南京邮电大学 2016 / 2017 学年第一学期

《数字信号处理 (双语)》期末试卷

1111

院(系)	班级	<u> </u>	姓名		
				12.1	
題号 一二	= 四			总分	
得分					
得分					
一、选择题	(10分,每题1分)			
(1). When sampling a sp	ech signal at a rate 8kl	Sky. Iz the cutoff frequ		文化值: aliasing	e ;
prefilter should be	C WHZ ts 8	F47.	, -	,	***
A. 16 B. 8	C. 4 D. 2	4/2) = 1	<u>-73-1</u>	•	
Consider a causal a	ad stable system $H(z)$	$= (1 - 2z^{-1})/(1 -$	$-0.5z^{-1}$). To m	ake its	• .
	(z) (stable) the im			uld be	
わ (B)	u(n-1) B.	IN (B)= THE			*
A. $2^n u(n) - 0.5 \cdot 2$	u(n-1) B =	$2^n u(-n-1) + 0.5$	$-2^{n-1}u(-n)$		*.
	u(n) D. $$			1 1 31 1	
	$(1+z^{-1})(1+2z^{-1})(1+z^{-1})$				*4
	highpass . C. band				
A time-windowing					
	ow $w(n)$ is $W(\omega)$,	then the DIFF o	t the windowed ∧ ∠ ∧ ∧	C v r r ⊃10 n Sagnai	4.元47万千
$x(n) \cdot w(n)$ is (4.5		71 2 211. E-10 3	S/w-2111	41200
$A = 2\pi A\delta(\omega - \omega_i)$) 3. Αδ(ω D. Αδ(ω	$-\omega_1$)	M 254.2	i. Na mazi d	N/W-6
\mathcal{L} $AW(\omega_{-} \omega_{i})$.	D. Αδ(ω	$-\omega_{\rm r}) m (\omega - \omega_{\rm r})$	In SELEC)	
	nber of delay units in	a system, we may	realize the sys	arioyanu	part Ty
1 (C)		正准实现形式		A STATE OF THE STA	
A. direct form	3./ cascade form C.	> cauonical tomis	D. paral	ia roun	$\frac{1}{2}$
(6) The 8-point DFT of	\vec{x} is $[8,0,-8j,8,8,8]$	3,81,0]. Then the	4-point DFT of	3.4 71 a	X X W1 114
\ is(C).	j (2 - 2)	6 5 5 N J		al li	
A. [8, -8j,8,8j]	B. [0,8,8,0] 18	[4,-4],4,4]	D. [0, 4, 4, 0]	•	
. (3	效字信号处理 å(双语))	试卷 第1页共	東	1000 4	
, in the second	改定信号を選(及语)) - 「「「「」」 - 「一」」 - 「一」」	1	0,-4j,4 11 11 0	, 4 , 4 , 4 ;	j) Ü
			-a -a g	40-4	14
J	MA				

(N.)
7.) When the N-point DFT of a length-N signal is implemented by matrix form the total
number of complex multiplications is ((). 延丹形式
A. $N \log_2 N$ B. $\frac{N}{2} \log_2 N$ C. N^2 D. $N(N-1)$
\sim
8. Compute the linear convolution of a long sequence x and the order-4 FIR filter he using Everlap-add method. If the block convolutions use length-16 circular convolution,
$p_{\theta} \Sigma$, then the length of the blocks should be (A)
LXI+M=NA. 12 B. 16 t/E C. 8 D. 3 overlap-add.
(2) The DIFT X(w) of a complex signal x(n) satisfies ()
$X(\omega) = X(-\omega)$ B. $X(\omega) = X'(-\omega) \rightarrow \chi_{(0)} + $
C. $X(\omega) = X(2\pi + \omega)$ D. $X(\omega) = X(\pi + \omega)$
10. The bilinear transform maps the left-hand s-plane into the area of () on the
z-plane to guarantee the stability and causality of the designed digital filter.
A. $ z > 0$ B. $ z > 1$ C. $ z < 0$ $ z < 1$
得 分
二、填空题(10分,每空1分)
1. In general, the windowing process has two major effects of the factor and
O引发用18多频的特殊的高频合号,导致频率增强的。
清海 重义 美国河 the three realization forms of digital filter (direct; canonical; cascade), the form less 致政的 是其实 Mensitive to coefficient quantization errors than the other two is cascade torm.
3. To generate a periodic signal [1,-2,0,31,-2,0,3,2,] with period of 4, the system.
$h(t) = \int_{-\infty}^{\infty} f(t) dt$ should be $H(z) = \frac{1-3z^2+3z^2}{4z^2}$
(ZC+Z+Z+4) A 10kHz sinusoidal signal is sampled at 40kHz and 10 periods of the signal are 40 + 14x10 + 40+15 collected. Suppose a 20-point DFT is performed, the DFT indices in the range
1 m 0 10 K x 19 corresponding to the singular in the singular
$2(Z+Z+Z^{9}+)$ $0 \le k \le 19$ corresponding to the peaks in the spectrum are $k=\sqrt{\frac{1}{16}}=20 \times \frac{1}{40}$
3(7^3+7^4+5) Suppose the DTFT of $[x_0,x_1,x_2,x_3]$ is $X(\omega)$. The DTFT of $[0,0,x_0,x_1,x_2,x_3]$ =5 1. 27^4 is $e^{3\omega}X(\omega)$. $X(\omega) \ge 0$
$\frac{1}{1-2^{n}}$ + $\frac{1}{1-2^{n}}$ (6.) Consider a causal FIR system $h(n) = [h(0), h(1), \dots, h(M)]$. $y(n)$ is the output signal for
the input $x(n) = [x(0), x(1), \cdots h(L-1)] - h(L < M)$ the range of the input-on transient, $\mathcal{R}(1)$
steady state and input-off transfer are 10.4 to 14. Miles respectively. 4(10) mh/m/x(10-m)
L <m (011-1)="" (1-1,="" 7="" 70,="" m+1-1)<="" td=""></m>
无格器: 30≤n-mely = max(o,n-l+1) & n <l+1<m< td=""></l+1<m<>
n-(l-1)≤ m ≤ n min(n, h) min(n, m) Lzm.
0 ≥ n < M+L-1, max[0, n-(L-1)]

```
11. Js.12 = Tifs
                                             fs=4KH8; [-2, 5]
                              if fia = fimed fs = 5 How mod 4
                                                                                                                                                                                                                                                                                                       = 240K Bytes
               1- (Xalt)= (05 13 Tt) + 45/1(Tt)
                                                                                                                                                                                                                                                         黑线条头
70岁(11) : 413) 13-17
                                                                                                                                             1. The signal x(t) = \cos(5\pi) + 4\sin(\pi), where t is in milliseconds, is sampled at
                          =H(w)|_{w=\pi} = \frac{b}{1+a}
                                                                                                                                                      sampling rate (f_x = 4 \text{ kHz.})
                                                                                                                                                      a) Determine the signal x_a(t) aliased with x(t).
                                                                                                                                                     b) If each sampled value is quantized by 8 bits, how many bytes of disk space should be to
                        1 = 1= ( SINH :
                                                                                                                                                                store I minute signal.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            (10.分)
                 .: S.1-13" is unchanged in the output of the filter
         D) A him = $ b. ah uins
                                                                                                                                                                                                                                                                                                                                                                                                      H(z) = b/(1-az^{-1})
                                                                                                                                                                                                               we use the (lowpass) filter
                                                                                                       ::02a 2.
                   NRR= =hn
                                                                                                                                                        0 < a < 1, b = 1 + a, to extract the high-frequency signal x(n) = s(-1)^n + v(n),
                                           = (1+\alpha)^{\frac{\lambda}{2}} \frac{1}{1-\alpha^{\frac{\lambda}{2}}}
                                                                                                                                                       where s is constant and v(n) is zero-mean white noise of variance \sigma_v^2.
             a) Explain why the desired part s(-1)^n is unchanged in the output of the noise is amplified. (A) b) Calculate the NRR and determine if the noise is amplified.
                                                                                                                                                         a) Explain why the desired part s(-1)^n is unchanged in the output of the filter.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (10 分)
                                    : 64v >6v >
        3. A signal consisting of four sinusoids of frequencies of 1, 1.5, 2 and 2.25kHz is sampled at 3 min = 2 × 5k-2 K (trate of 8kHz.

= 0.15kHz.

a) Determine the minimum number of (samples) that should be collected for the
                                                                                                                                                                                   frequency spectrum to exhibit four distinct peaks at these frequencies.
Afmin > 15
                                                                                                                                                               b) How many samples should be collected if a Hanning window is used for
                                \frac{1}{2} \frac{1}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            (10.分)
           16) L>, c 15 = 64
                                                                                                                                           4. Considering the signal x(n) = \cos(m/4) + 2\cos(m/8) (n = 0,1,...,15) Determine
      4 酿: ca) XINI=105(型)
                                                                                                                                       the fo-point DFT and 8-point DFT spectrum of x(n) without performing any DFT or
                       = -10学+0-1年1)+
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (10分)
                             e^{\frac{\pi n}{8} + e^{-\frac{\pi}{8}n}}
                     = \frac{1}{2}e^{i\frac{\pi}{4}n} + \frac{1}{2}e^{i\frac{\pi}{4}n} + e^{i\frac{\pi}{8}} Design a lowpass digital FIR filter with cutoff frequency \omega_c = 0.4\pi using a
                                                                                                                                                                     rectangular window of length N=21.
                           12 LEIBEN =16# 1
               (x_{(n)}) = (x_{(n)}) of the designed filter.

(x_{(n)}) = \frac{1}{16} \sum_{k=0}^{16} x_{(k)} e^{i \int_{-\infty}^{\infty} x_{(k)}} e^{i \int_{-\infty}^{\infty} x_{(k)} e^{i \int_{-\infty}^{\infty} x_{(k)} e^{i \int_{-\infty}^{\infty} x_{(k)}} e^{i \int_{-\infty}^{\infty} x_{(k)} e^{
                                                                                                                                                                          stophand attenuation simultaneously?

M_{\pi}^{2}: N=21, M=\frac{N}{2}=10

                                                                                                                                                                                               17 - N - 21, M = \sqrt{2} = 10
103 \text{ d(k)} = \frac{100}{100} \text{ mosker} \qquad \frac{1}{100} = \frac{100}{100} \text{ mosker} \qquad \frac{1}{100} = \frac{100}{100} = \frac{100}
                             X(1)=183, X(2)=8;
                                   X(12) = 87 X(15) = 16
                                                                                                                                                                                        (163 中曾大心(数学信号处理》(双语)) 成节 第 3 页 <u>Sin [0.47(n-10]</u>
图汉明窗,并把窗台增大列原来的工程以上
       : X = [0, 16, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
            8-point = [0.8,0,0,0,0,8,0]
```


南京邮电大学 2015 / 2016 学年第二学期

《数字信号处理 A (双语)》 试卷

院(系)	* * * *		·, ·	班级_			学号_		姓名		· —
题号			ΓΞ	E 53	Ā	六、	1 +	· 入	九十十	总分	· } .
得分			-							1/2	
(2)	sampled disk so A who mean appar whee	ed valued	store ating a strob tationa	uantized the sign at 8Hz at 8Hz at light all speed at light at lig	flashir	ning clarge one	ockwise per and is the	neede, is see 0.1 sec sense	e of 8kHz, and 420 km by the in a dark round. Determine of rotation for a LTI system.	deach ytes of om by one the factor of the	1 = 10 Hz f med fs = -M
(4)	is	A.H.tw. zero of gnal $x(t)$ ected. S	$H(z)$ $= \cos($ Suppos	$=\frac{1}{1-0}$ $2\pi f_1(t)+c$	$\frac{1}{5z^{-1}}$ is $\frac{1}{5z^{-1}}$ os $\frac{2\pi f_2}{2}$	s <u>}=</u> t) is sa OFT is	armpled:	nd the po at 20kH med, th	ponse of this- pole is 2 0 z and 128 sample physical frequency res	oples are	\$ -0.5 \$ = 20 KHZ
	is _ ③) Sup (基	ofton pose a 二)F		nt DFT i	s com	puted i	nsing the	ne decir	时分算 nation-in-time ex multiplicat 	n radix-2 ions is	L=128
	二、选: D. The		ar tran	storm rr	ans the	e left-t	nand s-r	olane in≀	to the area of (()) on	. •
· · · · · · · · · · · · · · · · · · ·	z-pl A. 2) Cor	Tane to $ z > 0$ ansider	guaran B a F	itee the s . z > l FIR 山	stability C	y and constant $ z $.	ausality < 0 h,,,/	of the D . $ z $ $ z $	designed digita <1 d an input	al filter.	۰
		[~0,~]	, ,,,,	. 1				•	of the filter in		

B. 16×6

C. 16×7.

第1页共4页


```
177 MIN) = 19 Sin ( 27t n) = Sin ( 2710 n)
                                                    fo = 2kHz fs = 8kHz [-$ 2) [-4kHz, 4kHz]
                                                                                                                                                                                                                                                                                                                                  f=10 kHz 2= #s
                                                           N=kf,=4k k=2 N=8 N-k=6
                                                                                                             A sinusoid signal x(t)=\sin(2\pi ft) with f=10kHz is sampled at a rate of 2\pi f_a=
                                                                                                          8kHz and a finite portion of the signal is collected. f well ( = > kuz
                                                                                                           a) Determine the peak frequencies lying in the Nyquist interval [-\pi_{\mu}\pi]
                                                                                                           b) Suppose an N-point DFT is to be performed. If we expect to see the
                                                                                                           peaks in the DFT spectrum, determine the possible number of N.
                                                                                        (3) Designing FIR digital filter with window method:
                                                                                                             a) Using the inverse DTFT, derive the impulse response of an ideal lowpass
                                                                                                          digital filter with cutoff frequency \omega_c. Sm \sim m \rightarrow m 
                                                                                                                                                                                                                                                                                             K= N-1 = 5 dlk) = Shiwith him =
                                                                                                                          cutoff frequency \omega_c = 0.3 \pi.
                                                                                        (4) Design a resolution filter of the form H(z)=1/(1+a_1z^{-1}+a_2z^{-1}) which has a
                                                                                                             Design a resonator time of the form 2 \frac{1}{4} = \frac{2 \ln \epsilon}{-4 \ln \epsilon} peak at f_0 = 600 \text{Hz} and the effective time constant n_{\text{eff}} = 300 (samples) h_{\text{eff}} = \frac{2 \ln \epsilon}{-4 \ln \epsilon}
                                                                                                             corresponding to \varepsilon = 1\%, and is operating at the rate of f_s = 5kH_0 - p_0 = aw
                                                                                                              a) Compute the values of a_1 and a_2. w_0 = \frac{2\pi f_0}{f_0} and a_1 = -2R\cos w.
b) Determine the 3-dB width \Delta \omega of the resonator.
           a: -- -> Rcos Wo
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         WP= 21 F= 21X
            على = 2 (الحراج) (5) Using the bilinear transformation and a lowpass analog Butterworth
                                                                                                                 filter ,design a lowpass digital filter operating at a rate of 40kHz and
-10 10 910 +(\Omega p/\Omega r)^{2N} having the following specifications: A_{pers}=3dB, f_{pers}=10kHz, f_{stop}=15kHz,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Ws = 21 = 211x1
-10 log 10 )+ (\Omega_{0}/\Omega_{c})^{2N} having the following specifications (Apass 300, 1948)

A_{stop}=35 \text{dB}. \Omega_{0}=100 \text{dB} \Omega_{0}=1
N = liggo (10% -1 =) | liggo (10% /10 ) od
                                                                                                                                                          When \Omega_0 = 1, the analog Butterworth lowpass filter H(s) = 1/D(s)
                                                                                                                                                                                                                                                                                                                               D(s)
              Johns = 277 fpass
                                                                                                                                                                                      (1+s)(1+s+s^2)
                                                                                                                                                                                       (1+0.7654s+s^2)(1+1.8478s+s^2)
               Zpoiss = Lan What
                                                                                                                                                                                        (1+s)(1+0.6180s+s^2)(1+1.6180s+s^2)
               Agas = 10/910 (1+ (2705)2)
                                                                                                                                                                                          (1+0.5176s+s^2)(1+1.4142s+s^2)(1+1.9319s+s^2)
                                                                                                                                                                                           (1+s)(1+0.4450s+s^2)(1+1.2470s+s^2)(1+1.8019s+s^2)
               pract = [N Josephio]
                                                 · (4 ( Jesta)
          12. = Jepans = 120
(10 April ) > (11) 18-1) = 0.013719456
```

四、简答、画图、分析 (1) Define the following transforms and explain how they are related to each (ii) Discrete Fourier transform (DFT) 清海は、スロン 一 (有限な, スロン) 一 (有限な, スロン) (iii) Fast Fourier transform (FFT). DFT 砂块基子以 Explain how the DTFT is related to the analogue Fourier transform. $\begin{array}{c} \text{FT } \chi = \longrightarrow \chi_{(\mathcal{R})} \left[\varrho^{\text{int}}\right] \\ \text{£4.5 in} \left(0.5\pi n\right) + 1.5\cos(\pi n), \ n=0,1,2,\ldots,15 \end{array}$ Considering the signal $\chi(n)=0.5+2\sin(0.5\pi n)+1.5\cos(\pi n), \ n=0,1,2,\ldots,15$ a) Sketch(画草图) the spectrum $X(\omega)$ ($0 \le \omega \le 2\pi$) of x(n). ×in)=05+je=-Telin+hteJin Wo=0.5 W4=) W12=-1 W3=LI c) Determine the 8-point DFT of x(n)(3) A filter is described by the system of difference equations: v(n) = x(n) + 0.25v(n-4)y(n) = 2v(n) - 3v(n-1) + 2v(n-2) - 3v(n-3)a) Determine the transfer function H(z) of the filter. b) Draw the cascade form of SOS realization of H(z). Each SGS should be implemented with canonical form, (1) = (2-38-1+28-2-238-1) V13) $\frac{1+132 = \frac{2-33^{-1}+13^{-1}+38^{-3}}{1-0.23^{-1}} \frac{(2-338^{-1})(1+3^{-1})}{(1-0.23^{-1})(1+0.53^{-1})}$ $= \frac{2-33^{-1}}{1+0.53^{-1}} \cdot \frac{1+3^{-1}}{1-0.53^{-1}} \cdot \frac{2-32^{-1}+22^{-2}-32^{-3}}{1-0.53^{-1}}$

岡牙邮电大学 2015/2016

《数字信号处理 A(双语

10	子牛弗	-1-201	I = I = I	92_
•			16.	2/
111	Hp 2-12-14	(/ 美)	10	
<i>) </i>	期末试卷	(A TE)		8 1 W

院(系)	_ 班级		· . 27	· 号		姓	名	
	= 553	五	7.	七	入	九	十	总分
得分	-	Mary Mary				!		
			4	1	<u>; </u>	1	1	1

选择题(每题2分, 共10分)

Ħ 筵 逆

守书其里

ij

Ena = 12. 1v. A 8 second long segment signal of a continuous-time signal is uniformly sampled without aliasing and generating a finite length sequence containing 8000 samples. The highest frequency component that could be present in the continuous-time signal is (D. 0.5 KHZ A. ETUN > A. E 2718 (W-W+ZI A. 1 kHz

A signal $Ae^{j\omega_n n}$ ($-\infty < n < +\infty$) is the input of a LTI system whose frequency response is $H(e^{l\omega})$, then the response of this system is () H(w) W2师 周期,州山) A $A_i e^{j\omega_i n}$ B. $A_i H(e^{j\omega_i}) e^{j\omega_i n}$ C. $2\pi H(e^{j\omega_i}) A_i \delta(\omega - \omega_i)$ D. $A_i H(e^{j\omega_i}) e^{j\omega_i n}$

Consider the length-7 sequence $\{x[n]\}=\{3, -5, 1, 2, 7, -4, -2\}$ with $x(e^{i\sigma})$ denoting its DTFT. Let Y[k] denote the 4-point DFT obtained by evaluating

 $A_1e^{j\omega_1n}$ B. $A_1H(e^{j\omega_1})e^{j\omega_1n}$ C. $2\pi H(e^{j\omega_1})A_1\delta(\omega-\omega_1)$ D. $A_1H(e^{j\omega_1})e^{j\omega_1n}$

Consider the length-7 sequence $\{x[n]\} = \{3, -5, 1, 2, 7, -4, -2\}$ with $X(e^{n})$ denoting its DTFT. Let Y[k] denote the 4-point DFT obtained by evaluating $X(s^{ts})$ at $\omega = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$, then $y[n] = IDI^{T}(Y[k])$ is (B. (3. -5, 1, 2, 7, -4, A. (10, -9, -1, 2)

C. (3, -5, 1, 2)

 $\{-1, -7, 1, 2, 7\}$

If a Type 1 linear-phase FIR filter with a transfer function $H_1(z)$ has the 又公 Z- 105 71= -1-1 又二年了=-05-051 70=-65+66 following zeros $z_1 = 1, z_2 = -0.6, z_3 = -1 + j$, determine which of the following

z-plane point is also its zero. (()

B. $z = \frac{5}{3}$ $C/z = \frac{-1-j}{2}$ A. z = 0.6

D. z = 1 + j

5. The bilinear transform maps the left-hand s-plane into the area of (n) on the z-plane to guarantee the stability and causality of the designed digital filter.

	~\(\psi\)	12120	В.	z>	ļ	C.	z < 0	D
(A)	55		填空; ,	题 (句	空 :	L分. [XT	, 共5分 n] †X	r) *[-n]]
(1)	The	conjugat	te-sy	mmetri	c pa	uri o	f the sec	quence
	is	0		· «.		. 验	陷故:	
	frequ	transfer uency is		-3		note	h filter.	is H(z) (VS(Mu)=
(3)_	Supp	oose the l	engtl	1-8 rea	l sig	mal:	x[n]={-3 + XZ7]	

 $=1-z^{-1}+z^{-2}$, then its notch 7 2 7 4 5 6 7 -1, 3, 4, 3, 6, 7},

 $0 \le n \le 7, \text{ and its DFT is } X[k], \text{ then } \sum_{k=0}^{7} X[k] = \frac{-1}{2} \sqrt{\frac{n}{2}} \left(\frac{1}{2} \right)^{\frac{n}{2}} \left(\frac{1}{2} \right)^$

(4) Suppose the DTFT of x[n] is $X(e^{j\phi})$, the DTFT of nx[n] is $y = \frac{1}{\sqrt{1+y}}$

(5) Write out how to use the Matlab function "freqz" to compute the frequency spectrum of a causal sequence x[n] at the frequency @=[-pi:pi/255:pi]:___

hon = - hon-n = oenen c=3

(1) (2 分) What condition should the impulse response h[n] of linear-phase FIR filter satisfy?

(2) (3 分) Explain the relationship between $\delta[n]$ and $\mu[n]$.

得 分

四、计算、分析与画图(共55分)

 $x[n] = j\cos(mn/2) + \sin(2mn/7)$

(1) (15分)

Let $\{x[n]\} = \{-3, 4, -1, 4\}$ and $\{h[n]\} = \{1, 2, 1, -2\}$ be two length-4 -3.4 -1 4 sequences defined for $0 \le n \le 3$.

a) Compute the linear convolution of x[n] and h[n].

《数字信号处理 A(双语)》试卷 A 第 2 页 共 4 页 一 6

What are the total number of complex multiplications and additions needed if a Decimation-in-Time HII is used to compute all DFI samples?

- (1) (10 分) Design a lowpass digital FIR filter meeting the following specifications: $\omega_{p} = 0.65\pi, \omega_{s} = 0.76\pi, \delta_{p} = 0.002, \delta_{s} = 0.004$
 - a) Determine the impulse response h[n] of the designed filter.
- b) Would the transition width and the ripple (波纹) size of the stopband be improved if the length of window increases?

(b)

Lable		ome fixed wind	ow functions	
Type of window (length <i>N</i> =2 <i>M</i> +1)		Relative Sidelobe Level(dB)	Minimum Stopband Attenuation(dB)	Transition Bandwidth
Rectangular	$4\pi/(2M+1)$	13.3	20.9	$0.92\pi/M$
Hann	$8\pi/(2M+1)$	31.5	43.9	$3.11\pi/M$
Hamming	$8\pi/(2M+1)$	42.7	54.5	$3.32\pi/M$

58.1

75.3

 $5.56\pi IM$

Window functions:

Blackman

 $w[n]=0.5+0.5\cos(\pi n/M)$, $-M \le n \le M$ Hann:

 $12\pi/(2M+1)$

- $w[n]=0.54+0.46\cos(\pi n/M), -M \le n \le M$ Hamming:
- $w[n]=0.42+0.5\cos(\pi n/M)+0.08\cos(2\pi n/M), -M \le n \le M$ Blackman:

prototype, design a lowpass digital filter operating at a rate of 20kHz and having passband and stopband frequencies of 4kHz and 5kHz, respectively. The maximum passband and minimum stopband attenuations are required to be 0.5dB and 10dB respectively. (The magnitude response of Butterworth filter is $|H_{c}(\Omega)|^{2} = \frac{1}{2N(N_{c})^{2N}}$ $\frac{2N \cdot P}{FT} = \frac{2N(N_{c})^{2N}}{2N(N_{c})^{2N}} = \frac{1}{2N(N_{c})^{2N}}$ $\frac{10\log_{10} |H(\Omega_{c})(\Omega_{c})^{2N}}{10\log_{10} |H(\Omega_{c})(\Omega_{c})^{2N}} = \frac{1}{10}$ Table: When $\Omega_c = 1$, the analog Butterworth lowpass filter H(s) = 1/D(s)Do = tan (40) = tan (40) 11) = 0.010961 52's = N tant 45) = tanto.2511)= 0.08708942 lugio (Ds/Db) $3 \left((1+s)(1+s+s^2) \right)$ 4 $(1+0.7654s+s^2)(1+1.8478s+s^2)$ $5 (1+s)(1+0.6180s+s^2)(1+1.6180s+s^2)$ $(1+0.5176s+s^2)(1+1.4142s+s^2)(1+1.9319s+s^2)$ $(1+s)(1+0.4450s+s^2)(1+1.2470s+s^2)(1+1.8019s+s^2)$ 《数字信号处键入(双语)》期末试卷(A 卷) 145% 翅号 得分 裚 一、填空题(每空1分,共15分) iT学, 生, 些, 玩 1 fr-garks (1) A speech signal is sampled at 8000Hz and the sampling period is 1 second. Every sample is quantized to bits determine the quantized 6400 (bits) (2) When the length of the input signal x is very long, we can compute the linear convolution y=x*h by the following two methods: over by and over up. are (3) A signal $(A_1e^{j\omega_1n} + A_2e^{j\omega_2n})\mu[n]$ is the input of a LTI system whose frequency response is $H(e^{i\omega})$, then the steady-state response of this system AHIOMIENUM + XI HIEMS) EJUDIN 5

(2)/(15分)Using the bilinear transformation method and a

E TO THE TOTAL TWO MENT OF THE TOTAL	and ny w. se
(3) A signal $(A_1e^{i\omega_1n} + A_2e^{i\omega_2n})\mu[n]$ is the input of a LTI s	ystem whose
frequency response is $H(e^{i\omega})$, then the steady-state response	of this system
is AHEMPER THE SECOND	•
Suppose a 16-point DFT is computed using the decimation-i(基二) FFT algorithm, the cost of the complex multiplication	in-time radix-2
the number of the complex additions is	
(5) Suppose the length-9 real signal $x[n] = \{3, 1, -5, -11, 0, -5, -1, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1$	-5, 3, 3, 8},
(5) Suppose the length-9 real signal $x[n]=\{3, 1, -5, -11, 0, -5 \le n \le 3\}$, and its DTFT is $X(e^{l\omega})$, then $X(e^{l\omega}) = \frac{1}{2}$, $X($	$X(e^{ix}) = \frac{3}{2},$ W_{ix}^{A} b
(6) If the transfer function of a causal and stable filter is $H(z)$	$z = \frac{1}{1 - \alpha z^{-1}}$, the
pole a should satisfy $a < 1$ $\frac{b2}{z-a}$	<u>a</u> *44,
(7) Suppose you have a causal IIR digital filter with transfer f	unction, you will
	i i
高分二、判断题(每题2分,共10分)	
The system $h[n]=2^{-n}\mu[n-1]$ is linear and time-invariant.	(X)
(2) When designing the FIR filter with window method, we may	
window's length N to eliminate the largest passband and sto	opband ripples.
 (3) The FFT is a fast implementation of the DFT. (4) Suppose the DTFT of x[n] is X(e^{iw}). If x[n] is real and eve 	, Y / \
	(12)

(5) A stable and causal filter can have zeros outside the unit circle.

real and even.

南京邮电大学 2014/2015 学年第二学期

《数字信号处理 A (双语)》期末试卷 (B 卷)

	院(系) 班级	_ 学号	姓名		
	题号 二 三 四 五 ;	七	九十	总分	
- 自	得分	·			
党 装	得分.				
考 订 试 线 規	1. 选择题(10分, 每题2分)				
则内	(1) Suppose the DTFT of $x = [x_a, x_1,$	$[x_2, x_3]$ is $X(a)$) The DTI	T of	
(É	$\mathbf{x} = [x_{0}, x_{1}, x_{2}, x_{3}, 0, 0, 0]$ is (\wedge).	XCn+3.1			• •
考要试	A. $e^{-j3\omega}X(\omega)$ B. $X(\omega+3)$	C. $X(\omega)$	D. $X(\omega-3)$. •
答 绝 不 題	(2) The inverse DTFT of the $H(e^{j\omega}) = [-4 + 3 - l]_{+} + \frac{3}{2}$	10:14ED 1:	<u> </u>).	
作: 整	A. $\{h[n]\} = \{3, 1.5, -4, 1.5, 3\}$ C. $\{h[n]\} = \{6, 3, -4, 6, 3\}$	${}^{3}B.\{h[n]\} = \{1.5\}$	$3, -4, 3,$ 3^{-3} $4 + \frac{5}{2}$	1.5} 2-3000 F	
	C. $\{h[n]\} = \{6, 3, -4, 6, 3\}$	$ \underbrace{p. \{h[n]\}}_{=/h} = \underbrace{3}_{3}, $	6, -4, 3,	6}	-0\32
	(3) The ROC of the z-transform of the sequences	$x[n]=(0.3)^n\mu[n+1]$	Jis (B. 1)	3ml umi	17
(e)")====(H	-30 A. 0< z <0.3 B. 0.3< z <∞	C. $ z > 0.3$	D. z <0.3	(一) 圣二	03
(C1)= 2 U	10 1/300(4) The 3-dB cutoff frequency of the FIR lowpas	is filter $H(z) = \frac{1}{2}$	$-(1+z^{-1})$ is (;). I-US	27
2 110	A. $\pi/4$ B. $\pi/2$	C. π/8	D. $3\pi/4$.*·	
- e=(e=	A. $\pi/4$ B. $\pi/2$ $(5)(X(e^{j\omega}))$ is the DTFT of the length-4 set	equence $x = [1,2,$	2,1]. Suppose t	he DFT	
neg Lan	sequence X is obtained by sampling $X(e)$	/ ^w) at uniform inte	rvals of π/4 start	$\frac{1}{2}$ ing from $\frac{2}{2}$	
= 8-星 (1)	$\omega=0$. Then the IDFT of X is ().	C. [1,2,2,1]	D. [1,2,2,1,0	0.0.01	
$H(e^{i\omega})^2 =$	当 X(etm)= Z XD1e-tmm ·	(1,2,2,1)	D. [1,2,2,1,0 DFT	X X	101/
105 =	$\frac{1}{2} = \frac{3}{2} \times 1000 = 100$		A) ~	· [1,2,1]	A table of the state of the sta
115,5=	三 = XD] + XU] e "数学信号处理"(双语)	》试卷 第 1 页 井	4 页		77
<u> </u>		12	2 1 (7) (7)	1221N= {	3
-					

2. 填空题(10分,每空1分)

- (1) A 32-point DFT of the sequence x[n] is to be computed. The total number of complex multiplications needed for the direct evaluation of all DFT samples is (1). If a Cooley-Tukey type FFT is used to compute the DFT samples, the total number of complex multiplications needed is (2).
- (2) The four samples of a length-6 real sequence x[n] with a real-valued 6-point DFT X[k] are given by x[0]=-4.9, x[1]=6.2, x[3]=8.58, and x[4]=-3.1. The remaining two samples of $x[2]=\frac{7}{3}$ and $x[5]=\frac{1}{4}$. x[n] are $x[2]=\frac{3}{3}$ and $x[5]=\frac{1}{4}$. x[n] are $x[2]=\frac{3}{3}$ and $x[5]=\frac{1}{4}$.

(3) A type 2 linear-phase FIR filter with a transfer function H(z) must have the zero z=

generating the discrete-time sequence $x[n] = \frac{(6)}{(6)(7)}$. The fundamental period of x[n] is $\frac{(7)}{(6)(7)}$.

(5) A continuous-time signal $x_a(t)$ is composed of a linear combination of sinusoidal signals of frequencies 300Hz, 500Hz, 2.8 kHz, and 3.4kHz. The signal $x_a(t)$ is sampled at a 3 kHz rate, and the sampled sequence is passed through an ideal lowpass filter with a tutoff frequency of 450Hz, generating a continuous-time signal $y_a(t)$. The frequency components present in the reconstructed signal $y_a(t)$ are (8), (9) and (10).

s present in the reconstructed signal $y_a(t)$ are (8), (9) and (10).

得 分

3、画图题(20分,每题10分)

- (3.1) Draw the flow-graph of the radix-2 DIF FFT algorithm for N=8.

7

4、计算题(30分,每题10分)

4.1 The transfer function of a LTI discrete-time system is given by

I discrete-time system is given by
$$H(z) = \frac{1 + 0.5z^{-1}}{1 + 1.5z^{-1} - z^{-2}} = \frac{1 + 2z^{-1}}{1 + 2z^{-1}} + \frac{1}{1 - 2z^{-1}}$$

a. If the system is causal, determine the ROC of H(z) and its corresponding inverse

b. If the system is stable, determine the ROC of H(z) and its corresponding inverse $\frac{2}{5} < |2| < 2$ and its corresponding inverse $\frac{2}{5} < |2| < 2$ and its corresponding inverse $\frac{2}{5} < |2| < 2$

$$-2^nM-11\frac{3}{3}+\frac{2}{5}(5)^nM(1)$$

z-transform.

c. If the system is noncausal and unstable, determine the ROC of H(z) and its

corresponding inverse z-transform.

The first three samples of the impulses of the FIR filter are given by h[0]=1, h[1]=3, and h[2]=3 5 $\frac{3}{2}$ $\frac{2}{2}$ $\frac{-2}{2}$ $\frac{-3}{3}$

a. Determine the remaining impulse response samples of lowest order for type III.

b. Determine the transfer function H(z) and the frequency response $H(e^{j\omega})$ of the filter. $H(e^{j\omega}) = 1+3e^{-j\omega}+2e^{-j\omega}+2e^{-j\omega}+2e^{-j\omega}$ c. Determine the values of $H(e^{j\omega})$ at $\omega = 0$ and $\omega = \pi$.

4.3
$$\{g[n]\}=\{1, 2, 2\}, \{h[n]\}=\{2, 1, 2, -3, 2, 1, 2, -3\}.$$

a. Determine the $y_L[n]$ obtained by a linear convolution of g[n] and h[n].

(b) determine the sequence $y_c[n]$ given by 6-point circular convolution of g[n] and h[n] from

 $y_{i}[n].$ 2.1.2.3.2.1.2.3

Yell= gloth[

《数字信号处理 A (双语)》试卷 第 3 页 共 4 页

5.1 Designing FIR digital filter with window method:

derive the impulse response $h_{LP}[n]$ of an ideal lowpass digital $h_{LP}[n] = \overline{2\pi} \int_{-\infty}^{\infty} e^{j\omega n} d\omega$ with cutoff frequency b. Using a rectangular window, design a length N=9 lowpass FIR filler of cutoff frequency $\psi_{o_c} = 0.5\pi$. $\psi_{o_c} = 0.5\pi$. $\psi_{o_c} = 0.5\pi$. $\psi_{o_c} = 0.5\pi$.

• 5.2 Design a FIR notch filter with notch frequency ω_0

a. Determine the transfer function H(z). $H(z) = |-2WSWo Z^{-1} + Z$

 $\frac{1}{4}$ $\frac{2}{4}$ $\frac{1}{4}$ $\frac{1}$

c. Compute the output sequence y[n] of the filter, when the sinusoidal sequence y[n] = y[

É

觉 避

则 诚 信 岩

id

绉

不

作 μir

- 5.3 Using the bilinear transformation and a third-order lowpass analog Butterworth prototype filter, design a lowpass digital filter operating at a tate of 40 kHz. The attenuation 3 dB frequency of the Butterworth prototype filter is 10kHz.
- a. Determine the transfer function $H_a(s)$ of the analog lowpass Butterworth filter.
- b. Determine the transfer function H(z) of the digital lowpass filter.

Butterworth polynomials

N		D(s)	. :	 *
1	(1+s)	-		
2	$(1+1.4142s+s^2)$			
.3	$(1+s)(1+s+s^2)$:	
4	$(1+0.7654s+s^2)(1+1.8478$	$s+s^2$)		

南京邮电大学 2013/2014 学年第一学期

《数字信号处理 A (双语)》试卷

•			•				•	
院(系)	班级		:	学号		·	姓名_	
95 9								•
题号 一 二	三 四	£.	六	七	.人.	·九	+	总分
但人					·		ļ <u>-</u>	总分
得分								
								.
得分					1	1	17	19
				-		1		
1、选择题	(5分,每)	福 4 4	· }				}	
	(0), 04,	. ور د ک	,				1	
				•	Dit	l det		
- (1) A sinusoid of frequen	cy.10Hz is s	ampled:	at a rai	e of 12	Hz. Th	e samn	led sign	oledni Oledni
contain the frequency	("Z")	=	,) ₁ .		-	· samp	ica signi	ai Wili
				**	-			
A. 2Hz B. 12		2Hz	D	24Hz		 		
(2)) The analog signal $x(t)$	$= \sin(24\pi t)$	() + sin(3477	(s cam)	(2/2)	2) 2 Santa 1	DITT	, .
in milliseconds The si	anni aliana			12 201111	310(1 A)(%	a taic I	<u>V KHZ a</u>	nd t is
in milliseconds. The si	gnar anased v	with $x(t)$						•
A. $\sin(4\pi t) - \sin(6t)$	πt) B. 25	$\sin(8\pi t)$	C.	2 sin($4\pi i$	D. 2s	in(14π)	· -
					,		111(1 1111)	į
(3) A signal $x(n) = e^{\int_{-4}^{\pi}}$	(-∞<	$n < +\infty$) is ar	oblied a	t the in	mut of	a ITI c	utatana
				,	c (110 11	mac or	a 1.11 8	System
whose frequency response	is $H(\omega)$ th	en the o	utput o	f this sy	stem is	((1	÷
> > MB(M)-7 +271K)) 114			010113 15	(<i>)</i> ·	
E-10	e de la composición dela composición de la composición de la composición de la composición dela composición dela composición dela composición de la composición de la composición dela composición de la composición dela c							
$ \begin{array}{c} \sum_{k \in \mathbb{N}} \sum_{k \in \mathbb{N}} \mathbb{E}\left(\sum_{k \in \mathbb{N}} \frac{1}{\mu} + \sum_{k \in \mathbb{N}} K\right) \\ A. H(\omega) e^{\int_{-\frac{\pi}{4}}^{\pi} d^{n}} B. \end{array} $	$H(\omega)\delta(\omega)$	$-\frac{\pi}{2}$	C	$H(\frac{\pi}{2})$	$j\frac{\pi}{4}n$	45	rr/ \ i	(an
and the second of the second o	()- (4	٠.,	4		D.	$H(\omega)e'$	
(4) An analog signal x	(t) with ma	aximum	freque	ncy < f	is	sample	ed at in	iferval
T (sampling rate f_s)	=1/T) and	the same	alad ric	mot la	Max MAX ==	. (V	M.	
the space $\hat{V}(\zeta)$		aro samp	rea si	Stidt 18	x(i).	ne app	Toximat	ion of
the spectrum $\hat{X}(f)$	to the origina	l spectru	m X ((f) be	comes e	xact w	hen (12).
A. $T \to \infty$ B.	$T \rightarrow 0$	~ .	\ ^ ^ ^			_		<i>'</i>
A. $T \to \infty$ B.	1 / 0 1	\smile . \int_{S}	$\leq 2 f_{\rm max}$	_{ix} D.	$f_s \ge$	f proc		
(5) Consider a RID Th	7	*						
(5) Consider a FIR filter	$\mathbf{n} = [n_0, n_1, \cdot]$	$\cdot\cdot,h_9$	and an	input si	gnal x	$=[x_0,$	x_1, \dots, x_n	[6]. If
we want to compute th	e output of th	e filter i	n matri	x form	v - H	v the	. 1 - ۱۰ الحدمال	
数) of H should be	, Ĉ , ¨		777	273	y - 11	A, me	uimensio	OD (班
	(<u>(</u>).		*X(E)	T.		X	-	1
A. 17×6 B. λ	(6×6	C. 16>	< 7	I	17~	7		•
1/2/ ₁ /5					^	,	L	- <u>-</u>

F32

得	分

2、填空题(5分,每空1分)

(1) A wheel, rotating at 8Hz and turning clockwise, is seen in a strobe light flashing once per 0.1 second. Determine	dark room by means of a the apparent rotational
speed, and sense of rotation of the wheel	-
(2) If the anticausal part of a stable system $h(n)$ is infinite, describe to make it causal:	e th <u>e two standard steps</u>
(3) The transfer function of a IIR filter is $H(z) = \frac{b}{1 - 0.9z^{-1}}$.	If this filter's frequency
response $H(\omega)$ at $\omega = 0$ is unity (that is $H(\omega) _{\omega=0} = 1$) the parameter habout
be	W
	1-0.90-107
得 分	•
-3. 判断题(在每小题末尾括号内打 / 或×, ·	每空1分,共5分)
a la maria	
(1) $y(n) = \begin{cases} x(n/2) & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}$ is a time invariant system.	·
-1.6	•
(2) The filter $H(z) = \frac{1+0.7z^{-1}}{1+0.9z^{-1}}$ is a lowpass filter.	(X)
(3) The inverse filter of the system $H(z) = (1+z^{-1})(1+2z^{-1})$ $Z = 0.7 \text{ Hz}$	
((4) The resonator filter can remove the power frequency interferance	be in the signal. $\Rightarrow (X)$
(5) The DTFT spectrum $X(\omega)$ of a complex-valued	*
$X(-\omega) = X(\omega)$	\ /
To all my - x (m)	(∑,)
	12 -5
4. Consider the analog signal $x(t) = \sin(10\pi t) + \cos(10\pi t)$	35
(hot t) = m 120.19	- SIII(24711) + SIN(70711) ,
where t is in milliseconds. This signal is prefiltered	by an analog antialiasing
《数字信号处理 A (双语)》 试卷 第 2 页 共 4	4 A A A
	fmd (3) == \$\fs\f

prefilter H(f) and then sampled at 40kHz. The resulting samples are immediately reconstructed using an ideal reconstructor. Determine the output $y_n(t)$ of the reconstructor in the following cases: a) When there is no prefilter, that is, H(f) = 1. b) When H(f) is an ideal prefilter with cutoff frequency 20kHz. c) When H(f) is a practical prefilter that has a flat passband up to 20kHz and attenuates at a rate of 40dB/octave beyond 20kHz. (15分). (5) Consider a 4-bit successive approximation A/D converter with full-scale range = X++0=-3.2+4== 29 of 8 volts. Using the successive approximation algorithm and quantizing by rounding, determine the two's complement representation of the analog input x = -3.2 volts. (Write out the steps testing each bit) $X = R(\overline{l_1} \times l_2)^2 + l_3 \times 3.4$) bibibibity for Guilfle) The input signal is nonzero over $5 \le n \le 18$, the impulse response h(n) is nonzero over $4 \le n \le 7$. The relationship between filter's input and output is 10 10 ± 5 3 described with LTT form of convolution $y(n) = \sum x(m)h(n-m)$. a) Determine the overall index range n for the output. $0 \le N \le L-1-M$ 05 NS10 X 95 nEX. b) Determine the summation range over m. > max [5,n-]) < M < min (18, n+4) 7. Determine the z-transforms and ROCs of the following systems. $= e^{nV(n)} - \left[e^{-u(n-N)}\right] = \delta(n-1)$ b. $x(n) = e^{n\pi} \left[u(n) - u(n-N)\right] = 0$ $f(n) = \delta(n-5)$ $H(z) = \frac{1}{5}(1-z^{-1})^{5} = 0.2-z^{-1}+2z^{-2}-2z^{-3}+z^{-4}-0.2z^{-5}$ a) Determine the zeros and poles $\frac{1}{5}(1-z^{-1})^{5} = 0.2-z^{-1}+2z^{-2}-2z^{-3}+z^{-4}-0.2z^{-5}$ b) Determine the DC gam of the filter. $H(0) = H(2)|_{Z=1} = 0$ (a) Draw a rough sketch of the magnitude response $|H(\omega)|$. $|H(\omega)| = 0.2e^{-\frac{1}{2}(10\pi)} + 2e^{-\frac{1}{2}(10\pi)} = 0.2e^{-\frac{1}{2}(10\pi)}$ H心上D 数字信号处理A(双语)》试卷 第3页共4页

15

6=4, R=8

= R = 8 = 1

1<0> b= -

unediately 9x Consider a LTI causal system whose 1/0 difference equation is onstructor $y(n) = \frac{5}{2}y(n-1) - y(n-2) + x(n-1)$ Compute the transform function H(z) of this system b) Determine the corresponding pole/zero pattern and the ROC of H(z). c) Compute the impulse response of this system. aftenuates d) It is easy to know this system is not stable. Determine another stable (but anticausal) (15分) system satisfying the same I/O difference equation. ale range lizing by 10) A resonator filter of the form $H(z) = \frac{G}{(1 - p_1 z^{-1})(1 - p_2 z^{-1})}$ operates at the log input (於底 rate of $f_0 = 5 \,\mathrm{kHz}$ and has a peak at $f_0 = 600 \,\mathrm{Hz}$. When the effective time constant corresponding to $\varepsilon=1\%$ is $n_{\rm eff}=300$ (samples), h(n) is. a) Determine the two poles p_1, p_2 . utput is b) Determine the 3-dB width $\Delta\omega$ of the resonator. (3) (2)= = = (1) (2) - Z (2) + 2 (X) (10分) - 1- U.T.) Z-1+P.P. Z-2 6) 感色: Z=0 极色: Z=2/0.5 Causal system: 性果 Rol: R>2 2<121<00 R= 5 nef = 0.0/300 = annulunu). ear Wo = 15 = 27 x 64 = 6 = 0.747.

So = 21-R).

So = 21-R).

Figure 1 = 1 x | 2 = 0.747.

So = 21-R).

Figure 1 = 1 x | 2 = 0.747.

Figure 1 = 0.747.

Figure 2 = 0.747.

Fi dia=sk | fra= pk fra= fr mod fr=-sk 1-22-1 a) Jath= xalth = sintent) + sin(-lort) = sintent) A .. Whist t = cortoff t hin)= = = 2" un) - = (=) nilin) Row Row d) hin)=32 nu(-n-1)+3(1)nu(-n-1) ROC-R205 · not aliasim = · July=get)= Sin (put) + sn expect) 新说: Rocassan C) $|H(f_1)| = |H(f_2)| = |$ $A = \log_2 \frac{B}{f_3/2} = \log_2 \frac{3\Gamma}{2} \rightarrow 400 \log_2 \log_2 \frac{1}{2} \times A00 \log_2 \frac{1}$ c) 11/40 = 11/40 = 1 yt)= Sin (lord) + galvard) + 1 Hfs/ Smilard) Yell)= Sin (lord) + Sin (retit) + In-You Sine-lord)

. سامود یا ه	南京邮电大学 2009/2010 学年第 二 学期
÷ :	上 填空题
	1. If the I/O difference equations of the LTI systems are $y(n)=3x\cdot(n)-2x\cdot(n-1)+4x\cdot(n-3)$ and $y(n)=-0.9y\cdot(n-1)+x\cdot(n)$, the causal impulse $(n-1)$ for $n \ge 0$ are $3 \delta (n)-2 \delta (n-1)+4 \delta (n-3)$ and $(-0.9)^n \mu (n)$ respectively.
-+(08)35. XISY: +(08)5.	2. The ROCs of the z-transform of $x(n) = (0.8)^n [\mu(n) - \mu ?^7]$ $ \frac{(n-8)}{(n-8)} \text{ and } x(n) = 8 \text{ (n+5) are } \boxed{270} \text{ and } \boxed{z \text{ km}} \text{ respectively.} $ 3. If the 8-point DFT of $x(n)$ is $\boxed{x0} \times 1, \boxed{x2} \times 3, \boxed{x4} \times 5, \boxed{x6} \times 7$, the 4-point DFT of $x(n)$ is $\boxed{x0} \times 1, \boxed{x2} \times 3, \boxed{x4} \times 5, \boxed{x6} \times 7$, the 4-point DFT of $x(n)$ is $\boxed{x0} \times 1, \boxed{x2} \times 3, \boxed{x4} \times 5, \boxed{x6} \times 7$.
	4) When the length of the input signal x is very long, we can compute the convolution y=x*h by the following two methods: overlap-add and overlap-save based on FFI. over lop method: overlap add.
	5. The DTFT of d(k) is D(w) pand if d(k) is real and even. D(w) must be real and even.
$ 21 2=\frac{b}{-a}=1$	6) A noisy measured signal $x(n)=s+v(n)$ is applied to the system $H(z)=b/(1-az^{-1})$ (0 <a<1), <math="" and="" constant="" desired="" is="" s="" signal="" the="">v(n) is white Gaussian noise, if the desired signal comes out unchanged, in should be $(1-a)$</a<1),>
ib=1-a	1. In the following systems, the only causal and stable systems is (B).
	A. $h(n) = -0.5^{\circ} \mu (-n-1)$ B. $h(n) = 0.5^{\circ} \mu (n)$ C. $h(n) = 2^{\circ} \mu (n)$ B. $h(n) = -2^{\circ} \mu (-n-1)$
	2.) The binlinear transform mans the left-hand s-plane into the area of (D)
	igital filter.
	A. $ z > 0$ B. $ z > 1$ G. $ z < 1$
	Consider a causal and stable system $H(z) = (1-2z^{-1})/(1-0.5z^{-1})$. To make its inverse system $H_{inv}(z)$ (stable) the impulse response of $H_{inv}(z)$ should be (B). Hiav(\Rightarrow) = $\frac{1-0.5}{1-0.2}$ \Rightarrow $\frac{1-0.5}{1-$
	A. $2 \mu (n) = 0.5*2" \mu (n-1) B = -2" \mu (-n-1) + 0.5*2" \mu (-n)$
	C. $2^{n} \mu (n) = 0.5*2^{n-1} \mu (n)$ D. $-2^{n} \mu (-n) + 0.5*2^{n-1} \mu (-n+1)$

```
Suppose the DTFT of x=[x0, x1, x2, \bar{x}3] is X(w). The DTFT of x=[0, 0, 0, x0, x1]
                                                    XIN-31
        A/e<sup>-3*</sup> X(w) B. e<sup>3*</sup> X(w) C. X(w+3) D. X(w-3)
                                                                      6-33m Xm July 11410
         5. The system y(n) = e^{x(n)} is (B). a_{x_1(m)+a_2x_3(n)} are a_{x_1(m)+a_3x_3(n)}
         A. linear and time-invariant B. honlinear and time-invariant
         C. linear and time-variant D. nonlinear and time-variant
        Consider a pair d(n) and D(w)=DTFT[d(n)]. If d(n) is only real, D(w) sati
                                      Dtwy = Down)
                                                         DEWS = DI-WS
                                                                               XvelCT) = XvelE
        A. D(w) = D(-w) B D(w) = D*(-w) C. D(w) = -D(-w) D. D(w) = D*(w)
(x) IDFT(X) equals to x
      N≥L B. N=[Nexact] C. N⟨L D. N≪L
      .8. A signal x(n) = e^{j(n)/4n} \cdot (-\infty \langle n \langle + \cdot \cdot \cdot \chi(n) \rangle = e^{j\frac{\pi}{4}n}
      \infty) is applied at the input of a LTI system whose frequency response is H(
      w), then the output of this system is (0)
      A. H(w) e<sup>1(e)/φ)*</sup> B. H(w) e<sup>1+</sup> C. H(w) δ (w·pi/4) \D/H(pi/4) e<sup>1(e)/φ)*</sup>
                                       リ(n) =h(n)* yn! =目
      9. The system H(z) = (1+z^{-1})(1+2z^{-1})(1+3z^{-1}) is a (A) filter
     A lowpass B. highpass C. bandpass D. bandstop
     10) A time-windowing process is performed to x(n) = Ae^{i2\pi i} (-\infty < n < +\infty)
     \infty). If the DTFT of the window w(n) is W(w), then the DTFT of the windowed
     signal x (n) *w (n) is ( C )
                                             Xins = AeJ=7ayn
                                                                Ae 12 Tivo, n
     A. 2pi A δ (w-w1) B. A δ (w-w1) C A W (w-w1) D. A δ (w-w1) W (w-w1)
     A causal (IR filte) has impulse response h(n)=5, if n=0; h(n)=6*(0.8)=1
    1. Working with the convolutional equation, derive the difference equation
   n satisfied by y(n).
                            安水用卷积方移
   Solution: if n=0, y(0)=5x(n)
    (14+11) + 6x (n) - 4x(n) - 4x(n)
                   = 5%(MAHZX(M).
                                                    9(141), = 5x(m) + 6x(n) + 6x08x(m).

H(N) = 5x(n) + 6x(n-1) + 6x0.8x(m).
```

$$\begin{array}{ll}
\text{iff:} & y(n) = \frac{1}{m} h(m) \pi(n-m), \\
h(0) = 5, h(0) = 6; & \text{iff:} n > 0, y(n) = h(n) * x(n) = \sum_{m=0}^{n} h(m) x(n-m) = 5x(n) + \sum_{m=1}^{n} h(m) x(n-m), \\
h(0) = 5, h(0) = 6; & \text{os:} h(0) = 6; & \text{os:} h(0) = 0; \\
y(n) = \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + 6x(n-1) + 6 \cdot (0.8) \pi(n-1) + 6 \cdot (0.8) \pi(n-1) + \dots \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0} h(m) \pi(n-m), \\
= 5x(n) + \frac{1}{m > 0$$

2. A 10kHz sinusoidal signal is sampled at 80kHz and 64 samples are collected and used to compute the 64-point DFT of this signal. At what DFT indices, k=0,1,...,63 would you expect to see any peaks in the DFT?

Compute the 8-point FFT of the length-8 signal: x=[5,-1,-3,-1,5,-1,-3,-1]. Nothing that these samples are the first 8 samples of x(n)=4cos(0.5 pi*n) + cos(pi*n) -1,-3,-1FT of the length-8 signal:x= compute the 64-po int DFT of this signal, y the foldiscuss whether the 8 computed FFT values accurately represent the expected spectrum of x(n). (What FFT indices cor respond to the two frequencies of the cosinusoids)

Solution:

$$x(n) = 4 \times \frac{e^{j0.5\pi n} + e^{-j0.5\pi n}}{2} + \frac{e^{j\pi n} + e^{-j\pi n}}{2}$$

$$= 2e^{j0.5\pi n} + 2e^{j1.5\pi n} + e^{j\pi n}$$

$$\Rightarrow 2e^{j\frac{\pi}{2}} + 2e^{j1.5\pi n} + e^{j\pi n}$$

$$= 2e^{j\frac{\pi}{2}} + 2e^{j\frac{\pi}{2}} 2e^{j\frac{$$

普相比普成位置一样, 幅层比似关系 边,但恰是 不是完全相方;

= 2e3In+2e3=nn+einn wn: \frac{\pi}{2}; wn = \frac{1}{2}\pi; wn = \frac{1}{2}\pi WK= 37 b, b=0.1.7 ·在WKK=3-WKK=4. WKK=604 可有初加的频谱。

4. Design a Length-41 (lowpass) digital FIR filter of cutoff frequency we=0

a. Determine the impulse response h(n) of the designed filter.

h.Tn) = 57n (NT (n-20) b.) Would the transition width and the attenuation of the stophend be 2007 oved if the length of the filter is increased Give the explanation.

Solution:

A)
$$M = \frac{N-1}{2} = 20$$

$$d(k) = \frac{\sin(0.2\pi k)}{\pi k}, -20 \le k \le 20$$

THE (a) d(k) = TIK

$$W = \frac{7}{\sqrt{4}} = 70$$

$$h(n) = d(n-n) = \frac{\sin[\alpha_1\pi(n-x_0)]}{\pi(n-x_0)}, \quad 0 \le n \le 40$$

$$h(k) = d(k-20) = \frac{\sin(0.2\pi k)}{\pi k - 20\pi}, 0 \le k \le 40$$
 (b) yes.

B) yes

5. Consider the following Length-16 signal: $x(n)=0.5+2\sin(0.5pi*n)+1.5c$

a. Determine the DTFT X(w) of this finite sequence, and sketch it roughly -by+25m(mm)+ (5m5(nn) √ versus w in the range 0≤w≤

2pi . [Hint: Remember that each spectral line gets replaced by the rectangu lar window's frequency response.]

b. Without performing any DFT or FFT computations, determine the 16-point t DFT of this sequence. Then, determine the 8-point DFT of the same sequen C.) Place the 16-point DFT values on the graph of X(w) of part (a).

- $X_L(w) = 05 - \frac{\pi}{2} [W_L(w) - \frac{\pi}{2}] - W_L(w) - \frac{\pi}{2} + W_L(w) - \frac{\pi}{2}$

KIN)=05+251A(O.STIN)+ ISLOSITIA)

=05 je i In + je i In + 150 i un

TX(8) = 15

7(h) x (h) : 16 x (o) = 05 3 x (o) = 8 ;

=> × 18)= 26,5

18 Point DFT: x=[8.0,74,0.24, 3.69,0]

Solution:

$$X(\omega) = \sum_{n=0}^{15} x(n) e^{-j\omega n}$$

 $\widehat{PP}: \{a\} \text{ fins: } 0.5 + 2 \sin(a.5\pi n) + i.5 \cos(\pi n)$ $= a_{5} + 2 \frac{e^{i\frac{\pi}{2}n} - e^{i\frac{\pi}{2}n}}{2i} + i.5 \frac{e^{i\pi n} + e^{i\pi n}}{2i}$ $= a_{5} + 2 \frac{e^{i\frac{\pi}{2}n} - e^{i\frac{\pi}{2}n}}{2i} + i.5 \frac{e^{i\pi n} + e^{i\pi n}}{2i}$ $= a_{5} + 2 \frac{e^{i\frac{\pi}{2}n} - e^{i\frac{\pi}{2}n}}{2i} + i.5 \frac{e^{i\pi n} + e^{i\pi n}}{2i}$ $= a_{5} + 2 \frac{e^{i\frac{\pi}{2}n} - e^{i\frac{\pi}{2}n}}{2i} + i.5 \frac{e^{i\pi n} + e^{i\pi n}}{2i}$ $= a_{5} + 2 \frac{e^{i\frac{\pi}{2}n} - e^{i\frac{\pi}{2}n}}{2i} + i.5 \frac{e^{i\pi n} + e^{i\pi n}}{2i}$ $= a_{5} + 2 \frac{e^{i\frac{\pi}{2}n} - e^{i\frac{\pi}{2}n}}{2i} + i.5 \frac{e^{i\pi n} - e^{i\frac{\pi}{2}n}}{2i}$ $= a_{5} + 2 \frac{e^{i\frac{\pi}{2}n} - e^{i\frac{\pi}{2}n}}{2i} + i.5 \frac{e^{i\pi n} - e^{i\frac{\pi}{2}n}}{2i}$

(XIM) = 0.64-] [7191M- TA) -549(M+ T)

to-75[2πδιω-π)+3πδιω-π]
(四) 简答、画图、分析题

= 0.5 - 1.0 = 0.

v2. How should you choose b so that the part s(-1)" comes out unchanged? S how that in this case the noise will be amplified. Explain this result by calculating the NRR as well as graphically by sketching the frequency spectra of the signals and filter.

Solution:

hin = b-an uin

$$NRR = \frac{2}{h_{\infty}} k_{1} \lambda_{1}^{2} = \frac{1}{h_{\infty}^{2}} \alpha^{2n}$$

$$= \frac{b^{2}}{1-\alpha^{2}} = \frac{C1 + \alpha}{1-\alpha^{2}}$$

$$= \frac{1+\alpha}{1-\alpha}$$

~ NRR>1 : 64× >6×

八樂声福治大.

A	.fs/2	R	fe	C	fe	/1	D	2	£c
7	113/6	υ.	.1.2	U.,	. 15/	* ** .	.υ.	4.	1.5

•	2. Suppose the DTFT of $x=[x0, x1, x2, x3]$ is $X(w)$, The DTFT of $x=[0, 0, 0]$	D. x0.
	$\times 1. \times 2. \times 3$ is (A). $e^{-jDw}X_{rw}$	
•	A/e-j3w X (w) B. ej3w X (w) C. X (w+3) D. X (w-3)	1
	(3.) The matrix form of 2-point DFT of a length-2 signal is (%).	
	of the meet 2 point of a rength-2 signal is (%).	
	A. 1 1/B/1 1'8.1-1'D.1-1 Who = e-127 km B.	
		Lu-
. A	(4.) The system $y(n)=x2(n-2)+x(3n)$ is (8) $y(n)=a\cdot\alpha(xg(n-2)+a\cdot\chi_2(n-2)+a\cdot\chi$	0.07.13.
n) = X201-25	(30) A linear and time-invariant & populinear and time-invariant to 37	
. }	and time invariant	,
	& linear and time-variant D. monlinear and time-variant	
. / (5. The system $H(z) = (1+z-1)(1+2z-1)(1+3z-1)$ is a (A) filter.	•
	lowpass B. highpass C. bandpass D. bandstop	
•	6) 运算办教的问题。	
	When N-point DFT of a length-N signal is implemented by decimation-i	n-ti
Ja: Nhyal	me radix-2 FF1 and N is a power (幕) of 2, the total number of complex n	uiti
	plications is the	
•	A. N log2 N.B. N/2 log2 N.C. N2 D. N(N-1) 1/2 log2 N.	
	Consider a pair d(n) and B(w) = DTETEL(w) 3 15 17 2	.: '
	Consider a pair $d(n)$ and $D(w) = DTFT[d(n)]$. If $d(n)$ is only real, $D(w)$ sfies (B)	sati
	D(w) = D(w) $D(w) = D(w)$ $D(w) = D(w)$	
	A. $D(w) = D(-w)$ B $D(w) = D*(-w)$ C. $D(w) = -D(-w)$ D. $D(w) = D*(w)$	
	8. The 4-point DET of v-11 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2	
	The 4-point DFT of $x=[1,2,2,1,3,2,2,1]$ is X. Then the IDFT of X is (B).
	A. [1, 2, 2, 1, 3, 2, 2, 1] B. [4, 4, 4, 2] C. [1, 2, 2, 1] D. [3, 2, 2, 1]	
٠	9.	-
	The binlinear transform maps the left-hand s-plane into the area of	(D)
	on the z-plane to guarantee the stablilty and causality of the designigated filter.	med d
	A. z >0 B. z >1 C. z<1\D/ z <1	

10. _A signal x(n)=ej(pi/4) n (-∞<n<+(0))

 ∞) is applied at the input of a LTI system whose frequency response is H(w), then the output of this system is (D) \triangleright

A. H(w) ej(pi/4) n B. H(w) ejwn C. H(w) δ (w-pi/4) D H(pi/4) ej(pi/4) n

计算题

1. Design a 2-pole resonator filter with peak at 60-500Hz and width \triangle f=32Hz, operating at the sampling rate of fc=10kHz.

爾: fo=500HZ, fc=10KHZ; of=32HZ.

$$\omega_0 = \frac{2\pi f_0}{f_0} = \frac{2\pi \times g_{00}}{10 \times 10^3} = \frac{21\pi}{10 \times 10^3} \left[\frac{10\pi}{1000} \left[\frac{10\pi}{1000} \left[\frac{10\pi}{1000} \right] \right] \right]$$

$$a_1 = -2R_{105W0}$$

 $a_2 = R^2$ => $a_1 = -18831$
 $a_3 = -2R_{105W0}$ => $a_4 = -18831$
 $a_5 = -2R_{105W0}$ => $a_6 = -18831$

Kim= 2511(05711), 1-017.-7.

$$xn) = \frac{1}{2} e^{\frac{\pi}{2}n} e^{\frac{\pi}{2}n}$$

$$= \frac{1}{2} e^{\frac{\pi}{2}n} - \frac{1}{2} e^{-\frac{\pi}{2}n}$$

k=509, X(3)=8j, & X[2]=j k=609, X(6)=8j & X[6)=-j

R=6

2. Consider the sinusoidal signal $x(n)=2\sin(0.5pi*n)$; $n=0,1,\dots,7$.

a. Without performing any DFT or FFT computations, determine the & point DFT of x(n).

图 xin)=2sin(型n) n=aj. 7 xin) = a xin)

$$\frac{\sqrt{2}}{\sqrt{2}} = 7 = \frac{\sqrt{2}}{\sqrt{2}} = \sqrt{2}$$

$$\frac{\hat{y} = h \times x = EDFT (DFT(h) - DFT(x))}{y = [2, 6, 8, 3, 0, 7, 8, 3, 2, -6]}$$

$$\frac{\hat{y} = [2, 5, 8, 3]}{y = [0, -2, 16, 6]}$$

$$\frac{\hat{y} = [2, 5, 8, 3]}{y = [0, -2, 16, 6]}$$

$$\frac{\hat{y} = [2, -2, 16, 6]}{y = [2, -2, 16, 6]}$$

4. Design a length-41 lowpass digital FIR filter of cutoff frequency wc=0 . 2*pi using a rectangular window.

a. Determine the impulse response h(n) of the designed filter.

$$M = \frac{\sin \omega \pi n}{\pi n} = 20$$

(1 £ Y) £40

33

b. Would the transition width and the attenuation of the stopband be impr oved if the length of the filter is increased? Give the explanation.

The sinusch increased? Give the explanation
$$\pi k$$
 $-mk \ge \pm m$, $M = \frac{MI}{2} = \frac{4II}{2} = 20$.

$$h(h) = d(n-M)$$

$$= \frac{\sin[0.2\pi(n-\infty)]}{\pi(n-\infty)}$$

$$0 \le n \le 40$$

- 5. Given a first order IIR filter $H(z) = \beta/(1-\alpha z-1)$.
- a. Determine the causal impulse response $h\left(\stackrel{*}{n}\right)$.
- b. Determine the noise reduction ratio NRR.
- c. To make the signal x(n)=5 comes out unchanged, determine the parameter
- a) Suppose O(a

 $\check{\zeta}$ and β is chosen to be the value in c, sketch the magnitude response |H|

(w) | over 0≤w≤n. Would the input white noise be amplified? 70x大.

e. Suppose
$$-1 < \alpha$$
 0 and 0 is the

 $\stackrel{<}{ extsf{1}}$ and eta is chosen to be the value in c, sketch |H(w)| over $0 \leqslant w \leqslant 1$

n. Would the input white noise be amplified?

$$|H(\lambda)|_{\lambda=1} = \frac{1-\alpha}{1-\alpha} = 1$$
, $|H(\lambda)|_{\lambda=1} = \frac{1-\alpha}{1+\alpha}$
 $|H(\lambda)|_{\lambda=1} = \frac{1-\alpha}{1-\alpha} = 1$, $|H(\lambda)|_{\lambda=1} = \frac{1-\alpha}{1+\alpha} = 1$.

b: NRR =
$$\frac{1}{2}$$
 hn = $\frac{1}{2}$ (d) $\frac{1}{2}$ u(n) $\frac{1}{6} = \frac{6(1-4^2)}{1-4^2}$

d:

- 1. A filter has transfer function: H(z)=0.5/(1+0.5jz-1)+0.5/(1-0.5jz-1)+2/(1+0.5z-1)+2/(1-0.5z-1).
- a. Determine all possible impulse responses h(n) and their ROCs.
- b. Draw the direct realization form of H(z),

c. Draw the cascade realization form.

The contraction form
$$\frac{4}{1+0.5[27]}$$
 is $\frac{65}{1+0.5[27]}$ b. $\frac{4}{1+0.5[27]}$ is $\frac{4}{1+0.5[27]}$ in $\frac{4}{1+0.5[27]}$ is $\frac{4}{1+0.5[27]}$ in $\frac{4}{1+0.$

RO(:

$$H(3) = \frac{11}{1 - 000\%^{3-4}} = \frac{(5 + 0.75\%^{2})}{(5 + 0.75\%^{2})(1 + 0.5\%^{2})}$$

- 2. ALTI system is described by the difference equation: y(n) = 0.25y(n-2)+x (n).
- a. Determine the transfer function H(z) of this system.

5. If the system is causal and stable, write out the corresponding impuls e response h(n).

c. Determine the zero pole pattern of the transfer function on the z-plan

d) Draw a rough sketch (草

图) cfits magnitude response [H(w)] over the frequency interval 0≤w≤ pi. Write out the value of |H(w)| at frequency w=0 and w=pi.

解: a: yin>=0>5yin->)+xin)

bi causal and stable:

ROGE 12170.5

Hew!/

3. A signal consisting of four sinusoids of frequencies of 1,1.5,2 and 2. 25kHz is sampled at a rate of 8kHz. Determine the minimum number of sample Ps that should be collected for the frequency spectrum to exhibit four dis

ofmin = 215-2=0.5KH 8

$$L > \frac{fs}{cf} = \frac{sk}{cvsk} = 32$$
 samples

1、填空题(每空1分,其10分)

(1) If the transfer function of a causal and stable fixer is $II(z) = \frac{n}{1 + az}$ the pole a

should satisfy $|\alpha| < 1$

(2) A noisy measured signal x(n) = s + v(n) is applied to the system $H(z) = \frac{b}{1 - az^{-1}}$

(0 < a < 1) is the desired constant signal and v(n) is white Gaussian noise. If the desired signal comes out unchanged, b should be (-a)

- (3) If the 8-point DFT of $\chi(n)$ is $\{X_0, X_1, X_2, X_1, X_4, X_5, X_6, X_7\}$, the 4-point DFT of $\chi(n)$ is $[X_0, X_1, X_4, X_6]$.
 - (4) When the length of the input signal x is very long, we can compute the convolution y=1*h by the following two methods: Overlap Add and Overlap Save based on FFT
 - (5) The DIFT of d(k) is $D(\omega)$ and if d(k) is real and even. $D(\omega)$ must be ω real and ω and ω
 - (6) To design a highpass digital filter using a lowpass analog filter, the hilmon transform we should choose is $s = \frac{1+2^{+}}{(42^{-1})^{-1}} \frac{1+2^{-1}}{(42^{-1})^{-1}} \frac{1+2^{-1}}{(42^{-1})^{-1}}$
 - (7) The ROCs of the Atransform of $x(n) = (0.8)^n [u(n) u(n-8)]$ and $x(n) = \delta(n+5)$ are $z \neq 0$ and $z \in C$ [8] > 0 and $z \in C$

2、选择题(每题1分, 其10分)

(1) In order to sample a signal at a rate for the conoff frequency of the antialiasing profilter A. $f_s/2$ B. $f_s = -\frac{1}{C_s} (f_s/4) = -\frac{1}{D_s} (2/f_s)$

(2) Suppose the DTFT of $x = [x_1, x_1, x_2, x_3]$ is $X(\omega)$. The DTFT of $\mathbf{x} = [0,0,0,x_{_{n}},x_{_{1}},x_{_{2}},x_{_{3}}]$ is (A)A. $e^{-i\delta\omega}X(\omega)$ B. $e^{i\delta\omega}X(\omega)$

C. $X(\omega+3)$, D. $X(\omega-3)$

(3) The matrix form of 2-point DFT of a length-2 signal is (β).

A. $\begin{bmatrix} 1 & 1 \\ 1 & -j \end{bmatrix}$ B. $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ C. $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ D. $\begin{bmatrix} 1 & -1 \\ 1 & j \end{bmatrix}$

(4) The system $y(n) = x^2(n-2) + x(3n)$ is (1)

A. linear and time-invariant C. finear and time-variant

В. nonlinear and time-invariant

D. nonlinear and time-variant

(5) The system $H(z) = (1+z^{-1})(1+2z^{-1})(1+3z^{-1})$ is a (A) filter. A. lowpass B. highpass C. bandpass D. bandstop

(6) When N-point DFT of a length-N signal is implemented by decimation-in-time radix * FFT and N is a power (器) of 2, the total number of complex multiplications is (身

A Mine N

 $\mathbf{B} \stackrel{\mathbf{N}}{=} \mathbf{I}$ oğ. \mathcal{N} C. \mathcal{N}^2 D. $\mathcal{N}(\mathcal{N}=1)$ (7) Consider a pair d(n) and $D(\omega) = DIFT[d(n)]$. If d(n) is only real, $D(\omega)$ -satisfies

 $A.D(\omega) = D(-\omega) B.D(\omega) = D^*(-\omega) \cdot C.D(\omega) = _T D(-\omega) \cdot D.D(\omega) = D^*(\omega)$

(8) The 4-point DFT of $x \in [1,2,2,1,3,2,2,1]$ is X Then the IDFT of X is $\{B_n\}$ A. [[,2,2,1,3,2,2,1] B. [4,4,4/2] C. [1,2/21] D. [3/2/21]

(9) The binlinear transform maps the left-hand s-plane into the area of (1) on the z-plane to guarantee the stablilty and causality of the designed digital filter.

A : |z| > 0

B. |z| > 1

C. z <1 *** D. | z | s L

(10) A signal $x(n) = e^{i \frac{\pi}{4}n}$ $(-\infty < n < +\infty)$ is applied at the input of a LTI system whose frequency response is $H(\omega)$, then the output of this system is $\mathbb{C}[\mathfrak{D}]$

A. $H(\omega)e^{i\frac{\pi}{4}n}$ B. $H(\omega)e^{-i\frac{\pi}{4}n}$ C. $H(\omega)\delta(\omega-\frac{\pi}{4})$ D. $H(\frac{\pi}{4})e^{i\frac{\pi}{4}n}$

$$W_0 = \frac{2\pi f_0}{f_0} = o / \pi \text{ tradians/sample]}$$

$$OW = \frac{2\pi o f}{f_0} = 0.02 = 2(1-R) \Rightarrow R = 0.79$$
or with peak of s (= 500Hz and width $V = 32Hz$)

(1) (10 %) Design a 2-pole resonator filter with peak at \$ f_0 = 500 Hz and width M 32 Hz. Toperating at the sampling rate of f = 10 kHz. $a_1 = -2 \text{R} \cos W_0$ $f = \begin{cases} a_1 = -(.483) \\ a_2 = R^2 \end{cases}$ $\begin{cases} a_2 = -(.483) \\ a_3 = -0.980 \end{cases}$ $\begin{cases} a_4 = -(.483) \\ a_5 = 0.980 \end{cases}$ $\begin{cases} a_6 = -(.483) \\ a_7 = 0.980 \end{cases}$ (2) (10.77) Consider the sinusordal signal $\tilde{x}(n) = 2 \sin(\frac{\pi}{2}n)$, n = 0, 1, ..., 7.

$$6 = (1-R)(1-2R(0s(2W_0)+R^2) = 0.0062$$

$$1 = 2\sin(-n) \cdot n = 0.1.....7$$

x without performing any DFT or FFT computations, determine the 8-point DFT of x(n).

by Compute the s point FFT of X(n) using the declination-in-time radix-2 PFT algorithm.

as Compute the convolution of the above two signals: y = h * x. To L2.5.8.3 $\frac{1}{3}$ 0. $\frac{1}{3}$ 8.3 $\mathfrak{b}_{\mathfrak{p}}$ compute the modulo 4 circular convolution. $\widetilde{\mathbf{y}}$ of \mathbf{x} and $\mathfrak{h}_{\mathfrak{p}}$

4) (1937) Design a length-11 abwpass digital FIR filter of cutoff frequency $\omega_c=0.2\pi$

$$\frac{1}{16\pi^2} = \frac{\sin(\log k)}{\pi(k)} = \frac{\sin(\cos(k-20))}{\sin(k-20)}$$

2. Determine the impulse response thirty of the designed filter

b. Would the transition width and the attenuation of the stoppand be improved if the length of the fillerastricteased) Give the explanation

(5) (15.3)) Since the direct order the filter
$$f(z) = \frac{\beta}{1 - \alpha z^{-1}}$$
,

a. Determine the causal impulse response h(n).

b. Determine the noise reduction ratio NRR.

c. To make the signal x(n)=5 comes out unchanged, determine the parameter β .

d. Suppose $0 < \alpha < 1$ and B is chosen to be the value in c., sketch the magnitude response $H(\omega)$ over $0 \le \omega \le \pi$. Would the input white noise be amplified?

t. Suppose $1<\omega<0$ and B is chosen to be the value in c., sketch $|H(\omega)|$ over $0 \le \omega \le \pi$. Would the input white noise be amplified?

4、简各、画图、分析题(共 25 分)

(1) (10分) A filter has transfer function:

$$H(z) = \frac{0.5}{1 + 0.5jz^{-1}} + \frac{0.5}{1 - 0.5jz^{-1}} + \frac{2}{1 + 0.5z^{-1}} + \frac{2}{1 - 0.5z^{-1}}$$

- a. Determine all possible impulse responses h(n) and their ROCs.
- b. Draw the direct realization form of H(z).
- e. Draw the cascade realization form.

(2) (10 分) A LITI system is described by the difference equation

$$y(n) = 0.25 y(n = 2) + x(n)$$

- a. Determine the transfer function H(z) of this system
- b. If the system is causal and stable, write out the corresponding impulse response R(n)
- c. Determine the zero/pole pattern of the transfer function on the z-plane
- d. Draw a rough sketch (其图) of its magnitude response $H(\omega)$ over the frequency

interval $0 \le \omega \le \pi$. Write out the value of $|H(\omega)|$ at frequency $\omega = 0$ and $\omega = \pi$

(J) (5分) A signal consisting of four sinusoids of frequencies of 1. 1.5, 2 and 2.25kHz is sampled at a rate of 8kHz. Determine the minimum number of samples that should be collected for the frequency specifium to exhibit four distinct peaks at these frequencies.

有分

1、填空题(每空1分,共10分)

(1) If the I/O difference equations of the LTI systems are

y(n) = 3x(n) - 2x(n-1) + 4x(n-3) and y(n) = -0.9y(n-1) + x(n)the causal impulse response h(n) for $n \ge 0$ are $3 \le (n) - 2 \le (n-1) + 4 \le (n-3)$ and 4 = (-0.9) = 0.9 The respectively.

The ROCs of the z-transform of $x(n) = (0.8)^n [u(n) - u(n-8)]$ and $x(n) = \delta(n+5)$ are $\frac{|z|}{|z|} \frac{|z|}{|z|} \frac{|z|}{|z|}$

(3) If the 8-point DFT of x(n) is $\{X_0,X_1,X_2,X_3,X_4,X_5,X_6,X_7\}$, the 4-point DFT of x(n) is $\{X_0,X_2,X_4,X_5,X_5,X_6,X_7\}$, the 4-point DFT of x(n) is $\{X_0,X_2,X_4,X_5,X_6,X_7\}$.

(4) When the length of the input signal x is very long, we can compute the convolution $y=x^{2}h$ by the following two methods: $y=x^{2}h$ by the following two methods: $y=x^{2}h$ by the following two methods: $y=x^{2}h$ by the following two methods:

(5) The DTFT of d(k) is D(w) and if d(k) is real and even, D(w) must be \mathbb{Z}

(6) A noisy measured signal x(n) = s + v(n) is applied to the system $II(z) = \frac{b}{1 - az^{-1}}$ (0 < a < 1) is the desired constant signal and v(n) is white Gaussian noise. If the desired signal comes out unchanged b should be $\frac{1-Q}{1-Q} = \frac{b}{1-az^{-1}}$

2、选择题(每题1分, 共10分)

(1) In t	he following systems, the o	nly cat	ISal and stable exclusion		
A.	$h(n) = -0.5^n u(-n-1)$		$h(n) = 0.5^n u(n)$	(B)	
C.	$h(n) = 2^n u(n) \qquad \cdot \qquad$		$h(n) = -2^n u(-n-1)$	-	*** **** **** * *

(2) The binlinear transform maps the left-hand s-plane into the area of () on the z-plane to guarantee the stability and causality of the designed digital filter.
A. |z|>0
B. |z|>1
C. z<1
D. |z|<1

(3) Consider a causal and stable system $H(z) = (1 - 2z^{-1})/(1 - 0.5z^{-1})$. To make its inverse system $H_{lnv}(z)$ stable, the impulse response of $H_{lnv}(z)$ should be ($\frac{1}{|z|}$)

A.
$$2^{n}u(n) - 0.5 \cdot 2^{n-1}u(n-1)$$
 B. $-2^{n}u(-n-1) + 0.5 \cdot 2^{n-1}u(-n)$
C. $2^{n}u(n) - 0.5 \cdot 2^{n-1}u(n)$ D. $-2^{n}u(-n) + 0.5 \cdot 2^{n-1}u(-n)$

(4) Suppose the DTFT of $\mathbf{x} = [x_1, x_2, x_3]$ is $X(\omega)$. The DTFT of $\mathbf{x} = [0.0, 0, x_1, x_1, x_2, x_3]$ is $X(\omega)$.

A.
$$e^{-j3\omega}X(\omega)$$
 B. $e^{j3\omega}X(\omega)$ C. $X(\omega+3)$ D. $X(\omega=3)$

(5) The system $y(n) = e^{n(n)} \sin(\frac{\pi}{2})$.

A. linear and time-invariant 0: nonlinear and time-invariant.

C. Linear and time-variant D_i -nonlinear and time-variant.

(6) Consider a pair d(n) and $D(\omega)=DTFT[d(n)]$. If d(n) is only real, $D(\omega)$ satisfies

(6) Consider a pair a(n) and $D(\omega) = D1FI[a(n)]$. If d(n) is only real, $D(\omega)$ satisfies $A.D(\omega) = D(-\omega)$, $B.D(\omega) = D'(-\omega)$, $C.D(\omega) = -D(-\omega)$, $D.D(\omega) = D^*(\omega)$.

(7) Suppose the N-point DFF of a length L sequence x is X (IDFT(X) equals to x only if A).

$$A \quad N \ge L \qquad B \quad N = [A]_{-+} \cdot 1 \qquad C \quad N < L \qquad \exists b \quad N \le L$$

(8) A signal $x(n) = e^{\int_{-1}^{x} n}$ $(-\infty < n < +\infty)$ is applied at the input of a LTI system whose frequency response is H(w), then the output of this system is $(-\infty)$.

$$A: \ H(\omega)e^{\int_{-1}^{\pi} n} \qquad B: H(\omega)e^{j\omega n} \qquad C: H(\omega)\delta(\omega - \frac{\pi}{\sqrt{4}}) \qquad D: H(\frac{\pi}{4})e^{j\frac{\pi}{4}}$$

(9) The system $H(z) = (1+z^{-1})(1+2z^{-1})(1+3z^{-1})$ is a (1) filter.

A. lowpass B. highpass C. bandpass D. har

(10) A time-windowing process is performed to $x(n) = Ae^{j2\pi\omega_n n}$ ($-\infty < n < \infty$). If the DTFT of the windowed signal

B.
$$A\delta(\omega-\omega_1)$$

$$C$$
. AH $(\omega - \omega_i)$.

D.
$$A\delta(\omega-\omega_1)W(\omega-\omega_1)$$

(1) (10 3)) A causal HR filter has impulse response

$$J_{i}(n) = \begin{cases} 5, & \text{if } n = 0 \\ 6(0.8)^{-1}, & \text{if } n \ge 1 \end{cases}$$

Working with the convolutional equation, derive the difference equation satisfied by |y(n)|.

(2) (10.5) A LULUZ simusoidal signal is sampled at 80kHz and 64 samples are collected and issued to be supported the 64-point abit Γ of this signal. At what DFT indices, k=0.1, 0.5 would you expect to see any peaks in the DFT?

(3)(10分)Compute the 8-point FFT of the length-8 signal.

$$x = [5 + 3 + 3 + 1 + 3 + 1]$$

Noting that these samples are the first 8 samples of

$$\mathbb{E}(n) = 4 \cos(0.5\pi n) + \cos(\pi n) \le$$

discuss whether the 8 computed FFT values accurately represent the expected spectrum of x(n). What FFT indices correspond to the two frequencies of the cosintisoids?

- (4) (10 分) Design a length-41 lowpass digital FIR filter of cutoff frequency $\omega_c=0.2\pi$ using a rectangular window.
- a. Determine the impulse response h(n) of the designed filter.
- b. Would the transition width and the attenuation of the stopband be improved if the length of the filter is increased? Give the explanation.

(5) (15 分) Consider the following length-16 signal:

$$x(n) = 0.5 + 2\sin(0.5\pi n) + 1.5\cos(\pi n), \quad n = 0.1, \dots, 15$$

- a. Determine the DTFT $X(\omega)$ of this finite sequence, and sketch it roughly versus ω in the range $0 \le \omega \le 2\pi$. [Hint: Remember that each spectral line gets replaced by the rectangular window's frequency response.]
- b. Without performing any DFT or FFT computations, determine the 16-point DFT of this sequence. Then, determine the 8-point DFT of the same sequence.
- c. Place the 16-point DFT values on the graph of $X(\omega)$ of part (a).

(1) (10 %) Using the lowpass filter $H(z)=rac{b}{1-az^{-1}}$, where 0<a<1 to extract the

high-frequency signal $x(n) = s(-1)^n + v(n)$, where v(n) is zero-mean white noise of variance σ_k^2 . How should you choose b so that the part $s(-1)^n$ comes out unchanged? Show that in this case the noise will be amplified. Explain this result by calculating the NRR as well as graphically by sketching the frequency spectra of the signals and filter

(2) (15 分) A linear system is described by the system of difference equations.

$$v(n) = x(n) + v(n-1)$$

$$y(n) = v(n) + v(n-2) + v(n-4)$$

- a. Determine the transfer function H(z) of the filter.
- b. Draw the direct, the canonical, and the cascade form of SOS realization (with real coefficients). In each case state the corresponding sample-by-sample filtering algorithms.

1.compute the z-transform of the following sequences and determine the corresponding region of convergence $X(z) = z^5$ $ROC: |z| \neq \infty$

$$(1)X(n)=*(n+5)$$

$$X(z)=z^5$$

$$ROC: |z| \neq \infty$$

$$x(n) = (-0.5)^n [u(n) - u(n-10)]$$

$$x(n) = (-0.5)^n u(n) - (-0.5)^{10} (-0.5)^{n-10} u(n-10)$$

$$X'(z) = \frac{1}{1 + 0.5z^{-1}} - (-0.5)^{10} \frac{z^{-10}}{1 + 0.5z^{-1}}$$
$$= \frac{1 - (0.5z^{-1})^{10}}{1 + 0.5z^{-1}} \quad ROC: |z| \neq 0$$

$$x(n) = 2(0.9)^n \cos(\pi n/2)u(n)$$

$$x(n) = (0.9)^{n} \left[e^{j\frac{n\pi}{2}} + e^{-j\frac{n\pi}{2}} \right] u(n)$$

$$= \left[(0.9 j)^{n} + (-0.9 j)^{n} \right] u(n)$$

$$X(z) = \frac{1}{1 - 0.9 jz^{-1}} + \frac{1}{1 + 0.9 jz^{-1}}$$

2.a filter is described by the following sample processing algorithm relating the input and output sample x and y; for each input sample x do:

$$w_0 = x + 0.64w_4$$
 $y = w_0 + w_3$ $w_4 = w_3$ $w_3 = w_2$ $w_2 = w_1$ $w_1 = w_0$

Determine the transfer function H(z)of this filter factor H(z)into factors of order up to two (with real-valued coefficients)and draw the corresponding cascade realization State the sample processing algorithm for that realization

过滤器是描述有关下列样品处理算法的输入和输出样本x和v.每一个输入样品的 x:确定传递函数的 H(z)的过滤.factor H(z)到秩序两因素(实系数),得出相应的来 样加工状态层叠算法实现的实现

(1)
$$H_{1}(z) = \frac{1+z^{-3}}{1-0.64z^{-4}}$$

(3) cascade realization

(4) sample-by-sample algorithm

$$\begin{cases} w_{00} = x + 0.8 w_{02} \\ y_0 = w_{00} + w_{01} \\ w_{02} = w_{01}; \quad w_{01} = w_{00} \\ w_{10} = y_0 - 0.8 w_{12} \\ y = w_{10} - w_{11} + w_{12} \\ w_{12} = w_{11}; \quad w_{11} = w_{10} \end{cases}$$

$$H(z) = \frac{b(1+z^{-1})}{1-az^{-1}}$$

$$\Rightarrow H(1) = \frac{2b}{1-a} = 1 \Rightarrow b = \frac{1-a}{2}$$

$$\therefore H(z) = \frac{(\frac{1-a}{2})(1+z^{-1})}{1-az^{-1}}$$

$$\Rightarrow h(n) = A_0 \delta(n) + A_1 a^n u(n) \qquad (A_0 = -\frac{b}{a}, A_1 = \frac{b(1+a)}{a})$$

$$\Rightarrow NRR = \sum h_n^2 = \frac{1-a}{2}$$

滤波器输入: $x(n) = s + \nu(n)$

(有用信号s(n)为恒值s, 所以频谱只含有DC频率, 噪声为白噪声)

低通滤波器:
$$H(z) = \frac{b}{1 - az^{-1}}$$
, $H(\omega) = \frac{b}{1 - ae^{-j\omega}}$

我们希望信号无失真通过系统,则要求

$$H(z)|_{z=1} = H(\omega)|_{\omega=0} = 1 \Rightarrow b = 1-a$$

$$\therefore NRR = \frac{\sigma_{y_v}^2}{\sigma_v^2} = \sum_n h_n^2 = \frac{1-a}{1+a}$$

这里就存在着去噪与系统响应速度的矛盾:

去噪效果好,要求NRR小,即
$$a \to 1$$
,但 $n_{eff} = \frac{\ln \varepsilon}{\ln a} \to \infty$ $(a \to 1)$

滤波器输入: $x(n) = (-1)^n s + v(n)$

(有用信号频谱只含有AC频率,噪声为白噪声)

高通滤波器:
$$H(z) = \frac{b}{1+az^{-1}}$$
, $H(\omega) = \frac{b}{1+ae^{-j\omega}}$, $h(n) = b(-a)^n u(n)$

我们希望信号无失真通过系统, 则要求

$$H(z)|_{z=-1} = H(\omega)|_{\omega=\pi} = 1 \Rightarrow b=1-a$$

$$\therefore NRR = \frac{\sigma_{y_v}^2}{\sigma_v^2} = \sum_n h_n^2 = \frac{1-a}{1+a}$$

这里同样存在着去噪与系统响应速度的矛盾:

去噪效果好,要求NRR小,即
$$a \to 1$$
,但 $n_{\text{eff}} = \frac{\ln \varepsilon}{\ln a} \to \infty$ ($as \to 1$)
$$\frac{1-a}{2} < \frac{1-a}{1+a} \quad (0 < a < 1 \Rightarrow 1 < 1+a < 2)$$

$$f_0 = 10 KHz$$
; $f_s = 80 KHz$
 $\frac{f_s}{N} k = f_0 \Rightarrow k = f_0 / \frac{f_s}{N} = 8$ $N - k = 64 - 8 = 56$

6.A 10KHZ sinusoidal signal is sampled at 80 kHZ and 64 samples are collected and used to compute the 64-point DFT of this signal, At what DET indices k=0.1,..,63 would you expect it see any peaks in the DFT?

10 KHZ 正弦信号取样80千赫和64的样品,会被收集并用来计算 DFT 的64点这个信号,在指标 k = 0.1),使用63,你希望看到任何的山峰 DFT 吗?

7.A 5kHZ sinusoidal signal is sampled at 40kHZ and 16 periods of the signal are collected. What is the length N of the collected samples? Suppose an N-point DFT is performed, then, at what DFT indices.k=0.1....N-1.do you expect to see any peaks in the DFT spectrum?

In general, how is the number of periods contained in the N samples related to the DFT index at which you get a peak?

5千赫正弦信号取样40 kHZ 及16时期的信号进行采集。什么是长度 N 的收集样品吗?假设一N-point DFT 是,在什么 performed then DFT indices k = 0.1 N-1. - 你希望看到任何的山峰 DFT 谱吗?

一般来说,怎样的数量是包含在 N 样品时期相关的 DFT 的索引在你所能得到的一个高峰?

$$f_0 = 5$$
KHz; $f_s = 40$ KHz; $T_L = T_{\text{pl}} \cdot 16 = \frac{1}{f_0} \cdot 16 = 3.2$ mes

1) $L = \frac{T_L}{T_{\text{sg}}} = T_L \cdot f_s = 3.2 \times 40 = 128$
 $\overline{y} \frac{T_{\text{pl}}}{T_{\text{sg}}} = \frac{f_s}{f_0} = 8($ 说明一个周期有8个采样) $\Longrightarrow L = 8 \times 16 = 128$

2)
$$N = L = 128$$
; $k = \frac{f_0}{f_s} \cdot N = 16$; $N - k = 128 - 16 = 112$

3) 设
$$L$$
个采样含 c 个周期的采样 $\Rightarrow L = N = c \cdot \frac{T_{\parallel}}{T_{\Re}} = c \cdot \frac{f_s}{f_o}$

$$k = \frac{f_o}{f_s} \cdot N = \frac{f_o}{f_s} \cdot c \cdot \frac{f_s}{f_o} = c = 整数$$

8.A dual-tone multi-frequency(DTMF)transmitter(touch-tone phone)encodes each-keypress as a sum of two sinusoidal tones with one frequency taken from group A and One from group B, where:

Group A:697 .770. 852. 941 HZ Group B:1209, 1336, 1477 HZ

A digital DTME receiver computes the spectrum of the received dual-tone signal and Determines the two frequencies that are present, and thus, the key that was pressed What is the smallest number of time samples L that we should collect at a sampling Rate of 8 KHZ, in order for the group-A frequencies to be resolvable from the group-B frequencies? What is L a hamming window is used prior to computing the spectrum?

一个 dual-tone 多频(DTMF)发送(电话)编码基于每一个键盘作为一笔两正弦 tones.with 取自一组频率一个来自 B 组,地点:

计算数字 DTME 接收机接收的 dual-tone 光谱信号

决定两个频率,那是在场的,因此,压的关键

什么是最小的若干时间样品,我们应该收集我在取样吗

8率 KHZ,为了解决赛区的频率是 b 组的频率? 什么是我一个海明窗采用计算光谱前吗

1)频域采样间隔为
$$\Delta f_{bin} = \frac{f_s}{N} = \frac{8}{16} = 0.5$$

9.an 18 KHZ sinusoid is sampled at a rate of 8 KHZ and a 16-point DFT of a finite portion of the signal is computed. At what DFT indices in the range 0<k<15 do you expect to see any peaks in the DFT spectrum? Would it matter if first we folded the 18 KHZ frequency to lie within the Nyquist interval and then computed the DFT? Explain — 个18 KHZ 正弦形取样率8千赫和发起反攻,这个有限的一部分 DFT 信号计算。指数在什么范围 DFT 0 < k < 15你希望看到任何的山峰 DFT 谱吗?你会介意如果首先我们把18 KHZ 躺在奈奎斯特频率区间,然后计算 DFT?解释一下好吗

$$\pm f_m = \Delta f_{bin} \cdot m = 0.5 \cdot m = \pm 18 \Rightarrow m = \pm 36$$

 $k = m \mod(16) = 4 \pi 12$
2) 先求进入Nyquist间隔的 $f_a = 2 \pi 16$
 $f_a = \Delta f_{bin} \cdot k \Rightarrow k = 4 \pi 12$

10.the following analog signal x(t), where t is in msec, is sampled at a rate of 8 kHZ

$$x(t) = \cos(24\pi t) + 2\sin(12\pi t)\cos(8\pi t)$$

A,Determine the signal Xa(t)that is aliased whih x(t)

B, Eight consecutive samples of x(t) are collected without performing any DFT or FFT operation, determine the 8-point DFT of these 8 samples

下面的模拟信号 x(t),在那里 t,在 msec 采样速率为8 kHZ

a.确定信号 Xa(t),与叠加 x(t)

b.八场 x(t)的样品收集或没有执行任何操作,DFT 频谱履行8点密度泛函确定这8 .样品

$$\Delta f_{\min} = 1209 - 941 = 268$$

$$\Delta f_{\min} \ge \frac{f_s}{L} \Rightarrow L \ge \frac{f_s}{\Delta f_{\min}} \ge \frac{8 \times 10^3}{268} = 29.85 \qquad L = 30$$

$$hamming \quad window: \Delta f_{\min} \ge 2 \frac{f_s}{L} \Rightarrow L \ge 2 \cdot \frac{f_s}{\Delta f_{\min}} = 59.7 \qquad L = 60$$

$$x(t) = \cos(24\pi t) + 2\sin(12\pi t)\cos(8\pi t) = \cos(24\pi t) + \sin(20\pi t) + \sin(4\pi t)$$

$$\therefore f_t = 12k, f_2 = 10k, f_3 = 2k, f_s = 8k \Rightarrow f_{1s} = 4k, f_{2s} = 2k, f_{3s} = 2k$$

$$1)x_s(t) = \cos(8\pi t) + 2\sin(4\pi t)$$

$$2)x(t) = \frac{1}{2}e^{t/24\pi t} + \frac{1}{2}e^{-t/24\pi t} + \frac{1}{2}e^{t/20\pi t} - \frac{1}{2}e^{-t/20\pi t} + \frac{1}{2}e^{t/4\pi t} - \frac{1}{2}e^{-t/4\pi t}$$

$$x(nT) = x(n) = \frac{1}{2}e^{\frac{t/24\pi t}{8}} + \frac{1}{2}e^{\frac{t/24\pi t}{8}} + \frac{1}{2}e^{\frac{t/24\pi t}{8}} + \frac{1}{2}e^{\frac{t/24\pi t}{8}} + \frac{1}{2}e^{\frac{t/24\pi t}{8}}$$

$$x(n)^{\frac{1}{2}}\frac{n}{2}e^{\frac{t/2}{2}\frac{n}{2}}e^{\frac{t/2}{2}\frac{n}{2}}e^{\frac{t/2}{2}\frac{n}{2}}e^{\frac{t/2}{2}\frac{n}{8}} + \frac{1}{2}e^{\frac{t/24\pi t}{8}} + \frac{1}{2}e^{\frac{t/24\pi t}{8}} + \frac{1}{2}e^{\frac{t/24\pi t}{8}} + \frac{1}{2}e^{\frac{t/24\pi t}{8}}$$

$$x(n)^{\frac{1}{2}}\frac{n}{2}e^{\frac{t/2}{2}\frac{n}{2}}e^{\frac{t/2}{2}\frac{n}{2}}e^{\frac{t/2}{2}\frac{n}{2}}e^{\frac{t/2}{2}\frac{n}{2}}e^{\frac{t/2}{2}\frac{n}{2}}e^{\frac{t/2}{2}\frac{n}{2}}e^{\frac{t/2\pi t}{8}}$$

$$x(n)^{\frac{1}{2}}\frac{n}{2}e^{\frac{t/2}{2}\frac{n}{2}}e^{\frac{t/2}{2}\frac{n}{2}}e^{\frac{t/2\pi t}{8}}e^{\frac{t/2}{2}\frac{n}{2}}e^{\frac{t/2\pi t}{8}}e^{\frac{t/2\pi t}{2}}e^{\frac{t/2\pi t}{8}}e^{\frac{t/2\pi t}{8}}e^{\frac{t/2\pi t}{8}}e^{\frac{t/2\pi t}{2}}e^{\frac{t/2\pi t}{2}}e^{\frac{t/2\pi t}{2}}e^{\frac{t/2\pi t}{8}}e^{\frac{t/2\pi t}{2}}e^{\frac{t/2\pi t}{8}}e^{\frac{t/2\pi t}{2}}e^{\frac{t/2\pi t}{8}}e^{\frac{t/2\pi t}{2}}e^{\frac{t/2\pi t}{8}}e^{\frac{t/2\pi t}{2}}e^{\frac{t/2\pi t}{8}}e^{\frac{t/2\pi t}{2}}e^{\frac{t/2\pi t}{8}}e^{\frac{t/2\pi t}{8}}e^{\frac{t/2\pi t}{8}}e^{\frac{t/2\pi t}{2}}e^{\frac{t/2\pi t}{8}}e^{\frac{t/2\pi t}{$$

$$\begin{aligned} & \{x_5 = [1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \widetilde{y}_1 = [-3 & 2 & 3 & 1 & 0 & -1 & 0 & 2], \widetilde{y}_2 = [2 & 0 & 2 & 0 & -2 & 0 & -2 & 0], \\ \widetilde{y}_3 = [1 & -2 & -1 & 2 & 1 & 0 & -1 & 0], \widetilde{y}_4 = [2 & 1 & -2 & -1 & 0 & 1 & 0 & -1], \\ \widetilde{y}_5 = [1 & 0 & -2 & 0 & 1 & 0 & 0 & 0] \\ y = [1 & 0 & -1 & 0 & 2 & 0 & -2 & 0 & -2 & 0 & 2 & 1 & 0 & -1 & 0 & -1], \\ y = [1 & 0 & -1 & 0 & 2 & 0 & -2 & 0 & -2 & 0 & 2 & 1 & 0 & -1 & 0 & -1], \\ y = x * h = [1 & 0 & -1 & -0 & 2 & 0 & -2 & 0 & -2 & 0 & 2 & 1 & 0 & -1 & 0 & -1 \\ 0 & 1 & 0 & -1 & 0 & 1] \end{aligned}$$

. 母权位你棚山以处0

12.the parameters N and Ω_0 of an analog Butterworth filter are determined by solving the two specification equations $A(\Omega_{oass}) = A_{poss}$, $A(\Omega_{stop}) = A_{stop}$, The resulting filter order is then rounded up to the next integer-value N.

Using this slightly larger N, show that if Ω_0 is found from the passband specification, that is ,by solving A(Ω_{pass})= A_{pass} , then the stopband specification is more than satisfied, that is A(Ω_{stop})> A_{stop} , Similarly, show that if we find Ω_0 form the stopband specification

 $A(\Omega_{nop})=A_{stop}$ then the passband specification is more than satisfied ,that is $A(\Omega_{poss})< A_{poss}$ N 的参数的一种模拟滤波器的视界由两个规格方程求解一个()()=.=.产生的滤波顺序则是把到下一个整型值的 N。

使用这个稍大的 N, 表明如果是发现的规格, 系为求解一个()=, 然后多阶规范满足, 那是一个()>, 同样表明, 如果我们发现形式规格(一阶)=然后频带种类超过满足, 那是一个()<

$$\begin{cases}
A(\Omega_{pass}) = 10 \lg[1 + (\frac{\Omega_{pass}}{\Omega_{0}})^{2N}] = A_{pass} \\
A(\Omega_{stop}) = 10 \lg[1 + (\frac{\Omega_{stop}}{\Omega_{0}})^{2N}] = A_{stop}
\end{cases} \tag{1}$$

$$N_{exact} = \ln(\sqrt{\frac{10^{A_{stop}/10} - 1}{10^{A_{pess}/10} - 1}}) / \ln(\frac{\Omega_{stop}}{\Omega_{pass}})$$
(3)

$$N = [N_{exact}] \ge N_{exact} \tag{4}$$

将(4)代入(1)得
$$\Omega_0 = \frac{\Omega_{pass}}{(10^{A_{pass}/10} - 1)^{\frac{1}{2N}}}$$
 (5)

(5)式与(4)式一起使(1)式等式两边准确成立, 但不能使 等式两边成立。

$$\widetilde{\mathcal{L}} \Omega_{0 \text{ exact}} = \frac{\Omega_{pass}}{(10^{A_{pass}/10} - 1)^{\frac{1}{2N_{exact}}}}$$
(6)

(6)式与(3)式一起精确满足方程组 (1)式和 (2)式

将 (6)代入 (2)得
$$10 \lg[1 + (\frac{\Omega_{stop}}{\Omega_{pass}})^{2N_{esset}} (10^{\Lambda_{pass}})^{10} - 1)] = A_{stop}$$
 将 (5)代 λ (2)第一个 (2)第一个 (3)第一个 (3)第一个 (4)第一个 (4)第一个 (5) 第一个 (5)

将(5)代入(2)第二个等号左边得:

$$A(\Omega_{stop}) = 10 \lg[1 + (\frac{\Omega_{stop}}{\Omega_{pass}})^{2N} \cdot (10^{A_{pqss}/10} - 1)]$$

$$\therefore \left(\frac{\Omega_{stop.}}{\Omega_{pass}}\right) > 1, \quad N \geq N_{exact}$$

$$A(\Omega_{stop}) = 10 \text{ lg} \left[1 + \left(\frac{\Omega_{stop}}{\Omega_{pass}} \right)^{2N} \cdot \left(10^{-A_{pass}/10} - 1 \right) \right]$$

$$\geq 10 \text{ [as } 1 + \left(\frac{\Omega_{stop}}{\Omega_{pass}} \right)^{2N} \cdot \left(10^{-A_{pass}/10} - 1 \right) \right]$$

$$> 10 \log \left[1 + \left(\frac{\Omega_{stop}}{\Omega_{pass}}\right)^{2N_{cool}} \cdot \left(10^{-A_{pass}/10} - 1\right)\right] = A_{stop}$$

$$> A$$

$$\therefore A(\Omega_{stop}) > A_{stop}$$

同理得
$$\Omega_0 = \frac{\Omega_{stop}}{(10^{A_{stop}/10} - 1)^{\frac{1}{2N}}}, \quad \Omega_{0 \text{ exact}} = \frac{\Omega_{stop}}{(10^{A_{stop}/10} - 1)^{\frac{1}{2N}}}$$

10
$$\lg[1 + (\frac{\Omega_{pass}}{\Omega_{stop}})^{2N_{evace}} \cdot (10^{-A_{mop}/10} - 1)] = A_{pass}$$

$$A(\Omega_{pass}) = 10 \lg[1 + (\frac{\Omega_{pass}}{\Omega_{stop}})^{2N} \cdot (10^{A_{stop}/10} - 1)] - \frac{(\frac{\Omega_{pass}}{\Omega_{stop}}) < 1. \ N \ge N_{exact}}{N}$$

$$A(\Omega_{stop}) < 10 \lg[1 + (\frac{\Omega_{pass}}{\Omega_{stop}})^{2N_{exact}} \cdot (10^{A_{stop}/10} - 1)] = A_{pass}$$

$$\therefore A(\Omega_{\textit{pass}}) < A_{\textit{pass}}$$

13. using the bilinear transformation and a lowpass analog Butterworth prototype filter design a lowpass digital filter operating at a rate of 40 kHZ and having the following specifications Fpass=10kHZ, Apass=3dB, Fstop=15kHZ, Astop=35dB carry out all the design steps by hand Draw the cascade realization form and write the difference equations and the corresponding sample processing algorithm implementing this realization in the time domain,

采用双线性变换和一个低通模拟原型滤波器设计一个视界低通数字滤波器操作速度40 kHZ 及具有以下规格 Fpass = 10 kHZ,Apass = 3分贝,Fstop = 15干赫,Astop = 35 dB.carry 出所 有的设计步骤的手

面梯级写这些差异实现形式 equatinons 和相应的样品处理算法实现过程中实施时间域、

$$f_{pass} = 10 \, k \cdot \text{Hz}, \ f_{stop} = 15 \, k \, \text{Hz}, \ f_{s} = 40 \, k \, \text{Hz}$$
 $A_{pass} = 3 \, dB, \ A_{stop} = 35 \, dB$

$$\omega_{pass} = \frac{2\pi \cdot f_{pass}}{f_{s}} = \frac{2\pi \cdot 10}{40} = \frac{\pi}{2}, \ \omega_{stop} = \frac{2\pi \cdot f_{stop}}{f_{s}} = \frac{2\pi \cdot 15}{40} = \frac{3\pi}{4}$$

$$\Omega_{pass} = tg\left(\frac{\omega_{pass}}{2}\right) = tg\left(\frac{\pi}{4}\right) = 1, \ \Omega_{stop} = tg\left(\frac{\omega_{stop}}{2}\right) = tg\left(\frac{3\pi}{8}\right) = 2:4142$$

$$N_{exact} = \ln\left(\sqrt{\frac{10^{A_{stop}/10} - 1}{10^{A_{pass}/10} - 1}}\right) / \ln\left(\frac{\Omega_{stop}}{\Omega_{pass}}\right) = 4.5744$$

$$\therefore N = 5$$

$$\Omega_{0} = \frac{\Omega_{pass}}{(10^{A_{pass}/10} - 1)^{\frac{1}{2N}}} = 1.0005 \approx 1$$

或
$$\Omega_0 = \frac{\Omega_{stop}}{(10^{-A_{stop}/10} - 1)^{\frac{1}{2N}}} = 1.0784 \approx 1$$

$$H_a(s) = \frac{1}{(1+s)(1+0.618 \ s+s^2)(1+1.618 \ s+s^2)}$$

$$H(z) = H_a(s) \Big|_{s = \frac{1-z^{-1}}{1+z^{-1}}}$$

第一章:

1、四种信号的概念及转换过程:

模拟信号一连续幅值的连续时间信号

量化信号一离散幅值的连续时间信号

抽样信号一连续幅值的离散时间信号

数字信号一离散幅值的离散时间信号

模拟信号通过抽样得到抽样信号再通过量化得到数字信号

典型数字信号处理系统的主要构成。 模拟信号数字化处理框图,图中各部分的功能作用。

Complete block-diagram

 Note: Both the anti-aliasing filter and the reconstruction filter are analog lowpass filters

前后两个滤波器的作用分别是: 抗混叠、平滑

1. 时城府31表示。明6月17 = 「..., -0.2, 217, 11, 0.2.11] 注意简次含义,代表的30册的最值。 : bit 56]: 15-12-02, 86]=2.17, 96]=11, 56]-20.2 conjugate 对复多: 「加了=「Arem]+1「加四了=实部框部 类的: 18 m) = Facail [Xman] 朝推广式:「加了: 为公园 + 为公园 = 共轭对称、十共死反对绍 conjugate-symmetric comparate-set antisymmetric) 为csm]= 立(方向)+水产n]) Darn]==[8m]-8*[-1]) 实践统对称有引是图度引(even sequence). 规对称[列: 加]= 光刊 类能放射和序3:20m]:一方印]、安头施反对称序列是有序3(odd sequence),为10]-0 形效: 粉度为2.8,能观2.21 2.22. 2- 序列 Kis 有限长 (finte-length), 对于从的 N. 序列4/2 N=N2-N1+1 => 可题中用外的技术序3). 研究状ではfurty-langth)をおび月引、新くれ、財、かりつ コ岩川之の、外が国東方的。 当下水山水和了。一部小 3. 序列的基本概念。 有人物的引擎星信息的本信息(B棒G点) persone 国果/作图果序列(二种提升) 5).解解解解例 門為沙 对于正线序列·为例:Acos(wn+中): 新戏剧(例)组织): 治 100:自伦的安学 当年现了·连续一定周期(新cwt) 如题:州(书阶) 高极不够期 生例的基本操作仓算). Q son]. 0 XM ->E →Wm7 $\rightarrow W_{cn}$ 1). Extractione - shofting): 543 (delay) = xcn-1] the (advance) = xcn+1] Mito (modulation): Xan] [an] 来这是 (multiplier): Asin)(fisk (adder): x6j+ym] @ \$k. (pluk-off mode) (8) time-reversal operation 彩作运算(在如方候). BE-n7 不等从,可从口 达朝时,等农的了直接运算 俱和整额部份23,22737题 柜鱼逝,如书届、长2月对各样图28 乡晚上24 旅版转移建造算如:为例→为四大],例从:为成了→为[-k]_Z为[-(k-n)]=为四大] 校训:勤奋、求实、进取、创新

有多个卷头鹭

convolution sum) 数和 . Jan]= sum] @ han] > Jan]= 5 sup] han = 5 sup han = 5
海发文式中的 T科和特点: 为和1657样立和=9657书. 如约到=为四期间+的1631+的1623种到
推查纸和的结·0定文式。同上的超少的包不进及乘波。
不进程表达,如为的=5年3,2,1],加到=53,2,1],永维卷纸:台则=6,0]到加到=
· 50]= 产法,17,16,10,4,19 海霉带头压蛋。
8 6 4 2 B性を食る65月31 大阪=MTN-1. か上: Jan 大阪=4+3-1=6 12 9 6 3 13 11 16 10 4 1 ア=マmファニア=m+1N: 1対整数は成分
12 9 6 3 17 16 10 4 1 refo, N-II
6.圆月这算. 今实际: 模运算. modulo 对于模运算实际联进程. 中: <-157=4 =>Y=25-7/3=4
1) 個目反好: Jon] = JC <n n]=""> DC<n-n>N]=D(m) 空欄架: 5/20.75/2:7</n-n></n>
Signalar V 7 7 Kind > Signalar 1, 10 s n x N-1
18 15 16 16 16 16 16 16 16 16 16 16 16 16 16
We John Miles
(遊覧表表) 「対する()]= 1 1 (1776) [= 1 507, 607, 607, 607, 607] . 「 「 「 507, 607, 607 」 うかい 反新 から から から
(近日本年)
3周周卷纸、(超过前围的平移、)停着相加发重看张备戏、用吹下实现、老知后找上以具的影影。
6.能量信号:能量为有限值,产的功率为0.有限外的能量成了: 6.二三/5017/2
的年信号,平的的各种限值能量无限。用期待到 18年 [186]
後対内か: 2 10mg (< で)
平方可和: 是 1%1200 平方可和并不定绝对可和。(如人们= sha4n
7.特殊多少: 维冲激励 Son]、华斯安东从Mon] 实践序》从On]=Ausluan+中)证额。
7.特殊的: 维坤波斯 Son], \$4. \$4. \$4. \$4. \$6. \$6. \$6. \$6. \$6. \$6. \$6. \$6. \$6. \$6
Sin] Siden]同条系: Xin]= [Yin] Sin-k] Son]= Mon]-Mon-1] 用题226
校训:勤奋、求实、进取、创新。 55
·

134 序3 b5 ル 計算子が: 2m]= A cos (いるn+(p) 2m)=A2n= A e34 (50+)いる)n= 2 re(m) +7 2mcm]
Trem = [A] 200 (05 (usn +4)) + 5 = 1 (A) 0801 (10 n+10) 50=017, 450.40. 50>017 to take
8.47
水理模模拟信号为的=Acos(2又fot+4P)=Acos(52ot+4P):52o为模拟的变量
一)年祥:七=NT,采祥闲期为了,抽样数率FT=宁。(R=FT) F的新的年祥的数年,厅为客部
(
(共存 5. カローなれ) (+nT = Acos (Jon T+4) し抽有的な率のT=2本FT=2年 mterpolation, checkmation が の 1 また 1 を mterpolation, checkmation が の 1 を mterpolation checkmation が の 1 を mterpolation に
() 2550 = Wo = StoT = 50 = 25.70 = 月化教籍数字Wo. 在到于Austworf中,
wo Fle: rodons/scumple. 520 Ple: radians/second. fo: Hz
9:月有3斤6数: 9(14)=Cos(6不七), 9(x+)=cos(14不七), g(+)=avs(26不七).用采拌多次于斤二小比条样
<u>旅条样后63</u>
11. 15. f.= 342, f.= 742, f.= 1347. AVF7=101/2. 1, T= 01/5 :, ab=5207=01520.
= # 146 (Dan)= Auscasnt4)(4x) 9 9 10 1 - according a comment
推进程,抽样定理了时间条件。不能要的)如此分别。 一种时间,1007年1月中间到,
数域年样·→、序列形 NDM (DFT+排列)
校训:勤奋、衣实、进取、创新。 910673.07.9

910873.07.9

长得里叶女换的4种的风火相好不 期期,连续为的 CTFT X(joz)连续,期期 柳期~连集 脚。连接系的 CTO X(Jkz) 新秋,非洲 2. CTFT 上文族: Xacfor)= Com Sout) e dt 连之族: Saut)= 立 (MA Xelfor) South de Machan Macha : 解语言度: Ex=C= (Dext) dt= Los Down to (t) dt = 立 Los (Xaly sz) ds. (Parsonal's theorem). DTFT 正皮接:X(efw)= デカロフe が 逆変換、カロコ= 立 「た / (efw) e かの dw. (も可能 3.16、3.21、 趣: 趣: 方= 【3.1、ち、-11.0、ち、3、3、2)、 ル= [-5,3)、 ボメ(efv)= ____、 メ(efx)= ___、 メ(efx)= ___、 メ(efx)= ___、 メ(efx)= -1; 内内関数、e⁻¹²¹ コード ス(efx)=-3+1-(-5)+(+1)-0+(-5)-3+3-2=- に ないかの かんが いた。 かんが いた。 これが いた いたが いた。 これが いた。 これ テリストアド性版の構成管が開発を、「X(e⁻¹)」、相談情情的数、の(w)=の(w)、 の(w)を確確 一端を、 無きない、 X(e⁻¹)」、相談情情的数、の(x)を行うない。 (x)の(a) と (是月期为不够即转。X(e)似于xxx)=要X(e)(ws) 如股水水 (存在) 7263.30.股为3]. 可村便数例:字调度专 意孔,32万。所表於, 险表34. 私好(情報). 均的较级 > DTFT 不存在. (收敛, convergence condition) DTFT的解籍客便: 图= 故 [不[6(e)]] duo
right: Ent 10 home = 0 1. 內門存在條件: 如了绝对有和是可门右在的处理条件 形通送成器中、有限能量。但不能切和、一个主体的现象、书图、图26. KT,报勤教育人,连续带科学会院。 · 財協案样 - 與城門期达拉· Articallasting fitter 我認識 临坡思 9 s/H. 抽样保持為: Sample and hold 的线射的信息的奢侈水处理过程: Ros 框图. A/D: 镇爱、朱柳春. Digital processor 数定处理器 Reconstruction falser @ 图外的探询增长以振频性 0.00的价值模拟编码台 五·马叶 (15) (1-17 度奉至《北登、信翰特帝) 二新空子加 科工でする。 特別はは かけいたる gart) が明め CTFI Gart) ここころはいです。 特工 T + gart) ないは (作者 gart) Pit) = 空 gart T) Set-nT) ない。 発行に信者 gp(t)= gart) Pit) = 空 gartnT) Set-nT) 9p(+) DTFT > Gp(大江)= = 1 1 2 (nT)e 12 nT = 十至 Ga(152 k27)) ; G(52)是 Ga(152) 63年的,并确定设为于 粉烂水卷,以左端,527%252m. [252m 特星斯特多年) 据 Sen Sec < (Set-Sen) 横拟额车分散的领字交易: 627. 52= 草. 627 Gargan 为洛城老选牌和重新自己的 辨趣: 36,261,365 书配例数3门

第四章:

- 4.1 从差分方程了解几种简单滤波器的功能。
- 1、累加器

$$y[n] = \sum_{\ell=-\infty}^{-1} x[\ell] + \sum_{\ell=0}^{n} x[\ell]$$
$$= y[-1] + \sum_{\ell=0}^{n} x[\ell], \ n \ge 0$$

2、滑动平均滤波器:

$$y[n] = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k]$$

- 3、线性内插器;
- 4、中值滤波器:从小到大排列,中间的值即为中值,常用于去除加性随机冲激噪声。
- 4.2 判断一般离散时间系统的性质: Problem 4.3
- 1、线性系统:

2、时不变系统:

3、因果系统:输出不能超前输入 例如下列系统为因果系统:

$$y[n] = \alpha_1 x[n] + \alpha_2 x[n-1] + \alpha_3 x[n-2] + \alpha_4 x[n-3]$$

$$y[n] = b_0 x[n] + b_1 x[n-1] + b_2 x[n-2] + a_1 y[n-1] + a_2 y[n-2]$$

$$y[n] = y[n-1] + x[n]$$

下列系统为非因果系统

$$y[n] = x_u[n] + \frac{1}{2}(x_u[n-1] + x_u[n+1])$$

(A causal implementation: $y[n] = x_u[n-1] + \frac{1}{2}(x_u[n-2] + x_u[n])$)

4、稳定系统:输入和输出都是有界的

品和财都是有限正常量

5、无源系统:输出序列 y[n]的能量不能超过输入 x[n]的能量

6、无损系统:输出序列 y[n]的能量等于输入 x[n]的能量

$$\sum_{n=-\infty}^{\infty} |\lambda_{2n}|_{1} = \sum_{n=-\infty}^{\infty} |\lambda_{2n}|_{2}.$$

4.3 冲激响应和阶跃响应的定义:

4.4 LTI 系统的 I/O 卷积关系 卷积和的计算: Problems 4.20, 4.23

LTI 系统的稳定性、因果性条件(时域判据。z域判据见 6.7 节)

中国经济入强与(7)系统的冲微响应进行基础。即可得到新出

- 日到表际计算卷纸和(书上码)题如中
- ③ 超创生。到的至172数字滤波器的冲海的后序引了20073 30 对引和时,即至112711(20、浅系线是超定的
- 回烟性, 当上的当门工商敬时铜系统的冲够响在序到了的高了 可图集序副时, 淡系统才是图果的。 (59)

系统互联 Problem 4.30

4.6 通常研究的 LTI 系统的差分方程:

FIR/IIR 系统、递归/非递归系统的定义

0岁儿初其有有限长时,则它是一个有限冲像的应商都对的系统

①当的四天院长,则管是一个无限冲够响应(222)离都对的系列

③著和但知道当前和过去对到的第八样本实现计算出输出样本,放射统称的非益旧离散时间系统。

图等计算输出时降了需要完全多新和过去时间的转入指标外,还 4.8 (可与6.7节、Ch7一起复习) 笔知道过去时刻的编出标本,则称为查证

重点: 频率响应的概念: Problem 4.58 4.63

第五章:

5.2 DFT 和 IDFT 的定义: 求和式、含因子的求和式、矩阵形式 DFT 和 IDFT 的计算: 例题, Problems 5.9, 5.10, 5.20, 5.55 (矩阵形式)

DFT 和 IDFT 的意义

- 5.3 DFT与 DTFT 的关系: Problem 5.25
- L点x[n]_ N点y[k]=DFT(x[n]) N点y[n] (0 $\leq n \leq$ N-1), N>=L时, y[n]=x[n].
- 5.4 圆周卷积的定义和计算(用于 5.7 节): Problem 5.2 或例题
- 5.5 圆周共轭对称/反对称的定义(用于5.6节)
- 5.6 DFT 对称性: Problems 5.43, 5.45
- 5.7 DFT 定理: Problem 5.55
- 5.10 用 DFT 求线性卷积 圆周卷积和线性卷积的关系: N 点序列 x 和 M 点序列 h,其线性卷积 yL[n]长 L=N+M-1,L 点圆周卷积 yC[n] = yL[n]。(P<L 点圆周卷积为 yL[n]以 P 为周期延拓后的[0,P-1]段,Problem5.28)

圆周卷积用 DFT 实现(利用 5.7 节 DFT 的圆周卷积定理)。 长序列的重叠相加法、重叠保留法的做法。

H23
5.20077. 7267= = 1207-e 120hr/w. och 5N-
3 W= e-12 M 1 1 678 2 x 7 k7 = 5 x (07. W kn
Int. You = 1 & your War och su-1
046/4431
077: X = Do.x
$7017 \sim 97$
D771的是11236年2366年26日 1977
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
D7-7的夏格斯是走桶上单位圈上的的个路截点。
1 19 13 247, 48 EX 40 27 14. problem 5,2 \$ 181/26.
33家、日和维持卷4、一样、因别是相爱人。
D老纸信息的的长度是是是N. 的以了找对心顶多
to 13 3N 43 /334 720 23-3
17 2n) = New 2n] + New 2n), O:N :N-1
V3 18 3, 4 Raf 93 313: Yes (1) = = (r20) + y + (c-n>n]), Densy
13 13 3- 5he COM 95 \$13. 80 27 = 5 (x2-7-7 \$2(-n>) con sny

1222 2 1/1/2 to 1 1/4	
177的对外的一节上意门。	
17765世色现. 卷上表 5.3	
1.10. 11.077 Bir 1/2 248.	
. , , , , , , , , , , , , , , , , , , ,	•
gln] -> (m-11/12) feb) (w+m-1) = m	7 Get.7
*1631	(ntn+) film]
-	Phy Civi
hin) = 20-119 helm (~tm-1,	1 Hezw
& Ja Sm	
•	
	<u> </u>
	en e
·	
	A SECTION OF THE PROPERTY OF T

天树, 自今 太家, 进取, 遇到

第六章

1. 之变换定义

• For a given sequence g[n], its z-transform G(z) is defined as

$$G(z) = \sum_{n = -\infty}^{\infty} g[n] z^{-n}$$

where $z = \Re(z) + jIm(z)$ is a complex variable

2.ROC (region of convergence) 收敛域:

(大家好好看一下下面的例子,并做课后习题 Problems 6.2, 6.5, 6.7, 6.8, 6.16)

of the causal sequence $x[n] = \alpha^n \mu[n]$ and its ROC

• Now
$$X(z) = \sum_{n=-\infty}^{\infty} \alpha^n \mu[n] z^{-n} = \sum_{n=0}^{\infty} \alpha^n z^{-n}$$

· The above power series converges to

$$X(z) = \frac{1}{1 - \alpha z^{-1}}, \text{ for } |\alpha z^{-1}| < 1$$

• ROC is the annular region $|z| > |\alpha|$

例二、 * Example - Consider the anti-causal sequence $y[n] = -\alpha^n \mu[-n-1]$

• Its z-transform is given by

$$Y(z) = \sum_{n = -\infty}^{-1} -\alpha^{n} z^{-n} = -\sum_{m=1}^{\infty} \alpha^{-m} z^{m}$$

$$= -\alpha^{-1} z \sum_{m=0}^{\infty} \alpha^{-m} z^{m} = -\frac{\alpha^{-1} z}{1 - \alpha^{-1} z}$$

$$= \frac{1}{1 - \alpha z^{-1}}, \text{ for } |\alpha^{-1} z| < 1$$

• ROC is the annular region $|z| < |\alpha|$

Table 6.1: Commonly Used z-Transform Pairs

Sequence	z-Transform	ROC
$\delta[n]$	to .	All values of z
$\mu[n]$	1-2-1	z > 1
$\alpha^n\mu[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
$(r^n\cos\omega_o n)\mu[n]$	$\frac{1 - (r\cos\omega_o)z^{-1}}{1 - (2r\cos\omega_o)z^{-1} + r^2z^{-2}}$	z > r
$(r^n \sin \omega_o n) \mu[n]$	$\frac{(r \sin \omega_{o}) z^{-1}}{1 - (2r \cos \omega_{o}) z^{-1} + r^{2} z^{-2}}$	z > r

Theorems	Sequence	z-Transform	ROC
(American) programment in the American and American and American and American American programments	8[n] h[n]	G(z) $H(z)$	$rac{\mathcal{R}_{\mathcal{S}}}{\mathcal{R}_{h}}$
Conjugation	g*[n]	G*(z*)	\mathcal{R}_g
Time-reversal	g[-n]	G(1/z)	$1/\mathcal{R}_g$
Linearity	$\alpha g[n] + \beta h[n]$	$\alpha G(z) + \beta H(z)$	Includes $\mathcal{R}_g \cap \mathcal{R}_h$
Time-shifting	$g[n-n_o]$	$z^{-n_0}G(z)$	\mathcal{R}_g , except possibly the point $z = 0$ or ∞
Multiplication by an exponential.	$\alpha^n g[n]$	$G(\varepsilon/lpha)$	$ lpha \mathcal{R}_{g}$
Differentiation of $G(z)$	ng[n]	$\frac{dG(z)}{dz}$	\mathcal{R}_g , except possibly the point $z = 0$ or ∞
Convolution	$g[n] \circledast h[n]$	G(z)H(z)	Includes $\mathcal{R}_g \cap \mathcal{R}_h$
Modulation	g[n]h[n]	$\frac{1}{2\pi j} \oint_C G(v) H(z/v) v^{-1} dv$	Includes $\mathcal{R}_g\mathcal{R}_h$
Parseval's relation		$\sum_{n=-\infty}^{\infty} g[n]h^*[n] = \frac{1}{2\pi j} \oint_C c$	$G(v)H^*(1/v^*)v^{-1}dv$

Note: If \mathcal{R}_g denotes the region $R_{g^-} < |z| < R_{g^+}$ and \mathcal{R}_h denotes the region $R_{h^-} < |z| < R_{h^+}$, then $1/\mathcal{R}_g$ denotes the region $1/R_{g^+} < |z| < 1/R_{g^-}$ and $\mathcal{R}_g \mathcal{R}_h$ denotes the region $R_{g^-} \mathcal{R}_{h^+} < |z| < R_{g^+} \mathcal{R}_{h^+}$.

4.有理 Z 变换(rational Z-transform)

The ROC of a rational Z-transform cannot contain any poles and is bounded by the poles.

5 * Example - Consider

$$G(z) = \frac{2 + 0.8z^{-1} + 0.5z^{-2} + 0.3z^{-3}}{1 + 0.8z^{-1} + 0.2z^{-2}}$$

 By long division in reverse order we arrive at

$$G(z) = -3.5 + 1.5z^{-1} + \frac{5.5 + 2.1z^{-1} - 1}{1 + 0.8z^{-1} + 0.2z^{-2}}$$
Proper fraction

(* Example - Let the z-transform H(z) of a causal sequence h[n] be given by

変換)

$$H(z) = \frac{z(z+2)}{(z-0.2)(z+0.6)} = \frac{1+2z^{-1}}{(1-0.2z^{-1})(1+0.6z^{-1})}$$

• A partial-fraction expansion of H(z) is then of the form

$$H(z) = \frac{\rho_1}{1 - 0.2z^{-1}} + \frac{\rho_2}{1 + 0.6z^{-1}}$$

Example: Determine the z-transform and corresponding 7. 食收敛域:右边序列在圆外,左边序列在圆内)

1)
$$x[n] = (0.8)^n \mu[n] + (1.25)^n \mu[n]$$

2)
$$x[n] = (0.8)^n \mu[n] - (1.25)^n \mu[-n-1]$$

3)
$$x[n] = -(0.8)^n \mu[-n-1] - (1.25)^n \mu[-n-1]$$

4)
$$x[n] = -(0.8)^n \mu[-n-1] + (1.25)^n \mu[n]$$

 $X(z) = \frac{1}{1 - 0.8z^{-1}} + \frac{1}{1 - 1.25z^{-1}}$

- Let $\{x[n]\}, 0 \le n \le L$, denote a finite-length sequence of length L+1
- Let $\{h[n]\}$, $0 \le n \le M$, denote a finite-length sequence of length M+1
- We shall evaluate $y[n] = x[n] \otimes h[n]$ using z-transform
- Note: $\{y[n]\}$ is a sequence of length L+M+1
- * Let $\{x[n]\}$ and $\{h[n]\}$ be two length- N^{--} sequences defined for $0 \le n \le N-1$ with X(z) and H(z) denoting their z-transforms
- Let $y_C[n] = x[n] \otimes h[n]$ denote the *N*-point circular convolution of x[n] and h[n]
- Let $y_L[n] = x[n] \odot h[n]$ denote the linear convolution of x[n] and h[n]
- * Let $Y_C(z)$ and $Y_L(z)$ denote the z-transforms of $y_C[n]$ and $y_L[n]$
- * It can be shown that

$$Y_C(z) = \langle Y_L(z) \rangle_{(z^{-N}-1)}$$

第七章

1.四种线性相位 FIR 滤波器的 h[n]特点、特点、零点分布情况。

• For a real impulse response, the magnitude response $|H(e^{j\omega})|$ is an even function of ω , i.e.,

 $|H(e^{j\omega})| = |\dot{H}(e^{-j\omega})|$

• Since $|H(e^{j\omega})| = |\bar{H}(\omega)|$, the amplitude response is then either an even function or an odd function of ω , i.e.

 $\tilde{H}(-\omega) = \pm \tilde{H}(\omega)$

The frequency response satisfies the relation
$$H(e^{j\omega}) = H^*(e^{-j\omega})$$
 or, equivalently, the relation
$$e^{j(c\omega+\beta)}\bar{H}(\omega) = e^{-j(-c\omega+\beta)}\bar{H}(-\omega)$$

$$h[n] = h[N-n], 0 \le n \le N (c = -N/2)$$

- Thus, the FIR filter with an even amplitude response will have a linear phase if it has a symmetric impulse response
- If $H(\omega)$ is an odd function of ω , then

$$h[n] = -h[N-n], \quad 0 \le n \le N \quad (c = -N/2)$$

• Therefore, a FIR filter with an odd amplitude response will have linear-phase response if it has an antisymmetric impulse response

Type 1: Symmetric Impulse Response with Odd Length

- In this case, the degree N is even
- The frequency response is of the form

$$H(e^{j\omega}) = e^{-jN\omega/2} \breve{H}(\omega)$$

where the amplitude response $H(\omega)$ is of the form

$$\widetilde{H}(\omega) = h\left[\frac{N}{2}\right] + 2\sum_{n=1}^{N/2} h\left[\frac{N}{2} - n\right] \cos(\omega n)$$

Type 2: Symmetric Impulse Response with Even Length

- In this case, the degree N is odd
- The expression for the frequency response in the general case for Type 2 FIR filters is of the form

$$H(e^{j\omega}) = e^{-jN\omega/2}\tilde{H}(\omega)$$

where the amplitude response is given by

$$\widetilde{H}(\omega) = 2 \sum_{n=1}^{(N+1)/2} h[\frac{N+1}{2} - n] \cos(\omega(n - \frac{1}{2}))$$

Type 3: Antiymmetric Impulse Response with Odd Length

- In this case, the degree N is even
 - In the general case

$$H(e^{j\omega}) = je^{-jN\omega/2}\check{H}(\omega)$$

where the amplitude response is of the form !

$$\widetilde{H}(\omega) = 2 \sum_{n=1}^{N/2} h \left[\frac{N}{2} - n \right] \sin(\omega n)$$

Type 4: Antiymmetric Impulse Response with Even Length

- In this case, the degree N is even
- · In the general case we have

$$H(e^{j\omega}) = je^{-jN\omega/2}\breve{H}(\omega)$$

where now the amplitude response is of the form

$$\breve{H}(\omega) = 2 \sum_{n=1}^{(N+1)/2} h[\frac{N+1}{2} - n] \sin(\omega(n - \frac{1}{2}))$$

Zero Locations of Linear-Phase FIR Transfer Functions

Type 1	Type 2	Type 3	Type 4
Can design any type	highpass and	Cannot design lowpass, highpass, and bandstop Zero at $\omega = 0$ and $\omega = \pi$	Cannot design lowpass, and bandstop Zero at $\omega = 0$

2.几种简单滤波器的<u>零极点分布</u>和<u>频响的联系。Problem 7.55</u>

•	Date Page	
Chapter & Digital I	Fitter Structures	
8.1.1.Block Diagram Representation 框图表在		
do: 7/[n] Po fo 伝説 Alpha fo fo 伝説 Alpha fo		
Jinz -djiri] + Pini+ Pini (- M)		
81.4. Canonic Structures 正作型— VE	时数量等于差对超阳阶	数
Moncanomic Structures 建注准型	Herwise.	
国一列队为韩王桂业,建时殷牧量为之,差为	0万雄阶级为1	
8.2 Equivalent Structures 居故结构 —— 游波	器有相同任銷俸數:	
等效结构的废机方式: Transpose operation (多	长置这早生队).	
(1) 倒我朋有路经,箭头刚	蛋	
血 把内谷柱 铁堆放加度		佑
四支挨辦节后和朔山	依	
Example - X(3) > D > Q Y(3) A K2 V ST BIK D Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	VH 10-10-10-10-10-10-10-10-10-10-10-10-10-1	/2 X8)
Original structure	Transposed Structu	<u>re:</u>
8.3 Basic FIR Digital Filter Structures (FI	[以族後卷)	
HGE 岩hkl3* (N所既FIR) ytul= ちhTklxIn-k]		
y[h]= シートルインロート] 8、31. Dirrot from Structures 直接型.		
de: 460= how xon + how xon 1) + how const his]1101-3] + 114]1101-4]	(<u>mmp N-4</u>
对流、NTI介系数表应器、NT双额入加度器	5	

Oale Page
直感型分为 I型、I型 框图图 P376 图(Q)、(6) 如为1.1型
8.3. Lascade-form Structures 33 Pt. 4.
H(8)= \$\frac{1}{h\overline{1}} 3^{\tau}\$
- 因刘分解 > 表放: HB)= hī0] II (H By37+ Be32)
一步就提展,例如1F-6时可由一个2叶FIR部的组队的级联实现)
答案是3个,因为一层至3、(3解到这一步的欧克子)
8.3.4. Linear-Phase FIR Structures 我性相位FIR.
川阶级性相位FIR塘战器可以用对称中级TOE
han = han-n B ch7 P323
现在对称中级响应 Namba
http://h
因此在有益型实现中: HBI=hTo]+hTo]3+hTo[3+hTo]3+hTo[3+hTo[3+hTo]3+hTo[3+hTo]3+hTo[3+hTo[3+hTo]3+hTo[3+hTo[3+hTo]3+hTo[3+hTo[3+hTo]3+hTo[3+hTo[3+hTo[3+hTo]3+hTo[3+hTo
= hTe) + hTe 13 4 hTe 13 4 hTe 13 4 + hTe 13 4 + hTe 13 5 + hTe 13 5
= hal (H3-6) +hal (3-1+3-5)+ hall (3-3-3-4) hall (H3-6) +hall (3-1+3-5)+ hall (3-3-3-4) hall (H3-6)
<u>到办套出利用地,性质可以7副力近一半面速度器</u>
及:有病型 FIR是 特殊面抽头正对例 → Tapped delay Line
8.4 Basic IR Polital Filter Structures—IR熔设器的基本结构
8HI Direct-Form Structures 直接配
H(8) = P(8) B+ P(8) + P(3) + P(3) AHD.
D(8) + di3+ d282+ d333 [(n)+ di3(n+)+, d39(n+2)+ d3 y (n-2)
= XPo+ PX[h-1]+ BX[h2]+ BX[h2]+ BX[h2]
y(n)= xpo+p,x(n-1)+p,x(n-2)+p,x(n-3)-dig(n-1)-deg(n-2)-d3y8n-37
· 查格 工型: 根据 以上差分3卷得到.

对一阶而言, dzk=Bzk=0

8.4.3 Parallel Realizations FRE

哥的分数展中的并联形式来实现

H(3)= Yo+ Z (Yok+ Yik3-1) 在1期中科技技术, 看 d= Yi=0 并胜7世份价数比姆阶数小一阶

为青

6

结论: 若-M≤n≤M 时, h+[n]=h+[n],则我如平方族亲康本;换言之,在均为侯	差净灯, 理想无
图长中围的顶的最佳和最简单的有限长高证具通过都短来得到的.	:
冲像响应为hing的国界FIR港波路可以通过设hing延时MC样本面	得到,可
hin=ht-M]	
通, 国果像设置 阿和那国果像设备 比回 具有相同的幅度响应且的	的相处物验相对
于非国民保护城市一个新产为WM的线性相接	
10.7.2 避想掳战为两个败响在。 雪点掌握.	Hqelv).
We ident towposs filter I hiper = sm wen - oo < n < p	·(
hylli]= j sm(v:(n-M)) = n <n (o'm)=" " ,="" 1="" <="" hip="" td="" w="" wc<="" =""><td></td></n>	
otherwise / Wc< W 572	-WCO WC 7-
ry Ideal highpass filter - hap [h] = 1 + we n=0	· [Hyperly].
8/h (Wen) n=0.	
H+p(e)m)= 11, Wc< w <2.	-wc wc 2.
13) ideal bandpass filter - heptin]= Wez Wez (n=0)	
$\frac{H_{BP}(e^{jw})}{7cn} = \frac{Sin(w_{Cs}n)}{7cn} \frac{sm(w_{Ch}n)}{7cn} \frac{(n\neq 0)}{7cn}$	And the second s
	nie de la communicación de
7-WC2-WC1 WC1 WC2 X	
(4) ideal bandstop filter - hasin]= \[\left[\left(\frac{(\left(\left(\hat{k}) - \left(\hat{k}))}{7-}\right) \left(\hat{h} = 0) \]	
Hrs (e in) sm (work) - Sm (work)	
	The Manual Control of the Control of
x -(V0) -VC, He W0 72 W	

		- And Milliands - And Milliand	<u>.</u>	·	Date	Page	
	这看出,其从东门				相來和	(4N-2)N XE	发表·相加.
_	和N值。复数相			_			- Antar Witte
1/3.2	Cooky-Tuk	ey FFT Algon	Hhms.	· 林 时	的抽取	图11,24	<u> 1542</u>
*	J			基于较生	种职	图11、28	P547.
					120		
		,					
	*			1	^		
			-			And the Annual Confession Confess	
	white the state of the payment		MALE WATER TO THE TAX	· ·			
				·			
-		· · · · · ·			· · · ·	of the last of the	
4	·						
		·	• •	-			
		**************************************			······································		
						~!!-	
		A STRUMBUL III AMADAMA				~	
				-,			
		*		<u></u>			
*/***		- THE STATE OF THE					
- NN							
						e	
			_,		132754771/4 (Pige)		

