# LOW DROP POWER SCHOTTKY RECTIFIER

## MAIN PRODUCTS CHARACTERISTICS

| I <sub>F(AV)</sub>      | 3 A     |
|-------------------------|---------|
| <b>V</b> <sub>RRM</sub> | 40 V    |
| <b>T</b> j              | 150℃    |
| V <sub>F</sub> (max)    | 0.475 V |

## **FEATURES AND BENEFITS**

- VERY SMALL CONDUCTION LOSSES
- NEGLIGIBLE SWITCHING LOSSES
- EXTREMELY FAST SWITCHING
- LOW FORWARD VOLTAGE DROP



#### **DESCRIPTION**

Axial Power Schottky rectifier suited for Switch Mode Power Supplies and high frequency DC to DC converters. Packaged in DO-201AD these devices are intended for use in low voltage, high frequency inverters, free wheeling, polarity protection and small battery chargers.

# **ABSOLUTE RATINGS** (limiting values)

| Cumbal              | Parameter                                |                                        | Unit |               |        |              |
|---------------------|------------------------------------------|----------------------------------------|------|---------------|--------|--------------|
| Symbol Parameter    |                                          |                                        |      | 1N5821        | 1N5822 |              |
| V <sub>RRM</sub>    | Repetitive peak reverse voltage          | 20                                     | 30   | 40            | V      |              |
| I <sub>F(RMS)</sub> | RMS forward current                      |                                        | 10   |               | Α      |              |
| I <sub>F(AV)</sub>  | Average forward current                  | $T_L = 100^{\circ}C$<br>$\delta = 0.5$ |      |               | 3      | А            |
|                     |                                          | $T_L = 110^{\circ}C$<br>$\delta = 0.5$ | 3    | 3             |        | А            |
| I <sub>FSM</sub>    | Surge non repetitive forward current     |                                        | 80   |               | А      |              |
| T <sub>stg</sub>    | Storage temperature range                |                                        |      | - 65 to + 150 |        |              |
| Tj                  | Maximum operating junction temperature * |                                        |      | 150           |        | $^{\circ}$ C |
| dV/dt               | Critical rate of rise of reverse voltage |                                        |      | 10000         |        |              |

<sup>\* :</sup>  $\frac{dPtot}{dTj} < \frac{1}{Rth(j-a)}$  thermal runaway condition for a diode on its own heatsink

# THERMAL RESISTANCES

| Symbol                | Paramet             | Value               | Unit |      |
|-----------------------|---------------------|---------------------|------|------|
| R <sub>th (j-a)</sub> | Junction to ambient | Lead length = 10 mm | 80   | °C/W |
| R <sub>th (j-l)</sub> | Junction to lead    | Lead length = 10 mm | 25   | °C/W |

## STATIC ELECTRICAL CHARACTERISTICS

| Symbol           | Parameter            | Tests Co   | 1N5820                 | 1N5821 | 1N5822 | Unit  |    |
|------------------|----------------------|------------|------------------------|--------|--------|-------|----|
| I <sub>R</sub> * | Reverse leakage      | Tj = 25°C  | $V_R = V_{RRM}$        | 2      | 2      | 2     | mA |
|                  | current              | Tj = 100°C |                        | 20     | 20     | 20    | mA |
| V <sub>F</sub> * | Forward voltage drop | Tj = 25°C  | IF = 3 A               | 0.475  | 0.5    | 0.525 | V  |
|                  |                      | Tj = 25°C  | I <sub>F</sub> = 9.4 A | 0.85   | 0.9    | 0.95  | V  |

Pulse test : \* tp = 380  $\mu$ s,  $\delta$  < 2%

To evaluate the conduction losses use the following equations :

 $P = 0.33 \times I_{F(AV)} + 0.035 I_{F}^{2}_{(RMS)} \text{ for } 1N5820 / 1N5821$   $P = 0.33 \times I_{F(AV)} + 0.060 I_{F}^{2}_{(RMS)} \text{ for } 1N5822$ 

**Fig. 1:** Average forward power dissipation versus average forward current (1N5820/1N5821).



**Fig. 2:** Average forward power dissipation versus average forward current (1N5822).



Fig. 2-1: Average forward current versus ambient temperature ( $\delta$ =0.5) (1N5820/1N5821).



**Fig. 3-1:** Non repetitive surge peak forward current versus overload duration (maximum values) (1N5820/1N5821).



**Fig. 4:** Relative variation of thermal impedance junction to ambient versus pulse duration (epoxy printed circuit board, e(Cu)=35mm, recommended pad layout).



Fig. 2-2: Average forward current versus ambient temperature ( $\delta$ =0.5) (1N5822).



**Fig. 3-2:** Non repetitive surge peak forward current versus overload duration (maximum values) (1N5822).



**Fig. 5:** Junction capacitance versus reverse voltage applied (typical values).



**Fig. 6-1:** Reverse leakage current versus reverse voltage applied (typical values) (1N5820/1N5821).



**Fig. 6-2:** Reverse leakage current versus reverse voltage applied (typical values) (1N5822).



**Fig. 7-1:** Forward voltage drop versus forward current (typical values) (1N5820/1N5821).



**Fig. 7-2:** Forward voltage drop versus forward current (typical values) (1N5822).



**Fig. 8:** Non repetitive surge peak forward current versus number of cycles.



# PACKAGE MECHANICAL DATA DO-201AD plastic



|      |                    | DIMENSIONS |       |       |                                                                 |  |  |
|------|--------------------|------------|-------|-------|-----------------------------------------------------------------|--|--|
| REF. | REF. Millimeters I |            | Inc   | hes   | NOTES                                                           |  |  |
|      | Min.               | Max.       | Min.  | Max.  |                                                                 |  |  |
| Α    |                    | 9.50       |       | 0.374 | 1 - The lead diameter Ø D is not controlled over zone E         |  |  |
| В    | 25.40              |            | 1.000 |       |                                                                 |  |  |
| ØC   |                    | 5.30       |       | 0.209 | 2 - The minimum axial length within which the device may be     |  |  |
| ØD   |                    | 1.30       |       | 0.051 | .051 placed with its leads bent at right angles is 0.59"(15 mm) |  |  |
| Е    |                    | 1.25       |       | 0.049 |                                                                 |  |  |

| Ordering type | Marking                  | Package  | Weight | Base qty | Delivery mode |
|---------------|--------------------------|----------|--------|----------|---------------|
| 1N582x        | Part number cathode ring | DO-201AD | 1.12g  | 600      | Ammopack      |
| 1N582xRL      | Part number cathode ring | DO-201AD | 1.12g  | 1900     | Tape & reel   |

<sup>■</sup> Epoxy meets UL94,V0