Prediction of ozone level in Boston

Lucas Emanuel Resck Domingues

Lucas Machado Moscheb*

Predicting O3 in Boston

Load and visualize

Daily average level of O3 in Boston

Data treatment

We noticed that some days do not exist in the dataset, for example, the day August 31, 2001 does not have information in the dataset.

```
## 148 148 Boston Massachusetts 42 2001-08-28 0.024583
## 149 149 Boston Massachusetts 42 2001-08-29 0.015000
## 150 150 Boston Massachusetts 42 2001-08-30 0.022333
## 151 151 Boston Massachusetts 42 2001-09-01 0.021958
## 152 152 Boston Massachusetts 42 2001-09-02 0.018750
## 153 153 Boston Massachusetts 42 2001-09-03 0.028708
```

Also, there is duplicated days, as June 9, 2002:

^{*}Escola de Matemática Aplicada

```
## 412 412 Boston Massachusetts 42 2002-06-09 0.036190  
## 414 414 Boston Massachusetts 42 2002-06-09 0.037000  
## 415 415 Boston Massachusetts 42 2002-06-10 0.023389
```

The duplicated one is easier to deal, but the nan values are harder. First we calculate the mean value between the duplicated.

The rate of NA values is almost 5% of the dataset.

```
## [1] 0.04453367
```

So as to solve that problem, we make a knn imputation using the month (k = 30)

Daily average level of O3 in Boston (after imputation)

Models: case 1

Now we develop some models using the train data.

The metric to compare is the Mean Absolute Error (MAE) in the predictions:

```
mae <- function(ytrue, ypred)
{
    return(mean(abs(ytrue - ypred)))
}</pre>
```

We will use rollyapply in order to calculate the error, considering the last two years to predict one week forward.

Decompose

First of all we make a seasonality test using Kruskal-Wallis. Actually it tests whether samples originate from the same distribution. We can organize it to be samples for each corresponding day. We compare two different frequencies: monthly and yearly. The second one showed the smallest p-value, in particular less than 0.05. FOr that reason, we will use 365 in the seasonality.

```
##
## Kruskal-Wallis rank sum test
##
## data: o3_train and g
## Kruskal-Wallis chi-squared = 32.983, df = 30, p-value = 0.3233
##
## Kruskal-Wallis rank sum test
##
## data: o3_train and g
## Kruskal-Wallis chi-squared = 2122.9, df = 364, p-value < 2.2e-16</pre>
```

Additive model

First we analyse the MAE.

[1] 0.007963981

We also can fit the model using t.window and analyse the reminder of the method.

The ACF and the PACF of the reminder:

We see that there are a big spike when lag = 365. It seems not so good for a reminder. We could fit an ARMA model in this reminder yet.

Multiplicative model

First we analyse the MAE.

[1] 0.00795386

We also can fit the model using t.window and analyse the reminder of the method.

The ACF and the PACF of the reminder:

We see that there are a big spike when lag = 365. It seems not so good for a reminder. We could fit an ARMA model in this reminder yet. The same problem as before.

Regression

 ${\bf Holt\text{-}Winters}$

 $\mathbf{A}\mathbf{R}\mathbf{M}\mathbf{A}$

Models: case 2