签到题

斐波那契数列公式为 $f_{n+2}=f_{n+1}+f_n$,而辗转相减求 gcd 为 gcd(a,b)=gcd(b,a-b) 。不难发现 $gcd(f_{n+2},f_{n+1})=gcd(f_{n+1},f_n)$,即斐波那契数列相邻两项互质。

再考虑 $gcd(f_n,f_m)$,不妨假设 n>m ,根据递推公式不难归纳发现 $f_n=f_mf_{n-m+1}+f_{m+1}f_{n-m}$ 。

用辗转相除法可以发现 $gcd(f_n,f_m)=gcd(f_mf_{n-m+1}+f_{m+1}f_{n-m},f_m)=gcd(f_{m+1}f_{n-m},f_m)$ 。

又因为 f_{m+1} 和 f_m 没有公因数,所以 $gcd(f_n,f_m)=gcd(f_{n-m},f_m)$ 。

观察发现下标的变化规律和辗转相减的变化一致。故得 $gcd(f_n,f_m)=f_{gcd(n,m)}$ 。

当 gcd(n,m) 较大时,用矩阵快速幂即可。

总复杂度 $O(T \log n)$ 。

狗窝

对原序列建线段树,则每个区间可以被线段树上的不超过 $\log n$ 个结点恰好覆盖。

将区间信息记录在线段树结点上。每次操作是单点修改。一旦把某个结点的子树全部修改掉了,那就更新它所记录的区间的计数器。一旦某个区间的计数器清零了,那么答案就+1。

总复杂度 $O((n+m)\log n)$ 。

牛棚

若将从1号点到2号点的路径称为好路径,那么题目等价于问1号图的好路径集合是否包含2号图的。

若是,则输出 No , 否则输出 Yes。

不妨记二维数组 $f_{i,j}$ 表示 1 号图的 i 号结点出发到 2 号点的路径集合是否包含 2 号图的 j 号结点出发到 2 号点的路径集合。

答案就是 $f_{1,1}$ 。

考虑逆向思维,一开始认为全部的 $f_{i,j}=1$,然后尝试将它们更新为 0 。

显然有 $f_{i,2}=0, (i
eq 2)$,因为2号点包含一条空路径,而其他点没有。

若 1 号图中有从 i 连向 j 的蓝边, 2 号图中有从 u 连向 v 的蓝边,而 $f_{j,v}=0$,则可得 $f_{i,x}=0$ 。

红边同理。

从 $f_{i,2}$ 开始不断反向 dfs 即可求出 f 数组。

总复杂度 $O(Tn^2)$ 。

鸟巢

对序列求前缀和 $s_n = \sum_{i=1}^n a_i$,则要求的就是所有 $s_i - s_j$ 的异或值。

对二进制每一位分别求答案。若对第 k 位计算,则高于 k 位的值都没有意义,则每个数都在 0 到 2^k-1 范围中。

考虑什么才会对答案产生贡献。对于 s_i 和 s_j ,当且仅当 i>j 且 s_i-s_j 的第 k 位是 1 ,这样的 (i,j) 才会对第 k 位产生 1 的贡献。

分类讨论: 若 s_i 和 s_j 第 k 位相同,则该条件等价于 $s_i < s_j$ 。若 s_i 和 s_j 第 k 位不同,则条件等价于 $s_i \text{xor} 2^{k-1} \geq s_j$ 。

不难发现这两种情形可以化归成求逆序对。

但我们不需要真正求出逆序对数量,只要求出奇偶性即可。注意到排列中交换任意两个元素,逆序对奇偶性一定改变。故逆序对奇偶性等于 排列长度加环数 的奇偶性。

只需O(n)求出排列环数,即可得到逆序对奇偶性。

要将原 s_i 序列转为排列,可以从低位向高位。每次加入一位时,将该位是1的数放到整个序列的后面,然后用桶离散化即可。

总复杂度 $O(n \log w)$ 。