International TOR Rectifier

IRFP260N

HEXFET® Power MOSFET

- Advanced Process Technology
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Ease of Paralleling
- Simple Drive Requirements

 $V_{DSS} = 200V$ $R_{DS(on)} = 0.04\Omega$ $I_D = 50A$

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-247 package is preferred for commercial-industrial applications where higher power levels preclude the use of TO-220 devices. The TO-247 is similar but superior to the earlier TO-218 package because of its isolated mounting hole.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	50	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	35	Α
I _{DM}	Pulsed Drain Current ①	200]
P _D @T _C = 25°C	Power Dissipation	300	W
	Linear Derating Factor	2.0	W/°C
V_{GS}	Gate-to-Source Voltage	±20	V
E _{AS}	Single Pulse Avalanche Energy@	560	mJ
I _{AR}	Avalanche Current①	50	Α
E _{AR}	Repetitive Avalanche Energy①	30	mJ
dv/dt	Peak Diode Recovery dv/dt ③	10	V/ns
T _J	Operating Junction and	-55 to +175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.50	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
$R_{\theta JA}$	Junction-to-Ambient		40	

Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	•	•				•
	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	200			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.26		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.04	Ω	V _{GS} = 10V, I _D = 28A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
g _{fs}	Forward Transconductance	27			S	V _{DS} = 50V, I _D = 28A ④
I _{DSS}	Drain-to-Source Leakage Current			25	μΑ	V _{DS} = 200V, V _{GS} = 0V
פפטי	Brain to Godroe Edanage Guirent			250	μΛ	$V_{DS} = 160V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
lass	Gate-to-Source Forward Leakage			100	nA .	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
Q _g	Total Gate Charge			234		I _D = 28A
Q _{gs}	Gate-to-Source Charge			38	nC	$V_{DS} = 160V$
Q_{gd}	Gate-to-Drain ("Miller") Charge			110		V _{GS} = 10V ④
t _{d(on)}	Turn-On Delay Time		17			V _{DD} = 100V
t _r	Rise Time		60		no	$I_D = 28A$
t _{d(off)}	Turn-Off Delay Time		55		ns	$R_G = 1.8\Omega$
t _f	Fall Time		48			V _{GS} = 10V ④
1	Internal Drain Inductance		5.0			Between lead,
L _D			3.0			6mm (0.25in.)
L _S	Internal Source Inductance		13		nH	from package
						and center of die contact
C _{iss}	Input Capacitance		4057			V _{GS} = 0V
Coss	Output Capacitance		603		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		161			f = 1.0MHz
			-		F.	= *

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions							
Is	Continuous Source Current			_ 50		MOSFET symbol							
	(Body Diode)				Α	showing the							
I _{SM}	Pulsed Source Current			_ 200	200	200	200	200	200	200	200	, ,	integral reverse ^G
	(Body Diode)①					p-n junction diode.							
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25$ °C, $I_S = 28A$, $V_{GS} = 0V$ ④							
t _{rr}	Reverse Recovery Time		268	402	ns	$T_J = 25$ °C, $I_F = 28A$							
Q _{rr}	Reverse Recovery Charge		1.9	2.8	μС	di/dt = 100A/µs ④							
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)											

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- $\label{eq:tarting} \begin{array}{ll} \text{ \ensuremath{\mathbb{Z}}} & \text{Starting T}_J = 25^\circ\text{C}, \ L = 1.5\text{mH} \\ & \text{R}_G = 25\Omega, \ \text{I}_{AS} = 28\text{A}. \end{array}$
- $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$
- 4 Pulse width \leq 400 μ s; duty cycle \leq 2%.

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International

TOR Rectifier

IRFP260N

Fig 10a. Switching Time Test Circuit

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* V_{GS} = 5V for Logic Level Devices

Fig 14. For N-Channel HEXFETS

International

Package Outline TO-247AC Outline

Dimensions are shown in millimeters (inches)

Part Marking Information TO-247AC

EXAMPLE: THIS IS AN IRFPE30 WITH ASSEMBLY LOT CODE 3A1Q

International Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936
Data and specifications subject to change without notice. 10/00