Economics 103 – Statistics for Economists

Minsu Chang

University of Pennsylvania

Lecture 16

Confidence Intervals - Part II

Last Time

Confidence Interval for Population Mean:

$$ar{X}_n \pm ext{qnorm} (1 - lpha/2) imes \sigma/\sqrt{n}$$

Based on Assumptions:

- 1. The population standard deviation σ was known.
- 2. The population is normally distributed (bell-shaped).

Today

What if population is normal but σ is unknown?

We Don't know σ . What to use instead?

$$ar{X}_n \pm ext{qnorm} (1-lpha/2) imes \sigma/\sqrt{n}$$

What about Sample Standard Deviation *S*?

$$P\left(-2 \le \frac{\bar{X}_n - \mu}{S/\sqrt{n}} \le 2\right) = 0.95 ???$$

Not Quite!

Although $(\bar{X}_n - \mu)/(\sigma/\sqrt{n}) \sim N(0,1)$, $S \neq \sigma$. In fact, S is an estimator of σ so it is a random variable!

What is the sampling distribution?

Suppose
$$X_1, \ldots, X_n \sim N(\mu, \sigma^2)$$

$$\frac{\bar{X}_n - \mu}{S/\sqrt{n}} \sim ???$$

First Step

What is the sampling distribution of S?

What is the Distribution?

Suppose $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$. What is the distribution of this sum?

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2$$

- (a) $\chi^2(n)$
- (b) $N(\mu, \sigma^2)$
- (c) N(0,1)
- (d) $N(\mu, \sigma^2/n)$
- (e) $\chi^2(1)$

Towards the Sampling Dist. of S

If
$$X_1, \ldots, X_n \sim N(\mu, \sigma^2)$$
, then

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 \sim \chi^2(n)$$

Now:

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 =$$

Towards the Sampling Dist. of S

If $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$, then

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 \sim \chi^2(n)$$

Now:

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 = \left(\frac{n-1}{\sigma^2} \right) \left[\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \mu)^2 \right]$$

Towards the Sampling Dist. of S

If $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$, then

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 \sim \chi^2(n)$$

Now:

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma}\right)^2 = \left(\frac{n-1}{\sigma^2}\right) \left[\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \mu)^2\right] \sim \chi^2(n)$$

Anything look familiar?

Suppose $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$. Then

$$\left(\frac{n-1}{\sigma^2}\right)\left[\frac{1}{n-1}\sum_{i=1}^n(X_i-\mu)^2\right]\sim\chi^2(n)$$

Suppose $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$. Then

$$\left(\frac{n-1}{\sigma^2}\right)\left[\frac{1}{n-1}\sum_{i=1}^n\left(X_i-\mu\right)^2\right]\sim\chi^2(n)$$

Replacing μ with $ar{X}$ "loses" a degree of freedom

$$\left(\frac{n-1}{\sigma^2}\right)\left[\frac{1}{n-1}\sum_{i=1}^n\left(X_i-\bar{X}\right)^2\right]=$$

Suppose $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$. Then

$$\left(\frac{n-1}{\sigma^2}\right)\left[\frac{1}{n-1}\sum_{i=1}^n\left(X_i-\mu\right)^2\right]\sim\chi^2(n)$$

Replacing μ with $ar{X}$ "loses" a degree of freedom

$$\left(\frac{n-1}{\sigma^2}\right)\left[\frac{1}{n-1}\sum_{i=1}^n\left(X_i-\bar{X}\right)^2\right]=\left(\frac{n-1}{\sigma^2}\right)S^2$$

Suppose $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$. Then

$$\left(\frac{n-1}{\sigma^2}\right)\left[\frac{1}{n-1}\sum_{i=1}^n(X_i-\mu)^2\right]\sim\chi^2(n)$$

Replacing μ with \bar{X} "loses" a degree of freedom

$$\left(\frac{n-1}{\sigma^2}\right)\left[\frac{1}{n-1}\sum_{i=1}^n\left(X_i-\bar{X}\right)^2\right]=\left(\frac{n-1}{\sigma^2}\right)S^2\sim\chi^2(n-1)$$

Ultimately, we will use this fact to work out the sampling distribution of $\sqrt{n}(\bar{X}_n - \mu)/S$, but for now let's take a detour...

95% CI for Variance of Normal Population

We know that:

$$\left(\frac{n-1}{\sigma^2}\right)S^2 \sim \chi^2(n-1)$$

95% CI for Variance of Normal Population

We know that:

$$\left(\frac{n-1}{\sigma^2}\right)S^2 \sim \chi^2(n-1)$$

First Step: find a, b such that

$$P\left[a \le \left(\frac{n-1}{\sigma^2}\right)S^2 \le b\right] = 0.95$$

95% CI for Variance of Normal Population

We know that:

$$\left(\frac{n-1}{\sigma^2}\right)S^2 \sim \chi^2(n-1)$$

First Step: find a, b such that

$$P\left[a \le \left(\frac{n-1}{\sigma^2}\right)S^2 \le b\right] = 0.95$$

Although there are many choices for a, b that would work, a sensible idea is to put 2.5% in each tail...

What R command should I use to calculate a?

$$P\left[a \le \left(\frac{n-1}{\sigma^2}\right)S^2 \le b\right] = 0.95$$

- (a) qchisq(0.95, df = n-1)
- (b) qchisq(0.025, df = n)
- (c) qchisq(0.975, df = n 1)
- (d) qchisq(0.025, df = n-1)
- (e) qchisq(0.975, df = n)

What R command should I use to calculate b?

$$P\left[a \le \left(\frac{n-1}{\sigma^2}\right)S^2 \le b\right] = 0.95$$

- (a) qchisq(0.95, df = n-1)
- (b) qchisq(0.025, df = n)
- (c) qchisq(0.975, df = n 1)
- (d) qchisq(0.025, df = n-1)
- (e) qchisq(0.975, df = n)

$$a = qchisq(0.025, df = n - 1)$$

 $b = qchisq(0.975, df = n - 1)$

$$P\left[a \le \left(\frac{n-1}{\sigma^2}\right)S^2 \le b\right] = 0.95$$

$$P\left[a \le \left(\frac{n-1}{\sigma^2}\right)S^2 \le b\right] = 0.95$$

$$P\left[\frac{a}{(n-1)S^2} \le \frac{1}{\sigma^2} \le \frac{b}{(n-1)S^2}\right] = 0.95$$

$$P\left[a \le \left(\frac{n-1}{\sigma^2}\right)S^2 \le b\right] = 0.95$$

$$P\left[\frac{a}{(n-1)S^2} \le \frac{1}{\sigma^2} \le \frac{b}{(n-1)S^2}\right] = 0.95$$

$$P\left[\frac{(n-1)S^2}{b} \le \sigma^2 \le \frac{(n-1)S^2}{a}\right] = 0.95$$

$$P\left[a \le \left(\frac{n-1}{\sigma^2}\right)S^2 \le b\right] = 0.95$$

$$P\left[\frac{a}{(n-1)S^2} \le \frac{1}{\sigma^2} \le \frac{b}{(n-1)S^2}\right] = 0.95$$

$$P\left[\frac{(n-1)S^2}{b} \le \sigma^2 \le \frac{(n-1)S^2}{a}\right] = 0.95$$

This CI is *not* symmetric: it *doesn't* take the form $\widehat{\theta} \pm ME!$

$$X_1,\ldots,X_{100}\sim \mathcal{N}(\mu,\sigma^2)$$
. Here $n-1=99$, hence

$$X_1,\dots,X_{100}\sim {\it N}(\mu,\sigma^2)$$
. Here $n-1=99$, hence $a={
m qchisq}(0.025,\ {
m df}=99)\ pprox\ 73$

$$X_1,\ldots,X_{100}\sim \mathcal{N}(\mu,\sigma^2)$$
. Here $n-1=99$, hence $a=\mathrm{qchisq}(0.025,\ \mathrm{df}=99)\ pprox\ 73$ $b=\mathrm{qchisq}(0.975,\ \mathrm{df}=99)\ pprox\ 128$

$$X_1, \dots, X_{100} \sim N(\mu, \sigma^2)$$
. Here $n-1 = 99$, hence

$$a = \text{qchisq(0.025, df = 99)} ~\approx~ 73$$

$$b = ext{qchisq(0.975, df = 99)} ~pprox ~128$$

$$LCL = (n-1)s^2/b =$$

$$X_1,\ldots,X_{100}\sim \mathcal{N}(\mu,\sigma^2)$$
. Here $n-1=99$, hence $a=\mathrm{qchisq}(0.025,\ \mathrm{df}=99)\ pprox\ 73$ $b=\mathrm{qchisq}(0.975,\ \mathrm{df}=99)\ pprox\ 128$

$$LCL = (n-1)s^2/b = 99 \times 4.3/128$$

$$X_1, \dots, X_{100} \sim \mathcal{N}(\mu, \sigma^2)$$
. Here $n-1=99$, hence $a=\text{qchisq}(0.025, \text{ df = 99}) ~\approx ~73$ $b=\text{qchisq}(0.975, \text{ df = 99}) ~\approx ~128$

$$LCL = (n-1)s^2/b = 99 \times 4.3/128 \approx 3.3$$

$$X_1,\ldots,X_{100}\sim N(\mu,\sigma^2)$$
. Here $n-1=99$, hence $a=\mathrm{qchisq}(0.025,\ \mathrm{df}=99)\ pprox\ 73$ $b=\mathrm{qchisq}(0.975,\ \mathrm{df}=99)\ pprox\ 128$

LCL =
$$(n-1)s^2/b = 99 \times 4.3/128 \approx 3.3$$

UCL = $(n-1)s^2/a =$

$$X_1,\ldots,X_{100}\sim \mathcal{N}(\mu,\sigma^2)$$
. Here $n-1=99$, hence $a=\mathrm{qchisq}(0.025,\ \mathrm{df}=99)\ pprox\ 73$ $b=\mathrm{qchisq}(0.975,\ \mathrm{df}=99)\ pprox\ 128$

LCL =
$$(n-1)s^2/b = 99 \times 4.3/128 \approx 3.3$$

UCL = $(n-1)s^2/a = 99 \times 4.3/73$

$$X_1,\ldots,X_{100}\sim N(\mu,\sigma^2)$$
. Here $n-1=99$, hence $a=\mathrm{qchisq}(0.025,\ \mathrm{df}=99)\ pprox\ 73$ $b=\mathrm{qchisq}(0.975,\ \mathrm{df}=99)\ pprox\ 128$

LCL =
$$(n-1)s^2/b = 99 \times 4.3/128 \approx 3.3$$

UCL = $(n-1)s^2/a = 99 \times 4.3/73 \approx 5.8$

$$X_1,\dots,X_{100}\sim N(\mu,\sigma^2)$$
. Here $n-1=99$, hence $a={
m qchisq}(0.025,\ {
m df}=99)\ pprox\ 73$ $b={
m qchisq}(0.975,\ {
m df}=99)\ pprox\ 128$

From the sample data, $s^2 = 4.3$

LCL =
$$(n-1)s^2/b = 99 \times 4.3/128 \approx 3.3$$

UCL = $(n-1)s^2/a = 99 \times 4.3/73 \approx 5.8$

95% CI for σ^2 is [3.3, 5.8].

Arbitrary Confidence Level: $(1 - \alpha)$

$$\begin{aligned} \mathbf{a} &= \mathrm{qchisq}(\alpha/2\text{, df = n - 1}) \\ \mathbf{b} &= \mathrm{qchisq}(1-\alpha/2\text{, df = n - 1}) \end{aligned}$$

CI for Normal Variance

$$\begin{aligned} \mathbf{a} &= \mathrm{qchisq}(\alpha/2, \ \mathrm{df = n - 1}) \\ \mathbf{b} &= \mathrm{qchisq}(1 - \alpha/2, \ \mathrm{df = n - 1}) \end{aligned}$$

$$P\left[a \le \left(\frac{n-1}{\sigma^2}\right)S^2 \le b\right] = 1 - \alpha$$

$$P\left[\frac{a}{(n-1)S^2} \le \frac{1}{\sigma^2} \le \frac{b}{(n-1)S^2}\right] = 1 - \alpha$$

$$P\left[\frac{(n-1)S^2}{b} \le \sigma^2 \le \frac{(n-1)S^2}{a}\right] = 1 - \alpha$$

CI for Normal Variance

Suppose $X_1, \ldots, X_n \sim \text{iid } N(\mu, \sigma^2)$ and let:

$$a = \operatorname{qchisq}(\alpha/2, df = n - 1)$$

 $b = \operatorname{qchisq}(1 - \alpha/2, df = n - 1)$

Then,

$$\left[\frac{(n-1)S^2}{b}, \frac{(n-1)S^2}{a}\right]$$

is a $100 \times (1 - \alpha)\%$ confidence interval for σ^2 .

End of Detour

We want to know the Sampling Distribution of $\sqrt{n}(\bar{X}_n - \mu)/S$ and we just saw that:

$$\left(\frac{n-1}{\sigma^2}\right)S^2 \sim \chi^2(n-1)$$

How can we use this fact to help us?

$$\frac{\bar{X}_n - \mu}{S/\sqrt{n}} =$$

$$\frac{\bar{X}_n - \mu}{S/\sqrt{n}} = \frac{\bar{X}_n - \mu}{S/\sqrt{n}} \cdot \left(\frac{\sigma/\sqrt{n}}{\sigma/\sqrt{n}}\right) =$$

This slide is just algebra:

$$\frac{\bar{X}_n - \mu}{S/\sqrt{n}} = \frac{\bar{X}_n - \mu}{S/\sqrt{n}} \cdot \left(\frac{\sigma/\sqrt{n}}{\sigma/\sqrt{n}}\right) = \left(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}\right) \left(\frac{\sigma/\sqrt{n}}{S/\sqrt{n}}\right)$$

_

$$\frac{\bar{X}_n - \mu}{S/\sqrt{n}} = \frac{\bar{X}_n - \mu}{S/\sqrt{n}} \cdot \left(\frac{\sigma/\sqrt{n}}{\sigma/\sqrt{n}}\right) = \left(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}\right) \left(\frac{\sigma/\sqrt{n}}{S/\sqrt{n}}\right)$$

$$= \left(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}\right) \left(\frac{\sigma}{S}\right) =$$

$$\frac{\bar{X}_{n} - \mu}{S/\sqrt{n}} = \frac{\bar{X}_{n} - \mu}{S/\sqrt{n}} \cdot \left(\frac{\sigma/\sqrt{n}}{\sigma/\sqrt{n}}\right) = \left(\frac{\bar{X}_{n} - \mu}{\sigma/\sqrt{n}}\right) \left(\frac{\sigma/\sqrt{n}}{S/\sqrt{n}}\right)$$

$$= \left(\frac{\bar{X}_{n} - \mu}{\sigma/\sqrt{n}}\right) \left(\frac{\sigma}{S}\right) = \left(\frac{\bar{X}_{n} - \mu}{\sigma/\sqrt{n}}\right) \left(\sqrt{\frac{n-1}{n-1}} \cdot \sqrt{\frac{\sigma^{2}}{S^{2}}}\right)$$

$$=$$

This slide is just algebra:

$$\frac{\bar{X}_{n} - \mu}{S/\sqrt{n}} = \frac{\bar{X}_{n} - \mu}{S/\sqrt{n}} \cdot \left(\frac{\sigma/\sqrt{n}}{\sigma/\sqrt{n}}\right) = \left(\frac{\bar{X}_{n} - \mu}{\sigma/\sqrt{n}}\right) \left(\frac{\sigma/\sqrt{n}}{S/\sqrt{n}}\right)$$

$$= \left(\frac{\bar{X}_{n} - \mu}{\sigma/\sqrt{n}}\right) \left(\frac{\sigma}{S}\right) = \left(\frac{\bar{X}_{n} - \mu}{\sigma/\sqrt{n}}\right) \left(\sqrt{\frac{n-1}{n-1}} \cdot \sqrt{\frac{\sigma^{2}}{S^{2}}}\right)$$

$$= \left(\frac{\bar{X}_{n} - \mu}{\sigma/\sqrt{n}}\right) \left(\sqrt{\frac{(n-1)\sigma^{2}}{(n-1)S^{2}}}\right)$$

=

$$\begin{split} \frac{\bar{X}_n - \mu}{S/\sqrt{n}} &= \frac{\bar{X}_n - \mu}{S/\sqrt{n}} \cdot \left(\frac{\sigma/\sqrt{n}}{\sigma/\sqrt{n}}\right) = \left(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}\right) \left(\frac{\sigma/\sqrt{n}}{S/\sqrt{n}}\right) \\ &= \left(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}\right) \left(\frac{\sigma}{S}\right) = \left(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}\right) \left(\sqrt{\frac{n-1}{n-1}} \cdot \sqrt{\frac{\sigma^2}{S^2}}\right) \\ &= \left(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}\right) \left(\sqrt{\frac{(n-1)\sigma^2}{(n-1)S^2}}\right) \\ &= \frac{\left(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}\right)}{\sqrt{\left\lceil\frac{(n-1)S^2}{\sigma^2}\right\rceil/(n-1)}} \end{split}$$

Distribution of $\sqrt{n}(\bar{X}_n - \mu)/\sigma$

Suppose $X_1, \ldots, X_n \sim \text{ iid } N(\mu, \sigma^2)$ and \bar{X}_n is the sample mean.

Then the sampling distribution of $\sqrt{n}(\bar{X}_n - \mu)/\sigma$ is

- (a) t(n)
- (b) t(n-1)
- (c) $\chi^2(n)$
- (d) $\chi^2(n-1)$
- (e) $N(\mu, \sigma^2)$
- (f) N(0,1)
- (g) $N(\mu, \sigma^2/n)$
- (h) F(n, n-1)

Distribution of $(n-1)S^2/\sigma^2$

Suppose $X_1, \ldots, X_n \sim \text{ iid } N(\mu, \sigma^2)$ and S^2 is the sample variance.

Then the sampling distribution of $(n-1)S^2/\sigma^2$ is

- (a) t(n)
- (b) t(n-1)
- (c) $\chi^2(n)$
- (d) $\chi^2(n-1)$
- (e) $N(\mu, \sigma^2)$
- (f) N(0,1)
- (g) $N(\mu, \sigma^2/n)$
- (h) F(n, n-1)

What is the Sampling Distribution?

Suppose $Z \sim N(0,1)$ independent of $Y \sim \chi^2(n-1)$. Then the sampling distribution of $Z/\sqrt{Y/(n-1)}$ is

- (a) t(n)
- (b) t(n-1)
- (c) $\chi^2(n)$
- (d) $\chi^2(n-1)$
- (e) $N(\mu, \sigma^2)$
- (f) N(0,1)
- (g) $N(\mu, \sigma^2/n)$
- (h) F(n, n-1)

From three slides back:

$$\frac{\bar{X}_n - \mu}{S/\sqrt{n}} = \frac{\left(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}\right)}{\sqrt{\left[\frac{(n-1)S^2}{\sigma^2}\right]/(n-1)}}$$

From three slides back:

$$\frac{\bar{X}_n - \mu}{S/\sqrt{n}} = \frac{\left(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}\right)}{\sqrt{\left[\frac{(n-1)S^2}{\sigma^2}\right]/(n-1)}}$$
$$= \frac{N(0,1)}{\sqrt{\frac{\chi^2(n-1)}{n-1}}}$$

From three slides back:

$$\frac{\bar{X}_n - \mu}{S/\sqrt{n}} = \frac{\left(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}\right)}{\sqrt{\left[\frac{(n-1)S^2}{\sigma^2}\right]/(n-1)}}$$

$$= \frac{N(0,1)}{\sqrt{\frac{\chi^2(n-1)}{n-1}}}$$

$$\sim t(n-1)$$

From three slides back:

$$\frac{\bar{X}_n - \mu}{S/\sqrt{n}} = \frac{\left(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}\right)}{\sqrt{\left[\frac{(n-1)S^2}{\sigma^2}\right]/(n-1)}}$$

$$= \frac{N(0,1)}{\sqrt{\frac{\chi^2(n-1)}{n-1}}}$$

$$\sim t(n-1)$$

Strictly speaking, need to show that numerator and denominator are independent, but you can take my word for it!

Punchline: Sampling Distribution of $\sqrt{n}(\bar{X}_n - \mu)/S$

If
$$X_1, \ldots, X_n \sim \mathsf{iid}\ \mathit{N}(\mu, \sigma^2)$$
, then

$$\left|\frac{\bar{X}_n-\mu}{S/\sqrt{n}}\sim t(n-1)\right|$$

Who was "Student?"

"Guinnessometrics: The Economic Foundation of Student's t"

"Student" is the pseudonym used in 19 of 21 published articles by William Sealy Gosset, who was a chemist, brewer, inventor, and self-trained statistician, agronomer, and designer of experiments ... [Gosset] worked his entire adult life ... as an experimental brewer for one employer: Arthur Guinness, Son & Company, Ltd., Dublin, St. Jamess Gate, Gosset was a master brewer and rose in fact to the top of the top of the brewing industry: Head Brewer of Guinness

Three Key Sampling Distributions

Suppose that $X_1, \ldots, X_n \sim \text{iid } N(\mu, \sigma^2)$. Then:

$$\left(\frac{n-1}{\sigma^2}\right)S^2 \sim \chi^2(n-1)$$

$$\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$$

$$\frac{\bar{X}_n - \mu}{S/\sqrt{n}} \sim t(n-1)$$

CI for Mean of Normal Distribution, Popn. Var. Unknown

Same argument as we used when the variance was known, except with t(n-1) rather than standard normal distribution:

$$P\left(-c \le \frac{\bar{X}_n - \mu}{S/\sqrt{n}} \le c\right) = 1 - \alpha$$

$$P\left(\bar{X}_n - c\frac{S}{\sqrt{n}} \le \mu \le \bar{X}_n + c\frac{S}{\sqrt{n}}\right) = 1 - \alpha$$

$$c = \operatorname{qt}(1 - \alpha/2, \operatorname{df} = n - 1)$$

$$\left|ar{X}_n \pm ext{qt}(1-lpha/2, ext{df}=n-1)\,rac{\mathcal{S}}{\sqrt{n}}
ight|$$

Comparison of CIs for Mean of Normal Distribution

 $100 \times (1 - \alpha)\%$ Confidence Level

$$X_1,\ldots,X_n\sim \mathsf{iid}\ N(\mu,\sigma^2)$$

Known Population Std. Dev. (σ)

$$ar{X}_n \pm ext{qnorm}(1-lpha/2) \, rac{\sigma}{\sqrt{n}}$$

Unknown Population Std. Dev. (σ)

$$\bar{X}_n \pm \operatorname{qt}(1-\alpha/2,\operatorname{df}=n-1)\frac{S}{\sqrt{n}}$$

Standard Error vs. Estimator of Standard Error

Standard Error

Recall that the standard deviation of the sampling distribution of an estimator is called the *standard error* (SE) of that estimator.

Example: Standard Error of the Mean

$$SE(ar{X}_n) = \sqrt{Var\left(ar{X}_n
ight)} = \sigma/\sqrt{n}$$

Estimator of Standard Error of the Mean

Whereas σ/\sqrt{n} is the standard error of the mean, S/\sqrt{n} is an estimator of this quantity: $\widehat{SE}(\bar{X_n}) = S/\sqrt{n}$

Writing the CIs in terms of Actual and Estimated SE

 $100 \times (1 - \alpha)\%$ Confidence Level

$$X_1,\ldots,X_n\sim \mathsf{iid}\ \mathsf{N}(\mu,\sigma^2)$$

Known Population Std. Dev. (σ)

$$\bar{X}_n \pm \operatorname{qnorm}(1-\alpha/2) \frac{SE(\bar{X}_n)}{SE(\bar{X}_n)}$$

Unknown Population Std. Dev. (σ)

$$\bar{X}_n \pm \operatorname{qt}(1 - \alpha/2, \operatorname{df} = n - 1) \widehat{SE}(\bar{X}_n)$$