Moments and moment generating function

Dr. Linh Nghiem

STAT3023

Review of random variables (STAT2011/2911)

of function of so

Consider a sample space Ω with a probability measure P. Let X be a random variable defined on this sample space.

- Any random variable X has a cumulative distribution function $(cdf)(F_X(x)) = P(X \le x). \times random \ variable$ $+ random \ Variable$
- Discrete random variables:

Moments

For any random variable X and a function $g: \mathbb{R} \to \mathbb{R}$, define the **expectation** of g(X) to be

Examples:

examples:

• rth moment:
$$q(x) = x^{r}$$
, $y_{r} = E(x^{r})$; $y_{r} = E(x^{r})$; $y_{r} = E(x^{r})$

• rth central moment: $g(x) = (x - \mu)^{-1}$; $\mu r = E[(x - \mu)]^{-1}$ r = 2; $E[(x - \mu)^{-2}] = Var(x)$ $= E(x^{2}) - \mu^{2}$

Moment generating functions

- Moment generating function: encoding the sequence of moments $\{E(X^r)\}$, $r=1,2\ldots,\infty$ into the coefficients of a power series. Generating function $\{E(X^r)\}$, then the moment generating function
- (mgf) of a random variable X is defined to be

$$M_X(t) = E\{g(X)\} = E\{\exp(tX)\}, \text{ furtion } g t.$$

provided this expectation exists for t in some open interval containing zero.

Getting moments from mgf

Calculus:
$$a = \frac{2}{2}$$
 of $a = t \times 1$
 $M_{x}(t) = E[e^{tx}]$ $E[x]$ $E[x]$

Examples

Examples

Uniqueness of mgf

Properties of mgf

Let X be a RV with $mgf M_X(t)$. Then the random variable

$$Z = aX + b \text{ has mgf}$$

$$M_Z(x) = E[e^{t}] = E[e^{t}] + e^{t}X$$

$$= e^{t}b E[e^{t}X] - e^{t}b M_X(e^{t})$$

$$= e^{t}b E[e^{t}X] - e^{t}b M_X(e^{t}X]$$

Properties of mgf

Recall for two independent random variables X and Y, we have

$$E\left\{g(X)h(Y)\right\} = E\left\{g(X)\right\}E\left\{h(Y)\right\}$$

for any two functions g and h. Let $M_X(t)$ and $M_Y(t)$ be mgfs of X and Y respectively, then the mgf of Z = X + Y is given by

$$|M_{z}(t)| = E[e^{zt}] = E[e^{(x+y)t}]$$

$$= E(e^{x+t}, e^{y+t})$$

$$= E(e^{x+t}, e^{x+t})$$

$$= E(e^{x+t}$$

Sum of independent random variables

More generally, if X_1, \ldots, X_n be mutually independent random variables with mgfs $M_{X_i}(t)$ for $i=1,\ldots,n$, then the mgf of $Z = \sum_{i=1}^{n} X_i$ is given by Eg: χ_1 : χ_1 : χ_1 : χ_2 : χ_3 : χ_4 : χ_5 $M_{z}(t) = \prod_{i=1}^{n} M_{x_{i}}(t) =$ $P(x_{i}=2) = e^{x_{i}} x_{i}/x_{i}; x=0,1,...$ Mx(4)= 2 = \(\) \

Examples

$$M_{Z}(t) = \prod_{i=1}^{n} e^{\chi_{i}} (e^{t} - 1) = \underbrace{e^{\sum_{i=1}^{n} \chi_{i}}}_{\text{MGF}} (e^{t} - 1)$$

$$\Rightarrow Z \sim \text{Poisson}(\sum_{i=1}^{n} \chi_{i})$$

$$\star \chi_{i} \sim N(\mu_{i}, \sigma_{i}^{2}); \quad \chi_{i} \sim \chi_{n} : \text{independent}$$

$$Z = \underbrace{\sum_{i=1}^{n} \chi_{i}^{n}}_{\text{MGF}} ?$$

$$M_{Z}(t) = \underbrace{\prod_{i=1}^{n} M_{X_{i}}(t)}_{\text{MGF}} = \underbrace{\underbrace{\sum_{i=1}^{n} \chi_{i}^{n}}_{\text{MGF}} (e^{t} - 1)}_{\text{MGF}} (e^{t} - 1)$$

$$\Rightarrow Z \sim N(\underbrace{\sum_{i=1}^{n} M_{X_{i}}(t)}_{\text{MGF}} (e^{t} - 1)$$

Probability bounds

Markov's inequality: For any non-negative random variable X and any a > 0, we have

Proof:
$$X$$
: Continuous, $\int_{X} (x) dx + \int_{X} (x) dx + \int_{X} (x) dx = \int_{X} (x) dx + \int_{X} (x) dx + \int_{X} (x) dx = \int_{X} (x) dx + \int_{X} (x) dx = \int_{X} (x) dx + \int_{X} (x) dx = \int_{X} (x)$

Probability bounds

Chebyshev's inequality: For any random variable X and any a>0, we have

Proof:
$$E(X) = \mu$$
;

$$|X - E(X)| = |X - \mu| \neq 0$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$P(|X - \mu| \neq \alpha) = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha = P(|X - \mu|^2 \neq \alpha^2)$$

$$|X - \mu| \neq \alpha^2$$

$$|X - \mu| \neq \alpha^2$$

$$|X - \mu|^2 \Rightarrow \alpha^2$$

$$|X - \mu| \neq \alpha^2$$

$$|X$$

Probability bounds

Examples

X-Bin (n, Plip(x7, xn) yor PCXC1. $P(x = xn) \in E(x) = \frac{np}{xn} = \frac{p}{x} = \frac{2}{3}$ $P = \frac{1}{2} : x = \frac{3}{4}$ Chil = 0* Marbori P(x7 an) = P(x-np 7 an -np) * Chebyshov: 5 P()x-np) 7, an - np) = $\frac{p(1-p)}{(\alpha n-np)^2} = \frac{p(1-p)}{n(\alpha-p)^2} = \frac{p(1-p)}{n(\alpha-p)^2}$ P= /21 x= /qp => P(x>xn) = 4/n. & Chernoff: P(X // dn) & min étan [Epeta (1-P)] Find to minimize h(t) { etacpet + (1-P)} > t minimize a(t) 9(14) = 0 74. h(x) = (1-2)

Convergence of mgfs implies convergences of cdfs

Suppose X_1, X_2, \ldots , is a sequence of random variables, each with mgf $M_{X_n}(t)$. Furthermore, suppose that

$$\lim_{n\to\infty} M_{X_n}(t) = M_X(t)$$

for all t in an open interval containing zero, and $M_X(t)$ is the mgf of a random variable X. Then for any x such that $F_X(x)$ is continuous, we have

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x).$$

We also say that the sequence $X_1, X_2, ... X_n$ converges to X in distribution.

Application: Poisson approximation to binomial distribution

Application: Central limit theorem

Convergence in probability

Weak law of large numbers