Udine, 12 giugno 2017

- 1. Sia $\mathcal{F} = \mathcal{F}(2,4,p,q)$ l'insieme di numeri di macchina con l'arrotondamento.
 - Definisci in generale la precisione di macchina u e determina quella di \mathcal{F} .
 - Determina p, q in modo che i numeri positivi di \mathcal{F} siano 88 e realmax = 60.
 - Sia $x = \frac{1}{5}$. Verifica che $x \notin \mathcal{F}$ e determina $\tilde{x} = fl(x) \in \mathcal{F}$.
 - Sia $y = \frac{7}{5}$. Verifica che $y \notin \mathcal{F}$ e determina $\tilde{y} = fl(y) \in \mathcal{F}$.
 - Calcola $z = \tilde{x} + 4\tilde{y}$ e $\tilde{z} = \tilde{x}fl(+)4\tilde{y}$.
- 2. Si vuole calcolare la funzione y = f(x).
 - Definisci l'errore inerente e il concetto di condizionamento.
 - Studia il condizionamento della funzione $f(x) = \frac{(1+x^2)}{(x^2-2)}$
 - Definisci l'errore algoritmico e il concetto di stabilità.
 - Studia la stabilità dell' algoritmo che valuta f(x) in un punto x.
 - Studia il condizionamento della funzione $g(x) = \sqrt{f(x)}$ e la stabilità dell'algoritmo che valuta g(x) in un punto x.
- 3. Sia $f(x) = -2x^3 + 3x^2 + 12x 1$.

 - Studia la convergenza ad α del metodo di Newton. La successione ottenuta con $x_0 = -2$ è convergente a α ? Se convergente, qual è l'ordine di convergenza? Giustifica la risposta.
 - Studia la convergenza a γ del metodo di Newton. La successione ottenuta con $x_0 = 2.5$ è convergente a γ ? Se convergente, qual è l'ordine di convergenza? Giustifica la risposta.

Sia $g(x) = \frac{x^3}{6} - \frac{x^2}{4} + \frac{1}{12}$. Verifica che α, β, γ sono punti fissi di g.

- Studia la convergenza ad α, β, γ del metodo iterativo $x_{k+1} = g(x_k), k = 0, 1, \dots$
- La successione ottenuta con $x_0 = 0.5$ è convergente? Se convergente, a quale delle tre radici converge? Qual è l'ordine di convergenza? Giustifica la risposta.
- Definisci il concetto di ordine di convergenza per una generica successione $x_k \to \alpha$ per $k \to +\infty$.
- 4. Sia data la matrice

$$A = \left(\begin{array}{ccc} 2 & -1 & \alpha \\ \alpha & -1 & 1 \\ -3 & 0 & 1 \end{array} \right).$$

- Disegna il grafico della funzione $\alpha \to ||A(\alpha)||_{\infty}$.
- \bullet Calcola la fattorizzazione LU di A.
- Per quale scelta del parametro α il sistema Ax = b ha un'unica soluzione?
- Nota la fattorizzazione LU di A come risolvi in generale il sistema lineare Ax = b?
- Illustra in generale la strategia del pivot parziale per il metodo di Gauss. Perchè si applica?
- Per quali valori del parametro α il metodo di Gauss con il pivot parziale al primo passo scambia la prima con la terza riga di A?
- Sia $\alpha = -4$. Calcola la fattorizzazione PA = LU con la tecnica del pivot parziale.
- Sia $\alpha = \frac{1}{4}$. Calcola la fattorizzazione PA = LU con la tecnica del pivot parziale.
- Nota la fattorizzazione PA = LU come risolvi in generale il sistema lineare Ax = b?
- Scrivi la pseudocodifica di un algoritmo efficiente per calcolare in generale la soluzione di Ux = d con U triangolare superiore e analizza il costo computazionale.
- 5. Sia $f(x) = \frac{(1+x^2)}{(x^2-2)}$. Dati i punti $P_0 = (-1, f(-1)), P_1 = (0, f(0)), P_2 = (1, f(1)).$
 - ullet Determina il polinomio p che interpola i tre punti nella forma di Newton.
 - Dato l'ulteriore punto $P_3 = (3, f(3))$, determina in maniera efficiente il polinomio \tilde{p} che interpola i quattro punti nella forma di Newton.
 - Determina il polinomio q di primo grado di miglior approssimazione dei tre punti nel senso dei minimi quadrati.
 - ullet Determina il polinomio r di grado zero di miglior approssimazione dei tre punti nel senso dei minimi quadrati.
 - Sia p_n il polinomio che interpola in n+1 punti distinti $a=x_0 < x_1 < \cdots < x_n = b$ una generica funzione f sufficientemente regolare. Scrivi la formula dell'errore $f(x) p_n(x)$ e determina una maggiorazione di $\max_{x \in [a,b]} |f(x) p_n(x)|$.
- 6. Scrivi la pseudocodifica di un algoritmo efficiente per calcolare un generico polinomio $p_n(x) = \sum_{i=0}^n a_i x^i$ in un punto x assegnato e analizza la sua complessità computazionale.
 - Modifica la pseudocodifica al punto precedente in modo da calcolare anche $p'_n(x)$.