STPSpanning Tree Protocol

- STP is used to reduce the effect of the broadcast frames in LAN networks.
 - Block some ports on switches to prevent the broadcast frames to move in two opposite directions
 - Make the propagation of the broadcast frame in one way only and prevent it in the reverse way.

Example:

- Assume three switches in a LAN network are connected in triangular form as shown:
- The costs of the links between switches are shown in the figure.

	MAC addresses	
SW1	OOff:ffff:ffff	
SW2	OOOf:ffff:ffff	
SW3	Offf:ffff:ffff	

Note:

- If no STP protocol is applied to this network,
 - The broadcast frame will propagat in clockwise and anticlockwise (2 opposite directions)
 - Which causes bad performance of the network due to the broadcast storm,

In the STP protocol we must assign the following

Root switch	The switch which control how the STP operates.		
	It is elected as the lowest MAC address.		
	- root switch will be SW2 (from the table).		
	- As SW2 is the root switch so its ports must be always open (forward)		
	- P1/SW2 and P2/SW2		
Root ports	The root ports are the facing port to the root switches on the other Switches		
•	- P1/SW3 and P2/SW1 ports must be always open (forward)		
Designated	The designated port is an open (forward) port but not directly connected to the root switch.		
Blocking port	- We still have two ports not assigned if forward (open) or blocked (closed).		
	- These two ports are: P1/SW1 and P2/SW3.		
	To choose the designated port		
	1. We take the port who has the less costs to the root switch SW2.		
	- In this case the costs are equal 4+5 = 9		
	2. Assign the port on the less MAC address between the switches on the link(SW1,SW3).		
	- MAC address of SW1 < MAC address of SW3		
	- The port on SW1 (P1/SW1) will be the designated port and P2/SW3 is the blocked port.		

• We can brief the functions of the port in STP in the following table

P1/SW1	Designated port	forward
P2/SW1	root port	forward
P1/SW2	port on root switch	forward
P2/SW2	port on root switch	forward
P1/SW3	root port	forward
P2/SW3	Blocking port	blocking