RD SHARMA Solutions for Class 12-science Maths Chapter 26 - Scalar Triple Product

Chapter 26 - Scalar Triple Product Exercise Ex. 26.1 Question 1(i)

Evaluate
$$\begin{bmatrix} \hat{i} \ \hat{j} \ \hat{k} \end{bmatrix} + \begin{bmatrix} \hat{j} \ \hat{k} \ \hat{i} \end{bmatrix} + \begin{bmatrix} \hat{k} \ \hat{i} \ \hat{j} \end{bmatrix}$$

Solution 1(i)

We have
$$\begin{split} \begin{bmatrix} \hat{i} \ \hat{j} \ \hat{k} \end{bmatrix} + \begin{bmatrix} \hat{j} \ \hat{k} \ \hat{i} \end{bmatrix} + \begin{bmatrix} \hat{k} \ \hat{i} \ \hat{j} \end{bmatrix} = \begin{pmatrix} \hat{i} \times \hat{j} \end{pmatrix} \cdot \hat{k} + \begin{pmatrix} \hat{j} \times \hat{k} \end{pmatrix} \cdot \hat{i} + \begin{pmatrix} \hat{k} \times \hat{i} \end{pmatrix} \cdot \hat{j} \\ &= \hat{k} \cdot \hat{k} + \hat{i} \cdot \hat{i} + \hat{j} \cdot \hat{j} \\ &= 1 + 1 + 1 \\ &= 3 \end{split}$$
 Therefore,
$$\begin{bmatrix} \hat{i} \ \hat{j} \ \hat{k} \end{bmatrix} + \begin{bmatrix} \hat{j} \ \hat{k} \ \hat{i} \end{bmatrix} + \begin{bmatrix} \hat{k} \ \hat{i} \ \hat{j} \end{bmatrix} = 3 \end{split}$$

Question 1(ii)

Evaluate
$$\begin{bmatrix} 2\hat{i} \ \hat{j} \ \hat{k} \end{bmatrix} + \begin{bmatrix} \hat{i} \ \hat{k} \ \hat{j} \end{bmatrix} + \begin{bmatrix} \hat{k} \ \hat{j} \ \hat{2}\hat{i} \end{bmatrix}$$

Solution 1(ii)

Question 2(i)

Find
$$\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$$
, when $\vec{a} = 2\hat{i} - 3\hat{j}$, $\vec{b} = \hat{i} + \hat{j} - \hat{k}$ and $\vec{c} = 3\hat{i} - \hat{k}$

Solution 2(i)

$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} 2 & -3 & 0 \\ 1 & 1 & -1 \\ 3 & 0 & -1 \end{vmatrix}$$
$$= 2(-1-0) + 3(-1+3)$$
$$= -2 + 6$$
$$= 4$$
Therefore,
$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = 4$$

Question 2(ii)

Find
$$\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$$
, when $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}, \vec{b} = 2\hat{i} + \hat{j} - \hat{k}$ and $\vec{c} = \hat{j} + \hat{k}$

Solution 2(ii)

We have

$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} 1 & -2 & 3 \\ 2 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix}$$

$$= 1(1+1) + 2(2+0) + 3(2-0)$$

$$= 2 + 4 + 6$$

$$= 12$$
Therefore, $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = 12$

Question 3(i)

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}, \vec{b} = \hat{i} + 2\hat{j} - \hat{k}, \vec{c} = 3\hat{i} - \hat{j} + 2\hat{k}$

Solution 3(i)

We know that the volume of a parallelepiped whose three adjacent edges are $\vec{a}, \vec{b}, \vec{c}$ is equal to $||\vec{a} \ \vec{b} \ \vec{c}||$.

We have

$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} 2 & 3 & 4 \\ 1 & 2 & -1 \\ 3 & -1 & 2 \end{vmatrix}$$
$$= 2(4-1)-3(2+3)+4(-1-6)$$
$$= 6-15-28$$
$$= -9-28$$
$$= -37$$

Therefore, the volume of the parallelepiped is $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = |-37| = 37$ cubic unit.

Question 3(ii)

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors $\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}, \vec{b} = \hat{i} + 2\hat{j} - \hat{k}, \vec{c} = 3\hat{i} - \hat{j} - 2\hat{k}$

Solution 3(ii)

Let
$$\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$$
, $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$, $\vec{c} = 3\hat{i} - \hat{j} - 2\hat{k}$

We know that the volume of a parallelepiped whose three adjacent edges are $\vec{a}, \vec{b}, \vec{c}$ is equal to $||\vec{a} \vec{b} \vec{c}||$.

We have

$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} 2 & -3 & 4 \\ 1 & 2 & -1 \\ 3 & -1 & -2 \end{vmatrix}$$

$$= 2(-4-1)+3(-2+3)+4(-1-6)$$

$$= -10+3-28$$

$$= -10-25$$

$$= -35$$

Therefore, the volume of the parallelepiped is $|\vec{a}| |\vec{b}| |\vec{c}| = |-35| = 35$ cubic unit.

Question 3(iii)

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors $\vec{a} = 11\hat{i}, \vec{b} = 2\hat{j}, \vec{c} = 13\hat{k}$

Solution 3(iii)

Let
$$\vec{a} = 11\hat{i}, \vec{b} = 2\hat{j}, \vec{c} = 13\hat{k}$$

We know that the volume of a parallelepiped whose three adjacent edges are $\vec{a}, \vec{b}, \vec{c}$ is equal to $||\vec{a} \ \vec{b} \ \vec{c}||$.

We have

$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} 11 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 13 \end{vmatrix}$$
$$= 11(26 - 0) + 0 + 0$$
$$= 286$$

Therefore, the volume of the parallelepiped is $|\vec{a}| |\vec{b}| |\vec{c}| = |286| = 286$ cubic unit.

Question 3(iv)

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} - \hat{j} + \hat{k}$, $\vec{c} = \hat{i} + 2\hat{j} - \hat{k}$

Solution 3(iv)

Let
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = \hat{i} - \hat{j} + \hat{k}, \vec{c} = \hat{i} + 2\hat{j} - \hat{k}$$

We know that the volume of a parallelepiped whose three adjacent edges are $\vec{a}, \vec{b}, \vec{c}$ is equal to $||\vec{a} \ \vec{b} \ \vec{c}||$.

We have

$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 2 & -1 \end{vmatrix}$$

$$= 1(1-2)-1(-1-1)+1(2+1)$$

$$= -1+2+3$$

Therefore, the volume of the parallelepiped is $\vec{a} \vec{b} \vec{c} = |4| = 4$ cubic unit.

Question 4(i)

Show that each of the following triads of vectors are coplanar: $\vec{a} = \hat{i} + 2\hat{j} - \hat{k}, \vec{b} = 3\hat{i} + 2\hat{j} + 7\hat{k}, \vec{c} = 5\hat{i} + 6\hat{j} + 5\hat{k}$

Solution 4(i)

We know that three vectors $\vec{a}, \vec{b}, \vec{c}$ are coplanar iff their scalar triple product is zero i.e. $[\vec{a} \ \vec{b} \ \vec{c}] = 0$.

Here,

$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} 1 & 2 & -1 \\ 3 & 2 & 7 \\ 5 & 6 & 5 \end{vmatrix}$$
$$= 1(10 - 42) - 2(15 - 35) - 1(18 - 10)$$
$$= -32 + 40 - 8$$

Hence, the given vectors are coplanar.

Question 4(ii)

Show that each of the following triads of vectors are coplanar: $\vec{a} = -4\hat{i} - 6\hat{j} - 2\hat{k}, \vec{b} = -\hat{i} + 4\hat{j} + 3\hat{k}, \vec{c} = -8\hat{i} - \hat{j} + 3\hat{k}$

Solution 4(ii)

We know that three vectors \vec{a} , \vec{b} , \vec{c} are coplanar iff their scalar triple product is zero i.e. $[\vec{a}\ \vec{b}\ \vec{c}] = 0$.

Here.

$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \ \end{bmatrix} = \begin{vmatrix} -4 & -6 & -2 \\ -1 & 4 & 3 \\ -8 & -1 & 3 \end{vmatrix}$$
$$= -4(12+3)+6(-3+24)-2(1+32)$$
$$= -60+126-66$$
$$= 0$$

Hence, the given vectors are coplanar.

Question 4(iii)

Show that each of the following triads of vectors are coplanar:

$$\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}, \vec{b} = -2\hat{i} + 3\hat{j} - 4\hat{k}, \vec{c} = \hat{i} - 3\hat{j} + 5\hat{k}$$

Solution 4(iii)

We know that three vectors \vec{a} , \vec{b} , \vec{c} are coplanar iff their scalar triple product is zero i.e. $[\vec{a}\ \vec{b}\ \vec{c}] = 0$.

Here,

$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} 1 & -2 & 3 \\ -2 & 3 & -4 \\ 1 & -3 & 5 \end{vmatrix}$$
$$= 1(15 - 12) + 2(-10 + 4) + 3(6 - 3)$$
$$= 3 - 12 + 9$$
$$= 0$$

Hence, the given vectors are coplanar.

Question 5(i)

Find the value of λ such that the following vectors are coplanar:

$$\vec{a} = \hat{i} - \hat{j} + \hat{k}, \vec{b} = 2\hat{i} + \hat{j} - \hat{k}, \vec{c} = \lambda \hat{i} - \hat{j} + \lambda \hat{k}$$

Solution 5(i)

We know that vectors \vec{a} , \vec{b} , \vec{c} are coplanar iff $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = 0$.

$$\therefore \vec{a}, \vec{b}, \vec{c} \text{ are coplanar}$$

$$\Rightarrow \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = 0$$

$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \\ \lambda & -1 & \lambda \end{vmatrix} = 0$$

$$= 1(\lambda - 1) + 1(2\lambda + \lambda) + 1(-2 - \lambda)$$

$$= \lambda - 1 + 3\lambda - 2 - \lambda$$

$$3 = 3\lambda$$

$$1 = \lambda$$

Question 5(ii)

Find the value of λ such that the following vectors are coplanar: $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}, \vec{b} = \hat{i} + 2\hat{j} - 3\hat{k}, \vec{c} = \lambda\hat{i} + \lambda\hat{j} + 5\hat{k}$

Solution 5(ii)

We know that vectors \vec{a} , \vec{b} , \vec{c} are coplanar iff $\left[\vec{a} \ \vec{b} \ \vec{c}\right] = 0$.

$$\therefore \vec{a}, \vec{b}, \vec{c} \text{ are coplanar}$$

$$\Rightarrow \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = 0$$

$$\begin{vmatrix} 2 & -1 & 1 \\ 1 & 2 & -3 \\ \lambda & \lambda & 5 \end{vmatrix} = 0$$

$$= 2(10 + 3\lambda) + 1(5 + 3\lambda) + 1(\lambda - 2\lambda)$$

$$= 20 + 6\lambda + 5 + 3\lambda - \lambda$$

$$-25 = 8\lambda$$

$$\lambda = -\frac{25}{8}$$

Question 5(iii)

Find the value of λ such that the following vectors are coplanar: $\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}, \vec{b} = 3\hat{i} + \lambda\hat{j} + \hat{k}, \vec{c} = \hat{i} + 2\hat{j} + 2\hat{k}$

Solution 5(iii)

We know that vectors \vec{a} , \vec{b} , \vec{c} are coplanar iff $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = 0$.

$$\therefore \vec{a}, \vec{b}, \vec{c} \text{ are coplanar}$$

$$\Rightarrow \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = 0$$

$$\begin{vmatrix} 1 & 2 & -3 \\ 3 & \lambda & 1 \\ 1 & 2 & 2 \end{vmatrix} = 0$$

$$= 1(2\lambda - 2) - 2(6 - 1) - 3(6 - \lambda)$$

$$= 2\lambda - 2 - 12 + 2 - 18 + 3\lambda$$

$$= 5\lambda - 30$$

$$30 = 5\lambda$$

$$\lambda = 6$$

Question 5(iv)

Find the value of λ such that the following vectors are coplanar: $\vec{a} = \hat{i} + 3\hat{j}, \vec{b} = 5\hat{k}, \vec{c} = \lambda\hat{i} - \hat{j}$

Solution 5(iv)

We know that vectors \vec{a} , \vec{b} , \vec{c} are coplanar iff $[\vec{a} \ \vec{b} \ \vec{c}] = 0$.

$$\therefore \vec{a}, \vec{b}, \vec{c} \text{ are coplanar}$$

$$\Rightarrow \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = 0$$

$$\begin{vmatrix} 1 & 3 & 0 \\ 0 & 0 & 5 \\ \lambda & -1 & 0 \end{vmatrix} = 0$$

$$= 1(0+5) - 3(0-5\lambda) + 0$$

$$= 5 + 15\lambda$$

$$-5 = 15\lambda$$

$$\lambda = -\frac{1}{3}$$

Question 6

Show that the four points having position vectors $6\hat{i}-7\hat{j}$, $16\hat{i}-19\hat{j}-4\hat{k}$, $3\hat{j}-6\hat{k}$, $2\hat{i}+5\hat{j}+10\hat{k}$ are not co-planer

$$OA = 6\hat{i} - 7\hat{j}$$
, $OB = 16\hat{i} - 19\hat{j} - 4\hat{k}$, $OC = 3\hat{j} - 6\hat{k}$, $OD = 2\hat{i} + 5\hat{j} + 10\hat{k}$

$$AB = OB - OA = 16\hat{i} - 25\hat{j} - 4\hat{k}$$

$$AC = OC - OA = -16\hat{i} - 16\hat{j} + 2\hat{k}$$

$$CD = OD - OC = 2\hat{i} + 2\hat{j} + 16\hat{k}$$

$$AD = OD - OA = -4\hat{i} + 12\hat{j} + 10\hat{k}$$

The four points are co-planer if vectors \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} are co-planer.

$$\begin{vmatrix} 16 & -25 & -4 \\ -16 & -16 & 2 \\ -4 & 12 & 10 \end{vmatrix} = 16(-160 - 24) + 25(-160 + 8) - 4(-144 + 64)$$

$$\neq 0$$

Hence the points are not coplanar.

Question 7

Show that the points A(-1,4,-3), B(3,2,-5), C(-3,8,-5) and D(-3,2,1) are co-planar.

Solution 7

$$AB = position \ vector \ of \ B - position \ vector \ of \ A$$

$$=4\hat{i}-2\hat{j}-2\hat{k}$$

 $AC = position \ vector \ of \ C - position \ vector \ of \ A$

$$=-2\hat{i}+4\hat{j}-2\hat{k}$$

 $AD = position \ vector \ of \ D - position \ vector \ of \ A$

$$=-2\hat{i}-2\hat{j}+4\hat{k}$$

The four points are co - planar if the vectors are co - planar.

Thus,
$$\begin{vmatrix} 4 & -2 & -2 \\ -2 & 4 & -2 \\ -2 & -2 & 4 \end{vmatrix} = 4[16-4] + 2[-8-4] - 2[4+8] = 48 - 24 - 24 = 0$$

Hence proved.

Ouestion 8

Show that the folur points whose position vectors are $6\hat{i} - 7\hat{j}$, $16\hat{i} - 19\hat{j} - 4\hat{k}$, $3\hat{i} - 6\hat{k}$, $2\hat{i} - 5\hat{j} + 10\hat{k}$

Let
$$OA = 6\hat{i} - 7\hat{j}$$
, $OB = 16\hat{i} - 19\hat{j} - 4\hat{k}$, $OC = 3\hat{i} - 6\hat{k}$, $OD = 2\hat{i} - 5\hat{j} + 10\hat{k}$
Thus,

$$AB = OB - OA = 10\hat{i} - 12\hat{j} - 4\hat{k}$$

$$AC = OC - OA = -3\hat{i} + 7\hat{j} - 6\hat{k}$$

$$AD = OD - OA = -4\hat{i} + 2\hat{j} + 10\hat{k}$$

The four points are co - planar if vectors AB, AC and AD are co - planar.

Thus, we have

$$\begin{vmatrix} 10 & -12 & -4 \\ -3 & 7 & -6 \\ -4 & 2 & 10 \end{vmatrix} = 10(70 + 12) + 12(-30 - 24) - 4(-6 + 28) = 820 - 648 - 88$$

Question 9

Find the value of λ for which the four points with position vectors $-\hat{j} - \hat{k}$, $4\hat{i} + 5\hat{j} + \lambda \hat{k}$, $3\hat{i} + 9\hat{j} + 4\hat{k}$ and $-4\hat{i} + 4\hat{j} + 4\hat{k}$ are coplanar.

Solution 9

Let

Position vector of $A = -\hat{j} - \hat{k}$

Position vector of $B = 4\hat{i} + 5\hat{j} + \lambda \hat{k}$

Position vector of $C = 3\hat{i} + 9\hat{j} + 4\hat{k}$

Position vector of $D = -4\hat{i} + 4\hat{j} + 4\hat{k}$

The four points are coplanar if the vectors \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} are coplanar.

$$\overline{AB} = 4\hat{i} + 6\hat{j} + (\lambda + 1)\hat{k}$$

$$\overline{AC} = 3\hat{i} + 10\hat{j} + 5\hat{k}$$

$$\overline{AD} = -4\hat{i} + 5\hat{j} + 5\hat{k}$$

$$\begin{vmatrix} 4 & 6 & (\lambda + 1) \\ 3 & 10 & 5 \\ -4 & 5 & 5 \end{vmatrix} = 0$$

$$4(50 - 25) - 6(15 + 20) + (\lambda + 1)(15 + 40) = 0$$

$$100 - 210 + 55 + 55\lambda = 0$$

$$55\lambda = 55$$

$$\lambda = 1$$

Question 10

Prove that
$$(\vec{a} - \vec{b}) \cdot \{(\vec{b} - \vec{c}) \times (\vec{c} - \vec{a})\} = 0$$

$$\begin{split} &(\vec{a}-\vec{b}).\left\{(\vec{b}-\vec{c})\times(\vec{c}-\vec{a})\right\} \\ &= \left[(\vec{a}-\vec{b}) \quad (\vec{b}-\vec{c}) \quad (\vec{c}-\vec{a})\right] \\ &= \left[\alpha \quad (\vec{b}-\vec{c}) \quad (\vec{c}-\vec{a})\right] + \left[-b \quad (\vec{b}-\vec{c}) \quad (\vec{c}-\vec{a})\right] \\ &= 6\left[a \quad b \quad c\right] - 6\left[a \quad b \quad c\right] \\ &= 0 \end{split}$$

Question 11

 $\vec{a}, \vec{b}, \vec{c}$ are the position vector of points A,B,C; prove that $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$ is a vector perpendicular to the plane of the triangle ABC.

Solution 11

If \vec{a} represents the sides AB, If \vec{b} represents the sides BC, If \vec{c} represents the sides AC of the triang leABC.

 $\vec{a} \times \vec{b}$ is perpendicular to the plane of the triang leABC.

 $\vec{b} \times \vec{c}$ is perpendicular to the plane of the triangle ABC.

 $\vec{c} \times \vec{a}$ is perpendicular to the plane of the triang leABC.

Hence $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$ is a vector perpendicular to the plane of the triangle ABC.

Question 12(i)

let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i}$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$. If $c_1 = 1$ and $c_2 = 2$, find c_3 which makes $\vec{a}, \vec{b}, \vec{c}$ coplanar

Solution 12(i)

a,b, c are coplanar if

$$\begin{bmatrix} a & b & c \end{bmatrix} = 0$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 2 & c_3 \end{vmatrix} = 0$$

$$0 - 1(c_3) + 1(2) = 0$$

$$c_3 = 2$$

Question 12(ii)

let
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\vec{b} = \hat{i}$ and $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$.
Then, If $c_2 = -1$ and $c_3 = 1$, show that no value of c_1 can make \vec{a} , \vec{b} and \vec{c} coplanar.

Solution 12(ii)

$$\vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = \hat{i} \text{ and } \vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}.$$

 $c_2 = -1 \text{ and } c_3 = 1,$

If \vec{a}, \vec{b} , and \vec{c} are coplanar, then their scalar triple product is zero.

But this is a contradiction as it is given that $c_2 = -1$ and $c_3 = 1$.

Hence, no value of c_1 can make the vectors coplanar.

Question 13

Find
$$\lambda$$
 for which the points $A(3,2,1)$, $B(4,\lambda,5)$, $C(4,2,-2)$ and $D(6,5,-1)$

are coplanar

Solution 13

Le

Position vector of $OA = 3\hat{i} + 2\hat{j} + \hat{k}$

Position vector of $OB = 4\hat{i} + \lambda \hat{j} + 5\hat{k}$

Position vector of $OC = 4\hat{i} + 2\hat{j} - 2\hat{k}$

Position vector of $OD = 6\hat{i} + 5\hat{j} - \hat{k}$

The four points are coplanar if the vectors \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} are coplanar.

$$\overline{AB} = \hat{i} + (\lambda - 2)\hat{j} + 4\hat{k}$$

$$\overline{AC} = \hat{i} + 0\hat{j} - 3\hat{k}$$

$$\overline{AD} = 3\hat{i} + 3\hat{j} - 2\hat{k}$$

$$\begin{vmatrix} 1 & (\lambda - 2) & 4 \\ 1 & 0 & -3 \\ 3 & 3 & -2 \end{vmatrix} = 0$$

$$1(9) - (\lambda - 2)(-2 + 9) + 4(3 - 0) = 0$$

$$9 - 7\lambda + 14 + 12 = 0$$

$$7\lambda = 35$$

$$\lambda = 5$$

Chapter 26 - Scalar Triple Product Exercise MCQ

Question 1

If a lies in the plane of vectors \vec{b} and \vec{c} , then which of the following is correct?

(a)
$$[\vec{a} \ \vec{b} \ \vec{c}] = 0$$

(b)
$$[\vec{a} \ \vec{b} \ \vec{c}] = 1$$

(d)
$$[\vec{b} \ \vec{c} \ \vec{a}] = 1$$

Correct option: (a)

Given that $\vec{a}, \vec{b}, \vec{c}$ are on the same plane.

$$\Rightarrow [\vec{a} \vec{b} \vec{c}] = 0$$

Question 2

The value of $[\vec{a} - \vec{b} \ \vec{b} - \vec{c} \ \vec{c} - \vec{a}]$, where $|\vec{a}| = 1$, $|\vec{b}| = 5$, $|\vec{d}| = 3$, is

- (a) 0
- (b) 1
- (c) 6
- (d) none of these

Solution 2

Correct option: (a)
$$\begin{bmatrix} \vec{a} - \vec{b} & \vec{b} - \vec{c} & \vec{c} - \vec{a} \end{bmatrix} = \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} - \begin{bmatrix} \vec{b} & \vec{c} & \vec{a} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \vec{a} - \vec{b} & \vec{b} - \vec{c} & \vec{c} - \vec{a} \end{bmatrix} = \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} + \begin{bmatrix} \vec{a} & \vec{c} & \vec{b} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \vec{a} - \vec{b} & \vec{b} - \vec{c} & \vec{c} - \vec{a} \end{bmatrix} = \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} - \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \vec{a} - \vec{b} & \vec{b} - \vec{c} & \vec{c} - \vec{a} \end{bmatrix} = \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} - \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \vec{a} - \vec{b} & \vec{b} - \vec{c} & \vec{c} - \vec{a} \end{bmatrix} = 0$$

Question 3

If a, b, c are three non-coplanar mutually perpendicular unit vectors, then $[\vec{a} \ \vec{b} \ \vec{c}]$, is

- (a) ± 1
- (b) 0
- (c) -2
- (d) 2

Solution 3

Correct option: (a)

$$\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = \begin{pmatrix} \vec{a} \times \vec{b} \end{pmatrix} \cdot \vec{c}$$

$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix}$$
 or $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = -\begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix}$ $(|\vec{c}| = 1, \text{ same directions or opposite})$

Hence,

$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = |\vec{a}| |\vec{b}| \sin \frac{\pi}{2} = 1$$

Or
$$-\left|\vec{a}\right|\left|\vec{b}\right|\sin\frac{\pi}{2} = -1$$

Question 4

If $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0$ for some non-zero vector \vec{r} , then the value of [a b c], is

- (a) 2
- (b) 3
- (c) 0
- (d) none of these

Solution 4

Correct option: (c)

$$\vec{r} \cdot \vec{a} = 0$$

 \Rightarrow either $\vec{a} = 0$ or both are perpendicular to each other.

If
$$\vec{a}$$
, \vec{b} , \vec{c} are zero $\Rightarrow [\vec{a} \vec{b} \vec{c}] = 0$

and

if three vectors are non - zero

⇒ they are coplanar and perpendicular tor.

$$\Rightarrow [\vec{a} \vec{b} \vec{c}] = 0$$

Question 5

For any three vectors \vec{a} , \vec{b} , \vec{c} the expression

$$(\vec{a} - \vec{b}) \cdot \{ (\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}) \}$$
 equals

- (a) [a b c]
- (b) 2[a b c]
- (c) $[\vec{a} \ \vec{b} \ \vec{c}]^2$
- (d) none of these

Solution 5

Correct option: (d)

$$\begin{aligned} & (\vec{a} - \vec{b}) \cdot \{ (\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}) \} \\ &= (\vec{a} - \vec{b}) \cdot (\vec{b} \times \vec{c} - \vec{b} \times \vec{a} - \vec{c} \times \vec{c} + \vec{c} \times \vec{a}) \\ &= (\vec{a} - \vec{b}) \cdot (\vec{b} \times \vec{c} - \vec{b} \times \vec{a} + \vec{c} \times \vec{a}) \\ &= \vec{a} \cdot (\vec{b} \times \vec{c}) - \vec{a} \cdot (\vec{b} \times \vec{a}) + \vec{a} \cdot (\vec{c} \times \vec{a}) - \vec{b} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{b} \times \vec{a}) - \vec{b} \cdot (\vec{c} \times \vec{a}) \\ &= [\vec{a} \vec{b} \vec{c}] - 0 + 0 - 0 + 0 - [\vec{b} \vec{c} \vec{a}] \\ &= [\vec{a} \vec{b} \vec{c}] \cdot [\vec{b} \vec{a} \vec{c}] \cdot [\vec{b} \vec{a} \vec{c}] \end{aligned}$$

$$= \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} + \begin{bmatrix} \vec{b} \ \vec{a} \ \vec{c} \end{bmatrix}$$

= 0

Question 6

If \vec{a} , \vec{b} , \vec{c} are non-coplanar vectors, then $\frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}) \cdot \vec{b}} + \frac{\vec{b} \cdot (\vec{a} \times \vec{c})}{\vec{c} \cdot (\vec{a} \times \vec{b})}$

is equal to

- (a) 0
- (b) 2
- (c) 1
- (d) none of these

Solution 6

Correct option:(a)

Correct option:(a)
$$\frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}) \cdot \vec{b}} + \frac{\vec{b} \cdot (\vec{a} \times \vec{c})}{\vec{c} \cdot (\vec{a} \times \vec{b})}$$

$$= \frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{\vec{b} \cdot (\vec{c} \times \vec{a})} + \frac{\vec{b} \cdot (\vec{a} \times \vec{c})}{\vec{c} \cdot (\vec{a} \times \vec{b})}$$

$$= \frac{[\vec{a} \vec{b} \vec{c}]}{[\vec{b} \vec{c} \vec{a}]} + \frac{[\vec{b} \vec{a} \vec{c}]}{[\vec{c} \vec{a} \vec{b}]}$$

$$= \frac{[\vec{a} \vec{b} \vec{c}]}{-[\vec{b} \vec{a} \vec{c}]} - \frac{[\vec{b} \vec{a} \vec{c}]}{[\vec{b} \vec{a} \vec{c}]}$$

$$= \frac{[\vec{a} \vec{b} \vec{c}]}{[\vec{a} \vec{b} \vec{c}]} - \frac{[\vec{b} \vec{a} \vec{c}]}{[\vec{b} \vec{a} \vec{c}]}$$

$$= 1 - 1$$

$$= 0$$

Question 7

Let $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$, $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ and $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b} . If the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$,

then
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2$$
 is equal to

- (a) 0
- (b) 1
- (c) $\frac{1}{4} |\vec{a}|^2 |\vec{b}|^2$
- (d) $\frac{3}{4}|\vec{a}|^2|\vec{b}|^2$

Solution 7

Correct option: (c) $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2$ $= ((\vec{a} \times \vec{b}) \cdot \vec{c})^2$ $= ((\vec{a} \times \vec{b}))^2 \qquad (\because \text{All are unit vectors})$ $= (|\vec{a}||\vec{b}||\sin \frac{\pi}{6})^2$

Question 8

 $=\frac{\left|\vec{a}\right|^2\left|\vec{b}\right|^2}{4}$

If $\vec{a} = 2\vec{i} - 3\vec{j} + 5\vec{k}$, $\vec{b} = 3\vec{i} - 4\vec{j} + 5\vec{k}$ and $\vec{c} = 5\vec{i} - 3\vec{j} - 2\vec{k}$, then the volume of the parallelopiped with conterminous edges $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$ is

- (a) 2
- (b) 1
- (c) -1
- (d) 2

Solution 8

$$\vec{a} + \vec{b} = 5\hat{i} - 7\hat{j} + 10\hat{k}$$

$$\vec{b} + \vec{c} = 8\hat{i} - 7\hat{j} + 3\hat{k}$$

$$\vec{c} + \vec{a} = 7\hat{i} - 6\hat{j} + 3\hat{k}$$

Volume of parallelopiped = $\vec{a} \cdot (\vec{b} \times \vec{c})$

$$\begin{vmatrix} 5 - 7 & 10 \\ 8 - 7 & 3 \\ 7 - 6 & 3 \end{vmatrix}$$
= 5(-21 + 18) + 7(24 - 21) + 10(-48 + 49)
= -15 + 21 + 10
= 16

NOTE: Answer not matching with back answer.

Question 9

If
$$[2\vec{a} + 4\vec{b} \ \vec{c} \ \vec{d}] = \lambda[\vec{a} \ \vec{c} \ \vec{d}] + \mu[\vec{b} \ \vec{c} \ \vec{d}]$$
, then $\lambda + \mu =$

- (a) 6
- (b) -6
- (c) 10
- (d) 8

Solution 9

Correct option: (a)
$$\begin{bmatrix} 2\vec{a} + 4\vec{b} & \vec{c} & \vec{d} \end{bmatrix} = \begin{bmatrix} 2\vec{a} & \vec{c} & \vec{d} \end{bmatrix} + \begin{bmatrix} 4\vec{b} & \vec{c} & \vec{d} \end{bmatrix}$$

$$\begin{bmatrix} 2\vec{a} + 4\vec{b} & \vec{c} & \vec{d} \end{bmatrix} = \begin{bmatrix} 2\vec{a} & \vec{c} & \vec{d} \end{bmatrix} + \begin{bmatrix} 4\vec{b} & \vec{c} & \vec{d} \end{bmatrix}$$

$$\begin{bmatrix} 2\vec{a} + 4\vec{b} & \vec{c} & \vec{d} \end{bmatrix} = 2\begin{bmatrix} \vec{a} & \vec{c} & \vec{d} \end{bmatrix} + 4\begin{bmatrix} \vec{b} & \vec{c} & \vec{d} \end{bmatrix}$$

$$\lambda = 2, \ \mu = 4$$

$$\Rightarrow \lambda + \mu = 6$$

$$[\vec{a} \ \vec{b} \ \vec{a} \times \vec{b}] + (\vec{a} \cdot \vec{b})^2 =$$

- (a) $|\vec{a}|^2 |\vec{b}|^2$
- (b) $|\vec{a} + \vec{b}|^2$
- (c) $|\vec{a}|^2 + |\vec{b}|^2$
- (d) $2|\vec{a}|^2 + |\vec{b}|^2$

Solution 10

Correct option: (a)

$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{a} \times \vec{b} \end{bmatrix} + (\vec{a} \cdot \vec{b})^{2}$$

$$= (\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) + (\vec{a} \cdot \vec{b})^{2}$$

$$= (\vec{a} \times \vec{b})^{2} + (\vec{a} \cdot \vec{b})^{2}$$

$$= |\vec{a}|^{2} |\vec{b}|^{2} \sin^{2}\theta + |\vec{a}|^{2} |\vec{b}|^{2} \cos^{2}\theta$$

$$= |\vec{a}|^{2} |\vec{b}|^{2}$$

Question 11

If the vectors $4\hat{i} + 11\hat{j} + m\hat{k}$, $7\hat{i} + 2\hat{j} + 6\hat{k}$ and $\hat{i} + 5\hat{j} + 4\hat{k}$ are coplanar, then m =

- (a) 0
- (b) 38
- (c) -10
- (d) 10

Solution 11

Correct option: (d)

If given vectors are coplanar then

$$\begin{vmatrix} 4 & 11 & m \\ 7 & 2 & 6 \\ 1 & 5 & 4 \end{vmatrix} = 0$$

$$4(8-30)-11(28-6)+m(35-2)=0$$

$$-88 - 242 + 33m = 0$$

$$-330 + 33m = 0$$

$$m = 10$$

NOTE: Answer not matching with back answer.

Question 12

For non-zero vectors \vec{a} , \vec{b} and \vec{c} the relation $|(\vec{a} \times \vec{b}) \cdot \vec{c}| = |\vec{a}| |\vec{b}| |\vec{d}|$ holds good, if

- (a) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = 0$
- (b) $\vec{a} \cdot \vec{b} = 0 = \vec{c} \cdot \vec{a}$
- (c) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$
- (d) $\vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$

Solution 12

Correct option: (c)

$$|(\vec{a} \times \vec{b}) \cdot \vec{c}| = |(\vec{a} \times \vec{b})| |\vec{c}| \cos \alpha$$

For $\alpha = 0$ or π

$$|(\vec{a} \times \vec{b}) \cdot \vec{c}| = |(\vec{a} \times \vec{b})||\vec{c}||$$

$$|(\vec{a} \times \vec{b}) \cdot \vec{c}| = |(\vec{a} \times \vec{b} \sin \beta)||\vec{c}|$$

For
$$\beta = \frac{\pi}{2}$$

Hence, given relation holds $g \infty d$ if

$$\vec{a} \cdot \vec{b} = 0$$
, $\vec{b} \cdot \vec{c} = 0$, $\vec{c} \cdot \vec{a} = 0$

Question 13

$$(\vec{a} + \vec{b}) \cdot (\vec{b} + \vec{c}) \times (\vec{a} + \vec{b} + \vec{c}) =$$

- (a) 0
- (b) -[a b c]
- (c) 2[a b c]
- (d) [a b c]

Solution 13

Correct option: (d)

$$(\vec{a} + \vec{b}) \cdot (\vec{b} + \vec{c}) \times (\vec{a} + \vec{b} + \vec{c})$$

$$= \left(\vec{a} + \vec{b}\right) \cdot \left(\vec{b} \times \vec{a} + \vec{b} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{c} \times \vec{b} + \vec{c} \times \vec{c}\right)$$

$$= (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{a} + 0 + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{c} \times \vec{b} + 0)$$

$$= \left(\vec{a} + \vec{b}\right) \cdot \left(\vec{b} \times \vec{a} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} - \vec{b} \times \vec{c}\right)$$

$$= (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{a} + \vec{c} \times \vec{a})$$

$$=\vec{a}\cdot\left(\vec{b}\times\vec{a}\right)+\vec{a}\cdot\left(\vec{c}\times\vec{a}\right)+\vec{b}\cdot\left(\vec{b}\times\vec{a}\right)+\vec{b}\cdot\left(\vec{c}\times\vec{a}\right)$$

$$= \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$$

Question 14

 \vec{lf} \vec{a} , \vec{b} , \vec{c} are three non-coplanar vectors, then

$$(\vec{a} + \vec{b} + \vec{c}) \cdot [(\vec{a} + \vec{b}) \times (\vec{a} + \vec{c})]$$
 equals

- (a) 0
- (b) [a b c]
- (c) 2[a b c]
- (d) -[a b c]

Solution 14

Correct option: (d)

$$(\vec{a} + \vec{b} + \vec{c}) \cdot [(\vec{a} + \vec{b}) \times (\vec{a} + \vec{c})]$$

$$= (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} \times \vec{a} + \vec{a} \times \vec{c} + \vec{b} \times \vec{a} + \vec{b} \times \vec{c})$$

$$= (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} \times \vec{c} + \vec{b} \times \vec{a} + \vec{b} \times \vec{c})$$

$$= \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} - \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} - \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$$

$$=-\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$$

NOTE: Answer not matching with back answer.

Question 15

$$(\vec{a}+2\vec{b}-\vec{c})\cdot\{(\vec{a}-\vec{b})\times(\vec{a}-\vec{b}-\vec{c})\}$$
 is equal to

(d) 0

Solution 15

Correct option: (c)

$$(\vec{a} + 2\vec{b} - \vec{c}) \cdot ((\vec{a} - \vec{b}) \times (\vec{a} - \vec{b} - \vec{c}))$$

$$= (\vec{a} + 2\vec{b} - \vec{c}) \cdot (\vec{a} \times \vec{a} - \vec{a} \times \vec{b} - \vec{a} \times \vec{c} - \vec{b} \times \vec{a} + \vec{b} \times \vec{b} + \vec{b} \times \vec{c})$$

$$= (\vec{a} + 2\vec{b} - \vec{c}) \cdot (-\vec{a} \times \vec{b} - \vec{a} \times \vec{c} + \vec{a} \times \vec{b} + \vec{b} \times \vec{c})$$

$$= (\vec{a} + 2\vec{b} - \vec{c}) \cdot (-\vec{a} \times \vec{c} + \vec{b} \times \vec{c})$$

$$= (\vec{a} + 2\vec{b} - \vec{c}) \cdot (-\vec{a} \times \vec{c} + \vec{b} \times \vec{c})$$

$$= [\vec{a} + \vec{b} + \vec{b} + \vec{c}]$$

$$= (\vec{a} + 2\vec{b} - \vec{c}) \cdot (-\vec{a} \times \vec{c} + \vec{b} \times \vec{c})$$

$$= [\vec{a} + \vec{b} + \vec{c}]$$

$$= (\vec{a} + 2\vec{b} - \vec{c}) \cdot (-\vec{a} \times \vec{c} + \vec{b} \times \vec{c})$$

$$= [\vec{a} + \vec{b} + \vec{c}]$$

$$= (\vec{a} + \vec{c}) \cdot (\vec{a} + \vec{c}) \cdot (\vec{a} + \vec{c}) \cdot (\vec{c} + \vec{c})$$

Chapter 26 - Scalar Triple Product Exercise Ex. 26VSAQ Question 1

Write the value of $\begin{bmatrix} 2\hat{i} & 3\hat{j} & 4\hat{k} \end{bmatrix}$

Solution 1

$$\begin{bmatrix} 2\hat{i} & 3\hat{j} & 4\hat{k} \end{bmatrix}$$

$$= 2 \times 3 \times 4 \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \end{bmatrix}$$

$$= 24 \times 1$$

$$= 24$$

Question 2

Write the value of $\begin{bmatrix} \hat{i} + \hat{j} & \hat{j} + \hat{k} & \hat{k} + \hat{i} \end{bmatrix}$

$$\begin{split} & \left[\hat{i} + \hat{j} \quad \hat{j} + \hat{k} \quad \hat{k} + \hat{i}\right] \\ &= \left[\hat{i} \quad \hat{j} + \hat{k} \quad \hat{k} + \hat{i}\right] + \left[\hat{j} \quad \hat{j} + \hat{k} \quad \hat{k} + \hat{i}\right] \\ &= \left(\left[\hat{i} \quad \hat{j} \quad \hat{k} + \hat{i}\right] + \left[\hat{i} \quad \hat{k} \quad \hat{k} + \hat{i}\right]\right) + \left(\left[\hat{j} \quad \hat{j} \quad \hat{k} + \hat{i}\right] + \left[\hat{j} \quad \hat{k} \quad \hat{k} + \hat{i}\right]\right) \\ &= \left[\hat{i} \quad \hat{j} \quad \hat{i}\right] + \left[\hat{i} \quad \hat{k} \quad \hat{k}\right] + \left[\hat{i} \quad \hat{k} \quad \hat{k}\right] + \left[\hat{i} \quad \hat{k} \quad \hat{i}\right] + \left[\hat{j} \quad \hat{j} \quad \hat{k}\right] + \left[\hat{j} \quad \hat{k} \quad \hat{i}\right] + \left[\hat{j} \quad \hat{k} \quad \hat{i}\right] + \left[\hat{j} \quad \hat{k} \quad \hat{i}\right] + \left[\hat{j} \quad \hat{k} \quad \hat{k}\right] \\ &= 0 + \left[\hat{i} \quad \hat{j} \quad \hat{k}\right] + 0 + 0 + 0 + 0 + \left[\hat{i} \quad \hat{j} \quad \hat{k}\right] + o \\ &= 2 \end{split}$$

Question 3

3. write the value of $\begin{bmatrix} \hat{i} - \hat{j} & \hat{j} - \hat{k} & \hat{k} - \hat{i} \end{bmatrix}$

Solution 3

$$\begin{split} & \left[\hat{i} - \hat{j} \quad \hat{j} - \hat{k} \quad \hat{k} - \hat{i}\right] \\ &= \left[\hat{i} \quad \hat{j} - \hat{k} \quad \hat{k} - \hat{i}\right] - \left[\hat{j} \quad \hat{j} - \hat{k} \quad \hat{k} - \hat{i}\right] \\ &= \left[\hat{i} \quad \hat{j} \quad \hat{k} - \hat{i}\right] - \left[\hat{i} \quad \hat{k} \quad \hat{k} - \hat{i}\right] - \left[\hat{j} \quad \hat{j} \quad \hat{k} - \hat{i}\right] + \left[\hat{j} \quad \hat{k} \quad \hat{k} - \hat{i}\right] \\ &= \left[\hat{i} \quad \hat{j} \quad \hat{k}\right] - \left[\hat{i} \quad \hat{j} \quad \hat{i}\right] - \left[\hat{i} \quad \hat{k} \quad \hat{k}\right] + \left[\hat{i} \quad \hat{k} \quad \hat{i}\right] - 0 + 0 - \left[\hat{j} \quad \hat{k} \quad \hat{i}\right] \\ &= \left[\hat{i} \quad \hat{j} \quad \hat{k}\right] - 0 - 0 + 0 + 0 - 0 + 0 - \left[\hat{i} \quad \hat{j} \quad \hat{k}\right] \\ &= 0 \end{split}$$

Question 4

4. find the value of a for which the vectors $\vec{\alpha} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{\beta} = a\hat{i} + \hat{j} + 2\vec{k}$, $\vec{\gamma} = \hat{i} + 2\hat{j} + a\hat{k}$ are coplanar

Solution 4

$$\begin{vmatrix} 1 & 2 & 1 \\ a & 1 & 2 \\ 1 & 2 & a \end{vmatrix} = 0$$

$$1(a-4)-2(a^2-2)+1(2a-1)=0$$

$$a-4-2a^2+4+2a-1=0$$

$$2a^2-3a+1=0$$

$$(2a-1)(a-1)=0$$

$$a=\frac{1}{2},1$$

Question 5

5.find the volume of the parallelepiped with its edges represented by the vectors $\hat{i}+\hat{j},\hat{i}+2\widehat{j},\hat{i}+\hat{j}+\pi\hat{k}$.

Volume of the parallelepiped is given by

$$\begin{vmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & \pi \end{vmatrix} = 1(2\pi - 0) - 1(\pi - 0) + 0$$

$$= 2\pi - \pi$$

$$= \pi$$

Thus, volume of the parallelopiped is π cubic units.

Question 6

If a, b are non – collinear vectors, then find the value of $[\vec{a} \ \vec{b} \ \hat{i}]\hat{i} + [\vec{a} \ \vec{b} \ \hat{j}]\hat{j} + [\vec{a} \ \vec{b} \ \hat{k}]\hat{k}$

Solution 6

For any vector \vec{r} , we have $\vec{r} = (\vec{r}.\hat{i})\hat{i} + (\vec{r}.\hat{j})\hat{j} + (\vec{r}.\hat{k})\hat{k}$ Replacing \vec{r} by $\vec{a} \times \vec{b}$, we have $\vec{a} \times \vec{b} = [(\vec{a} \times \vec{b}) \cdot \hat{i}]\hat{i} + [(\vec{a} \times \vec{b}) \cdot \hat{j}]\hat{j} + [(\vec{a} \times \vec{b}) \cdot \hat{k}]\hat{k}$ $\Rightarrow \vec{a} \times \vec{b} = [\vec{a} \ \vec{b} \ \hat{i}]\hat{i} + [\vec{a} \ \vec{b} \ \hat{i}]\hat{i} + [\vec{a} \ \vec{b} \ \hat{k}]\hat{k}$

Ouestion 7

the vectors $(\sec^2 A)\hat{i} + \hat{j} + \hat{k}, \hat{i} + (\sec^2 B)\hat{j} + \hat{k}, \hat{i} + \hat{j} + (\sec^2 C)\hat{k}$ are coplanar, then the value of $\sec^2 A + \csc^2 B + \cos ec^2 C$

Solution 7

$$\begin{vmatrix} \sec^2 A & 1 & 1 \\ 1 & \sec^2 B & 1 \\ 1 & 1 & \sec^2 C \end{vmatrix} = 0$$

$$\sec^2 A \left(\sec^2 B \sec^2 C - 1\right) - 1 \left(\sec^2 C - 1\right) + 1 \left(1 - \sec^2 B\right) = 0$$

$$\sec^2 A \sec^2 B \sec^2 C - \sec^2 A + \left(1 - \sec^2 B\right) + \left(1 - \sec^2 C\right) = 0$$

$$\sec^2 A \sec^2 B \sec^2 C - \left(\sec^2 A + \sec^2 B + \sec^2 C\right) = 2$$

$$\cos e c^2 A + \cos e c^2 B + \csc^2 C = 2$$

Question 8

For any two vectors \vec{a} and \vec{b} of mag nitude 3 and 4 respectively, write the value of $\begin{bmatrix} \vec{a} & \vec{b} & \vec{a} \times \vec{b} \end{bmatrix} + (\vec{a}.\vec{b})^2$

$$\begin{bmatrix} \vec{a} & \vec{b} & \vec{a} \times \vec{b} \end{bmatrix} + (\vec{a}.\vec{b})^2$$
$$= 0 + (12)^2$$
$$= 144$$

Question 9

If
$$\begin{bmatrix} \vec{3}\vec{a} + 7\vec{b} & \vec{c} & \vec{d} \end{bmatrix} = \lambda \begin{bmatrix} \vec{a} & \vec{c} & \vec{d} \end{bmatrix} + \mu \begin{bmatrix} \vec{b} & \vec{c} & \vec{d} \end{bmatrix}$$
, then find the value of $\lambda + \mu$

Solution 9

$$\begin{bmatrix} 3\vec{a} + 7\vec{b} & \vec{c} & \vec{d} \end{bmatrix} = \lambda \begin{bmatrix} \vec{a} & \vec{c} & \vec{d} \end{bmatrix} + \mu \begin{bmatrix} \vec{b} & \vec{c} & \vec{d} \end{bmatrix}$$

$$\begin{bmatrix} 3\vec{a} & \vec{c} & \vec{d} \end{bmatrix} + \begin{bmatrix} 7\vec{b} & \vec{c} & \vec{d} \end{bmatrix} = \lambda \begin{bmatrix} \vec{a} & \vec{c} & \vec{d} \end{bmatrix} + \mu \begin{bmatrix} \vec{b} & \vec{c} & \vec{d} \end{bmatrix}$$

$$3 \begin{bmatrix} \vec{a} & \vec{c} & \vec{d} \end{bmatrix} + 7 \begin{bmatrix} \vec{b} & \vec{c} & \vec{d} \end{bmatrix} = \lambda \begin{bmatrix} \vec{a} & \vec{c} & \vec{d} \end{bmatrix} + \mu \begin{bmatrix} \vec{b} & \vec{c} & \vec{d} \end{bmatrix}$$

Comparing ,we get

$$\lambda = 3$$

$$\mu = 7$$

$$\lambda + \mu = 10$$

Question 10

If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors, then find the value of $\frac{\vec{a}.(\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}).\vec{b}} + \frac{\vec{b}.(\vec{a} \times \vec{c})}{\vec{c}.(\vec{a} \times \vec{b})}$

Solution 10

$$\begin{aligned} & \frac{\vec{a}.(\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}).\vec{b}} + \frac{\vec{b}.(\vec{a} \times \vec{c})}{\vec{c}.(\vec{a} \times \vec{b})} \\ = & \frac{[a \quad b \quad c]}{[c \quad a \quad b]} + \frac{[b \quad a \quad c]}{[c \quad a \quad b]} \\ = & \frac{[a \quad b \quad c]}{[c \quad a \quad b]} - \frac{[a \quad b \quad c]}{[c \quad a \quad b]} \end{aligned}$$

Question 11

Find
$$\vec{a} \cdot (\vec{b} \times \vec{c})$$
, if $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j} + 2\hat{k}$.

$$\bar{a} = 2\hat{i} + \hat{j} + 3\hat{k}, \vec{b} = -\hat{i} + 2\hat{j} + \hat{k} \text{ and } \vec{c} = 3\hat{i} + \hat{j} + 2\hat{k}$$

$$\hat{i} \quad \hat{j} \quad \hat{k}$$

$$\vec{b} \times \vec{c} = \begin{vmatrix} -1 & 2 & 1 \end{vmatrix} = \hat{i}(4-1) - \hat{j}(-5) + \hat{k}(-1-6)$$

$$3 \quad 1 \quad 2$$

$$= 3\hat{i} + 5\hat{j} - 7\hat{k}$$

$$\bar{a}.(\vec{b} \times \vec{c}) = (2\hat{i} + \hat{j} + 3\hat{k}).(3\hat{i} + 5\hat{j} - 7\hat{k})$$

$$= 6 + 5 - 21 = -10$$

.