PHY 1120 - Dr. Rowley

Chapter 22 - Magnets

Magnets

- Keys
 - No Mono-poles, always in pairs
 - Magnetic Field lines go N -> S outside of the magnetic material
 - Geographic North ~ Magnetic South-ish
 - Magnetic Fields are 3-Dimensional

Magnetic Fields - 2D

Magnetic Fields - 3D

No Mono-poles?

N

S

A single North-South Magnet

N S

A north end and south end of two magnets

Same ends of two magnets

Two magnets with an eraser in the middle

N S Eraser S

Two magnets with a piece of Iron in the middle.

N S P N S

- * **PURPOSE:** Determine the direction of the B-field given the current in a wire.
 - 1. Thumb in the direction of the conventional current.
 - 2. Fingers wrap in the direction of the B-Field

What is the direction of the magnetic field at A? at B?

Out of the page

Where is the wire and which direction is the current going?

- * **PURPOSE:** Determine the direction of the force on a CURRENT CARRYING wire that is EXPERIENCING an external B-field.
- Fingers point in the direction of the current in the wire.
- Palm points in the direction of the B-Field
- Thumb points in the direction of the force on the wire.

* A 2.5 Tesla B-Field goes into the board. A 1.00m wire carries a current 1.5 Ampere current in that magnetic field. What is the minimum force the wire can experience? What is the maximum force the wire can experience?

B = 2.5 T I = 1.5 A $\ell = 1.00 \text{ m}$ $\theta = ?$ F = ?

What is the effect of B, I, ℓ , and θ on Force?

$$F(B,I,\ell,\theta)=?$$

Current <i>I</i> in the wire (A)	Length L of wire (m)	Orientation angle θ between the current and the \vec{B} field	Magnitude of magnetic force F exerted on the wire (N)
I	L	90°	F_1
21	We repeat $t _{\mathbf{J}}$ sume proce	90°	$2F_1$
31	L L	90°	$3F_1$
I	L	90°	F_1
I	2L	90°	$2F_1$
I	3L	90°	$3F_1$
I	L	0°	0
I	L	30°	$0.5F_{1}$
I	L	60°	$0.87F_1$
I	L	90°	F_1

- What is the relationship between B and F?
 - Direct
- What is the relationship between I and F?
 - Direct

- What is the relationship between ℓ and F?
 - Direct
- What is the relationship between θ and F?
 - Direct, kinda... it's complicated

What is the Force on a Current Carrying Wire?

$$F = I \ell B \sin \theta$$

Direction of Force?

(Hint: RHR #2)

* A 2.5 Tesla B-Field goes into the board. A 1.00m wire carries a 1.5 Ampere current in that magnetic field. What is the minimum force the wire can experience? What is the maximum force the wire can experience?

$$B = 2.5 \text{ T}$$
 $I = 1.5 \text{ A}$
 $\ell = 1.00 \text{ m}$
 $\theta = ?$
 $F = ?$

$$F = I \ell B \sin \theta$$

$$F = (2.5 \text{ T})(1.0 \text{ m})(1.5 \text{ A})\sin\theta$$

Continued

$$B = 2.5 \text{ T}$$
 $I = 1.5 \text{ A}$
 $\ell = 1.00 \text{ m}$
 $\theta = ?$
 $F = ?$

If
$$\theta = 0^{\circ}$$

$$F = (2.5 \text{ T})(1.0 \text{ m})(1.5 \text{ A})\sin 0^{\circ}$$

$$F = 0 \text{ N!}$$

If
$$\theta = 90^{\circ}$$

$$F = (2.5 \text{ T})(1.0 \text{ m})(1.5 \text{ A})\sin 90^{\circ}$$

$$F = 3.75 \text{ N}!$$