Finite State Space

Pure FSM form is composed of:

- A set of states
- A set of possible inputs (or events)
- A set of possible outputs (or actions)
- A transition function:
 - Given the current state and an input: defines the output and the next state

States:

- Represent all possible "situations" that must be distinguished
- At any given time, the system is in exactly one of the states
- There is a finite number of these states

An example: a 3-bit counter that increments when "count" input is received

States: ?

An example: a counter

 States: the different combinations of the digits: 000, 001, 010, ... 111

Inputs: ?

An example: a counter

- Inputs (events):
 - Only one: "count"
 - We will call this "C"

Outputs: ?

An example: a counter

Outputs: same as the set of states

Transition function: ?

An example: a counter

- Transition function:
 - On the count event, transition to the next highest value

A Graphical Representation:

A transition

A transition

A transition

The full transition set

Example II: An Up/Down Counter

- Suppose we have two events (instead of one): Count up and count down
- How does this change our state transition diagram?

Example II: An Up/Down Counter

The full transition set

