On the Parametrized Complexity of Red-Blue Points Separation [1]

Édouard Bonnet, Panos Giannopoulos, and Michael Lambis

Merkouris Papamichail†

[†]IGP in Algorithms, Logic and Discrete Mathematics NKUA, NTUA

Parametrized Algorithms & Complexity, Spring 2021

Table of Contents

- Introduction
 - The Problem
 - Exponential Time Hypothesis
- 2 Lower Bound
 - 2-Track Hitting Set Problems
 - Reduction
 - Gadgets
- Upper Bound
 - Description & Strategy
 - 2-Conjunctive Normal Form
- 4 Conclusion & Future Work
- Bibliography

Table of Constents

- Introduction
 - The Problem
 - Exponential Time Hypothesis
- 2 Lower Bound
 - 2-Track Hitting Set Problems
 - Reduction
 - Gadgets
- Upper Bound
 - Description & Strategy
 - 2-Conjunctive Normal Form
- 4 Conclusion & Future Work
- 6 Bibliography

The Problem

Red-blue Points Separation

Let $\mathcal{R}, \mathcal{B} \subset \mathbb{R}^2$ two point-sets in the plane. We need to find some set of lines \mathcal{L} , that separates \mathcal{R} from \mathcal{B} .

Results

- Lower Bound: In the general case, there is no $n^{o(k)}$ algorithm, unless ETH is false.
- **Upper Bound**: Axis-Parallel case, there is an $O(n \log n + n|\mathcal{B}|9^{|\mathcal{B}|})$ algorithm.
- Conjecture: Axis-Parallel case, there is an FPT algorithm, in the number of lines $|\mathcal{L}|$.

Exponential Time Hypothesis

Exponential Time Hypothesis (ETH)

3-SAT cannot be solved in subexponential time.

- Stated by Impagliazzo & Paturi in 1999 [3]
- ullet If ETH holds, then $\mathbf{P}
 eq \mathbf{NP}$
- ullet Stronger conjecture, than $\mathbf{P}
 eq \mathbf{NP}$

Table of Constents

- Introduction
 - The Problem
 - Exponential Time Hypothesis
- 2 Lower Bound
 - 2-Track Hitting Set Problems
 - Reduction
 - Gadgets
- Upper Bound
 - Description & Strategy
 - 2-Conjunctive Normal Form
- 4 Conclusion & Future Work
- 6 Bibliography

2-Track Hitting Set

Definition

Input:

- **1** A, B two totally ordered sets.
- ② S_A , S_B two collections of *intervals* of A, B, respectively.
- **3** An *1-1 correspondence* $\phi: A \rightarrow B$

Parameter:

• The size of the solution k = |S|.

Output:

- **1** A set $S = \{(a, \phi(a)) \mid a \in A, \phi(a) \in B\}$
- 2 The 1st projection of S is a hitting set for A
- The 2nd projection of S is a hitting set for B.

Structured 2-Track Hitting Set

Definition

- **1** The definition of the sets A, B, S_A, S_B and the solution S is the same as 2-Track Hitting Set.
- ② Additional *constraints in the 1-1 correspondence*.
- \odot \mathcal{C} is a partition of A into k color classes, each containing t elements.
- For each $a \in C_i$, $\phi(a) = \sigma \circ \sigma_i$, where σ maps C_i to a color class C_i' of B_i , σ_i "shuffles" the elements of C_i in C_i'

Figure 1: Constraints on the 1-1 correspondence of the STRUCTURED 2-TRACK HITTING SET.

The Reduction

Theorem 1 (Bonnet and Miltzow) [2]

STRUCTURED 2-TRACK HITTING SET is W[1]-hard and, unless the ETH fails, cannot be solved in $f(k)n^{o(k/\log k)}$ time for any computable function f.

- We use RED-BLUE POINT SEPARATION as a "black box", in order to solve an instance of STRUCTURED 2-TRACK HITTING SET.
- **2** Structured 2-Track Hitting Set \leq Red-Blue Point Separation
- From Theorem 1, and the reduction (Theorem 2) we have the desired lower bound (Theorem 3).

Theorem 3

RED-BLUE SEPARATION is W[1]-hard w.r.t. the number of lines k, and unless ETH fails, cannot be solved in $f(k)n^{o(k/\log k)}$ time for any computable function f.

Strategy

• Given an instance \mathcal{I}_{S2-THS} of the STRUCTURED 2-TRACK HITTING SET problem, we need to construct an instance \mathcal{J}_{R-BS} of the RED-BLUE SEPARATION problem, such that

$$\mathcal{I}_{\textit{S2-THS}} \in \mathcal{L}_{\textit{S2-THS}} \Leftrightarrow \mathcal{J}_{\textit{R-BS}} \in \mathcal{L}_{\textit{R-BS}}$$

- We need to encode the following structures:
 - \bigcirc The sets A, B.
 - 2 The collections of intervals S_A , S_B .
 - **3** The permutation of the color classes σ (inter-class permutation).
 - **1** The permutation of the elements of each class σ_i (intra-class permutation).
- The positions of red and blue points on the plane will be the restrictions.
- The *lines* selected by the R-BS algorithm, will correspond to the elements of a hitting set in S2-THS.

Goal

Theorem 2

Let \mathcal{I}_{S2-THS} be an instance of the S2-THS problem, and \mathcal{J}_{R-BS} be the corresponding instance (of our construction) of the R-BS problem. Then, $\mathcal{I}_{S2-THS} \in \mathcal{L}_{S2-THS}$, if and only if \mathcal{J}_{R-BS} can be solved with 6k+14 lines.

Note: From Theorems 1, 2 we obtain Theorem 3 as a Corollary.

Wire Diagram

Figure 2: The wire diagram of the gadgets.

Long Alley Gadgets

- (b) Surrounding a gadget with long alleys.
- Figure 3: Long alleys and their use.

- Enforcing (almost) horizontal or vertical lines.
- We surround gadgets with long alleys in order to force only axis parallel lines to pass through a gadget.
- There are infinitely many possible lines passing through a long alley, even in Q².

Interval Gadgets & Encoding A-Track

(a) Interval gadget corresponding to $[a_1, a_9] = \{a_1, a_2, \dots, a_9\}.$

(b) Interval gadgets put together. A representation of a track.

- Figure 4a. The algorithm must choose at least one horizontal line, corresponding to some $a_i \in [a_1, a_9]$.
- Figure 4a. In order to separate the red points from the red with 2 axis-parallel lines, the choice of the former imposes the later.
- Figure 4b. A representation of a track.
- Figure 4b. Separating these points requires taking lines associated to a minimum hitting set.
- Note 1. We include the *color classes* as intervals w.l.o.g.
- Note 2. We surround track-A with 4k long alleys.

Encoding *Inter*-class Permutation σ

Figure 5: Encoding the permutation $\sigma = 31452$.

- We place the σ -gadget at the right-hand side of the A-tack gadget.
- The choices within the color classes are transferred from almost horizontal, to almost vertical.
- Given the k choices of horizontal lines originating from the A-track gadget, it results in a vertical propagation accompanied by the desired reordering of the color classes.

Encoding *Intra*-class Permutations σ_i

Figure 6: Half encoding of the permutation $\sigma_i = 73285164$, of the i-th color class.

- We place a σ_i -gadget, for each color class.
- All σ_i -gadgets are bellow the σ -gadget.
- We utilize the arbitrary slopes of the lines, in order to keep the gadget "small" and maintain the parameter.
- The gadget on the left enforces that the choice of a_i^j is linked with an element smaller or equal to b_i^j.
- We use a symmetrical gadget to enforce the other inequality.

Encoding Track B

Figure 7: The encoding of the B-Track.

- We set the encoding of the B-Track around 5° to the right.
- The rotation facilitates the arbitrary slopes of the σ_i -gadgets.
- From the prespective of the B-Track the "incoming" lines behave like vertical.

The Big Picture

Figure 8: The Big Picture.

- The thin rectangles are the long alleys.
- The bold square in the with the diagonal top left corner is the encoding of A-track.
- The other bold square in the middle is the encoding of B-track.
- The smaller squares with the diagonal are encodings of the σ-permutation.
- The small round gadgets are the half-encodings of the σ_i-permutations.

Table of Constents

- Introduction
 - The Problem
 - Exponential Time Hypothesis
- 2 Lower Bound
 - 2-Track Hitting Set Problems
 - Reduction
 - Gadgets
- Upper Bound
 - Description & Strategy
 - 2-Conjunctive Normal Form
- 4 Conclusion & Future Work
- 6 Bibliography

Description & Strategy

- We present an FPT algorithm for AXIS-PARALLEL RED-BLUE SEPARATION.
- Parameter: $min\{|\mathcal{R},\mathcal{B}|\}$, w.l.o.g. we assume \mathcal{B} is the smaller set.

Theorem 4

An optimal solution of AXIS-PARALLEL RED-BLUE SEPARATION can be computed in $O(n \log n + n|\mathcal{B}|9^{|\mathcal{B}|})$ time.

- **①** We divide the plane into $|\mathcal{B}| + 1$ vertical stripes.
- Each stripe contains only red points, hence an optimal solution uses at most two lines inside a single strip.
- **③** We enumerate the number of lines used in each strip in $9^{|\mathcal{B}|}$ time.
- We check if a specification holds, by verifying a 2-CNF formula.

2-CNF: Definitions & Variables

Definitions:

- Let X, Y two list of the points $\mathcal{R} \cup \mathcal{B}$, sorted by x and y coordinate, respectively.
- $V_i = \{ p \in \mathbb{R}^2 \mid X[i] \le p(x) \le X[i+1] \}$
- $H_i = \{ p \in \mathbb{R}^2 \mid Y[i] \le p(y) \le Y[i+1] \}$
- Let S be the solution.

Variables:

- For each red point $p \in H_i$, let y_p^i denote "the line of S in H_i is below p".
- For each red point $p \in V_i$, let x_p^i denote "the line of S in S_i is to left of p".

2-CNF: Constraints 1, 2

Constraints:

- 1) For each pair of red points $p, p' \in H_i$, that are in consecutive lexicographical (y, x) order, we add the restriction $y_p^i \to y_{p'}^i$.
- 2) For each pair of red points $p, p' \in V_i$, that are consecutive in lexicographical (x, y) order, we add the restriction $x_p^i \to x_{p'}^i$

Figure 9: Constraints 1, 2.

2-CNF: C_{ij}-separable & Interesting Cells

Definition: C_{ij} -separable

Let $C_{ij} = H_i \cap V_j$ be a *cell*. A red point $p \in C_{ij}$ is called C_{ij} -separable for a point $p_b \in \mathcal{B}$, if p can be separated from p_b by a vertical r horizontal line running through the interior of C_{ij} .

Definition: Interesting Cell

We say that C_{ij} is *interesting* for a point $p_b \in \mathcal{B}$ if the following hold:

- **1** C_{ij} contains at least one red point that is C_{ij} -separable for p_b .
- ② At least one of H_i or V_j contains at most one horizontal or vertical line from S respectively.
- **3** There is no vertical line from S in a strip strictly between p_b and V_j
- There is no horizontal line from S in a strip strictly between p_b and H_i
- **Note:** The interesting cells for p_b are the cells that contain lines, whose position *cannot be predetermined*.

2-CNF: Constraint 3

Figure 10: The gray cell is interesting for p_b . Here, we construct the clause $y_p^2 \vee \neg x_p^4$. We would have $y_p^2 = 0$, $\neg x_p^4 = 1$.

3) For each $p_b \in \mathcal{B}$, each interesting cell C_{ij} and each red point $p \in C_{ij}$ we construct a clause:

- If $y(p_b) \ge Y(i+1)$, add $\neg y_p^i$, else add y_p^i .
- ② If $x(p_b) \ge X(i+1)$, add $\neg x_p^i$, else add x_p^i .
- **③** We construct $O(|\mathcal{B}||\mathcal{R}|)$ clauses.
- In an infeasible instance, we will have empty (unsatisfiable) clauses.

Table of Constents

- Introduction
 - The Problem
 - Exponential Time Hypothesis
- 2 Lower Bound
 - 2-Track Hitting Set Problems
 - Reduction
 - Gadgets
- Upper Bound
 - Description & Strategy
 - 2-Conjunctive Normal Form
- 4 Conclusion & Future Work
- Bibliography

Conclusions & Future Work

Conclusions

- We presented a reduction from STRUCTURED 2-TRACK HITTING SET to RED-BLUE POINTS SEPARATION.
- We proved the R-BPS cannot have an FPT algorithm, n the general case.
- We presented an FPT algorithm for the special case of AXIS PARALLEL R-BPS.

Future Work

- The complexity of AXIS PARALLEL R-BPS. Is it FPT, w.r.t. the number of lines?
- The complexity of R-BPS, when lines are allowed to have 3 slopes.
- The complexity of AXIS PARALLEL R-BPS in 3-dimensions.

Thank you for your time!

Table of Constents

- Introduction
 - The Problem
 - Exponential Time Hypothesis
- 2 Lower Bound
 - 2-Track Hitting Set Problems
 - Reduction
 - Gadgets
- Upper Bound
 - Description & Strategy
 - 2-Conjunctive Normal Form
- 4 Conclusion & Future Work
- 5 Bibliography

Bibliography

É. BONNET, P. GIANNOPOULOS, AND M. LAMPIS, On the parameterized complexity of red-blue points separation, CoRR, abs/1710.00637 (2017).

E. Bonnet and T. Miltzow, *Parameterized hardness of art gallery problems*, ACM Trans. Algorithms, 16 (2020).

R. IMPAGLIAZZO AND R. PATURI, *Complexity of k-sat*, in Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317), 1999, pp. 237–240.