Stage Hopital Foch - Etude des facteurs qui influencent l'hypothermie lors d'un sejour clinique

LABARRE Vincent

05/07/2020

Contents

I. Nettoyage des données - Étude du mécanisme des données manquantes :	2
A) Création de 8 nouvelles variables:	2
B) La meilleure façon de faire:	3
C) La moins bonne façon de faire:	7
II. Description des données : 36	6
A) Description globale:	6
B) Description par rapport à la chirurgie :	0
III. Analyses Univariées 41	1
A) Température:	1
B) Open_Coelio:	3
C) Surface:	4
D) Heure d'arrivée en salle:	5
E) ASA:	6
F) Pain_score:	7
G) NVPO_level:	8
H) Anesthésie AIVOC:	9
I) Heated_Fluide:	0
J) ATC:	1
K) Antécédents:	5
L) GHM à 2 digits:	9
M) GHM à 3 digits:	2
IV. Analyses Multivariées 75	5
A) 1ere analyse multivariée - Age, poids, taille et asa :	5
B) 2e analyse multivariée - ATC :	7

I. Nettoyage des données - Étude du mécanisme des données manquantes :

Pour ce travail, après analyse des variables présentes dans le jeu de données, nous avons pu déterminer que les variables suivantes étaient les variables pertinentes (en ajoutant les ATC, antécédents et ghm) pour notre étude:

- ca_id,ca_date,
- pat_age,
- pat_genre,
- ca evt pir,
- ca_evt_por,
- ca_evt_apacu,
- ca_evt_dpacu,
- pat_asa,
- pat_taille,
- pat poids,
- ope_classe,
- sej_dur,
- ghm_code,
- cmd_c,
- sej_long,
- sej_longpo,
- ghm foch,
- ca ag,
- evt_induction,
- evt entretien,
- tp_val,
- tp thermielib,
- tp heatedAir,
- tp_heatedFluide

A) Création de 8 nouvelles variables:

Nous allons créer 8 nouvelles variables pour compléter notre jeu de données :

- Exclusion: indique les variables à exclure ("Oui") ou à garder ("Non").
- Radiologie Interventionnelle: "Oui" ou "Non".
- Endoscopie: "Oui" ou "Non".
- Specialite_chirurgicale : précise la spécialité chirurgicale.
- Open_Coelio: renseigne sur la pratique de l'opération: "Open", "Coelio" ou NA.
- Surface : donne l'ampleur de l' "Ouverture chirurgicale".
- IMC (Indice de masse corporelle): grandeur permettant d'estimer la corpulence d'une personne. Formule: IMC = 10000*poids/(taille)^2 avec Unités: poids: kg; taille: cm
- BSA (Body Surface Area) / SC (Surface Corporelle) : surface externe de la peau recouvrant le corps. Formule : SC = racine carrée du (poids x taille)/3600 avec Unités : SC: m2 ; poids: kg ; taille: cm

B) La meilleure façon de faire:

Retirons dès maintenant de notre jeu de données les variables à exclure et regardons les différences de proportions de données manquantes :

Dataset	Nb_Observations	Nb_NA_tp
apxa	10336	296
apxa_modifié	10232	236

Maintenant, regardons le nombre d'observations non remplies pour les nouvelles variables (endoscopie, RI, Open ou Coelio etc ..) et groupons les par CCAM :

Code CCAM	Effectif	Proportion (en %)
KAFA001	525	13.6010363
	207	5.3626943
LFFA002	162	4.1968912
AAFA002	150	3.8860104
LFDA009	126	3.2642487
LFDA006	112	2.9015544
JDLD001	99	2.5647668
AELA002	80	2.0725389
AELA001	75	1.9430052
LDCA013	72	1.8652850
JKFA002	64	1.6580311
GEQE002	62	1.6062176
LDFA008	62	1.6062176
LFDA004	58	1.5025907
LHFA016	53	1.3730570
ACFA002	49	1.2694301
ACFA022	45	1.1658031
JKFA018	45	1.1658031
GBPE001	44	1.1398964
JGFE023	44	1.1398964
LHCA010	43	1.1139896
AFFA007	42	1.0880829
ACFA028	40	1.0362694
LFAA002	37	0.9585492
AFFA005	35	0.9067358
AAFA001	34	0.8808290
LFDA001	33	0.8549223
QBFA007	33	0.8549223
LDAA001	32	0.8290155
LHMA006	32	0.8290155
ACFA011	30	0.7772021
ACFA020	30	0.7772021
ABCA002	29	0.7512953
LFAA001	28	0.7253886
JLDA002	26	0.6735751
AEKA001	24	0.6217617
ACFA001	23	0.5958549
GEQJ237	23	0.5958549
JGNJ900	22	0.5699482

Code CCAM	Effectif	Proportion (en %)
JKFA025	22	0.5699482
LHMA003	22	0.5699482
AALB001	20	0.5181347
ABFA010	20	0.5181347
JKFA026	20	0.5181347
ACFA010	19	0.4922280
LFFA004	19	0.4922280
AFLA003	18	0.4663212
EACA007	18	0.4663212
LAMA009	18	0.4663212
DGLF001	16	0.4145078
ACHA002	15	0.3886010
LDFA009	15	0.3886010
QBPA001	13	0.3367876
ABCC001	12	0.3108808
JKNE001	12	0.3108808
JMDA001	12	0.3108808
LDFA011	12	0.3108808
LAFA018	11	0.2849741
AHQB026	10	0.2590674
JCLE002	10	0.2590674
LAFA019	10	0.2590674
ACFA013	9	0.2331606
AEGA001	9	0.2331606
EGFA003	9	0.2331606
HKPA007	9	0.2331606
JKFE002	9	0.2331606
LDPA001	9	0.2331606
LHMA011	9	0.2331606
ABFA006	8	0.2072539
JACH001	8	0.2072539
JKFE001	8	0.2072539
LAFA004	8	0.2072539 0.2072539
LHCA002	8	0.2072539
ACFA024	7	0.1813472
AELB002	7	0.1813472
JGFA014	7	0.1813472
JJQC001	7	0.1813472
•		
ZBQC002	7	0.1813472
AAFA003	6	0.1554404
ABJA003	6	0.1554404
ABSA008	6	0.1554404
EEAF001	6	0.1554404
JKFA007	6	0.1554404
AAKA001	5	0.1295337
ABCB001	5	0.1295337
ACFA004	5	0.1295337
ACFA007	5	0.1295337
ACPA001	5	0.1295337
CBMD003	5	0.1295337
EDAF003	5	0.1295337
HJFD002	5	0.1295337

Code CCAM	Effectif	Proportion (en %)
HKFA004	5	0.1295337
JDFE001	5	0.1295337
JKFA005	5	0.1295337
LDFA007	5	0.1295337
LDFA012	5	0.1295337 0.1295337
LJFA009	5	0.1295337 0.1295337
AAFA007	4	0.1235357
ABFA005	4	0.1036269
ABJA006	4	0.1036269
AEFA002	4	0.1036269
AFCA002	4	0.1036269
AFSA003	$\frac{4}{4}$	0.1036269
AHFA007	$\frac{4}{4}$	0.1036269
EGED001	$\frac{4}{4}$	0.1036269
	$\frac{4}{4}$	0.1036269 0.1036269
GDFE004	$\frac{4}{4}$	0.1036269 0.1036269
GEQE007		
GEQE013	4	0.1036269
HHFA010	4	0.1036269
JCKE002	4	0.1036269
JEPE002	4	0.1036269
JKFA021	4	0.1036269
JKFA031	4	0.1036269
LDCA003	4	0.1036269
LDPA007	4	0.1036269
LFDA012	4	0.1036269
LHMA015	4	0.1036269
LHMH002	4	0.1036269
ABFA002	3	0.0777202
ABFA008	3	0.0777202
ABFA009	3	0.0777202
ABSA009	3	0.0777202
AEFA001	3	0.0777202
AELB001	3	0.0777202
AEPA001	3	0.0777202
AFFA003	3	0.0777202
AFPA001	3	0.0777202
AHLB018	3	0.0777202
DGPA012	3	0.0777202
EACA002	3	0.0777202
EEAF006	3	0.0777202
EECA003	3	0.0777202
EGFA001	3	0.0777202
GEQE006	3	0.0777202
GFFA007	3	0.0777202
HDMA009	3	0.0777202
HEFA012	3	0.0777202
HFFC001	3	0.0777202
HJFD005	3	0.0777202
HJQD001	3	0.0777202
HKFA008	3	0.0777202
HKPA004	3	0.0777202
JCQE003	3	0.0777202

Code CCAM	Effectif	Proportion (en %)
JDFE002	3	0.0777202
JDQE003	3	0.0777202
JJCC004	3	0.0777202
JLCA003	3	0.0777202
JLCA005	3	0.0777202
KBFA001	3	0.0777202
KCFA001	3	0.0777202
LAFA011	3	0.0777202
LAMA007	3	0.0777202
LDCA011	3	0.0777202
LEFC002	3	0.0777202
LFFA001	3	0.0777202
LHDA002	3	0.0777202
LHGA007	3	0.0777202
LJFA006	3	0.0777202
YYYY027	3	0.0777202
AAJA005	2	0.0717202
ABSA004	$\frac{2}{2}$	0.0518135 0.0518135
ABSA004 ABSA011	$\frac{2}{2}$	0.0518135
ACFA016	$\frac{2}{2}$	0.0518135
ACFA010 ACFA018	$\frac{2}{2}$	0.0518135
ACFA016 ACFA026	$\frac{2}{2}$	0.0518135
AEFA003	$\frac{2}{2}$	0.0518135
AFFA003	$\overset{2}{2}$	0.0518135
AFFA010	$\overset{2}{2}$	0.0518135
AHFA004	$\overset{2}{2}$	0.0518135
CAMA011	$\overset{2}{2}$	0.0518135
CAMA011 CAMA018	$\overset{2}{2}$	0.0518135
EEAF004	$\frac{2}{2}$	0.0518135
EGFA005	$\frac{2}{2}$	0.0518135
ENCA001	$\frac{2}{2}$	0.0518135
FAFA015	$\frac{2}{2}$	0.0518135
FCFA005	$\frac{2}{2}$	0.0518135
GAFD001	$\frac{2}{2}$	0.0518135
GAMA016	$\frac{2}{2}$	0.0518135
GAMA020	$\frac{2}{2}$	0.0518135
GELE008	2	0.0518135
GENE001	2	0.0518135
GEQE004	2	0.0518135
GFFA010	$\frac{2}{2}$	0.0518135
GFFA011	2	0.0518135
GFFA012	2	0.0518135
GFFA026	2	0.0518135
HAFA001	2	0.0518135
HCFA005	2	0.0518135
HDQE001	2	0.0518135
HEME002	2	0.0518135
HFFA002	$\frac{2}{2}$	0.0518135
HFFC002	$\frac{1}{2}$	0.0518135
HFFC017	2	0.0518135
HFMC004	2	0.0518135
HFMC008	2	0.0518135
0 0 0 0	_	0.0010100

Code CCAM Effectif Proportion (en %) HHMC001 2 0.0518135 HJSD001 2 0.0518135 HKCA001 2 0.0518135 HKFA006 2 0.0518135 HKFA008 2 0.0518135 HKFA008 2 0.0518135 HLFA020 2 0.0518135 JAFA003 2 0.0518135 JAFA024 2 0.0518135 JAFO08 2 0.0518135 JAFO08 2 0.0518135 JAFO09 2 0.0518135 JAFO008 2 0.0518135 JCCA002 2 0.0518135 JCEA001 2 0.0518135 JCFA003 2 0.0518135 JCFA001 2 0.0518135 JCEA001 2 0.0518135 JDFA001 2 0.0518135 JDFE003 2 0.0518135 JDFE004 2 0.0518135 JHFA03 2 <th>Code CCAM</th> <th>Effectif</th> <th>Proportion (en %)</th>	Code CCAM	Effectif	Proportion (en %)
HJSD001 2 0.0518135 HKCA001 2 0.0518135 HKFA006 2 0.0518135 HKFA008 2 0.0518135 HKPA008 2 0.0518135 JAFA003 2 0.0518135 JAFA002 2 0.0518135 JCCA002 2 0.0518135 JCFA001 2 0.0518135 JCFA001 2 0.0518135 JCFA001 2 0.0518135 JCEA001 2 0.0518135 JCFA001 2 0.0518135 JJFC001 2 0.0518135 JDFE003 2 0.0518135 JDFE003 2 0.0518135 JDFE003 2 0.0518135 JDFE002 2 0.0518135 JHFA003 2 0.0518135 JHFA001 2 0.0518135 JHFA001 2 0.0518135 JKFC006 2 0.0518135 JKFC006 2 0.0518135 JKFC006 2 0.0518135 JKFC006 2 0.0518135 JKFC006 2 0.0518135 JKFC006 2 0.0518135 JCCA007 2 0.0518135 JCCA007 2 0.0518135 JCCA007 2 0.0518135 JCCA004 2 0.0518135 JCCA004 2 0.0518135 LDCA004 2 0.0518135 LDFA006 1 0.0259067 ABA001 1 0.0259067 ABA003 1 0.0259067 ABA0001 1 0.0259067 ABA0001 1 0.0259067 ABA0001 1 0.0259067 ABA0001 1 0.0259067	-		
HKCA001 2 0.0518135 HKFA006 2 0.0518135 HKFA006 2 0.0518135 HKFA008 2 0.0518135 HLFA020 2 0.0518135 JAFA003 2 0.0518135 JAFA002 2 0.0518135 JAFA002 2 0.0518135 JCCA002 2 0.0518135 JCFA001 2 0.0518135 JDFA001 2 0.0518135 JDFA001 2 0.0518135 JDFE003 2 0.0518135 JDFE003 2 0.0518135 JDFE003 2 0.0518135 JDFE004 2 0.0518135 JJFC009 2 0.0518135 JHFA003 2 0.0518135 JKFC006 2 0.0518135 JKFC006 2 0.0518135 JKFC006 2 0.0518135 LCA007 2 0.0518135 LCA007 2 0.0518135 LDCA004 2 0.0518135 LDCA004 2 0.0518135 LDFA001 1 0.0259067 ABJA008 1 0.0259067			
HKFA005			
HKFA006 2 0.0518135 HKPA008 2 0.0518135 HLFA020 2 0.0518135 JAFA003 2 0.0518135 JAFA024 2 0.0518135 JAFC008 2 0.0518135 JBFA002 2 0.0518135 JCCA002 2 0.0518135 JCEA001 2 0.0518135 JCFA003 2 0.0518135 JCKE001 2 0.0518135 JCLE001 2 0.0518135 JDFE003 2 0.0518135 JDFE003 2 0.0518135 JDFE003 2 0.0518135 JDFE001 2 0.0518135 JDFE002 2 0.0518135 JDFE002 2 0.0518135 JHFA003 2 0.0518135 JHFA003 2 0.0518135 JHFA003 2 0.0518135 JJFC009 2 0.0518135 JKFC002 2 0.0518135 JKFC002 2 0.0518135 JKFC006 2 0.0518135 JKFC006 2 0.0518135 JLCA007 2 0.0518135 LDCA004 2 0.0518135 LDFA006 2 0.0518135 LDFA006 2 0.0518135 LDFA006 2 0.0518135 LDFA006 2 0.0518135 LDFA001 2 0.0518135 LDFA006 2 0.0518135 LDFA006 2 0.0518135 LDFA001 2 0.0518135 LDFA006 2 0.0518135 LDFA001 1 0.0259067 ABJA008 1 0.0259067			
HKPA008 2 0.0518135 HLFA020 2 0.0518135 JAFA003 2 0.0518135 JAFA024 2 0.0518135 JAFC008 2 0.0518135 JBFA002 2 0.0518135 JCCA002 2 0.0518135 JCEA001 2 0.0518135 JCFA001 2 0.0518135 JCFA003 2 0.0518135 JCKE001 2 0.0518135 JDFA001 2 0.0518135 JDFE003 2 0.0518135 JDFE003 2 0.0518135 JDFE002 2 0.0518135 JHFA003 2 0.0518135 JHFA003 2 0.0518135 JHFA003 2 0.0518135 JKFC006 2 0.0518135 JKFC006 2 0.0518135 JKFC006 2 0.0518135 JKFC006 2 0.0518135 LCA007 2 0.0518135 LCA007 2 0.0518135 LDCA004 2 0.0518135 LDAA002 2 0.0518135 LDAA002 2 0.0518135 LDFA001 2 0.0518135 LDFA006 2 0.0518135 LDFA006 2 0.0518135 LDFA001 2 0.0518135 LDFA006 2 0.0518135 LDFA001 2 0.0518135 LDFA006 2 0.0518135 LDFA006 2 0.0518135 LDFA001 2 0.0518135 LDFA006 2 0.0518135 LDFA006 2 0.0518135 LDFA006 2 0.0518135 LDFA006 2 0.0518135 LDFA001 1 0.0259067 ABJA008 1 0.0259067			
HLFA020 2 0.0518135 JAFA003 2 0.0518135 JAFA024 2 0.0518135 JAFC008 2 0.0518135 JBFA002 2 0.0518135 JCCA002 2 0.0518135 JCEA001 2 0.0518135 JCFA001 2 0.0518135 JCFA003 2 0.0518135 JCKE001 2 0.0518135 JCLE001 2 0.0518135 JDFA001 2 0.0518135 JDFA001 2 0.0518135 JDFA001 2 0.0518135 JDFE003 2 0.0518135 JDFE003 2 0.0518135 JDJE001 2 0.0518135 JDJE001 2 0.0518135 JDFE002 2 0.0518135 JHFA003 2 0.0518135 JHFA003 2 0.0518135 JHFA004 2 0.0518135 JKFA011 2 0.0518135 JKFC006 2 0.0518135 JKCA007 2 0.0518135 JKCA007 2 0.0518135 LDCA004 2 0.0518135 LDFA006 2 0.0518135 LDCA004 2 0.0518135 LDCA006 2 0.0518135 LDCA006 2 0.0518135 LDCA006 2 0.0518135 LDCA007 2 0.0518135 LDCA006 2 0.0518135 LDCA00			
JAFA003 2 0.0518135 JAFA024 2 0.0518135 JAFC008 2 0.0518135 JBFA002 2 0.0518135 JCCA002 2 0.0518135 JCEA001 2 0.0518135 JCFA001 2 0.0518135 JCFA003 2 0.0518135 JCKE001 2 0.0518135 JCLE001 2 0.0518135 JDFA001 2 0.0518135 JDFA001 2 0.0518135 JDFE003 2 0.0518135 JDFE003 2 0.0518135 JDJE001 2 0.0518135 JDJE001 2 0.0518135 JDJE001 2 0.0518135 JDFE002 2 0.0518135 JHFA003 2 0.0518135 JHFA003 2 0.0518135 JKFA011 2 0.0518135 JKFC006 2 0.0518135 JKFC006 2 0.0518135 JKCA007 2 0.0518135 LDCA004 2 0.0518135 LDCA002 2 0.0518135 LDCA004 2 0.0518135 LDCA004 2 0.0518135 LDFA006 2 0.0518135 LDCA004 2 0.0518135 LDCA004 2 0.0518135 LDCA004 2 0.0518135 LDFA006 2 0.0518135 LFCA004 2 0.0518135 LFCA005 1 0.0259067 ABJA008 1 0.0259067 ABJA008 1 0.0259067 ABJA008 1 0.0259067 ABJA008 1 0.0259067			
JAFA024 2 0.0518135 JAFC008 2 0.0518135 JBFA002 2 0.0518135 JCCA002 2 0.0518135 JCEA001 2 0.0518135 JCFA001 2 0.0518135 JCFA003 2 0.0518135 JCKE001 2 0.0518135 JCLE001 2 0.0518135 JDFA001 2 0.0518135 JDFE003 2 0.0518135 JDFE003 2 0.0518135 JDJE001 2 0.0518135 JDJE001 2 0.0518135 JDFE002 2 0.0518135 JHFA003 2 0.0518135 JHFA003 2 0.0518135 JHFA003 2 0.0518135 JKFC009 2 0.0518135 JKFC009 2 0.0518135 JKFC006 2 0.0518135 JKFC006 2 0.0518135 JLCA007 2 0.0518135 LDCA007 2 0.0518135 LDCA002 2 0.0518135 LDCA002 2 0.0518135 LDCA004 2 0.0518135 LDCA004 2 0.0518135 LDCA004 2 0.0518135 LDFA006 2 0.0518135 LFFA006 2 0.0518135 LFFA00			
JAFC008 JBFA002 JBFA002 JCCA002 JCCA002 JCCA001 JCEA001 JCEA001 JCFA001 JCFA003 JCFA003 JCCEO01 JCCEO JC			
JBFA002 2 0.0518135 JCCA002 2 0.0518135 JCEA001 2 0.0518135 JCFA003 2 0.0518135 JCKE001 2 0.0518135 JCLE001 2 0.0518135 JDFA001 2 0.0518135 JDFE003 2 0.0518135 JDFE001 2 0.0518135 JDFE002 2 0.0518135 JDFE001 2 0.0518135 JDFE002 2 0.0518135 JHFA003 2 0.0518135 JHFA004 2 0.0518135 JHFA005 2 0.0518135 JHFA006 2 0.0518135 JKFC009 2 0.0518135 JKFC006 2 0.0518135 JKFC006 2 0.0518135 JLCA007 2 0.0518135 LBFA023 2 0.0518135 LDCA004 2 0.0518135 LDFA001 2 <td< td=""><td></td><td></td><td></td></td<>			
JCCA002 2 0.0518135 JCEA001 2 0.0518135 JCFA003 2 0.0518135 JCFA003 2 0.0518135 JCKE001 2 0.0518135 JCLE001 2 0.0518135 JDFA001 2 0.0518135 JDFA001 2 0.0518135 JDFE003 2 0.0518135 JDJE001 2 0.0518135 JDPE002 2 0.0518135 JHFA003 2 0.0518135 JHFA003 2 0.0518135 JHFA003 2 0.0518135 JKFC006 2 0.0518135 JKFC006 2 0.0518135 JKFC006 2 0.0518135 LDCA007 2 0.0518135 LDAA002 2 0.0518135 LDAA002 2 0.0518135 LDCA004 2 0.0518135 LDCA004 2 0.0518135 LDFA001 2 0.0518135 LDFA006 2 0.0518135 LFCA004 2 0.0518135 LFCA004 2 0.0518135 LFFA006 2 0.0518135 LFFA006 2 0.0518135 LFFA006 2 0.0518135 LFFA006 1 0.0559067 AAJA001 1 0.0259067 ABJA008 1 0.0259067	JAFC008		
JCEA001 2 0.0518135 JCFA003 2 0.0518135 JCKE001 2 0.0518135 JCKE001 2 0.0518135 JCLE001 2 0.0518135 JDFA001 2 0.0518135 JDFA001 2 0.0518135 JDFE003 2 0.0518135 JDJE001 2 0.0518135 JDJE001 2 0.0518135 JDJE001 2 0.0518135 JDFE002 2 0.0518135 JHFA003 2 0.0518135 JHFA003 2 0.0518135 JHFA001 2 0.0518135 JKFC009 2 0.0518135 JKFC009 2 0.0518135 JKFC002 2 0.0518135 JKFC006 2 0.0518135 JLCA007 2 0.0518135 LDCA007 2 0.0518135 LDCA002 2 0.0518135 LDAA002 2 0.0518135 LDFA006 2 0.0518135 LDCA004 2 0.0518135 LDCA004 2 0.0518135 LDCA004 2 0.0518135 LDFA006 2 0.0518135 LFCA004 2 0.0518135 LFCA004 2 0.0518135 LFCA004 2 0.0518135 LFCA004 1 0.051803 LFCA005 1 0.0259067 ABJA008 1 0.0259067			0.0518135
JCFA001 2 0.0518135 JCFA003 2 0.0518135 JCKE001 2 0.0518135 JCLE001 2 0.0518135 JDFA001 2 0.0518135 JDFE003 2 0.0518135 JDFE003 2 0.0518135 JDJE001 2 0.0518135 JDJE001 2 0.0518135 JDPE002 2 0.0518135 JHFA003 2 0.0518135 JHFA003 2 0.0518135 JHFA001 2 0.0518135 JKFC009 2 0.0518135 JKFC002 2 0.0518135 JKFC006 2 0.0518135 JKFC006 2 0.0518135 JLCA007 2 0.0518135 LDCA007 2 0.0518135 LDAA002 2 0.0518135 LDAA002 2 0.0518135 LDAA002 2 0.0518135 LDCA004 2 0.0518135 LDCA004 2 0.0518135 LDFA006 2 0.0518135 LDFA006 2 0.0518135 LDFA006 2 0.0518135 LDFA006 2 0.0518135 LDFA001 2 0.0518135 LDFA006 2 0.0518135 LFFA006 1 0.0518135 LFFA006 1 0.0518135 LFFA001 1 0.0518135 LFFA001 1 0.0518135 LFFA001 1 0.0259067 AAJA001 1 0.0259067 ABJA008 1 0.0259067 ABMA003 1 0.0259067 ABMA003 1 0.0259067 ABMA003 1 0.0259067 ABMA003 1 0.0259067			0.0518135
JCFA003 JCKE001 JCKE001 JCKE001 JCLE001 JCLE001 JDFA001 JDFA001 JDFE003 JDFE003 JDGE001 JDGE001 JDJE001 JDJE001 JDJE001 JDJE002 JDJE002 JDFA003 JDFE002 JDFA003 JDFE002 JDFA003 JDFE002 JDFA003 JDFE002 JDFA003 JDFE002 JDFA003 JDFE002 JDFA003 JDFA003 JDFA003 JDFA003 JDFA009 JDFA009 JDFA009 JDFA009 JDFA009 JDFA009 JDFA009 JDFA006 JDFA006 JDFA007 JDFA006 JDFA008 JDFA009 JDFA00	JCEA001	2	0.0518135
JCKE001 2 0.0518135 JCLE001 2 0.0518135 JDFA001 2 0.0518135 JDFE003 2 0.0518135 JDGE001 2 0.0518135 JDJE001 2 0.0518135 JDPE002 2 0.0518135 JHFA003 2 0.0518135 JHFA003 2 0.0518135 JHFA000 2 0.0518135 JKFC009 2 0.0518135 JKFC002 2 0.0518135 JKFC006 2 0.0518135 JKFC006 2 0.0518135 JLCA007 2 0.0518135 JLCA007 2 0.0518135 LDAA002 2 0.0518135 LDAA002 2 0.0518135 LDCA004 2 0.0518135 LDCA004 2 0.0518135 LDFA006 2 0.0518135 LFCA004 2 0.0518135 LFFA006 1 0.0518135 LFFA001 1 0.0518135 LFFA001 1 0.0518135 LFFA001 1 0.0259067 ABJA008 1 0.0259067 ABJA008 1 0.0259067 ABMA003 1 0.0259067	JCFA001		0.0518135
JCLE001 2 0.0518135 JDFA001 2 0.0518135 JDFE003 2 0.0518135 JDGE001 2 0.0518135 JDJE001 2 0.0518135 JDPE002 2 0.0518135 JHFA003 2 0.0518135 JHFA002 2 0.0518135 JHFC009 2 0.0518135 JKFC009 2 0.0518135 JKFC006 2 0.0518135 JKFC006 2 0.0518135 JLCA007 2 0.0518135 LDCA002 2 0.0518135 LDAA002 2 0.0518135 LDFA006 2 0.0518135 LDCA004 2 0.0518135 LDFA006 2 0.0518135 LFCA004 1 0.0259067 AAJA001 1 0.0259067 AAJA001 1 0.0259067 ABJA008 1 0.0259067 ABJA008 1 0.0259067 ABMA003 1 0.0259067 ABMA003 1 0.0259067 ABMA003 1 0.0259067	JCFA003		0.0518135
JDFA001 2 0.0518135 JDFE003 2 0.0518135 JDGE001 2 0.0518135 JDPE002 2 0.0518135 JDPE002 2 0.0518135 JHFA003 2 0.0518135 JHFA009 2 0.0518135 JJFC009 2 0.0518135 JKFA011 2 0.0518135 JKFC002 2 0.0518135 JKFC006 2 0.0518135 JLCA007 2 0.0518135 KAFA002 2 0.0518135 LDAA002 2 0.0518135 LDCA004 2 0.0518135 LDFA004 2 0.0518135 LDFA006 2 0.0518135 LFCA004 2 0.0518135 LFCA004 2 0.0518135 LFKA001 2 0.0518135 LFKA001 2 0.0518135 LFKA001 2 0.0518135 LFKA001 2 0.0518135 LMMA008 2 0.0518135 <td< td=""><td>JCKE001</td><td>2</td><td>0.0518135</td></td<>	JCKE001	2	0.0518135
JDFE003 2 0.0518135 JDGE001 2 0.0518135 JDPE002 2 0.0518135 JDPE002 2 0.0518135 JHFA003 2 0.0518135 JHHA002 2 0.0518135 JJFC009 2 0.0518135 JKFC002 2 0.0518135 JKFC006 2 0.0518135 JLCA007 2 0.0518135 JLCA007 2 0.0518135 LBFA023 2 0.0518135 LDCA002 2 0.0518135 LDCA004 2 0.0518135 LDFA005 2 0.0518135 LDFA006 2 0.0518135 LEFA006 2 0.0518135 LFCA004 2 0.0518135 LFCA004 2 0.0518135 LFKA001 2 0.0518135 LFKA001 2 0.0518135 LFKA001 2 0.0518135 LFKA001 2 0.0518135 AAFA005 1 0.0259067 <td< td=""><td>JCLE001</td><td>2</td><td>0.0518135</td></td<>	JCLE001	2	0.0518135
JDGE001 2 0.0518135 JDJE002 2 0.0518135 JDPE002 2 0.0518135 JHFA003 2 0.0518135 JHHA002 2 0.0518135 JJFC009 2 0.0518135 JKFA011 2 0.0518135 JKFC002 2 0.0518135 JKFC006 2 0.0518135 JLCA007 2 0.0518135 LBFA023 2 0.0518135 LDCA002 2 0.0518135 LDCA002 2 0.0518135 LDCA004 2 0.0518135 LDFA001 2 0.0518135 LFCA004 2 0.0518135 LFCA004 2 0.0518135 LFKA001 1 0.0259067 AAFA005 1 <td< td=""><td>JDFA001</td><td>2</td><td>0.0518135</td></td<>	JDFA001	2	0.0518135
JDJE001 2 0.0518135 JDPE002 2 0.0518135 JHFA003 2 0.0518135 JHHA002 2 0.0518135 JJFC009 2 0.0518135 JKFA011 2 0.0518135 JKFC002 2 0.0518135 JKFC006 2 0.0518135 JLCA007 2 0.0518135 KAFA002 2 0.0518135 LDA003 2 0.0518135 LDCA004 2 0.0518135 LDCA004 2 0.0518135 LDFA001 2 0.0518135 LFCA004 2 0.0518135 LFCA004 2 0.0518135 LFCA004 2 0.0518135 LFKA001 1 0.0259067 AAFA005 1 0.0259067 ABFA001 1 0.0259067	JDFE003	2	0.0518135
JDJE001 2 0.0518135 JDPE002 2 0.0518135 JHFA003 2 0.0518135 JHHA002 2 0.0518135 JJFC009 2 0.0518135 JKFA011 2 0.0518135 JKFC002 2 0.0518135 JKFC006 2 0.0518135 JLCA007 2 0.0518135 KAFA002 2 0.0518135 LDA003 2 0.0518135 LDCA004 2 0.0518135 LDCA004 2 0.0518135 LDFA001 2 0.0518135 LFCA004 2 0.0518135 LFCA004 2 0.0518135 LFKA001 2 0.0518135 LFKA001 2 0.0518135 LFKA001 2 0.0518135 LFKA001 2 0.0518135 AAFA005 1 0.0259067 AAJA001 1 0.0259067 ABFA001 1 0.0259067 ABFA001 1 0.0259067	JDGE001		
JDPE002 2 0.0518135 JHFA003 2 0.0518135 JHHA002 2 0.0518135 JJFC009 2 0.0518135 JKFA011 2 0.0518135 JKFC002 2 0.0518135 JKFC006 2 0.0518135 JLCA007 2 0.0518135 KAFA002 2 0.0518135 LBFA023 2 0.0518135 LDCA002 2 0.0518135 LDCA004 2 0.0518135 LDFA001 2 0.0518135 LDFA006 2 0.0518135 LFCA004 2 0.0518135 LFCA004 2 0.0518135 LFKA001 2 0.0518135 LFKA001 2 0.0518135 LFKA001 2 0.0518135 AFA005 1 0.0259067 AAFA005 1 0.0259067 ABFA001 1 0.0259067 ABFA001 1 0.0259067 ABHA003 1 0.0259067	JDJE001	2	
JHFA003 2 0.0518135 JHHA002 2 0.0518135 JJFC009 2 0.0518135 JKFA011 2 0.0518135 JKFC002 2 0.0518135 JKFC006 2 0.0518135 JLCA007 2 0.0518135 KAFA002 2 0.0518135 LBFA023 2 0.0518135 LDCA002 2 0.0518135 LDCA002 2 0.0518135 LDFA001 2 0.0518135 LDFA006 2 0.0518135 LFCA004 2 0.0518135 LFCA004 2 0.0518135 LFKA001 2 0.0518135 LFKA001 2 0.0518135 LFKA001 2 0.0518135 LFKA001 2 0.0518135 AAFA005 1 0.0259067 ABFA001 1 0.0259067 ABFA001 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 <td< td=""><td>JDPE002</td><td></td><td>0.0518135</td></td<>	JDPE002		0.0518135
JHHA002 2 0.0518135 JJFC009 2 0.0518135 JKFA011 2 0.0518135 JKFC002 2 0.0518135 JKFC006 2 0.0518135 JLCA007 2 0.0518135 KAFA002 2 0.0518135 LBFA023 2 0.0518135 LDCA002 2 0.0518135 LDCA004 2 0.0518135 LDFA004 2 0.0518135 LDFA006 2 0.0518135 LFCA004 2 0.0518135 LFCA004 2 0.0518135 LFCA004 2 0.0518135 LFKA001 2 0.0518135 LFKA001 2 0.0518135 LFKA001 2 0.0518135 AAFA005 1 0.0259067 AAJA001 1 0.0259067 ABFA001 1 0.0259067 ABFA001 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 <td< td=""><td></td><td></td><td></td></td<>			
JJFC009 2 0.0518135 JKFA011 2 0.0518135 JKFC002 2 0.0518135 JKFC006 2 0.0518135 JLCA007 2 0.0518135 KAFA002 2 0.0518135 LBFA023 2 0.0518135 LDCA002 2 0.0518135 LDCA004 2 0.0518135 LDFA001 2 0.0518135 LDFA006 2 0.0518135 LFCA004 2 0.0518135 LFCA004 2 0.0518135 LFDA010 2 0.0518135 LFKA001 2 0.0518135 LFMA005 2 0.0518135 AAFA001 2 0.0518135 AAFA005 1 0.0259067 ABFA001 1 0.0259067 ABFA001 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ABMA005 1 0.0259067 ABMA005 1 0.0259067 <td></td> <td></td> <td></td>			
JKFA011 2 0.0518135 JKFC002 2 0.0518135 JKFC006 2 0.0518135 JLCA007 2 0.0518135 KAFA002 2 0.0518135 LBFA023 2 0.0518135 LDCA002 2 0.0518135 LDCA004 2 0.0518135 LDFA001 2 0.0518135 LDFA006 2 0.0518135 LFCA004 2 0.0518135 LFCA004 2 0.0518135 LFDA010 2 0.0518135 LFKA001 2 0.0518135 LFKA001 2 0.0518135 AFA005 1 0.0259067 AAFA005 1 0.0259067 ABFA001 1 0.0259067 ABFA001 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ABMA005 1 0.0259067 ABMA005 1 0.0259067			
JKFC002 2 0.0518135 JKFC006 2 0.0518135 JLCA007 2 0.0518135 KAFA002 2 0.0518135 LBFA023 2 0.0518135 LDAA002 2 0.0518135 LDCA004 2 0.0518135 LDFA001 2 0.0518135 LDFA006 2 0.0518135 LFCA004 2 0.0518135 LFDA010 2 0.0518135 LFKA001 2 0.0518135 LFKA002 2 0.0518135 LFKA003 1 0.0259067 AAFA005 1 0.0259067 ABFA001 1 0.0259067 ABFA001 1 0.0259067 ABLA001 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ACFA005 1 0.0259067			
JKFC006 2 0.0518135 JLCA007 2 0.0518135 KAFA002 2 0.0518135 LBFA023 2 0.0518135 LDAA002 2 0.0518135 LDCA004 2 0.0518135 LDCA004 2 0.0518135 LDFA001 2 0.0518135 LEFA006 2 0.0518135 LFCA004 2 0.0518135 LFDA010 2 0.0518135 LFKA001 2 0.0518135 LFKA002 2 0.0518135 LFKA001 2 0.0518135 AFKA005 1 0.0259067 AAFA005 1 0.0259067 ABFA001 1 0.0259067 ABFA001 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ACFA005 1 0.0259067			
JLCA007 2 0.0518135 KAFA002 2 0.0518135 LBFA023 2 0.0518135 LDAA002 2 0.0518135 LDCA002 2 0.0518135 LDCA004 2 0.0518135 LDFA001 2 0.0518135 LDFA006 2 0.0518135 LFCA004 2 0.0518135 LFCA004 2 0.0518135 LFKA001 2 0.0518135 LFKA001 2 0.0518135 LMMA008 2 0.0518135 QZKA007 2 0.0518135 AAFA005 1 0.0259067 ABFA001 1 0.0259067 ABFA001 1 0.0259067 ABJA008 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ACFA005 1 0.0259067			
KAFA002 2 0.0518135 LBFA023 2 0.0518135 LDAA002 2 0.0518135 LDCA002 2 0.0518135 LDCA004 2 0.0518135 LDFA001 2 0.0518135 LDFA006 2 0.0518135 LEFA006 2 0.0518135 LFCA004 2 0.0518135 LFKA001 2 0.0518135 LFKA001 2 0.0518135 LMMA008 2 0.0518135 QZKA007 2 0.0518135 AAFA005 1 0.0259067 ABCA003 1 0.0259067 ABFA001 1 0.0259067 ABJA008 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ACFA005 1 0.0259067			
LBFA023 2 0.0518135 LDAA002 2 0.0518135 LDCA002 2 0.0518135 LDCA004 2 0.0518135 LDFA001 2 0.0518135 LDFA006 2 0.0518135 LEFA006 2 0.0518135 LFCA004 2 0.0518135 LFDA010 2 0.0518135 LFKA001 2 0.0518135 LMMA008 2 0.0518135 QZKA007 2 0.0518135 AAFA005 1 0.0259067 AAJA001 1 0.0259067 ABFA003 1 0.0259067 ABJA008 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ACFA005 1 0.0259067			
LDAA002 2 0.0518135 LDCA002 2 0.0518135 LDCA004 2 0.0518135 LDFA001 2 0.0518135 LDFA006 2 0.0518135 LEFA006 2 0.0518135 LFCA004 2 0.0518135 LFDA010 2 0.0518135 LFKA001 2 0.0518135 LMMA008 2 0.0518135 QZKA007 2 0.0518135 AAFA005 1 0.0259067 ABJA001 1 0.0259067 ABFA001 1 0.0259067 ABJA008 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ACFA005 1 0.0259067			
LDCA002 2 0.0518135 LDCA004 2 0.0518135 LDFA001 2 0.0518135 LDFA006 2 0.0518135 LEFA006 2 0.0518135 LFCA004 2 0.0518135 LFDA010 2 0.0518135 LFKA001 2 0.0518135 LMMA008 2 0.0518135 QZKA007 2 0.0518135 AAFA005 1 0.0259067 ABJA001 1 0.0259067 ABFA001 1 0.0259067 ABJA008 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ACFA005 1 0.0259067			
LDCA004 2 0.0518135 LDFA001 2 0.0518135 LDFA006 2 0.0518135 LEFA006 2 0.0518135 LFCA004 2 0.0518135 LFDA010 2 0.0518135 LFKA001 2 0.0518135 LMMA008 2 0.0518135 QZKA007 2 0.0518135 AAFA005 1 0.0259067 AAJA001 1 0.0259067 ABFA003 1 0.0259067 ABJA008 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ACFA005 1 0.0259067			
LDFA001 2 0.0518135 LDFA006 2 0.0518135 LEFA006 2 0.0518135 LFCA004 2 0.0518135 LFDA010 2 0.0518135 LFKA001 2 0.0518135 LMMA008 2 0.0518135 QZKA007 2 0.0518135 AAFA005 1 0.0259067 AAJA001 1 0.0259067 ABFA003 1 0.0259067 ABJA008 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ACFA005 1 0.0259067		2	
LDFA006 2 0.0518135 LEFA006 2 0.0518135 LFCA004 2 0.0518135 LFDA010 2 0.0518135 LFKA001 2 0.0518135 LMMA008 2 0.0518135 QZKA007 2 0.0518135 AAFA005 1 0.0259067 AAJA001 1 0.0259067 ABFA003 1 0.0259067 ABJA008 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ACFA005 1 0.0259067		2	
LEFA006 2 0.0518135 LFCA004 2 0.0518135 LFDA010 2 0.0518135 LFKA001 2 0.0518135 LMMA008 2 0.0518135 QZKA007 2 0.0518135 AAFA005 1 0.0259067 AAJA001 1 0.0259067 ABCA003 1 0.0259067 ABFA001 1 0.0259067 ABJA008 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ACFA005 1 0.0259067			
LFCA004 2 0.0518135 LFDA010 2 0.0518135 LFKA001 2 0.0518135 LMMA008 2 0.0518135 QZKA007 2 0.0518135 AAFA005 1 0.0259067 AAJA001 1 0.0259067 ABCA003 1 0.0259067 ABFA001 1 0.0259067 ABJA008 1 0.0259067 ABLA001 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ACFA005 1 0.0259067			
LFDA010 2 0.0518135 LFKA001 2 0.0518135 LMMA008 2 0.0518135 QZKA007 2 0.0518135 AAFA005 1 0.0259067 AAJA001 1 0.0259067 ABCA003 1 0.0259067 ABFA001 1 0.0259067 ABJA008 1 0.0259067 ABLA001 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ACFA005 1 0.0259067		2	
LFKA001 2 0.0518135 LMMA008 2 0.0518135 QZKA007 2 0.0518135 AAFA005 1 0.0259067 AAJA001 1 0.0259067 ABCA003 1 0.0259067 ABFA001 1 0.0259067 ABJA008 1 0.0259067 ABLA001 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ACFA005 1 0.0259067		2	
LMMA008 2 0.0518135 QZKA007 2 0.0518135 AAFA005 1 0.0259067 AAJA001 1 0.0259067 ABCA003 1 0.0259067 ABFA001 1 0.0259067 ABJA008 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ACFA005 1 0.0259067			
QZKA007 2 0.0518135 AAFA005 1 0.0259067 AAJA001 1 0.0259067 ABCA003 1 0.0259067 ABFA001 1 0.0259067 ABJA008 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ACFA005 1 0.0259067			
AAFA005 1 0.0259067 AAJA001 1 0.0259067 ABCA003 1 0.0259067 ABFA001 1 0.0259067 ABJA008 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ACFA005 1 0.0259067			
AAJA001 1 0.0259067 ABCA003 1 0.0259067 ABFA001 1 0.0259067 ABJA008 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ACFA005 1 0.0259067	•		
ABCA003 1 0.0259067 ABFA001 1 0.0259067 ABJA008 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ACFA005 1 0.0259067			
ABFA001 1 0.0259067 ABJA008 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ACFA005 1 0.0259067			
ABJA008 1 0.0259067 ABLA001 1 0.0259067 ABMA003 1 0.0259067 ACFA005 1 0.0259067			
ABLA001 1 0.0259067 ABMA003 1 0.0259067 ACFA005 1 0.0259067			
$\begin{array}{ccccc} ABMA003 & 1 & 0.0259067 \\ ACFA005 & 1 & 0.0259067 \end{array}$			
ACFA005 1 0.0259067			
ACFA008 1 0.0259067			
ACFA015 1 0.0259067	ACFA015	1	0.0259067

Code CCAM	Effectif	Proportion (en %)
ADKA001	1	0.0259067
AEGB001	1	0.0259067
AFCA001	1	0.0259067
AFCA004	1	0.0259067
AFFA004	1	0.0259067
AFFA008	1	0.0259067
AFGA001	1	0.0259067
AFJA004	1	0.0259067
AHFA010	1	0.0259067
AHLA003	1	0.0259067
AHPA020	1	0.0259067
AZGA001	1	0.0259067
BAMA003	1	0.0259067
BBCE001	1	0.0259067 0.0259067
BFGA427	1	
	1	0.0259067
BGJB001		0.0259067
BKBA001	1	0.0259067
CBFA010	1	0.0259067
CBFA013	1	0.0259067
DAFA009	1	0.0259067
DFFA001	1	0.0259067
DGCA009	1	0.0259067
DGFA012	1	0.0259067
DGPA010	1	0.0259067
DGQH001	1	0.0259067
DHAF002	1	0.0259067
DHFA007	1	0.0259067
EACA003	1	0.0259067
EAFA001	1	0.0259067
EAFA003	1	0.0259067
EAFA005	1	0.0259067
EBCA009	1	0.0259067
EBEA003	1	0.0259067
EBGA001	1	0.0259067
ECCA003	1	0.0259067
EDAF004	1	0.0259067
EDCA001	1	0.0259067
EDLF005	1	0.0259067
EEAA002	1	0.0259067
EECA002	1	0.0259067
EEPF002	1	0.0259067
EEQH006	1	0.0259067
EGAF003	1	0.0259067
EGFC001	1	0.0259067
EJSF771	1	0.0259067
ENAF001	1	0.0259067
ENAF002	1	0.0259067
EZFA002	1	0.0259067
FAFA005	1	0.0259067
FBFA900	1	0.0259067
FCFA001	1	0.0259067
FFFC420	1	0.0259067
	_	

GAFD002 1 0.0259067 GAMA009 1 0.0259067 GAND001 1 0.0259067 GASE001 1 0.0259067 GBBA001 1 0.0259067 GCFA007 1 0.0259067 GDFA011 1 0.0259067 GDFE001 1 0.0259067 GDFE003 1 0.0259067 GDFE006 1 0.0259067 GDFE007 1 0.0259067 GDFE003 1 0.0259067 GDFE0008 1 0.0259067 GDFE0009 1 0.0259067 GEFA009 1 0.0259067 GEFA009 1 0.0259067 GEFA028 1 0.0259067 GFFA028 1 0.0259067 GFFC004 1 0.0259067 GKKE002 1 0.0259067 HAFA026 1 0.0259067 HAMA008 1 0.0259067 HAMA008 1 0.0259067 HAMA008 1 0.0259067 HAMA004 1 0.0259067 HDFA011 1 0.0259067 HEFA002 1 0.0259067 HEFA002 1 0.0259067 HEFA004 1 0.0259067 HEFA005 1 0.0259067 HEFA006 1 0.0259067 HEFA007 1 0.0259067 HFFA008 1 0.0259067 HFFA009 1 0.0259067	Code CCAM	Effectif	Proportion (en %)
GAMA002			
GAMA009 1 0.0259067 GAND001 1 0.0259067 GASE001 1 0.0259067 GBBA001 1 0.0259067 GCFA007 1 0.0259067 GDFA011 1 0.0259067 GDFE001 1 0.0259067 GDFE003 1 0.0259067 GDFE006 1 0.0259067 GDFE007 1 0.0259067 GDE003 1 0.0259067 GDE003 1 0.0259067 GDE003 1 0.0259067 GDE003 1 0.0259067 GEFA009 1 0.0259067 GEFA009 1 0.0259067 GEFA009 1 0.0259067 GFFA028 1 0.0259067 GFFA031 1 0.0259067 GFFC004 1 0.0259067 GKE006 1 0.0259067 GKE006 1 0.0259067 GFA030 1 0.0259067 GFFA031 1 0.0259067 GFFC004 1 0.0259067 GFFC004 1 0.0259067 HAMA008 1 0.0259067 HAMA008 1 0.0259067 HAMA008 1 0.0259067 HAMA004 1 0.0259067 HBGD422 1 0.0259067 HBGD422 1 0.0259067 HBFA004 1 0.0259067 HEFA004 1 0.0259067 HFFA003 1 0.0259067 HFFA004 1 0.0259067 HFFA004 1 0.0259067 HFFA005 1 0.0259067 HFFA006 1 0.0259067 HFFA001 1 0.0259067 HFCO031 1 0.0259067 HFSA001 1 0.0259067 HFSA001 1 0.0259067 HFSA001 1 0.0259067 HFFA003 1 0.0259067 HFFA004 1 0.0259067 HFFA006 1 0.0259067 HFFA007 1 0.0259067 HFFA008 1 0.0259067 HFFA008 1 0.0259067 HFFC002 1 0.0259067 HKMA004 1 0.0259067 HKMA004 1 0.0259067 HKMA006 1 0.0259067 HKMA008 1 0.0259067 HKMA000 1 0.0259067			
GAND001 1 0.0259067 GASE001 1 0.0259067 GBBA001 1 0.0259067 GCFA007 1 0.0259067 GDFA011 1 0.0259067 GDFE001 1 0.0259067 GDFE003 1 0.0259067 GDFE006 1 0.0259067 GDFE007 1 0.0259067 GDFE008 1 0.0259067 GDFE009 1 0.0259067 GEPA009 1 0.0259067 GEPA009 1 0.0259067 GEPA009 1 0.0259067 GFFA028 1 0.0259067 GFFA031 1 0.0259067 GFFC004 1 0.0259067 GKKE002 1 0.0259067 HAMA008 1 0.0259067 HAMA014 1 0.0259067 HDFA004 1 0.0259067 HDFA004 1 0.0259067 HEFA009 1 0.0259067 HEFA009 1 0.0259067 HFA004 1 0.0259067 HFA004 1 0.0259067 HFA004 1 0.0259067 HFFA005 1 0.0259067 HFA006 1 0.0259067 HFA001 1 0.0259067 HFA001 1 0.0259067 HFA003 1 0.0259067 HFA004 1 0.0259067 HFA005 1 0.0259067 HFA006 1 0.0259067 HFA007 1 0.0259067 HFA008 1 0.0259067 HFA009 1 0.0259067 HFC090 1 0.0259067 HFC000 1 0.0259067 HMFC000 1 0.0259067			
GASE001 1 0.0259067 GBBA001 1 0.0259067 GCFA007 1 0.0259067 GDFA011 1 0.0259067 GDFE001 1 0.0259067 GDFE003 1 0.0259067 GDFE006 1 0.0259067 GDFE007 1 0.0259067 GDFE003 1 0.0259067 GDFE009 1 0.0259067 GDFE009 1 0.0259067 GENE009 1 0.0259067 GENE006 1 0.0259067 GENE006 1 0.0259067 GENE006 1 0.0259067 GENE006 1 0.0259067 GFA028 1 0.0259067 GFFA031 1 0.0259067 GFFC004 1 0.0259067 GKKE002 1 0.0259067 HAMA008 1 0.0259067 HAMA014 1 0.0259067 HDFA011 1 0.0259067 HEFA002 1 0.0259067 HEFA002 1 0.0259067 HEFA004 1 0.0259067 HEFA004 1 0.0259067 HFFA001 1 0.0259067 HFCA004 1 0.0259067 HFFA001 1 0.0259067 HFCA004 1 0.0259067 HFFA003 1 0.0259067 HFFA003 1 0.0259067 HFFA004 1 0.0259067 HFFA005 1 0.0259067 HFFA006 1 0.0259067 HFCA004 1 0.0259067 HFCO02 1 0.0259067 HFCO02 1 0.0259067 HMCCA008 1 0.0259067 HMFCO02 1 0.0259067			
GBBA001 1 0.0259067 GCFA007 1 0.0259067 GDFA011 1 0.0259067 GDFE001 1 0.0259067 GDFE003 1 0.0259067 GDFE006 1 0.0259067 GDFE003 1 0.0259067 GDFE003 1 0.0259067 GEFA009 1 0.0259067 GENE006 1 0.0259067 GENE008 1 0.0259067 GEFA028 1 0.0259067 GFFA028 1 0.0259067 GFFA031 1 0.0259067 GKKE002 1 0.0259067 GKKE002 1 0.0259067 GKKE002 1 0.0259067 HAA008 1 0.0259067 HAA008 1 0.0259067 HBGD422 1 0.0259067 HBGD422 1 0.0259067 HBFA004 1 0.0259067 HEFA005 1 0			
GCFA007 1 0.0259067 GDFA011 1 0.0259067 GDFE001 1 0.0259067 GDFE003 1 0.0259067 GDFE006 1 0.0259067 GDFE007 1 0.0259067 GDFE003 1 0.0259067 GDFE003 1 0.0259067 GDE003 1 0.0259067 GDFE003 1 0.0259067 GDFE006 1 0.0259067 GEFA009 1 0.0259067 GENE006 1 0.0259067 GENE006 1 0.0259067 GFA028 1 0.0259067 GFFA031 1 0.0259067 GKE004 1 0.0259067 GKE002 1 0.0259067 HAFA026 1 0.0259067 HAMA008 1 0.0259067 HAMA008 1 0.0259067 HDFA011 1 0.0259067 HEFA002 1 0.0259067 HEFA004 1 0.0259067 HEFA004 1 0.0259067 HFA004 1 0.0259067 HFA004 1 0.0259067 HFA004 1 0.0259067 HFA004 1 0.0259067 HFA005 1 0.0259067 HFA006 1 0.0259067 HFA007 1 0.0259067 HFA008 1 0.0259067 HFA009 1 0.0259067 HKA009 1 0.0259067			
GDFA011 1 0.0259067 GDFE001 1 0.0259067 GDFE003 1 0.0259067 GDFE006 1 0.0259067 GDFE007 1 0.0259067 GDLE003 1 0.0259067 GDPE003 1 0.0259067 GEFA009 1 0.0259067 GENE006 1 0.0259067 GENE008 1 0.0259067 GFA028 1 0.0259067 GFFA031 1 0.0259067 GFFC004 1 0.0259067 GKKE002 1 0.0259067 GKKE002 1 0.0259067 HAA026 1 0.0259067 HAMA014 1 0.0259067 HBGD422 1 0.0259067 HDFA004 1 0.0259067 HEFA002 1 0.0259067 HEFA003 1 0.0259067 HEFA004 1 0.0259067 HFFA003 1 0			
GDFE001 1 0.0259067 GDFE003 1 0.0259067 GDFE006 1 0.0259067 GDFE007 1 0.0259067 GDLE003 1 0.0259067 GDPE003 1 0.0259067 GEFA009 1 0.0259067 GENE006 1 0.0259067 GEQE008 1 0.0259067 GFFA028 1 0.0259067 GFFA031 1 0.0259067 GFFC004 1 0.0259067 GKKE002 1 0.0259067 GKKE002 1 0.0259067 HAFA026 1 0.0259067 HAMA008 1 0.0259067 HAMA014 1 0.0259067 HBGD422 1 0.0259067 HDFA004 1 0.0259067 HEFA002 1 0.0259067 HEFA003 1 0.0259067 HEFA004 1 0.0259067 HFFA003 1 <td< td=""><td></td><td></td><td></td></td<>			
GDFE003 1 0.0259067 GDFE006 1 0.0259067 GDFE007 1 0.0259067 GDLE003 1 0.0259067 GDPE003 1 0.0259067 GERA009 1 0.0259067 GENE006 1 0.0259067 GEQE008 1 0.0259067 GFFA028 1 0.0259067 GFFA031 1 0.0259067 GFFC004 1 0.0259067 GKKE002 1 0.0259067 HAFA026 1 0.0259067 HAMA008 1 0.0259067 HAMA014 1 0.0259067 HBGD422 1 0.0259067 HDFA004 1 0.0259067 HEFA002 1 0.0259067 HEFA003 1 0.0259067 HEFA004 1 0.0259067 HEFA005 1 0.0259067 HFFA003 1 0.0259067 HFFA003 1 <td< td=""><td></td><td></td><td></td></td<>			
GDFE006 1 0.0259067 GDFE007 1 0.0259067 GDLE003 1 0.0259067 GDPE003 1 0.0259067 GEFA009 1 0.0259067 GENE006 1 0.0259067 GEQE008 1 0.0259067 GFFA028 1 0.0259067 GFFA031 1 0.0259067 GKKE002 1 0.0259067 GKKE002 1 0.0259067 HAFA026 1 0.0259067 HAMA008 1 0.0259067 HAMA014 1 0.0259067 HBGD422 1 0.0259067 HDFA004 1 0.0259067 HEFA002 1 0.0259067 HEFA003 1 0.0259067 HEFA004 1 0.0259067 HEFA005 1 0.0259067 HEFA004 1 0.0259067 HFFA003 1 0.0259067 HFFA003 1 <td< td=""><td></td><td></td><td></td></td<>			
GDFE007 1 0.0259067 GDLE003 1 0.0259067 GDPE003 1 0.0259067 GEFA009 1 0.0259067 GENE006 1 0.0259067 GENE008 1 0.0259067 GFFA028 1 0.0259067 GFFA031 1 0.0259067 GFFC004 1 0.0259067 GKKE002 1 0.0259067 HAFA026 1 0.0259067 HAFA026 1 0.0259067 HAMA008 1 0.0259067 HAMA014 1 0.0259067 HBGD422 1 0.0259067 HDFA004 1 0.0259067 HDFA004 1 0.0259067 HEFA002 1 0.0259067 HEFA003 1 0.0259067 HEFA004 1 0.0259067 HFFA003 1 0.0259067 HFFA003 1 0.0259067 HFFA004 1 <td< td=""><td></td><td></td><td></td></td<>			
GDLE003 1 0.0259067 GDPE003 1 0.0259067 GEFA009 1 0.0259067 GENE006 1 0.0259067 GEQE008 1 0.0259067 GFFA028 1 0.0259067 GFFA031 1 0.0259067 GFFC004 1 0.0259067 GKKE002 1 0.0259067 HAFA026 1 0.0259067 HAMA008 1 0.0259067 HDFA011 1 0.0259067 HEFA002 1 0.0259067 HEFA004 1 0.0259067 HEFA004 1 0.0259067 HEFA001 1 0.0259067 HFA003 1 0.0259067 HFA004 1 0.0259067 HFA003 1 0.0259067 HFA004 1 0.0259067 HFA005 1 0.0259067 HFA006 1 0.0259067 HFA007 1 0.0259067 HFA008 1 0.0259067 HFA008 1 0.0259067 HHFC296 1 0.0259067 HJFA008 1 0.0259067 HKMA004 1 0.0259067 HKMA004 1 0.0259067 HJFA008 1 0.0259067 HJFA008 1 0.0259067 HJFA008 1 0.0259067 HKMA004 1 0.0259067 HKMA004 1 0.0259067 HKMA006 1 0.0259067 HKMA008 1 0.0259067 HKMA000 1 0.0259067 HMFC002 1 0.0259067			
GDPE003 1 0.0259067 GEFA009 1 0.0259067 GENE006 1 0.0259067 GENE008 1 0.0259067 GFFA028 1 0.0259067 GFFA031 1 0.0259067 GFFC004 1 0.0259067 GKKE002 1 0.0259067 HAFA026 1 0.0259067 HAMA008 1 0.0259067 HAMA014 1 0.0259067 HBGD422 1 0.0259067 HDFA004 1 0.0259067 HDFA011 1 0.0259067 HEFA002 1 0.0259067 HEFA003 1 0.0259067 HEFA004 1 0.0259067 HFFA003 1 0.0259067 HFFA004 1 0.0259067 HFFA003 1 0.0259067 HFFA004 1 0.0259067 HFFA005 1 0.0259067 HGCC031 1 <td< td=""><td></td><td></td><td></td></td<>			
GEFA009 1 0.0259067 GENE006 1 0.0259067 GEQE008 1 0.0259067 GFFA028 1 0.0259067 GFFA031 1 0.0259067 GFFC004 1 0.0259067 GKKE002 1 0.0259067 HAFA026 1 0.0259067 HAMA008 1 0.0259067 HAMA014 1 0.0259067 HBGD422 1 0.0259067 HDFA004 1 0.0259067 HDFA011 1 0.0259067 HEFA002 1 0.0259067 HEFA003 1 0.0259067 HEQE002 1 0.0259067 HFFA003 1 0.0259067 HFFA004 1 0.0259067 HFSA001 1 0.0259067 HFSA001 1 0.0259067 HHFC296 1 0.0259067 HJFA013 1 0.0259067 HJFA008 1 <td< td=""><td></td><td></td><td></td></td<>			
GENE006 1 0.0259067 GEQE008 1 0.0259067 GFFA028 1 0.0259067 GFFA031 1 0.0259067 GFFC004 1 0.0259067 GKKE002 1 0.0259067 HAFA026 1 0.0259067 HAMA008 1 0.0259067 HAMA014 1 0.0259067 HBGD422 1 0.0259067 HDFA004 1 0.0259067 HDFA011 1 0.0259067 HEFA002 1 0.0259067 HEFA003 1 0.0259067 HEFA004 1 0.0259067 HEFA005 1 0.0259067 HEFA004 1 0.0259067 HFFA003 1 0.0259067 HFFA003 1 0.0259067 HFFA003 1 0.0259067 HHFA030 1 0.0259067 HHFC296 1 0.0259067 HJFA013 1 <td< td=""><td></td><td></td><td></td></td<>			
GEQE008 1 0.0259067 GFFA028 1 0.0259067 GFFA031 1 0.0259067 GFFC004 1 0.0259067 GKKE002 1 0.0259067 HAFA026 1 0.0259067 HAMA008 1 0.0259067 HAMA014 1 0.0259067 HBGD422 1 0.0259067 HDFA004 1 0.0259067 HDFA011 1 0.0259067 HEFA002 1 0.0259067 HEFA003 1 0.0259067 HEFA004 1 0.0259067 HEFA005 1 0.0259067 HEFA004 1 0.0259067 HFFA003 1 0.0259067 HFFA004 1 0.0259067 HFFA003 1 0.0259067 HFFA003 1 0.0259067 HHFA030 1 0.0259067 HHFC296 1 0.0259067 HJFA013 1 <td< td=""><td></td><td></td><td></td></td<>			
GFFA028 GFFA031 GFFC004 GFFC004 GKE002 1 0.0259067 HAFA026 HAFA026 HAMA008 1 0.0259067 HAMA014 1 0.0259067 HDFA004 HDFA004 HEFA002 HEFA002 1 0.0259067 HEFA005 HEFA005 HEFA006 HFA001 HFA001 1 0.0259067 HFCO01 HFCO01 HFCO01 HFCO02 HFCO01 HFCO02 HFCO01 HFCO02 HFCO01 HFCO02 HJFA003 HFCO01 HFCO02 HFCO01			
GFFA031 1 0.0259067 GFFC004 1 0.0259067 GKKE002 1 0.0259067 HAFA026 1 0.0259067 HAMA008 1 0.0259067 HAMA014 1 0.0259067 HBGD422 1 0.0259067 HDFA004 1 0.0259067 HDFA011 1 0.0259067 HEFA002 1 0.0259067 HEFA004 1 0.0259067 HEFA005 1 0.0259067 HEQE002 1 0.0259067 HFFA003 1 0.0259067 HFFSA001 1 0.0259067 HFSA001 1 0.0259067 HHFA030 1 0.0259067 HHFC296 1 0.0259067 HJFA013 1 0.0259067 HJGD001 1 0.0259067 HKMA004 1 0.0259067 HKMA006 1 0.0259067 HKPA006 1 0.0259067 HMFC002 1 0.0259067 <t< td=""><td></td><td></td><td></td></t<>			
GFFC004 1 0.0259067 GKKE002 1 0.0259067 HAFA026 1 0.0259067 HAMA008 1 0.0259067 HAMA014 1 0.0259067 HBGD422 1 0.0259067 HDFA004 1 0.0259067 HDFA011 1 0.0259067 HEFA002 1 0.0259067 HEFA004 1 0.0259067 HEFA005 1 0.0259067 HEQE002 1 0.0259067 HFFA003 1 0.0259067 HFFA004 1 0.0259067 HFFA003 1 0.0259067 HFFA003 1 0.0259067 HFFA003 1 0.0259067 HHFA030 1 0.0259067 HHFA030 1 0.0259067 HJFA013 1 0.0259067 HJGD001 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HMFA010 1 0.0259067 <td< td=""><td></td><td></td><td></td></td<>			
GKKE002 1 0.0259067 HAFA026 1 0.0259067 HAMA008 1 0.0259067 HAMA014 1 0.0259067 HBGD422 1 0.0259067 HDFA004 1 0.0259067 HDFA011 1 0.0259067 HEFA002 1 0.0259067 HEFA004 1 0.0259067 HEFA005 1 0.0259067 HEQE002 1 0.0259067 HFFA003 1 0.0259067 HFFA004 1 0.0259067 HFSA001 1 0.0259067 HFSA003 1 0.0259067 HHFC296 1 0.0259067 HHFC296 1 0.0259067 HJFA008 1 0.0259067 HJFA013 1 0.0259067 HKMA004 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HMFC002 1 0.0259067 HMFC002 1 0.0259067 <td< td=""><td></td><td></td><td></td></td<>			
HAFA026 HAMA008 1 0.0259067 HAMA014 1 0.0259067 HBGD422 1 0.0259067 HDFA004 1 0.0259067 HEFA001 1 1 0.0259067 HEFA002 1 0.0259067 HEFA005 1 0.0259067 HFCA004 1 0.0259067 HFFA003 1 0.0259067 HFFA003 1 0.0259067 HFSA001 1 1 0.0259067 HFSA001 1 0.0259067 HFC296 1 0.0259067 HHFA030 1 0.0259067 HHFC296 1 0.0259067 HJFA008 1 0.0259067 HJFA013 1 0.0259067 HJFA008 1 0.0259067 HJFA008 1 0.0259067 HJFA008 1 0.0259067 HJFA008 1 0.0259067 HJFA006 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HKPA006 1 0.0259067 HKPC002 1 0.0259067 HMFC002 1 0.0259067			
HAMA008 1 0.0259067 HAMA014 1 0.0259067 HBGD422 1 0.0259067 HDFA004 1 0.0259067 HDFA011 1 0.0259067 HEFA002 1 0.0259067 HEFA004 1 0.0259067 HEFA005 1 0.0259067 HEQE002 1 0.0259067 HFFA003 1 0.0259067 HFFA003 1 0.0259067 HFSA001 1 0.0259067 HFSA003 1 0.0259067 HHFA030 1 0.0259067 HHFA030 1 0.0259067 HJFA013 1 0.0259067 HJFD002 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HKPA006 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMFC002 1 0.0259067 HNFC002 1 0.0259067 <td< td=""><td></td><td></td><td></td></td<>			
HAMA014 1 0.0259067 HBGD422 1 0.0259067 HDFA004 1 0.0259067 HDFA011 1 0.0259067 HEFA002 1 0.0259067 HEFA004 1 0.0259067 HEFA005 1 0.0259067 HEQE002 1 0.0259067 HFCA004 1 0.0259067 HFFA003 1 0.0259067 HFSA001 1 0.0259067 HGCC031 1 0.0259067 HHFA030 1 0.0259067 HJFA008 1 0.0259067 HJFA013 1 0.0259067 HJHD002 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HKPA006 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMFC002 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067 <td></td> <td></td> <td></td>			
HBGD422 1 0.0259067 HDFA004 1 0.0259067 HDFA011 1 0.0259067 HEFA002 1 0.0259067 HEFA004 1 0.0259067 HEFA005 1 0.0259067 HEQE002 1 0.0259067 HFCA004 1 0.0259067 HFFA003 1 0.0259067 HFSA001 1 0.0259067 HGCC031 1 0.0259067 HHFA030 1 0.0259067 HJFA008 1 0.0259067 HJFA013 1 0.0259067 HJHD002 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HLFC002 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMFC002 1 0.0259067 HNFC002 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067 <td></td> <td></td> <td></td>			
HDFA004 1 0.0259067 HDFA011 1 0.0259067 HEFA002 1 0.0259067 HEFA004 1 0.0259067 HEFA005 1 0.0259067 HEQE002 1 0.0259067 HFCA004 1 0.0259067 HFFA003 1 0.0259067 HFSA001 1 0.0259067 HGCC031 1 0.0259067 HHFA030 1 0.0259067 HJFA008 1 0.0259067 HJFA013 1 0.0259067 HJGD001 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HKPA006 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMFC002 1 0.0259067 HNFC002 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HDFA011 1 0.0259067 HEFA002 1 0.0259067 HEFA004 1 0.0259067 HEFA005 1 0.0259067 HEQE002 1 0.0259067 HFCA004 1 0.0259067 HFFA003 1 0.0259067 HFMA011 1 0.0259067 HFSA001 1 0.0259067 HHFA030 1 0.0259067 HHFC296 1 0.0259067 HJFA013 1 0.0259067 HJFA013 1 0.0259067 HJHD002 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HMCA008 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMFC002 1 0.0259067 HNFC002 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HEFA002 1 0.0259067 HEFA004 1 0.0259067 HEFA005 1 0.0259067 HEQE002 1 0.0259067 HFCA004 1 0.0259067 HFFA003 1 0.0259067 HFMA011 1 0.0259067 HFSA001 1 0.0259067 HGCC031 1 0.0259067 HHFA030 1 0.0259067 HJFA008 1 0.0259067 HJFA013 1 0.0259067 HJGD001 1 0.0259067 HJHD002 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HMCA008 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMFC002 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HEFA004 1 0.0259067 HEFA005 1 0.0259067 HEQE002 1 0.0259067 HFCA004 1 0.0259067 HFFA003 1 0.0259067 HFMA011 1 0.0259067 HFSA001 1 0.0259067 HGCC031 1 0.0259067 HHFA030 1 0.0259067 HJFA008 1 0.0259067 HJFA013 1 0.0259067 HJGD001 1 0.0259067 HJHD002 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HLFC002 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMFC002 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067 HPPA001 1 0.0259067			
HEFA005 1 0.0259067 HEQE002 1 0.0259067 HFCA004 1 0.0259067 HFFA003 1 0.0259067 HFMA011 1 0.0259067 HFSA001 1 0.0259067 HGCC031 1 0.0259067 HHFA030 1 0.0259067 HJFA008 1 0.0259067 HJFA013 1 0.0259067 HJGD001 1 0.0259067 HJHD002 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HLFC002 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMFC002 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HEQE002 1 0.0259067 HFCA004 1 0.0259067 HFFA003 1 0.0259067 HFMA011 1 0.0259067 HFSA001 1 0.0259067 HGCC031 1 0.0259067 HHFA030 1 0.0259067 HJFA008 1 0.0259067 HJFA013 1 0.0259067 HJGD001 1 0.0259067 HJHD002 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HLFC002 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMFC002 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HFCA004 1 0.0259067 HFFA003 1 0.0259067 HFMA011 1 0.0259067 HFSA001 1 0.0259067 HGCC031 1 0.0259067 HHFA030 1 0.0259067 HHFC296 1 0.0259067 HJFA013 1 0.0259067 HJGD001 1 0.0259067 HJHD002 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HLFC002 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMFC002 1 0.0259067 HNFC002 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HFFA003 1 0.0259067 HFMA011 1 0.0259067 HFSA001 1 0.0259067 HGCC031 1 0.0259067 HHFA030 1 0.0259067 HHFC296 1 0.0259067 HJFA013 1 0.0259067 HJGD001 1 0.0259067 HJHD002 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HLFC002 1 0.0259067 HMCA008 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMFC002 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HFMA011 1 0.0259067 HFSA001 1 0.0259067 HGCC031 1 0.0259067 HHFA030 1 0.0259067 HHFC296 1 0.0259067 HJFA008 1 0.0259067 HJFA013 1 0.0259067 HJGD001 1 0.0259067 HJHD002 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HMCA008 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMGC001 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HFSA001 1 0.0259067 HGCC031 1 0.0259067 HHFA030 1 0.0259067 HHFC296 1 0.0259067 HJFA008 1 0.0259067 HJFA013 1 0.0259067 HJGD001 1 0.0259067 HJHD002 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HLFC002 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMGC001 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HGCC031 1 0.0259067 HHFA030 1 0.0259067 HHFC296 1 0.0259067 HJFA008 1 0.0259067 HJFA013 1 0.0259067 HJGD001 1 0.0259067 HJHD002 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HLFC002 1 0.0259067 HMCA008 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMGC001 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HHFA030 1 0.0259067 HHFC296 1 0.0259067 HJFA008 1 0.0259067 HJFA013 1 0.0259067 HJGD001 1 0.0259067 HJHD002 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HLFC002 1 0.0259067 HMCA008 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMFC002 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HHFC296 1 0.0259067 HJFA008 1 0.0259067 HJFA013 1 0.0259067 HJGD001 1 0.0259067 HJHD002 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HLFC002 1 0.0259067 HMCA008 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMFC001 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HJFA008 1 0.0259067 HJFA013 1 0.0259067 HJGD001 1 0.0259067 HJHD002 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HLFC002 1 0.0259067 HMCA008 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMGC001 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HJFA013 1 0.0259067 HJGD001 1 0.0259067 HJHD002 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HLFC002 1 0.0259067 HMCA008 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMGC001 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HJGD001 1 0.0259067 HJHD002 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HLFC002 1 0.0259067 HMCA008 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMGC001 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HJHD002 1 0.0259067 HKMA004 1 0.0259067 HKPA006 1 0.0259067 HLFC002 1 0.0259067 HMCA008 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMGC001 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HKMA004 1 0.0259067 HKPA006 1 0.0259067 HLFC002 1 0.0259067 HMCA008 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMGC001 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HKPA006 1 0.0259067 HLFC002 1 0.0259067 HMCA008 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMGC001 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HLFC002 1 0.0259067 HMCA008 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMGC001 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HMCA008 1 0.0259067 HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMGC001 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HMFA010 1 0.0259067 HMFC002 1 0.0259067 HMGC001 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HMFC002 1 0.0259067 HMGC001 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HMGC001 1 0.0259067 HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HNFC002 1 0.0259067 HPPA001 1 0.0259067			
HPPA001 1 0.0259067			
JAFA010 1 0.0259067			
	JAFA010	1	0.0259067

Code CCAM	Effectif	Proportion (en %)
JAFC002	1	0.0259067
JAFC004	1	0.0259067
JAGA003	1	0.0259067
JANE002	1	0.0259067
	1	
JANE005		0.0259067
JCAE001	1	0.0259067
JCCA013	1	0.0259067
JCGE001	1	0.0259067
JCGE004	1	0.0259067
JCMA003	1	0.0259067
JDCC016	1	0.0259067
JDQE001	1	0.0259067
JDQH001	1	0.0259067
JEFA007	1	0.0259067
JEFA012	1	0.0259067
JELA003	1	0.0259067
JFFA001	1	0.0259067
JFFA004	1	0.0259067
JGFC045	1	0.0259067
JGFE365	1	0.0259067
JGHJ001	1	0.0259067
JHEA008	1	0.0259067
JHFA010	1	0.0259067
JHFC001	1	0.0259067
JHGA001	1	0.0259067
JHHA003	1	0.0259067
JHMA007	1	0.0259067
JHSB001	1	0.0259067
JJCA002	1	0.0259067
JJFA005	1	0.0259067
JJFC002	1	0.0259067
JKFA008	1	0.0259067
JKGD002	1	0.0259067
JKPD002	1	0.0259067
JLCA002	1	0.0259067
JLCA008	1	0.0259067
JLSD001	1	0.0259067
JMFA009	1	0.0259067
JRGA002	1	0.0259067
JRGC001	1	0.0259067
KAFE900	1	0.0259067
KCFA004	1	0.0259067 0.0259067
KDFC001	1	
		0.0259067
LACA017	1	0.0259067
LACB002	1	0.0259067
LAFA020	1	0.0259067
LAPA015	1	0.0259067
LCFA004	1	0.0259067
LCFA012	1	0.0259067
LDCA012	1	0.0259067
LDFA004	1	0.0259067
LDPA005	1	0.0259067

Code CCAM	Effectif	Proportion (en %)
LEFA002	1	0.0259067
LFCA001	1	0.0259067
LFCA003	1	0.0259067
LFCA005	1	0.0259067
LFDA013	1	0.0259067
LFFA003	1	0.0259067
LFFA005	1	0.0259067
LHCA016	1	0.0259067
LHMA004	1	0.0259067
LLCA002	1	0.0259067
LLMC001	1	0.0259067
LLMC004	1	0.0259067
NEJA002	1	0.0259067
QBJB001	1	0.0259067
QEFA005	1	0.0259067
QZEA031	1	0.0259067
QZFA024	1	0.0259067
QZLB002	1	0.0259067
YYYY017	1	0.0259067

Pour la suite, non gardons ces observations non remplies (on verra ce qu'on en fait plus tard). Cependant, nous retirons les observations pédiatriques.

Répartition données manquantes de tp_val en fonction du type de la surface :

Répartition données manquantes pour la température (tp_val), l'âge, la taille et le poids :

On peut voir avec le premier tableau que la proportion de données manquantes est beaucoup plus importante pour la température que pour les 3 autres variables mais que cette proportion reste très faible (inférieure à 3%).

Ensuite, nous constatons avec le deuxième tableau que la présence de données manquantes pour tp_val et pat_age ne dépendent pas d'autres variables (seulement 11 valeurs sur 241 pour la température dépendent d'une autre variable et 1 seule sur 10 pour l'âge).

Enfin, on distingue que les données manquantes de la variable poids dépendent directement des données manquantes de la variable taille mais pas réciproquement. On en déduit que la taille est renseignée (dans la BD) dès que le poids l'est aussi.

De ces faits, on en conclut que le mécanisme des données manquantes est MCAR et vu leur faible proportion, nous pouvons les supprimer.

Puis, analysons la répartition des données manquantes pour les variables d'intérêt :

Nous pouvons donc voir qu'il y a énormément de valeurs manquantes pour les variables tp_heatedFluide et tp_heatedAir.

En examinant plus en profondeur ces variables, il semblerait que le remplissage de tp_heatedFluide dépend de tp_heatedAir: on utilise d'abord une couverture chauffante pour réchauffer le patient et si cette couverture est utilisée, alors tp_heatedAir[ca_id=*] prend la valeur TRUE, puis tp_heatedFluide prend la valeur TRUE ou FALSE selon s'il y a eu besoin en plus d'utiliser le réchauffeur fluide ou non.

En fait, nous considérons maintenant que tp_heatedAir est toujours égal à TRUE (M.Fischler a dit que tous les patients avaient une couverture).

Ensuite, cherchons s'il y a des corrélations entre la présence de données manquantes pour tp_heatedFluide et les autres variables :

Peut-on dire que c'est MCAR ? Au final, on ne prend pas en compte cette variable dans les analyses ultérieures car elle comporte beaucoup trop de données manquantes.

Pour les autres variables, on a :

A chaque valeur de ghm_code manquante correspond une valeur manquante de ghm_foch (cohérent).

De même, à chaque valeur de sej_longpo manquante correspond une valeur manquante de sej_long et sej_dur, ce qui est aussi normal. Et de plus, il manque aussi à chaque fois la valeur de cmd_c qui est la classification médico-économique utilisée pour le PMSI en MCO.

Pas approfondis car on n'en a pas besoin.

C) La moins bonne façon de faire:

Visualisons les données manquantes pour ces variables:

Nous pouvons donc voir qu'il y a énormément de valeurs manquantes pour les variables tp_heatedFluide et tp_heatedAir.

En examinant plus en profondeur ces variables, il semblerait que le remplissage de tp_heatedFluide dépend de tp_heatedAir: on utilise d'abord une couverture chauffante pour réchauffer le patient et si cette couverture est utilisée, alors tp_heatedAir[ca_id=*] prend la valeur TRUE, puis tp_heatedFluide prend la valeur TRUE ou FALSE selon s'il y a eu besoin en plus d'utiliser le réchauffeur fluide ou non.

Le problème est que tp_heatedAir prend ici soit la valeur TRUE, soit la valeur NA (sur les 10 336 observations, il n'y en a qu'UNE ayant la valeur FALSE, ce qui peut donc être considéré comme une erreur). Ainsi on ne sait pas si les valeurs NA signifie FALSE (il n'y a pas eu besoin de couverture chauffante) ou alors si c'est une véritable valeur NA.

Nous avons le même problème avec les variables ATC_* et ant_* : M.Trillat nous a dit que lorsqu'une ligne contenait NA pour tous les ATC_* ou tous les ant_*, cela signifiait que le patient n'avait pris aucun médicament ou n'avait aucun antécédent (donc ici NA=0). Cependant, nous ne pouvons pas être sûr à 100% que ces observations, où tous les ATC par exemple sont NA, ne correspondent pas à des valeurs non renseignées, donc véritablement NA.

Nous pouvons affirmer que les données manquantes ici ne sont pas MNAR. Il reste à déterminer si elles sont MAR ou MCAR.

Pour cela, cherchons s'il y a des corrélations entre la présence de ces données manquantes et les autres variables :

Tout d'abord, on remarque que pour toutes les valeurs de tp_val manquantes nous avons aussi une valeur manquante pour tp_heatedAir et tp_heatedFluide.

Ensuite, on voit que certaines valeurs NA de tp_heatedAir pourraient être des valeurs TRUE (celles pour lesquelles tp_val < 34°C). Cependant, on imagine que pour certains cas d'hypothermie sévère, le traitement n'est pas de mettre une couverture ...

De plus, on constate que la couverture est parfois utilisée pour des patients normothermes (température appartenant à [36°C,37,5°C]), voire même pour des patients hyperthermes (température > 37,5°C).

Qu'en conclure ? ça me paraît très délicat: ceci semble résulter d'erreurs de sources humaines (mauvaises valeurs rentrées) mais il faudrait vérifier les dossiers pour confirmer cette hypothèse.

Pour les autres variables, on a :

A chaque valeur de ghm_code manquante correspond une valeur manquante de ghm_foch (cohérent).

De même, à chaque valeur de sej_longpo manquante correspond une valeur manquante de sej_long et sej_dur, ce qui est aussi normal. Et de plus, il manque aussi à chaque fois la valeur de cmd_c qui est la classification médico-économique utilisée pour le PMSI en MCO. Cela conforterait donc l'idée d'une nonsaisie par l'infirmier de ces observations. Mais pour pouvoir affirmer que le mécanisme est MCAR, il faudrait montrer que cette non-saisie ne dépend pas d'une autre variable (plus précisément, des observations d'autres variables et non par rapport aux NA des autres variables).

Cependant, en pratique, MCAR ("Missing Completely at Random") et ("Missing at Random") sont tous les deux "ignorables" parce que dans ces deux cas nous ne devons pas inclure d'informations sur les données manquantes elles-mêmes lorsque nous traitons les données manquantes. Toutefois, la suppression de données exige que les données soient MCAR afin de ne pas introduire de biais dans les résultats. Donc ici, nous considèrerons que les NA sont MCAR.

On peut voir que les NA de tp_val ne dépendent pas directement des 3 autres variables.

Ensuite, regardons plus en détail les observations des 3 autres variables, dont on peut déjà affirmer qu'elles ne peuvent dépendre d'aucunes autres (par une analyse rapide) :

Observations des 3 variables lorsque l'âge est NA :

	pat_age	pat_poids	pat_taille
91	NA	56.05175	157.4209
495	NA	74.82216	174.7673
3889	NA	89.18585	163.2049
4187	NA	87.90097	186.1814
4396	NA	56.98401	156.8854
4422	NA	63.97489	166.8601
4427	NA	46.80882	160.0163
5136	NA	87.94090	174.2759
5229	NA	61.15326	161.3772
5868	NA	82.15115	182.6741

Observations des 3 variables lorsque la taille est NA:

	pat_age	pat_poids	pat_taille
223	51.11705	NA	NA
365	79.05131	52.07354	NA
897	66.10781	62.93898	NA
1966	31.02436	55.93793	NA
2243	62.92319	NA	NA
3376	76.07402	55.86371	NA
4913	69.04311	NA	NA
7079	40.93801	NA	NA
7119	40.85042	87.82891	NA
8236	33.90497	NA	NA
10146	74.15409	NA	NA

Observations des 3 variables lorsque le poids est NA:

	pat_age	pat_poids	pat_taille
223	51.11705	NA	NA
2243	62.92319	NA	NA
4913	69.04311	NA	NA
7079	40.93801	NA	NA
8236	33.90497	NA	NA
10146	74.15409	NA	NA

Le premier tableau montre que les données manquantes de l'âge ne dépendent pas des deux autres variables, donc elles sont MCAR : on peut les supprimer.

Le deuxième tableau montre aussi que les données manquantes de la taille ne dépend pas des deux autres variables mais qu'au contraire, le troisième tableau dévoile que les données manquantes du poids dépendent de ceux de la taille.

Ainsi, on en déduit que les données manquantes de la taille sont MCAR et que donc, en même temps, les NA du poids seront enlevés.

Par conséquent, nous allons retirer pour la suite les données manquantes contenues dans tp_val, pat_age, pat_taille et pat_poids.

1) La température :

Nous allons étudier plus en détails les données de température (notre variable à expliquer). Tout d'abord, on cosidère qu'elles doivent valoir entre 28°C et 42°C car d'après la littérature, il y a risque de mort du patient dès que ces seuils sont dépassés.

Tout d'abord, observons les outliers pour la variable tp_val (la valeur de la température du patient durant l'opération) :

tp_val	ca_id
368.007933	1559052
3.007900	31568757
363.987228	35682240

ca_id	tp_val
38723619	2.981546
45099978	362.010721
45571581	0.397720
95169690	2.995548
97466325	3.106397
97638189	337.008962
97769133	360.984910
98122068	365.002262
100746063	2.997232
101739396	3.512558
102358311	3.388927
103185918	336.087078
103247298	377.617460
103379265	3.284321
104489220	366.997364
105051870	356.015211
106424736	2.985449
106934190	365.006877
106936236	3.503078
110213928	362.004022
114828681	362.988469
116625069	368.994005
117610218	375.004893
119198937	378.016211
122690436	3.199095
124054095	373.016000
124130820	2.990081
129852459	369.011603
129889287	373.017635
134326038	362.000085
134379234	367.006761
134554167	374.987501
137351049	367.017986
140720811	6.109342
142538682	372.987772
146767764	366.005908
148371828	336.208140
152239791	371.990512
153135939	371.998735
158514873	362.007339

Nous pouvons supposer que ces outliers sont des valeurs mal tapées (il faudrait vérifier directement dans les dossiers pour confirmer, mais pour la suite on va admettre l'hypothèse) : il suffit alors de déplacer la virgule au bon endroit pour obtenir la valeur adéquate (une ces valeurs sera à supprimer car elle donnera 61.09342).

Voyons la correction faite pour quelques outliers :

```
## [1] 36.80079
```

[1] 30.079

[1] 36.39872

[1] 29.81545

Nous remarquons une valeur absurde pour l'hypothermie sévère que nous allons supprimer :

2) Récupération et nettoyage des autres données utiles :

Maintenant, regardons pour les autres variables qui seront pertinentes dans notre étude: Analysons les :

```
##
        ca_id
                            ca_date
                                                  pat_age
                                                                   pat_genre
##
   Min.
           : 1080288
                                :2016-01-01
                                                      : 7.003
                                                                         :5027
                                               Min.
##
    1st Qu.: 94293490
                         1st Qu.:2016-11-27
                                               1st Qu.:45.840
                                                                 Inconnu: 19
    Median :107925477
                         Median :2018-01-08
                                               Median :59.089
                                                                        :4973
##
                                                                 Μ
##
           :102511604
                         Mean
                                :2018-01-06
                                               Mean
                                                       :57.340
                         3rd Qu.:2019-02-21
                                               3rd Qu.:70.004
    3rd Qu.:136941338
##
##
           :168472755
                                :2019-12-31
                                                       :97.080
##
##
      ca_evt_pir
                                      ca_evt_por
           :2015-01-27 13:22:00
                                           :2015-01-27 14:30:00
##
    Min.
                                   Min.
    1st Qu.:2016-12-24 10:52:30
                                   1st Qu.:2016-12-24 15:23:00
##
    Median :2018-01-21 08:04:00
                                   Median :2018-01-21 10:28:00
##
##
    Mean
           :2018-01-06 18:13:11
                                   Mean
                                           :2018-01-06 21:14:59
```

```
3rd Qu.:2019-01-23 08:05:30
                                    3rd Qu.:2019-01-23 10:08:00
##
    Max.
           :2020-12-08 08:01:00
                                           :2020-12-08 10:14:00
                                    Max.
##
##
     ca_evt_apacu
                                     ca_evt_dpacu
                                                                      pat_asa
##
           :2015-01-27 14:40:00
                                    Min.
                                           :2015-01-27 15:54:00
                                                                    Length: 10019
    1st Qu.:2016-12-24 14:04:15
                                    1st Qu.:2016-12-24 17:49:30
                                                                    Class : character
##
                                    Median: 2018-01-21 13:19:00
                                                                    Mode : character
##
    Median: 2018-01-21 10:57:00
##
    Mean
           :2018-01-06 22:15:13
                                    Mean
                                           :2018-01-07 05:37:07
##
    3rd Qu.:2019-01-23 10:43:15
                                    3rd Qu.:2019-01-23 13:48:00
##
    Max.
           :2020-12-08 10:20:00
                                    Max.
                                           :2020-12-08 13:00:00
##
    NA's
           :1
                                    NA's
                                           :4
##
      pat_taille
                           pat_poids
                                                    ope_classe
                                                                     sej_dur
##
    Min.
               -0.022
                                     1.024
                                             NCH
                                                         :2539
                                                                         : 0.000
           :
                         Min.
                                :
                                                                 Min.
    1st Qu.:
                                    62.020
                                             URO
                                                                  1st Qu.: 1.000
##
              161.916
                         1st Qu.:
                                                         :2072
    Median :
              168.856
                         Median :
                                    71.996
                                             DIG
                                                                 Median :
                                                                            4.000
##
                                                         :1756
##
    Mean
              170.619
                         Mean
                                    74.001
                                             THO
                                                         :1065
                                                                  Mean
                                                                            5.167
##
    3rd Qu.: 175.595
                         3rd Qu.:
                                    82.126
                                             GYNECOLOGIE: 1006
                                                                  3rd Qu.: 6.000
##
    Max.
           :16294.358
                                 :7594.834
                                             ORL
                                                         : 922
                                                                         :136.000
                         Max.
                                                                  Max.
##
                                             (Other)
                                                         : 659
                                                                         :501
                                                                 NA's
                                                       sej_longpo
##
       ghm_code
                        cmd c
                                       sej_long
##
    04C022 : 346
                    Min.
                           : 1.000
                                      Mode :logical
                                                       Mode :logical
    12C111 : 322
                    1st Qu.: 4.000
                                      FALSE: 7809
                                                       FALSE: 7639
##
    01C042 : 314
                    Median : 8.000
                                      TRUE: 1709
                                                       TRUE: 1879
##
    08C522 : 308
                           : 8.006
                                      NA's :501
                                                       NA's :501
##
                    Mean
##
    10C021 : 296
                    3rd Qu.:11.000
##
    (Other):7928
                    Max.
                           :90.000
##
    NA's
          : 505
                    NA's
                           :501
##
      ghm_foch
                                        evt_induction
                         ca_ag
##
   Length: 10019
                        Mode:logical
                                        Min.
                                               :2016-01-01 08:12:00
    Class : character
                        TRUE: 10019
                                        1st Qu.:2016-11-28 10:36:30
##
    Mode : character
                                        Median :2018-01-08 14:35:30
##
                                        Mean
                                               :2018-01-08 02:30:23
##
                                        3rd Qu.:2019-02-22 21:10:00
##
                                        Max.
                                                :2019-12-31 14:45:00
##
                                        NA's
                                                :35
##
    evt entretien
                                        tp_val
                                                     tp_thermielib
                                                                     tp_heatedAir
           :2016-01-01 08:25:28
                                    Min.
                                           :29.82
                                                     hypoSev: 113
                                                                     Mode :logical
##
    1st Qu.:2016-11-27 17:42:41
                                    1st Qu.:36.01
                                                     hypoMod: 301
                                                                     FALSE:1
    Median :2018-01-08 08:30:59
                                    Median :36.48
                                                     hypoLeg:1279
                                                                     TRUE: 4003
##
    Mean
           :2018-01-07 11:46:38
                                                     normoTh:7696
                                                                     NA's :6015
##
                                    Mean
                                           :36.46
    3rd Qu.:2019-02-22 09:51:50
                                                     hyperTh: 630
                                    3rd Qu.:36.89
   Max.
           :2019-12-31 14:56:36
                                    Max.
                                           :39.71
##
##
    NA's
           :4
##
    tp_heatedFluide
                       ope_ccam
##
   Mode :logical
                     Length: 10019
##
    FALSE: 2761
                     Class : character
##
    TRUE: 1243
                     Mode :character
##
    NA's :6015
##
##
##
```

Nous voyons des valeurs aberrantes de taille (-0,022cm) et de poids (7596kg). Cependant, nous allons commencer par vérifier les données pour l'âge.

a) Âge:

Réalisons une boxplot pour cette variable :

Nous remarquons donc un outlier qui a pour valeur :

[1] 7.002975

Faisons un focus sur ce dernier pour déterminer si c'est un véritable outlier ou non (car il est possible d'avoir un patient en pédiatrie de l'âge de 7 ans) :

	ca_id	pat_age	pat_genre	pat_taille	pat_poids
7314	2120679	7.002975	M	122.7277	25.98272

On observe que ces valeurs sont cohérentes : d'après la littérature, un garçon de 7 ans a en moyenne une taille de $118~\rm cm$ et un poids de $22~\rm kg$.

Cependant, après quelques discussions, nous avons décidé que nous ne garderons pas les patients pédiatriques pour la suite de l'étude.

b) Taille:

Nous avons déjà pu voir, à l'aide du summary exécuté dans le B), que certaines valeurs de taille étaient absurdes (des tailles de valeur négative ou de plus de 3 mètres).

Nous allons donc amorcer notre nettoyage de cette variable en retirant ses valeurs non pertinentes :

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 1.148 161.946 168.856 168.670 175.596 203.159 21
```

Maintenant, traçons la boxplot et affichons les valeurs des outliers :


```
##
    [1]
          1.148488
                     1.305316
                                 2.089886
                                            3.658837
                                                       14.821905
                                                                  16.804291
    [7]
                    46.896413
##
         44.163643
                                57.922201
                                           59.102160
                                                       61.126327
                                                                  68.062177
##
   [13]
         69.958454
                    74.267570
                                75.310231
                                           76.027010
                                                      76.226264
                                                                  77.930077
                                           84.550949
   [19]
         82.875689
                    83.207108
                                83.780980
                                                      85.684450
                                                                  87.546234
   [25]
         90.694221 103.708527 104.160037 104.312188 108.944965 109.893986
        110.669302 113.321807 125.355907 138.181576 139.190837 139.495665
##
   [37]
        139.853954 140.045568 140.047652 140.785016 140.912793 196.897833
        196.904406 196.908643 197.128980 197.223962 197.336592 197.432899
       197.617717 197.675865 198.212265 198.442940 198.495141 198.530719
   [55] 198.850949 198.859993 198.867408 199.352406 199.649675 199.710929
   [61] 199.799342 199.928965 202.284719 203.159458
```

Nous constatons un nombre assez important d'outliers. Regardons les plus en détail :

	ca_id	pat_age	pat_genre	pat_taille	pat_poids
1870	1995873	54.05567	\mathbf{M}	1.148488	75.18816
9972	109031340	31.80516	\mathbf{F}	1.305316	61.19125
2601	2047023	45.88652	\mathbf{M}	2.089886	47.17364
8643	107495817	77.07763	\mathbf{F}	3.658837	52.19967
9552	96863778	69.90184	\mathbf{F}	14.821905	85.05142
1490	97832559	47.07532	${ m M}$	16.804291	104.80291
3511	133021713	87.97997	\mathbf{F}	44.163643	158.14218
3628	103643199	83.82751	\mathbf{F}	46.896413	155.94833
6872	126073497	47.10452	\mathbf{F}	57.922201	165.08881
4117	119079246	49.11696	F	59.102160	162.84785
2117	146028135	53.98322	F	61.126327	73.99135
8262	151280217	42.95383	\mathbf{F}	68.062178	159.02479
737	99215655	53.17110	F	69.958454	169.81264
872	166974060	43.09972	\mathbf{M}	74.267571	169.80473
1297	119559033	48.95684	M	75.310231	174.88190
5418	35633136	74.01103	M	76.027010	169.08372
2847	143011308	66.01068	F	76.226264	174.99768
5514	41616663	68.10332	M	77.930076	173.16503
10197	31613769	61.02120	M	82.875689	181.18511
9734	150337011	71.82762	M	83.207108	83.91848
7938	161021223	44.98384	F	83.780980	159.97741
3282	132396660	58.97414	F	84.550949	175.90776
9919	106666164	21.98655	M	85.684450	85.92921
3987	101263701	58.04769	M	87.546234	178.08047
5390	108425724	77.97911	M	90.694221	172.93745
8490	30900738	60.90680	M	103.708527	181.05881
10151	97214667	70.03996	M	104.160037	174.14845
7935	1816848	49.16502	M	104.312188	185.10637
1606	96878100	70.16224	F	108.944965	41.58718
4340	116276226	70.98286	M	109.893986	71.10051
7636	100862685	29.87739	F	110.669302	165.16500
3213	99046860	48.00718	M	113.321807	46.87403
4841	144972399	51.10576	M	125.355907	124.95011
6778	110555610	43.05483	F	138.181576	59.85084
6663	105521427	84.92080	F	139.190837	49.83567
8156	31524768	57.94473	F	139.495665	45.02364
3650	133578225	67.93837	F	139.853954	42.09431
2352	120933945	46.18133	F	140.045568	40.53166
3372	160139397	72.86765	F	140.047652	53.09839
2699	101352702	64.91665	F	140.785015	34.83162
1446	159640173	71.83287	F	140.912793	41.97421
8436	158333802	43.00972	M	196.897833	100.03692
1719	97274001	35.07118	M	196.904406	96.03861
6183	141504429	57.87068	M	196.908643	68.00044
3484	140234886	76.02498	M	197.128980	68.07969
7654	105522450	59.93542	M	197.223962	83.93708
7819	112022592	51.11865	F	197.336592	94.97258
1742	40206969	44.91581	M	197.432899	118.99390
8534	107305539	39.90382	M	197.617717	116.81113
6203	105970524	32.99311	M	197.675865	100.01845
3346	119423997	28.85270	M	198.212265	110.00706
1649	126706734	28.82898	M	198.442940	75.17931
1010	120100104	20.02000	111	100.442040	19.11991

	ca_id	pat_age	pat_genre	pat_taille	pat_poids
7790	100244793	47.15730	M	198.495141	81.87485
15	1545753	66.98059	\mathbf{F}	198.530719	52.12150
3856	124769172	53.85070	\mathbf{M}	198.850949	80.16590
9407	47234979	45.16019	\mathbf{M}	198.859993	140.17944
1561	160769565	45.17589	\mathbf{M}	198.867408	97.08572
9226	121195833	53.19526	\mathbf{M}	199.352406	83.98143
3392	33441870	60.08800	\mathbf{M}	199.649675	154.84091
3742	14550129	49.85330	\mathbf{M}	199.710929	78.92223
7761	96155862	36.87300	\mathbf{M}	199.799341	122.84410
311	160722507	77.13048	\mathbf{M}	199.928965	97.02294
9791	118823496	47.13596	\mathbf{M}	202.284718	102.02953
7748	47045724	42.01623	M	203.159458	96.16331

On peut raisonnablement affirmer que les 7 premières valeurs, en termes de taille et/ou de cohérence entre taille modifiée et poids, ne peuvent pas être corrigées. Nous allons donc les supprimer.

Il nous reste donc à corriger les valeurs suivantes :

	ca_id	pat_age	pat_genre	pat_taille	pat_poids
3511	133021713	87.97997	F	44.16364	158.14218
3628	103643199	83.82751	\mathbf{F}	46.89641	155.94833
6872	126073497	47.10452	\mathbf{F}	57.92220	165.08881
4117	119079246	49.11696	\mathbf{F}	59.10216	162.84785
2117	146028135	53.98322	\mathbf{F}	61.12633	73.99135
8262	151280217	42.95383	\mathbf{F}	68.06218	159.02479
737	99215655	53.17110	\mathbf{F}	69.95845	169.81264
872	166974060	43.09972	M	74.26757	169.80473
1297	119559033	48.95684	M	75.31023	174.88190
5418	35633136	74.01103	M	76.02701	169.08372
2847	143011308	66.01068	\mathbf{F}	76.22626	174.99768
5514	41616663	68.10332	M	77.93008	173.16503
10197	31613769	61.02120	M	82.87569	181.18511
9734	150337011	71.82762	M	83.20711	83.91848
7938	161021223	44.98384	\mathbf{F}	83.78098	159.97741
3282	132396660	58.97414	\mathbf{F}	84.55095	175.90776
9919	106666164	21.98655	M	85.68445	85.92921
3987	101263701	58.04769	M	87.54623	178.08047
5390	108425724	77.97911	M	90.69422	172.93745
8490	30900738	60.90680	M	103.70853	181.05881
10151	97214667	70.03996	M	104.16004	174.14845
7935	1816848	49.16502	M	104.31219	185.10637
1606	96878100	70.16224	\mathbf{F}	108.94496	41.58718
4340	116276226	70.98286	M	109.89399	71.10051
7636	100862685	29.87739	\mathbf{F}	110.66930	165.16500
3213	99046860	48.00718	M	113.32181	46.87403
4841	144972399	51.10576	M	125.35591	124.95011
6778	110555610	43.05483	\mathbf{F}	138.18158	59.85084
6663	105521427	84.92080	\mathbf{F}	139.19084	49.83567
8156	31524768	57.94473	\mathbf{F}	139.49567	45.02364
3650	133578225	67.93837	F	139.85395	42.09431
2352	120933945	46.18133	F	140.04557	40.53166
3372	160139397	72.86765	F	140.04765	53.09839

	ca_id	pat_age	pat_genre	pat_taille	pat_poids
2699	101352702	64.91665	F	140.78502	34.83162
1446	159640173	71.83287	F	140.91279	41.97421
8436	158333802	43.00972	M	196.89783	100.03692
1719	97274001	35.07118	M	196.90441	96.03861
6183	141504429	57.87068	\mathbf{M}	196.90864	68.00044
3484	140234886	76.02498	M	197.12898	68.07969
7654	105522450	59.93542	\mathbf{M}	197.22396	83.93708
7819	112022592	51.11865	F	197.33659	94.97258
1742	40206969	44.91581	\mathbf{M}	197.43290	118.99390
8534	107305539	39.90382	\mathbf{M}	197.61772	116.81113
6203	105970524	32.99311	\mathbf{M}	197.67587	100.01845
3346	119423997	28.85270	\mathbf{M}	198.21226	110.00706
1649	126706734	28.82898	\mathbf{M}	198.44294	75.17931
7790	100244793	47.15730	\mathbf{M}	198.49514	81.87485
15	1545753	66.98059	F	198.53072	52.12150
3856	124769172	53.85070	\mathbf{M}	198.85095	80.16590
9407	47234979	45.16019	\mathbf{M}	198.85999	140.17944
1561	160769565	45.17589	\mathbf{M}	198.86741	97.08572
9226	121195833	53.19526	\mathbf{M}	199.35241	83.98143
3392	33441870	60.08800	\mathbf{M}	199.64968	154.84091
3742	14550129	49.85330	\mathbf{M}	199.71093	78.92223
7761	96155862	36.87300	\mathbf{M}	199.79934	122.84410
311	160722507	77.13048	\mathbf{M}	199.92896	97.02294
9791	118823496	47.13596	M	202.28472	102.02953
7748	47045724	42.01623	M	203.15946	96.16331

Après inspection, nous avons l'impression qu'il y a une inversion entre les valeurs de poids et de taille pour les 22 premières valeurs (jusqu'à ca_id=1816848 compris, en rajoutant un 1 devant le poids des 5e, 14e et 17e valeurs). Nous allons donc faire les modifications nécessaires (comme précédemment, il faudrait vérifier dans les dossiers, mais nous admettons l'hypothèse pour la suite) :

	ca_id	pat_age	pat_genre	pat_taille	pat_poids
1606	96878100	70.16224	F	108.9450	41.58718
4340	116276226	70.98286	M	109.8940	71.10051
7636	100862685	29.87739	F	110.6693	165.16500
3213	99046860	48.00718	M	113.3218	46.87403
4841	144972399	51.10576	\mathbf{M}	125.3559	124.95011
6778	110555610	43.05483	F	138.1816	59.85084
6663	105521427	84.92080	F	139.1908	49.83567
8156	31524768	57.94473	F	139.4957	45.02364
3650	133578225	67.93837	F	139.8540	42.09431
2352	120933945	46.18133	F	140.0456	40.53166
3372	160139397	72.86765	F	140.0477	53.09839
2699	101352702	64.91665	F	140.7850	34.83162
1446	159640173	71.83287	F	140.9128	41.97421
8436	158333802	43.00972	\mathbf{M}	196.8978	100.03692
1719	97274001	35.07118	\mathbf{M}	196.9044	96.03861
6183	141504429	57.87068	\mathbf{M}	196.9086	68.00044
3484	140234886	76.02498	\mathbf{M}	197.1290	68.07969
7654	105522450	59.93542	M	197.2240	83.93708
7819	112022592	51.11865	F	197.3366	94.97258

	ca_id	pat_age	pat_genre	pat_taille	pat_poids
1742	40206969	44.91581	M	197.4329	118.99390
8534	107305539	39.90382	M	197.6177	116.81113
6203	105970524	32.99311	M	197.6759	100.01845
3346	119423997	28.85270	\mathbf{M}	198.2123	110.00706
1649	126706734	28.82898	M	198.4429	75.17931
7790	100244793	47.15730	M	198.4951	81.87485
15	1545753	66.98059	F	198.5307	52.12150
3856	124769172	53.85070	M	198.8509	80.16590
9407	47234979	45.16019	\mathbf{M}	198.8600	140.17944
1561	160769565	45.17589	M	198.8674	97.08572
9226	121195833	53.19526	\mathbf{M}	199.3524	83.98143
3392	33441870	60.08800	M	199.6497	154.84091
3742	14550129	49.85330	M	199.7109	78.92223
7761	96155862	36.87300	\mathbf{M}	199.7993	122.84410
311	160722507	77.13048	\mathbf{M}	199.9290	97.02294
9791	118823496	47.13596	M	202.2847	102.02953
7748	47045724	42.01623	M	203.1595	96.16331

Ensuite, les 5 premières valeurs restantes ne sont pas corrigeables à notre avis, donc nous allons les retirer.

Enfin, toutes les autres lignes semblent contenir des valeurs cohérentes (pour déterminer la cohérence des valeurs entre taille et poids, nous nous sommes aidés du site suivant : http://www.poids-ideal.org/) et puisque, d'après le tracé de la boxplot, ce ne sont pas des outliers très importants, alors nous les gardons pour la suite de notre étude.

c) Poids:

Montrons le summary désormais obtenu pour l'âge, la taille et le poids des patients :

```
##
       pat_age
                       pat_taille
                                         pat_poids
##
    Min.
            :18.03
                     Min.
                             :138.2
                                            :
                                                  0.089
                                      Min.
    1st Qu.:45.89
                     1st Qu.:162.0
                                                 61.985
##
                                      1st Qu.:
##
    Median :59.12
                     Median :168.9
                                      Median :
                                                 71.951
##
    Mean
            :57.51
                     Mean
                             :169.0
                                      Mean
                                                 73.733
##
    3rd Qu.:70.02
                     3rd Qu.:175.6
                                      3rd Qu.:
                                                 82.109
##
    Max.
            :97.08
                     Max.
                             :203.2
                                      Max.
                                              :7594.834
```

Outre le fait que nous pouvons bien voir les corrections faites sur les variables âge et taille, nous voyons une nouvelle fois la présence de valeurs aberrantes pour le poids.

Traçons la boxplot du poids et affichons les valeurs des outliers :


```
##
     [1] 112.8429 112.8721 112.8837 112.8844 112.9016 112.9394 112.9524 112.9660
##
     [9] 113.0505 113.0724 113.0912 113.0932 113.1019 113.1985 113.1996 113.9375
##
    [17] 113.9411 113.9750 114.0176 114.1248 114.1921 114.8150 114.8156 114.8240
    [25] 114.8315 114.8366 114.8392 114.9001 114.9570 114.9576 114.9900 115.0030
##
    [33] 115.0451 115.0565 115.0746 115.0833 115.1142 115.1308 115.1377 115.1694
##
##
    [41] 115.1896 115.1993 115.8278 115.8964 115.9675 116.0740 116.1425 116.8111
    [49] 116.8215 116.8431 116.8732 116.8969 116.9483 116.9745 117.1678 117.8103
##
    [57] 117.8234 117.8754 117.8773 117.8911 117.9690 118.1224 118.1495 118.1900
    [65] 118.8144 118.9939 119.0042 119.1827 119.8571 119.9154 119.9227 119.9415
##
```

```
## [73] 119.9433 119.9512 119.9555 119.9608 119.9702 120.0389 120.0478 120.0547
## [81] 120.0957 120.1288 120.1431 120.1432 120.1584 120.1853 121.0175 121.0505
## [89] 121.1207 121.8374 121.9455 121.9497 122.1425 122.1608 122.8441 123.1725
## [97] 123.8473 123.8957 123.9319 124.8354 124.9555 125.0863 125.0970 125.0995
## [105] 125.1844 125.8280 125.9456 127.1403 127.8545 128.1382 129.1308 129.8064
## [113] 129.8436 129.8713 129.8760 129.9357 130.0546 130.0914 133.0768 134.1489
## [121] 134.8717 134.9958 140.1794 140.9946 144.1812 150.0414 154.8409 159.9296
## [129] 160.1152 174.9974
```

De nouveau, nous relevons un nombre assez important d'outliers. Regardons les plus précisément :

			not gonno	not to:11o	not noida
	ca_id	pat_age	pat_genre	pat_taille	pat_poids
4920	155603415	39.93089	\mathbf{M}	179.3369	112.8429
7621	107226768	26.12541	\mathbf{M}	186.0588	112.8721
6235	155670933	57.05219	\mathbf{M}	176.0515	112.8837
1271	45900987	32.90303	F	168.5284	112.8844
7627	99826386	50.92675	\mathbf{M}	176.4498	112.9016
7439	1379004	39.90981	F	157.0642	112.9394
7583	98480118	23.17316	\mathbf{F}	177.8502	112.9524
9391	149525772	74.13369	M	174.6122	112.9660
1567	152652060	34.91242	\mathbf{F}	170.7673	113.0505
5614	41030484	66.97262	M	178.9174	113.0724
6256	96057654	68.99852	M	175.0097	113.0912
595	115869072	32.83705	M	184.8914	113.0932
4631	1748307	80.17213	M	176.1215	113.1019
1306	139339761	47.11463	\mathbf{F}	175.0738	113.1985
7787	116857290	20.14968	M	189.2432	113.1996
2158	147174918	22.00177	M	191.4129	113.9375
4270	142799547	71.03722	M	184.3693	113.9411
2004	156366573	29.13260	M	184.1250	113.9750
7853	95343600	27.16162	\mathbf{F}	174.7422	114.0176
3148	145979031	76.83107	M	180.0627	114.1248
4380	33450054	44.85239	\mathbf{F}	176.5990	114.1921
8372	97599315	27.87495	M	171.3218	114.8150
3835	38194728	30.16852	M	186.8194	114.8156
7271	103822224	73.96921	\mathbf{F}	158.3993	114.8240
7826	98432037	61.80423	M	176.8641	114.8315
321	36747183	25.88660	M	186.7745	114.8366
463	117929394	63.87376	M	171.3784	114.8392
6247	125173257	42.98236	M	174.8218	114.9001
5079	124217775	69.15545	M	174.3275	114.9570
4737	116312031	57.13882	M	194.1867	114.9576
1880	42857562	77.10678	\mathbf{F}	164.4970	114.9900
7920	41058105	31.14725	\mathbf{F}	168.3912	115.0030
5383	100147608	66.03515	M	186.9458	115.0451
4557	117560091	49.88242	M	183.6920	115.0565
9986	104918880	36.88867	\mathbf{F}	173.5380	115.0746
1711	139313163	35.88202	M	182.5542	115.0833
5678	159673932	64.87029	M	186.7874	115.1142
2970	37208556	61.91020	\mathbf{M}	181.4599	115.1308
7020	39828459	59.97757	F	161.5609	115.1377
9464	123614205	69.08460	M	173.9263	115.1694
465	107104008	24.87235	\mathbf{M}	178.6559	115.1896

	ca_id	pat_age	pat_genre	pat_taille	pat_poids
9378	46304049	24.91335	M	181.1750	115.1993
619	106921914	25.05439	${ m M}$	177.0992	115.8278
5580	150515013	59.84749	${ m M}$	184.3175	115.8964
5417	109562277	67.84319	M	170.9402	115.9675
1636	165154143	71.19972	M	189.7869	116.0740
438	108493242	25.12853	M	177.8382	116.1425
8534	107305539	39.90382	M	197.6177	116.8111
4029	116509470	62.96253	M	189.3764	116.8215
701	110205744	45.10529	F	169.3366	116.8431
7716	159758841	43.00996	M	181.5189	116.8732
3023	39214659	72.03492	M	181.0515	116.8969
364	104189481	54.03346	M	181.6679	116.9483
3932	116108454	52.97860	F	163.4569	116.9745
7065	39078600	42.19860	F	103.4509 173.7093	110.9743
3112	161583873	59.06399	г М	185.5096	
			F		117.8103
3598	99024354	79.84693		168.4488	117.8234
478	36839253	50.14669	F	173.9648	117.8754
736	132924528	54.03495	F	178.3943	117.8773
7780	108132123	39.04848	M	180.1216	117.8911
6981	110659956	63.88192	F	162.8239	117.9690
328	37378374	68.87260	M	184.3068	118.1224
596	109568415	65.17736	F	165.3748	118.1495
8805	107441598	53.15917	M	182.1295	118.1900
9550	33905289	54.14433	M	194.1514	118.8144
1742	40206969	44.91581	M	197.4329	118.9939
3780	31544205	82.00559	M	166.5992	119.0042
2929	44876964	69.84695	\mathbf{M}	186.3759	119.1827
9092	125758413	45.84891	\mathbf{M}	185.9152	119.8571
7677	96108804	33.09269	${ m M}$	191.7101	119.9154
1689	139035930	82.16947	${ m M}$	178.1642	119.9227
10254	138745398	81.96191	M	176.4759	119.9415
10249	139570959	81.93904	M	177.3824	119.9433
2037	46615041	24.99290	\mathbf{M}	186.6528	119.9512
8069	46198680	40.99282	${ m M}$	185.5514	119.9555
8282	108737739	69.94738	${ m M}$	171.7429	119.9608
7329	111112122	43.03495	F	181.2997	119.9702
4518	96940503	38.84959	F	167.2089	120.0389
4749	33545193	62.04584	M	193.4090	120.0478
9271	107709624	54.16786	M	189.5493	120.0547
5140	160505631	65.80268	M	186.8071	120.0957
10066	157172697	47.09851	F	170.1805	120.1288
4028	99727155	59.07949	M	187.9217	120.1431
7438	105733188	32.89082	F	174.6810	120.1432
651	104751108	58.03677	F	179.1480	120.1584
9066	100709235	68.13234	M	186.2708	120.1853
7346	39063255	51.10358	M	186.0577	120.1005 121.0175
688	114420504	54.13144	F	164.8461	121.0175
1924	114420504 104823741	67.96323	г М	193.2084	121.0303 121.1207
3688	135965907	34.08410	M	189.9851	121.1207
		60.83339			
3639	134835492		M M	176.9100	121.9455
126	32014785	62.17280	M M	181.1288	121.9497
1705	153100134	56.84949	M	186.7072	122.1425

	ca_id	pat_age	pat_genre	pat_taille	pat_poids
3927	47492775	66.87529	M	177.2122	122.1608
7761	96155862	36.87300	\mathbf{M}	199.7993	122.8441
2064	45135783	47.06980	${ m M}$	176.1461	123.1725
4619	165449790	67.98755	${ m M}$	187.0055	123.8473
9172	45320946	34.12536	\mathbf{M}	186.9050	123.8957
7410	108045168	61.91443	${ m M}$	168.6617	123.9319
2424	107909109	50.18440	M	183.0865	124.8354
333	116441952	60.19456	F	162.2775	124.9555
10110	1999965	39.00856	M	188.5144	125.0863
314	95070459	54.12166	M	193.6468	125.0970
2563	103681050	62.14562	M	174.4698	125.0995
9297	46469775	42.95704	\mathbf{F}	163.1893	125.1844
3127	106236504	53.09192	M	178.5166	125.8280
6102	94704225	66.94196	M	176.8491	125.9456
1214	114905406	65.88335	M	182.5612	127.1403
37	15151653	63.94025	M	188.2606	127.8545
4273	98861697	36.12697	\mathbf{F}	174.7729	128.1382
1568	97373232	26.16868	M	190.8662	129.1308
9910	1852653	22.86772	M	189.9998	129.8064
1564	1214301	55.84000	\mathbf{F}	168.4831	129.8436
7448	38427972	57.95119	\mathbf{F}	168.2947	129.8713
5195	95500119	67.00209	M	181.2822	129.8760
7810	122101188	51.07730	\mathbf{F}	173.6322	129.9357
8299	34135464	60.99881	M	175.5708	130.0546
1748	107602209	27.18733	M	186.4842	130.0914
4257	160026867	32.91422	\mathbf{F}	169.1640	133.0768
1882	103350621	47.97930	\mathbf{F}	175.0592	134.1489
1878	149319126	52.02538	M	173.9688	134.8717
7292	115977510	55.02854	M	182.6184	134.9958
9407	47234979	45.16019	M	198.8600	140.1794
7427	104334747	33.84718	M	187.6759	140.9946
34	42766515	55.99271	M	178.3572	144.1812
755	119397399	30.92556	M	181.5117	150.0414
3392	33441870	60.08800	M	199.6497	154.8409
2893	31176948	70.07722	F	153.7284	159.9296
9920	128284200	33.03581	M	175.8922	160.1152
5575	140229771	58.18055	M	174.3041	174.9974

Le curseur pour pouvoir déterminer quelles sont les valeurs absurdes est assez délicat à placer : certaines valeurs pour les femmes semblent très importantes mais pas aberrantes.

Par conséquent, nous allons seulement éliminer les 6 dernières valeurs, qui paraîssent trop élevées.

II. Description des données :

A) Description globale :

Répartion (en pourcentage) des patients selon leur genre :

Définition des intervalles de température :

Niveau:	Intervalles de température en °C :
Hyperthermie Normothermie	> 37,5 [36; 37,5]
${\bf Hypothermie:}$	
LégèreModérée	[35; 36]]34; 35[
- Sévère	=< 34

Répartition des patients selon la classification ASA:

ASA	Nombre	Proportion (%)
1	2355	23.0407984
2	6150	60.1702377
3	1640	16.0453967
4	41	0.4011349
5	1	0.0097838
NULL	34	0.3326485

Répartition des patients selon la classification GHM avec 2 digits (cmd) :

Code GHM à 2 digits	Nombre	Proportion (%)
01	1059	10.9209034
02	24	0.2474992
03	608	6.2699804
04	954	9.8380943
05	295	3.0421780
06	1087	11.2096525
07	468	4.8262349
08	1054	10.8693410
09	209	2.1553058

Code GHM à 2 digits	Nombre	Proportion (%)
10	692	7.1362277
11	785	8.0952872
12	801	8.2602867
13	1140	11.7562133
14	10	0.1031247
16	73	0.7528101
17	119	1.2271837
18	2	0.0206249
19	142	1.4643704
21	17	0.1753120
23	30	0.3093740
25	5	0.0515623
27	123	1.2684335

Répartition des patients selon la classification GHM avec 3 digits :

Code GHM à 3 digits	Nombre	Proportion (%)
01C	945	9.7452820
01K	86	0.8868722
01M	28	0.2887491
02C	23	0.2371868
02M	1	0.0103125
03C	573	5.9090440
03K	14	0.1443745
03M	21	0.2165618
04C	911	9.3946581
04K	28	0.2887491
04M	15	0.1546870
05C	233	2.4028050
05K	56	0.5774982
05M	6	0.0618748
06C	1084	11.1787151
06M	3	0.0309374
07C	468	4.8262349
08C	1039	10.7146540
08K	5	0.0515623
08M	10	0.1031247
09C	204	2.1037434
09M	5	0.0515623
10C	687	7.0846654
10M	5	0.0515623
11C	776	8.0024750
11K	1	0.0103125
11M	8	0.0824997
12C	795	8.1984119
12K	1	0.0103125
12M	5	0.0515623
13C	1117	11.5190265
13K	23	0.2371868
14C	10	0.1031247
16C	36	0.3712488

Code GHM à 3 digits	Nombre	Proportion (%)
16M	37	0.3815613
17C	97	1.0003094
17K	19	0.1959369
17M	3	0.0309374
18C	2	0.0206249
19C	139	1.4334330
19M	3	0.0309374
21C	17	0.1753120
23C	4	0.0412499
23K	16	0.1649995
23M	10	0.1031247
25C	5	0.0515623
27C	123	1.2684335

B) Description par rapport à la chirurgie :

Influence de la chirurgie sur l'hypothermie :

Tableau pour mieux voir les chiffres de la répartition :

ope_classe	$tp_thermielib$	value
AUTRE	hypoLeg	2
CARDIO	hypoLeg	0
DIG	hypoLeg	226
ENDO_THO	hypoLeg	15
GYNECOLOGIE	hypoLeg	146
NCH	hypoLeg	271
NRDT	hypoLeg	25
OPH	hypoLeg	1
ORL	hypoLeg	64
THO	hypoLeg	182
URO	hypoLeg	307
VASCULAIRE	hypoLeg	33
AUTRE	hypoMod	3
CARDIO	hypoMod	0
DIG	hypoMod	48
ENDO_THO	hypoMod	5
GYNECOLOGIE	hypoMod	49
NCH	hypoMod	60
NRDT	hypoMod	6

ope_classe	tp_thermielib	value
ОРН	hypoMod	1
ORL	hypoMod	12
THO	hypoMod	38
URO	hypoMod	68
VASCULAIRE	hypoMod	11
AUTRE	hypoSev	0
CARDIO	hypoSev	0
DIG	hypoSev	21
ENDO_THO	hypoSev	0
GYNECOLOGIE	hypoSev	13
NCH	hypoSev	18
NRDT	hypoSev	0
OPH	hypoSev	0
ORL	hypoSev	5
THO	hypoSev	16
URO	hypoSev	38
VASCULAIRE	hypoSev	4

III. Analyses Univariées

A) Température:

Tableau général tp_cat :

Variabl H sypo.S	Sh Raptire nts.Hypo	$\mathrm{Hypo.IC}_{-}$	_95onnHeya	pod:StranginoHypo	NH.IC_	95 <u>T</u> esstean	p.value
Homme	1892 890 (47%)			6392 3184 (49.8%)		Pearson's Chisquared	0.102
pat_ag 3 .46e- 18	$\begin{aligned} & \text{Effectif} = 1892 \;, \\ & \text{Moyenne} = 59.6 \\ & \pm 15.9 \end{aligned}$	[58.91 ; 60.34]	Effectif > 5000	$ \begin{aligned} & \text{Effectif} = 6392 \text{ ,} \\ & \text{Moyenne} = 57 \pm \\ & 16.22845 \end{aligned} $	[56.64 ; 57.44]	test Welch Two Sample	7.37e- 10
pat_ta Il33 e- 06	$\begin{aligned} & \text{Effectif} = 1886 \ , \\ & \text{Moyenne} = 169 \\ & \pm 9.24 \end{aligned}$	[168.1 ; 169]	Effectif > 5000	$\begin{array}{l} {\rm Effectif} = 6374 \ , \\ {\rm Moyenne} = 169 \ \pm \\ 9.114448 \end{array}$	[168.8 ; 169.2]	t-test Welch Two Sample t-test	0.0459
pat_poid98e- 11	$\begin{aligned} & \text{Effectif} = 1870 \text{ ,} \\ & \text{Moyenne} = 70.5 \\ & \pm 14 \end{aligned}$	[69.83 ; 71.1]	Effectif > 5000	$\begin{array}{l} {\rm Effectif} = 6318 \ , \\ {\rm Moyenne} = 72.9 \ \pm \\ 13.98958 \end{array}$	[72.6 ; 73.29]	Welch Two Sample t-test	2.21e- 11
pat_im £ 71e- 14	$\begin{aligned} & \text{Effectif} = 1861 \;, \\ & \text{Moyenne} = 24.7 \\ & \pm 4.08 \end{aligned}$	[24.53 ; 24.9]	Effectif > 5000	$\begin{array}{l} \text{Effectif} = 6245 \ , \\ \text{Moyenne} = 25.4 \ \pm \\ 4.049514 \end{array}$	[25.28 ; 25.48]	Welch Two Sample t-test	8.17e- 10
pat_bs 8 .84e- 07	$\begin{aligned} & \text{Effectif} = 1877 \;, \\ & \text{Moyenne} = 1.81 \\ & \pm \; 0.213 \end{aligned}$	[1.801 ; 1.821]	Effectif > 5000	$\label{eq:effectif} \begin{split} & \text{Effectif} = 6360 \ , \\ & \text{Moyenne} = 1.85 \pm \\ & 0.2119656 \end{split}$	[1.842 ; 1.852]	Welch Two Sample t-test	1.08e- 10

Variabl H ypo.S	Sh Raptire nts.Hypo	Hypo.IC	_95onnHeya	pod:SthatprinoHypo	NH.IC_	95 <u>T</u> esstean	p.value
dur_ar@27e-	Effectif = 1826 ,	[149.9	Effectif	Effectif = 6051 ,	[146.8	Welch	0.0197
29	Moyenne = 153	; 156.6	>	Moyenne = $149 \pm$; 150.5	Two	
	± 73.2	j	5000	74.26634	j	Sample	
		•			•	t-test	
dur_sa44e	Effectif = 1860,	[173.7	Effectif	Effectif $= 6189$,	[169.3	Welch	0.00303
29	Moyenne = 177	; 180.7	>	Moyenne = 171 \pm	; 173.1	Two	
	± 76.7]	5000	77.26124]	Sample	
						t-test	
dur_re 2e3e-	Effectif = 1888,	[389.5]	Effectif	Effectif = 6366 ,	[371.7	Welch	0.0181
48	Moyenne = 410	; 429.7	>	Moyenne = 382 \pm	;392.8	Two	
	± 446]	5000	427.6955]	Sample	
						t-test	
$sej_du8.79e-$	Effectif $= 1681$,	[3.664]	Effectif	Effectif $= 5643$,	[3.537]	Welch	0.023
27	Moyenne = 3.81	; 3.948	>	Moyenne = $3.62 \pm$; 3.697	Two	
	± 2.97]	5000	3.05669]	Sample	
						t-test	

B) Open_Coelio:

Tableau Open_Coelio et tp_cat :

Variables	Patients.Hypo	Pat.Non.Hypo	Test	p.value
Open_Co	pell@74 (26 %)	3635 (74 %)	Pearson's Chi-squared test	1.28e- 16
Open	Effectif = 466 (36.6 % des hypos)	Effectif = 1771 (48.7 % des non hypos)	•	
Coelio	Effectif = 808 (63.4 % des hypos)	Effectif = 1864 (51.3 % des non hypos)		

C) Surface:

Tableau Surface et tp_cat :

Variables	Patients.Hypo	Pat.Non.Hypo	Test	p.value
Surface	606 (19 %)	2585 (81 %)	Pearson's Chi-squared test	3.39e- 11
Grand	Effectif = 289 (47.7 % des hypos)	Effectif = 842 (32.6 % des non hypos)	-	
Moyen	Effectif = 83 (13.7 % des hypos)	Effectif = 377 (14.6 % des non hypos)		
Petit	Effectif = 232 (38.3 % des hypos)	Effectif = 1354 (52.4 % des non hypos)		
Tout Petit	Effectif = 0 (0% des hypos)	Effectif = 0 (0 % des non hypos)		

D) Heure d'arrivée en salle:

Tableau Heure d'arrivée en salle et tp_cat :

Variables	Patients.Hypo	Pat.Non.Hypo	Test	p.value
Heure d'arrivée en salle	1892 (22.8 %)	6392 (77.2 %)	Pearson's Chi-squared test	1.33e- 05
am	Effectif = 1248 (66% des hypos)	Effectif = 3738 (58.5 % des non hypos)	1	
pm	Effectif = 644 (34 % des hypos)	Effectif = 2654 (41.5 % des non hypos)		

E) ASA:
Tableau ASA et tp_cat :

Variables	s Patients Hypo	Pat Non Hypo	Test	p value
ASA	1892 (22.8 %)	6392 (77.2 %)	Pearson's Chi-squared test	0.00756
Niveau	Effectif = 8 (0.423 % des	Effectif = 19 (0.297 % des non		
0	hypos)	hypos)		
Niveau	Effectif = 405 (21.4 % des	Effectif = 1581 (24.7 % des		
1	hypos)	non hypos)		
Niveau	Effectif = 1164 (61.5 % des	Effectif = 3883 (60.7 % des		
2	hypos)	non hypos)		
Niveau	Effectif = 310 (16.4 % des	Effectif = 899 (14.1% des non		
3	hypos)	hypos)		
Niveau	Effectif = 5 (0.264% des	Effectif = 10 (0.156 % des non		
4	hypos)	hypos)		

F) Pain_score:

Tableau pain_score et tp_cat :

Variables	Patients Hypo	Pat Non Hypo	Test	p value	
Pain_score1879 (22.8 %)		6366 (77.2 %)	Pearson's Chi-squared test	0.0385	
Valeur	Effectif = 597 (31.8% des	Effectif = 2044 (32.1 % des	•		
=0	hypos)	non hypos)			
Valeur	Effectif = 110 (5.85 % des	Effectif = 493 (7.74 % des non			
= 1	hypos)	hypos)			
Valeur	Effectif = 174 (9.26 % des	Effectif = 676 (10.6 % des non			
=2	hypos)	hypos)			
Valeur	Effectif = 210 (11.2 % des	Effectif = 663 (10.4 % des non			
=3	hypos)	hypos)			
Valeur	Effectif = 163 (8.67 % des	Effectif = 544 (8.55 % des non			
=4	hypos)	hypos)			
Valeur	Effectif = 226 (12% des	Effectif = 677 (10.6 % des non			
=5	hypos)	hypos)			
Valeur	Effectif = 137 (7.29 % des	Effectif = 454 (7.13 % des non			
= 6	hypos)	hypos)			
Valeur	Effectif = 142 (7.56 % des	Effectif = 391 (6.14 % des non			
=7	hypos)	hypos)			
Valeur	Effectif = 86 (4.58 % des	Effectif = 287 (4.51 % des non			
= 8	hypos)	hypos)			
Valeur	Effectif = 23 (1.22 % des	Effectif = 82 (1.29 % des non			
= 9	hypos)	hypos)			
Valeur	Effectif = $11 ext{ (} 0.585 ext{ % des }$	Effectif = 55 (0.864 % des non			
= 10	hypos)	hypos)			

G) NVPO_level:

Tableau nvpo_level et tp_cat :

Variables	Patients.Hypo	Pat.Non.Hypo	Test	p.value
nvpo level	1669 (22.9 %)	5624 (77.1 %)	Pearson's Chi-squared test	0.265
Rien	Effectif = 1641 (98.3 % des hypos)	Effectif = 5539 (98.5 % des non hypos)		
Nausees severes	Effectif = 8 (0.479 % des hypos)	Effectif = 41 (0.729 % des non hypos)		
Nausees severes	Effectif = 13 (0.779 % des hypos)	Effectif = 31 (0.551 % des non hypos)		
Vomissements	Effectif = 7 (0.419 % des hypos)	Effectif = 13 (0.231 % des non hypos)		
Vomissements incoercibles	Effectif = 0 (0 % des hypos)	Effectif = 0 (0 % des non hypos)		

H) Anesthésie AIVOC:

Anesthésie AIVOC et tp_cat :

Variables	Patients.Hypo	Pat.Non.Hypo	Test	p.value
Consultation associable	1892 (22.8 %)	6392 (77.2 %)	Pearson's Chi-squared test	0.000635
TRUE	Effectif = 549 (29% des hypos)	Effectif = 1602 (25.1 % des non hypos)	•	
FALSE	Effectif = 1343 (71 % des hypos)	Effectif = 4790 (74.9 % des non hypos)		

I) Heated_Fluide:

$tp_heatedFluide\ et\ tp_cat:$

Variables	Patients.Hypo	Pat.Non.Hypo	Test	p.value
Consultation associable	814 (24.6 %)	2496 (75.4 %)	Pearson's Chi-squared test	0.199
TRUE	Effectif = 283 (34.8 % des hypos)	Effectif = 805 (32.3 % des non hypos)	•	
FALSE	Effectif = 531 (65.2 % des hypos)	Effectif = 1691 (67.7 % des non hypos)		

J) ATC:
Tableau ATC tp_cat:

Classes atc selon leur influence sur tp_cat :

Classes ayant une influence	Classes n'ayant pas d'influence
52	153
atc C09C	atc B01A
atc_C07A	atc H02A
atc_C08C	atc_A02B
atc_C10A	atc_C09D
atc_A10B	atc_C03C
atc_A11C	atc_M04A
atc_N03A	atc_B03X
atc_H03A	atc_V03A
atc_N06A	atc_A10A
atc_C02A	atc_B03A
atc_R03D	atc_N02B
atc_G02C	atc_S01E
atc_C09A	atc_G04B
atc_C10B	atc_C03E
atc_A06A	atc_R03A
atc_R01A	atc_C01B
atc_C08D	atc_G03X
atc_N02A	atc_N05C
atc_J01F	atc_C03A
atc_C01E	atc_M01A
atc_C02C	atc_R05D
atc_C05C	atc_G04C
atc_R06A	atc_M01C
atc_A12A	atc_R03B
atc_G03D	atc_A12B
atc_N04B	atc_C09B
atc_N07B	atc_C01D
atc_A03A	atc_N05B
atc_L01A	atc_J01C
atc_N02C	atc_L02B
atc_A07D	atc_C07B
atc_R05C	atc_N05A
atc_C04A	atc_M05B
atc_S01B	atc_A07E
atc_H03B	atc_L01B
atc_D10B	atc_R03C
atc_A13A	atc_C02L
atc_N06B	atc_C03D
atc_L02A	atc_G03C
atc_C05A	atc_H05A
atc_G03H	atc_L04A
atc_J01G	atc_J05A
atc_C02D	atc_A11A
atc_B02B	atc_B03B
atc_L01C	atc_N07C

Classes ayant une influence	Classes n'ayant pas d'influence
atc_S01L	atc_C01A
atc_D06A	atc_A03F
atc_P01C	atc_J01X
atc_H02C	atc_J01D
atc_G02B	atc_A11D
atc_V01A	atc_A07B
atc_C07D	atc_M09A
	atc_C03B
	atc_J01E
	atc_M03B
	atc_S01G
	atc_S01X
	atc_C09X
	atc_A07X
	atc_G03F
	atc_A09A atc_A12C
	atc_A12C atc_L01X
	atc_LOTA atc M02A
	atc_N102A atc A11H
	atc J02A
	atc G03B
	atc D08A
	atc J01M
	atc D02A
	atc C07F
	atc N06D
	atc M03C
	atc P01A
	atc A16A
	atc_A01A
	atc_S02C
	atc_J07B
	atc_J01A
	atc_S01A
	atc_N04A
	atc_A07A
	atc_A02A
	atc_A08A
	atc_A04A
	atc_N01B
	atc_D06B
	atc_A05A
	atc_D07X
	${ m atc_D07A}$
	atc_B05B
	atc_B02A
	atc_P01B
	atc_G01A
	atc_N07X
	atc_H05B
	atc_H01C

Classes ayant une influence	Classes n'ayant pas d'influence
	atc_A07F
	atc_R05F
	atc_C01C
	atc_D05B
	atc_N07A
	atc_R05X
	atc_G03A
	atc_C02K
	atc_D01A
	atc_B05X
	atc_J04B
	atc_J04A
	atc_D03A
	atc_A03C
	atc_L03A
	atc_D01B
	atc_B05A
	atc_B05D
	atc_S01C
	atc_A11G
	atc_D11A
	atc_H01B
	atc_J01R
	atc_D10A
	atc_H01A
	atc_D07B
	atc_P02C
	atc_D05A
	atc_A11J
	atc_J06B
	atc_G03G
	atc_C08G
	atc_C03X
	atc_B05Z
	atc_L01D
	atc_A05B
	atc_V04C
	atc_V08A
	atc_S01F
	atc_A03B
	atc_R07A
	atc_S02D
	atc_N01A
	atc_S02A
	atc_R01B
	atc_R02A
	atc_V09X
	atc_A11B
	atc_J07A
	atc_B06A
	${ m atc}_{ m A05C}$
	atc_P03A

Classes ayant une influence	Classes n'ayant pas d'influence
	atc_V09G
	atc_S01H
	atc_V10A
	atc_V08C

Détails des atc influents sur tp cat :

Variablesm	Effectif.	gla H yapo	Non.Hy	rpæst	p.value
	8284	1892	6392		
atc_C0\(\)6giotensin II receptor blockers (ARBs), plain				Pearson's Chi-squared test with Yates' continuity correction	0.0179
In	596 (7.19 %)	160 (8.46 %)	436 (6.82 %)		
Out	7688 (92.8 %)	1732 (91.5 %)	5956 (93.2 %)		
atc_C(B Ata blocking agents	70)	70)	70)	Pearson's Chi-squared test with Yates' continuity correction	0.0683
In	1069 (12.9 %)	268 (14.2 %)	801 (12.5 %)		
Out	7215 (87.1 %)	1624 (85.8 %)	5591 (87.5 %)		
atc_COMCective calcium channel blockers with mainly vascular effects				Pearson's Chi-squared test with Yates' continuity correction	0.034
In	874 (10.6 %)	225 (11.9 %)	649 (10.2 %)		
Out	7410 (89.4 %)	1667 (88.1 %)	5743 (89.8 %)		
atc_CIDipid modifying agents, plain				Pearson's Chi-squared test with Yates' continuity correction	0.162
In	1600 (19.3 %)	387 (20.5 %)	1213 (19 %)		
Out	6684 (80.7 %)	1505 (79.5 %)	5179 (81 %)		
$\begin{array}{c} {\rm atc_A1\!BBod~glucose~lowering~drugs},\\ {\rm excluding~insulins} \end{array}$,	,		Pearson's Chi-squared test with Yates' continuity correction	0.0029
In	682 (8.23 %)	124 (6.55 %)	558 (8.73 %)		
Out	7602 (91.8 %)	1768 (93.4 %)	5834 (91.3 %)		
atc_ANGamin A and D, including combinations of the two	· · /	, , ,	, v ,	Pearson's Chi-squared test with Yates' continuity correction	0.0115

1.26	Variabl as m	Effectif.	glo lly ppo	Non.Hy	rp T est	p.value
Out \$180 (1857 (6323 (98.9 98.9 98.7 98.2 98.9 98.7 98.2 98.9 98.9 98.7 98.9	In	104 (35 (69 (
State Stat						
S8.7 S8.2 S8.9 S8.5 S8.9 S8.7 S8.2 S8.9 S8.5		%)	%)			
tc_NOSmicepileptics W	Out	`	,			
tc_N0&Atiepileptics Comparison Chi-squared test with Yates' continuity correction Chi-squared test with Yates' continuity Chi-squared test with Yates' continuity Chi-squared test with Yates' continuity Chi-squared test with						
with Yates' continuity correction 1		%)	%)	%)		
Correction	atc_N %A tiepileptics					0.00744
Second						
Cont	_		/		correction	
Out 7742 (1794 (5948 (93.5 94.8 93.1	In		,			
Out						
93.5 94.8 93.1		,				
Carroll Carr	Out	`				
tc_H0BAyroid preparations Text						
with Yates' continuity correction 1	TT/SDIA . 1	%)	%)	%)		0.0001
correction 724 (194 (530 (8.74 10.3 8.29 %) %) %) %) Out 7560 (1698 (5862 (91.3 89.7 91.7 %) %) %) 89.7 91.7 %) %) %) 10	atc_HUBAyroid preparations					0.0091
Teach Teac						
8.74 10.3 8.29	Т	794 (104 (F20 (correction	
Dut	In					
Out 7560 (1698 (5862 (91.3 89.7 91.7						
91.3	Out					
Solution Section Sec	Out					
Pearson's Chi-squared test with Yates' continuity correction						
with Yates' continuity correction 815 (157 (658 (9.84 8.3 %) 10.3 %)	ate NOGAtidenressants	70)	70)	70)	Paarson's Chi-squared test	0.0118
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ate_ivadiatepressams					0.0110
815 (157 (658 (9.84 8.3 %) 10.3 %) 10.3 %) 7469 (1735 (5734 (90.2 91.7 89.7 %) %) %) ttc_CO2\(\frac{1}{2}\) Atiadrenergic agents, centrally acting \(\frac{1}{2}\) \(\					•	
9.84 8.3 %) 10.3 %)	In	815 (157 (658 (correction	
Out 7469 (1735 (5734 (90.2 91.7 89.7 %) %) tc_CONAtiadrenergic agents, centrally acting Pearson's Chi-squared test with Yates' continuity correction 1						
Out 7469 (1735 (5734 (90.2 91.7 89.7 %) %) %) tc_CONAtiadrenergic agents, centrally acting			0.0 70)			
90.2 91.7 89.7 %) %) %) tc_CONAtiadrenergic agents, centrally acting 55 (17 (38 (0.664 0.899 0.594 %) %) %) Out 8229 (1875 (6354 (99.3 99.1 99.4 %)) %) tc_RO3ther systemic drugs for obstructive airway diseases 90.2 91.7 89.7 %) Pearson's Chi-squared test 0.204 with Yates' continuity correction Pearson's Chi-squared test 0.153 with Yates' continuity correction	Out		1735 (
% % % % %						
tc_C02Atiadrenergic agents,						
centrally acting $\begin{array}{cccccccccccccccccccccccccccccccccccc$	atc CO2Atiadrenergic agents,	,	,	,	Pearson's Chi-squared test	0.204
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
0.664 0.899 0.594 %) %) %) Out 8229 (1875 (6354 (99.3 99.1 99.4 %)) %) tc_R03ther systemic drugs for obstructive airway diseases Pearson's Chi-squared test 0.153 with Yates' continuity correction					correction	
Out $ \begin{pmatrix} \% \\ 8229 \\ 1875 \\ 99.3 \\ 99.1 \\ 99.4 \\ \% \end{pmatrix} = \begin{pmatrix} 99.4 \\ 99.3 \\ \% \end{pmatrix} $ tc_R032her systemic drugs for obstructive airway diseases $ \begin{pmatrix} Pearson's Chi-squared test \\ with Yates' continuity \\ correction \end{pmatrix} = \begin{pmatrix} 0.153 \\ 0.153$	In	55 (17 (38 (
Out 8229 (99.3 99.1 99.4 99.8 99.1 99.4 99.9 10		0.664	0.899	0.594		
99.3 99.1 99.4 %) %) %) tc_R03Eher systemic drugs for obstructive airway diseases Pearson's Chi-squared test 0.153 with Yates' continuity correction			%)			
%) %) %) tc_R09ther systemic drugs for Pearson's Chi-squared test 0.153 obstructive airway diseases with Yates' continuity correction	Out	8229 (1875 (
tc_R03Eher systemic drugs for Pearson's Chi-squared test 0.153 obstructive airway diseases with Yates' continuity correction						
obstructive airway diseases with Yates' continuity correction		%)	%)	%)		
correction	atc_R@her systemic drugs for					0.153
	obstructive airway diseases					
					correction	
· · · · · · · · · · · · · · · · · · ·	In	,		`		
$0.688 \qquad 0.423 \qquad 0.767$						
%) %) %)	_					
	Out					
99.3 99.6 99.2						
%) %)		%)	%)	%)		

Variablasm	Effectif.glo H ypo		Non.Hyp&est		p.value
atc_G@Gher gynecologicals				Pearson's Chi-squared test with Yates' continuity correction	0.00103
In	42 (0.507 %)	19 (1 %)	23 (0.36 %)		
Out	8242 (99.5 %)	1873 (99 %)	6369 (99.6 %)		
atc_C0 \% E inhibitors, plain	,0)		70)	Pearson's Chi-squared test with Yates' continuity correction	0.0588
In	480 (5.79 %)	127 (6.71 %)	353 (5.52 %)		
Out	7804 (94.2 %)	1765 (93.3 %)	6039 (94.5 %)		
atc_C1013id modifying agents, combinations				Pearson's Chi-squared test with Yates' continuity correction	0.169
In	97 (1.17 %)	16 (0.846 %)	81 (1.27 %)		
Out	8187 (98.8 %)	1876 (99.2 %)	6311 (98.7 %)		
atc_A 66 Aigs for constipation				Pearson's Chi-squared test with Yates' continuity correction	0.221
In	146 (1.76 %)	40 (2.11 %)	106 (1.66 %)		
Out	8138 (98.2 %)	1852 (97.9 %)	6286 (98.3 %)		
atc_R D Acongestants and other nasal preparations for topical use	,	,	,	Pearson's Chi-squared test with Yates' continuity correction	0.22
In	94 (1.13 %)	16 (0.846 %)	78 (1.22 %)		
Out	8190 (98.9 %)	1876 (99.2 %)	6314 (98.8 %)		
atc_C03Dective calcium channel blockers with direct cardiac effects	,	,	,	Pearson's Chi-squared test with Yates' continuity correction	0.241
In	143 (1.73 %)	39 (2.06 %)	104 (1.63 %)		

Variablesm	Effectif.gloHyppo		Non.Hyp&est		p.value
Out	8141 (98.3 %)	1853 (97.9 %)	6288 (98.4 %)		0.63
atc_N@Aioids				Pearson's Chi-squared test with Yates' continuity correction	6.69e- 05
In	695 (8.39 %)	116 (6.13 %)	579 (9.06 %)		
Out	7589 (91.6 %)	1776 (93.9 %)	5813 (90.9 %)		
atc_J0 \mathbf{M} acrolides, lincosamides and streptogramins	70)	70)	70)	Pearson's Chi-squared test with Yates' continuity correction	0.0682
In	56 (0.676 %)	19 (1 %)	37 (0.579 %)		
Out	8228 (99.3 %)	1873 (99 %)	6355 (99.4 %)		
atc_C Ω Ener cardiac preparations	,		,	Fisher's Exact Test for Count Data	0.195
In	21 (0.254 %)	2 (0.106 %)	19 (0.297 %)		
Out	8263 (99.7 %)	1890 (99.9 %)	6373 (99.7 %)		
atc_C \26 tiadrenergic agents, peripherally acting				Pearson's Chi-squared test with Yates' continuity correction	0.0739
In	97 (1.17 %)	30 (1.59 %)	67 (1.05 %)		
Out	8187 (98.8 %)	1862 (98.4 %)	6325 (99 %)		
atc_C056pillary stabilising agents				Pearson's Chi-squared test with Yates' continuity correction	0.126
In	27 (0.326 %)	10 (0.529 %)	17 (0.266 %)		
Out	8257 (99.7 %)	1882 (99.5 %)	6375 (99.7 %)		
atc_R06Atihistamines for systemic use	,	,	,	Pearson's Chi-squared test with Yates' continuity correction	0.18

Variabl es m	Effectif.	glo lly po	Non.Hy	rpæst	p.value
In	326 (3.94 %)	64 (3.38 %)	262 (4.1 %)		
Out	7958 (96.1 %)	1828 (96.6 %)	6130 (95.9 %)		
atc_A 12a1cium	,	,	,	Pearson's Chi-squared test with Yates' continuity correction	0.00756
In	145 (1.75 %)	47 (2.48 %)	98 (1.53 %)		
Out	8139 (98.2 %)	1845 (97.5 %)	6294 (98.5 %)		
atc_G(B)Dgestogens	,	,	,	Pearson's Chi-squared test with Yates' continuity correction	0.169
In	107 (1.29 %)	18 (0.951 %)	89 (1.39 %)		
Out	8177 (98.7 %)	1874 (99 %)	6303 (98.6 %)		
atc_N (1246 paminergic agents				Pearson's Chi-squared test with Yates' continuity correction	0.0242
In	78 (0.942 %)	9 (0.476 %)	69 (1.08 %)		
Out	8206 (99.1 %)	1883 (99.5 %)	6323 (98.9 %)		
atc_NDBigs used in addictive disorders In	41 (3 (38 (Fisher's Exact Test for Count Data	0.0145
Out	0.495 %) 8243 (0.159 %) 1889 (0.594 %) 6354 (
atc_ACBAugs for functional	99.5 %)	99.8 %)	99.4 %)	Pearson's Chi-squared test	0.0971
gastrointestinal disorders	100 /	90 (00./	with Yates' continuity correction	0.0371
In	122 (1.47 %)	36 (1.9 %)	86 (1.35 %)		
Out	8162 (98.5 %)	1856 (98.1 %)	6306 (98.7 %)		
atc_L0A1kylating agents	,	,	,	Fisher's Exact Test for Count Data	0.137

Variablesm	Effectif.	glo lly po	Non.Hy	pæst	p.value
In Out	6 (0.0724 %) 8278 (99.9	3 (0.159 %) 1889 (99.8	3 (0.0469 %) 6389 (100		
atc_N0 26 timigraine preparations	%)	%)	%)	Pearson's Chi-squared test with Yates' continuity correction	0.193
In	39 (0.471	5 (0.264	34 (0.532		
Out	%) 8245 (99.5 %)	%) 1887 (99.7 %)	%) 6358 (99.5 %)		
atc_A0 Th tipropulsives		,	,	Pearson's Chi-squared test with Yates' continuity correction	0.0582
In	31 (0.374 %)	12 (0.634 %)	19 (0.297 %)		
Out	8253 (99.6 %)	1880 (99.4 %)	6373 (99.7 %)		
atc_ROESpectorants, excluding combinations with cough suppressants				Fisher's Exact Test for Count Data	0.128
In	9 (0.109 %)	4 (0.211 %)	5 (0.0782 %)		
Out	8275 (99.9 %)	1888 (99.8 %)	6387 (99.9 %)		
atc_COPAripheral vasodilators	,	,	,	Pearson's Chi-squared test with Yates' continuity correction	0.0539
In	21 (0.254 %)	9 (0.476 %)	12 (0.188 %)		
Out	8263 (99.7 %)	1883 (99.5 %)	6380 (99.8 %)		
atc_SOABti-inflammatory agents	,	,	,	Fisher's Exact Test for Count Data	0.2
In	7 (0.0845 %)	3 (0.159 %)	4 (0.0626 %)		
Out	8277 (99.9 %)	1889 (99.8 %)	6388 (99.9 %)		
atc_H0\$\varBtithyroid preparations	, v ,	, o j	, v <i>j</i>	Fisher's Exact Test for Count Data	0.0639

Variablesm	Effectif.	glo lly po	Non.Hy	rpæst	p.value
In Out	21 (0.254 %) 8263 (99.7 %)	1 (0.0529 %) 1891 (99.9	20 (0.313 %) 6372 (99.7 %)		
atc_D140 Bti-acne preparations for systemic use	<i>7</i> 0)	%)	70)	Fisher's Exact Test for Count Data	0.226
In Out	4 (0.0483 %) 8280 (2 (0.106 %) 1890 (2 (0.0313 %) 6390 (
	100 %)	99.9 %)	100 %)		
atc_A IBoAnics	9. (9. (1 /	Fisher's Exact Test for Count Data	0.133
In Out	3 (0.0362 %) 8281 (2 (0.106 %) 1890 (1 (0.0156 %) 6391 (
atc_N068ychostimulants, agents used	100 %)	99.9 %)	100 %)	Fisher's Exact Test for	0.128
for ADHD and nootropics In	9 (0.109	4 (0.211	5 (0.0782	Count Data	
Out	%) 8275 (99.9 %)	%) 1888 (99.8 %)	%) 6387 (99.9 %)		
atc_L0 $\!$ EArmones and related agents	, ,	,	,	Fisher's Exact Test for Count Data	0.14
In	24 (0.29 %)	2 (0.106 %)	22 (0.344 %)		
Out	8260 (99.7 %)	1890 (99.9 %)	6370 (99.7 %)		
atc_COMents for treatment of hemorrhoids and anal fissures for topical use				Fisher's Exact Test for Count Data	0.228
In	1 (0.0121 %)	1 (0.0529 %)	0 (0 %)		
Out	8283 (100 %)	1891 (99.9 %)	6392 (100 %)		
atc_G0%Htiandrogens		,	,	Fisher's Exact Test for Count Data	0.0031
In	33 (0.398 %)	1 (0.0529 %)	32 (0.501 %)		

Variablesm	Effectif.	glo Hy opo	Non.Hy	pæst	p.value
Out	8251 (99.6 %)	1891 (99.9 %)	6360 (99.5 %)		
atc_J0AGninoglycoside antibacterials	,	,	,	Fisher's Exact Test for Count Data	0.228
In	1 (0.0121 %)	1 (0.0529 %)	0 (0 %)		
Out	8283 (100 %)	1891 (99.9 %)	6392 (100 %)		
atc_C02Deriolar smooth muscle, agents acting on		,	,	Fisher's Exact Test for Count Data	0.226
In Out	4 (0.0483 %) 8280 (100 %)	2 (0.106 %) 1890 (99.9	2 (0.0313 %) 6390 (100		
atc_B0 vB amin K and other hemostatics	100 /0)	%)	%)	Fisher's Exact Test for Count Data	0.0521
In	2 (0.0241 %)	2 (0.106 %)	0 (0 %)	Count Dava	
Out	8282 (100 %)	1890 (99.9 %)	6392 (100 %)		
atc_LOPGant alkaloids and other natural products		,	,	Fisher's Exact Test for Count Data	0.0395
In	4 (0.0483 %)	3 (0.159 %)	1 (0.0156 %)		
Out	8280 (100 %)	1889 (99.8 %)	6391 (100 %)		
atc_S0 O cular vascular disorder agents		,	,	Fisher's Exact Test for Count Data	0.228
In	1 (0.0121 %)	1 (0.0529 %)	0 (0 %)		
Out	8283 (100 %)	1891 (99.9 %)	6392 (100 %)		
atc_D0&Atibiotics for topical use		70)	70)	Fisher's Exact Test for Count Data	0.228
In	1 (0.0121 %)	1 (0.0529 %)	0 (0 %)	250110 250000	
Out	8283 (100 %)	1891 (99.9 %)	6392 (100 %)		

Variablasm	Effectif.glo#Hyrbo		Non.Hy	Non.HypTest	
atc_P0A@ents against leishmaniasis and trypanosomiasis				Fisher's Exact Test for Count Data	0.228
In	1 (0.0121 %)	1 (0.0529 %)	0 (0 %)		
Out	8283 (100 %)	1891 (99.9 %)	6392 (100 %)		
atc_H0\f26tiadrenal preparations		70)	70)	Fisher's Exact Test for Count Data	0.00256
In	8 (0.0966	6 (0.317	2 (0.0313		
Out	%) 8276 (99.9 %)	%) 1886 (99.7 %)	%) 6390 (100 %)		
atc_G@Antraceptives for topical use	70)	70)	70)	Fisher's Exact Test for Count Data	0.228
In	1 (0.0121 %)	1 (0.0529 %)	0 (0 %)		
Out	8283 (100 %)	1891 (99.9	6392 (100		
atc_V0AHergens		%)	%)	Fisher's Exact Test for Count Data	0.228
In	1 (0.0121 %)	1 (0.0529 %)	0 (0 %)		
Out	8283 (100 %)	1891 (99.9	6392 (100		
atc_CCBD a blocking agents, thiazides and other diuretics		%)	%)	Fisher's Exact Test for Count Data	0.228
In	1 (0.0121	1 (0.0529	0 (0 %)		
Out	%) 8283 (100 %)	%) 1891 (99.9 %)	6392 (100 %)		

Détails des atc non influents et influents :

K) Antécédents:

Tableau Ant

Classes ant selon leur influence :

Classes event une influence	Classes n'avent pas d'influence
Classes ayant une influence	Classes n'ayant pas d'influence
13	18
ant_ascite	$ant_alcoolisme$
ant_asthme	ant_avcait
ant_bpco	$ant_neoplasie$
ant_depression	ant_card_ische
ant_epilepsie	ant_syst ème
ant_ins_renale	ant_vih
$ant_diabete_insdep$	$\operatorname{ant_doul_chronique}$
ant_diabete	$ant_dyslipidemie$
ant_pacemaker	$ant_emphyseme$
$ant_pathohepatique$	$ant_fibrosepulm$
ant_sasnonapp	ant_hta
ant_saos	ant_htap
ant_tabagisme	ant_hypothyroidie
	$ant_ins_cardiaque$
	ant_ronfleur
	ant_sasapp
	$ant_sclerose$
	$ant_valvulopathie$

Détails des ant influents sur tp_cat :

Variables	Effectif.glob	allypo	Non.Hypo	Test	p.value
	8284	1892	6392		_
ant_ascite	,	,	,	Fisher's Exact Test for Count Data	0.226
In	4 (0.0483	2 (0.106	2 (
	%)	%)	0.0313		
Out	8280 (100	1890 (%) 6390 (
Jut	%)	99.9 %)	100 %)		
ant_asthme	70)	33.3 70)	100 70)	Pearson's Chi-squared test with Yates'	0.0238
· · · · · · · · · · · · · · · · · · ·				continuity correction	
In	408 (4.93)	74 (3.91)	334 (
	%)	%)	5.23 %)		
Out	7876 (1818 (6058 (
. 1	95.1 %)	96.1 %)	94.8 %)		0.140
ant_bpco				Pearson's Chi-squared test with Yates'	0.142
In	157 (1.9	44 (2.33	113 (continuity correction	
.11	%)	%)	1.77 %)		
Out	8127 (1848 (6279 (
	98.1 %)	97.7 %)	98.2 %)		
$ant_depression$	n			Pearson's Chi-squared test with Yates'	0.166
_	(- 04)	/	/	continuity correction	
In	166 (2 %)	30 (1.59	136 (
Ont	0110 / 00	%)	2.13 %)		
Out	8118 (98 %)	1862 (98.4 %)	6256 (97.9 %)		
ant_epilepsie	70)	30.4 70)	31.3 70)	Pearson's Chi-squared test with Yates'	0.0501
				continuity correction	0.000
In	83 (1 %)	11 (72 (1.13	·	
		0.581 %)	%)		
Out	8201 (99	1881 (6320 (
, .	%)	99.4 %)	98.9 %)	D 1 Cl: 14 4 11 W 1	0.0076
ant_ins_rena	le			Pearson's Chi-squared test with Yates' continuity correction	0.0876
[n	227 (2.74	63 (3.33	164 (continuity correction	
ш	%)	%)	2.57 %)		
Out	8057 (1829 (6228 (
	97.3 %)	$96.7\ \%)$	97.4 %)		
$ant_diabete_$	insdep	,	,	Pearson's Chi-squared test with Yates'	0.0236
_			/	continuity correction	
In	256 (3.09	43 (2.27	213 (
Ont	%)	%) 1849 (3.33 %)		
Out	8028 (96.9 %)	97.7 %)	$6179 \ (96.7 \ \%)$		
ant diabete	90.9 70)	91.1 70)	90.1 70)	Pearson's Chi-squared test with Yates'	0.00186
				continuity correction	0.00100
${ m In}$	616 (7.44	109 (507 (v	
	%)	5.76 %)	$7.93\ \%)$		
Out	7668 (1783 (5885 (
	92.6%)	94.2 %)	92.1 %)		

Variables	Effectif.glob	oalHypo	Non.Hypo	Test	p.value
ant_pacema	ıker			Pearson's Chi-squared test with Yates' continuity correction	0.171
In	56 (0.676 %)	8 (0.423 %)	48 (0.751 %)	·	
Out	8228 (99.3 %)	1884 (99.6 %)	6344 (99.2 %)		
ant_pathohepatique			,	Pearson's Chi-squared test with Yates' continuity correction	0.13
In	86 (1.04 %)	26 (1.37 %)	60 (0.939 %)	·	
Out	8198 (99 %)	1866 (98.6 %)	6332 (99.1 %)		
ant_sasnona	app	,	,	Pearson's Chi-squared test with Yates' continuity correction	0.125
In	52 (0.628 %)	17 (0.899 %)	35 (0.548 %)		
Out	8232 (99.4 %)	1875 (99.1 %)	6357 (99.5 %)		
ant_saos	,	,	ŕ	Pearson's Chi-squared test with Yates' continuity correction	0.174
In	334 (4.03 %)	87 (4.6 %)	247 (3.86 %)		
Out	7950 (96 %)	1805 (95.4 %)	6145 (96.1 %)		
ant_tabagis	me	,	,	Pearson's Chi-squared test with Yates' continuity correction	0.225
In	861 (10.4 %)	182 (9.62 %)	679 (10.6 %)	v	
Out	7423 (89.6 %)	1710 (90.4 %)	5713 (89.4 %)		

Détails des ant non influents et influents :

L) GHM à 2 digits:

Tableau GHM à 2 digits :

Classes GHM à 2 digits selon leur influence sur tp_cat :

Nombre de groupes : 8
09
02
05
16
18
23
27
21

Détails des GHM à 2 digits influents sur tp_cat :

Variables	Effectif.global	Нуро	Non.Hypo	Test
	7867	1805	6062	
01				Pearson's Chi-squared test with Yates' continuity correction
In	621~(~7.89~%)	93~(~5.15~%)	528 (8.71 %)	_
Out	7246 (92.1 %)	1712 (94.8 %)	5534 (91.3 %)	
08	,	,		Pearson's Chi-squared test with Yates' continuity correction
In	916~(~11.6~%)	152~(~8.42~%)	764~(~12.6~%)	
Out	6951~(~88.4~%)	1653~(~91.6~%)	5298 (87.4 %)	
10				Pearson's Chi-squared test with Yates' continuity correction
In	634 (8.06 %)	183 (10.1 %)	451 (7.44 %)	
Out	7233 (91.9 %)	1622 (89.9 %)	5611 (92.6 %)	
17	00 / 1 0 : 20	10 / 0 000 00	BO / 4 - 2 ~ ~ ~	Pearson's Chi-squared test with Yates' continuity correction
In	82 (1.04 %)	12 (0.665 %)	70 (1.15 %)	
Out	7785 (99 %)	1793 (99.3 %)	5992 (98.8 %)	D COLUMN TO THE
11	640 (0.04 04)	179 (050 %)	455 (5 O 4 O 4)	Pearson's Chi-squared test with Yates' continuity correction
In	648 (8.24 %)	173 (9.58 %)	475 (7.84 %)	
Out	7219 (91.8 %)	1632 (90.4 %)	5587 (92.2 %)	Deargon's Chi squared test with V-1-2
03 In	457 (5.81 %)	64 (3.55 %)	303 (6 10 01)	Pearson's Chi-squared test with Yates' continuity correction
In Out	457 (5.81 %) 7410 (94.2 %)	1741 (96.5 %)	393 (6.48 %)	
06	1410 (94.2 70)	1141 (90.0 70)	5669 (93.5 %)	Pearson's Chi-squared test with Yates' continuity correction
In	978 (12.4 %)	187 (10.4 %)	791 (13 %)	1 carbon 5 cm-squared test with rates continuity correction
Out	6889 (87.6 %)	1618 (89.6 %)	5271 (87 %)	
04	0000 (01.0 /0)	1010 (00.0 /0)	0211 (01 70)	Pearson's Chi-squared test with Yates' continuity correction
In	834 (10.6 %)	228 (12.6 %)	606 (10 %)	The state of the s
Out	7033 (89.4 %)	1577 (87.4 %)	5456 (90 %)	
07	(- 3 - 7 0)	(- · · - / · /)	(- 0 , 0)	Pearson's Chi-squared test with Yates' continuity correction
In	438 (5.57 %)	144 (7.98 %)	294 (4.85 %)	
Out	7429 (94.4 %)	1661 (92 %)	5768 (95.2 %)	
13	` ' ' '	-/	· · · · /	Pearson's Chi-squared test with Yates' continuity correction
In	973~(~12.4~%)	268 (14.8 %)	705~(~11.6~%)	
Out	6894 (87.6 %)	1537~(~85.2~%)	5357 (88.4 %)	
12	•	•	,	Pearson's Chi-squared test with Yates' continuity correction
In	632~(~8.03~%)	171~(~9.47~%)	461~(~7.6~%)	
Out	7235 (92 %)	1634~(~90.5~%)	5601 (92.4 %)	
19				Pearson's Chi-squared test with Yates' continuity correction
In	,	14 (0.776 %)	101 (1.67 %)	
Out	7752 (98.5 %)	1791 (99.2 %)	5961 (98.3 %)	
25		2 / 2 2	2 / 2::	Fisher's Exact Test for Count Data
In	4 (0.0508 %)	2 (0.111 %)	2 (0.033 %)	
Out	7863 (99.9%)	1803 (99.9 %)	6060 (100 %)	
14	1 / 0 0 = 0 = 0 = 0 =	0 (0 : : : 2:	0 (0 000 000	Fisher's Exact Test for Count Data
In	4 (0.0508 %)	2 (0.111 %)	2 (0.033 %)	
Out	7863 (99.9%)	1803~(~99.9~%)	6060 (100 %)	

Détails des GHM à 2 digits non influents et influents :

M) GHM à 3 digits:

Tableau GHM à 3 digits :

Classes GHM à 3 digits selon leur influence sur tp_cat :

Classes ayant une influence	Classes n'ayant pas d'influence
Nombre de groupes : 15	Nombre de groupes : 19
01C	09C
08C	09M
10C	01M
17C	02C
11C	05C
03C	06M
06C	16C
05K	05M
04C	18C
07C	16M
13C	03K
12C	03M
19C	08M
25C	11M
14C	23C
	27C
	21C
	04M
	02M

Détails des GHM à 3 digits influents :

Variables	Effectif.global	Нуро	Non.Hypo	Test
-	7867	1805	6062	
01C				Pearson's Chi-squared test with Yates' continuity correction
In	619 (7.87 %)	93 (5.15 %)	526 (8.68 %)	-
Out	7248 (92.1 %)	1712 (94.8 %)	5536 (91.3 %)	
08C				Pearson's Chi-squared test with Yates' continuity correction
In	914 (11.6 %)	151~(~8.37~%)	$763 \ (12.6 \%)$	
Out	6953~(~88.4~%)	1654 (91.6 %)	5299 (87.4 %)	
10C				Pearson's Chi-squared test with Yates' continuity correction
In	634 (8.06 %)	183 (10.1 %)	451 (7.44 %)	
Out	7233 (91.9 %)	$1622 \ (89.9 \ \%)$	5611 (92.6 %)	
17C	00 (1010)	10 (0 00 (4)	- 0 (4.4 - 04)	Pearson's Chi-squared test with Yates' continuity correction
In	82 (1.04 %)	12 (0.665 %)	70 (1.15 %)	
Out	7785 (99 %)	1793 (99.3 %)	5992 (98.8 %)	D 1 Cl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11C In	644 (9 10 %)	173 (9.58 %)	471 (777 07)	Pearson's Chi-squared test with Yates' continuity correction
Out	644 (8.19 %) 7223 (91.8 %)	1632 (90.4 %)	471 (7.77 %) 5591 (92.2 %)	
03C	1223 (91.0 /0)	1032 (90.4 70)	5591 (92.2 70)	Pearson's Chi-squared test with Yates' continuity correction
In	450 (5.72 %)	64 (3.55 %)	386 (6.37 %)	1 earson's Chi-squared test with Tates continuity correction
Out	7417 (94.3 %)	1741 (96.5 %)	5676 (93.6 %)	
06C	(01.9 /0)	1111 (30.5 70)	3010 (30.0 70)	Pearson's Chi-squared test with Yates' continuity correction
In	977 (12.4 %)	187 (10.4 %)	790 (13 %)	1 conson s can squared vest with 1 aves continuity correction
Out	6890 (87.6 %)	1618 (89.6 %)	5272 (87 %)	
05K	(/ • /	- (, •)	(- , , ,)	Pearson's Chi-squared test with Yates' continuity correction
In	43 (0.547 %)	6 (0.332 %)	37 (0.61 %)	•
Out	7824 (99.5 %)	1799 (99.7 %)	6025 (99.4 %)	
04C				Pearson's Chi-squared test with Yates' continuity correction
In	$833 \ (10.6 \%)$	$228 \ (12.6 \%)$	605~(~9.98~%)	
Out	7034 (89.4%)	1577 (87.4 %)	5457 (90 %)	
07C				Pearson's Chi-squared test with Yates' continuity correction
In	438 (5.57 %)	144 (7.98 %)	294 (4.85 %)	
Out	7429 (94.4 %)	1661 (92 %)	5768 (95.2 %)	
13C	059 (10 4 (4)	200 (110 (4)	TOF (11 0 M)	Pearson's Chi-squared test with Yates' continuity correction
In	973 (12.4 %)	268 (14.8 %)	705 (11.6 %)	
Out	6894 (87.6 %)	1537 (85.2 %)	5357 (88.4 %)	D
12C	622 (2 02 07)	171 (0.47 %)	461 (7.6 %)	Pearson's Chi-squared test with Yates' continuity correction
$_{ m Out}$	632 (8.03 %) 7235 (92 %)	1634 (90.5 %)	5601 (92.4 %)	
19C	1233 (92 70)	1034 (90.5 70)	5001 (92.4 70)	Pearson's Chi-squared test with Yates' continuity correction
In	115 (1.46 %)	14 (0.776 %)	101 (1.67 %)	rearson's om-squared test with rates continuity correction
Out	7752 (98.5 %)	1791 (99.2 %)	5961 (98.3 %)	
25C	. 102 (00.0 70)	1.01 (00.2 /0)	3001 (00.0 70)	Fisher's Exact Test for Count Data
In	4 (0.0508 %)	2 (0.111 %)	2 (0.033 %)	
Out	7863 (99.9 %)	1803 (99.9 %)	6060 (100 %)	
14C	(33.3 ,0)	((, 0)	Fisher's Exact Test for Count Data
In	4 (0.0508 %)	2 (0.111 %)	2 (0.033 %)	
Out	7863 (99.9 %)	1803 (99.9 %)	6060 (100 %)	

Détails des GHM à 3 digits non influents et influents :

IV. Analyses Multivariées

Avant:

On considère uniquement les patients en chirurgie (comme précédemment).

A) 1ere analyse multivariée - Age, poids, taille et asa:

```
##
## Call:
## lm(formula = data$tp_val ~ data$pat_age + data$pat_poids + data$pat_taille +
       data$ASA.0 + data$ASA.1 + data$ASA.2 + data$ASA.3 + data$ASA.4)
##
## Residuals:
##
      Min
                               30
               1Q Median
                                      Max
## -35.977 -0.309
                    0.068
                            0.452
                                     1.307
##
## Coefficients: (1 not defined because of singularities)
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  36.346986
                              0.516626 70.354 < 2e-16 ***
                              0.001139 -2.743 0.00609 **
## data$pat_age
                   -0.003124
## data$pat_poids
                   0.003507
                              0.001319
                                         2.659
                                                0.00785 **
## data$pat_taille -0.000459
                              0.002117 -0.217
                                                0.82833
                  -0.146773
## data$ASA.0
                              0.483814 -0.303
                                                0.76162
## data$ASA.1
                  -0.006160
                              0.392218 -0.016
                                                0.98747
                  -0.001537
## data$ASA.2
                              0.390676 -0.004
                                                0.99686
                  -0.015136
                              0.392360
                                        -0.039
                                                0.96923
## data$ASA.3
## data$ASA.4
                         NA
                                    NΑ
                                            NA
                                                     NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.459 on 7859 degrees of freedom
## Multiple R-squared: 0.002458,
                                   Adjusted R-squared:
## F-statistic: 2.767 on 7 and 7859 DF, p-value: 0.007156
Après:
##
## Call:
## lm(formula = data$tp_val ~ data$pat_age + data$pat_poids)
## Residuals:
##
      Min
               10 Median
                               30
                                      Max
## -35.976 -0.309
                    0.068
                            0.454
                                     1.300
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 36.274777
                             0.102345 354.438
                                                <2e-16 ***
## data$pat_age
                 -0.003112
                             0.001016 -3.063
                                                0.0022 **
## data$pat_poids 0.003354
                             0.001109
                                        3.025
                                                0.0025 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

##

Residual standard error: 1.459 on 7864 degrees of freedom
Multiple R-squared: 0.002409, Adjusted R-squared: 0.002156
F-statistic: 9.496 on 2 and 7864 DF, p-value: 7.599e-05

B) 2e analyse multivariée - ATC :

Avant:

```
##
## Call:
  lm(formula = data$tp val ~ data$atc CO9C + data$atc CO7A + data$atc CO8C +
       data$atc_C10A + data$atc_A10B + data$atc_A11C + data$atc_N03A +
##
       data$atc_H03A + data$atc_N06A + data$atc_C02A + data$atc_G02C +
##
       data$atc_C09A + data$atc_C10B + data$atc_A06A + data$atc_R01A +
##
       data$atc_CO8D + data$atc_NO2A + data$atc_GO4C + data$atc_JO1F +
##
       data$atc_C01E + data$atc_C02C + data$atc_C05C + data$atc_A12A +
##
       data$atc_GO3D + data$atc_NO4B + data$atc_NO7B + data$atc_AO3A +
##
       data$atc_CO3B + data$atc_LO1A + data$atc_NO2C + data$atc_AO7D +
##
       data$atc_R05C + data$atc_C04A + data$atc_H03B + data$atc_D10B +
##
       data$atc_A13A + data$atc_N06B + data$atc_L02A + data$atc_G03H +
##
       data$atc_J01G + data$atc_C02D + data$atc_B02B + data$atc_G03A +
##
       data$atc_L01C + data$atc_S01L + data$atc_D06A + data$atc_P01C +
       data$atc HO2C + data$atc GO2B + data$atc VO1A + data$atc CO7D)
##
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
   -35.971
           -0.324
                     0.074
                              0.452
                                      1.919
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
                              0.025101 1447.654
## (Intercept)
                 36.337957
                                                   <2e-16 ***
## data$atc_C09C -0.080410
                              0.041874
                                         -1.920
                                                   0.0549
## data$atc_CO7A -0.010885
                                         -0.351
                                                   0.7256
                              0.031008
## data$atc_CO8C -0.022135
                              0.034436
                                         -0.643
                                                   0.5204
## data$atc_C10A -0.014647
                                         -0.557
                              0.026273
                                                   0.5772
## data$atc_A10B
                  0.036034
                              0.021933
                                          1.643
                                                   0.1005
## data$atc_A11C
                  0.004812
                              0.069507
                                          0.069
                                                   0.9448
## data$atc_NO3A
                                          1.454
                  0.053315
                              0.036676
                                                   0.1461
## data$atc_H03A -0.006964
                              0.032627
                                         -0.213
                                                   0.8310
## data$atc NO6A
                  0.015163
                              0.033863
                                          0.448
                                                   0.6543
## data$atc_CO2A -0.035212
                                         -0.277
                              0.127284
                                                   0.7821
## data$atc_G02C -0.185833
                              0.200370
                                         -0.927
                                                   0.3537
## data$atc_C09A -0.072643
                              0.045564
                                         -1.594
                                                   0.1109
## data$atc_C10B
                  0.090930
                                          0.906
                              0.100325
                                                   0.3648
## data$atc_A06A -0.038318
                              0.086520
                                         -0.443
                                                   0.6579
## data$atc_R01A
                                          0.538
                                                   0.5906
                  0.065667
                              0.122073
## data$atc_CO8D
                  0.037506
                              0.074665
                                          0.502
                                                   0.6155
## data$atc_NO2A
                  0.041075
                              0.032399
                                          1.268
                                                   0.2049
## data$atc_G04C
                  0.028262
                              0.040646
                                          0.695
                                                   0.4869
## data$atc_J01F
                  0.035866
                              0.096253
                                          0.373
                                                   0.7094
## data$atc_C01E
                  0.269638
                                          1.156
                                                   0.2478
                              0.233295
## data$atc_C02C
                  0.044767
                              0.081113
                                          0.552
                                                   0.5810
## data$atc C05C -0.124369
                                         -0.578
                              0.215210
                                                   0.5634
## data$atc_A12A
                  0.025189
                              0.071439
                                          0.353
                                                   0.7244
                                          0.587
## data$atc_GO3D
                  0.059392
                              0.101197
                                                   0.5573
## data$atc_NO4B
                  0.055466
                                          1.190
                                                   0.2343
                              0.046629
## data$atc NO7B
                  0.056512
                              0.134591
                                          0.420
                                                   0.6746
## data$atc_A03A -0.002834
                                         -0.031
                                                   0.9753
                              0.091410
```

```
## data$atc_CO3B -0.382862
                                        -2.295
                                                 0.0218 *
                             0.166857
## data$atc_L01A 0.299285
                                         0.616
                                                 0.5378
                             0.485735
## data$atc NO2C 0.065216
                             0.137564
                                         0.474
                                                 0.6355
## data$atc_A07D 0.060464
                                         0.338
                             0.178869
                                                 0.7353
## data$atc_R05C -0.073828
                             0.383806
                                        -0.192
                                                 0.8475
## data$atc CO4A -0.026077
                                        -0.207
                             0.125776
                                                 0.8358
## data$atc H03B 0.286721
                             0.324291
                                        0.884
                                                 0.3767
## data$atc_D10B -0.084445
                             0.339583
                                        -0.249
                                                 0.8036
## data$atc_A13A -0.344762
                             0.862342
                                        -0.400
                                                 0.6893
## data$atc_N06B -0.070748
                             0.341278
                                        -0.207
                                                 0.8358
## data$atc_L02A 0.097026
                             0.251290
                                        0.386
                                                 0.6994
## data$atc_GO3H 0.341284
                             0.221462
                                         1.541
                                                 0.1234
## data$atc_J01G -0.877883
                                        -0.564
                             1.556783
                                                 0.5728
                             0.292484
                                        -0.060
                                                 0.9523
## data$atc_CO2D -0.017499
                                        -0.385
## data$atc_B02B -0.190230
                             0.494489
                                                 0.7005
## data$atc_GO3A 0.125152
                             0.190550
                                         0.657
                                                 0.5113
## data$atc_L01C -0.730497
                                        -0.923
                                                 0.3562
                             0.791690
## data$atc S01L -0.726342
                                        -0.490
                                                 0.6240
                             1.481601
## data$atc_D06A -0.446243
                                        -0.301
                                                 0.7633
                             1.481590
## data$atc_P01C -0.816520
                             1.480037
                                        -0.552
                                                 0.5812
## data$atc_H02C -0.350328
                             0.448278
                                        -0.781
                                                 0.4345
                                        -0.237
## data$atc_G02B -0.351119
                             1.479872
                                                 0.8125
## data$atc_V01A -0.378548
                                        -0.255
                                                 0.7985
                             1.482964
## data$atc_CO7D -0.339425
                             1.483250
                                        -0.229
                                                 0.8190
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.48 on 5822 degrees of freedom
     (1993 observations deleted due to missingness)
## Multiple R-squared: 0.006424,
                                    Adjusted R-squared: -0.00228
## F-statistic: 0.7381 on 51 and 5822 DF, p-value: 0.9174
Après :
##
## Call:
## lm(formula = data$tp_val ~ data$atc_CO9C + data$atc_A10B + data$atc_NO3A +
       data$atc_CO9A + data$atc_CO3B + data$atc_GO3H)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -35.949 -0.337
                     0.064
                             0.450
                                     1.853
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 36.34637
                             0.02149 1690.952
                                                <2e-16 ***
## data$atc_C09C -0.08855
                                       -2.267
                             0.03907
                                                0.0234 *
## data$atc_A10B 0.03751
                             0.02018
                                        1.859
                                                0.0631 .
## data$atc_NO3A 0.06706
                             0.03471
                                        1.932
                                                0.0534 .
## data$atc_C09A -0.07588
                             0.04279
                                       -1.773
                                                0.0763 .
## data$atc_CO3B -0.39595
                                       -2.390
                             0.16569
                                                0.0169 *
## data$atc_GO3H 0.34345
                             0.22063
                                        1.557
                                                0.1196
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 1.476 on 5867 degrees of freedom
## (1993 observations deleted due to missingness)
## Multiple R-squared: 0.003845, Adjusted R-squared: 0.002826
## F-statistic: 3.774 on 6 and 5867 DF, p-value: 0.0009378
```