Ansatz: Use case 2 (more or less) on the point we want to halve: Let $\mathbf{P}_1 = \{Q_1, Q_2\}$ be the point in question, just add it to a tangential point $\mathbf{P}_2 = \{Q_3, Q_3\}$. Obtain a point $\mathbf{P}_3 = \{Q_5, Q_6\}$. Let's assume we used (†) to solve. We now see Q_3 as a parameter and impose/want that $Q_5 = Q_6$. This means that (†) must factor as a square, so

$$\frac{1}{4} \left(T_5 - \sum_{i=1}^4 x_i \right)^2 = T_4 - T_5 \sum_{i=1}^4 x_i + \sum_{\substack{i,j=1\\i \le j}}^4 x_i x_j$$

with $x_3 = x_4$.