INSA DE STRASBOURG

Projet Mathématique

Problème isopérimétrique

Auteurs
Abrini Mouad Cartier
Millon Damien

18 octobre 2019

Table des matières

Ι	Fonctions de plusieurs variables	2
1	Cas du triangle 1.1 Question 1	5
II	En dimension infinie	Į.

Première partie Fonctions de plusieurs variables

Cas 1

Cas du triangle

1.1 Question 1

Comme indiqué sur la question, on peut utiliser la formule de Héron pour calculer l'aire d'un triangle. Pour ce faire, il suffit d'avoir le périmètre du triangle.

Soit $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ une fonction de classe C^1 , $g: \mathbb{R}^3 \longrightarrow \mathbb{R}$ une fonction de classe C^1 et soit $G = \{(x_1, ..., x_n | g(x_1, ..., x_n) = 0\}.$

Soit P le périmètre et A l'aire d'un triangle dont les côtés ont pour mesures a, b et c. Posons alors

$$g_1(a, b, c) = a + b + c - P$$
 (1.1)

La fonction g_1 représente la première contrainte qui est unique dans notre cas

Posons $s = \frac{P}{2}$ le demi-périmètre qui sera fixé.

La formule de Héron nous affirme que :

$$f(a,b,c) = A(a,b,c) = \sqrt[2]{s(s-a)(s-b)(s-c)}$$
(1.2)

Nous cherchons à maximiser cette fonction f qui est associée à l'aire de notre triangle.

L'équation (1.1) nous donne que $g_1(a,b,c) = 0$. Ce qui veut dire que le triplet (a,b,c) appartient à G : Le théorème des extremas liées s'applique. On a donc

$$\exists \lambda \in R^{+*} \qquad \overrightarrow{\nabla} f = \lambda \overrightarrow{\nabla} g_1 \tag{1.3}$$

1.2 Question 2

Nous devons ainsi calculer le gradient de g et f.

$$\overrightarrow{\nabla} f(a,b,c) = \begin{pmatrix} \frac{\partial f(a,b,c)}{\partial a} \\ \frac{\partial f(a,b,c)}{\partial b} \\ \frac{\partial f(a,b,c)}{\partial c} \end{pmatrix}, \quad \overrightarrow{\nabla} g_1(a,b,c) = \begin{pmatrix} \frac{\partial g_1(a,b,c)}{\partial a} \\ \frac{\partial g_1(a,b,c)}{\partial b} \\ \frac{\partial g_1(a,b,c)}{\partial c} \end{pmatrix}$$

Ce qui nous donne (en utilisant une fonction Python):

$$\overrightarrow{\nabla} f(a,b,c) = \begin{pmatrix} -\frac{\sqrt{s(-a+s)(-b+s)(-c+s)}}{2(-a+s)} \\ -\frac{\sqrt{s(-a+s)(-b+s)(-c+s)}}{2(-b+s)} \\ -\frac{\sqrt{s(-a+s)(-b+s)(-c+s)}}{2(-c+s)} \end{pmatrix}, \quad \overrightarrow{\nabla} g_1(a,b,c) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

En utilisant (1.3), nous obtenons le système suivant :

$$\begin{cases}
-\frac{\sqrt{s(-a+s)(-b+s)(-c+s)}}{2(-a+s)} = \lambda & (1) \\
-\frac{\sqrt{s(-a+s)(-b+s)(-c+s)}}{2(-b+s)} = \lambda & (2) \\
-\frac{\sqrt{s(-a+s)(-b+s)(-c+s)}}{2(-c+s)} = \lambda & (3)
\end{cases}$$

On a alors directement en utilisant l'équation (1) et (2) $\frac{s(s-b)(s-c)}{s-a} = \frac{s(s-a)(s-c)}{s-b}$ Qui se simplifie en $(s-a)^2 = (s-b)^2$. Or on sait que le demi-périmètre est toujours plus grand que chaque coté du triangle. Donc a = b. on faisant de même avec (2) et (3), on retrouve finalement que a = b = c. Ainsi, en utilisant (1.1), on obtient que

$$a = b = c = \frac{P}{3} \tag{1.5}$$

Ce qui correspond à un triangle équilatéral.

Deuxième partie En dimension infinie