1 Implication

$$\neg q \implies \neg p$$
 (1)

p	q	$\neg p$	$\neg q$	$p \implies q$	$\neg q \implies \neg p$
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	0	0
1	1	0	0	1	1

 $p \implies q$ is logically equivalent to $\neg q \implies \neg p$

So, $\neg q \implies \neg p$ is the **contrapositive** of $p \implies q$.

 $p \implies q$ material implication

 $q \implies p$ is called the **converse** of material implication.

 $(\neg q \implies \neg p)$ is called the **contrapositive** of material implication, and

 $(\neg p \implies \neg q)$ is called the **inverse** of material implication.

2 First Identity

 $p \implies q \text{ means } p : q.$

If the argument is valid and p is true, then q is also true.

If the argument is valid and p is false, then we can conclude nothing about

Thus, $p \implies q$ is logically equivalent to $\neg p \lor q$.

p	q	$\neg p$	$p \implies q$	$\neg p \lor q$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	0
1	1	0	1	1

This is known as implication reduction.

This is important because we *always* want to remove implication from our logical statements.

3 De Morgan's Laws

$$\neg (p \land q) \equiv \neg p \lor \neg q \tag{4}$$

$$\neg (p \lor q) \equiv \neg p \land \neg q \tag{5}$$

Many of the Axiomatic Laws come in pairs (principle of duality)

Show the truth table (exercise)

Propositional Identities are given on the exam.

4 Principle of Duality

(exercise for the reader (???))