Simple Circuits

Due Jun 20 at 1pm	Points 10	Questions 5	Available Jun 17 at 6pm - Jun 20 at 1:30pm 3 days
Time Limit None			

Instructions

Please read the Lab Manual for the Lab "Simple Circuits" on pages 109 to 113 for the necessary information to answer the quiz questions. You have only one attempt.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	1562 minutes	5 out of 10

♠ Correct answers are hidden.

Score for this quiz: 5 out of 10 Submitted Jun 19 at 1:37pm This attempt took 1562 minutes.

2 / 2 pts **Question 1**

Two resistors are connected in SERIES in a simple circuit. What is the total resistance of the resistors given the resistances: R_1 =8.2 $k\Omega$, and R_2 =2.8 $k\Omega$. Your answer should be given to the first decimal place and in $k\Omega$.

11.0000

Incorrect

Question 2

0 / 2 pts

Two resistors are connected in PARALLEL in a simple circuit. What is the total resistance of the resistors given the resistances: R_1 =9.0 $k\Omega$, and R_2 =3.0 $k\Omega$. Your answer should be given to the second decimal place and $\ln k\Omega$.

0.0833

Incorrect

Question 3 0 / 3 pts

Given the resistor network above, calculate the total resistance the points a and b, where R₁ = 5.0 $k\Omega$, R₂ = 5.0 $k\Omega$ and R₃ = 3.0 $k\Omega$. Give your answer in $k\Omega$.

8.4000

Question 4 2 / 2 pts

Given the circuit below, calculate the total current flowing through the circuit. Where $R_1 = 3.0 \text{ k}\Omega$ and V = 3.0 Volts. Give your answer in miliamps, and round your answer to the second decimal place.

0.5000

How will the multimeter be wired into the circuit to measure voltage across a resistor, in parallel or in series? Parallel Series

Quiz Score: 5 out of 10