北京师范大学 2021 ~ 2022 学年第二学期期末考试试卷 (A 卷)

课程名称:	高等代数 II			任课老师姓名:					<u> </u>
卷面总分:	_100	分	考试时长:	_120_	分钟	考试类别:	闭卷⊠	开卷□	其他 🗆

一、(15分)判断5是否为实系数多项式

$$f(x) = 3x^5 - 224x^3 + 742x^2 + 5x + 50$$

的根,如果是的话,是几重根?

- 二、(15分)
 - (1) (8 分) 假设实系数多项式 f(x), g(x) 互素,证明:对任意正整数 $n, f(x^n)$ 与 $g(x^n)$ 互素。
 - (2) (7 分) 假设 f(x) 是整系数多项式且 f(1) 和 f(2) 都是奇数。证明: f(x) 没有整数根。
- 三、(15 分) 对于实二次型 $q=2x_1^2+5x_2^2+5x_3^2+4x_1x_2+4x_1x_3+8x_2x_3$, 求一个正交替换

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = U \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix},$$

其中 U 是正交矩阵, 使得 $q = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2$ 为对角型。

- 四、 $(20 \ \mathcal{G})$ 令 $M_n(\mathbf{F})$ 表示数域 \mathbf{F} 上一切 n 阶矩阵组成的向量空间, $\mathbf{A} \in M_n(\mathbf{F})$. 证明:
 - (1) (5 分) 映射 $\sigma_A: \mathbf{B} \mapsto \mathbf{AB} \mathbf{BA}$ 是 $M_n(\mathbf{F})$ 上的一个线性变换;
 - (2) (10 分) 若 A 是幂零矩阵, 则 σ_A 是一个幂零变换;
 - (3) (5 分) 若 A 为对角矩阵, 则 σ_A 是一个可对角化的变换.
- 五、(25 分) 假设 σ 是有限维实向量空间 V 上的线性变换。
 - (1) (5 分) 假设 $f(x), g(x) \in \mathbb{R}[x]$ 互素。证明: $\operatorname{Ker} g(\sigma) \subseteq \operatorname{Img} f(\sigma)$.
 - (2) (10 分) 证明: 如果 $\operatorname{Img} \sigma^n = \operatorname{Img} \sigma^{n+1}$, 那么 $\operatorname{Img} \sigma^k = \operatorname{Img} \sigma^n$ 对所有 $k \ge n$ 成立。
 - (3) (10 分) 令 $Z = \{z \in V \mid$ 存在正整数m使得 $\sigma^m(z) = 0\}$,

$$W = \bigcap_{i=1}^{\infty} \operatorname{Img} \sigma^{i}.$$

证明 Z 和 W 都是 V 的 σ 不变子空间且 $V = W \oplus Z$.

六、(10 分) 假设 A, B 为实对称矩阵且 A 正定。证明 AB 的特征值均为实数。