Example 5.3: Heat flow in an L-shaped body (p. 337)

Consider two dimensional heat flow over an L-shaped body with thermal conductivity k=45~W/m.°C shown in Figure. The bottom is maintained at $T_0=110$ °C. Convection heat loss takes place on the top where the ambient air temperature is 20°C and the convection heat transfer coefficient is $h=55~W/m^2$.°C. The right side is insulated. The left side is subjected to heat flux at a uniform rate of $q_L=8000~W/m^2$. Heat is generated in the body at a rate of $Q=5\times10^6~W/m^3$. Determine temperature distribution in the body.

As shown earlier the governing differential equation for a heat flow problem is a special case of the general form. With the numerical values given for this example

$$k_x = k_y = 45; \quad p = 0; \quad q = 5 \times 10^6$$

The boundary conditions are as follows.

For all nodes on the bottom side, T = 110

On the left side $(n_x = -1, n_y = 0)$:

$$-k \frac{\partial T}{\partial n} = k \frac{\partial T}{\partial x} = q_L \implies \alpha = 0; \beta = 8000$$

On the right side, $\alpha = 0$; $\beta = 0$

For convection on horizontal portions of the top side ($n_x = 0$, $n_y = 1$):

$$-k \frac{\partial T}{\partial n} = -k \frac{\partial T}{\partial v} = h(T - T_{\infty})$$

$$\implies \alpha = -h = -55; \beta = h T_{\infty} = 55 \times 20 = 1100$$

For convection on vertical portion of the top side $(n_x=1,\ n_y=0)$:

$$-k \frac{\partial T}{\partial n} = -k \frac{\partial T}{\partial x} = h(T - T_{\infty})$$

$$\implies \alpha = -h = -55; \beta = h T_{\infty} = 55 \times 20 = 1100$$

The complete finite element solution is as follows.

1	2	3			
	2	4			
4	5	6	7	8	
	1	3	5	6	
9	10	11	12	13	
_	10	11	12	13	- x

Global equations at start of the element assembly process

Element dimensions: a = 0.0075; b = 0.0075

NBC on side 4

Complete element equations

$$\begin{pmatrix} 30. & -7.5 & -15. & -7.5 \\ -7.5 & 30. & -7.5 & -15. \\ -15. & -7.5 & 30. & -7.5 \\ -7.5 & -15. & -7.5 & 30. \end{pmatrix} \begin{pmatrix} T_9 \\ T_{10} \\ T_5 \\ T_4 \end{pmatrix} = \begin{pmatrix} 341.25 \\ 281.25 \\ 281.25 \\ 341.25 \end{pmatrix}$$

The element contributes to {9, 10, 5, 4} global degrees of freedom.

Adding element equations into appropriate locations we have

Element dimensions:
$$a = 0.0075$$
; $b = 0.0075$

NBC on side 3

NBC on side 4

Complete element equations

$$\begin{pmatrix} 30. & -7.5 & -15. & -7.5 \\ -7.5 & 30. & -7.5 & -15. \\ -15. & -7.5 & 30.275 & -7.3625 \\ -7.5 & -15. & -7.3625 & 30.275 \end{pmatrix} \begin{pmatrix} T_4 \\ T_5 \\ T_2 \\ T_1 \end{pmatrix} = \begin{pmatrix} 341.25 \\ 281.25 \\ 289.5 \\ 349.5 \end{pmatrix}$$

The element contributes to {4, 5, 2, 1} global degrees of freedom.

Adding element equations into appropriate locations we have

Element dimensions: a = 0.0075; b = 0.0075

Complete element equations

$$\begin{pmatrix} 30. & -7.5 & -15. & -7.5 \\ -7.5 & 30. & -7.5 & -15. \\ -15. & -7.5 & 30. & -7.5 \\ -7.5 & -15. & -7.5 & 30. \end{pmatrix} \begin{pmatrix} T_{10} \\ T_{11} \\ T_6 \\ T_5 \end{pmatrix} = \begin{pmatrix} 281.25 \\ 281.25$$

The element contributes to {10, 11, 6, 5} global degrees of freedom.

Adding element equations into appropriate locations we have

Element dimensions: a = 0.0075; b = 0.0075

NBC on side 2

$$\mathbf{L} = 0.015; \qquad \alpha = -55; \qquad \beta = 1100$$

$$\mathbf{k}_{\alpha} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.275 & 0.1375 & 0 \\ 0 & 0.1375 & 0.275 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; \qquad \mathbf{r}_{\beta} = \begin{pmatrix} 0 \\ 8.25 \\ 8.25 \\ 0 \end{pmatrix}$$

NBC on side 3

Complete element equations

$$\begin{pmatrix} 30. & -7.5 & -15. & -7.5 \\ -7.5 & 30.275 & -7.3625 & -15. \\ -15. & -7.3625 & 30.55 & -7.3625 \\ -7.5 & -15. & -7.3625 & 30.275 \end{pmatrix} \begin{pmatrix} T_5 \\ T_6 \\ T_3 \\ T_2 \end{pmatrix} = \begin{pmatrix} 281.25 \\ 289.5 \\ 297.75 \\ 289.5 \end{pmatrix}$$

The element contributes to {5, 6, 3, 2} global degrees of freedom.

Adding element equations into appropriate locations we have

$$\begin{pmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_6 \\ T_7 \\ T_8 \\ T_9 \\ T_{10} \\ T_{11} \\ T_{12} \\ T_{13} \end{pmatrix} = \begin{pmatrix} 349.5 \\ 579. \\ 579. \\ 682.5 \\ 1125. \\ 570.75 \\ 0 \\ 0 \\ 341.25 \\ 562.5 \\ 281.25 \\ 0 \\ 0 \end{pmatrix}$$

Equations for element 5

Element dimensions: a = 0.0075; b = 0.0075

NBC on side 3

Complete element equations

$$\begin{pmatrix} 30. & -7.5 & -15. & -7.5 \\ -7.5 & 30. & -7.5 & -15. \\ -15. & -7.5 & 30.275 & -7.3625 \\ -7.5 & -15. & -7.3625 & 30.275 \end{pmatrix} \begin{pmatrix} T_{11} \\ T_{12} \\ T_7 \\ T_6 \end{pmatrix} = \begin{pmatrix} 281.25 \\ 281.25 \\ 289.5 \\ 289.5 \\ 289.5 \end{pmatrix}$$

The element contributes to {11, 12, 7, 6} global degrees of freedom.

Adding element equations into appropriate locations we have

Equations for element 6

Element dimensions: a = 0.0075;

b = 0.0075

NBC on side 3

Complete element equations

$$\begin{pmatrix} 30. & -7.5 & -15. & -7.5 \\ -7.5 & 30. & -7.5 & -15. \\ -15. & -7.5 & 30.275 & -7.3625 \\ -7.5 & -15. & -7.3625 & 30.275 \end{pmatrix} \begin{pmatrix} T_{12} \\ T_{13} \\ T_8 \\ T_7 \end{pmatrix} = \begin{pmatrix} 281.25 \\ 281.25 \\ 289.5 \\ 289.5 \\ 289.5 \end{pmatrix}$$

The element contributes to {12, 13, 8, 7} global degrees of freedom.

Adding element equations into appropriate locations we have

Essential boundary conditions

Node	dof	Value
9	T_9	110
10	T_{10}	110
11	T_{11}	110
12	T_{12}	110
13	T_{13}	110

Delete equations {9, 10, 11, 12, 13}.

1	30.275	-7.3625	0	-7.5	-15 .	0	0	0	0	0	0	0	
	-7.3625	60.55	-7.3625	-15.	-15.	-15 .	0	0	0	0	0	0	
	0	-7.3625	30.55	0	-15 .	-7.3625	0	0	0	0	0	0	
	-7.5	-15 .	0	60.	-15.	0	0	0	-7.5	-15.	0	0	
	-15 .	-15 .	-15 .	-15.	120.	-15 .	0	0	-15.	-15 .	-15 .	0	
	0	-15 .	-7.3625	0	-15 .	90.55	-7.3625	0	0	-15 .	-15 .	-15 .	
	0	0	0	0	0	-7.3625	60.55	-7.3625	0	0	-15 .	-15 .	-:
	0	0	0	0	0	0	-7.3625	30.275	0	0	0	-15.	-

Extract columns {9, 10, 11, 12, 13}.

Multiply each column by its respective known value {110, 110, 110, 110, 110}.

Move all resulting vectors to the rhs.

After adjusting for essential boundary conditions we have

$$\begin{pmatrix} 30.275 & -7.3625 & 0 & -7.5 & -15. & 0 & 0 & 0 \\ -7.3625 & 60.55 & -7.3625 & -15. & -15. & -15. & 0 & 0 & 0 \\ 0 & -7.3625 & 30.55 & 0 & -15. & -7.3625 & 0 & 0 & 0 \\ -7.5 & -15. & 0 & 60. & -15. & 0 & 0 & 0 & 0 \\ -15. & -15. & -15. & -15. & 120. & -15. & 0 & 0 & 0 \\ 0 & -15. & -7.3625 & 0 & -15. & 90.55 & -7.3625 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -7.3625 & 60.55 & -7.3625 & 0 \\ 0 & 0 & 0 & 0 & 0 & -7.3625 & 30.275 \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_6 \\ T_7 \\ T_8 \end{pmatrix} = \begin{pmatrix} 349.5 \\ 579. \\ 297.75 \\ 3157.5 \\ 6075. \\ 5810.25 \\ 5529. \\ 2764.5 \end{pmatrix}$$

Solving the final system of global equations we get

$$\{T_1=154.962,\ T_2=151.228,\ T_3=148.673, \\ T_4=145.433,\ T_5=142.521,\ T_6=134.871,\ T_7=122.436,\ T_8=121.088\}$$

Complete table of nodal values

	T
1	154.962
2	151.228
3	148.673
4	145.433
5	142.521
6	134.871
7	122.436
8	121.088
9	110
10	110
11	110
12	110
13	110

Solution for element 1

Coordinates of element center

$$x_c = 0.0075;$$
 $y_c = 0.0075$

Element dimensions: a = 0.0075;

b = 0.0075

Interpolation functions in local element coordinates

$$\textbf{\textit{N}}^T = \{4444.44\,t\,s - 33.3333\,s - 33.3333\,t + 0.25, \, -4444.44\,t\,s + 33.3333\,s - 33.3333\,t + 0.25, \, 4444.44\,t\,s + 33.3333\,s + 33.3333\,t + 0.25\}$$

Shift for global coordinates: s = x - 0.0075;

$$t = y - 0.0075$$

Interpolation functions in global coordinates

$$\textbf{\textit{N}}^T = \\ \{4444.44\,y\,x - 66.6667\,x - 66.6667\,y + 1.,\ 66.6667\,x - 4444.44\,x\,y,\ 4444.44\,x\,y,\ 66.6667\,y - 4444.44\,x\,y\} \\ \text{Nodal values, } \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \\ \text{Nodal values}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal values}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal values}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}^T = \{110,\ 110,\ 142.521,\ 145.433\} \\ \text{Nodal value}, \textbf{\textit{d}^T = \{110,\ 110,\ 142.521,\ 145$$

$$T(\mathbf{x}, \mathbf{y}) = \mathbf{N}^{\mathrm{T}} \mathbf{d} = -12940.9 \,\mathbf{x} \,\mathbf{y} + 2362.17 \,\mathbf{y} + 110.$$

$$\partial T/\partial x = -12940.9 \, y;$$
 $\partial T/\partial y = 2362.17 - 12940.9 \, x$

Solution for element 2

Coordinates of element center

$$x_c = 0.0075;$$
 $y_c = 0.0225$

Element dimensions: a = 0.0075;

b = 0.0075

Interpolation functions in local element coordinates

Shift for global coordinates: s = x - 0.0075;

t = y - 0.0225

Interpolation functions in global coordinates

Nodal values, $\mathbf{d}^{T} = \{145.433, 142.521, 151.228, 154.962\}$

$$T(\mathbf{x},\,\mathbf{y}) = \textbf{\textit{N}}^{T}\textbf{\textit{d}} = -3653.37\,\mathbf{y}\,\mathbf{x} - 139.313\,\mathbf{x} + 635.298\,\mathbf{y} + 135.903$$

$$\partial T/\partial x = -3653.37 \text{ y} - 139.313; \qquad \qquad \partial T/\partial y = 635.298 - 3653.37 \text{ x}$$

Solution for element 3

Coordinates of element center

$$x_c = 0.0225;$$
 $y_c = 0.0075$

Element dimensions: a = 0.0075;

b = 0.0075

Interpolation functions in local element coordinates

$$\textbf{\textit{N}}^T = \{4444.44\,t\,s - 33.3333\,s - 33.3333\,t + 0.25, \, -4444.44\,t\,s + 33.3333\,s - 33.3333\,t + 0.25, \, 4444.44\,t\,s + 33.3333\,s + 33.3333\,t + 0.25\}$$

Shift for global coordinates: s = x - 0.0225;

t = y - 0.0075

Interpolation functions in global coordinates

$$N^T = \{4444.44 \text{ y x} - 66.6667 \text{ x} - 133.333 \text{ y} + 2., \\ -4444.44 \text{ y x} + 66.6667 \text{ x} + 66.6667 \text{ y} - 1., \\ 4444.44 \text{ x y} - 66.6667 \text{ y}, \\ 133.333 \text{ y} - 4444.44 \text{ x y} \}$$

Nodal values, $\boldsymbol{d}^{\mathrm{T}} = \{110, 110, 134.871, 142.521\}$

$$T(\mathbf{x}, \mathbf{y}) = \mathbf{N}^{\mathrm{T}} \mathbf{d} = -34001.2 \,\mathbf{x} \,\mathbf{y} + 2678.07 \,\mathbf{y} + 110.$$

$$\partial T/\partial x = -34001.2 \text{ y};$$
 $\partial T/\partial y = 2678.07 - 34001.2 \text{ x}$

Solution for element 4

Coordinates of element center

$$x_c = 0.0225;$$
 $y_c = 0.0225$

Element dimensions: a = 0.0075;

b = 0.0075

Interpolation functions in local element coordinates

$$\textbf{\textit{N}}^T = \{4444.44\,t\,s - 33.3333\,s - 33.3333\,t + 0.25, \, -4444.44\,t\,s + 33.3333\,s - 33.3333\,t + 0.25, \, 4444.44\,t\,s + 33.3333\,s + 33.3333\,t + 0.25\}$$

Shift for global coordinates: s = x - 0.0225;

t = y - 0.0225

Interpolation functions in global coordinates

$$N^T = \{4444.44 \text{ y x} - 133.333 \text{ x} - 133.333 \text{ y} + 4., -4444.44 \text{ y x} + 133.333 \text{ x} + 66.6667 \text{ y} - 2., 4444.44 \text{ y x} - 66.6667 \text{ x} - 66.6667 \text{ y} + 1., -4444.44 \text{ y x} + 66.6667 \text{ x} + 133.333 \text{ y} - 2.\}$$

Nodal values, $\mathbf{d}^{T} = \{142.521, 134.871, 148.673, 151.228\}$

$$T(x, y) = N^{T} d = 22645.1 y x - 849.695 x + 240.82 y + 146.559$$

$$\partial T/\partial x = 22645.1 \text{ y} - 849.695;$$

$$\partial T/\partial y = 22645.1 x + 240.82$$

Solution for element 5

Coordinates of element center

$$x_c = 0.0375;$$
 $y_c = 0.0075$

Element dimensions: a = 0.0075;

b = 0.0075

Interpolation functions in local element coordinates

$$\textbf{\textit{N}}^T = \{4444.44\,t\,s - 33.3333\,s - 33.3333\,t + 0.25, \, -4444.44\,t\,s + 33.3333\,s - 33.3333\,t + 0.25, \, 4444.44\,t\,s + 33.3333\,s + 33.3333\,t + 0.25\}$$

Shift for global coordinates: s = x - 0.0375;

$$t = y - 0.0075$$

Interpolation functions in global coordinates

$$N^{T} = \{4444.44 \text{ y x} - 66.6667 \text{ x} - 200. \text{ y} + 3., \\ -4444.44 \text{ y x} + 66.6667 \text{ x} + 133.333 \text{ y} - 2., \\ 4444.44 \text{ x y} - 133.333 \text{ y}, \\ 200. \text{ y} - 4444.44 \text{ x y} \}$$

Nodal values, $\mathbf{d}^{\mathrm{T}} = \{110, 110, 122.436, 134.871\}$

$$T(x, y) = N^{T} d = -55265. xy + 3315.99 y + 110.$$

$$\partial T/\partial x = -55265.\,y; \qquad \qquad \partial T/\partial y = 3315.99 - 55265.\,x$$

Solution for element 6

Coordinates of element center

$$x_c = 0.0525;$$
 $y_c = 0.0075$

Element dimensions: a = 0.0075;

b = 0.0075

Interpolation functions in local element coordinates

$$\begin{aligned} N^T &= \{4444.44\,t\,s - 33.3333\,s - 33.3333\,t + 0.25, \, -4444.44\,t\,s + 33.3333\,s - 33.3333\,t + 0.25, \, \\ 4444.44\,t\,s + 33.3333\,s + 33.3333\,t + 0.25, \, -4444.44\,t\,s - 33.3333\,s + 33.3333\,t + 0.25 \} \end{aligned}$$

Shift for global coordinates: s = x - 0.0525;

$$t = y - 0.0075$$

Interpolation functions in global coordinates

$$\begin{aligned} \textbf{\textit{N}}^T &= \{4444.44\,y\,x - 66.6667\,x - 266.667\,y + 4., \\ &- 4444.44\,y\,x + 66.6667\,x + 200.\,y - 3.,\,4444.44\,x\,y - 200.\,y,\,266.667\,y - 4444.44\,x\,y\} \end{aligned}$$

Nodal values, $\boldsymbol{d}^{\mathrm{T}} = \{110, \ 110, \ 121.088, \ 122.436\}$

$$T(x, y) = N^{T} d = -5991.37 x y + 1098.67 y + 110.$$

$$\partial T/\partial x = -5991.37 \,\mathrm{y}; \qquad \qquad \partial T/\partial y = 1098.67 - 5991.37 \,\mathrm{x}$$

Solution summary

Nodal solution

	x-coord	y-coord	T
1	0	0.03	154.962
2	0.015	0.03	151.228
3	0.03	0.03	148.673
4	0	0.015	145.433
5	0.015	0.015	142.521
6	0.03	0.015	134.871
7	0.045	0.015	122.436
8	0.06	0.015	121.088
9	0	0	110
10	0.015	0	110
11	0.03	0	110
12	0.045	0	110
13	0.06	0	110

Solution at element centroids

	x-coord	y-coord	T	$\partial T/\partial x$	$\partial T/\partial y$
1	0.0075	0.0075	126.988	-97.057	2265.11
2	0.0075	0.0225	148.536	-221.514	607.898
3	0.0225	0.0075	124.348	-255.009	1913.04
4	0.0225	0.0225	144.323	-340.18	750.336
5	0.0375	0.0075	119.327	-414.488	1243.55
6	0.0525	0.0075	115.881	-44.9353	784.124

Solution derivatives

$\begin{pmatrix} -221.514 \\ 607.898 \end{pmatrix}$	(-340.18) 750.336)		
$\begin{pmatrix} -97.057 \\ 2265.11 \end{pmatrix}$	(-255.009)	(-414.488)	(-44.9353)
	1913.04)	1243.55)	784.124)