21. Resolver $x \cos y y''' - 3x \sin y y' y'' - \cos y y'' x \cos y (y')^3 + \sin y (y')^2 + x \cos y y' - \sin y = 0$.

Como $\frac{d}{dx}(\frac{\sin y}{x}) = \frac{x \cos y \ y' - \sin y}{x^2}$, los últimos dos términos de la ecuación dada sugieren $\frac{1}{x^2}$ como

un posible factor integrante. Empleándole e integrando,

$$\frac{\cos y \ y'' - \sin y \ (y')^2}{x} + \frac{\sin y}{x} = C_1 \qquad \text{o} \qquad \cos y \ y'' - \sin y \ (y')^2 + \sin y = C_1 x.$$

La sustitución sen y = z reduce esta ecuación a $z'' + z = C_1x$ cuya solución completa es

$$z = \operatorname{sen} y = C_1 x + C_2 \cos x + C_3 \sin x.$$

PROBLEMAS PROPUESTOS

Resolver

22.
$$y'' + (y')^2 + 1 = 0$$

23.
$$(1+x^2)y'' + 2xy' = 2x^{-5}$$

24.
$$xy'' - y' = -2/x - \ln x$$

25.
$$y''' + y'' = x^2$$

26.
$$yy'' + (y')^3 = 0$$

27.
$$yy'' + (y')^2 = 2$$

28.
$$yy'' = (y')^2 (1 - y' \cos y + yy' \sin y)$$
 $x = C_1 + C_2 \ln y + \sin y$

29.
$$(2x-3)y''' - (6x-7)y'' + 4xy' - 4y = 8$$
 $y = C_1x + C_2e^x + C_3e^{2x} - 2$

Sol. $y = \ln \cos(x - C_1) + C_2$

$$y = C_1 + C_2 \text{ arc tg } x + 1/x$$

24.
$$xy'' - y' = -2/x - \ln x$$
 $y = C_1x^2 + C_2 + (x+1) \ln x$

$$y = C_1 e^{-x} + C_2 x + C_3 + x^2 (x^2 - 4x + 12)/12$$

$$x = C_1 + C_2 y + y \ln y$$

$$y^2 = 2x^2 + C_1x + C_2$$

$$x = C_1 + C_2 \ln y + \operatorname{sen} y$$

$$y = C_1 x + C_2 e^x + C_3 e^{2x} - 2$$

Sugerencia: y = x es una integral particular de la ecuación reducida.

30.
$$(2x^5-1)y'''-6x^2y''+6xy'=0$$
 $y=C_1(x^4+4x)+C_2x^2+C_2$

30.
$$(2x^{3}-1)y''' - 6x^{2}y'' + 6xy' = 0$$

31. $yy'' - (y')^{2} = y^{2} \ln y$

Sugerencia: Utilizar ln
$$y = z$$
.

32.
$$(x + 2y)y'' + 2(y')^2 + 2y' = 2$$

32.
$$(x + 2y)y'' + 2(y')^2 + 2y' = 2$$

32.
$$(x + 2y)y'' + 2(y') + 2y' = 2$$

$$(x + 2y)y'' + 2(y') + 2y' = 2$$

33.
$$(1+2y+3y^2)y'''+6y'[y''+(y')^2+3yy'']=x$$
 $y+y^2+y^3=C_1x^2+C_2x+C_3+x^4/24$

33.
$$(1+2y+3y)y+6y'[y''+(y')+3yy'']=x'$$
 $y+y$
34. $3x[y^2y'''+6yy'y''+2(y')^3]=3y[yy''+2(y')^2]=-2/x$

Sugerencia:
$$1/x^2$$
 es un factor integrante. Sol. $y^3 = C_1 x^3 + C_2 x + C_3 + x \ln x$

35.
$$yy''' + 3y'y'' - 2yy'' - 2(y')^2 + yy' = e^{2x}$$
 Sol. $y^2 = C_1 + C_2e^x + C_3xe^x + e^{2x^2}$

$$y(x+y) = x^2 + C_1x + C_2$$

 $\ln y = C_1 e^x + C_2 e^{-x}$

$$y^2 + y^3 = C_1 x^2 + C_2 x + C_3 + x^4/2$$

$$y^3 = C_1 x^3 + C_2 x + C_3 + x \ln x$$

Sol.
$$y^2 = C_1 + C_2 e^x + C_3 x e^x + e^{2x^3}$$

Sugerencia: e^{-x} es un factor integrante. Resuélvase también empleando $y^2 = v$.

36. $2(y+1)y'' + 2(y')^2 + y^2 + 2y = 0$ Sol. $y^2 + 2y = C_1 \cos x + C_2 \sin x$

Sol.
$$y^2 + 2y = C_1 \cos x + C_2 \sin x$$

Sugerencia: Utilizar $y^2 + 2y = v$.