

THERMASGARD® HTF 50

THERMASGARD® HTF 200

D Bedienungs- und Montageanleitung

Hülsenfühler/Kabeltemperaturfühler Kanal-/Tauch-/Einschraub-Temperaturfühler. mit passivem Ausgang

GB Operating Instructions, Mounting & Installation

Sleeve sensor/cable temperature sensor duct/immersion/screw-in temperature sensor, with passive output

(F) Notice d'instruction

Sonde chemisée/Sonde de température à câble sonde de température pour montage en gaine / à immerger / à visser, avec sortie passive

(RU) Руководство по монтажу и обслуживанию

Датчик температуры втулочный / кабельный Канальный / погружной / ввинчиваемый датчик температуры. с пассивным выходом

HTF200 + MF-06-K

(NL = 200 mm) incl. Montageflansch als Kanaltemperaturfühler

(NL = 200 mm) including mounting flange as duct temperature sensor

(NL = 200 mm) y compris bride de montage comme sonde de température pour montage en gaine

(NL = 200 мм) вкл. присоединительный фланец в качестве канального датчика температуры

S+S REGELTECHNIK

S+S REGELTECHNIK GMBH PIRNAER STRASSE 20 90411 NÜRNBERG / GERMANY

FON +49(0)911/51947-0 FAX +49(0)911/51947-70

mail@SplusS.de www.SplusS.de

Herzlichen Glückwunsch!

Sie haben ein deutsches Qualitätsprodukt erworben.

Congratulations!

You have bought a German quality product.

Félicitations!

Vous avez fait l'acquisition d'un produit allemand de qualité.

Примите наши поздравления!

Вы приобрели качественный продукт, изготовленный в Германии.

THERMASGARD® HTF 50 THERMASGARD® HTF 200

IP65 (Standard) feuchtedicht verprägt (standard) humidity-tight stamped (standard) serti étanche à l'humidité (стандартные) с влагонепроницаемой запрессовкой

IP 68
(optional) wasserdicht vergossen, rolliert *
(optional) watertight compound-filled, rolled *
(en option) surmoulé étanche à l'eau, roulé *
(опционально) в литой водонепроницаемой оболочке, *
с накаткой

IP 54
(optional) mit Glasseide-Kabel
(optional) with glass fibre cable
(en option) avec câble en fibre de verre
(опционально) с кабелем из стеклонити

- * High-Performance-Verguss gegen Vibration, mechanischer Belastung und Feuchtigkeit
- * High-performance encapsulation against vibration, mechanical stress and humidity

HTF 50

(NL = 50 mm) mit PVC/Silkon-Kabel (Standard)
(NL = 50 mm) with PVC/Silicone cable (standard)
(NL = 50 mm) avec câble en PVC/Silicone (standard)
(NL = 50 mm) с кабелем из ПВХ или силикона (стандартные)

HTF50

(NL = 50 mm) mit Glasseide-Kabel (NL = 50 mm) with glass fibre cable (NL = 50 mm) avec câble en soie de verre (NL = 50 мм) с кабелем из стекловолокна Der Hülsenfühler / Kabelfühler THERMASGARD® HTF dient zur Erfassung von Temperaturen in flüssigen und gasförmigen Medien. Er kann als Kanalfühler sowie mittels Einbau in eine Tauchhülse als Tauch- und Einschraubfühler verwendet werden. Die Hülsenlänge variiert je nach Wunsch von 30...400 mm (Standard ist 50 mm bzw. 200 mm), die Kabellänge ist frei wählbar (Standard ist 1,5 m). Je nach Anwendung mit Sillkon-, Glasseiden- oder PVC-Leitung, als Zwei- oder Vierleiteranschluss. Für den direkten, dauerhaften Einsatz in Flüssigkeiten verwenden Sie bitte unsere Tauchhülsen THE.

TECHNISCHE DATEN	
Messbereiche:	-35+105°C PVC, LIYY, 2x0,25 mm² -50+180°C Silikon, SIHF, 2x0,25 mm² -50+250°C PTFE, 2x0,25 mm² -50+350°C Glasseide, 2x0,25 mm² Enden abisoliert, mit Aderendhülsen (optional erweiterte Messbereichsgrenzen, in Abhängigkeit von der Anschlussleitung, Tmax WTC = +150°C / LM2352 = +125°C / Ni1000 = +180°C)
Sensoren / Ausgang:	siehe Tabelle, passiv (optional auch mit zwei Sensoren) (Perfect Sensor Protection bei IP68)
Schaltungsart:	2-Leiteranschluss (optional 4-Leiteranschluss)
Messstrom:	ca. 1 mA
Schutzrohr (Fühlerhülse):	Edelstahl V4A (1.4571), Ø=6mm, HTF50 NL= 50mm HTF200 NL=200mm (optional auch andere Maße, NL= 30400mm) Kabeleinführung verprägt (optional rolliert)
Anschlusskabel:	KL = 1,5 m (optional auch 3 m, 5 m, 8 m, 10 m)
Isolationswiderstand:	≥ 100 MΩ, bei +20 °C (500 V DC)
Prozessanschluss:	mittels Flansch aus Kunststoff (siehe Tabelle) (optional Stahl verzinkt)
zulässige Luftfeuchte:	< 95 % r. H., nicht kondensierende Luft
Schutzklasse:	III (nach EN 60 730)
Schutzart:	IP65 (nach EN 60529) feuchtedicht verprägt IP68 (optional wasserdicht vergossen ³) rolliert IP54 (optional mit Glasseide-Kabel)
ZUBEHÖR	
MF-06-K	Montageflansch aus Kunststoff, 56,8 \times 84,3 mm, \emptyset = 6,2 mm Rohrdurchführung, T_{max} = +100 °C
THE-ms/xx	Tauchhülse aus Messing vernickelt, Ø=9 mm, EL = 50 - 250 mm (siehe Tabelle), Innendurchmesser der Aufnahme Ø = 5,2 mm, mit Druckschraube M12 x1,5 T _{max} = +130 °C, p _{max} = 16 bar
THE-VA/xx	Tauchhülse aus Edelstahl V4A (1.4571), \emptyset = 9 mm, EL = 50 -400 mm (siehe Tabelle), Innendurchmesser der Aufnahme \emptyset = 5,2 mm, mit Druckschraube M12 X1,5 T_{max} = +200 °C, p_{max} = 40 ber

THERMASGARD® HTF - Hülsenfühler / Kabeltemperaturfühler Tvp/WG03 - Sensor/Ausgang Messbereiche				
Typ/WGO3 - Sensor/Ausgang	PVC (IP65)*	Silikon (IP65)*	PTFE (IP65)*	Glasseide (IP54)
HTF50 (NL = 50 mm)				
HTF 50 Pt100, Klasse B	−35+105°C	-50+180°C	−50+250°C	-50+350°C
HTF50 Pt1000, Klasse B	−35+105°C	-50+180°C	-50+250°C	-50+350°C
HTF50 Pt1000 A, Klasse A-TGA	−35+105°C	-50+180°C		
HTF50 Ni1000	−35+105°C	-50+180°C	-	-
HTF50 Ni1000 TK5000, LG-Ni1000	−35+105°C	−50+180°C	-	-
HTF 50 NTC 1,8 K, 5K, 10K, 20K, 30K, 10K Precon	−35+105°C	- 50+150°C	-	-
HTF 50 KTY 81-210, 81-110, 81-121, 81-122, 11-6	−35+105°C	- 40+125°C	-	-
HTF50 LM235Z (TCR=10 mV/K, 2,73 V bei 0°C), KP10	−35+105°C	- 40+125°C	-	-
HTF200 (NL=200 mm)				
HTF200 Pt100	−35+105°C	-50+180°C	-	-
HTF200 Pt1000	−35+105°C	-50+180°C	-	-
HTF200 Ni1000	−35+105°C	-50+180°C	-	-
HTF200 Ni1000 TK5000, LG-Ni1000	−35+105°C	−50+180°C	-	-
HTF 200 NTC 1,8 K, 5K, 10K, 20K, 30K, 10K Precon	−35+105°C	- 50+150°C	-	-
HTF200 KTY 81-210, 81-110, 81-121, 81-122, 11-6	−35+105°C	- 40+125°C	-	-
HTF200 LM235Z (TCR=10mV/K, 2,73V bei 0°C), KP10	-35+105°C	- 40+125°C	-	-

D Allgemeine Informationen

Messprinzip für HLK-(HVAC)-Temperaturfühler allgemein:

Das Messprinzip der Temperaturfühler beruht darauf, dass der innen liegende Sensor ein temperaturabhängiges Widerstandssignal abgibt. Die Art des innen liegenden Sensors bestimmt das Ausgangssignal. Man unterscheidet die nachfolgenden passiven / aktiven Temperatursensoren:

- a) Pt 100-Messwiderstand (nach DIN EN 60 751)
- b) Pt 1000 Messwiderstand (nach DIN EN 60751)
- c) Ni 1000-Messwiderstand (nach DIN EN 43 760, TCR=6180 ppm/K)
- d) Ni1000_TK5000-Messwiderstand (TCR=5000 ppm/K)
- e) LM235Z, Halbleiter IC (10mV/K, 2,73V/°C), beim Anschluss ist auf die Polung +/- zu achten!
- f) NTC (nach DIN 44070)
- g) PTC
- h) KTY-Siliziumtemperatursensoren

Die wichtigsten Kennlinien der Temperatursensoren sind auf der letzten Seite dieser Bedienungsanleitung dargestellt. Die einzelnen Temperatursensoren weisen entsprechend ihrer Kennlinie einen unterschiedlichen Anstieg im Bereich 0 bis 100 °C (TK-Wert) auf. Ebenso sind die maximal möglichen Messbereiche von Sensor zu Sensor verschieden (siehe hierzu einige Beispiele unter technischen Daten).

Aufbau der HKL-Temperaturfühler allgemein:

Die Fühler werden wir folgt nach Bauformen unterschieden: Anlegetemperaturfühler, Kabeltemperaturfühler, Gehäuse- und Einbautemperaturfühler.

- Bei den Anlegetemperaturfühlern besitzt der Temperaturfühler mindestens eine Anlegefläche, die z.B. an Rohroberflächen oder Heizkörpern angelegt werden muss. Wird die Anlegefläche nicht richtig zur Messoberfläche positioniert, so können erhebliche Temperaturmessfehler entstehen. Es ist für eine gute Kontaktfläche und Temperaturleitung zu sorgen, Schmutz und Unebenheiten sind zu vermeiden, ggfl. ist Wärmeleitpaste zu verwenden.
- Bei den Kabeltemperaturfühlern ist der Temperatursensor in eine Fühlerhülse eingebracht, aus der das Anschlusskabel herausgeführt wird.
 Neben den Standardisolationsmaterialien PVC, Silikon, Glasseide mit Edelstahlgeflecht sind auch andere Ausführungen möglich, die dann einen erhöhten Anwendungsbereich zulassen können.
- Bei den Gehäusefühlern ist der Temperatursensor in einem entsprechenden Gehäuse eingebettet, wobei das Gehäuse verschieden aufgebaut sein kann z.B. mit einer externen Fühlerhülse (siehe Außentemperaturfühler ATF2). Bei den Gehäusefühlern wird in der Regel unterschieden zwischen Unterputz (FSTF) und Aufputz (RTF, ATF) und Innenraum- und Feuchtraumausführungen. Die Anschlussklemmen sind im Anschlussgehäuse auf einer Platine untergebracht.
- Bei den Kanal- und Einbautemperaturfühlern unterscheidet man zwischen Temperaturfühlern mit auswechselbarem Messeinsatz und ohne auswechselbarem Messeinsatz. Die Anschlussteile sind im Anschlusskopf untergebracht. Der Prozessanschluss ist standardmäßig ein G_-Gewinde bei Tauchfühlern, bei Kanalfühlern mittels Montageflansch, kann jedoch auch andersartig ausgebildet werden. Besitzt der Einbaufühler ein Halsrohr, ist der Anwendungstemperaturbereich in der Regel etwas größer, da die aufsteigende Wärme nicht direkt und gleich in den Anschlusskopf einfließen kann. Dies ist insbesondere beim Einbau von Transmittern zu beachten. Bei den Einbaufühlern ist der Temperatursensor immer im vorderen Teil des Schutzrohres untergebracht. Bei Temperaturfühlern mit geringer Ansprechzeit sind die Schutzrohre verjüngt ausgeführt.

Hinweis!

Wählen Sie die Eintauchtiefe bei Einbaufühlern so, dass der Fehler durch Wärmeableitung innerhalb der zulässigen Fehlergrenzen bleibt. Der Richtwert: ist 10 x Ø des Schutzrohres + Sensorlänge. Bitte beachten Sie bei Gehäusefühlern, insbesondere bei Außenfühlern, den Temperaturstrahlungseinfluss. Als Zubehör kann ein Sonnen- und Strahlungsschutz SS-02 montiert werden.

Maximale Temperaturbelastung der Bauteile:

Grundsätzlich sind alle Temperaturfühler vor unzulässiger Überhitzung zu schützen!

Standardrichtwerte gelten für die einzelnen Bauelemente in Abhängigkeit von der Materialwahl in neutraler Atmosphäre und unter sonstigen normalen Betriebsbedingungen (siehe Tabelle rechts).

Bei Kombination verschiedener Isolationen gilt immer die minimale Temperatur.

Bauteil m	ax. Temperaturbelastung
Anschlusskopf B-Kopf:	
Aluguss mit Gummidichtung	+100 °C
Aluguss mit Silikondichtung	+150 °C
"VA"-Teil mit PTFE-Dichtung	+200 °C
Kunststoffkopf:	
Anschlusskabel	+100 °C
PVC-normal (PVC-wärmestabilisiert)	
Silikon	+180 °C
PTFE	+200 °C
Glasseidenisolation mit Edelstahlgeflecht	+400 °C

(D) Montage und Installation

Die Geräte sind im spannungslosen Zustand anzuschließen. Der Anschluss der Geräte darf nur an Sicherheitskleinspannung erfolgen. Folgeschäden, welche durch Fehler an diesem Gerät entstehen, sind von der Gewährleistung und Haftung ausgeschlossen. Die Installation der Geräte darf nur durch autorisiertes Fachpersonal erfolgen. Es gelten ausschließlich die technischen Daten und Anschlussbedingungen der zum Gerät gelieferten Geräteetikettdaten, der Montage- und Bedienungsanleitung. Abweichungen zur Katalogdarstellung sind nicht zusätzlich aufgeführt und im Sinne des technischen Fortschritts und der stetigen Verbesserung unserer Produkte möglich. Bei Veränderungen der Geräte durch den Anwender entfallen alle Gewährleistungsansprüche. Der Betrieb in der Nähe von Geräten, welche nicht den EMV-Richtlinien entsprechen, kann zur Beeinflussung der Funktionsweise führen. Dieses Gerät darf nicht für Überwachungszwecke, welche dem Schutz von Personen gegen Gefährdung oder Verletzung dienen und nicht als NOT-AUS-Schalter an Anlagen und Maschinen oder vergleichbare sicherheitsrelevante Aufgaben verwendet werden.

Die Gehäuse- und Gehäusezubehörmaße können geringe Toleranzen zu den Angaben dieser Anleitung aufweisen.

Veränderungen dieser Unterlagen sind nicht gestattet.

Bei Reklamationen werden nur vollständige Geräte in Originalverpackung angenommen.

Hinweise zum mechanischen Ein- und Anbau:

Der Einbau hat unter Berücksichtigung der einschlägigen, für den Messort gültigen Vorschriften und Standards (wie z.B. Schweißvorschriften usw.) zu erfolgen. Insbesondere sind zu berücksichtigen:

- VDE / VDI Technische Temperaturmessungen, Richtlinie, Messanordnungen für Temperaturmessungen
- die EMV-Richtlinien, diese sind einzuhalten
- eine Parallelverlegung mit stromführenden Leitungen ist unbedingt zu vermeiden
- es wird empfohlen abgeschirmte Leitungen zu verwenden, dabei ist der Schirm einseitig an der DDC/SPS aufzulegen.

Der Einbau hat unter Beachtung der Übereinstimmung der vorliegenden technischen Parameter der Thermometer mit den realen Einsatzbedingungen zu erfolgen, insbesondere:

- Messbereich
- zulässiger maximaler Druck, Strömungsgeschwindigkeit
- Einbaulänge, Rohrmaße
- Schwingungen, Vibrationen, Stöße sind zu vermeiden (< 0,5 g)

Achtung! Berücksichtigen Sie in jedem Fall die mechanischen und thermischen Belastungsgrenzen der Schutzrohre nach DIN 43763 bzw. nach speziellen S+S-Standards!

D Widerstandskennlinien (siehe letzte Seite)

Um Schäden/Fehler zu verhindern, sind vorzugsweise abgeschirmte Leitungen zu verwenden.

Eine Parallelverlegung mit stromführenden Leitungen ist unbedingt zu vermeiden.

Die EMV-Richtlinien sind zu beachten! Die Installation der Geräte darf nur durch einen Fachmann erfolgen!

Grenzabweichungen nach Klassen:

Toleranzen bei O°C:

Platinsensoren (Pt100, Pt1000):

DIN EN 60751, Klasse B	± 0,3	K
1/3 DIN EN 60751, Klasse A	± 0,1	Κ

Nickelsensoren:

NI1000 DIN EN 43760, Klasse B± 0),4 K
NI1000 1/2 DIN EN 43760, Klasse B± 0),2 K
NI1000 TK5000± 0),4 K

ACHTUNG, HINWEIS!

Infolge der Eigenerwärmung beeinflusst der Messstrom die Messgenauigkeit des Thermometers und sollte daher keinesfalls größer sein, als wie folgt angegeben:

Richtwerte für den Messstrom:

Sensorstrom maximal	
Pt100, Pt1000 (Dünnschicht)	<0,1-0,3 mA
Ni1000 (DIN), Ni1000 TK5000	<2 mA
NTC's	<1 mA
LM235	400 µA5mA

(B) THERMASGARD® HTF

The sleeve sensor/cable sensor THERMASGARD® HTF is used to measure temperatures in liquid and gaseous media. It can be used as a duct sensor and - if installed in an immersion sleeve - as an immersion gaseuos filedia. It can be used as a duct serisor and - il illistation in illiministration steeve - as an illiministration and screw-in sensor. The sleeve length varies, depending on request, from 30...400 mm (standard is 50 mm respectively 200 mm), the cable length is arbitrary (standard is 1.5 m). Depending on application, with silicone, glass fibre, or PVC leads, for two-wire or four-wire connection. For direct, continuous use in liquids, please use our THE immersion sleeves.

TECHNICAL DATA	
Measuring ranges:	-35+105°C PVC, LIYY, 2x0.25 mm² -50+180°C Silicone, SIHF, 2x0.25 mm² -50+250°C PTFE, 2x0.25 mm² -50+250°C glass fibre, 2x0.25 mm² ends stripped with wire end sleeves (extended measuring range limits optional, depending on connection leads, T _{max} NTC = +150°C / LM235Z = +125°C / Ni1000 = +180°C)
Sensors/output:	see table, passive (optional also with 2 sensors) (Perfect Sensor Protection with IP68)
Connection type:	2-wire connection (4-wire connection optional)
Testing current:	approx. 1 mA
Protective tube	stainless steel, V4A (1.4571), $\emptyset = 6 \text{mm}$
(sensor sleeve):	HTF50 NL= 50mm HTF200 NL=200mm (other optional dimensions also available, NL= 30400mm) cable entry stamped (optional rolled)
Connection cable:	KL = 1.5 m (optional also 3 m, 5 m, 8 m, 10 m)
Insulating resistance:	≥ 100 MΩ, at +20 °C (500 V DC)
Process connection:	by mounting flange made of plastic (galvanised steel optional)
Permitted humidity:	<95% r.H., non-precipitating air
Protection class:	III (according to EN 60730)
Protection type:	IP65 (according to EN 60529) humidity-tight stamped IP68 (optional watertight compound-filled*) rolled IP54 (optional glass fibre cable)
ACCESSORIES	
MF-06-K	Mounting flange plastic, $56.8 \times 84.3 \text{mm}$, $\emptyset = 6.2 \text{mm}$ tube gland, $T_{\text{max}} = +100 ^{\circ}\text{C}$
THE-ms/xx	Immersion sleeve, brass, nickel-plated, $\emptyset = 9$ mm, EL = $50 \cdot 250$ mm (see table), inner diameter of socket $\emptyset = 5.2$ mm, with adjusting screw M12 x1.5 $T_{max} = +130^{\circ}$ C, $p_{max} = 16$ bar
THE-VA/xx	Immersion sleeve, stainless steel, V4A (1.4571), $\emptyset = 9$ mm, EL = 50-400 mm (see table), inner diameter of socket $\emptyset = 5.2$ mm, with adjusting screw M12 x1.5 $T_{max} = +200^{\circ}\mathrm{C}$, $p_{max} = 40$ bor

THERMASGARD® HTF - Sleeve sensor/cable temperature sensor				
Type/WG03 - Sensor/Output Measuring ranges				
	PVC (IP 65)*	Silicone (IP65)*	PTFE (IP65)*	glass fibre (IP 54)
HTF50 (NL = 50 mm)				
HTF50 Pt100, class B	−35+105°C	-50+180°C	-50+250°C	-50+350°C
HTF50 Pt1000, class B	-35+105°C	-50+180°C	-50+250°C	-50+350°C
HTF50 Pt1000 A, class A-TGA	-35+105°C	-50+180°C		
HTF50 Ni1000	−35+105°C	-50+180°C	-	-
HTF50 Ni1000 TK5000, LG-Ni1000	−35+105°C	-50+180°C	-	-
HTF 50 NTC 1,8 K, 5K, 10K, 20K, 30K, 10K Precon	-35+105°C	- 50+150°C	-	-
HTF50 KTY 81-210, 81-110, 81-121, 81-122, 11-6	-35+105°C	- 40+125°C	-	-
HTF50 LM235Z (TCR=10 mV/K, 2.73 V at 0°C), KP10	-35+105°C	- 40+125°C	-	-
HTF200 (NL=200 mm)				
HTF200 Pt100	-35+105°C	-50+180°C	-	-
HTF200 Pt1000	-35+105°C	−50+180°C	-	-
HTF200 Ni1000	−35+105°C	-50+180°C	-	-
HTF200 Ni1000 TK5000, LG-Ni1000	−35+105°C	-50+180°C	-	-
HTF200 NTC 1,8 K, 5K, 10K, 20K, 30K, 10K Precon	-35+105°C	- 50+150°C	-	-
HTF200 KTY 81-210, 81-110, 81-121, 81-122, 11-6	-35+105°C	- 40+125°C	-	-
HTF200 LM235Z (TCR=10 mV/K, 2.73 V at 0 °C), KP10	−35+105°C	- 40+125°C	-	-

Measuring principle of HVAC temperature sensors in general:

The measuring principle of temperature sensors is based on an internal sensor that outputs a temperature-dependent resistance signal. The type of the internal sensor determines the output signal. The following active passive temperature sensors are distinguished:

- a) Pt 100 measuring resistor (according to DIN EN 60 751)
- b) Pt 1000 measuring resistor (according to DIN EN 60751)
- c) Ni 1000 measuring resistor (according to DIN EN 43 760, TCR = 6180 ppm/K)
- d) Ni 1000_TK 5000 measuring resistor (TCR = 5000 ppm/K)
- e) LM235Z, semiconductor IC [10 mV/K, 2.73 V/°C]. Ensure correct polarity +/- when connecting!
- f) NTC (according to DIN 44070)
- g) PTC
- h) KTY silicon temperature sensors

The most important resistance characteristics are shown on the last page of these operating instructions. According to their characteristics, individual temperature sensors exhibit different slopes in the range between 0 °C and 100 °C (TK value). Maximum-possible measuring ranges also vary from sensor to sensor (for some examples to this see under technical data).

Design of HVAC temperature sensors in general:

Sensors are distinguished by shape type as follows: surface-contacting sensors, cable temperature sensors, and enclosure-type and built-in temperature sensors.

- On surface-contacting sensors, the temperature sensor has at least one contact area that must be brought in contact, e.g. with the surface of radiators or pipes. If the contact area is not positioned correctly relative to the surface to be measured, significant temperature measurement errors may occur. Good contact area and temperature conduction must be ensured, dirt and unevenness must be avoided, and heat-conductive paste is to be used where necessary.
- On cable temperature sensors, the temperature sensor is installed inside a sensor sleeve, from which a connecting cable is leading out. In
 addition to the standard insulating materials PVC, silicone, and fibreglass with stainless steel texture, other versions are also available that
 may allow a wider range of application.
- On enclosure-type sensors, the temperature sensor is embedded in a respective enclosure. Different designs of enclosures are available, e.g. with an external sensor sleeve (see outside temperature sensor ATF2). Enclosure-type sensors are normally distinguished into in-wall (FSTF) and on-wall (FTF, ATF) types and indoor and wet room versions. Connection terminals are placed on a plate inside the connecting enclosure.
- Duct and built-in temperature sensors are distinguished into temperature sensors with interchangeable measuring insert and without interchangeable measuring insert. Connection parts are placed inside a connecting head. Standard process connection for immersion sensors is a pipe thread (sizes in inches) and a mounting flange for duct sensors. However, it may be designed differently. When a built-in sensor has a neck tube, the application range is usually somewhat wider since ascending heat cannot flow directly and immediately into the connecting head. This is to be noted especially when transmitters are installed. The temperature sensor in built-in sensors is always placed inside the front part of the protective tubes. On temperature sensors with short reaction times, protective tubes are stepped.

Note!

Select immersion depth for built-in sensors so that the error caused by heat dissipation stays within the admissible error margins. A standard value is: 10 x diameter of protection tube + sensor length. In connection with enclosure-type sensors, particularly with outdoor sensors, please consider the influence of thermal radiation. For that purpose, a sunshade and radiation protector SS-02 can be attached.

Maximum thermal load on components:

On principle, all temperature sensors shall be protected against unacceptable overheating!

Standard values for individual components and materials selected are shown for operation under neutral atmosphere and otherwise normal conditions (see table to the right).

For combinations of different insulating materials, the lowest temperature limit shall always apply.

Component	max. thermal load
Connecting head type B:	
Aluminium casting with rubber seal	+100 °C
Aluminium casting with silicone seal	+150 °C
"VA" stainless steel part with PTFE seal	+200°C
Connecting head made of plastic:	
Connecting cable	+100 °C
PVC, normal (PVC, heat-stabilized)	+70 °C (+105 °C)
Silicone	+180 °C
PTFE	+200°C
Fibreglass insulation with stainless steel texture	+400°C

(GB) Mounting and Installation

Devices are to be connected under dead-voltage condition. Devices must only be connected to safety extra-low voltage. Consequential damages caused by a fault in this device are excluded from warranty or liability. Installation of these devices must only be realized by authorized qualified personnel. The technical data and connecting conditions shown on the device labels and in the mounting and operating instructions delivered together with the device are exclusively valid. Deviations from the catalogue representation are not explicitly mentioned and are possible in terms of technical progress and continuous improvement of our products. In case of any modifications made by the user, all warranty claims are forfeited. Operating this device close to other devices that do not comply with EMC directives may influence functionality. This device must not be used for monitoring applications, which serve the purpose of protecting persons against hazards or injury, or as an EMERGENCY STOP switch for systems or machinery, or for any other similar safety-relevant purposes.

Dimensions of enclosures or enclosure accessories may show slight tolerances on the specifications provided in these instructions.

Modifications of these records are not permitted.

In case of a complaint, only complete devices returned in original packing will be accepted.

Notes regarding mechanical mounting and attachment:

Mounting shall take place while observing all relevant regulations and standards applicable for the place of measurement (e.g. such as welding instructions, etc.). Particularly the following shall be regarded:

- VDE/VDI directive technical temperature measurements, measurement set-up for temperature measurements.
- The EMC directives must be adhered to.
- It is imperative to avoid parallel laying of current-carrying lines.
- We recommend to use shielded cables with

the shielding being attached at one side to the DDC/PLC.

Before mounting, make sure that the existing thermometer's technical parameters comply with the actual conditions at the place of utilization, in particular in respect of:

- Measuring range
- Permissible maximum pressure, flow velocity
- Installation length, tube dimensions
- Oscillations, vibrations, shocks are to be avoided (< 0.5 g)

Attention! In any case, please observe the mechanical and thermal load limits of protective tubes according to DIN 43763 respectively according to specific S+S standards!

Resistance characteristics of passive temperature sensors (see last page)

In order to avoid damages/errors, preferably shielded cables are to be used.

Laying measuring cables parallel with current-carrying cables must in any case be avoided. EMC directives shall be observed! These instruments must be installed by authorised specialists only!

Limiting deviation according to classes:

Tolerances at O°C:

Platinum sensors (Pt100, Pt1000):

DIN	I EN 60751, class B	± C	1.3	K
1/3	3 DIN EN 60751, class A	± C).1	K

Nickel sensors:

NI1000 DIN EN 43760, class B± 0.4 K
NI1000 1/2 DIN EN 43760, class B± 0.2 K
NI1000 TK5000 ± 0.4 K

ATTENTION, NOTE!

Testing current influences the thermometer's measuring accuracy due to intrinsic heating and therefore, should never be greater than as specified below:

Standard values for testing current:

Sensor current, maximum	I _{max.}
Pt100, Pt1000 (thin-layer)<	D.1 - O.3 mA
Ni1000 (DIN), Ni1000 TK5000	<2mA
NTC's	<1 mA
LM235400) μΑ5mA

La sonde chemisée / à câble THERMASGARD® HTF sert à la détection de température dans des milieux liquides et gazeux. Elle peut être utilisée comme sonde en gaine par montage dans un doigt de gant ou comme sonde à immerger et à visser. La longueur de la chemise varie selon les besoins de 30...400 mm (la longueur standard est de 50 mm resp. 200 mm), la longueur de câble est librement définissable (la longueur standard est de 1,5 m). Suivant l'utilisation avec câble en silicone, fibre de verre ou PVC, comme raccordement à deux ou quatre fils. Pour une utilisation directe et à long terme dans des liquides, veuillez utiliser nos doigts de gant THE.

CARACTÉRISTIQUES TI	ECHNIQUES
Plages de mesure :	$-35+105 ^{\circ}\text{C PVC}, \text{ LIYY, } 2 \times 0.25 \text{ mm}^2 \\ -50+250 ^{\circ}\text{C PTFE}, 2 \times 0.25 \text{ mm}^2 \\ -50+250 ^{\circ}\text{C PTFE}, 2 \times 0.25 \text{ mm}^2 \\ -50+350 ^{\circ}\text{C fibre de verre}, 2 \times 0.25 \text{ mm}^2 \\ \text{extrémités isolées, avec embouts (en option, limites de plage de mesure étendues, en fonction du câble de raccordement, } \\ T_{max} \text{ NTC} = +150 ^{\circ}\text{C} / \text{LM235Z} = +125 ^{\circ}\text{C} / \text{Ni1000} = +180 ^{\circ}\text{C})$
Capteurs / Sortie :	voir tableau, passive (également avec deux capteurs en option) (Perfect Sensor Protection pour IP68)
Type de raccordement :	2 fils (4 fils en option)
Courant de mesure :	env. 1 mA
Tube de protection	acier inox V4A (1.4571), Ø=6 mm
(chemise de sonde) :	HTF50 Ln= 50 mm HTF200 Ln=200 mm (également d'autres dimensions en option, Ln= 30400 mm) passage de câble serti (roulé en option)
Câble de raccordement :	KL = 1,5 m (en option aussi 3 m, 5 m, 8 m, 10 m)
Résistance d'isolement :	≥ 100 MΩ, à +20 °C (500 V cc)
Raccordement process :	au moyen d'une bride en plastique (voir tableau) (en option en acier galvanisé)
Humidité d'air admissible :	<95% h.r., air sans condensation
Classe de protection :	III (selon EN 60730)
Type de protection :	IP65 (selon EN 60529) sert i étanche à l'humidité IP68 (surmoulé étanche à l'eau* en option) roulé IP54 (avec câble en f ibre de verre en option)
ACCESSOIRES	
MF-06-K	Bride de montage en matière plastique, $56.8 \times 84.3 \text{mm}$, $\emptyset = 6.2 \text{mm}$ passage de tuyaux, $T_{\text{max}} = +100 ^{\circ}\text{C}$
THE-ms/xx	Doigt de gant en laiton nickelé, $\emptyset = 9 \text{ mm}$, $EL = 50 \cdot 250 \text{ mm}$ (voir tableau), diamètre intérieur d'insertion $\emptyset = 5,2 \text{ mm}$, avec vis de pression M12 x1,5 $T_{max} = +130 ^{\circ}\text{C}$, $p_{max} = 16 \text{ bar}$
THE-VA/xx	Doigt de gant en acier inox V4A (1.4571), Ø = 9 mm, EL = 50 - 400 mm (voir tableau), diamètre intérieur d'insertion Ø = 5,2 mm, avec vis de pression M12 x1,5 T _{max} = +200 °C, p _{max} = 40 bar

THERMASGARD® HTF - Sonde chemisée / Sonde de température à câble								
Désignation/WG03 - capteur/sorti	Plages de mesur	e						
	PVC (IP 65)*	silicone (IP65)*	PTFE (IP65)*	soie de verre (IP54)				
HTF50 (Ln=50mm)								
HTF50 Pt100, classe B	−35+105°C	-50+180°C	-50+250°C	-50+350°C				
HTF50 Pt1000, classe B	−35+105°C	-50+180°C	-50+250°C	-50+350°C				
HTF50 Pt1000 A, classe A-TGA	−35+105°C	-50+180°C						
HTF50 Ni1000	−35+105°C	-50+180°C	-	-				
HTF50 Ni1000 TK5000, LG-Ni1000	−35+105°C	-50+180°C	-	-				
HTF50 NTC 1,8 K, 5K, 10K, 20K, 30K, 10K Precon	-35+105°C	- 50+150°C	-	-				
HTF 50 KTY 81-210, 81-110, 81-121, 81-122, 11-6	−35+105°C	- 40+125°C		-				
HTF50 LM235Z (TCR=10 mV/K, 2,73 V à 0 °C), KP10	−35+105°C	- 40+125°C	-	-				
HTF200 (Ln=200 mm)								
HTF200 Pt100	-35+105°C	-50+180°C	-	-				
HTF200 Pt1000	−35+105°C	-50+180°C	-	-				
HTF200 Ni1000	−35+105°C	-50+180°C	-	-				
HTF200 Ni1000 TK5000, LG-Ni1000	−35+105°C	-50+180°C	-	-				
HTF200 NTC 1,8 K, 5K, 10K, 20K, 30K, 10K Precon	−35+105°C	- 50+150°C	=,	-				
HTF200 KTY 81-210, 81-110, 81-121, 81-122, 11-6	-35+105°C	- 40+125°C	-	-				
HTF200 LM235Z (TCR = 10 mV/K, 2,73V à 0 °C), KP10	−35+105°C	- 40+125°C	-	-				

Principe de mesure des sondes de température pour applications CVC (HVAC) en général:

Le principe de mesure se base sur le fait que le capteur à l'intérieur génère un signal de résistance dépendant de la température. Le signal de sortie est déterminé par le type de capteur qui se trouve à l'intérieur. On distinque les capteurs de température actifs et passifs suivants:

- a) Pt 100 résistance électrique (suivant DIN EN 60 751)
- b) Pt 1000 résistance électrique (suivant DIN EN 60751)
- c) Ni 1000 résistance électrique (suivant DIN EN 43 760, TCR=6180 ppm/K)
- d) Ni 1000_TK5000 résistance électrique (TCR=5000 ppm/K)
- e) LM235Z, semi-conducteur IC (10mV/K, 2,73V/°C). Lors du raccordement électrique, veiller à la bonne polarisation +/-!
- f) NTC (suivant DIN 44070)
- g) PTC
- h) KTY- capteurs de température en silicium

Les courbes caractéristiques les plus importantes des capteurs de température se trouvent à la dernière page de cette notice d'instruction. Conformément à leur courbe caractéristique, chacun des capteurs de température présente une montée différente dans la plage située entre O et 100°C (valeur du coefficient de température). Pareillement, les plages de mesure maximales possibles varient en fonction du capteur utilisé (voir quelques exemples à ce sujet dans la rubrique données techniques).

Modes de réalisation des sondes de température pour applications CVC en général:

On distingue les sondes suivant leur forme de construction, à savoir: sondes de température à applique, sondes de température à câble, sondes de température sous forme de boîtier et sondes de température pour montage en gaine.

- Dans le cas des sondes de température à applique, la sonde de température dispose d'au moins une surface d'applique qui doit être appliquée par ex. sur la surface des tubes ou de radiateurs. Si la surface d'applique n'est pas positionnée correctement sur la surface de mesure, ceci peut causer de graves erreurs de mesure de température. Veillez à ce qu'il y ait une bonne surface de contact et à une bonne conduction thermique, évitez les impuretés et les aspérités, si nécessaire, utilisez de la pâte thermique conductrice,
- Dans le cas des sondes à câble, le capteur de température est logé dans une chemise d'où sort le câble de raccordement. Outre les matériaux d'isolation standards tels que le PVC, le silicone, la soie de verre avec tresse inox, d'autres versions sont également disponibles, permettant ainsi une plage d'utilisation plus élevée.
- Dans le cas des sondes de température sous forme de boîtier, le capteur de température est incorporé dans un boîtier correspondant. Mais il est possible que ce boîtier soit construit différemment, par ex. avec une sonde chemisée externe (voir sonde de température extérieure ATF2). Dans le cas des sondes sous forme de boîtier, on distingue en règle générale les sondes encastrées (FSTF) et celles en saillie (RTF, ATF) et entre les versions pour espaces intérieurs et celles pour locaux humides. Le bornier est logé dans le boîtier de raccordement.
- Dans le cas des sondes de température pour montage en gaine, on distingue les sondes de température avec insert de mesure interchangeable et celles sans insert de mesure interchangeable. Les éléments de raccordement sont logés dans la tête de raccordement. Dans le cas des sondes à plongeur, le raccordement au process se fait par défaut par un filetage mâle G, les sondes pour gaine sont raccordées par bride de montage. Pourtant il est possible que le type de raccordement soit d'une forme différente. Si la sonde à visser possède un tube prolongateur, la plage de température d'utilisation est en règle générale plus élevée puisque la chaleur montante ne peut pas entrer directement et immédiatement dans la tête de raccordement. Ceci est particulièrement important pour le montage d'un transmetteur. Dans le cas des sondes à visser, le capteur de température est toujours logé dans la partie avant du tube de protection. Dans le cas des sondes de température avec temps de réponse rapide, les extrémités des tubes de protection sont à simple diminution de section.

Remarquel

Dans le cas des sondes à visser, choisissez la profondeur d'immersion de telle facon que l'erreur due à la dissipation de chaleur reste dans les limites d'erreur admissibles. Valeur indicative: 10 x Ø du tube de protection + longueur de la sonde. Dans le cas des sondes sous forme de boîtier, notamment dans le cas des sondes extérieures, n'oubliez pas de tenir compte de l'influence du rayonnement thermique. Il est possible de monter une protection solaire et anti-rayonnement SS-02 (disponible en accessoire).

Contrainte thermique maximale des composants:

En général, toutes les sondes de température doivent être protégées contre la surchauffe!

Les valeurs indicatives standard sont applicables pour chaque élément en fonction du choix du matériau en ambiance neutre et dans les autres conditions de service normales (voir tableau à droite).

Lors d'une combinaison de plusieurs types d'isolation, c'est toujours la température minimale qui est applicable.

Pièce	contrainte thermique maximale
Tête de raccordement forme B:	
Aluminium moulé avec joint en caoutchou	c+100°C
Aluminium moulé avec joint en silicone	+150°C
Pièce en acier inox avec joint en PTFE	+200°C
Tête en matière plastique:	
Câble de raccordement	+100°C
PVC normal (PVC stabilisé thermiquemen	t)+70°C (+105°C)
Silicone	+180°C
PTFE	+200°C
Isolation soie de verre avec tresse inox	+400°C

(F) Montage et installation

Les raccordements électriques doivent être exécutés HORS TENSION. Veillez à ne brancher l'appareil que sur un réseau de très basse tension de sécurité. Nous déclinons toute responsabilité ou garantie au titre de tout dommage consécutif provoqué par des erreurs commises sur cet appareil. L'installation des appareils ne doit être effectuée que par du personnel qualifié et autorisé. Seules les données techniques et les conditions de raccordement indiquées sur l'étiquette signalétique de l'appareil ainsi que la notice d'instruction sont applicables. Des différences par rapport à la présentation dans le catalogue ne sont pas mentionnées explicitement et sont possibles suite au progrès technique et à l'amélioration continue de nos produits. En cas de modifications des appareils par l'utilisateur, tous droits de garantie ne seront pas reconnus. L'utilisation de l'appareil à proximité d'appareils qui ne sont pas conformes aux directives « CEM » pourra nuire à son mode de fonctionnement. Cet appareil ne devra pas être utilisé à des fins de surveillance qui visent à la protection des personnes contre les dangers ou les blessures ni comme interrupteur d'arrêt d'urgence sur des installations ou des machines ni pour des fonctions relatives à la sécurité comparables.

Il est possible que les dimensions du boîtier et des accessoires du boîtier divergent légèrement des indications données dans cette notice. Il est interdit de modifier la présente documentation.

En cas de réclamation, les appareils ne sont repris que dans leur emballage d'origine et que si tous les éléments de l'appareil sont complets.

Consignes pour l'installation mécanique:

Effectuer le montage en tenant compte des dispositions et règles standards à ce titre applicables pour le lieu de mesure (par ex. des règles de soudage, etc.) Sont notamment à considérer:

- Mesure technique de températures selon VDE/VDI, directives, ordonnances sur les instruments de mesure pour la mesure de températures.
- Les directives « CEM », celles-ci sont à respecter.
- Ne pas poser les câbles de sonde en parallèle avec des câbles de
- Il est conseillé d'utiliser des câbles blindés, ce faisant raccorder l'une des extrémités du blindage sur le DDC/API.

Effectuer l'installation en respectant la conformité des paramètres techniques correspondants des thermomètres aux conditions d'utilisation réelles, notamment:

- Plage de mesure
- Pression maximale admissible, vitesse d'écoulement
- Longueur de montage, dimensions des tubes
- Éviter les oscillations, vibrations, chocs (< 0,5 g)

Attention! Il faut impérativement tenir compte des limites de sollicitation mécaniques et thermiques des tubes de protection suivant DIN 43763 et/ou suivant les standards spécifiques de S+S!

Courbes caractéristiques (cf. dernière page)

Pour éviter des endommagements ou erreurs de mesure, il est conseillé d'utiliser de préférence des câbles blindés. Ne pas poser les câbles de sonde en parallèle avec des câbles de puissance. Les directives CEM sont à respecter! L'installation des appareils doit être effectuée uniquement par un spécialiste qualifié!

Incertitudes de mesure selon classes:

Tolérances à 0°C:

Sondes platine (Pt100, Pt1000):

1/3 DIN EN 60751, classe A.....± 0,1 K

Sondes nickel:

NI1000 DIN EN 43760, classe B......± 0,4 K NI1000 1/2 DIN EN 43760, classe B ± 0.2 K NI1000 TK5000.....± 0.4 K

ATTENTION!

À cause de son propre échauffement, le courant de mesure influence la précision du thermomètre et ne doit donc pas dépasser les valeurs suivantes.

Valeurs indicatives pour le courant de mesure:

Imaxi
<0,1-0,3 mA
<2mA
<1 mA
400 µA5mA

Защитная трубка

(гильза чувствительного элемента):

THERMASCARDS HITE ...

Втулочный /кабельный датчик температуры THERMASGARD® HTF служит для измерения температуры отупичным кооблевом дегчи. Температуры ТНЕЛИМАТОЗАТО ТН Служит дли можерении температуры жидких и газообразных сред. Его можно использовать в качестве канального датчика также в качестве погружного и ввинчиваемого датчика посредством установки в погружную гильзу. Длина гильзы варьируется по желанию в пределах от 30 до 400 мм (стандартные значения — 50 мм или 200 мм), длина кабеля — по выбору (стандартная длина — 1,5 м). В зависимости от области применения — с силиконовым, стехловолоконным или ПВХ-кабелем, для двух- или четырехпроводного подключения. Для непосредственного, подключения. Для непосредственного, длительного применения в жидкостях используйте наши погружные гильзы ТНЕ.

ТЕХНИЧЕСКИЕ ДАННЫЕ -35...+105 °C ПВХ, LIYY, 2 \times 0,25 мм² -50...+180 °C силикон, SiHF, 2 \times 0,25 мм² -50...+250 °C ПТФЭ, 2 \times 0,25 мм² -50...+250 °C СТЕКЛОНИТЬ, 2 \times 0,25 мм² Диапазоны измерения: со снятой изоляцией на концах, с наконечниками (опционально более широкие диапазоны, в зависимости от соединительного провода, T_{max} NTC = +150 °C / LM235Z = +125 °C / Ni1000 = +180 °C) Чувствительные элементы / см. таблицу, пассивный (опционально также с двумя чувствительными элементами) (Perfect Sensor Protection при IP68) выход: Тип полключения: по двухпроводной схеме (опционально — четырехпроводное подключение) Измерительный ток: прибл. 1 мА

высококачественная сталь V4A (1.4571), Ø=6 мм

(опционально также другие длины, NL = 30...400 mm) исполнение

HTF50 NL = 50 MM HTF200 NL = 200 MM

	кабельного ввода с запрессовкой (опционально — с накаткой)
Соединительный кабель:	KL = 1,5 м (опционально 3м, 5м, 8м, 10м)
Сопротивление изоляции:	≥ 100 MOм, при +20 °C (500 B постоянного тока)
Монтаж /подключение:	при помощи фланца из пластика (см. таблицу) (опционально — из оцинкованной стали)
Допустимая относительная влажность воздуха:	< 95 %, без конденсата
Класс защиты:	III (согласно EN 60730)
Степень защиты:	IP65 (согласно EN 60529) исполнение с влагонепроницаемой запрессовкой IP68 (опционально — в литой водонепроницаемой оболочке*) исполнение с накаткой IP54 (опционально — с кабелем из стеклонити)
ПРИНАДЛЕЖНОСТИ	
MF-06-K	Присоединительный фланец из пластика, 56.8×84.3 мм, проходное сечение трубы $\emptyset = 6.2$ мм, $T_{max} = +100^{\circ}\text{C}$
THE-ms/xx	Погружная гильза из никелированной латуни, $\mathcal{Q}=9$ мм, $EL=50-250$ мм (см. таблицу), внутренний диаметр гнезда $\mathcal{Q}=5,2$ мм, с нажимной винт M12 x1,5 $T_{\max}=4130^\circC,\ p_{\max}=16$ бар
THE-VA/xx	Погружная гильза из высококачественной стали V4A (1.4571), $\mathcal{Q}=9$ мм. $EL=50-400$ мм (см. таблицу), внутренний диаметр гнезда $\mathcal{Q}=5,2$ мм, с нажимной винт M12 x1,5 $T_{\max}=+200^\circC,\ p_{\max}=40$ бар

Тип/WG03 - Чувствительный элемент/выход	Диапазоны измерения					
	ПВХ (IP 65)*	силикон (IP 65)*	PTFE (IP65)*	стеклонить (IP 54)		
HTF50 (NL=50 mm)						
HTF50 Pt100, класс В	−35+105°C	−50+180°C	−50+250°C	-50+350°C		
HTF50 Pt1000, класс В	−35+105°C	-50+180°C	-50+250°C	-50+350°C		
HTF50 Pt1000 A, класс A-TGA	−35+105°C	-50+180°C				
HTF50 Ni1000	-35+105°C	−50+180°C	-	-		
HTF50 Ni1000 TK5000, LG-Ni1000	−35+105°C	−50+180°C	-	-		
HTF 50 NTC 1,8 K, 5K, 10K, 20K, 30K, 10K Precon	−35+105°C	- 50+150°C	-	-		
HTF 50 KTY 81-210, 81-110, 81-121, 81-122, 11-6	-35+105°C	- 40+125°C	-	-		
HTF50 LM235Z (TCR=10мB/K, 2,73В при 0°C), KP10	−35+105°C	- 40+125°C	-	-		
HTF200 (NL=200 мм)						
HTF200 Pt100	-35+105°C	-50+180°C	-	-		
HTF200 Pt1000	−35+105°C	−50+180°C	-	-		
HTF200 Ni1000	−35+105°C	−50+180°C	-	-		
HTF200 Ni1000 TK5000, LG-Ni1000	−35+105°C	−50+180°C	-	-		
HTF 200 NTC 1,8 K, 5K, 10K, 20K, 30K, 10K Precon	-35+105°C	- 50+150°C	-	-		
HTF200 KTY 81-210, 81-110, 81-121, 81-122, 11-6	−35+105°C	- 40+125°C	-	-		
HTF200 LM235Z (TCR=10мB/K, 2,73B при 0°C), KP10	-35+105°C	- 40+125°C	_	_		

Общий принцип измерения для датчика температуры HLK (HVAC):

Принцип измерения температуры основан на зависимости электрического сопротивления чувствительного элемента (сенсора), находящегося внутри датчика, от температуры. Выходной сигнал сопротивления определяется типом чувствительного элемента. Различают следующие пассивные/активные чувствительные элементы:

- а) измерительный резистор Pt 100 (соотв. DIN EN 60 751)
- б) измерительный резистор Pt 1000 (соотв. DIN EN 60751)
- в) измерительный резистор Ni 1000 (соотв. DIN EN 43 760, TCR=6180 млн-1/K)
- г) измерительный резистор Ni 1000 TK5000 (TCR=5000 млн-1/K)
- д) LM235Z, полупроводник IC (10 мВ/K, 2,73 В/°С), при подключении учитывайте полярность +/-!
- e) NTC (соотв. DIN 44070)
- ж) PTC
- з) кремниевые температурные сенсоры КТУ

Важнейшие характеристики датчиков температуры представлены на последней странице руководства. Для отдельных датчиков, согласно приведенным данным, характерно повышение в диапазоне от 0 до 100°C (величина ТК). Максимальные возможные диапазоны измерения различны у разных сенсоров (см. отдельные примеры в технических данных).

Общие сведения о конструктивном исполнении датчиков:

Датчики температуры различаются по конструктивному исполнению: накладные, кабельные, корпусные и встраиваемые.

- Накладные датчики температуры имеют по крайней мере одну контактную площадку, посредством которой обеспечивается установка датчика, например, на поверхностях труб или радиаторов отопления. При неправильном позиционировании контактной площадки относительно поверхности измерения могут возникать существенные погрешности измерения температуры. Следует обеспечивать хорошую поверхность контакта и подвод/отвод тепла, избегать загрязнения и неровностей поверхности; при необходимости может использоваться теплопроводящая паста.
- В случае кабельных датчиков температуры чувствительный элемент помещается во втулку, из которой выводится присоединительный кабель.
 Помимо стандартных изоляционных материалов (ПВХ, силикон, стеклонить с оплеткой из высококачественной стали), возможны также другие исполнения, допускающие расширение диапазона применения.
- В случае корпусных датчиков температуры чувствительный элемент помещается в соответствующий корпус; возможны различные исполнения корпуса: например, с внешней втулкой датчика (см. наружный датчик температуры ATF2). Как правило, различают корпусные датчики для скрытой (FSTF) и открытой (RTF, ATF) установки, а также исполнения для внутренних помещений и помещений с повышенной влажностью. Присоединительные зажимы размещаются в присоединительном корпусе на плате.
- В случае канальных и встраиваемых датчиков температуры различают датчики со сменной измерительной вставкой и без таковой. Присоединительные детали размещаются в присоединительной головке. Монтаж стандартно осуществляется посредством G-резьбы для погружных датчиков, присоединительного фланца для канальных датчиков; возможны и иные виды монтажа. Если встраиваемый датчик снабжен горловиной, то рабочий диапазон температур, как правило, несколько расширяется, поскольку увеличившаяся теплота достигает присоединительной головки не напрямую и с некоторой задержкой. Это следует учитывать в особенности при монтаже трансмиттеров. В случае встраиваемых датчиков чувствительный элемент всегда расположен в передней части защитной трубки. Защитные трубки датчиков температуры с пониженным временем реакции выполняются с сужением..

Указание!

Глубину погружения для погружных датчиков следует выбирать таким образом, чтобы погрешность измерения, вызванная отводом тепла, находилась в допустимых пределах. Нормативное значение: 10 х Ø защитной трубки + длина чувствительного элемента. В случае корпусных датчиков (особенно при наружном исполнении) следует учитывать влияние теплового излучения. При необходимости может использоваться приспособление для защиты от солнечных лучей и посторонних предметов SS-02.

Максимальная температурная нагрузка деталей:

Все датчики температуры необходимо защищать от перегрева!

Стандартные нормативные значения действительны для отдельных конструктивных элементов в зависимости от выбора материала в нейтральной атмосфере и при прочих нормальных условиях эксплуатации (см. таблицу справа).

При комбинировании различных изоляционных материалов действительна наименьшая из температур.

Присоединительная головка В-образной формы:				
Алюминиевое литье с резиновым уплотнением			+100	٥°C
Алюминиевое литье с силиконовым уплотнением			+150	٥°C
«VA»-деталь с PTFE уплотнением			+200	٥°C
Пластиковая головка:				
Присоединительный кабель			+100	٥°C
ПВХ-норм. (ПВХ термостабилизир.)		+70°C	(+105	°C)
Силикон			+180)°C
РТFE (политетрафторэтилен)			+200)°C
Изоляция из стеклонити с оплеткой из высококач. ст	алі	1	+400)°C

макс, температурная нагрузка

(RU) Монтаж и подключение

Приборы следует устанавливать в обесточенном состоянии. Подключение должно осуществляться исключительно к безопасно малому напряжению. Повреждения приборов вследствие несоблюдения упомянутых требований не подлежат устранению по гарантии; ответственность производителя исключается. Установка приборов должна осуществляться только авторизованным персоналом. Действительны исключительно технические данные и условия подключения, приведенные на поставляемых с приборами этикетках/табличках и в руководствах по монтажу и эксплуатации. Отклонения от представленных в каталоге характеристик дополнительно не указываются, несмотря на их возможность в силу технического прогресса и постоянного совершенствования нашей продукции. В случае модификации приборов потребителем гарантийные обязательства теряют силу. Эксплуатация вблизи оборудования, не соответствующего нормам электромагнитной совместимости (EMV), может влиять на работу приборов. Недопустимо использование данного прибора в качестве устройства контроля/наблюдения, служащего для защиты людей от травм и угрозы для здоровья/жизни, а также в качестве аварийного выключателя устройств и машин или для аналогичных задач обеспечения безопасности.

Размеры корпусов и корпусных принадлежностей могут в определённых пределах отличаться от указанных в данном руководстве. Изменение документации не допускается.

В случае рекламаций принимаются исключительно цельные приборы в оригинальной упаковке.

Указания к механическому монтажу:

Монтаж должен осуществляться с учетом соответствующих, действительных для места измерения предписаний и стандартов (напр., предписаний для сварочных работ). В особенности следует поинимать во внимание:

- указания VDE/VDI (союз немецких электротехников/союз немецких инженеров) к техническим измерениям температуры, директивы по устройствам измерения температуры
- директивы по электромагнитной совместимости (их следует придерживаться)
- непременно следует избегать параллельной прокладки токоведущих линий
- рекомендуется применять экранированную проводку; экран следует при этом с одной стороны монтировать к DDC/PLC.

Монтаж следует осуществлять с учетом соответствия прилагаемых технических параметров термометра реальным условиям эксплуатации, в особенности:

- диапазона измерения
- максимально допустимого давления и скорости потока
- установочной длины, размера трубки
- допустимых колебаний, вибраций, ударов (д.б. < 0,5 q).

Внимание! В обязательном порядке следует учитывать предельные допустимые механические и термические нагрузки для защитных трубок согл. DIN 43763 либо специальных стандартов S+S!

Характеристики сопротивления пассивных датчиков температуры (Подробности на последней странице)

В целях предотвращения повреждений и неисправностей предпочтительно применение экранированных кабелей. Необходимо избегать параллельной прокладки с токоведущими кабелями.

Соблюдайте предписания техники электрической безопасности!

Установка приборов должна производиться только квалифицированным персоналом.

Предельные отклонения по классам:

Допуски при О°С:

Чувствительные элементы из платины (Pt100, Pt1000):

DIN EN 60751, класс Б	±Ι	0,3	K
1/3 DIN EN 60751, класс А	±Ι	0,1	K

Чувствительные элементы из никеля:

NI1000 DIN EN 43760, класс Б± 0,4 K
NI1000 1/2 DIN EN 43760, класс Б± 0,2 К
NI1000 TK5000± 0,4 K

ВНИМАНИЕ!

Измерительный ток вследствие саморазогрева оказывает влияние на точность измерения термометра и по этой причине не должен превышать нижеприведенного значения:

Контрольные величины для измерительного тока:

Чувствительный элемент	I _{макс.}
Pt100, Pt1000 (тонкопленочный)<0,1-	О,З мА
Ni1000 (DIN), Ni1000 TK5000	<2 _M A
NTC's	< 1 _M A
LM235400 μA	5 мА

Accessories Accessoires Принадлежности

MF-06-K

Montageflansch aus Kunststoff (optional) Mounting flange, plastic (optional) Bride de montage en matière plastique (en option) Присоединительный фланец из пластика (опционально)

Immersion sleeve, stainless steel, V4A, Погружная гильза из высококачественной стали V4A, с нажимной винт

avec vis de pression

латуни, с нажимной винт

Погружная гильза из никелированной

© Copyright by S+S Regeltechnik GmbH

Nachdruck, auch auszugsweise, nur mit Genehmigung von S+S Regeltechnik GmbH gestattet. Reprints, in part or in total, are only permitted with the approval of S+S Regeltechnik GmbH. La reproduction des textes même partielle est uniquement autorisée après accord de la société S+S Regeltechnik GmbH. Перепечатка, в том числе в сокращенном виде, разрешается лишь с согласия S+S Regeltechnik GmbH.

Irrtümer und technische Änderungen vorbehalten.

Errors and technical changes excepted.

Sous réserve d'erreurs et de modifications techniques.

Возможны ошибки и технические изменения.

Widerstandskennlinien für passive Temperatursensoren Resistance characteristics of passive temperature sensors Courbes caractéristiques pour capteurs de température passive Характеристики сопротивления пассивных датчиков температуры

	PT 100	PT 1000	Ni 1000	Ni 1000 TK 5000	FeT (T1)	KTY 81-210	LM235Z (KP10)	
°C	Ω	Ω	Ω	Ω	Ω	Ω	mV	°C
- 50	80.3	803	743	790.8	-	1030	-	- 50
- 40	84.3	843	791	826.8	-	1135	2330	- 40
- 30	88.2	882	842	871.7	1935	1247	2430	- 30
- 20	92.2	922	893	913.4	2031	1367	2530	- 20
- 10	96.1	961	946	956.2	2128	1495	2630	- 10
0	100.0	1000	1000	1000.0	2227	1630	2730	0
+10	103.9	1039	1056	1044.8	2328	1772	2830	+10
+20	107.8	1078	1112	1090.7	2429	1922	2930	+20
+30	111.7	1117	1171	1137.6	2534	2080	3030	+30
+40	115.5	1155	1230	1185.7	2639	2245	3130	+40
+50	119.4	1194	1291	1235.0	2746	2417	3230	+ 50
+60	123.2	1232	1353	1285.4	2856	2597	3330	+60
+70	127.1	1271	1417	1337.1	2967	2785	3430	+70
+80	130.9	1309	1483	1390.1	3079	2980	3530	+80
+90	134.7	1347	1549	1444.4	3195	3182	3630	+90
+100	138.5	1385	1618	1500.0	3312	3392	3730	+100
+110	142.3	1423	1688	1557.0	3431	3607	3830	+110
+120	146.1	1461	1760	1625.4	3552	3817	3930	+ 120
+130	149.8	1498	1833	-	3676	4008	-	+130
+140	153.6	1536	1909		3802	4166	-	+ 140
+ 150	157.3	1573	1987	-	3929	4280	-	+ 150

	NTC 1.8 kOhm	NTC 2.2 kOhm	NTC 3 kOhm	NTC 5 kOhm	NTC 10 kOhm	NTC 10 kPRE	NTC 20 kOhm	NTC 50 kOhm	
°C	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	°C
- 50	-	-	-	-	-	-	-	-	- 50
- 40	39073	-	-	-	-	-	806800	2017000	- 40
- 30	22301	27886	53093	88488	175785	135200	413400	1033500	- 30
- 20	13196	16502	29125	48541	96597	78910	220600	551500	- 20
- 10	8069	10070	16599	27664	55142	47540	122260	305650	- 10
0	5085	6452	9795	16325	32590	29490	70140	175350	0
+10	3294	4138	5971	9951	19880	18790	41540	103850	+10
+20	2189	2719	3747	6246	12491	12270	25340	63350	+20
+30	1489	1812	2417	4028	8058	8196	15886	39715	+30
+40	1034	1248	1597	2662	5329	5594	10212	25530	+40
+50	733	876	1081	1801	3605	3893	6718	16795	+ 50
+60	529	626	746	1244	2489	2760	4518	11295	+60
+70	389	454	526	876	1753	1900	3098	7745	+70
+80	290	335	346	627	1256	1457	2166	5415	+80
+90	220	251	275	458	915	1084	1541	3852	+90
+100	169	190	204	339	678	817	1114	2785	+100
+110	131	146	138	255	509	624	818	2045	+110
+120	103	-	105	195	389	482	609	1523	+120
+130	-	-	81	151	300	377	460	1149	+130
+140	-	-	64	118	234	298	351	878	+140
+ 150	-	-	50	93	185	238	272	679	+ 150