

Maximum Classifier Discrepancy for Unsupervised Domain Adaptation

Kuniaki Saito¹, Kohei Watanabe¹, Yoshitaka Ushiku¹, and Tatsuya Harada^{1,2}

¹The University of Tokyo ²RIKEN AIP

Introduction

Unsupervised Domain Adaptation (UDA)

- > Transfer knowledge from *label-rich* domain (source) to *unlabeled* domain (target).
- > Goal is to obtain a good classifier for the target domain.

Popular Approach: Aligning features by a domain classifier

- > Domain classifier tries to predict domain's label (source or target).
- Feature generator tries to deceive the domain classifier to extract domain-invariant features.

 Domain Classifier based Method

Problem

- Task-specific classifier is not considered to align features.
- Features of target can be generated near the decision boundary.

Key Idea

Discrepancy: Disagreement of two classifiers' predictions

- > We have to detect target ones far from the source ones.
- > Discrepancy can be large for target ones far from source ones.

Train two classifiers to increase the discrepancy on target.

Train feature extractor to reduce the discrepancy

Method

Adversarial Learning Steps

- Loss for source is also used to update all networks.
- We propose three steps training procedure for optimization.
- How many times we update **G** to minimize discrepancy per one iteration is a hyper-parameter.

Experiments1: Digits Image Classification

	SVHN	- SVHN to MNIST						
METHOD	to MNIST	to GTSRB	to USPS	to USPS*	to MNIST	0.020	0.9	
Source Only	67.1	85.1	76.7	79.4	63.4	_ 0.015	— Accuracy of classifier1	
MMD [1]	71.1	91.1	_	81.1	_	S 0.010	Accuracy of classifier1Accuracy of classifier20.7	
DANN [2]	\parallel 71.1	88.7	77.1 ± 1.8	85.1	73.0 ± 0.2	9 5.515	— Discrepancy Loss 0.6	
DSN[3]	\parallel 82.7	93.1	91.3	_	_	0.005	0.6	
ADDA [4]	$ 76.0 \pm 1.8$	_	89.4 ± 0.2	_	90.1 ± 0.8	0,000	0.5	
Ours $(n=4)$	96.2 \pm 0.4	94.4 ±0.3	94.2 ± 0.7	96.5 \pm 0.3	94.1 ±0.3	0.000 ₀	0.4	
	11	ı	1	1	1	_	10 20 30 40 ^{0.4} Epoch	

- Our method outperformed domain classifier based methods.
- > The accuracy improves with the decrease of discrepancy loss.

Experiments2: Object Classification (Synthetic to Real)

Iethod	plane	bcycl	bus	car	horse	knife	mcycl	person	plant	sktbrd	train	truck	mean
ource Only	55.1	53.3	61.9	59.1	80.6	17.9	79.7	31.2	81.0	26.5	73.5	8.5	52.4
IMD [1]	87.1	63.0	76.5	42.0	90.3	42.9	85.9	53.1	49.7	36.3	85.8	20.7	61.1
	81.9	77.7	82.8	44.3	81.2	29.5	65.1	28.6	51.9	54.6	82.8	7.8	57.4
Ours $(n=4)$	87.0	60.9	83.7	64.0	88.9	79.6	84.7	76.9	88.6	40.3	83.0	25.8	71.9

Our method is also effective for adaptation from synthetic and real.

Experiments3: Domain Adaptive Semantic Segmentation

Network	method	\parallel mIoU	road	sdwk	bldng	wall	fnce	pole	lght	sign	vgttn	trrn	sky	prsn	rder	car	trck	bus	train	mcycl	bcycl
VGG-16	Source Only	24.9	25.9	10.9	50.5	3.3	12.2	25.4	28.6	13.0	78.3	7.3	63.9	52.1	7.9	66.3	5.2	7.8	0.9	13.7	0.7
	FCN Wld [5]	27.1	70.4	32.4	62.1	14.9	5.4	10.9	14.2	2.7	79.2	21.3	64.6	44.1	4.2	70.4	8.0	7.3	0.0	3.5	0.0
	CDA (I) [6]	23.1	26.4	10.8	69.7	10.2	9.4	20.2	13.6	14.0	56.9	2.8	63.8	31.8	10.6	60.5	10.9	3.4	10.9	3.8	9.5
	Ours (n=4)	28.8	86.4	8.5	76.1	18.6	9.7	14.9	7.8	0.6	82.8	32.7	71.4	25.2	1.1	76.3	16.1	17.1	1.4	0.2	0.0
DRN-105	Source Only	22.2	36.4	14.2	67.4	16.4	12.0	20.1	8.7	0.7	69.8	13.3	56.9	37.0	0.4	53.6	10.6	3.2	0.2	0.9	0.0
	DANN [2]	32.8	64.3	23.2	73.4	11.3	18.6	29.0	31.8	14.9	82.0	16.8	73.2	53.9	12.4	53.3	20.4	11.0	5.0	18.7	9.8
	Ours (n=2)	39.7	90.3	31.0	78.5	19.7	17.3	28.6	30.9	16.1	83.7	30.0	69.1	58.5	19.6	81.5	23.8	30.0	5.7	25.7	14.3

- Source: GTA5, Target: CityScape, finetune VGG and DRN network
- Significant improvement in mIoU was observed.

Summary

- > A new adversarial learning for UDA using task-specific classifiers
- Method effective for image classification and semantic segmentation
- The effectiveness is verified through extensive experiments.
- Gradient reversal layer [2] also works in many settings.
- We proposed to sample two networks from a network with dropout [7].

[1] M. Long et al., Learning transferable features with deep adaptation networks. In *ICML*, 201 [2] Y.Ganin et al., Unsupervised domain adaptation by backpropagation. In *ICML*, 2015.

[3] K.Bousmalis et al., Domain separation networks. In *NIPS*, 2016.

[4] E. Tzeng et al., Adversarial discriminative domain adaptation. In CVPR, 2017.
 [5] J. Hoffman et al., FCNs in the wild: Pixel-level adversarial and constraint-based adaptation. ArXiiv 2016.
 [6] Y. Zhang et al., Curriculum domain adaptation for semantic segmentation of urban scenes. In ICCV, 2017.
 [7] K. Saito et al., Adversarial Dropout Regularization. In ICLR 2018.