EXERCISE SHEET 2

Exercise 1: Advanced shuffling

In lecture we discussed the shuffling formulas

- $\langle a, b, cd \rangle \subseteq \langle a, bc, d \rangle$,
- $\langle a, b, c \rangle d = a \langle b, c, d \rangle$ and
- $\langle a, b, c \rangle + \langle b, c, a \rangle + \langle c, a, b \rangle = 0$

and the situations in which they apply. In this exercise you will prove two additional shuffling formulas.

Let \mathcal{C} be a stable category. Let

$$U \xrightarrow{a} V \xrightarrow{b} W \xrightarrow{c} X \xrightarrow{d} Y$$

be a sequence of four composable maps in \mathcal{C} and suppose that all ab and bc are nullhomotopic.

(a) Show that

$$\langle a, b, c \rangle d \subseteq \langle a, b, cd \rangle.$$

(b) Identify which nullhomotopies one should use to obtain a equality.

Let

$$U \xrightarrow{a} V \xrightarrow{b} W \xrightarrow{c} X \xrightarrow{d} Y \xrightarrow{e} Z$$

be a sequence of five composable maps in C and let $e_2:bc\leftrightarrow 0$ and $e_3:cd\leftrightarrow 0$ be nullhomotopies. Suppose further that all of the following maps are nullhomotopic

$$ab$$
, de , $a\langle b, e_2c, e_3d\rangle$, $\langle b, e_2c, e_3d\rangle e$.

Consider the following expression:

$$\langle \langle a, b, c \rangle, d, e \rangle \pm \langle a, \langle b, c, d \rangle, e \rangle \pm \langle a, b, \langle c, d, e \rangle \rangle \tag{1}$$

- (c) Confirm that the expression in (1) is defined, adding in the omitted suspensions as necessary.
- (d) Determine an orientation of the signs so that (1) contains zero.
- (e) Identify a collection of nullhomotopies so that the expression is exactly zero.

Background

The first 13 stable homotopy groups of the 2-local sphere $\mathbb{S}_{(2)}$ can be computed using only the Serre spectral sequence. These groups (and the ring structure) are given in the table below:

1

stem	group	generator	relations
0	\mathbb{Z}	1	
1	$\mathbb{Z}/2$	η	
2	$\mathbb{Z}/2$	η^2	
3	$\mathbb{Z}/8$	ν	$\eta^3 = 4\nu$
4	0		
5	0		
6	$\mathbb{Z}/2$	$ u^2$	
7	$\mathbb{Z}/16$	σ	
8	$\mathbb{Z}/2 \oplus \mathbb{Z}/2$	$\eta\sigma,\epsilon$	
9	$\mathbb{Z}/2 \oplus \mathbb{Z}/2 \oplus \mathbb{Z}/2$	$\eta^2 \sigma, \eta \epsilon, \mu_9$	$\nu^3 = \eta^2 \sigma + \eta \epsilon$
10	$\mathbb{Z}/2$	$\eta\mu_9$	
11	$\mathbb{Z}/8$	ζ	$\eta^2 \mu_9 = 4\zeta$
12	0		
13	0		

You will want to use this information as you do the next four exercises.

Exercise 2: Evaluating Toda brackets

Toda proved the following formula¹ for Toda brackets of elements in $\pi_*\mathbb{S}$: Given $\alpha, \beta \in \pi_*\mathbb{S}$ such that $\alpha\beta = 0$

• If $|\alpha| = k$ is even (or k is odd and $2\alpha = 0$), there is an element $Q_1(\alpha) \in \pi_{2k+1}\mathbb{S}$ such that

$$\langle \alpha, \beta, \alpha \rangle = Q_1(\alpha)\beta + \alpha \blacksquare.$$

Here \blacksquare is an ideterminate used for keeping track of indeterminacy.

• If $|\alpha| = k$ is odd, then

$$\langle \alpha, \beta, \alpha \rangle$$
 and $\langle \beta, \alpha, 2\alpha \rangle$.

have non-empty intersection.

For elements in even degree $Q_1(-)$ is a (not necessarily additive) operation of signature

$$\pi_k \mathbb{S} \to \pi_{2k+1} \mathbb{S}$$
.

In fact, for $\alpha_1, \alpha_2 \in \pi_k \mathbb{S}$ with k even we have

$$Q_1(\alpha_1 + \alpha_2) = Q_1(\alpha_1) + Q_1(\alpha_2) + \eta \alpha_1 \alpha_2$$

and for $\alpha_1 \in \pi_{k_1} \mathbb{S}$ and $\alpha_2 \in \pi_{k_2} \mathbb{S}$ with k_1, k_2 even we have

$$Q_1(\alpha_1 \alpha_2) = \alpha_1^2 Q_1(\alpha_2) + Q_1(\alpha_1) \alpha_2^2$$

Using the table above, shuffling rules and Toda's formula evaluate the following Toda brackets. Remember to keep indeterminacy in mind.

- (0) Compute $Q_1(n)$ for each $n \in \mathbb{Z} \cong \pi_0 \mathbb{S}$.
- (a) $\langle 2, \eta, 2 \rangle$
- (b) $\langle \eta, 2, \eta \rangle$
- (c) $\langle 2, \eta, \nu \rangle$
- (d) $\langle \eta, \nu, \eta \rangle$
- (e) $\langle \nu, \eta, \nu \rangle$

 $^{^{1}}$ This formula comes from the theory of power operations on \mathbb{S} and we will return to this subject at the end of the course.

- (f) $\langle \eta^2, \eta^2, \eta^2 \rangle$ (g) $\langle \eta, 2, \nu^2 \rangle$

1. Exercise 3: Cells structures

Like spaces, spectra can be given skeletal filtrations.

Definition 1.1. A skeletal filtration on X is a sequence

$$\cdots \rightarrow X_{-2} \rightarrow X_{-1} \rightarrow X_0 \rightarrow X_1 \rightarrow X_2 \rightarrow \cdots$$

such that

- (1) $\operatorname{cof}(X_{i-1} \to X_i)$ is a sum of copies of \mathbb{S}^i ,
- (2) $0 \cong X_{-\infty} := \lim X_i$ and
- (3) $X \cong X_{\infty} := \operatorname{colim} X_i$.

Alternatively, we can rotate the cofiber sequences in a skeletal filtration and view the pushout

$$\bigoplus \mathbb{S}^{i-1} \longrightarrow X_{i-1} \\
\downarrow \qquad \qquad \downarrow \\
0 \longrightarrow X_i$$

as specifying a collection of cell attachments that build X_i from X_{i-1} .

- (a) Prove that every 2-local finite spectrum X can be given a skeletal filtration with exactly $\dim_{\mathbb{F}_2}(H_i(X;\mathbb{F}_2))$ many *i*-cells. We call a choice of such a skeletal filtration a minimal skeletal filtration. (Hint: use the Hurewicz theorem)
- (b) Extend the results of part (a) to spectra which are of finite type.³

The homotopy and homology rings of the spectrum \mathbb{F}_2 representing cohomology with \mathbb{F}_2 coefficients are given by

$$\pi_*\mathbb{F}_2\cong egin{cases} \mathbb{F}_2 & *=0 \ 0 & *
eq 0 \end{cases} H_*(\mathbb{F}_2;\mathbb{F}_2)\coloneqq \pi_*(\mathbb{F}_2\otimes\mathbb{F}_2)\cong \mathbb{F}_2[\zeta_1,\zeta_2,\dots]$$

where $|\zeta_i| = 2^i - 2$.

- (c) Determine the attaching maps in the minimal 0-skeleton of \mathbb{F}_2 .
- (d) Determine the attaching maps in the minimal 1-skeleton of \mathbb{F}_2 .
- (e) Determine the attaching maps in the minimal 2-skeleton of \mathbb{F}_2 .
- (f) Determine the attaching maps in the minimal 3-skeleton of \mathbb{F}_2 .

The homotopy and homology rings of the spectrum $\mathbb{Z}_{(2)}$ representing cohomology with $\mathbb{Z}_{(2)}$ coefficients are given by

$$\pi_* \mathbb{F}_2 \cong \begin{cases} \mathbb{Z}_{(2)} & * = 0 \\ 0 & * \neq 0 \end{cases} \qquad H_*(\mathbb{Z}_{(2)}; \mathbb{F}_2) \coloneqq \pi_*(\mathbb{Z}_{(2)} \otimes \mathbb{F}_2) \cong \mathbb{F}_2[\zeta_1^2, \zeta_2, \dots]$$

where $|\zeta_1^2| = 2$ and $|\zeta_i| = 2^i - 2$ for $i \geq 2$. The name of the class ζ_1^2 comes from the fact that the reduction mod 2 map

$$\mathbb{Z}_{(2)} \to \mathbb{F}_2$$

²Recall that discs are contractible, which is why the bottom left is zero.

 $^{{}^3}X$ is of finite type if it is bounded below and $H_i(X;\mathbb{Z}_{(2)})$ is finitely generated for all i.

induces the natural injective map of polynomial algebras

$$\mathbb{F}_2[\zeta_1^2, \zeta_2, \dots] \to \mathbb{F}_2[\zeta_1, \zeta_2, \dots]$$

on \mathbb{F}_2 -homology.

- (g) Determine the attaching maps in the minimal 2-skeleton of $\mathbb{Z}_{(2)}$.
- (h) Determine the attaching maps in the minimal 3-skeleton of \mathbb{F}_2 .

2. Exercise 4: Characterizing KU

KU is an \mathbb{E}_{∞} -algebra in Sp whose associated cohomology theory classifies stable complex vector bundles. The ring spectrum $KU_{(2)}$ satisfies the following properties

- (1) $KU_{(2)}$ is 2-periodic. This means that there is an invertible class β in $\pi_2 KU_{(2)}$.
- (2) The connective cover of $KU_{(2)}$ is typically called $ku_{(2)}$. The \mathbb{E}_{∞} -algebra $ku_{(2)}$ is finite type and its \mathbb{F}_2 -homology is

$$H_*(\mathrm{ku}_{(2)}; \mathbb{F}_2) := \pi_*(\mathbb{F}_2 \otimes \mathrm{ku}_{(2)}) \cong \mathbb{F}_2[\zeta_1^2, \zeta_2^2, \zeta_3, \zeta_4, \dots]$$

where
$$|\zeta_1^2| = 2$$
, $|\zeta_2^2| = 6$ and $|\zeta_i| = 2^i - 2$ for $i \ge 3$.

where $|\zeta_1^2|=2$, $|\zeta_2^2|=6$ and $|\zeta_i|=2^i-2$ for $i\geq 3$. (3) There is a map of \mathbb{E}_{∞} -algebras $\mathrm{ku}_{(2)}\to\mathbb{Z}_{(2)}$ which induces the natural inclusion

$$\mathbb{F}_2[\zeta_1^2, \zeta_2^2, \zeta_3, \zeta_4, \dots] \to \mathbb{F}_2[\zeta_1^2, \zeta_2, \dots]$$

on \mathbb{F}_2 -homology.

- (a) Show that the localization of $ku_{(2)}$ at β is $KU_{(2)}$.
- (b) Determine the cells and attaching maps of a minimal 4 skeleton of $ku_{(2)}$.
- (c) Using (b), compute $\pi_* ku_{(2)}$ for * = 0, 1, 2.
- (d) Determine the ring $\pi_* KU_{(2)}$.
- (e) Describe β as a map into the 2-skeleton of $ku_{(2)}$.
- (f) Conclude that properties (1), (2) and (3) above characterize $KU_{(2)}$.
- (g) How much can you weaken properties (1), (2) and (3) while still being able to prove (f)?