Potenz und Taylor Reihen

Taylor Koeffizient	Taylor Reihe	Konvergenzradius	Taylor Glied
$a_k = \frac{f^{(k)}(x_0)}{k!}, k = 0, 1, \dots$	$t_f(x) = \sum_{k=0}^{\inf} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$	$\rho = \lim_{k \to \infty} \left \frac{a_k}{a_{k+1}} \right = \lim_{k \to \infty} \frac{1}{\sqrt[k]{ a_k }}$	$\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k$

- Innerhalb des Konvergenzradius darf:
 - gliedweise abgeleitet werden
 - gliedweise integriert werden
 - gliedweise addiert, subtrahiert und multipliziert werden
- Fehlerabschätzung
 - -alternierender Fall: $Fehler \leq |1.weggelassenes\,Glied|$
 - -normaler Fall: $TaylorReihe(k\,Stelle) + Fehler \geq effektiver\,Wert$

Beispiele Taylorreihen

arcsin(x), x < 1	$= \sum_{k=0}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2k-1)}{2 \cdot 4 \cdot 6 \cdots (2k)} \frac{x^{2k+1}}{2k+1} = x + \frac{x^3}{6} + \frac{3x^5}{40} + \frac{5x^7}{112} + \cdots$	$cos(x), x \in R$	$= \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \pm \cdots$
$tan(x), x < \frac{\pi}{2}$	$ = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{2^{2k} (2^{2k} - 1)}{(2k)!} B_{2k} x^{2k-1} = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \cdots $	$ln(1+x), -1 < x \le 1$	$ = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} \pm \cdots $
$(1+x)^a, x < 1$	$=\sum_{k=0}^{\infty} {\alpha \choose k} x^k = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 + \cdots$	$e^x, x \in R$	$= \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$
$sin(x), x \in R$	$= \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} \pm \cdots$	arctan(x), x < 1	$= \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} \pm \cdots$
arccos(x), x < 1	$ = \frac{\pi}{2} - \sum_{k=0}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2k-1)}{2 \cdot 4 \cdot 6 \cdots (2k)} \frac{x^{2k+1}}{2k+1} = \frac{\pi}{2} - \left(x + \frac{x^3}{6} + \frac{3x^5}{40} + \frac{5x^7}{112}\right) $	+…)	

Beispiel Herleitung Taylorreihe

 $f(x) = ln(x) bei x_0 = 1$

Ableitung	Koeffizient	Formel	Glied
f = ln(x)	$a_0 = 0$	$\frac{f(1)}{0!}(x-1)^0$	0
$f' = \frac{1}{x}$	$a_1 = 1$	$\frac{f'(1)}{1!}(x-1)^1$	1(x-1)
$f'' = \frac{-1}{x^2}$	$a_2 = \frac{-1}{2}$	$\frac{f''(1)}{2!}(x-1)^2$	$\frac{-1}{2}(x-1)^2$
$f''' = \frac{2}{x^3}$	$a_3 = \frac{1}{3}$	$\frac{f'''(1)}{3!}(x-1)^3$	$\frac{1}{3}(x-1)^3$
$f'''' = -\frac{6}{x^4}$	$a_4 = \frac{-1}{4}$	$\frac{f''''(1)}{4!}(x-1)^4$	$\frac{-1}{4}(x-1)^4$
		$\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k$	

$$(x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \frac{1}{4}(x-1)^4 + \frac{1}{5}(x-1)^5 - \frac{1}{6}(x-1)^6 + O((x-1)^6) + O$$