

Lab Report

TERM:	Spring 2021						
Module:	EE1616 Electronic Workshop						
	•						
CLASS:	34092102						
BRUNEL ID:	2161047						
NAME:	Xukang Liu						
TUTOR:	Guoquan Li						

June 13, 2022

PIC Lab 3: PICmicro Interfacing with LCD and Keypad

O Aims (5 Marks)

- To further understand LCD and matrix keypad.
- Try to use assembly language to create some characters on the LCDs and know the principle of matrix keypad.
- Try to use assembly language to connect LCD and matrix keypad. Enter some words on the keypad and then LCD will display the characters.

1 Task 1 (30 Marks)

1.1 Task 1.1 (10 Marks)

Pin Assignment							
Pin no.	Symbol	function					
1	Vss	Power supply (GND)					
2	Vdd	Power supply (+)					
3	Vo	Contrast Adjust					
4	RS	Register select signal					
5	R/\overline{W}	Data read/write					
6	Е	Enable signal					
7~14	DB0-DB7	Data bus line					
15	A	Power supply for LED B/L (+)					
16	K	Power supply for LED B/L (-)					

Before I modify the code, the LCD can display some words, but the cursor and blink are off.

```
TABLCD ADDWF
               PCL, F
                               :LCD initialisation table
               B' 00111000'
                               ;Function Set: 8-bit operation and 2 lines
    RETLW
               B' 00001111'
                               ;Display ON/OFF Control: set display on, cursor off, blink off
    RETLW
               B' 00000001'
                               ;Clear Display
   RETLW
               B' 00000010'
                               :Return Home: Set cursor to home position
    RETLW
    RETLW
               0X00
                               ;End of initialisation table
```

This is my modified code, I turn the code to B'00001111', so the cursor and blink are displayed.

When I modify the code to B'00001110', the cursor is on and the blink is off.

From this experiment, I know the function of each pins of LCDs. I also further understand how to modify some codes to change some display on LCD, such as let cursor and blink on or off.

1.2 Task 1.2 (10 Marks)

```
TABLCD ADDWF PCL, F
                                        :LCD initialisation table
2
                        B' 00111000'
                                        ;Function Set: 8-bit operation and 2 lines
           RETLW
3
           RETLW
                        B' 00001110'
                                        ;Display ON/OFF Control: set display on, cursor off, blink off
4
                        B' 00000001'
           RETLW
                                        ;Clear Display
                                        :Return Home: Set cursor to home position
5
           RETLW
                        B' 00000010'
6
           RETLW
                        0X00
                                        ;End of initialisation table
7
8
       ; sub-routine which consists of a string of alphanumeric letters to be displayed on LCD module
9
       ;0x00 (or 0) is an indicator for end of string
10
       MESSAG ADDWF PCL, F
       DT "HELLO KUGO", 0
11
12
           RETLW
                        0X00
                                        ;End of string
```

This is my subroutine, my message is "HELLO KUGO".

1.3 Task 1.3 (10 Marks)

Firstly, I add some codes on START subroutine to set cursor location at 0x40 of the LCD.

```
; sub-routine to send a string of alphanumeric letter to LCD module
 78
        LCDMSG CLRF
                         L00P
                                          :clear loop
             BSF
                                          :set RS for data send
 79
                         RSLINE, 4
        LCDMS2 MOVF
                         LOOP, W
                                          :get table address
 80
 81
             CALL
                         MESSAG
                                          :get message letter
 82
             XORLW
                         0X00
                                          :0x00 is the indicator for last data
             BTFSC
                                          :has last LCD letter been sent?
 83
                         STATUS, Z
             GOTO
                                          :YES, so end the DATA SEND routine
 84
                         MSGEND
                                          ; No, send the data to LCD for display
 85
             CALL
                         LCDOUT
 86
             INCF
                         LOOP, F
                                          :inc loop
             GOTO
                                          repeat for next one letter
 87
                         LCDMS2
 88
        MSGEND RETURN
 89
 90
         LCDMSG1 CLRF
                         L00P
                                          ;clear loop
 91
                                          :set RS for data send
             BSF
                         RSLINE, 4
 92
        LCDMS3 MOVF
                         LOOP, W
                                          :get table address
 93
             CALL
                         MESSAG1
                                          :get message letter
 94
             XORLW
                         0X00
                                          ;0x00 is the indicator for last data
                                          ;has last LCD letter been sent?
             BTFSC
 95
                         STATUS, Z
 96
             GOTO
                         MSGEND1
                                          :YES, so end the DATA SEND routine
                                          :No, send the data to LCD for display
 97
             CALL
                         LCDOUT
 98
             INCF
                         LOOP, F
                                          :inc loop
 99
             GOTO
                                          :repeat for next one letter
                         LCDMS3
100
         MSGEND1 RETURN
101
69
        MESSAG ADDWF PCL, F
70
        DT "CQUPT HELLO", 0
            RETLW
                        0X00
                                        :End of string
71
72
73
        MESSAG1 ADDWF PCL, F
74
            DT"Liu Xu Kang", 0
            RETLW 0X00
 75
```

I also add some subroutines to make my code work properly.

Therefore, the result is:

2 Task 2 (30 Marks)

2.1 Task 2.1 (10 Marks)

When I click "1" on the keypad, the LED "0", "4", "5" are on. Convert is to binary value, it means "00110001".

Lower Bis	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx0000	CG RAM (1)			0	a	P	`	P				_	9	Ę,	α	р
xxxx0001	(2)		!(H	Q	a	9				7	Ŧ	4	ä	q
xxxx0010	(3)		Ш	2	В	R	Ь	r			r	1	ij	×	ß	Θ

This is the figure of Alphanumeric characters displayable by the LCD module. I can

find that the upper 4 bits is 0011 and lower 4 bits is 0001. It is corresponding to the LEDs, so the result is correct.

2.2 Task 2.2 (20 Marks)

- a) TRISD is defined as "B'11110000'", it means Port D0-D3 as output and D4-D7 as input.
- b) Pin 1 is defined as output and pin 6 is defined as input.
- c) Firstly, set all pins as high level. For detecting 5, pin 1 output low level, if 5 is pressed, pin 6 is input as low level.

3 Task 3 (30 Marks)

After I add "GETKEY" subroutine to the code, I can find the result:

If I click some keys on the keypad, the second line can only display one character.

I change the code, such that it can continuously output characters. The result is:

4 Conclusions (5 Marks)

In the experiment, I knew how to display characters I wanted on the LCD. I also further understanded the principle of matrix keypad. Finally, I connect the LCD and keypad together, I can input any letters or numbers and output them on the LCD. But I also didn't know some detail of the code, some subroutine I don't know what it mean in this code, so I need to study deeply after class.