Computer Vision Projection Matrix and Camera Calibration

Dr. Mrinmoy Ghorai

Indian Institute of Information Technology
Sri City, Chittoor

Last Class

Pinhole camera model

Homogeneous coordinates

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

 Vanishing points and vanishing lines

Perspective and 3D Geometry

Camera models and Projective geometry

What's the mapping between image and world coordiantes?

Projection Matrix and Camera calibration

- What's the projection matrix between scene and image coordinates?
- How to calibrate the projection matrix?

Single view metrology and Camera properties

- How can we measure the size of 3D objects in an image?
- What are the important camera properties?

Photo stitching

 What's the mapping from two images taken without camera translation?

Epipolar Geometry and Stereo Vision

 What's the mapping from two images taken with camera translation?

Structure from motion

How can we recover 3D points from multiple images?

This class

Common Transformations

 What is the relation between scene point and image point in form of matrix?

How can we calibrate the camera?

Common Transformations

Parametric (global) warping

Transformation T is a coordinate-changing machine: p' = T(p)

For linear transformations, we can represent T as a matrix

$$p' = Tp$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{T} \begin{bmatrix} x \\ y \end{bmatrix}$$

Common Transformations

original

Transformed

translation

rotation

aspect

affine

perspective

Scaling

- Scaling a coordinate means multiplying each of its components by a scalar
- *Uniform scaling* means this scalar is the same for all components:

Scaling

• Non-uniform scaling: different scalars per component:

Scaling

Scaling operation:

$$x' = ax$$

$$y' = by$$

• Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
scaling matrix S

2-D Rotation

2-D Rotation

2-D Rotation

Basic 2D transformations

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
Scale

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\Theta & -\sin\Theta \\ \sin\Theta & \cos\Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Rotate

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Affine

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & \alpha_x \\ \alpha_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
Shear

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Translate

 $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$ Affine is any combination of translation, scale, rotation, shear

Affine Transformations

Affine transformations are combinations of

- Linear transformations, and
- Translations

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$$

or

Properties of affine transformations:

- Lines map to lines
- Parallel lines remain parallel
- · Ratios are preserved

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Projective Transformations

Projective transformations are combos of

- Affine transformations, and
- Projective warps

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Properties of projective transformations:

- Lines map to lines
- Parallel lines do not necessarily remain parallel
- · Ratios are not preserved
- Projective matrix is defined up to a scale (8 DOF)

Projective Transformations (homography)

The transformation between two views of a planar surface

 The transformation between images from two cameras that share the same center

Application: Panorama stitching

Source: Hartley & Zisserman

Application: document scanning

2D image transformations (reference table)

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} ig[egin{array}{c c} ig[oldsymbol{I} ig oldsymbol{t} ig]_{2 imes 3} \end{array}$	2	orientation $+\cdots$	
rigid (Euclidean)	$igg[egin{array}{c c} R & t \end{bmatrix}_{2 imes 3}$	3	lengths + · · ·	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2 imes 3}$	4	$angles + \cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

What is the relation between scene point and image point in form of matrix?

Projection: world coordinates → image coordinates

Projection is a matrix multiplication using homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \end{bmatrix} \Rightarrow (f\frac{x}{z}, f\frac{y}{z})$$
divide by the third coordinate

Projection is a matrix multiplication using homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} fx \\ fy \\ z \end{bmatrix} \implies (f\frac{x}{z}, f\frac{y}{z})$$
divide by the third coordinate

Projection is a matrix multiplication using homogeneous coordinates

$$\begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} fx \\ fy \\ z \end{bmatrix} \implies (f\frac{x}{z}, f\frac{y}{z})$$

$$\text{divide by the third coordinate}$$

Projection is a matrix multiplication using homogeneous coordinates

$$\begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} fx \\ fy \\ z \end{bmatrix} \implies (f\frac{x}{z}, f\frac{y}{z})$$
divide by the third coordinate

In practice: lots of coordinate transformations...

Projection matrix

$$x = K[R \ t]X$$

x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

Projection matrix under assumptions

Intrinsic Assumptions

- Unit aspect ratio
- No skew
- Optical center at (0,0) (i.e., at image origin)

No rotation

• Camera at (0,0,0)

Extrinsic Assumptions

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \longrightarrow w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Slide Credit: Saverese

Remove assumption: known optical center

Intrinsic Assumptions

- Unit aspect ratio
- No skew

Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & u_0 & 0 \\ 0 & f & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove assumption: square pixels

Intrinsic Assumptions

No skew

Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 & u_0 & 0 \\ 0 & \beta & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove assumption: non-skewed pixels

Intrinsic Assumptions

Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 & 0 \\ 0 & \beta & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Note: different books use different notation for parameters

Remove assumption: Camera translation

Intrinsic Assumptions Extrinsic Assumptions
• No rotation

$$\mathbf{X} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix} \mathbf{X} \longrightarrow w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:

$$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$R_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$R_{z}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Remove all assumption: Camera rotation also

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}$$

$$w\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove all assumption: Camera rotation also

$$x = K[R \ t]X$$

$$w\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Aspect Ratio

$$w\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & s & u_0 \\ 0 & \alpha f & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Degrees of freedom

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}$$

$$\mathbf{5} \qquad \mathbf{6}$$

$$w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Aspect Ratio

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & s & u_0 \\ 0 & \alpha f & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Orthographic Projection

 Object dimensions are small compared to distance to camera

- Good approximation for telephoto optics
- Also called "parallel projection": $(x, y, z) \rightarrow (x, y)$
- What's the projection matrix?

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$

Orthographic Projection

 Object dimensions are small compared to distance to camera

- Good approximation for telephoto optics
- Also called "parallel projection": $(x, y, z) \rightarrow (x, y)$
- What's the projection matrix?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$

Orthographic Projection

- What happens to parallel lines?
- What happens to angles?
- What happens to distances?

How can we calibrate the camera?

How to calibrate the camera?

Method 1: Use an object (calibration grid) with known geometry

- Correspond image points to 3d points
- Get least squares solution (or non-linear solution)

$$\begin{bmatrix} wu \\ wv \\ w \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Method 1: Use an object (calibration grid) with known geometry

- Correspond image points to 3d points
- Get least squares solution (or non-linear solution)

$$\begin{bmatrix} wu \\ wv \\ w \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Known 3d

locations

Method 1: Use an object (calibration grid) with known geometry

- Correspond image points to 3d points
- Get least squares solution (or non-linear solution)
 Known 2d image

Known 3d

coordinates $\begin{bmatrix} wu \\ wv \\ w \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$

Method 1: Use an object (calibration grid) with known geometry

- Correspond image points to 3d points
- Get least squares solution (or non-linear solution)
 Known 2d image

coordinates

$$\begin{bmatrix} wu \\ wv \\ w \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Known 3d

locations

$$s = m_{31}X + m_{32}Y + m_{33}Z + m_{34}$$

Known 2d image coords
$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
 Known 3d locations

$$s = m_{31}X + m_{32}Y + m_{33}Z + m_{34}$$

$$su = m_{31}uX + m_{32}uY + m_{33}uZ + m_{34}u = m_{11}X + m_{12}Y + m_{13}Z + m_{14}U = m_{14}X + m_{15}Y + m_{15}Z + m_{15}$$

Known 2d image coords
$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
 Known 3d locations

$$s = m_{31}X + m_{32}Y + m_{33}Z + m_{34}$$

$$su = m_{31}uX + m_{32}uY + m_{33}uZ + m_{34}u = m_{11}X + m_{12}Y + m_{13}Z + m_{14}$$

$$sv = m_{31}vX + m_{32}vY + m_{33}vZ + m_{34}v = m_{21}X + m_{22}Y + m_{23}Z + m_{24}$$

Known 2d image coords
$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
 Known 3d locations

$$s = m_{31}X + m_{32}Y + m_{33}Z + m_{34}$$

$$su = m_{31}uX + m_{32}uY + m_{33}uZ + m_{34}u = m_{11}X + m_{12}Y + m_{13}Z + m_{14}$$

$$sv = m_{31}vX + m_{32}vY + m_{33}vZ + m_{34}v = m_{21}X + m_{22}Y + m_{23}Z + m_{24}$$

$$\begin{split} & m_{11}X + m_{12}Y + m_{13}Z + m_{14} - m_{31}uX - m_{32}uY - m_{33}uZ - m_{34}u = 0 \\ & m_{21}X + m_{22}Y + m_{23}Z + m_{24} - m_{31}vX - m_{32}vY - m_{33}vZ - m_{34}v = 0 \end{split}$$

Known 2d image coords
$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
 Known 3d locations

$$\begin{split} & m_{11}X + m_{12}Y + m_{13}Z + m_{14} - m_{31}uX - m_{32}uY - m_{33}uZ - m_{34}u = 0 \\ & m_{21}X + m_{22}Y + m_{23}Z + m_{24} - m_{31}vX - m_{32}vY - m_{33}vZ - m_{34}v = 0 \end{split}$$

Known 2d image coords
$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$
 Known 3d locations

$$\begin{split} & m_{11}X + m_{12}Y + m_{13}Z + m_{14} - m_{31}uX - m_{32}uY - m_{33}uZ - m_{34}u = 0 \\ & m_{21}X + m_{22}Y + m_{23}Z + m_{24} - m_{31}vX - m_{32}vY - m_{33}vZ - m_{34}v = 0 \end{split}$$

 Homogeneous linear system. Solve for m's entries using linear least squares

$$\begin{bmatrix} X_1 & Y_1 & Z_1 & 1 & 0 & 0 & 0 & -u_1X_1 & -u_1Y_1 & -u_1Z_1 & -u_1 \\ 0 & 0 & 0 & 0 & X_1 & Y_1 & Z_1 & 1 & -v_1X_1 & -v_1Y_1 & -v_1Z_1 & -v_1 \\ \vdots & & & & & & & & \\ X_n & Y_n & Z_n & 1 & 0 & 0 & 0 & -u_nX_n & -u_nY_n & -u_nZ_n & -u_n \\ 0 & 0 & 0 & 0 & X_n & Y_n & Z_n & 1 & -v_nX_n & -v_nY_n & -v_nZ_n & -v_n \end{bmatrix} \begin{bmatrix} m_{13} \\ m_{14} \\ m_{21} \\ m_{22} \\ m_{23} \\ m_{31} \\ m_{31} \\ m_{32} \\ m_{33} \\ m_{34} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

Can we factorize M back to K [R | T]?

- Yes!
- We can use QR factorization

- http://ksimek.github.io/2012/08/14/decompose/
- https://en.wikipedia.org/wiki/QR decomposition

Method 2: Use vanishing points

Find vanishing points corresponding to orthogonal directions

Calibration from vanishing points

1 finite vanishing point, 2 infinite vanishing points

2 finite vanishing points, 1 infinite vanishing point

3 finite vanishing points

- Intrinsic camera matrix
 - Use orthogonality as a constraint
 - Model K with only f, u_0 , v_0

$$\mathbf{p}_i = \mathbf{KRX}_i$$

- Intrinsic camera matrix
 - Use orthogonality as a constraint
 - Model K with only f, u_0 , v_0

$$\mathbf{p}_i = \mathbf{K} \mathbf{R} \mathbf{X}_i$$
$$\mathbf{X}_i = \mathbf{R}^{-1} \mathbf{K}^{-1} \mathbf{p}_i = \mathbf{R}^T \mathbf{K}^{-1} \mathbf{p}_i$$

- Intrinsic camera matrix
 - Use orthogonality as a constraint
 - Model K with only f, u_0 , v_0

$$\mathbf{p}_{i} = \mathbf{K}\mathbf{R}\mathbf{X}_{i} \qquad \mathbf{X}_{i}^{T}\mathbf{X}_{j} = 0$$

$$\mathbf{X}_{i} = \mathbf{R}^{-1}\mathbf{K}^{-1}\mathbf{p}_{i} = \mathbf{R}^{T}\mathbf{K}^{-1}\mathbf{p}_{i}$$

- Intrinsic camera matrix
 - Use orthogonality as a constraint
 - Model K with only f, u_0 , v_0

$$\mathbf{p}_{i} = \mathbf{K}\mathbf{R}\mathbf{X}_{i} \qquad \mathbf{X}_{i}^{T}\mathbf{X}_{j} = 0$$

$$\mathbf{X}_{i} = \mathbf{R}^{-1}\mathbf{K}^{-1}\mathbf{p}_{i} = \mathbf{R}^{T}\mathbf{K}^{-1}\mathbf{p}_{i}$$

$$\mathbf{p}_{i}^{T}(\mathbf{K}^{-1})^{T}(\mathbf{R}^{T})^{T}(\mathbf{R}^{T})(\mathbf{K}^{-1})\mathbf{p}_{j} = \mathbf{0}$$

- Intrinsic camera matrix
 - Use orthogonality as a constraint
 - Model K with only f, u_0 , v_0

$$\begin{aligned} \mathbf{p}_i &= \mathbf{K} \mathbf{R} \mathbf{X}_i \\ \mathbf{X}_i &= \mathbf{R}^{-1} \mathbf{K}^{-1} \mathbf{p}_i = \mathbf{R}^T \mathbf{K}^{-1} \mathbf{p}_i \\ \mathbf{p}_i^T (\mathbf{K}^{-1})^T (\mathbf{R}^T)^T (\mathbf{R}^T) (\mathbf{K}^{-1}) \mathbf{p}_j &= \mathbf{0} \\ \mathbf{p}_i^T \mathbf{K}^{-T} \mathbf{R} \mathbf{R}^T \mathbf{K}^{-1} \mathbf{p}_j &= \mathbf{0} \end{aligned}$$

- Intrinsic camera matrix
 - Use orthogonality as a constraint
 - Model K with only f, u_0 , v_0

$$\begin{aligned} \mathbf{p}_i &= \mathbf{K} \mathbf{R} \mathbf{X}_i \\ \mathbf{X}_i &= \mathbf{R}^{-1} \mathbf{K}^{-1} \mathbf{p}_i = \mathbf{R}^T \mathbf{K}^{-1} \mathbf{p}_i \\ \mathbf{p}_i^T (\mathbf{K}^{-1})^T (\mathbf{R}^T)^T (\mathbf{R}^T) (\mathbf{K}^{-1}) \mathbf{p}_j &= \mathbf{0} \\ \mathbf{p}_i^T \mathbf{K}^{-T} \mathbf{R} \mathbf{R}^T \mathbf{K}^{-1} \mathbf{p}_j &= \mathbf{0} \\ \mathbf{p}_i^T \mathbf{K}^{-T} \mathbf{K}^{-1} \mathbf{p}_j &= \mathbf{0} \end{aligned}$$

- Intrinsic camera matrix
 - Use orthogonality as a constraint
 - Model K with only f, u_0 , v_0

For vanishing points

$$\mathbf{p}_{i} = \mathbf{K}\mathbf{R}\mathbf{X}_{i} \qquad \mathbf{X}_{i}^{T}\mathbf{X}_{j} = 0$$

$$\mathbf{X}_{i} = \mathbf{R}^{-1}\mathbf{K}^{-1}\mathbf{p}_{i} = \mathbf{R}^{T}\mathbf{K}^{-1}\mathbf{p}_{i}$$

$$\mathbf{p}_{i}^{T}(\mathbf{K}^{-1})^{T}(\mathbf{R}^{T})^{T}(\mathbf{R}^{T})(\mathbf{K}^{-1})\mathbf{p}_{j} = \mathbf{0}$$

$$\mathbf{p}_{i}^{T}\mathbf{K}^{-T}\mathbf{R}\mathbf{R}^{T}\mathbf{K}^{-1}\mathbf{p}_{j} = \mathbf{0}$$

$$\mathbf{p}_{i}^{T}\mathbf{K}^{-T}\mathbf{K}^{-1}\mathbf{p}_{i} = \mathbf{0}$$

Similarly

$$\mathbf{p}_i^T \mathbf{K}^{-T} \mathbf{K}^{-1} \mathbf{p}_k = \mathbf{0}$$
$$\mathbf{p}_i^T \mathbf{K}^{-T} \mathbf{K}^{-1} \mathbf{p}_k = \mathbf{0}$$

- Intrinsic camera matrix
 - Use orthogonality as a constraint
 - Model K with only f, u_0 , v_0

$$\mathbf{p}_{i} = \mathbf{K}\mathbf{R}\mathbf{X}_{i} \qquad \mathbf{X}_{i}^{T}\mathbf{X}_{j} = 0$$

$$\mathbf{X}_{i} = \mathbf{R}^{-1}\mathbf{K}^{-1}\mathbf{p}_{i} = \mathbf{R}^{T}\mathbf{K}^{-1}\mathbf{p}_{i}$$

$$\mathbf{p}_{i}^{T}(\mathbf{K}^{-1})^{T}(\mathbf{R}^{T})^{T}(\mathbf{R}^{T})(\mathbf{K}^{-1})\mathbf{p}_{j} = \mathbf{0}$$

$$\mathbf{p}_{i}^{T}\mathbf{K}^{-T}\mathbf{R}\mathbf{R}^{T}\mathbf{K}^{-1}\mathbf{p}_{j} = \mathbf{0}$$

$$\mathbf{p}_{i}^{T}\mathbf{K}^{-T}\mathbf{K}^{-1}\mathbf{p}_{i} = \mathbf{0}$$

- What if you don't have three finite vanishing points?
 - Two finite VP: get valid u_0 , v_0 closest to image center; solve f
 - One finite VP: u_0 , v_0 is at vanishing point; can't solve for f

Things to remember

- Projection Matrix?
 - Extrinsic Matrix
 - Camera Rotation
 - Camera Translation
 - Intrinsic Matrix
 - Focal Length
 - Optical Center
 - Aspect Ratio
 - Skewness
 - Degree of Freedom
 - 5- Intrinsic
 - 6- Extrinsic
- Calibrate the camera?
 - Use an object with known geometry
 - Use vanishing points

Acknowledgements

- Thanks to the following researchers for making their teaching/research material online
 - Forsyth
 - Steve Seitz
 - Noah Snavely
 - J.B. Huang
 - Derek Hoiem
 - J. Hays
 - J. Johnson
 - R. Girshick
 - S. Lazebnik
 - K. Grauman
 - Antonio Torralba
 - Rob Fergus
 - Leibe
 - And many more

Next Class:

How can we measure the size of 3D objects from an image?

