Dissertação apresentada à Pró-Reitoria de Pós-Graduação do Instituto Tecnológico de Aeronáutica, como parte dos requisitos para obtenção do título de Mestre em Ciências no Programa de Pós-Graduação em Engenharia Eletrônica e Computação, Área de Sistemas e Controle.

Wellington Vieira Martins de Castro

SLAM DISTRIBUÍDO ENVOLVENDO NAVEGAÇÃO, GUIAMENTO E FUSÃO SENSORIAL PARA RECONSTRUÇÃO 2D

Dissertação aprovada em sua versão final pelos abaixo assinados:

Prof. Dr. Jacques Waldmann Orientador

Prof. Dr. John von Neumann Pró-Reitor de Pós-Graduação

Campo Montenegro São José dos Campos, SP - Brasil 2015

Dados Internacionais de Catalogação-na-Publicação (CIP) Divisão de Informação e Documentação

de Castro, Wellington Vieira Martins

SLAM distribuído envolvendo navegação, guiamento e fusão sensorial para reconstrução 2D / Wellington Vieira Martins de Castro. São José dos Campos, 2015.

24f.

Dissertação de Mestrado – Curso de Engenharia Eletrônica e Computação. Área de Sistemas e Controle – Instituto Tecnológico de Aeronáutica, 2015. Orientador: Prof. Dr. Jacques Waldmann.

1. Cupim. 2. Dilema. 3. Construção. I. Instituto Tecnológico de Aeronáutica. II. Título.

REFERÊNCIA BIBLIOGRÁFICA

DE CASTRO, Wellington Vieira Martins. **SLAM distribuído envolvendo navegação, guiamento e fusão sensorial para reconstrução 2D**. 2015. 24f. Dissertação de Mestrado – Instituto Tecnológico de Aeronáutica, São José dos Campos.

CESSÃO DE DIREITOS

NOME DO AUTOR: Wellington Vieira Martins de Castro TITULO DO TRABALHO: SLAM distribuído envolvendo navegação, guiamento e fusão sensorial para reconstrução 2D.

TIPO DO TRABALHO/ANO: Dissertação / 2015

É concedida ao Instituto Tecnológico de Aeronáutica permissão para reproduzir cópias desta dissertação e para emprestar ou vender cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte desta dissertação pode ser reproduzida sem a autorização do autor.

SLAM DISTRIBUÍDO ENVOLVENDO NAVEGAÇÃO, GUIAMENTO E FUSÃO SENSORIAL PARA RECONSTRUÇÃO 2D

Wellington Vieira Martins de Castro

Composição da Banca Examinadora:

Prof. Dr.	Alan Turing	Presidente	-	ITA
Prof. Dr.	Jacques Waldmann	Orientador	-	ITA
Prof. Dr.	Linus Torwald		-	UXXX
Prof. Dr.	Richard Stallman		-	UYYY
Prof. Dr.	Donald Duck		-	DYSNEY
Prof. Dr.	Mickey Mouse		-	DISNEY

Aos amigos da Graduação e Pós-Graduação do ITA por motivarem tanto a criação deste template pelo Fábio Fagundes Silveira quanto por motivarem a mim e outras pessoas a atualizarem e aprimorarem este excelente trabalho.

Agradecimentos

Primeiramente, gostaria de agradecer ao Dr. Donald E. Knuth, por ter desenvolvido o T_FX.

Ao Dr. Leslie Lamport, por ter criado o LATEX, facilitando muito a utilização do TEX, e assim, eu não ter que usar o Word.

Ao Prof. Dr. Meu Orientador, pela orientação e confiança depositada na realização deste trabalho.

Ao Dr. Nelson D'Ávilla, por emprestar seu nome a essa importante via de trânsito na cidade de São José dos Campos.

Ah, já estava esquecendo... agradeço também, mais uma vez ao TEX, por ele não possuir vírus de macro :-)

Resumo

Aqui começa o resumo do referido trabalho. Não tenho a menor idéia do que colocar aqui. Sendo assim, vou inventar. Lá vai: Este trabalho apresenta uma metodologia de controle de posição das juntas passivas de um manipulador subatuado de uma maneira subótima. O termo subatuado se refere ao fato de que nem todas as juntas ou graus de liberdade do sistema são equipados com atuadores, o que ocorre na prática devido a falhas ou como resultado de projeto. As juntas passivas de manipuladores desse tipo são indiretamente controladas pelo movimento das juntas ativas usando as características de acoplamento da dinâmica de manipuladores. A utilização de redundância de atuação das juntas ativas permite a minimização de alguns critérios, como consumo de energia, por exemplo. Apesar da estrutura cinemática de manipuladores subatuados ser idêntica a do totalmente atuado, em geral suas caraterísticas dinâmicas diferem devido a presença de juntas passivas. Assim, apresentamos a modelagem dinâmica de um manipulador subatuado e o conceito de índice de acoplamento. Este índice é utilizado na sequência de controle ótimo do manipulador. A hipótese de que o número de juntas ativas seja maior que o número de passivas $(n_a > n_p)$ permite o controle ótimo das juntas passivas, uma vez que na etapa de controle destas há mais entradas (torques nos atuadores das juntas ativas), que elementos a controlar (posição das juntas passivas).

Abstract

Well, the book is on the table. This work presents a control methodologie for the position of the passive joints of an underactuated manipulator in a suboptimal way. The term underactuated refers to the fact that not all the joints or degrees of freedom of the system are equipped with actuators, which occurs in practice due to failures or as design result. The passive joints of manipulators like this are indirectly controlled by the motion of the active joints using the dynamic coupling characteristics. The utilization of actuation redundancy of the active joints allows the minimization of some criteria, like energy consumption, for example. Although the kinematic structure of an underactuated manipulator is identical to that of a similar fully actuated one, in general their dynamic characteristics are different due to the presence of passive joints. Thus, we present the dynamic modelling of an underactuated manipulator and the concept of coulpling index. This index is used in the sequence of the optimal control of the manipulator.

Lista de Figuras

FIGURA A.1 –Uma	figura que	está no apêndice .		23
-----------------	------------	--------------------	--	----

Lista de Tabelas

Lista de Abreviaturas e Siglas

CML Concurrent Mapping and Localization

GPS Global Positioning System

SLAM Simultaneous Localization and Mapping

ROS Robot Operating System

KF Filtro de Kalman

EKF Filtro de Kalman Extendido EIF Filtro de Informação Extendido

SEIF Filtro de Informação Extendido Esparço

Lista de Símbolos

 \mathbf{x}_t Pose do robô no instante t

 $\mathbf{x}_{0:t}$ Conjunto das poses do robô do instante 0 até t

 \mathbf{u}_t Entrada de controle no instante t

 $\mathbf{u}_{0:t}$ Conjunto das entradas de controle to instante 0 até t

 \mathbf{z}_t Medida do sensor extrínseco no instante t

z_{0:t}
 Conjunto das medidas do sensor extrínseco do instante 0 até t
 m mapa do ambiente, constituído das coordenadas das landmarks

 $p(\mathbf{x}_t, \mathbf{m} | \mathbf{z}_{1:t}, \mathbf{u}_{1:t}, \mathbf{x}_0)$ Distribuição do problema online SLAM $p(\mathbf{x}_{0:t}, \mathbf{m} | \mathbf{z}_{1:t}, \mathbf{u}_{1:t}, \mathbf{x}_0)$ Distribuição do problema full SLAM

Sumário

1	INT	TRODUÇÃO	14
	1.1	Objetivo	17
	1.2	Motivação	18
	1.3	Organização do trabalho	18
2	Vis	são Geral do Sistema	19
	2.1	Modelo do robô	19
	2.2	Modelo de medida Range-Bearing	19
	2.3	Simulação	19
	2.4	Visualização	19
3	АР	LICAÇÃO DA ESTIMAÇÃO NO PROBLEMA SLAM	20
	3.1	Filtro de Kalman Extendido	20
	3.2	EKF-SLAM	20
4	Со	NCLUSÃO	21
R	EFER	ÊNCIAS	22
A	PÊNI	DICE A – TÓPICOS DE DILEMA LINEAR	23
	A.1	Uma Primeira Seção para o Apêndice	23
A	NEXC	O A – EXEMPLO DE UM PRIMEIRO ANEXO	24
	A.1	Uma Seção do Primeiro Anexo	24

1 Introdução

O problema de Mapeamento e Localização Simultâneos conhecido pela sigla SLAM por conta do termo em inglês Simultaneous Localization and Mapping, pergunta se é possível para um robô móvel ser colocado em um ambiente desconhecido a priori e incrementalmente construir um mapa deste ambiente enquanto simultaneamente se localiza neste mapa. Ou seja, tanto a trajetória da plataforma móvel quanto a localização das características do mapa (também conhecidas por landmarks) são estimadas em tempo real sem a necessidade de nenhum conhecimento a priori de suas localizações (DURRANT-WHYTE; BAILEY, 2006), ou infra estrutura de localização prévia, como GPS.

Além disso, SLAM também já foi conhecido como Mapeamento e Localização Concorrentes (CML, do inglês Concurrent Mapping and Localization), porém este termo caiu em desuso a partir de 1995 quando o termo SLAM foi cunhando em (DURRANT-WHYTE et al., 1996) no Simpósio Internacional de Pesquisa em Robótica, ISSR, onde originalmente era chamado Simultaneous Localization and Map Building. A solução do problema de SLAM é fundamental para atingir a robótica móvel autônoma e independente de operadores (DURRANT-WHYTE; BAILEY, 2006). Entretanto resolver o problema de localização e mapeamento simultâneos, apesar de solucionado, não é uma tarefa trivial tanto do ponto de vista teórico como do ponto de vista da implementação (DURRANT-WHYTE et al., 1996).

Caracterização do problema

Imagine um robô dotado de um sensor extrínseco, capaz de capturar medidas relacionadas ao ambiente e, um sensor intrínseco capaz de medir os comandos de controle executados, se deslocando. Até o instante t as seguintes quantidades são observadas:

- \bullet \mathbf{x}_t : o vetor de estados descrevendo a pose do robô no instante t
- $\mathbf{x}_{1:t} = {\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{t-1}, \mathbf{x}_t}$: histórico de poses do robô até o instante t
- \bullet \mathbf{u}_t : o vetor de controle executado pelo robô no instante t
- $\mathbf{u}_{0:t} = \{\mathbf{u}_0, \mathbf{u}_1, \dots, \mathbf{u}_{t-1}, \mathbf{u}_t\}$: histórico de controles executados pelo robô até o instante t

- \mathbf{z}_t : o vetor de medidas no instante t
- $\mathbf{z}_{0:t} = \{\mathbf{z}_0, \mathbf{z}_1, \dots, \mathbf{z}_{t-1}, \mathbf{z}_t\}$: o conjunto de todas as medidas realizadas até o instante t
- m: o vetor de mapa, constituído pelas posições das características do ambiente consideradas pelo robô

De maneira bastante sucinta, os problemas de SLAM consistem em estimar uma das seguintes distribuições de probabilidade:

$$p\left(\mathbf{x}_{t}, \mathbf{m} \mid \mathbf{z}_{1:t}, \mathbf{u}_{0:t}, \mathbf{x}_{0}\right) \tag{1.1}$$

$$p\left(\mathbf{x}_{1:t}, \mathbf{m} \mid \mathbf{z}_{1:t}, \mathbf{u}_{1:t}, \mathbf{x}_{0}\right) \tag{1.2}$$

Além da solução da primeira distribuição se preocupar apenas em estimar o estado atual, enquanto na segunda toda a trajetória, o histórico de poses até o instante t, é estimada. A diferença fundamental entre as duas soluções é que para calcular a primeira distribuição, não são utilizadas entradas de controle e medidas posteriores a um instante t para estimar a pose \mathbf{x}_t . Enquanto na solução da segunda, medidas e controles posteriores podem ser utilizados para calcular poses anteriores a eles. Habitualmente os problemas de estimação dessas duas distribuições são conhecidos como *online* SLAM e *full* SLAM, respectivamente.

Embora as definições do problema em 1.1 e 1.2 sejam simples, resolvê-lo está longe de ser. A depender das características do sistema como: a dinâmica do robô, sensores utilizados, recursos computacionais disponíveis, restrição de tempo real, e, necessidade de navegação e guiamento autônomos, sua solução pode se tornar mais ou menos complexa. Difícil também, é aprender terminologia utilizada, pelos pesquisadores, para cada uma dessas características. Parte da terminologia, pertinente a este trabalho, do problema de SLAM é abordada a seguir.

Taxonomia do problema SLAM

Como é de se esperar, há termos específicos para tratar cada aspecto de um sistema SLAM. Esta Seção visa apresentar os termos pertinentes a este trabalho, a fim de estabelecer um vocabulário comum que será utilizado em todas as seções e capítulos subsequentes a este.

Como mencionado anteriormente, há duas classes de problemas de SLAM: *online* SLAM e *full* SLAM, e, portanto, duas classes de algoritmos para resolve-los. Os algoritmos *full* SLAM também são chamados de *offline SLAM* por serem normalmente utilizados

em etapas de pós processamento, como refinamento de mapas. Esses algoritmos exigem mais recursos, tanto de processamento quanto de memória para serem processados. Portanto, há grande dificuldade para utiliza-los embarcados nos agentes durante a etapa de exploração do ambiente.

Em contra partida, os algoritmos que resolvem o problema de *online* SLAM são comumente utilizados de maneira embarcada, pois tendem a consumir menos recursos computacionais. A pose e o mapa estimado por eles podem ser utilizados no processo de tomada de decisão do agente durante a execução da tarefa de mapeamento.

Contudo, para que um robô consiga estimar precisamente sua pose \mathbf{x} , é necessário alimentar os algoritmos com as medidas \mathbf{u} provenientes dos sensores intrínsecos (encoders, giroscópios e acelerômetros), e, também, medidas \mathbf{z} do ambiente obtidas por sensores extrínsecos. O erro entre a posição esperada pelo robô de um objeto, dada a estimativa que o robô tem da sua pose e, a posição desse objeto lida pelo sensor extrínseco, pode ser utilizado para atualizar a confiança que o robô tem sobre a sua pose, por exemplo. Aqui, objeto significa qualquer aspecto do ambiente com características suficientes que permita-o ser identificado, podendo ser desde objetos propriamente ditos como móveis e árvores, a pontos e quinas.

Essas medidas relacionadas ao ambiente, lidas pelos sensores extrínsecos (sonares, câmeras RGB, scanner laser, entre outros), possuem, em geral, duas componentes comumente denominados *Range* e *Bearing*. A componente *Range* é a distância do sensor até o objeto medido. Enquanto *Bearing* é a posição angular do objeto em relação ao sensor. Porém, nem todo sensor é capaz de fornecer essas duas medidas, câmeras RGB por exemplo, conseguem informar apenas o *Bearing*.

Então, de acordo com a presença/ausência dessas componentes os termos: Range Only, Bearing Only e Range-Bearing SLAM são utilizados para identificar qual classe de medidas do ambiente está sendo utilizada na solução do problema. Range Only significa que a medida possui apenas a componente de distância. Em medidas Bearing Only apenas a posição angular é lida. E em Range-Bearing ambas as quantidades são lidas, em sistemas Range-Bearing SLAM são comumente utilizados sensores do tipo LIDAR (Light Detection and Ranging), que retornam uma nuvem de pontos onde cada ponto é descrito pela distância e posição angular em relação ao sensor.

Com um algoritmo capaz de estimar 1.1 ou 1.2 e sensores apropriados para alimenta-lo, um robô um robô é capaz de performar SLAM como foi apresentado até agora. Porém, ao mapear o ambiente, o robô pode explora-lo de maneira autônoma, ou, quando o cenário permite, ser controlado remotamente por um operador. Em cenários como a exploração de Marte tal controle é inviável. Quando a solução para o problema de SLAM também incorpora a geração de trajetórias, para que a exploração seja feita de forma autônoma

(ativa), é denominada SLAM Ativo.

Até o momento, o problema de SLAM foi tratado como se a tarefa fosse resolvida por um único agente/robô. Porém, é possível integrar mais robôs para executarem a tarefa de maneira conjunta, surgindo assim uma série de benefícios. O primeiro, e mais óbvio, benefício é que a tarefa pode ser executada mais rápido já que a carga de trabalho é dividida entre os agentes. Outro ponto, é que mesmo que um agente venha a sofrer um dano, a tarefa ainda pode ser concluída, pois o sistema pode reagir e redistribuir a tarefa entre os robôs restantes. Porém, esses benefícios vêm com o preço de um sistema complexo que lida com a coordenação e cooperação dos robôs (SAEEDI et al., 2016). Essa abordagem com múltiplos robôs é chamada de SLAM Distribuído.

Além disso, dependendo da arquitetura do fluxo de informação entre os agentes, a abordagem SLAM Distribuído é subdividida em Centralizada e Descentralizada (CADENA et al., 2016, p. 1316). Na arquitetura centralizada, há um nó central responsável por processar e distribuir o mapa global composto pelo mapa local de cada agente do sistema, há portanto um único ponto de falha catastrófica, o nó central. Nessa arquitetura é geralmente mais simples manter consistência e consenso sobre o mapa global.

Em contra partida, a arquitetura descentralizada não possui figura central, a comunicação e troca de mapas é realizada par a par entre os agentes. Neste arranjo todo o processamento é feito na ponta, consenso e convergência se tornam mais complicados, porém, o sistema se torna mais robusto com redundância de informação e ausência de falha catastrófica de um nó central.

1.1 Objetivo

O objetivo deste trabalho é criar um sistema que consiste em um grupo de robôs capazes de mapear o ambiente onde estão inseridos, sem nenhuma infraestrutura de localização como GPS, de maneira ativa e descentralizada, preocupando-se com restrições de memória e processamento em ambiente simulado.

Portanto, além de produzir algoritmos que capacitem os robôs a resolverem o problema de SLAM Ativo Descentralizado e Distribuído, é preciso criar uma infraestrutura de software onde o ambiente e os agentes serão simulados. Para isso utilizou-se o Sistema Operacional de Robô, ROS do inglês *Robot Operating System*, que é um *framework* de código aberto e linguagem neutra (QUIGLEY et al., 2009), amplamente utilizado pela indústria e pela academia. Pois ele provê um conjunto de bibliotecas e ferramentas pertinentes ao cenário de desenvolvimento em robótica, além de uma camada de comunicação comum utilizada pelos diferentes módulos do sistema (mapeamento, navegação, visão) trocarem informações.

Dessa forma, ao utilizar o ROS este trabalho se torna facilmente reutilizável em outras pesquisas, permitindo que cada um de seus módulos (simulação, visualização, SLAM e navegação) possa ser explorado e até modificado de forma individual. Além disso, permite que mais módulos sejam adicionados, estendendo as capacidades do sistema aqui desenvolvido.

Para a simulação do ambiente, sensores e agentes utilizou-se o simulador Gazebo (KO-ENIG; HOWARD, 2004)

tocar no assunto que o gazebo realiza simulacoes fidedignas de sensores, mass, friction, and numerous other physics variables dizer que ele oferece um controle muito grande sobre quase todos os aspectos da simulacao desde condicoes de luz até coeficientes de atrito textura, transparencia e cor

1.2 Motivação

1.3 Organização do trabalho

2 Visão Geral do Sistema

- 2.1 Modelo do robô
- 2.2 Modelo de medida Range-Bearing
- 2.3 Simulação
- 2.4 Visualização

3 Aplicação da estimação no problema SLAM

Neste capítulo serão descritas as alterações necessárias no clássico Filtro de Kalman Extendido (EKF) para que ele possa ser aplicado na resolução do problema de SLAM, resultando na técnica EKF-SLAM. Além disso, também serão abordadas técnicas decorrentes da EKF-SLAM como EIF-SLAM e SEIF-SLAM, sendo esta última a técnica de estimação utilizada neste trabalho.

3.1 Filtro de Kalman Extendido

O Filtro de Kalman (KF) As equações do EKF clássico, para sistemas discretos, são as equações de 3.1 até 3.5.

$$\overline{\boldsymbol{\mu}}_t = \boldsymbol{g}(\boldsymbol{\mu}_{t-1}, \mathbf{u}_t) \tag{3.1}$$

$$\overline{\mathbf{P}}_t = \mathbf{G}_t \mathbf{P}_{t-1} \mathbf{G}_t^T + \mathbf{R}_t \tag{3.2}$$

$$\mathbf{K}_{t} = \overline{\mathbf{P}}_{t} \mathbf{H}_{t}^{T} (\mathbf{H}_{t} \overline{\mathbf{P}}_{t} \mathbf{H}_{t}^{T} + \mathbf{Q}_{t})^{-1}$$
(3.3)

$$\boldsymbol{\mu}_t = \overline{\boldsymbol{\mu}}_t + \mathbf{K}_t(\mathbf{y}_t - \boldsymbol{h}(\overline{\boldsymbol{\mu}}_t)) \tag{3.4}$$

$$\mathbf{P}_{t} = (\mathbf{I} - \mathbf{K}_{t} \mathbf{H}_{t}) \overline{\mathbf{P}}_{t} (\mathbf{I} - \mathbf{K}_{t} \mathbf{H}_{t})^{T} + \mathbf{K}_{t} \mathbf{Q}_{t} \mathbf{K}_{t}^{T}$$
(3.5)

3.2 EKF-SLAM

pipi popopopo

4 Conclusão

Neste trabalho realizou-se o projeto de uma metodologia de controle subótimo redundante da junta passiva de um manipulador com três graus de liberdade instantaneamente. Para este propósito usou-se nas formulações o vetor gradiente de uma função escalar que estima o acoplamento entre a junta passiva e as ativas desse manipulador. Aqui a redundância foi usada da melhor maneira possível sem focalizar o efeito global. Portanto, este método deve ser denominado de controle ótimo local por redundância. A principal vantagem dessa formulação é a computação em tempo real, que é necessária para o controle do manipulador experimental. Além disso esse método pode ser usado com diferentes tipos de controladores, uma vez que as alterações são feitas nas equações dinâmicas do manipulador.

A consequência direta observada nessa formulação é a redução dos torques na fase de controle da junta passiva, e consequente redução da energia elétrica gasta. Isso ocorre devido ao fato de que ao longo da trajetória do manipulador o índice de acoplamento de torque tende a ser maximizado, e portanto, menor é o torque necessário nos atuadores para se conseguir o posicionamento da junta passiva do manipulador.

Outros resultados indiretos obtidos são: um movimento mais uniforme e suave do manipulador e um tempo de acomodação menor tanto no posicionamento da junta passiva quanto das ativas, conforme podemos obervar nos gráficos de desempenho dos resultados apresentados. Isso ocorre porque a maximização do acoplamento entre as juntas facilita o controle. Assim ocorrem menos picos de torque, e como as juntas ativas tem "menos trabalho" para posicionar a passiva estas se movem menos na direção contrária ao movimento daquelas, diminuindo assim as velocidades alcançadas e os tempos de posicionamento.

Uma extensão deste trabalho pode ser a implementação de um controle ótimo global por redundância da junta passiva do manipulador. Para isto pode-se fazer o planejamento off-line da trajetória das juntas de modo a minimizar a energia consumida. Alguns estudos foram feitos nesse sentido, usando o Princípio Mínimo de Pontryagin, mas sem resultados satisfatórios até o momento.

Referências

CADENA, C.; CARLONE, L.; CARRILLO, H.; LATIF, Y.; SCARAMUZZA, D.; NEIRA, J.; REID, I.; LEONARD, J. J. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. **IEEE Transactions on robotics**, IEEE, v. 32, n. 6, p. 1309–1332, 2016.

DURRANT-WHYTE, H.; BAILEY, T. Simultaneous localization and mapping: part i. **IEEE robotics & automation magazine**, IEEE, v. 13, n. 2, p. 99–110, 2006.

DURRANT-WHYTE, H.; RYE, D.; NEBOT, E. Localization of autonomous guided vehicles. **Robotics Research**, Springer, p. 613–625, 1996.

KOENIG, N.; HOWARD, A. Design and use paradigms for gazebo, an open-source multi-robot simulator. *In*: **IEEE/RSJ International Conference on Intelligent Robots and Systems. Proceedings** [...]. Sendai, Japan: [s.n.], 2004. p. 2149–2154.

QUIGLEY, M.; CONLEY, K.; GERKEY, B.; FAUST, J.; FOOTE, T.; LEIBS, J.; WHEELER, R.; NG, A. Y. *et al.* Ros: an open-source robot operating system. *In*: KOBE, JAPAN. **ICRA workshop on open source software**. **Proceedings** [...]. [*S.l.: s.n.*], 2009. v. 3, n. 3.2, p. 5.

SAEEDI, S.; TRENTINI, M.; SETO, M.; LI, H. Multiple-robot simultaneous localization and mapping: A review. **Journal of Field Robotics**, Wiley Online Library, v. 33, n. 1, p. 3–46, 2016.

Apêndice A - Tópicos de Dilema Linear

A.1 Uma Primeira Seção para o Apêndice

A matriz de Dilema Linear M e o vetor de torques inerciais b, utilizados na simulação são calculados segundo a formulação abaixo:

$$M = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix}$$
 (A.1)

FIGURA A.1 – Uma figura que está no apêndice

Anexo A - Exemplo de um Primeiro Anexo

A.1 Uma Seção do Primeiro Anexo

Algum texto na primeira seção do primeiro anexo.

	FOLHA DE REGIST	RO DO DOCUMENTO	
1. CLASSIFICAÇÃO/TIPO DM	 DATA 25 de março de 2015 	3. DOCUMENTO Nº DCTA/ITA/DM-018/2015	4. № DE PÁGINAS 24
5. TÍTULO E SUBTÍTULO: SLAM distribuído envolven	do navegação, guiamento e f	usão sensorial para reconstruç	ão 2D
6. AUTOR(ES): Wellington Vieira Martins	de Castro		
7. INSTITUIÇÃO(ÕES)/ÓRGÂ Instituto Tecnológico de Ae	O(S) INTERNO(S)/DIVISÃO(Õ eronáutica – ITA	DES):	
8. PALAVRAS-CHAVE SUGEF Cupim; Cimento; Estrutura			
9. PALAVRAS-CHAVE RESUL Cupim; Dilema; Construção	•		
Mecânica. Área de Sistema Coorientadora: Prof ^a . Dr ^a .	as Aeroespaciais e Mecatrôn Doralice Serra. Defesa em 0	(X) rama de Pós-Graduação em E ica. Orientador: Prof. Dr. A 15/03/2015. Publicada em 25/	dalberto Santos Dupont. 03/2015.
inventar. Lá vai: Este tra manipulador subatuado d juntas ou graus de liberda ou como resultado de propelo movimento das junt A utilização de redundân consumo de energia, por e do totalmente atuado, em apresentamos a modelager índice é utilizado na sequé seja maior que o número	abalho apresenta uma metode e uma maneira subótima. Con de do sistema são equipados jeto. As juntas passivas de as ativas usando as caracteccia de atuação das juntas exemplo. Apesar da estrutur geral suas caraterísticas dinâm dinâmica de um manipulado encia de controle ótimo do mode passivas $(n_a > n_p)$ permitá mais entradas (torques no	lologia de controle de posição o termo subatuado se refere ao se com atuadores, o que ocorre manipuladores desse tipo são rísticas de acoplamento da de ativas permite a minimização a cinemática de manipuladore micas diferem devido a presenço dor subatuado e o conceito de funipulador. A hipótese de que ite o controle ótimo das juntas atuadores das juntas ativas)	das juntas passivas de um o fato de que nem todas as e na prática devido a falhas o indiretamente controladas inâmica de manipuladores. o de alguns critérios, como es subatuados ser idêntica a a de juntas passivas. Assim, ndice de acoplamento. Este e o número de juntas ativas s passivas, uma vez que na
12. GRAU DE SIGILO: (X) OSTENS	IVO () RESE	RVADO () SEC	RETO