

LEAD-FREE COMPATI-

BLE COMPONENT

0023

ESR in $m\Omega$

SnPb termination option is not

RoHS compliant.

Tantalum Ultra Low ESR Capacitor

FEATURES

- Improved reliability 0.5%/1khrs (twice better than standard)
- DCL reduced by 25% to 0.0075 CV
- Robust against higher thermo-mechanical stresses during assembly
- Multi-anode construction
- Super low ESR
- CV range 4.7-1500µF / 2.5-50V
- "Mirror" construction used with D case capacitors reduces ESL to half
- · Automotive, industrial and other higher end applications

APPLICATIONS

• Automotive, Avionics and Industrial high power DC/DC convertors

MULTIANODE

MULTIANODE TRM D LOW SELF INDUCTANCE CONSTRUCTION "MIRROR" DESIGN

MARKING

D, E, U CASE

Rated Voltage Code CASE DIMENSIONS: millimeters (inches)

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W₁±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
D	2917	7343-31	7.30 (0.287)	4.30 (0.169)	2.90 (0.114)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
E	2917	7343-43	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
U	2924	7361-43	7.30 (0.287)	6.10 (0.240)	4.10 (0.162)	3.10 (0.120)	1.30 (0.051)	4.40 (0.173)

W₁ dimension applies to the termination width for A dimensional area only

HOW TO ORDER E

TRM

108

Tolerance

K=±10% M=±20%

004

002 = 2.5 Vdc004 = 4 Vdc006 = 6.3 Vdc

010 = 10 Vdc012 = 12 Vdc016 = 16 Vdc020 = 20 Vdc025 = 25 Vdc

035 = 35 Vdc050 = 50 Vdc

Rated DC Voltage

Packaging R = Pure Tin 7" Reel S = Pure Tin 13" Reel H = Tin Lead 7" Reel

R

(Contact Manufacturer) K = Tin Lead 13" Reel (Contact Manufacturer)

H, K = Non RoHS

TECHNICAL SPECIFICATIONS

Technical Data:	All technical data relate to an ambient temperature of +25°C										
Capacitance Range:	4.7 μF to 1500 μF										
Capacitance Tolerance:		±10°	%; ±20%)							
Rated Voltage (V _R)	≤ +85°C:	2.5	4	6.3	10	12	16	20	25	35	50
Category Voltage (V _C)	≤ +125°C:	1.7	2.7	4	7	8	10	13	17	23	33
Surge Voltage (V _S)	≤ +85°C:	3.3	5.2	8	13	16	20	26	32	46	65
Surge Voltage (V _S)	≤ +125°C:	2.2	3.4	5	8	10	13	16	20	28	40
Temperature Range:		-55°	C to +12	25°C						•	
Poliobility:		0.50	- nor 100	n hours	at 95°C	\/ \with (100//00	rioc impo	danca		

Reliability: 0.5% per 1000 hours at 85°C, V_R with $0.1\Omega/V$ series impedance, 60% confidence level

Meets requirements of AEC-Q200

Tantalum Ultra Low ESR Capacitor

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capa	citance				F	Rated Voltage	DC (V _R) to 85°	С			
μF	Code	2.5V (e)	4V (G)	6.3V (J)	10V (A)	A) 12V (B) 16V (C)		20V (D)	25V (E)	35V (V)	50V (T)
4.7	475										D(200)
6.8	685										
10	106									D(120)	
15	156										
22	226									D(70)/E(60,100)	
33	336								D(65)	E(50,65)	
47	476						D(100)	D(55)	E(65)		
68	686										
100	107							E(35,45)			
150	157				D(45)		E(30,40)				
220	227				D(35)	E(35)	U(30,40)				
330	337		D(35)	D(35)	E(35)						
470	477		D(35)	E(30)	U(23,30)						
680	687		E(23)	U(18,23)							
1000	108	D(25)	E(23) U(18,23)								
1500	158	E(18) U(18,23)									

Released ratings, (ESR ratings in mOhms in parentheses)

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

Tantalum Ultra Low ESR Capacitor

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category	Category Temperature	DCL Max.	DF Max.	ESR Max.	Max. 100KHZ RMS C	Iz RMS Cu	rrent (A)	MSL
Part No.	Size	(μF)	(V)	(°C)	(V) Š	(°C)	WA)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	IVIOL
TDMD400*000#000F		1000	0.5	0.5		It @ 85°C	40.0		0.5	0.404	0.074	4.077	
TRMD108*002#0025	D	1000	2.5	85	1.7	125	18.8	8	25	3.194	2.874	1.277	3
TRME158*002#0018	E	1500	2.5	85	1.7	125	28.1	6	18	3.873	3.486	1.549	3
TRMU158*002#0018	U	1500	2.5	85	1.7	125	22.5	6	18	4.048	3.643	1.619	3
TRMU158*002#0023	U	1500	2.5	85	1.7	125	22.5	6	23	3.581	3.223	1.433	3
TDMD007*004#000E		000	1	0.5		t @ 85°C	0.0		0.5	0.000	0.400	1 000	0
TRMD337*004#0035	D	330 470	4	85 85	2.7	125	9.9	8	35 35	2.699	2.429	1.080	3
TRMD477*004#0035		680	· ·			125	14.1	8		2.699		1.080	3
TRME687*004#0023	E		4	85	2.7	125	20.4	6	23	3.426	3.084	1.370	3
TRME108*004#0023	E	1000		85	2.7	125	30	6	23	3.426	3.084	1.370	3
TRMU108*004#0018	U	1000	4	85	2.7	125	30	6	18	4.048	3.643	1.619	3
TRMU108*004#0023	U	1000	4	85	2.7	125	30	6	23	3.581	3.223	1.433	3
TDMD007*000#0005		000	0.0	٥٢		It @ 85°C	110		05	0.000	0.400	1 000	
TRMD337*006#0035	D	330	6.3	85	4	125	14.9	8	35	2.699	2.429	1.080	3
TRME477*006#0030	E	470	6.3	85	4	125	21.2	6	30	3.000	2.700	1.200	3
TRMU687*006#0018	U	680	6.3	85	4	125	30.6	6	18	4.048	3.643	1.619	3
TRMU687*006#0023	U	680	6.3	85	4	125	30.6	6	23	3.581	3.223	1.433	3
TDMD4.57*04.0 !!00.45		150	40	0.5	10 Vo	t @ 85°C	44.0		1	0.000	0.440	0.050	
TRMD157*010#0045	D	150	10	85	/	125	11.3	8	45	2.380	2.142	0.952	3
TRMD227*010#0035	D	220	10	85	7	125	16.5	8	35	2.699	2.429	1.080	3
TRME337*010#0035	E	330	10	85	7	125	24.8	6	35	2.777	2.500	1.111	3
TRMU477*010#0023	U	470	10	85	7	125	35.3	8	23	3.581	3.223	1.433	3
TRMU477*010#0030	U	470	10	85	7	125	35.3	8	30	3.136	2.822	1.254	3
TDME007*040#0005		000	40	0.5		t @ 85°C	10.0		1 05	0.777	0.500		0
TRME227*012#0035	E	220	12	85	8.4	125	19.8	6	35	2.777	2.500	1.111	3
TD1 17 17 0 10 10 10 10 10 10 10 10 10 10 10 10 1		1 47	10	0.5		t @ 85°C	F 0		100	1 507	1 107	0.000	
TRMD476*016#0100	D	47	16	85	10	125	5.6	8	100	1.597	1.437	0.639	3
TRME157*016#0030	E	150	16	85	10	125	18	6	30	3.000	2.700	1.200	3
TRME157*016#0040	E	150	16	85	10	125	18	6	40	2.598	2.338	1.039	3
TRMU227*016#0030	U	220	16	85	10	125	26.4	8	30	3.136	2.822	1.254	3
TRMU227*016#0040	U	220	16	85	10	125	26.4	8	40	2.716	2.444	1.086	3
TDMD 470+000 #00==		47	00	0.5		t @ 85°C	7.1			0.450	1.000	0.001	
TRMD476*020#0055	D	47	20	85	13	125	7.1	8	55	2.153	1.938	0.861	3
TRME107*020#0035	E	100	20	85	13	125	15	6	35	2.777	2.500	1.111	3
TRME107*020#0045	Е	100	20	85	13	125	15	6	45	2.449	2.205	0.980	3
TDMD000+00E #CCCE		00	0.5	0.5		t @ 85°C	0.0		05	1 001	4 700	0.700	0
TRMD336*025#0065	D	33	25	85	17	125	6.2	8	65	1.981	1.783	0.792	3
TRME476*025#0065	Е	47	25	85	17	125	8.8	6	65	2.038	1.834	0.815	3
TDMD400+005#0400		10	0.5	0.5		t @ 85°C	0.0		100	4 450	1 010	0.500	_
TRMD106*035#0120	D	10	35	85	23	125	2.6	8	120	1.458	1.312	0.583	3
TRMD226*035#0070	D	22	35	85	23	125	5.8	8	70	1.909	1.718	0.763	3
TRME226*035#0060	E	22	35	85	23	125	5.8	6	60	2.121	1.909	0.849	3
TRME226*035#0100	E	22	35	85	23	125	5.8	6	100	1.643	1.479	0.657	3
TRME336*035#0050	E	33	35	85	23	125	8.7	6	50	2.324	2.091	0.930	3
TRME336*035#0065	E	33	35	85	23	125	8.7	6	65	2.038	1.834	0.815	3
TOUGH AREA						t @ 85°C		-				0.4==	
TRMD475*050#0200	D	4.7	50	85	33	125	1.8	8	200	1.129	1.016	0.452	3

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.

The EIA & CECC standards for low ESR Solid Tantalum Capacitors allow an ESR movement to 1.25 times catalogue limit post mounting.

For typical weight and composition see page 273.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

Tantalum Ultra Low ESR Capacitor

QUALIFICATION TABLE

TEST		TRM prof	fessional multi	anode series (Tempe	rature i	ange -5	5°C to	+125°C)				
ILSI		Condition			Ch	aracteri	stics					
				Visual examination	no vi	sible da	mage					
		d voltage (Ur) at 85°C ar		DCL	initial limit							
Endurance		c) at 125°C for 2000 hou e of ≤0.1Ω/V. Stabilize at		ΔC/C	withi	n ±10%	of initial	value				
		urs before measuring.	Toom tomporatare	DF	initia	initial limit						
				Characteristics								
				Visual examination								
	Store at 12	25°C. no voltage applied	. for 2000 hours.	DCL	1.25	x initial	limit					
Storage Life	Stabilize a	t room temperature for 1		ΔC/C	within ±10% of initial value							
Storage Life Humidity Biased Humidity	before me	asuring.		DF	initia	limit						
				ESR	1.25	x initial	limit					
Storage Life Humidity Storage Life Humidity Storage Life Humidity Storage Life Storage Life												
Biased	Store at 6	65°C and 95% relative h	numidity for 500	DCL								
Humidity				ΔC/C	within ±10% of initial value							
Storage Life Humidity Biased Humidity Temperature Stability Surge Voltage Mechanical Shock				DF	1111							
				Visual examination no visible damage								
				Visual examination	no visible damage							
	Apply rate	ed voltage (Ur) at 85°C,	85% relative	DCL	ŭ							
				ΔC/C	within ±10% of initial value							
numicity			Tiodis before	DF	1.2 x initial limit							
	,			ESR	1.25 x initial limit							
	Step	Temperature°C	Duration(min)					+85°C	+125°C	+20°		
				DCI	11 *	n/a	II *	10 x II *		11 *		
-										<u> </u>		
Stability					10.0							
					+ ·-							
	6	+20	15	ESR	1.25 x IL*	2.5 x IL*	1.25 x IL*	1.25 x IL*	1.25 x IL*	1.25 x l		
				Visual examination	no visible damage							
Surge		x category voltage (U		DCL	initial limit							
Humidity Biased Humidity Biased Humidity Step Temperature and measuring.	5 min 30	sec discharge) through		ΔC/C	within ±5% of initial value							
	e resistance of 10000		DF	initial limit								
				ESR	1.25 x initial limit							
				Visual examination	no visible damage							
Moohonical												
	MIL-STD	-202, Method 213, Co	ndition F									
SHOCK		,										
				_	_							
							9					
Vibration	MII -STD	-202, Method 204, Co	ndition D				f initial v	value				
	1,1112 010	202, 111011100 204, 00					v	2.00				
			•	ESR			imit					

*Initial Limit

Tantalum Ultra Low ESR Capacitor

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

Five Capacitor Construction Styles

SERIES LINE UP: CONVENTIONAL SMD MnO₂

