Nov 2002, Presentation UAV Workshop, Bath University

TOWARDS DESIGNING HIGH ASPECT RATIO HIGH ALTITUDE JOINED-WING SENSOR-CRAFT (HALE-UAV)

Dr. R. K. Nangia

Bsc PhD CEng AFAIAA FRAeS

Nangia Aero Research Associates,

BRISTOL, UK.

Copyright c: Nangia 2002, Published by University of Bath with permission

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington	
		2. REPORT TYPE N/A		3. DATES COVERED		
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER					
Towards Designing Sensorcraft (HALI	ed-Wing	-Wing 5b. GRANT NUMBER				
bensoreran (IIIIDE-UAV)				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Nangia Aero Research Associates, BRISTOL, UK.				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
	otes 85, CSP 02-5078, Pr al document contain	•	lynamic Issues of	f Unmanned	Air Vehicles	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 66	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

ACKNOWLEDGEMENTS

- The work is part of in-house R & D activities and also supported in part by the USAF-EOARD.
- The authors have pleasure in acknowledging helpful technical discussions with Dr. D. Multhopp, Dr Carl Tilmann, Dr. C. Jobe, Dr. W. Blake (all from US-AFRL), Dr. M. E. Palmer.
- Lastly, any opinions expressed are those of the author.

This Presentation

- Introduce HALE-UAV
- A Vision of Future Sensor Craft Importance
- Joined-Wing Configs.
- 2-D Laminar Aerofoils
- Aspects of 3-D Design, different Swept Tips
- LE Suction Control, Elliptic loadings, Neutral Stab.
- CFD Checks
- Inverse 3-D Design Capabilities
- Intake Design Preliminary Work
- Avenues for Further Work

Typical HALE Global Hawk

span: 116 ft, length 44 ft light composites, aluminium fuselage, COST \$10M

Range 12000 nm, AUW 25,600 lb, range up to 2000nm at 65000ft

flies to an area 1200 miles and remains on station 24 hrs

cloud penetrating synthetic aperture radar / ground moving target indicator, electro-optical and infra-red sensors

image an area 40,000 square miles (State of Illinois) in 24 hours

Bending Moments acting on an Inboard-Jointed Joined Wing.

TRANSPORTS

AC2ISR: What the Future Will Bring

Right Info to the Right Warfighter at the Right Time for the Right Decision

Sensor Craft UAV as Element of Global Awareness/Global Engagement Vision

Other joined-wing possibilities

Mission profile and requirements

Mission Segments

- 1. Engine Start & Warm-up
- 2. Taxi
- 3. Takeoff
- 4. Climb & Accelerate to Cruise
- 5. Cruise out 3000
- 6. Loiter
- 7. Return Cruise
- 8. Descend
- 9. Loiter at Sea Level
- 10. Landing, Taxi, Shutdown

Cruise Radius: 3000 nm

<u>Loiter</u>: 65 Kft for 40 - 80 hr (at 3000 nm range)

Payload: 4000 lb Field Length: 5350 ft over 50 ft Obstacle (SLS)

Control: 20 kt cross-wind on takeoff and landing

Flight duration 4-6 days

Implies a Wide Flight Envelope

T/W range of interest: .30 -.50

Reference Configuration - Antenna Integration

19.6% t/c, Navier-Stokes Results at Re 1 million, Mach 0.01, Biber & Tilmann

2-D CALCULATIONS, INVISCID, MACH no VARIES from 0.0 to 0.6

2-D CALCULATIONS, INVISCID, MACH no VARIES from 0.0 to 0.6

SUMMARISING THE AEROFOIL PERFORMANCE, LAMINAR FLOW CAPABILITY Uncambered & Cambered

AT! CONFIGURATION

AT!, BASIC CHARACTERISTICS, Uncambered Aerofoils Cp Distributions & Interference Effects On Spanwise Loadings

DESIGNED WING, Super-Critical Type Aerofoil, Twist & camber

Assume Zero Static Margin (Neutral Stability)
Respective Wing Settings Follow, Use Panel Method

Spanwise Loadings AoA = 3.25, 4.25, 5.25

(a) $(\alpha, C_L) = (3.25^\circ, 0.588)$

Cp Distbns.

AoA = 3.25, 4.25, 5.25

Mach no

Euler, M=0.6, Design AoA + 0 deg, CL = 0.51, Upper Surface

Mach no.

Euler, M=0.6, Design AoA + 4 deg, CL = 1.08, Upper Surface

POWERFUL INVERSE METHOD, KNOWN Target Pressure Distbn. "Supplanted" on a GIVEN WING

COMPARING AEROFOIL SECTIONS ON FRONT WING AT START & AFTER 6 CYCLES (WING AND TAIL BOTH MODELLED)

Laminar AT1

SPANWISE LOADINGS AT Mach 0.6, CL=0.72, 0.9,1.07,1.25.1.43,1.6

COMPARING UNCAMBERED & DESIGNED CONFIGS AT SAME CL VALUES

COMPARING UNCAMBERED & DESIGNED CONFIGS AT SAME CL VALUES

COMPARING UNCAMBERED & DESIGNED CONFIGS AT SAME CL VALUES

SPANWISE LOADINGS AT Mach 0.15, CL=0.63, 0.74,0.94,1.1.1.26,1.41

Forward Swept Tip FT1 Laminar

SPANWISE LOADINGS AT Mach 0.6, CL=0.72, 0.9,1.07,1.24.1.43,1.6

COMPARING UNCAMBERED & DESIGNED CONFIGS AT SAME CL VALUES

COMPARING UNCAMBERED & DESIGNED CONFIGS AT SAME CL VALUES

Possibly Exceeding Laminar limits at Wing Junction

CL=1.6

COMPARING UNCAMBERED & DESIGNED CONFIGS AT SAME CL VALUES

Complexity Level

M, MFR variation

M, a & MFR

Geometry, M, a, & & MFR

Geometry, Scarf, M. a. B & MFR

forward-swept corner

Geometry, Scarf, Installation M, a, 8 & MFR

ORDER OF COMPLEXITY

EFFECT OF MFR & α , ONSET OF EXTERNAL & INTERNAL LIP SEPARATION

UNSCARFED INTAKES

UNSCRAFED, SCARFED & 3-D STEALTHY INTAKES

Intakes, Propulsion

- Shown a Preliminary set of Results
- Sizing is the first Concern
- Altitude of Operation!
- Off-Design
- Suitable Power-plants!
- Possibly Two needed
- Work Continues
- Experimental Work needed

Configuration & Structure

- Configuration / Layout
- What Light Materials
- One or two Fuselage
- Are such high AR craft feasible, structure
- Aero-elastic tailoring
- Manufacturing Constraints

Aerodynamics / Flow Control / Control

- Viscous Effects: Laminar Flow Extent
- Spanwise press. gradients
- Effect of Sweep, lower sweep Config. !
- Field performance
- Off-design, side-slip
- Controls location, pitch, directional & lateral
- Off-design
- Flow control, what & where!

Experimental work

- Difficulty in modelling large AR Configs
- Reynolds Number Considerations
- Laminar flow in WT!
- Half models
- Control effects not representative of full-scale
- A Radio Control Free-Flight Model!
- Propulsion Integration Considerations

Concluding Remarks

- Introduced HALE UAV
- A Vision of Future Sensor Craft Importance
- Joined-Wing Configs.
- 2-D Laminar Aerofoils
- Different Type of Swept-Tips in 3-D
- Aspects of 3-D Design
- LE Suction Control, Elliptic loadings, Neutral Stab.
- CFD Checks Forward-Swept Root area
- Inverse Design Capabilities
- Intake Design Preliminary Work
- Avenues for Further Work

*** Thank You for Listening ***

So I hope, enough has been shown to interest and inform you in the fast moving field of Sensor-Craft PLENTY of Further Work!

Shall we try Comments and Questions?

