Sets Recognized by n-Tape Automata

S. EILENBERG, * C. C. ELGOT, AND J. C. SHEPHERDSON TO

IBM Watson Research Center, Yorktown Heights, New York 10598

Communicated by Graham Higman

Received December 2, 1967

INTRODUCTION

The *n*-tape automata studied here, bear a very close resemblance to ordinary finite automata, since all *n*-tapes move simultaneously. This kind of tape action differs from that of the *n*-tape automata of [4], where tape motion is individual and is controlled by the state of the automaton.

The notion of "n-tape automaton" over an alphabet Σ gives rise to the notion of "n-recognizable" set of n-tuples of words in Σ . This latter notion coincides with what is called "FAD relation" in [I].

By means of a certain first-order interpreted theory, the notion that a set of n-tuples of words in Σ is "n-definable" is introduced. In contradistinction to the notion "n-recognizable," which is defined for fixed n, the notion "n-definable" must be defined simultaneously for all n. The main result asserts that in the case that Σ is finite and contains more than one letter, these two notions are extensionally equivalent.

1. n-Tape Automata

We start with an informal description of *n*-tape automata. Let Σ be a set of elements (not necessarily finite) called an *alphabet*. As usual, we denote by Σ^* the free monoid (always with unit element) with base Σ and by Σ^{*n} the *n*-fold product $\Sigma^* \times \cdots \times \Sigma^*$. An element w of Σ^{*n} is then an *n*-tuple $w_1, ..., w_n$, where each w_i is a word in the alphabet Σ . Let S be a finite set (the elements of which will be called states). There is a distinguished *initial* state s_0 in S and a distinguished subset F of S of *final* states. An

^{*} Columbia University and IBM Watson Research.

[†] IBM Watson Research.

^{††} University of Bristol, England.

element $w=(w_1,...,w_n)$ acts on the set S in the following manner. Let w=uw', where u_i is a single letter, if the length $lw_i>0$, and $u_i=1$, if $w_i=1$. For any $s\in S$, su is then an element of S and sw is defined as (su) w'. This combined with the rule that s1=s, where 1=(1,...,1) is the unit element of Σ^{*n} , gives an inductive description of $sw\in \Sigma^{*n}$, for any $s\in S$ and $w\in \Sigma^{*n}$. The behavior $\mathscr{B}(\mathcal{O})$ of an n-tape automaton is the set of all $w\in \Sigma^{*n}$ such that $s_0w\in F$. A subset of Σ^{*n} , which is the behavior of some automaton, is called n-recognizable.

It should be noted that for n=1, the automata described above are the ordinary finite automata, so that "1-recognizable" is "recognizable" in the ordinary sense. The extreme case n=0 may also be included; \mathcal{E}^{*n} in this case has only the unit element and the behavior of the automaton is the set consisting of the unit element if $s_0 \in F$ and is empty otherwise. Exactly the same phenomenon takes place in the other extreme case where \mathcal{E} is empty and n is arbitrary.

A formal substitute for automata described above will be given in Section 4. The class of recognizable subsets of *n*-tape automata will be denoted by $\mathcal{R}_n(\Sigma)$. Note that $\mathcal{R}_1(\Sigma) = \mathcal{R}(\Sigma)$ is just the class of recognizable sets in the usual sense. Since the alphabet Σ is fixed throughout, we shall write \mathcal{R}_n instead of $\mathcal{R}_n(\Sigma)$.

2. Definable Sets

We now describe a sequence $\mathscr{D} = \{\mathscr{D}_n \; ; \; n = 0, 1, \ldots\}$, each \mathscr{D}_n being a class of subsets of \mathscr{L}^{*n} . The sequence \mathscr{D} will be defined as the smallest one containing certain *basic sets* and closed with respect to certain operations. The basic sets are:

- (2.1) $\Sigma^* \sigma = \{ w \mid w \in \Sigma^*, \sigma \text{ is the terminal letter of } w \};$
- $(2.2) \quad I = \{(w_1\,,\,w_2) \mid (w_1\,,\,w_2) \in \varSigma^{*2},\, w_2 \leqslant w_1\},$

where " $w_2 \leqslant w_1$ " means w_2 is an initial segment of w_1 ;

$$(2.3) \quad E = \{(w_1, w_2) \mid (w_1, w_2) \in \mathcal{E}^{*2}, \ lw_1 = lw_2\}.$$

The operations are the following:

- (2.4) Binary intersection. For every n, the intersection of any two sets in \mathcal{D}_n is in \mathcal{D}_n .
- (2.5) Difference. For any two sets C_1 , C_2 in \mathcal{D}_n , the difference $C_1 \setminus C_2$ is in \mathcal{D}_n .
- (2.6) Permutation. Given any permutation π of the set $\{1, 2, ..., n\}$ and given $w \in \Sigma^{*n}$, let $\pi w = (w_{\pi 1}, w_{\pi 2}, ..., w_{\pi n})$. Then for every C in \mathcal{D}_n , the set πC is in \mathcal{D}_n .

- (2.7) Projection. Define $p: \Sigma^{*(n+1)} \to \Sigma^{*n}$ by setting $p(w_1, ..., w_{n+1}) = (w_1, ..., w_n)$. Then for every set C in \mathcal{D}_{n+1} , the set pC is in \mathcal{D}_n .
- (2.8) Cylindrification. For every set C in \mathcal{Q}_n , the set $p^{-1}C$ is in \mathcal{Q}_{n+1} . Note that

$$p^{-1}C = \{w \mid w \in \Sigma^{*(n+1)}, (w_1, ..., w_n) \in C\}.$$

We observe that $pI = pE = \mathcal{L}^* \in \mathcal{D}_1$. Hence, by repeated application of cylindrification, $\mathcal{L}^{*n} \in \mathcal{D}_n$. Thus, by (2.5), \mathcal{D}_n is closed with respect to

(2.9) Complementation. If $C \in \mathcal{D}_n$, the complement $\Sigma^{*n} \setminus C$ of C is in \mathcal{D}_n . In particular, for every $n, \phi \in \mathcal{D}_n$.

The sets \mathscr{Q}_n may be briefly described in the language of mathematical logic as the *n*-ary relations on Σ^* first-order definable from the binary relations I and E, and from the unary relations $\Sigma^*\sigma$, $\sigma \in \Sigma$. A set $C \in \Sigma^{*n}$ will be called *n*-definable iff $C \in \mathscr{Q}_n$. Thus, C is *n*-definable iff there is a first-order formula $\mathscr{F}[w_1, ..., w_n]$ constructed from the atomic formulas

$$w \in \Sigma^* \sigma$$
, $(w, w') \in I$, $(w, w') \in E$,

which defines C in the ordinary sense. Illustrations of the connection between formulas and the sets which they define, will be found in the proofs of Section 8. In particular, a sentence (formula without free variables) defines a subset of Σ^{*0} which, therefore, is either empty or is $\Sigma^{*0} = \{1\}$. In the latter case, the sentence is true.

3. STATEMENT OF MAIN RESULTS

Theorem 1. For any alphabet Σ , every n-definable set is n-recognizable.

Theorem 2. If Σ is a finite alphabet containing more than one letter, then every n-recognizable set is n-definable.

In the excluded cases of Σ infinite or $\Sigma = \{\sigma\}$, Theorem 2 fails. The latter case is discussed fully in Section 9, where the definable sets for $\Sigma = \{\sigma\}$ are completely described by Theorem 9.1. In particular, \mathcal{D}_1 consists exactly of those sets which are finite or whose complements are finite. Thus, for example, the set $(\sigma\sigma)^*$ is in \mathcal{M}_1 but not in \mathcal{D}_1 . The case of Σ infinite is treated in Section 10.

In the case that Σ is finite, the action of a finite automaton over Σ may be described by a finite table. It is a consequence of the fact that the proof of Theorem 1 is entirely effective, that the first-order theory based upon the relations $E, I, \Sigma^*\sigma$ is decidable. More explicitly, given finite automata

 \mathcal{O}_1 and \mathcal{O}_2 , there is a mechanical procedure for constructing an automaton \mathcal{O}_1 such that $\mathcal{BO}_1 = \mathcal{BO}_1 \cap \mathcal{BO}_2$ and a mechanical procedure for constructing \mathcal{O}_1 so that $\mathcal{BO}_1' = p\mathcal{BO}_1$; similarly for (2.5), (2.6), and (2.8). The discussion of related decidability and undecidability results is, however, outside the scope of this paper.

Finally, Theorem 11.1 shows how sets in \mathcal{R}_n may be decomposed into "homogeneous" sets.

4. REDUCTION TO ORDINARY AUTOMATA

Let Γ be a finite set with a binary relation $\gamma' < \gamma$. A word $w = \gamma_1 \gamma_2 \cdots \gamma_r$, $\gamma_i \in \Gamma$, will be called *related* if $\gamma_r < \cdots < \gamma_2 < \gamma_1$. The set of all related words is denoted by G. We note that

$$G = \Gamma^* \setminus F$$

where

$$F = \bigcup \Gamma^* \gamma_1 \gamma_2 \Gamma^*, \quad \gamma_2 \text{ non } < \gamma_1.$$
 (4.1)

PROPOSITION 4.1. If Γ is finite, then G is a recognizable subset of Γ^* .

Proof. Each of the summands in (4.1) is recognizable, e.g., by Kleene's theorem. Since Γ is finite, the union in (4.1) is finite so that F is recognizable and therefore also G.

The proposition fails if Γ is infinite. For example, let $\Gamma = \{\gamma_1, \gamma_2, \gamma_3, ...\}$ and define

$$\gamma < \gamma' \Leftrightarrow \gamma = \gamma_i \land \gamma' = \gamma_{i+1}$$
, for some *i*.

Then G is not recognizable. Indeed, let \mathcal{O} be an automaton recognizing G. Then, for every i, j, i < j, we have $\gamma_i \cdots \gamma_j \in G$, while

$$\gamma_1 \cdots \gamma_j \gamma_{i+1} \cdots \gamma_j \in \Gamma^* \setminus G$$
.

Thus, the states $s_0 \gamma_1 \gamma_2 \cdots \gamma_i$ and $s_0 \gamma_1 \gamma_2 \cdots \gamma_j$ are distinct, where s_0 is the initial state of \mathcal{OI} .

Returning to the alphabet Σ , consider $w = (w_1, ..., w_n) \in \Sigma^{*n}$, we define the length function $lw = \sup lw_i$ for i = 1, ..., n.

Let $\Gamma_n = \{w \mid w \in \Sigma^{*n}, lw = 1\}$. Thus, $w \in \Gamma_n$ provided both that $w_i \in \Sigma$ or $w_i = 1$ and that at least one w_i is an element of Σ . We define a relation u < w on Γ_n by the condition

$$w_i = 1 \Rightarrow u_i = 1.$$

This gives us the subsets G_n and F_n of Γ_n^* for each n.

Each $w \in \Sigma^{*n}$ admits a unique decomposition

$$w = \gamma_1 \cdots \gamma_k \,, \qquad \gamma_i \in \Gamma_n \,, \tag{4.2}$$

and

$$\gamma_k < \gamma_{k-1} < \cdots < \gamma_1$$
.

Further, in this decomposition lw = k.

This decomposition yields a mapping

$$\alpha: \Sigma^{*n} \to G_n$$

which is clearly a bijection. The inverse of this bijection is denoted by β . We are careful to avoid identification of Σ^{*n} with G_n because α is not multiplicative. We note, however, that β does preserve multiplication to the extent that multiplication is defined in G_n .

Proposition 4.2. G_n is a recognizable subset of Γ_n^* .

Proof. Since the relation < is a preorder, we obtain an equivalence relation in Γ_n by defining

$$\gamma_1 \equiv \gamma_2 \Leftrightarrow \gamma_1 < \gamma_2 \land \gamma_2 < \gamma_1$$
.

Let $\hat{\Gamma}_n = \Gamma_n/\equiv$. First note that $\hat{\Gamma}_n$ is finite. Secondly, the preorder in Γ_n becomes an order in $\hat{\Gamma}_n$. By Proposition 4.1, \hat{G}_n is a recognizable subset of $\hat{\Gamma}_n^*$. If $\eta:\Gamma_n^*\to\hat{\Gamma}_n^*$ is the natural morphism, then $G_n=\eta^{-1}\hat{G}_n$. Consequently, G_n is recognizable.

Let \mathscr{C} be an automaton in the usual sense on the alphabet Γ_n . Then its behavior $\mathscr{B}(\mathscr{C})$ is a subset of Γ_n *. This automaton may also be viewed as an *n*-tape automaton in the sense of Section 1, since each $w \in \Sigma^{*n}$ acts on the states by virtue of formula (4.2).

The behavior $\mathscr{B}_n(\mathscr{A})$ of the *n*-tape automaton is then a subset of Σ^{*n} . The two behaviors are related by the formula

$$\mathscr{B}_n(\mathscr{A}) = \beta(G_n \cap \mathscr{B}(\mathscr{A})).$$

This leads to the following

PROPOSITION 4.3. A subset X of Σ^{*n} is n-recognizable iff αX is a recognizable subset of Γ_n^* .

Proof. If $X = \mathcal{B}_n(\mathcal{O})$, then $\alpha X = G_n \cap \mathcal{B}(\mathcal{O})$. This set is recognizable since G_n is recognizable. Conversely, if αX is recognizable, then there exists an automaton \mathcal{O} such that $\mathcal{B}(\mathcal{O}) = \alpha X$, then

$$\mathscr{B}_n(\mathscr{C}l) := \beta(G_n \cap \mathscr{B}(\mathscr{C}l)) = \beta(G_n \cap \alpha X) = \beta \alpha X = X.$$

For future use, we introduce the projection morphism

$$q:\Gamma_{n+1}^*\to\Gamma_n$$
,

by defining for $\gamma = (w_1, ..., w_{n+1}) \in \Gamma_{n+1}$ (so that $w_i \in \Sigma$ or $w_i = 1$),

$$q\gamma = 1$$
 if $w_1 = \cdots = w_n = 1$

$$q\gamma = (w_1, ..., w_n)$$
 otherwise.

Observe that $qG_{n+1}=G_n$. The projection q is related to the projection $p: \mathcal{L}^{*(n+1)} \to \mathcal{L}^{*n}$ by the formal rules:

$$\alpha p X = q \alpha X \qquad \text{for} \quad X \subset \Sigma^{*(n+1)} \tag{4.3}$$

$$\alpha p^{-1}X = G_{n+1} \cap q^{-1}\alpha X \quad \text{for} \quad X \subset \Sigma^{*n}. \tag{4.4}$$

PROPOSITION 4.4. If X is a recognizable subset of Γ_{n+1}^* , then qX is a recognizable subset of Γ_n^* .

Proof. This follows from the following slightly more general fact: If Ω and Θ are arbitrary alphabets and $f: \Omega^* \to \Theta^*$ is a morphism such that $f\omega \in \Theta$, or $f\omega = 1$, for all $\omega \in \Omega$, then f transforms recognizable sets into recognizable sets. Indeed, let X be a recognizable subset of Ω^* , and let Y = fX. There is then a finite monoid A and a morphism $g: \Omega^* \to A$, such that $X = g^{-1}C$ for some $C \subset A$. The morphism g determines a morphism $G: P(\Omega^*) \to P(A)$, where $P(\Omega^*)$ and P(A) are the monoids of all subsets of Ω^* and A respectively. Consider the mapping $f^{-1}: \Theta^* \to P(\Omega^*)$. The condition imposed on f implies that $f^{-1}(xy) = (f^{-1}x)(f^{-1}y)$ for $x, y \in \Theta^*$. Then $Gf^{-1}: \Theta^* \to P(A)$ is a multiplicative mapping. Let B be the image of Gf^{-1} . Then B is a finite monoid and $h = Gf^{-1}: \Theta^* \to B$ is a morphism of monoids. Now verify that

$$h^{-1}(D\cap B)=Y,$$

where

$$D = \{U \mid U \in P(A), \ U \cap C \neq \emptyset\}.$$

5. Proof of Theorem 1

First we show that the basic sets (2.1), (2.2), and (2.3) are 1-recognizable respectively 2-recognizable.

Ad(2.1) The following automaton recognizes $\Sigma^*\sigma$:

$$S=\{s_0$$
 , $s_1\}$, $F=\{s_1\}$, $s_i\sigma=s_1$, $s_i\sigma'=s_0$ for $\sigma'
eq\sigma$.

Ad(2.2) The following automaton recognizes I:

$$S = \{s_0, s_1, s_2\}, \qquad F = \{s_0, s_1\},$$

 $s_0(\sigma, \sigma) = s_0$
 $s_i(\sigma, 1) = s_1 \qquad \text{for} \quad i = 0, 1$
 $s_1(\sigma, 1) = s_2 \qquad \text{in all other cases.}$

Ad(2.3) The following automaton recognizes E:

$$S = \{s_0, s_1\}, \qquad F = \{s_0\},$$
 $s_0 \gamma = s_0, \qquad \text{for} \quad \gamma \in \mathcal{L}^2$ $s \gamma = s_1, \qquad \text{in all other cases.}$

The next step is to verify that rules (2.4)–(2.8) hold with \mathcal{R}_n replacing \mathcal{D}_n . This is clear for rules (2.4)–(2.6).

Ad(2.7) If $X \in \mathcal{R}_{n+1}$, then αX is a recognizable subset of G_{n+1} . Thus, by Proposition 4.4, $q\alpha X$ is a recognizable subset of G_n . By (4.3), $q\alpha X = \alpha p X$ and, therefore, $pX \in \mathcal{R}_n$.

Ad(2.8) If $X \in \mathcal{R}_n$, then αX is a recognizable subset of G_n . Then $G_{n+1} \cap q^{-1}\alpha X$ is a recognizable subset of G_{n+1} . By (4.4), $\alpha p^{-1}X$ is a recognizable subset of G_{n+1} and, therefore, $p^{-1}X \in \mathcal{R}_{n+1}$.

This concludes the proof of Theorem 1.

6. Local Sets

Let Ω be a finite alphabet. The subsets of Ω^* of the form

$$\{1\}, \, \omega \Omega^*, \, \Omega^* \omega, \, \Omega^* \omega, \, \omega' \Omega^*, \tag{6.1}$$

with ω , $\omega' \in \Omega$, will be called *basic local* sets. The union of any set of basic *local* sets will be called a local set.

PROPOSITION 6.1. If Ω is a subset of a finite set Θ , then for every local subset L of Ω^* , there exists a local subset K of Θ^* such that

$$\Omega^* \setminus L = \Theta^* \setminus K$$
.

Proof. We must have

$$K = (\Theta^* \setminus \Omega^*) \cup L;$$

so we only need to prove that this set is local in Θ^* . First we enlarge L to a set L' obtained by replacing each summand of L in (6.1) by the corresponding set

$$\{1\}$$
, $\omega\Theta^*$, $\Theta^*\omega$, $\Theta^*\omega\omega'\Theta^*$.

There results a set L' local in Θ^* such that $L' \cap \Omega^* = L$. Consequently,

$$K = (\Theta^* \setminus \Omega^*) \cup L'.$$

The set $\Theta^* \setminus \Omega^*$ is the union of the sets

$$\theta\Theta^*$$
, $\Theta^*\theta$, $\Theta^*\theta\theta'\Theta^*$, $\Theta^*\theta'\theta\Theta^*$,

for all $\theta \in \Theta \setminus \Omega$ and all $\theta' \in \Theta$. Thus, $\Theta^* \setminus \Omega^*$ is local. Consequently, K is local.

PROPOSITION 6.2. If Θ is a finite alphabet and X is a recognizable subset of Θ^* , then there exists a finite alphabet Ω , a function $f: \Omega \to \Theta$, and a local subset L of Ω^* such that

$$X = f * (\Omega * \setminus L).$$

Here f^* denotes the morphism $\Omega^* \to \Theta^*$ determined by f.

Proof. This proposition should be regarded as well known. For the sake of completeness we include a proof.

Let \mathcal{O} be a finite Θ -automaton which recognizes the set X. Let S be the set of states, $s_0 \in S$ the initial state and $F \subset S$ the set of final states. Let $\Omega = S \times \Theta$, $f(s, \theta) = \theta$. Let L be the union of the following basic local sets in Ω^*

$$(s, \theta) \Omega^*$$
 for $s \neq s_0$
 $\Omega^*(s, \theta)(s', \theta') \Omega^*$ for $s' \neq s\theta$
 $\Omega^*(s, \theta)$ for $s\theta \notin F$.

If $w \in \Omega^* \setminus L$, then $s_0 f^* w \in F$ and, therefore, $f^* w \in X$. Conversely, let $v = \theta_1 \cdots \theta_n \in X$. Consider

$$w = (s_0, \theta_1)(s_1, \theta_2) \cdots (s_{n-1}, \theta_n),$$

where $s_i = s_{i-1}\theta_i$ for i = 1,..., n-1. Then $s_{n-1}\theta_n = s_0v \in F$. Thus, $w \in \Omega^* \setminus L$ and $f^*w = v$ as required.

7. REDUCTION OF THEOREM 2

PROPOSITION 7.1. Assume that the alphabet Σ is finite and has at least two letters. If a subset X of G_n is recognizable, then there exists an integer $r \geqslant 0$ and a local subset K of Γ_{n+r}^* such that

$$X = q^r(G_{n+r} \setminus K), \tag{7.1}$$

where q' is the iterated projection

$$\Gamma_{n+r}^* \xrightarrow{q} \Gamma_{n+r-1}^* \xrightarrow{q} \cdots \xrightarrow{q} \Gamma_n^*$$

Proof. By Proposition 6.2 there exists an alphabet Ω , a mapping $f: \Omega \to \Gamma_n$, and a local subset L of Ω^* such that

$$f^*(\Omega^* \setminus L) = X. \tag{7.2}$$

Since Σ has at least two letters, there exists an integer $r \geqslant 0$, for which Σ^r will have more elements than Ω . Let $j: \Omega \to \Sigma^r$ be an injective mapping.

We turn our attention to Γ_{n+r}^{\times} . Each $\gamma \in \Gamma_{n+r}$ may be written in one of the forms

$$(\gamma_1, \gamma_2), (\gamma_1, 1), (1, \gamma_2),$$

with $\gamma_1 \in \Gamma_n$, $\gamma_2 \in \Gamma_r$. Further, $q^r \gamma = \gamma_1$ in the first two cases while $q^r \gamma = 1$ in the third case.

Since $f\omega \in \Gamma_n$ and $jw \in \Sigma^r \subset \Gamma_r$, we may embed Ω into Γ_{n+r} by identifying each $\omega \in \Omega$ with $(f\omega, j\omega) \in \Gamma_{n+r}$. Then formula (7.2) becomes

$$q^{r}(\Omega^* \setminus L) = X. \tag{7.3}$$

Next we show that

$$\Omega^* \setminus L \subset G_{n+r}$$
.

Indeed, let

$$w = \omega_1 \cdots \omega_k \in \Omega^* \setminus L.$$

Then, $f * w \in X \subset G_n$, so that $f \omega_k < f \omega_{k-1} < \cdots < f \omega_1$. Since

$$j\omega_k < j\omega_{k-1} < \dots < j\omega_1$$

holds automatically because $j\omega_i \in \Sigma^*$, it follows that $\omega_k < \omega_{k-1} < \cdots < \omega_1$; i.e., $w \in G_{n+r}$. Hence, $\Omega^* \setminus L \subset G_{n+r}$.

By Proposition 6.1, there exists a local subset K of Γ_{n+r}^* such that $\Omega^* \setminus L = \Gamma_{n+r}^* \setminus K$. Since $\Gamma_{n+r}^* \setminus K \subset G_{n+r}$, we have $\Gamma_{n+r}^* \setminus K = G_{n+r} \setminus K$. This implies (7.1) as required.

The proposition just proved will now be used to reduce the problem of proving the inclusion $\mathscr{R}_n \subset \mathscr{D}_n$ to a lemma concerning basic local sets in Γ_n^* . This lemma will be established in Section 8.

Let $X \in \mathscr{R}_n$. Then αX is a recognizable subset of G_n , and by the proposition we have

$$\alpha X = q^r(G_{n+r} \setminus K),$$

for a local set K in Γ_{n+r}^* . Therefore,

$$X = \beta q^r(G_{n+r} \setminus K) = p^r \beta(G_{n+r} \setminus K).$$

To show that $X \in \mathcal{D}_n$, it suffices to show that $\beta(G_{n+r} \setminus K) \in \mathcal{D}_{n+r}$. Let $K = \bigcup_i K_i$ be the finite union of basic local sets and let m = n + r. Then

$$G_m \setminus K = \bigcap_i (G_m \setminus K_i),$$

so that

$$\beta(G_m \setminus K) = \bigcap_i \beta(G_m \setminus K_i).$$

Since $\beta(G_m \setminus K_i) = \mathcal{L}^{*m} \setminus \beta(G_m \cap K_i)$, and since \mathcal{Q}_m is closed under boolean operations, it suffices to prove

LEMMA 7.2. For any alphabet Σ and for any basic local subset K of Γ_n^* , the set $\beta(G_n \cap K)$ is n-definable. This will be proved in the next section.

8. Proof of Lemma 7.2

There will be a string of preliminary lemmas. Throughout, the letters w, w_1, w_i , etc., will designate elements of Σ^* ; thus, (w_1, w_2) will automatically be an element of Σ^{*2} , etc., where Σ is an arbitrary alphabet.

LEMMA 8.1. For k = 0, 1, ..., the sets

$$egin{aligned} L_k &= \{(w_1\ , w_2)\ |\ k + lw_2 \leqslant lw_1\} \ \\ L_{k^{'}} &= \{(w_1\ , w_2)\ |\ k + lw_2 = lw_1\} \ \\ L_k^{''} &= \{(w_1\ , w_2)\ |\ k + lw_2 \geqslant lw_1\}, \end{aligned}$$

are 2-definable, and the sets

$$M_k = \{w \mid k \leqslant lw\}$$
 $M_{k'} = \{w \mid k = lw\}$
 $M_{k'} = \{w \mid k \geqslant lw\}$

are 1-definable.

Proof. Consider the following two equivalences:

$$lw_2 \leqslant lw_1 \Leftrightarrow \exists w_3 (lw_2 = lw_3 \land w_3 \leqslant w_1)$$

$$k + 1 + lw_2 \leqslant lw_1 \Leftrightarrow \exists w_3 (k + lw_3 \leqslant lw_1 \land lw_3 \leqslant lw_2 \land lw_3 \neq lw_2)$$

The first formula implies that

$$egin{aligned} L_0 &= p(Q_1 \cap Q_2) \ Q_1 &= \{w_1 \,,\, w_2 \,,\, w_3 \mid lw_2 = lw_3\} \ Q_2 &= \{w_1 \,,\, w_2 \,,\, w_3 \mid w_3 \leqslant w_1\}. \end{aligned}$$

The latter sets are obtainable from the sets E and I by permutation and cylindrification. Thus, Q_1 , $Q_2 \in \mathscr{D}_3$ and, therefore, $L_0 \in \mathscr{D}_2$.

The second formula shows that

$$L_{k+1}=p(R_1\cap R_2\setminus R_3),$$

 R_1 , R_2 , R_3 obtainable from L_k , L_0 , and E by permutation and cylindrification. Thus, if $L_k \in \mathscr{D}_2$, then R_1 , R_2 , $R_3 \in \mathscr{D}_3$ and $L_{k+1} \in \mathscr{D}_2$. Hence, by induction on k, $L_k \in \mathscr{D}_2$ for all k.

$$L_k'' = \Sigma^{*2} \setminus L_{k+1}$$
 , $L_k' = L_k \cap L_k''$.

Next,

$$k \leqslant lw_1 \Leftrightarrow \mathop{\exists}\limits_{w_2} (k + lw_2 \leqslant lw_1).$$

Thus, $M_k = pL_k \in \mathcal{Q}_1$. Further,

$$M_k'' = \Sigma^* \setminus M_{k+1}$$
, $M_k' := M_k \cap M_k''$

so that M_k , $M_k'' \in \mathcal{D}_1$.

LEMMA 8.2. For any $\sigma, \sigma' \in \Sigma'$ the sets

$$egin{aligned} V_{\sigma} &= \{(w_1\,,\,w_2) \mid w_1 = w_2\sigma\} \ V_{\sigma\sigma'} &= \{(w_1\,,\,w_2) \mid w_1 = w_2\sigma\sigma'\} \ U_{\sigma\sigma'} &= \{(w_1\,,\,w_2) \mid w_2\sigma\sigma' \leqslant w_1\}, \end{aligned}$$

are 2-definable.

Proof. The set V_{σ} is defined by the formula

$$w_2\leqslant w_1 \mathrel{\wedge} (w_1 \mathrel{,} w_2) \in L_1{'} \mathrel{\wedge} w_1 \in \varSigma^*\sigma.$$

Thus, $V_{\sigma} \in \mathcal{Q}_2$. Now $V_{\sigma\sigma'}$ is defined by

$$\exists w_3(w_3 = w_2 \sigma \wedge w_1 = w_3 \sigma').$$

Therefore, $V_{\sigma\sigma^{'}}\in\mathscr{D}_{\mathbf{2}}$. Finally, $U_{\sigma\sigma^{'}}$ is given by

$$\exists w_3(w_3=w_2\sigma\sigma' \land w_3\leqslant w_1).$$

Thus, $U_{\sigma\sigma'} \in \mathscr{D}_2$.

LEMMA 8.3. The sets $\sigma \Sigma^*$ are 1-definable for all $\sigma \in \Sigma$.

Proof. Note that $\sigma \Sigma^*$ is defined by the formula

$$\exists w_2 (w_2 \in M_1{'} \text{ in } w_2 \in \varSigma^*\sigma \text{ in } w_2 \leqslant w_1).$$

LEMMA 8.4. $\beta(G_n \cap \gamma \Gamma_n^*)$ is n-definable.

Proof. Applying an appropriate permutation, we may assume that

$$\gamma = (\sigma_1, ..., \sigma_r, 1, ..., 1)$$
 with $1 \leqslant r \leqslant n$.

Then $\beta(G_n \cap \gamma \Gamma_n^*)$ is the intersection of the subsets of Σ^{*n} defined by the following conditions:

$$w_i \in \sigma_i \Sigma^*$$
 for $1 \leqslant i \leqslant r$ $w_i = 1$ for $r < i \leqslant n$.

This proves the lemma.

If in the above argument we set r = 0, we obtain

LEMMA 8.4'. $\beta(G_n \cap \{1\})$ is n-definable.

LEMMA 8.5. $\beta(G_n \cap \Gamma_n * \gamma \gamma' \Gamma_n *)$ is n-definable.

Proof. Using an appropriate permutation, we may assume that

$$\gamma = (\sigma_1, ..., \sigma_r, 1, ..., 1)$$

$$\gamma' = (\sigma_1', ..., \sigma_s', 1, ..., 1),$$

with $0 < s \leqslant r \leqslant n$. We then see that

$$\beta(G_n \cap \Gamma_n * \gamma \gamma' \Gamma_n *) = p^r M,$$

where M is the subset of $\Sigma^{*(n+r)}$ defined by the following conditions:

$$egin{aligned} w_{n+i}\sigma\sigma'&\leqslant w_i & ext{for}\quad i=1,...,s \ & w_{n+i}\sigma=w_i & ext{for}\quad i=s+1,...,r \ & lw_i&\leqslant lw_{n+r} & ext{for}\quad i=r+1,...,n \ & lw_i=lw_{n+r} & ext{for}\quad i=n+1,...,n+r-1. \end{aligned}$$

This proves the lemma. Setting s = 0 in the above argument, we obtain

LEMMA 8.5'. $\beta(G_n \cap \Gamma_n * \gamma)$ is n-definable.

The last four lemmas constitute a proof of Lemma 7.2.

9. The Case of a Single-Letter Alphabet

If Σ is a single letter, then Σ^* may be identified with the monoid N of nonnegative integers.

The basic definable sets then are

$$1 + N = \{x \mid 0 < x\}, \qquad I = \{x_1, x_2 \mid x_1 \leqslant x_2\}.$$

Since $E = \{x_1, x_2 \mid x_1 = x_2\}$ is obtainable from I, it has been suppressed. Call a subset X of N^n primitive if it is the solution of a single inequality of the type

$$x_i \leqslant x_i + a$$
 or $x_i \leqslant a$ or $a \leqslant x_i$,

for some i, j = 1,..., n and some $a \ge 0$. The intersection of a finite number of primitive sets will be called *elementary*.

Let \mathscr{E}_n denote the class of finite unions of elementary subsets of N^n .

Theorem 9.1. $\mathscr{E}_n = \mathscr{D}_n$.

Proof. The fact that each primitive subset of N^n is in \mathcal{D}_n follows from Lemma 8.1. Therefore, $\mathscr{E}_n \subset \mathscr{D}_n$, for all $n = 1, \ldots$.

To prove the opposite inclusion $\mathcal{D}_n \subset \mathscr{E}_n$, we first note that the basic definable sets are primitive. Further, the class of primitive sets is closed with respect to complementation and cylindrification. Therefore, the sequence $\{\mathscr{E}_n\}$ satisfies rules (2.4), (2.5), (2.6), and (2.8). To verify rule (2.7), it suffices to show that if $X \subset N^{n+1}$ is elementary, then so is the projection $pX \subset N^n$.

For any $x \in N^{n+1}$ it will be convenient to denote the last coordinate by y, while retaining the notation $x_1, ..., x_n$ for the first n coordinates. The inequalities defining the set X may now be recorded as follows:

(9.1) inequalities involving only $x_1, ..., x_n$

$$(9.2) x_i + a_i \leqslant y -\infty < a_i < \infty$$

$$(9.3) y \leqslant x_j + b_j -\infty < b_j < \infty$$

$$(9.4) c \leq y \leq d 0 \leq c \leq d \leq \infty,$$

with the indices i, j ranging over subsets I, J of $\{1, ..., n\}$.

We now record some consequences of these inequalities:

$$(9.5) x_i + a_i \leqslant x_j + b_j i \in I, j \in J$$

$$(9.6) x_i + a_i \leqslant d i \in I$$

$$(9.7) c \leqslant x_j + b_j j \in J$$

Let Y denote the elementary subset of N^n defined by the inequalities (9.1), (9.5)-(9.7). We assert that pX = Y. Since (9.5)-(9.7) are consequences of

(9.2)-(9.4), we certainly have $pX \subset Y$. To prove the converse, let $x = (x_1, ..., x_n) \in Y$. Define $x' = (x_1, ..., x_n, y)$ with

$$y = \text{Inf}(d, x_i + b_i), \quad j \in J.$$

Then $x' \in X$ and px' = x. Thus, pX = Y.

The following is immediate.

COROLLARY 9.2. \mathcal{D}_1 consists of those subsets of N which are either finite or have finite complement.

This result appears in the literature [3], cf. p. 354 and [2]. The proof of Theorem 9.1 is essentially the argument used in [2] to obtain the corollary.

10. THE CASE OF AN INFINITE ALPHABET

Let Σ be an infinite alphabet. Any permutation π of Σ induces an isomorphism $\pi^{*n}: \Sigma^{*n} \to \Sigma^{*n}$. A subset X of Σ^{*n} will be called *finitary* if there exists a finite subset F (called a *carrier* for X), such that for any permutation π of Σ leaving F pointwise-fixed, we have $\pi^{*n}X = X$.

Proposition 10.1. Every n-definable set is finitary.

Proof. The basic sets $\Sigma^*\sigma$ are finitary with carriers $\{\sigma\}$. The basic sets I and E are finitary with carrier ϕ . Next consider the rules (2.4)-(2.8). If X_1 and X_2 are finitary with carriers F_1 and F_2 , then $X_1 \cap X_2$ resp. $X_1 \setminus X_2$ is finitary with carrier $F_1 \cup F_2$. Thus, rules (2.4) and (2.5) hold. The rules (2.6)-(2.8) hold without change of carrier. This yields the conclusion.

EXAMPLE 1. Let \mathcal{Z} be a subset of \mathcal{L} which is infinite and such that $\mathcal{L} \setminus \mathcal{Z}$ also is infinite. Then \mathcal{Z} is not finitary and, therefore, is not 1-definable. However, \mathcal{Z} is recognized by the automaton

$$S = \{s_0, s_1, s_2\}, \qquad F = \{s_1\}$$

 $s_0 \chi = s_1 \quad \text{if} \quad \chi \in \mathcal{Z}$
 $s \sigma = s_2 \quad \text{in all other cases.}$

Example 2. The set

$$\{(\sigma w_1 \ , \ \sigma w_2) \mid \sigma \in \Sigma\}$$

is definable.

Indeed, the set is defined by the formula

$$\exists w_3[lw_3=1 \ \land \ w_3\leqslant w_1 \ \land \ w_3\leqslant w_2].$$

Example 3. The sets

$$\{(w_1\sigma, w_2\sigma) \mid \sigma \in \Sigma\},$$
$$\{(\sigma, \sigma'\sigma) \mid \sigma', \sigma \in \Sigma\},$$

are not 2-recognizable and hence also not 2-definable.

Indeed, let C be one of the two sets. Then, for $\sigma' \neq \sigma''$,

$$(\sigma', \sigma)(1, \sigma') \in C, \qquad (\sigma'', \sigma)(1, \sigma') \notin C.$$

Then for any automaton \mathcal{O} recognizing C, we must have $s_0(\sigma', \sigma) \neq s_0(\sigma'', \sigma)$, for $\sigma' \neq \sigma''$. Therefore, \mathcal{O} is not finite.

Example 4. The sets

$$egin{aligned} \{(w_1\sigma,\,w_2\sigma)\mid lw_1\,=\,lw_2\,,\,\sigma\in\mathcal{\Sigma}\},\ &\{(\sigma_1\sigma,\,\sigma_2\sigma)\mid\sigma_1\,,\,\sigma_2\,,\,\sigma\in\mathcal{\Sigma}\}, \end{aligned}$$

are 2-recognizable.

Indeed the automata recognizing these sets are

$$S = \{s_0, s_1, s_2\}$$
 $F = \{s_1\}$
 $s_0(\sigma_1, \sigma_2) = s_0$ if $\sigma_1 \neq \sigma_2$
 $s_0(\sigma, \sigma) = s_1$
 $s_1(\sigma_1, \sigma_2) = s_0$ if $\sigma_1 \neq \sigma_2$
 $s_1(\sigma, \sigma) = s_1$
 $s\gamma = s_2$ in all other cases.
 $S = \{s_0, s_1, s_2, s_3\}$ $F = \{s_2\}$
 $s_0(\sigma_1, \sigma_2) = s_1$
 $s_1(\sigma, \sigma) = s_2$
 $s\gamma = s_2$ in all other cases.

PROBLEM 1. Are the sets in Example 4 2-definable?

PROBLEM 2. If a subset of Σ^{*n} is both finitary and n-recognizable, is it n-definable?

PROBLEM 3. If a definable set is invariant under all permutations of the alphabet, is it then first order definable from E and I only (without use of $\Sigma^*\sigma$)?

11. Decomposition into Homogeneous Sets

Let A be a non-empty subset of $\{1,...,n\}$. An element $w=(w_1,...,w_n)$ of Σ^{*n} is called homogeneous of Type A provided

$$w_i = 1$$
 for $i \notin A$ (11.1)

$$lw_i = lw_j \quad \text{for } i, j \in A.$$
 (11.2)

In particular, the unit element of Σ^{*n} is homogeneous of any type. The set of all homogeneous elements of Type A form a submonoid of Σ^{*n} . This submonoid may be identified with the monoid Σ^{A*} , where Σ^{A} is the set of all functions $A \to \Sigma$.

Theorem 11.1. Let Σ be a finite alphabet. A subset X of Σ^{*n} is n-recognizable if and only if X is the finite union of sets which are products.

$$X_1 \cdots X_k \qquad k = 1, 2, ...,$$
 (11.3)

where

$$X_i$$
 is a recognizable subset of Σ^{A_i*} . (11.4)

$$A_1 \supset \cdots \supset A_k$$
. (11.5)

For the proof we first develop analogous notions in the monoid Γ_n^* associated with the alphabet Σ . Let $\gamma \in \Gamma_n$. Then

$$\gamma = (w_1,...,w_n), \quad w_i \in \Sigma^*, \quad \sup_i kw_i = 1.$$

Let

$$|\gamma| = \{i \mid w_i \in \Sigma\}.$$

Then

$$\phi \neq |\gamma| \subset \{1,...,n\}.$$

For any non-empty subset A of $\{1,...,n\}$, set

$$\Gamma_A = \{ \gamma \mid \gamma \in \Gamma_n , |\gamma| = A \}.$$

Theorem 11.2. Let Σ be any alphabet. A subset Y of G_n is rational (i.e., regular in the sense of Kleene), if and only if, Y is the finite union of sets which are products

$$Y_1 \cdots Y_k \qquad k = 1, 2, ...,$$
 (11.3')

where

$$Y_i$$
 is a rational subset of $\Gamma_{A_i}^*$ (11.4')

$$A_1 \supset \cdots \supset A_k$$
 (11.5')

We first show how the second theorem implies the first. Indeed, if Σ is finite, then so is Γ_n . Thus, in Theorem 11.2, "rational" may be replaced by "recognizable." Further, the bijection $\alpha: \mathcal{L}^{*n} \to G_n$ maps the submonoids Σ^{A*} of Σ^{*n} isomorphically onto the submonoid, Γ_A^* of Γ_n . Further, α maps every set (11.3), satisfying (11.4) and (11.5), onto a set (11.3') satisfying (11.4') and (11.5'). The mapping $\beta: G_n \to \Sigma^{*n}$ does the opposite.

To prove Theorem 11.2, denote by \mathscr{E}_1 the class of all subsets of Γ_n^* which are finite unions of sets (11.3') satisfying (11.4') and (11.5'). Denote by \mathscr{E}_2 the class of all subsets Y of Γ_n^* for which $Y \setminus G_n \neq \phi$. Then set $\mathscr{E} = \mathscr{E}_1 \cup \mathscr{E}_2$.

First note that $\{w\} \in \mathscr{E}$ for every $w \in \Gamma_n^*$. Indeed, if $w \notin G_n$, then $\{w\} \in \mathscr{E}_2$. If $w \in G_n$, then

$$w = \gamma_1 \cdots \gamma_k$$
, $|\gamma_1| \supset \cdots \supset |\gamma_n|$.

Thus, $\{w\}$ has the form (11.3') with (11.4') and (11.5') satisfied. Hence, $\{w\} \in \mathscr{E}_1$.

Next observe that $\mathscr E$ is closed with respect to finite unions. To prove that $\mathscr E$ is closed with respect to products, consider

$$Q = YZ, \quad Y, Z \in \mathscr{E}.$$

If $Q \setminus G_n \neq \phi$ then $Q \in \mathscr{E}_2 \subset \mathscr{E}$. Thus, we may assume that $Q \subset G_n$. This implies $Y \subset G_n$, $Z \subset G_n$ or, equivalently, $Y, Z \in \mathscr{E}_1$. By distributivity, it suffices to consider

$$Y = Y_1 \cdots Y_k \,, \qquad Y_i \subset \varGamma_{A_i}^* \,, \qquad A_1 \supset \cdots \supset A_k \,, \qquad Y_i \neq \{1\}$$

$$Z = Z_1 \cdots Z_l$$
, $Z_j \subset \Gamma_{B_j}^*$, $B_1 \supset \cdots \supset B_l$, $Z_i \neq \{1\}$.

Let $y \in Y_k$, $z \in Z_1$, $y \neq 1 \neq z$. Since $YZ \subset G_n$, we have $yz \in G_n$, which implies $A_k \supset B_1$. Thus, $YZ = Y_1 \cdots Y_k Z_1 \cdots Z_l$ has the required form, and hence $Q \in \mathscr{E}_1$.

Finally, let $T \in \mathscr{E}$ and consider T^* . If $T \in \mathscr{E}_2$, then $T \setminus G_n \neq \varnothing$. Therefore, $T^* \setminus G_n \neq \varnothing$ and $T^* \in \mathscr{E}_2$. Thus we may assume

$$T \in \mathscr{E}_1$$
, $T^* \subset G_n$.

Let Y and Z be any two (not necessarily distinct) summands of T satisfying (11.4') and (11.5'). Then $YZ \subset T^* \subset G_n$ and, therefore, by the argument above, $A_k \supset B_1$. Similarly, since $ZY \subset T^* \subset G_n$, we have $B_l \supset A_1$. Consequently, $A_1 = \cdots = A_k = B_1 = \cdots = B_l$. Therefore, T is a rational subset of Γ_A^* for some A. Hence $T^* \in \mathscr{E}_1$.

Since the class \mathscr{E} is closed under the Kleene operations, and contains the individual elements of Γ_n^* , it follows that it contains all the rational subsets of Γ_n^* . Hence, every rational subset of G_n is in \mathscr{E}_1 as required.

REFERENCES

- ELGOT, C. C. AND MEZEI, J. E. On relations defined by generalized finite automata. IBM J. Res. Develop. 9 (1965).
- 2. ELGOT, C. C. AND WRIGHT, J. B. Quantifier elimination in a problem of logical design. *Mich. Math. J.* 6 (1959).
- 3. HILBERT AND BERNAYS. "Grundlagen der Mathematik." Vol. 1, (cf. p. 354). Springer, Berlin, 1934.
- RABIN, M. O. AND SCOTT, D. Finite automata and their problems. IBM J. Res. Develop. 3 (1959).