1 Álgebra superior

1.1 Funciones

Teorema 1.1. Para $f : \mathbb{X} \to \mathbb{Y}$ función, se cumple:

- 1. Si $A \subseteq Dom(f)$, $A = \emptyset$ si y solo si $f[A] = \emptyset$.
- 2. $Si \ f^{-1}[\emptyset] = \emptyset$.
- 3. $Si \ x \in Dom(f), \ f[\{x\}] = \{f(x)\}.$
- 4. Si $A \subseteq B$ entonces $f[A] \subseteq f[B]$.
- 5. $f[A \cup B] = f[A] \cup f[B]$.
- 6. $f[A \cap B] \subseteq f[A] \cap f[B]$.
- 7. $f[A-B] \supseteq f[A] f[B]$.

Teorema 1.2. Si f y g son funciones

- 1. $g \circ f[A] = g[f[A]]$.
- 2. $(g \circ f)^{-1}[A] = g^{-1}[f^{-1}[A]].$

Definición 1.3. $f: \mathbb{X} \to \mathbb{Y}$ es invertible si y solo si f^{-1} es función.

Definición 1.4. $f: \mathbb{X} \to \mathbb{Y}$ es inyectiva si y solo si f(x) = f(y) implica x = y para todo $x, y \in \mathbb{X}$.

Teorema 1.5. Para $f: \mathbb{X} \to \mathbb{Y}$ Son equivalentes:

- 1. f es inyectiva.
- 2. $\exists g : \mathbb{Y} \to \mathbb{X} \ tal \ que \ g \circ f = id_{\mathbb{Y}}$.
- 3. $f(A \cap B) = f(A) \cap f(B)$ para todo $A, B \subseteq X$. (esta hay que revisarla)

Definición 1.6. $f: \mathbb{X} \to \mathbb{Y}$ es sobreyectiva si y solo si para todo $y \in \mathbb{Y}$ existe $x \in \mathbb{X}$ tal que f(x) = y.

Teorema 1.7. Si $f: \mathbb{X} \to \mathbb{Y}$ es función, son equivalentes las siguientes afirmaciones:

1. f es sobreyectiva.

- 2. $\forall y \in \mathbb{Y}, f[\mathbb{X}] \supseteq y$.
- 3. $\forall Z, Y$ conjuntos cualesquiera tales que $h, k : Z \to \mathbb{Y}$ si $h \circ f = k \circ f$ entonces h = k.
- 4. $\forall A \subseteq \mathbb{Y} \ y \ A \neq \emptyset \ entonces \ f^{-1}[A] \neq \emptyset$.
- 5. $\forall B \subseteq \mathbb{Y} \ entonces \ B \subseteq f[f^{-1}[B]]$