Ejercicios

Los marcados con * son para evaluación continua.

 Formalizar la siguiente deducción y comprobar si es correcta, usando cálculo con supuestos (*):

Ni apruebo ni programo bien a menos que tenga paciencia.

Esta claro que o apruebo o me cae una bronca de mis padres.

Si me cae una bronca de mis padres entonces es que estoy programando bien.

De todo esto se deduce que tengo paciencia.

a: apruebo

b: programo bien

p: tengo paciencia

r: me cae una bronca de mis padres

$$\sim$$
(\sim a $\land \sim$ b) \rightarrow p, a \lor r, r \rightarrow b \Rightarrow p

4. Formalizar la siguiente deducción y comprobar si es correcta, usando cálculo con supuestos:

O no es suficiente tener un buen sueldo para vivir bien, o soy demasiado exigente.

La verdad es que no trabajo mucho.

Pero sólo si trabajo mucho o vivo bien tendré un buen sueldo.

Luego lo que pasa es que soy demasiado exigente.

s: tener un buen sueldo

b: vivir bien

e: ser demasiado exigente

t: trabajar mucho

$$\sim$$
(s \rightarrow b) v e, \sim t, s \rightarrow t v b \Rightarrow e

5. Formalizar la siguiente deducción y comprobar si es correcta, usando cálculo con supuestos.

"Si
$$x=1$$
 e $y=2$, entonces $z=3$.

Sabemos que w=0 es necesario para que si y=2 entonces sea z=3.

Tenemos que x=1;

por consiguiente w=0."

$$x: x = 1 ; y: y = 2; z: z = 3; w: w=0$$

$$X \wedge Y \rightarrow Z$$
, $(Y \rightarrow Z) \rightarrow W$, $X \Rightarrow W$

- 6. Formalizar y demostrar que la deducción es correcta, usando cálculo con supuestos.
 - 1. Si hablas eres un ser humano.
 - 2. Si no tienes nada que decir, no hablas.
 - 3. Sólo si tienes algo que decir, eres un ser inteligente.
 - 4. Si eres un ser humano, y tienes algo que decir, eres un buen conversador.
 - 5. No eres un ser inteligente o eres un ser humano.
 - 6. Por lo tanto, si hablas o eres un ser inteligente, eres un buen conversador.

h: hablas

s: ser humano

t: tener qué decir

i: inteligente

c: conversador

$$h \rightarrow s, \, {\sim}t \rightarrow {\sim}h, \, i \rightarrow t, \, s \wedge t \rightarrow c, \, {\sim}i \vee s \Rightarrow h \vee i \rightarrow c$$