Summary	Revenue Maximization
	Price Optimization
	Revenue Maximization
	Profit Maximization Price is optimized based on what your objective is.
	Demand response curve
	• Let us assume a linear relationship between Price and Demand. • From our previous discussion, a linear relationship between Price and Demand is of the type: $D(p) = D_0 + m * p$
	Where $D(p)$ is the demand (as a function of price, p), D_0 is the market size (total demand when the price = 0), and m is the slope.
	For the sample we had seen in the last session, this relationship was: $D(p) = 5842.8 -157.7 * p$
Revenue Maximizing Price	Sales Revenue function
	Revenue from sales is always calculated as
	Revenue = Demand * Price
	$R(\underline{p}) = D(p) * p$
	$R(p) = (D_0 + m * p) * p = D_0 * p + m * p^2$
	$R(p) = (D_0 + m * p) * p = D_0 * p + m * p^2$ • For our numerical example, $R(p) = 5842.8 * p - 157.7 * p^2$
	• Revenue, $R(p) = D(p) \times p = (D_o + mp) \times p$.
	• You take derivative of $R(p)$ w.r.t p , set it 0 and get p^* .
	$egin{align} R\left(p ight) &= D\left(p ight) imes p &= D_o \; p \; + m \; p^2 \ rac{\partial R\left(p ight)}{\partial R\left(p ight)} &= R\left(p ight) \; . \end{split}$
	$rac{\partial R(p)}{\partial p}=0$. $D_o+2mp=0$ $oldsymbol{p}^*=-rac{oldsymbol{D}_o}{2oldsymbol{m}}$
	Revenue maximization
	 We now find the optimal price that maximizes the revenue. From the First Order Necessary Condition, we find the partial derivative of the revenue function w.r.to p, and set it to be zero.
	$\frac{\partial R(p)}{\partial p} = 5842.8 - 157.7 * 2 * p$
	$\frac{\partial R(p)}{\partial p} = 0 \Rightarrow p^* = \frac{5842.8}{2 * 157.7} = 18.52$