DU CLASSIQUE AU QUANTIQUE

Autour d'un opérateur de Schrödinger magnétique

PAUL GENIET

Sous la direction de VINCENT BRUNEAU et NICOLAS POPOFF

Université de BORDEAUX

MÉCANIQUE QUANTIQUE

Le chat de Schrödinger

Le chat de Schrödinger

- Le chat est mort? Est-il vivant?
- Les deux à la fois?
- Éléments observables.

Le Formalisme quantique

À un instant donné

- Système multi-états.
- États \leftrightarrow fonctions d'ondes : $|\Phi(t)\rangle \in \mathcal{H}$: Hilbert.
- $|\Phi(t)\rangle^2$: densité de probabilité de l'état du système à l'instant t.
- \square Observables : opérateurs sur \mathcal{H} .
 - r : Position.
 - p : Quantité de mouvement.
 - Principe d'incertitude $[\mathbf{r}, \mathbf{p}] = i\hbar$.
- $H := \mathbf{p}^2 + V(\mathbf{r}, t)$:
 Hamiltonien (énergie).

Évolution temporelle

Une EDP linéaire:

 $i\hbar\partial_t\Phi=H\Phi$ (Schrodinger)

CONTEXTE ET PROBLÈME

Un système quantique est décrit par un opérateur différentiel du second ordre, l'opérateur de Schrödinger, qui joue le rôle d'hamiltonien d'un système quantique. Nous nous intéressons à la description de son spectre dans le cadre du mouvement d'une particule chargée en présence d'un champ magnétique.

REPRÉSENTATION SPECTRALE

Hamiltonien : opérateur linéaire Recherche d'éléments propres :

$$\mathbf{H}\mathbf{\Phi}_{\mathbf{n}} = \mathbf{E}_{\mathbf{n}}\mathbf{\Phi}_{\mathbf{n}}$$

- Spectre ponctuel : solutions liées à un puit de potentiel, niveaux d'énergie quantifiés (électron autour d'un atome d'hydrogène).
- Spectre continu : solutions libres (électron échapant à l'atome d'hydrogène).
- Solution stationnaire de l'equation de Schrödinger.

Notre modèle de champ magnétique

Le champ magnétique tourne autour de l'axe Oz

- Champ magnétique : $\vec{B} = B(r) \vec{u}_{\theta}$.
- Potentiel magnétique : $\vec{B} = \vec{rot} \left(\vec{A} \right) \text{ avec } \vec{A} = a \left(r \right) \vec{u}_z.$
- Cadre classique : Trajectoire définie par une EDO : $m\ddot{\vec{r}} = q\dot{\vec{r}} \wedge \vec{B}$.
- Cadre quantique : Étude spectrale de l'hamiltonien $\operatorname{sur} \mathbf{L}^2(\mathbb{R}^3)$:

$$H = (i\nabla + A)^2.$$

Généralisation à la dimension n

Formes différentielles:

$$A = \sum_{k=1}^{n} A_k dx_k.$$

$$B = \sum_{1 \leqslant i < j \leqslant n} \frac{\partial A_i}{\partial x_j} - \frac{\partial A_j}{\partial x_i} dx_i \wedge dx_j.$$

- dB = 0 et B = dA.
- Généralisation des opérateurs vectoriels **rot** et **div**.

TRAJECTOIRE CLASSIQUE

La particule s'enroule autour des lignes de champ.

Trajectoire en 3D

Projection sur le plan : z = 0

OUTILS DES PREUVES

Niveaux de Landau:

- Principe du Min-Max.
- Approximation harmonique.
- Oscillateur harmonique.
- Fonctions d'Hermite.

Propagation infiniment lente:

- Methode de Frobenius.
- Étude des fonctions propres $u_{m,p}$ de $H_m(\xi)$:
 Localisations.
 Estimées d'Agmon : décroissance exponentielle.
- Perturbation au 1^{er} ordre:

$$\lambda'_{m,p}\left(\xi\right) = \int_{0}^{+\infty} \frac{\left|u_{m}\left(r,\xi\right)\right|^{2}}{r^{3}} dr$$

HAMILTONIEN ET COURBES DE DISPERSION

- $\mathbb{H} = -\Delta_{n-1} + (i\partial_z + a(r))^2.$
- Fourier en z (fréquence ξ) et série de Fourier angulaire :

$$H \simeq \sum_{m \in \mathbb{N}} \int_{\mathbb{R}}^{\oplus} H_m(\xi) d\xi,$$

 $H_m(\xi) := -\partial_r^2 + \frac{k_m}{r^2} + (\xi - a(r))^2$ opérateur 1D en polaire.

- \blacksquare *H* est autoadjoint.
- $H_m(\xi)$ à résolvante compacte donc à spectre discret.
- Courbes de dispersion : $\sigma\left(H_{m}\left(\xi\right)\right)=\left\{ \lambda_{m,p}\left(\xi\right),p\in\mathbb{N}\right\} .$
- $\sigma\left(H\right) = \bigcup_{m,p} \lambda_{m,p}\left(\mathbb{R}\right)$ abs continu

PERSPECTIVES

Perturbation par un champ électrique (étude de H+V) ou par un obstacle pouvant mener à l'apparition :

- de spectre ponctuel, c'est-à-dire de trajectoires captées.
- de résonances.

Application à d'autres modèles :

- modèle d'Iwatsuka.
- modèles sur le demi-plan intervenant en mecanique quantique.

COURBES DE DISPERSION

Interprétation

 $\lambda_{m,p}\left(\xi\right)$: niveau d'énergie.

 $\lambda'_{m,p}(\xi)$: vitesse de propagation le long de l'axe Oz.

 $sgn\left(\lambda_{m,p}'\left(\xi\right)\right)$: direction de propagation.

Décomposition d'un niveau d'énergie en une somme de modes propres.

 ξ : fréquence

m: moment angulaire

COMPORTEMENT DES FONCTIONS DE BANDE

Vers la quantification, les **niveaux de Landau** : $\lim_{\xi \to +\infty} \lambda_{m,p}(\xi) = E_p := 2p+1$ Développement asymptotique à tout ordre des courbes de dispersion (dans le cas a(r) = r) :

$$\lambda_{m,p}(\xi) = E_p + \frac{k_m}{\xi^2} + \cdots$$

Propagation lente à niveau d'énergie fixé : $k_m \to +\infty$ et ξ tel que $\lambda_{m,p}(\xi) = E$

$$\frac{K_{-}}{\sqrt{k_m}} \leqslant \lambda'_{m,p}(\xi) \leqslant \frac{K_{+}}{\sqrt{k_m}}.$$

Références

- [1] S. Agmon. Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrödinger Operations. 1982.
- [2] V. Bruneau and N. Popoff. On the ground state energy of the Laplacian with a magnetic field created by a rectilinear current. 2015.
- [3] M. Dimassi and G. Raikov. Spectral asymptotics for quantum Hamiltonians in strong magnetic fields. 2001.
- [4] D. Yafaev. On spectral properties of translationally invariant magnetic Schrödinger operators. 2008.
- [5] P. Geniet. Spectral study of a Schrödinger operator (en préparation).