Relações

Lista

1.

a)

$$4E0 \Rightarrow 4 - 0 = 4$$

4 é par.

$$2E6 \Rightarrow 2 - 6 = -4$$

-4 é par.

$$3E - 3 \Rightarrow 3 - (-3) = 6$$

6 é par.

$$5E2 \Rightarrow 5 - 2 - 3$$

3 é ímpar.

A resposta então é:

- (V) 4E0
- (V) 2E6
- (V) 3E 3
- (F) 5E2

b)

Uma possível resposta é 1, 3, 5, 7, 9. Qualquer número ímpar atende à condição.

 $\mathbf{c})$

Se n é impar, então $n=2k+1, k\in\mathbb{Z}$.

$$n-1=2k+1-1=2k, k\in\mathbb{Z}$$
, ou seja, $n-1$ é par.

Com n-1 par, temos nE1.

Se |A| = |B|, então A e B têm o mesmo número de elementos.

$$\{a\} J \{c\} \Rightarrow |\{a\}| = 1 \text{ e } |\{c\}| = 1, \log |\{a\}| = |\{c\}|$$

$$\{a, b, c\} J \{a, c\} \Rightarrow |\{a, b, c\}| = 3 \text{ e } |\{a, c\}| = 2, \log |\{a, b, c\}| \neq |\{a, c\}|$$

$$\{a,b\} J \{b,c\} \Rightarrow |\{a,b\}| = 2 e |\{b,c\}| = 2, \log |\{a,b\}| = |\{b,c\}|$$

A resposta então é:

- $(V) \{a\} J\{c\}$
- $(F) \{a,b,c\} J \{a,c\}$
- (V) $\{a, b\} J \{b, c\}$

3.

$$A = \{3, 4, 5\} \in B = \{4, 5, 6\}.$$

Em todo par $\langle a, b \rangle \in R$, temos $a \in A$, $b \in B$ e a < b.

Logo,
$$R = \{\langle 3, 4 \rangle, \langle 3, 5 \rangle, \langle 3, 6 \rangle, \langle 4, 5 \rangle, \langle 4, 6 \rangle, \langle 5, 6 \rangle\}.$$

Em todo par $\langle b, a \rangle \in R^{-1}$, temos $\langle a, b \rangle \in R$.

Logo,
$$R^{-1} = \{\langle 4, 3 \rangle, \langle 5, 3 \rangle, \langle 6, 3 \rangle, \langle 5, 4 \rangle, \langle 6, 4 \rangle, \langle 6, 5 \rangle\}.$$

4.

a)

- Reflexiva \Rightarrow a relação não tem $\langle 2, 2 \rangle$. Logo, não é reflexiva.
- \bullet Transitiva \Rightarrow a relação tem $\langle 1,0\rangle$ e $\langle 0,3\rangle,$ mas não tem $\langle 1,3\rangle.$ Logo, não é transitiva.
- Simétrica \Rightarrow a relação tem (0,3), mas não tem (3,0). Logo, não é simétrica.
- Anti-simétrica \Rightarrow a relação tem $\langle 0,1 \rangle$ e $\langle 1,0 \rangle$, e $0 \neq 1$. Logo, não é anti-simétrica.

b)

- Reflexiva \Rightarrow a relação não tem $\langle 3, 3 \rangle$. Logo, não é reflexiva.
- Transitiva \Rightarrow a relação tem $\langle 0,1 \rangle$ e $\langle 1,2 \rangle$, mas não tem $\langle 0,2 \rangle$. Logo, não é transitiva.
- Simétrica \Rightarrow a relação tem (0,1) e não tem (1,0). Logo, não é simétrica.
- Anti-simétrica \Rightarrow é verdade para a relação que $\forall a, b \in A, aRb \land bRa \rightarrow a = b$. Logo, é anti-simétrica.

$\mathbf{c})$

- Reflexiva \Rightarrow a relação não tem $\langle a, a \rangle$ para nenhum $a \in A$. Logo, não é reflexiva.
- Transitiva \Rightarrow a relação tem $\langle 2,3 \rangle$ e $\langle 3,2 \rangle$, mas não tem $\langle 2,2 \rangle$. Logo, não é transitiva.
- Simétrica \Rightarrow é verdade para a relação que $\forall a,b \in A, aRb \rightarrow bRa$. Logo, é simétrica.
- Anti-simétrica \Rightarrow a relação tem $\langle 2,3 \rangle$ e $\langle 3,2 \rangle$, e $2 \neq 3$. Logo, não é anti-simétrica.

d)

- Reflexiva \Rightarrow a relação não tem $\langle a, a \rangle$ para nenhum $a \in A$. Logo, não é reflexiva.
- Transitiva \Rightarrow a relação tem $\langle 1,2 \rangle$ e $\langle 2,1 \rangle$, mas não tem $\langle 1,1 \rangle$. Logo, não é transitiva.
- Simétrica \Rightarrow é verdade para a relação que $\forall a,b \in A, aRb \rightarrow bRa$. Logo, é simétrica.
- \bullet Anti-simétrica \Rightarrow a relação tem $\langle 1,2\rangle$ e $\langle 2,1\rangle,$ e 1 \neq 2. Logo, não é anti-simétrica.

$\mathbf{e})$

- Reflexiva \Rightarrow a relação não tem $\langle 1, 1 \rangle, \langle 2, 2 \rangle$ e $\langle 3, 3 \rangle$. Logo, não é reflexiva.
- Transitiva \Rightarrow é verdade para a relação que $\forall a,b,c \in A, aRb \land bRc \rightarrow aRc$. Logo, é transitiva.

- Simétrica \Rightarrow a relação tem (0,1) e não tem (1,0). Logo, não é simétrica.
- Anti-simétrica \Rightarrow é verdade para a relação que $\forall a, b \in A, aRb \land bRa \rightarrow a = b$. Logo, é anti-simétrica.

f)

- Reflexiva \Rightarrow a relação não tem $\langle a, a \rangle$ para nenhum $a \in A$. Logo, não é reflexiva.
- Transitiva \Rightarrow é verdade para a relação que $\forall a, b, c \in A, aRb \land bRc \rightarrow aRc$. Logo, é transitiva.
- Simétrica \Rightarrow a relação tem (0,1) e não tem (1,0). Logo, não é simétrica.
- Anti-simétrica \Rightarrow é verdade para a relação que $\forall a, b \in A, aRb \land bRa \rightarrow a = b$. Logo, é anti-simétrica.

\mathbf{g}

- Reflexiva \Rightarrow a relação não tem $\langle a, a \rangle$ para nenhum $a \in A$. Logo, não é reflexiva.
- Transitiva \Rightarrow é verdade para a relação que $\forall a,b,c \in A, aRb \land bRc \rightarrow aRc$. Logo, é transitiva.
- Simétrica \Rightarrow a relação tem $\langle 0, 3 \rangle$ e não tem $\langle 3, 0 \rangle$. Logo, não é simétrica.
- Anti-simétrica \Rightarrow é verdade para a relação que $\forall a,b \in A, aRb \land bRa \rightarrow a = b$. Logo, é anti-simétrica.

h)

- Reflexiva \Rightarrow a relação não tem $\langle 2, 2 \rangle$ e $\langle 3, 3 \rangle$. Logo, não é reflexiva.
- Transitiva \Rightarrow é verdade para a relação que $\forall a,b,c \in A, aRb \land bRc \rightarrow aRc$. Logo, é transitiva.
- Simétrica \Rightarrow é verdade para a relação que $\forall a,b \in A, aRb \rightarrow bRa$. Logo, é simétrica.
- Anti-simétrica \Rightarrow é verdade para a relação que $\forall a, b \in A, aRb \land bRa \rightarrow a = b$. Logo, é anti-simétrica.

5.

 \mathbf{a}

 $R_9 = R_1 \cup R_4 = \{\langle 0, 0 \rangle, \langle 0, 1 \rangle, \langle 0, 3 \rangle, \langle 1, 0 \rangle, \langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 1 \rangle, \langle 2, 3 \rangle, \langle 3, 1 \rangle, \langle 3, 3 \rangle\}.$ R_9 tem todas as duplas de R_1 e R_4 .

b)

$$R_{10} = R_5 - R_6 = \{\langle 0, 0 \rangle, \langle 1, 2 \rangle\}.$$

 R_{10} tem todas as duplas de R_5 , com exceção das que também estão em R_6 .

 $\mathbf{c})$

$$R_{11} = \overline{R_2} = \{\langle 0, 2 \rangle, \langle 0, 3 \rangle, \langle 1, 0 \rangle, \langle 1, 3 \rangle, \langle 2, 0 \rangle, \langle 2, 1 \rangle, \langle 3, 0 \rangle, \langle 3, 1 \rangle, \langle 3, 2 \rangle, \langle 3, 3 \rangle\}$$
. R_{11} tem todas as duplas de $A \times A$, com exceção das que também estão em R_2 .

6.

 \mathbf{a}

- Reflexiva \Rightarrow não faz sentido dizer que x é mais alto que x. Logo, não é reflexiva. A relação seria reflexiva somente se não houvesse pessoas no conjunto.
- Transitiva \Rightarrow se x é mais alto que y e y é mais alto que z, x é mais alto que z. Logo, é transitiva.
- Simétrica \Rightarrow se x é mais alto que y, y não é mais alto que x. Logo, não é simétrica. A relação seria simétrica somente se todos tivessem o mesmo tamanho ou se não houvesse nenhuma pessoa no conjunto, pois não haveria x mais alto que y.
- Anti-simétrica \Rightarrow se x é mais alto que y, nunca teremos y mais alto que x. Logo, é anti-simétrica.

b)

- \bullet Reflexiva \Rightarrow todo xnasceu no mesmo dia que x. Logo, é reflexiva.
- Transitiva \Rightarrow se x nasceu no mesmo dia que y e y nasceu no mesmo dia que z, x nasceu no mesmo dia que z. Logo, é transitiva.
- Simétrica \Rightarrow se x nasceu no mesmo dia que y, y nasceu no mesmo dia que x. Logo, é simétrica.

• Anti-simétrica \Rightarrow se temos x nascido no mesmo dia que y, sempre teremos y nascido no mesmo dia que x. Logo, não é anti-simétrica. A relação seria anti-simétrica somente se ninguém tivesse nascido no mesmo dia.

 $\mathbf{c})$

- Reflexiva $\Rightarrow x$ sempre tem o mesmo nome que x. Logo, é reflexiva.
- Transitiva \Rightarrow se x tem o mesmo nome que y e y tem o mesmo nome que z, x tem o mesmo nome que z. Logo, é transitiva.
- Simétrica \Rightarrow se x tem o mesmo nome que y, y tem o mesmo nome que x. Logo, é simétrica.
- Anti-simétrica \Rightarrow se temos x com o mesmo nome que y, sempre teremos y com o mesmo nome que x. Logo, não é anti-simétrica. A relação seria anti-simétrica somente se não houvesse nomes repetidos.

7.

a)

- Reflexiva \Rightarrow não faz sentido dizer que $x \neq x$. Logo, não é reflexiva. A relação seria reflexiva somente se não houvesse números no conjunto.
- Transitiva \Rightarrow é possível ter $x \neq y$ e $y \neq z$ com x = z. Assim, temos xSy e ySz, mas não temos xSz. Logo, não é transitiva. A relação seria transitiva somente se não houvesse números diferentes no conjunto, pois nunca haveria $x \neq y$ e $y \neq z$.
- Simétrica \Rightarrow se $x \neq y$, então $y \neq x$. Logo, é simétrica.
- Anti-simétrica \Rightarrow se temos xSy, sempre temos ySx. Logo, não é anti-simétrica. A relação seria anti-simétrica somente se não houvesse números diferentes no conjunto.

b)

- Reflexiva \Rightarrow se x=y=0, temos $x\cdot y=0<1$. Assim, não temos 0T0. Logo, não é reflexiva. Para todos os demais valores de x=y, teremos $x\cdot y=x^2\geq 1$, logo, a relação seria reflexiva somente se não houvesse o 0 no conjunto.
- Transitiva \Rightarrow se $x, y \in \mathbb{Z}$ e $x \cdot y \geq 1$, x e y têm o mesmo sinal e são diferentes de 0. Se $y, z \in \mathbb{Z}$ e $y \cdot z \geq 1$, y e z têm o mesmo sinal e são diferentes de 0. Assim, $x, z \in \mathbb{Z}$ têm o mesmo sinal e são diferentes de 0, então, $x \cdot z \geq 1$. Logo, é transitiva.

- Simétrica $\Rightarrow x \cdot y = y \cdot x$, então, se $x \cdot y \ge 1$, $y \cdot x \ge 1$. Logo, é simétrica.
- Anti-simétrica \Rightarrow se temos $x \cdot y \geq 1$, também temos $y \cdot x \geq 1$. Logo, não é anti-simétrica. A relação só seria anti-simétrica se os únicos pares x, y do conjunto que resultassem em $x \cdot y \geq 1$ fossem com x = y ou se nenhum par x, y do conjunto resultasse em $x \cdot y \geq 1$.

$\mathbf{c})$

- Reflexiva $\Rightarrow x$ é sempre múltiplo de x. Logo, é reflexiva.
- Transitiva \Rightarrow se x é múltiplo de y, então $x = ky, k \in \mathbb{Z}$. Se y é múltiplo de z, então $y = nz, n \in \mathbb{Z}$. Assim, x = ky = k(nz) = (kn)z, com $kn = m \in \mathbb{Z}$, ou seja, x é múltiplo de z. Logo, é transitiva.
- Simétrica \Rightarrow se x é múltiplo de y e $x \neq y$, y não é múltiplo de x. Logo, não é simétrica. A relação seria simétrica somente se nenhum número no conjunto fosse múltiplo de outro.
- Anti-simétrica \Rightarrow se x é múltiplo de y e y é múltiplo de x, então x=y. Logo, é anti-simétrica.

d)

- Reflexiva \Rightarrow para $x \in \mathbb{Z}$, a condição $x \geq x^2$ não é satisfeita para valores de x maiores que 1. Logo, não é simétrica. A relação seria simétrica somente se não houvesse elementos no conjunto diferentes de 0 e 1 ou se não houvesse elementos no conjunto.
- Transitiva \Rightarrow se $x \ge y^2$ e $y \ge z^2$, como, para $y \in \mathbb{Z}$, $y^2 \ge y$, temos $x \ge y^2 \ge y \ge z^2$. Assim, $x \ge z^2$. Logo, é transitiva.
- Simétrica \Rightarrow se $x \ge y^2$, como, para $x, y \in \mathbb{Z}, x^2 \ge x$ e $y^2 \ge y$, temos $x^2 \ge x \ge y^2 \ge y$. Assim, $x^2 \ge y$, então não podemos escrever que $y \ge x^2$. Logo, não é simétrica. A relação seria simétrica somente se não houvesse elementos no conjunto diferentes de 0 e 1 ou se não houvesse pares x, y no conjunto tais que $x \ge y^2$.
- Anti-simétrica \Rightarrow os únicos casos em que $x \ge y^2$ e $y \ge x^2$ são com x = y = 0 e x = y = 1, ou seja, se xPy e yPx, então x = y. Logo, é anti-simétrica.