

Progetto di moduli per lo sviluppo di applicativi client-server basati su Shadow Framework

Candidato: Luigi Pasotti Relatore: Prof. Alessandro Martinelli

Università degli Studi di Pavia Facoltà di Ingegneria Dipartimento di Ingegneria Industriale e dell'Informazione

22 Aprile 2013

Contenuti della presentazione

- Introduzione
 - Obbiettivo della tesi
 - Web 3D e Tecnologie attuali
 - Shadow Framework
- 2 SF-Remote-Connection
 - Moduli
 - Dataset sostitutivi
- 3 Test
- 4 Risultati e sviluppi futuri

Obbiettivo della tesi

Contesto

- Shadow Framework: framework per la realizzazione di applicazioni che fanno uso di grafica tridimensionale real-time ideato e sviluppato dall'Ingegner Alessandro Martinelli
- Caratteristiche:
 - portabilità: scritto in Java (desktop, Android), versione C++ (desktop, iOS) in sviluppo
 - design web-oriented: in sviluppo una versione javascript
 - moderno: massiccio utilizzo delle GPU a pipeline programmabile
 - estendibile: uso di design pattern, modulare

Obbiettivo

- Produzione di moduli utili allo sviluppo di applicazioni client-server orientate al web:
 - · estensione del layer dati
 - · dati grafici trasmessi in rete

Web 3D

Fruizione tramite il web di contenuti in grafica 3D real-time interattiva

Applicazioni:

- · navigazione web
- · intrattenimento: giochi, social network
- · eCommerce: vetrine interattive

Problematica

• dimensione dei dati grafici non trascurabile (GigaByte)

Tecnologie Attuali

Modalità di fruizione usate da framework e applicazioni

- Plugin per browser: Flash, Java, Ad hoc
- WebGL: javascript
- Live streaming: applicazioni native, Java Web Start, ecc.

Modalità di trasmissione dati (e relativi problemi)

- Approccio stand-alone: lunghi tempi di caricamento
- Flusso continuo: occupazione di banda
- Trasferimento progressivo: limitazioni alla qualità dei dati

Shadow Framework

Focus sui 3 "momenti" di accesso ai dati grafici:

- Accesso
- Costruzione e Inizializzazione
- Visualizzazione

Pipeline di accesso ai dati

Shadow Framework

Focus sui 3 "momenti" di accesso ai dati grafici:

- Accesso
- Costruzione e Inizializzazione
- Visualizzazione

Pipeline di accesso ai dati

Shadow Framework

Focus sui 3 "momenti" di accesso ai dati grafici:

- Accesso
- Costruzione e Inizializzazione
- Visualizzazione

Pipeline di accesso ai dati

Confronto rappresentazione dati

Rendering della stessa geometria in **formato SF** (sinistra) ed in forma di **mesh poligonale** (destra)

- dimensione xml: 3 kB
- dimensione file .sf: 263 Byte
- dimensione file .sf (con sola geometria): 64 Byte

- dimensione Collada: 55,3 kB (standard xml riconosciuto)
- dimensione obj: 34,3 kB
- dimensione file .3ds: 8,6 kB

Layer Dati Shadow Framework

Dati gestiti tramite astrazione

- SFDataset: unità base di ogni dato del framework
- SFDataCenter: gestore centralizzato dei dati
 - Singleton
 - Bridge

SF-Remote-Connection

Moduli del progetto

- Base Communication
 - Libreria per comunicazione via TCP
- RemoteDataCenter Tool
 - Implementazione di SFIDataCenter che usa la comunicazione di rete
- Client
 - · Libreria per applicazioni client
- Server
 - · Libreria per applicazioni server

Moduli

- Gestione connessioni client e server
- Scambio messaggi testuali via TCP
- Configurabilità protocollo di comunicazione attraverso il pattern State

Moduli

RemoteDataCenter Tool

Implementazione di SFIDataCenter che usa la comunicazione di rete

- · Coda di richieste
- Meccanismo a Dataset sostitutivi

- · Implementazione del reperimento dati
 - Bufferizzazione delle richieste
 - Multithread
- Macchina a stati per la gestione del protocollo lato client
 - Espandibilità
 - Test-oriented

Libreria per applicazioni server

- No stack grafico, solo gestione dei dati
- Multithread
- Macchina a stati per la gestione del protocollo lato server
 - Espandibilità
 - Test-oriented

Dataset sostitutivi

Motivazioni

- · Reperimento dati non bloccante
- Possibilità di definire dei "segna-posto" per gli elementi grafici

Motivazioni

- Reperimento dati non bloccante
- Possibilità di definire dei "segna-posto" per gli elementi grafici

Dataset sostitutivi

Update dei dati

- Deve affrontare la costruzione e inizializzazione dei dati ricevuti
- Deve essere sincronizzato con il processo di rendering:
 - meccanismo interno al framework che usa un Updater e un Initiator.

Test

Test dal vivo

Buona visione

Conclusioni

Conclusioni

- I moduli:
 - · rispecchiano le caratteristiche volute;
 - · sono facilmente estendibili.
- Acquisita familiarità con pratiche e tecniche riconosciute:
 - uso di Design Pattern:
 - · metodi di sviluppo agile;
 - strumenti di controllo di versione concorrente.
- Importante feedback sulle componenti interne dello Shadow Framework

Sviluppi futuri

- Strumenti per una comunicazione più complessa
- Tool per la definizione dei Dataset sostitutivi
- · Invio di Dataset aggregati in librerie

Progetto di moduli per lo sviluppo di applicativi client-server basati su Shadow Framework

Candidato: Luigi Pasotti Relatore: Prof. Alessandro Martinelli

Università degli Studi di Pavia Facoltà di Ingegneria Dipartimento di Ingegneria Industriale e dell'Informazione

22 Aprile 2013

