A linear-time algorithm for the generalized TRS based on a convex quadratic reformulation

Alex L. Wang

Based on joint work with Fatma Kılınç-Karzan

1 Introduction

Convex hull result

3 Convex quadratic reformulation of the GTRS and algorithms

The Generalized Trust Region Subproblem (GTRS)

$$\mathsf{Opt} \coloneqq \inf_{x \in \mathbb{R}^n} \left\{ q_0(x) \, | \, q_1(x) \leq 0 \right\}$$

• q_0 and q_1 are nonconvex quadratic functions

The Generalized Trust Region Subproblem (GTRS)

Opt :=
$$\inf_{x \in \mathbb{R}^n} \{ q_0(x) \mid q_1(x) \le 0 \}$$

- q_0 and q_1 are nonconvex quadratic functions
- Applications: nonconvex quadratic integer programs, signal processing, compressed sensing, robust optimization, trust-region methods

Applications

- Applications
- Surprisingly simple/beautiful theory

- Applications
- Surprisingly simple/beautiful theory
 - ullet S-lemma \Longrightarrow the semidefinite-programming relaxation is tight \Longrightarrow polynomial-time algorithm

- Applications
- Surprisingly simple/beautiful theory
 - ullet S-lemma \Longrightarrow the semidefinite-programming relaxation is tight \Longrightarrow polynomial-time algorithm
 - Connections between GTRS and generalized eigenvalues

- Applications
- Surprisingly simple/beautiful theory
 - \bullet S-lemma \implies the semidefinite-programming relaxation is tight \implies polynomial-time algorithm
 - Connections between GTRS and generalized eigenvalues
 - Special instance of QCQP

Results/Outline

Under "mild assumptions"

Convex hull result ⇒ convex quadratic reformulation

Results/Outline

Under "mild assumptions"

- Convex hull result ⇒ convex quadratic reformulation
- New linear-time algorithm for approximating the GTRS

Introduction

2 Convex hull result

3 Convex quadratic reformulation of the GTRS and algorithms

$$\inf_{x \in \mathbb{R}^n} \{ q_0(x) \, | \, q_1(x) \le 0 \}$$

$$\inf_{x \in \mathbb{R}^n} \{ q_0(x) \, | \, q_1(x) \le 0 \}$$

$$\inf_{x \in \mathbb{R}^{n}} \left\{ q_{0}(x) \mid q_{1}(x) \leq 0 \right\} \\
= \inf_{(x,t) \in \mathbb{R}^{n+1}} \left\{ t \mid \begin{array}{c} q_{0}(x) \leq t \\ q_{1}(x) \leq 0 \end{array} \right\} =: \inf_{x,t} \left\{ t \mid (x,t) \in \mathcal{S} \right\}$$

$$\begin{split} \inf_{x \in \mathbb{R}^n} \left\{ q_0(x) \mid q_1(x) \leq 0 \right\} \\ &= \inf_{(x,t) \in \mathbb{R}^{n+1}} \left\{ t \left| \begin{array}{c} q_0(x) \leq t \\ q_1(x) \leq 0 \end{array} \right. \right\} =: \inf_{x,t} \left\{ t \mid (x,t) \in \mathcal{S} \right\} \\ &= \inf_{x,t} \left\{ t \mid (x,t) \in \overline{\mathsf{conv}}(\mathcal{S}) \right\} \end{split}$$

Main object of analysis

$$q(\gamma, x) := q_0(x) + \gamma q_1(x)$$

• Main object of analysis

$$q(\gamma,x) := q_0(x) + \gamma q_1(x)$$

• $S(\gamma) := \{(x,t) \mid q(\gamma,x) \leq t\}$

Main object of analysis

$$q(\gamma,x):=q_0(x)+\gamma q_1(x)$$

• $S(\gamma) := \{(x,t) \mid q(\gamma,x) \leq t\}$

Exercise

Main object of analysis

$$q(\gamma,x) := q_0(x) + \gamma q_1(x)$$

• $S(\gamma) := \{(x,t) \mid q(\gamma,x) \leq t\}$

Exercise

$$S = \left\{ (x,t) \left| \begin{array}{c} q_0(x) \le t \\ q_1(x) \le 0 \end{array} \right. \right\}$$

Main object of analysis

$$q(\gamma,x):=q_0(x)+\gamma q_1(x)$$

• $S(\gamma) := \{(x,t) \mid q(\gamma,x) \leq t\}$

Exercise

$$S = \left\{ (x, t) \middle| \begin{array}{l} q_0(x) \le t \\ q_1(x) \le 0 \end{array} \right\}$$
$$\subseteq \left\{ (x, t) \middle| q_0(x) + \gamma q_1(x) \le t \right\}$$

Main object of analysis

$$q(\gamma,x) := q_0(x) + \gamma q_1(x)$$

• $S(\gamma) := \{(x, t) \mid q(\gamma, x) \leq t\}$

Exercise

$$S = \left\{ (x,t) \middle| \begin{array}{l} q_0(x) \le t \\ q_1(x) \le 0 \end{array} \right\}$$
$$\subseteq \left\{ (x,t) \middle| q_0(x) + \gamma q_1(x) \le t \right\}$$
$$= \left\{ (x,t) \middle| q(\gamma,x) \le t \right\}$$

Main object of analysis

$$q(\gamma,x):=q_0(x)+\gamma q_1(x)$$

• $S(\gamma) := \{(x,t) \mid q(\gamma,x) \leq t\}$

Exercise

$$S = \left\{ (x,t) \middle| \begin{array}{l} q_0(x) \le t \\ q_1(x) \le 0 \end{array} \right\}$$
$$\subseteq \left\{ (x,t) \middle| q_0(x) + \gamma q_1(x) \le t \right\}$$
$$= \left\{ (x,t) \middle| q(\gamma,x) \le t \right\} = S(\gamma)$$

• $S(\gamma) := \{(x, t) \mid q(\gamma, x) \leq t\}$

- $S(\gamma) := \{(x, t) \mid q(\gamma, x) \leq t\}$
 - $S(0) = \{(x, t) | q_0(x) \le t\}$

- $S(\gamma) := \{(x, t) \mid q(\gamma, x) \leq t\}$
 - $S(0) = \{(x, t) | q_0(x) \le t\}$
 - $\mathcal{S}(\text{large number}) \approx \{(x,t) \,|\, q_1(x) \leq 0\}$

- $S(\gamma) := \{(x,t) \mid q(\gamma,x) \leq t\}$
 - $S(0) = \{(x, t) | q_0(x) \le t\}$
 - $\mathcal{S}(\text{large number}) \approx \{(x, t) \mid q_1(x) \leq 0\}$
 - $\mathcal{S} \approx \mathcal{S}(0) \cap \mathcal{S}(\text{large number})$

- $S(\gamma) := \{(x, t) \mid q(\gamma, x) \leq t\}$
 - $S(0) = \{(x, t) | q_0(x) \le t\}$
 - $\mathcal{S}(\text{large number}) \approx \{(x, t) \mid q_1(x) \leq 0\}$
 - $S \approx S(0) \cap S(\text{large number})$
- Convex hull result

- $S(\gamma) := \{(x, t) \mid q(\gamma, x) \leq t\}$
 - $S(0) = \{(x, t) | q_0(x) \le t\}$
 - $\mathcal{S}(\text{large number}) \approx \{(x, t) \mid q_1(x) \leq 0\}$
 - $S \approx S(0) \cap S(\text{large number})$
- Convex hull result
 - Define $\Gamma := \{ \gamma \ge 0 \, | \, \mathcal{S}(\gamma) \text{ is convex} \} =: [\gamma_-, \gamma_+]$

- $S(\gamma) := \{(x, t) \mid q(\gamma, x) \leq t\}$
 - $S(0) = \{(x, t) | q_0(x) \le t\}$
 - $\mathcal{S}(\text{large number}) \approx \{(x, t) \mid q_1(x) \leq 0\}$
 - $S \approx S(0) \cap S(\text{large number})$
- Convex hull result
 - Define $\Gamma := \{ \gamma \geq 0 \, | \, \mathcal{S}(\gamma) \text{ is convex} \} =: [\gamma_-, \gamma_+]$
 - $\overline{\operatorname{conv}}(\mathcal{S}) = \mathcal{S}(\gamma_{-}) \cap \mathcal{S}(\gamma_{+})$

Convex hull result

Theorem

Suppose q_0 and q_1 are both nonconvex and Γ is nonempty. Then Γ can be written $\Gamma=[\gamma_-,\gamma_+]$ and

$$\overline{\mathsf{conv}}(\mathcal{S}) = \mathcal{S}(\gamma_-) \cap \mathcal{S}(\gamma_+) = \left\{ (x,t) \left| egin{array}{c} q(\gamma_-,x) \leq t \\ q(\gamma_+,x) \leq t \end{array}
ight\}$$

Introduction

Convex hull result

3 Convex quadratic reformulation of the GTRS and algorithms

$$\mathsf{Opt} = \inf_{(x,t)} \left\{ t \, | \, (x,t) \in \overline{\mathsf{conv}}(\mathcal{S}) \right\}$$

$$\begin{aligned} \mathsf{Opt} &= \inf_{(x,t)} \left\{ t \, | \, (x,t) \in \overline{\mathsf{conv}}(\mathcal{S}) \right\} \\ &= \inf_{(x,t)} \left\{ t \, \middle| \begin{array}{l} q(\gamma_-,x) \leq t \\ q(\gamma_+,x) \leq t \end{array} \right\} \end{aligned}$$

$$\begin{aligned} \mathsf{Opt} &= \inf_{(x,t)} \left\{ t \, | \, (x,t) \in \overline{\mathsf{conv}}(\mathcal{S}) \right\} \\ &= \inf_{(x,t)} \left\{ t \, \middle| \begin{array}{l} q(\gamma_-,x) \leq t \\ q(\gamma_+,x) \leq t \end{array} \right\} \\ &= \inf_x \max \left\{ q(\gamma_-,x), q(\gamma_+,x) \right\} \end{aligned}$$

We can reformulate

$$\begin{aligned} \mathsf{Opt} &= \inf_{(x,t)} \left\{ t \, | \, (x,t) \in \overline{\mathsf{conv}}(\mathcal{S}) \right\} \\ &= \inf_{(x,t)} \left\{ t \, \middle| \begin{array}{l} q(\gamma_-,x) \leq t \\ q(\gamma_+,x) \leq t \end{array} \right\} \\ &= \inf_{x} \max \left\{ q(\gamma_-,x), q(\gamma_+,x) \right\} \end{aligned}$$

• Algorithm idea

$$\begin{aligned} \mathsf{Opt} &= \inf_{(x,t)} \left\{ t \, | \, (x,t) \in \overline{\mathsf{conv}}(\mathcal{S}) \right\} \\ &= \inf_{(x,t)} \left\{ t \, \middle| \begin{array}{l} q(\gamma_-,x) \leq t \\ q(\gamma_+,x) \leq t \end{array} \right\} \\ &= \inf_{x} \max \left\{ q(\gamma_-,x), q(\gamma_+,x) \right\} \end{aligned}$$

- Algorithm idea
 - Approximate γ_- and γ_+ to high enough accuracy

$$\begin{aligned} \mathsf{Opt} &= \inf_{(x,t)} \left\{ t \, | \, (x,t) \in \overline{\mathsf{conv}}(\mathcal{S}) \right\} \\ &= \inf_{(x,t)} \left\{ t \, \middle| \begin{array}{l} q(\gamma_-,x) \leq t \\ q(\gamma_+,x) \leq t \end{array} \right\} \\ &= \inf_{x} \max \left\{ q(\gamma_-,x), q(\gamma_+,x) \right\} \end{aligned}$$

- Algorithm idea
 - Approximate γ_- and γ_+ to high enough accuracy
 - Approximately solve a smooth minimax problem

We can reformulate

$$\begin{aligned} \mathsf{Opt} &= \inf_{(x,t)} \left\{ t \, | \, (x,t) \in \overline{\mathsf{conv}}(\mathcal{S}) \right\} \\ &= \inf_{(x,t)} \left\{ t \, \middle| \begin{array}{l} q(\gamma_-,x) \leq t \\ q(\gamma_+,x) \leq t \end{array} \right\} \\ &= \inf_{x} \max \left\{ q(\gamma_-,x), q(\gamma_+,x) \right\} \end{aligned}$$

- Algorithm idea
 - Approximate γ_{-} and γ_{+} to high enough accuracy
 - Approximately solve a smooth minimax problem

Theorem ("informally")

There exists an algorithm, ALG, such that if q_0 and q_1 satisfy some "mild assumptions," then ALG outputs an ϵ -approximate optimizer to the GTRS with probability $\geq 1-p$. ALG runs in time $\approx \tilde{O}\left(\frac{N}{\sqrt{\epsilon}}\right)$.

• Want to optimize the GTRS: $\inf_{x} \{q_0(x) \mid q_1(x) \leq 0\}$

- Want to optimize the GTRS: $\inf_{x} \{q_0(x) \mid q_1(x) \leq 0\}$
- Studied a pencil of quadratics $q(\gamma, x)$

- Want to optimize the GTRS: $\inf_{x} \{q_0(x) \mid q_1(x) \leq 0\}$
- Studied a pencil of quadratics $q(\gamma, x)$
- Gave an explicit description of $\overline{\operatorname{conv}}(\mathcal{S})$

- Want to optimize the GTRS: $\inf_{x} \{q_0(x) \mid q_1(x) \leq 0\}$
- Studied a pencil of quadratics $q(\gamma, x)$
- Gave an explicit description of $\overline{\operatorname{conv}}(\mathcal{S})$
- Convex quadratic reformulation!

- Want to optimize the GTRS: $\inf_{x} \{q_0(x) \mid q_1(x) \leq 0\}$
- Studied a pencil of quadratics $q(\gamma, x)$
- Gave an explicit description of $\overline{\text{conv}}(S)$
- Convex quadratic reformulation!
- Gave a linear (in N) time algorithm for solving the GTRS

Questions?