# CS & IT



# ENGINEERING

## DIGITAL LOGIC

Sequential Circuit

Lecture No. 09



By- CHANDAN SIR



TOPICS TO BE COVERED 01 Counters

**02** PRACTICE

**03** DISCUSSION

#### COUNTER



- 1 Asynchronous counter [Ripple counter]
- 3 Synchronous counter





## Asynchronous counter





## Asynchronous counter





|       | 0 - 0 - 0 |     | 0.0     |
|-------|-----------|-----|---------|
| CLOCK | DO OCOPOL | CIY | =Qo+QA  |
| 0     | 0000      | L   |         |
|       | 0001      | 0   |         |
| 2     | BAS       | 10  |         |
| 3     | 0001      | 0   | (MOD= 2 |
| 4     |           |     |         |
| 2     |           |     |         |
| 6     |           |     |         |
| 7     |           |     |         |
| 2     |           | _   |         |
| 2     |           |     |         |





Hown counter



#### Bco counter

```
0000
0001
0010
0011
0 100
10101
 0110
```

1000 Regran











lcux

Tax > sum of the propagation delay of all Tax > Part Part Part

Tax > 3 Cpart



### n bit Ripple counter



In 4 bit Ripple counter all the FF's are identical and having propagation delay 10 µs. Then for smooth operation maximum clock frequency will be?

$$(f(n))_{max} = \frac{1}{n \cdot c_{p4q}} = \frac{1}{4 \times 10 \times 10^{-6}} = \frac{10^{-6}}{4 \times 10} = \frac{10^{-6}}{4 \times 10} = \frac{10^{-6}}{4 \times 10} = \frac{10^{-6}}{4 \times 10^{-6}} = \frac{10^{-6}}{4 \times 10^{-6}}$$



# Thank you

Seldiers!

