Prova sem consulta. Duração: 2h.

1ª Prova de Avaliação

- * Todas as folhas devem ser identificadas com o nome completo. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular gráficas e microcomputadores;
- * Resolva cada um dos dois grupos utilizando folhas de capa distintas.

GRUPO I

- 1. [3,8] Seja a função vetorial $r(t) = (1 + \cos(t), 1 \cos(t), \sqrt{2}\sin(t))$, $t \in [0, \pi]$. Calcule:
 - a) Os versores da tangente e da normal principal à curva no ponto $P = (1, 1, \sqrt{2})$.
 - **b**) A equação cartesiana do plano osculador à curva no ponto P.
- **2.** [3,8] Calcule a derivada direcional da função de campo escalar $f(x, y, z) = yxe^{xz} + z^2$ no ponto R = (1, -1, 0), na direção do vetor normal à superfície $x^2yz - y^2 + xz^2 = -1$ nesse ponto.
- 3. [2,2] Calcule os pontos críticos de $f(x, y) = x^2y y^2 x^2$ e classifique-os.

GRUPO II

- **4.** [4,0] A equação $x \ln(y) + y^2 z + z^2 = 6$ define z como função implícita de x e y na vizinhança do ponto Q = (1,1,2). Obtenha as derivadas $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ e $\frac{\partial^2 z}{\partial y \partial x}$ em Q.
- **5.** [4,2] Considere o integral duplo $\int_{1}^{0} \int_{0}^{2x+2} y \, dy dx + \int_{0}^{1} \int_{x}^{2-x^2} y \, dy dx.$
 - a) Esboce o domínio de integração.
 - **b**) Calcule o valor do integral.
 - c) Reescreva-o trocando a ordem de integração.
- **6.** [2,0] Seja $r(t): \mathbb{R} \to \mathbb{R}^3$ uma curva regular. Sendo k(t) a sua curvatura, mostre que:
 - a) $r''(t) = ||r'(t)||' T(t) + k(t) ||r'(t)||^2 N(t)$.
 - **b**) $k(t) = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}$.