

《电子技术实验》

班	级:			
姓	名:			
学	号:			
同组	且人:			
: 무	教师.			

信息科学与工程学院 2021 年 3 月

实验 1 晶体三极管放大电路特性研究

预习内容:若三极管 β =220,电位器 Rp 在中间位置,请计算电路的静态工作点 I_B . Ic 和 $A_UR_LR_O$

一、实验目的

- 1. 掌握用 Multisim 软件分析晶体三极管放大电路主要性能指标的方法。
- 2. 学会放大电路静态工作点的测量与调整方法。
- 3. 掌握测量电压放大倍数 Av。
- 4. 掌握测量放大电路的输入输出电阻的方法。

二、实验原理

图 1-2 晶体三极管放大电路特性研究实验电路

该电路的静态工作点,可以由下式估算。设流过偏置电阻的电流远远大于基极电流 IB,则:

$$U_{\scriptscriptstyle B} = R_{\scriptscriptstyle B2} I_{\scriptscriptstyle 2} \approx \frac{R_{\scriptscriptstyle B2}}{R_{\scriptscriptstyle B1} + R_{\scriptscriptstyle B2}} U_{\scriptscriptstyle CC} \qquad \qquad I_{\scriptscriptstyle C} \approx I_{\scriptscriptstyle E} = \frac{U_{\scriptscriptstyle B} - U_{\scriptscriptstyle BE}}{R_{\scriptscriptstyle E}}$$

$$U_{\rm CE} = V_{\rm CC} - I_{\rm C}(R_{\rm C} + R_{\rm E})$$

该电路的交流电压放大倍数为:

$$\dot{\mathbf{A}}_{u} = \frac{\dot{\mathbf{U}}_{\mathrm{O}}}{\dot{\mathbf{U}}_{\mathrm{i}}} = -\beta \frac{\mathbf{R}_{\mathrm{e}} // \mathbf{R}_{\mathrm{L}}}{\mathbf{r}_{\mathrm{be}}}$$

交流输入电阻为: $R_{i} = R_{b1} / / R_{b2} / / r_{be}$

输出电阻为: $R_{\rm O} \approx R_{\rm C}$

若 CE 开路,则该电路的交流电压放大倍数为:

$$\dot{\mathbf{A}}_{u} = \frac{\dot{\mathbf{U}}_{\mathrm{O}}}{\dot{\mathbf{U}}_{\mathrm{i}}} = -\beta \frac{\mathbf{R}_{\mathrm{e}} / / \mathbf{R}_{\mathrm{L}}}{\mathbf{r}_{\mathrm{be}} + (1 + \beta) \mathbf{R}_{\mathrm{e}}}$$

交流输入电阻为: $R_{i} = R_{b1} / / R_{b2} / / r_{be} + (1+\beta) R_{e}$

三、实验内容

1. 创建电路,给电路中的全部元器件按图 1-2 要求标识,参数设置,鼠标右键弹出窗口选择"show node names", Multisim 自动给各节点编号,并显示在电路图上。

2. 给虚拟仪器设置参数

(1) 函数发生器

波形: 正弦波

Frequency: 1KHz Duty cycle: 50% Amplitude: 20mV

Offset: 0

(2) 示波器

Time base: 0.50ms/div, "Y/T"显示方式

Channel A: 10mV/div

y position: 0.00, "AC"工作方式

Channel B: 1 V/div

y position: 0.00, "AC"工作方式

Trigger: "Auto"方式

Channel A: 输入线设为黑色,则输入信号波形为黑色。(点击线段,右键修改 line color)

Channel B: 输入线设为红色,则输出信号波形为红色。

(3) 波特图仪

幅频特性 Vertical: log, F: 60dB, I: 0dB

Horizontal: log, F: 1GHz, I: 1Hz

- 3. 单击"O/I"开关,运行电路,调节 Rp位置,使 Ic=1.5mA,用示波器观察波形,填入表 1-2。
- (1) 测量静态工作点

在菜单栏依次执行"仿真(S)"/"Analyses and Simulate"/"直流工作点"命令,将弹出直流工作点分析对话框,如图 1-3 所示,在"Output variables"选项中选择需要仿真的输出节点,然后单击"simulate",由各节点电压算出静态工作点,分析结果与理论值比较。(或直接串入 DC 电流表并入 DC 电压表测量各静态值,或在各节点各支路用鼠标右键放置电压/电流探针)

图 1-3 直流工作点分析对话框

表 1—1	静态工作点的测试实验数据表	Ic=1.5mA
4X I I	时心工作点的例识关巡戏始终	10 1.01111

	77 - 1 M 6 - 1 M 7 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1						
	狈	量值		计算值			
$U_B(V)$	$U_{E}(V)$	U _c (V)	U _{BE} (V)	U _{CE} (V)	Ic (mA)		

(2) 测量放大倍数

把输入信号减小为 10mv,双击示波器图标,打开示波器面板,观察波形,再单击"Pause"按钮,暂停运行。拖拽读数指针,测得:

$$A_{\!\scriptscriptstyle V}=V_{\!\scriptscriptstyle o\mathrm{m}}$$
 $/V_{\!\scriptscriptstyle i\mathrm{m}}=$ _______,输入输出波形相位差 $\,arphi=rac{\Delta t}{T}*2\pi=$ ______

(3) 测量幅频特性

双击波特图仪图标,打开波特图仪面板,单击"Magnitude",测得幅频特性。

通过在输入端接入如图 1-4 所示的电压表和电流表 (mode 选择为交流)。激活电路,测得电流电压

值,则输入电阻 $R_i = \frac{U_i}{I_i} =$ ____。

(5) 测量输出电阻 Ro:

如图1-5所示,在 $R_L=\infty$ 时,测量开路输出电压 U_O ;在 $R_5=6K$ 时,测量负载电压 U_L 。计算输出电阻 R_o 。

$$R_{o} = \left(\frac{U_{o}}{U_{L}} - 1\right) * R_{L}$$

$$\frac{VCC}{R_{p} \ VCC}$$

$$15V \ R_{3} \ 3k\Omega$$

$$\frac{R_{key=A}}{100k} \ 50\%$$

$$100k \ R_{key=A}$$

$$100k \ R_{1} \ 100k$$

$$100k \ R_{2} \ 100k$$

$$100k \ R_{3} \ 100k$$

$$100k \ R_{4} \ R_{5} \ 6k\Omega$$

$$100k \ R_{5} \ 6k\Omega$$

$$100k \ R_{5} \ 100k$$

激活电路,分别测得电压值,根据公式计算输出电阻。

(6) 观察输出波形失真情况

逐步加大输入信号,使输出电压 Uo 足够大但不失真。然后保持输入信号不变,分别增大和减小 Rp,使波形出现失真,绘出 Uo 的波形。并测出失真情况下的静态工作点 Ic 和 Uce 值,记入表 1-2中。

表 1-2 静态工作点变化对输出波形的影响

三、思考题

- 1. 输出波形失真的原因有哪些? 怎样克服?
- 2. 如果 R₂短路, 放大器会出现什么故障?
- 3. 放大电路的静态测试与动态测试有何区别? 静态工作点的设置对交流信号的放大有何作用?

实验 2 射极输出器

一、 实验目的

- 1. 掌握射极跟随器的特性及测试方法。
- 2. 学习放大器输入电阻、输出电阻的测量方法;

二、原理说明

射极跟随器的原理图如图 2-1 所示,它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近等于 1,输出电压能在较大范围内跟随输入电压做线性变化,以及输入、输出相位相同等特点。其输入、输出电阻和电压放大倍数可由下式计算:

图 2-1 射极输出器

1. 输入电阻 R;

图 2-1 所示电路的输入电阻

$$R_i = R_B / [r_{be} + (1 + \beta)(R_E / / R_L)]$$

实验中为了测量放大器的输入电阻,按图 2-2 所示电路在被测放大器的输入端与信号源之间串入一已知电阻 R,在放大器正常工作的情况下,分别测量出 U_s 和 U_i ,根据输入电阻的定义可得:

$$R_i = \frac{U_i}{I_i} = \frac{U_i}{\frac{U_R}{R}} = \frac{U_i}{U_S - U_i} R$$

2. 输出电阻 R_0

图 2-1 所示电路的输出电阻

$$R_O \approx \frac{r_{be}}{\beta}$$

实验中为了测量输出电阻,先测量空载输出电压 U_o ,再测量接入负载 R_L 后的输出电压 U_L ,

根据

$$U_L = \frac{R_L}{R_O + R_L} U_O$$

即可求出

$$R_O = \left(\frac{U_O}{U_L} - 1\right) R_L$$

2. 电压放大倍数

放大电路的电压放大倍数

$$A_{u} = \frac{\dot{U}_{o}}{\dot{U}_{i}} = \frac{(1 + \beta)(R_{E} // R_{L})}{r_{he} + (1 + \beta)(R_{E} // R_{L})} \le 1$$

上式说明,射极跟随器的电压放大倍数小于等于1,且为正值,这是深度负反馈的结果。但它的射 极电流仍比基极电流大 $(1+\beta)$ 倍,所以它具有一定的电流和功率放大作用。

三、实验内容

图 2-2 射极跟随器实验电路

1. 静态工作点的调整

利用单管低频电压放大电路实验模块,短接电阻 R_C , (由发射极经耦合电容 C_E 输出),构建成共 集电路。接通+12V 直流电源,在 B 点加入 $f = 1KH_Z$ 的正弦信号 u_i ,输出端用示波器监视输出波 形,反复调整 R_{B1} 及信号源的输出幅度,使在示波器上得到一个最大不失真输出波形,然后置 $u_i=0$, 测量晶体管各管脚对地的电位,将测得数据记入表2-1。

在下面整个测试过程中应保持 R_{B1} 不变(即保持静态工作点 I_E 不变)。

表 2-1 实验数据记录

	测量数据(V)	计算数据(mA)		
$egin{array}{ c c c c c c c c c c c c c c c c c c c$			$I_{\scriptscriptstyle B}$	$I_{\scriptscriptstyle E}$

2. 测量电压放大倍数 Auu:

开启信号发生器电源, $R_L = \infty$ 的条件下,测量 U_I 和 U_O ,计算 A_{UU} 。

$U_{I}(V)$	$U_{O}\left(V\right)$	A_{UU}		

3. 测量输入电阻 R_i :

将低频信号发生器1 KHz、200 mV 的正弦交流信号作为输入信号 U_{S} ,串一5.1 K 的电阻接到 U_{I} , R_{L} = ∞ 的条件下,测量 U_{S} 和 U_{I} ,计算输入电阻 R_{I} 。

U _S (mV)	Ui (mV)	$R_{\rm i}$

4. 测量输出电阻 R_a :

在 $R_L = \infty$ 时,测量输出电压 U_O ;在 $R_L = 510 \Omega$ 时,测量负载电压 U_L 。计算输出电阻 R_o 。

$U_{0}\left(mV\right)$	U _L (mV)	R_{\circ}

四、 预习思考题

- i. 阅读各项实验内容,理解有关实验原理,明确实验目的。
 - 2、复习射极输出器的工作原理和特点。
 - 3、理论上计算图 2-2 所示电路的放大倍数和输入、输出电阻。(β=80)
 - 4、用 multisim 仿真软件得出表格中各仿真值。(β=80)

五、实验报告

- 1. 从电压放大倍数、输入及输出电阻比较射极输出器(共集电极放大电路)和集电极输出电路(共射极放大电路),两种电路各有什么优缺点。
- 2. 射极输出器通常多应用于放大电路的首级和末级,为什么?

实验 3 晶体管差动放大电路

一、实验目的

- 1. 了解差模信号和共模信号的区别。
- 2. 学习差动放大电路对差模和共模信号的放大作用。
- 3. 熟悉直流稳压电源构成双电源的使用方法。
- 4. 进一步熟悉常用电子仪器的使用方法。

二、原理说明

(1) 差模电压放大倍数

图 3-2 所示电路的差模电压放大倍数为

$$A_{ud} = \frac{-\beta R_{c1}}{R_{b1} + r_{be} + \frac{1}{2}(1 + \beta)R_{W}}$$

实验中差模电压放大倍数的测量方法是:输入差模信号:正弦波 u_{id} ,,设差动放大电路为单端输入,双端输出接法。用晶体管毫伏表测量出 T_1 , T_2 集电极对地的交流电压有效值 U_{C1} 、 U_{C2} ,则双端输出时差模电压放大倍数为

$$A_{ud} = \frac{U_{C1} + U_{C2}}{U_{id}}$$

(2) 共模电压放大倍数

图 3-2 所示电路的共模电压放大倍数为

$$A_{uc} = 0$$

实验中差模电压放大倍数的测量方法是:两个输入端输入一对共模信号:直流电压 U_{ic},用万用表测量出 U_o,则双端输出时共模电压放大倍数为

$$A_{uc} = \frac{U_o}{U_{io}}$$

(3) 共模抑制比

常用共模抑制比 KCMR 来表示差动放大电路对共模信号的抑制能力,即

$$K_{CMR} = \left| \frac{A_{ud}}{A_{oc}} \right|$$

或

$$K_{CMR} = 20 \lg \left| \frac{A_{ud}}{A_{oc}} \right| dB$$

K_{CMR}越大,说明差动放大电路对共模信号的抑制能力越强,放大电路的性能越好。 晶体管差动放大电路实验模块图如图3-3所示:

图3-3 晶体管差动放大电路实验模块

二、实验内容及步骤

1. 在晶体管差动放大电路实验模块上构建成长尾差动放大电路(短接 K 和位置1)。 正负电源的连接

为了给差动放大电路提供 $\pm 12V$ 工作电源,调节双路输出稳压电源,使 E_1 和 E_2 均为 12V。关掉电源,将稳压电源按图 3-4 接线, E_1 的正极端子输出电压 $\pm 12V$,接在实验板的 V_{CC} 处。 E_2 的负极端子输出电压 $\pm 12V$,接在实验板的 V_{SS} 处。 E_1 的负极端子和 E_2 的正极端子连接后,接在实验板公共接地端。

图 3-4 ±12V 工作电源的连接方法

2. 零点调整和静态工作点测量。

输入端 A、B 同时接地,接通电源 V_{cc} 和 V_{ss} ,用万用表直流电压档测量双端输出电压 U_{o} ,调节电位器 R_{tr} ,使双端输出电压 U_{o} 为零。测量有关电压填入下表,并计算相关的电压、电流。

U_{B1}	U_{B2}	U_{CE1}	U_{CE2}	$U_{\rm E1}$	U_{E2}	U_{Rc1}	U_{Rc2}	U_{R3}	
计算项	U_{BE1}	U_{BE2}	I_{Rb1}	I_{Rb2}	I_{C1}	I_{C2}	β1	β_2	I_{R3}

3. 差模放大倍数测量

输入端 A 接入1KHz、20mV 的正弦交流信号,输入端 B 接地(单端输入)。分别用示波器观察差动放大管 T_1 、 T_2 集电极对地的电压(单端输出)和电阻 R_3 两端(**1端与地**)的电压波形。可以看出 R_3 两端交流分量基本为零,用交流毫伏表测量也可验证。在输出波形不失真的条件下,用交流毫伏表分别测量 T_1 、 T_2 集电极对地的交流电压有效值 U_{01} 和 U_{02} ,用交流毫伏表测量 R_3 两端交流电压 U_{R3} 。然后改变输入交流信号为1KHz、40mV,重复上述测量填入下表并计算差模放大倍数 A_{UD} 。

Us	U ₀₁	$ U_{O2} $	U_{R3}	$U_{O} = U_{O1} + U_{O2} $	A _{UD=} Uo/U _S
20 mV					
40 mV					

[注1: $A_{U0} = (|U_{01}| + |U_{02}|) / U_{s}$][注2: 使用中注意示波器输入端的共地问题]

- 4. 在晶体管差动放大电路实验模块上构建成恒流源差动放大电路(短接 K 和位置2)。
- 1) 重复步骤2的零点调整和步骤3,测量数据填入下表并计算。

Us	$ U_{O1} $	$ U_{O2} $	U_{K}	$U_{O} = U_{O1} + U_{O2} $	$A_{UD1=}$ Uo/U_S
20 mV					

2) 共模放大倍数的测量

输入端 A、B 短接点 E (C 与 D 短接),调整 Rp 使短接点 E 与地之间电压在1. 5V~2V 间作为共模电压 U_{IC} ,用万用表直流电压档测量 U_{O} ,填入下表。

[注: U₀=U_{C1}-U_{C2}]

U _{IC}	Uo	$A_{UC} = U_O / U_{IC}$	CMRR=20lg(A _{UD} / A _{UC})

3) 同时有差模和共模信号输入时放大倍数的测量

输入端 A 接 D、输入端 B 接 E,用万用表直流电压档测量下表中的各电压,并计算出 A_{UD} 。调节 R_P ,使 U_{ID} =0.05V。

U_{IC}	$U_{ID} = U_{Rp}$	U_{O1}	U_{O2}	Uo	A _{UD2} =Uo/U _{ID}

分析:比较忽略了AUD*UD后计算出的AUD与步骤1得到AUDI的误差。

三、预习要求

- 1. 复习差动放大电路原理、特点,了解其调整方法。
- 2. 了解差动放大器差放大倍数、共模放大倍数、CMRR 的测量方法。

实验 4 低频功率放大器——OTL 功放

一、实验目的

- 1. 理解 OTL 功率放大器的工作原理;
- 2. 学会 OTL 电路的调试及主要性能指标的测试方法。

二、原理说明

OTL 功率放大电路即无变压器耦合的功率放电电路。由于它的体积小、重量轻,又便于采用深度负反馈来改善非线性失真,因而得到了广泛的应用。

OTL 功率放大器电路实验模块图如下:

图中晶体管 T_1 为推动级(即前置放大级), T_2 、 T_3 是一对参数对称的 NPN 和 PNP 型的互补晶体三极管,它们组成互补推挽 OTL 功放电路。 T_2 、 T_3 管都为射极输出器形式,因此具有输出电阻低、负载能力强等优点,适合于作功率输出级。 T_4 和 R_{W2} 、 R_{C2} 构成 V_{BE} 扩大电路。 T_1 管工作于甲类状态,集电极电流 I_{C1} 由电位器 R_{W1} 调节。因为静态时要求输出端中点电位 $V_B=0.5V_{CC}$,故电位器 R_{W1} 调整位置由此而定。调节 R_{W2} 则可以使 T_2 、 T_3 管得到合适的静态电流而工作于甲、乙类状态,以克服交越失真。

当输入正弦交流信号 Ui 时,经 T_1 放大、倒相后同时作用于 T_2 、 T_3 管的基极,Ui 的负半周使 T_2 管导通(T_3 管截止),有电流通过负载 R_L ,同时向电容 C_5 充电;在 Ui 的正半周, T_3 管导通(T_2 管截止),则已充好电的电容 C_5 起着电源的作用,通过负载 R_L 放电。这样在 R_L 上就得到了完整的正弦波。

C2与 R 则构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。

三、实验内容及步骤

在实验模块上构建 OTL 功率放大器电路。把 Rw1、Rw2都调到最小,接上负载 RL。

- 1. 静态工作点调整和测量
- 1) 将 R_{W2} 的阻值调到最小(注:若 R_{W2} 的阻值过大,使 T_2 、 T_3 管的静态电流过大,效率降低,甚至损坏管子)。首先不采用自举电路(即不接入 C_2)。检查线路无误后接通电源 V_{CC} (+6V)。缓慢调节电位器 R_{W1} 使输出端中点电位 V_B =0.5 V_{CC} =3V ,然后测量 T_2 管集电极电流 I_{C2} 。以下保持电位器 R_{W1} 位置不变。
- 2) 输入1KHz 的正弦交流信号,逐步调大输入幅度,使输出增大直至出现交越失真,用示波器观察输出波形的交越失真现象。
- 3) 保持输入信号不变,缓慢调节电位器 R_{W2} 使输出波形的交越失真现象恰好消失。除去输入信号,测量 T_2 管集电极电流 I_{C2} ,此即为最佳静态工作点。
 - 2. 最大输出功率和效率的测定
- 1) 输入1KHz 的正弦交流,缓慢增大调整输入信号电压幅度,用示波器观察输出波形,在输出波形即将失真时,用交流毫伏表测量 R_L 上的电压 U_{Omax} ,计算最大输出功率 P_{Omax} 。

 $P_{Omax} = U_{Omax}^2 / R_L$

- 2) 测出此时直流电源输出的平均电流 I_{DC} ,求得电源输出功率 P_E ,进而求出效率 η 。 $P_E = V_{CC}*I_{DC}, \quad \eta = P_{Omax} \ / \ P_E$
- 3. 采用自举电路 (即接入 C_2),重复以上各实验步骤。并观察采用自举电路前后输出正负半周的幅度变化情况。

	I_{C2}	I_{C2 最佳	U_{Omax}	P _{Omax}	I_{DC}	PE	η
无自举							
有自举							

四、实验预习要求

- 1. 熟悉 OTL 功率放大器的工作原理。
- 2. 熟悉实验电路,明确实验内容和主要步骤。

五、实验报告要求

- 1. 画出实验电路图。
- 2. 根据实验线路的数据,理论上计算该电路的静态值。
- 3. 画出实验中所观察到的几种输出波形。

实验 5 负反馈放大器——电压串联负反馈

一、实验目的

- 1. 了解电压串联负反馈的原理和性能;
- 2. 掌握负反馈放大器性能的一般测试方法。

四、实验预习要求

- 1. 复习负反馈放大器的工作原理,了解不同反馈方式对放大器放大倍数、输入电阻和输出电阻的影响。
- 2. 分别计算本实验电路在无反馈和有反馈(AB 连接)时的放大倍数、反馈系数 F、输入电阻和输出电阻 (β=100, D 和地短接),填入表格。

三、 实验内容及步骤

1. 静态工作点的测量

电路如图 5-2 所示,接通+12V 电源 V_{CC} ,放大电路的输入端 u_{S} 短接,短路 R_{S} ,连接电路中 D、 F 两点,接入旁路电容 C_{EI} 。调节 R_{W} ,用万用表直流电压挡测量 R_{CI} 两端电压,使 $U_{RCI}=2.4V$,测量 T_{I} 、 T_{2} 管的静态工作点,记录在表 5-1 中。并计算相关的电压、电流。

表 5-1

		测量值	计算值		
	$U_B(V)$	$U_{C}(V)$	$U_E(V)$	$I_{C}(mA)$	U _{CE} (V)
T1					
T2					

2. 测定基本放大电路的性能

放大电路输入端 us 接入 1KHz、20mV 的正弦交流信号。且在以下测试中保持不变。用示波器观察输出波形,完成以下实验,将实验数据记录在表 5-2 中,并计算相关实验数据。

1) 测定基本放大电路的放大倍数 Au

短路 R_S , 负载 R_L 不接 (开路), 测量此时放大电路输出电压 U_o 。则有:

$$A_U = \frac{U_o}{U_a}$$

2) 测定基本放大电路的输入电阻 R_i

接入 R_S , 负载 R_L 不接 (开路), 测量此时放大电路输出电压 U_a' 。则有:

$$U_o' = \frac{R_i}{R_s + R_i} U_o$$

输入电阻 R_i 根据上式即可算出。

3) 测定基本放大电路的输出电阻 R_a

短路 R_S ,接入负载 R_L =300 Ω ,测量此时放大电路输出电压 U_a^n 。则有:

$$R_o = \left(\frac{U_o}{U_o''} - 1\right) R_L$$

表5-2

	测量	 直值	计算值			
U_{S} (mV)	$U_{S}(mV)$ $U_{O}(mV)$ $U'_{O}(mV)$ $U''_{O}(mV)$			$oldsymbol{A}_U$	$R_i(\Omega)$	$R_o(\Omega)$

3. 测定反馈放大电路的性能

放大电路输入端 u_S 接入1KHz、20mV 的正弦交流信号,且在以下测试中保持不变。连接 A、B 两点,即加入负反馈。用示波器观察输出电压,调节 R_{FI} ,使负反馈电路达到最深负反馈状态,即此时输出电压达到最小值。完成以下实验,将实验数据记录在表5-3中,并计算相关实验数据。

1) 测定反馈放大电路放大倍数 A_{uf}

短路 R_{S} ,负载 R_{L} 不接(开路),测量此时反馈放大电路输出电压 U_{of} 。则有:

$$A_{uf} = \frac{U_{of}}{U_{s}}$$

16

2) 测定输入电阻 R_{if}

接入 R_S ,负载 R_L 不接 (开路),测量此时放大器输出电压 U_{of}^{\prime} 。则有:

$$U'_{of} = \frac{R_i}{R_c + R_i} U_{of}$$

输入电阻 R_{if} 据上式即可算出。

3)测定基本放大电路的输出电阻 R_{of}

短路 R_S ,接入负载 R_L =300 Ω ,测量此时放大器输出电压 U''_{of} ,则有:

$$R_{of} = \left(\frac{U_{of}}{U_{of}''} - 1\right) R_L$$

表5-3

	测量		计算值			
$U_{S} (\mathrm{mV})$ $U_{of} (\mathrm{mV})$ $U'_{of} (\mathrm{mV})$ $U''_{of} (\mathrm{mV})$				A_{uf}	$R_{if}(\Omega)$	$R_{of}\left(\Omega\right)$

4. 计算反馈深度

用毫伏表测 A 端和接地端的电压为 $U_{F=}$ ____,则 $F=U_{F}/U_{O=}$ ___,由此按下式可计算

反馈深度=
$$\mathbf{1} + AF = \frac{A_u}{A_{uf}} =$$

四. 实验报告要求

- 1. 总结电压串联负反馈对放大器性能的影响(包括放大倍数、输入电阻、输出电阻)。
- 2. 如按深度负反馈估算,则闭环电压放大倍数 Auf=?和测量值是否一致?为什么?
- 3. 如输入信号存在失真,能否用负反馈来改善?

实验 6 集成运放的线性应用

一、 实验目的

- 1. 学习集成运算放大器的基本使用方法。
- 2. 利用集成运算放大器构成比例器、加法器和减法器。

二、实验预习要求

- 1. 运算放大器为什么要调零?了解集成运放的调零方法。
- 2. 熟悉实验电路,列出 U_0 与 U_{S1} 、 U_{S2} 之间的关系方程式,并按电路参数计算出输出电压的理论值。

二、实验内容

1. 观察 741 运算放大器的外型与管脚

在实验模块上采用的集成运放型号是 LM741,其在一片器件上含有一个运放电路。电路采用双列直插引脚封装,体积小,集成度高,价格低廉,使用方便。本实验中采用电源 $V_{CC}=+12V$, $V_{EE}=-12V$ 。LM741的管脚排列图详见图6-2。

6-1 双列直插式 741

2. 放大器的调零

右上图是调零电位器连接示意图,使用时必须正确使用引脚才能确保电路正常工作。所谓调零并不是对独立运放进行调零,而是对运放的应用电路调零。即将运放应用电路**输入端接地**(即输入U_x为零),调节调零电位器,使输出电压等于零。

- 3. 运放的线性应用
- 1) 同相比例运算

2) 反相比例运算

3) 差动放大运算

4) 反相求和运算

- (1) 分别按原理图接线,仔细检查。
- (2) 每一实验电路在测试前都要调零,调试方法是将所有的输入端 U_X 接地,调整调零电位器使输出电压为零(输出电压用万用表的直流毫伏档量程测量)。
- (3) 按要求调整好输入信号(直流电压:用+12V 或-12V 加电阻、电位器分压输出;交流电压:用低频信号发生器输出),然后接通电源,输入信号。

DC 信号源产生电路如图 6-4 所示。在图中 3-4 中, U_{AO} , U_{BO} 提供正电压, U_{CO} , U_{DO} 提供负电压。改变 R_{W1} R_{W2} 箭头位置, U_{AO} 、 U_{BO} 、 U_{CO} 、 U_{DO} 就是可调的输入信号。可以由万用表直流电压档测量。

注意,在使用时,DC 信号源产生电路板上的0点必须与集成运算放大电路板上的地连接。

6-4 四路 DC 信号源

	输入	信号 U _X (注	E: AC 为函数信号发生器提供	输出电	玉 Uo
	1KHZ 流信		号,DC 为四路 DC 模块提供直	实测值	理论值
	1	AC	0.01V		
同相	2	AC	0.1V		
比例	3	DC	0.5V		
反相	1	AC	0.01V		
比例	2	AC	0.1V		
	3	DC	0.5V		
差动	1	DC	0.3V 和0.5V		
放大	2	DC	0.5V 和0.1V		
反相	1	DC	0.3V 和0.5V		
求和	2	DC	0.5V 和-1V		

五、实验报告要求

- 1. 将实验结果整理成表格,实验结果和预习思考题中的理论分析结果相比较。
- 2. 设计一个运算电路,实现 uo=3ui1-2ui2 (电阻用 $K\Omega$ 级)。

实验7 数字式温度表的设计

一、实验目的

- 1. 了解数字式温度表的基本构成。
- 2. 熟悉数字温度表的工作原理。
- 3. 掌握电阻/电压转换电路、电压放大电路的设计方法。
- 4. 学会电子系统测量和调试技术。

二、设计步骤

画出各模块电路图:

三、连线调试

(1) 放大器零点调试。(2) 放大器放大倍数的调试。

温度	电阻值	显示温度	误差	温度	电阻值	显示温度	误差
0	100			100	138. 50		
10	103.90			110	142. 29		
20	107. 79			120	146.06		
30	111.67			130	149.82		
40	115. 54			140	153. 58		
50	119.40			150	157. 31		
60	123. 24			160	161.04		
70	127. 07			170	164. 76		
80	130.89			180	168.46		
90	134. 70			190	172. 16		
				200	175.84		

总结: 调试中出现的问题及解决的方法

实验8 整流、滤波及稳压电源

一、实验目的

- 1. 观察整流、滤波、稳压电路的输入、输出波形,电容器的作用及稳压管的稳压特性。
- 2. 测量电路外特性。
- 3. 熟悉和掌握线性集成稳压电路的工作原理和使用方法。

二、预习思考题

- 1. 复习整流、滤波、稳压电路原理,在表 8-1 右侧画出整流(全波、半波)、滤波的波形。
- 2. 请算出表 8-1 各种情形下最右侧的理论值,设输入交流为 ui=17V。
- 3. 使用电解电容器要注意什么?
- 4. 集成稳压器件 7812 使用方法。

表 8-1

名称	测试点	波形	数值	理论值
变压器输出电压	A、F	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. U _{AF} =	

表 8-2 整流、电容滤波电源的外特性(接 $C_{\scriptscriptstyle 1}$,不接 $C_{\scriptscriptstyle 2}$ 、 $D_{\scriptscriptstyle Z}$)

$I_o(mA)$	0(负载开路)	15	20	25	30	40	50
U_o (V)							

表 8-3 整流、CRC 滤波、稳压电源的外特性(接 $C_{\scriptscriptstyle 1}$ 、 $C_{\scriptscriptstyle 2}$ 、 $D_{\scriptscriptstyle Z}$)

I_o (mA)	0(负载开路)	15	20	25	30	40	50
U_o (V)							

6. 由 7812 组成的直流稳压电路。

- 1)接图 8-3 连接电路,**注意必须断开实验模块的 D 点和安培表的连接**,由 7812 的输出直接接到安培表。用示波器观察 7812 输入端和输出端 U_0 的波形。
- 2) 测量 7812 稳压电源的外特性,完成表 8-4 数据测试。

表 8-4 7812 稳压电源的外特性

$I_o(\mathrm{mA})$	0(负载开路)	10	15	20	25	30	40
U_o (V)							

四、 实验报告思考题

- 1. 稳压管 2CW17 的极性如果接反了,会产生什么结果?
- 2. 稳压二极管起稳压作用的条件是什么?由表 8-3 得出稳压管稳压的电流范围为多少?
- 3. 根据实验步骤4、5、6的测量结果,画出外特性曲线[$U_o = f(I)$],比较三条曲线的异同,说明哪个电路的稳压电路最好。

实验 9 集成逻辑门电路

一、实验目的

- 1. 掌握 TTL 门电路逻辑功能的测试方法;
- 2. 熟悉与非门主要逻辑功能应用的实际电路,并用实验验证与非门电路的静态逻辑功能;
- 3. 熟悉 TTL 与非门的外型及管脚排列。
- 4. 掌握中规模译码器的逻辑功能和使用方法。

二、预习思考题

- 1、为什么 TTL 电路输入端悬空相当于输入逻辑"1" 电平? TTL 电路不用的输入端应如何处理?
 - 2. TTL 与非门典型的高电平电压和低电平电压大约为多少?
 - 3. 根据实验内容 3 设计画出多数表决器的实验电路, 画在表 9-5 旁边。
 - 4. 如果要求多数表决器电路输出 Z 为 "0"时,发光二极管亮,输出 Z 为 "1"时,发光二极管不亮,电路应作何种改动,试说明理由。
 - 5. 用 74HC138 译码器实现正常译码功能,输入选通控制端 $\overline{E_1}$, $\overline{E_2}$, E_3 如何设置?

三、实验内容及步骤

1. 与非门逻辑功能的测试

按图9-6接线,接上万用表,SW1或SW2断开,将与非门的两个输入端按表9-1组合方式输入,测量输出电压并记录测量结果。

	表9-1	
输	入	输出
A	В	L(V)
0	0	
0	1	
1	0	
1	1	

图 9-6 逻辑功能的测试

2. TTL 与非门电压传输特性的测试

测试电路见图 9-7。

电阻 R 插入实验箱电阻插孔中,逻辑开关 K_2 合上为 1,旋转电位器 Rw,使 V_1 逐渐增大,同时读出 V_1 和 V_2 值,其中 V_1 值代表输入电压 V_1 , V_2 值代表输出电压 V_0 值。

画出 Vo 与 Vi 的关系曲线,即电压传输特性。

$V_{i}(V)$	0.5	0.7	0.9	1.1	1.2	1.3	1.6	2	5
$V_{o}(V)$									

图9-7 TTL 与非门电压传输特性测试图

3. 用与非门实现一个多数表决器

用二输入与非门74LS00和四输入与非门74LS20(管脚排列如图9-8所示)实现一个三输入多数表决器。A,B,C为三个输入端,Z为输出端,接逻辑电平指示。发光二极管"亮",表示多数同意,表决通过;否则,发光二极管"不亮",表示多数反对,表决没有通过。或者说A,B,C三个输入端中,"0"状态多于"1"状态时,表示多数反对,Z输出为"0",发光二极管"不亮",表决没有通过;否则,A,B,C三个输入端中,"1"状态多于"0"状态时,表示多数赞成,Z输出为"1",发光二极管"亮",表决通过。A,B,C三个输入信号的电平由逻辑开关控制。

用布尔代数列出表9-4的逻辑方程式,加以简化后,设计出相应的电路图。根据表9-3的输入组合, 验证电路的逻辑功能。

丰	O	_4
ᅏ	м	-4

A	В	С	Z
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

图 9-8 74LS20 的电路结构和引脚排列图

4、3-8 译码器 74HC138 的逻辑功能测试

接图 9-9 接好实验线路,将选通控制端 $\overline{E_1}$, $\overline{E_2}$, E_3 和输入信号按表格 6-5 改变, 观察 8 个 LED 的发光情况,并将结果填入表 9-5 中。

图 9-9 74HC138 逻辑功能测试电路

表 9-5 74HC138 的逻辑功能测试结果

		输	入						输	出			
E_3	$\overline{E_2}$	$\overline{E_1}$	A_2	A_1	A_0	$\overline{Y_0}$	7447441 7459 1111111	$\overline{Y_2}$	$\overline{Y_3}$	$\overline{Y_4}$	$\overline{Y_5}$	$\overline{Y_6}$	$\overline{Y_7}$
X	1	×	×	×	×								
X	×	1	×	×	×								
0	×	×	×	×	×								
1	0	0	0	0	0								
1	0	0	0	0	1								
1	0	0	0	1	0								
1	0	0	0	1	1								
1	0	0	1	0	0								
1	0	0	1	0	1								
1	0	0	1	1	0								
1	0	0	1	1	1								

四、实验报告要求

- 1. 记录实验测得的门电路参数值,并与器件规范值比较。
- 2. 用方格纸画出电压传输特性曲线, 阈值电压、输出高电平和输出低电平分别是多少?
- 3. 画出多数表决器电路图及实验测试结果。
- 4. 根据实验结果表 9-5 总结 74HC138 译码器的功能和应用。

实验 10 半加器、全加器

- 一、实验目的
- 1. 掌握半加器、全加器的工作原理。
- 2. 熟悉常用全加器、半加器的管脚排列和逻辑功能。
- 二、实验原理和电路

根据组合电路设计方法,首先列出半加器的真值表,见表 10-1。 写出半加器的逻辑表达式

$$S = \overline{AB} + A\overline{B} = A \oplus B$$

C=AB

若用"与非门"来实现,即为

S=AB • A • AB • B=AB+AB

 $C = \overline{AB} = AB$

半加器的逻辑电路图如图 10-1 所示。

用上述两个半加器可组成全加器,原理如图 10-2 所示。

表 10-1 半加器逻辑功能

车	俞入	和	进位		
A	В	S	С		
0	0	0	0		
0	1	1	0		
1	0	1	0		
1	1	0	1		

在实验过程中,我们可以选异或门 74LS86 及与门 74LS08 实现半加器的逻辑功能;也可用全与非门如 74LS00 反相器 74LS04 组成半加器。这里全加器不用门电路构成,而选用集成的双全加器 74LS183,其管脚排列和逻辑功能表分别见图 10-3 和表 10-2 所示。

(a) 用异或门组成的半加器

(b) 用与非门组成的半加器

图 10-1 半加器逻辑电路图

图 10-2 由二个半加器组成的全加器

图 10-3 74LS183 双全加器外引脚排列图

表 10-2 全加器逻辑功能

三、实验内容及步骤

1.半加器和全加器

分别将 2 输入四异或门 74LS86,与门 74LS08 及全加器 74LS183 插入实验系统 IC 空插座中。

(1) 分析、测试半加器电路

用异或门 74LS86 与 74LS08 四 2 输入与门组成的半加器电路见图 10-1。74LS86 管脚排列如图 10-4,14 脚为电源 +5V,7 脚为接地。按表格 10-3 改变输入信号 A、B,观察并记录 S 和 C。

	输入		输出			
C1-1	В	A	Si	C_{i}		
0	0	0	0	0		
0	0	1	1	0		
0	1	0	1	0		
0	1	1	0	1		
1	0	0	1	0		
1	0	1	0	1		
1	1	0	0	1		
1	1	1	1	1		

10-4 74LS86 引脚排列图

10-5 74LS08 引脚排列图

表 10-3 半加器功能测试表

输	λ	箱	俞 出
A	В	S	C
0	0		
0	1		
1	0		
1	1		

(2) 分析、测试全加器电路

74LS183 的外引脚排列见图 10-3。将 A、B、Ci-1 分别接实验箱逻辑开关 K1、K2、K3,输出 Si 和 Ci 接发光二极管 LED,如图 3-6 所示。按全加器真值表输入 K1、K2、K3,逻辑电平信号,观察输出结果和 Si 及进位 Ci,并记录下来。

2.设计一位二进制全加器

用 74138 和双 4 输入与非门 74LS20 设计一位二进制全加器。

图 10-6 全加器实验接线图

- (a) 写出 1 位二进制全加器真值表。
- (b) 写出 Si 及进位 Ci 的逻辑表达式。
- (c) 画出用 74138 和 74LS20 构成 1 位二进制全加器的电路图。
- (d) 搭建电路,验证结论的正确性。按表格 10-4 改变输入信号 A, B, C_{i-1} ,观察并记录 S_i 和 C_i 。

表 10-4 全加器功能测试表

	输入		输出			
A	В	C_{i-1}	S_{i}	C_{i}		
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

四、实验器材

1.数字电子技术实验系统

1台

2.集成电路: 74LS08, 74LS86, 74LS183, 74LS138, 74LS20

各1片

五、预习要求

- 1.复习半加器、全加器的工作原理和特点。
- 2.了解本实验中所用集成电路的逻辑功能和使用方法。
- 3.设计一位全加器电路,用 74138 和双 4 输入与非门 74LS20 实现。

六、实验报告要求

- 1.整理实验数据和实验线路图。
- 2.写出一位全加器电路的设计步骤及测试结果。

实验 11 触发器

一、实验目的

- 1. 掌握基本 RS 触发器、D 触发器、JK 触发器的逻辑功能和工作原理。
- 2. 掌握触发器逻辑功能的测试方法。
- 3. 了解时钟触发不同逻辑功能之间的相互转换。

二、实验内容及步骤

- 1. 基本触发器
- 1. 按图 11-6 用 74LS00 构成一个基本 RS 触发器。
- 2. S,R分别接逻辑开关 SW_1,SW_2 , Q,\overline{Q} 端分别接两只发光二极管。
- 3. S, R按表格 11-5 改变,观察 Q, \overline{Q} 端的状态,并记录。
- 。●注意:发光二极管亮为"1"。

图 11-6 RS 触发器逻辑功能测试实验线路

表 11-5 RS 触发器逻辑功能测试结果

S	R	Q	\overline{Q}
0	0		
0	1		
1	0		
1	1		

2. 时钟触发器

我们选用常用的上升沿触发器的 74LS74 双 D 功能的触发器和下降沿触发的 74LS112 双 JK 触发器。(1) D 触发器

74LS74 双 D 触发器的外管脚排列图如图 11-7 所示。

a) 74LS74 芯片插入实验箱 IC 空插座中,按图 11-8 触发器接线图接线,其中 1D、1 $\overline{R_d}$ 、1 $\overline{S_d}$ 分

别接逻辑开关 SW₁、SW₂和 SW₃,1CP 接单次脉冲(实验箱中已自备),输出 1Q 和 1 \overline{Q} 分别接二只发光二极管 LED。

图 11-7 74LS74 双 D 触发器外引脚排列图

图 11-8 D 触发器实验线路图

②接通电源,按下列表格 11-6 验证 D 触发器功能:

表 11-6 D触发器逻辑功能测试结果

$1\overline{R}_D$	$1\overline{S}_D$	1 <i>D</i>	1CP	Q	\overline{Q}
0	1	×	×		
1	0	×	×		
1	1	0	单次脉冲		
1	1	1	单次脉冲		

③把 1D 接到 K_1 的导线去掉,而把 \overline{Q} 和 1D 相连接,输入(按动)单次脉冲,Q 这时在脉冲上升 沿时,翻转,即 $Q^{n+1}=\overline{Q^n}$ 。 **总结:D 触发器功能**

(2) JK 触发器

74LS112 双 JK 触发器的外管脚排列图如图 11-9 所示。

将 74LS112 芯片插入实验箱 IC 空插座中,按图 11-10JK 触发器接线图接线,其中 $1\overline{R_d}$ 、 $1\overline{S_d}$ 、 1J、1K 分别接四只逻辑开关 K_1 、 K_2 、 K_3 、 K_4 ,1CP 接单次脉冲,Q和 \overline{Q} 分别接发光二极管,16 脚接 5V,8 脚接地。

表 11-7 JK 触发器逻辑功能测试结

$\overline{S}_{\scriptscriptstyle D}$	$\overline{R}_{\scriptscriptstyle D}$	J	K	Q_{n+1}
0	1	×	×	
1	0	×	×	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

总结: JK 触发器功能

图 11-9 74LS112 双 JK 触发器外引脚排列图

图 11-10 JK 触发器实验接线图

3. 用触发器 74LS175 构成四路抢答判决电路

用触发器 74175 构成四路抢答判决电路如图 11-15 所示, $D_1 \sim D_4$ 接逻辑开关 $K_1 \sim K_4$, $Q_1 \sim Q_4$ 接发光二极管。平时 $K_1 \sim K_4$ 均拨向 "0", CR 接 K_5 拨 "0" 然后再拨向 "1",各 Q 端复位,发光二极管均不亮,一旦 $K_1 \sim K_4$ 中任一开关先拨 "1",则相应的 Q 端置 "1";而其它迟打开的开关由于电路的具体构成将失去对其 Q 端的置 "1" 控制作用,从而实现了四路抢答判决功能。

试插接调试电路,观察实验结果。

图 11-12 74LS00 2 输入与非门 图 11-13 74LS20 双 4 输入与非门

图 11-14 74LS175 四 D 触发器

图 11-15 四路抢答判决电路

六、实验报告要求

- 1. 整理实验结果,并进行分析、总结。
- 2. 通过实验总结为什么 JK 触发器比 D 触发器功能更强、应用更灵活?
- 3. 图 11-15 所示的四路抢答判决电路中,假设两位抢答者打开的时间差小于 1ms,那么该电路是否还能正常运行?为什么?如何修改电路?

实验 12 集成计数器 74LS192 的使用

一、实验目的

- 1. 学会可预置输入、可加、减的 BCD 码计数器74LS192的使用,以进一步加强利用器件手册搭接电路的能力;
 - 2. 加强 BCD 七段译码电路 MC4511以及数码显示器的应用能力。

二、实验原理

1. 74LS192 同步可逆递增/递减 BCD 计数器,具有双时钟输入,并具有清除和置数等功能,其引脚排列如图 12-1,逻辑符号如图 12-2。

图 12-1 74LS192 引脚排列图

图 12-2 74LS192 逻辑符号

PL: 置数端, 低电平有效, 异步预置。

三: 复位输入端,高电平有效,异步清零。

 CP_U : 加计数端; CP_D : 减计数端。

TC₁₁: 进位输出,1001 状态后负脉冲输出。

 TC_D : 借位输出,0000 状态后负脉冲输出。

 $P_3P_2P_1P_0$: 并行数据输入端; $Q_3Q_2Q_1Q_0$: 数据输出端。

74LS192 计数器的功能如表 12-1 所示:

表 12-1 74LS192 计数器功能表

	输入								输	出	
MR	PL	CP_U	CP_D	P_3	P_2	P_1	P ₀	Q_3	Q_2	Q_1	Q_0
1	×	×	×	×	×	×	×	0	0	0	0
0	0	×	×	d	С	b	a	d	С	b	a
0	1	1	1	×	×	×	×		加	计	数
0	1	1	1	X	X	X	X		减	计	数

当复位输入端 MR=1 时,计数器直接清零; MR=0 时执行其他功能。

当MR=0,并且置数端PL=0,数据直接从数据输入端 $P_3P_2P_1P_0$ 置入计数器。

当MR=0,并且置数端PL=1,执行计数功能。执行加法计数时,减计数端 CP_D 接高电平,计数脉冲由加计数端 CP_U 输入,在计数脉冲上升沿进行 8421BCD 码的十进制加法计数;执行减法计数时,加计数端 CP_U 接高电平,计数脉冲由减计数端 CP_D 输入,在计数脉冲上升沿进行 8421BCD 码的十进制减法计数。

2. 74LS192 计数器的级联使用

一个十进制计数器只能表示 0~9 十个数,为了扩大计数器计数范围,常用多个十进制计数器级联使用。

同步计数器往往设有进位(或借位),故可选用其进位(或借位)输出信号驱动下一级计数器。 1)74LS192计数器实现0~99的计数

两片 74LS192 计数器构成 0~99 计数器如图 12-3 所示。74LS192(1)的进位输出端驱动 74LS192(2)的加计数端,从而实现 0~99 的计数。

2) 74LS192 计数器实现特殊 12 进制计数器

在数字钟里,对时位的计数序列是 1、2、……11、12、1、……是 12 进制的,且无 0 出现。用 74LS192 计数器实现这个特殊 12 进制计数器,电路如图 12-4 所示。当计数到 13 时,通过与非门产生一个复位信号,使 74LS192(2)(即时十位)直接置成 0000,而 74LS192(1)(即时个位)直接 置成 0001,从而实现了 1~12 计数。

三、实验内容及步骤

- 1. 利用一块74LS192作十进制0~9加法计数。
- 2. 用两块74LS192组成二位计数脉冲上升沿触发的计数电路,作十进制数0~99计数。

3. 用计数器的预置 BCD 码的输入端和预置数装入端设计一个22进制和特殊15进制(1-15)的计数器,并验证该电路的正确性。

四、实验器材

1. 数字电子技术实验系统1 台2. 直流稳压电源1 台3. 集成电路: 74LS1922 片74LS20, 74LS00各 1 片

五、预习要求

- 1. 复习计数器电路的工作原理和电路组成结构。
- 2. 熟悉中规模集成计数器电路 74LS192 的逻辑功能、外引脚排列和使用方法。
- 3. 设计实验中的电路接线图。

六、实验报告要求

- 1. 整理实验电路。
- 2. 设计一个秒时钟计数(1-60)、译码显示电路,画出逻辑电路图。

实验 13 寄存器、移位寄存器

一、实验目的

- 1. 熟悉寄存器的电路结构和工作原理。
- 2. 掌握中规模集成电路 74LS194 双向移位寄存器的逻辑功能和使用方法。
- 3. 熟悉移位寄存器、计数器的逻辑电路和工作原理。

二、实验原理和电路

在数字电路中,常常需要将一些数码、指令或运算结果暂时存放起来,能完成这种作用的部件叫寄存器。寄存器具有清除数码、接收数码、存放数码和传送数码的功能。寄存器分为数据(码)寄存器和移位寄存器两种。

1. 数码寄存器

由 D 触发器组成的数码寄存器如图 13-1 所示, Ro端输入负脉冲时, 使各寄存器清零。

图 13-1 四位数码寄存器

CP 端的脉冲上升沿到来时,d3d2d1d0 各位数据被输入到寄存器中,并寄存。所以数据寄存器就有如下四个特点:①能清除,②能写入,③能寄存,④能读出。这种输入、输出方式称为并行输入、并行输出。

2. 移位寄存器

具有移位逻辑功能的寄存器称为移位寄存器。移位功能是每位触发器的输出与下一级触发器的输入相连而形成的。它可以起到多方面的作用,可以存贮或延迟输入一输出信息,也可以用来把串行的二进制数转换为并行的二进制(串并转换)或者相反(并串转换)。在计算机电路中还应用移位寄存器来实现二进制的乘 2 和除 2 功能。

图 13-2 为四位串行输入、串并行输出的左移移位寄存器(由四个 D 触发器构成)。

图 13-2 四位串行输入、串并行输出的左移移位寄存器

由图 13-2 已知, CP 脉冲的输入(上升沿起作用)作为同步移位脉冲,数据(码)的移位操作由"左移控制"端控制,数码是从串行输入端输入,输出可以是串行输出或并行输出。

移位寄存器在应用中需要左移、右移、保持、并行输入输出或串行输入输出等多种功能。具有上述多种功能的移位寄存器称之为多功能双向移位寄存器。如中规模集成电路 74LS194 就是具有左、右移位,清零,数据并入/并出、串出等多种功能的移位寄存器。

CR	M_1	M_0	D_{SR}	$D_{ m SL}$	CP	D_0	D_2	D_2	D_3	Q_0	Q_1	Q_2	Q_3	注
0	X	X	×	×	×	×	×	×	×	0	0	0	0	清零
1	X	X	×	×	0	×	×	×	×	Q_0	Q_1	Q_2	Q_3	保 持
1	1	1	X	×	\uparrow	D_0	D_1	D_2	D_3	D_0	D_1	D_2	D_3	并行输入
1	0	1	1	×	1	X	X	×	X	1	Q_0	Q_1	Q_2	右移输入1
1	0	1	0	×	\uparrow	X	×	×	×	0	Q_0	Q_1	Q_2	右移输入0
1	1	0	×	1	1	×	×	×	×	Q_1	Q_2	Q_3	1	左移输入1
1	1	0	×	0	\uparrow	×	×	×	×	Q_1	Q_2	Q_3	0	左移输入0
1	0	0	X	×	X	X	X	X	×	Q_0	Q_1	Q_2	Q_3	保持

由表 13-1 可知, 74LS194 具有如下功能:

- ①清除: 当 CR=0 时,不管其它输入为何状态,输出为全 0 状态。
- ②保持: CP=0, CR=1 时, 其它输入为任意状态,输出状态保持。或者 CR=1, M1、M0 均为 0, 其它输入为任意状态,输出状态也将保持。
- ③置数 (送数): CR=1, M1=M0=1, 在 CP 脉冲上升沿时,将数据输入端数据 D0、D1、D2、D3 置入Q0、Q1、Q2、Q3 中并寄存。
- ④右移: CR=1, M1=0, M0=1, 在 CP 脉冲上升沿时,实现右移操作,此时若 $D_{SR}=0$,则 0 向 Q0 移位,若 $D_{SR}=1$,则 1 向 Q0 移位。

⑤左移: CR=1, M1=1, M0=0, 在 CP 脉冲上升沿时,实现左移功能。此时若 $D_{SL}=0$,则把 0 向 Q3 移位,若 $D_{SL}=1$,则把 1 向 Q3 移位。

3. 移位寄存器的应用

移位寄存器用来构成计数器,这里在实际工程中经常用到的。比如用移位寄存器构成环形计数器、 扭环形计数器和自起动扭环形计数器等。它还可用作数据寄存。比如,两个数相加、相减其结果的存放,等等。

三、实验内容及步骤

1. 数据寄存器

- a. 在实验箱中,选四个 D 触发器 74LS74,按图 13-1 直接接线。D3、D2、D1、D0 接逻辑开关,输出接四只 LED 发光二极管,四只触发器的清零端 Rd 相连接到实验箱中逻辑开关。
- b. 接线完毕,则可通电实验。置 $D_3D_2D_1D_0=1010$,清 "0"(\Box)后(即清零端先置 0 后置 1),按动单次脉冲,这时 Q_3 、 Q_2 、 Q_1 、 Q_0 将被置为 1010,可观察到四只发光二极管为亮、灭、亮、灭。即输出数据为 1010。
 - c. 改变 D3、D2、D1、D0 的数值, 重复 b, 验证其数据寄存的功能, 并记录结果表 13-2。

77 >500H 14 14 14 14 14 14 14 14 14 14 14 14 14							
输入数据状态			输出数据状态				
D_3	D_2	D_1	D_0	Q_3	Q_2	Q_1	Q_0
1	0	1	0				
0	1	1	0				
1	1	1	0				
0	0	0	1				
1	0	0	1				

表 13-2 数据寄存器状态

2. 移位寄存器

- (1) 用四个 D 触发器 (74LS74) 连成左移位寄存器电路, 用发光二极管显示电路状态, 电路如图 13-4所示。
- (2) 利用74LS74的 Sd 和 Rd 端(由逻辑开关控制)设置电路的初始状态"0001"。
- (3) 按动单次脉冲,可将脉冲信号不断地送入74LS74的 CP(CLK)端,观察所设计电路的时序循环变化规律是否符合实验要求,如符合要求则记录实验结果。

图 13-4 D 触发器构成移位寄存器的实验线路图

表13-3 移位寄存器实验结果

输入	输出状态				
脉冲 CP	Q_0	Q_1	\mathbb{Q}_2	Q_3	
0	0	0	0	1	
1↑					
2↑					
3↑					
4↑					

3. 集成移位寄存器 74LS194

(1) 左移寄存器功能测试

将 74LS194 器件按左移循环图 13—5 接线,(\pmb{M}_1 、 \pmb{M}_0 = "1,0", $\pmb{Q}_0 \sim \pmb{Q}_3$ 接状态显示灯,将 \pmb{Q}_0 接至左移输入 \pmb{D}_{SL}),在 \pmb{CP} 加单脉冲输入条件下,观察 $\pmb{Q}_0 \sim \pmb{Q}_3$ 状态变化情况,并将实验结果记入表 13–4 内。

图 13-5 左移功能接线

脉冲	Q_0	Q_1	Q_2	Q_3
0				
1				
2				
3				
4				

(2) 右移寄存器构成节日彩灯电路

图 13-6 是用双向移位寄存器 74LS194 构成的右移逐位亮,继而右移逐位灭的节日彩灯电路。按图接线,在 CLK 端加入 1Hz 的连续脉冲,观察发光二极管的亮灭规律。

图 13-6 4LS194 构成的节日彩灯电路

四、实验器材

1. 数字电子技	术实验系统	1台
2. 直流稳压电	源	1台
3. 集成电路:	74LS74	2片
	74LS194, 74LS04	1片

五、预习要求

1. 复习寄存器,移位寄存器的工作原理和逻辑电路。

六、实验报告要求

- 1. 画出各实验电路和时序图、状态图。
- 2. 整理实验表格。

实验 14 数字电子钟逻辑电路设计

一、简述

数字电子钟是一种用数字显示秒、分、时、日的计时装置,与传统的机械钟相比,它具有走时准确、显示直观、无机械传动装置等优点,因而得到了广泛的应用:小到人们日常生活中的电子手表,大到车站、码头、机场等公共场所的大型数显电子钟。

数字电子钟的电路组成方框图如图 14-1 所示。

图 14-1 数字电子钟框图

由图 14-1 可见, 数字电子钟由以下几部分组成:振荡器和分频器组成的秒脉冲发生器;校时电路;六十进制秒、分计数器及 24 进制(或 12 进制)计时计数器;以及秒、分、时的译码显示部分等。

二、设计任务和要求

用 multisim14.0 仿真软件设计一台能显示时、分秒的数字电子钟,要求如下:

- 1. 由 555 多谐振荡电路和分频器产生 1Hz 标准秒信号。
- 2. 秒、分为 00~59 六十进制计数器。
- 3. 时为 00~23 二时进制计数器。
- 4. 可手动校正: 能分别进行分、时的校正。只要将开关置于手动位置,对时、分进行单独计数。
- 5.*整点报时功能(每小时 59 分 56 秒开始报时 5 秒钟,可以用探针 probe 闪烁代替)。
- 6.*触摸报整点时数电路的设计,产生触摸控制脉冲的电路有555定时器单稳态电路。