Einführung in die

Wahrscheinlichkeitstheorie und Statistik

Prof. Dr. Jan Johannes Sergio Brenner Miguel Wintersemester 2020/21

4. Übungsblatt

Aufgabe 13 (Das Bildmaß, 4 = 1.5 + 1 + 1.5 Punkte).

Seien (Ω, \mathscr{A}) , $(\mathcal{X}, \mathscr{B})$, $(\mathcal{Y}, \mathscr{C})$ Messräume, $X : \Omega \longrightarrow \mathcal{X}$ eine $(\mathscr{A}, \mathscr{B})$ -messbare Abbildung und $Y : \mathcal{X} \longrightarrow \mathcal{Y}$ eine $(\mathscr{B}, \mathscr{C})$ -messbare Abbildung. Sei \mathbb{P} ein Wahrscheinlichkeitsmaß auf (Ω, \mathscr{A}) .

(a) Das Bildmaß bzw. induzierte Maß von \mathbb{P} unter X auf $(\mathcal{X}, \mathcal{B})$ ist definiert durch

$$\mathbb{P}^X: \mathscr{B} \longrightarrow \mathbb{R}, \qquad \mathbb{P}^X(B) := \mathbb{P}(X^{-1}(B)), \quad B \in \mathscr{B}.$$

Zeigen Sie: \mathbb{P}^X ist tatsächlich ein Maß auf $(\mathcal{X}, \mathcal{B})$.

(b) Zeigen Sie die Verträglichkeit des Bildmaßes mit der Komposition von Abbildungen, d.h. zeigen Sie

$$\left(\mathbb{P}^X\right)^Y = \mathbb{P}^{(Y \circ X)}.$$

(c) Es sei nun $\Omega = \mathbb{N}_0 = \{0, 1, 2, 3, ...\}$ und \mathbb{P} als Wahrscheinlichkeitsmaß auf $(\Omega, 2^{\Omega})$ definiert durch

$$\mathbb{P}(\{n\}) := 2^{-n-1}.$$

Weiter sei eine (messbare) Abbildung definiert durch

$$X: \Omega \longrightarrow \mathbb{R}, \quad X(n) := n \mod 3.$$

Bestimmen Sie das induzierte Maß \mathbb{P}^X auf $(\mathcal{X}, \mathcal{B}) := (\text{Bild}(X), 2^{\text{Bild}(X)})$, das durch

$$\mathbb{P}^X(A) := \mathbb{P}(X^{-1}(A))$$

gegeben ist.

Aufgabe 14 (Transformation von Zufallsvariablen, 4 = 1.5 + 1 + 1.5 Punkte).

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und $X : \Omega \to \mathbb{R}$ eine stetig-verteilte Zufallsvariable.

- (a) Sei $X \sim U_{[0,1]}$, d.h. X ist gleichverteilt auf [0,1] mit Dichte $\mathbb{f}^X(x) = \mathbb{1}_{[0,1]}(x), x \in \mathbb{R}$. Berechnen Sie die Dichte \mathbb{f}^Y von $Y := -2\log(X)$. Welche (bekannte) Verteilung besitzt Y?
- (b) Sei $X \sim \text{Exp}_{\lambda}$, d.h. X ist exponential verteilt mit Parameter $\lambda > 0$ und Dichte $\mathbb{f}^{X}(x) = \mathbb{1}_{[0,\infty)}(x)\lambda \exp(-\lambda x), x \in \mathbb{R}$. Berechnen Sie die Dichte \mathbb{f}^{Y} von $Y := \alpha X$, wobei $\alpha > 0$. Welche (bekannte) Verteilung besitzt Y?
- (c) Sei $X \sim U_{[-1,1]}$, d.h. X ist gleichverteilt auf [-1,1] mit Dichte $\mathbb{f}^X(x) = \frac{1}{2}\mathbb{1}_{[-1,1]}(x), x \in \mathbb{R}$. Berechnen Sie die Dichte \mathbb{f}^Y von $Y := X^2$.

1

Aufgabe 15 (Inversionsmethode, 4 = 2 + 1 + 1 Punkte).

Um Realisierungen von stetig verteilten Zufallsvariablen auf dem Computer zu erzeugen, wird häufig auf die Inversionsmethode zurückgegriffen. Damit beschäftigt sich diese Aufgabe. Sei $(\Omega, \mathscr{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und X eine stetig verteilte Zufallsvariable mit Verteilungsfunktion $\mathscr{F}: \mathbb{R} \to [0, 1]$.

- (a) Definiere $\mathbb{F}^*(y) := \inf\{x \in \mathbb{R} : \mathbb{F}(x) \geq y\}$. Zeigen Sie, dass für alle $y \in [0,1], z \in \mathbb{R}$ gilt: $\mathbb{F}^*(y) \leq z \Leftrightarrow y \leq \mathbb{F}(z)$. Hinweis: Zeigen Sie zunächst mittels der rechtsseitigen Stetigkeit von F, dass $F(F^*(y)) \geq y$ gilt.
- (b) Zeigen Sie: Ist $Y \sim U[0,1]$, dann hat $\mathbb{F}^*(Y)$ dieselbe Verteilung wie X.

Nehmen Sie nun an, dass \mathbb{F} stetig und streng monoton wachsend auf $D_{\mathbb{F}} := \mathbb{F}^{-1}((0,1))$ ist. In diesem Fall ist $\mathbb{F}: D_{\mathbb{F}} \to (0,1)$ offenbar invertierbar und es gilt $\mathbb{F}^* = \mathbb{F}^{-1}$ auf dem offenen Intervall (0,1), wobei $\mathbb{F}^{-1}: (0,1) \to D_{\mathbb{F}}$ die Umkehrfunktion von $\mathbb{F}: D_{\mathbb{F}} \to (0,1)$ bezeichnet.

(c) Sei $\lambda > 0$. Auf ihrem Computer können Sie nur Realisierungen einer U[0,1]-verteilten Zufallsvariable Y erzeugen. Geben Sie eine Funktion $G:[0,1] \to \mathbb{R}$ an, so dass Sie durch G(Y) Realisierungen einer $\operatorname{Exp}_{\lambda}$ -verteilten Zufallsvariable erhalten.

Aufgabe 16 (Gemeinsame Verteilungen, 4 = 1 + 1 + 2 Punkte).

Sei $(\Omega, \mathscr{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum, $\lambda > 0$ und $X, Y : \Omega \to \mathbb{R}$ zwei stetige Zufallsvariablen mit gemeinsamer Wahrscheinlichkeitsdichte

$$f^{X,Y}(x,y) = C_{\lambda} \cdot \exp(-\lambda y) \cdot \mathbb{1}_{\{0 \le x \le y\}}.$$

- (a) Bestimmen Sie $C_{\lambda} > 0$, sodass $f^{X,Y}$ tatsächlich eine Wahrscheinlichkeitsdichte ist.
- (b) Berechnen Sie die Randdichten f^X und f^Y von X bzw. Y.
- (c) Berechnen Sie die Wahrscheinlichkeiten $\mathbb{P}(X \geq Y)$ und $\mathbb{P}(2X \leq Y)$.

Abgabe:

In Zweiergruppen, bis spätestens Montag, den 07. Dezember 2020, 09:00 Uhr.

Homepage der Vorlesung:

https://sip.math.uni-heidelberg.de/vl/ews-ws20/