Topología: Relación de problemas del Tema 3

Grado en Matemáticas, Doble Grado en Física y Matemáticas, Doble Grado en Ing. Informática y Matemáticas Universidad de Granada

Curso 2023-2024

- 1. Demuestra que \mathbb{S}^1 no es homeomorfo a ningún subconjunto de \mathbb{R} , ambos considerados con la topología usual.
- 2. Demuestra que $\mathbb{R}^{n+1} \setminus \mathbb{S}^n$ no es conexo.
- 3. Sea (X, \mathcal{T}) un espacio topológico. Demuestra que son equivalentes:
 - a) (X, \mathcal{T}) es conexo.
 - b) Para todo $A \subseteq X$ tal que $\partial A = \emptyset$ se tiene A = X o $A = \emptyset$.
- 4. Sean A y B subconjuntos conexos de un espacio topológico (X, \mathcal{T}) tales que $\overline{A} \cap B \neq \emptyset$. Demuestra que $A \cup B$ es conexo.
- 5. Sean A y B subconjuntos cerrados y no vacíos de un espacio (X, \mathcal{T}) tales que $A \cup B$ y $A \cap B$ son conexos. Demuestra que A y B son conexos.
- 6. Sean Y_1 y Y_2 subespacios de (X, \mathcal{T}) y sea $A \subseteq Y_1 \cap Y_2$. Demuestra que si A es abierto (respectivamente cerrado) en Y_1 y en Y_2 entonces A es abierto (respectivamente cerrado) en $Y_1 \cap Y_2$ y en $Y_1 \cup Y_2$.
- 7. Sean (X, \mathcal{T}) un espacio conexo y A un subconjunto conexo y no vacío de X. Sea U un abierto y cerrado en $X \setminus A$. Demuestra que $A \cup U$ es conexo.
- 8. Sean (X, \mathcal{T}) un espacio conexo y A un subconjunto conexo y no vacío de X. Sea C una componente conexa de $X \setminus A$. Demuestra que $X \setminus C$ es conexo.
- 9. Prueba que el interior y la frontera de un subconjunto conexo no son en general conexos.
- 10. Sean (X, \mathcal{T}) y (X', \mathcal{T}') dos espacios topológicos conexos y $A \subseteq X$, $A \neq X$, $B \subseteq X'$, $B \neq X'$. ¿Es $X \times X' \setminus A \times B$ conexo?
- 11. Sea X el conjunto de los puntos de \mathbb{R}^2 con alguna coordenada racional. Prueba que X con la topología inducida es un subconjunto conexo.
- 12. Prueba que no existen aplicaciones continuas e inyectivas de \mathbb{R}^2 en \mathbb{R} .
- 13. Sea (X, \mathcal{T}) un espacio topológico y $\{A_i\}_{i \in I}$ una partición por subconjuntos conexos y abiertos de (X, \mathcal{T}) . Entonces $\{A_i\}_{i \in I}$ es la familia de componentes conexas de X.

- 14. Sea $X = \{a, b, c, d, e\}$ y $\mathcal{T} = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}$. Calcula las componentes conexas de (X, \mathcal{T}) .
- 15. Denotemos por C((a,b),r) la circunferencia en \mathbb{R}^2 con centro (a,b) y radio r. Demuestra que ninguno de los siguientes espacios topológicos es homeomorfo a cualquier otro.
 - a) $X_1 = C((0,0),1),$
 - b) $X_2 = C((-1,0),1) \cup C((1,0),1),$
 - c) $X_3 = C((-1,0),1) \cup C((1,0),1) \cup C((0,\sqrt{3}),1),$
 - d) $X_4 = C((-1,0),1) \cup C((1,0),1) \cup (\mathbb{R} \times \{1\}).$
- 16. Decide cuales de los siguientes subespacios de \mathbb{R} y \mathbb{R}^2 son compactos. Razona la respuesta.
 - a) $[0, \infty[$.
 - b) $[0,1] \cap \mathbb{Q}$.
 - c) $\{(x,y) \in \mathbb{R}^2 \mid x \ge 1, 0 \le y \le \frac{1}{x} \}$
 - d) $\{(x,y) \in \mathbb{R}^2 \mid |x| + |y| \le 1\}$
 - e) $\mathbb{S}^1 \setminus \{(\sqrt{2}/2, -\sqrt{2}/2)\}.$
 - f) (]0,1[, \mathcal{T}), donde $\mathcal{T} = \{\emptyset, X\} \cup \{]0, 1 \frac{1}{n}[\mid n \ge 2\}.$
 - g) $(\mathbb{R}, \mathcal{T})$, donde $\mathcal{T} = \{ O \subseteq \mathbb{R} \mid O = U \setminus B, U \in \mathcal{T}_u, B \subseteq \{ \frac{1}{n} \mid n \in \mathbb{N} \} \}.$
 - h) La recta de Sorgenfrey.
 - i) $(\mathbb{Q}, \mathcal{T}_u|_{\mathbb{Q}})$.
 - j) X es un conjunto $p \in X$ un punto fijo y $\mathcal{T} = \{O \subseteq X \mid p \in O\} \cup \emptyset$.
 - k) X es un conjunto $p \in X$ un punto fijo y $\mathcal{T} = \{O \subseteq X \mid p \notin O\} \cup X$.
 - l) \mathbb{N} con la topología $\mathcal{T} = \{\emptyset, \mathbb{N}\} \cup \{\{1, \dots, n\} \mid n \in \mathbb{N}\}.$
- 17. Sea (X, \mathcal{T}) un espacio topológico. Prueba que si $A, A' \subseteq X$ son subespacios compactos entonces $A \cup A'$ también es compacto.
- 18. Sea (X, \mathcal{T}) un espacio topológico Hausdorff. Prueba que si $\{A_i\}_{i\in I}$ son subespacios compactos de X entonces $\cap_{i\in I}A_i$ también es compacto.
- 19. Sea (X, \mathcal{T}) un espacio topológico compacto y supongamos que para cada $n \in \mathbb{N}$, C_n es un subconjunto cerrado y no vacío tal que $C_{n+1} \subseteq C_n$. Prueba que $\bigcap_{n=1}^{\infty} C_n \neq \emptyset$.
- 20. Sea (X, \mathcal{T}) un espacio Hausdorff y compacto y $f: X \to X$ una aplicación continua. Prueba que existe $A \subseteq X$ un subconjunto cerrado y no vacío tal que f(A) = A.
- 21. Demuestra el siguiente resultado conocido como el teorema de la aplicación contractiva: si X es un espacio métrico compacto y $f: X \to X$ es una aplicación contractiva (es decir, existe K < 1 tal que $d(f(x), f(y)) \le Kf(x, y)$ para todo $x, y \in X$, entonces existe un único punto $x \in X$ tal que f(x) = x.

- 22. Sea (X, \mathcal{T}) un espacio topológico Hausdorff y $\{K_n\}_{n\in\mathbb{N}}$ una sucesión estrictamente decreciente de compactos no vacíos en X. Demuestra que $K = \bigcap_{n\in\mathbb{N}} K_n \neq \emptyset$ y que si $U \in \mathcal{T}$ tal que $K \subseteq U$ entonces existe $m \in \mathbb{N}$ tal que $K_m \subseteq U$.
- 23. Encuentra contraejemplos de las afirmaciones siguientes:
 - a) En cualquier espacio métrico, toda bola cerrada es un subespacio compacto.
 - b) En cualquier espacio métrico, ninguna bola abierta puede ser un subespacio compacto.
- 24. Demuestra que no existe ninguna función continua $f:([0,1],\mathcal{T}_u|_{[0,1]})\to (\mathbb{R},\mathcal{T}_u)$ que verifique $f(x)\in\mathbb{R}\setminus\mathbb{Q}$ si $x\in\mathbb{Q}$ y $f(x)\in\mathbb{Q}$ si $x\in\mathbb{R}\setminus\mathbb{Q}$.
- 25. Sean (X, \mathcal{T}) e (Y, \mathcal{T}') espacios topológicos con (X, \mathcal{T}) compacto. Prueba que la proyección $\pi_Y: X \times Y \to Y$ es cerrada.
- 26. Se dice que $C \subseteq \mathbb{R}^2$ es una curva de Jordan si C = f([0,1]) para $f:[0,1] \to \mathbb{R}^2$ una aplicación continua e inyectiva. Prueba que no existe una curva de Jordan que rellene el cuadrado $[0,1] \times [0,1]$.
- 27. Prueba que los subconjuntos compactos de la recta de Sorgenfrey son necesariamente numerables.