

Show TH XEC, P(x)

Proof: Assume 7 xEC > P(x) Assume 7 is true

[solot] (x)9 E D3x E

P(x): (3 (True)

P(x): {..., 1,...3 (False) note: 1=1+0i

-> <-

ZX × EC > PCx)

geloff 2i T is false. T is false.

i. By TT. & xEC, P(x) is true. ris true by T.T

Show $\exists y \in \mathbb{N} \quad \exists y^3 > y^2$ Proof: Assume $\forall y \in \mathbb{N}, y^3 \leq y^2$ Assume $\forall i \in \mathbb{N}$ if y = 2, then $(2)^3 \leq (2)^2$ $8 \leq 4$ $\Rightarrow \leftarrow$ $8 \neq 4$

.. \forall yEN, $y^3 \leq y^2$ is false. \top is false.

.. By $\top . \top$ \exists yEN \ni $y^3 > y^2$ is true. Γ is true by $\top . \top$

Cose 2

Show Y x EN, x-120 Proposition

Proof: Assume J X EN 3 X-1 CO Assume T is true

0>1-x \(\mathred{\chi}\) \(\mathred{\chi}\)

× < 1

N\$0,00=x EN3x EN3x E

XEN 3 XCI

eslate 2i 7 selate 1-x ENI3 x E i.

.. By T.T. &xEN, x-120 is the. By T.T. ris the

Care-Show 3 x, y & N 3 x & n Proof: Assume & x,y & N & EN if x = 1, y=2, then == EN :. \tempersen, \frac{x}{9} \in N is false .. By TT. 3 x, y EN 3 x & N is true $3 \times ER = 1 \times > 1$, then $\frac{x}{x^2+1} < \frac{8}{x^2+1}$ Proof: Assume $\forall x \in \mathbb{R}$ $\times > 1$ and $\frac{x}{x^2+1} \ge \frac{1}{3}$ I+ (x=0, then (0>1) and 0 (0)2+1 (0>1) and $\left(0>\frac{1}{3}\right)$ $(0 \le 1)$ and $(0 \le \frac{1}{3})$ ". $\forall \times \in \mathbb{R}$ $\times > 1$ and $\frac{\times}{\times^2 + 1} = \frac{1}{3}$ is raise. i. By TT. 3 XER if x > 1, then $\frac{x}{x^2+1} < \frac{1}{3}$ is tree.

Co:	
Stani If rition even Integer, then x is odd. to	This is a "for all"
× 2	statement; H
	Magaza to "-tore acity"
	-,
	negate P-ta to Pra
Proof: A: sume = = x in Z & x +1 is an even Integer AND	x is even.
Δ	
Ix in Z + x+1 is an even Z (Ang) ===	CIEZ Deno, mon se
	روساع مره
	inteas.
P	
3 x in 2 3 (x+1 is an even 2' (AMD) x+1=2	x+1 coers be
	both even and
	097
ZxEZ = x+1 is even and x+1 is odd	Thore is no x in the
	Integers such that,
	x+1 is even and odd.
3 x in 2 3 x+1 is an even Integer AND x is even	s false.
By TT It x+1 is an even Integer, then x is odd is to	rve.

(Care 2) Show 4	
Show & x, y ER it x+y 22, then	Cx21 or y21]
Proof: Assume I x,y EK x+2-2 AND [
3 x, y ER x + 222 and x + y e2	negation of x+y=2
2 x, y ER x+2 22 and x+y <2	
(1) You Exerx x=2 and Exeloryell	
By T.T. \taux,y ER ix x+y 22, +hen Cx	c 21 or y 212 is the
(Case 2) 5 how 4	
Show \ XER if x>1, then x2>x	
Proof: Assume 3x ER 3 x >1 and x 2 < x	
Verintention	
-x -x	
$x^{2}-x \leq 0$ $x(x-1) \leq 0$	
x = 0	
	(i): -'\(-\(\cdot\-\cdot\) \\ = 0
$\left(\begin{array}{c} 0 \leq x \leq 1 \end{array} \right)$	(-)(-) (+)
	$(5):5(.5-1) \leq 0$ $(+)(-)$
	2): $2(2-1) \leq 0$ $(+)(+)$
	(+)

(Cose D) Show
$$\forall$$

(Cose D) Show \forall

(Cose D) Sho

