How to Program a Calculator A look at the geometric cosine method

Jake Darby

How to Program
a Calculator

Jake Darby

ntroduction

Derivation

Errors

Derivation

Errors

Numerical Analysis of Common Functions

ntroduction

erivation

Errors

- ntroduction
- erivation
- Errors

onclusion.

- Numerical Analysis of Common Functions
 - Appoximations

Numerical Analysis of Common Functions

- Appoximations
- Errors

Introduction

Derivation

Errors

Derivation

Errors

Conclusion

Numerical Analysis of Common Functions

- Appoximations
- Errors
- Implementation

- Numerical Analysis of Common Functions
 - Appoximations
 - Errors
 - Implementation
- Functions examined have been studied since antiquity

Derivation

Errors

Derivation

Errors

Conclusion

Numerical Analysis of Common Functions

- Appoximations
- Errors
- Implementation
- Functions examined have been studied since antiquity
 - Square Roots

Derivation

Errors

- Numerical Analysis of Common Functions
 - Appoximations
 - Errors
 - Implementation
- Functions examined have been studied since antiquity
 - Square Roots
 - Trigonometric Functions

Derivation

Errors

- Numerical Analysis of Common Functions
 - Appoximations
 - Errors
 - Implementation
- Functions examined have been studied since antiquity
 - Square Roots
 - Trigonometric Functions
 - Logarithms and Exponentials

Conclusion

Numerical Analysis of Common Functions

- Appoximations
- Errors
- Implementation
- Functions examined have been studied since antiquity
 - Square Roots
 - Trigonometric Functions
 - Logarithms and Exponentials
- These functions can be complex to approximate well

Jake Darby

ntroduction

Derivation

Errors

Conclusion

▶ Numerical Analysis of Common Functions

- Appoximations
- Errors
- Implementation
- Functions examined have been studied since antiquity
 - Square Roots
 - Trigonometric Functions
 - Logarithms and Exponentials
- These functions can be complex to approximate well
- Implemented by modern computers and calculators

Jake Darby

ntroduction

Derivation

onclusion

► Numerical Analysis of Common Functions

- Appoximations
- Errors
- Implementation
- Functions examined have been studied since antiquity
 - Square Roots
 - Trigonometric Functions
 - Logarithms and Exponentials
- These functions can be complex to approximate well
- Implemented by modern computers and calculators
 - Implemented in C

- ▶ Numerical Analysis of Common Functions
 - Appoximations
 - Errors
 - Implementation
- Functions examined have been studied since antiquity
 - Square Roots
 - Trigonometric Functions
 - Logarithms and Exponentials
- ► These functions can be complex to approximate well
- Implemented by modern computers and calculators
 - Implemented in C
 - GNU & MPFR libraries

Trigonometric Functions

How to Program a Calculator

Jake Darby

ntroduction

erivation)

Errors

erivation

Errors

Conclusion

Looked at sin, cos and tan

How to Program a Calculator

Jake Darby

ntroduction

Derivation

rrors

- Looked at sin, cos and tan
 - Studied as far back as the Egyptians

Derivation

rrors

- Looked at sin, cos and tan
 - Studied as far back as the Egyptians
 - Use Trigonometric Identities to reduce the problem

Derivation

rrors

- ▶ Looked at sin, cos and tan
 - Studied as far back as the Egyptians
 - Use Trigonometric Identities to reduce the problem
- Analysed several different methods

Looked at sin, cos and tan

ntroduction

Derivation

rrors

- Studied as far back as the Egyptians
- ▶ Use Trigonometric Identities to reduce the problem
- ose ingonometric identifies to reduce the proble
- Analysed several different methods
 - Each of the methods have their benefits

Derivation

rrors

- Looked at sin, cos and tan
 - Studied as far back as the Egyptians
 - Use Trigonometric Identities to reduce the problem
- Analysed several different methods
 - ▶ Each of the methods have their benefits
 - Taylor

Derivation

Errors

- Looked at sin, cos and tan
 - Studied as far back as the Egyptians
 - Use Trigonometric Identities to reduce the problem
- Analysed several different methods
 - Each of the methods have their benefits
 - Taylor
 - CORDIC

Derivation

rrors

- Looked at sin, cos and tan
 - Studied as far back as the Egyptians
 - Use Trigonometric Identities to reduce the problem
- Analysed several different methods
 - Each of the methods have their benefits
 - Taylor
 - CORDIC
 - Geometric

Derivation

Errors

Conclusion

Figure: First diagram in developing the geometric method

Geometric Method Derivation 1

How to Program a Calculator

Jake Darby

ntroduction

Derivatio

Errors

Derivatio

Errors

Conclusion

Derivation

Errors

Derivation

Errors

Conclusion

 $s^2 = \sin^2 \theta + (1 - \cos \theta)^2$

- $s^2 = 2 2\cos\theta$

Geometric Method Derivation
$$1\,$$

- $s^2 = \sin^2 \theta + (1 \cos \theta)^2$
- $s^2 = 2 2\cos\theta$
- $\cos \theta = 1 \frac{1}{2}s^2$
- \triangleright $s \approx \theta$

- $s^2 = \sin^2 \theta + (1 \cos \theta)^2$
- $s^2 = 2 2\cos\theta$
- $\cos \theta = 1 \frac{1}{2}s^2$
- \triangleright $s \approx \theta$
- We wish to improve our approximation of s

How to Progran
a Calculator

Jake Darby

ntroduction

Derivatio

Errors

Figure: Diagram to show how to recursively calculate s

How to Program a Calculator

Jake Darby

ntroduction

Jerivation

Errors

How to Program a Calculator

Jake Darby

ntroduction

Derivation

Errors

Conclusion

► ABC is right angled

Derivation

Errors

Conclusion

► ABC is right angled

$$AB = \sqrt{AC^2 - BC^2}$$
$$= \sqrt{4 - h^2}$$

Derivation

Errors

Conclusion

► ABC is right angled

$$AB = \sqrt{AC^2 - BC^2}$$
$$= \sqrt{4 - h^2}$$

► Area of ABC:

How to Program a Calculator

Jake Darby

ntroduction

Derivation

Errors

- ► ABC is right angled
- $AB = \sqrt{AC^2 BC^2}$ $= \sqrt{4 h^2}$
- ► Area of ABC:
 - $-\frac{1}{2}h\sqrt{4-h^2}$

ntroduction

Derivation

Errors

- ► ABC is right angled
- $AB = \sqrt{AC^2 BC^2}$ $= \sqrt{4 h^2}$
- ► Area of ABC:
 - $harpoonup \frac{1}{2}h\sqrt{4-h^2}$
 - $ightharpoonup rac{1}{2} \cdot 2 \cdot rac{s}{2}$

How to Program a Calculator

Jake Darby

Introduction

Derivation

Errors

- ► ABC is right angled
- $AB = \sqrt{AC^2 BC^2}$ $= \sqrt{4 h^2}$
- ► Area of ABC:

$$\frac{1}{2}h\sqrt{4-h^2}$$

$$ightharpoonup rac{1}{2} \cdot 2 \cdot rac{s}{2}$$

$$> s^2 = h^2(4 - h^2)$$

Derivation

Errors

- ► ABC is right angled
- $AB = \sqrt{AC^2 BC^2}$ $= \sqrt{4 h^2}$
- Area of ABC:

$$\frac{1}{2}h\sqrt{4-h^2}$$

$$ightharpoonup rac{1}{2} \cdot 2 \cdot rac{s}{2}$$

▶
$$h \approx \frac{\theta}{2}$$

erivation

rrors

$$\begin{array}{l} \text{geometric_cos} \left(\theta \in [0, \frac{\pi}{2}], k \in \mathbb{N} \right) : \\ h_0 := \theta 2^{-k} \\ n := 0 \\ \text{while } n < k : \\ h_{n+1}^2 := h_n^2 \cdot (4 - h_n^2) \\ n \mapsto n + 1 \\ \text{return } 1 - \frac{1}{2}h_k^2 \end{array}$$

```
#include <assert.h>
#include <math.h>
double geometric cos (double theta,
                      unsigned int k){
   //k > 0
   assert(k);
   //0 \ll theta \ll pi/2
   assert(0 \le theta < 1.57079632679);
   double h = theta * pow(2, -k);
   h *= h:
   for (int i = 0; i < k; ++i)
      h = h * (4 - h);
   return 1 - h/2;
```

erivation

rrors

erivation

Errors

erivation

rrors

onclusion

▶ Errors occur due to the assumption that $h_0 = \theta 2^{-k}$

Derivation

rrors

- Errors occur due to the assumption that $h_0 = \theta 2^{-k}$
- ▶ We are concerned here with the absolute error

- Errors occur due to the assumption that $h_0 = \theta 2^{-k}$
- We are concerned here with the absolute error
 - If $\bar{x} \approx x$, then the absolute error is:

$$\epsilon_x := |x - \bar{x}|$$

- Errors occur due to the assumption that $h_0 = \theta 2^{-k}$
- We are concerned here with the absolute error
 - If $\bar{x} \approx x$, then the absolute error is:

$$\epsilon_{\mathsf{x}} := |\mathsf{x} - \bar{\mathsf{x}}|$$

Assumptions:

Basics and Assumptions

- Errors occur due to the assumption that $h_0 = \theta 2^{-k}$
- We are concerned here with the absolute error
 - If $\bar{x} \approx x$, then the absolute error is:

$$\epsilon_{x} := |x - \bar{x}|$$

- Assumptions:
 - All calculations are performed without error

Basics and Assumptions

- Errors occur due to the assumption that $h_0 = \theta 2^{-k}$
- We are concerned here with the absolute error
 - If $\bar{x} \approx x$, then the absolute error is:

$$\epsilon_{\mathsf{x}} := |\mathsf{x} - \bar{\mathsf{x}}|$$

- Assumptions:
 - All calculations are performed without error
 - All calculations are performed to arbitrary precision

erivation

Errors

How to Progran a Calculator

Jake Darby

ntroduction

erivation

rrors

Conclusion

► Two important propositions:

Derivation

Errors

Conclusion

► Two important propositions:

• 4.3.1:
$$h_n = 2\sin(2^n\sin^{-1}(\theta 2^{-k-1}))$$

Derivation

Errors

Conclusion

► Two important propositions:

• 4.3.1: $h_n = 2\sin(2^n\sin^{-1}(\theta 2^{-k-1}))$

• 4.3.2: $h_n > 2\sin(\theta 2^{n-k-1})$

Derivation

Errors

Conclusion

► Two important propositions:

• 4.3.1: $h_n = 2\sin(2^n\sin^{-1}(\theta 2^{-k-1}))$

• 4.3.2: $h_n > 2\sin(\theta 2^{n-k-1})$

Proposition 4.3.3:

Derivation

Errors

- ► Two important propositions:
 - 4.3.1: $h_n = 2\sin(2^n\sin^{-1}(\theta 2^{-k-1}))$
 - 4.3.2: $h_n > 2\sin(\theta 2^{n-k-1})$
- ▶ Proposition 4.3.3:
 - $\epsilon_n = |h_n 2\sin(\theta 2^{n-k-1})|$

- ► Two important propositions:
 - 4.3.1: $h_n = 2\sin(2^n\sin^{-1}(\theta 2^{-k-1}))$
 - 4.3.2: $h_n > 2\sin(\theta 2^{n-k-1})$
- Proposition 4.3.3:
 - $\bullet \ \epsilon_n = |h_n 2\sin(\theta 2^{n-k-1})|$
 - $\epsilon_k < 2^k \epsilon_0$

Derivation

Errors

- ► Two important propositions:
 - 4.3.1: $h_n = 2\sin(2^n\sin^{-1}(\theta 2^{-k-1}))$
 - 4.3.2: $h_n > 2\sin(\theta 2^{n-k-1})$
- ► Proposition 4.3.3:
 - $\epsilon_n = |h_n 2\sin(\theta 2^{n-k-1})|$
 - $\epsilon_k < 2^k \epsilon_0$
 - ▶ Proven by showing $\epsilon_{n+1} < 2\epsilon_n$

Derivation

Errors

- ► Two important propositions:
 - 4.3.1: $h_n = 2\sin(2^n\sin^{-1}(\theta 2^{-k-1}))$
 - 4.3.2: $h_n > 2\sin(\theta 2^{n-k-1})$
- ► Proposition 4.3.3:
 - $\bullet \ \epsilon_n = |h_n 2\sin(\theta 2^{n-k-1})|$
 - $\epsilon_k < 2^k \epsilon_0$
 - ▶ Proven by showing $\epsilon_{n+1} < 2\epsilon_n$
 - Uses simple trigonometry and algebraic re-arrangement

Derivation

Errors

Derivation

Conclusion

 $ightharpoonup \epsilon_k = h_k - s$

Derivation

rrors

$$ightharpoonup \epsilon_k = h_k - s$$

$$\bullet \epsilon_0 = \theta 2^{-k} - 2\sin(\theta 2^{-k-1})$$

Derivation

Errors

- $\bullet \ \epsilon_k = h_k s$
- $\bullet \ \epsilon_0 = \theta 2^{-k} 2\sin(\theta 2^{-k-1})$
- $\blacktriangleright \text{ Let } \mathcal{C} := 1 \frac{1}{2}h_k^2$

Errors

- $\epsilon_k = h_k s$
 - $\bullet \epsilon_0 = \theta 2^{-k} 2\sin(\theta 2^{-k-1})$
 - ▶ Let $C := 1 \frac{1}{2}h_k^2$
 - Let $\epsilon_{\mathcal{C}} := |\mathcal{C} \cos \theta|$

Derivation

Errors

- $\bullet \ \epsilon_k = h_k s$
- $\bullet \epsilon_0 = \theta 2^{-k} 2\sin(\theta 2^{-k-1})$
- ▶ Let $\mathcal{C} := 1 \frac{1}{2}h_k^2$
- Let $\epsilon_{\mathcal{C}} := |\mathcal{C} \cos \theta|$
- ▶ We can show that $\epsilon_{\mathcal{C}} < 2\epsilon_{\mathit{k}}$

ntroduction

Derivation

Errors

- $\epsilon_k = h_k s$
- $\epsilon_0 = \theta 2^{-k} 2\sin(\theta 2^{-k-1})$
- ▶ Let $C := 1 \frac{1}{2}h_k^2$
- $\blacktriangleright \ \mathsf{Let} \ \epsilon_{\mathcal{C}} := |\mathcal{C} \cos \theta|$
- ▶ We can show that $\epsilon_{\mathcal{C}} < 2\epsilon_{k}$
- Thus $\epsilon_{\mathcal{C}} < 2^{k+1} \epsilon_0$ = $2\theta - 2^{k+2} \sin(\theta 2^{-k-1})$

Derivation

Errors

- $ightharpoonup \epsilon_k = h_k s$
- $\epsilon_0 = \theta 2^{-k} 2\sin(\theta 2^{-k-1})$
- ▶ Let $C := 1 \frac{1}{2}h_k^2$
- $\blacktriangleright \ \mathsf{Let} \ \epsilon_{\mathcal{C}} := |\mathcal{C} \cos \theta|$
- ▶ We can show that $\epsilon_{\mathcal{C}} < 2\epsilon_{k}$
- Thus $\epsilon_{\mathcal{C}} < 2^{k+1} \epsilon_0$ = $2\theta - 2^{k+2} \sin(\theta 2^{-k-1})$
- $2^{k+2}\sin(\theta 2^{-k-1}) = 2\theta \frac{1}{6}\theta^3 2^{-2k-1} + \frac{1}{120}\theta^5 2^{-4k-1} + \cdots$

Derivation

Errors

- $ightharpoonup \epsilon_k = h_k s$
- $\epsilon_0 = \theta 2^{-k} 2\sin(\theta 2^{-k-1})$
- ▶ Let $C := 1 \frac{1}{2}h_k^2$
- $\blacktriangleright \ \mathsf{Let} \ \epsilon_{\mathcal{C}} := |\mathcal{C} \cos \theta|$
- ▶ We can show that $\epsilon_{\mathcal{C}} < 2\epsilon_{k}$
- Thus $\epsilon_{\mathcal{C}} < 2^{k+1} \epsilon_0$ = $2\theta - 2^{k+2} \sin(\theta 2^{-k-1})$
- $2^{k+2}\sin(\theta 2^{-k-1}) = 2\theta \frac{1}{6}\theta^3 2^{-2k-1} + \frac{1}{120}\theta^5 2^{-4k-1} + \cdots$
- $\epsilon_{\mathcal{C}} < \frac{1}{6}\theta^3 2^{-2k-1} + \mathcal{O}(2^{-4k-1})$

ntroduction

Derivation

Errors

 $ightharpoonup 2\theta - 2^{k+2}\sin(\theta 2^{-k-1}) < 10^{-N}$

troduction

Derivation

Errors

- $2\theta 2^{k+2}\sin(\theta 2^{-k-1}) < 10^{-N}$
 - ► Guarantee *N* digits of accuracy

Derivation

Errors

- $2\theta 2^{k+2}\sin(\theta 2^{-k-1}) < 10^{-N}$
 - ► Guarantee *N* digits of accuracy
 - Must solve $2^{k+2} \sin(\theta 2^{-k-1}) > 2\theta 10^{-N}$

Derivation

Errors

 $2\theta - 2^{k+2}\sin(\theta 2^{-k-1}) < 10^{-N}$

► Guarantee *N* digits of accuracy

► Must solve $2^{k+2} \sin(\theta 2^{-k-1}) > 2\theta - 10^{-N}$

▶ Use a test value of $\theta = 0.5$

ntroduction

Derivation

Errors

- $2\theta 2^{k+2}\sin(\theta 2^{-k-1}) < 10^{-N}$
 - Guarantee N digits of accuracy
 - Must solve $2^{k+2} \sin(\theta 2^{-k-1}) > 2\theta 10^{-N}$
- ▶ Use a test value of $\theta = 0.5$

N	k
5	6
10	14
50	80
100	163
1000	1658

Figure: This table shows the minimum k required to guarantee N digits of accuracy for our approximation of cos(0.5)

Derivation

Errors

Derivation

Errors

Conclusion

▶ Interesting method, but better exist

Derivation

Errors

Conclusior

- Interesting method, but better exist
 - e.g. Taylor Series method

Derivation

Errors

- ▶ Interesting method, but better exist
 - e.g. Taylor Series method
- ► Fairly trivial to reverse the algorithm to find cos⁻¹

Derivation

rrors

- ▶ Interesting method, but better exist
 - e.g. Taylor Series method
- ► Fairly trivial to reverse the algorithm to find cos⁻¹
- Just one method, in one section

Derivation

Errors

- Interesting method, but better exist
 - e.g. Taylor Series method
- ► Fairly trivial to reverse the algorithm to find cos⁻¹
- Just one method, in one section
 - Digit by digit square root

Derivation

Errors

- ▶ Interesting method, but better exist
 - e.g. Taylor Series method
- ► Fairly trivial to reverse the algorithm to find cos⁻¹
- Just one method, in one section
 - Digit by digit square root
 - Hardware implementable trig calculations

Derivation

rrors

- ▶ Interesting method, but better exist
 - e.g. Taylor Series method
- ► Fairly trivial to reverse the algorithm to find cos⁻¹
- Just one method, in one section
 - Digit by digit square root
 - Hardware implementable trig calculations
 - Continued fractions for exponentials

Introduction

Derivation

Errors

Conclusion

Thank you for listening

Introduction

Derivation

LITOIS

Conclusion

Thank you for listening

Project at: https://github.com/Ybrad/Year-4-Project

ntroduction

Derivation

Thank you for listening

Project at: https://github.com/Ybrad/Year-4-Project

Any questions?