코딩 테스트 모의고사 (E형)

〈문제지〉

난이도	~당	문제 풀이시간	3시간
문제 개수	3문제	합격 커트라인	2~3문제

코딩 테스트 모의고사 문제는 인터넷 검색이 불가능한 상황에서 제한 시간안에 풀어주세요. 소스코드 작성 및 프로그램 실행 결과를 계산할 수 있는 Python 3.7 개발 환경은 제공된다고 가정합니다.

문제 1. 점프 점프

(시간 제한: 1초, 메모리 제한: 256MB)

두 학생 A와 B가 일직선상의 트랙에서 같은 방향으로 멀리뛰기를 하고 있다. A는 한 번에 X 미터를, B는 한 번에 Y 미터를 뛴다. 두 학생의 시작 지점과 X,Y에 대한 정보가 주어졌을 때, 두 학생이 공통적으로 지나게 되는 지점 중에서 시작 지점으로부터 가장 가까운 지점을 찾는 프로그램을 작성하시오.

예를 들어 한 번에 10 미터를 뛰는 A는 30의 지점에서 멀리뛰기를 시작하고, 한 번에 12 미터를 뛰는 B는 8의 지점에서 시작한다고 가정하자. A가 5 번의 멀리뛰기를 하고, B가 6 번의 멀리뛰기를 하면 두사람은 80의 지점을 공통으로 지나게 되며, 이는 두 학생의 시작 지점에서 가장 가까운 지점이다.

입력 조건

첫째 줄에 두 사람이 한 번에 멀리뛰기를 하는 거리 X, Y 와 시작 지점의 위치 값 P_1 , P_2 가 각각 공백을 기준으로 구분되어 자연수로 주어진다. $(1 \le X, Y, P_1, P_2 \le 100)$

출력 조건

첫째 줄에 두 학생이 공통적으로 지나는 지점 중에서 가장 가까운 지점을 찾는 프로그램을 작성하시오. 단, 두 학생이 공통적으로 지나는 지점이 없다면 -1을 출력한다.

입력 예시 1

10 12 30 8

출력 예시 1

80

입력 예시 2

1 1 7 12

출력 예시 2

12

입력 예시 3

7721

출력 예시 3

-1

문제 2. 특정 거리의 도시 찾기

(시간 제한: 2초, 메모리 제한: 256MB)

어떤 나라에는 1 번부터 N 번까지의 도시가 존재한다. 또한 총 M 개의 단방향 도로가 존재한다. 모든 도로의 거리는 1 이다.

이 때 특정한 도시 X로부터 출발하여 도달할 수 있는 모든 도시 중에서, 최단 거리가 정확히 K인 모든 도시들의 번호를 출력하는 프로그램을 작성하시오. 또한 출발 도시 X에서 출발 도시 X로 가는 최단 거리는 항상 0이라고 가정한다.

예를 들어 N = 4, K = 2, X = 1 일 때 다음과 같이 그래프가 구성되어 있다고 가정하자.

이 때 1번 도시에서 출발하여 도달할 수 있는 도시 중에서, 최단 거리가 2인 도시는 4번 도시 뿐이다. 2번과 3번 도시의 경우, 최단 거리가 1이기 때문에 출력하지 않는다.

입력 조건

첫째 줄에 도시의 개수 N, 도로의 개수 M, 거리 정보 K, 출발 도시의 번호 X가 주어진다. $(2 \le N \le 300,000,1 \le M \le 1,000,000,1 \le K \le 300,000,1 \le X \le N)$ 둘째 줄부터 M 개의 줄에 걸쳐서 두 개의 자연수 A,B가 공백을 기준으로 구분되어 주어진다. 이는 A 번 도시에서 B 번 도시로 이동하는 단방향 도로가 존재한다는 의미다. $(1 \le A,B \le N)$ 단, A와 B는 서로 다른 자연수이다.

출력 조건

X로부터 출발하여 도달할 수 있는 도시 중에서, 최단 거리가 K인 모든 도시의 번호를 한 줄에 하나씩 오름차순으로 출력한다.

단, 도달할 수 있는 도시 중에서, 최단 거리가 K인 도시가 하나도 존재하지 않으면 -1을 출력한다.

입력 예시 1

4421

1 2

13

2 3

2 4

출력 예시 1

4

입력 예시 2

4321

1 2

13

14

출력 예시 2

-1

입력 예시 3

4411

1 2

13

2 3

2 4

출력 예시 3

2

3

문제 3. 샘터

(시간 제한: 1초, 메모리 제한: 256MB)

일직선 상의 공간에 N 개의 샘터가 존재하며, K 채의 집을 짓고자 한다. 모든 샘터 및 집이 존재하는 위치는 항상 정수 형태이다. 단, 일직선상의 공간에서 N 개의 샘터 및 K 채의 집들은 모두 서로 다른 위치에 존재한다. 다시 말해 하나의 위치에는 샘터가 있거나, 집이 있거나, 혹은 아무것도 없다.

K 채의 집을 지을 때, 가능하면 샘터의 주변에 집들을 지어서 K 채의 모든 집에 대한 불행도의 합이 최소가 되도록 짓고자 한다. 이 때 특정한 집에 대한 불행도란, 가장 가까운 샘터까지의 '거리(Distance)'로 정의된다. 예를 들어 특정한 집이 1에 위치하고, 그 집과 가장 가까운 샘터가 -5에 위치한다고 하면, 이 집의 불행도는 6이다.

N=2, K=5일 때, 모든 집에 대한 불행도의 합이 최소가 되도록 집을 짓는 경우를 고려해보자. 두 개의 샘터가 0,3의 위치에 존재한다고 가정하자.

이 때 다음과 같이 5개의 집을 설치하면, 각 집의 불행도의 합이 2+1+1+1+1=6로 최소가 된다. 집을 짓는 가능한 경우의 수는 여러가지가 될 수 있지만, 불행도의 합을 6보다 작게 만드는 방법은 없다.

입력 조건

첫째 줄에 자연수 N 과 K 가 공백을 기준으로 구분되어 주어진다. $(1 \le N, K \le 100,000)$ 둘째 줄에 N 개의 샘터의 위치가 공백을 기준으로 구분되어 정수 형태로 주어진다. $(-100,000,000 \le$ 샘터의 위치 $\le 100,000,000)$ 단, 모든 N 개의 샘터의 위치들은 서로 다르게 주어진다.

출력 조건

첫째 줄에 모든 집에 대한 불행도의 합이 최솟값을 출력한다.

입력 예시

2 5

0 3

출력 예시

6