Señales analógicas y digitales

Dr. Marcelo Risk

Data Mining de Series Temporales, Maestría en Explotación de Datos y Descubrimiento de Conocimientos, FCEyN UBA

2020

Conversión de analógico a digital y al revés

Necesidad de conectar sensores y transductores analógicos a computadoras digitales:

conversión A-D (Analógico→Digital)

Ejemplos de sensores analógicos: luz, temperatura, niveles, sonido, distancias, etc.

Conversión de analógico a digital y al revés

Necesidad de conectar sensores y transductores analógicos a computadoras digitales:

conversión A-D (Analógico→Digital)

- ► Ejemplos de sensores analógicos: luz, temperatura, niveles, sonido, distancias, etc.
- Necesidad de conectar transductores de salida analógica a computadoras digitales:

conversión D-A (Digital→Analógico)

Ejemplos de transductores analógicos: parlantes (audio), resistencias disipadoras, motores, etc.

Sistema de procesamiento de señales

Señal analógica: puede tener cualquier valor dentro de un rango de la unidad de la variable, y en cualquier instante de tiempo, es continua en amplitud y tiempo.

Sistema de procesamiento de señales

- ➤ **Señal analógica**: puede tener cualquier valor dentro de un rango de la unidad de la variable, y en cualquier instante de tiempo, es *continua* en amplitud y tiempo.
- ➤ **Señal digital**: tiene valores dentro de un rango numérico, y en instantes discretos en el tiempo, es *discreta* en amplitud y tiempo.

Digitalización de una señal analógica

- \triangleright x(t) es muestreada en el tiempo a un intervalo Δt
- ▶ dentro del rango dinámico (x_{min}, x_{max}) es muestreada en amplitud a un intervalo Δx
- ▶ N muestras en total en amplitud

Teorema del muestreo (tiempo) y muestreo en amplitud

- Muestreo en el tiempo: dada una señal analógica x(t), con una frecuencia máxima $F_{\text{máxima}}$ y la frecuencia de muestreo $F_{\text{muestreo}} = \frac{1}{\Delta t}$
- ▶ Teorema del muestreo: $F_{\text{muestreo}} >= 2F_{\text{máxima}}$
- ► Muestreo en amplitud: dado un rango dinámico (x_{min} , x_{max}), entonces $\Delta x = \frac{x_{max} x_{min}}{N}$
- N: se determina con la *cantidad de bits* del conversor analógico-digital $N = 2^{bits}$
- ▶ **Ejemplo**: un CD de música $F_{maxima} = 20 Khertz$ es muestreado en el tiempo a $F_{muestreo} = 44 Khertz$ y en amplitud con 16 bits, es decir N = 65536

Conversión A-D

