Intraseasonal to interannual variability of zoo... By: Ranjan Kumar Sahu

As of: Jan 8, 2025 10:10:36 AM 14,791 words - 0 matches - 563 sources

Simi	larity	Ind	lex

7%

Mode:	Content	Tracking	~
-------	---------	----------	---

paper text:

Intraseasonal to interannual variability of zooplankton biomass and standing stock inferred from ADCP backscatter in the eastern Arabian Sea Ranjan Kumar Sahu1,2, D. Shankar1,2, P. Amol2,3, S.G.Aparna1,2, and D.V. Desai1,2 1CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India. 2Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India. 3CSIR-National Institute of Oceanography, Regional Centre, 530017, Visakhapatnam, India. January 6, 2025 Abstract The spatio-temporal variation of zooplankton biomass and standing stock in the eastern Arabian Sea (EAS) is mapped using backscatter measurements from 153.3 kHz acoustic Doppler current profiler (ADCP) moorings deployed at seven locations on the continental slope off the west coast of India from October 2017 to December 2023. The conversion from backscatter to biomass is based 1 on volumetric zooplankton sampling at the respective locations. Zooplankton biomass in 24-140 m decreases from the upper ocean to lower depths. Changes are observed in seasonal variation of zooplankton standing stock monthly climatology (24-120 m biomass integral) as we move poleward along the slope. Standing stock variation is lowest at Kanyakumari followed by Okha, which lie at the southern and northern boundary of EAS, respectively. While annual cycle is predominant at northeastern Arabian Sea (NEAS), it decreases towards southeastern Arabian Sea (SEAS) where the semi-annual cycle tends to dominate. Analysis reveals weak annual cycle in zooplankton biomass and dominance of intraseasonal and intra-annual components. Strong interannual variability, which is rarely addressed in conventional studies, is observed off Kollam with peaks corresponding to period ~720 days, moderately off Mumbai and feebly off Goa. Intraseasonal variability is often comparable (stronger) to the intra-annual (annual) variability both of which increases (decreases) equatorward with an evident presence in SEAS. Stronger intraseasonal variability has implication on zooplankton sampling using conventional methods, and it's patchiness in open ocean. Further, it also impacts the accurate estimation of standing stock and on reduced predictability of biomass. 2 1 Intro duction 1.1 Background Zooplankton plays a vital role in food web of pelagic ecosystem by enabling the hierarchical trans- port of organic matter from primary producers to higher trophic levels impacting the fish population [Ohman and Hirche, 2001] and the carbon pump of the deep ocean [Quéré et al., 2016]. They are presumably the largest migrating organisms in terms of biomass [Hays, 2003] which occurs in diel vertical migration (DVM). Zooplankton depend not only on phytoplankton but other environmental parameters (e.g. mixed-layer depth, insolation, oxygen, thermocline, nutrient availability, chl-a con- centration and daily primary production). The biological productivity of the ocean is essentially connected with physics and chemistry [Subrahmanyan, 1959, Ryther et al., 1966, Qasim, 1977, Nair, 1970, Banse, 1995, McCreary et al., 2009, Vijith et al., 2016, Amol et al., 2020]. The dynamic ocean results in varying physico-chemical properties, leading to bloom and growth of plankton in favourable conditions. The changes are strongly influenced by the seasonal cycle in the North Indian Ocean (NIO; north of 5 oN of Indian Ocean). The eastern boundary of Arabian Sea con-tains the West India Coastal Current [WICC; Ramamirtham and Murty, 1965, Banse, 1968, Shetye et al., 1990, McCreary et al., 1993, Amol et al., 2014, Vijith et al., 2016, Chaudhuri et al., 2020] which reverses seasonally, flowing poleward (equatorward) during November to February (June to September) [Shetye et al., 1990, 1991, Vijith et al., 2022]. A direct consequence of this reversal is the seasonal cycle of thermocline [Prasad and Bahulayan, 1996, Kumar and Narvekar, 2005], oxycline [DeSousa et al., 1996, Schmidt et al., 2020] and thickness of mixed-layer depth IMLD; Shetye et al., 1991, Prasad and Bahulayan, 1996, Kumar and Narvekar, 2005] induced by upwelling (downwelling) favourable conditions in summer (winter) at eastern 3 Arabian Sea (EAS) facilitated further by wind speed and near-surface stratification. Further, the phytoplankton biomass and chl-a concentration changes with the season [Subrahmanyan and Sarma, 1960, Banse, 1968, Kumar and Narvekar, 2005, Lévy et al., 2007, Vijith et al., 2016]. Upwelling in summer monsoon leads to maximum chl-a growth in the entire EAS [Banse, 1968, Banse and English, 2000, McCreary et al., 2009, Hood et al., 2017, Bernal et al., 2018, Shi and Wang, 2022]. During

winter monsoon, the convective mixing induced winter mixed layer [Shetye et al., 1992, Madhupratap et al., 1996b, McCreary et al., 1996, Lévy et al., 2007, Shankar et al., 2016, Vijith et al., 2016, Keerthi et al., 2017, Shi and Wang, 2022] results in winter chl-a peak at NEAS while the downwelling Rossby waves modulate chl-a along SEAS albeit limited to coast and islands [Amol et al., 2020]. The zooplankton grazing peak is instantaneous with no time delay from peak phytoplankton production [Li et al., 2000, Barber et al., 2001], but its population growth lags [Rehim and Imran, 2012, Almén and Tamelander, 2020] depending on its gestation period and other limiting aspects. While some studies suggest that the peak timing of zooplankton may not change in parallel with phytoplankton blooms [Winder and Schindler, 2004], others indicate that lag exists between primary production and the transfer of energy to higher trophic levels [Brock and McClain, 1992, Brock et al., 1991]. The conventional zooplankton measurements, where only few snapshot/s of the event is captured gives an incoherent or incomplete understanding in terms of spatio-temporal variation of zooplankton [Ramamurthy, 1965, Piontkovski et al., 1995, Madhupratap et al., 1992, 1996a, Wishner et al., 1998, Kidwai and Amjad, 2000, Barber et al., 2001, Khandagale et al., 2022] as much information is revealed by later studies [Jyothibabu et al., 2010, Shankar et al., 2019, Aparna et al., 2022] using high resolution data. Calibrated acoustic instruments such as acoustic Doppler current profiler (ADCP) along with relevant data can be utilised to understand small scale variability 4 [Nair et al., 1999, Edvardsen et al., 2003, Smith and Madhupratap, 2005, Smeti et al., 2015, Kang et al., 2024], the complex interplay between the physico-chemical parameters and ecosystem [Jiang et al., 2007, Potiris et al., 2018, Shankar et al., 2019, Aparna et al., 2022, Nie et al., 2023], the zooplankton migration [Inoue et al., 2016, Ursella et al., 2018, 2021] and their seasonal to annual variation [Jiang et al., 2007, Hobbs et al., 2021, Liu et al., 2022, Aparna et al., 2022]. The relationship between backscatter and the abundance and size of zooplankton was described by Greenlaw [1979] wherein it was pointed out that single frequency backscatter can be used to esti- mate abundance if mean zooplankton size is known. A drastic increase in study temporal and spatial variation of zooplankton biomass using backscatter-proxy came in 1990s by introduction of high-frequency echo sounders, with studies [Flagg and Smith, 1989, Wiebe et al., 1990, Batchelder et al., 1995, Greene et al., 1998, Rippeth and Simpson, 1998] methodically showing acoustic backscatter estimated zooplankton biomass. Net sampling augmented ADCP backscatter have been used to study DVM and the spatial and temporal variability of zooplankton biomass in different marine regions, such as the Southwestern Pacific, the Lazarev Sea in Antarctica and the Corsica Channel in the north-western Mediterranean Sea [Cisewski et al., 2010, Hamilton et al., 2013, Smeti et al., 2015, Guerra et al., 2019]. The first such study to exploit the potential of ADCPs in EAS was carried out by Aparna et al. [2022] (A22 from hereon) using ADCP moorings deployed on conti- nental slopes off the Indian west coast. In their work, they showed that the zooplankton standing stock (ZSS) in fact declines during upwelling facilitated increase in phytoplankton biomass. The unusual interaction implies the break down of existing understanding of predator-prey relationship in fundamental level of marine food chain. 5 1.2 Objective and scope of the manuscript A network of ADCPs has been installed off the continental slope and shelf on the west coast of India. This ADCPs have enabled a rigorous view of intraseasonal to seasonal scale variability [Amol et al., 2014, Chaudhuri et al., 2020] of WICC. In the recent study A22 have used ADCP moorings off Mumbai, Goa and Kollam to explain the temporal variability of zooplankton biomass. The study showed that the zooplankton peaks (and troughs) is not only non-uniform in latitude but also heavily influenced by the oxygen minimum zone, MLD and the seasonal upwelling/downwelling conditions. Stark contrast in the phytoplankton bloom and subsequence growth of zooplankton or the lack thereof was observed in the EAS regimes. We extend the work of A22 by presenting data from four additional moorings in the EAS, show- casing the deviations of seasonal cycle from climatology, and discussing the significant intraseasonal variability of biomass and standing stock revealed by the ADCP data. The paper is organized as follows; datasets and methods employed are described in section 2. Section 3 describes the observed climatology of zooplankton biomass and standing stock. A comparison is drawn to the results of A22. Further, the seasonal cycle of zooplankton biomass and standing stock is discussed with re-lation to the MLD, oxygen, temperature and circulation in determining the biomass is discussed in results section 4. Section 5 delves deeper into the intraseasonal variability with summary and conclusion in section 6. 2 Data and methods The backscatter data from ADCP and the zooplankton samples collected from the periphery of mooring is described in this section. The backscatter derived from the echo intensity of the seven 6 ADCP mooring deployed on the continental slope off the Indian west coast is the primary data we have use in this manuscript. The moorings details are summarized in table 1. In situ biomass data from volumetric zooplankton samples are used to validate and correlate with backscatter. The chl-a data is used to study and draw

inferences for the possible zooplankton growth seasons. In addition, we have used the monthly climatology of temperature and salinity from Chatterjee et al. [2012]. 2.1 ADCP data and backscatter estimation The ADCPs were deployed on the continental slope off the Indian west coast (Fig. 1), off Mumbai, Goa, Kollam and Kanyakumari, and later extended to three more sites to cover the entire EAS basin from Okha (22.26°N) in north to Kanyakumari (6.96 °N) in south. The other two ADCPs are, 1) Jaigarh at central EAS (CEAS), 2) Udupi (primarily at SEAS regime) in the transition zone between CEAS and SEAS. The extended moorings were deployed in October 2017, though Kanyakumari had been deployed earlier too. However, only Mumbai, Goa and Kollam were part of the previous backscatter study by A22. The moorings are serviced on yearly basis usually during October-November or sometime during September-December (depending on ship availability). The ADCPs are of Teledyne RD Instruments make, upward-looking and operate at 153.3 kHz. While utmost care is taken to position the instrument (mooring) at ~150-200 m (~1050-1100 m) depth, yet for some deployments it's shallow or deeper owing to drift caused by floater buoyancy-anchor weight balance. Data was collected at hourly interval and the bin size was set to 4 m. The echoes at surface to 10% range (~20 m) means the data at these depths is rendered useless and is discarded from further use. We have followed the methodology laid down in A22 to derive the backscatter time series from ADCP echo intensity data. The gaps up to two days are filled using the grafting method of Mukhopadhyay et al. [2017] once the zooplankton biomass time series is constructed. 7 2.2 Zooplankton data and estimation of biomass The zooplankton samples were collected in the vicinity (~10 km) of ADCP mooring site twice, once prior retrieval and again post deployment of moorings so that there is overlap in the ADCP time instance and in situ zooplankton samples during servicing cruises on board of RV Sindhu Sankalp and RV Sindhu Sadhana (table 2). Multi-plankton net (MPN) (100 µm mesh size, 0.5 m2 mouth area) was used to get samples in the pre-determined depth ranges; water volume filtered was calculated by the product of sampling depth range and the mouth area of net. The depth range and timing of sample collection was different throughout the MPN hauls (refer table 2). From 2020 onward, the depth-range was standardized to the bins of 0-25, 25-50, 50-75, 75-100, 100-150 (units are in meters). The backscatter obtained earlier is averaged in vertical corresponding to the specific MPN hauls for each site. The backscatter is linearly regressed with respective biomass to establish their relationship (Fig. 2), which has been demonstrated in numerous previous studies [Flagg and Smith, 1989, Heywood et al., 1991, Jiang et al., 2007, Aparna et al., 2022]. 2.2.1 Biomass time series and estimation of standing stock The zooplankton biomass time series (Fig. 3) is created from the above derived linear relationship. The standing stock is determined by taking the depth integral of biomass over the water column. To maintain the consistency of standing stock estimation, only those deployments that doesn't lack data at any depth in the entire range of 24-120 m are considered for analysis as in A22. The lack of data in the above mentioned depth range is due to deviation in positioning of ADCP sensor in the water column. A swift alteration in bathymetry along the continental slope implies that the mooring might anchor at a different depth than planned, hence a change in the predicted position of ADCP. This leads to gap in data at few mooring sites for some year. For example, for the northern-most 8 mooring at Okha, data is not available for the entire upper 120 m depth for the second deployment. Also at Jaigarh, where the surface to ~60 m data (in 3rd deployment) and Kollam, where 80 m and below (in 4th deployment) is unavailable and hence discarded from standing stock estimation. There are few deployments where no or bad data was recorded e.g, at Udupi (4th deployment) and Kanyakumari (6th deployment). 2.3 Mixed-layer depth, temperature, oxygen and chlorophyll As we are using a 153.3 kHz ADCP moored at ~150 m, the top ~10% of data is unusable because of surface echoes. MLD in EAS is of the order ~20 to 40 m during summer monsoon [Shetye et al., 1990, Shankar et al., 2005, Sreenivas et al., 2008] especially in the SEAS [Shenoi et al., 2005], but during winter the MLD in northern NEAS remains deep [Shankar et al., 2016]. The temperature data is used from Chatterjee et al. [2012], a monthly climatology having 1° spatial resolution. Monthly climatology of oxygen data is obtained from World Ocean Atlas 2013 [García et al., 2014] which contains objectively analyzed 1 climatological fields of in situ measurements. Previous study based on ADCP data of EAS A22 have used SeaWIFS based chl-a data for comparison with climatology of ZSS. The SeaWIFS was at its end of service in 2010, hence we use new chl-a product from Global Ocean Colour, biogeochemical L3 data obtained from E.U. Copernicus Marine Service Information. The daily data is available at a spatial resolution of 4 km. 3 Time series, climatology and seasonal cycle The monthly climatology of biomass and ZSS is computed for all locations having valid data in 24-140 m depth range. To distinguish between high and low productivity zones, we employed a biomass contour, similar to the 215 mg m-3 threshold used in A22 but with exception of Kollam 9 during 2020 as variation in the monthly averaged data suggests presence of strong interannual variability. The

variability is of two distinct types, 1) deviation from the seasonal cycle and is aperiodic, 2) variation associated with interannual climate modes and it is quasi-periodic. For the years 2019 and 2020 the low biomass is observed at depths as much as near to the surface regime off Kollam (Fig. 3). But for the years 2018, 2022, and 2023 the high biomass occurs at deeper depths. Since we can't use two contours for demarcating the high biomass for same time series, we couldn't use any contour for the year 2020 when it is shallowest and isn't a representative of the seasonal variation. A decrease in biomass with increasing depth at all seven study sites is observed (Fig. 3). The demarcating biomass contour (z215) and its depth contour (D215) allows us to link the seasonal vari- ation of biomass to the physico-chemical properties. However, to better capture seasonal variations off Kanyakumari and Okha, the threshold was replaced by 175 mg m-3. Time series, climatology and seasonal cycle of biomass is discussed in the following sections. For a comparison with physico- chemical forcing, we use isotherm of 23 °C (henceforth, D23) and oxygen contour specific to each site depending on its position relative to oxygen minimum zone (OMZ) boundaries of EAS. 3.1 Time series description Rate of biomass decrease with depth, roughly defined as the difference between mean biomass at 40 and 104 m depth is highest off Jaigarh and Mumbai as it has higher biomass in upper ocean (Fig. 4) and lowest off Kanyakumari. This is followed by Goa and Udupi. While the biomass decrease with depth is lower off Kollam from 2017 to 2020, it becomes considerably high from thereon (Fig. 4 f). A comparatively moderate decline in zooplankton biomass with respect to depth off Okha (Fig. 3 a1, a2) at NEAS is agreeing with earlier reported data [Wishner et al., 1998, Madhupratap et al., 10 2001, Smith and Madhupratap, 2005, Jyothibabu et al., 2010]. The difference of mean biomass at 40 and 104 m is high at most location but it arises due to the bigger difference in select few years, e.g., off Mumbai during 2020 and 2022, off Jaigarh in 2021, at Goa during 2021-2022, off Kollam during 2022. The sites at SEAS, particularly off Kanyakumari for all years and 2017 to 2020 off Kollam also have weaker decrease [Madhupratap et al., 2001, Jyothibabu et al., 2010, Aparna et al., 2022]. However, the biomass decline with depth post 2021 off Kollam is high owing to a strong bloom in these years and is reflected as D215 deepening. D175 and D215 is deep throughout EAS during winter monsoon as seen from the same biomass value at 40 and 104 m indicating the penetration of D215/D175 all the way to 104 m, but the occurrence of high biomass is distinct to each regime of EAS. Upper ocean shows considerably high biomass and ZSS during winter monsoon at NEAS. On the contrary at SEAS, the upper ocean shows higher biomass during summer monsoon even though the D215 and D175 is shallower during this period. The mean, standard deviation of biomass, ZSS and chl-a are shown in supplementary table S1. There is no consistent variation as seen from the analysis of mean and standard deviation of biomass at 40 and 104 m. The sites with higher biomass tends to have higher variation over time e.g. Mumbai, Jaigarh and Kollam. Superposed on the time-series is seasonal cycle and variability of distinct period band, a detailed discussion on this is presented in section 3.3. 3.2 Climatology of zooplankton biomass and standing stock Off Kanyakumari, z175 is shallower from May onward till October and the zooplankton biomass is comparatively higher than rest of the year (Fig. 5 g1). The D23 isotherm along-with oxycline (marked by 2.1 ml L-1, a higher oxygen contour as it lies outside OMZ core) follows the same seasonal cycle like D175. However, there is almost no seasonal variation in ZSS off Kanyakumari 11 (σ, 0.67 gm m-2) as compared to the chl-a variation (σ, 1.53 mg m-3). At the nearest northern mooring site off Kollam, a strong seasonal cycle is observed and the D215 is deeper for any given month. A decline (steep-rise) in ZSS (chl-a biomass) is seen and its minimum (peak) is attained in August (Fig. 5 f2). This feature was previously reported by A22, highlighting an imbalance in the interaction between zooplankton and phytoplankton, it occurs due to shallowing of thermocline and low oxygen, and that's why the ZSS is at it's minimum when chl-a peaks. A similar feature is seen further north, off Udupi which sits at the transition zone of SEAS and CEAS, albeit with a relatively weaker zooplankton biomass and minimum (peak) of ZSS (chl-a) occurring a month later during September. The D215 seasonal trend off Goa in present study is similar to trend of D215 off Goa as described in A22 (See section S1 for comparison). The biomass off Goa decreases rapidly below the z215 as reported earlier, reaching as low as 60 mg m-3 at 130 m during June to September (Fig. 5 d1). The ZSS off Jaigarh is identical but stronger to that of off Goa, owing to higher biomass above z215 and the comparatively deeper D215 (Fig. 5 c1). What's intriguing is a presence of strong variation in ZSS off Jaigarh (σ, 3.24 gm m-2) highest among all locations although the seasonal variation in chl-a biomass (Fig. 5 c2) is visibly nonexistent (σ, 0.05 mg m-3) and lowest among all locations. This is an exact opposite scenario of Kanyakumari, where an insignificant seasonal variation in ZSS is seen even though the chl-a biomass varies strongly. Starting from Kollam (Fig. 5 f1) and moving northward to Jaigarh (Fig. 5 c1), we see that the core of high zooplankton biomass gradually shifts from summer (off Kollam) to

winter monsoon (off Jaigarh), with the transition of upper ocean zooplankton biomass happening along Udupi and Goa. On the contrary, chl-a biomass tends to have low seasonal range as we move northward from SEAS, with Jaigarh having the least seasonal variation. This shift along with winter monsoon facilitated deeper thermocline leads to an 12 even larger impact on ZSS. Further north off Mumbai the D215 is deeper in December to early April, resulting in a higher ZSS (Fig. 5 b2). D23 follows D215 and the oxycline follows an erratic pattern, reaching depths > 140 m during January to March; when a higher biomass is observed above z215. The chla biomass shows seasonal variation albeit lower than the SEAS counterpart. At the northern-most site of EAS i.e, off Okha, biomass above z175 is much weaker leading to a relatively lower ZSS (Fig. 5 a1, a2) compared to Mumbai. There's two chl-a peak off Okha, one in February due to convective mixing induced deepening of MLD [Wiggert et al., 2005, Lévy et al., 2007, Keerthi et al., 2017, Shankar et al., 2016] and the other during August in summer monsoon [Wiggert et al., 2005, Lévy et al., 2007]. The ZSS remains flat during June to September, although the chl-a biomass increases in this time. Afterwards, ZSS gradually increases and attains its maximum in February same as the chl-a biomass. For a discussion on comparison with A22 climatology, the readers are referred section S1 of supplementary. 3.3 Seasonal cycle and variability This section will deal with a discussion on the seasonal cycle and variability of biomass and ZSS in annual and intra-annual scale along the three regimes of EAS. To understand the variation at a specific period, say 365-days (annual cycle) or 180-days (semi-annual cycle), wavelet analysis is carried out for biomass (Fig. 6) and ZSS (Fig. 7). However, if we wish to understand the variation in a specific period band, we use Lanczos filtered time series. A brief discussion on the above mentioned techniques and variability in distinct period band is given in section S2. From the linear equation correlating biomass and backscatter, the upper and lower bound of error limits equals to ~14 mg m-3 (Fig. 2). The standard deviation of intraannual (annual) 13 variability is comparable to (less than) the error range of biomass vs backscatter relation. However, we are limited by the gaps in time series as discussed in section 2.2.1. Therefore, we consider locations other than Okha and Jaigarh for the 40 m biomass and ZSS in annual scale. The seasonal cycle is the sum total of annual, semi-annual cycle and their variability. The annual cycle of biomass off Kanyakumari (Udupi and Kollam) is weak (strong), but it varies in time (Fig. 6). For example off Kollam, the wavelet power is stronger post 2020. Wavelet analysis of the ZSS time series, derived from integrated biomass between 24 and 120 meters depth, indicates absence (presence) of annual cycle off Kanyakumari (off Udupi) (Fig. 7 g1). To capture the annual variability, the biomass is passed through Lanczos filter within period of 300 to 400 days (Fig. 8). The annual variability off Kanyakumari is least among all mooring sites. Kollam shows strong annual variability indicating prominent year-to-year variation of biomass. The intraannual band (Fig. 9) tends to be stronger compared to the annual band. Much like the annual cycle, the semi-annual cycle is weak and intra-annual variability is moderate off Kanyakumari compared to Kollam and Udupi. However, the strong variability in intra-annual scale is restricted to upper ocean for few years off Kollam, where minor spectra around 120 days is also observed. Off Goa, the annual cycle of biomass is comparatively weak contrary to the results of A22, possibly due to shorter time record and low biomass in the recent years as reflected in its ZSS wavelet for 2018 to early 2020 (2021 and 2022) (Fig. 7) resulting in a weak (strong) annual variability (Fig. 8). Off Goa and Jaigarh, the semi-annual cycle tends to be strong, specifically during 2022 when a anomalous bloom is observed throughout EAS. The semi-annual cycle weakens with depth in these locations. Intra-annual component of seasonal cycle is observed off Goa, with weak (strong) variability during 2019 (2020, 2022) and is moderately strong off Jaigarh (Fig. 9). Energy is spread among all intra-annual periods for 2022 off Goa (Figs. 6 and 7), while during 2019 and 2020 the 14 wavelet energy is only present in the semi-annual periods resulting in a overall weaker intra-annual component (Fig. 6). Further north, a strong annual cycle is seen off Mumbai with strong annual variability highest among EAS sites (Fig. 8). Biomass variability in annual scale decreases minutely with depth off Mumbai and the three CEAS sites than off Kollam (Fig. 8) similar to the observed ocean currents [Chaudhuri et al., 2020, 2021]. The annual cycle and annual variability of biomass and subsequently, ZSS increases along the slope as we go northward to Mumbai from Kanyakumari. The intra-annual band's strength is reduced off Mumbai and Okha as compared to CEAS and SEAS, and the intra- annual variability also decreases more with depth as we go equatorward. The semi-annual cycle is moderately present at 40 m off Mumbai which weakens at 104 m resulting in higher contribution of annual cycle to ZSS. Analysis reveals the presence of moderately strong semi-annual cycle off Okha but only at 104 m and it's intra-annual (annual) band is similar (weaker) in magnitude as compared to Mumbai. Excluding Kanyakumari, intra-annual variability of biomass decreases poleward with higher variation seen off Kollam and Udupi similar to the WICC [Amol et al., 2014, Chaudhuri et al., 2020]. 4 Interannual variability Aberrations

from the seasonal cycle occurs due to the variations in interannual and intraseasonal scales, we deal with the former (later) in this (next) section. The presence of interannual variability in zooplankton biomass is not well observed or understood previously due to lack of continuous long-term data. Unlike previous studies [Madhupratap et al., 1996a, Jyothibabu et al., 2010], the work carried out using long continuous time series by A22 was able to shed light on the seasonal cycle and hinted on the strong interannual variability at Kollam, a feature that was not seen at rest 15 of the sites. We've used the latest ADCP records along with data used in A22 off Mumbai, Goa, and Kollam to show strong presence of interannual variability. From the biomass time series off Kollam, a higher biomass is observed for the years 2016, 2018 - 2019, and 2022 - 2023 (Fig. 3) with deeper D215. It is low for the years 2013 and to a great extent during 2020 and the D215 is shallow enough to touch depths up to ~20 m and above throughout the year. This reason led us to discard D215 for 2020 in our analysis. Multi-year long high or low biomass is coming from its underlying interannual variability (Fig. S2). As seen in the monthly resampled biomass time series off Kollam, the magnitude of interannual component is higher than the annual variability, and it masks the underlying weaker annual component irrespective of whether it is strongly positive or negative. The wavelet spectra of daily biomass at 40 m is able to register the quasi-biennial oscillations (~720 days) observed in this time series. Off Goa however, the biomass doesn't show much year-to-year variations resulting in lack of spectra within the Cone of Influence (CoI), but the spectra shows up at seasonal and intraseasonal scales and also in biennial period though it lies beyond CoI from 2020 onward. Further north, Mumbai have the strongest observed annual cycle as discussed using recent data (Fig. 6), but the appended data from A22 shows evidence of variability at ~720 days (Fig. S2). The variability off Kanyakumari as inferred from it's biomass time series is similar to that of off Kollam, such as during 2020 when both the sites had low biomass year round, but since the mean biomass at any given depth above its z175 is lower than the z215 off Kollam, the impact of interannual variability is reflected prominently at the later site. 16 5 Intraseasonal variability On the similar lines as discussed in the preceding section, intraseasonal variability of biomass is defined as shifts occurring within a season, typically lasting few days to few weeks and is driven by short-term environmental changes, e.g., nutrient replenishment (depletion) in short-span due to upwelling and/or entrainment (bloom). The variability can be split into two categories; a high-frequency (period < 30 days) and a low-frequency (30 < period < 90 days) component. The presence of significant variation in the 30-day running mean with recurring bursts are seen in the daily data and in the wavelet analysis of biomass at 40 and 104 m (Fig. 6) lasting few days to a week and distinctive to each location. Most of the spikes in biomass are occurring due to the high-frequency component of intraseasonal band, but our focus is on the low-frequency component seen as bursts lasting much longer than biomass spikes. Much like the intra-annual variability, the standard deviation of intraseasonal component is comparable or higher than the error range of unfiltered biomass vs backscatter relation. The strength and contribution of variability components changes over time and differs between EAS regimes as discussed in section 3.3. From the wavelet analysis of biomass at 40 and 104 m, peaks in low-frequency intraseasonal band is observed across EAS. But the variability can be different at upper and lower regimes at a given location within a specific period band. This difference is evident e.g., during 2019-2021 off Kanyakumari, the wavelet power of biomass within the intraseasonal band declines as we go deeper from 40 m (Fig. 6). The filtered biomass in intraseasonal band also showcases the decrease in variability with respect to depth for the same period off Kanyakumari (Fig. 10). This holds true across EAS with the exception of very few years where the variability at 104 m is comparable or higher than biomass variability at surface layers. However, in other few instances, such as during September-November of 2018 off CEAS, intraseasonal variability remains 17 consistent throughout the entire water column. Strong intraseasonal variability off Kanyakumari relative to the variability in its annual band, along-with comparable or lower range of intra-annual variability (Fig. 11) and the wavelet at 40 and 104 m indicates that the short-lived environmental changes is a major driver of its biomass alongside minor seasonal variation. Off Kollam and Udupi, the presence of intraseasonal bursts is prominent, but due to an equal strength of intra-annual component the biomass isn't solely driven by short-term environmental changes. For instance, in 2019 off Kollam (Fig. 11), low frequency intraseasonal variability was weak during summer monsoon but an increase in biomass during the same period was due to an increase intra-annual component. However, a sharp decline in August 2019 resulted from reduced intra-annual and intraseasonal variability, even with the presence of a weakly positive annual variability. Off Goa, strong peaks in intraseasonal band is present in wavelet spectra of biomass. During early 2019 to late 2020, the intra-annual variability off Goa is non-existent and with the weak annual variability (Fig. 11), a rather seasonally invariant biomass at 40 and 104 m is observed but the presence of intraseasonal

variations is seen at both 40 and 104 m (Fig. 4). The wavelet peaks in intraseasonal band occurred strongly in 2018 and later in 2020, but the absence intra-annual band in 2019 makes it easier to comprehend the contribution of intraseasonal variability. A similar feature is noted off Jaigarh albeit with a weaker magnitude. Weak presence of intraseasonal variability is noticed in the relatively smoother 30-day rolling mean biomass off Mumbai and Okha. During early 2021 off Mumbai, the presence of strong intraseasonal peaks in wavelet spectra of 104 m along with 40 m (Fig. 6) shows up in biomass variability in intraseasonal scale (Fig. 10). Although spectra in the intraseasonal band is present at 40 m off Mumbai and Okha, it is almost absent at 104 m except for a select few years. It implies that at some locations the strong variability may occur at 18 deeper depth even when the upper ocean is showing lower variability. Off Okha, the intraseasonal variability is lowest among all EAS sites followed by Mumbai. However, Okha has weak annual and intra-annual variability unlike Mumbai leading to least predictability. The biomass variability at 40 and 104 m in intraseasonal scale is well reflected in the ZSS time series and the corresponding wavelet spectra (Fig. 7). While 40 m biomass varies strongly Off SEAS, the biomass variation at 104 m is weaker in comparison leading to upper ocean determined ZSS. There are instances when both 40 and 104 m biomass are in phase leading to a stronger ZSS variation e.g., September-November 2019 off Kanyakumari (Fig. S3) though biomass variation at 104 m is weak (Fig. 10). At instances such as during June-July 2018 and Mar-July 2019 at the above location, when the 40 and 104 m biomass are anti-phase or not in phase, they result in a reduced ZSS (Fig. S3). No annual and semi-annual cycle seems to be present in ZSS off Kanyakumari, but presence of bursts lasting few days to weeks are an indication of intraseasonal variations. While off Kollam and Udupi, the presence of strong intra-annual variations is observed in ZSS alongside intraseasonal variation dominant during September-November. Off Goa and Jaigarh during early 2019 to late 2020, the intra-annual and annual variations are much weak but strong intraseasonal variation leads to bursts in biomass. The resulting ZSS at these locations shows strong intraseasonal bursts but seasonal variation is weaker ((Fig. 7) d2, c2). Strength of intraseasonal variability in biomass is reduced at NEAS (Fig. 10) leading to a comparatively smoother ZSS in 30-day rolling mean data (Fig. 7 a2, b2). The intraseasonal peaks in biomass and further ZSS are strong in SEAS followed by CEAS and is weak off NEAS sites (Fig. 10). Variability in intraseasonal scale seems to occur predominantly during August to November, for example off Kanyakumari (2018, 2019 and 2020), off Kollam (2018, 2021 and 2022) and off Udupi (2018) although it can extend to mid-summer/mid-winter monsoon 19 for few years and is coherent along much of the EAS slope as seen during 2018 at intraseasonal band or sometimes even at scale of few days (Fig. 11). The coherence (Fig. S4) and strong variability at deeper depths at instance (during early 2021 off Mumbai) indicates possible role of ocean circulation in determining biomass at intraseasonal periods. Also, the magnitude of intraseasonal variability of 40 m (104 m) biomass decreases (increases) as we move poleward (Fig. 11), the 40 m variance is much like the observed intraseasonal currents [Amol et al., 2014, Chaudhuri et al., 2020, 2021]. However, the strength of intraseasonal variability of biomass is in contrast to the corresponding band of WICC which is strong during winter monsoon along the slope [Amol et al., 2014, Chaudhuri et al., 2020] and shelf [Chaudhuri et al., 2021] suggesting further study to identify any possible connection. Nonetheless, the backscatter derived biomass in higher sampling frequency is essential for discussing the intraseasonal variability, whereas conventional sampling method such as with research vessel, where one snapshot of biomass is taken in an interval of 15-30 days, would fail to capture these bursts in biomass, 6 Discussion 6.1 Summary The zooplankton biomass and standing stock across different regions of EAS was examined in this article, highlighting their spatio-temporal trends in the light of physico-chemical parameters using the multi-yearlong ADCP backscatter data from 2017 to 2023. The findings shows notable seasonal variation in zooplankton biomass and ZSS; in SEAS the higher biomass is observed during summer monsoon, while in NEAS the high biomass is observed during winter monsoon with transition of peak biomass happening gradually along CEAS (sec- 20 tion 3.2). Off Kollam, a unique double peak in ZSS occurs, one during May to July and another in September to November, suggesting a complex interplay between environmental drivers and zooplankton growth (Fig. 5 f2). Off Kanyakumari, the seasonal variation in ZSS is non-existent even though a dramatic seasonality is seen in chl-a. On contrary, Jaigarh shows strong variation in ZSS where the chl-a variation is non-existent. Such feature was observed at embayment west off Antarc- tic peninsula and has been attributed to advective influx [Espinasse et al., 2012] but the distinct dynamics of EAS and Antarctica implies the causality may not be same. Climatology shows strong decline in biomass w.r.t. depth off Goa, then NEAS sites off Jaigarh, Mumbai and Okha followed by SEAS locations off Udupi, Kollam and Kanyakumari. The minor peak observed off Mumbai in A22's climatology is absent in the climatology presented using the recent data. Seasonal cycle and variability play a

crucial role in regulating biomass. A strong annual cycle is observed at NEAS (Fig. 6), with biomass peaking during winter monsoon months (Fig. 5) and deeper D215, the annual cycle weakens as we got equatorward. CEAS and SEAS regions particularly off Kollam, exhibit more complex patterns. Off Kollam, the presence of a weak annual cycle and a stronger semi-annual cycle is noted along with a strong quasi-biennial cycle agreeing with A22. The semi-annual cycle is especially prominent in the SEAS (section 3.3), where it contributes significantly to the seasonal biomass changes. The variability in annual scale is weak, while that in intra-annual scale is often comparable to intraseasonal variability which is found to influence zooplankton biomass strongly in the summer to winter monsoon transition months (Fig. 10). The high (low) frequency component of intraseasonal variability determine changes lasting for days (few days to weeks) observed as spikes (bursts) in the daily biomass record (Fig. 11). Intraseasonal variability is higher in the SEAS, with the NEAS displaying less variance. The intraseasonal variability is often restricted to the upper layer, and it is expected owing to higher variability 21 of chl-a at surface which weakens with increasing depth. The affect of intraseasonal variability compounded with presence of strong intra-annual is observed in the difference of mean biomass at 40 and 104 m (Fig. 4). The intraseasonal variations may exist throughout the water column for few years and can be coherent along the slope possibly suggesting that the penetration and propagation of currents in intraseasonal band [Amol et al., 2012, 2014, Chaudhuri et al., 2020]) could be driving biomass on few occasions. The reduction/enhancement of ZSS on account of out-of-phase/in-phase upper and lower depth biomass occurs at annual and intra-annual and intraseasonal time scales (Fig. S3), 6.2 consequences of intraseasonal variability It is evident that the intraseasonal variability dominates the zooplankton biomass along EAS regime (section 5). A strong intraseasonal component suggests implications on sampling, zooplankton patchiness and its predictability. 6.2.1 Implication on sampling Zooplankton biomass exhibits significant intraseasonal variability driven by dynamic oceanographic processes which operate over short temporal scales and vary in space (section 5). Since the strength of intraseasonal component is higher than the other two variabilities (Fig. 11) and its high-frequency component is rather erratic, dependency of zooplankton biomass on the intraseasonal variation has implication on the sampling of zooplankton using cruises. A servicing cruise along the EAS moorings takes about 12 to 15 days excluding the time to and fro from port to first/last mooring [Chaudhuri et al., 2020, Aparna et al., 2022]. However, a sampling cruise dedicated to study the spatial variation of zooplankton [Madhupratap et al., 1992, Smith et al., 1998, Wishner et al., 1998, 22 Kidwai and Amjad, 2000], say for summer monsoon may last a month or more with coarse sampling interval and hence fail to capture the actual biomass within a season for a fair spatial comparison. Consider the cruise undertaken to address the seasonality in zooplankton abundances and com- position [Madhupratap et al., 1996a] in Arabian Sea as part of JGOFS program. The first, second and third cruises of this study was taken 12 April to 12 May 1994 (inter-monsoon), 3 February to 4 March 1995 (winter) and 20 July to 12 August 1995 (summer), respectively. It is imperative to acknowledge that sampling done twice (once in mid-day and again in midnight), and two snapshots are held as a representative of the entire season. Does this sampling method give accurate idea about the zooplankton biomass in a particular season? The comparison of variability in intrasea- sonal periods is used to shed a light on the biomass variation within a season. Consider the summer monsoon months, off Mumbai during early June of 2019 (Fig. 11), where a spike in biomass is observed due to an instantaneous increase in the high-frequency component of biomass variability resulting in an increase of ~150 mg m-3 within few days. Similar spikes are seen at other locations too, e.g., off Kollam during July end and multiple instances in September of 2019 (Fig. 11). These spikes lasts only for a day to few days but the bursts in biomass tend to last longer from a few days to a few weeks. A burst is seen in biomass during September 2019 off Kanyakumari, but the preceding summer monsoon months had an almost invariant biomass with minor bursts, both of which won't be captured by a conventional ship based sampling. Second limitation of cruise based sampling is spatial constraint. For the same year 2019 off Kanyakumari, the burst in biomass during September is followed by a decline during October which results in a biomass difference of about ~160 mg m-3 within a month and most of it is contribution from intraseasonal variability (Fig. 11). This burst is also observed off Kollam, Udupi till Goa, albeit with decreasing intensity as we go poleward. Such coherency can only be observed if continuous and frequent measurements 23 were taken across EAS. The spatial map of mesozooplankton distribution such as one by Jyoth- ibabu et al. [2010] for each season (see Fig. 11 of Jyothibabu et al. [2010]) is limited by sampling frequency and time elapsed to cover stations, and the measured biomass is prone to distortion since biomass is subject to drastic changes within few days. The limitations of cruise based sampling leads to inaccurate depiction of biomass in space and time, and it can be mitigated by usage of ADCP backscatter derived

zooplankton biomass. 6.2.2 Zooplankton patchiness Poor sampling coverage and intermittent measurement also impacts assessment of zooplankton patchiness, defined as the aggregations arising in response to temperature, salinity and oxygen gradients, currents, variation in light intensity, predator-prey concentrations [Folt and Burns, 1999, Raghukumar and Anil, 2003]. Though the usage of traditional sampling methods has led to de-termination of zooplankton abundance and distribution in EAS [Madhupratap et al., 1992, 1996a, Khandagale et al., 2022], the biomass measurements can miss or rarely sample the patches of zoo- plankton, and thereby misinterpret abundance by under/over-estimation of the standing stock. A high intraseasonal variability in zooplankton biomass suggests that patchiness in the deep-sea en-vironment occurs within individual seasons on periods equivalent to few days to few weeks. During July 20-31st 2019, a spike lasting few days in daily biomass at 40 m (Fig. 11) is observed at most of the EAS sites, albeit with differing magnitude followed by a sharp decline and difference in oc-currence of maximum biomass by few days. But the coherence doesn't exist at all instances. For example, during 13th June 2019, the instantaneous spike in biomass observed off Mumbai is not seen anywhere else, but the low biomass lasting about 2 weeks in dates adjacent to this spike is seen at Okha, Mumbai, Jaigarh and Goa (Fig. 11). The observed spikes in zooplankton biomass, 24 as discussed in the preceding subsection, occurring within just a few days, are a clear example of the zooplankton cluster formation. The patchiness can also exist on longer periods. During 15 January-15 February 2019, a burst is observed off Udupi lasting about 20-30 days, while it is missing at its nearby moorings, signifying presence of patchiness and its prominence in the longer periods of intraseasonal band. However, there are occasions such as during September-November 2018 (Fig. 10) and 2019 (Fig. 11) when the coherence (Fig. S4) in biomass is observed indicating collapse of patchiness. The zooplankton patchiness occurring in longer periods of intraseasonal band is likely associated with processes such as fronts [Coyle and Jr, 2000, Wade and Heywood, 2001, Hitchcock et al., 2002], pulsed inputs of nutrients in open ocean water [Anil et al., 2021] and biological processes [Folt and Burns, 1999], while those occurring in shorter periods could be due to physical convergence [Napp et al., 1996] of zooplankton. The higher variance in deeper layers off Okha could be an indication of deep-living zooplankton species [Raghukumar and Anil, 2003] due to strong oxygen gradient. Thus, a lack of feasibility in intensive in-situ sampling suggests that the data collected might not be representative of the actual standing stock being studied [Smith et al., 1998] and may not capture zooplankton patches. 6.2.3 Predictability Though EAS shows a strong seasonal cycle of current, there are notable differences between regimes of EAS. Kollam's seasonal cycle is marked by intense intraseasonal bursts making the shelf WICC at Kollam highly unpredictable [Chaudhuri et al., 2021] and the intraseasonal variability increases equatorward. The direction of WICC at any given time of the year can be either poleward or equatorward owing to the bursts. Similarly, the zooplankton biomass varies frequently and strongly 25 within the season itself (section 5) across EAS. From the preceding subsection, it is inferred that though not often, coherence is observed in both the lower and higher periods of intraseasonal band leading to collapse of patchiness. The presence of coherence implicates better predictability of biomass especially during September-November as observed during 2018 and 2019. However, rest of the time in absence of coherence in few months, patchiness takes over and the zooplankton biomass is erratic with sudden spikes and lasting bursts. This indicates that zooplankton form and patches fluctuate due to short-term changes, possibly responding to ocean environment [Folt and Burns, 1999, Raghukumar and Anil, 2003, Anil et al., 2021]. Hence, the zooplankton biomass much like the current is dominated by intraseasonal variations more than the annual cycle indicating possible loss in predictability. Understanding the currents and phytoplankton variability and their relation to zooplankton would enable us to have better predictability. The occurrence of strong biomass intraseasonal variability before winter monsoon, the similarity in trend of increasing (decreasing) intraseasonal and intra-annual (annual) variability of biomass and currents as we go equatorward along the EAS slope, presence strong interannual variability in biomass and currents and quasibiennial cycle that is associated with Indian summer-monsoon rainfall [Mooley and Parthasarathy, 1984, Bhalme et al., 1987, Meehl and Arblaster, 2002], all these are tempting as it indicates a link between the two. However, a rigorous study is necessary to excavate any such relationship. Strong peaks in intraseasonal band in chl-a was evident in Lomb-Scargle periodogram (Fig. S5), analogous to zooplankton biomass and ZSS, but lacked concrete evidence of direct correlation. 26 6.3 Conclusion The results presented in this paper are based on the ADCP backscatter which is suitable for creating long-term time series of zooplankton biomass in open ocean [Jiang et al., 2007, Hobbs et al., 2021, Ursella et al., 2021, Aparna et al., 2022]. There are however, certain limitations to this approach of studying biomass using ADCP backscatter as proxy. While the variation in depth is captured with in-situ samples from MPN, the

variation in season is not adequately addressed owing to the limitation of months when ADCP servicing cruises are undertaken apart from availability. The west coast cruises for ADCP servicing are planned for the monsoon transition months but may start as early as late September till December with few exceptions such as 2022 when it was carried out in March. Since the intraseasonal and intraannual variability is almost double that of the annual one (section 5), the sampling done in particular season for biomass-backscatter comparison isn't sufficient but can be mitigated with extensive season-wise sampling [Jadhav and Smitha, 2024]. The second limitation is lack of any information regarding the size distribution of zooplankton and their contribution to ZSS is lost. The merits outshine above mentioned disadvantages in the unique aspect that a sufficiently long and continuous time series of zooplankton biomass could be constructed upon which further analysis can be carried out. Along-with the discussion on seasonal and further the climatological cycle, we provided evidence of strong intraseasonal variation; this has three major implications: 1) on the conventional sampling methods used to assess the zooplankton biomass and standing stock, and the snapshots provided by such samples aren't representative of a season; 2) on the zooplankton patchiness, and further on the under or over estimation of standing stock; 3) on the predictability which is reduced due to strong biomass variation at intraseasonal scale, and the presence of patchiness as spikes and bursts. The possible influence of ocean currents could be 27 explored using the current data from ADCPs [Hitchcock et al., 2002, Lawson et al., 2004]. It is evident that a mono-frequency ADCP is adequately suitable to capture the intraseasonal variations of zooplankton biomass that will otherwise be left inaccessible by traditional methods. 7 Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. 8 Acknowledgments The data were collected by xxx with fund provided under xxxx. The mooring programme is supported by INCOIS (Indian National Centre for Ocean Information Sevices, Hyderabad) and CSIR. We acknowledge the contribution of mooring division and ship cell of CSIR-NIO. Ranjan Kumar Sahu expresses his acknowledgment to the Council of Scientific and Industrial Research (CSIR) for sponsoring his fellowship. Additionally, he extends his thanks to Ashok Kankonkar for providing the essential data, Rahul Khedekar for his data processing, Roshan D'Souza for his diligent work in biological data analysis. Their contributions were invaluable to the successful completion of this research. References Anna-Karin Almén and Tobias Tamelander. Temperature-related timing of the spring bloom and match between phytoplankton and zooplankton. Marine Biology Research, 16(8-9):674-682, 2020. P Amol, D Shankar, SG Aparna, SSC Shenoi, V Fernando, SR Shetye, A Mukherjee, Y Agarvadekar, S Khalap, and NP Satelkar. Observational evidence from direct current measurements for propagation of remotely forced waves on the shelf off the west coast of india. Journal of Geophysical Research: Oceans, 117(C5), 2012. 28 P Amol, D Shankar, V Fernando, A Mukherjee, SG Aparna, R Fernandes, GS Michael, ST Khalap, NP Satelkar, Y Agarvadekar, et al. Observed intraseasonal and seasonal variability of the west india coastal current on the continental slope. Journal of Earth System Science, 123(5):1045-1074, 2014. P Amol, Suchandan Bemal, D Shankar, V Jain, V Thushara, V Vijith, and PN Vinayachandran. Modulation of chlorophyll concentration by downwelling rossby waves during the winter monsoon in the southeastern arabian sea. Progress in Oceanography, 186:102365, 2020. AC Anil, DV Desai, L Khandeparker, V Krishnamurthy, K Mapari, S Mitbavkar, JS Patil, VVSS Sarma, and SS Sawant. Short term response of plankton community to nutrient enrichment in central eastern arabian sea: Elucidation through mesocosm experiments. Journal of Environmental Management, 288:112390, 2021. SG Aparna, DV Desai, D Shankar, AC Anil, Shrikant Dora, and R Khedekar. Seasonal cycle of zooplankton standing stock inferred from adop backscatter measurements in the eastern arabian sea. Progress in Oceanography, 203: 102766, 2022. K Banse and DC English. Geographical differences in seasonality of czcs-derived phytoplankton pigment in the arabian sea for 1978-1986. Deep Sea Research Part II: Topical Studies in Oceanography, 47(7-8):1623-1677, 2000. Karl Banse. Hydrography of the arabian sea shelf of india and pakistan and effects on demersal fishes. In Deep sea research and oceanographic Abstracts, volume 15, pages 45-79. Elsevier, 1968. Karl Banse. Zooplankton: pivotal role in the control of ocean production: I. biomass and production. ICES Journal of marine Science, 52(3-4):265-277, 1995. Richard T Barber, John Marra, Robert C Bidigare, Louis A Codispoti, David Halpern, Zackary Johnson, Mikel Latasa, Ralf Goericke, and Sharon L Smith. Primary productivity and its regulation in the arabian sea during 1995. Deep Sea Res. Part 2 Top. Stud. Oceanogr., 48(6-7):1127-1172, jan 2001. H. P. Batchelder, J. R. VanKeuren, R. D. Vaillancourt, and E. Swift. Spatial and temporal distributions of acoustically estimated zooplankton biomass near the marine light-mixed layers station (59°30'n, 21°00'w) in the north atlantic in may 1991. Journal of Geophysical Research: Oceans, 100:6549-6563, 1995. doi: 10.1029/94jc00981. Suchandan Bemal, Arga Chandrashekar Anil, D Shankar, R Remya,

and Rajdeep Roy. Picophytoplankton variability: Influence of winter convective mixing and advection in the northeastern arabian sea. Journal of Marine Systems, 180:37-48, 2018. HN Bhalme, SS Rahalkar, and AB Sikder. Tropical quasi-biennial oscillation of the 10-mb wind and indian monsoon rainfall-implications for forecasting. Journal of climatology, 7(4):345-353, 1987. John C Brock and Charles R McClain. Interannual variability in phytoplankton blooms observed in the northwestern arabian sea during the southwest monsoon. Journal of Geophysical Research: Oceans, 97(C1):733-750, 1992. 29 John C Brock, Charles R McClain, Mark E Luther, and William W Hay. The phytoplankton bloom in the north- western arabian sea during the southwest monsoon of 1979. Journal of Geophysical Research: Oceans, 96(C11): 20623-20642, 1991. Abhisek Chatterjee, D Shankar, SSC Shenoi, GV Reddy, GS Michael, M Ravichandran, VV Gopalkrishna, EP Rama Rao, TVS Udaya Bhaskar, and VN Sanjeevan. A new atlas of temperature and salinity for the north indian ocean. Journal of Earth System Science, 121:559-593, 2012. Anya Chaudhuri, D Shankar, SG Aparna, P Amol, V Fernando, A Kankonkar, GS Michael, NP Satelkar, ST Khalap, AP Tari, et al. Observed variability of the west india coastal current on the continental slope from 2009-2018. Journal of Earth System Science, 129(1):57, 2020. Anya Chaudhuri, P Amol, D Shankar, S Mukhopadhyay, SG Aparna, V Fernando, and A Kankonkar. Observed variability of the west india coastal current on the continental shelf from 2010–2017. Journal of Earth System Science, 130:1-21, 2021. Boris Cisewski, Volker H Strass, Monika Rhein, and Sören Krägefsky. Seasonal variation of diel vertical migration of zooplankton from adop backscatter time series data in the lazarev sea, antarctica. Deep Sea Research Part I: Oceanographic Research Papers, 57(1):78-94, 2010. Kenneth O Coyle and George L Hunt Jr. Seasonal differences in the distribution, density and scale of zooplankton patches in the upper mixed layer near the. Plankton Biol. Ecol, 47(1):31-42, 2000. Kent L Deines. Backscatter estimation using broadband acoustic doppler current profilers. In Proceedings of the IEEE Sixth Working Conference on Current Measurement (Cat. No. 99CH36331), pages 249-253. IEEE, 1999. SN DeSousa, M Dileepkumar, S Sardessai, VVSS Sarma, and PV Shirodkar. Seasonal variability in oxygen and nutrients in the central and eastern arabian sea. Indian Academy of Sciences, 1996. A Edvardsen, D Slagstad, KS Tande, and P Jaccard. Assessing zooplankton advection in the barents sea using underway measurements and modelling. Fisheries Oceanography, 12(2):61-74, 2003. Boris Espinasse, Meng Zhou, Yiwu Zhu, Elliott L Hazen, Ari S Friedlaender, Douglas P Nowacek, Dezhang Chu, and Francois Carlotti. Austral fall- winter transition of mesozooplankton assemblages and krill aggregations in an embayment west of the antarctic peninsula. Marine Ecology Progress Series, 452:63-80, 2012. Charles N Flagg and Sharon L Smith. On the use of the acoustic doppler current profiler to measure zooplankton abundance. Deep Sea Research Part A. Oceanographic Research Papers, 36(3):455-474, 1989. Carol L Folt and Carolyn W Burns. Biological drivers of zooplankton patchiness. Trends in Ecology & Evolution, 14(8):300-305, 1999. H. E. García, R. A. Locarnini, T. P. Boyer, J. I. Antonov, A. V. Mishonov, O. K. Baranova, M. M. Zweng, J. R. Reagan, and D. R. Johnson. Dissolved oxygen, apparent oxygen utilization, and oxygen saturation. NOAA Atlas NESDIS 75, 3, 2014. 30 Charles H Greene, Peter H Wiebe, Chris Pelkie, Mark C Benfield, and Jacqueline M Popp. Three-dimensional acoustic visualization of zooplankton patchiness. Deep Sea Research Part II: Topical Studies in Oceanography, 45 (7):1201-1217, 1998. Charles F Greenlaw. Acoustical estimation of zooplankton populations 1. Limnology and Oceanography, 24(2): 226-242, 1979. Davide Guerra, Katrin Schroeder, Mireno Borghini, Elisa Camatti, Marco Pansera, Anna Schroeder, Stefania Sparnocchia, and Jacopo Chiggiato. Zooplankton diel vertical migration in the corsica channel (north-western mediterranean sea) detected by a moored acoustic doppler current profiler. Ocean Science, 15(3):631-649, 2019. James M Hamilton, Kate Collins, and Simon J Prinsenberg. Links between ocean properties, ice cover, and plankton dynamics on interannual time scales in the canadian arctic archipelago. Journal of Geophysical Research: Oceans, 118(10):5625-5639, 2013. Graeme C Hays. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. In Migrations and Dispersal of Marine Organisms: Proceedings of the 37 th European Marine Biology Symposium held in Reykjavík, Iceland, 5-9 August 2002, pages 163-170. Springer, 2003. Karen J Heywood, S Scrope-Howe, and ED Barton. Estimation of zooplankton abundance from shipborne adop backscatter. Deep Sea Research Part A. Oceanographic Research Papers, 38(6):677-691, 1991. Gary L Hitchcock, Peter Lane, Sharon Smith, Jiangang Luo, and Peter B Ortner. Zooplankton spatial distributions in coastal waters of the northern arabian sea, august, 1995. Deep Sea Research Part II: Topical Studies in Oceanography, 49(12):2403-2423, 2002. Laura Hobbs, Neil S Banas, Jonathan H Cohen, Finlo R Cottier, Jørgen Berge, and Øystein Varpe. A marine zooplankton community vertically structured by light across diel to interannual timescales. Biology Letters, 17(2): 20200810, 2021. Raleigh R Hood, Lynnath E Beckley, and Jerry D Wiggert. Biogeochemical and ecological impacts of boundary currents in the indian ocean. Progress in Oceanography, 156:290-325, 2017.

Ryuichiro Inoue, Minoru Kitamura, and Tetsuichi Fujiki. Diel vertical migration of zooplankton at the s 1 biogeo- chemical mooring revealed from acoustic backscattering strength. Journal of Geophysical Research: Oceans, 121 (2):1031-1050, 2016. Shirin J Jadhav and BR Smitha. Abundance distribution pattern of zooplankton associated with the eastern arabian sea monsoon system as detected by underwater acoustics and net sampling. Acoustics Australia, pages 1-22, 2024. Songnian Jiang, Tommy D Dickey, Deborah K Steinberg, and Laurence P Madin. Temporal variability of zooplankton biomass from adop backscatter time series data at the bermuda testbed mooring site. Deep Sea Research Part I: Oceanographic Research Papers, 54(4):608-636, 2007. 31 R Jyothibabu, NV Madhu, H Habeebrehman, KV Jayalakshmy, KKC Nair, and CT Achuthankutty. Re-evaluation of 'paradox of mesozooplankton'in the eastern arabian sea based on ship and satellite observations. Journal of Marine Systems, 81(3):235-251, 2010. Myounghee Kang, Sunyoung Oh, Wooseok Oh, Dong-Jin Kang, SungHyun Nam, and Kyounghoon Lee. Acoustic characterization of fish and macroplankton communities in the seychelles-chagos thermocline ridge of the southwest indian ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 213:105356, 2024. Madhavan Girijakumari Keerthi, Matthieu Lengaigne, Marina Levy, Jerome Vialard, Vallivattathillam Parvathi, Clément de Boyer Montégut, Christian Ethé, Olivier Aumont, Iyyappan Suresh, Valiya Parambil Akhil, et al. Physical control of interannual variations of the winter chlorophyll bloom in the northern arabian sea. Biogeo- sciences, 14(15):3615-3632, 2017. Punam A Khandagale, Vaibhav D Mhatre, and Sujitha Thomas. Seasonal and spatial variability of zooplankton diversity in north eastern arabian sea along the maharashtra coast. Journal of the Marine Biological Association of India, 64(1):25-32, 2022. S Kidwai and S Amjad. Zooplankton: pre-southwest and northeast monsoons of 1993 to 1994, from the north arabian sea. Mar. Biol., 136(3):561-571, apr 2000. S. Prasanna Kumar and Jayu Narvekar. Seasonal variability of the mixed layer in the central arabian sea and its implication on nutrients and primary productivity. Deep Sea Research Part II: Topical Studies in Oceanography, 52(14):1848-1861, 2005. ISSN 0967-0645. doi: https://doi.org/10.1016/j.dsr2.2005.06.002. URL https://www. sciencedirect.com/science/article/pii/S0967064505001207. Biogeochemical Processes in the Northern Indian Ocean. Gareth L Lawson, Peter H Wiebe, Carin J Ashjian, Scott M Gallager, Cabell S Davis, and Joseph D Warren. Acoustically-inferred zooplankton distribution in relation to hydrography west of the antarctic peninsula. Deep Sea Research Part II: Topical Studies in Oceanography, 51(17-19):2041-2072, 2004. Marina Lévy, D Shankar, J-M André, SSC Shenoi, Fabien Durand, and Clément de Boyer Montégut. Basinwide seasonal evolution of the indian ocean's phytoplankton blooms. Journal of Geophysical Research: Oceans, 112 (C12), 2007. M Li, A Gargett, and K Denman. What determines seasonal and interannual variability of phytoplankton and zooplankton in strongly estuarine systems? Estuarine, Coastal and Shelf Science, 50(4):467-488, 2000. Yanliang Liu, Jingsong Guo, Yuhuan Xue, Chalermrat Sangmanee, Huiwu Wang, Chang Zhao, Somkiat Khokiat-tiwong, and Weidong Yu. Seasonal variation in diel vertical migration of zooplankton and micronekton in the andaman sea observed by a moored adop. Deep Sea Research Part I: Oceanographic Research Papers, 179:103663, 2022. M Madhupratap, P Haridas, Neelam Ramaiah, and CT Achuthankutty. Zooplankton of the southwest coast of india: abundance, composition, temporal and spatial variability in 1987. 1992. 32 M Madhupratap, TC Gopalakrishnan, P Haridas, KKC Nair, PN Aravindakshan, G Padmavati, and Shiney Paul. Lack of seasonal and geographic variation in mesozooplankton biomass in the arabian sea and its structure in the mixed layer. Current science. Bangalore, 71(11):863-868, 1996a. M Madhupratap, S Prasanna Kumar, PMA Bhattathiri, M Dileep Kumar, S Raghukumar, KKC Nair, and N Rama- iah. Mechanism of the biological response to winter cooling in the northeastern arabian sea. Nature, 384(6609): 549-552, 1996b. M Madhupratap, TC Gopalakrishnan, P Haridas, and KKC Nair. Mesozooplankton biomass, composition and distribution in the arabian sea during the fall intermonsoon: implications of oxygen gradients. Deep Sea Research Part II: Topical Studies in Oceanography, 48(6-7):1345-1368, 2001. JP McCreary, Raghu Murtugudde, Jerome Vialard, PN Vinayachandran, Jerry D Wiggert, Raleigh R Hood, D Shankar, and S Shetye. Biophysical processes in the indian ocean. Indian Ocean biogeochemical processes and ecological variability, 185:9-32, 2009. Julian P McCreary, Pijush K Kundu, and Robert L Molinari. A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the indian ocean. Progress in Oceanography, 31(3):181-244, 1993. Julian P McCreary, Kevin E Kohler, Raleigh R Hood, and Donald B Olson. A fourcomponent ecosystem model of biological activity in the arabian sea. Progress in Oceanography, 37(3-4):193-240, 1996. Gerald A Meehl and Julie M Arblaster. The tropospheric biennial oscillation and asian-australian monsoon rainfall. Journal of Climate, 15(7):722-744, 2002. DA Mooley and B Parthasarathy. Fluctuations in all-india summer monsoon rainfall during 1871-1978. Climatic change, 6(3):287-301, 1984. S Mukhopadhyay, D Shankar, S G Aparna, and A Mukherjee. Observations of the sub-inertial, near-surface

east india coastal current. Cont. Shelf Res., 148:159-177, September 2017. KKC Nair, M Madhupratap, TC Gopalakrishnan, P Haridas, and Mangesh Gauns. The arabian sea: physical environment, zooplankton and myctophid abundance. 1999. PV Nair. Primary productivity in the indian seas. CMFRI Bulletin, 22:1-63, 1970. Jeffrey M Napp, Lewis S Incze, Peter B Ortner, Deborah LW Siefert, and Lisa Britt. The plankton of shelikof strait, alaska: standing stock, production, mesoscale variability and their relevance to larval fish survival. Fisheries Oceanography, 5:19-38, 1996. Lingyun Nie, Jianchao Li, Hao Wu, Wenchao Zhang, Yongjun Tian, Yang Liu, Peng Sun, Zhenjiang Ye, Shuyang Ma, and Qinfeng Gao. The influence of ocean processes on fine-scale changes in the yellow sea cold water mass boundary area structure based on acoustic observations. Remote Sensing, 15(17):4272, 2023. 33 MD Ohman and H-J Hirche. Density-dependent mortality in an oceanic copepod population. Nature, 412(6847): 638-641, 2001. SA Piontkovski, R Williams, and TA Melnik. Spatial heterogeneity, biomass and size structure of plankton of the indian ocean: some general trends. Marine ecology progress series, pages 219-227, 1995. Emmanuel Potiris, Constantin Franqoulis, Alkiviadis Kalampokis, Manolis Ntoumas, Manos Pettas, George Peti- hakis, and Vassilis Zervakis. Acoustic doppler current profiler observations of migration patternsof zooplankton in the cretan sea. Ocean Science, 14(4):783-800, 2018. TG Prasad and N Bahulayan. Mixed layer depth and thermocline climatology of the arabian sea and western equatorial indian ocean. 1996. SZ Qasim. Biological productivity of the indian ocean. 1977. Corinne Le Quéré, Robbie M Andrew, Josep G Canadell, Stephen Sitch, Jan Ivar Korsbakken, Glen P Peters, Andrew C Manning, Thomas A Boden, Pieter P Tans, Richard A Houghton, et al. Global carbon budget 2016. Earth System Science Data, 8(2):605-649, 2016. Seshagiri Raghukumar and AC Anil. Marine biodiversity and ecosystem functioning: A perspective. Current Science, 84(7):884-892, 2003. CP Ramamirtham and AVS Murty. Hydrography of the west coast of india during the pre-monsoon period of the year 1962 part 2: in and offshore waters of the konkan and malabar coasts. Journal of the Marine Biological Association of India, 7(1):150-168, 1965. S Ramamurthy. Studies on the plankton of the north kanara coast in relation to the pelagic fishery. Journal of Marine Biological Association of India, 7(1):127-149, 1965. Mehbuba Rehim and Mudassar Imran. Dynamical analysis of a delay model of phytoplankton-zooplankton interac- tion. Applied Mathematical Modelling, 36(2):638-647, 2012. T. P. Rippeth and J. H. Simpson. Diurnal signals in vertical motions on the hebridean shelf. Limnology and Oceanography, 43:1690-1696, 1998. doi: 10.4319/lo.1998.43.7.1690. John H Ryther, John R Hall, Allan K Pease, Andrew Bakun, and Mark M Jones. Primary organic production in relation to the chemistry and hydrography of the western indian ocean 1. Limnology and Oceanography, 11(3): 371-380, 1966. Henrike Schmidt, Rena Czeschel, and Martin Visbeck. Seasonal variability of the arabian sea intermediate circulation and its impact on seasonal changes of the upper oxygen minimum zone. Ocean Science, 16(6):1459-1474, 2020. D Shankar, SSC Shenoi, RK Nayak, PN Vinayachandran, G Nampoothiri, AM Almeida, GS Michael, MR Ramesh Kumar, D Sundar, and OP Sreejith. Hydrography of the eastern arabian sea during summer monsoon 2002. Journal of earth system science, 114:459-474, 2005. 34 D Shankar, R Remya, PN Vinayachandran, Abhisek Chatterjee, and Ambica Behera. Inhibition of mixed-layer deepening during winter in the northeastern arabian sea by the west india coastal current. Climate Dynamics, 47:1049-1072, 2016. D Shankar, R Remya, AC Anil, and V Vijith. Role of physical processes in determining the nature of fisheries in the eastern arabian sea. Progress in Oceanography, 172:124–158, 2019. SSC Shenoi, D Shankar, GS Michael, J Kurian, KK Varma, MR Ramesh Kumar, AM Almeida, AS Unnikrishnan, W Fernandes, N Barreto, et al. Hydrography and water masses in the southeastern arabian sea during march-june 2003. Journal of earth system science, 114:475-491, 2005. SR Shetye, AD Gouveia, SSC Shenoi, D Sundar, GS Michael, AM Almeida, and K Santanam. Hydrography and circulation off the west coast of india during the southwest monsoon 1987. 1990. S.R. Shetye, A.D. Gouveia, S.S.C. Shenoi, G.S. Michael, D. Sundar, A.M. Almeida, and K. Santanam. The coastal current off western india during the northeast monsoon. Deep Sea Research Part A. Oceanographic Research Papers, 38(12):1517-1529, 1991. ISSN 0198-0149. doi: https://doi.org/10.1016/0198-0149(91)90087-V. URL https://www.sciencedirect.com/science/article/pii/019801499190087V. SR Shetye, AD Gouveia, and SSC Shenoi. Does winter cooling lead to the subsurface salinity minimum off saurashtra, india? Oceanography of the Indian Ocean, pages 617-625, 1992. Wei Shi and Menghua Wang. Phytoplankton biomass dynamics in the arabian sea from viirs observations. Journal of Marine Systems, 227:103670, 2022. Houssem Smeti, Marc Pagano, Christophe Menkes, Anne Lebourges-Dhaussy, Brian PV Hunt, Valerie Allain, Martine Rodier, Florian De Boissieu, Elodie Kestenare, and Cherif Sammari. Spatial and temporal variability of zooplankton off n ew c aledonia (s outhwestern p acific) from acoustics and net measurements. Journal of Geophysical Research: Oceans, 120(4):2676-2700, 2015. Sharon Smith, Michael Roman, Irina Prusova, Karen Wishner, Marcia Gowing, LA Codispoti, Richard Barber,

John Marra, and Charles Flagg. Seasonal response of zooplankton to monsoonal reversals in the arabian sea. Deep Sea Research Part II: Topical Studies in Oceanography, 45(10-11):2369-2403, 1998. SL Smith and M Madhupratap. Mesozooplankton of the arabian sea: patterns influenced by seasons, upwelling, and oxygen concentrations. Progress in Oceanography, 65(2-4):214-239, 2005. Patnaik Sreenivas, KVKRK Patnaik, and KVSR Prasad. Monthly variability of mixed layer over arabian sea using argo data. Marine Geodesy, 31(1):17-38, 2008. R Subrahmanyan. Studies on the phytoplankton of the west coast of india: Part ii. physical and chemical factors influencing the production of phytoplankton, with remarks on the cycle of nutrients and on the relationship of the phosphate-content to fish landings. In Proceedings/Indian Academy of Sciences, volume 50, pages 189-252. Springer, 1959. 35 R Subrahmanyan and AH Sarma. Studies on the phytoplankton of the west coast of india. part iii. seasonal variation of the phytoplankters and environmental factors. Indian Journal of Fisheries, 7(2):307-336, 1960. Laura Ursella, Vanessa Cardin, Mirna Batistić, Rade Garić, and Miroslav Gačić. Evidence of zooplankton vertical migration from continuous southern adriatic buoy current-meter records. Progress in oceanography, 167:78-96, 2018. Laura Ursella, Sara Pensieri, Enric Pallàs-Sanz, Sharon Z Herzka, Roberto Bozzano, Miguel Tenreiro, Vanessa Cardin, Julio Candela, and Julio Sheinbaum. Diel, lunar and seasonal vertical migration in the deep western gulf of mexico evidenced from a long-term data series of acoustic backscatter. Progress in Oceanography, 195:102562, 2021. V Vijith, PN Vinayachandran, V Thushara, P Amol, D Shankar, and AC Anil. Consequences of inhibition of mixed-layer deepening by the west india coastal current for winter phytoplankton bloom in the northeastern arabian sea. Journal of Geophysical Research: Oceans, 121(9):6583-6603, 2016. V Vijith, SR Shetye, AD Gouveia, SSC Shenoi, GS Michael, and D Sundar. Circulation in the region of the west india coastal current in march 1994 hydrographic and altimeter data. Journal of Earth System Science, 131(1): 16, 2022. Ian P Wade and Karen J Heywood. Acoustic backscatter observations of zooplankton abundance and behaviour and the influence of oceanic fronts in the northeast atlantic. Deep Sea Research Part II: Topical Studies in Oceanography, 48(4-5):899-924, 2001. Peter H Wiebe, Charles H Greene, Timothy K Stanton, and Janusz Burczynski. Sound scattering by live zooplankton and micronekton: empirical studies with a dual-beam acoustical system. The Journal of the Acoustical Society of America, 88(5):2346-2360, 1990. Jerry D Wiggert, RR Hood, Karl Banse, and JC Kindle. Monsoon-driven biogeochemical processes in the arabian sea. Progress in Oceanography, 65(2-4):176-213, 2005. Monika Winder and Daniel E Schindler. Climatic effects on the phenology of lake processes. Global change biology, 10(11):1844-1856, 2004. Karen F Wishner, Marcia M Gowing, and Celia Gelfman. Mesozooplankton biomass in the upper 1000 m in the arabian sea: overall seasonal and geographic patterns, and relationship to oxygen gradients. Deep Sea Research Part II: Topical Studies in Oceanography, 45(10-11):2405-2432, 1998. 36 Table 1: ADCP deployment details at the locations. The temporal resolution is 1 hour, bin size(vertical resolution) 4 m. All ADCPs are operated at 153.3 kHz. The moorings are at a water column depth of 950-1200 m on the continental slope and are serviced on yearly basis according to ship availability. The 6th column consists of Reference echo intensity (Er) for each beam, while the 7th column contains the corresponding RSSI conversion factor [Deines, 1999]. Date Depth Station (Position; °E, °N) Deployment Recovery Ocean ADCP Er Kc Okha (67.47, 22.26) 01/10/2018 01/12/2019 04/12/2020 08/03/2022 01/12/2019 04/12/2020 08/03/2022 01/01/2023 996 1166 1021 1019 118 312 144 142 37, 37, 36 39, 36, 38, 36 41, 37, 38, 37 37, 38, 39 , 36 0.42 , 0.44 , 0.42 , 0.43 0.42 , 0.44 , 0.42 , 0.43 0.42 , 0.44 , 0.42 , 0.43 0.42 , 0.44 , 0.42 , 0.44 , 0.42 , 0.43 Mumbai (69.24, 20.01) 09/11/2017 29/09/2018 29/11/2019 02/12/2020 07/03/2022 29/09/2018 29/11/2019 02/12/2020 06/03/2022 02/01/2023 1025 1122 1143 1125 1103 150 125 164 142 158 36, 34, 39, 42 35, 36, 39, 42 37, 34, 39, 43 36, 34, 39, 42 37, 34, 40, 43 0.40, 0.40, 0.40, 0.40 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40 Jaigarh (71.12, 17.53) 27/10/2017 27/09/2018 03/11/2019 30/11/2020 27/09/2018 30/10/2019 30/11/2020 05/03/2022 1039 1032 1142 1099 198 164 264 119 32 , 35, 33, 32 32, 35, 33, 31 32, 36, 33, 32 33, 36, 34, 32 0.45, 0.45 Goa (72.74, 15.17) 03/10/2017 25/09/2018 16/10/2019 29/11/2020 03/03/2022 25/09/2018 16/10/2019 29/11/2020 03/03/2022 05/01/2023 1000 969 966 985 984 174 145 143 157 159 35, 37, 34, 35 38, 36, 36, 36, 34 44, 38, 36, 43 35, 40, 35, 38, 35, 38, 35, 34, 0.44, 0.44, 0.44, 0.44, 0.44, 0.44, 0.40, 0.41, 0.44, 0.4 0.40 , 0.41 Udupi (74.04, 12.5) 05/10/2017 06/10/2018 18/10/2019 11/03/2022 06/10/2018 18/10/2019 11/12/2020 06/01/2023 1028 1027 1018 1036 176 179 168 155 44, 46, 29, 35 32, 38, 30, 36 33, 37, 31, 38 31, 32, 32, 33 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45 Kollam (75.44, 9.05) 07/10/2017 08/10/2018 20/10/2019 13/12/2020 13/03/2022 08/10/2018 20/10/2019 13/12/2020 13/03/2022 08/01/2023 1174 1160 1209 1129 1149 200 123 176 91 164 43, 55,

45, 43, 49, 62, 46, 46, 52, 61, 54, 55, 49, 51, 46, 47, 41, 48, 43, 41, 0.49, 0.50, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0.40, 0 0.50 0.49, 0.50, 0.49, 0.50 0.49, 0.50 0.49, 0.50, 0.49, 0.50 Kanyakumari (77.39,6.96) 16/11/2016 08/10/2017 10/10/2018 22/10/2019 14/12/2020 08/10/2017 10/10/2018 22/10/2019 14/12/2020 14/03/2022 1096 1055 1075 1060 1184 252 181 180 167 287 37, 36, 0.45 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45 37 Table 2: Volumetric samples of zooplankton of various stations. The sampling depth range is standardised for later years for bin range of 0-25m, 25-50m, 50-75m, 75-100m, 100-150m. The abbreviations are in the following manner: Okha (O), Mumbai (M), Jaigarh (J), Goa (G), Udupi (U), Kollam (K), Kanyakumari (KK); The number tags corresponds to particular cruise of a station. Sample number Tag Lat(N) Lon(E) Date Time (IST) Sampling depth range (m) 1-3 G1 4-6 G2 7-10 G2 11-14 J1 15-17 J2 18-21 J2 22-25 M1 26-27 M1 28-29 M2 30-33 M2 34-37 U1 38-40 U1 41-43 U2 44-47 U2 48-51 K1 52-54 K1 55-56 K2 57-60 K2 15.18 15.16 15.16 72.79 72.71 72.71 20 20 20.01 20.01 69.19 69.19 69.2 69.2 9.06 9.06 9.04 9.04 75.42 75.42 75.4 25 Sep 18 25 Sep 18 25 Sep 18 26 Sep 18 27 Sep 18 27 Sep 18 28 Sep 18 28 Sep 18 29 Sep 18 29 Sep 18 5 Oct 18 5 Oct 18 6 Oct 18 6 Oct 18 8 Oct 18 452 2108 2137 2000 2000 2100 2135 2205 2035 2057 2000 2100 2000 2100 421 449 2027 2045 50-25, 100-50, 150-100 50-25, 100-50, 150-100 40-20, 60-40, 80-60, 100-80 40-20, 60-40, 80-60, $100-80\ 50-25$, 100-50, $150-100\ 40-20$, 60-40, 80-60, $100-80\ 40-20$, 60-40, 80-60, $100-80\ 50-25$, $100-50\ 50-25$, $100-50\ 50-25$, $100-50\ 40-20$ 20,60-40,80-60,100-80 40-20,60-40,80-60,100-80 50-25,100-50,150-100 50-25,100-50,150-100 40-20,60-40,80-60,80-60,100-80100-80 40-20, 60-40, 80-60, 100-80 50-25, 100-50, 150-100 50-25, 100-50 40-20, 60-40, 80-60, 100-80 61-64 65-67 68-70 71-74 75-78 79-82 83-86 87-89 90-92 93-96 97-100 101 G2 G3 K2 K3 KK1 KK2 J1 J2 M2 M3 O1 O2 15.16 15.16 9.02 9.04 72.74 72.74 75.42 75.43 19.98 20.01 22.24 22.25 69.22 69.23 67.49 67.46 16 Oct 19 16 Oct 19 20 Oct 19 20 Oct 19 22 Oct 19 22 Oct 19 30 Oct 19 4 Nov 19 29 Nov 19 30 Nov 19 1 Dec 19 1 Dec 19 829 1812 840 1934 742 1925 324 946 1434 958 937 1957 50-25, 75-50, 100-75, 150-100 50-25, 75-50, 100-75 50-25, 75-50, 100-75 50-25, 75-50, 100-75, 150-100 50-25, 75-50, 100-75, 150-100 50-25, 150-10075-50, 100-75, 150-100 50-25, 75-50, 100-75, 150-100 75-50, 100-75, 150-100 50-25, 75-50, 100-75 50-25, 75-50, 100-75, 150-100150-100 50-25, 75-50, 100-75, 150-100 150-100 102-105 105-108 108-110 111-114 115-118 119.00 120-123 124-127 128-131 132-134 135-138 G3 15.68 G4 15.32 J2 17.85 J3 17.91 M4 20.03 O2 22.41 O3 22.41 K3 9.11 K4 9.06 KK1 7.62 KK2 7.62 73.22 28 Nov 20 73.22 29 Nov 20 71.21 30 Nov 20 71.21 1 Dec 20 69.38 2 Dec 20 67.8 4 Dec 20 67.79 4 Dec 20 75.72 12 Dec 20 75.74 13 Dec 20 77.63 14 Dec 20 77.63 14 Dec 20 930 50-25, 75-50, 100-75, 150-100 1558 50-25, 75-50, 100-75, 150-100 1458 75-50, 100-75, $150-100\ 1052\ 50-25$, 75-50, 100-75, $150-100\ 2016\ 50-25$, 75-50, 100-75, $150-100\ 953\ 150-100\ 2011\ 50-25$, 75-50, 100-75, $150-100\ 953\ 150-100\ 2011\ 50-25$, 100-75, 100 $150-100\ 2335\ 50-25$, 75-50, 100-75, $150-100\ 1507\ 50-25$, 75-50, 100-75, $150-100\ 1226\ 50-25$, $75-50\ 2047\ 50-25$, 75-50, 100-75, $150-100\ 1226\ 50-25$, 100-75, $150-100\ 1226\ 50-25$, 100-75, $150-100\ 1226\ 50-25$, 100-75, 1100-75, 150-100 139-142 143-146 147-150 151-154 155-158 159-160 161-164 G4 G5 M5 O3 U3 K4 KK3 15.32 15.68 19.99 22.24 12.5 9.04 6.97 73.21 3 Mar 22 73.21 4 Mar 22 69.23 7 Mar 22 67.5 8 Mar 22 74.04 12 Mar 22 75.42 13 Mar 22 77.4 15 Mar 22 823 50-25, 75-50, 100-75, 150-100 1030 50-25, 75-50, 100-75, 150-100 957 50-25, 75-50, 100-75, 150-100 806 50-25, 75-50, 100-75, 150-100 100-75, 100100-75, 150-100 1156 50-25, 75-50, 100-75, 150-100 1027 50-25, 75-50, 100-75 1220 50-25, 75-50, 100-75, 150-100 38Figure 1: Map showing region of interest in eastern Arabian Sea. The slope moorings are deployed at ~1000 m depth as shown in the bathymetry contour. Note the increase in shelf width as we go poleward along the coast. The mooring sites off Okha and Mumbai are in Northern EAS; Jaigarh and Goa in Central EAS while Kollam and Kanyakumari are at Southern EAS. Udupi is situated at the transition zone of Central and Southern EAS. 39 Figure 2: The linear fit line of Biomass (log10 scale) and backscattering strength (in dB). The linear fit line is within the error range of previous result of [Aparna et al., 2022] (contained 67 data points) onto which latest zooplankton volumetric sample data (159 data points) is appended. The regression equation is $y = (0.02 \pm 0.0025) x + (4.0144 \pm 0.0$ 0.2198) and correlation value of 0.54. The dashed green lines denote error range of plausible slope and intercept. From the linear equation, the upper and lower bound of error limit leads to an error bar of \sim 14 mg m $^-$ 3. Standard deviation σ of log10(Biomass) is \pm 0.49, which results in the backscatter range of 48.58 dB encompassing the entire backscatter range. It signifies the robustness of zooplankton biomass dependency on ADCP measured backscattering strength. 40 Figure 3: The Daily and monthly averaged biomass for EAS moorings, north (top) to south (bottom). The black contours are marking of 175 mg m-3 biomass for Okha and Kanyakumari; 215 mg m-3 for Mumbai, Goa and Kollam. The biomass contours are distinct and different based on the physico-chemical parameters and the one that best explains seasonality at respective location. The top 10% of data is discarded due to echo noise. The dashed line

at 22 m marks the top-depth of first bin i.e, 24 m. During 2020 off Kollam, a lack of suitable biomass contour showing seasonality is due to strong interannual variations. 41 Figure 4: The biomass at depth of 40 m (grey, black) and 104 m (cyan, blue) and ZSS (pink, red), the lighter (darker) shades shows daily (30 day rolling averaged) sample, respectively. The mean biomass at 40 and 104 and mean ZSS is shown in top right corresponding to black, blue and red. Notice the spikes (bursts) seen in the daily (rolling mean) data of biomass at 40 m that lasts few days (few days to weeks), e.g., during many isolated days of June of 2020 (during entire June-July of 2020). These spikes and bursts are seen at all locations and both at 40 and 104 m, albeit with a varied magnitude. 42 Figure 5: Monthly climatology of zooplankton biomass is shown in left panels for 7 locations, (top to bottom is southward). The D175 and D215 are shown in solid lines; dashed line represents the depth of 23 C isotherm; oxygen contours are shown in dotted lines and labeled for each mooring. The right set of panel plots is showing ZSS (24-140 biomass integral) and chl-a climatology for corresponding locations. 43 Figure 6: Wavelet power spectra (Morlet) of the 40 m (left panel) and 104 m (right panel) zooplankton biomass plotted against time as abscissa and period in days as ordinate. The wavelet power is in log2 scale, the 95% significance is marked in black contours; the cross-shaded region falls under cone of influence. The horizontal dashed white (solid black) lines shows annual and semi-annual periods (intraseasonal band). Vertical white lines separates years. 44 Figure 7: Wavelet power spectra (Morlet) of zooplankton standing stock plotted against time as abscissa and period in days as ordinate. The wavelet power is in log2 scale, the 95% significance is marked in black contours; The vertical white lines separates years. The right side panel shows the ZSS (24–120 m. biomass integral) time series of 30 day rolling mean data (black) overlaid upon daily data (Grey). The 30 day rolling mean data of chl-a (solid blue) is plotted over its daily data (cyan). 45 Figure 8: The biomass variation occurring in annual band (300 to 400 days). Owing to the presence of seasonal reversal of current, there is a variation driven by associated upwelling (downwelling) processes in summer (winter) monsoon. The horizontal black and blue lines is for 40 and 104 m, and the standard deviation of biomass at those depths are shown in respective colors at top right corner of each panel; vertical black lines separate the years. The dashed line at 22 m marks the top-depth of first bin i.e, 24 m and solid magenta curves denotes D215 (D175 off Okha and Kanyakumari) 46 Figure 9: The biomass variation occurring in 100 to 250 days period (between the seasons and within a year record or intra-annual band) is obtained using a band pass filter. The horizontal black and blue lines is for 40 and 104 m, vertical black lines separate the years. The dashed line at 22 m marks the top-depth of first bin i.e, 24 m and solid magenta curves denotes D215 (D175 off Okha and Kanyakumari). 47 Figure 10: Biomass variation found in the Intraseasonal band i.e., 30 to 90 days period is obtained using a lanczos band pass filter. The horizontal black and blue lines is for 40 and 104 m; vertical black lines separate the years and solid magenta curves denotes D215 (D175 off Okha and Kanyakumari). The dashed line at 22 m marks the top-depth of first bin i.e, 24 m. Intraseasonal variability is seen throughout the record, is coherent along the slope and its magnitude is stronger during August to November. 48 49 Figure 11: Comparison between mean-removed daily biomass time series at 40 m and the distinct components of variability off Mumbai, Goa and Kollam for 2019. The biomass units are mg m-3 and its mean for respective location is shown in top right box. Off Mumbai and Kollam, an increase in biomass is noticed from May onward and lasting till late monsoon with weeks of low biomass during August due to low contribution of intraseasonal component of variability. The pink (green) highlighted region shows coherence in 30-90 days intraseasonal band (daily data) of 40 m biomass. The standalone spikes are representative of patchiness i.e., dense clusters of zooplankton and may not necessarily be observed elsewhere. The annual variability is very weak and lies close to zero almost always.

sources:

415 words / 5% - Crossref

S.G. Aparna, D.V. Desai, D. Shankar, A.C. Anil, S. Dora, R. Khedekar. "Seasonal cycle of zooplankton standing stock inferred from ADCP backscatter measurements in the eastern Arabian Sea", Progress in Oceanography, 2022

414 words / 5% - Crossref

S.G. Aparna, D.V. Desai, D. Shankar, A.C. Anil, Shrikant Dora, R. Khedekar. "Seasonal cycle of zooplankton standing stock inferred from ADCP backscatter measurements in the eastern Arabian Sea", Progress in Oceanography, 2022

71 words / 1% - Internet from 11-Aug-2022 12:00AM link.springer.com

71 words / 1% - Internet from 05-Oct-2022 12:00AM link.springer.com

45 words / 1% - from 03-Sep-2023 12:00AM link.springer.com

52 words / 1% - Internet from 25-Dec-2022 12:00AM irgu.unigoa.ac.in

46 words / 1% - Internet from 27-Oct-2022 12:00AM irgu.unigoa.ac.in

51 words / 1% - Internet from 12-Jan-2023 12:00AM drs.nio.org

107 words / 1% - Crossref

Ke Huang, Huijie Xue, Fei Chai, Dongxiao Wang, Peng Xiu, Qiang Xie, Ying Wu, Xiaomei Liao, Wentao Ma, Jinglong Yao, Wei Zhou. "Inter-annual variability of biogeography-based phytoplankton seasonality in the Arabian Sea during 1998–2017", Deep Sea Research Part II: Topical Studies in Oceanography, 2022

58 words / 1% - from 19-Dec-2023 12:00AM bg.copernicus.org

58 words / 1% - Internet from 26-Dec-2022 12:00AM bg.copernicus.org

51 words / 1% - from 28-Jun-2024 12:00AM bg.copernicus.org

51 words / 1% - from 22-Jun-2023 12:00AM bg.copernicus.org

51 words / 1% - Internet from 26-Dec-2022 12:00AM bg.copernicus.org

51 words / 1% - Internet from 22-Jan-2022 12:00AM bg_copernicus.org

44 words / 1% - Internet from 09-May-2021 12:00AM bg.copernicus.org

90 words / 1% - Crossref

D. Shankar, R. Remya, A.C. Anil, V. Vijith. "Role of physical processes in determining the nature of fisheries in the eastern Arabian Sea", Progress in Oceanography, 2019

82 words / 1% - Crossref

P. Amol, Suchandan Bemal, D. Shankar, V. Jain, V. Thushara, V. Vijith, P.N. Vinayachandran. "Modulation of chlorophyll concentration by downwelling Rossby waves during the winter monsoon in the southeastern Arabian Sea", Progress in Oceanography, 2020

44 words / 1% - Internet

Calise, Lucio. "Multifrequency acoustic target strength of Northern krill", The University of Bergen

75 words / 1% - Crossref

K.J. Albin, R. Jyothibabu, K.T. Alok, S. Santhikrishnan et al. "Distinctive phytoplankton size responses to the nutrient enrichment of coastal upwelling and winter convection in the eastern Arabian Sea", Progress in Oceanography, 2022

75 words / 1% - Crossref

K.J. Albin, R. Jyothibabu, K.T. Alok, S. Santhikrishnan et al. "Distinctive Phytoplankton Size Responses to the Nutrient Enrichment of Coastal Upwelling and Winter Convection in the Eastern Arabian Sea", Progress in Oceanography, 2022

75 words / 1% - Crossref

D. Shankar, R. Remya, A.C. Anil, V. Vijith. "Role of physical processes in determining the nature of fisheries in the eastern Arabian Sea", Progress in Oceanography, 2018

59 words / 1% - Internet from 29-Nov-2021 12:00AM os.copernicus.org

74 words / 1% - Crossref

S. Parthasarathi, R. Jyothibabu, N. Arunpandi, V. Vidhya, C.P. Rashid, R.T. Jebarani, S. Santhikrishnan. "Copepod community in the coastal waters off Kochi (India) signify the enhanced estuarine flushing during the Southwest Monsoon", Continental Shelf Research, 2024

71 words / 1% - Crossref

Shiva Shankar Manche, Rabindra K. Nayak, S Rajesh, Rajashree V. Bothale, Prakash Chauhan. "Characteristics of mesoscale eddies and their evolution in the north Indian ocean", Progress in Oceanography, 2024

71 words / 1% - Crossref

Shiva Shankar Manche, Rabindra K. Nayak, Rajesh Sikhakolli, Rajashree V. Bothale, Prakash Chauhan.
"Characteristics of mesoscale eddies and their evolution in the north Indian ocean", Progress in Oceanography, 2024

44 words / 1% - from 26-Dec-2024 12:00AM www.frontiersin.org

44 words / 1% - from 24-Dec-2024 12:00AM www.frontiersin.org

67 words / 1% - Crossref

<u>Vineet Jain, D. Shankar, P.N. Vinayachandran, A. Mukherjee, P. Amol. "Role of ocean dynamics in the evolution of mixed-layer temperature in the Bay of Bengal during the summer monsoon", Ocean Modelling, 2021</u>

67 words / 1% - Crossref

"Systems Biogeochemistry of Major Marine Biomes", Wiley, 2022

66 words / 1% - Crossref

Mintu Chowdhury, Haimanti Biswas, Aditi Mitra, Saumya Silori et al. "Southwest monsoon-driven changes in the phytoplankton community structure in the central Arabian Sea (2017–2018): After two decades of JGOFS", Progress in Oceanography, 2021

64 words / 1% - Crossref

C.K. Sherin, G.V.M. Gupta, V. Sudheesh, Ch.V. Ramu, Bikram Reddy, N.V. Harikrishnachari, Anil Kumar Vijayan. "Nutriclines and nutrient stoichiometry in the eastern Arabian Sea: Intra-annual variations and controlling mechanisms", Progress in Oceanography, 2023

61 words / 1% - Crossref

<u>Yaima Domínguez-Samalea, Néstor Rey-Villiers, Alberto Sánchez. "Deoxygenation of the Eastern Tropical North Pacific over the last 1200 years", Quaternary International, 2024</u>

61 words / 1% - Crossref

Anya Chaudhuri, P Amol, D Shankar, S Mukhopadhyay, S G Aparna, V Fernando, A Kankonkar. "Observed variability of the West India Coastal Current on the continental shelf from 2010–2017", Journal of Earth System Science, 2021

60 words / 1% - Crossref

Mohanan Geethalekshmi Sreeush, Vinu Valsala, Sreenivas Pentakota, Koneru Venkata Siva Rama Prasad, Raghu Murtugudde. "Optimization of Biological Production for Indian Ocean upwelling zones: Part & amp;ndash; I: Improving Biological Parameterization via a variable Compensation Depth", Biogeosciences Discussions, 2017

50 words / 1% - from 25-Apr-2023 12:00AM coek.info

59 words / 1% - Crossref

<u>Helen E. Phillips, Amit Tandon, Ryo Furue, Raleigh Hood et al. "Progress in understanding of Indian Ocean circulation, variability, air—sea exchange, and impacts on biogeochemistry", Ocean Science, 2021</u>

44 words / 1% - Internet from 29-Jan-2023 12:00AM www.researchgate.net

56 words / 1% - Crossref

Yanliang Liu, Jingsong Guo, Yuhuan Xue, Chalermrat Sangmanee, Huiwu Wang, Chang Zhao, Somkiat Khokiattiwong, Weidong Yu. "Seasonal variation in diel vertical migration of zooplankton and micronekton in the Andaman Sea observed by a moored ADCP", Deep Sea Research Part I: Oceanographic Research Papers, 2022

56 words / 1% - Crossref

Yanliang Liu, Jingsong Guo, Yuhuan Xue, Chalermrat Sangmanee, Huiwu Wang, Chang Zhao, Somkiat Khokiattiwong, Weidong Yu. "Seasonal variation in diel vertical migration of zooplankton and micronekton in the Andaman Sea observed by a moored ADCP", Deep Sea Research Part I: Oceanographic Research Papers, 2021

55 words / 1% - Crossref

"Dynamics of Planktonic Primary Productivity in the Indian Ocean", Springer Science and Business Media LLC, 2023

54 words / 1% - Crossref

<u>Lidita Khandeparker, Dipesh Kale, Niyati Hede, Arga Chandrashekar Anil. "Application of functional metagenomics in the evaluation of microbial community dynamics in the Arabian Sea: Implications of environmental settings", Journal of Environmental Management, 2025</u>

52 words / 1% - ProQuest

<u>Liu, Jiarui. "The Biogeochemistry of Methane Cycling and Its Clumped Isotope Effects.", University of California, Los Angeles, 2024</u>

51 words / 1% - Crossref

Yunzhi Feng, Dong Sun, Qianwen Shao, Chen Fang, Chunsheng Wang. "COI metabarcoding better reveals the seasonal variations in the zooplankton community in the western Pacific Warm Pool", Ecological Indicators, 2023

51 words / 1% - Crossref

V. Vijith, A.C. Anil, D. Shankar, Swapna P. Antony. "Assessing the geographical distribution of carnivorous and planktivorous fishes in the western Bay of Bengal", Ecological Informatics, 2023

51 words / 1% - Crossref

V. Vijith, A.C. Anil, D. Shankar, Swapna P. Antony. "Assessing the geographical distribution of carnivorous and planktivorous fishes in the western Bay of Bengal", Ecological Informatics, 2022

51 words / 1% - Crossref

V. Thushara, P. N. Vinayachandran. "Formation of summer phytoplankton bloom in the northwestern Bay of Bengal in a coupled physical-ecosystem model", Journal of Geophysical Research: Oceans, 2016

51 words / 1% - Crossref

S. Santhikrishnan, R. Jyothibabu, R. Sajeev, C. B Vishnu, K.J. Albin, K.T. Alok, R.S. Pandiya Rajan. "Impact of river discharge and suspended sediments on the nearshore benthic environment along the Indian southwest coast", Science of The Total Environment, 2024

51 words / 1% - Crossref

Saumya Silori, Haimanti Biswas, Mintu Chowdhury, Diksha Sharma, Mandeng-Yogo Magloire, Damien Cardinal. "Interannual variability in particulate organic matter distribution and its carbon stable isotope signatures from the western Indian shelf waters", Science of The Total Environment, 2022

50 words / 1% - Crossref

S. Santhikrishnan, R. Jyothibabu, R. Sajeev, C. Vishnu, K.J. Albin, K.T. Alok, R.S. Pandiyarajan. "Impact of river discharge and suspended sediments on the nearshore benthic environment along the Indian southwest coast", Science of The Total Environment, 2024

50 words / 1% - Crossref

Laura Ursella, Sara Pensieri, Enric Pallàs-Sanz, Sharon Z. Herzka et al. "Diel, lunar and seasonal vertical migration in the deep western Gulf of Mexico evidenced from a long-term data series of acoustic backscatter", Progress in Oceanography, 2021

50 words / 1% - Crossref

Elin A. Thomas, Todd Bond, Jess L. Kolbusz, Yakufu Niyazi, Denise J.B. Swanborn, Alan J. Jamieson. "Deepsea ecosystems of the Indian Ocean >1000m", Science of The Total Environment, 2024

48 words / 1% - Crossref

L. Jagadeesan, R. Jyothibabu, N. Arunpandi, C. Karnan, K.K. Balachandran. "Dominance of coastal upwelling over Mud Bank in shaping the mesozooplankton along the southwest coast of India during the Southwest Monsoon", Progress in Oceanography, 2017

47 words / 1% - Crossref

Zouhair Lachkar, Marina Lévy, Derara Hailegeorgis, Parvathi Vallivattathillam. "Differences in recent and future trends in the Arabian Sea oxygen minimum zone: processes and uncertainties", Frontiers in Marine Science, 2023

46 words / 1% - Crossref

Sandra R. Maier, Sandra Brooke, Laurence H. De Clippele, Evert de Froe et al. "On the paradox of thriving coldwater coral reefs in the food-limited deep sea", Biological Reviews, 2023

45 words / 1% - Crossref

P Amol, D Shankar, V Fernando, A Mukherjee et al. "Observed intraseasonal and seasonal variability of the West India Coastal Current on the continental slope", Journal of Earth System Science, 2014

44 words / 1% - Crossref

Myounghee Kang, Fredrich Simanungkalit, Dongha Kang, Jihoon Jung et al. "Latitudinal influences on sound scattering layer characteristics in the Southwestern Indian Ocean: insights into oceanographic environmental interactions", Frontiers in Marine Science, 2024

44 words / 1% - Internet from 22-Nov-2019 12:00AM www.biogeosciences.net

44 words / 1% - Internet from 29-Sep-2022 12:00AM bora.uib.no

23 words / < 1% match - Internet from 26-Aug-2022 12:00AM link.springer.com

20 words / < 1% match - from 25-Dec-2023 12:00AM link.springer.com

10 words / < 1% match - from 26-Jul-2023 12:00AM link.springer.com

10 words / < 1% match - Internet from 21-Sep-2022 12:00AM link.springer.com

10 words / < 1% match - Internet from 19-Dec-2019 12:00AM link.springer.com

43 words / < 1% match - Internet from 02-Dec-2021 12:00AM irgu.unigoa.ac.in

33 words / < 1% match - Internet from 25-Oct-2022 12:00AM irgu.unigoa.ac.in

24 words / < 1% match - Internet from 25-Oct-2022 12:00AM irgu.unigoa.ac.in

20 words / < 1% match - Internet from 19-Nov-2022 12:00AM irgu.unigoa.ac.in

11 words / < 1% match - Internet from 26-Oct-2022 12:00AM irgu.unigoa.ac.in

1 words / < 1% match - Internet from 09-Nov-2021 12:00AM gu.unigoa.ac.in
1 words / < 1% match - Internet from 03-Nov-2021 12:00AM gu.unigoa.ac.in
0 words / < 1% match - Internet from 19-Nov-2022 12:00AM gu.unigoa.ac.in
2 words / < 1% match - Internet from 07-Mar-2023 12:00AM rs.nio.org
2 words / < 1% match - from 18-Mar-2023 12:00AM rs.nio.org
2 words / < 1% match - from 18-Mar-2023 12:00AM rs.nio.org
2 words / < 1% match - Internet from 05-Jan-2023 12:00AM rs.nio.org
2 words / < 1% match - Internet from 17-Feb-2022 12:00AM rs.nio.org
4 words / < 1% match - Internet from 15-Oct-2022 12:00AM rs.nio.org
1 words / < 1% match - Internet from 05-Dec-2022 12:00AM rs.nio.org
1 words / < 1% match - Internet from 04-Nov-2022 12:00AM rs.nio.org
1 words / < 1% match - Internet from 17-Feb-2022 12:00AM rs.nio.org
0 words / < 1% match - Internet from 15-Oct-2022 12:00AM rs.nio.org
0 words / < 1% match - Internet from 14-Oct-2022 12:00AM rs.nio.org
0 words / < 1% match - Internet from 14-Oct-2022 12:00AM rs.nio.org
0 words / < 1% match - Internet from 09-Feb-2022 12:00AM rs.nio.org

10 words / < 1% match - Internet from 26-Sep-2021 12:00AM drs.nio.org

30 words / < 1% match - Internet

<u>Cisewski, Boris, Strass, Volker. "Acoustic insights into the zooplankton dynamics of the eastern Weddell Sea", 2016</u>

11 words / < 1% match - Internet

<u>Helenius, Laura. "The role of zooplankton in littoral communities: Diversity and food web interactions in the Baltic Sea", University of Helsinki, 2015</u>

11 words / < 1% match - from 28-Nov-2024 12:00AM os.copernicus.org

11 words / < 1% match - from 13-Nov-2023 12:00AM os.copernicus.org

10 words / < 1% match - from 13-Nov-2023 12:00AM os.copernicus.org

10 words / < 1% match - Internet from 19-Dec-2022 12:00AM os.copernicus.org

10 words / < 1% match - Internet from 20-Oct-2022 12:00AM os.copernicus.org

32 words / < 1% match - from 08-Jul-2024 12:00AM www.frontiersin.org

11 words / < 1% match - from 22-Dec-2024 12:00AM www.frontiersin.org

10 words / < 1% match - from 08-Jul-2024 12:00AM www.frontiersin.org

32 words / < 1% match - Internet from 18-Nov-2022 12:00AM dyuthi.cusat.ac.in

32 words / < 1% match - Internet from 18-Nov-2022 12:00AM dyuthi.cusat.ac.in

24 words / < 1% match - Internet from 15-Nov-2022 12:00AM dyuthi.cusat.ac.in

10 words / < 1% match - Internet from 05-Jul-2022 12:00AM coek.info

11 words / < 1% match - Internet from 09-Feb-2023 12:00AM www.researchgate.net

10 words / < 1% match - Internet from 24-Jul-2022 12:00AM www.researchgate.net
26 words / < 1% match - from 11-Jun-2024 12:00AM journals.ametsoc.org
26 words / < 1% match - Internet from 17-Jan-2022 12:00AM journals.ametsoc.org
21 words / < 1% match - Internet from 26-Sep-2021 12:00AM journals.ametsoc.org
14 words / < 1% match - Internet from 23-Dec-2021 12:00AM journals.ametsoc.org
31 words / < 1% match - from 17-Apr-2023 12:00AM www.medrxiv.org
17 words / < 1% match - from 09-Aug-2023 12:00AM www.medrxiv.org
17 words / < 1% match - Internet from 09-Dec-2022 12:00AM www.medrxiv.org
17 words / < 1% match - Internet from 19-Apr-2022 12:00AM www.medrxiv.org
27 words / < 1% match - from 12-Aug-2024 12:00AM <u>WWW.MDPI.COM</u>
11 words / < 1% match - from 23-Feb-2024 12:00AM <u>WWW.MDPI.COM</u>
10 words / < 1% match - from 22-Feb-2024 12:00AM <u>WWW.MDPI.COM</u>
33 words / < 1% match - Internet from 09-Dec-2022 12:00AM oceanrep.geomar.de
33 words / < 1% match - Internet from 29-Dec-2017 12:00AM oceanrep.geomar.de
13 words / < 1% match - Internet from 16-Dec-2022 12:00AM oceanrep.geomar.de
31 words / < 1% match - from 24-Jun-2024 12:00AM archimer.ifremer.fr

27 words / < 1% match - Internet from 16-Feb-2021 12:00AM archimer.ifremer.fr

12 words / < 1% match - Internet from 28-Nov-2022 12:00AM archimer.ifremer.fr

10 words / < 1% match - Internet from 23-Sep-2022 12:00AM archimer.ifremer.fr

43 words / < 1% match - Crossref

P. Hari Praved, Otto M.P. Oliveira, K.V. Neethu, Nazar M. Suhaana, S. Bijoy Nandan, P.R. Jayachandran. "Unusual blooming of invasive ctenophore Beroe ovata (Bruguière, 1789) and geographical range expansion based on morphology and molecular analysis", Regional Studies in Marine Science, 2023

43 words / < 1% match - ProQuest

<u>Negede, Betelhem Mulugeta. "Technology Adoption and Social Protection: Evidence From Rural and Urban Ethiopia.", Wageningen University and Research, 2024</u>

43 words / < 1% match - Crossref

Gabriela Guerra Araújo Abrantes de Figueiredo, Simone Maria de Albuquerque Lira, Arnaud Bertrand, Sigrid Neumann-Leitão et al. "Zooplankton abundance and biovolume size-spectra in the western tropical Atlantic from the shelf towards complex oceanic current systems", Marine Environmental Research, 2024

43 words / < 1% match - Crossref

C.R. Asha Devi, K.G. Vimalkumar, K.B. Padmakumar, C.T. Lathika, T.P. Maneesh, M. Maneesh. "Understanding the microzooplankton mediated food web of the winter-spring Noctiluca bloom in the Northeastern Arabian Sea Ecosystem", Regional Studies in Marine Science, 2021

43 words / < 1% match - Internet from 19-Nov-2022 12:00AM mspace.lib.umanitoba.ca

43 words / < 1% match - Internet from 26-Sep-2021 12:00AM mspace.lib.umanitoba.ca

32 words / < 1% match - from 11-Aug-2024 12:00AM c.coek.info

31 words / < 1% match - from 30-Apr-2024 12:00AM c.coek.info

30 words / < 1% match - from 30-Apr-2024 12:00AM c.coek.info

11 words / < 1% match - from 17-May-2024 12:00AM c.coek.info

42 words / < 1% match - Crossref

Grant C. Pitcher, Arturo Aguirre-Velarde, Denise Breitburg, Jorge Cardich et al. "System controls of coastal and open ocean oxygen depletion", Progress in Oceanography, 2021

42 words / < 1% match - Crossref

C.R. Asha Devi, K.G. Vimalkumar, K.B. Padmakumar, C.T. Lathika, T.P. Maneesh, M. Sudhakar. "Understanding the microzooplankton mediated food web of the winter—spring Noctiluca bloom in the Northeastern Arabian Sea Ecosystem", Regional Studies in Marine Science, 2021

42 words / < 1% match - Crossref

A.C. Anil, D.V. Desai, L. Khandeparker, V. Krishnamurthy, K. Mapari, S. Mitbavkar, J.S. Patil, V.V.S.S. Sarma, S.S. Sawant. "Short term response of plankton community to nutrient enrichment in central eastern Arabian Sea: Elucidation through mesocosm experiments", Journal of Environmental Management, 2021

42 words / < 1% match - Internet from 27-Sep-2022 12:00AM pure.mpg.de

42 words / < 1% match - from 07-Feb-2024 12:00AM imr.brage.unit.no

22 words / < 1% match - from 10-Dec-2023 12:00AM ddescholar.acemap.info

20 words / < 1% match - from 07-Mar-2024 12:00AM ddescholar.acemap.info

20 words / < 1% match - from 07-Mar-2024 12:00AM ddescholar.acemap.info

20 words / < 1% match - from 07-Mar-2024 12:00AM ddescholar.acemap.info

20 words / < 1% match - from 06-Mar-2024 12:00AM ddescholar.acemap.info

20 words / < 1% match - from 03-Feb-2024 12:00AM ddescholar.acemap.info

20 words / < 1% match - from 18-Oct-2023 12:00AM ddescholar.acemap.info

20 words / < 1% match - from 02-Dec-2023 12:00AM ddescholar.acemap.info

11 words / < 1% match - from 25-Mar-2024 12:00AM ddescholar.acemap.info

11 words / < 1% match - from 17-Jan-2024 12:00AM ddescholar.acemap.info

11 words / < 1% match - from 04-Nov-2023 12:00AM ddescholar.acemap.info

42 words / < 1% match - Internet from 15-Jan-2023 12:00AM c-cascades.ulb.ac.be

32 words / < 1% match - Internet from 16-Dec-2018 12:00AM agupubs.onlinelibrary.wiley.com

10 words / < 1% match - Internet from 16-Dec-2019 12:00AM agupubs.onlinelibrary.wiley.com

41 words / < 1% match - Crossref

Rebecca Piontek, Cornelia Jaspers, Maarten Boersma, Alexander Arkhipkin. "Temporal and spatial variability in the mesozooplankton community off the Falkland Islands (Southwest Atlantic)", Regional Studies in Marine Science, 2023

41 words / < 1% match - Crossref

Sneha Jha, Surya Datta Sudhakar, Swarnali Majumder, Sudheer Joseph, T.M. Balakrishnan Nair. "A multidecadal study of the Malabar upwelling system influencing Indian Mackerel landings along the coasts of Karnataka and Kerala, south-east Arabian Sea", Journal of Marine Systems, 2024

41 words / < 1% match - Publications

Andrés Hugo Arias, Sandra Elizabeth Botté. "Coastal and Deep Ocean Pollution", CRC Press, 2020

41 words / < 1% match - from 03-Jan-2025 12:00AM www.prl.res.in

41 words / < 1% match - Internet from 08-Nov-2022 12:00AM researchrepository.murdoch.edu.au

41 words / < 1% match - Internet

Hood, R.R., Beckley, L.E., Wiggert, J.D.. "Biogeochemical and ecological impacts of boundary currents in the Indian Ocean", 'Elsevier BV', 2017

40 words / < 1% match - Crossref

Nanyu Zhao, Hong Yan, Yuanjian Yang, Chengcheng Liu et al. "A 23.7-year long daily growth rate record of a modern giant clam shell from South China Sea and its potential in high-resolution paleoclimate reconstruction", Palaeogeography, Palaeoclimatology, Palaeoecology, 2021

40 words / < 1% match - Crossref

<u>James David Broome, David Cook, Brynhildur Davíðsdóttir. "Heavenly lights: An exploratory review of auroral ecosystem services and disservices", Ecosystem Services, 2024</u>

40 words / < 1% match - Crossref

Dongmei Lian, Xin Liu, Edward A. Laws, Tongtong Liu, Jingxiao Wang, Shaoling Shang, Zhongping Lee. "A "trapezoidal" relationship between solar radiation and chlorophyll concentrations at the center of the South Pacific Gyre", Progress in Oceanography, 2024

20 words / < 1% match - Internet from 31-Aug-2021 12:00AM www.biorxiv.org

10 words / < 1% match - from 22-Jul-2023 12:00AM www.biorxiv.org

10 words / < 1% match - from 20-Jul-2023 12:00AM www.biorxiv.org

10 words / < 1% match - from 13-May-2023 12:00AM www.biorxiv.org

10 words / < 1% match - from 06-May-2023 12:00AM www.biorxiv.org

30 words / < 1% match - Internet from 13-Jan-2023 12:00AM d197for5662m48.cloudfront.net

30 words / < 1% match - Internet from 13-Jan-2023 12:00AM d197for5662m48.cloudfront.net

10 words / < 1% match - Internet from 13-Jan-2023 12:00AM d197for5662m48.cloudfront.net

38 words / < 1% match - Crossref

P. Ezhilarasan, Vishnu Vardhan Kanuri, R. Sivasankar, P. Sathish Kumar, M.V. Ramana Murthy, V. Ranga Rao, K. Ramu. "Surface mesozooplankton assemblages in a tropical coastal upwelling ecosystem: Southeastern Arabian Sea", Continental Shelf Research, 2018

20 words / < 1% match - from 09-May-2024 12:00AM egusphere.copernicus.org

20 words / < 1% match - from 20-Nov-2023 12:00AM egusphere.copernicus.org

18 words / < 1% match - from 09-May-2024 12:00AM egusphere.copernicus.org

37 words / < 1% match - Internet from 22-Jan-2022 12:00AM ndl.ethernet.edu.et

36 words / < 1% match - Internet

Krishnakumar, P. K, Bhat, G. S. "Seasonal and interannual variations of oceanographic conditions off Mangalore coast (Karnataka, India) in the Malabar upwelling system during 1995–2004 and their influences on the pelagic fishery", Blackwell Publishing

10 words / < 1% match - Internet from 03-Nov-2022 12:00AM eprints.cmfri.org.in

36 words / < 1% match - Crossref

P.J. Vidya, Siby Kurian. "Impact of 2015–2016 ENSO on the winter bloom and associated phytoplankton community shift in the northeastern Arabian Sea", Journal of Marine Systems, 2018

36 words / < 1% match - Crossref

P. K. KRISHNAKUMAR. "Seasonal and interannual variations of oceanographic conditions off Mangalore coast (Karnataka, India) in the Malabar upwelling system during 1995-2004 and their influences on the pelagic fishery: Oceanographic conditions off Mangalore coast (India) and their influences on pelagic fishery.", Fisheries Oceanography, 12/17/2007

36 words / < 1% match - Crossref

P. K. KRISHNAKUMAR, G. S. BHAT. "Seasonal and interannual variations of oceanographic conditions off Mangalore coast (Karnataka, India) in the Malabar upwelling system during 1995–2004 and their influences on the pelagic fishery,", Fisheries Oceanography, 2007

36 words / < 1% match - Crossref

P. K. KRISHNAKUMAR, G. S. BHAT. "Seasonal and interannual variations of oceanographic conditions off Mangalore coast (Karnataka, India) in the Malabar upwelling system during 1995-2004 and their influences on the pelagic fishery", Fisheries Oceanography, 2007

36 words / < 1% match - Crossref

Mayur Gachake, Anoop A. Nayak, P. Amol, P.N. Vinayachandran. "Microstructures along the Indian west-coast continental shelf: layering and vertical mixing", Continental Shelf Research, 2025

36 words / < 1% match - Crossref

Mayur Gachake, Anoop A. Nayak, P. Amol, P.N. Vinayachandran. "Microstructures along the Indian west-coast continental shelf: layering and vertical mixing", Continental Shelf Research, 2024

36 words / < 1% match - Crossref

D. Shankar, R. Remya, P. N. Vinayachandran, Abhisek Chatterjee, Ambica Behera. "Inhibition of mixed-layer deepening during winter in the northeastern Arabian Sea by the West India Coastal Current", Climate Dynamics, 2015

35 words / < 1% match - Crossref

Teesha Mathew, Satya Prakash, Lakshmi Shenoy, Abhisek Chatterjee, T.V.S.Udaya Bhaskar, Bozena Wojtasiewicz. "Observed variability of monsoon blooms in the north-central Arabian Sea and its implication on oxygen concentration: A Bio-Argo study", Deep Sea Research Part II: Topical Studies in Oceanography, 2021

35 words / < 1% match - Crossref

<u>Teesha Mathew, Satya Prakash, Lakshmi Shenoy, Abhisek Chatterjee, T.V.S. Udaya Bhaskar, Bozena Wojtasiewicz. "Observed variability of monsoon blooms in the north-central Arabian Sea and its implication on oxygen concentration: A bio-argo study", Deep Sea Research Part II: Topical Studies in Oceanography, 2021</u>

35 words / < 1% match - Crossref

Mintu Chowdhury, Haimanti Biswas, Aditi Mitra, Saumya Silori et al. "Southwest monsoon-driven changes in the phytoplankton community structure in the central Arabian Sea (2017-2018): After two decades of JGOFS", Progress in Oceanography, 2021

33 words / < 1% match - from 27-Jul-2024 12:00AM arxiv.org

33 words / < 1% match - from 27-Jul-2024 12:00AM arxiv.org

31 words / < 1% match - from 24-Jul-2024 12:00AM arxiv.org 31 words / < 1% match - from 24-Jul-2024 12:00AM arxiv.org

30 words / < 1% match - from 27-Jul-2024 12:00AM arxiv.org

34 words / < 1% match - Crossref

M. Alam, M. Tripti, G.P. Gurumurthy, Y. Sohrin, M. Tsujisaka, A.D. Singh, S. Takano, K. Verma. "Palaeoredox reconstruction in the eastern Arabian Sea since the late Miocene: Insights from trace element and stable isotopes of molybdenum (δ98/95Mo) and tungsten (δ186/184W) at IODP Site U1457 of Laxmi Basin", Palaeogeography, Palaeoclimatology, Palaeoecology, 2021

33 words / < 1% match - Crossref

Sanitha K. Sivadas, Dharmendra Pratap Singh, Rajeev Saraswat. "Functional and taxonomic (α and β) diversity patterns of macrobenthic communities along a depth gradient (19–2639m): A case study from the southern Indian continental margin", Deep Sea Research Part I: Oceanographic Research Papers, 2020

33 words / < 1% match - Internet from 11-Dec-2022 12:00AM web.whoi.edu

33 words / < 1% match - from 08-Dec-2024 12:00AM scimedjournal.org

32 words / < 1% match - from 08-Dec-2024 12:00AM scimedjournal.org

32 words / < 1% match - from 08-Dec-2024 12:00AM scimedjournal.org

32 words / < 1% match - from 08-Dec-2024 12:00AM scimedjournal.org

32 words / < 1% match - from 08-Dec-2024 12:00AM scimedjournal.org

33 words / < 1% match - from 18-Apr-2023 12:00AM odis.incois.gov.in

33 words / < 1% match - Internet from 17-Oct-2022 12:00AM deepai.org

33 words / < 1% match - Internet from 07-Feb-2022 12:00AM aquadocs.org

32 words / < 1% match - Crossref

Yawouvi Dodji Soviadan, Fabio Benedetti, Manoela C. Brandão, Sakina-Dorothée Ayata et al. "Patterns of mesozooplankton community composition and vertical fluxes in the global ocean", Progress in Oceanography, 2022

32 words / < 1% match - Crossref

<u>Yawouvi Dodji Soviadan, Fabio Benedetti, Manoela C. Brandão, Sakina-Dorothée Ayata et al. "Patterns of mesozooplankton community composition and vertical fluxes in the global ocean", Progress in Oceanography, 2021</u>

32 words / < 1% match - Crossref

Raleigh R. Hood, Lynnath E. Beckley, Jerry D. Wiggert. "Biogeochemical and ecological impacts of boundary currents in the Indian Ocean", Progress in Oceanography, 2017

32 words / < 1% match - Crossref

Roxy, Mathew Koll, Aditi Modi, Raghu Murtugudde, Vinu Valsala, Swapna Panickal, S. Prasanna Kumar, M. Ravichandran, Marcello Vichi, and Marina Lévy. "A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean: Phytoplankton in a warming Indian Ocean", Geophysical Research Letters, 2015.

32 words / < 1% match - Crossref

Pitchaikkaran Raja, Shambanagouda R. Marigoudar, Panneerselvam Karthikeyan, Sarvalingam Barath Kumar et al. "Responses of plankton community to threshold metal concentrations of cadmium and lead in a mesocosm experiment at Bay of Bengal", Journal of Environmental Management, 2024

32 words / < 1% match - Crossref

Myounghee Kang, Aldwin Adrianus, Kyoung-Ho Cho, Jee-Hoon Kim, Wuju Son, Jaeill Yoo, Eun Jin Yang, Hyoung Sul La. "Characterization of pelagic communities in the Pacific sector of the Arctic Ocean using a broadband acoustic system, net samplers, and optical instruments", Journal of Marine Systems, 2024

32 words / < 1% match - Crossref

Martina Mascioni, Gastón O. Almandoz, Lindsey Ekern, B. Jack Pan, Maria Vernet. "Microplanktonic diatom assemblages dominated the primary production but not the biomass in an Antarctic fjord", Journal of Marine Systems, 2021

32 words / < 1% match - Crossref

<u>Jai Kumar, Smitha Ratheesh, Neeraj Agarwal, Rashmi Sharma. "Study of upwelling and mixing process in the Somali coastal region using satellite and numerical model observations: A Lagrangian approach", Deep Sea Research Part II: Topical Studies in Oceanography, 2024</u>

32 words / < 1% match - Crossref

<u>Hui Liu, Nehad Nour El-Din, Gilbert Rowe, Mohsin Al-Ansi et al. "Characteristics and renewal of zooplankton communities under extreme environmental stresses in the oligotrophic hypersaline Arabian Gulf", Progress in Oceanography, 2021</u>

31 words / < 1% match - from 04-Nov-2024 12:00AM hightechjournal.org

31 words / < 1% match - from 19-Mar-2024 12:00AM hightechjournal.org

31 words / < 1% match - Crossref

Y.J. Lu, Y.F. He, H.X. Chen, H. Huang, X. Zhang, J.X. Lin. "Characteristics of copper-containing cobalt chromium particles: Metal ion release, passive behavior, and biological response", Powder Technology, 2024

31 words / < 1% match - Crossref

<u>Xiuping Liu, Ningdong Xie, Mohan Bai, Jiaqian Li, Guangyi Wang. "Composition change and decreased diversity of microbial eukaryotes in the coastal upwelling waters of South China Sea", Science of The Total Environment, 2021</u>

31 words / < 1% match - Crossref

<u>Vivek Seelanki, Tanuja Nigam, Vimlesh Pant. "Unravelling the roles of Indian Ocean Dipole and El-Niño on winter primary productivity over the Arabian Sea", Deep Sea Research Part I: Oceanographic Research Papers, 2022</u>

31 words / < 1% match - Crossref

V. Vidhya, R. Jyothibabu, L. Jagadeesan, C. Rashid, K.T. Alok, N. Arunpandi, R. Thirumurugan. "Oxygen minimum zone copepods in the Arabian Sea and the Bay of Bengal: Their adaptations and status", Progress in Oceanography, 2022

31 words / < 1% match - Crossref

V. Vidhya, R. Jyothibabu, L. Jagadeesan, C. Rashid, K.T. Alok, N. Arunpandi, R. Thirumurugan. "Oxygen Minimum Zone Copepods in the Arabian Sea and the Bay of Bengal: Their Adaptations and Status", Progress in Oceanography, 2022

31 words / < 1% match - Publications

Takashi Kitagawa, Shingo Kimura. "Biology and Ecology of Bluefin Tuna", CRC Press, 2015

31 words / < 1% match - Crossref

S. Santhikrishnan, R. Jyothibabu, K.J. Albin, K.T. Alok, C. Karnan, N. Arunpandi, M.F. Camey, T.R. Gireesh Kumar. "Biophysical implications of the freshwater influx over small spatial scale in the coastal waters along the southwest coast of India during the Southwest Monsoon", Continental Shelf Research, 2021

31 words / < 1% match - Crossref

S. Santhikrishnan, R. Jyothibabu, K.J. Albin, K.T. Alok, C. Karnan, N. Arunpandi, M.F. Camey, T. Gireesh Kumar. "Biophysical implications of the freshwater influx over small spatial scale in the coastal waters along the southwest coast of India during the Southwest Monsoon", Continental Shelf Research, 2021

31 words / < 1% match - Crossref

Radovan Djurovic, Predrag Elek, Milos Markovic, Dejan Jevtic. "Modification and experimental validation of the Forrestal-Warren perforation model for high hardness armor steel plates of intermediate thickness", Defence Technology, 2024

31 words / < 1% match - Crossref

Patrick Houssard, Anne Lorrain, Laura Tremblay-Boyer, Valérie Allain et al. "Trophic position increases with thermocline depth in yellowfin and bigeye tuna across the Western and Central Pacific Ocean", Progress in Oceanography, 2017

31 words / < 1% match - Crossref

Shriya Garg, Mangesh Gauns, T.V.S. Udaya Bhaskar. "Dynamics of subsurface chlorophyll maxima in the northern Indian Ocean", Marine Pollution Bulletin, 2024

31 words / < 1% match - Crossref

Minju Kim, Jung-Hoon Kang, TaeKeun Rho, Hyoun-Woo Kang, Dong-Jin Kang, Jae-Hyoung Park, Purena Son. "Mesozooplankton community variability in the Seychelles-Chagos Thermocline Ridge in the western Indian Ocean", Journal of Marine Systems, 2022

31 words / < 1% match - Crossref

Mengya Yang, Mingyue Yin, Yaoqi Zheng, Jishuang Jiang, Caixu Wang, Shuang Liu, Lilong Yan. "Performance and mechanism of tetracycline removal by the aerobic nitrate-reducing strain Pseudomonas sp. XS-18 with auto-aggregation", Bioresource Technology, 2022

31 words / < 1% match - Crossref

Marília C. Campos, Cristiano M. Chiessi, Rodrigo A. Nascimento, Laura Kraft et al. "Millennial- to centennial-scale Atlantic ITCZ swings during the penultimate deglaciation", Quaternary Science Reviews, 2025

31 words / < 1% match - Crossref

M. Sheaves, R. Baker, K. Abrantes, A. Barnett, M. Bradley, A. Dubuc, C. Mattone, J. Sheaves, N. Waltham.
"Consequences for Nekton of the Nature, Dynamics, and Ecological Functioning of Tropical Tidally Dominated Ecosystems", Estuarine, Coastal and Shelf Science, 2024

31 words / < 1% match - Crossref

<u>Jae-Won Yoo, Chae-Lin Lee, Sungtae Kim, Eun-Ju Seong et al. "Ecological changes in subtidal macrobenthic communities of the Taean coast following the Hebei Spirit oil spill: A 10-year longitudinal study", Marine Pollution Bulletin, 2023</u>

31 words / < 1% match - Crossref

J.V. Sinu, B. Ajimila. "Quantitative composition, distribution and abundance of zooplankton communities in relation to physico-chemical parameters from selected beaches of Alappuzha in Arabian Sea, southwest coast of India", Total Environment Research Themes, 2023

31 words / < 1% match - Crossref

J.V. Sinu, B. Ajimila. "Quantitative Composition, Distribution and Abundance of Zooplankton Communities in relation to Physico-chemical Parameters from selected Beaches of Alappuzha in Arabian Sea, Southwest Coast of India", Total Environment Research Themes, 2023

31 words / < 1% match - ProQuest

<u>Kunjikuttan Nair, Akhil. "Atomically Engineering the Electrochemical, Structural, and Thermal Properties of Two-Dimensional Transition-Metal Dichalcogenide Monolayers and Heterostructures for Alkali Metal-Ion Battery Anode Applications.", University of Toronto (Canada), 2024</u>

31 words / < 1% match - Crossref

<u>Karl Weckström, Sonja Salovius-Laurén. "Diel activity patterns of rocky shore macroinvertebrates in the northern Baltic Sea", Journal of Sea Research, 2023</u>

31 words / < 1% match - Crossref

<u>Daeho Jin. "Modulation of tropical ocean surface chlorophyll by the Madden–Julian Oscillation", Climate Dynamics</u>, 03/11/2012

31 words / < 1% match - Crossref

C.M. Furtado, T.R. Gireeshkumar, E.R. Vignesh, K.P. Fahad Fathin, Anju Suresh, R. Jyothibabu. "Polycyclic aromatic hydrocarbons in surface sediments of the western Bay of Bengal: Distribution, sources, and ecological risk assessment", Marine Pollution Bulletin, 2025

31 words / < 1% match - Crossref

Biswamoy Paul, Balaji Baduru, Arya Paul, P.A. Francis, Satish R. Shetye. "Absence of the annual cycle in shelf current inshore of the East Indian Coastal Current", Continental Shelf Research, 2021

31 words / < 1% match - Crossref

Bingzhang Chen. "Thermal diversity affects community responses to warming", Ecological Modelling, 2022

31 words / < 1% match - Crossref

Benjamin Planque, Lucas Bas, Martin Biuw, Marie-Anne Blanchet et al. "A food-web assessment model for marine mammals, fish, and fisheries in the Norwegian and Barents Seas", Progress in Oceanography, 2024

31 words / < 1% match - Crossref

B. Bikram Reddy, Anil Kumar Vijayan, V. Sudheesh, C.K. Sherin, Rajdeep Roy, N.N. Vishnu, G.V.M. Gupta. "Nutrient stoichiometry drives the phytoplankton populations during the progression of upwelling along the eastern Arabian Sea", Progress in Oceanography, 2024

31 words / < 1% match - Crossref <u>Arnoldo Valle-Levinson, Margaret A. Daly, Braulio Juarez, Leonardo Tenorio-Fernandez et al. "Influence of kelp</u> forests on flow around headlands", Science of The Total Environment, 2022 31 words / < 1% match - Crossref A. Mukherjee. "Role of atmospheric and oceanic processes on decadal change of Antarctic sea-ice between 2000-2019", Dynamics of Atmospheres and Oceans, 2024 31 words / < 1% match - from 17-Sep-2024 12:00AM www.ihp-microelectronics.com 31 words / < 1% match - from 23-Feb-2024 12:00AM www.ccspublishing.org.cn 31 words / < 1% match - from 23-Feb-2024 12:00AM www.ccspublishing.org.cn 31 words / < 1% match - from 30-Apr-2024 12:00AM rua.ua.es 31 words / < 1% match - from 11-Aug-2024 12:00AM researchonline.jcu.edu.au 31 words / < 1% match - from 01-Sep-2023 12:00AM research-management.mq.edu.au 31 words / < 1% match - from 23-Jul-2024 12:00AM pure.hw.ac.uk 31 words / < 1% match - from 17-Sep-2024 12:00AM pure.tue.nl 31 words / < 1% match - from 17-Sep-2024 12:00AM publications.aston.ac.uk 31 words / < 1% match - from 25-Oct-2024 12:00AM kp652.bver.co.kr 31 words / < 1% match - from 16-May-2024 12:00AM du.diva-portal.org 31 words / < 1% match - from 24-Jan-2024 12:00AM dspace.uevora.pt 31 words / < 1% match - from 26-Nov-2024 12:00AM docserv.uni-duesseldorf.de 31 words / < 1% match - from 21-Jun-2024 12:00AM

cyc-net.org

30 words / < 1% match - Crossref

Zhaoru Zhang, Eileen E. Hofmann, Michael S. Dinniman, Christian Reiss, Walker O. Smith, Meng Zhou. "Linkage of the physical environments in the northern Antarctic Peninsula region to the Southern Annular Mode and the implications for the phytoplankton production", Progress in Oceanography, 2020

30 words / < 1% match - Crossref

Yanyan Wang, Wei-dong Zhai, Chi Wu. "Algal cell viability assessment: The role of environmental factors in phytoplankton population dynamics", Marine Pollution Bulletin, 2023

30 words / < 1% match - Crossref Posted Content

Xiang Li, Guo-lei Du, Shi-Nan Wu, Si-Qi Zhang, Zhi-Jie Zhang, Jia-feng Tang. "The Systemic Immune-Inflammation Index is Linked to Cataracts: Insights from NHANES 2005-2008", Springer Science and Business Media LLC, 2024

30 words / < 1% match - Crossref

<u>Vladislav Petrusevich, Igor A. Dmitrenko, Sergey A. Kirillov, Søren Rysgaard et al. "Wintertime water dynamics and moonlight disruption of the acoustic backscatter diurnal signal in an ice-covered Northeast Greenland fjord", Journal of Geophysical Research: Oceans, 2016</u>

30 words / < 1% match - Crossref

V. Thushara, P. N. Vinayachandran. "Unprecedented surface chlorophyll blooms in the southeastern Arabian Sea during an extreme negative Indian Ocean Dipole", Geophysical Research Letters, 2020

30 words / < 1% match - Crossref

Rajdeep Roy, Aneesh A. Lotliker, Sanjiba Kumar Baliarsingh, Chiranjivi Jayaram. "Water column properties associated with massive algal bloom of green Noctiluca scintillans in the Arabian Sea", Marine Pollution Bulletin. 2024

30 words / < 1% match - Crossref

Rocío Rodríguez-Torres, Rodrigo Almeda, Michael Kristiansen, Sinja Rist, Mie S. Winding, Torkel Gissel Nielsen. "Ingestion and impact of microplastics on arctic Calanus copepods", Aquatic Toxicology, 2020

30 words / < 1% match - Crossref

R. Prasanth, V. Vijith, V. Thushara, Jenson V. George, P.N. Vinayachandran. "Processes governing the seasonality of vertical chlorophyll-a distribution in the central Arabian Sea: Bio-Argo observations and ecosystem model simulation", Deep Sea Research Part II: Topical Studies in Oceanography, 2021

30 words / < 1% match - Crossref Posted Content

Qifeng Wen, Jinjin Chen, Jin Li, Ida Putu Wiweka Dharmasiddhi, Maohua Yang, Jianmin Xing, Yilan Liu. "A single-plasmid-based, easily curable CRISPR/Cas9 system for rapid, iterative genome editing in Pseudomonas putida KT2440", Springer Science and Business Media LLC, 2024

30 words / < 1% match - Crossref

Petrusevich, Vladislav, Igor A. Dmitrenko, Sergey A. Kirillov, Søren Rysgaard, Stig Falk-Petersen, David G. Barber, Wieter Boone, and Jens K. Ehn. "Wintertime water dynamics and moonlight disruption of the acoustic backscatter diurnal signal in an ice-covered Northeast Greenland fjord", Journal of Geophysical Research Oceans, 2016.

30 words / < 1% match - Crossref

Peter H. Wiebe, Andone C. Lavery, Gareth L. Lawson. "Biogeographic variations in diel vertical migration determined from acoustic backscattering in the northwest Atlantic Ocean", Deep Sea Research Part I: Oceanographic Research Papers, 2023

30 words / < 1% match - Crossref

1/8/25, 10:15 AM

Peter H. Wiebe, Andone C. Lavery, Gareth L. Lawson. "Biogeographic variations in diel vertical migration determined from acoustic backscattering in the northwest Atlantic Ocean", Deep Sea Research Part I: Oceanographic Research Papers, 2022

30 words / < 1% match - Crossref

Paul E. Renaud, Malin Daase, Eva Leu, Maxime Geoffroy et al. "Extreme mismatch between phytoplankton and grazers during Arctic spring blooms and consequences for the pelagic food-web", Progress in Oceanography, 2024

30 words / < 1% match - Crossref

P.J. Clerkin, M.C. Arostegui, W.C. Chiang, S.J. Lin, C.D. Miller, C.D. Braun. "First telemetry insights into the movements and vertical habitat use of megamouth shark (Megachasma pelagios) in the northwest Pacific", Deep Sea Research Part I: Oceanographic Research Papers, 2024

30 words / < 1% match - Crossref

P. Anjaneyan, J. Kuttippurath, P.V. Hareesh Kumar, S.M. Ali, Mini Raman. "Spatio-temporal changes of winter and spring phytoplankton blooms in Arabian sea during the period 1997–2020", Journal of Environmental Management, 2023

30 words / < 1% match - Crossref

Shengjie Xu, Shuai Shi, Li Li, Xiangli Tian, Qinfeng Gao, Shuanglin Dong. "Effects of deep-sea cage culture on water quality and stable carbon and nitrogen isotopes of suspended particulate organic matter in the Yellow Sea Cold Water Mass", Marine Pollution Bulletin, 2024

30 words / < 1% match - Crossref

N. Sunanda, J. Kuttippurath, R. Peter, A. Chakraborty. "An atmosphere-ocean coupled model for simulating physical and biogeochemical state of north Indian Ocean: Customisation and validation", Ocean Modelling, 2024

30 words / < 1% match - Crossref

Megan Trethewy, Mariana Mayer-Pinto, Katherine A. Dafforn. "Urban shading and artificial light at night alter natural light regimes and affect marine intertidal assemblages", Marine Pollution Bulletin, 2023

30 words / < 1% match - Crossref

Marian Peña. "Atlantic versus Mediterranean deep scattering layers around the Iberian peninsula", Progress in Oceanography, 2024

30 words / < 1% match - Crossref

Marian Peña, María Moyà, Aina Carbonell, Rafael González-Quirós. "Vertical distribution and acoustic characteristics of deep water micronektonic crustacean in the Bay of Biscay", Marine Environmental Research, 2023

30 words / < 1% match - Crossref

Marian Peña, María Moya, Aina Carbonell, Rafael González Quirós. "Vertical distribution and acoustic characteristics of deep water micronektonic crustacean in the Bay of Biscay", Marine Environmental Research, 2023

30 words / < 1% match - Crossref

Monika Jankute, Luke J. Alderwick, Alice R. Moorey, Maju Joe et al. "The singular Corynebacterium glutamicum Emb arabinofuranosyltransferase polymerises the $\alpha(1 \rightarrow 5)$ arabinan backbone in the early stages of cell wall arabinan biosynthesis", The Cell Surface, 2018

30 words / < 1% match - Crossref

M. Varna, A.K. Jithin, P.A. Francis. "Characteristics and dynamics of mesoscale eddies in the eastern Arabian sea", Deep Sea Research Part II: Topical Studies in Oceanography, 2023

30 words / < 1% match - Crossref

M. Varna, A.K. Jithin, P.A. Francis. "Characteristics and dynamics of mesoscale eddies in the eastern Arabian sea", Deep Sea Research Part II: Topical Studies in Oceanography, 2022

30 words / < 1% match - Crossref

M. Sheaves, R. Baker, K. Abrantes, A. Barnett, M. Bradley, A. Dubuc, C. Mattone, J. Sheaves, N. Waltham. "Consequences for nekton of the nature, dynamics, and ecological functioning of tropical tidally dominated ecosystems", Estuarine, Coastal and Shelf Science, 2024

30 words / < 1% match - Crossref

<u>Jenny A. Huggett, Margaux Noyon, Jacob Carstensen, David R. Walker. "Patterns in the plankton – Spatial distribution and long-term variability of copepods on the Agulhas Bank", Deep Sea Research Part II: Topical Studies in Oceanography, 2023</u>

30 words / < 1% match - Crossref

Karl A. Safi, Andrés Gutiérrez Rodríguez, Julie A. Hall, Matthew H. Pinkerton. "Phytoplankton dynamics, growth and microzooplankton grazing across the subtropical frontal zone, east of New Zealand", Deep Sea Research Part II: Topical Studies in Oceanography, 2023

30 words / < 1% match - Crossref

Kailin Liu, Zhimeng Xu, Xin Liu, Bangqin Huang, Hongbin Liu, Bingzhang Chen. "Modelling global mesozooplankton biomass using machine learning", Progress in Oceanography, 2024

30 words / < 1% match - Crossref Posted Content

Elsayed Elbayoumy, Ashraf El-Bindary, Tamaki Nakano, Mohamed Aboelnga. "Silver Nanoparticles Immobilized on Crosslinked Vinyl Polymer for Catalytic Reduction of Nitrophenol: Experimental and Computational Studies", Springer Science and Business Media LLC, 2024

30 words / < 1% match - Crossref

Elisabeth Teca Oliva, Elisabeth Michel, Giuseppe Siani, Xavier Crosta et al. "Paleoceanography of the Southeast Pacific since the late glacial from diatom and foraminiferal assemblages", Palaeogeography, Palaeoclimatology, Palaeoecology, 2024

30 words / < 1% match - Crossref

Edward R. Urban. "Outcomes of the U.S. Program in Biology of the International Indian Ocean Expedition", Deep Sea Research Part II: Topical Studies in Oceanography, 2020

30 words / < 1% match - Crossref

<u>Dongkyun Kim, Christian Onof. "A stochastic rainfall model that can reproduce important rainfall properties across the timescales from several minutes to a decade", Journal of Hydrology, 2020</u>

30 words / < 1% match - Crossref

Benjamin J. Laurel, Mary E. Hunsicker, Lorenzo Ciannelli, Thomas P. Hurst et al. "Regional warming exacerbates match/mismatch vulnerability for cod larvae in Alaska", Progress in Oceanography, 2021

30 words / < 1% match - Crossref

Boris Cisewski, Volker H. Strass. "Acoustic insights into the zooplankton dynamics of the eastern Weddell Sea", Progress in Oceanography, 2016

30 words / < 1% match - Crossref

Arun Deo Singh, Harshit Singh, Shubham Tripathi, Pradyumna Singh. "Evolution and dynamics of the Arabian sea oxygen minimum zone: Understanding the paradoxes", Evolving Earth, 2023

30 words / < 1% match - Crossref

Arun Deo Singh, Harshit Singh, Shubham Tripathi, Pradyumna Singh. "Evolution and dynamics of the Arabian Sea oxygen minimum zone: Understanding the paradoxes", Evolving Earth, 2023

30 words / < 1% match - Crossref

Apsara P Vijayan, Siby Kurian, Duphrin Joseph, Megha Dixon et al. "Variation of amino acid in the sinking particulates in the northeastern Arabian Sea and the northern Bay of Bengal", Progress in Oceanography, 2023

30 words / < 1% match - Crossref Posted Content

Abdallah M. Eteleeb, Suélen Santos Alves, Stephanie Buss, Mouhsin Shafi et al. "Transcriptomic analyses of human brains with Alzheimer's disease identified dysregulated epilepsy-causing genes", Cold Spring Harbor Laboratory, 2025

30 words / < 1% match - Crossref

<u>Cisewski, Boris, and Volker H. Strass. "Acoustic insights into the zooplankton dynamics of the eastern Weddell Sea", Progress In Oceanography, 2016.</u>

30 words / < 1% match - Crossref

<u>Camila Serra-Pompei, Floor Soudijn, André W. Visser, Thomas Kiørboe, Ken H. Andersen. "A general size- and trait-based model of plankton communities", Progress in Oceanography, 2020</u>

30 words / < 1% match - Internet from 02-Nov-2022 12:00AM www.ccpo.odu.edu

30 words / < 1% match - Internet from 04-Nov-2022 12:00AM rucool.marine.rutgers.edu

30 words / < 1% match - from 08-Jul-2024 12:00AM pure.rug.nl

30 words / < 1% match - Internet from 28-Jul-2022 12:00AM par.nsf.gov

20 words / < 1% match - from 06-Jan-2024 12:00AM munin.uit.no

10 words / < 1% match - from 29-Dec-2023 12:00AM munin.uit.no

30 words / < 1% match - from 24-Oct-2024 12:00AM backend.orbit.dtu.dk

30 words / < 1% match - Internet from 12-Nov-2022 12:00AM backend.orbit.dtu.dk

29 words / < 1% match - Crossref

<u>Veronica Livescu, Cameron M. Knapp, George T. Gray, Ramon M. Martinez, Benjamin M. Morrow, Bineh G. Ndefru. "Additively manufactured tantalum microstructures", Materialia, 2018</u>

29 words / < 1% match - from 16-Apr-2023 12:00AM openresearch-repository.anu.edu.au

28 words / < 1% match - Crossref

V.V.S.S. Sarma, D.V. Desai, J.S. Patil, L. Khandeparker et al. "Ecosystem response in temperature fronts in the northeastern Arabian Sea", Progress in Oceanography, 2018

28 words / < 1% match - Crossref

S Mukhopadhyay, D Shankar, S G Aparna, V Fernando, A Kankonkar. "Observed variability of the East India Coastal Current on the continental shelf during 2010–2018", Journal of Earth System Science, 2020

27 words / < 1% match - Crossref

Yanting Li, Cuihua Zhang, Chunyu Li, Yong Ma. "Online channel configuration strategy considering contract manufacturer encroachment and green investment", Electronic Commerce Research, 2022

27 words / < 1% match - Crossref

<u>Veronica Livescu, Cameron M. Knapp, George T. Gray, Ramon M. Martinez, Benjamin M. Morrow, Bineh G. Ndefru.</u> "Additively Manufactured Tantalum Microstructures", Materialia, 2018

27 words / < 1% match - Crossref Posted Content

<u>Júlia Lopes Ferigatto, Fábio Luiz Coracin, Hélio Massaiochi Tanimoto, Vivian Palata Viola et al. "Effectiveness of a Protocol with Antimicrobial Photodynamic Therapy for Treating Osteoradionecrosis: A Retrospective Study", Springer Science and Business Media LLC, 2024</u>

27 words / < 1% match - Crossref

Kanchana Bandara, Sünnje L. Basedow, Geir Pedersen, Vigdis Tverberg. "Mid-summer vertical behavior of a high-latitude oceanic zooplankton community", Journal of Marine Systems, 2022

27 words / < 1% match - from 16-May-2023 12:00AM oxfordjournals.org

15 words / < 1% match - Internet from 20-Aug-2020 12:00AM digital.lib.washington.edu

12 words / < 1% match - Internet from 15-Aug-2019 12:00AM digital.lib.washington.edu

26 words / < 1% match - Crossref

S. Mukhopadhyay, D. Shankar, S.G. Aparna, A. Mukherjee. "Observations of the sub-inertial, near-surface East India Coastal Current", Continental Shelf Research, 2017

26 words / < 1% match - Crossref Posted Content

Ram Prasad Aganja, Jun Kwon, Amal Senevirathne, John Hwa Lee. "Deletion of pagL and arnT genes that involved in LPS structure and charge modulation in Salmonella genome confer reduced endotoxicity and retained efficient protection against wild-type S. Gallinarium challenge in chicken", Springer Science and Business Media LLC, 2024

26 words / < 1% match - Crossref

Puthenveettil Narayana Menon Vinayachandran, Yukio Masumoto, Michael J. Roberts, Jenny A. Huggett et al. "Reviews and syntheses: Physical and biogeochemical processes associated with upwelling in the Indian Ocean", Biogeosciences, 2021

26 words / < 1% match - Crossref

M. R. Karim, Nayem Al Kayed, Rakayet Rafi, B. M. A. Rahman. "RETRACTED ARTICLE: Design and analysis of inverse tapered silicon nitride waveguide for flat and highly coherent supercontinuum generation in the mid-infrared", Optical and Quantum Electronics, 2023

26 words / < 1% match - Crossref

C. Shaji, A. Gangopadhyay. "Synoptic Modeling in the Eastern Arabian Sea during the Southwest Monsoon Using Upwelling Feature Models", Journal of Atmospheric and Oceanic Technology, 2007

26 words / < 1% match - from 06-Mar-2024 12:00AM listens.online

25 words / < 1% match - Crossref

<u>Suchandan Bemal, Arga Chandrashekar Anil, P. Amol. "Picophytoplankton variability: Influence of Rossby wave propagation in the southeastern Arabian Sea", Journal of Marine Systems, 2019</u>

25 words / < 1% match - Crossref

Mohanan Geethalekshmi Sreeush, Vinu Valsala, Halder Santanu, Sreenivas Pentakota, K.V.S.R. Prasad, C.V. Naidu, Raghu Murtugudde. "Biological production in the Indian Ocean upwelling zones - Part 2: Data based estimates of variable compensation depth for ocean carbon models via cyclo-stationary Bayesian Inversion.", Deep Sea Research Part II: Topical Studies in Oceanography, 2019

25 words / < 1% match - Crossref

<u>Christopher Jun Wen Chew, Vimal Kumar, Panos Patros, Robi Malik. "Real-time system call-based ransomware detection", International Journal of Information Security, 2024</u>

25 words / < 1% match - Internet from 30-Aug-2022 12:00AM portals.iucn.org

25 words / < 1% match - Internet from 06-Oct-2022 12:00AM icriforum.org

25 words / < 1% match - Internet from 23-Sep-2022 12:00AM en.unesco.org

24 words / < 1% match - Crossref

<u>Vineet Jain, D. Shankar, P. N. Vinayachandran, A. Kankonkar et al. "Evidence for the existence of Persian Gulf Water and Red Sea Water in the Bay of Bengal", Climate Dynamics, 2016</u>

24 words / < 1% match - Crossref

S Mukhopadhyay, D Shankar, S G Aparna, A Mukherjee et al. "Observed variability of the East India Coastal Current on the continental slope during 2009–2018", Journal of Earth System Science, 2020

24 words / < 1% match - Crossref

Jain, Vineet, D. Shankar, P. N. Vinayachandran, A. Kankonkar, Abhisek Chatterjee, P. Amol, A. M. Almeida, G. S. Michael, A. Mukherjee, Meenakshi Chatterjee, R. Fernandes, R. Luis, Amol Kamble, A. K. Hegde, Siddhartha Chatterjee, Umasankar Das, and C. P. Neema. "Evidence for the existence of Persian Gulf Water and Red Sea Water in the Bay of Bengal", Climate Dynamics, 2016.

24 words / < 1% match - Internet from 16-Jan-2017 12:00AM digitalcommons.uri.edu

23 words / < 1% match - Crossref

Yuan Wang, Jinhui Zhang, Jiancheng Yu, Qiaoyan Wu, Dong Sun. "Anticyclonic mesoscale eddy induces mesopelagic biomass hotspot in the oligotrophic ocean", Journal of Marine Systems, 2022

23 words / < 1% match - Crossref

Yuan Wang, Jinhui Zhang, Jiancheng Yu, Qiaoyan Wu, Dong Sun. "Anticyclonic mesoscale eddy induced mesopelagic biomass hotspot in the oligotrophic ocean", Journal of Marine Systems, 2023

23 words / < 1% match - Crossref

N. Arunpandi, R. Jyothibabu, L. Jagadeesan, T.R. Gireeshkumar, C. Karnan, S. W. A Naqvi. "Noctiluca and copepods grazing on the phytoplankton community in a nutrient-enriched coastal environment along the southwest coast of India", Environmental Monitoring and Assessment, 2017

23 words / < 1% match - ProQuest

Ernst, Paul Andrew. "New Techniques for Studying Ocean Eddy Dynamics in the Arabian Sea and the Gulf of Mexico", University of South Carolina, 2024

23 words / < 1% match - Internet from 28-Dec-2019 12:00AM rd.springer.com

23 words / < 1% match - from 29-Aug-2024 12:00AM assets-eu.researchsquare.com

22 words / < 1% match - Publications

Yeqiao Wang. "Fresh Water and Watersheds", CRC Press, 2020

22 words / < 1% match - Crossref

V. Thushara, P. N. Vinayachandran. "Unprecedented Surface Chlorophyll Blooms intheSoutheastern Arabian Sea During an Extreme Negative Indian Ocean Dipole", Geophysical Research Letters, 2020

22 words / < 1% match - Crossref

Wilson, C.. "Global distribution of summer chlorophyll blooms in the oligotrophic gyres", Progress in Oceanography, 200808

22 words / < 1% match - Crossref

Ressler, P.H.. "Hydrographic and acoustic evidence for enhanced plankton stocks in a small cyclone in the northeastern Gulf of Mexico", Continental Shelf Research, 200301

22 words / < 1% match - Crossref

Menkes, C.E., V. Allain, M. Rodier, F. Gallois, A. Lebourges-Dhaussy, B.P.V. Hunt, H. Smeti, M. Pagano, E. Josse, A. Daroux, P. Lehodey, I. Senina, E. Kestenare, A. Lorrain, and S. Nicol. "Seasonal oceanography from physics to micronekton in the south-west Pacific", Deep Sea Research Part II Topical Studies in Oceanography, 2015.

22 words / < 1% match - Crossref

Lü, Lian-Gang, Xiao Wang, Huiwu Wang, Laoyu Li, and Guangbing Yang. "The variations of zooplankton biomass and their migration associated with the Yellow Sea Warm Current", Continental Shelf Research, 2013.

22 words / < 1% match - Crossref

<u>Luo, J.. "Diel vertical migration of zooplankton and mesopelagic fish in the Arabian Sea", Deep-Sea Research Part II, 2000</u>

22 words / < 1% match - Crossref

<u>Lian-Gang Lü, Xiao Wang, Huiwu Wang, Laoyu Li, Guangbing Yang. "The variations of zooplankton biomass and their migration associated with the Yellow Sea Warm Current", Continental Shelf Research, 2013</u>

22 words / < 1% match - Crossref

<u>Lian-Gang Lü, Jianjun Liu, Fei Yu, Wei Wu, Xiaodong Yang. "Vertical Migration of Sound Scatterers in the Southern Yellow Sea in Summer", Ocean Science Journal, 2007</u>

22 words / < 1% match - Crossref

<u>Jiangang Luo, Peter B Ortner, David Forcucci, Shailer R Cummings. "Diel vertical migration of zooplankton and mesopelagic fish in the Arabian Sea", Deep Sea Research Part II: Topical Studies in Oceanography, 2000</u>

22 words / < 1% match - Crossref

<u>Huiwu Wang, Hongxia Chen, Liang Xue, Na Liu, Yanliang Liu. "Zooplankton diel vertical migration and influence of upwelling on the biomass in the Chukchi Sea during summer", Acta Oceanologica Sinica, 2015</u>

22 words / < 1% match - Crossref

Davis, R.W.. "Cetacean habitat in the northern oceanic Gulf of Mexico", Deep-Sea Research Part I, 200201

22 words / < 1% match - Crossref

C.E. Menkes, V. Allain, M. Rodier, F. Gallois et al. "Seasonal oceanography from physics to micronekton in the south-west Pacific", Deep Sea Research Part II: Topical Studies in Oceanography, 2015

12 words / < 1% match - Internet from 14-Sep-2022 12:00AM tel.archives-ouvertes.fr

12 words / < 1% match - Internet from 23-Apr-2019 12:00AM tel.archives-ouvertes.fr

12 words / < 1% match - Internet from 17-Apr-2018 12:00AM tel.archives-ouvertes.fr

10 words / < 1% match - Internet from 03-May-2019 12:00AM tel.archives-ouvertes.fr

22 words / < 1% match - Internet from 06-Jun-2022 12:00AM pubag.nal.usda.gov

22 words / < 1% match - Internet from 06-Jun-2022 12:00AM pubag.nal.usda.gov

22 words / < 1% match - Internet from 31-Aug-2022 12:00AM scholarspace.manoa.hawaii.edu

22 words / < 1% match - from 17-Aug-2024 12:00AM discovery.researcher.life

11 words / < 1% match - Internet from 02-Mar-2022 12:00AM core.ac.uk

11 words / < 1% match - Internet from 15-Feb-2022 12:00AM core.ac.uk

21 words / < 1% match - Crossref

V. V. Gopalakrishna. "Observed anomalous upwelling in the Lakshadweep Sea during the summer monsoon season of 2005", Journal of Geophysical Research, 05/02/2008

21 words / < 1% match - Crossref

Rolf Koppelmann, Horst Weikert. "Transfer of organic matter in the deep Arabian Sea zooplankton community: insights from δ15N analysis", Deep Sea Research Part II: Topical Studies in Oceanography, 2000

21 words / < 1% match - ProQuest

Primo, Ana Lígia Sequeira. "Larval Fish Dynamics in the Mondego Estuary. Linking Early Life Stages and Recruitment Processes", Universidade de Coimbra (Portugal), 2024

21 words / < 1% match - Crossref

P. Amol, P.N. Vinayachandran, D. Shankar, V. Thushara, V. Vijith, Abhisek Chatterjee, A. Kankonkar. "Effect of freshwater advection and winds on the vertical structure of chlorophyll in the northern Bay of Bengal", Deep Sea Research Part II: Topical Studies in Oceanography, 2019

21 words / < 1% match - Crossref

P. A. Francis, A. K. Jithin, J. B. Effy, A. Chatterjee et al. "High-Resolution Operational Ocean Forecast and Reanalysis System for the Indian Ocean", Bulletin of the American Meteorological Society, 2020

21 words / < 1% match - ProQuest

Nichols, Ross C.. "Intra-Seasonal Variation in Feeding Rates and Diel Foraging Behavior in a Seasonally Fasting Mammal, the Humpback Whale (Megaptera novaeangliae).", University of California, Santa Cruz, 2021

21 words / < 1% match - Crossref

Madhupratap, M.. "Biogeochemistry of the Bay of Bengal: physical, chemical and primary productivity characteristics of the central and western Bay of Bengal during summer monsoon 2001", Deep-Sea Research Part II, 200303

21 words / < 1% match - Crossref

Madhavan Girijakumari Keerthi, Matthieu Lengaigne, Marina Levy, Jerome Vialard et al. "Physical control of interannual variations of the winter chlorophyll bloom in the northern Arabian Sea", Biogeosciences, 2017

21 words / < 1% match - Crossref

Koppelmann, R.. "Transfer of organic matter in the deep Arabian Sea zooplankton community: insights from @d^1^5N analysis", Deep-Sea Research Part II, 2000

21 words / < 1% match - ProQuest

Barth, Alexander. "Illuminating the Twilight Zone: In-Situ Imaging Facilitates Discovery of Mesopelagic Plankton Dynamics and Community Structure", University of South Carolina, 2024

21 words / < 1% match - Crossref

Analiza Maria D'souza, Mangesh Gauns. "Spatial variability of copepod species distribution in the eastern Arabian Sea in pre-monsoon conditions", Deep Sea Research Part II: Topical Studies in Oceanography, 2018

21 words / < 1% match - Crossref

A. Mukherjee, D. Shankar, Abhisek Chatterjee, P. N. Vinayachandran. "Numerical simulation of the observed near-surface East India Coastal Current on the continental slope", Climate Dynamics, 2017

21 words / < 1% match - from 11-Apr-2024 12:00AM ueaeprints.uea.ac.uk

21 words / < 1% match - from 25-May-2023 12:00AM opus.lib.uts.edu.au

21 words / < 1% match - Internet from 16-Apr-2018 12:00AM hal.upmc.fr

21 words / < 1% match - Internet from 01-Dec-2022 12:00AM hal.sorbonne-universite.fr

21 words / < 1% match - Internet from 01-May-2019 12:00AM hal.sorbonne-universite.fr

21 words / < 1% match - Internet from 27-Oct-2022 12:00AM etheses.dur.ac.uk

11 words / < 1% match - from 29-May-2024 12:00AM docslib.org

10 words / < 1% match - from 31-Jul-2024 12:00AM docslib.org

21 words / < 1% match - from 01-Jun-2024 12:00AM 123dok.net

20 words / < 1% match - Crossref

Zhankun Wang, Steven F. DiMarco, Stephanie Ingle, Leila Belabbassi, Lubna H. Al-Kharusi. "Seasonal and annual variability of vertically migrating scattering layers in the northern Arabian Sea", Deep Sea Research Part I: Oceanographic Research Papers, 2014

20 words / < 1% match - Crossref

Wang, Zhankun, Steven F. DiMarco, Stephanie Ingle, Leila Belabbassi, and Lubna H. Al-Kharusi. "Seasonal and annual variability of vertically migrating scattering layers in the northern Arabian Sea", Deep Sea Research Part LOceanographic Research Papers, 2014.

20 words / < 1% match - Crossref

Raleigh R. Hood, Victoria J. Coles, Jenny A. Huggett, Michael R. Landry, Marina Levy, James W. Moffett, Timothy Rixen. "Nutrient, phytoplankton, and zooplankton variability in the Indian Ocean", Elsevier BV, 2024

20 words / < 1% match - Crossref

Pavanathara Augustine Francis, Abraham Kaduvathazham Jithin, Abhisek Chatterjee, Arnab Mukherjee et al. "Structure and dynamics of undercurrents in the western boundary current of the Bay of Bengal", Ocean Dynamics, 2020

20 words / < 1% match - Crossref

Paul A. Ernst, Bulusu Subrahmanyam, Yves Morel, Corinne B. Trott, Alexis Chaigneau. "Subsurface Eddy Detection Optimized with Potential Vorticity from Models in the Arabian Sea", Journal of Atmospheric and Oceanic Technology, 2023

20 words / < 1% match - Crossref

Sahina Akter, Ajay Nakhawa, Santosh Bhendekar, Dhanya M. Lal, Zeba Jaffer Abidi, Binaya Bhusan Nayak, Karankumar Ramteke. "Deciphering the distribution of Indian mackerel, Rastrelliger kanagurta (Cuvier, 1817) along the Northwest coasts of India", Thalassas: An International Journal of Marine Sciences, 2024

20 words / < 1% match - Publications

<u>Luis R. Vieira, Fernando Morgado. "Zooplankton Challenges in a Changing World - A Worldwide Perspective and Research Approach", CRC Press, 2025</u>

20 words / < 1% match - Crossref

Johnson Zacharia, Chungath Kuttan Rajan, Chiranjivi Jayaram. "A cold pool formation in the Lakshadweep Sea during Indian summer monsoon", Ocean Dynamics, 2012

20 words / < 1% match - from 27-Aug-2023 12:00AM udspace.udel.edu

20 words / < 1% match - Internet from 02-Nov-2022 12:00AM www.usbr.gov

10 words / < 1% match - Internet from 12-Dec-2022 12:00AM www.pmel.noaa.gov

10 words / < 1% match - Internet from 07-Oct-2021 12:00AM www.pmel.noaa.gov

20 words / < 1% match - from 21-Aug-2023 12:00AM scholarcommons.sc.edu

20 words / < 1% match - Internet

<u>Trott, Corinne Beverly. "Upper Ocean Dynamics and Mixing in the Arabian Sea During Monsoons", Scholar Commons, 2019</u>

20 words / < 1% match - Internet from 16-May-2020 12:00AM scholarcommons.sc.edu

20 words / < 1% match - from 25-Jan-2024 12:00AM online.ucpress.edu

20 words / < 1% match - from 27-Jun-2024 12:00AM qfd.whoi.edu

18 words / < 1% match - Crossref

A.K. Jithin, A.S. Unnikrishnan, V. Fernando, M.P. Subeesh et al. "Observed tidal currents on the continental shelf off the east coast of India", Continental Shelf Research, 2017

18 words / < 1% match - from 12-Feb-2024 12:00AM nsss2024.unigoa.ac.in

15 words / < 1% match - Crossref

V. V. S. S. Sarma. "Carbon budget in the eastern and central Arabian Sea: An Indian JGOFS synthesis", Global Biogeochemical Cycles, 2003

15 words / < 1% match - Crossref

Suchandan Bemal, Arga Chandrashekar Anil, D. Shankar, R. Remya, Rajdeep Roy. "Picophytoplankton variability: Influence of winter convective mixing and advection in the northeastern Arabian Sea", Journal of Marine Systems, 2018

15 words / < 1% match - Crossref

Sankar Prasad Lahiri, Naresh Krishna Vissa. "Assessment of Indian Ocean upwelling changes and its relationship with the Indian monsoon", Global and Planetary Change, 2022

15 words / < 1% match - from 16-Sep-2024 12:00AM <u>liche.org.in</u>

15 words / < 1% match - from 10-Feb-2024 12:00AM <u>iiche.org.in</u>

14 words / < 1% match - Crossref

<u>Vipin, P., Kankan Sarkar, S.G. Aparna, D. Shankar, V.V.S.S. Sarma, D.G. Gracias, M.S. Krishna, G. Srikanth, R. Mandal, E.P. Rama Rao, and N. Srinivasa Rao. "Evolution and sub-surface characteristics of a sea-surface temperature filament and front in the northeastern Arabian Sea during November–December 2012", Journal of Marine Systems, 2015.</u>

14 words / < 1% match - Crossref

P. Vipin, Kankan Sarkar, S.G. Aparna, D. Shankar et al. "Evolution and sub-surface characteristics of a seasurface temperature filament and front in the northeastern Arabian Sea during November–December 2012", Journal of Marine Systems, 2015

14 words / < 1% match - Crossref

Abhisek Chatterjee, D. Shankar, J. P. McCreary, P. N. Vinayachandran, A. Mukherjee. "Dynamics of Andaman Sea circulation and its role in connecting the equatorial Indian Ocean to the Bay of Bengal", Journal of Geophysical Research: Oceans, 2017

12 words / < 1% match - from 08-May-2024 12:00AM cp.copernicus.org

10 words / < 1% match - Internet from 13-Dec-2022 12:00AM cp.copernicus.org

13 words / < 1% match - Crossref

<u>Lakshmi R. Shenoy, Abhisek Chatterjee, Satya Prakash, Teesha Mathew. "Biophysical interactions in driving the summer monsoon chlorophyll bloom off the Somalia coast", Journal of Geophysical Research: Oceans, 2020</u>

13 words / < 1% match - Crossref

Dalton S. Hardisty, Kimberly V. Lau. "Ocean redox evolution past and present", Elsevier BV, 2025

13 words / < 1% match - Crossref

Dalton S. Hardisty, Kimberly V. Lau. "Ocean redox evolution past and present", Elsevier BV, 2024

13 words / < 1% match - Internet from 11-Sep-2021 12:00AM www.bmrat.org

13 words / < 1% match - Internet from 10-Sep-2022 12:00AM macau.uni-kiel.de

13 words / < 1% match - Internet from 09-Sep-2021 12:00AM home.biomedpress.org

13 words / < 1% match - from 23-Feb-2024 12:00AM era.library.ualberta.ca

12 words / < 1% match - Crossref

<u>Tetjana Ross.</u> "A video-plankton and microstructure profiler for the exploration of in situ connections between zooplankton and turbulence", Deep Sea Research Part I: Oceanographic Research Papers, 2014

12 words / < 1% match - Crossref

Ramaiah, N.. "Seasonal variations in carbon biomass of bacteria, thraustochytrids and microzooplankton in the Northern Arabian Sea", Deep-Sea Research Part II, 200507

12 words / < 1% match - Crossref

Raleigh R. Hood, Caroline C. Ummenhofer, Helen E. Phillips, Janet Sprintall. "Introduction to the Indian Ocean", Elsevier BV, 2024

12 words / < 1% match - Crossref

Ross, Tetjana. "A video-plankton and microstructure profiler for the exploration of in situ connections between zooplankton and turbulence", Deep Sea Research Part I Oceanographic Research Papers, 2014.

12 words / < 1% match - from 02-Nov-2023 12:00AM dspace.plymouth.ac.uk

12 words / < 1% match - Internet from 02-Mar-2021 12:00AM doaj.org

12 words / < 1% match - Internet from 12-Nov-2022 12:00AM consultation.eau-artois-picardie.fr

11 words / < 1% match - Crossref

Z. Erdem, J. Lattaud, M. R. van Erk, E. Mezger, G.-J. Reichart, A. Lückge, J. S. Sinninghe Damsté, S. Schouten. "Applicability of the Long Chain Diol Index (LDI) as a Sea Surface Temperature Proxy in the Arabian Sea", Paleoceanography and Paleoclimatology, 2021

11 words / < 1% match - Crossref

Z. Erdem, J. Lattaud, M. R. Erk, E. Mezger, G.-J. Reichart, A. Lückge, J. S. Sinninghe Damsté, S. Schouten. "Applicability of the Long Chain Diol Index (LDI) as a Sea Surface Temperature Proxy in the Arabian Sea", Paleoceanography and Paleoclimatology, 2021

11 words / < 1% match - Crossref

<u>Yuntao Wang, Wentao Ma, Feng Zhou, Fei Chai. "Frontal variability and its impact on chlorophyll in the Arabian Sea", Journal of Marine Systems, 2021</u>

11 words / < 1% match - Crossref

V. Vijith, P. N. Vinayachandran, V. Thushara, P. Amol, D. Shankar, A. C. Anil. "Consequences of inhibition of mixed-layer deepening by the West India Coastal Current for winter phytoplankton bloom in the northeastern Arabian Sea", Journal of Geophysical Research: Oceans, 2016

11 words / < 1% match - Crossref

V. Vidhya, R. Jyothibabu, K.T. Alok, C.P. Rashid, N. Arunpandi, C.R. Asha Devi, G.V.M. Gupta, R. Thirumurugan. "Ecophysiological status of copepods in the oxygen minimum zone of Eastern Arabian Sea", Marine Pollution Bulletin, 2025

11 words / < 1% match - Crossref

V. V. S. S. Sarma. "The influence of Indian Ocean Dipole (IOD) on biogeochemistry of carbon in the Arabian Sea during 1997–1998", Journal of Earth System Science, 08/2006

11 words / < 1% match - Crossref

V. V. S. S. Sarma, Sridevi B, Ashwini Kumar, S Bikkina, V. R. Kumari, P Bikkina, K Yadav, V.D. Rao. "Impact of atmospheric anthropogenic nitrogen on new production in the northern Indian Ocean: Constrained based on satellite aerosol optical depth and particulate nitrogen levels", Environmental Science: Processes & Impacts, 2022

11 words / < 1% match - Crossref

S.R. Shetye, V. Vijith. "Sub-tidal water-level oscillations in the Mandovi estuary, west coast of India", Estuarine, Coastal and Shelf Science, 2013

11 words / < 1% match - Crossref

Remote Sensing of the Changing Oceans, 2011.

11 words / < 1% match - Crossref

Radenac, M.-H.. "Impact of environmental forcing on the acoustic backscattering strength in the equatorial Pacific: Diurnal, lunar, intraseasonal, and interannual variability", Deep-Sea Research Part I, 201010

11 words / < 1% match - Crossref

P. Gaube, D. B. Chelton, P. G. Strutton, M. J. Behrenfeld. "Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies", Journal of Geophysical Research: Oceans, 2013

11 words / < 1% match - Crossref

Subeesh, M.P., and A.S. Unnikrishnan. "Observed internal tides and near-inertial waves on the continental shelf and slope off Jaigarh, central west coast of India", Journal of Marine Systems, 2016.

11 words / < 1% match - Crossref

Shetye, S.R., and V. Vijith. "Sub-tidal water-level oscillations in the Mandovi estuary, west coast of India", Estuarine Coastal and Shelf Science, 2013.

11 words / < 1% match - Crossref

Sarma, V. V. S. S.. "Net community production in the northern Indian Ocean", Geophysical Monograph Series, 2009.

11 words / < 1% match - Crossref

Salihoglu, B., S. Neuer, S. Painting, R. Murtugudde, E.E. Hofmann, J.H. Steele, R.R. Hood, L. Legendre, M.W. Lomas, J.D. Wiggert, S. Ito, Z. Lachkar, G.L. Hunt, K.F. Drinkwater, and C.L. Sabine. "Bridging marine ecosystem and biogeochemistry research: Lessons and recommendations from comparative studies", Journal of Marine Systems, 2013.

11 words / < 1% match - Crossref

Nisha Kurian. "Observed Interannual Variability of the Thermohaline Structure in the South Eastern Arabian Sea", Remote Sensing of the Changing Oceans, 2011

11 words / < 1% match - Crossref

Nisha Kurian, Joshua Costa, V. Suneel, V.V. Gopalakrishna et al. "Chapter 16 Observed Interannual Variability of the Thermohaline Structure in the South Eastern Arabian Sea", Springer Science and Business Media LLC, 2011

11 words / < 1% match - Crossref

Marie-Hélène Radenac, Patricia E. Plimpton, Anne Lebourges-Dhaussy, Ludivine Commien, Michael J. McPhaden. "Impact of environmental forcing on the acoustic backscattering strength in the equatorial Pacific: Diurnal, lunar, intraseasonal, and interannual variability", Deep Sea Research Part I: Oceanographic Research Papers, 2010

11 words / < 1% match - Crossref

Madhupratap, M.. "Mesozooplankton biomass, composition and distribution in the Arabian Sea during the Fall Intermonsoon: implications of oxygen gradients", Deep-Sea Research Part II, 2001

11 words / < 1% match - Crossref

Mohan Shang, Dongjie Tang, Xiaoying Shi, Limin Zhou, Xiqiang Zhou, Huyue Song, Ganqing Jiang. "A pulse of oxygen increase in the early Mesoproterozoic ocean at ca. 1.57–1.56 Ga", Earth and Planetary Science Letters, 2019

11 words / < 1% match - Crossref

M Madhupratap, T.C Gopalakrishnan, P Haridas, K.K.C Nair. "Mesozooplankton biomass, composition and distribution in the Arabian Sea during the Fall Intermonsoon: implications of oxygen gradients", Deep Sea Research Part II: Topical Studies in Oceanography, 2001

11 words / < 1% match - Crossref

<u>Lingyun Nie, Jianchao Li, Hao Wu, Wenchao Zhang, Yongjun Tian, Yang Liu, Peng Sun, Zhenjiang Ye, Shuyang Ma, Qinfeng Gao.</u> "The Influence of Ocean Processes on Fine-Scale Changes in the Yellow Sea Cold Water Mass Boundary Area Structure Based on Acoustic Observations", Remote Sensing, 2023

11 words / < 1% match - Crossref

La, H.S., H.K. Ha, C.Y. Kang, A.K. Wåhlin, and H.C. Shin. "Acoustic backscatter observations with implications for seasonal and vertical migrations of zooplankton and nekton in the Amundsen shelf (Antarctica)", Estuarine Coastal and Shelf Science, 2015.

11 words / < 1% match - Crossref

Jourdin, Frédéric, Caroline Tessier, Pierre Hir, Romaric Verney, Michel Lunven, Sophie Loyer, André Lusven, Jean-François Filipot, and Jérémy Lepesqueur. "Dual-frequency ADCPs measuring turbidity", Geo-Marine Letters, 2014.

11 words / < 1% match - Crossref

H.S. La, H.K. Ha, C.Y. Kang, A.K. Wåhlin, H.C. Shin. "Acoustic backscatter observations with implications for seasonal and vertical migrations of zooplankton and nekton in the Amundsen shelf (Antarctica)", Estuarine, Coastal and Shelf Science, 2015

11 words / < 1% match - Crossref

Kunz, A.. "Luminescence dating of late holocene dunes showing remnants of early settlement in Cuddalore and evidence of monsoon activity in south east India", Quaternary International, 20100801

11 words / < 1% match - Crossref

<u>Frédéric Jourdin, Caroline Tessier, Pierre Le Hir, Romaric Verney et al. "Dual-frequency ADCPs measuring turbidity", Geo-Marine Letters, 2014</u>

11 words / < 1% match - Crossref

<u>Dwivedi Suneet, Mishra Alok Kumar, Srivastava Atul. "Upper ocean high resolution regional modeling of the Arabian Sea and Bay of Bengal", Acta Oceanologica Sinica, 2019</u>

11 words / < 1% match - Crossref

GEORGE L. HUNT. "Oceanography and ecology of the Aleutian Archipelago: spatial and temporal variation", Fisheries Oceanography, 11/2005

11 words / < 1% match - Crossref

Böll, Anna, Hartmut Schulz, Philipp Munz, Tim Rixen, Birgit Gaye, and Kay-Christian Emeis. "Contrasting sea surface temperature of summer and winter monsoon variability in the northern Arabian Sea over the last 25ka", Palaeogeography Palaeoclimatology Palaeoecology, 2015.

11 words / < 1% match - Crossref

Afzal Khan, Sk Masiul Islam, Shahzad Ahmed, Rishi R. Kumar, Mohammad R. Habib, Kun Huang, Ming Hu, Xuegong Yu, Deren Yang. "Direct CVD Growth of Graphene on Technologically Important Dielectric and Semiconducting Substrates", Advanced Science, 2018

11 words / < 1% match - Crossref

Conte, M.H.. "Transient physical forcing of pulsed export of bioreactive material to the deep Sargasso Sea", Deep-Sea Research Part I, 200310/11

11 words / < 1% match - Crossref

"Remote Sensing of the Changing Oceans", Springer Science and Business Media LLC, 2011

11 words / < 1% match - Crossref

"Remote Sensing of the Changing Oceans", Springer Nature, 2011

11 words / < 1% match - Internet from 20-Dec-2022 12:00AM www.yumpu.com

11 words / < 1% match - from 05-Jul-2024 12:00AM www.peeref.com

11 words / < 1% match - Internet from 06-Jan-2023 12:00AM www.ias.ac.in

11 words / < 1% match - from 15-Nov-2023 12:00AM www.nextbigfuture.com

11 words / < 1% match - from 14-Jan-2024 12:00AM worldwidescience.org

10 words / < 1% match - from 03-Jan-2024 12:00AM worldwidescience.org

11 words / < 1% match - Internet from 14-Mar-2022 12:00AM researcher.life

11 words / < 1% match - Internet

Sharma, Priya. "Spatio-Temporal Dynamics Of Phytoplankton Biomass From Ocean Color Remote Sensing And Cmip5 Model Suites", ScholarlyCommons, 2018

11 words / < 1% match - from 06-Jul-2024 12:00AM netlib.sandia.gov

10 words / < 1% match - from 06-Jul-2024 12:00AM netlib.sandia.gov
11 words / < 1% match - from 25-Jan-2024 12:00AM netlib.org
11 words / < 1% match - from 25-Jan-2024 12:00AM netlib.org
10 words / < 1% match - from 25-Jan-2024 12:00AM netlib.org
11 words / < 1% match - from 24-Dec-2023 12:00AM literature.pherobase.com
11 words / < 1% match - from 21-Jun-2024 12:00AM ouci.dntb.gov.ua
11 words / < 1% match - from 30-May-2024 12:00AM ouci.dntb.gov.ua
11 words / < 1% match - from 30-May-2024 12:00AM ouci.dntb.gov.ua
11 words / < 1% match - from 01-Oct-2023 12:00AM ouci.dntb.gov.ua
11 words / < 1% match - from 27-Oct-2024 12:00AM oceansociety.in
11 words / < 1% match - from 30-Jan-2024 12:00AM journalcra.com
11 words / < 1% match - Internet from 07-May-2014 12:00AM gallopingcamel.info
11 words / < 1% match - from 18-Mar-2023 12:00AM buscador.una.edu.ni
11 words / < 1% match - Internet from 14-Jan-2022 12:00AM api.crossref.org

do Rosário Gomes, Helga, Sergio deRada, Joaquim I. Goes, and Fei Chai. "Examining features of enhanced phytoplankton biomass in the Bay of Bengal using a coupled physical-biological model", Journal of Geophysical Research Oceans, 2016.

10 words / < 1% match - Crossref

Xiong Chen, Chongyin Li, Lifeng Li, Peilong Yu, Minghao Yang. "Interannual variations of the influences of MJO on winter rainfall in southern China", Environmental Research Letters, 2020

10 words / < 1% match - Crossref

<u>Vladislav Y. Petrusevich, Igor A. Dmitrenko, Andrea Niemi, Sergey A. Kirillov et al. "Impact of tidal dynamics on diel vertical migration of zooplankton in Hudson Bay", Ocean Science, 2020</u>

10 words / < 1% match - Crossref

<u>Veerasingam, S., Mahua Saha, V. Suneel, P. Vethamony, Andrea Carmelita Rodrigues, Sourav Bhattacharyya, and B.G. Naik. "Characteristics, seasonal distribution and surface degradation features of microplastic pellets along the Goa coast, India", Chemosphere, 2016.</u>

10 words / < 1% match - Crossref

V. Purnachandra Rao, B. Ramalingeswara Rao. "Provenance and distribution of clay minerals in the sediments of the western continental shelf and slope of India", Continental Shelf Research, 1995

10 words / < 1% match - Crossref

V. P. Akhil, M. Lengaigne, J. Vialard, F. Durand et al. "A modeling study of processes controlling the Bay of Bengal sea surface salinity interannual variability", Journal of Geophysical Research: Oceans, 2016

10 words / < 1% match - Crossref

V. Siegel. "Distribution and population dynamics of Euphausia superba: summary of recent findings", Polar Biology, 2005

10 words / < 1% match - Crossref

Wishner, Karen F., Dawn M. Outram, Brad A. Seibel, Kendra L. Daly, and Rebecca L. Williams. "Zooplankton in the eastern tropical north Pacific: Boundary effects of oxygen minimum zone expansion", Deep Sea Research Part I Oceanographic Research Papers, 2013.

10 words / < 1% match - Crossref

Wendi Zheng, Wen Zhou, Wenxi Cao, Lin Deng, Guifeng Wang, Zhantang Xu, Cai Li, Yuezhong Yang, Kai Zeng, Yu Zhang, Shuibo Hu. "Estimation of cell abundances of picophytoplankton based on the absorption coefficient of phytoplankton in the South China sea", Continental Shelf Research, 2021

10 words / < 1% match - Crossref

S. Veerasingam, Mahua Saha, V. Suneel, P. Vethamony, Andrea Carmelita Rodrigues, Sourav Bhattacharyya, B.G. Naik. "Characteristics, seasonal distribution and surface degradation features of microplastic pellets along the Goa coast, India", Chemosphere, 2016

10 words / < 1% match - Crossref

Ryuichiro Inoue, Minoru Kitamura, Tetsuichi Fujiki. " Diel vertical migration of zooplankton at the 1 biogeochemical mooring revealed from acoustic backscattering strength ", Journal of Geophysical Research: Oceans, 2016

10 words / < 1% match - Crossref

Rao, R.R.. "A cold pool south of Indo-Sri Lanka channel and its intrusion into the Southeastern Arabian Sea during winter", Deep-Sea Research Part I, 200808

10 words / < 1% match - Crossref

Ramaswamy, V.. "Regional variations in the fluxes of foraminifera carbonate, coccolithophorid carbonate and biogenic opal in the northern Indian Ocean", Deep-Sea Research Part I, 200602

10 words / < 1% match - Crossref

Ravichandran, M.. "Observed variability of chlorophyll-a using Argo profiling floats in the southeastern Arabian Sea", Deep-Sea Research Part I, 201207

10 words / < 1% match - Crossref

Roy, Rajdeep, Rajath Chitari, Vinayak Kulkarni, M.S. Krishna, V.V.S.S. Sarma, and A.C. Anil. "CHEMTAX-derived phytoplankton community structure associated with temperature fronts in the northeastern Arabian Sea", Journal of Marine Systems, 2015.

10 words / < 1% match - Crossref

R. Jyothibabu, N.V. Madhu, H. Habeebrehman, K.V. Jayalakshmy, K.K.C. Nair, C.T. Achuthankutty. "Reevaluation of 'paradox of mesozooplankton' in the eastern Arabian Sea based on ship and satellite observations", Journal of Marine Systems, 2010

10 words / < 1% match - Crossref

R. Dwi Susanto, Y. Tony Song. "Indonesian throughflow proxy from satellite altimeters and gravimeters", Journal of Geophysical Research: Oceans, 2015

10 words / < 1% match - Crossref

<u>Postel, L.. "Zooplankton biomass variability off Angola and Namibia investigated by a lowered ADCP and net sampling", Journal of Marine Systems, 200711</u>

10 words / < 1% match - Crossref

P. Amol, P.N. Vinayachandran, D. Shankar, V. Thushara, V. Vijith, Abhisek Chatterjee, A. Kankonkar. "Effect of freshwater advection and winds on the vertical structure of chlorophyll in the northern Bay of Bengal", Deep Sea Research Part II: Topical Studies in Oceanography, 2020

10 words / < 1% match - Crossref

Svetlana Fernandes, Subhrangshu Mandal, Kalyani Sivan, Aditya Peketi, Aninda Mazumdar. "Biogeochemistry of Marine Oxygen Minimum Zones with Special Emphasis on the Northern Indian Ocean", Wiley, 2022

10 words / < 1% match - Crossref

<u>Stephanie A. Henson. "Decadal variability in North Atlantic phytoplankton blooms", Journal of Geophysical Research, 04/25/2009</u>

10 words / < 1% match - Crossref

Shirin J. Jadhav, B. R. Smitha. "Abundance Distribution Pattern of Zooplankton Associated with the Eastern Arabian Sea Monsoon System as Detected by Underwater Acoustics and Net Sampling", Acoustics Australia, 2024

10 words / < 1% match - Crossref

Sehwa Chun, Hyoung Sul La, Wuju Son, Young Cheol Kim, Kyoung-Ho Cho, Eun Jin Yang. "Detection method for diel vertical migration", Methods in Ecology and Evolution, 2022

10 words / < 1% match - Crossref

Sehwa Chun, Hyoung Sul La, Wuju Son, Young Cheol Kim, Kyoung-Ho Cho, Eun Jin Yang. "Detection method for diel vertical migration pattern using cross-correlation with backscatter time-series data", Methods in Ecology and Evolution, 2022

10 words / < 1% match - Crossref

Narvekar, J.. "Seasonal variability of the mixed layer in the central Bay of Bengal and associated changes in nutrients and chlorophyll", Deep-Sea Research Part I, 200605

10 words / < 1% match - Crossref

McQuinn, Ian H., Stéphane Plourde, Jean-François St. Pierre, and Maxime Dion. "Spatial and temporal variations in the abundance, distribution, and aggregation of krill (Thysanoessa raschii and Meganyctiphanes norvegica) in the lower estuary and Gulf of St. Lawrence", Progress In Oceanography, 2015.

10 words / < 1% match - Crossref

Martin, M. V., and C. Shaji. "On the eastward shift of winter surface chlorophyll-a bloom peak in the Bay of Bengal", Journal of Geophysical Research Oceans, 2015.

10 words / < 1% match - Crossref

Maria Shamina D'Silva, Arga Chandrashekar Anil, Ravidas Krishna Naik, Priya Mallika D'Costa. "Algal blooms: a perspective from the coasts of India", Natural Hazards, 2012

10 words / < 1% match - Crossref

MADHUPRATAP, M.. "A first report on a bloom of the marine prymnesiophycean, Phaeocystis globosa from the Arabian Sea", Oceanologica Acta, 200001/02

10 words / < 1% match - Crossref

M Madhupratap, Mangesh Gauns, N Ramaiah, S Prasanna Kumar, P.M Muraleedharan, S.N de Sousa, S Sardessai, Usha Muraleedharan. "Biogeochemistry of the Bay of Bengal: physical, chemical and primary productivity characteristics of the central and western Bay of Bengal during summer monsoon 2001", Deep Sea Research Part II: Topical Studies in Oceanography, 2003

10 words / < 1% match - Crossref

M. Rakhesh, A. V. Raman, C. Kalavati, B. R. Subramanian, V. S. Sharma, E. Sunitha Babu, Nanduri Sateesh. "Zooplankton community structure across an eddy-generated upwelling band close to a tropical bay-mangrove ecosystem", Marine Biology, 2008

10 words / < 1% match - Crossref

M. Ravichandran, M.S. Girishkumar, Stephen Riser. "Observed variability of chlorophyll-a using Argo profiling floats in the southeastern Arabian Sea", Deep Sea Research Part I: Oceanographic Research Papers, 2012

10 words / < 1% match - Crossref

M. G. Keerthi, M. Lengaigne, K. Drushka, J. Vialard, C. de Boyer Montegut, S. Pous, M. Levy, P. M. Muraleedharan. "Intraseasonal variability of mixed layer depth in the tropical Indian Ocean", Climate Dynamics, 2015

10 words / < 1% match - Crossref

<u>Liljebladh, B.. "Krill behaviour as recorded by acoustic doppler current profilers in the Gullmarsfjord", Journal of Marine Systems, 200101</u>

10 words / < 1% match - Crossref

<u>Olascoaga, M.J.. "Biophysical isopycnic-coordinate modelling of plankton dynamics in the Arabian Sea", Ocean Modelling, 2005</u>

10 words / < 1% match - Crossref

K FOOTE. "Acoustical methods", ICES Zooplankton Methodology Manual, 2000

10 words / < 1% match - Crossref

K.O Coyle, A.I Pinchuk. "The abundance and distribution of euphausiids and zero-age pollock on the inner shelf of the southeast Bering Sea near the Inner Front in 1997–1999", Deep Sea Research Part II: Topical Studies in Oceanography, 2002

10 words / < 1% match - Crossref

K. Hudson, M.J. Oliver, J. Kohut, J.H. Cohen et al. "Subsurface Eddy Facilitates Retention of Simulated Diel Vertical Migrators in a Biological Hotspot", Journal of Geophysical Research: Oceans, 2022

10 words / < 1% match - Crossref

K. Hudson, M. J. Oliver, J. Kohut, J. H. Cohen et al. "Subsurface Eddy Facilitates Retention of Simulated Diel Vertical Migrators in a Biological Hotspot", Journal of Geophysical Research: Oceans, 2022

10 words / < 1% match - Crossref

Jørgen Berge, Finlo Cottier, Øystein Varpe, Paul E. Renaud et al. "Arctic complexity: a case study on diel vertical migration of zooplankton", Journal of Plankton Research, 2014

10 words / < 1% match - Crossref

<u>Jong-Yeon Park, Jong-Seong Kug. "Marine biological feedback associated with Indian Ocean Dipole in a coupled ocean/biogeochemical model", Climate Dynamics, 2013</u>

10 words / < 1% match - Crossref

Inoue, Ryuichiro, Minoru Kitamura, and Tetsuichi Fujiki. "Diel vertical migration of zooplankton at the S1 biogeochemical mooring revealed from acoustic backscattering strength", Journal of Geophysical Research Oceans, 2016.

10 words / < 1% match - Crossref

<u>Hunt Jr, G.L..</u> "Climate change and control of the southeastern Bering Sea pelagic ecosystem", <u>Deep-Sea Research Part II, 200212</u>

10 words / < 1% match - Crossref

<u>Helen E. Phillips, Viviane V. Menezes, Motoki Nagura, Michael J. McPhaden, P.N. Vinayachandran, Lisa M.</u> Beal. "Indian Ocean circulation", Elsevier BV, 2024

10 words / < 1% match - Crossref

Helga do Rosario Gomes, Joaquim I. Goes, S.G. Prabhu Matondkar, Sushma G. Parab, Adnan R.N. Al-Azri, Prasad G. Thoppil. "Blooms of Noctiluca miliaris in the Arabian Sea—An in situ and satellite study", Deep Sea Research Part I: Oceanographic Research Papers, 2008

10 words / < 1% match - Crossref

Karina von Schuckmann, Pierre-Yves Le Traon, Neville Smith, Ananda Pascual et al. "Copernicus Marine Service Ocean State Report", Journal of Operational Oceanography, 2018

10 words / < 1% match - Crossref

Karen F. Wishner, Dawn M. Outram, Brad A. Seibel, Kendra L. Daly, Rebecca L. Williams. "Zooplankton in the eastern tropical north Pacific: Boundary effects of oxygen minimum zone expansion", Deep Sea Research Part I: Oceanographic Research Papers, 2013

10 words / < 1% match - ProQuest

Karakuş, Onur. "Estimating the Effect of Krill on the Southern Ocean Ecosystem Functioning", Middle East Technical University (Turkey), 2024

10 words / < 1% match - Crossref

Kailasam Muni Krishna. "On the benefits of using a high-resolution mesoscale model to improve wind field for the study of upwelling off the Indian coasts", International Journal of Digital Earth, 2009

10 words / < 1% match - Crossref

Fielding, S.. "Mesoscale subduction at the Almeria-Oran front", Journal of Marine Systems, 200110

10 words / < 1% match - Crossref

<u>Dave, Apurva C., Andrew D. Barton, M. Susan Lozier, and Galen A. McKinley. "What drives seasonal change in oligotrophic area in the subtropical North Atlantic?", Journal of Geophysical Research Oceans, 2015.</u>

10 words / < 1% match - Crossref

George L. Hunt Jr, Phyllis Stabeno, Gary Walters, Elizabeth Sinclair, Richard D. Brodeur, Jeffery M. Napp, Nicholas A. Bond. "Climate change and control of the southeastern Bering Sea pelagic ecosystem", Deep Sea Research Part II: Topical Studies in Oceanography, 2002

10 words / < 1% match - Crossref

Gomes, H.d.R.. "Blooms of Noctiluca miliaris in the Arabian Sea-An in situ and satellite study", Deep-Sea Research Part I, 200806

10 words / < 1% match - Crossref

C. Karnan, R. Jyothibabu, T.M. Manoj Kumar, K.K. Balachandran, N. Arunpandi, L. Jagadeesan. "Seasonality in autotrophic mesoplankton in a coastal upwelling-mud bank environment along the southwest coast of India and its ecological implications", Continental Shelf Research, 2017

10 words / < 1% match - Crossref

Bhagyashri R. Naik, Mangesh Gauns, Kausar Bepari, Hema Uskaikar, Damodar M. Shenoy. "Variation in phytoplankton community and its implication to dimethylsulphide production at a coastal station off Goa, India", Marine Environmental Research, 2020

10 words / < 1% match - Crossref

Berge, J., F. Cottier, O. Varpe, P. E. Renaud, S. Falk-Petersen, S. Kwasniewski, C. Griffiths, J. E. Soreide, G. Johnsen, A. Aubert, O. Bjaerke, J. Hovinen, S. Jung-Madsen, M. Tveit, and S. Majaneva. "Arctic complexity: a case study on diel vertical migration of zooplankton", Journal of Plankton Research, 2014.

10 words / < 1% match - Crossref

Bengt Liljebladh, Maria A Thomasson. "Krill behaviour as recorded by acoustic doppler current profilers in the Gullmarsfjord", Journal of Marine Systems, 2001

10 words / < 1% match - Crossref

Ayaz Ahmed, Mangesh Gauns, Siby Kurian, Pratirupa Bardhan, Anil Pratihary, Hema Naik, Damodar M. Shenoy, S.W.A. Naqvi. "Nitrogen fixation rates in the eastern Arabian Sea", Estuarine, Coastal and Shelf Science, 2017

10 words / < 1% match - Crossref

Andreas Lorke, Daniel F. McGinnis, Piet Spaak, Alfred Wüest. "Acoustic observations of zooplankton in lakes using a Doppler current profiler", Freshwater Biology, 2004

10 words / < 1% match - Crossref

Andreas Lorke, Daniel F. McGinnis, Piet Spaak, Alfred Wuest. "Acoustic observations of zooplankton in lakes using a Doppler current profiler", Freshwater Biology, 2004

10 words / < 1% match - Crossref

Andreas Lorke. "Acoustic observations of zooplankton in lakes using a Doppler current profiler", Freshwater Biology, 10/2004

10 words / < 1% match - Crossref

Anya Chaudhuri, D Shankar, S G Aparna, P Amol et al. "Observed variability of the West India Coastal Current on the continental slope from 2009–2018", Journal of Earth System Science, 2020

10 words / < 1% match - Crossref

Ambica Behara, P.N. Vinayachandran, D. Shankar. "Influence of Rainfall over Eastern Arabian Sea on its Salinity", Journal of Geophysical Research: Oceans, 2019

10 words / < 1% match - Crossref

A Mukherjee, D Shankar, V Fernando, P Amol et al. "Observed seasonal and intraseasonal variability of the East India Coastal Current on the continental slope", Journal of Earth System Science, 2014

10 words / < 1% match - Crossref

Chenghao Yang, Dongfeng Xu, Zuozhi Chen, Jun Wang, Mingquan Xu, Yaochu Yuan, Meng Zhou. "Diel vertical migration of zooplankton and micronekton on the northern slope of the South China Sea observed by a moored ADCP", Deep Sea Research Part II: Topical Studies in Oceanography, 2019

10 words / < 1% match - Crossref

Coyle, K.. "The abundance and distribution of euphausiids and zero-age pollock on the inner shelf of the southeast Bering Sea near the Inner Front in 1997-1999", Deep-Sea Research Part II, 200212

10 words / < 1% match - from 10-Feb-2024 12:00AM <u>uwspace.uwaterloo.ca</u>

10 words / < 1% match - Internet from 26-Sep-2022 12:00AM www.research-collection.ethz.ch

10 words / < 1% match - Internet from 15-Oct-2022 12:00AM www.fao.org

10 words / < 1% match - Internet from 04-Feb-2023 12:00AM www.clivar.org

10 words / < 1% match - Internet from 29-Sep-2019 12:00AM www.ocean-sci.net

10 words / < 1% match - Internet from 30-Aug-2019 12:00AM www.ocean-sci.net

10 words / < 1% match - from 28-Jul-2023 12:00AM pdffox.com

10 words / < 1% match - from 26-Nov-2023 12:00AM pdfcookie.com

10 words / < 1% match - from 09-Nov-2023 12:00AM paparesearch.com

10 words / < 1% match - Internet from 28-Nov-2019 12:00AM spotidoc.com

10 words / < 1% match - from 27-Jan-2024 12:00AM sportdocbox.com Content Tracking

1/8/25, 10:15 AM

10 words / < 1% match - Internet from 28-Nov-2022 12:00AM
skemman.is

10 words / < 1% match - Internet from 01-Dec-2022 12:00AM
nsgl.gso.uri.edu

10 words / < 1% match - from 10-Jul-2024 12:00AM
oro.open.ac.uk

10 words / < 1% match - Internet from 05-Oct-2020 12:00AM hsbiblio.uni-tuebingen.de

10 words / < 1% match - Internet from 09-Jun-2020 12:00AM escholarship.org

10 words / < 1% match - from 12-Jul-2024 12:00AM dipot.ulb.ac.be

10 words / < 1% match - from 23-Feb-2024 12:00AM d-nb.info

10 words / < 1% match - from 01-Aug-2023 12:00AM gmd.copernicus.org