Explicando do Código de Hamming Exemplo com 4 bits - 1110.

A vantagem do Código de Hamming é que ele permite a recuperação do bit errado. Vejamos o exemplo com 4 bits – 1110.

Para esse exemplo de 4 bits precisaremos na realidade de 7 bits (os quatro que estamos trabalhando e **1110**b mais 3 que são usados na recuperação de dados no caso de erro, que precisamos calcular).

IDENTIFICADOR	X1	X2	M1	X3	M2	МЗ	M4
DADOS			1		1	1	0
ÍNDICE	1	2	3	4	5	6	7
Potência de 2	20	2 ¹		2 ²			

$$M1 = 3 = 2 + 1 = X2 + X1$$

 $M2 = 5 = 4 + 1 = X3 + X1$

$$M3 = 6 = 4 + 2 = X3 + X2$$

$$M4 = 7 = 4 + 2 + 1 = X3 + X2 + X1$$

ID	ÍNDICE	DECOMPOSIÇÃO	VALORES
M1	3	2+1	X2 + X1
M2	5	4+1	X3 + X1
М3	6	4+2	X3 + X2
M4	7	4+2+1	X3 + X2 + X1

Faça uma operação XOR com os "Ms" de acordo com a ocorrência das varáveis "X". Para calcular o valor de X1 temos:

$$X1 = M1 \oplus M2 \oplus M4$$

$$X1 = 1 \oplus 1 \oplus 0 = 0$$

Logo
$$X1 = 0$$

Para calcular o valor de X2 temos:

$$X2 = M1 \oplus M3 \oplus M4$$

$$X2 = 1 \oplus 1 \oplus 0 = 0$$

$$Logo X2 = 0$$

Para calcular o valor de X2 temos:

$$X3 = M2 \oplus M3 \oplus M4$$

$$X3 = 1 \oplus 1 \oplus 0 = 0$$

$$Logo X3 = 0$$

IDENTIFICADOR	X1	X2	M1	X3	M2	МЗ	M4
DADOS	0	0	1	0	1	1	0
ÍNDICE	1	2	3	4	5	6	7
Potência de 2	20	2 ¹		2 ²			

ASSIM O CÓDIGO GERADO PARA OS BITS 1110 É 0010110

PARA USAR O CÓDIGO RECEBIDO, UM DADO COMPONENTE RECEBE 0010110 E FARÁ OS CÁLCULOS:

IDENTIFICADOR	X1	X2	M1	X3	M2	МЗ	M4
DADOS	0	0	1	0	1	1	0
ÍNDICE	1	2	3	4	5	6	7

Sabendo que os cálculos para descobrir os valores "Xs" foram os seguintes:

 $X1 = M1 \oplus M2 \oplus M4$

 $X2 = M1 \oplus M3 \oplus M4$

 $X3 = M2 \oplus M3 \oplus M4$

Proceda calculando a paridade entre cada X e seus respectivos Ms.

Assim:

P1 = X1, M1, M2, M4	P2 = X2, M1, M3, M4	P3 = X3, M2, M3, M4
P1= 0, 1, 1, 0	P2 = 0, 1, 1, 0	P3 = 0, 1, 1, 0
P1= 0 (PAR)	P2 = 0 (PAR)	P3 = 0 (PAR)

DESSA FORMA CONCLUI-SE QUE NÃO HOUVE ERRO NA TRANSMISSÃO.

No entanto, se houver um erro... (neste exemplo simularemos um erro ocorrendo em M2)

IDENTIFICADOR	X1	X2	M1	X3	M2	МЗ	M4
DADOS	0	0	1	0	<u>0</u>	1	0
ÍNDICE	1	2	3	4	5	6	7
ÍNDICE BINÁRIO	001	010	011	100	101	110	111

Sabendo que os cálculos para descobrir os valores "Xs" foram os seguintes:

 $X1 = M1 \oplus M2 \oplus M4$

 $X2 = M1 \oplus M3 \oplus M4$

 $X3 = M2 \oplus M3 \oplus M4$

Proceda calculando a paridade entre cada X e seus respectivos Ms.

Assim:

P1 = X1, M1, M2, M4	P2 = X2, M1, M3, M4	P3 = X3, M2, M3, M4
P1= 0, 1, 0, 0	P2 = 0, 1, 1, 0	P3 = 0, 0, 1, 0
P1= 1 (IMPAR)	P2 = 0 (PAR)	P3 = 1 (IMPAR)

DEPOIS DE FAZER O CÁLCULO, PEGUE OS 3 BINÁRIOS EM ORDEM INVERSA (COMO A SETA AZUL SUGERE). VOCÊ TERÁ O BINÁRIO 101 (5 EM DECIMAL) QUE É A LOCALIZAÇÃO DO BIT QUE FOI ENVIADO ERRADO. É SÓ INVERTÊ-LO.

EXEMPLO DE GERAÇÃO DE CÓDIGO COM 8 BITS: 10101101

IDENTIFICADOR	X1	X2	M1	Х3	M2	МЗ	M4	X4	M5	M6	M7	M8
DADOS			1		0	1	0		1	1	0	1
ÍNDICE	1	2	3	4	5	6	7	8	9	10	11	12
Potência de 2	2 ⁰	2 ¹		2 ²				2 ³				

DECOMPOR OS "Ms":

ID	ÍNDICE	DECOMPOSIÇÃO	VALORES
M1	3	2+1	X2 + X1
M2	5	4+1	X3 + X1
М3	6	4+2	X3 + X2
M4	7	4+2+1	X3 + X2 + X1
M5	9	8+1	X4 + X1
M6	10	8+2	X4 + X2
M7	11	8+2+1	X4 + X2 + X1
M8	12	8+4	X4 + X3

CALCULAR OS VALORES "Xs":

Xs	CÁLCULO	VALORES	RESULTADO
X1=	$M1 \oplus M2 \oplus M4 \oplus M5 \oplus M7$	$1 \oplus 0 \oplus 0 \oplus 1 \oplus 0$	0
X2=	$M1 \oplus M3 \oplus M4 \oplus M6 \oplus M7$	$1 \oplus 1 \oplus 0 \oplus 1 \oplus 0$	1
X3=	M2 ⊕ M3 ⊕ M4 ⊕ M8	$0 \oplus 1 \oplus 0 \oplus 1$	0
X4=	M5 ⊕ M6 ⊕ M7 ⊕ M8	$1 \oplus 1 \oplus 0 \oplus 1$	1

RESULTADO:

IDENTIFICADOR	X1	X2	M1	Х3	M2	МЗ	M4	X4	M5	M6	M7	M8
DADOS	0	1	1	0	0	1	0	1	1	1	0	1
ÍNDICE	1	2	3	4	5	6	7	8	9	10	11	12
Potência de 2	2 ⁰	2 ¹		2 ²				2 ⁴				

CONFERINDO O CÓDIGO DE 8 BITS (NESSE CASO ELE VEM CERTO): 011001011101

IDENTIFICADOR	X1	X2	M1	Х3	M2	МЗ	M4	X4	M5	M6	M7	M8
DADOS	0	1	1	0	0	1	0	1	1	1	0	1
ÍNDICE	1	2	3	4	5	6	7	8	9	10	11	12

SABENDO QUE:

MBENDO QUE.					
Xs	CÁLCULO				
X1=	$M1 \oplus M2 \oplus M4 \oplus M5 \oplus M7$				
X2=	$M1 \oplus M3 \oplus M4 \oplus M6 \oplus M7$				
X3=	$M2 \oplus M3 \oplus M4 \oplus M8$				
X4=	$M5 \oplus M6 \oplus M7 \oplus M8$				

FAÇAMOS O CÁLCULO DAS PARIDADES:

Assim:

P1 = X1, M1, M2, M4, M5, M7 P1= 0, 1, 0, 0, 1, 0 P1= 0 (PAR)			P4 = X4, M5, M6, M7, M8 P4 = 1, 1, 1, 0, 1 P4= 0 (PAR)
--	--	--	--

TODOS OS CÁLCULOS DERAM "PAR", ENTÃO O NÚMERO ESTÁ CORRETO

CONFERINDO O CÓDIGO DE 8 BITS (NESSE CASO ELE VEM ERRADO): 0111010111101 (o correto seria 011001011101)

IDENTIFICADOR	X1	X2	M1	Х3	M2	М3	M4	X4	M5	M6	M7	M8
DADOS	0	1	1	1	0	1	0	1	1	1	0	1
ÍNDICE	1	2	3	4	5	6	7	8	9	10	11	12

SABENDO QUE:

Xs	CÁLCULO
X1=	$M1 \oplus M2 \oplus M4 \oplus M5 \oplus M7$
X2=	$M1 \oplus M3 \oplus M4 \oplus M6 \oplus M7$
X3=	$M2 \oplus M3 \oplus M4 \oplus M8$
X4=	$M5 \oplus M6 \oplus M7 \oplus M8$

FAÇAMOS O CÁLCULO DAS PARIDADES:

Assim:

1 1001111									
P1 = X1, M1, M2, M4, M5, M7	P2 = X2, M1, M3, M4, M6, M7	P3 = X3, M2, M3, M4, M8	P4 = X4, M5, M6, M7, M8						
P1= 0, 1, 0, 0, 1, 0	P2 = 1, 1, 1, 0, 1, 0	P3 = 1, 0, 1, 0, 1	P4 = 1, 1, 1, 0, 1						
P1= 0 (PAR)	P2 = 0 (PAR)	P3 = 1 (IMPAR)	P4= 0 (PAR)						

DEPOIS DE FAZER O CÁLCULO, PEGUE OS 4 BINÁRIOS EM ORDEM INVERSA (COMO A SETA AZUL SUGERE). VOCÊ TERÁ O BINÁRIO 0100 (4 EM DECIMAL) QUE É A LOCALIZAÇÃO DO BIT QUE FOI ENVIADO ERRADO. É SÓ INVERTÊ-LO.