

FIG. 1

FIG. 2

FIG. 3

FIG. 4

$$X \equiv [\underline{x}, \bar{x}] = \{x \in \mathfrak{R}^* \mid \underline{x} \leq x \leq \bar{x}\}$$

$$Y \equiv [\underline{y}, \bar{y}] = \{y \in \mathfrak{R}^* \mid \underline{y} \leq y \leq \bar{y}\}$$

$$(1) \quad X + Y = \left[\downarrow \underline{x} + \underline{y}, \uparrow \bar{x} + \bar{y} \right]$$

$$(2) \quad X - Y = \left[\downarrow \underline{x} - \bar{y}, \uparrow \bar{x} - \underline{y} \right]$$

$$(3) \quad X \times Y = \left[\min(\downarrow \underline{x} \times \underline{y}, \underline{x} \times \bar{y}, \bar{x} \times \underline{y}, \bar{x} \times \bar{y}), \max(\uparrow \underline{x} \times \underline{y}, \underline{x} \times \bar{y}, \bar{x} \times \underline{y}, \bar{x} \times \bar{y}) \right]$$

$$(4) \quad X / Y = \left[\min(\downarrow \underline{x} / \underline{y}, \underline{x} / \bar{y}, \bar{x} / \underline{y}, \bar{x} / \bar{y}), \max(\uparrow \underline{x} / \underline{y}, \underline{x} / \bar{y}, \bar{x} / \underline{y}, \bar{x} / \bar{y}) \right], \text{if } 0 \notin Y$$

$$X / Y = \mathfrak{R}^*, \text{if } 0 \in Y$$

FIG. 5

<u>INTERVAL</u>	<u>REPRESENTATION</u>	
[empty]	$[NaN_\emptyset, NaN_\emptyset]$	(1)
$[-\infty, +\infty]$	$[-\inf, +\inf]$	(2)
$\{-\infty, +\infty\}$	$[+\inf, -\inf]$	(3)
$[-\delta, b]$, $-\text{fp_max} \leq b \leq +\text{fp_max}$	$[-\inf, B]$	(4)
$[a, b]$, $a < b$	$[A, B]$	(5)
$[a, 0]$, $-\text{fp_max} \leq a \leq -\text{fp_min}$	$[A, +0]$	(6)
$[0, 0]$	$[-0, +0]$	(7)
$[\epsilon, b]$, $+\text{fp_min} \leq b \leq +\text{fp_max}$	$[+0, B]$	(8)
$[a, -\epsilon]$, $-\text{fp_max} \leq a \leq -\text{fp_min}$	$[A, -0]$	(9)
$[0, b]$, $+\text{fp_min} \leq b \leq +\text{fp_max}$	$[-0, B]$	(10)
$[a, +\delta]$, $-\text{fp_max} \leq a \leq +\text{fp_max}$	$[A, +\inf]$	(11)
$[-\infty, b]$, $-\text{fp_max} \leq b \leq +\text{fp_max}$	$[+\inf, B]$	(12)
$[a, +\infty]$, $-\text{fp_max} \leq a \leq +\text{fp_max}$	$[A, -\inf]$	(13)
$[-\infty, a] \cup [b, +\infty]$ $-\text{fp_max} \leq a < b \leq +\text{fp_max}$	$[B, A]$	(14)

FIG. 6