

Java Bitwise Operators

• Java has six bitwise operators:

Symbol	Operator	
&	Bitwise AND	
	Bitwise OR	
۸	Bitwise XOR	
~	Bitwise NOT	
<<	LEFT SHIFT	
>>	RIGHT SHIFT	
CS 160, Spi	ring Semester 2014 2	

Java AND and OR AND operator (&) OR operator (|) A & B A | B 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 CS 160, Spring Semester 2014

Binary to Decimal

Decimal	Binary	Decimal	Binary
0	0000b	8	1000b
1	0001b	9	1001b
2	0010b	10	1010b
3	0011b	11	1011b
4	0100b	12	1100b
5	0101b	13	1101b
6	0110b	14	1110b
7	0111b	15	1111b

Binary to Decimal

- 0-9 are used for decimal numbers (base-10):
 - $-149 = 1*10^2 + 4*10^1 + 9*10^0$
- 0-1 are used for binary numbers (base-2):
 - $-1010b = 1*2^3 + 0*2^2 + 1*2^1 + *2^0 = 8 + 2 = 10$
- Example:
 - 10111b in decimal?
 - $-1*2^4 + 0*2^3 + 1*2^2 + 1*2^1 + 1*2^1 = 16 + 4 + 2 + 1 = 23$
 - What is 14 in binary?
 - $-8+4+2=1*2^3$ C+161, *227; tem1st*20:4+ $0*2^0=1110b$

Bitwise Operator Examples

- 4-bit numbers:
 - -6 & 5 = 0110b & 0101b = 0100b = 4
 - $-6 \mid 5 = 0110b \mid 0101b = 0111b = 7$
 - $-6^{5} = 0110b^{0101b} = 0011b = 3$
 - $^6 = ^0110b = 1001b = 9$
- 8-bit numbers:
 - -6 << 3 = 00000110b << 3 = 00110000b = 48 (6 * 8)
 - 48 >> 4 = 00110000b >> 4 = 00000011b = 3 (48 / 16)

CS 160, Spring Semester 2014

Masking Operations

- Clearing bits:
 - -x = 00101001b = 41
 - want to clear top 4-bits
 - -x = x & 00001111b = x & 15 = 00001001b = 9
- Setting bits:
 - -x = 00101001b = 41
 - want to set bottom 4-bits
 - $-x = x \mid 00001111b = x \mid 15 = 00101111b = 47$

CS 160, Spring Semester 2014