Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение

высшего образования

«Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники

Вариант №76 Лабораторная работа №6 по дисциплине Математическая статистика

Выполнил Студент группы Р3112

Кобелев Р.П

Балин А. А.

Пархоменко К. А.

Преподаватель:

Милованович Е. А.

Содержание

1	Цель работы	2
2	Данные	2
3	Выполнение	2
4	Вывод	3

1 Цель работы

Цель работы состоит в построении оценок математических ожиданий и дисперсии случайных величин, входящих в систему, а также оценок корреляционного момента и коэффицента корреляции.

2 Данные

Таблица группированных данных:

\mathbf{y}_{j}^{*} \mathbf{x}_{i}^{*}	15	25	30	35
10	15	0	0	0
20	10	80	30	0
30	0	0	45	20

3 Выполнение

Построим матрицу распределения (n = 200):

y_j^*	10	20	30	35	$P(\mathbf{x}=\mathbf{x}_i)$
\mathbf{x}_{i}^{*}					
10	0.075	0.000	0.000	0.000	0.075
20	0	0.400	0.150	0	0.600
30	0.000	0.000	0.225	0.100	0.325
$P(y=y_i)$	0.125	0.400	0.375	0.1	1

Найдём математическое ожидание и дисперсию для х:

$$\overline{M}(x) = \sum_{i=1}^{n} (x_i^*) p_i^* = 22.5$$

$$\overline{D}(x) = \sum_{i=1}^{n} (x_i^*)^2 P_i^* - (\overline{M}(x))^2 = 33.75$$

$$\overline{\sigma}(x) = 5.81$$

Найдём математическое ожидание и дисперсию для у:

$$\overline{M}(y) = \sum_{j=1}^{m} (y_j^*) q_j^* = 26.625$$

$$\overline{D}(y) = \sum_{i=1}^{n} (y_i^*)^2 P_i^* - (\overline{M}(y))^2 = 29.234375$$

$$\overline{\sigma}(y) = 5.41$$

Найдём корреляцинонный момент:

$$\overline{K}(x,y) = \overline{cov}(x,y) = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i^* y_j^* P_i^* - \overline{M}(x) \overline{M}(y) = 24.6875$$

$$\overline{r}_{xy} = \frac{\overline{K}(x,y)}{\overline{\sigma}(x) \cdot \overline{\sigma}(y)} = 0.786$$

Корреляционная матрица:

$$K = \begin{pmatrix} \overline{D}(x) & \overline{K}(x,y) \\ \overline{K}(x,y) & \overline{D}(y) \end{pmatrix} = \begin{pmatrix} 33.75 & 24.6875 \\ 24.6875 & 29.234375 \end{pmatrix}$$

Чтобы построить зависимость условного математического ожидания константы y от значений компонент x, нужно найти значения математических ожиданий из условных рядов распределения

	15	25	30	35
$P(y=y_i x=10)$	1	0.000	0.000	0.000
$P(y=y_i x=20)$	0.0833	0.667	0.250	0.000
$P(y=y_i x=30)$	0.000	0.000	0.692308	0.307692

Теперь построим таблицу условных математических ожиданий y при различных значениях x:

	10	20	30	
$M(y x=x_i)$	15.000	25.41667	31.538462	

Найдём функцию регрессии (оценка несмещённости и эффективности):

$$y = m_y + r \frac{\sigma_y}{\sigma_x} (x - m_x)$$

Получим уравнение:

Чтобы построить зависимость условного математического ожидания константы $\overline{y}(x) = \overline{M}(y) + \overline{r}_{xy} \frac{\overline{\sigma y}}{\overline{\sigma x}}(x - \overline{M}(x)) = 26.625 + 0.786 \cdot \frac{5.41}{5.81}(x - 22.5) = \frac{295077}{29050} + \frac{212613}{290500}x = 10.158 + 0.732x$

$$\delta_{x=10} = \frac{|17.378 - 15.0|}{15.0} \cdot 100\% = 15\%$$

$$\delta_{x=20} = \frac{|24.798 - 25.416667|}{25.416667} \cdot 100\% = 2.43\%$$

$$\delta_{x=30} = \frac{|32.118 - 31.538462|}{31.538462} \cdot 100\% = 1.838\%$$

График:

4 Вывод

Построили оценки математических ожиданий и диспресий случайных величин, входящих в систе- му, а также оценки корреляционного момента и коэффициента корреляции.