UAV drop physic

Generated by Doxygen 1.9.1

1 Namespace Index	1
1.1 Namespace List	
2 Hierarchical Index	;
2.1 Class Hierarchy	
3 Class Index	ţ
3.1 Class List	
4 File Index	7
4.1 File List	5
5 Namespace Documentation	9
5.1 def Namespace Reference	
5.1.1 Detailed Description	
5.1.2 Variable Documentation	
5.1.2.1 INFO_PERIOD	
5.1.2.2 STEP_TIME	
6 Class Documentation	11
6.1 Accelerometer Class Reference	
6.1.1 Detailed Description	
6.1.2 Constructor & Destructor Documentation	
6.1.2.1 Accelerometer()	
6.1.3 Member Function Documentation	
6.1.3.1 update()	
6.1.4 Member Data Documentation	
6.1.4.1 g	
6.2 AeroCoefficients Struct Reference	
6.2.1 Detailed Description	
6.2.2 Member Data Documentation	
6.2.2.1 C0	
6.2.2.2 Cab	
6.2.2.3 Cpqr	
6.2.2.4 d	
6.2.2.5 eAR	
6.2.2.6 S	
6.2.2.7 stallLimit	
6.3 AHRS Class Reference	
6.3.1 Detailed Description	
6.3.2 Constructor & Destructor Documentation	
6.3.2.1 AHRS()	
6.3.2.2 ~AHRS()	
6.3.3 Member Function Documentation	

6.3.3.1 getGyroBias()	 . 15
6.3.3.2 getOri()	 . 15
6.3.3.3 rot_bw()	 . 16
6.3.3.4 update()	 . 16
6.3.4 Member Data Documentation	 . 16
6.3.4.1 env	 . 16
6.3.4.2 logger	 . 16
6.3.4.3 mtxOri	 . 16
6.3.4.4 ori_est	 . 17
6.4 AHRS_complementary Class Reference	 . 17
6.4.1 Detailed Description	 . 17
6.4.2 Constructor & Destructor Documentation	 . 17
6.4.2.1 AHRS_complementary()	 . 17
$6.4.2.2 \sim \text{AHRS_complementary()} \dots \dots \dots \dots \dots \dots \dots$. 18
6.4.3 Member Function Documentation	 . 18
6.4.3.1 rot_bw()	 . 18
6.4.3.2 update()	 . 18
6.4.4 Member Data Documentation	 . 18
6.4.4.1 alpha	 . 18
6.5 AHRS_EKF Class Reference	 . 19
6.5.1 Detailed Description	 . 19
6.5.2 Constructor & Destructor Documentation	 . 19
6.5.2.1 AHRS_EKF()	 . 19
6.5.2.2 ~AHRS_EKF()	 . 20
6.5.3 Member Function Documentation	 . 20
6.5.3.1 getGyroBias()	 . 20
6.5.3.2 q()	 . 20
6.5.3.3 quaterionToRPY()	 . 20
6.5.3.4 rot_bw()	 . 20
6.5.3.5 RPYToQuaterion()	 . 21
6.5.3.6 update()	 . 21
6.5.4 Member Data Documentation	 . 21
6.5.4.1 P	 . 21
6.5.4.2 Q	 . 21
6.5.4.3 R	 . 21
6.5.4.4 x	 . 21
6.6 AHRSParams Struct Reference	 . 22
6.6.1 Detailed Description	 . 22
6.6.2 Member Data Documentation	 . 22
6.6.2.1 alpha	 . 22
6.6.2.2 Q	 . 22
6.6.2.3 R	 . 22

6.6.2.4 type	. 22
6.7 Ammo Class Reference	. 23
6.7.1 Constructor & Destructor Documentation	. 23
6.7.1.1 Ammo() [1/2]	. 23
6.7.1.2 Ammo() [2/2]	. 23
6.7.2 Member Function Documentation	. 23
6.7.2.1 getV0()	. 24
6.7.2.2 operator=()	. 24
6.7.3 Member Data Documentation	. 24
6.7.3.1 _V0	. 24
6.8 Barometer Class Reference	. 24
6.8.1 Detailed Description	. 25
6.8.2 Constructor & Destructor Documentation	. 25
6.8.2.1 Barometer()	. 25
6.8.3 Member Function Documentation	. 25
6.8.3.1 update()	. 25
6.9 Cargo Class Reference	. 25
6.9.1 Constructor & Destructor Documentation	. 26
6.9.1.1 Cargo() [1/2]	. 26
6.9.1.2 Cargo() [2/2]	. 26
6.10 Control Class Reference	. 26
6.10.1 Detailed Description	. 27
6.10.2 Constructor & Destructor Documentation	. 27
6.10.2.1 Control()	. 27
6.10.2.2 ~Control()	. 28
6.10.3 Member Function Documentation	. 28
6.10.3.1 handleMsg()	. 28
6.10.3.2 prepare()	. 28
6.10.3.3 recv()	. 28
6.10.3.4 sendHinge()	. 29
6.10.3.5 sendSpeed()	. 30
6.10.3.6 sendSurface()	. 30
6.10.3.7 start()	. 30
6.10.3.8 startJet()	. 30
6.10.3.9 stop()	. 31
6.11 Controller Class Reference	. 31
6.11.1 Detailed Description	. 31
6.11.2 Constructor & Destructor Documentation	. 32
6.11.2.1 Controller()	. 32
6.11.2.2 ~Controller()	. 33
6.11.3 Member Function Documentation	. 33
6.11.3.1 exitController()	. 33

6.11.3.2 run()	. 33
6.11.3.3 setMode()	. 33
6.11.4 Friends And Related Function Documentation	. 34
6.11.4.1 Control	. 34
6.12 ControllerLoop Class Reference	. 34
6.12.1 Detailed Description	. 35
6.12.2 Constructor & Destructor Documentation	. 35
6.12.2.1 ControllerLoop()	. 35
6.12.2.2 ~ControllerLoop()	. 35
6.12.3 Member Function Documentation	. 35
6.12.3.1 checkJoystickLength()	. 36
6.12.3.2 ControllerLoopFactory()	. 37
6.12.3.3 demandInfo()	. 37
6.12.3.4 getMode()	. 37
6.12.3.5 handleJoystick()	. 38
6.12.3.6 job()	. 38
6.12.3.7 overridePosition()	. 38
6.12.3.8 requiredPIDs()	. 38
6.12.4 Member Data Documentation	. 39
6.12.4.1 _mode	. 39
6.12.4.2 required_pids	. 39
6.13 ControllerLoopFMANUAL Class Reference	. 39
6.13.1 Constructor & Destructor Documentation	. 39
6.13.1.1 ControllerLoopFMANUAL()	. 40
6.13.2 Member Function Documentation	. 40
6.13.2.1 handleJoystick()	. 40
6.13.2.2 job()	. 40
6.14 ControllerLoopNONE Class Reference	. 40
6.14.1 Constructor & Destructor Documentation	. 40
6.14.1.1 ControllerLoopNONE()	. 41
6.15 ControllerLoopQACRO Class Reference	. 41
6.15.1 Constructor & Destructor Documentation	. 41
6.15.1.1 ControllerLoopQACRO()	. 41
6.15.2 Member Function Documentation	. 41
6.15.2.1 demandInfo()	. 42
6.15.2.2 handleJoystick()	. 42
6.15.2.3 job()	. 42
6.16 ControllerLoopQANGLE Class Reference	. 42
6.16.1 Constructor & Destructor Documentation	. 43
6.16.1.1 ControllerLoopQANGLE()	. 43
6.16.2 Member Function Documentation	. 43
6.16.2.1 demandInfo()	. 43

6.16.2.2 handleJoystick()	43
6.16.2.3 job()	43
6.16.2.4 overridePosition()	44
6.17 ControllerLoopQPOS Class Reference	44
6.17.1 Constructor & Destructor Documentation	44
6.17.1.1 ControllerLoopQPOS()	44
6.17.2 Member Function Documentation	44
6.17.2.1 demandInfo()	45
6.17.2.2 handleJoystick()	45
6.17.2.3 job()	45
6.17.2.4 overridePosition()	45
6.18 ControllerLoopRMANUAL Class Reference	45
6.18.1 Constructor & Destructor Documentation	46
6.18.1.1 ControllerLoopRMANUAL()	46
6.18.2 Member Function Documentation	46
6.18.2.1 demandInfo()	46
6.18.2.2 handleJoystick()	46
6.18.2.3 job()	47
6.18.3 Member Data Documentation	47
6.18.3.1 demandedX	47
6.18.3.2 demandedY	47
6.19 ControlSurfaces Class Reference	47
6.19.1 Detailed Description	48
6.19.2 Constructor & Destructor Documentation	48
6.19.2.1 ControlSurfaces() [1/2]	48
6.19.2.2 ControlSurfaces() [2/2]	48
6.19.3 Member Function Documentation	48
6.19.3.1 getCoefficients()	48
6.19.3.2 getNoOfSurface()	49
6.19.3.3 getValues()	49
6.19.3.4 restoreTrim()	49
6.19.3.5 setValues()	49
6.20 Drive Struct Reference	49
6.20.1 Detailed Description	50
6.20.2 Member Data Documentation	50
6.20.2.1 axis	50
6.20.2.2 hinges	50
6.20.2.3 noOfHinges	50
6.20.2.4 position	50
6.21 EKF Class Reference	50
6.21.1 Detailed Description	51
6.21.2 Constructor & Destructor Documentation	51

6.21.2.1 EKF()	51
6.21.3 Member Function Documentation	51
6.21.3.1 getPos()	51
6.21.3.2 getVeI()	52
6.21.3.3 log()	52
6.21.3.4 predict()	52
6.21.3.5 updateBaro()	52
6.21.3.6 updateGPS()	53
6.21.3.7 updateGPSVel()	53
6.22 EKFParams Struct Reference	53
6.22.1 Detailed Description	54
6.22.2 Member Data Documentation	54
6.22.2.1 P0	54
6.22.2.2 Q	54
6.22.2.3 RBaro	54
6.22.2.4 RGPSPos	54
6.22.2.5 RGPSVel	54
6.23 EKFScalers Struct Reference	55
6.23.1 Detailed Description	55
6.23.2 Member Data Documentation	55
6.23.2.1 baroScaler	55
6.23.2.2 predictScaler	55
6.23.2.3 updateScaler	55
6.23.2.4 zScaler	55
6.24 Environment Class Reference	56
6.24.1 Constructor & Destructor Documentation	56
6.24.1.1 Environment()	56
6.24.1.2 ∼Environment()	57
6.24.2 Member Function Documentation	57
6.24.2.1 getAngularAcceleraton()	57
6.24.2.2 getAngularVelocity()	57
6.24.2.3 getLinearAcceleration()	58
6.24.2.4 getLinearVelocity()	58
6.24.2.5 getOrientation()	58
6.24.2.6 getPosition()	58
6.24.2.7 getRnb()	59
6.24.2.8 getTime()	59
6.24.2.9 getWorldAngularVelocity()	59
6.24.2.10 getWorldLinearVelocity()	59
6.24.2.11 updateSensors()	60
6.24.3 Member Data Documentation	60
6.24.3.1 sensors	60

6.24.3.2 sensorsVec3d	60
6.25 GPS Class Reference	60
6.25.1 Detailed Description	61
6.25.2 Constructor & Destructor Documentation	61
6.25.2.1 GPS()	61
6.25.3 Member Function Documentation	61
6.25.3.1 update()	61
6.26 GPSVel Class Reference	61
6.26.1 Detailed Description	62
6.26.2 Constructor & Destructor Documentation	62
6.26.2.1 GPSVel()	62
6.26.3 Member Function Documentation	62
6.26.3.1 update()	62
6.27 Gyroscope Class Reference	63
6.27.1 Detailed Description	63
6.27.2 Constructor & Destructor Documentation	63
6.27.2.1 Gyroscope()	63
6.27.3 Member Function Documentation	63
6.27.3.1 update()	63
6.28 Hinge Class Reference	64
6.28.1 Detailed Description	64
6.28.2 Constructor & Destructor Documentation	64
6.28.2.1 Hinge() [1/3]	64
6.28.2.2 Hinge() [2/3]	64
6.28.2.3 Hinge() [3/3]	64
6.28.3 Member Function Documentation	65
6.28.3.1 getRot()	65
6.28.3.2 operator=()	65
6.28.3.3 updateValue()	65
6.29 Jet Class Reference	65
6.29.1 Detailed Description	66
6.29.2 Member Function Documentation	66
6.29.2.1 getLastThrust()	66
6.29.2.2 getThrust()	66
6.29.2.3 start()	67
6.29.3 Member Data Documentation	67
6.29.3.1 phases	67
6.29.3.2 thrust	67
6.29.3.3 time	67
6.30 Load Class Reference	68
6.30.1 Detailed Description	68
6.30.2 Constructor & Destructor Documentation	68

6.30.2.1 Load() [1/2]	68
6.30.2.2 Load() [2/2]	68
6.30.3 Member Function Documentation	69
6.30.3.1 getMass()	69
6.30.3.2 getOffset()	69
6.30.3.3 operator=()	69
6.30.3.4 release()	69
6.31 Logger Class Reference	70
6.31.1 Detailed Description	70
6.31.2 Constructor & Destructor Documentation	70
6.31.2.1 Logger()	70
6.31.2.2 ~Logger()	71
6.31.3 Member Function Documentation	71
6.31.3.1 log() [1/2]	71
6.31.3.2 log() [2/2]	71
6.31.3.3 setFmt()	72
6.31.3.4 setLogDirectory()	72
6.32 Magnetometer Class Reference	72
6.32.1 Detailed Description	73
6.32.2 Constructor & Destructor Documentation	73
6.32.2.1 Magnetometer()	73
6.32.3 Member Function Documentation	73
6.32.3.1 update()	73
6.32.4 Member Data Documentation	73
6.32.4.1 mag	73
6.33 NS Class Reference	74
6.33.1 Detailed Description	74
6.33.2 Constructor & Destructor Documentation	74
6.33.2.1 NS()	74
6.33.2.2 ∼NS()	74
6.33.3 Member Function Documentation	75
6.33.3.1 getAngularVelocity()	75
6.33.3.2 getLinearVelocity()	75
6.33.3.3 getOrientation()	75
6.33.3.4 getPosition()	76
6.34 ODE Class Reference	76
6.34.1 Detailed Description	77
6.34.2 Member Enumeration Documentation	77
6.34.2.1 ODEMethod	77
6.34.3 Constructor & Destructor Documentation	77
6.34.3.1 ODE()	77
6.34.3.2 ∼ODE()	77

6.34.4 Member Function Documentation	77
6.34.4.1 factory()	77
6.34.4.2 fromString()	78
6.34.4.3 getMicrosteps() [1/2]	78
6.34.4.4 getMicrosteps() [2/2]	78
6.34.4.5 step()	79
6.35 ODE_Euler Class Reference	79
6.35.1 Detailed Description	80
6.35.2 Constructor & Destructor Documentation	80
6.35.2.1 ODE_Euler()	80
6.35.3 Member Function Documentation	80
6.35.3.1 step()	80
6.36 ODE_Heun Class Reference	81
6.36.1 Detailed Description	81
6.36.2 Constructor & Destructor Documentation	81
6.36.2.1 ODE_Heun()	81
6.36.3 Member Function Documentation	81
6.36.3.1 step()	81
6.37 ODE_RK4 Class Reference	82
6.37.1 Detailed Description	82
6.37.2 Constructor & Destructor Documentation	82
6.37.2.1 ODE_RK4()	83
6.37.3 Member Function Documentation	83
6.37.3.1 step()	83
6.38 ODETest Class Reference	83
6.38.1 Member Function Documentation	84
6.38.1.1 SetUp()	84
6.38.1.2 TearDown()	84
6.39 PID Class Reference	84
6.39.1 Detailed Description	84
6.39.2 Constructor & Destructor Documentation	84
6.39.2.1 PID()	85
6.39.2.2 ~PID()	85
6.39.3 Member Function Documentation	85
6.39.3.1 calc() [1/2]	85
6.39.3.2 calc() [2/2]	85
6.39.3.3 clear()	86
6.39.3.4 set_dt()	86
6.40 Rotor Struct Reference	86
6.40.1 Detailed Description	87
6.40.2 Member Data Documentation	87
6.40.2.1 direction	87

6.40.2.2 forceCoff	 . 87
6.40.2.3 hoverSpeed	 . 87
6.40.2.4 maxSpeed	 . 87
6.40.2.5 timeConstant	 . 87
6.40.2.6 torqueCoff	 . 87
$6.41 \; Sensor < T > Class \; Template \; Reference \; \ldots \; $. 88
6.41.1 Detailed Description	 . 88
6.41.2 Constructor & Destructor Documentation	 . 89
6.41.2.1 Sensor()	 . 89
6.41.3 Member Function Documentation	 . 89
6.41.3.1 error()	 . 89
6.41.3.2 getReading()	 . 89
6.41.3.3 getSd()	 . 90
6.41.3.4 isReady()	
6.41.3.5 shouldUpdate()	 . 90
6.41.3.6 update()	 . 90
6.41.4 Member Data Documentation	 . 91
6.41.4.1 bias	 . 91
6.41.4.2 dist	 . 91
6.41.4.3 env	 . 91
6.41.4.4 gen	 . 91
6.41.4.5 lastUpdate	 . 91
6.41.4.6 logger	 . 91
6.41.4.7 ready	 . 92
6.41.4.8 refreshTime	 . 92
6.41.4.9 value	 . 92
6.42 SensorParams Struct Reference	 . 92
6.42.1 Detailed Description	 . 92
6.42.2 Member Data Documentation	 . 92
6.42.2.1 bias	 . 93
6.42.2.2 name	 . 93
6.42.2.3 refreshTime	 . 93
6.42.2.4 sd	 . 93
6.43 TimedLoop Class Reference	 . 93
6.43.1 Detailed Description	 . 93
6.43.2 Constructor & Destructor Documentation	 . 94
6.43.2.1 TimedLoop()	 . 94
6.43.3 Member Function Documentation	 . 95
6.43.3.1 go() [1/2]	 . 95
6.43.3.2 go() [2/2]	 . 95
6.44 UAVparams Struct Reference	 . 95
6.44.1 Detailed Description	 . 96

6.44.2 Constructor & Destructor Documentation	 97
6.44.2.1 UAVparams()	 97
6.44.2.2 ~UAVparams()	 97
6.44.3 Member Function Documentation	 97
6.44.3.1 getRotorHoverSpeeds()	 97
6.44.3.2 getRotorMaxSpeeds()	 97
6.44.3.3 getRotorTimeContants()	 97
6.44.3.4 getSingleton()	 97
6.44.3.5 loadConfig()	 98
6.44.4 Member Data Documentation	 98
6.44.4.1 aero_coffs	 98
6.44.4.2 ahrs	 98
6.44.4.3 ammo	
6.44.4.4 cargo	 98
6.44.4.5 ekf	 98
6.44.4.6 initialMode	 98
6.44.4.7 initialOrientation	 99
6.44.4.8 initialPosition	
6.44.4.9 initialVelocity	 99
6.44.4.10 instantRun	 99
6.44.4.11 lx	
6.44.4.12 lxy	 99
6.44.4.13 lxz	 99
6.44.4.14 ly	
6.44.4.15 lyz	
6.44.4.16 lz	
6.44.4.17 jets	 100
6.44.4.18 m	 100
6.44.4.19 name	
6.44.4.20 noOfAmmo	
6.44.4.21 noOfCargo	
6.44.4.22 noOfJets	
6.44.4.23 noOfRotors	_
6.44.4.24 pids	
6.44.4.25 rotorMixer	
6.44.4.26 rotors	
6.44.4.27 sensors	
6.44.4.28 surfaceMixer	
6.44.4.29 surfaces	 101
File Documentation	103
7.1 lib/UAV_common/header/common.hpp File Reference	 103

7.2 lib/UAV_common/src/components/aero_coefficients.hpp File Reference
7.3 lib/UAV_common/src/components/components.hpp File Reference
7.4 lib/UAV_common/src/components/control_surfaces.cpp File Reference
7.5 lib/UAV_common/src/components/control_surfaces.hpp File Reference
7.6 lib/UAV_common/src/components/drive.cpp File Reference
7.7 lib/UAV_common/src/components/drive.hpp File Reference
7.8 lib/UAV_common/src/components/hinge.cpp File Reference
7.8.1 Function Documentation
7.8.1.1 asSkewMatrix()
7.9 lib/UAV_common/src/components/hinge.hpp File Reference
7.10 lib/UAV_common/src/components/loads.cpp File Reference
7.11 lib/UAV_common/src/components/loads.hpp File Reference
7.12 lib/UAV_common/src/components/navi.hpp File Reference
7.13 lib/UAV_common/src/logger/logger.cpp File Reference
7.13.1 Function Documentation
7.13.1.1 shouldLog()
7.14 lib/UAV_common/src/logger/logger.hpp File Reference
7.14.1 Macro Definition Documentation
7.14.1.1 LOGGER_MASK
7.15 lib/UAV_common/src/ode/ode.cpp File Reference
7.16 lib/UAV_common/src/ode/ode.hpp File Reference
7.17 lib/UAV_common/src/ode/ode_impl.hpp File Reference
7.18 lib/UAV_common/src/ode/ode_test.cpp File Reference
7.18.1 Function Documentation
7.18.1.1 getMethodsToTest()
7.18.1.2 INSTANTIATE_TEST_SUITE_P()
7.18.1.3 main()
7.18.1.4 TEST_F() [1/2]
7.18.1.5 TEST_F() [2/2]
7.18.1.6 TEST_P() [1/3]
7.18.1.7 TEST_P() [2/3]
7.18.1.8 TEST_P() [3/3]
7.19 lib/UAV_common/src/parser/parser.cpp File Reference
7.19.1 Function Documentation
7.19.1.1 parseMatrixXd()
7.19.1.2 parseVectorXd()
7.20 lib/UAV_common/src/parser/parser.hpp File Reference
7.20.1 Function Documentation
7.20.1.1 parseMatrixXd()
7.20.1.2 parseVectorXd()
7.21 lib/UAV_common/src/parser/uav_params.cpp File Reference
7.21.1 Function Documentation 112

7.21.1.1 parseHinge()
7.21.1.2 parsePID()
7.22 lib/UAV_common/src/parser/uav_params.hpp File Reference
7.23 lib/UAV_common/src/PID/PID.cpp File Reference
7.24 lib/UAV_common/src/PID/PID.hpp File Reference
7.24.1 Enumeration Type Documentation
7.24.1.1 AntiWindUpMode
7.25 lib/UAV_common/src/timed_loop/status.hpp File Reference
7.25.1 Enumeration Type Documentation
7.25.1.1 Status
7.26 lib/UAV_common/src/timed_loop/timed_loop.cpp File Reference
7.27 lib/UAV_common/src/timed_loop/timed_loop.hpp File Reference
7.28 src/communication/control.cpp File Reference
7.28.1 Function Documentation
7.28.1.1 orderServerJob()
7.29 src/communication/control.hpp File Reference
7.30 src/communication/control_recv.cpp File Reference
7.31 src/communication/control_send.cpp File Reference
7.32 src/controller/controller.cpp File Reference
7.33 src/controller/controller.hpp File Reference
7.34 src/controller_loop.cpp File Reference
7.35 src/controller_loop.hpp File Reference
7.36 src/controller_mode.hpp File Reference
7.36.1 Enumeration Type Documentation
7.36.1.1 ControllerMode
7.36.2 Function Documentation
7.36.2.1 ControllerModeFromString()
7.36.2.2 ControllerModeToString()
7.37 src/controller/mixers.cpp File Reference
7.37.1 Function Documentation
7.37.1.1 applyMixerRotors()
7.37.1.2 applyMixerRotorsHover()
7.37.1.3 applyMixerSurfaces()
7.38 src/controller/mixers.hpp File Reference
7.38.1 Function Documentation
7.38.1.1 applyMixerRotors()
7.38.1.2 applyMixerRotorsHover()
7.38.1.3 applyMixerSurfaces()
7.39 src/controller/modes/controller_loop_FMANUAL.cpp File Reference
7.40 src/controller/modes/controller_loop_FMANUAL.hpp File Reference
7.41 src/controller/modes/controller_loop_NONE.cpp File Reference
7.42 src/controller/modes/controller_loop_NONE.hpp File Reference

7.43 src/controller/modes/controller_loop_QACRO.cpp File Reference
7.44 src/controller/modes/controller_loop_QACRO.hpp File Reference
7.45 src/controller/modes/controller_loop_QANGLE.cpp File Reference
7.46 src/controller/modes/controller_loop_QANGLE.hpp File Reference
7.47 src/controller/modes/controller_loop_QPOS.cpp File Reference
7.48 src/controller/modes/controller_loop_QPOS.hpp File Reference
7.49 src/controller/modes/controller_loop_RMANUAL.cpp File Reference
7.50 src/controller/modes/controller_loop_RMANUAL.hpp File Reference
7.51 src/defines.hpp File Reference
7.51.1 Macro Definition Documentation
7.51.1.1 USE_QUATERIONS
7.52 src/main.cpp File Reference
7.52.1 Macro Definition Documentation
7.52.1.1 LOGGER_MASK
7.52.2 Function Documentation
7.52.2.1 main()
7.52.2.2 parseArgs()
7.52.3 Variable Documentation
7.52.3.1 log_path
7.53 src/navigation/AHRS.cpp File Reference
7.54 src/navigation/AHRS.hpp File Reference
7.55 src/navigation/AHRS/AHRS_complementary.cpp File Reference
7.55.1 Function Documentation
7.55.1.1 calcRbn()
7.55.1.2 calcRnb()
7.55.1.3 calcTom()
7.55.1.4 clampOrientation()
7.56 src/navigation/AHRS/AHRS_complementary.hpp File Reference
7.57 src/navigation/AHRS/AHRS_EKF.cpp File Reference
7.57.1 Function Documentation
7.57.1.1 C()
7.57.1.2 S()
7.58 src/navigation/AHRS/AHRS_EKF.hpp File Reference
7.59 src/navigation/EKF.cpp File Reference
7.60 src/navigation/EKF.hpp File Reference
7.61 src/navigation/environment.cpp File Reference
7.61.1 Function Documentation
7.61.1.1 connectConflateSocket()
7.61.1.2 r_nb() [1/2]
7.61.1.3 r_nb() [2/2]
7.61.1.4 recvVectors()
7.62 src/navigation/environment.hpp File Reference

Index	13
	7.67.1.4 safeSet()
	7.67.1.3 safeGet()
	7.67.1.2 clampAngle()
	7.67.1.1 circularError()
	7.67.1 Function Documentation
7.67	src/utils.hpp File Reference
7.66	src/navigation/sensors.hpp File Reference
7.65	src/navigation/sensors.cpp File Reference
7.64	src/navigation/NS.hpp File Reference
7.63	src/navigation/NS.cpp File Reference

Namespace Index

1.1 Namespace List

Here is a list of all nar	nespaces with brief descriptions:	
def	or constants	

2 Namespace Index

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

AeroCoefficients	
AHRS	
AHRS_EKF	
AHRS_complementary	
AHRSParams	. 22
Control	
Controller	
ControllerLoop	. 34
ControllerLoopFMANUAL	39
ControllerLoopNONE	40
ControllerLoopQACRO	41
ControllerLoopQANGLE	42
ControllerLoopQPOS	44
ControllerLoopRMANUAL	45
ControlSurfaces	. 47
Drive	. 49
Jet	65
Rotor	86
EKF	. 50
EKFParams	
EKFScalers	
Environment	
Hinge	
Load	
Ammo	
Cargo	
Logger	
NS	
ODE	
ODE Euler	
ODE_Euler	
ODE_RK4	
-	
PID	
$Sensor < T > \dots \dots$. 88

4 Hierarchical Index

ensor< double >	
Barometer	2
ensor< Eigen::Vector3d >	8
Accelerometer	
GPS	6
GPSVel	6
Gyroscope	6
Magnetometer	7
ensorParams	9
sting::TestWithParam	
ODETest	8
medLoop	
∆Vnarams	C

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Accelerometer
Representation of accelerometer
AeroCoefficients
Aerodynamic coefficient
AHRS
Attitude and heading reference system
AHRS_complementary
Implementation of AHRS based on Complementary Filter
AHRS_EKF
Implementation of AHRS based on Extended Kalman Filter
AHRSParams
AHRS parameters
Ammo
Barometer
Representation of barometer
Cargo
Control
Control command listener & sender
Controller
Central controller class
ControllerLoop
This class is interface of controller modes. All modes should keep this strucure and implements
all true virtual methods
ControllerLoopFMANUAL
ControllerLoopNONE
ControllerLoopQACRO
ControllerLoopQANGLE
ControllerLoopQPOS
ControllerLoopRMANUAL
ControlSurfaces
Aircraft's control surfaces
Drive
Drive propelling aircraft
EKF
Extended Kalman Filter

6 Class Index

EKFPara	ims control of the co	
	EK filer parameters	53
EKFScal	ers	
	Scalers for EKF	55
Environm GPS	nent	56
GPSVel	Representation of GPS position measure	60
	Representation of GPS velocity measure	61
Gyroscop		00
Hinge	Representation of gyroscope	63
Jet	Hinge connecting aircraft with drives	64
Lood	Jet rocket engine	65
Load	Load of aircraft that can be droped or launched	68
Logger	Log vector data with timestamp in file	70
Magneto	meter	
NS	Representation of magnetometer	72
ODE	Navigation system	74
	Ordinal differencial equation solver	76
ODE_Eu		
ODE_He	Explicit Euler algorithm	79
ODE RK	Second order explicit Heun algorithm	81
	Fourth order Runge Kutta algorithm	82
ODETest PID		83
	PID discrete controller	84
Rotor		-00
Sensor<	Rotor engine with controlled speed	86
SensorPa	Sensors base class	88
23/100/11	Base parameters of a sensor	92
TimedLo	ор	
IIA\/para	Simulation of real-time synchronized loop	93
UAVpara	Parsed LIAV configuration from XMI	95

File Index

4.1 File List

Here is a list of all files with brief descriptions:

lib/UAV_common/header/common.hpp
lib/UAV_common/src/components/aero_coefficients.hpp
lib/UAV_common/src/components/components.hpp
lib/UAV_common/src/components/control_surfaces.cpp
lib/UAV_common/src/components/control_surfaces.hpp
lib/UAV_common/src/components/drive.cpp
lib/UAV_common/src/components/drive.hpp
lib/UAV_common/src/components/hinge.cpp
lib/UAV_common/src/components/hinge.hpp
lib/UAV_common/src/components/loads.cpp
lib/UAV_common/src/components/loads.hpp
lib/UAV_common/src/components/navi.hpp
lib/UAV_common/src/logger/logger.cpp
lib/UAV_common/src/logger/logger.hpp
lib/UAV_common/src/ode/ode.cpp
lib/UAV_common/src/ode/ode.hpp
lib/UAV_common/src/ode/ode_impl.hpp
lib/UAV_common/src/ode/ode_test.cpp
lib/UAV_common/src/parser/parser.cpp
lib/UAV_common/src/parser/parser.hpp
lib/UAV_common/src/parser/uav_params.cpp
lib/UAV_common/src/parser/uav_params.hpp
lib/UAV_common/src/PID/PID.cpp
lib/UAV_common/src/PID/PID.hpp
lib/UAV_common/src/timed_loop/status.hpp
lib/UAV_common/src/timed_loop/timed_loop.cpp
lib/UAV_common/src/timed_loop/timed_loop.hpp
src/defines.hpp
src/main.cpp
src/utils.hpp
src/communication/control.cpp
src/communication/control.hpp
src/communication/control_recv.cpp
src/communication/control_send.cpp
src/controller/controller.cpp

8 File Index

src/controller/controller.hpp
src/controller_loop.cpp
src/controller_loop.hpp
src/controller_mode.hpp
src/controller/mixers.cpp
src/controller/mixers.hpp
src/controller/modes/controller_loop_FMANUAL.cpp
src/controller/modes/controller_loop_FMANUAL.hpp
src/controller/modes/controller_loop_NONE.cpp
src/controller/modes/controller_loop_NONE.hpp
src/controller/modes/controller_loop_QACRO.cpp
src/controller/modes/controller_loop_QACRO.hpp
src/controller/modes/controller_loop_QANGLE.cpp
src/controller/modes/controller_loop_QANGLE.hpp
src/controller/modes/controller_loop_QPOS.cpp
src/controller/modes/controller_loop_QPOS.hpp
src/controller/modes/controller_loop_RMANUAL.cpp
src/controller/modes/controller_loop_RMANUAL.hpp
src/navigation/AHRS.cpp
src/navigation/AHRS.hpp
src/navigation/EKF.cpp
src/navigation/EKF.hpp
src/navigation/environment.cpp
src/navigation/environment.hpp
src/navigation/NS.cpp
src/navigation/NS.hpp
src/navigation/sensors.cpp
src/navigation/sensors.hpp
src/navigation/AHRS/AHRS_complementary.cpp
src/navigation/AHRS/AHRS_complementary.hpp
src/navigation/AHRS/AHRS_EKF.cpp
src/navigation/AHRS_EKF.hpp

Namespace Documentation

5.1 def Namespace Reference

Controller constants.

Variables

const double STEP_TIME = 0.003
 Step time of controller. Step of PID and EKF calculations.

• const int INFO_PERIOD = 2

How often send demands in response to stick command.

5.1.1 Detailed Description

Controller constants.

5.1.2 Variable Documentation

5.1.2.1 INFO_PERIOD

```
const int def::INFO_PERIOD = 2
```

How often send demands in response to stick command.

5.1.2.2 STEP_TIME

```
const double def::STEP_TIME = 0.003
```

Step time of controller. Step of PID and EKF calculations.

Class Documentation

6.1 Accelerometer Class Reference

Representation of accelerometer.

#include <sensors.hpp>

Inheritance diagram for Accelerometer:

Collaboration diagram for Accelerometer:

Public Member Functions

- Accelerometer (Environment &env, double sd, Eigen::Vector3d bias, double refreshTime)
- void update () override

Update sensor state. Measured value is updated if sensor is ready for next read.

Static Public Attributes

• static const Eigen::Vector3d g = Eigen::Vector3d(0.0,0.0,9.81)

Additional Inherited Members

6.1.1 Detailed Description

Representation of accelerometer.

6.1.2 Constructor & Destructor Documentation

6.1.2.1 Accelerometer()

6.1.3 Member Function Documentation

6.1.3.1 update()

```
void Accelerometer::update ( ) [override], [virtual]
```

Update sensor state. Measured value is updated if sensor is ready for next read.

Implements Sensor< Eigen::Vector3d >.

6.1.4 Member Data Documentation

6.1.4.1 g

```
const Eigen::Vector3d Accelerometer::g = Eigen::Vector3d(0.0,0.0,9.81) [static]
```

The documentation for this class was generated from the following files:

- src/navigation/sensors.hpp
- src/navigation/sensors.cpp

6.2 AeroCoefficients Struct Reference

Aerodynamic coefficient.

```
#include <aero_coefficients.hpp>
```

Public Attributes

- double S
- double d
- double eAR
- Eigen::Vector< double, 6 > C0
- Eigen::Matrix< double, 6, 3 > Cpqr
- Eigen::Matrix< double, 6, 4 > Cab
- · double stallLimit

6.2.1 Detailed Description

Aerodynamic coefficient.

6.2.2 Member Data Documentation

6.2.2.1 C0

Eigen::Vector<double,6> AeroCoefficients::C0

6.2.2.2 Cab

Eigen::Matrix<double,6,4> AeroCoefficients::Cab

6.2.2.3 Cpqr

Eigen::Matrix<double,6,3> AeroCoefficients::Cpqr

6.2.2.4 d

double AeroCoefficients::d

6.2.2.5 eAR

double AeroCoefficients::eAR

6.2.2.6 S

double AeroCoefficients::S

6.2.2.7 stallLimit

```
double AeroCoefficients::stallLimit
```

The documentation for this struct was generated from the following file:

lib/UAV_common/src/components/aero_coefficients.hpp

6.3 AHRS Class Reference

Attitude and heading reference system.

```
#include <AHRS.hpp>
```

Inheritance diagram for AHRS:

Collaboration diagram for AHRS:

Public Member Functions

• AHRS (Environment &env)

Constructor.

• ∼AHRS ()

Deconstructor.

Eigen::Vector3d getOri ()

Returns estimatied orientation vector (roll, pitch, yaw)

• virtual Eigen::Vector3d getGyroBias ()

Returns estimatied gyroscope bias.

• virtual Eigen::Matrix3d rot_bw ()=0

Returns rotation matrix from body to world frame.

virtual void update (Eigen::Vector3d gyro, Eigen::Vector3d acc, Eigen::Vector3d mag)=0

Protected Attributes

- Eigen::Vector3d ori_est
- std::mutex mtxOri
- Environment & env
- Logger logger

6.3.1 Detailed Description

Attitude and heading reference system.

6.3.2 Constructor & Destructor Documentation

6.3.2.1 AHRS()

```
AHRS::AHRS (
Environment & env)
```

Constructor.

6.3 AHRS Class Reference 15

Do					
Pа	ra	m	eı	re.	rs

env | eference to environment, where AHRS works

6.3.2.2 ∼AHRS()

```
AHRS::~AHRS ( )
```

Deconstructor.

6.3.3 Member Function Documentation

6.3.3.1 getGyroBias()

```
Eigen::Vector3d AHRS::getGyroBias ( ) [virtual]
```

Returns estimatied gyroscope bias.

Returns

gyroscope bias

Reimplemented in AHRS_EKF.

6.3.3.2 getOri()

```
Eigen::Vector3d AHRS::getOri ( )
```

Returns estimatied orientation vector (roll, pitch, yaw)

Returns

estimatied orientation

6.3.3.3 rot_bw()

```
virtual Eigen::Matrix3d AHRS::rot_bw ( ) [pure virtual]
```

Returns rotation matrix from body to world frame.

Returns

rotation matrix

Implemented in AHRS_EKF, and AHRS_complementary.

6.3.3.4 update()

Implemented in AHRS_EKF, and AHRS_complementary.

6.3.4 Member Data Documentation

6.3.4.1 env

```
Environment& AHRS::env [protected]
```

6.3.4.2 logger

```
Logger AHRS::logger [protected]
```

6.3.4.3 mtxOri

```
std::mutex AHRS::mtxOri [protected]
```

6.3.4.4 ori_est

```
Eigen::Vector3d AHRS::ori_est [protected]
```

The documentation for this class was generated from the following files:

- src/navigation/AHRS.hpp
- src/navigation/AHRS.cpp

6.4 AHRS_complementary Class Reference

Implementation of AHRS based on Complementary Filter.

```
#include <AHRS_complementary.hpp>
```

Inheritance diagram for AHRS complementary:

Collaboration diagram for AHRS_complementary:

Public Member Functions

- AHRS_complementary (Environment &env, double alpha)
- ∼AHRS_complementary ()
- Eigen::Matrix3d rot_bw () override

Returns rotation matrix from body to world frame.

• void update (Eigen::Vector3d gyro, Eigen::Vector3d acc, Eigen::Vector3d mag) override

Protected Attributes

• const double alpha

6.4.1 Detailed Description

Implementation of AHRS based on Complementary Filter.

6.4.2 Constructor & Destructor Documentation

6.4.2.1 AHRS_complementary()

6.4.2.2 ~AHRS_complementary()

```
{\tt AHRS\_complementary::} {\sim} {\tt AHRS\_complementary} \ \ (\ \ )
```

6.4.3 Member Function Documentation

6.4.3.1 rot_bw()

```
Eigen::Matrix3d AHRS_complementary::rot_bw ( ) [override], [virtual]
```

Returns rotation matrix from body to world frame.

Returns

rotation matrix

Implements AHRS.

6.4.3.2 update()

Implements AHRS.

6.4.4 Member Data Documentation

6.4.4.1 alpha

```
const double AHRS_complementary::alpha [protected]
```

The documentation for this class was generated from the following files:

- src/navigation/AHRS/AHRS_complementary.hpp
- src/navigation/AHRS/AHRS_complementary.cpp

6.5 AHRS EKF Class Reference

Implementation of AHRS based on Extended Kalman Filter.

```
#include <AHRS_EKF.hpp>
```

Inheritance diagram for AHRS_EKF:

Collaboration diagram for AHRS_EKF:

Public Member Functions

- AHRS_EKF (Environment &env, double Q_scaler, double R_scaler)
- ∼AHRS EKF ()
- Eigen::Vector3d getGyroBias () override

Returns estimatied gyroscope bias.

• Eigen::Matrix3d rot_bw () override

Returns rotation matrix from body to world frame.

· void update (Eigen::Vector3d gyro, Eigen::Vector3d acc, Eigen::Vector3d mag) override

Protected Member Functions

- Eigen::Vector4d q ()
- Eigen::Vector3d quaterionToRPY (Eigen::Vector4d q)
- Eigen::Vector4d RPYToQuaterion (Eigen::Vector3d RPY)

Protected Attributes

```
• Eigen::Vector< double, 7 > x
```

- Eigen::Matrix< double, 7, 7 > P
- Eigen::Matrix< double, 7, 7 > Q
- Eigen::Matrix< double, 6, 6 > R

6.5.1 Detailed Description

Implementation of AHRS based on Extended Kalman Filter.

6.5.2 Constructor & Destructor Documentation

6.5.2.1 AHRS_EKF()

6.5.2.2 ∼AHRS_EKF()

```
AHRS_EKF::\simAHRS_EKF ( )
```

6.5.3 Member Function Documentation

6.5.3.1 getGyroBias()

```
Eigen::Vector3d AHRS_EKF::getGyroBias ( ) [override], [virtual]
```

Returns estimatied gyroscope bias.

Returns

gyroscope bias

Reimplemented from AHRS.

6.5.3.2 q()

```
Eigen::Vector4d AHRS_EKF::q ( ) [protected]
```

6.5.3.3 quaterionToRPY()

6.5.3.4 rot_bw()

```
Eigen::Matrix3d AHRS_EKF::rot_bw ( ) [override], [virtual]
```

Returns rotation matrix from body to world frame.

Returns

rotation matrix

Implements AHRS.

6.5.3.5 RPYToQuaterion()

6.5.3.6 update()

Implements AHRS.

6.5.4 Member Data Documentation

6.5.4.1 P

```
Eigen::Matrix<double,7,7> AHRS_EKF::P [protected]
```

6.5.4.2 Q

```
Eigen::Matrix<double,7,7> AHRS_EKF::Q [protected]
```

6.5.4.3 R

```
Eigen::Matrix<double,6,6> AHRS_EKF::R [protected]
```

6.5.4.4 x

```
Eigen::Vector<double,7> AHRS_EKF::x [protected]
```

The documentation for this class was generated from the following files:

- src/navigation/AHRS/AHRS_EKF.hpp
- src/navigation/AHRS/AHRS_EKF.cpp

6.6 AHRSParams Struct Reference

AHRS parameters.

#include <navi.hpp>

Public Attributes

- std::string type
- double alpha
- double Q
- double R

6.6.1 Detailed Description

AHRS parameters.

6.6.2 Member Data Documentation

6.6.2.1 alpha

double AHRSParams::alpha

6.6.2.2 Q

double AHRSParams::Q

6.6.2.3 R

double AHRSParams::R

6.6.2.4 type

std::string AHRSParams::type

The documentation for this struct was generated from the following file:

• lib/UAV_common/src/components/navi.hpp

6.7 Ammo Class Reference 23

6.7 Ammo Class Reference

```
#include <loads.hpp>
```

Inheritance diagram for Ammo:

Collaboration diagram for Ammo:

Public Member Functions

- Ammo ()=default
- Ammo (int ammount, double reload, Eigen::Vector3d offset, double mass, Eigen::Vector3d V0)
- Ammo & operator= (const Ammo &other)
- Eigen::Vector3d getV0 ()

get start velocity of ammo when launched

Protected Attributes

• Eigen::Vector3d _V0

Additional Inherited Members

6.7.1 Constructor & Destructor Documentation

6.7.1.1 Ammo() [1/2]

```
Ammo::Ammo ( ) [default]
```

6.7.1.2 Ammo() [2/2]

6.7.2 Member Function Documentation

6.7.2.1 getV0()

```
Eigen::Vector3d Ammo::getV0 ( ) [inline]
```

get start velocity of ammo when launched

Returns

start velocity vector

6.7.2.2 operator=()

```
Ammo & Ammo::operator= (

const Ammo & other)
```

6.7.3 Member Data Documentation

```
6.7.3.1 _V0
```

```
Eigen::Vector3d Ammo::_V0 [protected]
```

The documentation for this class was generated from the following files:

- lib/UAV_common/src/components/loads.hpp
- lib/UAV_common/src/components/loads.cpp

6.8 Barometer Class Reference

Representation of barometer.

```
#include <sensors.hpp>
```

Inheritance diagram for Barometer:

Collaboration diagram for Barometer:

Public Member Functions

- Barometer (Environment &env, double sd, Eigen::Vector3d bias, double refreshTime)
- void update () override

Update sensor state. Measured value is updated if sensor is ready for next read.

Additional Inherited Members

6.8.1 Detailed Description

Representation of barometer.

6.8.2 Constructor & Destructor Documentation

6.8.2.1 Barometer()

6.8.3 Member Function Documentation

6.8.3.1 update()

```
void Barometer::update ( ) [override], [virtual]
```

Update sensor state. Measured value is updated if sensor is ready for next read.

Implements Sensor< double >.

The documentation for this class was generated from the following files:

- src/navigation/sensors.hpp
- src/navigation/sensors.cpp

6.9 Cargo Class Reference

```
#include <loads.hpp>
```

Inheritance diagram for Cargo:

Collaboration diagram for Cargo:

Public Member Functions

- Cargo ()=default
- Cargo (int ammount, double reload, Eigen::Vector3d offset, double mass)

Additional Inherited Members

6.9.1 Constructor & Destructor Documentation

6.9.1.1 Cargo() [1/2]

```
Cargo::Cargo ( ) [default]
```

6.9.1.2 Cargo() [2/2]

```
Cargo::Cargo (
                int ammount,
                double reload,
                Eigen::Vector3d offset,
                double mass )
```

The documentation for this class was generated from the following files:

- lib/UAV_common/src/components/loads.hpp
- lib/UAV_common/src/components/loads.cpp

6.10 Control Class Reference

Control command listener & sender.

```
#include <control.hpp>
```

Public Member Functions

• Control (zmq::context_t *ctx, std::string uav_address, Controller *controller)

Constructor.

• ∼Control ()

Deconstructor.

• void prepare ()

Sends ping command.

• void start ()

Sends start command.

• void stop ()

Sends stop command.

• void recv ()

Recivers reply and check if it contains "ok" phrase.

void sendSpeed (Eigen::VectorXd speeds)

Sends new demanded rotors speed.

• void sendSurface (Eigen::VectorXd angels)

Sends new demanded surface deflactions.

void startJet (int index)

Sends command to start jet engine of given index.

• void sendHinge (char type, int index, int hinge_index, double value)

Sends command to control hinge deflaction.

• std::string handleMsg (std::string msg)

Handle incomming control message - message that instruct controller what to do.

6.10.1 Detailed Description

Control command listener & sender.

6.10.2 Constructor & Destructor Documentation

6.10.2.1 Control()

```
Control::Control (
    zmq::context_t * ctx,
    std::string uav_address,
    Controller * controller )
```

Constructor.

Parameters

ctx	zero mq context
uav_address	address to REP socket in simulation of controller uav
controller	pointer to controller instance

6.10.2.2 \sim Control()

```
Control::~Control ( )
```

Deconstructor.

6.10.3 Member Function Documentation

6.10.3.1 handleMsg()

```
std::string Control::handleMsg (
    std::string msg )
```

Handle incomming control message - message that instruct controller what to do.

Parameters

msg	message content
-----	-----------------

Returns

reply to message

6.10.3.2 prepare()

```
void Control::prepare ( )
```

Sends ping command.

6.10.3.3 recv()

```
void Control::recv ( )
```

Recivers reply and check if it contains "ok" phrase.

6.10.3.4 sendHinge()

Sends command to control hinge deflaction.

Parameters

type	hinge type: 'r' - rotor, 'j' - jet
index	drive index
hinge_index	hinge index
value	new deflection

6.10.3.5 sendSpeed()

Sends new demanded rotors speed.

Parameters

speeds vector of demanded s	peeds
-----------------------------	-------

6.10.3.6 sendSurface()

Sends new demanded surface deflactions.

Parameters

speeds	vector of surface deflactions
--------	-------------------------------

6.10.3.7 start()

```
void Control::start ( )
```

Sends start command.

6.10.3.8 startJet()

Sends command to start jet engine of given index.

Parameters

index	jet engine index
-------	------------------

6.10.3.9 stop()

```
void Control::stop ( )
```

Sends stop command.

The documentation for this class was generated from the following files:

- src/communication/control.hpp
- src/communication/control.cpp
- src/communication/control_recv.cpp
- src/communication/control_send.cpp

6.11 Controller Class Reference

Central controller class.

```
#include <controller.hpp>
```

Public Member Functions

• Controller (zmq::context_t *ctx, std::string uav_address)

Constructor.

- ∼Controller ()
- void run ()

Run controller.

• void setMode (ControllerMode new_mode)

Change controller mode.

• void exitController ()

Stop controller loop.

Friends

· class Control

6.11.1 Detailed Description

Central controller class.

6.11.2 Constructor & Destructor Documentation

6.11.2.1 Controller()

```
Controller::Controller (
    zmq::context_t * ctx,
    std::string uav_address )
```

Constructor.

Parameters

ctx	zero mq context
uav_address	address of simulation sockets

6.11.2.2 \sim Controller()

```
Controller::\simController ( )
```

6.11.3 Member Function Documentation

6.11.3.1 exitController()

```
void Controller::exitController ( )
```

Stop controller loop.

6.11.3.2 run()

```
void Controller::run ( )
```

Run controller.

6.11.3.3 setMode()

Change controller mode.

Parameters

new_mode new contoller mode

6.11.4 Friends And Related Function Documentation

6.11.4.1 Control

```
friend class Control [friend]
```

The documentation for this class was generated from the following files:

- src/controller/controller.hpp
- src/controller/controller.cpp

6.12 ControllerLoop Class Reference

This class is interface of controller modes. All modes should keep this strucure and implements all true virtual methods.

```
#include <controller_loop.hpp>
```

Inheritance diagram for ControllerLoop:

Public Member Functions

ControllerLoop (ControllerMode mode)

Base class constructor.

virtual ∼ControllerLoop ()

Virtual deconstructor for defined behavior.

virtual void job ([[maybe_unused]] std::map< std::string, PID > &pids, [[maybe_unused]] Control &control, [[maybe_unused]] NS &navisys)

Controller job that will be called in control loop.

virtual void handleJoystick ([[maybe_unused]] Eigen::VectorXd joystick)

Handle incomming joystick deflaction.

virtual std::string demandInfo ()

Prepare info about state and demands.

virtual const std::vector< std::string > & requiredPIDs ()

Defines pids controller required by mode.

• virtual void overridePosition ([[maybe_unused]] Eigen::Vector3d position, [[maybe_unused]] Eigen::Vector3d orientation)

Overrides demands to apply to given postion and orientation.

ControllerMode getMode ()

Returns assigned mode enum value.

Static Public Member Functions

• static ControllerLoop * ControllerLoopFactory (ControllerMode mode)

ControllerLoop factor. Returns instace of ControllerLoop that implements specified mode.

Protected Member Functions

• bool checkJoystickLength (const Eigen::VectorXd &joystick, const int minimalSize)

Check if joystick input vector is correct.

Protected Attributes

- const ControllerMode _mode
- std::vector< std::string > required_pids

6.12.1 Detailed Description

This class is interface of controller modes. All modes should keep this strucure and implements all true virtual methods.

6.12.2 Constructor & Destructor Documentation

6.12.2.1 ControllerLoop()

Base class constructor.

Parameters

```
mode mode enum value
```

6.12.2.2 ∼ControllerLoop()

```
virtual ControllerLoop::~ControllerLoop ( ) [inline], [virtual]
```

Virtual deconstructor for defined behavior.

6.12.3 Member Function Documentation

6.12.3.1 checkJoystickLength()

Check if joystick input vector is correct.

Parameters

joystick	joystick axes deflaction
minimalSize	minimal length of deflation vector that can be interpreted

Returns

return true if joystick input vector is long enough

6.12.3.2 ControllerLoopFactory()

ControllerLoop factor. Returns instace of ControllerLoop that implements specified mode.

Parameters

mode demanded mode

Returns

Pointer to dynamically alocated ControllerLoop

6.12.3.3 demandInfo()

```
virtual std::string ControllerLoop::demandInfo ( ) [inline], [virtual]
```

Prepare info about state and demands.

Returns

information about mode and actually set demands

Reimplemented in ControllerLoopRMANUAL, ControllerLoopQPOS, ControllerLoopQANGLE, and ControllerLoopQACRO.

6.12.3.4 getMode()

```
ControllerMode ControllerLoop::getMode ( ) [inline]
```

Returns assigned mode enum value.

Returns

mode enum value

6.12.3.5 handleJoystick()

Handle incomming joystick deflaction.

Parameters

joystick	joystick axes deflaction
----------	--------------------------

6.12.3.6 job()

Controller job that will be called in control loop.

Parameters

pids	map of aviliable pid controllers
control	reference to control instatce that is used to send control commands
navisys	navigation system reference

6.12.3.7 overridePosition()

Overrides demands to apply to given postion and orientation.

Parameters

position	position vector in world frame
orientation	orientation vector in world frame

6.12.3.8 requiredPIDs()

virtual const std::vector<std::string>& ControllerLoop::requiredPIDs () [inline], [virtual]
Defines pids controller required by mode.

Returns

vector of names of required pids

6.12.4 Member Data Documentation

6.12.4.1 _mode

const ControllerMode ControllerLoop::_mode [protected]

6.12.4.2 required_pids

std::vector<std::string> ControllerLoop::required_pids [protected]

The documentation for this class was generated from the following files:

- src/controller/controller_loop.hpp
- src/controller/controller_loop.cpp

6.13 ControllerLoopFMANUAL Class Reference

```
#include <controller_loop_FMANUAL.hpp>
```

Inheritance diagram for ControllerLoopFMANUAL:

Collaboration diagram for ControllerLoopFMANUAL:

Public Member Functions

- ControllerLoopFMANUAL ()
- void job ([[maybe_unused]] std::map< std::string, PID > &pids, Control &control, [[maybe_unused]] NS &navisys) override
- · void handleJoystick (Eigen::VectorXd joystick) override

Additional Inherited Members

6.13.1 Constructor & Destructor Documentation

6.13.1.1 ControllerLoopFMANUAL()

```
ControllerLoopFMANUAL::ControllerLoopFMANUAL ( )
```

6.13.2 Member Function Documentation

6.13.2.1 handleJoystick()

6.13.2.2 job()

The documentation for this class was generated from the following files:

- src/controller/modes/controller_loop_FMANUAL.hpp
- src/controller/modes/controller_loop_FMANUAL.cpp

6.14 ControllerLoopNONE Class Reference

```
#include <controller_loop_NONE.hpp>
```

Inheritance diagram for ControllerLoopNONE:

Collaboration diagram for ControllerLoopNONE:

Public Member Functions

• ControllerLoopNONE ()

Additional Inherited Members

6.14.1 Constructor & Destructor Documentation

6.14.1.1 ControllerLoopNONE()

```
ControllerLoopNONE::ControllerLoopNONE ( )
```

The documentation for this class was generated from the following files:

- src/controller/modes/controller_loop_NONE.hpp
- src/controller/modes/controller_loop_NONE.cpp

6.15 ControllerLoopQACRO Class Reference

```
#include <controller_loop_QACRO.hpp>
```

Inheritance diagram for ControllerLoopQACRO:

Collaboration diagram for ControllerLoopQACRO:

Public Member Functions

- ControllerLoopQACRO ()
- void job (std::map< std::string, PID > &pids, Control &control, NS &navisys) override
- · void handleJoystick (Eigen::VectorXd joystick) override
- std::string demandInfo () override

Prepare info about state and demands.

Additional Inherited Members

6.15.1 Constructor & Destructor Documentation

6.15.1.1 ControllerLoopQACRO()

ControllerLoopQACRO::ControllerLoopQACRO ()

6.15.2 Member Function Documentation

6.15.2.1 demandInfo()

```
std::string ControllerLoopQACRO::demandInfo ( ) [override], [virtual]
```

Prepare info about state and demands.

Returns

information about mode and actually set demands

Reimplemented from ControllerLoop.

6.15.2.2 handleJoystick()

6.15.2.3 job()

```
void ControllerLoopQACRO::job (
    std::map< std::string, PID > & pids,
    Control & control,
    NS & navisys ) [override]
```

The documentation for this class was generated from the following files:

- src/controller/modes/controller_loop_QACRO.hpp
- src/controller/modes/controller_loop_QACRO.cpp

6.16 ControllerLoopQANGLE Class Reference

```
#include <controller_loop_QANGLE.hpp>
```

Inheritance diagram for ControllerLoopQANGLE:

Collaboration diagram for ControllerLoopQANGLE:

Public Member Functions

- ControllerLoopQANGLE ()
- void job (std::map< std::string, PID > &pids, Control &control, NS &navisys) override
- · void handleJoystick (Eigen::VectorXd joystick) override
- std::string demandInfo () override

Prepare info about state and demands.

void overridePosition (Eigen::Vector3d position, Eigen::Vector3d orientation) override

Additional Inherited Members

6.16.1 Constructor & Destructor Documentation

6.16.1.1 ControllerLoopQANGLE()

```
ControllerLoopQANGLE::ControllerLoopQANGLE ( )
```

6.16.2 Member Function Documentation

6.16.2.1 demandInfo()

```
std::string ControllerLoopQANGLE::demandInfo ( ) [override], [virtual]
```

Prepare info about state and demands.

Returns

information about mode and actually set demands

Reimplemented from ControllerLoop.

6.16.2.2 handleJoystick()

6.16.2.3 job()

```
void ControllerLoopQANGLE::job (
    std::map< std::string, PID > & pids,
    Control & control,
    NS & navisys ) [override]
```

6.16.2.4 overridePosition()

The documentation for this class was generated from the following files:

- src/controller/modes/controller_loop_QANGLE.hpp
- src/controller/modes/controller loop QANGLE.cpp

6.17 ControllerLoopQPOS Class Reference

```
#include <controller_loop_QPOS.hpp>
```

Inheritance diagram for ControllerLoopQPOS:

Collaboration diagram for ControllerLoopQPOS:

Public Member Functions

- ControllerLoopQPOS ()
- void job (std::map< std::string, PID > &pids, Control &control, NS &navisys) override
- · void handleJoystick (Eigen::VectorXd joystick) override
- std::string demandInfo () override

Prepare info about state and demands.

• void overridePosition (Eigen::Vector3d position, Eigen::Vector3d orientation) override

Additional Inherited Members

6.17.1 Constructor & Destructor Documentation

6.17.1.1 ControllerLoopQPOS()

```
ControllerLoopQPOS::ControllerLoopQPOS ( )
```

6.17.2 Member Function Documentation

6.17.2.1 demandInfo()

```
std::string ControllerLoopQPOS::demandInfo ( ) [override], [virtual]
```

Prepare info about state and demands.

Returns

information about mode and actually set demands

Reimplemented from ControllerLoop.

6.17.2.2 handleJoystick()

6.17.2.3 job()

```
void ControllerLoopQPOS::job (
    std::map< std::string, PID > & pids,
    Control & control,
    NS & navisys ) [override]
```

6.17.2.4 overridePosition()

The documentation for this class was generated from the following files:

- src/controller/modes/controller_loop_QPOS.hpp
- src/controller/modes/controller_loop_QPOS.cpp

6.18 ControllerLoopRMANUAL Class Reference

```
#include <controller_loop_RMANUAL.hpp>
```

Inheritance diagram for ControllerLoopRMANUAL:

Collaboration diagram for ControllerLoopRMANUAL:

Public Member Functions

- ControllerLoopRMANUAL ()
- void job ([[maybe_unused]] std::map< std::string, PID > &pids, Control &control, [[maybe_unused]] NS &navisys) override
- · void handleJoystick (Eigen::VectorXd joystick) override
- std::string demandInfo () override

Prepare info about state and demands.

Protected Attributes

- double demandedX
- double demandedY

Additional Inherited Members

6.18.1 Constructor & Destructor Documentation

6.18.1.1 ControllerLoopRMANUAL()

```
ControllerLoopRMANUAL::ControllerLoopRMANUAL ( )
```

6.18.2 Member Function Documentation

6.18.2.1 demandInfo()

```
std::string ControllerLoopRMANUAL::demandInfo ( ) [override], [virtual]
```

Prepare info about state and demands.

Returns

information about mode and actually set demands

Reimplemented from ControllerLoop.

6.18.2.2 handleJoystick()

6.18.2.3 job()

6.18.3 Member Data Documentation

6.18.3.1 demandedX

```
double ControllerLoopRMANUAL::demandedX [protected]
```

6.18.3.2 demandedY

```
double ControllerLoopRMANUAL::demandedY [protected]
```

The documentation for this class was generated from the following files:

- src/controller/modes/controller loop RMANUAL.hpp
- src/controller/modes/controller_loop_RMANUAL.cpp

6.19 ControlSurfaces Class Reference

Aircraft's control surfaces.

```
#include <control_surfaces.hpp>
```

Public Member Functions

- ControlSurfaces ()
- ControlSurfaces (int noOfSurfaces, Eigen::Matrix< double, 6,-1 > matrix, Eigen::VectorXd min, Eigen::

 VectorXd max, Eigen::VectorXd trim)

Constructor.

- Eigen::Vector< double, 6 > getCoefficients () const
- bool setValues (Eigen::VectorXd new_values)
- void restoreTrim ()
- int getNoOfSurface () const
- Eigen::VectorXd getValues () const

6.19.1 Detailed Description

Aircraft's control surfaces.

6.19.2 Constructor & Destructor Documentation

6.19.2.1 ControlSurfaces() [1/2]

```
ControlSurfaces::ControlSurfaces ( )
```

6.19.2.2 ControlSurfaces() [2/2]

```
ControlSurfaces::ControlSurfaces (
    int noOfSurfaces,
    Eigen::Matrix< double, 6,-1 > matrix,
    Eigen::VectorXd min,
    Eigen::VectorXd max,
    Eigen::VectorXd trim )
```

Constructor.

Parameters

noOfSurfaces	number of independent surfaces
matrix	coefficients matrix
min	vector of min angles
max	vector of max angles
trim	vector of trim angles

6.19.3 Member Function Documentation

6.19.3.1 getCoefficients()

```
Eigen::Vector< double, 6 > ControlSurfaces::getCoefficients ( ) const
```

6.20 Drive Struct Reference 49

6.19.3.2 getNoOfSurface()

```
int ControlSurfaces::getNoOfSurface ( ) const [inline]
```

6.19.3.3 getValues()

```
Eigen::VectorXd ControlSurfaces::getValues ( ) const [inline]
```

6.19.3.4 restoreTrim()

```
void ControlSurfaces::restoreTrim ( )
```

6.19.3.5 setValues()

The documentation for this class was generated from the following files:

- lib/UAV_common/src/components/control_surfaces.hpp
- lib/UAV_common/src/components/control_surfaces.cpp

6.20 Drive Struct Reference

Drive propelling aircraft.

```
#include <drive.hpp>
```

Inheritance diagram for Drive:

Collaboration diagram for Drive:

Public Attributes

- Eigen::Vector3d position
- Eigen::Vector3d axis
- int noOfHinges
- Hinge hinges [2]

6.20.1 Detailed Description

Drive propelling aircraft.

6.20.2 Member Data Documentation

6.20.2.1 axis

Eigen::Vector3d Drive::axis

6.20.2.2 hinges

Hinge Drive::hinges[2]

6.20.2.3 noOfHinges

int Drive::noOfHinges

6.20.2.4 position

Eigen::Vector3d Drive::position

The documentation for this struct was generated from the following file:

• lib/UAV_common/src/components/drive.hpp

6.21 EKF Class Reference

Extended Kalman Filter.

#include <EKF.hpp>

6.21 EKF Class Reference 51

Public Member Functions

• EKF (EKFParams params)

Constructor.

• Eigen::Vector3d getPos ()

Returns estimated position vector.

• Eigen::Vector3d getVel ()

Returns estimated velocity vector.

• void predict (double time, Eigen::Vector3d acc)

Predict phase. Integration of accelerometer measures.

• void updateBaro (double time, double baro)

Update phase. Height correction.

void updateGPS (double time, Eigen::Vector3d pos)

Update phase. Position correction.

• void updateGPSVel (double time, Eigen::Vector3d vel)

Update phase. Velocity correction.

• void log (double time)

Log filter state.

6.21.1 Detailed Description

Extended Kalman Filter.

6.21.2 Constructor & Destructor Documentation

6.21.2.1 EKF()

Constructor.

Parameters

params filter parameters

6.21.3 Member Function Documentation

6.21.3.1 getPos()

```
Eigen::Vector3d EKF::getPos ( )
```

Returns estimated position vector.

Returns

position vector in world frame

6.21.3.2 getVel()

```
Eigen::Vector3d EKF::getVel ( )
```

Returns estimated velocity vector.

Returns

velocity vector in world frame

6.21.3.3 log()

Log filter state.

Parameters

ime simulation time

6.21.3.4 predict()

Predict phase. Integration of accelerometer measures.

Parameters

time	simulation time
acc	accelerometer measure

6.21.3.5 updateBaro()

```
void EKF::updateBaro (
```

```
double time,
double baro )
```

Update phase. Height correction.

Parameters

time	simulation time
baro	barometer measure

6.21.3.6 updateGPS()

Update phase. Position correction.

Parameters

time	simulation time
baro	GPS location measure

6.21.3.7 updateGPSVel()

Update phase. Velocity correction.

Parameters

time	simulation time
baro	GPS velocity measure

The documentation for this class was generated from the following files:

- src/navigation/EKF.hpp
- src/navigation/EKF.cpp

6.22 EKFParams Struct Reference

EK filer parameters.

```
#include <EKF.hpp>
```

Public Attributes

- Eigen::Matrix< double, 6, 6 > P0
- Eigen::Matrix< double, 6, 6 > Q
- double RBaro
- Eigen::Matrix3d RGPSPos
- Eigen::Matrix3d RGPSVel

6.22.1 Detailed Description

EK filer parameters.

6.22.2 Member Data Documentation

6.22.2.1 P0

Eigen::Matrix<double,6,6> EKFParams::P0

6.22.2.2 Q

Eigen::Matrix<double,6,6> EKFParams::Q

6.22.2.3 RBaro

double EKFParams::RBaro

6.22.2.4 RGPSPos

Eigen::Matrix3d EKFParams::RGPSPos

6.22.2.5 RGPSVel

Eigen::Matrix3d EKFParams::RGPSVel

The documentation for this struct was generated from the following file:

• src/navigation/EKF.hpp

6.23 EKFScalers Struct Reference

Scalers for EKF.

#include <navi.hpp>

Public Attributes

- double predictScaler
- double updateScaler
- · double baroScaler
- · double zScaler

6.23.1 Detailed Description

Scalers for EKF.

6.23.2 Member Data Documentation

6.23.2.1 baroScaler

double EKFScalers::baroScaler

6.23.2.2 predictScaler

double EKFScalers::predictScaler

6.23.2.3 updateScaler

double EKFScalers::updateScaler

6.23.2.4 zScaler

double EKFScalers::zScaler

The documentation for this struct was generated from the following file:

• lib/UAV_common/src/components/navi.hpp

Environment Class Reference 6.24

```
#include <environment.hpp>
```

Public Member Functions

• Environment (zmq::context t *ctx, std::string uav address)

Constructor.

∼Environment ()

Deconstructor.

double getTime ()

Returns time of simulation.

Eigen::Vector3d getPosition ()

Returns exact postion vector.

• Eigen::Vector4d getOrientation ()

Returns exact orientation vector.

• Eigen::Vector3d getWorldLinearVelocity ()

Returns exact linear velocity vector.

• Eigen::Vector3d getWorldAngularVelocity ()

Returns exact angular velocity vector.

• Eigen::Vector3d getLinearVelocity ()

Returns exact linear velocity vector.

• Eigen::Vector3d getAngularVelocity ()

Returns exact angular velocity vector.

Eigen::Vector3d getLinearAcceleration ()

Returns exact linear acceleration vector.

Eigen::Vector3d getAngularAcceleration ()

Returns exact angular acceleration vector.

Eigen::Matrix3d getRnb ()

Get rotation matrix from world to body frame.

void updateSensors ()

update all sensors

Public Attributes

```
    std::map< std::string, std::unique_ptr< Sensor< Eigen::Vector3d >> > sensorsVec3d
```

map of sensors that measure values which is 3 element vector

std::map< std::string, std::unique_ptr< Sensor< double >>> sensors

map of sensors that measure single value

6.24.1 Constructor & Destructor Documentation

6.24.1.1 Environment()

```
Environment::Environment (
             zmq::context_t * ctx,
             std::string uav_address )
```

Constructor.

Parameters

ctx	zero mq context
uav_address	address to state PUB socket that enviroment should listen

6.24.1.2 ∼Environment()

Environment::~Environment ()

Deconstructor.

6.24.2 Member Function Documentation

6.24.2.1 getAngularAcceleraton()

Eigen::Vector3d Environment::getAngularAcceleraton ()

Returns exact angular acceleration vector.

Returns

angular acceleration vector in body frame

6.24.2.2 getAngularVelocity()

Eigen::Vector3d Environment::getAngularVelocity ()

Returns exact angular velocity vector.

Returns

angular velocities vector in body frame

6.24.2.3 getLinearAcceleration()

```
Eigen::Vector3d Environment::getLinearAcceleration ( )
```

Returns exact linear acceleration vector.

Returns

linear acceleration vector in body frame

6.24.2.4 getLinearVelocity()

```
Eigen::Vector3d Environment::getLinearVelocity ( )
```

Returns exact linear velocity vector.

Returns

linear velocity vector in body frame

6.24.2.5 getOrientation()

```
Eigen::Vector4d Environment::getOrientation ( )
```

Returns exact orientation vector.

Returns

orientation vector in world frame

6.24.2.6 getPosition()

```
Eigen::Vector3d Environment::getPosition ( )
```

Returns exact postion vector.

Returns

position vector in world frame

6.24.2.7 getRnb()

```
Eigen::Matrix3d Environment::getRnb ( )
```

Get rotation matrix from world to body frame.

Returns

rotation matrix

6.24.2.8 getTime()

```
double Environment::getTime ( )
```

Returns time of simulation.

Returns

simulation time

6.24.2.9 getWorldAngularVelocity()

```
Eigen::Vector3d Environment::getWorldAngularVelocity ( )
```

Returns exact angular velocity vector.

Returns

linear angular vector in world frame

6.24.2.10 getWorldLinearVelocity()

```
Eigen::Vector3d Environment::getWorldLinearVelocity ( )
```

Returns exact linear velocity vector.

Returns

linear velocity vector in world frame

6.24.2.11 updateSensors()

```
void Environment::updateSensors ( )
update all sensors
```

6.24.3 Member Data Documentation

6.24.3.1 sensors

```
\verb|std::map|<|std::string|, \verb|std::unique_ptr|<|Sensor|<|double|>>> |Environment::sensors|
```

map of sensors that measure single value

6.24.3.2 sensorsVec3d

map of sensors that measure values which is 3 element vector

The documentation for this class was generated from the following files:

- src/navigation/environment.hpp
- src/navigation/environment.cpp

6.25 GPS Class Reference

Representation of GPS position measure.

```
#include <sensors.hpp>
```

Inheritance diagram for GPS:

Collaboration diagram for GPS:

Public Member Functions

- GPS (Environment &env, double sd, Eigen::Vector3d bias, double refreshTime)
- void update () override

Update sensor state. Measured value is updated if sensor is ready for next read.

Additional Inherited Members

6.25.1 Detailed Description

Representation of GPS position measure.

6.25.2 Constructor & Destructor Documentation

6.25.2.1 GPS()

6.25.3 Member Function Documentation

6.25.3.1 update()

```
void GPS::update ( ) [override], [virtual]
```

Update sensor state. Measured value is updated if sensor is ready for next read.

Implements Sensor< Eigen::Vector3d >.

The documentation for this class was generated from the following files:

- src/navigation/sensors.hpp
- src/navigation/sensors.cpp

6.26 GPSVel Class Reference

Representation of GPS velocity measure.

```
#include <sensors.hpp>
```

Inheritance diagram for GPSVel:

Collaboration diagram for GPSVel:

Public Member Functions

- GPSVel (Environment &env, double sd, Eigen::Vector3d bias, double refreshTime)
- void update () override

Update sensor state. Measured value is updated if sensor is ready for next read.

Additional Inherited Members

6.26.1 Detailed Description

Representation of GPS velocity measure.

6.26.2 Constructor & Destructor Documentation

6.26.2.1 GPSVel()

6.26.3 Member Function Documentation

6.26.3.1 update()

```
void GPSVel::update ( ) [override], [virtual]
```

Update sensor state. Measured value is updated if sensor is ready for next read.

Implements Sensor< Eigen::Vector3d >.

The documentation for this class was generated from the following files:

- src/navigation/sensors.hpp
- src/navigation/sensors.cpp

6.27 Gyroscope Class Reference

Representation of gyroscope.

```
#include <sensors.hpp>
```

Inheritance diagram for Gyroscope:

Collaboration diagram for Gyroscope:

Public Member Functions

- Gyroscope (Environment &env, double sd, Eigen::Vector3d bias, double refreshTime)
- void update () override

Update sensor state. Measured value is updated if sensor is ready for next read.

Additional Inherited Members

6.27.1 Detailed Description

Representation of gyroscope.

6.27.2 Constructor & Destructor Documentation

6.27.2.1 Gyroscope()

6.27.3 Member Function Documentation

6.27.3.1 update()

```
void Gyroscope::update ( ) [override], [virtual]
```

Update sensor state. Measured value is updated if sensor is ready for next read.

Implements Sensor< Eigen::Vector3d >.

The documentation for this class was generated from the following files:

- src/navigation/sensors.hpp
- src/navigation/sensors.cpp

6.28 Hinge Class Reference

Hinge connecting aircraft with drives.

```
#include <hinge.hpp>
```

Public Member Functions

- Hinge ()=default
- Hinge (Eigen::Vector3d axis, double max, double min, double trim)
- Hinge (const Hinge &old)
- Hinge & operator= (const Hinge &old)
- void updateValue (double newValue)

set new angle on hinge

• const Eigen::Matrix3d getRot ()

Get rotattion matrix of orientation change due to hinge.

6.28.1 Detailed Description

Hinge connecting aircraft with drives.

6.28.2 Constructor & Destructor Documentation

```
6.28.2.1 Hinge() [1/3]
```

```
Hinge::Hinge ( ) [default]
```

6.28.2.2 Hinge() [2/3]

6.28.2.3 Hinge() [3/3]

6.29 Jet Class Reference 65

6.28.3 Member Function Documentation

6.28.3.1 getRot()

```
const Eigen::Matrix3d Hinge::getRot ( )
```

Get rotattion matrix of orientation change due to hinge.

Returns

rotation matrix

6.28.3.2 operator=()

6.28.3.3 updateValue()

set new angle on hinge

Parameters

newValue	new angle of hinge
HEW Value	new angle of fillige

The documentation for this class was generated from the following files:

- lib/UAV_common/src/components/hinge.hpp
- lib/UAV_common/src/components/hinge.cpp

6.29 Jet Class Reference

Jet rocket engine.

```
#include <drive.hpp>
```

Inheritance diagram for Jet:

Collaboration diagram for Jet:

Public Member Functions

```
• bool start (double time)
```

start jet engine

• double getThrust (double time)

get thrust in specific time

double getLastThrust ()

get last calculated thrust

Public Attributes

- int phases
- Eigen::VectorXd thrust
- Eigen::VectorXd time

6.29.1 Detailed Description

Jet rocket engine.

6.29.2 Member Function Documentation

6.29.2.1 getLastThrust()

```
double Jet::getLastThrust ( ) [inline]
```

get last calculated thrust

Returns

last calculated thrust

6.29.2.2 getThrust()

get thrust in specific time

Parameters

time timestamp

6.29 Jet Class Reference 67

Returns

thrust value in Newtons

6.29.2.3 start()

start jet engine

Parameters

time	timestamp of start
------	--------------------

Returns

true if start succesful, false if already started

6.29.3 Member Data Documentation

6.29.3.1 phases

int Jet::phases

6.29.3.2 thrust

Eigen::VectorXd Jet::thrust

6.29.3.3 time

Eigen::VectorXd Jet::time

The documentation for this class was generated from the following files:

- lib/UAV_common/src/components/drive.hpp
- lib/UAV_common/src/components/drive.cpp

6.30 Load Class Reference

Load of aircraft that can be droped or launched.

```
#include <loads.hpp>
```

Inheritance diagram for Load:

Public Member Functions

```
    double getMass ()
        get mass of load
    Eigen::Vector3d getOffset ()
        get offset of load
    int release (double time)
```

Try to release load.

Protected Member Functions

- Load ()=default
- Load (int ammount, double reload, Eigen::Vector3d offset, double mass)
- Load & operator= (const Load &other)

6.30.1 Detailed Description

Load of aircraft that can be droped or launched.

6.30.2 Constructor & Destructor Documentation

```
6.30.2.1 Load() [1/2]
```

```
Load::Load ( ) [protected], [default]
```

6.30.2.2 Load() [2/2]

```
Load::Load (
          int ammount,
          double reload,
          Eigen::Vector3d offset,
          double mass ) [protected]
```

6.30 Load Class Reference 69

6.30.3 Member Function Documentation

```
6.30.3.1 getMass()

double Load::getMass ( ) [inline]

get mass of load

Returns
    mass
```

6.30.3.2 getOffset()

```
Eigen::Vector3d Load::getOffset ( ) [inline]
get offset of load
```

Returns

offset vector

6.30.3.3 operator=()

6.30.3.4 release()

Try to release load.

Parameters

time

Returns

leftover ammount of loads. Return -1 if load is not ready and -2 if out of load

The documentation for this class was generated from the following files:

- lib/UAV_common/src/components/loads.hpp
- lib/UAV common/src/components/loads.cpp

6.31 Logger Class Reference

Log vector data with timestamp in file.

```
#include <logger.hpp>
```

Public Member Functions

```
• Logger (std::string path, std::string fmt="", uint8_t group=0)
```

Constructor.

• ∼Logger ()

Deconstructor.

void setFmt (std::string fmt)

Set new format if was not known in constructor.

void log (double time, std::initializer_list< Eigen::VectorXd > args)

Log one row

void log (double time, std::initializer_list< double > args)

Log one row.

Static Public Member Functions

static void setLogDirectory (std::string subdirectory)
 Set global path that log should be created at. Path will be added to relative path of specific log instance.

6.31.1 Detailed Description

Log vector data with timestamp in file.

6.31.2 Constructor & Destructor Documentation

6.31.2.1 Logger()

Constructor.

Parameters

path	relative path with log file name.
fmt	format - information about log structure. First line in log file
group	log group - log will be created only if group is in actual LOGGER_MASK

6.31.2.2 \sim Logger()

```
Logger::\simLogger ( )
```

Deconstructor.

6.31.3 Member Function Documentation

6.31.3.1 log() [1/2]

```
void Logger::log ( \label{logger} \mbox{double } time, $$ \mbox{std::initializer\_list< double } > args \mbox{ )}
```

Log one row.

Parameters

time	timestamp
args	list of doubles

6.31.3.2 log() [2/2]

```
void Logger::log ( \label{logger} \mbox{double } time, \\ \mbox{std::initializer\_list} < \mbox{Eigen::VectorXd} > args \mbox{)}
```

Log one row.

Parameters

time	timestamp
args	list of double vectors

6.31.3.3 setFmt()

Set new format if was not known in constructor.

Parameters

```
fmt | new format
```

6.31.3.4 setLogDirectory()

Set global path that log should be created at. Path will be added to relative path of specific log instance.

Parameters

```
subdirectory new global log path
```

The documentation for this class was generated from the following files:

- lib/UAV_common/src/logger/logger.hpp
- lib/UAV_common/src/logger/logger.cpp

6.32 Magnetometer Class Reference

Representation of magnetometer.

```
#include <sensors.hpp>
```

Inheritance diagram for Magnetometer:

Collaboration diagram for Magnetometer:

Public Member Functions

- Magnetometer (Environment &env, double sd, Eigen::Vector3d bias, double refreshTime)
- void update () override

Update sensor state. Measured value is updated if sensor is ready for next read.

Static Public Attributes

• static const Eigen::Vector3d mag = Eigen::Vector3d(60.0,0.0,0.0)

Additional Inherited Members

6.32.1 Detailed Description

Representation of magnetometer.

6.32.2 Constructor & Destructor Documentation

6.32.2.1 Magnetometer()

6.32.3 Member Function Documentation

6.32.3.1 update()

```
void Magnetometer::update ( ) [override], [virtual]
```

Update sensor state. Measured value is updated if sensor is ready for next read.

Implements Sensor< Eigen::Vector3d >.

6.32.4 Member Data Documentation

6.32.4.1 mag

```
const Eigen::Vector3d Magnetometer::mag = Eigen::Vector3d(60.0,0.0,0.0) [static]
```

The documentation for this class was generated from the following files:

- src/navigation/sensors.hpp
- src/navigation/sensors.cpp

6.33 NS Class Reference

```
Navigation system.
```

```
#include <NS.hpp>
```

Public Member Functions

• NS (Environment &env)

Consturctor.

• ∼NS ()

Deconstructor.

• Eigen::Vector3d getPosition ()

Returns position estimated by NS.

• Eigen::Vector3d getLinearVelocity ()

Returns linear velocity estimated by NS.

• Eigen::Vector3d getOrientation ()

Returns orientation estimated by NS.

• Eigen::Vector3d getAngularVelocity ()

Returns rates estimated by NS.

6.33.1 Detailed Description

Navigation system.

6.33.2 Constructor & Destructor Documentation

6.33.2.1 NS()

Consturctor.

Parameters

env reference to environment, that NS navigate through

6.33.2.2 ∼NS()

```
\text{NS::}{\sim}\text{NS} ( )
```

6.33 NS Class Reference 75

Deconstructor.

6.33.3 Member Function Documentation

6.33.3.1 getAngularVelocity()

```
Eigen::Vector3d NS::getAngularVelocity ( )
```

Returns rates estimated by NS.

Returns

angular velocity vector (roll rate, pitch rate, yaw rate) in body frame

6.33.3.2 getLinearVelocity()

```
Eigen::Vector3d NS::getLinearVelocity ( )
```

Returns linear velocity estimated by NS.

Returns

linear velocity vector in world frame

6.33.3.3 getOrientation()

```
Eigen::Vector3d NS::getOrientation ( )
```

Returns orientation estimated by NS.

Returns

orientation vector (RPY) in world frame

6.33.3.4 getPosition()

```
Eigen::Vector3d NS::getPosition ( )
```

Returns position estimated by NS.

Returns

position vector in world frame

The documentation for this class was generated from the following files:

- src/navigation/NS.hpp
- src/navigation/NS.cpp

6.34 ODE Class Reference

Ordinal differencial equation solver.

```
#include <ode.hpp>
```

Inheritance diagram for ODE:

Public Types

 enum ODEMethod { Euler , Heun , RK4 , NONE } Supported solving method.

Public Member Functions

ODE (int micro_steps)

Constructor.

virtual ∼ODE ()

Virtual deconstructor.

One step of explicit solving algorithm.

• int getMicrosteps () const

Return microsteps - number of rhs function calls to calculate on step.

Static Public Member Functions

static ODEMethod fromString (std::string str)

Parse solving method from string.

static std::unique_ptr< ODE > factory (ODEMethod method)

Factory constructing ODE solvers.

static int getMicrosteps (ODEMethod method)

Get microsteps of given method.

6.34 ODE Class Reference 77

6.34.1 Detailed Description

Ordinal differencial equation solver.

6.34.2 Member Enumeration Documentation

6.34.2.1 ODEMethod

```
enum ODE::ODEMethod
```

Supported solving method.

Enumerator

Euler	
Heun	
RK4	
NONE	

6.34.3 Constructor & Destructor Documentation

6.34.3.1 ODE()

Constructor.

6.34.3.2 ∼ODE()

```
virtual ODE::\simODE ( ) [inline], [virtual]
```

Virtual deconstructor.

6.34.4 Member Function Documentation

6.34.4.1 factory()

Factory constructing ODE solvers.

Parameters

method	type of desired method
--------	------------------------

Returns

instance of **ODE** solver

6.34.4.2 fromString()

Parse solving method from string.

Parameters

```
str input string
```

Returns

solving method if parsed, NONE if unknown

6.34.4.3 getMicrosteps() [1/2]

```
int ODE::getMicrosteps ( ) const
```

Return microsteps - number of rhs function calls to calculate on step.

Returns

microsteps

6.34.4.4 getMicrosteps() [2/2]

Get microsteps of given method.

Parameters

Returns

number of microstep in one algoritm step

6.34.4.5 step()

One step of explicit solving algorithm.

Parameters

t	start time	
y0	start variable	
rhs_fun	right-hand-side function, calculation of derivative	
h	time step	

Returns

Implemented in ODE_RK4, ODE_Heun, and ODE_Euler.

The documentation for this class was generated from the following files:

- lib/UAV_common/src/ode/ode.hpp
- lib/UAV_common/src/ode/ode.cpp

6.35 ODE_Euler Class Reference

Explicit Euler algorithm.

```
#include <ode_impl.hpp>
```

Inheritance diagram for ODE_Euler:

Collaboration diagram for ODE_Euler:

Public Member Functions

- ODE_Euler ()
- Eigen::VectorXd step (double t, Eigen::VectorXd y0, std::function< Eigen::VectorXd(double, Eigen::Vector ← Xd)> rhs_fun, double h) override

One step of explicit solving algorithm.

Additional Inherited Members

6.35.1 Detailed Description

Explicit Euler algorithm.

6.35.2 Constructor & Destructor Documentation

6.35.2.1 ODE_Euler()

```
ODE_Euler::ODE_Euler ( ) [inline]
```

6.35.3 Member Function Documentation

6.35.3.1 step()

One step of explicit solving algorithm.

Parameters

t	start time
y0	start variable
rhs_fun	right-hand-side function, calculation of derivative
h	time step

Returns

Implements ODE.

The documentation for this class was generated from the following file:

• lib/UAV_common/src/ode/ode_impl.hpp

6.36 ODE Heun Class Reference

Second order explicit Heun algorithm.

```
#include <ode_impl.hpp>
```

Inheritance diagram for ODE Heun:

Collaboration diagram for ODE_Heun:

Public Member Functions

- ODE_Heun ()
- Eigen::VectorXd step (double t, Eigen::VectorXd y0, std::function< Eigen::VectorXd(double, Eigen::Vector ∠ Xd)> rhs_fun, double h) override

One step of explicit solving algorithm.

Additional Inherited Members

6.36.1 Detailed Description

Second order explicit Heun algorithm.

6.36.2 Constructor & Destructor Documentation

```
6.36.2.1 ODE_Heun()
```

```
ODE_Heun::ODE_Heun ( ) [inline]
```

6.36.3 Member Function Documentation

6.36.3.1 step()

One step of explicit solving algorithm.

Parameters

t	start time	
у0	start variable	
rhs_fun	rhs_fun right-hand-side function, calculation of derivative	
h	time step	

Returns

Implements ODE.

The documentation for this class was generated from the following file:

• lib/UAV_common/src/ode/ode_impl.hpp

6.37 ODE RK4 Class Reference

Fourth order Runge Kutta algorithm.

#include <ode_impl.hpp>

Inheritance diagram for ODE_RK4:

Collaboration diagram for ODE_RK4:

Public Member Functions

- ODE_RK4 ()
- Eigen::VectorXd step (double t, Eigen::VectorXd y0, std::function< Eigen::VectorXd(double, Eigen::Vector → Xd)> rhs_fun, double h) override

One step of explicit solving algorithm.

Additional Inherited Members

6.37.1 Detailed Description

Fourth order Runge Kutta algorithm.

6.37.2 Constructor & Destructor Documentation

6.37.2.1 ODE_RK4()

```
ODE_RK4::ODE_RK4 ( ) [inline]
```

6.37.3 Member Function Documentation

6.37.3.1 step()

One step of explicit solving algorithm.

Parameters

t	start time
y0	start variable
rhs_fun	right-hand-side function, calculation of derivative
h	time step

Returns

Implements ODE.

The documentation for this class was generated from the following file:

• lib/UAV_common/src/ode/ode_impl.hpp

6.38 ODETest Class Reference

Inheritance diagram for ODETest:

Collaboration diagram for ODETest:

Protected Member Functions

- void SetUp () override
- void TearDown () override

6.38.1 Member Function Documentation

6.38.1.1 SetUp()

```
void ODETest::SetUp ( ) [inline], [override], [protected]
```

6.38.1.2 TearDown()

```
void ODETest::TearDown ( ) [inline], [override], [protected]
```

The documentation for this class was generated from the following file:

• lib/UAV_common/src/ode/ode_test.cpp

6.39 PID Class Reference

PID discrete controller.

```
#include <PID.hpp>
```

Public Member Functions

- PID (double Kp, double Ki, double Kd, double min=std::numeric_limits< double >::min(), double max=std
 ::numeric_limits< double >::max(), AntiWindUpMode antiWindUp=AntiWindUpMode::Clamping)
- ∼PID ()
- void set_dt (double dt)

Set new time step.

• double calc (double error)

calc output of controller

• double calc (double error, double dt)

calc output of controller with specific time step

• void clear ()

clear internal state

6.39.1 Detailed Description

PID discrete controller.

6.39.2 Constructor & Destructor Documentation

6.39 PID Class Reference 85

6.39.2.1 PID()

6.39.2.2 ∼PID()

```
\text{PID}::\sim \text{PID} ( )
```

6.39.3 Member Function Documentation

6.39.3.1 calc() [1/2]

calc output of controller

Parameters

error	input of controller

Returns

output of controller

6.39.3.2 calc() [2/2]

```
double PID::calc ( \label{eq:calc} \mbox{double error,} \\ \mbox{double } \mbox{\it dt} \mbox{\ )}
```

calc output of controller with specific time step

Parameters

error	input of controller
dt	time step

Generated by Doxygen

Returns

output of controller

6.39.3.3 clear()

```
void PID::clear ( )
```

clear internal state

6.39.3.4 set_dt()

Set new time step.

Parameters

dt new time step

The documentation for this class was generated from the following files:

- lib/UAV_common/src/PID/PID.hpp
- lib/UAV_common/src/PID/PID.cpp

6.40 Rotor Struct Reference

Rotor engine with controlled speed.

```
#include <drive.hpp>
```

Inheritance diagram for Rotor:

Collaboration diagram for Rotor:

Public Attributes

- double forceCoff
- double torqueCoff
- int direction
- double timeConstant
- double maxSpeed
- double hoverSpeed

6.40.1 Detailed Description

Rotor engine with controlled speed.

6.40.2 Member Data Documentation

6.40.2.1 direction

int Rotor::direction

6.40.2.2 forceCoff

double Rotor::forceCoff

6.40.2.3 hoverSpeed

double Rotor::hoverSpeed

6.40.2.4 maxSpeed

double Rotor::maxSpeed

6.40.2.5 timeConstant

double Rotor::timeConstant

6.40.2.6 torqueCoff

double Rotor::torqueCoff

The documentation for this struct was generated from the following file:

lib/UAV_common/src/components/drive.hpp

6.41 Sensor < T > Class Template Reference

Sensors base class.

```
#include <sensors.hpp>
```

Collaboration diagram for Sensor< T >:

Public Member Functions

Sensor (Environment &env, double sd, T bias, std::string path, std::string fmt, double refreshTime)
 Constructor.

virtual void update ()=0

Update sensor state. Measured value is updated if sensor is ready for next read.

• T getReading ()

Returns recent measure.

• double getSd ()

Returns standard deviation.

· bool isReady ()

Checks if sensor is ready.

Protected Member Functions

• bool shouldUpdate ()

Checks if sensor should measure next value.

• double error ()

Protected Attributes

- Environment & env
- T value
- double refreshTime
- · double lastUpdate
- · std::atomic_bool ready
- std::normal_distribution< double > dist
- T bias
- · Logger logger

Static Protected Attributes

• static std::mt19937 gen = std::mt19937(std::random_device()())

6.41.1 Detailed Description

template < class T > class Sensor < T >

Sensors base class.

Template Parameters

```
T type of data read by sensor
```

6.41.2 Constructor & Destructor Documentation

6.41.2.1 Sensor()

Constructor.

Parameters

env	reference to environment sensor measures
sd	standard deviation of reading
bias	reading bias
path	path where sensor logs are saved
fmt	header of log file
refreshTime	sample period

6.41.3 Member Function Documentation

6.41.3.1 error()

```
template<class T >
double Sensor< T >::error [protected]
```

6.41.3.2 getReading()

```
template<class T >
T Sensor< T >::getReading ( ) [inline]
```

Returns recent measure.

Returns

sensor measure

6.41.3.3 getSd()

```
template<class T >
double Sensor< T >::getSd ( ) [inline]
```

Returns standard deviation.

Returns

standard deviation

6.41.3.4 isReady()

```
template<class T >
bool Sensor< T >::isReady ( ) [inline]
```

Checks if sensor is ready.

Returns

true if sensor is ready

6.41.3.5 shouldUpdate()

```
template<class T >
bool Sensor< T >::shouldUpdate [protected]
```

Checks if sensor should measure next value.

Returns

true if sensor is ready for next measure

6.41.3.6 update()

```
template<class T >
virtual void Sensor< T >::update ( ) [pure virtual]
```

Update sensor state. Measured value is updated if sensor is ready for next read.

Implemented in GPSVel, GPS, Barometer, Magnetometer, Gyroscope, and Accelerometer.

6.41.4 Member Data Documentation

6.41.4.1 bias

```
template<class T >
T Sensor< T >::bias [protected]
```

6.41.4.2 dist

```
template<class T >
std::normal_distribution<double> Sensor< T >::dist [protected]
```

6.41.4.3 env

```
template<class T >
Environment& Sensor< T >::env [protected]
```

6.41.4.4 gen

```
template<class T >
std::mt19937 Sensor< T >::gen = std::mt19937(std::random_device()()) [static], [protected]
```

6.41.4.5 lastUpdate

```
template<class T >
double Sensor< T >::lastUpdate [protected]
```

6.41.4.6 logger

```
template<class T >
Logger Sensor< T >::logger [protected]
```

92 Class Documentation

6.41.4.7 ready

```
template<class T >
std::atomic_bool Sensor< T >::ready [protected]
```

6.41.4.8 refreshTime

```
template<class T >
double Sensor< T >::refreshTime [protected]
```

6.41.4.9 value

```
template<class T >
T Sensor< T >::value [protected]
```

The documentation for this class was generated from the following files:

- src/navigation/sensors.hpp
- src/navigation/sensors.cpp

6.42 SensorParams Struct Reference

Base parameters of a sensor.

```
#include <navi.hpp>
```

Public Attributes

- std::string name
- double sd
- Eigen::Vector3d bias
- double refreshTime

6.42.1 Detailed Description

Base parameters of a sensor.

6.42.2 Member Data Documentation

6.42.2.1 bias

Eigen::Vector3d SensorParams::bias

6.42.2.2 name

std::string SensorParams::name

6.42.2.3 refreshTime

double SensorParams::refreshTime

6.42.2.4 sd

double SensorParams::sd

The documentation for this struct was generated from the following file:

• lib/UAV_common/src/components/navi.hpp

6.43 TimedLoop Class Reference

Simulation of real-time synchronized loop.

```
#include <timed_loop.hpp>
```

Public Member Functions

- TimedLoop (int periodInMs, std::function< void(void)> func, Status &status)
 - Constructor.
- void go ()

start infinite loop

void go (uint32_t loops)

start loop for specific cycle numbers

6.43.1 Detailed Description

Simulation of real-time synchronized loop.

94 Class Documentation

6.43.2 Constructor & Destructor Documentation

6.43.2.1 TimedLoop()

```
TimedLoop::TimedLoop (
          int periodInMs,
          std::function< void(void) > func,
          Status & status )
```

Constructor.

Parameters

periodInMs	loop period in milliseconds
func	function that should be called in loop
status	reference to controlling status

6.43.3 Member Function Documentation

```
6.43.3.1 go() [1/2]
```

```
void TimedLoop::go ( )
```

start infinite loop

6.43.3.2 go() [2/2]

start loop for specific cycle numbers

Parameters

loops	how many cycles should be done
-------	--------------------------------

The documentation for this class was generated from the following files:

- lib/UAV_common/src/timed_loop/timed_loop.hpp
- lib/UAV_common/src/timed_loop/timed_loop.cpp

6.44 UAVparams Struct Reference

Parsed UAV configuration from XML.

```
#include <uav_params.hpp>
```

Collaboration diagram for UAVparams:

96 Class Documentation

Public Member Functions

- UAVparams ()
 - Initialize default data.
- ∼UAVparams ()
- void loadConfig (std::string configFile)
- Eigen::VectorXd getRotorTimeContants () const
- Eigen::VectorXd getRotorMaxSpeeds () const
- Eigen::VectorXd getRotorHoverSpeeds () const

Static Public Member Functions

static const UAVparams * getSingleton ()

Public Attributes

- std::string name
- bool instantRun
- std::string initialMode
- Eigen::Vector3d initialPosition
- Eigen::Vector3d initialOrientation
- Eigen::Vector3d initialVelocity
- double m
- double lx
- · double ly
- double Iz
- double lxy
- double Ixz
- double lyz
- int noOfRotors
- std::unique_ptr< Rotor[]> rotors
- · int noOfJets
- std::unique_ptr< Jet[]> jets
- · ControlSurfaces surfaces
- AeroCoefficients aero_coffs
- std::map < std::string, PID > pids
- std::vector< SensorParams > sensors
- AHRSParams ahrs
- · EKFScalers ekf
- Eigen::MatrixX4d rotorMixer
- Eigen::MatrixX4d surfaceMixer
- int noOfAmmo
- std::unique_ptr< Ammo[]> ammo
- · int noOfCargo
- std::unique_ptr< Cargo[]> cargo

6.44.1 Detailed Description

Parsed UAV configuration from XML.

6.44.2 Constructor & Destructor Documentation

6.44.2.1 UAVparams() UAVparams::UAVparams () Initialize default data. 6.44.2.2 ∼UAVparams() UAVparams::~UAVparams () 6.44.3 Member Function Documentation 6.44.3.1 getRotorHoverSpeeds() Eigen::VectorXd UAVparams::getRotorHoverSpeeds () const 6.44.3.2 getRotorMaxSpeeds() Eigen::VectorXd UAVparams::getRotorMaxSpeeds () const 6.44.3.3 getRotorTimeContants() Eigen::VectorXd UAVparams::getRotorTimeContants () const 6.44.3.4 getSingleton()

const UAVparams * UAVparams::getSingleton () [static]

98 Class Documentation

6.44.3.5 loadConfig()

6.44.4 Member Data Documentation

6.44.4.1 aero_coffs

AeroCoefficients UAVparams::aero_coffs

6.44.4.2 ahrs

AHRSParams UAVparams::ahrs

6.44.4.3 ammo

std::unique_ptr<Ammo[]> UAVparams::ammo

6.44.4.4 cargo

std::unique_ptr<Cargo[]> UAVparams::cargo

6.44.4.5 ekf

EKFScalers UAVparams::ekf

6.44.4.6 initialMode

std::string UAVparams::initialMode

6.44.4.7 initialOrientation

Eigen::Vector3d UAVparams::initialOrientation

6.44.4.8 initialPosition

Eigen::Vector3d UAVparams::initialPosition

6.44.4.9 initialVelocity

Eigen::Vector3d UAVparams::initialVelocity

6.44.4.10 instantRun

bool UAVparams::instantRun

6.44.4.11 lx

double UAVparams::Ix

6.44.4.12 lxy

double UAVparams::Ixy

6.44.4.13 lxz

double UAVparams::Ixz

6.44.4.14 ly

double UAVparams::Iy

100 Class Documentation

6.44.4.15 lyz

double UAVparams::Iyz

6.44.4.16 Iz

double UAVparams::Iz

6.44.4.17 jets

std::unique_ptr<Jet[]> UAVparams::jets

6.44.4.18 m

double UAVparams::m

6.44.4.19 name

std::string UAVparams::name

6.44.4.20 noOfAmmo

int UAVparams::noOfAmmo

6.44.4.21 noOfCargo

int UAVparams::noOfCargo

6.44.4.22 noOfJets

int UAVparams::noOfJets

6.44.4.23 noOfRotors

int UAVparams::noOfRotors

6.44.4.24 pids

std::map<std::string,PID> UAVparams::pids

6.44.4.25 rotorMixer

Eigen::MatrixX4d UAVparams::rotorMixer

6.44.4.26 rotors

std::unique_ptr<Rotor[]> UAVparams::rotors

6.44.4.27 sensors

std::vector<SensorParams> UAVparams::sensors

6.44.4.28 surfaceMixer

Eigen::MatrixX4d UAVparams::surfaceMixer

6.44.4.29 surfaces

ControlSurfaces UAVparams::surfaces

The documentation for this struct was generated from the following files:

- lib/UAV_common/src/parser/uav_params.hpp
- lib/UAV_common/src/parser/uav_params.cpp

102 Class Documentation

Chapter 7

File Documentation

7.1 lib/UAV_common/header/common.hpp File Reference

```
#include "../src/logger/logger.hpp"
#include "../src/ode/ode.hpp"
#include "../src/PID/PID.hpp"
#include "../src/timed_loop/timed_loop.hpp"
#include "../src/timed_loop/status.hpp"
#include "../src/parser/parser.hpp"
#include "../src/parser/uav_params.hpp"
#include "../src/components/components.hpp"
Include dependency graph for common.hpp: This graph shows which files directly or indirectly include this file:
```

7.2 lib/UAV_common/src/components/aero_coefficients.hpp File Reference

```
#include <Eigen/Dense>
```

Include dependency graph for aero_coefficients.hpp: This graph shows which files directly or indirectly include this file:

Classes

• struct AeroCoefficients

Aerodynamic coefficient.

7.3 lib/UAV common/src/components/components.hpp File Reference

```
#include "drive.hpp"
#include "control_surfaces.hpp"
#include "aero_coefficients.hpp"
#include "loads.hpp"
#include "navi.hpp"
```

Include dependency graph for components.hpp: This graph shows which files directly or indirectly include this file:

7.4 lib/UAV_common/src/components/control_surfaces.cpp File Reference

#include "control_surfaces.hpp"
Include dependency graph for control_surfaces.cpp:

7.5 lib/UAV_common/src/components/control_surfaces.hpp File Reference

#include <Eigen/Dense>

Include dependency graph for control_surfaces.hpp: This graph shows which files directly or indirectly include this file:

Classes

· class ControlSurfaces

Aircraft's control surfaces.

7.6 lib/UAV common/src/components/drive.cpp File Reference

#include "drive.hpp"
Include dependency graph for drive.cpp:

7.7 lib/UAV common/src/components/drive.hpp File Reference

```
#include <Eigen/Dense>
#include "hinge.hpp"
```

Include dependency graph for drive.hpp: This graph shows which files directly or indirectly include this file:

Classes

struct Drive

Drive propelling aircraft.

• struct Rotor

Rotor engine with controlled speed.

class Jet

Jet rocket engine.

7.8 lib/UAV_common/src/components/hinge.cpp File Reference

```
#include "hinge.hpp"
Include dependency graph for hinge.cpp:
```

Functions

• Eigen::Matrix3d asSkewMatrix (Eigen::Vector3d v)

7.8.1 Function Documentation

7.8.1.1 asSkewMatrix()

7.9 lib/UAV_common/src/components/hinge.hpp File Reference

```
#include <Eigen/Dense>
#include <mutex>
#include <memory>
```

Include dependency graph for hinge.hpp: This graph shows which files directly or indirectly include this file:

Classes

class Hinge

Hinge connecting aircraft with drives.

7.10 lib/UAV_common/src/components/loads.cpp File Reference

```
#include "loads.hpp"
#include <limits>
Include dependency graph for loads.cpp:
```

7.11 lib/UAV_common/src/components/loads.hpp File Reference

```
#include <Eigen/Dense>
#include <atomic>
```

Include dependency graph for loads.hpp: This graph shows which files directly or indirectly include this file:

Classes

class Load

Load of aircraft that can be droped or launched.

- class Ammo
- class Cargo

7.12 lib/UAV_common/src/components/navi.hpp File Reference

```
#include <Eigen/Dense>
```

Include dependency graph for navi.hpp: This graph shows which files directly or indirectly include this file:

Classes

struct SensorParams

Base parameters of a sensor.

struct AHRSParams

AHRS parameters.

struct EKFScalers

Scalers for EKF.

7.13 lib/UAV_common/src/logger/logger.cpp File Reference

```
#include "logger.hpp"
#include <Eigen/Dense>
#include <iostream>
#include <fstream>
#include <initializer_list>
#include <string>
#include <filesystem>
Include dependency graph for logger.cpp:
```

Functions

• bool shouldLog (uint8_t group)

7.13.1 Function Documentation

7.13.1.1 shouldLog()

7.14 lib/UAV common/src/logger/logger.hpp File Reference

```
#include <Eigen/Dense>
#include <iostream>
#include <fstream>
#include <initializer_list>
#include <string>
#include <filesystem>
```

Include dependency graph for logger.hpp: This graph shows which files directly or indirectly include this file:

Classes

class Logger

Log vector data with timestamp in file.

Macros

• #define LOGGER_MASK -1

7.14.1 Macro Definition Documentation

7.14.1.1 LOGGER_MASK

```
#define LOGGER_MASK -1
```

7.15 lib/UAV_common/src/ode/ode.cpp File Reference

```
#include "ode.hpp"
#include "ode_impl.hpp"
Include dependency graph for ode.cpp:
```

7.16 lib/UAV_common/src/ode/ode.hpp File Reference

```
#include <functional>
#include <memory>
#include <Eigen/Dense>
```

Include dependency graph for ode.hpp: This graph shows which files directly or indirectly include this file:

Classes

class ODE

Ordinal differencial equation solver.

7.17 lib/UAV_common/src/ode/ode_impl.hpp File Reference

```
#include "ode.hpp"
```

Include dependency graph for ode_impl.hpp: This graph shows which files directly or indirectly include this file:

Classes

```
    class ODE_Euler
        Explicit Euler algorithm.
    class ODE_Heun
        Second order explicit Heun algorithm.
    class ODE_RK4
        Fourth order Runge Kutta algorithm.
```

7.18 lib/UAV_common/src/ode/ode_test.cpp File Reference

```
#include "ode.hpp"
#include <gtest/gtest.h>
#include <numbers>
Include dependency graph for ode test.cpp:
```

Classes

class ODETest

Functions

```
std::vector < ODE::ODEMethod > getMethodsToTest ()
TEST_F (ODETest, FromStringTest)
TEST_F (ODETest, FactoryTest)
TEST_P (ODETest, TestConstFunction)
TEST_P (ODETest, TestFirstOrder)
TEST_P (ODETest, TestRHSCalls)
INSTANTIATE_TEST_SUITE_P (TestDerivedClasses, ODETest, testing::ValuesIn(getMethodsToTest()))
int main (int argc, char **argv)
```

7.18.1 Function Documentation

7.18.1.1 getMethodsToTest()

```
\verb|std::vector<ODE::ODEMethod>| getMethodsToTest ()|\\
```

7.18.1.2 INSTANTIATE_TEST_SUITE_P()

7.18.1.3 main()

```
int main ( \label{eq:int_argc} \text{int } \textit{argc,} \label{eq:char_argv} \text{char ** argv })
```

7.18.1.4 TEST_F() [1/2]

```
TEST_F (
          ODETest ,
          FactoryTest )
```

7.18.1.5 TEST_F() [2/2]

```
TEST_F (
          ODETest ,
          FromStringTest )
```

7.18.1.6 TEST_P() [1/3]

```
TEST_P (
          ODETest ,
          TestConstFunction )
```

7.18.1.7 TEST_P() [2/3]

```
TEST_P (
          ODETest ,
          TestFirstOrder )
```

7.18.1.8 TEST_P() [3/3]

```
TEST_P (
          ODETest ,
          TestRHSCalls )
```

7.19 lib/UAV_common/src/parser/parser.cpp File Reference

```
#include "parser.hpp"
#include <Eigen/Dense>
#include <iostream>
#include <sstream>
Include dependency graph for parser.cpp:
```

Functions

- Eigen::MatrixXd parseMatrixXd (const std::string &input, int R, int C, char delimiter)

 Parse input string to double matrix of specific shape and delimiter.
- Eigen::VectorXd parseVectorXd (std::string str, int noOfElem, char delimiter)

 Parse input string to double vector of specific length and delimiter.

7.19.1 Function Documentation

7.19.1.1 parseMatrixXd()

Parse input string to double matrix of specific shape and delimiter.

Parameters

input	input string
R	number of rows
С	number of columns
delimiter	delimiter

Returns

parsed matrix

7.19.1.2 parseVectorXd()

Parse input string to double vector of specific length and delimiter.

Parameters

str	input string
noOfElem	length of vector
delimiter	delimiter

Returns

parsed vector

7.20 lib/UAV_common/src/parser/parser.hpp File Reference

```
#include <Eigen/Dense>
```

Include dependency graph for parser.hpp: This graph shows which files directly or indirectly include this file:

Functions

- Eigen::MatrixXd parseMatrixXd (const std::string &input, int R, int C, char delimiter=' ')

 Parse input string to double matrix of specific shape and delimiter.
- Eigen::VectorXd parseVectorXd (std::string str, int noOfElem, char delimiter='')

 Parse input string to double vector of specific length and delimiter.

7.20.1 Function Documentation

7.20.1.1 parseMatrixXd()

Parse input string to double matrix of specific shape and delimiter.

Parameters

input	input string
R	number of rows
С	number of columns
delimiter	delimiter

Returns

parsed matrix

7.20.1.2 parseVectorXd()

Parse input string to double vector of specific length and delimiter.

Parameters

str	input string
noOfElem	length of vector
delimiter	delimiter

Returns

parsed vector

7.21 lib/UAV_common/src/parser/uav_params.cpp File Reference

```
#include <Eigen/Dense>
#include "uav_params.hpp"
#include <iostream>
#include <fstream>
#include <filesystem>
#include <mutex>
#include "rapidxml/rapidxml.hpp"
#include "parser.hpp"
Include dependency graph for uav_params.cpp:
```

Functions

- void parseHinge (rapidxml::xml_node<> *hingeNode, Hinge *hinge)
- PID parsePID (rapidxml::xml node<> *PIDNode)

7.21.1 Function Documentation

7.21.1.1 parseHinge()

7.21.1.2 parsePID()

7.22 lib/UAV_common/src/parser/uav_params.hpp File Reference

```
#include <Eigen/Dense>
#include <mutex>
#include <memory>
#include <map>
#include "rapidxml/rapidxml.hpp"
#include "../components/components.hpp"
#include "../PID/PID.hpp"
```

Include dependency graph for uav_params.hpp: This graph shows which files directly or indirectly include this file:

Classes

struct UAVparams

Parsed UAV configuration from XML.

7.23 lib/UAV common/src/PID/PID.cpp File Reference

```
#include "PID.hpp"
#include <limits>
#include <algorithm>
Include dependency graph for PID.cpp:
```

7.24 lib/UAV_common/src/PID/PID.hpp File Reference

```
#include <limits>
```

Include dependency graph for PID.hpp: This graph shows which files directly or indirectly include this file:

Classes

• class PID

PID discrete controller.

Enumerations

enum AntiWindUpMode { None , Clamping }
 Methods of handling windup in controller.

7.24.1 Enumeration Type Documentation

7.24.1.1 AntiWindUpMode

```
enum AntiWindUpMode
```

Methods of handling windup in controller.

Enumerator

None	
Clamping	

7.25 lib/UAV_common/src/timed_loop/status.hpp File Reference

This graph shows which files directly or indirectly include this file:

Enumerations

```
    enum Status { idle = 1 , running = 2 , exiting = 3 , reload = 4 }
status of timed loop. Control it's job
```

7.25.1 Enumeration Type Documentation

7.25.1.1 Status

enum Status

status of timed loop. Control it's job

Enumerator

idle	loop is ready to run
running	loop is running
exiting	loop will be break in next occasion.
reload	loop job should be reloaded

7.26 lib/UAV_common/src/timed_loop/timed_loop.cpp File Reference

```
#include "timed_loop.hpp"
#include <stdint.h>
#include <chrono>
#include <thread>
#include "status.hpp"
#include <iostream>
```

Include dependency graph for timed_loop.cpp:

7.27 lib/UAV common/src/timed loop/timed loop.hpp File Reference

```
#include <stdint.h>
#include <functional>
#include "status.hpp"
```

Include dependency graph for timed loop.hpp: This graph shows which files directly or indirectly include this file:

Classes

class TimedLoop

Simulation of real-time synchronized loop.

7.28 src/communication/control.cpp File Reference

```
#include "control.hpp"
#include <iostream>
Include dependency graph for control.cpp:
```

Functions

void orderServerJob (zmq::context_t *ctx, std::string uav_address, std::function< std::string(std::string)> handleMsg, bool &run)

7.28.1 Function Documentation

7.28.1.1 orderServerJob()

```
void orderServerJob (
    zmq::context_t * ctx,
    std::string uav_address,
    std::function< std::string(std::string)> handleMsg,
    bool & run )
```

7.29 src/communication/control.hpp File Reference

```
#include <zmq.hpp>
#include <Eigen/Dense>
#include <atomic>
#include <thread>
#include <functional>
#include "../controller/controller.hpp"
```

Include dependency graph for control.hpp: This graph shows which files directly or indirectly include this file:

Classes

· class Control

Control command listener & sender.

7.30 src/communication/control_recv.cpp File Reference

```
#include "control.hpp"
#include <iostream>
#include "../defines.hpp"
Include dependency graph for control recv.cpp:
```

7.31 src/communication/control_send.cpp File Reference

```
#include "control.hpp"
#include <iostream>
Include dependency graph for control send.cpp:
```

7.32 src/controller/controller.cpp File Reference

```
#include "controller.hpp"
#include <iostream>
#include "../defines.hpp"
Include dependency graph for controller.cpp:
```

7.33 src/controller/controller.hpp File Reference

```
#include <map>
#include <string>
#include <Eigen/Dense>
#include <functional>
#include <optional>
#include "../navigation/NS.hpp"
#include "../navigation/environment.hpp"
#include "mixers.hpp"
#include "controller_mode.hpp"
#include "controller_loop.hpp"
#include "common.hpp"
#include "../communication/control.hpp"
```

Include dependency graph for controller.hpp: This graph shows which files directly or indirectly include this file:

Classes

· class Controller

Central controller class.

7.34 src/controller/controller loop.cpp File Reference

```
#include "controller_loop.hpp"
#include "modes/controller_loop_NONE.hpp"
#include "modes/controller_loop_QACRO.hpp"
#include "modes/controller_loop_QANGLE.hpp"
#include "modes/controller_loop_QPOS.hpp"
#include "modes/controller_loop_RMANUAL.hpp"
#include dependency graph for controller loop.cpp:
```

7.35 src/controller/controller_loop.hpp File Reference

```
#include <Eigen/Dense>
#include <map>
#include "controller_mode.hpp"
#include "common.hpp"
#include "mixers.hpp"
#include "../communication/control.hpp"
#include "../navigation/NS.hpp"
```

Include dependency graph for controller_loop.hpp: This graph shows which files directly or indirectly include this file:

Classes

class ControllerLoop

This class is interface of controller modes. All modes should keep this strucure and implements all true virtual methods.

7.36 src/controller/controller_mode.hpp File Reference

```
#include <string_view>
#include <iostream>
```

Include dependency graph for controller_mode.hpp: This graph shows which files directly or indirectly include this file:

Enumerations

```
    enum ControllerMode {
    NONE = 0 , QPOS = 1 , QANGLE = 2 , QACRO = 3 ,
    FMANUAL = 4 , FACRO = 5 , FANGLE = 6 , RMANUAL = 7 }
    Controller modes.
```

Functions

- constexpr const char * ControllerModeToString (ControllerMode mode) throw ()
 Serializes controller mode to string.
- constexpr ControllerMode ControllerModeFromString (const char *mode) throw ()
 Parse string to controller mode.

7.36.1 Enumeration Type Documentation

7.36.1.1 ControllerMode

enum ControllerMode

Controller modes.

Enumerator

QPOS QANGLE QACRO FMANUAL FACRO FANGLE RMANUAL	NONE	
QACRO FMANUAL FACRO FANGLE	QPOS	
FMANUAL FACRO FANGLE	QANGLE	
FACRO FANGLE	QACRO	
FANGLE	FMANUAL	
	FACRO	
RMANUAL	FANGLE	
	RMANUAL	

7.36.2 Function Documentation

7.36.2.1 ControllerModeFromString()

Parse string to controller mode.

Parameters

mode	string to parse
------	-----------------

Returns

parsing result, NONE if parse failed

7.36.2.2 ControllerModeToString()

Serializes controller mode to string.

Parameters

mode controller mode

Returns

serialized mode

7.37 src/controller/mixers.cpp File Reference

```
#include "mixers.hpp"
#include <Eigen/Dense>
#include "common.hpp"
Include dependency graph for mixers.cpp:
```

Functions

- Eigen::VectorXd applyMixerRotors (double climb_rate, double roll_rate, double pitch_rate, double yaw_rate)

 Calculates rotor demanded speed as result of multiplication mixer matrix and rates. Average speed is proportional to climb rate
- Eigen::VectorXd applyMixerRotorsHover (double throttle, double roll_rate, double pitch_rate, double yaw_
 rate)

Calculates rotor demanded speed as result of multiplication mixer matrix and rates. Average speed is proportional to throttle. It's scaled to achieve hover at centered throttle.

• Eigen::VectorXd applyMixerSurfaces (double throttle, double roll_rate, double pitch_rate, double yaw_rate)

Calculated demanded surfaces deflection result of multiplication mixer matrix and rates.

7.37.1 Function Documentation

7.37.1.1 applyMixerRotors()

Calculates rotor demanded speed as result of multiplication mixer matrix and rates. Average speed is proportional to climb rate.

Parameters

climb_rate	
roll_rate	
pitch_rate	
yaw_rate	

Returns

Rotors demanded speed

7.37.1.2 applyMixerRotorsHover()

Calculates rotor demanded speed as result of multiplication mixer matrix and rates. Average speed is proportional to throttle. It's scaled to achieve hover at centered throttle.

Parameters

throttle	
roll_rate	
pitch_rate	
yaw_rate	

Returns

Rotors demanded speed

7.37.1.3 applyMixerSurfaces()

Calculated demanded surfaces deflection result of multiplication mixer matrix and rates.

Parameters

throttle	
roll_rate	
pitch_rate	
yaw_rate	

Returns

demanded surfaces deflection

7.38 src/controller/mixers.hpp File Reference

```
#include <Eigen/Dense>
```

Include dependency graph for mixers.hpp: This graph shows which files directly or indirectly include this file:

Functions

- Eigen::VectorXd applyMixerRotors (double climb_rate, double roll_rate, double pitch_rate, double yaw_rate)

 Calculates rotor demanded speed as result of multiplication mixer matrix and rates. Average speed is proportional to climb rate.
- Eigen::VectorXd applyMixerRotorsHover (double throttle, double roll_rate, double pitch_rate, double yaw_←
 rate)

Calculates rotor demanded speed as result of multiplication mixer matrix and rates. Average speed is proportional to throttle. It's scaled to achieve hover at centered throttle.

• Eigen::VectorXd applyMixerSurfaces (double throttle, double roll_rate, double pitch_rate, double yaw_rate)

Calculated demanded surfaces deflection result of multiplication mixer matrix and rates.

7.38.1 Function Documentation

7.38.1.1 applyMixerRotors()

Calculates rotor demanded speed as result of multiplication mixer matrix and rates. Average speed is proportional to climb rate.

Parameters

climb_rate	
roll_rate	
pitch_rate	
yaw_rate	

Returns

Rotors demanded speed

7.38.1.2 applyMixerRotorsHover()

```
double roll_rate,
double pitch_rate,
double yaw_rate )
```

Calculates rotor demanded speed as result of multiplication mixer matrix and rates. Average speed is proportional to throttle. It's scaled to achieve hover at centered throttle.

Parameters

throttle	
roll_rate	
pitch_rate	
yaw_rate	

Returns

Rotors demanded speed

7.38.1.3 applyMixerSurfaces()

Calculated demanded surfaces deflection result of multiplication mixer matrix and rates.

Parameters

throttle	
roll_rate	
pitch_rate	
yaw_rate	

Returns

demanded surfaces deflection

7.39 src/controller/modes/controller_loop_FMANUAL.cpp File Reference

```
#include "controller_loop_FMANUAL.hpp"
Include dependency graph for controller_loop_FMANUAL.cpp:
```

7.40 src/controller/modes/controller loop FMANUAL.hpp File Reference

#include "../controller_loop.hpp"

Include dependency graph for controller_loop_FMANUAL.hpp: This graph shows which files directly or indirectly include this file:

Classes

class ControllerLoopFMANUAL

7.41 src/controller/modes/controller loop NONE.cpp File Reference

#include "controller_loop_NONE.hpp"
Include dependency graph for controller_loop_NONE.cpp:

7.42 src/controller/modes/controller_loop_NONE.hpp File Reference

#include "../controller_loop.hpp"

Include dependency graph for controller_loop_NONE.hpp: This graph shows which files directly or indirectly include this file:

Classes

• class ControllerLoopNONE

7.43 src/controller/modes/controller_loop_QACRO.cpp File Reference

#include "controller_loop_QACRO.hpp"
Include dependency graph for controller_loop_QACRO.cpp:

7.44 src/controller/modes/controller_loop_QACRO.hpp File Reference

#include "../controller_loop.hpp"

Include dependency graph for controller_loop_QACRO.hpp: This graph shows which files directly or indirectly include this file:

Classes

class ControllerLoopQACRO

7.45 src/controller/modes/controller loop QANGLE.cpp File Reference

```
#include "controller_loop_QANGLE.hpp"
#include "../../utils.hpp"
Include dependency graph for controller_loop_QANGLE.cpp:
```

7.46 src/controller/modes/controller loop QANGLE.hpp File Reference

```
#include "../controller_loop.hpp"
```

Include dependency graph for controller_loop_QANGLE.hpp: This graph shows which files directly or indirectly include this file:

Classes

class ControllerLoopQANGLE

7.47 src/controller/modes/controller_loop_QPOS.cpp File Reference

```
#include "controller_loop_QPOS.hpp"
#include "../../utils.hpp"
Include dependency graph for controller_loop_QPOS.cpp:
```

7.48 src/controller/modes/controller_loop_QPOS.hpp File Reference

```
#include "../controller_loop.hpp"
```

Include dependency graph for controller_loop_QPOS.hpp: This graph shows which files directly or indirectly include this file:

Classes

class ControllerLoopQPOS

7.49 src/controller/modes/controller_loop_RMANUAL.cpp File Reference

```
#include "controller_loop_RMANUAL.hpp"
Include dependency graph for controller loop RMANUAL.cpp:
```

7.50 src/controller/modes/controller loop RMANUAL.hpp File Reference

```
#include "../controller_loop.hpp"
```

Include dependency graph for controller_loop_RMANUAL.hpp: This graph shows which files directly or indirectly include this file:

Classes

class ControllerLoopRMANUAL

7.51 src/defines.hpp File Reference

This graph shows which files directly or indirectly include this file:

Namespaces

• def

Controller constants.

Macros

• #define USE_QUATERIONS 1

Variables

```
    const double def::STEP_TIME = 0.003
        Step time of controller. Step of PID and EKF calculations.

    const int def::INFO_PERIOD = 2
        How often send demands in response to stick command.
```

7.51.1 Macro Definition Documentation

7.51.1.1 USE_QUATERIONS

```
#define USE_QUATERIONS 1
```

7.52 src/main.cpp File Reference

```
#include <iostream>
#include <fstream>
#include <cxxopts.hpp>
#include <thread>
#include <chrono>
#include <filesystem>
#include "zmq.hpp"
#include "controller/controller.hpp"
#include "common.hpp"
Include dependency graph for main.cpp:
```

Macros

• #define LOGGER_MASK 5

Functions

```
    void parseArgs (int argc, char **argv, UAVparams *params)
    Parse CL arguments.
    int main (int argc, char **argv)
```

Variables

• std::string log_path = "logs/"

7.52.1 Macro Definition Documentation

7.52.1.1 LOGGER MASK

```
#define LOGGER_MASK 5
```

7.52.2 Function Documentation

7.52.2.1 main()

```
int main (
          int argc,
          char ** argv )
```

7.52.2.2 parseArgs()

```
void parseArgs (
          int argc,
          char ** argv,
          UAVparams * params )
```

Parse CL arguments.

Parameters

argc	number of argument
argv	argument array
params	pointer to UAVparams instant that should be filled

7.52.3 Variable Documentation

7.52.3.1 log_path

```
std::string log_path = "logs/"
```

7.53 src/navigation/AHRS.cpp File Reference

```
#include "AHRS.hpp"
#include <Eigen/Dense>
#include <random>
#include "common.hpp"
Include dependency graph for AHRS.cpp:
```

7.54 src/navigation/AHRS.hpp File Reference

```
#include <Eigen/Dense>
#include <random>
#include <optional>
#include "environment.hpp"
#include "sensors.hpp"
```

Include dependency graph for AHRS.hpp: This graph shows which files directly or indirectly include this file:

Classes

• class AHRS

Attitude and heading reference system.

7.55 src/navigation/AHRS/AHRS_complementary.cpp File Reference

```
#include "AHRS_complementary.hpp"
#include <Eigen/Dense>
#include <random>
#include <iostream>
#include "common.hpp"
```

Include dependency graph for AHRS_complementary.cpp:

Functions

- Eigen::Matrix3d calcRnb (Eigen::Vector3d ori)
- Eigen::Matrix3d calcRbn (Eigen::Vector3d ori)
- Eigen::Matrix3d calcTom (Eigen::Vector3d ori)
- void clampOrientation (Eigen::Vector3d &vec)

7.55.1 Function Documentation

7.55.1.1 calcRbn()

7.55.1.2 calcRnb()

7.55.1.3 calcTom()

7.55.1.4 clampOrientation()

```
void clampOrientation ( \label{eq:condition} \mbox{Eigen::Vector3d \& $vec$ )}
```

7.56 src/navigation/AHRS/AHRS_complementary.hpp File Reference

```
#include <Eigen/Dense>
#include <random>
#include "../environment.hpp"
#include "../sensors.hpp"
#include "common.hpp"
#include "../AHRS.hpp"
```

Include dependency graph for AHRS_complementary.hpp: This graph shows which files directly or indirectly include this file:

Classes

class AHRS_complementary

Implementation of AHRS based on Complementary Filter.

7.57 src/navigation/AHRS/AHRS_EKF.cpp File Reference

```
#include "AHRS_EKF.hpp"
#include <Eigen/Dense>
#include <random>
#include <iostream>
Include dependency graph for AHRS_EKF.cpp:
```

Functions

- Eigen::Matrix< double, 4, 3 > S (Eigen::Vector4d q)
- Eigen::Matrix< double, 6, 7 > C (Eigen::Vector4d q)

7.57.1 Function Documentation

7.57.1.1 C()

7.57.1.2 S()

```
Eigen::Matrix<double,4,3> S ( Eigen::Vector4d q )
```

7.58 src/navigation/AHRS/AHRS_EKF.hpp File Reference

```
#include <Eigen/Dense>
#include "../environment.hpp"
#include "../sensors.hpp"
#include "common.hpp"
#include "../AHRS.hpp"
```

Include dependency graph for AHRS_EKF.hpp: This graph shows which files directly or indirectly include this file:

Classes

· class AHRS_EKF

Implementation of AHRS based on Extended Kalman Filter.

7.59 src/navigation/EKF.cpp File Reference

```
#include "EKF.hpp"
#include <Eigen/Dense>
#include <iostream>
#include "common.hpp"
Include dependency graph for EKF.cpp:
```

7.60 src/navigation/EKF.hpp File Reference

```
#include <Eigen/Dense>
#include "environment.hpp"
#include "sensors.hpp"
Include dependency graph for EKF.hpp: This graph shows which files directly or indirectly include this file:
```

Classes

• struct EKFParams

EK filer parameters.

· class EKF

Extended Kalman Filter.

7.61 src/navigation/environment.cpp File Reference

```
#include "environment.hpp"
#include <zmq.hpp>
#include <Eigen/Dense>
#include <mutex>
#include <vector>
#include <memory>
#include <iostream>
#include <iinitializer_list>
#include "../utils.hpp"
#include "sensors.hpp"
#include "../defines.hpp"
Include dependency graph for environment.cpp:
```

Functions

- void connectConflateSocket (zmq::socket_t &sock, std::string address, std::string topic)
- template<int Size1, int Size2>
 bool recvVectors (zmq::socket_t &sock, int skip, Eigen::Vector< double, Size1 > &vec1, Eigen::Vector<
 double, Size2 > &vec2)
- Eigen::Matrix< double, 3, 3 > r_nb (const Eigen::Vector3d &RPY)
- Eigen::Matrix< double, 3, 3 > r_nb (const Eigen::Vector4d &e)

7.61.1 Function Documentation

7.61.1.1 connectConflateSocket()

```
void connectConflateSocket (
    zmq::socket_t & sock,
    std::string address,
    std::string topic )
```

7.61.1.2 r_nb() [1/2]

7.61.1.3 r_nb() [2/2]

7.61.1.4 recvVectors()

7.62 src/navigation/environment.hpp File Reference

```
#include <zmq.hpp>
#include <thread>
#include <Eigen/Dense>
#include <mutex>
#include <vector>
#include <memory>
#include <atomic>
#include <map>
#include "sensors.hpp"
#include "common.hpp"
#include "../defines.hpp"
Include dependency graph for environment.hpp: This graph shows which files directly or indirectly include this file:
```

Classes

class Environment

7.63 src/navigation/NS.cpp File Reference

```
#include "NS.hpp"
#include <Eigen/Dense>
#include <iostream>
#include "AHRS/AHRS_EKF.hpp"
#include "AHRS/AHRS_complementary.hpp"
#include "../defines.hpp"
Include dependency graph for NS.cpp:
```

7.64 src/navigation/NS.hpp File Reference

```
#include <Eigen/Dense>
#include "environment.hpp"
#include "sensors.hpp"
#include "AHRS.hpp"
#include "EKF.hpp"
```

Include dependency graph for NS.hpp: This graph shows which files directly or indirectly include this file:

Classes

• class NS

Navigation system.

7.65 src/navigation/sensors.cpp File Reference

```
#include "sensors.hpp"
#include <Eigen/Dense>
#include <random>
#include <liimits>
#include "environment.hpp"
#include "common.hpp"
Include dependency graph for sensors.cpp:
```

7.66 src/navigation/sensors.hpp File Reference

```
#include <Eigen/Dense>
#include <random>
#include <atomic>
#include "common.hpp"
```

Include dependency graph for sensors.hpp: This graph shows which files directly or indirectly include this file:

Classes

class Sensor< T >

Sensors base class.

· class Accelerometer

Representation of accelerometer.

class Gyroscope

Representation of gyroscope.

· class Magnetometer

Representation of magnetometer.

class Barometer

Representation of barometer.

class GPS

Representation of GPS position measure.

· class GPSVel

Representation of GPS velocity measure.

7.67 src/utils.hpp File Reference

```
#include <Eigen/Dense>
#include <mutex>
```

Include dependency graph for utils.hpp: This graph shows which files directly or indirectly include this file:

Functions

```
    template<typename T >
        void safeSet (T &vec, T &new_val, std::mutex &mtx)
        Safe setter for T type value protected by mutex.
    template<typename T >
        T safeGet (T &vec, std::mutex &mtx)
```

Safe getter for T type value protected by mutex.

• double circularError (double demanded, double val)

Calculates error between demanded and actual angle. Finds shorter path. For example if actual value is -0.9pi and demanded is 0.9pi error is equal -0.2pi.

• double clampAngle (double angle)

Clamps angle given in radians to range <-pi,pi>

7.67.1 Function Documentation

7.67.1.1 circularError()

Calculates error between demanded and actual angle. Finds shorter path. For example if actual value is -0.9pi and demanded is 0.9pi error is equal -0.2pi.

Parameters

demanded	demanded angle in radian
val	actual angle in radian

Returns

angle error

7.67.1.2 clampAngle()

Clamps angle given in radians to range <-pi,pi>

Parameters

angle	angle in radian
-------	-----------------

Returns

angle converted to range <-pi,pi>

7.67.1.3 safeGet()

Safe getter for T type value protected by mutex.

Template Parameters

T Type of variable

Parameters

vec	value to be get
mtx	mutex

Returns

value of vec

7.67.1.4 safeSet()

Safe setter for T type value protected by mutex.

Template Parameters

```
T Type of variable
```

Parameters

vec	value to be set
new_val	new value
mtx	mutex

Index

_V0	mtxOri, 16
Ammo, 24	ori_est, 16
_mode	rot_bw, 15
ControllerLoop, 39	update, 16
~AHRS	ahrs
AHRS, 15	UAVparams, 98
~AHRS_EKF	AHRS_complementary, 17
AHRS_EKF, 19	\sim AHRS_complementary, 17
~AHRS_complementary	AHRS_complementary, 17
AHRS_complementary, 17	alpha, 18
\sim Control	rot_bw, 18
Control, 28	update, 18
\sim Controller	AHRS_complementary.cpp
Controller, 33	calcRbn, 128
~ControllerLoop	calcRnb, 128
ControllerLoop, 35	calcTom, 128
~Environment	clampOrientation, 128
Environment, 57	AHRS_EKF, 19
~Logger	\sim AHRS_EKF, 19
Logger, 71	AHRS_EKF, 19
~NS	getGyroBias, 20
NS, 74	P, 21
~ODE	Q, 21
ODE, 77	g, 20
~PID	quaterionToRPY, 20
PID, 85	R, 21
~UAVparams	rot_bw, 20
UAVparams, 97	RPYToQuaterion, 20
o, triparamo, o,	update, 21
Accelerometer, 11	x, 21
Accelerometer, 11	AHRS_EKF.cpp
g, 12	C, 129
update, 12	S, 129
aero_coffs	AHRSParams, 22
UAVparams, 98	alpha, 22
AeroCoefficients, 12	Q, 22
C0, 13	R, 22
Cab, 13	type, 22
Cpqr, 13	alpha
d, 13	AHRS_complementary, 18
eAR, 13	AHRSParams, 22
S, 13	Ammo, 23
stallLimit, 13	_V0, 24
AHRS, 14	Ammo, 23
∼AHRS, 15	getV0, 23
AHRS, 14	operator=, 24
env, 16	ammo
getGyroBias, 15	UAVparams, 98
getOri, 15	AntiWindUpMode
logger, 16	Antivinaopivioae

PID.hpp, 113	Controller, 34
applyMixerRotors	handleMsg, 28
mixers.cpp, 119	prepare, <mark>28</mark>
mixers.hpp, 121	recv, 28
applyMixerRotorsHover	sendHinge, 28
mixers.cpp, 120	sendSpeed, 30
mixers.hpp, 121	sendSurface, 30
applyMixerSurfaces	start, 30
mixers.cpp, 120	startJet, 30
mixers.hpp, 122	stop, 31
asSkewMatrix	control.cpp
hinge.cpp, 105	orderServerJob, 115
axis	Controller, 31
Drive, 50	\sim Controller, 33
2, 00	Control, 34
Barometer, 24	Controller, 32
Barometer, 25	exitController, 33
update, 25	run, 33
baroScaler	setMode, 33
EKFScalers, 55	
bias	controller_mode.hpp
Sensor< T >, 91	ControllerMode, 118
	ControllerModeFromString, 118
SensorParams, 92	ControllerModeToString, 118
С	FACRO, 118
AHRS_EKF.cpp, 129	FANGLE, 118
C0	FMANUAL, 118
	NONE, 118
AeroCoefficients, 13	QACRO, 118
Cab	QANGLE, 118
AeroCoefficients, 13	QPOS, 118
calc	RMANUAL, 118
PID, 85	ControllerLoop, 34
calcRbn	_mode, 39
AHRS_complementary.cpp, 128	\sim ControllerLoop, 35
calcRnb	checkJoystickLength, 35
AHRS_complementary.cpp, 128	ControllerLoop, 35
calcTom	ControllerLoopFactory, 37
AHRS_complementary.cpp, 128	demandInfo, 37
Cargo, 25	getMode, 37
Cargo, 26	handleJoystick, 37
cargo	job, 38
UAVparams, 98	overridePosition, 38
checkJoystickLength	required pids, 39
ControllerLoop, 35	requiredPIDs, 38
circularError	ControllerLoopFactory
utils.hpp, 134	ControllerLoop, 37
clampAngle	ControllerLoopFMANUAL, 39
utils.hpp, 134	•
Clamping	ControllerLoopFMANUAL, 39
PID.hpp, 114	handleJoystick, 40
clampOrientation	job, 40
AHRS_complementary.cpp, 128	ControllerLoopNONE, 40
clear	ControllerLoopNONE, 40
PID, 86	ControllerLoopQACRO, 41
connectConflateSocket	ControllerLoopQACRO, 41
	demandInfo, 41
environment.cpp, 131	handleJoystick, 42
Control 38	job, <mark>42</mark>
~Control, 28	ControllerLoopQANGLE, 42
Control, 27	

ControllerLoopQANGLE, 43	position, 50
demandInfo, 43	- A D
handleJoystick, 43	eAR
job, 43	AeroCoefficients, 13
overridePosition, 43	EKF, 50
ControllerLoopQPOS, 44	EKF, 51
ControllerLoopQPOS, 44	getPos, 51 getVel, 52
demandInfo, 44	log, 52
handleJoystick, 45	predict, 52
job, 45	updateBaro, 52
overridePosition, 45	updateGPS, 53
Controller Loop RMANULAL 45	updateGPSVel, 53
ControllerLoopRMANUAL, 46 demandedX, 47	ekf
demandedY, 47	UAVparams, 98
demandInfo, 46	EKFParams, 53
handleJoystick, 46	P0, 54
job, 46	Q, 54
ControllerMode	RBaro, 54
controller_mode.hpp, 118	RGPSPos, 54
Controller_mode.ripp, 116 ControllerModeFromString	RGPSVel, 54
controller_mode.hpp, 118	EKFScalers, 55
ControllerModeToString	baroScaler, 55
controller_mode.hpp, 118	predictScaler, 55
ControlSurfaces, 47	updateScaler, 55
ControlSurfaces, 48	zScaler, 55
getCoefficients, 48	env
getNoOfSurface, 48	AHRS, 16
getValues, 49	Sensor <t>, 91</t>
restoreTrim, 49	Environment, 56
setValues, 49	\sim Environment, 57
Cpqr	Environment, 56
AeroCoefficients, 13	getAngularAcceleraton, 57
, , ,	getAngularVelocity, 57
d	getLinearAcceleration, 57
AeroCoefficients, 13	getLinearVelocity, 58
def, 9	getOrientation, 58
INFO_PERIOD, 9	getPosition, 58
STEP_TIME, 9	getRnb, 58
defines.hpp	getTime, 59
USE_QUATERIONS, 125	getWorldAngularVelocity, 59
demandedX	getWorldLinearVelocity, 59
ControllerLoopRMANUAL, 47	sensors, 60
demandedY	sensorsVec3d, 60
ControllerLoopRMANUAL, 47	updateSensors, 59
demandInfo	environment.cpp
ControllerLoop, 37	connectConflateSocket, 131
ControllerLoopQACRO, 41	r_nb, 131
ControllerLoopQANGLE, 43	recvVectors, 131
ControllerLoopQPOS, 44	error
ControllerLoopRMANUAL, 46	Sensor $<$ T $>$, 89
direction	Euler
Rotor, 87	ODE, 77
dist Consent To 24	exitController
Sensor< T >, 91	Controller, 33
Drive, 49	exiting
axis, 50	status.hpp, 114
hinges, 50	EACRO
noOfHinges, 50	FACRO

controller_mode.hpp, 118	getRot
factory	Hinge, 65
ODE, 77	getRotorHoverSpeeds
FANGLE	UAVparams, 97
controller_mode.hpp, 118	getRotorMaxSpeeds
FMANUAL	UAVparams, 97
controller_mode.hpp, 118	getRotorTimeContants
forceCoff	UAVparams, 97
Rotor, 87	getSd
fromString	Sensor $<$ T $>$, 90
•	•
ODE, 78	getSingleton
g	UAVparams, 97
Accelerometer, 12	getThrust
	Jet, 66
gen	getTime
Sensor< T >, 91	Environment, 59
getAngularAcceleraton	getV0
Environment, 57	Ammo, 23
getAngularVelocity	getValues
Environment, 57	ControlSurfaces, 49
NS, 75	getVel
getCoefficients	EKF, 52
ControlSurfaces, 48	getWorldAngularVelocity
getGyroBias	Environment, 59
AHRS, 15	getWorldLinearVelocity
AHRS_EKF, 20	Environment, 59
getLastThrust	
Jet, 66	go Timodhaan 05
getLinearAcceleration	TimedLoop, 95
Environment, 57	GPS, 60
	GPS, 61
getLinearVelocity	update, 61
Environment, 58	GPSVel, 61
NS, 75	GPSVel, 62
getMass	update, 62
Load, 69	Gyroscope, 63
getMethodsToTest	Gyroscope, 63
ode_test.cpp, 108	update, 63
getMicrosteps	•
ODE, 78	handleJoystick
getMode	ControllerLoop, 37
ControllerLoop, 37	ControllerLoopFMANUAL, 40
getNoOfSurface	ControllerLoopQACRO, 42
ControlSurfaces, 48	ControllerLoopQANGLE, 43
getOffset	ControllerLoopQPOS, 45
Load, 69	ControllerLoopRMANUAL, 46
getOri	handleMsg
AHRS, 15	Control, 28
getOrientation	Heun
-	
Environment, 58	ODE, 77
NS, 75	Hinge, 64
getPos	getRot, 65
EKF, 51	Hinge, 64
getPosition	operator=, 65
Environment, 58	updateValue, 65
NS, 75	hinge.cpp
getReading	asSkewMatrix, 105
Sensor< T >, 89	hinges
getRnb	Drive, 50
Environment, 58	hoverSpeed
, -	•

Rotor, 87	lib/UAV_common/src/components/control_surfaces.hpp,
idle	lib/UAV_common/src/components/drive.cpp, 104
status.hpp, 114	lib/UAV_common/src/components/drive.hpp, 104
INFO_PERIOD	lib/UAV common/src/components/hinge.cpp, 104
def, 9	lib/UAV common/src/components/hinge.hpp, 105
initialMode	lib/UAV_common/src/components/loads.cpp, 105
UAVparams, 98	lib/UAV_common/src/components/loads.hpp, 105
initialOrientation	lib/UAV_common/src/components/navi.hpp, 106
UAVparams, 98	lib/UAV common/src/logger/logger.cpp, 106
initialPosition	lib/UAV_common/src/logger/logger.hpp, 106
UAVparams, 99	lib/UAV_common/src/ode/ode.cpp, 107
initialVelocity	lib/UAV_common/src/ode/ode.hpp, 107
UAVparams, 99	lib/UAV_common/src/ode/ode_impl.hpp, 107
INSTANTIATE_TEST_SUITE_P	lib/UAV_common/src/ode/ode_test.cpp, 108
ode_test.cpp, 108	lib/UAV_common/src/parser/parser.cpp, 110
instantRun	lib/UAV_common/src/parser/parser.hpp, 111
UAVparams, 99	lib/UAV_common/src/parser/uav_params.cpp, 112
isReady	lib/UAV_common/src/parser/uav_params.hpp, 113
Sensor< T >, 90	lib/UAV_common/src/PID/PID.cpp, 113
lx	lib/UAV common/src/PID/PID.hpp, 113
UAVparams, 99	lib/UAV_common/src/timed_loop/status.hpp, 114
lxy	lib/UAV common/src/timed loop/timed loop.cpp, 114
UAVparams, 99	lib/UAV_common/src/timed_loop/timed_loop.hpp, 115
lxz	Load, 68
UAVparams, 99	getMass, 69
ly	-
UAVparams, 99	getOffset, 69
lyz	Load, 68
UAVparams, 99	operator=, 69
Iz	release, 69
UAVparams, 100	loadConfig
OAVparams, 100	UAVparams, 97
Jet, 65	log
getLastThrust, 66	EKF, 52
getThrust, 66	Logger, 71
phases, 67	log_path
start, 67	main.cpp, 127
thrust, 67	Logger, 70
time, 67	~Logger, 71
jets	log, 71
UAVparams, 100	Logger, 70
job	setFmt, 72
ControllerLoop, 38	setLogDirectory, 72
ControllerLoopFMANUAL, 40	logger
ControllerLoopQACRO, 42	AHRS, 16
•	Sensor< T >, 91
Controller Loop QANGLE, 43	logger.cpp
Controller Loop QPOS, 45	shouldLog, 106
ControllerLoopRMANUAL, 46	logger.hpp
lastUpdate	LOGGER_MASK, 107
Sensor< T >, 91	LOGGER_MASK
lib/UAV_common/header/common.hpp, 103	logger.hpp, 107
lib/UAV_common/src/components/aero_coefficients.hpp,	main.cpp, 126
103	m
lib/UAV_common/src/components/components.hpp,	UAVparams, 100
103	mag
lib/UAV_common/src/components/control_surfaces.cpp,	Magnetometer, 73
104	Magnetometer, 72

mag, 73	ODEMethod, 77
Magnetometer, 73	RK4, 77
update, 73	step, 79
main	ODE_Euler, 79
main.cpp, 126	ODE_Euler, 80
ode_test.cpp, 108	step, 80
main.cpp	ODE_Heun, 81
log_path, 127	ODE_Heun, 81
LOGGER_MASK, 126	step, 81
main, 126	ODE_RK4, 82
parseArgs, 126	ODE_RK4, 82
maxSpeed	step, 83
Rotor, 87	ode_test.cpp
mixers.cpp	getMethodsToTest, 108
applyMixerRotors, 119	INSTANTIATE_TEST_SUITE_P, 108
applyMixerRotorsHover, 120	main, 108
applyMixerSurfaces, 120	TEST_F, 109
mixers.hpp	TEST_P, 109
applyMixerRotors, 121	ODEMethod
applyMixerRotorsHover, 121	ODE, 77
applyMixerNeterores, 122	ODETest, 83
mtxOri	SetUp, 84
AHRS, 16	TearDown, 84
74110, 10	operator=
name	Ammo, 24
SensorParams, 93	Hinge, 65
UAVparams, 100	Load, 69
NONE	orderServerJob
controller_mode.hpp, 118	
ODE, 77	control.cpp, 115
None	ori_est
PID.hpp, 114	AHRS, 16
noOfAmmo	overridePosition
UAVparams, 100	ControllerLoop, 38
noOfCargo	ControllerLoopQANGLE, 43
	ControllerLoopQPOS, 45
UAVparams, 100	Р
noOfHinges	AHRS EKF, 21
Drive, 50	P0
noOfJets	
UAVparams, 100	EKFParams, 54
noOfRotors	parseArgs
UAVparams, 100	main.cpp, 126
NS, 74	parseHinge
∼NS, 74	uav_params.cpp, 112
getAngularVelocity, 75	parseMatrixXd
getLinearVelocity, 75	parser.cpp, 110
getOrientation, 75	parser.hpp, 111
getPosition, 75	parsePID
NS, 74	uav_params.cpp, 112
	parser.cpp
ODE, 76	parseMatrixXd, 110
~ODE, 77	parseVectorXd, 110
Euler, 77	parser.hpp
factory, 77	parseMatrixXd, 111
fromString, 78	parseVectorXd, 112
getMicrosteps, 78	parseVectorXd
Heun, 77	parser.cpp, 110
NONE, 77	parser.hpp, 112
ODE 77	
ODE, 77	phases

Jet, 67	requiredPIDs
PID, 84	ControllerLoop, 38
\sim PID, 85	restoreTrim
calc, 85	ControlSurfaces, 49
clear, 86	RGPSPos
PID, 84	EKFParams, 54
set_dt, 86	RGPSVel
PID.hpp	EKFParams, 54
AntiWindUpMode, 113	RK4
Clamping, 114	ODE, 77
None, 114	RMANUAL
pids	controller_mode.hpp, 118
UAVparams, 101	rot_bw
position	AHRS, 15
Drive, 50	
	AHRS_complementary, 18
predict	AHRS_EKF, 20
EKF, 52	Rotor, 86
predictScaler	direction, 87
EKFScalers, 55	forceCoff, 87
prepare	hoverSpeed, 87
Control, 28	maxSpeed, 87
•	timeConstant, 87
Q	torqueCoff, 87
AHRS_EKF, 21	rotorMixer
AHRSParams, 22	UAVparams, 101
EKFParams, 54	rotors
q	UAVparams, 101
AHRS_EKF, 20	RPYToQuaterion
QACRO	AHRS_EKF, 20
controller_mode.hpp, 118	run
QANGLE	Controller, 33
controller_mode.hpp, 118	running
QPOS	status.hpp, 114
controller_mode.hpp, 118	1-1-7
quaterionToRPY	S
AHRS_EKF, 20	AeroCoefficients, 13
	AHRS_EKF.cpp, 129
R	safeGet
AHRS_EKF, 21	utils.hpp, 135
AHRSParams, 22	safeSet
r nb	utils.hpp, 135
environment.cpp, 131	sd
RBaro	SensorParams, 93
EKFParams, 54	sendHinge
ready	Control, 28
Sensor< T >, 91	sendSpeed
recv	Control, 30
Control, 28	sendSurface
recvVectors	
	Control, 30
environment.cpp, 131	Sensor
refreshTime	Sensor $\langle T \rangle$, 89
Sensor <t>, 92</t>	Sensor< T>, 88
SensorParams, 93	bias, 91
release	dist, 91
Load, 69	env, 91
reload	error, 89
status.hpp, 114	gen, 91
required_pids	getReading, 89
ControllerLoop, 39	getSd, 90

isReady, 90	$src/controller/modes/controller_loop_RMANUAL.cpp,$
lastUpdate, 91	124
logger, 91	src/controller/modes/controller_loop_RMANUAL.hpp,
ready, 91	124
refreshTime, 92	src/defines.hpp, 125
Sensor, 89	src/main.cpp, 125
shouldUpdate, 90	src/navigation/AHRS.cpp, 127
update, 90	src/navigation/AHRS.hpp, 127
value, 92	src/navigation/AHRS/AHRS_complementary.cpp, 127
SensorParams, 92	src/navigation/AHRS/AHRS_complementary.hpp, 128
bias, 92	src/navigation/AHRS/AHRS_EKF.cpp, 129
name, 93	src/navigation/AHRS/AHRS_EKF.hpp, 129
refreshTime, 93	src/navigation/EKF.cpp, 130
sd, 93	src/navigation/EKF.hpp, 130
sensors	src/navigation/environment.cpp, 130
Environment, 60	src/navigation/environment.hpp, 132
UAVparams, 101	src/navigation/NS.cpp, 132
sensorsVec3d	src/navigation/NS.hpp, 132
Environment, 60	src/navigation/sensors.cpp, 133
set_dt	src/navigation/sensors.hpp, 133
PID, 86	src/utils.hpp, 133
setFmt	stallLimit
Logger, 72	AeroCoefficients, 13
setLogDirectory	start
Logger, 72	Control, 30
setMode	Jet, 67
Controller, 33	startJet
SetUp	Control, 30
ODETest, 84	Status
setValues	status.hpp, 114
ControlSurfaces, 49	status.hpp
shouldLog	exiting, 114
logger.cpp, 106	idle, 114
shouldUpdate	reload, 114
Sensor <t>, 90</t>	running, 114
src/communication/control.cpp, 115	Status, 114
src/communication/control.hpp, 115	step
src/communication/control_recv.cpp, 116	ODE, 79
src/communication/control_send.cpp, 116	ODE_Euler, 80
src/controller/controller.cpp, 116	ODE_Heun, 81
src/controller/controller.hpp, 116	ODE_RK4, 83
src/controller/controller_loop.cpp, 117	STEP_TIME
src/controller/controller_loop.hpp, 117	def, 9
src/controller/controller_mode.hpp, 117	stop
src/controller/mixers.cpp, 119	Control, 31
src/controller/mixers.hpp, 121	surfaceMixer
src/controller/modes/controller_loop_FMANUAL.cpp,	UAVparams, 101
122	surfaces
src/controller/modes/controller_loop_FMANUAL.hpp,	UAVparams, 101
123	,
src/controller/modes/controller_loop_NONE.cpp, 123	TearDown
src/controller/modes/controller_loop_NONE.hpp, 123	ODETest, 84
src/controller/modes/controller_loop_QACRO.cpp, 123	TEST_F
src/controller/modes/controller_loop_QACRO.hpp, 123	ode_test.cpp, 109
src/controller/modes/controller_loop_QANGLE.cpp, 124	TEST_P
src/controller/modes/controller_loop_QANGLE.hpp, 124	ode_test.cpp, 109
src/controller/modes/controller_loop_QPOS.cpp, 124	thrust
src/controller/modes/controller_loop_QPOS.hpp, 124	Jet, 67
212, 221.11.01.01,0200, 001111.01101_100P_Q1 00111PP, 127	time

Jet, 67	Gyroscope, 63
timeConstant	Magnetometer, 73
Rotor, 87	Sensor $<$ T $>$, 90
TimedLoop, 93	updateBaro
go, 95	EKF, 52
TimedLoop, 94	updateGPS
torqueCoff	EKF, 53
Rotor, 87	updateGPSVel
type	EKF, 53
AHRSParams, 22	updateScaler
uav_params.cpp	EKFScalers, 55
parseHinge, 112	updateSensors
parsePID, 112	Environment, 59
UAVparams, 95	updateValue
~UAVparams, 97	Hinge, 65
aero_coffs, 98	USE_QUATERIONS
ahrs, 98	defines.hpp, 125
ammo, 98	utils.hpp
cargo, 98	circularError, 134
ekf, 98	clampAngle, 134
getRotorHoverSpeeds, 97	safeGet, 135
getRotorMaxSpeeds, 97	safeSet, 135
getRotorTimeContants, 97	value
getSingleton, 97	Sensor< T >, 92
initialMode, 98	0011301 < 1 > , 02
initialOrientation, 98	X
initialPosition, 99	AHRS_EKF, 21
initialVelocity, 99	- ,
instantRun, 99	zScaler
lx, 99	EKFScalers, 55
lxy, 99	
lxz, 99	
ly, 99	
lyz, 99	
lz, 100	
jets, 100	
loadConfig, 97	
m, 100	
name, 100	
noOfAmmo, 100	
noOfCargo, 100	
noOfJets, 100	
noOfRotors, 100	
pids, 101	
rotorMixer, 101	
rotors, 101	
sensors, 101	
surfaceMixer, 101	
surfaces, 101	
UAVparams, 97	
update	
Accelerometer, 12	
AHRS, 16	
AHRS_complementary, 18	
AHRS_EKF, 21	
Barometer, 25	
GPS, 61	
GPSVel, 62	