Solution of HW12

Chapter 8

- 28. (a) H_0 : $p \ge .2$; H_1 : p < .2
 - (b) Type I: we will conclude that the failure rate has been reduced by new technology and stricter quality controls when, in fact, it has not.

Type II: we do not detect an apparently reduced failure rate

(c) Let X: the number of failures during the first 1000 hours in the 20 trials $X \ \text{is binomial with } n=20 \ \text{and } p=.2 \ \text{when } H_0 \ \text{is true}$

$$E[X] = np = (20)(.2) = 4$$

- (d) $\alpha = P[\text{reject H}_0 \mid \text{H}_0 \text{ is true}] = P[\text{X} \le 1 \mid \text{p} = .2] = .0692$
- (e) β = P[fail to reject H₀ | p = .1] = P[X > 1 | p = .1] = 1 - P[X \le 1 | p = .1] = 1 - .3917 = .6083 power = 1 - β = 1 - .6083 = .3917
- (f) Increase α by changing the critical region to C = {0, 1, 2} no, α = P[X \leq 2 | p = .2] = .2061 increase the sample size

29.
$$P[X \ge 14|p = 0.4] = 1 - P[X \le 13|p = 0.4] = 1 - 0.9935 = 0.0065$$

$$P[X \ge 14|p = 0.3] = 1 - P[X \le 13|p = 0.3] = 1 - 0.9997 = 0.0003$$

$$P[X \ge 14|p = 0.2] = 1 - P[X \le 13|p = 0.2] \approx 0.0$$

$$P[X \ge 14|p = 0.1] = 1 - P[X \le 13|p = 0.1] \approx 0.0$$

All these probabilities are less than 0.0577

- 30. (a) \bar{X} is normal with mean 20 and variance $\frac{20}{9} = 2.7778$
 - (b) lpha is the area to the right of 25 under the normal curve with mean 20

(c)
$$\alpha = P[\bar{X} > 25 \mid \mu = 20] = P\left[Z > \frac{25 - 20}{\frac{5}{3}}\right] = 1 - P[Z \le 3] = 1 - .9987 = .0013$$

- (d) \bar{X} is normal with mean 28 and variance $\frac{25}{9}$
- (e) β is the area to the left of 25 under the normal curve with mean 28

(f)
$$\beta = P[\bar{X} \le 25 \mid \mu = 25] = P[Z \le \frac{25 - 28}{5/3}] = P[Z \le -1.8] = .0359$$

- (g) power = $1 \beta = 1 .0359 = .9641$
- (h) The curves will become narrower and will have less overlap
- (i) α and β will both decrease

32. (a)
$$H_0: \mu \ge .6$$
 g/mi; $H_1: \mu < .6$ g/mi

(b) Type I: we will conclude that the new engine has a mean emission level below .6 g / mi when, in fact, this is not true.

Type II: we will not detect the fact that the new engine has a mean emission level below the current standard of .6 g / mi.

(c) P value =
$$P[\bar{X} \le .5 \mid \mu = .6, \ \sigma = .4] = P \left[Z \le \frac{.6 - .6}{.4 / \sqrt{64}} \right] = .0228$$

yes, reject H₀ because the chance of being wrong if you do is .0228, which is quite small.

Type I error might be committed

35. For a hypothesis test on the mean with unknown variance σ^2 , there are three cases

of test:

The right-tailed test: H_0 : $\mu = \mu_0$; H_1 : $\mu > \mu_0$

The left-tailed test: H_0 : $\mu = \mu_0$; H_1 : $\mu < \mu_0$

The two-tailed test: H_0 : $\mu = \mu_0$; H_1 : $\mu \neq \mu_0$

To find the critical region, assuming H_0 is true, the test statistic $\frac{\bar{X}-\mu_0}{S/\sqrt{n}} \sim T_{n-1}$. The critical points can be found as:

For right-tailed test: $P[T_{n-1} \ge t_{\alpha}] = \alpha$

For left-tailed test: $P[T_{n-1} \le t_{1-\alpha}] = \alpha$

For two-tailed test: $P[T_{n-1} \ge t_{\alpha/2}] + P[T_{n-1} \le t_{1-\alpha/2}] = \alpha$

Hence,

- (a) Left-tailed test. The critical point can be found from T_{24} table. $t_{0.95}=-1.711$
- (b) Left-tailed test. The critical point can be found from T_{∞} table. $t_{0.90}=-1.282$
- (c) Right-tailed test. The critical point can be found from T_{19} table. $t_{0.025}=2.093$
- (d) Right-tailed test. The critical point can be found from $T_{\rm 15}$ table. $t_{\rm 0.01}=2.602$
- (e) Two-tailed test. The critical point can be found from T_{19} table.

$$t_{0.05} = 1.729, t_{0.95} = -1.729$$

(f) Two-tailed test. The critical point can be found from T_{29} table.

$$t_{0.025} = 2.045, t_{0.975} = -2.045$$

38. (a) This is a two-tailed test. Assuming H_0 is true, the test statistic is $\frac{\bar{X}-9.5}{S/\sqrt{50}} \sim T_{49}$ The critical values can be found as: $\pm t_{0.025} = \pm 2.010$

(b) The observed value of the test statistic is
$$\frac{\bar{X}-9.5}{S/\sqrt{50}} = \frac{9.8-9.5}{1.2/\sqrt{50}} = 1.768$$

Since -2.010 < 1.768 < 2.010, 1.768 is not in the critical region so we do not reject H $_0$ at $\alpha = .05$

Therefore, we cannot say that the mean predicted by the model is different from 9.5 million barrels per day.

In this case, we are subject to Type II error.

- 40. (a) $H_0: \mu = 4.6 \text{ mg/litre}$ $H_1: \mu > 4.6 \text{ mg/litre}$
 - (b) Assuming H_0 is true, the test statistic is $\frac{\bar{X}-4.6}{S/\sqrt{28}} \sim T_{27}$. The observed value of the

test statistic is
$$\frac{\overline{x} - \mu_0}{\sqrt[8]{n}} = \frac{5.2 - 4.6}{1.6 / \sqrt{28}} = 1.98$$

Since this is a right-tailed test, we have

$$p_{value} = P[T_{27} \ge 1.98]$$

From the T-table, we have, $P[T_{27} \ge 1.703] = 0.05$

Hence,
$$P[T_{27} \ge 1.98] < 0.05$$

At the significance level of $\alpha=0.05$, H_0 should be rejected.

(c) The mean silicon concentration in the river has increased, thus, the mineral content in the soil is being depleted.

43. (a)
$$H_0$$
: $\mu = 5$; H_1 : $\mu < 5$

(b) Let's carry out a hypothesis test on (a). Assuming H_0 is true, the test statistic

is
$$\frac{\bar{X}-5}{S/\sqrt{16}} \sim T_{15}$$
. The observed value of the test statistic is $\frac{\bar{X}-5}{S/4} = \frac{4.28-5}{0.828/4} = -3.472$

Since this is a left-tailed test, the p-value is:

$$p_{value} = P[T_{15} < -3.472]$$

From the T-table, we found out: $P[T_{15} < -2.947] = 0.005$

Hence,

$$p_{value} = P[T_{15} < -3.472] < 0.005$$

At the significance level of $\alpha=0.01$, H_0 should be rejected. i.e., the sampled data support the contention.

- (c) At the significance level of $\alpha=0.05$, H_0 should be rejected.
- (d) Probably not. Since $\bar{x} = 4.28 \ inch$ is still a significant number.
- 48. (a) Assuming H_0 is true, the test statistic is $\frac{\bar{X}-1.3}{S/\sqrt{30}} \sim T_{29}$. The observed value of the test statistic is $\frac{3.97-1.3}{1.89/\sqrt{20}} = 7.738$

Since this value is above the critical point $t_{.01}$ ($\gamma=29$) = 2.462 , we reject H₀ at $\alpha=.01$

(b) The observed value of the test statistic is $\chi^2 = \frac{29(1.89)^2}{(.6)^2} = 287.75$

and the critical point is $~\chi^2_{.01} \left(\gamma = 29\right) = 49.6$. Thus, we reject H $_0$ at . $\alpha = .01$

The design specifications are not met.

This can also be done using the p-value method:

$$p_{value} = P[X_{29}^2 \ge 287.75] = 1 - P[X_{29}^2 \le 287.75]$$

From the chi-squared probability table, we find that $P[X_{29}^2 \le 52.3] = 0.995$

Hence, we have, $p_{value} < 0.005 < \alpha = 0.01$

Therefore, we reject H_0 at $\alpha=0.01$