AMENDMENT AND PRESENTATION OF CLAIMS

Please replace all prior claims in the present application with the following claims, in which claims 1-13 are currently amended.

1. (Currently Amended) A method Method for monitoring the stability of the a carrier frequency (ω_i) of identical transmitted signals $(s_i(t))$ of several transmitters $(S_1,...,S_i,...,S_n)$ of a single-frequency network by comprising:

receiving, by a receiver device (E) positioned within the transmission range of the single-frequency network, a signal ($e_i(t)$) associated with a transmitted signal ($s_i(t)$) of a transmitter (S_i) and a reference signal ($e_0(t)$) of a reference transmitter (S_0); and

evaluating the <u>a</u> phase position of a <u>the</u> received signal $(e_i(t))$ associated with a <u>the</u> transmitted signal $(s_i(t))$ of a <u>the</u> transmitter (S_i) with reference to a <u>the</u> received signal $(e_0(t))$ of a <u>the</u> reference transmitter (S_0) , both of which are received by a receiver device (E) positioned within the transmission range of the single frequency network.

2. (Currently Amended) A method Method according to claim 1, characterised by further comprising:

a calculation (S70) of calculating a carrier-frequency displacement ($\Delta\omega_i$) of a carrier frequency (ω_i) of a transmitter (S_i) relative to a reference carrier frequency (ω_0) of the reference transmitter (S_0) from a phase-displacement difference ($\Delta\Delta\Theta_i(t_{B2}-t_{B1})$) caused by the carrier-frequency displacement ($\Delta\omega_i$) of this transmitter between a phase displacement ($\Delta\Theta_i(t_{B2})$) at least at one second observation time (t_{B2}) and a phase displacement ($\Delta\Theta_i(t_{B1})$) at a first observation time (t_{B1}) of a received signal ($e_i(t)$) of this transmitter (S_i) associated with the transmitted signal

 $(s_i(t))$ relative to a received signal $(e_0(t))$ of the reference transmitter (S_0) associated with the transmitted signal $(s_0(t))$.

- (Currently Amended) A method Method for monitoring the stability of the carrier frequency according to claim 2, characterised in that the calculation (S70) of the carrier frequency displacement ($\Delta \omega_i$) of the carrier frequency (ω_i) of the transmitter (S_i) relative to the carrier frequency (ω_0) of the reference transmitter (S_0) from the phase displacement difference ($\Delta \Delta \Theta_i(t_{B2},t_{B1})$) is preceded by the procedural stages listed below wherein said calculating includes:
- determination (S10) of determining a transmission function ($H_{SFN}(f)$) of the transmission channel from the transmitters ($S_1,...,S_i,...,S_n$) to the receiver device (E),

ealeulation (S20) of calculating a characteristic of a complex, time-discrete, summated impulse response ($h_{SFN1}(t)$) at the first observation time (t_{B1}) and a characteristic of a complex, time-discrete, summated impulse response ($h_{SFN2}(t)$) at the second observation time (t_{B2}) of the transmission channel respectively from the transmission function ($H_{SFN}(t)$) of the transmission channel,

masking (S30) of masking a characteristic of a complex impulse response ($h_{SFN1i}(t)$) at the first observation time (t_{B1}) and of a characteristic of a complex impulse response ($h_{SFN2i}(t)$) at the second observation time (t_{B2}) for every transmitter (S_i) of the single-frequency network respectively from the characteristic of the complex, summated impulse response ($h_{SFN1}(t)$) at the first observation time (t_{B1}) and from the characteristic of the complex, summated impulse response ($h_{SFN2}(t)$) at the second observation time (t_{B2}),

determination (S40) of determining a phase characteristic ($arg(h_{SFN1i}(t))$) of the complex impulse response ($h_{SFN1i}(t)$) at the first observation time (t_{B1}) and of a phase characteristic

(arg($h_{SFN2i}(t)$) of the complex impulse response ($h_{SFN2}(t)$) at the second observation time (t_{B2}) for every transmitter (S_i) of the single-frequency network, <u>and</u>

between a phase displacement ($\Delta\Theta_i(t_{B2})$) at the second observation time (t_{B2}) and a phase displacement ($\Delta\Theta_i(t_{B1})$) at the first observation time (t_{B1}) by subtraction of a phase characteristic ($arg(h_{SFN1i}(t))$) of the complex impulse response ($arg(h_{SFN1i}(t))$) at the first observation time (t_{B1}) from a phase characteristic ($arg(h_{SFN2i}(t))$) of the complex impulse response ($h_{SFN1i}(t)$) at the second observation time (t_{B2}) of the respective transmitter (S_i).

- 4. (Currently Amended) A method Method for monitoring the stability of the carrier frequency according to claim 3, characterised by further comprising:
- [[-]] increasing (S60) the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B2}-t_{B1})$) by the factor $2^*\pi$ in the case of a decrease in the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B2}-t_{B1})$) to the value $-\pi$ or below and
- [[-]] reducing (S65) the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B2}-t_{B1})$) by the factor -2* π in the case of an increase in the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B2}-t_{B1})$) above the value π .
- 5. (Currently Amended) A method Method for monitoring the stability of the carrier frequency according to claim 3 or 4, characterised in that further comprising:

determining, in the case of digital terrestrial TV, the transmission function of the transmission channel from the transmitters $(S_1,...,S_i,...,S_n)$ to the receiver device (E) is determined from the DVB-T symbols of scattered pilot carriers of received signals $(e_i(t))$ of the transmitters $(S_1,...,S_i,...,S_n)$ modulated according to the orthogonal-frequency-division-multiplexing (OFDM) method.

6. (Currently Amended) A method Method for monitoring the stability of the carrier frequency according to claim 3, characterised in that wherein:

the calculation (S20) of a said calculating the characteristic of a complex, time-discrete, summated impulse response $h_{SFN1/2}(t)$ at the discrete first observation time t_{B1} of the transmission channel is derived from the transmission function $H_{SFN}(f)$ of the transmission channel using the Fourier transform according to the formula:

$$h_{SFN1/2}(t) = \sum_{k=0}^{N_F-1} H_{SFN}(k) * e^{j2\pi kt/N_F}$$

wherein

 $H_{SFN}(f)$ denotes the transmission function or respectively the frequency response of the transmission channel,

- N_F denotes the number of sampling values for the discrete Fourier transform,
- k denotes the discrete frequency values,
- t denotes the sampling times of the time-discrete, summated impulse response of the transmission channel and
- denotes the index for the observation time $t_{\rm B1}$ or respectively $t_{\rm B2}$.
- 7. (Currently Amended) A method Method for monitoring the stability of the carrier frequency according to claim 6, characterised in that wherein:

the calculation (S20) of a said calculating the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B2}-t_{B1})$) for each transmitter S_i of the single-frequency network is derived according to the formula:

$$\Delta\Delta\Theta_{i}(t_{B2}-t_{B1}) = arg(h_{SFN2i}(t)) - arg(h_{SFN1i}(t))$$

wherein

- i denotes the index for the transmitter S_i
- $arg(h_{SFN2i}(t))$ denotes the phase characteristic of the complex impulse response $h_{SFN2i}(t)$ at the observation time t_{B2} of the transmitter S_i and
- $arg(h_{SFN1i}(t))$ denotes the phase characteristic of the complex impulse response $h_{SFN1i}(t)$ at the observation time t_{B1} of the transmitter S_i .
- 8. (Currently Amended) A method Method for monitoring the stability of the carrier frequency according to claim 7, characterised in that wherein:

the calculation (S20) of a said calculating the carrier-frequency displacement $\Delta\omega_i$ of the transmitter S_i relative to the carrier frequency ω_0 of the reference transmitter of the single-frequency network is derived according to the formula:

$$\Delta\omega_{\rm I} = \Delta\Delta\Theta_{\rm i}(t_{\rm B2}-t_{\rm B1})/(t_{\rm B2}-t_{\rm B1})$$

wherein

- i denotes the index for the transmitter S_i ,
- $\Delta\Delta\Theta_i(t_{B2}-t_{B1})$ denotes the phase position difference $\Delta\Delta\Theta_i(t_{B2}-t_{B1})$ for the transmitter S_i of the single-frequency network and

t_{B1}, t_{B2} denote the observation times.

9. (Currently Amended) A method Method for monitoring the stability of the carrier frequency according to claim 8, characterised in that to allow an unambiguous identification of the permanent carrier frequency displacement $\Delta \omega_i$ of the transmitter S_i in the single frequency network relative to the carrier frequency ω_0 of the reference transmitter S_0 at several observation times t_{Bj} , the further comprising performing the following procedural stages are implemented steps repeatedly:

— calculation (S20) of calculating the characteristic of the complex, time-discrete, summated impulse response $h_{SFNj}(t)$ and $(h_{SFN(j+1)}(t))$ at the observation times t_{Bj} and $t_{B(j+1)}$,

—masking (S30) of masking the characteristic of the complex impulse response $h_{SFNji}(t)$ and $h_{SFN(j+1)i}(t)$ at the observation times t_{Bj} and $t_{B(j+1)}$ for every transmitter S_i of the single-frequency network,

determination (S40) of determining the phase characteristics $arg(h_{SFNji}(t))$ and $arg(h_{SFN(j+1)i}(t))$ of the complex impulse responses $h_{SFNji}(t)$ and $h_{SFN(j+1)i}(t)$ at the observation times t_{Bj} and $t_{B(j+1)}$,

ealculation (S50) of calculating the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B(j+1)}-t_{Bj})$) between the phase displacement $\Delta\Theta_i(t_{B(j+1)})$ at the observation time $t_{B(j+1)}$ and the phase displacement $\Delta\Theta_i(t_{Bj})$ at the observation time t_{Bj} for every transmitter S_i of the single-frequency network,

[[-]] increasing (S60) the phase-displacement difference $\Delta\Delta\Theta_i(t_{B(j+1)}-t_{Bj})$ by the factor $2^*\pi$ in the case of a decrease in the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B(j+1)}-t_{Bj})$) to the value $-\pi$ or below,

[[-]] reducing (S65) the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B(j+1)}-t_{Bj})$) by the factor - $2*\pi$ in the case of an increase in the phase-displacement difference $\Delta\Delta\Theta_i(t_{B(j+1)}-t_{Bj})$ above the value π and

calculation (S70) of calculating the carrier-frequency displacement $\Delta\omega_{ij}$ of the transmitter S_i relative to the carrier frequency ω_0 of the reference transmitter of the single-frequency network at several observation times t_{Bj} ; and that following this,

an averaging (S80) of all carrier-frequency displacements $\Delta\omega_{ij}$ of every transmitter S_i relative to the carrier frequency ω_0 of the reference transmitter S_0 of the single-frequency network calculated respectively in procedural stage (S70), is implemented at the observation times t_{Bj} .

- (Currently Amended) A method Method for monitoring the stability of the carrier frequency according to claim 9, characterised in that the wherein said averaging (S80) of all carrier-frequency displacements $\Delta\omega_{ij}$ of every transmitter S_i relative to the carrier frequency ω_0 of a reference transmitter S_0 of the single-frequency network calculated in procedural stage (S70), is implemented using a recursive method.
- (Currently Amended) A device Device for monitoring the stability of the carrier frequency (ω_i) of identical transmitted signals $s_i(t)$ of several transmitters $(S_1,...,S_i,...,S_n)$ of a single-frequency network comprising:
 - [[-]] a receiver device (E),
- [[-]] a unit (11) for determining a transmission function $H_{SFN}(f)$ of a transmission channel of several transmitters $(S_1,...,S_i,...,S_n)$ of the single-frequency network to the receiver device (E) disposed within the transmission range of the single-frequency network,
 - [[-]] a unit (12) for implementing an inverse Fourier transform,
- [[-]] a unit (13) for masking a impulse response $(h_{SFNi}(t))$ for every transmitter (S_i) from the summated impulse response $(h_{SFN}(t))$,
- [[-]] a unit (14) for determining the phase characteristic ($arg(h_{SFNi}(t))$) of the impulse response ($h_{SFNi}(t)$) for every transmitter (S_i),
- [[-]] a unit (15) for calculating the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B(j+1)}-t_{Bj})$) of the phase displacement ($\Delta\Theta_i$) of a transmitter (S_i) relative to a reference transmitter (S₀) at least at

two different times ((t_{B1}, t_{Bj+1})) and the carrier-frequency displacement ($\Delta\omega_i$) of every transmitter (S_i) relative to the carrier frequency (ω_0) of the reference transmitter (S_0), and

- [[-]] a unit (2) for presenting the calculated carrier-frequency displacement $(\Delta\omega_i)$ of every transmitter (S_i) relative to the carrier frequency (ω_0) of the reference transmitter (S_0) of the single-frequency network.
- 12. (Currently Amended) A device Device for monitoring the stability of the carrier wave (ω_i) of identical transmitted signals $s_i(t)$ of several transmitters $(S_1,...,S_i,...,S_n)$ of a single-frequency network comprising:
 - [[-]] a receiver device (E),
- [[-]] a unit (16) for determining a transmission function ($H_{SFN}(f)$) from pilot carriers of the received signal ($e_i(t)$),
- [[-]] a unit (13) for masking a impulse response $(h_{SFNi}(t))$ for every transmitter (S_i) from the summated impulse response $(h_{SFN}(t))$,
- [[-]] a unit (14) for determining the phase characteristic $(arg(h_{SFNi}(t)))$ of the impulse response $(h_{SFNi}(t))$ for every transmitter (S_i) ,
- [[-]] a unit (15) for calculating the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B(j+1)}-t_{Bj})$) of the phase displacement $\Delta\Theta_i$ of a transmitter (S_i) relative to a reference transmitter (S₀) at least at two different times $(t_{Bj}-t_{B(j+1)})$ and the carrier-frequency displacement $(\Delta\omega_i)$ of every transmitter relative to the carrier frequency (ω_0) of the reference transmitter (S₀), and
- [[-]] a unit (2) for presenting the calculated carrier-frequency displacement $(\Delta \omega_i)$ of every transmitter (S_i) relative to the carrier frequency (ω_0) of the reference transmitter (S_0) of the single-frequency network.

13. (Currently Amended) A device Device for monitoring the stability of the carrier frequency according to claim 11 or 12, characterised in that wherein:

the unit (2) for presenting the calculated carrier-frequency displacement $(\Delta\omega_i)$ of every transmitter (S_i) relative to the carrier frequency (ω_0) of the reference transmitter (S_0) comprises a tabular and/or graphic display device.