

Binarinio atsako modeliai

Laboratorinis darbas

Darbą atliko:

Vainius Gataveckas, Matas Gaulia, Dovydas Martinkus

Duomenų Mokslas

3 kursas 2 gr.

Naudoti metodai

Darbas atliktas naudojant R ir SAS.

Naudoti R paketai:

tidyverse

caret

MASS

cutpointr

yardstick

effects

Duomenys ir jų šaltiniai

Pimų tautybės moterų diagnostiniai matavimai skirti nustatyti ar paciento sergamumą diabetu..

Duomenų šaltinis - Kaggle. Prieiga per internetą: https://www.kaggle.com/uciml/pima-indians-diabetes-database

```
"Pregnancies" - neštumų kiekis.
"Glucose" - gliukozės koncentracija plazmoje gliukozės tolerancijos testo metu.
"BloodPressure" - diastolinis kraujo spaudimas.
"BMI" – kūno masės indeksas.
"SkinThickness" - tricepso odos plotis.
"Insulin" - glukozės tolerancijos testo rezultatas.
"DiabetesPedigreeFunction" - diabeto tikėtinumas pagal šeimos istoriją.
"Age" – amžius.
```

"Outcome" – diabeto diagnozė (klasifikuojantis kintamasis).

Tikslas ir uždaviniai

Tikslas: Rasti kokią įtaką tam tikri požymiai daro tikimybei sirgti diabetu ir prognozuoti diagnozę ar pacientas serga diabetu.

Uždaviniai:

Parinkti binarinio atsako modelj (parinkti jungties funkciją).

Paprastesnio (turinčio mažiau kovariančių) modelio suradimas.

Slenkstinės reikšmės parinkimas.

Gauty modelio koeficienty interpretacija

Modelio tinkamumo analizė.

Atliktos analizės aprašymas

1. Naudojant R

Duomenų aibę sudaro duomenys apie 500 diabetų nesergančių ir 268 sergančių pacientų. Atliekant tiriamąją duomenų analizę palygintas kovariančių pasiskirstymas abiejose grupėse naudojant stačiakampes diagramas, pavaizduotos empirinės sirgimu diabetu tikimybės pagal kiekvieną kovariantę.

```
library(tidyverse)
y <- read_csv("diabetes.csv")
table(y$Outcome)

##
## 0 1
## 500 268

# Empirinės tikimybės
y_plot <- y %>% pivot_longer(1:8)

y_plot %>% ggplot(aes(value, Outcome)) +
    stat_summary(fun = mean, geom = "bar") +
    facet_wrap(vars(name), scales = "free") +
    scale_x_binned(n.breaks = 8) +
    theme_minimal()
```



```
# stačiakampės diagramos
y <- y %>% mutate(Outcome = factor(Outcome))
y_plot <- y_plot %>% mutate(Outcome = factor(Outcome))

y_plot %>% ggplot(aes(Outcome, value, fill = Outcome)) +
    geom_boxplot() +
    facet_wrap(vars(name), scales = "free") +
    theme_minimal()
```



```
library(caret)
library(yardstick)
model <- glm(</pre>
  formula = Outcome ~ ., family = binomial(logit),
  data = y
1 - pchisq(model$deviance, model$df.residual) # goodness-of-fit testas
## [1] 0.8185965
model <- glm(</pre>
  formula = Outcome ~ ., family = binomial(logit),
  data = y
)
confusionMatrix(factor(as.numeric(model$fitted.values > 0.5)), factor(y$Outcome))
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
               0 1
##
            0 445 112
##
               55 156
##
##
                  Accuracy : 0.7826
##
                    95% CI : (0.7517, 0.8112)
##
       No Information Rate : 0.651
##
       P-Value [Acc > NIR] : 1.373e-15
##
##
                      Kappa: 0.4966
##
    Mcnemar's Test P-Value : 1.468e-05
##
##
               Sensitivity: 0.8900
##
```

```
##
               Specificity: 0.5821
##
            Pos Pred Value: 0.7989
##
            Neg Pred Value: 0.7393
##
                Prevalence: 0.6510
##
            Detection Rate: 0.5794
##
      Detection Prevalence: 0.7253
##
         Balanced Accuracy: 0.7360
##
##
          'Positive' Class : 0
##
y_2 <- y %>% mutate(pred = model$fitted.values)
roc_auc(y_2, Outcome, pred, event_level = "second")
## # A tibble: 1 x 3
##
    .metric .estimator .estimate
##
     <chr> <chr>
## 1 roc_auc binary
                            0.839
# kovariančių atranka
model_2 <- glm(
  formula = Outcome ~ Pregnancies + Glucose + BloodPressure + BMI + DiabetesPedigreeFunction, family =
binomial(logit),
 data = y
anova(model, model_2, test = "Chisq") # modelis statistiškai reikšmingai nesiskiria nuo modelio su viso
mis kovariantėmis
## Analysis of Deviance Table
##
## Model 1: Outcome ~ Pregnancies + Glucose + BloodPressure + SkinThickness +
##
       Insulin + BMI + DiabetesPedigreeFunction + Age
## Model 2: Outcome ~ Pregnancies + Glucose + BloodPressure + BMI + DiabetesPedigreeFunction
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1
          759
                   723.45
## 2
           762
                   728.56 -3 -5.1142 0.1636
model$aic
## [1] 741.4454
model_2$aic
## [1] 740.5596
exp(coef(model_2))
                                                                      Glucose
##
                (Intercept)
                                         Pregnancies
                                        1.1658987706
##
               0.0003509201
                                                                 1.0352654766
##
              BloodPressure
                                                 BMI DiabetesPedigreeFunction
               0.9880648446
                                        1.0885341500
                                                                 2.4858820555
exp(confint(model_2))
                                   2.5 %
##
                                              97.5 %
## (Intercept)
                            8.892197e-05 0.001261429
                            1.104688e+00 1.232240806
## Pregnancies
## Glucose
                            1.028583e+00 1.042375734
## BloodPressure
                            9.782664e-01 0.997813080
                            1.059521e+00 1.119907794
## BMI
## DiabetesPedigreeFunction 1.404567e+00 4.451068106
confusionMatrix(factor(as.numeric(model_2$fitted.values > 0.5)), factor(y$Outcome))
## Confusion Matrix and Statistics
##
```

```
##
             Reference
## Prediction
##
            0 441 114
            1 59 154
##
##
                   Accuracy : 0.7747
95% CI : (0.7435, 0.8038)
##
##
##
       No Information Rate : 0.651
##
       P-Value [Acc > NIR] : 6.403e-14
##
                      Kappa: 0.4795
##
##
    Mcnemar's Test P-Value : 4.034e-05
##
##
##
                Sensitivity: 0.8820
##
                Specificity: 0.5746
##
            Pos Pred Value : 0.7946
##
            Neg Pred Value : 0.7230
##
                 Prevalence: 0.6510
##
            Detection Rate: 0.5742
##
      Detection Prevalence : 0.7227
##
         Balanced Accuracy: 0.7283
##
##
           'Positive' Class : 0
##
# Modelio kovariačių efektai
library(effects)
plot(predictorEffects(model_2))
```

inancies predictor effectipitate predictor effetibptifressure predictor effec

BMI predictor Diffeet exile edigree Function predictor effect plot

Pradinio modelio su visomis kovariantėmis (naudojant logit jungties funkciją) tikslumas (angl. accuracy) 78%, plotas po ROC kreive 0.84.

Rasta, kad modelis tik su kovariantėmis "Pregnancies", "Glucose" "BloodPressure" "BMI" ir "DiabetesPedigreeFunction" statistiškai reikšmingai nesiskiria nuo modelio su visomis kovariantėmis (p=0.18). Modelio tikslumas 77%. Plotas po ROC kreive 0.84.

Modelio koeficientų interpretacija standartinė logit modeliui (pvz. Paciento kūno masės indeksui (angl. BMI) padidėjus 1, tikimybė, kad pacientas serga diabetu padidėja 1.08 kartus).

```
library(cutpointr)
library(yardstick)

y_2 <- y %>% mutate(pred = model_2$fitted.values)

cp <- cutpointr(y_2, pred, Outcome,
    pos_class = "1", direction = ">=",
    method = maximize_metric, metric = youden
)

cp$roc_curve[[1]] %>%
    ggplot(aes(x = 1 - tnr, y = tpr)) +
    geom_path() +
    coord_equal() +
    geom_abline() +
    theme_bw() +
    xlab("Specificity") +
    ylab("Sensitivity")
```


Atsižvelgiant į didesnį nesergančių pacientų kiekį duomenyse (stulp. "Outcome" reikšmė 0) laikyta, kad ROC kreivė gali teigti klaidinančia informaciją apie modelio kokybę. Papildomai pavaizduotas modelio Precision-Recall grafikas. Atsižvelgiant į uždavinio specifiką (laikyta, kad neteisingai diagnozuotos neigiamos diagnozės (False Negative) kaina didesnė už neteisingai diagnozuotą teigiamą diabeto diagnozę (False Positive)) modeliui siekta parinkti kitą slenkstinę reikšmę (angl. cutoff value).

```
roc_auc(y_2, Outcome, pred, event_level = "second")
## # A tibble: 1 x 3
##
     .metric .estimator .estimate
##
     <chr> <chr>
                            <dbl>
                            0.837
## 1 roc_auc binary
# TN skaičius nėra svarbus uždaviniui
# be to, 0 skaičius šiek tiek didesnis už 1
# todėl naudojama PR kreivė
cutoff <- cp$roc_curve[[1]] %>%
 filter(tpr > 0.9) %>%
 pull(m) %>%
 max()
labels <- filter(cp$roc_curve[[1]], (m %in% c(max(m), cutoff))) %>% round(2)
cp$roc_curve[[1]] %>%
 ggplot(aes(x = tpr, y = tp / (fp + tp))) +
 geom_point(data = labels) +
 geom_text(data = labels, aes(label = x.sorted), nudge_y = 0.05) +
 geom_path() +
 coord_equal() +
 theme_bw() +
 xlab("Recall") +
 ylab("Precision")
```



```
# optimalios slenkstinės reikšmės pagal Youden indeksą ir pasirinkus ribą Sensitivity > 0.9
# Palyginimas su probit modeliu
model_3 <- glm(
   formula = Outcome ~ Pregnancies + Glucose + BloodPressure + BMI + DiabetesPedigreeFunction, family = binomial(probit),</pre>
```

```
data = y
)

y_3 <- y %>% mutate(pred = model_3$fitted.values)

cp_2 <- cutpointr(y_3, pred, Outcome,
    method = maximize_metric, metric = F1_score
)

cp$roc_curve[[1]] %>%
    mutate(link = "logit") %>%
    rbind((cp_2$roc_curve[[1]] %>% mutate(link = "probit"))) %>%
    ggplot(aes(x = tpr, y = tp / (fp + tp), color = link)) +
    geom_path() +
    coord_equal() +
    theme_bw() +
    xlab("Specificity") +
    ylab("Sensitivity")
```


Rasta slenkstinė reikšmė pagal Joudeno (Youden) indeksą - 0.31. Naudojant kriterijų, siekiantį teisingai aptikti bent 90% procentų teigiamų diagnozių (Sensitivity > 0.9) - 0.19 (abi reikšmės pažymėtos Precision-Recall grafike). Modelis palygintas su modeliu su tokiomis pačiomis kovariantėmis, tačiau naudojančiu probit junties funkciją. Palygintos modelių ROC kreivės. Reikšmingų skirtumų tarp modelių nerasta.

Rezultatai

Naudojant logistinę regresiją siekta rasti kokie požymiai susiję su didžiausia rizika sirgti diabetu, prognozuoti šios ligos diagnozę.

Tyrimo metu rasta, kad modelis su kovariantėmis "Pregnancies", "Glucose" "BloodPressure" "BMI" ir "DiabetesPedigreeFunction" statistiškai reikšmingai nesiskiria nuo modelio su visomis kovariantėmis (p=0.18). Modelio tikslumas (angl. accuracy) 0.77. Plotas po modelio ROC kreive = 0.84.

Atsižvelgiant į užduoties specifiką, pasirinktos kitos modelio slenkstinės reikšmės: siekiant teisingai aptikti bent 90% teigiamų diabeto diagnozių pasirinkta slenkstinė riba 0.19.

Reišmingų skirtumų tarp modelio naudojančio logit ir probit jungties funkcijas nerasta.

2. Naudojant SAS

```
PROC IMPORT DATAFILE='/home/u45871880/diabetes.csv'
       DBMS=CSV
       OUT=data;
       GETNAMES=YES;
RUN;
%MACRO boxplot(column);
ods graphics / reset width=6.4in height=4.8in imagemap;
proc sgplot data=WORK.DATA;
       vbox &column / category=Outcome;
       yaxis grid;
run;
%MEND;
%boxplot(Pregnancies);
%boxplot(Glucose);
%boxplot(BloodPressure);
%boxplot(SkinThickness)
%boxplot(Insulin);
%boxplot(Age);
%boxplot(DiabetesPedigreeFunction);
%boxplot(BMI);
```

* Modelis su visomis kovariantėmis;

PROC LOGISTIC DATA=data DESCENDING

plots(only)=(roc(ID=cutpoint) effect(X=(Pregnancies Glucose BloodPressure SkinThickness Insulin Age

DiabetesPedigreeFunction BMI) CLBAND=YES ALPHA=0.05));

MODEL Outcome = Pregnancies Glucose BloodPressure SkinThickness

Insulin BMI DiabetesPedigreeFunction Age /

RSQUARE CTABLE PPROB=(0.1 TO 0.9 BY 0.1) EXPB LACKFIT scale=none clparm=wald RUN;

Response Profile							
Ordered Value	Outcome	Total Frequency					
1	1	268					
2	0	500					

Probability modeled is Outcome='1'.

Testing Global Null Hypothesis: BETA=0								
Test	Chi-Square	DF	Pr > ChiSq					
Likelihood Ratio	270.0385	8	<.0001					
Score	232.8984	8	<.0001					
Wald	167.7255	8	<.0001					

A	Analysis of Maximum Likelihood Estimates										
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	Exp(Est)					
Intercept	1	-8.4047	0.7166	137.5452	<.0001	0.000					
Pregnancies	1	0.1232	0.0321	14.7466	0.0001	1.131					
Glucose	1	0.0352	0.00371	89.8965	<.0001	1.036					
BloodPressure	1	-0.0133	0.00523	6.4537	0.0111	0.987					
SkinThickness	1	0.000619	0.00690	0.0080	0.9285	1.001					
Insulin	1	-0.00119	0.000901	1.7485	0.1861	0.999					
BMI	1	0.0897	0.0151	35.3467	<.0001	1.094					
DiabetesPedigreeFunc	1	0.9452	0.2991	9.9828	0.0016	2.573					
Age	1	0.0149	0.00933	2.5372	0.1112	1.015					

Hosmer and Lemeshow Goodness-of-Fit Test							
Chi-Square	DF	Pr > ChiSq					
8.3230	8	0.4026					

	Classification Table												
	Correct Incorrect				Percentages								
Prob Level	Event	Non- Event	Event	Non- Event	Correct	Sensi- tivity	Speci- ficity	Pos Pred	Neg Pred				
0.100	261	146	354	7	53.0	97.4	29.2	42.4	95.4				
0.200	240	277	223	28	67.3	89.6	55.4	51.8	90.8				
0.300	209	356	144	59	73.6	78.0	71.2	59.2	85.8				
0.400	177	408	92	91	76.2	66.0	81.6	65.8	81.8				
0.500	154	443	57	114	77.7	57.5	88.6	73.0	79.5				
0.600	130	457	43	138	76.4	48.5	91.4	75.1	76.8				

Classification Table											
	Correct Incorrect			Percentages							
Prob Level	Event	Non- Event	Event	Non- Event	Correct	Sensi- tivity	Speci- ficity	Pos Pred	Neg Pred		
0.700	97	475	25	171	74.5	36.2	95.0	79.5	73.5		
0.800	62	489	11	206	71.7	23.1	97.8	84.9	70.4		
0.900	22	495	5	246	67.3	8.2	99.0	81.5	66.8		

* Pažingsninė regresija kovariančių atrinkimui; PROC LOGISTIC DATA=data DESCENDING plots(only)=(roc); MODEL Outcome = Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age / CTABLE PPROB=(0.1 TO 0.9 BY 0.1) EXPB scale=none clparm=wald outroc=performance SELECTION=stepwise RUN;

	Summary of Stepwise Selection										
	Effect			Number In	Score	Wald					
Step	Entered	Removed	DF		Chi-Square	Chi-Square	Pr > ChiSq				
1	Glucose		1	1	167.1922		<.0001				
2	BMI		1	2	34.3033		<.0001				
3	Pregnancies		1	3	27.3305		<.0001				
4	DiabetesPedigreeFunc		1	4	9.6773		0.0019				
5	BloodPressure		1	5	5.8123		0.0159				

Analysis of Maximum Likelihood Estimates									
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	Exp(Est)			
Intercept	1	-7.9549	0.6758	138.5505	<.0001	0.000			

Analysis of Maximum Likelihood Estimates										
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	Exp(Est)				
Pregnancies	1	0.1535	0.0278	30.4074	<.0001	1.166				
Glucose	1	0.0347	0.00339	104.3051	<.0001	1.035				
BloodPressure	1	-0.0120	0.00503	5.6969	0.0170	0.988				
BMI	1	0.0848	0.0141	36.0703	<.0001	1.089				
DiabetesPedigreeFunc	1	0.9106	0.2940	9.5919	0.0020	2.486				

	Classification Table												
	Cor	rect	Inco	rrect		Perc	entages						
Prob Level	Event	Non- Event	Event	Non- Event	Correct	Sensi- tivity	Speci- ficity	Pos Pred	Neg Pred				
0.100	259	138	362	9	51.7	96.6	27.6	41.7	93.9				
0.200	239	275	225	29	66.9	89.2	55.0	51.5	90.5				
0.300	215	362	138	53	75.1	80.2	72.4	60.9	87.2				
0.400	181	412	88	87	77.2	67.5	82.4	67.3	82.6				
0.500	152	439	61	116	77.0	56.7	87.8	71.4	79.1				
0.600	133	462	38	135	77.5	49.6	92.4	77.8	77.4				
0.700	96	477	23	172	74.6	35.8	95.4	80.7	73.5				
0.800	63	492	8	205	72.3	23.5	98.4	88.7	70.6				
0.900	23	496	4	245	67.6	8.6	99.2	85.2	66.9				

^{*} Atsižvelgiai į uždavinio specifiką

^{*} Sukuriamas Precision-Recall grafikas alternativių slenksninių reikšmių parinkimui; data precision_recall; set performance;

```
precision = _POS_/(_POS_ + _FALPOS_);
recall = _POS_/(_POS_ + _FALNEG_);
F_stat = harmean(precision,recall);
if mod(N_, 20) = 0 then PROB_=PROB_;
       else _PROB_ = .;
run;
Proc SQL;
create table precision_recall as
Select *
From precision_recall
having _step_ = max(_step_);
proc sort data=precision_recall;
by recall;
run;
ods graphics / reset width=6.4in height=4.8in imagemap;
proc sgplot data=WORK.PRECISION_RECALL;
        SERIES X = recall Y = precision / DATALABEL=_PROB_;
run;
ods graphics / reset;
```

