0.1 Potensar

$$\operatorname{grunntal} \longrightarrow 2^3 \stackrel{\longleftarrow}{\longleftarrow} \operatorname{eksponent}$$

Ein potens består av eit grunntal og ein eksponent. For eksempel er 2^3 ein potens med grunntal 2 og eksponent 3. Ein positiv, heiltals eksponent seier kor mange eksemplar av grunntalet som skal gongast saman, altså er

$$2^3 = 2 \cdot 2 \cdot 2$$

0.1 Potenstall

 a^n er eit potenstal med grunntal a og eksponent n.

Viss n er eit naturleg tal, vil a^n svare til n eksemplar av a multiplisert med kvarandre.

Merk: $a^1 = a$

Eksempel 1

$$5^3 = 5 \cdot 5 \cdot 5$$
$$= 125$$

Eksempel 2

$$c^4 = c \cdot c \cdot c \cdot c$$

$$(-7)^2 = (-7) \cdot (-7)$$

= 49

Språkboksen

Vanlege måtar å sei
e 2^3 på er

- "2 i tredje"
- \bullet "2 opphøgd i 3"

I programmeringsspråk brukast gjerne symbolet ^ eller symbola ** mellom grunntall og eksponent.

Merk

Dei komande sidene vil innehalde reglar for potensar med tilhøyrande forklaringar. Sjølv om det er ønskeleg at dei har ei så generell form som mogleg, har vi i forklaringane valgt å bruke eksempel der eksponentane ikkje er variablar. Å bruke variablar som eksponentar ville gitt mykje mindre leservenlege uttrykk, og vi vil påstå at dei generelle tilfella kjem godt til synes også ved å studere konkrete tilfelle.

0.2 Gonging med potensar

$$a^m \cdot a^n = a^{m+n}$$

Eksempel 1

$$3^5 \cdot 3^2 = 3^{5+2} = 3^7$$

Eksempel 2

$$b^4 \cdot b^{11} = b^{3+11}$$
$$= b^{14}$$

Eksempel 3

$$a^5 \cdot a^{-7} = a^{5-7} = a^{-2}$$

(Sjå $Regel\ 0.5$ for korleis potens med negativ eksponent kan tolkast.)

0.2 Gonging med potensar (forklaring)

Lat oss sjå på tilfellet

$$a^2 \cdot a^3$$

Vi har at

$$a^2 = 2 \cdot 2$$

$$a^3 = 2 \cdot 2 \cdot 2$$

Med andre ord kan vi skrive

$$a^{2} \cdot a^{3} = \underbrace{a^{2} \cdot a \cdot a \cdot a \cdot a}_{a^{3} \cdot a \cdot a \cdot a}$$
$$= a^{5}$$

0.3 Divisjon med potensar

$$\frac{a^m}{a^n} = a^{m-n}$$

Eksempel 1

$$\frac{3^5}{3^2} = 3^{5-2} = 3^3$$

Eksempel 2

$$\frac{2^4 \cdot a^7}{a^6 \cdot 2^2} = 2^{4-2} \cdot a^{7-6}$$
$$= 2^2 a$$
$$= 4a$$

0.3 Divisjon med potensar (forklaring)

Lat oss undersøke brøken

$$\frac{a^5}{a^2}$$

Vi skriv ut potensane i tellar og nemnar:

$$\frac{a^5}{a^2} = \frac{a \cdot a \cdot a \cdot a \cdot a}{a \cdot a}$$
$$= \frac{\alpha \cdot \alpha \cdot a \cdot a \cdot a}{\alpha \cdot \alpha}$$
$$= a \cdot a \cdot a$$
$$= a^3$$

Dette kunne vi ha skrive som

$$\frac{a^5}{a^2} = a^{5-2}$$
$$= a^3$$

0.4 Spesialtilfellet a^0

$$a^0 = 1$$

Eksempel 1

$$1000^0 = 1$$

Eksempel 2

$$(-b)^0 = 1$$

0.4 Spesialtilfellet a^0 (forklaring)

Eit tal delt på seg sjølv er alltid lik 1, derfor er

$$\frac{a^n}{a^n} = 1$$

Av dette, og Regel~0.3, har vi at

$$1 = \frac{a^n}{a^n}$$

$$= a^{n-n}$$

$$= a^0$$

0.5 Potens med negativ eksponent

$$a^{-n} = \frac{1}{a^n}$$

Eksempel 1

$$a^{-8} = \frac{1}{a^8}$$

Eksempel 2

$$(-4)^{-3} = \frac{1}{(-4)^3} = -\frac{1}{64}$$

0.5 Potens med negativ eksponent (forklaring)

Av Regel 0.4 har vi at $a^0 = 1$. Altså er

$$\frac{1}{a^n} = \frac{a^0}{a^n}$$

Av Regel 0.3 er

$$\frac{a^0}{a^n} = a^{0-n}$$
$$= a^{-n}$$

0.6 Brøk som grunntal

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$

Eksempel 1

$$\left(\frac{3}{4}\right)^2 = \frac{3^2}{4^2} = \frac{9}{16}$$

Eksempel 2

$$\left(\frac{a}{7}\right)^3 = \frac{a^3}{7^3} = \frac{a^3}{343}$$

5

0.6 Brøk som grunntal (forklaring)

La oss studere

$$\left(\frac{a}{b}\right)^3$$

Vi har at

$$\left(\frac{a}{b}\right)^3 = \frac{a}{b} \cdot \frac{a}{b} \cdot \frac{a}{b}$$
$$= \frac{a \cdot a \cdot a}{b \cdot b \cdot b}$$
$$= \frac{a^3}{b^3}$$

0.7 Faktorar som grunntal

$$(ab)^m = a^m b^m$$

Eksempel 1

$$(3a)^5 = 3^5 a^5$$

= $243a^5$

Eksempel 2

$$(ab)^4 = a^4b^4$$

0.7 Faktorar som grunntal (forklaring)

Lat oss bruke $(a \cdot b)^3$ som eksempel. Vi har at

$$(a \cdot b)^3 = (a \cdot b) \cdot (a \cdot b) \cdot (a \cdot b)$$
$$= a \cdot a \cdot a \cdot b \cdot b \cdot b$$
$$= a^3 b^3$$

0.8 Potens som grunntal

$$(a^m)^n = a^{m \cdot n}$$

Eksempel 1

$$\left(c^4\right)^5 = c^{4\cdot 5}$$
$$= c^{20}$$

Eksempel 2

$$\left(3^{\frac{5}{4}}\right)^8 = 3^{\frac{5}{4} \cdot 8}$$
$$= 3^{10}$$

0.8 Potens som grunntal (forklaring)

Lat oss bruke $(a^3)^4$ som eksempel. Vi har at

$$\left(a^3\right)^4 = a^3 \cdot a^3 \cdot a^3 \cdot a^3$$

Av Regel~0.2 er

$$a^{3} \cdot a^{3} \cdot a^{3} \cdot a^{3} = a^{3+3+3+3}$$

$$= a^{3\cdot 4}$$

$$= a^{12}$$

0.9 *n*-rot

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

Symbolet $\sqrt{}$ kallast eit rotteikn. For eksponenten $\frac{1}{2}$ er det vanleg å utelate 2 i rotteiknet:

$$a^{\frac{1}{2}} = \sqrt{a}$$

Eksempel

Av Regel 0.8 har vi at

$$\left(a^{b}\right)^{\frac{1}{b}} = a^{b \cdot \frac{1}{b}}$$
$$= a$$

For eksempel er

$$9^{\frac{1}{2}} = \sqrt{9} = 3$$
, sidan $3^2 = 9$

$$125^{\frac{1}{3}} = \sqrt[3]{125} = 5$$
, sidan $5^3 = 125$

$$16^{\frac{1}{4}} = \sqrt[4]{16} = 2$$
, sidan $2^4 = 16$

Språkboksen

 $\sqrt{9}$ kallast "kvadratrota til 9"

 $\sqrt[5]{9}$ kallast "femterota til 9".

0.2 Irrasjonale tal

0.10 Irrasjonale tal

Eit tal som ikkje er eit rasjonalt tal, er eit irrasjonalt tal¹.

Verdien til eit irrasjonalt tal har uendeleg mange desimalar med eit ikkje-repeterande mønster.

Eksempel 1

 $\sqrt{2}$ er eit irrasjonelt tal.

 $\sqrt{2} = 1.414213562373...$

¹Strengt tatt er irrasjonale tal alle *reelle* tal som ikkje er rasjonale tal. Men for å forklare kva *reelle* tal er, må vi forklare kva *imaginære* tal er, og det har vi valgt å ikkje gjere i denne boka.