Ricerca operativa

Mario Petruccelli Università degli studi di Milano

A.A. 2018/2019

Sommario

1	Introduzione							
	1.1	Tassonomia modelli						
	1.2	Problema dello zaino						
	1.3	Esempi di problemi						
		1.3.1 Problema trasporto e localizzazione impianti						
		1.3.2 Problema assegnamento						
		1.3.3 Mix Produttivo						

1 Introduzione

Ricerca operativa: Disciplina che affronta la risoluzione di problemi decisionali complessi tramite modelli matematici e algoritmi.

$\underbrace{\textbf{Sistema organizzato}} \rightarrow \underbrace{\textbf{Modello}}$

Input: Decisioni Output: Prestazioni Input: Dati e parametri Output: Decisioni e prestazioni

Problemi

- Pochi dati
- Troppa semplificazione

1.1 Tassonomia modelli

- **Descrittivi** \rightarrow (es modellini, plastici, ...)
- **Predittivi** \rightarrow Più complicati (es andamento mercati finanziari, previsioni, ...)
- $\bullet \ \mathbf{Prescrittivi} \to \mathbf{Modelli}$ di problemi di ottimizzazione

Metodologie: Teoria e algoritmi di ottimizzazione, teoria grafi e reti di flusso, teoria dei giochi e delle decisioni.

La descrizione del problema sarà attraverso: vincoli, obiettivi.

Esempio di problemi decisionali

- Finanza (investimenti)
- Produzione (dimensionamento, organizzazione, ...)
- Logistica (gestione scorte, quanta merce, ...)
- Gestione (pianificazione, turnistica personale, ...)
- Servizi (rotte, ...)

NB Lo stesso modello può servire per risolvere problemi diversi.

Set covering Problema per la gestione di un territorio. I problemi dei sismografi e dei ripetitori sono diversi ma si ragiona allo stesso modo.

Programmazione matematica Ottimizzare una funzione di più variabili, spesso soggette a vincoli.

Risoluzione

- Analisi struttura e creazione modello matematico.
- Definizione soluzione.

Programmazione Pianificazione delle azioni necessarie per individuare la soluzione ottima.

- Programmazione lineare continua.
- Programmazione lineare intera \rightarrow difficile: può non concludersi.
- Programmazione booleana.
- Programmazione non lineare.
- Programmazione stocastica.

1.2 Problema dello zaino

n oggetti di valore p_j e peso w_j j=1 ...n ed è data la capacità massima b di un contenitore.

Problema quali oggetti inserire nel contenitore senza superare capacità.

Obiettivo Massimizzare il valore degli oggetti.

Si tratta di un piano di **ottimizzazione** e ne definiamo i 4 componenti fondamentali.

- Dati $\rightarrow p_j, w_j, b$
- Variabili (decisioni) $\to x_j = \begin{cases} 1 \text{ se il j-esimo oggetto viene inserito} \\ 0 \text{ altrimenti} \end{cases}$
- Vincoli
- Obiettivo \to $\sum_{j=1}^n p_j x_j = \text{Valore complessivo degli}$ Funzione obiettivo \to $\max \sum_{j=1}^n p_j x_j$ oggetti inseriti.

Se $x_j = 1$ allora anche $p_j x_j = 1 \rightarrow$ ragiono uguale per i vincoli.

 $\sum_{j=1}^{n} w_j x_j \leq b \rightarrow \text{valore complessivo ingombro.}$

Quindi **modello** max
$$\sum_{j=1}^{n} p_j x_j$$
 $\sum_{j=1}^{n} w_j x_j \le b$ $x_j \in \{0, 1\} j = 1...n$

1.3 Esempi di problemi

1.3.1 Problema trasporto e localizzazione impianti

Dove aprire unità produttive e come trasportare prodotto dalle unità aperte ai magazzini per soddisfare domanda.

Obiettivo Minimizzare costi di apertura e trasporto.

Dati

- n siti candidati per unità produttive, ognuna con capacità massima a_j $j = 1, \ldots, n$.
- m magazzini con una domanda da soddisfare b_j $j=1,\ldots,n.$
- c_{ij} costo di trasporto di un'unità di prodotto dal sito i al magazzino j.

L'attivazione di un'unità produttiva nel sito i ha un costo fisso f_i .

Variabili

- $x_{ij} \ge 0$ unità di merce trasportata da sito i a magazzino j.
- Dobbiamo aggiungere una variabile binaria per decidere se aprire o meno unità produttiva.

$$y_i = \begin{cases} 1 & se \ apro \ impianto \ i \\ 0 & altrimenti \end{cases}$$

NB Dobbiamo rispettare che sia un problema di programmazione lineare, *i.e.* non moltiplicare variabili tra di loro.

Vincoli

ullet Fissato un i questo non può superare la sua capacità produttiva

$$\sum_{j=1}^{m} x_{ij} \le a_i \quad \forall i = 1, \dots, n$$

$$\sum_{i=1}^{n} x_{ij} \ge b_j \quad \forall j = 1, \dots, m$$

$$x_{ij} \ge 0$$
 $j = 1, \ldots, n$ $i = 1, \ldots, m$

Obiettivo

$$\min \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij}$$

$$\min \sum_{i,j} c_{ij} x_{ij} + \sum_{i=1}^{n} f_i y_i$$

Subject to
$$\sum_{j=1}^{m} x_{ij} \le a_i y_i \quad \forall i$$

$$\sum_{i=1}^{n} x_{ij} \ge b_j \ \forall j \qquad x_{ij} \ge 0 \ \forall i, j \qquad y_i \in \{0, 1\} \ \forall i$$

1.3.2 Problema assegnamento

Associare a ciascuna persona una sola attività in modo che tutte le attività siano svolte e sia minima la somma dei tempi impiegatiper svolgere.

Dati

- \bullet *n* lavoratori.
- n attività.
- Indichiamo con $t_{ij} > 0$ il tempo che impiega il lavoratore i, l'attività j con $i, j = 1, \ldots, n$

Variabili

Variabile binaria
$$x_{ij} = \begin{cases} 1 & \text{se i svolge } j \\ 0 & \text{altrimenti} \end{cases}$$

Vincoli

$$\sum_{j=1}^{n} x_{ij} = 1 \quad \forall i = 1, \dots, n$$

$$\sum_{i=1}^{n} x_{ij} = 1 \quad \forall j = 1, \dots, n$$

$$x_{ij} \le \{0, 1\} \quad \forall i, j$$

Obiettivo

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} t_{ij} x_{ij}$$

Si prende il tempo solo se x_{ij} è a 1.

1.3.3 Mix Produttivo

Determinare quali prodotti produrre e in quale quantità per massimizzare il profitto complessivo.

Dati

- $i=1,\ldots,m$ risorse produttive in quantità limitata. La massima disponibilità è b_1,\ldots,b_m
- Per produrre un'unità di prodotto j-esimo si utilizzano a_{ij} unità della risorsa i-esima.
- Agli n prodotti sono associati i profitti unitari c_1, \ldots, c_n (profitto per unità di prodotto). Si suppone che tutta la produzione venga venduta.

Variabili $x_j = \text{numero prodotti di tipo } j$

Γ ablet	Portatile	Ore nomo
		Ole dollo
30	20	
1	6	540
Ĺ	1	100
1		6

Obiettivo

$$\max \sum_{j=1}^{n} c_j x_j = \max 30x_t + 20x_p$$

Esempio:

$$\max 30x_t + 20x_p$$

$$8x_t + 4x_p \le 640$$

$$4x_t + 6x_p \le 540$$

$$x_t + x_p \le 100$$

$$x_t, x_p \ge 0$$

$$\sum_{j=1}^n a_{ij}x_j \le b_i \quad i = 1, \dots, m$$

$$x_j \ge 0 \quad j = 1, \dots, n$$

Esempio vernici Quantità vernici che bisogna produrre per massimizzare il guadagno.

Dati

- 3k\$ per E.
- 2k\$ per I.
- Disponibilità A 6 tonnellate.
- Disponibilità B 8 tonnellate.

Variabili

- x_E Tonnellate vernice E.
- x_I Tonnellate vernice I.

Vincoli

 $\max 3x_E + 2x_I$

Obiettivo

$$1x_E + 2x_I \le 6$$
$$2x_E + 1x_I \le 8$$
$$x_I \le x_E + 1$$
$$x_I \le 2$$
$$x_E, x_I \ge 0$$

Esempio problema dieta Quali ingredienti e in che quantità miscelare per minimizzare il costo del mangime.

Dati Ogni dose deve contenere *almeno* 2hg di proteine, 4hg di carboidrati, 3hg di grasso.

Variabili $x_j = \text{kg ingredienti di } j.$

	Ingrediente	Proteine	Carboidrati	Grasso	Costo \$/kg
	1	1	4	3	3
Vincoli	2	3	4	2	6
	3	2	3	3	5
	4	2	2	4	6

Obiettivo

$$\min 3x_1 + 6x_2 + 5x_3 + 6x_4$$

$$1x_1 + 3x_2 + 2x_3 + 2x_4 \ge 2 \text{ proteine}$$

$$4x_1 + 4x_2 + 3x_3 + 2x_4 \ge 4 \text{ carboidrati}$$

$$3x_1 + 2x_2 + 3x_3 + 4x_4 \ge 3 \text{ grasso}$$

$$x_j \ge 0$$