

Computer Networks

EDA387 / DIT663 SP1 2014/2015

Internet Interconnections

Ali Salehson

2

0

1

Course Literature

Douglas Comer

"Internetworking with TCP/IP"

Principles, Protocols, and Architectures

Volume 1, 5th edition Prentice Hall 2006

➤ J. F. Kurose, K. W. Ross
"Computer Networking"

A Top-Down Approach

6th edition, Pearson Education 2012

Internetworking with TCP/IP

Ch 3: Internetworking Concept (review)

Ch 4: IPv4 Addressing

Ch 5: ARP protocol & operation

Ch 6: IPv4 Protocol (self-study)

Ch 7: Forwarding IP Datagrams

Ch 8: ICMP and TCP/IP Utilities (self-study)

Ch 9: IPv4 CIDR

2

0

1

NANCE

Internetworking with TCP/IP

Ch 23: Domain Name System (DNS)

Ch 31: IPv6 & ICMPv6

2

0

4

NANCES

Internet Services

Practical Perspective (lab 4h)

- ➤ Domain Name System (DNS)
 - Using dig in Linux
 - DNS-client interacts with DNS-servers
- > IPv6 and ICMPv6
 - Using ping6 and traceroute6 in Linux
 - Capturing IPv6 packets with Wireshark
 - Neighbor Discovery and Autoconfig

Internet Interconnections Underlying Network Technologies

Ethernet and MAC frames Review

Ali Salehson

Network Technologies (review)

Outline

- > Review basic network concepts
- > Examine physical networks
- > Learn physical addressing
- > Focus on Ethernet technology
- > Study MAC frame

The TCP/IP Concept

- - 2
 - 0
 - 1
 - 4

- > Use existing network hardware
- > Interconnect networks

The challenge is to accommodate all possible network hardware.

Basic Categories of Network

- 2
- 0
- 1
- 4

- Connection-oriented
 - circuit-switching or virtual-circuit packet-switching
- Connectionless
 - datagram packet-switching frame broadcasting

Connection Oriented

Paradigm

- establish a "connection" through the network
- send / receive data over the same connection
- terminate the connection
- > Can guarantee bandwidth and reserve resources
- ➤ Works well with real-time applications (e.g. voice)

Examples

- PSTN and ISDN (circuit-switching)
- Frame Relay and ATM (VC packet-switching)

9

0

1

Connectionless Networks

Paradigm

- form a "packet" of data to transmit
- send packet as soon as possible over network
- > Each packet travels as datagram independently
- > Packet includes identification of the destination
- **Each packet can be of a different size**
- Works well with file transfer applications

Packet-switching Networks

- Local Area Network (LAN)
- Wide Area Network (WAN)

2

0

1

Local Area Networks

- > Engineered for
 - Limited distance to a locale
 - Direct connection among computers
- > Low cost
- High speed
- > Need Medium Access Control (MAC)

2

0

1

Wide Area Networks

- Engineered for
 - Long distances
 - Indirect connection via special-purpose hardware (DTE/DCE)
- > Higher cost
- Lower capacity in shared links
- **Need Intermediate Network Devices**

2

0

1

Packet-switched Networks

- Wide Area Networks
 - ARPAnet, Internet
 - Common carrier services
- Leased Line services
 - Point-to-point connections
- Local Area Networks
 - Ethernet
 - Wi-Fi

2

0

1

ARPAnet (1969-1989)

Original backbone of Internet

Wide area network around which TCP/IP was developed

Funding from Advanced Research Project Agency (ARPA)

NANCES

WANs from Carriers

- Point-to-point digital circuits
 - T-lines (e.g. T1 = 1.544 Mbps)
 - E-lines (e.g. E1 = 2.048 Mbps)
 - OC-line (e.g. OC-3 = 155 Mbps)

- Packet-switching services also available by:
 - X.25, Frame Relay, ATM

NANCE

Point-to-Point Network

- > Any direct connection between two nodes
 - Leased line
 - Connection between two routers
 - Dialup connection
 - DSL broadband connection
- Link-level protocol required for framing
- > TCP/IP views it as an independent network

2

0

1

LANs: Focus on Ethernet

- extremely cheap and popular
- can run over
 - copper (twisted pair)
 - optical fiber
- many physical standards
 - 10 Base T (Legacy Ethernet 10 Mbps)
 - 100 Base T (Fast Ethernet 100 Mbps)
 - 1000 Base T (Gigabit Ethernet 1 Gbps)
 - 10 Gigabit Ethernet over fiber
- one IEEE MAC standard 802.3

2

0

1

NANCES

Hardware Address

- Unique number assigned to each network interface (NIC) on a machine
- > Used to identify destination for a frame
- **Known as (all terms are almost equal!)**
 - Physical address
 - Link-layer address (layer-2 address)
 - Hardware address
 - Medium Access Control (MAC) address

2

0

1

Use of Hardware Address

- > Sender supplies
 - Destination address
 - Source address (in most technologies)
- > Network Hardware
 - Uses destination address to forward frame
 - Delivers frame to proper machine interface
- > Each network technology defines its own scheme of addressing
 - Static: assigned by hardware vendor
 - Configurable: assigned by customer
 - Dynamic: assigned by software at startup

2

0

1

LAN MAC Address

- > MAC (link-layer or physical) address:
 - used to get frame from one interface to another physically-connected interface (same network)
 - 48-bit MAC address (for most LANs)
 - normally burned in the adapter ROM
- ➤ MAC address allocation administered by IEEE:
 Institute of Electrical and Electronics Engineers
- ➤ Manufacturer gets portion of MAC address space (to assure uniqueness)
- > MAC addressing is flat, no hierarchy
 - LAN card may be moved from one LAN to another

Ethernet Frame Format

 Sending adapter encapsulates IP datagram (or other higher layer protocol data) in a frame

Sync | Header | Payload | Trailer

Preamble: (7 + 1) bytes

7 bytes with pattern 10101010 followed by one byte as: Start of Frame Delimiter (SFD) with pattern 10101011 both used to synchronize receiver and sender clock rates and indicating the start of the frame.

Ethernet Frame Format

Addresses: 2 x 6 bytes

if adapter receives frame with matching destination address, or with broadcast address (e.g. ARP packet), it passes data in frame to network layer protocol

Type/Length: 2 bytes (0x0800 for IP) / (0x002E → 0x05DC) in Ethernet type II, indicates higher layer protocol (mostly IP) in IEEE 802.3 indicates length of data field (LLC frame)

Data: 46 – 1500 bytes (variable)

Min. length makes sure collisions are always detected

Max. length indicates Maximum Transmission Unit (MTU) on Ethernet

CRC: 4 bytes

at sender inserted FCS bits, to check for errors at receiver

2

0

1

NANCES

MAC Addresses

 The 48-bit MAC address is given as 6 bytes, separated by periods (hyphens or colons) and each byte is presented as two hexadecimal digits 2

0

1

NANCE OF THE PARTY OF THE PARTY

MAC Unicast Address

- Ethernet hardware addresses are 48 bits, expressed as 12 hexadecimal digits (0-9, A-F often capitalized).
- ➤ The first (left) 6 digits should match the vendor of the Ethernet interface. These high-order 3 octets (6 hex digits) are also known as the Organizationally Unique Identifier (OUI).
- The last (right) 6 digits specify the serial number given for the interface by that vendor.
- These addresses are physical unicast addresses, and not *multicast* nor *broadcast*, so the second hex digit (reading from the left) will be even, not odd.

MAC Multicast Address

- ➤ An Ethernet multicast address consists of the multicast bit, the 23-bit vendor component, and the 24-bit group identifier assigned by the vendor.
- ➤ For example, DEC is assigned the vendor component (first 3 bytes) 08-00-2B, so multicast addresses assigned by DEC will have the first 24-bits 09-00-2B.
- > The multicast bit is the low-order bit of the first byte, which is "the first bit on the wire".

MAC Multicast Address

ONLY destination address

Examples:

01-80-C2-00-00 used by Spanning Tree Protocol 01-00-5E-00-00 is the Internet Multicast

Octets transmitted left-to-right, and within octets: on the wire, bits transmitted from right to left (LSB) in memory, bits placed from left to right (MSB)

CSMA/Collision Detection

- 1. Adapter receives datagram from network layer and creates frame
- 2. Adapter waits until it senses channel idle, plus 96 bit times, then transmits frame.
- 3. If adapter transmits entire frame without detecting another transmission, the adapter is done with frame.

- 4. If adapter detects another transmission while it is self transmitting, aborts and sends jam signal (48 bits) to warn other nodes about collision
- 5. After aborting, adapter enters **exponential backoff**: after *m*th collision, adapter chooses *K* at random from {0,1,2,...,2^m-1} until K is max 1023 (m = 10).

 Adapter waits K*512 bit times, and returns to Step 2 **Bit time is 10 ns for 100 Mbps**

max. wait time is about 5 ms

for K = 1023,

NAME OF THE PARTY OF THE PARTY

Shared Ethernet: Hubs

Hubs are essentially physical-layer multiport repeaters:

- bits coming in one link repeated out all other links
- at same rate
- no frame buffering
- adapters detect collisions and do CSMA/CD

2

0

1

LAN Bridge

- ➤ Hardware device that connects two LAN segments and makes them appear to be a single LAN
- Inspects frames to learn which computers are on which side of the bridge
- > Uses hardware addresses to filter
- > Repeats frames from one LAN segment to another
- ➤ Introduces delay of 1 frame-time (store-and-forward)
- ➤ Does not forward collisions or noise (checks CRC and performs CSMA/CD)
- ➤ Called Layer 2 device

Switched Ethernet

link-layer device

- multi-port LAN bridge
- store and forward Ethernet frames
- examine frame header and selectively forward frame based on MAC destination address

Auto-negotiation

detection of devices and their communication capabilities

• Transparent

hosts are unaware of presence of switches

Plug-and-play, self-learning

The switch forwarding table does not need to be configured

Self Learning

- Switch learns which MAC addresses of hosts can be reached through which interface
 - When frame received, switch "learns" location of sender i.e. incoming LAN segment
 - Records sender/location pair in switch table
- Entry in switch table
 [MAC Address, Interface, Time Stamp]
- Stale entries in table dropped (aging time may be configured or set to a default)

2

0

1

Summary

- > TCP/IP is designed to use all types of networks
 - Connection-oriented
 - Connectionless
 - Local Area Network (LAN)
 - Wide Area Network (WAN)
 - Point-to-point link
 - Set of bridged networks
- > Recall: each technology can define its own addressing scheme
- ➤ Heterogeneous networks imply potential for heterogeneous addressing
- Conclusion: cannot rely on hardware addressing

Questions?

2

0

1

Thank You!

Internet Interconnections

Internetworking Concept Architectural Model Review

Ali Salehson

2

0

1

The TCP/IP Internet Concept

- > Use available physical networks
- > Interconnect underlying networks
 - Network of networks
 - Providing universal communication
- > Devise abstractions that hide
 - Underlying architecture
 - Hardware addresses
 - Routes and alternative paths

2

0

1

Internet Interconnection

- > Network uses active intermediate system
- Each network sees an additional computer system attached
- > IS is an IP router (originally called IP gateway)

In a TCP/IP internet, special computers called IP routers or IP gateways provide interconnections among physical networks.

2

0

4

Internetworking

Uses multiple IP routers

- > Ensures that each network is reachable
- Do not need router between *each* pair of networks (packets may be passed through other networks)

Packet Transmission Paradigm

- > Source computer
 - Generates a packet
 - Sends across one network to a router
- > Intermediate router
 - Forwards packet to "next" router
- > Final router
 - Delivers packet to destination

Routers use the destination network, not the destination computer, when forwarding packets.

Architectural Terminology

- > End-user System (ES) is called *host*
 - Connects to physical network
 - Normally many hosts per network
 - Possibly more than one network connection per host (multi-homed)
- ➤ Dedicated systems called *IP gateways* or *IP routers* interconnect networks
 - Router connects two or more networks

Summary

- > TCP/IP Internet is set of interconnected (possibly heterogeneous) networks
- > Routers provide interconnection
- > End-user systems are called host computers
- ➤ Internetworking introduces abstractions that hide details of underlying networks

Needs:

- Addressing model and relationship to hardware addresses
- Format of packet as it travels through Internet

2

0

1

Questions?

2

0

1

Thank You!