Angewandte Mathematik Komplexe Zahlen

Dr. Marcel Ritter
Univ.-Prof. Dr. Matthias Harders
Sommersemester 2022

Motivation

Quaternionen (Erweiterung der komplexen Zahlen)
 zur Darstellung von Rotationen (z.B. in der Robotik)

@igs

Angewandte Mathematik für die Informatik – SS2022

Motivation

 Verwendung der komplexer Zahlen in der Notation der Fourier-Transformation (z.B. Epizyklen-Zeichnung)

Angewandte Mathematik für die Informatik – SS2022

Inhalt

- Komplexe Zahlen
- Komplexe Nullstellen
- Eulersche Formel
- Fourier-Transformation
- Quaternionen

Angewandte Mathematik für die Informatik – SS2022

Komplexe Zahlen

 Die Menge C der komplexen Zahlen ist ein K\u00f6rper (siehe auch VL Lineare Algebra)

$$\mathbb{C} = \{a + ib \mid a, b \in \mathbb{R}\}\$$

• Auf dem Körper $(\mathbb{C},+,\cdot)$ der komplexen Zahlen sind Addition und Multiplikation definiert als

$$(a+ib)+(c+id)=((a+c)+i(b+d))$$

$$(a+ib)\cdot(c+id)=((ac-bd)+i(ad+bc))$$

Hierbei wird die imaginäre Zahl (Einheit) i verwendet, für welche gilt:

$$i^2 = -1$$
 $i = \sqrt{-1}$

Angewandte Mathematik für die Informatik – SS2022

Komplexe Zahlen

- Eine Zahl $z = (a + ib) \in \mathbb{C}$ kann auch als Tupel (a,b) geschrieben werden
- Man erhält den Realteil von z durch die Abbildung Re(z) = a, sowie den Imaginärteil durch Im(z) = b
- Somit kann eine reelle Zahl $x \in \mathbb{R}$ dargestellt werden als komplexe Zahle $(x, 0) = (x + i \cdot 0)$ in \mathbb{C}
- Insbesondere ist somit $\mathbb R$ eine Teilmenge von $\mathbb C$
- Für komplexe Zahlen z = (a + ib) existieren konjugiert komplexe Zahlen $\overline{z} = (a ib)$; mit diesen gilt:

$$z = z_1/z_2 = (z_1/z_2) \cdot (\overline{z}_2/\overline{z}_2) = (z_1 \cdot \overline{z}_2)/|z_2|^2$$

Angewandte Mathematik für die Informatik – SS2022

Komplexe Zahlenebene

• Komplexe Zahlen können als Punkte in der Ebene \mathbb{R}^2 über ihren Real- und Imaginärteil dargestellt werden

Komplexe Zahlenebene

Beispieloperationen – geometrische Interpretation

Komplexe Zahlenebene

Beispieloperationen – geometrische Interpretation

Komplexe Zahlenebene

Potenzen der imaginären Einheit

Komplexe Zahlenebene

Beispiele einiger Bereiche der Ebene

Mandelbrot-Menge

@igs

• Gegeben als Menge M von komplexen Zahlen c, für die die folgende quadratische Rekursionsgleichung (oder Folge) für z_n begrenzt bleibt

Inhalt

- Komplexe Zahlen
- Komplexe Nullstellen
- Eulersche Formel
- Fourier-Transformation
- Quaternionen

Angewandte Mathematik für die Informatik – SS2022

Fundamentalsatz der Algebra

- Jedes nicht-konstante Polynom mit komplexen Koeffizienten hat mindestens eine Nullstelle in C
- Ebenso hat jedes nicht-konstante Polynom vom Grad n mit komplexen Koeffizienten genau n komplexe Nullstellen (unter Berücksichtigung der Vielfachheit)
- Beispiele:

$$x^2 + 1 = 0$$

$$\Leftrightarrow x = \pm i$$

$$x^2 + 1 = 0$$
 $\Leftrightarrow x = \pm i$ $(x-i)(x+i) = 0$

$$x^3 - x^2 + x - 1 = 0$$
 <

$$x^3 - x^2 + x - 1 = 0$$
 $\iff x = \pm i \lor x = 1$ $(x - i)(x + i)(x - 1) = 0$

Fundamentalsatz der Algebra

• Weiteres Beispiel: $f(x) = x^5 - 3x^4 + 4x^3 - 2x^2$

Inhalt

- Komplexe Zahlen
- Komplexe Nullstellen
- Eulersche Formel
- Fourier-Transformation
- Quaternionen

Eulersche Formel

 Erweiterung der Definition der Exponentialfunktion auf komplexe Zahlen

$$e^{\mathrm{i}x} = \cos x + \mathrm{i}\sin x$$
 $x \in \mathbb{R}$

Angewandte Mathematik für die Informatik – SS2022

16

Eulersche Formel

- Herleitung über Taylorreihen von e^x , $\sin x$ und $\cos x$
 - Siehe Proseminar

m

Angewandte Mathematik für die Informatik – SS202

Eulersche Formel

■ Jede komplexe Zahl $z = (a + ib) \neq 0$ kann somit auch dargestellt werden in der Form

$$z = r \cdot e^{i\varphi}$$

• Es gilt mit einer komplexen Zahl z = (a + ib)

$$e^z = e^{a+ib} = e^a \cdot e^{ib} = e^a \left(\cos b + i\sin b\right)$$

Damit z.B. auch

$$z = z_1 \cdot z_2 = \left(r_1 \cdot e^{i\varphi_1}\right) \left(r_2 \cdot e^{i\varphi_2}\right) = r_1 \cdot r_2 \cdot e^{i(\varphi_1 + \varphi_2)}$$
 (Addition der Winkel)

• Darstellung komplexer Zahlen somit auch in Form von Polarkoordinaten (r, φ)

Angewandte Mathematik für die Informatik - SS2022

18

Komplexe Exponentialfunktion

• Die komplexe Exponentialfunktion ist periodisch mit der Periode $2\pi i$; mit komplexer Zahl z = (a + ib):

$$e^{z+k2\pi i} = e^{a+i(b+k2\pi)}$$

$$= e^{a}\cos(b+k2\pi)+i\sin(b+k2\pi)$$

$$= e^{a}\cos(b)+i\sin(b) = e^{a}e^{ib} = e^{z}$$

 Zusammenhang zwischen Trigonometrischen Funktionen und komplexen Exponentialfunktionen

$$\cos x = \text{Re}(e^{ix}) = \frac{e^{ix} + e^{-ix}}{2}$$
 $\sin x = \text{Im}(e^{ix}) = \frac{e^{ix} - e^{-ix}}{2i}$

Angewandte Mathematik für die Informatik – SS202

Eulersche Formel

Zusammenhang graphisch:

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

Angewandte Mathematik für die Informatik – SS2022

20

Eulersche Formel

Zusammenhang graphisch:

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

https://www.geogebra.org/calculator/rgtfghv

Angewandte Mathematik für die Informatik – SS2022

Inhalt

- Komplexe Zahlen
- Komplexe Nullstellen
- Eulersche Formel
- Fourier-Transformation
- Quaternionen

Fourier-Transformation

• Die (kontinuierliche) Fourier-Transformation einer integrierbaren, reellen, skalaren Funktion f(x) ist gegeben als:

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi u \cdot x} dx$$

• Gemäß der Eulerschen Formel ist dies äquivalent zu:

$$F(u) = \int_{-\infty}^{\infty} f(x) (\cos(2\pi u \cdot x) - i\sin(2\pi u \cdot x)) dx$$

 In verwandten Schreibweisen wird manchmal der konstante Term aus dem Integral gezogen

Angewandte Mathematik für die Informatik – SS2022

Fourier-Transformation

Die entsprechende inverse Transformation lautet:

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{i2\pi x \cdot u} du$$

- Die Transformation, d.h. die Auswertung des Integrals kann auch als Operator notiert werden F(u) = F[f(x)]
- Die Fourier-Transformation kann als unendliche Summe in einer Fourier-Reihe gesehen werden, die dadurch in ein Integral übergeht
- Die diskreten Koeffizienten der Fourier-Reihe gehen damit in eine kontinuierliche Funktion über

Angewandte Mathematik für die Informatik – SS2022

23

Fourier-Transformation

Beispiele: Transformation von Signalen

Fourier-Transformation - Dirac Funktion

- Ist keine echte Funktion
 - → Linearform

- Als ,convenience' von Dirac 1930 eingeführt
 - In ,Principles of Quantum Mechanics'
- Grob:

$$\delta(x) = \begin{cases} +\infty, & x = 0 \\ 0, & x \neq 0 \end{cases} \text{ und } \int_{-\infty}^{\infty} \delta(x) dx = 1$$

■ Insbesondere: ∞

$$\int\limits_{-\infty}^{\infty}f(x)\delta(x)dx=f(0) \qquad \text{(NB: Lebesgue Integral)}$$

Angewandte Mathematik für die Informatik – SS2022

innsbi

Fourier-Transformation – Geometrische Interpretation

Ortsraum zu Frequenzraum

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi u \cdot x} dx$$

ngewandte Mathematik für die Informatik – SS20

Fourier-Transformation - JPG

- JPG Kompression:
 - Diskrete Cosinus-Transformation (DCT) in 2D
 - Aufteilen des Bildes in 8x8 Pixel Blöcke (pro Kanal)

Angewandte Mathematik für die Informatik – SS2022

Fourier-Transformation - JPG

- JPG Kompression:
 - DCT Matrix wird komponentenweise dividiert und gerundet (quantisiert)

 Die vielen entstehenden Nullen können dann komprimiert werden (diagonale Indexbereiche)

https://en.wikipedia.org/wiki/Quantization_(image_processing)#Quantization_matrices

Fourier-Transformation – Epizyklen Linearkombination von Rotationen im Komplexen Frequenz: -2 -1 0 1 2 [cylces/sec] ... Rotation: $e^{-2\,2\pi i\,t}$ $e^{-1\,2\pi i\,t}$ 1 $e^{1\,2\pi i\,t}$ $e^{2\,2\pi i\,t}$ Länge: c_{-2} c_{-1} c_0 c_1 c_2

- $c_n e^{n 2\pi i t}$ Summierte Komponente:
 - $-c_n$... Länge und Startrotation (Komplex)

$$c_n = 1$$

$$c = 2$$

$$c_n = 1$$
 $c_n = 2$ $c_n = 2 e^{i\pi/4} = \sqrt{2} + i\sqrt{2}$

Fourier-Transformation – Epizyklen

- $c_n e^{n 2\pi i t}$ Summierte Komponente:
 - $-c_n$... Länge und Startrotation (Komplex)

$$c = 1$$

$$c = 2$$

$$c_n = 1$$
 $c_n = 2$ $c_n = 2 e^{i\pi/4} = \sqrt{2} + i\sqrt{2}$

- n ... Rotationsrichtung und Geschwindigkeit

$$n = 0$$

$$n = 1$$

$$n = -i$$

- Funktion insgesamt: $f(t) = \sum_{n} c_n e^{n 2\pi i t}$
- Berechnung der Koeffizienten c_n

$$\int_0^1 f(t)dt = ?$$

Angewandte Mathematik für die Informatik – SS2022

Fourier-Transformation - Epizyklen

- Funktion insgesamt: $f(t) = \sum_{n} c_n e^{n 2\pi i t}$
- lacktriangle Berechnung der Koeffizienten c_n

$$\int_0^1 f(t)dt = ?$$

$$= \int_0^1 \left(\dots + c_{-1}e^{-1 2\pi i t} + c_0 e^{0 2\pi i t} + c_1 e^{1 2\pi i t} + c_2 e^{2 2\pi i t} + \dots \right) dt =$$

- Funktion insgesamt: $f(t) = \sum_{n} c_n e^{n 2\pi i t}$
- Berechnung der Koeffizienten c_n

$$\int_{0}^{1} f(t)dt = ?$$

$$= \int_{0}^{1} (\dots + c_{-1}e^{-12\pi i t} + c_{0}e^{02\pi i t} + c_{1}e^{12\pi i t} + c_{2}e^{22\pi i t} + \dots) dt =$$

$$= \dots \int_{0}^{1} c_{-1}e^{-12\pi i t}dt + \int_{0}^{1} c_{0}dt + \int_{0}^{1} c_{1}e^{12\pi i t}dt + \int_{0}^{1} c_{2}e^{22\pi i t}dt + \dots =$$

Angewandte Mathematik für die Informatik – SS2022

38

Fourier-Transformation - Epizyklen

- Funktion insgesamt: $f(t) = \sum_{n} c_n e^{n 2\pi i t}$
- lacktriangle Berechnung der Koeffizienten c_n

$$\int_{0}^{1} f(t)dt = ?$$

$$= \int_{0}^{1} \left(\dots + c_{-1}e^{-12\pi i t} + c_{0}e^{02\pi i t} + c_{1}e^{12\pi i t} + c_{2}e^{22\pi i t} + \dots \right) dt =$$

$$= \dots \int_{0}^{1} c_{-1}e^{-12\pi i t}dt + \int_{0}^{1} c_{0}dt + \int_{0}^{1} c_{1}e^{12\pi i t}dt + \int_{0}^{1} c_{2}e^{22\pi i t}dt + \dots =$$

Angewandte Mathematik für die Informatik – SS202

- Funktion insgesamt: $f(t) = \sum_{n} c_n e^{n 2\pi i t}$
- Berechnung der Koeffizienten c_n

$$\int_{0}^{1} f(t)dt = ?$$

$$= \int_{0}^{1} (\dots + c_{-1}e^{-12\pi i t} + c_{0}e^{02\pi i t} + c_{1}e^{12\pi i t} + c_{2}e^{22\pi i t} + \dots) dt =$$

$$= \dots \int_{0}^{1} c_{-1}e^{-12\pi i t}dt + \int_{0}^{1} c_{0}dt + \int_{0}^{1} c_{1}e^{12\pi i t}dt + \int_{0}^{1} c_{2}e^{22\pi i t}dt + \dots =$$

$$0 \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 0$$

Angewandte Mathematik für die Informatik – SS2022

2

Fourier-Transformation - Epizyklen

• Berechnung der Koeffizienten c_n

$$\begin{split} &\int_0^1 f(t) \ e^{-1 \, 2\pi i \, t} \ dt = ? \\ &= \int_0^1 \big(\dots + c_{-1} e^{(-1-1) \, 2\pi i \, t} + c_0 e^{(0-1) \, 2\pi i \, t} + c_1 e^{(1-1) \, 2\pi i \, t} \dots \big) \ dt = \end{split}$$

universite

lacktriangle Berechnung der Koeffizienten c_n

$$\int_0^1 f(t) \ e^{-1 \, 2\pi i \, t} \ dt = ?$$

$$= \int_0^1 \left(\dots + c_{-1} e^{(-1-1) \, 2\pi i \, t} + c_0 e^{(0-1) \, 2\pi i \, t} + c_1 e^{(1-1) \, 2\pi i \, t} \dots \right) \ dt =$$

$$= \dots \int_0^1 c_{-1} e^{-2 \, 2\pi i \, t} dt \ + \int_0^1 c_0 e^{-1 \, \pi i \, t} dt \ + \int_0^1 c_1 \underbrace{e^{0 \, 2\pi i \, t}}_1 dt \ + \dots =$$

Angewandte Mathematik für die Informatik – SS2022

Fourier-Transformation – Epizyklen

- Berechnung der Koeffizienten c_n
 - Kontinuierlich

$$c_n = \int_0^1 f(t) e^{-n 2\pi i t} dt$$

− Diskret mit N komplexen Zahlen (oder 2D Punkten) z_i:

$$c_n \approx \sum_{j=1}^N z_j \ e^{-n \, 2\pi i}$$

Angewandte Mathematik für die Informatik – SS202

- Näherung einer 2D Kurve über Epizyklen-koeffizienten (diskret)
 - 1. Berechnung von (vielen) Punkten entlang der Kurve
 - 2. Berechnen der Koeffizienten c_n Anzahl Koeffizienten je nach Genauigkeit der Näherung
 - 3. Näherung:

$$f(t) = \sum_{n} c_n e^{n \, 2\pi i \, t}$$

https://youtu.be/-qgreAUpPwM

Angewandte Mathematik für die Informatik – SS2022

/11

Inhalt

- Komplexe Zahlen
- Komplexe Nullstellen
- Eulersche Formel
- Fourier-Transformation
- Quaternionen

università Inniversità

Quaternionen – Ausblick

 Rotationen in 3D können mit Quaternion beschrieben werden

• Die Rotation mit einem Winkel heta um eine Achse $oldsymbol{v}$

$$q = w + v_x i + v_y j + v_z k$$

$$i^2 = j^2 = k^2 = ijk = -1$$

$$ij = k$$

$$ji = -k$$

$$ij = -ji$$

$$Q(v, \theta) = e^{\frac{\theta}{2}(v_x i + v_y j + v_z k)}$$

$$Q(\mathbf{v}, \theta) = \cos(\theta/2) + (v_x i + v_y j + v_z k) \sin(\theta/2)$$

Angewandte Mathematik für die Informatik - SS2022

12

Quaternionen – Ausblick

- Rotation durch Multiplikation (Hamiltonprodukt)
 - $q = q_B q_A (\neq q_A q_B)$ (Aneinanderreihen von Rotationen)
 - $p' = q p q^{-1}$ (Rotation einen Punktes p)
- Kompaktere Beschreibung von Rotationen in 3D
 - Matrix 3x3 Komponenten → Quaternion 4 Komponenten
- Stabilere Eigenschaften
 - Verhindert singulären Rotationszustand
- Leicht zu Interpolieren (Animationen)
- (Äquivalent zu 3D Rotor der geometrischen Algebra)

Angewandte Mathematik für die Informatik – SS2022

Einige Hilfreiche Weblinks

- "3 Blue 1 Brown" zu FT A Visual Introduction https://www.youtube.com/watch?v=spUNpyF58BY
- Aktuelles zu JPG https://jpeg.org
- "3 Blue 1 Brown" zu Epizyklen-Zeichnungen (u.a.) https://www.youtube.com/watch?v=r6sGWTCMz2k

Angewandte Mathematik für die Informatik – SS2022

44

Vorlesungsplan

Datum	Thema	Proseminar
11.03.22	Einführung, Grundlagen, Funktionen	(Beginn zuvor am 8.3.)
18.03.22	Differentialrechnung	
25.03.22	Integralrechnung	
01.04.22	Differentialgleichungen	
08.04.22	Weitere Funktionen	
Osterferien		
29.04.22	Reihen und Folgen	
06.05.22	Numerische Auswertung von Funktionen	
13.05.22	Lösung von Gleichungssystemen	
20.05.22	Interpolation	
27.05.22	Zufallszahlen	
03.06.22	Komplexe Zahlen	
10.06.22	Klausurvorbereitung	
01.07.22	Klausur	

Angewandte Mathematik für die Informatik – SS2022