Лабораторная работа 2

Интерполяция и среднеквадратичное приближение

- **1.** Создать таблицу значений функции f(x), разбив отрезок [0,6] на n равных частей точками x_i ($i=\overline{0,n}$). Для полученной таблично заданной в равноотстоящих узлах функции f(x), выполнить следующие действия при n=6 и n=10:
 - а) построить интерполяционный многочлен Лагранжа $L_n(x)$, проиллюстрировать графически (изобразить точки $(x_i, f(x_i))$ и графики функций f(x) и $L_n(x)$ на одном чертеже);
 - **б)** создать таблицу конечных разностей функции f(x) по точкам $(x_i, f(x_i))$, $i = \overline{0,n}$;
 - **в)** построить второй интерполяционный многочлен Ньютона $P_n(x)$, проиллюстрировать графически;
 - г) построить интерполяционный многочлен Ньютона $Np_n(x)$ с помощью функции **InterpolatingPolynomial** пакета **Mathematica**, проиллюстрировать графически;
 - д) вычислить значения функции f(x) и всех построенных интерполяционных многочленов $L_n(x)$, $P_n(x)$ и $Np_n(x)$ в точке x=2,4316 ;
 - е) построить график погрешности интерполирования многочленом Ньютона $R_n(x) = |f(x) Np_n(x)|$ на отрезке [0,6], найти максимум погрешности $R_n(x)$ на отрезке [0,6] с помощью функции **FindMaximum** пакета **Mathematica**;
 - **ж**) исследовать зависимость погрешности интерполирования $R_n(x)$ от числа узлов интерполяции (степени многочлена n).

1.1.
$$f(x) = 5 \exp\left(-\frac{1}{18}x^2 + \frac{1}{3}x - \frac{1}{2}\right) - 2\sin\sqrt{x}$$
.

1.2.
$$f(x) = \frac{3x + \pi}{\sqrt{1 + x^2 + \sqrt{(1 + x^2)^3}}}$$
.

1.3.
$$f(x) = \sqrt{x^3 + 4} \cdot \cos\left(\frac{x}{\sqrt{17}} + \frac{1}{21}\right)$$
.

1.4.
$$f(x) = \frac{4x^2 - 5x + 1}{\sqrt{2 + x^2 + \sqrt{(2 + x^2)^5}}}$$
.

1.5.
$$f(x) = \sqrt{3} \exp\left(-\frac{1}{22}x^3 + \frac{1}{2}x - \frac{1}{4}\right)$$
.

1.6.
$$f(x) = \exp\left(x - \frac{x^2}{4}\right) \cdot \text{th}\left(\frac{x^3}{11} + \frac{1}{3}\right)$$
.

1.7.
$$f(x) = \frac{2\sqrt{21} \cdot \sin(3x^2/28) + \sqrt[3]{3}}{\sqrt{2 + x^2 + \sqrt{(4 + x^2)^3}}}.$$

1.8.
$$f(x) = \exp\left(2x - \frac{2x^2}{7}\right) \cdot \arctan\left(\frac{3x^5}{14} + \frac{5}{6}\right)$$
.

1.9.
$$f(x) = 3 + \left(\frac{2}{7}x - \cosh\frac{3x}{13}\right) \cdot \ln(x^2 + 2x + 3)$$
.

1.10.
$$f(x) = \frac{\sinh\sqrt{x^2 + x + 5} + \pi}{\sqrt{3x^8 + 11x^4 + 33}}$$
.

1.11.
$$f(x) = 4\exp\left(-\frac{2}{7}x^2 - \frac{4}{9}x + \frac{1}{13}\right) + 7\cos\sqrt{4x+1}$$
.

1.12.
$$f(x) = \frac{7x + 12\sin x}{\sqrt{\pi + x^2 + \sqrt[3]{(1 + x^2)^4}}}$$
.

1.13.
$$f(x) = \sqrt[5]{x^6 + 4x^2 + 1} \cdot \sin\left(\frac{2x}{\sqrt{31}} + \frac{1}{7}\sqrt{x+5} + \frac{1}{18}\right)$$
.

1.14.
$$f(x) = (x + \sqrt{\pi + 1}) \cdot \exp\left(-\frac{4}{39}\sqrt{x^5} + \frac{5}{9}x + \frac{1}{4}\right)$$
.

1.15.
$$f(x) = \left(\frac{5}{11}x + \cos\frac{3x}{2} - \sqrt{x} \operatorname{sh} \frac{x}{6}\right) \cdot \log_2(x^2 + 4x + 5)$$
.

1.16.
$$f(x) = \exp\left(3x - \frac{x^2}{6}\right) \cdot \operatorname{arccrc}\left(\frac{2x^7}{35} + 1\right)$$
.

- **2.** Создать таблицу значений функции f(x) (1.1-1.16), разбив отрезок [0,6] на n частей неравноотстоящими точками x_i вида $x_i = \frac{a+b}{2} + \frac{b-a}{2} \cdot t_i$, где t_i корни многочлена Чебышёва $T_{n+1}(t)$ $(i=\overline{0,n})$. Для полученной таблично заданной функции f(x), выполнить следующие действия при n=6 и n=10:
 - а) создать таблицу разделенных разностей функции f(x) по точкам $(x_i, f(x_i)), i = \overline{0, n};$
 - **б)** построить интерполяционный многочлен Ньютона $Pnr_n(x)$ для неравноотстоящих узлов, проиллюстрировать графически (изобразить точки $(x_i, f(x_i))$ и графики функций f(x) и $Pnr_n(x)$ на одном чертеже);
 - в) построить интерполирующую функцию $Intf_n(x)$ с помощью функции **Interpolation** пакета **Mathematica**, проиллюстрировать графически;
 - г) вычислить значения функции f(x) и построенных интерполяционных многочленов $Pnr_n(x)$ и $Intf_n(x)$ в точке x = 2,4316;
 - д) найти максимумы абсолютных погрешностей интерполирования функции f(x) многочленом Ньютона $Pnr_n(x)$ и функцией $Intf_n(x)$ на отрезке [0, 6] с помощью функции **FindMaximum** пакета **Mathematica**.
- **3.** Сравнить результаты заданий 1 и 2 для равноотстоящих и неравноотстоящих узлов и сделать выводы о зависимость погрешности интерполирования от числа узлов и их расположения на отрезке.
- **4.** Используя таблицу значений функции f(x) в равноотстоящих точках отрезка [0,6], полученной в задании 1 при n=10, выполнить следующие действия:
 - а) построить интерполяционный кубический сплайн дефекта 1 $S_3(x)$ для функции f(x), проиллюстрировать графически (изобразить точки $(x_i, f(x_i))$ и графики функций f(x) и $S_3(x)$ на одном чертеже);
 - **б)** выполнить интерполяцию сплайном Sf(x) с помощью функции **Interpolation**[data,**Method->"Spline"**], проиллюстрировать графически;
 - **в)** построить интерполяционный кубический сплайн Spl с помощью функции **SplineFit**[data, **Cubic**] (предварительно загрузить пакет сплайнитерполяции командой **Needs**["**Splines**"]), проиллюстрировать

графически (для построения графика сплайна Spl использовать функцию **ParametricPlot**);

- г) вычислить значения функции f(x) и построенных интерполяционных сплайнов $S_3(x)$, Sf(x) и Spl в точке x = 2,4316.
- **5.** Используя таблицу значений функции f(x) в равноотстоящих точках отрезка [0,6], полученной в задании 1 при n=10, выполнить следующие действия:
 - **а)** аппроксимировать с помощью метода наименьших квадратов функцию f(x) многочленом первой степени $Q_1(x)$, проиллюстрировать графически (изобразить точки $(x_i, f(x_i))$ и график функции $Q_1(x)$ на одном чертеже);
 - **б)** аппроксимировать с помощью метода наименьших квадратов функцию f(x) многочленом второй степени $Q_2(x)$, проиллюстрировать графически;
 - **в)** найти многочлены наилучшего среднеквадратичного приближения третьей и четвертой степеней ($Q_3(x)$ и $Q_4(x)$) с помощью функции **Fit** пакета **Mathematica**, проиллюстрировать графически;
 - г) вычислить значения функции f(x) и построенных многочленов $Q_1(x)$, $Q_2(x)$, $Q_3(x)$ и $Q_4(x)$ в точке x=2,4316;
 - д) сравнить результаты, полученные в пунктах а, б и в, изобразив на одном чертеже точки $(x_i, f(x_i))$ и графики функций $Q_1(x)$, $Q_2(x)$, $Q_3(x)$ и $Q_4(x)$

•