Expresiones regulares

Recordamos...

Un lenguaje L' es **regular** si existe un AFD M que lo acepta. Es decir, L(M) = L'. De esto concluimos que los lenguajes aceptados por los AFDs forman la familia de los **lenguajes regulares**

Si $\Sigma = \{a_1, a_2, ..., a_m\}$ entonces, 1) $\{a_1\}$, $\{a_2\}$, .. son lenguajes regulares. 2) $\{\}$ es un lenguaje regular y 3) el conjunto que solo tiene a lambda, es también un lenguaje regular

También sabemos que dado dos lenguajes regulares L₁ y L₂,

La unión, concatenación, la cláusula de Kleene, la operación de reversa, el complemento y la intersección preservan la propiedad de ser Lenguajes regulares

Definición inductiva de Lenguajes regulares

Sea $\Sigma = \{a_1, a_2, ... a_m\}$, un lenguaje regular sobre Σ es cualquier conjunto que pueda formarse por una secuencia finita de aplicaciones de las siguientes reglas:

- $\{a_1\}, \{a_2\}, ..., \{a_m\}$ son lenguajes regulares
- {} es un lenguaje regular
- el conjunto que solo contiene a lambda es un lenguaje regular
- Dado L_1 y L_2 regulares, L_1L_2 es un lenguaje regular
- Dado L_1 y L_2 regulares, L_1 U L_2 es un lenguaje regular
- Dado L_1 y L_2 regulares, $L_1 \cap L_2$ es un lenguaje regular
- Dado L₁ regular, L₁* es un lenguaje regular

Expresiones regulares

Dado un alfabeto **\Sigma**

• \emptyset (el conjunto vacío), ϵ (epsilon) y cualquier $a \in \Sigma$, son expresiones regulares

- sea r₁ y r₂, dos expresiones regulares:
 - \circ r₁ + r₂ (**suma**) es una expresión regular
 - o r₁. r₂ (concatenación) es una expresión regular
 - o r₁* (cláusula de kleene) es una expresión regular
 - (r₁) (paréntesis) es una expresión regular

Ejemplos:

$$(a+b\cdot c)^* \cdot (c+\varnothing) \qquad (a+b)^* \cdot (a+b\cdot b)$$
$$(a+b) \cdot a^* \qquad (0+1)^* \cdot 0 \cdot 0 \cdot (0+1)^*$$

Esto NO es una RE

$$(a+b+)$$

Función de interpretación

Notar que necesitamos alguna forma de interpretar una expresión r. La llamaremos función de interpretación, L(r)

Casos primitivos

- $\circ \quad \mathsf{L}(\emptyset) = \{\}$
- $\circ \quad \mathsf{L}(\mathbf{\epsilon}) = \{ \lambda \}$
- ∘ L(a) = { a } para cualquier a $\in \Sigma$

Casos inductivos

- \circ L(r₁ + r₂) = L(r₁) U L(r₂)
- \circ L(r₁.r₂) = L(r₁).L(r₂)
- \circ L(r₁*) = (L(r₁))*
- $\circ \quad L((r_1)) = L(r_1)$

L((a+b).a*) ⇒ L(a+b).L(a*) ⇒ L(a)UL(b).(L(a))* ⇒
$$⇒ ({a}U{b}).({a})* ⇒ {a, b}.{\lambda, a, aa, aaa, ...} ⇒ {a, aa, aaa, ..., b, ba, baaa, ...}$$

Notar que las expresiones regulares describen Lenguajes regulares

$$r_1 = (a.a)^* . (a.b)^* . b$$
 $r_2 = (1 + (0.1))^* . (0 + \epsilon)$
 $L(r_1) = \{ a^{2n} b^{2m} b, n, m >= 0 \}$ $L(r_2) = \{ x \in \{0, 1\}^* : |x|_{00} = 0 \}$

Equivalencia entre expresiones regulares

Sea r_1 y r_2 , dos expresiones regulares, r_1 y r_2 son equivalentes si $L(r_1) = L(r_2)$

Ejemplo:
$$r_1 = (1 + (0 \cdot 1))^* \cdot (0 + \varepsilon)$$
 y $r_2 = ((1^* \cdot (0 \cdot 1)^*)^* \cdot (0 + \varepsilon)) + (1^* \cdot (0 + \varepsilon))$ son equivalentes

Para probar que dos expresiones regulares son equivalentes debemos mostrar que describen el mismo lenguaje, **buscamos otra manera...**

Propiedades algebraicas de las expresiones regulares

Sea el alfabeto Σ y tres expresiones regulares r_1 , r_2 y r_3 entonces:

```
1. r_1 + ^ = r_1
   2. r_1 \cdot \epsilon = r_1 = \epsilon \cdot r_1
   3. r_1 \cdot ^{\prime} \cdot ^{\prime} = ^{\prime} = ^{\prime} \cdot r_1
   4. r_1 + r_2 = r_2 + r_1
   5. r_1 + r_1 = r_1
   6. r_1 + (r_2 + r_3) = (r_1 + r_2) + r_3
   7. r_1 \cdot (r_2 \cdot r_3) = (r_1 \cdot r_2) \cdot r_3
   8. r_1 \cdot (r_2 + r_3) = (r_1 \cdot r_2) + (r_1 \cdot r_3)
11. (r_1 + r_2)^* = (r_1^* + r_2^*)^*

12. (r_1 \cdot r_2)^* = (r_1^* \cdot r_2^*)^*

13. (r_1^*)^* = r_1^*

14. (r_1)^* \cdot (r_1^*) = r_1^*

15. r_1 + (r_1)^* = r_1^*
```

Observaciones

- Las ecuaciones (a) (o) son reglas de un cálculo ecuacional, es decir, sustitución de iguales
- Cada paso de sustitución establece una igualdad válida entre lenguajes regulares

Aclaración

 A fin de facilitar la lectura y escritura de las ER, no escribimos los "." y los paréntesis. Asumimos la precedencia: + < * < .

Ej:
$$((1^* \cdot (0 \cdot 1)^*)^* \cdot (0 + \varepsilon)) + (1^* \cdot (0 + \varepsilon)) \longrightarrow (1^* (01)^*)^* (0 + \varepsilon) + 1^* (0 + \varepsilon)$$

Lema: sea $\mathbf{r}_1 = (1 + 01)^* (0 + \epsilon) \text{ y } \mathbf{r}_2 = (1^* (01)^*)^* (0 + \epsilon) + 1^* (0 + \epsilon) \text{ entonces } \mathbf{r}_1 = \mathbf{r}_2$

Definición: $r \subseteq S \iff r+s=s$

Propiedad 1: $r + s = t \implies r + t = t \land s + t = t$

Teorema 2: $r \subseteq s \implies r^* \subseteq s^*$

Lema 3: $(1+01)^* + 1^* = (1+01)^*$

Expresiones y Lenguajes Regulares

Teorema: Los lenguajes generados por expresiones regulares es la familia de lenguajes regulares

Demo: Mostramos la doble inclusión

- 1. {Lenguajes generados por ER} \subseteq {Lenguajes regulares}
- 2. {Lenguajes regulares} \subseteq {Lenguajes generados por ER}

Prueba: Por inducción sobre el tamaño de r

• Casos base, \emptyset , ε , $a \in \Sigma$

Prueba: Por inducción sobre el tamaño de r

Casos inductivos,
$$r_1 + r_2$$
, $r_1 \cdot r_2$, $r_1^* y ((r_1))$

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 + r_2) =$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 \cdot r_2)$$

 $L((r_1)) = L(r_1)$

$$L(r_1^*) = (L(r_1))^*$$

Prueba: Por inducción sobre el tamaño de r

• Casos inductivos, $r_1 + r_2$, $r_1 \cdot r_2$, $r_1^* y ((r_1))$

Por HI: $L(r_1)$ y $L(r_2)$ son lenguajes regulares

También sabemos que los lenguajes regulares son cerrados bajo la unión, la concatenación y la clausura

$$L(r_1) \cup L(r_2)$$

$$L(r_1) L(r_2)$$

$$(L(r_1))^*$$

Prueba: Por inducción sobre el tamaño de r

• Casos inductivos, $r_1 + r_2$, $r_1 \cdot r_2$, $r_1^* y ((r_1))$

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1^*) = (L(r_1))^*$$

Son lenguajes regulares

16

Usando las propiedades de clausura de estas operaciones, podemos construir recursivamente el AFND M que acepta L(M) = L(r)

Parte 2: Para cualquier lenguaje regular L, existe una expresión regular r con L(r) = L

Prueba: Convertimos un AFND que acepta L a una expresión regular

- Dado que L es regular, existe un AFND M que lo acepta
- A partir de M construimos el grafo de transición generalizado equivalente en el cual las etiquetas de transición son expresiones regulares

$$bb*a$$

$$bb*(a+b)$$

$$q_0$$

$$r = (bb * a) * bb * (a + b)b *$$

$$L(r) = L(M) = L$$

En general

En general

Repitiendo el proceso hasta que queden dos estados, el grafo resultante es

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

 $L(r) = L(M) = L$

Método de eliminación de estados

Supongamos que deseamos eliminar el estado s

- Se eliminan todos los arcos que incluyen a "s"
- Se introducen, para cada predecesor q_i de s y cada sucesor p_j de s, una expresión regular que representa todas las rutas que inician en q_i , van a s, quizás hacen un loop en s (cero o más veces, y finalmente van a p_j . La expresión para estas rutas es Q_iS*P_j . Esta expresión se suma al arco que va de q_i a p_j . Si este arco no existe, se añade primero uno con la expresión ø

Estrategia para construir una RE equivalente

1 - Para cada estado final q_f , aplicar el proceso de reducción para producir un autómata equivalente con expresiones regulares como etiquetas en los arcos. Eliminar todos los estados excepto q_f y el estado inicial q_0 .

2 - Si q_f != q_{0f} se genera un autómata con 2 estados como el siguiente,

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) * = (r_1 + r_2 r_4 * r_3) * r_2 r_4 *$$

Estrategia para construir una RE equivalente

3 - Si el estado inicial es un estado final, también se debe hacer una eliminación de estados del autómata original que elimine todos los estados menos el inicial y dejamos un autómata como el siguiente:

4 - La expresión final es la suma de todas las expresiones derivadas del autómata reducido para cada estado de aceptación por las reglas 2 y 3

Ejemplo: Puerta

Transformamos el AFND del problema de la puerta en una RE

ninguno* (adelante+atrás+ambos) ((adelante+atrás+ambos) + ninguno ninguno*(adelante+atrás+ambos))* =

(ninguno(adelante+atrás+ambos)(adelante+atrás+ambos)*ninguno)* (adelante+atrás+ambos)(adelante+atrás+ambos)

Ejemplo 2: Máquina expendedora

Transformamos el AFND del problema de la máquina expendedora en una RE

 L_0 = { λ ,510C, 555C, 105C, 5105CH,5555CH, 1055CH,5510CH, 1010CH}

$$L(M) = L_0^*$$

Ejemplo 2: Máquina expendedora

Segundo paso: Eliminar estado X

Tercer paso: Eliminar estado XV

Ejemplo 2: Máquina expendedora

Cuarto paso: Eliminar estado XX

Paso final

$$(((5 10 + (55+10)5)C)^* + ((((5 10 + (55+10)5) 5) + (55+10)10)CH)^*)^*$$

$$start \longrightarrow \boxed{I}$$

Vemos que: $r = ((((510) + (55+10)5)C)* + ((((510 + (55+10)5)5 + (55+10)10)CH)*)* = L(r) = L_0^*$

Observación

Representación estándar de los Lenguajes Regulares

Semántica

Nota: Cuando decimos "Tenemos un lenguaje regular L" nos referimos a "El lenguaje L está en una representación estándar" (AFD, AFND, ER)