Introduction to R for Research

Data Visualization with ggplot2

Penn State, University Libraries, Research Informatics and Publishing

Workshop Housekeeping

Questions?

Use the chat or raise hand feature.

Feedback Survey

After each session, please fill out the Qualtrics survey (link in chat and emailed out after session).

Credits

Images and content sourced/based on:

ggplot2: Elegant Graphics for Data Analysis by Hadley Wickham

Introduction to data visualization with ggplot2, Data Camp - Rick Scavetta

How do you pronounce the word: Data

What is the purpose of Data Visualization?

Agenda

- Base R vs ggplot2
- The logic of ggplot2
- Basic plots
- Data viz cheat sheet
- Faceting
- Themes
- Research Example
- Exporting plots
- Steps moving forward

Base R vs ggplot2

Base R you plot based on specific functions

- hist()
- boxplot()
- barplot()
- pie()
- plot()

Base R vs ggplot2

ggplot2 is based on the Grammar of Graphics

Thinks about visualizations as layers/components

Greater flexibility, more personalization, more intricate plots, while simple plots are still simple

mpg dataset from ggplot2 - "Fuel economy data from 1999 to 2008 for 38 popular models of cars"

Variables

- displ engine displacement (size)
- year year of manufacture
- cty city miles per gallon
- hwy highway miles per gallon
- class type of car (suv, pickup, etc.)

ggplot(mpg)

ggplot(mpg, aes(x = cty, y = hwy))


```
ggplot(mpg, aes(x = cty, y = hwy)) +
  geom_point()
```



```
ggplot(mpg, aes(x = cty, y = hwy)) +
  geom_point() +
  facet_wrap(~year)
```



```
ggplot(mpg, aes(x = cty, y = hwy)) +
  geom_point() +
  facet_wrap(~year) +
  geom_smooth(method = "lm")
```



```
ggplot(mpg, aes(x = cty, y = hwy)) +
  geom_point() +
  facet_wrap(~year) +
  geom_smooth(method = "lm") +
  theme_bw()
```


Data What dataset

Aesthetics Select x and y-axis, colors, shapes, etc.

Geometries Which geometric object (points, bars, lines)

Data What dataset

Aesthetics Select x and y-axis, colors, shapes, etc.

Geometries Which geometric object (points, bars, lines)

Facets Plot subsets of the data separately

Data What dataset

Aesthetics Select x and y-axis, colors, shapes, etc.

Geometries Which geometric object (points, bars, lines)

Facets Plot subsets of the data separately

Statistics Statistical transformations

Data What dataset

Aesthetics Select x and y-axis, colors, shapes, etc.

Geometries Which geometric object (points, bars, lines)

Facets Plot subsets of the data separately

Statistics Statistical transformations

Coordinates Coordinate system (Cartesian, polar, map)

Aesthetics Select x and y-axis, colors, shapes, etc.

Geometries Which geometric object (points, bars, lines)

Facets Plot subsets of the data separately

Statistics Statistical transformations

Coordinates Coordinate system (Cartesian, polar, map)

Themes Font size, background color, etc.

Breaking down ggplot2

Before we start plotting

Make sure to load tidyverse (or just ggplot2)

> library(tidyverse)

We will load datasets like mpg by doing the following:

> data(mpg)

To learn about the dataset, type:

> ?mpg

Before we start plotting

Plots will appear under the `Plots` tab in the bottom left section of RStudio

Click the arrow buttons to go between plots

Data

ggplot(dataset)

Specify dataset desired for the plot

Aesthetics

Aesthetics

x and y-axis, color, etc.

Aesthetics

Aesthetic	Description
X	X axis
У	Y axis
fill	Fill color
color	Color of points or outlines of other geoms
size	Size of points, thickness of lines
alpha	Transparency

Geometries

Start new line after `+`

ggplot(dataset, aes(xvar, yvar)) +
geom_*()

How to represent the data points

geom_point() = scatterplot

geom_histogram() = histogram

geom_point()

ggplot2: Elegant Graphics for Data Analysis, by Hadley Wickham

geom_point()

ggplot2: Elegant Graphics for Data Analysis, by Hadley Wickham

geom_point()

ggplot2: Elegant Graphics for Data Analysis, by Hadley Wickham

geom_point()

ggplot2: Elegant Graphics for Data Analysis, by Hadley Wickham

ggplot(mpg, aes(x = displ, y = hwy, color = class)) + geom_point()

ggplot2: Elegant Graphics for Data Analysis, by Hadley Wickham

ggplot2: Elegant Graphics for Data Analysis, by Hadley Wickham

mpg Example

- 1. Load the mpg dataset (from the ggplot2 package)
- > data(mpg)

- > ?mpg # To learn about the variables
- 2. Experiment with different aesthetics (alpha, shape, size, color)
- > ggplot(mpg, aes(x = displ, y = hwy)) +

> ggplot(mpg, aes(x = displ, y = hwy)) +

> geom_point(alpha = 0.2)

> geom_point(size = 5, color = "red")

> ggplot(mpg, aes(x = displ, y = hwy)) +

> ggplot(mpg, aes(x = displ, y = hwy)) +

> geom_point(shape = 15)

> geom_point()

ggplot(mpg, aes(x = drv)) +

geom_bar()

Some geometries only need one variable.

Bar Plots - One (Discrete) Variable

ggplot(mpg, aes(x = drv, fill = year)) +

geom_bar()

Arguments may require discrete (categorical) vs continuous variables.

Fill must be categorical, but the data has it as continuous.

ggplot(mpg, aes(x = drv, fill = as.factor(year))) +

geom_bar()

Setting the year (continuous) as a factor makes it categorical. We can now use it to fill the colors!

Note: For other plots, the color can be a continuous variable.

ggplot(mpg, aes(x = drv, fill = as.factor(year))) +

geom_bar(position = "dodge")

1

Different `geom_*` have different arguments

ggplot(mpg, aes(y = drv, fill = as.factor(year))) +

geom_bar(position = "dodge")

Data Viz Cheat Sheet

ggplot does not suggest what plot to make

How do you decide what type of plot to make?

- Number of variables
- Continuous vs Discrete
- Goal of the visualization

Data Viz Cheat Sheet

Data Visualization with ggplot2

Cheat Sheet

Basics

ggplot2 is based on the grammar of graphics, the idea that you can build every graph from the same components: a data set, a coordinate system, and geoms—visual marks that represent data points.

To display values, map variables in the data to visual properties of the geom (aesthetics) like size, color, and ${\bf x}$ and ${\bf y}$ locations.

Geoms - Use a geom function to represent data points, use the geom's aesthetic properties to represent variables. Each function returns a layer.

Graphical Primitives a <- ggplot(economics, aes(date, unemploy)) b <- ggplot(seals, aes(x = long, y = lat)) geom blank() (Useful for expanding limits) geom_curve(aes(vend = lat + 1, xend=long+1,curvature=z)) - x, xend, y, yend alpha, angle, color, curvature, linetype, size geom_path(lineend="butt", linejoin="round', linemitre=1) x, y, alpha, color, group, linetype, size geom_polygon(aes(group = group)) x, y, alpha, color, fill, group, linetype, size geom_rect(aes(xmin = long, ymin=lat, xmax=long+1, ymax=lat+1)) - xmax, xmin, ymax, ymin, alpha, color, fill, linetype, size geom_ribbon(aes(ymin=unemploy - 900, vmax=unemplov + 900) - x, vmax, vmin alpha, color, fill, group, linetype, size Line Segments

common aesthetics: x, y, alpha, color, linetype, size

Economics Example

- 1. Load the 'economics' dataset:
- > data(economics) > ?economics # To learn about the variables
- 2. Create a line plot to visualize the trend in personal savings rate ('psavert') over time ('date')
- > ggplot(economics, aes(x = ____, y = ____) +
- > geom____()
- 3. Color the above plot based on the population size 'pop'.
- 4. Create as many different types of plots for (2) as possible.

Economics Example - Solutions

- 2. Create a line plot to visualize the trend in personal savings rate ('psavert') over time ('date')
- > ggplot(economics, aes(x = date, y = psavert) +
- > geom_line()

Economics Example - Solutions

3. Color the above plot based on the population size 'pop'.

> ggplot(economics, aes(x = date, y = psavert, color = pop)) +

> geom_line()

Economics Example - Solutions

4. Create as many different types of plots for (2) as possible.

Essentially all the geometries for 2 continuous variables work!

Economics Example - - Solutions

Note: You can overlap geoms!

```
ggplot(economics, aes(x = date, y = psavert)) +
```

```
geom_point() +
```

geom_smooth()

Grouping by color may be hard to differentiate

Based on: https://ggplot2-book.org/getting-started.html

Facets clearly show groupings

Facets clearly show groupings

Source: https://ggplot2-book.org/facet.html

facet_wrap

Split the plots by variable x

facet_wrap

```
ggplot(mpg, aes(x = displ, y = hwy)) +
  geom_point()
```


facet_wrap

```
ggplot(mpg, aes(x = displ, y = hwy)) +
  geom_point() +
  facet_wrap(~class)
```


y variable on columns

x variable on rows

```
ggplot(mpg, aes(x = displ, y = hwy)) +
  geom_point() +
  facet_grid(class~.)
```


`class` as columns


```
ggplot(mpg, aes(x = displ, y = hwy)) +
  geom_point() +
  facet_grid(.~class)
```


`class` as rows


```
ggplot(mpg, aes(x = displ, y = hwy)) +
  geom_point() +
```

facet_grid(drv ~ class)

`drv` as columns

`class` as rows

facet_grid and facet_wrap

... + facet_grid(y~x, scales = "____")

"fixed" = x and y fixed

"free_x" = x scale free

"free_y" = y scale free

"free: = x and y free

... + facet_wrap(~class, scales = "free_x")

Diamonds Example

- 1. Load the 'diamonds' dataset:
- > data(diamonds)
 > ?diamonds # To learn about the variables
- 2. What is the most common diamond color ('color')?
- > ggplot(_____, aes(x = ___) +
- > geom____()
- 3. What is the most common diamond color ('color') for each type of cut 'cut'? Use facet_wrap() or facet_grid().
- 4. Set the facet scales to be "free_y", and color by `cut`

2. What is the most common diamond color ('color')? Answer with a plot.

- > ggplot(diamonds, aes(x = color) +
- > geom_bar()

3. What is the most common diamond color ('color') for each type of cut 'cut'? Use facet_wrap() or facet_grid().

- > ggplot(diamonds, aes(x = color)) +
- > geom_bar() +
- > facet_wrap(~cut)

- 4. Set the facet scales to be "free_y", and color by `cut`
- > ggplot(diamonds, aes(x = color, fill = cut)) +
- > geom_bar() +
- > facet_wrap(~cut, scales = "free_y")
- > ggplot(diamonds, aes(x = color, color = cut)) +
- > geom_bar() +
- > facet_wrap(~cut, scales = "free_y")

labs - Adding labels

```
ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point()
```


labs - Adding labels

Themes

- theme_bw()
- theme_linedraw()
- theme_light()
- theme_dark()
- theme_minimal()
- theme_classic()
- theme_void()

Note: These are complete themes, you can manually adjust colors/scales/fonts too

Themes

Themes

Themes - Extra themes from package `ggthemes`

CO2 Example

1. Load the 'CO2' dataset (from 'datasets' package):

> data(CO2)

> ?CO2 # To learn about the variables

You are a researcher trying to identify the cold tolerance of the grass species *Echinochloa crus-galli*.

You are interested in the differences in `conc` and `uptake` between `Plant`, `Type`, and `Treatment`.

2. Make plots to help you draw conclusions about the effect of `Plant`, `Type`, and `Treatment` on the two continuous variables.

Hints: `conc` and `uptake` are continuous, while the rest are discrete.

Exporting ggplots

ggsave("plotname.png")

Saves most recently displayed ggplot

Can save as a png, jpg, pdf, svg, etc.

Can specify height and width of output

Steps moving forward

Explore opportunities to use R

- Classwork/research
- Take on projects of interest to you
- DataFest

Good Resources

- R for Data Science by Hadley Wickham & Garrett Grolemund
- Google's R Style Guide