Total No. of Questions: 6

Total No. of Printed Pages:2

Enrollment	No	

Faculty of Engineering End Sem (Odd) Examination Dec-2018 CA5EL28 Network Security

Programme: MCA Branch/Specialisation: Computer

Application

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

K.1 (1)	10 (5)	snoura se write	011 111 1011 111500	aa or omy a, o,	C 01 G.	
Q.1	i.	The network identities.	security princ	ciple that helps	s to establish proof of	1
		(a) Integrity		(b) Authentic	ation	
		(c) Access co	ntrol	(d) Confident	iality	
	ii.	A computer	program that	attaches itself	to another legitimate	1
	program and causes damage to network or computer sy				computer system is	
		(a) Worm		(b) Trojan ho	rse	
		(c) Virus		(d) None of the	hese	
	iii.	The matrix th	eory is used in		technique.	1
		(a) Hill cipher	r	(b) Playfair c	ipher	
		(c) Vigenere	cipher	(d) Monoalph	nabetic cipher	
	iv.	The caesar cij	pher is a	_cipher that ha	s a key of 3.	1
		(a) Transposit	tion	(b) Additive		
		(c) Shift		(d) None of the	hese	
	v.	v. In the DES algorithm, the round key is bit and the Ro			bit and the Round	1
		input is	bits.			
		(a) 48,32	(b) 64,32	(c) 56,32	(d) 32,32	
	vi. The number of tests required to break DES algorithm are				algorithm are	1
		(a) 2.8×10^{14}	(b) $4.2x10^9$	(c) 1.84×10^{19}	(d) 7.2×10^{16}	
	vii.	In asymmetr	ic cryptograp	hy	number of keys	1
		required.				
		(a) 3	(b) 2	(c) 4	(d) 1	

[2]

	viii.	viii. A digital signature is a mathematical technique used to valida		
		and of digital document.		
		(a) Authenticity, Integrity (b) Authenticity, Confidentiality		
		(c) Integrity, Confidentiality (d) None of these		
	ix.	IPsec defines two protocolsand	1	
		(a) AH, SSL (b) PGP, ESP (c) AH, ESP (d) PGP, SSL		
	х.	In SSL Protocol, each upper layer message is fragmented into a	1	
		maximum of bytes.		
		(a) 2^{16} (b) 2^{15} (c) 2^{14} (d) 2^{13}		
Q.2 i.		Discuss various types of legal attacks.	4	
	ii.	Discuss various security services briefly.	6	
OR	iii.	How are side channel attacks performed?	6	
Q.3	i.	Define homophonic substitution cipher	2	
	ii.	Why one time pad can only be used once? Justify with an	8	
		example.		
OR	iii.	Discuss the working of Hill Cipher.	8	
Q.4	i.	Define Feistel cipher network.	2	
	ii.	With the help of an example, distinguish between CBC and CBF	8	
		modes of operation.		
OR	iii.	Discuss internal structure of IDEA.	8	
Q.5		Attempt any two:		
	i.	Differentiate between symmetric and asymmetric cryptography.	5	
	ii.	How do you implement digital signatures using hash function?	5	
	iii.	With p=7; q=11; e=17 and M=8. Perform encryption and	5	
		decryption using RSA.		
0.6			~	
Q.6	i. 	Define IP security.	3	
OB	ii. 	Discuss SSL handshake protocol.	7	
OR	iii.	Explain Anomaly based IDS in brief with help of an example.	7	

P.T.O.

Marking Scheme CA5EL28 Network Security

2.1	i.	The network security principle that helps to estidentities.	tablish proof of	1
		(b) Authentication		
	ii.	A computer program that attaches itself to and program and causes damage to network or compute (c) Virus	•	1
	iii.	The matrix theory is used in	technique.	1
		(a) Hill cipher		
	iv.	The caesar cipher is acipher that has a key	of 3.	1
	v.	(a) Transposition In the DES algorithm, the round key is bit	and the Round	1
		input isbits.		
	vi.	(a) 48,32 The number of tests required to breek DES election	am oro	1
	V1.	The number of tests required to break DES algorith (d) 7.2×10^{16}	IIII aic	1
	vii.	In asymmetric cryptography no	umber of keys	1
	V 11.	required.	uniber of keys	
		(b) 2		
V	viii.	A digital signature is a mathematical technique used to validate and of digital document.		
		(a) Authenticity, Integrity		
	ix.	IPsec defines two protocolsand	·	1
		(c) AH, ESP		
х.		In SSL Protocol, each upper layer message is fra maximum of bytes. (c) 2 ¹⁴	agmented into a	1
2.2	i.	Two types of legal attacks 2 marks each	(2 marks * 2)	4
_	ii.	Three security services 2 marks each	(2 marks * 3)	6
R	iii.	Side channel attacks performed		6
		Algorithm	3 marks	
		Diagram	3 marks	
2.3	i.	Homophonic substitution cipher.		2
		_		

	ii.	One time pad can only be used once	3 marks	8	
		Justification with an example	5 marks		
OR	iii.	Working of Hill Cipher.		8	
		Algorithm	4 marks		
		Example	4 marks		
Q.4	i.	Feistel cipher network.		2	
	ii.	CBC modes + example	4 marks	8	
		CBF modes + example	4 marks		
OR	iii.	Internal structure of IDEA		8	
		Algorithm	4 marks		
		Diagram	4 marks		
Q.5		Attempt any two:			
	i.	Four differences b/w symmetric and asymmetric cryptography			
		1.25 marks each	(1.25 marks * 4)		
	ii.	Implementation of digital signatures using hash function 5			
	iii.	Encryption and decryption using RSA. Stepwise marking		5	
Q.6	i.	IP security		3	
	ii.	SSL handshake protocol.		7	
		Algorithm	4 marks		
		Diagram	3 marks		
OR	iii.	Anomaly based IDS in brief with help of an e	example	7	
		Anomaly	2 marks		
		Algorithm	3 marks		
		Diagram	2 marks		
