A Book of Abstract Algebra (2nd Edition)

Chapter 24, Problem 3EB

Bookmark

Show all steps: ON

Problem

Write all the quadratic polynomials in $\mathbb{Z}_{5}[x]$. How many are there? How many cubic polynomials are there in $\mathbb{Z}_{5}[x]$? More generally, how many polynomials of degree m are there in $\mathbb{Z}_{n}[x]$?

Step-by-step solution

Step 1 of 3

The general form of second degree polynomial is $ax^2 + bx + c$. Consider the polynomial ring $\mathbb{Z}_{5}[x]$. The elements of $\mathbb{Z}_{5}[x]$ are $\{0,1,2,3,4\}$.

Since $ax^2 + bx + c$ is a second degree polynomial then $a \neq 0$.

Then a can choose the numbers 1,2,3,or 4.

Number ways a can choose = 4

b can choose the numbers 0,1,2,3, or 4.

Number ways b can choose = 5

Similarly,

Number ways c can choose = 5

Then,

Total number of second degree polynomial in $\mathbb{Z}_5[x] = 4 \times 5 \times 5$ = 100

The polynomials are the following.

$$x^2 + 0x + 0$$
, $x^2 + x + 0$, $x^2 + 2x + 0$, $x^2 + 3x + 0$, $x^2 + 4x + 0$
 $x^2 + 0x + 1$, $x^2 + x + 1$, $x^2 + 2x + 1$, $x^2 + 3x + 1$, $x^2 + 4x + 1$
 $x^2 + 0x + 2$, $x^2 + x + 2$, $x^2 + 2x + 2$, $x^2 + 3x + 2$, $x^2 + 4x + 2$
 $x^2 + 0x + 3$, $x^2 + x + 3$, $x^2 + 2x + 3$, $x^2 + 3x + 3$, $x^2 + 4x + 3$
 $x^2 + 0x + 4$, $x^2 + x + 4$, $x^2 + 2x + 4$, $x^2 + 3x + 4$, $x^2 + 4x + 4$

And,

$$2x^{2} + 0x + 0$$
, $2x^{2} + x + 0$, $2x^{2} + 2x + 0$, $2x^{2} + 3x + 0$, $2x^{2} + 4x + 0$
 $2x^{2} + 0x + 1$, $2x^{2} + x + 1$, $2x^{2} + 2x + 1$, $2x^{2} + 3x + 1$, $2x^{2} + 4x + 1$
 $2x^{2} + 0x + 2$, $2x^{2} + x + 2$, $2x^{2} + 2x + 2$, $2x^{2} + 3x + 2$, $2x^{2} + 4x + 2$
 $2x^{2} + 0x + 3$, $2x^{2} + x + 3$, $2x^{2} + 2x + 3$, $2x^{2} + 3x + 3$, $2x^{2} + 4x + 3$
 $2x^{2} + 0x + 4$, $2x^{2} + x + 4$, $2x^{2} + 2x + 4$, $2x^{2} + 3x + 4$, $2x^{2} + 4x + 4$

And.

$$3x^2 + 0x + 0$$
, $3x^2 + x + 0$, $3x^2 + 2x + 0$, $3x^2 + 3x + 0$, $3x^2 + 4x + 0$
 $3x^2 + 0x + 1$, $3x^2 + x + 1$, $3x^2 + 2x + 1$, $3x^2 + 3x + 1$, $3x^2 + 4x + 1$
 $3x^2 + 0x + 2$, $3x^2 + x + 2$, $3x^2 + 2x + 2$, $3x^2 + 3x + 2$, $3x^2 + 4x + 2$
 $3x^2 + 0x + 3$, $3x^2 + x + 3$, $3x^2 + 2x + 3$, $3x^2 + 3x + 3$, $3x^2 + 4x + 3$
 $3x^2 + 0x + 4$, $3x^2 + x + 4$, $3x^2 + 2x + 4$, $3x^2 + 3x + 4$, $3x^2 + 4x + 4$
And,

$$4x^{2} + 0x + 0$$
, $4x^{2} + x + 0$, $4x^{2} + 2x + 0$, $4x^{2} + 3x + 0$, $4x^{2} + 4x + 0$
 $4x^{2} + 0x + 1$, $4x^{2} + x + 1$, $4x^{2} + 2x + 1$, $4x^{2} + 3x + 1$, $4x^{2} + 4x + 1$
 $4x^{2} + 0x + 2$, $4x^{2} + x + 2$, $4x^{2} + 2x + 2$, $4x^{2} + 3x + 2$, $4x^{2} + 4x + 2$
 $4x^{2} + 0x + 3$, $4x^{2} + x + 3$, $4x^{2} + 2x + 3$, $4x^{2} + 3x + 3$, $4x^{2} + 4x + 3$
 $4x^{2} + 0x + 4$, $4x^{2} + x + 4$, $4x^{2} + 2x + 4$, $4x^{2} + 3x + 4$, $4x^{2} + 4x + 4$

Comment

Step 2 of 3

The general form of second degree polynomial is $ax^3 + bx^2 + cx + d$.

Since $ax^3 + bx^2 + cx + d$ is a third degree polynomial then $a \neq 0$.

Then a can choose the numbers 1,2,3,or 4.

Number ways a can choose = 4

b can choose the numbers 0,1,2,3, or 4.

Number ways b can choose = 5

Similarly,

Number ways c can choose = 5

Similarly,

Number ways d can choose = 5

Then,

Total number of second degree polynomial in $\mathbb{Z}_5[x] = 0$	$4 \times 5 \times 5 \times 5$
=	500

Comment

Step 3 of 3

The general form of mth degree polynomial is $a_m x^m + a_{m-1} x^{m-1} + ... + a_1 x + a_0$. Consider the polynomial ring $\mathbb{Z}_n[x]$. The elements of $\mathbb{Z}_n[x]$ are $\{0,1,2,3,4,...,n-1\}$.

Since $a_m x^m + a_{m-1} x^{m-1} + \ldots + a_1 x + a_0$ is a mth degree polynomial then $a_m \neq 0$.

Then a_m can choose the numbers 1, 2, ..., or n-1.

Number ways a_m can choose = n-1

 a_{m-1} can choose the numbers 0,1,2,..., or n-1.

Number ways a_{m-1} can choose = n

Similarly,

Number ways a_{m-2} can choose = n

Similarly for others can choose *n* ways.

Then,

Total number of *n*th degree polynomial in $\mathbb{Z}_n[x] = (n-1) \times n \times n \times \dots \times n$ $= \boxed{n^m(n-1)}$

Comment