What is claimed is:

- 1. A high-strength steel sheet having excellent workability comprising:
 - 0.06 to 0.25 % by mass of carbon;
 - 0.5 to 3.5 % by mass of Si; and
 - 0.7 to 4 % by mass of Mn,

wherein mother structure of said steel sheet is ferrite, second phase structure of said steel sheet comprises martensite and the residual austenite and said second phase structure (α 1 + γ_R) has an area fraction of 25 % or less based on the total structure when it is measured by image analysis,

and wherein said steel sheet satisfies the following requirements (1) to (3):

- (1) the volume fraction $(Vt\gamma_R)$ of said residual austenite is 5 % or more when a measurement specimen of said residual austenite is measured by saturation magnetization measurement,
- (2) the ratio (SF γ_R / Vt γ_R) of the area fraction (SF γ_R) of said residual austenite within the ferrite particle to Vt γ_R is 0.65 or more when the area fraction is measured by FESEM/EBSP, and
- (3) the ratio $[\alpha 2/(\alpha 1 + \gamma_R)]$ of the space factor $(\alpha 2)$ of said martensite to the second phase structure $(\alpha 1 + \gamma_R)$ satisfies the following expression:
 - $0.25 \le [\alpha 2/(\alpha 1 + \gamma_R)] \le 0.60,$

wherein the space factor $(\alpha 2)$ is calculated from a

difference between the second phase structure $(\alpha 1 \, + \, \gamma_R)$ and the residual austenite (Vt γ_R).

- 2. A high-strength steel sheet having excellent workability comprising:
 - 0.06 to 0.25 % by mass of carbon;
 - 0.5 to 3.5 % by mass of Si; and
 - 0.7 to 4 % by mass of Mn,

wherein mother structure of said steel sheet is ferrite, second phase structure of said steel sheet comprises martensite and the residual austenite and said second phase structure (α 1 + γ_R) has an area fraction of 25 % or less based on the total structure when it is measured by image analysis,

and wherein said steel sheet satisfies the following requirements (1), (4) and (3):

- (1) the volume fraction $(Vt\gamma_R)$ of said residual austenite is 5~% or more when a measurement specimen of said residual austenite is measured by saturation magnetization measurement,
- (4) the average C content of said residual austenite is 0.95 to 1.2 % by mass, and
- (3) the ratio $[\alpha 2/(\alpha 1 + \gamma_R)]$ of the space factor $(\alpha 2)$ of said martensite to the second phase structure $(\alpha 1 + \gamma_R)$ satisfies the following expression:

 $0.25 \le [\alpha 2/(\alpha 1 + \gamma_R)] \le 0.60$,

wherein the space factor ($\alpha 2$) is calculated from a difference between the second phase structure ($\alpha 1$ + γ_R)

and the residual austenite ($Vt\gamma_R$).

3. A process for producing the high-strength steel sheet of claim 1 by hot rolling, optionally cold rolling and continuous annealing, comprising the steps of:

subjecting a slab which comprises the components set forth in claim 1 to solution treatment at 1,270°C or higher for 5 hours or more;

hot rolling the slab into a steel sheet; and subjecting the steel sheet to austempering to be wound up, after the hot rolled plate is cooled to a bainite transformation range and maintained at that temperature range for 50 to 200 seconds.

4. A process for producing the high-strength steel sheet of claim 2 by hot rolling, optionally cold rolling and continuous annealing, comprising the steps of:

subjecting a slab which comprises the components set forth in claim 2 to solution treatment at 1,270°C or higher for 5 hours or more;

hot rolling the slab into a steel sheet; and subjecting the steel sheet to austempering to be wound up, after the hot rolled plate is cooled to a bainite transformation range and maintained at that temperature range for 50 to 200 seconds.