Variations et extremums

Seconde 9

29 Mars 2024

Exercice 1:

Soit f une fonction à valeurs réelles. Pour chaque courbe représentative \mathcal{C}_f de f :

- (a) Donner l'intervalle de définition de f.
- (b) Dresser le tableau de variations de f.
- (c) Déterminer le maximum et le minimum de f, ainsi que les valeurs sur lesquels f atteint ces extremums.

Exercice 2:

Soit f une fonction à valeurs réelles. Pour chacun des tableaux de variations de f suivants, déterminer le minimum et le maximum de f, ainsi que les nombres sur lesquels f atteint ces extremums.

x	-5	0	3	10
$\begin{array}{c} \text{Variations} \\ \text{de } f \end{array}$	-5	8	-6	9
x	-2	-1	6	8
$\begin{array}{c} \text{Variations} \\ \text{de } f \end{array}$	-6	2	_4	8
x	-9	-2	8	10
$\begin{array}{c} \text{Variations} \\ \text{de } f \end{array}$	9	-3	4	-10

Exercice 3:

Soit ABCD un rectangle tel que AB = 10 et AB = 6. Soient M, N, P, Q quatre point respectivement sur les segments [AB], [BC], [CD] et [DA] et tels que

$$AM = BN = CP = DQ.$$

On note $a \in [0; 6]$ la longueur AM.

(a) Montrer que l'aire de MNPQ en fonction de a vaut

$$2a^2 - 16a + 60$$
.

(b) Montrer que cette aire vaut aussi

$$2(a-4)^2+28$$
.

- (c) Justifier que cette aire est toujours supérieure à 28.
- (d) En déduire l'aire minimale de MNPQ en fonction de a, et pour quelle valeur de a ce minimum est atteint.