

High dimensional time series analysis

4. Automatic forecasting algorithms

robjhyndman.com/hdtsa

Outline

- 1 Exponential smoothing
- 2 Lab Session 7
- 3 ARIMA models
- 4 Lab Session 8
- 5 Seasonal ARIMA models
- 6 Lab Session 9
- 7 Forecast accuracy measures

Outline

- 1 Exponential smoothing
- 2 Lab Session 7
- 3 ARIMA models
- 4 Lab Session 8
- 5 Seasonal ARIMA models
- 6 Lab Session 9
- 7 Forecast accuracy measures

Historical perspective

- Developed in the 1950s and 1960s as methods (algorithms) to produce point forecasts.
- Combine a "level", "trend" (slope) and "seasonal" component to describe a time series.
- The rate of change of the components are controlled by "smoothing parameters": α , β and γ respectively.
- Need to choose best values for the smoothing parameters (and initial states).
- Equivalent ETS state space models developed in the 1990s and 2000s.

We want a model that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

We want a model that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

Additively?

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$

We want a model that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

Additively?

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$

Multiplicatively?

$$y_t = \ell_{t-1}b_{t-1}s_{t-m}(1+\varepsilon_t)$$

We want a model that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

Additively?

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$

Multiplicatively?

$$y_t = \ell_{t-1}b_{t-1}s_{t-m}(1+\varepsilon_t)$$

Perhaps a mix of both?

$$y_t = (\ell_{t-1} + b_{t-1})s_{t-m} + \varepsilon_t$$

We want a model that captures the level (ℓ_t), trend (b_t) and seasonality (s_t).

How do we combine these elements?

Additively?

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$

Multiplicatively?

$$y_t = \ell_{t-1}b_{t-1}s_{t-m}(1+\varepsilon_t)$$

Perhaps a mix of both?

$$y_t = (\ell_{t-1} + b_{t-1})s_{t-m} + \varepsilon_t$$

How do the level, trend and seasonal components evolve over time?

ETS models

General notation ETS: ExponenTial Smoothing

→ ↑

Error Trend Season

Error: Additive ("A") or multiplicative ("M")

ETS models

```
General notation ETS: ExponenTial Smoothing

∠ ↑ △

Error Trend Season
```

Error: Additive ("A") or multiplicative ("M")

Trend: None ("N"), additive ("A"), multiplicative ("M"), or damped ("Ad" or "Md").

ETS models

Error: Additive ("A") or multiplicative ("M")

Trend: None ("N"), additive ("A"), multiplicative ("M"), or damped ("Ad" or "Md").

Seasonality: None ("N"), additive ("A") or multiplicative ("M")

ETS(A,N,N): SES with additive errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T$$

Measurement equation $y_t = \ell_{t-1} + \varepsilon_t$

State equation $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$

where $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

ETS(A,N,N): SES with additive errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T$$

Measurement equation $y_t = \ell_{t-1} + \varepsilon_t$

State equation $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$

where $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

- "innovations" or "single source of error" because equations have the same error process, ε_t .
- Measurement equation: relationship between observations and states.
- Transition/state equation(s): evolution of the state(s) through time.

ETS(M,N,N): SES with multiplicative errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T$$

Measurement equation $y_t = \ell_{t-1}(1 + \varepsilon_t)$

State equation $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$

where $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

ETS(M,N,N): SES with multiplicative errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T$$

Measurement equation $y_t = \ell_{t-1}(1 + \varepsilon_t)$

State equation $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$

where $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

Models with additive and multiplicative errors with the same parameters generate the same point forecasts but different prediction intervals.

ETS(A,A,N): Holt's linear trend

Additive errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T + hb_T$$

Measurement equation $y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$

State equations $\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$
 $b_t = b_{t-1} + \beta \varepsilon_t$

9

ETS(A,A,N): Holt's linear trend

Additive errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T + hb_T$$

Measurement equation $y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$

State equations $\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$
 $b_t = b_{t-1} + \beta \varepsilon_t$

Multiplicative errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T + hb_T$$

Measurement equation $y_t = (\ell_{t-1} + b_{t-1})(1 + \varepsilon_t)$

State equations $\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$
 $\ell_t = b_{t-1} + \beta \varepsilon_t$

```
aus_economy <- global_economy %>% filter(Code == "AUS") %>%
 mutate(Pop = Population/1e6)
fit <- aus_economy %>% model(AAN = ETS(Pop))
report(fit)
## Series: Pop
## Model: ETS(A,A,N)
##
    Smoothing parameters:
##
      alpha = 1
##
      beta = 0.327
##
##
    Initial states:
##
    1 h
##
   10.1 0.222
##
##
    sigma^2: 0.0041
##
    AIC AICC BIC
##
## -77.0 -75.8 -66.7
```

##

##

9 Australia AAN

10 Auctralia AAN


```
## Country .model Year Pop level slope remainder
## <fct> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 Australia AAN 1959 NA 10.1 0.222 NA
## 2 Australia AAN 1960 10.3 10.3 0.222 -0.000145
```

4 Australia AAN 1962 10.7 10.7 0.231 0.0418 ## 5 Australia AAN 1963 11.0 11.0 0.223 -0.0229 ## 6 Australia AAN 1964 11.2 11.2 0.221 -0.00641 ## 7 Australia AAN 1965 11.4 11.4 0.221 -0.000314 ## 8 Australia AAN 1966 11.7 11.7 0.235 0.0418

1060

1967 11.8 11.8 0.206 -0.0869

12 0 12 0 0 200 0 00250

11

3 Australia AAN 1961 10.5 10.5 0.217 -0.0159


```
fit %>%
  forecast(h = 20) %>%
  autoplot(aus_economy) +
  ylab("Population") + xlab("Year")
```


ETS(A,Ad,N): Damped trend method

Additive errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T + (\phi + \cdots + \phi^{h-1})b_T$$

Measurement equation $y_t = (\ell_{t-1} + \phi b_{t-1}) + \varepsilon_t$
State equations $\ell_t = (\ell_{t-1} + \phi b_{t-1}) + \alpha \varepsilon_t$
 $\ell_t = (\ell_{t-1} + \phi b_{t-1}) + \alpha \varepsilon_t$

ETS(A,Ad,N): Damped trend method

Additive errors

Forecast equation
$$\hat{y}_{T+h|T} = \ell_T + (\phi + \cdots + \phi^{h-1})b_T$$

Measurement equation $y_t = (\ell_{t-1} + \phi b_{t-1}) + \varepsilon_t$
State equations $\ell_t = (\ell_{t-1} + \phi b_{t-1}) + \alpha \varepsilon_t$
 $\ell_t = (\ell_{t-1} + \phi b_{t-1}) + \alpha \varepsilon_t$

- Damping parameter $0 < \phi < 1$.
- If ϕ = 1, identical to Holt's linear trend.
- As $h \to \infty$, $\hat{y}_{T+h|T} \to \ell_T + \phi b_T/(1-\phi)$.
- Short-run forecasts trended, long-run forecasts constant.

```
aus_economy %>%
  model(holt = ETS(Pop ~ trend("Ad"))) %>%
  forecast(h = 20) %>%
  autoplot(aus_economy)
```


Example: National populations

```
fit <- global_economy %>%
 mutate(Pop = Population/1e6) %>%
 model(ets = ETS(Pop))
fit
## # A mable: 263 x 2
## # Key: Country [263]
## Country
                        ets
## <fct>
                       <model>
## 1 Afghanistan
                       <ETS(A,A,N)>
## 2 Albania
                        <ETS(M,A,N)>
## 3 Algeria
                        <ETS(M,A,N)>
## 4 American Samoa
                        <ETS(M,A,N)>
## 5 Andorra
                        <ETS(M,A,N)>
## 6 Angola
                        <ETS(M,A,N)>
## 7 Antigua and Barbuda <ETS(M,A,N)>
## 8 Arab World
                        <ETS(M,A,N)>
## 9 Argentina
                        <ETS(A,A,N)>
## 10 Armenia
                        <ETS(M,A,N)>
## # ... with 253 more rows
```

Example: National populations

```
fit %>%
 forecast(h = 5)
## # A fable: 1,315 x 5 [1Y]
  # Key: Country, .model [263]
##
## Country .model Year Pop .distribution
## <fct> <chr> <dbl> <dbl> <dbl> <dist>
##
   1 Afghanistan ets 2018 36.4 N(36, 0.012)
##
   2 Afghanistan ets
                       2019 37.3
                                 N(37, 0.059)
   3 Afghanistan ets
                       2020 38.2 N(38, 0.164)
##
                       2021 39.0 N(39, 0.351)
##
   4 Afghanistan ets
##
   5 Afghanistan ets
                       2022 39.9
                                 N(40, 0.644)
                       2018 2.87 N(2.9, 0.00012)
##
   6 Albania
                ets
##
   7 Albania
                ets
                       2019 2.87 N(2.9, 0.00060)
                       2020 2.87 N(2.9, 0.00169)
##
   8 Albania
               ets
   9 Albania
                       2021 2.86 N(2.9, 0.00362)
##
               ets
```

ETS(A,A,A): Holt-Winters additive method

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t+h-m(k+1)}$$

Observation equation $y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$
State equations $\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$
 $\ell_t = \ell_{t-1} + \beta \varepsilon_t$
 $\ell_t = \ell_{t-1} + \beta \varepsilon_t$
 $\ell_t = \ell_{t-1} + \beta \varepsilon_t$

- k = integer part of (h-1)/m.
- \square $\sum_i s_i \approx 0.$
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m = period of seasonality (e.g. m = 4 for quarterly data).

ETS(M,A,M): Holt-Winters multiplicative method

Forecast equation
$$\hat{y}_{t+h|t} = (\ell_t + hb_t)s_{t+h-m(k+1)}$$

Observation equation $y_t = (\ell_{t-1} + b_{t-1})s_{t-m}(1 + \varepsilon_t)$
State equations $\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$
 $b_t = b_{t-1}(1 + \beta \varepsilon_t)$
 $s_t = s_{t-m}(1 + \gamma \varepsilon_t)$

- k is integer part of (h-1)/m.
- lacksquare $\sum_i s_i \approx m$.
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 \alpha$ and m = period of seasonality (e.g. m = 4 for quarterly data).

```
holidays <- tourism %>%
 filter(Purpose == "Holiday")
fit <- holidays %>% model(ets = ETS(Trips))
fit
## # A mable: 76 x 4
## # Key: Region, State, Purpose [76]
##
     Region
                                State
                                                  Purpose ets
     <chr>
                                <chr>>
                                                  <chr> <model>
##
   1 Adelaide
                                South Australia Holiday <ETS(A,N,A~
##
   2 Adelaide Hills
##
                                South Australia
                                                  Holiday <ETS(A,A,N~
##
   3 Alice Springs
                                Northern Territo~ Holiday <ETS(M,N,A~
   4 Australia's Coral Coast
##
                                Western Australia Holiday <ETS(M,N,A~
   5 Australia's Golden Outba~
##
                                Western Australia Holiday <ETS(M,N,M~
   6 Australia's North West
##
                                Western Australia Holiday <ETS(A,N,A~
                                Western Australia Holiday <ETS(M,N,M~
##
    7 Australia's South West
##
   8 Ballarat
                                Victoria
                                                  Holiday <ETS(M,N,A~
##
   9 Barkly
                                Northern Territo~ Holiday <ETS(A,N,A~
                                South Australia Holiday <ETS(A,N,N~ 20
## 10 Barossa
```

```
fit %>% filter(Region=="Snowy Mountains") %>% report()
```

```
## Series: Trips
## Model: ETS(M,N,A)
##
    Smoothing parameters:
##
       alpha = 0.157
##
      gamma = 1e-04
##
##
    Initial states:
##
     l s1 s2 s3 s4
##
   142 -61 131 -42.2 -27.7
##
##
    sigma^2: 0.0388
##
##
   AIC AICC BIC
##
   852 854 869
```

fit %>% filter(Region=="Snowy Mountains") %>% components(fit)

```
## # A dable:
                             84 x 9 [10]
## # Key:
                             Region, State, Purpose, .model [1]
## # ETS(M,N,A) Decomposition: Trips = (lag(level, 1) + lag(season,
## # 4)) \star (1 + remainder)
##
     Region State Purpose .model
                                   Quarter Trips level season
##
     <chr> <chr> <chr> <chr>
                                    <qtr> <dbl> <dbl> <dbl> <dbl>
##
    1 Snowy~ New ~ Holiday ets
                                   1997 Q1 NA
                                                  NA
                                                       -27.7
##
    2 Snowy~ New ~ Holiday ets
                                   1997 Q2 NA
                                                  NA
                                                      -42.2
##
   3 Snowv~ New ~ Holiday ets
                                                      131.
                                   1997 03 NA NA
                                   1997 04 NA 142. -61.0
##
    4 Snowy~ New ~ Holiday ets
##
    5 Snowy~ New ~ Holiday ets
                                   1998 Q1 101. 140.
                                                      -27.7
##
   6 Snowy~ New ~ Holiday ets
                                   1998 Q2 112. 142. -42.2
   7 Snowy~ New ~ Holiday ets
                                   1998 Q3 310. 148. 131.
##
                                   1998 04 89.8 148. -61.0
##
   8 Snowy~ New ~ Holiday ets
##
   9 Snowy~ New ~ Holiday ets
                                   1999 01 112. 147. -27.7
## 10 Snowv~ New ~ Holiday ets
                                  1999 Q2 103. 147.
                                                       -42.2
## # ... with 74 more rows, and 1 more variable: remainder <dbl>
```

```
fit %>% filter(Region=="Snowy Mountains") %>%
  components(fit) %>% autoplot()
     ETS(M,N,A) decomposition
     Trips = (lag(level, 1) + lag(season, 4)) * (1 + remainder)
 300 -
 200 -
 100 -
 160 -
 150 -
                                                                                               leve
 140 -
 130 -
 120 -
 110 -
 100 -
  50 -
   0 -
 -50 -
                                                                                               remainder
0.25 -
0.00 -
-0.25 -
                                              Quarter
```

fit %>% forecast()

```
## # A fable: 608 x 7 [10]
## # Key:
             Region, State, Purpose, .model [76]
##
     Region
               State Purpose .model
                                        Quarter Trips .distribution
##
     <chr> <chr> <chr> <chr> <chr>
                                          <atr> <dbl> <dist>
   1 Adelaide South A~ Holiday ets
                                        2018 Q1 210. N(210, 457)
##
   2 Adelaide South A~ Holiday ets
##
                                        2018 Q2 173. N(173, 473)
   3 Adelaide South A~ Holiday ets
                                        2018 Q3 169. N(169, 489)
##
##
   4 Adelaide South A~ Holiday ets
                                        2018 Q4 186. N(186, 505)
##
   5 Adelaide South A~ Holiday ets
                                        2019 Q1 210. N(210, 521)
##
   6 Adelaide South A~ Holiday ets
                                        2019 Q2 173. N(173, 537)
##
   7 Adelaide South A~ Holiday ets
                                        2019 03 169. N(169, 553)
   8 Adelaide South A~ Holiday ets
                                        2019 04 186. N(186, 569)
##
   9 Adelaide~ South A~ Holiday ets
##
                                        2018 01 19.4 N(19, 36)
## 10 Adelaide~ South A~ Holiday ets
                                        2018 02 19.6 N(20, 36)
## # ... with 598 more rows
```

```
fit %>% forecast() %>%
  filter(Region=="Snowy Mountains") %>%
  autoplot(holidays) +
    xlab("Year") + ylab("Overnight trips (thousands)")
```


Exponential smoothing models

Additive Error		Seasonal Component			
Trend		N	Α	М	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	A,N,N	A,N,A	<u> </u>	
Α	(Additive)	A,A,N	A,A,A	<u>^,^,\</u>	
A_d	(Additive damped)	A,A _d ,N	A,A_d,A	<u>^,,^</u>	

Multiplicative Error		Seasonal Component			
Trend		N	Α	М	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	M,N,N	M,N,A	M,N,M	
Α	(Additive)	M,A,N	M,A,A	M,A,M	
A_d	(Additive damped)	M,A_d,N	M,A_d,A	M,A_d,M	

Estimating ETS models

- Smoothing parameters α , β , γ and ϕ , and the initial states ℓ_0 , b_0 , s_0 , s_{-1} , ..., s_{-m+1} are estimated by maximising the "likelihood" = the probability of the data arising from the specified model.
- For models with additive errors equivalent to minimising SSE.
- For models with multiplicative errors, not equivalent to minimising SSE.

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where *L* is the likelihood and *k* is the number of parameters initial states estimated in the model.

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where *L* is the likelihood and *k* is the number of parameters initial states estimated in the model.

Corrected AIC

$$AIC_c = AIC + \frac{2(k+1)(k+2)}{T-k}$$

which is the AIC corrected (for small sample bias).

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where *L* is the likelihood and *k* is the number of parameters initial states estimated in the model.

Corrected AIC

$$AIC_c = AIC + \frac{2(k+1)(k+2)}{T-k}$$

which is the AIC corrected (for small sample bias).

Bayesian Information Criterion

$$BIC = AIC + k(\log(T) - 2).$$

AIC and cross-validation

Minimizing the AIC assuming
Gaussian residuals is asymptotically
equivalent to minimizing one-step
time series cross validation MSE.

Automatic forecasting

From Hyndman et al. (IJF, 2002):

- Apply each model that is appropriate to the data.

 Optimize parameters and initial values using

 MLE.
- 2 Select best method using AICc.
- Produce forecasts using best method.
- Obtain forecast intervals using underlying state space model.
 - Method performed very well in M3 competition.
 - Used as a benchmark in the M4 competition.

Outline

- 1 Exponential smoothing
- 2 Lab Session 7
- 3 ARIMA models
- 4 Lab Session 8
- 5 Seasonal ARIMA models
- 6 Lab Session 9
- 7 Forecast accuracy measures

Lab Session 7

Find an ETS model for the Gas data from aus_production.

- Why is multiplicative seasonality necessary here?
- Experiment with making the trend damped.

Outline

- 1 Exponential smoothing
- 2 Lab Session 7
- 3 ARIMA models
- 4 Lab Session 8
- 5 Seasonal ARIMA models
- 6 Lab Session 9
- 7 Forecast accuracy measures

AR: autoregressive (lagged observations as inputs)

I: integrated (differencing to make series stationary)

MA: moving average (lagged errors as inputs)

AR: autoregressive (lagged observations as inputs)

I: integrated (differencing to make series stationary)

MA: moving average (lagged errors as inputs)

An ARIMA model is rarely interpretable in terms of visible data structures like trend and seasonality. But it can capture a huge range of time series patterns.

Stationarity

Definition

If $\{y_t\}$ is a stationary time series, then for all s, the distribution of (y_t, \ldots, y_{t+s}) does not depend on t.

Stationarity

Definition

If $\{y_t\}$ is a stationary time series, then for all s, the distribution of (y_t, \ldots, y_{t+s}) does not depend on t.

A stationary series is:

- roughly horizontal
- constant variance
- no patterns predictable in the long-term

Stationary?

```
gafa_stock %>%
  filter(Symbol == "G00G", year(Date) == 2018) %>%
  autoplot(Close) +
   ylab("Google closing stock price ($US)")
```


Stationary?

```
gafa_stock %>%
  filter(Symbol == "G00G", year(Date) == 2018) %>%
  autoplot(difference(Close)) +
    ylab("Daily change in Google closing stock price")
```


Differencing

- Differencing helps to **stabilize the mean**.
- The differenced series is the change between each observation in the original series.
- Occasionally the differenced data will not appear stationary and it may be necessary to difference the data a second time.
- In practice, it is almost never necessary to go beyond second-order differences.

Autoregressive models

Autoregressive (AR) models:

$$\mathbf{y}_t = \mathbf{c} + \phi_1 \mathbf{y}_{t-1} + \phi_2 \mathbf{y}_{t-2} + \cdots + \phi_p \mathbf{y}_{t-p} + \varepsilon_t,$$

where ε_t is white noise. This is a multiple regression with **lagged values** of y_t as predictors.

Cyclic behaviour is possible when $p \ge 2$.

Moving Average (MA) models

Moving Average (MA) models:

 $y_t = c + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \cdots + \theta_q \varepsilon_{t-q},$ where ε_t is white noise. This is a multiple regression with **lagged** *errors* as predictors. Don't confuse this with moving average smoothing!

Autoregressive Moving Average models:

$$y_{t} = c + \phi_{1}y_{t-1} + \dots + \phi_{p}y_{t-p}$$
$$+ \theta_{1}\varepsilon_{t-1} + \dots + \theta_{q}\varepsilon_{t-q} + \varepsilon_{t}.$$

Autoregressive Moving Average models:

$$y_{t} = c + \phi_{1}y_{t-1} + \dots + \phi_{p}y_{t-p}$$
$$+ \theta_{1}\varepsilon_{t-1} + \dots + \theta_{q}\varepsilon_{t-q} + \varepsilon_{t}.$$

Predictors include both lagged values of y_t and lagged errors.

Autoregressive Moving Average models:

$$y_{t} = c + \phi_{1}y_{t-1} + \dots + \phi_{p}y_{t-p}$$
$$+ \theta_{1}\varepsilon_{t-1} + \dots + \theta_{q}\varepsilon_{t-q} + \varepsilon_{t}.$$

Predictors include both lagged values of y_t and lagged errors.

Autoregressive Integrated Moving Average models

- Combine ARMA model with differencing.
- d-differenced series follows an ARMA model.
- Need to choose *p*, *d*, *q* and whether or not to include *c*.

ARIMA(p, d, q) model

AR: p = order of the autoregressive part

I: d =degree of first differencing involved

MA: q = order of the moving average part.

- White noise model: ARIMA(0,0,0)
- Random walk: ARIMA(0,1,0) with no constant
- Random walk with drift: ARIMA(0,1,0) with const.
- \blacksquare AR(p): ARIMA(p,0,0)
- \blacksquare MA(q): ARIMA(0,0,q)

```
fit <- global_economy %>%
  model(arima = ARIMA(Population))
fit
## # A mable: 263 x 2
## # Key: Country [263]
      Country
                             arima
##
## <fct>
                             <model>
##
    1 Afghanistan
                             \langle ARIMA(4,2,1) \rangle
    2 Albania
                             <ARIMA(0,2,2)>
##
## 3 Algeria
                             \langle ARIMA(2,2,2) \rangle
##
    4 American Samoa
                             \langle ARIMA(2,2,2) \rangle
    5 Andorra
                             <ARIMA(2,1,2) w/ drift>
##
##
    6 Angola
                             \langle ARIMA(4,2,1) \rangle
##
    7 Antigua and Barbuda <ARIMA(2,1,2) w/ drift>
    8 Arab World
                             <ARIMA(0,2,1)>
##
```

```
fit %>% filter(Country=="Australia") %>% report()
## Series: Population
## Model: ARIMA(0,2,1)
##
## Coefficients:
##
           ma1
## -0.661
## s.e. 0.107
##
## sigma^2 estimated as 4.063e+09:
                                  log likelihood=-699
## AIC=1401 AICc=1402 BIC=1405
```

```
fit %>% filter(Country=="Australia") %>% report()
## Series: Population
## Model: ARIMA(0,2,1)
##
## Coefficients:
##
               ma1
                                   y_t = 2y_{t-1} - y_{t-2} - 0.7\varepsilon_{t-1} + \varepsilon_t
## -0.661
                                                  \varepsilon_t \sim \text{NID}(0.4 \times 10^9)
## s.e. 0.107
##
   sigma<sup>2</sup> estimated as 4.063e+09:
                                           log likelihood=-699
## ATC=1401
                 ATCc=1402
                                BTC=1405
```

Understanding ARIMA models

- If c = 0 and d = 0, the long-term forecasts will go to zero.
- If c = 0 and d = 1, the long-term forecasts will go to a non-zero constant.
- If c = 0 and d = 2, the long-term forecasts will follow a straight line.
- If $c \neq 0$ and d = 0, the long-term forecasts will go to the mean of the data.
- If $c \neq 0$ and d = 1, the long-term forecasts will follow a straight line.
- If $c \neq 0$ and d = 2, the long-term forecasts will follow a quadratic trend.

Understanding ARIMA models

Forecast variance and d

- The higher the value of *d*, the more rapidly the prediction intervals increase in size.
- For d = 0, the long-term forecast standard deviation will go to the standard deviation of the historical data.

```
fit %>% forecast(h=10) %>%
  filter(Country=="Australia") %>%
  autoplot(global_economy)
```


Hyndman and Khandakar (JSS, 2008) algorithm:

- Select no. differences d via KPSS test.
- Select *p*, *q* and inclusion of *c* by minimising AICc.
- Use stepwise search to traverse model space.

Hyndman and Khandakar (JSS, 2008) algorithm:

- Select no. differences d via KPSS test.
- Select p, q and inclusion of c by minimising AICc.
- Use stepwise search to traverse model space.

AICc =
$$-2 \log(L) + 2(p+q+k+1) \left[1 + \frac{(p+q+k+2)}{T-p-q-k-2} \right]$$
. where L is the maximised likelihood fitted to the differenced data, $k = 1$ if $c \neq 0$ and $k = 0$ otherwise.

Hyndman and Khandakar (JSS, 2008) algorithm:

- Select no. differences *d* via KPSS test.
- Select p, q and inclusion of c by minimising AICc.
- Use stepwise search to traverse model space.

AICc =
$$-2 \log(L) + 2(p+q+k+1) \left[1 + \frac{(p+q+k+2)}{T-p-q-k-2} \right]$$
. where L is the maximised likelihood fitted to the differenced data, $k = 1$ if $c \neq 0$ and $k = 0$ otherwise.

Note: Can't compare AICc for different values of *d*.

Step1: Select current model (with smallest AICc) from:

ARIMA(2, d, 2)

ARIMA(0, d, 0)

ARIMA(1, d, 0)

ARIMA(0, d, 1)

```
Step1: Select current model (with smallest AICc) from:

ARIMA(2, d, 2)

ARIMA(0, d, 0)

ARIMA(1, d, 0)

ARIMA(0, d, 1)
```

- **Step 2:** Consider variations of current model:
 - vary one of p, q, from current model by ± 1 ;
 - p, q both vary from current model by ± 1 ;
 - Include/exclude c from current model.

Model with lowest AICc becomes current model.

```
Step1: Select current model (with smallest AICc) from:

ARIMA(2, d, 2)

ARIMA(0, d, 0)

ARIMA(1, d, 0)
```

ARIMA(0, d, 1)

Step 2: Consider variations of current model:

- vary one of p, q, from current model by ± 1 ;
- **p**, q both vary from current model by ± 1 ;
- Include/exclude *c* from current model.

Model with lowest AICc becomes current model.

Repeat Step 2 until no lower AICc can be found.

Outline

- 1 Exponential smoothing
- 2 Lab Session 7
- 3 ARIMA models
- 4 Lab Session 8
- 5 Seasonal ARIMA models
- 6 Lab Session 9
- 7 Forecast accuracy measures

Lab Session 8

For the United States GDP data (from global_economy):

- Fit a suitable ARIMA model for the logged data.
- Produce forecasts of your fitted model. Do the forecasts look reasonable?

Outline

- 1 Exponential smoothing
- 2 Lab Session 7
- 3 ARIMA models
- 4 Lab Session 8
- 5 Seasonal ARIMA models
- 6 Lab Session 9
- 7 Forecast accuracy measures

```
usmelec %>% autoplot(
  Generation
)
```



```
usmelec %>% autoplot(
  log(Generation)
)
```



```
usmelec %>% autoplot(
  log(Generation) %>% difference(12)
)
```



```
usmelec %>% autoplot(
  log(Generation) %>% difference(12) %>% difference()
)
```


Example: US electricity production

```
usmelec %>%
 model(arima = ARIMA(log(Generation))) %>%
 report()
## Series: Generation
## Model: ARIMA(1,1,1)(2,1,1)[12]
## Transformation: log(.x)
##
## Coefficients:
##
           ar1
                    ma1
                           sar1 sar2 sma1
##
        0.4116 - 0.8483 0.0100 - 0.1017 - 0.8204
## s.e. 0.0617 0.0348 0.0561
                                 0.0529
                                          0.0357
##
## sigma^2 estimated as 0.0006841: log likelihood=1047
## AIC=-2082 AICc=-2082
                           BIC=-2057
```

Example: US electricity production

```
usmelec %>%
model(arima = ARIMA(log(Generation))) %>%
forecast(h="3 years") %>%
autoplot(usmelec)
```


Example: US electricity production

```
usmelec %>%
  model(arima = ARIMA(log(Generation))) %>%
  forecast(h="3 years") %>%
  autoplot(filter_index(usmelec, 2005 ~ .))
```


Seasonal ARIMA models

- \blacksquare m = number of observations per year.
- d first differences, D seasonal differences
- p AR lags, q MA lags
- P seasonal AR lags, Q seasonal MA lags

Seasonal and non-seasonal terms combine multiplicatively

Common ARIMA models

The US Census Bureau uses the following models most often:

ARIMA(0,1,1)(0,1,1) _m	with log transformation
$ARIMA(0,1,2)(0,1,1)_m$	with log transformation
$ARIMA(2,1,0)(0,1,1)_m$	with log transformation
$ARIMA(0,2,2)(0,1,1)_m$	with log transformation
$ARIMA(2,1,2)(0,1,1)_m$	with no transformation

```
h02 <- PBS %>% filter(ATC2 == "H02") %>%
summarise(Cost = sum(Cost))
h02 %>% autoplot(Cost) +
xlab("Year") + ylab("") +
ggtitle("Cortecosteroid drug scripts")
```



```
h02 <- PBS %>% filter(ATC2 == "H02") %>%
summarise(Cost = sum(Cost))
h02 %>% autoplot(log(Cost)) +
xlab("Year") + ylab("") +
ggtitle("Log Cortecosteroid drug scripts")
```



```
fit <- h02 %>%
  model(auto = ARIMA(log(Cost)))
report(fit)
## Series: Cost
## Model: ARIMA(2,1,0)(0,1,1)[12]
## Transformation: log(.x)
##
## Coefficients:
##
            arl ar2 smal
## -0.8491 -0.4207 -0.6401
## s.e. 0.0712 0.0714 0.0694
##
## sigma^2 estimated as 0.004399: log likelihood=245
## ATC=-483 ATCc=-483 BTC=-470
```

```
fit <- h02 %>%
 model(best = ARIMA(log(Cost), stepwise = FALSE,
               approximation = FALSE,
               order_constraint = p + q + P + Q \le 9)
report(fit)
## Series: Cost
## Model: ARIMA(4,1,1)(2,1,2)[12]
## Transformation: log(.x)
##
## Coefficients:
           arl ar2 ar3 ar4 mal sar1 sar2
##
## -0.0426 0.210 0.202 -0.227 -0.742 0.621 -0.383
## s.e. 0.2167 0.181 0.114 0.081 0.207 0.242 0.118
##
       smal sma2
## -1.202 0.496
## s.e. 0.249 0.214
##
## sigma^2 estimated as 0.004061: log likelihood=254
## ATC=-489 ATCc=-487 BTC=-456
```

```
fit %>% forecast %>% autoplot(h02) +
  ylab("H02 Expenditure ($AUD)") + xlab("Year")
```


Outline

- 1 Exponential smoothing
- 2 Lab Session 7
- 3 ARIMA models
- 4 Lab Session 8
- 5 Seasonal ARIMA models
- 6 Lab Session 9
- 7 Forecast accuracy measures

Lab Session 9

For the Australian tourism data (from tourism):

- Fit a suitable ARIMA model for all data.
- Produce forecasts of your fitted models.
- Check the forecasts for the "Snowy Mountains" and "Melbourne" regions. Do they look reasonable?

Outline

- 1 Exponential smoothing
- 2 Lab Session 7
- 3 ARIMA models
- 4 Lab Session 8
- 5 Seasonal ARIMA models
- 6 Lab Session 9
- 7 Forecast accuracy measures

Training and test sets

- A model which fits the training data well will not necessarily forecast well.
- Forecast accuracy is based only on the test set.

Forecast errors

Forecast "error": the difference between an observed value and its forecast.

$$e_{T+h} = y_{T+h} - \hat{y}_{T+h|T},$$

where the training data is given by $\{y_1, \ldots, y_T\}$


```
y_{T+h} = (T+h)th observation, h = 1, ..., H
\hat{y}_{T+h|T} = \text{its forecast based on data up to time } T.
e_{T+h} = y_{T+h} - \hat{y}_{T+h|T}

MAE = mean(|e_{T+h}|)

MSE = mean(e_{T+h}^2)

RMSE = \sqrt{\text{mean}(e_{T+h}^2)}

MAPE = 100mean(|e_{T+h}|/|y_{T+h}|)
```

```
y_{T+h} = (T+h)th observation, h = 1, ..., H

\hat{y}_{T+h|T} = \text{its forecast based on data up to time } T.

e_{T+h} = y_{T+h} - \hat{y}_{T+h|T}

MAE = mean(|e_{T+h}|)

MSE = mean(e_{T+h}^2) RMSE = \sqrt{\text{mean}(e_{T+h}^2)}

MAPE = 100mean(|e_{T+h}|/|y_{T+h}|)
```

- MAE, MSE, RMSE are all scale dependent.
- MAPE is scale independent but is only sensible if $y_t \gg 0$ for all t, and y has a natural zero.

```
recent_production <- aus_production %>%
  filter(year(Quarter) >= 1992)
train <- recent_production %>% filter(year(Quarter) <= 2007)
beer fit <- train %>%
 model(
   ets = ETS(Beer),
   arima = ARIMA(Beer)
beer_fc <- forecast(beer_fit, h="4 years")</pre>
accuracy(beer_fc, aus_production)
## # A tibble: 2 x 9
## .model .type ME RMSE MAE MPE MAPE MASE ACF1
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
## 1 arima Test 4.18 11.2 10.4 0.940 2.47 0.657 0.145
## 2 ets Test 0.854 9.80 8.99 0.151 2.18 0.568 0.207
```

Traditional evaluation

Traditional evaluation

Traditional evaluation

- Forecast accuracy averaged over test sets.
- Also known as "evaluation on a rolling forecasting origin"

Creating the rolling training sets

There are three main rolling types which can be used.

- Stretch: extends a growing length window with new data.
- Slide: shifts a fixed length window through the data.
- Tile: moves a fixed length window without overlap.

Three functions to roll a tsibble: stretch_tsibble(), slide_tsibble(), and tile_tsibble().

For time series cross-validation, stretching windows are most commonly used.

Creating the rolling training sets

A tsibble: 23,871 x 8 [10]

213

5178

F207

8 1956 Q2

0 10FC 02

##

Stretch with a minimum length of 3, growing by 1 each step.

```
beer_stretch <- aus_production %>%
    stretch_tsibble(.init=1, .step=1)
```

```
##
  # Key:
        .id [218]
    Quarter Beer Tobacco Bricks Cement Electricity
                                             Gas
                                                   .id
##
     <qtr> <dbl> <dbl> <dbl>
                             <dbl>
                                       <dbl> <dbl> <int>
##
   1 1956 Q1 284 5225
                         189
                               465
                                        3923
                                               5
##
##
   2 1956 Q1 284
                  5225
                         189 465
                                        3923
                                               5
   3 1956 Q2 213
                                        4436
##
                  5178
                         204
                               532
                                               6
##
   4 1956 Q1 284
                  5225
                         189
                               465
                                        3923
   5 1956 Q2
            213
                  5178
                         204
                               532
                                        4436
                                               6
##
##
   6 1956 03
            227
                  5297
                         208
                               561
                                        4806
                                               5
##
   7 1956 Q1
            284
                  5225
                         189
                               465
                                        3923
                                                    4
```

204

532

4436

1000

784

```
fit_cv <- beer_stretch %>%
  model(arima=ARIMA(Beer), ets=ETS(Beer))
```

```
## # A mable: 218 x 3
## # Key: .id [218]
##
         .id arima
                                                   ets
      <int> <model>
                                                   <model>
##
          1 <NULL model>
                                                   <NULL model>
##
          2 <ARIMA(0,1,0) w/ drift>
                                                   <NULL model>
##
    2
## 3
          3 < ARIMA(0,2,1) >
                                                   <NULL model>
          4 < ARIMA(0,0,0) w/ mean>
##
    4
                                                   \langle ETS(A,N,N) \rangle
           5 <NULL model>
                                                   <ETS(A,N,N)>
##
    5
          6 <NULL model>
                                                   <ETS(A,N,N)>
##
    6
##
          7 <NULL model>
                                                   <ETS(A,N,N)>
##
          8 <NULL model>
                                                   <ETS(A,N,N)>
    8
           9 \langle ARIMA(0,0,0)(0,1,0)[4] \rangle
                                                   <ETS(A,N,N)>
##
##
  10
         10 < ARIMA(0,0,0)(0,1,0)[4] >
                                                   \langle ETS(A,N,N) \rangle
```

Produce one step ahead forecasts from all models.

```
fc_cv <- fit_cv %>% filter(.id>8) %>% forecast(h=1)
## # A fable: 420 x 5 [10]
## # Key: .id, .model [420]
##
       .id .model Quarter Beer .distribution
     <int> <chr> <qtr> <dbl> <dist>
##
        9 arima 1958 Q2 228 N(228, 207)
##
##
   2 10 arima 1958 Q3 236 N(236, 177)
   3 11 arima 1958 Q4 320 N(320, 151)
##
   4 12 arima 1959 Q1 272 N(272, 139)
##
##
   5 13 arima 1959 Q2 233 N(233, 137)
##
   6 14 arima 1959 Q3 237 N(237, 127)
   7 15 arima 1959 Q4 313
##
                             N(313, 130)
        16 arima 1960 Q1 261
                             N(261, 120)
##
   8
        17 arima 1960 Q2 231. N(231, 116)
##
   9
        10 oring 1000 02 242 N(242 100)
```

80

```
fc_cv %>% accuracy(aus_production)
```

```
## # A tibble: 2 x 9
## .model .type ME RMSE MAE MPE MAPE MASE
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 3.08 0.834
## 2 ets Test 0.199 17.5 13.3 0.0531 3.16 0.855
0.129
```

A good way to choose the best forecasting model is to find the model with the smallest RMSE computed using time series cross-validation.