi t)^{2s}}{\Gamma(s)\Gamma(s+1)} \int_{1}^{\infty} e^{-2\pi y t w} (w+1)^{s-1} (w-1)^{s} dw$$

$$= \frac{2\pi i (\pi t)^{2s} e^{-2\pi y t}}{\Gamma(s)\Gamma(s+1)} \int_{0}^{\infty} e^{-2\pi y t w} (w+2)^{s-1} w^{s} dw$$

$$= \frac{2\pi i (2\pi t)^{2s} e^{-2\pi y t}}{\Gamma(s)\Gamma(s+1)} \int_{0}^{\infty} e^{-4\pi y t w} (w+1)^{s-1} w^{s} dw \qquad (t>0). \tag{1.9}$$

La integral es la función hipergeométrica confluente definida por:

$$\sigma(z;\alpha,\beta) = \int_0^\infty e^{-zw} (w+1)^{\alpha-1} w^{\beta-1} dw \qquad (\Re(z), \Re(\beta) > 0, \alpha \in \mathbb{C}),$$

En particular:

$$\hat{\phi}_{y,s}(t) = \frac{2\pi i (2\pi t)^{2s} e^{-2\pi yt}}{\Gamma(s)\Gamma(s+1)} \sigma(4\pi yt; s, s+1).$$

Ahora, si t < 0, para calcular $\hat{\phi}_{y,s}(t)$ hacemos el cambio de variable $w \mapsto \pi |t| w$ seguido del cambio $w \mapsto w + 1$ y después $w \mapsto 2w$:

$$\hat{\phi}_{y,s}(t) = \frac{2\pi i}{\Gamma(s)\Gamma(s+1)} \int_{1}^{\infty} e^{-2\pi y|t|w} (\pi w |t| + \pi t)^{s-1} (\pi w |t| - \pi t)^{s} (\pi |t|) dw$$

$$= \frac{2\pi i \pi^{2s} |t|^{2s}}{\Gamma(s)\Gamma(s+1)} \int_{1}^{\infty} e^{-2\pi y|t|w} (w-1)^{s-1} (w+1)^{s} dw$$

$$= \frac{2\pi i (\pi t)^{2s} e^{-2\pi y|t|}}{\Gamma(s)\Gamma(s+1)} \int_{0}^{\infty} e^{-2\pi y|t|w} (w+2)^{s} w^{s-1} dw$$

$$= \frac{2\pi i (2\pi t)^{2s} e^{-2\pi y|t|}}{\Gamma(s)\Gamma(s+1)} \int_{0}^{\infty} e^{-4\pi y|t|w} (w+1)^{s} w^{s-1} dw \qquad (u<0)$$

$$= \frac{2\pi i (2\pi t)^{2s} e^{-2\pi y|t|}}{\Gamma(s)\Gamma(s+1)} \sigma(4\pi y |t|; s+1, s). \qquad (1.10)$$

Con esto terminamos de verificar la fórmula (1.7) para los tres casos posibles de u.

1.2 La función hipergeométrica confluente

La función hipergeométrica confluente la definió originalemente E. Kummer en 1836 como la serie

$$F(z; \alpha, \beta, \gamma) := 1 + \frac{\alpha\beta}{1!\gamma}z + \frac{\alpha(\alpha+1)\beta(\beta+1)}{2!\gamma(\gamma+1)}z^2 + \cdots$$

que es una de las soluciones de la ecuación diferencial de Kummer [?]:

$$\frac{d^2y}{dx^2} + p_1(x)\frac{dy}{dx} + p_0(x)y = 0$$

donde p_0 y p_1 son funciones racionales. La otra solución la estudió F.G. Tricomi en 1960 y dió una fórmula integral para esta solución [?, §2] siguiendo el trabajo de E.T. Whittaker del principio del siglo XX.

Ahora, la fórmula integral que queremos estudiar

$$\sigma(z;\alpha,\beta) := \int_0^\infty e^{-zx} (x+1)^{\alpha-1} x^{\beta-1} dx$$

es una variante de la funciones con las que trabajó Tricomi, pero cumple propiedades muy similares a las propiedades de su función hipergeométrica confluente que expone (por ejemplo [?, $\S 2.3$]) En este apéndice probamos las propiedades de σ usadas en la sección ?? (cf. página 5):

- (i) $\sigma(z; \alpha, \beta)$ es uniformemente convergente sobre cualquier subconjunto compact de $\mathbb{H}' \times \mathbb{C} \times \mathbb{H}'$ y por lo tanto define una función analítica sobre $\mathbb{H}' \times \mathbb{C} \times \mathbb{H}'$.
- (ii) $\sigma(z; \alpha, \beta)$ se puede continuar analíticamente a una función meromorfa definida sobre $\mathbb{H}' \times \mathbb{C} \times \mathbb{C}$ con polos donde $\beta = 0, -1, -2, \ldots$, ie. donde $\Gamma(\beta)$ tiene polos.
- (iii) Para todo subconjunto compacto $Q \subset \mathbb{C} \times \mathbb{C}$ existen constantes postivas A, B > 0 tales que

$$|\sigma(y;\alpha,\beta)| \le Ay^{-\Re(\beta)}(1+y^{-B}) \qquad \forall (\alpha,\beta) \in Q , y > 0.$$

Proof. (i) Observa que el integrando de $\sigma(z; \alpha, \beta)$ es de orden $x^{\Re(\beta)-1}$ cuando $x \to 0$ porque

$$\lim_{x \to 0} \left| e^{-zx} (x+1)^{\alpha - 1} x^{\beta - 1} \right| = \lim_{x \to 0} x^{\Re(\beta) - 1} \quad \Longrightarrow \quad \left| e^{-zx} (x+1)^{\alpha - 1} x^{\beta - 1} \right| = \mathcal{O}(x^{\Re(\beta) - 1}) \quad (x \to 0)$$

y es de orden $e^{-\Re(z)x}$ cuando $x\to\infty$ porque

$$\lim_{x \to \infty} \frac{(x+1)^{\Re(\alpha)-1} x^{\Re(\beta)-1}}{e^{\Re(z)x}} = 0 \quad \Longrightarrow \quad \left| e^{-zx} (x+1)^{\alpha-1} x^{\beta-1} \right| = \mathcal{O}(e^{-\Re(z)x}) \quad (x \to \infty).$$

Por lo tanto la integral es convergente cuando $\Re(z) > 0$ y $\Re(\beta) > 0$; observa que no hay restricción para α .

Además sea Q' cualquier subconjunto compacto de $\mathbb{H}' \times \mathbb{C} \times \mathbb{H}'$ y sean $\varepsilon > 0$ y $\delta > 0$ tales que $\Re(z) > \varepsilon$ y $\Re(\beta) > \delta$ para toda $z \in Q \cap \mathbb{H}'$ y para toda $\beta \in Q \cap \mathbb{H}'$. Entonces nuestras aproximaciones del integrando implican que existen constantes $C_1, C_2 > 0$ tales que:

$$\left|e^{-zx}(x+1)^{\alpha-1}x^{\beta-1}\right| = e^{-\Re(z)x}(x+1)^{\Re(\alpha)-1}x^{\Re(\beta)-1} \begin{cases} \leq C_1e^{-\varepsilon x} & \text{para } x \text{ suficientemente grande} \\ \leq C_2x^{\delta-1} & \text{para } x \text{ suficientemente pequeña} \end{cases}$$

Por lo tanto la integral $\sigma(z; \alpha, \beta)$ converge uniformemente sobre cualquier subconjunto compato de $\mathbb{H}' \times \mathbb{C} \times \mathbb{H}'$.

Para probar (ii) vamos a necesitar la siguiente identidad:

Lema 2. Para toda n > 0 la función σ cumple:

$$\frac{\partial^n}{\partial z^n} \left(e^{-z} \sigma(z; \alpha, \beta) \right) = (-1)^n e^{-z} \sigma(z; \alpha + n, \beta) \qquad \forall (z, \alpha, \beta) \in \mathbb{H}' \times \mathbb{C} \times \mathbb{H}'$$

Proof. Por (i) sabemos que la integral $\sigma(z; \alpha, \beta)$ es uniformemente convergente en la variable z sobre subconjuntos compactos de \mathbb{H}' , cuando $\Re(\alpha) > 0$ y $\Re(\beta) > 0$. Entonces podemos intercambiar la derivada con la integral:

$$\begin{split} \frac{\partial}{\partial z} \left(e^{-z} \sigma(z; \alpha, \beta) \right) &= \frac{\partial}{\partial z} \left(\int_0^\infty e^{-zw-z} (w+1)^{\alpha-1} w^{\beta-1} dw \right) \\ &= \int_0^\infty (w+1)^{\alpha-1} w^{\beta-1} \frac{\partial}{\partial z} e^{-z(w+1)} dw \\ &= \int_0^\infty (w+1)^{\alpha-1} w^{\beta-1} (-1) (w+1) e^{-z(w+1)} dw \\ &= -e^{-z} \int_0^\infty e^{-zw} (w+1)^{\alpha} w^{\beta-1} dw \\ &= -e^{-z} \sigma(z; \alpha+1, \beta) \qquad \forall (z, \alpha, \beta) \in \mathbb{H}' \times \mathbb{H}' \times \mathbb{H}' \end{split}$$

Por inducción tenemos que:

$$\frac{\partial^n}{\partial z^n} \left(e^{-z} \sigma(z; \alpha, \beta) \right) = (-1)^n e^{-z} \sigma(z; \alpha + n, \beta).$$

Proof. (ii) Para continuar $\sigma(z; \alpha, \beta)$ analíticamente, primero asumimos que z > 0 y que $\Re(\alpha) > 0$ (además de que $\Re(\beta) > 0$ donde $\sigma(z; \alpha, \beta)$ es convergente). Entonces:

 $\sigma(z; 1 - \beta, \alpha) = \int_0^\infty e^{-zw} (w + 1)^{-\beta} w^{\alpha - 1} dw$ $\stackrel{(1.4)}{=} \int_0^\infty e^{-zw} \left(\frac{1}{\Gamma(\beta)} \int_0^\infty e^{-(w + 1)v} v^{\beta - 1} dv \right) w^{\alpha - 1} dw$ $= \frac{1}{\Gamma(\beta)} \int_0^\infty e^{-v} v^{\beta - 1} \left(\int_0^\infty e^{-(z + v)w} w^{\alpha - 1} dw \right) dv$ $\stackrel{(1.4)}{=} \frac{\Gamma(\alpha)}{\Gamma(\beta)} \int_0^\infty e^{-v} v^{\beta - 1} (z + v)^{-\alpha} dv$ $= \frac{\Gamma(\alpha)}{\Gamma(\beta)} z^{\beta - \alpha} \int_0^\infty e^{-v} v^{\beta - 1} (v + 1)^{-\alpha} dv$ $\therefore \Gamma(\alpha)^{-1} z^{\alpha} \sigma(z; 1 - \beta, \alpha) = \Gamma(\beta)^{-1} z^{\beta} \sigma(z; 1 - \alpha, \beta) \qquad \forall (z, \alpha, \beta) \in \mathbb{R}^+ \times \mathbb{H}' \times \mathbb{H}',$

donde el intercambio de las integrales se verifica de exactamente la misma manera que el intercambio anterior (1.8).

La última igualdad de la ecuación anterior nos motiva a cambiar σ por otra función donde la simetría se vea más sencilla. Con

$$\overset{\sim}{\sigma}(z;\alpha,\beta) := \Gamma(\beta)^{-1} z^{\beta} \sigma(z;\alpha,\beta).$$

tenemos

$$\widetilde{\sigma}(z; 1 - \beta, \alpha) = \widetilde{\sigma}(z; 1 - \alpha, \beta).$$

Gracias a (i), $\sigma(z; \alpha, \beta)$ es una función holomorfa sobre $\mathbb{H}' \times \mathbb{H}' \times \mathbb{H}'$ (recuerda que la función gamma nunca se anula). Como $\Gamma(\beta)^{-1}z^{\beta}$ también es una función holomorfa sobre el mismo dominio,

entonces $\overset{\sim}{\sigma}$ es holomorfa sobre $\mathbb{H}' \times \mathbb{H}' \times \mathbb{H}'$. Por lo tanto coinciden en esa región. La simetría que exhibe $\overset{\sim}{\sigma}$ se puede reescribir como

$$\widetilde{\sigma}(z;\alpha,\beta) = \widetilde{\sigma}(z;1-\beta,1-\alpha) \qquad (\Re(z) > 0, \Re(\alpha) < 1, \Re(\beta) > 0). \tag{1.11}$$

Ahora extendemos la región de definición de $\overset{\sim}{\sigma}$ de la siguiente manera:

$$\widetilde{\sigma}(z;\alpha,\beta) = \begin{cases} \widetilde{\sigma}(z;\alpha,\beta) & \alpha \in \mathbb{C}, \Re(\beta) > 0\\ \widetilde{\sigma}(z;1-\beta,1-\alpha) & \Re(\alpha) < 1, \beta \in \mathbb{C} \end{cases}$$
(1.12)

Ahora solamente nos falta ver cómo definir $\widetilde{\sigma}(z; \alpha, \beta)$ cuando $\Re(z) > 0$, $\Re(\alpha) \ge 1$ y $\beta \in \mathbb{C}$. Por el lema 2, resulta que derivar $\widetilde{\sigma}$ con respecto de z n veces aumenta la parte real de α por n. Esto lo usamos para poder reducir al caso anterior.

Más precisamente, con el lema 2 calculamos la n-ésima derivada de $\overset{\sim}{\sigma}$ para obtener:

$$\frac{\partial^{n}}{\partial z^{n}} \left(e^{-z} z^{-\beta} \widetilde{\sigma}(z; \alpha, \beta) \right) = \Gamma(\beta)^{-1} \frac{\partial^{n}}{\partial z^{n}} \left(e^{-z} \sigma(z; \alpha, \beta) \right)
\stackrel{(??)}{=} \Gamma(\beta)^{-1} (-1)^{n} e^{-z} \sigma(z; \alpha + n, \beta)
= (-1)^{n} e^{-z} z^{-\beta} \widetilde{\sigma}(z; \alpha + n, \beta),$$

o equivalentemente

$$\widetilde{\sigma}(z;\alpha,\beta) = (-1)^n e^z z^\beta \frac{\partial^n}{\partial z^n} \left(e^{-z} z^{-\beta} \widetilde{\sigma}(z;\alpha-n,\beta) \right). \tag{1.13}$$

Ahora podemos volver a extender $\overset{\sim}{\sigma}$, pero esta vez a todo $\mathbb{H}' \times \mathbb{C} \times \mathbb{C}$. Tomamos la extensión (1.12) de $\overset{\sim}{\sigma}$ y usamos (1.13) para obtener:

$$\widetilde{\sigma}(z;\alpha,\beta) = \begin{cases} \widetilde{\sigma}(z;1-\beta,1-\alpha) & \Re(\alpha) < 1, \beta \in \mathbb{C} \\ (-1)^n e^z z^\beta \frac{\partial^n}{\partial z^n} \left(e^{-z} z^{-\beta} \widetilde{\sigma}(z;\alpha-n,\beta) \right) & \Re(\alpha) \ge 1, \beta \in \mathbb{C} \end{cases} \quad (n = \lfloor \Re(\alpha) \rfloor)$$

donde $\lfloor \Re(\alpha) \rfloor$ se define como el menor natural n tal que $n \leq \Re(\alpha) < n+1$. Con esta nueva definición, $\overset{\sim}{\sigma}$ es una función bien definida y holomorfa sobre $\mathbb{H}' \times \mathbb{C} \times \mathbb{C}$. Con esto podemos conlcuir que $\sigma(z; \alpha, \beta) = \Gamma(\beta) z^{-\beta} \overset{\sim}{\sigma}(z; \alpha, \beta)$ se extiende a una función meromorfa sobre $\mathbb{H}' \times \mathbb{C} \times \mathbb{C}$ con los polos de $\Gamma(\beta)$.

Para probar (iii) vamos a necesitar la siguiente identidad:

Lema 3. Para toda n > 0 la función σ cumple:

$$\sigma(y;\alpha,\beta) = \frac{\Gamma(\beta)}{\Gamma(\beta+n)} \sum_{j=0}^{n} \binom{n}{j} y^{n-j} \left(\prod_{l=1}^{j} (l-\alpha) \right) \sigma(y;\alpha-j,\beta+n)$$
 (1.14)

para todo $(y, \alpha, \beta) \in \mathbb{R}^+ \times \mathbb{C} \times \mathbb{H}'$ (Nota: el producto dentro de la suma se considera vacío cuando j = 0).

Proof. Esta prueba es por inducción. Primero consideramos el caso n=1 y asumimos que $\Re(\beta) > 0$. Como y>0, la integral $\sigma(z;\alpha,\beta)$ converge absolutamente (por la prueba de (i)), entonces integramos por partes:

$$\sigma(y;\alpha,\beta) = \int_0^\infty e^{-yx} (x+1)^\alpha x^{\beta-1} dx$$

$$= \left[\frac{1}{\beta} e^{-yx} (x+1)^{\alpha-1} x^\beta \right]_{x\to 0}^{x\to \infty} - \frac{1}{\beta} \int_0^\infty (-ye^{-yx} (x+1)^{\alpha-1} + (\alpha-1)e^{-yx} (x+1)^{\alpha-2}) x^\beta dx$$

$$\stackrel{*}{=} \frac{y}{\beta} \sigma(y;\alpha,\beta+1) + \frac{(1-\alpha)}{\beta} \sigma(z;\alpha-1,\beta+1)$$
(1.15)

lo cual verifica la fórmula (1.14) para n=1 (Recuerda que la ecuación funcional $\Gamma(z+1)=z\Gamma(z)$ implica que $\beta^{-1}=\Gamma(\beta)\Gamma(\beta+1)^{-1}$). Ahora, supongamos que la fórmula es válida para n>1. Aplicamos (1.15) a un sumando de (1.14):

$$\sigma(y; \alpha - j, \beta + n) = \frac{y}{\beta + n}\sigma(y; \alpha - j, \beta + n + 1) + \frac{(j + 1 - \alpha)}{\beta + n}\sigma(z; \alpha - (j + 1), \beta + n + 1).$$

Si nos olvidamos por un momento del factor $(\beta + n)^{-1}$, esto implica que (1.14) se descompone en dos sumas:

$$\sum_{j=0}^{n} \binom{n}{j} y^{n+1-j} \left(\prod_{l=1}^{j} (l-\alpha) \right) \sigma(y;\alpha-j,\beta+n+1) + \sum_{j=0}^{n} \binom{n}{j} y^{n-j} \left(\prod_{l=1}^{j+1} (l-\alpha) \right) \sigma(y;\alpha-(j+1),\beta+n+1)$$

Con el cambio de índice $j + 1 \mapsto j$, la segunda suma se escribe como:

$$\sum_{j=1}^{n+1} \binom{n}{j-1} y^{n+1-j} \left(\prod_{l=1}^{j} (l-\alpha) \right) \sigma(y; \alpha-j, \beta+n+1)$$

donde los sumandos difieren por solamente su coeficiente binomial con los sumandos de la primera suma. Con la fórmula recursiva de los coeficientes binomiales* (y recordando el factor $(\beta + n)^{-1}$) la fórmula (1.14) se convierte en

$$\sigma(y;\alpha,\beta) = \frac{\Gamma(\beta)}{(\beta+n)\Gamma(\beta+n)} \sum_{j=0}^{n+1} \binom{n+1}{j} y^{n+1-j} \left(\prod_{l=1}^{j} (l-\alpha) \right) \sigma(y;\alpha-j,\beta+n+1)$$

Una última aplicación de la ecuación funcional de Γ termina de verificar la fórmula (1.14) para n+1.

Proof. (iii) Para probar la cota de $|\sigma(y; \alpha, \beta)|$, dividimos en dos casos: primero asumimos que $Q \subset \mathbb{C} \times \mathbb{H}'$ y después usamos esto para probar el caso cuando Q es un subconjunto compacto arbitrario de $\mathbb{C} \times \mathbb{C}$.

$${}^*\binom{n+1}{j} = \binom{n}{j} + \binom{n}{j-1}$$

 $(Q \subset \mathbb{C} \times \mathbb{H}')$ Sea $(\alpha, \beta) \in Q$, entonces $\Re(\alpha)$ está acotado; sea $n \in \mathbb{N}$ tal que $\Re(\alpha) \le n+1$. Como $\Re(\beta) > 0$ podemos calcular

$$|\sigma(y;\alpha,\beta)| \leq \int_0^\infty e^{-yx} |x+1|^n |x|^{\Re(\beta)-1} dx \leq \int_0^\infty e^{-yx} \sum_{j=0} n \binom{n}{j} x^j |x|^{\Re(\beta)-1} dx$$

$$\therefore |\sigma(y;\alpha,\beta)| \leq \sum_{j=0}^n \binom{n}{j} \int_0^\infty e^{-yt} x^{\Re(\beta)+j-1} dx = \sum_{j=0}^n \binom{n}{j} y^{-\Re(\beta)-j} \Gamma(\Re(\beta)+j)$$

Como cada $\Gamma(\Re(\beta) + j)$ es una función continua de (α, β) , cada una está acotada y así todas están acotadas por un A' > 0. Por lo tanto:

$$|\sigma(y; \alpha, \beta)| \le A' y^{-\Re(\beta)} \sum_{j=0}^{n} y^{-j} \le A' y^{-\Re(\beta)} n(1 + y^{-n})$$

donde la última desigualdad se sigue de que los n sumandos son menores o iguales a 1 o y^{-n} si $y \le 1$ o y > 1 respectivamente. Si ponemos A := A'n y B = n, obtenemos la desigualdad ((iii)) para compactos contenidos en $\mathbb{C} \times \mathbb{H}'$.

 $(Q \subset \mathbb{C} \times \mathbb{C})$ Sea Q un subconjunto compacto arbitrario de $\mathbb{C} \times \mathbb{C}$ y n el mínimo natural tal que $-n < \Re(\beta)$, ie. $(\alpha, \beta + n) \in \mathbb{C} \times \mathbb{H}'$ para todo $(\alpha, \beta) \in Q$. Por (ii), ambos lados de la fórmula (1.14) son funciones holomorfas sobre $(\alpha, \beta) \in \mathbb{C} \times \mathbb{C}$ y como la igualdad implica que coinciden sobre el abierto $\mathbb{C} \times \mathbb{H}'$, las funciones son iguales sobre todo $\mathbb{C} \times \mathbb{C}$ y tenemos que

$$\sigma(y;\alpha,\beta) = \sum_{j=0}^n \underbrace{\frac{\Gamma(\beta)}{\Gamma(\beta+n)} \binom{n}{j} \left(\prod_{l=1}^j (l-\alpha)\right)} y^{n-j} \sigma(y;\alpha-j,\beta+n) \qquad \forall y>0 \,,\; (\alpha,\beta) \in \mathbb{C} \times \mathbb{C}.$$

Observa que, para cada j, la * es una función continua de (α, β) entonces su valor absoluto alcanza un máximo sobre Q. Si tomamos C > 0 una cota de * que funcione para todas las j's, entonces obtenemos:

$$|\sigma(y;\alpha,\beta)| \le C \sum_{j=0}^{n} y^{n-j} |\sigma(y;\alpha-j,\beta+n)|$$
(1.16)

Ahora, como Q + (0, n) es un compacto contenido en $\mathbb{C} \times \mathbb{H}'$, podemos aplicar el caso anterior para encontrar constantes $A_0, \ldots, A_n, B_0, \ldots, B_n > 0$ tales que $|\sigma(y; \alpha - j, \beta + n)| \le A_j y^{-\Re(\beta)-n} (1+y^{-B_j})$. Además, si tomamos $A' = \max\{A_j\}$ y $B' = \min\{B_j\}$ obtenemos que

$$|\sigma(y; \alpha - j, \beta + n)| \le A' y^{-\Re(\beta) - n} (1 + y^{-B'}) \qquad \forall j = 0, \dots, n.$$

Por lo tanto, la desigualdad (1.16) queda:

$$|\sigma(y; \alpha, \beta)| \le A' C n y^{-\Re(\beta) - n} (1 + y^{-B'}) \sum_{j=0}^{n} y^{n-j} \le A' C y^{-\Re(\beta) - n} (1 + y^{-B}) n (1 + y^{n})$$

$$\therefore |\sigma(y; \alpha, \beta)| \le A y^{-\Re(\beta)} (1 + y^{-B'}) (1 + y^{-n})$$

donde hemos escrito A=A'Cn. Por último podemos encontrar una constante B>0 tal que $(1+y^{-B'})(1+y^{-n}) \leq (1+y^B)$ (por ejemplo podemos tomar B tal que $y^{-B'}, y^{-n}, y^{-B'-n} \leq \frac{1}{3}y^{-B}$) y así concluimos que:

$$|\sigma(y; \alpha, \beta)| \le Ay^{-\Re(\beta)} (1 + y^{-B}) \qquad \forall (\alpha, \beta) \in \mathbb{C} \times \mathbb{C}, y > 0.$$

Resumimos los resultados de esta sección en el siguiente teorema:

Teorema 4. La función $\sigma(z; \alpha, \beta)$ admite una continuación meromorfa a $\mathbb{H}' \times \mathbb{C} \times \mathbb{C}$ con polos cuando $\beta = 0, -1, -2, \ldots$, ie. $\overset{\sim}{\sigma}(z; \alpha, \beta) := \Gamma(\beta)^{-1} z^{\beta} \sigma(z; \alpha, \beta)$ es una función holomorfa y para cualquier compacto $Q \subset \mathbb{C} \times \mathbb{C}$ existen constantes A, B > 0 tales que

$$|\sigma(y; \alpha, \beta)| \le Ay^{-\Re(\beta)} (1 + y^{-B}) \qquad \forall (\alpha, \beta) \in \mathbb{C} \times \mathbb{C}, y > 0.$$

o equivalentemente † :

$$\left| \widetilde{\sigma}(y; \alpha, \beta) \right| \le A(1 + y^{-B}).$$

[†]Para eliminar el factor $\Gamma(\beta)^{-1}$ nada más observamos que éste es una función continua de (α, β) y es acotado sobre Q; esta cota lo absorbe la constante A.