Теория конечных графов

1. Организация учебного процесса

2. Неориентированные графы

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Курс теории конечных графов

		* * *
$N_{\underline{0}}$	Наименование	Содержание раздела
Π/Π	раздела	
	дисциплины	
1.	Элементы	Введение в теорию графов: основные понятия и определения.
_,	теории графов	Матричные представления графов. Маршруты, цепи, циклы.
		Нахождение связных компонент. Метрические характеристики графов.
		Подграфы. Операции над графами. Деревья. Эйлеровы графы.
		Гамильтоновы графы. Эйлеровы пути и циклы. Гамильтоновы пути и
		циклы. Связь между наличием в связном графе гамильтоновых циклов
		и длиной максимальных простых путей в нем. Нахождение кратчайших
		путей в ориентированном графе.
2.	Алгоритмы на	Алгоритм Краскала. Алгоритм Прима. Алгоритм Дейкстры.
۷.	графах	Алгоритм нахождения эйлерова цикла в графе. Алгоритм построения
		кратчайшего пути от фиксированной вершины до всех остальных
		вершин в ориентированном графе, случай неотрицательных весов
		ребер.
3.	Потоки в сетях	Прикладные модели и задачи, примеры применения методов
٥.		теории графов. Оценки структурных компонент графа. Задача о
		максимальном потоке и о минимальном разрезе в сети. Максимальный
		поток в транспортной сети. Задача на нахождение «узких» мест в сети.
		Задача о потоке минимальной стоимости.

БРС

Раздел	Тема	Формы контр		Баллы		
		Выполнение ПЗ (ЛР)	Контр. тест.	Итог. контр. знаний	темы	раздела
1.	Основные понятия ТГ. Неориентированные и ориентированные графы. Метрические характеристики графов.	0	15 (работа на семинарах /лекциях)	5	20	20
2.	Алгоритмы на графах: Краскала, Прима, Дейкстры, поиска Эйлерова цикла, Уоршала—Флойда. Транзитивное замыкание.	8 !	25	10	40	40
3.	Потоки на графах. Задача почтальона для ориентированных графов. Гамильтоновы графы.	7 !	25	5	40	40
Итого		15	65	20	100	100

Литература

- 1. Зарипова Э.Р., Кокотчикова М.Г. Лекции по дискретной математике: Теория графов. Учебное пособие. М., изд-во: РУДН, 2013, 162 с.
- 2. Емеличев В.А., Мельников О.И. Сарванов В.И., Тышкевич Р.И. «Лекции по теории графов» М.: Либроком, 2014.- 392 с.
- 3. Микони С.В., Дискретная математика для бакалавра. Множества, отношения, функции, графы. СПб., Изд-во Лань, 2013 г., 192 с.
- 4. Годунова Е.К. «Введение в теорию графов. Индивидуальные задания» М.: МПГУ, 2012. 44 с.
- 5. Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- 6. Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- 7. Учебный портал РУДН, раздел «Теория конечных графов» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26342

Примеры графов

Примеры графов

Примеры графов

Определение неорграфа

Пусть ${\bf V}$ — непустое множество, ${\bf V}^{^{(2)}}$ — множество всех его двухэлементных подмножеств, т.е. $(V_1,V_2)\in {\bf V}^{^{(2)}}$, если $V_1,V_2\in {\bf V}$.

Неориентированным графом (или просто графом) называется пара $G = (\mathbf{V}, \mathbf{E})$, где $\mathbf{E} \subseteq \mathbf{V}^{\scriptscriptstyle{(2)}}$.

Элементы множества ${\bf V}$ называются вершинами графа, а элементы множества ${\bf E}$ – ребрами.

Пример неорграфа

Множество вершин: $\mathbf{V} = \{V_1, V_2, V_3\}$, множество ребер: $\mathbf{E} = \{e_1, e_2, e_3\}$,

где
$$e_1 = (V_1, V_2)$$
, $e_2 = (V_2, V_3)$ и $e_3 = (V_3, V_3)$.

Смежность и инцидентность

Если ребро e соединяет вершины V_1 и V_2 , $e = (V_1, V_2) \in \mathbf{E}$, то вершины V_1 , V_2 называются смежными, а ребро $e = (V_1, V_2)$ называется ребром, инцидентным вершинам V_1 и V_2 .

Если ребро e инцидентно вершинам V_1 и V_2 , то такие вершины называются граничными точками ребра e.

Если вершины V_1 и V_2 – граничные точки ребра e и вершина V_1 совпадает с вершиной V_2 , то ребро e называется петлей. (В этом случае вершина V_1 смежна сама с собой.)

Если вершины V_1 и V_2 одновременно инцидентны ребрам e_1 и e_2 , то ребра e_1 и e_2 — называются параллельными ребрами.

Ребра e_1 и e_2 называются смежными, если они имеют хотя бы одну общую граничную точку. 10 Маркова Ёкатерина Викторовна. Лк. 1 по ТКГ. Неорграфы.

Смежность и инцидентность

Параллельные ребра e_1 и e_2 , смежные ребра e_3 и e_5 , ребра e_1 и e_4 не смежные, также как и e_2 и e_4 .

Петля – e_4 . Пример 2.

Степень вершины

Число ребер, инцидентных вершине V (петля учитывается дважды), называется степенью вершины V и обозначается $\delta(V)$. Вершина V изолирована, если $\delta(V) = 0$. В случае петли, например, в вершине V_1 , $\delta(V_1) = 2$.

$$\delta(V_1) = 2$$
, $\delta(V_2) = 3$, $\delta(V_4) = 0$, $\delta(V_5) = 2$.

Вырожденный граф

Граф называется вырожденным (пустым), если все его вершины являются изолированными.

Изоморфизм графов

Рассмотрим два графа $G = (\mathbf{V}, \mathbf{E})$ и $G^* = (\mathbf{V}^*, \mathbf{E}^*)$, и пусть существует биекция (взаимно однозначное отображение) – $\varphi : \mathbf{V} \to \mathbf{V}^*$.

Если для любых вершин V_i и V_j графа G их образы $\varphi(V_i)$ и $\varphi(V_j)$ смежны в G^* тогда и только тогда, когда вершины V_i и V_j смежны в G, то эта биекция называется изоморфизмом графа G на граф G^* . Если такой изоморфизм существует, то граф G изоморфен графу G^* .

Пример изоморфных графов

Для графов G и G^* вершины пронумерованы соответствующим образом.

Пример неизоморфных графов

Для этих двух графов G и G^* число вершин одинаковое, но, например, степень вершины V_1 графа G равна единице, а в графе G^* нет вершин, степень которых меньше двух. Читателю предлагается найти другие признаки неизоморфности.

Упражнение: определить, изоморфны ли графы?

Даны два графа G и G^* . Являются ли эти два графа изоморфными? Если графы являются изоморфными, найдите биекцию.

Теорема о числе вершин нечетной степени в графе 1/3

<u>Теорема:</u> В конечном графе число вершин нечетной степени четно.

Док-во. Нечетная степень вершины означает, что число ребер, инцидентных данной вершине, нечетно. Докажем, что количество таких вершин в графе четно.

Рассмотрим конечный граф $G = (\mathbf{V}, \mathbf{E})$. Пусть $|\mathbf{V}|$ и $|\mathbf{E}|$ — число вершин и ребер соответственно.

Утверждение.
$$\sum_{V \in \mathbf{V}} \delta(V) = 2 \cdot |\mathbf{E}|$$
.

Теорема о числе вершин нечетной степени в графе 2/3

Разобьем множество вершин V на два множества: $V = V_2 \cup V_1$.

- 1) $\mathbf{V}_{_{2}}$ множество всех вершин, имеющих четные степени, $\sum_{V\in\mathbf{V}_{2}}\delta(V)$ сумма степеней вершин четной степени.
- 2) V_1 множество всех вершин, имеющих нечетные степени, $\sum_{V \in V_1} \delta(V)$ сумма степеней вершин нечетной степени.

$$\sum_{V \in \mathbf{V}} \mathcal{S}(V) = \sum_{V \in \mathbf{V}_2} \mathcal{S}(V) + \sum_{V \in \mathbf{V}_1} \mathcal{S}(V) \quad \text{if } \sum_{V \in \mathbf{V}_1} \mathcal{S}(V) = \sum_{V \in \mathbf{V}} \mathcal{S}(V) - \sum_{V \in \mathbf{V}_2} \mathcal{S}(V).$$

Теорема о числе вершин нечетной степени в графе 3/3

Так как по утверждению $\sum_{v \in \mathbf{V}} \delta(V) = 2 \cdot |\mathbf{E}|$, то эта сумма является четной. Сумма $\sum_{v \in \mathbf{V}_2} \delta(V)$ также четна, так как суммируются четные степени вершин.

 $\Rightarrow \sum_{V \in \mathbf{V_1}} \mathcal{S}(V)$ — эта сумма также четна, так как является конечной суммой четных чисел.

В сумме $\sum_{v \in V_1} \delta(V)$ суммируются нечетные числа. Для того, чтобы сумма $\sum_{v \in V_1} \delta(V)$ была четной, количество слагаемых должно быть четно. \Rightarrow Количество вершин нечетной степени четно. \Box

Подграф

Граф $G_1 = (\mathbf{V}_1, \mathbf{E}_1)$ называется подграфом графа $G = (\mathbf{V}, \mathbf{E})$ при соблюдении следующих условий:

- 1. $\mathbf{V}_{1} \subseteq \mathbf{V}, \mathbf{E}_{1} \subseteq \mathbf{E}.$
- 2. Если ребро $e \in \mathbf{E}_1$ инцидентно вершинам V_1 и $V_2 \in \mathbf{V}_1$, то ребро $e \in \mathbf{E}$, также инцидентно вершинам $V_1, V_2 \in \mathbf{V}$.

Маршруты, цепи и циклы

Конечная последовательность ребер $e_1, e_2, ..., e_n$ графа $G = (\mathbf{V}, \mathbf{E})$ (не обязательно различных) называется маршрутом длины n, если существует последовательность $V_0, V_1, V_2, ..., V_n$ вершин (не обязательно различных), таких, что e_i инцидентно вершинам V_{i-1} и V_i , $i = \overline{1, n}$. (Здесь номера вершин и ребер показывают последовательность в маршруте, а не нумерацию в графе.) Маршрут замкнут, если $V_0 = V_n$ (циклический маршрут).

Маршрут называется цепью, если все его ребра различны и простой цепью, если все его вершины различны (в этом случае и все его ребра различны).

Замкнутая цепь называется циклом.

Простая замкнутая цепь называется простым циклом.

Связность

Граф $G = (\mathbf{V}, \mathbf{E})$ называется связным, если каждая пара различных вершин может быть соединена, по крайней мере, одной цепью. В противном случае граф называется несвязным.

Пример 8. Связный и несвязный графы

Теорема о связности графа

Граф $G = (\mathbf{V}, \mathbf{E})$ связен тогда и только тогда, когда множество его вершин нельзя разбить на два непустых подмножества $\mathbf{V} = \mathbf{V}_1 \cup \mathbf{V}_2$ так, что обе граничные точки каждого ребра находятся в одном и том же подмножестве.

Теорема о связности графа

Граф $G = (\mathbf{V}, \mathbf{E})$ связен тогда и только тогда, когда множество его вершин нельзя разбить на два непустых подмножества $\mathbf{V} = \mathbf{V}_1 \cup \mathbf{V}_2$ так, что обе граничные точки каждого ребра находятся в одном и том же подмножестве.

Доказательство. (от противного в обе стороны)

1) (слева направо) Пусть $G = (\mathbf{V}, \mathbf{E})$ несвязен. Выберем произвольную вершину V_i из множества \mathbf{V}_1 . Множество \mathbf{V}_1 состоит из вершины V_i и всех вершин, которые могут быть соединены с V_i цепью. Так как G несвязен, то $\exists \mathbf{V}_2 = \mathbf{V} \setminus \mathbf{V}_1$ и $\mathbf{V}_2 \neq \emptyset$. По построению множества \mathbf{V}_1 ни одно ребро из множества \mathbf{V}_1 не соединяет вершину из множества \mathbf{V}_1 ни с одной вершиной из множества \mathbf{V}_2 , т.е. \exists разбиение G на непустые подмножества.

Теорема о связности графа

2) (справа налево) Пусть \exists разбиение графа G на непустые подмножества \mathbf{V}_1 и \mathbf{V}_2 . Произвольным образом выберем вершины V_i из \mathbf{V}_1 и V_j из \mathbf{V}_2 . Цепь, соединяющая вершины V_i и V_j должна содержать минимум одно ребро, содержащее граничные точки в обоих множествах \mathbf{V}_1 и \mathbf{V}_2 . Так как такого ребра не существует, то G — несвязен.

Деревья и леса

Граф называется деревом, если он связен и не имеет циклов. Обозначается буквой T .

Граф, не имеющий циклов и состоящий из k компонентов, называется лесом из k деревьев. Обозначается буквой F.

Пример 9. Два дерева составляют лес из двух компонентов. Заметим, что T_1 является полным бинарным деревом.

Упражнение: определить, является ли граф деревом?

Пример 10.

Ветви и хорды дерева

Если дерево T является подграфом графа G, то ребра графа G, принадлежащие дереву T, называются ветвями дерева T, а ребра, не принадлежащие дереву T, называются хордами относительно дерева T.

Дерево T является подграфом графа G . Дерево T получилось путем удаления ребер $e_{\scriptscriptstyle 2}$, $e_{\scriptscriptstyle 4}$ из графа G . Ребра $e_{\scriptscriptstyle 1}$, $e_{\scriptscriptstyle 3}$, $e_{\scriptscriptstyle 5}$ графа G являются ветвями дерева T , а ребра $e_{\scriptscriptstyle 2}$, $e_{\scriptscriptstyle 4}$ — хорды относительно дерева T .

Теорема о количестве ребер для дерева с *п* вершинами

Дерево с *п* вершинами имеет в точности *n*-1 ребро.

Доказательство.

Нужно доказать, что количество ребер в дереве не больше (n-1), иначе образуется цикл, и не меньше (n-1), иначе образуется лес.

Теорема о количестве ребер для дерева с *n* вершинами

- 1) Удаление одного ребра разбивает дерево на 2 компоненты связности, то есть превращает его в лес из двух деревьев, граф становится несвязным. Удаление второго ребра превращает дерево в лес из 3 деревьев, и так далее. Удаление (n-1)-го ребра превращает дерево в лес из n деревьев, каждое из которых является изолированной вершиной.
- 2) Добавление любого ребра, после (n-1) образует цикл с ребрами, составляющими дерево.

Следовательно, каждое дерево с n вершинами имеет в точности (n-1) ребро.

Пример с деревом, состоящим из 7 вершин

Пример 12. Удаление каждого ребра добавляет несвязные компоненты

Тема следующей лекции:

«Ориентированные графы».