SIE WOLLEN RECHTZEITIG EIN BILD ÜBER DIE DATENQUALITÄT IHRER ANALYSEDATEN HABEN? – SAS UND JMP HELFEN IHNEN DABEI

§sas

§sas

KSFE 2013, ULM, 1. MÄRZ 2013 DR. GERHARD SVOLBA - SAS AUSTRIA

INHALT

Die Idee von "Data Quality for Analytics"

Live Demo →

Datenqualitäts-Profiling von Querschnittsdaten

Live Demo →

Datenqualitäts-Profiling von Längsschnittsdaten

Entdecken von Auffälligkeiten in den Daten

DIE IDEE VON "DATA QUALITY FOR ANALYTICS"

DER UMFANG VON DATA PREPARATION UND DATA QUALITY FOR ANALYTICS

"Das gesamte Ökosystem (Entscheidungen, Kriterien, Datenaufbereitungsschritte, fachliche Überlegungen) das zwischen der FACHLICHEN FRAGESTELLUNG und dem FINALEN ANALYTISCHEN MART liegt.

Fachliche Fragestellung

- 1. Review der fachlicher Fragestellung
- 2. Definition der Datenqualitätskriterien
- Erzeugen eines Data Marts aus den Inputdaten
- 4. Profiling des Datenqualitäts-Satus
- 5. Entscheidung über den Datenqualitätsstatus
- 6. Aufbereitung der Daten für die analytische Verwendung

analytische Mar

-inaler

DATA QUALITY FOR ANALYTICS DIE GRUNDIDEE

DER ANALYSEPROZESS UND DIE ENTSCHEIDUNG ÜBER DIE DATENQUALITÄT

ENTDECKUNG UND BEHANDLUNG VON FEHLENDEN WERTEN

IN QUERSCHNITTSDATEN

FEHLENDE WERTE IN QUERSCHNITTS-

Univariate Analyse

_		_	
	ΛΠ	ГΕ	NI
\cup	\vdash		. I N

Obs	Variable	NumberMissing	Proportion_Missing	N		EigenheimWe	rt –				
1	Alter	753	0.07	10303		KundeSe	it –				
2	EigenheimWert	945	0.09	10303		Einkomme	n -				
3	Einkommen	898	0.09	10303		Geschlech	nt -				
4	EinkommensKlasse	359	0.03	10303	99	Alte	er –				
5	EurotaxKlasse	196	0.02	10303	Variable	EinkommensKlass	e -				
6	EurotaxWert	244	0.00	40202		Eurotavillo					
7	Fuehrerscheinentzug		S-COID	177	3/177	/ N					
8	Geschlecht		% COUN		PIV	()	r				
9	KundeSeit	J27	0.00	10000				_			
10	VermahnungsPunkte	124	0.01	10303			0.00	0.02	0.04 Proportion_Miss	0.06 sing (Sum)	0.08

- Welche Variablen in meinen Daten leiden unter der "Fehlende-Werte Krankheit"?
- Betrachtung aber nur aus einer "Spalten-Perspektive"
- Nicht: Wie viele "Full-Records" habe ich?
- Nicht: Gibt es ein Muster in der Struktur der fehlenden Daten?

Multivariate Analyse bringt mehr Einblick

 Zusammenhängen der "Fehlender Wert"-Indikatoren für jede Variable zu einer Kette. Z.B: 00100100

Records mit > 4 fehlend. Werten

Records mit Fehlenden Wert in 1 Variablen

%MV_Profiling(data=EM.KFZ_STORNO_DQ,

vars= Alter AutoTyp AutoVerwendung EigenheimWert Einkommen
EinkommensKlasse

EurotaxKlasse EurotaxWert Fuehrerscheinentzug Geschlecht KundeSeit VermahnungsPunkte); Multivariate Analyse zeigt Muster in den fehlenden Werten

Variablen

Clustering

Principal

Components

FEHLENDE WERTE IN QUERSCHNITTS-DATEN

"Struktur der fehlenden Daten" Task in JMP

WERTE | ERSETZEN VON FEHLENDEN WERTEN MIT DEM | NITTS- | SAS ENTERPRISE MINER UND SAS STAT

SAS Enterprise Miner

Method

Mean

Median

Distribution

Tree

Tree Surrogate

Midrange

Mid-Minimum

Tukey's Biweight

Huber

Andew's Wave

Default constant

SAS STAT - PROC MI

```
proc mi data = CreditData
         out = CreditData MI;
 var clage mortdue value;
run;
proc logistic data = CreditData MI;
 model bad(event='1') =
           clage mortdue value / covb;
 ods output
         ParameterEstimates = Estimates
         Covb = CovMatrix;
 by Imputation;
run;
proc mianalyze parms=Estimates
               covb=CovMatrix;
 modeleffects intercept
              clage
              mortdue
              value;
run:
```

ENTDECKUNG UND BEHANDLUNG VON FEHLENDEN WERTEN

IN LÄNGSSCHNITTSDATEN

Profiling der Struktur der fehlenden Werte und der 0-Werte in Zeitreihendaten

Fehlender Wert

TS_Profile_Chain	Frequency	Percent
111111111111111111111111111111111111111	18	39.13
111111111111111111111111111111111111111	17	36.96
000000111111111111111111111111111111111	5	10.87
111111001111111110000011111111111111111	1	2.17
111111111111111111111111111111111111111	1	2.17
111111111111111111111111111111111111111	1	2.17
111111111111111111111111111111111111111	1	2.17
11111111111111111111111111111111111111		2.17
1111XX11111111111111111111111111111111	1	2.17

0 Wert

FEHLENDE WERTE IN LÄNGSSCHNITTS-DATEN

Profiling der Struktur der fehlenden Werte und der 0-Werte in Zeitreihendaten

FEHLENDE DATEN

WERTE | **ERSETZEN VON FEHLENDEN WERTEN** IN LÄNGSSCHNITTS- | MIT PROC EXPAND (SAS ETS)

	DATE	AIR	air_mv
1	JAN49	112	112
2	FEB49	118	118
3	MAR49	132	132
4	APR49	129	129
5	MAY49	121	
6	JUN49	135	135
7	JUL49	148	
8	AUG49	148	148
9	SEP49	136	136
10	OCT49	119	119
11	NOV49	104	
12	DEC49	118	118
13	JAN50	115	115
14	FEB50	126	126
15	MAR50	141	141

	date	air	air_mv	air_expand
1	JAN49	112	112	112
2	FEB49	118	118	118
3	MAR49	132	132	132
4	APR49	129	129	129
5	MAY49	121		128.29783049
6	JUN49	135	135	135
7	JUL49	148		144.73734152
8	AUG49	148	148	148
9	SEP49	136	136	136
10	OCT49	119	119	119
11	NOV49	104		116.19900978
12	DEC49	118	118	118
13	JAN50	115	115	115
14	FEB50	126	126	126
15	MAR50	141	141	141
16	APR50	135	135	135
17	MAY50	125	125	125

FEHLENDE WERTE IN LÄNGSSCHNITTS-DATEN

AUFFINDEN VON FEHLENDEN RECORDS MIT PROC TIMESERIES (SAS ETS)

ENTDECKEN VON AUFFÄLLIGKEITEN IN DEN DATEN

AUFFINDEN VON AUFFÄLLIGKEITEN MIT INDIVIDUELLEN VALIDIERUNGSLIMITS

GRAPHISCH INTERAKTIVE DQ -KONTROLLE MIT JMP

SKIZZE EINER REGATTABAHN MIT 3 BOJEN.

VISUELLE AUFDECKUNG VON FEHLERN IN DEN DATEN

GRAPHISCH INTERAKTIVE DQ -KONTROLLE MIT JMP

AUFDECKEN EINES FEHLERS BEIM EINLESEN DER DATEN

```
speed="5.854"
'2009-05-21T14:04:32+02:00"
                            heading="202.17"
                                                             lat (tude="47.
                                              speed="5.713"
                            heading="200.95"
                                                             latitude="47.
'2009-05-21T14:04:34+02:00"
                            heading="200.76"
                                              speed="5.803 latitude="47.
'2009-05-21T14:04:36+02:00"
                                              speed="5,723"
                            heading="200.03"
'2009-05-21T14:04:38+02:00"
                                                             latitude="47.
                            heading="199.16"
'2009-05-21T14:04:40+02:00"
                                              speed="3.917"
                                                             latitude="47.
                            heading="197.26"
                                              speer="5.912"
'2009-05-21T14:04:42+02:00"
                                                            latitude="47.
                            heading="200.01"
                                              sp.ed="5.755"
                                                             latitude="47.
'2009-05-21T14:04:44+02:00"
                            heading="200.18"
                                              speed="5.755"
'2009-05-21T14:04:46+02:00"
                                                             latitude="47.
                                              speed="5.55"
                            heading="205. 72
                                                            latitude="47.7
'2009-05-21T14:04:48+02:00"
                            heading="198" speed="5.405" latitude="47.785
'2009-05-21T14:04:50+02:00"
'2009-05-21T14:04:52+02:00"
                            heading="205.26"
                                              speed="5.619" latitude="47.
                            heading="195.28"
                                              speed="5.598"
                                                             latitude="47.
'2009-05-21T14:04:54+02:00"
                            heading="198.07"
'2009-05-21T14:04:56+02:00"
                                              speed="5.558" latitude="47.
                            heading="204.78"
'2009-05-21T14:04:58+02:00"
                                              speed="5.503"
                                                             latitude="47.
                            heading="207.05"
'2009-05-21T14:05:00+02:00"
                                              speed="5.295" latitude="47.
                            heading="206.9"
'2009-05-21T14:05:02+02:00"
                                             speed="5.175" latitude="47.7
                            heading="210.27"
                                              speed="5.721"
                                                            latitude="47.
'2009-05-21T14:05:04+02:00"
                            heading="204.1"
'2009-05-21T14:05:06+02:00"
                                             speed="5.468" latitude="47.7
'2009-05-21T14:05:08+02:00"
                            heading="199.92"
                                              speed="5.536"
                                                             latitude="47.
'2009-05-21T14:05:10+02:00"
                            heading="198.01"
                                              speed="5.722" latitude="47.
```

ABSCHLIESSENDE KOMMENTARE

- "Datenqualität für Analytik" ist mehr!
 - Mehr Anforderungen
 - Mehr Möglichkeiten
- SAS und JMP sind perfekt geeignet f
 ür das
 - Profiling,
 - Bewerten,
 - Verbessern,
 - Simulieren der Datenqualität.

KONTAKT-INFORMATIONEN

Data Quality for Analytics Using SAS SAS Press 2012

http://www.sascommunity.org/wiki/Data_Quality_for_Analytics

Data Preparation for Analytics Using SAS SAS Press 2006

http://www.sascommunity.org/wiki/Data_Preparation_for_Analytics

Gerhard Svolba
Analytic Solution Architect
SAS-Austria
Gerhard.svolba@sas.com
http://www.sascommunity.org/wiki/Gerhard_Svolba
LinkedIn
XING

