

Tesis de Church-Turing

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Los 23 problemas de Hilbert

David Hilbert

Presentó 23 problemas matemáticos a resolver en el próximo siglo

En una conferencia del congreso internacional de matemáticos en Paris en el año 1900.

El 10mo problema

Encontrar un algoritmo para determinar si una ecuación polinómica diofántica (con 2 o más incógnitas) con coeficientes enteros, tiene una solución entera.

solución entera: Si la evaluación del polinomio con una asignación de sus variables con valores enteros da como resultado cero (raíz entera)

David Hilbert: Matemático alemán (1862 – 1943)

10mo problema

Hilbert

Presenta el problema pensando que se iba a poder resolver.

No se planteaba

La imposibilidad del cálculo

(similar era el pensamiento hegemónico contemporáneo)

Sería cuestión

de encontrar el algoritmo que indique paso a paso como hallar la solución

Ejemplo

La siguiente ecuación polinómica diofántica

$$6x^3yz^2 + 3xy^2 - x^3 - 10$$

Corresponde a un polinomio

De 4 términos con 3 variables

Buscamos la existencia de una raíz entera

una asignación de sus variables con valores enteros que da como resultado cero

Expresamos entonces:

$$6x^3yz^2 + 3xy^2 - x^3 - 10 = 0$$

Y podemos ver que la siguiente asignación responde afirmativamente

$$x = 5$$
, $y = 3$ y $z = 0$ $\rightarrow 6x^3yz^2 + 3xy^2 - x^3 - 10 = 0 + 3*5*9 - 125 - 10 = 135 - 125 - 10 = 0$

Sobre el algoritmo

Hilbert no utilizó el término algoritmo

Sino, "un proceso según el cual se puede determinar en un número finito de operaciones"

El concepto de algoritmo es antiguo

Utilizado desde la antigüedad para procesos matemáticos (griegos, egipcios, babilonios)

Pero no había sido definido formalmente aún

Para responder afirmativamente bastaba con encontrar el procedimiento

Para responder negativamente, se requería determinar los límites de los algoritmos

Entscheidungsproblem

El problema de decisión

Fue un desafio lanzado por David Hilbert y Wilhelm Ackermann en 1928

Implica

encontrar un algoritmo general que decidiese si una fórmula del cálculo de primer orden es un teorema

En este desafío es en el que trabajo Turing

Y su resultado fue la publicación "ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM" del año 1936

Entscheidungsproblem (cont.)

Turing propone

Su maquina automática (Maquina de Turing) como herramienta de cálculo.

Paralelamente (y aventajándolo por unos meses),

Alonzo Church desarrolla su cálculo lambda (λ-calculus) para el mismo motivo.

Turing demuestra que su

Máquina y el λ-calculus son equivalentes.

Alonzo Church (1903-1995): Matemático Estadounidense

Tesis de Church Turing

Con el trabajo de Church y turing

Se dió un marco para definir que es un algoritmo

Coloquialmente:

Todo algoritmo existe si es equivalente a una maquina de Turing

Todos los modelos matemáticos de computo posibles

Tienen igual o menor poder computacional que las máquinas de turing.

(con posibles queremos decir construibles en el mundo real, por ejemplo: la imposibilidad de realizar una cantidad de operaciones infinita en un tiempo finito)

Importante! Es una tesis, por lo tanto no está probado

Pero es aceptado casi universalmente

10mo problema: Un problema más sencillo

Si restringimos el 10mo problema

A determinar si un polinomio de 1 variable tiene raíces enteras

Expresamos el polinomio como

$$f(x) = C_1 x^k + C_2 x^{k-1} + \dots + C_{k+1}$$

Podemos ir probando valores de x

Resolución

Podemos construir una TM

para computar el problema

Definimos el lenguaje para nuestra TM

P={p/p polinomio con variable x con una raiz entera}

Nuestra TM M será

"Ante el input (p): donde p polinomio con variable x

Evaluar p estableciendo x según la secuencia 0, 1, −1, 2, −2, 3, -3 ...

Si en algun momento p se evalua en 0, aceptar"

Análisis de la TM

El algoritmo encontrará eventualmente si el polinómio tiene una raíz entera.

Pero si no tiene, loopeará eternamente

Por lo tanto

la TM anterior reconoce el lenguaje P

¿Se puede evitar el posible loopeo?

Si! podemos acotar el rango donde se puede encontrar la raiz entera.

Rango de la raíz entera

Sea

$$f(x_0) = c_1 x_0^{k} + c_2 x_0^{k-1} + \dots + c_{k+1} = 0$$

Podemos operar algebraicamente

$$c_1 x_0^k + c_2 x_0^{k-1} + \dots + c_{k+1} = 0$$
 \longrightarrow $c_1 x_0^k = -(c_2 x_0^{k-1} + \dots + c_{k+1})$ \longrightarrow

$$|c_1 x_0^k| = |-(c_2 x_0^{k-1} + ... + c_{k+1})|$$
 $|c_1||x_0^k| = |c_2 x_0^{k-1} + ... + c_{k+1}|$

$$|c_1||x_0^k| \le |c_2 x_0^{k-1}| + \dots + |c_{k+1}|$$

Rango de la raíz entera (cont.)

Sea C_{max} al coeficiente con mayor numero absoluto

$$|c_1||x_0^k| \le |c_{max}x_0^{k-1}| + \ldots + |c_{max}|$$
 $|c_1||x_0^k| \le |c_{max}| * (|x_0^{k-1}| + \ldots + 1)$

$$|c_1||x_0^k| \le |c_{max}| * (k|x_0^{k-1}|)$$
 $|x_0| \le \frac{|c_{max}| * k}{|c_1|}$

Entonces

puedo restringir la búsqueda de la raíz entera entre valores

$$\pm \frac{|C_{max}| * k}{|C_1|}$$

Y mi TM se convierte en un decididor

Como colorario

P={p/p polinomio con variable x con una raiz entera} es TURING DECIDIBLE

Regresando a la ecuación polinómica diofántica

Podemos construir una TM

para computar el problema

Definimos el lenguaje para nuestra TM

D={p/p polinomio con 2 o más variables con una raiz entera}

Podemos ir probando los valores

(0,0,...,0),(1,0,...,0),(1,1,...,0),...,(1,1,...,1),...,(0,0,...,-1),... todas las combinaciones posibles

Por lo tanto

D={p/ p polinomio con 2 o más variables con una raiz entera} es TURING RECONOCIBLE

Regresando... (cont.)

Se puede crear una TM

para el problema que sea decididor?

En 1971

Yuri Matijasevich demostró que no es posible

(utilizó el andamiaje creado por Church y Turing)

Por lo tanto

D={p/ p polinomio con 2 o más variables con una raiz entera} NO ES TURING DECIDIBLE

Presentación realizada en Julio de 2020