

(iii) ab 2+66 pfag W: dp atbb pla

5+ +05

21= 41,41

22= X2,42

24= X2,44

23= X1,43

24= X2,44

25= X1,44

24= X2,44

25= X1,44

24= X2,44

25= X1,44

24= X2,44

25= X1,44

25= X1,44

2) Probabilistic Meere Theorem: Paper ains to at a probilistic conterport of Deenes Theorem. Assure that expressions an automot Jep Koart quantitative properties of Lords. totablishes Probabilistic Prite Automata (PFA). depend on input letter. Assure that finel state his has out soin transitions. Then aims to make Probabilistic Repular Explosion of PRES) PREDS are fregments of LEG built inductively IS Af is PRE, then Et. F is PRE To construct PRF equivalent to PFA, propositions are

DEHF 8 9 = PRF then Et F. 9 = PRF

J: A+ > [0,1] if (f) regornized by PFA then recognized by PFA then recognized by PFA Theorem is that PfAsal PRES are effectively equilibrate then Two-way revigetions (for traversity apol) and Pubbles (for recovering Ater) are added Bobobilistic Pebble Autorate is constructed, then Probabilistic Peloble Expusion. Both are shown to be equilibent

Probalistic Kleene Theorem

Theorem is from any PPE can ay PPA be constructed equinant

Theorem 3: Forom A be, a PPA with p peobles, can be construct a co PPF. o Ei = Eq E Acc Eign

Corrainy: for every PPE & ad LEAT
we have ([E]](b) & [O,1]

The state of the s

Kleone Tired Autoriate:
Airs to light find NES, an extension of NES to specify sets of dense time dispete - value sympt
Tires RES:
bet of tirel 1 to over an alphabet 2 is defind recursively as either 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
29 9 2 9, 11 , 12.
Timed Automate:
1) red Autobrate: (1) 1/2 (2) (1) 1/2 (2) (1) 1/2 (2) (1) 2 (2) (1) 2 (2) (1) 2 (2) (1) 2 (2) (1) 2 (2) (1) 2 (2) (1) 2 (2) (2) 2 (2) (3) 2 (2) (4) 2 (2) (4) 2 (2) (5) 2 (2) (6) 2 (2) (7) 2 (2) (8) 2 (2) (9) 3 (2) (9) 4 (2) (9) 5 (2) (9) 6 (2) (9) 6 (2) (9) 7 (2
A TA is a type $A = (Q, C, \Delta, E, \lambda_1, E, \lambda_2, F)$. Three Disapprove (Q, C, D, E, \lambda_1, E, \lambda_2, F).
Q: finite ect of states
C = finiter choks
C: finiter chocks 2: output a liphe bet
A = dravitor raction
1: Q > 0 & is consult put rep 5 c & d o in itial set
FC Q acceptly set

	14575,67.		
	11,011,0,9		
T. J			
state	a	Ь	6
4 4	3 EV	4 20	2 p
× 2	5 111	5 11	5 m
13	6 111	III F	7 111
1 14	T	TI	5 III
5	II II	8 11	21
6	91	10 1	3 IV
	10 II	V I	YIV
7	10 11		-
28	1/0/11	5 m	7 w
a	10011	6 m	70
10	9 II	7 111	7 並
111	HI	7 111	71
grel:			
6	a	Ь	. C
2 1	312	YW	214
IN S 2	5 11		5m
3	6 n		7 11
4	7 1	2	
111 5	11 11		2
6	91	11	7.
6	10	-	
8	11		
1 9 10	10		
(1)	d II	-	7115
	11 2	r Two	7 1

Diogram

states = 5 i=j=3 k=2 51-30-50 133 332 0000,000 111 22 JOOD YIR KROOD 0839123 HB > A V (xy) 50 state 1000111/4 5 6 2 \$5 X thuo not regular

