

Mark Scheme (Results)

October 2023

Pearson Edexcel International Advanced Subsidiary Level in Physics (WPH12) Paper 01

Unit 2: Waves and Electricity

Question Number	Answer	Mark
1	A is the correct answer	(1)
	B is not the correct answer as wavelength is a distance	
	C is not the correct answer as d is a distance	
	D is not the correct answer as θ is an angle	
2	C is the correct answer	(1)
	A is not the correct answer as there is a small current In the reverse direction	
	correct answer as there is a small current In the reverse direction	
	D is not the correct answer as there is a small current when the p.d. $< 0.7 \text{ V}$	
3	B is the correct answer	(1)
	A is not the correct answer as this would reduce the detail	
	C is not the correct answer as this would have no effect on detail	
	D is not the correct answer as this would reduce the detail	(4)
4	D is the correct answer	(1)
	A is not the correct answer as a larger charge would decrease drift velocity	
	B is not the correct answer as a larger diameter would decrease drift velocity	
_	C is not the correct answer as a larger current would increase drift velocity	(4)
5	B is the correct answer	(1)
	A is not the correct answer as the time period can be determined from the graph	
	C is not the correct answer as the wave could be transverse or longitudinal	
	D is not the correct answer as the wave could be transverse or longitudinal	(4)
6	B is the correct answer	(1)
	A is not the correct answer as the wavelength is 2/3 of the length VY	
	C is not the correct answer as the wavelength is 2/3 of the length VY	
	D is not the correct answer as the wavelength is 2/3 of the length VY	
7	C is the correct answer	(1)
	A is not the correct answer as these would be in antiphase	
	B is not the correct answer as these would be in antiphase	
	D is not the correct answer as this is incorrect	
8	C is the correct answer	(1)
	A is not the correct answer as $T = \mu v^2$ or $T \propto \frac{m}{l}$ so $2l$ is $T/2$	
	B is not the correct answer as $T = \mu v^2$ or $T \propto m/l$ so $2l$ is $T/2$	
	D is not the correct answer as $T = \mu v^2$ or $T \propto m/l$ so $2l$ is $T/2$	
9	D is the correct answer	(1)
	A is not the correct answer as this corresponds to the smallest energy change	
	B is not the correct answer as this corresponds to the smallest energy change	
	C is not the correct answer as this corresponds to the smallest energy change	
10	C is the correct answer	(1)
	A is not the correct answer as light transmitted Is unpolarised as this is unchanged	
	B is not the correct answer as light reflected must be polarised as it Is absorbed by	
	the filter D is not the correct answer as light reflected must be polarised as it Is absorbed by	
	D is not the correct answer as light reflected must be polarised as it Is absorbed by the filter	

Question Number	Answer	Mark
11	Waves <u>reflect</u> off surrounding objects / surfaces (1)	
	Time to return is detected (1)	
	This time can be used to determine the distance/position of an object (1)	3
	Total for question 11	3

Question Number	Answer	Mark
12	Use of conservation of charge (1)	
	Use of conservation of energy (1)	
	Algebra leading to given expression (1)	3
	Example of derivation (conservation of charge) $I = I_1 + I_2$ $\frac{V_{tot}}{R_{tot}} = \frac{V_1}{R_1} + \frac{V_2}{R_2}$ (conservation of energy) $V_{tot} = V_1 = V_2$	
	$\frac{1}{R_{tot}} = \frac{1}{R_1} + \frac{1}{R_2}$	
	$\frac{1}{R_{tot}} = \frac{R_1 + R_2}{R_1 R_2}$	
	$R_{tot} = \frac{R_1 R_2}{R_1 + R_2}$	
	Total for question 12	3

Question Number	Answer	Mark
13(a)	Use of $R = \frac{\rho l}{A}$ (1)	
	Use of cross-sectional area = width \times thickness (1)	
	Thickness of layer of carbon = 1.2×10^{-5} m (1)	3
	Example of calculation $8.8 \Omega = \frac{3.7 \times 10^{-5} \Omega \text{ m} \times 0.12 \text{ m}}{0.042 \text{ m} \times t}$ $t = 1.2 \times 10^{-5} \text{m}$	
13(b)(i)	Use of $R = V/I$ to calculate I Or ratio of resistances = ratio of p.d.s (1)	
	Calculate p.d. across the internal resistance (see $0.1V$) Or calculate whole circuit resistance (see 9.4Ω) (1)	
	$r = 0.63 \ \Omega \tag{1}$	3
	Example of calculation $I = \frac{1.4}{8.8} = 0.16 \text{ A}$ $r = \frac{0.1 \text{ V}}{0.16 \text{ A}} = 0.63 \Omega$	
13(b)(ii)	Reading on voltmeter = 0.35 V $ \frac{\text{Example of calculation}}{V} = \frac{3.0 \text{ cm}}{12.0 \text{ cm}} $ $ V = 0.35 \text{ V} $ (1)	1
	Total for question 13	7

Question Number						
14(a)	10°C corresponds to $2.0~\Omega$	(1)				
	Use of ratio of resistances	(1)				
	Use of corresponding ratio of p.d.s	(1)				
	To a p.d. of 0.7(06) V	(1)				
	If temperature goes below this level then resistance of thermistor increases	(1)				
	So p.d. to heater (switch) increases and so heater switch does perform as required	(1)				
	$\frac{\text{Example of calculation}}{\frac{V}{6.0} = \frac{2.0}{15 + 2.0}}$ $V = 0.706 \text{ V}$					
	Or 10° C corresponds to 2.0Ω	(1)				
	Use of $I = V/R$ for whole circuit	(1)				
	Use of $V = IR$ for thermistor	(1)				
	To a p.d. of 0.7(06) V	(1)				
	If temperature goes below this level then resistance of thermistor increases	(1)				
	So p.d. to heater (switch) increases and so heater switch does perform as required Example of calculation $I = 6.0 \text{ V} / (2 + 15) \Omega$ = 0.353 A $V = 0.353 \text{ A} \times 2.0 \Omega$ = 0.706 V	(1)	6			
14(b)	Increase in temperature results in more electrons released Or Increase in temperature results in more electrons moving into conduction band	(1)				
	So resistance decreases (dependent on MP1)	(1)	2			
	[allow converse argument]		0			
	Total for question 14		8			

Question Number	Answer		Mark
15(a)	Electrons can exhibit wave behaviour	(1)	
	Electrons diffract as they pass through the graphite	(1)	
	Or graphite acts as a diffraction grating	(1)	
	Structure of graphite must be ordered/regular/layered	(1)	
	The (de Broglie) wavelength of the electrons is similar to the spacing of gaps between atoms	(1)	4
15(b)(i)	Use of $V = W/Q$	(1)	
	$W = 3.8 \times 10^{-16} (J)$	(1)	2
	Example of calculation $W = 1.6 \times 10^{-19} \text{C} \times 2400 \text{ V} = 3.84 \times 10^{-16} \text{ J}$		
15(b)(ii)	Use of $E_k = \frac{1}{2}mv^2$	(1)	
	$v = 2.9 \times 10^7 \text{ m s}^{-1}$	(1)	2
	(allow ecf from (b)(i))		
	Example of calculation		
	$E_k = 3.8 \times 10^{-16} \text{ J} = \frac{1}{2} 9.11 \times 10^{-31} \text{kg} \times v^2$		
	$v = 2.90 \times 10^7 \text{ m s}^{-1}$		
15(b)(iii)	(Increasing the accelerating p.d.) would increase the (maximum) momentum of the electrons		
	Or (Increasing the accelerating p.d.) would increase the (maximum) velocity of the electrons	(1)	
	Use of $\lambda = \frac{h}{p}$ so (de Broglie) wavelength of the electrons decreases	(1)	
	So the diameter of the circles would decrease Or Distance between maxima decreases	(1)	3
	Total for question 15		11

Question Number	Answer		Mark
16(a)	Interference/superposition takes place Destructive (interference) occurs when (the two reflective) waves meet in antiphase (and these wavelengths are missing) If the path difference is equal to $(n + 1/2) \lambda$	(1)	
	[Allow If $2d = (n + 1/2) \lambda$]	(1)	3
16(b)	Use of path difference = $2d$	(1)	
	Use of minimum occurs when path difference = $\lambda / 2$	(1)	
	Use of $n = c/v$ (with $v = f\lambda$)	(1)	
	wavelength in air = 6.0×10^{-7} m	(1)	4
	Example of calculation Path difference = $2 \times 6.5 \times 10^{-8}$ m = 1.3×10^{-7} m wavelength in coating = $2 \times 1.3 \times 10^{-7}$ m = 2.6×10^{-7} m wavelength in air = 2.6×10^{-7} m × $2.3 = 5.98 \times 10^{-7}$ m = 598 nm		
16(c)	Use of $I = P/A$	(1)	
	Use of $P = E/t$	(1)	
	Use of Efficiency = useful power output/power input	(1)	
	Efficiency = $0.31 \text{Or} 31\%$	(1)	4
	Example of calculation Power incident on solar array = 1.1 kW m ⁻² × 8.7 m ² × cos 60 = 4.785 kW Power output from solar array = 5.4×10^6 J ÷ 3600 s = 1.5 kW Efficiency = 1.5 kW ÷ 4.785 kW = 0.313	-	
	Total for question 16		11

Question Number			Answe	er			Mark
*17(a)	structured ans Marks are awa shows lines of	wer with linkag arded for indica reasoning.	ent's ability to show a ges and fully-sustained tive content and for ho ow the marks should b	l reasoning. ow the ansv	ver is str	uctured and	
					awarde of answ	ed line of	
	and fully sus	tained lines of	nd logical structure wi reasoning demonstrate ed with some linkages	ed througho		1	
	Answer has a		ween points and is unsum of marks for indicang		t and the	0 e marks for	
	IC points	IC mark	Max linkage mark	Max fina	l mark		
	6 5	4 3	2 2	6 5			
	4	3	1	4			
	3	2	1	3			
	1	2	0	1			
	0	0	0	0			
	Indicative co IC1 Phot IC2 cause IC3 from IC4 as th Or a frequ IC5 The c the c IC6 Whe longe Or V	ontent ons (of ultrave (photo)) elect (the surface (e) (photon) en s the frequence (ency of magnetic (frequency)) and the polarity er have enough the polarity of copper When the polarity hold frequency	iolet light) rons to be emitted of) the magnesium / ergy is greater than to	ribbon the work for the work is greent is zero move acro current is zero curre	ged gau because ss the ga ero because	ze (and create e the electrons no ap ause the work	6

17(b)(i)	Greater intensity increases the rate of photons emission from the lamp	(1)	
	This leads to an increased (emission) rate of (photo)electrons (crossing the airgap)	(1)	
	So greater rate of flow of charge Or increase in current	(1)	3
17(b)(ii)	Use of $c = f\lambda$	(1)	
	Use of $E = hf$	(1)	
	Converts work function and photon energy to the same unit	(1)	
	$E=2.0$ (eV)= which is less than ϕ so photoelectric effect will not take place $\mathbf{Or}\ E=3.1\times 10^{-19}$ (J) which is less than 5.9×10^{-19} (J) so photoelectric effect will not take place $\mathbf{Or}\ $ threshold frequency (f ₀) = 8.9×10^{14} (Hz) which is greater than 4.7×10^{14} (Hz) so photoelectric effect will not take place	(1)	4
	Example of calculation Frequency of light = 3.0×10^8 m s ⁻¹ / 6.33×10^{-7} m = 4.74×10^{14} Hz $E = 6.63 \times 10^{-34}$ J s × 4.74×10^{14} s ⁻¹ = 3.14×10^{-19} J $\phi = 3.7$ V × 1.6×10^{-19} J V ⁻¹ = 5.92×10^{-19} J		
	Total for question 17		13

Question Number	Answer		Mark
18(a)	MAX 4		
	A wavefront is a line on which all points are in phase	(1)	
	The wavefronts are parallel to the boundary (between air and glass) Or The wavefronts are perpendicular to the normal Or Light is (travelling) along the normal		
	Or Light is (travelling) perpendicular to the (surface of the) glass block	(1)	
	So all of the (points on the) wavefront enter the glass at the same time	(1)	
	The wave slows down (as it enters the glass block)	(1)	
	But the whole wavefront travels the same distance in the same time (so the ray does not change direction)	(1)	4
18(b)	Use of $n_1 \sin \theta_1 = n_2 \sin \theta_2$	(1)	
	Substitution of $\theta_2 = 90^{\circ}$	(1)	
	$c = 62 (^{\circ})$	(1)	3
	Example of calculation $1.51 \times \sin c = 1.33 \times \sin 90^{0}$ $c = 61.7^{\circ}$		
18(c)	Ray reflects off glass / water interface with no refracted ray	(1)	
	Angle of reflection = Angle of incidence (by eye)	(1)	
	Ray is undeviated at glass / air interface	(1)	3
	<u>Example</u>		
	laser pointer		

18(d)	(Some of) the light (travelling from the glass) is refracted/transmitted into the	(1)	
	fingers/ridges/skin	(1)	
	Dark areas where fingers/ridges/skin is in contact with glass	(1)	
	(Some of) the light (travelling from the glass) is reflected from the air/valley	(1)	
	Light areas where air is in contact with glass.	(1)	4
	Total for question 18		14