EVALUACIÓN DEL DESEMPEÑO DE SISTEMAS COMPUTACIONALES

29/04/2012

Caso1: Entonación de una plataforma computacional en un ambiente Cliente/Servidor

La Gerencia de Operaciones de la Planta de Ensamblaje de Ford Motor de Venezuela, se plantea incorporar entre sus actividades el análisis de rendimiento. Para ello, es necesario en la fase inicial cumplir con las siguientes actividades:

- 1. Determinar la información representativa en términos de rendimiento la plataforma computacional
- 2. Registrar información del comportamiento de dicha plataforma
- 3. Crear una herramienta que automatice el análisis de resultados para la toma de decisiones.

Evaluación del Desempeño de Sistemas Computacionales

CASO1: ENTONACIÓN DE UNA PLATAFORMA COMPUTACIONAL EN UN AMBIENTE CLIENTE/SERVIDOR

Breve Resumen de la Problemática

La Gerencia de Operaciones de la Planta de Ensamblaje de Ford Motor de Venezuela, en la Zona Industrial de Valencia, se plantea incorporar entre sus actividades el análisis de rendimiento. Para ello, es necesario en la fase inicial cumplir con las siguientes actividades:

- 1. Determinar la información representativa en términos de rendimiento la plataforma computacional
- 2. Registrar información del comportamiento de dicha plataforma
- 3. Crear una herramienta que automatice el análisis de resultados para la toma de decisiones

La importancia de este estudio radica en que la Gerencia ha evaluado el costo que representa una hora de caída del sistema en alrededor de 300.000,00 \$ solo en el servidor de ventas.

Los servidores HP-UX, están basados en una arquitectura cliente/servidor, los cuales prestan servicios a los diferentes departamentos: Producción (P & A), Ventas, Comunicaciones, Desarrollo y Finanzas.

Este estudio se enfocó en el análisis del rendimiento de uno de los servidores más importantes: Producción. Este servidor presta servicios al manejo de tareas como: Compras-Ventas de repuestos e inventario. Estas dos actividades son una de las bases primordiales de la organización, ya que la compra y venta de repuestos generan ganancias y a través del inventario se lleva un control tanto de la materia prima como de la producción. Por estas razones, los servicios especificados generan una gran demanda sobre el servidor.

El servidor de producción es un "cuello de botella" dentro de la organización, ya que la mayoría de los departamentos requieren del acceso a los datos almacenados en éste, para la realización de sus procesos estratégicos.

Descripción de la Estructura Organizacional de la Empresa

La Empresa está conformada por un conjunto de Unidades que realizan tareas específicas dentro de la Organización

Figura 1: Estructura organizacional de la empresa Ford Motor de Venezuela planta Valencia

Descripción de la Plataforma Computacional

Descripción del HW del servidor de Producción

- Equipo HP K200
- 2 CPU 100 MHz PA 7200
- 512 MB de memoria RAM
- 8 Discos duros: 6 de 2 GB y 2 de 4.3GB
- (Almacenamiento secundario total: 16.3 GB)
- 2 Tarjetas controladoras de I/O fast SCSI-II
- 2 Tarjetas de red
- Emulación Cliente/Servidor
- 1Consola y 54 usuarios activos en promedio
- Buffer Caché
- Paginación y swapping activos
- Area de swap: 512 MB en disco; 128 MB en memoria
- Grado de Multiprogramación: 5 procesos en ejecución (en promedio)
- Aplicaciones Oracle referentes al manejo de repuestos (Compra y venta de productos para repuestos)

Descripción de las redes de interconexión

Ford de Venezuela planta Valencia, cuenta con una red WAN para la comunicación con los sistemas de Colombia y USA. La comunicación contra Caracas es vía radio, y con Colombia vía satélite. La comunicación Valencia-Colombia se realiza a través de Caracas, las conexiones vía satélite permiten la comunicación entre Valencia y USA.

Ford de Venezuela también cuenta con redes basadas en sistemas Novell, Windows NT y HP-UX. Cada red soporta la funcionalidad de ciertos departamentos de la organización y maneja alrededor de 200 usuarios activos en cada tecnología de red.

Figura 2: Plataforma Ford Servidores HP

Descripción del Sw del servidor de Producción

- Sistema operativo: HP-UX 10.20 con match para el 2000
- Manejador de Base de Datos ORACLE 7.3/7.4
- Ambiente de desarrollo ORACLE Developer 2000 1.3

Unidades de Negocio

La Unidad o ente de negocio que determina proporcionalmente la carga de trabajo o transacciones de la Organización, según la gerencia son las ventas ya que éstas involucran tanto las ventas de repuestos como las ventas de vehículos. Las ventas se relacionan con transacciones ya que generan: facturas, información contable, procesos de calidad y garantía.

Índices de Rendimiento

Datos de Comportamiento del Sistema

Monitoreo del Rendimiento en UNIX

Los comandos principales para obtener información del rendimiento en UNIX son:

Comando	Interpretación y Uso
sar	Provee reportes sobre: Utilización del CPU, Actividad de Buffer, Swapping, y Switching, Actividad de dispositivos de bloque y TTY, Llamadas al Sistema, uso de rutinas de acceso a archivos, actividad de colas y estadísticas sobre las tablas del kernel
vmstat	es usado para examinar estadísticas de memoria real y virtual, como por ejemplo, actividad de paginación y swapping, reporte del uso del disco, estados de los procesos, carga del CPU, actualización de caché e interrupciones.
lostat	Provee estadísticas principalmente sobre la actividad de I/O de los dispositivos de bloque, opcionalmente provee información sobre los terminales y utilización del CPU

Monitoreo del Rendimiento en ORACLE

La fuente más común de datos de rendimiento de ORACLE es un conjunto de tablas dinámicas de rendimiento, conocidas como vistas V\$

Las principales herramientas de monitoreo son:

Comandos	Interpretación y uso		
Ultbstat.sql/utlestat.sql	Provee información de las tablas dinámicas de rendimiento v\$. Usado para capturar muestras de las estadísticas de rendimiento de la instancia de la base de datos		
Sql trace Facility y TKPROF	Provee información de rendimiento de instrucciones sql individuales. Estadísticas tales como: contadores de parse, execute y fetch, consumo de CPU, lecturas físicas y lógicas, número de tuplas procesadas y fallos en la librería caché		
Explain plan	Despliega información del plan de ejecución elegido por el optimizador de ejecución en ORACLE, específicamente para las instrucciones Select,		

Update, Insert y Delete.

Días de observación

Proceso de recolección de datos en los servidores a partir del día 26 de agosto hasta el 16 de septiembre de 1999. Obteniéndose información confiable según se señala en esta tabla resumen.

Aspecto	Tiempo		
Porcentaje de utilización del CPU	01/07/1999 hasta 16/09/1999		
Buffer Caché	Julio, agosto y primera mitad de septiembre		
Porcentaje Utilización de Discos	26/08/1999 hasta 10/09/1999		
Tiempo de Servicio por Discos	26/08/1999 hasta 10/09/1999		
Tiempo de Espera por Discos	26/08/1999 hasta 10/09/1999		
Porcentaje de aciertos Buffer Caché de ORACLE	28/08/1999 hasta 15/09/1999		

Periodo e intervalo de monitoreo

El período de monitoreo se realizó desde las 6:00am hasta 8:00pm, tomando en cuenta el medio día y las frecuencia de muestreo se llevó a cabo cada 15 minutos.

Selección de los índices de Rendimiento a Monitorear que permiten analizar el rendimiento de la plataforma computacional a entonar

Índices Seleccionados bajo Unix

	Actividad	Comandos	Indices
		sar –q	rung-sz
Actividad de CPU 🧹			%runocc
710		sar –w	pswch/s
	CPU	sar –u	%usr
			%sys
	_		%wio
			%idle
		sar –q	swpq-sz
			%swpocc
	Swapping	sar –w	swpin/s
	o napping		swpot/s
Utilización de Memoria 🧹			bswin/s
			bswot/s
		vmstat (sin –s)	avm
			free
			re
	Paginación		at
	_		pi
			po
			fr
	-	sar –b	bread/s
			bwrit/s
Actividad de I/O 🤇	Buffer Cache		lread/s lwrit/s
, , , , ,			iwrii/s %rcache
	—		%rcacne %wcache
	Procesos	vmstat (sin-s)	b
	Frocesos		w
		sar –d	%busy
		sar –a	avque
			r+w/s
			blks/s
	I/O de discos		avwait
			avserv
		Iostat	sps
			msps
		netstat –i	opkts
	I/O de red		oerrs
	I/O de red		ipkts
			ierrs

Índices Seleccionados bajo Oracle

Comandos / Vista	Indices		
Comunaos / Vista	Parse time CPU		
	Parse time elapsed		
	Parse count		
	Redo blocks written		
	Redo entries		
	Redo log space requests		
	Redo synch writes		
	Redo writes		
	Redo write time		
YARAY GOTTA TO	Physical reads		
V\$SYSSTAT	Db Block Gets		
	Consistent Gets		
	Sort(memory)		
	Sort(disk)		
	Table fetch continued row		
	DBWR Checkpoints		
	Physical writes		
	User commits		
	User rollback		
	Logons current		
V\$LIBRARYCACHE	Reloads		
	Pins		
V\$ROWCACHE	Gets		
	Getsmisses		
V\$SESSTAT	Session memory		
· ·	Max session memory		
	(Buffer wait) undo header		
	(Buffer wait) undo block		
V\$WAITSTAT	(Buffer wait) data blocks		
VΨWAIISIAI	(Buffer wait) system undo header		
	(Buffer wait) system undo block		
V\$DISPATCHER	Idle		
V QUISTAT CHEK			
***	Busy		
V\$QUEUE	Wait		
	Totalq		
	Gets		
	Misses		
V\$LATCH	Sleeps		
	Immediate gets		
	Immediate misses		
	Phyrds		
	Phywrts		
AND AND AND	Phyblkrd		
V\$FILESTAT	Phyblkwrt		
	Readtim		
	Writetim		

Análisis de los resultados obtenidos a través de la actividad de monitoreo

Actividad del CPU

La Tabla muestra la utilización promedio del CPU por clase (luego de caracterizar la carga de trabajo)

Muestra	%CPU	%CPU	%CPU en	%CPU
	Usuario	Sistema	Espera por I/O	Desocupado
Julio	30	7	27	36
Agosto	34	9	32	25
Primera mitad	34,95	10,51	26,50	28,04
Septiembre				
Promedio	33	9	29	30

Figura 3: Utilización promedio de CPU por clase

Actividad de Memoria

Buffer Cache

Muestra	%Aciertos en Escrituras	%Aciertos en Lecturas
Julio	87,35	99,99
Agosto	87,45	99,98
Primera mitad Septiembre	92,03	99,91

Figura 4: Actividad promedio de buffer caché UNIX

Según recomendaciones del fabricante, si el porcentaje de aciertos para peticiones de lectura cae por debajo de 90 o para peticiones de escritura por debajo de 65, puede ser posible mejorar el rendimiento incrementando el número y/o tamaño de buffers. Como se muestra en la tabla de la figura 4, el porcentaje de aciertos para peticiones de lecturas se encuentra muy cercano al 100%. Respecto al porcentaje de aciertos para peticiones de escritura, se mantiene muy por encima del nivel recomendado.

¿Qué acciones se deberían tomar ante esta situación?

Utilización de Memoria

%Memoria Procesos Listos	%Memoria Otros	%Memoria Sistema (Unix+Oracle)	%Memoria Libre
3,07	11,29	16,99	13,56

Figura 5: Utilización promedio de la memoria

De acuerdo al análisis de estos resultados, podemos concluir que la cantidad de memoria es holgada de acuerdo a las necesidades de la instalación, por tal motivo,

¿Es necesario añadir espacio de swapping, ajustar el tamaño del buffer cache o incrementar la memoria?

Actividad de Discos

El subsistema de discos en el servidor de producción está estructurado de la siguiente manera:

- 1. Dos tarjetas de I/O: FAST/Wide SCSI-21 de 20MB/seg.
- 2. Ocho discos duros de 9Ms

Fig. 6 Subsistema de disco del servidor HP de producción.

Los índices a considerar en el análisis de cada disco son:

Índice	Interpretación		
% de Utilización	Porcentaje de tiempo del dispositivo ocupado por peticiones de transferencia.		
Tiempo de espera (contención I/O)	Número promedio de milisegundos que una petición de transferencia espera en cola por servicio.		
Tiempo de servicio	Número promedio de milisegundos er que una transferencia es completada Incluye tiempo de búsqueda, latencia rotacional y tiempo de transferencia		
Tiempo efectivo de servicio	la suma de tiempo de espera y tiempo de servicio. Es el tiempo real que tarda una transferencia desde que fue submitida		

Este análisis toma en cuenta la comparación entre los índices y carga de discos.

¿Considera válida las siguientes reflexiones?

Lo ideal es que los discos mantengan la información y su carga de trabajo, tales como transferencia de I/O, lo más equilibrada posible, de acuerdo a las capacidades de su tarjeta de I/O.

Es necesario mantener los archivos más frecuentemente utilizados en los discos conectados a la tarjeta de I/O con mayor capacidad de transferencia.

Los archivos demasiado grandes deben ser divididos en varios discos. De tal manera que accesos a esos archivos pueden producir transferencias paralelas desde y hacia diferentes discos, según sea la disposición de las tarjetas de I/O.

El rendimiento de discos puede mejorar en gran medida si se mantienen archivos grandes y frecuentemente accedidos divididos en varios discos conectados a diferentes tarjetas de I/O

Tabla 1: Resumen de la actividad promedio por día en disco

Disco	Utilización	Tiempo	Tiempo de	Tiempo de
Disco		efectivo	servicio	espera
C0t3d0	7,06	16,41	10,97	5,44
C0t4d0	2,21	17,17	11,29	5,88
C0t5d0	4,40	15,87	10,22	5,66
C0t6d0	3,17	63,82	14,07	49,75
C0t12d0	24,58	90,41	25,75	64,66
C0t13d0	5,43	18,44	13,35	5,09
C0t14d0	29,96	19,89	14,03	5,86
C0t15d0	25,27	18,95	13,31	5,64

Una vez analizado en detalle los datos obtenidos con respecto a los discos se llegó a las siguientes consideraciones:

- Los discos que presentan sobre-utilización son los discos 5,7 y 8 todos conectados a una misma tarjeta de I/O. Se recomienda distribuir la carga.
- El disco 5 presenta sobrecarga en todos los índices evaluados. Convirtiéndose en un cuello de botella.

¿Cuáles actividades de entonación se recomiendan?

Actividad Oracle

La actividad de Oracle abarca las principales estructuras en memoria del área Global del Sistema, el área de ordenamiento o sort en memoria y el reporte de conexiones y usuarios

Fig. 7 Estructura de memoria usada por Oracle

Buffer Caché de Datos

%Aciertos Buffer Cache Oracle	Physical reads	db block gets	Consistent gets
66,46	2040759,621	234748,0105	8122909,562

Tabla 2: Aciertos promedio de acceso al buffer cache de Oracle

Según las recomendaciones de Boeheim, el porcentaje de aciertos del buffer caché de ORACLE debe ser mayor que el 60-70 %

¿De acuerdo a los datos de rendimiento obtenidos para este tópico, cómo se comportan los parámetros?

Buffer Caché de Biblioteca

%Fallos Cache Biblioteca	Recargas Cache Biblioteca	Accesos Biblioteca
0,1631	331,0877	203042,0103

Tabla 3: Fallos promedio de acceso al caché de Biblioteca

Según Frazzini el umbral recomendado de advertencia para el porcentaje de fallos del caché de biblioteca es <1%

¿Qué información aportan los datos de rendimiento según la tabla?

Buffer Caché del Diccionario de Datos

% Fallos Cache Diccionario Datos	Fallos Cache Diccionario	Accesos Diccionario
11,2114	1375,4932	122687,0511

Tabla 4: Fallos promedio de acceso al caché del Diccionario de Datos

Según Boeheim los fallos en la caché de diccionario de datos, es recomendable mantenerlos en un porcentaje entre el 10% y 15%

¿Qué información aportan los datos de rendimiento según la tabla?

Para finalizar...

Señale el conjunto de pasos, que en orden cronológico deben ser llevados a cabo para entonar una plataforma computacional bajo un esquema cliente servidor, soportada por un sistema operativo UNIX y con un manejador de base de datos ORACLE.