

Problem R-12D. Interpret the partial spectrum of the triene shown below, and assign stereochemistry to two of the double bonds. The complete spectrum is on the next page.

$$\begin{array}{c} O \\ H_{A} \\ H_{C} \\ \end{array}$$

$$\begin{array}{c} H_{B} \\ H_{C} \\ \end{array}$$

$$\begin{array}{c} H_{C} \\ H_{D} \\ \end{array}$$

(a) On the expansion reproduced below, mark clearly the assignment of the protons H_A to H_E . Draw a coupling tree for each one to show that you understand the line assignments. You may use first order analysis.

(b) Report the data below in the standard format (e.g., δ 5.31, dq, J = 8.2, 3.3 Hz)

 H_A

 H_D

 H_B ______ H_E

H_E

H_C

(c) What is the stereochemistry at the H_{A} - H_{B} double bond? Explain briefly.

(d) What is the stereochemistry at the ${\rm H}_{\rm D}$ - ${\rm H}_{\rm E}$ double bond? Explain briefly.

Problem R-12D. Interpret the partial spectrum of the triene shown below, and assign stereochemistry to two of the double bonds. The complete spectrum is on the next page.

$$\begin{array}{c} & & & \\ & &$$

(a) On the expansion reproduced below, mark clearly the assignment of the protons H_A to H_E . Draw a coupling tree for each one to show that you understand the line assignments. You may use first order analysis.

(b) Report the data below in the standard format (e.g., δ 5.31, dq, J = 8.2, 3.3 Hz)

- (c) What is the stereochemistry at the H_A H_B double bond? Explain briefly.
- 2 Double bond must be cis 11 Hz coupling too small for trans
 - (d) What is the stereochemistry at the $H_{\rm D}$ $H_{\rm E}$ double bond? Explain briefly.
- 2 Double bond must be trans 18 Hz coupling

5