4

Announcements

- Homework 2
 - Posted yesterday, due Monday night
 - For extra notebook work, please save as a pdf and then combine with your handwritten work for a single pdf to submit
 - Can use online sites like https://combinepdf.com/ if you need
- If you are late on HW1, just remember you have 14 cumulative grace days!
- Friday: Bring your computers again for visualization day!

I'd say I spent _____ hours on HW1.

- A. 1-3 hours
- B. 3-6 hours
- C. 6-9 hours
- D. 9+ hours

5 charges q are arranged in a regular pentagon as shown. What is the electric field at the center?

- A. Zero, and I can show it mathematically
- B. Zero, but I'm less confident with the math
- C. Nonzero, and I can show it mathematically
- D. Nonzero, but I'm less confident with the math

5 charges q are arranged in a regular pentagon as shown. What is the electric field at the center?

- A. Zero, and I can show it mathematically
- B. Zero, but I'm less confident with the math
- C. Nonzero, and I can show it mathematically
- D. Nonzero, but I'm less confident with the math

Suppose now we removed the topmost charge. Now what is the electric field at the center of the pentagon?

A.
$$\frac{4}{4\pi\epsilon_0} \frac{q}{a^2} \hat{\boldsymbol{y}}$$

A.
$$\frac{4}{4\pi\epsilon_0} \frac{q}{a^2} \hat{\boldsymbol{y}}$$
B. $\frac{1}{4\pi\epsilon_0} \frac{q}{a^2} \hat{\boldsymbol{y}}$

$$C. -\frac{1}{4\pi\epsilon_0} \frac{q}{a^2} \hat{\mathbf{y}}$$

D. I need longer to work out this math

Suppose now we removed the topmost charge. Now what is the electric field at the center of the pentagon?

A.
$$\frac{4}{4\pi\epsilon_0} \frac{q}{a^2} \hat{\boldsymbol{y}}$$

B. $\frac{1}{4\pi\epsilon_0} \frac{q}{a^2} \hat{\boldsymbol{y}}$

B.
$$\frac{1}{4\pi\epsilon_0} \frac{q}{a^2} \hat{\boldsymbol{y}}$$

$$\mathsf{C.} \ -\frac{1}{4\pi\epsilon_0}\frac{q}{\mathsf{a}^2}\hat{\mathsf{y}}$$

D. I need longer to work out this math

Say we want to find the electric field at point P due to the line of charge to the left. Breaking it up into chunks of length $d\ell$, what is the value of \imath ?

- A. x
- B. *y*₅
- C. $\sqrt{d\ell_s^2 + x^2}$
- D. $\sqrt{x^2+y_s^2}$

Say we want to find the electric field at point P due to the line of charge to the left. Breaking it up into chunks of length $d\ell$, what is the value of \imath ?

C.
$$\sqrt{d\ell_s^2 + x^2}$$

D.
$$\sqrt{x^2+y_3^2}$$

Given that, in terms of \vec{a} ,

$$\vec{\mathbf{E}}(\vec{r}) = \int \frac{\lambda d\ell_s}{4\pi\epsilon_0 2^3} \vec{\boldsymbol{\lambda}}$$

what is $\vec{\mathbf{E}}_{x}(x,0,0)$ (as a function of x)?

A.
$$\frac{\lambda}{4\pi\epsilon_0} \int \frac{x}{x^3} dy_s$$

B.
$$\frac{\lambda}{4\pi\epsilon_0} \int \frac{x}{(x^2 + y_s^2)^{3/2}} dy_s$$

C.
$$\frac{\lambda}{4\pi\epsilon_0} \int \frac{y_s}{(x^2 + y_s^2)^{3/2}} dy_s$$

D. Something else

$$\vec{\mathbf{E}}(\vec{r}) = \int \frac{\lambda d\ell_s}{4\pi\epsilon_0 \, 2^3} \vec{\boldsymbol{\lambda}}$$

what is $\vec{\mathbf{E}}_{x}(x,0,0)$ (as a function of x)?

A.
$$\frac{\lambda}{4\pi\epsilon_0} \int \frac{x}{x^3} dy_s$$

B.
$$\frac{\lambda}{4\pi\epsilon_0}\int \frac{x}{(x^2+y_s^2)^{3/2}}dy_s$$

C.
$$\frac{\lambda}{4\pi\epsilon_0} \int \frac{y_s}{(x^2 + y_s^2)^{3/2}} dy_s$$

D. Something else

How would you go about solving this integral, if you didn't have computational assistance?

$$\frac{\lambda}{4\pi\epsilon_0} \int \frac{x}{(x^2 + y_s^2)^{3/2}} dy_s$$

- A. u substitution
- B. Trig substitution
- C. Integration by parts
- D. Throwing up your hands in despair

How would you go about solving this integral, if you didn't have computational assistance?

$$\frac{\lambda}{4\pi\epsilon_0} \int \frac{x}{(x^2 + y_s^2)^{3/2}} dy_s$$

- A. *u* substitution
- B. Trig substitution
- C. Integration by parts
- D. Throwing up your hands in despair

How do people feel about Taylor series for working out limiting behavior?

- A. I remember them and am comfortable with them
- B. I remember them, but am not particularly comfortable with them
- C. I've definitely used them before, but I don't recall how they work
- D. I am alarmed. What is a Taylor Series?!

Taylor Series! (playing a hunch here...)

• The Taylor series of a function f about some point a is

$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots$$

- ullet Most commonly looking at when a variable is small, so a commonly is 0
- Binomial Approximation (Special Taylor)
 - Rewrite equation into form $(1+x)^{\alpha}$ where x is small
 - Then $(1+x)^{\alpha} \approx 1 + \alpha x$

$$f(x) = \frac{x}{\sqrt{x^2 + a^2}}$$

for huge values of x? (Just focusing on x dependency here, you can ignore any a's floating around)

- A. 1 + x
- B. 1
- C. $1 \frac{1}{x}$
- $1 \frac{1}{x^2}$

$$f(x) = \frac{x}{\sqrt{x^2 + a^2}}$$

for huge values of x? (Just focusing on x dependency here, you can ignore any a's floating around)

- A. 1 + x
- B. 1
- C. $1 \frac{1}{x}$
- D. $1 \frac{1}{x^2}$

So, what do you expect to happen to the field as you get really far from the rod?

$$E_{x} = \frac{\lambda}{4\pi\epsilon_{0}} \frac{L}{x\sqrt{x^{2} + L^{2}}}$$

- A. E_x will go to 0
- B. E_x begins to look like a point charge
- C. E_x goes to ∞
- D. More than one of these is true

So, what do you expect to happen to the field as you get really far from the rod?

$$E_{x} = \frac{\lambda}{4\pi\epsilon_{0}} \frac{L}{x\sqrt{x^{2} + L^{2}}}$$

- A. E_x will go to 0
- B. E_x begins to look like a point charge
- C. E_x goes to ∞
- D. More than one of these is true