Variance and Inbreeding

Peter von Rohr

2022-11-04

Assumption

- ▶ Variance of breeding value u_i : $var(u_i) = (A)_{ii} \overline{\sigma_u^2}$
- Diagnoal elements of numerator relationship matrix A

$$(A)_{ii} = (1 + F_i)$$

where

 F_i inbreeding coefficient of animal i σ_u^2 genetic additive variance

 \triangleright The higher F_i , the higher the similarity, the higher the variance

$$\rightarrow \mbox{ Contradiction?} \left\langle \begin{tabular}{c} \b$$

Variance and Inbreeding

- Relationship between variance and inbreeding
- ► How does inbreeding affect the genetic variance?
- How do we get inbreeding in a population?
- \rightarrow Population separates into different lines

Population with Inbreeding

Assumptions

- N individuals
- self-fertilizing, shedding constant rate of eggs and sperm
- ▶ at a given locus: alleles in base population are non-identical by descent
- N individuals produce 2N gametes (eggs and sperm) at constant rate
- ▶ probability that a pair of gametes taken at random carry identical alleles: 1/2N
- probability corresponds to the inbreeding coefficient (F)

Inbreeding Coefficient

▶ In generation 1:

$$F_1=rac{1}{2N}$$

- second generation
 - either de-novo match of alleles or
 - the same alleles from generation 1

$$F_2 = \frac{1}{2N} + (1 - \frac{1}{2N}) * F_1$$

▶ new variable $\Delta F = \frac{1}{2N}$, then

$$F_2 = \Delta F + (1 - \Delta F) * F_1$$

Inbreeding Coefficient II

- Generation t: $F_t = \Delta F + (1 \Delta F) * F_{t-1}$
- ▶ Solving for ΔF

$$\Delta F = \frac{F_t - F_{t-1}}{1 - F_{t-1}}$$

▶ Panmicitic Index P = 1 - F

$$rac{P_t}{P_{t-1}} = 1 - \Delta F$$
 $P_t = (1 - \Delta F)^t * P_0 ext{ with } P_0 = 1$ $F_t = 1 - (1 - \Delta F)^t$

Variance of Gene Frequency

- ▶ Allele frequencies (p and q) no longer constant in lines \rightarrow variation
- ▶ Variance of change of q (same for p)

$$\sigma_{\Delta q}^2 = \frac{p_0 q_0}{2N} = p_0 q_0 \Delta F$$

ightharpoonup Variance of q (same for p)

$$\sigma_q^2 = p_0 q_0 F$$

Genotype Frequencies

- Average genotype frequency of homozygotes across all lines: $\bar{q^2}$
- Definition of variance

$$\sigma_q^2 = \bar{q^2} - \bar{q}^2$$

where \bar{q} is the mean allele frequency across all lines and hence is the same as q_0 in the base population

Therefore

$$\bar{q^2} = q_0^2 + \sigma_q^2 = q_0^2 + p_0 q_0 F$$

Genotype Frequencies II

Table 1: Genotype Frequencies for a bi-allelic locus, expressed in terms of inbreeding coefficient ${\cal F}$

Genotype	Original Frequencies	Changes due to inbreeding
$ \begin{array}{c} A_1 A_1 \\ A_1 A_2 \\ A_2 A_2 \end{array} $	p_0^2 $2p_0q_0$ q_0^2	$+p_0q_0F$ $-2p_0q_0F$ $+p_0q_0F$

Changes of Mean Value

Table 2: Derivation of Inbreeding Depression

Genotyp € requency		Value Product	Value Product	
A_1A_2	$egin{aligned} ar{p}^2 + ar{p}ar{q}F \ 2ar{p}ar{q} - 2ar{p}ar{q}F \ ar{q}^2 + ar{p}ar{q}F \end{aligned}$	$egin{array}{ll} a & ig(ar p^2+ar par qFig)a\ d & ig(2ar par q-2ar par qFig)d\ -a & -ig(ar q^2+ar par qFig)a \end{array}$		

Inbreeding Depression

$$M_F = (\bar{p}^2 + \bar{p}\bar{q}F)a + (2\bar{p}\bar{q} - 2\bar{p}\bar{q}F)d - (\bar{q}^2 + \bar{p}\bar{q}F)a$$

$$= a(\bar{p} - \bar{q}) + 2d\bar{p}\bar{q} - 2d\bar{p}\bar{q}F$$

$$= a(\bar{p} - \bar{q}) + 2d\bar{p}\bar{q}(1 - F)$$

$$= M_0 - 2d\bar{p}\bar{q}F$$

Changes of Variance

- Only additive locus
- ▶ Within line: as before

$$V_{\bar{G}} = 2(\bar{pq})a^2$$

= $2p_0q_0(1-F)$
= $V_G(1-F)$

▶ New variance component: between line

$$var(M) = \sigma_M^2 = 4a^2\sigma_q^2 = 4a^2p_0q_0F = 2FV_G$$

Summary

Table 3: Partitioning of the variance in a population with inbreeding coefficient F

Source	Variance
Between lines Within lines Total	$2FV_G (1-F)V_G (1+F)V_G$