b (x < 0,5) = 5° 5° 90x8(1-1) dx = 0,010.
[=(U,5)= 0.010x = P(X 50,5)
d. P(x = 0,500) = 0, 15 (2) = 902001.20,
E(x) = [x f(x) dx = [x . 9028(1-x) . dx . = 3
7
$S^{2} = \int_{-\infty}^{\infty} (x - \mu_{x})^{2} f(x) dx = \int_{0}^{\infty} (x - \frac{9}{4\pi})^{2} \frac{90x^{8}(1-x)}{12} dx = 0.0124$
17 - 7 . 7.776
$\rho = \rho(x) = 0.9295 = 1 - \rho(x \le 0.9295) = 1 - \rho(u.9195) = 0.1965$
A IT
a part $f(x; 4; 90) = \begin{cases} \frac{4}{80} (x - \frac{2}{80})^3 & 0 \le x \le 80 \\ 0 & d5 \neq 0 \end{cases}$
80 do #
$f(x;1;80) = \begin{cases} \frac{1}{80} \left(\frac{x}{x} + \frac{x}{20} \right) & o < x < 80 \end{cases} $ $ch\tilde{t} \neq 0$
l o chù ±
0 560 3
1 6 00 -0.5
$P(x; 0.5; 80) =) \frac{1}{160} (1 - \frac{90}{80}) = 0.51 < 80$ $0.51 < 80$
0 46.7
b. & x < 0; \(\frac{1}{2} \) = 0
b. $\ell \times c_0$: $f(x) = 0$ $\propto x < T$: $f(x) = -\left(1 - \frac{x}{c}\right)^{d}$
b. $E \times CO$; $f(x) = 0$ $\propto \times CI$: $f(x) = -\left(1 - \frac{x}{C}\right)^{C}$ $x > T \cdot F(x) = 1$
b. $\ell \times \langle 0 : \pm \langle x \rangle = 0$ $\propto \times \langle T : \pm \langle x \rangle = - \left(1 - \frac{x}{\epsilon}\right)^{\ell}$ $\propto \langle T : \pm \langle x \rangle = - \left(1 - \frac{x}{\epsilon}\right)^{\ell}$ $\sim \langle \ell(x), x \rangle = \ell(x \times x) = 0$
b. $\delta x < 0$; $f(x) = 0$ $\propto x < T$: $F(x) = -\left(1 - \frac{x}{e}\right)^{\theta}$ $f(x) = A(1 - \frac{x}{e})^{\theta} = 0$. T.
b. $\ell \times \langle 0 : \pm \langle x \rangle = 0$ $\propto \times \langle T : \pm \langle x \rangle = - \left(1 - \frac{x}{\epsilon}\right)^{\ell}$ $\propto \langle T : \pm \langle x \rangle = - \left(1 - \frac{x}{\epsilon}\right)^{\ell}$ $\sim \langle \ell(x), x \rangle = \ell(x \times x) = 0$
b. $I \times (0; f(x) = 0)$ $\propto \times (I; f(x)) = -(1 - \frac{x}{e})^{\theta}$ $\propto T \cdot F(x) = 1$ c. $I(X) \times 1 = I(X \times 1) = 0$ $I = I(X) = I(X \times 1) = 0$ $I = I(X) = I(X \times 1) = 0$ $I = I(X) = I(X \times 1) =$
b. $\delta x < 0$; $f(x) = 0$ $\propto x < T$: $F(x) = -\left(1 - \frac{x}{e}\right)^{\theta}$ $f(x) = A(1 - \frac{x}{e})^{\theta} = 0$. T.
b. $\delta x < 0$; $f(x) = 0$ $\propto x < T$: $F(x) = -(1 - \frac{x}{C})^{\theta}$ x > T: $F(x) = 1c. \ell(x) = \rho(x < x) = 0, f(x) = 0,$
b. $\delta x < 0$; $f(x) = 0$ $x \times \sqrt{T}$: $F(x) = -(1 - \frac{x}{C})^{\theta}$ $x \times \sqrt{T}$: $F(x) = 1$ c. $f(x) = A \cdot (1 - \frac{x}{C})^{\theta} = 0$, $f(x) = 0$, $f(x) = A \cdot (1 - \frac{x}{C})^{\theta} = 0$, $f(x) =$
b. $\ell(x) = \ell(x) = 0$ $\ell(x) = \ell(x) = -(1 - \frac{x}{e})^{\theta}$ $\ell(x) = \ell(x) = -(1 - \frac{x}{e})^{\theta} = 0$, $\ell(x) = -(1 - \frac{x}{e})^{\theta} = 0$,
b. $\ell(x) = \ell(x) = 0$ $\ell(x) = \ell(x) = -(1 - \frac{x}{e})^{\theta}$ $\ell(x) = \ell(x) = -(1 - \frac{x}{e})^{\theta} = 0$, $\ell(x) = -(1 - \frac{x}{e})^{\theta} = 0$,
b. $\ell(x) = \ell(x) = 0$ $\ell(x) = \ell(x) = -(1 - \frac{x}{e})^{\theta}$ $\ell(x) = \ell(x) = -(1 - \frac{x}{e})^{\theta} = 0$, $\ell(x) = -(1 - \frac{x}{e})^{\theta} = 0$,
b. $\theta. x < 0$; $f(x) = 0$ $x \times (T) = F(x) = -1$ c. P(x) = 1 $c. P(x) = A(1 - \frac{x}{2})^{\theta} = 0$, T $e. P(x) = A(1 - \frac{x}{2})^{\theta} = 0$, T e. P(x) = A
b. $\ell \times \langle 0 : \pm \langle x \rangle = 0$ $\propto \times \langle T : \pm \langle x \rangle = -(1 - \frac{x}{e})^{\theta}$ $\chi \setminus T : \pm \langle x \rangle = -(1 - \frac{x}{e})^{\theta}$ $c : \ell(x) : -4 : (1 - \frac{x}{e})^{\theta} = 0, T$ $\epsilon : (1 - \frac{x}{e})^{\theta} = 0, T$
b. $\theta : x < 0$; $f(x) = 0$ $x : x < T$: $F(x) = -(1 - \frac{x}{e})^{\theta}$ x : x : x : x : x : x : x : x : x : x :

P(X < 9, TD) = P(Z < 9, 50 - 1000, 0, 0, 5) - P(Z < -1, 581) - 0, 0, 50 4.38 Songuisi to I tuit Nava lende Goi \times lā Si người bị hhuyế trừ \times \rightarrow $\beta(1000, 0, 193)$ $P(\times) 200) = P(X \le 200 + 0, 5) = P(X \le 200 + 0, 5 - 0, (93, 1000)) = P(X \le 20, 6) = 0,325$ =1P(X < 200)= 0, 1243 P(180 < X < 300) = P(X < 300) - P(X < 180) - P(Z < 8,61) - P(Z < -1,002) =1-0,15810-0,8419 4.39 Gai X R Số thiết bị hếng: X~B (5000; 0,001)

P(X>10) - P(2>10-0,5-0,001.5000) - P(7>9,019) = 1-P(75.3.875)

\[
\sqrt{0,001.1000.0,999} \]

= 1-0,97.8=0,022 $\frac{\sqrt{0,001.1000.0,999}}{4.40. \times P(\lambda)} = \frac{1-0.9.8=0.021}{10000} = \frac{1-0.9.8=0.021}{10000} = \frac{10000}{1000} = \frac{10000}{1000}$ b. e(x < 9900) = e(x < 9900+05) = e[7 < 2900+00,5 - 10000) = e[55 C. P. (7) = 0,01 = 1 = P(752) (2> 10200 ±0,5 - 10000) = P(2>1,995) = 1-P(2< 1,995).

