Lecture 4: Principal Component Analysis and Regression

James D. Wilson MATH 373

Plan for this Lecture

- Dimension Reduction via Principal Component Analysis
- Principal Component Regression for High Dimensional settings
- Algorithms:
 - Principal Component Analysis (PCA)
 - Principal Component Regression (PCR)
- Warning: Linear Algebra heavy!

Reference: ISL Sections 6.3 - 6.4; 10.2

Regression Methods So Far

Setting: Continuous response y and predictors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p$

So Far: Linear regression using some (or all) of the original predictors:

$$y_i = \beta_0 + \sum_{j=1}^p \beta_j x_{ij} + \epsilon_i, \qquad i = 1, \ldots, n$$

- Ordinary Least Squares: with model selection
- Shrinkage methods: Ridge, Lasso, Elastic Net

Regression Methods So Far

Potential concerns: High-dimensional setting $(p \gg n)$, or correlations among variables

- (X^TX) is no longer full rank (and therefore non-invertible)
- The curse of dimensionality refers to the fact that including more predictors does not improve the prediction of capabilities of a model even though the MSE in the training set may lead you to think otherwise.
- Note: Shrinkage and model selection tools can reduce p

Curse of Dimensionality

Example: n = 20 training observations

Dimension Reduction Methods

Aim: Reduce the dimension p to some M < n

Idea: Transform, or project, variables $\mathbf{x}_1, \dots, \mathbf{x}_p$ to a lower dimensional space $\mathbf{z}_1, \dots, \mathbf{z}_M$ where

$$\mathbf{z}_m = \sum_{j=1}^p \phi_{jm} \mathbf{x}_j$$

for some constants $\phi_{1m}, \phi_{2m}, \dots, \phi_{pm}, m = 1, \dots, M$

Dimension Reduction Methods

(New?) Model:

$$y_i = \theta_0 + \sum_{m=1}^{M} \theta_m z_{im} + \epsilon_i$$

Tis new, but there is a close relationship with the standard model:

$$\sum_{m=1}^{M} \theta_m z_{im} = \sum_{m=1}^{M} \theta_m \sum_{j=1}^{p} \phi_{jm} x_{ij}$$
$$= \sum_{j=1}^{p} \sum_{m=1}^{M} \theta_m \phi_{jm} x_{ij}$$
$$= \sum_{i=1}^{p} \beta_i x_{ij}$$

where:
$$\beta_0 = \theta_0$$
, and $\beta_j = \sum_{m=1}^M \theta_m \phi_{jm}$ for $j = 1, \dots, p$

Dimension Reduction Methods

Results:

• The estimated β_i coefficients must take form

$$\beta_j = \sum_{m=1}^M \theta_m \phi_{jm}$$

- Bias is increased
- When p > n, selecting a value M << p can significantly reduce variance of the coefficients
- When M = p, fitting the new model is equivalent to fitting OLS estimates for β

Using a Dimension Reduction Method

Requires 2 steps:

- **1** Transformation: transform $\mathbf{x}_1, \dots, \mathbf{x}_p$ to $\mathbf{z}_1, \dots, \mathbf{z}_M$
- Fitting the model: Fit the model

$$y_i = \theta_0 + \sum_{m=1}^{M} \theta_m z_{im} + \epsilon_i$$

using least squares (i.e. minimizing the MSE in the training set)

Focus: principal component regression, which regresses y onto the *directions of highest variability* in the data matrix X. First, we will describe how to find these *directions of highest variability* in X via principal component analysis.

Principal Component Analysis

Idea: Reduce the dimension of the $n \times p$ matrix X.

How: Project X onto an M < p dimensional space $\{\mathbf{z}_1, \dots, \mathbf{z}_M\}$ so that

- $\mathbf{z}_i^T \mathbf{z}_j = 0$, for all $i \neq j$ (orthogonality)
- $\mathbf{z}_{i}^{T}\mathbf{z}_{i} = 1$, for all i = 1, ..., M
- z₁,..., z_k explain the most variability in X possible for a k-dimensional space subject to the above 2 constraints.
 Equivalently, the projection of X is as close as possible to the subspace of z₁,..., z_k

Principal Component Analysis

Fact: It turns out that \mathbf{z}_m can be expressed as linear combinations of the columns of X:

$$\mathbf{z}_m = \sum_{j=1}^p \phi_{jm} \mathbf{x}_j$$

where $\sum_{j=1}^{p} \phi_{jm}^2 = 1$

Terminology:

- $z_1, ..., z_M$ are called the principal components (PCs)
- z_{11}, \ldots, z_{n1} are the principal component scores of the first PC
- $\phi_{11}, \dots, \phi_{p1}$ are the principal component loadings of the first PC

Visualization of PCs

Principal Component Analysis

- This is the first unsupervised method we've discussed. That is, there is no response affecting our analysis of the data *X*.
- We are focusing now on the transformation of X to a lower-dimensional space
- Big Question: How do we choose the transformation?!
- **Big Question** (for PCA): How do we *maximize* the variation in *X*?

Empirical Covariance Matrix

Data matrix: X

The covariance of variable j and variable k is

$$Cov(\mathbf{x}_j, \mathbf{x}_k) = \frac{1}{n} \sum_{i=1}^n (x_{ij} - \overline{\mathbf{x}}_j)(x_{ik} - \overline{\mathbf{x}}_k) = \frac{1}{n} \sum_{i=1}^n x_{ij} x_{ik} - \overline{\mathbf{x}}_j \overline{\mathbf{x}}_k$$

where $\overline{\mathbf{x}}_j$ is a scalar: $\overline{\mathbf{x}}_j = \sum_{i=1}^n x_{ij}$

Definition: Empirical Covariance Matrix (for variables)

$$\Sigma := \{ \mathsf{Cov}(\mathbf{x}_j, \mathbf{x}_k) : 1 \le j, k \le p \}$$

Matrix Formula for Covariance

Goal: Express Σ in terms of the Gram matrix X^TX .

Fact:

$$\Sigma = n^{-1}X^TX - \mathbf{u}\mathbf{u}^T$$

where $\mathbf{u}^T = (\overline{\mathbf{x}}_1, \dots, \overline{\mathbf{x}}_p)$ is the vector of column means of X.

Matrix Formula for Covariance

Assumption: the vector of column means $\mathbf{u} = 0$. (column center the data)

Then, $\Sigma = n^{-1}X^TX$.

Properties of Σ

- 1. Σ is $p \times p$, symmetric, and non-negative definite
- 2. $\operatorname{rank}(\Sigma) = \operatorname{rank}(X^T X) = \operatorname{rank}(X) \leq \min(n, p)$
- 3. Σ has real eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p \ge 0$.
- 4. If p > n then rank(Σ) < p and Σ is not invertible.

Total Variation and the Trace of Σ

Total Variation of X

Basic facts about the trace imply

$$\sum_{k=1}^{p} \lambda_k = \operatorname{tr}(\Sigma) = \frac{1}{n} \operatorname{tr}(X^T X)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{p} x_{ij}^2$$

$$= \sum_{j=1}^{p} \left(\frac{1}{n} \sum_{i=1}^{n} x_{ij}^2\right) = \sum_{j=1}^{p} \operatorname{Var}(\mathbf{x}_j)$$

$$= \operatorname{The total variation of } X$$

Variation and the Trace of Σ

Magnitude of the Samples

$$\sum_{k=1}^{p} \lambda_k = \operatorname{tr}(\Sigma) = \frac{1}{n} \operatorname{tr}(X^T X)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{p} x_{ij}^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} \|x_i\|^2$$

:= The average squared norm of the samples

Approximating a Set of Vectors

Given: Vectors $\mathbf{u}_1, \dots, \mathbf{u}_n \in \mathbb{R}^p$ centered so that $\sum_i \mathbf{u}_i = \mathbf{0}$ (Think about the rows of X once X is column-centered)

Goal: Find a low dimensional summary of $\mathbf{u}_1, \dots, \mathbf{u}_n$, more precisely, a subspace V of \mathbb{R}^p such that

- dim(V) much less than p (and n)
- projection of \mathbf{u}_j onto V is close to \mathbf{u}_j

Note: Smallest subspace of \mathbb{R}^p containing $\{\mathbf{u}_i\}$ is

$$V = \operatorname{span}(\mathbf{u}_1, \dots, \mathbf{u}_n)$$
 with $\dim(V) \leq n$

Approximating a Set of Vectors

Consider approximating subspace V of dimension 1, equivalently,

$$V = \{ \alpha \, \mathbf{u}_0 : \alpha \in \mathbb{R} \} \text{ some } \mathbf{u}_0 \in \mathbb{R}^p \text{ with } \|\mathbf{u}_0\| = 1.$$

Definition: The projection of **u** onto V is $(\mathbf{u}^T \mathbf{u}_0) \mathbf{u}_0$.

Two (Complementary) Goals:

- 1. Find \mathbf{u}_0 to maximize $Var(\{\mathbf{u}_1^T \mathbf{u}_0, \dots, \mathbf{u}_n^T \mathbf{u}_0\})$
- 1. Find \mathbf{u}_0 to minimize $n^{-1} \sum_{i=1}^n \|\mathbf{u}_i (\mathbf{u}_i^T \mathbf{u}_0) \mathbf{u}_0\|^2$

Variance of Projections

By definition of the variance:

$$\operatorname{Var}(\{\mathbf{u}_{1}^{T} \mathbf{u}_{0}, \dots, \mathbf{u}_{n}^{T} \mathbf{u}_{0}\}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}_{i}^{T} \mathbf{u}_{0})^{2} - \left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{u}_{i}^{T} \mathbf{u}_{0}\right]^{2}$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}_{i}^{T} \mathbf{u}_{0})^{2} - \left[\frac{1}{n} \mathbf{u}_{0}^{T} (\sum_{i=1}^{n} \mathbf{u}_{i})\right]^{2}$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}_{i}^{T} \mathbf{u}_{0})^{2}$$

The last equality follows since $\sum_{i} \mathbf{u}_{i} = \mathbf{0}$ (data are centered).

Sum of Squares Fit

Consider sum of squares. Completing square of *i*th term gives

$$\|\mathbf{u}_{i} - (\mathbf{u}_{i}^{T} \mathbf{u}_{0}) \mathbf{u}_{0}\|^{2} = \|\mathbf{u}_{i}\|^{2} - 2(\mathbf{u}_{i}^{T} \mathbf{u}_{0})^{2} + (\mathbf{u}_{i}^{T} \mathbf{u}_{0})^{2} \|\mathbf{u}_{0}\|^{2}$$
$$= \|\mathbf{u}_{i}\|^{2} - (\mathbf{u}_{i}^{T} \mathbf{u}_{0})^{2}$$

Therefore

$$\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{u}_{i} - (\mathbf{u}_{i}^{T} \mathbf{u}_{0}) \mathbf{u}_{0}\|^{2} = \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{u}_{i}\|^{2} - \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}_{i}^{T} \mathbf{u}_{0})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{u}_{i}\|^{2} - \text{Var}(\{\mathbf{u}_{i}^{T} \mathbf{u}_{0}\}) \tag{1}$$

Conclusion: Choosing \mathbf{u}_0 to minimize the sum of squares fit is equivalent to maximizing variance of projection lengths.

Empirical Covariance Matrix

Define $X = n \times p$ matrix with rows $\mathbf{u}_1^T, \dots, \mathbf{u}_n^T$.

Let $\Sigma = n^{-1}X^TX$ be $p \times p$ covariance matrix of X. Then,

$$Var(\{\mathbf{u}_{i}^{T} \mathbf{u}_{0}\}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}_{i}^{T} \mathbf{u}_{0})^{2} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u}_{0}^{T} \mathbf{u}_{i}) (\mathbf{u}_{i}^{T} \mathbf{u}_{0})$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mathbf{u}_{0}^{T} (\mathbf{u}_{i} \mathbf{u}_{i}^{T}) \mathbf{u}_{0} = \mathbf{u}_{0}^{T} (\frac{1}{n} \sum_{i=1}^{n} \mathbf{u}_{i} \mathbf{u}_{i}^{T}) \mathbf{u}_{0}$$

$$= \mathbf{u}_{0}^{T} (\frac{1}{n} X^{T} X) \mathbf{u}_{0} = \mathbf{u}_{0}^{T} \Sigma \mathbf{u}_{0}$$

Best 1-Dimensional Subspace

Upshot: Variance of the projections $\{\mathbf{u}_1^T \mathbf{u}_0, \dots, \mathbf{u}_n^T \mathbf{u}_0\}$ onto \mathbf{u}_0 is equal to $\mathbf{u}_0^T \Sigma \mathbf{u}_0$. Maximized when \mathbf{u}_0 is the leading eigenvector of Σ .

Let $\lambda_1 \geq \cdots \geq \lambda_p \geq 0$ be the eigenvalues of Σ , with corresponding orthonormal eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

Fact: The best one dimensional approximation for $\mathbf{u}_1, \dots, \mathbf{u}_n$ is obtained by projecting the data vectors onto the line

$$V_1 = \operatorname{span}\{\mathbf{v}_1\},$$

in the direction of the principal eigenvector of Σ .

Approximation Error of V_1

By (1) and fact that $\frac{1}{n}\sum_{i=1}^{n} \|\mathbf{u}_i\|^2 = \text{tr}(\Sigma)$, approximation error is

$$\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{u}_{i} - (\mathbf{u}_{i}^{T} \mathbf{v}_{1}) \mathbf{v}_{1}\|^{2} = \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{u}_{i}\|^{2} - \mathbf{v}_{1}^{T} \sum \mathbf{v}_{1}$$

$$= \operatorname{tr}(\Sigma) - \lambda_{1} = \sum_{i=1}^{p} \lambda_{i} - \lambda_{1} = \sum_{i=2}^{p} \lambda_{i}$$

Residual error after projecting onto \mathbf{v}_1 is sum of the remaining eigenvalues 2 through p.

Higher Order PCs

For $1 \le d \le p$ the *d*-dimensional subspace *V* of \mathbb{R}^p minimizing

$$\frac{1}{n}\sum_{i=1}^{n}\|\mathbf{u}_i-\operatorname{proj}_V(\mathbf{u}_i)\|^2$$

is $V_d = \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_d\} = \operatorname{span}$ of d leading eigenvectors of Σ . In this case, the projection of \mathbf{u} onto V_d is

$$\operatorname{proj}_{V_d}(\mathbf{u}) = \sum_{j=1}^d (\mathbf{u}^T \mathbf{v}_j) \mathbf{v}_j$$

and the approximation error of V_d is given by

$$\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{u}_{i} - \text{proj}_{V_{d}}(\mathbf{u}_{i})\|^{2} = \sum_{i=d+1}^{p} \lambda_{i}$$

PCA: Bringing it all together

Recall: Given X, we'd like to project columns $\mathbf{x}_1, \dots, \mathbf{x}_p$ down to a lower-dimensional space $\mathbf{z}_1, \dots, \mathbf{z}_M$ where

$$\mathbf{z}_m = \sum_{j=1}^p \phi_{jm} \mathbf{x}_j$$

Let \mathbf{u}_i = the jth row of X.

- Principal component loadings (directions): $\phi_i = (\phi_{11}, \phi_{21}, \dots, \phi_{p1})$ Use $\mathbf{v}_i = \text{the } i \text{th eigenvector of } \Sigma = n^{-1} X^T X$
- Principal components: $z_1, ..., z_M$ where

$$\mathbf{z}_j = X\mathbf{v}_j$$

• Principal component scores: $z_{\ell,j} = \mathbf{u}_{\ell}^T \mathbf{v}_j$

PCA: Important Considerations

- Method is unsupervised. There is no dependence on any response data y.
- Before application, the columns of X must be centered.
- Principal components are uncorrelated (hence no multicollinearity)
- No rigorous way to choose the number of PCs to use, but there is a heuristic (see next slide).

Choosing the number of PCs

Definition: The percentage of variation (PVE) captured by the first d principal components, equivalently the subspace V_d , is

$$\frac{\sum_{i=1}^{d} \lambda_i}{\sum_{j=1}^{p} \lambda_j} \times 100$$

We choose the number of PCs by evaluating the scree plot: a plot of the number of PCs against the PVE.

Example of Scree Plot

Aim: capture a significant (enough) amount of variability in X

Example: TCGA Gene Expression Data

- Heat map of gene expression data from The Cancer Genome Atlas (TCGA)
 - Samples
 - 95 Luminal A breast tumors
 - 122 Basal breast tumors
 - Variables: 2000 randomly selected genes

Question: can the PCs of this gene expression data help distinguish cancer subtypes?

PCA on TCGA Expression Data

Figure: Projections of Sample data onto the first four principal components of the TCGA dataset. Colors represent subtype of cancer: Luminal A and Basal

Example: Image Data

Data: $X = 396 \times 588$ matrix of pixel intensities

Question: Can we project columns of the image onto a low dimensional subspace and still reconstruct the image?

Image Reconstruction

d = 1, PVE = 80.42

d = 3, PVE = 88.91

d = 20, PVE = 97.24

d = 5, PVE = 92.99

d = 40, PVE = 98.18

EigenFace, EigenGene, EigenEverything

Eigen-faces Example:

PCA on ... pancake recipes?!

From "Cooking for Geeks: Real Science, Great Hacks, and Good Food"

Every pancake recipe is a scaled version of this eigen-pancake recipe:

- 1 1/2 cups flour
- 2 tablespoons sugar
- 2 teaspoons baking powder
- 1/2 teaspoon salt

- 2 tablespoons butter
- 11/4 cups milk
- 2 small eggs

Back to Regression

Standard Model:

$$y_i = \sum_{j=1}^p \beta_j x_{ij} + \epsilon_i$$

PCR Assumption: the directions in which $\mathbf{x}_1, \dots, \mathbf{x}_p$ show the most variation are the directions that are associated with y.

- 1. Transformation: transform $\mathbf{x}_1, \dots, \mathbf{x}_p$ to $\mathbf{z}_1, \dots, \mathbf{z}_M$.
 - Column center X
 - Set \mathbf{z}_m = the mth eigenvector of $n^{-1}X^TX$
 - Choose $M \le p$ using PVE

Principal Component Regression

2. Fitting the model: Fit the model

$$y_i = \theta_0 + \sum_{m=1}^{M} \theta_m z_{im} + \epsilon_i$$

Standard least squares regression can be used

Training vs. Test set analysis

Training Set: Use to calculate the PC loadings ϕ_1, \ldots, ϕ_M . Then fit model by estimating $\theta_0, \ldots, \theta_M$.

Test Set: Project data onto PC loadings to obtain principal component scores. Then, evaluate goodness of fit of model using $\theta_0, \dots, \theta_M$ from the Training data.

Example of PCR

Two simulated data sets

Example of PCR

Simulated data set where true predictors were first 5 PCs. (Right): dashed = Ridge, solid = Lasso

Example of PCR on Credit Data

Note the shrinkage effect! Closely related to Ridge regression.

Pros and Cons of PCR

Pros:

- Easily handles high dimensional data p > n
- Often leads to a drastic decrease in variance of parameter estimates
- Takes care of issues of correlations between variables (and multicollinearity)

Cons:

- Introduces bias to the parameter estimates
- Hard to interpret coefficients in regression

Implementing PCA and PCR with R

Next we'll show how to implement PCA and PCR in R.