Approach

Brute Force Technique

- 1. A method of accomplishing something primarily by means of strength, without the use of great skill, mechanical aids or thought. [quotations ▼] We lifted the car by brute force.
- 2. (computer science) A method of computation wherein the computer is let to try all permutations of a problem until one is found that provides a solution, in contrast to the implementation of a more intelligent algorithm.

We lifted the car by brute force.

Description

Chunnu has a collection of cards. Each card has a value assigned to it. He wants to check if there exist two cards N and M such that N is double the value of M (i.e N = 2 * M).

Print "Yes" without quotes, if a solution exists, else print "No" without quotes.

ullet The value of all the cards are stored in an array (arr) or length x .

Input

The first and the only line contains the value of all the cards

Output

Print "Yes" without quotes if the solution exists, else print "No" without quotes.

Sample Input 1 🖺	Sample Output 1
4 1 2 3 4	Yes
Sample Input 2 🖹	Sample Output 2
5	No

Print (res") without quotes, if a solution exists, else print "No" without quotes.

. The value of all the cards are stored in an array (arr) or length x .

Sample Input 1 🖺	Sample Output 1
1 2 3 4	Yes
Sample Input 2	Sample Output 2
5 5 0 9 7 20	No
	A 0 1 2 3 N = Y (vs)

A printe for we

NOTE

- 1. Brute Force Technique:
 - For some problems, using the brute force technique may lead to a LE frime Limit
 Exceeded) error, or some test cases may fail.
- 2. Don't Worry:
 - If this happens, don't worry—please proceed to the next question and continue.
- 3. Optimized Techniques:
 - In **later units**, you will learn about the **optimized techniques** that will help you avoid TLE errors.

Intersection of Array

Description

You are given 2 arrays of N integers. Your task is to write a program that finds the one integer which is common in both arrays.

Note: There is always one integer common in both arrays.

Input

Input Format

First line of input contains N

the contains N space separated integers making the first array

Third line contains N space separated integers making the second array

Constraints

N<1000

Output

Output Format

Output that one integer which is common in both arrays

Sample Input 1 🖺

3 4 5 7 9 2 5

Sample Output 1

5

You are given 2 arrays of N integers. Your task is to write a program that finds the one integer which is common in both arrays.

Note: There is always one integer common in both arrays.

Count such pairs

-4:19:27

Description

You are given an array A of N integers along with a target integer. Your task is to find out the number of pairs of integers present in the array whose sum is equal to the target value.

Input

Input Format:

First line contains 2 integers: N and the target respectively.

Second line contains N integers which are the elements of the array.

Constraints:

N<100

Output

Print one number which is number of such pairs.

Sample Input 1 🖺

5 9 3 0 6 2 7

Given an array A of N positive numbers. The task is to find the position where equilibrium first occurs in the array. An equilibrium position in an array is a position such that the sum of elements before it is equal to the sum of elements after it. The valid index range is from [1, n-2] because there should be at least one element on both sides.

Input

Input Format

First Line has T (Testcases) and then for every test case we have:

- . The first line contains an integer N denoting the size of the array.
- . Then in the following sequence are N space-separated values of the array A.

Constraints:

- 1 <= T <= 100
- 3 <= N <= 1000
- 1 <= Ai <= 10^8

Output

In a new line print the position at which the elements are at equilibrium if no equilibrium point exists print -1.

Sample Input 1 🖺

2 5 15 1 5 5 5 3 1 2 3

Sample Output 1

1 -1

Sample Input 1 🖺

2 5 15 1 5 5 5 3 1 2 3

Sample Output 1

Equilibrium Element

 $A \hookrightarrow 6 \qquad 3 \qquad 7 \qquad 2 \qquad 4 \qquad 9 \qquad 9$

for(In+1=1;1/2 n-2;1++){ CoffSum = 0 For (int) = 1-13 17 = 0;5--) { Cent sum += aljs Segntsum =0 for(intic= îti; l=Cn; l=Ch; l=Ch; < orghtsam +=a[12] of congression == Conscious) return ?;

ار

HMCY nomter/ Minytes On at 11.89