STAR

System for Tracking Animals using Radars

Sangam '22
Energy and Environment
NIT Trichy

TEAM MEMBERS

Madhav R 111120083 B.Tech in Mechanical Engineering

> Rishivanthiya G R 110119092 B.Tech in ICE

> > K Girish 108119053 B.Tech in ECE

Sunkara Vikash 107120124 B.Tech in EEE

CONTENTS

- A discussion on the current methods on the monitoring of animals in Wildlife reserves/sanctuaries and zoos
- Introduction to contactless methods using radars
 - o FMCW

- Methodology of STAR
 - Hardware used and features
 - Use of MATLAB

PROBLEM STATEMENT

- Extinction of over 18 species of wild animals in the last century
- Despite efforts taken through wildlife reserves and sanctuaries, poaching remains to be a threat

 Locating and monitoring the movement and vitals of the animals in reserves are challenging

CURRENT METHODS

- Existing methods involve use of cameras, which prove to be disadvantageous because of their limited field of vision and range, and poor performance in harsh weather conditions.
- While microchip implants that use may help track the different animals of the same species, it cannot actively locate or track the vitals of said animals.
- GPS devices are also not the best option as they are susceptible to damage and are sometimes too large to be implanted into animals.

OBJECTIVES OF STAR

- The main objectives of this project are to:
 - → Detect and measure vital signs of animals.
 - → Tracking both animal and human movements to prevent poaching and hunting in wildlife sanctuaries.
- This will be accomplished using FMCW Radar.

FMCW RADARS

$$s(t) = A_t \exp\left(j(2\pi f_{min}t + \pi Kt^2)\right), \quad 0 < t < T_r,$$

FLOWCHART

SIMULATION

PSD Estimate of transmit ▲ 🚊 🖃 🖑 🕀 🔾 🎧 -50 -100 -150 PSD(dB) **SIMULATION** -200 -250 -300 -350 8 ×10¹⁰ 2 3 6 Frequency

f_beat = 367000000

r = beat2range(f_beat,K,c) %range

r = 55.0500

SIMULATION - Antenna Radiation Pattern

PROPOSED ALGORITHM FOR DETECTING VITAL SIGNS

Simulation - Further Plans

- Implement Velocity Estimation for a single target.
- Implement Range and Velocity estimation for multiple targets.
- Model Respiration and heartbeat along with environmental noise and detect the same using the proposed algorithm.

HARDWARE

- 1. Radar Sensor Chip AWR1843
- 2. Antenna
- 3. CAN-FD transceiver-TCAN1042HGVDRQ1
- 4. XDS110 based JTAG emulation with a serial port-(TM4C1294NCPDT)

Radar Sensor Chip - AWR1843

- mmWave radar sensor 76-81GHz
- Single-chip, Low-power Achieved through RFCMOS technology
- Integrated processing Removes the need for an external processor in the system
- Scalable Portfolio SW re-use across Automotive & Industrial platforms, regardless of band
- Imaging Radar Lidar-like performance at the right price point

SCHEMATIC

ESTIMATED COST

Fabrication Components

(material, joints, etc.)

Radar Sensor Chip + PCB +

Components

Power supply

Estimated Cost - INR 24,000

- INR 2500

- INR 20,000

- INR 1500

WHAT'S NEXT?

- Solid platform on MATLAB for testing the proposed algorithm.
- Testing the hardware using humans for detecting vital signs.
- This project can also be extended to multiple other applications