

HIGH AND LOW SIDE DRIVER

Features

- Floating channel designed for bootstrap operation
- Fully operational to +600 V
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout for both channels
- 3.3 V and 5 V input logic compatible
- Matched propagation delay for both channels
- Logic and power ground +/- 5 V offset
- Lower di/dt gate driver for better noise immunity
- Output source/sink current capability 1.4 A/1.8 A
- RoHS compliant

8-Lead PDIP IRS2181 8-Lead SOIC IRS2181S 14-Lead SOIC IRS2181S

Description

The IRS2181/IRS21814 are high voltage, high speed power MOSFET and IGBT drivers with independent high-side and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is com-

Feature Comparison

Part	Input logic	Cross- conduction prevention logic	Deadtime (ns)	Ground Pins	t _{on} /t _{off} (ns)	
2181	HIN/LIN	no	none	COM	180/220	
21814	HIIN/LIIN	110	none	Vss/COM	100/220	
2183	HIN/LIN	Internal 400	Internal 400	COM	180/220	
21834	HIIN/LIIN	yes	Program 400-5000	Vss/COM	100/220	
2184	IN/SD ves		Internal 400	COM	680/270	
21844	114/30	yes	Program 400-5000	Vss/COM	000/270	

patible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
V _B	High-side floating absolute voltage		-0.3	620 (Note 1)	
Vs	High-side floating supply offset voltage		V _B - 20	V _B + 0.3	
VHO	High-side floating output voltage		Vs - 0.3	V _B + 0.3	
Vcc	Low-side and logic fixed supply voltage		-0.3	20 (Note 1)	V
V_{LO}	Low-side output voltage		-0.3	V _{CC} + 0.3	V
V _{IN}	Logic input voltage (HIN & LIN)		V _{SS} - 0.3	V _{CC} + 0.3	
Vss	Logic ground (IRS21814 only)	V _{CC} - 20	V _{CC} + 0.3		
dV _S /dt	Allowable offset supply voltage transient	_	50	V/ns	
		(8-lead PDIP)	_	1.0	
D-	Package power dissipation @ T _A ≤ +25 °C	(8-lead SOIC)	_	0.625	
P _D	Fackage power dissipation @ 1 A ≤ +25 C	(14-lead PDIP)	_	1.6	W
		(14-lead SOIC)	_	1.0	
		(8-lead PDIP)	_	125	
Dth	Thermal registance junction to embient	(8-lead SOIC)	_	200	°C/W
Rth _{JA}	Thermal resistance, junction to ambient	(14-lead PDIP)	_	75	C/VV
			_	120	
TJ	Junction temperature	_	150		
T _S	Storage temperature		-50	150	°C
TL	Lead temperature (soldering, 10 seconds)		_	300	

Note 1: All supplies are fully tested at 25 V and an internal 20 V clamp exists for each supply.

Recommended Operating Conditions

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_S and V_{SS} offset rating are tested with all supplies biased at a 15 V differential.

Symbol	Definition	Min.	Max.	Units
VB	High-side floating supply absolute voltage	V _S + 10	V _S + 20	
Vs	High-side floating supply offset voltage	Note 2	600	
V _{HO}	High-side floating output voltage	VS	V_{B}	
Vcc	Low-side and logic fixed supply voltage	10	20	V
V_{LO}	Low-side output voltage	0	V _{CC}	
V _{IN}	Logic input voltage (HIN & LIN)	V _{SS}	V _{CC}	
V _{SS}	Logic ground (IRS21814 only)	-5	5	
TA	Ambient temperature	-40	125	°C

Note 2: Logic operational for V_S of -5 V to +600 V. Logic state held for V_S of -5 V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 15 V, V_{SS} = COM, C_L = 1000 pF, T_A = 25 °C.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	_	180	270		V _S = 0 V
toff	Turn-off propagation delay	_	220	330		V _S = 0 V or 600 V
MT	Delay matching, HS & LS turn-on/off	_	0	35	ns	
t _r	Turn-on rise time	_	40	60		V _S = 0 V
tf	Turn-off fall time	_	20	35		

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V, V_{SS} = COM and T_A = 25 °C unless otherwise specified. The V_{IL} , V_{IH} , and I_{IN} parameters are referenced to V_{SS} /COM and are applicable to the respective input leads HIN and LIN. The V_O , I_O , and R_{OD} parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" input voltage	2.5	_	_		V _{CC} = 10 V to 20 V
V _{IL}	Logic "0" input voltage	_	_	0.8	V	
Voh	High level output voltage, V _{BIAS} - V _O	-	_	1.4	-	I _O = 0 A
V _{OL}	Low level output voltage, VO	_	_	0.2		I _O = 20 mA
ILK	Offset supply leakage current	-	_	50		V _B = V _S = 600 V
I _{QBS}	Quiescent V _{BS} supply current	20	60	150		\/ = 0\/ a= F\/
lacc	Quiescent V _{CC} supply current	50	120	240	μA	V _{IN} = 0 V or 5 V
I _{IN+}	Logic "1" input bias current	_	25	60		V _{IN} = 5 V
I _{IN} -	Logic "0" input bias current	_	_	5.0		V _{IN} = 0 V
V _{CCUV+}	V _{CC} and V _{BS} supply undervoltage positive going	8.0	8.9	9.8		
V _{BSUV+}	threshold	0.0	0.9	9.0		
V _{CCUV} -	V_{CC} and V_{BS} supply undervoltage negative going	7.4	8.2	9.0	V	
V _{BSUV} -	threshold	7.4	0.2	9.0		
Vccuvh	Hysteresis	0.3	0.7			
VBSUVH	nysteresis	0.3	0.7	_		
IO+	Output high chart circuit pulsed current	1.4	1.9			V _O = 0 V,
IU+	Output high short circuit pulsed current	1.4	1.9		Α	PW ≤ 10 µs
10-	Output low short circuit pulsed current		2.3	2.3 _		V _O = 15 V,
.5	- Carparian and an ended an ended	1.8				PW ≤ 10 µs

Functional Block Diagrams

Lead Definitions

Symbol	Description
HIN	Logic input for high-side gate driver output (HO), in phase (IRS2181/IRS21814)
LIN	Logic input for low-side gate driver output (LO), in phase (IRS2181/IRS21814)
VSS	Logic ground (IRS21814 only)
VB	High-side floating supply
НО	High-side gate drive output
VS	High-side floating supply return
Vcc	Low-side and logic fixed supply
LO	Low-side gate drive output
СОМ	Low-side return

Lead Assignments

Figure 1. Input/Output Timing Diagram

Figure 2. Switching Time Waveform Definitions

Figure 3. Delay Matching Waveform Definitions

Figure 4A. Turn-On Propagation Delay vs. Temperature

Figure 5A. Turn-Off Propagation Delay vs. Temperature

Figure 4B. Turn-On Propagation Delay vs. Supply Voltage

Figure 5B. Turn-Off Propagation Delay vs. Supply Voltage

Figure 6A. Turn-On Rise Time vs.
Temperature

Figure 6B. Turn-On Rise Time vs. Supply Voltage

Figure 7A. Turn-Off Fall Time vs.
Temperature

Figure 7B. Turn-Off Fall Time vs. Supply Voltage

Figure 8A. Logic "1" Input Voltage vs. Temperature

Figure 8B. Logic "1" Input oltage vs. Supply Voltage

Figure 9A. Logic "0" Input Voltage vs. Temperature

Figure 9B. Logic "0" Input Voltage vs. Supply Voltage

5.0 80 4.0 1.0 1.0 10 12 14 16 18 20 V_{BAIS} Supply Voltage (V)

Figure 10A. High Level Output Voltage vs. Temperature (I_O = 0 mA)

Figure 10B. High Level Output Voltage vs. Supply Voltage (I_O = 0 mA)

Figure 11A. Low Level Output vs. Temperature

Figure 11B. Low Level Output vs. Supply Voltage

250

200

150

100

50

0

-50

-25

0

V_{BS} Supply Current (µA)

IRS2181/IRS21814(S)PbF

Figure 12A. Offset Supply Leakage Current vs. Temperature

Min.

100

125

Figure 13A. V_{BS} Supply Current vs. Temperature

25

Temperature (°C)

50

75

Figure 12B. Offset Supply Leakage Current vs. V_B Boost Voltage

Figure 13B. $V_{\rm BS}$ Supply Current vs. $V_{\rm BS}$ Floating Supply Voltage

Figure 14A. V_{CC} Supply Current vs. V_{CC} Temperature

Figure 14B. $V_{\rm cc}$ Supply Current vs. $V_{\rm cc}$ Supply Voltage

Figure 15A. Logic "1" Input Bias Current vs. Temperature

Figure 15B. Logic "1" Input Bias Current vs. Supply Voltage

Figure 16A. Logic "0" Input Bias Current vs. Temperature

Figure 16B. Logic "0" Input Bias Current vs. Voltage

Figure 17. V_{CC} and V_{BS} Undervoltage Threshold (+) vs. Temperature

Figure 18. $V_{\rm CC}$ and $V_{\rm BS}$ Undervoltage Threshold (-) vs. Temperature

Figure 19A. Output Source Current vs. Temperature

Figure 19B. Output Source Current vs. Supply Voltage

Figure 20A. Output Sink Current vs. Temperature

Figure 20B. Output Sink Current vs. Supply Voltage

Figure 21. IRS2181 vs. Frequency (IRFBC20), $\rm R_{\rm oate} = 33~\Omega,~V_{\rm CC} = 15~V$

Figure 22. IRS2181 vs. Frequency (IRFBC30), $\rm R_{\rm qate} {=} 22\,\Omega,\, \rm V_{\rm CC} {=} 15~\rm V$

Figure 23. IRS2181 vs. Frequency (IRFBC40), $R_{\text{pate}} = 15~\Omega,~V_{\text{CC}} = 15~V$

Figure 24. IRS2181 vs. Frequency (IRFPE50), $\rm R_{\rm oate} {=} 10~\Omega, \, \rm V_{\rm cc} {=} 15~V$

Figure 25. IRS21814 vs. Frequency (IRFBC20), $\rm R_{oate} = 33~\Omega,~V_{CC} = 15~V$

Figure 27. IRS21814 vs. Frequency (IRFBC40), R_{nate} =15 Ω , V_{CC} =15 V

Figure 26. IRS21814 vs. Frequency (IRFBC30), R_{cate} =22 Ω , V_{CC} =15 V

Figure 28. IRS21814 vs. Frequency (IRFPE50), $R_{\text{cate}} \text{=} 10~\Omega, \, V_{\text{CC}} \text{=} 15~\text{V}$

Figure 29. IRS2181S vs. Frequency (IRFBC20), R_{cate} =33 Ω , V_{CC} =15 V

Figure 31. IRS2181S vs. Frequency (IRFBC40), $\rm R_{\rm qate} {=}15~\Omega, \, \rm V_{\rm CC} {=}15~V$

Figure 30. IRS2181S vs. Frequency (IRFBC30), $\rm R_{oate}$ =22 $\Omega, \, \rm V_{CC}$ =15 V

Figure 32. IRS2181S vs. Frequency (IRFPE50), $R_{\mbox{\tiny Date}} \!=\! \! 10~\Omega, \, V_{\mbox{\tiny CC}} \!=\! \! 15~V$

Figure 33. IRS21814S vs. Frequency (IRFBC20), $\rm R_{oate} = 33~\Omega, \, V_{CC} = 15~V$

Figure 34. IRS21814S vs. Frequency (IRFBC30), R_{note} =22 Ω , V_{CC} =15 V

Figure 35. IRS21814S vs. Frequency (IRFBC40), $\rm R_{gate}{=}15~\Omega,\,V_{CC}{=}15~V$

Figure 36. IRS21814S vs. Frequency (IRFPE50), R_{nate} =10 Ω , V_{CC} =15 V

Case outlines

Tape & Reel 8-lead SOIC

	M etric		lm p erial	
Code	Min	Max	Min	Max
Α	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	11.70	12.30	0.46	0.484
D	5.45	5.55	0.214	0.218
E	6.30	6.50	0.248	0.255
F	5.10	5.30	0.200	0.208
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062

REEL DIMENSIONS FOR 8SOICN

	M e	tric	lm p	erial
Code	Min	Max	Min	Max
Α	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	18.40	n/a	0.724
G H	14.50	17.10	0.570	0.673
Н	12.40	14.40	0.488	0.566

Tape & Reel 14-lead SOIC

CARRIER TAPE DIMENSION FOR 14SOICN

	M etric		lm p erial	
Code	Min	Max	Min	Max
Α	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	15.70	16.30	0.618	0.641
D	7.40	7.60	0.291	0.299
E	6.40	6.60	0.252	0.260
F	9.40	9.60	0.370	0.378
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062

REEL DIMENSIONS FOR 14SOICN

	M etric Im p		lm p	erial
Code	Min	Max	Min	Max
Α	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	22.40	n/a	0.881
G	18.50	21.10	0.728	0.830
Н	16.40	18.40	0.645	0.724

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

8-Lead PDIP IRS2181PbF 8-Lead SOIC IRS2181SPbF 8-Lead SOIC Tape & Reel IRS2181STRPbF 14-Lead PDIP IRS21814PbF 14-Lead SOIC IRS21814SPbF 14-Lead SOIC Tape & Reel IRS21814STRPbF

International

TOR Rectifier

SOIC8 &14 are MSL2 qualified.

This product has been designed and qualified for the industrial level.

Qualification standards can be found at www.irf.com

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 11/27/2006