Interim analysis tool

Susanne Blotwijk & Wilfried Cools

INTERFACULTY CENTER
DATA PROCESSING
& STATISTICS

INTERIM ANALYSIS DATA COLLECTION

- All data at once

18 data points (e.g 18 mice)

- Not all data at once

Purpose:
Stop data collection early,
in case of sufficient evidence

INTERIM ANALYSIS APPROACH

What groups on this campus often do:

Allowed chance for a false positive = α

Interim analysis 1: $p < \alpha$?

Interim analysis 2: $p < \alpha$?
Final analysis: $p < \alpha$?

Problem 1: Total probability of a false positive $> \alpha$

Problem 2: Influence on the power?

INTERIM ANALYSIS

APPROACH

Step 1: perform the power analysis in Gpower as you would without interim analysis determine a first approximation of the sample size

Step 2: use our tool

determine interim specific alpha's and total sample size

Ex.: control group, experimental condition 1 & 2

Group means: 1, 2, 3

SD: 1.25

We can process 6 mice at a time

Stages: 6; 12; 18; 24; 27

Mice per group: 2; 4; 6; 8; 9

F tests - ANOVA: Fixed effects, omnibus, one-way **Analysis:** A priori: Compute required sample size

Input: Effect size f = 0.6531973 α err prob = 0.05 Power (1-β) = 0.8

Number of groups = 3

Output: Noncentrality = 11.5200012

Critical F = 3.4028261

Numerator df = 2 Denominator df = 24

Total sample size = 27

Actual power = 0.8210086

INTERIM ANALYSIS

TOOL: INPUT

Simulating Alpha Spending

INTERIM ANALYSIS TOO LITTLE POWER

	test 1	test 2	test 3	test 4
cumulative power	0.0691	0.378	0.6891	0.7879
alphas	0.0034	0.014	0.0285	0.032
cumulative alpha	0.0033	0.0164	0.0376	0.05
target cumulative alpha	0.0033	0.0164	0.0376	0.05
expected number				
expected stop				

▶ Total power: decreases by adding interim analyses.

► Type I errors for each test (all < .05)

In case of insufficient power (< 0.8), there are two options:

- 1) Add an extra mouse to the final stage
- 2) Remove one of the interim analyses

INTERIM ANALYSIS

TOOL: OUTPUT

Simulating Alpha Spending

We add one mouse to our original number, so 9+1 = 10. We have 3 groups, so in total 3*10 = 30.

INTERIM ANALYSIS TOO FEW SIMULATIONS

	test 1	test 2	test 3	test 4			
cumulative power	0.07	0.39	0.71	0.82			
alphas	0	0.02	0.03	0.04			
cumulative alpha	0	0.02	0.04	0.05		These two rows differ too much	
target cumulative alpha	0	0.02	0.04	0.05		→ accuracy is too low → more simulations neede	
expected number					22.11		
expected stop			7		2.83		
					here is 0 ⁄→ more	simulations needed	

- 1) Two numbers in this part of the column differ too much
- \rightarrow accuracy is too low \rightarrow more simulations needed
- 2) Less than two significant digits
- \rightarrow precision is too low \rightarrow more simulations needed

