Úkol

- 1. Změřte statickou charakteristiku termistoru pro proudy do 25 mA a graficky ji znázorněte. V případě záznamu měření počítačem vytiskněte.
- 2. Změřte teplotní závislost odporu termistoru v teplotním intervalu přibližně 180 až 360 K a graficky znázorněte (ev. vytiskněte).
- 3. Graficky znázorněte závislost logaritmu odporu R termistoru na $\frac{1}{T}$ a vyhodnoť te velikost materiálových veličin R_{∞} a B, aktivační energie U a teplotního součinitele odporu α při pokojové teplotě.
- 4. Stanovte teplotu termistoru v maximu charakteristiky, případně v některých dalších bodech a tepelný odpor K.

Teorie

Termistor je polovodičová součástka, jejíž odpor závisí na teplotě, nejčastěji s teplotou klesá. To je způsobeno zvýšením koncentrace nositelů náboje či zvýšení jejich pohyblivosti při rostoucí teplotě. V obou případech Závisí odpor termistoru R_t na teplotě T vztahem

$$R_t = R_\infty \exp(\frac{B}{T}). \tag{1}$$

Konstanta R_{∞} závisí na materiálu a rozměrech termistoru, veličina charakterizuje v prvním případě teplotní citlivost součástky, v případě druhém změnu pohyblivosti nositelů náboje.

Klesající odpor s rostoucí teplotou znamená, že termistor má záporný teplotní součinitel odporu α . Ten navíc není konstantní, ale závislý na teplotě podle

$$\alpha = -\frac{B}{T^2}. (2)$$

Aktivační energie je energie potřebná k ionizaci příměsi, tedy k tomu, aby se elektron dostal z příměsového atomu do vodivostního pásu. V literatuře se zpravidla uvádí v jednotkách eV nebo $J \, mol^{-1}$. Lze vypočítat jako

$$\Delta U = 2RB,\tag{3}$$

kde $R = 8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}$ je plynová konstanta.

Konstanty B a R_{∞} nejlépe získáme z lineární regrese grafu rovnice

$$\log R = \log R_{\infty} + \frac{B}{T}.\tag{4}$$

Pomocí zapojení 1 naměříme statickou voltampérovou charakteristiku termistoru. Teplotu v bodě maxima spočítáme podle vzorce

$$T_m = \frac{1}{2}(B - \sqrt{B(B - 4T_0)}),\tag{5}$$

kde T_0 je teplota okolí. Pomocí této hodnoty pak stanovíme tepelný odpor K pomocí

$$K = \frac{T_m - T_0}{U_m I_m}. (6)$$

Indexem m jsou označeny hodnoty při maximálním napětí na termistoru.

Obrázek 1: Zapojení pro měření statické charakteristiky termistoru

Pomocí schématu 2 měříme závislost odporu termistoru na teplotě. Teplotu měříme platinovým odporovým teploměrem, hodnoty teplot v kelvinech získáme z naměřených odporů R_{Pt} pomocí vztahu

$$T = \frac{R_{Pt} - R_0}{\alpha_{Pt} R_0} + 273{,}15,\tag{7}$$

přičemž $R_0=100\,\Omega$ je odpor teploměru při teplotě 273,15 K a $\alpha_{Pt}=3,\!85\times10^{-3}\,\mathrm{K}^{-1}$ je teplotní součinitel odporu teploměru.

Obrázek 2: Schéma pro měření závislosti odporu termistoru na teplotě

Výsledky měření

Úkol 1

Tabulka 1 obsahuje naměřené hodnoty statické voltampérové charakteristiky termistoru. Pro měření napětí i proudu byly použity multimetry **METEX MXD-4660A** při nastavení DC V s rozsahem 2 V, resp. DC A s rozsahem 200 mA. Uvedené chyby odpovídají chybě přístroje.

\overline{I}	σ_I	U	σ_U
[mA]	[mA]	[V]	[V]
0,08	0,03	0,0470	0,0003
0,20	0,03	$0,\!1191$	0,0004
0,31	0,03	$0,\!1834$	0,0004
$0,\!39$	0,03	$0,\!2332$	0,0004
$0,\!49$	0,03	$0,\!2933$	0,0004
0,60	0,03	$0,\!3529$	0,0005
0,73	0,03	$0,\!4206$	0,0005
0,80	0,03	$0,\!4564$	0,0005
0,91	0,03	$0,\!5092$	0,0006
1,01	0,03	$0,\!5525$	0,0006
1,58	0,04	0,7523	0,0007
$2,\!14$	0,04	$0,\!8756$	0,0007
$3,\!15$	0,04	0,9952	0,0008
$4,\!13$	0,04	1,0434	0,0008
$4,\!87$	0,04	1,0597	0,0008
5,81	0,05	1,0663	0,0008
6,79	0,05	1,0645	0,0008
8,77	0,06	1,0497	0,0008
$10,\!56$	0,06	1,0325	0,0008
$12,\!19$	0,07	1,0173	0,0008
$14,\!64$	0,07	0,9971	0,0008
$16,\!60$	0,08	0,9839	0,0008
18,31	0,08	0,9742	0,0008
$20,\!30$	0,09	0,9649	0,0008
22,71	$0,\!10$	0,9524	0,0008
24,91	0,10	0,9478	0,0008

Tabulka 1: Naměřené hodnoty napětí a proudu pro statickou charakteristiku termistoru

Úkol 2

V následující tabulce jsou uvedeny hodnoty odporů teploměru, přepočtené teploty a odpovídající odpory termistoru. Odpory byly měřeny multimetry **METEX MXD-4660A**, pro R_{Pt} s nastavením OHM 200 Ω , pro R_t do hodnoty 245 Ω s nastavením OHM 200 $k\Omega$, dále s rozsahem 2 $k\Omega$. Teploty byly spočteny podle vzorce (7), chyby podle zákona přenosu chyb.

R_{Pt} $\sigma_{R_{Pt}}$ T σ_{T} R_{t} $\sigma_{R_{t}}$ R_{Pt} $\sigma_{R_{Pt}}$ T σ_{T} R $[\Omega]$ $[\Omega]$ $[\Omega]$ $[\Omega]$ $[\Omega]$ $[\Omega]$ $[\Omega]$ $[\Omega]$	
$[\Omega]$ $[\Omega]$ $[K]$ $[K]$ $[\Omega]$ $[\Omega]$ $[\Omega]$ $[\Omega]$ $[\Omega]$ $[K]$ $[K]$	
[] [] [**] [**] [**] [**] [**] [**]	Ω $[\Omega]$
68,10 0,19 190,3 0,5 64 920 130 98,17 0,25 268,4 0,6 165	0 32
68,46 0,19 191,2 0,5 61 860 120 98,69 0,25 269,7 0,6 156	
68,80 0,19 192,1 0,5 59 080 120 99,00 0,25 270,6 0,6 152	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
70,22 $0,19$ $195,8$ $0,5$ 49000 100 $101,09$ $0,25$ $276,0$ $0,7$ 124	
70,70 $0,19$ $197,0$ $0,5$ 46050 100 $102,83$ $0,26$ $280,5$ $0,7$ 106	
71,46 $0,19$ $199,0$ $0,5$ 41810 90 $103,37$ $0,26$ $281,9$ $0,7$ 101	
71,40 $0,19$ $199,0$ $0,5$ 41810 90 $103,37$ $0,20$ $281,9$ $0,7$ 101 $72,35$ $0,19$ $201,3$ $0,5$ 37270 90 $103,83$ $0,26$ $283,1$ $0,7$ 97	
72,91 0,20 202,8 0,5 34 600 80 104,34 0,26 284,4 0,7 92	
	.0 51
73,49 0,20 204,3 0,5 32010 80 104,75 0,26 285,5 0,7 89	
73,92 $0,20$ $205,4$ $0,5$ 30290 80 $105,46$ $0,26$ $287,3$ $0,7$ 83	31
74,55 0,20 207,0 0,5 27820 70 106,14 0,26 289,1 0,7 79	0 31
75,03 0,20 208,3 0,5 26 100 70 106,53 0,26 290,1 0,7 76	31
75,41 0,20 209,3 0,5 24,790 70 107,01 0,26 291,4 0,7 78	31
75,97 0,20 210,7 0,5 23 000 60 107,74 0,27 293,3 0,7 68	31
76,47 0,20 212,0 0,5 21470 60 108,26 0,27 294,6 0,7 66	31
76,93 0,20 213,2 0,5 20 230 60 109,57 0,27 298,0 0,7 59	0 31
77,38 0,20 214,4 0,5 19 030 60 111,34 0,27 302,6 0,7 50	0 31
77,88 0,21 215,7 0,5 17780 60 112,33 0,27 305,2 0,7 46	31
78,60 0,21 217,6 0,5 16160 50 113,77 0,28 308,9 0,7 41	0 31
78,98 0,21 218,6 0,5 15370 50 114,97 0,28 312,0 0,7 37	
79,62 0,21 220,2 0,5 14120 50 115,52 0,28 313,5 0,7 36	
80,09 0,21 221,4 0,5 13 280 50 117,30 0,28 318,1 0,7 31	
80,73 0,21 223,1 0,5 12 230 50 118,00 0,29 319,9 0,7 30	
81,62 0,21 225,4 0,6 10 920 50 118,95 0,29 322,4 0,7 28	
82,72 0,22 228,3 0,6 9530 40 120,48 0,29 326,3 0,8 25	
83,92 0,22 231,4 0,6 8230 40 121,01 0,29 327,7 0,8 24	
	6,7 0,6
	3,1 0,6
05,15 0,22 254,5 0,0 1100 40 122,20 0,29 550,8 0,8 22	
85,62 0,22 235,8 0,6 6720 40 122,80 0,30 332,4 0,8 21	4,5 0,6
86,27 0,22 237,5 0,6 6210 40 123,38 0,30 333,9 0,8 20	06,5 $0,6$
86,80 0,22 238,9 0,6 5830 40 124,22 0,30 336,1 0,8 19	5,7 0,6
87,22 0,22 240,0 0,6 5560 40 125,02 0,30 338,1 0,8 18	66,0 $0,6$
87,71 0,23 241,2 0,6 5250 40 125,54 0,30 339,5 0,8 18	0,2 $0,6$
	4,9 0,6
	$69,5 \qquad 0,6$
89,22 0,23 245,1 0,6 4420 40 126,87 0,30 342,9 0,8 16	55,8 0,5
	55,9 0,5
89,97 0,23 247,1 0,6 4020 40 128,66 0,31 347,6 0,8 14	8,8 0,5
90,56 0,23 248,6 0,6 3720 40 129,07 0,31 348,7 0,8 14	5,3 0,5
	1,2 $0,5$
	55,3 $0,5$
	8,9 0,5
	3,2 $0,5$
	1.5,2 0.5 1.6 0.5
	0.5 0.5 0.5
	$\begin{array}{ccc} 0.1 & 0.5 \\ 6.9 & 0.5 \end{array}$
	$\begin{array}{ccc} 0.9 & 0.5 \\ 6.1 & 0.5 \end{array}$
71,0± 0,20 200,0 0,0 1100 00 100,00 0,02 000,9 0,0 11	.0,1 0,0

Tabulka 2: Hodnoty pro určení závislosti odporu termistoru na teplotě

Následující graf vyobrazuje naměřenou závislost proloženou exponenciálním fitem.

Obrázek 3: Závislost odporu termistoru na teplotě

Úkol 3 a 4

V grafu 4 je zobrazena lineární závislost $\log R_t$ na 1/T spolu s regresní přímkou podle rovnice (4). Z té jsme určili hodnoty

$$B = (2610 \pm 12) \text{ K},$$

 $R_{\infty} = (0.086 \pm 0.004) \Omega.$

Podle vzorce (3) byla spočtena aktivační energie ΔU a podle (2) teplotní součinitel odporu při teplotě 298,15 K

$$\Delta U = (43,40 \pm 0,19) \times 10^3 \,\mathrm{J}\,\mathrm{mol}^{-1},$$

 $\alpha = (29,4 \pm 0,2) \times 10^{-3} \,\mathrm{K}^{-1}.$

Graf 5 ukazuje statickou voltampérovou charakteristiku termistoru a teplotu termistoru při protékajícím proudu, vypočtenou podle (6). Potřebné konstanty T_0 a T_m byly určeny z lineární regrese lineární části grafu 5 a srovnáním s průběhem teplotní závislosti odporu, respektive ze vztahu (5):

$$T_0 = (295,5 \pm 0,5) \text{ K},$$

 $T_m = (339,7 \pm 0,7) \text{ K}.$

Konstanta K byla spočtena podle vzorce (6) s použitím výše uvedených konstant

$$K = (7.14 \pm 0.08) \times 10^3 \,\mathrm{K} \,\mathrm{W}^{-1}.$$

Obrázek 4: Lineární regrese závislosti $\log R_t$ na 1/T

Obrázek 5: Statická voltampérová charakteristika termistoru s průběhem teploty

Diskuse

Při tomto měření je velké monžství možných chyb spojeno s nedokonalou teplotní rovnováhou v měřicí soustavě, především pak při měření teplotní závislosti odporu. Teploměr totiž nemohl být na přesně stejném místě jako termistor, jistě tedy vzniká určitá systematická chyba v určení teploty, která se v uvedených hodnotách chyb neodráží. V průběhu měření statické charakteristiky pak mohlo vlivem malé prodlevy mezi změnou protékajícího proudu a odečtením měřených hodnot dojít k určitému nadhodnocení měřeného napětí.

K výše uvedeným příčinám chyb také přistupuje skutečnost, že teplota okolí nebyla měřena přímo, ale odečtena později z lineární regrese lineární části statické charakteristiky, která mohla být již zmíněným způsobem zkreslená.

Závěr

Křivka naměřené statické charakteristiky termistoru v první části lineárně roste, následně mírně klesá. Naměřená teplotní závislost má exponenciální průběh, obě závislosti odpovídají teoretické předpovědi.

Z lineární regrese podle rovnice (4) jsme určili konstanty

$$B = (2610 \pm 12) \,\mathrm{K},$$

$$R_{\infty} = (0.086 \pm 0.004) \,\Omega,$$

dále byla spočtena aktivační energie

$$\Delta U = (43.40 \pm 0.19) \times 10^3 \,\mathrm{J}\,\mathrm{mol}^{-1}$$

a teplotní součinitel odporu termistoru při pokojové teplotě

$$\alpha = (29.4 \pm 0.2) \times 10^{-3} \,\mathrm{K}^{-1}.$$

Ze statické charakteristiky byly spočteny hodnoty teploty termistoru v maximu charakteristiky a tepelný odpor

$$T_m = (339.7 \pm 0.7) \,\mathrm{K},$$

 $K = (7.14 \pm 0.08) \times 10^3 \,\mathrm{K} \,\mathrm{W}^{-1}.$

Literatura

[1] Studijní text "Charakteristiky termistoru", dostupné z http://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/txt_209.pdf, 18.11.2017