MECANICA CLASICA

Coordenadas generalizadas. Grados de libertad. Lagrange.

- 1. Se tiene el sistema de la figura, donde x_1 , x_2 se miden a partir de las posiciones de equilibrio. Sea $q_1 = x_1 + x_2$ y $q_2 = x_1 x_2$.
 - a. Definen (q_1, q_2) un conjunto admisible de coordenadas generalizadas?.
 - b. Si $q_1 = 0$, describa cualitativamente el movimiento de cada partícula. Idem si $q_2 = 0$.
 - c. Calcular las fuerzas generalizadas Q_1 y Q_2 .
- 2. Para los casos siguientes. Cuántos grados de libertad tiene el sistema?. Proponga conjuntos de coordenadas generalizadas adecuadas:
 - $a. m_1 y m_2$ se mueven en el plano de la mesa.
 - b. Idem, pero la mesa rota con $\omega = \text{cte.}$.
 - c. m_1 y m_2 se hallan dentro de un tubo. Si q_1 y q_2 se miden a partir del centro de masa, son coordenadas apropiadas?.
 - d. Las dos masas se hallan unidas entre sí por una barra rígida. Analice el caso en que sólo pueden moverse horizontalmente y también el caso bidimensional.
 - e. Discuta los casos P fijo y P móvil.
 - f. Una masa enhebrada en un alambre elíptico.
 - g. Una máquina de Atwood. Analice los casos en que la cuerda desliza y no desliza sobre la polea.
 - h. Una partícula puntual que cae por una esfera, con gravedad.
- 3. D_1 y D_2 son dos plataformas rotantes como se muestra en la figura. D_1 se mueve respecto a la tierra con velocidad $\dot{\theta}_1$. D_2 se mueve respecto a D_1 con velocidad $\dot{\theta}_2$. Una partícula de masa m se mueve libremente sobre D_2 . Escriba el lagrangiano del sistema en términos de coordenadas polares ρ, φ , de un sistema cartesiano fijo a D_2 . Halle las ecuaciones de movimiento de la partícula e interprete.
- 4. Se tiene el sistema de la figura. Hallar la aceleración de cada masa utilizando:
 - a. Las ecuaciones de Newton y condiciones cinemáticas.
 - b. Principio de los Trabajos Virtuales (PTV)
 - c. Las ecuaciones de Lagrange.

- d^* . Repita a y b, pero ahora considerando que las poleas tienen masa M y radio R.
- 5. Dos partículas de masa m_1 y m_2 están unidas por un hilo inextensible de longitud l; m_1 se mueve sólo sobre el eje x y m_2 sólo sobre el y. Las condiciones iniciales son las que indica la figura.
 - a. Halle la ecuación de movimiento para θ utilizando el PTV.
 - b. Halle la ecuación de Lagrage para θ .
 - c. Si $m_1 = m_2 \equiv m$, halle la tensión T en el hilo como función de θ .
 - d. Cuál es el período de movimiento de θ en este caso?. Suponga que θ sólo puede tomar valores pequeños.
- 6. Dos partículas de masas m_1 y m_2 están unidas por un hilo como indica la figura. m_1 se mueve en el plano de la mesa y m_2 sólo verticalmente. En t = 0, m_1 se encuentra a una distancia r_0 del orificio y se le aplica una velocidad v_0 perpendicular al hilo.
 - a. Escriba las ecuaciones de Lagrange y halle sus integrales primeras en términos de las condiciones iniciales.
 - b. Halle la tensión del hilo.
 - c. Repita a y b suponiendo ahora que el movimiento de m_2 es bidimensional.
- 7. Bajo la acción de la gravedad, una partícula de masa m se desliza por una superficie cónica $\rho = z \operatorname{tg}\alpha$, sin rozamiento.
 - a. Halle las ecuaciones de movimiento de la partícula utilizando como coordenadas generalizadas el ángulo θ medido en el plano perpendicular al eje del cono y la distancia r al vértice del mismo, tomada a lo largo del cono.
 - b. Hallar r máximo y r mínimo para el caso en que $\alpha = 30^{\circ}$ y las condiciones iniciales sean r(0) = a, $\dot{r}(0) = 0$, $\dot{\theta}^{2}(0) = 4\sqrt{3}g/a$.
 - c. Halle el potencial efectivo unidimensional equivalente. Muestre que las órbitas circulares son posibles y halle la velocidad de la partícula en tales órbitas.
 - d. Suponiendo la partícula en movimiento circular, halle la constante del oscilador y el período de oscilación para pequeñas perturbaciones de este movimiento. Compare este período con el de revolución para hacer una descripción cualitativa del movimiento perturbado.
- 8. Analizar los siguientes puntos
 - a. Dado un sistema constituído por N partículas, cuál es el número de grados de libertad del mismo? y cuál el de ecuaciones de vínculo?

- b. Se puede utilizar una velocidad como coordenada generalizada?
- c. Las fuerzas generalizadas se aplican sobre cada partícula?
- d. El número de grados de libertad de un sistema, es independiente del sistema de referencia utilizado para describir el movimiento?.
- e. Para estudiar el equilibrio de un sistema, es siempre válido utilizar el principio de los trabajos virtuales?.
- f. Es válida la formulación lagrangiana para un potencial dependiente de la velocidad? y para el campo electromagnético?.
- g. Dé un ejemplo en que un desplazamiento virtual difiera de uno real. En qué casos son iguales?.
- h. Las ecuaciones de vínculo para un sistema físico, dependen del sistema de referencia utilizado?, y las fuerzas de vínculo?.
- i. Para calcular las fuerzas de vínculo de un sistema, qué métodos es posible emplear?.
- j. Siempre se pueden escribir las ecuaciones de Newton desde el centro de masa de un sistema?.
- k. Para un sistema de N partículas, cuántas ecuaciones de Newton se necesitan? y de Lagrange?.
- l. Qué se entiende por un sistema inercial? Serán correctas las ecuaciones de movimiento si se escribe el lagrangiano desde un sistema no inercial?
- m. Para una carga en un campo electromagnético, se puede conservar el impulso lineal de la misma? Qué magnitud se conserva?.

9. Sea el sistema de la figura.

- a. Halle las ecuaciones de movimiento utilizando el método de Lagrange.
- b. Para el caso $\mathbf{g} = 0$, integre las ecuaciones para condiciones iniciales $r(0) = r_0$, $\dot{r}(0) = 0$.
- c. Discuta el caso en que φ varía libremente.

10. Considere el sistema de la figura.

- a. Encuentre las ecuaciones de movimiento para el péndulo doble que oscila en un plano.
- b. Halle una expresión aproximada de las mismas para pequeñas oscilaciones alrededor de la posición de equilibrio estable.

- c. Resuelva las ecuaciones proponiendo una solución de tipo armónico para los grados de libertad. En t=0 ambas masas se hallan en reposo sobre la vertical y a la inferior se le aplica una velocidad v_0 perpendicular al hilo.
- d. Halle las tensiones sobre los hilos.
- 11. Una partícula de masa m se desliza sin fricción por un alambre fijo en el punto A y que forma un ángulo θ_0 con un eje vertical y que se encuentra rotando alrededor del mismo eje con velocidad angular constante ω .
 - a. Encuentre el lagrangiano y las ecuaciones de Lagrange.
 - b. Halle r(t) sabiendo que a $t=0, r(0)=r_0, \dot{r}(0)=0$.
- 12. Considere el péndulo en tres dimensiones —péndulo esférico.
 - a. Encontrar las ecuaciones de Lagrange para el mismo.
 - b. A partir de las ecuaciones de Lagrange hallar las constantes de movimiento.
 - c. Discuta cualitativamente el movimiento de este péndulo.
- 13. Escriba el lagrangiano de un péndulo plano donde el punto de suspensión:
 - a. se desplaza uniformemente por un círculo vertical de radio a con frecuencia ω ,
 - b. efectúa oscilaciones verticales de la forma $a\cos\omega t$,
 - c. efectúa oscilaciones horizontales de la forma $a\cos\omega t$.
- 14. Encuentre el lagrangiano de los sistemas de la figura. Existe gravedad.
- 15*. Sea una partícula libre de masa m y carga q en un campo electromagnético con potenciales ϕ , \mathbf{A} ($\mathbf{E} = -\nabla \phi c^{-1} \partial \mathbf{A} / \partial t$; $\mathbf{B} = \nabla \times \mathbf{A}$). Obtenga a partir del lagrangiano $\mathcal{L} = T U$ —donde U es un potencial generalizado dependiente de la velocidad— las ecuaciones de movimiento. Muestre que la fuerza aplicada sobre la partícula es la de Lorentz $\mathbf{F} = q(\mathbf{E} + c^{-1}\mathbf{v} \times \mathbf{B})$, $U = q\phi qc^{-1}\mathbf{v} \cdot \mathbf{A}$.
- 16*. Sean $(x_1, y_1), (x_2, y_2)$, dos sistemas de referencia cartesianos bidimensionales. Suponga que el origen de coordenadas O se mueve con $\mathbf{v} =$ cte. respecto a x_1, y_1 y que los ejes x_2, y_2 rotan con velocidad angular constante. Hallar explícitamente las ecuaciones de transformación: $x_1 = x_1(x_2, y_2, t)$ y $y_1 = y_1(x_2, y_2, t)$.
- 17. Encuentre el lagrangiano y las ecuaciones de movimiento del siguiente sistema: un péndulo simple de masa m_2 , con una masa m_1 en el punto sostén, la cual puede moverse sobre una línea horizontal contenida en el plano de movimiento de m_2 . Resuelva las ecuaciones de movimiento y halle la frecuencia de oscilación del sistema para pequeños apartamientos de la posición de equilibrio estable. Suponga condiciones iniciales adecuadas.

- 18^* . Escriba el lagrangiano y las ecuaciones de movimiento del siguiente sistema: una máquina de Atwood con una cuerda de largo l, una polea con momento de inercia I y que rueda sin deslizar con la cuerda.
- 19*. Sea una partícula de masa m y carga q inmersa en un campo magnético uniforme $\mathbf{B}=B_0\widehat{z}.$
 - a. Si $\mathbf{A} = Bx\hat{y}$ compruebe que $\mathbf{B} = \nabla \times \mathbf{A}$ —, calcule las ecuaciones de movimiento y muestre que las órbitas son espirales cilíndricas. Calcule el radio y el centro de la circunferencia transversal a dicha espiral. Las condiciones iniciales son $\mathbf{r}(0) = (x_0, y_0, z_0)$, $\mathbf{v}(0) = (\dot{x}_0, \dot{y}_0, \dot{z}_0)$.
 - b. Repita el punto a. pero ahora para el potencial vector $\mathbf{A}' = \frac{1}{2}\mathbf{B} \times \mathbf{r}$.
 - c. Calcule la función ψ que da el cambio de medida —cambio de gauge— $\mathbf{A}' = \mathbf{A} + \nabla \psi$.
 - d. Si $\mathbf{v}(0) = 0$, interprete físicamente la solución hallada en a.
- 20. Sea un oscilador isótropo bidimensional $(k_x = k_y \equiv k)$.
 - a. Escriba el lagrangiano del sistema y halle las ecuaciones de movimiento para las coordenadas generalizadas $q_1 = x$ y $q_2 = y$.
 - b. Sea $\mathcal{L}^* = m\dot{x}\dot{y} kxy$. Halle las ecuaciones de movimiento para este sistema. Compare con las obtenidas en a.

,