

Inteligencia Artificial

Unidad 2: Redes Neuronales

TEMA 3: Algoritmos de IA Moderna-I

Módulo 2: Desde el Perceptrón a las Redes Neuronales

Unidad 2

Redes Neuronales

TEMA 3: Algoritmos de IA Moderna-I

Sesión 11-12

MÓDULO 2: Desde el Perceptrón a las Redes Neuronales

- 1. Perceptrón vs. Red Neuronal Artificial
- 2. Estructura de una Red Neuronal Artificial
- 3. Modelo Estándar de una Red Neuronal Artificial
- 4. El Perceptrón Simple
- 5. Redes ADALINE
- 6. Ventajas / Limitaciones

Preguntas

Aprendizaje supervisado

- El aprendizaje supervisado es una técnica aplicado en aprendizaje automático y minería de datos.
- El objetivo del aprendizaje supervisado es clasificar o predecir el valor correspondiente a cualquier objeto de entrada válida después de haber visto una serie de ejemplos denominado datos de entrenamiento. Para ello, tiene que generalizar a partir de los datos presentados a las situaciones no vistas previamente denominado test o prueba.

Clasificación vs Predicción

- Clasificación
 - □ Usado para predecir el valor de un atributo categórico (discreto o nominal)
- □ Predicción
 - Usado para modelar funciones que toman valore continuos
 - Predecir valores numéricos desconocidos

Aprendizaje Supervisado

Modelo supervisado

Tarea de clasificación

Ejemplo: predicción de engaños al fisco

Tid	Refund	Marital Status	Taxable Income	Cheat	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No	No	Single	75K	?
2	No	Married	100K	No	Yes	Married	50K	?
3	No	Single	70K	No	No	Married	150K	?
4	Yes	Married	120K	No	Yes	Divorced	90K	?
5	No	Divorced	95K	Yes	No	Single	40K	?
6	No	Married	60K	No	No	Married	80K	?
,	Yes	Divorced	220K	No			•	
3	No	Single	85K	Yes	_			
9	No	Married	75K	No			Learn	
10	No	Single	90K	Yes	Training Set	—	lassifi	er

Modelo de clasificación o modelo de predicción

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes

Conjunto de entrenamiento

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Conjunto de prueba

Arquitectura de la neurona artificial

Funciones de activación para la neurona

Nombre	Relación Entrada /Salida	Icono
Limitador Fuerte	$a = 0 n < 0$ $a = 1 n \ge 0$	工
Limitador Fuerte Simétrico	$a = -1 n < 0$ $a = +1 n \ge 0$	手
Lineal Positiva	$a = 0 n < 0$ $a = n 0 \le n$	
Lineal	a = n	\neq
Lineal Saturado	a = 0 n < 0 $a = n 0 \le n < 1$ a = 1 n > 1	_

Nombre	Relación Entrada /Salida	Icono
Lineal	a = -1 n < -1]
Saturado	$a = n - 1 \le n \le 1$	+
Simétrico	a = +1 n > 1	
Sigmoidal	1	
Logarítmico	$a = \frac{1}{1 + e^{-n}}$	
Tangente		
Sigmoidal	$a = \frac{e^n - e^{-n}}{e^n + e^{-n}}$	+
Hiperbólica	$e^n + e^{-n}$	
Competitiva	а	
	= 1 Neurona con n max	$ \mathbf{C} $
	a = 0 el resto de neuronas	

Funciones de activación para la neurona

Algoritmo de Perceptron unicapa

- 1. Iniciar valores aleatorios para pesos y umbral
- 2. Modificación de los pesos hasta encontrar el hiperplano discriminante
 - a) Seleccionar un ejemplo x del conjunto de entrenamiento
 - b) Se calcula la salida de la red:

$$a = w_1 x_1 + w_2 x_2, ..., w_n x_n + w_o$$

 $y = f(a)$

c) Si $y \neq d(x)$ se modifican los pesos:

$$w_i(t+1) = w_i(t) + \alpha(d(x) - y) * x_i$$

d) Repetir épocas desde el paso 2.a hasta cumplir un criterio de parada.

Donde:

- α es factor de aprendizaje
- d(x) clase o etiqueta esperada

Objetivo de Perceptrón Unicapa

Usa una función de activación ejemplo limitador fuerte simétrico

$$y = \begin{cases} +1, & si \ a > 0 \\ -1, & si \ a \le 0 \end{cases}$$

La ecuación del hiperplano es: $w_1x_1 + w_2x_2 + \theta = 0$ x_2 Pendiente de la recta $x_2 = -\frac{w_1}{w_2}x_1 - \frac{\theta}{w_2}$ Punto de corte

Perceptrón Simple: Ejemplo

Considerar el conjunto de datos

Factor de aprendizaje $\alpha = 0.3$

	Atributos						
	X ₁	X ₂	Clase				
1	-1	-1	-1				
2	1	-1	-1				
3	-1	1	-1				
4	1	1	1				
n							

- 1. Diseñar la Red Neuronal que corresponde
- 2. Presentar el hiperplano discriminante de clasificación previo a entrenamiento
- 3. Realizar el entrenamiento
- 4. Presentar el hiperplano discriminante de clasificación posterior al entrenamiento

Perceptrón Simple: Ejemplo- Solución

1) Diseñar la Red Neuronal

Conjunto de datos

Perceptrón Simple: Ejemplo- Solución

2) Presentar el hiperplano discriminante de clasificación previo a entrenamiento

Conjunto de datos

	_X ₁	ibutos X ₂	Clase
1	-1	-1	-1
2	1	-1	-1
3	-1	1	-1
4	1	1	1
n			

Considerar la ecuación:

$$w_1 x_1 + w_2 x_2 + \theta = 0$$

Hallamos un punto

Asumimos
$$x_1 = -1$$

(1)(-1) + (1) x_2 + 0.5 = 0

$$x_2 = 1 - 0.5$$

$$x_2 = 0.5$$

Solución Perceptrón Simple Solución

3) Realizar el entrenamiento con el primer patrón

Conjunto de datos

	X ₁	X ₂	Clase
a) 1	-1	-1	-1
2	1	-1	-1
3	-1	1	-1
4	1	1	1
n			

$$x = (-1, -1),$$
 b $d(x) = -1$

$$f(x) \Rightarrow y = \begin{cases} +1, & si \ w_1 x_1 + w_2 x_2 + \theta > 0 \\ -1, & si \ w_1 x_1 + w_2 x_2 + \theta \le 0 \end{cases}$$

$$a = w_1 x_1 + w_2 x_2 + w_0 x_0$$

$$a = (1)(-1) + (1)(-1) + (0.5)(1)$$

$$a = -1.5$$

$$y = d(x) = ?$$

 $y = f(-1.5) = -1$

C) Bien clasificado No modificamos pesos

4) Realizar el entrenamiento con el segundo patrón

Conjunto de datos

	X ₁	X ₂	Clase
1	-1	-1	-1
2	1	-1	-1
3	-1	1	-1
4	1	1	1
n			

$$f(x) \Rightarrow y = \begin{cases} +1, & si \ w_1 x_1 + w_2 x_2 + \theta > 0 \\ -1, & si \ w_1 x_1 + w_2 x_2 + \theta \le 0 \end{cases}$$

Factor de aprendizaje $\alpha = 0.3$

b)
$$\begin{cases} a = w_1 x_1 + w_2 x_2 + w_0 x_0 \\ a = (1)(1) + (1)(-1) + (0.5)(1) \\ a = 0.5 \end{cases}$$
$$y = f(0.5) = 1$$
 Mal clasificado (nuevos pesos)
$$y = d(x) = F$$

$$w_i(t+1) = w_i(t) + \alpha(d(x) - y) * x_i$$

$$w_1 = 1 + 0.3(-1 - 1)1 = 0.4$$

$$w_2 = 1 + 0.3(-1 - 1) - 1 = 1.6$$

$$\theta = 0.5 + 0.3(-1 - 1)1 = -0.1$$

4) Realizar el entrenamiento con el segundo patrón

Conjunto de datos

	X ₁	X ₂	Clase
1	-1	-1	-1
2	1	-1	-1
3	-1	1	-1
4	1	1	1
n			

$$f(x)$$
 \Rightarrow $y = \begin{cases} +1, & si \ w_1 x_1 + w_2 x_2 + \theta > 0 \\ -1, & si \ w_1 x_1 + w_2 x_2 + \theta \le 0 \end{cases}$

Factor de aprendizaje $\alpha = 0.3$

b)
$$\begin{cases} a = w_1 x_1 + w_2 x_2 + w_0 x_0 \\ a = (0,4)(1) + (1,6)(-1) + (-0,1)(1) \\ a = 0,4-1,6-0,1 \\ y = f(-1,3) = -1 \\ y = d(x) = V \end{cases}$$

C) Bien clasificado No modificamos pesos

Resultado de entrenamiento

Después de entrenar 2 patrones

Considerar la ecuación:

$$w_1 x_1 + w_2 x_2 + \theta = 0$$

Hallamos un punto

 $x_2 = 0.313$

Asumimos
$$x_1 = -1$$

 $(0.4)(-1) + (1.6)x_2 - 0.1 = 0$
 $x_2 = (0.4 + 0.1)/1.6$

Hallamos el otro punto

Asumimos
$$x_1 = 1$$

 $(0.4)(1) + (1.6)x_2 - 0.1 = 0$
 $x_2 = (-0.4 + 0.1)/1.6$
 $x_2 = 0.186$

4) Realizar el entrenamiento con el tercer patrón

Conjunto de datos

 $\sqrt{w_i(t+1)} = w_i(t) + \alpha(d(x) - y) * x_i$

Factor de aprendizaje $\alpha = 0.3$

b)
$$\begin{cases} a = w_1 x_1 + w_2 x_2 + w_0 x_0 \\ a = (0,4)(-1) + (1,6)(1) + (-0,1)(1) \\ a = 1,1 \end{cases}$$
$$y = f(\mathbf{0}.5) = \mathbf{1}$$
 Mal clasificado (nuevos pesos)
$$y = d(x) = \mathbf{F}$$

4) Realizar el entrenamiento con el tercer patrón

Conjunto de datos

	X ₁	X ₂	Clase
1	-1	-1	-1
2	1	-1	-1
3	-1	1	-1
4	1	1	1
n			

Factor de aprendizaje $\alpha = 0.3$

b)
$$\begin{cases} a = w_1 x_1 + w_2 x_2 + w_0 x_0 \\ a = (1)(-1) + (1)(1) + (-0,7)(1) \\ a = -0,7 \\ y = f(-0,7) = -1 \\ y = d(x) = V \end{cases}$$

C) Bien clasificado
No modificamos pesos

4) Realizar el entrenamiento con el cuarto patrón

Conjunto de datos

	X ₁	X ₂	Clase
1	-1	-1	-1
2	1	-1	-1
3	-1	1	-1
4	1	1	1
n			

$$x_1 = 1$$

$$x_2 = 1$$

$$\theta = -0.7$$

Factor de aprendizaje $\alpha = 0.3$

b)
$$\begin{cases} a = w_1 x_1 + w_2 x_2 + w_0 x_0 \\ a = (1)(1) + (1)(1) + (-0,7)(1) \\ a = 1,3 \\ y = f(1.3) = 1 \\ y = d(x) = V \end{cases}$$

C) Bien clasificado No modificamos pesos

ADALINE (ADAptive Linear NEuron) fue desarrollado en 1960 por Widrow y Hoff.

• Las <u>entradas pueden ser continuas</u> y se <u>utiliza una neurona similar a la del</u> <u>Perceptrón Simple</u>, igualmente, resulta un caso de respuesta lineal.

Dr. Bernard Widrow

Widrow PhD. Marcian Hoff

$$u = \sum_{i=1}^{n} w_i * x_i - \theta \longleftrightarrow u = \sum_{i=0}^{n} w_i * x_i$$

ADALINE (ADAptive Linear NEuron) fue desarrollado en 1960 por Widrow y Hoff.

La salida de la Red Adaline se puede dar mediante la ecuación:

$$u = \sum_{i=1}^{n} w_i * x_i - \theta \longleftrightarrow u = \sum_{i=0}^{n} w_i * x_{i_0}$$
$$y = g(u)$$

- w_i son los pesos sinápticos asociados a cada entrada.
- θ es el umbral de activación o bias.
- g() es la función de activación.
- u es el potencial de activación.

Dr. Bernard Widrow

PhD. Marcian Hoff

APRENDIZAJE: DIFERENCIAS ENTRE PERCEPTRON Y REDES ADALINE

PERCEPTRON

- Utiliza la salida de la función umbral (binaria) para el aprendizaje.
- Sólo se tiene en cuenta si se ha equivocado o no (no cuanto se equivocó).
- Valores de <u>respuesta no</u> continuos.

ADALINE

- Utiliza directamente la salida de la red (real) teniendo en cuenta cuánto se ha equivocado.
- Considera el error entre la salida lograda y versus la salida deseada d (etiqueta): $|d^p y^p|$
- Esta regla se conoce como **REGLA DELTA**. La $\Delta w_i = \alpha |d^p y^p|x_i$ constante α se denomina **TASA DE APRENDIZAJE**.
- Valores de <u>respuesta continuos</u>.
- Se busca minimizar la desviación de la red para todos los patrones (características) de entrada, eligiendo una medida del error global.
- Normalmente se utiliza el error cuadrático medio:

$$E = rac{1}{2} \sum_{p=1}^m (d^p - y^p)^2$$

Error cuadrático medio, compara un valor predicho y un valor observado o conocido.

EJEMPLO: Decodificador binario a decimal

Datos

d(X)	X ₃	X ₂	X ₁
1	1	0	0
2	0	1	0
3	1	1	0
4	0	0	1
5	1	0	1
6	0	1	1
7	1	1	1

Paso #1: Asignamos valores aleatorios para pesos de las entradas y umbral

Paso #2: Seleccionar un ejemplo x del conjunto de

1 = 1

$$x_1 = 0, x_2 = 0, x_3$$

entrenamiento:

Paso #3: Calcular la salida de la red: $y = f(w_1x_1 + \cdots + w_nx_n + \theta)$ y obtener la

diferencia.

$$y = 0.84 * 0 + 0.394 * 0 + 0.783 * 1 = 0.783$$

$$E = |d^p - y^p| = |1 - 0.783| = 0.217$$

$$w_1 = w_1 + \alpha * E * x_1 = 0.84 + 0.3 * 0.217 * 0 = 0.840$$

 $w_2 = w_2 + \alpha * E * x_2 = 0.394 + 0.3 * 0.217 * 0 = 0.394$
 $w_3 = w_3 + \alpha * E * x_3 = 0.783 + 0.3 * 0.217 * 0.8481$

 X_3

0

EJEMPLO: Decodificador binario a decimal

d(X)

6

7

Datos

 X_1

	0	0	1	1
7	0	1	0	2
	0	1	1	3
	1	0	0	4
	1	0	1	5

 X_2

Paso #5: Modificar los pesos y el umbral y repetimos desde el paso #2 hasta cumplir el criterio de parada.

Paso #2: Seleccionar un ejemplo x del conjunto de entrenamiento: $x_1 = 0$, $x_2 = 1$, $x_3 = 0$

Paso #3: Calcular la salida de la red: $y = f(w_1x_1 + \cdots + w_nx_n + \theta)$ y obtener la diferencia.

$$y = 0.84 * 0 + 0.394 * 1 + 0.8481 * 0 = 0.394$$

$$E = |d^p - y^p| = |2 - 0.394| = 1.606$$

$$w_1 = w_1 + \alpha * E * x_1 = 0.84 + 0.3 * 1.606 * 0 = 0.840$$

 $w_2 = w_2 + \alpha * E * x_2 = 0.394 + 0.3 * 1.606 * 1 = 0.876$
 $w_3 = w_3 + \alpha * E * x_3 = 0.8481 + 0.3 * 1.606 * 0 = 0.8481$

EJEMPLO: Decodificador binario a decimal

Datos

x ₁	X ₂	X ₃	d(X)
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Paso #5: Modificar los pesos y el umbral y repetimos desde el paso #2 hasta cumplir el criterio de parada.

Paso #2: Seleccionar un ejemplo x del conjunto de entrenamiento: $x_1 = 0, x_2 = 1, x_3 = 1$

Paso #3: Calcular la salida de la red: $y = f(w_1x_1 + \cdots + w_nx_n + \theta)$ y obtener la diferencia.

$$y = 0.84 * 0 + 0.876 * 1 + 0.8481 * 1 = 1.7241$$

$$E = |d^p - y^p| = |3 - 0.394| = 1.2759$$

$$w_1 = w_1 + \alpha * E * x_1 = 0.84 + 0.3 * 1.2759 * 0 = 0.840$$

 $w_2 = w_2 + \alpha * E * x_2 = 0.876 + 0.3 * 1.2759 * 1 = 1.259$
 $w_3 = w_3 + \alpha * E * x_3 = 0.8481 + 0.3 * 1.2759 * 1 = 1.231$

EJEMPLO: Decodificador binario a decimal

Datos

x ₁	X ₂	X ₃	d(X)
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Paso #5: Modificar los pesos y el umbral y repetimos desde el paso #2 hasta cumplir el criterio de parada.

Paso #2: Seleccionar un ejemplo x del conjunto de entrenamiento: $x_1 = 1$, $x_2 = 0$, $x_3 = 0$

Paso #3: Calcular la salida de la red: $y = f(w_1x_1 + \cdots + w_nx_n + \theta)$ y obtener la diferencia.

$$y = 0.84 * 1 + 0.876 * 0 + 0.8481 * 0 = 0.84$$

$$E = |d^p - y^p| = |4 - 0.84| = 3.16$$

$$w_1 = w_1 + \alpha * E * x_1 = 0.84 + 0.3 * 3.16 * 1 = 1.788$$

 $w_2 = w_2 + \alpha * E * x_2 = 1.259 + 0.3 * 3.16 * 0 = 1.259$
 $w_3 = w_3 + \alpha * E * x_3 = 1.231 + 0.3 * 3.16 * 0 = 1.231$

EJEMPLO: Decodificador binario a decimal

Datos

x ₁	X ₂	X ₃	d(X)
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Paso #5: Modificar los pesos y el umbral y repetimos desde el paso #2 hasta cumplir el criterio de parada.

Paso #2: Seleccionar un ejemplo x del conjunto de entrenamiento: $x_1 = 1$, $x_2 = 0$, $x_3 = 1$

Paso #3: Calcular la salida de la red: $y = f(w_1x_1 + \cdots + w_nx_n + \theta)$ y obtener la diferencia.

$$y = 1.788 * 1 + 1.259 * 0 + 1.231 * 1 = 3.019$$

$$E = |d^p - y^p| = |5 - 3.019| = 1.981$$

$$w_1 = w_1 + \alpha * E * x_1 = 1.788 + 0.3 * 1.981 * 1 = 2.382$$

 $w_2 = w_2 + \alpha * E * x_2 = 1.259 + 0.3 * 1.981 * 0 1.259$
 $\overline{w}_3 = w_3 + \alpha * E * x_3 = 1.231 + 0.3 * 1.981 * 1 = 1.825$

EJEMPLO: Decodificador binario a decimal

Datos

x ₁	X ₂	X ₃	d(X)
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Paso #5: Modificar los pesos y el umbral y repetimos desde el paso #2 hasta cumplir el criterio de parada.

Paso #2: Seleccionar un ejemplo x del conjunto de

$$x_1 = 1, x_2 = 1, x_3 = 0$$

entrenamiento:

Paso #3: Calcular la salida de la red: $y = f(w_1x_1 + \cdots + w_nx_n + \theta)$ y obtener la diferencia.

$$y = 2.382 * 1 + 1.259 * 1 + 1.825 * 0 = 3.641$$

$$E = |d^p - y^p| = |6 - 3.641| = 2.359$$

$$w_1 = w_1 + \alpha * E * x_1 = 2.382 + 0.3 * 2.359 * 1 = 3.09$$

 $w_2 = w_2 + \alpha * E * x_2 = 1.259 + 0.3 * 2.359 * 1 = 1.967$
 $w_3 = w_3 + \alpha * E * x_3 = 1.825 + 0.3 * 2.359 * 0 = 1.825$

EJEMPLO: Decodificador binario a decimal

Datos

X ₁	X ₂	X ₃	d(X)
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Paso #5: Modificar los pesos y el umbral y repetimos desde el paso #2 hasta cumplir el criterio de parada.

Paso #2: Seleccionar un ejemplo x del conjunto de

$$x_1 = 1, x_2 = 1, x_3 = 1$$

entrenamiento:

Paso #3: Calcular la salida de la red: $y = f(w_1x_1 + \cdots + w_nx_n + \theta)$ y obtener la diferencia.

$$y = 3.09 * 1 + 1.967 * 1 + 1.825 * 1 = 6.882$$

$$E = |d^p - y^p| = |7 - 6.882| = 0.118$$

Paso #4: Para todos los pesos y para el umbral, calcular:

EJEMPLO: Decodificador binario a decimal

Visualización de los pesos según

iteraciones

Iteración	w1	w2	w3
1	3.13	2.00	1.86
2	3.61	1.98	1.42
3	3.82	1.98	1.2
4	3.92	1.98	1.1
5	3.96	1.99	1.02
6	3.99	2.00	1.01
7	4.00	2.00	1.00
8	4.00	2.00	1.00
9	4.00	2.00	1.00
10	4.00	2.00	1.00

- La tasa de aprendizaje α también puede ser adaptativa.
- Por ejemplo al inicio, el valor puede ser alto, para dar "grandes pasos" de corrección del error y para salir de mínimos locales.
- Sin embargo al final del entrenamiento debe disminuir para hacer correcciones finas.

APRENDIZAJE: Seudocódigo

- 1. Inicializar los pesos y umbral de forma aleatoria.
- 2. Seleccionar un ejemplo x del conjunto de entrenamiento.
- 3. Calcular la salida de la red: $y = f(w_1x_1 + \cdots + w_nx_n + \theta)$ y obtener la diferencia.
- 4. Para todos los pesos y para el umbral, calcular:

$$\Delta w_i = \alpha |d^p - y^p| x_i$$
 $\Delta \theta_i = \alpha |d^p - y^p|$

5. Modificar los pesos y el umbral del siguiente modo:

$$w_i(t+1) = w_i(t) + \Delta w_i$$

$$\theta(t+1) = \theta(t) + \Delta \theta_i$$

6. Repetir para todos los patrones de entrenamiento hasta cumplir el criterio de parada.

6. Ventajas / Limitaciones

VENTAJAS

- El uso del Perceptrón o de las redes ADALINE permite aproximar de manera fácil, cualquier tipo de función o sistemas, sólo conociendo un conjunto de ejemplos (características o entradas).
- El uso del Perceptrón o de las redes ADALINE permite que cualquier sistema (caja negra), se puede representar por una red.

LIMITACIONES

- Estas técnicas poseen grandes limitaciones.
- Sólo pueden resolver sistemas donde los ejemplos o características (entradas) son linealmente separables (por ejemplo no resolverá el XOR Exclusivo para el cual no existe un hiperplano.

Solución: Combinar varios Perceptrones

PREGUNTAS

Dudas y opiniones

Preguntas?