The "Data Science" Specialization

Learn More

X

Feedback — Week 1 Quiz

Help

You submitted this quiz on **Wed 14 May 2014 11:12 PM CEST**. You got a score of **18.00** out of **20.00**. You can attempt again, if you'd like.

Introduction

This first quiz will check your ability to execute basic operations on objects in R and to understand some basic concepts. For questions 11–20 you will need to load a dataset into R and do some basic manipulations in order to answer the questions on the quiz.

You may want to print a copy of the quiz questions to look at as you work on the assignment. It is recommended that you save your answers as you go in the event that a technical problem should occur with your network connection or computer. Ultimately, you must submit the quiz online to get credit!

Data

The zip file containing the data for questions 11–20 in this Quiz can be downloaded here:

Week 1 Quiz Data

For this assignment you will need to unzip this file in your working directory.

The R language is a dialect of which of the following programming languages?

Your Answer		Score	Explanation
⊚ S	~	1.00	R is a dialect of the S language which was developed at Bell Labs.
Lisp			
Fortran			
С			
Total		1.00 /	
		1.00	

The definition of free software consists of four freedoms (freedoms 0 through 3). Which of the following is NOT one of the freedoms that are part of the definition?

Your Answer	Score	Explanation
The freedom to redistribute copies so you can help your neighbor.		
The freedom to run the program, for any purpose.		
The freedom to improve the program, and release your improvements to the public, so that the whole community benefits.		
The freedom to prevent users from using the software for undesirable purposes.	✓ 1.00	This is not part of the free software definition. Freedom 0 requires that the users of free software be free to use the software for any purpose.
Total	1.00 / 1.00	

Question 3

In R the following are all atomic data types EXCEPT

our Answer		Score	Explanation
logical			
complex			
array	~	1.00	'array' is not an atomic data type in R.
nteger			
otal		1.00 / 1.00	

If I execute the expression x <- 4 in R, what is the class of the object x' as determined by the class()' function?

Your Answer		Score	Explanation
olist			
numeric			
<pre>evector</pre>	×	0.00	By default, numbers in R are represented as numeric objects 'vector' is a type of data structure, not a data class.
integer			
Total		0.00 /	
		1.00	

Question 5

What is the class of the object defined by $x \leftarrow c(4, TRUE)$?

Your Answer		Score	Explanation
ointeger			
⊚numeric	~	1.00	The numeric class is the "lowest common denominator" here and so all elements will be coerced into that class.
list			
character			
Total		1.00 /	
		1.00	

Question Explanation

R does automatic coercion of vectors so that all elements of the vector are the same data class.

Question 6

If I have two vectors $x \leftarrow c(1,3,5)$ and $y \leftarrow c(3,2,10)$, what is produced by the expression rbind(x, y)?

Your Answer		Score	Explanation
a matrix with three columns and two rows	~	1.00	The 'rbind' function treats vectors as if they were rows of a matrix. It then takes those vectors and binds them together row-wise to create a matrix.
a vector of length			
a vector of length			
a 2 by 2 matrix			
Total		1.00 / 1.00	

Question 7

A key property of vectors in R is that

Your Answer		Score	Explanation
elements of a vector can only be character or numeric			
a vector cannot have have attributes like dimensions			
elements of a vector all must be of the same class	~	1.00	
elements of a vector can be of different classes			
Total		1.00 / 1.00	

Question 8

Suppose I have a list defined as $x \leftarrow \text{list}(2, "a", "b", TRUE)$. What does x[[1]] give me?

Your Answer		Score	Explanation
a numeric vector of length 1.	~	1.00	

a list containing a numeric vector of length	າ 1.
a list containing the letter "a".	
a list containing the number 2.	
Total	1.00 / 1.00

Suppose I have a vector x <- 1:4 and a vector y <- 2. What is produced by the expression x + y?

Your Answer		Score	Explanation
a numeric vector with elements 3, 4, 5, 6.	~	1.00	
a numeric vector with elements 1, 2, 3, 6.			
a numeric vector with elements 3, 2, 3, 6.			
an integer vector with elements 3, 2, 3, 4.			
Total		1.00 / 1.00	

Question 10

Suppose I have a vector $x \leftarrow c(3, 5, 1, 10, 12, 6)$ and I want to set all elements of this vector that are less than 6 to be equal to zero. What R code achieves this?

Your Answer	Score	Explanation
x[x %in% 1:5] <- 0		
	× 0.00	This takes the elements of x that are less than 6 and tests whether they are equal to 0 or not.
x[x == 6] <- 0		
x[x == 0]		
Total	0.00 / 1.00	

In the dataset provided for this Quiz, what are the column names of the dataset?

Your Answer		Score	Explanation
01, 2, 3, 4, 5, 6			
Ozone, Solar.R, Wind			
Month, Day, Temp, Wind			
Ozone, Solar.R, Wind, Temp, Month, Day	~	1.00	You can get the column names of a data frame with the `names()' function.
Total		1.00 /	
		1.00	

Question 12

1 18 224 13.8 67

9 17

Extract the first 2 rows of the data frame and print them to the console. What does the output look like?

Your Answer	Score	Explanation
0		
Ozone Solar.R Wind T		
emp Month Day		
1 7 NA 6.9 74		
5 11		
2 35 274 10.3 82		
7 17		
		Year and the Control of the Control
O-one Color D Wind T	1.00	You can extract the first two rows using the [operator
Ozone Solar.R Wind T		and an integer sequence to index the rows.
emp Month Day		
1 41 190 7.4 67		
5 1		
2 36 118 8.0 72		
5 2		
0		
Ozone Solar.R Wind T		

```
2 NA 258 9.7 81
7 22

Ozone Solar.R Wind T
emp Month Day
1 9 24 10.9 71
9 14
2 18 131 8.0 76
9 29

Total

1.00 /
1.00
```

How many observations (i.e. rows) are in this data frame?

Your Answer		Score	Explanation
160			
4 5			
◎153	~	1.00	You can use the `nrows()' function to compute the number of rows in a data frame.
129			
Total		1.00 / 1.00	

Question 14

Extract the *last* 2 rows of the data frame and print them to the console. What does the output look like?

Your Answer	Score	Explanation
0		
Ozone Solar.R Wind Te		

Ozone Solar.R Wind Te

```
152 34 307 12.0 66
 5 17
153 13 27 10.3 76
 9 18
                        ✓ 1.00
                                     The `tail()' function is an easy way to extract the
  Ozone Solar.R Wind Te
                                     last few elements of an R object.
mp Month Day
152 18 131 8.0 76
 9 29
153 20 223 11.5 68
 9 30
Ozone Solar.R Wind Te
mp Month Day
152 11 44 9.7 62
5 20
153 108 223 8.0 85
 7 25
  Ozone Solar.R Wind Te
mp Month Day
152 31 244 10.9 78
 8 19
153 29 127 9.7 82
 6 7
Total
                           1.00 /
                            1.00
```

What is the value of Ozone in the 47th row?

Your Answer		Score	Explanation
18			
⊚21	~	1.00	The single bracket [operator can be used to extract individual rows of a data frame.
3 4			
6 3			

Total	1.00 / 1.00		

How many missing values are in the Ozone column of this data frame?

Your Answer		Score	Explanation
@37	~	1.00	
9			
4 3			
0 78			
Total		1.00 / 1.00	

Question Explanation

The `is.na' function can be used to test for missing values.

Question 17

What is the mean of the Ozone column in this dataset? Exclude missing values (coded as NA) from this calculation.

Your Answer		Score	Explanation
5 3.2			
3 1.5			
942.1	~	1.00	
18.0			
Total		1.00 / 1.00	

Question Explanation

The `mean' function can be used to calculate the mean.

Extract the subset of rows of the data frame where Ozone values are above 31 and Temp values are above 90. What is the mean of Solar.R in this subset?

Your Answer		Score	Explanation
185.9			
©212.8	~	1.00	
334.0			
205.0			
Total		1.00 / 1.00	

Question Explanation

You need to construct a logical vector in R to match the question's requirements. Then use that logical vector to subset the data frame.

Question 19

What is the mean of "Temp" when "Month" is equal to 6?

Your Answer		Score	Explanation
90.2			
⊚79.1	~	1.00	
85.6			
75.3			
Total		1.00 / 1.00	
AI		1.00 / 1.00	

Question 20

What was the maximum ozone value in the month of May (i.e. Month = 5)?

core E	Explanation
	core E

100		
18		
97		
115	✓	1.00
Total		1.00 / 1.00