TITLE TBD.

Bobby Xiong^{1,*}, Iegor Riepin¹, Tom Brown¹

¹Technische Universität Berlin, Department of Digital Transformation in Energy Systems, Germany *Presenting author: xiong@tu-berlin.de

Tags: resilience, infrastructure, energy system modelling, energy policy

43rd International Energy Workshop — relevant conference topics:

(1) Reaching net-zero emissions and climate neutrality • (2) Role of renewable energy in the energy transition • (3) Role of hydrogen, ammonia, e-fuels and e-methane in the energy transition • (4) Managing power system transitions — integration of variable renewable energy and power-to-X • (5) Sectoral pathways for the energy transition — transport, industry, and buildings • (6) Energy transition infrastructure — assessment of infrastructure to enable the energy transition, including electrical transmission, storage, EV charging, and hydrogen distribution, CCS and CDR • (12) Climate resilience of energy systems • (13) Utilisation of scenarios by governments

Summary

Summary

Introduction

In the research project RESILIENT¹, our team develops the first truly multi-vector energy infrastructure planning tool that can handle uncertain environments. We build upon the open-source, widely-used, multi-vector energy planning tool PyPSA-Eur², and improve its ability to optimise energy infrastructure in a resilient way.

Methodology

Methodology

Results (preliminary)

Results

Conclusion

${\bf Conclusion}$

 $^{^{1}}$ https://resilient-project.github.io/

²https://pypsa-eur.readthedocs.io/

References

References