92. Если $x_n \to a$, то что можно сказать о пределе

$$\lim_{n\to\infty}\frac{x_{n+1}}{x_n}$$
?

- 93. Доказать, что сходящаяся числовая последовательность ограничена.
- 94. Доказать, что сходящаяся числовая последовательность достигает либо своей верхней грани, либо своей нижней грани, либо той и другой. Построить примеры последовательностей всех трех типов.
- **95.** Доказать, что числовая последовательность x_n ($n=1, 2, \ldots$), стремящаяся к $+\infty$, обязательно достигает своей нижней грани.

Найти наибольший член последовательности x_n ($n = 1, 2, \ldots$), если:

96.
$$x_n = \frac{n^2}{2^n}$$
. **97.** $x_n = \frac{\sqrt{n}}{100+n}$. **98.** $x_n = \frac{1000^n}{n!}$.

Найти наименьший член последовательности x_n ($n = 1, 2, \ldots$), если:

99.
$$x_n = n^2 - 9n - 100$$
. 100. $x_n = n + \frac{100}{n}$.

Для последовательности x_n (n = 1, 2, ...) найти inf x_n , sup x_n , $\lim_{n\to\infty} x_n$ и $\lim_{n\to\infty} x_n$, если:

101.
$$x_n = 1 - \frac{1}{n}$$
. 101.1. $x_n = (-1)^{n-1} \left(2 + \frac{3}{n}\right)$.

102.
$$x_n = \frac{(-1)^n}{n} + \frac{1 + (-1)^n}{2}$$
.

103.
$$x_n = 1 + \frac{n}{n+1} \cos \frac{n\pi}{2}$$
.

104.
$$x_n = 1 + 2(-1)^{n+1} + 3 \cdot (-1)^{\frac{n(n-1)}{2}}$$

105.
$$x_n = \frac{n-1}{n+1} \cos \frac{2n\pi}{3}$$
. 106. $x_n = (-1)^n n$.

107.
$$x_n = -n[2+(-1)^n]$$
. 108. $x_n = n^{(-1)n}$.

109.
$$x_n = 1 + n \sin \frac{n\pi}{2}$$
. 110. $x_n = \frac{1}{n - 10.2}$.