\mathbf{N}_2	+	$3\mathrm{H}_2$	催化剂 人 高温、高压		$2\mathrm{NH}_3$	
\mathbf{N}_2	+	${ m O}_2$	放电		2NO	
2NO	+	${ m O}_2$	\longrightarrow		$2\mathrm{NO}_2$	
$2\mathrm{NO}_2$	+	$ m H_2O$	\longrightarrow	NHO_3	+	HNO_2
$3 \mathrm{Mg}$	+	$ m N_2$	点燃		$\mathrm{Mg_3N_2}$	
$6\mathrm{Li}$	+	$ m N_2$	点燃		$2\mathrm{Li}_3\mathrm{N}$	
$2\mathrm{Cu}$	+	${ m O}_2$	$\xrightarrow{\hspace*{1cm}\Delta\hspace*{1cm}}$		2CuO	
NaNO_2	+	$\mathrm{NH_4Cl}$	\longrightarrow	$\mathrm{NH_4NO_2}$	+	NaCl
$ m NH_4NO_2$		$\xrightarrow{\hspace*{1cm} \Delta \hspace*{1cm}}$	N_2	+	$2\mathrm{H}_2\mathrm{O}$	
NaNO_2	+	$\mathrm{NH_4Cl}$	$\xrightarrow{\hspace*{1cm} \Delta \hspace*{1cm}}$	N_2 +	$2\mathrm{H}_2\mathrm{O}$	+ NaCl
$\mathrm{NH_{3}\cdot H_{2}O}$		$\xrightarrow{\hspace*{1cm} \Delta \hspace*{1cm}}$	NH_3	+	$\mathrm{H}_2\mathrm{O}$	
$\mathrm{NH}_{3(\mathrm{g})}$	+	$\mathrm{HCl}_{(\mathrm{g})}$	\longrightarrow	$ m NH_4Cl_{(s)}$		
NH_3	+	HNO_3	\longrightarrow	$\mathrm{NH_4NO_3}$		
$2\mathrm{NH}_3$	+	$\mathrm{H}_2\mathrm{SO}_4$	\longrightarrow	$(\mathrm{NH_4})_2\mathrm{SO_4}$		
${ m Fe^{2+}}$	+	$2{ m NH_4OH}$	\longrightarrow	${ m Fe}({ m OH})_2\!\!\downarrow$	+	$2\mathrm{NH_4}^+$
Al^{3+}	+	$3\mathrm{NH_4OH}$	\longrightarrow	Al(OH)₃↓	+	$3\mathrm{NH_4}^+$
Cu^{2+}	+	$2{ m NH_4OH}$	\longrightarrow	$\mathrm{Ca}(\mathrm{OH})_2 \!\!\downarrow$	+	$2\mathrm{NH_4}^+$
$\mathrm{Cu}(\mathrm{OH})_{2(s)}$	+	$4NH_{3(\mathrm{aq})}$	\longrightarrow	$[\mathrm{Cu}(\mathrm{NH_3})_4](\mathrm{OH})_{2(\mathrm{aq})}$		

Pb^{2+}	+	$\mathrm{NH_4OH}$	\longrightarrow	$\mathrm{Pb}(\mathrm{OH})_2\!\!\downarrow$	+	$2\mathrm{NH_4}^+$
${ m Zn}({ m OH})_2$	+	$4\mathrm{NH}_3$	\longrightarrow	$[\mathrm{Zn}(\mathrm{NH_3})_4](\mathrm{OH})_2$		
$\mathrm{Zn}(\mathrm{OH})_2$	+	2NaOH	\longrightarrow	$\rm Na_2[Zn(OH)_4]_{(aq)}$		
$4NH_{3(\mathrm{g})}$	+	$3\mathrm{O}_{2(\mathrm{g})}$	点燃	$6\mathrm{H}_2\mathrm{O}$	+	$2\mathrm{N}_2$
$4\mathrm{NH}_3$	+	$5\mathrm{O}_2$	800℃	4NO	+	$6\mathrm{H}_2\mathrm{O}$
2NO	+	${ m O}_2$	\longrightarrow	$2\mathrm{NO}_2$		
$3\mathrm{NO}_2$	+	$\mathrm{H}_2\mathrm{O}$	\longrightarrow	$2\mathrm{HNO}_3$	+	NO
$3CuO_{(s)}\\$	+	$2NH_{3(g)} \\$	$\xrightarrow{\Delta}$	3Cu +	N_2	+ 3H ₂ O
	$2NH_{3(g)}$		$\xrightarrow{\Delta}$	$N_{2(g)}$	+	$3H_{2(g)}$
$2\mathrm{NH_4Cl}$	+	$\mathrm{Ca}(\mathrm{OH})_2$	$\xrightarrow{\Delta}$	$\mathrm{CaCl_2} + $	$2{\rm NH_3}{\uparrow}$	+ 2H ₂ O
$NH_4Cl_{(s)} \\$		$\xrightarrow{\Delta}$	$NH_{3(g)} \\$	+	$\mathrm{HCl}_{(\mathrm{g})}$	
$NH_{3(g)}$	+	$\mathrm{HCl}_{(\mathrm{g})}$	\longrightarrow		$NH_4Cl_{(s)} \\$	
$({ m NH_4})_2{ m SO}_4$			$\xrightarrow{\Delta}$	${\rm NH_3} \uparrow$	+	$\mathrm{NH_4HSO_4}$
$\mathrm{NH_4HSO_4}$			$\xrightarrow{\Delta}$	${\rm NH_3} \uparrow$	+	$\mathrm{H}_2\mathrm{SO}_4$
$({ m NH_4})_2{ m SO}_4$			$\xrightarrow{\Delta}$	$2{\rm NH_3}{\uparrow}$	+	$\mathrm{H}_2\mathrm{SO}_4$
$\mathrm{NH_4SO}_{2(\mathrm{s})}$			$\xrightarrow{\Delta}$	$N_{2(\mathrm{g})}$	+	$2H_2O_{\rm (g)}$
$NH_4NO_{3(s)} \\$			$\xrightarrow{\hspace*{1cm} \Delta \hspace*{1cm}}$	$N_2O(\mathrm{g})$	+	$2H_2O(\mathrm{g})$
$2\mathrm{N}_2\mathrm{O}$			$\xrightarrow{\Delta}$	$2\mathrm{N}_2$	+	${ m O}_2$

$2\mathrm{NaNO}_{3\mathrm{(s)}}$	$\xrightarrow{\hspace*{1cm} \Delta \hspace*{1cm}} \hspace*{1cm} \hspace*{1cm}$	$2NaNO_{2(s)} \\$	+	${ m O}_{2({ m g})}$
$4\mathrm{Fe}(\mathrm{NO_3})_{3\mathrm{(s)}}$	$\xrightarrow{\Delta}$	$2Fe_{2}O_{3(s)} \ + \\$	$12NO_{2(g)} \\$	$+ 3 O_{2(g)}$
$2{\rm AgNO}_{\rm 3(s)}$	$\xrightarrow{\hspace*{1cm} \Delta \hspace*{1cm}}$	$2\mathrm{Ag}_{(\mathrm{s})} +$	$2NO_{2(g)} \\$	$+ \qquad O_{2(g)}$
$ m NH_4NO_3$	$\xrightarrow{\hspace*{1cm} \Delta \hspace*{1cm}}$	$ m N_2O$	+	$2\mathrm{H}_2\mathrm{O}$
$3 Fe^{2+} + NO_3^- + 4H^+$	\longrightarrow	$3\mathrm{Fe}^{3+}$ +	NO	+ 2H ₂ O
$\mathrm{Fe^{2+}}$ + NO	\longrightarrow		$[\mathrm{Fe}(\mathrm{NO})]^{2+}$	