PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY(Autonomous) KANURU, VIJAYAWADA

Department of CSE (DATA SCIENCE) II B.Tech – II Semester

Advanced Competitive Programming

Course Code	20SO8456	Year	II	Semester	II
Course Category	SOC2	Branch	CSE(Data Science)	Course Type	Theory
Credits	2	L-T-P	1-0-2	Prerequisites	Foundations of Competitive Programming, Data Structures
Continuous Evaluation :	-	Semester End Evaluation:	50	Total Marks:	50

	Syllabus – Course Contents				
Week 1	• Apply Binary Tree concepts to solve the Level Order Print, Tree Diameter Concept, Tree Diameter Optimized Code, Replace with Descendant Sum, Height of Tree, Height Balanced Tree Concept, Max Subset Sum Tree, Print At Level K, Nodes at Distance K, Nodes at Distance K Code, Vertical Order Print, Sorted Nodes at Distance K, Siblings Swap problems.				
Week 2	Exercise problems on Binary Trees: • https://www.hackerrank.com/domains/datastructures?filters%5Bsubdomains%5D%5 B%5D=trees • https://www.hackerearth.com/practice/data-structures/trees/binary-and-nary-trees/practice-problems/				
Week 3	 Apply Binary Search Tree concepts to solve Minimum Height BST, Closest in BST, In order Successor in BST, IsBST, LCA, Shortest Tree Path 				
Week 4	Exercise problems on Binary Search Trees: • https://www.hackerearth.com/practice/data-structures/trees/binary-search-tree/practice-problems/ • https://www.hackerrank.com/domains/datastructures?filters%5Bsubdomains%5D%5 B%5D=trees				
Week 5	• Apply Priority Queue concepts to solve Sorting using Heap, Finding Cabs Implementation, Merging Ropes, Running Median, Running Median Class, Merging K-Arrays, Merge K-Sorted Arrays, problems				
Week 6	Exercise problems on Priority Queue: • https://www.hackerrank.com/domains/datastructures?filters%5Bsubdomains%5D%5 B%5D=heap • https://www.hackerearth.com/practice/data-structures/trees/heapspriority-queues/practice-problems/				
Week 7	• Apply Hashing technique to solve Triplets in GP, Hashing with Slider, Triplets in GP Implementation, Counting Rectangles Sets, Counting Rectangles Implementation, Counting Triangles Unordered Maps, Counting Triangles Implementation, Anagrams in Substrings Maps, Anagrams in Substrings Implementation Quick Brown Fox Implementation, Common Elements, First Repeating Letter, Break the chain, Minimum Bars, Group Anagrams, Longest k-sum Subarray problems				
Week 8	Exercise problems on Hashing Technique: • https://www.hackerearth.com/practice/data-structures/hash-tables/basics-of-hash-tables/practice-problems/				
Week 9	 Apply Graph data structure to solve Cycle Detection in Undirected Graph, Backedge Detection, Cycle Detection in Directed Graph, Board Game Implementation, Storing Weighted Graphs, Astronaut Pairs, Graph Sequence, Largest Island, Shortest Grid Path, Minimum Spanning Trees, Kruskal Algorithm Prims Algorithm, Explaining Dijkstra Algorithm, Bellman-Ford Algorithm and Floyd-Warshall Algorithm, Bipartite Graph Test 				

Week 10	Exercise problems on Graph data structure:				
	• https://www.hackerrank.com/domains/algorithms?filters%5Bsubdomains%5D%5B%5D=				
	graph-theory				
	https://codeforces.com/				
	https://www.codechef.com/				
Week 11	Apply Divide and Conquer to solve the problems				
	• https://codeforces.com/				
	https://www.codechef.com/				
	• https://leetcode.com/				
Week 12	Apply Greedy Algorithms to solve the problems				
	 https://www.hackerearth.com/practice/algorithms/greedy/basics-of-greedy- 				
	algorithms/practice-problems/				
	• https://www.hackerrank.com/domains/algorithms?filters%5Bsubdomains%5D%5B%				
	5D=greedy				
	• https://codeforces.com/				
	• https://www.codechef.com/				
	https://leetcode.com/ A rely Pools Tracing To keing to colve the graphlems				
	Apply Back Tracing Technique to solve the problems https://codeforces.com/ 				
Week 13	https://www.codechef.com/				
	https://leetcode.com/				
	• <u>nttps://leetcode.com/</u>				
	Apply Dynamic Programming to solve the problems				
Week 14	 https://www.hackerrank.com/domains/algorithms?filters%5Bsubdomains%5D%5B% 				
	5D=greedy&filters%5Bsubdomains%5D%5B%5D=dynamic-programming				
	Apply Dynamic Programming to solve the problems				
	 https://www.hackerearth.com/practice/algorithms/dynamic- 				
	programming/introduction-to-dynamic-programming-1/practice-problems/				
Week 15	• https://www.codechef.com/practice?end_rating=1199&group=all&itm_campaign=pr				
	actice&itm_medium=navmenu&limit=20&page=0&search=&sort_by=difficulty_rating&s				
	ort_order=asc&start_rating=1000&tags=&topic=Dynamic%20Programming&v				
W1-16	ideo_editorial=0&wa_enabled=0				
Week 16	Case Study				

LEARNING RESOURCES

Text Books

- 1. Guide to Competitive Programming; Learning and improving Algorithms Through Contests, Antti Laaksonen, Second Edition, 2020, Springer.
- 2. Programming Challenges: The Programming Contest Training Manual, Steven S. Skiene, 2006, Springer.
- 3. Introduction to Algorithms, Thomas H. Cormen, Third Edition, 2009, PHI Learning Pvt. Ltd.

e-Resources & other digital material

- 1. https://www.hackerrank.com
- 2. https://www.hackerearth.com
- 3. https://www.codeforces.com
- 4. https://www.codechef.com
- 5. https://www.leetcode.com
- 6. https://www.interviewbit.com
- 7. https://www.topcoder.com
- 8. https://www.geeksforgeeks.com
- 9. https://www.codewars.com