Client / Project	Job No.	Sub. Ref.	No.
flint neill		8	1/2
SUBJECT	Date	Prep. by	Check. by
Frequency response for deterspace egns.	02/11/16	RIHY	

FREQUENCY RESPONSE (FROM STATE-SPACE EQUIS)

Dod-space equations:

$$\begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} 0 \\ + \dot{x} \\ + \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 \\ -\dot{x} \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix}$$

ie
$$\underline{z}(t) = [A_c] \underline{z}(t) + [B] \underline{F}(t)$$

(2Nx1) (2Nx1.) (2Nx1.) (Nx1)

Also: $y_0[t] = [c] x(t) + [D] F(t)$.

Note $\neq y$. This is $(N_0 \times 2N)$ $(2N \times 1)$ $(N_0 \times N)$ $(N \times 1)$.

The output reador $(N_0 \times 1)$

Frequency response is defined as fillows: $J_{\delta}(s) = [G(s)]F(s) \qquad \text{Solve} \qquad \text{Forms}$ Laplace (or Farrier)

Armsford of F(t)

Dimensions: $(N_0 \times I) = (N_0 \times N) \cdot (N \times I)$.

ie [6(5)] is a (NoxH) media, imppreg imputs (fore)

flint neill	Client / Project	Job No.	Sub. Ref.	No. 2/2
SUBJECT		Date 03/11/16.	Prep. by	Check. by

Properties of Laplace trusfor:
$$2 (j(t)) = s y(s)$$

$$2 (j(t)) = s y(s) (= s^2y(s))$$

$$2\left(\dot{x}(t)\right) = \left[A_{c}\right] \times (s) + \left[B\right] \times (s)$$

$$2\left(\dot{y}_{o}(t)\right) = \left[C\right] \times (s) + \left[D\right] \times (s)$$

$$S \underline{x}(s) = \begin{bmatrix} A_C \end{bmatrix} \underline{x}(s) + \begin{bmatrix} B \end{bmatrix} \underline{E}(s)$$

$$\underline{y}_0(s) = \begin{bmatrix} C \end{bmatrix} \underline{x}(s) + \begin{bmatrix} B \end{bmatrix} \underline{E}(s)$$

$$\Rightarrow (s[I]-[Ac]) \times (s) = [B] F(s)$$

$$\Rightarrow \times (s) = (s[I]-[Ac])^{T}[B] F(s)$$

$$\exists y_{\circ}(s) = \left(\begin{bmatrix} c \end{bmatrix} \left(s \begin{bmatrix} I \end{bmatrix} - \begin{bmatrix} A_c \end{bmatrix} \right)^{T} \begin{bmatrix} B \end{bmatrix} + \begin{bmatrix} D \end{bmatrix} \underbrace{F(s)}$$

$$\exists \left[G(s)\right] = \left[C\right]\left(s\left[I\right] - \left[AC\right]\right)^{-1}\left[B\right] + \left[D\right]$$

Defries [G(s)] in tens of state-space andies A, B, C, D.

COTT	Project:	Doc Nos:	Rev:	
COMI			Page: t/t	
	Subject:	Prepared: RUM.	Date: 20/07/18.	
Office/Discipline:	Ery response - Sydm und constant	Checked:	Date:	
	ATR/Job:	Approved:	Date:	

Frequency response - system with construits

Let
$$M' = ZTMZ$$
 $K' = ZTKZ$
 $C' = ZTCZ$

where $Z = Null(J)$.

It can be show That

$$\dot{z}' = A' z' + B' \int$$

$$\ni (sI-A') \times '(s) = B' \oint (s)$$

$$\Rightarrow \quad \underline{\times}'(s) = \left[sI-A'\right]^{-1}B'J(s)$$

Real
$$\underline{x} = Z_2 \underline{x}$$
 wher $Z_2 = \begin{bmatrix} z & 0 \\ 0 & Z \end{bmatrix}$
 $\exists \underline{x}(s) = Z_2 \underline{x}'(s)$

$$\Rightarrow z(s) = \left[z_z \left[sI - A' \right]' B' \right] \underline{I(s)}.$$

$$transfer modring$$

mapping applied boads