

Exercise 13A

Question 6:

Length of wall = 15mBreadth of wall = 0.3mHeight of wall = 4m

Height of wall = 4m Volume of the wall = $(15 \times 0.3 \times 4) \text{ m}^3 = 18\text{m}^3$

Volume of mortar = $\left(\frac{1}{12} \times 18\right) = 1.5 \text{ m}^3$

Volume of wall = (18 - 1.5)m³ = $16.5 = \frac{33}{2}$ m³

Length of brick = 22 cmBreadth of brick = 12.5 cmHeight of brick = 7.5 cm

 $\therefore \quad \text{Volume of 1 brick} = \left(\frac{22}{100} \times \frac{12.5}{100} \times \frac{7.5}{100}\right) \text{m}^3$ $= \left(\frac{33}{16000}\right) \text{m}^3$

∴ Number of bricks = $\frac{\text{Volume of bricks}}{\text{Volume of 1brick}}$ = $\left(\frac{33}{2} \times \frac{16000}{33}\right) = 8000$

Question 7:

External length of cistern = 1.35 m = 135 cmExternal breadth of cistern = 1.08 m = 108 cm

External height of cistern = 90cm

 $\therefore \qquad \text{External volume of cistern} = (135 \times 108 \times 90) \, \text{cm}^3$

=1312200 cm³

Internal length of cistern = $(135 - 2 \times 2.5)$ cm

= (135 - 5) cm = 130 cm

Internal breadth of cistern = $(108 - 2 \times 2.5)$ cm

= (108 - 5) cm = 103 cm

Internal height of cistern = (90 - 2.5) cm = 87.5 cm

Capacity of the cistern = Internal volume of

cistern = $(130 \times 103 \times 87.5) \text{ cm}^3$

 $= (130 \times 103 \times 87.3) \text{ cm}^3$ = 1171625 cm³

Volume of the iron used = External volume of the

cistern

٠.

-Internal volume of the

cistern = (1312200 -1171625) cm³ = 140575 cm³

********* END *******