Générateurs de nombres aléatoires

Algorithmes et Structures de Données II, GymInf

Juan-Carlos Barros, Yves Dethurens, Daniel Kessler et Jean-Francis Ravoux 5 juillet 2021

Table des matières

1	Intro	oduction	1
	1.1	Que veut-on simuler et pourquoi?	1
	1.2	TRNG vs PRNG	2
2	Générateurs de suites pseudo-aléatoires		
	2.1	Historique	2
	2.2	Caractéristiques communes	2
	2.3	Générateurs linéaires congruents (LCG)	2
	2.4	Mersenne Twister et les LFSR	
3	Générateurs de "vraies" suites aléatoires		2
	3.1	Généralités - Processeur incapable	2
	3.2	Généralités - Le Monde réel oui	2
	3.3	Collection d'entropie	2
	3.4	Algorithmes d'aggrégation et expansion d'entropie	3
	3.5	Le futur est-il quantique?	
	3.6	Exemple genevois : ID Quantique	3
4	Que	fait le module "random" de Python?	3
5	Con	clusion	3
Ré	Références		

1 Introduction

1.1 Que veut-on simuler et pourquoi?

- distributions aléatoires (bla)
- utilité directe (ex : jeus) et indirecte (ex : algos aléatoires)

1.2 TRNG vs PRNG

. . .

2 Générateurs de suites pseudo-aléatoires

2.1 Historique

 $von \ Neumann[\textbf{VonNeumann}] \ (bla)$

2.2 Caractéristiques communes

- période (bla)
- seed (bla)

2.3 Générateurs linéaires congruents (LCG)

. . .

2.4 Mersenne Twister et les LFSR

. .

3 Générateurs de "vraies" suites aléatoires

3.1 Généralités - Processeur incapable

- Processeur arrive plutôt bien à propager de l'aléatoire
- Voir algorithmes présentés précédemment
- Mais il lui faut un coup de pouce au départ
- Besoin d'une graine pour démarrer
- Pourquoi hasard inaccessible au processeur?
- Car le processeur est profondément déterministe

3.2 Généralités - Le Monde réel oui

- Aléatoire inévitable et dérangeant dans le monde réel!
 - Incertitudes fondamentales des mesures
 - Impossibilité de contrôler une valeur physique
- Monde réel est donc LA source d'inspiration

3.3 Collection d'entropie

- Principales sources de hasard :
 - phénomènes physiques stochastiques :
 - bruit thermique (Johnson et Nyquist)

- autres phénomènes statistiques (vagues, etc.)
- phénomènes quantiques intrinsèquement aléatoires
 - effet photoélectrique
 - n'importe quelle autre mesure quantique

3.4 Algorithmes d'aggrégation et expansion d'entropie

- Algorithme pour grossir le flux de TRNG (pas assez rapide)
- HAVEGE (utilisé pas le noyau Linux)
- HArdware Volatile Entropy Gathering and Expansion
- https://www.irisa.fr/caps/projects/hipsor/misc.php

3.5 Le futur est-il quantique?

- Sources quantiques:
 - source de radioactivité détectée par un compteur Geiger
 - photons traversant un miroir semi-réfléchissant
 - C'est le choix de la compagnie Genevoise ID Quantique

3.6 Exemple genevois : ID Quantique

- Principe de la source ID Quantique :
 - photons traversant un miroir semi-réfléchissant
 - événements mutuellement exclusifs (réflexion / transmission)
 - Détection associée respectivement à des valeurs de bit 0 ou 1

4 Que fait le module "random" de Python?

bla sur les PRNG et TRNG utilisés (indirectement) par Python et résumé de résultats de petits tests

5 Conclusion

bla bla