Information & System Security

Mathematics Related to **Public Key** Cryptography

9-3 FACTORIZATION

- Factorization has been the subject of continuous research in the past; such research is likely to continue in the future.
- Factorization plays a very important role in the security of several public-key cryptosystems (see Chapter 10).

Topics discussed in this section:

- 9.3.1 Fundamental Theorem of Arithmetic
- **9.3.2** Factorization Methods
- 9.3.3 Fermat Method

9.3.1 Fundamental Theorem of Arithmetic

$$n = p_1^{e_1} \times p_2^{e_2} \times \cdots \times p_k^{e_k}$$

Greatest Common Divisor

$$a = p_1^{a_1} \times p_2^{a_2} \times \cdots \times p_k^{a_k} \qquad b = p_1^{b_1} \times p_2^{b_2} \times \cdots \times p_k^{b_k}$$

$$\gcd(a, b) = p_1^{\min(a_1, b_1)} \times p_2^{\min(a_2, b_2)} \times \cdots \times p_k^{\min(a_k, b_k)}$$

Least Common Multiplier

$$a = p_1^{a1} \times p_2^{a2} \times \dots \times p_k^{ak} \qquad b = p_1^{b1} \times p_2^{b2} \times \dots \times p_k^{bk}$$

$$\text{lcm } (a, b) = p_1^{\max(a_1, b_1)} \times p_2^{\max(a_2, b_2)} \times \dots \times p_k^{\max(a_k, b_k)}$$

$$lcm(a, b) \times gcd(a, b) = a \times b$$

9.3.2 Factorization Methods

Trial Division Method

```
Trial_Division_Factorization (n) // n is the number to be factored
   a \leftarrow 2
   while (a \le \sqrt{n})
        while (n \mod a = 0)
                                       // Factors are output one by one
             output a
             n = n / a
        a \leftarrow a + 1
   if (n > 1) output n
                                      // n has no more factors
```

9.3.2 Continued

Example

Use the trial division algorithm to find the factors of 1233.

Solution

We use the trial division algorithm and get the following result. $1233 = 3^2 \times 137$

Example

Use the trial division algorithm to find the factors of 1523357784.

Solution

We use the trial division algorithm and get the following result.

$$1523357784 = 2^{3} \times 3^{2} \times 13 \times 37 \times 43987$$

9.3.3 Fermat's Method

$$n = x^2 - y^2 = a \times b$$
 with $a = (x + y)$ and $b = (x - y)$

```
Feramat_Factorization (n) // n is the number to be factored
    x \leftarrow \sqrt{n} // smallest integer greater than \sqrt{n}
    while (x < n)
      w \leftarrow x^2 - n
      if (w is perfect square)
       y \leftarrow \sqrt{w}; \ a \leftarrow x + y;
       b \leftarrow x - y; return a and b
     x \leftarrow x + 1
```


Use the Fermat's method to find the factors of 33.

Solution

We use the Fermat's method and get the following result.

n=33, x=ceil(
$$\sqrt{n}$$
)=ceil($\sqrt{33}$)=6.

					(x+y)	(x-y)
<u>ltr</u>	X	$w=x^2-n$	is w perf sqr	_y=√w_	a	<u>b</u>
1	6	3	no	-	-	-
2	7	16	yes	4	11	3

Factors of 33 are 3 and 11.

9.3.3 Continued Example

Use the Fermat's method to find the factors of 123.

Solution

We use the Fermat's method and get the following result.

$n = 123$, $x = ceil(\sqrt{n}) = ceil(\sqrt{123}) = 12$						
<u>Itr</u>	Χ	w=x²-n	w perf sq	y=√w	a=x+y	b=x-y
1	12	21	no	-	-	-
2	13	46	no	-	-	-
3	14	63	no	-	-	-
				•••		•••
11	22	361	yes	19	41	3

9-4 CHINESE REMAINDER THEOREM

The Chinese remainder theorem (CRT) is used to solve a set of congruent equations with one variable but different moduli, which are relatively prime, as shown below:

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$
...
 $x \equiv a_k \pmod{m_k}$

Solution To Chinese Remainder Theorem

- 1. Find $M = m_1 \times m_2 \times ... \times m_k$. This is the common modulus.
- 2. Find $M_1 = M/m_1$, $M_2 = M/m_2$, ..., $M_k = M/m_k$.
- 3. Find the multiplicative inverse of M_1 , M_2 , ..., M_k using the corresponding moduli $(m_1, m_2, ..., m_k)$. Call the inverses M_1^{-1} , M_2^{-1} , ..., M_k^{-1} .
- 4. The solution to the simultaneous equations is

$$x = (a_1 \times M_1 \times M_1^{-1} + a_2 \times M_2 \times M_2^{-1} + \cdots + a_k \times M_k \times M_k^{-1}) \mod M$$

Example

Find the solution to the simultaneous equations:

$$x \equiv 2 \pmod{3}$$

$$x \equiv 3 \pmod{5}$$

$$x \equiv 2 \pmod{7}$$

Solution

We follow the four steps.

1.
$$M = 3 \times 5 \times 7 = 105$$

2.
$$M_1 = 105 / 3 = 35$$
, $M_2 = 105 / 5 = 21$, $M_3 = 105 / 7 = 15$

3. The inverses are
$$M_1^{-1} = 2$$
, $M_2^{-1} = 1$, $M_3^{-1} = 1$

4.
$$X = (2 \times 35 \times 2 + 3 \times 21 \times 1 + 2 \times 15 \times 1) \mod 105$$

= 23 mod 105

Example

Find an integer that has a remainder of 3 when divided by 7 and 13, but is divisible by 12.

Solution

This is a CRT problem. We can form three equations and solve them to find the value of x.

$$x = 3 \mod 7$$

$$x = 3 \mod 13$$

$$x = 0 \mod 12$$

If we follow the four steps, we find x = 276.

We can check that $276 = 3 \mod 7$, $276 = 3 \mod 13$ and 276 is divisible by 12 (the quotient is 23 and the remainder is 0).

Example

Assume we need to calculate z = x + y where x = 123and y = 334, but our system accepts only numbers less than 100. These numbers can be represented as follows:

Solution

$$x \equiv 24 \pmod{99}$$
 $y \equiv 37 \pmod{99}$
 $x \equiv 25 \pmod{98}$ $y \equiv 40 \pmod{98}$
 $x \equiv 26 \pmod{97}$ $y \equiv 43 \pmod{97}$

Adding each congruence in x with the corresponding congruence in y gives

$$x + y \equiv 61 \pmod{99}$$
 $\to z \equiv 61 \pmod{99}$
 $x + y \equiv 65 \pmod{98}$ $\to z \equiv 65 \pmod{98}$
 $x + y \equiv 69 \pmod{97}$ $\to z \equiv 69 \pmod{97}$

Now three equations can be solved using the Chinese remainder theorem to find z. One of the acceptable answers is z = 457.

9-5 QUADRATIC CONGRUENCE

- In cryptography, we also need to discuss quadratic congruence—that is, equations of the form $a_2x^2 + a_1x + a_0 \equiv 0 \pmod{n}$.
- We limit our discussion to quadratic equations in which $a_2 = 1$ and $a_1 = 0$, that is equations of the form $x^2 \equiv a \pmod{n}$.

Topics discussed in this section:

- 9.5.1 Quadratic Congruence Modulo a Prime
- 9.5.2 Quadratic Congruence Modulo a Composite

9.5.1 Quadratic Congruence Modulo a Prime

We first consider the case in which the modulus is a prime.

Example The equation $x^2 \equiv 3 \pmod{11}$

has two solutions, $x \equiv 5 \pmod{11}$ and $x \equiv -5 \pmod{11}$. But note that $-5 \equiv 6 \pmod{11}$, so the solutions are actually 5 and 6. Also note that these two solutions are incongruent.

Example The equation $x^2 \equiv 2 \pmod{11}$

has no solution. No integer x can be found such that its square is 2 mod 11.

Quadratic Residues and Nonresidue

In the equation $x^2 \equiv a \pmod{p}$, a is called

- a quadratic residue (QR) if the equation has two solutions;
- a quadratic nonresidue (QNR) if the equation has no solutions.

Example

There are 10 elements in Z_{11}^* . Exactly five of them are quadratic residues and five of them are nonresidues. In other words, Z_{11}^* is divided into two separate sets, QR and QNR, as shown in Figure.

Each element has a square root

No element has a square root

Division of Z_{11}^* elements into QRs and QNRs

Euler's Criteria

- a. If $a^{(p-1)/2} \equiv 1 \pmod{p}$, a is a quadratic residue modulo p.
- b. If $a^{(p-1)/2} \equiv -1 \pmod{p}$, a is a quadratic nonresidue modulo p.

Example

To find out if 14 or 16 is a QR in \mathbb{Z}_{23}^* , we calculate:

 $14^{(23-1)/2} \mod 23 \ \rightarrow \ 22 \mod 23 \ \rightarrow \ -1 \mod 23$ (nonresidue)

 $16^{(23-1)/2} \mod 23 \rightarrow 16^{11} \mod 23 \rightarrow 1 \mod 23$ (residue)

Solving Quadratic Equation Modulo a Prime

Special Case:
$$p = 4k + 3$$

Solutions:

$$x \equiv a^{(p+1)/4} \pmod{p} \text{ and } x \equiv -a^{(p+1)/4} \pmod{p}$$

Example

Solve the following quadratic equations:

a.
$$x^2 \equiv 3 \pmod{23}$$

b.
$$x^2 \equiv 2 \pmod{11}$$

c.
$$x^2 \equiv 7 \pmod{19}$$

Solutions

a.
$$x \equiv \pm 16 \pmod{23}$$
 $\sqrt{3} \equiv \pm 16 \pmod{23}$.

b. There is no solution for $\sqrt{2}$ in \mathbb{Z}_{11} .

c.
$$x \equiv \pm 11 \pmod{19}$$
. $\sqrt{7} \equiv \pm 11 \pmod{19}$.

9.5.2 Quadratic Congruence Modulo a Composite

Decomposition of congruence modulo a composite

Example

Assume that $x^2 \equiv 36 \pmod{77}$. We know that $77 = 7 \times 11$. We can write

$$x^2 \equiv 36 \pmod{7} \equiv 1 \pmod{7}$$
 and $x^2 \equiv 36 \pmod{11} \equiv 3 \pmod{11}$

The answers are $x \equiv +1 \pmod{7}$, $x \equiv -1 \pmod{7}$, $x \equiv +5 \pmod{11}$, and $x \equiv -5 \pmod{11}$. Now we can make four sets of equations out of these:

Set 1:
$$x \equiv +1 \pmod{7}$$
 $x \equiv +5 \pmod{11}$ Set 2: $x \equiv +1 \pmod{7}$ $x \equiv -5 \pmod{11}$ Set 3: $x \equiv -1 \pmod{7}$ $x \equiv +5 \pmod{11}$ Set 4: $x \equiv -1 \pmod{7}$ $x \equiv -5 \pmod{11}$

The answers are $x = \pm 6$ and ± 27 .

Complexity

How hard is it to solve a quadratic congruence modulo a composite?

The main task is the factorization of the modulus. In other words, the complexity of solving a quadratic congruence modulo a composite is the same as factorizing a composite integer. As we have seen, if *n* is very large, factorization is infeasible.

Note

Solving a quadratic congruence modulo a composite is as hard as factorization of the modulus.

References

Chapter 9 - Behrouz A Forouzan, Debdeep Mukhopadhyay, Cryptography and Network Security, Mc Graw Hill, 3rd Edition, 2015.

Chapter 8 - William Stallings, Cryptography and Network Security Principles and Practices, 7th Edition, Pearson Education, 2017.