6 FORMALE SPRACHEN

6.1 OPERATIONEN AUF FORMALEN SPRACHEN

6.1.1 Produkt oder Konkatenation formaler Sprachen

Produkt von Sprachen

- Def: $L_1 \cdot L_2 = \{ w_1 w_2 \mid w_1 \in L_1 \text{ und } w_2 \in L_2 \}$
- Beispiel: noch mal: formale Sprache *L* aller Wörter über *A* = {a,b}, in denen nirgends das Teilwort ab vorkommt.

kann man jetzt so schreiben: $L = \{b\}^* \{a\}^*$

- Beispiel: Menge aller Wörter über A außer dem leeren: $A \cdot A^*$, denn jedes nichtleere Wort hat ein erstes Symbol und dahinter kommt ein beliebiges (evtl auch leeres) Wort
- formale Sprache L_I der legalen Zahlen vom Typ int:

```
- Versuch: A = \{0, ..., 9\}

L_I = A \cdot A^*
```

– Was fehlt? jedenfalls das Minuszeichen; besser: $\{\varepsilon, -\} \cdot A \cdot A^*$

- Was ist mit Präfix 0x? gibts den? ich weiß es nicht
- formale Sprache L_V der legalen Variablennamen in Java:

```
- Versuch: A = \{ \_, a, ..., z, A, ..., Z \}, B = A \cup \{0, ..., 9 \}
L_V = A \cdot B^*.
```

- es fehlen die Umlaute, ...
- Was ist noch falsch? z.B. Schlüsselwörter (if, ...) sind als Variablennamen verboten.

also eher sowas wie $L_V = (A \cdot B^*) \setminus \{if, class, ...\}$

Mitteilung: da könnte man jetzt alle endlich vielen Schlüsselwörter aufzählen, aber wenn nur endlich viele Wörter verboten sind, geht es im Prinzip ohne Mengendifferenz

• $L_1 = \{a^n \mid n \in \mathbb{N}_0\}$ und $L_2 = \{b^n \mid n \in \mathbb{N}_0\}$ **Achtung:** $L_1L_2 = \{a^kb^m \mid k \in \mathbb{N}_0 \text{ und } m \in \mathbb{N}_0\}$ die **Exponenten können verschieden** sein!

hier steht nichts anderes als $\{a\}^*\{b\}^*$

Potenzen von L

```
• Def: L^0 = \{\varepsilon\} und L^{i+1} = L^i \cdot L
```

• Beispiel: $L = \{a\}^* \{b\}^*$

dann enthält z.B.

$$-L^0 = \{\varepsilon\}$$

- $L^1 = L = \{\varepsilon, \text{aabbbbb}, \text{aaaaab}, \text{aaaa}, \text{bbbbbbbb}, \dots \}$
- $-L^2 = \{\varepsilon, \text{aabbbbaaaaab}, \text{aaaaabab}, \text{aaaaaa}, \text{bbbbbb}, \dots\}$
- usw.

6.1.2 Konkatenationsabschluss einer formalen Sprache

Kokatenationsabschluss

• Def:

$$L^+ = \bigcup_{i \in \mathbb{N}_+} L^i$$
 und $L^* = \bigcup_{i \in \mathbb{N}_0} L^i$

- Beispiel: $L = \{a\}^* \{b\}^*$
 - Man mache sich klar: $L^* = \{a, b\}^*$, also alles
 - da geht z. B. so: (die Studenten möglichst selber drauf kommen lassen) zerhacke beliebiges aber festes $w \in \{a,b\}^*$ an allen Stellen, wo Teilwort ba vorkommt, zwischen dem b und dem a. Die entstehenden Teilwörter sind aus L.
- Man beweise: $L^* \cdot L = L^+$
 - Wie beweist man, dass zwei Mengen gleich sind?
 - Zum Beispiel, indem man zeigt, dass ⊆ und ⊇ gelten.
 - Also:
 - * ⊆:

Wenn $w \in L^* \cdot L$, dann w = w'w'' mit $w' \in L^*$ und $w'' \in L$.

Also existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$.

Also $w = w'w'' \in L^i \cdot L = L^{i+1}$.

Da $i + 1 \in \mathbb{N}_+$, ist $L^{i+1} \subseteq L^+$, also $w \in L^+$.

* \supseteq : Wenn $w \in L^+$, dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$.

Da $i \in \mathbb{N}_+$ ist i = j + 1 für ein $j \in \mathbb{N}_0$,

also ist für ein $j \in \mathbb{N}_0$: $w \in L^{j+1} = L^j \cdot L$.

also w = w'w'' mit $w' \in L^j$ und $w'' \in L$.

Wegen $L^j \subseteq L^*$ ist $w = w'w'' \in L^* \cdot L$.