

目录

糖通数概测的粉洗棒度管的

精通数据和资

ONE 重新审视模型

从随机的角度理解线性回归模型 从绝级回的那么

精通数据科学

精通数据科学

TWO 假设检验与置信区间

控制模型随机性的利器

楼通数流彩道:

THREE 代码实现。这种"

废话少说,放码过来

重新审视模型

条件概率

站在统计学的角度出发,我们试图 弄清楚变量y和x之间的数学关系

x与y之间可近 似为线性关系

生产记事本

日期	玩偶个数	成本	第几天	
04/01	10	7.7	1	森道
04/02	10	9.87	2	新育 工
04/03	11	10.87	3	68.8
04/04	12	12.18	4	从绝影
04/05	13	11.43	5	-
04/06	14	13.36	6	
04/07	15	15.15	7	
04/08	216	16.73	8	
04/09	17	17.4	9	
:			:	
	精工	通数() (本国)	后科	· · · · · · · · · · · · · · · · · · ·

生产记事本

日期	玩偶个数	成本	第几天
04/01	17/10	7.7	1
04/02	102 20	9.87	2

 $(x_1=10, y_1=7.7)$ $(x_2=10, y_2=9.87)$

> 变量少似乎带有 某种随机性

于是假设: $y_i = ax_i + b + \varepsilon_i$

其中 ϵ_i 表示随时扰动项

重新审视模型

条件概率

$$y_i = ax_i + b + \varepsilon_i$$

在上面公式的基础上,进一步假设:

日期	玩偶个数	成本	第几天
04/01	10	7.7	1
04/02	10	9.87	2
	34		

精通数据科学

 $y_1 = 7.7 \sim N(10a+b,\sigma^2)$ $y_2 = 9.87 \sim N(10a+b,\sigma^2)$

相同的玩偶个数,不同的成本。 因为成本y7,y2是同一正态分布 的两次独立观测值

重新审视模型

参数估计公式

根据上面的模型假设

$$y_i = ax_i + b + \varepsilon_i$$

· 变量y是随机变量

从给你回归到深度管的

· yi之间相互独立,而且都服从正态分布

由于y是随机变量,定义参数的似然函数 (likelihood function)

$$L = P(Y | a, b, X, \sigma^2)$$

似然函数其实就是y的联合条件概率yi相互独立,因此可以将似然函数改写如下

$$L = \prod P(y_i | a, b, x_i, \sigma^2)$$

既然y是随机变量,那么模型参数估计的原则是**y出现的概率达到最大**

· 这就是最大似然估计法(Maximum Likelihood Estimation, MLE)

$$(\hat{a}, \hat{b}) = argmax_{a,b}L$$

$$(\hat{a}, \hat{b}) = \operatorname{argmax}_{a,b} \ln L$$

$$\ln L = -0.5n \ln(2\pi\sigma^2) - (1/2\sigma^2) \sum_{i} (y_i - ax_i - b)^2$$

从给做回的秘证不随管的

$$(\hat{a}, \hat{b}) = \underset{i}{argmin_{a,b}} \sum_{i} (y_i - ax_i - b)^2$$

目录

精通数据和资 TE 重新审视模型

从随机的角度理解线性回归模型

精通效低积管 从给收益则的秘证不管管的

潮通查证据科学:

格通数据科学

TWO 假设检验与置信区间

控制模型随机性的利器

超通数源和资

THREE 代码实现。由对源是是

废话少说,放码过来

参数估计值的分布

$$(\hat{a}, \hat{b}) = argmin_{a,b} \sum_{i} (y_i - ax_i - b)^2$$

根据模型参数的估计公式,可以得到参数a, b的估计值:

- · 使用不同的数据训练模型,得到不同的参数估计值
 - · 数学上可以证明,参数估计值本身也是随机变量,而且服从正态分布。

实证例子

置信区间

既然得到估计值只是随机变量的一次观测值

- · 更关心估计值离真实值有多远?
- 解决方案: 定义参数真实值的置信区间

95%的置信区间表示

- · 重复100次的模型训练,并按公式得到置信区间,那么有95次,参数a的真实值将落在这个区间里
- · 可以"通俗地"理解为参数a的大致取值范围

估计值 â 服从以真实值为期望的正态分布

假设检验

除了置信区间外,还可以使用假设检验 来得到更有把握的结果

- · 对单个参数的假设检验与置信区间比 较类似
- 也可以对多个参数做组合的假设检验

楼通教师和潜

精通数据科学: 从始级回的秘证

THANK等

从给性回归那样度管的

精通数据科语: 从给您回归到深度管理

超通数混彩道: 从给你国的秘证

糖通数概称管: 从给你回的秘证不随管的

> 精通数据科学 从绝对回归对流汗度管的

精通数据科学: 从给你回的那样随管型