CURS 4

SERII NUMERICE CU TERMENI OARECARE. SERII DE PUTERI

A. Arusoaie

e-mail: andreea.arusoaie@info.uaic.ro

Web: http://profs.info.uaic.ro/~andreea.arusoaie/math.html

Facultatea de Informatică, Universitatea "Alexandru Ioan Cuza" din Iași

18 Octombrie, 2021

Structura cursului

- Serii cu termeni oarecare
 - Criterii de convergență
 - Criteriul lui Abel
 - Serii absolut convergente
 - Serii alternate
- Serii de puteri
 - Teorema lui Abel
 - Determinarea razei de convergență
 - Exemple de serii de puteri

Structura cursului

- Serii cu termeni oarecare
 - Criterii de convergență
 - Criteriul lui Abel
 - Serii absolut convergente
 - Serii alternate
- Serii de puteri
 - Teorema lui Abel
 - Determinarea razei de convergență
 - Exemple de serii de puteri

Serii cu termeni oarecare

- ▶ Spunem că seria $\sum_{n=1}^{\infty} x_n$ este o *serie cu termeni oarecare*, dacă termenul general al seriei, x_n , nu are același semn pentru orice $n \in \mathbb{N}^*$.
- Un caz particular de serii cu termeni oarecare îl reprezintă seriile alternate de forma $\sum_{n=1}^{\infty} (-1)^n y_n$.

Serii cu termeni oarecare

Exemplu: Seria armonică alternată $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ este convergentă.

Serii cu termeni oarecare

Criteriul lui Dirichlet

Teoremă

Fie $(x_n)_{n\in\mathbb{N}}$ și $(y_n)_{n\in\mathbb{N}^*}$ șiruri de numere reale, și fie $S_n=x_1+\ldots+x_n, n\in\mathbb{N}^*$. Dacă

- şirul $(S_n)_{n\in\mathbb{N}^*}$ este mărginit;
- ② șirul $(y_n)_{n\in\mathbb{N}^*}$ este monoton descrescător cu $\lim_{n\to\infty}y_n=0$,

atunci seria $\sum_{n=1}^{\infty} x_n y_n$ este convergentă.

Exemplu

Exemplu: Să se arate că seria $\sum_{n=1}^{\infty} \frac{\cos n}{\sqrt{n}}$ este convergentă.

Criteriul lui Abel

Teoremă

Fie $(x_n)_{n\in\mathbb{N}^*}$ și $(y_n)_{n\in\mathbb{N}^*}$ două șiruri de numere reale. Dacă

- seria $\sum_{n=1}^{\infty} x_n$ este convergentă;
- $oldsymbol{0}$ şirul $(y_n)_{n\in\mathbb{N}^*}$ este monoton şi mărginit,

atunci seria $\sum_{n=1}^{\infty} x_n y_n$ este convergentă.

Exemplu

Exemplu: Arătați că seria
$$\sum_{i=1}^{\infty}$$

Exemplu: Arătați că seria
$$\sum_{n=1}^{\infty} \left(\frac{\sin n \cdot \cos \frac{1}{n}}{n} \right)$$
 este convergentă.

Serii absolut convergente

Definiție

Spunem că seria de numere reale $\sum_{n=1}^{\infty} x_n$ este

- i) absolut convergentă, dacă $\sum_{n=1}^{\infty} |x_n|$ este convergentă notăm $\sum_{n=1}^{\infty} x_n(AC)$;
- ii) semiconvergentă, dacă $\sum_{n=1}^\infty x_n$ este convergentă iar $\sum_{n=1}^\infty |x_n|$ este divergentă -

$$\operatorname{notam} \sum_{n=1}^{\infty} x_n(SC).$$

Serii absolut convergente

Observație: Pentru serii cu termeni pozitivi, absoluta convergență este echivalentă cu convergența.

Exemplu: Seria armonică alternată $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ este semiconvergentă deoarece

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}(C), \text{ însă } \sum_{n=1}^{\infty} \left| (-1)^{n+1} \frac{1}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}(D) \text{ (seria armonică simplă)}.$$

12/33

Serii absolut convergente

Propoziție

Dacă o serie de numere reale este absolut convergentă, atunci ea este convergentă.

Demonstrație: Fie $\sum_{n=1}^{\infty} x_n$ o serie absolut convergentă.

Fie $\varepsilon>0$; deoarece $\sum_{n=1}^{\infty}|x_n|(C)$, există $n_{\varepsilon}\in\mathbb{N}^*$ astfel încât

$$|x_{n+1}| + \ldots + |x_{n+p}| < \varepsilon, \forall n \ge n_{\varepsilon}, \forall p \in \mathbb{N}^*.$$

Însă cum $|x_{n+1}+\ldots+x_{n+p}| \leq |x_{n+1}|+\ldots+|x_{n+p}|$, obținem

$$|x_{n+1} + \ldots + x_{n+p}| < \varepsilon, \forall n \ge n_e, \forall p \in \mathbb{N}^*.$$

Conform teoremei lui Cauchy, seria $\sum_{n=1}^{\infty} x_n$ este convergentă.

◆□▶→□▶→□▶→□▶ □ めの@

Matematică, Anul I A. Arusoaie

Criteriul rădăcinii

Corolar

Fie $\sum x_n$ o serie de numere reale cu termeni oarecare.

Dacă există limita $\lim_{n\to\infty} \sqrt[n]{|x_n|} = \ell \in \overline{\mathbb{R}}$, atunci:

- i) dacă $\ell < 1$, atunci $\sum_{n=1}^{\infty} x_n(AC)$;
- ii) dacă $\ell > 1$, atunci $\sum_{n=1}^{\infty} |x_n|(D)$;

Criteriul raportului -D'Alembert

Corolar

Fie $\sum_{n=0}^{\infty} x_n$ o serie de numere reale cu termeni oarecare.

Dacă există limita $\lim_{n \to \infty} \frac{|x_{n+1}|}{|x_n|} = \ell \in \overline{\mathbb{R}}$, atunci:

- i) dacă $\ell < 1$, atunci $\sum_{n=1}^{\infty} x_n(AC)$;
- ii) dacă $\ell > 1$, atunci $\sum_{n=1}^{\infty} |x_n|(D)$.

15/33

Criteriul lui Raabe-Duhamel

Corolar

Fie $\sum x_n$ o serie de numere reale cu termeni oarecare.

Dacă există limita $\lim_{n \to \infty} n \left(\frac{|x_n|}{|x_{n+1}|} - 1 \right) = \ell \in \overline{\mathbb{R}},$ atunci:

- i) dacă $\ell > 1$, atunci $\sum_{n=1}^{\infty} x_n(AC)$;
- ii) dacă $\ell < 1$, atunci $\sum_{n=1}^{\infty} |x_n|(D)$.

16/33

Serii alternate

- ullet Spunem că seria $\sum_{n=1}^{\infty} x_n$ este *alternată*, dacă $x_n \cdot x_{n+1} \leq 0, orall n \in \mathbb{N}^*.$
- Orice serie alternată poate fi scrisă astfel:

$$\sum_{n=1}^{\infty} (-1)^n y_n, \text{ unde } y_n \geq 0, \forall n \in \mathbb{N}^*.$$

Serii alternate

Teoremă (Criteriul lui Leibniz)

Dacă $(y_n)_{n\in\mathbb{N}^*}$ este un șir de numere reale pozitive, descrescător și convergent la 0, atunci seria $\sum_{n=1}^{\infty} (-1)^n y_n$ este convergentă.

Demostrație: Folosim criteriul lui Dirichlet.

Exemplu: Seria $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ este convergentă.

Structura cursului

- Serii cu termeni oarecare
 - Criterii de convergență
 - Criteriul lui Abel
 - Serii absolut convergente
 - Serii alternate
- Serii de puteri
 - Teorema lui Abel
 - Determinarea razei de convergență
 - Exemple de serii de puteri

Definiție

Fie $(a_n)_{n\in\mathbb{N}}$ un şir de numere reale.

Se numește serie de puteri centrată în $y_0 \in \mathbb{R}$ o serie de forma

$$a_0 + a_1(y - y_0) + \ldots + a_n(y - y_0)^n + \ldots = \sum_{n=0}^{\infty} a_n(y - y_0)^n, y \in \mathbb{R}.$$
 (1)

Termenii a_n se numesc **coeficienți ai seriei**.

Dacă facem schimbarea de variabilă $x=y-y_0$, seria (1) se poate scrie în forma

$$a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n + \ldots = \sum_{n=0}^{\infty} a_n x^n.$$
 (2)

20/33

Teorema (Abel)

Pentru orice serie de puteri $\sum_{n=0}^{\infty} a_n x^n$, există un număr R, $0 \le R \le +\infty$, numit

rază de convergență a seriei de puteri $\sum_{n=0}^{\infty} a_n x^n$, astfel încât:

- i. Seria $\sum_{n=0}^{\infty} a_n x^n(AC)$ pentru orice $x \in (-R, R)$;
- ii. Seria $\sum_{n=0}^{\infty} a_n x^n(D)$ pentru orice $x \in \mathbb{R} \setminus [-R,R]$.

Putem rescrie teorema lui Abel și astfel:

Pentru orice serie de puteri $\sum_{n=0}^{\infty} a_n x^n$, există R, $0 \le R \le +\infty$ așa încât:

- i) dacă R=0, atunci unicul punct de (absolută) convergență pentru seria $\sum_{n=0}^{\infty}a_{n}x^{n} \text{ este } x=0;$
- ii) dacă R>0, atunci seria $\displaystyle\sum_{n=0}a_{n}x^{n}(AC)$ pe intervalul (-R,R);
- iii) dacă $0 < R < +\infty$, atunci seria $\sum_{n=0}^{\infty} a_n x^n(D)$ pe $(-\infty, -R) \cup (R, +\infty)$;
- iv) dacă $R=+\infty$, atunci seria $\sum_{n=0}^{\infty}a_nx^n(C)$ pe \mathbb{R} ;

→□▶→□▶→□▶→□▶ □ 少Qで

Dacă notăm

- ullet D_c domeniul de convergență $\Big\{x\in\mathbb{R}\mid \sum_{n=0}^\infty a_nx^n(C)\Big\}$,
- ullet D_{ac} domeniul de absolută convergență $\Big\{x\in\mathbb{R}\mid \sum_{n=0}^{\infty}a_nx^n(AC)\Big\}$,

atunci, pentru orice serie de puteri $\displaystyle \sum_{n=0}^{\infty} a_n x^n$ au loc următoarele incluziuni:

$$(-R,R) \subseteq D_{ac} \subseteq D_c \subseteq [-R,R].$$

23 / 33

Determinarea razei de convergență

Propoziție

Fie $\sum_{n=0}^{\infty} a_n x^n$ o serie de puteri și fie R raza ei de convergență.

Dacă există $\rho = \lim_{n \to \infty} \sqrt[n]{|a_n|}$, atunci raza de convergență a seriei $\sum_{n=0}^{\infty} a_n x^n$ este

$$R = \left\{ \begin{array}{ll} 0, & \text{când } \rho = +\infty; \\ \\ \frac{1}{\rho}, & \text{când } 0 < \rho < +\infty; \\ \\ \infty, & \text{când } \rho = 0. \end{array} \right.$$

• Dacă nu există $\lim_{n\to\infty}\sqrt[n]{|a_n|}$, vom calcula R similar, doar că de data asta, $\rho=\limsup_{n\to\infty}\sqrt[n]{|a_n|}$.

Exemplu

Să se studieze convergența seriei $\displaystyle \sum_{n=0}^{\infty} 3^n x^n.$

FII (UAIC, Iași)

Determinarea razei de convergență

Propoziție

Fie $\sum_{n=0}^{\infty} a_n x^n$ o serie de puteri și fie R raza ei de convergență.

Dacă există $\ell = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \in \overline{\mathbb{R}}$, atunci raza de convergență este dată de

$$R = \left\{ \begin{array}{ll} 0, & \text{când } \ell = +\infty; \\ \\ \frac{1}{\ell}, & \text{când } 0 < \ell < +\infty; \\ \\ \infty, & \text{când } \ell = 0. \end{array} \right.$$

26 / 33

Exemplu

Să se studieze convergența seriei de puteri $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} (x-1)^n$.

27 / 33

- 1. Seria nulă: $a_n = 0, n \in \mathbb{N}$. În acest caz, $R = \infty, D_{ac} = D_c = \mathbb{R}$.
- 2. Seria geometrică, $\sum_{n=0}^{\infty} x^n$. Avem R=1, $D_{ac}=D_c=(-1,1)$.
 - $\qquad \qquad \mathbf{Dac\check{a}}\ x \in (-1,1) \text{, atunci}\ \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$
- 3. Seria $\sum_{n=0}^{\infty} n! x^n$: $R = 0, D_{ac} = D_c = \{0\}$.

4. Seria $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} x^n$, cu $\alpha \in \mathbb{R}$.

Avem R=1 și

$$D_{ac} = \begin{cases} (-1,1), & \alpha \le 1; \\ [-1,1], & \alpha > 1; \end{cases}$$

,

$$D_c = \left\{ \begin{array}{ll} (-1,1), & \alpha \leq 0; \\ [-1,1), & \alpha \in (0,1]; \\ [-1,1], & \alpha > 1; \end{array} \right. .$$

5. Seria exponențială, $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. Avem $R=+\infty,\, D_{ac}=D_c=\mathbb{R}.$ Mai mult

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x.$$

6. Seriile trigonometrice, $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \text{ si } \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}.$ Avem $R=\infty$, $D_{ac}=D_c=\mathbb{R}$. Mai mult, avem $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \ \forall x \in \mathbb{R};$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}, \ \forall x \in \mathbb{R};$$

31/33

7. Seriile hiperbolice, $\sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1}$ și $\sum_{n=0}^{\infty} \frac{1}{(2n)!} x^{2n}$. Avem $R=\infty$, $D_{ac}=D_c=\mathbb{R}$. Mai mult, avem

$$\begin{split} shx &= \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1} := \frac{e^x - e^{-x}}{2}, \ \forall x \in \mathbb{R}; \\ chx &= \sum_{n=0}^{\infty} \frac{1}{(2n)!} x^{2n} := \frac{e^x + e^{-x}}{2}, \ \forall x \in \mathbb{R}; \end{split}$$

32 / 33

Bibliografie

- V. Postolică *Eficiență prin matematică aplicată. Analiză matematică*, Editura Matrix Rom, București, 2006.
- Emil Popescu Analiză matematică. Calcul diferențial, Editura Matrix Rom, Bucuresti, 2006.
- M. Postolache *Analiză matematică (teorie și aplicații)*, Editura "Fair Partners", București, 2011.
- Steven Heilman Sequences and Series of Functions. Convergence, UCLA Department of Mathematics, Los Angeles, 2015.
- M. Deisenroth, M. Cheraghchi *Mathematical Methods (Chap.4:Power Series)*, Imperial College London, Department of Computing, 2016.

33/33