Choosing a Student Model for a Real World Application

Jiří Řihák, Radek Pelánek

Masaryk University Brno

Research group, Masaryk university Brno

Development of applications: matmat.cz, outlinemaps.org, ...

- Which student model to choose
- How to set parameters
- How many answers model needs
- . . .

matmat.cz

- online, free, without ads
- basic arithmetic $+, -, \times, \div$
- 150 000 answers, 2 000 items
- adaptive practice
- importance of response time

matmat.cz

- online, free, without ads
- basic arithmetic $+, -, \times, \div$
- 150 000 answers, 2 000 items
- adaptive practice
- importance of response time
 - correct answer to 3×5 in **2** seconds
 - correct answer to 3×5 in **14** seconds

Adaptability

- selection of question targeting 75% success rate
- model parameters difficulties of items and skills of learners
- domain model several skills per learner
- use of response time

What aspects of student modeling are most important?

Aspects to Compare

Three aspects of student modeling

- domain models
- response times uses
- missing answers

Too complicated?

• Item average - no skill

- Item average no skill
- Basic model one global skill

- Item average no skill
- Basic model one global skill
- Concepts model 5 skills

- Item average no skill
- Basic model one global skill
- Concepts model 5 skills
- Hierarchical model

Response Times

- classic response:
 - \bullet r=0 wrong answer
 - r = 1 correct answer
- use of response time:
 - \bullet r=0 wrong answer
 - ullet $r \in [0,1]$ correct answer

Response Times

- no time
- threshold time
- exponential time
- linear time

Wrong Answers

- many missing answers skips
- long sequences of missing answers
 - adults trying system
 - gaming system
- simple model extension:
 - · probability of missing next answer
 - based on number of previous missing answers

Aspects to Compare

Three aspects of student modeling

- domain models 4
- response times uses 4
- missing answers with and without

Prediction Accuracy

• Large improvement over baseline does not mean usefulness for more complex models.

Prediction Accuracy - Time

Comparing models with different time utilization

- models are trained to predict different absolute values
- direct comparison is not possible

Estimated Parameters - Difficulties

Correlations of Estimated Parameters

Correlations of Estimated Parameters

- Item average
- Response time use have larger impact on trained parameters that domain modeling.

Estimated Parameters

Estimated Parameters - Stability

Utilization of response time have large impact on model stability.

Conclusion

- Large improvement over baseline does not mean usefulness for more complex models.
- Response time use have larger impact on trained parameters that domain modeling.
- Utilization of response time have large impact on model stability.

Incorporation of different aspects of student modeling may be more important than detailed modeling of one particular aspect.

