

Liga Młodszych - Rozwiązania

Zadanie 1. Niech n będzie liczbą całkowitą dodatnią. Wykaż, że:

$$1 + \frac{1}{2^3} + \frac{1}{3^3} + \ldots + \frac{1}{n^3} < \frac{3}{2}$$

Rozwiązanie Dla n = 1 nierówność zachodzi.

Dla $n \ge 2$ udowodnimy przez indukcję mocniejszą nierówność

$$1 + \frac{1}{2^3} + \frac{1}{3^3} + \dots + \frac{1}{n^3} < \frac{3}{2} - \frac{1}{n+1}$$

Baza indukcyjna n=2 działa, bo $1+\frac{1}{8}=\frac{9}{8}<\frac{3}{2}-\frac{1}{3}=\frac{6}{7}$. Zakładamy, że dla n zachodzi podana nierówność i wykażemy, że wówczas dla n+1 również zachodzi.

$$1 + \frac{1}{2^3} + \frac{1}{3^3} + \dots + \frac{1}{n^3} + \frac{1}{(n+1)^3} < \frac{3}{2} - \frac{1}{n+1} + \frac{1}{n^3+1} = \frac{3}{2} - \frac{n^2 - n}{n^3 + 1} < \frac{3}{2} - \frac{1}{n+2}$$

Ostatnia nierówność zachodzi, bo

Rudki 27.09.2022

$$\frac{3}{2} - \frac{n - n^2}{n^3 + 1} < \frac{3}{2} - \frac{1}{n + 2} \Leftrightarrow \frac{1}{n + 2} < \frac{n - n^2}{n^3 + 1} \Leftrightarrow n^3 + 1 < (n^2 - n)(n + 2) = n^3 + n^2 - 2n \Leftrightarrow 0 \leqslant (n - 1)^2$$

Zadanie 2. Wyznaczyć wszystkie wielomiany P o współczynnikach całkowitych, które spełniają warunek: dla dowolnej liczby całkowitej $n \ge 1$ liczba P(n) jest pierwsza.

Rozwiązanie Udowodnimy, że jedynymi rozwiązaniami sa wielomiany stałe (równe stale pewnej liczbie pierwszej). Z założenia wiemy, że P(1) = p, gdzie p jest liczbą pierwszą. Z podstawowej własności dla $k \ge 1$ mamy teraz

$$pk = (pk + 1) - 1 \mid P(pk + 1) - P(1) = P(pk + 1) - p.$$

Stąd wynika, że $p \mid P(pk+1)$ dla dowolnej liczby całkowitej $k \ge 1$. Z założenia wiemy jednak, że ta liczba jest pierwsza, a więc skoro podzielna przez p, to równa p. A zatem P(pk+1) = p dla dowolnej liczby całkowitej $k \ge 1$. Stąd wynika, że wielomian P(x) - p posiada nieskończenie wiele pierwiastków, a więc jest stale równe 0. Czyli wielomian P jest stale równy p i dowód jest zakończony.

Zadanie 3. Znajdź wszystkie pary liczb całkowitych x i y spełniające równanie

$$2x^6 + y^7 = 11$$

Rozwiązanie Będziemy chcieli pokazać, że nie ma takich liczb, rozważając to równanie dla pewnego modulo.

W celu wybrania odpowiedniego modulo udowodnimy pewien lemacik:

Dla $p \in \mathbb{P}, x^a$ przyjmuje $\frac{p-1}{NWD(p-1,a)} + 1$ różnych wartości mod p.

Dowód: Weźmy generator g modulo p. Każdemu r takiemu, że $1 \leqslant r \leqslant p-1$ możemy wzajemnie jednoznacznie przypisać b spełniające $1 \leqslant b \leqslant p-1$ tak, że $g^b \equiv_p r$. Wtedy $\{1,2,\ldots,p-1\} \equiv_p \{g^{b_1},g^{b_2},\ldots,g^{b_{p-1}}\} \equiv_p \{g^1,g^2,\ldots,g^{p-1}\}$, czyli $\{1^a,2^a,\ldots,(p-1)^a\} \equiv_p \{g^a,g^{2a},\ldots,g^{(p-1)a}\}$. Zachodzi

$$g^{an} \equiv_p g^{am} \iff an \equiv_{p-1} am \iff n \equiv m \mod \frac{p-1}{NWD(a, p-1)}.$$

Wynika z tego, że dla każdego n, spośród liczb $1, 2, \ldots, p-1$, istnieje dokładnie NWD(a, p-1) takich m, że $g^n \equiv_p g^m$. Różnych $x^a \mod p$ dla $1 \leqslant x \leqslant p-1$, jest więc $\frac{p-1}{NWD(a,p-1)}$. Oczywiście jest też wartość 0, której tu nie policzyliśmy.

Powyższy lemat pozwala nam określić, jakiego modulo potrzebujemy. Aby zminimalizować ilość wartości x^6 oraz y^7 , najlepiej wybrać takie p, że p-1 ma jak największe wspólne dzielniki z liczbami 6 i 7. Najlepszym kandydatem jest wiec $43 = 6 \cdot 7 + 1$.

Najpierw dla ułatwienia obliczeń znajdziemy generator modulo 43. Modulo 43, x jest generatorem wtedy i tylko wtedy, gdy $x^6 \not\equiv_p 1 \land x^{14} \not\equiv_p 1 \land x^{21} \not\equiv_p 1$. Generatora będziemy szukać sprawdzając kolejne liczby naturalne nie będące kwadratem liczby całkowitej. Sprawdzamy, że:

$$2^{14} \equiv_p (2^7)^2 \equiv_p 128^2 \equiv_p (-1)^2 \equiv_p 1$$

czyli 2 nie jest generatorem. Następnie testujemy 3:

$$3^{6} \equiv_{p} 38 \cdot 3 \cdot 3 \equiv_{p} 28 \cdot 3 \equiv_{p} -2$$
$$3^{7} \equiv_{p} -2 \cdot 3 = -6$$
$$3^{14} \equiv_{p} 36$$
$$3^{21} \equiv_{p} -216 \equiv_{p} -1$$

czyli 3 jest generatorem modulo 43.

Wiedząc że 3 jest generatorem, możemy łatwo wyznaczyć wszystkie wartości x^6 i y^7 : wartości x^6 to wartości 3^{6a} , a wartości y^7 to wartości 3^{7a} (i każde z nich może też przyjąć wartość 0). Mnożąc kolejno 3^6 przez siebie, otrzymujemy wartości -2, 4, -8, 16, -32, 21, 1, a z 3^7 otrzymujemy wartości -6, 36, -1, 6, -36, 1. Zbiór wartości $2x^6$ to więc $\{0, 2, 8, 22, 27, 32, 39, 42\}$, a zbiór wartości $11 - y^7$ to $\{4, 5, 10, 11, 12, 17, 18\}$. Nie istnieje element należący do obu z nich, czyli równanie $2x^6 = 11 - y^7$ nie ma rozwiązań modulo 43, a więc również rozwiązań całkowitych.

Zadanie 4. 2021-kat foremny jest podzielony przekatnymi na trójkaty (żadne dwie przekatne się nie przecinaja).

Udowodnij, że co najmniej jeden z tych trójkątów jest ostrokątny.

Rozwiązanie 2021-kąt foremnny da się wpisać w okrąg. Rozważmy środek okręgu opisanego na tym wielokącie. Wiemy, że trójkąt jest ostrokątny \Leftrightarrow gdy środek okręgu opisanego znajduje się wewnątrz tego trójkąta. Żadna przekątna 2021-kąta nie przechodzi przez środek jego okręgu opisanego oraz ten środek leży wewnątrz wielokąta. Zatem po podziale na trójkąty będzie istniał taki, w którym środek tego okręgu będzie leżał w jego wnętrzu, stąd będzie ostrokątny.

Zadanie 5. Dana jest liczba całkowita dodatnia n. Udowodnij, że dla dowolnych liczb całkowitych dodatnich a,b,c nieprzekraczających $3n^2+4n$ istnieją liczby całkowite x,y,z, takie że ich wartość bezwzględna nie przekracza 2n, nie wszystkie są równe 0 oraz ax+by+cz=0. **Rozwiązanie** Załóżmy bez straty ogólności, że a jest największą z tych trzech liczb. Gdy a=b lub a=c, to działa odpowiednio x=1,y=-1,z=0 i x=1,y=0,z=-1. W takim razie a>b,c.

Idea rozwiązania jest następująca: chcemy pokazać, że można wybrać y,z w dozwolonym przedziale takie, że by+cz jest podzielne przez a. Jeżeli uda się takie by+cz znaleźć i okaże się ono stosunkowo małe, tj w przedziale [-2an,2an], to możemy wybrać $x=-\frac{by+cz}{a}$, co rozwiąże zadanie.

Aby by+cz było w przedziale [-2an, 2an] wystarczy, aby zachodziła nierówność $-2n \leqslant \frac{by+cz}{a} \leqslant 2n$. Ta nierówność na pewno zachodzi, jeśli y, z są przeciwnych znaków. Gdyby udało się zagwarantować, że $-2n-1 \leqslant x+y \leqslant 2n+1$, to nierówność by zachodziła również gdy x,y są tych samych znaków, bo a>b,c oraz $\frac{by+cz}{a}$ jest liczbą całkowitą. Nasz cel to zatem znaleźć y,z takie, że:

$$1. -2n \leqslant y, z \leqslant 2n$$

$$2. \ a \mid by + cz$$

$$3. -2n - 1 \le y + z \le 2n + 1$$

Warunek 2. można spełnić tak: gdyby istniały bY+cZ i bY'+cZ' dające tą samą resztę z dzielenia przez a, to b(Y-Y')+c(Z-Z') daje resztę 0. Warunki 1. i 3. byłyby spełnione, gdyby zmienne Y,Y',Z,Z' spełniały dodatkowo nierówności $0 \le Y,Z,Y',Z' \le 2n$ i $n \le Y+Z,Y'+Z' \le 3n+1$. Policzmy więc, ile jest y,z spełniających warunki $0 \le y,z \le 2n$ i $n \le y+z \le 3n+1$. Jeśli y=0, to z można wybrać na n+1 sposobów. Jeśli $1 \le y \le n$, to z można wybrać na n+y+1 sposobów. Jeśli $n+1 \le y \le 2n$, to z można wybrać na z0 sposobów. Sumując to otrzymujemy

$$(n+1)+(n+1+1)+(n+1+2)+\ldots+(n+1+n)+(3n+2-n-1)+(3n+2-n-2)+\ldots+(3n+2-n-n)$$

$$= n+1+n\cdot(n+1)+n\cdot(2n+2)=3n^2+4n+1$$

Jest to więcej niż $a \leq 3n^2 + 4n$, więc z zasady szufladkowej Dirichleta pewne dwie reszty z dzielenia przez a muszą się powtarzać.

Zadanie 6. Na nieskończonej szachownicy jest n^2 kamyczków ułożonych w kwadrat $n \times n$. Kamyczek zajmuje jedno pole tej szachownicy. Andrzej i Bajorek grają w następującą grę: Ruch polega na wybraniu jednego z kamyczków i przeskoczeniu nim nad jednym z jego sąsiednich kamyczków. Kamyczek przeskoczony znika. Skakać można tylko równolegle do osi x i y. Dla jakich n możliwe jest, że gra skończy się z tylko jednym kamyczkiem pozostałym na szachownicy?

Rozwiązanie Udowodnimy, że dla n=3k+1 i n=3k+2 możliwa jest taka gra, a dla n podzielnych przez 3 nie.

Zauważmy, że jeśli mamy kamyczki w takiej pozycji zwanej dalej "L":

to możemy usunąć 3 kamyczki które stoją w linii, skacząc pozostałym czwartym w górę, lewym z linii w prawo, a następnie wracając czwartym kamyczkiem w dół.

Pokażemy indukcyjnie, że dla n=3k+1 i n=3k+2 da się grać w sposób prowadzący do pozostanięcia jednego kamyczka. Gdy n=1 od razu mamy oczekiwaną pozycję, dla n=2 skaczemy lewymi w prawo, a następnie dolnym w górę, bazę indukcyjną mamy dowiedzioną (k=0), ustalmy k>1 i załóżmy, że dla mniejszych k teza zachodzi.

Zauważmy, ze dla n = 3k + 1 możemy poprzez usunięcie obwódki (zaczynamy z lewego górnego rogu i usuwamy prostokaty 3×1 po obwodzie przejść do przypadku n = 3(k - 1) + 2.

Dla n=3k+2 możemy poprzez usuwanie prostokątów 2×3 (2 linie po 3 kamyki, usuwamy najpierw zewnętrzną potem wewnętrzną) po obwodzie analogicznie do wcześniejszego przypadku, redukujemy w ten sposób do planszy dla n=3(k-1)+1 co dowodzi, że da się wykonać takie gry (dla planszy 5×5 wykorzystujemy środkowe pole do usuwania wewnętrznych prostokątów 3×1).

Do udowodnienia postulowanej tezy brakuje nam dowodu, że dla n=3k nie da się wykonać takiej gry, aby został jeden kamyk.

W tym celu ponumerujmy liczbami całkowitymi wiersze i kolumny, tak aby dolne lewe pole kwadratu $n \times n$ z kamyczkami na początku to było (1,1) a górne prawe (n,n), reszta kolumn i wierszy jest numerowana w naturalny sposób wynikający z współrzędnych tych dwóch pól. Wreszcie niech pole (x,y) ma przypisaną do siebie liczbę równą x+y mod 3.

Na planszy $3k \times 3k$ mamy po równo 0, 1, 2, ponieważ w każdym rzędzie $3k \times 1$ jest dokładnie k pól każdego rodzaju. Dozwolone ruchy nie zaburzają niezmiennika, który mówi, że modulo 2 liczby pól z kamykami o danych numerach (0, 1, 2) są równe, więc na końcu gry też tak musi być, co dowodzi, że dla n = 3k szukana rozgrywka nie istnieje.

Zadanie 7. Prosta przechodząca przez środek okręgu wpisanego I trójkąta ABC przecina boki AB i BC w punktach M i N odpowiednio. Punkty K i L wybrane są na boku AC w taki sposób, że $\triangleleft ILA = \triangleleft IMB$ oraz $\triangleleft IKC = \triangleleft INB$. Jeśli trójkąt BMN jest ostrokątny to udowodnij, że AM + KL + CN = AC.

Rozwiązanie Zdefiniujmy punkt M', że leży na boku AC i AM = AM'. Ponieważ AI jest dwusieczną to trójkąty MAI i M'AI są przystające (bkb) to IM = IM'. Ponadto z równości kątów w zadaniu, dostajemy, że MALI jest cykliczny. Skoro $\angle MAI = \angle LAI$ to IM = IL. Analogicznie definiujemy punkt N' i dowodzimy jego własności. Teza zadania równoważna jest z tym, że KL = M'N'. Wynika to wprost, że trójkąty KIN' i M'IL są równoramienne.