Continuous functions (between metric spaces).

Recall: $f: \mathbb{R} \to \mathbb{R}$ is continuous at c if: $\forall \varepsilon > 0, \exists \delta > 0, (|x - c| < \delta \Longrightarrow |f(x) - f(c)| < \varepsilon)$.

Let (X, d_X) and (Y, d_Y) be two metric spaces.

[Keep in mind important case: $X = \mathbb{R}^2, Y = \mathbb{R}^2$]

Definition: $f: X \to Y$ is continuous at $x_0 \in X$ if: $\forall \varepsilon > 0, \exists \delta > 0, d_X(x, x_0) < \delta \Longrightarrow d_Y(f(x), f(x_0)) < \varepsilon$.

Equivalently, using open balls: $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in B_{\delta}(x_0), f(x) \in B_{\varepsilon}(f(x_0)).$

Definition: $f: X \to Y$ is continuous on $A \subset X$ if it is continuous at every $x_0 \in A$.

"Continuity" is closedly related to "open set" and "sequence limits".

Theorem: the following are equivalent (TFAE): if X, Y are metric spaces,

- 1. $[\varepsilon \delta]$ $f: X \to Y$ is continuous at x_0 : $\forall \varepsilon > 0, \exists \delta > 0, d_X(x, x_0) < \delta \Longrightarrow d_Y(f(x), f(x_0)) < \varepsilon$.
- 2. [Sequential] If $x_k \to x_0$ in (X, d_X) , then $f(x_k) \to f(x_0)$ in (Y, d_Y) .
- 3. [Topological] For all open set $V \subset Y$ containing $f(x_0)$, there exist an open set $U \subset X$ containing x_0 , such that $f(U) \subset V$.

Proof:

- $3 \Longrightarrow 1$: [Use openness to find $\delta > 0$] Let $\varepsilon > 0$ be arbitrary (goal: find $\delta > 0$).
 - \circ Let $V = B_{\varepsilon}(f(x_0))$.
 - \circ By 3, choose U open in X and contains x_0 , $f(U) \subset V$.
 - o By "openness", there exists a positive radius, $\delta > 0$, such that $B_{\delta}(x_0) \subset U$.
 - Then, for any $x \in B_{\delta}(x_0) \subset U$, $f(x) \in f(U) \subset V = B_{\varepsilon}(f(x_0))$ as required.
- $1 \Longrightarrow 2$:

Informal, backwards thought process:

- o To show that $f(x_k) \to f(x_0)$, we need: "for all large enough k", $d(f(x_k), f(x_0)) < \varepsilon$.
- Using (1), this can be achieved whenever $d(x_k, x_0) < \delta$.
- Because $x_k \rightarrow x_0$ in X, this can be garanteed whenever: "k is large".

Proof: [forward]

- For any $\varepsilon > 0$, by (1), we can find $\delta > 0$ satisfying $d_X(x, x_0) < \delta \Longrightarrow d_Y(f(x), f(x_0)) < \varepsilon$.
- Because $x_k \to x_0$ in (X, d_X) , we choose N such that whenever $k \geqslant N$, there is $d_X(x, x_0) < \delta$.
- Therefore,

$$k \geqslant N \Longrightarrow d_X(x, x_0) < \delta \Longrightarrow d_Y(f(x), f(x_0)) < \varepsilon$$

as required. \square

 \circ [Conclusion: assuming (1), then $x_k \to x_0$ implies $f(x_k) \to f(x_0)$.]

- $2 \Longrightarrow 3$: (I can't directly prove 3; how about contradiction?)
 - [Recall 3: For all open set $V \subset Y$ containing $f(x_0)$, there exist an open set $U \subset X$ containing x_0 , such that $f(U) \subset V$.]
 - Suppose the opposite of 3 is true: there exists an open set $V \subset Y$ containing $f(x_0)$, such that for all open $x_0 \in U \subset X$, $f(U) \not\subset V$.
 - [Idea 1: On X's side, consider a sequence of open balls $U_k = B_{1/k}(x_0)$.] For each k, choose $U = B_{1/k}(x_0)$, and choose $x_k \in B_{1/k}(x_0)$ such that $f(x_k) \notin V$.
 - \circ Since $d(x_k, x) < 1/k \rightarrow 0$, we know $x_k \rightarrow x_0$ in (X, d).
 - [Idea 2: On Y's side, use openness to find a positive radius ε_0 for $f(x_0)$.] Because V is open and contains $f(x_0)$, there exists $\varepsilon > 0$ such that $B_{\varepsilon}(f(x_0)) \subset V$.
 - Since $f(x_k) \notin V$, we know $f(x_k) \notin B_{\varepsilon}(f(x_0))$, in other words $d(f(x_k), f(x_0)) \geqslant \varepsilon$ for all k.
 - But then $\{x_k\}$ is a sequence converging to x_0 such that $f(x_k)$ does not converge to $f(x_0)$, contradicting $(2).\square$

Image and Preimage

Set theory reminder: given any $f: X \to Y$, $U \subset X$, $V \subset Y$, define

$$f(U) = \{ f(u) \in Y : u \in U \},\$$

$$f^{-1}(V) = \{ u \in X : f(u) \in V \}.$$

Good properties of preimages with respect to union, intersection, complement:

- $f(U) \subset V \iff f(u) \in V (\forall u \in U) \iff U \subset f^{-1}(V)$
- $f^{-1}(V_1 \cap V_2) = \{x \in X : f(x) \in V_i(\forall i)\} = f^{-1}(V_1) \cap f^{-1}(V_2)$
- $f^{-1}(V_1 \cup V_2) = \{x \in X : f(x) \in V_i(\exists i)\} = f^{-1}(V_1) \cup f^{-1}(V_2)$

[In fact, true also for arbitrary unions and intersections]

• $f^{-1}(V^c) = \{x \in X : f(x) \notin V\} = (f^{-1}(V))^c$

Continuity vs preimage of open sets

Theorem: $f: X \to Y$ is continuous if and only if for any V open in Y, $f^{-1}(V) = \{x \in X: f(x) \in V\}$ is open in X.

Proof: [Use definition/property (3) of function continuity...]

[Remark: since U is open iff U^c is closed, we also know that f is continuous if and only if its preimages of any closed sets are still closed.]

Compositions of continuous functions are continuous (using sequences, or using preimages of open sets)

Theorem: Let $X \xrightarrow{f} Y \xrightarrow{g} Z$ where f, g are continuous (and X, Y, Z are metric spaces.) Then $g \circ f: X \to Z$ is also continuous.

Proof 2: Take an arbitrary convergence sequence in X, $x_k \rightarrow x$.

Since f is continuous, $f(x_k) \to f(x)$ (as a sequence in Y).

Since g is continuous, $g(f(x_k)) \rightarrow g(f(x))$ (as a sequence in Z).

Therefore, the function $g \circ f$ is also continuous.

Proof 3: let W be any open subset in Z. Because g is continuous, $g^{-1}(W)$ is open in Y; because f is continuous, $f^{-1}(g^{-1}(W)) = (g \circ f)^{-1}(W)$ is open in X. Therefore $g \circ f$ is continuous.

Proof 1: [Try using $\varepsilon-\delta$ definition of continuous functions. The outline will be similar to the above, but more cumbersome to state...]

Example of discontinuous function: $\operatorname{Arg}:\mathbb{C}-0\to (-\pi,\pi]$ [Using sequences: easy. Using preimage: also OK. Later: use "connected set".]

Review: some facts about continuous functions from \mathbb{R}^m to \mathbb{R}^n

[In this course, you do not need to justify why some basic functions are continuous...]

Step 1: Continuous functions $f: \mathbb{R}^m \to \mathbb{R}$. Suppose f, g are both real-valued functions on \mathbb{R}^m , and $c \in \mathbb{R}$, then the following are also continuous functions:

• Constant function c, and Linear functions $f(x_1,...,x_m) = a_1x_1 + \cdots + a_mx_m = a^Tx$.

- $f \pm g$; cf; fg; f/g (whenever $g(x) \neq 0$); [Proof idea: sequential criterion + algebraic limit theorem.]
 - \circ Therefore, polynomials in m variables and rational functions are continuous on their domain.
- f, composed with continuous functions $h: \mathbb{R} \to \mathbb{R}$
 - \circ For example, $f^n, \sqrt[n]{f}, |f|, e^f, \ln(f)$ (whenever f > 0) are continuous.
 - o $\max(f,g) = \frac{1}{2}(|f+g| + |f-g|), \min(f,g) = \frac{1}{2}(|f+g| |f-g|)$ are continuous (also true for min/max of finitely many continuous functions).

Step 2: Continuous functions $f: \mathbb{R}^m \to \mathbb{R}^n$.

- $f = (f_1, f_2, \dots, f_n)$, where for each $i = 1, 2, \dots, n$, component $f_i : \mathbb{R}^m \to \mathbb{R}$.
- f is continuous if and only if each f_i is continuous (reducing to step 1).
 - \circ Reason: in \mathbb{R}^n with any p-norm, sequence converges iff each coordinate converges; combine this with the sequential criterion for continuity.