Porodogram leave	Mar.
Process or Manotekey 14.1 + 14.2	
Outline:	
1) Big pictue/mstration	
i) us to sominate	
3) Simple of proach - take OFT of a window section (just like for determinishe signal) - problem of voince 4) Dearlossam averaging (Bartlett)	~e },
4) Perodogram averaging (Bartlett)	
- variance reduction - wholeoft: stability us resolution	^
5) Welch method	
6) other methods	
1) Big picture / motoration	
Let's say we have a noise process with a particular spectrum: "colored"	
Darticular spectrum:	(
Invest "colored"	
	v-(#-2010******
` \	

this gives us a random time series:

We may want to extract the spectrum given the bare series. have soils.

- Figure out where noise is for Frequency - selective filtery - system identification (next page)

* 1 1 > 5

Y(w)= H(w) X(w)

\\(\a)2= \\\\

= HWHTW XX

= | H(W)/2 |X(W)/2

so if we can estimate

1 x(w) 12 + 17(w) 12 we can find 11+(W)/2

how collive do this?

approach 1: do the same thing we did for deterministic for signels. pick a time window apply wen), take DFT

problem: variance is very high

approach 2: brede signal into mony vinlows, possibly overlappel, possibly non-rectangular weight, then overage the DFD of each

WZ WI WY

OFT Rom UD, W., etc.

average all the magnitudes of each DFT

More man preliminaries

Randon processes used to model very complex or noise-like signds.

characterised by statistical properties average vanince outocorrelation power density spectrum

comples.) Sample venous: $f_{x}^{2} = \frac{1}{2} \sum_{n=0}^{L_{1}} x(n)$ $\mathcal{L}_{x}^{2} = \frac{1}{2} \left(\sum_{n=0}^{k} (x_{n}) - \hat{m_{x}} \right)^{2}$

we would like these estimators to be

E (eshmotu) = true volve Cespected value of

weaker: asymptotically embiased: E (estimate) -> true value as La op

Consistent: variance (eshador) -> 0 as Lap

Expedel value means we repeat the estimate many times

classic results for estimating mean variance of Garussian variable of wear it, variance of the points

 $\xi(\hat{M}_{x}) = M$ (so sample mean is unbiased)

E (Vor (wind)) = 52/2 (so " is consistent

COMPACIAL MARKET PARTY AND	auto-correlation ()
	new quantity: auto-correlation of how it relates to
	new quantity: auto-correlation of how it relates to
	def: the cross-correlation of 2 signal u
	$f_{xy}(e) = \sum_{x(n)} y(n-e) = \sum_{x(n+e)} y(n)$ $f_{x=-\infty}$ $f_{$
	Chisely related to a relative
	$S_{xy}(0) = \sum_{n=0}^{\infty} x(n)y(n-l)$ $\times *y = \sum_{n=0}^{\infty} x(n)y(l-n)$
assandiadas en de la biológica de el contra francisco e en propieto de el contra de entre de el contra de entre La contra de entre d	by inspection, if we flip orgunect of y, they match.
	So $r_{xy}(L) = x(n) * y(-n)$
	autocorrelation is correlation of signal whatself: (xx(l)) = \(\sum_{x(n)} \gamma(n-l) = \mathbb{M} \gamma(n) \\ x(n) \times \times (-n)
	sometimes we may want to compte time-averaged autocorrelation (Port eg 14.1.24)
	$C_{n}(m) = \lim_{N \to \infty} \sum_{n=0}^{N-m-1} X(n-m)$
	(basically, arease by # pt)

autocorrelation 3

	1) Link between ato arrelation and specto:
	$ X(\omega) ^2 = X(\omega) X'(\omega) $ $= X(\omega) X(-\omega) \qquad (if conj. Symmetric)$
	thus $ X(\omega) ^2 = X(\omega) X(-\omega) \iff X(\omega) \times X(-\infty) $ by time recent property of OTET
	but, x(n) x x(-n) = (xx)
	ie., passes mag-squarel speaking is F.T. of the autocorrelation,
	3) Why is white noise "white" (all frequencies?)
*c~	Consider a zero-mean signal, each time sample unrelated to any others. ANNIMA Exchit leo then, resule: O else, on average
	s E(7xx(e)) = No2 8(e)
	f we use fine-ownered. Fine-ownered. Fixe, got \(\xi(\pi)\) = \sigma^2 \(\xi(\pi)\) = \(\xi(\pi)\) = \sigma^2 \(\xi(\pi)\) = \(\xi(\pi)\) = \sigma^2 \(\xi(\pi)\) = \sigma^2 \(\xi(\pi)\) =

2) mall preliminaries

Some notation (Chapter 3 2.1.2)

an energy signal is one of finite energy

E = { |x(n)|2

a Power signal

(for example, finite longh signals)

has finite power:

P = lin 1 Em 15 600

which is for example, an infinitely long signal that is well - behaved.

Energy spectral density is must of an energy signal

Six (F) = (X(F)) 2 eshous how energy is

didn hitel across

Power spectal density shows how every in a power signal is alwaysted

Txx(F), mathematically, can define as F.T. of autocorrelation

In 14.1,1 Port ducus every synds

in 14.12, Port discuss power signals/specker

for random processes, we need to us talk about PSD

Pom notation

PSD ERD true spectrum | Sxx(6)

estimate | Sxx(6) Txx(A) Pxx(F)

a) First, let's establish the link between the

continuous-tre spectru and the sampled-time spectru

Sampling theory refroster.

earlier, we saw that when soing from Xalt) to X(n),

we used the transtorn pair:

The scaling of the transtorn pair:

The scaling of t

this gave us the sampled spectrum?

where f= F/Fs

but, w= 211f, so above is some as PoM eq 14.1.6

assuming there is no aliasing, XCW= = Xa(f), WICTT

so the sampled spectrum

so the sampled spectra is just a scaled version of the true speakin - thus it's useful

b) now let's look at actually calculating the spectrum. A possible flowdrost is:

 $V(\omega)$ $V(\omega)$ $V(\omega)^2$ $V(\omega)^2$ $V(\omega)^2$ $V(\omega)^2$

130

under approach 1, V(w) = X(w) * W(w) so window smooths the true spectrum note it we use on infinitely long rectangular window WW 3 8(c) 5, V(L) -> X(L). (asymptotically unsicosel discussion, Por end of 14.1.1 we may want absolute values (not relative) now about amplitude? in some applications. ex: if estimating ubration spectrum, we care about the values! Own't want levels to change if wan changes we have V=X *W & to keep the window from changing the energy, we want to normalize its energy. By Parsent, IT [|was|2 = Swan = En rectangular window: Ew2(4) = 812 = N in general, de fire

Not W= \frac{N1}{N} \times \frac{N1}{N} \time then we can recover the true level by

Bixi(w) = UN | Si (wanxan) = iwanya |

porodogram 7

V=1 for restruction otherwise, calculate it. x is dubted bh Wirdir

Approad 2: autocorrelation we can write the may-squared as of a signt x(n) as | Swy = Xw Xw = Xw X (-w) but this Fourier transforms to: X(m)X(-m) <> x(m) * x(-n) = Exch)x(n+m) n=0 (if x has k samples) by analosy, if we = (xx(m) = acro-correlation! opeak or v(n) = w(n) x(n), PRI SACW) = UN DET ((VC)) (approd (COPT-base) > Bortlott Well approd 2 (Txx base) -> Bladener Tokey Q. How does periodogram work, as described above? A. not very well at all. example: perodosan_no_averay.m Consider the statistics (PoM 14.1.2; hard to follow) can show the periodogram is asymptotedly unbiased i.e. if we define B(w) = \w(w)|2 E (PEE(W)) = TPXX(W) * B(W) For finite N, E(PXX) + The , so estimate is as N > 00, To B(W) > 5(M), so E(PE) > Ph asymptotically unbiased; longer short ver undow lelps. E(Pages) => 1/2

Varina : hard to show, but vor (Pxx(w)) ~ [xx(w)

correction: variance ~ true value ^2

longe H does not help!

4) Penodogram averaging (Bortlett method) PAM 14.2.1 This is the simplest method that works: Brede up data into chinks calculate penodogen for each, and average. Rectangular vinlow

MAMMAMMIN Pxx(m) Pxx(m) Pxx(m) Pxx(w)= \times \times Pxx(w)

Cre windows overaged

since each window is the same, average stats: is unchanged from single periodogram

> variance improves: var (Pxx(w)) = 1 [xx (w)

so as KT, var J

TRADEOFF

IF we have N total points, we now break them into K windows, longth M= N/K

(Soul) resolution drops by factor of the (mainly bigge)
(good) variance drops " " " (good) variance drops

Bortlett wethod - Quality Factor Q = E(Pxx)

Var(Pxx)

Var(Pxx)

For Bortlet, this is

Vxxx(w) & Bcw)

For Royal and Surger

Vxx = k

Vxxx(w) & Bcw)

Vxx = k

Mattas examples: bartlett_tradeoffs.m

4) welch method (14.2.2 in Prm)

two basic modifications to above:

- a) apply windows other than rectangular
 - b) allow windows to overlap

what happens when we overly the windows?

- -) was more terms to average lower variance
- -> but overlapped windows are orrelated. Thus benefit is not simple # Lindard

A result: calcular show for 50% overly, trunsle or homing violar, vorince reduction is ~2x

for 75% ovely, reluction 24x

Q Favor = Sk, no ovelop CBertlett

8k, 50% ovelop, transle.

25090 overlyped Limbas

(5) Other methods

-> Blackman Tukey - estimate cross-correlatation,
smooth it, Fourse transform.
Generally, pretty similar to Weldy no pros or cons.

> Parametric methods - big topic

Post Approaches so for are nonparametric -

alternative: assume the process spectrum has a particular mathematical form, (all-pole, etc.) & estimate coefficients of the model.

much more high-res, Loss Stable.

honework

14.9 0)