



# Saliency Map-aided Generative Adversarial Network for RAW to RGB Mapping

Yuzhi Zhao<sup>1</sup> Lai-Man Po<sup>1</sup> Tiantian Zhang<sup>1</sup> Zongbang Liao<sup>2</sup> Xiang Shi<sup>2</sup> et al. <sup>1</sup>City University of Hong Kong <sup>2</sup>Huazhong University of Science and Technology





#### PROBLEM STATEMENT

Learn a general mapping from RAW file to RGB format.

- 1) Saliency map implicit data augmentation
- 2) Fastest network across all solutions that produces 28 images per second (224 × 224 resolution)
- 3) Transform Huawei RAW file to Canon RGB quality
- 4) Train a RAW2RGB GAN on your own dataset
- → Try it: <a href="https://github.com/zhaoyuzhi/RAW2RGB-GAN">https://github.com/zhaoyuzhi/RAW2RGB-GAN</a>

# SALIENCY MAP DATA AUGMENTATION (SMDA)

**Problem:** Traditional data augmentation method (flipping, cropping, rotation) only perform physical transformation.

Goal: Add semantic information to system, which is significant for many domain transfer applications

**Procedure:** A pre-trained Sal-GAN is adopted to generate saliency maps automatically. Then, the generated saliency maps are utilized to scale pixel-level L1 loss as a proxy target.



**Analysis:** RAW2RGB-GAN is a multi-task system. At backward propagation, the gradients from saliency map prediction branch revises mainstream.

#### **Quantitative Result:**

We have done an experiment on ImageNet training set on colorization task. SMDA obviously improve high-level representation. Please see more details through this link: <a href="https://github.com/zhaoyuzhi/Semantic-Colorization-GAN">https://github.com/zhaoyuzhi/Semantic-Colorization-GAN</a>





**Test Time:** For 224 × 224 patches, it takes 0.03571s (27.98 images / second) to transfer an image on single 1080 Ti.

Full Resolution Testing Result: It takes only 0.5 second for rendering approximately 2000 × 1500 image.



# RAW2RGB-GAN ARCHITECTURE

There are three main parts: mainstream  $G_1$ , saliency map prediction branch  $G_2$ , and patch-based discriminator D.



Pixel L1 Loss:  $L_1 = \mathbb{E}[\|G_1(x) - y\|_1]$ ; Attn Loss:  $L_A = \mathbb{E}[\|G_1(x) \odot G_2(x) - y \odot s\|_1]$ ; G Loss:  $L_G = \frac{1}{2} \mathbb{E}[(D(G_1(x)) - 1)^2]$ ; Percep Loss:  $L_p = \mathbb{E}[\|\phi_l(G(x)) - \phi_l(c)\|_1]$ ; D Loss:  $L_D = \frac{1}{2} \mathbb{E}[(D(G_1(x)) - 1)^2] - \mathbb{E}[(D(G_1(x)))^2]$ 

### FAILURE CASES

- 1) Unreasonable blurry
- 2) Little color bleeding
  In the future, multiple
  dataset and advanced
  network architecture can
  enhance mapping quality



# CONCLUSION

We achieve 21.91 PSNR on ZRR testing set, and there are main contributions of proposed RAW2RGB-GAN.

- 1) The saliency map data augmentation (SMDA) enhances the training of network and has been demonstrated in other image translation tasks like colorization.
- 2) A GAN-based solution to automatically transform RAW file of phone to Canon DSLR camera RGB quality.
- 3) The fastest framework that generates nearly 30FPS.