	The second of the second		er i de la companya	KOT				
•	DEPARTMENT OF COMMERCE PATENT AND TRADE	1	ATTORNEY'S DOCKET NUMBER	T CT				
TRANSMITTAL LETTER TO THE UNITED STATES			1241.18	4				
DESIGNATED/ELECTED OFFICE (DO/EO/US)			US APPLICATION NO (If known,					
CONCERNING A FILI		09/806	272					
INTERNATIONAL APPLICATION NO.	INTERNATIONAL FILING DATE		PRIORITY DATE CLAIM	IED				
PCT/JP99/05349	29 September 1990		29 September 1998					
TITLE OF INVENTION	The second second	· · · · · · · · · · · · · · · · · · ·	The state of the s					
DNAS ENCODING NOVEL POLYPEP	MAR 2 8 2001	JC07 R	99'd Pointo 2	8 MAR 2001				
^ APPLICANT(S) FOR DO/EO/US Motoharu Seiki	MAK 2 8 2001							
Applicant herewith submits to the United	States Designated/Flecton Office	DO/FO/LIS) t	he following items and	dother				
	ADEMAN SHICE	DOILOIDD) I	ne tonowing nems and	1 Other				
information:								
	tems concerning a filing under 35 U		1 05110005					
2. This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.								
3. X This express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay								
examination until the expiration of the application time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(l). 4. X A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed								
priority date.								
5. X A copy of the International Application as filed (35 U.S.C. 371(c)(2))								
a. is transmitted herewith (required only if not transmitted by the International Bureau).								
b. X has been transmitted by the International Bureau. c. is not required, as the application was filed in the United States Receiving Office (RO/US). X A translation of the International Application into English (35 U.S.C. 371(c)(2)).								
c. is not required, as the application was filed in the United States Receiving Office (RO/US).								
X A translation of the International Application into English (35 U.S.C. 371(c)(2)).								
Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3))								
a. are transmitted herewith (required only if not transmitted by the International Bureau).								
b. have been transmitted by the International Bureau.								
c. have not been made; however, the time limit for making such amendments has NOT expired.								
d. X have not been made and v				-				
	A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).							
An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)). 10. A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C.								
371(c)(5)).				İ				
Items 11. to 16. below concern other do	• •	d:		1				
11. X An Information Disclosure States								
12. An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.								
13. X A FIRST preliminary amendment.								
A SECOND or SUBSEQUENT preliminary amendment.								
14. A substitute specification. 15. A change of power of attorney and/or address letter.								
·		. E DCm/	DE 4/400 E DOE	m 1000 C				
16. X Other items or information: Submission of Computer Readable Form; Form PCT/IPEA/409; Form PCT/IB/308; Copy of Published International Application No. WO00/18900; Form PCT/ISA/210.								
				-				
				ĺ				
			3 ,	\				
				İ				

		N/	JC03/Rec'd	PCT/PTO 28	MAR 2001			
U.S. APPLICATION NO. (If known, see	5°CFR15)	INTERNATIONAL APPLICATION N		ATTORNEY'S DOCKET NU				
09/806232 РСТ/ЈР99/05349				1241.18				
17. X The following fe	CALCULATIONS	PTO USE ONLY						
Basic National l		l						
Search Report has b								
International prelim								
(37 CFR 1.492(a)(1)								
No international pre		ì						
(a)(1)) but internation								
Neither internationa								
nor international sea								
International prelim								
(a)(4)) and all claim								
	ENTER AI	PPROPRIATE BASIC	FEE AMOUNT =	\$860.00				
Surcharge of \$130.00 for	furnishing the oath or de	claration later than 2	0 30 months					
from the earliest claimed		\$						
Claims	Number Filed	Number Extra	Rate					
Total Claims	114 - 20 =	94	X \$18.00	\$1692.00				
Independent Claims	6 - 3 =	3	X \$80.00	\$240.00				
Multiple dependent clain	\$270.00							
wil		OTAL OF ABOVE CA	+ \$270.00 LCULATIONS =	\$3062.00				
Applicant claims sm	\$1531.00							
reduced by ½.								
- v . i			SUBTOTAL =	\$1531.00				
Frocessing fee of \$130.00	\$							
30 months from the ea								
			ATIONAL FEE =	\$1531.00				
Fee for recording the encacempanied by an appro	\$							
	\$1531.00							
	Amount to be:							
e, ***				refunded	\$			
				charged	\$			
a. X A check in the amount of \$1531.00 to cover the above fees is enclosed.								
	Deposit Account No			e above fees. A dur	licate copy of			
this sheet is enclosed.								
c. X The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment								
to Deposit Account No. <u>06-1205</u> . A duplicate copy of this sheet is enclosed.								
NOTE: Where an appr	opriate time limit under	37 CFR 1.494 or 1.495	has not been met,	a petition to revive	(37 CFR			
1.137(a) or (b)) must be filed and granted to restore the application to pending status. SEND ALL CORRESPONDENCE TO:								
	8) 						
Lawrence S. Perry FITZPATRICK, CELLA,	_	Į						
30 Rockefeller Plaza								
New York, NY 10112		1						
Tel: (212) 218-2100 Fax: (212) 218-2200 31.865					1			
Fax: (212) 218-2200	· · · · · · · · · · · · · · · · · · ·							

NY_MAIN 156469 v 1

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Commissioner for Patents Washington, D.C. 20231

PRELIMINARY AMENDMENT

Sir:

Prior to action on the merits, please amend the above-identified application as follows:

IN THE CLAIMS:

Please amend Claims 13, 18-21, 25, 26, 29, 30 and 32. A marked up copy of Claims 13, 18-21, 25, 26, 29, 30 and 32, showing the changes made thereto, is attached.

13. (Amended) A recombinant DNA that is obtained by integrating the DNA of any one of claims 11 or 12 into a vector.

- 18. (Amended) An oligonucleotide selected from an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of claim 9; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the above oligonucleotides.
- 19. (Amended) An oligonucleotide selected form an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of claim 10; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the above oligonucleotides.
- 20. (Amended) A method of detecting an mRNA encoding the polypeptide of any one of claims 1 to 8 using an oligonucleotide selected from an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of claim 9; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the above oligonucleotides.

- 21. (Amended) A method of inhibiting expression of the polypeptide of any one of claims 1 to 8 using an oligonucleotide selected from an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of claim 9; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the above oligonucleotides.
- 25. (Amended) A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, wherein said agent comprises the DNA of claim 9.
- 26. (Amended) A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ

transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury, inflammations associated with infiltration of leukocytes, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said agent comprises the DNA of claim 10.

- 29. (Amended) A vector for gene therapy for treating arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, wherein said vector is obtained by integrating the oligonucleotide of claim 18 into a vector.
- 30. (Amended) A vector for gene therapy for treating arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury,

inflammations associated with infiltration of leukocytes, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said vector is obtained by integrating the oligonucleotide of claim 19 into a vector.

32. (Amended) The method of claim 31, wherein said compound that regulates the expression of a gene is detected by determining the amount of mRNA encoding the polypeptide.

REMARKS

Claims 13, 18-21, 25, 26, 29, 30 and 32 have been amended to correct their dependency and conformity with accepted U.S. practice. No new matter has been added.

Applicants' undersigned attorney may be reached in our New York office by telephone at (212) 218-2100. All correspondence should continue to be directed to our below listed address.

Respectfully submitted,

Attorney for Applicants

Lawrence S. Perry

Registration No. 31,865

FITZPATRICK, CELLA, HARPER & SCINTO 30 Rockefeller Plaza New York, New York 10112-3801 Facsimile: (212) 218-2200

LSP\ac

NY_MAIN 156479 V1

VERSION WITH MARKINGS SHOWING CHANGES MADE TO CLAIMS

- 13. (Amended) A recombinant DNA that is obtained by integrating the DNA of any one of claims [9 to]11 or 12 into a vector.
- 18. (Amended) An oligonucleotide selected [form] from an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of claim 9 [or 11]; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the above oligonucleotides.
- 19. (Amended) An oligonucleotide selected form an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of claim 10 [or 12]; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the above oligonucleotides.

- 20. (Amended) A method of detecting an mRNA encoding the polypeptide of any one of claims 1 to 8 using [the] an oligonucleotide [of claim 18 or 19] selected from an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of claim 9; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the above oligonucleotides.
- 21. (Amended) A method of inhibiting expression of the polypeptide of any one of claims 1 to 8 using [the] an oligonucleotide [of claim 18 or 19] selected from an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of claim 9; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the above oligonucleotides.
- 25. (Amended) A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis,

arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, wherein said agent comprises the DNA of claim 9 [or 11].

- agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury, inflammations associated with infiltration of leukocytes, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said agent comprises the DNA of claim 10 [or 12].
- 29. (Amended) A vector for gene therapy for treating arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes,

wherein said vector is obtained by integrating the [DNA of claim 9 or 11, or the] oligonucleotide of claim 18 into a vector.

- treating arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury, inflammations associated with infiltration of leukocytes, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said vector is obtained by integrating the [DNA of claim 10 or 12, or the] oligonucleotide of claim 19 into a vector.
- 32. (Amended) The method of claim 31, wherein said compound that regulates the expression of a gene is detected by determining the amount of mRNA encoding the polypeptide [of any one of claims 1 to 8].

NY_MAIN 156479 v 1

JC07 Rec'd PCT/PTO 1 0 M

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Motoharu Seiki

Application No.: 09/806,232

Filed: March 28, 2001

For: DNAS ENCODING NOVEL
POLYPEPTIDES

Examiner: Not Yet Assigned

Group Art Unit: N/Y/A

Art Unit: N/Y/A

May 10, 2001

Commissioner for Patents Washington, D.C. 20231

SUPPLEMENTAL PRELIMINARY AMENDMENT

Sir:

1241.18

Further to the Preliminary Amendment filed March 28, 2001 and prior to action on the merits, please amend the above-identified application as follows:

IN THE SPECIFICATION

Please substitute the paragraph starting at page 39, line 5 and ending at line 8 with the following replacement paragraph. A marked-up copy of this paragraph, showing the changes made thereto, is attached.

In human, the expression of MT5-MMP was strong in the brain, and its expression was observed in the kidney and pancreas. The results of examination of its site-specific

expression in the human brain revealed a characteristic expression in the cerebellum. High expression in the cerebellum was also confirmed in mouse.

REMARKS

The specification has been amended to correct an inadvertent word processing error. Since no new matter has been added, entry hereof is earnestly solicited.

Applicants' undersigned attorney may be reached in our New York office by telephone at (212) 218-2100. All correspondence should continue to be directed to our below listed address.

Respectfully submitted,

Attorney for Applicants Lawrence S. Perry

Registration No. 31,865

FITZPATRICK, CELLA, HARPER & SCINTO 30 Rockefeller Plaza New York, New York 10112-3801 Facsimile: (212) 218-2200

LSP\ac

NY_MAIN 168275 v1

VERSION WITH MARKINGS TO SHOW CHANGES MADE TO SPECIFICATION

The paragraph starting at page 39, line 5 and ending at line 8 has been amended as follows.

In human, the expression of MT5-MMP [also] was strong in the brain, and its expression was observed in the kidney and pancreas. The results of examination of its site-specific expression in the human brain revealed a characteristic expression in the cerebellum. High expression in the cerebellum was also confirmed in mouse.

NY_MAIN 168275 v 1

1241.18

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Commissioner for Patents Washington, D.C. 20231

SUBMISSION OF COMPUTER READABLE FORM UNDER 37 C.F.R. § 1.821(e)

Sir:

Applicants submit herewith a computer readable form under 37 C.F.R. § 1.821(e). The content of the computer readable form and the Sequence Listing filed herewith are the same.

Applicants' undersigned attorney may be reached in our New York office by telephone at (212) 218-2100. All correspondence should continue to be directed to our below listed address.

Respectfully submitted,

Attorney for Applican Lawrence S. Perry

Registration No. 31,865

FITZPATRICK, CELLA, HARPER & SCINTO 30 Rockefeller Plaza New York, New York 10112-3801 Facsimile: (212) 218-2200

2/PR+/

DESCRIPTION

DNAS ENCODING NOVEL POLYPEPTIDES

TECHNICAL FIELD

The present invention relates to novel membrane-type matrix metalloproteinase polypeptides; DNAs encoding the polypeptides; vectors comprising the DNAs; transformants transformed with the vectors; and a method of producing the polypeptides. Furthermore, the present invention relates to a method of searching for inhibitors or activators of the polypeptides using the polypeptides, a part thereof, or microorganisms or animal cells expressing the polypeptides or a part thereof, as well as a method of searching for compounds that regulate the gene expression of the polypeptides.

BACKGROUND ART

A group of enzymes generically termed "matrix metalloproteinases" (hereinafter, abbreviated to MMPs) that have metal ions at the active center are involved in the degradation of extracellular matrix composed of complicated components such as collagens, fibronectin, laminin and proteoglycans.

To date, the following MMPs have been reported: interstitial collagenase (MMP-1), gelatinase A (MMP-2), gelatinase B (MMP-9), stromelysin 1 (MMP-3), matrilysin (MMP-7), neutrophil collagenase (MMP-8), stromelysin 2 (MMP-10), stromelysin 3 (MMP-11), metalloelastase (MMP-12), collagenase 3 (MMP-13), membrane type 1 MMP (MT1-MMP or MMP-14), membrane type 2 MMP (MT2-MMP or MMP-15), membrane type 3 MMP (MT3-MMP or MMP-16), membrane type 4 MMP (MT4-MMP or MMP-17), etc. (Protein, Nucleic Acid and Enzyme, 42, 2386 (1997)). These MMPs form a family, and each MMP is basically composed of an N-terminal propeptide domain, an active domain to which zinc ions bind, and a hemopexin-like domain. In MMP-7, no hemopexin-like domain is found. Transmembrane-type MMPs have a transmembrane domain and a intracellular domain at the C-terminal of the hemopexin-like domain.

A human MT4-MMP gene has already been reported [Puente, Cancer Research, <u>56</u>, 944 (1996)]. However, a translation initiation site is not included in the nucleotide sequence of this gene, and this gene was defined as a human MT4-MMP gene simply because it comprises a nucleotide sequence containing MMP-like domains. Thus, it is difficult to consider that this gene encodes the full-length of MT4-MMP.

On the other hand, it is known that production of MT1-MMP is enhanced in patients with arthrosis deformans [Am. J. Pathol., 151, 245 (1997)]; that MMPs are important for the infiltration of leukocytes into tissues that is important in immunological and inflammatory reactions [J. Immunol., 156, 1 (1996)]; that MMP inhibitors prevent hepatitis [Eur. J. Pharmacol., 341, 105 (1998)]; and that MMP inhibitors are effective for treating corneal ulcer [Japanese Journal of Ophthalmology, 102, 270 (1998)].

It is also known that MMPs are important for cancer proliferation, infiltration and metastasis [Protein, Nucleic Acid and Enzyme, <u>42</u>, 2386 (1997)], and it is reported that MMP inhibitors have carcinostatic activity [SCRIP, <u>2349</u>, 20 (1998)].

Furthermore, it is suggested that MT4-MMP is expressed in leukocytes and thus may be involved in the migration and infiltration of leukocytes.

From what have been described so far, MMPs may be used for markers for diagnosing arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, and inhibitors of MMPs are useful for preventing or treating these diseases.

The already reported MT4-MMP gene [Cancer Research, <u>56</u>, 944 (1996)] does not include a transcription initiation site nor has such a domain structure as seen in known membrane-type MMPs such as MT1-MMP. Therefore, this gene represents a sequence encoding a non-physiological peptide not expressed *in vivo*.

The present invention provides a novel, membrane-type matrix metalloproteinase polypeptide [hereinafter, sometimes abbreviated to MT4-MMP(2)] that is, different from the

hitherto reported MT4-MMP, physiologically active; a DNA encoding the metalloproteinase polypeptide; a method of producing the metalloproteinase polypeptide; and a method of screening for inhibitors or activators of the metalloproteinase polypeptide using the polypeptide or the DNA encoding the polypeptide.

The present invention also provides physiologically active, novel, human and mouse membrane-type matrix metalloproteinase polypeptides (hereinafter, abbreviated to human or mouse MT5-MMP); DNAs encoding the metalloproteinase polypeptides; a method of producing the metalloproteinase polypeptides; and a method of screening for inhibitors or activators of the metalloproteinase polypeptides using the polypeptides or the DNAs encoding the polypeptides.

DISCLOSURE OF THE INVENTION

The present inventor has made intensive and extensive researches based on the assumption that the known human MT4-MMP is not a protein having the inherent activity of MT4-MMP and that a true MT4-MMP protein having the activity should exist. Thus, the present invention has been achieved.

Also, the present inventor has made intensive and extensive researches based on the assumption that useful and novel membrane-type MMPs should exist other than hitherto known membrane-type MMPs that are considered useful in pharmaceutical purposes. Thus, the present invention has been achieved.

The present invention relates to the following inventions (1) to (32).

- (1) A polypeptide consisting of the amino acid sequence as shown in SEQ ID NO: 1.
- (2) A polypeptide having an amino acid sequence wherein one or several amino acids are deleted, substituted or added in the amino acid sequence of the polypeptide of (1) above and having metalloproteinase activity.
- (3) A polypeptide consisting of the amino acid sequence as shown in SEQ ID NO: 2.
- (4) A polypeptide having an amino acid sequence wherein one or several amino acids are deleted, substituted or added in the amino acid sequence of the polypeptide of (3) above and having metalloproteinase activity.

The deletion, substitution or addition mentioned in (2) and (4) above can be made by site-specific mutagenesis that was a well-known technique prior to the filing of the present application. "One or several amino acids" means the number of amino acids that can be deleted, substituted or added by site-specific mutagenesis. The polypeptide having an amino acid sequence wherein one or several amino acids are deleted, substituted or added in the amino acid sequence and having metalloproteinase activity can be prepared based on those methods described in Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989) (hereinafter, abbreviated to Molecular Cloning 2nd Ed.); Current Protocols in Molecular Biology, Supplement 1-38, John Wiley & Sons (1987-1997) (hereinafter, abbreviated to Current Protocols 1-38); Nucleic Acid Research, 10, 6487 (1982); Proc. Natl. Acad. Sci. USA, 79, 6409 (1982); Gene, 34, 315 (1985), Nucleic Acids Research, 13, 4431 (1985); Proc. Natl. Acad. Sci. USA, 81, 5662 (1984); Science, 224, 1431 (1984); PCT WO85/00817 (1985); Nature, 316, 601 (1985) and so forth.

- (5) A polypeptide consisting of the amino acid sequence as shown in SEQ ID NO: 5.
- (6) A polypeptide having an amino acid sequence wherein one or several amino acids are deleted, substituted or added in the amino acid sequence of the polypeptide of (5) above and having metalloproteinase activity.
- (7) A polypeptide consisting of the amino acid sequence as shown in SEQ ID NO: 6.
- (8) A polypeptide having an amino acid sequence wherein one or several amino acids are deleted, substituted or added in the amino acid sequence of the polypeptide of (7) above and having metalloproteinase activity.
- (9) A DNA encoding the polypeptide of any one of (1) to (4) above.
- (10) A DNA encoding the polypeptide of any one of (5) to (8) above.
- (11) A DNA consisting of the nucleotide sequence of positions 86-1846 of SEQ ID NO: 3 or positions 100-1917 of SEQ ID NO: 4, or a DNA which hybridizes to the DNA under stringent conditions and which encodes a polypeptide having metalloproteinase activity.

The above expression "a DNA which hybridizes under stringent conditions" means a DNA that is obtained by colony hybridization, plaque hybridization, Southern blot

hybridization or the like using, as a probe, a DNA consisting of the nucleotide sequence of positions 86-1846 of SEQ ID NO: 3 or positions 100-1917 of SEQ ID NO: 4. Specifically, a DNA which can be identified by carrying out a hybridization at 65° C in the presence of 0.7-1.0 mol/L NaCl using a filter on which the DNA derived from colony or plaque is immobilized, and then washing the filter in 0.1-2 x SSC (saline-sodium citrate) solution (1x SSC solution is composed of 150 mmol/L sodium chloride and 15 mmol/L sodium citrate) at 65° C.

Hybridization may be carried out based on those methods described in laboratory manuals such as Molecular Cloning 2nd Ed., Current Protocol in Molecular Biology, and DNA Cloning 1: Core Techniques, A Practical Approach, Second Edition, Oxford University Press (1995).

Specific examples of hybridizable DNAs include DNAs having at least 80% or more, preferably 95% or more homology to the nucleotide sequence of positions 86-1846 of SEQ ID NO: 3 or positions 100-1917 of SEQ ID NO: 4.

(12) A DNA consisting of the nucleotide sequence of positions 75-1928 of SEQ ID NO: 7 or positions 1-1935 of SEQ ID NO: 8, or a DNA which hybridizes to the DNA under stringent conditions and which encodes a polypeptide having metalloproteinase activity.

The above expression "a DNA which hybridizes under stringent conditions" means a DNA that is obtained by colony hybridization, plaque hybridization, Southern blot hybridization or the like using, as a probe, a DNA consisting of the nucleotide sequence of positions 75-1928 of SEQ ID NO: 7 or positions 1-1935 of SEQ ID NO: 8. Specifically, a DNA which can be identified by carrying out a hybridization at 65°C in the presence of 0.7-1.0 mol/L NaCl using a filter on which the DNA derived from colony or plaque is immobilized, and then washing the filter in 0.1-2 x SSC (saline-sodium citrate) solution (1x SSC solution is composed of 150 mmol/L sodium chloride and 15 mmol/L sodium citrate) at 65°C.

Specific examples of hybridizable DNAs include DNAs having at least 80% or more, preferably 95% or more homology to the nucleotide sequence of positions 75-1928 of SEQ ID NO: 7 or positions 1-1935 of SEQ ID NO: 8.

- (13) A recombinant DNA that is obtained by integrating the DNA of any one of (9) to (12) above into a vector.
- (14) A transformant comprising the recombinant DNA of (13) above.
- (15) The transformant of (14) above, wherein said transformant is a microorganism belonging to the genus *Escherichia*.
- (16) The transformant of (15) above, wherein said microorganism belonging to the genus Escherichia is Escherichia coli.
- (17) A method of producing the polypeptide of any one of (1) to (8) above, comprising culturing a transformant comprising a recombinant DNA obtained by integrating a DNA encoding the polypeptide into a vector in a medium, allowing the polypeptide to be produced and accumulated in the culture, and recovering the polypeptide from the culture.
- (18) An oligonucleotide selected from an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of (9) or (11) above; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the above oligonucleotides.
- (19) An oligonucleotide selected from an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of (10) or (12) above; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the above oligonucleotides.
- (20) A method of detecting an mRNA encoding the polypeptide of any one of (1) to (8) above using the oligonucleotide of (18) or (19) above.
- (21) A method of inhibiting expression of the polypeptide of any one of (1) to (8) using the oligonucleotide of (18) or (19) above.
- (22) A method of screening for an inhibitor or an activator of the polypeptide of any one of (1) to (8) above, which comprises using the polypeptide and a cell that expresses the polypeptide.
- (23) A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans,

rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, wherein said agent comprises the polypeptide of any one of (1) to (4) above.

- (24) A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury, inflammations associated with infiltration of leukocytes, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said agent comprises the polypeptide of any one of (5) to (8) above.
- (25) A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, wherein said agent comprises the DNA of (9) or (11) above.
- (26) A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury, inflammations associated with infiltration of leukocytes, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said agent comprises the DNA of (10) or (12) above.
- (27) A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact

dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, wherein said agent comprises the oligonucleotide of (18) above.

- (28) A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury, inflammations associated with infiltration of leukocytes, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said agent comprises the oligonucleotide of (19) above.
- (29) A vector for gene therapy for treating arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, wherein said vector is obtained by integrating the DNA of (9) or (11) above, or the oligonucleotide of (18) above into a vector.
- (30) A vector for gene therapy for treating arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury, inflammations associated with infiltration of leukocytes, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said vector is obtained by integrating the DNA of (10) or (12) above, or the oligonucleotide of (19) above into a vector.
- (31) A method of screening for a compound that regulates the expression of a gene encoding the polypeptide of any one of (1) to (8) above, which comprises contacting a cell that expresses the polypeptide with a test sample.

(32) The method of (31) above, wherein said compound that regulates the expression of a gene is detected by determining the amount of mRNA encoding the polypeptide of any one of (1) to (8) above.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows an alignment of the amino acid sequences of human MT5-MMP and mouse MT5-MMP with the amino acid sequences of human MT1-MMP, MT2-MMP, MT3-MMP and MT4-MMP(2).

Mark "*" indicates identical amino acid residues.

Mark "." indicates similar amino acid residues.

(Amino acid residues are represented by one-letter abbreviations.)

In this Figure, "kb" means kilobase pairs.

Fig. 2 shows the results of an experiment in which a mouse MT5-MMP partial peptide (i.e., propeptide domain + active domain; "MT5 \triangle C" in this Figure) of various concentrations was reacted with pro-MMP-2 to thereby examine the peptide's ability to cleave and activate pro-MMP-2.

As a positive control, APMA was used. As a result, activation was recognized in an MMP concentration dependent manner. In this Figure, "Active" shows activated MMP-2.

BEST MODES FOR CARRYING OUT THE INVENTION

Hereinbelow, the present invention will be described in detail.

[1] Acquisition of the DNAs encoding the Novel Matrix Metalloproteinase Polypeptides of the Present Invention

(1) Preparation of cDNA Libraries

In order to construct a cDNA library, total RNA or mRNA is prepared from an appropriate cell or tissue.

As a method for preparing total RNA, the guanidine thiocyanate-cesium trifluoroacetate method [Methods in Enzymology, 154, 3 (1987)], the acid guanidine thiocyanate/phenol/chloroform (AGPC) method [Analytical Biochemistry, 162, 156 (1987);

Experimental Medicine, 9, 1937 (1991)]; or the like may be used.

As a method for preparing mRNA (as poly(A)* RNA) from total RNA, a method using oligo(dT) immobilized cellulose column (Molecular Cloning 2nd Ed.), a method using oligo(dT) latex [Cell Engineering, Supplement 8, "New Cell Engineering Experiment Protocols", SHUJUNSHA Co., pp.48-52; Nucleic Acids Res., Symposium Series, 19, 61 (1988)] or the like may be used.

Alternatively, mRNA may be prepared directly from a tissue or cell using a commercial kit such as First Track mRNA Isolation Kit (Invitrogen) or Quick Prep mRNA Purification Kit (Pharmacia).

In the case of MT4-MMP(2), preferably, types of cDNA libraries which contained ESTs of the DNA encoding MT4-MMP found in databases are ascertained, and then cells or tissues that were used for the construction of those libraries, or cell strains or the like derived from those tissues may be used as an appropriate cell or tissue. In the case of MT5-MMP, it is preferable to use tissues such as brain and kidney or cell strains derived from those tissues as an appropriate cell or tissue.

From the resultant total RNA or mRNA, a cDNA library is constructed by conventional methods.

Specific examples of methods for constructing cDNA libraries include those described in Molecular Cloning 2nd Ed.; Current Protocols 1-38; DNA Cloning 1: Core Techniques, A practical Approach, Second Edition, Oxford University Press (1995); etc. or methods using commercial kits such as SuperScript Plasmid System for cDNA Synthesis and Plasmid Cloning manufactured by Gibco BRL and ZAP-cDNA Synthesis Kit manufactured by Stratagene.

As a cloning vector for constructing a cDNA library, any vector, such as a phage vector or plasmid vector, may be used as long as it is capable of autonomous replication in *E. coli* K12 strain.

Specifically, ZAP Express [Stratagene; Strategies, 5, 58 (1992)], pBluescript II SK(+) [Nucleic Acids Research, 17, 9494 (1989)], Lamda ZAP II {Stratagene}, λ gt10, λ gt11 [DNA Cloning, A Practical Approach, 1, 49 (1985)], λ TriplEx (Clontech), λ ExCell

(Pharmacia), pT7T318U (Pharmacia), pcD2 [Mol. Cell. Biol., 3, 280 (1983)], pUC18 [Gene, 33, 103 (1985)], pAMo [J. Biol. Chem., 268, 22782-22787 (1993); also called as "pAMoPRC3Sc" (Japanese Unexamined Patent Publication No. 05-336963) or the like may be used.

As a host microorganism, any microorganism may be used as long as it belongs to Escherichia coli. Specifically, Escherichia coli XL1-Blue MRF' [Stratagene; Strategies 5, 81 (1992)], Escherichia coli C600 [Genetics, 39, 440 (1954)], Escherichia coli Y1088 [Science, 222, 778 (1983)], Escherichia coli Y1090 [Science, 222, 778 (1983)], Escherichia coli NM522 [J. Mol. Biol., 166, 1 (1983)], Escherichia coli K802 [J. Mol. Biol., 16, 118 (1966)], Escherichia coli JM105 [Gene, 38, 275 (1985)], Escherichia coli SOLRTM Strain (Stratagene), Escherichia coli LE392 (Molecular Cloning 2nd Ed.) or the like may be used.

In addition to cDNA libraries constructed by the above-described methods, commercial cDNA libraries may also be used.

Examples of commercial cDNA libraries include cDNA libraries of individual organs derived from animals such as human, bovine, mouse, rat or rabbit manufactured by Clontech, Lifetech Oriental, etc.

(2) Aquisition of the DNAs of the Invention

cDNA clones containing the DNA of the present invention may be selected from the cDNA library prepared in (1) above by such method as colony hybridization or plaque hybridization (Molecular Cloning 2nd Ed.) using a radioactively or fluorescently labeled probe.

As a probe for MT4-MMP(2) gene, an oligonucleotide based on the nucleotide sequence of a DNA encoding MT4-MMP (a part of which has been elucidated) may be used. For MT5-MMP gene, an oligonucleotide based on the nucleotide sequence of a DNA encoding MT3-MMP may be used.

From the resultant clones of interest, mRNA is obtained as described above and then cDNA is synthesized.

An adaptor is added to both ends of the resultant cDNA. Using a primer based on the

sequence of this adaptor and a gene-specific primer based on the partially known sequence of the gene of interest, 5' RACE (rapid amplification of cDNA ends) and 3' RACE [Proc. Natl. Acad. Sci. USA, 85, 8998 (1988)] are carried out to obtain a cDNA fragment located 5' to the primer sequence and a cDNA fragment located 3' to the primer sequence.

By ligating the resultant cDNA fragments, a full-length cDNA can be obtained.

The nucleotide sequence of the thus obtained DNA fragment can be determined by integrating into a vector the fragment as it is or the fragment digested with an appropriate restriction enzyme by conventional methods and then analyzing the sequence by conventional methods such as the dideoxy method by Sanger et al. [Proc. Natl. Acad. Sci. USA, 74, 5463 (1977)] or with a DNA sequencer manufactured by Perkin Elmer (373A DNA Sequencer), Pharmacia, LI-COR, etc.

In order to determine the nucleotide sequence of the genomic DNA fragment encoding the polypeptide of the present invention, conventional methods for chromosomal DNA cloning (Molecular Cloning 2nd Ed.) can be used.

Briefly, chromosomal DNA from cells expressing the polypeptide of the present invention [such as monocytic THP-1 cells for MT4-MMP(2); such as brain or kidney cells for MT5-MMP] is digested with a restriction enzyme. The digested fragments are cloned into a conventional plasmid vector or phage vector to construct a genomic library.

The genomic library is screened using, as a probe, the DNA fragment obtained and sequenced as described above in the same manner as in the cDNA cloning described above. Thus, clones containing the genomic gene encoding the polypeptide of the present invention can be obtained.

Using the resultant clones, the nucleotide sequence of the genomic gene can be determined by the above-described method.

It is also possible to obtain a DNA of interest derived from other tissues or other animals (e.g. human) by selecting DNAs that hybridize to the DNA obtained by the above-described method under stringent conditions.

Alternatively, a DNA of interest may be chemically synthesized with a DNA synthesizer based on the nucleotide sequence information obtained by the above-described

method. As a DNA synthesizer, one using the thiophosphite method manufactured by Shimadzu Corp., a DNA synthesizer model 392 using the phosphoamidite method manufactured by Perkin Elmer, or the like may be enumerated.

The novelty of the nucleotide sequence obtained can be confirmed by searching DNA sequence databases of GenBank, EMBL, DDBJ, etc. using a homology search program such as BLAST. If the nucleotide sequence is found to be novel, it is converted into an amino acid sequence. Then, amino acid sequence databases of GenPept, PIR, Swiss-Prot, etc. are searched using a homology search program such as FASTA or FrameSearch to thereby search for existing genes having homology to the novel nucleotide sequence.

As a DNA encoding MT4-MMP(2), the polypeptide of the present invention, that has been confirmed to have a novel nucleotide sequence by the above-described method, a DNA having the nucleotide sequence as shown in SEQ ID NO: 3 or SEQ ID NO: 4 may be given, for example.

As a plasmid comprising a DNA having the nucleotide sequence as shown in SEQ ID NO: 3, plasmid pmMT4/pBSSK may be given. As a plasmid comprising a DNA having the nucleotide sequence as shown in SEQ ID NO: 4, plasmid phMT4/pBSIIKS may be given.

Escherichia coli pmMT4/pBSSK comprising plasmid pmMT4/pBSSK and Escherichia coli phMT4/pBSIIKS comprising plasmid phMT4/pBSIIKS were deposited as FERM BP-6528 and FERM BP-6530, respectively, on September 25, 1998 with National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology located at 1-3, Higashi 1-chome, Tsukuba City, Ibaraki Pref., Japan (postal code: 305-8566).

As a DNA encoding MT5-MMP, another polypeptide of the present invention, that has been confirmed to have a novel nucleotide sequence by the above-described method, a DNA having the nucleotide sequence as shown in SEQ ID NO: 7 or SEQ ID NO: 8 may be given, for example.

As a plasmid comprising a DNA having the nucleotide sequence as shown in SEQ ID NO: 7, plasmid pmMT5/pBSSK may be given. As a plasmid comprising a DNA having the nucleotide sequence as shown in SEQ ID NO: 8, plasmid phMT5/pGEM may be given.

Escherichia coli pmMT5/pBSSK comprising plasmid pmMT5/pBSSK and

Escherichia coli phMT5/pGEM comprising plasmid phMT5/pGEM were deposited as FERM BP-6529 and FERM BP-6531, respectively, on September 25, 1998 with National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology located at 1-3, Higashi 1-chome, Tsukuba City, Ibaraki Pref., Japan (postal code: 305-8566).

(3) Preparation of the Oligonucleotides of the Invention

Using the DNAs and DNA fragments of the present invention obtained in the above-described method, oligonucleotides (anti-sense and sense) comprising a partial sequence of the DNAs of the present invention can be prepared by conventional methods or with the DNA synthesizer mentioned above.

Examples of such oligonucleotides include a DNA having the same sequence as that of consecutive 5 to 60 bases within the nucleotide sequences of the above-described DNAs, or a DNA complementary thereto. Specifically, as oligonucleotides comprising a partial sequence of MT4-MMP(2) gene, a DNA having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases in the nucleotide sequence as shown in SEQ ID NO: 3 or 4, or a DNA complementary thereto may be given. As oligonucleotides comprising a partial sequence of MT5-MMP gene, a DNA having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases in the nucleotide sequence as shown in SEQ ID NO: 7 or 8, or a DNA complementary thereto may be given. When oligonucleotides are used as a sense primer and an anti-sense primer, the above-described oligonucleotides are preferably used which are not greatly different between the selected two in melting temperature (Tm) and in the number of bases.

Furthermore, derivatives of these oligonucleotides may also be used as the oligonucleotide of the present invention.

Some of the examples of such oligonucleotide derivatives include oligonucleotide derivatives in which phosphodiester bonds are converted to phosphorothioate bonds; oligonucleotide derivatives in which phosphodiester bonds are converted to N 3'-P5' phosphoamidate bonds; oligonucleotide derivatives in which ribose and phosphodiester bonds are converted to peptide-nucleic acid bonds; oligonucleotide derivatives in which uracil is

substituted by C-5 propynyluracil; oligonucleotide derivatives in which uracil is substituted by C-5 thiazoluracil; oligonucleotide derivatives in which cytosine is substituted by C-5 propynylcytosine; oligonucleotide derivatives in which cytosine is substituted by phenoxazine-modified cytosine; oligonucleotide derivatives in which ribose is substituted by 2'-O-propylribose; or oligonucleotide derivatives in which ribose is substituted by 2'-methoxyethoxyribose [Cell Engineering, 16, 1463 (1997)].

[2] Preparation of the Matrix Metalloproteinase Polypeptides of the Invention

(1) Preparation of Transformants

In order to express in a host cell the DNA of the present invention obtained by the method described in [1] above, methods described in Molecular Cloning 2nd Ed. and Current Protocols 1-38, for example, may be used.

Briefly, a recombinant expression vector is prepared by inserting the DNA of the present invention downstream of a promoter in an appropriate vector. Then, by introducing the recombinant vector into a host cell, a transformant that expresses the polypeptide of the present invention can be obtained.

As a host cell, any cell such as a bacterium, yeast, animal cell, or insect cell may be used as long as it is capable of expressing the gene of interest.

As an expression vector, a vector which is capable of autonomously replicating or integrating into chromosome in the above host cell, and which comprises a promoter at a site appropriate for transcription of the DNA of the present invention, is used.

When a procaryote such as a bacterium is used as the host cell, it is preferred that the expression vector for the polypeptide gene of the present invention be capable of autonomous replication in the procaryote and, at the same time, a recombinant vector composed of a promoter, a ribosome binding sequence, the DNA of the present invention, and a transcription termination sequence. The vector may also contain a gene that controls the promoter.

Examples of expression vectors which may be used in the present invention include pKK233-2 (Pharmacia), pSE280 (Invitrogen), pGEMEX-1 (Promega), pQE-8 (Qiagen), pKYP10 (Japanese Unexamined Patent Publication No. 58-110600), pKYP200 [Agric. Biol.

Chem., <u>48</u>, 669 (1984)], pLSA1 [Agric. Biol. Chem., <u>53</u>, 277 (1989)], pGEL1 [Proc. Natl. Acad. Sci. USA, <u>82</u>, 4306 (1985)], pBluescript II SK(-) (Stratagene), pGEX (Pharmacia), and pET-3 (Novagen).

As a promoter, any promoter may be used as long as it can direct the expression of the gene of interest in a host cell such as *E. coli* or *Bacillus subtilis*. For example, an *E. coli*- or phage-derived promoter such as trp promoter (Ptrp), lac promoter, PL promoter, PR promoter or T7 promoter; SP01 promoter; SP02 promoter; or penP promoter may be used. An artificially designed and altered promoter such as a promoter in which two Prtp promoters are connected in series (Ptrp x 2), tac promoter, lacT7 promoter, or let 1 promoter may also be used.

As a ribosome binding sequence, it is preferable to use a plasmid in which the distance between Shine-Dalgarno sequence and the initiation codon is appropriately adjusted (e.g., 6-18 bp).

In the recombinant vector of the present invention, it is not necessarily required for the expression of the DNA of the present invention to contain a transcription termination sequence, but it is desirable to locate such a sequence immediately downstream of the structural gene.

As a host cell, a microorganism belonging to the genus Escherichia, Serratia, Bacillus, Brevibacterium, Corynebacterium, Microbacterium, Pseudomonas or the like may be used. Specific examples of host cells which may be used in the present invention include Escherichia coli XL1-Blue, Escherichia coli XL2-Blue, Escherichia coli DH1, Escherichia coli MC1000, Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JM109, Escherichia coli HB101, Escherichia coli No.49, Escherichia coli W3110, Escherichia coli NY49, Serratia ficaria, Serratia fonticola, Serratia liquefaciens, Serratia marcescens, Bacillus subtilis, Bacillus amyloliquefaciens, Brevibacterium ammoniagenes, Brevibacterium glutamicum ATCC14068, Brevibacterium saccharolyticum ATCC14066, Corynebacterium glutamicum ATCC13032, Corynebacterium glutamicum ATCC14067, Corynebacterium glutamicum ATCC13869, Corynebacterium acetoacidophilum ATCC13870, Microbacterium ammoniaphilum ATCC15354, and Pseudomonas sp. D-0110.

As a method for introducing the recombinant vector, any method of introducing

DNA into the above host cell may be used. For example, the method using calcium ions [Proc. Natl. Acad. Sci., USA, <u>69</u>, 2110 (1972)], the protoplast method (Japanese Unexamined Patent Publication No. 63-248394), or electroporation [Gene, <u>17</u>, 107 (1982); Molecular & General Genetics, <u>168</u>, 111 (1979)] may be used.

When a yeast strain is used as the host cell, an expression vector such as YEp13 (ATCC37115), YEp24 (ATCC37051), YCp50 (ATCC37419), pHS19, or pHS15 may be used.

As a promoter, any promoter that can direct the expression of the gene of interest in yeast may be used. For example, PH05 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, heat shock polypeptide promoter, MF α 1 promoter, or CUP 1 promoter may be used.

As a host cell, a yeast strain belonging to the genus Saccharomyces, Schizosaccharomyces, Kluyveromyces, Trichosporon, Schwanniomyces, Pichia or the like may be used. Specific examples of yest strains that may be used in the present invention include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, Schwanniomyces alluvius, and Pichia pastoris.

As a method for introducing the recombinant vector, any method of introducing DNA into yeast may be used. For example, electroporation [Methods in Enzymology, 194, 182 (1990)], the spheroplast method [Proc. Natl. Acad. Sci., USA, 81, 4889 (1984)], the lithium acetate method [Journal of Bacteriology, 153, 163 (1983)] or the like may be enumerated.

When an animal cell is used as the host, an expression vector such as pAGE107 (Japanese Unexamined Patent Publication No. 3-22979; Cytotechnology, 3, 133 (1990)], pAS3-3 (Japanese Unexamined Patent Publication No. 2-227075), pCDM8 [Nature, 329, 840 (1987)], pcDNAI/Amp (Invitrogen), pREP4 (Invitrogen), or pAGE103 [Journal of Biochemistry, 101, 1307 (1987)] may be used.

As a promoter, any promoter that can direct the expression of the gene of interest in animal cells may be used. Examples of promoters that may be used in the present invention include the promoter of the IE (immediate early) gene of cytomegalovirus (CMV), the early promoter of SV40, a metallothionein promoter, a retrovirus promoter, a heat shock

promoter and SR α promoter. Alternatively, the enhancer of the IE gene of human CMV may be used in combination with the promoter thereof.

Examples of animal cells that may be used in the present invention include human cells such as Namalwa cells, HEK293 cells (ATCC: CRL-1573); simian cells such as COS cells; and Chinese hamster cells such as CHO cells, HBT5637 (Japanese Unexamined Patent Publication No. 63-299).

As a method for introducing the recombinant vector, any method of introducing DNA into animal cells may be used. For example, electroporation [Cytotechnology, 3, 133 (1990)], the calcium phosphate method (Japanese Unexamined Patent Publication No. 2-227075), or lipofection [Proc. Natl. Acad. Sci. USA, <u>84</u>, 7413 (1987); Virology, <u>52</u>, 456 (1973)] may be used.

When an insect cell is used as the host, it is possible to express the polypeptide of the present invention according to methods described in, for example, Baculovirus Expression Vectors, A Laboratory Manual, W.H. Freeman and Company, New York (1992); Current Protocols 1-38; and Bio Technology, 6, 47 (1988).

Briefly, a recombinant gene transfer vector and Baculovirus are co-introduced into an insect cell to thereby obtain a recombinant virus in the supernatant of the insect cell culture. Then, the insect cell is infected with the recombinant virus further to allow the production of the polypeptide of the present invention.

As a gene transfer vector that may be used in the above method, pVL1392, pVL1393, pBlueBacIII (all of which are manufactured by Invitrogen) may be enumerated, for example.

As a Baculovirus that may be used in the above method, Autographa californica nuclear polyhedrosis virus that infects insects belonging to the subfamily Hadeniae may be given, for example.

As an insect cell that may be used in the above method, *Spodoptera frugiperda* ovary cells Sf9 and Sf21 [Baculovirus Expression Vectors, A Laboratory Manual (1992)]; a *Trichoplusia ni* ovary cell High5 (Invitrogen); or the like may be enumerated.

As a method of co-introducing a gene transfer vector and Baculovirus into an insect cell

for preparing a recombinant virus, the calcium phosphate method (Japanese Unexamined Patent Publication No. 2-227075) or lipofection [Proc. Natl. Acad. Sci. USA, <u>84</u>, 7413 (1987)] may be enumerated, for example.

As a method of expressing the gene, in addition to direct expression, such as secretion production or fusion protein expression may be carried out based on the methods described in Molecular Cloning 2nd Ed.

When the polypeptide of the present invention is expressed by a yeast strain, animal cell or insect cell, a polypeptide to which sugars or sugar chains have been attached can be obtained.

The polypeptide of the present invention can be prepared by culturing the transformant obtained as described above in a medium, allowing the polypeptide of the present invention to be produced and accumulated in the culture, and recovering the polypeptide from the culture.

It is also possible to express the polypeptide of the present invention in a patient *in vivo* by introducing an appropriate expression vector that directs expression of the polypeptide of the present invention into cells taken from the patient's living body and then returning the cells into the body.

(2) Culturing of Transformants

The culturing of the transformant of the present invention in a medium is carried out by conventional methods used for culturing hosts.

As a medium to culture the transformant obtained from a procaryotic host such as *E. coli* or an eucaryotic host such as yeast, either a natural or synthetic medium may be used as long as it contains carbon sources, nitrogen sources and inorganic salts assimilable by the microorganism and is suitable for efficient culturing of the transformant.

As carbon sources, any carbon source may be used as long as it is assimilable by the microorganism. For example, carbohydrates such as glucose, fructose, sucrose, or molasses, starch or starch hydrolysate containing them; organic acids such as acetic acid, propionic acid; and alcohols such as ethanol and propanol may be used.

As nitrogen sources, ammonia; ammonium salts of inorganic or organic acids such as

ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate; other nitrogen-containing compounds; Peptone; meat extract; yeast extract; corn steep liquor; casein hydrolysate; soybean meal and soybean meal hydrolysate; various fermented microorganism cells and digested products thereof; and the like may be used.

As inorganic substances, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, iron(II) sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like may be used.

Usually, culturing is carried out under aerobic conditions, by such as shaking culture or submerged aeration agitation culture. The culturing temperature is preferably between 15 to 40°C, and the culturing period is usually 16 to 96 hrs. During the culturing, the pH is maintained at 3.0 to 9.0. The pH adjustment is carried out using an inorganic or organic salt, an alkali solution, urea, calcium carbonate, ammonia or the like.

During the culturing, an antibiotic such as ampicillin or tetracycline may be added to the medium if necessary.

When a microorganism transformed with an expression vector using an inducible promoter is cultured, an inducer may be added to the medium if necessary. For example, when a microorganism transformed with an expression vector using Lac promoter is cultured, isopropyl- β -D-thiogalactopyranoside or the like may be added. When a microorganism transformed with an expression vector using trp promoter is cultured, indoleacrylic acid or the like may be added.

As a medium to culture a transformant obtained from an animal cell as a host, commonly used RPMI1640 medium [The Journal of the American Medical Association, 199, 519 (1967)], Eagle's MEM medium [Science, 122, 501 (1952)], DMEM medium [Virology, 8, 396 (1959)], 199 medium [Proceeding of the Society for the Biological Medicine, 73, 1 (1950)] or one of these media supplemented with fetal bovine serum, etc. may be used.

Usually, the culturing is carried out at pH 6-8, at $30\text{-}40^{\circ}\text{C}$ in the presence of 5% CO₂ for 1 to 7 days.

During the culturing, an antibiotic such as kanamycin, penicillin, or streptomycin may be added to the medium if necessary.

As a medium to culture a transformant obtained from an insect cell as a host, commonly used TNM-FH medium (Pharmingen), Sf-900 II SFM medium (Life Technologies), ExCell400 or ExCell405 (both from JRH Biosciences), Grace's Insect Medium [Nature, 195, 788 (1962)] or the like may be used.

Usually, culturing is carried out at pH 6-7 at 25-30°C for 1 to 5 days.

During the culturing, an antibiotic such as gentamycin may be added to the medium if necessary.

(3) Isolation and Purification of the Expressed Polypeptides

Conventional methods of enzyme isolation/purification may be used to isolate and purify the polypeptides expressed by the method described above from the culture of the above-described transformant. For example, when the polypeptide of the present invention is expressed in a dissolved state in cells, the cells are harvested by centrifugation after completion of the culturing, and then suspended in an aqueous buffer. Subsequently, the cells are disrupted with a sonicator, French press, Manton-Gaulin homogenizer, Dynomill or the like to thereby obtain a cell-free extract, which is then centrifuged to obtain a supernatant. From this supernatant, a purified sample may be obtained by conventional enzyme isolation/purification methods. For example, the solvent extraction method; salting out with ammonium sulfate or the like; desalting; precipitation with organic solvents; anion exchange chromatography using resins such as Q-Sepharose, diethylaminoethyl (DEAE)-Sepharose, DIAION HPA-75 (Mitsubishi Chemical Corp.); cation exchange chromatography using resins such as S-Sepharose FF (Pharmacia); hydrophobic chromatography using resins such as butyl Sepharose, phenyl Sepharose; gel filtration using molecular sieve; affinity chromatography; and electrophoresis such as chromatofocusing, isoelectric focusing; may be used independently or in combination.

When the polypeptide of the present invention is expressed in an insoluble form within cells, the cells are harvested and disrupted in the same manner as described above. Then, the cells are centrifuged to obtain the precipitate fraction, from which the polypeptide is recovered by conventional methods. Subsequently, the polypeptide in an insoluble form is solubilized

with a protein-denaturing agent. The resultant solubilized solution is diluted until the solution no longer contains the denaturing agent or the concentration of the denaturing agent becomes so low that no protein denaturation would occur; or the solubilized solution is dialyzed. Thus, the normal steric structure of the polypeptide is restored. Subsequently, a purified sample can be obtained by using the isolation/purification methods described above.

When the polypeptide of the present invention or a derivative thereof (such as sugar-modified polypeptide) is secreted out of cells, the polypeptide or the derivative can be recovered from the culture supernatant. Briefly, the culture is treated by centrifugation, etc. in the same manner as described above to obtain the soluble fraction. From this soluble fraction, a purified sample can be obtained by using the isolation/purification methods described above. When the polypeptide of the present invention or a derivative thereof (such as sugar-modified polypeptide) is expressed on cell surfaces, the membrane fraction of the cultured cells is dissolved with a surfactant to obtain the soluble fraction. From this soluble fraction, a purified sample can be obtained by using the isolation/purification methods described above.

Alternatively, the polypeptide of the present invention may be prepared by chemical synthesis methods such as the Fmoc (fluorenylmethyloxycarbonyl) method and the tBoc (t-butyloxycarbonyl) method. The polypeptide of the present invention may also be chemically synthesized with peptide synthesizers manufactured by Advanced ChemTech, Perkin Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, PerSeptive, Shimadzu Corp. and so forth.

[3] Detection of the Biological Activity of the Polypeptides of the Invention

The proteinase activity of the polypeptides of the present invention obtained by the method described in [2] above is determined by subjecting a peptide or protein degraded by the polypeptides of the present invention electrophoresis or column chromatography. Alternatively, the activity is determined by measuring degradation of a fluorescence- or isotope-labeled peptide or protein by the polypeptide of the present invention. It is also possible to detect the activity by measuring the state of activation of an enzyme that is

activated by excision of a peptide. The activity may also be measured by using a gel containing a peptide that is degraded by the enzyme in the same manner as in gelatin zymography.

[4] Search for and Identification of Inhibitors or Activators of the Polypeptides of the Invention

A test sample is added to those cells expressing the polypeptide of the present invention prepared by the method described in [2] above, or the polypeptide of the present invention purified by the method described in [2] above from recombinant *E. coli* cells expressing the polypeptide of the present invention prepared by the method described in [2] above.

Then, by comparing the proteinase activity of the polypeptide of the present invention in the presence of the test sample with the activity in the absence of the test sample, it is possible to screen for a substance that enhances the proteinase activity (activator) or a substance that inhibits the proteinase activity (inhibitor).

Specific examples of test samples include synthetic compounds, naturally occurring proteins, artificially synthesized proteins, peptides, saccharides, lipids, modified products or derivatives of these substances; urine, body fluids, tissue extracts, cell culture supernatants and cell extracts from mammals (such as mouse, rat, guinea pig, hamster, pig, sheep, bovine, equine, canine, feline, simian, or human); non-peptidic compounds; fermentation products; and extracts from plants and other organisms.

When a peptide is used as a test sample, a random peptide library may be utilized. Examples of random peptide libraries that may be used in the present invention include peptides on phage [Proc. Natl. Acad. Sci. USA, <u>87</u>, 6378 (1990); PCT Patent Application Number 96/40189] and peptides on plasmids [United States Patent No. 5,270,170; United States Patent No. 5,338,665].

Peptides that bind to MT4-MMP(2) of the present invention can be obtained by screening a random peptide library. Examples of random peptide libraries that may be used in the present invention include peptides on phage [Proc. Natl. Acad. Sci. USA, <u>87</u>, 6378 (1990); PCT Patent Application Number 96/40189] and peptides on plasmids [United States

Patent No. 5,270,170; United States Patent No. 5,338,665].

[5] Uses of the DNAs and Polypeptides of the Invention

(1) The DNA of the present invention may be used as a probe in Northern hybridization on RNA that is extracted from human tissues or human-derived cells in the same manner as described in (2) of Section [1] above, to thereby detect or quantitatively determine the mRNA of the polypeptide gene of the present invention in the tissues or cells. By comparing the amounts of RNA expressed in various tissues, the tissue distribution of the polypeptide of the present invention can be elucidated.

Alternatively, the oligonucleotide of the present invention may be used as a primer specific to the DNA of the present invention in RT-PCR [reverse transcription PCR; PCR protocols (1990)] on RNA that is extracted from human tissues or human-derived cells in the same manner as described in (2) of Section [1] above, to thereby detect or quantitatively determine the mRNA of the polypeptide gene of the present invention. These methods of quantitative determination of the mRNA of the polypeptide gene may be used in the diagnosis of disease states in which the gene is involved.

By quantification of the mRNA encoding the polypeptide in various disease model animals, it is possible to reveal the importance of the gene product in diseases. Furthermore, it is possible to evaluate a drug by comparing the amount of expression of the mRNA encoding the polypeptide in the presence or absence of the drug.

(2) The DNA of the present invention or an oligonucleotide having a nucleotide sequence identical with or complementary to a partial nucleotide sequence of the DNA may be used as a probe to carry out *in situ* hybridization [Methods in Enzymology, 254, 419 (1995)] on human tissue section. As a result, more detailed information on the distribution of the polypeptide of the present invention can be obtained, e.g. cells expressing the polypeptide in a given tissue can be specified.

Information as to in which tissue or cell the polypeptide of the present invention is expressed, and information as to what stimulation given to cells changes the amount of expression of the polypeptide obtained by the above-described methods will be useful in

elucidating the physiological functions of the polypeptide of the present invention and its involvement in diseases.

- (3) The DNA of the present invention may be used as a probe to carry out Southern hybridization (Molecular Cloning 2nd Ed.) on genomic DNA. As a result, mutations in the gene encoding the polypeptide of the present invention can be detected. By detecting such mutations, it is possible to diagnose those diseases which may be caused by mutations of the gene. Specifically, with respect to MT4-MMP(2), diseases such as arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, and inflammations associated with infiltration of leukocytes may be diagnosed. With respect to MT5-MMP, diseases such as arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease, brain tumor, and inflammations associated with infiltration of leukocytes may be diagnosed.
- (4) The anti-sense oligonucleotides (RNA/DNA) of the present invention are expected to be applicable to treatment or prevention of diseases in which the gene encoding the polypeptide of the present invention may be involved in their onset, by inhibiting the transcription of the gene or the translation of the mRNA [Chemistry 46, 681 (1991); Bio Technology, 2, 358 (1992)]. With respect to MT4-MMP(2), specific examples of such diseases include arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, and inflammations associated with infiltration of leukocytes. With respect to MT5-MMP, specific examples of such diseases include arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor,

brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease, brain tumor, and inflammations associated with infiltration of leukocytes.

The above-described anti-sense oligonucleotide is designed and prepared based on a partial nucleotide sequence of the DNA encoding the polypeptide of the present invention, preferably a nucleotide sequence complementary to 10-50 bases within the translation initiation region, and then administered into the living bodies of subjects.

Pharmaceuticals containing the DNA of the present invention are prepared or administered in the same manner as described below except that the DNA of the present invention is used instead of the polypeptide of the present invention.

(5) The polypeptide of the present invention can be obtained by using the DNA of the present invention in accordance with the method described in [2] above. With respect to MT4-MMP(2), a polypeptide of the present invention is used for a diagnostic agent, therapeutic agent or prophylactic agent for diseases such as arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, and inflammations associated with infiltration of leukocytes. With respect to MT5-MMP, a polypeptide of the present invention is used for a diagnostic agent, therapeutic agent or prophylactic agent for diseases such as arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease, brain tumor, and inflammations associated with infiltration of leukocytes is contemplated.

Although it is possible to administer the polypeptide of the present invention alone as a diagnostic agent or therapeutic agent, usually it is preferred that the polypeptide of the present invention be administered as a pharmaceutical preparation obtained by mixing the polypeptide with one or more pharmacologically acceptable carriers and formulating by any of the well-known methods in the technical field of pharmaceutics. Preferably, a sterile solution of the

polypeptide dissolved in water or an aqueous carrier such as an aqueous solution of NaCl, glycine, glucose or human albumin is used. Pharmacologically acceptable additives such as buffers and isotonic agents that bring liquid preparations close to physiological conditions may also be added. For example, sodium acetate, sodium chloride, sodium lactate, potassium chloride, or sodium citrate may be added. The pharmaceutical preparation may be freezedried for storage and dissolved in an appropriate solvent at the time of use.

It is desirable to select the best route of administration that would be most effective for the treatment intended. Usually, parenteral routes such as subcutaneous, intramuscular, intravenous, or intratracheal route are used.

(6) The DNAs of the present invention (sense DNAs and anti-sense DNAs) or oligonucleotides comprising a part of the nucleotide sequences thereof may be incorporated as a single-stranded or double-stranded DNA or oligonucleotide into viral vectors such as retrovirus, adenovirus, adeno-associated virus or other vectors to prepare vectors for gene therapy, and may be used in such therapy.

EXAMPLES

Hereinbelow, the present invention will be described more specifically with reference to the following Examples. However, the scope of the present invention is not limited by these Examples.

EXAMPLE 1. Cloning of the Gene of Mouse MT4-MMP-Related Protein [MT4-MMP(2)]

Since MT4-MMP gene is highly expressed in the human brain, a brain cDNA library from mouse 17-day embryo was prepared using ZAP-cDNA Synthesis Kit (Stratagene) according to the manual attached to the Kit.

Using a partial sequence of the human MT4-MMP gene (positions 233-1899 of SEQ ID NO: 17) as a probe, the resultant cDNA library was screened by plaque hybridization.

Several of the positive clones that hybridized to the above probe were analyzed for their nucleotide sequences. All of the analyzed clones contained a signal peptide sequence that is considered missing in the reported human MT4-MMP gene; the longest clone was 3.5 kb.

Therefore, it was considered that an mRNA corresponding to the DNA of SEQ ID NO: 3 which can express the 587 amino acid MT4-MMP(2) shown in SEQ ID NO: 1 is expressed in mouse.

EXAMPLE 2. Cloning of Human MT4-MMP (2) Gene

EST clones relating to the human MT4-MMP gene were searched for through databases. However, no clones were registered which contain a sequence encoding a signal peptide as seen in the above-mentioned mouse gene. Therefore, it was considered that secretion-type human MT4-MMP gene does not exist or there are reasons that make the isolation thereof difficult.

A human brain cDNA library (Clontech) was screened using a partial sequence of the mouse MT4-MMP(2) gene, as a probe, from Example 1 encoding an N-terminal region representing the signal peptide. However, the gene of interest could not be isolated. Then, the inventors analyzed 5' regions of transcripts by 5' RACE. For this analysis, monocytederived THP-1 (ATCC TIB-202; American Type Culture Collection) cells were used in which expression of MT4-MMP mRNA had been confirmed.

Briefly, a cDNA was prepared using poly(A)⁺ RNA isolated from human THP-1 cells, a human MT4-MMP selective primer (SEQ ID NO: 9) and Superscript II (Gibco BRL). A single-stranded oligonucleotide adaptor (SEQ ID NO: 10) was ligated to the resultant cDNA with T4 RNA ligase. Then, a PCR was performed in GC buffer using the MT4-MMP selective primer (SEQ ID NO: 9), an adaptor selective primer (SEQ ID NO: 11) and LA Taq (Takara). After completion of this reaction, another PCR was performed using a gene-selective, other primer (SEQ ID NO: 12) and an adaptor selective primer (SEQ ID NO: 13).

The analysis of the 50 clones revealed that, while 3 clones were cDNA fragments containing an MT4-MMP sequence, 47 clones were cDNA fragments encoding a signal peptide sequence similar to that in mouse MT4-MMP(2). From this, in addition to the downstream region of the propeptide sequence already known, the entire region of the mRNA of SEQ ID NO: 4 encoding human MT4-MMP(2) as shown in SEQ ID NO: 2 containing a signal peptide has been elucidated. Although the nucleotide sequence of an EST clone

H97792 was almost identical with the sequence of the MT4-MMP gene reported by Puente [Cancer Research, <u>56</u>, 944 (1996); SEQ ID NO: 17], a partial sequence of the catalytic domain was different. The EST clone H97792 was more highly conserved with mouse MT4-MMP(2) gene. When the entire sequence of human MT4-MMP(2) gene was determined newly, differences were found even in the previously sequenced region of the MT4-MMP gene reported by Puente.

Mouse and human MT4-MMP(2) genes are mutually conserved well; their propeptide domains, catalytic domains, hinge domains and hemopexin-like domains had 87%, 87%, 78% and 96% homology, respectively. Their signal peptide domains and transmembrane domains had relatively low similarities of 54% and 35%, respectively. When the catalytic domain of human MT4-MMP(2) gene were compared with the catalytic domains of MT1-MMP, MT2-MMP and MT3-MMP, the similarities were 36%, 39% and 31%, respectively. These results also supported that mouse MT4-MMP(2) gene is most close to human MT4-MMP(2) gene. Thus, it was concluded that mouse MT4-MMP(2) gene is a mouse homologue to human MT4-MMP(2) gene.

EXAMPLE 3. Expression of MT4-MMP(2) and Detection of the Gene Product

In order to confirm that a gene product is certainly translated from the isolated cDNA, the cDNA was integrated into pSG5 vector (Stratagene) containing an SV 40 promoter. For detecting the expressed product, a FLAG sequence (Eastman Chemical) was integrated downstream of the latent enzyme processing site to thereby enable detection with anti-FLAG antibodies.

COS-1 cells were transfected with mouse or human MT4-MMP(2) expression plasmids. After 48 hr, cells were harvested and lysed followed by detection of FLAG-labeled MT4-MMP by Western blotting. With the use of an anti-FLAG antibody M2 (Eastman Chemical), a specific 66 kDa band in both cells transfected with the expression plasmids was detected.

EXAMPLE 4. Detection and Analysis of MT4-MMP Transcript

Since MT4-MMP transcript has an Alu sequence at 5' end, there was a possibility that it

contains intron(s). Using a partial sequence of human MT4-MMP(2) (positions 212-519 of SEQ ID NO: 4) as a probe, hybridized clones were isolated from a library of Health Science Research Resources Bank (Deposit No. LI020) by hybridization, and plasmids were extracted from the resultant clones by conventional methods. Then, the present inventors examined nucleotide sequences around the 5' end region (positions 140-272 of SEQ ID: 17) of MT4-MMP contained in these plasmids.

When MT4-MMP gene was compared with MT4-MMP(2) gene, MT4-MMP nucleotide sequence of the region in which homology no longer exists (positions 1-139 of SEQ ID NO: 17) was almost identical with positions 3008-3147 of the genomic sequence (SEQ ID NO: 18); and a splice donor sequence was found on the border between the region with homology and the region without homology. The sequence encoding the exons of MT4-MMP (positions 140-340 of SEQ ID NO: 17) were almost identical with positions 3148-3280 and positions 3564-3633 of the genomic sequence (SEQ ID NO: 18). From these results, it was concluded that the transcript still containing the first intron is MT4-MMP transcript.

From these results, it was considered that two mRNAs encoding MT4-MMP and MT4-MMP(2) are expressed in human.

In order to discriminate these two transcripts by performing RT-PCR separately, 5' primers specific to individual transcripts (MT4-MMP: SEQ ID NO: 14; MT4-MMP(2): SEQ ID NO: 15) and a common 3' primer (SEQ ID NO: 16) were prepared.

The expression of these transcripts in various cancer cells is shown in Table 1 below.

Table 1. Expression of MT4-MMP(2) and MT4-MMP Transcripts in Cancer Cells

Cancer Cell Line	MT4-MMP(2)	MT4-MMP	Accession Number
Jurkat (T cell)	++	+/-	ATCC TIB-152
Raji (B cell)	~	-	ATCC CCL-86
BJAB (B cell)	-	-	ATCC HB-136
THP-1 (monocytic)	++	+	ATCC TIB-202
K562 (monocytic)	++	-	ATCC CCL-243
U-937 (monocytic)	++	•	ATCC CRL-1593.2
U-251 MG (astrocytoma)	++	-	Hakkoken IFO50288
SK-N-SH (neuroblastoma) ++	-	ATCC HTB-11
no.10 (glioma)	+/-	-	Hakkoken IFO50368
KALS-1 (glioma)	++	-	Hakkoken IFO50434
MKN-7 (gastric)	+	-	Riken RCB0999
MKN-28 (gastric)	-	-	Riken RCB1000
NUGC-4 (gastric)	+	-	HS Found JCRB0834
PANC-1 (pancreatic)	++	+	ATCC CRL-1469
MIA PaCa-2 (pancreatic)	++	+/-	ATCC CRL-1420
SK-HEP-1 (hepatoma)	++	+	ATCC HTB-52
Hep 3B (hepatoma)	++	+	ATCC HB-8064
ZR-75-1 (breast)	++	+	ATCC CRL-1500
MCF7(adenocarcinoma)	++	+	ATCC HTB-22
T-24 (bladder)	++	+	ATCC HTB-4
A375 (melanoma)	++	+	ATCC CRL-1619
HT-1080 (fibrosarcoma)	+	-	ATCC CCL-121

^{++:} strong expression; +: medium expression; +/-: slight expression; -: no expression

ATCC: American Type Culture Collection

HS Found.: Japan Health Sciences Foundation

Riken: The Institute of Physical and Chemical Research

Hakkoken: Institute for Fermentation, Osaka

MT4-MMP was only expressed in those cells where expression of MT4-MMP(2) was recognized.

From these results, it is believed that MT4-MMP(2) is the major transcript and that expression of MT4-MMP also occurs depending on cells under similar transcriptional control.

EXAMPLE 5. Expression of MT4-MMP(2) in mouse Tissues

Tissues of 4-week old mice were excised by organ. RNA was extracted therefrom and used to examine the expression pattern of MT4-MMP(2). Briefly, 20 μ g of total RNA was electrophoresed on 1% agarose gel and transferred onto a nylon membrane followed by Northern blot analysis using 32 P-labeled mouse MT4-MMP(2) gene as a probe, to thereby examine the expression pattern of MT4-MMP(2).

Organs in which particularly high expression was observed were the cerebrum, cerebellum, brainstem, large intestine, uterus, and testis. Little expression was observed in the adrenal, mammary gland, and placenta. The results of expression in mouse were consistent with the results of MT4-MMP expression in human tissues reported by Puente et al. [Cancer Research, <u>56</u>, 944 (1996)].

In mouse, the expression of MT4-MMP(2) was very high in the brain, and its expression was also observed in some limited organs such as the large intestine, uterus and testis. This presents a contrast to the expression of MT1-MMP and MT2-MMP seen in a relatively wide range of tissues. From this, it is believed that MT4-MMP(2) is involved in the maintenance of homeostasis in tissues through the degradation of extracellular substrates specific to those organs expressing MT4-MMP(2).

EXAMPLE 6. Expression of a Mouse MT4-MMP(2) Partial Peptide (Hemopexin-like Domain) in E. coli

A cDNA encoding a mouse MT4-MMP(2) partial peptide (hemopexin-like domain) having an amino acid sequence represented by positions 321-550 of SEQ ID NO: 1 to which a

methionine residue was added at the N-terminus was amplified by polymerase chain reaction (PCR) using the cDNA of mouse MT4-MMP(2) as a template.

The amplified fragment was subcloned into an E.~coli expression vector pET3a (Takara) and then introduced into E.~coli BL21 (DE3) pLysS (Takara). This E.~coli was grown in 1 liter of expression medium in the presence of 100 μ g/ml of ampicillin until OD₆₀₀ reached 0.5. Then, the cells were stimulated with 0.4 mmol/L of isopropyl- β -D-thiogalactopyranoside (IPTG) and cultured for another three hours.

After the culturing, granules (inclusion bodies) consisting of the mouse MT4-MMP(2) partial peptide formed in *E. coli* cells were collected by conventional methods and dissolved in a solubilization solution containing 8 mol/L urea, 50 mmol/L Tris-HCl (pH 8.6) and 20 mmol/L dithiothreitol (DTT). The resultant solution was applied to High Q anion exchange column followed by recovery of the fraction eluted with 0.2 mol/L sodium chloride.

This fraction was diluted with a solution containing 50 mmol/L Tris-HCl (pH 8.6), 6 mol/L urea, 1 mmol/L dithiothreitol, 0.15 mol/L sodium chloride, 5 mmol/L calcium chloride, 100 mmol/L zinc chloride and 0.02% sodium azide. Then, cystamine (final concentration: 20 mmol/L) was added to the resultant dilution. Subsequently, the resultant solution was dialyzed against a solution containing 50 mmol/L Tris-HCl (pH 8.6), 0.15 mol/L sodium chloride, 5 mmol/L calcium chloride, 100 mmol/L zinc chloride, 5 mmol/L β mercaptoethanol, 1 mmol/L 2-hydroxyethyldisulfide and 0.02% sodium azide at 4°C. Further, dialysis was performed against 10 volumes of a solution containing 50 mmol/L Tris-HCl (pH 7.5), 0.15 mol/L sodium chloride, 5 mmol/L calcium chloride, 50 mmol/L zinc chloride and 0.02% sodium azide (4 hr x 3 times). The dialyzed solution was centrifuged at 22,000xg at 4°C for 10 min to remove the precipitate.

The supernatant was applied to S-200 column pre-equilibrated with a buffer containing 50 mmol/L Tris-HCl (pH 7.5), 150 mmol/L sodium chloride, 10 mmol/L calcium chloride and 0.02% sodium azide for gel filtration to obtain a mouse MT4-MMP(2) partial peptide corresponding to the hemopexin-like domain.

EXAMPLE 7. Expression of a Human MT4-MMP(2) Partial Peptide (Propeptide Domain +

Active Domain) in E. coli

A cDNA encoding a human MT4-MMP(2) partial peptide having an amino acid sequence represented by positions 58-298 of SEQ ID NO: 2 was amplified by polymerase chain reaction (PCR) using the cDNA of human MT4-MMP(2) as a template.

The amplified fragment was subcloned into an E. coli expression vector pRSET (Invitrogen). The enzyme was expressed as a fusion protein fused to the 6x His sequence present in the pRSET-derived leader sequence. This vector was introduced into E. coli BL21 (DE3) pLysS (Takara). This E. coli was grown in 1 liter of expression medium (tryptone, 12 g/L; yeast extract, 24 g/L; sodium chloride, 10 g/L; Trisma base, 250 mg/L; glycerol, 4 ml/L) in the presence of 100 μ g/ml ampicillin until OD₆₀₀ reached 0.5. Then, the cells were stimulated with 0.4 mmol/L isopropyl- β -D-thiogalactopyranoside (IPTG) and cultured for another three hours.

After the culturing, granules (inclusion bodies) consisting of the human MT4-MMP(2) partial peptide (propeptide domain + active domain) formed in *E. coli* cells were collected by conventional methods and dissolved in a solubilization solution containing 8 mol/L urea and 50 mmol/L Tris-HCl (pH 8.6). The resultant solution was applied to a nickel chelate column followed by recovery of the fraction eluted with 250 mmol/L imidazole.

This fraction was diluted with a solution containing 50 mmol/L Tris-HCl (pH 8.6), 6 mol/L urea, 20 mmol/L dithiothreitol, 0.15 mol/L sodium chloride, 100 mmol/L calcium chloride, 100 μ mol/L zinc chloride and 0.02% sodium azide (200-fold dilution). Then, cystamine (final concentration: 20 mmol/L) was added to the resultant dilution. Subsequently, the resultant solution was dialyzed against a solution containing 50 mmol/L Tris-HCl (pH 8.6), 0.15 mol/L sodium chloride, 10 mmol/L calcium chloride, 100 μ mol/L zinc chloride, 5 mmol/L β mercaptoethanol, 1 mmol/L 2-hydroxyethyldisulfide and 0.02% sodium azide at 4°C. Further, dialysis was performed against 10 volumes of a solution containing 50 mmol/L Tris-HCl (pH 7.5), 0.15 mol/L sodium chloride, 10 mmol/L calcium chloride, 50 μ mol/L zinc chloride and 0.02% sodium azide (4 hr x 3 times). The thus dialyzed solution was centrifuged at 22,000xg at 4°C for 10 min to remove the precipitate.

The supernatant obtained was concentrated 5-fold with Amicon YM-10 (Millipore) to

prepare a crude enzyme.

EXAMPLE 8. Measurement of the Activity of the Human MT4-MMP(2) Partial Peptide (Active Domain)

a) Activation of the Human MT4-MMP(2) Partial Peptide (Propeptide Domain + Active Domain)

It is known that MMPs are activated by trypsin treatment and then exhibit metalloproteinase activity. Whether MT4-MMP(2) is also activated by such treatment or not was examined by the method described below.

Briefly, trypsin (Wako Purechemical Industries, Ltd.) was added to 200 μ 1 of the crude MT4-MMP(2) partial peptide (propeptide domain + active domain) solution to give a concentration of 0.1 μ g/ml, and reacted at 37°C for 30 min. Then, phenylmethanesulfonyl fluoride (PMSF) (a serine protease inhibitor) was added to the reaction solution at 1 mmol/L to inactivate the trypsin.

b) Assay

To 10 μ 1 of the activated enzyme, a measurement buffer or an inhibitor diluted with a measurement buffer (TIMP-1 or TIMP-2; final concentration: 1μ g/ml) was added to make a 50 μ 1 solution. To this solution, 50 μ 1 of 10 μ mol/L fluorescent substrate was added and reacted at 37°C for 120 min. After the completion of each reaction, fluorescence generated by the enzyme reaction was measured. Measurement was carried out under the following conditions: excitation wave length: 320 nm; fluorescence wave length: 395 nm.

The reagents and substrates used in this assay were as described below.

Fluorescent substrate: DMSO stock (10 mmol/L); MOCAc-Pro-Leu-Gly-Leu-

A₂pr(Dnp)-Ala-Arg-NH₂ (Peptide Institute, Inc.)

Standard fluorescent substrate: DMSO stock (1 mmol/L); MOCAc-Pro-Leu-Gly (Peptide Institute, Inc.)

Activity measurement buffer: 0.1 mol/L Tris-HCl (pH 7.5; Nacalai Tesque), 0.1 mol/L NaCl (Nacalai Tesque), 0.01 mol/L CaCl₂ (Wako Purechemical), 0.05% Briji-35 (w/v; Wako Purechemical)

The results of the measurement are shown in Table 2. Similar to other MMPs, the MT4-MMP(2) partial peptide, in particular, the partial peptide after the activation by trypsin exhibited a strong substrate-degrading activity.

It is reported that MT-MMPs are not inhibited by the metalloproteinase inhibitor TIMP-1, but inhibited by TIMP-2 [FEBS Letters, 393, 101 (1996)].

Whether MT4-MMP(2) also has such a nature or not was examined.

As shown in Table 2, similar to the activities of other MT-MMPs, the activity of MT4-MMP(2) was not inhibited by TIMP-1, but strongly inhibited by TIMP-2.

These results revealed that MT4-MMP(2) is one type of MT-MMP.

Table 2. Measurement of the Activity of Human MT4-MMP(2) Partial Peptide (Active Domain)

Sample	Trypsin	Inhibitor	Fluorescence Intensity
	Treatment		$(Mean \pm SD) (n=3)$
Blank			0.000±0.057
Human MT4-MMP(2) partial peptide	-	None	1.304 ± 0.056
Human MT4-MMP(2) partial peptide	+	None	4.882±0.102
Human MT4-MMP(2) partial peptide	+	TIMP-1	3.493±0.166
Human MT4-MMP(2) partial peptide	+	TIMP-2	0.076 ± 0.065

EXAMPLE 9. Cloning of Mouse MT5-MMP Gene

In order to isolate mouse MT5-MMP gene, a brain cDNA library from mouse 17-day embryo was prepared using ZAP-cDNA Synthesis Kit (Stratagene) according to the manual attached to the kit.

The resultant cDNA library was screened by plaque hybridization using human MT3-MMP gene as a probe. Clones exhibiting a strong signal and clones exhibiting a weak signal were obtained. The nucleotide sequences of these clones were determined.

As a result of analysis of clones with a weak signal, a 2.1 kb sequence was found in one of them. Although this sequence exhibited weak homology to human and rat MT3-MMP genes, it was not homologous to other MMP genes. Thus, it was considered that this sequence represents a novel MMP gene.

Subsequently, a 3.7 kb cDNA fragment that hybridized to the above-described 2.1 kb sequence was obtained from the above library by plaque hybridization. From the 2.1 kb and 3.7 kb sequences, a 4.2 kb cDNA sequence shown in SEQ ID NO: 7 was obtained.

A protein with 618 amino acids represented by SEQ ID NO: 5 was encoded in the cDNA shown in SEQ ID NO: 7. Since the peptide of SEQ ID NO: 5 contains those sequences corresponding to the individual domains of MT-MMPs in well-conserved states, it was concluded that this peptide is a novel MT-MMP, namely, mouse MT5-MMP (Fig. 1).

EXAMPLE 10. Cloning of Human MT5-MMP Gene

In order to confirm the human gene corresponding to mouse MT5-MMP gene, a human kidney cDNA library (Clontech) was screened by plaque hybridization using mouse MT5-MMP gene as a probe in the same manner as in Example 9. As a result, a gene that has 92% homology to mouse MT5-MMP gene and is different from known MT-MMP genes was obtained.

All of the sequenced human MT5-MMP cDNA clones lacked a 5' region that is supposed to encode a signal peptide. Thus, the sequence of the missing region was determined by 5' RACE as described below to thereby determine the nucleotide sequence containing the entire region encoding human MT5-MMP gene.

Briefly, cDNA was prepared from a human brain poly(A)⁺ RNA (Clontech) using Superscript II (Gibco BRL) and a human MT5-MMP gene-selective primer (SEQ ID NO: 19) according to the manual attached to the kit.

A single-stranded oligonucleotide adaptor (SEQ ID NO: 10) was ligated to the resultant cDNA with T4 RNA ligase. Then, the cDNA was subjected to PCR in GC buffer using the MT5-MMP gene-selective primer (SEQ ID NO: 19), an adaptor-selective primer (SEQ ID NO: 11) and LA Taq (Takara).

After completion of the above PCR, another PCR was performed using an other geneselective primer (SEQ ID NO: 20) and an adaptor-selective primer (SEQ ID NO: 13). From the above-mentioned sequence obtained from the human kidney cDNA library using the mouse gene as a probe and the sequence obtained from the 5' RACE, a 2.6 kb cDNA fragment (shown in SEQ ID NO: 8) that encodes a 645 amino acid protein (shown in SEQ ID NO: 6) was obtained.

EXAMPLE 11. Expression of MT5-MMP mRNAs in Internal Organs

Expression of MT5-MMP gene in tissues was examined by Northern blotting.

Briefly, 20 μ g of total RNA was electrophoresed on 1% agarose gel and transferred onto a nylon membrane. Then, Northern blotting was carried out using ³²P-labeled mouse MT5-MMP gene as a probe to examine the expression pattern of approximately 4 kb MT5-MMP mRNAs.

In 2-week old mice, a strong expression was observed only in the brain, but the expression was around detection limit or below in other tissues of other organs.

When expression in human tissues was examined with Multiple Tissue Blot (Clontech) using human MT5-MMP gene as a probe, high expression was observed in the brain. The results of Northern blotting using ³²P-labeled human MT5-MMP gene as a probe revealed that strong expression of both 4.0 kb and 4.8 kb MT5-MMP mRNAs are also recognized in the human brain. In human, the expression was also recognized in the kidney and pancreas. The 4.8 kb mRNA and the 4.0 kb mRNA were expressed strongly in the brain and in the kidney and pancreas, respectively.

Then, RT-PCR was carried out using MT5-MMP specific primers (SEQ ID NOS: 21 and 22) to analyze these fragments. As a result, it was found that a DNA fragment of the same size as that of the fragment amplified in the brain is amplified in the kidney and pancreas with almost equal efficiencies and that no products of different sizes were found. Thus, it was believed that the shorter transcript contains the entire coding region.

When the expression of MT5-MMP in mouse and human was examined, characteristic expression was observed in the brain. In particular, the expression was limited in the brain in mouse, and was very low in other internal organs.

Since the expression of this gene in the brain is characteristic, site-specific expression was examined using Human Brain Multiple Tissue Blot (Clontech).

High expression of MT5-MMP was observed in the cerebellum. Its expression was

also observed in the cerebral cortex, medulla, occipital region of head, frontal region of head, temporal region of head and putamen, but not observed in the spinal cord.

These results show a remarkable characteristic of MT5-MMP gene different from other MT-MMP genes expressed in various tissues.

In human, the expression of MT5-MMP was also strong in the brain, and its expression was observed in the kidney and pancreas. The results of examination of its site-specific expression in the human brain revealed a characteristic expression in the cerebellum. High expression in the cerebellum was also confirmed in mouse.

These results suggest the possibility that MT5-MMP controls the degradation of extracellular matrixes around cells associated with such processes as the maturation and maintenance of brain tissues, the construction of nervous network, and so forth.

EXAMPLE 12. Expression of MT5-MMP mRNA in Cancer Cells

MT1-MMP is expressed frequently in cancer cells *per se* and interstitial cells around them in many cancer tissues and functions as an activator of gelatinase A at the tissue level. The expression of MT5-MMP in various cancer cell strains was examined by RT-PCR using MT5-MMP-specific primers (SEQ ID NOS: 21 and 22).

The results are shown in Table 3 below.

Table 3. Expression of MT5-MMP Transcript in Cancer Cells

Cancer Cell Line	MT5-MMP	Accession Number
Jurkat (T cell)	-	ATCC TIB-152
Raji (B cell)	-	ATCC CCL-86
BJAB (B cell)	-	ATCC HB-136
THP-1 (monocytic)	-	ATCC TIB-202
K562 (monocytic)	-	ATCC CCL-243
U-937 (monocytic)	-	ATCC CRL-1593.2
U-251 MG (astrocytoma)	-	Hakkoken IFO50288
SK-N-SH (neuroblastoma) +++	ATCC HTB-11
no.10 (glioma)	++	Hakkoken IFO50368
KALS-1 (glioma)	+++	Hakkoken IFO50434
MKN-7 (gastric)	+	Riken RCB0999
MKN-28 (gastric)	-	Riken RCB1000
NUGC-4 (gastric)	+	HS Found JCRB0834
PANC-1 (pancreatic)	+	ATCC CRL-1469
MIA PaCa-2 (pancreatic)	+	ATCC CRL-1420
SK-HEP-1 (hepatoma)	+	ATCC HTB-52
Hep 3B (hepatoma)	+	ATCC HB-8064
ZR-75-1 (breast)	?	ATCC CRL-1500
MCF7(adenocarcinoma)	-	ATCC HTB-22
T-24 (bladder)	-	ATCC HTB-4
A375 (melanoma)	+/-	ATCC CRL-1619
HT-1080 (fibrosarcoma)	+/-	ATCC CCL-121

^{+++:} very strong expression; ++: strong expression; +: medium expression; +/-: slight expression; -: no expression

ATCC: American Type Culture Collection

HS Found.: Japan Health Sciences Foundation

Riken: The Institute of Physical and Chemical Research

Hakkoken: Institute for Fermentation, Osaka

While MT1-MMP is expressed in various cancer cell lines, cell lines expressing MT5-MMP were specific in the nervous system-derived neuroblastoma [SK-N-SH (HTB-11, ATCC)], undifferentiated glioma [no. 10 (IFO50368, Institute for Fermentation, Osaka)], and glioma [KALS-1, (IFO50434, Institute for Fermentation, Osaka)], with the correlation of the expression in brain.

Also, its expression in pancreatic cancer cell strains [PANC-1 (CRL-1469, ATCC); MIA PaCa-2 (CRL-1420, ATCC)] and hepatoma cell strains [SK-HEP-1 (HTB-52, ATCC): Hep 3B (HB-8064, ATCC)] was characteristic.

It is considered that abnormal expression of MT-MMPs on cell surfaces promotes the infiltration of cells. Actually, excessive expression of MT1-MMP enhances the infiltrating ability of cancer cell lines and increases the frequency of experimental metastasis. In human cancer tissues, cancer cells and fibroblasts around them express MT1-MMP at high frequency, and the presence of gelatinase A which MT1-MMP activates at sites of its expression is well correlated with the infiltration and metastasis of cancer.

Since MT5-MMP is expressed in undifferentiated glioma, glioma, pancreatic cancer and hepatoma cell lines, the possibility has been suggested that excessive expression of MT5-MMP is involved in the malignant nature of cancer cells in a specific types of cancers.

EXAMPLE 13. Expression of a Mouse MT5-MMP Partial Peptide (Propeptide Domain + Active Domain) in E. coli

A cDNA encoding a mouse MT5-MMP partial peptide having an amino acid sequence represented by positions 40-300 of SEQ ID NO: 5 to which a methionine residue is added at the N terminus was amplified by polymerase chain reaction (PCR) using the cDNA of mouse MT5-MMP as a template.

The amplified fragment was subcloned into an E. coli expression vector pET3a (Takara)

4

and then introduced into *E. coli* BL21 (DE3) pLysS (Takara). This *E. coli* was grown in 1 liter of expression medium (12 g/L of tryptone; 24 g/L of yeast extract; 10 g/L of sodium chloride; 250 mg/L of Trisma base; 4 ml/L of glycerol) in the presence of 100 μ g/mL ampicillin until OD₆₀₀ reached 0.5. Then, the cells were stimulated with 0.4 mmol/L isopropyl- β -D-thiogalactopyranoside (IPTG) and cultured for another three hours.

After the culturing, granules (inclusion bodies) consisting of the mouse MT5- MMP partial peptide formed in the *E. coli* cells were recovered by conventional methods and dissolved in a solubilization solution containing 8 mol/L urea, 50 mmol/L Tris-HCl (pH 8.6) and 20 mmol/L dithiothreitol (DTT). The resultant solution was applied to Q-anion ion exchange column followed by recovery of the fraction eluted with 0.1 M NaCl.

This fraction was diluted with a solution containing 50 mmol/L Tris-HCl (pH 8.6), 6 mol/L urea, 1 mmol/L dithiothreitol, 0.15 mol/L sodium chloride, 5 mmol/L calcium chloride, 100 mmol/L zinc chloride and 0.02% sodium azide. Then, cystamine (final concentration: 20 mmol/L) was added to the resultant dilution. Subsequently, the resultant solution was dialyzed against 4 L of a solution containing 50 mmol/L Tris-HCl (pH 8.6), 0.15 mol/L sodium chloride, 5 mmol/L calcium chloride, 100 mmol/L zinc chloride, 5 mmol/L β mercaptoethanol, 1 mmol/L 2-hydroxyethyldisulfide and 0.02% sodium azide at 4 $^{\circ}$ C overnight. Further, dialysis was performed against 10 volumes of a solution containing 50 mmol/L Tris-HCl (pH 7.5), 0.15 mol/L sodium chloride, 5 mmol/L calcium chloride, 50 μ mol/L zinc chloride and 0.02% sodium azide (4 hr x 3 times). The thus dialyzed solution was centrifuged at 22,000xg at 4 $^{\circ}$ C for 10 min to remove the precipitate.

The supernatant obtained was concentrated with Amicon YM-10 (Millipore) and treated with 0.1 μ g/ml trypsin at 37°C for 30 min. After inactivation of the trypsin with 1 mmol/L DTT, the sample was applied to S-200 column pre-equilibrated with a buffer containing 50 mmol/L Tris-HCl (pH 7.5), 150 mmol/L sodium chloride, 10 mmol/L calcium chloride and 0.02% sodium azide to perform gel filtration. As a result, the mouse MT5-MMP partial peptide (propeptide domain + active domain) was obtained.

Human MT5-MMP peptide can also be expressed in the same manner.

- 35

EXAMPLE 14. Measurement of the Activity of Mouse MT5-MMP Partial Peptide (Active Domain)

ProMMP-2 (final concentration: 1 μ g/mL) and the mouse MT5-MMP partial peptide (propeptide domain + active domain) (final concentration: 1 μ g/mL) were mixed and incubated at 37°C for 1 hr. In this operation, Briji 35-added TNC buffer [50 mmol/L Tris-HCl (pH 7.5), 150 mmol/L NaCl, 10 mmol/L CaCl₂, 0.02% NaN₃, 0.05% Briji 35] was used. After the incubation, an equal volume of SDS/PAGE loading buffer was added to the sample, which was then electrophoresed and subjected to Coomassie staining according to routine procedures. As a positive control of activation for ProMMP-2, p-aminophenylmercuric acetate (APMA) was used. As a result, activation of ProMMP-2 was recognized depending on a MMP concentration. The results are shown in Fig. 2.

INDUSTRIAL APPLICABILITY

By using the DNA of novel MT4-MMP(2) polypeptide obtained by the present invention, it becomes possible to diagnose, prevent or treat diseases such as arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, wounds including corneal ulcer, leukemia, cancer, and inflammations associated with infiltration of leukocytes.

Furthermore, by using the DNA of novel MT5-MMP polypeptide obtained by the present invention, it becomes possible to diagnose, prevent or treat diseases such as arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, wounds including corneal ulcer, leukemia, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease, brain tumor, cancer, and inflammations associated with infiltration of leukocytes.

CLAIMS

- 1. A polypeptide consisting of the amino acid sequence as shown in SEQ ID NO: 1.
- 2. A polypeptide having an amino acid sequence wherein one or several amino acids are deleted, substituted or added in the amino acid sequence of the polypeptide of claim 1 and having metalloproteinase activity.
- 3. A polypeptide consisting of the amino acid sequence as shown in SEQ ID NO: 2.
- 4. A polypeptide having an amino acid sequence wherein one or several amino acids are deleted, substituted or added in the amino acid sequence of the polypeptide of claim 3 and having metalloproteinase activity.
- 5. A polypeptide consisting of the amino acid sequence as shown in SEQ ID NO: 5.
- 6. A polypeptide having an amino acid sequence wherein one or several amino acids are deleted, substituted or added in the amino acid sequence of the polypeptide of claim 5 and having metalloproteinase activity.
- 7. A polypeptide consisting of the amino acid sequence as shown in SEQ ID NO: 6.
- 8. A polypeptide having an amino acid sequence wherein one or several amino acids are deleted, substituted or added in the amino acid sequence of the polypeptide of claim 7 and having metalloproteinase activity.
- 9. A DNA encoding the polypeptide of any one of claims 1 to 4.
- 10. A DNA encoding the polypeptide of any one of claims 5 to 8.

- 11. A DNA consisting of the nucleotide sequence of positions 86-1846 of SEQ ID NO: 3 or positions 100-1917 of SEQ ID NO: 4, or a DNA which hybridizes to said DNA under stringent conditions and which encodes a polypeptide having metalloproteinase activity.
- 12. A DNA consisting of the nucleotide sequence of positions 75-1928 of SEQ ID NO: 7 or positions 1-1935 of SEQ ID NO: 8, or a DNA which hybridizes to said DNA under stringent conditions and which encodes a polypeptide having metalloproteinase activity.
- 13. A recombinant DNA that is obtained by integrating the DNA of any one of claims 9 to 12 into a vector.
- 14. A transformant comprising the recombinant DNA of claim 13.
- 15. The transformant of claim 14, wherein said transformant is a microorganism belonging to the genus *Escherichia*.
- 16. The transformant of claim 15, wherein said microorganism belonging to the genus *Escherichia* is *Escherichia coli*.
- 17. A method of producing the polypeptide of any one of claims 1 to 8, comprising culturing a transformant comprising a recombinant DNA obtained by integrating a DNA encoding said polypeptide into a vector in a medium, allowing said polypeptide to be produced and accumulated in the resultant culture, and recovering said polypeptide from said culture.
- 18. An oligonucleotide selected form an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of claim 9 or 11; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the

above oligonucleotides.

- 19. An oligonucleotide selected form an oligonucleotide having a nucleotide sequence identical with a nucleotide sequence consisting of consecutive 5 to 60 bases of the DNA of claim 10 or 12; an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence of said oligonucleotide; or an oligonucleotide derivative of any one of the above oligonucleotides.
- 20. A method of detecting an mRNA encoding the polypeptide of any one of claims 1 to 8 using the oligonucleotide of claim 18 or 19.
- 21. A method of inhibiting expression of the polypeptide of any one of claims 1 to 8 using the oligonucleotide of claim 18 or 19.
- 22. A method of screening for an inhibitor or an activator of the polypeptide of any one of claims 1 to 8, which comprises using the polypeptide and a cell that expresses the polypeptide.
- 23. A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, wherein said agent comprises the polypeptide of any one of claims 1 to 4.
- 24. A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury, inflammations associated with infiltration of leukocytes,

brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said agent comprises the polypeptide of any one of claims 5 to 8.

- 25. A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, wherein said agent comprises the DNA of claim 9 or 11.
- 26. A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury, inflammations associated with infiltration of leukocytes, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said agent comprises the DNA of claim 10 or 12.
- 27. A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, wherein said agent comprises the oligonucleotide of claim 18.
- 28. A diagnostic agent, therapeutic agent or prophylactic agent for arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact

dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury, inflammations associated with infiltration of leukocytes, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said agent comprises the oligonucleotide of claim 19.

- 29. A vector for gene therapy for treating arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury or inflammations associated with infiltration of leukocytes, wherein said vector is obtained by integrating the DNA of claim 9 or 11, or the oligonucleotide of claim 18 into a vector.
- 30. A vector for gene therapy for treating arthrosis deformans, rheumatoid arthritis, asthma, autoimmune diseases, atopic dermatitis, psoriasis, contact dermatitis, alopecia, ischemic heart diseases, immune response associated with organ transplantation, hepatitis, nephritis, pancreatitis, arteriosclerosis, leukemia, malignant tumor, wounds, corneal ulcer, tissue injury, inflammations associated with infiltration of leukocytes, brain disorders at the time of cerebral apoplexy, Alzheimer's disease, dementia, multiple sclerosis, Parkinson's disease or brain tumor, wherein said vector is obtained by integrating the DNA of claim 10 or 12, or the oligonucleotide of claim 19 into a vector.
- 31. A method of screening for a compound that regulates the expression of a gene encoding the polypeptide of any one of claims 1 to 8, which comprises contacting a cell that expresses the polypeptide with a test sample.
- 32. The method of claim 31, wherein said compound that regulates the expression of a gene is detected by determining the amount of mRNA encoding the polypeptide of any one of

Fig. 1

human	MTI-MMP	1	MSPAPRPSRFSPEAWLQQYGYLPPGD	49
human	MT2-MMP	i	MGSDPSAPGRPGWTGSLLGDREEAARPRLLPL-LLYLLGCLGLGVAAEDAEVHAENWLRLYGYLPQPS	67
human	MT3-MMP	1	-MILLTFSTGRRLDFVHHSGVFFLQT-LLWILCATVCGTEQYFNVEVWLQKYGYLPPTD	57
human	MT4-MMP(2)		MRRRAARGPGPP-PPGPGLSRLPLLPLPLLLLLALGTRGGCAAPEPARRAEDLSLGVENLSRFGYLPPAD	69
	MT5-MMP		MPRSRGGRAAPGPPPPPPPGQAPRWSRWRYPGRLLLL-LLPALCCLPGAARAAAAAGAGNRAAVAVAVARADEAEAPFAGONWLKSYGYLLPYD	95
	MT5-MMP		MPRSRGGRAAPGQASRWSGWRAPGRLLPLLPALCCLAAAAGAGKPAGADAPFAGQNWLKSYGYLLPYE	68
mouse	PILO PEN	•		00
			* * * ***	
human	MT1-MMP	50	LRTHTQRSPQSLSAAIAAMQKFYGLQVTGKADADTMKAMRRPRCGVPDKFGAEIKANVRRKRYAIQGLKWQHNEITFCIQNYTPKVGEYATYEAIR	
	MT2-MMP		RHMSTMRSAQILASALAEMQRFYGIPVTGVLDEETKEWMKRPRCGVPDQFGVRVKANLRRRRKRYALTGRKWNNHHLTFSIQNYT—EKLGWYHSMEAVR	
	MT3-MMP		PRMSVLRSAETMQSALAAMQQFYGINMTGKVDRNTIDWMKKPRCGVPDQTRGSSKFHIRRKRYALTGQKWQHKHITYSIKNVTPKVGDPETRKAIR	
	MT4-MMP(2)		PTTGQLQTQEELSKAITAMQQFGGLEATGILDEATLALMKTPRCSLPDLPVLTQARRRRQAPAPTKWNKRNLSWRVRTFPRDSPLGHDTVRALMY	
	MT5-MMP		SRASALHSAKALQSAVSTMQQFYGIPVTGVLDQTTIEWMKKPRCGVPDHPHLSRRRNKRYALTGQKWRQKHITYSIHNYTPKVGELDTRKAIR	
mouse	MTS-MMP	69	SRASALHSGKALQSAVSTMQQFYGIPVTGVLDQTTIEWMKKPRCGVPDHPHLSRRRRNKRYALTGQKWRQXHITYSIHNYTPKVGELDTRKAIR	162
			*. **. * * * * * * * * * * * * * *	
	MT1 1000		TARREST AND ADDRESS AND ADDRES	
	MT1-MMP		KAFRVWESATPLRFREVPYAY I REGHEKQAD I MI FFAEGFHGDSTPFDGEGGFLAHAYFPGPN-I GGDTHFDSAEPWTVRNEDLNGND I FLVAVHELGHA	
	MT2-MMP		RAFRYWEQATPLVFQEVPYEDIRLRRQKEADIMVLFASGFHGDSSPFDGTGGFLAHAYFPGPG-LGGDTHFDADEPWTFSSTDLHGNNLFLVAVHELGHA	
	MT3-MMP		RAFDVWQNVTPLTFEEVPYSELENGK-RDVDITIIFASGFHGDSSPFDGEGGFLAHAYFPGPG-IGGDTHFDSDEPWTLGNPNHDGNDLFLVAVHELGHA	
	MT4-MMP(2)		YALKVWSDIAPLNFHEVAGS-TADIQIDFSKADHNDGYPFDARR-HRAHAFFPGHHHTAGYTHFNDDEAWTFRSSDAHGMDLFAVAVHEFGHA	
	MT5-MMP		QAFDVWQKVTPLTFEEVPYHEIKSDR-KEADIMIFFASGFHGDSSPFDGEGGFLAHAYFPGPG-IGGDTHFDSDEPWTLGNANHDGNDLFLVAVHELGHA	
mouse	MT5-MMP	163	QAFDVWQKVTPLTFEEVPYHEIKSDR-KEADIMIFFASGFHGDSSPFDGEGGFLAHAYFPGPG-IGGDTHFDSDEPWTLGNANHDGNDLFLVAVHELGHA	260
			* ** ,** * * * * * * * * * * * * * * *	
human	MT1-MMP	245	I OF EUCCNDCA THA DEVOKAMITE	010
	MT2-MMP		LGLEHSSDPSAIMAPFYQWMDTENFVLPDDDRRGIQQLYGGESGFPTKMPPQPRTTSRPSYPDKPKNP	
	MT3-MMP		LGLEHSSNPNAIMAPFYQWKDVDNFKLPEDDLRGIQQLYGTPDGQPQPTQPLPTVTPRRPGRPDHRPPRPPQPPPPGGKPERPPKPGPPVQPR	
			LGLEHSNDPTAIMAPFYQYMETDNFKLPNDDLQGIQKIYGPPDKIPPPTRPLPTVPPHRSIPPADPRKNDR-PKPPRPPTGIGLSHVAAAHSIMRPYYQGPVGDPLRYGLPYEDKVRVWQLYGVRESVSPTAQPEEPPLLPEPPDNRSSAPPRKD	
	MT5-MMP		LGLEHSSDPSAIMAPFYQYMETHNFKLPQDDLQGIQKIYGPPAEPLEPTRPLPTLPVRRIHSPSE-RKHERQPRPPRPPLGD	
	MT5-MMP		LGLEHSNDPSAIMAPFYQYMETHNFKLPQDDLQGIQKIYGPPAEPLEPTRPLHTLPVRRIHSPSE-RKHERHPRPPPPPLGD	
		201	* * * * * * * * * * * * * * * * * * * *	241
human	MT1-MMP	313	TYGPNICDGNFDTVAMLRGEMFVFKKRWFWRVRNNQ-VMDGYPMPIGQFWRGLPASINTAYER-KDGKFVFFKGDKHWVFDEASLEPGYPK	401
human	MT2-MMP		ATERPDQYGPNICDGDFDTVAMLRGEMFVFKGRWFWRVRHNR-VLDNYPMPIGHFWRGLPGDISAAYER-QDGRFVFFKGDRYWLFREANLEPGYPQ	
	MT3-MMP	332	-RPSYPGAKPNICDGNFNTLAILRREMFVFKDQWFWRVRNNR-VMDGYPMQITYFWRGLPPSIDAVYEN-SDGNFVFFKGNKYWVFKDTTLQPGYPH	425
humar	MT4-MMP(2)	330	VPHRCSTHFDAVAQIRGEAFFFKGKYFWRLTRDRHLVSLQPAQMHRFWRGLPLHLDSVDAVYERTSDHKIVFFKGDRYWVFKDNNVEEGYPR	421
humar	MT5-MMP		-RPSTPGTKPN1CDGNFNTVALFRGEMFVFKDRWFWRLRNNR-VQEGYPMQ1EQFWKGLPAR1DAAYER-ADGRFVFFKGDKYWVFKEVTVEPGYPH	
mouse	MT5-MMP	342	-RPSTPGAKPNICDGNFNTVALFRGEMFVFKDRWFWRLRNNR-VQEGYPMQIEQFWKGLPARIDAAYER-ADGRFVFFKGDKYWVFKEVTVEPGYPH	435
			*. * * * * * * *	
	MT1-MMP		HIKELGRGLPTDKIDAALFWMPNGKTYFFRGNKYYRFNEELRAVDSEYPKNIKVWEGIPESPRGSFMGSDEVFTYFYKGNKYWKFNNQKLKVEPGYPKSA	
	MT2-MMP		$\tt PLTSYGLGIPYDRIDTAIWWEPTGHTFFFQEDRYWRFNEETQRGDPGYPKPISVWQGIPASPKGAFLSNDAAYTYFYKGTKYWKFDNERLRMEPGYPKSI$	
	MT3-MMP		DLITLGSGIPPHGIDSAIWWEDVGKTYFFKGDRYWRYSEEMKTMDPGYPKPITVWKGIPESPQGAFVHKENGFTYFYKGKEYWKFNNQILKVEPGYPRSI	
			${\tt PVSDFSLPPGGIDAAFSWAHNDRTYFFKDQLYWRYDDHTRHMDPGYPAQSPLWRGVPSTLDDAMRWSDG-ASYFFRGQEYWKVLDGELEVAPGYPQST}$	
	MT5-MMP		SLGELGSCLPREGIDTALRWEPVGKTYFFKGERYWRYSEERRATDPGYPKPITVWKGIPQAPQGAFISKEGYYTYFYKGRDYWKFDNQKLSVEPGYPRNI	
mouse	MT5-MMP	436	SLGELGSCLPREGIDTALRWEPVGKTYFFKGERYWCYSEERRATDPGYPKPITVWKGIPQAPQGAFISKEGYYTYFYKGRDYWKFDNQKLSVEPGYPRNI	535
	*		* **.* * .*.**. * * ** .* *.*	
L	. WTI ME		I DANK (AADAAADD B	
	MT1-MMP	502	LRDWMGCPSGGRPDEGTEEETEVIIIEVDEEGGGAVSAAAVVLPVLLLLLVLAVGLAVFFFRRH	565
	MT2-MMP	553	LRDFMGCQEHVEPGPRWPDVARPPFNPHGGAEPGADSAEGDVGDGDGDGGGGVNKDGGSRVVVQMEEVARTVNVVMVLVPLLLLLCVLGLTYALVQMQRK	652
	MT3-MMP	526	LKDFMGCDG-PTDRVKEGHSPPDDVDIVIKLDNTASTVKAIAIVIPCILALCLLVLVYTVFQFKRK	590
	MT4-MMP(2)	519	ARDWLVCGDSQADGSVAAGVDAAEGPRAPPGQHDQSRSEDGYEVCSCTSGASSPPGAPGPLVAATMLLLLPP	590
	MT5-MMP	563	LRDWMGCNQKEVERRKERRLPQDDVDIMVTINDVPGSVNAVAVVIPCILSLCILVLVYTIFQFKNK	628
mouse	MT5-MMP	536	LRDWMGCKQKEVERRKERRLPQDDVDIMVTIDDVPGSVNAVAVVVPCTLSLCLLVLLYTIFQFKNK	601
			* * *	
L	MT1 1010	***	AMPORTAL MARKATANIA FAA	
	MT1-MMP		GTPRRLLYCQRSLLDKV 582	
	MT2-MMP		GAPRVLLYCKRSLQEW 669	
	MT3-MMP		CTPRHILYCKRSMQEWV 607	
	1 MT4~MMP(2)		LSPGALWTAAQALTL 605	
	MT5-MMP		TGPQPVTYYKRPVQEWV 645	
mouse	MT5-MMP	602	AGPQPVTYYKRPVQEWV 618	
			*	

Fig. 2

Attorney's Docket	No.:
110001110	* 1 * 1 *

DECLARATION, POWER OF ATTORNEY AND PETITION

I (We), the undersigned inventor(s), hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I (We) believe that I am (we are) the original, first, and joint (sole) inventor(s) of the subject matter which is claimed and for which a patent is sought on the invention entitled

DN AS ENCODING NOVEL POLYPEPTIDES

the	specification of which	
	is attached hereto.	
	☐ was filed on	a
	Application Serial No.	
	and amended on	
	was filed as PCT international application	
	Number PCT/JP99/05349	
	o n September 29, 1999	
	and was amended under PCT Article 19	
	o n	(if applicable)

I (We) hereby state that I (We) have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above; that I (We) do not know and do not believe that this invention was ever known or used before my invention or discovery thereof, or patented or described in any printed publication in any country before my invention or discovery thereof, or more than one year prior to this application, or in public use or on sale in the United States for more than one year prior to this application; that this invention or discovery has not been patented or made the subject of an inventor's certificate in any country foreign to the United States on an application filed by me or my legal representatives or assigns more than twelve months before this application.

I (We) acknowledge the duty to disclose information known to be material to

Deignier

the patentability of this application as defined in Section 1.56 of Title 37 Code of Federal Regulations.

I (We) hereby claim foreign priority benefits under Section 119(a)-(d) of Title 35 United States Code, of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

	<u> </u>		11011	ıy	
Application No.	Country	Filing date	claim	ed	
276258/1998	Japan	<u>September 29, 1998</u>	Yes	□ No	
291505/1998	Japan	<u>September 29, 1998</u>	Yes	□ No	
			_	□ No	
			☐ Yes	□ No	
of any United Stat	tes application(s	s) listed below.			
(Application Num	nber)	(Filing Date)			
(Application Nur	nber)	(Filing Date)			

I (We) hereby claim the benefit under Section 120 of Title 35 United States Code, of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Section 112 of Title 35 United States Code, I (We) acknowledge the duty to disclose material information as defined in Section 1.56(a) of Title 37 Code of Federal Regulations, which occurred between the filing date of the prior application and national or PCT international filing date of this application:

					Status	(pending,	patented,
Application	Serial	No.	Filing Date			ab	andoned)

And I (We) hereby appoint: Finnegan, Henderson, Farabow, Garrett & Dunner, L.L.P., Registration No. 22,540; Douglas B. Henderson, Registration No. 20,291; Ford F. Farabow, Jr., Registration No. 20,630; Arthur S. Garrett, Registration No. 20,338; Donald R. Dunner, Registration No. 19,073; Brian G. Brunsvold, Registration No. 22,593; Tipton D. Jennings, IV, Registration No. 20,645; Jerry D. Voight, Registration No. 23.020; Laurence R. Hefter, Registration No. 20,827; Kenneth E. Payne, Registration No. 23.098; Herbert H. Mintz, Registration No. 26,691; C. Larry O'Rourke, Registration No. 26,014; Albert J. Santorelli, Registration No. 22,610; Michael C. Elmer, Registration No. 25,857; Richard H. Smith, Registration No. 20,609; Stephen L. Peterson, Registration No. 26.325; John M. Romary, Registration No. 26,331; Bruce C. Zotter, Registration No. 27,680; Dennis P. O'Reilley, Registration No. 27,932; Allen M. Sokal, Registration No. 26,695; Robert D. Bajefsky, Registration No. 25,387; Richard L. Stroup, Registration No. 28,478; David W. Hill, Registration No. 28,220; Thomas L. Irving, Registration No. 28,619; Charles E. Lipsey, Registration No. 28,165; Thomas W. Winland, Registration No. 27,605; Basil J. Lewris, Registration No. 28,818; Martin I. Fuchs, Registration No. 28,508; E. Robert Yoches, Registration No. 30,120; Barry W. Graham, Registration No. 29,924; Susan Haberman Griffen, Registration No. 30.907; Richard B. Racine, Registration No. 30,415; Thomas H. Jenkins, Registration No. 30,857; Robert E. Converse, Jr., Registration No. 27,432; Clair X. Mullen, Jr., Registration No. 20,348; Christopher P. Foley, Registration No. 31,354; John C. Paul, Registration No. 30,413; David M. Kelly, Registration No. 30,953; Kenneth J. Meyers, Registration No. 25,146; Carol P. Einaudi, Registration No. 32,220; Walter Y.Boyd, Jr., Registration No. 31,738; Steven M. Anzalone, Registration No. 32,095; Jean B. Fordis, Registration No. 32,984; Barbara C. McCurdy, Registration No. 32,120; James K. Hammond, Registration No. 31,964; Richard V. Burgujian, Registration No. 31,744; J. Michael Jakes, Registration No. 32,824; Thomas W. Banks, Registration No. 32,719; M. Paul Barker, Registration No. 32,013; Bryan C. Diner, Registration No. 32,409; Christopher P. Isaac, Registration No. 32,616; Andrew C. Sonu, Registration No. 33.457; and Dirk D. Thomas, Registration No. 32.600.

I(We) hereby request that all correspondence regarding this application be sent to the firm of FINNEGAN, HENDERSON, FARABOW, GARRETT & DUNNER, L.L.P. whose Post office address is: 1300 I Street, N.W., WASHINGTON, D.C. 20005 U.S.A.

I (We) declare further that all statements made herein of my (our) knowledge are true and that all statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment,

or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

- 60	Motoharu SEIKI	Residence: <u>Tokyo, Japan IPX</u>
	NAME OF FIRST SOLE INVENTOR	
	171 O. h.	
Service Servic	Molohary Seller	Citizen of: <u>Japan</u>
Host lines	Signature of Inventor	Post Office Address:
		Koyamadai-jutaku 5-203, 2-5,
≒d Uii	March 14, 2001	Koyamadai, Shinagawa-ku,
The last	Date	Tokyo 142-0061 Japan

<120> DNA CODING FOR NOVEL POLIPEPTIDE

<130>

<140> PCT/JP99/05349

<141> 1999-09-29

<150> JP10-276258

<151> 1998-09-29

<150> JP10-291505

<151> 1998-09-29

<160> 22

<170> PatentIn Ver. 2.0

<210> 1

<211> 587

<212> PRT

<213> Mouse

<400> 1

Met Gly Arg Arg Pro Arg Gly Pro Gly Ser Pro Arg Gly Pro Gly Pro

1

5

10

15

Pro	Arg	Pro	Gly	Pro	Gly	Leu	Pro	Pro	Leu	Leu	Leu	Val	Leu	Ala	Leu
			20					25					30		
Ala	Ala	His	Gly	Gly	Cys	Ala	Ala	Pro	Ala	Pro	Arg	Ala	Glu	Asp	Leu
		35					40					45			
					_	_	~		.	0.1	m		D .	D	A 1 -
Ser		Gly	Val	Glu	Trp		Ser	Arg	Phe	Gly		Leu	Pro	Pro	Ala
	50					55					60				
Acn	Pro	Δ1a	Sor	Gly	Gln	Len	Gln	Thr	Gln	Glu	Glu	Leu	Ser	Lvs	Ala
65	,110	пта	561	diy	70	БСС	0111		· · · ·	75					80
Ile	Thr	Ala	Met	Gln	Gln	Phe	Gly	Gly	Leu	Glu	Thr	Thr	Gly	Ile	Leu
				85					90					95	
Asp	Glu	Ala	Thr	Leu	Ala	Leu	Met			Pro	Arg	Cys		Leu	Pro
			100	1				105					110		
	7	D	D	C1	. 41-	C1m	Com	A == ~	. A ma	Lva	A = 0	· Glm	Thr	Dro	Pro
Asp	Leu	Pro 115		GIY	АГа	Gili	120		, Alg	. Lys	A1 g	125		110	Pro
		115	•				120					120			
Pro	Thr	Lys	Trp	Ser	Lys	Arg	Asn	Leu	Ser	Trp	Arg	; Val	Arg	Thr	Phe
	130		-			135					140				
Pro	Arg	Asp	Ser	Pro	Leu	Gly	Arg	Asp	Thr	· Val	Arg	g Ala	Leu	Met	Tyr

Tyr Ala Leu Lys Val Trp Ser Asp Ile Thr Pro Leu Asn Phe His Glu

150

155

Val Ala Gly Asn Ala Ala Asp Ile Gln Ile Asp Phe Ser Lys Ala Asp

His Asn Asp Gly Tyr Pro Phe Asp Gly Pro Gly Gly Thr Val Ala His

Ala Phe Phe Pro Gly Asp His His Thr Ala Gly Asp Thr His Phe Asp

Asp Asp Glu Pro Trp Thr Phe Arg Ser Ser Asp Ala His Gly Met Asp

Leu Phe Ala Val Ala Val His Glu Phe Gly His Ala Ile Gly Leu Ser

His Val Ala Ala Pro Ser Ser Ile Met Gln Pro Tyr Tyr Gln Gly Pro

Val Gly Asp Pro Val Arg Tyr Gly Leu Pro Tyr Glu Asp Arg Val Arg

Val Trp Gln Leu Tyr Gly Val Arg Glu Ser Val Ser Pro Thr Ala Gln

Leu Asp Thr Pro Glu Pro Glu Glu Pro Pro Leu Leu Pro Glu Pro Pro

Asn Asn Arg Ser Ser Thr Pro Pro Gln Lys Asp Val Pro His Arg Cys
325
330
335

Thr Ala His Phe Asp Ala Val Ala Gln IIe Arg Gly Glu Ala Phe Phe 340 345 350

Phe Lys Gly Lys Tyr Phe Trp Arg Leu Thr Arg Asp Arg His Leu Val
355 360 365

Ser Leu Gln Pro Ala Gln Met His Arg Phe Trp Arg Gly Leu Pro Leu 370 375 380

His Leu Asp Ser Val Asp Ala Val Tyr Glu Arg Thr Ser Asp His Lys 385 390 395 400

Ile Val Phe Phe Lys Gly Asp Arg Tyr Trp Val Phe Lys Asp Asn Asn 405 410 415

Val Glu Glu Gly Tyr Pro Arg Pro Val Ser Asp Phe Ser Leu Pro Pro
420 425 430

Gly Gly Ile Asp Ala Val Phe Ser Trp Ala His Asn Asp Arg Thr Tyr
435
440
445

Phe Phe Lys Asp Gln Leu Tyr Trp Arg Tyr Asp Asp His Thr Arg Arg
450 455 460

Met Asp Pro Gly Tyr Pro Ala Gln Gly Pro Leu Trp Arg Gly Val Pro 465 470 475 480 Ser Met Leu Asp Asp Ala Met Arg Trp Ser Asp Gly Ala Ser Tyr Phe
485 490 495

Phe Arg Gly Gln Glu Tyr Trp Lys Val Leu Asp Gly Glu Leu Glu Ala 500 505 510

Ala Pro Gly Tyr Pro Gln Ser Thr Ala Arg Asp Trp Leu Val Cys Gly 515 520 525

Glu Pro Leu Ala Asp Ala Glu Asp Val Gly Pro Gly Pro Gln Gly Arg
530 535 540

Ser Gly Ala Gln Asp Gly Leu Ala Val Cys Ser Cys Thr Ser Asp Ala 545 550 555 560

His Arg Leu Ala Leu Pro Ser Leu Leu Leu Leu Thr Pro Leu Leu Trp
565 570 575

Gly Leu Trp Thr Ser Val Ser Ala Lys Ala Ser 580 585

<210> 2

<211> 606

<212> PRT

<213> Homo sapiens

<400> 2

Met Arg Arg Arg Ala Ala Arg Gly Pro Gly Pro Pro Pro Gly Pro

Gly Leu Ser Arg Leu Pro Leu Leu Pro Leu Pro Leu Leu Leu Leu Leu Leu 20 25 30

Ala Leu Gly Thr Arg Gly Gly Cys Ala Ala Pro Glu Pro Ala Arg Arg

35

40

45

Ala Glu Asp Leu Ser Leu Gly Val Glu Trp Leu Ser Arg Phe Gly Tyr
50 55 60

Leu Pro Pro Ala Asp Pro Thr Thr Gly Gln Leu Gln Thr Gln Glu Glu 65 70 75 80

Leu Ser Lys Ala Ile Thr Ala Met Gln Gln Phe Gly Gly Leu Glu Ala 85 90 . 95

Thr Gly Ile Leu Asp Glu Ala Thr Leu Ala Leu Met Lys Thr Pro Arg 100 105 110

Cys Ser Leu Pro Asp Leu Pro Val Leu Thr Gln Ala Arg Arg Arg 115 120 125

Gln Ala Pro Ala Pro Thr Lys Trp Asn Lys Arg Asn Leu Ser Trp Arg 130 135 140

Val Arg Thr Phe Pro Arg Asp Ser Pro Leu Gly His Asp Thr Val Arg 145 150 155 160

Ala	Leu	Met	Tyr	Tyr	Ala	Leu	Lys	Val	Trp	Ser	Asp	Ile	Ala	Pro	Leu
				165					170					175	
Asn	Phe	His	Glu	Val	Ala	Gly	Ser	Thr	Ala	Asp	Ile	Gln	Ile	Asp	Phe
			180					185					190		
Ser	Lvs	Ala	Asp	His	Asn	Asp	Gly	Tyr	Pro	Phe	Asp	Gly	Pro	Gly	Gly
001		195					200	·			-	205			
		100													
Thr	Val	Ala	His	Ala	Phe	Phe	Pro	Glv	His	His	His	Thr	Ala	Gly	Asp
1111	210	mu	1115	mu	1110	215	110	013			220			0	•
	210					210					220				
Th ==	шіа	Dho	Aan	Aan	Aan	Glu	Λla	Trn	Thr	Pho	Δrσ	Ser	Ser	Asn	Ala
	піѕ	rne	asp	nsp		Giu	піа	пр	1111	235	nı g	bei	501	пър	240
225					230					200					240
u; c	Clar	Mot	\ an	Lou	Pho	A 1 a	Val	Δla	Val	Hic	Glu	Phe	Glv	His	Ala
піѕ	Gly	меι	nsp		1 116	піа	Vai	піа	250	1115	uru	1 110	dry	255	mu
				245					250					200	
T 1 -	C1	Ι	C	11:0	Vol.	A 1 o	۸1.	41 0	цia	Sor	110	Mot	Ara	Dro	Tur
He	ыу	Leu		HIS	vai	АТА	Ala		піѕ	sei	116	меι		110	Tyr
			260					265					270		
			_				_			m	0.1	-		m	0.1
Tyr	Gln			Val	Gly	Asp			Arg	Tyr	Gly			lyr	Glu
		275	i				280					285			
Asp	Lys	Val	Arg	Val	Trp	Gln	Leu	Tyr	Gly	Val	Arg	Glu	Ser	Val	Ser
	290					295					300				
Pro	Thr	Ala	Gln	Pro	Glu	Glu	Pro	Pro	Leu	Leu	Pro	Glu	Pro	Pro	Asp

Asn Arg Ser Ser Ala Pro Pro Arg Lys Asp Val Pro His Arg Cys Ser 325 330 335

Thr His Phe Asp Ala Val Ala Gln Ile Arg Gly Glu Ala Phe Phe Phe 340 345 350

Lys Gly Lys Tyr Phe Trp Arg Leu Thr Arg Asp Arg His Leu Val Ser 355 360 365

Leu Gln Pro Ala Gln Met His Arg Phe Trp Arg Gly Leu Pro Leu His 370 375 380

Leu Asp Ser Val Asp Ala Val Tyr Glu Arg Thr Ser Asp His Lys Ile
385 390 395 400

Val Phe Phe Lys Gly Asp Arg Tyr Trp Val Phe Lys Asp Asn Asn Val
405 410 415

Glu Glu Gly Tyr Pro Arg Pro Val Ser Asp Phe Ser Leu Pro Pro Gly
420 425 430

Gly Ile Asp Ala Ala Phe Ser Trp Ala His Asn Asp Arg Thr Tyr Phe
435
440
445

Phe Lys Asp Gln Leu Tyr Trp Arg Tyr Asp Asp His Thr Arg His Met
450 455 460

Asp Pro Gly Tyr Pro Ala Gln Ser Pro Leu Trp Arg Gly Val Pro Ser

Thr Leu Asp Asp Ala Met Arg Trp Ser Asp Gly Ala Ser Tyr Phe Phe
485 490 495

470

Arg Gly Gln Glu Tyr Trp Lys Val Leu Asp Gly Glu Leu Glu Val Ala
500 505 510

Pro Gly Tyr Pro Gln Ser Thr Ala Arg Asp Trp Leu Val Cys Gly Asp
515 520 525

Ser Gln Ala Asp Gly Ser Val Ala Ala Gly Val Asp Ala Ala Glu Gly 530 535 540

Pro Arg Ala Pro Pro Gly Gln His Asp Gln Ser Arg Ser Glu Asp Gly 545 550 555 560

Tyr Glu Val Cys Ser Cys Thr Ser Gly Ala Ser Ser Pro Pro Gly Ala
565 570 575

Pro Gly Pro Leu Val Ala Ala Thr Met Leu Leu Leu Leu Pro Pro Leu 580 585 590

Ser Pro Gly Ala Leu Trp Thr Ala Ala Gln Ala Leu Thr Leu
595 600 605

<210> 3

<211> 3517

<212> DNA

<220>

<221> CDS

<222> (86)..(1846)

<400> 3

ggcacgaggg cgcggagccg agcgaggcgc ggagctggct gctggcgggt gcggggaccc 60

tcgccacccg acctgggaga gcggg atg gga cgc cgc cgc cgg gga cct ggg 112

Met Gly Arg Arg Pro Arg Gly Pro Gly

1

5

tcc ccc cgg gga cct ggc cct cca cgc ccc ggg ccg ggg ctg cca cca 160

Ser Pro Arg Gly Pro Gly Pro Pro Arg Pro Gly Pro Gly Leu Pro Pro

10 15 20 25

ctg ctg ctt gta ctg gcg ctg gcg gcc cat ggg ggc tgc gca gcg ccc 208

Leu Leu Val Leu Ala Leu Ala Ala His Gly Gly Cys Ala Ala Pro

30 35 40

gcg ccc cgc gcg gag gac ctc agc ctc ggg gtg gag tgg cta agc agg 256
Ala Pro Arg Ala Glu Asp Leu Ser Leu Gly Val Glu Trp Leu Ser Arg
45 50 55

ttt ggc tac ctg ccg cct gca gat ccg gca tca ggg cag cta cag acc 304

Phe Gly Tyr Leu Pro Pro Ala Asp Pro Ala Ser Gly Gln Leu Gln Thr
60 65 70

cag	gag	gaa	ctg	tcc	aaa	gcg	att	act	gcc	atg	cag	cag	ιιι	ggı	ggı	354
Gln	Glu	Glu	Leu	Ser	Lys	Ala	Ile	Thr	Ala	Met	Gln	Gln	Phe	Gly	Gly	
	75					80					85					
ctg	gag	acc	act	ggc	atc	cta	gat	gag	gcc	act	ctg	gcc	ctg	atg	aaa	400
Leu	Glu	Thr	Thr	Gly	Ile	Leu	Asp	Glu	Ala	Thr	Leu	Ala	Leu	Met	Lys	
90					95					100					105	
acc	cct	cga	tgc	tcc	ctt	ccg	gac	ctg	ccc	cct	ggg	gcc	caa	tcg	aga	448
Thr	Pro	Arg	Cys	Ser	Leu	Pro	Asp	Leu	Pro	Pro	Gly	Ala	Gln	Ser	Arg	
				110					115					120		
agg	aag	cgg	cag	act	cca	ccc	cca	acc	aaa	tgg	agc	aag	agg	aac	ctt	496
Arg	Lys	Arg	Gln	Thr	Pro	Pro	Pro	Thr	Lys	Trp	Ser	Lys	Arg	Asn	Leu	
			125					130					135			
tct	tgg	agg	gtc	cgg	aca	ttc	cca	cgg	gac	tca	ccc	ctg	ggc	cgg	gat	544
Ser	Trp	Arg	Val	Arg	Thr	Phe	Pro	Arg	Asp	Ser	Pro	Leu	Gly	Arg	Asp	
		140					145					150				
act	gtg	cgt	gca	ctc	atg	tac	tac	gcc	ctc	aaa	gtc	tgg	agt	gac	atc	592
Thr	Val	Arg	Ala	Leu	Met	Tyr	Tyr	Ala	Leu	Lys	Val	Trp	Ser	Asp	Ile	
	155					160					165					
aca	ccc	ttg	aac	ttc	cac	gag	gta	gcg	ggc	aac	gcg	gcg	gac	atc	cag	640
Thr	Pro	Leu	Asn	Phe	His	Glu	Val	Ala	Gly	Asn	Ala	Ala	Asp	Ile	Gln	
170					175					180					185	
atc	gac	ttc	tcc	aag	gcc	gac	cac	aat	gac	ggc	tac	ccc	ttc	gat	ggc	688

Ile	Asp	Phe	Ser	Lys	Ala	Asp	His	Asn	Asp	Gly	Tyr	Pro	Phe	Asp	Gly	
				190					195					200		
cct	ggt	ggc	acg	gtg	gcc	cac	gca	ttc	ttc	cct	ggt	gac	cac	cac	acg	736
Pro	Gly	Gly	Thr	Val	Ala	His	Ala	Phe	Phe	Pro	Gly	Asp	His	His	Thr	
			205					210					215			
gca	ggg	gac	acc	cac	ttt	gat	gac	gat	gag	cca	tgg	acc	ttc	cgt	tcc	784
Ala	Gly	Asp	Thr	His	Phe	Asp	Asp	Asp	Glu	Pro	Trp	Thr	Phe	Arg	Ser	
		220					225					230				
							ctg									832
Ser		Ala	His	Gly	Met		Leu	Phe	Ala	Val			His	Glu	Phe	
	235					240					245					
			. 4.4	4	-4-		224	~++	700	goo	000	200	tee	ate	ato	880
															atg Met	000
250		Ala	116	Gly	255		His	Vai	піа	260		DCI	bei	110	265	
250					200					200						
caa	ccg	tac	tac	cag	ggc	ccc	gtg	ggt	gac	ccc	gta	. cgc	tat	gga	ctt	928
							Val									
0		- 0 -	-0-	270				-	275					280		
ccc	tat	gag	gac	agg	gtg	cgt	gtc	tgg	cag	ttg	tac	ggt	gtg	cgg	gaa	976
Pro	Tyr	Glu	Asp	Arg	g Val	Arg	; Val	Trp	Gln	Leu	ı Tyr	Gly	Val	Arg	Glu	
			285	; •				290)				295	5		
tcc	gtg	tco	cct	act	t gcc	cag	g ctg	gat	acc	cca	a gag	ccc	gag	g gag	cca	102
Ser	· Val	Ser	Pro	Thi	r Ala	Glr	Leu	Asp	Thr	Pro	Glu	ı Pro	Glu	ı Glu	Pro	

ccc	ctc	ctg	cca	gag	ccc	ccc	aac	aat	cgg	tct	agc	act	ccg	ccc	cag	1072
Pro	Leu	Leu	Pro	Glu	Pro	Pro	Asn	Asn	Arg	Ser	Ser	Thr	Pro	Pro	Gln	
	315					320					325					
aag	gac	gtg	cct	cac	agg	tgc	act	gcc	cac	ttt	gat	gct	gtg	gcc	cag	1120
Lys	Asp	Val	Pro	His	Arg	Cys	Thr	Ala	His	Phe	Asp	Ala	Val	Ala	Gln	
330					335					340					345	
att	cga	ggc	gaa	gca	ttc	ttt	ttc	aaa	ggc	aag	tat	ttc	tgg	agg	ctg	1168
lle	Arg	Gly	Glu	Ala	Phe	Phe	Phe	Lys	Gly	Lys	Tyr	Phe	Trp	Arg	Leu	
				350					355					360		
acc	cgg	gac	cga	cac	ttg	gtg	tcg	ctg	cag	ccg	gct	caa	atg	cat	cgc	1216
Thr	Arg	Asp	Arg	His	Leu	Val	Ser	Leu	Gln	Pro	Ala	Gln	Met	His	Arg	
			365					370					375	1		
ttc	tgg	cgg	ggc	ctg	ccg	ctg	cac	ctg	gac	agt	gtg	gac	gcc	gtg	tat	1264
Phe	Trp	Arg	Gly	Leu	Pro	Leu	His	Leu	Asp	Ser	Val	Asp	Ala	Val	Tyr	
		380					385					390				
gag	cgt	acc	agt	gac	cac	aag	att	gtc	ttc	ttc	aaa	gga	gac	aga	tac	1312
Glu	Arg	Thr	Ser	Asp	His	Lys	Ile	Val	Phe	Phe	Lys	Gly	Asp	Arg	Tyr	
	395	;				400)				405	i				
tgg	gtg	ttt	aag	gac	aac	aac	gta	gag	gaa	ggg	g tac	ccg	cga	a cct	gtc	1360
Trp	Val	Phe	Lys	s Asp	Asr	Asr	l Val	Glu	Glu	Gly	7 Tyr	Pro	Arg	g Pro	Val	
410)				415	5				420)				425	

tcc	gac	ttc	agc	ctc	ccg	cca	ggt	ggc	atc	gat	gct	gtc	ttc	tcc	tgg	1408
Ser	Asp	Phe	Ser	Leu	Pro	Pro	Gly	Gly	Ile	Asp	Ala	Val	Phe	Ser	Trp	
				430					435					440		
gcc	cac	aat	gac	agg	act	tat	ttc	ttt	aag	gac	cag	ctg	tac	tgg	cgc	1456
Ala	His	Asn	Asp	Arg	Thr	Tyr	Phe	Phe	Lys	Asp	Gln	Leu	Tyr	Trp	Arg	
			445					450					455			
tat	gat	gac	cac	aca	cgg	cgc	atg	gac	cct	ggc	tac	cct	gcc	cag	gga	1504
Tyr	Asp	Asp	His	Thr	Arg	Arg	Met	Asp	Pro	Gly	Tyr	Pro	Ala	Gln	Gly	
		460					465					470				
ccc	ctg	tgg	aga	ggt	gtc	ccc	agc	atg	ttg	gat	gat	gcc	atg	cgc	tgg	1552
Pro	Leu	Trp	Arg	Gly	Val	Pro	Ser	Met	Leu	Asp	Asp	Ala	Met	Arg	Trp	
	475					480					485					
tct	gat	ggt	gca	tcc	tat	ttc	ttc	cga	ggc	cag	gag	tac	tgg	aaa	gtg	1600
Ser	Asp	Gly	Ala	Ser	Tyr	Phe	Phe	Arg	Gly	Gln	Glu	Tyr	Trp	Lys	Val	
490					495					500					505	
ctg	gat	ggc	gag	ctg	gaa	gca	gcc	ccc	ggg	tac	cca	cag	tct	aca	gcc	1648
Leu	Asp	Gly	Glu	Leu	Glu	Ala	Ala	Pro	Gly	Tyr	Pro	Gln	Ser	Thr	Ala	
				510					515					520		
cgc	gac	tgg	ctg	gta	tgc	ggt	gag	ccg	ctg	gcg	gat	gcg	gag	gat	gta	1696
Arg	Asp	Trp	Leu	Val	Cys	Gly	Glu	Pro	Leu	Ala	Asp	Ala	Glu	Asp	Val	
			525					530					535			

ggg	cct	gga	ссс	cag	ggc	cgc	agt	ggg	gcc	caa	gat	ggt	ctg	gca	gta	1744
Gly	Pro	Gly	Pro	Gln	Gly	Arg	Ser	Gly	Ala	Gln	Asp	Gly	Leu	Ala	Val	
		540					545					550				

tgt tcc tgc act tca gac gca cac agg ttg gca ctg cca tct ctg ctg 1792 Cys Ser Cys Thr Ser Asp Ala His Arg Leu Ala Leu Pro Ser Leu Leu 555 560 565

ctt ctg act cca ctg ctg tgg ggc ctg tgg acc tca gtc tct gcc aag 1840 Leu Leu Thr Pro Leu Leu Trp Gly Leu Trp Thr Ser Val Ser Ala Lys 570 585 585

gca tcc tgagggcagt gctagccttg cggatcaagg agccagggga gcagggacac 1896 Ala Ser

actggccagt actcagcagg acttgtgct caagcttccg gtccctcgct ccttccttcc 1956

ttccttcctt gaacccaggg gtgctgtgcc atctgctgga gtggtctcca gctgggacag 2016

gacgtcccac caagggcatc catgcacacc ttgcctacct ggagcagcca taggcagctc 2076

cccttccctc ctctgcacat cacgctgctt cgttgcacct tgccgggctg cccaagccca 2136

gctgtcacaa ccccaggatg ccttgtctgc acctgagcgg ctctgatggc atctgcacgt 2196

gggctgatga ggggcaaaca ggggttcctc gtggtatccg taggggccac catgcctgtt 2256

tcacaagtaa gagagttgat gccccgatgg gggaacaggg tgggagaaag gcacctaccc 2316

agaagtetga tecaetgeeg titgeageag eeagegeegt atetgetggg ataggggace 2376 agtcacactc aggatctgcc cacagattcc cagatgctgg caaggggcct tgctccaact 2436 accaggagca cagccacctc tccccgtcct agataggtta gccatggagg ctgtgtcctg 2496 ttatctccct ctctttggcc aggagagcat tgtgggtctc cctcgggtgc tgttgatggg 2556 ggtggggggc gcccatagag atatttcttc atctgtcagt acccattgct tcagcaagat 2616 gececcatat agttetggee tgagaceetg eagettggae teacagetgt eeecteecea 2676 gctgcagaag ggcttctaac acctggaata aaggtgggcg ttcagtttag ggaaggagga 2736 tggttggggg agcccagggt gatagcaagg gggagctgca gggataagtg tcagggtcct 2796 cggggagtca tgacaatgtt accgcctaac ttggagatgt aggagctgtg cacggattgc 2856 ttctctgggt gacaaacctc catggtccag aaaggggctg aggttgaacc caagatgggt 2916 taatgagete cagaaaggaa cagecaagtt caaaggttet gggacaagae gggeetgagg 2976 aacagggcca cccaggtagg cgtggctgta gggtaagcag tttctgtcat tgggcacgag 3036 atgaaaatta gtgatcacac gcacataccc ccctccccaa ctggcccggt cccatctcag 3096 gtaagaaagg cttctgtcta ccccaggcca ggtttgagtg ttgtcaggat gagtgagcag 3156 ctagcggggc ctaagtttct accetecatt teceaageet ggeeacaeee tagaceetg 3216 tcagactagg caggacagag tcaggggtag gggcatctga ggtttccctg tcttggaagc 3276

caccctactc tgccctcata tcaaagcacg ctcctatgat gtcccatgtt gtccaccagc 3336

ctgcaggaca cagatgtcct atacagcaac agggaaagtc caaaaatctt tgtcacatag 3396

cactgaaaac cagacccgca ggctggagct gtctagatgc tggtgtcaca ctcatttaa 3456

aacccaaact cttaataaaa attttgtaca ctggaaaaaa aaaaaaaaa aaaaaaaaa 3516

a 3517

<210> 4

<211> 2423 (2438 ではないか?)

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (100)..(1917)

<400> 4

ccggcggggg cgccgcggag agcggagggc gccgggctgc ggaacgcgaa gcggagggcg 60

cgggaccctg cacgccgccc gcgggcccat gtgagcgcc atg cgg cgc cgc gca 114

Met Arg Arg Arg Ala

gcc	cgg	gga	ccc	ggc	ccg	ccg	ccc	cca	ggg	ccc	gga	ctc	tcg	cgg	ctg	162
Ala	Arg	Gly	Pro	Gly	Pro	Pro	Pro	Pro	Gly	Pro	Gly	Leu	Ser	Arg	Leu	
				10					15					20		
ccg	ctg	ctg	ccg	ctg	ccg	ctg	ctg	ctg	ctg	ctg	gcg	ctg	ggg	acc	cgc	210
Pro	Leu	Leu	Pro	Leu	Pro	Leu	Leu	Leu	Leu	Leu	Ala	Leu	Gly	Thr	Arg	
			25					30					35			
ggg	ggc	tgc	gcc	gcg	ccg	gaa	ccc	gcg	cgg	cgc	gcc	gag	gac	ctc	agc	258
Gly	Gly	Cys	Ala	Ala	Pro	Glu	Pro	Ala	Arg	Arg	Ala	Glu	Asp	Leu	Ser	
		40					45					50				
ctg	gga	gtg	gag	tgg	cta	agc	agg	ttc	ggt	tac	ctg	ccc	ccg	gct	gac	306
Leu	Gly	Val	Glu	Trp	Leu	Ser	Arg	Phe	Gly	Tyr	Leu	Pro	Pro	Ala	Asp	
	55					60					65					
		aca														354
	Thr	Thr	Gly	Gln		Gln	Thr	Gln	Glu		Leu	Ser	Lys	Ala		
70					75					80					85	
																400
		atg														402
Thr	Ala	Met	Gln		Phe	Gly	Gly	Leu			Thr	Gly	He			
				90					95					100		
												4	_4_			450
		acc														450
Glu	Ala	Thr	Leu	АІа	Leu	met	Lys	1nr		arg	СУS	ser	Leu		ASP	
			1116					1 111					110			

ctc	cct	gtc	ctg	acc	cag	gct	cgc	agg	aga	cgc	cag	gct	cca	gcc	ccc	490
Leu	Pro	Val	Leu	Thr	Gln	Ala	Arg	Arg	Arg	Arg	Gln	Ala	Pro	Ala	Pro	
		120					125					130				
acc	aag	tgg	aac	aag	agg	aac	ctg	tcg	tgg	agg	gtc	cgg	acg	ttc	cca	546
Thr	Lys	Trp	Asn	Lys	Arg	Asn	Leu	Ser	Trp	Arg	Val	Arg	Thr	Phe	Pro	
	135					140					145					
cgg	gac	tca	cca	ctg	ggg	cac	gac	acg	gtg	cgt	gca	ctc	atg	tac	tac	594
Arg	Asp	Ser	Pro	Leu	Gly	His	Asp	Thr	Val	Arg	Ala	Leu	Met	Tyr	Tyr	
150					155					160					165	
gcc	ctc	aag	gtc	tgg	agc	gac	att	gcg	ccc	ctg	aac	ttc	cac	gag	gtg	642
Ala	Leu	Lys	Val	Trp	Ser	Asp	Ile	Ala	Pro	Leu	Asn	Phe	His	Glu	Val	
				170					175					180		
					•											
gcg	ggc	agc	acc	gcc	gac	atc	cag	atc	gac	ttc	tcc	aag	gcc	gac	cat	690
Ala	Gly	Ser	Thr	Ala	Asp	lle	Gln	Ile	Asp	Phe	Ser	Lys	Ala	Asp	His	
			185	ı				190					195	i		
aac	gac	ggc	tac	ccc	tto	gac	ggc	ccc	ggc	ggc	acc	gtg	gcc	cac	gcc	738
Asn	Asp	Gly	Tyr	Pro	Phe	. Asp	Gly	Pro	Gly	Gly	Thr	Val	Ala	His	Ala	
		200)				205	•				210)			
tto	tto	ccc	ggc	cac	cac	cac	acc	gco	ggg	gac	aco	cac	ttt	t gac	gat	786
Phe	Phe	Pro	Gly	His	His	s His	Thr	Ala	a Gly	Asp	Thi	His	3 Phe	e Asp	Asp	
	215	5				220)				225	5				
ຕລເ	າ ອຸຊຸດ	, acc	· too	z acc	: 11d	. വളവ	t.c.	tce	g gai	gec	cae	ggg	z ats	g gao	ctg	834

Asp	Glu	Ala	Trp	Thr	Phe	Arg	Ser	Ser	Asp	Ala	His	Gly	Met	Asp	Leu	
230					235					240					245	
ttt	gca	gtg	gct	gtc	cac	gag	ttt	ggc	cac	gcc	att	ggg	tta	agc	cat	882
Phe	Ala	Val	Ala	Val	His	Glu	Phe	Gly	His	Ala	Ile	Gly	Leu	Ser	His	
				250					255					260		
gtg	gcc	gct	gca	cac	tcc	atc	atg	cgg	ccg	tac	tac	cag	ggc	ccg	gtg	930
Val	Ala	Ala	Ala	His	Ser	Ile	Met	Arg	Pro	Tyr	Tyr	Gln	Gly	Pro	Val	
			265					270					275			
ggt	gac	ccg	ctg	cgc	tac	ggg	ctc	ссс	tac	gag	gac	aag	gtg	cgc	gtc	978
Gly	Asp	Pro	Leu	Arg	Tyr	Gly	Leu	Pro	Tyr	Glu	Asp	Lys	Val	Arg	Val	
		280					285					290				
tgg	cag	ctg	tac	ggt	gtg	cgg	gag	tct	gtg	tct	ccc	acg	gcg	cag	ccc	1026
Trp	Gln	Leu	Tyr	Gly	Val	Arg	Glu	Ser	Val	Ser	Pro	Thr	Ala	Gln	Pro	
	295					300					305					
gag	gag	cct	ccc	ctg	ctg	ccg	gag	ccc	cca	gac	aac	cgg	tcc	agc	gcc	1074
Glu	Glu	Pro	Pro	Leu	Leu	Pro	Glu	Pro	Pro	Asp	Asn	Arg	Ser	Ser	Ala	
310					315					320					325	
ccg	ccc	agg	aag	gac	gtg	ссс	cac	aga	tgc	agc	act	cac	ttt	gac	gcg	1122
Pro	Pro	Arg	Lys	Asp	Val	Pro	His	Arg	Cys	Ser	Thr	His	Phe	Asp	Ala	
				330					335					340		
gtg	gcc	cag	atc	cgg	ggt	gaa	gct	ttc	ttc	ttc	aaa	ggc	aag	tac	ttc	1170
Val	Ala	Gln	Ile	Arg	Gly	Glu	Ala	Phe	Phe	Phe	Lys	Gly	Lys	Tyr	Phe	

tgg	cgg	ctg	acg	cgg	gac	cgg	cac	ctg	gtg	tcc	ctg	cag	ccg	gca	cag	1218
Trp	Arg	Leu	Thr	Arg	Asp	Arg	His	Leu	Val	Ser	Leu	Gln	Pro	Ala	Gln	
		360					365					370				
atg	cac	cgc	ttc	tgg	cgg	ggc	ctg	ccg	ctg	cac	ctg	gac	agc	gtg	gac	1266
Met	His	Arg	Phe	Trp	Arg	Gly	Leu	Pro	Leu	His	Leu	Asp	Ser	Val	Asp	
	375					380					385					
gcc	gtg	tac	gag	cgc	acc	agc	gac	cac	aag	atc	gtc	ttc	ttt	aaa	gga	1314
Ala	Val	Tyr	Glu	Arg	Thr	Ser	Asp	His	Lys	lle	Val	Phe	Phe	Lys	Gly	
390					395					400					405	
gac	agg	tac	tgg	gtg	ttc	aag	gac	aat	aac	gta	gag	gaa	gga	tac	ccg	1362
Asp	Arg	Tyr	Trp	Val	Phe	Lys	Asp	Asn	Asn	Val	Glu	Glu	Gly	Tyr	Pro	
				410					415					420		
cgc	ссс	gtc	tcc	gac	ttc	agc	ctc	ccg	cct	ggc	ggc	atc	gac	gct	gcc	1410
Arg	Pro	Val	Ser	Asp	Phe	Ser	Leu	Pro	Pro	Gly	Gly	Ile	Asp	Ala	Ala	
			425					430					435			
ttc	tcc	tgg	gcc	cac	aat	gac	agg	act	tat	ttc	ttt	aag	gac	cag	ctg	1458
Phe	Ser	Trp	Ala	His	Asn	Asp	Arg	Thr	Tyr	Phe	Phe	Lys	Asp	Gln	Leu	
		440					445					450				
tac	tgg	cgc	tac	gat	gac	cac	acg	agg	cac	atg	gac	ccc	ggc	tac	ccc	1506
Tyr	Trp	Arg	Tyr	Asp	Asp	His	Thr	Arg	His	Met	Asp	Pro	Gly	Tyr	Pro	
	455					460					465					

gcc	cag	agc	ccc	ctg	tgg	agg	ggt	gtc	ccc	agc	acg	ctg	gac	gac	gcc	1554
Ala	Gln	Ser	Pro	Leu	Trp	Arg	Gly	Val	Pro	Ser	Thr	Leu	Asp	Asp	Ala	
470					475					480					485	
atg	cgc	tgg	tcc	gac	ggt	gcc	tcc	tac	ttc	ttc	cgt	ggc	cag	gag	tac	1602
Met	Arg	Trp	Ser	Asp	Gly	Ala	Ser	Tyr	Phe	Phe	Arg	Gly	Gln	Glu	Tyr	
				490					495					500		
tgg	aaa	gtg	ctg	gat	ggc	gag	ctg	gag	gtg	gca	ccc	ggg	tac	cca	cag	1650
Trp	Lys	Val	Leu	Asp	Gly	Glu	Leu	Glu	Val	Ala	Pro	Gly	Tyr	Pro	Gln	
			505					510					515			
tcc	acg	gcc	cgg	gac	tgg	ctg	gtg	tgt	gga	gac	tca	cag	gcc	gat	gga	1698
Ser	Thr	Ala	Arg	Asp	Trp	Leu	Val	Cys	Gly	Asp	Ser	Gln	Ala	Asp	Gly	
		520					525					530				
tct	gtg	gct	gcg	ggc	gtg	gac	gcg	gca	gag	ggg	ccc	cgc	gcc	cct	cca	1746
Ser	Val	Ala	Ala	Gly	Val	Asp	Ala	Ala	Glu	Gly	Pro	Arg	Ala	Pro	Pro	
	535					540					545					
gga	caa	cat	gac	cag	agc	cgc	tcg	gag	gac	ggt	tac	gag	gtc	tgc	tca	1794
Gly	Gln	His	Asp	Gln	Ser	Arg	Ser	Glu	Asp	Gly	Tyr	Glu	Val	Cys	Ser	
550					555					560					565	
tgc	acc	tct	ggg	gca	tcc	tct	ccc	ccg	ggg	gcc	cca	ggc	cca	ctg	gtg	1842
Cys	Thr	Ser	Gly	Ala	Ser	Ser	Pro	Pro	Gly	Ala	Pro	Gly	Pro	Leu	Val	
				570					575					580		

gct	gcc	acc	atg	ctg	ctg	ctg	ctg	ccg	cca	ctg	tca	cca	ggc	gcc	ctg	1890
Ala	Ala	Thr	Met	Leu	Leu	Leu	Leu	Pro	Pro	Leu	Ser	Pro	Gly	Ala	Leu	
			585					590					595			

tgg aca gcg gcc cag gcc ctg acg cta tgacacacag cgcgagccca 1937

Trp Thr Ala Ala Gln Ala Leu Thr Leu
600 605

tgagaggaca gaggcggtgg gacagcctgg ccacagaggg caaggactgt gccggagtcc 1997

ctgggggagg tgctggcgcg ggatgaggac gggccaccct ggcaccggaa ggccagcaga 2057

gggcacggcc cgccagggct gggcaggctc aggtggcaag gacggagctg tcccctagtg 2117

agggactgtg ttgactgacg agccgagggg tggccgctcc agaagggtgc ccagtcaggc 2177

cgcaccgccg ccagcctcct ccggccctgg agggagcatc tcgggctggg ggcccacccc 2237

tctctgtgcc ggcgccacca accccacca cactgctgcc tggtgctccc gccggcccac 2297

agggcctccg tccccaggtc cccagtggg cagccctcc cacagacgag ccccccacat 2357

ggtgccgcgg cacgtcccc ctgtgacgcg ttccagacca acatgacctc tccctgcttt 2417

gtaaaaaaaa aaaaaaaaa a

<210> 5 <211> 618

<212> PRT <213> Mouse <400> 5 Met Pro Arg Ser Arg Gly Gly Arg Ala Ala Pro Gly Gln Ala Ser Arg Trp Ser Gly Trp Arg Ala Pro Gly Arg Leu Leu Pro Leu Leu Pro Ala Leu Cys Cys Leu Ala Ala Ala Ala Gly Ala Gly Lys Pro Ala Gly Ala Asp Ala Pro Phe Ala Gly Gln Asn Trp Leu Lys Ser Tyr Gly Tyr Leu Leu Pro Tyr Glu Ser Arg Ala Ser Ala Leu His Ser Gly Lys Ala Leu Gln Ser Ala Val Ser Thr Met Gln Gln Phe Tyr Gly Ile Pro Val Thr Gly Val Leu Asp Gln Thr Thr Ile Glu Trp Met Lys Lys Pro Arg Cys

Gly Val Pro Asp His Pro His Leu Ser Arg Arg Arg Asn Lys Arg

Tyr Ala Leu Thr Gly Gln Lys Trp Arg Gln Lys His Ile Thr Tyr Ser

He	His	Asn	Tyr	Thr	Pro	Lys	Val	Gly	Glu	Leu	Asp	Thr	Arg	Lys	Ala
145					150					155					160

Ile Arg Gln Ala Phe Asp Val Trp Gln Lys Val Thr Pro Leu Thr Phe
165 170 175

Glu Glu Val Pro Tyr His Glu Ile Lys Ser Asp Arg Lys Glu Ala Asp 180 185 190

Ile Met Ile Phe Phe Ala Ser Gly Phe His Gly Asp Ser Ser Pro Phe 195 200 205

Asp Gly Glu Gly Phe Leu Ala His Ala Tyr Phe Pro Gly Pro Gly
210 215 220

Ile Gly Gly Asp Thr His Phe Asp Ser Asp Glu Pro Trp Thr Leu Gly
225 230 235 240

Asn Ala Asn His Asp Gly Asn Asp Leu Phe Leu Val Ala Val His Glu 245 250 255

Leu Gly His Ala Leu Gly Leu Glu His Ser Asn Asp Pro Ser Ala Ile
260 265 270

Met Ala Pro Phe Tyr Gln Tyr Met Glu Thr His Asn Phe Lys Leu Pro 275 280 285 Gln Asp Asp Leu Gln Gly Ile Gln Lys Ile Tyr Gly Pro Pro Ala Glu Pro Leu Glu Pro Thr Arg Pro Leu His Thr Leu Pro Val Arg Arg Ile His Ser Pro Ser Glu Arg Lys His Glu Arg His Pro Arg Pro Pro Arg Pro Pro Leu Gly Asp Arg Pro Ser Thr Pro Gly Ala Lys Pro Asn Ile Cys Asp Gly Asn Phe Asn Thr Val Ala Leu Phe Arg Gly Glu Met Phe Val Phe Lys Asp Arg Trp Phe Trp Arg Leu Arg Asn Asn Arg Val Gln Glu Gly Tyr Pro Met Gln Ile Glu Gln Phe Trp Lys Gly Leu Pro Ala Arg Ile Asp Ala Ala Tyr Glu Arg Ala Asp Gly Arg Phe Val Phe Phe Lys Gly Asp Lys Tyr Trp Val Phe Lys Glu Val Thr Val Glu Pro Gly

Tyr Pro His Ser Leu Gly Glu Leu Gly Ser Cys Leu Pro Arg Glu Gly

Ile Asp Thr Ala Leu Arg Trp Glu Pro Val Gly Lys Thr Tyr Phe Phe
450 455 460

Lys Gly Glu Arg Tyr Trp Arg Tyr Ser Glu Glu Arg Arg Ala Thr Asp 465 470 475 480

Pro Gly Tyr Pro Lys Pro Ile Thr Val Trp Lys Gly Ile Pro Gln Ala
485 490 495

Pro Gln Gly Ala Phe Ile Ser Lys Glu Gly Tyr Tyr Thr Tyr Phe Tyr
500 505 510

Lys Gly Arg Asp Tyr Trp Lys Phe Asp Asn Gln Lys Leu Ser Val Glu
515 520 525

Pro Gly Tyr Pro Arg Asn Ile Leu Arg Asp Trp Met Gly Cys Lys Gln
530 535 540

Lys Glu Val Glu Arg Arg Lys Glu Arg Arg Leu Pro Gln Asp Asp Val 545 550 555 560

Asp Ile Met Val Thr Ile Asp Asp Val Pro Gly Ser Val Asn Ala Val
565 570 575

Ala Val Val Val Pro Cys Thr Leu Ser Leu Cys Leu Leu Val Leu Leu 580 585 590

Tyr Thr Ile Phe Gln Phe Lys Asn Lys Ala Gly Pro Gln Pro Val Thr

Tyr Tyr Lys Arg Pro Val Gln Glu Trp Val 610 615

<210> 6

<211> 645

<212> PRT

<213> Homo sapiens

<400> 6

Met Pro Arg Ser Arg Gly Gly Arg Ala Ala Pro Gly Pro Pro Pro 1 5 10 15

Pro Pro Pro Gly Gln Ala Pro Arg Trp Ser Arg Trp Arg Val Pro
20 25 30

Gly Arg Leu Leu Leu Leu Leu Pro Ala Leu Cys Cys Leu Pro Gly
35 40 45

Ala Ala Arg Ala Ala Ala Ala Ala Gly Ala Gly Asn Arg Ala Ala 50 55 60

Val Ala Val Ala Val Ala Arg Ala Asp Glu Ala Glu Ala Pro Phe Ala 65 70 75 80

Gly Gln Asn Trp Leu Lys Ser Tyr Gly Tyr Leu Leu Pro Tyr Asp Ser 85 90 95 Arg Ala Ser Ala Leu His Ser Ala Lys Ala Leu Gln Ser Ala Val Ser Thr Met Gln Gln Phe Tyr Gly Ile Pro Val Thr Gly Val Leu Asp Gln Thr Thr Ile Glu Trp Met Lys Lys Pro Arg Cys Gly Val Pro Asp His Pro His Leu Ser Arg Arg Arg Arg Asn Lys Arg Tyr Ala Leu Thr Gly Gln Lys Trp Arg Gln Lys His Ile Thr Tyr Ser Ile His Asn Tyr Thr Pro Lys Val Gly Glu Leu Asp Thr Arg Lys Ala Ile Arg Gln Ala Phe Asp Val Trp Gln Lys Val Thr Pro Leu Thr Phe Glu Glu Val Pro Tyr His Glu Ile Lys Ser Asp Arg Lys Glu Ala Asp Ile Met Ile Phe Phe Ala Ser Gly Phe His Gly Asp Ser Ser Pro Phe Asp Gly Glu Gly Gly

Phe Leu Ala His Ala Tyr Phe Pro Gly Pro Gly Ile Gly Gly Asp Thr

- His Phe Asp Ser Asp Glu Pro Trp Thr Leu Gly Asn Ala Asn His Asp 260 265 270
- Gly Asn Asp Leu Phe Leu Val Ala Val His Glu Leu Gly His Ala Leu 275 280 285
- Gly Leu Glu His Ser Ser Asp Pro Ser Ala Ile Met Ala Pro Phe Tyr 290 295 300
- Gln Tyr Met Glu Thr His Asn Phe Lys Leu Pro Gln Asp Asp Leu Gln 305 310 315 320
- Gly Ile Gln Lys Ile Tyr Gly Pro Pro Ala Glu Pro Leu Glu Pro Thr
 325 330 335
- Arg Pro Leu Pro Thr Leu Pro Val Arg Arg Ile His Ser Pro Ser Glu 340 345 350
- Arg Lys His Glu Arg Gln Pro Arg Pro Pro Arg Pro Pro Leu Gly Asp
 355
 360
 365
- Arg Pro Ser Thr Pro Gly Thr Lys Pro Asn Ile Cys Asp Gly Asn Phe 370 375 380
- Asn Thr Val Ala Leu Phe Arg Gly Glu Met Phe Val Phe Lys Asp Arg 385 390 395 400
- Trp Phe Trp Arg Leu Arg Asn Asn Arg Val Gln Glu Gly Tyr Pro Met

Gln Ile Glu Gln Phe Trp Lys Gly Leu Pro Ala Arg Ile Asp Ala Ala 420 425 430

Tyr Glu Arg Ala Asp Gly Arg Phe Val Phe Phe Lys Gly Asp Lys Tyr
435
440
445

Trp Val Phe Lys Glu Val Thr Val Glu Pro Gly Tyr Pro His Ser Leu 450 455 460

Gly Glu Leu Gly Ser Cys Leu Pro Arg Glu Gly Ile Asp Thr Ala Leu 465 470 475 480

Arg Trp Glu Pro Val Gly Lys Thr Tyr Phe Phe Lys Gly Glu Arg Tyr
485
490
495

Trp Arg Tyr Ser Glu Glu Arg Arg Ala Thr Asp Pro Gly Tyr Pro Lys
500 505 510

Pro Ile Thr Val Trp Lys Gly Ile Pro Gln Ala Pro Gln Gly Ala Phe
515 520 525

Ile Ser Lys Glu Gly Tyr Tyr Thr Tyr Phe Tyr Lys Gly Arg Asp Tyr
530 535 540

Trp Lys Phe Asp Asn Gln Lys Leu Ser Val Glu Pro Gly Tyr Pro Arg 545 550 555 560

Asn Ile Leu Arg Asp Trp Met Gly Cys Asn Gln Lys Glu Val Glu Arg 565 570 575

Arg Lys Glu Arg Arg Leu Pro Gln Asp Asp Val Asp Ile Met Val Thr
580 585 590

Ile Asn Asp Val Pro Gly Ser Val Asn Ala Val Ala Val Val Ile Pro 595 600 605

Cys Ile Leu Ser Leu Cys Ile Leu Val Leu Val Tyr Thr Ile Phe Gln 610 615 620

Phe Lys Asn Lys Thr Gly Pro Gln Pro Val Thr Tyr Tyr Lys Arg Pro 625 630 635 640

Val Gln Glu Trp Val 645

<210> 7

<211> 4263

<212> DNA

<213> Mouse

<220>

<221> CDS

<222> (75)..(1928)

<400> 7

gegggaggae eeggeeggag eegeegeege egeegeegee ategeageeg ggeggeeggg 60

cccc	ecge	egc (cggg	atg	ccg	agg	agc	cgg	ggc	ggc	cgc	gct	gcg	ccg	ggc	110
				Met	Pro	Arg	Ser	Arg	Gly	Gly	Arg	Ala	Ala	Pro	Gly	
				1				5					10			
cag	gcc	tcg	cgc	tgg	agc	ggc	tgg	cgg	gcc	ccg	ggg	cgg	ctg	ctg	ccg	158
Gln	Ala	Ser	Arg	Trp	Ser	Gly	Trp	Arg	Ala	Pro	Gly	Arg	Leu	Leu	Pro	
		15					20					25				
•																
			gcg													206
Leu		Pro	Ala	Leu	Cys		Leu	Ala	Ala	Ala		Gly	Ala	Gly	Lys	
	30					35					40					
								,								05.4
			gcg													254
	Ala	Gly	Ala	Asp		Pro	Phe	Ala	Gly		Asn	lrp	Leu	Lys		
45					-50					55					60	
† o †	aac	tat	ctg	ctt	ccc	tat	ດລດ	tea	റമമ	ധോ	tet	aca	ttσ	cat	tet	302
			Leu													002
- 3 -		- , -	Dou	65		- 3 -	014		70				200	75		
ggg	aag	gcc	ttg	cag	tcc	gcg	gtc	tcc	act	atg	cag	cag	ttt	tac	ggg	350
Gly	Lys	Ala	Leu	Gln	Ser	Ala	Val	Ser	Thr	Met	Gln	Gln	Phe	Tyr	Gly	
			80					85					90			
atc	cca	gtc	acc	ggt	gtg	ttg	gat	cag	aca	aca	atc	gag	tgg	atg	aag	398
Ile	Pro	Val	Thr	Gly	Val	Leu	Asp	Gln	Thr	Thr	Ile	Glu	Trp	Met	Lys	
		95					100					105				

aaa	cct	cga	tgt	ggc	gtc	cct	gat	cat	ccc	cac	ttg	agc	agg	agg	agg	440
Lys	Pro	Arg	Cys	Gly	Val	Pro	Asp	His	Pro	His	Leu	Ser	Arg	Arg	Arg	
	110					115					120					
aga	aat	aag	cga	tat	gcc	cta	act	gga	cag	aag	tgg	agg	cag	aaa	cac	494
		Lys														
125					130					135					140	
atc	acc	tac	agc	att	cac	aat	tat	acc	cca	aag	gtg	ggt	gag	ctg	gac	542
		Tyr														
		Ü		145					150					155		
aca	cgg	aag	gct	att	cgt	cag	gct	ttc	gat	gtg	tgg	cag	aag	gtg	act	590
		Lys														
		·	160					165					170			
cca	ctg	acc	ttt	gaa	gag	gtg	cca	tac	cat	gag	atc	aaa	agt	gac	cgg	638
		Thr														
		175					180					185				
aag	gag	gca	gac	atc	atg	atc	ttc	ttt	gct	tct	ggt	ttc	cat	ggt	gac	686
															Asp	
	190		•			195					200					
agc	t.c.c	сса	ttt	gat	ggg	gaa	ggg	gga	. ttc	cta	gcc	cat	gcc	tac	ttt	734
															Phe	
205		110	1 110		210					215				·	220	
200					210											
co+	u a a		a a a a	rato	• നനം	രനം	_ ປອດ	act	Cac	. † † †	gat	tra	gat	ฮลล	. ccc	782
UUL	550	, cca	555	, aic	550	, 55a	. 500	uci	·	,	. 541	u	. 040	- 6uu		. 02

				225					230					235		
tgg	acg	cta	gga	aat	gcc	aac	cat	gat	ggc	aat	gac	ctc	ttc	ctg	gtg	830
						Asn										
11 P	••••	200	240					245	·		•		250			
gcc	gtg	cat	gaa	ctg	ggc	cat	gca	ctg	ggc	ttg	gag	cac	tct	aat	gac	878
						His										
		255			•		260					265				
ccc	agt	gct	atc	atg	gct	ccc	ttc	tac	caa	tac	atg	gag	aca	cac	aac	926
						Pro										
	270					275					280					
ttc	aag	cta	ccg	cag	gac	gat	ctc	cag	ggc	atc	cag	aag	att	tac	gga	974
Phe	Lys	Leu	Pro	Gln	Asp	Asp	Leu	Gln	Gly	Ile	Gln	Lys	lle	Tyr	Gly	
285					290					295			`.		300	
ccc	cca	gct	gag	cct	ctg	gag	ccc	aca	agg	ccc	ctc	cat	aca	ctc	ccg	1022
Pro	Pro	Ala	Glu	Pro	Leu	Glu	Pro	Thr	Arg	Pro	Leu	His	Thr	Leu	Pro	
				305					310					315		
gtc	cgc	agg	atc	cac	tcg	ccg	tct	gag	agg	aag	cac	gag	cgg	cac	cca	1070
Val	Arg	Arg	Ile	His	Ser	Pro	Ser	Glu	Arg	Lys	His	Glu	Arg	His	Pro	
			320					325					330			
agg	ccc	cca	cgg	ccg	ccc	ctt	ggg	gac	cgg	cca	tcc	act	cca	ggt	gcc	1118
Arg	Pro	Pro	Arg	Pro	Pro	Leu	Gly	Asp	Arg	Pro	Ser	Thr	Pro	Gly	Ala	

Pro Gly Pro Gly Ile Gly Gly Asp Thr His Phe Asp Ser Asp Glu Pro

aaa ccc aac atc tgc gat ggc aac ttc aac aca gtg gcc ctc ttc cga

Lys Pro Asn Ile Cys Asp Gly Asn Phe Asn Thr Val Ala Leu Phe Arg

		ggg	gag	atg	ttt	gtg	ttc	aag	gat	cgc	tgg	ttc	tgg	cgc	ctg	cgc	aat
		Gly	Glu	Met	Phe	Val	Phe	Lys	Asp	Arg	Trp	Phe	Trp	Arg	Leu	Arg	Asn
		365					370		•			375					380
i i i	a A																
All Shadi	1	aac	cgg	gtg	cag	gaa	ggc	tac	ccc	atg	cag	atc	gaa	cag	ttc	tgg	aag
Tank Stank	S Real	Asn	Arg	Val	Gln	Glu	Gly	Tyr	Pro	Met	Gln	Ile	Glu	Gln	Phe	Trp	Lys
Hans with	Ann Ann Ann and that the third and the					385					390					395	
# Wents on		ggc	ctg	ccc	gcc	cgc	ata	gac	gca	gcc	tat	gaa	aga	gct	gac	ggg	aga
Hyen. H	22 The Stand Committee of the Standard	Gly	Leu	Pro	Ala	Arg	He	Asp	Ala	Ala	Tyr	Glu	Arg	Ala	Asp	Gly	Arg
Sales Shaper					400					405					410		
, Life	27.00																
		ttc	gtc	ttc	ttc	aaa	gga	gac	aag	tac	tgg	gtt	ttc	aaa	gaa	gtg	acg
		Phe	Val	Phe	Phe	Lys	Gly	Asp	Lys	Tyr	Trp	Val	Phe	Lys	Glu	Val	Thr
				415					420					425			

1214
1262
1310
1358
1406
1454

gtg gaa cct ggg tac ccc cac agc ttg ggg gag ctg gga agc tgc ctg

Val Glu Pro Gly Tyr Pro His Ser Leu Gly Glu Leu Gly Ser Cys Leu

ccc cgt gaa gga att gac aca gct ctg cgc tgg gaa cct gtg ggc aaa

Pro Arg Glu Gly Ile Asp Thr Ala Leu Arg Trp Glu Pro Val Gly Lys

acc	tac	ttc	ttc	aaa	ggc	gaa	cgg	tac	tgg	cgc	tac	agc	gag	gag	cgg	1502
Thr	Tyr	Phe	Phe	Lys	Gly	Glu	Arg	Tyr	Trp	Arg	Tyr	Ser	Glu	Glu	Arg	
				465					470					475		
cga	gcc	aca	gac	cct	ggc	tac	ccc	aag	ccc	atc	acc	gtg	tgg	aag	ggc	1550
Arg	Ala	Thr	Asp	Pro	Gly	Tyr	Pro	Lys	Pro	lle	Thr	Val	Trp	Lys	Gly	
			480					485					490			
atc	ccg	cag	gct	ccg	caa	ggg	gcc	ttc	atc	agc	aag	gaa	gga	tat	tac	1598
Ile	Pro	Gln	Ala	Pro	Gln	Gly	Ala	Phe	Ile	Ser	Lys	Glu	Gly	Tyr	Tyr	
		495					500					505				
acc	tac	ttc	tac	aaa	ggc	cgg	gac	tac	tgg	aag	ttt	gac	aac	cag	aaa	1646
Thr	Tyr	Phe	Tyr	Lys	Gly	Arg	Asp	Tyr	Trp	Lys	Phe	Asp	Asn	Gln	Lys	
	510					515					520					
ctg	agc	gtg	gag	cca	ggc	tac	cca	cgc	aac	atc	ctg	cgt	gac	tgg	atg	1694
Leu	Ser	Val	Glu	Pro	Gly	Tyr	Pro	Arg	Asn	Ile	Leu	Arg	Asp	Trp	Met	
525					530					535					540	
ggc	tgc	aag	cag	aag	gag	gta	gag	cgg	cgt	aag	gag	cgg	agg	ctg	ccc	1742
Gly	Cys	Lys	Gln	Lys	Glu	Val	Glu	Arg	Arg	Lys	Glu	Arg	Arg	Leu	Pro	
				545					550					555		
cag	gat	gat	gtg	gac	atc	atg	gtg	acc	atc	gat	gac	gtg	cca	ggc	tct	1790
Gln	Asp	Asp	Val	Asp	Ile	Met	Val	Thr	Ile	Asp	Asp	Val	Pro	Gly	Ser	
			560					565					570			

gtg	aac	gct	gtg	gct	gtg	gtt	gtc	ccc	tgc	aca	ctg	tcc	ctc	tgc	ctc	1	838
Val	Asn	Ala	Val	Ala	Val	Val	Val	Pro	Cys	Thr	Leu	Ser	Leu	Cys	Leu		
		575					580					585					

ctg gtg ctg ctc tac act atc ttc caa ttc aag aac aag gcg ggt cct 1886
Leu Val Leu Leu Tyr Thr Ile Phe Gln Phe Lys Asn Lys Ala Gly Pro
590 595 600

cag ccc gtc acc tac tat aag cgg ccg gtc cag gag tgg gta 1928

Gln Pro Val Thr Tyr Tyr Lys Arg Pro Val Gln Glu Trp Val

605 610 615

tgagcagccc agagccctct ctgtctaccc ggtctggcca gccaggccct tcctcaccag 1988
ggtctgaggg gcagctctag ccactgcca ctggggccag cagggctaag gcagggttcg 2048
tgtgtagctg aagtggtgg tgcactggtc taggctgagt gcggggctgg gagtgatggt 2108
ggctatgccc aggttgggta gctggcaccc agctgccagc cttctgtcct gggcagacct 2168
ctctctactc aagggaatag gccaggccct gtcaggagtc aaggatggt ccaggaggtg 2228
cccctgaggt cattgcatcc tgtggtgtt gcaagatacc acagctccag tcctggctg 2288
gacccagccc tctgaggcaa gccagcacta gctctcaccc caccccaaga tgccaccaat 2348
ccccagtcccc tctgccaaca cctgctggtc agatgtcccc tcatccctac cctactatcc 2408
tccaaggctg cagtgccct gatgccaaca gagtgggcaa aagcctgggt ttccctgct 2468

agcccataga gagattecte aggaaacetg ttecaecegt caggteteet etgagaetea 2528 gaacttaggg tcacatgctg caggcaaggc tgtggccagc tggatctcac aaggacccag 2588 ctgtcatgtc gtgaatattt aaatgtcctg tcactactgt ttaaagtccc attttgcaaa 2648 ggctacttga ggctttaggt cagctagagg tgactgtctt ggtgatgagg ccagtatggt 2708 ggcccttccc cgggcactaa ggaccacggt gctgcaaagg ccactcgggc atcctgatac 2768 tagcgggcat cctgttcagg aggctcaaca gctacaggag ctgaccctgg ttctgggggc 2828 ggatgcaagt ttgtgaccat tctctactcc ccctcattaa tgttgtcccc tgccctgctc 2888 cagcctgtcc tctgtggcct gggggctcgg cctgactaca ggtaaagcag agaggattct 2948 agagccaccc ttgtcatctt ctcagagtaa gggaccaggg cagcctttta agttctccat 3008 ctacatcccc agtgaccctg aggcaactca gctccagcct ggagtcggtg tttgtgctcc 3068 tatcttgacc ctggcagccc aggtctctgg gtccatcttc ctgcactgct cttaggaaaa 3128 gggtcctctt cccagctggt agcagcccca ggctttgggg tttcccccaa ctccctaacc 3188 caaactacct ttttgttgtt tgttttaacc tgaggccctt cttcacatct gacagttcct 3248 aagtettggt ttggettget ecaaaaceae tgggtgeaag tgteacteae tggetetetg 3308 ccaaacccaa cggtggtacg aggcggccat caaggtgcta gtgggtcaca gataccaact 3368 ctgacctctg agcctgcatg ggctttgccc ctgccctgtg gtctctcgcc ctgtagcaca 3428 gacagagact ctcgatgccc tgggagttgt tgagtaaaat ctcttgtccc agaagcacct 3488 atgtgggtcc actgtgtccc atctcaccat tgtgttcttg ctcattttgg ccaagggcag 3548 gctccctggg gcaggcgggg aacaactgca gagatttagt gattcatagg tttgtacagc 3608 gttttatact ttgcaaagca ctttattagc tcacagctgt ccactcacat gaaactcctg 3668 taggetetga gagaggetga gggtageact catettacce teagatgaag cacaaggagg 3728 tettattate tgcccetgce atccaggtgg ecctggetgg gtcttgtgte eccateagtg 3788 ggcccttcca gggtccaaga aaactgtctc ttctagtcct ctcctctggg cctccctccc 3848 ccagtcccct ggtccctctc ctcaggttgg tgctcacttc ttgaaagctc taggccccgc 3908 aggeteett ttggeteetg geatteeaag geeagttgeg aaagageagg ggatggagge 3968 aggcagccca ggctgcagat gtgagggaca cagggccggg cccagagagg gctcagccta 4028 gaggetteca atettggatt ettetgeetg eggteatetg tittgteeate ageceaggte 4088 agagcagtca gaggggcaaa gtactggagc ccccagagct cagcttcccc tcggcctggg 4148 tgacatcaca gcatctcagt gtcggtcaca ttttaaactg atcagccttt gtacaatgtt 4208 <210> 8

<211> 2620

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(1935)

<400> 8

ccg ccg ccg ccg ggc cag gcc ccg cgc tgg agc cgc tgg cgg gtc cct 96
Pro Pro Pro Pro Gly Gln Ala Pro Arg Trp Ser Arg Trp Arg Val Pro
20 25 30

gcc gcg cgg gcg gcg gcg gcg gcg ggg gca ggg aac cgg gca gcg 192
Ala Ala Arg Ala Ala Ala Ala Ala Gly Ala Gly Asn Arg Ala Ala
50 55 60

gtg	gcg	gtg	gcg	gtg	gcg	cgg	gcg	gac	gag	gcg	gag	gcg	ccc	ttc	gcc	240
Val	Ala	Val	Ala	Val	Ala	Arg	Ala	Asp	Glu	Ala	Glu	Ala	Pro	Phe	Ala	
65					70					75					80	
ggg	cag	aac	tgg	tta	aag	tcc	tat	ggc	tat	ctg	ctt	ccc	tat	gac	tca	288
Gly	Gln	Asn	Trp	Leu	Lys	Ser	Tyr	Gly	Tyr	Leu	Leu	Pro	Tyr	Asp	Ser	
				85					90					95		
cgg	gca	tct	gcg	ctg	cac	tca	gcg	aag	gcc	ttg	cag	tcg	gca	gtc	tcc	336
Arg	Ala	Ser	Ala	Leu	His	Ser	Ala	Lys	Ala	Leu	Gln	Ser	Ala	Val	Ser	
			100					105					110			
act	atg	cag	cag	ttt	tac	ggg	atc	ccg	gtc	acc	ggt	gtg	ttg	gat	cag	384
Thr	Met	Gln	Gln	Phe	Tyr	Gly	Ile	Pro	Val	Thr	Gly	Val	Leu	Asp	Gln	
		115					120					125				
aca	acg	atc	gag	tgg	atg	aag	aaa	ccc	cga	tgt	ggt	gtc	cct	gat	cac	432
Thr	Thr	Ile	Glu	Trp	Met	Lys	Lys	Pro	Arg	Cys	Gly	Val	Pro	Asp	His	
	130					135					140					
ccc	cac	tta	agc	cgt	agg	cgg	aga	aac	aag	cgc	tat	gcc	ctg	act	gga	480
Pro	His	Leu	Ser	Arg	Arg	Arg	Arg	Asn	Lys	Arg	Tyr	Ala	Leu	Thr	Gly	
145					150					155					160	
cag	aag	tgg	agg	caa	aaa	cac	atc	acc	tac	agc	att	cac	aac	tat	acc	528
Gln	Lys	Trp	Arg	Gln	Lys	His	Ile	Thr	Tyr	Ser	Ile	His	Asn	Tyr	Thr	
				165					170					175		
cca	aaa	gtg	ggt	gag	cta	gac	acg	cgg	aaa	gct	att	cgc	cag	gct	ttc	576

Pro	Lys	Val	Gly	Glu	Leu	Asp	Thr	Arg	Lys	Ala	Ile	Arg	Gln	Ala	Phe	
			180					185					190			
gat	gtg	tgg	cag	aag	gtg	acc	cca	ctg	acc	ttt	gaa	gag	gtg	cca	tac	624
Asp	Val	Trp	Gln	Lys	Val	Thr	Pro	Leu	Thr	Phe	Glu	Glu	Val	Pro	Tyr	
		195					200					205				
cat	gag	atc	aaa	agt	gac	cgg	aag	gag	gca	gac	atc	atg	atc	ttt	ttt	672
His	Glu	Ile	Lys	Ser	Asp	Arg	Lys	Glu	Ala	Asp	Ile	Met	Ile	Phe	Phe	
	210					215					220					
gct	tct	ggt	ttc	cat	ggc	gac	agc	tcc	cca	ttt	gat	gga	gaa	ggg	gga	720
Ala	Ser	Gly	Phe	His	Gly	Asp	Ser	Ser	Pro	Phe	Asp	Gly	Glu	Gly	Gly	
225	-				230					235					240	
ttc	ctg	gcc	cat	gcc	tac	ttc	cct	ggc	cca	ggg	att	gga	gga	gac	acc	768
Phe	Leu	Ala	His	Ala	Tyr	Phe	Pro	Gly	Pro	Gly	Ile	Gly	Gly	Asp	Thr	
				245					250					255		
cac	ttt	gac	tcc	gat	gag	cca	tgg	acg	cta	gga	aac	gcc	aac	cat	gac	816
His	Phe	Asp	Ser	Asp	Glu	Pro	Trp	Thr	Leu	Gly	Asn	Ala	Asn	His	Asp	
			260					265					270			
ggg	aac	gac	ctc	ttc	ctg	gtg	gct	gtg	cat	gag	ctg	ggc	cac	gcg	ctg	864
Gly	Asn	Asp	Leu	Phe	Leu	Val	Ala	Val	His	Glu	Leu	Gly	His	Ala	Leu	
		275					280					285				
gga	ctg	gag	cac	tcc	agc	gac	ccc	agc	gcc	atc	atg	gcg	ссс	ttc	tac	912
Gly	Leu	Glu	His	Ser	Ser	Asp	Pro	Ser	Ala	Ile	Met	Ala	Pro	Phe	Tyr	

cag	tac	atg	gag	acg	cac	aac	ttc	aag	ctg	ccc	cag	gac	gat	ctc	cag	960
Gln	Tyr	Met	Glu	Thr	His	Asn	Phe	Lys	Leu	Pro	Gln	Asp	Asp	Leu	Gln	
305					310					315					320	
ggc	atc	cag	aag	atc	tat	gga	ccc	cca	gcc	gag	cct	ctg	gag	ccc	aca	1008
Gly	Ile	Gln	Lys	Ile	Tyr	Gly	Pro	Pro	Ala	Glu	Pro	Leu	Glu	Pro	Thr	
				325					330					335		
agg	cca	ctc	cct	aca	ctc	ccc	gtc	cgc	agg	atc	cac	tca	cca	tcg	gag	1056
Arg	Pro	Leu	Pro	Thr	Leu	Pro	Val	Arg	Arg	Ile	His	Ser	Pro	Ser	Glu	
			340					345					350			
agg	aaa	cac	gag	cgc	cag	ccc	agg	ccc	cct	cgg	ccg	ccc	ctc	ggg	gac	1104
Arg	Lys	His	Glu	Arg	Gln	Pro	Arg	Pro	Pro	Arg	Pro	Pro	Leu	Gly	Asp	
		355					360					365				
cgg	cca	tcc	aca	cca	ggc	acc	aaa	ccc	aac	atc	tgt	gac	ggc	aac	ttc	1152
Arg	Pro	Ser	Thr	Pro	Gly	Thr	Lys	Pro	Asn	Ile	Cys	Asp	Gly	Asn	Phe	
	370					375					380					
aac	aca	gtg	gcc	ctc	ttc	cgg	ggc	gag	atg	ttt	gtc	ttt	aag	gat	cgc	1200
Asn	Thr	Val	Ala	Leu	Phe	Arg	Gly	Glu	Met	Phe	Val	Phe	Lys	Asp	Arg	
385	•				390					395					400	
tgg	ttc	tgg	cgt	ctg	cgc	aat	aac	cga	gtg	cag	gag	ggc	tac	ccc	atg	1248
Trp	Phe	Trp	Arg	Leu	Arg	Asn	Asn	Arg	Val	Gln	Glu	Gly	Tyr	Pro	Met	
				405					410					415		

(cag	atc	gag	cag	ttc	tgg	aag	ggc	ctg	cct	gcc	cgc	atc	gac	gca	gcc	1296
(Gln	Ile	Glu	Gln	Phe	Trp	Lys	Gly	Leu	Pro	Ala	Arg	Ile	Asp	Ala	Ala	
				420					425					430			
	tat	gaa	agg	gcc	gat	ggg	aga	ttt	gtc	ttc	ttc	aaa	ggt	gac	aag	tat	1344
	Tyr	Glu	Arg	Ala	Asp	Gly	Arg	Phe	Val	Phe	Phe	Lys	Gly	Asp	Lys	Tyr	
			435					440					445				
	tgg	gtg	ttt	aag	gag	gtg	acg	gtg	gag	cct	ggg	tac	ccc	cac	agc	ctg	1392
	Trp	Val	Phe	Lys	Glu	Val	Thr	Val	Glu	Pro	Gly	Tyr	Pro	His	Ser	Leu	
		450					455					460					
	ggg	gag	ctg	ggc	agc	tgt	ttg	ccc	cgt	gaa	ggc	att	gac	aca	gct	ctg	1440
	Gly	Glu	Leu	Gly	Ser	Cys	Leu	Pro	Arg	Glu	Gly	Ile	Asp	Thr	Ala	Leu	
	465					470					475					480	
	cgc	tgg	gaa	cct	gtg	ggc	aag	acc	tac	ttt	ttc	aaa	ggc	gag	cgg	tac	1488
	Arg	Trp	Glu	Pro	Val	Gly	Lys	Thr	Tyr	Phe	Phe	Lys	Gly	Glu	Arg	Tyr	
					485					490					495		
	tgg	cgc	tac	agc	gag	gag	cgg	cgg	gcc	acg	gac	cct	ggc	tac	cct	aag	1536
	Trp	Arg	Tyr	Ser	Glu	Glu	Arg	Arg	Ala	Thr	Asp	Pro	Gly	Tyr	Pro	Lys	
				500					505					510			
	ccc	atc	acc	gtg	tgg	aag	ggc	atc	cca	cag	gct	ccc	caa	gga	gcc	ttc	1584
	Pro	Ile	Thr	Val	Trp	Lys	Gly	Ile	Pro	Gln	Ala	Pro	Gln	Gly	Ala	Phe	
			515					520					525				

atc	agc	aag	gaa	gga	tat	tac	acc	tat	ttc	tac	aag	ggc	cgg	gac	tac	1632
Ile	Ser	Lys	Glu	Gly	Tyr	Tyr	Thr	Tyr	Phe	Tyr	Lys	Gly	Arg	Asp	Tyr	
	530					535					540					
tgg	aag	ttt	gac	aac	cag	aaa	ctg	agc	gtg	gag	cca	ggc	tac	ccg	cgc	1680
Trp	Lys	Phe	Asp	Asn	Gln	Lys	Leu	Ser	Val	Glu	Pro	Gly	Tyr	Pro	Arg	
545					550					555					560	
aac	atc	ctg	cgt	gac	tgg	atg	ggc	tgc	aac	cag	aag	gag	gtg	gag	cgg	1728
Asn	Ile	Leu	Arg	Asp	Trp	Met	Gly	Cys	Asn	Gln	Lys	Glu	Val	Glu	Arg	
				565					570					575		
cgg	aag	gag	cgg	cgg	ctg	ccc	cag	gac	gac	gtg	gac	atc	atg	gtg	acc	1776
Arg	Lys	Glu	Arg	Arg	Leu	Pro	Gln	Asp	Asp	Val	Asp	Ile	Met	Val	Thr	
			580					585					590			
atc	aac	gat	gtg	ccg	ggc	tcc	gtg	aac	gcc	gtg	gcc	gtg	gtc	atc	ccc	1824
Ile	Asn	Asp	Val	Pro	Gly	Ser	Val	Asn	Ala	Val	Ala	Val	Val	Ile	Pro	
		595					600					605				
tgc	atc	ctg	tcc	ctc	tgc	atc	ctg	gtg	ctg	gtc	tac	acc	atc	ttc	cag	1872
Cys	Ile	Leu	Ser	Leu	Cys	Ile	Leu	Val	Leu	Val	Tyr	Thr	Ile	Phe	Gln	
	610					615					620					
ttc	aag	aac	aag	aca	ggc	cct	cag	cct	gtc	acc	tac	tat	aag	cgg	cca	1920
Phe	Lys	Asn	Lys	Thr	Gly	Pro	Gln	Pro	Val	Thr	Tyr	Tyr	Lys	Arg	Pro	
625					630					635	ı				640	
gtc	cag	gaa	tgg	gtg	tga	gcag	ссс	agag	ccct	ct c	tato	cact	t gg	tctg	gcca	1975

gccaggccct tcctcaccag ggtctgaggg gcagctctgg ccagtgctca ccagggccag 2035 cagggcccta ggctggggtc gtacagctga agttgtgggt gcattggcct aggctgagcg 2095 tggggcaggg aattatgggg gctgtgccca gggtgggtgt ctggcaccca gctgccagcc 2155 ttctgtcctg ggcaaactac tccctactta agggaatagg ccaggctcca tccggaggca 2215 gggaccatgc caggaggagc ccctgtggtc acggcatcct gtggtgtcca tgaggtacca 2275 cagctccact cctggctgga acccggcacc ctctgtggga agccagcact agctctcatc 2335 ccccatecgg gagataccae cagteetggt eccettttge caacacetge tggtcagatg 2395 teccectace eccaececae tgteetecaa ggetacagga eccetgette tgacacagtg 2455 agcaacaagc ctgggtttcc ctgctggcag acggcagatc cctcaggaaa cctgctccac 2515 ttgtcagggt ctcttcggag acccaggatt tagggtcaca tgctgcaggc agggctgtgg 2575 2620 cccagctggg tctgacaagg acccgtgtca catcgtgaat attta

<210> 9

<211> 21

<212> DNA

<213> Homo sapiens

<400> 9	
GGTTCCTCTT GTTCCACTTG G	21
<210> 10	
<211> 35	
<212> DNA	
<213> Homo sapiens	
<400> 10	
gtaggaattc gggttgtagg gaggtcgaca ttgcc	35
<210> 11	
<211> 23	
<212> DNA	
<213> Homo sapiens	
<400> 11	
ggcaatgtcg acctccctac aac	23
<210> 12	
<211> 22	
<212> D N A	
<213> Homo sapiens	
<400> 12	
ggagctgtct aaggccatca ca	22
Z210\ 12	

<211> 23	
<212> DNA	
<213> Homo sapiens	
<400> 13	
ctccctacaa cccgaattcc tac	23
<210> 14	
<211> 20	
<212> DNA	
<213> Homo sapiens	
<400> 14	
cttgtgggca gatagggggc	20
<210> 15	
<211> 21	
<212> D N A	
<213> Homo sapiens	
<400> 15	21
cgcgccgagg acctcagcct g	۷1
2010\ 1C	
<210> 16	
<211> 21	
<212> DNA	
<213> Homo sapiens	
<400> 16	
/J/// 10	

<210> 17

<211> 2295

<212> DNA

<213> Homo sapiens

<400> 17

aagagacaag aggtgccttg tgggcagata gggggctggg agggggcctg cccggaagca 60 gtggtggccc gtggcaggct tctcactggg taggaccggg ccctctgttg cacccctca 120 ecctgetete tgeecteagg agtggetaag eaggtteggt tacetgeece eggetgaeee 180 cacaacaggg cagctgcaga cgcaagagga gctgtctaag gccatcacag ccatgcagca 240 gtttggtggc ctggaggcca ccggcatcct ggacgaggcc accctggccc tgatgaaaac 300 cccaegetge teeetgecag accteeetgt cetgacecag getegeagga gaegecagge 360 tecageeece accaagtgga acaagaggaa cetgtegtgg agggteegga egtteecaeg 420 ggactcacca ctggggcacg acacggtgcg tgcactcatg tactacgccc tcaaggtctg 480 gagcgacatt gcgcccctga acttccacga ggtggcgggc agcaccgccg acatccagat 540 cgacttetee aaggeegace ataacgaegg etacceette gaegeeegge ggeaeegtge 600 ccacgccttc ttccccggcc accaccacac cgccgggtac acccacttta acgatgacga 660

ggcctggacc ttccgctcct cggatgccca cgggatggac ctgtttgcag tggctgtcca 720 cgagtttggc cacgccattg ggttaagcca tgtggccgct gcacactcca tcatgcggcc 780 gtactaccag ggcccggtgg gtgacccgct gcgctacggg ctcccctacg aggacaaggt 840 gcgcgtctgg cagctgtacg gtgtgcggga gtctgtgtct cccacggcgc agcccgagga 900 gcctcccctg ctgccggagc ccccagacaa ccggtccagc gccccgccca ggaaggacgt 960 gccccacaga tgcagcactc actttgacgc ggtggcccag atccggggtg aagctttctt 1020 cttcaaaggc aagtacttct ggcggctgac gcgggaccgg cacctggtgt ccctgcagcc 1080 ggcacagatg caccgcttct ggcggggcct gccgctgcac ctggacagcg tggacgccgt 1140 gtacgagcgc accagcgacc acaagatcgt cttctttaaa ggagacaggt actgggtgtt 1200 caaggacaat aacgtagagg aaggataccc gcgccccgtc tccgacttca gcctcccgcc 1260 tggcggcatc gacgctgcct tctcctgggc ccacaatgac aggacttatt tctttaagga 1320 ccagctgtac tggcgctacg atgaccacac gaggcacatg gaccccggct accccgccca 1380 gagcccctg tggagggtg tccccagcac gctggacgac gccatgcgct ggtccgacgg 1440 tgcctcctac ttcttccgtg gccaggagta ctggaaagtg ctggatggcg agctggaggt 1500 ggcacceggg tacceacagt ccaeggeeeg ggactggetg gtgtgtggag acteacagge 1560 cgatggatct gtggctgcgg gcgtggacgc ggcagagggg ccccgcgccc ctccaggaca 1620 acatgaccag agccgctcgg aggacggtta cgaggtctgc tcatgcacct ctggggcatc 1680 ctctccccg ggggccccag gcccactggt ggctgccacc atgctgctgc tgctgccgcc 1740 actgtcacca ggcgccctgt ggacagcggc ccaggccctg acgctatgac acacagcgcg 1800 agcccatgag aggacagagg cggtgggaca gcctggccac agagggcaag gactgtgccg 1860 gagtccctgg gggaggtgct ggcgcgggat gaggacgggc caccctggca ccggaaggcc 1920 agcagaggc acggcccgcc agggctggc aggctcaggt ggcaaggacg gagctgtccc 1980 ctagtgaggg actgtgttga ctgacgagcc gaggggtggc cgctccagaa gggtgcccag 2040 tcaggccgca ccgccgccag cctcctccgg ccctggaggg agcatctcgg gctgggggcc 2100 cacccctctc tgtgccggcg ccaccaaccc cacccacact gctgcctggt gctcccgccg 2160 geccaeaggg ceteegteec eaggteecea gtggggeage ceteeceaea gaegageece 2220 ccacatggtg ccgcggcacg tccccctgt gacgcgttcc agaccaacat gacctctccc 2280 2295 tgctttgtag cggcc

<210> 18

```
<211> 4014
```

<212> DNA

<213> Homo sapiens

<220>

<221> exon

<222> (3148)..(3280)

<220>

<221> exon

<222> (3564)..(3633)

<400> 18

tictgttggg gtgtccctgg caaactagga agtggttccc acceteteae tecageceee 60

aagacggccc eteccaggat gcctagectg agatttgggg cacareceet gageacaaae 120

tegtgttagg taggaggeae ecaecagece tgeeceaeag acceaecaee eeceaagatt 180

egatgecatt etatgeteaa attecagtge eteetgggge cacaggegae agtgeetgtt 240

tateatggge ggggetgeet gteeeggget ggtgeeggg eeetggttet atgagttgaa 300

geaggetgge egeteaeaee tgeaactaaa ecaectgett ecaaacattg ggeaacatte 360

cacageeaet gggagtgetg eetgeeagge eeggeteeae ttteetgaaa tgeatgtgge 420

etegtggeea ggetgeeeag eteeetgggg accagagtgg ggggtgeeee aaacegeeae 480

cgtgaacccc acagagtaaa tgggccactc agtgcagcta ccagccatga cctcagctta 540 tagacgggaa ggctgggggg tgagttgtcc tcccaagggg tctcagcacc tgctggccca 600 acccaggeag cagetggeet gggtgggaaa ggeacetgee tgtgtggaee etteeetggt 660 gagggggcag ggggtcatca tccaatatca tagatgatgt gaggaaactc cagagtgctt 720 cctggaggag gtgacaggct attgtaacca tgaggcacag tggccctgtt gagctgtgat 780 cttaacaaag gactaaaaag tgcagaatgt gctgatgggc atctccagca cctacagcgg 840 tgactgatca tgggacaccc tcagtaaacc ctgcaggtgc aaggtagtgt gggaccggat 900 gctcggggcc aaagatcccc acaccctgga ggtcagggcg gaagtgggag gccagcttgt 960 caaggccaag gctgtcaccc ccaaggcccc tccagagaag ctgcccaccc cagtcatgaa 1020 cgtccacttt gacgtcctgt cgtgcctata gctttggagg ggcccccagt tctgtacaca 1080 ctcttggctt ccccaagggg ctgagggct gggctgggtc agtagggttt ggaaaggggg 1140 taaaggcaca gagggggcc ccgggaagga ctcagtgctt cctggaaggg gaatctcggg 1200 gtgtgcagat cccatgtagt gtcttgtgag gcccctcctg gccagcacgs cctgttgctg 1260 atgcccctgg gacttccagg atggtggtgc ctcattccct ctgagcactg cctgctgkgt 1320 gggcaggagg gttggccagg accaccccat caccagctcc tgcagaccag aacctggagg 1380 cccagcaggt ggcataawtg agtcacaagc attttctttt ttctttttcc ttttttttt 1440 tttaggattt ctttaaaaag ttatgttttt ttcatttatg cattttttta ggttaagcca 1500 catgaaacta ctagtattta ttttaaatca gaaatggtca aaaatgggca ctttcatatg 1560 atttggccaa tgaatacatg agaggtggta aataatagcg attcacaagc attttctaaa 1620 tgtccaggga aaaaaaaaag acaggtttgc aggcagggca gagcccccag cacatcaccc 1680 ctggcttgta cctttctgga gcccgcctca cccctgctgt ggttccctgg gctggcgagt 1740 atccacaggg cagagcagca gcttcatggc agcctgcaag tgggcacagg cgccatttgg 1800 cggttgaaga aactgaagct aggggtggag gtagccccca cagatggcac ccaggcctgc 1860 catececagg tececacgat ggeacecagg tececacaga tggeatecag geececetgt 1920 ccccagggcc cctccagggt agcagagatg actggggcat ggggccaggg cttgatttat 1980 gcccaggtta aagggctgcc ctcattcctg ctcctactca gctccggtgt gggtagcctt 2040 geacceacce cagtgggeec tteagageag agetgteece tgegeeaggt getggtgtga 2100 acattttcca cgtcctggct cacgtcctca tcaccagcct gccaaggact ctgaggaagg 2160 agcccagagg ggtggactgc cttgccccag gcacacagcg gggaggtggc tgagtgggat 2220

ttgaacctag gcagcctggc tggaacctgg cttttgtttc tgagacaggg tctcgctctg 2280 ttgcagacac agtctgcaac tcctgtgctc aaacgatcct cccgcctcag cctcccaaag 2340 tgctgggatc tcaggcataa gccacagcac cggccaagcc tgggctctta tctcccccat 2400 gaatgtacag catggcccaa ttccttaaac tggtgtctga gccacagcct ttctcagctg 2460 gggtcccaga ccttggatgc tagacttccc tgtcacaagt cagctgagag cctgcatttg 2520 acactggcca catttaagag ccttttgaag gttccctagc attttgcggt ctcaggaggc 2580 gtggggtggg gcagggttgc catgagtggt tgtacaggtc gtgcacggca caagctcaca 2640 ccatctaagg gacatcagat ttatttattt attcattttt tagatggagt cttgctctgt 2700 cgcccaggct ggagtgcagt ggcacgatct cggctcactg caagctccgc ctcctgggtt 2760 cccaccactc tcctgcytca gcctcccgag tagctgggac tacaggcacc tgccaccaca 2820 cccggctaat tttttgtatt tttagtagag acggggtttc accatattag ctaggatggt 2880 ctccatctcc tgacctcatg atccgcctgc ctcggcctcc caaactgctg ggattacagg 2940 cgtgagccac agcacccggc cagggacatc aggtttatta agacactttt ccggcagctg 3000 cccagggaag agacagagag gtgccttgtg ggcagatagg gggctgggag ggggcctgcc 3060 cggaagcagt gttggcccgt ggcaggcttc tcactgggta ggaccgggcc ctctgttgca 3120

cccctcacc ctgctctctg ccctcaggag tggctaagca ggttcggtta cctgcccccg 3180 gbtgacccca caacagggca gctgcagacg caagaggagc tgtctaaggc catcacagcc 3240 atgcagcagt ttkgtggcct ggaggchacc ggcatcctgg gtcagttctc cagggggcag 3300 egggagegee gtgseeceeg teaggtetge geeegtegge catgeeceet etgateagge 3360 acagtecegt ettatgettg aatgaacetg ggteetggee tggtgtaget cagageetgg 3420 ggctggtccc ccaaagatga cgtgggagga gggsgcggct cggaggctgg tgccagagtc 3480 aggeteeege cettggggat getegggate etagggtggg gagtgagetg ggetaggete 3540 tgagctccat gctttccctg cagacgaggc caccttggcc ctgatgaaaa ccccacgctg 3600 ctccctgcca gacctcccct gtcctgaccm caggtctcgc agggagacgc acaggtctcm 3660 cagcccccmm mcaagtggac acagagagga acctgtcgtg gaggtgggtg cgtggccagg 3720 gtgaggagcg gggcctccgt ggaggtggsc gcgtggccag ggtgaggaac ggggtctccg 3780 tggaggtggg cgcgtggcca gggtggggaa cggggtctcc gtggaggcgg gtgcgtggcc 3840 agggtgagga acagggtctc cgtggaggtg ggcgcgtggc cagggtgggg aacggggtct 3900 ccgtggaggc gggtgcgtgg ccagggtgag gagtggggcc cccatgtctc cgtgtctggg 3960

cctgctgtag	atatcaagct	tatcgatacc	gtcgacctcg	aggggghcc	gtac	4014
<210> 19						
<211> 21						
<212> D N A	A					
<213> Homo						
	_					
<400> 19						
aatctcccat	cggccctttc	a				21
<210> 20						
<211> 20					-	
<212> D N A	A					
<213> Homo	sapiens					
<400> 20						
atgcacggcc	accaggaaga					20
<210> 21						
<211> 20						
<212> DNA	A					
<213> Homo						
	-					
<400> 21				,		
ggatcagaca	acgatcgagt					20
<210> 22						
<211> 20						
<212> DNA	4					

<213> Homo sapiens

<400> 22

cagcttgaag ttgtgcgtct

20

SEQUENCE LISTING

```
<110> Seiki Motoharu
<120> DNA CODING FOR NOVEL POLYPEPTIDE
<130> 1241.18
<140> US 09/806,232
<141> 2001-03-28
<150> PCT/JP99/05349
<151> 1999-09-29
<150> JP10-276258
<151> 1998-09-29
<150> JP10-291505
<151> 1998-09-29
<160> 22
<470> PatentIn Ver. 2.0
<210> 1
<211> 587
<212> PRT
<213> Mouse
<400> 1
Met Gly Arg Arg Pro Arg Gly Pro Gly Ser Pro Arg Gly Pro Gly Pro
                                      10
Pro Arg Pro Gly Pro Gly Leu Pro Pro Leu Leu Val Leu Ala Leu
Ala Ala His Gly Gly Cys Ala Ala Pro Ala Pro Arg Ala Glu Asp Leu
         35
Ser Leu Gly Val Glu Trp Leu Ser Arg Phe Gly Tyr Leu Pro Pro Ala
                          55
Asp Pro Ala Ser Gly Gln Leu Gln Thr Gln Glu Glu Leu Ser Lys Ala
Ile Thr Ala Met Gln Gln Phe Gly Gly Leu Glu Thr Thr Gly Ile Leu
Asp Glu Ala Thr Leu Ala Leu Met Lys Thr Pro Arg Cys Ser Leu Pro
            100
                                 105
                                                      110
Asp Leu Pro Pro Gly Ala Gln Ser Arg Arg Lys Arg Gln Thr Pro Pro
        115
                             120
                                                  125
```

Pro Thr Lys Trp Ser Lys Arg Asn Leu Ser Trp Arg Val Arg Thr Phe 135 Pro Arg Asp Ser Pro Leu Gly Arg Asp Thr Val Arg Ala Leu Met Tyr 150 155 Tyr Ala Leu Lys Val Trp Ser Asp Ile Thr Pro Leu Asn Phe His Glu 165 170 Val Ala Gly Asn Ala Ala Asp Ile Gln Ile Asp Phe Ser Lys Ala Asp 180 185 His Asn Asp Gly Tyr Pro Phe Asp Gly Pro Gly Gly Thr Val Ala His 200 Ala Phe Phe Pro Gly Asp His His Thr Ala Gly Asp Thr His Phe Asp 215 Asp Asp Glu Pro Trp Thr Phe Arg Ser Ser Asp Ala His Gly Met Asp 225 230 La Phe Ala Val Ala Val His Glu Phe Gly His Ala Ile Gly Leu Ser 245 250 D. His Val Ala Ala Pro Ser Ser Ile Met Gln Pro Tyr Tyr Gln Gly Pro 265 Gly Asp Pro Val Arg Tyr Gly Leu Pro Tyr Glu Asp Arg Val Arg 275 Trp Gln Leu Tyr Gly Val Arg Glu Ser Val Ser Pro Thr Ala Gln 290 300 Led Asp Thr Pro Glu Pro Glu Pro Pro Leu Leu Pro Glu Pro Pro 315 Asn Asn Arg Ser Ser Thr Pro Pro Gln Lys Asp Val Pro His Arg Cys 325 335 Thr Ala His Phe Asp Ala Val Ala Gln Ile Arg Gly Glu Ala Phe Phe 340 345 Phe Lys Gly Lys Tyr Phe Trp Arg Leu Thr Arg Asp Arg His Leu Val 360 Ser Leu Gln Pro Ala Gln Met His Arg Phe Trp Arg Gly Leu Pro Leu 370 375 380 His Leu Asp Ser Val Asp Ala Val Tyr Glu Arg Thr Ser Asp His Lys 385 390 395 400 Ile Val Phe Phe Lys Gly Asp Arg Tyr Trp Val Phe Lys Asp Asn Asn

Val Glu Glu Gly Tyr Pro Arg Pro Val Ser Asp Phe Ser Leu Pro Pro Gly Gly Ile Asp Ala Val Phe Ser Trp Ala His Asn Asp Arg Thr Tyr Phe Phe Lys Asp Gln Leu Tyr Trp Arg Tyr Asp Asp His Thr Arg Arg $\frac{1}{450}$

Met Asp Pro Gly Tyr Pro Ala Gln Gly Pro Leu Trp Arg Gly Val Pro 465 470 475 480

Ser Met Leu Asp Asp Ala Met Arg Trp Ser Asp Gly Ala Ser Tyr Phe
485 490 495

Phe Arg Gly Gln Glu Tyr Trp Lys Val Leu Asp Gly Glu Leu Glu Ala 500 505 510

Ala Pro Gly Tyr Pro Gln Ser Thr Ala Arg Asp Trp Leu Val Cys Gly
515 520 525

Giu Pro Leu Ala Asp Ala Glu Asp Val Gly Pro Gly Pro Gln Gly Arg
530 535 540

Ser Gly Ala Gln Asp Gly Leu Ala Val Cys Ser Cys Thr Ser Asp Ala 545 550 550 555

Hrs Arg Leu Ala Leu Pro Ser Leu Leu Leu Leu Thr Pro Leu Leu Trp
565 570 575

Gly Leu Trp Thr Ser Val Ser Ala Lys Ala Ser 580 585

<210> 2

<211> 606

<212> PRT

<213> Homo sapiens

<400> 2

Met Arg Arg Ala Ala Arg Gly Pro Gly Pro Pro Pro Pro Gly Pro

1 5 10 15

Gly Leu Ser Arg Leu Pro Leu Leu Pro Leu Pro Leu Leu Leu Leu 20 25 30

Ala Leu Gly Thr Arg Gly Gly Cys Ala Ala Pro Glu Pro Ala Arg Arg 35 40 45

Ala Glu Asp Leu Ser Leu Gly Val Glu Trp Leu Ser Arg Phe Gly Tyr
50 60

Leu Pro Pro Ala Asp Pro Thr Thr Gly Gln Leu Gln Thr Gln Glu Glu Leu Ser Lys Ala Ile Thr Ala Met Gln Gln Phe Gly Gly Leu Glu Ala Thr Gly Ile Leu Asp Glu Ala Thr Leu Ala Leu Met Lys Thr Pro Arg 105 Cys Ser Leu Pro Asp Leu Pro Val Leu Thr Gln Ala Arg Arg Arg Arg Gln Ala Pro Ala Pro Thr Lys Trp Asn Lys Arg Asn Leu Ser Trp Arg 135 Val Arg Thr Phe Pro Arg Asp Ser Pro Leu Gly His Asp Thr Val Arg Ala Leu Met Tyr Tyr Ala Leu Lys Val Trp Ser Asp Ile Ala Pro Leu 165 175 Asn Phe His Glu Val Ala Gly Ser Thr Ala Asp Ile Gln Ile Asp Phe 180 185 CJ Lys Ala Asp His Asn Asp Gly Tyr Pro Phe Asp Gly Pro Gly Gly 200 Val Ala His Ala Phe Phe Pro Gly His His His Thr Ala Gly Asp 210 His Phe Asp Asp Glu Ala Trp Thr Phe Arg Ser Ser Asp Ala 235 His Gly Met Asp Leu Phe Ala Val Ala Val His Glu Phe Gly His Ala 245 250 Ile Gly Leu Ser His Val Ala Ala Ala His Ser Ile Met Arg Pro Tyr 260 270 Tyr Gln Gly Pro Val Gly Asp Pro Leu Arg Tyr Gly Leu Pro Tyr Glu 280 Asp Lys Val Arg Val Trp Gln Leu Tyr Gly Val Arg Glu Ser Val Ser 295 Pro Thr Ala Gln Pro Glu Glu Pro Pro Leu Leu Pro Glu Pro Pro Asp 305 320 Asn Arg Ser Ser Ala Pro Pro Arg Lys Asp Val Pro His Arg Cys Ser 325 330 335 Thr His Phe Asp Ala Val Ala Gln Ile Arg Gly Glu Ala Phe Phe Phe

340 345 350

Lys Gly Lys Tyr Phe Trp Arg Leu Thr Arg Asp Arg His Leu Val Ser 360 365 Leu Gln Pro Ala Gln Met His Arg Phe Trp Arg Gly Leu Pro Leu His 375 Leu Asp Ser Val Asp Ala Val Tyr Glu Arg Thr Ser Asp His Lys Ile 385 400 Val Phe Phe Lys Gly Asp Arg Tyr Trp Val Phe Lys Asp Asn Asn Val 410 Glu Glu Gly Tyr Pro Arg Pro Val Ser Asp Phe Ser Leu Pro Pro Gly 425 Gly Ile Asp Ala Ala Phe Ser Trp Ala His Asn Asp Arg Thr Tyr Phe 435 440 Phe Lys Asp Gln Leu Tyr Trp Arg Tyr Asp Asp His Thr Arg His Met 450 460 Asp Pro Gly Tyr Pro Ala Gln Ser Pro Leu Trp Arg Gly Val Pro Ser 465 470 480 LJ. The Leu Asp Asp Ala Met Arg Trp Ser Asp Gly Ala Ser Tyr Phe Phe 490 Arg Gly Gln Glu Tyr Trp Lys Val Leu Asp Gly Glu Leu Glu Val Ala 500 Gly Tyr Pro Gln Ser Thr Ala Arg Asp Trp Leu Val Cys Gly Asp 515 520 Ser Gln Ala Asp Gly Ser Val Ala Ala Gly Val Asp Ala Ala Glu Gly 535 Pro Arg Ala Pro Pro Gly Gln His Asp Gln Ser Arg Ser Glu Asp Gly 545 550 555 Tyr Glu Val Cys Ser Cys Thr Ser Gly Ala Ser Ser Pro Pro Gly Ala 565 575 Pro Gly Pro Leu Val Ala Ala Thr Met Leu Leu Leu Pro Pro Leu 585 Ser Pro Gly Ala Leu Trp Thr Ala Ala Gln Ala Leu Thr Leu 595 600

<210> 3 <211> 3517

```
<212> DNA
 <213> Mouse
 <220>
 <221> CDS
 <222> (86)..(1846)
 <400> 3
 ggcacgaggg cgcggagccg agcgaggcgc ggagctggct gctggcgggt gcggggaccc 60
 tegecaceeg acetgggaga geggg atg gga ege ege eeg egg gga eet ggg
                             Met Gly Arg Arg Pro Arg Gly Pro Gly
 tcc ccc cgg gga cct ggc cct cca cgc ccc ggg ccg ggg ctg cca cca
                                                                    160
 Ser Pro Arg Gly Pro Gly Pro Pro Arg Pro Gly Pro Gly Leu Pro Pro
  10
 ctg ctg ctt gta ctg gcg ctg gcc cat ggg ggc tgc gca gcg ccc
                                                                    208
Len Leu Val Leu Ala Leu Ala Ala His Gly Gly Cys Ala Ala Pro
gg ccc cgc gcg gag gac ctc agc ctc ggg gtg gag tgg cta agc agg
Ala Pro Arg Ala Glu Asp Leu Ser Leu Gly Val Glu Trp Leu Ser Arg
                                                                    256
 50
 ggc tac ctg ccg cct gca gat ccg gca tca ggg cag cta cag acc
tet
                                                                   304
Phe Gly Tyr Leu Pro Pro Ala Asp Pro Ala Ser Gly Gln Leu Gln Thr
         6.0
cad gag gaa ctg tcc aaa gcg att act gcc atg cag cag ttt ggt ggt
                                                                   352
    Glu Glu Leu Ser Lys Ala Ile Thr Ala Met Gln Gln Phe Gly Gly
     75
ctg gag acc act ggc atc cta gat gag gcc act ctg gcc ctg atg aaa
                                                                   400
Leu Glu Thr Thr Gly Ile Leu Asp Glu Ala Thr Leu Ala Leu Met Lys
                                         100
                                                             105
acc cct cga tgc tcc ctt ccg gac ctg ccc cct ggg gcc caa tcg aga
                                                                   448
Thr Pro Arg Cys Ser Leu Pro Asp Leu Pro Pro Gly Ala Gln Ser Arg
                110
agg aag cgg cag act cca ccc cca acc aaa tgg agc aag agg aac ctt
                                                                   496
Arg Lys Arg Gln Thr Pro Pro Pro Thr Lys Trp Ser Lys Arg Asn Leu
            125
                                                     135
tct tgg agg gtc cgg aca ttc cca cgg gac tca ccc ctg ggc cgg gat
                                                                   544
Ser Trp Arg Val Arg Thr Phe Pro Arg Asp Ser Pro Leu Gly Arg Asp
        140
                            145
act gtg cgt gca ctc atg tac tac gcc ctc aaa gtc tgg agt gac atc
                                                                   592
Thr Val Arg Ala Leu Met Tyr Tyr Ala Leu Lys Val Trp Ser Asp Ile
```

ac Th 17	T PT	c tto D Lev	g aac 1 Asr	tto Phe	cac His	GIU	gta Val	gcg Ala	Gl ^y	c aac Asr 180	ı Ala	gcg Ala	gac As <u>r</u>	ato Ile	cag Gln 185	640
at Il	c gad e Asp	tto Phe	tcc Ser	aag Lys 190	Ата	gac Asp	cac His	aat Asn	gac Asp 195	Gly	tac Tyr	ccc Pro	tto Phe	gat Asp 200	Gly	688
cc Pr	t ggt o Gly	ggc Gly	acg Thr 205	var	gcc Ala	cac His	gca Ala	ttc Phe 210	Phe	cct Pro	ggt Gly	gac Asp	cac His 215	His	acg Thr	736
gc. Ala	a ggg a Gly	gac Asp 220	Inr	cac His	ttt Phe	gat Asp	gac Asp 225	gat Asp	gag Glu	cca Pro	tgg Trp	acc Thr 230	ttc Phe	cgt Arg	tcc Ser	784
tc: Sell		ALA	cac His	Gly 333	atg Met	gac Asp 240	ctg Leu	ttt Phe	gca Ala	gtg Val	gcc Ala 245	gtc Val	cat His	gag Glu	ttt Phe	832
991 GIS 250	cat His	gcc Ala	att Ile	ggt Gly	ctg Leu 255	agc Ser	cat His	gtt Val	gcc Ala	gcc Ala 260	cca Pro	agc Ser	tcc Ser	atc Ile	atg Met 265	880
ca Glr	a ccg 1 Pro	tac Tyr	tac Tyr	cag Gln 270	ggc Gly	ccc Pro	gtg Val	ggt Gly	gac Asp 275	ccc Pro	gta Val	cgc Arg	tat Tyr	gga Gly 280	ctt Leu	928
CG C	tat Tyr	gag Glu	gac Asp 285	agg Arg	gtg Val	cgt Arg	gtc Val	tgg Trp 290	cag Gln	ttg Leu	tac Tyr	ggt Gly	gtg Val 295	cgg Arg	gaa Glu	976
t đồ Ser	gtg Val	tcc Ser 300	cct Pro	act Thr	gcc Ala	cag Gln	ctg Leu 305	gat Asp	acc Thr	cca Pro	gag Glu	ccc Pro 310	gag Glu	gag Glu	cca Pro	1024
ccc Pro	ctc Leu 315	ctg Leu	cca Pro	gag Glu	ccc Pro	ccc Pro 320	aac Asn	aat Asn	cgg Arg	tct Ser	agc Ser 325	act Thr	ccg Pro	ccc Pro	cag Gln	1072
aag Lys 330	gac Asp	gtg Val	cct Pro	cac His	agg Arg 335	tgc Cys	act Thr	gcc Ala	cac His	ttt Phe 340	gat Asp	gct Ala	gtg Val	gcc Ala	cag Gln 345	1120
att Ile	cga Arg	ggc Gly	gaa Glu	gca Ala 350	ttc Phe	ttt Phe	ttc Phe	aaa Lys	ggc Gly 355	aag Lys	tat Tyr	ttc Phe	tgg Trp	agg Arg 360	ctg Leu	1168
acc Thr	cgg Arg	gac Asp	cga Arg	cac His	ttg Leu	gtg Val	tcg Ser	ctg Leu	cag Gln	ccg Pro	gct Ala	caa Gln	atg Met	cat His	cgc Arg	1216

tto Phe	tgg Trp	g cgg Arg 380	l GTÀ	ctg Leu	g ccg L Pro	ctg Leu	cac His 385	Leu	gac Asp	agt Ser	gtg Val	gac Asp 390	Ala	gtg Val	g tat Tyr	1264
gag Glu	cgt Arg 395	Thr	agt Ser	gac Asp	cac His	aag Lys 400	Ile	gto Val	ttc Phe	ttc Phe	aaa Lys 405	Gly	gac Asp	aga Arg	tac Tyr	1312
tgg Trp 410	Val	ttt Phe	aag Lys	gac Asp	aac Asn 415	aac Asn	gta Val	gag Glu	gaa Glu	999 Gly 420	Tyr	ccg Pro	cga Arg	cct Pro	gtc Val 425	1360
tcc Ser	gac Asp	ttc Phe	agc Ser	ctc Leu 430	ccg Pro	cca Pro	ggt Gly	gly	atc Ile 435	gat Asp	gct Ala	gtc Val	ttc Phe	tcc Ser 440	tgg Trp	1408
gcc Ala	cac His	aat Asn	gac Asp 445	agg Arg	act Thr	tat Tyr	ttc Phe	ttt Phe 450	aag Lys	gac Asp	cag Gln	ctg Leu	tac Tyr 455	tgg Trp	cgc Arg	1456
tal Tvr	gat Asp	gac Asp 460	cac His	aca Thr	cgg Arg	cgc Arg	atg Met 465	gac Asp	cct Pro	ggc Gly	tac Tyr	cct Pro 470	gcc Ala	cag Gln	gga Gly	1504
C Pro	ctg Leu 475	tgg Trp	aga Arg	ggt Gly	gtc Val	ccc Pro 480	agc Ser	atg Met	ttg Leu	gat Asp	gat Asp 485	gcc Ala	atg Met	cgc Arg	tgg Trp	1552
t 5 4 9 1	gat Asp	ggt Gly	gca Ala	tcc Ser	tat Tyr 495	ttc Phe	ttc Phe	cga Arg	ggc Gly	cag Gln 500	gag Glu	tac Tyr	tgg Trp	aaa Lys	gtg Val 505	1600
ctģ Leu	gat Asp	ggc Gly	gag Glu	ctg Leu 510	gaa Glu	gca Ala	gcc Ala	ccc Pro	999 Gly 515	tac Tyr	cca Pro	cag Gln	tct Ser	aca Thr 520	gcc Ala	1648
cgc Arg	gac Asp	tgg Trp	ctg Leu 525	gta Val	tgc Cys	ggt Gly	gag Glu	ccg Pro 530	ctg Leu	gcg Ala	gat Asp	gcg Ala	gag Glu 535	gat Asp	gta Val	1696
gly aaa	cct Pro	gga Gly 540	ccc Pro	cag Gln	ggc Gly	cgc Arg	agt Ser 545	Gly aaa	gcc Ala	caa Gln	gat Asp	ggt Gly 550	ctg Leu	gca Ala	gta Val	1744
tgt Cys	tcc Ser 555	tgc Cys	act Thr	tca Ser	gac Asp	gca Ala 560	cac His	agg Arg	ttg Leu	gca Ala	ctg Leu 565	cca Pro	tct Ser	ctg Leu	ctg Leu	1792
ctt Leu	ctg Leu	act Thr	cca Pro	ctg Leu	ctg Leu	tgg Trp	ggc Gly	ctg Leu	tgg Trp	acc Thr	tca Ser	gtc Val	tct Ser	gcc Ala	aag Lys	1840

570

gca tcc tgagggcagt gctagccttg cggatcaagg agccagggga gcagggacac 1896 Ala Ser actggccagt actcagcagg acttgtgctc caagcttccg gtccctcgct ccttccttcc 1956 tteetteett gaacccaggg gtgetgtgee atetgetgga gtggteteea getgggaeag 2016 gacgtcccac caagggcatc catgcacacc ttgcctacct ggagcagcca taggcagctc 2076 ccettecete etetgeacat caegetgett egttgeacet tgeegggetg cecaageeca 2136 gctgtcacaa ccccaggatg ccttgtctgc acctgagegg ctctgatggc atctgcacgt 2196 gggctgatga ggggcaaaca ggggttcctc gtggtatccg taggggccac catgcctgtt 2256 tcacaagtaa gaqaqttgat gccccgatgg gggaacaggg tgggagaaag gcacctaccc 2316 a a a again a de la contra del contra de la contra del contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra del contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra del contra de la contra del cont agtcacactc aggatctgcc cacagattcc cagatgctgg caaggggcct tgctccaact 2436 a@caggagca cagccacctc tccccgtcct agataggtta gccatggagg ctgtgtcctg 2496 thatctccct ctctttggcc aggagagcat tgtgggtctc cctcgggtgc tgttgatggg 2556 ggtggggggc gcccatagag atatttcttc atctgtcagt acccattgct tcagcaagat 2616 geeccatat agttctggcc tgagaccctg cagcttggac tcacagctgt cccctcccca 2676 getgcagaag ggcttctaac acctggaata aaggtgggcg ttcagtttag ggaaggagga 2736 t∰gttggggg agcccagggt gatagcaagg gggagctgca gggataagtg tcagggtcct 2796 cggggagtca tgacaatgtt accgcctaac ttggagatgt aggagctgtg cacggattgc 2856 ttctctgggt gacaaacctc catggtccag aaaggggctg aggttgaacc caagatgggt 2916 taatgagete cagaaaggaa cagecaagtt caaaggttet gggacaagae gggeetgagg 2976 aacagggcca cccaggtagg cgtggctgta gggtaagcag tttctgtcat tgggcacgag 3036

atgaaaatta gtgatcacac gcacataccc ccctccccaa ctggcccggt cccatctcag 3096

gtaagaaagg cttctgtcta ccccaggcca ggtttgagtg ttgtcaggat gagtgagcag 3156

ctagegggge ctaagtttet accetecatt teccaageet ggecacacee tagacecetg 3216

tcagactagg caggacagag tcaggggtag gggcatctga ggtttccctg tcttggaagc 3276

caccctactc tgccctcata tcaaagcacg ctcctatgat gtcccatgtt gtccaccagc 3336

ctgcaggaca cagatgtcct atacagcaac agggaaagtc caaaaatctt tgtcacatag 3396 cactgaaaac cagacccgca ggctggagct gtctagatgc tggtgtcaca ctcattttaa 3456 а 3517 <210> 4 <211> 2438 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (100)..(1917) <400> 4 ccggcggggg cgccgcggag agcggagggc gccgggctgc ggaacgcgaa gcggagggcg 60 cagagaccctg cacgccgccc gcgggcccat gtgagcgcc atg cgg cgc cgc gca 114 Met Arg Arg Arg Ala gate cgg gga ccc ggc ccg ccc cca ggg ccc gga ctc tcg cgg ctg 162 Ala Arg Gly Pro Gly Pro Pro Pro Pro Gly Pro Gly Leu Ser Arg Leu 10 20 ceg ctg ctg ccg ctg ctg ctg ctg ctg ctg gcg ctg ggg acc cgc 210 Pro Leu Leu Pro Leu Pro Leu Leu Leu Leu Ala Leu Gly Thr Arg 25 35 ggg ggc tgc gcc gcg ccg gaa ccc gcg cgg cgc gcc gag gac ctc agc 258 Gly Cys Ala Ala Pro Glu Pro Ala Arg Arg Ala Glu Asp Leu Ser 40 ctg gga gtg gag tgg cta agc agg ttc ggt tac ctg ccc ccg gct gac 306 Leu Gly Val Glu Trp Leu Ser Arg Phe Gly Tyr Leu Pro Pro Ala Asp 55 60 65 ccc aca aca ggg cag ctg cag acg caa gag gag ctg tct aag gcc atc 354 Pro Thr Thr Gly Gln Leu Gln Thr Gln Glu Glu Leu Ser Lys Ala Ile 70 75 85 aca gcc atg cag cag ttt ggt ggc ctg gag gcc acc ggc atc ctg gac 402 Thr Ala Met Gln Gln Phe Gly Gly Leu Glu Ala Thr Gly Ile Leu Asp 90 95 100 gag gee ace etg gee etg atg aaa ace eea ege tge tee etg eea gae 450 Ğlu Ala Thr Leu Ala Leu Met Lys Thr Pro Arg Cys Ser Leu Pro Asp

110

105

	ctc Leu	cct Pro	gto Val 120	те.	g acc . Thr	cag Gln	gct Ala	cgc Arg 125	Arg	aga Arg	cgc Arg	cag Gln	gct Ala 130	Pro	a gco Ala	c ccc a Pro	498
	acc Thr	aag Lys 135	ıτħ	aac Asn	: aag Lys	agg Arg	aac Asn 140	. Leu	tcg Ser	tgg Trp	agg Arg	gtc Val 145	Arg	acg Thr	tto Phe	c cca Pro	546
	cgg Arg 150	gac Asp	tca Ser	cca Pro	ctg Leu	999 Gly 155	cac His	gac Asp	acg Thr	gtg Val	cgt Arg 160	Ala	ctc Leu	atg Met	tac Tyr	tac Tyr 165	594
	gcc Ala	ctc Leu	aag Lys	gtc Val	tgg Trp 170	agc Ser	gac Asp	att Ile	gcg Ala	ccc Pro 175	ctg Leu	aac Asn	ttc Phe	cac His	gag Glu 180	gtg Val	642
	gcg Ala	ggc Gly	agc Ser	acc Thr 185	gcc Ala	gac Asp	atc Ile	cag Gln	atc Ile 190	gac Asp	ttc Phe	tcc Ser	aag Lys	gcc Ala 195	gac Asp	cat His	690
	aac Ash	gac Asp	ggc Gly 200	tac Tyr	ccc Pro	ttc Phe	gac Asp	ggc Gly 205	ccc Pro	ggc Gly	ggc Gly	acc Thr	gtg Val 210	gcc Ala	cac His	gcc Ala	738
	P II E	ttc Phe 215	ccc Pro	ggc Gly	cac His	cac His	cac His 220	acc Thr	gcc Ala	Gly 999	gac Asp	acc Thr 225	cac His	ttt Phe	gac Asp	gat Asp	786
1	9ac Asp 230	gag Glu	gcc Ala	tgg Trp	acc Thr	ttc Phe 235	cgc Arg	tcc Ser	tcg Ser	gat Asp	gcc Ala 240	cac His	gly aaa	atg Met	gac Asp	ctg Leu 245	834
]	t tit Phé	gca Ala	gtg Val	gct Ala	gtc Val 250	cac His	gag Glu	ttt Phe	ggc Gly	cac His 255	gcc Ala	att Ile	gly ggg	tta Leu	agc Ser 260	cat His	882
7	gtg /al	gcc Ala	gct Ala	gca Ala 265	cac His	tcc Ser	atc Ile	Met	cgg Arg 270	ccg Pro	tac Tyr	tac Tyr	cag Gln	ggc Gly 275	ccg Pro	gtg Val	930
	ggt Gly	gac Asp	ccg Pro 280	ctg Leu	cgc Arg	tac Tyr	gly aaa	ctc Leu 285	ccc Pro	tac Tyr	gag Glu	gac Asp	aag Lys 290	gtg Val	cgc Arg	gtc Val	978
t T	·τρ	cag Gln 295	ctg Leu	tac Tyr	ggt Gly	Val	cgg Arg 300	gag Glu	tct Ser	gtg Val	Ser	ccc Pro 305	acg Thr	gcg Ala	cag Gln	ccc Pro	1026
<u>_</u>	jag Slu S10	gag Glu	cct Pro	ccc Pro	ctg Leu	ctg Leu 315	ccg Pro	gag Glu	ccc Pro	Pro	gac Asp 320	aac Asn	cgg Arg	tcc Ser	agc Ser	gcc Ala 325	1074

			gtg Val						1122
			ggt Gly					ttc Phe	1170
			gac Asp					cag Gln	1218
			cgg Arg						1266
			acc Thr 395						1314
			ttc Phe					ccg Pro	1362
			ttc Phe						1410
			aat Asn						1458
tạc Tyr			gac Asp						1506
			tgg Trp 475						1554
			ggt Gly						1602
			ggc Gly						1650
			tgg Trp						1698

														cct Pro		1746
														tgc Cys		1794
														ctg Leu 580		1842
														gcc Ala		1890
			gcc Ala						tgad	cacad	cag (cgcga	agcc	ca		1937
100	gagga	aca (gaggo	cggts	gg ga	acago	cctg	g cca	acaga	aggg	caaç	ggact	gt	gccg	gagtcc	1997
c E go	9999	agg 1	tgcts	ggcgo	cg gg	gatga	aggad	gg(gccad	ccct	ggca	accgo	gaa	ggcca	agcaga	2057
ට <u>ම්</u> බ්ර	cacgo	jcc (cgcca	aggg	ct go	gcaç	ggcto	agg	gtggd	caag	gaco	ggago	ctg	tccc	ctagtg	2117
aggg	jacts	jtg 1	ttgad	ctgad	cg ag	geega	19999	g tgg	gccgo	ctcc	agaa	agggt	gc	ccagt	caggc	2177
C∰€ a	accgo	cg (ccago	cata	et co	ggc	cctgg	g agg	ggago	catc	tcgg	gcto	999	ggcc	cacccc	2237
tď	etgte	JCC (ggcgo	ccaco	ca ac	ccca	accca	a cac	ctgct	gcc	tggt	gcto	ccc	gccg	gcccac	2297
add	jccto	cg 1	tacad	caggt	c c	cagt	9999	g cag	gccct	ccc	caca	agaco	gag	cccc	cacat	2357
gģt	accgo	gg (cacgt	cccc	cc ct	gtga	acgcs	j tto	caga	acca	acat	gaco	ctc	tccct	gcttt	2417
gtaa	aaaa	aa a	aaaaa	aaaa	aa a											2438

<210> 5

<211> 618

<212> PRT

<213> Mouse

<400> 5

Met Pro Arg Ser Arg Gly Gly Arg Ala Ala Pro Gly Gln Ala Ser Arg 1 5 10 15

Trp Ser Gly Trp Arg Ala Pro Gly Arg Leu Leu Pro Leu Leu Pro Ala 20 25 30

Leu Cys Cys Leu Ala Ala Ala Gly Ala Gly Lys Pro Ala Gly Ala

Asp	Ala 50	Pro	Phe	Ala	Gly	Gln 55	Asn	Trp	Leu	Lys	Ser 60	Tyr	Gly	Tyr	Leu
Leu 65	Pro	Tyr	Glu	Ser	Arg 70	Ala	Ser	Ala	Leu	His 75	Ser	Gly	Lys	Ala	Leu 80
Gln	Ser	Ala	Val	Ser 85	Thr	Met	Gln	Gln	Phe 90	Tyr	Gly	Ile	Pro	Val 95	Thr
Gly	Val	Leu	Asp 100	Gln	Thr	Thr	Ile	Glu 105	Trp	Met	Lys	Lys	Pro 110	Arg	Cys
Gly	Val	Pro 115	Asp	His	Pro	His	Leu 120	Ser	Arg	Arg	Arg	Arg 125	Asn	Lys	Arg
Tyr	Ala 130	Leu	Thr	Gly	Gln	Lys 135	Trp	Arg	Gln	Lys	His 140	Ile	Thr	Tyr	Ser
IID 145	His	Asn	Tyr	Thr	Pro 150	Lys	Val	Gly	Glu	Leu 155	Asp	Thr	Arg	Lys	Ala 160
I te	Arg	Gln	Ala	Phe 165	Asp	Val	Trp	Gln	Lys 170	Val	Thr	Pro	Leu	Thr 175	Phe
G	Glu	Val	Pro 180	Tyr	His	Glu	Ile	Lys 185	Ser	Asp	Arg	Lys	Glu 190	Ala	Asp
ITÉ	Met	Ile 195	Phe	Phe	Ala	Ser	Gly 200	Phe	His	Gly	Asp	Ser 205	Ser	Pro	Phe
ASP	Gly 210	Glu	Gly	Gly	Phe	Leu 215	Ala	His	Ala	Tyr	Phe 220	Pro	Gly	Pro	Gly
Ile 225	Gly	Gly	Asp	Thr	His 230	Phe	Asp	Ser	Asp	Glu 235	Pro	Trp	Thr	Leu	Gly 240
Asn	Ala	Asn	His	Asp 245	Gly	Asn	Asp	Leu	Phe 250	Leu	Val	Ala	Val	His 255	Glu
Leu	Gly	His	Ala 260	Leu	Gly	Leu	Glu	His 265	Ser	Asn	Asp	Pro	Ser 270	Ala	Ile
Met	Ala	Pro 275	Phe	Tyr	Gln	Tyr	Met 280	Glu	Thr	His	Asn	Phe 285	Lys	Leu	Pro
Gln	Asp 290	Asp	Leu	Gln	Gly	Ile 295	Gln	Lys	Ile	Tyr	Gly 300	Pro	Pro	Ala	Glu
Pro 305	Leu	Glu	Pro	Thr	Arg 310	Pro	Leu	His	Thr	Leu 315	Pro	Val	Arg	Arg	Ile 320

His Ser Pro Ser Glu Arg Lys His Glu Arg His Pro Arg Pro Pro Arg 330 Pro Pro Leu Gly Asp Arg Pro Ser Thr Pro Gly Ala Lys Pro Asn Ile Cys Asp Gly Asn Phe Asn Thr Val Ala Leu Phe Arg Gly Glu Met Phe 355 360 Val Phe Lys Asp Arg Trp Phe Trp Arg Leu Arg Asn Asn Arg Val Gln 380 Glu Gly Tyr Pro Met Gln Ile Glu Gln Phe Trp Lys Gly Leu Pro Ala 390 Arg Ile Asp Ala Ala Tyr Glu Arg Ala Asp Gly Arg Phe Val Phe 405 410 Lys Gly Asp Lys Tyr Trp Val Phe Lys Glu Val Thr Val Glu Pro Gly 420 IJŽ Tyr Pro His Ser Leu Gly Glu Leu Gly Ser Cys Leu Pro Arg Glu Gly 440 Is Asp Thr Ala Leu Arg Trp Glu Pro Val Gly Lys Thr Tyr Phe Phe 450 455 Lys Gly Glu Arg Tyr Trp Arg Tyr Ser Glu Glu Arg Arg Ala Thr Asp 470 480 Pro Gly Tyr Pro Lys Pro Ile Thr Val Trp Lys Gly Ile Pro Gln Ala 485 490 Gln Gly Ala Phe Ile Ser Lys Glu Gly Tyr Tyr Thr Tyr Phe Tyr 505 Lys Gly Arg Asp Tyr Trp Lys Phe Asp Asn Gln Lys Leu Ser Val Glu 515 Pro Gly Tyr Pro Arg Asn Ile Leu Arg Asp Trp Met Gly Cys Lys Gln 535 Lys Glu Val Glu Arg Arg Lys Glu Arg Arg Leu Pro Gln Asp Asp Val 555 Asp Ile Met Val Thr Ile Asp Asp Val Pro Gly Ser Val Asn Ala Val 565 570 Ala Val Val Pro Cys Thr Leu Ser Leu Cys Leu Leu Val Leu Leu 580 590 Tyr Thr Ile Phe Gln Phe Lys Asn Lys Ala Gly Pro Gln Pro Val Thr

595 600 605

Tyr Tyr Lys Arg Pro Val Gln Glu Trp Val 610 615

<210> 6

<211> 645

<212> PRT

<213> Homo sapiens

<400> 6

Met Pro Arg Ser Arg Gly Gly Arg Ala Ala Pro Gly Pro Pro Pro 1 5 10 15

Pro Pro Pro Gly Gln Ala Pro Arg Trp Ser Arg Trp Arg Val Pro
20 25 30

Gly Arg Leu Leu Leu Leu Leu Pro Ala Leu Cys Cys Leu Pro Gly 35 40 45

Ala Ala Arg Ala Ala Ala Ala Ala Gly Ala Gly Asn Arg Ala Ala 60 55 60

Val Ala Val Ala Val Ala Arg Ala Asp Glu Ala Glu Ala Pro Phe Ala 65 70 75 80

Gly Gln Asn Trp Leu Lys Ser Tyr Gly Tyr Leu Leu Pro Tyr Asp Ser 85 90 95

g Ala Ser Ala Leu His Ser Ala Lys Ala Leu Gln Ser Ala Val Ser 100 105 110

Thr Met Gln Gln Phe Tyr Gly Ile Pro Val Thr Gly Val Leu Asp Gln 115 120 125

Thr Thr Ile Glu Trp Met Lys Lys Pro Arg Cys Gly Val Pro Asp His
130 140

Pro His Leu Ser Arg Arg Arg Arg Asn Lys Arg Tyr Ala Leu Thr Gly
145 155 160

Gln Lys Trp Arg Gln Lys His Ile Thr Tyr Ser Ile His Asn Tyr Thr 165 170 175

Pro Lys Val Gly Glu Leu Asp Thr Arg Lys Ala Ile Arg Gln Ala Phe 180 185 190

Asp Val Trp Gln Lys Val Thr Pro Leu Thr Phe Glu Glu Val Pro Tyr 195 200 205

His Glu Ile Lys Ser Asp Arg Lys Glu Ala Asp Ile Met Ile Phe Phe 210 215 220

Ala Ser Gly Phe His Gly Asp Ser Ser Pro Phe Asp Gly Glu Gly Gly Phe Leu Ala His Ala Tyr Phe Pro Gly Pro Gly Ile Gly Gly Asp Thr 245 His Phe Asp Ser Asp Glu Pro Trp Thr Leu Gly Asn Ala Asn His Asp 265 Gly Asn Asp Leu Phe Leu Val Ala Val His Glu Leu Gly His Ala Leu 280 Gly Leu Glu His Ser Ser Asp Pro Ser Ala Ile Met Ala Pro Phe Tyr 300 Gln Tyr Met Glu Thr His Asn Phe Lys Leu Pro Gln Asp Asp Leu Gln 305 310 Gly Ile Gln Lys Ile Tyr Gly Pro Pro Ala Glu Pro Leu Glu Pro Thr 325 330 ijĨ Arg Pro Leu Pro Thr Leu Pro Val Arg Ile His Ser Pro Ser Glu 345 350 Arg Lys His Glu Arg Gln Pro Arg Pro Pro Arg Pro Pro Leu Gly Asp 355 360 Arg Pro Ser Thr Pro Gly Thr Lys Pro Asn Ile Cys Asp Gly Asn Phe 370 Ash Thr Val Ala Leu Phe Arg Gly Glu Met Phe Val Phe Lys Asp Arg 385 390 395 Phe Trp Arg Leu Arg Asn Asn Arg Val Gln Glu Gly Tyr Pro Met 410 Gln Ile Glu Gln Phe Trp Lys Gly Leu Pro Ala Arg Ile Asp Ala Ala 420 430 Tyr Glu Arg Ala Asp Gly Arg Phe Val Phe Phe Lys Gly Asp Lys Tyr 440 Trp Val Phe Lys Glu Val Thr Val Glu Pro Gly Tyr Pro His Ser Leu 455 Gly Glu Leu Gly Ser Cys Leu Pro Arg Glu Gly Ile Asp Thr Ala Leu 465 470 475 Arg Trp Glu Pro Val Gly Lys Thr Tyr Phe Phe Lys Gly Glu Arg Tyr 485 495 Trp Arg Tyr Ser Glu Glu Arg Arg Ala Thr Asp Pro Gly Tyr Pro Lys

500 505 510 Pro Ile Thr Val Trp Lys Gly Ile Pro Gln Ala Pro Gln Gly Ala Phe 515 520 Ile Ser Lys Glu Gly Tyr Tyr Thr Tyr Phe Tyr Lys Gly Arg Asp Tyr Trp Lys Phe Asp Asn Gln Lys Leu Ser Val Glu Pro Gly Tyr Pro Arg 545 550 555 560 Asn Ile Leu Arg Asp Trp Met Gly Cys Asn Gln Lys Glu Val Glu Arg 565 Arg Lys Glu Arg Arg Leu Pro Gln Asp Asp Val Asp Ile Met Val Thr 580 585 Ile Asn Asp Val Pro Gly Ser Val Asn Ala Val Ala Val Ile Pro 600 Cws Ile Leu Ser Leu Cys Ile Leu Val Leu Val Tyr Thr Ile Phe Gln 610 615 620 Phe Lys Asn Lys Thr Gly Pro Gln Pro Val Thr Tyr Tyr Lys Arg Pro 625 635 Gln Glu Trp Val <210> 7 <211> 4263 <212> DNA <建3> Mouse <220> <221> CDS <222> (75)..(1928) <400> 7 gcgggaggac ccggccggag ccgccgccgc cgccgccgcc atcgcagccg ggcggccggq 60 cccccgccgc cggg atg ccg agg agc cgg ggc cgc gct gcg ccg ggc 110 Met Pro Arg Ser Arg Gly Gly Arg Ala Ala Pro Gly 158 Gln Ala Ser Arg Trp Ser Gly Trp Arg Ala Pro Gly Arg Leu Leu Pro 15 206 Leu Leu Pro Ala Leu Cys Cys Leu Ala Ala Ala Gly Ala Gly Lys

ccs Pro 45) Ата	: gly	ggg Ala	gac Asp	gcg Ala 50	. Pro	ttc Phe	gct Ala	Gly ggg	cag Gln 55	Asn	tgg Trp	tta Leu	aaa Lys	tca Ser 60	254
tat Tyr	: Gly	tat Tyr	ctg Leu	ctt Leu 65	. Pro	tat Tyr	gag Glu	tcg Ser	cgg Arg 70	Ala	tct Ser	gcg Ala	ttg Leu	cat His	tct Ser	302
ggg Gly	aag Lys	gcc Ala	ttg Leu 80	cag Gln	tcc Ser	gcg Ala	gtc Val	tcc Ser 85	Thr	atg Met	cag Gln	cag Gln	ttt Phe 90	Tyr	Gly aaa	350
atc Ile	cca Pro	gtc Val 95	Inr	ggt Gly	gtg Val	ttg Leu	gat Asp 100	cag Gln	aca Thr	aca Thr	atc Ile	gag Glu 105	tgg Trp	atg Met	aag Lys	398
aaa Lys	cct Pro 110	cga Arg	tgt Cys	ggc Gly	gtc Val	cct Pro 115	gat Asp	cat His	ccc Pro	cac His	ttg Leu 120	agc Ser	agg Arg	agg Arg	agg Arg	446
aga Arg 125	aat Asn	aag Lys	cga Arg	tat Tyr	gcc Ala 130	cta Leu	act Thr	gga Gly	cag Gln	aag Lys 135	tgg Trp	agg Arg	cag Gln	aaa Lys	cac His 140	494
a III	acc Thr	tac Tyr	agc Ser	att Ile 145	cac His	aat Asn	tat Tyr	acc Thr	cca Pro 150	aag Lys	gtg Val	ggt Gly	gag Glu	ctg Leu 155	gac Asp	542
aca Thurs	cgg Arg	aag Lys	gct Ala 160	att Ile	cgt Arg	cag Gln	gct Ala	ttc Phe 165	gat Asp	gtg Val	tgg Trp	cag Gln	aag Lys 170	gtg Val	act Thr	590
cđã Pro	ctg Leu	acc Thr 175	ttt Phe	gaa Glu	gag Glu	gtg Val	cca Pro 180	tac Tyr	cat His	gag Glu	atc Ile	aaa Lys 185	agt Ser	gac Asp	cgg Arg	638
aag Lys	gag Glu 190	gca Ala	gac Asp	atc Ile	atg Met	atc Ile 195	ttc Phe	ttt Phe	gct Ala	tct Ser	ggt Gly 200	ttc Phe	cat His	ggt Gly	gac Asp	686
agc Ser 205	tcc Ser	cca Pro	ttt Phe	gat Asp	999 Gly 210	gaa Glu	Gly 333	gga Gly	ttc Phe	cta Leu 215	gcc Ala	cat His	gcc Ala	tac Tyr	ttt Phe 220	734
cct Pro	ggc Gly	cca Pro	Gl ^A aaa	atc Ile 225	gga Gly	gga Gly	gac Asp	Thr	cac His 230	ttt Phe	gat Asp	tca Ser	gat Asp	gaa Glu 235	ccc Pro	782
tgg Trp	acg Thr	cta Leu	gga Gly 240	aat Asn	gcc Ala	aac Asn	Hls .	gat Asp 245	ggc Gly	aat Asn	gac Asp	Leu	ttc Phe 250	ctg Leu	gtg Val	830

gco Ala	gtg Val	cat His 255	3 GIU	cto Lev	g ggc	cat His	gca Ala 260	Leu	Gly	ttg Leu	gag Glu	g cac His 265	Ser	aat Asr	gac Asp	878
ccc Pro	agt Ser 270	. ATS	ato Ile	atg Met	gct Ala	ccc Pro 275	Phe	tac Tyr	caa Gln	. tac . Tyr	atg Met 280	Glu	aca Thr	cac His	aac Asn	926
ttc Phe 285	ьт	cta Leu	ccg Pro	cag Gln	gac Asp 290	gat Asp	ctc Leu	cag Gln	ggc	atc Ile 295	Gln	aag Lys	att Ile	tac Tyr	gga Gly 300	974
ccc Pro	cca Pro	gct Ala	gag Glu	cct Pro 305	ьeu	gag Glu	ccc Pro	aca Thr	agg Arg 310	ccc Pro	ctc Leu	cat His	aca Thr	ctc Leu 315	ccg Pro	1022
gtc Val	cgc Arg	agg Arg	atc Ile 320	cac His	tcg Ser	ccg Pro	tct Ser	gag Glu 325	agg Arg	aag Lys	cac His	gag Glu	cgg Arg 330	cac His	cca Pro	1070
agg	ccc Pro	cca Pro 335	cgg Arg	ccg Pro	ccc Pro	ctt Leu	999 Gly 340	gac Asp	cgg Arg	cca Pro	tcc Ser	act Thr 345	cca Pro	ggt Gly	gcc Ala	1118
	ccc Pro 350	aac Asn	atc Ile	tgc Cys	gat Asp	ggc Gly 355	aac Asn	ttc Phe	aac Asn	aca Thr	gtg Val 360	gcc Ala	ctc Leu	ttc Phe	cga Arg	1166
gg y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5 y 5 y	gag Glu	atg Met	ttt Phe	gtg Val	ttc Phe 370	aag Lys	gat Asp	cgc Arg	tgg Trp	ttc Phe 375	tgg Trp	cgc Arg	ctg Leu	cgc Arg	aat Asn 380	1214
aac Asn	cgg Arg	gtg Val	cag Gln	gaa Glu 385	ggc Gly	tac Tyr	ccc Pro	atg Met	cag Gln 390	atc Ile	gaa Glu	cag Gln	ttc Phe	tgg Trp 395	aag Lys	1262
ggc Gly	ctg Leu	ccc Pro	gcc Ala 400	cgc Arg	ata Ile	gac Asp	gca Ala	gcc Ala 405	tat Tyr	gaa Glu	aga Arg	gct Ala	gac Asp 410	gly aaa	aga Arg	1310
ttc Phe	val	ttc Phe 415	ttc Phe	aaa Lys	gga Gly	gac Asp	aag Lys 420	tac Tyr	tgg Trp	gtt Val	ttc Phe	aaa Lys 425	gaa Glu	gtg Val	acg Thr	1358
gtg Val	gaa Glu 430	cct Pro	gly Gly	tac Tyr	ccc Pro	cac His 435	agc Ser	ttg Leu	gly aaa	gag Glu	ctg Leu 440	gga Gly	agc Ser	tgc Cys	ctg Leu	1406
ccc Pro 445	cgt Arg	gaa Glu	gga Gly	att Ile	gac Asp 450	aca Thr	gct Ala	ctg Leu	Arg	tgg Trp 455	gaa Glu	cct Pro	gtg Val	ggc Gly	aaa Lys 460	1454

														gag Glu 475		1502
														aag Lys		1550
														tat Tyr		1598
														cag Gln		1646
														tgg Trp		1694
ggc														ctg Leu 555		1742
cag														ggc Gly		1790
														tgc Cys		1838
														ggt Gly		1886
cag Gln 605	ccc Pro	gtc Val	acc Thr	tac Tyr	tat Tyr 610	aag Lys	cgg Arg	ccg Pro	gtc Val	cag Gln 615	gag Glu	tgg Trp	gta Val			1928
tgag	gcago	ccc a	agago	cctc	ct ct	gtct	acco	ggt	ctg	gcca	gcca	aggco	cct	tcctc	accag	1988
ggto	ctgag	199 S	gcago	ctcta	ag co	cacto	gccca	a cto	3999¢	ccag	cago	gcta	aag	gcago	gttcg	2048
tgts	gtago	tg a	aagto	gtgg	gg tg	gcact	ggto	taç	gcts	gagt	gcgg	ggct	gg	gagto	gatggt	2108
ggct	atgo	ccc a	aggtt	gggt	a go	ctggc	cacco	c ago	ctgcc	cagc	ctto	tgto	cct	gggca	ıgacct	2168
ctct	ctac	ctc a	aggg	gaata	ag go	cago	gadat	gto	cagga	igtc	aagg	gatgo	gtg	ccago	gaggtg	2228
ccc	ctgag	ggt o	catto	gcato	cc to	ıtggt	gtct	gca	agat	acc	acaç	gatad	cag	tccts	gctgg	2288

gacccagece tetgaggeaa gecageaeta geteteaeee caccecaaga tgecaccaat 2348 cccagtcccc tctgccaaca cctgctggtc agatgtcccc tcatccctac cctactatcc 2408 tccaaggctg cagtgcccct gatgccaaca gagtgggcaa aagcctgggt ttcccctgct 2468 agcccataga gagattcctc aggaaacctg ttccacccgt caggtctcct ctgagactca 2528 gaacttaggg tcacatgctg caggcaaggc tgtggccagc tggatctcac aaggacccag 2588 ctgtcatgtc gtgaatattt aaatgtcctg tcactactgt ttaaagtccc attttgcaaa 2648 ggctacttga ggctttaggt cagctagagg tgactgtctt ggtgatgagg ccagtatggt 2708 ggcccttccc cgggcactaa ggaccacggt gctgcaaagg ccactcgggc atcctgatac 2768 tagcgggcat cctgttcagg aggctcaaca gctacaggag ctgaccctgg ttctgggggc 2828 ggatgcaagt ttgtgaccat tctctactcc ccctcattaa tgttgtcccc tgccctgctc 2888 caracteristic tetgtggeet gggggetegg eetgaetaea ggtaaageag agaggattet 2948 agagecacee ttgtcatett eteagagtaa gggaecaggg cageetttta agttetecat 3008 catcccc agtgaccctg aggcaactca gctccagcct ggagtcggtg tttgtgctcc 3068 tatettgace etggeagece aggtetetgg gtecatette etgeactget ettaggaaaa 3128 gggtcctctt cccagctggt agcagcccca ggctttgggg tttcccccaa ctccctaacc 3188 caaactacct ttttgttgtt tgttttaacc tgaggccctt cttcacatct gacagttcct 3248 a destructing temperature and a second temperature and a second temperature a second ccaaacccaa cggtggtacg aggcggccat caaggtgcta gtgggtcaca gataccaact 3368 ctgacetetg ageetgeatg ggetttgeee etgeeetgtg gtetetegee etgtageaea 3428 gacagagact ctcgatgccc tgggagttgt tgagtaaaat ctcttgtccc agaagcacct 3488 atgtgggtcc actgtgtccc atctcaccat tgtgttcttg ctcattttgg ccaagggcag 3548 gctccctggg gcaggcgggg aacaactgca gagatttagt gattcatagg tttgtacagc 3608 gttttatact ttgcaaagca ctttattagc tcacagctgt ccactcacat gaaactcctg 3668 taggctctga gagaggctga gggtagcact catcttaccc tcagatgaag cacaaggagg 3728 tcttattatc tgcccctgcc atccaggtgg ccctggctgg gtcttgtgtc cccatcagtg 3788 ggcccttcca gggtccaaga aaactgtctc ttctagtcct ctcctctggg cctccctccc 3848

ccaqtcccct qqtccctctc ctcaqqttqq tqctcacttc ttqaaaqctc taqqcccqc 3908 aggeteectg ttggeteetg geatteeaag geeagttgeg aaagageagg ggatggagge 3968 aggcagccca ggctgcagat gtgagggaca cagggccggg cccagagagg gctcagccta 4028 gaggetteca atettggatt ettetgeetg eggteatetg tttgteeate ageceaggte 4088 agagcagtca gaggggcaaa gtactggagc ccccagagct cagcttcccc tcgqcctgqq 4148 tgacatcaca gcatctcagt gtcggtcaca ttttaaactg atcagccttt gtacaatgtt 4208 4263 <210> 8 <211> 2620 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(1935) < 400 > 8 affig ccg agg agc cgg ggc ggc cgc gcc gcg ccg ggg ccg ccg ccg ccg 48 Met Pro Arg Ser Arg Gly Gly Arg Ala Ala Pro Gly Pro Pro Pro cag ccg ccg ccg ggc cag gcc ccg cgc tgg agc cgc tgg cgg gtc cct 96 Pro Pro Pro Gly Gln Ala Pro Arg Trp Ser Arg Trp Arg Val Pro 20 30 144 GIW Arg Leu Leu Leu Leu Leu Pro Ala Leu Cys Cys Leu Pro Gly 35 192 Ala Ala Arg Ala Ala Ala Ala Ala Gly Ala Gly Asn Arg Ala Ala 50 55 240 gtg gcg gtg gcg gtg gcg cgg gcg gac gag gcg gag gcg ccc ttc gcc Val Ala Val Ala Val Ala Arg Ala Asp Glu Ala Glu Ala Pro Phe Ala 65 ggg cag aac tgg tta aag tcc tat ggc tat ctg ctt ccc tat gac tca 288 Gly Gln Asn Trp Leu Lys Ser Tyr Gly Tyr Leu Leu Pro Tyr Asp Ser 85 90 95 egg gea tet geg etg eac tea geg aag gee ttg eag teg gea gte tee 336 Arq Ala Ser Ala Leu His Ser Ala Lys Ala Leu Gln Ser Ala Val Ser

105

100

act Thr	atg Met	cag Gln 115	r GTI	ttt. Phe	tac Tyr	gly aaa	atc Ile 120	Pro	gto Val	acc Thr	ggt Gly	gtg Val 125	. Leu	gat Asp	cag Gln	384
aca Thr	acg Thr 130	тте	gag Glu	tgg Trp	atg Met	aag Lys 135	aaa Lys	ccc Pro	cga Arg	tgt Cys	ggt Gly 140	r Val	cct Pro	gat Asp	cac His	432
ccc Pro 145	HIS	tta Leu	agc Ser	cgt Arg	agg Arg 150	cgg Arg	aga Arg	aac Asn	aag Lys	cgc Arg 155	tat Tyr	gcc Ala	ctg Leu	act Thr	gga Gly 160	480
cag Gln	aag Lys	tgg Trp	agg Arg	caa Gln 165	aaa Lys	cac His	atc Ile	acc Thr	tac Tyr 170	Ser	att Ile	cac His	aac Asn	tat Tyr 175	acc Thr	528
cca Pro	aaa Lys	gtg Val	ggt Gly 180	gag Glu	cta Leu	gac Asp	acg Thr	cgg Arg 185	aaa Lys	gct Ala	att Ile	cgc Arg	cag Gln 190	gct Ala	ttc Phe	576
gal Asp	gtg Val	tgg Trp 195	cag Gln	aag Lys	gtg Val	acc Thr	cca Pro 200	ctg Leu	acc Thr	ttt Phe	gaa Glu	gag Glu 205	gtg Val	cca Pro	tac Tyr	624
Cat His	gag Glu 210	atc Ile	aaa Lys	agt Ser	gac Asp	cgg Arg 215	aag Lys	gag Glu	gca Ala	gac Asp	atc Ile 220	atg Met	atc Ile	ttt Phe	ttt Phe	672
STATE OF A LANGE	tct Ser	ggt Gly	ttc Phe	cat His	ggc Gly 230	gac Asp	agc Ser	tcc Ser	cca Pro	ttt Phe 235	gat Asp	gga Gly	gaa Glu	gly aaa	gga Gly 240	720
tří	ctg Leu	gcc Ala	cat His	gcc Ala 245	tac Tyr	ttc Phe	cct Pro	ggc Gly	cca Pro 250	G1 333	att Ile	gga Gly	gga Gly	gac Asp 255	acc Thr	768
cac His	ttt Phe	gac Asp	tcc Ser 260	gat Asp	gag Glu	cca Pro	tgg Trp	acg Thr 265	cta Leu	gga Gly	aac Asn	gcc Ala	aac Asn 270	cat His	gac Asp	816
gly ggg	aac Asn	gac Asp 275	ctc Leu	ttc Phe	ctg Leu	Val	gct Ala 280	gtg Val	cat His	gag Glu	ctg Leu	ggc Gly 285	cac His	gcg Ala	ctg Leu	864
GTA	ctg Leu 290	gag Glu	cac His	tcc Ser	ser	gac Asp 295	ccc Pro	agc Ser	gcc Ala	atc Ile	atg Met 300	gcg Ala	ccc Pro	ttc Phe	tac Tyr	912
cag Gln 305	tac Tyr	atg Met	gag Glu	Thr	cac His 310	aac Asn	ttc Phe	aag Lys	Leu	ccc Pro 315	cag Gln	gac Asp	gat Asp	ctc Leu	cag Gln 320	960

ggo Gly	ato Ile	c cag e Glr	g aag 1 Lys	ato Ile 325	e Tyr	gga Gly	ccc	cca Pro	gco Ala 330	ı Glü	g cct L Pro	cto Leu	gag Glu	cco Pro 335	aca Thr	1008
agg Arg	g cca Pro	a cto Leu	cct Pro 340	inr	cto Leu	ccc Pro	gtc Val	cgc Arg 345	Arg	ato Ile	cac His	tca Ser	cca Pro	Ser	gag Glu	1056
agg Arg	aaa Lys	cac His 355	GIU	cgc Arg	cag Gln	ccc Pro	agg Arg 360	ccc Pro	cct Pro	cgg Arg	ccg Pro	ccc Pro 365	Leu	ggg Gly	gac Asp	1104
cgg Arg	cca Pro 370	ser	aca Thr	cca Pro	ggc	acc Thr 375	aaa Lys	ccc Pro	aac Asn	atc Ile	tgt Cys 380	Asp	ggc Gly	aac Asn	ttc Phe	1152
aac Asn 385	Thr	gtg Val	gcc Ala	ctc Leu	ttc Phe 390	cgg Arg	ggc Gly	gag Glu	atg Met	ttt Phe 395	gtc Val	ttt Phe	aag Lys	gat Asp	cgc Arg 400	1200
tgg	ttc Phe	tgg Trp	cgt Arg	ctg Leu 405	cgc Arg	aat Asn	aac Asn	cga Arg	gtg Val 410	cag Gln	gag Glu	ggc Gly	tac Tyr	ccc Pro 415	atg Met	1248
C G	atc Ile	gag Glu	cag Gln 420	ttc Phe	tgg Trp	aag Lys	ggc Gly	ctg Leu 425	cct Pro	gcc Ala	cgc Arg	atc Ile	gac Asp 430	gca Ala	gcc Ala	1296
tally was now	gaa Glu	agg Arg 435	gcc Ala	gat Asp	Gly aaa	aga Arg	ttt Phe 440	gtc Val	ttc Phe	ttc Phe	aaa Lys	ggt Gly 445	gac Asp	aag Lys	tat Tyr	1344
T 15	gtg Val 450	ttt Phe	aag Lys	gag Glu	gtg Val	acg Thr 455	gtg Val	gag Glu	cct Pro	gly ggg	tac Tyr 460	ccc Pro	cac His	agc Ser	ctg Leu	1392
999 Gly 465	gag Glu	ctg Leu	ggc Gly	agc Ser	tgt Cys 470	ttg Leu	ccc Pro	cgt Arg	gaa Glu	ggc Gly 475	att Ile	gac Asp	aca Thr	gct Ala	ctg Leu 480	1440
cgc Arg	tgg Trp	gaa Glu	cct Pro	gtg Val 485	ggc Gly	aag Lys	acc Thr	tac Tyr	ttt Phe 490	ttc Phe	aaa Lys	ggc Gly	gag Glu	cgg Arg 495	tac Tyr	1488
tgg Trp	cgc Arg	tac Tyr	agc Ser 500	gag Glu	gag Glu	cgg Arg	Arg	gcc Ala 505	acg Thr	gac Asp	cct Pro	ggc Gly	tac Tyr 510	cct Pro	aag Lys	1536
ccc Pro	тте	acc Thr 515	gtg Val	tgg Trp	aag Lys	Gly	atc Ile 520	cca Pro	cag Gln	gct Ala	Pro	caa Gln 525	gga Gly	gcc Ala	ttc Phe	1584

														gac Asp		1632
														ccg Pro		1680
														gag Glu 575		1728
														gtg Val		1776
Ile														atc Ile		1824
tgc Cys														ttc Phe		1872
														cgg Arg		1920
			tgg Trp		tgag	gcago	ccc a	agago	eccto	ct ct	atco	cactt	gg.	tctgg	gcca	1975
gdda	iggco	ect t	cata	cacca	ag gg	jtcto	gaggg	g gca	agcto	ctgg	ccas	gtgct	ca (ccago	gccag	2035
calge	gccc	cta c	ggctg	ggggt	c gt	acag	gctga	a agt	tgtg	ggt	gcat	tggd	cct a	aggct	gagcg	2095
tggg	gcag	igg a	aatta	atggg	ia ad	tgtg	gccca	999	gtggg	gtgt	ctg	gcaco	cca 🤉	gctgo	cagcc	2155
ttct	gtcc	etg g	ggcaa	aacta	ac to	ccta	actta	agg	ggaat	agg	ccas	gcto	cca	tccgg	gaggca	2215
ggga	ccat	gc c	cagga	aggag	jc co	ctgt	ggto	acç	ggcat	cct	gtgg	gtgto	cca '	tgagg	gtacca	2275
cago	tcca	act o	cctgg	gctgg	ja ac	ccgg	gcaco	cto	tgtg	ggga	agco	cagca	act a	agcto	tcatc	2335
cccc	atco	.gg 9	gagat	acca	ic ca	igtco	tggt	ccc	cttt	tgc	caac	cacct	gc 1	tggto	agatg	2395
tạcc	ccta	acc c	ccac	ccca	ic to	gtcct	ccaa	ggc	ctaca	agga	ccc	ctgct	tc	tgaca	cagtg	2455
agca	acaa	igc o	ctggg	gtttc	cc ct	gate	gcas	g acc	gcas	gatc	cct	cagga	aaa (cctgo	tccac	2515
ttgt	cago	gt o	ctctt	cgga	ag ac	ccas	gatt	tag	ggto	caca	tgct	gcag	gc a	agggd	tgtgg	2575

cccagctggg	tctgacaagg	acccgtgtca	catcgtgaat	attta	2620
<210> 9 <211> 21 <212> DNA <213> Homo	sapiens				
<400> 9 ggttcctctt	gttccacttg	g			21
<210> 10 <211> 35 <212> DNA <213> Homo	sapiens				
<400> 10 gtaggaattc	gggttgtagg	gaggtcgaca	ttgcc		35
<210> 11 <211> 23 <212> DNA <213> Homo	ganieng				
<100> 11	sapiens				
gitaatgtcg <210> 12 <211> 22 <212> DNA	acctccctac	aac			23
<113> Homo <100> 12	sapiens				
57.8	aaggccatca	ca			22
<211> 23 <212> DNA <213> Homo	sapiens				
<400> 13 ctccctacaa	cccgaattcc	tac			23
<210> 14 <211> 20 <212> DNA <213> Homo	sapiens				
<400> 14 cttgtgggca	gatagggggc				20
<210> 15 <211> 21					

```
<212> DNA
<213> Homo sapiens
<400> 15
cgcgccgagg acctcagcct g
                                                                    21
<210> 16
<211> 21
<212> DNA
<213> Homo sapiens
<400> 16
ggttcctctt gttccacttq q
                                                                    21
<210> 17
<211> 2295
<212> DNA
<213> Homo sapiens
<400> 17
aagagacaag aggtgccttg tgggcagata gggggctggg agggggcctg cccggaagca 60
gigtggccc gtggcaggct tctcactggg taggaccggg ccctctgttg cacccctca 120
certgetete tgeeeteagg agtggetaag caggtteggt tacetgeece eggetgaeee 180
cacaaggg cagctgcaga cgcaagagga gctgtctaag gccatcacag ccatgcagca 240
gttggtggc ctggaggcca ccggcatcct ggacgaggcc accctggccc tgatgaaaac 300
céacgctgc tecetgecag acetecetgt eetgacecag getegeagga gaegecagge 360
toagecccc accaagtgga acaagaggaa cctgtcgtgg agggtccgga cgttcccacg 420
ghactcacca ctggggcacg acacggtgcg tgcactcatg tactacgccc tcaaggtctg 480
gagegaeatt gegeeetga aetteeaega ggtggeggge ageaeegeeg aeateeagat 540
cgacttctcc aaggccgacc ataacgacgg ctaccccttc gacgcccggc ggcaccgtgc 600
ccacgccttc ttccccggcc accaccacac cgccgggtac acccacttta acgatgacga 660
ggcctggacc ttccgctcct cggatgccca cgggatggac ctgtttgcag tggctgtcca 720
cgagtttggc cacgccattg ggttaagcca tgtggccgct gcacactcca tcatgcggcc 780
gtactaccag ggcccggtgg gtgacccgct gcgctacggg ctcccctacg aggacaaggt 840
gcgcgtctgg cagctgtacg gtgtgcggga gtctgtgtct cccacggcgc agcccgagga 900
geeteeeetg etgeeggage eeceagaeaa eeggteeage geeeegeeea ggaaggaegt 960
```

gccccacaga tgcagcactc actttgacgc ggtggcccag atccggggtg aagctttctt 1020 cttcaaaggc aagtacttct ggcggctgac gcgggaccgg cacctggtgt ccctgcagcc 1080 ggcacagatg caccgcttct ggcggggcct gccgctgcac ctggacagcg tggacgccgt 1140 gtacgagcgc accagcgacc acaagatcgt cttctttaaa ggagacaggt actgggtgtt 1200 caaggacaat aacgtagagg aaggataccc gcgccccgtc tccgacttca gcctcccgcc 1260 tggeggcate gaegetgeet teteetggge ceacaatgae aggaettatt tetttaagga 1320 ccagetgtae tggegetaeg atgaecaeae gaggeaeatg gaeceegget acceegeeea 1380 gageceeetg tggaggggtg teeceageae getggaegae geeatgeget ggteegaegg 1440 tgcctcctac ttcttccgtg gccaggagta ctggaaagtg ctggatggcg agctggaggt 1500 ggcacccggg tacccacagt ccacggcccg ggactggctg gtgtgtggag actcacaggc 1560 cante de la capacita del capacita de la capacita de la capacita del capacita de la capacita del capacita de la capacita de la capacita de la capacita de la capacita del capacita de la capacita del capacita de la capacita de la capacita del capacita del capacita de la capacita del capacita de la capacita de la capacita de la capacita de la capacita de la capacita de la capacita de la capacita de la capacita de la capacita del capacita de la capacita de la capacita de la capacita de la capacita de la capacita de a a fat gaccag agecgetegg aggacggtta egaggtetge teatgeacet etggggeate 1680 cfftcccccg ggggccccag gcccactggt ggctgccacc atgctgctgc tgctgccgcc 1740 aditgtcacca ggcgccctgt ggacagcggc ccaggccctg acgctatgac acacagcgcg 1800 ağçccatgag aggacagagg cggtgggaca gcctggccac agagggcaag gactgtgccg 1860 gaj tecetgg gggaggtget ggegegggat gaggaeggge caeeetggea eeggaaggee 1920 a@agagggc acggcccgcc agggctgggc aggctcaggt ggcaaggacg gagctgtccc 1980 ctagtgaggg actgtgttga ctgacgagcc gaggggtggc cgctccagaa gggtgcccag 2040 tcaggccgca ccgccgccag cctcctccgg ccctggaggg agcatctcgg gctgggggcc 2100 cacccctctc tgtgccggcg ccaccaaccc cacccacact gctgcctggt gctcccgccg 2160 gcccacaggg cctccgtccc caggtcccca gtggggcagc cctccccaca gacgagcccc 2220 ccacatggtg ccgcggcacg tccccctgt gacgcgttcc agaccaacat gacctctccc 2280 tgctttgtag cggcc 2295

<210> 18

<211> 4014

<212> DNA

<213> Homo sapiens

```
<222> (3148)..(3280)
<220>
<221> exon
<222> (3564)..(3633)
<400> 18
ttctgttggg gtgtccctgg caaactagga agtggttccc accctctcac tccagccccc 60
aagacggccc ctcccaggat gcctagcctg agatttgggg cacarcccct gagcacaaac 120
tegtgttagg taggaggeae ecaceageee tgeeceacag acceaceace ecceaagatt 180
cgatgccatt ctatgctcaa attccagtgc ctcctggggc cacaggcgac agtgcctgtt 240
tatcatgggc ggggctgcct gtcccgggct ggtgccgggg ccctggttct atgagttgaa 300
gcaggctggc cgctcacacc tgcaactaaa ccacctgctt ccaaacattg ggcaacattc 360
cacagecaet gggagtgetg cetgecagge eeggeteeae ttteetgaaa tgeatgtgge 420
ctigtggcca ggctgcccag ctccctgggg accagagtgg ggggtgcccc aaaccgccac 480
coffgaacccc acagagtaaa tgggccactc agtgcagcta ccagccatga cctcagctta 540
tagacgggaa ggctgggggg tgagttgtcc tcccaagggg tctcagcacc tgctggccca 600
aggcaggcag cagctggcct gggtgggaaa ggcacctgcc tgtgtggacc cttccctggt 660
gaggggcag ggggtcatca tccaatatca tagatgatgt gaggaaactc cagagtgctt 720
cctggaggag gtgacaggct attgtaacca tgaggcacag tggccctgtt gagctgtgat 780
cttaacaaag gactaaaaag tgcagaatgt gctgatgggc atctccagca cctacagcgg 840
tgactgatca tgggacaccc tcagtaaacc ctgcaggtgc aaggtagtgt gggaccggat 900
gctcggggcc aaagatcccc acaccctgga ggtcagggcg gaagtgggag gccagcttgt 960
caaggccaag gctgtcaccc ccaaggcccc tccagagaag ctgcccaccc cagtcatgaa 1020
cgtccacttt gacgtcctgt cgtgcctata gctttggagg ggcccccagt tctgtacaca 1080
ctcttggctt ccccaagggg ctgagggct gggctgggtc agtagggttt ggaaagggg 1140
taaaggcaca gaggggggcc ccgggaagga ctcagtgctt cctggaaggg gaatctcggg 1200
gtgtgcagat cccatgtagt gtcttgtgag gcccctcctg gccagcacgs cctgttgctg 1260
atgcccctgg gacttccagg atggtggtgc ctcattccct ctgagcactg cctgctgkgt 1320
```

<221> exon

gggcaggagg gttggccagg accaccccat caccagctcc tgcagaccag aacctggagg 1380 cccagcaggt ggcataawtg agtcacaagc attttcttt ttcttttcc tttttttt 1440 tttaggattt ctttaaaaag ttatgttttt ttcatttatg cattttttta ggttaagcca 1500 catgaaacta ctagtattta ttttaaatca gaaatggtca aaaatgggca ctttcatatg 1560 atttggccaa tgaatacatg agaggtggta aataatagcg attcacaagc attttctaaa 1620 tgtccaggga aaaaaaaag acaggtttgc aggcagggca gagcccccag cacatcaccc 1680 ctggcttgta cctttctgga gcccgcctca cccctgctgt ggttccctgg gctggcgagt 1740 atccacaggg cagagcagca gcttcatggc agcctgcaag tgggcacagg cgccatttgg 1800 cggttgaaga aactgaagct aggggtggag gtagccccca cagatggcac ccaggcctgc 1860 catececagg tececaegat ggeacecagg tececaega tggeatecag geececetgt 1920 cgccagggcc cctccagggt agcagagatg actggggcat ggggccaggg cttgatttat 1980 gercaggtta aagggctgcc ctcattcctg ctcctactca gctccggtgt gggtagcctt 2040 gaacccc cagtgggccc ttcagagcag agctgtcccc tgcgccaggt gctggtgta 2100 a da tttttcca cgtcctggct cacgtcctca tcaccagcct gccaaggact ctgaggaagg 2160 ağçccagagg ggtggactgc cttgccccag gcacacagcg gggaggtggc tgagtgggat 2220 t aacctag gcagcctggc tggaacctgg cttttgtttc tgagacaggg tctcgctctg 2280 ttgcagacac agtctgcaac tcctgtgctc aaacgatcct cccgcctcag cctcccaaag 2340 thetgggate teaggeataa gecaeageae eggeeaagee tgggetetta tetececeat 2400 gaatgtacag catggcccaa ttccttaaac tggtgtctga gccacagcct ttctcagctg 2460 gggtcccaga ccttggatgc tagacttccc tgtcacaagt cagctgagag cctgcatttg 2520 acactggcca catttaagag ccttttgaag gttccctagc attttgcggt ctcaggaggc 2580 gtggggtggg gcagggttgc catgagtggt tgtacaggtc gtgcacggca caagctcaca 2640 ccatctaagg gacatcagat ttatttattt attcatttt tagatggagt cttgctctgt 2700 cgcccaggct ggagtgcagt ggcacgatct cggctcactg caagctccgc ctcctgggtt 2760 cccaccactc teetgeytea geeteeegag tagetgggae tacaggeace tgeeaccaca 2820 cccggctaat ttttgtatt tttagtagag acggggtttc accatattag ctaggatggt 2880

ctccatctcc tgacctcatg atccgcctgc ctcggcctcc caaactgctg ggattacagg 2940 cgtgagccac agcacccggc cagggacatc aggtttatta agacactttt ccggcagctg 3000 cccagggaag agacagagag gtgccttgtg ggcagatagg gggctgggag ggggcctgcc 3060 cggaagcagt gttggcccgt ggcaggcttc tcactgggta ggaccgggcc ctctgttgca 3120 ccccctcacc ctgctctctg ccctcaggag tggctaagca ggttcggtta cctgccccg 3180 gbtgacccca caacagggca gctgcagacg caagaggagc tgtctaaggc catcacagcc 3240 atgcagcagt ttkgtggcct ggaggchacc ggcatcctgg gtcagttctc cagggggcag 3300 cgggagcgcc gtgscccccg tcaggtctgc gcccgtcggc catgccccct ctgatcaggc 3360 acagtecegt ettatgettg aatgaacetg ggteetggee tggtgtaget eagageetgg 3420 ggctggtccc ccaaagatga cgtgggagga gggsgcggct cggaggctgg tgccagagtc 3480 aggdctcccgc ccttggggat gctcgggatc ctagggtggg gagtgagctg ggctaggctc 3540 t agacgaggc caccttggcc ctgatgaaaa ccccacgctg 3600 chectgeca gaeeteeet gteetgaeem caggtetege agggagaege acaggtetem 3660 caggicccccmm mcaagtggac acagagagga acctgtcgtg gaggtgggtg cgtggccagg 3720 gtgaggagcg gggcctccgt ggaggtggsc gcgtggccag ggtgaggaac ggggtctccg 3780 t de aggtggg cgcgtggcca gggtggggaa cggggtctcc gtggaggcgg gtgcgtggcc 3840 addgtgagga acagggtctc cgtggaggtg ggcgcgtggc cagggtgggg aacggggtct 3900 cestggaggc gggtgcgtgg ccagggtgag gagtggggcc cccatgtctc cgtgtctggg 3960 cctgctgtag atatcaagct tatcgatacc gtcgacctcg agggggghcc gtac <210> 19 <211> 21 <212> DNA <213> Homo sapiens <400> 19 aatctcccat cggccctttc a 21 <210> 20 <211> 20 <212> DNA <213> Homo sapiens

- 32 -

<400> 20

atgcacggcc a	accaggaaga	20
<210> 21 <211> 20 <212> DNA <213> Homo s	sapiens	
<400> 21 ggatcagaca a	acgatcgagt	20
<210> 22 <211> 20 <212> DNA <213> Homo s	sapiens	
<400> 22 Cagcttgaag t	tgtgcgtct	20
"approximate the state of the s		

SEQUENCE LISTING

```
<110> Seiki Motoharu
 <120> DNA CODING FOR NOVEL POLIPEPTIDE
<130> 1241.18
<140> US 09/806,232
<141> 2001-03-28
<140> PCT/JP99/05349
<141> 1999-09-29
<150> JP10-276258
<151> 1998-09-29
<150> JP10-291505
<151> 1998-09-29
 77
<160> 22
< 170> PatentIn Ver. 2.0
<210> 1
<211> 587
<212> PRT
<213> Mouse
<400> 1
Met Gly Arg Arg Pro Arg Gly Pro Gly Ser Pro Arg Gly Pro Gly Pro
                                      10
                                                           15
Pro Arg Pro Gly Pro Gly Leu Pro Pro Leu Leu Val Leu Ala Leu
                                  25
Ala Ala His Gly Gly Cys Ala Ala Pro Ala Pro Arg Ala Glu Asp Leu
Ser Leu Gly Val Glu Trp Leu Ser Arg Phe Gly Tyr Leu Pro Pro Ala
     50
                          55
Asp Pro Ala Ser Gly Gln Leu Gln Thr Gln Glu Glu Leu Ser Lys Ala
 65
                     70
                                          75
Ile Thr Ala Met Gln Gln Phe Gly Gly Leu Glu Thr Thr Gly Ile Leu
```

Asp Glu Ala Thr Leu Ala Leu Met Lys Thr Pro Arg Cys Ser Leu Pro Asp Leu Pro Pro Gly Ala Gln Ser Arg Arg Lys Arg Gln Thr Pro Pro Pro Thr Lys Trp Ser Lys Arg Asn Leu Ser Trp Arg Val Arg Thr Phe Pro Arg Asp Ser Pro Leu Gly Arg Asp Thr Val Arg Ala Leu Met Tyr Tyr Ala Leu Lys Val Trp Ser Asp Ile Thr Pro Leu Asn Phe His Glu Val Ala Gly Asn Ala Ala Asp Ile Gln Ile Asp Phe Ser Lys Ala Asp Asn Asp Gly Tyr Pro Phe Asp Gly Pro Gly Gly Thr Val Ala His His L. Phe Phe Pro Gly Asp His His Thr Ala Gly Asp Thr His Phe Asp Ľ Asp Asp Glu Pro Trp Thr Phe Arg Ser Asp Ala His Gly Met Asp Leu Phe Ala Val Ala Val His Glu Phe Gly His Ala Ile Gly Leu Ser His Val Ala Pro Ser Ser Ile Met Gln Pro Tyr Tyr Gln Gly Pro Val Gly Asp Pro Val Arg Tyr Gly Leu Pro Tyr Glu Asp Arg Val Arg Val Trp Gln Leu Tyr Gly Val Arg Glu Ser Val Ser Pro Thr Ala Gln

Leu Asp Thr Pro Glu Pro Glu Glu Pro Pro Leu Leu Pro Glu Pro Pro

- 2 -

Asn Asn Arg Ser Ser Thr Pro Pro Gln Lys Asp Val Pro His Arg Cys Thr Ala His Phe Asp Ala Val Ala Gln Ile Arg Gly Glu Ala Phe Phe Phe Lys Gly Lys Tyr Phe Trp Arg Leu Thr Arg Asp Arg His Leu Val Ser Leu Gln Pro Ala Gln Met His Arg Phe Trp Arg Gly Leu Pro Leu His Leu Asp Ser Val Asp Ala Val Tyr Glu Arg Thr Ser Asp His Lys Ile Val Phe Lys Gly Asp Arg Tyr Trp Val Phe Lys Asp Asn Asn ű Valley III III GI Glu Glu Gly Tyr Pro Arg Pro Val Ser Asp Phe Ser Leu Pro Pro Gly Ile Asp Ala Val Phe Ser Trp Ala His Asn Asp Arg Thr Tyr Phe Lys Asp Gln Leu Tyr Trp Arg Tyr Asp Asp His Thr Arg Arg Ŋ Met Asp Pro Gly Tyr Pro Ala Gln Gly Pro Leu Trp Arg Gly Val Pro Ser Met Leu Asp Asp Ala Met Arg Trp Ser Asp Gly Ala Ser Tyr Phe Phe Arg Gly Gln Glu Tyr Trp Lys Val Leu Asp Gly Glu Leu Glu Ala Ala Pro Gly Tyr Pro Gln Ser Thr Ala Arg Asp Trp Leu Val Cys Gly Glu Pro Leu Ala Asp Ala Glu Asp Val Gly Pro Gly Pro Gln Gly Arg Ser Gly Ala Gln Asp Gly Leu Ala Val Cys Ser Cys Thr Ser Asp Ala

His Arg Leu Ala Leu Pro Ser Leu Leu Leu Thr Pro Leu Leu Trp 565 570 575

Gly Leu Trp Thr Ser Val Ser Ala Lys Ala Ser 580 585

<210> 2

<211> 606

<212> PRT

<213> Homo sapiens

<400> 2

Met Arg Arg Ala Ala Arg Gly Pro Gly Pro Pro Pro Pro Gly Pro 10

Gly Leu Ser Arg Leu Pro Leu Leu Pro Leu Pro Leu Leu Leu Leu 20 25 30 ű

Ata Leu Gly Thr Arg Gly Gly Cys Ala Ala Pro Glu Pro Ala Arg Arg Ala 40 45

Glu Asp Leu Ser Leu Gly Val Glu Trp Leu Ser Arg Phe Gly Tyr 55 60

Let Pro Pro Ala Asp Pro Thr Thr Gly Gln Leu Gln Thr Glu Glu 70 75 M.

Lew Ser Lys Ala Ile Thr Ala Met Gln Gln Phe Gly Gly Leu Glu Ala 85 90

Thr Gly Ile Leu Asp Glu Ala Thr Leu Ala Leu Met Lys Thr Pro Arg 105

Cys Ser Leu Pro Asp Leu Pro Val Leu Thr Gln Ala Arg Arg Arg 115 120 125

Gln Ala Pro Ala Pro Thr Lys Trp Asn Lys Arg Asn Leu Ser Trp Arg 130 135

Val Arg Thr Phe Pro Arg Asp Ser Pro Leu Gly His Asp Thr Val Arg 145 150 155 160

Ala Leu Met Tyr Tyr Ala Leu Lys Val Trp Ser Asp Ile Ala Pro Leu 165 170

Asn Phe His Glu Val Ala Gly Ser Thr Ala Asp Ile Gln Ile Asp Phe Ser Lys Ala Asp His Asn Asp Gly Tyr Pro Phe Asp Gly Pro Gly Gly Thr Val Ala His Ala Phe Phe Pro Gly His His His Thr Ala Gly Asp Thr His Phe Asp Asp Asp Glu Ala Trp Thr Phe Arg Ser Ser Asp Ala His Gly Met Asp Leu Phe Ala Val Ala Val His Glu Phe Gly His Ala Ile Gly Leu Ser His Val Ala Ala Ala His Ser Ile Met Arg Pro Tyr Ų, Tyr Gln Gly Pro Val Gly Asp Pro Leu Arg Tyr Gly Leu Pro Tyr Glu Asim management Lys Val Arg Val Trp Gln Leu Tyr Gly Val Arg Glu Ser Val Ser Pro Thr Ala Gln Pro Glu Glu Pro Pro Leu Leu Pro Glu Pro Pro Asp Asi Arg Ser Ser Ala Pro Pro Arg Lys Asp Val Pro His Arg Cys Ser Thr His Phe Asp Ala Val Ala Gln Ile Arg Gly Glu Ala Phe Phe Lys Gly Lys Tyr Phe Trp Arg Leu Thr Arg Asp Arg His Leu Val Ser Leu Gln Pro Ala Gln Met His Arg Phe Trp Arg Gly Leu Pro Leu His Leu Asp Ser Val Asp Ala Val Tyr Glu Arg Thr Ser Asp His Lys Ile Val Phe Phe Lys Gly Asp Arg Tyr Trp Val Phe Lys Asp Asn Asn Val

```
Glu Glu Gly Tyr Pro Arg Pro Val Ser Asp Phe Ser Leu Pro Pro Gly
             420
                                  425
                                                       430
Gly Ile Asp Ala Ala Phe Ser Trp Ala His Asn Asp Arg Thr Tyr Phe
         435
                              440
                                                   445
Phe Lys Asp Gln Leu Tyr Trp Arg Tyr Asp Asp His Thr Arg His Met
     450
                          455
                                              460
Asp Pro Gly Tyr Pro Ala Gln Ser Pro Leu Trp Arg Gly Val Pro Ser
465
                     470
                                          475
                                                               480
Thr Leu Asp Asp Ala Met Arg Trp Ser Asp Gly Ala Ser Tyr Phe Phe
                 485
                                      490
Arg Gly Gln Glu Tyr Trp Lys Val Leu Asp Gly Glu Leu Glu Val Ala
             500
                                  505
                                                      510
 47
PLO
    Gly Tyr Pro Gln Ser Thr Ala Arg Asp Trp Leu Val Cys Gly Asp
        515
                              520
                                                  525
Ser
    Gln Ala Asp Gly Ser Val Ala Gly Val Asp Ala Ala Glu Gly
    530
 W. H
                         535
                                              540
Pro Arg Ala Pro Pro Gly Gln His Asp Gln Ser Arg Ser Glu Asp Gly
545
                     550
                                          555
                                                               560
 n i
Tyr Glu Val Cys Ser Cys Thr Ser Gly Ala Ser Ser Pro Pro Gly Ala
                 565
                                      570
                                                          575
Pro Gly Pro Leu Val Ala Ala Thr Met Leu Leu Leu Pro Pro Leu
            580
                                 585
                                                      590
Ser Pro Gly Ala Leu Trp Thr Ala Ala Gln Ala Leu Thr Leu
        595
                             600
                                                  605
<210> 3
<211> 3517
<212> DNA
<213> Mouse
<220>
<221> CDS
```

<222> (86)..(1846)

	0> 3 acga		cgcg	gago	cg a	gcga	ggcg	c gg	agct	ggct	gct	ggcg	ggt	gcgg	ggaccc	60
tcg	ccac	ccg	acct	ggga	ga g	cggg									gjå aaa	112
tcc Ser 10	ccc Pro	cgg Arg	gga Gly	cct Pro	ggc Gly 15	cct Pro	cca Pro	cgc Arg	ccc Pro	ggg Gly 20	ccg Pro	ggg Gly	ctg Leu	cca Pro	cca Pro 25	160
ctg Leu	ctg Leu	ctt Leu	gta Val	ctg Leu 30	gcg Ala	ctg Leu	gcg Ala	gcc Ala	cat His 35	Gly	ggc	tgc Cys	gca Ala	gcg Ala 40	ccc Pro	208
gcg Ala	ccc Pro	cgc Arg	gcg Ala 45	gag Glu	gac Asp	ctc Leu	agc Ser	ctc Leu 50	ggg Gly	gtg Val	gag Glu	tgg Trp	cta Leu 55	agc Ser	agg Arg	256
ttee	ggc Gly	tac Tyr 60	ctg Leu	ccg Pro	cct Pro	gca Ala	gat Asp 65	ccg Pro	gca Ala	tca Ser	ggg Gly	cag Gln 70	cta Leu	cag Gln	acc Thr	304
cag GID	gag Glu 75	gaa Glu	ctg Leu	tcc Ser	aaa Lys	gcg Ala 80	att Ile	act Thr	gcc Ala	atg Met	cag Gln 85	cag Gln	ttt Phe	ggt Gly	ggt Gly	352
cti Let 90	gag Glu	acc Thr	act Thr	ggc Gly	atc Ile 95	cta Leu	gat Asp	gag Glu	gcc Ala	act Thr 100	ctg Leu	gcc Ala	ctg Leu	atg Met	aaa Lys 105	400
acc Thr	cct Pro	cga Arg	tgc Cys	tcc Ser 110	ctt Leu	ccg Pro	gac Asp	ctg Leu	ccc Pro 115	cct Pro	ggg Gly	gcc Ala	caa Gln	tcg Ser 120	aga Arg	448
agg Arg	aag Lys	cgg Arg	cag Gln 125	act Thr	cca Pro	ccc Pro	cca Pro	acc Thr 130	aaa Lys	tgg Trp	agc Ser	aag Lys	agg Arg 135	aac Asn	ctt Leu	496
tct Ser	tgg Trp	agg Arg 140	gtc Val	cgg Arg	aca Thr	ttc Phe	cca Pro 145	cgg Arg	gac Asp	tca Ser	ccc Pro	ctg Leu 150	ggc Gly	cgg Arg	gat Asp	544
act	gtg	cgt	gca	ctc	atg	tac	tac	gcc	ctc	aaa	gtc	tgg	agt	gac	atc	592

	Thr	Val 155	Arg	Ala	Leu	Met	Tyr 160		Ala	Leu	Lys	Val 165		Ser	Asp	Ile	
	aca Thr 170	ccc Pro	ttg Leu	aac Asn	ttc Phe	cac His 175	gag Glu	gta Val	gcg Ala	ggc Gly	aac Asn 180	Ala	gcg Ala	gac Asp	atc Ile	cag Gln 185	640
	atc Ile	gac Asp	ttc Phe	tcc Ser	aag Lys 190	gcc Ala	gac Asp	cac His	aat Asn	gac Asp 195	ggc Gly	tac Tyr	ccc Pro	ttc Phe	gat Asp 200	ggc Gly	688
	cct Pro	ggt Gly	ggc Gly	acg Thr 205	gtg Val	gcc Ala	cac His	gca Ala	ttc Phe 210	ttc Phe	cct Pro	ggt Gly	gac Asp	cac His 215	cac His	acg Thr	736
	gca Ala	ggg Gly	gac Asp 220	acc Thr	cac His	ttt Phe	gat Asp	gac Asp 225	gat Asp	gag Glu	cca Pro	tgg Trp	acc Thr 230	ttc Phe	cgt Arg	tcc Ser	784
	tea Ser	gat Asp 235	gcc Ala	cac His	Gly	atg Met	gac Asp 240	ctg Leu	ttt Phe	gca Ala	gtg Val	gcc Ala 245	gtc Val	cat His	gag Glu	ttt Phe	832
•	ggt GLY 250	cat	gcc Ala	att Ile	ggt Gly	ctg Leu 255	agc Ser	cat His	gtt Val	gcc Ala	gcc Ala 260	cca Pro	agc Ser	tcc Ser	atc Ile	atg Met 265	880
(caā Glī	ccg Pro	tac Tyr	tac Tyr	cag Gln 270	ggc Gly	ccc Pro	gtg Val	ggt Gly	gac Asp 275	ccc Pro	gta Val	cgc Arg	tat Tyr	gga Gly 280	ctt Leu	928
.]	ccc Pro	tat Tyr	gag Glu	gac Asp 285	agg Arg	gtg Val	cgt Arg	gtc Val	tgg Trp 290	cag Gln	ttg Leu	tac Tyr	ggt Gly	gtg Val 295	cgg Arg	gaa Glu	976
1	tcc Ser	gtg Val	tcc Ser 300	cct Pro	act Thr	gcc Ala	cag Gln	ctg Leu 305	gat Asp	acc Thr	cca Pro	gag Glu	ccc Pro 310	gag Glu	gag Glu	cca Pro	1024
I	ecc Pro	ctc Leu 315	ctg Leu	cca Pro	gag Glu	ccc Pro	ccc Pro 320	aac Asn	aat Asn	cgg Arg	tct Ser	agc Ser 325	act Thr	ccg Pro	ccc Pro	cag Gln	1072
ć	aag	gac	gtg	cct	cac	agg	tgc	act	gcc	cac	ttt	gat	gct	gtg	gcc	cag	1120

Lys 330	Asp	Val	Pro	His	Arg 335	Cys	Thr	Ala	His	Phe 340	Asp	Ala	Val	Ala	Gln 345	
			gaa Glu													1168
			cga Arg 365													1216
ttc Phe	tgg Trp	cgg Arg 380	ggc Gly	ctg Leu	ccg Pro	ctg Leu	cac His 385	ctg Leu	gac Asp	agt Ser	gtg Val	gac Asp 390	gcc Ala	gtg Val	tat Tyr	1264
			agt Ser													1312
tog Tree 410	gtg Val	ttt Phe	aag Lys	gac Asp	aac Asn 415	aac Asn	gta Val	gag Glu	gaa Glu	ggg Gly 420	tac Tyr	ccg Pro	cga Arg	cct Pro	gtc Val 425	1360
tgc Ser			agc Ser													1408
gÇÇ Ala	cac His	aat Asn	gac Asp 445	agg Arg	act Thr	tat Tyr	ttc Phe	ttt Phe 450	aag Lys	gac Asp	cag Gln	ctg Leu	tac Tyr 455	tgg Trp	cgc Arg	1456
			cac His													1504
			aga Arg													1552
tct Ser 490	gat Asp	ggt Gly	gca Ala	tcc Ser	tat Tyr 495	ttc Phe	ttc Phe	cga Arg	ggc Gly	cag Gln 500	gag Glu	tac Tyr	tgg Trp	aaa Lys	gtg Val 505	1600
ctg	gat	ggc	gag	ctg	gaa	gca	gcc	ccc	ggg	tac	cca	cag	tct	aca	gcc	1648

Leu Asp Gly Glu Leu Glu Ala Ala Pro Gly Tyr Pro Gln Ser Thr Ala 510 515 520 cgc gac tgg ctg gta tgc ggt gag ccg ctg gcg gat gcg gag gat gta 1696 Arg Asp Trp Leu Val Cys Gly Glu Pro Leu Ala Asp Ala Glu Asp Val ggg cct gga ccc cag ggc cgc agt ggg gcc caa gat ggt ctq qca qta 1744 Gly Pro Gly Pro Gln Gly Arg Ser Gly Ala Gln Asp Gly Leu Ala Val 540 545 550 tgt tcc tgc act tca gac gca cac agg ttg gca ctg cca tct ctg ctg 1792 Cys Ser Cys Thr Ser Asp Ala His Arq Leu Ala Leu Pro Ser Leu Leu 555 560 565 ctt ctg act cca ctg ctg tgg ggc ctg tgg acc tca gtc tct gcc aag 1840 Let Leu Thr Pro Leu Leu Trp Gly Leu Trp Thr Ser Val Ser Ala Lys 5**7**€ 575 580 gea tee tgagggeagt getageettg eggateaagg ageeagggga geagggaeae 1896 Ala Ser adeggecagt actcagcagg acttgtgctc caagetteeg gteecteget ectteettee 1956 ttecttcctt gaacccaggg gtgctgtgcc atctgctgga gtggtctcca gctgggacag 2016 gacgteceae caagggeate catgeaeace ttgeetaeet ggageageea taggeagete 2076 ccettccctc ctctgcacat cacgctgctt cgttgcacct tgccgggctg cccaagccca 2136 gctgtcacaa ccccaggatg ccttgtctgc acctgagcgg ctctgatggc atctgcacgt 2196 gggctgatga ggggcaaaca ggggttcctc gtggtatccg taggggccac catgcctgtt 2256 tcacaagtaa gagagttgat gccccgatgg gggaacaggg tgggagaaag gcacctaccc 2316 agaagtetga teeactgeeg tttgeageag eeagegeegt atetgetggg ataggggaee 2376 agtcacactc aggatctgcc cacagattcc cagatgctgg caaggggcct tgctccaact 2436 accaggagca cagccacctc tccccqtcct agataggtta gccatggagg ctgtgtcctg 2496 ttatctccct ctctttggcc aggagagcat tgtgggtctc cctcgggtgc tgttgatggg 2556

ggtggggggc gcccatagag atatttcttc atctgtcagt acccattgct tcagcaagat 2616 gcccccatat agttctggcc tgagaccctg cagcttggac tcacagctgt cccctcccca 2676 gctgcagaag ggcttctaac acctggaata aaggtgggcg ttcagtttag ggaaggagga 2736 tggttggggg agcccagggt gatagcaagg gggagctqca gggataagtg tcagggtcct 2796 cggggagtca tgacaatgtt accgcctaac ttggagatgt aggagctgtg cacggattgc 2856 ttctctqqqt qacaaacctc catqqtccaq aaaqqqqctq aqqttqaacc caaqatqqqt 2916 taatqaqctc caqaaaqqaa cagccaaqtt caaaqqttct gggacaagac gggcctgagg 2976 aacaqqqcca cccaqqtaqq cqtqqctqta qqqtaaqcaq tttctgtcat tqggcacqaq 3036 atta gtgatcacac gcacataccc ccctcccaa ctggcccggt cccatctcag 3096 gtaaqaaagg cttctgtcta ccccaggcca ggtttgagtg ttgtcaggat gagtgagcag 3156 ctagegggge ctaagtttet accetecatt teceaageet ggeeacacee tagaceeetg 3216 toaggetag description to toaggetag description caccatactc tgccctcata tcaaagcacg ctcctatgat gtcccatgtt gtccaccagc 3336 ctigcaggaca cagatgteet atacageaac agggaaagte caaaaatett tgteacatag 3396 caetgaaaac cagacccgca ggctggagct gtctagatgc tggtgtcaca ctcattttaa 3456 а 3517

```
<210> 4
```

<400> 4

<211> 2423 2438

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (100)..(1917)

ccg	gcgg	ggg	cgcc	gcgg	ag a	gcgg	aggg	c gc	cggg	ctgc	gga	acgc	gaa	gcgg	agggcg	60
cgg	gacc	ctg.	cacg		cc g	cggg	ccca [.]	t gt	gagc				_	cgc Arg	_	114
														cgg Arg 20		162
														acc Thr		210
ggg Gly														ctc Leu		258
														gct Ala		306
														gcc Ala		354
aca Thr														ctg Leu 100		402
														cca Pro		450
														gcc Ala		498
														ttc Phe		546
cgg	gac	tca	cca	ctg	ggg	cac	gac	acg	gtg	cgt	gca	ctc	atg	tac	tac	594

Arg 150	Asp	Ser	Pro	Leu	Gly 155	His	Asp	Thr	Val	Arg 160		Leu	Met	Tyr	Tyr 165	
gcc Ala	ctc Leu	aag Lys	gtc Val	tgg Trp 170	agc Ser	gac Asp	att Ile	gcg Ala	ccc Pro 175	ctg Leu	aac Asn	ttc Phe	cac His	gag Glu 180	gtg Val	642
gcg Ala	ggc Gly	agc Ser	acc Thr 185	gcc Ala	gac Asp	atc Ile	cag Gln	atc Ile 190	gac Asp	ttc Phe	tcc Ser	aag Lys	gcc Ala 195	gac Asp	cat His	690
aac Asn	gac Asp	ggc Gly 200	tac Tyr	ccc Pro	ttc Phe	gac Asp	ggc Gly 205	ccc Pro	ggc Gly	ggc Gly	acc Thr	gtg Val 210	gcc Ala	cac His	gcc Ala	738
ttc.	ttc Phe 215	ccc Pro	ggc Gly	cac His	cac His	cac His 220	acc Thr	gcc Ala	ggg Gly	gac Asp	acc Thr 225	cac His	ttt Phe	gac Asp	gat Asp	786
gae Asp 230	gag Glu	gcc Ala	tgg Trp	acc Thr	ttc Phe 235	cgc Arg	tcc Ser	tcg Ser	gat Asp	gcc Ala 240	cac His	ggg Gly	atg Met	gac Asp	ctg Leu 245	834
ttt Phe	gca Ala	gtg Val	gct Ala	gtc Val 250	cac His	gag Glu	ttt Phe	ggc Gly	cac His 255	gcc Ala	att Ile	gly	tta Leu	agc Ser 260	cat His	882
gtg VaI	gcc Ala	gct Ala	gca Ala 265	cac His	tcc Ser	atc Ile	atg Met	cgg Arg 270	ccg Pro	tac Tyr	tac Tyr	cag Gln	ggc Gly 275	ccg Pro	gtg Val	930
ggt Gly	gac Asp	ccg Pro 280	ctg Leu	cgc Arg	tac Tyr	ggg Gly	ctc Leu 285	ccc Pro	tac Tyr	gag Glu	gac Asp	aag Lys 290	gtg Val	cgc Arg	gtc Val	978
tgg Trp	cag Gln 295	ctg Leu	tac Tyr	ggt Gly	gtg Val	cgg Arg 300	gag Glu	tct Ser	gtg Val	tct Ser	ccc Pro 305	acg Thr	gcg Ala	cag Gln	ccc Pro	1026
gag Glu 310	gag Glu	cct Pro	ccc Pro	ctg Leu	ctg Leu 315	ccg Pro	gag Glu	ccc Pro	cca Pro	gac Asp 320	aac Asn	cgg Arg	tcc Ser	agc Ser	gcc Ala 325	1074
ccg	CCC	agg	aag	gac	gtg	ccc	cac	aga	tgc	agc	act	cac	ttt	gac	gcg	1122

Pro	Pro	Arg	Lys	Asp 330		Pro	His	Arg	Cys 335	Ser	Thr	His	Phe	Asp 340	Ala	
					ggt Gly										ttc Phe	1170
															cag Gln	1218
atg Met	cac His 375	cgc Arg	ttc Phe	tgg Trp	cgg Arg	ggc Gly 380	ctg Leu	ccg Pro	ctg Leu	cac His	ctg Leu 385	gac Asp	agc Ser	gtg Val	gac Asp	1266
gcc Ala 390	gtg Val	tac Tyr	gag Glu	cgc Arg	acc Thr 395	agc Ser	gac Asp	cac His	aag Lys	atc Ile 400	gtc Val	ttc Phe	ttt Phe	aaa Lys	gga Gly 405	1314
gae Asp	agg Arg	tac Tyr	tgg Trp	gtg Val 410	ttc Phe	aag Lys	gac Asp	aat Asn	aac Asn 415	gta Val	gag Glu	gaa Glu	gga Gly	tac Tyr 420	ccg Pro	1362
CGC Arg	ccc Pro	gtc Val	tcc Ser 425	gac Asp	ttc Phe	agc Ser	ctc Leu	ccg Pro 430	cct Pro	ggc Gly	ggc Gly	atc Ile	gac Asp 435	gct Ala	gcc Ala	1410
ttc Phe	tcc Ser	tgg Trp 440	gcc Ala	cac His	aat Asn	gac Asp	agg Arg 445	act Thr	tat Tyr	ttc Phe	ttt Phe	aag Lys 450	gac Asp	cag Gln	ctg Leu	1458
tac Tyr	tgg Trp 455	cgc Arg	tac Tyr	gat Asp	gac Asp	cac His 460	acg Thr	agg Arg	cac His	atg Met	gac Asp 465	ccc Pro	ggc Gly	tac Tyr	ccc Pro	1506
gcc Ala 470	cag Gln	agc Ser	ccc Pro	ctg Leu	tgg Trp 475	agg Arg	ggt Gly	gtc Val	ccc Pro	agc Ser 480	acg Thr	ctg Leu	gac Asp	gac Asp	gcc Ala 485	1554
atg Met	cgc Arg	tgg Trp	tcc Ser	gac Asp 490	ggt Gly	gcc Ala	tcc Ser	tac Tyr	ttc Phe 495	ttc Phe	cgt Arg	ggc Gly	cag Gln	gag Glu 500	tac Tyr	1602
tgg	aaa	gtg	ctg	gat	ggc	gag	ctg	gag	gtg	gca	CCC	ggg	tac	cca	cag	1650

Trp	Lys	Val	Leu 505	Asp	Gly	Glu	Leu	Glu 510	Val	Ala	Pro	Gly	Tyr 515	Pro	Gln	
tcc Ser	acg Thr	gcc Ala 520	cgg Arg	gac Asp	tgg Trp	ctg Leu	gtg Val 525	tgt Cys	gga Gly	gac Asp	tca Ser	cag Gln 530	gcc Ala	gat Asp	gga Gly	1698
tct Ser	gtg Val 535	gct Ala	gcg Ala	ggc Gly	gtg Val	gac Asp 540	gcg Ala	gca Ala	gag Glu	ggg Gly	ccc Pro 545	cgc Arg	gcc Ala	cct Pro	cca Pro	1746
gga Gly 550	caa Gln	cat His	gac Asp	cag Gln	agc Ser 555	cgc Arg	tcg Ser	gag Glu	gac Asp	ggt Gly 560	tac Tyr	gag Glu	gtc Val	tgc Cys	tca Ser 565	1794
tgc C ys	acc Thr	tct Ser	ggg Gly	gca Ala 570	tcc Ser	tct Ser	ccc Pro	ccg Pro	ggg Gly 575	gcc Ala	cca Pro	ggc Gly	cca Pro	ctg Leu 580	gtg Val	1842
gcta	gcc Ala	acc Thr	atg Met 585	ctg Leu	ctg Leu	ctg Leu	ctg Leu	ccg Pro 590	cca Pro	ctg Leu	tca Ser	cca Pro	ggc Gly 595	gcc Ala	ctg Leu	1890
tqg Trp	aca Thr	gcg Ala 600	gcc Ala	cag Gln	gcc Ala	ctg Leu	acg Thr 605	cta Leu	tgac	acac	ag c	gcga	.gccc	ca		1937
t ga g	agga	ıca g	gagge	ggtg	g ga	.cagc	ctgg	cca	.caga	ggg	caag	gact	gt g	ıccgg	agtcc	1997
															gcaga	
gggc	acgg	cc c	gcca	gggc	t gg	gcag	gctc	agg	tggc	aag	gacg	gagc	tg t	cccc	tagtg	2117
aggg	actg	tg t	tgac	tgac	g ag	ccga	gggg	tgg	ccgc	tcc	agaa	gggt	gc c	cagt	caggc	2177
cgca	ccgc	cg c	cagc	ctcc	t cc	ggcc	ctgg	agg	gagc	atc	tcgg	gctg	gg g	gccc	acccc	2237
tctc	tgtg	cc g	gcgc	cacc	a ac	ccca	ccca	cac	tgct	gcc	tggt	gctc	cc g	ccgg	cccac	2297
aggg	cctc	cg t	cccc	aggt	c cc	cagt	gggg	cag	ccct	ccc	caca	gacg	ag c	cccc	cacat	2357
ggtg	ccgc	gg c	acgt	cccc	c ct	gtga	cgcg	ttc	caga	cca	acat	gacc	tc t	ccct	gcttt	2417
gtaaaaaaaa aaaaaaaaa a												2438				

<210> 5

<211> 618

<212> PRT

<213> Mouse

<400> 5

Met Pro Arg Ser Arg Gly Gly Arg Ala Ala Pro Gly Gln Ala Ser Arg
1 5 10 15

Trp Ser Gly Trp Arg Ala Pro Gly Arg Leu Leu Pro Leu Leu Pro Ala 20 25 30

Leu Cys Cys Leu Ala Ala Ala Gly Ala Gly Lys Pro Ala Gly Ala 35 40 45

Asp Ala Pro Phe Ala Gly Gln Asn Trp Leu Lys Ser Tyr Gly Tyr Leu 50 55 60

Leu Pro Tyr Glu Ser Arg Ala Ser Ala Leu His Ser Gly Lys Ala Leu 65 70 75 80

GTM Ser Ala Val Ser Thr Met Gln Gln Phe Tyr Gly Ile Pro Val Thr 85 90 95

Giy Val Leu Asp Gln Thr Thr Ile Glu Trp Met Lys Lys Pro Arg Cys

GIV Val Pro Asp His Pro His Leu Ser Arg Arg Arg Arg Asn Lys Arg 115 120 125

Tyr Ala Leu Thr Gly Gln Lys Trp Arg Gln Lys His Ile Thr Tyr Ser 130 135 140

Ile Arg Gln Ala Phe Asp Val Trp Gln Lys Val Thr Pro Leu Thr Phe
165 170 175

Glu Glu Val Pro Tyr His Glu Ile Lys Ser Asp Arg Lys Glu Ala Asp 180 185 190

Ile Met Ile Phe Phe Ala Ser Gly Phe His Gly Asp Ser Ser Pro Phe

- Asp Gly Glu Gly Phe Leu Ala His Ala Tyr Phe Pro Gly Pro Gly 210 215 220
- Ile Gly Gly Asp Thr His Phe Asp Ser Asp Glu Pro Trp Thr Leu Gly 225 230 235 240
- Asn Ala Asn His Asp Gly Asn Asp Leu Phe Leu Val Ala Val His Glu 245 250 255
- Leu Gly His Ala Leu Gly Leu Glu His Ser Asn Asp Pro Ser Ala Ile 260 265 270
- Met Ala Pro Phe Tyr Gln Tyr Met Glu Thr His Asn Phe Lys Leu Pro 275 280 285
- Gin Asp Asp Leu Gln Gly Ile Gln Lys Ile Tyr Gly Pro Pro Ala Glu 290 295 300
- Pro Leu Glu Pro Thr Arg Pro Leu His Thr Leu Pro Val Arg Arg Ile 305 310 315 320
- His Ser Pro Ser Glu Arg Lys His Glu Arg His Pro Arg Pro Pro Arg 325 330 335
- Pro Leu Gly Asp Arg Pro Ser Thr Pro Gly Ala Lys Pro Asn Ile 340 345 350
- Cys Asp Gly Asn Phe Asn Thr Val Ala Leu Phe Arg Gly Glu Met Phe 355 360 365
- Val Phe Lys Asp Arg Trp Phe Trp Arg Leu Arg Asn Asn Arg Val Gln 370 375 380
- Glu Gly Tyr Pro Met Gln Ile Glu Gln Phe Trp Lys Gly Leu Pro Ala 385 390 395 400
- Arg Ile Asp Ala Ala Tyr Glu Arg Ala Asp Gly Arg Phe Val Phe 405 410 415
- Lys Gly Asp Lys Tyr Trp Val Phe Lys Glu Val Thr Val Glu Pro Gly 420 425 430

Tyr Pro His Ser Leu Gly Glu Leu Gly Ser Cys Leu Pro Arg Glu Gly Ile Asp Thr Ala Leu Arg Trp Glu Pro Val Gly Lys Thr Tyr Phe Phe Lys Gly Glu Arg Tyr Trp Arg Tyr Ser Glu Glu Arg Arg Ala Thr Asp Pro Gly Tyr Pro Lys Pro Ile Thr Val Trp Lys Gly Ile Pro Gln Ala Pro Gln Gly Ala Phe Ile Ser Lys Glu Gly Tyr Tyr Thr Tyr Phe Tyr Lys Gly Arg Asp Tyr Trp Lys Phe Asp Asn Gln Lys Leu Ser Val Glu Pro Gly Tyr Pro Arg Asn Ile Leu Arg Asp Trp Met Gly Cys Lys Gln Lys Glu Val Glu Arg Arg Lys Glu Arg Arg Leu Pro Gln Asp Asp Val Asp Ile Met Val Thr Ile Asp Asp Val Pro Gly Ser Val Asn Ala Val M Ala Val Val Pro Cys Thr Leu Ser Leu Cys Leu Leu Val Leu Leu --Tyr Thr Ile Phe Gln Phe Lys Asn Lys Ala Gly Pro Gln Pro Val Thr Tyr Tyr Lys Arg Pro Val Gln Glu Trp Val <210> 6 <211> 645 <212> PRT <213> Homo sapiens <400> 6 Met Pro Arg Ser Arg Gly Gly Arg Ala Ala Pro Gly Pro Pro Pro

Pro Pro Pro Pro Gly Gln Ala Pro Arg Trp Ser Arg Trp Arg Val Pro Gly Arg Leu Leu Leu Leu Leu Pro Ala Leu Cys Cys Leu Pro Gly Ala Ala Arg Ala Ala Ala Ala Ala Gly Ala Gly Asn Arg Ala Ala Val Ala Val Ala Val Ala Arg Ala Asp Glu Ala Glu Ala Pro Phe Ala Gly Gln Asn Trp Leu Lys Ser Tyr Gly Tyr Leu Leu Pro Tyr Asp Ser Arg Ala Ser Ala Leu His Ser Ala Lys Ala Leu Gln Ser Ala Val Ser Met Gln Gln Phe Tyr Gly Ile Pro Val Thr Gly Val Leu Asp Gln Dī The Thr Ile Glu Trp Met Lys Lys Pro Arg Cys Gly Val Pro Asp His Pro His Leu Ser Arg Arg Arg Arg Asn Lys Arg Tyr Ala Leu Thr Gly GH Lys Trp Arg Gln Lys His Ile Thr Tyr Ser Ile His Asn Tyr Thr Pro Lys Val Gly Glu Leu Asp Thr Arg Lys Ala Ile Arg Gln Ala Phe Asp Val Trp Gln Lys Val Thr Pro Leu Thr Phe Glu Glu Val Pro Tyr His Glu Ile Lys Ser Asp Arg Lys Glu Ala Asp Ile Met Ile Phe Phe Ala Ser Gly Phe His Gly Asp Ser Ser Pro Phe Asp Gly Gly Gly

Phe Leu Ala His Ala Tyr Phe Pro Gly Pro Gly Ile Gly Gly Asp Thr

His Phe Asp Ser Asp Glu Pro Trp Thr Leu Gly Asn Ala Asn His Asp Gly Asn Asp Leu Phe Leu Val Ala Val His Glu Leu Gly His Ala Leu Gly Leu Glu His Ser Ser Asp Pro Ser Ala Ile Met Ala Pro Phe Tyr Gln Tyr Met Glu Thr His Asn Phe Lys Leu Pro Gln Asp Asp Leu Gln Gly Ile Gln Lys Ile Tyr Gly Pro Pro Ala Glu Pro Leu Glu Pro Thr Arg Pro Leu Pro Thr Leu Pro Val Arg Ile His Ser Pro Ser Glu T. Arg Lys His Glu Arg Gln Pro Arg Pro Pro Pro Leu Gly Asp A. H. H. H. Pro Ser Thr Pro Gly Thr Lys Pro Asn Ile Cys Asp Gly Asn Phe E.J. Asm Thr Val Ala Leu Phe Arg Gly Glu Met Phe Val Phe Lys Asp Arg Tro Phe Trp Arg Leu Arg Asn Asn Arg Val Glu Glu Gly Tyr Pro Met į. Gln Ile Glu Gln Phe Trp Lys Gly Leu Pro Ala Arg Ile Asp Ala Ala Tyr Glu Arg Ala Asp Gly Arg Phe Val Phe Phe Lys Gly Asp Lys Tyr Trp Val Phe Lys Glu Val Thr Val Glu Pro Gly Tyr Pro His Ser Leu Gly Glu Leu Gly Ser Cys Leu Pro Arg Glu Gly Ile Asp Thr Ala Leu Arg Trp Glu Pro Val Gly Lys Thr Tyr Phe Phe Lys Gly Glu Arg Tyr

```
Trp Arg Tyr Ser Glu Glu Arg Arg Ala Thr Asp Pro Gly Tyr Pro Lys
             500
                                 505
                                                      510
Pro Ile Thr Val Trp Lys Gly Ile Pro Gln Ala Pro Gln Gly Ala Phe
         515
                             520
                                                  525
Ile Ser Lys Glu Gly Tyr Tyr Thr Tyr Phe Tyr Lys Gly Arg Asp Tyr
    530
                         535
                                              540
Trp Lys Phe Asp Asn Gln Lys Leu Ser Val Glu Pro Gly Tyr Pro Arq
545
                     550
                                         555
                                                              560
Asn Ile Leu Arg Asp Trp Met Gly Cys Asn Gln Lys Glu Val Glu Arg
                 565
                                     570
                                                          575
Arg Lys Glu Arg Arg Leu Pro Gln Asp Asp Val Asp Ile Met Val Thr
 580
                                 585
                                                      590
 I Asn Asp Val Pro Gly Ser Val Asn Ala Val Ala Val Val Ile Pro
        595
                             600
                                                 605
 Cys.
    Ile Leu Ser Leu Cys Ile Leu Val Leu Val Tyr Thr Ile Phe Gln
    610
                         615
                                             620
Phe Lys Asn Lys Thr Gly Pro Gln Pro Val Thr Tyr Tyr Lys Arg Pro
625
                     630
                                         635
                                                              640
 Val Gln Glu Trp Val
                645
 14
<210> 7
<211> 4263
<212> DNA
<213> Mouse
<220>
<221> CDS
<222> (75)..(1928)
<400> 7
gegggaggae ceggeggag cegeegeege egeegeege ategeageeg ggeggeeggg 60
cccccgccgc cggg atg ccg agg agc cgg ggc cgc gct gcg ccg ggc
                                                                   110
                Met Pro Arg Ser Arg Gly Gly Arg Ala Ala Pro Gly
```

		tcg Ser 15														158
ctg Leu	ctg Leu 30	ccc Pro	gcg Ala	ctc Leu	tgc Cys	tgc Cys 35	ctc Leu	gcg Ala	gcg Ala	gcg Ala	gcg Ala 40	ggg	gcc Ala	ggg Gly	aag Lys	206
ccg Pro 45	gcc Ala	ggg Gly	gcg Ala	gac Asp	gcg Ala 50	ccc Pro	ttc Phe	gct Ala	ggg Gly	cag Gln 55	aac Asn	tgg Trp	tta Leu	aaa Lys	tca Ser 60	254
tat Tyr	ggc Gly	tat Tyr	ctg Leu	ctt Leu 65	ccc Pro	tat Tyr	gag Glu	tcg Ser	cgg Arg 70	gca Ala	tct Ser	gcg Ala	ttg Leu	cat His 75	tct Ser	302
g g		gcc Ala														350
ate Ile	cca Pro	gtc Val 95	acc Thr	ggt Gly	gtg Val	ttg Leu	gat Asp 100	cag Gln	aca Thr	aca Thr	atc Ile	gag Glu 105	tgg Trp	atg Met	aag Lys	398
aaa Lys	cct Pro 110	cga Arg	tgt Cys	ggc Gly	gtc Val	cct Pro 115	gat Asp	cat His	ccc Pro	cac His	ttg Leu 120	agc Ser	agg Arg	agg Arg	agg Arg	446
aga Arg 125	aat Asn	aag Lys	cga Arg	tat Tyr	gcc Ala 130	cta Leu	act Thr	gga Gly	cag Gln	aag Lys 135	tgg Trp	agg Arg	cag Gln	aaa Lys	cac His 140	494
atc Ile	acc Thr	tac Tyr	agc Ser	att Ile 145	cac His	aat Asn	tat Tyr	acc Thr	cca Pro 150	aag Lys	gtg Val	ggt Gly	gag Glu	ctg Leu 155	gac Asp	542
aca Thr	cgg Arg	aag Lys	gct Ala 160	att Ile	cgt Arg	cag Gln	gct Ala	ttc Phe 165	gat Asp	gtg Val	tgg Trp	cag Gln	aag Lys 170	gtg Val	act Thr	590
cca Pro	ctg Leu	acc Thr	ttt Phe	gaa Glu	gag Glu	gtg Val	cca Pro	tac Tyr	cat His	gag Glu	atc Ile	aaa Lys	agt Ser	gac Asp	cgg Arg	638

					atg Met										gac Asp	686
					ggg Gly 210											734
					gga Gly											782
tgg Trp	acg Thr	cta Leu	gga Gly 240	aat Asn	gcc Ala	aac Asn	cat His	gat Asp 245	ggc Gly	aat Asn	gac Asp	ctc Leu	ttc Phe 250	ctg Leu	gtg Val	830
g es A la	gtg Val	cat His 255	gaa Glu	ctg Leu	ggc Gly	cat His	gca Ala 260	ctg Leu	ggc Gly	ttg Leu	gag Glu	cac His 265	tct Ser	aat Asn	gac Asp	878
CCC Pro	agt Ser 270	gct Ala	atc Ile	atg Met	gct Ala	ccc Pro 275	ttc Phe	tac Tyr	caa Gln	tac Tyr	atg Met 280	gag Glu	aca Thr	cac His	aac Asn	926
tte Phe 285	aag Lys	cta Leu	ccg Pro	cag Gln	gac Asp 290	gat Asp	ctc Leu	cag Gln	ggc Gly	atc Ile 295	cag Gln	aag Lys	att Ile	tac Tyr	gga Gly 300	97 4
					ctg Leu											1022
gtc Val	cgc Arg	agg Arg	atc Ile 320	cac His	tcg Ser	ccg Pro	tct Ser	gag Glu 325	agg Arg	aag Lys	cac His	gag Glu	cgg Arg 330	cac His	cca Pro	1070
agg Arg	ccc Pro	cca Pro 335	cgg Arg	ccg Pro	ccc Pro	ctt Leu	ggg Gly 340	gac Asp	cgg Arg	cca Pro	tcc Ser	act Thr 345	cca Pro	ggt Gly	gcc Ala	1118
					gat Asp											1166

ggg Gly 365	gag Glu	atg Met	ttt Phe	gtg Val	ttc Phe 370	aag Lys	gat Asp	cgc Arg	tgg Trp	ttc Phe 375	tgg Trp	cgc Arg	ctg Leu	cgc Arg	aat Asn 380	1214
aac Asn	cgg Arg	gtg Val	cag Gln	gaa Glu 385	ggc Gly	tac Tyr	ccc Pro	atg Met	cag Gln 390	atc Ile	gaa Glu	cag Gln	ttc Phe	tgg Trp 395	aag Lys	1262
ggc Gly	ctg Leu	ccc Pro	gcc Ala 400	cgc Arg	ata Ile	gac Asp	gca Ala	gcc Ala 405	tat Tyr	gaa Glu	aga Arg	gct Ala	gac Asp 410	ggg Gly	aga Arg	1310
ttc Phe	gtc Val	ttc Phe 415	ttc Phe	aaa Lys	gga Gly	gac Asp	aag Lys 420	tac Tyr	tgg Trp	gtt Val	ttc Phe	aaa Lys 425	gaa Glu	gtg Val	acg Thr	1358
y van m	gaa Glu 430	cct Pro	ggg Gly	tac Tyr	ccc Pro	cac His 435	agc Ser	ttg Leu	ggg Gly	gag Glu	ctg Leu 440	gga Gly	agc Ser	tgc Cys	ctg Leu	1406
CCC PEO 445	cgt Arg	gaa Glu	gga Gly	att Ile	gac Asp 450	aca Thr	gct Ala	ctg Leu	cgc Arg	tgg Trp 455	gaa Glu	cct Pro	gtg Val	ggc Gly	aaa Lys 460	1454
ace Thr	tac Tyr	ttc Phe	ttc Phe	aaa Lys 465	ggc Gly	gaa Glu	cgg Arg	tac Tyr	tgg Trp 470	cgc Arg	tac Tyr	agc Ser	gag Glu	gag Glu 475	cgg Arg	1502
cga Arg	gcc Ala	aca Thr	gac Asp 480	cct Pro	ggc Gly	tac Tyr	ccc Pro	aag Lys 485	ccc Pro	atc Ile	acc Thr	gtg Val	tgg Trp 490	aag Lys	ggc Gly	1550
atc Ile	ccg Pro	cag Gln 495	gct Ala	ccg Pro	caa Gln	ggg Gly	gcc Ala 500	ttc Phe	atc Ile	agc Ser	aag Lys	gaa Glu 505	gga Gly	tat Tyr	tac Tyr	1598
acc Thr	tac Tyr 510	ttc Phe	tac Tyr	aaa Lys	ggc Gly	cgg Arg 515	gac Asp	tac Tyr	tgg Trp	aag Lys	ttt Phe 520	gac Asp	aac Asn	cag Gln	aaa Lys	1646
ctg Leu	agc Ser	gtg Val	gag Glu	cca Pro	ggc Gly	tac Tyr	cca Pro	cgc Arg	aac Asn	atc Ile	ctg Leu	cgt Arg	gac Asp	tgg Trp	atg Met	1694

525					530					535					540	
ggc Gly	tgc Cys	aag Lys	cag Gln	aag Lys 545	gag Glu	gta Val	gag Glu	cgg Arg	cgt Arg 550	aag Lys	gag Glu	cgg Arg	agg Arg	ctg Leu 555	ccc Pro	1742
			gtg Val 560													1790
gtg Val	aac Asn	gct Ala 575	gtg Val	gct Ala	gtg Val	gtt Val	gtc Val 580	ccc Pro	tgc Cys	aca Thr	ctg Leu	tcc Ser 585	ctc Leu	tgc Cys	ctc Leu	1838
ctg Leu	gtg Val 590	ctg Leu	ctc Leu	tac Tyr	act Thr	atc Ile 595	ttc Phe	caa Gln	ttc Phe	aag Lys	aac Asn 600	aag Lys	gcg Ala	ggt Gly	cct Pro	1886
			acc Thr													1928
t ga g	cago	ccc a	agago	cctc	t ct	gtct	acco	ggt ggt	ctg	gcca	gcca	aggco	ect 1	tcctc	caccag	1988
gato	tgag	igg g	gcago	tcta	ıg co	acto	lccc	a cto	gggg	cag	cago	ggcta	ag g	gcago	gttcg	2048
tgtg	tago	tg a	aagtg	ıgtgg	ıg to	cact	ggto	: tag	ggctg	gagt	gcgg	ggct	gg g	gagto	gatggt	2108
g gc t	atgo	cc a	aggtt	gggt	a go	tggc	acco	ago	etgec	agc	ctto	tgtc	ct o	gggca	igacct	2168
ctct	ctac	tc a	aaggg	aata	g go	cagg	ccct	gto	agga	igtc	aagg	gatgo	ıtg d	cago	gaggtg	2228
cccc	tgag	gt c	attg	cato	c tg	rtggt	gtct	gca	agat	acc	acag	ctcc	ag t	cctg	ıgctgg	2288
gacc	cage	cc t	ctga	.ggca	a go	cago	acta	gct	ctca	ccc	cacc	ccaa	iga t	gcca	ccaat	2348
ccca	gtcc	cc t	ctgc	caac	a cc	tgct	ggtc	aga	tgtc	ccc	tcat	ccct	ac c	ctac	tatcc	2408
tcca	aggc	tg c	agtg	cccc	t ga	tgcc	aaca	gag	ıtggg	caa	aago	ctgg	gt t	tccc	ctgct	2468
agcc	cata	ga g	gagat	tcct	c ag	gaaa	.cctg	tto	cacc	cgt	cagg	tctc	ct c	tgag	actca	2528
gaac	ttag	gg t	caca	tgct	g ca	ggca	aggc	tgt	ggcc	agc	tgga	tctc	ac a	ıagga	cccag	2588

ctgtcatgtc gtgaatattt aaatgtcctg tcactactgt ttaaagtccc attttgcaaa 2648 ggctacttga ggctttaggt cagctagagg tgactgtctt ggtgatgagg ccagtatggt 2708 ggcccttccc cgggcactaa ggaccacggt gctgcaaagg ccactcgggc atcctgatac 2768 tagcgggcat cctgttcagg aggctcaaca gctacaggag ctgaccctgg ttctgggggc 2828 ggatgcaagt ttgtgaccat tctctactcc ccctcattaa tgttgtcccc tgccctgctc 2888 cagcctgtcc tctgtggcct gggggctcgg cctgactaca ggtaaagcag agaggattct 2948 agagccaccc ttgtcatctt ctcagagtaa gggaccaggg cagcctttta agttctccat 3008 ctacatcccc agtgaccctg aggcaactca gctccagcct ggagtcggtg tttgtgctcc 3068 tatettgace etggeageee aggtetetgg gtecatette etgeactget ettaggaaaa 3128 gggtcctctt cccagctggt agcagcccca ggctttgggg tttcccccaa ctccctaacc 3188 caaactacct ttttgttgtt tgttttaacc tgaggccctt cttcacatct gacagttcct 3248 a district toget toget ccaaaaccac toggtocaag totcactcac togeteteto 3308 c da acccaa cggtggtacg aggcggccat caaggtgcta gtgggtcaca gataccaact 3368 ctgacctctg agectgcatg ggetttgccc ctgccctgtg gtctctcgcc ctgtagcaca 3428 gagagact ctcgatgccc tgggagttgt tgagtaaaat ctcttgtccc agaagcacct 3488 atgtgggtcc actgtgtccc atctcaccat tgtgttcttg ctcattttgg ccaagggcag 3548 gctccctggg gcaggcgggg aacaactgca gagatttagt gattcatagg tttgtacagc 3608 gttttatact ttgcaaagca ctttattagc tcacagctgt ccactcacat gaaactcctg 3668 taggctctga gagaggctga gggtagcact catcttaccc tcagatgaag cacaaggagg 3728 tcttattatc tgcccctgcc atccaggtgg ccctggctgg gtcttgtgtc cccatcagtg 3788 ggcccttcca gggtccaaga aaactgtctc ttctagtcct ctcctctggg cctccctccc 3848 ccagtcccct ggtccctctc ctcaggttgg tgctcacttc ttgaaagctc taggccccgc 3908

aggctccctg ttggctcctg gcattccaag gccagttgcg aaagagcagg ggatggaggc 3968 aggcagccca ggctgcagat gtgagggaca cagggccggg cccagagagg gctcagccta 4028 gaggetteea atettggatt ettetgeetg eggteatetg tttgteeate ageceaggte 4088 agagcagtca gaggggcaaa gtactggagc ccccagagct cagcttcccc tcggcctggg 4148 tgacatcaca gcatctcagt gtcggtcaca ttttaaactg atcagccttt gtacaatgtt 4208 4263 <210> 8 <211> 2620 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(1935) <400> 8 48 Met Pro Arg Ser Arg Gly Gly Arg Ala Ala Pro Gly Pro Pro Pro <u>.</u>1 10 15 Lj cod ccg ccg ggc cag gcc ccg cgc tgg agc cqc tgg cqq qtc cct 96 Pro Pro Pro Gly Gln Ala Pro Arg Trp Ser Arg Trp Arg Val Pro 20 25 þŕ 144 Gly Arg Leu Leu Leu Leu Leu Pro Ala Leu Cys Cys Leu Pro Gly 35 40 45 192 Ala Ala Arg Ala Ala Ala Ala Ala Gly Ala Gly Asn Arg Ala Ala 50 55 60 240 Val Ala Val Ala Ala Arg Ala Asp Glu Ala Glu Ala Pro Phe Ala 65 70 75 ggg cag aac tgg tta aag tcc tat ggc tat ctg ctt ccc tat gac tca

Gly Gln Asn Trp Leu Lys Ser Tyr Gly Tyr Leu Leu Pro Tyr Asp Ser

cgg Arg	gca Ala	tct Ser	gcg Ala 100	Leu	cac His	tca Ser	gcg Ala	aag Lys 105	gcc Ala	ttg Leu	cag Gln	tcg Ser	gca Ala 110	Val	tcc Ser	336
act Thr	atg Met	cag Gln 115	Gln	ttt Phe	tac Tyr	Gly	atc Ile 120	ccg Pro	gtc Val	acc Thr	ggt Gly	gtg Val 125	ttg Leu	gat Asp	cag Gln	384
aca Thr	acg Thr 130	atc Ile	gag Glu	tgģ Trp	atg Met	aag Lys 135	aaa Lys	ccc Pro	cga Arg	tgt Cys	ggt Gly 140	gtc Val	cct Pro	gat Asp	cac His	432
Pro	cac His	tta Leu	agc Ser	cgt Arg	agg Arg 150	cgg Arg	aga Arg	aac Asn	aag Lys	cgc Arg 155	tat Tyr	gcc Ala	ctg Leu	act Thr	gga Gly 160	480
C G G	aag Lys	tgg Trp	agg Arg	caa Gln 165	aaa Lys	cac His	atc Ile	acc Thr	tac Tyr 170	agc Ser	att Ile	cac His	aac Asn	tat Tyr 175	acc Thr	528
CCa Preo	aaa Lys	gtg Val	ggt Gly 180	gag Glu	cta Leu	gac Asp	acg Thr	cgg Arg 185	aaa Lys	gct Ala	att Ile	cgc Arg	cag Gln 190	gct Ala	ttc Phe	576
gate Asp	gtg Val	tgg Trp 195	cag Gln	aag Lys	gtg Val	acc Thr	cca Pro 200	ctg Leu	acc Thr	ttt Phe	gaa Glu	gag Glu 205	gtg Val	cca Pro	tac Tyr	624
cat His	gag Glu 210	atc Ile	aaa Lys	agt Ser	gac Asp	cgg Arg 215	aag Lys	gag Glu	gca Ala	gac Asp	atc Ile 220	atg Met	atc Ile	ttt Phe	ttt Phe	672
gct Ala 225	tct Ser	ggt Gly	ttc Phe	cat His	ggc Gly 230	gac Asp	agc Ser	tcc Ser	cca Pro	ttt Phe 235	gat Asp	gga Gly	gaa Glu	ggg Gly	gga Gly 240	720
ttc Phe	ctg Leu	gcc Ala	cat His	gcc Ala 245	tac Tyr	ttc Phe	cct Pro	ggc Gly	cca Pro 250	ggg Gly	att Ile	gga Gly	gga Gly	gac Asp 255	acc Thr	768
cac His	ttt Phe	gac Asp	tcc Ser	gat Asp	gag Glu	cca Pro	tgg Trp	acg Thr	cta Leu	gga Gly	aac Asn	gcc Ala	aac Asn	cat His	gac Asp	816

gg ₍	g aac y Asn	gac Asp 275	ctc Leu	ttc Phe	ctg Leu	gtg Val	gct Ala 280	gtg Val	cat His	gag Glu	ctg Leu	ggc Gly 285	cac His	gcg Ala	ctg Leu	864
gg:	a ctg y Leu 290	Glu	cac His	tcc Ser	agc Ser	gac Asp 295	ccc Pro	agc Ser	gcc Ala	atc Ile	atg Met 300	gcg Ala	ccc Pro	ttc Phe	tac Tyr	912
cad Gli 30!	g tac n Tyr	atg Met	gag Glu	acg Thr	cac His 310	aac Asn	ttc Phe	aag Lys	ctg Leu	ccc Pro 315	cag Gln	gac Asp	gat Asp	ctc Leu	cag Gln 320	960
ggo Gly	c atc 7 Ile	cag Gln	aag Lys	atc Ile 325	tat Tyr	gga Gly	ccc Pro	cca Pro	gcc Ala 330	gag Glu	cct Pro	ctg Leu	gag Glu	ccc Pro 335	aca Thr	1008
agi	cca Pro	ctc Leu	cct Pro 340	aca Thr	ctc Leu	ccc Pro	gtc Val	cgc Arg 345	agg Arg	atc Ile	cac His	tca Ser	cca Pro 350	tcg Ser	gag Glu	1056
ago Aro	aaa Lys	cac His 355	gag Glu	cgc Arg	cag Gln	ccc Pro	agg Arg 360	ccc Pro	cct Pro	cgg Arg	ccg Pro	ccc Pro 365	ctc Leu	ggg Gly	gac Asp	1104
cgo Arc		tcc Ser	aca Thr	cca Pro	ggc Gly	acc Thr 375	aaa Lys	ccc Pro	aac Asn	atc Ile	tgt Cys 380	gac Asp	ggc Gly	aac Asn	ttc Phe	1152
aac Asn 385	aca Thr	gtg Val	gcc Ala	ctc Leu	ttc Phe 390	cgg Arg	ggc Gly	gag Glu	atg Met	ttt Phe 395	gtc Val	ttt Phe	aag Lys	gat Asp	cgc Arg 400	1200
tgg Trp	ttc Phe	tgg Trp	cgt Arg	ctg Leu 405	cgc Arg	aat Asn	aac Asn	cga Arg	gtg Val 410	cag Gln	gag Glu	ggc Gly	tac Tyr	ccc Pro 415	atg Met	1248
cag Gln	atc Ile	gag Glu	cag Gln 420	ttc Phe	tgg Trp	aag Lys	ggc Gly	ctg Leu 425	cct Pro	gcc Ala	cgc Arg	atc Ile	gac Asp 430	gca Ala	gcc Ala	1296
tat Tyr	gaa Glu	agg Arg	gcc Ala	gat Asp	ggg Gly	aga Arg	ttt Phe	gtc Val	ttc Phe	ttc Phe	aaa Lys	ggt Gly	gac Asp	aag Lys	tat Tyr	1344

tgg Trp	gtg Val 450	Phe	aag Lys	gag Glu	gtg Val	acg Thr 455	gtg Val	gag Glu	cct Pro	ggg Gly	tac Tyr 460	ccc Pro	cac His	agc Ser	ctg Leu	1392
ggg Gly 465	gag Glu	ctg Leu	ggc Gly	agc Ser	tgt Cys 470	ttg Leu	ccc Pro	cgt Arg	gaa Glu	ggc Gly 475	att Ile	gac Asp	aca Thr	gct Ala	ctg Leu 480	1440
cgc Arg	tgg Trp	gaa Glu	cct Pro	gtg Val 485	ggc Gly	aag Lys	acc Thr	tac Tyr	ttt Phe 490	ttc Phe	aaa Lys	ggc Gly	gag Glu	cgg Arg 495	tac Tyr	1488
tgg Trp	cgc Arg	tac Tyr	agc Ser 500	gag Glu	gag Glu	cgg Arg	cgg Arg	gcc Ala 505	acg Thr	gac Asp	cct Pro	ggc Gly	tac Tyr 510	cct Pro	aag Lys	1536
céé	atc Ile	acc Thr 515	gtg Val	tgg Trp	aag Lys	ggc Gly	atc Ile 520	cca Pro	cag Gln	gct Ala	ccc Pro	caa Gln 525	gga Gly	gcc Ala	ttc Phe	1584
Ile	agc Ser 530	aag Lys	gaa Glu	gga Gly	tat Tyr	tac Tyr 535	acc Thr	tat Tyr	ttc Phe	tac Tyr	aag Lys 540	ggc Gly	cgg Arg	gac Asp	tac Tyr	1632
tgg Trb 549	aag Lys	ttt	gac Asp	aac Asn	cag Gln 550	aaa Lys	ctg Leu	agc Ser	gtg Val	gag Glu 555	cca Pro	ggc Gly	tac Tyr	ccg Pro	cgc Arg 560	1680
aac Asn	atc Ile	ctg Leu	cgt Arg	gac Asp 565	tgg Trp	atg Met	ggc Gly	tgc Cys	aac Asn 570	cag Gln	aag Lys	gag Glu	gtg Val	gag Glu 575	cgg Arg	1728
cgg Arg	aag Lys	gag Glu	cgg Arg 580	cgg Arg	ctg Leu	ccc Pro	cag Gln	gac Asp 585	gac Asp	gtg Val	gac Asp	atc Ile	atg Met 590	gtg Val	acc Thr	1776
atc Ile	aac Asn	gat Asp 595	gtg Val	ccg Pro	ggc Gly	tcc Ser	gtg Val 600	aac Asn	gcc Ala	gtg Val	gcc Ala	gtg Val 605	gtc Val	atc Ile	ccc Pro	1824
tgc Cys	atc Ile	ctg Leu	tcc Ser	ctc Leu	tgc Cys	atc Ile	ctg Leu	gtg Val	ctg Leu	gtc Val	tac Tyr	acc Thr	atc Ile	ttc Phe	cag Gln	1872

ttc aag aac aag aca ggc cct cag cct gtc acc tac tat aag cgg cca Phe Lys Asn Lys Thr Gly Pro Gln Pro Val Thr Tyr Tyr Lys Arg Pro 625 630 635 640	1920
gtc cag gaa tgg gtg tgagcagccc agagccctct ctatccactt ggtctggcca Val Gln Glu Trp Val 645	1975
gccaggccct tcctcaccag ggtctgaggg gcagctctgg ccagtgctca ccagggccag	2035
cagggcccta ggctggggtc gtacagctga agttgtgggt gcattggcct aggctgagcg	2095
tggggcaggg aattatgggg gctgtgccca gggtgggtgt ctggcaccca gctgccagcc	2155
ttetgtcctg ggcaaactac tccctactta agggaatagg ccaggctcca tccggaggca	2215
ggaccatge caggaggage ecctgtggte acggeatect gtggtgteca tgaggtacca	2275
cagetecaet eetggetgga acceggeace etetgtggga agecageact ageteteate	2335
coccatecgg gagataceae cagtectggt eceettttge caacacetge tggtcagatg	2395
togecetace eccaececae tgteetecaa ggetacagga eccetgette tgacacagtg	2455
agraacaage etgggtttee etgetggeag aeggeagate eeteaggaaa eetgeteeae	2515
ttgtcagggt ctcttcggag acccaggatt tagggtcaca tgctgcaggc agggctgtgg	2575
cccagctggg tctgacaagg acccgtgtca catcgtgaat attta	2620
<210> 9 <211> 21 <212> DNA	
<213> Homo sapiens	
<400> 9 ggttcctctt gttccacttg g	21
<210> 10 <211> 35 <212> DNA	
<213> Homo sapiens	

<400> 10 gtaggaattc	gggttgtagg	gaggtcgaca	ttgcc	35
<210> 11 <211> 23 <212> DNA <213> Homo	sapiens			
<400> 11 ggcaatgtcg	acctccctac	aac		23
<210> 12 <211> 22 <212> DNA <213> Homo	sapiens			
< 13 × 13	aaggccatca	ca		22
<211> 23 <212> DNA <213> Homo	sapiens			
<pre><400> 13 ctgcctacaa [] <210> 14 <211> 20</pre>	cccgaattcc	tac		23
<212> DNA <213> Homo	sapiens			
<400> 14 cttgtgggca	gatagggggc			20
<210> 15 <211> 21 <212> DNA <213> Homo	sapiens			
<400> 15 cgcgccgagg	acctcagcct	g		21
<210> 16				

```
<213> Homo sapiens
<400> 16
ggttcctctt gttccacttg g
                                                                    21
<210> 17
<211> 2295
<212> DNA
<213> Homo sapiens
<400> 17
aagagacaag aggtgccttg tgggcagata gggggctggg agggggcctg cccggaagca 60
gtggtggccc gtggcaggct tctcactggg taggaccggg ccctctgttg cacccctca 120
coetgetete tgeeeteagg agtggetaag eaggtteggt tacetgeece eggetgaeee 180
caeaacaggg cagctgcaga cgcaagagga gctgtctaag gccatcacag ccatgcagca 240
gtttggtggc ctggaggcca ccggcatcct ggacgaggcc accctggccc tgatgaaaac 300
cccagetge tecetgecag acetecetgt eetgacecag getegeagga gaegecagge 360
togagecece accaagtgga acaagaggaa eetgtegtgg agggteegga egtteecacg 420
ggactcacca ctggggcacg acacggtgcg tgcactcatg tactacgccc tcaaggtctg 480
gagegacatt gegeeetga actteeaega ggtggeggge ageaeegeeg acateeagat 540
cgacttctcc aaggccgacc ataacgacgg ctaccccttc gacgcccggc ggcaccgtgc 600
ccacgeette tteeceggee accaceacae egeegggtae acceaettta acgatgaega 660
ggeetggaee tteegeteet eggatgeeea egggatggae etgtttgeag tggetgteea 720
cgagtttggc cacgccattg ggttaagcca tgtggccgct gcacactcca tcatgcggcc 780
gtactaccag ggcccggtgg gtgacccgct gcgctacggg ctcccctacg aggacaaggt 840
gcgcgtctgg cagctgtacg gtgtgcggga gtctgtgtct cccacggcgc agcccgagga 900
gcctcccctg ctgccggagc ccccagacaa ccggtccagc gccccgccca ggaaggacgt 960
```

<211> 21 <212> DNA

gccccacaga tgcagcactc actttgacgc ggtggcccag atccggggtg aagctttctt 1020 cttcaaaggc aagtacttct ggcggctgac gcgggaccgg cacctggtgt ccctgcagcc 1080 ggcacagatg caccgcttct ggcggggcct gccgctgcac ctggacagcg tggacgccgt 1140 gtacgagcgc accagcgacc acaagatcgt cttctttaaa ggagacaggt actgggtgtt 1200 caaggacaat aacgtagagg aaggataccc gcgccccgtc tccgacttca gcctcccgcc 1260 tggcggcatc gacgctgcct tctcctgggc ccacaatgac aggacttatt tctttaagga 1320 ccagctgtac tggcgctacg atgaccacac gaggcacatg gaccccggct accccgccca 1380 gageceettg tggaggggtg teeceageae getggaegae geeatgeget ggteegaegg 1440 tgcctcctac ttcttccgtg gccaggagta ctggaaagtg ctggatggcg agctggaggt 1500 ggacccggg tacccacagt ccacggcccg ggactggctg gtgtgtggag actcacaggc 1560 continue to the continue of th adatgaccag agccgctcgg aggacggtta cgaggtctgc tcatgcacct ctggggcatc 1680 ctctccccg ggggccccag gcccactggt ggctgccacc atgctgctgc tgctgccgcc 1740 actigtcacca ggcgccctgt ggacagcggc ccaggccctg acgctatgac acacagcgcg 1800 ageccatgag aggacagagg cggtgggaca gcctggccac agagggcaag gactgtgccg 1860 gagtccctgg gggaggtgct ggcgcgggat gaggacgggc caccctggca ccggaaggcc 1920 agcagagggc acggcccgcc agggctgggc aggctcaggt ggcaaggacg gagctgtccc 1980 ctagtgaggg actgtgttga ctgacgagcc gaggggtggc cgctccagaa gggtgcccag 2040 tcaggccgca ccgccgccag cctcctccgg ccctggaggg agcatctcgg gctgggggcc 2100 cacccctctc tgtgccggcg ccaccaaccc cacccacact gctgcctggt gctcccgccg 2160 gcccacaggg cctccgtccc caggtcccca gtggggcagc cctccccaca gacgagcccc 2220 ccacatggtg ccgcggcacg tccccctgt gacgcgttcc agaccaacat gacctctccc 2280

```
tgctttgtag cggcc
                                                                  2295
<210> 18
<211> 4014
<212> DNA
<213> Homo sapiens
<220>
<221> exon
<222> (3148)..(3280)
<220>
<221> exon
<222> (3564)..(3633)
<400> 18
ttetgttggg gtgtccctgg caaactagga agtggttccc accctctcac tccaqccccc 60
addacggccc ctcccaggat gcctagcctg agatttgggg cacarcccct gagcacaaac 120
togtgttagg taggaggcac ccaccagccc tgcccacag acccaccacc ccccaagatt 180
cgatgccatt ctatgctcaa attccagtgc ctcctggggc cacaggcgac agtgcctgtt 240
tatcatgggc ggggctgcct gtcccgggct ggtgccgggg ccctggttct atgagttgaa 300
gdaggctggc cgctcacacc tgcaactaaa ccacctgctt ccaaacattg ggcaacattc 360
caeagccact gggagtgctg cctgccaggc ccggctccac tttcctgaaa tgcatgtggc 420
ctcgtggcca ggctgcccag ctccctgggg accagagtgg ggggtgcccc aaaccgccac 480
cgtgaacccc acagagtaaa tgggccactc agtgcagcta ccagccatga cctcagctta 540
tagacgggaa ggctgggggg tgagttgtcc tcccaagggg tctcagcacc tgctggccca 600
acccaggcag cagctggcct gggtgggaaa ggcacctgcc tgtgtggacc cttccctggt 660
```

gagggggcag ggggtcatca tccaatatca tagatgatgt gaggaaactc cagagtgctt 720

cctggaggag gtgacaggct attgtaacca tgaggcacag tggccctgtt gagctgtgat 780

cttaacaaag gactaaaaag tgcagaatgt gctgatgggc atctccagca cctacagcgg 840

tgactgatca tgggacaccc tcagtaaacc ctgcaggtgc aaggtagtgt gggaccggat 900 gctcggggcc aaagatcccc acaccctgga ggtcagggcg gaagtgggag gccagcttgt 960 caaggccaag gctgtcaccc ccaaggcccc tccagagaag ctgcccaccc cagtcatgaa 1020 cgtccacttt gacgtcctgt cgtgcctata gctttggagg ggcccccagt tctgtacaca 1080 ctcttggctt ccccaagggg ctgaggggct gggctgggtc agtagggttt ggaaaggggg 1140 taaaggcaca gaggggggcc ccgggaagga ctcagtgctt cctggaaggg gaatctcggg 1200 gtgtgcagat cccatgtagt gtcttgtgag gcccctcctg gccagcacgs cctgttgctg 1260 atgcccctgg gacttccagg atggtggtgc ctcattccct ctgagcactg cctgctgkgt 1320 gggcaggagg gttggccagg accaccccat caccagctcc tgcagaccag aacctggagg 1380 cogagcaggt ggcataawtg agtcacaagc attttcttt ttctttttcc tttttttt 1440 tmaggattt ctttaaaaag ttatgttttt ttcatttatg catttttta ggttaagcca 1500 catgaaacta ctagtattta ttttaaatca gaaatggtca aaaatgggca ctttcatatg 1560 atttggccaa tgaatacatg agaggtggta aataatagcg attcacaagc attttctaaa 1620 tatccaggga aaaaaaaag acaggtttgc aggcagggca gagcccccag cacatcaccc 1680 ctagettgta cetttetgga geeegeetea eeeetgetgt ggtteeetgg getggegagt 1740 atccacaggg cagagcagca gcttcatggc agcctgcaag tgggcacagg cgccatttgg 1800 cggttgaaga aactgaagct aggggtggag gtagccccca cagatggcac ccaggcctgc 1860 catececagg teeceaegat ggeaeceagg teeceaeaga tggeateeag geececetgt 1920 ccccagggcc cctccagggt agcagagatg actggggcat ggggccaggg cttgatttat 1980 gcccaggtta aagggctgcc ctcattcctg ctcctactca gctccggtgt gggtagcctt 2040 gcacccaccc cagtgggccc ttcagagcag agctgtcccc tgcgccaggt gctggtgtga 2100 acattttcca cgtcctggct cacgtcctca tcaccagcct gccaaggact ctgaggaagg 2160

agcccagagg ggtggactgc cttgccccag gcacacagcg gggaggtggc tgagtgggat 2220 ttgaacctag gcagcctggc tggaacctgg cttttgtttc tgagacaggg tctcgctctg 2280 ttgcagacac agtctgcaac tcctgtgctc aaacgatcct cccgcctcag cctcccaaag 2340 tgctgggatc tcaggcataa gccacagcac cggccaagcc tgggctctta tctcccccat 2400 gaatgtacag catggcccaa ttccttaaac tggtgtctga gccacagcct ttctcagctg 2460 gggtcccaga ccttggatgc tagacttccc tgtcacaagt cagctgagag cctgcatttq 2520 acactggcca catttaagag ccttttgaag gttccctagc attttgcggt ctcaggaggc 2580 gtggggtggg gcagggttgc catgagtggt tgtacaggtc gtgcacqqca caagctcaca 2640 ceatctaagg gacatcagat ttatttattt attcattttt tagatggagt cttgctctgt 2700 coccagget ggagtgcagt ggcacgatet eggeteactg caageteege etectgggtt 2760 cocaccacte teetgeytea geeteeegag tagetgggae taeaggeace tgeeaceaca 2820 cceggctaat tttttgtatt tttagtagag acggggtttc accatattag ctaggatggt 2880 ctgcatctcc tgacctcatg atccgcctgc ctcggcctcc caaactgctg ggattacagg 2940 compagecae ageaecegge cagggaeate aggtttatta agacaetttt ceggeagetg 3000 ccaagggaag agacagaag gtgccttgtg ggcagatagg gggctgggag ggggcctgcc 3060 cggaagcagt gttggcccgt ggcaggcttc tcactgggta ggaccgggcc ctctgttgca 3120 ccccctcacc ctgctctctg ccctcaggag tggctaagca ggttcggtta cctgccccg 3180 gbtgacccca caacagggca gctgcagacg caagaggagc tgtctaaggc catcacagcc 3240 atgcagcagt ttkgtggcct ggaggchacc ggcatcctgg gtcagttctc cagggggcag 3300 cgggagcgcc gtgscccccg tcaggtctgc gcccgtcggc catgcccct ctgatcaggc 3360 acagtcccgt cttatgcttg aatgaacctg ggtcctggcc tggtgtagct cagagcctgg 3420 ggctggtccc ccaaagatga cgtgggagga gggsgcggct cggaggctgg tgccagagtc 3480

aggctcccgc ccttggggat gctcgggatc ctagggtggg gagtgagctg ggctaggctc 3540 tgageteeat gettteeetg cagaegagge cacettggee etgatgaaaa eeceaegetg 3600 ctccctgcca gacctcccct gtcctgaccm caggtctcgc agggagacgc acaggtctcm 3660 cagcccccmm mcaagtggac acagagagga acctgtcgtg gaggtgggtg cgtggccagg 3720 gtgaggagcg gggcctccgt ggaggtggsc gcgtggccag ggtgaggaac ggggtctccg 3780 tggaggtggg cgcgtggcca gggtggggaa cggggtctcc gtggaggcgg gtgcgtggcc 3840 agggtgagga acagggtctc cgtggaggtg ggcgcgtggc cagggtgggg aacggggtct 3900 ccgtggaggc gggtgcgtgg ccagggtgag gagtggggcc cccatgtctc cgtgtctggg 3960 cctgctgtag atatcaagct tatcgatacc gtcgacctcg aqqqqqqhcc gtac 4014 <210> 19 <211> 21 <212> DNA <213> Homo sapiens <400> 19 aatctcccat cggccctttc a 21 <210> 20 <211> 20 <212> DNA <213> Homo sapiens <400> 20 atgcacggcc accaggaaga 20 <210> 21 <211> 20 <212> DNA <213> Homo sapiens <400> 21 ggatcagaca acgatcgagt 20 <210> 22

<211> 20

<212> DNA <213> Homo sapiens

<400> 22 cagettgaag ttgtgegtet