P425/1

PURE MATHEMATICS

PAPER 1

April, 2024

3 hours

Uganda Advanced Certificate of Education

PURE MATHEMATICS

Paper 1

3 hours

INSTRUCTIONS TO CANDIDATES:

Answer all the eight questions in section A and five questions from section B.

Any additional question(s) answered will **not** be marked.

All working must be show clearly.

Begin each answer on a fresh sheet of paper.

Graph paper is provided.

Silent, non-programmable scientific calculators and mathematical tables with a list of formulae may be used.

Turn Over

SECTION A: (40 MARKS)

Answer all the questions in this section.

- 1. Solve the equation $5\sin 2x + 4 = 10\sin^2 x$ for $-\pi \le x \le \pi$. (05 marks)
- 2. The second and third terms of a geometric progression are 24 and $12(\alpha + 1)$ respectively. Find α if the sum of the first three terms of the progression is 76.

 (05 marks)
- 3. Points A and B have position vectors 2i 5j + 3k and 7i 2k respectively. Find the coordinates of the point C which divides AB internally in the ratio 2:3 and point D which divides AB externally in the ratio 3:8. (05 marks)
- **4.** Given that $y = \frac{\sin x}{x}$, show that $x \frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} + xy = 0$. (05 marks)
- 5. Find the coordinates of the points of intersection of the curve with parametric equations $x = 2t^2 1$, y = 3(t + 1) and the line 3x 4y = 3. (05 marks)
- **6.** Find $\int \frac{\cos x}{4 + \sin^2 x} dx$ (05 marks)
- 7. Solve the equation $\log_x 32 \log_{256} x = 1$ (05 marks)
- **8.** A spherical water container of internal radius 10cm has water to a maximum depth of 18cm. Find the volume of the water in the container. (05 marks)

SECTION B: (60 MARKS)

Answer any five questions from this section.

- 9. (a) Use binomial theorem to obtain the first four terms of the expansion $(1-6x)^{1/4}$. Hence find $\sqrt[4]{39}$ correct to 4s.f. (06 marks)
 - (b) Use maclaurin's theorem to find the expansion of $e^x \sin x$ in ascending powers of x as far as the term in x^3 . (06 marks)
- **10.** By splitting the numerator, find

(a)
$$\int \frac{2x-1}{4x^2+3} dx$$
 (b) $\int \frac{\cos\theta - 2\sin\theta}{3\cos\theta + 4\sin\theta} d\theta$ (12 marks)

- 11. (a) If θ is acute and $\cot \theta = \frac{x^2 y^2}{2xy}$; x > 0, y > 0, find the value of $\sec \theta$ in the simplest form. (04 marks)
 - (b) Prove that $\frac{1 + \cos x + \sin x}{1 \cos x + \sin x} = \cot x.$ (04 marks)
 - (c) Solve for x if $\sin^{-1} x \cos^{-1} x = \frac{\pi}{2}$ (04 marks)
- 12. (a) Find the Cartesian equation of the plane which passes through the point (1,2,3) and which is parallel to the vectors $2\mathbf{i} + 4\mathbf{j} 10\mathbf{k}$ and $6\mathbf{i} 4\mathbf{j} + 2\mathbf{k}$. (05 marks)
 - (b) Find the equation of line of intersection of the planes 4x + 3y + z = 10 and x + y + z = 6. Find the angle between the planes above.

(07 marks)

- 13. (a) Show that z = 2 + 3i is a root of the equation $z^4 5z^3 + 18z^2 17z + 13 = 0$, hence find other roots. (06 marks)
 - (b) If $z = 1 + \cos 2\theta + i \sin 2\theta$, prove that $|z| = 2\cos\theta$ and $\arg z = \theta$.

 (06 marks)

- Sketch the curve $y = x^3 3x^2 + 2x$ and find the area enclosed by the curve and the x-axis between x = 0 and x = 4. If this area is now rotated about the x axis through 2π radians, determine the volume of the solid generated, correct to three significant figures. (12 marks)
- 15. (a) $P(ap^2,2ap)$ is any point on the parabola $y^2 = 4ax$ and the chord from P passing through the focal point meets the parabola again at $Q(aq^2,2aq)$ If pq=c, find the value of c. (04 marks)
 - (b) Find the equation of the normal at $R(a\cos\theta,b\sin\theta)$ to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. If the normal at R to the ellipse meets the x-axis at N and the y-axis at S. Find the equation of locus of the midpoint of **NS**. Find the area of triangle **NOS** where O is the centre of the ellipse.
- 16. (a) Find the particular solution of the equation $\frac{dy}{dx} = x \frac{2y}{x}$ given y(2) = 4. (05 marks)
 - (b) The rate of increase of the population ,P, of baboons in Busitema forest reserve is proportional to the number present in the forest at any time , t years. On first June 2010, there were 300 baboons in the forest and a year later, they were found to be 380.
 - (i) Form a differential equation involving P and t where t is time.

 (01 mark)
 - (ii) Predict the population of baboons by first June, 2018.

 (06 marks)

END