Université libre de Bruxelles

INFO-F-409 - Learning Dynamics

Assignment Two

 $Raymond\ Lochner\ -\ 000443637$ raymond.lochner@ulb.ac.be

Contents

1	Part One - Spatial Prisoners Dilemma	1
	1.1 Moore Neighborhood	1
2	Part Two	7
3	Part Three	8

Preliminary information

Each simulation was being executed 100 times. For the visualizations:

- ullet Red signifies the action cooperation
- ullet Blue signifies the action defection

Graphic displays one specific game, Graph shows information of all games

1 Part One - Spatial Prisoners Dilemma

1.1 Moore Neighborhood

1.1.1 4x4

Figure 1: Prisoners Dilemma, Moore, 4x4

From simulating 100 runs we observe that all converge to *defecting*. It is however possible that it converges to a cooperative field, but it requires that we have a sub-matrix of 2x2 with only cooperators and all other players being defectors. This did obviously not happen during one of the simulations.

1.1.2 8x8

Figure 3: Prisoners Dilemma, Moore, 8x8

From simulating 100 runs we observe that all converge to *defecting*. It is however possible that it converges to a cooperative field, but it requires that we have a sub-matrix of 2x2 with only cooperators and all other players being defectors. This did obviously not happen during one of the simulations.

1.1.3 12x12

Figure 5: Prisoners Dilemma, Moore, 12x12

1.1.4 20x20

Figure 6: Prisoners Dilemma, Moore, 20x20

$1.1.5 \quad 50 \text{x} 50$

Figure 7: Prisoners Dilemma, Moore, 50x50

2 Part Two

3 Part Three