Analyzing Loan Application Trends in New York State: Machine Learning Insights into Who Can Get a Loan

Yihao(Rainer) Luo, Yiqing (Selina) Xin, Yiwen (Wendy) Sun

ORIE 5741 Project Team Sweet Potatoes

Outline

- 1. Project Background & Problem
- 2. Dataset Introduction
- 3. Data Cleaning Process
- 4. Three Machine Learning Models
- 5. Summary & Next Steps

Background & Problem

- General Background:
 - o financial institutions face <u>credit risk</u>: possibility of loss if borrowers fail to repay loans or meet contractual obligations.
 - problems: interruption of cash flow & increase cost of loan collection
 - o normally, bank require applicants' information to decide whether to lend a loan.
- Project Goal / Decision Problem:
 - identify applicant characteristics favored by lenders and that have higher probability of application acceptance to help applicants to determine whether the application will be accepted.

Dataset & Variables

- Dataset intro:
 - FFIEC Home Mortgage Disclosure Act (HMDA)
 - state: New York, year: 2021
 - o 787,436 observations
 - 99 variables of information about borrowers, demographics, loan details, etc.

select essential variables

- 1 response variable: denial_reason_1
- 23 predictive variables → 6 categories:
 - 1. demographics (e.g. race, sex)
 - 2. borrower basics (e.g. income)
 - 3. property nature (e.g. house values)
 - 4. the purpose of the loan (loan reasons)
 - 5. contract details (e.g. interest rates)
 - 6. others (e.g. bank id)

Data Cleaning

- Feature Engineering:
 - response variable
 - categorical predictive variables ______ one-hot encoding
- Missing Values for Numerical Predictive Variables
 - \circ few missing observations \rightarrow remove rows with missing observations
 - \circ many missing observations \rightarrow use average to fill missing values
 - Missing values for certain variables occur when the corresponding applications are not accepted, meaning that information is only collected for accepted applications. (e.g. loan term, interest rate)

→ 1: approved; -1: denied

772458 observations, 178 predictors

Exploratory Data Analysis

- Percentage of acceptance and rejection
 - o acceptance 87%
 - o rejection 13%

Machine Learning Models

- 1. Logistic Regression
- 2. Decision Tree
- 3. Random Forest Tree
- Train/Test split \rightarrow train: 80%, test: 20%

Logistic Regression Method

- Model probability of certain events or outcomes by using sigmoid function to map real-valued numbers to a value between 0 and 1
- Pros:
 - classification problem (response = -1 or 1)
 - easy to implement and interpret; model will output a probability estimate for each observation
- Cons:
 - Assumes linear relationship between predictor and log odds of variables, but may not always be true
 - may not perform well if the dataset is very imbalance

Logistic Regression

- Classification Model
- Results
 - o precision = 0.83
 - \circ recall = 0.99
 - o AUC = 0.58
- Low AUC → poor ability to distinguish between positive and negative classes

Tree Based Algorithms

- Robust to any kind of Inputs (i.e. Numerical / Categorical) <-Important when client information comes in different forms
- Fast in Making predictions, making it suitable for online learning (i.e. Loan Pre-approval) within the Financial Industry
- Ability to detect feature importance, so Data Scientists could understand the causality.
- Boosting and Bagging will further empower the model

Decision Tree

- Tree based algorithm that seek to minimize impurity (Entropy) at each node
- Tree Depth is selected basing on validation loss

Decision Tree

- Tree Visualization is exhibited at the RHS
- A small tree (max depth = 4) ensures a 98% validation accuracy
- Conclusion: Only a few features are important (by Mean Decrease Impurity)
 - Property_value (61.4%)
 - Interest rate (37.2%)
 - Rate_spread (1.4%)

Random Forest

- We have noticed each individual tree is a strong learner. So we fit a Random Forest to:
 - Increase Generalizability
 - Identify other Important Features
- Number of Trees is selected on training loss, as it is an unbiased estimation of the Validation loss.
- Boosting algorithms are not considered

Random Forest

- Random Forest (30 Trees) 'forces' the model to pay attention to other features.
- As a result, accuracy decreases to 82%
- We get interpretable results on other deterministic factors of loan approval

Score: 0.8208755228784824

	feature	importance
3	interest_rate	0.224368
23	debt_to_income_ratio->60%	0.181814
4	rate_spread	0.180363
0	property_value	0.102915
1	loan_to_value_ratio	0.062061
7	debt_to_income_ratio-50%-60%	0.047234
6	income	0.043117
140	open-end_line_of_credit-1	0.016489
141	open-end_line_of_credit-2	0.016173
54	applicant_age-8888	0.011249

Summary & Next Step

Logistic Regression

- high precision and recall
- o but low AUC (0.58) suggests the model performs no better than random chance

Decision Tree & Random Forest

- Decision Tree with max depth of 4 achieves high accuracy (98%)
- Random Forest with 30 trees improves the model's attention to other features with accuracy of 82%, which provides insight into other factors of loan approval.

Next Step

 Deploy the random forest model on a web platform or integrate into an existing loan application system to provide instant feedback to applicants on their application's acceptance probability.

Thank You