

Université

Département d'informatique

Attaques et vulnérabilités des réseaux

Réalisé par : Dr RIAHLA

Docteur de l'université de Limoges (France)

Maitre de conférences à l'université de Boumerdes

Département de physique/Infotronique IT/S6

Introduction

Introduction Hacker et cracker

Hacker

Une communauté de programmeurs expérimentés et des spécialistes des réseaux, ont créé le mot "hacker".

Ces informaticiens sont:

- Généralement discrets
- >Anti-autoritaristes
- Motivés par la curiosité.

Introduction Hacker et cracker

cracker

- > Personnes qui s'autoproclament des "hackers".
- Adolescents de sexe masculin
- ➤S'introduisant à distance dans les systèmes informatiques
- > piratent des systèmes téléphoniques.
- >Utilisent des outils écrit par d'autres personnes (trouvés sur Internet).

^{*} Réalisé par : Dr RIAHLA

Introduction Hacker et cracker

Les vrais hackers appellent ces gens des *crackers*.

Les vrais hackers pensent que les crackers sont:

- > Des gens paresseux,
- >Irresponsables et
- >Pas très brillants.

Introduction Objectifs des attaques

- Désinformer
- Empêcher l'accès à une ressource
- Prendre le contrôle d'une ressource
- Récupérer de l'information présente sur le système
- Utiliser le système compromis pour rebondir
- Constituer un réseau de « botnet » (ou réseau de machines zombies)

Introduction Motivations des attaques

- ➤ Vol d'informations
- Modifications d'informations
- > Vengeance/rancune
- ➤ Politique/religion
- Défis intellectuels

Introduction Cible des pirates

- ➤ Les états
- > Serveurs militaires
- **≻**Banques
- ➤ Universités
- >Tout le monde

Définitions

Définitions

Nœud malicieux:

➤ Unité malveillante (écoute puis attaque)

Attaquant actif-n-m:

Attaquant qui possède m nœuds malicieux et qui compromis n nœuds

Attaques externes:

>Attaques lancées par un nœud qui n'appartient pas au réseau ou bien qui n'est pas autorisé à y accéder

Définitions

Attaques internes:

- >Attaques lancées par des nœuds internes compromis ou malveillants.
- C'est le type de menace le plus sévère
- Les mécanismes proposés pour lutter contre les attaques externes sont inefficaces devant ce type d'attaques

Définitions (Définitions: **Attaques passives**)

- >Écoute des lignes
- >Analyse de trafic
- Plus facile avec le sans fil
- >C'est une préparation d'une attaque active

La Solution doit:

>Assurer la confidentialité des échanges.

Définitions (Définitions: **Attaques actives**)

- > **Détruire** des messages
- >Injecter des messages erronés
- Modifier des messages et usurper l'identité d'un nœud.
- >...etc

La Solution doit:

Assurer la disponibilité, l'intégrité, l'authentification et la non répudiation

Rappels TCP/IP

Rappels sur le concept d'IP Anatomie d'une adresse IP

- >Adresse logique des machines
- > Représentée sur 32 Bits

Réalisé par : Dr RIAHLA

>ICANN, Institution chargée d'affecter les

numéros IP dans le monde afin d'éviter les conflits

Datagramme IP:

L'unité de base des données circulant sur Internet

<		32	>		
Version (4 bits)	Longueur d'en-tête (4 bits)	Type de serviœ (8 bits)		Longueur totale (16 bits)	
Identification (16 bits)			Drapeau (3 bits)	Décalage fragment (13 bits)	
Durée de vie (8 bits)		Protocole (8 bits)	Somme de contrôle en-tête (16 bits)		
Adresse IP source (32 bits)					
Adresse IP destination (32 bits)					
Données					

Message UDP

Port UDP source	Port UDP destination	
Longueur message UDP	Somme de contrôle	
Données		

Segment TCP

Segment TCP Le champ Flags

- >ACK: Le paquet est un accusé de réception
- ➤**FIN**: L'émetteur a atteint la fin de son flot de données.
- >RST: Réinitialiser la connexion.
- >**SYN:** Synchroniser les numéros de séquence pour initialiser une connexion.
- >**PSH:** Fonction push.

Segment TCP Acquittements

Segment TCP Ouverture de connexion

Segment TCP Fermeture de connexion

Segment TCP Autres types de connexions

Transfert de données

```
==> ACK=1 - SeqNum=101 - AckNum=301 - Data=30 octets

<== ACK=1 - SeqNum=301 - AckNum=131 - Data=10 octets

==> ACK=1 - SeqNum=131 - AckNum=311 - Data=5 octets

<== ACK=1 - SeqNum=311 - AckNum=136 - Data=10 octets
```

Fermeture brutale de connexion

```
==> ACK=1 - RST=0 - SeqNum=200 - AckNum=400
<== ACK=0 - RST=1 - SeqNum=400 - ACKNum=xxx
```


Attaques réseaux

Université

Les réseaux peuvent être vulnérables:

- > Par une mauvaise implémentation des piles udp/ip et tcp/ip.
- > Par des faiblesses des protocoles

IP Spoofing:Introduction (Usurpation d'adresse IP)

➤ Dans certains cas, l'adresse IP source est utilisée pour autorisez une connexion (Systèmes sur lesquels l'authentification est fondée sur l'adresse IP).

IP Spoofing: On fait croire que la requête provient d'une machine autorisée.

2008/2009

IP Spoofing: Principe

>IP Spoofing: Forger l'adresse source d'un paquet et à abusez de la confiance de cette source.

- ➤ Plus facile à utiliser avec les protocoles basés sur UDP.
- ➤ Pour **TCP** ???

IP Spoofing: Attaques à base de TCP

IP Spoofing: Attaques à base de TCP

- >TCP est un protocole en mode connecté, il utilise des acquittements et des numéros de séquence
- ➤Pour éviter d'utiliser les mêmes numéros de séquence, un numéro de séquence initial aléatoire (ISN) est choisi pour chaque nouvelle connexion

>Exemple d'attaque: les protocoles rlogin, rsh sur les machines à numéro de séquence TCP prévisible.

Mais...

IP Spoofing: Attaque à base de TCP

- >Comment deviner l'ISN d'une machine?
- >Comment empêcher une machine répondre! ?

TCP ISN generation

Dans certaines implémentations de pile TCP/IP prochain ISN peut que soit prédit.

Un pirate procède comme suite:

TCP ISN generation

- ➤Il ouvre quelques connexions (par exemple SMTP) pour obtenez les ISN courants et leurs méthodes d'incrémentation.
- ➤Il lance sa connexion forgé qui utilise le dernier ISN incrémenté selon la méthode détectée.
- ➤Il peut lancer des connexions forgés multiples avec différentes augmentations en espérant qu'au moins une est correct.

Exemple

DOS (déni de service)

- >Attaque destinée à empêcher l'utilisation d'une machine ou d'un service.
- Plus souvent utilisé pour saturer un routeur ou un serveur.
- >Ce type d'attaque peut engendrer des pertes très importantes pour une entreprise.
- >Attaque très simple à mettre en œuvre (outils faciles à trouver) et très difficile à empêcher.

DOS

DOS local

- > Epuisement des ressources
- > Saturation de l'espace disque
- >répertoires récursifs
- ➤ boucle infinie de fork ()
- >...etc

DOS par le réseau

- > Consommation de bande passante
- >SYN flood
- >mailbombing.
- > ...etc

DOS: Exemple SYN Flood

- >Attaque par inondation de SYN avec une adresse source usurpée (spoofée) et inaccessible.
- ➤ La machine cible doit gérer une liste de connexions dans l'état SYN_RECV .
- >Le pirate sature cette liste.
- >La machine victime ignore les prochaines connexions
- >Attaque visible si la commande netstat -an indique un grand nombre de connexions

Se protéger de SYN Flood

➤ Une file FIFO (file circulaire)

DOS: Outils

- ≻Ping 'O Death
- ► Land Blat
- >Jolt
- ➤ TearDrop SynDrop
- ➤ Ident Attack
- >Bonk Boink
- >Smurf
- **>** WinNuke

Réalisé par : Dr RIAHLA 2

ARP Spoofing

- ➤ Pollution des caches arp avec de fausses associations adresse mac/adresse IP.
- >Permet des attaques de type "man in the middles.

Outils:

Réalisé par : Dr RIAHLA

- arp-sk (unix) winarp-sk (windows)
- http://www.arp-sk.org
- WinArpSpoof <u>http://nextsecurity.net</u>

ARP Spoofing

Réalisé par : Dr RIAHLA

Se protéger contre ARP Spoofing

- >Utiliser des associations statiques
- >Surveiller les changements d'association:
- arpwatch (unix)

http://www.securityfocus.com/data/tools/arpwat
ch.tar.Z

WinARP Watch (Windows)

http://www.securityfocus.com/data/tools/warpw
atch.zip

DNS Cache poisoning

Réalisé par : Dr RIAHLA

Sniffer

- ➤ De nombreux protocoles utilisent une authentification en texte clair
- ➤En visualisant la circulation sur un réseau, nous pouvons obtenir les noms d'utilisateurs et les mots de passe == **sniffer**
- Les sniffers Utilisent des sockets en mode « promiscuous »
- >socket (AF_INET,SOCK_RAW,IPPROTO_RAW)

Sniffer

Sniffing: Examples

Les protocoles d'authentification dont l'échange de données est en text clair:

- >telnet
- > rsh, rlogin, rexec
- > ftp
- http (with basic authentication)
- pop, imap (with default authentication)

Sniffing: Outils

➤ Le sniffer de base pour unix: tcpdump.

tcpdump host e450 and port 25

>Sniffer multi-plateforme: ethereal

(http://www.ethereal.com) devenu wireshark

(http://www.wireshark.org)

Cain &Abel

Smurf

Envoie d'une trame ICMP "echo request « ping » sur une adresse de diffusion.

• Exemple: ping 193.49.200.255

Objectif

- >Utilisée pour déterminer les machines actives sur une plage IP donnée.
- > Ecrouler une machine

Smurf Ecrouler une machine

Se protéger Contre Smurf

Interdire la réponse aux trames ICMP sur les adresses de diffusion:

- Au niveau routeur
- Au niveau machine

L'ingénierie sociale

- ➤Il n'y a généralement pas d'attaques réussies sans relations humaines
- > basée sur quartes grands principes:
- Le contexte (l'organigramme de l'entreprise)
- L'audace ou le bluff (avoir connaissance et savoir parler)
- La chance
- La patience calculée

Réussite de l'attaque ingénierie sociale

➤ Les personnes ne sont pas formées à la notion de sécurité informatique

Comment ça!!!!!!:

- > Disquettes ou sauvegardes jetées à la poubelle
- > Papiers ou l'on note ses mots de passe jetés à la poubelle
- ➤ Echange de mot de passe par MSN!!!!!

DDOS

- ➤ Distributed Denial Of Service.
- >Type d'attaque très à la mode.
- L'objectif est d'écrouler une machine et/ou saturer la bande passante de la victime.
- > Nécessite plusieurs machines corrompues.

DDOS Distributed Denial Of Service.

•Attaque popularisée le 14 février 2000 sur quelques sites .com renommés (ebay, cnn, amazon, microsoft, ...). Le coupable « Mafiaboy », 15 ans, est arrêté au Canada le 15 avril et condamné à 8 mois de détention. Il a causé des pertes estimées à 1,2 milliards de dollars en 24 heures.

DDOS Distributed Denial Of Service.

DDOS Exemples

- ➤ Tribe Flood Network (TFN)
- >Trinoo
- >TFN2K
- >Trinity (utilise les serveurs irc)..etc

Se protegé contre DDOS:

- > Etre attentif aux ports ouverts
- >find_ddos sur http://www.nipc.gov

But d'une attaque DDOS

- ➤Un botnet de 1000 machines peut saturer la bande passante d'une grande entreprise (1000 * 128Kb/s = 128 Mb/s).
- >Une entreprise peut acheter les services d'un « bot herders » pour attaquer un concurrent.

>« Ddos extortion »: des pirates peuvent menacer des sites de commerce en ligne (Exemple: la société Canbet en Angleterre).

Les « botnets »

- ➤ Début des années 1990.
- Réseau de machines contrôlées par un « bot herder » ou « botmaster ».

Selon une estimation: une machine sur quatre fait partie d'un botnet, soit environ 154 millions de machines.

Les « botnets » (Utilisation)

- >Envoyer du spam
- ➤ Vol d'informations sensibles (keylogger).
- ➤ Installer des spywares.
- Paralyser un réseau en déni de services (ddos)
- ➤ Installer un site web malicieux (phishing)
- >Truquer les statistiques de sites webs.

– ...

L'homme du milieu man in the middle

- > DHCP
- **>ARP**
- >ICMP
- >RIP
- > DNS
- >Proxy HTTP
- >Virus

Réalisé par : Dr RIAHLA 63

Intrusion

Attaque:

- ➤ Découverte systématique d'informations.
- Tentative d'intrusion ou de déni de service.

Intrusion:

Réalisé par : Dr RIAHLA

➤ Prise de contrôle totale ou partielle d'un système distant

Intrusion

- ➤ la réalisation d'une menace (c 'est une attaque).
- > Les conséquences peuvent être catastrophiques
- : vol, fraude, incident diplomatique, chantage...etc

Solution:

> Firewall et systèmes de détection d'intrusion (étudier dans les prochaines parties)

La méthode des hackers

Collecte d'information

Utilitaires utilisés par les pirates pour préparer leurs attaques.

- ➤ Détermination des champs d'activités(site web): Téléphone, Implantation Emails, politique de sécurité, liens vers d'autres serveurs WEB, Code source HTML
- >Recensement des éléments du réseau (Identifier les noms de domaines et les réseaux associés d'une organisation: BDD INTERNIC, ARIN,...etc)

Collecte d'information

- ➤Interrogation des serveurs DNS (**outil**: nslookup www.google.fr)
- ➤ Cartographie du réseau (Détermination de la topologie de chaque réseau : **traceroute**)
- Utiliser aussi les techniques d'Ingénierie sociale

La méthode des hackers

Balayage systématique Scanner

Frapper contre tous les murs dans l'espoir de trouver les portes et les fenêtres du réseau cible.

- ➤En connaissant les adresses IP, nous pouvons lancer un scan pour trouver des cibles intéressantes
- ➤Le scanner va essayer de se connecter à tous les services voulu sur toutes les machines appartenant à une plage d'adresses
- Résultat: liste des machines accessibles, des ports ouverts sur ces machines (Outil: superscan)

La méthode des hackers

Enumération des services

➤ Dans cette phase, il faut trouver des informations sur les services disponibles (TCP et UDP).

>Chercher aussi des:

Systèmes d'exploitation

Fournisseur d'un logiciel

Version d'un logiciel (ou service)

Outils de scan : nmap, strobe, udp_scan, netcat,

La méthode des hackers

Intrusion

- ➤ Par la recherche d'une vulnérabilité connue qui n'a pas encore été corrigé (patcher), nous pouvons pénétrer dans un système.
- ➤ Des failles connues peuvent être trouvées sur des sites web: securityfocus.com, secunia.com
- Les vulnérabilités les plus récentes sont publiées dans des mailing-listes

La méthode des hackers

Suite des étapes

Escalation (extension) of privileges

- ➤ Chercher à augmenter ses privilèges
- ➤ Par exemple l'installation d'un petit script que l'administrateur exécute par erreur .
- >Le pirate peut installer un sniffeur

Suite des étapes

Plundering

Réalisé par : Dr RIAHLA

- >Le vol de mots de passe.
- ➤ La recherche des informations, des documents ou des emails contenants des mots de passe

Suite des étapes

Effacer la trace

- Correction de logs avec des outils automatiques
- ➤ Dissimulation d'intrusion à l'aide de rootkits pour masquer la présence du hacker

Installation d'un backdoor

Conclusion

Après quelques minutes, n'importe qui est capable d'apprendre la manière de hacker votre site

Ce n'est pas parce que vous n'êtes pas connu que vous ne serez pas attaqué

Il faut donc:

- ➤ installer les correctifs de sécurité (patches) quand ils sont publiés
- ➤ installer seulement les modules logiciels strictement nécessaires pour vos serveurs.

Conclusion

Lorsque les compétences au sein de l'entreprise ne sont pas suffisantes pour mener à bien cette opération, il convient de faire réaliser un audit par une société spécialisée dans la sécurité informatique.

Merci

Réalisé par : Dr RIAHLA 81