Tight-Binding formalism

Cyrille Barreteau

April 2025

Figure 1: geometry of the unit-cell and its periodicity

1 notations

The main reference is (Barreteau, Spanjaard, & Desjonquères, 2016).

1.1 Geometry

Born von Karman (BVK) conditions are used. BVK: $L_a = N_a \times a$, $L_b = N_b \times b$, $L_c = N_c \times c$. $N = N_a \times N_b \times N_c$: Total number of cells. Periodicity along \mathbf{a} , \mathbf{b} et \mathbf{c} . volume of the unit-cell $\mathbf{\omega} = \mathbf{a}$. ($\mathbf{b} \times \mathbf{c}$) $\mathbf{R} = n_a \mathbf{a} + n_b \mathbf{b} + n_c \mathbf{c}$. Reciprocal vectors \mathbf{a}^* , \mathbf{b}^* and \mathbf{c}^* . volume of Brillouin zone $\mathbf{\omega}^* = \frac{2\Pi^3}{\omega}$ $\mathbf{g} = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*$.

scalar product: $\mathbf{R}.\mathbf{g} = 2\pi(n_a h + n_b k + n_c l)$

If $\mathbf{R} \in \text{Bravais}$ lattice and $\mathbf{g} \in \text{Reciprocal lattice}$ then $\mathbf{R}.\mathbf{g} = 2\pi n \Rightarrow e^{i\mathbf{R}.\mathbf{g}} = 1$

 n_{at} : number of atoms in the unit-cell.

R, **R**': periodic vectors of the Bravais lattice

 \mathbf{r}_n , \mathbf{r}_m : position of the atoms in the unit-cell $n = 1 \cdots, n_{at}$.

1.2 Orbitals

 λ, μ, ν : orbitals $|s\rangle, |p_x\rangle, |p_y\rangle, |p_z\rangle, |d_{xy}\rangle, |d_{yz}\rangle, |d_{zx}\rangle, |d_{x^2-y^2}\rangle, |d_{3z^2-r^2}\rangle$. l orbitals. Atomic wave functions of orbital λ centered on site (R, n).

$$\langle \mathbf{r}|R,n,\lambda\rangle = \phi_{\lambda}(\mathbf{r} - \mathbf{R} - \mathbf{r}_n)$$

1.3 Hamiltonian

 \hat{H} Hamiltonian operator.

H Hamiltonian matrix:

$$m{H}_{R,n,R',m}^{\lambda,\mu} = \langle R,n,\lambda|\hat{H}|R',m,\mu
angle \quad ; \quad m{S}_{R,n,R',m}^{\lambda,\mu} = \langle Rn,\lambda|\hat{I}|R'm,\mu
angle$$

2 Bloch Theorem

2.1 notations

 $|\alpha,\mathbf{k}\rangle$ Bloch function of index α ($\alpha=1,\cdots,n_{\mathrm{at}}\times l$) and wave-vector $\mathbf{k}\in 1$ BZ $\mathbf{k}=k_a\mathbf{a}^*+k_b\mathbf{b}^*+k_c\mathbf{c}^*\in 1$ BZ $k_{i=a,b,c}=(2\times n_i-N_i-1)/(2N_i)$ $(n_i=1,\cdots,N_i)$. We recall some relations:

$$\frac{1}{N}\sum_{\mathbf{R}}e^{i\mathbf{k}.\mathbf{R}}=\delta_{\mathbf{k}}\quad;\quad \frac{1}{N^2}\sum_{\mathbf{R}.\mathbf{R}'}e^{i(\mathbf{k}-\mathbf{k}').(\mathbf{R}-\mathbf{R}')}=\delta_{\mathbf{k}.\mathbf{k}'}$$

2.2 Bloch Functions

Expansion of wave functions on atomic orbitals

$$|\Psi_{\alpha}\rangle = \sum_{\mathbf{R},n,\lambda} C^{\alpha}_{Rn\lambda} |\mathbf{R},n,\lambda\rangle$$

According to Bloch theorem the function solutions of the Shrodinger equations can be labeled by two indices (α, \mathbf{k}) :

$$C_{R,n\lambda}^{\alpha} = \frac{1}{\sqrt{N}} e^{i\mathbf{k}\cdot\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{r}_n} C_{n\lambda}^{\alpha}(\mathbf{k})$$

So:

$$|\alpha, \mathbf{k}\rangle = \sum_{n,\lambda} C_{n\lambda}^{\alpha}(\mathbf{k}) \frac{e^{i\mathbf{k}\cdot\mathbf{r}_n}}{\sqrt{N}} \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} |\mathbf{R}, n, \lambda\rangle$$

Introducing a TB basis adapted to periodicity $|n, \lambda, \mathbf{k}\rangle$ one gets:

$$|\alpha, \mathbf{k}\rangle = \sum_{n,\lambda} C_{n\lambda}^{\alpha}(\mathbf{k})|n,\lambda,\mathbf{k}\rangle \quad \text{with} \quad |n,\lambda,\mathbf{k}\rangle = \frac{e^{i\mathbf{k}\cdot\mathbf{r}_n}}{\sqrt{N}} \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} |\mathbf{R},n,\lambda\rangle$$

The closure relation reads

$$\sum_{\alpha,\mathbf{k}} |\alpha,\mathbf{k}\rangle\langle\alpha,\mathbf{k}| = \hat{I}$$

And the Hamiltonian:

$$\sum_{\alpha,\mathbf{k}} |\alpha,\mathbf{k}\rangle \epsilon_{\alpha}(\mathbf{k})\langle \alpha,\mathbf{k}| = \hat{H}$$

If the Bloch coefficient $C_{i\lambda}^{\alpha}(\mathbf{k})$ are normalized correctly:

$$\langle \alpha, \mathbf{k} | \beta, \mathbf{k} \rangle = \sum_{n\lambda, m\mu} (C^\alpha_{n\lambda}(\mathbf{k}))^\star S^{\lambda, \mu}_{a,b}(\mathbf{k}) C^\beta_{m\mu}(\mathbf{k}) = \delta_{\alpha\beta} \quad \forall \mathbf{k}$$

3 Schrödinger Equation

Schrödinger Equation:

$$\hat{H}|\alpha,\mathbf{k}\rangle = \varepsilon_{\alpha}(\mathbf{k})|\alpha,\mathbf{k}\rangle$$

Generalized eigenvalue problem:.

$$H(\mathbf{k})C^{\alpha}(\mathbf{k}) = \varepsilon_{\alpha}(\mathbf{k})S(\mathbf{k})C^{\alpha}(\mathbf{k})$$

$$H^{\lambda,\mu}_{n,m}(\mathbf{k}) = \langle n, \lambda, \mathbf{k} | \hat{H} | m, \mu, \mathbf{k} \rangle = \sum_{\mathbf{R}} e^{i\mathbf{k}.(\mathbf{R} + \mathbf{r}_m - \mathbf{r}_n)} \langle 0, n, \lambda | \hat{H} | \mathbf{R}, m, \mu \rangle$$

$$S^{\lambda,\mu}_{n,m}(\mathbf{k}) = \langle n, \lambda, \mathbf{k} | \hat{I} | m, \mu, \mathbf{k} \rangle = \sum_{\mathbf{R}} e^{i\mathbf{k}.(\mathbf{R} + \mathbf{r}_m - \mathbf{r}_n)} \langle 0, n, \lambda | \hat{I} | \mathbf{R}, m, \mu \rangle$$

$$\begin{pmatrix} (\hat{H}_{11}) & \cdots & (\hat{H}_{1m}) & \cdots & (\hat{H}_{1n_{at}}) \\ \vdots & \ddots & & & & \\ (\hat{H}_{n1}) & \cdots & (\hat{H}_{nm}) & \cdots & & \\ \vdots & \ddots & & & & \\ (\hat{H}_{n1}) & \cdots & (\hat{H}_{nm}) & \cdots & & \\ \vdots & \ddots & & & & \\ (\hat{C}^{\alpha}_{n}) & \vdots & \ddots & & \\ \vdots & \ddots & & & & \\ (\hat{C}^{\alpha}_{n}) & \vdots & \ddots & & \\ \vdots & \ddots & & \ddots & & \\ (\hat{C}^{\alpha}_{n}) & \vdots & \ddots & & \\ \vdots & \ddots & & \ddots & \\ (\hat{C}^{\alpha}_{n}) & \vdots & \ddots & & \\$$

 (H_{nm}) matrice $l \times l$ with $(H_{nm})_{\lambda,\mu} = H_{nm}^{\lambda\mu}(\mathbf{k})$. $H(\mathbf{k})$ matrix of size $(ln_{at}) \times (ln_{at})$.

The wave-vector should be normalized

$$\sum_{n\lambda,m\mu} C_{n\lambda}^{\alpha,\star}(\mathbf{k}) S_{n,m}^{\lambda,\mu}(\mathbf{k}) C_{m\mu}^{\beta}(\mathbf{k}) = \delta_{\alpha\beta} \quad \forall \mathbf{k}$$

In matrix form:

$$^{t}C^{\alpha\star}(\mathbf{k})\mathcal{S}(\mathbf{k})C^{\beta}(\mathbf{k}) = \delta_{\alpha\beta} \quad \forall \mathbf{k}$$

Setting $\widetilde{C}^{\alpha} = \mathcal{S}(\mathbf{k})C^{\alpha}(\mathbf{k})$, one gets:

$$^{\it t}{\it C}^{\alpha\star}({\bf k})\widetilde{\it C}^{\beta}({\bf k}) = \delta_{\alpha\beta} \quad \forall {\bf k}$$

4 Remarks on non-orthogonal basis in Quantum Mechanics

4.1 Dual basis

Let's ignore λ and **k** indices. One consider a non-orthogonal basis $|a\rangle$. One defines its dual $|\tilde{a}\rangle$

$$|\tilde{a}\rangle = \sum_{b} (S^{-1})_{a,b} |b\rangle$$

the following orthogonality relation holds

$$\langle \tilde{b} | a \rangle = \delta_{ab}$$

And two closure relations:

$$\sum_{a} |\tilde{a}\rangle\langle a| = \hat{I}$$
 ; $\sum_{a} |a\rangle\langle \tilde{a}| = \hat{I}$

The eigenstates $|\alpha\rangle$ can be decomposed on the $|a\rangle$ basis:

$$|\alpha\rangle = \sum_{a} C_a^{\alpha} |a\rangle$$

And the coefficient C_a^{α} are obtained:

$$C_a^{\alpha} = \langle \tilde{a} | \alpha \rangle$$

4.2 Matrix expression of an operator in a non-orthogonal basis

Let \hat{A} be an operator. One can define 4 different matrices: A, \tilde{A} , \tilde{A}' , and \bar{A} :

$$A_{ab} = \langle a|\hat{A}|b\rangle$$
 ; $\tilde{A}_{ab} = \langle \tilde{a}|\hat{A}|b\rangle$; $\tilde{A'}_{ab} = \langle a|\hat{A}|\tilde{b}\rangle$; $\bar{A}_{ab} = \langle \tilde{a}|\hat{A}|\tilde{b}\rangle$

One then easily shows that

$$\hat{A}|b\rangle = \sum_{a} \tilde{A}_{ab}|a\rangle$$
 ; $\hat{A}|\tilde{b}\rangle = \sum_{a} \tilde{A'}_{ab}|\tilde{a}\rangle$

and

$$\hat{A} = \sum_{ab} |a\rangle \bar{A}_{ab}\langle b|$$

The following matrix relations can be easily derived:

$$A = S\bar{A}S$$
 ; $\bar{A} = S^{-1}AS^{-1}$; $\tilde{A} = S^{-1}A = \bar{A}S$; $\tilde{A'} = AS^{-1} = S\bar{A}$

A and \bar{A} are Hermitian contrary to \tilde{A} et \tilde{A}' . However \tilde{A} et \tilde{A}' are the matrix representation of the linear operator in basis $|a\rangle$ and $|\tilde{a}\rangle$ respectively. Hence, they have the property of composition of operators:

$$\widetilde{AB} = \widetilde{A}\widetilde{B}$$
 and $\widetilde{AB}' = \widetilde{A}'\widetilde{B}'$

Let us also note that the trace of the operator \hat{A} is obtained from the trace of \tilde{A} or \tilde{A}' matrix:

$$\operatorname{Tr}(\hat{A}) = \operatorname{Tr}(\tilde{A}') = \operatorname{Tr}(\tilde{A}') = \sum_{a} \tilde{A}_{aa} = \sum_{a} \tilde{A}'_{aa}$$

However the trace of the operator is NOT the trace of A or \bar{A}

$$\operatorname{Tr}(\hat{A}) = \operatorname{Tr}(S^{-1}A) = \operatorname{Tr}(AS^{-1}) = \operatorname{Tr}(\bar{A}S) = \operatorname{Tr}(S\bar{A})$$

Let us consider an operator of the form $\hat{A} = F(\hat{H})^{1}$. \hat{H} can be diagonalized in eigen-state basis $|\alpha\rangle$:

$$\hat{A} = \sum_{\alpha} |\alpha\rangle F(\epsilon_{\alpha})\langle\alpha|$$

Using the expression of $|\alpha\rangle$ in the $|a\rangle$ basis:

$$|\alpha\rangle = \sum_{a} C_a^{\alpha} |a\rangle$$

we get

$$\hat{A} = \sum_{ab} |a\rangle \bar{A}_{ab}\langle b|$$
 with $\bar{A}_{ab} = \sum_{\alpha} F(\epsilon_{\alpha}) C_a^{\alpha} (C_b^{\alpha})^*$

Let's consider two important operator, the density operator $\hat{\rho} = f(\hat{H})$ and the Green function operator $\hat{G}(z) = (z\hat{I} - \hat{H})^{-1}$: $\bar{\rho}_{ab} = \sum_{\alpha} f(\epsilon_{\alpha}) C_a^{\alpha} (C_b^{\alpha})^{\star}$

And for $\hat{G}(z)$ using the identity $(z\hat{I} - \hat{H})\hat{G}(z) = \hat{I}$ we have:

$$\langle a|(z\hat{I}-\hat{H})\sum_{b}|b\rangle\langle \tilde{b}|\hat{G}(z)|\tilde{c}\rangle=\delta_{a,c}$$

Hence we have the following matrix relation

$$(zS - H)\bar{G}(z) = Id$$

¹ if F is the Fermi function then \hat{A} the density operator $\hat{\rho}$, or if F(x) = 1/(z-x) then \hat{A} is the Green function G(z), or if Dirac $F(x) = \delta(E-x)$ then we get the density of states

4.3 Tensorial notation

The tensorial can be very useful is some cases:

$$|\phi_a\rangle = |a\rangle$$
 ; $|\phi^a\rangle = |\tilde{a}\rangle$

we then have:

$$A_{ab} = \langle \phi_a | \hat{A} | \phi_b \rangle = A_{ab} \quad ; \quad A^{ab} = \langle \phi^a | \hat{A} | \phi^b \rangle = \bar{A}_{ab} \quad ; \quad A^a_{\ b} = \langle \phi^a | \hat{A} | \phi_b \rangle = \tilde{A}_{ab} \quad ; \quad A^a_{\ a} = \langle \phi_a | \hat{A} | \phi^b \rangle = (GAb_{\ a})^{\star}$$

And for the overlaps:

$$I_{ab} = \langle \phi_a | \hat{I} | \phi_b \rangle = S_{ab}$$
; $I^{ab} = \langle \phi^a | \hat{I} | \phi^b \rangle = (S^{-1})_{ab}$; $I^a_b = \langle \phi^a | \hat{I} | \phi_b \rangle = \delta^a_b$; $I^b_a = \langle \phi_a | \hat{I} | \phi^b \rangle = \delta^b_a$

With Einstein convention the closure relations reads:

$$|\phi^a\rangle\langle\phi_a|=\hat{I}$$
 ; $|\phi_a\rangle\langle\phi^a|=\hat{I}$

The trace of operator \hat{A} reads:

$$\operatorname{Tr}(\hat{A}) = \langle \phi^a | \hat{A} | \phi_a \rangle = A^a_{\ a} = \langle \phi_a | \hat{A} | \phi^a \rangle = A^a_{\ a}$$

The trace of the product of two operators $\hat{A}.\hat{B}$

$$\operatorname{Tr}(\hat{A}.\hat{B}) = \langle \phi_a | \hat{A}.\hat{B} | \phi^a \rangle = \langle \phi_a | \hat{A} | \phi_b \rangle \langle \phi^b | \hat{B} | \phi^a \rangle = A_{ab} B^{ba}$$

5 Definition of local quantities in a non-orthogonal basis

5.1 Definition of operators

Let's consider the density operator $\hat{\rho} = f(\hat{H})^2$ and the density operator $\hat{D}(E) = \delta(E - \hat{H})$:

$$\hat{\rho} = \sum_{\alpha} |\alpha\rangle f_{\alpha}\langle\alpha| \quad ; \quad \hat{D}(E) = \sum_{\alpha} |\alpha\rangle \delta(E - \epsilon_{\alpha})\langle\alpha|)$$

The trace of $\hat{\rho}$ is equal to the number of electrons:

$$\operatorname{Tr}(\hat{\mathbf{p}}) = N_e = \int_{-\infty}^{+\infty} f(E)D(E)dE = \sum_{\alpha} f_{\alpha}$$

while the trace of $\hat{D}(E)$ is the density of states:

$$D(E) = \text{Tr}(\hat{D}(E)) = \sum_{\alpha} \delta(E - \epsilon_{\alpha})$$

Let's write the trace of the operator with the TB coefficients $|\alpha\rangle = \sum_a C_a^{\alpha} |a\rangle$.

$$\operatorname{Tr}(\hat{\mathsf{p}}) = \sum_{a} \sum_{\alpha} \langle \tilde{a} | \alpha \rangle f_{\alpha} \langle \alpha | a \rangle = \left[\sum_{ab} \left(\sum_{\alpha} f_{\alpha} C_{a}^{\alpha} (C_{b}^{\alpha})^{\star} \right) S_{a,b} \right] = \operatorname{Tr}\left(\bar{\mathsf{p}} \mathcal{S} \right)$$

One recognize the general result obtained previously for the trace of an operator applied to $\hat{\rho} = f(\hat{H})$ and its matricial expression $\bar{\rho}$

$$\bar{\rho}_{ab} = \sum_{\alpha} f_{\alpha} C_a^{\alpha} (C_b^{\alpha})^{\star}$$

 $[\]frac{1}{1 + \exp(\frac{x - E_f}{k_B T})}$

5.2 Local decomposition of density operator

One notes that the previous sum can be decomposed as a sum of partial sums

$$\operatorname{Tr}(\hat{\rho}) = \sum_{a} \rho_a$$

with:

$$\rho_a = \frac{1}{2} \left[\sum_{\alpha} f_{\alpha} \left(\sum_{b} C_a^{\alpha^{\star}} S_{a,b} C_b^{\alpha} + C_a^{\alpha} S_{a,b}^{\star} C_b^{\alpha \star} \right) \right] = \frac{1}{2} \left[\langle \tilde{a} | \hat{\mathbf{p}} | a \rangle + \langle a | \hat{\mathbf{p}} | \tilde{a} \rangle \right]$$

Or:

$$\rho_{a} = \Re \left[\sum_{\alpha} f_{\alpha} \sum_{b} C_{a}^{\alpha^{\star}} S_{a,b} C_{b}^{\alpha} \right] = \Re \left[\bar{\rho} S \right]_{a,a}$$

Setting $\widetilde{C}_a^{\alpha} = \sum_b S_{ab} C_b^{\alpha}$ one finally obtains:

$$\rho_a = \Re\left(\sum_{\alpha} f_{\alpha} C_a^{\alpha \star} \widetilde{C}_a^{\alpha}\right)$$

In matrix form:

$$\widetilde{C}^{\alpha} = SC^{\alpha}$$

And the trace of $\hat{\rho}$ gives the total number of electrons:

$$\operatorname{Tr}(\hat{\rho}) = \sum_{\alpha} f_{\alpha} \underbrace{C^{\alpha \star} \widetilde{C}^{\alpha}}_{=1} = N_{e}$$

5.3 Average operator

5.3.1 Average of any operator \hat{A}

The average of \hat{A} reads:

$$\langle \hat{A} \rangle = \operatorname{Tr}(\hat{\rho}.\hat{A}) = \sum_{\alpha} f_{\alpha} \langle \alpha | \hat{A} | \alpha \rangle$$

Writing the Bloch $|\alpha\rangle$ in the basis $|a\rangle$ one gets:

$$\langle \hat{A} \rangle = \sum_{ab} \left(\sum_{\alpha} f_{\alpha} C_a^{\alpha} (C_b^{\alpha})^{\star} \right) \langle b | \hat{A} | a \rangle$$

 $\langle \hat{A} \rangle$ can be written in matrix form:

$$\langle \hat{A} \rangle = \operatorname{Tr} \left[\bar{\rho} A \right]$$

with as usual:

$$\bar{\rho}_{ab} = \sum_{\alpha} f_{\alpha} C_a^{\alpha} (C_b^{\alpha})^{\star}$$

Note that the summation can be re-organized in a different manner:

$$\langle \hat{A} \rangle = \sum_{\alpha} f_{\alpha} {}^{t} C^{\alpha \star} A C^{\alpha}$$

5.4 Average of an operator of the form $\hat{A} = g(\hat{H})$

If $\hat{A} = g(\hat{H})$, using $\hat{H}|\alpha\rangle = \varepsilon_{\alpha}|\alpha\rangle$ one gets:

$$\langle \hat{A} \rangle = \text{Tr}(\hat{\rho}g(\hat{H})) = \sum_{ab} \left(\sum_{\alpha} f_{\alpha}g(\epsilon_{\alpha}) C_b^{\alpha} (C_a^{\alpha})^{\star} \right) S_{a,b}$$

In matrix form:

$$\langle \hat{A} \rangle = \operatorname{Tr} \left[\overline{\rho A} S \right]$$

with:

$$\overline{\rho A}_{ab} = \sum_{\alpha} f_{E_f}(\epsilon_{\alpha}) g(\epsilon_{\alpha}) C_a^{\alpha} (C_b^{\alpha})^{\star}$$

Reorganizing the sum one obtains the "trivial" result:

$$\langle \hat{A} \rangle = \sum_{\alpha} f_{\alpha} g(\epsilon_{\alpha}) \underbrace{C^{\alpha \star} \widetilde{C}^{\alpha}}_{-1} = \sum_{\alpha} f_{\alpha} g(\epsilon_{\alpha})$$

One can as-well define the local component

$$A_a = rac{1}{2} \left[\sum_{lpha} f_{lpha} g(\mathbf{\epsilon}_{lpha}) \left(\sum_b C_a^{lpha^\star} S_{a,b} C_b^{lpha} + \sum_b C_a^{lpha} S_{a,b}^{\star} C_b^{lpha \star}
ight)
ight]$$

or

$$A_{a} = \Re \left[\sum_{\alpha} f_{\alpha} g(\mathbf{e}_{\alpha}) \sum_{b} C_{a}^{\alpha \star} S_{a,b} C_{b}^{\alpha} \right]$$

In a more compact form:

$$A_{a} = \Re \left[\sum_{\alpha} f_{\alpha} g(\mathbf{\epsilon}_{\alpha}) C_{a}^{\alpha \star} \widetilde{C}_{a}^{\alpha} \right] = \frac{1}{2} \left[\langle \widetilde{a} | \hat{\mathbf{p}}. \hat{G} | a \rangle + \langle a | \hat{\mathbf{p}}. \hat{G} | \widetilde{a} \rangle \right]$$

5.4.1 Total energy

In the case of the total energy $\hat{A} = \hat{H}$ so G(x) = x

$$E^{tot} = \langle \hat{H} \rangle = \sum_{\alpha} f_{\alpha} \varepsilon_{\alpha} \underbrace{{}^{t}C^{\alpha \star}\widetilde{C}^{\alpha}}_{-1} = \sum_{\alpha} f_{\alpha} \varepsilon_{\alpha}$$

Using previous section one can define the local decomposition of the energy:

$$E_a^{tot} = \Re\left[\sum_{\alpha} f_{\alpha} \varepsilon_{\alpha} C_a^{\alpha \star} \widetilde{C}_a^{\alpha}\right]$$

6 Back to the periodic case, Bloch theorem

6.1 TB basis in "real" space and its dual

$$\widetilde{|R,n,\lambda\rangle} = \sum_{R',m,\mu} (S^{-1})_{Rn,R'm}^{\lambda,\mu} |R',m,\mu\rangle \text{ dual basis verifying the relation } \langle \widetilde{R',m,\mu} | R,n,\lambda\rangle = \delta_{R,R'} \delta_{n,m} \delta_{\lambda,\mu} |R',n,\lambda\rangle$$

Closure relation:
$$\sum_{R,n,\lambda} |\widetilde{R,n,\lambda}\rangle \langle R,n,\lambda| = \hat{I}$$

$$|\Psi_{\alpha}\rangle = \sum_{\mathbf{R},n,\lambda} C_{Rn\lambda}^{\alpha} |\mathbf{R},n,\lambda\rangle$$

TB coefficients:
$$\langle \widetilde{R,n,\lambda} | \alpha, \mathbf{k} \rangle = C_{R,n,\lambda}^{\alpha} = \frac{1}{\sqrt{N}} e^{i\mathbf{k}.\mathbf{R}} e^{i\mathbf{k}.\mathbf{r}_n} C_{n\lambda}^{\alpha}(\mathbf{k})$$

6.2 TB Bloch basis and its dual

We recall

$$|n,\lambda,\mathbf{k}\rangle = \frac{e^{i\mathbf{k}.\mathbf{r}_n}}{\sqrt{N}} \sum_{\mathbf{R}} e^{i\mathbf{k}.\mathbf{R}} |\mathbf{R},n,\lambda\rangle$$

The dual basis is naturally defined as:

$$|\widetilde{n,\lambda,\mathbf{k}}\rangle = \sum_{m,\mu} (S^{-1}(\mathbf{k}))_{n,m}^{\lambda,\mu} |m,\mu,\mathbf{k}\rangle$$

the orthogonality relation holds: $\langle \widetilde{n,\mu,\mathbf{k}}|m,\lambda,\mathbf{k}\rangle=\delta_{n,m}\delta_{\lambda,\mu}$. As well as the closure relation: $\sum_{n,\lambda,\mathbf{k}}|\widetilde{n,\lambda,\mathbf{k}}\rangle\langle n,\lambda,\mathbf{k}|=\widehat{I}$ And the TB coefficients $\langle \widetilde{n,\lambda,\mathbf{k}}|\alpha,\mathbf{k}\rangle=C_{n,\lambda}^{\alpha}(\mathbf{k})$

6.3 Charge and local density

6.3.1 Density operator

The density operator $\hat{\rho}$ and the density of states operator $\hat{D}(E)$ (which trace gives the density of stats):

$$\hat{\rho} = f(\hat{H})$$
 [3]; $\hat{D}(E) = \delta(E - H)$; $D(E) = \text{Tr}\hat{D}(E)$

$$\rho = \sum_{\alpha \mathbf{k}} |\alpha, \mathbf{k} \rangle w_{\mathbf{k}} f_{\alpha}(\mathbf{k}) \langle \alpha, \mathbf{k} | \quad ; \quad \mathbf{D}(E) = \sum_{\alpha \mathbf{k}} |\alpha, \mathbf{k} \rangle w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k})) \langle \alpha, \mathbf{k} | \quad ; \quad D(E) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \delta(E - \epsilon_{\alpha}(\mathbf{k}))$$

 $w_{\mathbf{k}}$ is the weight of wave-vector \mathbf{k} , in practice the summation over \mathbf{k} is discrete and involves special \mathbf{k} points. The summation is normalized such that:

$$\sum_{\mathbf{k}} w_{\mathbf{k}} = 1 = \frac{\omega}{8\pi^3} \int_{\mathbf{BZ}} d\mathbf{k}$$

By definition the trace of $\hat{\rho}$ is equal to the number of electrons:

$$\operatorname{Tr}(\hat{\mathbf{p}}) = N_e = \int_{-\infty}^{+\infty} f(E)D(E)dE = \sum_{\alpha} (\mathbf{k}) w_{\mathbf{k}} f_{\alpha}(\mathbf{k})$$

Let's write the trace of $\hat{\rho}$ using the TB coefficient:

$$\operatorname{Tr}(\hat{\mathbf{p}}) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} \langle \alpha, \mathbf{k} | f_{\alpha}(\mathbf{k}) | \alpha, \mathbf{k} \rangle = \sum_{\mathbf{k}} w_{\mathbf{k}} \left[\sum_{\substack{n\lambda \\ m\mu}} \left(\sum_{\alpha} f_{\alpha}(\mathbf{k}) C_{m\mu}^{\alpha}(\mathbf{k}) (C_{n\lambda}^{\alpha}(\mathbf{k}))^{*} \right) S_{n,m}^{\lambda,\mu}(\mathbf{k}) \right]$$

One recognize the result of the previous section in matricial form of $\hat{\rho} = f(\hat{H})$ in TB basis:

$$\operatorname{Tr}(\hat{\rho}) = \sum_{\mathbf{k}} w_{\mathbf{k}} \operatorname{Tr}\left[\bar{\rho}(\mathbf{k}) S(\mathbf{k})\right]$$

With

$$\bar{\rho}_{nm}^{\lambda\mu}(\mathbf{k}) = \sum_{\alpha} f_{\alpha}(\mathbf{k}) C_{n\lambda}^{\alpha}(\mathbf{k}) (C_{m\mu}^{\alpha}(\mathbf{k}))^{\star}$$

 $[\]frac{1}{1 + \exp(\frac{x - E_f}{k_B T})}$

6.3.2 Local decomposition

One notes that the previous summation can be decomposed in local components:

$$\operatorname{Tr}(\hat{\rho}) = \sum_{n\lambda} \rho_{n\lambda}$$

where $\rho_{n\lambda}$ is the charge on site *n* and orbital λ :

$$\rho_{n\lambda} = \frac{1}{2} \left[\sum_{\alpha,\mathbf{k}} w_{\mathbf{k}} f_{\alpha}(\mathbf{k}) \sum_{m\mu} C_{n\lambda}^{\alpha^{\star}}(\mathbf{k}) S_{n,m}^{\lambda,\mu}(\mathbf{k}) C_{m\mu}^{\alpha}(\mathbf{k}) + \sum_{\alpha,\mathbf{k}} w_{\mathbf{k}} f_{\alpha}(\mathbf{k}) \sum_{m\mu} C_{n\lambda}^{\alpha}(\mathbf{k}) S_{n,m}^{\lambda,\mu^{\star}}(\mathbf{k}) C_{n\mu}^{\alpha^{\star}}(\mathbf{k}) \right]$$

Or:

$$\rho_{n\lambda} = \Re \left[\sum_{\alpha,\mathbf{k}} w_{\mathbf{k}} f_{\alpha}(\mathbf{k}) \sum_{m\mu} C_{n\lambda}^{\alpha^{\star}}(\mathbf{k}) S_{n,m}^{\lambda,\mu}(\mathbf{k}) C_{m\mu}^{\alpha}(\mathbf{k}) \right]$$

Setting $\widetilde{C}_{n\lambda}^{\alpha} = \sum_{m\mu} S_{nm}^{\lambda\mu}(\mathbf{k}) C_{m\mu}^{\alpha}(\mathbf{k})$ One gets

$$\rho_{n,\lambda} = \Re\left(\sum_{\alpha,\mathbf{k}} f_{\alpha}(\mathbf{k}) w_{\mathbf{k}} C_{n\lambda}^{\alpha,\star}(\mathbf{k}) \widetilde{C}_{n\lambda}^{\alpha}(\mathbf{k})\right)$$

Or in matrix form:

$$\widetilde{C}^{\alpha}(\mathbf{k}) = S(\mathbf{k})C^{\alpha}(\mathbf{k})$$

Hence the trace of the operator $\hat{\rho}$ reads:

$$\operatorname{Tr}(\hat{\mathbf{p}}) = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} f_{\alpha}(\mathbf{k})^{t} C^{\alpha \star}(\mathbf{k}) \widetilde{C}^{\alpha}(\mathbf{k}) = N_{e}$$

6.4 Average operator

6.4.1 Average value of the operator \hat{A}

The average of \hat{A} reads:

$$\langle \hat{A} \rangle = \text{Tr}(\hat{p}\hat{A}) = \sum_{\alpha, \mathbf{k}} w_{\mathbf{k}} f_{\alpha}(\mathbf{k}) \langle \alpha, \mathbf{k} | \mathbf{A} | \alpha, \mathbf{k} \rangle$$

Unsing the expansion of the Bloch $|\alpha, \mathbf{k}\rangle$ on the TB basis $|n, \lambda, \mathbf{k}\rangle$ gives:

$$\langle \hat{A} \rangle = \sum_{\substack{n\lambda \\ mu}} \left(\sum_{\alpha, \mathbf{k}} w_{\mathbf{k}} f_{\alpha}(\mathbf{k}) C_{n\lambda}^{\alpha}(\mathbf{k}) (C_{m\mu}^{\alpha}(\mathbf{k}))^{*} \right) \langle m\mu, \mathbf{k} | \mathbf{A} | n\lambda, \mathbf{k} \rangle$$

 $\langle \hat{A} \rangle$ can be written as the trace of a matrix product:

$$\langle \hat{A} \rangle = \sum_{\mathbf{k}} w_{\mathbf{k}} \operatorname{Tr} \left[\bar{\rho}(\mathbf{k}) A(\mathbf{k}) \right]$$

With:

$$\bar{\rho}_{nm}^{\lambda\mu}(\mathbf{k}) = \sum_{\alpha} f_{\alpha}(\mathbf{k}) C_{n\lambda}^{\alpha}(\mathbf{k}) (C_{m\mu}^{\alpha}(\mathbf{k}))^{\star}$$

Note that the summation can be re-organized in a slightly different way:

$$\langle \hat{A} \rangle = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} f_{\alpha}(\mathbf{k})^{t} C^{\alpha \star}(\mathbf{k}) A(\mathbf{k}) C^{\alpha}(\mathbf{k})$$

6.4.2 Average of an operator of the form $\hat{A} = g(\hat{H})$

Let's consider $\hat{A} = g(\hat{H})$ then:

$$\langle \hat{A} \rangle = \text{Tr}(\hat{\rho}F(\hat{H})) = \sum_{\mathbf{k}} \sum_{\substack{n\lambda \\ m\mu}} \left(\sum_{\alpha} w_{\mathbf{k}} f_{\alpha}(\mathbf{k}) g(\boldsymbol{\varepsilon}_{\alpha}(\mathbf{k})) C_{m\mu}^{\alpha}(\mathbf{k}) (C_{n\lambda}^{\alpha}(\mathbf{k}))^{\star} \right) S_{n,m}^{\lambda,\mu}(\mathbf{k})$$

In matrix form:

$$\langle \hat{A} \rangle = \sum_{\mathbf{k}} w_{\mathbf{k}} \operatorname{Tr} \left[(\overline{FG})(\mathbf{k}) S(\mathbf{k}) \right]$$

with

$$\overline{FG}_{nm}^{\lambda\mu}(\mathbf{k}) = \sum_{\alpha} f_{\alpha}(\mathbf{k}) g(\mathbf{\epsilon}_{\alpha}(\mathbf{k})) C_{n\lambda}^{\alpha}(\mathbf{k}) (C_{m\mu}^{\alpha}(\mathbf{k}))^{\star}$$

Reorganizing the summation gives:

$$\langle \hat{A} \rangle = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} f_{\alpha}(\mathbf{k}) g(\mathbf{\epsilon}_{\alpha}(\mathbf{k}))^{t} C^{\alpha \star}(\mathbf{k}) \widetilde{C}^{\alpha}(\mathbf{k})$$

And the local component

$$A_{n\lambda} = \frac{1}{2} \left[\sum_{\alpha, \mathbf{k}} w_{\mathbf{k}} f_{\alpha}(\mathbf{k}) g(\varepsilon_{\alpha}(\mathbf{k})) \left(\sum_{m\mu} C_{n\lambda}^{\alpha^{\star}}(\mathbf{k}) S_{nm}^{\lambda,\mu}(\mathbf{k}) C_{m\mu}^{\alpha}(\mathbf{k}) + \sum_{m\mu} C_{n\lambda}^{\alpha}(\mathbf{k}) S_{n,m}^{\lambda,\mu\star}(\mathbf{k}) C_{m\mu}^{\alpha\star}(\mathbf{k}) \right) \right]$$

So that

$$A_{n\lambda} = \Re \left[\sum_{\alpha, \mathbf{k}} w_{\mathbf{k}} f_{\alpha}(\mathbf{k}) g(\varepsilon_{\alpha}(\mathbf{k})) \sum_{m\mu} C_{n\lambda}^{\alpha, \star}(\mathbf{k}) S_{n,m}^{\lambda, \mu}(\mathbf{k}) C_{m\mu}^{\alpha}(\mathbf{k}) \right]$$

Or in a more compact form:

$$A_{n\lambda} = \Re \left[\sum_{\alpha, \mathbf{k}} w_{\mathbf{k}} f_{\alpha}(\mathbf{k}) g(\varepsilon_{\alpha}(\mathbf{k})) C_{n\lambda}^{\alpha \star}(\mathbf{k}) \widetilde{C}_{n\lambda}^{\alpha}(\mathbf{k}) \right]$$

6.4.3 Total energy

In the case of the total energy $\hat{A} = \hat{H}$ so that g(x) = x

$$E_{tot} = \langle \hat{H} \rangle = \sum_{\alpha \mathbf{k}} w_{\mathbf{k}} f_{\alpha}(\mathbf{k}) \varepsilon_{\alpha}(\mathbf{k})^{t} C^{\alpha \star}(\mathbf{k}) \widetilde{C}^{\alpha}(\mathbf{k})$$

The local component of the energy is defined as:

$$E_{n\lambda}^{\text{tot}} = \Re \left[\sum_{\alpha, \mathbf{k}} w_{\mathbf{k}} f_{\alpha}(\mathbf{k}) \varepsilon_{\alpha}(\mathbf{k}) C_{n\lambda}^{\alpha \star}(\mathbf{k}) \widetilde{C}_{n\lambda}^{\alpha}(\mathbf{k}) \right]$$

6.4.4 Group velocity

Let's consider the groupe velocity $v_{k,\alpha}$, of band α at k:

$$\hbar \mathbf{v}_{\mathbf{k},\alpha} = \nabla_{\mathbf{k}} \mathbf{\varepsilon}_{\alpha}(\mathbf{k})$$

For component d = x, y, z

$$\hbar v_{\mathbf{k},\alpha}^d = \frac{\partial}{\partial k_d} \langle \alpha \mathbf{k} | \hat{H} | \alpha \mathbf{k} \rangle$$

Using the expansion of the Bloch function in TB basis as well as the generalized eigenvalue equation and normalization of eigenvectors one gets:

$$\hbar v_{\mathbf{k},\alpha}^{d} = {^t} C^{\alpha \star}(\mathbf{k}) \left[\frac{\partial}{\partial k_d} H(\mathbf{k}) - \varepsilon_{\alpha}(\mathbf{k}) \frac{\partial}{\partial k_d} S(\mathbf{k}) \right] C^{\alpha}(\mathbf{k})$$

Hence we have to calculate the derivative the Hamiltonian matrix

$$\frac{\partial}{\partial k_d} H_{n,m}^{\lambda,\mu}(\mathbf{k}) = i \sum_{\mathbf{R}} (\mathbf{R}^d + \mathbf{r}_m^d - \mathbf{r}_n^d) e^{i\mathbf{k}.(\mathbf{R} + \mathbf{r}_m - \mathbf{r}_n)} \langle 0, n, \lambda | \hat{H} | \mathbf{R}, m, \mu \rangle$$

and overlap

$$\frac{\partial}{\partial k_d} S_{n,m}^{\lambda,\mu}(\mathbf{k}) = i \sum_{\mathbf{R}} (\mathbf{R}^d + \mathbf{r}_m^d - \mathbf{r}_n^d) e^{i\mathbf{k}.(\mathbf{R} + \mathbf{r}_m - \mathbf{r}_n)} \langle 0, n, \lambda | \hat{I} | \mathbf{R}, m, \mu \rangle$$

7 What about spin!

7.1 Local and global basis

One can choose a global spin basis linked to the crystal lattice or a local basis linked to the orientation of the spin magnetization. For the global basis $\sigma = \uparrow, \downarrow$ diagonalize σ_z operator while for the local basis $\sigma'' = \uparrow, \downarrow$ diagonalize $\sigma_{z''}$. The global basis is indentical for each atom of the system, while in case of non-collinear magnetization the local basis can change from site to site! We will use the global basis in the following.

Figure 2: Definition of the spin basis in spherical coordinates

7.2 TB basis and Bloch theorem with spinors

Let's introduce the spin variable σ , we define the TB basis with an additionnal index:

$$|\mathbf{R}, n, \lambda, \sigma\rangle = |\mathbf{R}, n, \lambda\rangle \otimes |\sigma\rangle$$

In the TB basis adapted to the periodic conditions $|n, \lambda, \sigma, \mathbf{k}\rangle$

$$|n,\lambda,\sigma,\mathbf{k}\rangle = \frac{e^{i\mathbf{k}\cdot\mathbf{r}_n}}{\sqrt{N}}\sum_{\mathbf{R}}e^{i\mathbf{k}\cdot\mathbf{R}}|\mathbf{R},n,\lambda,\sigma\rangle$$

And the Bloch function:

$$|\alpha, \mathbf{k}\rangle = \sum_{n, \lambda, \sigma} C_{n\lambda\sigma}^{\alpha}(\mathbf{k})|n, \lambda, \sigma, \mathbf{k}\rangle$$

Note that if the Hamiltonian does NOT possess term that "mix" up and down spins the coefficients $C^{\alpha}_{a\lambda\sigma}(\mathbf{k})$ can be separated in "up" ($\sigma=\uparrow$) and "down" ($\sigma=\downarrow$). This situation occurs when the magnetization is collinear without spin-orbit coupling.

7.3 Expression of an operator in the TB basis

 \hat{A} hermitian operator can be written in the TB basis $|n, \lambda, \sigma, \mathbf{k}\rangle$:

$$A_{n,m}^{\lambda\sigma,\mu,\sigma'}(\mathbf{k}) = \langle n,\lambda,\sigma,\mathbf{k}|\hat{A}|m,\mu,\sigma'\mathbf{k}\rangle = \sum_{\mathbf{R}} e^{i\mathbf{k}.(\mathbf{R}+\mathbf{r}_m-\mathbf{r}_n)} \langle 0,n,\lambda,\sigma|\hat{A}|\mathbf{R},m,\mu,\sigma'\rangle$$

If \hat{A} is independent of spin:

$$A_{n.m}^{\lambda\sigma,\mu\sigma'}(\mathbf{k}) = A_{n.m}^{\lambda,\mu}(\mathbf{k}) \otimes \boldsymbol{\sigma}_0$$

This result applies to the component of the Hamiltonian that does not depend on spin H_0 :

$$H_{n,m}^{0,\lambda\sigma,\mu\sigma'}(\mathbf{k}) = H_{n,m}^{0,\lambda,\mu}(\mathbf{k}) \otimes \boldsymbol{\sigma}_0$$
 and $S_{n,m}^{\lambda\sigma,\mu\sigma'}(\mathbf{k}) = S_{n,m}^{\lambda,\mu}(\mathbf{k}) \otimes \boldsymbol{\sigma}_0$

The TB magnetic Hamiltonian contains four terms H_0 , H_{LCN} , H_{Stoner} and H_{SOC} ⁴:

$$H = H_0 \otimes \boldsymbol{\sigma}_0 + \sum_{\substack{n,\lambda \\ m\mu}} U_{n,\lambda} (\boldsymbol{\rho}_{n,\lambda} - \boldsymbol{\rho}_{n,\lambda}^0) \delta_{n,\lambda,b\mu} \otimes \boldsymbol{\sigma}_0 - \frac{1}{2} \sum_{\substack{n,\lambda \\ m\mu}} I_{n,\lambda} \delta_{n,\lambda,m\mu} \mathbf{m}_{n\lambda}.\boldsymbol{\sigma} + \sum_{\substack{n,\lambda,\sigma \\ m \ \mu \ \sigma'}} \xi_{n,\lambda} \delta_{n,m} \langle \lambda, \sigma | \mathbf{l}.\sigma | \mu, \sigma' \rangle$$

7.4 Average operators

7.4.1 Pauli operator

The average of the spin operator is expressed as follows σ^5 :

$$\langle \boldsymbol{\sigma} \rangle = \sum_{\alpha, \mathbf{k}} w_{\mathbf{k}} f_{\alpha}(\mathbf{k}) \langle \alpha, \mathbf{k} | \boldsymbol{\sigma} | \alpha, \mathbf{k} \rangle$$

Let's use the definition of $|\alpha, \mathbf{k}\rangle$ and the fact that σ acts only on spin variables:

$$|\alpha, \mathbf{k}\rangle = \sum_{n, \lambda, \sigma} C_{n\lambda\sigma}^{\alpha}(\mathbf{k})|n, \lambda, \sigma, \mathbf{k}\rangle \quad ; \quad \boldsymbol{\sigma}|n, \lambda, \sigma', \mathbf{k}\rangle = \sum_{\sigma\sigma'} \boldsymbol{\sigma}_{\sigma\sigma'}|n, \lambda, \sigma', \mathbf{k}\rangle$$

$$\langle \boldsymbol{\sigma} \rangle = \operatorname{Tr}(\hat{\rho}\boldsymbol{\sigma}) = \sum_{\sigma \sigma'} \left[\sum_{\substack{n\lambda \\ n\mu\nu}} \left(\sum_{\alpha,\mathbf{k}} w_{\mathbf{k}} f_{\alpha}(\mathbf{k}) C^{\alpha}_{n\mu\sigma'}(\mathbf{k}) (C^{\alpha}_{n\lambda\sigma}(\mathbf{k}))^{\star} \right) S^{\lambda,\mu}_{a,b}(\mathbf{k}) \right] \boldsymbol{\sigma}_{\sigma\sigma'}$$

Let's introduce the density matrix $\bar{\rho}$ de:

$$\bar{\rho}^{\sigma\sigma'} = \sum_{\mathbf{k}} w_{\mathbf{k}} \sum_{\substack{\alpha\lambda \\ h\mu}} \left(\sum_{\alpha} f_{\alpha}(\mathbf{k}) C^{\alpha}_{m\mu\sigma}(\mathbf{k}) (C^{\alpha}_{n\lambda\sigma'}(\mathbf{k}))^{\star} \right) S^{\lambda,\mu}_{n,m}(\mathbf{k})$$

$$\bar{\rho} = \left(\begin{array}{cc} \rho^{\uparrow\uparrow} & \rho^{\uparrow\downarrow} \\ \rho^{\downarrow\uparrow} & \rho^{\downarrow\downarrow} \end{array}\right)$$

$$\sigma_x = \left(egin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}
ight) \quad \sigma_y = \left(egin{array}{cc} 0 & -i \\ i & 0 \end{array}
ight) \quad \sigma_z = \left(egin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}
ight) \quad \sigma_0 = \left(egin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}
ight)$$

⁴For more details aboit the Hamiltonian see "Comptes Rendus Physique 17 406-429 (2016)."

 $^{{}^5\}sigma = (\sigma_x, \sigma_y, \sigma_z)$ est formé des 3 matrices de Pauli et $\sigma_{\sigma\sigma'}$ représente les coefficients de ces matrices:

Hence we have:

$$\langle \boldsymbol{\sigma} \rangle = \sum_{\boldsymbol{\sigma} \boldsymbol{\sigma}'} \bar{\rho}^{\boldsymbol{\sigma}' \boldsymbol{\sigma}} \boldsymbol{\sigma}_{\boldsymbol{\sigma} \boldsymbol{\sigma}'} = \operatorname{Tr}(\tilde{\rho} \boldsymbol{\sigma})$$

Le calcul montre donc que:

$$\begin{array}{lcl} \langle \sigma_x \rangle & = & \bar{\rho}^{\downarrow\uparrow} + \bar{\rho}^{\uparrow\downarrow} = 2 \Re(\bar{\rho}^{\uparrow\downarrow}) \\ \langle \sigma_y \rangle & = & i(\bar{\rho}^{\uparrow\downarrow} - \bar{\rho}^{\downarrow\uparrow}) = -2 \Im(\bar{\rho}^{\uparrow\downarrow}) \\ \langle \sigma_z \rangle & = & \bar{\rho}^{\uparrow\uparrow} - \bar{\rho}^{\downarrow\downarrow} \\ \langle \sigma_0 \rangle & = & \bar{\rho}^{\uparrow\uparrow} + \bar{\rho}^{\downarrow\downarrow} \end{array}$$

Inverting these formula one gets:

$$\begin{array}{rcl} \bar{\rho}^{\uparrow\uparrow} & = & \frac{1}{2} [\langle \sigma_0 \rangle + \langle \sigma_z \rangle] \\ \bar{\rho}^{\downarrow\downarrow} & = & \frac{1}{2} [\langle \sigma_0 \rangle - \langle \sigma_z \rangle] \\ \bar{\rho}^{\uparrow\downarrow} & = & \frac{1}{2} [\langle \sigma_x \rangle - i \langle \sigma_y \rangle] \\ \bar{\rho}^{\downarrow\uparrow} & = & \frac{1}{2} [\langle \sigma_x \rangle + i \langle \sigma_y \rangle] \end{array}$$

7.4.2 Local quantities

One can défine a local density:

$$\bar{\rho}_{n\lambda}^{\sigma\sigma'} = \frac{1}{2} \left[\sum_{\alpha,\mathbf{k}} w_{\mathbf{k}} f_{\alpha}(\mathbf{k}) \left(\sum_{m\mu} C_{n\lambda\sigma'}^{\alpha,\star}(\mathbf{k}) S_{n,m}^{\lambda,\mu}(\mathbf{k}) C_{m\mu\sigma}^{\alpha}(\mathbf{k}) + \sum_{m\mu} C_{n\lambda\sigma}^{\alpha}(\mathbf{k}) S_{n,m}^{\lambda,\mu\star}(\mathbf{k}) C_{m\mu\sigma'}^{\alpha,\star}(\mathbf{k}) \right) \right]$$

It is useful to introduce $C^{\alpha}_{\sigma}(\mathbf{k})$ as a sub-vector of $C^{\alpha}(\mathbf{k})$. Similarly one defines $\widetilde{C}^{\alpha}_{\sigma}(\mathbf{k}) = S(\mathbf{k})C^{\alpha}_{\sigma}(\mathbf{k})$. The local density reads:

$$\bar{\rho}_{n\lambda}^{\sigma\sigma'} = \frac{1}{2} \left[\sum_{\alpha,\mathbf{k}} w_{\mathbf{k}} f_{\alpha}(\mathbf{k}) \left(C_{n\lambda\sigma'}^{\alpha\star}(\mathbf{k}) \widetilde{C}_{n\lambda\sigma}^{\alpha}(\mathbf{k}) + C_{n\lambda\sigma}^{\alpha}(\mathbf{k}) \widetilde{C}_{n\lambda\sigma'}^{\alpha\star}(\mathbf{k}) \right) \right]$$
$$\bar{\rho}_{n,\lambda} = \begin{pmatrix} \rho_{n\lambda}^{\uparrow\uparrow} & \rho_{n\lambda}^{\uparrow\downarrow} \\ \rho_{n\lambda}^{\downarrow\uparrow} & \rho_{n\lambda}^{\downarrow\downarrow} \end{pmatrix}$$

and we have:

$$\begin{array}{lcl} \langle \sigma_x \rangle_{n\lambda} & = & \rho_{n\lambda}^{\downarrow\uparrow} + \rho_{n\lambda}^{\uparrow\downarrow} = 2 \Re(\rho_{n\lambda}^{\uparrow\downarrow}) \\ \langle \sigma_y \rangle_{n\lambda} & = & i(\rho_{n\lambda}^{\uparrow\downarrow} - \rho_{n\lambda}^{\downarrow\uparrow}) = -2 \Im(\rho_{n\lambda}^{\uparrow\downarrow}) \\ \langle \sigma_z \rangle_{n\lambda} & = & \rho_{n\lambda}^{\uparrow\uparrow} - \rho_{n\lambda}^{\downarrow\downarrow} \\ \langle \sigma_0 \rangle_{n\lambda} & = & \rho_{n\lambda}^{\uparrow\uparrow} + \rho_{n\lambda}^{\downarrow\downarrow} \end{array}$$

7.5 Average of an operator

7.5.1 General case

 \hat{A} Hermitian operator:

$$A_{nm}^{\lambda\sigma,\mu\sigma'}(\mathbf{k}) = \langle n, \lambda, \sigma, \mathbf{k} | \mathbf{A} | m, \mu, \sigma' \mathbf{k} \rangle$$

Its average reads:

$$\langle A \rangle = \sum_{\mathbf{k}} w_{\mathbf{k}} \operatorname{Tr} \left[\bar{\rho}(\mathbf{k}) A(\mathbf{k}) \right]$$

Where $\hat{\rho}(\mathbf{k})$:

$$\bar{\rho}_{n\lambda m\mu}^{\sigma\sigma'}(\mathbf{k}) = \sum_{\alpha} f_{\alpha}(\mathbf{k}) C_{n\lambda\sigma}^{\alpha}(\mathbf{k}) (C_{m\mu\sigma'}^{\alpha}(\mathbf{k}))^{\star}$$

7.5.2 Orbital moment

Let \hat{L}_d be the oribital moment operator (d = x, y, z). Its expression in the TB basis $|\mathbf{R}, n, \mu, \sigma\rangle$ is:

$$\hat{L}_d | \mathbf{R}, n, \lambda, \sigma \rangle = \sum_{\mu} L_d^{\lambda \mu} | \mathbf{R}, n \mu \sigma \rangle$$

This is a "local" operator that do not depend on spin its expression in the $|n, \lambda, \mathbf{k}\rangle$ basis reads:

$$L_{d,nm}^{\lambda\sigma,\mu\sigma'}=\langle n,\lambda,\sigma,\mathbf{k}|\hat{L_d}|m,\mu,\sigma'\mathbf{k}\rangle=\sum_{\mathcal{M}}S_{nm}^{\lambda\nu}(\mathbf{k})L_d^{\nu\mu}\delta_{\sigma\sigma'}$$

The local component of the orbital moment is:

$$\langle \hat{L}_d \rangle_n = \Re \left[\sum_{\alpha \mathbf{k}} f_{\alpha}(\mathbf{k}) w_{\mathbf{k}} \sum_{m \lambda \mu \sigma} C_{n \lambda \sigma}^{\alpha \star}(\mathbf{k}) L_d^{\lambda \mu} S_{nm}^{\lambda \mu}(\mathbf{k}) C_{m \mu \sigma}^{\alpha}(\mathbf{k}) \right]$$

Let us give the expression of the orbital operator in the p and d orbital basis.

• p orbitals: $\lambda = \{p_x, p_y, p_z\}$

$$L_x^{(p)} = \hbar \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad L_y^{(p)} = \hbar \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix} \quad L_z^{(p)} = \hbar \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• *d* orbitals $\lambda = \{d_{xy}, d_{yz}, d_{xz}, d_{x^2-y^2}, d_{z^2}\}$

$$L_x^{(d)} = \hbar \begin{pmatrix} 0 & 0 & -i & 0 & 0 \\ 0 & 0 & 0 & -i & -i\sqrt{3} \\ i & 0 & 0 & 0 & 0 \\ 0 & i & 0 & 0 & 0 \\ 0 & i\sqrt{3} & 0 & 0 & 0 \end{pmatrix} \quad L_y^{(d)} = \hbar \begin{pmatrix} 0 & i & 0 & 0 & 0 \\ -i & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -i & i\sqrt{3} \\ 0 & 0 & i & 0 & 0 \\ 0 & 0 & -i\sqrt{3} & 0 & 0 \end{pmatrix} \quad L_z^{(d)} = \hbar \begin{pmatrix} 0 & 0 & 0 & 2i & 0 \\ 0 & 0 & i & 0 & 0 \\ 0 & 0 & i & 0 & 0 \\ 0 & 0 & -i\sqrt{3} & 0 & 0 \end{pmatrix}$$

References

Barreteau, C., Spanjaard, D., & Desjonquères, M.-C. (2016, March). An efficient magnetic tight-binding method for transition metals and alloys. *Comptes Rendus Physique*, 17(3-4), 406–429. doi: 10.1016/J.CRHY.2015.12.014