Analysis Integralrechnung

David Jäggli

12. Dezember 2022

Inhaltsverzeichnis

Das unbestimmte Integral

Bei der Integralrechnung haben wir die umgekehrte Aufgabenstellung als bei der Differenzialrechnung. Anstatt Ableitung (quasi Aufleitung).

Fragenstellung: welche Funktion F'(x) gibt abgeleitet f(x).

Beispiel:

$$f(x) = x^3 + 2x^2 + 5x - 6$$
$$F(x) = \frac{1}{4}x^4 + \frac{2}{3}x^3 + \frac{5}{2}x^2 - 6x + c$$

$$\int \sqrt[5]{x^4} \, dx = \int x^{\frac{4}{5}} = \frac{x^{\frac{4}{5}+1}}{\frac{4}{5}+1} = \frac{x^{\frac{9}{5}}}{\frac{9}{5}} = \frac{9}{\frac{5}{5}} \cdot x^{\frac{5}{9}}$$

Wobei: $F(x) = \int f(x) dx$

Weiter zu beachten:

• Weil Konstante c fehlt, ist es ein unbestimmtes Integral.

• Nicht jede Funktion hat eine Stammfunktion.

Man bezeichnet:

als **Integrand** = Funktion die hinter/unter dem Integral steht

 $\int f(x) dx$ als unbestimmtes Integral F(x) + c als Stammfunktion

die Integrationsvariable

als Integrationskonstante

1.1 Integrationsregeln

Bei allen Integrationen immer ganz am Schluss noch die Konstante c hinschreiben.

1.1.1 Potenz

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1}$$

1.1.2 Faktoren

Ein konstanter Faktor kann vor das Integrationszeichen genommen werden.

$$\int a \cdot f(x) \, dx = a \cdot \int f(x) \, dx$$

1.1.3 Summe

Das Integral aus einer Summe von Funktion ist gleich der Summe der Integrale der einzelnen Funktionen.

$$\int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx$$

1.1.4 Multiplikation

Ein Produkt von Funktionen kann nicht einfach voneinander getrennt werden wie bei der Summe

Heisst:

$$\int f(x) \cdot g(x) \, dx \neq \int f(x) \, dx \cdot \int g(x) \, dx$$

1.2 Integration von weiteren elementaren Funktionen

Exponentielle Funktionen:

E_1	$\int e^x dx = e^x + c$	
E_2	$\int e^{ax+b} dx = \frac{1}{a} \cdot e^{ax+b} + c$	
E_3	$\int a^x dx = \frac{a^x}{\ln(a)} + c$	für $a \in \mathbb{R}_+^*$ und $a \neq 1$

 ${\bf Logarithmische\ Funktionen:}$

L_1	$\int \ln(x) dx = x \cdot \ln(x) - x + c \text{ für } x \in \mathbb{R}_+^*$
L_2	$\int \ln(ax+b) dx = \frac{1}{a} [(ax+b) \cdot \ln(ax+b) - (ax+b)] + c$
L_3	$\int \log_a x dx = \frac{1}{\ln(a)} (x \cdot \ln(x) - x) + c \text{ für } x \in \mathbb{R}_+^*$

2 Das bestimmte Integral

2.1 Die Berechnung des bestimmten Integrals

Mithilfe der Integralrechnung kann man z.B. eine Fläche unter einer Kurve in einem gewissen Abschnitt berechnen. Es gilt:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Wobei F die Stammfunktion von f(x) ist.

Vorgehensweise für die Berechnung des bestimmten Integrals

- Bestimmung der Stammfunktion F(x)
- Bilden der zwei eingesetzten Werte F(a) und F(b)
- Subtraktion der von F(b) F(a) ergibt das gesuchte Integral.

Die Integrationskonstante c im bestimmten Integral fällt weg und muss somit nicht berücksichtigt werden.

2.2 Bestimmtes Integral und Flächeninhalt

Das bestimmte Integral kann jedoch nicht uneingeschränkt mit dem Flächeninhalt gleichgesetzt werden. Geht die Ursprungsfunktion in den negativen y-Wertebereich ergeben sich negative Flächen, was nicht sehr sinnvoll ist.

Will man die gesamte Fläche zwischen der Funktionskurve und der x-Achse herausfinden, muss man die einzelnen Flächen zwischen den Nullpunkten einzeln berechnen und den Absolutwert davon nehmen.

Vorgehensweise für die Berechnung der Fläche

- 1. Berechnen der Nullstellen von f(x).
- 2. Die Integrale einzeln rechen.
- 3. Die Beträge aller Resultate addieren.

Anschaungs-Beispiel:

Bei folgendem Beispiel ist die Kurve $-x^2+6x$ gegeben. Die blaue Fläche würde man mit folgender Formel berechnen:

$$\int_0^6 -x^2 + 6x \, dx$$

resp.

$$F(6) - F(0)$$

2.3 Integrationsregeln für bestimmte Integrale

Für Faktor- und Additionsregel siehe auch Kapitel??

Faktorregel: $\int_a^b c \cdot f(x) dx = c \cdot \int_a^b f(x) dx$ Additions regel: $\int_a^b f(x) \pm g(x) dx = \int_a^b f(x) \pm \int_a^b g(x) dx$ Vertauschungs regel: $\int_a^b f(x) dx = -\int_b^a f(x) dx$

Zerlegungsregel $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)$ für a < c < b gilt:

Vergleichsregel $\int_a^b g(x)dx \le \int_a^b f(x)dx$ [Bedingung¹]

Fläche einer Linie: $\int_a^a f(x)dx = 0$

2.4 Integrationsvariable ungleich 'x'

Die Integrationsvariable muss nicht immer x sein. Nach welcher Variabel integriert wird, wird am Schluss mit 'd' angegeben. Also dx für x oder dy für y.

Wenn f(x) und g(x) im Intervall $a \le x \le b$ stetig sind und im Intervall gilt immer f(x) < g(x)

3 Substitutionsmethoden

3.1 Lineare Substitution

Zu berechnendes Integral:	$\int (ax+b)^n dx$
Berechnung von z:	z = ax + b
Integral berechnen:	$\frac{1}{a} \int z^n dz = \frac{1}{a \cdot (n+1)} z^{n+1}$
Zurücksubstituieren:	$\frac{1}{a\cdot(n+1)}(ax+b)^{n+1}+c$

Allgemeine finale Formel:

$$\frac{1}{a \cdot (n+1)} (ax+b)^{n+1} + c$$

Formelsammlung für einzelne Fälle:

<u>Fall</u>	Lösung
$\int (ax+b)^n dx$	$\frac{1}{a\cdot(n+1)}(ax+b)^{n+1}+c$
$\int \sqrt{ax+b} \ dx$	$\frac{2}{3a}(ax+b)^{\frac{3}{2}}+c$
$\int e^{ax+b} dx$	$\frac{1}{a} \cdot e^{ax+b} + c$

3.1.1 Spezialfall: die logarithmische Integration

Falls die Substitution z von der Form $z=\frac{1}{g(x)}$ ist, oder wenn der Integrand die Form $\frac{g(x)}{g(x)}dx$ hat, ergibt sich für die Lösung eine allgemeine Formel.

$$\int \frac{g'(x)}{g(x)} dx = \ln|g(x)| + c$$

Funktioniert auch, wenn im Zähler ein Vielfaches von der Ableitung steht \to Vielfaches aus der Integration herausnehmen.

3.2 Da fäut no öppis

TODO

4 Partielle Integration

TODO

5 Wichtige Formeln

5.1 Fläche zwischen zwei Funktionskurven

Beispiel: gesucht ist der Flächeninhalt, der von den beiden Funktionen $f(x) = x^2 + 1$ $g(x) = -x^2 + 2x + 5$ begrenzt ist.

Vorgehensweise:

- 1. Bestimmen der x-Koordinaten der Schnittpunkte.
- 2. Die Fläche bestimmen.
- 3. Betrag der Fläche bestimmen.

Beispiel:

1. Schritt - Schnittpunkte

1.
$$x^2 + 1 = -x^2 + 2x + 5 \Rightarrow$$

2.
$$2x^2 - 2x - 4 = 0 \Rightarrow$$

3.
$$x^2 - x - 2 = 0 \Rightarrow$$

4.
$$(x-2)(x+1) = 0 \Rightarrow$$

5.
$$\underline{x_1 = 2, x_2 = -1}$$

2. Schritt - Fläche

Die Fläche ist gleich der Fläche unter g(x) minus die Fläche unter f(x). Somit gilt: $A=\int_{-1}^2 g(x)\,dx-\int_{-1}^2 f(x)\,dx\Rightarrow$

$$\int_{-1}^{2} g(x) - f(x) \, dx$$