

EC2x&EG9x&EG25-G Series QuecOpen Low Power Mode Application Note

LTE Standard Module Series

Version: 1.0.0

Date: 2020-11-05

Status: Preliminary

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: info@quectel.com

Or our local office. For more information, please visit: http://www.quectel.com/support/sales.htm.

For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm or email to support@quectel.com.

GENERAL NOTES

QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

DISCLAIMER

WHILE QUECTEL HAS MADE EFFORTS TO ENSURE THAT THE FUNCTIONS AND FEATURES UNDER DEVELOPMENT ARE FREE FROM ERRORS, IT IS POSSIBLE THAT THESE FUNCTIONS AND FEATURES COULD CONTAIN ERRORS, INACCURACIES AND OMISSIONS. UNLESS OTHERWISE PROVIDED BY VALID AGREEMENT, QUECTEL MAKES NO WARRANTIES OF ANY KIND, IMPLIED OR EXPRESS, WITH RESPECT TO THE USE OF FEATURES AND FUNCTIONS UNDER DEVELOPMENT. TO THE MAXIMUM EXTENT PERMITTED BY LAW, QUECTEL EXCLUDES ALL LIABILITY FOR ANY LOSS OR DAMAGE SUFFERED IN CONNECTION WITH THE USE OF THE FUNCTIONS AND FEATURES UNDER DEVELOPMENT, REGARDLESS OF WHETHER SUCH LOSS OR DAMAGE MAY HAVE BEEN FORESEEABLE.

COPYRIGHT

THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCING, DISSEMINATING AND EDITING THIS DOCUMENT AS WELL AS USING THE CONTENT WITHOUT PERMISSION ARE FORBIDDEN. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2020. All rights reserved.

About the Document

Revision History

Version	Date	Author	Description
-	2020-10-05	Gale GAO/ Young XU	Creation of the document
1.0.0	2020-11-05	Gale GAO/ Young XU	Preliminary

Contents

Ab	out the	Documen	t	
Со	ntents			3
Tal	ole Inde	x		4
Fig	ure Ind	ех		5
1	Introd	uction		6
			le Modules	
2	Low P	ower Mod	le	7
	2.1.	Low Powe	er Mode Status Diagram	7
	2.2.	Solution to	Wake up from Sleep	8
3	LPM F	Related AP	Pls	10
	3.1.	Header Fil	le	10
	3.2.	API Descr	ription	10
	3.	2.1. QL	_Lpm_Init	10
		3.2.1.1.	QL_Lpm_Handler_T	11
	3.	2.2. QL	_Lpm_Deinit	11
	3.	2.3. QI_	_Autosleep_Enable	11
	3.	2.4. QI_	SLP_WakeLock_Create	12
	3.	2.5. QI_	_SLP_WakeLock_Lock	13
	3.	2.6. QI_	SLP_WakeLock_Unlock	13
	3.	2.7. QI_	SLP_WakeLock_Destroy	14
4	Curre	nt Consun	nption	15
5	Preca	utions		19
	5.1.	Unable to	Enter LPM	19
	5.2.	Wake up f	rom Sleep Unexpectedly	20
	5.3.	High Curre	ent Consumption in LPM	21
6	Apper	ndix A Ref	erences	23

Table Index

Table 1: Events in the Solution to Wake up from Sleep	8
Table 2: Power Consumption under Different Networks (3.3V VBAT Powered)	15
Table 3: Common NAS Wakeup Messages	21
Table 4: Abbreviations	23

Figure Index

Figure 1: Low Power Mode Status	/
Figure 2: Solution to Wake up from Sleep	8
Figure 3: KEYSIGHT Current Consumption Diagram	. 22

1 Introduction

Quectel LTE Standard EC2x series, EG9x series and EG25-G modules support QuecOpen® solution. This document introduces the QuecOpen® low power mode (LPM) based on Linux autosleep and wakelock features. The autosleep and wakelock features are contradictory communities, which respectively implement the sleep and wake-up functions of the module.

- Autosleep: After enabling the autosleep, the module always has the tendency to freeze the process, suspend peripheral devices and force the CPU to sleep.
- Wakelock: If the kernel or any application holds one or more wakelocks, it inhibits the module from going to sleep.

1.1. Applicable Modules

Table 1: Applicable Modules

Module Series	Module
	EC25 series
EC2x series	EC21 series
	EC20 R2.1
EG9x series	EG95 series
EGAX Selles	EG91 series
EG25-G	EG25-G

2 Low Power Mode

2.1. Low Power Mode Status Diagram

Figure 1: Low Power Mode Status

2.2. Solution to Wake up from Sleep

Figure 2: Solution to Wake up from Sleep

Table 1: Events in the Solution to Wake up from Sleep

State		Event	Description	
Initial state		D	The wakeup_out pin outputs high level, so that the initial state of the "F" pin of the MCU is in high level	
Initial state		G	The MCU pin outputs high level, so that wakeup_in pin is high level	
QuecOpen suspend	Module	E	When the wakeup_in pin receives a falling edge, the application will release the wakelock. When the module enters low power mode, the wakeup_out pin automatically outputs low and feedback to the MCU	
QuecOpen	pen Module	A/B/C/E	When the module is waken up by these wake-up events, the application needs to lock the wakelock	
awake		D	When A, B, C, E events occur, D controls the wakeup_out pin to output high level, wake up/feedback to MCU	

NOTE

 For examples of D event, please refer to: ql-ol-extsdk/example/low_power_consume_app/example_lpm.c

3 LPM Related APIs

3.1. Header File

The API header file *ql_lpm.h* is located in the *ql-sdk/ql-ol-extsdk/example/wakelock/main.c* directory. Unless otherwise stated, the header files mentioned in this document are in the *ql-sdk/ql-ol-extsdk/example/wakelock/main.c* directory.

3.2. API Description

3.2.1. QL_Lpm_Init

This function initializes the low power mode. The module automatically loads the ql_lpm driver, and at the same time monitor the wakeup_in pin state changes to notify *ql_lpm_handler*.

Prototype

int QL_Lpm_Init(QL_Lpm_Handler_T ql_lpm_handler, QL_Lpm_Cfg_T *ql_lpm_cfg)

Parameter

ql_lpm_handler.

[In] User callback. This callback function is called once there is any change in wakeup_in pin level.

ql_lpm_cfg:

[In] User parameter data structure. It supports to configure pins and trigger mode; it is recommended to input NULL (by using the default pin and trigger mode).

Return Value

- 0 Indicates the function is executed successfully
- -1 Indicates the function fails to be executed

3.2.1.1.QL_Lpm_Handler_T

If this function is registered through *QL_Lpm_Init*, it is triggered when the wakeup_in pin level changes.

Prototype

typedef void (*QL_Lpm_Handler_T) (ql_lpm_edge_t lpm_edge)

Parameter

Ipm_edge:

[In] Edge change of wakeup_in pin level reported by the lower layer

E_QL_LPM_FALLING Falling edge E_QL_LPM_RISING Rising Edge

Return Value

None.

3.2.2. QL_Lpm_Deinit

This function deinitializes the low power mode, uninstalls the ql_lpm kernel module, and deinitializes the handler.

Prototype

int QL_Lpm_Deinit()

Parameter

NA

Return Value

- 0 Indicates the function is executed successfully
- -1 Indicates the function fails to be executed

3.2.3. QI_Autosleep_Enable

This function enables the autosleep feature. After the autosleep feature is enabled, the system automatically goes to sleep after meeting certain conditions

Prototype

int QI_Autosleep_Enable(char enable)

Parameter

enable:

- [In] Enable the autosleep feature or not
 - Enable autosleep
 - Cancel autosleep (Normally it is not used. If the module needs to be awake, please call QI_SLP_WakeLock_Lock to lock the wakelock after waking up the system to keep the system awake.)

Return Value

- Indicates the function is executed successfully 0
- -1 Indicates the function fails to be executed

NOTE

After autosleep is enabled by QI_Autosleep_Enable, it is generally recommended to call QI_SLP_WakeLock_Lock to keep the system awake instead of QI_Autosleep_Enable(0). QI_SLP_WakeLock_Unlock can release the wakelock to give up the sleep lock. See Chapter 3.2.5 and Chapter 3.2.6 for details. All process is frozen after the system goes into sleep and continues operating once the system wakes up from sleep mode.

3.2.4. QI_SLP_WakeLock_Create

This function creates the wakelocks. The owner of the wakelocks created by this interface is the current process. It supports to create maximum 512 wakelocks.

Prototype

int QI_SLP_WakeLock_Create(const char *name, size_t len)

Parameter

name:

[In] Wakelock name which is reflected in /sys/kernel/debug/wakeup_sources.

len:

[In] The length of the wakelock name. The maximum length is 28 characters.

Return Value

Wakelock descriptor Indicates the function is executed successfully. Please check the error codes

through errno.

-1 Indicates the function fails to be executed

3.2.5. QI_SLP_WakeLock_Lock

This function locks the created wakelocks. After locking the wakelocks, Linux cannot enter low power mode.

Prototype

int QI_SLP_WakeLock_Lock(int fd)

Parameter

fd:

[In] Wakelock descriptor

Return Value

- 0 Indicates the function is executed successfully
- -1 Indicates the function fails to be executed

3.2.6. QI_SLP_WakeLock_Unlock

This function unlocks the specified wakelocks. If there is no other wakelock in the system, and the application has enabled the autosleep feature, Linux enters low power mode.

Prototype

int QI_SLP_WakeLock_Unlock(int fd)

Parameter

fd:

[In] Wakelock descriptor

Return Value

- 0 Indicates the function is executed successfully
- -1 Indicates the function fails to be executed

3.2.7. QI_SLP_WakeLock_Destroy

This function destroys the wakelocks.

Prototype

int QI_SLP_WakeLock_Destroy(int fd)

Parameter

fd:

[In] Wakelock descriptor

Return Value

- 0 Indicates the function is executed successfully
- -1 Indicates the function fails to be executed

4 Current Consumption

The current consumption of LTE Standard QuecOpen modules under different networks is shown in the table below:

Table 2: Power Consumption under Different Networks (3.3V VBAT Powered)

Parameter	Mode	Condition	Typical value	Unit
	Power-off	The module is powered off	12	uA
		AT+CFUN=0(Disconnect the USB)	1.11	mA
		EGSM @DRX=2(Disconnect the USB)	2.21	mA
		EGSM @DRX=5(Disconnect the USB)	1.67	mA
		EGSM @DRX=5(Suspend the USB)	1.91	mA
		EGSM @DRX=9(Disconnect the USB)	1.51	mA
	LPM	DCS @DRX=2(Disconnect the USB)	2.02	mA
		DCS @DRX=5(Disconnect the USB)	1.45	mA
I _{VBAT}		DCS @DRX=5(Suspend the USB)	1.64	mA
		DCS @DRX=9(Disconnect the USB)	1.32	mA
		TD-SCDMA Band A @PF=64 (disconnect the USB)	2.03	mA
		TD-SCDMA Band A @PF=128 (disconnect the USB)	1.67	mA
		TD-SCDMA Band A @PF=256 (disconnect the USB)	1.56	mA
		TD-SCDMA Band A @PF=512 (disconnect the USB)	1.42	mA
		BC0 @SCI=1(Disconnect the USB)	3.45	mA
		BC0 @SCI=1(Suspend the USB)	3.74	mA

	WCDMA @PF=64(Disconnect the USB)	2.02	mA
	WCDMA @PF=64(Suspend the USB)	2.17	mA
	WCDMA @PF=128(Disconnect the USB)	1.71	mA
	WCDMA @PF=256(Disconnect the USB)	1.42	mA
	WCDMA @ PF=512(Disconnect the USB)	1.33	mA
	LTE-FDD @PF=32(Disconnect the USB)	3.37	mA
	LTE-FDD @PF=64(Disconnect the USB)	2.27	mA
	LTE-FDD @PF=64(Suspend the USB)	2.53	mA
	LTE-FDD @PF=128(Disconnect the USB)	1.86	mA
	LTE-FDD @PF=256(Disconnect the USB)	1.52	mA
	LTE-TDD @PF=32(Disconnect the USB)	3.41	mA
	LTE-TDD @PF=64(Disconnect the USB)	2.27	mA
	LTE-TDD @PF=64(Suspend the USB)	2.51	mA
	LTE-TDD @PF=128(Disconnect the USB)	1.71	mA
	LTE-TDD @PF=256(Disconnect the USB)	1.42	mA
	EGSM @DRX=5(Disconnect the USB)	17.54	mA
	EGSM @DRX=5(Connect by USB)	27.67	mA
	BC0 @SCI=1(Disconnect the USB)	18.92	mA
	BC0 @SCI=1(Connect by USB)	29.08	mA
Lelle	TD-SCDMA Band A @PF=64 (Disconnect the USB)	17.61	mA
Idle	TD-SCDMA Band A @PF=64 (Connect by USB)	27.60	mA
	WCDMA @PF=64(Disconnect the USB)	17.92	mA
	WCDMA @PF=64(Connect by USB)	28.00	mA
	LTE-FDD @PF=64(Disconnect the USB)	17.84	mA
	LTE-FDD @PF=64(Connect by USB)	27.94	mA

		LTE-TDD @ PF=64(Disconnect the USB)	18.11	mA
		LTE-TDD @ PF=64(Connect by USB)	28.08	mA
		GSM900 4DL/1UL @32.62 dBm	246.8	mA
		GSM900 3DL/2UL @32.45 dBm	418.3	mA
		GSM900 2DL/3UL @30.73 dBm	513.2	mA
	GPRS data	GSM900 1DL/4UL @29.75 dBm	594.3	mA
	transmission (GNSS is disabled)	DCS1800 4DL/1UL @29.57 dBm	170.8	mA
		DCS1800 3DL/2UL @29.45 dBm	274.9	mA
		DCS1800 2DL/3UL @29.28 dBm	374.8	mA
		DCS1800 1DL/4UL @29.11 dBm	475.5	mA
		GSM900 4DL/1UL @27.24 dBm	157.3	mA
	EDGE data transmission (GNSS is disabled)	GSM900 3DL/2UL @27.14 dBm	258.8	mA
		GSM900 2DL/3UL @27.01 dBm	358.3	mA
		GSM900 1DL/4UL @26.91 dBm	461.0	mA
		DCS1800 4DL/1UL @25.85 dBm	143.4	mA
		DCS1800 3DL/2UL @25.57 dBm	235.2	mA
		DCS1800 2DL/3UL @25.55 dBm	323.7	mA
		DCS1800 1DL/4UL @25.22 dBm	415.7	mA
	CDMA/TD-SCDMA	BC0 @23.98 dBm	600.7	mA
	data transmission	TD-SCDMA Band A @23.42 dBm	130.6	mA
	(GNSS is disabled)	TD-SCDMA Band F @23.32 dBm	131.9	mA
		WCDMA B1 HSDPA @21.06 dBm	503.8	mA
	WCDMA data	WCDMA B1 HSUPA @20.56 dBm	500.6	mA
	transmission (GNSS is disabled)	WCDMA B8 HSDPA @21.16 dBm	469.5	mA
		WCDMA B8 HSUPA @20.83 dBm	527.2	mA

	LTE-FDD B1 @22.04 dBm	709.7	mA
	LTE-FDD B3 @22.87 dBm	717.1	mA
	LTE-FDD B5 @22.11 dBm	609.6	mA
LTE data	LTE-FDD B8 @22.40 dBm	609.4	mA
transmission (GNSS is disabled)	LTE-TDD B38 @22.75 dBm	434.4	mA
	LTE-TDD B39 @22.90 dBm	336.5	mA
	LTE-TDD B40 @23.04 dBm	360.5	mA
	LTE-TDD B41 @22.95 dBm	403.8	mA
	GSM900PCL=5 @32.71 dBm	244.4	mA
	GSM900PCL=12 @19.53 dBm	111.7	mA
GSM voice call	GSM900PCL=19 @5.69 dBm	81.2	mA
GSIVI Voice call	DCS1800 PCL=0 @29.64 dBm	165.6	mA
	DCS1800 PCL=7 @16.66 dBm	126.4	mA
	DCS1800 PCL=15 @0.41 dBm	105.0	mA
CDMA voice call	BC0 @24.09 dBm	686.3	mA
CDIVIA VOICE CAII	BC0 @-60.12 dBm	114.3	mA
WCDMA voice call	WCDMA B1 @23.01 dBm	607.9	mA
WODIVIA VOICE CAII	WCDMA B8 @22.57 dBm	542.3	mA

5 Precautions

5.1. Unable to Enter LPM

If the wakelocks are released in the application, but the module still cannot enter LPM, you can use the following command to view the wakelocks held by the current system:

```
awk '$6 != 0 {print $1" "$6}' /sys/kernel/debug/wakeup_sources
```

Case 1: If msm_otg is output, it means that the usb_vbus pin is in high level and needs to be pulled low to enter LPM.

```
~ # awk '$6 != 0 {print $1" "$6}' /sys/kernel/debug/wakeup_sources
name active_since
msm_otg 77464
~ #
```

Case 2: If **DATA1** is output, it means that the GPS data is restricting the module from going to sleep. Call QL_LOC_Stop_Navigation () to disable the GPS feature. After that, the module enters LPM.

```
~ # awk '$6 != 0 {print $1" "$6}' /sys/kernel/debug/wakeup_sources
name_active_since

DATA1 448

msm_otg 1105442

~ #
```

Case 3: If bam_dmux_wakelock is output, it means that there is data transmission on rmnet_data internet access, and the data transmission needs to be stopped to enter LPM.

```
~ # awk '$6 != 0 {print $1" "$6}' /sys/kernel/debug/wakeup_sources
name active since
bam_dmux_wakelock 1714
msm_otg 226735
~ #
```

Case 4: If the Wi-Fi function is enabled, call *ql_wifi_disable()* to enter LPM by disabling the Wi-Fi function.

Case 5: If the Ethernet is enabled, call *ql_sgmii_disable()* to enter LPM by disabling Ethernet.

5.2. Wake up from Sleep Unexpectedly

To check whether the module wakes up from LPM unexpectedly, KEYSIGHT power source is one of the method to capture the current consumption; the other one is using Debug UART port of the module to capture the logs. The logs can be analyzed to find out the reasons to confirm whether it is an unexpected wake-up.

First, execute the following commands:

```
~ # echo 1 > /sys/module/printk/parameters/perf_mode_console
```

- ~ # echo 1 > /sys/module/msm_show_resume_irq/parameters/debug_mask
- ~ # echo 0x2 > /sys/module/ipc router core/parameters/debug mask

Then, call the relevant APIs to put the module into LPM and observe the logs. If the following logs are printed, it indicates that the module may have been unexpectedly waken up:

```
[ 113.386694] gic_show_resume_irq: 57 triggered qcom,smd-modem
[ 113.386694] gic_show_resume_irq: 200 triggered qcom,smd-rpm
[ 113.386694] resume cycles: 2542257600
[ 113.388512] [IPCRTR] CLI RX Len:0xd T:0x1 CF:0x0 SVC:<0x3:0x1> SRC:<0x3:0x11> DST:<0x1:0x43> DATA: 51000b04 13000600
[ 113.388520] PM: noirq resume of devices complete after 0.975 msecs
[ 113.389994] PM: early resume of devices complete after 1.088 msecs
```

If the above logs are printed, it means that one of the following situations may occur:

Case 1: Print gic_show_resume_irq: 57 triggered qcom,smd-modem

- 57 indicates that the modem sends a QMI message to the AP through SMD;
- If it is 58, it means that there are IP packets sent to AP.

Case 2: Print [IPCRTR] CLI RX Len:0xd T:0x1 CF:0x0 SVC:<0x3:0x1> SRC:<0x3:0x11> DST:<0x1:0x43> DATA: 51000b04 13000600

- CLI RX indicates that the QMI client received a message, which may be a response or an indication.
 In this case, it needs to be distinguished by the DATA field.
- SVC: <0x3:0x1>: 0x3 represents QMI MSG ID: NAS
- DATA: 51000b04 13000600: This field is 13000600 51000b04 in reverse order, where 04 field represents an indication, and 51 field represents MI_NAS_SIG_INFO_IND, which is the QMI MSG reporting the status change due to the change in signal strength.

Table 3: Common NAS Wakeup Messages

NAS Wakeup Messages	Field	Description
QMI_NAS_ERR_RATE_IND	0x0053	Provide specific RAT error rate information
QMI_NAS_SIG_INFO_IND	0x0051	Provide information on changes in signal strength status
QMI_NAS_RF_BAND_INFO_IND	0x0066	Report current RF band information
QMI_NAS_SYS_INFO_IND	0x004E	Indicates changes in system information
QMI_NAS_SERVING_SYSTEN_IND	0x0024 indication	Indicates the current service system registration status and/or changes in radio technology (not recommended)

5.3. High Current Consumption in LPM

If the average current consumption is still high after the module enters LPM, there may be three types of reasons: unexpected wakeup, bottom current, and RF (network, frequency band, etc.). The troubleshooting steps are as follows:

Step 1: Use the module's Debug UART to capture the logs. First confirm whether the module wakes up unexpectedly. Please refer to *Chapter 5.2* for details.

Step 2: If no unexpected wakeup is found in **Step 1**, check whether the bottom current is too high. Execute **AT+CFUN=0** to turn off the radio frequency interference, and observe whether the bottom current is still too high (normally below 1.5 mA); if the bottom current is still high, check whether the pin forms a leakage circuit with the external circuit and causes the bottom current to be high.

Step 3: If current consumption in LPM is still high after excluding **Step 1** and **Step 2**, use KEYSIGHT Power Supply to capture the accurate current consumption diagram to view the reasons, as shown in the following figure:

Figure 3: KEYSIGHT Current Consumption Diagram

6 Appendix A References

Table 4: Abbreviations

Abbreviation	Description
AP	Access Point
API	Application Program Interface
APN	Access Point Name
CPU	Central Processing Unit
DRX	Discontinuous Reception
GNSS	Global Navigation Satellite System
GPIO	General-purpose input/output
GSM	Global System for Mobile Communication
LPM	Low Power Mode
LTE	Long Term Evolution
MCU	Microcontroller Unit
NAS	Network Access Serve
QMI	QUALCOMM Message Interface
RF	Radio Frequency
SMS	Short Messaging Service
UART	Universal Asynchronous Receiver/Transmitter
USB	Universal Serial Bus
WCDMA	Wideband Code Division Multiple Access