84 KVADRATNI OSTATCI

Primjer 4.6. Neka je p > 5 prosti broj. Dokazati da postoje dva uzastopna prirodna broja koja su oba kvadratni ostatci te dva uzastopna prirodna broja koja su kvadratni neostatci modulo p.

Rješenje: Od brojeva 2, 5 i 10 barem jedan mora biti kvadratni ostatak modulo p. Zaista, ako je $(\frac{2}{p}) = -1$ i $(\frac{5}{p}) = -1$, onda je $(\frac{10}{p}) = (-1) \cdot (-1) = 1$. Ako je 2 kvadratni ostatak, onda su 1,2 uzastopni kvadratni ostatci; ako je 5 kvadratni ostatak, onda su 4,5 uzastopni kvadratni ostatci; ako je 10 kvadratni ostatak, onda su 9,10 uzastopni kvadratni ostatci. Za neostatke, pogledajmo brojeve 2 i 3. Ako su oba kvadratni neostatci, našli smo dva uzastopna neostatka. U protivnom među brojevima 1,2,3,4 imamo barem 3 kvadratna ostatka i najviše 1 neostatak. Ako među brojevima $5,6,\ldots,p-1$ nema uzastopnih neostataka, onda bi u skupu $\{1,2,\ldots,p-1\}$ bilo više ostataka nego neostataka, što je nemoguće prema Teoremu 4.1.

Primjer 4.7. Neka je n cijeli broj oblika 16k+12 te neka je $\{b_1, b_2, b_3, b_4\}$ skup cijelih brojeva sa svojstvom da je $b_i \cdot b_j + n$ kvadrat cijelog broja za sve $i \neq j$. Dokazati da su tada svi brojevi b_i parni.

Rješenje: Pretpostavimo da je b_1 neparan. Kvadrati pri dijeljenju sa 16 daju ostatke 0,1,4,9. Stoga je $b_ib_j\equiv 4,5,8,13\pmod{16}$. Ovo povlači da ako je neki od brojeva b_2,b_3,b_4 paran, onda je on djeljiv s 4, a također i da ne mogu dva od ovih brojeva biti djeljiva s 4. Zaključujemo da je među brojevima b_2,b_3,b_4 najviše jedan paran, tj. barem dva neparna. Dakle, možemo pretpostaviti da su b_1,b_2,b_3 neparni. Iz uvjeta $b_ib_j\equiv 5,13\pmod{16}$ imamo $b_ib_j\equiv 5\pmod{8}$, tj.

$$b_1b_2 \equiv 5 \pmod{8}, \quad b_1b_3 \equiv 5 \pmod{8}, \quad b_2b_3 \equiv 5 \pmod{8}.$$

Množenjem ovih triju kongruencija dobivamo $(b_1b_2b_3)^2 \equiv 5 \pmod 8$, što je kontradikcija, jer kvadrati pri dijeljenju s 8 daju ostatke 0, 1, 4.

Nije teško provjeriti da skup

$$\{2, 2k^2 - 4k - 4, 2k^2 + 2, 8k^2 - 8k + 6\}$$

ima svojstvo da mu je produkt svakih dvaju različitih elemenata uvećan za 16k+12 kvadrat nekog cijelog broja. U terminologiji iz Potpoglavlja 14.6, takvi skupovi se nazivaju D(16k+12)-četvorke. U skladu s prethodnim primjerom, vidimo da su svi elementi skupa parni.