

complete ultrafilter and partitions

 ${\bf Canonical\ name} \quad {\bf Complete Ultrafilter And Partitions}$

Date of creation 2013-03-22 18:55:52 Last modified on 2013-03-22 18:55:52 Owner yesitis (13730)

Last modified by yesitis (13730)

Numerical id 4

Author yesitis (13730) Entry type Definition Classification msc 03E02 If U is an ultrafilter on a set S, then

U is κ -complete \Leftrightarrow there is no partition of S into κ -many pieces for which each piece X_{α} of the partition is not in U.

We prove the case of σ -completeness; the case of arbitrary infinite cardinality follows closely. For the \Rightarrow direction, let P be a partition of S into ω many pieces, all of which do not belong to U, and write $S = \bigcup_{n=1}^{\omega} X_n$ to illustrate this partition. Now, $\varnothing = S^{\complement} = \bigcap_{n=1}^{\omega} X_n^{\complement}$. Since, by our assumption, each of the X_n do not belong to U, we have $X_n^{\complement} \in U$ for each $n < \omega$ as U is an ultrafilter. Thus, $(\bigcap_{n=1}^{\omega} X_n^{\complement}) \in U$ by σ -completeness. This, however, means $\varnothing \in U$, contradicting the definition of a filter.

Note that the converse states that every partition P of S into ω -many pieces has a (unique) piece $X_1 \in U$. To prove this, let Y_n be a collection of ω many members of U and let $Y = \bigcap_{n=1}^{\omega} Y_n$. Now consider the partition $\{P_{\iota} : \iota \leq \omega\}$ of $S \setminus Y$:

for each $s \in S \setminus Y$, put $s \in P_{\iota}$ if ι is the least index for which $s \notin Y_{\iota}$.

It is easy to verify that each $s \in S \setminus Y$ belongs to a unique P_{ι} , the collection of P_{ι} 's is indeed a partition of $S \setminus Y$.

Along with Y, $\{P_{\iota} : \iota \leq \omega\}$ partitions S into $\aleph_0 = \omega$ many pieces. A (unique) piece of this partition belongs in U: $P_{\iota*} \in U$ or $Y \in U$. But, $P_{\iota} \cap Y_{\iota} = \varnothing \not\in U$ by the definition of P_{ι} . This excludes the possibility for the former to belong in U (cf. alternative characterization of filter) and so $Y \in U$.

Thus, starting from an arbitrary collection $\{Y_n\}$ of ω -many members of U, we have identified a partition of S for which the unique piece which belongs to U is $\cap Y_n$. Therefore, U is σ -complete.