## **Powering Ell with MOA**

Brad Wright
Randall M. Hauch
January 8, 2004





## **Topics**

- What is an MOA and why is it important?
- EII as a case study for MOA
- MOA "in action", a demonstration...
- Attributes of an MOA
- Miscellaneous Topics



#### **MOA** and Ell Defined

- Model-Oriented Architecture (MOA)
  - An architecture which utilizes models and metadata describing solutions to control behavior and deliver a solution or result.
  - "Data-driven" architectures where the "data" are formal metadata describing solutions in formal ways
  - Architectures which maximize result while minimizing code
- Enterprise Information Integration (EII)
  - Middleware-based integration of diverse, disparate data in realtime and on-demand
  - Data "federation"
  - A collection of products & technologies which mediate access to data on behalf of applications.



## Why are MOA and Ell important?

- MOA represents a new trend in application architecture
  - Maximize adaptability, flexibility
  - Minimize development time
  - Reduce maintenance costs
  - Don't confuse with SOA!
    - SOA are an approach for how to componentize a solution and how the component find and interact with one another
    - MOA are an approach for how individual application components control and define behavior
- Ell represents a new trend in data access
  - Decouple solutions from data
  - Minimize development time
  - Reduce maintenance costs



## Powering Ell with MOA

## MetaMatrix has developed an EII product that is an MOA



#### **About MetaMatrix**

- Leading provider of Enterprise Information Integration (EII) products
  - MetaBase: modeling and metadata management
  - MetaMatrix Server: enterprise-grade integration engine
- Founded in 1998
- Headquartered in NYC
- Development in St. Louis
- Currently about 65 employees worldwide
- Privately held, backed by leading venture firms
  - Kleiner, Perkins, Caufield and Byers
  - Invus, Schroder's Finance Partners, Gateway Ventures
- www.metamatrix.com



#### **About MetaMatrix**

#### Customers

- Financial: Merrill Lynch, CSFB, and others
- Government: various departments in US, UK, and Canada
- OEM: SAP

#### News



Intelligent Enterprise selects MetaMatrix as 2004 company to watch - Dec 2003



MetaMatrix recognized as one of SDTimes' Top 100 Innovators and Leaders - June 2003



MetaMatrix Named One of Top 100 Private Companies by AlwaysOn - July 2003

#### Aberdeen*Group*

New Enterprise Information Integration Sector to Fuel \$7.5 Billion Market by 2003 - May 2002



#### **About MetaMatrix Products**

- Currently working on 8<sup>th</sup> release
  - 4.0 General Availability (GA) in about 3 weeks
- All products are written in Java
  - Except our ODBC driver!
- Process:
  - Mixture of XP, RUP and others to suit our needs
  - Iterative development and release
  - Currently on 6 month release cycles
  - Automated (constant) builds and unit/regression tests w/ reports
  - Organized around 4 product teams, testing team



#### **About MetaMatrix Products**

- Our products run in or on:
  - App Servers: WebLogic, WebSphere, JBoss, SAP
  - RDBMs (our data): Oracle, DB2, SQL Server, Sybase
  - Platforms: Win2K, XP, Solaris, Linux
  - JREs: 1.3.1, 1.4.2
- Statistics (excluding test cases):
  - 1,109,790 lines of code
  - 606,880 non-comment LOC
  - 7,221 Classes
  - 51,413 Methods
  - 8,113 Unit tests (28.3% total coverage)
  - 31 external libraries (all of Eclipse is counted as 1)



#### **Applications and Data**

- As Java developers, we have many different frameworks for working with application data
  - JDBC, JCA, DOM, JAXP/JAXR/JAXM, EJB, etc.
  - Each framework helps isolate developers and applications from some of the low-level intricacies of various technologies
- These frameworks do <u>not</u> help with the bigger data problem: integrating the data
- What can help us when our application needs data
  - From multiple sources?
  - Is logically similar but not technically equivalent?
  - Is not in the form our application needs?
  - Is much more complex than our application needs?



## The World of Enterprise Information

#### It's Shared

- Developers may not be in control of structure or content
- Multiple applications may be using the same data

#### It's **Distributed**

Data is spread across multiple locations

#### • It's **Disparate**

- Similar or related data is managed in different places
- Each store may have its own protocols, semantics, behaviors

#### It's **Dynamic**

Content and structure undergo changes

#### • It's Valuable

Often critically important to the enterprise



## The World of Enterprise Information

- Typical Global 1000 company (or gov't agency)
  - Hundreds (or more!) of relational databases
  - Hundreds of tables in each database
  - Dozens of relationships in each database
  - Dozens of columns in each table
- That's many tens of thousands of columns!
- Data is isolated into silos
- Business processes require data from many isolated sources developed using varying technologies over decades



## Challenges of Enterprise Information Integration

- How to integrate all this data in a usable manner?
- How to easily describe the desired integration?
- How to decouple applications from data sources and changes in those sources?





#### Ell Needs MOA

- Ell needs a familiar metaphor: virtual database
- Ell needs to be model-driven

Given the large diversity in systems to be integrated, Ell needs to be an MOA – an architecture whose behavior is defined by models not code.





#### What is EII?





#### The "Process" of an Ell MOA





#### **Enterprise Information Integration**

 Applications make single/unified requests to the virtual database, which accesses and integrates the data



- Virtual database appears as a normal database, but
  - Data from multiple disparate source is accessed and integrated without client having to know those details
  - Only necessary data is accessed and integrated
  - Allows access to real data in real-time without copies
  - Updates are allowed



## **Enterprise Information Integration**

- Makes it easier for applications to get and use the information they need
  - In the form and structure needed by the application
  - Efficiently and in real-time on demand
- The EII engine is designed to
  - Return the correct data (!)
  - Scale to large numbers of clients and sources
  - Be fault tolerant of failures
  - Abstract the applications from the details of the sources
  - Process requests efficiently and very quickly
  - Make use of many different types of sources (not just DBMSs)
  - Support updates and use distributed transactions



## **Build it yourself?**

- Some of our best customers tried to do it themselves!
- GIGA Reseach's Perspective:

#### **Data Integration Costs — Pay Now or Pay Later**

Costs for tool-based vs. mostly manual methods are inversely related.

#### **Mostly Manual:**

- Homegrown ODS
- Hand-coded ETL
- Low-end replication



TIME

#### Tool-Based:

- ETL
- EAI
- EII
- Replication



## The MetaMatrix System





#### **MetaMatrix and Ell**

#### Step 1: Model Integration Behavior

- Use Modeler to create models of
  - The physical information sources
  - The virtual information needed by information consumers
  - The transformation between the virtual and physical
- Manage models in repository
  - Allows sharing, searching and configuration control







#### MetaMatrix and Ell

#### Step 2: Deploy Models and Execute

- Deploy the models to the MetaMatrix Server
  - Multiple VDBs and multiple versions of same VDB
- Clients connect to VDB via JDBC, SOAP or ODBC
  - Submit queries or execute procedures
  - Obtain result sets or XML documents





## **Model-Oriented Architectures**



#### **Terminology**

- A <u>model</u> is a precise and accurate description of a system that is used for a purpose
  - Often graphical ways of viewing and manipulating the models
  - Usually make it easier to understand the real system



 A software system is <u>model-oriented</u> if it uses models to dictate its behavior or functionality at runtime



## **Benefits of being Model-Oriented**

- Do not write code to define integration logic
- Models are easier to create and maintain than would be code
  - They are rich yet more abstract (hide much of the detail)
  - Can view graphically
- Models can be easily reused and exchanged
- Models describe what sources are available
  - Repository of models provides an enterprise catalog



#### **Demonstration**

## MOA In Action: MetaBase Modeler



#### **Modeling-Related OMG Standards**

- Meta-Object Facility (MOF)
  - Defines an architecture for modeling
  - Uses "metamodels" to define behavior and structure of models
- Model-Driven Architecture (MDA™)
  - Defines architecture using models to drive processes and systems
    - Unfortunately interpreted by many to be for application development
- XML Metadata Interchange (XMI)
  - Defines rules that dictate how models defined with MOF are serialized to XML files
- Common Warehouse Metamodel (CWM)
  - Defines metamodels for various types of information systems
  - Relational, record, hierarchical, OLAP, etc.
- Unified Modeling Language (UML)
  - The well-known metamodel for object-oriented systems



#### Conclusion

#### An MOA System

- Uses (OMG) standards to define, manage and exchange models
- Uses models to describe systems and their behavior
- Consumes models at runtime to produce the behavior
- MOA Benefits to MetaMatrix
  - Solve a very complex problem
  - Makes EII easy to our customers
  - Minimized our development effort



# Miscellaneous Topics About Java Development At MetaMatrix



## Our Use of Open Source

- Our approach is to use best-of-breed tools
- Many open source products are considered best-of-breed
  - Apache: Xerces, Axis, Ant, Commons, Lucene, RegExp
  - Eclipse: JDT, SDT, PDE, Team, EMF, XSD,
  - Others: JUnit, JAXEN, JBoss, JDOM, SAXON, ConcurrentUtil (Doug Lea)
- The Eclipse plug-in architecture fits into this philosophy
  - Widespread adoption by companies and open-source community
  - Many plug-ins are open-source
  - Plug-ins contribute new functionality to other plug-ins
  - Very active and responsive newsgroups



#### **Development Tools**

- Eclipse (SDT/PDE)
  - Plus various plugins
- Builds
  - ANT, Cruise Control,
- Coverage and Testing
  - Clover, JUnit
- Apps and Tools:
  - DefectTracker, Wiki, Quickbase
  - Squirrel, DBVisualizer
- Java APIs:
  - J2SE/J2EE 1.3 and 1.4
  - JDBC, JMS, JAXP, JSP, Servlet, EJB, JNDI, JTA/JTS, RMI, ...