← رئيسي مجموعة:

فعریف:

CardE: رئيسي مجموعة منتهية E هو عدد عناصر المجموعة E ويرمز له بالرمز $Card\varnothing=0$

خاصية:

و B مجموعتان منتهيتانA $Card(A \cup B) = CardA + CardB - Card(A \cap B)$

<u>→ वांवत वस्वरुकः</u>

فعریف:

Eليكن A جزءا من مجموعة منتهية Eمتمم A بالنسبة للمجموعة Eهي المجموعة التي يرمز لها بالرمز : $\overline{A}=\{x\in E\,/\,x\not\in A\}$

<u>هااحظات:</u>

- $A \cap \overline{A} = \varnothing$ •
- $A \cup \overline{A} = E$ •
- $card\overline{A} = cardE cardA$ •

→ اطبرأ الأساسى للنعداد:

نعتبر تجربة تتطلب نتائجها p اختيارا $(p\in\mathbb{N}^*)$ إذا كان الاختيار الأول يتم n_1 كيفية مختلفة و كان الاختيار الثاني يتم n_2 كيفية مختلفة و كان الاختيار الثاني يتم n_2 كيفية مختلفة و كان الاختيار p يتم p كيفية مختلفة فإن عدد النتائج الممكنة هو الجداء p

النزنيبات بنكرار - النزيبات بدون بنكرار:

النرنيبات بنكران

 $(p \leq n)$ الیکن n و p عنصرین من p عنصر من بین n عنصر هو p عنصر من بین p عنصر هو عنصر من بین p

النرنيبات بدون بنكران

لیکن
$$n$$
 و q عنصرین من * n عنصر من بین n عنصر هو : عدد الترتیبات بدون تکرار ل p عنصر من بین n عنصر هو :
$$A_n^p = \underbrace{n \times (n-1) \times (n-2) \times \ldots \times (n-p+1)}_{p}$$
 من العوامل

حالة خا<u>صة:</u>

کل ترتیبة بدون تکرار ل n عنصر من بین n عنصر تسمی کذلك تبدیلة ل n عنصر $n!=n\times(n-1)\times(n-2)\times...\times2\times1$ و عددها :

← الناليفات:

$$n$$
 لتكن E محموعة منتهية عدد عناصرها E كل جزء E من E عدد عناصره E من عنصر يسمى تأليفة ل E عنصر من بين E عنصر و عدد هذه التأليفات هو E

C_n^p و A_n^p و n! الأعداد:

$n \in \mathbb{N}^* \qquad n! = n \times (n-1) \times (n-2) \times \dots \times 2 \times 1$ $0! = 1$					
$A_n^p = \frac{n!}{(n-p)!}$	$C_n^p = \frac{n!}{p!(n-p)!}$				
$C_n^{n-1} = n \qquad C_n^0 = 1$	$C_n^1 = n \qquad \qquad C_n^n = 1$				
$C_n^{p-1} + C_n^p = C_{n+1}^p$	$C_n^p = C_n^{n-p}$				

<u>← بعض أنواع السحب:</u>

 $(p \le n)$ عنصر من بین p عنصر p

نلخص النتائج في الجدول التالي:

الترتيب	عدد السحبات المكنة هو	نوع السحب
غيرمهم	C_n^{p}	آني
مهم	n^p	بالتتابع و بإحلال
مهم	A_n^p	بالتتابع و بدون إحلال

ملخص الاحنمالات

← مصطلحات

معناه	المصطلح الاحتمالي
كل تجربة تقبل أكثر من نتيجة	تجربة عشوائية
هي مجموعة الإمكانيات الممكنة لتجربة عشوائية	كون الإمكانيات Ω
Ω جزءا من كون الإمكانيات A	A حدث
كل حدث يتضمن عنصرا وحيدا	حدث ابتدائي
إذا تحقق الحدثان A و B في آن واحد	$A\cap B$ تحقق الحدث
إذا تحقق A أو هما معا	$A \cup B$ تحقق الحدث
$A\cap\overline{A}=arnothing$ هو الحدث $\overline{A}=\Omega$ هو الحدث $\overline{A}=\Omega$	الحدث المضاد للحدث A
$A \cap B = \emptyset$	و B حدثان غير منسجمين A

←اسنقرار حدث - احنمال حدث:

- فعریف: لیکن Ω کون إمکانیات تجربة عشوائیة \bullet
- p_i : هو $\{\omega_i\}$ هو احتمال الحدث ابتدائی $\{\omega_i\}$ هي قيمته p_i نقول أن احتمال الحدث $\{\omega_i\}$ $P(\{\omega_i\}) = p_i$ ونکتب:
 - احتمال حدث هو مجموع الاحتمالات الابتدائية التي تكون هذا الحدث أى إذا كان $\{\omega_1;\omega_2;\omega_3;...;\omega_n\}$ حدثا من $A=\{\omega_1;\omega_2;\omega_3;...;\omega_n\}$ هو: $p(A) = p(\omega_1) + p(\omega_2) + p(\omega_3) + \dots + p(\omega_n)$
 - لیکن Ω کون إمکانیات تجربة عشوائیة
 - $p(\Omega) = 1$, $p(\emptyset) = 0$ •
 - Ω من A من $0 \leq p(A) \leq 1$
 - احتمال اتحاد حدثين:

 Ω لكل حدثين A و B من

$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$

$$p(A \cup B) = p(A) + p(B) = p(A) + p(B)$$

إذا كان A و B غير منسجمين $p(A \cup B) = p(A) + p(B)$

• احتمال الحدث المضاد:

$$p\left(\overline{A}\right)=1-p\left(A
ight)$$
 : Ω نکل حدث A من

→ فرضية نساوي الاحتمالات:

📀 <u>نعریف:</u>

<u> خاصیات:</u>

 Ω إذا كانت جميع الأحداث الابتدائية متساوية الاحتمال في تجربة عشوائية كون إمكانيتها

 $p(A) = \frac{cardA}{card\Omega}$ فإن احتمال كل حدث A من Ω هو:

→ الاحتمال الشرطي - استقرالية حدثين:

$$p(A) \neq 0 = A$$
 ليكن A و B حدثين مرتبطين بنفس التجربة العشوائية بحيث:

$$p\left(B
ight)=p\left(B/A
ight)=rac{p\left(A\cap B
ight)}{p\left(A
ight)}$$
 :حتمال حدث B علما أن الحدث A محقق هو العدد

$$p(A) \times p(B) \neq 0$$
 لكل حدثين A و B مرتبطين بنفس التجربة العشوائية بحيث: $P(A \cap B) = p(A) \times p(B/A) = p(B) \times p(A/B)$ لدينا:

لکل حدثین
$$A$$
 و B مرتبطین بنفس التجربة العشوائیة $lacktriangledown$ لکل حدثین $A\Leftrightarrow p(A\cap B)=p(A) imes p(B)$

$$\Omega$$
ليكن Ω كون إمكانيات تجربة عشوائية و Ω_1 و Ω_2 تجزيئا ل $\Omega_1\cap\Omega_2=\varnothing$ $\Omega_1\cup\Omega_2=\Omega$ لكل حدث $\Omega_1\cap\Omega_2=\varphi$ عن $\Omega_1\cup\Omega_2=\varphi$ لكل حدث $\Omega_1\cap\Omega_2=\varphi$ عن $\Omega_1\cup\Omega_2=\varphi$

→ الاخنيارات اطنكررة:

اخاصية:

p ليكن A حدثا في تجربة عشوائية احتماله p إذا أعيدت هذه التجربة n مرة فان احتمال تحقق الحدث k , A مرة بالضبط هو : $(k \leq n) \qquad C_n^k \left(p \right)^k (1-p)^{n-k}$

<u>←قانون احنمال منغم عشوائي:</u>

لیکن متغیرا عشوائیا علی Ω کون إمکانیات تجربة عشوائیة

لتحديد قانون احتمال المتغير العشوائي X نتبع المرحلتين التاليتين:

- X تحديد $\{x_1;x_2;x_3;\ldots;x_n\}$ تحديد $\{x_1;x_2;x_3;\ldots;x_n\}$ تحديد
 - $\{1;2;...;n\}$ لكل أمن المجموعة $p\left(X=x_{i}
 ight)$ لكل أمن المجموعة $\Phi\left(X=x_{i}
 ight)$

<u>← الأمل الرياضي- المغايرة- الاخراف الطرازي لمنغم عشوائي:</u>

x_i	x_1	x_2	x_3		x_n	Xليكن اليكن متغيرا عشوائيا قانونه
$p(X = x_i)$	p_1	p_2	p_3	•••	p_n	معرف بالجدول التالي:

$E(X) = x_1 \times p_1 + x_2 \times p_2 + x_3 \times p_3 + \dots + x_n \times p_n$	$m{X}$ الأمل الرياضي للمتغير	<u> 📤 ٺعاريف:</u>
$V(X) = E(X^2) - [E(X)]^2$	المغايرة للمتغير X	
$\sigma\left(X\right) = \sqrt{V\left(X\right)}$	$oldsymbol{X}$ الانحراف الطرازي للمتغير	

← القانون الحداني:

ليكن p احتمال حدث A في تجربة عشوائية. نعيد هذه التجربة n مرة

p وسيطاه n وسيطاه n الذي يربط كل نتيجة بعدد المرات التي يتحقق فيها الحدث n يسمى توزيعا حدانيا وسيطاه n

$$orall k \in \{0;1;2;...;n\}$$
 $p\left(X=k
ight) = C_n^k imes p^k imes (1-p)^{n-k}$ ولدينا $V\left(X
ight) = np\left(1-p
ight)$ و