数列极限

定义

• 设 x_n 是 一数列,若存在常数 a, $\forall \epsilon>0$, $\exists N_0>0$,当 $n>N_0$ 时, $|x_n-a|<\epsilon$ 恒成立,常数 a 是数列 $\{x_n\}$ 的极限或者说数列 $\{x_n\}$ 趋近于 a

证明数列极限不存在

任意子列发散

两个子列的极限存在但不相等

性质

唯一性

• 若极限存在,则极限唯一

保号性

• 若数列 $\{x_n\}$ 的极限 a>0(a<0),则存在正整数 N_0 ,当 $n>N_0$ 时, $x_n>0(x_n<0)$,取 $\epsilon=\pm a$ 即可

有界性

• 若数列 $\{x_n\}$ 的极限 a 存在,则数列 $\{x_n\}$ 有界

推论

- 推论 1: 如果数列从某项起有 $x_n \geq 0$ 且 $\lim_{n o \infty} x_n = a$, 则 $a \geq 0$
- 推论 2: 如果 $\lim_{n o \infty} x_n = A$,则 $\lim_{n o \infty} |x_n| = |A|$

求数列极限

定义法

极限运算规则

- $ullet \lim_{n o\infty}x_n=a,\lim_{n o\infty}y_n=b$
- $ullet \lim_{n o\infty}[x_n\pm y_n]=\lim_{n o\infty}x_n\pm\lim_{n o\infty}y_n=a\pm b$
- $ullet \lim_{n o\infty}[x_n\cdot y_n]=\lim_{n o\infty}x_n\cdot\lim_{n o\infty}y_n=ab$
- $ullet \lim_{n o\infty}rac{x_n}{y_n}=rac{\lim\limits_{n o\infty}x_n}{\lim\limits_{n o\infty}y_n}=rac{a}{b},b
 eq0$

归结原理

• 设函数 f(x) 在去心邻域 $\mathring{U}(a,\delta)$ 上有定义,那么 $\lim_{x o a}f(x)=l$ 的充分必要条件是: 对与一切序列 $\{x_n\}_{n=1}^\infty\subset\mathring{U}(a,\delta)$,只要 $\lim_{n o\infty}x_n=a$,就有 $\lim_{n o\infty}f(x_n)=l$

夹逼准则

设数列 $\{x_n\}$, $\{y_n\}$, $\{z_n\}$ 满足 $x_n\leq y_n\leq z_n$, $\lim_{n o\infty}x_n=\lim_{n o\infty}z_n=a$, 则 $\lim_{n o\infty}y_n=a$, 条件可变为 $n>N_0$ 时, $x_n\leq y_n\leq z_n$ (有限无关性)

单调有界准则

单调有界数列必有极限