Ministerul Educației și Cercetării Centrul Național de Evaluare și Examinare

Examenul de bacalaureat naţional 2020 Proba E, d) **FIZICA**

Filiera teoretică – profilul real, Filiera vocațională – profilul militar

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

 Se acordă 10 puncte din oficiu. • Timpul de lucru efectiv este de 3 ore.

A. MECANICĂ Test 4

Se consideră accelerația gravitațională g = 10m/s².

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

1. Unitatea de măsură a puterii mecanice, scrisă în funcție de unitățile de măsură fundamentale în S.I., este:

a.
$$kg \cdot \frac{m}{s^2}$$

b.
$$kg \cdot \frac{m^2}{s^2}$$
 c. $kg \cdot \frac{m}{s}$ **d.** $kg \cdot \frac{m^2}{s^3}$

c.
$$kg \cdot \frac{m}{s}$$

d.
$$kg \cdot \frac{m^2}{s^3}$$

(3p)

2. Un camion parcurge un sfert din drumul său cu viteza $v_1 = 30 \, \text{km/h}$, iar restul drumului cu viteza $v_2 = 60 \,\text{km/h}$. Viteza medie a camionului pe întreaga distanță parcursă are valoarea:

- a. 45km/h
- **b.** 48km/h
- **c.** 50km/h

(3p)

3. Asupra unui resort elastic acționează la ambele extremități, în sensuri contrare, câte o forță având modulul egal cu 40N. Alungirea resortului este egală cu 5 cm. Constanta elastică a resortului este egală cu:

- **a.** 8N/m
- **b.** 125N/m
- d. 1600N/m

(3p)

4. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, legea Hooke poate fi scrisă în forma:

a.
$$\frac{F}{S} = E \frac{\Delta \ell}{\ell_0}$$

b.
$$\frac{S}{F} = E \frac{\Delta \ell}{\ell_0}$$

c.
$$\frac{F}{S} \cdot E = \frac{\Delta \ell}{\ell_0}$$

d.
$$F \cdot S = E \frac{\Delta \ell}{\ell_0}$$

5. Un avion având masa $m = 20 \, \mathrm{t}$ decolează de pe un aeroport situat la nivelul mării și ajunge la altitudinea h = 5000 m. Variația energiei potențiale datorate interacțiunii gravitaționale avion-Pământ este de aproximativ:

(3p)

II. Rezolvati următoarea problemă:

Un corp paralelipipedic având masa $m_1 = 0.8 \, \mathrm{kg}$ este lăsat să alunece liber pe un plan înclinat cu unghiul $\alpha = 30^{\circ}$ față de orizontală. Coeficientul de frecare la alunecare între corp și planul înclinat este $\mu_1 = 0.29 \left(\cong \frac{\sqrt{3}}{6} \right).$

a. Reprezentați forțele care acționează asupra corpului în timpul coborârii.

b. Calculați mărimile componentelor \vec{G}_p și \vec{G}_n ale greutății corpului pe direcția *paralelă* cu planul înclinat, respectiv pe direcția normală la suprafața acestuia.

c. Calculati acceleratia corpului.

d. Se așază în fața corpului de masă m_1 un al doilea corp paralelipipedic de masă $m_2 = 0.2 \,\mathrm{kg}$, ca în figura alăturată. Coeficientul de frecare la alunecare

între corpul de masă m_2 și planul înclinat este $\mu_2 = 0.58 \left(\approx \frac{\sqrt{3}}{3} \right)$. Calculați

valoarea forței de interacțiune dintre corpuri în timpul alunecării lor pe planul înclinat.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Un corp cu masa $m=20\,\mathrm{kg}$ este lansat de-a lungul suprafeței orizontale a gheții cu viteza $v=14.4\,\mathrm{\frac{km}{h}}$. Sub acțiunea forței de frecare, el se oprește după un interval de timp $\Delta t = 20 \, \text{s}$. Coeficientul de frecare la alunecare este constant. Calculați:

a. energia cinetică a corpului în momentul lansării;

b. lucrul mecanic efectuat de forța de frecare până la oprirea corpului;

c. modulul forței de frecare;

d. distanța parcursă de corp până la oprire.

Examenul de bacalaureat naţional 2020 Proba E, d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu.

• Timpul de lucru efectiv este de 3 ore. B. ELEMENTE DE TERMODINAMICĂ

Test 4

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \frac{\text{J}}{\text{mol} \cdot \text{K}}$. Între parametrii

de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$.

I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect.

1. În figura alăturată sunt reprezentate, în coordonate V-T, trei procese termodinamice efectuate, la aceași presiune, de mase egale din trei gaze diferite. Relația dintre masele molare ale acestora este:

b.
$$\mu_1 = \mu_2 < \mu_3$$

c.
$$\mu_1 > \mu_2 > \mu_3$$

d.
$$\mu_1 < \mu_2 < \mu_3$$
 (3p)

2. Notațiile fiind cele utilizate în manualele de fizică, relația Robert-Mayer poate fi scrisă în forma:

$$a. C_V = R - C_p$$

b.
$$C_{V} - C_{p} = R$$

b.
$$C_V - C_p = R$$
 c. $C_V = C_p + \mu R$ **d.** $C_p = C_V + R$

$$\mathbf{d.} \ C_p = C_V + R \tag{3p}$$

- 3. Energia internă a unei cantități constante de gaz ideal:
- a. creste în urma unei destinderi adiabatice
- b. scade dacă gazul primește izocor căldură
- c. este constantă într-o transformare izotermă

4. Unitatea de măsură în S.I. pentru capacitatea calorică a unui corp este:

a.
$$J \cdot kg^{-1} \cdot K^{-1}$$

c.
$$N \cdot m^2 \cdot K^{-1}$$

(3p)

5. Raportul dintre lucrul mecanic efectuat de un motor termic pe durata unui ciclu complet și căldura primită de la sursa caldă în același interval de timp este $\eta = 0,25$. Motorul cedează sursei reci căldura $|Q_c| = 360 \, \text{J}$. Căldura primită de la sursa caldă este:

a. 270 J

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

Un cilindru orizontal cu lungimea $\ell = 90 \, \text{cm}$ si sectiunea $S = 83.1 \, \text{cm}^2$, închis la ambele capete, este împărtit în două compartimente cu ajutorul unui piston mobil termoizolant, subțire si etans, ce se poate misca fără frecare. În primul compartiment este închisă o masă $m_1 = 0.16 \, \mathrm{g}$ de hidrogen $(\mu_1 = 2 \, \mathrm{g/mol})$ aflat la temperatura $t_1 = 27^{\circ}\text{C}$, iar în al doilea o masă $m_2 = 1,12 \text{ g}$ de azot $(\mu_2 = 28 \text{ g/mol})$ aflat la aceeași temperatură. Pistonul este liber si se află în echilibru mecanic. Ambele gaze sunt considerate gaze ideale. Determinati:

- a. masa unei molecule de hidrogen:
- **b.** lungimea compartimentului care contine azot;
- c. presiunea la care se află cele două gaze;
- d. temperatura la care trebuie încălzit azotul, astfel încât cele două gaze să ocupe volume egale, dacă temperatura hidrogenului rămâne nemodificată.

III. Rezolvați următoarea problemă:

Un gaz considerat ideal este supus procesului termodinamic ciclic reprezentat în sistemul de coordonate p-T în figura alăturată. Lucrul mecanic total schimbat de gaz cu mediul într-un ciclu este L = 100 J. Se cunosc: raportul temperaturilor

 $T_2 / T_1 = 2,72 \ (\cong e)$ și căldura molară izocoră a gazului $C_v = \frac{5}{2}R$.

- **a.** Reprezentați procesul ciclic în sistemul de coordonate p-V.
- **b**. Determinați valoarea produsului p_1V_1 dintre presiunea gazului și volumul ocupat de acesta în starea 1.
- **c.** Calculați variația energiei interne a gazului în procesul $3 \rightarrow 1$.
- d. Calculați căldura primită de gaz într-un ciclu.

(15 puncte)

Examenul de bacalaureat naţional 2020 Proba E, d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Test 4

- I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Simbolurile unitătilor de măsură fiind cele folosite în S.I., unitatea de măsură pentru rezistenta electrică **nu** poate fi scrisă în forma:
- **a.** $W^{-1} \cdot A \cdot V^{-1}$
- **b.** $V \cdot A^{-1}$
- c. $W \cdot A^{-2}$
- **d.** $W^{-1} \cdot V^2$

(3p)

- **2.** Randamentul unui circuit simplu are valoarea $\eta = 80\%$. Între rezistenta electrică R a circuitului exterior si rezistența interioară r a sursei există relația:
- **a.** $R = 8 \cdot r$
- **b.** $R = 4 \cdot r$
- c. $R = 2 \cdot r$
- **d.** R = r

(3p)

- 3. La gruparea rezistoarelor în serie:
- a. rezistența electrică echivalentă este mai mică decât oricare dintre rezistențele rezistoarelor din circuit
- b. rezistența electrică echivalentă este egală cu suma inverselor rezistențelor electrice
- c. intensitatea curentului electric este aceeași prin fiecare rezistor
- d. intensitatea curentului prin rezistența echivalentă este egală cu suma intensităților curenților care trec prin fiecare rezistor (3p)
- 4. La temperatură constantă, rezistenta electrică R a unui conductor filiform având sectiunea constantă depinde de lungimea ℓ a conductorului conform reprezentării grafice din figura:

(3p)

- 5. Trei surse identice având fiecare tensiunea electromotoare E și rezistența interioară r furnizează un curent de aceeași intensitate unui circuit exterior de rezistență R fie că sunt conectate în serie, fie că sunt conectate în paralel. Între rezistența circuitului exterior și rezistența interioară a unei surse există relația:
- **a.** R = r/2
- **b.** R = r
- **c.** R = r/3
- **d.** R = 3r
- (3p)

II. Rezolvați următoarea problemă:

La bornele unui generator electric se conectează un reostat. În circuit se introduce un ampermetru pentru măsurarea intensității curentului electric prin reostat si un voltmetru pentru măsurarea tensiunii la bornele generatorului.

(15 puncte) 1,0 2,0 3,0 | 4,0 | 5,0 16 20

Instrumentele de măsură sunt considerate ideale $(R_A\cong 0;\,R_V\to \infty)$. Datele experimentale culese, obținute prin deplasarea cursorului reostatului, sunt prezentate în tabelul alăturat. După efectuarea măsurătorilor se conectează, în serie cu reostatul, un bec. Schema circuitului este prezentată în figura alăturată. Pe soclul becului sunt inscripționate valorile: 12 V; 2 A. Se constată că becul funcționează normal atunci când cursorul C al reostatului se află fată de capătul A la o distantă egală cu o sesime din lungimea totală AB a reostatului.

- a. Stabiliti expresia matematică a relatiei care redă dependenta teoretică a tensiunii la bornele generatorului (având tensiunea electromotoare E și rezistența interioară r) de intensitatea curentului electric prin generator.
- b. Calculați rezistența interioară a generatorului.
- c. Calculați tensiunea electromotoare a generatorului.
- **d.** Determinați valoarea maximă a rezistenței reostatului.

III. Rezolvaţi următoarea problemă:

(15 puncte)

La rețeaua de 220 V se leagă în paralel, prin intermediul unei prize multiple, un fier de călcat cu puterea nominală $P_1 = 2200 \,\mathrm{W}$ și un aspirator de putere nominală $P_2 = 1100 \,\mathrm{W}$. Cele două aparate au aceeași tensiune nominală $U_n = 220 \,\mathrm{V}$. Priza este protejată printr-o siguranță fuzibilă care suportă un curent electric de intensitate maximă I_{maxim} = 25 A . Calculați:

- **a.** energia consumată de aspirator în $\Delta t = 15 \,\text{min}$ de funcționare, exprimată în kWh;
- **b.** intensitatea curentului care trece prin rezistența fierului de călcat;
- c. numărul maxim de fiare de călcat identice celui descris mai sus care pot fi alimentate de la priza multiplă, considerând că aspiratorul este scos din priză;
- d. puterea electrică maximă care poate fi extrasă prin priza protejată cu siguranța fuzibilă.

Examenul de bacalaureat naţional 2020 Proba E, d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. • Timpul de lucru efectiv este de 3 ore.

D. OPTICĂ Test 4

Se consideră: viteza luminii în vid $c = 3.10^8$ m/s, constanta Planck $h = 6.6.10^{-34}$ J·s.

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Despre indicele de refractie absolut al unui mediu se poate afirma că:
- **b.** se măsoară în m a. este adimensional c. se măsoară în Hz d. se măsoară în m/s (3p)
- 2. Interfranja se defineste ca:
- a. distanta dintre un maxim si un minim de interferentă
- b. distanța dintre două minime de interferență nesuccesive
- c. distanta minimă care cuprinde centrul unui maxim si centrul unui minim
- d. distanta dintre centrele a două maxime de interferentă succesive
- 3. Într-un experiment s-a măsurat valoarea unghiului de refracție r al unei raze laser la trecerea din aer $(n_{aer} \cong 1)$ într-un lichid, pentru diverse valori ale unghiului de incidentă i. Pe baza datelor obținute a fost trasat graficul alăturat. Viteza de propagare a luminii în lichid este de aproximativ:

- **a.** 1,5 · 10⁸ m/s
- **b.** $2.2 \cdot 10^8 \text{ m/s}$
- **c.** 3.0 · 10⁸ m/s
- **d.** $4.0 \cdot 10^8$ m/s
- **4.** Două lentile cu distanțele focale $f_1 = 10 \, \mathrm{cm}$ și respectiv $f_2 = 30 \, \mathrm{cm}$ alcătuiesc un sistem optic centrat. Un fascicul de lumină care era paralel înainte de trecerea prin sistemul optic, rămâne tot paralel si după trecerea prin sistem. Distanta dintre lentile este:
- **a.** 10 cm
- **b.** 20 cm
- c. 30 cm
- **d.** 40 cm
- (3p)

(3p)

(3p)

- **5.** Frecvența radiației alcătuite din fotoni cu energia $\varepsilon = 6.0 \cdot 10^{-19}$ J este de aproximativ:
- **a.** 1.1·10¹⁴ Hz
- **b.** 5.1·10¹⁴ Hz
- **c.** 9.1·10¹⁴ Hz
- **d.** $9.1 \cdot 10^{15} \, \text{Hz}$ (3p)

II. Rezolvati următoarea problemă:

(15 puncte)

Un botanist, care participă la o expediție într-o zonă izolată, dispune de o lentilă convergentă subțire (o lupă) având distanța focală f = 5.0 cm. Aceasta poate fi folosită atât pentru observarea detaliilor plantelor, cât și pentru aprinderea focului folosind razele solare. Dacă se asază lentila perpendicular pe razele de lumină provenite de la Soare și se modifică distanța dintre aceasta și o foaie de hârtie, înainte ca hârtia să ia foc se constată că diametrul minim al petei luminoase observate pe hârtie (imaginea Soarelui) este $d = 0.5 \,\mathrm{mm}$.

- a. Calculati convergenta lentilei.
- b. Pentru a observa detaliile unei seminte, botanistul vrea să obtină cu ajutorul lentilei o imagine dreaptă si de două ori mai mare a semintei. Determinati distanta la care trebuie tinută lentila fată de sământă.
- c. Realizați un desen în care să evidențiați construcția imaginii printr-o lentilă convergentă, pentru un obiect perpendicular pe axa optică principală situat la jumătatea distantei dintre focarul obiect si lentilă.
- d. Calculati valoarea care poate fi estimată, pe baza datelor prezentate, pentru raportul dintre distanta Pământ-Soare și diametrul Soarelui.

III. Rezolvați următoarea problemă:

(15 puncte)

Sursa de lumină a unui dispozitiv Young este așezată pe axa de simetrie a acestuia și emite radiații cu lungimea de undă de 500 nm. Distanța dintre cele două fante ale dispozitivului este $a = 1 \, \text{mm}$.

- a. Calculati distanta la care trebuie să se afle ecranul fată de planul fantelor pentru ca interfranja să fie de 1,5mm atunci când dispozitivul este în aer.
- b. Considerând că ecranul de observație se plasează la 2m de planul fantelor, calculați diferența de drum optic dintre două raze care interferă într-un punct aflat pe ecranul de observatie la 1,2 mm de maximul central;
- c. Calculați distanța dintre cel de al treilea minim de interferență situat de o parte a maximului central si maximul de ordin unu situat de cealaltă parte a maximului central. Distanta dintre planul fantelor si ecran este D=2m.
- d. Calculați noua valoare a interfranjei dacă întreg dispozitivul se introduce în apă și se menține distanța D=2m dintre planul fantelor și ecran. Indicele de refracție al apei este $n_{apa}=\frac{4}{3}$.

D. Optică 4 Probă scrisă la Fizică