TITLE

BY YIZHI ZHANG

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Applied Mathematics in the Graduate College of the Illinois Institute of Technology

Approved		
P P	Advisor	

Chicago, Illinois Date © Copyright by YIZHI ZHANG Date

ACKNOWLEDGMENT

Will be added once thesis is finished

TABLE OF CONTENTS

Pa	age
ACKNOWLEDGEMENT	iii
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF SYMBOLS	viii
ABSTRACT	ix
CHAPTER	
1. INTRODUCTION	1
2. PROBLEM STATEMENT AND ASSUMPTIONS	2
3. DATA-DRIVEN ERROR BOUND	5
3.1. Trapezoidal Rule	5 6
4. ADAPTIVE, AUTOMATIC ALGORITHMS WITH GUARANTEES AND THEIR COMPUTATIONAL COST	9
4.1. Trapezoidal Rule	9 11
5. LOWER BOUND OF COMPLEXITY	14
5.1. Traezoidale rule	14 16
6. NUMERICAL EXPERIMENTS	19
6.1. Traezoidale rule	19 20
7. CONCLUSION	21
7.1. Summary	21
APPENDIX	22
A. TABLE OF TRANSITION COEFFICIENTS FOR THE DESIGN OF LINEAR-PHASE FIR FILTERS	22

В.	NAME OF YOUR SECOND APPENDIX	24
С.	NAME OF YOUR THIRD APPENDIX	26

LIST OF TABLES

Table		Page
6.1	The probability of the test function lying in the cone for the original and eventual values of τ and the empirical success rate of Algorithm	
	?? plus the success rates of other common quadrature algorithms	20

LIST OF FIGURES

Figure

LIST OF SYMBOLS

Symbol	Definition		
β	List of symbols will be added later		

ABSTRACT

Abstract will be included once all parts are finished

INTRODUCTION

Introduce existing algorithms for integration problems.

show drwabacks

1. Non-adaptive 2. adaptive no guarantees 3. maybe more

introduce

$$INT(f) = \int_{a}^{b} f(x)dx \in \mathbb{R}.$$
 (1.1)

The goal is to construct adaptive, automatic algorithms with guarantees of success. In Chapter 2, I will introduce the definitions and assumptions used in the thesis. Chapter 3 will be focusing on finding the upper bound of the approximation errors. The guaranteed algorithms based on trapezoidal rule and Simpson's rule will be presented in Chapter 4 with rigorous theoretical proof of success/successfulness. Chapter 5 will study the lower and upper bound of computational cost. Chapter 6 will study the lower bound of complexity. In Chapter 7, the results from numerical experiences will be discussed.

PROBLEM STATEMENT AND ASSUMPTIONS

The previous chapter introduced the univariate integration problem. The building blocks of the adaptive, automatic algorithms are two widely used fixed cost algorithms, trapezoidal rule and Simpson's rule. The composite trapezoidal rule can be defined as:

$$T(f,n) = \frac{b-a}{2n} \sum_{j=0}^{n} (f(u_j) + f(u_{j+1})), \tag{2.1}$$

where

$$u_j = a + \frac{j(b-a)}{n}, \qquad j = 0, \dots, n, \qquad n \in \mathbb{N}.$$
 (2.2)

It uses n+1 function values where those n+1 node points are equally spaced between a and b. The composite Simpson's rule can be defined as:

$$S(f,n) = \frac{b-a}{18n} \sum_{j=0}^{3n-1} (f(v_{2j}) + 4f(v_{2j+1}) + f(v_{2j+2})), \tag{2.3}$$

where

$$v_j = a + \frac{j(b-a)}{6n}, \qquad j = 0, \dots, 6n, \qquad n \in \mathbb{N}.$$
 (2.4)

It uses 6n + 1 equally spaced function values, which form 6n intervals/subintervals between a and b. The reason why we use 6n intervals is that firstly, Simpson's rule requires an even number of intervals. Secondly, we are going to use the third order finite difference method to approximate the third derivative of f in later chapters. The third order finite difference method requires the number of intervals to be a multiple of f. Thus, the number of intervals for input data has to be a multiple of f.

We also need to find error bounds to guarantee our methods. The traditional non-adaptive trapezoidal rule and Simpson's rule have upper bounds on approximation error in terms of the total variation of a particular derivative of integrand:

$$\operatorname{err}(f, n) \le \overline{\operatorname{err}}(f, n) := C(n) \operatorname{Var}(f^{(p)}).$$
 (2.5)

For trapezoidal rule, $C(n)=(b-a)^2/8n^2, p=1$ (ref), and for Simpson's rule, $C(n)=(b-a)^4/5832n^4, p=3$ (ref). check 5832

To define the total variation, $\operatorname{Var}(f)$, firstly we introduce the notation $\widehat{V}(f, \{x_i\}_{i=0}^{n+1})$ as an approximation to the total variation:

$$\widehat{V}(f, \{x_i\}_{i=0}^{n+1}) = \sum_{i=1}^{n-1} |f(x_{i+1}) - f(x_i)|, \tag{2.6}$$

where $\{x_i\}_{i=0}^{n+1}$ is any given partition with not necessarily equal spacing, and $a = x_0 \le x_1 < \cdots < x_n \le x_{n+1} = b$. The use of n+2 points and ignoring x_0 and x_{n+1} in (2.6) are for convenience later. The total variation can be defined as an upper of bound of $\widehat{V}(f, \{x_i\}_{i=0}^{n+1})$:

$$Var(f) := \sup \left\{ \widehat{V}(f, \{x_i\}_{i=0}^{n+1}), \text{ for any } n \in \mathbb{N}, \text{ and } \{x_i\}_{i=0}^{n+1} \right\},$$
 (2.7)

To ensure a finite error bound, our algorithms are defined for function spaces with finite interval and finite total variations of the relative derivatives:

$$\mathcal{V}^p := \{ f \in C[a, b] : Var(f^{(p)}) < \infty \}, \tag{2.8}$$

where for trapezoidal rule, p = 1, and for Simpson's rule, p = 3.

Our algorithms will not work for all $f \in \mathcal{V}^p$ because f may have changes in $f^{(p)}$ on small intervals that the algorithms cannot detect. In order to build adaptive automatic and guaranteed algorithms, we have to set up the following pre-existing condition that all functions to be integrated must lie in a cone space of integrands for which $\widehat{V}(f, \{x_i\}_{i=0}^{n+1})$ does not underestimate $\operatorname{Var}(f)$ too much:

$$C^{p} := \left\{ f \in \mathcal{V}^{p}, \operatorname{Var}(f^{(p)}) \leq \mathfrak{C}(\operatorname{size}(\{x_{i}\}_{i=0}^{n+1})) \widehat{V}(f^{(p)}, \{x_{i}\}_{i=0}^{n+1}), \right.$$
for all choices of $n \in \mathbb{N}$, and $\{x_{i}\}_{i=0}^{n+1}$ with $\operatorname{size}(\{x_{i}\}_{i=0}^{n+1}) < \mathfrak{h} \right\}.$ (2.9)

The cone space C^p is a subspace of V^p . Here $\operatorname{size}(\{x_i\}_{i=0}^{n+1})$ is the largest possible width between any adjunct x_i :

$$\operatorname{size}(\{x_i\}_{i=0}^{n+1}) := \max_{i=0,\dots,n} x_{i+1} - x_i. \tag{2.10}$$

The cut-off value $\mathfrak{h} \in (0, b-a)$ and the inflation factor $\mathfrak{C} : [0, \mathfrak{h} \to [1, \infty)]$ define the cone. The choice of \mathfrak{C} is flexible, but it must be non-decreaing. In this thesis, we choose

$$\mathfrak{C}(h) := \mathfrak{C}(0)\mathfrak{h}/(\mathfrak{h} - h) \tag{2.11}$$

for convenience.

With the cone space defined, we can start constructing our adaptive trapezoidal rule and Simpson's rule algorithms for functions in C^p , with appropriate value of p. To begin with, Chapter 3 will show how the algorithms confidently estimate the error and provide data-driven error bounds.

DATA-DRIVEN ERROR BOUND

In this chapter, we will derive upper bounds with quadrature error in terms of function values. By (2.5) in Chapter 2, we know that the approximation errors of trapezoidal rule and Simpson's rule have an upper bound in terms of the total variation of the appropriate derivatives. The definition of the cone suggests a way of bounding $\operatorname{Var}(f^{(p)})$ in terms of $\widehat{V}(f^{(p)}, \{x_i\}_{i=0}^{n+1})$. However, our algorithms are based on function values and $\widehat{V}(f^{(p)}, \{x_i\}_{i=0}^{n+1})$ is defined in terms of derivative values. Thus we will use finite differences to express derivative values in terms of function values.

3.1 Trapezoidal Rule We used the backward finite difference method to approximate f'. Let $h_1 = u_{j+1} - u_j = (b-a)/n$ and

$$f[u_j] = f(u_j), \text{ for } j = 0, \dots, n,$$

 $f[u_j, u_{j-1}] = \frac{f(u_j) - f(u_{j-1})}{h_1}, \text{ for } j = 1, \dots, n.$

According to Mean Value Theorem for divided differences, (ref), for all $j = 1, 2, \dots, n$, there exists $x_j \in (u_{j-1}, u_j)$ such that

$$f[u_j, u_{j-1}] = f'(x_j),$$

for $j = 1, 2, \dots, n$. This implies that

$$f'(x_j) = \frac{f(u_j) - f(u_{j-1})}{h_1} = \frac{n}{(b-a)} [f(u_j) - f(u_{j-1})], \tag{3.1}$$

for some $x_j \in (u_{j-1}, u_j)$. Let $\{a = x_0, x_1, \dots, x_n, x_{n+1} = b\}$ be a partition as was introduced just below (2.6). Note that no matter how the x_j 's are located, the largest possible width cannot be larger than two intervals. So $\text{size}(\{x_j\}_{j=0}^{n+1}) \leq 2h_1 = 2(b-a)/n$.

Since (2.6) is true for all partition $\{x_i\}_{i=0}^{n+1}$, it is true for (3.1). Then we have the approximation $\widetilde{V}_1(f,n)$ to $\widehat{V}(f^{(p)},\{x_i\}_{i=0}^{n+1})$ using only function values:

$$\widetilde{V}_1(f,n) := \frac{n}{(b-a)} \sum_{j=1}^{n-1} |f(u_{j+1}) - 2f(u_j) + f(u_{j-1})| = \widehat{V}(f', \{x_i\}_{i=0}^{n+1}).$$
 (3.2)

Therefore by combining (2.5), (2.9), and (3.2) (put numbers to the equation below) together, we obtain the error bound for our trapezoidal rule algorithm using only function values:

$$\overline{\operatorname{err}}(f,n) := C(n) \operatorname{Var}(f'),$$

$$\leq C(n) \mathfrak{C}(\operatorname{size}(\{x_i\}_{i=0}^{n+1})) \widehat{V}(f', \{x_i\}_{i=0}^{n+1}),$$

$$= C(n) \mathfrak{C}(\operatorname{size}(\{x_i\}_{i=0}^{n+1})) \widetilde{V}_1(f,n),$$

$$= \frac{(b-a)^2 \mathfrak{C}(2(b-a)/n) \widetilde{V}_1(f,n)}{8n^2}$$

(fix equation number, explain C is non-decreasing, double check n^2 at bottom)

This error bound of our algorithm using only function values provides guarantees that it will succeed. With a user provided tolerance ε , as long as n is big enough, the approximation error will eventually decrease below ε .

3.2 Simpson's Rule

Similar to the trapezoidal rule, we used the third order backward finite difference methods to approximate f'''. Let $h_3 = v_{j+1} - v_j = (b-a)/6n$ and

$$f[v_j] = f(v_j), \text{ for } j = 0, \dots, 6n,$$

$$f[v_j, v_{j-1}] = \frac{f(v_j) - f(v_{j-1})}{h_3}, \text{ for } j = 1, \dots, 6n,$$

$$f[v_j, v_{j-1}, v_{j-2}] = \frac{f(v_j) - 2f(v_{j-1}) + f(v_{j-2})}{2h_3^2}, \text{ for } j = 2, \dots, 6n,$$

$$f[v_j, v_{j-1}, v_{j-2}, v_{j-3}] = \frac{f(v_j) - 3f(v_{j-1}) + 3f(v_{j-2}) - f(v_{j-3})}{6h_3^3}, \text{ for } j = 3, \dots, 6n.$$

According to Mean Value Theorem for divided differences, (ref), for all $j = 1, 2, \dots, n$, there exists $x_j \in (v_{3j-3}, v_{3j})$ such that

$$f[v_{3j}, v_{3j-1}, v_{3j-2}, t_{3j-3}] = \frac{f'''(x_j)}{6},$$

for $j = 1, 2, \dots, n$. This implies that

$$f'''(x_j) = \frac{f(v_{3j}) - 3f(v_{3j-1}) + 3f(v_{3j-2}) - f(v_{3j-3})}{h_3^3},$$

$$= \frac{216n^3}{(b-a)^3} [f(v_{3j}) - 3f(v_{3j-1}) + 3f(v_{3j-2}) - f(v_{3j-3})]. \quad (3.3)$$

for some $x_j \in (v_{j-1}, v_j)$. Let $\{a = x_0, x_1, \dots, x_n, x_{n+1} = b\}$ be a partition as was introduced just below (2.6). Note that no matter how the x_j 's are located, the largest possible width cannot be larger than six intervals. So $\text{size}(\{x_j\}_{i=0}^{n+1}) \leq 6h_3 = (b-a)/n$.

Since (2.6) is true for all partition $\{x_i\}_{i=0}^{n+1}$, it is true for (3.1). Then we have the approximation $\widetilde{V}_1(f,n)$ to $\widehat{V}(f^{(p)},\{x_i\}_{i=0}^{n+1})$ using only function values:

$$\widetilde{V}_3(f,n) = \frac{216n^3}{(b-a)^3} \sum_{j=1}^{2n-1} |f(v_{3j+3}) - 3f(v_{3j+2}) + 3f(v_{3j+1}) -2f(v_{3j}) + 3f(v_{3j-1}) - 3f(v_{3j-2}) + f(v_{3j-3})|, \quad (3.4)$$

Therefore by combining the relative equations ((2.5), (2.9), and (3.2)) (put numbers to the equation below) together, we obtain the error bound for our Simpson's rule algorithm using only function values:

$$\overline{\operatorname{err}}(f,n) := C(n) \operatorname{Var}(f'''),$$

$$\leq C(n) \mathfrak{C}(\operatorname{size}(\{x_i\}_{i=0}^{n+1})) \widehat{V}(f''', \{x_i\}_{i=0}^{n+1}),$$

$$= C(n) \mathfrak{C}(\operatorname{size}(\{x_i\}_{i=0}^{n+1})) \widetilde{V}_3(f,n),$$

$$= \frac{(b-a)^4 \mathfrak{C}((b-a)/n) \widetilde{V}_3(f,n)}{5832n^4}$$

This error bound of our algorithm using only function values provides guarantees that it will succeed. With a user provided tolerance ε , as long as n is big enough,

the approximation error will eventually decrease below ε .

The error bounds of our trapezoidal rule and Simpson's rule algorithms then can be treated as the stopping criterion. In the next Chapter, details about the algorithms will be introduced. The lower bounds and upper bounds of the computational cost will be discussed as well.

ADAPTIVE, AUTOMATIC ALGORITHMS WITH GUARANTEES AND THEIR COMPUTATIONAL COST

In the previous Chapter, we have found the error bounds of our trapezoidal rule and Simpson's rule algorithms using input function values. In the Chapter, firstly we will provide details about the two algorithms. We build our algorithms as black-box algorithms. That is, as long as the user provides the input function and error tolerance, the algorithms will automatically give out an answer by deciding the number of functions value used, the location of the points, and the shape of the cone by themselves. In order to prevent the algorithms taking too long, we will also set a max number of iterations and a max number of input points. If the either of the max number is reached, the algorithms will quit and provide a best possible output. In order to save the computation time, we will use embedded input points to compute function values. This means that if the algorithms enter the next iteration, the number of input points used will be multiplied by an integer and the function values from the last iteration will be saved and used again.

4.1 Trapezoidal Rule

4.1.1 Trapezoidal Rule Algorithm.

Algorithm 1 (Trapezoidal Rule). Let the sequence of algorithms $\{T_n\}_{n\in\mathcal{I}}$, and $\widetilde{V}_1(f,n)$ be as described above. Let $\tau\geq 2$ be the cone constant. Set i=1. Let $n_1=\lceil (\tau+1)/2\rceil+1$. For any error tolerance ε and input function f, do the following:

Stage 1. Estimate $||f'||_1$ and bound Var(f'). Compute and $\widetilde{V}_1(f,n)$ in (3.2).

Stage 2. Check the necessary condition for $f \in \mathcal{C}_{\tau}$. Compute

$$\tau_{\min,n_i} = \frac{F_{n_i}(f)}{\widetilde{F}_{n_i}(f) + F_{n_i}(f)/(2n_i - 2)}.(C)$$

(Change) If $\tau \geq \tau_{\min,n_i}$, then go to stage 3. Otherwise, set $\tau = 2\tau_{\min,n_i}$. If $n_i \geq (\tau + 1)/2$, then go to stage 3. Otherwise, choose

$$n_{i+1} = 1 + (n_i - 1) \left\lceil \frac{\tau + 1}{2n_i - 2} \right\rceil.$$

Go to Stage 1.

Stage 3. Check for convergence. Check whether n_i is large enough to satisfy the error tolerance, i.e.

$$\widetilde{F}_{n_i}(f) \le \frac{4\varepsilon(n_i-1)(2n_i-2-\tau)}{\tau}.$$

(Change) If this is true, then return $T_{n_i}(f)$ and terminate the algorithm. If this is not true, choose

$$n_{i+1} = 1 + (n_i - 1) \max \left\{ 2, \left\lceil \frac{1}{(n_i - 1)} \sqrt{\frac{\tau \widetilde{F}_{n_i}(f)}{8\varepsilon}} \right\rceil \right\}.$$

(Change) Go to Stage 1.

4.1.2 Computational Cost of Traezoidale Rule.

Theorem 1. Let $\sigma > 0$ be some fixed parameter, and let $\mathcal{B}_{\sigma} = \{f \in \mathcal{V}^1 : \operatorname{Var}(f') \leq \sigma\}$. Let $T \in \mathcal{A}(\mathcal{B}_{\sigma}, \mathbb{R}, \operatorname{INT}, \Lambda^{\operatorname{std}})$ be the non-adaptive trapezoidal rule defined by Algorithm ??, and let $\varepsilon > 0$ be the error tolerance. Then this algorithm succeeds for $f \in \mathcal{B}_{\sigma}$, i.e., $|\operatorname{INT}(f) - T(f, \varepsilon)| \leq \varepsilon$, and the cost of this algorithm is $\left\lceil \sqrt{\sigma/(8\varepsilon)} \right\rceil + 1$, regardless of the size of $\operatorname{Var}(f')$.

Now let $T \in \mathcal{A}(\mathcal{C}_{\tau}, \mathbb{R}, \mathrm{INT}, \Lambda^{\mathrm{std}})$ be the adaptive trapezoidal rule defined by Algorithm ??, and let τ , n_1 , and ε be as described there. Let \mathcal{C}_{τ} be the cone of

functions defined in (??). Then it follows that Algorithm ?? is successful for all functions in C_{τ} , i.e., $|INT(f) - T(f, \varepsilon)| \leq \varepsilon$. Moreover, the cost of this algorithm is bounded below and above as follows:

$$\max\left(\left\lceil\frac{\tau+1}{2}\right\rceil, \left\lceil\sqrt{\frac{\operatorname{Var}(f')}{8\varepsilon}}\right\rceil\right) + 1$$

$$\leq \max\left(\left\lceil\frac{\tau+1}{2}\right\rceil, \left\lceil\sqrt{\frac{\tau \|f'-f(1)+f(0)\|_{1}}{8\varepsilon}}\right\rceil\right) + 1$$

$$\leq \cot(T, f; \varepsilon)$$

$$\leq \sqrt{\frac{\tau \|f'-f(1)+f(0)\|_{1}}{2\varepsilon}} + \tau + 4 \leq \sqrt{\frac{\tau \operatorname{Var}(f')}{4\varepsilon}} + \tau + 4. \quad (4.1)$$

The algorithm is computationally stable, meaning that the minimum and maximum costs for all integrands, f, with fixed $||f' - f(1) + f(0)||_1$ or Var(f') are an ε -independent constant of each other.

Need proof

4.2 Simpson's rule

4.2.1 Simpson's Rule Algorithm.

Algorithm 2 (Adaptive Univariate Integration). Given an interval [a, b], an inflation function, \mathfrak{C} , a positive key mesh size \mathfrak{h} , a positive error tolerance, ε , and a routine for generating values of the integrand, f, set l = 1, and $n_1 = 2(\lfloor (b-a)/\mathfrak{h} \rfloor + 1)$.

Stage 1 Compute the error estimate $\widetilde{\text{err}}(f, n_l)$ according to (??).

Stage 2 If $\widetilde{\operatorname{err}}(f, n_l) \leq \varepsilon$, then return the Simpson's rule approximation $S_{n_l}(f)$ as the answer.

Stage 3 Otherwise let $n_{l+1} = \max(2, m)\eta_l$, where

$$m = \min\{r \in \mathbb{N} : \eta(rn_l)\widetilde{V}_{n_l(f)} \le \varepsilon\}, \text{ with } \eta(n) := \frac{(b-a)^4\mathfrak{C}(2(b-a)/n)}{5832n^4}.$$

increase l by one, and go to 1.

Theorem 2. Algorithm 2 is successful, i.e.,

$$\left| \int_a^b f(x) dx - \mathit{integral}(f, a, b, \varepsilon) \right| \le \varepsilon, \qquad \forall f \in \mathcal{C}.$$

4.2.2 Computational Cost of Simpson's Rule.

Theorem 3. Let $N(f, \varepsilon)$ denote the final number of n_l in Stage 2 when the algorithm terminates. Then this number is bounded below and above in terms of the true, yet unknown, Var(f''').

$$\max\left(\left\lfloor \frac{2(b-a)}{\mathfrak{h}}\right\rfloor + 1, \left\lceil (b-a)\left(\frac{\operatorname{Var}(f''')}{5832\varepsilon}\right)^{1/4}\right\rceil\right) \le N(f,\varepsilon)$$

$$\le 2\min\left\{n \in \mathbb{N} : n \ge 2\left(\left\lfloor \frac{(b-a)}{\mathfrak{h}}\right\rfloor + 1\right), \eta(n)\operatorname{Var}(f''') \le \varepsilon\right\}$$

$$\le 2\min_{0 < \alpha \le 1} \max\left(2\left(\left\lfloor \frac{(b-a)}{\alpha\mathfrak{h}}\right\rfloor + 1\right), (b-a)\left(\frac{\mathfrak{C}(\alpha\mathfrak{h})\operatorname{Var}(f''')}{5832\varepsilon}\right)^{1/4} + 1\right). (4.2)$$

The number of function values required by the algorithm is $3N(f,\varepsilon)+1$.

Proof. No matter what inputs f and ε are provided, $N(f,\varepsilon) \geq n_1 = 2(\lfloor (b-a)/\mathfrak{h} \rfloor + 1)$. Then the number of intervals increases until $\widetilde{\text{err}}(f,n) \leq \varepsilon$, which by (??) implies that $\overline{\text{err}}(f,n) \leq \varepsilon$. This implies the lower bound on $N(f,\varepsilon)$.

Let L be the value of l for which Algorithm 2 terminates. Since n_1 satisfies the upper bound, we may assume that $L \geq 2$. Let m be the integer found in Step 3, and let $m^* = \max(2, m)$. Note that $\eta((m^* - 1)n_{L-1}) \operatorname{Var}(f''') > \varepsilon$. For $m^* = 2$, this is true because $\eta(n_{L-1}) \operatorname{Var}(f''') \geq \eta(n_{L-1}) \widetilde{V}_{n_{L-1}}(f) = \widetilde{\operatorname{err}}(f, n_{L-1}) > \varepsilon$. For $m^* = m > 2$ it is true because of the definition of m. Since η is a decreasing function, it follows that

$$(m^* - 1)n_{L-1} < n^* := \min \left\{ n \in \mathbb{N} : n \ge \left\lfloor \frac{2(b-a)}{n} \right\rfloor + 1, \eta(n) \operatorname{Var}(f''') \le \varepsilon \right\}.$$

Therefore $n_L = m^* n_{L-1} < m^* \frac{n^*}{m^*-1} = \frac{m^*}{m^*-1} n^* \le 2n^*$.

To prove the latter part of the upper bound, we need to prove that

$$n^* \le \max\left(\left\lfloor \frac{2(b-a)}{\alpha \mathfrak{h}} \right\rfloor + 1, (b-a) \left(\frac{\mathfrak{C}(\alpha \mathfrak{h}) \operatorname{Var}(f''')}{5832\varepsilon}\right)^{1/4} + 1\right), \quad 0 < \alpha < 1.$$

For fixed $\alpha \in (0, 1]$, we only need to consider that case where $n^* > \lfloor 2(b-a)/(\alpha \mathfrak{h}) \rfloor + 1$. This implies that $n^*-1 > \lfloor 2(b-a)/(\alpha \mathfrak{h}) \rfloor \geq 2(b-a)/(\alpha \mathfrak{h})$ thus $\alpha \mathfrak{h} \geq 2(b-a)/(n^*-1)$. Also by the definition of n^* , η , and \mathfrak{C} is non-decreasing:

$$\begin{split} &\eta(n^*-1)\operatorname{Var}(f''')>\varepsilon,\\ &\Rightarrow 1<\left(\frac{\eta(n^*-1)\operatorname{Var}(f''')}{\varepsilon}\right)^{1/4},\\ &\Rightarrow n^*-1< n^*-1\left(\frac{\eta(n^*-1)\operatorname{Var}(f''')}{\varepsilon}\right)^{1/4},\\ &= n^*-1\left(\frac{(b-a)^4\mathfrak{C}(2(b-a)/(n^*-1))\operatorname{Var}(f''')}{5832(n^*-1)^4\varepsilon}\right)^{1/4},\\ &\leq (b-a)\left(\frac{\mathfrak{C}(\alpha\mathfrak{h})\operatorname{Var}(f''')}{5832\varepsilon}\right)^{1/4}. \end{split}$$

This completes the prove of latter part of the upper bound.

Say something about next Chapter

LOWER BOUND OF COMPLEXITY

In the previous Chapter, we have discussed the algorithms and their computational cost. In this Chapter, we will discuss the lower bound of complexity. The complexity of a problem is that... So if the lower bound of the complexity is asymptotically xxx to the computational cost, it proves that our algorithm is optimal. (Need to ask.) The method of proving the lower bound of complexity is by providing a fooling function to show that no matter how good the algorithms are, it will always be fooled by the function and provide a wrong answer. (Need say more.)

5.1 Traezoidale rule Firstly, we derive a lower bound on the cost of approximating functions in the ball \mathcal{B}_{σ} and in the cone \mathcal{C}_{τ} by constructing fooling functions. Following the arguments of Section ??, we choose the triangle shaped function $f_0: x \mapsto 1/2 - |1/2 - x|$. Then

$$|f_0|_{\widetilde{\mathcal{F}}} = ||f_0' - f_0(1) + f_0(0)||_1 = \int_0^1 |\operatorname{sign}(1/2 - x)| \, dx = 1,$$

 $|f_0|_{\mathcal{F}} = \operatorname{Var}(f_0') = 2 = \tau_{\min}.$

For any $n \in \mathcal{J} := \mathbb{N}_0$, suppose that the one has the data $L_i(f) = f(\xi_i)$, $i = 1, \ldots, n$ for arbitrary ξ_i , where $0 = \xi_0 \le \xi_1 < \cdots < \xi_n \le \xi_{n+1} = 1$. There must be some $j = 0, \ldots, n$ such that $\xi_{j+1} - \xi_j \ge 1/(n+1)$. The function f_1 is defined as a triangle function on the interval $[\xi_j, \xi_{j+1}]$:

$$f_1(x) := \begin{cases} \frac{\xi_{j+1} - \xi_j - |\xi_{j+1} + \xi_j - 2x|}{8} & \xi_j \le x \le \xi_{j+1}, \\ 0 & \text{otherwise.} \end{cases}$$

This is a piecewise linear function whose derivative changes from 0 to 1/4 to -1/4 to

0 provided $0 < \xi_j < \xi_{j+1} < 1$, and so $|f_1|_{\mathcal{F}} = \operatorname{Var}(f_1') \leq 1$. Moreover,

INT
$$(f) = \int_0^1 f_1(x) dx = \frac{(\xi_{j+1} - \xi_j)^2}{16} \ge \frac{1}{16(n+1)^2} =: g(n),$$
$$g^{-1}(\varepsilon) = \left[\sqrt{\frac{1}{16\varepsilon}} \right] - 1.$$

Using these choices of f_0 and f_1 , along with the corresponding g above, one may invoke Theorems ??-??, and Corollary ?? to obtain the following theorem.

Theorem 4. For $\sigma > 0$ let $\mathcal{B}_{\sigma} = \{ f \in \mathcal{V}^1 : \operatorname{Var}(f') \leq \sigma \}$. The complexity of integration on this ball is bounded below as

$$comp(\varepsilon, \mathcal{A}(\mathcal{B}_{\sigma}, \mathbb{R}, INT, \Lambda^{std}), \mathcal{B}_{s}) \geq \left\lceil \sqrt{\frac{\min(s, \sigma)}{16\varepsilon}} \right\rceil - 1.$$

Algorithm ?? using the trapezoidal rule has optimal order in the sense of Theorem ??.

For $\tau > 2$, the complexity of the integration problem over the cone of functions \mathcal{C}_{τ} defined in $(\ref{eq:total_$

$$comp(\varepsilon, \mathcal{A}(\mathcal{C}_{\tau}, \mathbb{R}, INT, \Lambda^{std}), \mathcal{B}_{s}) \geq \left\lceil \sqrt{\frac{(\tau - 2)s}{32\tau\varepsilon}} \right\rceil - 1.$$

The adaptive trapezoidal Algorithm $\ref{eq:local_transform}$ has optimal order for integration of functions in \mathcal{C}_{τ} in the sense of Corollary $\ref{eq:local_transform}$.

(5.1a)

Simpson's rule building fooling function:

$$bump(x;t,h) := \begin{cases} (x-t)^3/6, & t \le x < t+h, \\ [-3(x-t)^3 + 12h(x-t)^2 - 12h^2(x-t) + 4h^3]/6, & t+h \le x < t+2h, \\ [3(x-t)^3 - 24h(x-t)^2 + 60h^2(x-t) - 44h^3]/6, & t+2h \le x < t+3h, \\ (t+4h-x)^3/6, & t+3h \le x < t+4h, \\ 0, & \text{otherwise,} \end{cases}$$

 $\operatorname{bump'''}(x;t,h) := \begin{cases} 1, & t \le x < t+h, \\ -3, & t+h \le x < t+2h, \\ 3, & t+2h \le x < t+3h,, \\ -1, & t+3h \le x < t+4h, \\ 0, & \text{otherwise,} \end{cases}$ (5.1b)

Var(bump'''(
$$\cdot$$
; t, h)) ≤ 16 with equality if $a < t < t + 4h < b$, (5.1c)
$$\int_{-b}^{b} \operatorname{peak}(x; t, h) dx = h^{4}. \tag{5.1d}$$

$$\int_{a}^{b} \operatorname{peak}(x; t, h) dx = h^{4}. \tag{5.1d}$$

The following double-bump function always lies in C:

twobp
$$(x; t, h, \pm) := \text{bump}(x; a, \mathfrak{h}) \pm \frac{15[\mathfrak{C}(h) - 1]}{16} \text{bump}(x; t, h)$$
$$a + 5\mathfrak{h} \le h \le b - 5h, 0 \le h < \mathfrak{h}. \quad (5.2a)$$

$$Var(twobp'''(x;t,h,\pm)) = 15 + 16\frac{15[\mathfrak{C}(h)-1]}{16} = 15\mathfrak{C}(h).$$
 (5.2b)

From this definition it follows that

$$\mathfrak{C}(\operatorname{size}(\{x_j\}_{j=0}^{n+1}))\widehat{V}(\operatorname{twobp}'''(x;t,h,\pm),\{x_j\}_{j=0}^{n+1})$$

$$\geq \begin{cases} 15\mathfrak{C}(h) = \operatorname{Var}(\operatorname{twobp}'''(x;t,h,\pm)), h \leq \operatorname{size}(\{x_j\}_{j=0}^{n+1})) < \mathfrak{h} \\ \mathfrak{C}(0)\operatorname{Var}(\operatorname{twobp}'''(x;t,h,\pm)), 0 \leq \operatorname{size}(\{x_j\}_{j=0}^{n+1})) < h \end{cases}$$

$$\geq \operatorname{Var}(\operatorname{twobp}'''(x;t,h,\pm))$$

Although twobp"'($x; t, h, \pm$) may have a bump with arbitrarily small width 4h, the height is small enough for twobp"'($x; t, h, \pm$) to lie in the cone.

complexity:

Theorem 5. Let int be any (possibly adaptive) algorithm that succeeds for all integrands in C, and only uses function values. For any error tolerance $\varepsilon > 0$ and any arbitrary value of Var(f'''), there will be some $f \in C$ for which int must use at least

$$-\frac{5}{4} + \frac{b - a - 5\mathfrak{h}}{8} \left[\frac{[\mathfrak{C}(0) - 1] \operatorname{Var}(f''')}{\varepsilon} \right]^{1/4}$$
 (5.3)

function values. As $Var(f''')/\varepsilon \to \infty$ the asymptotic rate of increase is the same as the computational cost of integral.

Proof. For any positive α , suppose that $\operatorname{int}(\cdot, a, b, \varepsilon)$ evaluates integrand $\alpha \operatorname{bump}'''(\cdot; t, h)$ at n nodes before returning to an answer. Let $\{x_j\}_{j=1}^m$ be the m < n ordered nodes used by $\operatorname{int}(\cdot, a, b, \varepsilon)$ that fall in the interval (x_0, x_{m+1}) where $x_0 := a + 3\mathfrak{h}$, $x_{m+1} := b - h$ (why h but not \mathfrak{h} or 5h?) and $h := (b - a - 5\mathfrak{h})/(4n + 5)$. There must e at least one of these x_j with $i = 0, \dots, m$ for which

$$\frac{x_{j+1} - x_j}{4} \ge \frac{x_{m+1} - x_0}{4(m+1)} \ge \frac{x_{m+1} - x_0}{4(n+1)} = \frac{b - a - 5\mathfrak{h} - h}{4n + 4} = h.$$

Choose one such x_j and call it t. The choice of t and h ensures that $int(\cdot, a, b, \varepsilon)$ cannot distinguish between $\alpha bump(\cdot; t, h)$ and $\alpha twobp(\cdot; t, h, \pm)$. Thus

$$int(\alpha twobp(\cdot;t,h,\pm),a,b,\varepsilon) = int(\alpha bump(\cdot;t,h),a,b,\varepsilon)$$

Moreover, α bump $(\cdot; t, h)$ and α twobp $(\cdot; t, h, \pm)$ are all in the cone \mathcal{C} . This means that int is successful for all of the functions.

$$\begin{split} \varepsilon & \geq \frac{1}{2} \left[\left| \int_a^b \alpha \mathrm{twobp}(x;t,h,-) dx - \mathrm{int}(\alpha \mathrm{twobp}(\cdot;t,h,-),a,b,\varepsilon) \right| \right. \\ & + \left| \int_a^b \alpha \mathrm{twobp}(x;t,h,+) dx - \mathrm{int}(\alpha \mathrm{twobp}(\cdot;t,h,+),a,b,\varepsilon) \right| \left. \right] \\ & \geq \frac{1}{2} \left[\left| \mathrm{int}(\alpha \mathrm{bump}(\cdot;t,h,-),a,b,\varepsilon) - \int_a^b \alpha \mathrm{twobp}(x;t,h,-) dx \right| \right. \\ & + \left| \int_a^b \alpha \mathrm{twobp}(x;t,h,+) dx - \mathrm{int}(\alpha \mathrm{bump}(\cdot;t,h,+),a,b,\varepsilon) \right| \left. \right] \\ & \geq \frac{1}{2} \left| \int_a^b \alpha \mathrm{twobp}(x;t,h,+) dx - \int_a^b \alpha \mathrm{twobp}(x;t,h,-) dx \right| \\ & = \int_a^b \alpha \mathrm{bump}(x;t,h) dx \\ & = \frac{15\alpha [\mathfrak{C}(h)-1]h^4}{16} \\ & = \frac{[\mathfrak{C}(h)-1]h^4 \operatorname{Var}(\alpha \mathrm{bump}'''(\cdot;a,\mathfrak{h}))}{16} \end{split}$$

Substituting h in terms of n:

$$\begin{split} 4n+5 &= \frac{b-a-5\mathfrak{h}}{h} \geq (b-a-5\mathfrak{h}) \left[\frac{\left[\mathfrak{C}(h)-1\right] \operatorname{Var}(\alpha \mathsf{bump'''}(\cdot;a,\mathfrak{h})))}{16\varepsilon} \right]^{1/4}, \\ &\geq \frac{b-a-5\mathfrak{h}}{2} \left[\frac{\left[\mathfrak{C}(0)-1\right] \operatorname{Var}(\alpha \mathsf{bump'''}(\cdot;a,\mathfrak{h}))}{\varepsilon} \right]^{1/4}. \end{split}$$

Since α is an arbitrary positive number, the value of $Var(\alpha bump'''(\cdot; a, \mathfrak{h}))$ is arbitrary.

Finally, comparing the upper bound on the computational cost of integral in (4.2) with the lower bound on the computational cost of the best algorithm in (5.3), both of them increase as $\mathcal{O}((\operatorname{Var}(f''')/\varepsilon))^{1/4}$ as $(\operatorname{Var}(f''')/\varepsilon)^{1/4} \to \infty$. Thus integral is optimal.

NUMERICAL EXPERIMENTS

6.1 Traezoidale rule Consider the family of bump test functions defined by

$$f(x) = \begin{cases} b[4a^2 + (x-z)^2 + (x-z-a)|x-z-a| \\ -(x-z+a)|x-z+a|], & z-2a \le x \le z+2a, \quad (6.1) \end{cases}$$

$$0, & \text{otherwise.}$$

with $\log_{10}(a) \sim \mathcal{U}[-4, -1]$, $z \sim \mathcal{U}[2a, 1 - 2a]$, and $b = 1/(4a^3)$ chosen to make $\int_0^1 f(x) dx = 1$. It follows that $||f' - f(1) + f(0)||_1 = 1/a$ and $Var(f') = 2/a^2$. The probability that $f \in \mathcal{C}_\tau$ is min $(1, \max(0, (\log_{10}(\tau/2) - 1)/3))$.

As an experiment, we chose 10000 random test functions and applied Algorithm ?? with an error tolerance of $\varepsilon = 10^{-8}$ and initial τ values of 10, 100, 1000. The algorithm is considered successful for a particular f if the exact and approximate integrals agree to within ε . The success and failure rates are given in Table 6.1. Our algorithm imposes a cost budget of $N_{\text{max}} = 10^7$. If the proposed n_{i+1} in Stages 2 or 3 exceeds N_{max} , then our algorithm returns a warning and falls back to the largest possible n_{i+1} not exceeding N_{max} for which $n_{i+1} - 1$ is a multiple of $n_i - 1$. The probability that f initially lies in \mathcal{C}_{τ} is the smaller number in the third column of Table 6.1, while the larger number is the empirical probability that f eventually lies in \mathcal{C}_{τ} after possible increases in τ made by Stage 2 of Algorithm ??. For this experiment Algorithm ?? was successful for all f that finally lie inside \mathcal{C}_{τ} and for which no attempt was made to exceed the cost budget.

Some commonly available numerical algorithms in MATLAB are quad and integral [?] and the MATLAB Chebfun toolbox [?]. We applied these three routines

			Success	Success	Failure
	au	$\operatorname{Prob}(f \in \mathcal{C}_{\tau})$	No Warning	Warning	No Warning
	10	$0\% \rightarrow 25\%$	25%	< 1%	75%
Algorithm ??	100	$23\% \rightarrow 58\%$	56%	2%	42%
	1000	$57\% \rightarrow 88\%$	68%	20%	12%
quad			8%		92%
integral			19%		81%
chebfun			29%		71%

Table 6.1. The probability of the test function lying in the cone for the original and eventual values of τ and the empirical success rate of Algorithm ?? plus the success rates of other common quadrature algorithms.

to the random family of test functions. Their success and failure rates are also recorded in Table 6.1. They do not give warnings of possible failure.

6.2 Simpson's Rule I need to use a good example to run the tests. Then I will need to compare the results for both algorithms with other algorithms. After that, I need to compare trap and sim to get the conclusion such as sim has faster convergence rate than trap. This will require an sample function good to both trap and sim.

CONCLUSION

A

7.1 Summary

A

APPENDIX A $\label{thm:coefficients} \mbox{TABLE OF TRANSITION COEFFICIENTS FOR THE DESIGN OF } \\ \mbox{LINEAR-PHASE FIR FILTERS}$

Your Appendix will go here!

$\label{eq:appendix} \text{APPENDIX B}$ NAME OF YOUR SECOND APPENDIX

Your second appendix text....

$\label{eq:appendix} \mbox{APPENDIX C}$ NAME OF YOUR THIRD APPENDIX

Your third appendix text....