2 熱入力量と放射能力の計算

2.1 面の定義

面については以下のネーミングを与える

	正	逆
地球指向面	+TAR	-TAR
北面 (パドルついている)	+PAD	-PAD
速度ベクトルに平行な面	+SUN	-SUN

2.2 仮定

- 1. 太陽定数 $P_S = 1358[W/m^2]$ とする
- 2. 地球からの輻射、アルベドは考慮しない
- 3. 太陽の食は考慮しない
- 4. 表面素材は A1 テフロン $(\alpha_s=0.2,\epsilon=0.8)$ とし、表面温度は $20[^{\circ}C]$ と仮定する
- 5. ± PAD 面では太陽電池パネル、+TAR 面ではパドルやアンテナによる放熱障害でそれぞれ 10 % 放射能力が 減るとする

2.3 各面の太陽輻射による熱入量

衛星の 6 面における太陽輻射による平均熱入量 q_s を、夏至で北面最悪時である軌道面と太陽のなす角 $\beta=23.4^\circ$ の時と、春秋分時である $\beta=0^\circ$ の時において計算する。計算には下記のコードを用いた。結果は下記の表のようになる。

```
import math
import matplotlib.pyplot as plt
p_s = 1358
alpha_s = 0.2
rad = math.pi/180
\#stephan_boltzman_constant
sigma = 5.67 * math.pow(10,-8)
temp_wall = 20 + 273.15
epsilon = 0.8
default_ratio = 1
pad_ratio = 0.9
tar_p_ratio = 0.9
beta_sum = 23.4
beta_spr = 0
dalpha = 0.1 積分用#
alpha = 0
q_tarp = 0
q_tarm = 0
q_sunp = 0
q_sunm = 0
q_padp = 0
q_padm = 0
```

```
def init_parameter():
    global alpha,q_tarp,q_tarm,q_sunp,q_sunm,q_padp,q_padm
    alpha = 0
    q_tarp = 0
    q_tarm = 0
    q_sunp = 0
    q_sunm = 0
    q_padp = 0
    q_padm = 0
def cal_radiation(beta):
    global alpha,q_tarp,q_tarm,q_sunp,q_sunm,\
    q_padp, q_padm, dalpha
    while alpha < 360:
        q_tarp += max(0,-math.cos(alpha*rad) * dalpha)
        q_tarm += max(0,math.cos(alpha*rad) * dalpha)
        q_sunp += max(0,math.sin(alpha*rad) * dalpha)
        q_sunm += max(0, -math.sin(alpha*rad) * dalpha)
        q_padp += max(0,1 * dalpha)
        q_padm += max(0,0 * dalpha)
        alpha += dalpha係数をかける
    q_tarp *= alpha_s * p_s * math.cos(beta*rad)
    q_tarm *= alpha_s * p_s * math.cos(beta*rad)
    \verb|q_sunp| *= alpha_s * p_s * math.cos(beta*rad)|
    {\tt q\_sunm *= alpha\_s * p\_s * math.cos(beta*rad)}
    q_padp *= alpha_s * p_s * math.sin(beta*rad)
    q_padm *= alpha_s * p_s * math.sin(beta*rad)一周の平均
    q_{tarp} *= 1/360.0
    q_tarm *= 1/360.0
    q_sunp *= 1/360.0
    q_sunm *= 1/360.0
    q_padp *= 1/360.0
    q_padm *= 1/360.0放射能力
    {\tt global \ epsilon\,, tar\_p\_ratio\,, pad\_ratio\,, default\_ratio}
    c1 = epsilon * sigma * math.pow(temp_wall,4)
    p_{tarp} = c1 * tar_{p_{tarp}}
    p_{tarm} = c1 * default_ratio - q_tarm
    p_sunp = c1 * default_ratio - q_sunp
    p_sunm = c1 * default_ratio - q_sunm
    p_padp = c1 * pad_ratio - q_padp
    p_padm = c1 * pad_ratio - q_padm
    print("beta", beta)
   print("q_tarp",q_tarp)
    print("q_tarm",q_tarm)
    print("q_sunp",q_sunp)
    print("q_sunm",q_sunm)
    print("q_padp",q_padp)
    print("q_padm",q_padm)
    print("p_tarp",p_tarp)
    print("p_tarm",p_tarm)
    print("p_sunp",p_sunp)
    print("p_sunm",p_sunm)
    print("p_padp",p_padp)
    print("p_padm",p_padm)
    print("\n")
```

```
if __name__ == "__main__":
   init_parameter()
   cal_radiation(beta_sum)
   init_parameter()
   cal_radiation(beta_spr)
```

軌道面と太陽のなす角 eta [$^{\circ}$]	0	23.4
$+\mathrm{TAR}[\mathrm{W}/m^2]$	86.45	79.34
$-\mathrm{TAR}[\mathrm{W}/m^2]$	86.45	79.34
$+SUN[W/m^2]$	86.45	79.34
$-\mathrm{SUN}[\mathrm{W}/m^2]$	86.45	79.34
$+PAD[W/m^2]$	0	107.87
$-\text{PAD}[W/m^2]$	0	0

2.4 各面の放射能力の計算

放射能力 P_{RAD} は、衛星の各面の放熱量ー外部からの入熱量であるから、

$$P_{RAD} = \epsilon \sigma T_{WALL}^4 F - q_s \tag{1}$$

となる。計算には 2.3 と同じコードを用いた。結果は下記の表のようになる。

$\beta[^{\circ}]$	0	23.4
$-$ +TAR[W/ m^2]	215.0	222.15
-TAR[W/ m^2]	248.5	255.65
$+SUN[W/m^2]$	248.5	255.65
$-\text{SUN}[W/m^2]$	248.5	255.65
$+PAD[W/m^2]$	301.5	193.6
$-\text{PAD}[W/m^2]$	301.5	301.5

3 サブシステムの洗い出し

サブシステム一覧と消費電力は下記の表の通り

	機器名	寸法 [cm]	重量 [kg]	消費	発熱	許容	搭載面要求
				電力	量	温度	
				[W]	[W]	$[^{\circ}C]$	
	uplink パラボラアンテナ						
	(S バン F)	ø70	5	0	0	10-40	+TAR 外
	uplink パラボラアンテナ						
	(Ka バンド)	ø150	23	0	0	10-40	+TAR 外
ミッション機器	downlink パラボラアンテナ	~90	c	0	0	10.40	TAD M
	(S バンド) downlink パラボラアンテナ	ø80	6	0	0	10-40	+TAR 外
	(Ka バンド)	ø160	26	0	0	10-40	+TAR 外
	アンテナタワー		70	0	0	-45-65	+TAR 外
	Ka バンド中継機	$138 \times 70 \times 20$	180	867	694	5-40	
	Sバンド中継機	$70 \times 70 \times 70$	60	330	264	5-40	
	アースセンサ	$12\times17\times13$	25	6	6	0-50	+TAR 外
	サンセンサ×2	$12 \times 43 \times 13$	4.5×2	6×2	6×2	0-50	± SUN 外
	IRU	$30 \times 38 \times 30$	22	10	10	0-40	
	AOCE	$20 \times 15 \times 7$	10	50	50	-5-40	
	リアクションホイール	$30 \times 30 \times 10$	24	60	60	0-45	
	TT&C ユニット	$80 \times 60 \times 20$	60	35	35	0-50	
バフ松里	オンボード計算機	$40 \times 26 \times 12$	20	120	120	-5 40	
バス機器	ヒドラジンスラスタ ×2		10×2			9-40	±SUN 外
	太陽電池パドル×2		77×2				±PAD 外
	パドル駆動モータ ×2	$19 \times 20 \times 34$	13×2	10×2	10×2	0-40	±PAD
	バッテリ×2	$35 \times 25 \times 20$	25×2		117 ×	5-20	
					2		
	電源制御部×2	$20 \times 30 \times 20$	10×2	25×2	25×2	0-40	
タンク系	ヒドラジンタンク ×2	r=35(球)	16.92×2	0	0	9-40	バルクヘッド
フィクボ	アポジタンク	r=58(球)	155.1	0	0	9-40	スラストチューブ