Hul	benæder	Variaci	ional:						
* E R	, x	€ X € Z	m >	n					
En(oc	ler: una	Trans-	ución	los Late	dato	s de 90 (-	entru ZIX)	.da	X
						s Z e1 e			J de
una	con					acio la			gener la
	nales	ue el	Prior	ρ(૨):				
V O O									
	ume (una c	distri bu	(101)	NOIM	a es	landar		
	ume (una (distri bu			al es.			

$$\begin{array}{c} \text{Photo} \quad \text{(eemplatamos)} \quad \text{la} \quad \text{distribuction} \quad \text{gaussiana} \; . \\ \\ \text{DKL} = \underbrace{\mathbb{E}_{p} \left\{ \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \right) \exp \left(-\frac{(2i-4i(x)^{2})}{2\sigma_{i}^{2}(x)} \right) \right\} - }_{2\sigma_{i}^{2}(x)} \\ \\ \text{Ep} \left\{ \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \right) \exp \left(-\frac{(2i-8i(x)^{2})}{2\sigma_{i}^{2}(x)} \right) \right\} \\ \\ \text{Por propredad} \; . \\ \\ \text{DKL} = \underbrace{\mathbb{E}_{p} \left\{ \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \right) + \log \exp \left(-\frac{(2i-4i(x)^{2})}{2\sigma_{i}^{2}(x)} \right) \right\} }_{N} \\ \\ - \log \left(\frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \right) + \log \exp \left(-\frac{(2i-8i(x)^{2})}{2\sigma_{i}^{2}(x)} \right) \right\} \\ \\ \text{DKL} = \underbrace{\mathbb{E}_{p} \left\{ \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \right) + \left(\frac{(2i-8i(x)^{2})}{2\sigma_{i}^{2}(x)} \right) \right\} }_{2\sigma_{i}^{2}(x)} \\ \\ \text{DKL} = \underbrace{\mathbb{E}_{p} \left\{ \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \right) + \left(\frac{(2i-8i(x)^{2})}{2\sigma_{i}^{2}(x)} \right) \right\} }_{2\sigma_{i}^{2}(x)} \\ \\ \text{DKL} = \underbrace{\mathbb{E}_{p} \left\{ \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \right) + \left(\frac{(2i-8i(x)^{2})}{2\sigma_{i}^{2}(x)} \right) \right\} }_{2\sigma_{i}^{2}(x)} \\ \\ \text{DKL} = \underbrace{\mathbb{E}_{p} \left\{ \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \right) + \left(\frac{(2i-4i(x)^{2})}{2\sigma_{i}^{2}(x)} \right) \right\} }_{2\sigma_{i}^{2}(x)} \\ \\ \text{DKL} = \underbrace{\mathbb{E}_{p} \left\{ \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \right) + \left(\frac{(2i-4i(x)^{2})}{2\sigma_{i}^{2}(x)} \right) \right\} }_{2\sigma_{i}^{2}(x)} \\ \\ \text{DKL} = \underbrace{\mathbb{E}_{p} \left\{ \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \right) + \left(\frac{(2i-4i(x)^{2})}{2\sigma_{i}^{2}(x)} \right) \right\} }_{2\sigma_{i}^{2}(x)} \\ \\ \text{DKL} = \underbrace{\mathbb{E}_{p} \left\{ \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \right) + \left(\frac{(2i-4i(x)^{2})}{2\sigma_{i}^{2}(x)} \right) \right\} }_{2\sigma_{i}^{2}(x)} \\ \\ \text{DKL} = \underbrace{\mathbb{E}_{p} \left\{ \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \right) + \left(\frac{(2i-4i(x)^{2})}{2\sigma_{i}^{2}(x)} \right) \right\} }_{2\sigma_{i}^{2}(x)} \\ \\ \text{DKL} = \underbrace{\mathbb{E}_{p} \left\{ \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \right) + \left(\frac{(2i-4i(x)^{2})}{2\sigma_{i}^{2}(x)} \right) \right\} }_{2\sigma_{i}^{2}(x)} \\ \\ \\ \text{DKL} = \underbrace{\mathbb{E}_{p} \left\{ \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \right) + \left(\frac{(2i-4i(x)^{2})}{2\sigma_{i}^{2}(x)} \right) \right\} }_{2\sigma_{i}^{2}(x)} \\ \\ \\ = \underbrace{\mathbb{E}_{p} \left\{ \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \right) + \left(\frac{(2i-4i(x)^{2})}{2\sigma_{i}^{2}(x)} \right) \right\} }_{2\sigma_{i}^{2}(x)} \\ \\ \\ \\ = \underbrace{\mathbb{E}_{p} \left\{ \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \right\} }_{2\sigma_{i}$$

$$DKI = \frac{1}{2} \mathbb{E}_{f} \left\{ \frac{Z}{i-1} \log \left(\frac{2\pi g_{i}^{2}}{2\pi \sigma_{i}^{2}} \right) - \left(\frac{(ii - 4i(x))^{2}}{\sigma_{i}^{2}(x)} \right) \right\}$$

$$+ \frac{(ii - \beta_{i}(x))}{g_{i}^{2}(x)}$$

$$DKI = \frac{1}{2} \mathbb{E}_{f} \left\{ \frac{Z}{i-1} \log \left(\frac{g_{i}^{2}}{\sigma_{i}^{2}} \right) - \left(\frac{(ii - 4i(x))^{2}}{\sigma_{i}^{2}(x)} \right) \right\}$$

$$+ \frac{(ii - \beta_{i}(x))}{g_{i}^{2}(x)}$$

$$DKI = \frac{1}{2} \mathbb{E}_{f} \left\{ \frac{Z}{i-1} \log \left(\frac{g_{i}^{2}}{\sigma_{i}^{2}(x)} \right) + \frac{(ii - \beta_{i}(x))^{2}}{g_{i}^{2}(x)} \right\}$$

$$- \frac{2i - 4i(x)}{\sigma_{i}^{2}(x)}$$

$$DKI = \frac{1}{2} \sum_{i=1}^{N} \log \mathbb{E}_{f} \left(\frac{g_{i}(x)}{\sigma_{i}^{2}(x)} \right) + \mathbb{E}_{f} \left(\frac{2i - 4i(x)}{g_{i}^{2}(x)} \right)$$

$$\mathbb{E}_{f} \left\{ \frac{(2i - 4i(x))^{2}}{\sigma_{i}^{2}(x)} \right\}$$

Ahora:
$$\frac{1}{2} \sum_{i=1}^{\infty} log \left(\frac{g_i(x)}{\sigma(ix)} \right) + \frac{lp[z_i - g_i(x)]^2}{g_i(x)} - \frac{l}{g_i(x)}$$

$$\frac{1}{2} \sum_{i=1}^{\infty} log \left(\frac{g_i(x)}{\sigma(ix)} \right) + \frac{lp[z_i - g_i(x)]^2}{g_i(x)} - \frac{l}{g_i(x)}$$

$$\frac{1}{2} \sum_{i=1}^{\infty} log \left(\frac{g_i(x)}{g_i(x)} \right) + \frac{l}{g_i(x)^2} + \frac{ll_i(x) - g_i(x)}{g_i(x)^2} - \frac{l}{g_i(x)^2}$$

$$\frac{1}{2} \sum_{i=1}^{\infty} log \left(\frac{g_i(x)}{\sigma(ix)} \right) + \frac{lp[z_i - g_i(x)]^2}{g_i(x)^2} + \frac{ll_i(x) - g_i(x)}{g_i(x)^2} - \frac{l}{g_i(x)^2}$$

$$\frac{1}{2} \sum_{i=1}^{\infty} log \left(\frac{g_i(x)}{\sigma(ix)} \right) + \frac{lp[z_i - g_i(x)]^2}{g_i(x)^2} + \frac{ll_i(x) - g_i(x)}{g_i(x)^2} - \frac{l}{g_i(x)^2}$$

$$\frac{1}{2} \sum_{i=1}^{\infty} log \left(\frac{g_i(x)}{\sigma(ix)} \right) + \frac{lp[z_i - g_i(x)]^2}{g_i(x)^2} + \frac{ll_i(x) - g_i(x)}{g_i(x)^2} - \frac{l}{g_i(x)^2}$$