#### Masters DSC/MLDM/CPS2

### Optimization & Operational Research - Exam

(26/03/2019) 2h00: personal documents allowed

## Exercise 1: A sum of two functions (8 points)

We consider two parameters  $\gamma, \delta \in \mathbb{R}$ . The aim of this exercise is to study function  $h_{\gamma,\delta} : \mathbb{R}^4 \to \mathbb{R}$  defined by:

$$h_{\gamma,\delta}(x_1, x_2, x_3, x_4) = f_{\gamma}(x_1, x_2) + g_{\delta}(x_3, x_4),$$

where  $f_{\gamma}, h_{\delta} : \mathbb{R}^2 \to \mathbb{R}$  are defined by :

$$f_{\gamma}(x_1, x_2) = \frac{1}{2} \left( 2x_1^2 + 4x_2^2 - 2\gamma x_1 x_2 \right) + x_1 - x_2 + 3,$$
  
$$h_{\delta}(x_3, x_4) = \delta x_3^3 + \frac{1}{2} \left( x_3^2 + x_4^2 + 0.5x_3 x_4 \right) - 6x_3 + 2x_4.$$

### Part A : Study of $f_{\gamma}$

This part focuses on the function  $f_{\gamma}$ .

- 1. Study the convexity of the function  $f_{\gamma}$ .
- 2. Give the solution of Euler's Equation, i.e. the solution of the linear system  $\nabla f_{\gamma}(x,y) = (0,0)$ , for all values of  $\gamma$ .
- 3. Give the nature of the previous extrema (i.e. say if it is local/global minimum/maximum of the function). The nature of the extremum depends on  $\gamma$ .

#### Part B : Study of $g_{\delta}$

This pat focuses on the function  $g_{\delta}$ .

- 1. Study the convexity of the function  $g_{\delta}$ .
- 2. Give the solution of Euler's Equation, i.e. the solution of the linear system  $\nabla g_{\delta}(x,y) = (0,0)$ , for all values of  $\delta$ .
- 3. Give the nature of the previous extrama (i.e. say if it is local/global minimum/maximum of the function). The nature of the extremum depends on  $\delta$ .

#### Part C : Minimization of $h_{\gamma,\delta}$

- 1. Show that the sum of two convex functions is convex.
- 2. Using the previous parts, show that the function  $h_{\gamma,\delta}$  is convex if and only if  $\gamma \in [-2\sqrt{2}, 2\sqrt{2}]$  and  $\delta = 0$ .

3. In the following, we consider that both  $\gamma$  and  $\delta$  are equal to 0. Thus, the function  $h_{0,0}$  is convex. The figure below on the left illustrates the convergence of two variations of gradient descent algorithm: (i) gradient descent with a fixed step and (ii) gradient descent with with an optimal step



- (a) Recall what the gradient descent algorithm consists of in general.
- (b) Explain which curve corresponds to which method. Justify your answer.
- (c) The figure on the right illustrates another variation of the gradient descent algorithm represented by the red curve (mentioned in class). In your opinion, which algorithm is that? (Bonus)
- (d) If you have found the right algorithm, try to explain why it converges in only one iteration in this case. (Bonus+)

## Exercise 2: Linear programming (6 points)

#### Part A: Formulate and solve an optimization problem

A chemical firm makes two types of industrial solvents,  $S_1$  and  $S_2$ . Each solvent is a mixture of three chemicals. Each kL of  $S_1$  requires 12L of chemical  $\mathbf{A}$ , 9L of chemical  $\mathbf{B}$ , and 30L of chemical  $\mathbf{C}$ . Each kL of  $S_2$  requires 24L of chemical  $\mathbf{A}$ , 5L of chemical  $\mathbf{B}$ , and 30L of chemical  $\mathbf{C}$ . The profit per kL of S1 is \$100, and the profit per kL of S2 is \$85. The inventory of the company shows 480 L of chemical  $\mathbf{A}$ , 180 L of chemical  $\mathbf{B}$ , and 720 L of chemical  $\mathbf{C}$ . Assuming the company can sell all the solvent it makes, find the number of kL of each solvent that the company should make to maximize profit.

- 1. Formulate the corresponding optimization problem and explain the meaning behind the introduced variables;
- 2. Do one step of the simplex algorithm. Explain which is the entering / leaving variable and why. Give the tableau before and after this step;
- 3. Finally, give the new feasible solution and explain what will happen next (e.g., this is the optimal solution, there is no optimal solution, ...).

#### Part B: Understanding simplex method

1. What are the basic variables of the problem given below? What is the value of nonbasic variables?

| В  |     |   | X1 | X2    | Х3 | X4   | X5 |
|----|-----|---|----|-------|----|------|----|
| X? |     | = |    | 1/3   |    | 1    | 0  |
| X? | 20  | = | 1  | 2/3   | -1 | 0    | 0  |
| X? | 80  | = | 0  |       | 3  | 0    | 1  |
|    | Z-3 | = | 0  | -25/3 | 0  | 40/3 | 0  |

2. What can you say about the solution of the following minimization problem?

| В  |     |   | X1  | X2  | Х3 | X4 |
|----|-----|---|-----|-----|----|----|
| Х3 | 24  | = | 0   | 1   | 1  | 0  |
| X4 | 20  | = | -2  | 2   | 0  | 1  |
|    | Z-0 | = | -40 | -35 | 0  | 0  |

# Exercise 3: Constrained optimization (6 points)

Consider the following constrained optimization problem with an arbitrary constant  $c_1$ :

$$\min_{x_1, x_2, x_3} c_1 x_1 - 4x_2 - 2x_3$$
subject to
$$x_1^2 + x_2^2 \le 2$$

$$x_2^2 + x_3^2 \le 2$$

$$x_1^2 + x_3^2 \le 2$$

- 1. Write down the KKT-conditions for the problem.
- 2. Are there any values for the constant  $c_1$  which make the point  $\mathbf{x} = (1.4, 0.2, 0.2)^T$  an optimal solution to the problem? If there are any such values, determine all of these values for  $c_1$ .
- 3. Reply to the previous question with  $\mathbf{x} = (1, 1, 1)^T$ .
- 4. Assume that  $c_1 = -6$ . Compute the value of the dual objective function  $g(\lambda)$  in the point  $\lambda^* = (1, 1, 1)^T$ , and determine whether it is an optimal solution to the dual problem.