

## Elektronische signalen 2

### Niet-inverterende versterker

P. Debbaut



# Principeschema

\*Voedingsspanningen niet getekend!





# Terugkoppeling-tegenkoppeling



# Spanningsversterking



#### Opmerkingen

- signaal wordt niet geïnverteerd
- $A_{uf}$  alleen bepaald door  $R_f$  en  $R_I$
- A<sub>iif</sub> dezelfde voor AC en DC

$$U_i = 0$$

$$U_g = U_i + U_f = U_f$$

$$U_f = U_o \frac{R_1}{R_1 + R_f} = U_g$$

$$U_o = U_g \frac{R_1 + R_f}{R_1}$$

$$A_{uf} = \frac{U_o}{U_g} = 1 + \frac{R_f}{R_1}$$

#### Blokschema niet-inverterende verst.



## In- en uitgangsweerstand



$$R_{if} = \infty$$

Belast de vorige trap niet!



Bij belasting daalt de uitgangsspanning niet!

## Transferkarakteristiek



# Spanningsvolger-buffertrap



R<sub>f</sub> vervangen door kortsluiting



$$A_{uf} = \frac{U_o}{U_g} = 1 + \frac{R_f}{R_1}$$

$$A_{uf} = 1 + \frac{R_f}{\infty} = 1$$

$$A_{uf} = 1$$

Eigenschappen buffertrap

$$R_{if} = \infty$$

$$R_{of}=0$$

 $U_o$  in fase met  $U_g$ 

# Asymmetrische voeding

Enkelvoudige voeding  $U_{s+}$ 





# Oefening - fasesplitter

Ontwerp een fasesplitter uitgevoerd met ideale opamps met de volgende specificaties:

- spanningsversterking voor elke uitgang = 1
- ingangsweerstand =  $10k\Omega$
- uitgangsweerstand voor elke uitgang =  $0\Omega$



Debbaut P.

# Toepassing—fasesplitter

Brugschakeling van geluidsversterkers



Voordeel: meer vermogen (4X) bij dezelfde voedingsspanning!

# Oplossing – fasesplitter

