

tt+γ Cross-Section @ 13TeV

CMS Data Analysis School @ LPC 2025

Sneha Vireshwar Dixit, Joe Gehrke, Sritam Kumar Satpathy, Gino Daniels, Thomas Wu, Ben Weiss, Lael Verace, Shachar Gottlieb, Cheng-Hsu Nee, Michael Chukwuka

Motivation - why tops?

- Top quark = Heaviest in Standard Model (since 1995)
- Key in searches for Beyond Standard Model Physics
- Large coupling to Higgs

Motivation - why ttγ?

- We want to learn more about top quark pairings!
- ttγ is sensitive to top EM properties
 - cross section proportional to top charge
- High multiplicity final state experimentally interesting

Top quark decay channels

- Top quark decays into W, b
- Final states depend on how the 2 Ws decay
 - o semi-leptonic, di-leptonic, hadronic channels
- Have to pick between signal/background purity and branching ratio

Signal and background

Signal

- \circ tt+ γ
- Event selection:
 - Exactly one e or μ
 - At least 4 jets (at least one is b-tagged)
 - Exactly one photon

Background

- \circ tt+ γ is not the only process that passes our selections
- o Categories:
 - Real photons without any top pair, e.g., $W+\gamma$ and $Z+\gamma$
 - Fake or non-prompt photons, e.g., tt, W+jets and Z+jets
 - Mis-identified electrons as photons, e.g. tt and Z+jets

The CMS Detector

Important elements of the CMS detector for this analysis:

- Tracker for precise vertexing
- ECAL for identifying photons and electrons (and misidentifying electrons)
- HCAL for identifying jets
- Muon Detector for identifying muons

Analysis Strategy

Control and Signal Regions

No top + true γ W+ γ ≥ 3 jets Z+ γ $= 0$ b jets	Other (no top + fake γ)	
Top+ true γ 4 Jets (≥1 b) Ch. Iso ≤1 1 tight γ 1 e ⁻	e - ≥3 jets • 0 b jets • 1 e -	Jets • Ch. Iso≥1

Unique feature of this analysis: 3 control regions to estimate MC backgrounds:

- V+γ (can Include a μ)
- MisID electrons (from Z→ee)
- Non-prompt γ (Jets)

Distinguished by inverting cuts on the signal region.

We then perform a maximum likelihood fit to obtain scale on the MC samples.

Charge Hadron Isolation Control Region Prefit

- Focused on jets faking photons to study background contributions.
- Dominated by tt processes with misidentified photons.
- Relax the selection on the photon by inverting the charged hadron Isolation cut for the photon to perform the fit.
- Large tail of non-prompt photons.
- Exclude the first bin in the fit to avoid overlap with the signal region to prevent double counting,..

Charge Hadron Isolation Control Region Postfit

- Focused on jets faking photons to study background contributions.
- Dominated by tt processes with misidentified photons.
- Relax the selection on the photon by inverting the charged hadron Isolation cut for the photon to perform the fit.
- Large tail of non-prompt photons.
- Exclude the first bin in the fit to avoid overlap with the signal region to prevent double counting,.

Scale Factor: 0.91 +/- 0.04

Misidentified Electrons Control Region Prefit

- Electrons misidentified as photons.
 Events will be from Z -> ee.
- If one electron is misidentified as photon, we can see a peak near Z mass.
- Fit the invariant mass of e+γ
 - Require exactly 1 electron.
 - Require 0-b tagged jets.
- Before the prefit, the data and MC have poor agreement, hence we expect a very huge scale factor.

Misidentified Electrons Control Region Postfit

- Electrons misidentified as photons.
 Events will be from Z -> ee.
- If one electron is misidentified as photon, we can see a peak near Z mass.
- Fit the invariant mass of e+γ
 - Require exactly 1 electron.
 - Require 0-b tagged jets.
- After the postfit, the data and MC have a very good agreement.

Scale Factor: 2.41 +/- 0.15

Vy Control Region - Prefit

- We obtain scale factors for W+ γ and Z+ γ rates using the invariant mass of μ + γ , where these are the dominant processes.
- Event selections:
 - Require one muon to suppress contributions from misID electrons
 - Require 0 b-tagged jets (separation from signal)
- Fit performed using a statistical shape analysis, yielding the scale factors:
 - \circ W+y: +0.91 ± 0.07
 - \circ Z+ γ : +0.85 ± 0.13

Vy Control Region - Postfit

- We obtain scale factors for W+ γ and Z+ γ rates using the invariant mass of μ + γ , where these are the dominant processes.
- Event selections:
 - Require one muon to suppress contributions from misID electrons
 - Require 0 b-tagged jets (separation from signal)
- Fit performed using a statistical shape analysis, yielding the scale factors:
 - \circ W+y: +0.91 ± 0.07
 - \circ Z+ γ : +0.85 ± 0.13

Signal Strength Prefit

- TTGamma invariant mass (signal)
- Obtain scale factors from control regions
- Apply maximum likelihood fit
- Measured Value/ SM Value

Signal Strength Pre/Postfit

Likelihood Scan

- Shape of -2∆InL in the minimization region
 - \circ -2 Δ lnL = 1 sets 68% CL
 - \circ -2 Δ InL = 4 sets 95% CL

Systematics

- ISR: Initial state radiation scale weighting
- FSR: Final state radiation scale weighting
- **PDF**: Parton distribution function parameter uncertainty
- **JES**: Jet energy scale scale corrections to jet momentum
- JER: Jet energy resolution scale corrections to jet momentum
- **b-tagging**: b-tag scale factor uncertainty (light and heavy jets)
- **lumi**: Integrated luminosity uncertainty
- **Pileup**: Reweighting uncertainty based on 1σ variations
- **Muon Efficiency**: Muon trigger, identification, and reconstruction scale factor
- **Electron Efficiency**: Electron trigger, identification, and reconstruction scale factor

Uncertainties

- Largest from theory uncertainty,
 b-tagging, jet related systematics
- Non-prompt is largest background in the SR
- b-tagging used to distinguish SR from CR
- M3 bins contain most of the signal
- M3, a jet mass sum, is highly dependant on JES and JER

Conclusion

- Precision measurement of the tt+y cross-section
 - Event selection: 4 jets (at least 1 b-tagged jet), 1 photon, 1 lepton
- Main backgrounds: jets/electrons faking photons, W/Z+y
- Three control regions defined to estimate background
 - Charged Hadron Isolation
 - Misidentified Electrons
 - V+V

Measured signal strength: $r = 1.05^{+0.06}_{-0.06}$

$$r = 1.05^{+0.06}_{-0.06}$$

$$\sigma_{t\bar{t}+\gamma} = 15.98^{+0.99}_{-0.93} \,\mathrm{pb}$$

$$\sigma_{SM} = 15.19 \,\mathrm{pb}$$

Consistent with Standard Model with 6% precision!

Acknowledgement

Thank you to our very very cool facilitators!!

Raghav Kansal, Ali Simsek, Honor Hare, Eddie McGrady, Leonardo Giannini, Aashwin Basnet, Georgios Krintiras.