Regression Analysis

Group 16

Project objective:

To apply regression models to analyse a given data set

Data Set: QSAR fish toxicity

Data Set Characteristics:	Multivariate	Number of Instances:	908	Area:	Physical
Attribute Characteristics:	Real	Number of Attributes:	7	Date Donated	2019-09-23
Associated Tasks:	Regression	Missing Values?	N/A	Number of Web Hits:	40630

Understanding the Data set

Data Set information:

Was used to develop quantitative regression to predict acute aquatic toxicity towards the fish Pimephales promelas (fathead minnow) on a set of 908 chemicals.

LC50 data, the conc. causing death in 50% of test fish over a test duration of 96 hrs, was used as model response.

Attribute Information:

Contains values for 6 attributes (molecular descriptors) of 908 chemicals used to predict quantitative acute aquatic toxicity towards the fish Pimephales promelas (fathead minnow).

Variable plots

Box plot of the variables:

Forward Selection plots:

AIC

• Minima: 2490.095

Forward Selection plot:

Adjusted R2

Maxima: 0.5743

Tests run:

- Multicollinearity check
 - VIF Values

- Normality check
 - Shapiro-Wilk Test

- Autocorrelation check
 - Durbin-Watson Test

- Homoscedasticity check
 - Goldfeld-Quandt Test

Multicollinearity Check

Autocorrelation Check

Durbin-Watson Test Result: 1.9785048067212314

Normality check

It's a normal distribution!!!

Shapiro-Wilk test ---- statistic: 0.9630, p-value: 0.0512

Homoscedasticity test

- Since the p-value is above 5%, so the null hypothesis is True.
- Thus the data is indeed Homoscedastic.
- Variance remains more or less constant.

Results:

 End points for both plots are reached when these 4 columns are taken into account: [SM1_Dz(Z), NdsCH, NdssC, MLOGP]

```
SM1_Dz(Z) -> 1.2556
NdsCH -> 0.4136
NdssC -> 0.0643
MLOGP -> 0.3901
```

- If Multicollinearity is taken into account, a significant drop in AIC score is observed.
- Taking the columns to be independent gives better result.

References:

1. <u>UCI Machine Learning repository</u> - Dataset