

Introdução as Redes Neurais Artificiais Aplicações

Professor Ciniro Nametala
Bacharelado em Engenharia de Computação
Instituto Federal de Minas Gerais – Campus Bambuí

Código da disciplina: BiSuCOM.553

Oferta: 2-2025

https://tinyurl.com/aula1rnaciniro

Agenda

- 1. Como modelos aprendem?
- 2. Principais áreas de aplicação
 - 1. Processamento de áudio
 - 2. Processamento de imagem
 - 3. Processamento de vídeo
 - 4. Processamento de dados temporais
 - 5. Resumo das áreas de aplicação
- 3. Histórico
- 4. Referências interessantes

Como aprendemos?

Como funciona meu cérebro?

Como eu aprendo as coisas?

Como um modelo aprende?

Al Learns to Walk (deep reinforcement learning)

Processamento de áudio

A Neural Network Learning to Speak - John Lockman

Processamento de áudio Aprendizado de fala

Neural Network Learns to Generate Voice (RNN/LSTM)

Processamento de áudio Categorização de pássaros pelo canto

<u>LocalizeIT - Audio: BirdNet Demo, Identification of birds from audio recordings</u>

Processamento de imagens

BASIC ARCHITECTURE

2D Convolution Neural Network Animation

Processamento de Imagens Reconhecimento de imagens de satélite

Imazon SAD - Sistema de Alertas de Desmatamento

Processamento de imagens Detecção de desmatamento

Processamento de Imagens Reconhecimento facial

Moving Archives – Harley-Davidson Musem
Google Labs - Al Tools

Processamento de Imagens Análise de imagens médicas

aorta_thoracic / tortuous / mild
aorta_thoracic / tortuous

input image

generated annotation

true annotation

opacity / lung / middle_lobe / right /aorta_thoracic / tortuous

opacity / lung / base / left

calcified_granuloma / lung / middle_lobe / right / multiple

calcified_granuloma / lung / hilum / right

opacity / lung / middle_lobe / right / blood_vessels

calcified_granuloma / lung / middle_lobe / right

airspace_disease / lung / hilum / right / lung / hilum

nodule / lung / hilum / right

thoracic_vertebrae_degenerative / mild

aorta_tortuous /
thoracic_vertebrae_degenerative
/ mild

normal

normal

normal

normal

Processamento de vídeo Carros autônomos

<u>IA ajuda veículos autônomos a enxergar além dos limites - NVIDIA DRIVE Labs</u>

Séries Temporais Aproximador universal de funções

Function approximation by using neural network. (Machine learning, Deep learning)

Séries Temporais Previsão em Séries Temporais

Séries Temporais Previsão em Séries Temporais

Séries Temporais Previsão em Séries Temporais

(a) Período de 2 semanas com melhor previsão fora da crise hídrica.

(c) Período de 2 semanas com pior previsão fora da crise hídrica.

(b) Período de 4 semanas com melhor previsão fora da crise hídrica.

(d) Período de 4 semanas com pior previsão fora da crise hídrica.

Redes Neurais Atencionais aplicadas a modelagem e previsão de preços no Mercado de Eletricidade Brasileiro

Perfil no Google Scholar do Prof. Ciniro

Outras aplicações

Otimização

Simulação

Resumo das áreas de aplicação de RNAs

Classificação

Atribuir rótulos pré-definidos

Ex.: Reconhecimento de imagens, análise de sentimentos

Previsão/Regressão

Prever valores ou estimar funções

Ex.: Previsão em séries temporais, preços de ações, demanda de energia

Geração de dados

Criar novos exemplos plausíveis

Ex.: Geração de imagens, texto, dados sintéticos

Agrupamento/Representação

Descobrir padrões ou representações latentes de forma não supervisionada

Ex.: Embbedings, clusterização e compressão de dados

Transformação

Converter um tipo de dado para outro mantendo a semântica

Ex.: Tradução, upscaling, transferência de estilo

Controle/Tomada de decisão Aprender políticas ótimas para agir em ambientes dinâmicos

Ex. Robótica, jogos, trading automático

Histórico

1943: Neurônio artificial por McCulloch & Pitts.

1949: Regra de aprendizado de Hebb.

1960: ADAptive LINear Element (Adaline).

1969: Demonstração de ineficiência em amostras não

linearmente separáveis feita por Minsky & Papert.

1982: Proposição de Hopfield sobre recorrência e múltiplas

camadas.

1986: Backpropagation para redes MLP por David

Rumelhart (e outros grupos paralelos).

1990: Métodos novos para melhoria dos treinamentos

(Levemberg-Marquardt).

1997: Criação das LSTMs por Jürgen Schmidhuber.

2012: Início das RNAs modernas (Bengio, Hinton e LeCun)

2017: Attention is all you need.

2022: Lançamento do ChatGPT.

2024: Hinton recebe o Prêmio Nobel e faz seu discurso

sobre a necessidade de controle das IAs.

Referências interessantes

Inside OpenAl's Stargate Megafactory with Sam Altman | The Circuit

Deep Learning e Aplicações - IMPA

A ideia que causou o nascimento da Inteligência Artificial

Canal Siraj Raval (um pouco desatualizado mas com muito material bom)