Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

ИІТМО

Исследование методов планирования движения робототехнических систем на основе геометрического подхода

Магазенков Егор Николаевич

Научный руководитель: Ведяков А. А., доцент, к.т.н.

Санкт-Петербург, 10 июня 2025 г.

Цель и задачи

Цель

Определение состояния области геометрического управления в решении задач планирования движения, а также применимости геометрических методов в ряде соответствующих прикладных задач

Задачи

- Провести аналитический обзор литературных источников
- Рассмотреть прикладные задачи для робототехнических систем, которые требуют планирования движения в среде с препятствиями.
- Описать методы и эксперименты для анализа работы методов в выбранных задачах
- Провести сравнительные эксперименты для методов согласно методике
- Сформулировать выводы об особенностях применения, предоставить методические рекомендации.

Постановка задачи

Найти политику движения $\pi(\sigma,\dot{\sigma}),\ \sigma\in\mathcal{Q}$, дающую путь в конфигурационном пространстве из начальной точки в целевую, обходя препятствия, лежащие в операционном пространстве

Путь $lpha:[0,+\infty) o \mathcal Q$ в конфигурационном пространстве.

Путь $\gamma = f_{\it kin} \circ \alpha$ в операционном пространстве.

Методы планирования движения

(b) Манипуляторная задача ²

(c) Движение машины ³

¹Maaji, S. UAV Path Planning for Area Coverage and Energy Consumption in Oil and Gas Exploration Environment

²MIT Computer Science & Artificial Intelligence Lab

³Лаборатория интеллектуального транспорта, МФТИ

Методы планирования движения

(a) Полет квадрокоптера $\mathbb{R}^n o \mathrm{SE}(3)$

(b) Манипуляторная задача 2 \mathbb{T}^7 (или $\mathbb{R}^7)$ $ightarrow \mathrm{SE}(3)$

(c) Движение машины 3 $\mathbb{R}^n o Surface$ (или \mathbb{R}^3)

¹Maaji, S. UAV Path Planning for Area Coverage and Energy Consumption in Oil and Gas Exploration Environment

²MIT Computer Science & Artificial Intelligence Lab

³Лаборатория интеллектуального транспорта, МФТИ

Методы планирования движения

(a) Полет квадрокоптера $\mathbb{R}^n o \mathrm{SE}(3)$

(b) Манипуляторная задача 2 \mathbb{T}^7 (или $\mathbb{R}^7)$ $ightarrow \mathrm{SE}(3)$

(c) Движение машины 3 $\mathbb{R}^n o Surface$ (или \mathbb{R}^3)

Пространства представляют из себя многообразия

¹Maaji, S. UAV Path Planning for Area Coverage and Energy Consumption in Oil and Gas Exploration Environment

²MIT Computer Science & Artificial Intelligence Lab

³Лаборатория интеллектуального транспорта, МФТИ

Основные идеи

1. Искривление пространства с помощью Римановой метрики около препятствий

Основные идеи

- 1. Искривление пространства с помощью Римановой метрики около препятствий
- 2. Динамическая система на многообразии для кривой σ под действием результирующей силы ${\mathcal F}$

Основные идеи

- 1. Искривление пространства с помощью Римановой метрики около препятствий
- 2. Динамическая система на многообразии для кривой σ под действием результирующей силы $\mathcal F$

$$\begin{cases} \widehat{\nabla_{\dot{\sigma}}} \dot{\hat{\sigma}} = \mathcal{F}, \\ \dot{\sigma}(0) = \underbrace{(p_0, v_0)}, \end{cases} \implies \ddot{\sigma}^k + \underbrace{\Gamma^k_{ij}}_{\text{символ } \text{Кристоффеля}} \dot{\sigma}^i \dot{\sigma}^j = \mathcal{F}^k \quad \forall k = 1 \dots \dim(W),$$

Основные идеи

- 1. Искривление пространства с помощью Римановой метрики около препятствий
- 2. Динамическая система на многообразии для кривой σ под действием результирующей силы ${\mathcal F}$

ускорение вдоль кривой
$$\begin{cases} \widehat{
abla}_{\dot{\sigma}}\dot{\hat{\sigma}}=\mathcal{F}, \\ \dot{\sigma}(0)=\underbrace{(p_0,v_0)}, \end{cases} \implies \ddot{\sigma}^k+\underbrace{\Gamma^k_{ij}}_{\text{символ Кристоффеля}}\dot{\sigma}^i\dot{\sigma}^j=\mathcal{F}^k \quad \forall k=1\ldots\dim(W),$$

3. Использование пулбека f^* для возврата в конфигурационное пространство

Основные идеи

- 1. Искривление пространства с помощью Римановой метрики около препятствий
- 2. Динамическая система на многообразии для кривой σ под действием результирующей силы $\mathcal F$

$$\begin{cases} \overbrace{f^*\nabla_{\dot{\sigma}}\gamma} = f^*\mathcal{F}, \\ \gamma = f^*df(\dot{\sigma}) \\ \dot{\sigma}(0) = (p_0, v_0), \end{cases} \implies \ddot{\gamma}^k + \underbrace{f^*\Gamma^k_{ij}}_{ij} \dot{\gamma}^i \dot{\gamma}^j = f^*\mathcal{F}^k \quad \forall k = 1 \dots \dim(W),$$

3. Использование пулбека f^{st} для возврата в конфигурационное пространство

Pullback bundle dynamical systems ¹ (PBDS)

• Метрика зависит только от координаты

Riemannian motion policies² (RMPFlow)

• Метрика может зависеть от скорости

¹Bylard, A. Composable Geometric Motion Policies using Multi-Task Pullback Bundle Dynamical Systems. 2021 IEEE International Conference on Robotics and Automation (ICRA)

²Cheng, C.-A. RMPflow: A Geometric Framework for Generation of Multitask Motion Policies. 2021 IEEE Transactions on Automation Science and Engineering

¹Bylard, A. Composable Geometric Motion Policies using Multi-Task Pullback Bundle Dynamical Systems. 2021 IEEE International Conference on Robotics and Automation (ICRA)

²Cheng, C.-A. RMPflow: A Geometric Framework for Generation of Multitask Motion Policies. 2021 IEEE Transactions on Automation Science and Engineering

Эксперименты

Пути, полученные RMPFlow при движении по сфере

Путь, полученный PBDS при движении манипулятора

Результаты

Свойства методов

Свойство	PBDS	RMPFlow	
Достижимость	оба метода сходятся в точку, заданную потенциальным		
	полем в задаче аттрактора		
Устойчивость путей	оба метода при одинаковых по направлению начальных		
	скоростях сохраняются одинаковый путь		
Геометрическая	не меняет путь при смене	меняет путь при смене карт	
устойчивость	карт		

(а) Устойчивость путей

(b) RMPFlow: разные карты

(c) PBDS: разные карты 8/11

Результаты

Свойства методов

 Достижимость: оба метода сойдутся в точку, заданную потенциальным полем в задаче аттрактора, при выполнении условий:

PBDS: дифференциал произведения отображений задания $d\left(\Pi_{i=1}^k f_i\right)$ инъективен, выбранные псевдометрики ω_i положительно полуопределены

RMPFlow: матрица инерции M с учетом кривизны несингулярна

- Устойчивость путей: методы при одинаковых по направлению скоростях сохраняют путь
- Геометрическая устойчивость: PBDS не меняет путь при смене карт, RMPFlow меняет

(а) Устойчивость путей

(b) RMPFlow: разные карты

(c) PBDS: разные карты 8/11

Результаты

Качественные показатели (20 экспериментов)

• Среднее время симуляции в 2-4 раза меньше времени вычислений

Метод	Время симуляции, с	Время вычисления, с
PBDS	9.78	21.49
RMPFlow	9.91	24.77

• Изменение расстояние до препятствий за счет выбора метрики

Метрика	Метод	Минимальное
		расстояние до
		препятствий, м
$g = \exp\left(\frac{0.1}{v^2}\right)$	PBDS	0.011
$g = \exp\left(\frac{1}{x^2}\right)$	RMPFlow	0.010
$\sigma = \exp(1)$	PBDS	0.019
$g = \exp\left(\frac{1}{x^2}\right)$	RMPFlow	0.023
$g = \exp\left(\frac{10}{x^2}\right)$	PBDS	0.040
$g = \exp\left(\frac{1}{x^2}\right)$	RMPFlow	0.041

Выводы и методические рекомендации

- Явное решение задач оптимизации \implies возможность real-time режима и планирования на горизонте.
- Ограничения на сочленения: репараметризация пути для достижения реализуемой динамики.
- Можно выбрать любые удобные карты в PBDS, рекомендуется выбор глобальной (или близкой к глобальной) карты для RMPFlow.
- Эмпирический подбор параметра метрики для обхода препятствий, не блокирующего проход робота.
- Учитывание тела робота при обходе препятствий.

Будущая работа

- Параллелизация вычислений
- Аппробация метода на реальной робототехнической системе
- Финслерова метрика
- Контактные задачи

Приложение 1/2

$$\ddot{q} = \mathrm{argmin}_{\ddot{q} \in D} \|Z(\ddot{q}) - S((q, \dot{q}))\|^2,$$
 где $D \subset TTQ$.

Приложение 2/2

где $\Xi_{ki} = Jf_{li}\Gamma^k_{lk}Jf_{hr}\dot{g}^r$

PBDS

$$\ddot{q} = \mathop{\mathrm{argmin}}_{\ddot{q} \in \mathcal{D}} \|Jf\ddot{q} + \dot{J}f\dot{q} - \dot{\gamma}(0)\|_{\omega(f)}^{2},$$
где $\dot{\gamma}(0) = g^{kj}(f)F^{j} - \dot{q}^{l}Jf_{jh}\dot{q}^{h}Jf_{rl}\Gamma_{rj}^{k}.$
 $\ddot{q} = \left(Jf^{T}\omega Jf\right)^{\dagger} \left(Jf^{T}\omega \left(g^{-1}F - (\dot{J}f - \Xi)\dot{q}\right)\right),$

RMPFlow

$$\ddot{q} = \operatorname{argmin}_{\ddot{q} \in D} \|Jf\ddot{q} + \dot{J}f\dot{q} - M^{\dagger}F\|_{M}^{2}.$$
 $\ddot{q} = \left(Jf^{T}MJf\right)^{\dagger} \left(Jf^{T}M\left(M^{\dagger}(F - \xi_{G}) - \dot{J}f\dot{q}\right)\right),$ где ξ_{G} — отвечающая за кривизну компонента.