Univerzálny RAM

Univerzálny RAM (alebo SIM) je RAM program, ktorý dostane na vstupe program P a číslo x and:

- ▶ ak sa P zacyklí na x, SIM(P,x) sa zacyklí
- ▶ ak P zastaví na x and vráti y, SIM(P,x) zastaví a vráti y

Univerzálny RAM je rekurzívny.

- RAM program je v zásade jednoduchý asemblér
- Napíšeme simulátor v nejakom "rozumnom" jazyku
- Z Churchovej tézy—existuje RAM implementujúci to isté

Možné modifikácie univerzálneho RAM.

- ightharpoonup simuluj iba prvých t krokov (SIM(P, x, t))
- môže odpovedať rôzne otázky o stave simulovaného RAMu po t krokoch

Univerzálne RAMy sú jednoduché

Očakávali by sme, že takéto simulátory sú zložité programy. Nie je to pravda: ľudia dokonca súťažia, kto napíše "jednoduchší" simulátor (menší počet riadkov kódu, menší počet registrov, ...) Ako implementovať SIM s malým počtom registrov?

Všetky registre simulovaného stroja uložíme v jedinom registri:

$$2^{R_1} \cdot 3^{R_2} \cdot \cdots \cdot p_i^{R_i} \cdot \ldots$$

Zvyšok simulácie bude potrebovať iba malý počet registrov
 povedzme < 1000

Ďalší nevypočítateľný problém: Koľko pamäte program používa?

$$\mathsf{IS_BIG}_{10000}(P,x) = \left\{ \begin{array}{ll} 1, & \mathsf{ak}\ P\ \mathsf{pou\check{z}ije} > 10000\ \mathsf{na}\ \mathsf{vstupe}\ x \\ 0, & \mathsf{inak} \end{array} \right.$$

Tvrdenie: Funkcia IS_BIG₁₀₀₀₀ nie je vypočítateľná.

Dôkaz: Redukciou z HALT

(t.j. chceme ukázať $HALT \leq^{T} IS_BIG_{10000}$)

► Chceme: RAM program pre HALT s IS BIG₁₀₀₀₀ ako procedúrou.

IS_BIG_{10000} pokr.

- Predpokladajme P zastaví na vstupe x. Potom SIM(P,x) tiež zastaví a teda program Q zastaví a použije ≥ 10001 registrov. \Rightarrow IS BIG $_{10000}(Q,x)=1$
 - Predpokladajme P nezastaví na vstupe x.
 Potom sa SIM(P,x) zacyklí a použije len malý počet registov
 ⇒ IS_BIG₁₀₀₀₀(Q,x) = 0
- ► Teda HALT ≤^T IS_BIG₁₀₀₀₀ a keďže HALT nie je vypočítateľná, IS_BIG₁₀₀₀₀ takisto nie je vypočítateľná.

Férovejší prístup k otázke "Koľko pamäte program používa"?

Def: Program P pretečie na vstupe x ak použije > 10000 registrov alebo použije hodnotu > 10000 v jednom z registrov.

$$IS_BIG_{10000,10000}(P,x) = \begin{cases} 1, & \text{ak } P \text{ pretečie na } x \\ 0, & \text{inak} \end{cases}$$

Dobrá správa: Táto funkcia je vypočítateľná! **Myšlienka:** Ak by sme vedeli, že sa *P* vždy zastaví, tak by sme ho mohli simulovať a počas behu kontrolovať pretečenie.

Zacyklenie bez pretečenia

Tvrdenie: Ak program P s k riadkami beží na vstupe x bez pretečenia $> k.10000^{10001}$ krokov, tak:

- sa zacyklí a
- nikdy nepretečie.

Dôkaz:

- Stav RAMu je jednoznačne daný:
 - obsahom všetkých neulových registrov
 - riadkom, ktorý sa práve vykonáva
- Ak vieme stav S_i RAMu v čase i, potom stav S_{i+1} v čase i+1 vieme jednoznačne určiť.

Zacyklenie bez pretečenia

► Teda: Ak sa rovnaký stav RAMu vyskytne v dvoch rôznych časoch i < j, potom sa postupnosť stavov:</p>

$$S_i, S_{i+1}, S_{i+2}, \ldots, S_{j-1}$$

bude donekonečna opakovať a program sa zacyklí.

Koľko existuje "nepretečených" stavov RAMu?

$$M = k \cdot 10000^{10001}$$

- ▶ Takže po M+1 krokoch, ak RAM nepretiekol alebo sa nezastavil, tak stav $S_{M+1} = S_i$ pre niektoré $i \leq M$. (Dirichletov princíp)
- program sa bude cykliť donekonečna a nikdy nepretečie.

IS_BIG_{10000,10000} je vypočítateľná!

```
IS_BIG_10000,10000(P,x):
    k := number of lines of P;
    SIM(P,x,k.10000^10001+1);

if P did overflow during simulation
    return 1;
else
    return 0;
```

Vypočítateľ nosť: Zhrnutie

- Churchova-Turingova téza: všetko je Turingov stroj (...alebo RAM)
- Niektoré problémy (napr. HALT) nie sú vypočítateľné
- Nevypočítateľ nosť môžeme dokazovať pomocou Turingových redukcií
- Niekedy malá zmena môže znamenať rozdiel medzi vypočítateľnou a nevypočítateľnou funkciou.
- Univerzálne RAMy nám môžu pomôcť pre dokazovaní, že funkcia je vypočítateľná aj pri dokazovaní, že funkcia nie je vypočítateľná.

"Vzor" dôkazu správnosti greedy algoritmu

Lema: Predpokladajme, že greedy algoritmus vráti riešenie G. Potom existuje optimálne riešenie, ktoré sa s riešením G zhoduje na prvých k voľbách.

Dôkaz: Matematickou indukciou podľa *k*.

Báza indukcie. Pre k = 0 – ľubovoľné optimálne riešenie.

Indukčný krok. (Prepokladajme, že sme neurobili chybu pri prvých k voľbách, potom aj (k+1)-vá voľba je OK.)

- Predpokladajme, že existuje optimálne riešenie OPT, ktoré sa zhoduje s G na prvých k voľbách.
- Vyrobíme riešenie OPT':
 - OPT' má rovnakú hodnotu ako OPT (a preto je tiež optimálne)
 - ▶ OPT' súhlasí s G na jednej ďalšej (k+1)-vej voľbe.

Dynamické programovanie

- 1. Určíme podproblém.
 - aké sú rozmery matice, ktorú budeme vypĺňať?
 - aký je presný význam každého políčka matice?
 - kde v matici nájdeme riešenie pôvodnej úlohy?
- 2. Vyriešime podproblém za pomoci iných podproblémov. Ako vypočítame jedno políčko matice z iných políčiek matice?
- 3. Bázové podproblémy. Ktoré políčka nemožno vypočítať pomocou vzťahov z predchádzajúceho kroku? Aké hodnoty by mali obsahovať?
- 4. Vyberieme poradie vypĺňania. V akom poradí musíme maticu vypĺňať tak, aby sme v každom kroku mali vypočítané všetky políčka, ktoré potrebujeme na výpočet daného políčka?

Master theorem

Nech T(n) = aT(n/b) + f(n), $T(1) = \Theta(1)$. Nech $k = \log_b a$. Potom:

- 1. Ak $f(n) \in O(n^{k-\varepsilon})$ pre niektoré $\varepsilon > 0$, potom $T(n) \in \Theta(n^k)$.
- 2. Ak $f(n) \in \Theta(n^k)$, potom $T(n) \in \Theta(f(n) \log n)$.
- 3. Ak $f(n) \in \Omega(n^{k+\varepsilon})$ pre niektoré $\varepsilon > 0$ a platí podmienka regularity, potom $T(n) \in \Theta(f(n))$.

Podmienka regularity:

Existuje c < 1 také, že pre všetky dostatočne veľké n platí $af(n/b) \le cf(n)$.

Poznámka:

Veta platí aj v prípade rozumných usporiadaní dolných a horných celých častí - viď napr. CLRS2 4.4.2.

Nedeterministický algoritmus pre riešenie TSP-D

```
function TSP-D
  visited[i]:=false for all vertices;
  last_visited:=1; visited[1]:=true;
  length:=0;
  repeat n-1 times
    choose next_visited between 1 and n;
    if visited[next_visited] then reject;
    //we cannot visit a single vertex twice
    visited[next_visited]:=true;
    length:=length+w(last_visited,next_visited);
    last_visited:=next_visited;
  length:=length+w(last_visited,1);
  if length <= B then accept;
               else reject;
```

SAT je NP-ťaždký: zhrnutie

Vyššieuvedeným postup skonštruujeme pre daný algoritmus A a vstup x formulu f:

- Postup možno zrealizovať v polynomiálnom čase v závislosti od n.
- Výsledná formula má polynomiálnu veľkosť v závislosti od n.
- f je splniteľná \iff A akceptuje x

 \Rightarrow Ukázali sme: $Q \leq_p SAT$ pre ľubovoľné $Q \in NP$

Ako dokázať, že problém Q je NP-ťažký?

- 1. Vyberme si problém N o ktorom už vieme, že je NP-úplný
- 2. Ukážeme $N \leq_P Q$:
 - Navrhneme polynomiálny algoritmus, ktorý prerobí vstup x pre problém N na vstup f(x) pre problém Q.
 - Dokážeme: Ak je x pozitívny vstup pre N, potom
 - f(x) je pozitívny vstup pre Q
 - ▶ Dokážeme: Ak je x negatívny vstup pre N, potom
 - f(x) je negatívny vstup pre Q
 - —ALEBO—
 - Ak f(x) je pozitívny vstup pre Q, potom
 - x je pozitívny vstup pre N
- 3. Keďže N je NP-úplný, Q musí byť NP-ťažký.

Diagonalizácia

Ako dokážete, že vaša obľúbená funkcia Q nie je rekurzívna?

Definícia: Funkcia A je reducibilná (v Turingovom zmysle) na funkciu B (alebo $A \leq^T B$) ak existuje algoritmus, ktorý vypočíta A tak, že používa B ako procedúru.

Note: Rozdiely medzi $A \leq^T B$ a $A \leq_P B$:

- $ightharpoonup \leq^T$ pre všetky problémy, nie len rozhodovacie.
- Žiadne obmedzenia na zložitosť.
- Žiadne obmedzenia na počet volaní funkcie B.

Lema: Ak A nie je rekurzívna (nie je vypočítateľná) a $A \leq^T B$, potom B nie je rekurzívna.

Univerzálny RAM

Univerzálny RAM (alebo SIM) je RAM program, ktorý dostane na vstupe program P a číslo x and:

- ▶ ak sa P zacyklí na x, SIM(P,x) sa zacyklí
- ▶ ak P zastaví na x and vráti y, SIM(P,x) zastaví a vráti y

Univerzálny RAM je rekurzívny.

- RAM program je v zásade jednoduchý asemblér
- Napíšeme simulátor v nejakom "rozumnom" jazyku
- Z Churchovej tézy—existuje RAM implementujúci to isté

Možné modifikácie univerzálneho RAM.

- ightharpoonup simuluj iba prvých t krokov (SIM(P, x, t))
- môže odpovedať rôzne otázky o stave simulovaného RAMu po t krokoch