24 DEVICES COVER COMMERCIAL, INDUSTRIAL, AND MILITARY TEMPERATURE RANGES

- **Low-Power Consumption**
- **Wide Common-Mode and Differential Voltage Ranges**
- **Low Input Bias and Offset Currents**
- **Output Short-Circuit Protection**
- **Low Total Harmonic** Distortion . . . 0.003% Typ

- High Input Impedance . . . JFET-Input Stage
- **Internal Frequency Compensation (Except** TL080, TL080A)
- **Latch-Up-Free Operation**
- High Slew Rate . . . 13 V/µs Typ
- **Common-Mode Input Voltage Range** Includes V_{CC+}

TL084M . . . FK PACKAGE (TOP VIEW)

NC-No internal connection

2 OUT

6

TL080, TL081, TL082, TL084, TL081A, TL082A, TL084A TL081B, TL082B, TL084B, TL082Y, TL084Y JFET-INPUT OPERATIONAL AMPLIFIERS

SLOS081A-D2297, FEBRUARY 1977-REVISED NOVEMBER 1992

symbols

description

The TL08_ JFET-input operational amplifier family is designed to offer a wider selection than any previously developed operational amplifier family. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient. Offset adjustment and external compensation options are available within the TL08_ family.

Device types with a C suffix are characterized for operation from 0° C to 70° C, those with an I suffix are characterized for operation from -40° C to 85° C, and those with an M suffix are characterized for operation over the full military temperature range of -55° C to 125° C.

AVAILABLE OPTIONS

	V _{IO}				PAC	KAGE				CLUD
TA	MAX at 25°C	SMALL OUTLINE (D008)	SMALL OUTLINE (D014)	CHIP CARRIER (FK)	CERAMIC DIP (J)	CERAMIC DIP (JG)	PLASTIC DIP (N)	PLASTIC DIP (P)	TSSOP (PW)	CHIP FORM (Y)
000	15 mV 15 mV 6 mV 3 mV	TL080CD TL081CD TL081ACD TL081BCD	_	_	_	_	_	TL080CP TL081CP TL081ACP TL081BCP	TL080CPW TL081CPW	-
0°C to 70°C	15 mV 6 mV 3 mV	TL082CD TL082ACD TL082BCD	_	_	_	_	_	TL082CP TL082ACP TL082BCP	TL082CPW	TL082Y
	15 mV 6 mV 3 mV	_	TL084CD TL084ACD TL084BCD	_	_	_	TL084CN TL084ACN TL084BCN	_	TL084CPW	TL084Y
-40°C to 85°C	6 mV 6 mV 6 mV	TL081ID TL082ID TL084ID	TL084ID	_	_	_	TL084IN	TL081IP TL082IP	_	_
−55°C to 125°C	6 mV 6 mV 9 mV	_	_	TL081MFK TL082MFK TL084MFK	TL084MJ	TL081MJG TL082MJG	_	_	_	_

The D package is available taped and reeled. Add R suffix to device type, (e.g., TL080CDR).

schematic (each amplifier)

 $C1 = 18 \ pF$ on TL081, TL082, and TL084 only (including their suffix versions). Component values shown are nominal.

3

chip information

These chips, when properly assembled, display characteristics similar to the TL082. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

CHIP THICKNESS: 15 TYPICAL

BONDING PADS: 4 × 4 MINIMUM

T_Jmax = 150°C

TOLERANCES ARE $\pm 10\%$

ALL DIMENSIONS ARE IN MILS

PIN (4) INTERNALLY CONNECTED

TO BACKSIDE OF CHIP

chip information

These chips, when properly assembled, display characteristics similar to the TL084. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

TL080, TL081, TL082, TL084, TL081A, TL082A, TL084A TL081B, TL082B, TL084B JFET-INPUT OPERATIONAL AMPLIFIERS

SLOS081A-D2297, FEBRUARY 1977-REVISED NOVEMBER 1992

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		TL08_C TL08_AC TL08_BC	TL08_I	TL08_M	UNIT
Supply voltage, V _{CC+} (see Note 1)		18	18	18	V
Supply voltage V _{CC} - (see Note 1)		-18	-18	-18	V
Differential input voltage (see Note 2)		± 30	± 30	± 30	V
Input voltage (see Notes 1 and 3)		±15	±15	±15	V
Duration of output short circuit (see Note 4)		unlimited	unlimited	unlimited	
Continuous total dissipation			See Dissipation R	ating Table	
Operating free-air temperature range		0 to 70	- 40 to 85	- 55 to 125	°C
Storage temperature range		- 65 to 150	- 65 to 150	- 65 to 150	°C
Case temperature for 60 seconds	FK package			260	°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J or JG package			300	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D, N, P, or PW package	260	260		°C

- NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
 - 4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D (8 Pin)	680 mW	5.8 mW/°C	32°C	464 mW	377 mW	N/A
D (14 Pin)	680 mW	7.6 mW/ ° C	60°C	608 mW	494 mW	N/A
FK	680 mW	11.0 mW/°C	88°C	680 mW	680 mW	275 mW
J	680 mW	11.0 mW/° C	88°C	680 mW	680 mW	275 mW
JG	680 mW	8.4 mW/°C	69°C	672 mW	546 mW	210 mW
N	680 mW	9.2 mW/° C	76°C	680 mW	598 mW	N/A
Р	680 mW	8.0 mW/°C	65°C	640 mW	520 mW	N/A
PW (8 Pin)	525 mW	4.2 mW/°C	25°C	336 mW	N/A	N/A
PW (14 Pin)	700 mW	5.6 mW/°C	25°C	448 mW	N/A	N/A

oted)
šer
ĭ
the
SS
Jes
₹
>
+15
II
: = ±33/
>
tics, V _C
eristics, V ₍
acteristics, V ₍
haracteristics, V _C
al characteristics, V _C
ical characteristics, V ₍
ctrical characteristics, V_{C}

	PARAMETER	TEST CON	TEST CONDITIONST		TL080C TL081C TL082C TL084C		エエエ	TL081AC TL082AC TL084AC		###	TLO81BC TL082BC TL084BC			TL0811 TL0821 TL0841		LIND
				MIN	TYP	MAX	NIM	ТҮР	MAX	NIM	ТҮР	MAX	NIM	TYP I	MAX	
<u>(</u>	enetion testion tudal	$V_{O} = 0,$	$T_A = 25^{\circ}C$		3	15		3	9		2	3		3	9	/\m
2	input oliset voltage	$R_S = 50 \Omega$	T _A = full range			20			7.5			2			6	<u> </u>
ανΙΟ	Temperature coefficient of input offset voltage	$V_{O} = 0$, $T_{A} = \text{full range}$	RS = 50 Ω,		18			18			18			18		μV/°C
<u> </u>	Transit offset and T	0 - 0/	T _A = 25°C		5	200		2	100		2	100		5	100	рА
2	input offset current+	0 - 0	T _A = full range			2			2			2			10	nA
<u>c</u>	Thought bias current #	0 = 0/	$T_A = 25^{\circ}C$		30	400		30	200		30	200		30	200	ρA
<u>a</u>		2-0-	T _A = full range			10			7			7			20	nA
	Common-mode				-12			-12			-12			-12		
VICR	input voltage range	T _A = 25°C		+1	to 15		+1	to 15		+1	to 15		+1	to 15		>
	Naccional contraction	T _A = 25°C	$R_L = 10 \text{ k}\Omega$	±12 ±	±13.5		±12 ±	±13.5		±12 ±	±13.5		±12 ±	±13.5		
NOΜ	Maximum peak	T full range	$R_L \ge 10 \text{ k}\Omega$	±12			±12			±12			±12			>
	Suppose solve	۱۸ – اطا اطالع	$R_L \ge 2 k\Omega$	±10	±12		±10	±12		±10	±12		±10	±12		
	Large-signal differential	$V_{Q} = \pm 10 \text{ V},$ $T_{A} = 25^{\circ}\text{C}$	$R_{L} \geq 2 k \Omega$,	25	200		20	200		20	200		20	200		/\~//
Q V	voltage amplification	$V_{Q} = \pm 10 \text{ V},$ TA = full range	R _L ≥2kΩ,	15			25			25			25)
B1	Unity-gain bandwidth	T _A = 25°C			က			က			က			3		MHz
r.	Input resistance	T _A = 25°C			1012			1012			1012			1012		G
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}$ min, $R_{S} = 50 \Omega$,	V _O = 0, T _A = 25°C	20	98		80	98		80	98		80	98		dB
kSVR	Supply voltage rejection ratio ($\Delta V_{CC\pm}/\Delta V_{IO}$)	$V_{CC} = \pm 15 \text{ V to } \pm 9 \text{ V,}$ $R_S = 50 \Omega,$ $T_A = 0.0$	$\pm 9 \text{ V}, \text{VO} = 0,$ $\text{TA} = 25^{\circ}\text{C}$	20	98		80	98		80	98		80	98		dB
၁၁၂	Supply current (per amplifier)	No load, T _A = 25°C	VO = 0,		1.4	2.8		4.1	2.8		1.4	2.8		1.4	2.8	mA
V ₀₁ /V ₀₂	Crosstalk attenuation	AVD = 100,	T _A = 25°C		120			120			120			120		dВ
T All chara	† All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified. Full range for T₄ is 0°C to 70°C for TL08 C. TL08 AC.	open-loop conditic	ons with zero comm	pom-nor	le voltag	e unles	s otherw	vise spe	cified. F	ull rang	le for T _A	is 0°C	to 70°C	for TL08	T C	OB AC

TL08_BC and -40°C to 85°C for TL08_I.

‡ Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 18. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.

electrical characteristics, $V_{\mbox{\footnotesize{CC}}\,\pm}\mbox{=}\,\pm15$ V (unless otherwise noted)

	ADAMETED	TEOT 001	IDITIONOT	TL0	B1M, TL0	82M		TL084M		LINUT
	PARAMETER	IEST CON	IDITIONST	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	$V_{O} = 0, R_{S} = 50 \Omega$	T _A = 25°C		3	6		3	9	mV
VIO	Input onset voltage	VO = 0, 1(S = 30 12	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$			9			15	111 V
αΛΙΟ	Temperature coefficient of input offset voltage	$V_O = 0$, $T_A = -55^{\circ}C$ to 125°C	R _S = 50 Ω,		18			18		μV/°C
110	Input offset current [∓]	V _O = 0	T _A = 25°C		5	100		5	100	pА
ilO	input onset current+	vO = 0	T _A = 125°C			20			20	nA
Iв	Input bias current‡	VO = 0	T _A = 25°C		30	200		30	200	pА
IIB	Input bias current+	VO = 0	T _A = 125°C			50			50	nA
	Common-mode				±12			± 12		
VICR	input voltage range	T _A = 25 °C		±11	to 15		±11	to 15		V
		T 05°C	D 401-0	140			140			
	Maximum peak	T _A = 25 °C,	$R_L = 10 \text{ k}\Omega$	±12	±13.5		±12	±13.5		V
VOМ	output voltage swing	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$	$R_L \ge 10 \text{ k}\Omega$	±12	140		±12	140		V
	Swilig		$R_L \ge 2 k\Omega$	±10	±12		±10	±12		
۸	Large-signal differential voltage	$V_O = \pm 10 \text{ V},$ $T_A = 25^{\circ}\text{C}$	$R_L \ge 2 k\Omega$,	25	200		25	200		V/mV
AVD	amplification	$V_O = \pm 10 \text{ V},$ $T_A = -55^{\circ}\text{C to } 125^{\circ}\text{C}$	$R_L \ge 2 k\Omega$,	15			15			V/IIIV
B ₁	Unity-gain bandwidth	T _A = 25 °C			3			3		MHz
rį	Input resistance	T _A = 25 ° C			10 ¹²			10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR} \text{ min},$ $R_S = 50 \Omega,$	$V_O = 0$, $T_A = 25$ °C	80	86		80	86		dB
kSVR	Supply voltage rejection ratio $(\Delta V_{CC\pm}/\Delta V_{IO})$	$V_{CC} = \pm 15 \text{ V to } \pm 9 \text{ V},$ $R_S = 50 \Omega,$	V _O = 0, T _A = 25°C	80	86		80	86		dB
ICC	Supply current (per amplifier)	No load,	$V_{O} = 0$, $T_{A} = 25^{\circ}C$		1.4	2.8		1.4	2.8	mA
V ₀₁ /V ₀₂	Crosstalk attenuation	A _{VD} = 100,	T _A = 25°C		120			120		dB

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified.

operating characteristics, $V_{CC\pm}$ = ± 15 V, T_A = $25^{\circ}C$ (unless otherwise noted)

	PARAMETER	٦	TEST CONDITIONS		MIN	TYP	MAX	UNIT
SR	Clause rate at units spain	V _I = 10 V, C _L = 100 pF,	R_L = 2 kΩ, See Figure 1		8*	13		\//a
SK	Slew rate at unity gain	$V_I = 10 \text{ V},$ $T_A = -55 ^{\circ}\text{C} \text{ to } 12$	$R_L = 2 k\Omega,$ 25°C,	C _L = 100 pF, See Figure 1	5*			V/μs
t _r	Rise time	$V_{I} = 20 \text{ mV},$	$R_L = 2 k\Omega$,			0.05		μs
	Overshoot factor	C _L = 100 pF,	See Figure 1			20%		
V	Fautivalent innut naise valtage	D- 400 O	f = 1 kHz			18		nV/√Hz
V _n	Equivalent input noise voltage	$R_S = 100 \Omega$	f = 10 Hz to 10 kHz			4		μV
In	Equivalent input noise current	$R_S = 100 \Omega$,	f = 1 kHz			0.01		pA/√Hz
THD	Total harmonic distortion	$V_{O(rms)} = 10 \text{ V},$ f = 1 kHz	$R_S \le 1 \text{ k}\Omega$,	$R_L \ge 2 k\Omega$,	(0.003%	·	

^{*}On products compliant to MIL-STD-883, Class B, this parameter is not production tested.

[‡] Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 18. Pulse techniques must be used that will maintain the junction temperatures as close to the ambient temperature as is possible.

TL082Y, TL084Y electrical characteristics, $V_{CC\pm}$ = ± 15 V (unless otherwise noted)

	PARAMETER	TEST CONDIT	IONS†	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	$V_{O} = 0$, $R_{S} = 50 \Omega$,	T _A = 25°C		3	15	mV
ανιο	Temperature coefficient of input offset voltage	$V_{O} = 0$, $R_{S} = 50 \Omega$,	T _A = 25°C		18		μV/°C
ΙO	Input offset current‡	$V_{O} = 0$,	T _A = 25°C		5	200	pА
I _{IB}	Input bias current [‡]	$V_{O} = 0,$	T _A = 25°C		30	400	pА
VICR	Common-mode input voltage range	T _A = 25°C		±11	-12 to 15		V
Vом	Maximum peak output voltage swing	$T_A = 25^{\circ}C$,	$R_L = 10 \text{ k}\Omega$	±12	±13.5		V
AVD	Large-signal differential voltage amplification	$V_O = \pm 10 \text{ V}, T_A = 25^{\circ}\text{C},$	$R_L \ge 2 k\Omega$	25	200		V/mV
B ₁	Unity-gain bandwidth	T _A = 25°C			3		MHz
rį	Input resistance	T _A = 25°C			10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR} \text{ min,}$ $R_S = 50 \Omega,$	$V_O = 0$, $T_A = 25$ °C	70	86		dB
ksvr	Supply voltage rejection ratio ($\Delta V_{CC\pm}/\Delta V_{IO}$)	$V_{CC} = \pm 15 \text{ V to } \pm 9 \text{ V},$ $R_S = 50 \Omega,$	$V_O = 0$, $T_A = 25$ °C	70	86		dB
ICC	Supply current (per amplifier)	No load, $V_O = 0$,	T _A = 25°C		1.4	2.8	mA
V ₀₁ /V ₀₂	Crosstalk attenuation	$A_{VD} = 100,$	T _A = 25°C		120		dB

[†] All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified.

operating characteristics, $V_{CC\pm} = ~\pm 15$ V, $T_A = 25\,^{\circ}C$ (unless otherwise noted)

	PARAMETER	TEST	CONDITIONS	MIN	TYP MAX	UNIT
SR	Slew rate at unity gain	$V_I = 10 \text{ V},$ $C_L = 100 \text{ pF},$	$R_L = 2 kΩ$, See Figure 1	8	13	V/μs
t _r	Rise time	$V_{I} = 20 \text{ mV},$	$R_L = 2 k\Omega$,		0.05	μs
	Overshoot factor	$C_L = 100 pF$,	See Figure 1		20%	
V	Equivalent input noise voltage	Rs = 100 Ω	f = 1 kHz		18	nV/√Hz
Vn	Equivalent input hoise voltage	KS = 100 22	f = 10 Hz to 10 kHz		4	μV
In	Equivalent input noise current	$R_S = 100 \Omega$,	f = 1 kHz		0.01	pA/√Hz
THD	Total harmonic distortion	$V_{O(rms)} = 10 V,$ f = 1 kHz	$R_S \le 1 \text{ k}\Omega, R_L \ge 2 \text{ k}\Omega,$	0.0	003%	

[‡] Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 18. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.

PARAMETER MEASUREMENT INFORMATION

Figure 1. Unity-Gain Amplifier

Figure 2. Gain-of-10 Inverting Amplifier

Figure 3. Feed-Forward Compensation

Figure 4. TL080 Input Offset Voltage Null Circuit

Figure 5. TL081 Input Offset Voltage Null Circuit

MAXIMUM PEAK OUTPUT VOLTAGE FREQUENCY ± 15 V_{CC±} = ±15 V $R_L = 10 \text{ k}\Omega$ T_A = 25°C VoM- Maximum Peak Output Voltage - V See Figure 2 ±12.5 $\pm 10\,$ $V_{CC\pm} = \pm 10 \text{ V}$ ±7.5 ±5 $V_{CC\pm} = \pm 5 V$ ± 2.5 0 100 1 k 10 k 100 k 1 M 10 M f - Frequency - Hz

MAXIMUM PEAK OUTPUT VOLTAGE‡

Figure 6

MAXIMUM PEAK OUTPUT VOLTAGE§

Figure 7

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 12-pF compensation capacitor is used with TL080.

Figure 8

[§] The temperature range of the C version is 0°C to 75°C, the I version is −40°C to 85°C, and the M version is −55°C to 125°C.

[‡]The -55°C curve and the 125°C curve apply only to the M version.

LARGE-SIGNAL[‡] DIFFERENTIAL VOLTAGE AMPLIFICATION

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 12-pF compensation capacitor is used with TL080.

[‡]The temperature range of the C version is 0°C to 75°C, the I version is -40°C to 85°C, and the M version is -55°C to 125°C.

0.6

0.4

0.2

0

0

2

6

8

 $|V_{CC\pm}|$ – Supply Voltage – V

Figure 17

10

12

14

16

125

0.6

0.4

0.2

0

_ -75

-50

-25

0

Figure 16

25

T_A - Free-Air Temperature -°C

50

75

100

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 12-pF compensation capacitor is used with TL080.

[‡] The temperature range of the C version is 0°C to 75°C, the I version is -40°C to 85°C, and the M version is -55°C to 125°C.

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 12-pF compensation capacitor is used with TL080.

[‡] The temperature range of the C version is 0°C to 75°C, the I version is -40°C to 85°C, and the M version is -55°C to 125°C.

COMMON-MODE REJECTION RATIO[‡] **EQUIVALENT INPUT NOISE VOLTAGE** FREE-AIR TEMPERATURE **FREQUENCY** 89 50 $V_{CC\pm} = \pm 15 \text{ V}$ V_n – Equilvalent Input Noise Voltage – nV/√Hz CMRR - Common-Mode Rejection Ratio - dB $R_L = 10 \text{ k}\Omega$ $^{\prime}$ CC \pm = \pm 15 V $A_{VD} = 10$ 88 40 $R_S = 100 \Omega$ $T_{\Delta} = 25^{\circ}C$ 87 30 86 20 85 10 84 83 0 _ 75 - 50 25 50 100 125 - 25 75 10 40 100 400 1 k 10 k 40 k 100 k TA - Free-Air Temperature - °C f - Frequency - Hz Figure 21 Figure 22

TOTAL HARMONIC DISTORTION

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 12-pF

compensation capacitor is used with TL080.

Figure 23

[‡]The temperature range of the C version is 0°C to 75°C, the I version is -40°C to 85°C, and the M version is -55°C to 125°C.

TYPICAL APPLICATION DATA

Figure 24. 0.5-Hz Square-Wave Oscillator

Figure 25. High-Q Notch Filter

Figure 26. Audio Distribution Amplifier

NOTE A: These resistor values may be adjusted for a symmetrical output.

Figure 27. 100-KHz Quadrature Oscillator

TYPICAL APPLICATION DATA

Figure 28. Positive-Feedback Bandpass Filter

Figure 29. IC Preamplifier

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated