All Pairs shortest paths using Dynamic Programming

Problem:

Given a weighted digraph G=(V,E) determine the length of the shortest path (i.e., distance) between all pairs of vertices in G. Here we assume that there are no cycles with zero or negative cost.

Solutions

Dijkstra's algorithm

- It's a single source shortest path algorithm ie single vertex to all other vertices
- Time complexity O(|E| log |V|)
- If graph is dense then $E = |V^2|$ then complexity is $O(|V^2| \log |V|)$
- If this algorithm runs for all vertices in the graph then complexity will become $O(|V^3| \log |V|)$
- Will not work for negative edge weights

Solutions

Bellman – Ford algorithm

- Slower than Dijkstra's algorithm but allows negative edge weights
- It's a single source shortest path algorithm ie single vertex to all other vertices
- Time complexity O(|E| |V|)
- If graph is dense then $E = |V^2|$ then complexity is $O(|V^3|)$
- If this algorithm runs for all vertices in the graph then complexity will become $O(|V^4|)$
- Will not work for negative cycles in the graph

Solutions

Floyd-Warshall algorithm

- It helps to find the shortest path in a weighted graph with positive or negative edge weights.
- A single execution of the algorithm is sufficient to find the lengths of the shortest paths between all pairs of vertices.
- Time complexity O(|V³|)
- Negative-weight edges may be present, but no negativeweight cycles.

The all-pairs shortest-path problem is to determine a matrix D such that d(i, j) is the length of a shortest path from i to j.

$$\mathsf{d}_{ij} = \begin{cases} 0 & \text{if } i = \mathsf{j} \\ d(i,j) & \text{if } i \neq \mathsf{j} \text{ and } (i,j) \in E \\ \infty & \text{if } i \neq \mathsf{j} \text{ and } (i,j) \notin E \end{cases}$$

Step 1: Decomposition

Definition: The vertices $v_2, v_3, ..., v_{l-1}$ are called the *intermediate vertices* of the path $p = \langle v_1, v_2, ..., v_{l-1}, v_l \rangle$.

• Let $d_{ij}^{(k)}$ be the length of the shortest path from i to j such that all intermediate vertices on the path (if any) are in set $\{1, 2, \dots, k\}$.

 $d_{ij}^{(0)}$ is set to be w_{ij} , i.e., no intermediate vertex. Let $D^{(k)}$ be the $n \times n$ matrix $[d_{ij}^{(k)}]$.

- Claim: $d_{ij}^{(n)}$ is the distance from i to j. So our aim is to compute $D^{(n)}$.
- Subproblems: compute $D^{(k)}$ for $k = 0, 1, \dots, n$.

Step 2: Structure of shortest paths

Observation 1: A shortest path does not contain the same vertex twice. Proof: A path containing the same vertex twice contains a cycle. Removing cycle gives a shorter path.

Observation 2: For a shortest path from i to j such that any intermediate vertices on the path are chosen from the set $\{1, 2, \dots, k\}$, there are two possibilities:

- 1. k is not a vertex on the path, The shortest such path has length $d_{ij}^{(k-1)}$

The shortest such path has length $d_{ik}^{(k-1)} + d_{ki}^{(k-1)}$

Shortest path from i to k Shortest path from k to j

Consider a shortest path from i to j containing the vertex k. It consists of a subpath from i to k and a subpath from k to j.

Each subpath can only contain intermediate vertices in $\{1,...,k-1\}$, and must be as short as possible, namely they have lengths $d_{ik}^{(k-1)}$ and $d_{kj}^{(k-1)}$.

Hence the path has length $d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$.

Combining the two cases we get

$$d_{ij}^{(k)} = \min \left\{ \frac{d_{ij}^{(k-1)}}{d_{ik}^{(k-1)}}, \frac{d_{ik}^{(k-1)}}{d_{ik}^{(k-1)}} + d_{kj}^{(k-1)} \right\}.$$

Step 3: the Bottom-up Computation

- Bottom: $D^{(0)} = [w_{ij}]$, the weight matrix.
- Compute $D^{(k)}$ from $D^{(k-1)}$ using

$$d_{ij}^{(k)} = \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right)$$
 for $k=1,...,n$.

Do we have any sub optimal structure and overlapping sub problems


```
Floyd-Warshall(w, n)
\{ \text{ for } i = 1 \text{ to } n \text{ do } \}
                                 initialize
    for j = 1 to n do
     \{ d[i,j] = w[i,j];
       pred[i, j] = nil;
  for k = 1 to n do
                                 dynamic programming
    for i = 1 to n do
       for j = 1 to n do
         if (d[i,k] + d[k,j] < d[i,j])
               {d[i,j] = d[i,k] + d[k,j]};
               pred[i, j] = k;
  return d[1..n, 1..n];
```

```
Algorithm AllPaths(cost, A, n)
    // cost[1:n,1:n] is the cost adjacency matrix of a graph with
\frac{1}{2} \frac{2}{3} \frac{4}{5}
    //n vertices; A[i,j] is the cost of a shortest path from vertex
    //i to vertex j. cost[i, i] = 0.0, for 1 \le i \le n.
         for i := 1 to n do
              for j := 1 to n do
                   A[i,j] := cost[i,j]; // Copy cost into A.
         for k := 1 to n do
              for i := 1 to n do
                   for j := 1 to n do
10
                        A[i,j] := \min(A[i,j], A[i,k] + A[k,j]);
11
12
```


(a) Example digraph

A^0	1	2	3			1			
1	0	4 0 ∞	11		1	0 6 3	4	11	
2	6	0	2		2	6	0	2	
3	3	00	0		3	3	7	0	
(b) A ⁰					(c) A ¹				

A^2	1	2	3				2		
1	0	4	6		1	0	4	6	
2	6	0 7	2		2	5	4 0 7	2	
3	3	7	0		3	3	7	0	
(d) A ²					(e) A ³				

EXAMPLE


```
Algorithm AllPaths(cost, A, n)
   // cost[1:n,1:n] is the cost adjacency matrix of a graph with
   //n vertices; A[i,j] is the cost of a shortest path from vertex
   // i to vertex j. cost[i, i] = 0.0, for 1 \le i \le n.
        for i := 1 to n do
             for j := 1 to n do
                 A[i,j] := cost[i,j]; // Copy cost into A.
        for k := 1 to n do
            for i := 1 to n do
                 for j := 1 to n do
10
                      A[i, j] := \min(A[i, j], A[i, k] + A[k, j]);
12
```

Time Complexity: O(n³)