Lecture Notes 12: Review Linear Algebra

CPSC 302: Numerical Computation for Algebraic Problems

Jessica Bosch
 jbosch@cs.ubc.ca
http://www.cs.ubc.ca/~jbosch

University of British Columbia Department of Computer Science

2017/2018 Winter Term 1

Copyright 2017 Jessica Bosch
Slides reused and adapted from Uri Ascher, Chen Greif
This work is made available under the terms of the Creative Commons Attribution 2.5 Canada license http://creativecommons.org/licenses/by/2.5/ca/

Goals of this Chapter

- Provide common background (no numerical algorithms) in linear algebra, necessary for developing numerical algorithms elsewhere.
- Collect several concepts and definitions for easy referencing.
- Ensure that those who have the necessary background can easily skip this chapter.

Chapter 4: Review Linear Algebra

- Basic Concepts: Linear Systems and Eigenvalue Problems
- Norms
- Special Matrix Classes
- Singular Value Decomposition (SVD)
- Examples in Applications

Basic Concepts: Linear Systems and Eigenvalue Problems
 Linear Systems
 Eigenvalues and Eigenvectors

2. Norms

1. Basic Concepts: Linear Systems and Eigenvalue Problems Linear Systems

Eigenvalues and Eigenvectors

2. Norms

Linear Independence and Linear Space

- Consider m real-valued vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$, each of length n, i.e., $\mathbf{v}_i \in \mathbb{R}^n$.
- These vectors are linearly independent if $\sum_{i=1}^{m} \alpha_i \mathbf{v}_i = \mathbf{0}$ necessarily implies that all (real, scalar) coefficients α_i are equal to zero.
- Assuming linear independence, the linear space $V = \text{span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ consists of all linear combinations $\sum_{i=1}^m \alpha_i \mathbf{v}_i$.
- The linear space V has dimension m. It is obviously a subspace of \mathbb{R}^n . (Hence, necessarily, $m \leq n$.)

Example

Are

$$\mathbf{v}_1 = \begin{pmatrix} 2 \\ 5 \end{pmatrix}, \qquad \mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

linear independent?

Consider

$$\mathbf{0} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 = \alpha_1 \begin{pmatrix} 2 \\ 5 \end{pmatrix} + \alpha_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

(I)
$$2\alpha_1 + \alpha_2 = 0 \Leftrightarrow \alpha_2 = -2\alpha_1$$

(II)
$$5\alpha_1 + \alpha_2 = 5\alpha_1 - 2\alpha_1 = 3\alpha_1 = 0 \Leftrightarrow \alpha_1 = 0$$

(I)'
$$\alpha_2 = 0$$

Hence, $\mathbf{v_1}$ and $\mathbf{v_2}$ are linear independent.

Linear System of Equations

• Find $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ which satisfies

$$a_{11}x_1 + a_{12}x_2 = b_1, a_{21}x_1 + a_{22}x_2 = b_2,$$

or
$$A$$
x = **b** with $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$.

- Unique solution iff lines are not parallel.
- Generalize to $n \times n$ systems $A\mathbf{x} = \mathbf{b}$,

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} ,$$

and the elements $a_{ij} \equiv a_{i,j}$ are real numbers.

Linear System of Equations (cont.)

In general, for a square $n \times n$ system with $A \in \mathbb{R}^{n \times n}$ there is a unique solution if one of the following equivalent statements hold:

- A is nonsingular;
- $\det(A) \neq 0$;
- A has linearly independent columns or rows;
- there exists an inverse A^{-1} satisfying $AA^{-1} = I = A^{-1}A$;
- range $(A) = \mathbb{R}^n$;
- $null(A) = \{0\}.$

Example

What is the nullspace of
$$A = \begin{pmatrix} 2 & 8 \\ 5 & 20 \end{pmatrix}$$
?

Bring A to triangular form:

$$A = \begin{pmatrix} 2 & 8 \\ 5 & 20 \end{pmatrix} \begin{vmatrix} \cdot 5 \\ \cdot (-2) \end{vmatrix} + \sim \tilde{A} = \begin{pmatrix} 2 & 8 \\ 0 & 0 \end{pmatrix}$$

Hence

$$2x_1 + 8x_2 = 0 \Leftrightarrow x_1 = -4x_2$$

and

$$\operatorname{null}(A) = \left\{ \alpha \begin{pmatrix} -4 \\ 1 \end{pmatrix} \middle| \alpha \in \mathbb{R} \right\}.$$

1. Basic Concepts: Linear Systems and Eigenvalue Problems Linear Systems

Eigenvalues and Eigenvectors

2. Norms

Eigenvalue Problems

Consider $A \in \mathbb{R}^{n \times n}$. A scalar $\lambda \in \mathbb{C}$ and a vector $\mathbf{0} \neq \mathbf{x} \in \mathbb{C}^n$ are an eigenvalue-eigenvector pair (or eigenpair) of A if

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

Example: Spectrum of A

$$A = \begin{pmatrix} -0.9880 & 1.8000 & -1.1777 & 0.5662 & -0.1852 \\ -1.9417 & -0.5835 & -0.2830 & -0.6202 & 1.0868 \\ 0.7845 & 1.0422 & -0.5945 & -1.9064 & -0.4689 \\ 0.1628 & 0.9532 & 1.7775 & -0.1745 & 0.5301 \\ -0.7548 & -0.4258 & 0.9639 & -0.1903 & -1.6595 \end{pmatrix}$$

See: spectrum.ipynb.

Eigenvalue Problems (cont.)

- For a **diagonalizable** $A \in \mathbb{R}^{n \times n}$ there are n (generally complex-valued) eigenpairs $(\lambda_j, \mathbf{x}_j)$, with $X = [\mathbf{x}_1, \dots, \mathbf{x}_n]$ nonsingular, and $X^{-1}AX$ is a diagonal matrix with the eigenvalues on the main diagonal.
- Similarity transformation: Given a nonsingular matrix S, the matrix $S^{-1}AS$ has the same eigenvalues as A. (Exercise: what about the eigenvectors?)

Symmetric Matrices

 $A \in \mathbb{R}^{n \times n}$ is symmetric if $A^T = A$.

• Examples:

1.
$$A = \begin{pmatrix} 4 & 1.01 \\ 1.01 & -2 \end{pmatrix}$$

2. $A = B^T B$ for any real rectangular B.

• Properties:

- 1. The eigenvalues of A are all real.
- 2. The matrix A is always diagonalizable, i.e., it has a full set of n linearly independent eigenvectors.
- 3. The eigenvector matrix X can be scaled so that it is real and

$$X^{-1} = X^{T}$$
.

(orthogonal)

1. Basic Concepts: Linear Systems and Eigenvalue Problems

2. Norms

Vector Norms

Matrix Norms

- 1. Basic Concepts: Linear Systems and Eigenvalue Problems
- 2. Norms

Vector Norms

Matrix Norms

Vector Norms

A **vector norm** is a function " $||\cdot||$ " from \mathbb{R}^n to \mathbb{R} that satisfies:

- 1. $\|\mathbf{x}\| \ge 0$; $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = \mathbf{0}$,
- 2. $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\| \ \forall \ \alpha \in \mathbb{R}$,
- 3. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|, \quad \forall \ \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
 - This generalizes absolute value or magnitude of a scalar.
 - The distance between vectors \mathbf{x} and \mathbf{y} can be measured by $\|\mathbf{x} \mathbf{y}\|$.

Famous Vector Norms

• ℓ_2 -norm

$$\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^T \mathbf{x}} = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$

• ℓ_{∞} -norm

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|$$

• ℓ_1 -norm

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$$

Example

Problem: Find the distance between

$$\mathbf{x} = \begin{pmatrix} 11\\12\\13 \end{pmatrix} \quad \text{and} \quad \mathbf{y} = \begin{pmatrix} 12\\14\\16 \end{pmatrix}.$$

Solution: let

$$\mathbf{z} = \mathbf{y} - \mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix},$$

and find $\|\mathbf{z}\|$.

Calculate

$$\|\mathbf{z}\|_1 = 1 + 2 + 3 = 6,$$

 $\|\mathbf{z}\|_2 = \sqrt{1 + 4 + 9} \approx 3.7417,$
 $\|\mathbf{z}\|_{\infty} = 3.$

- 1. Basic Concepts: Linear Systems and Eigenvalue Problems
- 2. Norms

Vector Norms

Matrix Norms

Matrix Norms

Induced matrix norm of $m \times n$ matrix A for a given vector norm:

$$||A|| = \max_{\mathbf{x} \neq \mathbf{0}} \frac{||A\mathbf{x}||}{||\mathbf{x}||} = \max_{||\mathbf{x}||=1} ||A\mathbf{x}||.$$

Then consistency properties hold,

$$||AB|| \le ||A|| ||B||, \quad ||A\mathbf{x}|| \le ||A|| ||\mathbf{x}||,$$

in addition to the previously stated three norm properties.

Famous Matrix Norms

• ℓ_2 -norm

$$||A||_2 = \sqrt{\rho(A^T A)} = \sigma_{\max}(A),$$

where ρ is **spectral radius**

$$\rho(B) = \max\{|\lambda|; \ \lambda \text{ is an eigenvalue of } B\}.$$

(A relatively painful calculation for such a simple task.)

• ℓ_{∞} -norm

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|.$$

ℓ₁-norm

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|.$$