- 1. Montrer que g définit une bijection de]- ∞ ; -1[sur un intervalle J à préciser.
- 2. On note g^{-1} sa bijection réciproque.
- a) Calculer g(-2). Montrer que g^{-1} est dérivable en ln3.
- b) Calculer $(g^{-1})'(\ln 3)$.
- c) Représenter la courbe de g^{-1} dans le repère précédent.

Chapitre 4 : NOMBRES COMPLEXES SIMILITUDES DIRECTES

1.1. RESUME DU COURS

Dans ce chapitre (O, \vec{u}, \vec{v}) est un repère orthonormé orienté du plan.

1.1.1. Nombres complexes

Dans cette partie a, b, a', b' sont des nombres réels et z, z' des nombres complexes.

Forme algébrique

- Tout nombre de la forme a + ib où $i^2 = -1$ est appelé nombre complexe.
- ightharpoonup L'écriture z=a+ib est appelée forme algébrique du nombre complexe z.
 - ➤ a est la partie réelle de z et est notée Re(z);

 b est la partie imaginaire de z et est notée Im(z).

- > Tout nombre réel a est un nombre complexe.
- ightharpoonup Tout nombre complexe de la forme ib, est appelé imaginaire pur.

Egalité de deux nombres complexes

Soit deux nombres complexes z = a + ib et z' = a' + ib'. z = z' ssi a = a' et b = b'.

Calcul dans C

Dans l'ensemble des nombres complexes \mathbb{C} , les règles de calcul de l'addition et de la multiplication sont les mêmes que dans \mathbb{R} .

Remarque: Les nombres complexes de la forme a + ib avec $b \neq 0$ n'ont pas de signe et on ne peut pas dire que l'un est plus grand ou plus petit que l'autre.

Nombre complexe conjugué

- Le nombre complexe conjugué de z = a + ib, est $\bar{z} = a ib$.
- > Propriétés :
- $\overline{z+z'} = \overline{z} + \overline{z'}$; $\overline{zz'} = \overline{z} \cdot \overline{z'}$; $\overline{\overline{z}} = z$.
- $(\overline{z'}) = \overline{z}, (\overline{z'})^n = (\overline{z'})^n \text{ où } z' \neq 0 \text{ et } n \in \mathbb{Z}.$
- Si z est un réel alors $\bar{z} = z$.
- Si z est un imaginaire pur alors $\bar{z} = -z$.
- Si z = a + ib alors $z + \overline{z} = 2a$, $z \overline{z} = 2ib$ et $z\overline{z} = a^2 + b^2$.
- ➤ **Remarque :** Pour déterminer la forme algébrique d'un quotient, on multiplie le numérateur et le dénominateur du quotient par le nombre complexe conjugué du dénominateur.

Affixe d'un point ou d'un vecteur

A tout point A(a; b), on peut associer le nombre Complexe $z_A = a + ib$ et réciproquement.

 z_A est appelé affixe de A et A est appelé point image de z_A ; on note $A(z_A)$ et on lit A d'affixe z_A .

A tout vecteur $\vec{w}(a;b)$, on peut associer le nombre complexe $z_A = a + ib$ et réciproquement.

 z_A est appelé affixe de \vec{w} et \vec{w} est appelé vecteur image de z_A ; on note \vec{w} (z_A) et on lit \vec{w} d'affixe z_A .

- $ightharpoonup \operatorname{Si} A(z_A)$ et $B(z_B)$ alors \overrightarrow{AB} a pour affixe $z_{\overrightarrow{AB}} = z_B z_A$.
- ightharpoonup Si $G(z_G)$ est le barycentre de (A;a), (B;b) et (C;c) alors $z_G = \frac{1}{a+b+c}$ $(az_A+bz_B+cz_C)$ où z_A , z_B et z_C sont les affixes respectives des points A, B et C.
- Si $I(z_I)$ est le milieu de [AB], alors $z_I = \frac{z_A + z_B}{2}$ où z_A et z_B sont les affixes respectives des points A et B.

Module d'un nombre complexe

▶ Définition : Soit z = a + ib l'affixe d'un point M dans le repère (O, \vec{u}, \vec{v}) ;

le module de z est $|z| = OM = \sqrt{a^2 + b^2}$.

- > Propriétés :
- $|z| = \sqrt{z\bar{z}}; |zz'| = |z|.|z'|; |\bar{z}| = |z|.$
- |z| = 0 ssi z = 0.
- $|z| \ge 0$; $|z + z'| \le |z| + |z'|$.
- $\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|}$ et $\left|(z')^n\right| = |z'|^n$ où $z' \neq 0$ et $n \in \mathbb{Z}^*$.
- Si z est un réel alors le module de z est la valeur absolue de z.
 - Si z_A et z_B sont les affixes respectives des points A et B,

alors $|z_B - z_A| = AB$.

On s'appuie sur cette égalité pour interpréter graphiquement le module d'un nombre complexe.

Argument d'un nombre complexe non nul

➤ **Définition**: soit z un nombre complexe non nul et M(z) son point image dans le repère (O, \vec{u}, \vec{v}) . On appelle argument de z, une mesure en radians de l'angle $(\vec{u}, \overrightarrow{OM})$.

On note $\arg z = (\vec{u}, \overrightarrow{OM})$.

- ➤ **Propriétés** : Soit z et z' des nombres complexes non nuls et n un entier naturel non nul.
 - arg(zz') = argz + argz'; $arg(\frac{z}{z'}) = argz argz'$.
 - $\arg(\frac{1}{z}) = -\arg z$; $\arg \bar{z} = -\arg z$; $\arg z^n = \text{n.arg}z$.

> Autres propriétés :

Soit z_A , z_B , z_C les affixes respectives des points A, B, C dans le repère (O, \vec{u}, \vec{v}) .

Si $z_A \neq z_B$ et $z_A \neq z_C$ alors :

- $\operatorname{arg}(z_B z_A) = (\vec{u}; \overrightarrow{AB})$.
- arg $(\frac{z_C z_A}{z_B z_A}) = (\overrightarrow{AB}; \overrightarrow{AC})$.

On s'appuie sur l'une de ces égalités pour interpréter graphiquement l'argument d'un nombre complexe non nul.

ightharpoonup Si z = a + ib et $z \neq 0$, alors on peut déterminer θ un

argument de z à partir des égalités
$$\begin{cases} cos\theta = \frac{a}{|z|} \\ sin\theta = \frac{b}{|z|} \end{cases}.$$

Forme trigonométrique d'un nombre complexe non nul

Tout nombre complexe non nul z peut s'écrire sous la forme $z = r(cos\theta + isin\theta)$, où r est le module de z et θ un de ses arguments.

Cette écriture est appelée forme trigonométrique de z.

Pour obtenir la forme trigonométrique d'un complexe z = a + ib, on calcule son module et on détermine θ un de ses arguments ; ainsi $z = |z|(cos\theta + isin\theta)$.

Attention

- $z = r(\cos\theta + i\sin\theta)$ n'est une forme trigonométrique de z que si r > 0.
- $z = r(cos\theta isin\theta)$ ou $z = r(sin\theta + icos\theta)$ ne sont pas des formes trigonométriques de z.

<u>Remarque</u>: on peut aussi déterminer la forme trigonométrique d'un nombre complexe non nul z=a+ib en procédant comme suit :

$$z = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} + i \cdot \frac{b}{\sqrt{a^2 + b^2}} \right) = \sqrt{a^2 + b^2} (\cos\theta + \sin\theta),$$

$$\theta$$
 étant un réel qui vérifie
$$\begin{cases} cos\theta = \frac{a}{\sqrt{a^2 + b^2}} \\ sin\theta = \frac{b}{\sqrt{a^2 + b^2}} \end{cases}$$

Formule de Moivre : $\forall n \in \mathbb{Z}, \forall \theta \in \mathbb{R}, (\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$.

Forme exponentielle d'un nombre complexe non nul

> La forme trigonométrique d'un nombre complexe non nul est $z = r(\cos\theta + i\sin\theta)$ où r = |z| et $\theta = \arg z$. En posant $\cos\theta + i\sin\theta = e^{i\theta}$, on obtient $z = re^{i\theta}$.

Donc tout nombre complexe non nul peut s'écrire sous la forme

 $z = r.e^{i\theta}$ où r = |z| et $\theta = argz$;

cette écriture est appelée forme exponentielle du complexe z.

- Propriétés : $e^{i\theta}$. $e^{i\theta'} = e^{i(\theta+\theta')}$; $\frac{e^{i\theta}}{e^{i\theta'}} = e^{i(\theta-\theta')}$; $(e^{i\theta})^n = e^{in\theta}$, $\forall n \in \mathbb{Z}$.
- \triangleright Formules d'Euler : $\forall \theta \in \mathbb{R}$,

$$cos\theta = \frac{-e^{i\theta} + e^{-i\theta}}{2}$$
 ; $sin\theta = \frac{-e^{i\theta} - e^{-i\theta}}{2i}$.

Linéarisation – Opération inverse de la linéarisation

- ➤ Pour linéariser $cos^k x$ ou $sin^k x$, $k \in \mathbb{N}^*$ -{1}, on utilise les formules d'Euler et la formule du binôme de Newton.
- ➤ Pour écrire coskx ou sinkx, ($k \in \mathbb{N}^*$ -{1}) en fonction des puissances de cosx et sinx, on utilise la formule de Moivre et la formule du binôme de Newton.

Réel et imaginaire pur

Soit Z un nombre complexe

- > Propriété 1
 - * Z est un réel ssi Im(Z) = 0.
 - * Z est un imaginaire pur ssi Re(Z) = 0.
- > Propriété 2
 - * Z est un réel ssi $\overline{Z} = Z$.
 - * Z est un imaginaire pur ssi $\bar{Z} = -Z$.
- > Propriété 3
 - * Z est un réel ssi (Z = 0) ou (Z \neq 0 et argZ = 0 (π)).
 - *Z est un imaginaire pur ssi (Z = 0) ou

$$(Z \neq 0 \text{ et arg} Z = \frac{\pi}{2} (\pi)).$$

- Propriété 4
 - * Z est un réel strictement positif ssi $\arg Z = 0$ (2π).

- * Z est un réel strictement négatif ssi arg $Z = \pi (2\pi)$.
- $*Z = bi, b > 0 \text{ ssi arg} Z = \frac{\pi}{2} (2\pi).$
- * Z = bi, b < 0 ssi arg $Z = -\frac{\pi}{2}(2\pi)$.

Remarque : Dans le repère (O, \vec{u}, \vec{v})

- l'axe des abscisses (O, \vec{u}) est l'axe des réels.
- l'axe des ordonnées (O, \vec{v}) est l'axe des imaginaires purs.

Ensemble de points

Soit A et B deux points distincts et r un réel positif. L'ensemble des points M tels que :

- ➤ MA = MB est la médiatrice du segment [AB].
- \triangleright MA = r est le cercle de centre A et de rayon r.
- \triangleright $(\overrightarrow{MA}; \overrightarrow{MB}) = 0 (\pi)$ est la droite (AB) privée de A et B.
- $ightharpoonup (\overrightarrow{MA}; \overrightarrow{MB}) = 0 (2\pi)$ est la droite (AB) privée de [AB].
- \triangleright $(\overrightarrow{MA}; \overrightarrow{MB}) = \pi (2\pi)$ est le segment [AB] privé de A et B.
- $ightharpoonup (\overrightarrow{MA}; \overrightarrow{MB}) = \frac{\pi}{2} (\pi)$ est le cercle de diamètre [AB] privé des points A et B.
- $ightharpoonup (\overrightarrow{MA}; \overrightarrow{MB}) = \frac{\pi}{2} (2\pi)$ est l'un des demi-cercles de diamètre [AB] privé des points A et B.
- $ightharpoonup (\overrightarrow{MA}; \overrightarrow{MB}) = -\frac{\pi}{2} (2\pi)$ est l'un des demi-cercles de diamètre [AB] privé des points A et B.

Remarques : Soit a, b des nombres réel et r un réel positif.

- L'équation du cercle de centre I(a; b) et de rayon r est : $(x-a)^2 + (y-b)^2 = r^2$
- $x^2 + ax = (x + \frac{a}{2})^2 (\frac{a}{2})^2$; $x^2 ax = (x \frac{a}{2})^2 (\frac{a}{2})^2$.

Ces deux égalités nous permettront dans les exercices d'obtenir la forme ci-dessus de l'équation d'un cercle, afin d'indiquer son centre et son rayon.

Racines n-ièmes

- ➤ **Définition**: Soit c un complexe non nul et $n \in \mathbb{N}^*$ -{1}; On appelle racine n-ième de c, tout complexe z tel que $z^n = c$
- Théorème : Soit θ un réel et r un réel strictement positif. Les racines n-iemes du nombre complexe $re^{i\theta}$ sont les nombres complexes $z_k = \sqrt[n]{r} \cdot e^{i(\frac{\theta}{n} + \frac{2k\pi}{n})}$ où $k \in \{0; 1; \dots; n-1\}$.
- ➤ En particulier : Les racines n-ièmes de $1 (1 = 1.e^{i.0})$, appelées racines n-ièmes de l'unité sont les nombres complexes z_k = $e^{i\frac{2k\pi}{n}}$ où $k \in \{0; 1; ...; n-1\}$.

> Propriétés

- La somme des n racines n-ièmes d'un complexe est nulle
- Si M_0 , M_1 , ..., M_{n-1} sont les points images respectifs des racines n-ièmes z_0 , z_1 , ..., z_{n-1} d'un nombre complexe dans le repère (O, \vec{u}, \vec{v}) , alors ces points sont les sommets d'un polygone régulier à n côtés, inscrit dans le cercle de centre O et de rayon $\sqrt[n]{r}$.

Racine carrée d'un nombre complexe de la forme a + ib

Pour trouver les racines carrées d'un nombre complexe de la forme a + ib, on détermine les complexes z = x + iy tels que $z^2 = a + ib$; ce qui revient à résoudre le système suivant :

$$\begin{cases} x^{2} + y^{2} = \sqrt{a^{2} + b^{2}} \\ x^{2} - y^{2} = a \\ 2xy = b \end{cases}.$$

Remarque

Ces racines carrées sont au nombre de deux et l'une est l'opposée de l'autre.

Equations du second degré dans C

Soit l'équation (E): $az^2 + bz + c = 0$ (où a, b, et c sont des nombres complexes avec $a \neq 0$) et $\Delta = b^2 - 4ac$ le discriminant.

$$ightharpoonup$$
 Si $\Delta = 0$, alors (E) a une solution $x_0 = \frac{-b}{2a}$.

 $ightharpoonup ext{Si } \Delta \neq 0$, (E) a alors deux solutions distinctes $rac{-b-\delta}{2a}$ et $rac{-b+\delta}{2a}$, où δ est un nombre complexe dont le carré est égal à Δ , c'est-à-dire une racine carrée de Δ .

Remarque:

Soit k un réel strictement positif, α et β des nombres réels.

- Si $\Delta = k$ alors $\Delta = (\sqrt{k})^2$; on choisit $\delta = \sqrt{k}$.
- Si $\Delta = -k$ alors $\Delta = i^2 \cdot k = (i\sqrt{k})^2$; on choisit $\delta = i\sqrt{k}$.
- Si $\Delta = \alpha + i\beta$, $(\beta \neq 0)$ on détermine alors δ une racine carrée de Δ en résolvant le système ci-dessus.
- Dans le cas $\Delta=k$ (respectivement $\Delta=-k$) on pouvait choisir la racine carrée opposée $\delta=-\sqrt{k}$ (respectivement $\delta=-i\sqrt{k}$).

1.1.2. Similitudes directes

Soit z, z', a, b, ω des nombres complexes, k et θ des nombres réels, M(z), M'(z'), $\Omega(\omega)$ des points du plan et $\overrightarrow{w}(b)$ un vecteur.

Expression complexe

 \triangleright d'une translation $t = t_{\vec{w}(b)}$.

$$M' = t(M) ssi \underline{z' = z + b}$$
.

 \triangleright d'une homothétie $h = h[\Omega(\omega); k], k \neq 0$.

$$M' = h(M) ssi z' - \omega = k(z - \omega)$$
.

 \triangleright d'une rotation $r = r[\Omega(\omega); \theta]$.

$$M' = r(M) ssi \underline{z' - \omega} = e^{i\theta}(z - \omega)$$
.

 \triangleright d'une similitude directe $s = s[\Omega(\omega); \theta; k], k > 0$.

$$M' = s(M) ssi \underline{z' - \omega} = ke^{i\theta}(z - \omega)$$
.

Remarques : Soit k le rapport de l'homothétie.

- Si k > 0, alors s = roh = hor = $s[\Omega(\omega); \theta; k]$.
- Si k < 0, alors s = roh = hor = $s[\Omega(\omega); \theta + \pi; -k]$.
- De manière générale, une similitude directe est une translation ou une homothétie ou une rotation ou la composée d'une homothétie avec une rotation.
- Le centre Ω d'une similitude directe, son angle θ et son rapport k sont appelés éléments caractéristiques de la similitude.

Expression réduite d'une similitude directe

- Froute application f du plan dans le plan, qui à tout point M(z) associe le point M'(z') tel que z' = az + b où $a \in \mathbb{C}^*$ et $b \in \mathbb{C}$ est une similitude directe.
 - Si a = 1 alors f est la translation de vecteur $\vec{w}(b)$.
- Si $a \in \mathbb{R}$ -{1} alors f est l'homothétie de centre $\Omega(\omega = \frac{b}{1-a})$ et de rapport a.
- Si $a \in \mathbb{C} \setminus \mathbb{R}$ et si |a| = I alors f est la rotation de centre $\Omega(\omega = \frac{b}{1-a})$ et d'angle $\arg a$.

• Si $a \in \mathbb{C} \setminus \mathbb{R}$ et si $|a| \neq 1$ alors f est la similitude directe de centre $\Omega(\omega = \frac{b}{1-a})$, d'angle arga et de rapport |a|.

Remarque: Le centre Ω d'affixe ω de la similitude ou de la rotation ou de l'hométhétie est le point invariant de f;

c'est-à-dire le point d'affixe z vérifiant z' = z.

Propriété caractéristique d'une similitude directe

Soit la similitude directe s de rapport k (k > 0), d'angle θ et A, B, C trois points du plan.

Si s(A) = A et si s(B) = C, alors s est la similitude de centre A, de rapport $k = \frac{AC}{AB}$ et d'angle $\theta = (\overrightarrow{AB}; \overrightarrow{AC})$.

Détermination d'une similitude directe

Pour déterminer la similitude directe s telle que s(A) = A et s(B) = B, où A, B, A et B sont des points, on peut procéder de cette manière :

Soit
$$s: z' = az + b$$
; $\begin{cases} s(A) = A' \\ s(B) = B' \end{cases}$ ssi $\begin{cases} az_A + b = z_{A'} \\ az_B + b = z_{B'} \end{cases}$

La résolution du système d'inconnue *a et b* donne l'expression de la similitude s.

Autres propriétés

Soit A, B, Ω des points et la simitude $s = s[\Omega(\omega); \theta; k]$, (k > 0)

L'image d'une droite (d) par s est une droite (d').

Si (d) est la droite (AB), alors son image (d') est la droite (A'B') où A' = s(A) et B' = s(B).

L'image d'un cercle (C) par s est un cercle (C').

Si (C) est le cercle de centre I et de rayon r, alors son image (C') est le cercle de centre I' et de rayon kr, où I'=s(I) et k le rapport de s.

1.2. EXERCICES D'APPLICATION

Exercice 1

Mettre sous forme algébrique les nombres complexes suivants :

1.
$$z_1 = \frac{1}{2 - i\sqrt{3}}$$
 et $z_2 = \frac{i - 3}{-1 - 2i}$.

2.
$$Z_1 = (z+2)(2z-i)$$
 et $Z_2 = \frac{z+1-i}{z-2}$

(on posera $z = x + iy \ ou \ x, \ y \in \mathbb{R}$).

Exercice 2

Ecrire sous forme trigonométrique et sous forme exponentielle les nombres complexes suivants :

1)
$$z = 1 - i\sqrt{3}$$
; 2) $z = -1 - i$; 3) $z = -\sqrt{6} + i\sqrt{2}$

4)
$$z = -\sin 2\theta + 2i\cos^2 \theta$$
, $\theta \in]0; \pi]$.

5)
$$z = 1 + \cos x + i \sin x$$
, $x \in]\pi; 2 \pi[$.

Exercice 3

On considère les points A, B, C de coordonnées respectives (1; -3), (4; 5) et (-3; 2).

1. Quels sont les affixes des points A, B et C et des vecteurs