Seminar 1 Integrale multiple

1. Calculați:

(a)
$$\int \frac{2x+1}{\sqrt{x^2-16}} dx, x > 4;$$

(b)
$$\int \frac{2x-5}{x^2-5x+7} dx;$$

(c)
$$\int \frac{x-1}{3x^2-6x+11} dx$$
;

(d)
$$\int \frac{2x}{x^4-1} dx, x \in (-1,1);$$

(e)
$$\int \arcsin x dx$$
;

Indicații:

•
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + c;$$

$$\bullet \left[\frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + c; \right]$$

$$\bullet \int \frac{\mathrm{d}x}{\sqrt{x^2 + a^2}} = \ln(x + \sqrt{x^2 + a^2}) + c;$$

$$\bullet \int \frac{\mathrm{d}x}{\sqrt{x^2 - a^2}} = \ln|x + \sqrt{x^2 - a^2}| + c;$$

$$\bullet \int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + c;$$

•
$$\int \frac{-dx}{\sqrt{a^2 - x^2}} = \arccos \frac{x}{a} + c;$$

2. Să se calculeze integralele duble:

(a)
$$\iint_D xy^2 dxdy$$
, unde $D = [0,1] \times [2,3]$;

(b)
$$\iint_D xy dx dy, \text{ unde } D = \{(x,y) \in \mathbb{R}^2 \mid y \in [0,1], y^2 \leqslant x \leqslant y\};$$

(c)
$$\iint_D (x+3y) dxdy$$
, unde D este mulțimea plană mărginită de curbele de ecuații $y=x^2+1, y=-x^2, x=-1, x=3$;

(d)
$$\iint_D x dx dy$$
, unde D este mulțimea plană mărginită de $x^2 + y^2 = 9$, $x \geqslant 0$;

(e)
$$\iint_D xy dx dy$$
, unde D este domeniul delimitat de curbele $xy = 1$ și $x + y = \frac{5}{2}$;

(f)
$$\int_{1}^{\sqrt{e}} x \log_3 x dx;$$

(g)
$$\int_{1}^{e} \sin(\ln x) dx;$$

(h)
$$\int_0^{\frac{1}{\sqrt{2}}} \frac{3-2x}{2x^2+1} dx;$$

(i)
$$\int_{1}^{e} \frac{\ln x}{x(2+\ln x)} dx;$$

- (f) $\iint_D y dx dy$, unde D este domeniul mărginit de parabola $y^2 = 2x$, cercul $x^2 + y^2 2x = 0$ și dreapta x = 2.
 - 3. Să se calculeze, trecînd la coordonate polare, integralele:

(a)
$$\iint_D e^{x^2+y^2} dxdy, \text{ unde } D = \{(x,y) \in \mathbb{R}^2 \mid x^2+y^2 \leqslant 1\};$$

(b)
$$\iint_{D} 1 + \sqrt{x^2 + y^2} dx dy, \text{ unde } D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 - y \leqslant 0, x \geqslant 0\};$$

(c)
$$\iint_D \ln(1+x^2+y^2) dxdy$$
, unde D este mărginit de curbele de ecuații:

$$\begin{cases} x^2 + y^2 &= e^2 \\ y &= x\sqrt{3} \\ x &= y\sqrt{3} \\ x &\geqslant 0 \end{cases}$$