Chapter 1 Section 3 Exercise Solutions

Samuel Lair

September 2022

Contents

1	Exercise 5	3
2	Exercise 6	3
3	Exercise 9	4
	3.1 (a)	4
	3.2 (b)	4
	3.3 (c)	4
4	Exercise 10	5
	4.1 (a)	5
	4.2 (b)	5
	4.3 (c)	5
5	Exercise 15	6
	5.1 (a)	6
	5.2 (b)	6
	5.3 (c)	6
	5.4 (d)	7
	5.5 (e)	7
	5.6 (f)	7
6	Exercise 16	8
	6.1 (a)	8
	6.2 (b)	8
	6.3 (c)	9
	6.4 (d)	9
7	Exercise 17	10
	7.1 (a)	10
	7.2 (b)	10
8	Exercise 18	11

9	Exercise 19	12
10	Exercise 20	13
11	Exercise 21	14
12	Exercise 22	15
13	Exercise 23	16
14	Exercise 24	17
15	Exercise 25	18
16	Exercise 26	19
17	Exercise 27	2 0
18	Exercise 28	21
19	Exercise 29	22
20	Exercise 30	23
21	Exercise 31	24
22	Exercise 32	25
23	Exercise 34	26

$\mid p \mid$	q	r	$q \lor r$	$p \wedge (q \vee r)$	$p \wedge q$	$p \wedge r$	$(p \land q) \lor (p \land r)$
T	T	T	T	T	T	T	T
$\mid T \mid$	T	F	T	T	T	F	T
$\mid T \mid$	F	T	T	T	F	T	T
$\mid T \mid$	F	F	F	F	F	F	F
F	T	T	T	F	F	F	F
F	T	F	T	F	F	F	F
F	F	T	T	F	F	F	F
F	F	F	F	F	F	F	F

Since the truth values of the compound propositions $p \land (q \lor r)$ and $(p \land q) \lor (p \land r)$ agree for all possible combinations of the truth values of p, q, and r, said compound propositions are logically equivalent.

2 Exercise 6

p	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$
T	T	T	F	F	F	F
T	F	F	T	F	T	T
F	T	F	T	T	F	T
F	F	F	T	T	T	T

Since the truth values of the compound propositions $\neg(p \land q)$ and $\neg p \lor \neg q$ agree for all possible combinations of the truth values of p and q, said compound propositions are logically equivalent.

3.1 (a)

$$\begin{array}{ccc} p \implies \neg q & & \equiv \\ \neg p \vee \neg q & & \end{array}$$

3.2 (b)

$$\begin{array}{cccc} (p \Longrightarrow q) \Longrightarrow r & & \equiv \\ \neg (p \Longrightarrow q) \lor r & & \equiv \\ \neg (\neg p \lor q) \lor r & & \equiv \\ (p \land \neg q) \lor r & & \end{array}$$

3.3 (c)

4.1 (a)

4.2 (b)

$$\begin{array}{cccc} p \vee q &\Longrightarrow \neg p & \equiv \\ \neg (p \vee q) \vee \neg p & \equiv \\ (\neg p \wedge \neg q) \vee \neg p & \equiv \\ \neg p \vee (\neg p \wedge \neg q) & \equiv \\ \neg p & \end{array}$$

4.3 (c)

5.1 (a)

$$\begin{array}{cccc} (p \wedge q) & \Longrightarrow & p & & \equiv \\ \neg (p \wedge q) \vee p & & \equiv \\ (\neg p \vee \neg q) \vee p & & \equiv \\ \neg q \vee (p \vee \neg p) & & \equiv \\ \neg q \vee T & & \equiv \\ T & & & \end{array}$$

5.2 (b)

$$\begin{array}{ll} p \implies (p \lor q) & \equiv \\ \neg p \lor (p \lor q) & \equiv \\ q \lor (p \lor \neg p) & \equiv \\ q \lor T & \equiv \\ T & \end{array}$$

5.3 (c)

5.4 (d)

$$\begin{array}{cccc} (p \wedge q) & \Longrightarrow & (p \Longrightarrow q) & & \equiv \\ (p \wedge q) & \Longrightarrow & (\neg p \vee q) & & \equiv \\ \neg (p \wedge q) \vee (\neg p \vee q) & & \equiv \\ (\neg p \vee \neg q) \vee (\neg p \vee q) & & \equiv \\ (\neg p \vee \neg p) \vee (q \vee \neg q) & & \equiv \\ \neg p \vee T & & \equiv \\ T & & & \end{array}$$

5.5 (e)

$$\neg(p \Longrightarrow q) \Longrightarrow p \qquad \qquad \equiv \\
 \neg(\neg p \lor q) \Longrightarrow p \qquad \qquad \equiv \\
 (\neg p \lor q) \lor p \qquad \qquad \equiv \\
 q \lor (p \lor \neg p) \qquad \qquad \equiv \\
 q \lor T \qquad \qquad \equiv \\
 T$$

5.6 (f)

$$\neg(p \Longrightarrow q) \Longrightarrow \neg q \qquad \qquad \equiv \\
 \neg(\neg p \lor q) \Longrightarrow \neg q \qquad \qquad \equiv \\
 (\neg p \lor q) \lor \neg q \qquad \qquad \equiv \\
 \neg p \lor (q \lor \neg q) \qquad \qquad \equiv \\
 \neg p \lor T \qquad \qquad \equiv \\
 T$$

6.1 (a)

```
[\neg p \land (p \lor q)] \implies q
                                                                                           \equiv
\neg [\neg p \land (p \lor q)] \lor q
                                                                                           \equiv
     p \vee \neg (p \vee q) \vee q
                                                                                           \equiv
      p \lor (\neg p \land \neg q) \lor q
                                                                                           \equiv
    (p \lor q) \lor (\neg p \land \neg q)
                                                                                           \equiv
   ((p \lor q) \lor \neg p) \land ((p \lor q) \lor \neg q)
                                                                                           \equiv
    (q \lor (p \lor \neg p)) \land (p \lor (q \lor \neg q))
                                                                                           \equiv
    (q \vee T) \wedge (p \vee T)
                                                                                           \equiv
      T \wedge T
                                                                                           \equiv
      T
```

6.2 (b)

$$[(p \Longrightarrow q) \land (q \Longrightarrow r)] \Longrightarrow (p \Longrightarrow r)$$

$$\lnot [(p \Longrightarrow q) \land (q \Longrightarrow r)] \lor (p \Longrightarrow r)$$

$$\lnot [(\neg p \lor q) \land (\neg q \lor r)] \lor (\neg p \lor r)$$

$$\boxminus [(\neg p \lor q) \lor \neg (\neg q \lor r)] \lor (\neg p \lor r)$$

$$\boxminus [(p \land \neg q) \lor (q \land \neg r)] \lor (\neg p \lor r)$$

$$\boxminus [(p \land \neg q) \land q) \lor ((p \lor \neg q) \land \neg r)] \lor (\neg p \lor r)$$

$$\thickspace [(p \land (q \land \neg q)) \lor ((p \lor \neg q) \land \neg r)] \lor (\neg p \lor r)$$

$$\thickspace [(p \land F) \lor (\neg r \land (p \lor \neg q))] \lor (\neg p \lor r)$$

$$\thickspace [F \lor ((\neg r \land p) \lor (\neg r \land \neg q))] \lor (\neg p \lor r)$$

$$\thickspace [F \lor ((\neg r \land p) \lor (\neg r \land \neg q))] \lor (\neg p \lor r)$$

$$\thickspace ((\neg p \lor r) \lor (\neg r \land \neg q)) \lor (\neg p \lor r)$$

$$\thickspace ((\neg p \lor r) \lor (\neg r \land \neg q)) \lor (\neg r \land \neg q)$$

$$\thickspace ((\neg p \lor T) \land (r \lor T)) \lor (\neg r \land \neg q)$$

$$\thickspace (T \land T) \lor (\neg r \land \neg q)$$

$$\thickspace (T \land T) \lor (\neg r \land \neg q)$$

$$\thickspace (T \land \neg q) \lor T$$

$$\Tau$$

6.3 (c)

6.4 (d)

$$\begin{aligned} & [(p \lor q) \land (p \implies r) \land (q \implies r)] \implies r \\ \neg [(p \lor q) \land (\neg p \lor r) \land (\neg q \lor r)] \lor r \\ & [\neg (p \lor q) \lor \neg (\neg p \lor r) \lor \neg (\neg q \lor r)] \lor r \\ & [(\neg p \land \neg q) \lor (p \land \neg r) \lor (q \land \neg r)] \lor r \\ & [(\neg p \land \neg q) \lor (p \land \neg r)] \lor [r \lor (q \land \neg r)] \\ & [(\neg p \land \neg q) \lor (p \land \neg r)] \lor [(r \lor q) \land (r \lor \neg r)] \\ & [(\neg p \land \neg q) \lor (p \land \neg r)] \lor (r \lor q) \\ & [(r \lor q) \lor (\neg p \land \neg q)] \lor (p \land \neg r) \\ & [((r \lor q) \lor \neg p) \land ((r \lor q) \lor \neg q)] \lor (p \land \neg r) \\ & ((r \lor q) \lor \neg p) \lor (p \land \neg r) \\ & ((r \lor q) \lor \neg p) \lor p) \land (((r \lor q) \lor \neg p) \lor \neg r) \\ & ((r \lor q) \lor (p \lor \neg p)) \land ((\neg p \lor q) \lor (r \lor \neg r)) \\ & ((r \lor q) \lor T) \land ((\neg p \lor q) \lor T) \\ & T \land T \\ & T \end{aligned}$$

7.1 (a)

p	q	$p \wedge q$	$p \lor (p \land q)$
\mathbf{T}	T	T	${f T}$
\mathbf{T}	F	F	${f T}$
F F	T	F	\mathbf{F}
\mathbf{F}	F	F	${f F}$

Since the truth values of $p \lor (p \land q)$ and p agree for all possible combinations of truth values for p and q, $p \lor (p \land q)$ and p are logically equivalent. I.e. $p \lor (p \land q) \equiv p$ is true.

7.2 (b)

p	q	$p \lor q$	$p \land (p \lor q)$
\mathbf{T}	T	T	\mathbf{T}
\mathbf{T}	F	T	\mathbf{T}
\mathbf{F}	T	T	${f F}$
\mathbf{F}	F	F	${f F}$

Since the truth values of $p \land (p \lor q)$ and p agree for all possible combinations of truth values for p and q, $p \land (p \lor q)$ and p are logically equivalent. I.e. $p \land (p \lor q) \equiv p$ is true.

$$\begin{array}{cccc} (\neg p \wedge (p \rightarrow q)) \rightarrow \neg q & \equiv \\ \neg (\neg p \wedge (\neg p \vee q)) \vee \neg q & \equiv \\ (p \vee \neg (\neg p \vee q)) \vee \neg q & \equiv \\ (p \vee (p \wedge \neg q)) \vee \neg q & \equiv \\ p \vee \neg q & \equiv \\ \neg p \rightarrow \neg q & \equiv \end{array}$$

Hence, $(\neg p \land (p \rightarrow q)) \rightarrow \neg q$ is not a tautology.

$$\begin{array}{cccc} (\neg q \wedge (p \rightarrow q)) \rightarrow \neg q & \equiv \\ \neg (\neg q \wedge (\neg p \vee q)) \vee \neg q & \equiv \\ (q \vee \neg (\neg p \vee q)) \vee \neg q & \equiv \\ (q \vee (p \wedge \neg q)) \vee \neg q & \equiv \\ (p \wedge \neg q) \vee (q \vee \neg q) & \equiv \\ (p \wedge \neg q) \vee T & \equiv \\ T & \end{array}$$

Hence, $(\neg q \land (p \to q)) \to \neg q$ is a tautology.

Let

$$p \leftrightarrow q \tag{1}$$
$$(p \land q) \lor (\neg p \land \neg q) \tag{2}$$

$$(p \wedge q) \vee (\neg p \wedge \neg q) \tag{2}$$

p	q	(1)	$p \wedge q$	$\neg p \wedge \neg q$	(2)
T	T	\mathbf{T}	T	F	\mathbf{T}
T	F	\mathbf{F}	F	F	\mathbf{F}
F	T	\mathbf{F}	F	F	\mathbf{F}
F	F	\mathbf{T}	F	T	\mathbf{T}

Since the truth values of (1) and (2) agree for all possible combinations of truth values for p and q, (1) and (2) are logically equivalent.

Let

Since the truth values of (3) and (4) agree for all possible combinations of truth values for p and q, (3) and (4) are logically equivalent.

Let

$$p \to q \tag{5}$$
$$\neg q \to \neg p \tag{6}$$

Since the truth values of (5) and (6) agree for all possible combinations of truth values for p and q, (5) and (6) are logically equivalent.

Let

p	q	$\neg p$	(7)	$\neg q$	(8)
T	T	F	F	F	F
T	F	F	T	T	T
F	T	T	T	F	T
F	F	T	F	T	F

Since the truth values of (7) and (8) agree for all possible combinations of truth values for p and q, (7) and (8) are logically equivalent.

 $\neg(p\oplus q)$ is true when $p\oplus q$ is false, which means that p and q share the same truth value. This is exactly when $p\leftrightarrow q$ is true. Hence, $\neg(p\oplus q)$ and $p\leftrightarrow q$ are logically equivalent.

 $\neg(p\leftrightarrow q)$ is true when $p\leftrightarrow q$ is false, which means that p and q have different truth values. This is exactly when $\neg p\leftrightarrow q$ is true. Hence, $\neg(p\leftrightarrow q)$ and $\neg p\leftrightarrow q$ are logically equivalent.

 $(p \to q) \land (p \to r)$ is true when both $(p \to q)$ and $(p \to r)$ are true, which means either p = F or both q = T and r = T. This is exactly when $p \to (q \land r)$ is true. Hence, $(p \to q) \land (p \to r)$ and $p \to (q \land r)$ are logically equivalent.

 $(p \to r) \land (q \to r)$ is true when both $(p \to r)$ and $(q \to r)$ are true, which means either r = T or both p = F and q = F. This is exactly when $(p \lor q) \to r$ is true. Hence, $(p \to r) \land (q \to r)$ and $(p \lor q) \to r$ are logically equivalent.

 $(p o q) \lor (p o r)$ is true when either (p o q) or (p o r) is true, which means either $p = F, \ q = T,$ or r = T. This is exactly when $p o (q \lor r)$ is true. Hence, $(p o q) \lor (p o r)$ and $p o (q \lor r)$ are logically equivalent.

 $(p \to r) \lor (q \to r)$ is true when either $(p \to r)$ or $(q \to r)$ is true, which means either $p = F, \ q = F,$ or r = T. This is exactly when $(p \land q) \to r$ is true. Hence, $(p \to r) \lor (q \to r)$ and $(p \land q) \to r$ are logically equivalent.

 $\neg p \to (q \to r)$ is true when either $\neg p$ is false or $(q \to r)$ is true, which means that either $p = T, \ q = F, \ \text{or} \ r = T$. This is exactly when $q \to (p \lor r)$ is true. Hence, $\neg p \to (q \to r)$ and $q \implies (p \lor r)$ are logically equivalent.

 $p\leftrightarrow q$ is true when p and q share the same truth value. This is exactly when $(p\to q)\wedge (q\to p)$ is true. Hence, $p\leftrightarrow q$ and $(p\to q)\wedge (q\to p)$ are logically equivalent.

 $p\leftrightarrow q$ is true when p and q share the same truth value. This is exactly when $\neg p\leftrightarrow \neg q$ is true. Hence, $p\leftrightarrow q$ and $\neg p\leftrightarrow \neg q$ are logically equivalent.

```
(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r)
                                                                                                       \equiv
\neg [(p \lor q) \land (\neg p \lor r)] \lor (q \lor r)
                                                                                                       \equiv
[\neg(p\vee q)\vee\neg(\neg p\vee r)]\vee(q\vee r)
                                                                                                       \equiv
[(\neg p \land \neg q) \lor (p \land \neg r)] \lor (q \lor r)
                                                                                                       \equiv
 (\neg p \land \neg q) \lor [(q \lor r) \lor (p \land \neg r)]
                                                                                                       \equiv
 (\neg p \land \neg q) \lor [((q \lor r) \lor p) \land ((q \lor r) \lor \neg r)]
                                                                                                       \equiv
 (\neg p \land \neg q) \lor [((q \lor r) \lor p) \land T]
                                                                                                       \equiv
 ((q \lor r) \lor p) \lor (\neg p \land \neg q)
                                                                                                       \equiv
(((q \vee r) \vee p) \vee \neg p) \wedge (((q \vee r) \vee p) \vee \neg q)
                                                                                                       \equiv
     T\wedge T
                                                                                                       \equiv
     T
```