13 | Homotopy Extension Property

13.1 Definition. Let X be a topological space, and let $A \subseteq X$. The pair (X, A) has the *homotopy* extension property if any map

$$h: X \times \{0\} \cup A \times [0,1] \rightarrow Y$$

can be extended to a map $\bar{h}: X \times [0,1] \to Y$.

13.2 Proposition. A pair (X, A) has the homotopy extension property if and only if $X \times \{0\} \cup A \times [0, 1]$ is a retract of $X \times [0, 1]$.

Proof. Exercise. □

13.3 Proposition.	If a pair (X, A) h	as the homotopy	j extension _l	property a	and X is a	Hausdorff space
then A is closed in	X.					

Proof. Exercise.

13.4 Proposition. If a pair (X, A) has the homotopy extension property and the space A is contractible then the quotient map $q: X \to X/A$ is a homotopy equivalence.

Proof. Exercise

13.6 Example. Warsaw Curve:

13.7 Theorem. Any relative CW complex (X, Y) has the homotopy extension property.
13.8 Lemma . For any $n > 0$ the pair (D^n, S^{n-1}) has the homotopy extension property.
13.9 Proposition . For any continuous function $f: X \to Y$ the pair $(M_f, X \times \{0\})$ has the homotopy
extension property. Proof. Exercise.
Proof of Lemma 13.8.

13.10 Lemma. Let Y be any space an let $X = Y \cup \{e_{\alpha}^n\}_{\alpha \in I}$ be a space obtained from by attaching some number of n-cells to X. Then the pair (X,Y) has the homotopy extension property.

13.11 Theorem. If X is a path connected finite CW complex of dimension 1 then $X \simeq \bigvee_{i=1}^n S^1$ where

$$n = \begin{pmatrix} number \ of \\ 1-cells \ of \ X \end{pmatrix} - \begin{pmatrix} number \ of \\ 0-cells \ of \ X \end{pmatrix} + 1$$

13.12 Corollary. If X is a path connected finite CW complex of dimension 1 then $\pi_1(X) \cong *_{i=1}^n \mathbb{Z}$ where n is defined as in Theorem 13.11.

Theorem 13.11 can be generalized to infinite 1-dimensional complexes:

13.13 Theorem. If X is a path connected 1-dimensional CW complex then $X \simeq \bigvee_{l \in I} S^1$ for some set I. As a consequence $\pi_1(X) \cong *_{i \in I} \mathbb{Z}$.

13.14 Note. Euler characteristic.