Testa fresatrice verticale

Analisi e verifica

ELABORATO ELEMENTI COSTRUTTIVI DI MACCHINE

Alberto Regoli

Anno accademico 2020/2021

Matricola: 563246

Modello ispirato alla testa fresatrice verticale dell' azienda Bentivoglio.

Sito di riferimento: www.bentivoglio1919.it

Materiali scelti dal catalogo dell' azienda Metallurgica Veneta.

Sito di riferimento: www.metallurgicaveneta.it

Utensile e parametri di taglio scelti dal catalogo dell' azienda Sandvik Coromant.

Sito di riferimento: www.sandvik.coromant.com

Dettagli costruttivi

- Montaggio a X per cuscinetti a sfere 7311 ACCBM
- Montaggio ad O per cuscinetti a rulli 32192 e 32196
- Bloccaggio cuscinetti con distanziali per avere gioco nullo e altri sistemi di bloccaggio, come ghiera e tappi
- Collegamenti albero mozzo con linguette UNI 6604 B 16x10x45
- Flangia con 4 bulloni M12 fra carter 1 e carter 2

Dettagli costruttivi

Elementi sottoassieme portautensili-tirante:

- Fresa Coromill R245-050-Q22-12H
- Vite M12
- Elemento di collegamento
- Mandrino SK 30.35.D22S
- Tirante M20
- Dado M20 (x2)

Bloccaggio assieme avviene tramite i due dadi sull' albero condotto. La trasmissione del moto è data dal contatto fra il mandrino e due denti presenti sull' albero condotto.

PORTAFRESE FISSI - SHELL END MILL HOLDERS - SK30

			AT2	G6.3/150	DO AD
Cod.					
SK.30.35.D16S	TC30 H35 D16S	32	16	17	35
SK.30.35.D22S	TC30 H35 D22S	40	22	19	35
SK.30.60.D27S	TC30 H60 D27S	50	27	21	60
SK.30.60.D32S	TC30 H60 D32S	58	32	24	60

Materiali e dati tecnici

• Albero intermedio e albero condotto ———— = 39NiCrMo3 (acciaio bonificato)

Su= 880 Mpa Sy= 685 Mpa Hb= 290

E= 210 Gpa A%= 11 %

• Ruote dentate cilindriche e coniche — Su= 1200 Mpa su= 5 cilindriche

Su= 1200 Mpa Sy= 800 m=5 cilindriche e m=6 coniche z_1 = 28 z_2 = 29 z_3 = 22

18NiCrMo5 (acciaio da cementazione)

- Linguetta UNI 6604 B 16x10x45 C45 Su= 590 Mpa
- Bulloni e viti

 M12 e M 8 Classe 8.8 unificati
- Guarnizioni e anelli seeger unificati

Materiali e dati tecnici

Condizioni di lavoro e analisi dei carichi

- Spianatura di una faccia di un pezzo meccanico di materiale P1.2.Z.AN (acciaio non legato)
 L= 50 mm D= 50 mm H = 20 mm
 Tempo di lavorazione < 5 s
- Velocità di taglio = 196.3 m/min
 Numero denti = 5
 Avanzamento per dente = 0.716 mm
 Velocità mandrino = 1000 rpm
 Velocità avanzamento = 3580 mm/min
 Profondità passata = 10 mm
 Numero passate in profondità = 2

Impegno di lavoro= 16.67 mm

Numero passate per impegno di lavoro = 3

Volume asportato = 597 cm³/min

Potenza di taglio = 16.9 Kw

Forza di taglio = Fc= 12172 N

Forza di taglio specifica = 1700 Mpa

Tempo lavorazione = 3.674 s

Fresa Coromill R245-050-Q22-12H

Avanzamento tavola, vf (mm/min)

$$V_f = f_z \times n \times ZEFF$$

Velocità di taglio, v_C (m/min)

$$v_{\rm c} = \frac{\pi \times DC_{\rm ap} \times n}{1000}$$

Velocità del mandrino, n (giri/min)

$$n = \frac{v_{\rm c} \times 1000}{\pi \times DC_{\rm ap}}$$

Avanzamento per dente, f_z (mm)

$$f_z = \frac{V_f}{n \times ZEFF}$$

Avanzamento per giro, f_n (mm/giro)

$$f_n = \frac{v_f}{n}$$

Volume di truciolo asportato, Q (cm³/min)

$$Q = \frac{AP \times a_e \times v_f}{1000}$$

Potenza netta, $P_{\rm c}$ (kW)

$$P_{\rm c} = \frac{a_{\rm e} \times AP \times v_{\rm f} \times k_{\rm c}}{60 \times 10^6}$$

• Lavorazione andata

Lavorazione ritorno

Schemi di equilibrio Mm L1 l1*α2 Ax L2 Az L3 L6 Fr1 Fr1 <mark>13*α3 L5</mark> Ft1 L4 FCr FCa

L1 = 120 mm L2= 91.4 mm L3= 105.8 mm L4= 131.8 mm L5= 100.2 mm L6= 209.4 d1= 110 mm d2=148 mm d3=142 mm df=50 mm ϕ =20° γ =42.8° l1= 0.01 kgm^2 l2= 0.081 kgm^2 l3= 0.085 kgm^2

Andata:

Cz+Bz-Fr2=0
-Fr1+Cx+Bx-Ft2=0
-Ft1+Cy++By-Fa2=0
-Ft1L1-ByL2+Fa2(L2+L3)-0.5Fr2d2=0
Fr1L1+BxL2-Ft2(L2+L3)=0
-0.5Ft1d1+0.5Ft2d2-(I1+I2)α2=0

Az+Dz+Fa2=0
Ax+Dx+FC-Fr2=0
Ay+Dy+Ft2=0
-Ft2L5-(L5+L6)Ay=0
-L4FC+0.5Fa2-Fr2L5+(L5+L6)Ax=0
0.5FC-0.5Ft2d2-I3α3=0

$$\begin{cases} \alpha 1 = \alpha 2 \\ \alpha 3 = \tau \alpha 2 \quad \text{con } \tau = 28/29 \end{cases}$$

Dz, Az procedura SKF
Cz, Bz procedura SKF

Ritorno:

 $\begin{cases}
Ax+Dx-FC-Fr2=0 \\
L4FC+0.5Fa2-Fr2L5+(L5+L6)Ax=0
\end{cases}$

NOTA: peso trascurato e un solo dente fresa in presa

Verifica e Analisi

- Albero condotto
- Cuscinetti obliqui a rulli 32912 e 32916
- Linguetta UNI 6604 B 16X10X45
- Ruota conica 3
- Flangia fra carter 1 e carter 2

Per definizione:

coefficiente di sicurezza = fattore per cui moltiplicare TUTTI i carichi per arrivare al fallimento

Le verifiche fatte porteranno a coefficienti di sicurezza superiori all' unità o ad un elevato numero di cicli prima di raggiungere il fallimento di un componente dell' assieme e conseguente fermo della fresatrice. In realtà la macchina dovrà fermarsi per cambiare utensile in caso di altre lavorazioni o per sostituire gli inserti della fresa usurati. Nel caso studiato essi hanno una vita pari a 103 lavorazioni di spianatura.

Verifica albero condotto

39NiCrMo3 (acciaio bonificato) Su= 880 Mpa Sy= 685 Mpa Hb= 290 E= 210 Gpa A%= 11 % L4= 131.8 mm L5= 100.2 mm L6= 209.4

• Diagrammi delle caratteristiche - Andata

Verifica albero condotto – Andata

Verifica statica — materiale scelto è duttile, quindi si riduce solamente alla verifica di collasso plastico

	Fn	Ту	Tx	Mx	Му	Mz	Wx [10 ⁴]	Area	σΖΖ	τλz	σeq
А	-4866.7	-3951.3	-3708.8	-1604	0	304.5	4.01	2765.1	-50.4	3.8	50.8
В	-4866.7	-3951.3	-3708.8	-1398	-144.4	304.5	2.85	2464.4	-59.2	5.4	60
Z	-4866.7	-3951.3	-3708.8	-1281.1	-226.7	304.5	3.17	2936,4	-49.2	4.8	49.9
С	-3523	-5948.2	1770.2	-921.4	-329.8	0	2.39	2626.4	-53.6	0	53.6
D	-3523	-5948.2	1770.2	-416.1	-143.6	0	2.76	2930.3	-25.6	0	25.6
Е	-3523	-5948.2	1770.2	-246.6	-85.1	0	2.06	2060	-20.7	0	20.7
F	-3523	-5948.2	1770.2	-169.5	-58.5	0	1.75	2336.6	-14.7	0	14.7

Verifica albero condotto – Andata

La sezione più critica è la B con σeqB= 60 Mpa ———— ncp= Sy/σeqB= 11.4

Verifica a fatica — La forza FC ha andamento ripetuto da 0 a Fcmax CL=Ct=1 Cg=0.7 (d> 50 mm) Cs=0.9 (lavorazione macchine) Cr= 0.814 q=0.9

Sn= Sn'CsCgCtCLCr= 225.6 Mpa σeqa,kf= 105.5 Mpa σeqm,kf= 2.81 Mpa

$$nf = \frac{\frac{1}{\sigma eqa, kf} = 2.12}{\frac{Sn}{Sn} + \frac{\sigma eqm, kf}{Su}}$$

Verifica albero condotto – Ritorno

Diagrammi delle caratteristiche - Ritorno

304.5

Forza Tx [N] Forza Ty [N] Forza Normale [N] L5 L6 L4 L6 L5 L6 L5 L4 1772 -3703.9 -2651.1 -1296 6415.6 -12172 4954.4 Momento torcente Mz [Nm] Momento flettente Mx [Nm] Momento flettente My [Nm] L6 L5 L5 L4 L6 L4 L6 L5 888

961.9

1604

L4

L4

-371.2

Verifica albero condotto – Ritorno

Verifica statica → materiale scelto è duttile, quindi si riduce solamente alla verifica di collasso plastico

	Fn	Ту	Tx	Mx	Му	Mz	Wx [10 ⁴]	Area	σzz	τλz	σeq
А	-2651.1	6415.6	-3708.8	1604	0	304.5	4.01	2765.1	41	3.8	41.5
В	-2651.1	6415.6	-3708.8	1411.5	-111.1	304.5	2.85	2464.4	53.4	5.4	54.2
Z	-2651.1	6415.6	-3708.8	1399	-115.6	304.5	3.17	2936,4	48.3	4.8	49
С	-1295.8	4954.4	1770.2	854.4	-329.8	0	2.39	2626.4	50	0	50
D	-1295.8	4954.4	1770.2	372.1	-143.6	0	2.76	2930.3	19.1	0	19.1
E	-1295.8	4954.4	1770.2	220.5	-85.1	0	2.06	2060	15.5	0	15.5
F	-1295.8	4954.4	1770.2	151.6	-58.5	0	1.75	2336.6	12.6	0	12.6

La sezione più critica è la B con σeqB= 54.2 Mpa
→ ncp= Sy/σeqB= 12.6

Verifica albero condotto – Ritorno

Verifica a fatica — La forza FC ha andamento ripetuto da 0 a Fcmax CL=Ct=1 Cg=0.7 (d> 50 mm) Cs=0.9 (lavorazione macchine) Cr= 0.814 q=0.9

$$\sigma$$
Nm= -0.54 Mpa σ Na= 0.54 Mpa kfN= 1.81 Valuto in B le σ medie e alternate \longrightarrow σ Mm= 0 Mpa σ Ma= 52.33 Mpa kfM= 1.81 σ Tm= 2.67 Mpa σ Ta= 2.67 Mpa kfT= 1.36

$$nf = \frac{\frac{1}{\sigma eqa, kf} - \sigma eqm, kf}{\frac{Sn}{Sn} + \frac{Sn}{Sn}} = 2.33$$

Verifica macrociclo
$$\longrightarrow$$
 40 000 pezzi da lavorare \longrightarrow 120 000 cicli andata/ritorno T=3.67 s w= 1000 rpm zeff= 5 cicli singola andata= 0.5wTzeff = 153.1 cicli $\underline{\sigma a} = \sigma a \frac{1}{(1-\sigma m/Su)} \underline{\sigma a}$, and = 105.8 $\underline{\sigma a}$, rit= 96.2 Mpa $\underline{\sigma a}$ =aNf^b \longrightarrow a= 2778.6 Mpa b= -0.182 Nf, and = 64.6 milioni di cicli Nf, rit= 109 milioni di cicli D=153.1/(64.6*10^6)+153.1/(109*10^6)=3.775*10^(-6)

Nf=cicli macrociclo a frattura=1/D= 264931 cicli

nf=264931/240000=1.10

Verifica denti albero condotto – trasmissione moto

R= 44.5 mm H= 17 mm L= 13 mm B= 9 mm Sy= 685 Mpa Su= 880 Mpa

304.5-2RF=0 F= 3421.4 N

nf =

Verifica a collasso plastico — considero dente come trave Mxmax= 29.08 Nm Jx= 789.8 mm^4 σ zz= 165.7 Mpa τ = 29.29 Mpa σ eq=165.7 Mpa σ ncp= 4.1

σeqa,kf σeqm,kf

NOTA: verifica valida per andata e ritorno

Verifica posizione punta utensile

L4= 131.8 mm L5= 100.2 mm L6= 209.4 Fcmax= 12172 N JxmedioL6= 8.044*10^5 mm^4 JxmedioL5= 1.43*10^6 mm^4 JxmedioL4= 4.795*10^6 mm^4

Applico integrale di Mohr per valutare spostamento in direzione x e y del dente a contatto con il pezzo:

Verifica posizione punta utensile

Andata:

$$Mx = \begin{cases} -5417s & 0 < s < L6 \\ -5273s + 28539 & L6 < s < (L6 + L5) \\ 12172s - 5372146 & (L6 + L5) < s < (L6 + L5 + L4) \end{cases}$$

$$Mz = \begin{cases} 304500 & (L6+L5) < s < (L6+L5+L4) \end{cases}$$

$$u = -0.02 \text{ mm}$$
 $v = 0.455 \text{ mm}$ $|s| = 0.455 \text{ mm}$ (accettabile)

Ritorno:

$$Mx = \begin{cases} 4594s & 0 < s < L6 \\ 7144.3s - 607727 & L6 < s < (L6 + L5) \\ -12172s - 5372146 & (L6 + L5) < s < (L6 + L5 + L4) \end{cases}$$

$$Mz = \begin{cases} 304500 & (L6+L5) < s < (L6+L5+L4) \end{cases}$$

$$u = -0.02 \text{ mm}$$
 $v = 0.111 \text{ mm}$ $|s| = 0.112 \text{ mm}$ (accettabile)

Verifica cuscinetti obliqui a rulli – Andata

Cuscinetto sup 32912 C= 53.2 KN C0= 75 KN Pu= 7.8 KN d= 60 mm e= 0.33 Y=1.8 Y0= 1 X= 0.35 Cuscinetto inf 32916 C= 89.7 KN C0= 125 KN Pu= 14 KN d= 80 mm e= 0.35 Y=1.7 Y0= 0.8

Verifica statica

P0sup=0.5Fr+Y0Fa= 6373.8 N (>Fr) | n0sup= C0/P0= 11.7 (>1.5 silenzioso)

P0inf = 0.5Fr+Y0Fa= 12653.4 N (< Fr= 16547 N) | n0inf= 7.55

Verifica dinamica

Fasup/Frsup= $0.618 > e \longrightarrow P = XFr + YFa = 8338.4 N (> Pu)$

 $\eta c=0.8$ (buona pulizia) k=1 (lubrificazione corretta) $a_{SKF}=2$ a1=0.64 (99%)

p=10/3 L_{5m} =a1 $a_{SKF}(C/P)^p$ = 616.6 milioni di cicli

Fainf/Frinf=0.294 > e \longrightarrow P= 16546.7 N (> Pu) a_{SKF} =1.75 a1=0.64 (99%)

 L_{5m} =a1 $a_{SKE}(C/P)^p$ = 313.4 milioni di cicli

Verifica cuscinetti obliqui a rulli – Ritorno

 $_{r}$, Fasup/Frsup=0.263 < e \longrightarrow P= 4924.3 N (< Pu)

Verifica macrociclo →40 000 pezzi da lavorare → 120 000 cicli andata/ritorno

T=3.67 s w= 1000 rpm zeff= 5 → cicli singola andata= 0.5wTzeff = 153.1 cicli

D= $153.1/(313.4*10^6)+153.1/(170.9*10^6)=1.384*10^(-6)$ Nf=cicli frattura= 1/D=722334

nf= 722334/240000 = 3

Verifica linguetta dell'albero condotto

UNI 6604 B 16x10x45 C45 Su= 590 Mpa Sy= 472 Mpa Kf=2 CL=Ct=1 Cg=0.9 Cr=0.814 Cs=0.8

Andata e ritorno

Verifica pressione di contatto — → npc= Sy/p"= 2.84

Verifica taglio statico \longrightarrow τ = F/(16x45)= 11 Mpa nts= 0.58Su/ τ = 30.48

Verifica a fatica \longrightarrow Fa=Fm=F/2= 3954.6 N σ m= σ a= $\sqrt{3}/2$ pKf= 19.02 Mpa Sn=Sn'CsCgCtCrCL= 216.2 Mpa nf=8.3

Verifica statica sede → già considerata nella verifica dell' albero condotto (σeq= 49.5 Mpa ncp=13.6)

Verifica fatica sede → Sn= 225.6 Mpa Kf= 2 , usando le caratteristiche di sollecitazione nel punto Z

Andata nf= 2.324

Ritorno nf= 2.551

Macrociclo

nf= 1.5

Verifica ruote coniche

Ruota conica 2 \longrightarrow z= 28 m= 6 d_b= 168 mm φ = 20° γ = 42.8° Ruota conica 3 \longrightarrow z=29 m= 6 d_b= 174 mm φ = 20° γ = 47.2° L= 114.5 mm b=min [L/3; 10m]= 38.2 mm τ =28/29= 0.966

Verifica andata e ritorno ruota conica 2

Ft2= 5476 N J=0.23 Kv=1.5 (curva A) Km=1.25 Ko=1.75 Su= 1200 Mpa Kms=1.4 CL=Ct=1 Cg=0.85 Cr=0.814 Cs=0.9 Cp=234.93 (Mpa)^0.5 dp=140 mm I=0.075 (grafico) HB= 600 CR=1 (99%) Cli= 1 (10^7 cicli)

$$nb=Sn/\sigma b=1.53$$

Verifica pitting
$$\sigma$$
h=Cp $\sqrt{\frac{Ft2KvKoKm}{bdpI}}$ = 1435.4 Mpa Sh=SfeCliCR= 1611 Mpa

$$np = (Sh/\sigma h)^2 = 1.26$$

Nota: m> 3-4, implica np < nb

Verifica rigidezza: spostamenti ruote inferiori a 0.125 mm e rotazioni inferiori a 0.0005 rad

Verifica flangia - Andata

L7= 135 mm L8= 201 mm L8= 277 mm df= 50 mm d1= 110 mm

Andata: [N, Nm]

-FC+Bx=0 2008.8+By=0 5119.3+Bz=0 Mx-5119.3*0.5d1=0 0.5FCL8+My=0 -2008.8L7+Mz-0.5FCdf=0

Cambio segno risultati sistema per avere azioni che assieme fa sulla flangia.

Verifica flangia – Andata

M12 8.8 Su= 800 Mpa Sy= 640 Sp= 0.9Sy= 576 Mpa ki=0.9 (smontaggi radi) At=84.3 mm^2 Fi=kiAtSp= 43701 N R= 132 mm g= 45 mm Eb= 210 Gpa Ec= 170 Gpa Ac=d^2+0.68dg+0.065g^2= 642.8 mm^2 f=0.5

	Fn [N]	Ftx [N]	Fty [N]
Bullone 1	9580	1651	1280
Bullone 2	-5356.4	502.2	131.1
Bullone 3	-15936	-646.5	1279.8
Bullone 4	-1000	502.2	2428.5

Fni=Fz/n Fni=Mx*yi/Ix Fni=My*xi/Iy Fti=Ft/n Fti=Mt*R/2Ix

Il bullone più critico è il numero 1.

Verifica flangia – Andata

Verifica distacco — Fe*= (Kb+Kc)Fi/Kc= 50790 N Femax= 9580 N | nd= Fe*/Femax= 5.3

Verifica scorrimento \longrightarrow Ft= $\sqrt{1650.9^2 + 1279.8^2} = 2089 \text{ N}$ ns= Fc*f/Ft= $\frac{f(Fi - \frac{kc}{kc + kb}Femax)}{Ft} = 8.5$

ns= Fc*f/Ft=
$$\frac{f(Fi - \frac{kc}{kc + kb}Femax)}{Ft}$$
= 8.5

Verifica collasso plastico — Sy=640 Mpa Fbmax=Fi+Kb*Femax/(Kb+Kc)= 45036 N σ =Fbmax/At= 534 Mpa ncp= Sy/ σ = 1.2

Verifica a fatica \longrightarrow Δ Fe/2= 4790 N kf= 3.0 Sy=640 Mpa Su= 800 Mpa CL=Ct=1 Cs=0.75 Cg=0.9 Cr= 0.814

$$nf = \sigma al/\sigma aL = \frac{\frac{Sn(1 - \frac{Sy}{Su})}{1 - Sn/Su}}{\frac{\Delta Fe}{2} * \frac{Kb}{Kb + Kc} * kf/At} = 2.55$$

Verifica flangia – Ritorno

Ritorno: [N, Nm]

FC+Bx=0 2008.8+By=0 5119.3+Bz=0 Mx-5119.3*0.5d1=0 -0.5FCL8+My=0 -2008.8L7+Mz-0.5FCdf=0

	Fn [N]	Ftx [N]	Fty [N]
Bullone 1	-9580	1651	1280
Bullone 2	-5356.4	502.2	131.1
Bullone 3	15936	646.5	1279.8
Bullone 4	-1000	502.2	2428.5

M12 8.8 Su= 800 Mpa Sy= 640 Sp= 0.9Sy= 576 Mpa ki=0.9 (smontaggi radi)

At=84.3 mm^2 Fi=kiAtSp= 43701 N

R= 132 mm g= 45 mm Eb= 210 Gpa Ec= 170 Gpa

Ac=d^2+0.68dg+0.065g^2= 642.8 mm^2 f=0.5

Ix=Iy= 34884 mm^2 Ixy=0

Kb=EbAt/g= 3.934*10^5 N/mm Kc=EcAc/g=2.428*10^6 N/mm

Il bullone critico è il numero 3.

Verifica flangia – Ritorno

Verifica distacco — Fe*= (Kb+Kc)Fi/Kc= 50790 N Femax= 15936 N

Verifica scorrimento
$$\longrightarrow$$
 Ft= $\sqrt{646.5^2 + 1279.8^2} = 1493.8 \text{ N}$ ns= Fc*f/Ft= $\frac{f(Fi - \frac{kc}{kc + kb}Femax)}{Ft} = 10.3$

ns= Fc*f/Ft=
$$\frac{f(Fi - \frac{kc}{kc + kb}Femax)}{Ft}$$
=10.3

Verifica collasso plastico \longrightarrow Sy=640 Mpa Fbmax=Fi+Kb*Femax/(Kb+Kc)= 45923 N σ =Fbmax/At= 545 Mpa ncp= Sy/ σ = 1.2

Verifica a fatica \longrightarrow Δ Fe/2= 7968 N kf= 3.0 Sy=640 Mpa Su= 800 Mpa CL=Ct=1 Cs=0.75 Cg=0.9 Cr= 0.814

$$nf = \sigma al/\sigma aL = \frac{\frac{Sn(1 - \frac{Sy}{Su})}{1 - Sn/Su}}{\frac{\Delta Fe}{2} * \frac{Kb}{Kb + Kc} * kf/At} = 1.53$$

Verifica macrociclo — → | nf= 1.23

39NiCrMo3

Qualità materiale	39NiCrMo3	
Norma di riferimento	EN 10083-3: 2006	
Numero	1.6510	

Composizi	one chim	ica						
C%	Si%	Mn%	P%	S%	Cr%	Mo%	Ni%	Scostamenti
	max		max	max				ammessi
0,35-0,43	0,40	0,50-0,80	0,025	0,035	0,60-1,00	0,15-0,25	0,70-1,00	per analisi
± 0.02	+ 0.03	± 0.04	+ 0.005	+ 0.005	± 0.05	± 0.03	± 0.05	di prodotto

Viene commercializzato anche con trattamento al calcio

Può essere fornito con aggiunta di piombo o zolfo controllato per lavorazione meccanica migliorata

Deformazione	Normalizzazione	Tempra	Tempra	Rinveni	mento	Distens	ione
a caldo							
1100-900	860	850	840	550-650		50 sotto	la
	aria	olio polimero	acqua	aria		tempera	tura di
		•				rinvenim	iento
Ricottura di	Ricottura	Ricottura	Tempra provetta	Prerisca	ıldo	Distens	ione
lavorabilità	isotermica	completa	Jominy	per sald	atura	dopo sa	ldatura
700	820 raff. forno	820	850	300		550 raffr	. forno
aria	fino a 650 poi aria	aria	acqua	AC1	AC3	Ms	Mf
(HB max 240)	(HB 195-240)	(HB max 235)		740	790	330	110

	/	1	/	٧-		/			140	- '	50	000		10
ropri	ietà meco	aniche	e e fisic	he										
.amina	ti a caldo d	aratteris	stiche me	ccaniche	allo stato	bonific	ato EN 10	0083-3: 2	006					
diamet	tro /spess.	Prova	di trazior	ne e resili	enza in l	longitudin	ale a 20	°C						
	mm	R		R	p 0.2		A %	C%	Κv	H	IB			
oltre	fino a	N/mm ²	2	N	/mm² mir	n.	min.	min.	J min.	р	er inform	azione		
	16/8	980-11	180	7	85		11	40		2	95-354			
16/8	40/20	930-11	130	7	35		11	40	35	2	78-339			
40/20	100/60	880-10	080	6	85		12	45	40	2	63-327			
100/60	160/100	830-98	30	6	35		12	50	40	2	49-295			
160/ 10 0	250/160	740-88	30	5	40		13	50	40	2	24-263			
Tabella	di rinvenir	nento v	alori a ter	mperatura	ambient	te su tono	do Ø 10 n	nm dopo t	empra a	850 °C i	n olio			
НВ		577	560	525	496	468	442	426	409	390	362	336	286	240
HRC		56	55	53	51	49	47	45.5	44	42	39	36	30	22.5
R	N/mm ²	2160	2070	1950	1820	1700	1580	1500	1430	1340	1220	1100	950	800
Rp 0.2	N/mm²	1440	1520	1540	1520	1490	1440	1370	1290	1220	1110	980	830	670
A	%	8.0	9.8	10.4	10.6	10.7	10.8	11.0	11.5	12.5	13.8	16.0	19.0	22.0
С	%	30	42	48	52	53	53	54	55	56	57	60	63	68
Kv	J	28	31	32	28	28	27	27	28	36	46	86	114	128
Diam	۰۸	100	150	200	250	200	250	400	450	EOO	EEO	600	CEO	700

18NiCrMo5

Qualità materiale	18NiCrMo5
Norma di riferimento	UNI 7846: 1978

mero

Proprietà meccaniche e fisiche

Composiz	ione chimi	ca						
C%	Si%	Mn%	Р%	S%	Cr%	Mo%	Ni%	Scostamenti
			max	max				ammessi
0,15-0,21	0,15-0,40	0,60-0,90	0,035	0,035	0,70-1,00	0,15-0,25	1,20-1,50	per analisi
± 0.02	± 0.03	± 0.04	+ 0.005	+ 0.005	± 0.05	± 0.03	± 0.05	di prodotto

A richiesta può essere fornito con aggiunta di Pb% 0.15-0.35 o zolfo controllato 0.020-0.035% per lavorazione meccanica migliorata. Viene commercializzatoanche con trattamento al calcio

Deformazione a caldo	Normalizzazione	Tempra nucleo	Carbonitrurazione	Cemen	tazione	Tempra cement	superf. ata	Rinvenimento				
1100-900	880 aria	840-870 880-930 olio, polimero o bagno sale					olio, polimero o olio, polimero o					150-180
Ricottura di lavorabilità	Ricottura isotermica	Ricottura +FP	Tempra provetta Jominy	Preriso per sal			Distensione dopo saldatura					
700 raffredd. 15 °C/h fino a 600 poi aria	850 raff. forno fino a 650 poi aria	950-1000 raffreddamento rapido	850 acqua	La sal	pri	eve esser ima della (
(HB max 240)	(HB 150-220)			Ac1	Асз	Mf		to cementato				
				730	815	140	360* 1	180**				

	•	214110							
Laminati a caldo	caratteristiche (di riferimento su barrott	o con temp	ra a nucleo U	JNI 7846: 19	78 Solo come	riferimento.		
sezione	sezione Prova di trazione e resilienza in longitudinale a 20 °C								
mm	R	Rp 0.2	Α%	C%	Kcu	HB			
barrotto	N/mm ²	N/mm ² min.	min.	min.	J min.				

mm	R	Rp 0.2	A %	C%	Kcu	HB	
barrotto	N/mm ²	N/mm ² min.	min.	min.	J min.		
11	1230-1520	980	8	-	30	363-432	
30	980-1270	735	9	-	32.5	295-373	a titolo informativo
63	830-1130	635	10	-	35	249-339	a titolo informativo

Tabella	a di rinveni	mento va	alori a ter	mperatur	ra ambie	nte su to	ndoØ1	0 mm do	po temp	ra a 850) °C in o	lio			
HB		415	415	415	409	404	395	381	362	344	327	301	271	237	218
HRC		44.5	44.5	44.5	44	43.5	42.5	41	39	37	35	32	28	22	-
R	N/mm ²	1460	1460	1450	1430	1400	1360	1300	1230	1150	1080	1000	900	790	710
Rp 0.2	N/mm ²	1070	1120	1170	1210	1210	1190	1150	1100	1040	960	860	790	700	610
Α	%	13.5	13.6	13.5	13.2	13.0	12.8	12.8	12.9	13.8	15.0	17.0	19.5	22.0	24.0
C	%	57.0	58.0	59.0	60.0	60.0	60.0	60.0	60.0	61.0	63.0	65.0	68.0	72.0	74.0
Kv	J	64	64	62	62	64	46	46	46	75	94	125	148	166	180
HRC str		64	63.5	62	60	59	56	-	-	-		-	-	-	-
Rinven	imento °C	50	100	150	200	250	300	350	400	450	500	550	600	650	700

C45

Normativa di riferimento UNI 7845 Reference Standard UNI 7845

Corris	pond	lenze	9
Corris Compa	rable	stand	lards

SIAU	DIN	W.N.	AFNOR	BS	AISI/SAE	
-	CK45	1.1191	(XC48)	(080M46)	-	

Composizione Chemical analysis

-	С	Mn	Si	Cr	Ni	Мо	Altri
	.42÷.50	.50÷.80	.15÷.35	-	-	-	P e S ≤ .035

Temperature per la lavorazione a caldo ed il trattamento termico Hot work and heat treatment temperatures

Punti critici Critical points	Fucinatura Forging	Normalizzazione Normalization	Ricottura subcritica Subcritical annealing	Ricottura isotermica Isothermal annealing	Tempra Hardening	Rinvenimento Tempering
Ac 1 730				820÷860	820÷840	
Ac3 770	1100÷850	840÷870	650÷700	\		550÷650
Ms 340				600x1h	acqua/ <i>watei</i>	r

Caratteristiche meccaniche / Mechanical properties

Stato Condition	Saggio Ø mm. Specimen Ø mm.	Re min. N/mm2	Rm N/mm2	A min. %	KCU min. J	Durezze HB allo s HB hardness in the followin	tato g conditions
Bonificato	16	510	730÷870	14	20	Ricotto lavorabile / Soft-annealed	≤ 235
Hardened and	16÷40	460	690÷830	15	17,5	Ricotto isotermico/Isothermal annealed	163÷217
tempered	40÷100	410	640÷780	16	15	Ricotto sferoidale/Spheroidal annealed	≤ 188
Normalizzato/Normaliz	zed 16÷100	335	590÷740	17			

Temprabilità Hardenability

HRC / %	Martensite	Diametro temprabile mm. / Hardenable diameter			
90%	50%	olio/ <i>oil</i>	acqua/water		
55	45	-	30		

