

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003 年2 月13 日 (13.02.2003)

PCT

(10) 国際公開番号 WO 03/011028 A1

(51)	国際特許分類7:		A01N 37/30,
	37/52, 43/44, 43/48, 4	3/54, C07C 237/40,	237/42, 257/06,
•	C07D 239/88, 263/10	, 265/08	
		•	

(21) 国際出願番号:

PCT/JP02/07833

(22) 国際出願日:

2002年8月1日 (01.08.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2001-234100 2001 年8 月1 日 (01.08.2001) JP 特願2001-310308 2001 年10 月5 日 (05.10.2001) JP 特願 2001-334110

2001年10月31日(31.10.2001) JP

特願2002-156102 2002年5月29日(29.05.2002)

(71) 出願人 (米国を除く全ての指定国について): 日産化学工業株式会社 (NISSAN CHEMICAL INDUSTRIES, LTD.) [JP/JP]; 〒101-0054 東京都 千代田区 神田錦町3 丁目7番地1 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 沼田 昭 (NU-MATA,Akira) [JP/JP]; 〒274-8507 千葉県 船橋市 坪井町7 2 2番地 1 日産化学工業株式会社 物質科学研究所内 Chiba (JP). 前田 兼成 (MAEDA,Kazushige) [JP/JP]; 〒274-8507 千葉県 船橋市 坪井町7 2 2番地 1 日産

化学工業株式会社物質科学研究所内 Chiba (JP). 三田 猛志 (MITA, Takeshi) [JP/JP]; 〒274-8507 千葉県 船橋市坪井町722番地1日産化学工業株式会社物質科学研究所内 Chiba (JP). 三宅 敏郎 (MIYAKE, Toshiro) [JP/JP]; 〒349-0294 埼玉県 南埼玉郡 白岡町大字白岡1470日産化学工業株式会社 生物科学研究所内 Saitama (JP). 瀧井新自 (TAKII, Shinji) [JP/JP]; 〒349-0294 埼玉県南埼玉郡白岡町大字白岡1470日産化学工業株式会社 生物科学研究所内 Saitama (JP). 伊藤 俊紀 (ITOH, Toshinori) [JP/JP]; 〒349-0294 埼玉県南埼玉郡白岡町大字白岡1470日産化学工業株式会社生物科学研究所内 Saitama (JP).

- (74) 代理人: 津国 肇 (TSUKUNI,Hajime); 〒105-0001 東京 都港区 虎ノ門1丁目22番12号 SVAX TSビ ル Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ 特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,

:[続葉有]

(54) Title: SUBSTITUTED AMIDES AND PEST CONTROLLERS

(54) 発明の名称: 置換アミド化合物及び有害生物防除剤

CI

G-2

(57) Abstract: Substituted amides represented by the general formula (1) or salts thereof, and pest controllers such as insecticides or acaricides, containing the same: (1) (G-1) (G-2) wherein A is a carbon atom or the like; G is a group represented by the general formula (G-1), (G-2), or the like; W¹ and W² are each independently oxygen or sulfur; X¹ is -N(R6)R5 or the like; X² is halogeno, C₁₋₆ alkyl, C₁₋₆ haloalkyl, or the like; Y¹, Y² and Y³ are each independently hydrogen, halogeno, cyano, or the like; R¹ and R³ are each independently cyano, C₁₋₁₂ alkyl, C₃₋₁₂ alkenyl, or the like; R⁴ is halogeno, cyano, nitro, or the like; R⁵ and R⁶ are each independently C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₃₋₆ alkenyl, or the like; m and n are each independently an integer of 1 to 3; and p³ is an integer of 1 to 4.

/統葉者

GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI 特 許(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

添付公開查類: 国際調査報告書

(57) 要約:

本発明は、一般式(1)

$$(X^{2})_{m} \xrightarrow{R^{1}} (Y^{3})_{n}$$

$$(X^{2})_{m} \xrightarrow{C} W^{1}$$

$$(X^{2})_{m} \xrightarrow{C} W^{2}$$

$$(X^{2})_{$$

式中、A は炭素原子等を表し、G は G-1 又は G-2 等を表し、W 及び W は各々独立して酸 素原子又は硫黄原子を表し、XIは-N(R6)R5等を表し、XIはハロゲン原子、C₁~C₆アルキル 又は $C_1 \sim C_6$ ハロアルキル等を表し、Y'、Y' 及び Y' は各々独立して水素原子、ハロゲン原子 又はシアノ等を表し、 R^1 、 R^2 及び R^3 は各々独立してシアノ、 $C_1 \sim C_1$, アルキル又は $C_2 \sim C_1$, アルケニル等を表し、Rfはハロゲン原子、シアノ又はニトロ等を表し、Rf及びRfは各々 独立して $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル又は $C_3 \sim C_6$ アルケニル等を表し、 π 及び nは各々独立して1~3の整数を表し、p3は1~4の整数を表す、

で表される置換アミド化合物又はその塩、及びそれらを含有する有害生物防除剤、特に 殺虫剤又は殺ダニ剤を提供する。

明細慧

置換アミド化合物及び有害生物防除剤

5 技術分野

本発明は、新規な置換アミド化合物及びその塩、並びに該化合物を有効成分として含有することを特徴とする有害生物防除剤に関するものである。本発明における有害生物防除剤とは、農園芸分野、畜産分野及び衛生分野におけるあらゆる有害な生物を対象とした防除剤を意味する。また、本発明における農薬とは、農園芸分野における殺虫・殺ダニ剤、殺線虫剤、除草剤及び殺菌剤を意味する。

背景技術

10

従来、置換アミド誘導体に関しては、国際特許出願公報(W0 99/51580号公報、W0 98/24771号公報)に医薬品として用いられるサイトカイン産生阻害活性、パソプレッシン拮抗活性等を有することが開示されている。また、ヨーロッパ特許出願公報(EP 0,919,542号公報、EP 1,006,107号公報)、国際特許出願公報(W0 99/51580号公報、W0 98/24771号公報、W0 01/00575号公報、W0 01/00599号公報、W0 01/02354号公報、W0 01/21576号公報、W0 01/46124号公報)には殺虫活性を有することが開示されている。しかしながら、本発明に係る新規な置換アミド誘導体に関しては何ら開示されていない。有害生物防除剤、例えば殺虫剤や殺菌剤の長年にわたる使用により、近年、病害虫が抵抗性を獲得し、従来用いられてきた殺虫剤や殺菌剤による防除が困難になっている。また、既存の有害生物防除剤の一部のものは毒性が高く、或いはあるものは長期の残留性により、生態系を乱しつつある。このような状況下、低毒性かつ低残留性の新規な有害生物防除剤の開発が常に期待されている。

25 本発明者らは、上記の課題解決を目標に鋭意研究を重ねた結果、本発明に係る下記一般式(1)で表される新規な置換アミド化合物が優れた有害生物防除活性、特に殺虫殺ダニ活性を示し、且つ、ホ乳動物、魚類及び益虫等の非標的生物に対してほとんど悪影響の無い、極めて有用な化合物であることを見い出し、本発明を完成した。

PCT/JP02/07833

発明の開示

すなわち、本発明は下記〔1〕~〔12〕に関するものである。

〔1〕 一般式(1):

式中、Aは、炭素原子又は窒素原子を表し、

5 Gは、G-1、G-2 又はG-3 を表し、

$$-\frac{W^{2}}{C}$$
 $-\frac{W^{2}}{N}$
 $-\frac{W$

₩ 及び W は、各々独立して酸素原子又は硫黄原子を表し、

X¹は、X¹-1 又は X¹-2 を表し、

 X^2 は、水素原子、ハロゲン原子、シアノ、ニトロ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルテオ、 $C_1 \sim C_6$ ハロアルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルコキシカルボニルを表し、 $C_1 \sim C_6$ アルコキシカルボニル

 Y^1 、 Y^2 及び Y^3 は、各々独立して水素原子、ハロゲン原子、シアノ、ニトロ、アジド、-15 SCN、 $-SF_5$ 、 $C_1 \sim C_6$ アルキル、 R^7 によって任意に置換された $(C_1 \sim C_6)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^7 によって任意に置換された $(C_3 \sim C_6)$ シクロアルキル、 $C_2 \sim C_6$ アルケニル、

 R^7 によって任意に置換された $(C_2 \sim C_6)$ アルケニル、 $C_3 \sim C_8$ シクロアルケニル、 $C_3 \sim C_8$ ハロシクロアルケニル、 $C_2 \sim C_6$ アルキニル、 R^7 によって任意に置換された $(C_2 \sim C_6)$ アルキニル、-OH、 $-OR^8$ 、-SH、-S (O) $_2OR^{10}$ 、-S (O) $_2OR^{10}$ 、-S (O) $_2OR^{11}$ $_2OR^{11}$ $_2OR^{10}$ $_2$

更に Y¹、Y²及び Y³のうち、2つの Y が隣接する場合には、隣接する2つの Y は -CH₂CH₂CH₂-, -CH₂CH₂O-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -CH₂SCH₂-, -CH₂CH₂N (R¹¹) -, -CH₂N (R¹¹) CH₂-, -CH₂CH₂CH₂CH₂-, -CH₂CH₂CH₂O-, -CH₂CH₂OCH₂-, -CH₂OCH₂-, -OCH₂CH₂O-, -OCH₂CH₂O-, -OCH₂CH₂O-, -OCH₂CH₂O-, -OCH₂CH₂S-, -CH₂CH=CH-, -OCH=CH-, -SCH=CH-, -N (R¹¹) CH=CH-, -OCH=N-, -SCH=N-, -N (R¹¹) CH=N-, -N (R¹¹) N=CH-, -CH=CHCH=CH-, -OCH₂CH=CH-, -N=CHCH=CH-又は-N=CHN=CH-を形成することにより、それぞれのYが結合する炭素原子と共に5員環又は6員環を形成してもよく、このとき、環を形成する各々の炭素原子に結合した水素原子はR¹²によって任意に置換されていてもよく、

Lは、式L-1から式L-58までの何れかで表される芳香族複素環を表し、

$$(Z)_{p4} = (Z)_{p4} = (Z)_{p4} = (Z)_{p4} = (Z)_{p4} = (Z)_{p3} = (Z)_{p3} = (Z)_{p3} = (Z)_{p4} = (Z)_{p4} = (Z)_{p4} = (Z)_{p5} = (Z)_{p5}$$

.

Mは、式M-1から式M-28までの何れかで表される脂肪族複素環を表し、

$$(R^{19})_{q4} \longrightarrow (R^{19})_{q4} \longrightarrow (R^{19})_{q3} \longrightarrow (R^{19})_{q3$$

Z は、水素原子、ハロゲン原子、シアノ、ニトロ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_2 \sim C_6$ アルケニル、 $C_2 \sim C_6$ アルキニル、 $C_2 \sim C_6$ アルキニル、 $C_2 \sim C_6$ アルキニル、 $C_2 \sim C_6$ アルキニル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルボニルスはフェニル)アミノ、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニルスはフェニルを表し、 $C_1 \sim C_6$ アルコキシカルボニルスはフェニ

 R^1 、 R^2 及び R^3 は、各々独立して水素原子、シアノ、 $C_1 \sim C_{12}$ アルキル、 R^{21} によって任意に置換された ($C_1 \sim C_{12}$) アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^{21} によって任意に置換された ($C_3 \sim C_8$) シクロアルキル、 $C_3 \sim C_{12}$ アルケニル、 R^{21} によって任意に置換された ($C_3 \sim C_{12}$) アルケニル、 $C_3 \sim C_8$ シクロアルケニル、 $C_3 \sim C_8$ ハロシクロアルケニル、 $C_3 \sim C_{12}$ アルキニル、 R^{21} によって任意に置換された ($C_3 \sim C_{12}$) アルキニル、 $-0R^{22}$ 、 $-SR^{24}$ 、-S(0) $_2R^{24}$ 、 $-SN(R^{25})$ R^{25} 、-S(0) $_2N(R^{28})$ R^{27} 、 $-N(R^{23})$ R^{22} 、-C(0) R^{10} 、-C(0) OR^{10} 、-C(0) SR^{10} 、-C(0) $N(R^{28})$ R^{27} 、-C(0) R^{21} R^{22} R^{23} R^{24} R^{25} R^{25} R

ン鎖を形成することにより、結合する窒素原子と共に $3\sim7$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子、硫黄原子及び窒素原子から選ばれる1 個の原子を含んでもよく、且つハロゲン原子、 $C_1\sim C_6$ アルキル基又は $C_1\sim C_6$ アルコキシ基によって任意に置換されていてもよく、

- R^4 は、水素原子、ハロゲン原子、シアノ、ニトロ、 $C_1 \sim C_{10}$ アルキル、 R^{21} によって任意 に置換された $(C_1 \sim C_{10})$ アルキル、 $C_3 \sim C_6$ シクロアルキル、 R^{21} によって任意に置換された $(C_3 \sim C_6)$ シクロアルキル、 $C_2 \sim C_{10}$ アルケニル、 R^{21} によって任意に置換された $(C_2 \sim C_{10})$ アルケニル、 $C_2 \sim C_8$ アルキニル、 R^{21} によって任意に置換された $(C_2 \sim C_{10})$ アルキニル、 $(C_2 \sim C_{10})$ アルキュール・ $(C_2 \sim C_{10})$ アルキュ
- 10 -C (0) N (R¹¹) R¹⁰、 -C (0) C (0) 0R¹⁰、 -CH=NOR¹²、 -C (R¹⁰) =NOR¹²、 -P (0) (0R¹³) ₂、 -P (S) (0R¹³) ₂、 -P (C) (Dx = 1) ₂、 -P (D) (Dx = 1) ₂、 -P (S) (OR¹³) ₂ . -P (S) (OR¹³
- R^5 は、 $C_1 \sim C_6$ アルキル、 R^{21} によって任意に置換された $(C_1 \sim C_6)$ アルキル、 $C_2 \sim C_6$ シアノアルキル、 $C_3 \sim C_6$ シクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ ハロアルキニル、 $C_3 \sim C_6$ ハロアルキニル、 $C_3 \sim C_6$ ハロアルキニル、 $C_3 \sim C_6$ ハロアルキニル、 $C_3 \sim C_6$ アルキルカルボニルオキシ、 $C_3 \sim C_6$ ハロアルキニル、 $C_3 \sim C_6$ ハロアルキニル、 $C_3 \sim C_6$ アルキルカルボニルオキシ、 $C_3 \sim C_6$ ハロアルキニル、 $C_3 \sim C_6$ ハロアルキニル、 $C_3 \sim C_6$ アルキルカルボニルオキシ、 $C_3 \sim C_6$ の $C_3 \sim C_6$ の $C_4 \sim C_6$ の $C_5 \sim C_6$ の $C_6 \sim C_6$

 \mathbb{R}^{5b} は、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキル、 $\mathbb{C}_3 \sim \mathbb{C}_6$ アルケニル又は $\mathbb{C}_8 \sim \mathbb{C}_6$ アルキニルを表し、

 R^6 は、(i) A が炭素原子を表すとき、水素原子、 $C_1 \sim C_6$ アルキル、 R^{21} によって任意に置

換された $(C_1 \sim C_6)$ アルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ アルキニル、 $C_1 \sim C_6$ ハロアルキニル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ ハロアルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニルスは $(Z)_{p1}$ によって置換されていてもよいフェニルカルボニルを表すか、或いは、 R^5 と R^6 とが一緒になって $C_2 \sim C_6$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 7$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子、硫黄原子及び窒素原子から選ばれる 1 個の原子を含んでもよく、且つハロゲン原子、酸素原子又はメチル基によって任意に置換されていてもよく、

さらに或いは、R⁶が R² と一緒になって-C (R^{6a}) (R^{6b}) -又は-C (0) C (R^{6a}) (R^{6b}) -を形成すること により、C 及び X¹が結合するベンゼン環と縮合する 6 員又は7 員のヘテロ環を形成してもよいことを表し、

(i i) A が窒素原子を表すとき、 R^6 は R^2 と一緒になって-C (R^{6a}) (R^{6b}) - 又は-C (O) C (R^{6a}) (R^{6b}) - を形成することにより、G 及び X^1 が結合するベンゼン環と縮合する G 員又は T 員のヘテロ環を形成することを表し、

 R^7 は、ハロゲン原子、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、-OH、25 $-OR^8$ 、-ON=C (R^{11}) R^{10} 、-SH、-S (O) $_1R^8$ 、 $-NHR^9$ 、-N (R^9) R^8 、 $C_1 \sim C_6$ アルコキシカルボニル、 C_1 $\sim C_6$ ハロアルコキシカルボニル、-Si (R^{16}) (R^{16}) R^{14} 、(Z) $_{p1}$ によって置換されていてもよいフェニル、(Z) $_{p2}$ によって置換されていてもよいナフチル、L 又は M を表し、

 \mathbb{R}^8 は、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 \mathbb{R}^{30} によって任意に置換された ($\mathbb{C}_1 \sim \mathbb{C}_6$) アルキル、 $\mathbb{C}_3 \sim \mathbb{C}_8$ シクロアルキル、 $\mathbb{C}_2 \sim \mathbb{C}_6$ アルケニル、 \mathbb{R}^{30}

によって任意に置換された $(C_2 \sim C_6)$ アルケニル、 $C_3 \sim C_8$ シクロアルケニル、 $C_3 \sim C_8$ ハロシクロアルケニル、 $C_3 \sim C_6$ アルキニル、 R^{30} によって任意に置換された $(C_3 \sim C_6)$ アルキニル、-C(0) R^{10} 、-C(0) R^{10} 、-C(0) R^{10} 、-C(0) R^{10} 、-C(0) R^{10} 、-C(0) R^{10} 、-C(0) R^{10} R^{1

 R^9 は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル($C_1 \sim C_6$) アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_6$ アルキル、 $C_3 \sim C_6$ アルキール、 $C_3 \sim C_6$ アルキール、 $C_1 \sim C_6$ アルキール、 $C_1 \sim C_6$ アルキール、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルキルスルボニル、 $C_1 \sim C_6$ アルキルスルボニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルボニル、 $C_1 \sim C_6$ アルキルスルボニル、 $C_1 \sim C_6$ アルキレン鎖を形成することにより、結合する窒素原子と共に3~7 負環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫黄原子から選ばれる1 個の原子を含んでもよく、且つハロゲン原子、 $C_1 \sim C_6$ アルキル基又は $C_1 \sim C_6$ ハロアルキル基によって置換されていてもよく、

 R^{10} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルス アルキル、 $C_1 \sim C_6$ ハロアルキルチオ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルス ルホニル ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルキルスルホニル ($C_1 \sim C_4$) アルキル、 $C_2 \sim C_6$ シア ノアルキル、 $C_1 \sim C_6$ アルコキシカルボニル ($C_1 \sim C_4$) アルキル、トリメチルシリル ($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル、 $C_2 \sim C_6$ アルケニル ($C_3 \sim C_8$) シクロアルキル、 $C_2 \sim C_6$ アルケニル ($C_3 \sim C_8$) シクロアルキル、 $C_2 \sim C_6$ アルケニル、($C_2 \sim C_6$ ハロアルケニル、($C_3 \sim C_8$) シクロアルキール、($C_2 \sim C_6$ ハロアルケニル、($C_3 \sim C_8$) シクロアルキール、($C_3 \sim C_8$) シクロアルキール、($C_3 \sim C_8$) シクロアルキール、($C_3 \sim C_8$) シクロアルケニル、($C_3 \sim C_8$) シクロアルキール、($C_3 \sim C_8$) シクロアルキール・($C_3 \sim C_8$) シクロアルキートール・($C_3 \sim C_8$) シクロアルキール・($C_3 \sim C_8$) シクロアルキール

PCT/JP02/07833

又はMを表し、

25

 R^{11} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ ハロアルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルキルチオ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルキルスルホニル($C_1 \sim C_4$) アルキル、 $C_3 \sim C_6$ シクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ アルキニル又は $C_3 \sim C_6$ ハロアルキニルを表すか、或いは、 R^{10} と R^{11} とが一緒になって $C_2 \sim C_5$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 6$ 負環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫黄原子から選ばれる1個の原子を含んでもよく、且つハロゲン原子、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルコキシ基 又は $(Z)_{p1}$ によって置換されていてもよいフェニル基によって置換されていてもよく、

 R^{12} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルカルボ $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル、($C_1 \sim C_4$) アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_6$ アルチニル、 $C_3 \sim C_6$ アルチニル、 $C_3 \sim C_6$ アルキニル、($C_3 \sim C_6$ アルキニルスは ($C_1 \sim C_4$) アルキール、 $C_3 \sim C_6$ アルキニルスは ($C_1 \sim C_4$) アルキールを表し、

 \mathbb{R}^{14} は、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキル又は \mathbb{C}_{01} によって置換されていてもよい 20 フェニルを表し、

 R^{13} は、 $C_1 \sim C_6$ アルキル又は $C_1 \sim C_6$ ハロアルキルを表し、

 R^{16} 及び R^{16} は、各々独立して $C_1 \sim C_6$ アルキル又は $C_1 \sim C_6$ ハロアルキルを表し、

 R^{17} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシカルボニル ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルコキシカルボニル ($C_1 \sim C_4$) アルキル、 ($C_1 \sim C_4$) アルキル、 ($C_1 \sim C_4$) アルキル、 ($C_2 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニルスは ($C_1 \sim C_6$ アルコキシカルボニル ($C_1 \sim C_6$ アルコキシカルボニルスは ($C_1 \sim C_6$ アルコキシカルズニルスは ($C_1 \sim C_6$ アルコキシ

 R^{18} は、ハロゲン原子、シアノ、ニトロ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_2 \sim C_6$ アルケニル、 $C_2 \sim C_6$ ハロアルケニル、 $C_2 \sim C_6$ アルキニル、 $C_2 \sim C_6$ ハロアルキニル、 $C_1 \sim C_6$

アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルアミノ、ジ $(C_1 \sim C_6$ アルキル) アミノ、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルキル $C_1 \sim C_6$ アルキル

 R^{19} は、ハロゲン原子、シアノ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、ヒドロキシ($C_1 \sim C_6$) アルキル、 $C_1 \sim C_4$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルコキシカルボニル ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルコキシカルボニル又は ($C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルコキシカルボニル又は ($C_1 \sim C_6$ アルコキシカルボニルスは ($C_1 \sim C_6$ アルコキシカルボニルスは ($C_1 \sim C_6$ アルコキシ ($C_1 \sim C_6$ アルコキシカルボニルスは ($C_1 \sim C_6$ アルコキシ ($C_1 \sim C_6$ アルコキシカルボニルスは ($C_1 \sim C_6$ アルコキシカルボニルスは ($C_1 \sim C_6$ アルコキシ ($C_1 \sim C_6$ アルコキシカルボニルスは ($C_1 \sim C_6$ アルコキシカルボニルスは ($C_1 \sim C_6$ アルコキシ ($C_1 \sim C_6$ アルコキシカルボニルスは ($C_1 \sim C_6$ アルコキシ ($C_1 \sim C_6$ アルコキシカルボニルスは ($C_1 \sim C_6$ アルコキシ ($C_1 \sim C_6$ アルコキシカルボニルスは ($C_1 \sim C_6$ アルコキシ ($C_1 \sim C_6$ アルコキシカルボニルスは ($C_1 \sim C_6$ アルコキシ ($C_1 \sim C_6$ アルコキシカルボニルスは ($C_1 \sim C_6$ アルコキシ ($C_1 \sim C_6$ アルコキシカルボニルスは ($C_1 \sim C_6$ アルコキシ ($C_1 \sim C_6$ アルコキシカルボニルスは ($C_1 \sim C_6$ アルコキシカルボニルスは ($C_1 \sim C_6$ アルコキシ ($C_1 \sim C_6$ アルコキシカルボニルスは ($C_1 \sim C_6$ アルコキシカルズニムは ($C_1 \sim C_6$ アルコキシカルスは ($C_1 \sim C_6$ アルコキシカルスは ($C_1 \sim C_6$ アルコキシムは ($C_1 \sim C_6$ アルコキシカルスは ($C_1 \sim C_6$ アルコキシムは (C_1

 R^{20} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、-CHO、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ ハロアルキルカルボニル、 $C_1 \sim C_6$ ハロアルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、 $C_1 \sim C_6$ アルキル)アミノカルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、 $C_1 \sim C_6$ アルキル)アミノカルボニル、 $C_1 \sim C_6$ アルキルアミノチオカルボニル、 $C_1 \sim C_6$ アルキル)アミノチオカルボニル、 $C_1 \sim C_6$ アルキルスルボニル、 $C_1 \sim C_6$ アルキルスルボニル、 $C_1 \sim C_6$ アルキルスルボニル、 $C_1 \sim C_6$ アルキルスルボニル、 $C_1 \sim C_6$ ハロアルキルスルボニル、 $C_1 \sim C_6$ アルキルスルボニル、 $C_1 \sim C_6$ ハロアルキルスルボニル、 $C_1 \sim C_6$ ハロアルキルスルボニル ボニル・ $C_1 \sim C_6$ ハロアルキルスルボニル・ $C_1 \sim C_6$ ハロアルボニル・ $C_1 \sim C_6$ ハロアルバニル・ $C_1 \sim C_6$ ハロアルバニル・ $C_1 \sim C_6$ ハロアルバニル・

 R^{21} は、ハロゲン原子、シアノ、ニトロ、 $C_3\sim C_8$ シクロアルキル、 $C_3\sim C_8$ ハロシクロアルキル、-OH、-OH、 $-OR^8$ 、-SH、-S (0) -OH -OH

 $P(0) (0R^{13})_2$ 、 $P(S) (0R^{13})_2$ 、 $P(7x=N)_2$ 、 $P(0) (7x=N)_2$ 、 $(Z)_{p1}$ によって置換されていてもよいフェニル、 $P(0)_{p2}$ によって置換されていてもよいナフチル、 $P(0)_{p2}$ によって置換されていてもよいナフチル、 $P(0)_{p2}$ によって置換されていてもよいフェニル、 $P(0)_{p2}$ によって置換されていてもよいフェニル $P(0)_{p2}$ によって置換されていてもよいフェニル $P(0)_{p2}$ によって置換されていてもよいフェニル $P(0)_{p2}$ によって置換されていてもよいフェニル、 $P(0)_{p2}$ によって置換されていてもよいフェニルを表し、

25.

 R^{23} は、水素原子、 $C_1 \sim C_6$ アルキル、-CHO、 $C_i \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ ハロアルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $(Z)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルコキシカルボニル、 $(Z)_{p1}$ によって置換されていてもよいフェノキシカルボニル又は $(Z)_{p1}$ によって置換されていてもよいフェニルカルボニル又は $(Z)_{p1}$ によって置換されていてもよいフェニルカルボニルを表し、

 R^{24} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $(Z)_{p2}$ によって置換されていてもよいフェニル、 $(Z)_{p2}$ によって置換されていてもよいナフチル、 $(Z)_{p2}$ によって置換されていてもよいナフチル、 $(Z)_{p3}$ によって置

 R^{25} は、 $C_1 \sim C_{12}$ アルキル、 $C_1 \sim C_{12}$ ハロアルキル、 $C_1 \sim C_{12}$ アルコキシ ($C_1 \sim C_{12}$) アルキル、 $C_2 \sim C_{12}$ シアノアルキル、 $C_1 \sim C_{12}$ アルコキシカルボニル ($C_1 \sim C_{12}$) アルキル、 ($C_1 \sim C_{12}$) アルキル、 ($C_1 \sim C_{12}$) アルキル、 ($C_2 \sim C_{12}$) アルキル、 ($C_3 \sim C_{12}$ アルコアルケニル、 $C_3 \sim C_{12}$ ハロアルケニル、 $C_3 \sim C_{12}$ アルキニル、 $C_1 \sim C_{12}$ アルコキシカルボニルスは ($C_1 \sim C_1 \sim$

 R^{26} は、 $C_1 \sim C_{12}$ アルキル、 $C_1 \sim C_{12}$ ハロアルキル、 $C_1 \sim C_{12}$ アルコキシ($C_1 \sim C_{12}$)アルキル、 $C_2 \sim C_{12}$ シアノアルキル、 $C_1 \sim C_{12}$ アルコキシカルボニル($C_1 \sim C_{12}$)アルキル、($C_1 \sim C_{12}$)アルキル、($C_1 \sim C_{12}$)アルキル、($C_1 \sim C_{12}$)アルキル、 $C_3 \sim C_{12}$ アルケニル、 $C_3 \sim C_{12}$ ハロアルケニル、 $C_3 \sim C_{12}$ アルキニル、 $C_3 \sim C_{12}$ アルキニルスは($C_1 \sim C_2 \sim C_{12}$ アルキニルスは($C_1 \sim C_2 \sim C_{12}$ アルキニルスは($C_1 \sim C_2 \sim C_2$

 R^{27} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_2 \sim C_6$ シアノアルキル、(Z) $_{p1}$ によって置換されていてもよいベンジル、 $C_3 \sim C_6$ シクロアルキル、 $C_3 \sim C_6$ アルキニル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、(Z) $_{p1}$ によって置換されていてもよいベンジルオキシ又は(Z) $_{p1}$ によって置換されていてもよいフェニルを表し、

且つ C₁~C₄アルキル基又は C₁~C₄アルコキシ基によって任意に置換されていてもよく、

 R^{28} は、水素原子、 $C_1 \sim C_6$ アルキル又は $C_1 \sim C_6$ ハロアルキルを表すか、或いは、 R^{27} と R^{28} とが一緒になって $C_4 \sim C_7$ アルキレン鎖を形成することにより、結合する窒素原子と共に $5 \sim 8$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫

黄原子から選ばれる1個の原子を含んでもよく、且つ $C_1 \sim C_4$ アルキル基又は $C_1 \sim C_4$ アルコキシ基によって任意に置換されていてもよく、

 R^{29} は、 $C_1 \sim C_8$ アルキル、 R^{31} によって任意に置換された ($C_1 \sim C_8$) アルキル、 $C_3 \sim C_6$ シクロアルキル、 R^{31} によって任意に置換された ($C_3 \sim C_6$) シクロアルキル、 $C_3 \sim C_6$ アルケニル、 R^{31} によって任意に置換された ($C_3 \sim C_6$) アルケニル、 $C_3 \sim C_6$ アルキニル、 R^{31} によって任意に置換された ($C_3 \sim C_6$) アルキニル、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、($Z_{11} \sim Z_{11} \sim Z_$

 R^{30} は、ハロゲン原子、シアノ、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、-OH、 $-OR^{32}$ 、-SH、-S (0) $_1R^{32}$ 、 $-NHR^{33}$ 、-N (R^{33}) R^{32} 、-CHO、-C (0) R^{34} 、-C (0) OH、-C (0) OR^{34} 、-C (R^{34}) $=NOR^{12}$ 、(Z) $_{p_1}$ によって置換されていてもよいフェニル、(Z) $_{p_2}$ によって置換されていてもよいナフチル、L 又は M を表し、

- R^{31} は、ハロゲン原子、シアノ、ニトロ、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、-OH、 $-OR^{32}$ 、-SH、-S (0) $_1R^{32}$ 、 $-NHR^{33}$ 、-N ($_1R^{33}$) $_2R^{32}$ 、-CHO、-C (0) $_1R^{10}$ 、-C (0) $_1R^{10}$ 、-C (0) $_1R^{10}$ $_1R^{10}$
- R^{32} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_6$) アルキル、 $C_1 \sim C_6$ アルキルチオ ($C_1 \sim C_6$) アルキル、 ($C_1 \sim C_6$) アルキル、 ($C_2 \sim C_6$ アルキル、 ($C_3 \sim C_6$ アルキル、 ($C_3 \sim C_8$ ンクロアルキル、 ($C_3 \sim C_8$ ハロシクロアルキル、 ($C_3 \sim C_6$ アルキニル、 ($C_3 \sim C_8$ シクロアルケニル、 ($C_3 \sim C_8$ ハロシクロアルケニル、 ($C_3 \sim C_6$ アルキニル、 ($C_3 \sim C_6$ アルキニル、 ($C_3 \sim C_6$ アルキニル、 ($C_1 \sim C_6$ アルキルカルボニル、 ($C_1 \sim C_6$ アルコキシカルボニル、 ($C_1 \sim C_6$ アルコキシカルボニル、 ($C_1 \sim C_6$ アルキルアミノカルボニル、 ジ($C_1 \sim C_6$ アルキルアミノカルボニル、 ジ($C_1 \sim C_6$ アルキルアミノチオカルボニル、 ジ($C_1 \sim C_6$ アルキルアミノチオカルボニル、 ($C_1 \sim C_6$ アルキルアミノチオカルボニル ($C_1 \sim C_6$ アルキャイトル・($C_1 \sim C_6$ アルキルアミハー・($C_1 \sim C_6$ アルキルアミハー・($C_1 \sim C_6$ アルキルア・($C_1 \sim C_6$ アルキルア・($C_1 \sim C$

PCT/JP02/07833

 R^{33} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルキニル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルキニル、 $C_1 \sim C_6$ アルキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ ハロアルコキシカルボニル、 $(Z)_{p1}$ によって置換されていてもよいフェニルカルボニル、 $(Z)_{p1}$ によって置換されていてもよいフェニルカルボニル、 $(Z)_{p2}$ によって置換されていてもよいナフチル、 $(Z)_{p2}$ によって置換されていてもよいナフチル、 $(Z)_{p2}$ によって置換されていてもよいナフチル、 $(Z)_{p2}$ によって置換されていてもよいナフチル、 $(Z)_{p2}$ によって置換されていてもよいナフチル、 $(Z)_{p2}$ によって $(Z_2 \sim C_6)$ アルキレン鎖を形成することにより、結合する窒素原子と共に $(Z_1 \sim C_6)$ アルキレン鎖は酸素原子及び硫黄原子から選ばれる $(Z_1 \sim C_6)$ のの原子を含んでもよく、且つハロゲン原子又はメチル基によって置換されていてもよく、

 R^{34} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_6$) アルキル、 $C_1 \sim C_6$ アルキルチオ ($C_1 \sim C_6$) アルキル、(Z) $_{p_1}$ によって置換されていてもよいフェニル ($C_1 \sim C_4$) アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_2 \sim C_6$ アルケニル ($C_3 \sim C_8$) シクロアルキル、 $C_2 \sim C_6$ アルケニル、 $C_2 \sim C_6$ アルケニル、 $C_2 \sim C_6$ アルケニル、 $C_2 \sim C_6$ アルケニル、 $C_2 \sim C_6$ ハロアルケニル、 $C_2 \sim C_6$ アルキニル、 $C_2 \sim C_6$ アルキニル・ $C_2 \sim C_6$ アルキューロー $C_2 \sim C_6$ アルキューロ $C_2 \sim$

Ⅲは、1~3の整数を表し、

15

25

nは、1~3の整数を表し、

pは、1~6の整数を表し、

20 plは、1~5の整数を表し、

p2 は、1~7の整数を表し、

p3 は、1~4の整数を表し、

p4 は、1~3の整数を表し、

p5 は、1~2の整数を表し、

p6 は、1~9の整数を表し、

q1 は、0~3の整数を表し、

q2 は、 $0 \sim 5$ の整数を表し、

q3 は、 $0 \sim 7$ の整数を表し、

g4は、0~9の整数を表し、

れていてもよく、

rは、0~2の整数を表す、

で表される置換アミド化合物又はその塩から選ばれる1種及び2種以上を有効成分として含有することを特徴とする有害生物防除剤。

- 〔2〕 上記〔1〕記載の置換アミド化合物及びその塩から選ばれる1種又は2種以 上を有効成分として含有することを特徴とする農薬。
 - 〔3〕 上記〔1〕記載の置換アミド化合物及びその塩から選ばれる1種又は2種以上を有効成分として含有することを特徴とする殺虫剤又は殺ダニ剤。
 - [4] 上記〔1〕記載の一般式(1)で表される化合物において、Aは、炭素原子を表し、
- Y^1 、 Y^2 及び Y^3 は、各々独立して水素原子、ハロゲン原子、シアノ、ニトロ、アジド、 10 -SCN、 $-SF_{5}$ 、 $C_{1}\sim C_{6}$ アルキル、 R^{7} によって任意に置換された $(C_{1}\sim C_{6})$ アルキル、 $C_{5}\sim C_{6}$ シク ロアルキル、R⁷によって任意に置換された(C₃~C₆)シクロアルキル、C₅~C₆アルケニル、 \mathbb{R}^7 によって任意に置換された ($\mathbb{C}_2 \sim \mathbb{C}_8$) アルケニル、 $\mathbb{C}_3 \sim \mathbb{C}_8$ シクロアルケニル、 $\mathbb{C}_3 \sim \mathbb{C}_8$ ハロ シクロアルケニル、 $C_2 \sim C_6$ アルキニル、 R^7 によって任意に置換された $(C_2 \sim C_6)$ アルキニル、 .15 -OH, $-OR^8$, -SH, -S (0) $_2R^8$, -S (0) $_2OR^{10}$, -S (0) $_2NHR^{11}$, -S (0) $_2N$ (R^{11}) R^{10} , $-NHR^9$, -N (R^9) R^8 , $-CHO_{\bullet}$ -C (0) R^{10} , -C (0) OR^{10} , -C (0) SR^{10} , -C (0) NHR^{11} , -C (0) N (R^{11}) R^{10} , -C (S) OR^{10} , -C (S) SR^{10} , -C (S) NHR¹¹, -C (S) N (R¹¹) R¹⁰, $-CH=NOR^{12}$, -C (R¹⁰) =NOR¹², -C (=NOR¹²) OR¹⁰, -C (=NOR¹²) SR¹⁰, -C (=NOR¹²) NH (R¹¹) , -C (=NOR¹²) N (R¹¹) R¹⁰, -P (0) (OR¹³) 2, -P (S) (OR¹³) 2, -P (0) (R¹⁴) (OR¹⁵) , -Si (R¹⁵) (R¹⁶) R¹⁴、(Z) n によって置換されていてもよいフェニル、(Z) c によって置換され 20ていてもよいナフチル、L-1~L-13、L-15~L-35、L-37~L-58 又は M を表し、n が 2 以上 の整数を表すとき、各々のYは互いに同一であっても、または相異なっていてもよく、 更に、nが2以上の整数であり、且つ2つのYが隣接する場合には、隣接する2つのY $\text{V$\ddot{a}$-CH$_2CH$_2$-, -CH$_2CH$_2$-, -CH$_2CH$_2$-, -CH$_2CH$_2$-, -CH$_2CH$_2$-, -CH$_2CH$_2$-, -CH$_2CH$_2$-, -CH$_2CH$_2$-, -CH$_2$-, -CH$_$ $-CH_2N$ (R¹⁷) CH_2- , $-CH_2CH_2CH_2CH_2-$, $-CH_2CH_2CH_2O-$, $-CH_2CH_2OCH_2-$, $-CH_2OCH_2O-$, $-OCH_2CH_2O-$, $-CH_2CH=CH-$, -OCH=CH-, -SCH=CH-, -N (\mathbb{R}^{17}) CH=CH-, -OCH=N-, -SCH=N-, -N (\mathbb{R}^{17}) CH=N-, -N (R¹⁷) N=CH-, -CH=CHCH=CH-, -OCH₂CH=CH-, -N=CHCH=CH-又は-N=CHN=CH-を形成すること により、それぞれのYが結合する炭素原子と共に5員環又は6員環を形成してもよく、 このとき、環を形成する各々の炭素原子に結合した水素原子は R¹⁸によって任意に置換さ

Ewannar ideaktopiusetui sturrsyzoodo 1310-b/WO03011028.cpc

PČT/JP02/07833

 R^6 は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルキニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキニル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキンカルボニル、 $C_1 \sim C_6$ ハロアルコキシカルボニル又は $(Z)_{p1}$ によって置換されていてもよいフェニルカルボニルを表すか、或いは、 R^5 と R^6 とが一緒になって $C_2 \sim C_6$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 7$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子、硫黄原子及び窒素原子から選ばれる 1 個の原子を含んでもよく、且つハロゲン原子、酸素原子又はメチル基によって任意に置換されていてもよい置換アミド化合物又はその塩。

10 [5] 上記[1]記載の一般式(1)で表される化合物において、

Aは、炭素原子又は窒素原子を表し、

Gは、G-1を表し、

X¹は、X¹-1を表し、

 R²は R⁶ と一緒になって-C (R⁶) (R⁶) -又は-C (O) C (R⁶) (R⁶) -を形成することにより、G 及

 び X¹ が結合するベンゼン環と縮合する 6 員又は7 員のヘテロ環を形成することを表す置換アミド化合物又はその塩。

[6] 一般式(2):

$$(X^{2})_{\overline{m}} \xrightarrow{\overline{U}} G$$

$$(Y^{3})_{n}$$

$$(Y^{3})_{n}$$

$$(Y^{3})_{n}$$

$$(Y^{3})_{n}$$

式中、Gは、G-1 又はG-2 を表し、

$$-C$$

$$N-R^{3}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

₩及び₩は、各々独立して酸素原子又は硫黄原子を表し、

20 X¹は、X¹-1 又は X¹-2 を表し、

20

PCT/JP02/07833

17

 X^2 は、水素原子、ハロゲン原子、シアノ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $C_1 \sim C_6$ ハロアルキルスルホニル又は $C_1 \sim C_6$ ハロアルキルスルホニルを表し、m が 2 以上の整数を表すとき、各々の X^2 は互いに同一であっても、または相異なっていてもよく、

 Y^1 は、水素原子、ハロゲン原子、シアノ、ニトロ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、ヒドロキシ ($C_1 \sim C_6$) アルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ ハロアルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキル、 $C_2 \sim C_6$ アルキル、 $C_1 \sim C_4$ アルキル、 $C_3 \sim C_6$ シクロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_2 \sim C_6$ アルケニルオキシ、 $C_2 \sim C_6$ アルキニルオキシ、($C_1 \sim C_6$ アルキニルオキシ、($C_1 \sim C_6$ アルキニルオキシ、($C_1 \sim C_6$ アルキニルオキシ、($C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルチオ、 $C_2 \sim C_6$ アルキニルチオ、($C_1 \sim C_6$ アルキルチオ、($C_1 \sim C_6$ アルキルチオ、($C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ ハロアルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルオニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルアミノ、ジ ($C_1 \sim C_6$ アルキル) アミノ、 $C_1 \sim C_6$ アルキNOR12、 $C_1 \sim C_6$ アルキルアミノ、ジ ($C_1 \sim C_6$ アルキル) アミノ、 $C_1 \sim C_6$ アルキNOR12、 $C_1 \sim C_6$ アルキルアミノ、 $C_1 \sim C_6$ アルキル)アミノ、 $C_1 \sim C_6$ アルキNOR12、 $C_1 \sim C_6$ アルキルアミノ、 $C_1 \sim C_6$ アルキル)アミノ、 $C_1 \sim C_6$ アルキNOR12、 $C_1 \sim C_6$ アルキNOR12、 $C_1 \sim C_6$ アルキルアミノ、 $C_1 \sim C_6$ アルキル)アミノ、 $C_1 \sim C_6$ アルキNOR12、 $C_1 \sim C_6$ アルキNOR12、 $C_1 \sim C_6$ アルキルアミノ、 $C_1 \sim C_6$ アルキルアミノ $C_1 \sim C_6$ アルキルアミノ $C_1 \sim C_6$ アルキルアミノ $C_1 \sim C_6$ アルキルア・ $C_1 \sim C_6$ アルキルアミノ $C_1 \sim C_6$ アルキルア・ $C_1 \sim C_6$ ア

15 $-Si(R^{15})(R^{16})R^{14}$ 、 $(Z)_{p1}$ によって置換されていてもよいフェニル、 $L-1\sim L-13$ 、 $L-15\sim L-35$ 、 $L-37\sim L-51$ 、M-1、M-6、M-10、M-23 又はM-26 を表し、

 Y^2 は、水素原子、ハロゲン原子、シアノ、ニトロ、 $-SF_5$ 、 $C_1 \sim C_6$ アルキル、 R^7 によって任意に置換された ($C_1 \sim C_6$) アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^7 によって任意に置換された ($C_2 \sim C_6$) シクロアルキル、 $C_2 \sim C_6$ アルケニル、 R^7 によって任意に置換された ($C_2 \sim C_6$) アルケニル、 $C_3 \sim C_8$ ハロシクロアルケニル、 $C_2 \sim C_6$ アルキニル、 R^7 によって任意に置換された ($C_2 \sim C_6$) アルキニル、 $-OR^{8a}$ 、 $-S(0)_{1}R^{8a}$ 、 $-S(0)_{2}OR^{10}$ 、 $-S(0)_{2}N(R^{11})R^{10}$ 、 $-N(R^9)R^{8b}$ 、 $-C(0)R^{10}$ 、 $-C(0)OR^{10}$ 、 $-C(0)N(R^{11})R^{10}$ 、 $-CH=NOR^{12}$ 、 $-C(R^{10})=NOR^{12}$ 、 $-P(0)(OR^{13})_{2}$ 、 $-P(0)(OR^{15})_{2}$ 、 $-P(0)(OR^{15})_{2}$ 、 $-P(0)(OR^{15})_{2}$ 、 $-P(0)(OR^{15})_{2}$ によって置換されていてもよいフェニル、 $-P(0)(OR^{15})_{2}$ によって置換されていてもよいフェニル、 $-P(0)(OR^{15})_{2}$ によって置換されていてもよいフェニル、 $-P(0)(OR^{15})_{2}$ によって

25 Y³は、水素原子、ハロゲン原子、シアノ、ニトロ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルコキシン・ $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルコキシ $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルコキシ $C_1 \sim C_6$ アルコキシ C

18

PCT/JP02/07833

 C_6 アルキルチオ、 C_1 ~ C_6 ハロアルキルチオ、 C_1 ~ C_6 アルキルスルフィニル、 C_1 ~ C_6 ハロアルキルスルホニル、 C_1 ~ C_6 ハロアルキルスルホニル、 C_1 ~ C_6 ハロアルキルスルホニル、 C_1 ~ C_6 ハロアルキルスルホニル、 C_1 0° = NOR¹²、-C(R1°) = NOR¹²、L-1~L-13、L-15~L-35、L-37~L-51、M-1、M-6、M-10、M-23 又は M-26 を表し、n が 2 又は 3 を表すとき、各々の Y3 は互いに同一であっても、又は相異なっていてもよく、

さらに、Y³が Y¹又は Y²と隣接する場合には、隣接する 2 つの Y¹と Y³又は Y²と Y³は -CH₂CH₂CH₂-, -CH₂CH₂O-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -CH₂SCH₂-, -CH₂CH₂N (R¹7)-, -CH₂N (R¹7) CH₂-, -CH₂CH₂CH₂CH₂-, -CH₂CH₂CH₂O-, -CH₂CH₂O-, -CH₂CH₂O-, -OCH₂CH₂O-, -OCH₂O-, -OCH₂CH₂O-, -OCH₂CH₂O-, -OCH₂CH₂O-, -OCH₂CH₂O-, -OCH₂CH₂O-, -OCH₂O-, -OCH₂CH₂O-, -OCH₂O-, -OC

 R^1 及び R^2 は、各々独立して水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_4$ アルキル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルキルチオ($C_1 \sim C_4$)アルキル、($C_1 \sim C_4$)アルキル、($C_1 \sim C_4$)アルキル、($C_1 \sim C_4$)アルキル、($C_1 \sim C_4$)アルキル、 $C_2 \sim C_6$ シアノアルキル、 $C_1 \sim C_6$ アルコキシカルボニル($C_1 \sim C_4$)アルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ ハロアルキニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ ハロアルキニル、 $C_3 \sim C_6$ アルコキシカルボニルスは $C_1 \sim C_6$ アルコキシカルボニルを表し、

 R^3 は、 $C_1 \sim C_8$ アルキル、 R^{21} によって任意に置換された $(C_1 \sim C_8)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキルチオ $(C_3 \sim C_8)$ シクロアルキル、 $C_1 \sim C_4$ アルキルスルフィニル $(C_3 \sim C_8)$ シクロアルキル、 $C_1 \sim C_4$ アルキルスルフィニル $(C_3 \sim C_8)$ シクロアルキル、 $C_1 \sim C_4$ アルキルスルホニル $(C_3 \sim C_8)$ シクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $(Z)_{p1}$ によって置換されていてもよいフェニル $(C_3 \sim C_6)$ アルケニル、 $(Z)_{p1}$ によって置換されていてもよいフェニル $(C_3 \sim C_6)$ アルケニル、 $(Z)_{p1}$ によって置換されていてもよいフェニル $(C_3 \sim C_6)$ アルキニル、 $(Z)_{p1}$ によって置換されていてもよいフェニル $(Z)_{p1}$ によって置換されてもよいフェニル $(Z)_{p1}$ によって置換されていてもよいフェニル $(Z)_{p1}$ によって $(Z)_{p1}$

10

25

PCT/JP02/07833

19

よく、且つハロゲン原子、 $C_1 \sim C_6$ アルキル基又は $C_1 \sim C_6$ アルコキシ基によって置換されていてもよく、

 R^4 は、水素原子、 $C_1 \sim C_6$ アルキル、 R^{21} によって任意に置換された $(C_1 \sim C_6)$ アルキル、 C_3 $\sim C_6$ シクロアルキル、 R^{21} によって任意に置換された $(C_3 \sim C_6)$ シクロアルキル、 $C_2 \sim C_{10}$ アルケニル、 R^{21} によって任意に置換された $(C_2 \sim C_{10})$ アルケニル、 $C_2 \sim C_8$ アルキニル、 R^{21} によって任意に置換された $(C_2 \sim C_{10})$ アルキニル、 $(Z)_{pl}$ によって置換されていてもよいフェニル、 $(Z)_{pl}$ によって置換されていてもよいフェニル、 $(Z)_{pl}$ によって置換されていてもよいデェニル、 $(Z)_{pl}$ によって置換されていてもよいデェニル、 $(Z)_{pl}$ によって置換されていてもよいデェニル、 $(Z)_{pl}$ によって置換されていてもよく、

 R^{5} は、 $C_{1}\sim C_{6}$ アルキル、 $C_{1}\sim C_{6}$ ハロアルキル、 $C_{3}\sim C_{6}$ シクロアルキル($C_{1}\sim C_{4}$) アルキル、 $C_{1}\sim C_{4}$ アルキル、 $C_{1}\sim C_{4}$ アルキル、 $C_{1}\sim C_{4}$ アルキル、 $C_{1}\sim C_{4}$ アルキル、($C_{1}\sim C_{4}$) アルキル、($C_{1}\sim C_{4}$) アルキル、($C_{1}\sim C_{4}$) アルキル、 $C_{2}\sim C_{6}$ シアノアルキル、 $C_{1}\sim C_{6}$ アルコキシカルボニル($C_{1}\sim C_{4}$) アルキル、 $C_{1}\sim C_{6}$ アルキル、 $C_{1}\sim C_{6}$ アルキル、 $C_{1}\sim C_{6}$ アルキルアミノカルボニル($C_{1}\sim C_{4}$) アルキル、ジ($C_{1}\sim C_{6}$ アルキル) アミノカルボニル($C_{1}\sim C_{4}$) アルキル、ジ($C_{1}\sim C_{6}$ アルキル) アミノカルボニル($C_{1}\sim C_{4}$) アルキル、($C_{1}\sim C_{4}$) アルキル、 $C_{2}\sim C_{6}$ アルキル、 $C_{3}\sim C_{6}$ アルキル、 $C_{3}\sim C_{6}$ アルキル、 $C_{3}\sim C_{6}$ アルキル、 $C_{3}\sim C_{6}$ アルキール、 $C_{3}\sim C_{6}$ アルキルカル ボニルオキシ、 $C_{3}\sim C_{6}$ アルキール、 $C_{3}\sim C_{6}$ アルキール、 $C_{3}\sim C_{6}$ アルキルカル ボニルオキシ、 $C_{3}\sim C_{6}$ アルキール・ $C_{3}\sim C_{6}$ アルキルカル ボニルオキシ、 $C_{3}\sim C_{6}$ アルキール・ $C_{3}\sim C_{6}$ アルキルカル ボニルオキシ、 $C_{3}\sim C_{6}\sim C_{6}\sim$

20 R^{5a} は、水素原子、 $C_1 \sim C_5$ アルキル、 $C_1 \sim C_5$ ハロアルキル、 $C_8 \sim C_5$ アルケニル又は $(Z)_{pl}$ によって置換されていてもよいフェニルを表し、

R5bは、C1~C6アルキルを表し、

 R^6 は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルキニル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ ハロアルキルカルボニル又は $C_1 \sim C_6$ アルキシカルボニルを表すか、或いは、 R^6 と R^6 とが一緒になって $C_2 \sim C_6$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 7$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子、硫黄原子及び窒素原子から選ばれる 1 個の原子を含んでもよく、且つハロゲン原子、酸素原子又はメチル基によって任意に置換されていてもよく、

PCT/JP02/07833

20

 R^{8a} は、 $C_1 \sim C_6$ アルキル、 R^{30} によって任意に置換された $(C_1 \sim C_6)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^{30} によって任意に置換された $(C_3 \sim C_8)$ シクロアルキル、 $C_2 \sim C_6$ アルケニル、 R^{30} によって任意に置換された $(C_2 \sim C_6)$ アルケニル、 $C_2 \sim C_6$ アルキニル、 R^{30} によって任意に置換された $(C_2 \sim C_6)$ アルキニル、 $C_3 \sim C_8$ ハロシクロアルケニル、-S (0) $_2$ R^{10} 、-P (0) $(0R^{13})$ $_2$ 、-P (S) $(0R^{13})$ $_2$ 、(Z) $_{p1}$ によって置換されていてもよいフェニル、L-17、L-18、L-21、L-25、L-45 、L-48 又は L-49 を表し、

15 R^{8b}は、-C(0) R¹⁰又は-C(0) OR¹⁰を表し、

R⁹は、水素原子、C₁~C₆アルキル又はC₁~C₆ハロアルキル表し、

 R^{10} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキルス($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキルス $C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキルス $C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキルス $C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ アルキルスルボニル($C_1 \sim C_4$)アルキル、 $C_2 \sim C_6$ シア ノアルキル、 $C_1 \sim C_6$ アルコキシカルボニル($C_1 \sim C_4$)アルキル、トリメチルシリル($C_1 \sim C_4$)アルキル、($C_1 \sim C_4$)アルキル、($C_1 \sim C_4$)アルキル、($C_1 \sim C_4$)アルキル、($C_1 \sim C_4$)アルキル、 $C_2 \sim C_6$ アルケニル($C_1 \sim C_4$)アルキル、 $C_2 \sim C_6$ アルケニル($C_3 \sim C_8$)シクロアルキル、 $C_2 \sim C_6$ アルケニル($C_3 \sim C_8$)シクロアルキル、 $C_2 \sim C_6$ アルケニル、 $C_2 \sim C_6$ ハロアルケニル、 $C_2 \sim C_6$ ハロアルケニル、 $C_2 \sim C_6$ アルケニル、 $C_2 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ ハロアルキニル、($C_3 \sim C_6$ ハロアルケニル、 $C_5 \sim C_6$ ハロアルキニル、($C_5 \sim C_6$ ハロアルキニル・($C_5 \sim C_6$ ハロアル

 R^{11} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル又は $C_8 \sim C_8$ シクロアルキルを表すか、或いは、 R^{10} と R^{11} とが一緒になって $C_2 \sim C_5$ アルキレン鎖を形成することにより、結

21

合する窒素原子と共に $3\sim6$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫黄原子から選ばれる1個の原子を含んでもよく、且つ $C_1\sim C_6$ アルキル基又は $C_1\sim C_6$ アルコキシ基によって置換されていてもよく、

 R^{12} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルコキシカルボニル($C_1 \sim C_4$) アルキル、ジ($C_1 \sim C_4$ アルキル) アミノカルボニル($C_1 \sim C_4$) アルキル、($C_2 \sim C_6$) アルキル、($C_3 \sim C_6$) アルキル、 $C_3 \sim C_6$ アルキニルを表し、 $C_3 \sim C_6$ アルキルを表し、 $C_1 \sim C_4$ アルキルを表し、 $C_1 \sim C_6$ アルキルを表し、

 R^{17} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $(Z)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ ハロアルキニル又は $(Z)_{p1}$ によって置換されていてもよいフェニルを表し、

 R^{18} は、ハロゲン原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルメルフィニル、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルカニル、 $C_1 \sim C_6$ ハロアルキルスルカニル、 $C_1 \sim C_6$ ハロアルキルスルカニル、 $C_1 \sim C_6$ ハロアルキルスルホニル、 $C_1 \sim C_6$ ハロアルキルスルホニルスは $(C_1)_{p1}$ によって置換されていてもよいフェニルを表し、同時に2個以上の R^{18} で置換されている場合、各々の R^{18} は互いに同一であっても、または相異なっていてもよく、

 R^{21} は、ハロゲン原子、シアノ、 $C_3 \sim C_6$ シクロアルキル、-OH、 $-OR^{8c}$ 、-SH、-S (0) $_{\rm I}R^{29}$ 、-N (R^9) R^{8c} 、-CHO、-C (0) R^{10} 、-C (0) OR^{10} 、-C (0) N (R^{11}) R^{10} 、 $-CH=NOR^{12}$ 、-C (R^{10}) $=NOR^{12}$ 、 (Z) $_{\rm Pl}$ によって置換されていてもよいフェニル、L 又は M を表し、

 R^{8c} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) アルキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルチオ ($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル・(C_1

 \mathbb{R}^{22} は、水素原子、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル又は $(\mathbb{Z})_{p1}$ によって置換されていてもよいフェニル $(\mathbb{C}_1$

20

PCT/JP02/07833

22

~C₄) アルキルを表し、

 \mathbb{R}^{23} は、水素原子、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $-\mathbb{C}H0$ 、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキルカルボニル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルコキシカルボニル、 \mathbb{C}_1 によって置換されていてもよいフェニル $\mathbb{C}_1 \sim \mathbb{C}_4$ アルコキシカルボニル、 \mathbb{C}_1 によって置換されていてもよいフェノキシカルボニル又は \mathbb{C}_1 によって置換されていてもよいフェニルカルボニルを表し、

 \mathbb{R}^{24} は、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキル又は $(\mathbb{Z})_{pl}$ によって置換されていてもよいフェニルを表し、

 R^{25} は、 $C_1 \sim C_{12}$ アルキル、 $C_1 \sim C_6$ アルコキシカルボニル ($C_1 \sim C_4$) アルキル又は $C_1 \sim C_{12}$ アルコキシカルボニルを表し、

 R^{26} は、 $C_1 \sim C_{12}$ アルキル又は $(Z)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキルを表すか、或いは、 R^{25} と R^{26} とが一緒になって $C_4 \sim C_7$ アルキレン鎖を形成することにより、結合する窒素原子と共に $5 \sim 8$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫黄原子から選ばれる 1 個の原子を含んでもよく、且つ $C_1 \sim C_4$ アルキル基によって任意に置換されていてもよく、

 R^{27} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ $(C_1 \sim C_4)$ アルキル、 $C_2 \sim C_6$ シアノアルキル、 $(Z)_{p_1}$ によって置換されていてもよいベンジル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルキニル又は $(Z)_{p_1}$ によって置換されていてもよいフェニルを表し、

 R^{28} は、水素原子又は $C_1 \sim C_6$ アルキルを表すか、或いは、 R^{27} と R^{28} とが一緒になって C_4 $\sim C_7$ アルキレン鎖を形成することにより、結合する窒素原子と共に $5 \sim 8$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫黄原子から選ばれる1個の原子を含んでもよく、且つ $C_1 \sim C_4$ アルキル基によって任意に置換されていてもよく、

 R^{29} は、 $C_1 \sim C_8$ アルキル、 R^{31} によって任意に置換された ($C_1 \sim C_8$) アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^{31} によって任意に置換された ($C_3 \sim C_8$) シクロアルキル、 R^{31} によって任意に置換された (R^{31} によって任意に置換された (R^{31} によって正換されていてもよいフェニルチオ、 R^{31} によって置換されていてもよいフェニルチオ、 R^{31} によって置換されていてもよいフェニルチオ、 R^{31} によって置換されていてもよいフェニルチオ、 R^{31} によって置換されていてもよいフェニルチオ、 R^{31} によって置換されていてもよいフェニルチオ、 R^{31} によって置換されていてもよいフェニル・ R^{31} に R^{31

PCT/JP02/07833

45、L-48 又は L-49 を表し、

WO 03/011028

 R^{30} は、ハロゲン原子、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ ハロアルコキシ($C_1 \sim C_4$)ハロアルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ又は(Z) $_{p_1}$ によって置換されていてもよいフェニルを表し、

23

 R^{31} は、ハロゲン原子、-OH、 $-OR^{32}$ 、-S (0) ${}_{1}R^{32}$ 、-C (0) ${}_{1}R^{10}$ 、-C (0) ${}_{2}R^{10}$ 、-C (0) ${}_{3}R^{10}$ 、-C (0) ${}_{4}R^{11}$ ${}_{5}R^{10}$ 又は (${}_{5}R^{11}$) によって置換されていてもよいフェニルを表し、

 R^{32} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルカルボニル又は $C_1 \sim C_6$ ハロアルキルカルボニル又は $C_1 \sim C_6$ ハロアルキルカルボニルを表し、

10 mは、1~3の整数を表し、

nは、 $1\sim3$ の整数を表し、

pは、1~4の整数を表す、

で表される上記〔4〕記載の置換アミド化合物又はその塩。

〔7〕 一般式(3):

15 式中、Aは、炭素原子又は窒素原子を表し、

20

· WI 及び WI は、各々独立して酸素原子又は硫黄原子を表し、

 X^2 は、水素原子、ハロゲン原子、シアノ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $C_1 \sim C_6$ アルキルスルホニル又は $C_1 \sim C_6$ ハロアルキルスルホニルを表し、m が 2 以上の整数を表すとき、各々の X^2 は互いに同一であっても、または相異なっていてもよく、

 Y^1 は、水素原子、ハロゲン原子、シアノ、ニトロ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_4$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ ハロアルコ

15

24

PCT/JP02/07833

キシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ ハロアルキルチオ($C_1 \sim C_4$) アルキル、($C_2 \sim C_6$ アルコキシ、($C_1 \sim C_6$ アルコキシ、($C_2 \sim C_6$ アルケニルオキシ、($C_2 \sim C_6$ アルキニルオキシ、($C_2 \sim C_6$ アルキニルオキシ、($C_2 \sim C_6$ アルキニルオキシ、($C_2 \sim C_6$ アルキニルオキシ、($C_2 \sim C_6$ アルキニルチオ、($C_2 \sim C_6$ アルキルスルフィニル、($C_1 \sim C_6$ アルキルスルフィニル、($C_1 \sim C_6$ アルキルスルフィニル、($C_1 \sim C_6$ アルキルスルホニル、($C_1 \sim C_6$ アルキルアミノ、ジ($C_1 \sim C_6$ アルキル) アミノ、-CH=NOR¹²、-C ($C_1 \sim C_6$ アルキルアミノ、ジ($C_1 \sim C_6$ アルキル) アミノ、-CH=NOR¹²、-C ($C_1 \sim C_6$ アー10、M-10、X-23 又は M-26 を表し、

 Y^2 は、水素原子、ハロゲン原子、シアノ、ニトロ、 $-SF_5$ 、 $C_1\sim C_6$ アルキル、 R^7 によって任意に置換された $(C_1\sim C_6)$ アルキル、 $C_3\sim C_8$ シクロアルキル、 R^7 によって任意に置換された $(C_2\sim C_6)$ シクロアルキル、 $C_2\sim C_6$ アルケニル、 R^7 によって任意に置換された $(C_2\sim C_6)$ アルケニル、 $C_3\sim C_8$ ハロシクロアルケニル、 $C_2\sim C_6$ アルキニル、 R^7 によって任意に置換された $(C_2\sim C_6)$ アルキニル、 $-OR^{8a}$ 、 $-S(0)_{1}R^{8a}$ 、 $-S(0)_{2}OR^{10}$ 、 $-S(0)_{2}N(R^{11})R^{10}$ 、 $-N(R^9)R^{8b}$ 、 $-C(0)R^{10}$ 、 $-C(0)OR^{10}$ 、 $-C(0)N(R^{11})R^{10}$ 、 $-C(0)N(R^{11})R^{10}$ 、 $-C(0)OR^{12}$ 、 $-C(0)OR^{13}$ $-C(0)OR^{13}$ $-C(0)OR^{15}$ $-C(0)OR^{1$

25

PCT/JP02/07833

25

を形成する各々の炭素原子に結合した水素原子は R¹⁸ によって任意に置換されていてもよく、

 R^1 は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_4$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルチオ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルチオ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルスル ホニル ($C_1 \sim C_4$) アルキル、 $C_2 \sim C_6$ シアノアルキル、 $C_1 \sim C_6$ アルコキシカルボニル ($C_1 \sim C_4$) アルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルカルボニル、 $C_3 \sim C_6$ アルコキシ、 $C_3 \sim C_6$ アルコキシ、 $C_3 \sim C_6$ アルコキシカルボニル ($C_1 \sim C_6$ アルコキシカルボニルを表し、

 R^3 は、 $C_1 \sim C_8 P$ ルキル、 R^{21} によって任意に置換された $(C_1 \sim C_8) P$ ルキル、 $C_3 \sim C_8$ シクロ Pルキル、ヒドロキシ $(C_3 \sim C_8)$ シクロアルキル、 $C_1 \sim C_4 P$ ルコキシ $(C_3 \sim C_8)$ シクロアルキル、 $C_1 \sim C_4 P$ ルキルスルフィニル $(C_3 \sim C_8)$ シクロアルキル、 $C_1 \sim C_4 P$ ルキルスルフィニル $(C_3 \sim C_8)$ シクロ Pルキル、 $C_1 \sim C_4 P$ ルキルスルホニル $(C_3 \sim C_8)$ シクロアルキル、 $C_3 \sim C_6 P$ ルケニル、 $C_3 \sim C_6 P$ ルウニル、 $(C_3 \sim C_8)$ アルケニル、 $(C_3 \sim C_8)$ アルキニル、 $(C_3 \sim C_8)$ アルキン・鎖を形成することにより、結合する窒素原子と共に $(C_3 \sim C_8)$ アルキル基又は $(C_3 \sim C_8)$ アルキシ基によって置換されてもよく、且つハロゲン原子、 $(C_1 \sim C_8)$ アルキル基又は $(C_1 \sim C_8)$ アルコキシ基によって置換されていてもよく、

 R^5 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル、($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル、 $C_2 \sim C_6$ シアノアルキル、 $C_1 \sim C_6$ アルコキシカルボニル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ アルキル、ジ($C_1 \sim C_6$ アルキル)アミノカルボニル($C_1 \sim C_4$) アルキル、ジ($C_1 \sim C_6$ アルキル) アミノカルボニル($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル・($C_1 \sim C_4$) アルキル・($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル・($C_1 \sim C_4$) アルキル・($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル・($C_1 \sim C_4$) アルキル・($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル・($C_1 \sim C_4$) アルキル・($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル・($C_1 \sim C_4$)

15

20

25

26

PCT/JP02/07833

ボニルオキシ、 $-SR^{24}$ 、-S(0) ${}_{2}R^{24}$ 、 $-SN(R^{26})$ R^{25} 、-S(0) ${}_{2}N(R^{28})$ R^{27} 、-CHO、-C(0) R^{10} 、-C(0) OR^{10} OR^{10} O

 R^{6a} 及び R^{6b} は、各々独立して水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_2 \sim C_6$ シクロアルキル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ ヒドロキシアルキル、 $C_1 \sim C_6$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルコキル、 $C_1 \sim C_6$ アルキルチオ($C_1 \sim C_4$)アルキル、 $C_2 \sim C_6$ シアノアルキル、 $C_1 \sim C_6$ アルコキシカルボニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキルアミノカルボニル($C_1 \sim C_6$ アルキル、ジ($C_1 \sim C_6$ アルキルアミノカルボニル($C_1 \sim C_4$)アルキル、ジ($C_1 \sim C_6$ アルキル、($C_2 \sim C_6$ アルキル、 $C_2 \sim C_6$ アルキル、 $C_2 \sim C_6$ アルキル、 $C_2 \sim C_6$ アルキル、 $C_2 \sim C_6$ アルカール、 $C_2 \sim C_6$ アルカールが一般で表すか、或いは、 $C_1 \sim C_6$ アルカールが一緒になって $C_2 \sim C_6$ アルキレン鎖を形成することにより、結合する炭素原子と共に3~6 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫黄原子から選ばれる1 個の原子を含んでもよく、且つハロゲン原子、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルキルチオ基又は $C_1 \sim C_6$ アルカールチオ基によって任意に置換されていてもよく、

 R^{8a} は、 $C_1 \sim C_6$ アルキル、 R^{30} によって任意に置換された ($C_1 \sim C_6$) アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^{30} によって任意に置換された ($C_3 \sim C_6$) シクロアルキル、 R^{30} によって任意に置換された ($C_2 \sim C_6$) アルケニル、 R^{30} によって任意に置換された ($C_2 \sim C_6$) アルケニル、 R^{30} によって任意に置換された (R^{30} では、 $R^{$

PCT/JP02/07833

27

-P (S) $(0R^{13})_2$ 、(Z) $_{p1}$ によって置換されていてもよいフェニル、L-17、L-18、L-21、L-25、L-45、L-48 又は L-49 を表し、

R^{8b}は、-C(0)R¹⁰又は-C(0)OR¹⁰を表し、

 \mathbb{R}^9 は、水素原子、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル又は $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキル表し、

 R^{10} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルス($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルキルチオ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルス ルホニル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルキルスルホニル($C_1 \sim C_4$) アルキル、 $C_2 \sim C_6$ シア ノアルキル、 $C_1 \sim C_6$ アルコキシカルボニル($C_1 \sim C_4$) アルキル、トリメチルシリル($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル、 $C_2 \sim C_6$ シア ルキル、($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキル、($C_1 \sim C_4$) アルキル、 $C_2 \sim C_6$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 $C_2 \sim C_6$ アルケニル($C_3 \sim C_8$) シクロアルキル、 $C_2 \sim C_6$ アルケニル($C_3 \sim C_8$) シクロアルキール、 $C_2 \sim C_6$ アルケニル、 $C_2 \sim C_6$ ハロアルケニル、 $C_2 \sim C_6$ ハロアルキニル、($C_3 \sim C_8$) シクロアルキニル、($C_3 \sim C_8$) シクロアルキール、($C_3 \sim C_8$) シクロアルキニル、($C_3 \sim C_8$) シクロアルキュル、($C_3 \sim C_8$) シクロアルキュル・($C_3 \sim C_8$) シクロアルキュー・($C_3 \sim C_8$)

15 又は M を表し、

20

25

 R^{11} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル又は $C_3 \sim C_8$ シクロアルキルを表すか、或いは、 R^{10} と R^{11} とが一緒になって $C_2 \sim C_5$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 6$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫黄原子から選ばれる 1 個の原子を含んでもよく、且つ $C_1 \sim C_6$ アルキル基又は $C_1 \sim C_6$ アルコキシ基によって置換されていてもよく、

 R^{12} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルコキシカルボニル($C_1 \sim C_4$) アルキル、ジ($C_1 \sim C_4$) アルキル、ジ($C_1 \sim C_4$) アルキル、($C_2 \sim C_6$) アルキル、($C_3 \sim C_6$) アルキルを表し、 R^{13} は、 $C_1 \sim C_6$ アルキルを表し、

 R^{17} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $(Z)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ ハロアルキニル又は $(Z)_{p1}$ によって置換されていてもよいフェニルを表

PCT/JP02/07833

28

し、

5

10

 R^{18} は、ハロゲン原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルカニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ ハロアルキルスルホニル又は $(Z)_{pl}$ によって置換されていてもよいフェニルを表し、同時に Z 個以上の Z^{18} で置換されている場合、各々の Z^{18} は互いに同一であっても、または相異なっていてもよく、

 R^{21} は、ハロゲン原子、シアノ、 $C_3\sim C_6$ シクロアルキル、-OH、 $-OR^{8c}$ 、-SH、-S (0) $_rR^{29}$ 、-N (R^9) R^{8c} 、-CHO、-C (0) R^{10} 、-C (0) OR^{10} 、-C (0) N (R^{11}) R^{10} 、 $-CH=NOR^{12}$ 、-C (R^{10}) $=NOR^{12}$ 、 (Z) $_{p1}$ によって置換されていてもよいフェニル、L 又は M を表し、

 R^{8c} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルチオ ($C_1 \sim C_4$) アルキル、 ($C_1 \sim C_4$) アルキル、 ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキル、 $C_2 \sim C_6$ シクロアルキル、 $C_3 \sim C_6$ シクロアルキル・ $C_5 \sim C_6$ シク

15 -C (S) N (R¹¹) R¹⁰、-S (0) ₂R¹⁰、-S (0) ₂N (R¹¹) R¹⁰、-P (0) (0R¹³) ₂、-P (S) (0R¹³) ₂又は(Z) _{p1} によって 置換されていてもよいフェニルを表し、

 \mathbb{R}^{22} は、水素原子、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル又は \mathbb{C}_1 によって置換されていてもよいフェニル \mathbb{C}_1 $\sim \mathbb{C}_4$ アルキルを表し、

 R^{23} は、水素原子、 $C_1 \sim C_6$ アルキル、-CHO、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $(Z)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルコキシカルボニル、 $(Z)_{p1}$ によって置換されていてもよいフェノキシカルボニル又は $(Z)_{p1}$ によって置換されていてもよいフェニルカルボニルを表し、

 \mathbb{R}^{24} は、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキル又は $\mathbb{C}_{1,0}$ によって置換されていてもよいフェニルを表し、

 R^{25} は、 $C_1 \sim C_{12}$ アルキル、 $C_1 \sim C_6$ アルコキシカルボニル ($C_1 \sim C_4$) アルキル又は $C_1 \sim C_{12}$ アルコキシカルボニルを表し、

 R^{26} は、 $C_1 \sim C_{12}$ アルキル又は $(Z)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキルを表すか、或いは、 R^{25} と R^{26} とが一緒になって $C_4 \sim C_7$ アルキレン鎖を形成することにより、結合する窒素原子と共に $5 \sim 8$ 員環を形成してもよいことを表し、このときこの

PCT/JP02/07833

29

アルキレン鎖は酸素原子及び硫黄原子から選ばれる1個の原子を含んでもよく、且つ C₁ ~C₄ アルキル基によって任意に置換されていてもよく、

 \mathbb{R}^{27} は、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルコキシ ($\mathbb{C}_1 \sim \mathbb{C}_6$) アルキル、 $\mathbb{C}_2 \sim \mathbb{C}_6$ シアノアルキル、 (\mathbb{Z}) \mathbb{C}_1 によって置換されていてもよいベンジル、 $\mathbb{C}_3 \sim \mathbb{C}_6$ シクロアルキル、 $\mathbb{C}_3 \sim \mathbb{C}_6$ アルキニル又は (\mathbb{Z}) \mathbb{C}_1 によって置換されていてもよいフェニルを

表し、

5

10

 R^{28} は、水素原子又は $C_1 \sim C_6$ アルキルを表すか、或いは、 R^{27} と R^{28} とが一緒になって C_4 $\sim C_7$ アルキレン鎖を形成することにより、結合する窒素原子と共に $5 \sim 8$ 負環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫黄原子から選ばれる 1 個の原子を含んでもよく、且つ $C_1 \sim C_4$ アルキル基によって任意に置換されていてもよく、

 R^{29} は、 $C_1 \sim C_8$ アルキル、 R^{31} によって任意に置換された $(C_1 \sim C_8)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^{31} によって任意に置換された $(C_3 \sim C_8)$ シクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキール、 $C_3 \sim C_6$ アルキール、 $C_1 \sim C_6$ アルキルチオ、

15 (Z) p1 によって置換されていてもよいフェニルチオ、-C (0) R¹⁰、-C (0) N (R¹¹) R¹⁰、-C (S) N (R¹¹) R¹⁰、-P (0) (OR¹³) 2、-P (S) (OR¹³) 2、(Z) p1 によって置換されていてもよいフェニル、L-18、L-21、L-25、L-30、L-31、L-32、L-33、L-34、L-35、L-37、L-38、L-40、L-45、L-48 又は L-49 を表し、

 R^{30} は、ハロゲン原子、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ又は $(Z)_{p_1}$ によって置換されていてもよいフェニルを表し、

 R^{31} は、ハロゲン原子、-OH、 $-OR^{32}$ 、-S (0) ${}_{1}R^{32}$ 、-C (0) ${}_{1}R^{10}$ 、-C (0) ${}_{1}R^{10}$ 、-C (0) ${}_{1}R^{10}$ 又は (2) ${}_{1}$ によって置換されていてもよいフェニルを表し、

 R^{82} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルカルボニル又は $C_1 \sim C_6$ ハロアルキルカルボニル又は $C_1 \sim C_6$ ハロアルキルカルボニルを表し、

mは、1~3の整数を表し、

nは、1~3の整数を表し、

0は、0又は1の整数を表す、

5

10

15

25

PCT/JP02/07833

で表される上記 [5] 記載の置換アミド化合物又はその塩。

[8] ₩及び₩は、酸素原子を表し、

X²は、水素原子、ハロゲン原子、シアノ、メチル、エチル、トリフルオロメチル、メトキシ、ジフルオロメトキシ、トリフルオロメトキシ、ブロモジフルオロメトキシ、メチルチオ、ジフルオロメチルチオ、トリフルオロメチルチオ、メタンスルホニル又はトリフルオロメタンスルホニルを表し、mが2以上の整数を表すとき、各々のX²は互いに同一であっても、または相異なっていてもよく、

30

 Y^1 は、水素原子、ハロゲン原子、シアノ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $(Z)_{p1}$ によって置換されていてもよいベンジル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_2 \sim C_6$ アルケニルオキシ、 $C_2 \sim C_6$ アルキニルオキシ、 $(Z)_{p1}$ によって置換されていてもよいフェノキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ又は $(Z)_{p1}$ によって置換されていてもよいフェニルチオを表し、

 Y^2 は、水素原子、ハロゲン原子、シアノ、ニトロ、-SF₆、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロ アルキル、 $C_1 \sim C_2$ アルコキシ ($C_1 \sim C_2$) アルキル、 $C_1 \sim C_2$ ハロアルコキシ ($C_1 \sim C_2$) アルキル、 $C_1 \sim C_6 P \mathcal{V} + \mathcal{$ アルキルスルフィニル ($C_1 \sim C_2$) アルキル、 $C_1 \sim C_2$ ハロアルキルスルフィニル ($C_1 \sim C_2$) アルキ ル、 $C_1 \sim C_6$ アルキルスルホニル ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルキルスルホニル ($C_1 \sim C_4$) アルキル、ヒドロキシ ($C_1 \sim C_4$) ハロアルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) ハロアルキル、 C_1 $\sim C_0 \cap C_1 \cap C_2 \cap C_3 \cap C_4 \cap C_4 \cap C_5 \cap C_6 \cap C_6 \cap C_6 \cap C_7 \cap C_7 \cap C_8 \cap C_$ アルキル、C₂~C₄ハロアルキニルオキシ (C₁~C₄)ハロアルキル、 (Z) ₁₁ によって置換されて いてもよいベンジルオキシ ($C_1 \sim C_4$) ハロアルキル、 $C_3 \sim C_6$ ハロシクロアルキル、 $C_1 \sim C_6$ ア ルコキシ、 $C_1 \sim C_2$ ハロアルコキシ、 $C_1 \sim C_2$ アルコキシ ($C_1 \sim C_2$) ハロアルコキシ、 $C_1 \sim C_2$ ハロ アルコキシ(C₁~C₄)ハロアルコキシ、C₁~C₅ハロアルコキシ(C₁~C₄)ハロアルコキシ(C₁~ C_{λ} ハロアルコキシ、 $(Z)_{n}$ によって置換されていてもよいフェニル $(C_{1} \sim C_{\lambda})$ ハロアルコキ シ、C。~C。ハロシクロアルキルオキシ、C。~C。ハロアルケニルオキシ、C,~C。アルコキシ ~C₆アルキルスルホニルオキシ、C₁~C₆ハロアルキルスルホニルオキシ、(Z)₁₁によって置 換されていてもよいフェノキシ、-0-(L-17)、-0-(L-45)、-0-(L-48)、-0-(L-49)、 $C_1 \sim C_4$

PCT/JP02/07833

31

アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $C_2 \sim C_6$ ハロアルケニルチオ、 $(Z)_{p1}$ によって置換されていてもよいフェニルチオ、-S-(L-17)、-S-(L-45)、-S-(L-48)、-S-(L-49)、 $C_1 \sim C_6$ ハロアルキルスルフィニル、 $C_2 \sim C_6$ ハロアルケニルスルフィニル、 $C_1 \sim C_6$ ハロアルキルスルフィニル、 $C_1 \sim C_6$ ハロアルケニルスルホニル、-N (\mathbb{R}^9) \mathbb{R}^{8b} 、-Si (CH_3) ${}_2\mathbb{R}^{14}$ 、 $L-1 \sim L-13$ 、L-15 $\sim L-35$ 、 $L-37 \sim L-58$ 又は M を表し、

 Y^3 は、水素原子、ハロゲン原子、シアノ、ニトロ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ ハロアルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルカーエルスルカールスルホニル又は $C_1 \sim C_6$ ハロアルキルスルホニルを表し、 $C_1 \sim C_6$ ハロアルキルスルホニルを表し、 $C_1 \sim C_6$ かとっても、 $C_1 \sim C_6$ ハロアルキルスルホニルを表し、 $C_1 \sim C_6$ かとっても、 $C_1 \sim C_6$

さらに、 Y^3 が Y^1 又は Y^2 と隣接する場合には、隣接する 2 つの Y^1 と Y^3 又は Y^2 と Y^3 は $-CH_2CH_2O-$, $-CH_2CH_2O-$, $-CH_2CH_2O-$, $-CH_2CH_2O-$, $-CH_2CH_2CH_2O-$, $-CH_2CH_2O-$, $-CH_2CH_2CH_2O-$, $-CH_2CH_2O-$, $-CH_2CH_2CH_2O-$, $-CH_2CH_2O-$, $-CH_2CH_2CH_2O-$, -C

Rは、水素原子を表し、

W.O 03/011028

5

10

15

R²は、水素原子又はC、~C、アルキルを表し、

 R^3 は、 $C_1 \sim C_8$ アルキル、 R^{21} によって任意に置換された ($C_1 \sim C_8$) アルキル、 $C_8 \sim C_8$ シクロアルキル、 $C_1 \sim C_4$ アルキルチオ ($C_3 \sim C_8$) シクロアルキル、 $C_1 \sim C_4$ アルキルスルフィニル ($C_3 \sim C_8$) シクロアルキル、 $C_1 \sim C_4$ アルキルスルホニル ($C_3 \sim C_8$) シクロアルキル、 $C_1 \sim C_8$ アルケニル、 $C_1 \sim C_8$ アルキニル、($C_1 \sim C_8$) アルキニル、 $C_1 \sim C_8$ アルコキシ、ジ ($C_1 \sim C_8$) アルキル)アミノ、 $C_1 \sim C_8$ アルコキシ、ジ ($C_1 \sim C_8$) アルキル)アミノ、 $C_1 \sim C_8$ アルコキシ、ジ ($C_1 \sim C_8$) アルキル)アミノ、 $C_1 \sim C_8$ アルコキシ、ジ ($C_1 \sim C_8$) アルキル)アミノ、 $C_1 \sim C_8$ アルコキシ、ジ ($C_1 \sim C_8$) アルキル)アミノ、 $C_1 \sim C_8$ アルコキシ、ジ ($C_1 \sim C_8$) アルキル)アミノ、 $C_1 \sim C_8$ アルコキシ、ジ ($C_1 \sim C_8$) アルキル)アミノ、 $C_1 \sim C_8$ アルコキシ、ジ ($C_1 \sim C_8$) アルキル) アミノ、 $C_1 \sim C_8$ アルコキシ、ジ ($C_1 \sim C_8$) アルキル) アミノ、 $C_1 \sim C_8$ アルコキシ、ジ ($C_1 \sim C_8$) アルキル

M-9、M-13、M-16、M-16、M-18、M-19、M-21、M-22、M-25 又はM-28 を表すか、或いは、 R^2 と R^3 とが一緒になって $C_2 \sim C_6$ アルキレン鎖を形成することにより、結合する窒素原子 と共に $3 \sim 7$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子、 硫黄原子及び窒素原子から選ばれる 1 個の原子を含んでもよく、且つハロゲン原子、メチル基又はメトキシ基によって置換されていてもよく、

32

PCT/JP02/07833

 R^4 は、水素原子、 $C_1 \sim C_6$ アルキル又は R^{21} によって任意に置換された $(C_1 \sim C_6)$ アルキルを表し、p が 2 以上の整数を表すとき、各々の R^4 は互いに同一であっても、または相異なっていてもよく、

 R^5 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキル、 $C_2 \sim C_6$ シアノアルキル、 $C_1 \sim C_6$ アルコキシカルボニル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルアミノカルボニル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキル、 $C_2 \sim C_6$ シクロ

- Pルキル、 $C_3 \sim C_6 P$ ルケニル、 $C_3 \sim C_6 N$ ロアルケニル、 $C_3 \sim C_6 P$ ルキニル、 $C_3 \sim C_6 N$ ロアルキニル、 $C_3 \sim C_6 N$ ロアルキニル、 $C_3 \sim C_6 P$ ルキルカルボニルオキシ、 $-SR^{24}$ 、 $-S(0)_2 R^{24}$ 、 $-SN(R^{26}) R^{25}$ 、 $-SN(R^{26}) R^{25}$ 、 $C_1 \sim C_6 P$ ルキルアミノスルホニル、ジ $(C_1 \sim C_6 P) P$ ルキル) Pミノスルホニル、 $-C(0) R^{10}$ 、 $-C(0) R^{10}$ を表し、
- R^6 は、水素原子、 $C_1 \sim C_6$ アルキル、-CHO、 $C_1 \sim C_4$ アルキルカルボニル又は $C_1 \sim C_4$ アルコキシカルボニルを表すか、或いは、 R^6 と R^6 とが一緒になって $C_2 \sim C_6$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 7$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子、硫黄原子及び窒素原子から選ばれる 1 個の原子を含んでもよく、且つ酸素原子又はメチル基によって任意に置換されていてもよく、
- 20 \mathbb{R}^{14} は、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル又は \mathbb{C}_{1} によって置換されていてもよいフェニルを表し、 \mathbb{R}^{17} は、水素原子、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル又は $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキルを表し、

 R^{18} は、ハロゲン原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル又は $(Z)_{p1}$ によって置換されていてもよいフェニルを表し、同時に2個以上の R^{18} で置換されている場合、各々の R^{18} は互いに同一であっても、または相異なっていてもよく、

 R^{21} は、ハロゲン原子、シアノ、 $C_3 \sim C_6$ シクロアルキル、-OH、 $-OR^{8c}$ 、-SH、-S (0) $_{1}R^{29}$ 、-N (R^{9}) R^{8c} 、-CHO、 $C_1 \sim C_6$ アルキルカルボニル、(Z) $_{p1}$ によって置換されていてもよいフェニルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、-C (O) N (R^{11}) R^{10} 、 $-CH=NOR^{12}$ 、-C (R^{10}) $=NOR^{12}$ 、(Z) $_{p1}$ によって置換されていてもよいフェニル、L 又は M を表し、

 \mathbb{R}^{8c} は、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルコキシ ($\mathbb{C}_1 \sim \mathbb{C}_6$) アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$

: WO 03/011028

15

20

25

Cアルケニルを表し、

PCT/JP02/07833

33

 C_6 アルキルチオ $(C_1 \sim C_4)$ アルキル、 $(Z)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル、-C(0) R^{10} 、-C(0) OR^{10} 、-C(0) $N(R^{11})$ R^{10} 、-C(S) $N(R^{11})$ R^{10} 、-S(0) ${}_2$ R^{10} 、

-S (0) ₂N (R¹¹) R¹⁰、-P (0) (0R¹³) ₂、-P (S) (0R¹³) ₂又は(Z) _{p1} によって置換されていてもよいフェニルを表し、

 R^{10} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_6$ アルキルチオ $(C_1 \sim C_4)$ アルキル、 $(Z)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル、 $C_3 \sim C_6$ シクロアルキル、 $C_2 \sim C_6$ アルケニル、 $(Z)_{p1}$ によって置換されていてもよいフェニル、L 又は M を表し、

 R^{11} は、水素原子又は $C_1 \sim C_6$ アルキルを表すか、或いは、 R^{10} と R^{11} とが一緒になって C_2 10 $\sim C_5$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 6$ 負環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫黄原子から選ばれる 1 個の原子を含んでもよく、且つ $C_1 \sim C_6$ アルキル基によって置換されていてもよく、

 \mathbb{R}^{12} は、水素原子、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキル、 $\mathbb{C}_3 \sim \mathbb{C}_8$ シクロアルキル($\mathbb{C}_1 \sim \mathbb{C}_4$) アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_4$ アルコキシ($\mathbb{C}_1 \sim \mathbb{C}_4$) アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_4$ アルキルチオ($\mathbb{C}_1 \sim \mathbb{C}_4$) アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_4$ アルキル) アミノカルボニル($\mathbb{C}_1 \sim \mathbb{C}_4$) アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_4$ アルキル、 ($\mathbb{C}_1 \sim \mathbb{C}_4$) アルキル、 ($\mathbb{C}_1 \sim \mathbb{C}_4$) アルキル又は $\mathbb{C}_3 \sim \mathbb{C}_4$) アルキル、 ($\mathbb{C}_1 \sim \mathbb{C}_4$) アルキル又は $\mathbb{C}_3 \sim \mathbb{C}_4$) アルキル、 ($\mathbb{C}_1 \sim \mathbb{C}_4$) アルキル又は $\mathbb{C}_3 \sim \mathbb{C}_4$) アルキル又は $\mathbb{C}_3 \sim \mathbb{C}_4$

 R^{29} は、 $C_1 \sim C_6$ アルキル、 R^{31} によって任意に置換された $(C_1 \sim C_6)$ アルキル、 $C_3 \sim C_6$ シクロアルキル、 $C_3 \sim C_6$ アルキニル、 $C_1 \sim C_6$ アルキルチオ、 $(Z)_{p1}$ によって置換されていてもよいフェニルチオ、-C (0) R^{10} 、-C (0) N (R^{11}) R^{10} 、

-C (S) N (R^{11}) R^{10} 、 (Z) $_{p1}$ によって置換されていてもよいフェニル、L-21、L-32、L-33、L-35、L-45、L-48 又はL-49 を表し、

 R^{81} は、ハロゲン原子、-OH、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルカルボニルオキシ、 $C_1 \sim C_6$ アルキルカルボニルオキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、ジ $(C_1 \sim C_6$ アルキル) アミノカルボニル又は $(Z)_{pl}$ によって置換されていてもよいフェニルを表す上記 [6] 記載の置換アミド化合物又はその塩。

[9] ₩及び₩は、酸素原子を表し、

10

15

20

25

34

PCT/JP02/07833

X²は、水素原子、ハロゲン原子、シアノ、メチル、エチル、トリフルオロメチル、メトキシ、ジフルオロメトキシ、トリフルオロメトキシ、ブロモジフルオロメトキシ、メチルチオ、ジフルオロメチルチオ、トリフルオロメチルチオ、メタンスルホニル又はトリフルオロメタンスルホニルを表し、πが2以上の整数を表すとき、各々のX²は互いに同一であっても、または相異なっていてもよく、

 Y^1 は、水素原子、ハロゲン原子、シアノ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $(Z)_{p1}$ によって置換されていてもよいベンジル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_2 \sim C_6$ アルケニルオキシ、 $C_2 \sim C_6$ アルキニルオキシ、 $(Z)_{p1}$ によって置換されていてもよいフェノキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ又は $(Z)_{p1}$ によって置換されていてもよいフェニルチオを表し、

 Y^2 は、水素原子、ハロゲン原子、シアノ、ニトロ、 $-SF_{\mathfrak{s}}$ 、 $C_{\mathfrak{l}} \sim C_{\mathfrak{s}}$ アルキル、 $C_{\mathfrak{l}} \sim C_{\mathfrak{s}}$ ハロ アルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6 P \mathcal{N} + \mathcal{$ アルキルスルフィニル ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルキルスルフィニル ($C_1 \sim C_4$) アルキ \mathcal{L}_1 、 \mathcal{L}_2 ~ \mathcal{L}_3 アルキルスルホニル (\mathcal{L}_1 ~ \mathcal{L}_3) アルキル、 \mathcal{L}_1 ~ \mathcal{L}_3 ハロアルキルスルホニル (\mathcal{L}_1 ~ \mathcal{L}_4) アルキル、ヒドロキシ($C_1 \sim C_4$) ハロアルキル、 $C_1 \sim C_6$ アルコキシ($C_1 \sim C_4$) ハロアルキル、 C_1 $C_2 \sim C_6 \cap C_2 \cap C_3 \cap C_4 \cap C_4 \cap C_4 \cap C_5 \cap C_6 \cap C_6$ アルキル、C₃~C₆ハロアルキニルオキシ(C₁~C₄)ハロアルキル、(Z)₁によって置換されて いてもよいベンジルオキシ(C₁~C₄)ハロアルキル、C₃~C₈ハロシクロアルキル、C₁~C₆ア ルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) ハロアルコキシ、 $C_1 \sim C_6$ ハロ アルコキシ $(C_1 \sim C_4)$ ハロアルコキシ、 $(C_1 \sim C_4)$ ハロアルコキシ $(C_1 \sim C_4)$ ハロアルコキシ $(C_1 \sim C_4)$ C_{a}) ハロアルコキシ、 $(Z)_{a}$ によって置換されていてもよいフェニル $(C_{1} \sim C_{a})$ ハロアルコキ シ、C₃~C₈ハロシクロアルキルオキシ、C₂~C₆ハロアルケニルオキシ、C₁~C₆アルコキシ \sim C₆アルキルスルホニルオキシ、 $C_1\sim$ C₆ハロアルキルスルホニルオキシ、 $(Z)_{n1}$ によって置 換されていてもよいフェノキシ、-0-(L-17)、-0-(L-45)、-0-(L-48)、-0-(L-49)、C₁~C₆ アルキルチオ、C₁~C₆ハロアルキルチオ、C₂~C₆ハロアルケニルチオ、(Z)₁₁によって置換 されていてもよいフェニルチオ、-S-(L-17)、-S-(L-45)、-S-(L-48)、-S-(L-49)、C₁~C₆

PCT/JP02/07833

35

ハロアルキルスルフィニル、 $C_2 \sim C_6$ ハロアルケニルスルフィニル、 $C_1 \sim C_6$ ハロアルキルスルホニル、 $C_2 \sim C_6$ ハロアルケニルスルホニル、-N (R^9) R^{8b} 、-Si (CH_3) ${}_2R^{14}$ 、L 又は M を表し、 Y^3 は、水素原子、ハロゲン原子、シアノ、ニトロ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキル・ $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルホニル又は $C_1 \sim C_6$ ハロアルキルスルホニルを表し、n が 2 又は 3 を表すとき、各々の Y^3 は互いに同一であっても、又は相異なっていてもよく、さらに Y^1 、 Y^2 及び Y^3 のうち、何れか 2 つが隣接する場合には、隣接する 2 つの Y は $-CH_2CH_2O_-$, $-CH_2OCH_2-$, $-OCH_2O_-$, $-CH_2CH_2S_-$, $-CH_2SCH_2-$, $-CH_2CH_2CH_2O_-$, $-CH_2CH_2OCH_2-$,

10 -CH₂OCH₂O-, -OCH₂CH₂O-, -OCH₂CH₂S-, -OCH=N-, -SCH=N-又は-N(R¹⁷) CH=N-を形成することにより、それぞれの Y が結合する炭素原子と共に 5 員環又は 6 員環を形成してもよいことを表し、このとき、環を形成する各々の炭素原子に結合した水素原子は R¹⁸によって任意に置換されていてもよく、

* R は、水素原子を表し、

· WO 03/011028

. 5

 R^3 は、 $C_1 \sim C_8$ アルキル、 R^{21} によって任意に置換された $(C_1 \sim C_8)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_1 \sim C_4$ アルキルチオ $(C_3 \sim C_8)$ シクロアルキル、 $C_1 \sim C_4$ アルキルスルフィニル $(C_3 \sim C_8)$ シクロアルキル、 $C_1 \sim C_4$ アルキール、 $C_1 \sim C_4$ アルキールスルホニル $(C_3 \sim C_8)$ シクロアルキル、 $C_1 \sim C_8$ アルケニル、 $(C_1 \sim C_8)$ アルキニル、 $(C_1 \sim C_8)$

 R^5 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキル、 $C_2 \sim C_6$ シアノアルキル、 $C_1 \sim C_6$ アルコキシカルボニル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキル・

アルコキシカルボニルを表し、

5

10

15

PCT/JP02/07833

 $ジ(C_1 \sim C_6 P N + N) P ミノカルボニル (C_1 \sim C_4) P N + N$ 、 (Z) $_{\rm Pl}$ によって置換されていてもよいフェニル ($C_1 \sim C_4$) $_{\rm Pl}$ アルキル、 $_{\rm L-}$ ($C_1 \sim C_4$) $_{\rm Pl}$ アルキル、 $_{\rm M-}$ ($C_1 \sim C_4$) $_{\rm Pl}$ アルキル、 $_{\rm C_5} \sim C_6$ クロアルキル、 $_{\rm C_5} \sim C_6$ アルキール、 $_{\rm C_5} \sim C_6$ アルキール、 $_{\rm C_5} \sim C_6$ アルキール、 $_{\rm C_5} \sim C_6$ アルキルチオ、 (Z) $_{\rm Pl}$ によって置換されていてもよいフェニルチオ、 $_{\rm C_1} \sim C_6$ アルキルスルホニル、 $_{\rm Pl}$ によって置換されていてもよいフェニルスルホニル、 $_{\rm C_1} \sim C_6$ アルキルアミノスルホニル、 $_{\rm C_1} \sim C_6$ アルキル)アミノスルホニル、 $_{\rm C_1} \sim C_6$ アルキルカルボニル、 $_{\rm C_1} \sim C_6$ アルキルカルボニル、 $_{\rm C_1} \sim C_6$ アルキルカルボニル、 $_{\rm C_1} \sim C_6$ アルコキシカルボニル又は $_{\rm C_1} \sim C_6$ アルコキシカルボニルを表し、 $_{\rm R_{\rm S_1}}$ 及び $_{\rm R_{\rm S_1}}$ は、各々独立して水素原子、 $_{\rm C_1} \sim C_6$ アルキル、 $_{\rm C_1} \sim C_6$ アルコキシ又は $_{\rm C_1} \sim C_6$

 \mathbb{R}^{14} は、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル又は $(\mathbb{Z})_{\mathfrak{p}_1}$ によって置換されていてもよいフェニルを表し、 \mathbb{R}^{17} は、水素原子、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル又は $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキルを表し、

 \mathbb{R}^{18} は、ハロゲン原子、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキル又は \mathbb{C}_{1} によって置換されていてもよいフェニルを表し、同時に 2 個以上の \mathbb{R}^{18} で置換されている場合、各々の \mathbb{R}^{18} は互いに同一であっても、または相異なっていてもよく、

 R^{21} は、ハロゲン原子、シアノ、 $C_8 \sim C_6$ シクロアルキル、-OH、 $-OR^{8c}$ 、-SH、-S (0) $_1R^{29}$ 、-N (R^9) R^{8c} 、-CHO、 $C_1 \sim C_6$ アルキルカルボニル、(Z) $_{p1}$ によって置換されていてもよいフェニルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、-C (0) N (R^{11}) R^{10} 、 $-CH=NOR^{12}$ 、-C $(R^{10})=NOR^{12}$ 、(Z) $_{p1}$ によって置換されていてもよいフェニル、L 又は M を表し、

 R^{8c} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルチオ ($C_1 \sim C_4$) アルキル、 (Z) $_{p_1}$ によって置換されていてもよいフェニル ($C_1 \sim C_4$) アルキル、-C (0) R^{10} 、-C (0) R^{10} 、-C (1) R^{10} 、-C (1) -

-C (S) N (\mathbb{R}^{11}) \mathbb{R}^{10} 、-S (0) ${}_{2}\mathbb{R}^{10}$ 、-S (0) ${}_{2}\mathbb{N}$ (\mathbb{R}^{11}) \mathbb{R}^{10} 、-P (0) (0 \mathbb{R}^{13}) ${}_{2}$ 、-P (S) (0 \mathbb{R}^{13}) ${}_{2}$ 又は(\mathbb{Z}) ${}_{p_{1}}$ によって置換されていてもよいフェニルを表し、

 R^{10} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルチオ ($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル、 $C_2 \sim C_6$ アルケニル、($C_1 \sim C_4$) アルキル、 $C_3 \sim C_6$ シクロアルキル、 $C_2 \sim C_6$ アルケニル、($C_1 \sim C_4$) はフェニル、L 又は M を表し、

 R^{11} は、水素原子又は $C_1 \sim C_6$ アルキルを表すか、或いは、 R^{10} と R^{11} とが一緒になって C_2

15

PCT/JP02/07833

37

 \sim C₅アルキレン鎖を形成することにより、結合する窒素原子と共に3 \sim 6 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫黄原子から選ばれる1個の原子を含んでもよく、且つ $C_1\sim C_6$ アルキル基によって置換されていてもよく、 R^{12} は、水素原子、 $C_1\sim C_6$ アルキル、 $C_1\sim C_6$ アルキル、 $C_3\sim C_8$ シクロアルキル ($C_1\sim C_4$) アルキル、 $C_1\sim C_4$ アルキル・ $C_1\sim C_4$ アルキルを表し、

 R^{29} は、 $C_1 \sim C_6$ アルキル、 R^{31} によって任意に置換された ($C_1 \sim C_6$) アルキル、 $C_3 \sim C_6$ シクロ アルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルキニル、 $C_1 \sim C_6$ アルキルチオ、 (Z) $_{P1}$ によって置換されていてもよいフェニルチオ、-C (0) R^{10} 、-C (0) N (R^{11}) R^{10} 、-C (S) N (R^{11}) R^{10} 、 (Z) $_{P1}$ によって置換されていてもよいフェニル、L-21、L-32、L-33、L-35、L-45、L-48 又は L-49 を表し、

 R^{31} は、ハロゲン原子、-OH、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルカルボニルオキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルカルボニルオキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、 $C_1 \sim C_6$ アルキル)アミノカルボニルスは $(Z)_{pl}$ によって置換されていてもよいフェニルを表す上記 [7] 記載の置換アミド化合物又はその塩。

- 20 [10] 上記[4]ないし[9]記載の置換アミド化合物及びその塩から選ばれる 1種又は2種以上を有効成分として含有することを特徴とする有害生物防除剤。
 - [11] 上記[4]ないし[9]記載の置換アミド化合物及びその塩から選ばれる 1種又は2種以上を有効成分として含有することを特徴とする農薬。
- [12] 上記[4]ないし[9]記載の置換アミド化合物及びその塩から選ばれる 25 1種又は2種以上を有効成分として含有することを特徴とする殺虫剤又は殺ダニ剤。

発明を実施するための最良の形態

本発明に包含される化合物には、置換基の種類によっては B-体及び Z-体の幾何異性体が存在する場合があるが、本発明はこれら B-体、Z-体又は B-体及び Z-体を任意の割合で

5

10

PCT/JP02/07833

含む混合物を包含するものである。また、本発明に包含される化合物のうちには、1個又は2個以上の不斉炭素原子の存在に起因する光学活性体が存在する場合があるが、本発明は全ての光学活性体又はラセミ体を包含する。さらに、本発明化合物は \mathbb{R}^1 、 \mathbb{R}^2 或いは \mathbb{R}^3 が水素原子であるときに、場合によっては次式で表される互変異性体の存在が考えられるが、本発明はそれらの構造をも包含するものである。

38

本発明に包含される化合物のうちで、常法に従って酸付加塩にすることができるものは、例えば、フッ化水素酸、塩酸、臭化水素酸、沃化水素酸等のハロゲン化水素酸の塩、硝酸、硫酸、燐酸、塩素酸、過塩素酸等の無機酸の塩、メタンスルホン酸、エタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等のスルホン酸の塩、ギ酸、酢酸、プロピオン酸、トリフルオロ酢酸、フマール酸、酒

10

PCT/JP02/07833

石酸、蓚酸、マレイン酸、リンゴ酸、コハク酸、安息香酸、マンデル酸、アスコルビン酸、乳酸、グルコン酸、クエン酸等のカルボン酸の塩又はグルタミン酸、アスパラギン酸等のアミノ酸の塩とすることができる。

或いは、本発明に包含される化合物のうちで、常法に従って金属塩にすることができるものは、例えば、リチウム、ナトリウム、カリウムといったアルカリ金属の塩、カルシウム、バリウム、マグネシウムといったアルカリ土類金属の塩又はアルミニウムの塩とすることができる。

次に、本明細書において示した各置換基の具体例を以下に示す。ここで、n-はノルマル、i-はイソ、s-はセカンダリー及び t-はターシャリーを各々意味し、Ph はフェニルを意味する。

本発明化合物におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。尚、本明細書中「ハロ」の表記もこれらのハロゲン原子を表す。

本明細書における $C_a \sim C_b$ アルキルの表記は、炭素原子数が $a \sim b$ 個よりなる直鎖状又は 分岐鎖状の炭化水素基を表し、例えばメチル基、エチル基、n-プロピル基、i-プロピル 15 基、n-ブチル基、s-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、l-メチルブチ ル基、2-メチルブチル基、3-メチルブチル基、1-エチルプロピル基、1,1-ジメチルプロ ピル基、1,2-ジメチルプロピル基、ネオペンチル基、n-ヘキシル基、1-メチルペンチル 基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1-エチルブチル 基、2-エチルブチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチル 20 ブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、3,3-ジメチルブチル基、 1, 1, 2-トリメチルプロピル基、1, 2, 2-トリメチルプロピル基、1-エチル-1-メチルプロピ. ル基、1-エチル-2-メチルプロピル基、ヘプチル基、1-メチルヘキシル基、5-メチルヘキ シル基、1,1-ジメチルペンチル基、2,2-ジメチルペンチル基、4,4-ジメチルペンチル基、 1-エチルペンチル基、2-エチルペンチル基、1,1,3-トリメチルブチル基、1,2,2-トリメ 25 チルブチル基、1、3、3-トリメチルブチル基、2、2、3-トリメチルブチル基、2、3、3-トリメ チルブチル基、1-n-プロピルブチル基、1,1,2,2-テトラメチルプロピル基、オクチル基、 1-メチルヘプチル基、3-メチルヘプチル基、6-メチルヘプチル基、2-エチルヘキシル基、 5,5-ジメチルヘキシル基、2,4,4-トリメチルペンチル基、1-エチル-1-メチルペンチル基、

5

40

PCT/JP02/07833

ノニル基、1-メチルオクチル基、2-メチルオクチル基、3-メチルオクチル基、7-メチルオクチル基、1-エチルヘプチル基、1,1-ジメチルヘプチル基、6,6-ジメチルヘプチル基、デシル基、1-メチルノニル基、2-メチルノニル基、6-メチルノニル基、1-エチルオクチル基、1-n-プロピルヘプチル基、ウンデシル基、1-メチルデシル基、2-メチルデシル基、8-メチルデシル基、1-エチルノニル基、1-n-プロピルオクチル基、1-n-ブチルヘプチル基、ドデシル基、1-メチルウンデシル基、3-メチルウンデシル基、9-メチルウンデシル基、10-メチルウンデシル基、1-エチルデシル基、1-n-プロピルノニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ ハロアルキルの表記は、炭素原子に結合した水素原子が、ハ ロゲン原子によって任意に置換された、炭素原子数が a~b 個よりなる直鎖状又は分岐鎖 10 状の炭化水素基を表し、このとき、2個以上のハロゲン原子によって置換されている場 合、それらのハロゲン原子は互いに同一でも、または互いに相異なっていてもよい。例 えばフルオロメチル基、クロロメチル基、プロモメチル基、ジフルオロメチル基、ジク ロロメチル基、トリフルオロメチル基、トリクロロメチル基、クロロジフルオロメチル 基、ブロモジフルオロメチル基、2-フルオロエチル基、1-クロロエチル基、2-クロロエ 15 チル基、1-ブロモエチル基、2-ブロモエチル基、2,2-ジフルオロエチル基、1,2-ジクロ ロエチル基、2,2-ジクロロエチル基、2-ブロモ-2-クロロエチル基、2,2,2-トリフルオロ エチル基、2,2,2-トリクロロエチル基、1,1,2,2-テトラフルオロエチル基、2-クロロ-1, 1, 2-トリフルオロエチル基、2-ブロモ-1, 1, 2-トリフルオロエチル基、ペンタフルオロ エチル基、2-クロロ-1, 1, 2, 2-テトラフルオロエチル基、1-クロロ-1, 2, 2, 2-テトラフル 20 オロエチル基、2-ブロモ-1, 1, 2, 2-テトラフルオロエチル基、2, 2-ジクロロ-1, 1, 2-トリ フルオロエチル基、2,2,2-トリクロロ-1,1-ジフルオロエチル基、2-フルオロ-1-メチル エチル基、1-クロロプロピル基、2-クロロプロピル基、3-クロロプロピル基、2-クロロ-1-メチルエチル基、2-ブロモプロピル基、3-ブロモプロピル基、2-ブロモ-1-メチルエチ ル基、3-ヨードプロピル基、2,3-ジクロロプロピル基、2,3-ジブロモプロピル基、 25 3, 3, 3-トリフルオロプロピル基、3, 3, 3-トリクロロプロピル基、3-ブロモ-3, 3-ジフルオ ロプロピル基、3,3-ジクロロ-3-フルオロプロピル基、2,2,3,3-テトラフルオロプロピル 基、1-ブロモ-3, 3, 3-トリフルオロプロピル基、2, 2, 3, 3, 3-ペンタフルオロプロピル基、 1, 1, 2, 3, 3, 3-ヘキサフルオロプロピル基、2, 2, 2-トリフルオロ-1-トリフルオロメチルエ

PCT/JP02/07833

41 チル基、ヘプタフルオロプロピル基、1,2,2,2-テトラフルオロ-1-トリフルオロメチルエ チル基、2-ブロモ-1, 1, 2, 3, 3, 3-ヘキサフルオロプロピル基、2, 3-ジクロロ-1, 1, 2, 3, 3-ペンタフルオロプロピル基、2-クロロブチル基、3-クロロブチル基、4-クロロブチル基、 2-クロロ-1, 1-ジメチルエチル基、4-ブロモブチル基、3-ブロモ-2-メチルプロピル基、 2-ブロモ-1, 1-ジメチルエチル基、2, 2-ジクロロ-1, 1-ジメチルエチル基、2-クロロ-1-ク ロロメチル-2-メチルエチル基、4,4,4-トリフルオロブチル基、3,3,3-トリフルオロ-1-メチルプロピル基、3,3,3-トリフルオロ-2-メチルプロピル基、2,3,4-トリクロロブチル 基、2,2,2-トリクロロ-1,1-ジメチルエチル基、4-クロロ-4,4-ジフルオロブチル基、 4,4-ジクロロ-4-フルオロブチル基、4-プロモ-4,4-ジフルオロブチル基、2,4-ジブロモ-4, 4-ジフルオロブチル基、3, 4-ジクロロ-3, 4, 4-トリフルオロブチル基、3, 3-ジクロロ-10 4.4.4-トリフルオロブチル基、4-ブロモ-3.3.4.4-テトラフルオロプチル基、4-ブロモ-3-クロロ-3, 4, 4-トリフルオロブチル基、2, 2, 3, 3, 4, 4-ヘキサフルオロブチル基、 2.2.3.4.4.4-ヘキサフルオロブチル基、2.2.2-トリフルオロ-1-メチル-1-トリフルオロ メチルエチル基、3.3.3-トリフルオロ-2-トリフルオロメチルプロピル基、 2, 2, 3, 3, 4, 4, 4-ヘプタフルオロブチル基、2, 3, 3, 3-テトラフルオロ-2-トリフルオロメチ . 15 ルプロピル基、1, 1, 2, 2, 3, 3, 4, 4-オクタフルオロブチル基、ノナフルオロブチル基、4-クロロー1, 1, 2, 2, 3, 3, 4, 4-オクタフルオロブチル基、5-クロロペンチル基、3-クロロー 2, 2-ジメチルプロピル基、5-プロモペンチル基、1, 5-ジブロモペンチル基、2, 3-ジブロ モー1, 1-ジメチルプロピル基、4, 4, 4-トリフルオロー2-メチルブチル基、4, 4, 5, 5, 5-ペン タフルオロペンチル基、5-ブロモ-4, 4, 5, 5-テトラフルオロペンチル基、4, 4-ジクロロ-20 5, 5, 5-トリフルオロペンチル基、4, 5-ジクロロ-4, 5, 5-トリフルオロペンチル基、5-ブロ モ-4-クロロ-4, 5, 5-トリフルオロペンチル基、4, 4, 4-トリフルオロ-4-トリフルオロメチ

リフルオロメチルプチル基、2, 3, 3, 4, 4, 4-ヘキサフルオロ-2-トリフルオロメチルブチル 基、2, 4, 5-トリクロロ-1, 1, 2, 3, 3, 4, 5, 5-オクタフルオロペンチル基、6-クロロヘキシル 基、6-ブロモヘキシル基、4, 4-ジクロロ-2, 2-ジメチルブチル基、4, 4, 5, 5, 6, 6, 6-ヘプタ フルオロヘキシル基、4, 5, 5, 5-テトラフルオロ-4-トリフルオロメチルペンチル基、 3, 4, 4, 5, 5, 5-ヘキサフルオロ-3-トリフルオロメチルペンチル基、4, 4, 4-トリフルオロ-3, 3-ビストリフルオロメチルブチル基、1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6-ドデカフルオロヘキ

ルブチル基、3, 3, 4, 4, 5, 5, 5-ヘプタフルオロペンチル基、3, 4, 4, 4-テトラフルオロ-3-ト

PCT/JP02/07833

WO 03/011028

42

シル基、トリデカフルオロヘキシル基、6-クロロ-1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6-ドデカフルオロヘキシル基、7-ブロモヘプチル基、4, 5, 5, 6, 6, 6-ヘキサフルオロ-4-トリフルオロメ チルヘキシル基、5, 5, 5-トリフルオロ-4, 4-ビストリフルオロメチルペンチル基、ペンタ デカフルオロヘプチル基、8-クロロオクチル基、8-ブロモオクチル基、7, 7, 8, 8, 8-ペン タフルオロオクチル基、9-ブロモノニル基、9, 9, 9-トリフルオロノニル基、7, 8, 8, 8-テ トラフルオロ-7-トリフルオロメチルオクチル基、10-クロロデシル基、10-ブロモデシル 基、11-ブロモウンデシル基、11, 11, 11-トリフルオロウンデシル基、12-ブロモドデシル 基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における C_a~C_bシアノアルキルの表記は、炭素原子に結合した水素原子が、シアノ基によって任意に置換された、炭素原子数が a~b 個よりなる直鎖状又は分岐鎖状のアルキル基を表し、例えばシアノメチル基、1-シアノエチル基、2-シアノエチル基、3-シアノプロピル基、1-シアノ-1-メチルエチル基、4-シアノブチル基、2-シアノ-1,1-ジメチルエチル基、1-シアノ-1-メチルプロピル基、1-シアノ-1-エチルプロピル基、6-シアノへキシル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ シクロアルキルの表記は、炭素原子数が $a \sim b$ 個よりなる環状 の炭化水素基を表し、3 員環から6 員環までの単環又は複合環構造を形成することが出 来る。また、各々の環は指定の炭素原子数の範囲でアルキル基によって任意に置換され ていてもよい。例えばシクロプロピル基、1-メチルシクロプロピル基、2-メチルシクロ プロピル基、2,2-ジメチルシクロプロピル基、2,2,3,3-テトラメチルシクロプロピル基、 20 シクロブチル基、1-メチルシクロブチル基、2,3,4-トリメチルシクロブチル基、シクロ ペンチル基、1-メチルシクロペンチル基、2-メチルシクロペンチル基、3-メチルシクロ ペンチル基、1-エチルシクロペンチル基、2-エチルシクロペンチル基、3-エチルシクロ ペンチル基、1-n-プロピルシクロペンチル基、1,2-ジメチルシクロペンチル基、1,3-ジ メチルシクロペンチル基、2,2-ジメチルシクロペンチル基、2,3-ジメチルシクロペンチ 25 ル基、2,4-ジメチルシクロペンチル基、2,5-ジメチルシクロペンチル基、3,4-ジメチル シクロペンチル基、2,2,4-トリメチルシクロペンチル基、2,3,4-トリメチルシクロペン チル基、2,4,4-トリメチルシクロペンチル基、シクロヘキシル基、1-メチルシクロヘキ シル基、2-メチルシクロヘキシル基、3-メチルシクロヘキシル基、4-メチルシクロヘキ

10

15

20

25

PCT/JP02/07833

43

シル基、1-エチルシクロヘキシル基、2-エチルシクロヘキシル基、4-エチルシクロヘキシル基、2,3-ジメチルシクロヘキシル基、2,4-ジメチルシクロヘキシル基、2,5-ジメチルシクロヘキシル基、2,6-ジメチルシクロヘキシル基、3,3-ジメチルシクロヘキシル基、3,4-ジメチルシクロヘキシル基、3,5-ジメチルシクロヘキシル基、4,4-ジメチルシクロヘキシル基、4,4-ジメチルシクロヘキシル基、シス-ピシクロ[3.1.0]ヘキサン-2-イル基、ピシクロ[2.1.1]ヘキサン-5-イル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ ハロシクロアルキルの表記は、炭素原子に結合した水素原子が、ハロゲン原子によって任意に置換された、炭素原子数が $a \sim b$ 個よりなる環状の炭化水素基を表し、 3 員環から 6 員環までの単環又は複合環構造を形成することが出来る。

また、各々の環は指定の炭素原子数の範囲でアルキル基によって任意に置換されていてもよく、ハロゲン原子による置換は環構造部分であっても、側鎖部分であっても、或いはそれらの両方であってもよく、さらに、2個以上のハロゲン原子によって置換されている場合、それらのハロゲン原子は互いに同一でも、または互いに相異なっていてもよい。例えば1-プロモシクロプロビル基、2,2-ジプロモシクロプロビル基、2,2-ジプロモシクロプロビル基、2,2-ジプロモシクロプロビル基、2,2-ジプロモー1-メチルシクロプロビル基、2,2-ジプロロー1-メチルシクロプロビル基、2,2-ジプロロー1-メチルシクロプロビル基、1-プロモシクロプチル基、2,2-ジクロロー3,3-ジメチルシクロプロビル基、1-プロモシクロブチル基、2,2,3,3-テトラフルオロシクロプチル基、3,4-ジプロモシクロペンチル基、1-プロモシクロペキシル基、2-フルオロシクロペキシル基、2-クロロシクロペキシル基、3-クロロシクロペキシル基、4-クロロシクロペキシル基、3-トリフルオロシクロペキシル基、3-トリフルオロメチルシクロペキシル基、3-トリフルオロメチルシクロペキシル基、3-トリフルオロメチルシクロペキシル基、4-トリフルオロメチルシクロペキシル基、3-トリクロロメチルシクロペキシル基、3,5-ジトリフルオロメチルシクロペキシル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における C_a~C_bアルケニルの表記は、炭素原子数が a~b 個よりなる直鎖状又は分岐鎖状で、且つ分子内に 1 個又は 2 個以上の二重結合を有する不飽和炭化水素基を表し、例えばビニル基、1-プロペニル基、1-メチルエテニル基、2-プロペニル基、1-ブラニル基、1-メチルー1-プロペニル基、2-ブテニル基、1-メチルー2-プロペニル基、2-ブテニル基、1-メチルー2-プロペニル基、3-ブテニル基、1、3-ブタジエニル基、チルー2-プロペニル基、3-ブテニル基、1、3-ブタジエニル基、

44

PCT/JP02/07833

1-ペンテニル基、1-メチル-1-ブテニル基、3-メチル-1-ブテニル基、1,2-ジメチル-1-プ ロペニル基、2-ペンテニル基、1-メチル-2-ブテニル基、2-メチル-2-ブテニル基、3-メ チル-2-ブテニル基、1-エチル-2-プロペニル基、1,1-ジメチル-2-プロペニル基、1,2-ジ メチル-2-プロペニル基、3-ペンテニル基、1-メチル-3-ブテニル基、2-メチル-3-ブテニ ル基、3-メチル-3-ブテニル基、4-ペンテニル基、1,3-ペンタジエニル基、1-ビニル-2-プロペニル基、1-ヘキセニル基、1-メチル-1-ペンテニル基、1-(i-ブチル)エテニル基、 2-ヘキセニル基、2-メチル-2-ペンテニル基、1-エチル-2-ブテニル基、1,3-ジメチル-2-ブテニル基、1-プロピル-2-プロペニル基、1-(i-プロピル)-2-プロペニル基、1-エチル-1-メチル-2-プロペニル基、1-エチル-2-メチル-2-プロペニル基、1, 1, 2-トリメチル-2-プロペニル基、3-ヘキセニル基、3-メチル-3-ペンテニル基、4-メチル-3-ペンテニル基、 10 1-エチル-3-ブテニル基、1,1-ジメチル-3-ブテニル基、1,2-ジメチル-3-ブテニル基、 1, 3-ジメチル-3-ブテニル基、4-ヘキセニル基、1-メチル-4-ペンテニル基、3-メチル-4-ペンテニル基、4-メチル-4-ペンテニル基、5-ヘキセニル基、1,5-ヘキサジエニル基、1-ビニルー3-ブテニル基、2,4-ヘキサジエニル基、1-ヘプテニル基、3-メチル-1-ヘキセニ ル基、2-エチル-1-ペンテニル基、2-ヘプテニル基、1,2-ジメチル-2-ペンテニル基、1-15 (i-プロピル)-2-ブテニル基、1-ブチル-2-プロペニル基、3-ヘプテニル基、1-(i-プロピ ル) -3-ブテニル基、1-エチル-1-メチル-3-ブテニル基、1-エチル-3-メチル-3-ブテニル 基、1,1,2-トリメチル-3-ブテニル基、1,1,3-トリメチル-3-ブテニル基、2,2,3-トリメ チル-3-ブテニル基、4-ヘプテニル基、1-エチル-4-ペンテニル基、1,1-ジメチル-4-ペン テニル基、1,3-ジメチル-4-ペンテニル基、1,4-ジメチル-4-ペンテニル基、2,2-ジメチ 20 ル-4-ペンテニル基、5-ヘプテニル基、6-ヘプテニル基、2,4-ヘプタジエニル基、3-メチ ル-1-ビニル-3-プテニル基、1,3,5-ヘプタトリエニル基、1-オクテニル基、2-オクテニ ル基、1-メチル-2-ヘプテニル基、2-エチル-2-ヘキセニル基、1-エチル-2-メチル-2-ペ ンテニル基、1-ペンチル-2-プロペニル基、2-ネオペンチル-2-プロペニル基、3-オクテ ニル基、1-(i-プロピル)-3-メチル-3-ブテニル基、1-エチル-1, 2-ジメチル-3-ブテニル 25 基、1-エチル-1, 3-ジメチル-3-ブテニル基、1, 5-ジメチル-4-ヘキセニル基、3, 3, 4-トリ メチル-4-ペンテニル基、5-オクテニル基、3-メチル-5-ヘプテニル基、1,5-ジメチル-5-ヘキセニル基、7-オクテニル基、2,4-オクタジエニル基、2,7-オクタジエニル基、1-(2-メチル-2-プロペニル)-2-ブテニル基、1-(i-プロペニル)-4-ペンテニル基、1-(i-プロペ

PCT/JP02/07833

45

ニル) -3-メチル-3-ブテニル基、1,1,4-トリメチル-2,4-ペンタジエニル基、5-メチル-2-メチレン-5-ヘキセニル基、1-ノネニル基、1-メチル-1-オクテニル基、2-ノネニル基、 1-(n-ヘキシル)-2-プロペニル基、3-ノネニル基、3-(ネオペンチル)-3-ブテニル基、 1.1.5-トリメチル-4-ヘキセニル基、7-メチル-5-オクテニル基、2,6-ジメチル-5-ヘプテ ニル基、4,4,5-トリメチル-5-ヘキセニル基、6-ノネニル基、8-ノネニル基、2,4-ノナジ 5 エニル基、2,6-ノナジエニル基、3,6-ノナジエニル基、2,6-ジメチル-1,5-ヘプタジエニ ル基、2,4-ジメチル-2,6-ヘプタジエニル基、1,4-ジメチル-1,3,5-ヘプタトリエニル基、 1,3-ジメチル-1,4,6-ヘプタトリエニル基、1-デセニル基、1,2-ジメチル-1-オクテニル 基、4-デセニル基、2-(i-プロピル)-5-メチル-4-ヘキセニル基、1-エチル-1,5-ジメチ ル-4-ヘキセニル基、1-エチル-3、3、4-トリメチル-4-ペンテニル基、5-デセニル基、5-エ 10 チル-1, 1-ジメチル-5-ヘキセニル基、3, 7-ジメチル-6-オクテニル基、1, 1, 5-トリメチ ルー6-ヘプテニル基、7-デセニル基、3,7-ジメチル-7-オクテニル基、9-デセニル基、2-アリル-5-メチル-4-ヘキセニル基、1,1,4-トリメチル-2-ビニル-3-ペンテニル基、1-メ - ※チレン-3-ノネニル基、2,4-デカジエニル基、1-メチル-1,3-ノナジエニル基、5,9-デカ ジエニル基、1,5-ジメチル-1-ビニル-4-ヘキセニル基、3,7-ジメチル-2,6-オクタジエニ 15 ル基、1-エチル-1,5-ジメチル-2,4-ヘキサジエニル基、1-(1-メチルエテニル)-4-メチ - ルー3, 5-ヘキサジエニル基、1-ウンデセニル基、2-ウンデセニル基、4-ウンデセニル基、 1, 3, 7-トリメチル-6-オクテニル基、10-ウンデセニル基、2, 4-ウンデカジエニル基、 5,10-ウンデカジエニル基、2,5,8-ウンデカトリエニル基、1-ドデセニル基、2-ドデセニ ル基、5-ドデセニル基、1-エチル-3、7-ジメチル-6-オクテニル基、7-ドデセニル基、1-20 エチル-3,7-ジメチル-7-オクテニル基、8-ドデセニル基、9-ドデセニル基、10-ドデセニ ル基、11-ドデセニル基、2,4-ドデカジエニル基、5,7-ドデカジエニル基、8,10-ドデカ ジエニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。 本明細書における C,~C,ハロアルケニルの表記は、炭素原子に結合した水素原子が、 ハロゲン原子によって任意に置換された、炭素原子数が a~b 個よりなる直鎖状又は分岐 鎖状で、且つ分子内に1個又は2個以上の二重結合を有する不飽和炭化水素基を表す。 このとき、2個以上のハロケン原子によって置換されている場合、それらのハロゲン原 子は互いに同一でも、または互いに相異なっていてもよい。例えば 2-クロロビニル基、 2-ブロモビニル基、2-ヨードビニル基、2,2-ジクロロビニル基、2,2-ジブロモビニル基、

10

15

20

25

46

PCT/JP02/07833

3-ブロモ-2-プロペニル基、1-クロロメチルビニル基、2-ブロモ-1-メチルビニル基、1-トリフルオロメチルビニル基、3,3,3-トリクロロ-1-プロペニル基、3-ブロモ-3,3-ジフ ルオロ-1-プロペニル基、2-クロロ-3、3、3-トリフルオロ-1-プロペニル基、2、3、3、3-テト ラクロロ-1-プロペニル基、1-トリフルオロメチル-2、2-ジフルオロピニル基、2-クロロ-2-プロペニル基、3,3-ジフルオロ-2-プロペニル基、3,3-ジクロロ-2-プロペニル基、 2.3.3-トリフルオロ-2-プロペニル基、2,3,3-トリクロロ-2-プロペニル基、4-ブロモ-3-クロロ-3.4.4-トリフルオロ-1-ブテニル基、1-ブロモメチル-2-プロペニル基、3-クロ ロー2-ブテニル基、4.4.4-トリフルオロー2-ブテニル基、4-ブロモー4,4-ジフルオロー2-ブ テニル基、3-ブロモ-3-ブテニル基、4.4-ジフルオロ-3-ブテニル基、3.4.4-トリフルオ ロ-3-ブテニル基、3,4,4-トリブロモ-3-ブテニル基、3-ブロモ-2-メチル-2-プロペニル 基、3.3.3-トリフルオロ-2-メチルプロペニル基、3-クロロ-4,4,4-トリフルオロ-2-ブテ ニル基、3,3,3-トリフルオロ-1-メチル-1-プロペニル基、3,3,3-トリフルオロ-2-トリフ ルオロメチル-1-プロペニル基、1,3,3,5-テトラフルオロ-2-トリフルオロメチル-1-プロ ペニル基、3.4.4-トリフルオロ-1、3-ブタジエニル基、3,4-ジブロモ-1-ペンテニル基、 3, 3, 4, 4, 5, 5, 5-ヘプタフルオロー1-ペンテニル基、5, 5-ジフルオロ-4-ペンテニル基、 4,5,5-トリフルオロ-4-ペンテニル基、3,4,4-テトラフルオロ-3-トリフルオロメチル-1-ブテニル基、3, 5, 5-トリフルオロ-2, 4-ペンタジエニル基、4, 4, 5, 5, 6, 6, 6-ヘプタフル オロ-2-ヘキセニル基、3.4.4.5.5.5-ヘキサフルオロ-3-トリフルオロメチル-1-ペンテニ ル基、4.5.5.5-テトラフルオロ-4-トリフルオロメチル-2-ペンテニル基、5-ブロモ-4, 5, 5-トリフルオロ-4-トリフルオロメチル-2-ペンテニル基、3, 3, 3-トリフルオロ-1-ペ ンタフルオロエチル-2-トリフルオロメチル-1-プロペニル基、4,5,5,6,6,6-ヘキサフル オロ-4-トリフルオロメチル-2-ヘキセニル基、3-パーフルオロブチル-2-プロペニル基、 3-ヨード-2-オクテニル基、2-パーフルオロヘキシルエテニル基、3-パーフルオロヘキシ ルー2-プロペニル基、12-ブロモー2-ドデセニル基等が具体例として挙げられ、各々の指定 の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ アルキニルの表記は、炭素原子数が $a \sim b$ 個よりなる直鎖状又は分岐鎖状で、且つ分子内に 1 個又は 2 個以上の三重結合を有する不飽和炭化水素基を表し、例えばエチニル基、1-プロピニル基、2-プロピニル基、1-ブチェル

47

PCT/JP02/07833

エチルー2-プロピニル基、1,1-ジメチルー2-プロピニル基、3-ペンチニル基、1-メチルー2-ブチニル基、4-ペンチニル基、1-メチル-3-ブチニル基、2-メチル-3-ブチニル基、1,1-ジメチル-2-プロピニル基、1-ヘキシニル基、3,3-ジメチル-1-ブチニル基、1-(n-プロピ ル)-2-プロピニル基、2-ヘキシニル基、1-エチル-2-ブチニル基、3-ヘキシニル基、1-メ . 5 チルー2ーペンチニル基、1-メチルー3ーペンチニル基、5-ヘキシニル基、1-エチルー3-ブチニ ル基、1-エチル-1-メチル-2-プロピニル基、1-(i-プロピル)-2-プロピニル基、1,1-ジメ チル-2-ブチニル基、2,2-ジメチル-3-ブチニル基、1-ヘプチニル基、1-(n-ブチノレ)-2-プ ロピニル基、2-ヘプチニル基、3-ヘプチニル基、1-メチル-3-ヘキシニル基、1-エチル-2-ペンチニル基、1-エチル-3-ペンチニル基、6-ヘプチニル基、1-メチル-1-(n-プロピ 10 ル)-2-プロピニル基、1-(i-プロピル)-1-メチル-2-プロピニル基、1-(i-ブチル)-2-プロ ピニル基、5-メチル-3-ヘキシニル基、1,1-ジメチル-2-ペンチニル基、1-エチル-1-メチ ルー2-ブチニル基、1-オクチニル基、1-(n-ペンチル)-2-プロピニル基、2-オクチニル基、 8-オクチニル基、1-メチル-3-ヘプチニル基、1-エチル-3-ヘキシニル基、7-オクチニル ◦基、1- (n-ブチル) -1-メチル-2-プロピニル基、1- (1-メチルブチル) -2-プロピニル基、1-(i-ブチル)-1-メチル-2-プロピニル基、2-ノニニル基、3-ノニニル基、1-エチル-3-ヘプ 15. チニル基、1-メチル-1-(n-ペンチル)-2-プロピニル基、1-(n-ブチル)-1-メチル-2-ブチ 。ニル基、1- (n-ブチル) -1-エチル-2-プロピニル基、1- (1-エチルプロピル) -1-メチル-2-プロピニル基、1-デシニル基、2-デシニル基、3-デシニル基、5-デシニル基、9-デシニ ル基、1-(n-ヘキシル)-1-メチル-2-プロピニル基、2-ウンデシニル基、10-ウンデシニル 20 基、5,10-ウンデカジイニル基、3-ドデシニル基、7-ドデシニル基、9-ドデシニル基、 10-ドデシニル基、11-ドデシニル基等が具体例として挙げられ、各々の指定の炭素原子 数の範囲で選択される。

本明細書における $C_a \sim C_b$ ハロアルキニルの表記は、炭素原子に結合した水素原子が、ハロゲン原子によって任意に置換された、炭素原子数が $a \sim b$ 個よりなる直鎖状又は分岐 35 鎖状で、且つ分子内に1個又は2個以上の三重結合を有する不飽和炭化水素基を表す。このとき、2個以上のハロゲン原子によって置換されている場合、それらのハロゲン原子は互いに同一でも、または互いに相異なっていても良い。例えば2-クロロエチニル基、2-ブロモエチニル基、2-ヨードエチニル基、3-クロロ-2-プロピニル基、3-ブロモ-2-プロピニル基、3-ブロモ-2-プロピニル基、3-フロー2-プロピニル基、3-フロー2-プロピニル基、3-クロ

10

15

20

ロー1-メチルー2-プロピニル基、3-ブロモー1-メチルー2-プロピニル基、3-ヨードー1-メチルー2-プロピニル基、3-クロロー1, 1-ジメチルー2-プロピニル基、3-ブロモー1, 1-ジメチルー2-プロピニル基、3-ブロモー1, 1-ジメチルー2-プロピニル基、1-クロロメチルー1-メチルー2-プロピニル基、4-クロロー2, 2-ジメチルー3-ブチニル基、4-ブロモー2, 2-ジメチルー3-ブチニル基、4-ヨードー2, 2-ジメチルー3-ブチニル基、10-ブロモー9-デシニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における C_a~C_bシクロアルケニルの表記は、炭素原子数が a~b 個よりなる環状の、且つ 1 個又は 2 個以上の二重結合を有する不飽和炭化水素基を表し、 3 員環から 6 員環までの単環又は複合環構造を形成することが出来る。また、各々の環は指定の炭素原子数の範囲でアルキル基によって任意に置換されていてもよく、さらに、二重結合は endo-又は exo-のどちらの形式であってもよい。例えばシクロペンテン-1-イル基、2-シクロペンテン-1-イル基、3-シクロペンテン-1-イル基、3-シクロペンテン-1-イル基、3-シクロペンテン-1-イル基、4-メチレンシクロペンチル基、シクロヘキセン-1-イル基、3-シクロヘキセン-1-イル基、4-メチル-2-シクロヘキセン-1-イル基、1-メチル-2-シクロヘキセン-1-イル基、4-メチル-3-シクロヘキセン-1-イル基、4-メチル-3-シクロヘキセン-1-イル基、4-メチル-3-シクロヘキセン-1-イル基、5-メチル-3-シクロヘキセン-1-イル基、5-メチル-3-シクロヘキセン-1-イル基、5-メチル-3-シクロヘキセン-1-イル基、4、6-ジメチル-3-シクロヘキセン-1-イル基、2-メチル-3-シクロヘキセン-1-イル基、4、6-ジメチル-3-シクロヘキセン-1-イル基、2-メチルビシクロ[2.2.1]-5-ヘプテン-2-イル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ ハロシクロアルケニルの表記は、炭素原子に結合した水素原子が、ハロゲン原子によって任意に置換された、炭素原子数が $a \sim b$ 個よりなる環状の、且つ 1 個又は 2 個以上の二重結合を有する不飽和炭化水素基を表し、 3 員環から 6 員環までの単環又は複合環構造を形成することが出来る。また、各々の環は指定の炭素原子数の範囲でアルキル基によって任意に置換されていてもよく、さらに、二重結合は endo-又は exo-のどちらの形式であってもよい。また、ハロゲン原子による置換は環構造部分であっても、側鎖部分であっても、或いはそれらの両方であってもよく、 2 個以上のハロゲン原子によって置換されている場合、それらのハロゲン原子は互いに同一でも、または互いに相異なっていても良い。例えば 2-クロロビシクロ [2.~2.~1]-5-ヘプテン-2-イル

5

10

15

20

25

40

PCT/JP02/07833

基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ アルコキシの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキル-0-基を表し、例えばメトキシ基、エトキシ基、n-プロピルオキシ基、i-プロピルオキシ基、n-ブチルオキシ基、s-ブチルオキシ基、i-ブチルオキシ基、t-ブチルオキシ基、t-ブチルオキシ基、t-ブチルオキシ基、t-ブチルオキシ基、t-ブチルオキシ基、t-ブチルオキシ基、t-ブチルオキシ基、t-ブチルオキシ基、t-ブチルオキシ基、t-ブチルオキシ基、t-ブチルオキシ基、t-ブチルオキシ基、t-ブチルオキシ基、t-ブナルオキシ基、t-ブナルオキシ基、t-ブナルオキシ基、t-ブナルオキシ基、t-ブナルオキシ基、t-ブナルオキシ基、t-ブナルオキシ基、t-ブナルオキシ基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における C_a~C_bハロアルコキシの表記は、炭素原子数が a~b 個よりなる前記の意味であるハロアルキル-0-基を表し、例えばジフルオロメトキシ基、トリフルオロメトキシ基、2-フルオロエトキシ基、2-クロロエトキシ基、2, 2, 2-トリフルオロエトキシ基、1, 1, 2, 2, -テトラフルオロエトキシ基、2-クロロエトキシ基、2, 2-トリフルオロエトキシ基、2-プロモー1, 1, 2-トリフルオロエトキシ基、2-プロモー1, 1, 2-トリフルオロエトキシ基、2-プロモー1, 1, 2-トリフルオロエトキシ基、2, 2-テトラフルオロエトキシ基、2, 2-ジクロロー1, 1, 2-トリフルオロエトキシ基、2, 2-テトラフルオロエトキシ基、2, 2-ジクロロー1, 1, 2-トリフルオロエトキシ基、2, 2, 2-トリクロロー1, 1-ジフルオロプロピルオキシ基、2, 2, 3, 3-アトラフルオロプロピルオキシ基、1, 1, 2, 3, 3, 3-ヘキサフルオロプロピルオキシ基、2-ブロモー1, 1, 2, 3, 3, 3-ヘキサフルオロプロピルオキシ基、2-ブロモー1, 1, 2, 3, 3, 3-ヘキサフルオロプロピルオキシ基、2-ブロモー1, 1, 2, 3, 3, 3-ヘキサフルオロプロピルオキシ基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ ハロシクロアルキルオキシの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるハロシクロアルキル-0-基を表し、例えば 2, 2, 4, 4-テトラフルオロシクロブチルオキシ基、2-クロロ-2, 3, 3-トリフルオロシクロブチルオキシ基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における C_a~C_bアルケニルオキシの表記は、炭素原子数が a~b 個よりなる前記の意味であるアルケニルー0-基を表し、例えばアリルオキシ基、2-ブテニルオキシ基、1-メチルー2-プロペニルオキシ基、3-メチルー2-ブテニルオキシ基、1,1-ジメチルー2-プロペニルオキシ基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択され

PCT/JP02/07833

50

る。

10

15

20

本明細書における $C_a \sim C_b$ ハロアルケニルオキシの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるハロアルケニル-0-基を表し、例えば 3, 3-ジフルオロ-2-プロペニルオキシ基、3, 3-ジクロロ-2-プロペニルオキシ基、2, 3, 3-トリフルオロ-2-プロペニルオキシ基、3, 3-トリフルオロ-1-(ペンタフルオロエチル)-2-(トリフルオロメチル)-1-プロペニルオキシ基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ アルキニルオキシの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキニル-0-基を表し、例えばプロパルギルオキシ基、2-ブチニルオキシ基、1-エチル-2-プロピニルオキシ基、2-ペンチニルオキシ基、1-メチル-2-ブチニルオキシ基、1, 1-ジメチル-2-プロピニルオキシ基、2-ヘキシニルオキシ基、1-エチル-2-ブチニルオキシ基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ ハロアルキニルオキシの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるハロアルキニル-0-基を表し、例えば 3-クロロ-2-プロピニルオキシ基、3-ブロモ-2-プロピニルオキシ基、3-ヨード-2-プロピニルオキシ基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における C_a~C_bハロアルキルチオの表記は、炭素原子数が a~b 個よりなる前記の意味であるハロアルキル-S-基を表し、例えばジフルオロメチルチオ基、トリフルオロメチルチオ基、プロモジフルオロメチルチオ基、2,2,2-トリフルオロエチルチオ基、1,1,2-トリフルオロエチルチオ基、ペンタフルオロエチルチオ基、2-ブロモ-1,1,2,2-テトラフルオロエチルチオ基、ヘプタフ

5

10

15

20

25

51

PCT/JP02/07833

ルオロプロピルチオ基、1,2,2,2-テトラフルオロ-1-トリフルオロメチルエチルチオ基、 ノナフルオロブチルチオ基等が具体例として挙げられ、各々の指定の炭素原子数の範囲 で選択される。

本明細書における $C_a \sim C_b$ アルケニルチオの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルケニル-S-基を表し、例えばアリルチオ基、2-ブテニルチオ基、1-メチル-2-プロペニルチオ基、3-メチル-2-ブテニルチオ基、1, 1-ジメチル-2-プロペニルチオ基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ ハロアルケニルチオの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるハロアルケニルーS-基を表し、例えば 3, 3-ジフルオロー2-プロペニルチオ基、 2, 3, 3-ジクロロー2-プロペニルチオ基、 2, 3, 3-トリフルオロー2-プロペニルチオ基、 3, 4, 4-トリフルオロー3-ブテニルチオ基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ アルキニルチオの表記は、炭素原子数が $a \sim b$ 個よりなる前記 の意味であるアルキニル-S-基を表し、例えばプロパルギルチオ基、2-ブチニルチオ基、2-ペンチニルチオ基、1-メチル-2-ブチニルチオ基、1, 1-ジメチル-2-プロピニルチオ基 等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_n \sim C_b$ アルキルスルフィニルの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキル-S (0) -基を表し、例えばメチルスルフィニル基、エチルスルフィニル基、n-プロピルスルフィニル基、i-プロピルスルフィニル基、n-ブチルスルフィニル基、n-ブチルスルフィニル基、n-ブチルスルフィニル基、n-ブチルスルフィニル基、n-ブチルスルフィニル基、n-ブチルスルフィニル基、n-ブチルスルフィニル基、n-ブチルスルフィニル基、n-ブチルスルフィニル基、n-ブチルスルフィニル基、n-ブチルスルフィニル基、n-ブチルスルフィニル基、n-ブチルスルフィニル基、n-ブチルスルフィニル基、n-ブチルスルフィニル基、n-ブチルスルフィニル基、n-ブチルスルフィニル基、n-ブチルスルフィニル

本明細書における $C_a \sim C_b$ ハロアルキルスルフィニルの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるハロアルキル-S (0) -基を表し、例えばジフルオロメチルスルフィニル基、 トリフルオロメチルスルフィニル基、 ブロモジフルオロメチルスルフィニル基、 2, 2, 2-トリフルオロエチルスルフィニル基、 2-ブロモ-1, 1, 2, 2-テトラフルオロエチルスルフィニル基、 1, 2, 2, 2-テトラフルオロー1-トリフルオロメチルエチルスルフィニル基、 ノナフルオロブチルスルフィニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における C_a~C_bハロアルケニルスルフィニルの表記は、炭素原子数が a~b 個

10

PCT/JP02/07833

52

よりなる前記の意味であるハロアルケニル-S(0)-基を表し、例えば 3, 4, 4-トリフルオロ-3-ブテニルスルフェニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ アルキルスルホニルの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキル $-SO_2$ -基を表し、例えばメタンスルホニル基、エタンスルホニル基、n-プロピルスルホニル基、i-プロピルスルホニル基、n-プチルスルホニル基、s-プチルスルホニル基、i-プチルスルホニル基、t-プチルスルホニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ ハロアルキルスルホニルの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるハロアルキル $-SO_2$ -基を表し、例えばジフルオロメタンスルホニル基、トリフルオロメタンスルホニル基、クロロジフルオロメタンスルホニル基、プロモジフルオロメタンスルホニル基、2,2,2-トリフルオロエタンスルホニル基、1,1,2-テトラフルオロエタンスルホニル基、1,1,2-トリフルオロ-2-クロロエタンスルホニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ ハロアルケニルスルホニルの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるハロアルケニル $-SO_2$ -基を表し、例えば 3, 3-ジフルオロ-2-プロペニルスルホニル基、 3, 3-ジクロロ-2-プロペニルスルホニル基、 2, 3, 3-トリフルオロ-2-プロペニルスルホニル基、 3, 4, 4-トリフルオロ-3-プテニルスルホニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

20 本明細書における C_a~C_bアルキルアミノの表記は、水素原子の一方が炭素原子数が a~b 個よりなる前記の意味であるアルキル基によって置換されたアミノ基を表し、例えばメチルアミノ基、エチルアミノ基、n-プロピルアミノ基、i-プロピルアミノ基、n-ブチルアミノ基、i-ブチルアミノ基、i-ブチルアミノ基、t-ブチルアミノ基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

25 本明細書におけるジ(C_a~C_bアルキル)アミノの表記は、水素原子が両方とも、それぞれ同一でも、又は互いに相異なっていてもよい炭素原子数が a~b 個よりなる前記の意味であるアルキル基によって置換されたアミノ基を表し、例えばジメチルアミノ基、エチル(メチル)アミノ基、ジエチルアミノ基、n-プロピル(メチル)アミノ基、i-プロピル(メチル)アミノ基、i-プロピル(メチル)アミノ基、i-プチル(メチル)

10

15

20

25

53

PCT/JP02/07833

アミノ基、t-ブチル(メチル)アミノ基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ アルキルカルボニルの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキルーC (0) -基を表し、例えば CH_3C (0) -基、 CH_3CH_2C (0) -基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ ハロアルキルカルボニルの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるハロアルキルーC (0) -基を表し、例えば FCH_2C (0) -基、 $C1CH_2C$ (0) -基、 F_2CHC (0) -基、 $C1_2CHC$ (0) -基、 CF_3C (0) -基、 $C1CF_2C$ (0) -基、 $C1_3C$ (0) -基、 $CC1_3C$ (0) -基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ ハロアルコキシカルボニルの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるハロアルキル-0-C (0) -基を表し、例えば $C1CH_2CH_2OC$ (0) -基、

本明細書におけるシ($C_a \sim C_b$ アルキル) アミノカルボニルの表記は、水素原子が両方とも、それぞれ同一でも、又は互いに相異なっていてもよい炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキル基によって置換されたカルバモイル基を表し、例えば (CH_3) $_2$ NC (0) -基、 (CH_3CH_2) $_2$ NC (0) -基、 (CH_3CH_2) $_2$ NC (0) -基、 (CH_3CH_2) $_2$ NC (0) -基等が具体例として挙

5

10

15

20

る。

C A

PCT/JP02/07833

げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ アルキルアミノチオカルボニルの表記は、水素原子の一方が 炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキル基によって置換されたチオカル バモイル基を表し、例えば CH_3NHC (S) -基、 CH_3CH_2NHC (S) -基、 $CH_3CH_2CH_2NHC$ (S) -基、 $CH_3CH_2CH_2NHC$ (S) -基、 $CH_3CH_2CH_2CH_2NHC$ (S) -基、 $CH_3CH_2CH_2NHC$ (S) -基、 CH_3CH_2NHC (S) -基、 CH_3CH_2NHC (S) -基、 CH_3CH_2NHC (S) -基、 CH_3CH_2NHC (S) -基、-ACM -ACM -ACM

本明細書における $C_a \sim C_b$ アルキルスルホニルオキシの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキル $-SO_2-0$ -基を表し、例えば CH_3SO_2-0 -基、 $CH_3CH_2SO_2-0$ -基、 $CH_3CH_2SO_2-0$ -基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ ハロアルキルスルホニルオキシの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるハロアルキル $-SO_2-0$ -基を表し、例えば CF_3SO_2-0 -基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ アルキルカルボニルオキシの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキルーC (0) -0—基を表し、例えば CH_3C (0) -0—基、 CH_3CH_2C (0) -0—基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ ハロアルキルカルボニルオキシの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるハロアルキルーC(0) -0-基を表し、例えば $FCH_2C(0)$ -0-基、 $C1CH_2C(0)$ -0-基、 $F_2CHC(0)$ -0-基、 $C1_2CHC(0)$ -0-基、 $CF_3C(0)$ -0-基、 $C1CF_2C(0)$ -0-基、 $C1CF_2C(0)$ -0-基、 $C1_3C(0)$ -0-基、 $CF_3CF_2C(0)$ -0-基、 $CF_3CF_2CF_2C(0)$ -0-基、 $C1CH_2CH_2CH_2CH_2C(0)$ -0-基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択

PCT/JP02/07833

される。

本明細書における R^7 によって任意に置換された $(C_a \sim C_b)$ アルキル、 R^{21} によって任意に置換された $(C_a \sim C_b)$ アルキル又は R^{31} に 置換された $(C_a \sim C_b)$ アルキルの表記は、任意の R^7 、 R^{21} 、 R^{30} 又は R^{31} によって、 炭素原子に結合した水素原子が任意に置換された炭素原子数が $a \sim b$ 個よりなる直鎖状又 は分岐鎖状の炭化水素基を表し、ここで、それぞれの $(C_a \sim C_b)$ アルキル基上の置換基 R^7 、 R^{21} 、 R^{30} 又は R^{31} が 2 個以上存在するとき、それぞれの R^7 、 R^{21} 、 R^{30} 又は R^{31} は互いに同一で も、または互いに相異なっていてもよい。

55

本明細書における $C_a \sim C_b$ シクロアルキル $(C_a \sim C_c)$ アルキル、ヒドロキシ $(C_a \sim C_c)$ アルキ $\mathcal{L}_{a} \sim C_{b} \mathcal{L}_{b} \mathcal{L}_{a} \sim C_{b} \mathcal{L}_{b} \mathcal{L}_{a} \sim C_{b} \mathcal{L}_{b} \mathcal{L}_{a} \sim C_{b} \mathcal{L}_{b} \mathcal{L}_{a} \sim C_{b} \mathcal{L}_{a} \sim C_{b} \mathcal{L}_{b} \mathcal{L}_{a} \sim C_{b} \mathcal{L}_{b} \mathcal{L}_{a} \sim C_{b} \mathcal{L}_{b} \mathcal{L}_{a} \sim C_{b} \mathcal{L}_{b} \mathcal$ 10 アルキルチオ ($C_a \sim C_a$) アルキル、 $C_a \sim C_b$ ハロアルキルチオ ($C_a \sim C_a$) アルキル、 (Z) 」によっ て置換されていてもよいフェニルチオ (C₄~C₆) アルキル、C₆~C₆アルキルスルフィニル (C₄ ∞∞ホニル(C_a~C₀) アルキル、C₂~C₅ハロアルキルスルホニル(C_a~C₀) アルキル、C₂~C₅アルキ 15 ルカルボニル (C_a~C_a) アルキル、C_a~C_b アルコキシカルボニル (C_a~C_a) アルキル、C_a~C_bハ ロアルコキシカルボニル(C。〜C。) アルキル、C。〜C。 アルキルアミノカルボニル(C。〜C。) アル ニューキル、ジ(C₂~C₅アルキル)アミノカルボニル(C₂~C₅)アルキル、トリメチルシリル(C₂~C₅) アルキル、 $(Z)_{n}$ によって置換されていてもよいフェニル $(C_{a} \sim C_{b})$ アルキル、 $L-(C_{a} \sim C_{b})$ ア ルキル又は M-(C₄~C₆) アルキル等の表記は、それぞれ前記の意味である任意の C₅~C₆シク 20 ロアルキル基、水酸基、C。~C。アルコキシ基、C。~C。ハロアルコキシ基、C。~C。アルキル チオ基、C_a~C_bハロアルキルチオ基、(Z)_nによって置換されていてもよいフェニルチオ 基、C₂~C₅アルキルスルフィニル基、C₂~C₅ハロアルキルスルフィニル基、C₂~C₅アルキ ルスルホニル基、C。~C。ハロアルキルスルホニル基、C。~C。アルキルカルボニル基、C。~ C,アルコキシカルボニル基、C,~C,ハロアルコキシカルボニル基、C,~C,アルキルアミノ カルボニル基、ジ(C。~C。アルキル)アミノカルボニル基、トリメチルシリル基、(Z)。に 25 よって置換されていてもよいフェニル基、L基又はM基によって、炭素原子に結合した水 素原子が任意に置換された炭素原子数が d~e 個よりなる直鎖状又は分岐鎖状の炭化水素 基を表し、各々の指定の炭素原子数の範囲で選択される。

本明細書におけるヒドロキシ (C_d~C_e) ハロアルキル、C_a~C_bアルコキシ (C_d~C_e) ハロアル

56

PCT/JP02/07833

キル、 $C_a \sim C_b$ ハロアルコキシ ($C_d \sim C_c$) ハロアルキル、 $C_a \sim C_b$ アルケニルオキシ ($C_d \sim C_c$) ハロ アルキル、 $C_a \sim C_h$ ハロアルケニルオキシ ($C_d \sim C_e$) ハロアルキル、 $C_a \sim C_h$ アルキニルオキシ $(C_a \sim C_a)$ ハロアルキル、 $C_a \sim C_b$ ハロアルキニルオキシ $(C_a \sim C_a)$ ハロアルキル又は $(Z)_{a1}$ に よって置換されていてもよいベンジルオキシ(C₄~C₆)ハロアルキル等の表記は、それぞれ 5 前記の意味である任意の水酸基、C,~C,アルコキシ基、C,~C,ハロアルコキシ基、C,~C, アルケニルオキシ基、C。~C。ハロアルケニルオキシ基、C。~C。アルキニルオキシ基、C。~ C_bハロアルキニルオキシ基又は(Z)_nによって置換されていてもよいベンジルオキシ基に よって、炭素原子に結合した水素原子又はハロゲン原子が任意に置換された炭素原子数 が d~e 個よりなる前記の意味であるハロアルキル基を表し、例えば 1, 2, 2, 2-テトラフル オロ-1-(メトキシ)エチル基、2,2,2-トリフルオロ-1-ヒドロキシ-1-(メチル)エチル基、 10 2. 2. 2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル基、2. 2. 2-トリフル オロ-1-メトキシ-1-(トリフルオロメチル) エチル基、1-エトキシ-2, 2, 2-トリフルオロ-1-(トリフルオロメチル)エチル基、2,2,2-トリフルオロ-1-n-プロピルオキシ-1-(トリフ ルオロメチル) エチル基、2.2.2-トリフルオロ-1-1-プロピルオキシ-1-(トリフルオロメ チル) エチル基、1-n-ブチルオキシ-2, 2, 2-トリフルオロ-1-(トリフルオロメチル) エチル 15 基、2.2.2-トリフルオロ-1-(2.2.2-トリフルオロエトキシ)-1-(トリフルオロメチル) エ チル基、1-アリルオキシ-2.2.2-トリフルオロ-1-(トリフルオロメチル)エチル基、1-(3, 3-ジフルオロ-2-プロペニルオキシ)-2, 2, 2-トリフルオロ-1-(トリフルオロメチル)エ チル基、1-(3,3-ジクロロ-2-プロペニルオキシ)-2,2,2-トリフルオロ-1-(トリフルオロ メチル) エチル基、2,2,2-トリフルオロ-1-トリフルオロメチル-1-(2,3,3-トリフルオロ-20 2-プロペニルオキシ) エチル基、2, 2, 2-トリフルオロ-1-プロパルギルオキシ-1-(トリフ ルオロメチル) エチル基、1-ベンジルオキシ-2, 2, 2-トリフルオロ-1-(トリフルオロメチ ル) エチル基、2-クロロー1-ヒドロキシー2、2-ジフルオロ-1-(トリフルオロメチル) エチル 基、2-クロロ-2、2-ジフルオロ-1-メトキシ-1-(トリフルオロメチル)エチル基、2-ブロ モー1-ヒドロキシー2, 2-ジフルオロー1-(トリフルオロメチル) エチル基、2-ブロモー2, 2-ジ 25 フルオロー1-メトキシー1-(トリフルオロメチル) エチル基、1-ヒドロキシー2-メチル-1-(ト - リフルオロメチル) プロピル基、1-ヒドロキシ-2, 2, 3, 3, 3-ペンタフルオロ-1-(トリフル オロメチル)プロピル基、2,2,3,3,3-ペンタフルオロ-1-メトキシ-1-(トリフルオロメチ ル)プロピル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

57

PCT/JP02/07833

本明細書における R^7 によって任意に置換された $(C_a \sim C_b)$ シクロアルキル、 R^{21} によって任意に置換された $(C_a \sim C_b)$ シクロアルキル、 R^{30} によって任意に置換された $(C_a \sim C_b)$ シクロアルキル又は R^{31} によって任意に置換された $(C_a \sim C_b)$ シクロアルキル等の表記は、任意の R^7 、 R^{21} 、 R^{30} 又は R^{31} によって、炭素原子に結合した水素原子が任意に置換された炭素原子 数が $a \sim b$ 個よりなる前記の意味であるシクロアルキル基を表す。このとき、 R^7 、 R^{21} 、 R^{30} 又は R^{31} による置換は、環構造部分であっても、側鎖部分であっても、或いはそれらの両方であってもよく、さらに、それぞれの $(C_a \sim C_b)$ シクロアルキル基上の置換基 R^7 、 R^{21} 、 R^{30} 又は R^{31} が 2 個以上存在するとき、それぞれの R^7 、 R^{21} 、 R^{30} 又は R^{31} は互いに同一でも、または互いに相異なっていてもよい。

本明細書における $C_a \sim C_b$ アルケニル $(C_d \sim C_e)$ シクロアルキル、 $C_a \sim C_b$ ハロアルケニル $(C_d \sim C_e)$ 10 \sim C_e) シクロアルキル、ヒドロキシ(C_d \sim C_e) シクロアルキル、C_a \sim C_bアルコキシ(C_d \sim C_e) シ クロアルキル、 $C_a \sim C_b$ アルキルチオ ($C_d \sim C_e$) シクロアルキル、 $C_a \sim C_b$ アルキルスルフィニ $(C_a \sim C_a)$ シクロアルキル又は $C_a \sim C_b$ アルキルスルホニル $(C_a \sim C_a)$ シクロアルキル等の表 常記は、それぞれ前記の意味である任意の C₂~C₅ アルケニル基、C₂~C₅ ハロアルケニル基、 15 水酸基、 $C_a \sim C_b$ アルコキシ基、 $C_a \sim C_b$ アルキルチオ基、 $C_a \sim C_b$ アルキルスルフィニル基又 は $C_a \sim C_b$ アルキルスルホニル基によって、炭素原子に結合した水素原子が任意に置換さ れた炭素原子数が d~e 個よりなる前記の意味であるシクロアルキル基を表し、例えば 2-ビニルシクロプロピル基、3,3-ジメチル-2-(2-メチル-1-プロペニル)シクロプロピル基、 2-(2, 2-ジクロロエテニル)-3, 3-ジメチルシクロプロピル基、2-(2-クロロ-3, 3, 3-トリフ ルオロ-1-プロペニル) -3, 3-ジメチルシクロプロピル基、1-(メチルチオメチル) シクロプ 20 ロピル基、1-(メチルスルフィニルメチル)シクロプロピル基、1-(メチルスルホニルメチ ル)シクロプロピル基、1-(メチルチオメチル)シクロブチル基、2-アリルシクロペンチル 基、1-(ヒドロキシメチル)シクロペンチル基、1-(メチルチオメチル)シクロペンチル基、 1- (メチルスルフィニルメチル) シクロペンチル基、1- (メチルスルホニルメチル) シクロ ペンチル基、2-(メチルチオ)シクロペンチル基、2-(メチルチオ)シクロヘキシル基等が 具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における R^7 によって任意に置換された $(C_a \sim C_b)$ アルケニル、 R^{21} によって任意に置換された $(C_a \sim C_b)$ アルケニル又は R^{31} によって任意に置換された $(C_a \sim C_b)$ アルケニル又は R^{31} によって任意に置換された $(C_a \sim C_b)$ アルケニルの表記は、任意の R^7 、 R^{21} 、 R^{30} 又は R^{31} に

5

10

15

20

25

PCT/JP02/07833

58

よって、炭素原子に結合した水素原子が任意に置換された炭素原子数が $a\sim b$ 個よりなる前記の意味であるアルケニル基を表し、ここで、それぞれの $(C_a\sim C_b)$ アルケニル基上の置換基 R^7 、 R^{21} 、 R^{30} 又は R^{31} が 2 個以上存在するとき、それぞれの R^7 、 R^{21} 、 R^{30} 又は R^{31} は互いに同一でも、または互いに相異なっていてもよい。

本明細書における $(Z)_{pl}$ によって置換されていてもよいフェニル $(C_a \sim C_b)$ アルケニル又は $L-(C_a \sim C_b)$ アルケニル等の表記は、任意の $(Z)_{pl}$ によって置換されていてもよいフェニル基 又は L 基によって、炭素原子に結合した水素原子が任意に置換された炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルケニル基を表し、例えば 1, 1-ジメチル-3-フェニル-2-プロペニル基、 <math>1, 1-ジメチル-3-(チオフェン-2-イル)-2-プロペニル基等が具体例として 挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における R^7 によって任意に置換された $(C_a \sim C_b)$ アルキニル、 R^{21} によって任意に置換された $(C_a \sim C_b)$ アルキニル又は R^{31} によって任意に置換された $(C_a \sim C_b)$ アルキニルの表記は、任意の R^7 、 R^{21} 、 R^{30} 又は R^{31} によって、炭素原子に結合した水素原子が任意に置換された炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキニル基を表し、ここでそれぞれの $(C_a \sim C_b)$ アルキニル基上の置換 基 R^7 、 R^{21} 、 R^{30} 又は R^{31} が 2 個以上存在するとき、それぞれの R^7 、 R^{21} 、 R^{30} 又は R^{31} は互いに同一でも、または互いに相異なっていてもよい。

本明細書における $(Z)_{p1}$ によって置換されていてもよいフェニル $(C_a \sim C_b)$ アルキニル又は $L-(C_a \sim C_b)$ アルキニル等の表記は、任意の $(Z)_{p1}$ によって置換されていてもよいフェニル基 又は L 基によって、炭素原子に結合した水素原子が任意に置換された炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキニル基を表し、例えば 1, 1-ジメチル-3-フェニル-2-プロピニル基、 <math>1, 1-ジメチル-3-(Fオフェン-2-イル)-2-プロピニル基、 <math>1, 1-ジメチル-3-(H) フェンー3ー (H) ジンー3ー (H) ジン (H) ジンー3ー (H) ジン (H) ジン (H) グン (H) グン (H) グン (H) グン (H) (H)

本明細書における $C_a \sim C_b$ アルコキシカルボニル $(C_d \sim C_e)$ アルコキシ、 $C_a \sim C_b$ ハロアルコキシカルボニル $(C_d \sim C_e)$ アルコキシ又は $(Z)_{pl}$ によって置換されていてもよいフェニル $(C_d \sim C_e)$ アルコキシ等の表記は、それぞれ前記の意味である任意の $C_a \sim C_b$ アルコキシカルボニル基、 $C_a \sim C_b$ ハロアルコキシカルボニル基又は $(Z)_{pl}$ によって置換されていてもよい

5

20

25

59

PCT/JP02/07833

本明細書における $C_a \sim C_b ア N$ コキシ $(C_d \sim C_e)$ ハロアルコキシ、 $C_a \sim C_b$ ハロアルコキシ $(C_d \sim C_e)$ ハロアルコキシ又は $(Z)_{pl}$ によって置換されていてもよいフェニル $(C_d \sim C_e)$ ハロアルコキシ基、 $C_a \sim C_b$ ハロアルコキシ基又は $(Z)_{pl}$ によって置換されていてもよいフェニル基によって、炭素原子に結合した水素原子又はハロゲン原子が任意に置換された炭素原子数が $d \sim e$ 個よりなる前記の意味であるハロアルコキシ基を表し、例えば 1, 1, 2-h リフルオロー2-(h リフルオロメントキシ基、 1, 1, 2-h リフルオロー2-(h リフルオロスクトナシン エトキシ基、 1, 1, 2-h リフルオロー2-(h リフルオロー2-(h リフルオロー2-(h リフルオロー2-(h リフルオロー2-(h リフルオロプロピルオキシ)エトキシ基、 (h) エトキシ基、 (h) ストキシ基、 (h) ストキシ基、 (h) ストナシオロプロピルオキシ エトキシ基、 (h) ストナシオロプロピルオキシ エトキシ基、 (h) ストナシオロプロピルオキシ ストキシ基、 (h) ストナシオロプロピルオキシ ストキシ基、 (h) ストナシストキシ基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ アルコキシ $(C_d \sim C_c)$ ハロアルケニルオキシ又は $C_a \sim C_b$ ハロアルクニルオキシ等の表記は、それぞれ前記の意味である任意の $C_a \sim C_b$ アルコキシ基又は $C_a \sim C_b$ ハロアルコキシ基によって、炭素原子に結合した水素原子又は ハロゲン原子が任意に置換された炭素原子数が $d \sim e$ 個よりなる前記の意味であるハロアルケニルオキシ基を表し、例えば 3, 3, 3-トリフルオロ-1-メトキシ-2-(トリフルオロメチル) -1-プロペニルオキシ基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ アルコキシ $(C_d \sim C_e)$ アルコキシ $(C_f \sim C_g)$ アルキル等の表記は、前記の意味である任意の $C_a \sim C_b$ アルコキシ $(C_d \sim C_e)$ アルコキシ基によって、炭素原子に結合した水素原子が任意に置換された、炭素原子数が $f \sim g$ 個よりなる前記の意味であるアルキル基を表し、例えば 2-(2- メトキシエトキシ) エチル基、2-(2- エトキシエトキシ) エ

5

10

15

60

PCT/JP02/07833

チル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $C_a \sim C_b$ ハロアルコキシ ($C_d \sim C_c$) ハロアルコキシ ($C_t \sim C_c$) ハロアルコキシ ($C_t \sim C_c$) ハロアルコキシ をの表記は、前記の意味である任意の $C_a \sim C_b$ ハロアルコキシ ($C_d \sim C_c$) ハロアルコキシ基によって、炭素原子に結合した水素原子又はハロゲン原子が任意に置換された炭素原子数が $1 \sim g$ 個よりなる前記の意味であるハロアルコキシ基を表し、例えば 1, 1, 2 - h リフルオロー2 $- (\wedge + \psi)$ ルオロー2 $- (\wedge + \psi)$ ルオロー3 $- (\wedge + \psi)$ ルカロー3 $- (\wedge + \psi)$ ルカロー3 $- (\wedge + \psi)$ かり、各々の指定の炭素原子数の範囲で選択される。

本明細書における $(Z)_{p1}$ によって置換されていてもよいフェニル $(C_a \sim C_b)$ アルキルカルボニルの表記は、 $(Z)_{p1}$ によって置換されていてもよいフェニル基によって、炭素原子に結合した水素原子が任意に置換された前記の意味である $(C_a \sim C_b)$ アルキルカルボニル基を表し、例えば $PhCH_2-C$ (0) -基、 $PhCH_2CH_2-C$ (0) -基、PhCH (CH_3) -C (0) -基、PhC (CH_3) (0) -基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

本明細書における $(Z)_{p1}$ によって置換されていてもよいフェニル $(C_a \sim C_b)$ アルコキシカルボニルの表記は、 $(Z)_{p1}$ によって置換されていてもよいフェニル基によって、炭素原子に結合した水素原子が任意に置換された前記の意味である $(C_a \sim C_b)$ アルコキシカルボニル基を表し、例えば $PhCH_2 = 0 - C$ (0) -基、 $PhCH_2 CH_2 = 0 - C$ (0) -基、PhCH (CH_3) (CH_3) (C

一般式(1)で表される本発明化合物のうち、好ましい化合物は下記の一般式(4) 20 又は一般式(5)で表される化合物である。

$$(X^{2}) \xrightarrow{\text{II}} (Y^{3})_{n}$$

$$(X^{3}) \xrightarrow{\text{II}} (Y^{3})_{n}$$

$$(X^{4}) \xrightarrow{\text{II}} (Y^{3})_{n}$$

$$(X^{5}) \xrightarrow{\text{II}} (Y^{5})_{n}$$

Y2で表される置換基に関して、好ましい範囲は下記の各群である。

すなわち、 Y^2-I : 水素原子、ハロゲン原子、シアノ、ニトロ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$

61.

アルコキシ $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_6$ ハロアルコキシ $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_6$ アルキルチオ $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_6$ ハロアルキルチオ $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_6$ アルキルスルフィニル $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_6$ ハロアルキルスルフィニル $(C_1 \sim C_4)$ アルキル、 $(C_1 \sim C_6)$ アルキル又は $(C_1 \sim C_6)$ アルキルスルホニル $(C_1 \sim C_4)$ アルキル。

5 Y²-II: C₁~C₆ハロアルキル。

10

 Y^2 – $III: ヒドロキシ (C₁~C₄) ハロアルキル、<math>C_1$ ~ C_6 アルコキシ (C_1 ~ C_4) ハロアルキル、 C_1 ~ C_6 ハロアルコキシ (C_1 ~ C_4) ハロアルキル、 C_2 ~ C_6 アルケニルオキシ (C_1 ~ C_4) ハロアルキル、 C_2 ~ C_6 アルケニルオキシ (C_1 ~ C_4) ハロアルキル、 C_3 ~ C_6 アルキニルオキシ (C_1 ~ C_4) ハロアルキル、 C_3 ~ C_6 アルキニルオキシ (C_1 ~ C_4) ハロアルキル、 C_3 ~ C_6 アルキニルオキシ (C_1 ~ C_4) ハロアルキルスは (C_1 ~ C_4) ハロアルキルスは (C_1 ~ C_4) ハロアルキルスは (C_1 ~ C_4) ハロアルキル

 Y^2 – $IV: C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 $(Z)_{pl}$ によって置換されていてもよいフェニル、 $L-1 \sim L-13$ 、 $L-15 \sim L-35$ 、 $L-37 \sim L-58$ 又は M。

 $Y^2-V: C_1\sim C_6$ アルコキシ、 $C_1\sim C_6$ ハロアルコキシ、 $C_1\sim C_6$ アルコキシ($C_1\sim C_4$) ハロアルコキシ、 $C_1\sim C_6$ ハロアルコキシ($C_1\sim C_4$) ハロアルコキシ、 $C_1\sim C_6$ ハロアルコキシ($C_1\sim C_4$) ハロアルコキシ、 $C_1\sim C_6$ ハロアルコキシ($C_1\sim C_4$) ハロアルコキシ、($C_1\sim C_4$) ハロアルコキシ、($C_1\sim C_4$) ハロアルコキシ、($C_1\sim C_4$) ハロアルコキシ、 $C_3\sim C_8$ ハロシクロアルキルオキシ、 $C_2\sim C_6$ ハロアルケニルオキシ、 $C_1\sim C_6$ アルコキシ($C_2\sim C_6$) ハロアルケニルオキシ、 $C_1\sim C_6$ ハロアルコキシ($C_2\sim C_6$) ハロアルケニルオキシ、 $C_1\sim C_6$ ハロアルキルスルホニルオキシ、($C_1\sim C_6$ アルキルスルホニルオキシ、($C_1\sim C_6$ アルキルスルホニルオキシ、($C_1\sim C_6$ アルキルスルホニルオキシ、($C_1\sim C_6$ アルキルスルホニルオキシ、($C_1\sim C_6$ ハロアルキルスルホニルオキシ、($C_1\sim C_6$ ハロアルキン、($C_1\sim C_6$ ハロアルキン、($C_1\sim C_6$ ハロアルキン、($C_1\sim C_6$ ハロアルキン・($C_1\sim C_6$ ハロアルキン、($C_1\sim C_6$ ハロアルキン ($C_1\sim C_6$ ハロアルキ

 Y^2 – $VI: -SF_5$ 、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $C_2 \sim C_6$ ハロアルケニルチオ、 $(Z)_{p1}$ によって置換されていてもよいフェニルチオ、-S-(L-17)、-S-(L-45)、-S-(L-48)、-S-(L-49)、 $C_1 \sim C_6$ ハロアルキルスルフィニル、 $C_2 \sim C_6$ ハロアルケニルスルフィニル、 $C_1 \sim C_6$ ハロアルキルスルホニル、 $C_1 \sim C_6$ ハロアルキルスルホニル、 $C_1 \sim C_6$ ハロアルケニルスルホニル、 $C_1 \sim C_6$ ハロアルケニルスルホニル、-N (\mathbb{R}^9) \mathbb{R}^{80} 又は

25 -Si (CH₃) $_2R^{14}$.

15

換されていてもよい。

PCT/JP02/07833

•

R³で表される置換基に関して、好ましい範囲は下記の各群である。

すなわち、 $R^3-I: C_1 \sim C_8$ アルキル、 $C_1 \sim C_8$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_8$) アルキル、 $(Z)_{p1}$ によって置換されていてもよいフェニル($C_1 \sim C_8$) アルキル、 $(L-(C_1 \sim C_8)$ アルキル、 $(C_1 \sim C_8)$ アルキール、 $(C_1 \sim C_8)$ アルキニル、 $(C_1 \sim C_8)$ アルキニルスは $(C_1 \sim C_8)$ アルキニル。

62

 R^3 -II: HO- $(C_1 \sim C_8)$ アルキル、 R^{8c} -O- $(C_1 \sim C_8)$ アルキル、(M-1)- $(C_1 \sim C_8)$ アルキル、(M-2)- $(C_1 \sim C_8)$ アルキル、(M-3)- $(C_1 \sim C_8)$ アルキル、(M-4)- $(C_1 \sim C_8)$ アルキル、(M-5)- $(C_1 \sim C_8)$ アルキル、(M-6)- $(C_1 \sim C_8)$ アルキル、(M-7)- $(C_1 \sim C_8)$ アルキル、(M-14)- $(C_1 \sim C_8)$

10 $(M-15)-(C_1\sim C_8)$ アルキル、 $(M-16)-(C_1\sim C_8)$ アルキル、 $(M-23)-(C_1\sim C_8)$ アルキル、 $(M-24)-(C_1\sim C_8)$ アルキル、 $(M-25)-(C_1\sim C_8)$ アルキル、M-5、M-15、M-16 又は M-25。

 R^{3} -III: $HS-(C_{1}\sim C_{8})$ アルキル、 R^{29} - $S-(C_{1}\sim C_{8})$ アルキル、 R^{29} -S(0) - $(C_{1}\sim C_{8})$ アルキル、(M-8) - $(C_{1}\sim C_{8})$ アルキル、(M-9) - $(C_{1}\sim C_{8})$ アルキル、(M-10) - $(C_{1}\sim C_{8})$ アルキル、(M-11) - $(C_{1}\sim C_{8})$ アルキル、(M-17) - $(C_{1}\sim C_{8})$ アルキル、(M-18) - $(C_{1}\sim C_{8})$ アルキル、(M-19) - $(C_{1}\sim C_{8})$ アルキル、(M-26) - $(C_{1}\sim C_{8})$ アルキル、(M-27) - $(C_{1}\sim C_{8})$ アルキル、(M-28) - $(C_{1}\sim C_{8})$ アルキル、(M-9) - $(C_{1}\sim C_{8})$ アルキル、(M-28) - $(C_{1}\sim C_{8})$ アルキル、(M-9) - (M-18) - (M-28) -

 R^3 -IV: R^8 cN (R^9) - $(C_1 \sim C_8)$ アルキル、(M-12) - $(C_1 \sim C_8)$ アルキル、(M-13) - $(C_1 \sim C_8)$ アルキル、(M-20) - $(C_1 \sim C_8)$ アルキル、(M-21) - $(C_1 \sim C_8)$ アルキル、(M-22) - $(C_1 \sim C_8)$ アルキル、(M-21) - $(C_1 \sim C_8)$ - $(C_1 \sim C_8)$ アルキル、(M-21) - $(C_1 \sim C_8)$ -

 $R^3-V: HC (0) - (C_1 \sim C_8)$ アルキル、 $C_1 \sim C_6$ アルキルカルボニル $(C_1 \sim C_8)$ アルキル、 $(Z)_{p1}$ に よって置換されていてもよいフェニルカルボニル $(C_1 \sim C_8)$ アルキル、 $(C_1 \sim C_8)$ シアノアルキル、 $(C_1 \sim C_6)$ アルコキシカルボニル $(C_1 \sim C_8)$ アルキル、 $(C_1 \sim C_8)$ アルキルスは $(C_1 \sim C_8)$ アルキル。

 R^3 –VI: C_3 ~ C_8 シクロアルキル、 C_1 ~ C_4 アルキルチオ (C_3 ~ C_8) シクロアルキル、 C_1 ~ C_4 ア ルキルスルフィニル (C_3 ~ C_8) シクロアルキル又は C_1 ~ C_4 アルキルスルホニル (C_3 ~ C_8) シクロアルキル。

 R^3 -VII: $C_1 \sim C_6$ アルコキシ又はジ($C_1 \sim C_6$ アルキル)アミノ。

 R^3 -VIII: R^3 が R^2 と一緒になって $C_2 \sim C_6$ アルキレン鎖を形成することにより、結合する 窒素原子と共に $3 \sim 7$ 員環を形成し、このときこのアルキレン鎖は酸素原子、硫黄原子

10

及び窒素原子から選ばれる1個の原子を含んでもよく、且つハロゲン原子、メチル基又はメトキシ基によって置換されていてもよい。

R⁵で表される置換基に関して、好ましい範囲は下記の各群である。

すなわち、 \mathbb{R}^{5} - \mathbf{I} : \mathbb{C}_{1} ~ \mathbb{C}_{6} アルキル、 \mathbb{C}_{1} ~ \mathbb{C}_{6} ハロアルキル、 \mathbb{C}_{3} ~ \mathbb{C}_{6} シクロアルキル(\mathbb{C}_{1} ~ \mathbb{C}_{4}) アルキル、 \mathbb{C}_{3} ~ \mathbb{C}_{6} シクロアルキル、 \mathbb{C}_{3} ~ \mathbb{C}_{6} アルケニル、 \mathbb{C}_{3} ~ \mathbb{C}_{6} アルキニル又は \mathbb{C}_{3} ~ \mathbb{C}_{6} ハロアルキニル。

 R^5 -II: C_1 ~ C_4 アルコキシ(C_1 ~ C_4) アルキル、 C_1 ~ C_4 アルキルチオ(C_1 ~ C_4) アルキル、 C_2 ~ C_6 シアノアルキル、 C_2 ~ C_6 シアノアルキル、 C_1 ~ C_6 アルコキシカルボニル(C_1 ~ C_4) アルキル、 C_1 ~ C_6 アルコキシカルボニル(C_1 ~ C_4) アルキル、 C_1 ~ C_6 アルキル、 C_1 ~ C_6 アルキルアミノカルボニル(C_1 ~ C_4) アルキル、シ(C_1 ~ C_6 アルキル) アミノカルボニル(C_1 ~ C_4) アルキル、(C_1 ~ C_4) アルキル、(C_1 ~ C_5) アルキル、(C_1 ~ C_6) アルキル、(C_1 ~ C_6) アルキル、 C_1 ~ C_6 アルキル、(C_1 ~ C_4) アルキル、(C_1 ~ C_4) アルキル、(C_1 ~ C_5) アルキル、(C_1 ~ C_6) アルキル。

 R^{5} — $III: -OH、<math>C_{1}\sim C_{6}$ アルキルカルボニルオキシ、 $-SR^{24}$ 、-S(0) ${}_{2}R^{24}$ 、 $-SN(R^{26})$ R^{25} 又は -S(0) ${}_{2}N(R^{28})$ R^{27} 。

15 $R^5-IV: -CHO$, $-C(0)R^{10}$, $-C(0)OR^{10}$, $-C(0)SR^{10}$, $-C(0)N(R^{11})R^{10}$, $-C(0)C(0)OR^{10}$, $-C(S)OR^{10}$, $-C(S)SR^{10}$ \nearrow $At-C(S)N(R^{11})R^{10}$.

 $R^5-V:R^5$ が R^6 と一緒になって $C_2\sim C_6$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3\sim7$ 負環を形成し、このときこのアルキレン鎖は酸素原子、硫黄原子及び窒素原子から選ばれる 1 個の原子を含んでもよく、且つハロゲン原子、酸素原子又はメチル基によって任意に置換されていてもよい。

これらの一般式(1)で表される化合物に関して、好ましい化合物の範囲を示す一般式(4)及び一般式(5)と各置換基の好ましい範囲を示す各群とは、それぞれ任意に組み合わせることができ、それぞれ好ましい本発明化合物の範囲を表すが、以下に特に好ましい範囲の組み合わせを挙げる。

25 すなわち、一般式 (4) において、好ましい置換基の範囲が Y²-I、R³-I と R⁵-I である本発明化合物。

一般式(4)において、好ましい置換基の範囲が Y^2 -I、 R^3 -I と R^5 -IV である本発明化合物。

一般式(4)において、好ましい置換基の範囲が Y^2 -II、 R^3 -I と R^5 -I である本発明化合

PCT/JP02/07833

物。

一般式 (4) において、好ましい置換基の範囲が Y^2 -II、 \mathbb{R}^3 -I と \mathbb{R}^5 -II である本発明化合物。

64

- 一般式(4)において、好ましい置換基の範囲が Y²-II、R³-I と R⁵-III である本発明化 5 合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2 -II、 \mathbb{R}^3 -I と \mathbb{R}^5 -IV である本発明化合物。
 - 一般式 (4) において、好ましい置換基の範囲が Y²-II、R³-I と R⁵-V である本発明化合物。
- 10 一般式 (4) において、好ましい置換基の範囲が Y²-II、R³-II と R⁵-I である本発明化 合物。
 - 一般式(4)において、好ましい置換基の範囲が Y²-II、R³-II と R⁵-II である本発明化合物。
- 一般式 (4) において、好ましい置換基の範囲が Y²-II、R³-II と R⁵-IV である本発明化 15 合物。
 - 一般式(4)において、好ましい置換基の範囲が Y²-II、R³-III と R⁵-I である本発明化合物。
 - 一般式 (4) において、好ましい置換基の範囲が Y²-II、R³-III と R⁵-II である本発明 化合物。
- 20 一般式 (4) において、好ましい置換基の範囲が Y²-II、R³-III と R⁵-III である本発明 化合物。
 - 一般式 (4) において、好ましい置換基の範囲が Y^2 -II、 R^5 -III と R^5 -IV である本発明化合物。
- 一般式 (4) において、好ましい置換基の範囲が Y²-II、R³-IV と R⁵-I である本発明化 25 合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2 -II、 R^3 -IV と R^5 -II である本発明化合物。
 - 一般式 (4) において、好ましい置換基の範囲が Y²-II、R³-IV と R⁵-IV である本発明化 合物。

65

PCT/JP02/07833

- 一般式(4)において、好ましい置換基の範囲が Y²-II、R³-V と R⁵-I である本発明化合物。
- 一般式(4)において、好ましい置換基の範囲が Y^2 -II、 R^3 -V と R^5 -II である本発明化合物。
- 5 一般式(4) において、好ましい置換基の範囲が Y²-II、R³-V と R⁵-IV である本発明化 合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2 -II、 R^8 -VI と R^5 -I である本発明化合物。
- 一般式 (4) において、好ましい置換基の範囲が Y²-II、R³-VI と R⁵-II である本発明化 10 合物。
 - 一般式 (4) において、好ましい置換基の範囲が Y^2 -II、 R^3 -VI と R^5 -IV である本発明化合物。
 - 一般式 (4) において、好ましい置換基の範囲が Y²-II、R³-VII と R⁵-I である本発明化 * 合物。
- 15 一般式 (4) において、好ましい置換基の範囲が Y²-II、R³-VII と R⁵-II である本発明 化合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2 -II、 R^3 -VII と R^5 -IV である本発明化合物。
- 一般式 (4) において、好ましい置換基の範囲が Y²-II、R³-VIII と R⁵-I である本発明 20 化合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2 -II、 R^3 -VIII と R^5 -IV である本発明化合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2 -III、 R^3 -I と R^5 -I である本発明化合物。
- 25 一般式 (4) において、好ましい置換基の範囲が Y²-III、R⁵-I と R⁵-II である本発明化 合物。
 - 一般式 (4) において、好ましい置換基の範囲が Y²-III、R³-I と R⁵-III である本発明 化合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2 -III、 \mathbb{R}^3 -I と \mathbb{R}^5 -IV である本発明化

PCT/JP02/07833

66

合物。

- 一般式 (4) において、好ましい置換基の範囲が Y²-III、R³-I と R⁵-V である本発明化合物。
- 一般式(4)において、好ましい置換基の範囲が Y²-III、R³-II と R⁵-I である本発明化 5 合物。
 - 一般式(4) において、好ましい置換基の範囲が Y²-III、R³-II と R⁵-II である本発明 化合物。
 - 一般式 (4) において、好ましい置換基の範囲が Y^2 -III、 R^3 -II と R^5 -IV である本発明 化合物。
- 10 一般式 (4) において、好ましい置換基の範囲が Y²-III、R³-III と R⁵-I である本発明 化合物。
 - 一般式(4) において、好ましい置換基の範囲が Y²-III、R³-III と R⁵-II である本発明 化合物。
- —般式 (4) において、好ましい置換基の範囲が Y²-III、R³-III と R⁵-IV である本発明 15 化合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2 -III、 R^3 -IV と R^5 -I である本発明化合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2 -III、 R^3 -IV と R^5 -II である本発明化合物。
- 20 一般式 (4) において、好ましい置換基の範囲が Y²-III、R³-IV と R⁵-IV である本発明 化合物。
 - 一般式 (4) において、好ましい置換基の範囲が Y^2 -III、 R^3 -V と R^5 -I である本発明化 合物。
- 一般式 (4) において、好ましい置換基の範囲が Y²-III、R³-V と R⁵-II である本発明化 25 合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2 -III、 R^3 -V と R^5 -IV である本発明化合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^{s} -III、 \mathbb{R}^{s} -VI と \mathbb{R}^{s} -I である本発明化合物。

PCT/JP02/07833

- 67
- 一般式(4)において、好ましい置換基の範囲が Y^2 -III、 \mathbb{R}^3 -VI と \mathbb{R}^5 -II である本発明化合物。
- 一般式 (4) において、好ましい置換基の範囲が Y^2 -III、 \mathbb{R}^3 -VI と \mathbb{R}^5 -IV である本発明化合物。
- 5 一般式(4)において、好ましい置換基の範囲が Y²-III、R³-VIIと R⁵-I である本発明 化合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2 -III、 R^3 -VII と R^5 -IV である本発明化合物。
- 一般式 (4) において、好ましい置換基の範囲が Y²-III、R³-VIII と R⁵-I である本発明 10 化合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2 -III、 R^3 -VIII と R^5 -IV である本発明化合物。
 - 一般式 (4) において、好ましい置換基の範囲が Y^2 -IV、 R^8 -I と R^6 -I である本発明化合物。
- 15 一般式 (4) において、好ましい置換基の範囲が Y²-IV、R³-I と R⁵-II である本発明化 合物。
 - 一般式 (4) において、好ましい置換基の範囲が Y^2 -IV、 R^3 -I と R^5 -IV である本発明化 合物。
- 一般式 (4) において、好ましい置換基の範囲が Y²-IV、R³-II と R⁵-I である本発明化 20 合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2 -IV、 R^3 -II と R^5 -IV である本発明化合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2 -IV、 R^3 -III と R^5 -I である本発明化合物。
- 25 一般式 (4) において、好ましい置換基の範囲が Y²-IV、R³-III と R⁵-II である本発明 化合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2 -IV、 R^3 -III と R^5 -IV である本発明化合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2 -IV、 \mathbb{R}^8 -IV と \mathbb{R}^5 -I である本発明化

PCT/JP02/07833

68

合物。

- 一般式(4)において、好ましい置換基の範囲が Y^2 -IV、 R^3 -IV と R^5 -IV である本発明化合物。
- 一般式(4)において、好ましい置換基の範囲が Y²-IV、R³-V と R⁵-I である本発明化合 物。
 - 一般式(4) において、好ましい置換基の範囲が Y²-IV、R³-V と R⁵-IV である本発明化合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2 -IV、 R^3 -VI と R^5 -I である本発明化合物。
- 10 一般式(4)において、好ましい置換基の範囲が Y²-IV、R³-VI と R⁵-IV である本発明化 合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2 -IV、 R^3 -VII と R^5 -I である本発明化合物。
- 一般式(4) において、好ましい置換基の範囲が Y²-IV、R³-VII と R⁵-IV である本発明 15 化合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2 -IV、 R^3 -VIII と R^5 -I である本発明化合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2 -IV、 R^3 -VIII と R^5 -IV である本発明化合物。
- 20 一般式(4)において、好ましい置換基の範囲が Y²-V、R³-I と R⁵-I である本発明化合物。
 - 一般式(4)において、好ましい置換基の範囲が Y²-V、R³-Iと R⁵-II である本発明化合物。
- 一般式(4)において、好ましい置換基の範囲が Y²-V、R³-Iと R⁵-III である本発明化 25 合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2-V 、 R^3-I と R^5-IV である本発明化合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2-V 、 R^3-I と R^5-V である本発明化合物。

- PCT/JP02/07833
- 一般式(4)において、好ましい置換基の範囲が Y^2-V 、 R^3-II と R^5-I である本発明化合物。
- 一般式 (4) において、好ましい置換基の範囲が Y^2-V 、 R^3-II と R^5-II である本発明化合物。
- 5 一般式(4)において、好ましい置換基の範囲が Y²-V、R³-IIと R⁵-IV である本発明化 合物。
 - 一般式 (4) において、好ましい置換基の範囲が Y^2 -V、 R^3 -III と R^5 -I である本発明化合物。
- 一般式 (4) において、好ましい置換基の範囲が Y²-V、R³-III と R⁵-II である本発明化 10 合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2-V 、 R^3-III と R^5-III である本発明化合物。
 - 一般式 (4) において、好ましい置換基の範囲が Y²-V、R³-III と R⁵-IV である本発明化 合物。
- 15 一般式 (4) において、好ましい置換基の範囲が Y²-V、R³-IV と R⁵-I である本発明化合物。
 - 一般式 (4) において、好ましい置換基の範囲が Y^2-V 、 R^3-IV と R^5-II である本発明化合物。
- 一般式 (4) において、好ましい置換基の範囲が Y²-V、R³-IV と R⁵-IV である本発明化 20 合物。
 - 一般式 (4) において、好ましい置換基の範囲が Y^2 –Y、 R^3 –Y と R^5 –I である本発明化合物。
 - 一般式 (4) において、好ましい置換基の範囲が Y²-V、R³-V と R⁵-II である本発明化合物。
- 25 一般式(4)において、好ましい置換基の範囲が Y²-V、R³-V と R⁵-IV である本発明化合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2-V 、 R^3-VI と R^5-I である本発明化合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2-V 、 R^3-VI と R^5-II である本発明化

PCT/JP02/07833

70

合物。

- 一般式 (4) において、好ましい置換基の範囲が Y²-V、R³-VI と R⁵-IV である本発明化合物。
- 一般式 (4) において、好ましい置換基の範囲が Y²-V、R³-VII と R⁵-I である本発明化 5 合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2-V 、 R^3-VII と R^5-II である本発明化合物。
 - 一般式(4)において、好ましい置換基の範囲が Y^2-V 、 R^3-VII と R^5-IV である本発明化合物。
- 10 一般式 (4) において、好ましい置換基の範囲が Y²-V、R³-VIII と R⁵-I である本発明化 合物。
 - 一般式 (4) において、好ましい置換基の範囲が Y²-V、R³-VIII と R⁵-IV である本発明 化合物。
- 一般式 (4) において、好ましい置換基の範囲が Y²-VI、R³-I と R⁵-I である本発明化合 15 物。
 - 一般式 (4) において、好ましい置換基の範囲が Y^2 –VI、 R^3 –I と R^5 –IV である本発明化合物。
 - 一般式 (4) において、好ましい置換基の範囲が Y²-VI、R³-III と R⁵-I である本発明化 合物。
- 20 一般式 (4) において、好ましい置換基の範囲が Y²-VI、R³-III と R⁵-IV である本発明 化合物。
 - 一般式 (4) において、好ましい置換基の範囲が Y²-VII、R³-I と R⁵-I である本発明化合物。
- 般式 (4) において、好ましい置換基の範囲が Y²-VII、R³-I と R⁵-II である本発明化 25 合物。
 - 一般式(4) において、好ましい置換基の範囲が Y²-VII、R³-I と R⁵-IV である本発明化 合物。
 - 一般式 (4) において、好ましい置換基の範囲が Y²-VII、R³-III と R⁵-I である本発明 化合物。

PCT/JP02/07833

WO 03/011028

一般式 (4) において、好ましい置換基の範囲が Y²-VII、R³-III と R⁵-II である本発明 化合物。

71

- 一般式(4)において、好ましい置換基の範囲が Y^2 -VII、 R^3 -III と R^5 -IV である本発明化合物。
- 5 一般式(5) において、好ましい置換基の範囲が Y²-I、R³-I と R⁵-I である本発明化合物。
 - 一般式(5) において、好ましい置換基の範囲が Y²-II、R³-I と R⁵-I である本発明化合物。
- 一般式 (5) において、好ましい置換基の範囲が Y²-II、R³-I と R⁵-II である本発明化 10 合物。
 - 一般式(5)において、好ましい置換基の範囲が Y^2 -II、 R^3 -I と R^5 -III である本発明化合物。
 - 一般式 (5) において、好ましい置換基の範囲が Y²-II、R³-I と R⁵-IV である本発明化 合物。
- 15 一般式(5)において、好ましい置換基の範囲が Y²-II、R³-II と R⁵-I である本発明化 合物。
 - 一般式(5)において、好ましい置換基の範囲が Y^2 –II、 R^3 –II と R^5 –II である本発明化合物。
- 一般式(5) において、好ましい置換基の範囲が Y²-II、R³-III と R⁵-I である本発明化 20 合物。
 - 一般式(5)において、好ましい置換基の範囲が Y^2 -II、 R^3 -III と R^5 -II である本発明化合物。
 - 一般式(5)において、好ましい置換基の範囲が Y^2 -II、 R^3 -IV と R^5 -I である本発明化合物。
- 25 一般式(5)において、好ましい置換基の範囲が Y²-II、R³-IV と R⁵-II である本発明化 合物。
 - 一般式(5) において、好ましい置換基の範囲が Y²-II、R³-V と R⁵-I である本発明化合物。
 - 一般式 (5) において、好ましい置換基の範囲が Y^2 -II、 \mathbb{R}^3 -V と \mathbb{R}^5 -II である本発明化

PCT/JP02/07833

WO 03/011028

72

合物。

- 一般式(5) において、好ましい置換基の範囲が Y^2 –II、 R^3 –VI と R^5 –I である本発明化合物。
- 一般式(5)において、好ましい置換基の範囲が Y²-II、R³-VI と R⁵-II である本発明化 6 合物。
 - 一般式(5) において、好ましい置換基の範囲が Y²-III、R³-I と R⁵-I である本発明化合物。
 - 一般式(5)において、好ましい置換基の範囲が Y^2 -III、 R^3 -I と R^5 -II である本発明化合物。
- 10 一般式(5) において、好ましい置換基の範囲が Y²-III、R³-II と R⁵-I である本発明化 合物。
 - 一般式(5)において、好ましい置換基の範囲が Y^2 -III、 R^3 -II と R^5 -II である本発明化合物。
- 一般式(5) において、好ましい置換基の範囲が Y²-III、R³-III と R⁵-I である本発明 化合物。
 - 一般式(5) において、好ましい置換基の範囲が Y²-III、R³-III と R⁵-II である本発明化合物。
 - 一般式(5) において、好ましい置換基の範囲が Y^2 -III、 R^3 -IV と R^5 -I である本発明化合物。
- 20 一般式(5) において、好ましい置換基の範囲が Y²-III、R³-IV と R⁵-II である本発明 化合物。
 - 一般式(5) において、好ましい置換基の範囲が Y²-III、R³-V と R⁵-I である本発明化合物。
- 一般式(5) において、好ましい置換基の範囲が Y²-III、R³-V と R⁵-II である本発明化 25 合物。
 - 一般式(5) において、好ましい置換基の範囲が Y²-III、R³-VI と R⁵-I である本発明化 合物。
 - 一般式(5)において、好ましい置換基の範囲が Y^2 -III、 R^3 -VI と R^5 -II である本発明化合物。

73

PCT/JP02/07833

- 一般式(5)において、好ましい置換基の範囲が Y^2 -IV、 \mathbb{R}^3 -I と \mathbb{R}^5 -I である本発明化合物。
- 一般式 (5) において、好ましい置換基の範囲が Y^2-IV 、 R^3-I と R^5-II である本発明化合物。
- 5 一般式 (5) において、好ましい置換基の範囲が Y²-IV、R³-II と R⁵-I である本発明化 合物。
 - 一般式 (5) において、好ましい置換基の範囲が Y²-IV、R³-II と R⁵-II である本発明化合物。
- 一般式 (5) において、好ましい置換基の範囲が Y²-IV、R³-III と R⁵-I である本発明化 10 合物。
 - 一般式 (5) において、好ましい置換基の範囲が Y^2 -IV、 R^3 -III と R^5 -II である本発明 化合物。
 - 一般式 (5) において、好ましい置換基の範囲が Y²-IV、R³-IV と R⁵-I である本発明化合物。
- 15 一般式(5) において、好ましい置換基の範囲が Y²-IV、R³-IV と R⁵-II である本発明化 合物。
 - 一般式 (5) において、好ましい置換基の範囲が Y²-IV、R³-V と R⁵-I である本発明化合物。
- 一般式 (5) において、好ましい置換基の範囲が Y²-IV、R⁵-V と R⁵-II である本発明化 20 合物。
 - 一般式(5)において、好ましい置換基の範囲が Y^2 -IV、 R^3 -VI と R^5 -I である本発明化合物。
 - 一般式 (5) において、好ましい置換基の範囲が Y²-IV、R³-VI と R⁵-II である本発明化合物。
- 25 一般式 (5) において、好ましい置換基の範囲が Y²-V、R³-I と R⁵-I である本発明化合物。
 - 一般式 (5) において、好ましい置換基の範囲が Y²-V、R³-I と R⁵-II である本発明化合物。
 - 一般式 (5) において、好ましい置換基の範囲が Y^2-V 、 R^3-I と R^5-III である本発明化

PCT/JP02/07833

WO 03/011028

合物。

5

15

一般式 (5) において、好ましい置換基の範囲が Y²-V、R³-II と R⁵-I である本発明化合物。

74

- 一般式(5) において、好ましい置換基の範囲が Y²-V、R³-II と R⁵-II である本発明化合物。
 - 一般式 (5) において、好ましい置換基の範囲が Y^2-V 、 R^3-III と R^5-I である本発明化合物。
 - 一般式 (5) において、好ましい置換基の範囲が Y²-V、R³-III と R⁵-II である本発明化 合物。
- 10 一般式(5) において、好ましい置換基の範囲が Y²-V、R³-IV と R⁵-I である本発明化合物。
 - 一般式 (5) において、好ましい置換基の範囲が Y^2 -V、 R^3 -IV と R^5 -II である本発明化 合物。
 - 一般式 (5) において、好ましい置換基の範囲が Y²-V、R³-V と R⁵-I である本発明化合物。
 - 一般式(5) において、好ましい置換基の範囲が Y²-V、R³-V と R⁵-II である本発明化合物。
 - 一般式(5)において、好ましい置換基の範囲が Y^2-V 、 R^3-VI と R^5-I である本発明化合物。
- 20 一般式 (5) において、好ましい置換基の範囲が Y²-V、R³-VI と R⁵-II である本発明化 合物。
 - 一般式(5)において、好ましい置換基の範囲が Y^2-VI 、 R^3-I と R^5-I である本発明化合物。
- 一般式 (5) において、好ましい置換基の範囲が Y²-VI、R³-I と R⁵-II である本発明化 25 合物。
 - 一般式 (5) において、好ましい置換基の範囲が Y^2-VI 、 \mathbb{R}^5-III と \mathbb{R}^5-I である本発明化合物。
 - 一般式(5) において、好ましい置換基の範囲が Y^2 –VI、 R^3 –III と R^5 –II である本発明化合物。

PCT/JP02/07833

75

- 一般式 (5) において、好ましい置換基の範囲が Y²-VII、R³-I と R⁵-I である本発明化合物。
- 一般式(5) において、好ましい置換基の範囲が Y^2-VII 、 R^3-I と R^5-II である本発明化合物。
- 一般式(5) において、好ましい置換基の範囲が Y²-VII、R³-III と R⁵-I である本発明化合物。
 - 一般式(5) において、好ましい置換基の範囲が Y^2 -VII、 R^3 -III と R^5 -II である本発明化合物。

本発明化合物は、例えば以下の方法により製造することが出来る。

10 製造法 A

$$(X^{2})_{m} \xrightarrow{R^{1}} (Y^{3})_{n}$$

$$(X^{2})_{m} \xrightarrow{C} W^{1}$$

一般式(6) [式中、A, G, W, X², Y¹, Y², Y³, R¹, m及びnは前記と同じ意味を表す。] で表される化合物と、一般式(7) [式中、R⁵は前記と同じ意味を表し、J¹は塩素原子、臭素原子、ヨウ素原子、C₁~C₄アルキルカルボニルオキシ基(例えば、ピパロイルオキシ基)、C₁~C₄アルキルスルホネート基(例えば、メタンスルホニルオキシ基)、C₁~C₄アルキルスルホネート基(例えば、メタンスルホニルオキシ基)、C₁ ~C₄ハロアルキルスルホネート基(例えば、トリフルオロメタンスルホニルオキシ基)、アリールスルホネート基(例えば、ベンゼンスルホニルオキシ基、p-トルエンスルホニルオキシ基) 又はアゾリル基(例えば、イミダゾール-1-イル基) のような良好な脱離基を表す。] で表される化合物とを、必要ならば塩基の存在下、必要ならば該反応に対して不活性な溶媒を用いて反応させることにより、一般式(1) において X¹が-N田ス⁵であるの設式(1-1) [式中、A, G, W¹, X², Y¹, Y², Y³, R¹, R⁵, m及びnは前記と同じ意味を表す。] で表される本発明化合物を得ることができる。

反応基質の量は、一般式(6)で表される化合物1当量に対して1~50当量の一般式(7)で表されるの化合物を用いることができる。

10

15

20

25

76

PCT/JP02/07833

溶媒を用いる場合、用いられる溶媒としては反応の進行を阻害しないものであれば何でもよく、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン等の脂肪族炭化水素類、シクロヘキサン等の脂環式炭化水素類、クロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン化炭化水素類、ジクロロメタン、クロロホルム、

四塩化炭素、1,2-ジクロロエタン、1,1,1-トリクロロエタン、トリクロロエチレン、テトラクロロエチレン等の脂肪族ハロゲン化炭化水素類、ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、酢酸エチル、プロピオン酸エチル等のエステル類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルー2-ピロリドン等のアミド類、トリエチルアミン、トリブチルアミン、N,N-ジメチル

アニリン等のアミン類、ピリジン、ピコリン等のピリジン類、メタノール、エタノール、エタノール、エチレングリコール等のアルコール類、アセトニトリル、ジメチルスルホキシド、スルホラン、1、3-ジメチル-2-イミダゾリジノン及び水等が挙げられる。これらの溶媒は単独で用いても、これらのうちの2種類以上を混合して用いてもよい。

塩基を用いる場合、用いられる塩基としては、例えば水素化ナトリウム、水素化カリウム等のアルカリ金属水素化物、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、ナトリウムエトキシド、カリウムターシャリーブトキシド等のアルカリ金属アルコキシド類、リチウムジイソプロピルアミド、リチウムヘキサメチルジシラザン、ナトリウムアミド等のアルカリ金属アミド類、ターシャリーブチルリチウム等の有機金属化合物、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等のアルカリ金属炭酸塩、トリエチルアミン、トリブチルアミン、N、Nージメチルアニリン、ピリジン、4-(ジメチルアミノ)ピリジン、イミダゾール、1、8-ジアザビシクロ[5、4、0]-7-ウンデセン等の有機塩基等を、一般式(6)で表される化合物に対して1~4当量用いることができる。

反応温度は-60℃から反応混合物の還流温度までの任意の温度を設定することができ、反応時間は、反応基質の濃度、反応温度によって変化するが、通常5分から100時間の範囲で任意に設定できる。

一般的には、例えば一般式(6)で表される化合物1当量に対して1~10当量の一般式(7)で表されるの化合物を用い、テトラヒドロフラン、1,4-ジオキサン、アセトニトリルやジメチルホルムアミド等の極性溶媒中、必要ならば塩基として水素化ナトリウム、カリウムターシャリーブトキシド、水酸化カリウム、炭酸カリウム、トリエチル

PCT/JP02/07833

77

製造法 B

一般式 (1) において X¹が-NHR⁵である一般式 (1-1) [式中、A, G, W¹, X², Y¹, Y², Y³, R¹, R⁵, m及び n は前記と同じ意味を表す。] で表される本発明化合物と、一般式 (8') [式中、R⁶及び J¹は前記と同じ意味を表す。] で表される化合物とを、製造法 A と同様な条件下反応させることにより、一般式 (1) において X¹が-N (R⁶) R⁶である本発明 化合物 (1-2) [式中、A, G, W¹, X², Y¹, Y², Y³, R¹, R⁶, m及び n は前記と同じ意味を表す。] を得ることができる。

10 製造法 C

一般式(1)において G が G-1 且つ R^2 が水素原子であり、 X^1 が一NHR 5 である一般式(1-3) [式中、A, W^1 , W^2 , X^2 , Y^1 , Y^2 , Y^3 , R^1 , R^3 , R^5 , m 及び n は前記と同じ意味を表す。] で表される本発明化合物と、一般式(9) [式中、 R^{6a} 及び R^{6b} は前記と同じ意味を表す。] で表される化合物とを、必要ならば触媒の存在下、必要ならば該反応に対して

PCT/JP02/07833

78

不活性な溶媒を用いて反応させることにより、一般式(3)において0が0である一般式(3-1) [式中、A, W¹, W², X², Y¹, Y², Y³, R¹, R³, R⁵, R⁶, m及びnは前記と同じ意味を表す。] で表される本発明化合物を得ることができる。

反応基質の量は、一般式 (1-3) で表される化合物 1 当量に対して 1 ~ 1 0 0 当量の 一般式 (9) で表される化合物を用いることができる。

溶媒を用いる場合、用いられる溶媒としては反応の進行を阻害しないものであれば何でもよく、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン等の脂肪族炭化水素類、シクロヘキサン等の脂環式炭化水素類、クロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン化炭化水素類、ジクロロメタン、クロロホルム、

- 10 四塩化炭素、1, 2-ジクロロエタン、1, 1, 1-トリクロロエタン、トリクロロエチレン、テトラクロロエチレン等の脂肪族ハロゲン化炭化水素類、ジエチルエーテル、1, 2-ジメトキシエタン、テトラヒドロフラン、1, 4-ジオキサン等のエーテル類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド類、トリエチルアミン、トリブチルアミン、N, N-ジメチルアニリン等のアミン類、ピリジン、ピコリン等のピリ
- 15 ジン類、メタノール、エタノール、エチレングリコール等のアルコール類、ギ酸、酢酸、 プロピオン酸等のカルボン酸類、アセトニトリル、ジメチルスルホキシド、スルホラン、 1、3-ジメチル-2-イミダゾリジノン及び水等が挙げられる。これらの溶媒は単独で用いて も、これらのうちの2種類以上を混合して用いてもよい。

触媒を用いる場合、反応の触媒としては、例えば塩酸、硫酸、硝酸等の鉱酸類、ギ酸、 20 酢酸、プロピオン酸、トリフルオロ酢酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等の有機酸類、トリエチルアミン塩酸塩、ピリジン塩酸塩等のアミ ン類の酸付加塩、塩化亜鉛、ヨウ化亜鉛、四塩化チタン、塩化セリウム、イッテルビウ ムトリフレート、三フッ化ホウ素-エーテル錯体等のルイス酸を、一般式 (1-3) で表 される化合物に対して 0.001~1当量用いることができる。

25 反応温度は−60℃から反応混合物の還流温度までの任意の温度を設定することができ、反応時間は、反応基質の濃度、反応温度によって変化するが、通常5分から100時間の範囲で任意に設定できる。

一般的には、例えば一般式(1-3)で表される化合物1当量に対して1~10当量の 一般式(9)で表される化合物を用い、ベンゼン、トルエン、メタノール、エタノール、 79

PCT/JP02/07833

ギ酸又は酢酸等の溶媒を用いるか、溶媒量の一般式 (9) で表される化合物を用い、濃塩酸又はp-トルエンスルホン酸等の触媒を一般式 (1-3) で表される化合物 1 当量に対して $0.01\sim0.1$ 当量用いて、 $50\sim180$ での温度範囲で、30分から 24 時間反応を行なうのが好ましい。

5 製造法 D

$$(X^{2})_{m} \qquad (10) \qquad (X^{2})_{m} \qquad (10)$$

$$R^{1} \qquad (10) \qquad (X^{2})_{m} \qquad (10)$$

$$R^{2} \qquad (10) \qquad (X^{2})_{m} \qquad (10)$$

$$R^{3} \qquad (1-3) \qquad (3-1)$$

一般式 (1) において G が G-1 且つ R^2 が水素原子であり、 X^1 が一NHR 5 である一般式 (1-3) [式中、A, W^1 , W^2 , X^2 , Y^1 , Y^2 , Y^3 , R^1 , R^3 , R^5 , m 及び n は前記と同じ意味を表す。] で表される本発明化合物と、一般式 (10) [式中、 R^{6a} 及び R^{6b} は前記と同じ意味を表し、 J^2 及び J^3 は互いに同一でも又は互いに相異なってもよく、塩素原子、臭素原子、ヨウ素原子、 $C_1 \sim C_4$ アルコキシ基(例えば、メトキシ基、エトキシ基)等を表す。] で表される化合物とを、必要ならば塩基又は触媒の存在下、必要ならば該反応に対して不活性な溶媒を用いて反応させることにより、一般式 (3) において 0 が 0 である一般式 (3-1) [式中、A, W^1 , W^2 , X^2 , Y^1 , Y^2 , Y^3 , R^1 , R^3 , R^6 , R^{6a} , R^{6b} , m 及び n は前記と同じ意味を表す。] で表される本発明化合物を得ることができる。

15 反応基質の量は、一般式(1-3)で表される化合物1当量に対して1~50当量の一般式(10)で表される化合物を用いることができる。

溶媒を用いる場合、用いられる溶媒としては製造法 C に記載したものと同様の溶媒を 用いることができる。

塩基を用いる場合、用いられる塩基としては製造法 A に記載したものと同様の塩基を 20 用いることができる。

触媒を用いる場合、反応の触媒としては製造法 C に記載したものと同様の触媒を用い

PCT/JP02/07833

WO 03/011028

ることができる。

反応温度は-60℃から反応混合物の還流温度までの任意の温度を設定することができ、反応時間は、反応基質の濃度、反応温度によって変化するが、通常5分から100時間の範囲で任意に設定できる。

80

一般的には、例えば一般式(1-3)で表される化合物1当量に対して1~10当量の一般式(10)で表される化合物を用い、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,2-ジメトキシエタン、テトラヒドロフラン又は1,4-ジオキサン等の溶媒を用い、必要ならば塩基として水素化ナトリウム、カリウムターシャリーブトキシド、水酸化カリウム、炭酸カリウム、トリエチルアミンやピリジン等を一般式(1-3)で表される化合物1当量に対して1~3当量用いて、0~90℃の温度範囲で、10分から24時間反応を行なうのが好ましい。

製造法 E

5

10

15

$$(X^{2})_{m}$$
 $(X^{2})_{m}$
 $(X^{2})_{m}$

一般式(1)においてGがG-1且つR2が水素原子であり、X1が.

 $-N(R^5)C(0)C(R^{6a})(R^{6b})J^4$ である一般式(1-4) [式中、A, W^1 , W^2 , X^2 , Y^1 , Y^2 , Y^3 , R^1 , R^3 , R^5 , R^{6a} , R^{6b} , m及びnは前記と同じ意味を表し、 J^4 がハロゲン原子を表す。] で表される本発明化合物を、必要ならば塩基の存在下、必要ならば該反応に対して不活性な溶媒を用いて反応させることにより、一般式(3)において0が1である一般式(3-2) [式中、A, W^1 , W^2 , X^2 , Y^1 , Y^2 , Y^3 , R^1 , R^3 , R^5 , R^{6a} , R^{6b} , m及びnは前記と同じ意味を表す。] で表される本発明化合物を得ることができる。

20 溶媒を用いる場合、用いられる溶媒としては製造法 A に記載したものと同様の溶媒を

PCT/JP02/07833

.

用いることができる。

塩基を用いる場合、用いられる塩基としては製造法 A に記載したものと同様の塩基を 用いることができる。

81

反応温度は-60℃から反応混合物の還流温度までの任意の温度を設定することができ、反応時間は、反応基質の濃度、反応温度によって変化するが、通常5分から100時間の範囲で任意に設定できる。

一般的には、例えば一般式(1-4)で表される化合物1当量に対して、必要ならば塩基として水素化ナトリウム、カリウムターシャリーブトキシド、水酸化カリウム、炭酸カリウム、トリエチルアミンやピリジン等を1~3当量用い、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,2-ジメトキシエタン、テトラヒドロフラン又は1,4-ジオキサン等の溶媒を用い室温~90℃の温度範囲で、10分から24時間反応を行なうのが好ましい。

製造法F

10

15

20

一般式 (1) において X^1 が X^1 -2 である一般式 (1-5) [式中、A, G, W^1 , X^2 , Y^1 , Y^2 , Y^3 , R^1 , R^{5a} , R^{5a} , R^{5a} , n 及び n は前記と同じ意味を表す。]で表される本発明化合物を、必要ならば触媒の存在下、必要ならば該反応に対して不活性な溶媒を用いて、水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム、水素化ホウ素リチウム等の水素化剤と反応させることにより、一般式 (1) において X^1 が一NHCH $_2$ R^{5a} である一般式 (1-6) [式中、A, G, W^1 , X^2 , Y^1 , Y^2 , Y^3 , R^1 , R^{5a} , n 及び n は前記と同じ意味を表す。]で表される本発明化合物を得ることができる。

反応基質の量は、一般式 (1-5) で表される化合物 1 当量に対して1~100 当量の

PCT/JP02/07833

82

水素化剤を用いることができる。

溶媒を用いる場合、用いられる溶媒としては反応の進行を阻害しないものであれば何でもよく、例えばジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、メタノール、エタノール、エチレングリコール等のアルコール類、ギ酸、酢酸、プロピオン酸等のカルボン酸類等が挙げられる。これらの溶媒は単独で用いても、これらのうちの2種類以上を混合して用いてもよい。

触媒を用いる場合、反応の触媒としては、例えば塩酸、硫酸、硝酸等の鉱酸類、ギ酸、酢酸、プロピオン酸、トリフルオロ酢酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等の有機酸、塩化亜鉛、四塩化チタン、塩化セリウム、イッテルビウムトリフレート、三フッ化ホウ素-エーテル錯体等のルイス酸を、一般式(1-5)で表される化合物に対して0.001~1当量用いることができる。

反応温度は-60℃から反応混合物の還流温度までの任意の温度を設定することができ、反応時間は、反応基質の濃度、反応温度によって変化するが、通常5分から100時間の範囲で任意に設定できる。

一般的には、例えば一般式(1-5)で表される化合物 1 当量に対して $1\sim10$ 当量のシアノ水素化ホウ素ナトリウムを用い、酢酸中、 $0\sim90$ での温度範囲で、10 分から 24 時間反応を行なうのが好ましい。

製造法G

10

15

一般式 (6) [式中、A, G, W¹, X^2 , Y¹, Y², Y³, R^1 , m 及び n は前記と同じ意味を表 す。] で表される化合物と、一般式 (1 1) [式中、 R^{5a} 及び R^{5b} は前記と同じ意味を表 す。] で表される化合物とを、必要ならば触媒の存在下、必要ならば該反応に対して不

PCT/JP02/07833

WO 03/011028

83

活性な溶媒を用いて反応させることにより、一般式(1)において X^1 が X^1 -2 である一般式(1-5) [式中、A, G, W^1 , X^2 , Y^1 , Y^2 , Y^3 , R^1 , R^{5a} , R^{5b} , m及び n は前記と同じ意味を表す。] で表される本発明化合物を得ることができる。

反応基質の量は、一般式(6)で表される化合物1当量に対して1~100当量の一般式(11)で表される化合物を用いることができる。

溶媒を用いる場合、用いられる溶媒としては反応の進行を阻害しないものであれば何でもよく、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン等の脂肪族炭化水素類、シクロヘキサン等の脂環式炭化水素類、クロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン化炭化水素類、ジクロロメタン、クロロホルム、

10 四塩化炭素、1, 2-ジクロロエタン、1, 1, 1-トリクロロエタン、トリクロロエチレン、テトラクロロエチレン等の脂肪族ハロゲン化炭化水素類、ジエチルエーテル、1, 2-ジメトキシエタン、テトラヒドロフラン、1, 4-ジオキサン等のエーテル類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド類、トリエチルアミン、トリブチルアミン、N, N-ジメチルアニリン等のアミン類、ピリジン、ピコリン等のピリジン類、メタノール、エタノール、エチレングリコール等のアルコール類、アセトニト

リル、ジメチルスルホキシド、スルホラン、1, 3-ジメチル-2-イミダゾリジノン及び水等が挙げられる。これらの溶媒は単独で用いても、これらのうちの2種類以上を混合して用いてもよい。

触媒を用いる場合、反応の触媒としては製造法 C に記載したものと同様の触媒を用いることができる。

反応温度は-60℃から反応混合物の還流温度までの任意の温度を設定することができ、反応時間は、反応基質の濃度、反応温度によって変化するが、通常5分から100時間の範囲で任意に設定できる。

一般的には、例えば一般式 (6) で表される化合物 1 当量に対して $1 \sim 1$ 0 当量の一般式 (11) で表される化合物を用い、無溶媒か、又はベンゼン、トルエン等の溶媒を用い、p-トルエンスルホン酸等の触媒を一般式 (6) で表される化合物 1 当量に対して $0.01\sim0.1$ 当量用いて、 $50\sim150$ での温度範囲で、30 分から 24 時間反応を行なうのが好ましい。

製造法H

20

25

15

20

84

PCT/JP02/07833

一般式(1 2) [式中、G, X^2 , R^5 , R^6 及びmは前記と同じ意味を表す。] で表される化合物と、一般式(1 3) [式中、A, Y^1 , Y^2 , Y^3 , R^1 及びnは前記と同じ意味を表す。] で表される化合物とを該反応に対して不活性な溶媒中、又は無溶媒にて、必要ならば塩基の存在下、縮合剤を用いて反応させることにより、一般式(1)において X^1 が X^1 -1 であり、 Y^1 が酸素原子である一般式(1-7) [式中、A, G, X^2 , Y^1 , Y^2 , Y^3 , R^1 , R^5 , R^6 , M 及びM1 は前記と同じ意味を表す。] で表される本発明化合物を得ることができる。

反応基質の量は、一般式 (12) で表される化合物 1 当量に対して 1~100 当量の 一般式 (13) で表される化合物を用いることができる。

縮合剤は、通常のアミド合成に使用されるものであれば特に制限はないが、例えば向 山試薬 (2-クロロ-N-メチルピリジニウム アイオダイド)、DCC (1,3-ジシクロヘキシル カルボジイミド)、WSC (1-エチル-3-(3-ジメチルアミノプロピル)-カルボジイミド 塩 酸塩)、CDI (カルボニルジイミダゾール)、ジメチルプロピニルスルホニウム ブロマ イド、プロパルギルトリフェニルホスホニウム ブロマイド、DEPC (シアノ燐酸ジエチ ル)等を、一般式 (12)で表される化合物に対して1~4当量用いることができる。

溶媒を用いる場合、用いられる溶媒としては反応の進行を阻害しないものであれば何でもよく、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン等の脂肪族炭化水素類、シクロヘキサン等の脂環式炭化水素類、クロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン化炭化水素類、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、1,1,1-トリクロロエタン、トリクロロエチレン、テトラクロロエチレン等の脂肪族ハロゲン化炭化水素類、ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、酢酸エチル、プロ

85

PCT/JP02/07833

ピオン酸エチル等のエステル類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルー2-ピロリドン等のアミド類、トリエチルアミン、トリブチルアミン、N,N-ジメチルアニリン等のアミン類、ピリジン、ピコリン等のピリジン類、アセトニトリル及びジメチルスルホキシド等が挙げられる。これらの溶媒は単独で用いても、これらのうちの2種類以上を混合して用いてもよい。

塩基の添加は必ずしも必要ではないが、塩基を用いる場合、用いられる塩基としては、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等のアルカリ金属炭酸塩、トリエチルアミン、トリブチルアミン、N, N-ジメチルアニリン、ピリジン、4-(ジメチルアミノ)ピリジン、イミ ダゾール、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン等の有機塩基等を、一般式(12)で表される化合物に対して1~4当量用いることができる。

反応温度は-60℃から反応混合物の還流温度までの任意の温度を設定することができ、反応時間は、反応基質の濃度、反応温度によって変化するが、通常5分から100時間の範囲で任意に設定できる。

- 一般的には、例えば一般式(12)で表される化合物1当量に対して1~20当量の一般式(13)で表される化合物及び1~4当量のWSC(1-エチル-3-(3-ジメチルアミノプロピル)-カルボジイミド塩酸塩)、CDI(カルボニルジイミダゾール)等の縮合剤を用い、必要ならば1~4当量の炭酸カリウム、トリエチルアミン、ピリジン、4-(ジメチルアミノ)ピリジン等の塩基存在下にて、無溶媒か、又はジクロロメタン、クロロホルム、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等の溶媒を用い、0℃からこれらの溶媒の還流温度の範囲で、10分から24時間反応を行なうのが好ましい。
 - 製造法 I

5

10

86

PCT/JP02/07833

$$(X^{2})_{m}$$

$$(X^{2})_{m}$$

$$X^{1} \stackrel{H}{O}$$

$$W^{1} \stackrel{Li-reagent}{V^{1}} \stackrel{X^{2}}{V^{2}} \stackrel{V}{V^{3}}_{n}$$

$$W^{1} \stackrel{Li-reagent}{V^{1}} \stackrel{X^{2}}{V^{3}}_{n}$$

$$W^{1} \stackrel{X^{1}}{V^{3}}_{n}$$

$$W^{1} \stackrel{X^{2}}{V^{3}}_{n}$$

$$W^{1} \stackrel{X^{1}}{V^{3}}_{n}$$

$$W^{1} \stackrel{X^{2}}{V^{3}}_{n}$$

$$W^{2} \stackrel{X^{2}}{V^{3}}_{n}$$

$$W^{1} \stackrel{X^{2}}{V^{3}}_{n}$$

$$W^{2} \stackrel{X^{2}}{V^{3}}_{n}$$

$$W^{3} \stackrel{X^{2}}{V^{3}}_{n}$$

$$W^{1} \stackrel{X^{2}}{V^{3}}_{n}$$

$$W^{2} \stackrel{X^{2}}{V^{3}}_{n}$$

$$W^{3} \stackrel{X^{2}}{V^{3}}_{n}$$

$$W^{3} \stackrel{X^{3}}{V^{3}}_{n}$$

一般式 (14) [式中、X¹, X², R³及び m は前記と同じ意味を表す。] で表される化合物を、文献記載の公知の方法、例えばケミカル・レビューズ [Chem. Rev.] 1990年、90巻、879頁等に記載の方法に準じて、位置選択的メタル化後、一般式 (15) [式中、A, W¹, Y¹, Y², Y³及び n は前記と同じ意味を表す。] で表される化合物と反応させることにより、一般式 (1) において Gが G-1 且つ R²が水素原子であり、№ が酸素原子であり、R¹が水素原子である一般式 (1-8) [式中、A, W¹, X¹, X², Y¹, Y², Y³, R³, m及び n は前記と同じ意味を表す。] で表される本発明化合物を得ることができる。製造法 J

一般式(16) [式中、A, W^I , X^2 , Y^I , Y^2 , Y^3 , R^I , R^5 , R^6 , m及びn は前記と同じ意味を表す。] で表される化合物と、一般式(17) [式中、 R^2 及び R^3 は前記と同じ意味を表す。] で表される化合物とを、製造法Hと同様な条件下反応させることにより、一般式(1)において X^I が X^I-1 であり、GがG-1であり、 W^2 が酸素原子である一般式(1-9) [式中、A, W^I , X^2 , Y^I , Y^2 , Y^3 , R^I , R^2 , R^3 , R^5 , R^6 , m及びnは前記と同じ意味を表す。] で表される本発明化合物を得ることができる。

PCT/JP02/07833

製造法K

87

一般式 (18) [式中、A, X¹, X², Y¹, Y², Y³, m及びnは前記と同じ意味を表す。]で表される化合物と、一般式 (19) [式中、 $1 及び $1 は前記と同じ意味を表す。]で表される化合物とを、製造法 $1 と同様な条件下反応させることにより、一般式 (1) において $1 が $1 で表される本発明化合物を得ることができる。

製造法L

5

10

一般式(1-11) [式中、 \mathbb{N}^1 , \mathbb{N}^2 , \mathbb{N}^1 , \mathbb{N}^2 , \mathbb{N}^1 , \mathbb{N}^4 , \mathbb{N}^5 , \mathbb{N}^6 , \mathbb{N} , \mathbb{N} D 及び \mathbb{N} D は前記と同じ意味を表し、 \mathbb{N}^5 はフッ素原子、塩素原子、臭素原子、ヨウ素原子、 \mathbb{N}_1 で \mathbb{N}_2 で表される本発明化合物を、必要ならば塩基の存在下、必要ならば該

20

25

88

PCT/JP02/07833

反応に対して不活性な溶媒を用いて環化させることにより、一般式(1)において X^1 が X^1 -1 であり、G が G-2 であり、W が酸素原子である一般式(1-1 2) [式中、 W^1 , X^2 , Y^1 , Y^2 , Y^3 , R^1 , R^4 , R^5 , R^6 , R, R, R0, R0 は前記と同じ意味を表す。]で表される本発明化合物を得ることができる。

5 溶媒を用いる場合、用いられる溶媒としては反応の進行を阻害しないものであれば何でもよく、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類、クロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン化炭化水素類、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、1,1,1-トリクロロエタン、トリクロロエチレン、テトラクロロエチレン等の脂肪族ハロゲン化炭化水素類、ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、アセトン、メチルエチルケトン等のケトン類、酢酸エチル、プロピオン酸エチル等のエステル類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド類、アセトニトリル、ジメチルスルホキシド、スルホラン及び1,3-ジメチル-2-イミダゾリジノン等が挙げられる。これらの溶媒は単独で用いても、これらのうちの2種類以上を混合して用いてもよい。

塩基を用いる場合、用いられる塩基としては、例えば水素化ナトリウム、水素化カリウム等のアルカリ金属水素化物、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、ナトリウムエトキシド、カリウムターシャリーブトキシド等のアルカリ金属アルコキシド類、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等のアルカリ金属炭酸塩、トリエチルアミン、トリブチルアミン、N、N-ジメチルアニリン、ピリジン、4-(ジメチルアミノ)ピリジン、イミダゾール、1、8-ジアザビシクロ[5、4、0]-7-ウンデセン等の有機塩基等を、一般式(1-7)で表される化合物に対して1~4当量用いることができる。

反応温度は-60℃から反応混合物の還流温度までの任意の温度を設定することができ、反応時間は、反応基質の濃度、反応温度によって変化するが、通常5分から100時間の範囲で任意に設定できる。

一般的には、例えば一般式(1-11)で表される化合物を溶媒量のピリジン中、0~90℃の温度範囲で、10分から24時間反応を行なうのが好ましい。 製造法 M

PCT/JP02/07833

89

$$(X^{2})_{m} \qquad P_{2}S_{5} \qquad (X^{2})_{m} \qquad ($$

一般式(1-13) [式中、 \mathbb{W}^1 , \mathbb{X}^2 , \mathbb{Y}^1 , \mathbb{Y}^2 , \mathbb{Y}^3 , \mathbb{R}^1 , \mathbb{R}^4 , \mathbb{R}^5 , \mathbb{R}^6

溶媒を用いる場合、用いられる溶媒としては製造法 L に記載したものと同じものを用いることができる。

反応温度は0℃から反応混合物の還流温度までの任意の温度を設定することができ、 10 反応時間は、反応基質の濃度、反応温度によって変化するが、通常5分から100時間 の範囲で任意に設定できる。

一般的には、例えば一般式(1-13)で表される化合物1当量に対して1~5当量の 五硫化二リンを用い、トルエン等の溶媒中、室温~90℃の温度範囲で、10分から2 4時間反応を行なうのが好ましい。

15 製造法 N

PCT/JP02/07833

90

$$(X^{2})_{m} \qquad W^{1} \qquad Y^{1} \qquad H-N$$

$$R^{3} \qquad (X^{2})_{m} \qquad HN$$

$$R^{5}-N \qquad W^{2} \qquad (17)$$

$$R^{5}-N \qquad R^{6} \qquad R^{2} \qquad X^{2}$$

$$R^{5}-N \qquad R^{6} \qquad R^{2} \qquad (1-15)$$

一般式(20) [式中、A、W¹、W²、X²、Y¹、Y²、Y³、R⁵、R⁶、m及びnは前記と同じ意味を表す。] で表される化合物と、一般式(17) [式中、R²及び R³は前記と同じ意味を表す。] で表される化合物とを該反応に対して不活性な溶媒中、又は無溶媒にて、必要ならば触媒の存在下、反応させることにより、一般式(1)において R¹が水素原子であり、X¹が X¹-1 であり、Gが G-1 である、一般式(1-15) [式中、A、W¹、W²、X²、Y¹、Y²、Y³、R²、R³、R⁵、R⁶、m及びnは前記と同じ意味を表す。] で表される本発明化合物を得ることができる。

反応基質の量は、一般式(20)で表される化合物1当量に対して $1\sim50$ 当量の一般式(17)で表される化合物を用いることができる。

10 溶媒を用いる場合、用いられる溶媒としては反応の進行を阻害しないものであれば何でもよく、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン等の脂肪族炭化水素類、シクロヘキサン等の脂環式炭化水素類、クロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン化炭化水素類、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、1,1,1-トリクロロエダン、トリクロロエチレン、テトラクロロエチレン等の脂肪族ハロゲン化炭化水素類、ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、酢酸エチル、プロピオン酸エチル等のエステル類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルー2-ピロリドン等のアミド類、ギ酸、酢酸、プロピオン酸等のカルボン酸類、トリエチルアミン、トリブチルアミン、N,N-ジメチルアニリン等のアミン類、ピリジン、ピコリン等のピリジン類、メタノール、エタノール、エチレングリコール等のアルコール類、アセトニトリル、ジメチルスルホキシド、スルホラン、1,3-ジメチル-2-イミダゾリジノ

PCT/JP02/07833

91

ン及び水等が挙げられる。これらの溶媒は単独で用いても、これらのうちの2種類以上 を混合して用いてもよい。

触媒を用いる場合、反応の触媒としては製造法 $\mathbb C$ に記載したものと同じものを、一般式 (20) で表される化合物に対して $0.001\sim1$ 当量用いることができる。

反応温度は-60℃から反応混合物の還流温度までの任意の温度を設定することができ、反応時間は、反応基質の濃度、反応温度によって変化するが、通常5分から100時間の範囲で任意に設定できる。

一般的には、例えば一般式(20)で表される化合物1当量に対して1~10当量の
 一般式(17)で表される化合物を用い、無溶媒か、又はテトラヒドロフラン、1,4-ジ
 10 オキサン等の溶媒を用い、50℃から反応混合物の還流温度の温度範囲で、30分から
 24時間反応を行なうのが好ましい。

製造法 0

5

一般式 (21) [式中、A, W¹, X², Y¹, Y², Y³, R⁵, R⁶, m及びnは前記と同じ意味を表す。] で表される化合物と、一般式 (17) [式中、R²及び R³は前記と同じ意味を表す。] で表される化合物とを、製造法 Nと同様な条件下反応させることにより、一般式 (1) において X¹が X¹-1 であり、G が G-1 であり、W²が酸素原子であり、R¹が水素原子である一般式 (1-16) [式中、A, W¹, X², Y¹, Y², Y³, R², R³, R⁶, m及びnは前記と同じ意味を表す。] で表される本発明化合物を得ることができる。

製造法 P

. 15

PCT/JP02/07833

92

一般式 (22) [式中、 W^2 , X^2 , R^3 , R^6 , R^6 及び \mathbf{n} は前記と同じ意味を表す。]で表される化合物と、一般式 (13) [式中、A, Y^1 , Y^2 , Y^3 , R^1 及び \mathbf{n} は前記と同じ意味を表す。]で表される化合物とを、製造法 \mathbf{N} と同様な条件下反応させることにより、一般式 (1) において \mathbf{X}^1 が \mathbf{X}^1 -1 であり、 \mathbf{G} が \mathbf{G} -1 であり、 \mathbf{W}^2 が酸素原子であり、 \mathbf{R}^2 が水素原子である一般式 (1-17) [式中、 \mathbf{A} , \mathbf{W}^2 , \mathbf{X}^2 , \mathbf{Y}^1 , \mathbf{Y}^2 , \mathbf{Y}^3 , \mathbf{R}^1 , \mathbf{R}^3 , \mathbf{R}^5 , \mathbf{R}^6 , \mathbf{n} 及び \mathbf{n} は前記と同じ意味を表す。]で表される本発明化合物を得ることができる。

製造法Q

一般式(1)において \mathbb{N} が酸素原子であり、 \mathbb{R}^1 が水素原子である一般式(1-18)

[式中、A, G, X^1 , X^2 , Y^1 , Y^2 , Y^3 , m及びnは前記と同じ意味を表す。]で表される本発明化合物と、一般式(23)[式中、 R^1 及び J^1 は前記と同じ意味を表す。]で表される化合物とを、製造法 A と同様な条件下反応させることにより、一般式(1)において W^1 が酸素原子である一般式(1-19)[式中、A, G, X^1 , X^2 , Y^1 , Y^2 , Y^3 , R^1 , m及びnは前記と同じ意味を表す。]で表される本発明化合物を得ることができる。

製造法R

10

5

10

PCT/JP02/07833

93

$$(X^{2})_{m}$$
 R^{1}
 $(Y^{1}$
 $(Y^{3})_{n}$
 R^{3}
 $(Y^{1}$
 $(Y^{3})_{n}$
 $(Y^{1}$
 $(Y^{3})_{n}$
 $(Y^{2})_{m}$
 $(Y^{3})_{n}$
 $(Y^{3})_{n}$

一般式(1)において \mathbb{N}^2 が酸素原子であり、 \mathbb{N}^3 が水素原子である一般式(1-20) [式中、A, \mathbb{N}^1 , \mathbb{N}^1 , \mathbb{N}^2 , \mathbb{N}^1 , \mathbb{N}^2 , \mathbb{N}^1 , \mathbb{N}^2 , \mathbb{N}^1 , \mathbb{N}^2 , \mathbb{N}^2 , \mathbb{N}^2 , \mathbb{N}^2 , \mathbb{N}^3 , \mathbb{N}^4

$$(X^{2})_{m}$$
 $(X^{2})_{m}$
 $(X^{2})_{m}$

一般式(3)において R^5 が水素原子であり、0が 0 である一般式(3-3) [式中、A、 W^1 、 W^2 、 X^2 、 Y^1 , Y^2 , Y^3 , R^1 , R^3 , R^{6a} , R^{6b} , m 及び n は前記と同じ意味を表す。] で表される本発明化合物と、一般式(7) [式中、 R^5 及び J^1 は前記と同じ意味を表す。] で表される化合物とを、製造法 A と同様な条件下反応させることにより、一般式(3)において 0 が 0 である一般式(3-4) [式中、A、 W^1 、 W^2 , X^2 , Y^1 , Y^2 , Y^3 , R^1 , R^3 , R^5 , R^{6a} , R^{6b} , m 及び n は前記と同じ意味を表す。] で表される本発明化合物を得ることができる。

製法A~製法Sにおいて、反応終了後の反応混合物は、直接濃縮、又は有機溶媒に溶解

25

PCT/JP02/07833

94

し、水洗後濃縮、又は氷水に投入、有機溶媒抽出後濃縮といった通常の後処理を行ない、 目的の本発明化合物を得ることができる。また、精製の必要が生じたときには、再結晶、 カラムクロマトグラフ、薄層クロマトグラフ、液体クロマトグラフ分取等の任意の精製 方法によって分離、精製することができる。

5 製造法 A 及び製造法 G において本発明化合物を製造するための原料化合物である、一般式(6)で表される化合物の或るものはヨーロッパ特許出願公報(EP 0,919,542号公報)、国際特許出願公報(W0 01/00599号公報、W0 01/02354号公報)等に記載の公知化合物であり、また、それ以外のものも、これらの合成方法及び文献記載のアニリン誘導体の一般的な合成方法に準じて合成することができる。

製造法 A 及び製造法 S における一般式 (7)で表される化合物、製造法 B における一般式 (8)で表される化合物、製造法 Q における一般式 (23)で表される化合物及び製造法 R における一般式 (24)で表される化合物の或るものは公知化合物であり、一部は市販品として入手できる。また、それ以外のものも文献記載の一般的な合成方法、例えばケミストリー・レターズ [Chem. Lett.] 1976年、373頁、テトラヘドロン・レターズ [Tetrahedron Lett.] 1976年、373頁、ザ・ジャーナル・オブ・オーガニック・ケミストリー [J. Org. Chem.] 1976年、41巻、4028頁及び1978年、43巻、3244頁、オーガニック・シンセシス [Org. Synth.] 1988年、コレクティブボリューム6巻、101頁、ジャーナル・オブ・ジ・アメリカン・ケミカル・ソサイエティー[J. Am. Chem. Soc.] 1964年、86巻、4383頁、英国特許(GB 2,161,802号公報)、ヨーロッパ特許(EP 0,051,273号公報)等に記載の方法に準じて容易に合成することができる。

製造法 C における一般式 (9) で表される化合物及び製造法 D における一般式 (1 0) で表される化合物の或るものは公知化合物であり、一部は市販品として入手できる。また、それ以外のものも文献記載のアルデヒド類、ケトン類、アセタール類及びケタール類の一般的な合成方法に準じて合成することができる。

製造法 G における一般式 (11) で表される化合物の或るものは公知化合物であり、 一部は市販品として入手できる。また、それ以外のものも文献記載のカルボン酸オルソ エステル類の一般的な合成方法、例えば、ケミストリー・レターズ [Chem. Lett.] 19 76年、891頁、ジャーナル・オブ・ジ・アメリカン・ケミカル・ソサイエティー[J.

:

.PCT/JP02/07833

Am. Chem. Soc.] 1942年、64巻、1825頁及び1955年、77巻、4571頁、ザ・ジャーナル・オブ・オーガニック・ケミストリー [J. Org. Chem.] 1980年、45巻、740頁等に記載の方法に準じて容易に合成することができる。

95

製造法 H において、本発明化合物を製造するための原料化合物である、一般式(1 2)で表される化合物は、例えば下記の反応式1~反応式3で表される方法等を用いて 合成することができる。

反応式1

一般式(25)[式中、 X^2 , R^5 , R^6 及び \mathbf{n} は前記と同じ意味を表す。]で表される化合物と、一般式(17)[式中、 R^2 及び R^3 は前記と同じ意味を表す。]で表される化合物とを、製造法 \mathbf{N} と同様な条件下反応させることにより、一般式(12)において \mathbf{G} が \mathbf{G} -1であり、 \mathbf{W}^2 が酸素原子である一般式(12-1)[式中、 \mathbf{X}^2 , \mathbf{R}^2 , \mathbf{R}^3 , \mathbf{R}^5 , \mathbf{R}^6 及び \mathbf{n} は前記と同じ意味を表す。]で表される化合物を得ることができる。

反応式2

10

15

$$(X^{2})_{m}$$

H

 $COOH$
 R^{5}
 R^{6}
 R^{6}
 R^{5}
 R^{6}
 R^{6}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{5}

一般式(14)において X¹が X¹-1である一般式(14-1) [式中、X², R³, R⁵, R⁵, R⁶及 び m は前記と同じ意味を表す。] で表される化合物を、文献記載の公知の方法、例えば、ケミカル・レビューズ [Chem. Rev.] 1990年、90巻、879頁等に記載の方法に準 じて、位置選択的メタル化後、炭酸ガスと反応させることにより、一般式(12)にお

15

20

PCT/JP02/07833

96

いて G が G-1 且つ R^2 が水素原子であり、 W^2 が酸素原子である一般式(1 2-2) [式中、 X^2 , R^3 , R^5 , R^6 及び m は前記と同じ意味を表す。] で表される化合物を得ることができる。 反応式 3

$$(X^{2})_{m} \qquad J^{6} \qquad (X^{2})_{m} \qquad 0 \qquad (X^{2}$$

一般式(26) [式中、X², R³, R⁵, R⁶, R⁶ 及びmは前記と同じ意味を表し、J⁶は臭素原子、ヨウ素原子、フルオロスルホニルオキシ基又はトリフルオロメタンスルホニルオキシ基を表す。] で表される化合物を、文献記載の公知の方法、例えばザ・ジャーナル・オブ・オーガニック・ケミストリー [J. Org. Chem.] 1991年、56巻、4320頁及び1994年、59巻、1216頁、テトラヘドロン・レターズ [Tetrahedron Lett.] 1992年、33巻、1959頁等に記載の方法に準じて反応させることにより、一般式(27) [式中、X², R³, R⁶, R⁶ 及びmは前記と同じ意味を表し、Rはメチル基又はエチル基等の低級アルキル基を表す。] で表される化合物をうることができる。この一般式(27)で表されるカルボン酸エステル誘導体は、一般的な加水分解反応条件下、容易に一般式(12-3) [式中、X², R³, R⁶, R՞ R՞ R՞ R՞ Rఠ 及びmは前記と同じ意味を表す。] で表されるカルボン酸に変換することができる。

製造法 H 及び製造法 P における一般式 (13)で表される化合物の或るものは公知化合物であり、一部は市販品として入手できる。また、それ以外のものも文献記載のアニリン類の一般的な合成方法、例えばアンゲバンテ・ヘミー・インターナショナル・エディション・イン・イングリッシュ [Angew. Chem. Int. Ed. Engl.] 1985年、24巻、871頁、ザ・ジャーナル・オブ・オーガニック・ケミストリー [J. Org. Chem.] 1964年、29巻、1頁及び1965年、30巻、1001頁、シンセシス [Synthesis] 1984年、667頁、日本化学会誌1973年、2351頁、ドイツ国特許 (DE 2606982号公報)、日本国特許 (特開平 1-90163号公報)等に記載の方法に準じて容易に合成することができる。

PCT/JP02/07833

製造法 I における一般式 (14) で表される化合物の或るものは国際特許出願公報 (W0 98/23581号公報、W0 01/70671号公報) 等に記載の公知化合物であり、一部は市販品として入手できる。また、それ以外のものもこれらの合成方法及び文献記載の公知の方法、例えばテトラヘドロン・レターズ [Tetrahedron Lett.] 1994年、35巻、2113頁に記載の方法等に準じて容易に合成することができる。

製造法 I における一般式 (15) で表される化合物の或るものは公知化合物であり、一部は市販品として入手できる。また、それ以外のものも文献記載のイソシアネート類の一般的な合成方法、例えばアンゲバンテ・ヘミー・インターナショナル・エディション・イン・イングリッシュ [Angew. Chem. Int. Ed. Engl.] 1987年、26巻、894頁及び1995年、34巻、2497頁、ザ・ジャーナル・オブ・オーガニック・ケミストリー [J. Org. Chem.] 1976年、41巻、2070頁、シンセシス [Synthesis] 1988年、990頁、テトラヘドロン・レターズ [Tetrahedron Lett.] 1997年、38巻、919頁等に記載の方法に準じて容易に合成することができる。

15 製造法 J において、本発明化合物を製造するための原料化合物である、一般式(1 6)で表される化合物は、例えば下記の反応式4又は反応式5で表される方法等を用い て合成できる。

反応式4

10

一般式(25) [式中、X², R⁵, R⁶及びmは前記と同じ意味を表す。] で表される化合 20 物と、一般式(13) [式中、A, Y¹, Y², Y³, R¹及びπは前記と同じ意味を表す。] で表 WO 03/011028 ·

98

PCT/JP02/07833

される化合物とを、製造法 N と同様な条件下反応させることにより、一般式(16)に おいて \mathbb{N}^1 が酸素原子である一般式(16-1) [式中、A, X^2 , Y^1 , Y^2 , Y^3 , \mathbb{R}^1 , \mathbb{R}^5 , \mathbb{R}^6 , \mathbb{R}^6 , \mathbb{R}^6 及び \mathbb{R}^6 は前記と同じ意味を表す。] で表される化合物を得ることができる。 反応式 \mathbb{R}^6

一般式(18)において X^1 が X^1 -1 である一般式(18-1) [式中、A, X^2 , Y^1 , Y^2 , Y^3 , R^5 , R^6 , m及び n は前記と同じ意味を表す。] で表される化合物を、文献記載の公知の方法、例えば、ケミカル・レビューズ [Chem. Rev.] 1990年、90巻、879頁等に記載の方法に準じて、位置選択的メタル化後、炭酸ガスと反応させることにより、一般式(16)において X^1 が X^1 -1 であり、 W^1 が酸素原子である一般式(16-2) [式中、A, X^2 , Y^1 , Y^2 , Y^3 , R^5 , R^6 , m及び n は前記と同じ意味を表す。] で表される化合物を得ることができる。

製造法 J、製造法 N 及び製造法 0 における一般式 (17) で表される化合物の或るものは公知化合物であり、一部は市販品として入手できる。また、それ以外のものも、例えばケミカル・アンド・ファーマシューティカル・ブレティン [Chem. Pharm. Bull.] 1982年、30巻、1921頁、ジャーナル・オブ・ジ・アメリカン・ケミカル・ソサイエティー [J. Am. Chem. Soc.] 1986年、108巻、3811頁、国際特許出願公報(W0 01/23350号公報)等に記載の方法及び文献記載のその他1級又は2級アルキルアミン類それぞれの一般的な合成方法に準じて合成することができる。

製造法 K において、本発明化合物を製造するための原料化合物である、一般式 (1 20 8) で表される化合物は、例えば下記の反応式 6 又は反応式 7 で表される方法等を用い て合成できる。

反応式6

5

10

15

PCT/JP02/07833

99

すなわち、一般式 (28) [式中、A, X^2 , Y^1 , Y^2 , Y^3 , m及び n は前記と同じ意味を表す。] で表される化合物を、製造法 A、製造法 B、製造法 F 及び製造法 G と同様な条件下反応させることにより、一般式 (18-1)、 (18-2)、 (18-3)、 (18-4)

PCT/JP02/07833

100

及び(18-5) [各式中、A, X^2 , Y^1 , Y^2 , Y^3 , R^5 , R^{5a} , R^{5b} , R^6 , m及びnは前記と同じ意味を表す。] で表される化合物を得ることができる。

反応式7

$$(X^{2})_{m} \qquad H_{2}N \qquad H_{2}N \qquad H_{3}N \qquad H_{3}N \qquad H_{4}N \qquad H_{5}N \qquad H_{5}$$

一般式(29) [式中、X², R⁵, R⁶及び m は前記と同じ意味を表す。] で表される化合物と、一般式(13) において R¹が水素原子である一般式(13-1) [式中、A, Y¹, Y², Y³及び n は前記と同じ意味を表す。] で表される化合物とを、製造法 H と同様な条件下反応させることにより、一般式(18)において X¹が X¹-1 である一般式(18-1) [式中、A, X², Y¹, Y², Y³, R⁵, R⁶, m及び n は前記と同じ意味を表す。] で表される化合物を得ることができる。

製造法ドにおける一般式(19)で表される化合物の或るものは公知化合物であり、一部は市販品として入手できる。また、それ以外のものも文献記載のイソシアネート類の一般的な合成方法、例えばアンゲバンテ・ヘミー・インターナショナル・エディション・イン・イングリッシュ[Angew. Chem. Int. Ed. Engl.] 1995年、34巻、22頁、ザ・ジャーナル・オブ・オーガニック・ケミストリー [J. Org. Chem.] 1970年、35巻、51頁及び1996年、61巻、3883頁、シンセシス [Synthesis] 1987年、907頁及び1988年、990頁、テトラヘドロン・レターズ [Tetrahedron Lett.] 1993年、34巻、3559頁及び1998年、39巻、3749頁等に記載の方法に準じて容易に合成することができる。

製造法Nにおいて、本発明化合物を製造するための原料化合物である、一般式(2 20 0)で表される化合物は、例えば下記の反応式8又は反応式9で表される方法等を用い て合成することができる。

反応式8

PCT/JP02/07833

$$(X^{2})_{m} \qquad W^{1} \qquad Y^{1} \qquad R^{5}-J^{1} \qquad (X^{2})_{m} \qquad W^{1} \qquad Y^{1} \qquad A \qquad Y^{2} \qquad (Y^{3})_{n} \qquad (X^{2})_{m} \qquad W^{1} \qquad Y^{1} \qquad A \qquad Y^{2} \qquad (Y^{3})_{n} \qquad (X^{2})_{m} \qquad W^{1} \qquad Y^{1} \qquad (X^{2})_{m} \qquad (X^{$$

一般式 (30) [式中、A, W¹, W², X², Y¹, Y², Y³, m及び n は前記と同じ意味を表す。] で表される化合物を、製造法 A、製造法 B、製造法 F 及び製造法 G と同様な条件下反応させることにより、一般式 (20)、 (20-1)、 (20-2) 及び (20-3) [各式中、A, W¹, W², X², Y¹, Y², Y³, R⁵, R⁵, m及び n は前記と同じ意味を表す。] で表される化合物を得ることができる。

(20-3)

反応式9

 R^{5a}

(20-2)

15

PCT/JP02/07833

102

一般式 (25) [式中、X², R⁶, R⁶及び m は前記と同じ意味を表す。] で表される化合物と一般式 (13) において R¹が水素原子である一般式 (13-1) [式中、A, Y¹, Y², Y³及び n は前記と同じ意味を表す。] で表される化合物とを、文献記載の公知の方法、例えばベリヒテ・デア・ドイッチェン・ヘミッシェン・ゲゼルシャフト [Ber. Dtsch. 5 Chem. Ges.] 1907年、40巻、3177頁、ジャーナル・オブ・ザ・ケミカル・ソサイエティー [J. Chem. Soc.] 1954年、2023頁、ジャーナル・オブ・ザ・ケミカル・ソサイエティー・パーキン・トランスアクションズ、1[J. Chem. Soc. Perkin Trans. 1] 1994年、2975頁等に記載の方法に準じて反応させることにより、一般式 (20) において W¹及び Wが酸素原子である一般式 (20-4) [式中、X², Y¹, Y², Y³, R⁶, m及び n は前記と同じ意味を表す。] で表される化合物を容易に合成することができる。

製造法 0 において、本発明化合物を製造するための原料化合物である、一般式(2 1)で表される化合物は、次のようにして合成できる。 反応式 1 0

$$(X^2)_m$$
 HN $(Y^3)_n$ $(X^2)_m$ $(Y^3)_m$ $(Y^3)_m$ $(Y^3)_m$ $(Y^4)_m$ $(Y^4)_m$

103

PCT/JP02/07833

すなわち、一般式 (16) において R¹が水素原子である一般式 (16-3) [式中、A, W¹, X², Y¹, Y², Y³, R⁵, R⁶, m及び n は前記と同じ意味を表す。] で表される化合物を、文献記載の一般的な脱水環化によるイソイミドの合成反応、例えばジャーナル・オブ・ジ・アメリカン・ケミカル・ソサイエティー[J. Am. Chem. Soc.] 1975年、97巻、5582頁、ジャーナル・オブ・メディシナル・ケミストリー [J. Med. Chem.] 1967年、10巻、982頁、ザ・ジャーナル・オブ・オーガニック・ケミストリー [J. Org. Chem.] 1963年、28巻、2018頁等に記載の方法等に準じて環化することにより容易に合成することができる。

製造法 P において、本発明化合物を製造するための原料化合物である、一般式(2 10 2)で表される化合物は、次のようにして合成できる。

反応式11

5

15

$$(X^2)_m$$
 COOH $(X^2)_m$ $(X^2)_m$

すなわち、一般式(1 2)において X^1 が X^1 -1 であり、G が G-1 且つ R^2 が水素原子である一般式(1 2-3) [式中、 W^2 , X^2 , R^3 , R^5 , R^6 及び m は前記と同じ意味を表す。] で表される化合物を、反応式 1 0 と同様に反応させることにより容易に合成することができる。

反応式 1、反応式 4 及び反応式 9 で用いられる一般式(2 5)[式中、 X^2 、 R^5 、 R^6 及び \square は前記と同じ意味を表す。]で表される化合物は、次のようにして合成できる。 反応式 1 2

PCT/JP02/07833

104

$$(X^{2})_{m} \qquad (X^{2})_{m} \qquad (X^{2})_{m} \qquad O$$

$$COOH \qquad COOH$$

$$R^{5}-N \qquad R^{6} \qquad R^{6} \qquad R^{6} \qquad (32) \qquad (33) \qquad (25)$$

すなわち、一般式 (3 2) [式中、X², R⁵, R⁶及びmは前記と同じ意味を表し、R はメチル基、エチル基等の低級アルキル基を表す。] で表される化合物を、文献記載の一般的な加水分解反応、例えばジャーナル・オブ・ジ・アメリカン・ケミカル・ソサイエティー[J. Am. Chem. Soc.] 1929年、51巻、1865頁、アンゲバンテ・ヘミー[Angew. Chem.] 1951年、63巻、329頁等に記載の方法に準じて一般式 (3 3) [式中、X², R⁶, R⁶及びmは前記と同じ意味を表す。] で表されるフタル酸誘導体とした後、文献記載の一般的な脱水環化反応、例えばザ・ジャーナル・オブ・オーガニック・ケミストリー [J. Org. Chem.] 1987年、52巻、129頁等に記載の方法に準じた条件下反応させることにより、一般式 (2 5) で表される化合物を得ることができる。反応式3で用いられる一般式 (2 6) [式中、X², R⁶, R⁶, R⁶, m及び J⁶は前記と

反応式13

.5

10

15

同じ意味を表す。] で表される化合物は、次のようにして合成できる。

すなわち、一般式(3 4) [式中、 X^2 , R^3 , R^5 , m及び J^6 は前記と同じ意味を表す。] で表される化合物と、一般式(9) [式中、 R^{6a} 及び R^{6b} は前記と同じ意味を表す。] で表される化合物又は一般式(1 0) [式中、 R^{6a} , R^{6b} , J^2 及び J^8 は前記と同じ意味を表す。] で表される化合物とを、製造法 C 又は製造法 D と同様な条件下反応させることに

PCT/JP02/07833

105

より、一般式(26)で表される化合物を得ることができる。

反応式 6 で用いられる一般式(2 8) [式中、A, X^2 , Y^1 , Y^2 , Y^3 , m及び n は前記と同じ意味を表す。] で表される化合物は、次のようにして合成できる。

反応式14

$$(X^{2})_{m} \qquad (X^{2})_{m} \qquad$$

5 すなわち、一般式(35)[式中、A, X², Y¹, Y², Y³, m及びnは前記と同じ意味を表す。]で表される化合物を、文献記載の一般的なニトロ基の還元反応、例えばジャーナル・オブ・メディシナル・ケミストリー [J. Med. Chem.] 1991年、34巻、2209頁等記載のパラジウム、プラチナ触媒等を用いた接触還元、例えばテトラヘドロン・レターズ [Tetrahedron Lett.] 1998年、39巻、201頁等記載のスズ、鉄等の低原子価金属塩を用いた還元、等に準じた条件下反応させることにより、一般式(28)で表される化合物を得ることができる。

反応式 7 で用いられる一般式(2 9) [式中、 X^2 、 R^5 、 R^6 及び ${\tt m}$ は前記と同じ意味を表す。] で表される化合物の或るものは公知化合物であり、一部は市販品として入手できる。また、それ以外のものも次のようにして容易に合成できる。

15 反応式 1 5

PCT/JP02/07833

COOR
$$R^{5}-J^{1}$$
 $(X^{2})_{m}$ $R^{6}-J^{1}$ $(X^{2})_{m}$ $R^{5}-N$ R^{6} (36) (37) (38) $(X^{2})_{m}$ $(X^{2})_{m}$

106

すなわち、公知の一般式(36) [式中、 X^2 及び \mathbf{n} は前記と同じ意味を表し、 \mathbf{R} はメチル基、エチル基等の低級アルキル基を表す。]で表される化合物と、一般式(7) [式中、 \mathbf{R}^5 及び \mathbf{J}^1 は前記と同じ意味を表す。]で表される化合物とを、製造法 \mathbf{A} と同様な条件下反応させることにより、一般式(37) [式中、 \mathbf{X}^2 、 \mathbf{R}^5 、 \mathbf{n} 及び \mathbf{R} は前記と同じ意味を表す。]で表される化合物を得ることができる。

さらに、この一般式(37)で表される化合物と、一般式(8) [式中、 R^6 及び J^1 は前記と同じ意味を表す。] で表される化合物とを、製造法 B と同様な条件下反応させることにより、一般式(38) [式中、 K^2 , R^5 , R^6 , m及び R は前記と同じ意味を表す。] で表される化合物を得ることができる。

10 このようにして得られた一般式(37)及び一般式(38)で表される化合物は、通常の安息香酸エステル類の加水分解反応条件下、容易に一般式(29-1) [式中、X², R⁵及び m は前記と同じ意味を表す。]及び一般式(29-2) [式中、X², R⁶及び m は前記と同じ意味を表す。]で表される対応するカルボン酸誘導体に変換できる。

反応式8で用いられる一般式 (30)で表される化合物の或るものはヨーロッパ特許 出願公報 (EP 0,919,542号公報、EP 1,006,107号公報、)、国際特許出願公報 (WO 01/00599号公報、WO 01/21576号公報)等に記載の公知化合物であり、また、それ以外 のものも、これらの合成方法及び文献記載のアニリン誘導体の一般的な合成方法に準じ

PCT/JP02/07833

107

て対応する置換フタル酸イミド誘導体から容易に合成することができる。

反応式12で用いられる一般式(32) [式中、X², R⁵, R⁶及びmは前記と同じ意味を表し、Rはメチル基、エチル基等の低級アルキル基を表す。] で表される化合物は、次のようにして合成できる。

5 反応式16

10

$$(X^{2})_{m} \qquad R^{5}-J^{1} \qquad (X^{2})_{m} \qquad R^{6}-J^{1} \qquad (X^{2})_{m} \qquad COOR$$

$$(R) \qquad (R) \qquad COOR \qquad (R) \qquad COOR$$

$$NH_{2} \qquad R^{5}-NH \qquad R^{5}-N \qquad R^{6} \qquad (R) \qquad (R) \qquad (R)$$

$$(R) \qquad (R) \qquad (R)$$

$$(R) \qquad (R) \qquad ($$

すなわち、一般式(3 9) [式中、 X^2 及び \mathbf{n} は前記と同じ意味を表し、 \mathbf{R} はメチル基、エチル基等の低級アルキル基を表す。] で表される化合物と、一般式(7) [式中、 \mathbf{R}^5 及び \mathbf{J}^1 は前記と同じ意味を表す。] で表される化合物とを、製造法 \mathbf{A} と同様な条件下反応させることにより、一般式(3 2-1) [式中、 \mathbf{X}^2 , \mathbf{R}^5 , \mathbf{n} 及び \mathbf{R} は前記と同じ意味を表す。] で表される化合物を得ることができる。

さらに、この一般式(32-1)で表される化合物と、一般式(8)[式中、 R^6 及び J^1 は前記と同じ意味を表す。]で表される化合物とを、製造法 B と同様な条件下反応させることにより、一般式(32-2)[式中、 X^2 、 R^5 、 R^6 、m 及び R は前記と同じ意味を表す。]で表される化合物を得ることができる。

反応式13で用いられる一般式(34) [式中、½, k³, k⁵, m及び J⁵は前記と同じ意 20 味を表す。]で表される化合物は、例えば下記の反応式17又は反応式18で表される 方法等を用いて合成できる。

反応式17

10

PCT/JP02/07833

108

$$(X^{2})_{m} J^{6} (X^{2})_{m} J^{6} (X^{2})_{m} J^{6} (40) (41) (41) (42) (42) (43) (43) (43) (34)$$

すなわち、一般式(40)[式中、 X^2 , m及び J^6 は前記と同じ意味を表す。]で表される化合物と、一般式(17)において R^2 が水素原子である一般式(17-1)[式中、 R^3 は前記と同じ意味を表す。]で表される化合物とを、製造法 H と同様な条件下反応させるか、或いは一般式(40)で表される化合物を、塩化チオニル又はオキザリルクロライド等のクロル化剤を用いて、対応するカルボン酸クロライドした後に一般式(17-1)で表される化合物と反応させることにより、一般式(42)[式中、 X^2 , R^3 , m及び J^6 は前記と同じ意味を表す。]で表される化合物を得ることができる。

この一般式(42)で表される化合物は、反応式14と同様な条件下反応させることにより、一般式(43) [式中、 X^2 、 \mathbb{R}^3 、 \mathbb{R} 及び \mathbb{J}^6 は前記と同じ意味を表す。] で表される化合物を得ることができる。

さらに、この一般式 (43) で表される化合物と、一般式 (7) [式中、 \mathbb{R}^5 及び \mathbb{J}^1 は 前記と同じ意味を表す。] で表される化合物とを、製造法 \mathbb{A} と同様な条件下反応させる ことにより、一般式 (34) で表される化合物を得ることができる。

また、一般式 $(4\ 3)$ で表される化合物は、一般式 $(4\ 1)$ [式中、 X^2 , m及び J^6 は前記と同じ意味を表す。] で表される化合物と、一般式 $(1\ 7-1)$ で表される化合物とを、一般式 $(4\ 0)$ で表される化合物の場合と同様に反応させることによっても得ることができる。

PCT/JP02/07833

WO 03/011028

ここで、用いられる一般式(40)で表される化合物及び一般式(41)で表される化合物の或るものは公知化合物(例えばザ・ジャーナル・オブ・オーガニック・ケミストリー[J. Org. Chem.] 1952年、17巻、167頁及び1954年、19巻、510頁等に記載の化合物。)であり、また、それ以外のものも文献記載の公知の方法を用いて容易に合成することができる。

109

反応式18

すなわち、一般式(44) [式中、½, m, J⁶及び R は前記と同じ意味を表す。] で表される化合物と、一般式(7) [式中、R⁵及び J¹は前記と同じ意味を表す。] で表される化合物とを、製造法 A と同様な条件下反応させることにより、一般式(45) [式中、10 ¾, R⁵, m, J⁶及び R は前記と同じ意味を表す。] で表される化合物を得ることができる。この一般式(45) で表される化合物は、通常の安息香酸エステル類の加水分解反応条件下、容易に一般式(46) [式中、¾, R⁵, m及び J⁶は前記と同じ意味を表す。] で表される対応するカルボン酸誘導体に変換できる。

さらに、この一般式(46)で表される化合物と、一般式(17)において R²が水素 I5 原子である一般式(17-1) [式中、R³は前記と同じ意味を表す。] で表される化合物 とを、製造法 H と同様な条件下反応させるか、或いは一般式(44)で表される化合物 を、塩化チオニル又はオキザリルクロライド等のクロル化剤を用いて、対応するカルボ

10

15

PCT/JP02/07833

110

ン酸クロライドした後に一般式(17-1)で表される化合物と反応させることにより、 一般式(34)で表される化合物を得ることができる。

ここで、用いられる一般式(4 4)で表される化合物の或るものは公知化合物(例えばテトラヘドロン・レターズ [Tetrahedron Lett.] 1993年、34巻、3083頁等に記載の化合物。)であり、また、それ以外のものも文献記載の公知の方法を用いて容易に合成することができる。

反応式14で用いられる一般式(35)[式中、A, X^2 , Y^1 , Y^2 , Y^3 , m及びnは前記と同じ意味を表す。]で表される化合物は、次のようにして合成できる。 反応式19

SOCl₂
or
$$(X^2)_m$$
O
 $(COCl_2)$
 Y^1
 X^2
 X^2
 X^2
 X^3
 X^2
 X^3
 X^2
 X^3
 X^3
 X^4
 X^2
 X^3
 X^4
 X^2
 X^3
 X^4
 X^2
 X^3
 X^4
 X^2
 X^3
 X^4
 X^4

すなわち、公知の一般式(47) [式中、 X^2 及びnは前記と同じ意味を表す。] で表される化合物と、一般式(13)において R^1 が水素原子である一般式(13-1) [式中、A, Y^1 , Y^2 , Y^3 及びnは前記と同じ意味を表す。] で表される化合物とを、製造法Hと同様な条件下反応させるか、或いはを、一般式(47)で表される化合物を、塩化チオニル又はオキザリルクロライド等のクロル化剤を用いて、対応するカルボン酸クロライドした後に、一般式(13-1)で表される化合物と反応させることにより、一般式(35)で表される化合物を得ることができる。

これらの各反応においては、反応終了後、通常の後処理を行なうことにより、製造法 A ~S の原料化合物となる各々の製造中間体を得ることができる。

またこれらの方法により製造された各々の製造中間体は、単離・精製することなく、 20 それぞれそのまま次工程の反応に用いることもできる。

本発明に包含される化合物としては、具体的に例えば、第1表~第6表に示す化合物 が挙げられる。但し、第1表~第6表の化合物は例示のためのものであって、本発明は

5

PCT/JP02/07833

111

これらのみに限定されるものではない。

尚、表中 Et との記載はエチルを表し、以下同様に n-Pr 及び Pr-n はノルマルプロピルを、i-Pr 及び Pr-i はイソプロピルを、c-Pr 及び Pr-c はシクロプロピルを、n-Bu 及び Bu-n はノルマルブチルを、s-Bu 及び Bu-s はセカンダリーブチルを、i-Bu 及び Bu-i はイソブチルを、t-Bu 及び Bu-t はターシャリーブチルを、c-Bu 及び Bu-c はシクロブチルを、n-Pen 及び Pen-n はノルマルペンチルを、c-Pen 及び Pen-c はシクロペンチルを、n-Hex 及び Hex-n はノルマルヘキシルを、c-Hex 及び Hex-c はシクロヘキシルを、Ph はフェニルを、Naph はナフチルをそれぞれ表し、

表中 T-1~T-24 は、それぞれ下記の構造を表し、

T-1:
$$\begin{array}{c} CI \\ \hline \\ T-2: \\ \hline \end{array}$$
 $\begin{array}{c} Br \\ \hline \\ T-3: \\ \hline \\ CH_3 \\ \end{array}$

$$T-4:$$
 CI
 CH_2SCH_3
 CH_3
 CH_2SCH_3

T-7:
$$CH_2S(O)CH_3$$
 T-8: $CH_2SO_2CH_3$ T-9: CH_2SCH_3

T-10:
$$CH_2OH$$
 $T-11:$ CH_2SCH_3 $T-12:$ $CH_2S(O)CH_3$

T-13:
$$CH_2SO_2CH_3$$
 T-14: $T-15:$

PCT/JP02/07833

112

T-16:
$$-N$$

T-17: $-N$

Et

T-18: $-N$

COOEt

COOEt

$$CH_3$$
 S
 $T-21: -N$

表中 L-1a~L-48c で表される芳香族複素環は、それぞれ下記の構造を表し、

L-14c:
$$-N$$
 CF_3
 CH_3
 CH_3
 CH_3

L-17a:
$$-V$$
CH₃
 CH_3

$$L-21a:$$

L-24a:
$$-N$$
 CF_3
L-36a: $-N$
 N
 L

PCT/JP02/07833

143

L-45a:
$$\longrightarrow$$
 L-45b: \longrightarrow Br L-45c: \longrightarrow CF₃

L-45d: \longrightarrow CF₃

L-46a: \longrightarrow N

$$L-48a:$$
 $N=$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

さらに、表中 $M-4a\sim M-24a$ で表される脂肪族複素環は、それぞれ下記の構造を表す。

$$M-4a:$$
 $M-5a:$
 $M-8a:$
 $M-9c:$
 $M-9c:$

$$M-22a:$$
 $N-CHO$ $M-22b:$ $N-C$

$$M-22c:$$
 $N-C$
 CF_3
 $M-22d:$
 $N-C$
 OCH

M-22e:
$$N-C'$$
OEt

M-24a: O
CH₃

また、表中、置換基 $(X^2)_m$ 、 $(Y^3)_n$ 及び置換基 $(R^4)_p$ の置換位置を表す番号は、それぞ

PCT/JP02/07833

WO 03/011028

114

れ下記の構造式に於いて記された番号の位置に対応するものである。

第1表

$$(X^{2})_{m} \xrightarrow{\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 3 \\ 1 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 3 \\ 1 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \end{array}} \xrightarrow{\begin{array}{$$

$$(X^{2})_{m} \xrightarrow{\begin{array}{c} 5 \\ 6 \end{array}} \begin{array}{c} 6 \\ C \\ O \\ H \\ C - N \\ O \end{array} \begin{array}{c} Y^{2} \\ Y^{3} \\ O \\ H \\ C - N \\ O \end{array}$$

$$(X^{2})_{m} \xrightarrow{\begin{array}{c} 5 \\ 0 \\ 1 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 6 \\ 0 \\ 1 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 7 \\ 0 \\ 1 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 7 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 7 \\ 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 7 \\ 0 \end{array}} \xrightarrow{\begin{array}{$$

$$(X^{2})_{m} \xrightarrow{\text{II}} (Y^{3})_{n}$$

$$(X^{2})_{m} \xrightarrow{\text{II}} (Y^{3})_{n}$$

$$C = N$$

$$Et$$

$$R^{3}$$

$$(X^{2})_{m} \xrightarrow{\text{II}} (Y^{3})_{n}$$

$$(X^{2})_{m} \xrightarrow{\text{II}} (Y^{3})_{n}$$

$$C = N$$

$$i-Pr$$

$$R^{3}$$

$$(X^{2})_{m} \xrightarrow{|I|} (Y^{3})_{n}$$

$$(X^{2})_{m} \xrightarrow{|I|} (Y^{3})_{n}$$

$$(X^{2})_{m} \xrightarrow{|I|} (Y^{3})_{n}$$

$$(X^{2})_{m} \xrightarrow{|I|} (Y^{3})_{n}$$

$$(X^{3})_{m} \xrightarrow{|I|} (Y^{3})_{n}$$

$$(X^{2})_{m} \xrightarrow{|I|} (Y^{3})_{n}$$

$$(X^{3})_{m} \xrightarrow{|I|} (Y^{3})_{n}$$

PCT/JP02/07833

[1] - 12

115

$$(X^{2})_{m} \xrightarrow{[l]} (Y^{3})_{n}$$

$$(X^{3})_{m} \xrightarrow{[l]} (Y^{3})_{n}$$

$$(X^{4})_{m} \xrightarrow{[l]} (Y^{3})_{n}$$

$$(X^{2})_{m} \xrightarrow{[l]} (Y^{3})_{n}$$

$$(X^{3})_{m} \xrightarrow{[l]} (Y^{3})_{n}$$

$$(X^{4})_{m} \xrightarrow{[l]} (Y^{3})_{n}$$

[1] - 11 -

PCT/JP02/07833

PCT/JP02/07833

[1] - 24

117

[1] - 23

PCT/JP02/07833

PCT/JP02/07833

119

$$(X^{2})_{m} \xrightarrow{\text{II}} (Y^{3})_{n}$$

[1] - 36

[1] - 35

120

PCT/JP02/07833

[1] - 42

WO-03/011028

PCT/JP02/07833

PCT/JP02/07833

[1] - 54

122

[1] - 53

124

PCT/JP02/07833

[1] - 65

PCT/JP02/07833

$$(X^{2})_{m} \xrightarrow{\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}} (Y^{1}) \xrightarrow{\begin{array}{c} 3 \\ 1 \\ 1 \\ 1 \end{array}} (Y^{2})$$

$$(X^{2})_{m} \xrightarrow{\begin{array}{c} 5 \\ 1 \\ 1 \end{array}} (Y^{3})$$

$$\begin{array}{c} 6 \\ C \\ O \\ C \\ O \\ R^{3} \end{array}$$

$$\begin{array}{c} C \\ O \\ C \\ O \\ C \end{array}$$

$$\begin{array}{c} 1 \\ 1 \\ 1 \end{array} - 73$$

$$Y^{1}$$
 X^{2}
 Y^{1}
 Y^{2}
 Y^{3}
 Y^{3}
 Y^{3}
 Y^{3}
 Y^{3}
 Y^{3}
 Y^{3}
 Y^{2}
 Y^{3}
 Y^{3

$$(X^{2})_{m} \xrightarrow{|I| \atop |I| \atop |I$$

$$(X^{2})_{m} \xrightarrow{\downarrow \downarrow} (Y^{3})_{n}$$

$$(X^{2})_{m} \xrightarrow{\begin{array}{c} 6 \\ \text{H} \\ \text{N} \\ 6 \\ \text{C} \\ \text{O} \\ \text{C} \\ \text{OEt} \\ \end{array}} \xrightarrow{\begin{array}{c} 1 \\ \text{N} \\ \text{O} \\ \text{O} \\ \text{N} \\ \text{O} \\$$

$$(X^{2})_{m} \xrightarrow{\begin{array}{c} 1 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \end{array}}$$

PCT/JP02/07833

PCT/JP02/07833

$$(X^{2})_{m} \xrightarrow{\begin{array}{c} 6 \\ \text{H} \\ \text{N} \end{array} \begin{array}{c} 3 \\ \text{H} \\ \text{N} \end{array} \begin{array}{c} 3 \\ \text{Y}^{2} \\ \text{H} \\ \text{O} \\ \text{C} \end{array} \begin{array}{c} 6 \\ \text{C} \\ \text{O} \\ \text{N} \\ \text{O} \\ \text{C} \end{array} \begin{array}{c} 6 \\ \text{C} \\ \text{O} \\ \text{N} \\ \text{O} \\ \text{Et} \end{array}$$

$$(X^{2})_{m} \xrightarrow{|I|} (Y^{3})_{n}$$

$$(X^{3})_{m} \xrightarrow{|I|} (Y^{3})_{n}$$

$$(X^{2})_{m} \xrightarrow{|I|} (Y^{3})_{n}$$

$$(X^{3})_{m} \xrightarrow{|I|} (Y^{3})_{n}$$

$$(X^{2})_{m} \xrightarrow{\begin{array}{c} Y^{1} \\ Y^{1} \\ Y^{2} \\ Y^{3} \\ Y^{2} \\ Y^{3} \\ Y^{2} \\ Y^{3} \\ Y^{2} \\ Y^{3} \\ Y^{3} \\ C \\ C \\ C \\ C \\ C \\ C \\ R^{3} \\ C \\ R^{3} \\ \end{array}$$

$$(X^{2})_{m} \xrightarrow{\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}} (Y^{1})_{n} \xrightarrow{\begin{array}{c} 3 \\ 1 \\ 1 \\ 1 \end{array}} (Y^{2})_{n}$$

$$CH_{3}O \longrightarrow NH \longrightarrow R^{3}$$

$$Y^{1}$$
 X^{2}
 Y^{1}
 Y^{2}
 Y^{3}
 Y^{3}
 Y^{2}
 Y^{3}
 Y^{3}
 Y^{3}
 Y^{3}
 Y^{2}
 Y^{3}
 Y^{3

PCT/JP02/07833

PCT/JP02/07833

PCT/JP02/07833

[1] - 108

[1] - 107

PCT/JP02/07833

$$(X^{2})_{m} \xrightarrow{\begin{array}{c} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

$$(X^{2})_{m} \xrightarrow{\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$$

[1] - 113

$$(X^{2})_{m} \xrightarrow{\begin{array}{c} 5 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 6 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 7 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 7 \\ 1 \\ 5 \end{array}} (Y^{3})_{n}$$

$$CH_{3}O \xrightarrow{N} \xrightarrow{N} \xrightarrow{R^{3}}$$

$$Y^{1}$$
 X^{2}
 Y^{2}
 Y^{2}
 Y^{3}
 Y^{3}
 Y^{2}
 Y^{3}
 Y^{3}
 Y^{2}
 Y^{3}
 Y^{3}
 Y^{3}
 Y^{3}
 Y^{3}
 Y^{3}
 Y^{3}
 Y^{3}
 Y^{3}
 Y^{4}
 Y^{5}
 Y^{5

$$(X^{2})_{m} \xrightarrow{\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 3 \\ 1 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 3 \\ 1 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \\ 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \\ 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \end{array}} \xrightarrow{\begin{array}{c} 1 \end{array}} \xrightarrow{\begin{array}{$$

[1] - 114

$$(X^{2})_{m} \xrightarrow{\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}} (Y^{1})_{1} \xrightarrow{\begin{array}{c} 3 \\ 1 \\ 1 \\ 1 \end{array}} (Y^{2})_{1}$$

$$(X^{2})_{m} \xrightarrow{\begin{array}{c} 5 \\ 1 \\ 1 \end{array}} (Y^{3})_{1}$$

$$C \xrightarrow{\begin{array}{c} 0 \\ 1 \\ 1 \end{array}} (X^{3})_{1} \xrightarrow{\begin{array}{c} 6 \\ 1 \\ 1 \end{array}} (Y^{3})_{1}$$

$$(X^{2})_{m} \xrightarrow{\begin{array}{c} Y^{1} \\ H \\ N \end{array} \begin{array}{c} 3 \\ Y^{2} \\ \hline \\ 1 \\ 5 \end{array} \begin{array}{c} Y^{2} \\ Y^{3})_{n} \\ \hline \\ C \\ O \\ \hline \\ N \\ R^{3} \end{array}$$

$$(X^{2})_{m} \xrightarrow{\begin{array}{c} 5 \\ 1 \\ 1 \\ 4 \end{array}} \xrightarrow{\begin{array}{c} 6 \\ 1 \\ 0 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 6 \\ 1 \\ 0 \end{array}} \xrightarrow{\begin{array}{c} 6$$

$$(X^{2})_{m} \xrightarrow{\begin{array}{c} 5 \\ \text{NH} \\ 0 \\ \text{O} \\ \end{array}} \xrightarrow{\begin{array}{c} 5 \\ \text{C-N} \\ \text{N} \\ \text{Y}^{1} \\ \text{C} \\ \text{O} \\ \text{H} \\ \end{array}} \xrightarrow{\begin{array}{c} 5 \\ \text{C-N} \\ \text{Y}^{1} \\ \text{R}^{3} \\ \end{array}} = \begin{bmatrix} 1 \end{bmatrix} - 118$$

$$(X^{2})_{m} \xrightarrow{\begin{array}{c} CH_{3} \\ N \end{array}} \xrightarrow{\begin{array}{c} CH_{3} \\ O \end{array}} \xrightarrow{\begin{array}{c} C\\ C-N \end{array}} \xrightarrow{\begin{array}{c} Y^{2} \\ Y^{3} \\ O \end{array}}$$

$$H \xrightarrow{\begin{array}{c} C\\ N \end{array}} \xrightarrow{\begin{array}{c}$$

[1] - 120

134

	(X²) m	R ³			•	Υ¹	Y 2	(Y³) n
5	H	CH ₃			•	СНз	CF (CF ₃) ₂	Н
	H	CH3				CH ₃	$C(CF_3)_2OH$	H
	H	СНз				CH_3	C (CF ₃) ₂ OCH ₃	ч Н
	H	CH ₃		•		CH_3	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	CH3				CH ₃	0 (L-45d)	H
10	H	Et				CH ₃	CF (CF ₃) ₂	чН
	H	Et				CH ₃	C (CF ₃) ₂ OH	H.
	H	Et				CH ₃	$C(CF_3)_2OCH_3$	H
	H	Et	•			CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	Et				CH3	0 (L-45d)	· H
15	H	n-Pr				F	$C(CF_3)_2OH$	H
	H	n-Pr				Cl	CF (CF ₃) ₂	H
	Н	n-Pr				Cl	OCF 2 CHFOCF 2 CF 2 CF 3	Н
	H	n-Pr	,			Br	CF (CF ₃) ₂	H
	H	n-Pr	٠	·		CH ₃	CF (CF ₃) ₂	H
20	H	n-Pr	,			CH3	$C(CF_3)_2OH$	Н
	H	n-Pr				CH ₃	C(CF ₃) ₂ OCH ₃	H
	H	n-Pr				CH_3	OCF 2 Br	· H
	H	n-Pr		. •		CH ₃	OCF ₂ CHFC1	H
	H	n-Pr				CH ₃	OCF ₂ CHFBr	Н
25	H	n-Pr				CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	n-Pr				CH ₃	0 (L-45d)	Η.
	Н	n-Pr				Et	$C(CF_3)_2OH$	H
	H	n-Pr				OCH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	i-Pr				Н	H	Н
30	H	i∸Pr				H	H	3-F
	H	i–Pr				H	H	3-C1
	H	i-P.r				·H	H .	3-Br
	H.	i-Pr				H	H	3-CH ₃
٠.	H	i-Pr				H	H	3-CF ₃

					•			
	WO 03/0	11028		. *			PCT/JP02	2/07833
					135	. *		•
	TT :	: D	•		TT	TT	9 0011	
		i-Pr			H	H	3-0CH ₃	
		i-Pr			H	H	3-OPr-i	
•		i-Pr			H	H .	3-0CHF ₂	
		i-Pr			H	H ·	3-SCH ₃	
5		i-Pr			H	H	3-SCF ₃	
		i-Pr			H	H .	3-S (0) CF ₃	
		i-Pr			H	H	3- (L-19a)	:
		i-Pr			H	H	3- (L-22b)	
10		i-Pr			H	H	3, 5-Cl ₂	
10		i-Pr	ν.		H	H	$3-CF_3-5-OCH_3$	•
		i-Pr			H	F	H	
		i-Pr			H	F	3-F	
		i-Pr	40		H	F	3-C1	
		i-Pr			H	Cl ·	Н	
15		i-Pr			H	Cl	3-C1	•
		i-Pr			H .	Cl	3-CF ₃	
		i-Pr			H	CI.	3-0 (L-45d)	
		i-Pr			H	Br	$\mathbf{H}_{\underline{\cdot}}$	
		i-Pr			H _.	Br	3-CH ₃	
20		i-Pr			H	I	Н	
		i-Pr			H	CH ₃	H	
		i–Pr			Н .	Et	H	
		i-Pr			H	Pr-n	H	
0.5		i-Pr			H	Pr-i	H	
25		i-Pr			H	Bu-n	H	
		i-Pr			H	Bu-t	H	
		i-Pr			H	CF ₃	Н	
		i-Pr			H	CF ₂ CF ₃	H	•
20		l-Pr			H	CF ₂ CF ₃	3-01	
30		i-Pr	*		H H	CF ₂ CF ₃	3-CH ₃	
•		i-Pr				CF ₂ CF ₂ CF ₃	H	
		i∸Pr			H .	CF (CF ₃) ₂	Н	
		i-Pr	•		H	CF (CF ₃) ₂	3-F	
35		i-Pr			H .	CF (CF ₃) ₂	3-C1	•
99		i-Pr i-Pr			H	CF (CF ₃) ₂	3-SCH ₃	
		i-ri i-Pr			H H	CF ₂ CF ₂ CF ₂ CI	F ₃ H	
		-F1 -Pr	•		n H	C (CF ₃) ₂ OH	H	
			•		n H	C (CF ₃) ₂ OCH ₃ T-1		
40		i-Pr			п Н	T-2	. Н	:
40		i–Pr i–Pr					Н	
•					H _.	T-3	H H	
		l-Pr l-Pr			H u	T-4		•
					H	T-5	a) Ph. 4. Cl. H	
<i>1</i> E		-Pr			H .	CH ₂ ON=C (Pr-		
45		-Pr	4		H	OCH ³	H	
		−Pr	•		H	OCHF ₂	Э- Б	
	H i	l–Pr			H	OCHF ₂	3-F	•

	**	70.02	· /011028		• • •	PCT/JP02/07833
	VV	/ U U3/	/011020		10.	1 C 1/31 02/07055
			•	13	36	• •
	H		i-Pr	H	OCHF ₂	3-C1
	. Н		i-Pr	H	OCHF ₂	3-CF ₃
	Н		i-Pr	H	OCHF ₂	3-0CH ₃
	H		i-Pr	H	OCHF ₂	3-0CHF ₂
5	H		i–Pr	H	OCHF ₂	3, 5-Cl ₂
Ü	Н		i-Pr	H	OCF ₃	H
	H		i-Pr	H	OCF ₂ CHF ₂	3, 5-Cl ₂
	H		i-Pr	H	OCF ₂ CHFOCF ₃	H
	H	•	i-Pr	H	OCF 2 CHFOCF 3	3-C1
10	H		i-Pr	H	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
10	H		i-Pr	H	OCH (CH ₃) Ph	H
	H		i-Pr	H	$0 \text{ (Ph-4-N0}_2)$	3, 5-Cl ₂
	H		i-Pr	H	0 (L-45d)	3, 5-Cl ₂
	H		i-Pr	H	SCHF ₂	
15	n H			n H		H H
19			i-Pr		SCF ₃	H H
	H		i-Pr	H	SCF ₂ Br	
	H		i-Pr	Н	SCH ₂ CF ₃	H
	Ĥ		i-Pr	H	SCF ₂ CHF ₂	H
0.0	H		i-Pr	H	SCF ₂ CF ₂ Br	H
20	· H		i-Pr	H	SCF ₂ CF ₂ CF ₃	H
	H		i-Pr	H	SCF (CF ₃) ₂	H
	H		i-Pr	Н	SCF ₂ CF ₂ CF ₂ CF ₃	Н
	H		i-Pr	Н	S (0) CF ₃	Н
0.5	H		i-Pr	H	S (0) CF ₂ Br	H
25	H	•	i-Pr	H	SO ₂ CF ₃	· H
	H		i-Pr	H	SO ₂ N (Et) ₂	H
	H		i-Pr	H	NO ₂	Н
	H		i-Pr	H	C (0) CH ₃	Н
0.0	Н	•	i-Pr	H	$C (CH_3) = NOCH_3$	H
30	. Н	•	i-Pr	Н	$C (CH_3) = NOCH_2 CH = CH_2$	
	H.		i-Pr	H	CN .	H
	H		i-Pr	H	CH=CC1 ₂	H
	H		i-Pr	Н	CH=CBr ₂	Н
0.5	H		i-Pr	H	CH=C (C1) CF ₃	H
35	H		i-Pr	H	Ph	H
	H		i-Pr	H	L-14c	H
	H		i-Pr	H	L-22b	. H
	H		i-Pr	Н	L-24a	H
	Н		i-Pr	Н	L-36a	H
40	H		i-Pr	Н	$3-0$ CH $_2$ $0-4$	
	H		i-Pr	H	$3-0$ CF $_2$ $0-4$	* '
	H	•	i-Pr	Н .	3-0CF ₂ CF ₂ -4	
	Η		i-Pr	Н	3-0CHFCF ₂ 0-4	
	H		i-Pr	Н	$3-0$ CF $_2$ CHF $0-4$	
45	H		i-Pr	Н	$3-0$ CF $_2$ CF $_2$ $0-4$	
	H		i-Pr	. Н	$3-0$ CF $_2$ OCF $_2-4$	
	H		i-Pr	Н	$3-0C (CF_2 CF_3) = N$	-4

	wo	03/011028	11	PCT/JP02/07833
	H	i-Pr	Н	$3-0C (CF_2 CF_2 CF_3) = N-4$
	Ħ	i-Pr	H	$3-N=C (CF_3) 0-4$
	H	i-Pr	Н	3-N=C (CF ₂ CF ₃) $0-4$
	H	i-Pr	Н	3-N=C (CF ₂ CF ₂ CF ₃) $0-4$
5	H H	i-Pr	н Н	$3-N=C (Ph-4-CF_3) 0-4$
		i–Pr	Н	3-SC(Pr-i)=N-4
	H	i-Pr	Н	3-N=C (CF ₃) NH-4
	Н	i-Pr	Н	3-N=C (CF ₃) N (CH ₃) -4
	Н	i-Pr	F	Н
10	·H	i-Pr	F	H 5–F
	H	i-Pr	F	F H
	H	i-Pr	. <u>F</u> .	<u>F</u> 3–F
	H	i-Pr	F	F 3, 5-Cl ₂
	H	i-Pr	F	F 3, 5, 6-F ₃
15	H	i-Pr	F	C1 H
	H	i-Pr	F	Br 5-CF ₃
	H	i-Pr	F	CF ₂ CF ₃ H
	H	i-Pr	F	CF ₂ CF ₂ CF ₃ H
ο.	H	i-Pr	F F	CF (CF ₃) 2 H
20	H	i-Pr i-Pr	r F	C (CF ₃) ₂ OH H
	н Н	i-Pr	r F	C (CF $_3$) $_2$ OCH $_3$ H OCF $_3$ H
	H	i-Pr	F	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
	H	i-Pr	F	0 (Ph-2-C1-4-CF ₃)
25	H	i-Pr	F	0 (L-45d) H
	H	i-Pr	F	S (Ph-2-C1-4-CF ₃) 5-C1
	Н	i-Pr	F	4-0CF ₂ 0-5
	H	i-Pr	C1	Н Н
	H	i-Pr	Cl	H 3-C1
30	H	i-Pr	Cl	H 5-C1
	H	i-Pr	c1	H 6-C1
	H	i-Pr	Cl	F
	H	i-Pr	C1	C1 H
•	H	i-Pr	C1	C1 3-C1
35	. Н	i-Pr	C1	CH ₃
	H	i-Pr	C1 ·	CF ₃
	H	i-Pr	C1	CF ₃ 6-C1
	H	i-Pr	C1	CF ₂ CF ₃ H
	H	i-Pr	Cl	CF ₂ CF ₂ CF ₃
40	H ·	i-Pr	C1	CF (CF ₃) ₂ H
	H	i-Pr	C1.	C (CF ₃) ₂ OH H
	H	i-Pr	Cl	C·(CF ₃) ₂ OCH ₃ H
	H	i-Pr	Cl	OCF 3 H
4.5	H.	i-Pr	C1	OCF ₂ CHFCF ₃ 5-Cl
45	H	i-Pr	Cl	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
	H	i-Pr	Cl	0 (L-45d) H
	H	i-Pr	Cl	3-0CHFCF ₂ 0-4
			• • • •	

		D'001044000				DCIII/TD02/05022
	W	O 03/011028			•	PCT/JP02/07833
				138		
	H	i-Pr		Cl	3-0CF ₂ CHF0-4	
	H	i-Pr	•	C1	$3-0$ CF $_2$ CF $_2$ 0 -4	,
	H	i-Pr		Cl	$3-N=C(CF_3)0-4$	
	H	i-Pr		Cl	$4-0$ CF $_{2}$ 0 -5	. *-
5	H	i-Pr	•	Cl	4-0CHFCF ₂ 0-5	
	H	i–Pr		Cl	4-0CF ₂ CHF0-5	•
*.	H	i-Pr		Ċl	4-0CF ₂ CF ₂ 0-5	
	H	i-Pr		Cl	3-0CHFCF ₂ 0-4-5-C	1
	H	i–Pr		Cl	3-0CHFCF ₂ 0-4-6-C	1
10	H	i–Pr		Br	Н	Н
	H	i–Pr	•	Br	CF ₂ CF ₃	H
	H.	i-Pr		Br	CF (CF ₃) ₂	H
	H	i-Pr	•	Br	CF (CF ₃) ₂	5-CH ₃
	H	i-Pr		Br	C (CF ₃) ₂ OH	Н .
15	H	i-Pr	,	Br	C (CF ₃) ₂ OCH ₃	H
	H	i–Pr		Br	OCF ₃	H
	H ·	i-Pr		Br	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	i-Pr		Br	0 (L-45d)	H
	H	i–Pr		Br	4-0CF ₂ CHF0-5	
.20	H	i-Pr	•	Br	4-0CHFCF ₂ 0-5-3-B	r
	H	i-Pr	•	Br	4-0CF ₂ CHF0-5-3-B	
	Η.	i-Pr		Br	3-0CHFCF ₂ 0-4-5-B	
	H	i-Pr		Br	3-0CF ₂ CHF0-4-5-B	
·	H	i-Pr		Br	3-0CHFCF ₂ 0-4-6-B	
25	. H	i-Pr	•	Br	3-0CF ₂ CHF0-4-6-B	r
	H	i-Pr	* '	I	4-0CF ₂ 0-5	•
	\mathbf{H}_{\cdot}	i-Pr		CH ₃	H	H .
	H	i-Pr		CH ₃	H	3-F
	H	i–Pr	•	CH3	H	3∸C1
30	H	i–Pr		CH ₃	H	3-CH ₃
	H	i-Pr		CH ₃	Н	3-CF ₃
	H	i–Pr		СНз	H	3-0CH ₃
	H	i–Pr		CH ₃		-OCHF ₂
	H	i–Pr		CH ₃		2 CHFC1
35	H	i–Pr		CH3	H	5-F
	H	i-Pr		CH ₃	H	5-C1
	H	i–Pr		CH ₃	H	5-Br
	H	i–Pr		CH ₃	H	5-CH ₃
40	H	i-Pr		CH ₃		CF ₂ CF ₃
40	H	i-Pr		CH ³		L-22a)
	H	i-Pr		CH ³		L-45d) 6-C1
	H	i-Pr		CH ³	H	6-CH ₃
	H H	i-Pr iPr	•	CH ₃	H ·F	о-он _з Н
45	n H	i-Pr i-Pr		CH ₃		H H
40	n H	i-Pr		CH ₃	C1	3-CH ₃
	n H	i-Pr		CH ₃	C1 .	5-C1
	ΙĹ	1-11	•	OIL3	VI ·	0 01

W	O O	3/0	11	028

	**	0 03/011020				PC1/JP
				139		
	Н	i-Pr		CH ₃	C1	5-0 (L-45d)
	H	i-Pr		CH ₃	Br	H
	H.	i-Pr		CH ₃	Br	3-CH ₃
	H	i-Pr	•	CH ₃	I	o chia
5			•	-		
. 5	H	i-Pr		CH3	CH ₃	Н
	H	i–Pr	. *	CH3	CH ₃	3-01
•	H	i-Pr		CH3	CH ₃	3-0CH ₃
	H	i-Pr	•	CH ₃	CH ₃	3-0CHF ₂
	H	i-Pr		CH ₃	CH ₃	6-CH ₃
10	H	i-Pr		CH ₃	CH ₂ CH ₂ Bu-t	H
	H	i-Pr		CH ₃	CF ₃	Н
	. Н	i-Pr	• , •	CH ₃	CF ₂ CF ₃	H ·
	H	i-Pr		CH ₃	CF ₂ CF ₃	3-CH ₃
	H	i-Pr		CH ₃	CF ₂ CF ₃	5-C1
15	H	i-Pr		CH ₃	CF ₂ CF ₃	5-CH ₃
-	H	i-Pr		CH ₃	CF ₂ CF ₃	6-СН3
	Η.	i-Pr		CH ₃	CF ₂ CF ₂ CF ₃	Н
	H	i-Pr		CH ₃	CF (CF ₃) ₂	H
	H	i-Pr		CH ₃	CF (CF ₃) ₂	3-CH ₃
20	H.	i-Pr		CH ₃	CF (CF ₃) ₂	5-F
40	H	i-Pr		CH ₃	CF (CF ₃) ₂	5-C1
	H	i-Pr		CH ₃		
				-	CF (CF ₃) ₂	6-CH ₃
	H	i-Pr	•	CH ₃	CF ₂ CF ₂ CF ₂ CF ₃	H
0.5	H	i-Pr		CH3	CF (CF ₃) CF ₂ CF ₃	Н
25	H	i-Pr		СНз	CF ₂ (CF ₂) ₄ CF ₃	H
	H	i-Pr		CH3	CF (CF ₃) OCH ₃	. H
	H	i-Pr		CH ₃	C (CF ₃) (CH ₃) OH	H
	H	i-Pr		CH ₃	C (CF ₃) (CH ₃) OCH ₃	Н
	H	i-Pr		СНз	C (CF ₃) ₂ OH	H
30	H	i-Pr	•	CH ₃	$C (CF_3)_2 OCH_3$. Н
	H	i-Pr		· CH3	$C(CF_3)_2OEt$	H
•	H	i-Pr	,	CH ₃	$C(CF_3)_2OPr-n$	H
	H.	i-Pr		CH ₃	$C(CF_3)_2OPr-i$	H
	H	i-Pr		СНз	$C (CF_3)_2 OBu-n$	H
35	· H	i-Pr		CH ₃	$C(CF_3)_2OHex-n$	H
	H	i-Pr		CH ₃	C (CF ₃) ₂ OCH ₂ CF ₃	H
•	H	i-Pr		CH ₃	C (CF ₃) 2 OCH 2 CH=CH	I ₂ H
	H	i-Pr	•	CH ₃	C (CF ₃) 2 OCH ₂ CH=CF	
	H	i-Pr		CH ₃	C (CF ₃) 2 OCH ₂ CF=CF	
40	H	i-Pr	•	CH ₃	C (CF ₃) 2 OCH ₂ CH=CC	
	H	i-Pr		CH ₃	$C (CF_3)_2 OCH_2 C \equiv CH$	
	H	i-Pr		CH ₃	C (CF ₃) ₂ OCH ₂ Ph	H
	Н	i-Pr	•	CH ₃	C (CF ₃) (CF ₂ Cl) OH	H
	H	i-Pr	• • • •	CH ₃	$C (CF_3) (CF_2C1) OCH$	
ΛE.	Н	i-Pr		CH ₃	C (CF ₃) (CF ₂ CI) OCH C (CF ₃) (CF ₂ Br) OH	з Н
45			•			
	H	i-Pr		CH3	C (CF ₃) (CF ₂ Br) OCH	
	H	i-Pr		CH ₃	C (CF ₃) (CF ₂ CF ₃) OH	I H

	110 00,0110.		2 0 2/02
		140	
	п : D-	OIL O (OE) (OE OE) OOU	. 17
	H i-Pr		Н
	H i-Pr		H
	H i-Pr		H
	H i-Pr		H
- 5	H i-Pr		H
	H i−Pr		H
	H i-Pr		H
	H i-Pr	CH_3 CH_2 (Ph-4-C1)	H _.
	H i-Pr	CH_3 CH (Ph-4-C1) OH	H
10	H i-Pr	CH ₃ OCH ₃	. Н
	H i-Pr	CH ₃ OCH ₃	3-CH ₃
	H i-Pr		H
	H i-Pr		Н
	H i-Pr	· · · · · · · · · · · · · · · · · · ·	3-C1
15	H i-Pr		3-CH ₃
	H i-Pr		5-C1
	H i-Pr	<u>-</u>	5-CH ₃
	H i-Pr	,	6-CH ₃
·	H i-Pr		3, 5-Cl ₂
20	H i-Pr		H
20			3-C1
•			
	H i-Pı		3-CH ₃
	H i-Pı		5-C1
0.5	H i-Pr		5-CH ₃
25	H i-Pı		8, 5-Cl ₂
	H i-Pr		H
	H i-Pı		3-C1
	H i-Pr	<u> </u>	3-CH ₃
	H i-Pı		5-C1
30	H i-Pı		5-CH ₃
	H i-Pı		6-CH ₃
•	H i-Pı		3, 5-Cl ₂
•	H i-Pı		H
	H i-Pı		H
35	H i-Pr	CH ₃ OCF ₂ CHF ₂	3-C1
	H i-Pı	CH ₃ OCF ₂ CHF ₂	$3-CH_3$
	H i-Pı	CH ₃ OCF ₂ CHF ₂	5-C1
	H i-Pı		5-CH ₃
	H i-Pı		6-СН3
40	H . i-P1		3, 5-Cl ₂
	H i-Pı	· · · · · · · · · · · · · · · · · · ·	H
	H i-Pr		3-C1
	·H i-Pı		3-CH ₃
	H i-Pi		5-C1
15	H i-Pı	<u> </u>	
45	•		5-CH ₃
	H i-Pı		6-CH ₃
	H i-Pr	CH ₃ OCF ₂ CHFC1 3	5, 5-Cl ₂
	•		

	V	VO 03/011028			41	PCT/JP	02/07833
				14	41		
	H	i-Pr		CH ₃	OCF ₂ CHFBr	Н	
	H	i-Pr	•	СHз	OCF ₂ CHFBr	3-C1	
	H	i-Pr		CH ₃			•
	H	i-Pr		CH ₃	OCF ₂ CHFBr	3-CH ₃	
5	H	i-Pr		CH ₃	OCF 2 CHFBr	5-C1	
	Ĥ	i-Pr	•	CH ₃		5-CH ₃	*
	H	i-Pr		LII3	OCF CHFBr	6-CH ₃	
	H	i-Pr		CH3	OCF ₂ CF ₂ Br	H	
	H	i-Pr		CH ₃	OCF ₂ CF ₂ Br	3-C1	
10	H	i-Pr		CH 3	OCF ₂ CF ₂ Br	5-C1	
	H	i-Pr	•	CH ₃	OCF 2 CFC 1 2	H	
	H	i-Pr		CH ₃	OCF ₂ CCl ₃	H .	
	H	i-Pr		CH ₃	OCH (CF ₃) ₂	H	
	H	i-Pr		СНз	OCH ₂ CF ₂ CHF ₂	H	
15	H	i-Pr		СНз	OCF 2 CHFCF 3	H	•
10	H.	i-Pr		СНз	OCF 2 CHFCF 3	3-C1	•
	H	i-Fi	•	CH ₃	OCF 2 CHFCF 3	3-CH ₃	•
•	H			СНз	OCF 2 CHFCF 3	5-C1	
	H	i-Pr		CH ₃	OCF ₂ CHFCF ₃	5-CH ₃	
20	H	i-Pr		CH3	OCF 2 CHFCF 3	6-CH _{.3}	
20	H	i-Pr		CH3	OCF 2 CHFCF 3	3, 5-Cl ₂	
	H	i-Pr		CH 3	OCF ₂ CFBrCF ₃	H	
	H	i-Pr		CH ₃	OCH ₂ OCH ₃	H	•
	H	i-Pr		СНз	OCF 2 CHFOCF 3	H	
25		i-Pr		СНз	OCF 2 CHFOCF 3	3-C1	
49	H	i-Pr		СНз	OCF 2 CHFOCF 3	3-CH ₃	
	H	i-Pr		СНз	OCF 2 CHFOCF 3	5-C1	
	H	i-Pr		СНз	OCF 2 CHFOCF 3	5-CH ₃	
	H	i-Pr	•	CH ₃	OCF 2 CHFOCF 3	6-CH ₃	
9.0	H	i-Pr	. 100	СНз	OCF 2 CHFOCF 3	3, 5-Cl ₂	
30	H.	i-Pr		СНз	OCF 2 CHFOCF 2 CF 2 CF 3	H	
	H	i-Pr		CH ₃ .	OCF 2 CHFOCF 2 CF 2 CF 3	3-C1	•
	H .	i-Pr		СНз	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	3-CH ₃	
	H	i-Pr		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	5-C1	
or.	H	i-Pr	•	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	5-CH ₃	
35	H	i-Pr		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	6-CH ₃	
	H	i-Pr	•	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	3, 5-Cl ₂	•
	H.	i–Pr		CH ₃	OCH ₂ SCH ₃	H	
	H	i–Pr		СНз	$0C (CF_2CF_3) = C (CF_3)_2$	H	
	H	i-Pr		CH ₃	$0C (0CH_3) = C (CF_3)_2$. Н	
40	H	i-Pr		CH_3	OCF 2 CF 2 Ph	H	
	H	i-Pr		CH ₃	0 (Ph-2-C1)	H	
	H	i-Pr	•	CH ₃	0 (Ph-3-C1)	H	•
	H	i-Pr		CH ₃	0 (Ph-4-C1)	H	
	H	i-Pr		CH ₃	0 (Ph-3-CF ₃)	H	
45	H	i-Pr		CH3	0 (Ph-4-CF ₃)	Н	
	H	i-Pr		CH ₃	0 (Ph-3-CN)	H	
	H	i-Pr		CH ₃	0 (Ph-2-C1-4-CF ₃)	. п	
			· ·	3	2 or 4 or 3/	п	

PCT/JP02/07833

WO 03/011028

	WO 03/011028	3			FC1/JI
	• .		14	42	•
	H i-Pr	. ,	CH ₃	$0C_6F_5$	U
	H i-Pr		CH ₃	0 (L-45b)	Н
	H i-Pr		CH ₃	0 (L-45c)	Н
	H i-Pr	*	CH ₃	0 (L-45c)	H
5	H i-Pr		CH ₃	0 (L-45c)	3-01
	H i-Pr		CH ₃	0 (L-45c)	5-01
•	H i-Pr		CH ₃	0 (L-45d)	3, 5-Cl ₂
	H i-Pr		CH ₃	0 (L-45d)	H
	H i-Pr		CH ₃	0 (L-45d)	3-01
10	H i-Pr		CH ₃	0 (L-45d) 0 (L-45d)	3-CH ₃
,	H i-Pr	•	CH ₃	0 (L-45d) 0 (L-45d)	5-C1
	H i-Pr	• •	CH ₃		5-CH ₃
	H i-Pr		CH ₃	0 (L-45d)	6-CH ₃
	H i-Pr	•	CH ₃		3, 5-Cl ₂
15	H i-Pr			0 (L-48a)	H
10	H i-Pr		CH ³	0 (L-48b)	H
	H i-Pr		CH ₃	0 (L-48c)	H
	H i-Pr	•	CH ₃	OSO ₂ CF ₃	H
	H i-Pr	*	CH₃	OP (S) (OCH ₃) ₂	H
20	H i-Pr		CH₃	4-CF ₂ CF ₂	
20	H i-Pr		CH ₃	4-0CF ₂ 0-{	
	H i-Pr		CH ₃	4-0CHFCF ₂	0-5
	H i-Pr	. *	CH ₃	4-0C (CF ₃)	
	H i-Pr		CH ³	SF ₅	H
25	H i-Pr		CH ₃	SCH ₃ .	Н
	H i-Pr			SCH ₃	3-CH ₃
	H i-Pr	,	CH3	SPr-i	H
	H i-Pr		CH3	SCHF ₂	H
	. H i-Pr		CH₃ CH₃	SCF ₃	H
30	H i-Pr		_	SCF ₂ Br	H
00	H i-Pr		CH₃	SCF ₂ CF ₃	H
	H i-Pr		CH ₃	SCF ₂ CF ₂ CF ₃	H
	H i-Pr		CH ₃	SCH ₂ CH ₂ CF=CF ₂	
	H i-Pr		CH ₃	S (Ph-3-C1)	H
35	H i-Pr	•	СНз	S (Ph-4-C1)	. Н
	H i-Pr		CH ₃	S (0) CF ₃	H
	H i-Pr		CH ₃	SO ₂ CF ₃	H
	H i-Pr		CH ₃	SCH ₂ CH ₂ CF=CF ₂	H
	H i-Pr		CH ₃	S (0) CH ₂ CH ₂ CF=	
40	H i-Pr		CH ₃	SO ₂ CH ₂ CH ₂ CF=C	_
70	H i-Pr		CH ₃	NO ₂	Н
	H i-Pr	•	CH3	NO ₂	$3-\mathrm{CH_3}$
	H i-Pr		CH3	N (CH ₃) C (0) CF ₃	Н
			CH ₃	N (CH ₃) C (0) CF ₂	
45	. •		CH3	N (CH ₃) C (0) CF ₂	
40			CH ₃	C (0) CF ₃	H
			CH ₃	C (0) Ph-4-C1	H
	H i-Pr		СНз	$C (CH^3) = NOCH^3$	H
	• 4		.`		

	WO 03/011028				PCT/JP02/07833	
				143		
	Н	i-Pr		ĊH ₃	C (Ph-4-C1) = NOH	H
	H	i-Pr		CH ₃	$C (Ph-4-C1) = NOCH_3$	H H
	H	i-Pr		CH ₃	C (0) OCH CE	n H
	H H	i-Pr i-Pr	•	CH ₃	C (0) OCH ₂ CF ₃ C (0) N (CH ₃) Ph-4-C1	H
5	H	i-Pr		CH ₃	CN CN	H
	H	i-Pr		CH ₃	C≡CBu-t	· H
	H	i-Pr		CH ₃	C≡CPh	H .
	H	i-Pr		CH ₃	$C \equiv C (Ph-2, 4-Cl_2)$	H
10	H	i-Pr		CH ₃	Ph-4-C1	H
• •	H	i–Pr		CH ₃	Ph-4-CF ₃	H
	H.	i-Pr		CH ₃	Ph-4-0CF ₃	H
	H	i-Pr		CH ₃	L-14c	H
	H	i-Pr		CH ₃	L-22a	H
15	H	i-Pr		CH ₃	L-24a	Н
	H	i–Pr	*	CH ₃	L-36a	H
	H	i-Pr	•	CH ₃	Si (CH ₃) ₃	H
	H	i-Pr	•	CH ₃	Si (CH ₃) ₂ Bu-t	H
	H	i-Pr	•	CH3	Si (CH ₃) ₂ Ph	H
20	H	i-Pr		CH3	P (0) (0Et) 2	H
	H	i-Pr		Et	H	H
	H	i-Pr		Et.	Н	5-F
	H	i-Pr	•	Et	H	6-Et
·0.E	H	i-Pr	•	Et		C1-6-Et
25	H	i-Pr		Et Et	C1 I	H H
	H H	i-Pr	•	Et .	CF ₂ CF ₃	H
	н Н	i-Pr i-Pr		Et.	CF (CF ₃) ₂	H
	H	i-Pr	••	Et.	C (CF ₃) ₂ OH	H
30	.Н	i–Pr	•	Et	C (CF ₃) ₂ OCH ₃	Н
00	H	i-Pr		Et	OCF ₃	Н
	H	i-Pr	•	Et	OCF ₂ Br	H
	H	i-Pr		Et	OCF 2 CHFC1	H
	H	i–Pr		Et	OCF ₂ CHFBr	H
35	H	i-Pr		Et	OCF 2 CHFCF 3	H
	Н	i-Pr	•	Et	OCF 2 CHFOCF 3	Н
	H	i-Pr		Et .	OCF 2 CHFOCF 2 CF 2 CF 3	· H
	Η.	i-Pr		Et	0 (L-45d)	H
	H	i-Pr		n-Pr	Ĭ.	\mathbf{H}
40	H	i-Pr		n-Pr	$C(CF_3)_2OH$	H
	\mathbf{H}_{\cdot}	i-Pr	· · · · · · · · · · · · · · · · · · ·	n-Pr	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	i-Pr		i-Pr	I	H
	H	i-Pr	•	i-Pr	CF (CF ₃) ₂	H
	H	i-Pr		i-Pr	C (CF ₃) ₂ OH	H
45	H	i-Pr		i-Pr	OCF 2 CHFOCF 2 CF 2 CF 3	H.
	H	i-Pr		i-Pr	0 (L-45d)	. Н
	H	i-Pr	•	n-Bu	I	H
			,			

	WO 0	3/011028				PCT/JP02/07833
				144	•	
	H	i-Pr		CF ₃	Н	Н.
	H	i-Pr		CF ₃	Cl	H
	H	i-Pr	•	CF ₃	CF ₂ CF ₃	n H
	H	i-Pr		CF ₃	OCHF ₂	n H
·5	H	i-Pr		CF ₃		H .
อ	H	i-Pr			OCF 2 CHFOCF 2 CF 2 CF 3	
	n H	i-Pr		CF ₂ CF ₃		H ·
٠	n H	•			CF ₂ CF ₃	H
		i-Pr		OCH ³	H	H
10	H	i-Pr		OCH3	H OF OF	5-Ph
10	H	i-Pr		OCH3	CF ₂ CF ₃	Н
	H	i-Pr		OCH3	CF (CF ₃) ₂	Н
	H	i-Pr			C (CF ₃) ₂ OH	H
	H	i-Pr	.•	OCH3	C (CF ₃) ₂ OCH ₃	Н
4.5	H	i-Pr	٠.,	OCH3	OCF ₃	H
15	H	i-Pr		OCH ₃	OCF ₂ Br	H
	H	i-Pr			OCF 2 CHFC1	H
	H	i-Pr		OCH ₃	OCF 2 CHFBr	H
	H	i-Pr		OCH3	OCF 2 CHFCF 3	H
	H	i-Pr		OCH3	OCF 2 CHFOCF 3	H
20	H	i-Pr		OCH3	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	i-Pr		OCH3	0 (L-45d)	Н
	H	i-Pr		OEt	CF (CF ₃) ₂	H _.
	H	i-Pr		OEt	C (CF ₃) ₂ OH	H
95	H	i-Pr		0Et	OCF 2 CHFOCF 2 CF 2 CF 3	H
25	H H	i-Pr			0 (L-45d)	H
	n H	i-Pr i-Pr		OPh OPh	CF (CF ₃) ₂	H H
	n H	i-Pr		OPh	C (CF ₃) ₂ OH	H H
	H	i-Pr		OPh	OCF ₂ :CHFOCF ₂ :CF ₂ :CF ₃ O (L-45d)	n H
30	H	i-Pr		SCH ₃	H (L-45u)	n H
υV	H	i-Pr		SCH ₃	CF ₂ CF ₃	H
	H	i-Pr		SCH ₃	CF (CF ₃) ₂	II
•	H	i-Pr		SCH ₃	C (CF ₃) ₂ OH	n H
	H	i-Pr		SCH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
35	H	i-Pr		SCH ₃	0 (L-45d)	H
	H	i-Pr		Ph	CF (CF ₃) ₂	H
	H	i-Pr			C (CF ₃) ₂ OH	H
	H	i–Pr			CF (CF ₃) ₂	H
	H	i-Pr			$(CH_2)_4 - 3 - 4 - CF (CF_3)_2$	
40	H	i-Pr			CF_20-3	•
-10	H	i-Pr			CF ₂ 0-3-6-C1	
	H	i-Pr			$=$ CHS $-3-4-$ CF (CF $_3$) $_2$	
	4-F	i-Pr		CH ₃	CF (CF ₃) ₂	H
	4-F.	i-Pr	•	CH ₃	C (CF ₃) ₂ OH	H
45	4-F	i-Pr		CH ₃	C (CF ₃) ₂ OCH ₃	H
-10	4-F	i-Pr		CH ₃	C (CF ₃) 20CH ₃	H
	4-F	i-Pr		CH ₃	C (CF ₃) 2OCH ₂ CF ₃	H
•	7 1			ori3	o (or 3/ 200H20F3	11

	wo (03/011028			•			PCT/JP02	2/07833
						145	•		
	4 T2	: n-				CH ₃	ר (כב / טים יים–נים	Н	
	4-F	i-Pr			-	•	C (CF ₃) 2 OCH 2 CH=CH ₂	•	
	4-F	i-Pr				CH ₃	C (CF ₃) 2 OCH 2 CH=CF ₂	H	
	4-F	i-Pr				CH3 ·	C (CF ₃) 2 OCH ₂ CF=CF ₂	H	
-	4-F	i-Pr	•	•		CH ₃	C (CF ₃) 2 OCH ₂ CH=CCl ₂		
5	4-F	i-Pr				CH ₃	C (CF ₃) ₂ OCH ₂ C≡CH	H	
	4-F	i-Pr		•		CH3	C (CF ₃) ₂ OCH ₂ Ph	H	
	4-F	i-Pr	•			CH3	OCHF ₂	H	
	4-F	i-Pr				CH ₃	OCHF ₂	3-C1	•
	4–F	i-Pr				CH ₃	OCHF ₂	3-CH ₃	
10	4-F	i-Pr		•		CH3	OCHF ₂	5-C1	
•	4-F	i-Pr				CH ₃	OCHF ₂	5-CH ₃	•
	4–F	i-Pr			٠	CH ;	OCHF ₂	6-CH ₃	
	4-F	i-Pr				CH 3	0 CHF $_{2}$	3, 5-Cl ₂	
	4-F	i-Pr				CH ₃	OCF ₃	. H	
15	4-F	i-Pr				СНз	OCF ₃	3-C1	
	4-F	i-Pr				CH ₃	OCF ₃	3-CH ₃	
	4-F	i-Pr				СНз	OCF ₃	5-C1	•
	4-F	i-Pr				CH ₃	OCF ₃	5-CH ₃	٠
	4-F	i-Pr				CH ₃	OCF ₂ Br	.H	
20	4-F	i-Pr	•			CH ₃	OCF ₂ Br	3-C1	
·	4-F	i–Pr				CH ₃	OCF ₂ Br	3-CH ₃	
	4-F	i-Pr				CH ₃	OCF ₂ Br	5-C1	•
	4-F	i-Pr				CH ₃ .	OCF ₂ Br	5-CH ₃	
	4–F	i-Pr	•			CH ₃	OCF ₂ Br	6-CH ₃	
25	4-F	i-Pr				CH ₃	OCF ₂ Br	3, 5-Cl ₂	
	4-F	i-Pr	•	•		CH ₃	OCF ₂ CHF ₂	H	
	4-F	.i–Pr			•	CH ₃	OCF ₂ CHF ₂	3-C1	
	4-F	i-Pr				CH ₃	OCF 2 CHF 2	3-CH ₃	
	4-F	i-Pr				CH ₃	OCF 2 CHF 2	5-C1	
30	4-F	i-Pr				CH ₃	OCF ₂ CHF ₂	5-CH₃	
	4-F	i-Pr				CH3 ·	OCF 2 CHFC1	H	
	4-F	i-Pr				CH ₃	OCF ₂ CHFBr	H	
	4-F	i-Pr				CH ₃	$0CF_2CF_2Br$	H	
	4-F	i-Pr				CH ₃	OCF 2 CHFCF 3	· H	
35	4-F	i-Pr				CH ₃	OCF ₂ CFBrCF ₃	H	
	4-F	i-Pr				CH ₃	OCF 2 CHFOCF 3	Η	
	4-F	i-Pr	•			CH ₃	OCF ₂ CHFOCF ₂ CF ₂ Br	H	
	4-F	i-Pr	-			CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	. Н	
	4-F	i-Pr				CH ₃	$0 \text{ (Ph-4-CF}_3)$. Н	
40	4-F	i-Pr		•		CH ₃	$0 \text{ (Ph-2-Cl-4-CF}_3)$	• Н	
	4-F	i-Pr				CH ₃	0 (L-45b)	H	
	4F	i–Pr				CH ₃	0 (L-45c)	H	٠
•	4-F	i-Pr				CH ₃	0 (L-45d)	H	
	4-F	i-Pr				CH ₃	OSO ₂ CF ₃	Н	
45	4-F	i-Pr				CH ₃	SF ₅	H.	
	4-F	i-Pr				CH ₃	SCF ₃	. Н	
	4-F	i-Pr				CH ₃	SCF ₂ Br	H	
			•			3	- - -	, ,	

	WO 03	3/011028	*		•			PCT/JP02/07833
						14	16	
	4-F	i-Pr				СНз	SCF ₂ CF ₃	H
	4-F	i-Pr				СНз	SCF ₂ CF ₂ CF ₃	H
	4-F	i-Pr	,			СНз	S (0) CF ₃	H
	4-F	i-Pr		•		CH3	SO ₂ CF ₃	Н
5	4-C1	i-Pr				CH3	CF (CF ₃) ₂	H
	4-C1	i-Pr				ĊНз	C (CF ₃) 2 OH	H
	4-C1	i-Pr				CH ₃	C (CF ₃) 2 OCH ₃	H
	4-C1	i-Pr				CH ₃	OCF ₂ Br	H
	4-C1	i-Pr				CH3	OCF ₂ CHFC1	H
10	4-C1	i-Pr				CH ₃	OCF ₂ CHFBr	H.
	4-C1	i-Pr				CH3		H
	4-C1	i-Pr				CH ₃	OCF ₂ CHFOCF ₃	H
	4-C1	i-Pr				CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	4-C1	i-Pr				CH3	$0 (Ph-2-C1-4-CF_3)$	Н
15	4-C1	i-Pr				CH3	0 (L-45d)	H
	$4-CH_3$	i-Pr			•	CH ₃	CF (CF ₃) ₂	Н
	4-CH ₃	i-Pr				CH ₃	C (CF ₃) ₂ OH	H
	$4-CH_3$	i-Pr				CH ₃	C (CF ₃) ₂ OCH ₃	Ĥ
,	$4-CH_3$	i-Pr				CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
20	$4-CH_3$	i-Pr				CH ₃	0 (L-45d)	H
	4 –CF $_3$	i-Pr			•	CH ₃	CF (CF ₃) ₂	. Н
	4-CF ₃	i-Pr				CH ₃	$C(CF_3)_2OH$	Н
	$4-CF_{3}$	i-Pr				CH 3	C(CF ₃) ₂ OCH ₃	Н
	4-CF ₃	i-Pr				СНз	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
25	4-CF ₃	i–Pr				СНз	0 (L-45d)	Н .
	5-F	i-Pr		•		CH ₃	CF (CF ₃) ₂	H
	5-F	i–Pr				CHa	C (CF ₃) ₂ OH	Н
	5-F	i-Pr			•	CH ₃	C (CF ₃) ₂ OCH ₃	H
	5-F	i-Pr	•			CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
30	5-F	i-Pr	•			CH ₃	0 (L-45d)	H
	6-F	i-Pr		•		CH ₃	CF (CF ₃) ₂	H
٠.	6-F	i-Pr		•		. CH3	C (CF ₃) ₂ OH	H
	6−F 6−F	i-Pr	•			CH3	C (CF ₃) ₂ OCH ₃	Н
35	0-г 6-F	i-Pr i-Pr	•			CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	Н
90		•				CH ₃	0 (L-45d)	H
	4, 5-F ₂ 4, 5-F ₂					CH ₃	CF (CF ₃) ₂	H
	4, 5-F ₂ 4, 5-F ₂					CH ₃ CH ₃	C (CF ₃) ₂ OH	H
	4, 5-F ₂					CH ₃	C (CF ₃) ₂ OCH ₃ OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H H
40	4, 5 F ₂			•			0 (L-45d)	H H
40.	H H	c-Pr				CH ₃	CF (CF ₃) ₂	н.
	H	c-Pr				CH ₃	C (CF ₃) ₂ OH	H.
	H	c–Pr				CH ₃	C (CF ₃) 2 OCH ₃	n H
	H	c-Pr				CH ₃	OCF ₃	H
45	H	c-Pr	-			CH ₃	OCF ₂ Br	H:
10	H	c-Pr				CH ₃	OCF ₂ Br	3-C1
	H	c-Pr			•	CH ₃	OCF ₂ Br	5-C1
		0 11		:	:	Orra	OOI 2DI	U=01

WO 03/011028

				141		•
	Н	c-Pr		CH ₃	OCF ₂ Br	3, 5-Cl ₂
	H	c-Pr		CH ₃	OCF 2 CHF 2	H
	H	c-Pr		CH ₃	OCF 2 CHFC1	Н
	H	c-Pr		CH ₃	OCF 2 CHFBr	Н
· Ė			•	CH ₃	OCF ₂ CF ₂ Br	H
5	H	c-Pr		7,	OCF 2 CHFCF 3	. H
	·H	c-Pr		CH ₃	OCF 2 CHFOCF 3	. Н
	H .	c-Pr		СНз		H
	H	c-Pr		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	
	H	c-Pr	•	СНз	0 (L-45d)	Ĥ
10	4-F	c-Pr	•	CH ₃	CF (CF ₃) ₂	H
	4-C1	c-Pr		CH ₃	C (CF ₃) ₂ OH	H
	4-CF ₃	c-Pr	•	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	· H
	5-F	c-Pr		CH₃	0 (L-45d)	H
	6-F	c-Pr		CH ₃	CF (CF ₃) ₂	H
15	H	n-Bu	•	СНз	CF (CF ₃) ₂	. Н
	H	n-Bu		· CH 3	$C(CF_3)_2OH$	H
	Н .	n-Bu		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	n-Bu		СНз	0 (L-45d)	Н
	H	i-Bu		CH ₃	CF (CF ₃) ₂	Н
20.	H	i-Bu		СНз	C (CF ₃) ₂ OH	Ĥ
4 0.	H	i-Bu		СНз	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	i-Bu		СНз	0 (L-45d)	H.
•	H	CH ₂ Pr-	•	CH ₃	C (CF ₃) ₂ OH	H
	H	s-Bu	J .	F	OCF 2 CHFOCF 2 CF 2 CF 3	H
25	H	s-Bu		C1	CF (CF ₃) ₂	H
20	H	s-Bu		Br	C (CF ₃) ₂ OH	H
	H	s-Bu	•	CH ₃	CF (CF ₃) ₂	Ĥ
٠.	H			CH ₃	C (CF ₃) ₂ OH	H
•		s-Bu		CH ₃	C (CF ₃) 2OCH ₃	H
0.0	H	s-Bu	•	CH ₃	OCHF ₂	H
30	H	s-Bu				3-C1
	H	s-Bu		CH ₃	OCHF ₂	3-CH ₃
	H	s-Bu		CH ₃	OCHF ₂	5-cn ₃
	H	s-Bu		CH ₃	OCHF ₂	
	Ħ	s-Bu		CH ₃	OCHF ₂	5-CH ₃
35	H	s-Bu	•	CH ₃	OCHF ₂	3, 5-Cl ₂
	\mathbf{H}	s-Bu		СНз	OCF ₃	H
	Н :	s-Bu		CH 3	OCF ₃	3-C1
	H	s⊣Bu		CH3	OCF ₃	5-C1
	H	s-Bu		CH ₃	OCF ₃	3, 5-Cl ₂
40	H	s-Bu		CH ₃	OCF ₂ Br	Н
	H	s-Bu		СНз	OCF ₂ Br	3-C1
	H	s-Bu		CH ₃	OCF ₂ Br	3-CH ₃
	H	s-Bu		CH ₃	OCF ₂ Br	5-C1
	H	s-Bu		CH ₃	OCF ₂ Br	5-CH ₃
45 -	H	s-Bu	•••	CH ₃	OCF ₂ Br	3, 5-Cl ₂
-10	H	s-Bu		CH ₃	OCF 2 CHF 2	H
	H	s-Bu		CH ₃	OCF ₂ CHF ₂	3-C1
	11	อ_ทิก		0113	JOI 2 OIL 2	

PCT/JP02/07833

WO	03	/01	1(128

148

	H	s-Bu	•			CH ₃	OCF 2 CHF 2	5-C1
٠,			. *	• .			OCF 2 CHF 2	3, 5-Cl ₂
	H	s-Bu				CH ₃	OUT 2 CIT 2	
	H	s-Bu	•			CH ₃	OCF 2 CHFC1	H
	H	s-Bu			1	CH ₃	OCF 2 CHFC1	,3-C1
5	H	s-Bu				CH ₃	OCF 2 CHFC1	5-C1
Ū	H					CH ₃	OCF 2 CHFC1	3, 5-Cl ₂
		s-Bu						
	H	s-Bu		•		CH 3	OCF ₂ CHFBr	H
	H	s-Bu				CH ₃	OCF ₂ CF ₂ Br	H
	H	s-Bu				CH ₃	OCF 2 CHFCF 3	H
10	H	s-Bu				CH ₃	OCF ₂ CFBrCF ₃	Н
10						CH ₃	OCF 2 CHFOCF 3	H
	H	s-Bu						
	H	s-Bu				CH ₃	OCF ₂ CHFOCF ₂ CF ₂ Br	Н
	H	s-Bu	•		*	CH3	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	s-Bu				CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	3-C1
15		s-Bu				CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	
10							OCF 2 CHFOCF 2 CF 2 CF 3	3, 5-Cl ₂
	H	s-Bu.				CH ₃	·	
•	H	s-Bu		•		CH ₃	0 (L-45d)	H
	H	s-Bu				CH ₃	0 (L-45d)	3-C1
	H	s-Bu				CH ₃	0 (L-45d)	5-C1
20	H	s-Bu	•			CH ₃	0 (L-45d)	3, 5-Cl ₂
4U								0, 0 01 ₂
	H	s-Bu				CH ₃	OSO ₂ CF ₃	
	H	s-Bu		•		CH ₃	SF ₅	H
	H	s-Bu				Ėt	CF ₂ CF ₃	H
	H	s-Bu '	•			Et	C (CF ₃) ₂ OH	H
25	H	s-Bu				Et	C (CF ₃) ₂ OCH ₃	Н -
40						Et	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	s-Bu						
	H	s-Bu				Et	0 (L-45d)	Н.
	Н.	.s-Bu				OCH3	CF (CF ₃) ₂	H
	H	s-Bu		•		OCH ₃	C (CF ₃) ₂ OH	H
30	H	s-Bu				OCH3	C (CF ₃) ₂ OCH ₃	Н
00	H	s-Bu				OCH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
			•	•		OOILS.		H
	Н .	s-Bu				OCH3	0 (L-45d)	
*	H _.	s-Bu				OE t	CF (CF ₃) ₂	H
	H	s-Bu				0Et	C (CF ₃) ₂ OH	H
35	H	s-Bu				0Et	$C(CF_3)_2OCH_3$	H
	·H	s-Bu		•			OCF 2 CHFOCF 2 CF 2 CF 3	H,
			. •			0E t	0 (L-45d)	Н
	H	s-Bu			:			•
	·H	s-Bu				SCH ₃	CF (CF ₃) ₂	H
	H .	s-Bu	•			SCH ₃	C (CF ₃) ₂ OH	H
40	H	s-Bu				SCH ₃	$C (CF_3)_2 OCH_3$	Н -
	4-F	s-Bu		•		CH ₃	C (CF ₃) ₂ OH	H
		s-Bu	•			_	OCF 2 CHFOCF 2 CF 2 CF 3	H
	4-C1					-		
	4-CF ₃	s-Bu				CH ₃	0 (L-45d)	H
	5-F	s-Bu	· •			3	CF (CF ₃) ₂	H
45	6-F	s-Bu			:	CH ₃	$C (CF_3)_2 OH$	Н
	H	t-Bu				Н .	CF (CF ₃) ₂	H
		t-Bu				H	CF (CF ₃) ₂	3-F
	H	ı–bu				11	Or (Or 3/ 2	9-1.

	,, ,						
				•	149		
	H H	t-Bu t-Bu	· .	.]	H H H	$3-0$ CF $_2$ $0-4$ $3-0$ CHFCF $_2$ $0-4$ $3-0$ CF $_2$ CHF $0-4$	
	H H	t-Bu			H	3-0CF ₂ CF ₂ 0-4	
ŕ		t-Bu	•		H	$3-0C (CF_2 CF_3) = N-$	4
5	H	t-Bu			H	3-N=C (CF ₂ CF ₃) $0-$	
	H	t∸Bu	• *		H	3-N=C (CF ₂ CF ₂ CF ₃	
	H	t-Bu	•		H	3-N=C (Ph-4-CF ₃)	
	H	t-Bu			n F	CF (CF ₃) ₂	· H.
	H.	t-Bu			r F	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
10 .	H	t-Bu			r F		. 11
	H	t-Bu	•			4-0CF ₂ 0-5	H
	H	t-Bu	,		Cl	CF (CF ₃) ₂	H
	H	t-Bu			C1	OCF 2 CHFOCF 2 CF 2 CF 3	11
	H	t-Bu	••	•	Cl	3-0CF ₂ CF ₂ 0-4	
15	H	t-Bu			Cl	3-N=C (CF ₃) 0-4	
	H	t-Bu			Cl	4-0CF ₂ 0-5	
	H	t-Bu		•	Cl	4-0CF ₂ CF ₂ 0-5	. 11
	H	t-Bu			Br	CF ₂ CF ₃	. H
	Н	t-Bu			Br	OCF 2 CHFOCF 2 CF 2 CF 3	H
20	H	t-Bu			ĊНз	CF ₂ CF ₃	3-CH ₃
	H	t-Bu	•		CH ₃	CF ₂ CF ₃	5-C1
	H	t-Bu	•		CH ₃	CF ₂ CF ₃	5-CH ₃
	H	t-Bu	,		CH ₃	CF (CF ₃) ₂	e cur.
	H	t-Bu			CH ₃	CF (CF ₃) ₂	3-CH ₃
25	H	t–Bu			CH3	CF (CF ₃) ₂	5–F H
•	· H	t-Bu			CH ₃	C (CF ₃) ₂ OH	
	H	t-Bu			CH ₃	C (CF ₃) ₂ OCH ₃	H H
	H	t-Bu			CH3	OCHF ₂	3-C1
	H	t-Bu			CH ₃	OCHF ₂	
30	Η.	t-Bu			CH ₃	OCHF 2	3-CH ₃
	H	t-Bu	a •		CH ₃	OCHF ₂	5-C1
	H	t-Bu	•		CH3	OCHF ₂	5-CH ₃
	H	t-Bu	•		CH3	OCHF 2	3, 5-Cl ₂
	H	t-Bu			CH ₃	OCF ₃	H
35	H	t-Bu			CH ₃	OCF 3	3-C1
	H	t-Bu			CH ₃	OCF ₃	5-C1
	H	t-Bu	,		CH ₃	OCF ₃	3, 5-Cl ₂
	H	t-Bu			CH ₃	OCF 2Br	Н
	H	t-Bu			CH ₃	OCF ₂ Br	3-C1
40	H	t-Bu			CH ₃	OCF ₂ Br	3-CH ₃
	Н	t-Bu	•		CH ₃	OCF ₂ Br	5-C1
	H.	t-Bu			CH ₃	OCF ₂ Br	5-CH ₃
	H	t-Bu			CH3	OCF ₂ Br	3, 5-Cl ₂
	H	t-Bu			CH3	OCF 2 CHF 2	H
45	H	t-Bu	•		CH3	OCF ₂ CHF ₂	3-C1.
	H	t-Bu			CH3	OCF 2 CHF 2	5-C1
	H	t-Bu			CH ₃	OCF ₂ CHF ₂	3, 5-Cl ₂
			·				•

	w	O 03/011028		••			PCT/JP02/07833
					150)	
	H	t-Bu			СНз	OCF 2 CHFC1	H
	H	t-Bu			CH ₃	OCF ₂ CHFC1	3-C1
	Н	t-Bu			CH ₃	OCF 2 CHFC1	5-C1
	H	t-Bu			CH ₃	OCF ₂ CHFC1	3, 5-Cl ₂
5	H	t-Bu			·CH ₃	OCF 2 CHFBr	H
	H	t-Bu	* .		CH ₃	OCF ₂ CF ₂ Br	H
	H	t-Bu	•		CH ₃	OCF 2 CHFCF 3	H
	H	t-Bu			CH ₃	OCF ₂ CFBrCF ₃	H
	H	t-Bu		•	CH ₃	OCF 2 CHFOCF 3	H
10	H	t-Bu			CH3	OCF ₂ CHFOCF ₂ CF ₂ Br	H
	H	t-Bu			CH3	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	t-Bu	•		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	
	H	t-Bu			CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	5-C1
	H	t-Bu			CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	
15	H	t-Bu			CH ₃	0 (L-45d)	H
	H	t-Bu	•		CH3	· 0 (L-45d)	3-C1
	H	t-Bu			CH ₃	0 (L-45d)	5-C1
	H	t-Bu			CH3	0 (L-45d)	3, 5-Cl ₂
	H	t–Bu	•		CH ₃	OSO ₂ CF ₃	H
20	H	t–Bu			CH3	SF ₅	Н
	H	t–Bu			CH3	SCF ₃	Ħ
	H	t-Bu			CH _a .	$SCF_{2}Br$	Н
	H	t-Bu			CH ₃	S (0) CF ₃	Н
9.5	H	t-Bu	ē.		CH ₃	SO ₂ CF ₃	H
25	H	t-Bu			CH ₃	4-0CHFCF ₂ 0-5	
	H H	t-Bu t-Bu			Et	CF (CF ₃) ₂	H
	H	t-ви t-Ви			Et .	C (CF ₃) ₂ OH	Н
	H	t-Bu		. ,	Et Et	C (CF ₃) ₂ OCH ₃	H
30	H	t-Bu			Et .	OCF ₃ OCF ₂ Br	H
Ųΰ	H	t-Bu			Et	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	t-Bu			Et	0 (L-45d)	H
	H.	t-Bu			Pr-i	CF (CF ₃) ₂	H H
	H	t-Bu			CF ₃	CF ₂ CF ₃	H
35	H	t-Bu			OCH ₃	CF (CF ₃) ₂	H
• •	Н	t-Bu			OCH ₃	C (CF ₃) ₂ OH	H
	H	t-Bu	•		OCH ₃	C (CF ₃) ₂ OCH ₃	H
	H	t-Bu		-	OCH ₃	OCF ₂ Br	H
	H	t-Bu			OCH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
40	H	t-Bu			OCH ₃	0 (L-45d)	H
	H	t-Bu			0Et	CF (CF ₃) ₂	. H
	H	t–Bu			0Et	C (CF ₃) ₂ OH	Н
	H	t-Bu	•		0Et	C (CF ₃) ₂ OCH ₃	H
	H	t–Bu			SCH ₃	CF (CF ₃) ₂	H
45	H	t-Bu			SCH ₃	C (CF ₃) ₂ OH	H
	H	t-Bu		•	SCH ₃	$C(CF_3)_2OCH_3$	H
	H	t-Bu			. 2-	$(CH_2)_4-3-4-CF_1(CF_3)_2$	·
		•					

PCT/JP02/07833

WO.	03	/0.1	1	028	

151

2-0CF₂0-3-4-C1 2-0CF₂0-3-4, 6-Cl₂ CH₃ OCF 2 CHFOCF 2 CF 2 CF 3 H CH₃ 0 (L-45d)H CF (CF₃)₂ CH₃ H CH₃ $C(CF_3)_2OH$ H CH₃ OCF 2 CHFOCF 2 CF 2 CF 3 H CH_3 CF (CF₃)₂ H CH₃ C (CF₃) , OH H CH₃ OCF 2 CHFOCF 2 CF 2 CF 3 H CH₃ 0 (L-45d)H CH3 C (CF₃)₂OH H OCF 2 CHFOCF 2 CF 2 CF 3 CH₃ H CH₃ CF (CF₃)₂ H CH₃ $C(CF_3)_2OH$ H CH_3 CF (CF₃)₂ H СНз C (CF 3) 2 OH H OCF 2 CHFOCF 2 CF 2 CF 3 CH_3 H CH3 0 (L-45d) H CH₃ OCF 2 CHFOCF 2 CF 2 CF 3 . H CH₃ CF (CF₃)₂ H CH₃ CF (CF₃)₂ H CH₃ $C(CF_3)_2OH$ H CH₃ C (CF₃)₂OCH₃ H CH3 OCF₃ H CH₃ OCF₂Br H CH3 OCF 2 CHF 2 H СНз OCF 2 CHFC1 : H CH₃ OCF 2 CHFBr H СHз OCF 2 CF 2 Br H CH₃ OCF 2 CHFCF 3 H CH₃ OCF 2 CFBrCF3 H CH3 OCF 2 CHFOCF 3 H OCF 2 CHFOCF 2 CF 2 CF 3 CH3 H CH₃ 0 (L-45d)H СHз 0 (L-45d)H CH₃ CF (CF₃)₂ H C (CF₃) 20H CH_3 H CH₃ OCF 2 CHFOCF 2 CF 2 CF 3 H CH₃ 0 (L-45d)H CF (CF₃)₂ CH₃ H CH₃ C (CF₃) 20H H $OCF_2CHFOCF_2CF_2CF_3$ CH₃ H CH3 CF (CF₃)₂ H CH3 C (CF₃) 20H H CH₃ OCF 2 CHFOCF 2 CF 2 CF 3 H СHз CF (CF₃)₂ H

```
H
                                t-Bu
                H
                               t-Bu
                4-F
                               t-Bu
                4-C1
                               t-Bu
      5
                4-CF<sub>3</sub>
                               t-Bu
                5-F
                               t-Bu
                6-F
                               t-Bu
               H
                              c-Bu
               H
                              c-Bu
   10
               H
                              c-Bu
               H
                              c-Bu
               H
                              n-Pen
              H
                              CH2CH2Pr-i
              H
                              CH2CH(CH3) Et
   15 .
              H
                              CH<sub>2</sub>Bu-t
              H
                              CH (CH<sub>3</sub>) Pr-n
              H
                              CH (CH<sub>3</sub>) Pr-n
              H
                              CH (CH<sub>3</sub>) Pr-n
              H
                              CH (CH<sub>3</sub>) Pr-n
   20
              H
                             CH (CH<sub>3</sub>) Pr-i
              H
                             CH (Et) 2
             H
                             C (CH<sub>3</sub>) <sub>2</sub>Et
             H
                             C (CH<sub>3</sub>) <sub>2</sub>Et
             H
                             C (CH<sub>3</sub>) <sub>2</sub>Et
  25
                             C (CH<sub>3</sub>) <sub>2</sub>Et
             H
             H
                             C (CH<sub>3</sub>) <sub>2</sub>Et
             H
                            C (CH<sub>3</sub>)<sub>2</sub>Et
             H
                            C (CH<sub>3</sub>)<sub>2</sub>Et
             H
                            C (CH<sub>3</sub>) <sub>2</sub>Et
 30
             H
                            C(CH_3)_2Et
             H
                            C(CH<sub>3</sub>)<sub>2</sub>Et
             H
                            C (CH<sub>3</sub>) <sub>2</sub>Et
            H
                            C (CH<sub>3</sub>) <sub>2</sub>Et
            H
                            C (CH<sub>3</sub>) <sub>2</sub>Et
 35
            H
                            C(CH<sub>3</sub>)<sub>2</sub>Et
            4-F
                            C(CH_3)_2Et
            4-C1
                           C (CH<sub>3</sub>) <sub>2</sub>Et
            4-CF.3
                           C(CH<sub>3</sub>)<sub>2</sub>Et
            5-F
                           C (CH<sub>3</sub>) <sub>2</sub>Et
            6-F
40
                           C (CH<sub>3</sub>) <sub>2</sub>Et
            H
                           CH<sub>2</sub>Hex-c
           H
                           CH2CH2F
           H
                           CH2CH2C1
           H
                           CH2CF3
45
           H
                           CH<sub>2</sub>CF<sub>3</sub>
           H
                          CH<sub>2</sub>CF<sub>3</sub>
```

H

(S) -CH (CH₃) CH₂F

****		104	4040
wt.	I 113	/V/ E	1028

	W	O 03/011028					
					152		
	. Н	(R) -CH (CH ₃) CH ₂ Br			CH ₃	C (CF ₃) ₂ OH	- H
	H	(S) -CH (CH ₃) CH ₂ Br			CH ₃	C (CF ₃) ₂ OH	H
	H	C (CH ₃) 2 CH ₂ C1			CH ₃	CF (CF ₃) ₂	H
	Н	C (CH ₃) ₂ CH ₂ C1			CH ₃	C (CF ₃) ₂ OH	H
5	Н	C (CH ₃) ₂ CH ₂ C1		•	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
U	H	C (CH ₃) ₂ CH ₂ C1			CH ₃	0 (L-45d)	H
	H	C (CH ₃) ₂ CH ₂ Br			CH ₃	C (CF ₃) ₂ OH	H
	Н	C (CH ₃) 2 CH ₂ Br			CH ₃		H
		C (CH ₃) 2 CHBrCH ₂ Br			CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	
10	H				-	CF (CF ₃) ₂	H
10	H	CH ₂ OCH ₃			CH3	C (CF ₃) ₂ OH	Ĥ
	H	CH ₂ CH ₂ OCH ₃	•		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H.
	. Н	CH ₂ CH ₂ OEt			CH3	CF (CF ₃) ₂	H
	H	CH ₂ CH ₂ OC (0) NHE t			CH ₃	CF (CF ₃) ₂	H
1.5	H	CH ₂ CH ₂ OC (0) NHE t			CH3	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
15	H	CH ₂ CH ₂ OPh			CH3	C (CF ₃) ₂ OH	H
	H	CH ₂ CH ₂ O (Ph-2-C1)	٠.		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	CH ₂ CH ₂ O (Ph-3-C1)			CH ₃	CF (CF ₃) ₂	H
	H	CH_2CH_2O (Ph-4-C1)			CH3	C (CF ₃) ₂ OH	Н
	H	CH ₂ CH (OH) CH ₃			·CH3	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	Н
20	H	CH ₂ CH (OH) Et			CH ₃	CF (CF ₃) ₂	. H .
	H	CH ₂ CH (OH) Ph			CH3	C (CF ₃) ₂ OH	Н_
	H	CH ₂ CH (OH) CH ₂ Ph			CH3 .	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	CH (CH ₃) CH ₂ OH			CH ₃	CF (CF ₃) ₂	H
	H	(R) -CH (CH ₃) CH ₂ OH			СНз	C (CF ₃) ₂ OH	H
25	H	(S) $-CH(CH_3)CH_2OH$			CH3	OCF 2 CHFOCF 2 CF 2 CF 3	H
•	H	CH (CH ₃) CH ₂ OCH ₃			CHa	CF (CF ₃) ₂	H
	H	CH (CH ₃) CH ₂ OCH ₃			СНз	C (CF ₃) ₂ OH	H
	H	CH (CH ₃) CH ₂ OCH ₃			CH3	C (CF ₃) ₂ OCH ₃	H
	H	CH (CH ₃) CH ₂ OCH ₃			CH ₃	C (CF ₃) ₂ OEt	H
30	H	CH (CH ₃) CH ₂ OCH ₃			CH3	$C (CF_3)_2 OCH_2 CH = CF_2$	H
	H	CH (CH ₃) CH ₂ OCH ₃			CH ₃	$C (CF_3)_2 OCH_2 CF = CF_2$	H
	H	CH (CH ₃) CH ₂ OCH ₃			CH3	$C (CF_3)_2 OCH_2 CH = CCl_2$	
	H	CH (CH ₃) CH ₂ OCH ₃			CH3	C (CF ₃) ₂ OCH ₂ Ph	H
	H	CH (CH ₃) CH ₂ OCH ₃			СНз	$C(CF_3)(CF_2C1)OH$	H
35	H	CH (CH ₃) CH ₂ OCH ₃			CH ₃	$C (CF_3) (CF_2C1) OCH_3$	·H
	H	CH (CH ₃) CH ₂ OCH ₃			СНз	$C (CF_3) (CF_2 CF_3) OH$	H
•	H.	$CH(CH_3)CH_2OCH_3$			СНз	C (CF ₃) (CF ₂ CF ₃) OCH ₃	· H
	H	CH (CH ₃) CH ₂ OCH ₃			CH3	OCHF ₂	H
	H	$CH (CH_3) CH_2 OCH_3$			CH3.	OCHF ₂	3-C1
40	H	CH (CH ₃) CH ₂ OCH ₃			CH ₃	OCHF ₂	3-CH ₃
•	H	$CH(CH_3)CH_2OCH_3$			CH ₃	OCHF ₂	5-C1
	H	$CH(CH_3)CH_2OCH_3$			CH ₃	OCHF ₂	5-CH ₃
	H	$CH(CH_3)CH_2OCH_3$			CH ₃	OCHF ₂	3, 5-Cl ₂
	H	CH (CH ₃) CH ₂ OCH ₃			CH ₃	OCF ₃	H
45	H	CH (CH ₃) CH ₂ OCH ₃			CH ₃	OCF ₃	3-C1
	H	CH (CH ₃) CH ₂ OCH ₃			CH3	OCF ₃	5-C1
	Η.	CH (CH ₃) CH ₂ OCH ₃			CH ₃	OCF ₃	3, 5-C1 ₂
		_			-	-	2

WO 03/011028

				100	•			
	H .	CH (CH ₃) CH ₂ OCH ₃		CH ₃	OCF ₂ Br		H	
	H	CH (CH ₃) CH ₂ OCH ₃		CH ₃	OCF ₂ Br		3-C1	
	. H	CH (CH ₃) CH ₂ OCH ₃		СНз	OCF ₂ Br		3-CH ₃	
	H	CH (CH ₃) CH ₂ OCH ₃		. CH ₃	OCF ₂ Br	•	5-C1	
5	H	CH (CH ₃) CH ₂ OCH ₃		CH ₃	OCF ₂ Br		5-CH ₃	
อ	H	CH (CH ₃) CH ₂ OCH ₃	• •	CH ₃	OCF ₂ Br	.,	3, 5-Cl ₂	
	H .	CH (CH ₃) CH ₂ OCH ₃	2	CH ₃	OCF 2 CHF 2		H	
		CH (CH ₃) CH ₂ OCH ₃	•	CH ₃	OCF 2 CHF 2	•	3-C1	
٠,	H	CH (CH ₃) CH ₂ OCH ₃		CH ₃	OCF 2 CHF 2		5-C1	
1 0	H	CH (CH ₃) CH ₂ OCH ₃		CH ₃	OCF 2 CHF 2	•	3, 5-Cl ₂	
10	H			CH ₃	OCF 2 CHFC 1		H	
	H.	CH (CH ₃) CH ₂ OCH ₃ CH (CH ₃) CH ₂ OCH ₃		CH ₃	OCF 2 CHFC1		3-C1	
	H			CH ₃	OCF 2 CHFC 1		5-C1	
	H	CH (CH ₃) CH ₂ OCH ₃		CH ₃	OCF 2 CHFC 1		3, 5-Cl ₂	
	H	CH (CH ₃) CH ₂ OCH ₃		CH ₃	OCF ₂ CHFBr	•"		ž Ŧ
15	H	CH (CH ₃) CH ₂ OCH ₃		CH ₃	OCF ₂ CF ₂ Br			H
	H	CH (CH ₃) CH ₂ OCH ₃		CH ₃	OCF ₂ CHFCF ₃			H
	H	CH (CH ₃) CH ₂ OCH ₃			OCF ₂ CFBrCF		1	H.
•	H	·CH (CH ₃) CH ₂ OCH ₃	•	CH ₃	OCF 2 CHFOCF	-		H
	H	CH (CH ₃) CH ₂ OCH ₃		CH ₃	OCF 2 CHFOCF			H
20	H	CH (CH ₃) CH ₂ OCH ₃		CH ₃	OCF 2 CHFOCF			H
	H	CH (CH ₃) CH ₂ OCH ₃		CH ₃	OCF 2 CHFOCF		3-0	
	H -	CH (CH ₃) CH ₂ OCH ₃		ĊH₃	OCF 2 CHFOCF		. 5-C	
	H	CH (CH ₃) CH ₂ OCH ₃		CH ₃ .	OCF 2 CHFOCF		3, 5-Cl	
	H	CH (CH ₃) CH ₂ OCH ₃	•	CH ₃	0 (L-45d)	201. 201. 3		1 2 H
25	H	CH (CH ₃) CH ₂ OCH ₃		CH ₃	0 (L-45d)		3-C	
	H _	CH (CH ₃) CH ₂ OCH ₃		CH ₃			5-C	
	H	CH (CH ₃) CH ₂ OCH ₃		CH ₃	0 (L-45d) 0 (L-45d)		3, 5-C1	
	H	CH (CH ₃) CH ₂ OCH ₃		CH ₃	0.02 CF ₃			2 H
	H	CH (CH ₃) CH ₂ OCH ₃		СНз				H
30	H	CH (CH ₃) CH ₂ OCH ₃		CH ₃	SF ₅			H
	H.	CH (CH ₃) CH ₂ OCH ₃		CH ₃	SCF ₃			H.
	H .	CH (CH ₃) CH ₂ OCH ₃		CH ₃	SCF ₂ Br			H.
	H	CH (CH ₃) CH ₂ OCH ₃		CH3	S (0) CF ₃			H
	H _.	CH (CH ₃) CH ₂ OCH ₃		CH 3	SO ₂ CF ₃	·		
35	4-F	CH (CH ₃) CH ₂ OCH ₃		CH 3	CF (CF ₃) ₂			H
	4-F	CH (CH ₃) CH ₂ OCH ₃		CH3	C (CF ₃) 2 OH	I		Н
	4-F	CH (CH ₃) CH ₂ OCH ₃		CH3	C (CF ₃) ₂ OCI		1	Н
	4-F	CH (CH ₃) CH ₂ OCH ₃		CH₃	OCF 2 CHFOCE	2 CF 2 CF 3		Н
	4-F	$CH(CH_3)CH_2OCH_3$.:	СНз	0 (L-45d)			
40	4-C1	$CH(CH_3)CH_2OCH_3$		СНз	C (CF ₃) ₂ OH	מת מה ה		H
	4 –CF $_3$	CH (CH ₃) CH ₂ OCH ₃		CH ₃	OCF 2 CHFOC	r ₂ Cr ₂ Cr ₃		H
	5-F	$CH(CH_3)CH_2OCH_3$		CH ₃	0 (L-45d)	•		H
	6-F	$CH(CH_3)CH_2OCH_3$		CH ₃	CF (CF ₃) ₂			H
	H	CH (CH ₃) CH ₂ OEt		CH3	CF (CF ₃) ₂			H.
45	H	CH (CH ₃) CH ₂ OPr-1	l .	. CH ₃	C (CF ₃) ₂ OH			H
	Н .	CH (CH ₃) CH ₂ OBu-i		CH ₃	OCF 2 CHFOCI	CF ₂ CF ₃		H
	Η .	CH (CH ₃) CH ₂ OCH ₂	CH ₂ OCH ₃	CH ₃	CF (CF ₃) ₂	•		H
	-							

	W O 03	011020				
				154		
	TT	CH (CH) CH OCH CH SCH		СНз	C (CF ₃) ₂ OH	H.
	H	CH (CH ₃) CH ₂ OCH ₂ CH ₂ SCH ₃		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	CH (CH ₃) CH ₂ OCH ₂ CH ₂ SEt		CH ₃	CF (CF ₃) ₂	H
	H	CH (CH ₃) CH ₂ OCH ₂ Ph		CH ₃	C (CF ₃) ₂ OH	H
	H	CH (CH ₃) CH ₂ OC (O) CH ₃		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
5	H	CH (CH ₃) CH ₂ OC (0) CF ₃		-	CF (CF ₃) ₂	H.
	H	CH (CH ₃) CH ₂ OC (O) NHCH ₃		CH ₃	CF (CF ₃) ₂	Н
•	H	CH (CH ₃) CH ₂ OC (O) NHE t		CH 3		H
	H .	CH (CH ₃) CH ₂ OC (O) NHE t		CH 3	C (CF ₃) ₂ OH	H
	H	CH (CH ₃) CH ₂ OC (O) NHE t		CH 3	C (CF ₃) ₂ OCH ₃	H
10	H	CH (CH ₃) CH ₂ OC (O) NHE t		CH ₃	OCF Br	H
	H	CH (CH ₃) CH ₂ OC (O) NHEt	•	CH 3	OCF CHE	H
	H	CH (CH ₃) CH ₂ OC (O) NHE t		CH ₃	OCF CHF 2	H.
	H	CH (CH ₃) CH ₂ OC (O) NHE t		CH ₃	OCF CHFC1	Н.
	H	CH (CH ₃) CH ₂ OC (O) NHE t		CH ₃	OCF CE Pr	H
15	H	CH (CH ₃) CH ₂ OC (O) NHE t		CH 3	OCF ₂ CF ₂ Br	H.
	H	CH (CH ₃) CH ₂ OC (O) NHEt		CH 3	OCF CHFCF 3	H · ·
	H	CH (CH ₃) CH ₂ OC (O) NHEt		CH ₃	OCF 2CFBrCF 3	Н
	. Н	CH (CH ₃) CH ₂ OC (O) NHE t		CH ₃	OCF 2 CHFOCF 3	H
,	H	CH (CH ₃) CH ₂ OC (O) NHE t		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	Н
20	H	CH (CH ₃) CH ₂ OC (O) NHE t		CH ₃	0 (L-45d)	H
	4-F	CH (CH ₃) CH ₂ OC (O) NHE t		CH ₃	C (CF ₃) ₂ OH	H
	4-C1	CH (CH ₃) CH ₂ OC (O) NHE t		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	Н
	4-CF ₃	CH (CH ₃) CH ₂ OC (O) NHEt		. CH3	0 (L-45d)	H
	5-F	CH (CH ₃) CH ₂ OC (O) NHE t		CH 3	CF (CF ₃) ₂	H
25	6-F	CH (CH ₃) CH ₂ OC (O) NHE t		CH ₃ :	C (CF ₃) ₂ OH	H
	H	CH (CH ₃) CH ₂ OC (O) NHPr-n	•	CH 3	C (CF ₃) ₂ OH OCF ₂ CHFOCF ₂ CF ₂ CF ₃	Н
	H.	CH (CH ₃) CH ₂ OC (O) NHPr-i		CH ₃	CF (CF ₃) ₂	H
	H	CH (CH ₃) CH ₂ OC (O) NHPr-c		CH 3	Cr (Cr ₃) ₂ OH	H
	H .	CH (CH ₃) CH ₂ OC (O) NHBu-t	D	CH3	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	Н
30	H	CH (CH ₃) CH ₂ OC (O) NHCH ₂ Cl	11 VVII [,3	CH 3	CF (CF ₃) ₂	H
	H	CH (CH ₃) CH ₂ OC (O) NHCH ₂ Cl		CH ₃	C (CF ₃) ₂ OH	Н
	H	CH (CH ₃) CH ₂ OC (O) NHCH ₂ C		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	CH (CH ₃) CH ₂ OC (O) NHCH ₂ C		CH ₃	CF (CF ₃) ₂	H
۰	H	CH (CH ₃) CH ₂ OC (O) NHCH ₂ P		CH ₃	C (CF ₃) ₂ OH	H :
35	H	CH (CH ₃) CH ₂ OC (O) NHPh		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	CH (CH ₃) CH ₂ OC (O) N (CH ₃)		CH ₃	CF (CF ₃) ₂	Н
•	H	CH (CH ₃) CH ₂ OC (O) N (Et) ₂		CH ₃	C (CF ₃) ₂ OH	H
	H	CH (CH ₃) CH ₂ OC (0) N (Pr-i		CH ₃		H
40	H	CH (CH ₃) CH ₂ OC (0) N (CH ₃)		CH ₃	CF (CF ₃) ₂	H
40	H	CH (CH ₃) CH ₂ OC (0) (T-19)		CH ₃	C (CF ₃) ₂ OH	H
	H	CH (CH ₃) CH ₂ OC (0) (T-22)		_		Н
	H	CH (CH ₃) CH ₂ OC (0) (T-23)		CH ³	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	CH (CH ₃) CH ₂ OC (0) (T-24)		CH3	CF (CF ₃) ₂	H
	H	CH (CH ₃) CH ₂ OP (O) (OEt) ₂		CH3		Н
45		CH (CH ₃) CH ₂ OP (S) (OCH ₃)		СНз	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	CH (CH ₃) CH ₂ OP (S) (OEt) ₂	:	CH ₃	CF (CF ₃) ₂	H
	H	CH (CH ₃) CH ₂ OPh		CH ₃	C (CF ₃) ₂ OH	. 11

٠	_	_
ı	_	_
ı		:1

	Ĥ	CH (CH ₃) CH ₂ O (Ph-4-C1)		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
				CH ₃	CF (CF ₃) ₂	H
	H	CH (CH ₃) CH ₂ O (Ph-3-CF ₃)				H
	H	CH (Et) CH ₂ OH		CH ₃	C (CF ₃) ₂ OH	
	H	CH (Et) CH ₂ OCH ₃	٠	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	Н
5	Ĥ	CH (Ph) CH ₂ OH		CH₃	CF (CF ₃) ₂	H.
	H ((R) -CH (Ph) CH ₂ OH		СНз	$C(CF_3)_2OH$	H :
	H	CH (Ph-2-C1) CH2OH		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	CH (Ph-4-C1) CH ₂ OH		CH ₃	CF (CF ₃) ₂	H
	H	CH (Ph-4-Ph) CH ₂ OH		CH ₃	$C(CF_3)_2OH$	H H
10	H	C (CH ₃) ₂ CH ₂ OH		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
.10	H.	C (CH ₃) ₂ CH ₂ OCH ₃		CH ₃	CF (CF ₃) ₂	H
				CH ₃	C (CF ₃) ₂ OH	H
,	H	C (CH ₃) ₂ CH ₂ OCH ₃				H
	H	C (CH ₃) ₂ CH ₂ OCH ₃		. CH ₃	C (CF ₃) ₂ OCH ₃	
	H	$C (CH_3)_2 CH_2 OCH_3$		CH ₃	OCHF ₂	H
15	H	C (CH ₃) ₂ CH ₂ OCH ₃		CH ₃	OCF ₃	H
	H	C (CH ₃) ₂ CH ₂ OCH ₃		CH3	OCF ₂ Br	H
	H .	C (CH ₃) ₂ CH ₂ OCH ₃		CH ₃	0 CF $_2$ CHF $_2$	H
	H	C (CH ₃) ₂ CH ₂ OCH ₃		CH ₃	OCF 2 CHFC1	H
	H	C (CH ₃) ₂ CH ₂ OCH ₃		CH ₃	OCF 2 CHFBr	H
20	H	C (CH ₃) 2 CH ₂ OCH ₃		CH ₃	OCF 2 CF 2 Br	H
	H	C (CH ₃) ₂ CH ₂ OCH ₃		CH ₃	OCF 2 CHFCF 3	H
	H	C (CH ₃) ₂ CH ₂ OCH ₃		CH ₃	OCF 2 CFBrCF 3	H
	H	C (CH ₃) 2 CH ₂ OCH ₃		CH ₃	OCF 2 CHFOCF 3	H
		C (CH ₃) ₂ CH ₂ OCH ₃		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	Н
0.5	H			CH ₃	0 (L-45d)	H
25	H	C (CH ₃) ₂ CH ₂ OCH ₃			·	H.
	H	C (CH ₃) ₂ CH ₂ OCH ₃		CH 3	OSO ₂ CF ₃	H
	H ;	C (CH ₃) ₂ CH ₂ OCH ₃		CH 3	SF ₅	
	H	C (CH ₃) ₂ CH ₂ OCH ₃		СНз	SCF ₃	H
	H	C (CH ₃) ₂ CH ₂ OCH ₃		СНз	SCF ₂ Br	H
30	H	C(CH ₃) ₂ CH ₂ OCH ₃		CH ₃	S (0) CF ₃	H
	H	$C(CH_3)_2CH_2OCH_3$		CH ₃	SO_2CF_3	Н
• '	4-F	$C(CH_3)_2CH_2OCH_3$		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	4-C	$C (CH_3)_2 CH_2 OCH_3$		CH ₃	0 (L-45d)	H
	4-C	F ₃ C (CH ₃) ₂ CH ₂ OCH ₃		CH ₃	CF (CF ₃) ₂	H -
35	5-F	C (CH ₃) 2CH2OCH3			C (CF ₃) ₂ OH	H
	6-F	C (CH ₃) 2 CH ₂ OCH ₃		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	· H	C (CH ₃) 2 CH ₂ OC (0) CH ₃		CH ₃ .		H
	H	C (CH ₃) 2 CH ₂ OC (0) CF ₃		CH ₃	C (CF ₃) ₂ OH	H
		C (CH ₃) 2 CH ₂ OC (O) NHCH ₃		CH ₃		. Н
40	H			_	. , -	H
40	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃		CH 3		
	H	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₃		CH ₃	C (CF ₃) ₂ OCH ₃	H.
	H ·	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃		CH _{3.}	OCF ₃	H
	. Н	$C (CH_3)_2 CH_2 OC (0) NHCH_3$		CH ₃	OCF ₂ Br	H
•	H	$C (CH_3)_2 CH_2 OC (0) NHCH_3$		CH ₃	OCF 2 CHF 2	H
45	H	C (CH ₃) $_2$ CH $_2$ OC (O) NHCH $_3$		СНз	OCF 2 CHFC1	H
	H	C (CH ₃) 2 CH ₂ OC (O) NHCH ₃		СНз	OCF 2 CHFBr	H
	H	C (CH ₃) 2 CH ₂ OC (O) NHCH ₃		CH ₃	OCF 2 CF 2 Br	H
				-		

	W.O 0.			•	
			156		• '
	· rt	C (CII) CII OC (O) NHCH	CH3	OCF 2 CHFCF 3	Ħ
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃ C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CH ₃	OCF ₂ CFBrCF ₃	H
	H		CH ₃	OCF ₂ CHFOCF ₃	H
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃ C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
_	H H	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₃	CH ₃	0 (L-45d)	H.
5	п 4–F	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₃	CH ₃	0 (L-45d)	H
	4-r 4-C1	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₃	CH ₃	CF (CF ₃) ₂	H
	4-CF ₃	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₃	CH ₃	C (CF ₃) ₂ OH	H
	4-cr ₃ 5-F	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
10	6-F	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₃	СНз	0 (L-45d)	H
10 .	H	C (CH ₃) ₂ CH ₂ OC (O) NHE t	CH ₃	CF (CF ₃) ₂	H
	H	C (CH ₃) ₂ CH ₂ OC (O) NHE t	CH ₃	C (CF ₃) ₂ OH	H
•	H	C (CH ₃) ₂ CH ₂ OC (O) NHE t	СНз	C (CF ₃) ₂ OCH ₃	H
	H	C (CH ₃) ₂ CH ₂ OC (O) NHE t	СНз	OCF ₃	H
15	H	C (CH ₃) ₂ CH ₂ OC (O) NHE t	CH3	OCF ₂ Br	H
1.0	H	C (CH ₃) ₂ CH ₂ OC (O) NHE t	CH3.	OCF ₂ CHF ₂ .	Ĥ
	H	C (CH ₃) 2CH ₂ OC (O) NHE t	СНз	OCF ₂ CHFCl	H
	H	C (CH ₃) 2CH ₂ OC (O) NHE t	CH ₃	OCF ₂ CHFBr	H
	H .	C (CH ₃) ₂ CH ₂ OC (O) NHEt	СНз	OCF ₂ CF ₂ Br	H
20	Н	$C (CH_3)_2 CH_2 OC (0) NHEt$	СНз	OCF ₂ CHFCF ₃	H
	H	$C (CH_3)_2 CH_2 OC (O) NHE t$	CH3	OCF ₂ CFBrCF ₃	H
	Ĥ	$C (CH_3)_2 CH_2 OC (0) NHE t$	CH3	OCF ₂ CHFOCF ₃	H
	- H	C (CH $_3$) $_2$ CH $_2$ OC (O) NHE t	CH3	OCF 2CHFOCF 2CF 2CF 3	H
	H	$C (CH_3)_2 CH_2 OC (0)$ NHE t	СНз	0 (L-45d)	H
25	4-F	$C (CH_3)_2 CH_2 OC (0) NHE t$	СНз	CF (CF ₃) ₂	H
	4-C1	$C (CH_3)_2 CH_2 OC (0) NHE t$	CH ₃	C (CF ₃) ₂ OH	Н
	4-CF ₃		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	. Н
	5-F	C (CH ₃) ₂ CH ₂ OC (0) NHE t	CH3	0 (L-45d)	·п
	6-F	C (CH ₃) ₂ CH ₂ OC (0) NHE t	CH3		n H
30	H	C (CH ₃) ₂ CH ₂ OC (0) NHPr-n	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	C (CH ₃) ₂ CH ₂ OC (O) NHPr-i	CH₃ CH₃	$CF (CF_3)_2$ $C (CF_3)_2 OH$	H
	H	C (CH ₃) ₂ CH ₂ OC (O) NHPr-c	СП _З	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₂ CF ₃		CF (CF ₃) ₂	H
0.5	H	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₂ CH ₂ OCH C (CH ₃) ₂ CH ₂ OC (O) NHCH ₂ CH ₂ SCH		C (CF ₃) ₂ OH	H
35	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₂ CH ₂ CH ₂ CH ₂			H
	H	$C (CH_3)_2 CH_2 OC (O) NHCH_2 CH=CH_2$	CH ₃	CF (CF ₃) ₂	H
	H	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₂ Ph	CH3	C (CF ₃) ₂ OH	·H
	H H	$C (CH_3) _2 CH_2 OC (O) N (CH_3) _2$	CH ₃	OCF 2CHFOCF 2CF 2CF 3	H
40	H ·	C (CH ₃) ₂ CH ₂ OP (S) (OCH ₃) ₂	CH ₃	CF (CF ₃) ₂	H
40	n H	CH ₂ CH (0Et) ₂	CH ₃	C (CF ₃) ₂ OH	H
	H	CH ₂ CH ₂ CH ₂ CH ₂ OH	CHa	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	н Н	CH ₂ CH ₂ CH ₂ OCH ₃	CH ₃	CF (CF ₃) ₂	H
	п Н	CH (CH ₃) CH ₂ CH ₂ OCH ₃	CH ₃		H.
45	H	CH (CH ₃) CH ₂ CH ₂ OEt	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
40	H	CH (CH ₃) CH ₂ CH ₂ OPr-n	CH ₃	CF (CF ₃) ₂	H
	H	CH (CH ₃) CH ₂ CH ₂ OBu-i	CH ₃	C (CF ₃) 2 OH	H
	, 11	ou (oug) ougourgond r	O. I. S	3, Z OAK	

•						
	Η.		CH (CH ₃) CH ₂ CH ₂ OCH ₂ CF ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	Н
	H		CH (CH ₃) CH ₂ CH ₂ OCH ₂ CH ₂ OCH ₃	СНз	CF (CF ₃) ₂	H
	H		CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OC (0) NHE t	CH3	$C(CF_3)_2OH$	H
	H		T-10	CH3	OCF 2 CHFOCF 2 CF 2 CF 3	H
5	H		M-4a	CH ₃	CF (CF ₃) ₂	H
	H		M-5a	CH ₃	C (CF ₃) ₂ OH	H
	H		CH ₂ (M-16a)	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	
	H		-			H
			CH ₂ (M-24a)	CH3	CF (CF ₃) ₂	H
10	H		CH ₂ SCH ₃	CH3	CF (CF ₃) ₂	H
10	H		CH ₂ SCH ₃	CH ₃	C (CF ₃) ₂ OH	H
	H		CH ₂ SCH ₃	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H		CH ₂ CH ₂ SCH ₃	СНз	CF (CF ₃) ₂	H
	H		CH ₂ CH ₂ SCH ₃	CH 3	C (CF ₃) ₂ OH	H
	H		CH ₂ CH ₂ SCH ₃	CH3	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
15	H		CH ₂ CH ₂ S (0) CH ₃	CH ₃	CF (CF ₃) ₂	. Н
	Н		CH ₂ CH ₂ SO ₂ CH ₃	СНз	$C(CF_3)_2OH$	H
	H		CH ₂ CH ₂ SEt	CH a	OCF 2 CHFOCF 2 CF 2 CF 3	H
	\mathbf{H}		CH ₂ CH ₂ SPr-i	CH3	CF (CF ₃) ₂	H
·	H		CH ₂ CH (CH ₃) SCH ₃	СНз	C (CF ₃) ₂ OH	H
20	H		CH ₂ CH (CH ₃) SO ₂ CH ₃	CH3	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H		CH ₂ CH (CH ₃) SEt	CH ₃	CF (CF ₃) ₂	. Н
	H		CH ₂ CH (CH ₃) SO ₂ Et	CH ₃	C (CF ₃) ₂ OH	H
	H		CH (CH ₃) CH ₂ SH	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H.
	H		CH (CH ₃) CH ₂ SCH ₃	C1	CF (CF ₃) ₂	Ħ
25	H		CH (CH ₃) CH ₂ SCH ₃	СНз	CF (CF ₃) ₂	H
	\cdot H		CH (CH ₃) CH ₂ SCH ₃	CH ₃	C (CF ₃) ₂ OH	Н
	H	(R)	-CH (CH ₃) CH ₂ SCH ₃	СНз	C (CF ₃) ₂ OH	· H
	H		-CH (CH ₃) CH ₂ SCH ₃	CH ₃	C (CF ₃) 20H	H
	H		CH (CH ₃) CH ₂ SCH ₃	CH ₃	C (CF ₃) ₂ OCH ₃	H
30	H		CH (CH ₃) CH ₂ SCH ₃	CH3	C (CF ₃) ₂ OEt	H
	H		CH (CH ₃) CH ₂ SCH ₃	CH ₃	$C (CF_3)_2 OCH_2 CH = CH_2$	H
	H		CH (CH ₃) CH ₂ SCH ₃	CH ₃	C (CF ₃) 20CH ₂ CH=CF ₂	. H
	H		CH (CH ₃) CH ₂ SCH ₃	CH3	C (CF ₃) 20CH ₂ CH=CCl ₂	- Н
	H	•	CH (CH ₃) CH ₂ SCH ₃	CH ₃	$C (CF_3)_2 OCH_2 CF = \dot{C}F_2$	H
35	H.		CH (CH ₃) CH ₂ SCH ₃	CH ₃	$C (CF_3)_2 OCH_2 C \equiv CH$	H
00	Н		CH (CH ₃) CH ₂ SCH ₃	CH ₃	C (CF ₃) ₂ OCH ₂ Ph	Н.
	H		CH (CH ₃) CH ₂ SCH ₃	CH ₃	C (CF ₃) (CF ₂ C1) OH	H
	H		CH (CH ₃) CH ₂ SCH ₃	CH ₃	C (CF ₃) (CF ₂ C1) OCH ₃	
	H.		CH (CH ₃) CH ₂ SCH ₃	-		H
40				CH ₃	C (CF ₃) (CF ₂ CF ₃) OH	H
40	Η.		CH (CH ₃) CH ₂ SCH ₃	CH ₃	C (CF ₃) (CF ₂ CF ₃) OCH ₃	H
	H		CH (CH ₃) CH ₂ SCH ₃	CH ₃	OCF ₃	H
	H		CH (CH ₃) CH ₂ SCH ₃	CH ₃	OCF ₂ Br	H
	H		CH (CH ₃) CH ₂ SCH ₃	. CH ₃	OCF 2 CHF 2	H
	H		CH (CH ₃) CH ₂ SCH ₃	CH,3	OCF 2 CHFC1	H
45	H		CH (CH ₃) CH ₂ SCH ₃	CH ₃	OCF 2 CHFBr	H
	H		CH (CH ₃) CH ₂ SCH ₃	CH3	OCF ₂ CF ₂ Br	H
	H		CH (CH ₃) CH ₂ SCH ₃	CH3	OCF 2 CHFCF 3	Ή.
			•			

PCT/JP02/07833

	•		158		
şê.	•		•	AAD ADD AD	IJ
	H $CH (CH_3) CH_2 SCH_3$		CH3	OCF ₂ CFBrCF ₃	H H
	H CH (CH ₃) CH ₂ SCH ₃		CH ₃	OCF 2 CHFOCF 3	
	H CH (CH ₃) CH ₂ SCH ₃		CH ₃	OCF 2 CHFOCF 2 CF 2 Br	H
	H CH (CH ₃) CH ₂ SCH ₃		CH 3	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
5	H CH (CH ₃) CH ₂ SCH ₃		CH ₃	$OC (CF_2CF_3) = C (CF_3)_2$	H
	H CH (CH ₃) CH ₂ SCH ₃		СНз	0 (L-45d)	H
	H CH (CH ₃) CH ₂ SCH ₃		CH ₃	SF ₅	H
	H CH (CH ₃) CH ₂ SCH ₃		СНз	SCF ₃	H
•	H CH (CH ₃) CH ₂ SCH ₃		Et	CF (CF ₃) ₂	Н
10	H CH (CH ₃) CH ₂ SCH ₃	•	OCH ₃	CF (CF ₃) ₂	H
	4-F CH (CH ₃) CH ₂ SCH ₃		CH3	CF (CF ₃) ₂	H
	4-F CH (CH ₃) CH ₂ SCH ₃	•	CH 3	$C(CF_3)_2OH$	H
,	4-F CH (CH ₃) CH ₂ SCH ₃		CH ₃	$C(CF_3)_2OCH_3$	H
	4-F CH (CH ₃) CH ₂ SCH ₃		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
15	4-F CH (CH ₃) CH ₂ SCH ₃		CH ₃	0 (L-45d)	H
10	4-C1 CH (CH ₃) CH ₂ SCH ₃		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H.
	4-CF ₃ CH (CH ₃) CH ₂ SCH ₃		CH ₃	0 (L-45d)	H
	5-F CH (CH ₃) CH ₂ SCH ₃		CH ₃	CF (CF ₃) ₂	. Н.
	6-F CH (CH ₃) CH ₂ SCH ₃		CH ₃	C(CF ₃) ₂ OH	H
20	H CH (CH ₃) CH ₂ S (0) CH ₃		СНз	CF (CF ₃) ₂	H
40	H $CH(CH_3)CH_2S(0)CH_3$		CH ₃	$C(CF_3)_2OH$	H
,	H CH (CH ₃) CH ₂ S (O) CH ₃		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H CH (CH ₃) CH ₂ S (0) CH ₃		CH ₃	0 (L-45d)	H
	H CH (CH ₃) CH ₂ SO ₂ CH ₃		CH ₃	CF (CF ₃) ₂	H
25	H CH (CH ₃) CH ₂ SO ₂ CH ₃	•	CH ₃	C (CF ₃) ₂ OH	H
40	H CH (CH ₃) CH ₂ SO ₂ CH ₃		CH3	C (CF ₃) 20CH ₃	H
	H CH (CH ₃) CH ₂ SO ₂ CH ₃	•	CH ₃	OCF ₂ Br	H
	H CH (CH ₃) CH ₂ SO ₂ CH ₃		CH ₃	OCF 2 CHFC 1	\mathbf{H}
	H CH (CH ₃) CH ₂ SO ₂ CH ₃		CH ₃	OCF 2 CHFBr	H
30	H · · CH (CH ₃) CH ₂ SO ₂ CH ₃		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	Н
00	H CH (CH ₃) CH ₂ SO ₂ CH ₃		CH ₃	0 (L-45d)	H
	H CH (CH ₃) CH ₂ SO ₂ CH ₃		CH ₃	SF ₅	H
	4-F CH (CH ₃) CH ₂ SO ₂ CH ₃		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	4-C1 CH (CH ₃) CH ₂ SO ₂ CH ₃		CH3	0 (L-45d)	H
3,5	4-CF ₃ CH (CH ₃) CH ₂ SO ₂ CH ₃		CH ₃	CF (CF ₃) ₂	H
0,0	5-F CH (CH ₃) CH ₂ SO ₂ CH ₃	•	CH ₃	$C(CF_3)_2OH$	- H
	6-F CH (CH ₃) CH ₂ SO ₂ CH ₃		СНз	OCF 2 CHFOCF 2 CF 2 CF 3	H
•	H CH (CH ₃) CH ₂ SEt	•	CH ₃	CF (CF ₃) ₂	H
	H CH (CH ₃) CH ₂ SEt		CH ₃	C (CF ₃) ₂ OH	H
40			CH ₃	C (CF ₃) 2OH	Ή
.40	H CH (CH ₃) CH ₂ SEt		CH ₃	C (CF ₃) 2 OCH ₃	H
			CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H CH (CH ₃) CH ₂ SEt		CH ₃	0 (L-45d)	H
	H CH (CH ₃) CH ₂ SEt		CH ₃	CF (CF ₃) ₂	H
	H CH (CH ₃) CH ₂ S (0) Et		CH ₃	C (CF ₃) ₂ OH	H
45			CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	Н
	H CH (CH ₃) CH ₂ SPr-n			CF (CF ₃) ₂	H
	H $CH (CH_3) CH_2 SPr-i$		СНз	or (or 3/ 2	** ,

WO 03/011028

	•	*	100		·
	H	CH (CH ₃) CH ₂ SBu-n	СНз	$C(CF_3)_2OH$	Н
	H	CH (CH ₃) CH ₂ SBu-i	CH ₃	OCF2CHFOCF2CF2CF3	H
	H	CH (CH ₃) CH ₂ SBu-t	CH3	CF (CF ₃) ₂	Н
	H	CH (CH ₃) CH ₂ SO ₂ Bu-t	CH ₃	C (CF ₃) ₂ OH	H
5	H	CH (CH ₃) CH ₂ SHex-n	CH3	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H .	CH (CH ₃) CH ₂ SHex-c	CH ₃	CF (CF ₃) ₂	H
	H	CH (CH ₃) CH ₂ SCH ₂ CF ₃	CH ₃	C (CF ₃) ₂ OH	H
	Н .	CH (CH ₃) CH ₂ S (O) CH ₂ CF ₃	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	5-C1
	H	CH (CH ₃) CH ₂ SO ₂ CH ₂ CF ₃	CH ₃	CF (CF ₃) ₂	H
10	H	CH (CH ₃) CH ₂ SCH ₂ CH ₂ OH	CH ₃	C (CF ₃) ₂ OH	H
	H	CH (CH ₃) CH ₂ SCH ₂ CH ₂ OCH ₃	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	CH (CH ₃) CH ₂ S (O) CH ₂ CH ₂ OCH ₃	CH ₃	CF (CF ₃) ₂	H
	H	CH (CH ₃) CH ₂ SO ₂ CH ₂ CH ₂ CH ₂ OCH ₃	CH ₃	C (CF ₃) ₂ OH	. Н
	H	CH (CH ₃) CH ₂ SCH ₂ CH ₂ CH ₂ OEt	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
15	H	CH (CH ₃) CH ₂ S (0) CH ₂ CH ₂ OEt	CH ₃	CF (CF ₃) ₂	H
	H	CH (CH ₃) CH ₂ SO ₂ CH ₂ CH ₂ OEt	CH ₃	$C(CF_3)_2OH$	Н
•	H	CH (CH ₃) CH ₂ SCH ₂ CH ₂ OC (0) CF ₃	СНз	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	CH (CH ₃) CH ₂ SCH ₂ CH ₂ SCH ₃	CH ₃	CF (CF ₃) ₂	Н
	H	CH (CH ₃) CH ₂ SCH ₂ CH=CH ₂	CH ₃	C (CF ₃) ₂ OH	· H
20	H.	CH (CH ₃) CH ₂ SCH ₂ C≡CH	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H.
	H	CH (CH ₃) CH ₂ SC (0) CH ₃	CH ₃	CF (CF ₃) ₂	H
	H	CH (CH ₃) CH ₂ SCH ₂ C (0) CH ₃	CH ₃	C (CF ₃) 20H	Ĥ
	H	CH (CH ₃) CH ₂ SCH ₂ CH ₂ C (0) OCH ₃	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	Η.	CH (CH ₃) CH ₂ SC (0) NHE t	CH ₃	CF (CF ₃) ₂	H
25	H	CH (CH ₃) CH ₂ SC (O) N (CH ₃) ₂	CH ₃	C (CF ₃) 20H	H
	H	CH (CH ₃) CH ₂ SC (O) N (Et) ₂	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	Н
	H	CH (CH ₃) CH ₂ SC (S) NHCH ₃	CH ₃	CF (CF ₃) ₂	H
	H	CH (CH ₃) CH ₂ SC (S) NHE t	CH ₃	C (CF ₃) ₂ OH	H
	H	CH (CH ₃) CH ₂ SC (S) N (CH ₃) ₂	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	· H
30	. Н	CH (CH ₃) CH ₂ SCH ₂ C (0) N (Et) ₂	CH ₃	CF (CF ₃) ₂	H.
	H	CH (CH ₃) CH ₂ S (0) CH ₂ C (0) N (Et) 2		C (CF ₃) 2OH	: <u>H</u>
	H	CH (CH ₃) CH ₂ SO ₂ CH ₂ C (0) N (Et) ₂		OCF2CHFOCF2CF2CF3	H
	· H	CH (CH ₃) CH ₂ SCH ₂ (Ph-2, 4-Cl ₂)	CH ₃	CF (CF ₃) ₂	Н
	H	CH (CH ₃) CH ₂ SPh	CH ₃	CF (CF ₃) ₂	Н
35	H	CH (CH ₃) CH ₂ SPh	CH ₃	$C(CF_3)_2OH$	H
	H	CH (CH ₃) CH ₂ SPh	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	$CH (CH_3) CH_2 S (L-21a)$	CH ₃	C (CF ₃) ₂ OH	H
	H	$CH (CH_3) CH_2 SO_2 (L-21a)$	CH3	OCF 2 CHFOCF 2 CF 2 CF 3	. Н
	. H	$CH (CH_3) CH_2 S (L-35a)$	CH ₃	CF (CF ₃) ₂	H
40	H	$CH (CH_3) CH_2 S (L-45a)$	CH ₃	C (CF ₃) ₂ OH	H
	H	CH (CH ₃) CH ₂ S (0) (L-45a)	CH3	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	$CH (CH_3) CH_2 SO_2 (L-45a)$	CH ₃	CF (CF ₃) ₂	H
	H	$CH (CH_3) CH_2 S (L-48a)$	CHa	C (CF ₃) ₂ OH	H
	H	CH (CH ₃) CH ₂ S (0) (L-48a)	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
45	Н .	CH (CH ₃) CH ₂ SO ₂ (L-48a)		CF (CF ₃) ₂	H
	. Н	CH (CH ₃) CH ₂ S (L-48b)	CH ₃	C (CF ₃) ₂ OH	H
	H	CH (CH ₃) CH ₂ S (0) (L-48b)	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	• .	· .	•	2 2 - U	

	WΩ	03/011028			,	PCT/JP02/0
	****			160		
	U	CH (CH ₃) CH ₂ SO ₂ (L-48b)		CH ₃	CF (CF ₃) ₂	Н
	H	CH (CH ₃) CH ₂ SSCH ₃		CH ₃	C (CF ₃) ₂ OH	H
	H			CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	- Н
	H	CH (CH ₃) CH ₂ SS (Ph-2-NO ₂)		CH ₃	CF (CF ₃) ₂	Н
	H	CH (Et) CH ₂ SCH ₃		CH ₃	C (CF ₃) ₂ OH	H
5	H	CH (CH ₂ SCH ₃) ₂	;	-	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	CH (Ph) CH ₂ SCH ₃		CH ₃	-	H
	H	CH (Ph) CH ₂ S (0) CH ₃		CH ₃	CF (CF ₃) ₂	H
	H	CH (CH ₃) CH (CH ₃) SCH ₃	*	CH3	C (CF ₃) ₂ OH	. H
	H	$CH (CH_3) CH (CH_3) SO_2 CH_3$		CH 3	OCF 2 CHFOCF 2 CF 2 CF 3	H
10	H	CH (CH ₃) CH (CH ₃) SEt		CH3	CF (CF ₃) ₂	Н
	H	CH (CH ₃) CH (CH ₃) SO ₂ Et		CH 3	C (CF ₃) ₂ OH	
	H	C (CH ₃) ₂ CH ₂ SCH ₃		C1	CF (CF ₃) ₂	H
	H	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃	CF (CF ₃) ₂	. Н
	H	C (CH ₃) ₂ CH ₂ SCH ₃		CH 3	C (CF ₃) ₂ OH	. Н
15	H	C (CH ₃) 2CH ₂ SCH ₃		CH 3	$C(CF_3)_2OCH_3$. H
.I. U	H	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃	C (CF ₃) ₂ OEt	H
	H;	C (CH ₃) ₂ CH ₂ SCH ₃		СНз	$C (CF_3)_2 OCH_2 CH = CF_2$	H
	H	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃	$C (CF_3)_2 OCH_2 CF = CF_2$	Н
	H	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃	$C (CF_3)_2 OCH_2 CH = CCl_2$	H
20	H	C (CH ₃) ₂ CH ₂ SCH ₃		CH3	C (CF ₃) ₂ OCH ₂ Ph	, H
۵0	. H.	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃	$C (CF_3) (CF_2C1) OH$	H
	H	C (CH ₃) ₂ CH ₂ SCH ₃		СНз	$C (CF_3) (CF_2C1) OCH_3$	H
	Ή	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃	$C(CF_3)(CF_2CF_3)OH$	H
	H	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃	C (CF ₃) (CF ₂ CF ₃) OCH ₃	H
0.E		C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃	OCF 3	H
25	H	C (CH ₃) ₂ CH ₂ SCH ₃		. CH ₃	OCF ₂ Br	H
	H.	C (CH ₃) ₂ CH ₂ SCH ₃		CH3	OCF 2 CHF 2	H
	H	C (CH ₃) ₂ CH ₂ SCH ₃	•	CH ₃	OCF 2CHFC1	H
	H			CH ₃	OCF ₂ CHFBr	H
0.0	H	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃	OCF ₂ CF ₂ Br	H
30	H	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃	OCF 2 CHFCF 3	H
	H	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃	OCF ₂ CFBrCF ₃	H
	H .	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃	OCF 2 CHFOCF 3	H
	H	C (CH ₃) ₂ CH ₂ SCH ₃		ĊH ₃	OCF 2 CHFOCF 2 CF 2 Br	Н
	H	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃		
35	H	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃		H
	H	C (CH ₃) ₂ CH ₂ SCH ₃		-	a contract of the contract of	H
	H	C (CH ₃) ₂ CH ₂ SCH ₃		CH 3		H
	H	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃		H
	H	C (CH ₃) ₂ CH ₂ SCH ₃		CH 3		H
40	H	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃		H H
	H	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃		
	H .	C (CH ₃) ₂ CH ₂ SCH ₃	,	CH 3		H
	H	C (CH ₃) ₂ CH ₂ SCH ₃	•	· Et	CF (CF ₃) ₂	Н
	H	C(CH ₃) ₂ CH ₂ SCH ₃		CH ₂		H
45	H	C (CH ₃) ₂ CH ₂ SCH ₃	•	OCH		H
	H	$C(CH_3)_2CH_2SCH_3$		СНз	CF (CF ₃) ₂	3-F
	4-F			СН₃	CF (CF ₃) ₂	H .

WO 03/011028

				101	•	
	4-F	C (CH ₃) ₂ CH ₂ SCH ₃		СНз	C (CF ₃) ₂ OH	H
	4-F	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃	C (CF ₃) ₂ OCH ₃	· H
	4-F	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	4-F	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃	0 (L-45d)	H
5	4-C1	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃	CF (CF ₃) ₂	. H
Ü	4-CF ₃	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃	C (CF ₃) ₂ OH	H .
	5-F	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	6-F	C (CH ₃) ₂ CH ₂ SCH ₃		CH ₃	0 (L-45d)	H
	H	C (CH ₃) ₂ CH ₂ S (0) CH ₃	•	CH ₃	CF (CF ₃) ₂	
10	H					H
10		$C (CH_3)_2 CH_2 S (0) CH_3$	·	CH3	C (CF ₃) ₂ OH	H
	H (-)	-C (CH ₃) ₂ CH ₂ S (0) CH ₃		CH3	C (CF ₃) ₂ OH	H
		-C (CH ₃) 2 CH ₂ S (0) CH ₃		CH ₃	C (CF ₃) ₂ OH	H
	H	C (CH ₃) ₂ CH ₂ S (0) CH ₃		CH ₃	C (CF ₃) ₂ OCH ₃	H
- F	H	C (CH ₃) ₂ CH ₂ S (0) CH ₃		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
15	H	C (CH ₃) ₂ CH ₂ S (0) CH ₃		CH ₃	0 (L-45d)	Н
	H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃		CH ₃	CF (CF ₃) ₂	H
	H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃		СНз	$C(CF_3)_2OH$	H
	H ·	$C (CH_3)_2 CH_2 SO_2 CH_3$		СНз	$C(CF_3)_2OCH_3$	H
	H	$C (CH_3)_2 CH_2 SO_2 CH_3$		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
20	H	$C (CH_3)_2 CH_2 SO_2 CH_3$		CH ₃	0 (L-45d)	H
	Η	$C (CH_3)_2 CH_2 SO_2 CH_3$		CH ₃	SF ₅	H
	4-F	$C(CH_3)_2CH_2SO_2CH_3$		СН₃	CF (CF ₃) ₂	H,
	4-C1	$C(CH_3)_2CH_2SO_2CH_3$		CH3	C (CF ₃) ₂ OH	H
	4 –CF $_{ m 3}$	$C(CH_3)_2CH_2SO_2CH_3$		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
25	5-F	$C (CH_3)_2 CH_2 SO_2 CH_3$		CH3	0 (L-45d)	- Н .
	6-F	$C(CH_3)_2CH_2SO_2CH_3$		CH ₃	CF (CF ₃) ₂	H.
	H .	C (CH ₃) 2 CH ₂ SEt		CH ₃	CF (CF ₃) ₂	·H
	H	C (CH ₃) ₂ CH ₂ SEt		CH ₃	C (CF ₃) ₂ OH	. Н
	H	C (CH ₃) ₂ CH ₂ SEt		CH ₃	C (CF ₃) 2 OCH ₃	H
30	.H	C (CH ₃) ₂ CH ₂ SEt	•	CH ₃	OCF ₂ Br	H
	H	C (CH ₃) ₂ CH ₂ SEt	•	CH ₃	OCF 2 CHFC1	H
•	H	C (CH ₃) ₂ CH ₂ SEt		CH ₃	OCF ₂ CHFBr	H
	H	C (CH ₃) ₂ CH ₂ SEt		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	C (CH ₃) ₂ CH ₂ SEt		CH3	0 (L-45d)	H
35	H	$C (CH_3)_2 CH_2 S (0) Et$		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	Н
	·H	C (CH ₃) ₂ CH ₂ SO ₂ Et		CH ₃	CF (CF ₃) ₂	H
	Н .	C (CH ₃) ₂ CH ₂ SPr-n		CH ₃	C (CF ₃) ₂ OH	H
	H ·	C (CH ₃) ₂ CH ₂ SPr-n	•	CHa	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	Η ·	$C (CH_3)_2 CH_2 S (0) Pr-n$		CH ₃	CF (CF ₃) ₂	H
40	H	C (CH ₃) ₂ CH ₂ SO ₂ Pr-n		CH ₃	C (CF ₃) ₂ OH	H .
	H	C (CH ₃) ₂ CH ₂ SPr-i		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	C (CH ₃) ₂ CH ₂ SPr-i		CH ₃	CF (CF ₃) ₂	H
	H	C (CH ₃) ₂ CH ₂ S (0) Pr-i		CH ₃	C (CF ₃) ₂ OH	Н
	H	$C (CH_3)_2 CH_2 SO_2 Pr-i$		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
45	Н	C (CH ₃) ₂ CH ₂ SBu-t		CH ₃	CF (CF ₃) ₂	H
τń	Ĥ	C (CH ₃) ₂ CH ₂ S (0) Bu-t		CH ₃	C (CF ₃) ₂ OH	Н.
	H	C (CH ₃) ₂ CH ₂ SPh		CH ₃		
	11	o tong/ 201120FII		0113	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H

WO 03/011028

			10-		
	H	C (CH ₃) ₂ CH ₂ S (O) Ph	CH ₃	CF (CF ₃) ₂	H
	H	C (CH ₃) ₂ CH ₂ SO ₂ Ph	СНз	C (CF ₃) ₂ OH	\mathbf{H}_{\cdot}
	H	$C (CH_3)_2 CH_2 SCH_2 (Ph-4-C1)$	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H.
	H	C (CH ₃) ₂ CH ₂ S (L-45a)	CH3	CF (CF ₃) ₂	H
5	H	C (CH ₃) ₂ CH ₂ S (0) (L-45a)	CH ₃	C (CF ₃) ₂ OH	H
U	H	C (CH ₃) ₂ CH ₂ SO ₂ (L-45a)	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	·H
	H	CH ₂ CH ₂ CH ₂ SCH ₃	CH3	CF (CF ₃) ₂	H
	H	CH ₂ CH ₂ CH ₂ SCH ₃	CH ₃	C (CF ₃) ₂ OH	H
•	H	CH ₂ CH ₂ CH ₂ S (0) CH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
10	H	CH ₂ CH ₂ CH ₂ SO ₂ CH ₃	CH ₃	CF (CF ₃) ₂	· H
10		CH (CH ₃) CH ₂ CH ₂ SCH ₃	CH ₃	CF (CF ₃) ₂	H
	H H	CH (CH ₃) CH ₂ CH ₂ SCH ₃	CH ₃	C (CF ₃) ₂ OH	H
			CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	CH (CH ₃) CH ₂ CH ₂ SCH ₃	CH ₃	C (CF ₃) ₂ OH	Ĥ
	H.	CH (CH ₃) CH ₂ CH ₂ S (0) CH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
15	H	CH (CH ₃) CH ₂ CH ₂ SO ₂ CH ₃	CH ₃	CF (CF ₃) ₂	H
	H	CH (CH ₃) CH ₂ CH ₂ SEt	CH ₃	C (CF ₃) ₂ OH	H
	H	CH (CH ₃) CH ₂ CH ₂ S (0) Et	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	CH (CH ₃) CH ₂ CH ₂ SO ₂ Et		CF (CF ₃) ₂	H.
	H	CH (Et) CH ₂ CH ₂ SCH ₃	СН _з СН _з	C (CF ₃) ₂ OH	H
20	H	CH (CH ₂ OH) CH ₂ CH ₂ SCH ₃	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	C (CH ₃) ₂ CH ₂ CH ₂ SCH ₃	CH ₃	CF (CF ₃) ₂	H
	H	C (CH ₃) ₂ CH ₂ CH ₂ SEt	CH ₃	C (CF ₃) ₂ OH	H
	H	CH (CH ₃) (CH ₂) ₃ SCH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
٥r	H	$CH (CH_3) (CH_2)_3 S (0) CH_3$	CH ₃	CF (CF ₃) ₂	H
25	H	CH (CH ₃) (CH ₂) ₃ SO ₂ CH ₃	CH ₃	C (CF ₃) ₂ OH	H
	H	CH (CH ₃) (CH ₂) ₃ SEt	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	$CH (CH_3) (CH_2)_3 S (0) Et$	CH ₃	CF (CF ₃) ₂	H
	H	CH (CH ₃) (CH ₂) ₃ SO ₂ Et	CH ₃	C (CF ₃) ₂ OH	H
0.0	H	C (CH ₃) ₂ (CH ₂) ₃ SCH ₃	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
30	H	C (CH ₃) ₂ (CH ₂) ₃ SEt	CH ₃		H-
	H	C (CH ₃) ₂ CH ₂ CH ₂ CH (CH ₃) SCH ₃	CH ₃	C (CF ₃) ₂ OH	Н
	H	CH (CH ₃) (CH ₂) ₄ SCH ₃	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	Н
	H	CH (CH ₃) (CH ₂) ₄ SO ₂ CH ₃	CH ₃	CF (CF ₃) ₂	H
0.5	H.	CH (CH ₃) (CH ₂) ₄ SEt	CH ₃	C (CF ₃) ₂ OH	H
35	Н	CH (CH ₃) (CH ₂) ₄ S (0) Et			. Ĥ
	H	CH (CH ₃) (CH ₂) ₄ SO ₂ Et	СНз	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	CH (CHO) CH ₂ SO ₂ CH ₃	CH ₃	CF (CF ₃) ₂	H
	H	C (CH ₃) (CHO) CH ₂ SO ₂ CH ₃	CH ₃	C (CF ₃) ₂ OH	H
	, <u>Н</u> .	C (CH ₃) (CHO) CH ₂ SO ₂ Et	CH3	OCF 2 CHFOCF 2 CF 2 CF 3	
40	H	T-6	CH3	CF (CF ₃) ₂	H
	Н	T-7	CH3	C (CF ₃) ₂ OH	H
	H	T-8	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	T-9	CH3	CF (CF ₃) ₂	Н
	H	T-11	CH3	C (CF ₃) ₂ OH	H
45	H	T-12	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	T-13	CH ₃	CF (CF ₃) ₂	H
	H	T-14	СНз	$C (CF_3)_2 OH$. Н

PCT/JP02/07833

W	O 03/011028		
---	-------------	--	--

T-15 H CH₃ OCF 2 CHFOCF 2 CF 2 CF 3 H H M-8a CH3 CF (CF₃)₂ H H M-9a CH₃ C (CF₃)₂OH H H M-9b OCF 2 CHFOCF 2 CF 2 CF 3 CH_a ·H H 5 M-9c CH₃ CF (CF₃)₂ H H M-19a CH3 $C(CF_3)_2OH$ H H CH_2NHC (0) OCH_3 CH₃ OCF 2 CHFOCF 2 CF 2 CF 3 H H CH₂NHC (0) OE t CH3. CF (CF₃)₂ H H CH₂NHC (0) OPr-i CH₃ C (CF₃) 20H H H 10 CH₂CH₂NHC (0) CH₃ CH3 CF (CF₃)₂ H H CH₂ CH₂ NHC (0) CH₃ CH₃ OCF 2 CHFOCF 2 CF 2 CF 3 H H CH2CH2NHC (0) Et CH₃ C (CF₃) 20H H Ή CH, CH, NHC (0) OEt OCF 2 CHFOCF 2 CF 2 CF 3 CH3 H H CH₂CH₂NHC (0) N (CH₃)₂ CF (CF₃)₂ CH₃ H 15 H CH₂CH₂NHC (0) Ph CH₃ $C(CF_3)_2OH$ H. H CH₂CH₂NHPh OCF 2 CHFOCF 2 CF 2 CF 3 CH₃ H H CH (CH₃) CH₂N (CH₃) 2 CH_3 CF (CF₃)₂ H H CH (CH₃) CH₂N (CH₃)₂ CH₃ C (CF₃) 20H H H CH (CH₃) CH₂N (CH₃) 2 CH₃. OCF 2 CHFOCF 2 CF 2 CF 3 H 20 H CH (CH₃) CH₂N (CH₃)₂ CH₃ 0 (L-45d)H H CH (CH₃) CH₂NHC (0) CH₃ CH₃ CF (CF₃)₂ H H CH (CH₃) CH₂NHC (0) Et CH3 · C (CF₃) 20H H H CH (CH₃) CH₂NHC (0) OCH₃ OCF 2 CHFOCF 2 CF 2 CF 3 CH₃ H H CH (CH₃) CH₂NHC (O) N (CH₃)₂ CF (CF₃)₂ CHa H 25 H CH (CH₃) CH₂NHC (S) NHEt CH3 $C(CF_3)_2OH$ H H CH (CH₃) CH₂NHSO₂CH₃ OCF 2 CHFOCF 2 CF 2 CF 3 CH₃ H H CH (CH₃) CH₂NHSO₂Et CH3 CF (CF₃)₂ H H CH (CH₃) CH₂NHSO₂Ph CH₃ C (CF₃) 20H H H CH (CH₃) CH₂N (CH₃) SO₂CH₃ CH₃ OCF 2 CHFOCF 2 CF 2 CF 3 H 30. H CH (CH₃) CH₂NHSO₂N (CH₃)₂ СHз CF (CF₃)₂ H H CH (CH₃) CH₂NHP₂(S) (OCH₃)₂ CH₃ $C(CF_3)_2OH$ H H CH (CH₃) CH₂NHP (S) (OEt)₂ OCF 2 CHFOCF 2 CF 2 CF 3 CH₃ H ·H C (CH₃) ₂ CH₂NHC (0) CH₃ CH₃ CF (CF₃)₂ H H $^{\circ}$ C (CH₃) $_{2}$ CH $_{2}$ NHC (0) Et. CH₃ H $C(CF_3)_2OH$ 35 H. $C (CH_3)_2 CH_2 NHC (0) Pr-c$ OCF 2 CHFOCF 2 CF 2 CF 3 CH₃ H H C (CH₃) ₂ CH₂NHC (0) Bu-t CH₃ CF (CF₃)₂ H H C (CH₃) 2 CH₂NHC (0) CF₃ CH₃ $C(CF_3)_2OH$ H H C (CH₃) 2 CH₂NHC (0) Ph OCF 2 CHFOCF 2 CF 2 CF 3 CH₃ H H $C (CH_3)_2 CH_2 NHC (0) (L-1a)$ CH₃ CF (CF₃)₂ H 40 H $C(CH_3)_2CH_2NHC(0)(L-2a)$ CH₃ C (CF₃) 20H H Η $C (CH_3)_2 CH_2 NHC (0) (L-3a)$ CH₃ OCF 2 CHFOCF 2 CF 2 CF 3 H H $C(CH_3)_2CH_2NHC(0)(L-4a)$ CH₃ CF (CF₃)₂ H H $C(CH_3)_2CH_2NHC(0)(L-16a)$ C (CF₃)₂OH CH₃ H H $C (CH_3)_2 CH_2 NHC (0) (L-17a)$ CH₃ OCF 2 CHFOCF 2 CF 2 CF 3 H H 45 $C(CH_3)_2CH_2NHC(0)(L-20a)$ CH₃ H CF (CF₃)₂ H $C(CH_3)_2CH_2NHC(0)(L-22a)$ CH₃ $C(CF_3)_2OH$ H Ĥ $C(CH_3)_2CH_2NHC(0)(L-23a)$ CH₃ OCF 2 CHFOCF 2 CF 2 CF 3 H

	W O 05/011020				
			164		
	H C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃		CH ₃	CF (CF ₃) ₂	H
	H $C (CH_3) _2 CH_2 NHC (O) OCH_3$		CH ₃	C (CF ₃) ₂ OH	H
	H $C (CH_3) _2 CH_2 NHC (0) OCH_3$		CH ³	C (CF ₃) ₂ OCH ₃	H
			CH ₃	OCF ₂ Br	H
	H C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃		CH ₃	OCF ₂ CHFC1	H
5	H C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃		CH ₃	OCF ₂ CHFBr	H
	H C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃		CH ₃	0 (L-45d)	Н
	H C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃		CH ₃	CF (CF ₃) ₂	H
1.0	H C (CH ₃) ₂ CH ₂ NHC (0) OEt		_	C (CF ₃) ₂ OH	H
10	H C (CH ₃) 2 CH ₂ NHC (0) OEt		CH ₃		Н
	H C (CH ₃) ₂ CH ₂ NHC (0) OEt		CH ₃	C (CF ₃) ₂ OCH ₃	H
•	H C (CH ₃) ₂ CH ₂ NHC (0) OEt		CH 3	OCF 3	H
	H C (CH ₃) ₂ CH ₂ NHC (0) OEt		CH ₃	OCF ₂ Br	H
1	H C (CH ₃) ₂ CH ₂ NHC (0) OEt		CH 3	OCF CHF 2	H
15	H C (CH ₃) ₂ CH ₂ NHC (0) 0Et		CH 3	OCF 2CHFC1	H
	H C (CH ₃) ₂ CH ₂ NHC (0) OEt		CH ₃	OCF CHFBr	H
	H C (CH ₃) $_2$ CH $_2$ NHC (0) OEt		CH ₃	OCF ₂ CF ₂ Br	Н.
	H C (CH ₃) ₂ CH ₂ NHC (0) OEt		CH ₃	OCF 2 CHFCF 3	
	H C (CH ₃) ₂ CH ₂ NHC (0) OEt		CH3	OCF 2 CFBrCF 3	H
20	H C (CH ₃) ₂ CH ₂ NHC (0) OEt		CH ₃	OCF 2 CHFOCF 3	
	H C (CH ₃) ₂ CH ₂ NHC (0) OEt		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H C (CH ₃) ₂ CH ₂ NHC (0) OEt		CH ₃	0 (L-45d)	H
	4-F C (CH ₃) ₂ CH ₂ NHC (0) OEt		CH ₃	C (CF ₃) ₂ OH	H
	4-C1 C (CH ₃) ₂ CH ₂ NHC (0) OEt		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
25	4-CF ₃ C (CH ₃) ₂ CH ₂ NHC (0) OEt		CH3	0 (L-45d)	H
	5-F C (CH ₃) ₂ CH ₂ NHC (0) OEt		CH 3	CF (CF ₃) ₂	H
	6-F C (CH ₃) ₂ CH ₂ NHC (0) OEt		CH ₃	C (CF ₃) ₂ OH	H
	H C (CH ₃) ₂ CH ₂ NHC (0) OPr-n		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	Н
	H CH ₂ CH ₂ CH ₂ NHC (0) OCH ₃		CH 3	CF (CF ₃) ₂	H
30	H CH ₂ CH ₂ CH ₂ NHC (0) OBu-t		CH ₃	C (CF ₃) ₂ OH	. Н
	H M-22a		CH 3	OCF 2 CHFOCF 2 CF 2 CF 3	Н
	H M-22b		CH 3	CF (CF ₃) ₂	H
	Н М-22с		CH ₃	C (CF ₃) ₂ OH	H
	H M-22d		CH 3	OCF 2 CHFOCF 2 CF 2 CF 3	H TÌ
35	H M-22e		CH3	CF (CF ₃) ₂	Ĥ
	H C (CH ₃) ₂ CHO		CH ₃	CF (CF ₃) ₂	H
	H C (CH ₃) ₂ CHO	•	CH ₃	C (CF ₃) ₂ OH	H
	H C (CH ₃) ₂ CHO		CH ₃	C (CF ₃) ₂ OCH ₃	. H
	H C (CH ₃) $_{2}$ CHO	٠	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	
40	H C (CH ₃) ₂ CHO		СНз	0 (L-45d)	H
	H CH (CH ₃) C (0) CH_3		CH ₃	C (CF ₃) ₂ OH	H
	H CH ₂ CH=NOCH ₃		CH 3	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H CH2C (Ph) = NOCH3		CH ₃	CF (CF ₃) ₂	H
	H CH (CH ₃) CH=NOCH ₃		CH _{.3}	CF (CF ₃) ₂	H
45	H CH (CH ₃) CH=NOCH ₃		CH ₃	$C(CF_3)_2OH$	H
	H CH (CH ₃) CH=NOCH ₃		CH ₃	$C(CF_3)_2OCH_3$	Н
: .	H CH (CH ₃) CH=NOCH ₃		CH3	OCF 2 CHFOCF 2 CF 2 CF 3	H
				*	

		2/04/1000			PCT/JP02/07833
	WO 0.	3/011028	165		1 C 1/91 02/0/000
	H	CH (CH ₃) CH=NOCH ₃	CH ₃	0 (L-45d)	H
	H	CH (CH ₃) CH=NOPr-n	CH ₃	C (CF ₃) ₂ OH	H
	H	CH (CH ₃) CH=NOCH ₂ Pr-c	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	CH (CH ₃) CH=NOCH ₂ CH ₂ OEt	CH ₃	CF (CF ₃) ₂	H
5	H	CH (CH ₃) CH=NOCH ₂ CH ₂ SEt	CH ₃	C (CF ₃) ₂ OH	H
U	H .	CH (CH ₃) CH=NOCH ₂ CH=CH ₂	CH3	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	CH (CH ₃) CH=NOCH ₂ Ph	CH ₃	CF (CF ₃) ₂	H
	H	$CH (CH_3) C (CH_3) = NOCH_3$	CH ₃	C (CF ₃) ₂ OH	H
,	H	C (CH ₃) ₂ CH=NOH	CH ₃	CF (CF ₃) ₂ On	H
10					
10	H	C (CH ₃) ₂ CH=NOH	CH3	C (CF ₃) ₂ OH	H
	H	C (CH ₃) ₂ CH=NOH	CH 3	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	C (CH ₃) ₂ CH=NOH	CH ₃	0 (L-45d)	H
	H	C (CH ₃) ₂ CH=NOCH ₃	CH ₃	CF (CF ₃) ₂	H -
	H	C (CH ₃) ₂ CH=NOCH ₃	CH ₃	$C(CF_3)_2OH$	H
15	H	$C (CH_3)_2 CH=NOCH_3$	CH ₃	C (CF ₃) ₂ OCH ₃	H
	Η .	C (CH ₃) ₂ CH=NOCH ₃	CH ₃	OCF ₃	Η,
	H	C (CH ₃) ₂ CH=NOCH ₃	CH ;	OCF ₂ Br	Н .
	H	$C (CH_3)_2 CH=NOCH_3$	CH ₃	OCF ₂ CHF ₂	H.
	. H	$C (CH_3)_2 CH = NOCH_3$	CH ₃	OCF 2 CHFC1	H
20	H	C (CH ₃) ₂ CH=NOCH ₃	CH ₃	OCF 2 CHFBr	H
	H	C (CH ₃) ₂ CH=NOCH ₃	CH ₃	OCF 2 CF 2 Br	H ·
	H	C (CH ₃) ₂ CH=NOCH ₃	CH ₃	OCF 2 CHFCF 3	H
	Η .	C (CH ₃) ₂ CH=NOCH ₃	CH ₃	OCF ₂ CFBrCF ₃	H
	H	C (CH ₃) ₂ CH=NOCH ₃	CH ₃	OCF 2 CHFOCF 3	H
25	H	C (CH ₃) ₂ CH=NOCH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	C (CH ₃) ₂ CH=NOCH ₃	CH ₃	0 (L-45d)	H
	4-F	C (CH ₃) ₂ CH=NOCH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
٠.	4-C1	C (CH ₃) ₂ CH=NOCH ₃	СНз	0 (L-45d)	H
	4-CF ₃	C (CH ₃) 2 CH=NOCH ₃	CH ₃	CF (CF ₃) ₂	Н
30	5-F	C (CH ₃) ₂ CH=NOCH ₃	CH ₃	C (CF ₃) ₂ OH	H.
	6-F	C (CH ₃) ₂ CH=NOCH ₃	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	Н
	H.	C (CH ₃) ₂ CH=NOE t	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	C (CH ₃) ₂ CH=NOCH ₂ C (0) OBu-t	CH ₃	CF (CF ₃) ₂	H
	H	C (CH ₃) ₂ CH=NOCH ₂ C (O) N (Et) ₂	CH 3	C (CF ₃) ₂ OH	H
35	H	C (CH ₃) (CH ₂ SO ₂ CH ₃) CH=NOH	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	. Н
00	H	C (CH ₃) (CH ₂ SO ₂ Et) CH=NOH	CH ₃	CF (CF ₃) ₂	H
	H	CH ₂ CH ₂ CH=NOCH ₃	CH ₃	C (CF ₃) ₂ OH	and the second s
	H		CH ₃		H
	н Н	CH (CH ₃) CH ₂ CH=NOCH ₃		OCF 2 CHFOCF 2 CF 2 CF 3	H
40		CH ₂ CH ₂ CH ₂ CH=NOEt CH ₂ C(0) OEt	CH ₃	CF (CF ₃) ₂	H
40	H	_		C (CF ₃) ₂ OH	H
·	H	CH (CH ₃) C (0) OE t	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H .	CH ₂ CH ₂ C (0) OEt	CH ₃	CF (CF ₃) ₂	H
	Ĥ	CH (CH ₃) CH ₂ C (0) OE t	CH ₃	C (CF ₃) ₂ OH	H .
	H	CH (CH ₃) C (0) NHE t	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
45	H	CH (CH ₃) C (O) NHP r-n	CH ₃	CF (CF ₃) ₂	H
	H	CH (CH ₃) C (0) NHBu-n	CH3	C (CF ₃) ₂ OH	• Н
	H	CH (CH ₃) C (O) NHCH ₂ Ph	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H

PCT/JP02/07833

WO	03	/01	1028

166

			100		
	H	$CH (CH_3) C (0) N (CH_3)_2$	CH ₃	CF (CF ₃) ₂	Н
	H	CH (CH ₃) C (0) N (Et) 2	CH ₃	C (CF ₃) ₂ OH	. Н
	H	CH (CH ₃) C (0) N (Pr-n) ₂	CH3	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	CH (CH ₃) C (0) (T-19)	CH ₃	CF (CF ₃) ₂	H
5	H	CH (CH ₃) C (0) (T-20)	CH ₃	C (CF ₃) ₂ OH	H ·
_	H	CH (CH ₃) C (0) (T-21)	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	Н
	H	CH (CH ₃) C (0) (T-22)	CH ₃	CF (CF ₃) ₂	H
• .	H	CH (CH ₃) C (0) (T-23)	CH ₃	C (CF ₃) ₂ OH	H
	Ĥ	CH (CH ₃) C (0) (T-24)	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	. Н
10	H	CH (CH ₃) CH ₂ C (O) NHCH ₃	CH ₃	CF (CF ₃) ₂	H
	H	CH (CH ₃) CH ₂ C (O) NHE t	CH ₃	C (CF ₃) ₂ OH	× H
	H	CH (CH ₃) CH ₂ C (O) N (CH ₃) ₂	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	Н
	H	CH (CH ₃) CH ₂ C (O) N (Et) ₂	CH ₃	CF (CF ₃) ₂	H
	H	CH (CH ₃) CH ₂ C (O) N (CH ₃) Ph	CH ₃	C (CF ₃) ₂ OH	H
15	H	CH (CH ₃) CN	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	C (CH ₃) ₂ CN	CH ₃	CF (CF ₃) ₂	H
	Н	C (CH ₃) ₂ CN	CH ₃	C (CF ₃) ₂ OH	H
	H	C (CH ₃) ₂ CN	CH ₃	C (CF ₃) 2 OCH ₃	H
	H	C (CH ₃) ₂ CN	CH ₃	OCF ₃	H ·
20	H	C (CH ₃) ₂ CN	CH ₃	OCF ₂ Br	H
	H	C (CH ₃) ₂ CN	CH ₃	OCF 2 CHF 2	H
	H	C (CH ₃) ₂ CN	CH ₃	OCF ₂ CHFC1	H
	H	C (CH ₃) ₂ CN	CH ₃	OCF ₂ CHFBr	H
	H	C (CH ₃) ₂ CN	CH ₃	OCF ₂ CF ₂ Br	Н
25	H ·	C (CH ₃) 2 CN	CH ₃	OCF 2 CHFCF 3	·H
	H	C (CH ₃) ₂ CN	CH ₃	OCF ₂ CFBrCF ₃	Ĥ
	H	C (CH ₃) ₂ CN	CH ₃	OCF 2 CHFOCF 3	H
	H	C (CH ₃) 2 CN	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
•	Н	C (CH ₃) ₂ CN	CH ₃	0 (L-45d)	H .
30	4-F	C (CH ₃) ₂ CN	CH ₃	0 (L-45d)	H
	4-C1	C (CH ₃) ₂ CN	CH ₃	CF (CF ₃) ₂	Н
	4-CF ₃	C (CH ₃) ₂ CN	CH ₃	C (CF ₃) ₂ OH	H
	5-F	C (CH ₃) ₂ CN	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	6-F	C (CH ₃) ₂ CN	CH ₃	0 (L-45d)	H
35	H .	CH ₂ CH=CH ₂	. CH3	CF (CF ₃) ₂	H
	Н	C (CH ₃) ₂ CH=CH ₂	CH ₃	C (CF ₃) ₂ OH	H
	H	CH ₂ CH ₂ CH=CF ₂	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	Н
	H	C (CH ₃) ₂ CH=CHC (0) NHE t	CH ₃	CF (CF ₃) ₂	Н
	H	C (CH ₃) 2 CH=CHPh (E)	CH ₃	C (CF ₃) ₂ OH	H
40	Н	CH ₂ C≡CH	CH ₃	CF (CF ₃) ₂	H
	H	CH ₂ C≡CH		C (CF ₃) ₂ OH	H
	H	CH ₂ C≡CH	CH ₃	C (CF ₃) ₂ OCH ₃	H
	H	CH ₂ C≡CH	CH ₃	OCF ₃	H .
	H	CH ₂ C≡CH	CH ₃	OCF ₂ Br	H.
45	H .	CH ₂ C≡CH	CH ₃	OCF ₂ CHF ₂	H
	Н	CH ₂ C≡CH	CH ₃	OCF 2 CHFC1	H
•	H	CH ₂ C≡CH	CH ₃	OCF 2 CHFBr	H
	**	20 011	0113	oor 2 our Dr	n

	WO 0	3/011028			PCT/JP02/07833
	•	•	167		
	Н	CH ₂ C≡CH	CH ₃	OCF ₂ CF ₂ Br	Ĥ ·
	H	CH ₂ C≡CH	CH ₃	OCF 2 CHFCF 3	H
	H	CH ₂ C≡CH	СНз	OCF ₂ CFBrCF ₃	H
	H	CH ₂ C≡CH	CH ₃	OCF 2 CHFOCF 3	H
5	H	CH ₂ C≡CH	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	CH ₂ C≡CH	CH ₃	0 (L-45d)	Н
	4-F	CH ₂ C≡CH	CH ₃	CF (CF ₃) ₂	H
	4-C1	CH ₂ C≡CH	CH ₃	C (CF ₃) ₂ OH	H
	4-CF ₃	CH ₂ C≡CH	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
10	5-F	CH ₂ C≡CH	CH ₃	0 (L-45d)	H
	6-F	CH ₂ C≡CH	CH ₃	CF (CF ₃) ₂	H
	H	C (CH ₃) ₂ C≡CH	CH ₃	CF (CF ₃) ₂	H
	H ·	$C (CH_3)_2 C \equiv CH$	CH ₃	C (CF ₃) ₂ OH	H
	H .	$C (CH_3)_2 C \equiv CH$	CH ₃	C (CF ₃) ₂ OCH ₃	п Н
15	H	$C (CH_3)_2 C \equiv CH$	CH ₃	0CF ₃	H
	H	$C (CH_3)_2 C = CH$	CH ₃	OCF ₂ Br	H
	H	$C (CH_3)_2 C \equiv CH$	CH3	OCF 2 CHF 2	H
	H	$C (CH_3)_2 C \equiv CH$	CH ₃	OCF ₂ CHFC1	п Н
	H	$C (CH_3)_2 C = CH$	CH ₃	OCF ₂ CHFBr	
20	H	$C (CH_3)_2 C = CH$	CH ₃	OCF ₂ CF ₂ Br	H
20	H	C (CH ₃) ₂ C≡CH	CH ₃	OCF 2 CHFCF 3	H H
•	H	$C (CH_3)_2 C \equiv CH$	CH ₃	OCF ₂ CFBrCF ₃	H
	H	$C (CH_3)_2 C = CH$	CH ₃	OCF ₂ CHFOCF ₃	n H
	H	C (CH ₃) ₂ C≡CH	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
25	H	$C (CH_3)_2 C \equiv CH$	CH ₃	0 (L-45d)	H
20	4–F	C (CH ₃) ₂ C≡CH	CH ₃	C (CF ₃) ₂ OH	H
	4-C1	C (CH ₃) ₂ C≡CH	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
		$C (CH_3)_2 C = CH$	CH ₃	0 (L-45d)	H
	5-F	C (CH ₃) ₂ C≡CH	CH ₃	CF (CF ₃) ₂	Н.
30	6-F	C (CH ₃) ₂ C≡CH	CH ₃	C (CF ₃) ₂ OH	H
	H	$C (CH_3)_2 C \equiv CPh$	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	$C \cdot (CH_3)_2 C \equiv C \cdot (Ph-4-CH_3)$	CH ₃	CF (CF ₃) ₂	H
	H	$C (CH_3)_2 C \equiv C (Ph-4-CF_3)$		C (CF ₃) ₂ OH	H
	H	$C (CH_3)_2 C \equiv C (Ph-4-0CH_3)$	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
35	H	$C (CH_3)_2 C \equiv C (Ph-4-0CF_3)$	CH₃	CF (CF ₃) ₂	H
	H	$C (CH_3)_2 C \equiv C (Ph-2, 4-F_2)$	CH ₃	C (CF ₃) ₂ OH	H .
	H	$C (CH_3)_2 C \equiv C (Ph-2, 4-Cl_2)$	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	$C (CH_3)_2 C \equiv C (Ph-2, 6-Cl_2)$	CH ₃	CF (CF ₃) ₂	H
	H	$C (CH_3)_2 C \equiv CNaph$	CH ₃	C (CF ₃) ₂ OH	H
40	H	$C (CH_3)_2 C \equiv C (L-3a)$	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H .
10	H	$C (CH_3)_2 C \equiv C (L-4a)$	CH ₃	CF (CF ₃) ₂	H
	H	$C (CH_3)_2 C \equiv C (L-45a)$	CH ₃	C (CF ₃) ₂ OH	H
	H	$C (CH_3)_2 C \equiv C (L-45b)$	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	п Н
	H	$C (CH_3)_2 C \equiv C (L-46a)$	CH ₃	CF (CF ₃) ₂	п Н
45	H	CH ₂ Ph		CF (CF ₃) ₂	H
	H	CH ₂ Ph	CH ₃	C (CF ₃) ₂ OH	n H
	H	CH ₂ Ph	CH ₃ .		•
	11	OHZIII	ong.	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H

	W	O 03/011028				PCT/JP02/07833
				168		
	Н	CH ₂ Ph		CH ₃	0 (L-45d)	H
	H	CH ₂ (Ph-2-F)		CH ₃	CF (CF ₃) ₂	H
	H	CH ₂ (Ph-2-F)		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H.
	H	CH ₂ (Ph-2-C1)		CH ₃	CF (CF ₃) ₂	H
5	H	CH ₂ (Ph-2-C1)		CH ₃	C (CF ₃) ₂ OH	. Н
U	H	CH ₂ (Ph-2-C1)		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	CH ₂ (Ph-2-C1)		CH ₃	0 (L-45d)	H
	H	CH ₂ (Ph-3-C1)		CH ₃	CF (CF ₃) ₂	H
	Н	CH ₂ (Ph-4-C1)		CH ₃	C (CF ₃) ₂ OH	Ĥ
10	H	CH ₂ (Ph-2-CH ₃)		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
. 10	H	CH_2 (Ph-3- CH_3)		CH ₃	CF (CF ₃) ₂	H
	H	CH_2 (Ph-4-CH ₃)		CH ₃	C (CF ₃) ₂ OH	H
	H	CH_2 (Ph-2-CF ₃)		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	Н
	H	CH_2 (Ph-2-OCH ₃)		CH ₃	CF (CF ₃) ₂	H
15	H	CH_2 (Ph-3-0CH ₃)		CH ₃	C (CF ₃) ₂ OH	H
	H	CH_2 (Ph-4-0CH ₃)		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H.
	H	CH_2 (Ph-4-OCF ₃)	•	CH ₃	CF (CF ₃) ₂	H
	H	CH_2 (Ph-2, 3-Cl ₂)		CH ₃	C (CF ₃) ₂ OH	H
	Н	CH_{2} (Ph-2, 4-Cl ₂)		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
20	H	CH ₂ (Ph-3, 4-Cl ₂)		CH ₃	CF (CF ₃) ₂	H
	H	CH ₂ (L-45a)		CH ₃	C (CF ₃) ₂ OH	Н
	H	CH ₂ (L-46a)		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	CH ₂ (L-47a)		CH3	CF (CF ₃) ₂	H .
	H	CH (CH ₃) Ph	•	CH ₃	CF (CF ₃) ₂	H
.25	H	CH (CH ₃) Ph		CH3	$C(CF_3)_2OH$	· H
	H	(R) $-CH$ (CH_3) Ph		CH 3	C (CF ₃) ₂ OH	H
	H	CH (CH ₃) Ph		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	Η.	(S) -CH (CH ₃) Ph		CH3	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	CH (CH ₃) Ph		CH ₃	0 (L-45d) .	H
30 -	H	$CH_1(CH_3)$ (Ph-2-C1)		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	CH (CH ₃) (Ph-3-C1)		CH3	CF (CF ₃) ₂	H
	H	CH (CH ₃) (Ph-4-C1)		CH ₃	C (CF ₃) ₂ OH	· H
	H	$CH (CH_3) (L-1a)$		CH ³	OCF 2 CHFOCF 2 CF 2 CF 3	H
or.	H	$CH (CH_3) (L-3a)$		CH ₃	CF (CF ₃) ₂	H
35	H	CH (CH ₃) (L-45a)		CH ₃	C (CF ₃) ₂ OH	H
	H	$C (CH_3)_2 Ph$		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ CF(CF ₃) ₂	H · ·
	H H	$C (CH_3)_2 (Ph-3-C1)$ $C (CH_3)_2 (Ph-4-C1)$		CH ₃	C (CF ₃) ₂ OH	H
	H	CH ₂ CH ₂ Ph		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
40	H	$CH_2CH_2CH_2$ (Ph-2-C1)		CH ₃	CF (CF ₃) ₂	H
40	H.			CH ₃	C (CF ₃) ₂ OH	H
	H	CH_2CH_2 (Ph-4-C1)		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	CH_2CH_2 (L-46a)	•	CH ₃	CF (CF ₃) ₂	H
	H	C (CH ₃) ₂ CH ₂ Ph	,	CH ₃	C (CF ₃) ₂ OH	H
45	H	CH ₂ CH ₂ CH ₂ Ph		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
TU	H	L-1a		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	H	OCH ₃		CH ₃	CF (CF ₃) ₂	H
	11	م ښمه ع		0113	(OI 3/ 2	*IT

	WO	03/011028				PCT/JP02/07833
				169		
5	H H H H H H H H H	OPr-n OCH ₂ Ph NH ₂ NHCHO NHC (O) CH ₃ NHC (O) Ph NHC (O) OCH ₃ NHC (O) OCH ₂ NHC (O) OCH ₂ Ph NHC (O) OCH ₂ Ph N(CH ₃) CHO N (CH ₃) C (O) CH ₃ N (CH ₃) C (O) OCH ₃		CH ₃	C (CF ₃) ₂ OH OCF ₂ CHFOCF ₂ CF ₂ CF ₃ CF (CF ₃) ₂ C (CF ₃) ₂ OH OCF ₂ CHFOCF ₂ CF ₂ CF ₃ CF (CF ₃) ₂ OH OCF ₂ CHFOCF ₂ CF ₂ CF ₃ CF (CF ₃) ₂ OH OCF ₂ CHFOCF ₂ CF ₂ CF ₃ CF (CF ₃) ₂ OH OCF ₂ CHFOCF ₂ CF ₂ CF ₃ CF (CF ₃) ₂ OH	H H H H H H H H
15		Annual Comments Comme	terminal tempopar territorio dell'estato tempo que tempo		Control of transcent Control of C	

第2表

PCT/JP02/07833

170

$$\begin{array}{c|c}
Y^1 & 3 & Y^2 \\
R^1 & 6 & 5 & 5
\end{array}$$

$$\begin{array}{c|c}
R^2 & 6 & 6 & 6
\end{array}$$

$$\begin{array}{c|c}
C & 0 & R^2 & 6
\end{array}$$

$$\begin{array}{c|c}
C - N & R^3 & 6
\end{array}$$

$$\begin{array}{c|c}
C - N & R^3 & 6
\end{array}$$

$$\begin{array}{c|c}
C - N & R^3 & 6
\end{array}$$

$$\begin{array}{c|c}
C - N & R^3 & 6
\end{array}$$

$$\begin{array}{c|c}
C - N & R^3 & 6
\end{array}$$

$$\begin{array}{c|c}
C - N & R^3 & 6
\end{array}$$

$$\begin{array}{c|c}
Y^1 & 3 & Y^2 \\
R^1 & & 1 & 5 \\
\hline
 & & & 6 \\
\hline
 & & & & 6 \\
\hline
 & & & & & 6 \\
\hline
 & & & & & & 6 \\
\hline
 & & & & & & & 6 \\
\hline
 & & & & & & & & 6 \\
\hline
 & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 &$$

$$\begin{array}{c|c} Y^1 & \stackrel{3}{\longrightarrow} Y^2 \\ R^1 & \stackrel{1}{\longrightarrow} (Y^3)_n \\ \hline & C & \\ & & C & \\ & & C & \\ & &$$

[2] - 10

$$Y^{1}$$
 X^{2}
 Y^{2}
 Y^{3}
 Y^{3}
 Y^{2}
 Y^{3}
 Y^{2}
 Y^{3}
 Y^{3}
 Y^{2}
 Y^{3}
 Y^{3}
 Y^{3}
 Y^{3}
 Y^{2}
 Y^{3}
 Y^{3

$$\begin{array}{c|c}
Y^1 & 3 & Y^2 \\
R^1 & 6 & 5 & 5
\end{array}$$

$$\begin{array}{c|c}
C & 0 & R^2 \\
C & N & Et & R^3
\end{array}$$

$$\begin{array}{c|c}
C & N & R^3 & 5
\end{array}$$

$$\begin{array}{c|c}
C & 13 & 13
\end{array}$$

$$Y^{1}$$
 X^{2}
 Y^{2}
 X^{1}
 X^{2}
 X^{2}
 X^{3}
 X^{2}
 X^{3}
 X^{2}
 X^{3}
 X^{4}
 X^{5}
 X^{2}
 X^{5}
 X^{2}
 X^{5}
 X^{2}
 X^{5}
 X^{5

$$Y^{1}$$
 X^{2}
 Y^{2}
 Y^{3}
 Y^{2}
 Y^{3}
 Y^{2}
 Y^{3}
 Y^{3}
 Y^{3}
 Y^{2}
 Y^{3}
 Y^{3

PCT/JP02/07833

172

[2] - 22

[2] - 21

PCT/JP02/07833

173

$$Y^1$$
 X^2
 Y^1
 X^2
 Y^1
 X^2
 Y^2
 Y^1
 X^2
 Y^3
 Y^2
 Y^3
 Y^3
 Y^2
 Y^3
 Y^3
 Y^2
 Y^3
 Y^3
 Y^3
 Y^2
 Y^3
 Y^3

	R¹	R ²	R ³	Y1	Υ2	(Y³) n
5	СНз	CH ₃		СНз	CF (CF ₃) ₂	. Н
	Н	Et .	Et	· H	C (CF ₃) ₂ OH	H
	H	Et	Et	H	3-0CF ₂ 0-4	
,	H	Et.	Et	·H	3-OCHFCF ₂ ()–4
	\mathbf{H}_{-}	Et	Et	H	3-OCF ₂ CHFO	
10	H	Et	Et	H	3-0C (CF ₂ CF	(a) =N-4
	H	Et	Et	Н	3-0C (Ph-2-	CF ₂) =N-4
	Ħ	Et	Et	H	3-N=C (Ph-4	-CF ₂) 0-4
	Н	Et ·	Et	F	OCF 2 CHFOCF 2	
	H	Et	Et	Cl	CF (CF ₃) ₂	H
15	·H	Et	Et	C1	$C(CF_3)_2OH$	H
	H	Et	Et	C1.	OCF 2 CHFOCF 2 C	
	H	Et	Et	Br	C (CF ₃) ₂ OH	Н
	H	Et	Et	CH ₃	CF (CF ₃) ₂	H
	H	Et	Et	CH ₃	$C(CF_3)_2OH$	H
20	H	Et	Et	СНз	C (CF ₃) 2 OCH ₃	. H
	H ·	Et	Et	CH3	OCHF ₂	· H
	H	Et	Et .	СНз	OCHF ₂	3-C1
	H	Et	Et	СНз	OCHF ₂	3-CH ₃
	Н	Et	Et	CH3	OCHF ₂	5-C1
25	H	Et	Et	CH3	OCHF ₂	5-CH ₃
	H	Et	Et	CH ₃	OCF ₃	H
	H	Et	Et	CH ₃	OCF ₂ Br	H
	Н	Et	Et	CH ₃	OCF 2 CHF 2	H
•	H	Et	Et	CH ₃	OCF 2 CHFC 1	H
30	H .	Et	Et	CH ₃	OCF ₂ CHFBr	H
	H	Et	Et	CH ₃	OCF ₂ CF ₂ Br	H
	H	Et	Et	CH ₃	OCF 2 CHFCF 3	H
	H	Εt	Et	CH ₃	OCF ₂ CFBrCF ₃	H
	H	Et	Et	CH ₃	OCF ₂ CHFOCF ₃	H

	•					•
	WO 03/011028					PCT/JP02/07833
				174		•
	11	13.4	174	•	OII	OCE CHECCE OF CE II
	H	Et	Et		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
•	H	Et	Et		CH ₃	0 (L-45d) H
	H	Et	Et		ĊH₃	SF ₅ H
μ.	H	Et	Et		CH ₃	SCF ₃ H
5	H	Et	Et	•	Et	CF (CF ₃) ₂ H
	H	Et	Et		Et	C (CF ₃) ₂ OH H
	H	Et	Et		Et	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
٠.	H	Et	Et		OCH 3	CF (CF ₃) ₂ H
	<u>H</u>	Et	Et		OCH ₃	C (CF ₃) ₂ OH H
10	Н	Et	Et		OCH3	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
	CH ₃	Et	Et.		CH3 ·	C (CF ₃) ₂ OH H
	Et	Et	Εt		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
	CH ₂ OCH ₃	Et	Et		CH ₃	CF (CF ₃) ₂ H
	CH ₂ OEt	Et	Et		CH3	$C(CF_3)_2OH$
- 15	CH ₂ SCH ₃	Et	Et		СНз	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
	CH ₂ SEt.	Et	Et		CH ₃	CF (CF ₃) ₂ H
	CH_2C (0) CH_3	Et.	Et	_	CH ₃	$C(CF_3)_2OH$ H
	CH ₂ COOCH ₃	Et	Et		CH 3	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
	CH ₂ COOEt	Et	Et	•	CH ₃	CF (CF ₃) ₂ H
20	CH ₂ CN	Et	Et		CH ₃	C (CF ₃) ₂ OH H
	$CH_2CH=CH_2$	Et	Et		СНз	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
	$CH_2C \equiv CH$	Et	Et		CH3.	CF (CF ₃) ₂ H
	C (0) CH ₃	Et	Et		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
	C (0) Et	Et	Et		CH3	0 (L-45d) H
25	C (0) Ph	Et	Et		CH 3	CF (CF ₃) ₂ H
		Et	Et		CH3	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
	C (0) 0Et	Et	Et		СНз	0 (L-45d) H
	CN	Et	Et		CH3	CF (CF ₃) ₂ H
	SCC1 ₃	Et	Et		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
30	SPh	Et ·	Et		CH ₃	0 (L-45d) H
	SN (Et) 2	Et	Et		CH3	CF (CF ₃) ₂ H
	$SN(Pr-i)_{2}$	Et	Et	•	CH3	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
	SN (Bu-n) 2	Et	Et		CH ₃	0 (L-45d) H
	S (T-16)	Et	Et		СНз	CF (CF ₃) ₂ H
35	S (T-17)	Et.	Et		СНз	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
	S (T-18)	Et	Et.		CH ₃	0 (L-45d) H
	S (T-23)	Et :	Et		СНз	CF (CF ₃) ₂ H
	SN (CH ₃) COOEt	Et	Et .		CH_{3}	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
	$SN (CH_3) COOP r-n$	Et	Et		CH3	0 (L-45d) H
40	SN (CH ₃) COOBu-n	Et.	Et		CH.3	CF (CF ₃) ₂ H
	$SN (CH_3) COOHex-n$	Et	Et.		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
	SN (Et) COOEt	Et	Et		CH ₃	0 (L-45d) H
	SN (Et) COOP r-n	Et	Et ·	-	CH3	CF (CF ₃) ₂ H
	SN (Et) COOBu-n	Et	Et		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3 H
45	SN (Pr-i) COOEt	Et	Et		CH3	0 (L-45d) H
	SN (Pr-i) COOPr-n	Et	Et		CH3	CF (CF ₃) ₂ H
•	SN (Pr-i) COOBu-n	Et	Et		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
					J	

	WO 03/011028			•	175			PCT/JP02	2/07833
			•		175				
	$S(0)_2CH_3$		Et	Et	•	CH ₃	0 (L-45d)	H	ĺ
	S (0) ₂ Et		Et	Et	•	CH ₃	CF (CF ₃) ₂	F	I
	S (0) ₂ Ph		Et	Et	•	CH ₃	OCF 2 CHFOCF 2	CF 2CF 3	H
	NHC (0) CH ₃		Et	Et		CH ₃	0 (L-45d)		[.
5	H		Et	n-Pr	•	C1	CF (CF ₃) ₂	Н	
U	H		Et	n-Pr		CH ₃	CF (CF ₃) ₂	· H	
	H		Et	n-Pr		CH ₃	C (CF ₃) 2OH		
	H		Et	n-Pr	•	CH ₃	OCF 2 CHFOCF 2		H
	H		n-Pr	n-Pr		CH ₃	CF (CF ₃) ₂		
10			n-Pr	n-Pr		CH ₃	$C (CF_3)_2 OH$	H	
10	H					CH ₃	OCF ₂ CHFOCF ₂		H
	H		n-Pr	n-Pr					II I
	H .		Et ·	i-Pr		CH ₃	CF (CF ₃) ₂		1 I
	H		i-Pr	i-Pr		CH 3	C (CF ₃) ₂ OH		
	H		C (0) CH ₃	i-Pr		CH ₃	OCF 2 CHFOCF 2		H
15	H		C (0) Et	i-Pr		CH3	CF (CF ₃) ₂		H
	\mathbf{H}_{-}		C (0) Ph	i-Pr		СНз	C (CF ₃) ₂ OH		H
	H		C (0) OCH3	i-Pr		CH ₃	OCF 2 CHFOCF		H
	H		C (0) OE t	i-Pr		СНз	CF (CF ₃) ₂		H
	H		SN (Bu-n) 2			СНз	$C(CF_3)_2OH$		H
20	H		SO_2CH_3	i-Pr		CH ₃	OCF 2 CHFOCF		Ĥ
	\mathbf{H}		NHC (0) CH_3			CH3	CF (CF ₃) ₂		H
·	CH ₃		H ·	i-Pr		СНз	$C(CF_3)_2OH$		H
	CH ₃		CH ₃	i-Pr		СНз	OCF 2 CHFOCF		H
	Et		H	i-Pr		СНз	CF (CF 3) 2.		H ·
25	Et		CH ₃	i-Pr		CH₃	$C(CF_3)_2OH$		H
	CH ₂ OCH ₃	•	H	i-Pr	•	СНз	OCF ¿ CHFOCF		H
	CH ₂ OEt		H	i-Pr		CH ₃	CF (CF $_3$) $_2$		H
	CH ₂ SCH ₃		H	i-Pr		СНз	$C (CF_3)_2OH$		H
	CH ₂ SEt		H	i-Pr		CH3	OCF 2 CHFOCF	$_2$ CF $_2$ CF $_3$	H
30	CH ₂ C (0) CH ₃		H	i-Pr		CH ₃	CF (CF ₃) ₂		H
	CH ₂ COOCH ₃		Ĥ	i-Pr		CH ₃	$C(CF_3)_2OH$		H
	CH ₂ COOEt		H	i-Pr		CH ₃	OCF 2 CHFOCF	2CF 2CF 3	H
	CH ₂ CN		· H	i-Pr		CH ₃	CF (CF ₃) ₂		H ·
	CH ₂ CH=CH ₂		H	i-Pr		CH ₃	C (CF ₃) ₂ OH		H
35	CH ₂ C≡CH		H	i-Pr		СНз	OCF 2 CHFOCF	cF cF 3	H
	CH ₃		H	t-Bu		H	CF (CF ₃) ₂		H
	Н		CH ₂ CH ₂ OE		ORt	CH ₃	C (CF ₃) ₂ OH		H
	H		Et	CH ₂ SCH		CH ₃	CF (CF ₃) ₂		H
	H		Et .	CH ₂ SCH		CH ₃	C (CF ₃) ₂ OH		H
40	H		Et	CH ₂ SCH		.CH ₃	OCF 2 CHFOCF		Ĥ
40			Et	CH ₂ SCH	 ∫_	CH ₃	0 (L-45d)		H
	. H					CH ₃	OCF 2 CHFOCF		H
	H		Et	CH ₂ CH ₂				201 201 3	H
	H		n-Pr	CH ₂ CH ₂		CH ³			H. H
	H		Et .	CH ₂ CH ₂ S		CH3	C (CF ₃) ₂ OH	י מים מים	
45	H		Et	CH2CH2S	(U) 2UH3	CH ₃	OCF 2 CHFOCE	20F20F3	Н
	H		Et	CH (CH 3) C			CF (CF ₃) ₂		H
	Н .		Et	$CH_2CH_2($	CH ₂ SCH ₃	CH 3	$C (CF_3)_2 OH$		H

PCT/JP02/07833

1	7	r
3	•	n
1	•	u

								,
	Н		E t	CH2C	CH ₂ CH ₂ S (0) CH ₃	CH_3	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	•	Et	CH2	CH ₂ CH ₂ SO ₂ CH ₃	CH3	CF (CF ₃) ₂	Ή
	H		CH2CH=	CH ₂	CH ₂ CH=CH ₂	CH3	C (CF ₃) ₂ OH	H
	CH3		CH ₃		CH ₂ Ph	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
5	Н		Et		CH ₂ Ph	CH3	CF (CF ₃) ₂	H
	CHa		H		CH (CH ₃) Ph	CH ₃	$C(CF_3)_2OH$	H
	H		-CH ₂ CH ₂ CH ₂ CH ₂ -			CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H	•	$-CH_2OCH_2CH_2-$			CH3	CF (CF ₃) ₂	H
•	H		$\begin{array}{c} -\mathrm{CH}_2\mathrm{SCH}_2\mathrm{CH}_2 - \\ -\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2 - \\ -\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}\mathrm{(CH}_3)\mathrm{CH}_2\mathrm{CH}_2 - \\ -\mathrm{CH}_2\mathrm{CH}\mathrm{(CH}_3)\mathrm{CH}_2\mathrm{CH}\mathrm{(CH}_3)\mathrm{CH}_2 - \\ -\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{OCH}_2\mathrm{CH}_2 - \end{array}$			CH ₃	$C(CF_3)_2OH$	H
10	Н.					CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	H					CH ₃	CF (CF ₃) ₂	H
	H					ĊНз	$C (CF_3)_2 OH$	H
	H	•				СНз	OCF 2 CHFOCF 2 CF 2 CF 3	H
	-Н		$-CH_2CH_2$	I (CH ₃)	0 CH (CH $_3$) CH $_2$ -	CH₃	CF (CF ₃) ₂	H
15	H		$-CH_2CH_2$	I ₂ CH ₂	CH ₂ CH ₂ CH ₂ -	CH3	$C(CF_3)_2OH$	H
,								

第3表

PCT/JP02/07833

177

PCT/JP02/07833

178

PCT/JP02/07833

180

PCT/JP02/07833

5	(R4) p	Y¹	γ2 .	(Y³) _n
	4-CH ₃ (R)	СНз	CF (CF ₃) ₂	Н
	4-CH ₃ (R)	СНз	C (CF ₃) ₂ OH	H
	4-CH ₃ (R)	. СН з		H
10	4-CH ₃ (R)	CH ₃	0 (L-45d)	H ·
	4-CH ₃ (S)	СНз	CF (CF ₃) ₂	H.
	4-CH ₃ (S)	CH ₃	$C(CF_3)_2OH$	H
	4-CH ₃ (S)	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	4-CH ₃ (S)	CH ₃	0 (L-45d)	Η .
15	4-Ph	CH ₃	CF (CF ₃) ₂	H
	5-Ph	CH ₃	C (CF ₃) ₂ OH	H
	4-(Ph-4-Bu-t)	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	4, 4- (CH ₃) ₂	Н	3-CF ₂ 0CF ₂ 0-4	
	$\frac{1}{4}$, $\frac{4}{4}$ (CH ₃) $\frac{2}{2}$	Cl	CF (CF ₃) 2	H
20	4, 4- (CH ₃) ₂	Cl	OCF2CHFOCF2CF2CF3	H

WO 03/011028

			102	
	4, 4-(CH ₃) ₂	Cl	3-CF ₂ OCF ₂ 0-4	
	4, 4- (CH ₃) ₂	·Br	CF (CF ₃) ₂	· H
	4, 4- (CH ₃) ₂	· CH ₃	Br	Η.
	4, 4- (CH ₃) ₂	CH ₃	CF ₃	H
5	4, 4- (CH ₃) 2	CH ₃	CF ₂ CF ₃	H
·	4, 4- (CH ₃) ₂	CH ₃	CF (CF ₃) ₂	H
	4, 4- (CH ₃) ₂	CH ₃	CF (CF ₃) ₂	3-F
•	4, 4- (CH ₃) ₂	CH ₃	CF ₂ CF ₂ CF ₂ CF ₃	H
	4, 4- (CH ₃) ₂	CH ₃	C (CF ₃) ₂ OH	H
10 .	4, 4- (CH ₃) ₂	CH ₃	C (CF ₃) 2 OCH ₃	H
10 .	4, 4- (CH ₃) ₂	CH ₃	OCHF ₂	H
	4, 4- (CH ₃) ₂	СНз	OCHF ₂	3-C1
	4, 4- (CH ₃) ₂	СНз	OCHF ₂	3-CH ₃
	4, 4- (CH ₃) ₂	CH ₃	OCHF ₂	5-C1
15	4, 4-(CH ₃) ₂	CH ₃	OCHF ₂	5-CH ₃
10	4, 4- (CH ₃) ₂	CH ₃	OCHF ₂	3, 5-Cl ₂
	4, 4- (CH ₃) ₂	CH ₃	OCF ₃	H
	4, 4- (CH ₃) ₂	CH ₃	OCF ₂ Br	H
	$\frac{1}{4}$, $\frac{1}{4}$ (CH ₃) $\frac{2}{2}$	CH ₃	OCF ₂ Br	3-C1 ·
20	4, 4- (CH ₃) ₂	CH ₃	OCF ₂ Br	3-CH ₃
20	4, 4- (CH ₃) ₂	CH ₃	OCF ₂ Br	5-C1
	4, 4- (CH ₃) ₂	CH 3	OCF ₂ Br	5-CH ₃
	4, 4- (CH ₃) ₂	CH ₃	OCF ₂ Br	3, 5-Cl ₂
٠.	4, 4- (CH ₃) ₂	CH ₃	OCF ₂ CHF ₂	H
25	4, 4- (CH ₃) ₂	CH ₃	OCF 2 CHFC1	Н
	4, 4- (CH ₃) ₂	CH ₃	OCF 2 CHFBr	H
	4, 4-(CH ₃) ₂	CH ₃	OCF ₂ CF ₂ Br	H
	4, 4-(CH ₃) ₂	CH ₃	OCF 2 CHF CF 3	H
	4, 4- (CH ₃) ₂	CH 3	OCF ₂ CFBrCF ₃	H
30	4, 4- (CH ₃) ₂	CH ₃	OCF 2 CHFOCF 3	H
	4, 4- (CH ₃) ₂	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	4, 4- (CH ₃) ₂	CH ₃	OSO ₂ CF ₃	H
	4, 4- (CH ₃) ₂	CH ₃	0 (L-45d)	H
	4, 4-(CH ₃) ₂	CH3	SF ₅	H _.
35	4, 4- (CH ₃) ₂	CH ₃	SCF ₂ Br	H
	4, 4-(CH ₃) ₂	Et	CF (CF ₃) ₂	H
	4, 4- (CH ₃) ₂	OCH ₃	$C(CF_3)_2OH$	Η .
	4-CH ₃ -4-CH ₂ SCH ₃	СНз	CF ₂ CF ₃	Ħ
	4-CH ₃ -4-CH ₂ SCH ₃	CHa	CF (CF ₃) ₂	H
40	4-CH ₃ -4-CH ₂ SCH ₃	CH ₃	$C(CF_3)_2OH$	\mathbf{H} .
	4-CH ₃ -4-CH ₂ SCH ₃	CH ₃	$C(CF_3)_2OCH_3$	H
	4-CH ₃ -4-CH ₂ SCH ₃	CH3	OCF ₃	· H
	4-CH ₃ -4-CH ₂ SCH ₃	CH3	OCF ₂ Br	H
	4-CH ₃ -4-CH ₂ SCH ₃	CH ₃	OCF ₂ CHF ₂	H
45	4-CH ₃ -4-CH ₂ SCH ₃	CH ₃	OCF 2 CHFC1	H
	4-CH ₃ -4-CH ₂ SCH ₃	CH ₃	OCF 2 CHFBr	H
	4-CH ₃ -4-CH ₂ SCH ₃	CH ₃	OCF ₂ CF ₂ Br	H
	~oo u			

	WO 03/011028	· · ·			PCT/JP02/07833
			183		
	4-CH ₃ -4-CH ₂ SCH ₃	CH ₃	OCF 2 CHFCF 3	Н	
	4-CH ₃ -4-CH ₂ SCH ₃	CH ₃	OCF ₂ CFBrCF ₃	H	
	4-CH ₃ -4-CH ₂ SCH ₃	CH ₃	OCF 2 CHFOCF 3	H	
	4-CH ₃ -4-CH ₂ SCH ₃	. CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H	·
5	4-CH ₃ -4-CH ₂ SCH ₃	CH ₃	0 (L-45d)	H	
U	4-CH ₃ -4-CH ₂ S (0) CH ₃	CH ₃	CF (CF ₃) ₂	H	
	$4-\text{CH}_3-4-\text{CH}_2\text{S}$ (0) CH ₃	CH ₃	C (CF ₃) ₂ OH	H	
	$4-\text{CH}_3-4-\text{CH}_2\text{S}$ (0) CH ₃	CH ₃	C (CF ₃) ₂ OCH ₃	H	· X-
	$4-\text{CH}_3-4-\text{CH}_2\text{S}$ (0) CH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H	
10	$4-\text{CH}_3-4-\text{CH}_2\text{S}$ (0) CH ₃	CH ₃	0 (L-45d)	H	
10	4-CH3-4-CH2SO2CH3	CH ₃	CF (CF ₃) ₂	H	
	4-CH ₃ -4-CH ₂ SO ₂ CH ₃	CH ₃	C (CF ₃) ₂ OH	Н	
	4-CH3-4-CH2SO2CH3	CH ₃	C (CF ₃) 2 OCH ₃	H	
	$4-\text{CH}_3-4-\text{CH}_2\text{SO}_2\text{CH}_3$	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H.	
15	4-CH ₃ -4-CH ₂ SO ₂ CH ₃	CH ₃	0 (L-45d)	H	•
10	4-CH ₃ -4-CH ₂ SEt	CH ₃	CF (CF ₃) ₂	H	
	4-CH ₃ -4-CH ₂ SEt	CH ₃	C (CF ₃) ₂ OH	H	
	$4-\text{CH}_3-4-\text{CH}_2\text{SEt}$	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H	
	$4-CH_3-4-CH_2S(0)$ Et	CH ₃	CF (CF ₃) ₂	H	
20	$4-CH_3-4-CH_2S$ (0) Et	CH ₃	C (CF ₃) ₂ OH	H	
20	$4-CH_3-4-CH_2S$ (0) Et	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H	
	4-CH ₃ -4-CH ₂ SO ₂ Et	CH ₃	CF (CF ₃) ₂	H	
	4-CH ₃ -4-CH ₂ SO ₂ Et	CH ₃	C (CF ₃) ₂ OH	H	
	$4-CH_3-4-CH_2SO_2Et$	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H	
25			-		

第4表

PCT/JP02/07833

$$\begin{array}{c|c}
Y^1 & 3 & Y^2 \\
H & 5 & 5 \\
\hline
C & 6 & (Y^3)_n \\
\hline
C & Pr-i \\
\hline
[4] - 3
\end{array}$$

PCT/JP02/07833

[4] - 31

[4] - 37

[4] - 36

または

[4] - 38

PCT/JP02/07833

•	R ⁵	R 6	Y1	Y ²	. (Хз) и
	Marine Ma		·		
	Et	Et	CH ₃	CF (CF ₃) ₂	H
5 ·	Et	Et	CH ₃	C (CF ₃) ₂ OH	H
	Et	Et	СНз	OCF 2 CHFOCF 2 CF 2 CF	
	Et	Et	CH ₃	0 (L-45d)	H
	n-Pr	Et	CH ₃	CF (CF ₃) ₂	H
	i-Pr	Et	CH ₃	$C(CF_3)_2OH$	H
0	c-Pr	СНз	CH3	OCF 2 CHFOCF 2 CF 2 CI	3 H
٠,	c-Pr	Et	CH ₃	CF (CF ₃) ₂	Н
	n-Bu	. Et	СН з	C (CF ₃) ₂ OH	H
	i-Bu	Et	CH ₃	OCF 2 CHFOCF 2 CF 2 CI	
•	s-Bu	Et	CH ₃	CF (CF ₃) ₂	H
		H	СНз	C (CF ₃) ₂ OH	H
.5	n-Pen	· H	CH ₃	CF (CF ₃) ₂	H
	c-Pen				
	c-Pen	Н	СНз	OCF 2 CHFOCF 2 CF 2 CI	
	n-Hex	Н	СНз	CF (CF ₃) ₂	Н .
	c-Hex	H	ĆН³	C (CF ₃) ₂ OH	H
20	CH ₂ CF ₃	H	CH 3	CF (CF ₃) ₂	H
	CH ₂ CF ₃	H	CH ₃	C (CF ₃) ₂ OH	H
	CH ₂ CF ₃	H	· CH ₃	OCF 2 CHFOCF 2 CF 2 C	
	CH ₂ CF ₃	H	CH ₃	0 (L-45d)	Н
	CH ₂ CF ₃	CH ₃	· CH ₃	CF (CF ₃) ₂	H
25	CH ₂ CF ₃	CH ₃	CH ₃	$C (CF_3)_2OH$	Ή
	CH ₂ CF ₃	CH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 C	F ₃ H
	CH ₂ CF ₃	CH ₃	CH ₃	0 (L-45d)	H
•	CH ₂ CF ₃	Et	. CH ₃	OCF 2 CHFOCF 2 CF 2 C	F ₃ H
	CH ₂ CF ₃	СНО	CH3	CF (CF ₃) ₂	H
30	CH ₂ CF ₃	C (0) CH3	CH ₃	C (CF ₃) ₂ OH	. Н
บบ	CH ₂ CF ₃	C (0) Et	CH ₃	OCF 2 CHFOCF 2 CF 2 C	
		C (0) CF ₃	CH ₃	CF (CF ₃) ₂	H
	CH ₂ CF ₃	.C (0) OCH ₃	CH ₃	C (CF ₃) ₂ OH	H
	CH ₂ CF ₃	C (0) OEt	, CH ₃	OCF ₂ CHFOCF ₂ CF ₂ C	
o. .	CH ₂ CF ₃ :				Н
35	CH ₂ OCH ₃	CHO	CH ₃	CF (CF ₃) ₂	
	CH ₂ OCH ₃	C (0) CH ₃	CH ₃	C (CF ₃) ₂ OH	Н
	CH ₂ OCH ₃	C (0) Et	CH ₃	OCF 2 CHFOCF 2 CF 2 C	
	CH ₂ OCH ₃	C (0) CF ₃	СНз	CF (CF ₃) ₂	Н
	CH ₂ OCH ₃	C (0) OCH ₃	CH ₃	$C(CF_3)_2OH$	H
40	CH ₂ OEt	СНО	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ C	
	CH ₂ OEt	C (O) CH ₃	CH₃	CF (CF ₃) ₂	H
	CH ₂ OEt	C (0) CF ₃	CH ₃	$C(CF_3)_2OH$	H
	CH ₂ OEt	C (0) OCH ₃	CH 3	OCF 2 CHFOCF 2 CF 2 C	F _a H
	CH ₂ OEt	C (0) OEt	CH ₃	CF (CF ₃) ₂	H
4 E	CH ₂ SCH ₃	H	CH ₃	CF (CF ₃) ₂	H
45		H	CH ₃	C (CF ₃) ₂ OH	H
	CH_2SCH_3 CH_2SCH_3	н Н	CH ₃	C (CF ₃) ₂ OCH ₃	H

	WO 03/011028	:			PCT/JP02/07833
		•	191		•
	CH ₂ SCH ₃	Н	CH ₃	OCHF ₂	H
	CH ₂ SCH ₃	H	CH ₃	OCHF ₂	3-C1
	CH ₂ SCH ₃	H	CH ₃	OCHF ₂	3-CH ₃
	CH ₂ SCH ₃	H	CH ₃	OCHF ₂	5-C1
5	CH ₂ SCH ₃	H	CH ₃	OCHF ₂	5-CH ₃
	CH ₂ SCH ₃	. Н	CH ₃	OCF ₃	H .
	CH ₂ SCH ₃	H	CH ₃	OCF ₂ Br	H .
	CH ₂ SCH ₃	H	CH ₃	OCF ₂ CHFC1	H
	CH ₂ SCH ₃	H	CH ₃	OCF ₂ CHFBr	H
10	CH ₂ SCH ₃	H	CH ₃	OCF 2 CHF CF 3	H.
	CH ₂ SCH ₃	H	CH ₃	OCF 2 CHFOCF 3	H
	CH ₂ SCH ₃	H	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	
	CH ₂ SCH ₃	H .	CH ₃	0 (L-45d)	H .
	CH ₂ SCH ₃	СНО	CH ₃	C (CF ₃) ₂ OH	H .:
15	CH ₂ SCH ₃	C (0) CH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	
	CH ₂ SCH ₃	C (0) CF ₃	CH ₃	CF (CF ₃) ₂	, H
	CH ₂ SCH ₃	C (0) OCH ₃	CH ₃	C (CF ₃) ₂ OH	Н
•	CH ₂ SEt	Н	CH ₃	CF (CF ₃) ₂	H.
	CH ₂ SEt	H	CH ₃	C (CF ₃) ₂ OH	H
20	· CH ₂ SEt	H	CH ₃	C (CF ₃) 20CH ₃	H.
	CH ₂ SEt	H	CH ₃	OCHF ₂	H
	CH ₂ SEt	H .	CH ₃	OCHF ₂	3-C1
	CH ₂ SEt	Н	CH ₃ .	OCHF ₂	3-CH ₃
	CH ₂ SEt	Ĥ	CH ₃	OCHF ₂	5-C1
25	CH ₂ SEt	H	СНз	OCHF ₂	5-CH ₃
	CH ₂ SEt	H	СНз	OCF 3	Н
	CH ₂ SEt	H	: CH3	OCF ₂ Br	H
	CH₂SE t	H	СНз	OCF ₂ CHFC1	H
	CH ₂ SEt	\mathbf{H} .	СНз	OCF ₂ CHFBr	Н .
30	CH ₂ SEt	Н	CH3	OCF ₂ CHFCF ₃	H
	CH ₂ SEt	H .	CH 3	OCF 2 CHFOCF 3	Н
•	CH ₂ SEt	• Н	CH 3	OCF 2 CHFOCF 2 CF 2 CF 3	H
	CH ₂ SEt	Н	CH 3	0 (L-45d)	H
	CH ₂ SEt	СНО	СНз	OCF 2 CHFOCF 2 CF 2 CF 3	H
35	CH ₂ SEt	C (0) CH ₃	CH ₃	CF (CF ₃) ₂	H
	CH ₂ SEt	C (0) CF ₃	CH ₃	$C(CF_3)_2OH$	Н
. *	CH ₂ SEt	C (0) OCH ₃	CH 3	OCF 2 CHFOCF 2 CF 2 CF 3	H
	CH ₂ SPh	H	CH ₃	CF (CF ₃) ₂	H
•	CH ₂ SPh	. Н	CH ₃	$C (CF_3)_2 OH$	H
40	CH ₂ SPh	Н	СНз	C (CF ₃) ₂ OCH ₃	H ·
	CH ₂ SPh	Н	CH ₃	OCF ₂ Br	H
	CH ₂ SPh	H	CH₃	OCF ₂ CHFC1	H
	CH ₂ SPh	H	CH ₃	OCF ₂ CHFBr	H.
	CH_2SPh	Н	CH ₃ :	OCF 2 CHFCF 3	H
45	CH ₂ SPh	Н	СНз	OCF ₂ CHFOCF ₃	H
	CH ₂ SPh	H	CH ₃	OCF2CHFOCF2CF2CF3	H
	CH ₂ SPh	H .	CH ₃	0 (L-45d)	H
				·	

	11 0 00/011020	•			I C
			192		
	CH ₂ SPh	СНО	CH ₃	CF (CF ₃) ₂	H
	CH ₂ SPh	C (0) CH ₃	CH3	C (CF ₃) ₂ OH	H
	CH ₂ SPh	C (0) CF ₃	СНз	OCF 2 CHFOCF 2 CF 2 CF 3	H
	CH ₂ SPh	C (0) OCH ₃	CH ₃	CF (CF ₃) ₂	H
5	CH ₂ CN	Н	CH ₃	C (CF ₃) ₂ OH	H
•	CH ₂ CN	СНО	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	CH ₂ CN	C (0) CH ₃	CH3	CF (CF ₃) ₂	H
•	CH ₂ CN	C (0) CF ₃	CH ₃	C (CF ₃) ₂ OH	H
	CH ₂ CN	C (O) OCH ₃	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
10	CH ₂ C (0) OCH ₃	Н	CH ₃		H
	CH ₂ C (0) OCH ₃	СНО	CH ₃	C (CF ₃) ₂ OH	H
	CH ₂ C (0) OCH ₃	C (0) CH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	Н
	CH ₂ C (0) OCH ₃	C (0) CF ₃	СНз	CF (CF ₃) ₂	H
	CH ₂ C (0) OCH ₃	C (0) OCH ₃	CH ₃	C (CF ₃) ₂ OH	H
15	CH ₂ C (0) NHCH ₃	Н	CH3	OCF 2 CHFOCF 2 CF 2 CF 3	H
	CH ₂ C (0) NHCH ₃	СНО	CH ₃	CF (CF ₃) ₂	H
	CH ₂ C (0) NHCH ₃	C (0) CH ₃	CH ₃	C (CF ₃) ₂ OH	H
	CH ₂ C (0) NHCH ₃	C (0) CF ₃	СНз	OCF 2 CHFOCF 2 CF 2 CF 3	H
	CH ₂ C (0) NHCH ₃	C (0) OCH ₃	CH ₃	CF (CF ₃) ₂	H
20	CH ₂ C (0) N (CH ₃) ₂	Н	CH ₃	$C(CF_3)^2OH$	H
	CH ₂ C (0) N (CH ₃) ₂	СНО	СНз	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	Н
	CH ₂ C (0) N (CH ₃) ₂	C (0) CH ₃	СНз	CF (CF ₃) ₂	H
	CH_2C (0) N (CH_3) 2	C (0) CF ₃	CH ₃	C (CF ₃) ₂ OH	H
	CH_2C (0) N (CH_3) 2	C (0) OCH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
25	CH ₂ CH=CH ₂	Н	CH ₃	CF (CF ₃) ₂	H
	CH ₂ CH=CH ₂	СНО	CH3	C (CF ₃) ₂ OH	H
	CH ₂ CH=CH ₂	C (0) CH ₃	СНз	OCF 2 CHFOCF 2 CF 2 CF 3	H
	CH ₂ CH=CH ₂	C (0) CF ₃	СНз	CF (CF ₃) ₂	H
	CH ₂ CH=CH ₂	C (0) OCH ₃	CH ₃	$C(CF_3)_2OH$	H
30	CH ₂ CH=CCl ₂	H	CH3	OCF 2 CHFOCF 2 CF 2 CF 3	H
•	CH ₂ CH=CCl ₂	СНО	CH ₃	CF (CF ₃) ₂	H
	CH ₂ CH=CCl ₂	C (0) CH3	СНз	$C(CF_3)_2OH$	H
	CH ₂ CH=CCl ₂	C (0) CF ₃	СНз	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	Ħ
	CH ₂ CH=CCl ₂	C (0) OCH 3	CH ₃ ·	CF (CF ₃) ₂	H
35	CH ₂ C≡CH	Н	CH 3	$C(CF_3)_2OH$	H
	$CH_2C \equiv CH$	СНО	CH 3	OCF 2 CHFOCF 2 CF 2 CF 3	H
	CH ₂ C≡CH	C (0) CH ₃	СНз	CF (CF ₃) ₂	H
	CH ₂ C≡CH	C (0) CF ₃	СНз	$C(CF_3)_2OH$	H
	CH ₂ C≡CH	C (0) OCH ₃	СНз	OCF 2 CHFOCF 2 CF 2 CF 3	H
40	$CH_2C \equiv CC1$	H	CH3	$CF(CF_3)_2$	H
·	CH ₂ C≡CC1	СНО	CH ³	$C(CF_3)_2OH$	H
	CH ₂ C≡CC1	C (0) CH ₃	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	CH ₂ C≡CC1	C (0) CF_3	СНз	CF (CF ₃) ₂	H
	$CH_2C \equiv CC1$	C (0) OCH ₃	СНз	$C(CF_3)_2OH$	H
45	CH ₂ Ph	Н	CH ₃	CF (CF ₃) ₂	H
	CH ₂ Ph	Н	CH ³	OCF 2 CHFOCF 2 CF 2 CF 3	H
. •	CH ₂ Ph	СНО	CH ₃	CF (CF ₃) ₂	H
				'	

193		WO 03/011028			9	PCT/JP02/07833
CH2Ph			•	193		
CH2Ph		CH 2Ph	C (0) CH 2	СНа	CF (CF a) a	Н
CH_Ph CH_2Ph CH_						
CH_Ph CH_2Ph CH_2Ph CH_2Ph CH_2Ph CH_3Ph CH_						
5				-		
CH₂Ph C (0) OCH₃ CH₃ OCF_CIFOCF₂ CF₂ CF₃ H CH0 n=Bu CH₃ CF (CF₃)₂ H CH0 n=Bu CH₃ CF (CF₃)₂ H CH0 i=Bu CH₃ OCF_CIFOCF₂ CF₂ CF₃ H CH0 c=Bu CH₃ CF (CF₃)₂ H CH0 c=Pen CH₃ CF (CF₃)₂ H CH0 c=Pen CH₃ CF (CF₃)₂ H CH0 c=Pen CH₃ CF (CF₃)₂ H CH0 cH₃ c=Pen CH₃ CF (CF₃)₂ D H CH0 CH₃ c=Pen CH₃ CF (CF₃)₂ D H H CH0 CH₃ CH0 CH₃ CH0 CH3 CH2	5			_		
CH2 (L-1a)	U					
CHO CHO I-Bu CHO CHO I-Bu CHO		-	-			
CHO	•					
10						
CHO C (O) CH ₃ C	10					
C (0) CH ₃	10					
C (0) CH ₃	*					
C (0) CH ₃						
15		_		•		
C (0) CH ₃						
C (0) CH ₃	15					
C (0) CH ₃ C (0) CH ₃ CH ₃ CF (CF ₃) ₂ H C (0) Et n-Pr CH ₃ CF (CF ₃) ₂ OH H C (0) Et i-Pr CH ₃ CF (CF ₃) ₂ OH H C (0) Pr-n n-Bu CH ₃ CF (CF ₃) ₂ OH H C (0) Pr-n n-Pr CH ₃ CF (CF ₃) ₂ OH H C (0) Pr-c n-Pr CH ₃ CF (CF ₃) ₂ OH H C (0) Pr-c n-Pr CH ₃ CF (CF ₃) ₂ H C (0) Bu-n CH ₃ CH ₃ CF (CF ₃) ₂ H C (0) Bu-n CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-n CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-n CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-n CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-n CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-n CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-n CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-n CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-n CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-n CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-n CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-n CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-n CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-n CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-n CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-n CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-n CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-n CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-n CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-n CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-n CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-n CH ₃ CF (CF ₃) ₂ OH H C (0) CH ₂ Pr-C H CH ₃ CF (CF ₃) ₂ OH H C (0) CH ₂ Pr-C CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) CH ₂ Pr-C CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) CH ₂ Pr-C CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) CH ₂ Pr-C CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) CH ₂ Pr-C CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) CH ₂ Pr-C CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) CH ₂ Pr-C CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) CH ₂ Pr-C CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) CH ₂ Pr-C CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) CH ₂ Pr-C CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) CH ₂ Pr-C CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) CH ₂ Pr-C CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) CH ₂ Pr-C CH ₃ CH ₃ CF (CF ₃) ₂ OH H						
C (0) Bt						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
C (0) Et			•			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20			_		
C (0) Pr-i				_		
C (0) Pr-c						
25		•	· ·			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25					and the second s
C (0) Bu-n i-Pr CH ₃ C (CF ₃) ₂ OH H C (0) Bu-i H CH ₃ OCF ₂ CHF0CF ₂ CF ₂ CF ₃ H C (0) Bu-i CH ₃ CH ₃ CF (CF ₃) ₂ H C (0) Bu-i Bt CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-i D-Pr CH ₃ OCF ₂ CHF0CF ₂ CF ₂ CF ₃ H C (0) Bu-s H CH ₃ CF (CF ₃) ₂ H C (0) Bu-s CH ₃ CH ₃ CF (CF ₃) ₂ H C (0) Bu-s CH ₃ CH ₃ CF (CF ₃) ₂ H C (0) Bu-s CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-c CH ₃ CF (CF ₃) ₂ H C (0) Bu-c CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-c CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-c CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-c CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) Bu-c CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) CH ₂ Pr-c CH ₃ CF (CF ₃) ₂ OH H C (0) CH ₂ Pr-c CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) CH ₂ Pr-c CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) CH ₂ Pr-c CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) Pen-n CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) Pen-n CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) Pen-n CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) Pen-n CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) Pen-n CH ₃ CH ₃ CF (CF ₃) ₂ OH H						
C (0) Bu-i						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						H
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			i-Pr			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			H		$C(CF_3)_2OH$	H
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C (0) Bu-c	СНз	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Et		CF (CF ₃) ₂	H
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40		n-Pr	CH ₃	$C(CF_3)_2OH$	H ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C (0) CH ₂ Pr-c	H	CH 3	OCF 2 CHFOCF 2 CF 2 CF 3	. Н
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		_	-			H
45 C (0) Pen-n CH ₃ CH ₃ CF (CF ₃) $_2$ H C (0) Pen-c H CH ₃ C (CF ₃) $_2$ OH H						H
C (0) Pen-c H CH_3 C (CF.3) $_2$ OH H	45	C (0) Pen-n	· CH ₃		. –	
		•				

	WO 03/011028				
	•	•	194		
	C (0) Pen-c	Et	CH ₃	CF (CF ₃) ₂	H
	C (0) Hex-n	H	CH ₃	C (CF ₃) ₂ OH	H
	C (0) Hex-n	CH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	C (0) Hex-c	Н	CH ₃	CF (CF ₃) ₂	H
c	C (0) Hex-c	-CH ₃	CH ₃	C (CF ₃) 20H	H
5	C (0) Hex-c	Et .	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	C (0) CH_2 Pen- C	H	CH ₃	CF (CF ₃) ₂	H
•	$C(0)$ CH_2 $Pen-c$	CH ₃	CH ₃	C (CF ₃) ₂ OH	H
	C (0) CH ₂ F	H	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
10	C (0) CH ₂ F	CH ₃	CH ₃	CF (CF ₃) ₂	H
10	C (0) CH ₂ F	Et	CH ₃	C (CF ₃) 2OH	H
	-	i-Pr	-CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	
	C (O) CH ₂ F	H H	CH ₃	CF (CF ₃) ₂	H
	C (0) CH ₂ Cl	CH ₃	CH ₃	C (CF ₃) ₂ OH	H
1 "	C (0) CH ₂ C1	Et	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	
15	C (0) CH ₂ C1	n-Pr	CH ₃	CF (CF ₃) ₂	Н
٠.	C (0) CH ₂ C1	н—1 1 Н	CH ₃	C (CF ₃) ₂ OH	H
	C (O) CHF ₂	CH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	
	C (O) CHF ₂	Et	CH ₃	CF (CF ₃) ₂	H
0.0	C (O) CHF ₂	Et	CH ₃	C (CF ₃) ₂ OH	H
20	C (O) CHF ₂	Et	CH ₃	C (CF ₃) ₂ OCH ₃	H
	C (0) CHF ₂ C (0) CHF ₂	Et	CH ₃	OCF ₃	H
	C (0) CHF ₂	Et	CH ₃	OCF ₂ Br	H
	C (0) CHF ₂	Et	CH ₃ .	OCF 2 CHFC1	H
9.5	C (0) CHF ₂	Et	CH ₃	OCF ₂ CHFBr	H
25	C (0) CHF ₂	Et	CH ₃	OCF ₂ CHFCF ₃	Н
	C (O) CHF ₂	Et [.]	CH ₃	OCF 2 CHFOCF 3	H
	C (0) CHF ₂	Et	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	
	C (0) CHF ₂	Et	CH ₃	OSO ₂ CF ₃	H
30	C (0) CHF ₂	Ēt	CH ₃	0 (L-45d)	H
JU	C (0) CHF ₂	Et	Et	CF (CF ₃) ₂	H
	C (0) CHF ₂	Et	OCH ₃	C (CF ₃) ₂ OH	H
	C (0) CHF ₂	i-Pr	СНз	OCF 2 CHFOCF 2 CF 2 CF	3 H
	C (O) CHC1 ₂	H	CH ₃	CF (CF ₃) ₂	H
35	C (O) CHCl ₂	CH ₃	CH ₃	$C(CF_3)_2OH$	H
00	C (O) CHCl ₂	Et	CH ₃	OCF 2 CHFOCF 2 CF 2 CF	3 H
	· C (0) CHC1 ₂	n-Pr	CH ₃	CF (CF ₃) ₂	H
	C (0) CCl ₃	H	CH3	C (CF ₃) ₂ OH	H
	C (0) CC1 ₃	CH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF	3 H
40	C (0) CC1 ₃	Et	CH3	CF (CF ₃) ₂	H
40	C (0) CF ₂ Br	Н	CH ₃	C (CF ₃) ₂ OH	Н
	C (0) CF ₂ Br	CH ₃	CH ₃	OCF CHFOCF CF CF	з Н
	C (0) CF ₂ Br	Et	CH 3	CF (CF ₃) ₂	H
	C (0) CF ₂ Br	Et	CH ₃	C (CF ₃) ₂ OH	H
45	C (0) CF ₂ Br	Et	CH ₃	OCF CHFOCF CF CF	
40	C (0) CF ₂ Br	Et	CH ₃	0 (L-45d)	H
	C (0) CF ₂ Br	i-Pr	CH ₃	CF (CF ₃) ₂	H
	O (O) OI SDI	* * * .		0. 2	

PCT/JP02/07833

	11.0.001011010	•		~	0
	•	-000	195		•
	C (0) CH ₂ CH ₂ C1	CH ₃	СНз	C (CF ₃) ₂ OH	H
	C (O) CH ₂ CH ₂ Cl	Et	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
٠	C (O) CHC1CH ₃	CH ₃	CH ₃	CF (CF ₃) ₂	H
•	C (O) CHC1CH ₃	Et	СНз	C (CF ₃) ₂ OH	H
5	C (0) CH ₂ CH ₂ Br	СНз	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	C (0) CH ₂ CH ₂ Br	Et	CH ₃	CF (CF ₃) ₂	H
	C (0) CH ₂ CF ₃	H	СНз	C (CF ₃) ₂ OH	H
	C (0) CH ₂ CF ₃	CH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	C (0) CH ₂ CF ₃	Et	CH ₃	CF (CF ₃) ₂	H
10	C (0) CH ₂ CF ₃	n-Pr	CH ₃	$C(CF_3)_2OH$	H
•	C (0) CF ₂ CHF ₂	Η .	СНз	OCF 2 CHFOCF 2 CF 2 CF 3	H
	C (0) CF_2CHF_2	CH ₃	СНз	CF (CF ₃) ₂	H
	C (0) CF_2CHF_2	Et	CH3	$C(CF_3)_2OH$	H
	C (0) CF ₂ CHF ₂	i-Pr	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
15	C (0) C_2F_5	H	СНз	CF (CF ₃) ₂	H
	$^{\mathrm{C}}$ (0) $^{\mathrm{C}}_{\mathrm{z}}\mathrm{F}_{\mathrm{5}}$	СНз	СНз	$C(CF_3)_2OH$	H
	C (0) C_2F_5	Et	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	$C(0) C_2 F_5$	n-Pr	CH 3	CF (CF ₃) ₂	H
	C (0) CF_2CF_2C1	H	CH ₃	C (CF ₃) ₂ OH	H
20	C (0) CF ₂ CF ₂ Cl	CH 3	СНз	OCF 2 CHFOCF 2 CF 2 CF 3	H
	C (0) CF ₂ CF ₂ Cl	Et	CH ₃	CF (CF ₃) ₂	H
٠,	C (0) CH ₂ CH ₂ CH ₂ Cl	CH ₃	CH ₃	C (CF ₃) ₂ OH	H
•	$C'(0) C (CH_3) _2 CH_2 C1$	H	CH ³	CF (CF ₃) ₂	H
0.5	C (0) C (CH ₃) ₂ CH ₂ C1	Н	CH ₃	C (CF ₃) ₂ OH	H
25	C (0) CH ₂ CH ₂ CF ₃	CH ₃	СН _з СН _з	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ CF (CF ₃) ₂	Н
	C (O) CH ₂ CH ₂ CF ₂ Br	CH₃ H	CH ₃	C (CF ₃) ₂ OH	H
	C (0) C ₃ F ₇ C (0) C ₃ F ₇	CH à	. CH3	OCF 2 CHFOCF 2 CF 2 CF 3	Н
	$C(0) C_3 F_7$	Et .	CH ₃	CF (CF ₃) ₂	H.
30	C (0) CH_2CH (CH_3) CF_3	CH ₃	CH ₃	C (CF ₃) ₂ OH	H
00	C (0) CH_2CH (CF_3) 2	CH ₃	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	C (0) (T-1)	CH ₃	CH 3	CF (CF ₃) ₂	H
	C (0) (T-4)	CH ₃	CH ₃	C (CF ₃) ₂ OH	H
	C (O) CH ₂ OCH ₃	Н	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	
35	C (0) CH ₂ OCH ₃	CH 3	CH ₃	CF (CF ₃) ₂	H
	C (O) CH ₂ OCH ₃	Et	CH ₃	CF (CF ₃) ₂	Η
	C (0) CH ₂ OCH ₃	Et ·	CH ₃	$C(CF_3)_2OH$	H
	C (0) CH ₂ OCH ₃	Et	СНз	OCF 2 CHFOCF 2 CF 2 CF 3	H
	C (O) CH ₂ OCH ₃	Et	CH 3	0 (L-45d)	H ·
40	C (O) CH ₂ OCH ₃	i-Pr	CH ₃	$C(CF_3)_2OH$	H
	C (O) CH ₂ OEt	Н	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	C (O) CH ₂ OEt	CH ₃	CH ₃	CF (CF ₃) ₂	H
•	C (O) CH ₂ OEt	Et	CH ₃	$C(CF_3)_2OH$	H
	°C (0) CH (CH ₃) OCH ₃	СНз	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
45	C (0) CH ₂ OCH ₂ CF ₃	CH 3	CH3	CF (CF ₃) ₂	·H
	C (0) CH ₂ OCH ₂ CH ₂ OEt	CH 3	CH ₃	$C(CF_3)_2OH$	H
	C (0) CH_2OC (0) CH_3	CH 3	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
				. •	

	WO 03/011028				PCT
	•		196		
	C (0) CH ₂ CH ₂ OCH ₃	СНз	CH ₃	CF (CF ₃) ₂	п
	C (O) CH ₂ SCH ₃	Н	CH ₃	$C(CF_3)_2OH$	H H
	C (O) CH ₂ SCH ₃	CH3	CH ₃	OCF ₂ CHFOCF ₂	
	C (O) CH ₂ SCH ₃	Et	CH ₃	CF (CF ₃) ₂	
5	C (O) CH ₂ SCH ₃	n-Pr	CH ₃	$C (CF_3)_2 OH$	Н
	C (O) CH ₂ SO ₂ CH ₃	. Н	CH ₃	OCF ₂ CHFOCF ₂	CE CE H
.*	C (O) CH ₂ SO ₂ CH ₃	CH ₃	CH ₃	CF (CF ₃) ₂	
	C (0) CH ₂ SO ₂ CH ₃	Et	CH ₃	$C (CF_3)_2 OH$	H
	C (O) CH ₂ SEt	CH ₃	CH ₃	OCF 2 CHFOCF 2	CE CE H
10	C (0) CH ₂ SEt	Et	CH ₃	CF (CF ₃) ₂	
	C (O) CH ₂ CH ₂ SCH ₃	CH ₃	CH ₃	$C (CF_3)_2 OH$	H
	C (O) CH ₂ CN	Н	CH ₃	OCF ₂ CHFOCF ₂	СЕ СЕ И
	C (O) CH ₂ CN	CH3	CH ₃	CF (CF ₃) ₂	
	C (O) CH ₂ CN	Et	CH ₃	$C (CF_3)_2 OH$	H
15	C (O) CH ₂ CH ₂ CN	CH ₃	CH ₃	OCF ₂ CHFOCF ₂	CE CE H
	C (0) CH ₂ C (0) OEt	Et	CH ₃	CF (CF ₃) ₂	CF ₂ CF ₃ H
	C (0) $CH = CH_2$	CH3	CH ₃	$C(CF_3)_2OH$	Н
	$C (0) CH = CH_2$	Et	CH ₃	OCF 2 CHFOCF 2	
	C (O) CH=CHCH ₃	CH ₃	CH ₃	CF (CF ₃) ₂	or 20r ₃ H
20	C (O) CH=CHCH ₃	Et	CH ₃	CF (CF ₃) ₂	H
	$C (0) C (CH_3) = CH_2$	CH ₃	СНз	C (CF ₃) ₂ 0H	. H
	C (0) CH=CHCH ₂ C1	CH ₃	CH ₃	OCF ₂ CHFOCF ₂ (
	C (0) $CH_2CH_2CH_2CH=CF_2$	CH ₃	CH ₃	CF (CF ₃) 2	or zor a H
	C(0) C = CH	Н .	СНз	$C(CF_3)_2OH$	H
25	C (0) C≡CH	CH3	CH ₃	OCF 2 CHFOCF 2 C	
	C (0) C≡CH	Et ·	CH.3	CF (CF ₃) ₂	. H
	$C_{\cdot}(0) CH_{2}C = CH$	CH ₃	CH ₃	$C(CF_3)_2OH$	H
	C (0) CH ₂ C≡CCH ₃	ĊНз	CH ₃	OCF 2 CHFOCF 2	
0.0	C (0) C = CC1	CH3	СНз	CF (CF ₃) ₂	H
30	C (0) CH ₂ C=CC1	CH3	СНз	$C(CF_3)_2OH$	H
	C (0) CH ₂ (M-9c)	CH ₃	CH ₃	OCF 2 CHFOCF 2 C	F ₂ CF ₃ H
	C (0) CH ₂ Ph	CH3	· CH ₃	CF (CF ₃) ₂	H
	C (0) CH ₂ Ph	Et	CH ₃	$C(CF_3)_2OH$	H
35	$C(0) CH_2 (L-14a)$	CH3	CH 3	OCF 2 CHFOCF 2 C	F ₂ CF ₃ H
งัง	$C (0) CH_2 (L-24a)$	CH ₃	СНз	CF (CF ₃) ₂	H-
	$C(0) CH_2 (L-36a)$	CH ₃	СНз	C (CF ₃) ₂ OH	. Н.
•	$C (0) CH_2 (L-45a)$	CH3	СНз	OCF 2 CHFOCF 2 C	F ₂ CF ₃ H
	C (0) CH_2 (L-46a) C (0) CH_2 (L-47a)	CH ₃	CH ₃	CF (CF ₃) ₂	· H
40	C (0) C (0) OCH ₃	CH ³	CH ₃	C (CF ₃) ₂ OH	. Н
-10	C (0) C (0) OCH ₃	Ħ rr	CH3	CF (CF ₃) ₂	H
• .	C (0) C (0) OCH ₃	H	CH3	OCF 2 CHFOCF 2 CF	_
		CH3	СНз	CF (CF ₃) ₂	· H
	C (0) C (0) OCH ₃	Et	CH ₃	CF (CF ₃) ₂	H
45	C (0) C (0) OCH ₃	Et	CH3	C (CF ₃) ₂ OH	H
TU	C (0) C (0) 0Et	n-Pr	CH ₃	OCF 2 CHFOCF 2 CF	
	C (0) C (0) OE t	H	CH ₃	CF (CF ₃) ₂	Н
	O (O) O (O) OE (CH3	CH3	$C(CF_3)_2OH$	H

WO 03/011028 PCT/JP02/07833

	WO 03/011028				•	PCI
				197		
	C (0) C (0) OEt	Et		CH ₃	CF (CF ₃) ₂	H
	C (0) C (0) OE't	Et		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	C(0)(M-4a)	CH à		CH ₃	CF (CF ₃) ₂	H
	C(0)(M-5a)	CH ₃		CH3	C (CF ₃) ₂ OH	H
5	C (0) (M-8a)	CH ₃		CH3	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	
	C (0) OP r-n	CH ₃		CH ₃	CF (CF ₃) ₂	Н
	C (0) $OPr-n$	Et		CH ₃	C (CF ₃) ₂ OH	H
	C (0) OPr-i	CH ₃		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	
	C (0) OPr-i	Et		CH ₃	CF (CF ₃) ₂	H
.10	C (0) OPr-c	CH ₃		CH ₃	C (CF ₃) ₂ OH	H
	C (0) OPr-c	Et		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	C (0) 0Bu-n	CH3		CH3	CF (CF ₃)	H
٠	C (0) OBu-s	CH ₃		CH ₃	C (CF ₃) ₂ OH	H
	C (0) OBu-i	Н	•	CH ₃	CF (CF ₃) ₂	H
15	C (0) OBu-t	CH3		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	
	C (0) OPen-n	CH3		CH ₃	CF (CF ₃) ₂	H
	C (0) OCH_2CF_3	CH ₃	ř	CH ₃	C (CF ₃) 2OH	H
	C (O) OCH ₂ CF ₃	Et		CH3	OCF 2 CHFOCF 2 CF 2 CF 3	H
	C (O) OCH ₂ CCl ₃	H	•	CH ₃	CF (CF ₃) ₂	H
20	C (0) $OCH_2CH_2CH_2CI$	CH ₃		CH ₃	C (CF ₃) ₂ OH	H
	C (0) $OCH_2CH_2CH_2CF_2C1$	СНз		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	
	$C(0) OCH_2CH_2OCH_3$	CH3		CH ₃	CF (CF ₃) ₂	Н
	C (0) OCH ₂ CH ₂ OEt	CH_3		CH ₃	C (CF ₃) ₂ OH	H
	$C (0) OCH_2CH=CH_2$	CH ₃		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
25	C (0) OCH_2 $CH=CHCH_3$	$\rm CH_3$		CH ₃	CF (CF ₃) ₂	H
	$C (0) OCH_2C (CH_3) = CH_2$	CH ₃		CH_3	$C(CF_3)_2OH$	H
	C (0) OCH (CH_3) $CH=CH_2$	CH ₃	•	CH 3	OCF 2 CHFOCF 2 CF 2 CF 3	H
	$C (0) OCH_2 CH=C (CH_3)_2$	CH3		CH ₃	CF (CF ₃) ₂	H
	$C (0) OCH_2 C (CH_3) = CHCH_3$	CH3		CH ₃	$C(CF_3)_2OH$	H
30	C (0) OCH ₂ CH ₂ CH=CH ₂	CH3		·CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	C (0) OCH ₂ CH (CH ₃) CH=CH ₂	CH ₃		CH3	$CF(CF_3)_2$	H
	$C (0) OCH_2 CH_2 C (CH_3) = CH_2$	CH ₃		CH ₃	$C(CF_3)_2OH$	H
	C (0) OCH ₂ CC1=CH ₂	CH ₃		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
9.5	C (0) OCH ₂ CH=CHBr	CH ₃		CH3	CF (CF ₃) ₂	H
35	C (0) OCH ₂ CC1=CC1 ₂	CH ₃		CH ₃	C (CF ₃) ₂ OH	H
	C (0) OCH ₂ CH=CC1CH ₃	CH ₃		CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
•	$C(0) OCH_2C(CH_3) = CHBr$	CH3		CH 3	CF (CF ₃) ₂	H
	C (0) OCH ₂ CH=CHCF ₃	CH ₃		CH3	C (CF ₃) ₂ OH	H
40	C (0) OCH ₂ CH=CHCF ₂ Br	CH ₃		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
40	C (0) OCH CH CC1CF ₃	CH ₃		CH ₃	CF (CF ₃) ₂	H
	$C (0) OCH_2 CH_2 CBr = CH_2$	CH ₃		CH3	C (CF ₃) ₂ OH	H
	$C(0) OCH_2 C = CH$	CH ₃		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	$\begin{array}{c} C (0) OCH_2 C = CCH_3 \\ C (0) OCH_2 C = CCH_3 \end{array}$	CH ₃	•	CH ₃	CF (CF ₃) ₂	H
45	$C (0) OCH_2 C \equiv CEt$	CH ₃		CH ₃	C (CF ₃) ₂ OH	H
45	$C(0)$ OCH (CH^3) $C = CH$	CH ₃		CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
	$C(0)$ OCH CH^3) $C = CCH^3$	CH ₃	*	CH ₃	CF (CF ₃) ₂	H ·
	$C (0) OCH_2 CH_2 C = CH$	CH ₃		CH3	C (CF ₃) ₂ OH	H

WO 03/011028

			130	•
	$C (0) OCH_2 CH_2 C \equiv CCH_3$	CH_3	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
	C (0) O (M-5a)	CH ₃	CH ₃	/
	C(0) O(M-9a)	CH3	.CH ₃	
	C(0) O(M-9c)	CH ₃		
5			CH3	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
Ü	C (0) OPh	CH ₃	CH ₃	CF (CF ₃) ₂ H
		CH ₃	CH ₃	$C(CF_3)_2OH$
	C (0) OPh	Et	СНз	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
	C (0) SCH ₃	H	СНз	$CF(CF_3)_2$ H
4.0	C (0) SCH ₃	CH ₃	СНз	$C(CF_3)_2OH$ H
10	C (0) SCH ₃	Et	CH ₃	CF (CF ₃) ₂ H
	C (0) SCH ₃	Et	CH ₃	C (CF ₃) 20H H
	C (0) SCH ₃	Et	CH ₃	C (CF ₃) 2 OCH ₃ H
	C (0) SCH ₃	Et	CH ₃	OCF ₃
	C (0) SCH ₃	Et	СНз	OCF ₂ Br H
15	C (0) SCH ₃	E't'	CH ₃	OCF 2 CHFC1 H
	C (0) SCH ₃	Et	CH ₃	OCF ₂ CHFBr H
	C (0) SCH ₃	Et	CH ₃	
	C (0) SCH ₃	Et	· CH ₃	
	C (O) SCH ₃	Et	CH ₃	
20	C (O) SCH ₃	Et	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
	C (O) SCH ₃	Et	Et	O (L-45d) H
	C (O) SCH ₃	Et .	OCH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
	C (O) SEt	Н		CF (CF ₃) ₂ H
	C (0) SEt	CH ₃	CH ³	C (CF ₃) ₂ OH H
25	C (O) SEt	Et	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
20	C (0) SEt		CH ^{3.}	CF (CF ₃) 2 H·
	C (0) SE t	Et.	CH ₃	C (CF ₃) ₂ OH H
	C (O) SEt	Et	CH ₃	C (CF ₃) ₂ OCH ₃ H
	C (0) SEt	Et	CH ₃	OCF ₃ H
. 30	C (O) SEt	Et	СНз	OCF ₂ Br H
00		Et	СНз	OCF ₂ CHFC1 H
	C (0) SEt	Et	СНз	OCF ₂ CHFBr H
	C (0) SEt	Et	CH ₃	OCF ₂ CHFCF ₃ H
	C (0) SEt	Et	CH ₃	OCF ₂ CHFOCF ₃ H
0.5	C (0) SEt	Et	CH3	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
35	C (0) SEt	Et	CH ₃	0 (L-45d) H
	C (0) SPr-n	CH3	CH ₃	CF (CF ₃) ₂ H
	C (0) SPr-n	Et	CḢ₃	C (CF ₃) ₂ OH H
	C (O) SCH ₂ CF ₃	CH₃	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
	C (0) SCH_2CF_3	Et	CH ₃	CF (CF ₃) ₂ H
40	$C_{c}(0)$ SCH ₂ CH=CH ₂	CH ₃	CH ₃	C (CF ₃) 20H H
	$C (0) SCH_2C (CH_3) = CH_2$	CH ₃	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
	C (0) S (M-9c)	CH ₃	ĆH ₃	
	C (0) SPh	CH ₃	CH ₃	
	C (0) SPh	Et	CH ₃	
45	C (0) N (CH ₃) ₂	CH ₃		
-,0	C (0) N (CH ₃) ₂	Et.	CH 3	OCF ₂ CHFOCF ₂ CF ₂ CF ₃ H
	C (0) N (CH ₃) OCH ₃		CH ₃	CF (CF ₃) ₂ H
	o (0) it (0113) 00113	CH ₃	CH ₃ .	$C(CF_3)_2OH$

	(10 00/011020				
			199		
	C (0) N (CH ₃) OCH ₃	Et	СНз	OCF 2 CHFOCF 2 CF 2 CF 3	Н
	C (0) (Ph-2-F)	CH ₃	CH ₃	CF (CF ₃) ₂	H
	C (0) (Ph-3-F)	CH ₃	CH ₃	C (CF ₃) ₂ OH	H
	C (0) (Ph-4-F)	CH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
5	C (0) (Ph-2-C1)	CH ₃	CH ₃	CF (CF ₃) 2.	H
U	C (0) (Ph-2-C1)	Et	CH ₃	CF (CF ₃) ₂	H
	C (0) (Ph-3-C1)	CH ₃	CH ₃	C (CF ₃) ₂ OH	H
	C (O) (Ph-3-C1)	Et .	CH ₃	CF (CF ₃) ₂	H
	C (0) (Ph-4-C1)	CH ₃	СНз	OCF 2 CHFOCF 2 CF 2 CF 3	·H
10	C (0) (Ph-4-C1)	Et	CH ₃	CF (CF ₃) ₂	H
10	C (0) (Ph-2-Br)	CH ₃	CH ₃	CF (CF ₃) ₂	H
	C (0) (Ph-3-Br)	CH ₃	CH ₃	C (CF ₃) ₂ OH	H
	C (0) (Ph-4-Br)	CH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H
	C (0) (Ph-2-I)	CH ₃	CH ₃	CF (CF ₃) ₂	Н
1 5	C (O) (Ph-3-I)	CH ₃	CH ₃	C (CF ₃) ₂ OH	H
15	C (0) (Ph-4-I)	CH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	
		CH ₃	CH ₃	CF (CF ₃) 2	H
	$C(0) (Ph-2-CH_3)$	CH ₃	CH ₃	C (CF ₃) ₂ OH	H
	C (0) (Ph-3-CH ₃)	CH ₃	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	
9.0	C (0) (Ph-4-CH ₃)	CH ₃	CH ₃	CF (CF ₃) ₂	H
20	C (0) (Ph-2-Et) C (0) (Ph-3-Et)	CH ₃	CH ₃	C (CF ₃) ₂ OH	H
	C (0) (Ph-4-Et)	CH ₃	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	
	C (0) (Ph-2-CF ₃)	CH ₃	CH ₃	CF (CF ₃) ₂	H
	C (0) (Ph-3-CF ₃)	ĆH ₃	CH ₃	C (CF ₃) ₂ OH	H
9 5	C (0) (Ph-4-CF ₃)	CH ₃	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	
25	C (0) (Ph-2-0CH ₃)	CH ₃	CH ₃	CF (CF ₃) ₂	H
	$C (0) (Ph-3-0CH_3)$	CH ₃	CH ₃	C (CF ₃) ₂ OH	H
	C (0) (Ph-4-0CH ₃)	CH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	
	C (0) (Ph-2-OCHF ₂)	CH ₃	CH ₃	CF (CF ₃) ₂	H
30	C (0) (Ph-3-0CHF ₂)	CH ₃	CH ₃	C (CF ₃) ₂ OH	Ĥ
υu	C (0) (Ph-4-0CHF ₂)	CH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	
	C (0) (Ph-2-OCF ₃)	CH ₃	CH ₃	CF (CF ₃) ₂	H
	C (0) (Ph-3-0CF ₃)	CH ₃	CH ₃	C (CF ₃) ₂ OH	H
	C (0) (Ph-4-0CF ₃)	CH ₃	. CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	
35	$C (0) (Ph-2-SCH_3)$	CH ₃	CH ₃	CF (CF ₃) ₂	H
00	C (0) (Ph-3-SCH ₃)	CH ₃	CH ₃	C (CF ₃) ₂ OH	H
	C (0) (Ph-4-SCH ₃)	CH ₃	CH3	OCF 2 CHFOCF 2 CF 2 CF 3	
	$C (0) (Ph-2-S0_2 CH_3)$	CH ₃	CH ₃	CF (CF ₃) ₂	Y. H
	$C (0) (Ph-3-SO_2CH_3)$	CH ₃	CH ₃	C (CF ₃) ₂ OH	H
40	$C(0) (Ph-4-SO_2CH_3)$	CH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF	
40	C (0) (Ph-2-SCHF ₂)	CH ₃	CH ₃	CF (CF ₃) ₂	Н
	C (0) (Ph-3-SCHF ₂)	CH ₃	CH ₃	C (CF ₃) ₂ OH	H
		CH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF;	
	C (0) (Ph-4-SCHF ₂) C (0) (Ph-2-SCF ₃)	CH ₃	CH ₃	CF (CF ₃) ₂	H H
4 5			CH ₃	C (CF ₃) ₂ OH	H
45	C (0) (Ph-3-SCF ₃)	CH ₃	·CH ₃	OCF 2 CHFOCF 2 CF 2 CF	
	$C(0) (Ph-4-SCF_3)$	CH ³	CH ₃	CF (CF ₃) ₂	3 II H
	$C (0) (Ph-2-NO_2)$	CH ₃	0113	Of (Of 3/ 2	11

WO 03/011028 PCT/JP02/07833

C (0) (Ph-3-NO ₂) CH ₃ CH ₃ CH ₃ C(F ₃) ₂ CH OFP ₂ -CHPOCF ₂ CF ₂ CF ₃ H C (0) (Ph-3-CN) CH ₃ CH ₃ CH ₄ CF (CF ₃) ₂ OH H C (0) (Ph-3-CN) CH ₃ CH ₃ CH ₄ CF (CF ₃) ₂ OH H C (0) (Ph-3-CN) CH ₃ CH ₃ CH ₄ CF (CF ₃) ₂ OH H C (0) (Ph-3-CN) CH ₃ CH ₃ CH ₄ CF (CF ₃) ₂ OH H C (0) (Ph-4-CN) CH ₃ CH ₃ CH ₄ CF (CF ₃) ₂ OH H C (0) (Ph-4-CN) CH ₃ CH ₃ CH ₄ CF (CF ₃) ₂ OH H C (0) (Ph-4-CN) CH ₃ CH ₃ CH ₄ CF (CF ₃) ₂ OH H C (0) (Ph-4-CN) CH ₃ CH ₃ CH ₄ CF (CF ₃) ₂ OH H C (0) (Ph-4-CN) CH ₃ CH ₃ CH ₄ CF (CF ₃) ₂ OH H C (0) (Ph-4-CN) CH ₃ CH ₃ CH ₃ CH ₄ CF (CF ₃) ₂ OH H C (0) (Ph-4-CN) CH ₃ CH ₃ CH ₄ CF (CF ₃) ₂ OH H C (0) (Ph-4-CN) CH ₃ CH ₃ CH ₄ CF (CF ₃) ₂ OH H C (0) (Ph-4-CN) CH ₃ CH ₃ CH ₄ CF (CF ₃) ₂ OH H C (0) (Ph-4-CN) CH ₃ CH ₃ CH ₄ CF (CF ₃) ₂ OH H C (0) (Ph-4-CN) CH ₃ CH ₃ CH ₄ CF (CF ₃) ₂ OH H C (0) (Ph-4-CN) CH ₃ CH ₃ CH ₄ CF (CF ₃) ₂ OH H C (0) (Ph-4-CN) CH ₃ CH ₃ CH ₄ CH ₅ CF (CF ₃) ₂ OH H C (0) (Ph-4-CN) CH ₃ CH ₄ CH ₄ CH ₅ CF (CF ₃) ₂ OH H C (0) (Ph-4-CN) CH ₃ CH ₄ CH ₅ CF (CF ₃) ₂ OH H C (0) (Ph-4-CN) CH ₃ CH ₄ CH ₅ CF (CF ₃) ₂ OH H C (0) (Ph-4-CN) CH ₃ CH ₄ CH ₅ CF (CF ₃) ₂ OH H C (0) (Ph-4-CN) CH ₃ CH ₄ CH ₅ CF (CF ₃) ₂ OH H C (0) (Ph-4-CN) CH ₃ CH ₄ CH ₅ CF (CF ₃) ₂ OH H C (0) (Ph-4-CN) CH ₃ CH ₃ CH ₄ CH ₅ CF (CF ₃) ₂ OH H C (0) (Ph-4-CN) CH ₃ CH ₄ CH ₅ CF (CF ₃) ₂ OH H C (0) (Ph-4-CN) CH ₃ CH ₄ C				200		•
C (0) (Ph-4-No ₂) C H ₃ C H ₄ CF (CF ₃) 2 H C (0) (Ph-3-CN) C H ₃ CH ₃ CH ₄ CF (CF ₃) 2 H C (0) (Ph-3-CN) C H ₃ CH ₃ CH ₄ CF (CF ₃) 2 OH H C (0) (Ph-3-CN) C H ₃ CH ₃ CH ₄ CF (CF ₃) 2 OH H C (0) (L-1a) CH ₃ CH ₃ CH ₄ CF (CF ₃) 2 OH H C (0) (L-2a) C H ₃ CH ₃ CH ₄ CF (CF ₃) 2 OH H C (0) (L-3a) C H ₃ CH ₃ CH ₄ CF (CF ₃) 2 OH H C (0) (L-16a) CH ₃ CH ₃ CH ₄ CF (CF ₃) 2 OH H C (0) (L-16a) CH ₃ CH ₃ CH ₅ CF (CF ₃) 2 OH H C (0) (L-17a) CH ₃ CH ₃ CH ₅ CF (CF ₃) 2 OH H C (0) (L-2a) CH ₃ CH ₃ CH ₅ CF (CF ₃) 2 OH H C (0) (L-2a) CH ₃ CH ₃ CH ₅ CF (CF ₃) 2 OH H C (0) (L-2a) CH ₃ CH ₃ CH ₅ CF (CF ₃) 2 OH H C (0) (L-2a) CH ₃ CH ₃ CH ₅ CF (CF ₃) 2 OH H C (0) (L-2a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 OH H C (0) (L-2a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 OH H C (0) (L-2a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 OH H C (0) (L-2a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 OH H C (0) (L-45a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 OH H C (0) (L-47a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 OH H C (0) (L-47a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 OH H C (3) OPT-1 CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 OH H C (3) OPT-1 CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 OH H C (3) OPT-1 CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 OH H C (3) OPT-1 CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 OH H C (3) OPT-1 CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 OH H C (3) SCH ₃ CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 OH H C (3) SCH ₃ CH ₄ CH ₃ CH ₃ CF (CF ₃) 2 OH H C (3) SCH ₃ CH ₄ CH ₃ CH ₃ CF (CF ₃) 2 OH H C (3) SCH ₃ CH ₄ CH ₃ CH ₃ CF (CF ₃) 2 OH H C (3) SCH ₃ CH ₄ CH ₄ CH ₃ CH ₃ CF (CF ₃) 2 OH H C (3) SCH ₃ CH ₄ CH ₄ CH ₃ CH ₃ CF (CF ₃) 2 OH H C (3) SCH ₃ CH ₄ CH ₄ CH ₃ CH ₃ CF (CF ₃) 2 OH H C (3) SCH ₃ CH ₄ CH ₄ CH ₃ CH ₃ CF (CF ₃) 2 OH H C (3) SCH ₃ CH ₄ CH ₄ CH ₄ CH ₃ CF (CF ₃) 2 OH H C (3) SCH ₃ CH ₄ CH ₄ CH ₄ CH ₄ CF (CF ₃) 2 OH H C (3) SCH ₃ CH ₄ CH ₄ CH ₄ CH ₄ CF (CF ₃) 2 OH H C (3) SCH ₃ CH ₄ CH ₄ CH ₄ CH ₄ CF (CF ₃) 2 OH H C (3) SCH ₃ CH ₄ CH ₄ CH ₄ CH ₄ CF (CF ₃) 2 OH H C (4) CF (CF ₃) 2 OH H C (5) SCH ₃ CH ₄ CH ₄ CH ₄ CF (CF ₃) 2 OH		C (0) (Ph-3-NO ₂)	CH ₃	CH ₃		
C (0) (Ph-2-CN)	• .			CH ₃ ·	OCF 2 CHFOCF 2 CF 2 CF	з . Н
5 (0) (Ph-3-CN) CH ₃ CH ₃ C(GF ₃) ₂ OH H C(0) (L-1a) CH ₃ CH ₃ C(GF ₃) ₂ OH H C(0) (L-2a) CH ₃ CH ₃ C(GF ₃) ₂ OH H C(0) (L-3a) CH ₃ CH ₃ C(GF ₃) ₂ OH H C(0) (L-3a) CH ₃ CH ₃ C(GF ₃) ₂ OH H C(0) (L-1a) CH ₃ CH ₃ CH ₃ C(GF ₃) ₂ OH H C(0) (L-1a) CH ₃ CH ₃ CH ₃ CF(GF ₃) ₂ H C(0) (L-1a) CH ₃ CH ₃ CH ₃ CF(GF ₃) ₂ H C(0) (L-1a) CH ₃ CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(0) (L-1a) CH ₃ CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(0) (L-1a) CH ₃ CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(0) (L-2a) CH ₃ CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(0) (L-2a) CH ₃ CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(0) (L-2a) CH ₃ CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(0) (L-2a) CH ₃ CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(0) (L-2a) CH ₃ CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(0) (L-2a) CH ₃ CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(0) (L-4a) CH ₃ CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(0) (L-4a) CH ₃ CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(0) (L-4a) CH ₃ CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(0) (L-4a) CH ₃ CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CF(GF ₃) ₂ OH H C(3) OPT-i CH ₃ CF(GF ₃) ₂ OH H C(4) OPT-CPCCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCP				CH ₃	CF (CF ₃) ₂	H
5	*		_		C (CF ₃) ₂ OH	H
C (0) (L-1a) CH3 CH3 CF (CF 3) 2 H C (0) (L-2a) CH3 CH3 CF (CF 3) 2 H C (0) (L-3a) CH3 CH3 CF (CF 3) 2 H C (0) (L-4a) CH3 CH3 CF (CF 3) 2 H C (0) (L-4a) CH3 CH3 CF (CF 3) 2 H C (0) (L-17a) CH3 CH3 CF (CF 3) 2 H C (0) (L-20a) CH3 CH3 CF (CF 3) 2 H C (0) (L-20a) CH3 CH3 CF (CF 3) 2 H C (0) (L-22a) CH3 CH3 CF (CF 3) 2 H C (0) (L-22a) CH3 CH3 CF (CF 3) 2 H C (0) (L-23a) CH3 CH3 CF (CF 3) 2 H C (0) (L-45a) CH3 CH3 CF (CF 3) 2 H C (0) (L-46a) CH3 CH3 CF (CF 3) 2 H C (0) (L-46a) CH3 CH3 CH3 CF (CF 3) 2 H C (0) (L-46a) CH3 CH3 CH3 CF (CF 3) 2 H C (3) 0Pr-i CH3 CH3 CH3 CF (CF 3) 2 H C (3) 0Pr-i CH3 CH3 CH3 CF (CF 3) 2 H C (3) 0Pr-i CH3 CF (CF 3) 2 H C (3) 0Pr-i CH3 CF (CF 3) 2 H C (3) 0Pr-i CH3 CF (CF 3) 2 H C (3) 0Pr-i CH3 CF (CF 3) 2 H C (4) 0Pr-i CH3 CF (CF 3) 2 H C (5) 0Pr-i CH3 CF (CF 3) 2 H C (6) 0Pr-i CH3 CF (CF 3) 2 H C (7) 0Pr-i CH3 CF (CF 3) 2 H C (8) 0Pr-i CH3 CF (CF 3) 2 H C (10 CF 2) 0Pr-i CH3 CF (CF 3) 2 H C (10 CF 2) 0Pr-i CH3 CF (CF 3) 2 H C (10 CF 2) 0Pr-i CH3 CF (CF 3) 2 H C (10 CF 2) 0Pr-i CH3 CF (CF 3) 2 H C (10 CF 2) 0Pr-i CH3 CF (CF 3) 2 H C (10 CF 2) 0Pr-i CH3 CF (CF 3) 2 H C (10 CF 3) 0Pr-i CH3 CF (CF 3) 2 H C (10 CF 3) 0Pr-i CH3 CF (CF 3) 2 H C (10 CF 3) 0Pr-i CH3 CF (CF 3) 2 H C (10 CF 3) 0Pr-i CH3 CF (CF 3) 2 H C (10 CF 3) 0Pr-i CH3 CF (CF 3) 2 H C (10 CF 3) 0	5				OCF 2 CHFOCF 2 CF 2 CF	з Н
C (O) (C-2a) CH ₃ CH ₃ C (CF ₃) 20H H C (O) (C-3a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 H C (O) (C-4a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 H C (O) (C-16a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 H C (O) (C-17a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (O) (C-2a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (O) (C-2a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (O) (C-2a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (O) (C-2a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (O) (C-2a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (O) (C-45a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (O) (C-46a) CH ₃ CH ₃ CF (CF ₃) 2 DH H C (O) (C-47a) CH ₃ CH ₃ CF (CF ₃) 2 DH H C (O) (C-47a) CH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) OPr-i CH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) OPr-i CH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) OPr-i CH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) CS CH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) SCH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) SCH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) SCH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) SCH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) SCH ₃ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) SCH ₃ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) SCH ₃ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) SCH ₃ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) SCH ₃ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) SCH ₃ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) SCH ₃ CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) SCH ₃ CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) SCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) SCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) SCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) SCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) SCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (S) CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (C) CCH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (C) CCH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) 2 DH H C (C) CCH ₃ CH ₂	U				CF (CF ₃) ₂	. Н
C (0) (L-3a) CH ₃ CH ₃ CF (CF ₃) 2 H C (0) (L-4a) CH ₃ CH ₃ CF (CF ₃) 2 H C (0) (L-16a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 H C (0) (L-17a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 H C (0) (L-20a) CH ₃ CH ₃ CF (CF ₃) 2 H C (0) (L-20a) CH ₃ CH ₃ CF (CF ₃) 2 H C (0) (L-22a) CH ₃ CH ₃ CF (CF ₃) 2 H C (0) (L-22a) CH ₃ CH ₃ CF (CF ₃) 2 H C (0) (L-45a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 H C (0) (L-46a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 H C (0) (L-46a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 H C (0) (L-47a) CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₃ CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₃ CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₃ CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₃ CH ₂ CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) 2 H C (3) OPr-1 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) 2 H C (4) C(4) CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) 2 H C (5) OPr-1 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) 2 H C (6) OPr-1 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) 2 H C (6) CH ₃ CPr ₃ CH ₃ CH ₃ CF (CF ₃) 2 H OPR-1 CH ₂ CH ₂ CH ₂ CH ₂ CH				_	-	H.
C (0) (L-4a) CH ₃ CH ₃ CF (CF ₃) ₂ H C (0) (L-16a) CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ H C (0) (L-20a) CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (0) (L-22a) CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (0) (L-22a) CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (0) (L-23a) CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (0) (L-45a) CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (0) (L-46a) CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (0) (L-47a) CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (0) (L-47a) CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (3) OPr-i CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ H C (3) OPr-i CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ H C (3) OPr-i CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ H C (3) OPr-i CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ H C (3) OPr-i CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ H C (3) SCH ₃ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (3) SCH ₃ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ H C (3) SCH ₃ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ H C (3) SCH ₃ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (3) SCH ₃ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (3) SCH ₃ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (3) SCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (3) SCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (3) SCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (3) SCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (3) SCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (3) SCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (3) CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (4) CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (5) CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (6) CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (6) CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (6) CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (6) CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (6) CH ₃ CH ₃ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (6) CH ₃ CH ₃ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (6) CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (6) CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (6) CH ₃ CH ₃ CH ₃ CH ₃ CH			-	-		з Н
10				_	- .	-
C (0) (L-17a) CH3 CH3 CH3 CF (CF3) 2 H C (0) (L-20a) CH3 CH3 CH3 CF (CF3) 2 H C (0) (L-25a) CH3 CH3 CH3 CF (CF3) 2 H C (0) (L-25a) CH3 CH3 CH3 CF (CF3) 2 H C (0) (L-45a) CH3 CH3 CF (CF3) 2 H C (0) (L-45a) CH3 CH3 CF (CF3) 2 H C (0) (L-46a) CH3 CH3 CF (CF3) 2 H C (0) (L-47a) CH3 CH3 CH3 CF (CF3) 2 H C (3) OPr-i CH3 CH3 CF (CF3) 2 H C (3) OPr-i CH3 CH3 CH3 CF (CF3) 2 H C (3) OPr-i CH3 CH3 CH3 CF (CF3) 2 H C (3) OPr-i CH3 CH3 CH3 CF (CF3) 2 H C (3) OPr-i CH3 CH3 CH3 CF (CF3) 2 H C (3) OPr-i CH3 CH3 CH3 CF (CF3) 2 H C (3) OPR-D CH3 CH3 CH3 CF (CF3) 2 H C (3) OPR-D CH3 CH3 CH3 CF (CF3) 2 H C (3) OPR-D CH3 CH3 CH3 CF (CF3) 2 H C (3) OPR-D CH3 CH3 CH3 CF (CF3) 2 H C (3) OPR-D CH3 CH3 CH3 CF (CF3) 2 H C (3) OPR-D CH3 CH3 CF (CF3) 2 H C (3) OPR-D CH3 CH3 CF (CF3) 2 H C (3) OPR-D CH3 CH3 CF (CF3) 2 H C (3) OPR-D CH3 CH3 CH3 CF (CF3) 2 H C (3) OPR-D CH3 CH3 CH3 CF (CF3) 2 H C (3) OPR-D CH3 CH3 CH3 CF (CF3) 2 H C (3) OPR-D CH3 CH3 CH3 CF (CF3) 2 H C (3) OPR-D CH3 CH3 CH3 CF (CF3) 2 H C (3) OPR-D CH3 CH3 CH3 CF (CF3) 2 H C (3) OPR-D CH3 CH3 CF (CF3) 2 H C (3) OPR-D CH3 CH3 CF (CF3) 2 H C (3) OPR-D CH3 CH3 CF (CF3) 2 H C (3) OPR-D CH3 CH3 CF (CF3) 2 H C (3) OPR-D CH3 CH3 CF (CF3) 2 H C (3) OPR-D CH3 CH3 CF (CF3) 2 H C (3) OPR-D CH3 CH3 CF (CF3) 2 H C (4) OPR-D CH3 CH3 CF (CF3) 2 H C (5) OPR-D CH3 CH3 CF (CF3) 2 H C (6) OPR-D CH3 CH3 CF (CF3) 2 H C (6) OPR-D CH3 CH3 CF (CF3) 2 H C (6) OPR-D CH3 CF (CF3) 2 H C (7) OPR-D CH3 CF (CF3) 2 CF (CF3) 2 H C (7) OPR-D CH3 CF (CF3) 2 CF (CF3) 2 CF (CF3) 2 CF (CF3) 2 CF (CF3)	10			- '		
C (0) (L-20a) CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH H C (0) (L-22a) CH ₃ CH ₃ CH ₃ CC _F ₃ DOH H C (0) (L-23a) CH ₃ CH ₃ CH ₃ CC _F ₃ DOH H C (0) (L-45a) CH ₃ CH ₃ CH ₃ CF _F ₃ CF ₂ CF ₂ CF ₃ H C (0) (L-46a) CH ₃ CH ₃ CH ₃ CF _F ₃ CF ₅ ₂ DOH H C (0) (L-47a) CH ₃ CH ₃ CH ₃ CF ₂ CF ₂ CF ₂ DOH H C (3) OPr-i CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH H C (5) OPr-i CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (5) OPr-i CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (5) OPh CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (5) SCH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (5) SCH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (5) SCH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (5) SCH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (5) SCH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (5) SCH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (5) SCH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (5) SCH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (5) SCH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (5) SCH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (5) SCH ₂ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (5) SCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (5) SCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (5) SCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (5) SCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (6) CH ₃ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (7) CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (8) SCH ₃ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (9) CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (1) CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (1) CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ DH C (1) CH ₃ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ DH C CH ₃ CF (CF ₃) ₂ DH C CH ₃ CF (CF ₃) ₂ DH C CH ₃ CF (CF ₃) ₂ DH C CH ₃ CF (CF ₃) ₂ DH C CH ₃ CF (CF ₃) ₂ DH C CH ₃ CF (CF ₃) ₂ DH C CH ₃ CF (CF ₃) ₂ DH C CH ₃ CF (CF ₃) ₂ DH C CH ₃ CF (CF ₃) ₂ DH C CH ₃ CF (CF ₃) ₂ DH C CH ₃ CF (CF ₃) ₂ DH C CH ₃ CF (CF ₃) ₂ DH C CH ₃ CF (CF ₃) ₂ DOH ₃ DH C CH ₃ CF (CF ₃) ₂ DOH ₃ DH C CH ₃ CF (CF ₃) ₂ DOH ₃ DH C CH ₃ CF (CF ₃) ₂ DOH ₃ DH C CH ₃ CF (CF ₃) ₂	10					
C (0) (1-22a) CH ₃ CH ₃ CH ₃ C (CF ₃) ₂ 0H H C (0) (1-22a) CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ 0H H C (0) (1-45a) CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (0) (1-47a) CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (3) 0Pr-i CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (5) 0Pr-i Bt CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (5) 0Pr-i CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (5) 0Ph CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (5) 0Ph CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (5) SCH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (5) SCH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (5) SCH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (5) SCH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (5) SCH ₃ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (5) SCH ₃ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (5) SCH ₃ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (5) SCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (5) SCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (5) SCH ₂ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (5) SCH ₂ CH ₃ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (5) SCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (5) SCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (5) SCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (6) CH ₃) ₂ CH ₂ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (6) CH ₃) ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (6) CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (6) CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (6) CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (6) CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (6) CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (7) CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (7) CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ OH H OH H CH ₃ CF (CF ₃) ₂ OH H OC (0) CH ₃ CF (CF ₃) ₂ H C (0) CH ₃ CF (CF ₃) ₂ H C (0) CH ₃ CF (CF ₃) ₂ CH ₃ CF (CF ₃) ₂ OH H C (1) CF (1)			-			•
C (0) (L-23a) CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ CH CO (L-25a) CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ CH CO (L-45a) CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ CH CO (L-47a) CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ CH CO (L-47a) CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ CH CO (S) OPr-1 CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ CH CO (S) OPr-1 Bt CH ₃ CH ₃ CF (CF ₃) ₂ CH CO (S) OPr-1 CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ CH CO (S) OPr-1 CH ₃ CH ₃ CF (CF ₃) ₂ CH CO (S) OPr-1 CH ₃ CH ₃ CF (CF ₃) ₂ CH CC (CF ₃) ₂ CH						
15				-		
C (0) (L-46a) CH ₃ CH ₃ CH ₃ CC(F ₃) ₂ OH H C (0) (L-47a) CH ₃ CH ₃ CH ₃ CF(CF ₃) ₂ H C (S) OPr-i CH ₃ CH ₃ CF(CF ₃) ₂ H C (S) OPr-i Bt CH ₃ CH ₃ CF(CF ₃) ₂ H C (S) OPh CH ₃ CH ₃ CF(CF ₃) ₂ H C (S) OPh CH ₃ CH ₃ CF(CF ₃) ₂ DH H C (S) SCH ₃ CH ₃ CH ₃ CF(CF ₃) ₂ DH H C (S) SCH ₃ CH ₃ CH ₃ CF(CF ₃) ₂ DH H C (S) SCH ₃ CH ₃ CH ₃ CF(CF ₃) ₂ DH H C (S) SCH ₃ CH ₃ CH ₃ CF(CF ₃) ₂ DH H C (S) SCH ₃ CH ₃ CH ₃ CF(CF ₃) ₂ DH H C (S) SCH ₃ CH ₃ CH ₃ CF(CF ₃) ₂ DH H C (S) SCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF(CF ₃) ₂ DH H C (S) SCH ₂ CH=CH ₂ CH ₃ CH ₃ CH ₃ CF(CF ₃) ₂ DH H C (S) SCH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CF(CF ₃) ₂ DH H C (S) SCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CF(CF ₃) ₂ DH H C (S) SCH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CF(CF ₃) ₂ DH H C (S) SCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CF(CF ₃) ₂ DH H C (S) CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CF(CF ₃) ₂ DH H C (S) CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF(CF ₃) ₂ DH H C (S) CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF(CF ₃) ₂ DH H C (S) CH ₂ CH						-
C (0) (L-47a) CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ H C (S) OPr-i CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ H C (S) OPr-i CH ₃ CH ₃ CF (CF ₃) ₂ H C (S) OPr-i CH ₃ CH ₃ CF (CF ₃) ₂ H C (S) OPr-i CH ₃ CH ₃ CF (CF ₃) ₂ OH H CH ₃ CGS OPP CHIOCF ₂ CF ₂ CF ₃ H C (S) OPP CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ CH C (S) OPP CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ CH C (S) SCH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH C C (S) SCH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH C C (S) SCH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH C C (S) SCH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH C C (S) SCH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH C C (S) SCH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH C C (S) SCH ₂ CH-CH ₂ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH C C (S) SCH ₂ CH-CH ₂ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH C C (S) SCH ₂ CH-CH ₂ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH C C (S) SCH ₂ CH-CH ₂ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH C C (S) SCH ₂ CH-CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH C C (S) SCH ₂ CH-CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH C C (S) SCH ₂ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH C C (S) SCH ₂ CH	15					
C (S) OPT-i	,					
C (S) OPT-1						•
C (S) OPh		•	•	•		
C (S) OPh CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ H C (S) SCH ₃ H CH ₃ C(S ₃ CF (CF ₃) ₂ OH H C (S) SCH ₃ CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (S) SCH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ H C (S) SCH ₃ Et CH ₃ CF (CF ₃) ₂ H C (S) SCH ₂ CH=CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ H C (S) SCH ₂ CH=CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (S) SCH ₂ CH=CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (S) SCH ₂ C(CH ₃) = CH ₂ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (S) SPh CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (S) SPh CH ₃ CH ₃ CH ₃ CF (CF ₃) ₂ OH H C (S) SPh CH ₃ CH ₂	· _ · _			_		2
C (S) SCH ₃ C (S) SEt C (H ₃ C (S) SEt C (H ₃ C (S) SEt C (H ₃ C (S) SCH ₂ C (S) SEt C (H ₃ C (S) SCH ₂ C (S) SCH ₂ C (CH ₃) = CH ₂ C (S) SCH ₂ C (CH ₃) = CH ₂ C (S) SCH ₂ C (CH ₃) = CH ₂ C (S) SCH ₂ C (CH ₃) = CH ₂ C (S) SCH ₂ C (CH ₃) = CH ₂ C (S) SCH ₂ C (CH ₃) = CH ₂ C (S) SPh C (S) SPh C (H ₃ C (S) SPh C (H ₃ C (CF ₃) = CH ₃ C (CF ₃) = CH ₃ C (CF ₃) = CH ₃ C (S) SPh C (CH ₃) = CH ₃ C (CF	20		-	•		•
C (S) SCH ₃ C (S) SEt C (H ₃ C (CF ₃) ₂ OH C (S) SEt C (S) SEt C (H ₃ C (S) SEt C (H ₃ C (CF ₃) ₂ OH C (S) SCH ₂ C (CH ₃) = CH ₂ C (H ₃ C (S) SCH ₂ C (CH ₃) = CH ₂ C (H ₃ C (S) SCH ₂ C (CH ₃) = CH ₂ C (H ₃ C (S) SCH ₂ C (CH ₃) = CH ₂ C (S) SPh C (H ₃ C (S) SPh C (H ₃ C (H ₃ C (CF ₃) ₂ OH C (S) SPh C (H ₃ C (CF ₃) ₂ OH C (CF ₃) ₃ OH C (CF ₃ OH C			-	-		
C (S) SCH ₃ C (S) SCH ₃ C (S) SEt CH ₃ C (S) SCH ₂ CH=CH ₂ CH ₃ C (S) SCH ₂ CH=CH ₂ CH ₃ C (S) SCH ₂ CC (CH ₃) = CH ₂ C (S) SCH ₂ C (CH ₃) = CH ₃ C (S) SCH ₂ C (CH ₃) = CH ₂ C (S) SCH ₂ C (CH ₃) = CH ₃ C (S) SPh CH ₃ C (S) SPh CH ₃ C (S) SPh CH ₃ C (CF ₃) 20H C (S) SPh CH ₃ C (S) SPh CH ₃ C (CF ₃) 20H C (S) SPh CH ₃ C (CF ₃) 20H		=		_		
25			-	_		•
C (S) SEt						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25		-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					_	_
C (S) SPh CH ₃ CH ₃ CH ₃ CH ₃ CCF ₂ CFFOCF ₂ CF ₂ CF ₃ H -CH ₂ CH ₂ CH ₂ — CH ₃ CF (CF ₃) ₂ H -C (O) C (CH ₃) ₂ CH ₂ — CH ₃ CF (CF ₃) ₂ H -C (O) C (CH ₃) ₂ CH ₂ — CH ₃ CF (CF ₃) ₂ H -CH ₂ CH ₂ CH ₂ CH ₂ — CH ₃ CF (CF ₃) ₂ H -CH ₂ CH ₂ CH ₂ CH ₂ — CH ₃ CF (CF ₃) ₂ H -CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ — CH ₃ CF (CF ₃) ₂ H -CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ — CH ₃ CF (CF ₃) ₂ H OH H CH ₃ CF (CF ₃) ₂ H OH CH ₃ CF (CF ₃) ₂ H OH CH ₃ CF (CF ₃) ₂ H OC (O) CH ₃ C (O) CH ₃ CH ₃ CF (CF ₃) ₂ H SO ₂ CH ₃ Et CH ₃ CF (CF ₃) ₂ H SO ₂ CH ₃ Et CH ₃ CF (CF ₃) ₂ H SO ₂ CF ₃ H CH ₃ CF (CF ₃) ₂ H SO ₂ CF ₃ H CH ₃ CF (CF ₃) ₂ H SO ₂ CF ₃ H CH ₃ CF (CF ₃) ₂ H SO ₂ CF ₃ H CH ₃ CF (CF ₃) ₂ H SO ₂ CF ₃ Et CH ₃ CF (CF ₃) ₂ H SO ₂ CF ₃ CH CH ₃ CF (CF ₃) ₂ H SO ₂ CF ₃ CH CH ₃ CF (CF ₃) ₂ H SO ₂ CF ₃ CH CH ₃ CF (CF ₃) ₂ H SO ₂ CF ₃ CH CH ₃ CF (CF ₃) ₂ H SO ₂ CF ₃ CF CH ₃ CH ₃ CF (CF ₃) ₂ H CH ₃ CF (CF ₃) ₂ CH ₃ H CH ₃ CF (CF ₃) ₂ CH ₃ H CH ₃ CF (CF ₃) ₂ CH ₃ H CH ₃ CF (CF ₃) ₂ CH ₃ H CH ₃ CF (CF ₃) ₂ CH ₃ H CH ₃ CF (CF ₃) ₂ CH ₃ H CH ₃ CF (CF ₃) ₂ CH ₃ H CH ₃ CF (CF ₃) ₂ CH ₃ H			-	-		
30						
-C (O) C (CH ₃) ₂ CH ₂ - -C (O) C (CH ₃) ₂ CH ₂ - -C (O) C (CH ₃) ₂ CH ₂ - -C (O) C (CH ₃) ₂ CH ₂ - -CH ₂ CH ₂ CH ₂ CH ₂ - -CH ₂ CH ₂ CH ₂ CH ₂ - -CH ₂ CH ₂ CH ₂ CH ₂ - -CH ₂ CH ₂ CH ₂ CH ₂ - -CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ - -CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ - -CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ - -CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ - -CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ - -CH ₃ CF (CF ₃) ₂ H OH H CH ₃ CF (CF ₃) ₂ H OC (O) CH ₃ C (O) CH ₃ CH ₃ CF (CF ₃) ₂ H OC (O) CH ₃ C (O) CH ₃ CH ₃ CF (CF ₃) ₂ H SO ₂ CH ₃ H SO ₂ CH ₃ Et CH ₃ C (CF ₃) ₂ OCH ₃ H SO ₂ CF ₃ H CH ₃ CF (CF ₃) ₂ H SO ₂ CF ₃ H CH ₃ CF (CF ₃) ₂ H SO ₂ CF ₃ H CH ₃ CF (CF ₃) ₂ H SO ₂ CF ₃ H CH ₃ CF (CF ₃) ₂ H SO ₂ CF ₃ CH SO ₂ CF ₃ Et CH ₃ CF (CF ₃) ₂ H CH ₃ CF (CF ₃) ₂ CH CH CH CH CH CH CH CH CH C			Un 3		_	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 30			_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-C (0) C (CH ₃) 2 CH ₂ -				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* .					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-CH ₂ CH ₂	:-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$:		•		-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_		-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			_			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	SO ₂ CH ₃		-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SO ₂ CH ₃				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SO ₂ CF ₃		_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SO ₂ CF ₃		_		
45 SO_2CF_3 Et CH_3 CF $(CF_3)_2$ H $SCCl_3$ H CH_3 CF $(CF_3)_2$ H	•			- .	•	
$SCC1_3$ H CH_3 $CF(CF_3)_2$ H	45			_		
			H	_		
			H	CH3	$C(CF_3)_2OCH_3$	Н

PCT/JP02/07833

	(O 00) 0110 mo		•			
			201			
	SCC1 ₃	Н	СНз	OCF 2 CHFOCF 2 CF 2 CF 3	H	
	SCC1 ₃	Et	CH ₃	CF (CF ₃) ₂	H	
	SCC1 ₃	Et	СНз	C (CF ₃) ₂ OCH ₃	H	
	SCC1 ₃	Et	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H	
5	SPh		CH ₃	CF (CF ₃) ₂	H	
·	SNEt ₂	H H	CH ₃	C (CF ₃) ₂ OCH ₃	H	
	SN (Pr-i) 2	H	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H	
	SN (Bu-n) 2	H	CH ₃	CF (CF ₃) ₂	H	
	SN (Bu-n) 2	H	CH ₃	C (CF ₃) ₂ OCH ₃	H	
10	SN (Bu-n) 2	H .	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H	
	T-16	H	CH ₃	C (CF ₃) ₂ OCH ₃	H	
	T-17	Н	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H	
	T-18	H	CH ₃	CF (CF ₃) ₂	H	
	T-18	H	СНз	$C(CF_3)_2OCH_3$	H	
15	T-18	H	CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H	
	T-23	H	ĊНз	$C(CF_3)_2OCH_3$	H	
	SN (CH ₃) C (0) OE t	H	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H	
	$SN(CH_3)C(0)OPr-n$	H	СНз	CF (CF ₃) ₂	H	
	SN (CH ₃) C (0) OBu-n	Н	CH ₃	CF (CF ₃) ₂	Й	
20	SN (CH ₃) C (0) 0Bu-n	H	CH ₃	$C(CF_3)_2OCH_3$	H	
	SN (CH ₃) C (0) 0Bu-n	H	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H	
	SN (CH $_3$) C (O) OHex-n	Н	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H	
	SN (Et) C (0) OEt	H	CH ₃	CF (CF ₃) ₂	H	
	SN (Et) C (0) OPr-n	. · H	CH ₃	$C(CF_3)_2OCH_3$	H	
25	SN (Et) C (0) 0Bu-n	. Н	СНз	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H	
	SN (Pr-i) C (0) OEt	H	СНз	CF (CF ₃) ₂	H.	
	SN (Pr-i) C (0) OPr-n	H	СНз	C (CF ₃) ₂ OCH ₃	H .	
	SN (Pr-i) C (0) OBu-n	H	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	H	
	American business business baselines business business business and business busines					

30 第5表

PCT/JP02/07833

PCT/JP02/07833

PCT/JP02/07833

205

PCT/JP02/07833

	R ⁵	R ^{6 a}	R ^{6 b}	R³
	Н	Н	Н	i-Pr
5	CH ₃	CH ₃	Н	Et
	CH ₃	CH ₃	H	n-Pr
	CH ₃	CH ₃	H	i-Pr
	CH ₃	CH ₃	H	c-Pr
	CH ₃ .	CH ₃	H	s-Bu
10	CH ₃	CH ₃	H	t-Bu
10		CH3	H	C (CH ₃) _z Et
	CH 3	CH ₃	H	CH (CH ₃) CH ₂ OCH ₃
	CH ₃		H	CH (CH ₃) CH ₂ OC (O) NHE t
	CH ₃	CH ₃	H	C (CH ₃) ₂ CH ₂ OCH ₃
	CH ₃	CH ₃		
15	CH.3	CH ₃	H	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₃
	CH ₃	CH ₃	.H	C (CH ₃) ₂ CH ₂ OC (O) NHE t
	CH ₃	СНз	H	CH (CH ₃) CH ₂ SCH ₃
	CH ₃	СНз	H	CH (CH ₃) CH ₂ SO ₂ CH ₃
	CH ₃	СНз	H	CH (CH ₃) CH ₂ SEt
20	CH ₃	·CH3	Н	CH (CH ₃) CH ₂ SO ₂ Et
	CH ₃	СНз	Ħ	C (CH ₃) ₂ CH ₂ SCH ₃
	CH ₃	CH ₃	Н	$C(CH_3)_2CH_2SO_2CH_3$
	CH ₃	CH ₃	H	C(CH ₃) ₂ CH ₂ SEt
	CH ₃	CH ₃	H	$C(CH_3)_2CH_2SO_2Et$
25	CH ₃	CH ₃	H ·	$C (CH_3)_2 CH_2 NHC (0) OCH_3$
	CH ₃	CH ₃	H	$C(CH_3)_2CH_2NHC(0)OEt$
	CH ₃	CH ₃	H	C (CH ₃) ₂ CHO
	CH ₃	CH ₃	H	CH (CH ₃) CH=NOCH ₃
	CH ₃	CH ₃	H	C (CH ₃) ₂ CH=NOH
30	CH ₃	CH ₃	H	C (CH ₃) ₂ CH=NOCH ₃
ÜÜ	CH ₃	CH ₃	H	C (CH ₃) ₂ CN
•	CH ₃	CH ₃	H	CH ₂ C≡CH
	CH ₃	CH ₃	Ĥ	C (CH ₃) ₂ C≡CH
	CH ₃	CH ₃	H	CH ₂ Ph
9.5		CH ₃	СНз	i-Pr
35	CH ₃	Et	Н	i–Pr
	CH3		CH ₃	i-Pr
	CH ₃	Et,	и Н	i-Pr
	CH ₃	n-Pr	H	
	CH ₃	i-Pr		i-Pr
40	CH ₃	c-Pr	H	i-Pr
	CH ₃	n-Bu	H	i-Pr
	CH ₃	i –Bu	H	i-Pr
	CH 3	s-Bu	H	i–Pr
	СНз	c-Bu	Н	i–Pr
45	СНз	n-Pen	H	i–Pr
	CH ₃	c-Pen	H .	i-Pr
	CH ₃	CH ₂ CH ₂ Cl	H	i-Pr

	WO 03/011028		207	•	PCT/JP02/07833
	,		407		
	CH ₃	CF ₃	·H	i-Pr	
	CH ₃	CH_2CF_3	H	i-Pr	
	CH ₃	CH ₂ OCH ₃	Н	i-Pr	
	CH ₃	CH ₂ OCH ₂ C≡CH	CH ₃	i-Pr	
5	CH ₃	CH ₂ OPh	Н	i-Pr	
	· CH ₃	CH ₂ OCH ₂ Ph	H	i-Pr	
	CH ₃	CH ₂ CH ₂ OCH ₃	Н	i-Pr	
	CH ₃	CH ₂ SCH ₃	CH ₃	i-Pr	•
	CH ₃	CH ₂ SO ₂ CH ₃	CH ₃	i-Pr	
10	CH ₃	CH ₂ SEt	СНз	i-Pr	
	CH ₃	. CH ₂ SPh	CH ₃	i–Pr	
	CH ₃	CH_2SO_2Ph	СНз	i-Pr	
	CH ₃	CH ₂ CH ₂ SCH ₃	Н	i-Pr	•
	CH ₃	C (0) OCH ₃	Н	i-Pr	
15	CH ₃	C (0) OEt	H	i-Pr	•
	CH ₃	CH ₂ C (0) OEt	Н	i-Pr	
	CH ₃	CH ₂ C (0) NHCH ₃	CH ₃	i–Pr	
	CH ₃	CH ₂ C (0) N (CH ₃)		i-Pr	
•	CH ₃	CH=CH ₂	Н	i-Pr	
20	CH ₃	CH=CHCH ₃	Н	i-Pr	
	CH ₃	$CH=C(CH_3)_2$	Н	i–Pr	
	CH ₃	CH ₂ C≡CCH ₃	H	i-Pr	
	CH ₃	CH_2Ph	Н	i-Pr	
	CH ₃	осн з	H	i-Pr	
25	CH ₃	0E t	H	i-Pr	
	CH ₃	0Pr $-$ n	Н	i-Pr	
	CH₃	M-4a	H	i-Pr	
	CH ₃	M-5a	H	i-Pr	
	CH ₃	L-1a	. Н	i-Pr	
30	CH ₃	L-2a	H	i-Pr	
	CH ₃	L-3a	H	i-Pr	•
	CH ₃	L-4a	H	i-Pr	
	CH ₃	$-CH_2CH_2CH_2C$	H ₂ -	i-Pr	
	CH ₃	-CH ₂ OCH ₂ CH ₂		i-Pr	
35	СНз	$-CH_2SCH_2CH_2$	-	i-Pr	•
	CH ₃	$-CH_2SO_2CH_2C$	H ₂ -	i-Pr	
	CH ₃	-CH2CH2CH2C	H ₂ CH ₂ -	i–Pr	•
	CH ₃	$-CH_2OCH_2CH_2$	CH ₂ -	i-Pr	٠.
	CH ₃	$-CH_2CH_2OCH_2$	CH ₂ -	i-Pr	
40	CH ₃	$-CH_2CH_2SCH_2$		i-Pr	•
	Et	CH ₃	СНз	i-Pr	
	Et	Et	Н	i-Pr	•
	Et	Et	Н	c-Pr	
	. Et	Et	H	s-Bu	
45	Et	Et	H	t-Bu	
	Et	Et	Н .	C (CH ₃) ₂ Et	•
	Et	Et -	Н	CH (CH ₃) CH ₂ OCI	I ₃ .
					-

	WO 03/011028		208	PCT/JP02/07833
	Et	Et	Н .	CH (CH ₃) CH ₂ OC (O) NHEt
	Et	Et .	Н	C(CH ₃) ₂ CH ₂ OCH ₃
	Et	Et	H	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₃
	Et	Et	H	$C (CH_3)_2 CH_2 OC (O) NHE t$
5	Et	Et	H	CH (CH ₃) CH ₂ SCH ₃
	Et	Et	H	CH (CH ₃) CH ₂ SO ₂ CH ₃
	. Et	Et	H	$C(CH_3)_2CH_2SCH_3$
	Et	Et	. Н	$C (CH_3)_2 CH_2 SO_2 CH_3$
	Et	Et	H	$C (CH_3)_2 CH_2 NHC (0) OCH_3$
10	Et	Et	H	C (CH ₃) ₂ CH ₂ NHC (0) OEt
	Et	Et	H	CH (CH ₃) CH=NOCH ₃
	Et	Et	H	C (CH ₃) ₂ CH=NOH
	Et	Et	H	C (CH ₃) ₂ CH=NOCH ₃
4 =	Et	Et	H	C (CH ₃) ₂ CN
15	Et	Et	H	CH ₂ C≡CH
	Et	Et Et	H · H	$C (CH_3)_2 C \equiv CH$ $CH_2 Ph$
	Et Et	Et	CH ₃	i-Pr
	Et	Et	CF ₃ .	i-Pr
20	Et	n-Pr	Н	i-Pr
20	Et	i-Pr	H	i–Pr
	Et	c-Pr	Н	i-Pr
	Et	CH ₂ CH ₂ Cl	H	i–Pr
	Ėt	CF ₃	H	i-Pr
25	Et	CH ₂ CF ₃	H	i-Pr
	Et	CH ₂ OCH ₃	H	i–Pr
•	Et	CH ₂ OPh	H	i-Pr
	Et	CH ₂ SCH ₃	CH 3	i-Pr
0.0	Et	CH ₂ SO ₂ CH ₃	CH ₃	i-Pr
30	Et Et	CH ₂ SEt C (0) OCH ₃	СН _з Н	i-Pr i-Pr
	Et	C (0) OCH ₃	. H	s-Bu
	Et	C (0) OCH ³	H.	t-Bu
	Et	C (0) OCH ₃	H	CH (CH ₃) CH ₂ OCH ₃
35	Et	C (0) OCH ₃	H .	CH (CH ₃) CH ₂ OC (O) NHE t
• • •	Et	C (0) OCH ₃	H	C (CH ₃) ₂ CH ₂ OCH ₃
	Et	C (0) OCH ₃	H	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₃
	Et	C (0) OCH ₃	H	C (CH ₃) ₂ CH ₂ OC (O) NHE t
	Et	C (0) OCH ₃	H	CH (CH ₃) CH ₂ SCH ₃
40	Et	C (0) OCH ³	H	CH (CH ₃) CH ₂ SO ₂ CH ₃
	E t	C (0) OCH ₃	H	C (CH ₃) ₂ CH ₂ SCH ₃
	Ét	C (0) 0CH ₃	H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃
	Et	C (0) OCH ₃	H	C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃
. –	Et	C (0) OCH ₃	H	C (CH ₃) ₂ CH ₂ NHC (0) OE t
45	Et	C (0) OCH ₃	H	CH (CH ₃) CH=NOCH ₃
	Et	C (0) OCH ₃	H	C (CH ₃) ₂ CH=NOH
	Et	C (0) OCH ₃	Н	C (CH ₃) ₂ CH=NOCH ₃

	WO 03/011028		209	PCT/JP02/0783
		. 0 (0) 0011		C (CH ₃) ₂ CN
	Et	C (0) OCH ₃	H	CH ₂ C≡CH
	Et	C (0) OCH ₃	H	$C (CH_3) {}_2C \equiv CH$
	Et	C (0) OCH ₃	Н	-
	Et	C (0) OEt	H H	i-Pr
5	Et	C (0) OEt	H	c-Pr
	Et .	C (0) OEt	H	s-Bu
	Et	C (0) OEt	H	t-Bu
	Et	C (0) OE t	H	C (CH ₃) ₂ Et
	Et	c (0) 0Et	H	CH (CH ₃) CH ₂ OCH ₃
10	Et	C (0) OEt	Η̈́	CH (CH ₃) CH ₂ OC (O) NHE t
	Et .	C (0) OE t	H	C (CH ₃) ₂ CH ₂ OCH ₃
•	Et .	C (0) OEt	H	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₃
	Et	C (O) OE t	· H .	C (CH ₃) 2CH ₂ OC (O) NHEt
	Et	C (0) OEt	H	CH (CH ₃) CH ₂ SCH ₃
15	Et	C (0) OEt	H	CH (CH ₃) CH ₂ SO ₂ CH ₃
	Et	C (0) OEt	Н	CH (CH ₃) CH ₂ SEt
	Et	C (0) OEt	H	CH (CH ₃) CH ₂ SO ₂ Et
	Et	C (0) OEt	Н	C (CH ₃) ₂ CH ₂ SCH ₃
	Et	C (0) OE t	H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃
20	Et	C (0) OE t	<u>H</u> .	C (CH ₃) ₂ CH ₂ SE t
	Et	C (0) 0Et	. <u>H</u>	C (CH ₃) ₂ CH ₂ SO ₂ Et
	Et ·	C (0) OE t	H .	C (CH ₃) 2CH ₂ NHC (O) OCH ₃
	Et	C (0) OE t	H	C (CH ₃) ₂ CH ₂ NHC (0) OEt
	Et	C (0) 0Et	H	C (CH ₃) 2CHO
25	Et	C (0) 0E t	H	CH (CH ₃) CH=NOCH ₃
	Et	C (0) 0E t	H	C (CH ₃) ₂ CH=NOH
	Et	C (0) OE t	Н	C (CH ₃) ₂ CH=NOCH ₃
	Et	C (0) OE t	. Н	C (CH ₃) ₂ CN
	Et	C (0) 0Et	· H	CH ₂ C≡CH
30	Et	C (0) OE t	H	C (CH ₃) ₂ C≡CH
	Et ·	C (0) 0Et	H	CH ₂ Ph
	Et ·	CH=CH ₂	H	i-Pr
	Et	ОСНз	H	i-Pr
	Et .	осн з	H	c-Pr
35	Et	осн _з	Н	s-Bu
	Et	ОСН _з	Н	t-Bu
	Et	OCH3	Н	C (CH ₃) ₂ Et
	Et	OCH ₃	Н	CH (CH ₃) CH ₂ OCH ₃
	Et.	OCH ₃	H	CH (CH ₃) CH ₂ OC (O) NHEt
40	Et	OCH ₃	Н	C (CH ₃) ₂ CH ₂ OCH ₃
	Et	OCH ₃	. Н	C (CH ₃) 2 CH ₂ OC (O) NHCH ₃
	Et	OCH ₃	H.	C (CH ₃) 2 CH ₂ OC (O) NHE t
	Et	OCH ₃	H	CH (CH ₃) CH ₂ SCH ₃
	Et	OCH ₃	H	CH (CH ₃) CH ₂ SO ₂ CH ₃
45	Et	OCH 3	H	CH (CH ₃) CH ₂ SEt
	Et	OCH ₃	<u>H</u> -	CH (CH ₃) CH ₂ SO ₂ Et
	Et	OCH ₃	Н	C (CH ₃) ₂ CH ₂ SCH ₃

WO 03/011028

			210	
• •	Et	ОСНз	Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃
	Et	OCH ₃	H	C (CH ₃) ₂ CH ₂ SEt
	Et .	OCH ₃	H	
	Et	OCH ₃	H	C (CH ₃) ₂ CH ₂ SO ₂ Et
. 5	Et	OCH ₃		C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃
J	Et .		H	C (CH ₃) ₂ CH ₂ NHC (0) OEt
	Et	OCH ₃	H	C (CH ₃) ₂ CHO
		OCH ₃	Н	CH (CH ₃) CH=NOCH ₃
•	Et	OCH 3	H	C (CH ₃) ₂ CH=NOH
1.0	Et	OCH 3	H	C (CH ₃) ₂ CH=NOCH ₃
10.	Et	OCH ₃	Н .	C (CH ₃) ₂ CN
	Et	OCH ₃	Н	$CH_2C = CH$
	Et	OCH ₃	H	$C (CH_3)_2 C \equiv CH$
	Et ·	OCH ₃	H	CH ₂ Ph
	Et	0Et	H	i-Pr
15	: Et	0E t	H	s-Bu
	Et	0E t	\mathbf{H}_{-}	t-Bu
	Et	OEt .	Н	CH (CH ₃) CH ₂ OCH ₃
	Et	OEt .	H	CH (CH ₃) CH ₂ OC (O) NHE t
	Et	OEt	H	C (CH ₃) · CH ₂ OCH ₃
20	Et	OEt	Н	$C (CH_3)_2 CH_2 OC (0) NHCH_3$
	Et	OEt ·	Н	$C (CH_3)_2 CH_2 OC (0) NHE t$
	Et	OEt '	H	CH (CH ₃) CH ₂ SCH ₃
	Et	0Et	Ĥ	CH (CH ₃) CH ₂ SO ₂ CH ₃
	Et	OEt	Н.	C (CH ₃) ₂ CH ₂ SCH ₃
25	Et.	OEt ·	H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃
	Et	OEt .	H	C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃
	Et	OEt.	H	C (CH ₃) 2CH ₂ NHC (0) OEt
	Et	0Et	H	CH (CH ₃) CH=NOCH ₃
	Еt	0Et	H	C (CH ₃) ₂ CH=NOH
30	Et	OEt .	· : H	C (CH ₃) ₂ CH=NOCH ₃
	Et	0Et	Н.	C (CH ₃) ₂ CN
	Et	0Et	H	CH ₂ C≡CH
	Et	0Et	. H	$C(CH_3)_2C \equiv CH$
•	Et ·	0Pr-n	Н	i-Pr
35	Et	0Pr−n	H	s-Bu
,	Et	OPr-n	H	t-Bu
	Et	OPr-n	H	CH (CH ₃) CH ₂ OCH ₃
	Et ·	0Pr-n	H	CH (CH ₃) CH ₂ OC (O) NHE t
	Et .	0Pr-n	H	C (CH ₃) ₂ CH ₂ OCH ₃
40	Et	0Pr-n	H	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₃
	Et	0Pr-n	H	$C (CH_3)_2 CH_2 OC (O) NHE t$
	Et	OPr-n	H	CH (CH ₃) CH ₂ SCH ₃
	Et	OPr-n	H	CH (CH ₃) CH ₂ SO ₂ CH ₃
	Et	OPr-n	·H	C (CH ₃) ₂ CH ₂ SCH ₃
45	Et	OPr-n	·11 Н	
TU	Et	OPr-n	H ·	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃
	Et	OPr-n		C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃ .
	E l	ALI-II	. Н	$C (CH_3)_2 CH_2 NHC (0) OEt$

	W O 05/011020			101
			211	
	Et	0Pr−n	Н	CH (CH ₃) CH=NOCH ₃
	Ēt	OPr-n	H	C (CH ₃) ₂ CH=NOH
	Et	OPr-n	H	C (CH ₃) 2CH=NOCH ₃
	Et	OPr-n	H	C (CH ₃) ₂ CN
5	Et	OPr-n	Н	CH ₂ C≡CH
•	Et	OPr-n	H	C (CH ₃) ₂ C≡CH
	n-Pr	CH ₃	H	i-Pr
•	n-Pr	CH ₃	CH ₃	i-Pr
	n-Pr	OCH ₃	. Н	i-Pr
10 -	n-Pr ·	OEt ·	H	i-Pr
	n-Pr	OPr-n	H	i-Pr
	i-Pr	CH ₃	H	i-Pr
	i-Pr	CH ₃	СНз	i-Pr
	i-Pr	OCH ₃	H	i-Pr
15	i-Pr	0E t	Н	i-Pr
•	i-Pr	0Pr-n	Н	i-Pr
	n-Bu	CH ₃	H .	i-Pr
	n-Bu	CH3	СНз	i-Pr
	n-Bu	OCH ₃	H	i-Pr
20	n-Bu	OE t	H	i-Pr
	n-Bu	OPr-n	Н	i-Pr
	i-Bu	H H	H H	i-Pr
	s-Bu CH ₂ Pr-c	n H	n H	i-Pr i-Pr
25	CH ₂ CF ₃	H	H	i-Pr
	CH ₂ CH ₂ OCH ₃	H	H	i-Pr
	CH ₂ CH ₂ SCH ₃	Н	H	i-Pr
	CH ₂ CH ₂ CN	H .	H	i–Pr
	CH ₂ C (0) OCH ₃	H .	H	i-Pr
30	CH ₂ CH ₂ CH ₂ CH=CH ₂	· Ħ	H	i-Pr
	$CH_2CH_2CH_2C \equiv CH$	H	Н	i-Pr
	CH_2Ph	Н	H	i-Pr
	СНО	H	H	i-Pr
	C (0) CH ₃	H	ч Н	i-Pr
35	C (0) E t	H	: H	i-Pr
	C (0) CH_2F	Н	H	i-Pr
	C (0) CH_2C1	Н	Н	i-Pr
	C (0) CH_2OCH_3	H .	Н	i-Pr
	C (O) CH ₂ SCH ₃	H	H	i-Pr
40	C (0) Ph	H	Н .	i-Pr
	C (0) OCH ₃	H	<u>H</u> .	i-Pr
	C (0) OEt	H T	H	i-Pr
	C (0) SCH ₃	Н	H	i-Pr
	C (0) SEt	H	H	i-Pr
45	C (O) NHCH ₃	H	Н.	i-Pr
	$C(0) N(CH_3)_2$	H	Н	i-Pr
	C (S) SCH ₃	Н	Н .	i-Pr

PCT/JP02/07833

212

C (S) SEt SO₂CH₃ H H H

i-Pr i-Pr

5 第6表

$$\begin{array}{c|c}
Y^{1} \\
Y^{2} \\
Y^{2} \\
Y^{3} \\
Y^{5} \\
Y^{3}
\end{array}$$

$$\begin{array}{c|c}
Y^{2} \\
Y^{3} \\
Y^{3} \\
Y^{5} \\
Y$$

$$\begin{array}{c|c}
Y^{1} \\
2 \\
N \\
Y^{2} \\
Y^{2} \\
Y^{3} \\
Y^{3} \\
Y^{3} \\
CH_{3} \\
[6] - 3
\end{array}$$

$$\begin{array}{c|c}
Y^{1} \\
2 \\
N \\
Y^{2} \\
Y^{3} \\
Y^{5} \\
Y^{3} \\
Y^{5} \\
Y^{5$$

$$\begin{array}{c|c}
Y^1 \\
Y^2 \\
Y^2 \\
Y^3 \\
Y^3 \\
Y^3 \\
Y^4 \\
Y^3 \\
Y^3 \\
Y^4 \\
Y^3 \\
Y^3 \\
Y^4 \\
Y^3 \\
Y^4 \\
Y^3 \\
Y^3 \\
Y^4 \\
Y^5 \\
Y^$$

または

PCT/JP02/07833

	R ⁵	R ³	Υ2	Y ¹ , (Y ³) _n
	CH ₃	i-Pr	CF (CF ₃) ₂	2-СН з
5	CH ₃	i-Pr	CF (CF ₃) ₂	4-CH ₃
Ū	CH ₃	i–Pr	OCH (CF ₃) ₂	2-CH ₃
	CH ³	i-Pr	OCH (CF ₃) ₂	4-CH ₃
	Et	CH ₃	CF (CF ₃) ₂	2-CH ₃
	Et	Et	OCH (CF ₃) ₂	2-CH ₃
10	Et	n-Pr	CF (CF ₃) ₂	2-CH ₃
	Et	i-Pr	Н	4-SPr-i
	Et	i-Pr	H	4-SBu-i
	Et	i–Pr	C1	4-CH ₃
	Et.	i-Pr	CH ₃	2-OCH (CF ₃) ₂
15	Et	i-Pr	CF ₂ CF ₃	2-C1
-	Et	i-Pr	CF ₂ CF ₃	2-CH ₃
	Et	i-Pr	CF (CF ₃) ₂	H .
	Et	i-Pr	CF (CF ₃) ₂	2-C1
	Et	i–Pr	CF (CF ₃) ₂	2-CH ₃
20	Et	i-Pr	CF (CF ₃) ₂	2-0CH ₃
20	. Et	i-Pr	CF (CF ₃) ₂	2-SCH ₃
	Et	i-Pr	CF (CF ₃) ₂	4-CH ₃
	Et	i-Pr	OCF ₂ Br	2-CH ₃
	Et	i-Pr	OCF 2 CHFC1	2-СН _з
25	Et	i-Pr	OCF 2 CHFC 1	4 –CH $_3$
	Et	i–Pr	OCF ₂ CHFBr	2-CH ₃
	Et	i–Pr	OCF ₂ CHFBr	4-CH ₃
	Et	i-Pr	0 CF $_2$ CHFCF $_3$	2-CH ₃
	·Et	-i-Pr	OCF 2 CHFCF 3	$4-CH_3$
30	Et	i-Pr	OCH (CF ₃) ₂	Н
	Et	i-Pr	OCH (CF ₃) ₂	2-C1
	Et	i-Pr	OCH (CF ₃) ₂	2-CH ₃
	Et	i-Pr	OCH (CF ₃) ₂	2-0CH ₃
	Et	i-Pr	OCH (CF ₃) ₂	4-CH ₃
35	Et	i-Pr	OCF ₂ CHFOCF ₃	2-CH ₃
ออ				-
	Et	i-Pr	OCF 2 CHFOCF 3	4-CH ₃
	Et	i-Pr	OCF 2 CHFOCF 2 CF 2 C	F ₃ 2-C1
•	Et	i-Pr	OCF 2 CHFOCF 2 CF 2 C	
	Et	i-Pr	OCF ₂ CHFOCF ₂ CF ₂ C	
40	Et	i-Pr	0 (Ph-4-Br)	$4-CH_3$
. •	Et	i-Pr	$0 (Ph-4-CF_3)$	2-CH ₃
	Et	i-Pr	0 (Ph-2, 4-Cl ₂)	Н
	Et .	i-Pr	0 (Ph-2-C1-4-CF ₃)	2-CH ₃
	Et	i-Pr	0 (L-45b)	2-CH ₃
45	Et	i–Pr	0 (L-45c)	2-CH ₃
40	•		0 (L-45d)	
	Et .	i-Pr		2-CH ₃
	Et	i-Pr	0 (L-45d)	4-CH ₃

WO 03/011028 PCT/JP02/07833 214

	Et		i-Pr	SCHF ₂	2-CH ₃
	Et		i-Pr	$N (CH_3) C (0) CF_2 CF_3$	2-CH ₃
	Et		c-Pr	CH (CF ₃) ₂	2-CH ₃
	Et		c-Pr	OCH (CF ₃) ₂	2-CH ₃
e .	•		s-Bu	CF (CF ₃) ₂	2-CH ₃
5	Et			OCH (CF ₃) ₂	2-CH ₃
	Et ·		s-Bu	CF (CF ₃) ₂	2-CH ₃
	Et		t-Bu		2 CH ₃
	Et		t-Bu	CF (CF ₃) ₂	-
	Et		t-Bu	OCH (CF ₃) ₂	2-CH ₃
10	Et		t-Bu	OCH (CF ₃) ₂	4-CH ₃
	Et		t-Bu	OCF 2 CHFOCF 2 CF 2 CF 3	2-CH ₃
	Et		C (CH ₃) ₂ Et	CH (CF ₃) ₂	2-CH ₃
	Et	•	C(CH ₃) ₂ Et	OCH (CF ₃) ₂	2-CH ₃
	Et		CH (CH ₃) CH ₂ OCH ₃	CF (CF ₃) ₂	2-CH ₃
15	Et		CH (CH ₃) CH ₂ OCH ₃	$CF(CF_3)_2$	4-CH ₃
	Et		CH (CH ₃) CH ₂ OCH ₃	$OCH(CF_3)_2$	$2-CH_3$
	Et		CH (CH ₃) CH ₂ OCH ₃	0 CH (CF $_3$) $_2$	2 –CH $_{ m 3}$
	Et		CH (CH ₃) CH ₂ OCH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	4 –CH $_3$
	Et		CH (CH ₃) CH ₂ OC (O) NHCH ₃	OCH (CF ₃) ₂	$2-CH_3$
20	Et		CH (CH ₃) CH ₂ OC (O) NHE t	CF (CF ₃) ₂	2 –CH $_{ m 3}$
	Et.	•	C (CH ₃) ₂ CH ₂ OCH ₃	CF (CF ₃) ₂	$2-\mathrm{CH}_3$
	Et	•	C (CH ₃) ₂ CH ₂ OCH ₃	CF (CF ₃) ₂	4 –CH $_{ m 3}$
	Et		C (CH ₃) 2CH2OCH3	OCH (CF ₃) ₂	2-CH 3
	Et		C (CH ₃) 2CH ₂ OCH ₃	OCH (CF ₃) ₂	4 –CH $_3$
25	Et	·	C (CH ₃) 2CH ₂ OCH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	2-CH ₃
,μο	Et	•	C (CH ₃) 2CH ₂ OC (O) NHCH ₃	CH (CF ₃) ₂	$2-CH_3$
	Et		C (CH ₃) ₂ CH ₂ OC (O) NHCH ₃	CH (CF ₃) ₂	$4-CH_3$
•	Et	•	C (CH ₃) 2CH ₂ OC (O) NHCH ₃	OCH (CF ₃) ₂	2-CH ₃
	Et		C (CH ₃) ₂ CH ₂ OC (O) NHCH ₃	OCH (CF ₃) ₂	4-CH ₃
30	Et		C (CH ₃) ₂ CH ₂ OC (O) NHCH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	
<i>0</i> u	Et	•	$C (CH_3)_2 CH_2 OC (O) NHE t$	CF (CF ₃) ₂	2-CH ₃
	Et		CH (CH ₃) CH ₂ SCH ₃	CF ₂ CF ₃	2-CH ₃
	Et.		CH (CH ₃) CH ₂ SCH ₃	CF (CF ₃) ₂	2-CH ₃
	Et.		CH (CH ₃) CH ₂ SCH ₃	CF (CF ₃) ₂	4-CH ₃
35	Et		CH (CH ₃) CH ₂ SCH ₃	OCF 2 CHFC1	2-CH ₃
อย			CH (CH ₃) CH ₂ SCH ₃	OCF ₂ CHFBr	2-CH ₃
	Et		CH (CH ₃) CH ₂ SCH ₃	OCF 2 CHFCF 3	2-CH ₃
	Et	•	CH (CH ₃) CH ₂ SCH ₃	OCH (CF ₃) ₂	2-CH ₃
	Et	• *		OCH (CF ₃) ₂	4-CH ₃
40	Et	•	CH (CH ₃) CH ₂ SCH ₃	OCF 2 CHFOCF 3	2-CH ₃
40	Et		CH (CH ₃) CH ₂ SCH ₃		
	Et	:	CH (CH ₃) CH ₂ SCH ₃	OCF 2 CHFOCF 2 CF 2 CF 5	
. •	Et	• .	CH (CH ₃) CH ₂ SO ₂ CH ₃	CH (CF ₃) ₂	2-CH ₃
	Et		CH (CH ₃) CH ₂ SO ₂ CH ₃	OCH (CF ₃) ₂	2-CH ₃
	Et	:	CH (CH ₃) CH ₂ SO ₂ CH ₃	OCF ₂ CHFOCF ₂ CF ₂ CF	
45	Et		CH (CH ₃) CH ₂ SE t	CF (CF ₃) ₂	2∸CH ₃
	Εt		CH (CH ₃) CH ₂ SO ₂ Et	OCH (CF ₃) ₂	2-CH ₃
	Et		C (CH ₃) ₂ CH ₂ SCH ₃	CF (CF ₃) ₂	2-CH ₃
				*	

wo	03/011028	
----	-----------	--

215

PCT/JP02/07833

	Et	C (CH ₃) ₂ C	H ₂ SCH ₃	CF (CF ₃) ₂	4-CH ₃
	Et	C (CH ₃) ₂ C		OCH (CF ₃) ₂	2 -CH $_{ extsf{3}}$
	Et	C (CH ₃) ₂ C		OCH (CF ₃) ₂	$4-CH_3$
	Et	$C (CH_3)_2 C$		OCF 2 CHFOCF 2 CF 2 CF 3	2-CH ₃
_				CF (CF ₃) ₂	2-CH ₃
5	Et		H ₂ SO ₂ CH ₃		2-CH ₃
	Et	C (CH ₃) ₂ C		OCH (CF ₃) ₂	
	Et	$C(CH_3)_2C$		CF (CF ₃) ₂	2-CH ₃
	Et		H_2 NHC (0) OCH ₃	OCH (CF ₃) ₂	2-CH ₃
•	Et	C (CH ₃) ₂ C	H_2 NHC (0) OE t	CF (CF ₃) ₂	$2-CH_3$
10	· Et	C (CH ₃) ₂ C	НО	OCH (CF ₃) ₂	$2-CH_3$
	E.t	CH (CH ₃) C		CF (CF ₃) ₂	$2-CH_3$
	Et	C (CH ₃) ₂ (OCH (CF ₃) ₂	$2-CH_3$
	Et	C (CH ₃) ₂ (CF (CF ₃) ₂	$2-CH_3$
	Et	$C (CH_3)_2$		CF (CF ₃) ₂	4-CH ₃
1 5	Et	C (CH ₃) ₂ (OCH (CF ₃) ₂	2-CH ₃
15				OCH (CF ₃) ₂	4-CH ₃
	Et	C (CH ₃) ₂ (OCF 2 CHFOCF 2 CF 2 CF 3	2-CH ₃
	Et	C (CH ₃) ₂ (
	Et	C (CH ₃) ₂ (OCH (CF ₃) ₂	2-CH ₃
	Et	CH ₂ C≡CH		CF (CF ₃) ₂	2-CH ₃
20	Et	$C(CH_3)_2$	C≡CH	OCH (CF ₃) ₂	2-CH ₃
	Et.	CH_2Ph		CF (CF ₃) ₂	2-CH ₃
	n-Pr	i-Pr		$OCH(CF_3)_2$	$2-CH_3$
	i-Pr	i-Pr		$CF(CF_3)_2$.	$2-CH_3$
	n-Bu	i-Pr		OCH (CF ₃) ₂	$2-CH_3$
25	i-Bu	i-Pr	,	CF (CF ₃) ₂	$2-CH_3$
	s-Bu	i-Pr		OCH (CF ₃) ₂	$2-CH_3$
	CH ₂ OCH ₃	i-Pr	**	CF (CF ₃) ₂	2-CH ₃
	CH ₂ OCH ₃	s-Bu		OCH (CF ₃) ₂	2-СН3
	CH ₂ OCH ₃	t-Bu		CF (CF ₃) ₂	2-CH ₃
'nn		C (CH ₃) ₂	T t	OCH (CF ₃) ₂	2-CH ₃
30	CH ₂ OCH ₃			CF (CF ₃) ₂	2-CH ₃
	CH ₂ OCH ₃		CH ₂ OCH ₃	OCH (CF ₃) ₂	2-CH ₃
	CH ₂ OCH ₃		CH ₂ OCH ₃		2-CH ₃
	CH ₂ OCH ₃		CH ₂ OC (O) NHCH ₃	CF (CF ₃) ₂	
	CH ₂ OCH ₃		CH ₂ SCH ₃	OCH (CF ₃) ₂	2-CH ₃
35	$\mathrm{CH_{2}OCH_{3}}$		CH ₂ SO ₂ CH ₃	CF (CF ₃) ₂	2-CH ₃
	CH ₂ OCH ₃		CH ₂ SCH ₃	$OCH(CF_3)_2$	2-CH ₃
	CH ₂ OCH ₃	C (CH ₃) ₂	CH ₂ SO ₂ CH ₃	CF (CF ₃) ₂	2-CH ₃
	CH ₂ OCH ₃		CH=NOCH ₃	OCH (CF ₃) ₂	2 -CH $_3$
	CH ₂ OCH ₃	C (CH ₃) 2		CF (CF ₃) ₂	2-CH ₃
40	CH ₂ OCH ₃	CH ₂ C≡C		OCH (CF ₃) ₂	2-CH ₃
40	CH ₂ OCH ₃	C (CH ₃) 2		CF (CF ₃) ₂	2-CH ₃
		i-Pr		OCH (CF ₃) ₂	2-CH ₃
	CH ₂ OEt			CF (CF ₃) ₂	2-CH ₃
	CH ₂ OEt	s-Bu			2-CH ₃
	CH ₂ OEt	t-Bu	714	OCH (CF ₃) ₂	-
45	CH ₂ OEt	C (CH ₃) ₂		CF (CF ₃) ₂	2-CH ₃
	CH ₂ OE t		CH ₂ OCH ₃	OCH (CF ₃) ₂	2-CH ₃
	CH ₂ OE t	CH (CH ₃)	CH ₂ OC (0) NHE t	CF (CF ₃) ₂	2-CH ₃
			•		

	W	o (03/	01	10	28
--	---	-----	-----	----	----	----

216

PCT/JP02/07833

		210		
•	CH ₂ OEt	$C(CH_3)_2CH_2OCH_3$	OCH (CF ₃) ₂	2-CH ₃
	CH ₂ OEt	$C (CH_3)_2 CH_2 OC (O) NHCH_3$	CF (CF ₃) ₂	2-CH ₃
	CH ₂ OEt	$C (CH_3)_2 CH_2 OC (O) NHE t$	OCH (CF ₃) ₂	2-CH ₃
	CH_2OEt	CH (CH ₃) CH ₂ SCH ₃	CF (CF ₃) ₂	2-0113
5	CH ₂ OEt	CH (CH ₃) CH ₂ SO ₂ CH ₃	OCH (CF ₃) ₂	2-CH ₃
	CH ₂ OEt	CH (CH ₃) CH ₂ SE t	CF (CF ₃) ₂	2-СН ₃
	CH ₂ OEt	CH (CH ₃) CH ₂ SO ₂ Et	OF (OF 3) 2	2-CH ₃
•	CH ₂ OEt	C (CH ₃) 2CH ₂ SCH ₃	OCH (CF ₃) ₂	2-CH ₃
	CH ₂ OE t	C (CH ₃) 2 CH ₂ SO ₂ CH ₃	CF (CF ₃) ₂	2-CH ₃
10	CH ₂ OEt	C (CH ₃) 2 CH ₂ SE t	OCH (CF ₃) ₂	2-CH ₃
	CH ₂ OEt		CF (CF ₃) ₂	2-CH ₃
	CH ₂ OEt	C (CH ₃) ₂ CH ₂ SO ₂ Et	OCH (CF ₃) ₂	2-CH ₃
	CH ₂ OEt	C (CH ₃) ₂ CH ₂ NHC (0) 0CH ₃	CF (CF ₃) ₂	2-CH ₃
	CH ₂ OE t	C (CH ₃) ₂ CH ₂ NHC (0) OE t	$OCH(CF_3)_2$	2-CH ₃
15	CH ₂ OEt	C (CH ₃) ₂ CHO	$CF(CF_3)_2$	2-CH ₃
10		CH (CH ₃) CH=NOCH ₃	OCH (CF ₃) ₂	2-СН 3
	CH ₂ OEt	C (CH ₃) ₂ CH=NOCH ₃	$CF(CF_3)_2$	2-CH ₃
	CH ₂ OEt	C (CH ₃) ₂ CN	OCH (CF $_3$) $_2$	2-CH ₃
	CH ₂ OEt	CH ₂ C≡CH	CF (CF ₃) ₂	2-CH ₃
0.0	CH ₂ OEt	$C(CH_3)_2C \equiv CH$	OCH (CF ₃) ₂	2-CH ₃
20	CH (CH ₃) OCH ₃	i–Pr	CF (CF ₃) ₂	2-CH ₃
	CH (CH ₃) OCH ₃	t-Bu	OCH (CF ₃) ₂	2-CH ₃
	CH (CH ₃) OCH ₃	CH (CH ₃) CH ₂ OCH ₃	CF (CF ₃) ₂	2-CH ₃
	CH (CH ₃) OCH ₃	$C (CH_3)_2 CH_2 OCH_3$	OCH (CF $_3$) $_2$	2-CH ₃
	CH (CH ₃) OCH ₃	CH (CH ₃) CH ₂ SCH ₃	CF (CF ₃) ₂	
25	CH (CH ₃) OCH ₃	CH (CH ₃) CH ₂ SO ₂ CH ₃	OCH (CF ₃) ₂	2-CH ₃
	CH (CH ₃) OCH ₃	C (CH ₃) ₂ CH ₂ SCH ₃	CF (CF ₃). ₂	2-CH ₃
	CH (CH ₃) OCH ₃	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	OCH (CF ₃) ₂	2-CH ₃
	CH (CH ₃) OCH ₃	C (CH ₃) ₂ CH=NOCH ₃	CF (CF ₃) ₂	2-CH ₃
	CH (CH ₃) OCH ₃	C (CH ₃) ₂ CN	OCH (CF ₃) ₂	2-CH ₃
30	CH (CH ₃) OCH ₃	CH ₂ C≡CH	CF (CF ₃) ₂	2-CH ₃
	CH (CH ₃) OCH ₃	C (CH ₃) ₂ C≡CH	Or (Or 3 / 2	2-CH ₃
	CH (Et) OCH ₃	i-Pr	OCH (CF ₃) ₂	2-CH ₃
	CH (Et) OCH ₃	t-Bu	OCH (CF ₃) ₂	2-СН _з
	CH (Et) OCH ₃	CH (CH ₃) CH ₂ OCH ₃	CF (CF ₃) ₂	2-CH ₃
35	CH (Et) OCH ₃	C (CH ₃) ₂ CH ₂ OCH ₃	OCH (CF ₃) ₂	2-СН з
	CH (Et) OCH ₃	CH (CH ₃) CH ₂ SCH ₃	CF (CF ₃) ₂	$2-CH_3$
	CH (Et) OCH ₃		OCH (CF ₃) ₂	2-CH ₃ .
	CH (Et) OCH ₃	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF (CF ₃) ₂	2-CH ₃
	CH (Et) OCH ₃	C (CH ₃) ₂ CH ₂ SCH ₃	0 CH (CF $_3$) $_2$	2-CH ₃
40	CH (Et) OCH ₃	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF (CF ₃) ₂	2-CH ₃
10	CH (Et) OCH ₃	C (CH ₃) ₂ CH=NOCH ₃	0 CH (CF $_3$) $_2$	2-CH ₃
		C (CH ₃) ₂ CN	CF (CF ₃) ₂	2-CH ₃
	CH (Et) OCH 3	CH ₂ C≡CH	0 CH (CF $_3$) $_2$	2-СН 3
٠, ,	CH (Et) OCH ₃	C (CH ₃) ₂ C≡CH	CF (CF ₃) ₂	2-СН 3
	CH ₂ C≡CH	i–Pr	OCH (CF ₃) ₂	2-CH ₃
15	CH ₂ C≡CH	s-Bu	CF (CF ₃) ₂	2-CH ₃
	CH ₂ C≡CH	t–Bu	OCH (CF ₃) ₂	2-CH ₃
	CH ₂ C≡CH	C (CH ₃) ₂ Et	CF (CF ₃) ₂	
			01 (01 3/ 2	2-CH ₃

	WO 03/011028			PCT/JP02/07833
		217		
	CH ₂ C≡CH	CH (CH ₃) CH ₂ OCH ₃	OCH (CF ₃) ₂	2-CH ₃
	$CH_2C \equiv CH$	C (CH ₃) ₂ CH ₂ OCH ₃	CF (CF ₃) ₂	2-CH ₃
	$CH_2C \equiv CH$	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₃	OCH (CF ₃) ₂	2-CH ₃
	$CH_2C \equiv CH$	CH (CH ₃) CH ₂ SCH ₃	CF (CF ₃) ₂	2-CH ₃
5	CH ₂ C≡CH	CH (CH ₃) CH ₂ SO ₂ CH ₃	OCH (CF ₃) ₂	2-CH ₃
	CH ₂ C≡CH	C (CH ₃) ₂ CH ₂ SCH ₃	CF (CF ₃) ₂	2-CH ₃
	CH ₂ C≡CH	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	OCH (CF ₃) ₂	2-CH ₃
	CH ₂ C≡CH	C (CH ₃) ₂ CH=NOCH ₃	CF (CF ₃) ₂	2-CH ₃
	$CH_2C \equiv CH$	C (CH ₃) 2 CN	OCH (CF ₃) ₂	2-CH ₃
10	CH ₂ C≡CH	CH ₂ C≡CH	CF (CF ₃) ₂	2-CH ₃
	CH ₂ C≡CH	C (CH ₃) ₂ C≡CH	OCH (CF ₃) ₂	2-CH ₃
	CHO.	i-Pr	CF (CF ₃) ₂	2-CH ₃
	C (0) CH ₃	i-Pr	OCH (CF ₃) ₂	2-CH ₃
	C (0) E t	i–Pr	CF (CF ₃) ₂	2-CH ₃
15	C (0) $Pr-n$	i–Pr	OCH (CF ₃) ₂	2-CH ₃
	C (0) Pr-i	i-Pr	CF (CF ₃) ₂	2-CH ₃
	·C (0) Pr-c	i-Pr	OCH (CF ₃) ₂	2-CH ₃
	C (0) Bu-t	i-Pr	CF (CF ₃) ₂	2-CH ₃
	C (0) CHF ₂	i-Pr	OCH (CF ₃) ₂	2-CH ₃
20	C (0) CF ₃	i-Pr	CF (CF ₃) ₂	2-CH ₃
	C (0) CF_2C1	i-Pr	OCH (CF ₃) ₂	2-CH ₃
	Ph	i-Pr	CF (CF ₃) ₂	2-CH ₃
	C (0) OCH ₃	i-Pr	OCH (CF ₃) ₂	2-CH ₃
	C (0) OE t	i-Pr	CF (CF ₃) ₂	2-CH ₃
25	C (0) OPr-n	i–Pr	OCH (CF ₃) ₂	2-CH ₃
	C (0) OPr-i	i–Pr	CF (CF ₃) ₂	2-CH ₃
	C (0) OCH ₂ CH ₂ C1	i–Pr	OCH (CF ₃) ₂	2-CH ₃
	C (0) OCH $_2$ CF $_3$	i–Pr	CF (CF ₃) ₂	2-CH ₃
	SCC1 ₃	i-Pr	OCH (CF ₃) ₂	2-CH ₃
30	*	To compare the same and the sam		-

本発明化合物は、農園芸作物及び樹木などを加害する所謂農業害虫、家畜、家禽類に 寄生する所謂家畜害虫、家屋等の人間の生活環境で様々な悪影響を与える所謂衛生害虫、 倉庫に貯蔵された穀物等を加害する所謂貯穀害虫、及び同様の場面で発生、加害するダ 二類、線虫類、軟体動物、甲殼類の何れの害虫も低濃度で有効に防除できる。

35 本発明化合物を用いて防除しうる昆虫類、ダニ類、線虫類、軟体動物及び甲殻類には 具体的に、例えば、

コナガ (Plutella xylostella)、タマナヤガ (Agrotis ipsilon)、カブラヤガ (Agrotis segetum)、オオタバコガ (Helicoverpa armigera)、タバコガ (Helicoverpa assulta)、コットンボールワーム (Helicoverpa zea)、タバコバッドワーム (Heliothis virescens)、ヨトウガ (Mamestra brassicae)、フタオビコヤガ (Naranga aenescens)、タマナギンウワバ (Plusia nigrisigna)、アワヨトウ (Pseudaletia separata)、シロイチモジヨトウ

20

25

PCT/JP02/07833

218

(Spodoptera exigua)、ハスモンヨトウ(Spodoptera litura)、コットンリーフワーム (Spodoptera littoralis)、フォールアーミーワーム(Spodoptera frugiperda)、サザン アーミーワーム(Spodoptera eridania)、トマトホーンワーム(Manduca quinquemaculata)、タバコホーンワーム (Manduca sexta) 、グレープベリーモス (Endopiza viteana)、ギンモンハモグリガ (Lyonetia prunifoliella malinella)、キン 5 モンホソガ (Phyllonorycter ringoneella)、ミカンハモグリガ (Phyllocnistis citrella)、ワタアカミムシ(Pectinophora gossypiella)、モモシンクイガ(Carposina niponensis)、リンゴコカクモンハマキ (Adoxophyes orana faciata)、チャノコカクモン ハマキ(Adoxophyes honmai)、チャハマキ(Homona magnamina)、コドリンガ(Cydla pomonella)、ナシヒメシンクイ(Grapholita molesta)、二カメイガ(Chilo 10 suppressalis)、コブノメイガ (Cnaphalocrocis medinalis)、ハイマダラノメイガ (Hellula undalis)、ヨーロピアンコーンボーラー (Ostrinia nubilalis)、ソイビーン ルーパー (Pseudoplusia includens)、イラクサギンウワバ (Trichoplusia ni)、アメリカ シロヒトリ (Hyphantria cunea)、モンシロチョウ (Pieris rapae crucivora)、イチモン ジセセリ (Parnara guttata) 等の鱗翅目害虫、 15

ドウガネブイブイ (Anomala cuprea)、ヒメコガネ (Anomala rufocuprea)、マメコガネ (Popillia japonica)、コロラドポテトピートル (Lepinotarsa decemlineata)、インゲンテントウ (Epilachna varivestis)、カンシャクシコメツキ (Melanotus tamsuyensis)、タ バコシバンムシ (Lasioderma serricorne)、ヒメヒラタケシキスイ (Epuraea domina)、ニジュウヤホシテントウ (Henosepilachna vigintioctopunctata)、チャイロコメノゴミムシダマシ (Tenebrio molitor)、コクヌストモドキ (Tribolium castaneum)、ゴマダラカミキリ (Anoplophora malasiaca)、マツノマダラカミキリ (Monochamus alternatus)、アズキゾウムシ (Callosobruchus chinensis)、ウリハムシ (Aulacophora femoralis)、イネドロオイムシ (Oulema oryzae)、キスジノミハムシ (Phyllotreta striolata)、アリモドキゾウムシ (Cylas formicarius)、ワタミゾウムシ (Anthonomus grandis)、イネゾウムシ (Ethinocnemus squameus)、アルファルファタコゾウムシ (Hypera postica)、イネミズゾウムシ (Lissorhoptrus oryzophilus)、コクゾウ (Sitophilus zeamais)、シバオサゾウムシ (Sphenophrus venatus vestius)、グラナリーウィービル (Sitophilus granarius)、サザンコーンルートワーム (Diabrotica undecimpunctata)、ウエスタンコーンルートワー

25

219

PCT/JP02/07833

ム (Diabrotica virgifera)、ノーザンコーンルートワーム (Diabrotica barberi)、アオ バアリガタハネカクシ (Paederus fuscipes) 等の鞘翅目害虫、

ナガメ (Eurydema rugosa)、シラホシカメムシ (Eysarcoris ventralis)、クサギカメム シ (Halyomorpha mista)、ミナミアオカメムシ (Nezara viridula)、クモヘリカメムシ (Leptocorisa chinensis)、ホソヘリカメムシ (Riptortus clavatus)、コバネヒョウタン ナガカメムシ(Togo hemipterus)、ターニッシュドプラントバグ(Lygus lineolaris)、 コットンフリーホッパー (Psuedatomoscelis seriatus)、ツツジグンバイ (Stephanitis pyrioides)、フタテンオオヨコバイ (Epiacanthus stramineus)、チャノミドリヒメヨコ バイ (Empoasca onukii)、ポテトリーフホッパー (Empoasca fabae)、ツマグロヨコバイ 10 (Nephotettix cinctinceps)、ヒメトビウンカ (Laodelphax striatellus)、トビイロウン カ (Nilaparvata lugens)、セジロウンカ (Sogatella furcifera)、ミカンキジラミ (Trioza erytreae)、ナシキジラミ (Psylla pyrisuga)、シルバーリーフコナジラミ ・(Bemisia argentifolii)、タバココナジラミ (Bemisia tabaci)、ミカンコナジラミ 回知aleurodes citri)、オンシツコナジラミ (Trialeurodes vaporariorum)、ワタアブラ ムシ(Aphis gossypii)、ユキヤナギアブラムシ(Aphis pomi)、モモアカアブラムシ 15 (Myzus persicae)、オオワラジカイガラムシ (Drosicha corpulenta)、イセリアカイガラ ムシ(Icerya purchasi)、ミカンコナカイガラムシ(Planococcus citri)、クワコナカイ ガラムシ (Pseudococcus comstocki)、ルビーロウムシ (Ceroplastes rubens)、ヤノネカ イガラムシ (Unaspis yanonensis)、トコジラミ (Cimex lectularius) 等の半翅目害虫、 ミカンキイロアザミウマ (Frankliniella occidentalis)、ヒラズハナアザミウマ 20

(Frankliniella intonsa)、チャノキイロアザミウマ(Scirtothrips dorsalis)、ミナミ キイロアザミウマ (Thrips palmi)、ネギアザミウマ (Thrips tabaci) 等の総翅目害虫、

ミカンコミバエ(Dacus dorsalis)、ウリミバエ(Dacus cucurbitae)、チチュウカイミ バエ (Ceratitis capitata)、イネヒメハモグリバエ (Hydrellia griseola)、ナスハモグ リバエ(Liriomyza bryoniae)、マメハモグリバエ(Liriomyza trifolii)、タネバエ (Hylemya platura)、アップルマゴット(Rhagoletis pomonella)、ヘシアンフライ (Mayetiola destructor)、イエバエ (Musca domestica)、サシバエ (Stomoxys calcitrans)、ヒツジシラミバエ (Melophagus ovinus)、ウシバエ (Hypoderma bovis)、キ スジウシバエ (Hypoderma lineatum)、ヒツジバエ (Oestrus ovis)、ツェツェバエ

PCT/JP02/07833

220

(Glossina palpalis, Glossina morsitans)、キアシオオブユ (Prosimulium yezoensis)、ウシアブ (Tabanus trigonus)、オオチョウバエ (Telmatoscopus albipunctatus)、トクナガヌカカ (Leptoconops nipponensis)、アカイエカ (Culex pipiens pallens)、ネッタイシマカ (Aedes aegypti)、ヒトスジシマカ (Aedes albopicutus)、シナハマダラカ (Anopheles hyracanus sinesis)等の双翅目害虫、

クリハバチ(Apethymus kuri)、カブラハバチ(Athalia rosae japonensis)、マツノキハバチ(Neodiprion sertifer)、グンタイアリ(Eciton burchelli, Eciton schmitti)、クロオオアリ(Camponotus japonicus)、オオスズメバチ(Vespa mandarina)、ブルドックアント(Myrmecia spp.)、ファイヤーアント類(Solenopsis spp.)、ファラオアント

10 (Monomorium pharaonis)等の膜翅目害虫、

クロゴキブリ (Periplaneta fuliginosa)、ヤマトゴキブリ (Periplaneta japonica)、 チャバネゴキブリ (Blattella germanica) 等の網翅目害虫、

エンマコオロギ (Teleogryllus emma)、ケラ (Gryllotalpa africana)、トノサマバッタ (Locusta migratoria)、コバネイナゴ (Oxya yezoensis)、サバクワタリバッタ

15 (Schistocerca gregaria)等の直翅目害虫、

イエシロアリ (Coptotermes formosanus)、ヤマトシロアリ (Reticulitermes speratus)、タイワンシロアリ (Odontotermes formosanus) 等のシロアリ目害虫、

ネコノミ (Ctenocephalidae felis)、ヒトノミ (Pulex irritans)、ケオプスネズミノミ (Xenopsylla cheopis) 等の等翅目害虫、

20 ニワトリオオハジラミ (Menacanthus stramineus)、ウシハジラミ (Bovicola bovis)等のハジラミ目害虫、

ウシジラミ (Haematopinus eurysternus)、ブタジラミ (Haematopinus suis)、ウシホソジラミ (Linognathus vituli)、ケブカウシジラミ (Solenopotes capillatus) 等のシラミ目害虫、

25 ミカンハダニ (Panonychus citri)、リンゴハダニ (Panonychus ulmi)、カンザワハダニ (Tetranychus kanzawai)、ナミハダニ (Tetranychus urticae) 等のハダニ類、

チャノナガサビダニ (Acaphylla theae)、ミカンサビダニ (Aculops pelekassi)、ニセナシサビダニ (Eriophyes chibaensis)、チューリップサビダニ (Aceria tulipae) 等のフシダニ類、

15

25

PCT/JP02/07833

221

チャノホコリダニ (Polyphaotarsonemus latus)、シクラメンホコリダニ (Steneotarsonemus pallidus) 等のホコリダニ類、

ケナガコナダニ (Tyrophagus putrescentiae)、ロビンネダニ (Rhizoglyphus robini)等のコナダニ類、

5 ミツバチヘギイタダニ (Varroa jacobsoni) 等のハチダニ類、

オウシマダニ (Boophilus microplus)、フタトゲチマダニ (Haemaphysalis longicornis) 等のマダニ類、

ヒツジキュウセンダニ (Psoroptes ovis) 等のキュウセンダニ類、 ヒゼンダニ (Sarcoptes scabiei) 等のヒゼンダニ類、

10 オカダンゴムシ (Armadillidium vulgare) 等の甲殻類、

キタネグサレセンチュウ (Prathylenchus penetrans)、クルミネグサレセンチュウ (Prathylenchus vulnus)、ジャガイモシストセンチュウ (Globodera rostochiensis)、ダイズシストセンチュウ (Heterodera glycines)、キタネコブセンチュウ (Meloidogyne hapla)、サツマイモネコブセンチュウ (Meloidogyne incognita)、マツノザイセンチュウ (Bursaphelenchus lignicolus)等の線虫類、

スクミリンゴガイ (Ponacea canaliculata)、ナメクジ (Incilaria bilineata)、ウスカワマイマイ (Acusta despecta sieboldiana)、ミスジマイマイ (Euhadra peliomphala)等の軟体動物、

等が挙げられるが、本発明はこれらのみに限定されるものではない。

20 さらに、本発明化合物は、有機燐系化合物、カーバメート系化合物又はピレスロイド 系化合物等の既存の殺虫剤に対して抵抗性の発達した害虫に対しても有効である。

すなわち、本発明化合物は、直翅目、アザミウマ目、半翅目、鱗翅目、鞘翅目、膜翅目、双翅目、網翅目、等翅目、シロアリ目、ダニ・シラミ類及び線虫類の害虫を低濃度で有効に防除することが出来る。一方、本発明化合物はホ乳類、魚類、甲殻類及び益虫に対してほとんど悪影響の無い極めて有用な特長を有している。

本発明化合物を使用するにあたっては、通常適当な固体担体又は液体担体と混合し、 更に所望により界面活性剤、浸透剤、展着剤、増粘剤、凍結防止剤、結合剤、固結防止 剤、崩壊剤、消泡剤、防腐剤および分解防止剤等を添加して、液剤(soluble concentrate)、乳剤(emulsifiable concentrate)、水和剤(wettable powder)、水

PCT/JP02/07833

WO 03/011028

10

15

20

25

.

溶剤(water soluble powder)、顆粒水和剤(water dispersible granule)、顆粒水溶剤(water soluble granule)、懸濁剤(suspension concentrate)、乳濁剤(emulsion, oil in water)、サスポエマルジョン(suspoemulsion)、マイクロエマルジョン(microemulsion)、粉剤(dustable powder)、粒剤(granule)およびゲル剤(gel)等任意の剤型の製剤にて実用に供することができる。また、省力化および安全性向上の観点から、上記任意の剤型の製剤を、水溶性カプセルおよび水溶性フィルムの袋等の水溶性包装体に封入して供することもできる。

222

固体担体としては、例えば石英、カオリナイト、パイロフィライト、セリサイト、タルク、ベントナイト、酸性白土、アタパルジャイト、ゼオライトおよび珪藻土等の天然 鉱物質類、炭酸カルシウム、硫酸アンモニウム、硫酸ナトリウムおよび塩化カリウム等 の無機塩類、合成シリカならびに合成シリケートが挙げられる。

液体担体としては、例えばエチレングリコール、プロピレングリコールおよびイソプロパノール等のアルコール類、キシレン、アルキルベンゼンおよびアルキルナフタレン等の芳香族炭化水素類、ブチルセロソルブ等のエーテル類、シクロヘキサノン等のケトン類、アーブチロラクトン等のエステル類、NーメチルピロリドンおよびNーオクチルピロリドン等の酸アミド類、大豆油、ナタネ油、綿実油およびヒマシ油等の植物油ならびに水が挙げられる。

これら固体および液体担体は、単独で用いても2種以上を併用してもよい。

界面活性剤としては、例えばポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンスチリルフェニルエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステルおよびポリオキシエチレンソルビタン脂肪酸エステル等のノニオン性界面活性剤、アルキル硫酸塩、アルキルベンゼンスルホン酸塩、リグニンスルホン酸塩、アルキルスルホコハク酸塩、ナフタレンスルホン酸塩、アルキルナフタレンスルホン酸塩、ナフタレンスルホン酸塩、アルキルナフタレンスルホン酸塩、ナフタレンスルホン酸のホルマリン縮合物の塩、ポリオキシエチレンアルキルアリールエーテル硫酸および燐酸塩、ポリオキシエチレンスチリルフェニルエーテル硫酸および燐酸塩、ポリカルボン酸塩およびポリスチレンスルホン酸塩等のアニオン性界面活性剤、アルキルアミン塩およびアルキル4級アンモニウム塩等のカチオン性界面活性剤ならび

PCT/JP02/07833

WO 03/011028

223

にアミノ酸型およびベタイン型等の両性界面活性剤が挙げられる。

これら界面活性剤の含有量は、特に限定されるものではないが、本発明の製剤100 重量部に対し、通常0.05~20重量部の範囲が望ましい。また、これら界面活性剤 は、単独で用いても2種以上を併用してもよい。

5 本発明化合物の施用薬量は適用場面、施用時期、施用方法、栽培作物等により差異は 有るが、一般には有効成分量としてヘクタール(ha)当たり0.005~50kg 程度が適 当である。

次に本発明化合物を用いる場合の製剤の配合例を示す。但し本発明の配合例は、これらのみに限定されるものではない。なお、以下の配合例において「部」は重量部を意味する。

[水和剤]

本発明化合物

0.1~80部

固体担体

5~98:9部

界面活性剤

1~10部

15 その他

10

ŗţ.

1

0~ 5部

その他として、例えば固結防止剤、分解防止剤等があげれらる。

[乳 剂]

本発明化合物

0.1~30部

液体担体

45~95部

20 界面活性剤

4.9~15部

その他

0~10部

その他として、例えば展着剤、分解防止剤等が挙げられる。

〔懸濁剤〕

本発明化合物

0.1~70部

25 液体担体

15~98.89部

界面活性剤

1~12部

その他

0.01~30部

その他として、例えば凍結防止剤、増粘剤等が挙げられる。

[顆粒水和剤]

PCT/JP02/07833

224

本発明化合物

0.1~90部

固体担体

0~98.9部

界面活性剤

1~20部

その他

0~ 10部

5 その他として、例えば結合剤、分解防止剤等が挙げられる。

[液 剤]

本発明化合物

0.01~70部

液体担体

20~99.99部

その他

0~10部

10 その他として、例えば凍結防止剤、展着剤等が挙げられる。

〔粒 剤〕

本発明化合物

0.01~80部

固体担体

10~99.99部

その他

0~10部

15 その他として、例えば結合剤、分解防止剤等が挙げられる。

〔粉 剤〕

本発明化合物

0.01~30部

固体担体

65~99.99部

その他

0~5部

20 その他として、例えばドリフト防止剤、分解防止剤等が挙げられる。

次に、本発明化合物を有効成分とする製剤例をより具体的に示すが、本発明はこれらに限定されるものではない。

尚、以下の配合例において、「部」は重量部を意味する。

[配合例1] 水和剤

25 本発明化合物 No. 1-068

20部

パイロフィライト

7 4部

ソルポール5039

4部

(非イオン性界面活性剤とアニオン性界面活性剤との混合物:東邦化学工業(株)商品名)

PCT/JP02/07833

225

カープレックス#80D

2部

(合成含水珪酸: 塩野義製薬(株)商品名)

以上を均一に混合粉砕して水和剤とする。

〔配合例2〕乳 剤

5 本発明化合物 No. 1-068

5部

キシレン

75部

Nーメチルピロリドン

15部

ソルポール2680

5部

(非イオン性界面活性剤とアニオン性界面活性剤との混合物:東邦化学工業(株)商品

10 名)

以上を均一に混合して乳剤とする。

〔配合例3〕懸濁剤・

本発明化合物 No. 1-068

25部

アグリソールS-710

10部

15 (非イオン性界面活性剤:花王(株)商品名)

ルノックス1000C

0.5部

(アニオン性界面活性剤:東邦化学工業(株)商品名)

キサンタンガム

0.2部

水

64.3部

20 以上を均一に混合した後、湿式粉砕して懸濁剤とする。

[配合例4] 顆粒水和剤

本発明化合物 No. 1-068

75部

ハイテノール NE-15

5部

(アニオン性界面活性剤:第一工業製薬(株)商品名)

25 バニレックスN

10部

(アニオン性界面活性剤:日本製紙(株)商品名)

カープレックス#80D

10部

(合成含水珪酸: 塩野義製薬(株) 商品名)

以上を均一に混合粉砕した後、少量の水を加えて攪拌混合し、押出式造粒機で造粒し、

PCT/JP02/07833

226

乾燥して顆粒水和剤とする。

〔配合例5〕粒 剤

本発明化合物 No. 1-0 6 8

5部

ベントナイト

50部

5 タルク

45部

以上を均一に混合粉砕した後、少量の水を加えて攪拌混合し、押出式造粒機で造粒し、 乾燥して粒剤とする。

〔配合例6〕粉 剤

本発明化合物 No. 1-0 6 8

3部

10 カープレックス#80D

0.5部

(合成含水珪酸: 塩野義製薬(株) 商品名)

カオリナイト

95部

リン酸ジイソプロピル

1.5部

以上を均一に混合粉砕して粉剤とする。

15 使用に際しては、上記製剤を水で1~10000倍に希釈して、又は希釈せずに直接 散布する。

また、本発明化合物を農薬として使用する場合には、必要に応じて製剤時又は散布時に他種の除草剤、各種殺虫剤、殺ダニ剤、殺線虫剤、殺菌剤、植物生長調節剤、共力剤、肥料、土壌改良剤等と混合施用しても良い。

20 特に他の農薬あるいは植物ホルモンと混合施用することにより、施用薬量の低減による低コスト化、混合薬剤の相乗作用による殺虫スペクトラムの拡大やより高い有害生物防除効果が期待できる。この際、同時に複数の公知農薬との組み合わせも可能である。本発明化合物と混合使用する農薬の種類としては、例えばファーム・ケミカルズ・ハンドブック(Farm Chemicals Handbook)1999年版に記載されている化合物等が挙げられる。具体的にその一般名を例示すれば次の通りであるが、必ずしもこれらのみに限定されるものではない。

殺菌剤:アシベンゾラルーS-メチル (acibenzolar-S-methyl)、アシルアミノベンザミド (acylaminobenzamide)、アンバム (amobam)、アムプロピルホス (ampropyfos)、アニラジン (anilazine)、アザコナゾール (azaconazole)、アゾキシストロビン

227

PCT/JP02/07833

(azoxystrobin)、ベナラキシル (benalaxyl)、ベノダニル (benodanil)、ベノミル (benomyl) 、ベンチアゾール(benthiazole)、ベンザマクリル(benzamacril)、ビナパ クリル (binapacryl) 、ビフェニル (biphenyl) 、ビテルタノール (bitertanol) 、ベ トキサジン (bethoxazine)、ボルドー液 (bordeaux mixture)、ブラストサイジンーS (blasticidin-S)、プロモコナゾール (bromoconazole)、ブピリメート (bupirimate) 、ブチオベート (buthiobate) 、カルシウムポリスルフィド (calcium polysulfide)、キャプタフォール(captafol)、キャプタン(captan)、カッパーオキ シクロリド (copper oxychloride)、カルプロパミド (carpropamid)、カルベンダジン (carbendazim) 、カルボキシン (carboxin) 、CGA-279202 (試験名) 、キノメチオ ネート (chinomethionat)、クロベンチアゾン (chlobenthiazone)、クロルフェナゾー 10 ル (chlorfenazol)、クロロネブ (chloroneb)、クロロタロニル (chlorothalonil)、 クロゾリネート (chlozolinate)、クフラネブ (cufraneb)、シモキサニル (cymoxanil)、シプロコナゾール (cyproconazol)、シプロジニル (cyprodinil)、シ プロフラム (cyprofuram)、ダゾメット(dazomet)、デバカルブ (debacarb) 、ジクロロ フェン (dichlorophen)、ジクロブトラゾール (diclobutrazol)、ジクロフラニド 15 (diclhlofluanid)、ジクロメジン (diclomedine)、ジクロラン (dicloran)、ジエト ーニップェンカルブ (diethofencarb) 、ジクロシメット (diclocymet) 、ジフェノコナゾール (difenoconazole)、ジフルメトリン(diflumetorim)、ジメチリモール (dimethirimol) 、ジメトモルフ (dimethomorph) 、ジニコナゾール (diniconazole) 、 ジニコナゾールーM (diniconazole-M) 、ジノカップ (dinocap) 、ジフェニルアミン (diphenylamine) 、ジピリチオン (dipyrithione) 、ジタリムホス (ditalimfos) 、ジ チアノン (dithianon)、ドデモルフ (dodemorph)、ドジン (dodine)、ドラゾクソロ ン (drazoxolon) 、エデフェノホス (edifenphos) 、エポキシコナゾール (epoxiconazole)、エタコナゾール (etaconazole)、エチリモル (ethirimol)、エト リジアノール (etridiazole)、ファモキサゾン (famoxadone)、フェナリモル 25 (fenarimol)、フェブコナゾール(febuconazole)、フェナミドン(fenamidone)、 フェンダゾスラム(fendazosulam)、フェンフラム(fenfuram)、フェンヘキサミド (fenhexamid)、フェンピクロニル (fenpiclonil)、フェンプロピジン (fenpropidin)、フェンプロピモルフ(fenpropimorph)、フェンチン(fentin)、

228

PCT/JP02/07833

フェルバン (ferbam) 、フェリムゾン (ferimzone) 、フルアジナム (fluazinam) 、フ ルジオキソニル (fludioxonil)、フルオロイミド (fluoroimide)、フルキンコナゾー ル(fluquinconazole)、フルシラゾール(flusilazole)、フルスルファミド (flusulfamide)、フルトラニル(flutolanil)、フルトリアフォール(flutriafol)、 フォルペット (folpet) 、フォセチルーアルミニウム (fosetyl-aluminium) 、フベリダ 5 ゾール (fuberidazole)、フララキシル (furalaxyl)、フラメトピル (furametpyr)、グ アザチン (guazatine)、ヘキサクロロベンゼン (hexachlorobenzene)、ヘキサコナ ゾール(hexaconazole)、ヒメキサゾール(hymexazol)、イマザリル(imazalil)、イ ミベンコナゾール(imibenconazole)、イミノクタジン(iminoctadine)、イプコナ ゾール (ipconazole) 、イプロベンホス (iprobenfos) 、イプロジオン (iprodione) 、 イソプロチオラン (isoprothiolane)、イプロバリカルブ (iprovalicarb)、カスガマ イシン (kasugamycin)、クレソキシムーメチル (kresoxim-methyl)、マンカッパー (mancopper)、マンコゼブ (mancozeb)、マンネブ (maneb)、メパニピリム (mepanipyrim)、メプロニル (mepronil)、メタラキシル (metalaxyl)、メトコナ 15 ゾール (metconazole) 、メタスルホカルブ (methasulfocarb) 、メチラム (metiram) 、 メトミノストロビン (metominostrobin) 、ミクロブタニル (myclobutanil) 、MTF-753 (試験名)、ナバム (nabam)、ニッケルビス (ジメチルジチオカーバメート) (nickel bis (dimethyldithiocarbamate))、ニトロタールーイソプロピル (nitrothalisopropyl)、ヌアリモル (nuarimol)、NNF-9425 (試験名)、オクチリノン・ (octhilinone)、オフレース (ofurace)、オキサジキシル (oxadixyl)、オキシカル 20 ボキシン (oxycarboxin) 、オキポコナゾールフマール酸塩 (oxpoconazole fumarate) 、 ペフラゾエート (pefurzoate) 、ペンコナゾール (penconazole) 、ペンシクロン (pencycuron)、フタライド (phthalide)、ピペラリン (piperalin)、ポリオキシン (polyoxins)、炭酸水素カリウム(potassium hydrogen carbonate)、プロベナゾール (probenazole)、プロクロラズ (prochloraz)、プロシミドン (procymidone)、プロ 25 パモカルブ塩酸塩(propamocarb hydrochloride)、プロピコナゾール (propiconazole) 、プロピネブ (propineb) 、ピラゾホス (pyrazophos) 、ピリフェ ノックス (pyrifenox) 、ピリメタニル (pyrimethanil) 、ピロキュロン (pyroquilon) 、 キノメチオネート(quinomethionate)、キノキシフェン(quinoxyfen)、キントゼン

10

15

PCT/JP02/07833

229

(quintozene)、RH7281 (試験名)、炭酸水素ナトリウム (sodium hydrogen carbonate)、次亜塩素酸ナトリウム (sodium hypochlorite)、硫黄 (sulfur)、スピロキサミン (spiroxamine)、テブコナゾール (tebuconazole)、テクナゼン (tecnazene)、テトラコナゾール (tetraconazole)、チアベンダゾール (thiabendazole)、チアジアジン (thiadiazin/milneb)、チフルザミド (thifluzamide)、チオファネートーメチル (thiophanate-methyl)、チラム (thiram)、トルクロホスーメチル (tolclofos-methyl)、トリルフラニド (tolylfluanid)、トリアジメホン (triadimefon)、トリアジメノール (toriadimenol)、トリアゾキシド (triazoxide)、トリシクラゾール (tricyclazole)、トリデモルフ (tridemorph)、トリフルミゾール (triflumizole)、トリホリン (triforine)、トリチコナゾール (triticonazole)、バリダマイシン (validamycin)、ビンクロゾリン (vinclozolin)、硫酸亜鉛 (zinc sulfate)、ジネブ (zineb)、ジラム (ziram) 及びシイタケ菌糸体抽出物など。

殺バクテリア剤:ストレプトマイシン (streptomycin)、テクロフタラム (tecloftalam)、オキシテトラサイクリン (oxyterracycline) 及びオキソリニックアシド (oxolinic acid) など。

殺線虫剤:アルドキシカルブ (aldoxycarb) 、カズサホス (cadusafos) 、フォスチアゼット (fosthiazate) 、フォスチエタン (fosthietan) 、オキサミル (oxamyl) 及びフェナミホス (fenamiphos) など。

殺ダニ剤:アセキノシル(acequinocyl)、アミトラズ(amitraz)、ビフェナゼート
(bifenazate)、ブロモプロピレート(bromopropylate)、チノメチオネート
(chinomethionat)、クロロベンジラート(chlorobezilate)、クロフェンテジン
(clofentezine)、サイヘキサチン(cyhexatine)、ジコフォール(dicofol)、ジエノ
クロール(dienochlor)、エトキサゾール(etoxazole)、フェナザキン(fenazaquin)、
フェンプタチンオキシド(fenbutatin oxide)、フェンプロパトリン(fenpropathrin)、
フェンプロキシメート(fenproximate)、ハルフェンプロックス(halfenprox)、ヘキ
シチアゾックス(hexythiazox)、ミルベメクチン(milbemectin)、プロパルギット
(propargite)、ピリダベン(pyridaben)、ピリミジフェン(pyrimidifen)及びテブ
フェンピラド(tebufenpyrad)など。

殺虫剤:アバメクチン (abamectin)、アセフェート (acephate)、アセタミピリド

PCT/JP02/07833

WO 03/011028

 230°

(acetamipirid)、アルディカルブ (aldicarb)、アレスリン (allethrin)、アジンホ スーメチル (azinphos-methyl) 、ベンジオカルブ (bendiocarb) 、ベンフラカルブ (benfuracarb)、ベンスルタップ (bensultap)、ビフェントリン (bifenthrin)、ブ プロフェジン (buprofezin) 、ブトカルボキシン (butocarboxim) 、カルバリル (carbaryl) 、カルボフラン (carbofuran) 、カルボスルファン (carbosulfan) 、カル 5 タップ (cartap) 、クロルフェナピル (chlorfenapyr) 、クロルピリホス (chlorpyrifos)、クロルフェンビンホス (chlorfenvinphos) 、クロルフルアズロン (chlorfluazuron)、クロチアニジン (clothianidin) 、クロマフェノジド (chromafenozide)、クロピリホスーメチル (chlorpyrifos-methyl) 、シクロプロトリ ン (cycloprothrin) 、シフルトリン (cyfluthrin) 、ベーターシフルトリン (beta-10 cyfluthrin)、シペルメトリン (cypermethrin)、シロマジン (cyromazine)、シハロ トリン (cyhalothrin) 、ラムダーシハロトリン (lambda-cyhalothrin) 、デルタメトリ ン (deltamethrin) 、ジアフェンチウロン (diafenthiuron) 、ダイアジノン (diazinon) 、ジアクロデン (diacloden) 、ジフルベンズロン (diflubenzuron) 、ジ メチルビンホス (dimethylvinphos) 、ジオフェノラン (diofenolan) 、ジスルフォトン 15 (disulfoton) 、ジメトエート (dimethoate) 、エマメクチンベンゾエート (emamectin-benzoate)、EPN、エスフェンバレレート (esfenvalerate)、エチオフェ ンカルブ (ethiofencarb) 、エチプロール (ethiprole) 、エトフェンプロックス (etofenprox)、エトリムホス (etrimfos)、フェニトロチオン (fenitrothion)、 フェノブカルブ (fenobucarb) 、フェノキシカーブ (fenoxycarb) 、フェンプロパトリ 20 ン (fenpropathrin)、フェンバレレート (fenvalerate)、フィプロニル (fipronil)、 フルアクリピリム (fluacrypyrim)、フルシトリネート (flucythrinate)、フルフェノ クスウロン (flufenoxuron)、フルフェンプロックス (flufenprox)、タウーフルバリ ネート (tau-fluvalinate)、ホノホス (fonophos)、フォルメタネート (formetanate)、フォルモチオン(formothion)、フラチオカルブ(furathiocarb)、 25 ハロフェノジド (halofenozide) 、ヘキサフルムロン (hexaflumuron) 、ヒドラメチル ノン (hydramethylnon) 、イミダクロプリド (imidacloprid) 、イソフェンホス (isofenphos)、インドキサカルブ (indoxacarb)、イソプロカルブ (isoprocarb)、

イソキサチオン (isoxathion) 、ルフェヌウロン (lufenuron) 、マラチオン

<u>" ONOUNDAGIA WEALT I LIVVIIIAE IDESKIUPJUSEIUI SIUTISQZUUDU I 3 TU-D (VVOU</u>

WO 03/011028

PCT/JP02/07833

231

(malathion)、メタルデヒド (metaldehyde)、メタミドホス (methamidophos)、メチダチオン (methidathion)、メタクリホス (methacrifos)、メタルカルブ (metalcarb)、メソミル (methomyl)、メソプレン (methoprene)、メトキシクロール (methoxychlor)、メトキシフェノジド (methoxyfenozide)、モノクロトホス

- 5 (monocrotophos)、ムスカルーレ (muscalure)、ニジノテフラン (nidinotefuran)、ニテンピラム (nitenpyram)、オメトエート (omethoate)、オキシデメトンーメチル (oxydemeton-methyl)、オキサミル (oxamyl)、パラチオン (parathion)、パラチオンーメチル (parathion-methyl)、ペルメトリン (permethrin)、フェントエート (phenthoate)、フォキシム (phoxim)、ホレート (phorate)、ホサロン
- 10 (phosalone)、ホスメット (phosmet)、ホスファミドン (phosphamidon)、ピリミカルブ (pirimicarb)、ピリミホスーメチル (pirimiphos-methyl)、プロフェノホス (profenofos)、プロトリフェンブト (protrifenbute)、ピメトロジン (pymetrozine)、ピラクロホス (pyraclofos)、ピリプロキシフェン (pyriproxyfen) ロテノン (rotenone)、スルプロホス (sulprofos)、シラフルオフェン
- 15 (silafluofen)、スピノサド(spinosad)、スルホテップ(sulfotep)、テブフェノジド(tebfenozide)、テフルベンズロン(teflubenzuron)、テフルトリン(tefluthorin)、テルブホス(terbufos)、テトラクロロビンホス(tetrachlorvinphos)、チアクロプリド(thiacloprid)、チオシクラム(thiocyclam)、チオジカルブ(thiodicarb)、チアメトキサム(thiamethoxam)、チ
- 20 オファノックス (thiofanox)、チオメトン (thiometon)、トルフェンピラド (tolfenpyrad)、トラロメスリン (tralomethrin)、トリクロルホン (trichlorfon)トリアズロン (triazuron)、トリフルムロン (triflumuron)及びバミドチオン (vamidothion)など。

25 実施例

以下に本発明化合物の合成例、試験例を実施例として具体的に述べることで、本発明をさらに詳しく説明するが、本発明はこれらによって限定されるものではない。

[合成例]

合成例1

PCT/JP02/07833

 $N^{l}-(4-\alpha \gamma^{l}g)$ アンプロピルー $2-\lambda$ チルフェニル) $-N^{l}-\lambda$ ソプロピルー $3-(1-\lambda)$ キシエチリデンアミノ)フタル酸ジアミド(本発明化合物 No. 1-10

8).

工程1; 3-アミノー \mathbb{N}^1- (4-ヘプタフルオロイソプロピル-2-メチルフェニル)- \mathbb{N}^2- イソプロピルフタル酸ジアミドの製造。

232

 N^1 - $(4-\Lambda)^2$ タフルオロイソプロピルー $2-\lambda$ チルフェニル) $-N^2$ -イソプロピルー 3-ニトロフタル酸ジアミド(EP 0, 919, 542 号公報記載の化合物) 9. 2g のメタノール 350 ml 溶液に、5%活性炭担持パラジウム 0. 35g を添加し、常圧水素雰囲気下にて 3 時間攪拌した。反応完結後、不溶物をセライト濾過、減圧下にて溶媒を留去すること

10 により得られた固体をジイソプロピルエーテルーへキサン混合溶媒にて洗浄し、目的物7.5gを白色結晶として得た。

融点215.0~216.0℃

工程 2 ; \mathbb{N}^{l} - $(4- \wedge \mathbb{J}^{l} \wedge \mathbb{J}^{l} - \mathbb{J}^{l} \wedge \mathbb{J}^{l} - \mathbb{J}^{l} -$

3-アミノーN¹ー (4-ヘプタフルオロイソプロピルー2-メチルフェニル) -N²ーイ ソプロピルフタル酸ジアミド 1.4gのオルト酢酸トリメチル 5 ml 溶液にパラトルエンス ルホン酸 0.2gを添加し、60℃にて30分攪拌した。反応完結後、減圧下に溶媒を留 去し、残留した固体をジイソプロピルエーテルにて洗浄し、目的物 1.4gを白色結晶として得た。

融点213.0~214.0℃

合成例2

 $3-(1-エトキシエチリデンアミノ) <math>-N^{1}-(4-(2, 2, 2-トリフルオロ-1))$

PCT/JP02/07833

233

ーヒドロキシー1ートリフルオロメチルエチル)-2ーメチルフェニル) $-N^2$ ーイソプロピルフタル酸ジアミド(本発明化合物 No. 1-114)。

工程1;N-(4-(2, 2, 2-h))フルオロー1ーヒドロキシー1ートリフルオロメチルエチル) -2-メチルフェニル) -3-ニトロフタルイミドの製造。

- 5 3-ニトロフタル酸無水物 2.8 g 及び4-(2, 2, 2-トリフルオロ-1-ヒドロキシ-1-トリフルオロメチルエチル)-2-メチルアニリン(ザ・ジャーナル・オブ・オーガニック・ケミストリー [J. Org. Chem.] 1965年、30巻、1001頁記載の化合物)4.0 g の酢酸 50 ml 溶液を、加熱還流下にて90分攪拌した。反応完結後、減圧下にて溶媒を留去、残留物を酢酸エチル200ml に溶解し、水100 ml、飽和炭酸
- 10 水素ナトリウム水溶液100ml、水100mlの順で洗浄した。有機層を飽和食塩水、無水硫酸マグネシウムの順で脱水・乾燥後、減圧下にて溶媒を留去することにより、目的物の粗生成物6.78gをアメ状固体として得た。このものは、精製することなく次の反応に用いた。

TH NMR (CDC1₃, Me₄Si, 300MHz) δ 8. 24 (d, J=7. 7Hz, 1H), 8. 20 (d, J=7. 7Hz, 1H), 8. 01 (t, J=7. 7Hz, 1H), 7. 74 (s, 1H), 7. 68 (d, J=8. 2Hz, 1H), 7. 30 (d, J=8. 2Hz, 1H), 3. 67 (bs, 1H), 2. 28 (s, 3H).

工程 2; \mathbb{N}^{l} - (4-(2,2,2-l) フルオロ-1-l ドロキシー 1-l リフルオロメチルエチル) -2-l チルエチル) -2-l チルフェニル) $-\mathbb{N}^{l}$ -1 プロピルー 3-l トロフタル酸ジアミドの製造。

- 20 N- (4-(2, 2, 2-トリフルオロ-1-ヒドロキシー1-トリフルオロメチルエチル) -2-メチルフェニル) -3-ニトロフタルイミド 3.9gのジオキサン40ml 溶液に、イソプロピルアミン2.5gを添加し、室温にて4日間攪拌した。反応完結後、減圧下にて溶媒を留去することにより得られた固体を酢酸エチルージイソプロピルエーテル混合溶媒にて洗浄し、目的物 3.1gを淡黄色結晶として得た。
- 25 融点155.0~157.0℃

15

 1 H NMR (CDC1₃-DMS0-d₆, Me₄Si, 300MHz) δ 9.89 (s, 1H), 8.66 (bs, 1H), 8.42 (d, J=7.7Hz, 1H), 8.17 (d, J=8.0Hz, 1H), 8.00 (d, J=7.7Hz, 1H), 7.75 (t, J=7.7Hz, 1H), 7.65 (d, J=8.5Hz, 1H), 7.54 (s, 1H), 7.51 (d, J=8.2Hz, 1H), 3.85-3.95 (m, 1H), 2.32 (s, 3H), 1.03 (d, J=6.3Hz, 6H).

PCT/JP02/07833

工程 3 ; 3- アミノー \mathbb{N}^{1} - (4- (2 ,2 ,2- トリフルオロ- 1- ヒドロキシ- 1- トリフルオロメチルエチル) - 2- メチルフェニル) - \mathbb{N}^{2} - 1 イソプロピルフタル酸ジアミド

234

の製造。

 N^1 — (4-(2,2,2-h)) -(4-(2,2,2-h)) -(4-(2,2,2-h

10 融点205.0~207.0℃

15 工程 4; $3-(1-エトキシエチリデンアミノ)-N-(4-(2, 2, 2-トリフルオロー1-ヒドロキシー1-トリフルオロメチルエチル)-2-メチルフェニル)-N^2-イソプロピルフタル酸ジアミドの製造。$

3-アミノー N^1 ー(4ー(2, 2, 2-トリフルオロー1-ヒドロキシー1-トリフルオロメチルエチル)-2-メチルフェニル)- N^2- イソプロピルフタル酸ジアミド 2. 2g

20 のオルト酢酸トリエチル30ml 溶液にパラトルエンスルホン酸0.05gを添加し、80℃にて30分攪拌した。反応完結後、減圧下に溶媒を留去し、残留した固体をジイソプロピルエーテルーへキサン混合溶媒にて洗浄し、目的物2.3g を白色結晶として得た。融点164.0~166.0℃

3-エチルアミノ-N † -(4-ヘプタフルオロイソプロピル-2-メチルフェニル)-

5

PCT/JP02/07833

235

№-イソプロピルフタル酸ジアミド(本発明化合物 No. 1-005)。

合成例 1 にて合成した N^1 – $(4- \wedge \gamma^2 \rho \gamma \nu \lambda^2 \rho \lambda^2$

融点208.0~209.0℃

- 10 ¹H NMR (CDC1₃, Me₄Si, 300MHz) δ8.43 (d, J=8.5Hz, 1H), 7.58 (s, 1H), 7.45 (d, J=8.5Hz, 1H), 7.41 (s, 1H), 7.32 (t, J=7.4Hz, 1H), 6.88 (d, J=7.4Hz, 1H), 6.78 (d, J=7.4Hz, 1H), 6.10 (d, J=7.7Hz, 1H), 5.43 (bs, 1H), 4.05-4.2 (m, 1H), 3.18 (q, J=7.0Hz, 2H), 2.31 (s, 3H), 1.28 (t, J=7.0Hz, 3H), 1.03 (d, J=6.6Hz, 6H). 合成例 4
- 3-エチルアミノーN'- (4-(2,2,2-)リフルオロー1-ヒドロキシー1-トリフルオロメチルエチル)-2-メチルフェニル)-N'-イソプロピルフタル酸ジアミド (本発明化合物 No. 1-006)。

合成例2にて合成した3-(1-エトキシエチリデンアミノ)-N-(4-(2, 2, 2-トリフルオロ-1-ヒドロキシ-1-トリフルオロメチルエチル)-2-メチル

- 20 フェニル) ーパーイソプロピルフタル酸ジアミド 2.0gの酢酸 1 3 ml 溶液に、撹拌下室温にて、シアノ水素化ホウ素ナトリウム 0.4 6gを3回に分割して添加した。同温度にて更に50分間攪拌を継続した後、酢酸エチル 100 ml にて希釈、水 50 ml ついで飽和炭酸水素ナトリウム水溶液 50 ml にて洗浄した。有機層を飽和食塩水、無水硫酸ナトリウムの順で脱水・乾燥、減圧下にて溶媒を留去することにより得られた残留固体を酢酸
- 25 エチルーヘキサン (1:1) にて溶出するシリカゲルカラムクロマトグラフィーにて精製し、目的物 1.8g を白色結晶として得た。

融点139.0~140.0℃

"H NMR (CDC1₃, Me₄Si, 300MHz) δ 8. 30 (d, J=8. 8Hz, 1H), 7. 5-7. 6 (m, 3H), 7. 32 (t, J=8. 0Hz, 1H), 6. 87 (d, J=7. 4Hz, 1H), 6. 76 (d, J=8. 2Hz, 1H), 6. 14 (d, J=7. 7Hz,

PCT/JP02/07833

WO 03/011028

236

1H), 5.34 (t, J=4.7Hz, 1H), 4.38 (s, 1H), 4.05-4.15 (m, 1H), 3.1-3.25 (m, 2H), 2.26 (s, 3H), 1.28 (t, J=6.9Hz, 3H), 1.03 (d, J=6.6Hz, 6H). 合成例 5

3 - (N-エチルアセトアミド) -N'- (4-ヘプタフルオロイソプロピル-2-メチルフェニル) -N²-イソプロピルフタル酸ジアミド(本発明化合物 No. 1-0 5 5)。 合成例 3 にて合成した 3 - エチルアミノーN'- (4-ヘプタフルオロイソプロピル-2-メチルフェニル) -N²-イソプロピルフタル酸ジアミド 0. 4 2g 及びピリジン 0. 1g のジクロロメタン 2 0 ml 溶液に、氷冷撹拌下、塩化アセチル 0. 0 9 7g を添加し、室温にて 1 2 時間攪拌した。反応完結後、水洗、有機層を飽和食塩水、無水硫酸ナトリウム

10 の順で脱水・乾燥、減圧下にて溶媒を留去した。残留固体をジイソプロピルエーテルー ヘキサン混合溶媒にて洗浄し、目的物 0.3 4g を白色結晶として得た。

融点144.0~147.0℃

¹H NMR (CDCl₃, Me₄Si, 300MHz) δ 9.03 and 8.39 (bs, 1H), 8.26 and 8.31 (d, J=8.2Hz, 1H), 7.96 and 7.88 (dd, J=8.0, 1.1Hz, 1H), 7.57 and 7.60 (t, J=7.8Hz, 1H), 7.4–15 7.5 (m, 2H), 7.26 and 7.34 (dd, J=7.7, 1.1Hz, 1H), 6.62 and 5.73 (d, J=8.2Hz, 1H), 4.1–4.25 (m, 1H), 3.7–3.85 and 4.25–4.4 (m, 1H), 3.55–3.7 and 3.05–3.2 (m, 1H), 2.40 and 2.38 (s, 3H), 2.26 and 1.87 (s, 3H), 1.25 and 1.17 (t, J=7.2Hz, 3H), 1.09 and 1.16 (d, J=6.6Hz, 6H).

20 N- (4-ヘプタフルオロイソプロピル-2-メチルフェニル) -1-エチル-4-イソプロピル-3H-1, 4-ベンゾジアゼピン-2, 5 (IH, 4H) -ジオン-6-カルボキサミド (本発明化合物 No. 8-001)。

合成例5と同様に合成した3-(2-クロローN-エチルアセトアミド)ーN¹-(4-ヘプタフルオロイソプロピルー2-メチルフェニル)ーN²-イソプロピルフタル酸ジアミド(本発明化合物 No. 1-086)0.39gのN,N-ジメチルホルムアミド5ml溶液に炭酸カリウム0.14gを添加し、室温にて3時間攪拌した。反応完結後、ジエチルエーテル50mlにて希釈し、水洗、有機層を飽和食塩水、無水硫酸ナトリウムの順で脱水・乾燥、減圧下にて溶媒を留去した。残留固体をジイソプロピルエーテルにて洗浄し、目的物0.26gを白色結晶として得た。

PCT/JP02/07833

237

融点138.0~140.0℃

¹H NMR (CDC1₃, Me₄Si, 300MHz) δ 8. 38 (bs, 1H), 8. 30 (d, J=8. 1Hz, 1H), 7. 4–7. 65 (m, 3H), 7. 39 (bs, 1H), 7. 3–7. 4 (m, 1H), 4. 8–5. 0 (m, 1H), 4. 2–4. 35 (m, 1H), 3. 87 (s, 2H), 3. 6–3. 8 (m, 1H), 2. 43 (s, 3H), 1. 2–1. 3 (m, 9H).

5 合成例 7

3-(N-エチルアセトアミド)-N-(4-(1,1,2-トリフルオロ-2-(へ プタフルオロプロピルオキシ)エトキシ)-2-メチルフェニル)-N-イソプロピルフタル酸ジアミド(本発明化合物 No. <math>1-068)。

合成例2及び4と同様に合成した3-エチルアミノーN¹- (4-(1, 1, 2-トリフルオロ-2-(ヘプタフルオロプロピルオキシ) エトキシ) -2-メチルフェニル) ーN² ーイソプロピルフタル酸ジアミド7.40g及びピリジン1.04gのジクロロメタン70 ml 溶液に、氷冷撹拌下、塩化アセチル1.04gを添加し、室温にて35分攪拌した。反応完結後、反応混合物に氷水100mlを加え有機層を分取、水層はクロロホルム150 ml にて抽出した。有機層を合わせて飽和食塩水、無水硫酸マグネシウムの順で脱水・乾燥、減圧下にて溶媒を留去した。残留固体を酢酸エチルーヘキサン(1:4)にて溶出するシリカゲルカラムクロマトグラフィーにて精製し、目的物6.75gを白色結晶として得た。

融点84.0~86.0℃

¹H NMR (CDC1₃, Me₄Si, 300MHz) δ 8. 87 and 8. 32 (bs, 1H), 7. 9–7. 95 (m, 1H), 7. 65 20 and 7. 92 (d, J=7. 8Hz, 1H), 7. 53 (t, J=8. 1Hz, 1H), 7. 31 and 7. 24 (dd, J=7. 5, 0. 9Hz, 1H), 7. 04 (bs, 2H), 6. 67 and 6. 42 (d, J=8. 1Hz, 1H), 6. 07 (dt, J=53. 4, 2. 7Hz, 1H), 4. 2–4. 4 and 3. 05–3. 2 (m, 1H), 4. 05–4. 2 and 4. 1–4. 25 (m, 1H), 3. 55–3. 75 and 3. 6–3. 8 (m, 1H), 2. 34 and 2. 31 (s, 3H), 2. 25 and 1. 86 (s, 3H), 1. 25 and 1. 15 (t, J=7. 2Hz, 3H), 1. 08 and 1. 09 (d, J=6. 6Hz, 6H).

25 合成例 8

3-エチル(メチル)アミノーNー(4-(1, 1, 2-トリフルオロ-2-(ヘプタフルオロプロピルオキシ)エトキシ)-2-メチルフェニル)-N²-イソプロピルフタル酸ジアミド(本発明化合物 No. 1-0 45)。

合成例2及び4と同様に合成した3-エチルアミノーN-(4-(1, 1, 2-トリフ

PCT/JP02/07833

ルオロー2ー(ヘプタフルオロプロピルオキシ)エトキシ)-2-メチルフェニル)-№ ーイソプロピルフタル酸ジアミド 0.7 0g及び 37%ホルムアルデヒド水溶液 0.4 5g のアセトニトリル 25 ml 縣濁液に、室温にてシアノ水素化ホウ素ナトリウム 0.2 1gを添加し、更に酢酸 0.2 mlを10分間にわたって滴下した。室温にて3時間攪拌を継続した後、反応混合物にジエチルエーテル 30 ml 及び1N水酸化カリウム水溶液 30 mlを加え有機層を分取、水層はさらにジエチルエーテル 30 mlを用いて抽出した。有機層を合わせて飽和食塩水、無水硫酸マグネシウムの順で脱水・乾燥し、減圧下にて溶媒を留去した。残留固体を酢酸エチルーへキサン(1:1)にて溶出するシリカゲルカラムクロマトグラフィーにて精製し、目的物 0.5 6gを白色結晶として得た。

238

10 融点127.0~132.0℃

15 合成例 9

- 20

N- $(4-\Delta \sqrt{3})$ ルオロイソプロピルー $2-\lambda$ チルフェニル) $-1-\Delta$ チルー $3-\Delta$ ソプロピルー $4-\Delta$ キソー 1 、 2 、 3 、 $4-\zeta$ トラヒドロキナゾリンー $5-\Delta$ ルボキサミド (本発明化合物 No. 5-0 0 8) 。

合成例3にて合成した3-エチルアミノーNー(4-ヘプタフルオロイソプロピルー2-メチルフェニル)ーN²ーイソプロピルフタル酸ジアミド0.33g及びピリジン0.23 gのジクロロメタン20ml 溶液に、氷冷撹拌下、クロロメチルメチルエーテル0.23gを添加し、室温にて12時間攪拌した。反応完結後、水洗、有機層を飽和食塩水、無水硫酸ナトリウムの順で脱水・乾燥、減圧下にて溶媒を留去した。残留固体を酢酸エチルーヘキサン(1:2)にて溶出するシリカゲルカラムクロマトグラフィーにて精製し、

25 目的物 0.26g を白色結晶として得た。

融点96.0~98.0℃

¹H NMR (CDCl₃, Me₄Si, 300MHz) δ 8. 40 (br, 1H), 7. 83 (bs, 1H), 7. 65 (d, J=8. 2Hz, 1H), 7. 35-7. 45 (m, 2H), 7. 01 (d, J=7. 4Hz, 1H), 6. 87 (d, J=8. 2Hz, 1H), 4. 85-4. 95 (m, 1H), 4. 41 (s, 2H), 3. 45 (q, J=7. 1Hz, 2H), 2. 33 (s, 3H), 1. 25 (t, J=7. 1Hz,

PCT/JP02/07833

239

3H), 1.19 (d, J=6.8Hz, 6H).

合成例10

10

20

N- $(4- \wedge 7 \wedge 7)$ ルオロイソプロピルー $2- \lambda$ チルフェニル) $-1- \Delta$ チルー $3- \lambda$ ソプロピルー $2- \lambda$ チルー $4- \lambda$ キソー 1 、 2 、 3 、 $4- \lambda$ トラヒドロキナゾリンー $5- \lambda$ ルボキサミド(本発明化合物 No. 7-001)。

合成例 3にて合成した 3 - x + y y -

"融点 9 1. 0~9 3. 0℃

1H NMR (CDC1₃, Me₄Si, 300MHz) δ 8. 43 (br, 1H), 8. 07 (bs, 1H), 7. 46 (d, J=8. 5Hz, 1H), 7. 3-7. 45 (m, 2H), 7. 03 (d, J=7. 4Hz, 1H), 6. 82 (d, J=8. 2Hz, 1H), 4. 85-4. 95 (m, 1H), 4. 74 (q, J=6. 0Hz, 1H), 3. 4-3. 6 (m, 1H), 3. 15-3. 3 (m, 1H), 2. 35 (s, 3H), 1. 30 (t, J=7. 1Hz, 3H), 1. 15-1. 4 (m, 9H).

合成例11

3-ジメチルアミノー \mathbb{N} ー(4-ヘプタフルオロイソプロピルー 2-メチルフェニル) $-\mathbb{N}^2-$ イソプロピルフタル酸ジアミド(本発明化合物 \mathbb{N} 0. 1-042)。

合成例1の工程1にて合成した3-アミノーNー(4-ヘプタフルオロイソプロピルー2-メチルフェニル)ーNーイソプロピルフタル酸ジアミド0.97g及び37%ホルムアルデヒド水溶液1.6gのアセトニトリル30ml 縣濁液にシアノ水素化ホウ素ナトリウム0.38gを添加し、室温にて30分撹拌した後、酢酸0.5mlを10分間にわたって35 滴下、更に室温にて3時間攪拌を継続した。反応完結後ジエチルエーテル100mlで希釈し、1N水酸化カリウム水溶液にて洗浄(20mlx3)、有機層を飽和食塩水、無水硫酸ナトリウムの順で脱水・乾燥し、減圧下にて溶媒を留去した。残留物を酢酸エチルーへキサン(1:1)にて溶出するシリカゲルカラムクロマトグラフィーにて精製し、目的物0.53gを白色結晶として得た。

PCT/JP02/07833

240

融点216.0~219.0℃

"H NMR (CDC1₃, Me₄Si, 300MHz) δ 8. 44 (bs, 1H), 8. 33 (d, J=8. 2Hz, 1H), 7. 35-7. 5 (m, 4H), 7. 22 (d, J=8. 2Hz, 1H), 6. 36 (bs, 1H), 4. 15-4. 25 (m, 1H), 2. 86 (s, 6H), 2. 39 (s, 3H), 1. 16 (d, J=6. 5Hz, 6H).

5 合成例 1 2

3-アセトアミドー \mathbb{N}^1- (4-ヘプタフルオロイソプロピルー2-メチルフェニル)ー \mathbb{N}^2- イソプロピルフタル酸ジアミド(本発明化合物 No. 1-028)。

合成例1の工程1にて合成した3-アミノーN'- (4-ヘプタフルオロイソプロピルー2-メチルフェニル)ーN'-イソプロピルフタル酸ジアミド0.55g及びトリエチルア 10 ミン0.25gのジクロロメタン30ml溶液に、氷冷撹拌下、塩化アセチル0.16gを添加し、室温に昇温後12時間攪拌を継続した。反応完結後、水10mlにて洗浄、有機層を飽和食塩水、無水硫酸ナトリウムの順で脱水・乾燥し、減圧下にて溶媒を留去した。 残留した固体をジイソプロピルエーテルにて洗浄し、目的物0.2gを白色結晶として得た。

15 融点 2 0 8.0 \sim 2 1 0.0 $^{\circ}$ C
¹H NMR (CDCl₃, Me₄Si, 300MHz) δ 9.01 (bs, 1H), 8.3–8.45 (m, 2H), 7.60 (s, 1H), 7.54 (t, J=8.0Hz, 1H), 7.53 (d, J=7.9Hz, 1H), 7.43 (s, 1H), 7.37 (d, J=7.7Hz, 1H), 6.39 (d, J=7.7Hz, 1H), 4.05–4.2 (m, 1H), 2.32 (s, 3H), 2.19 (s, 3H), 1.07 (d, J=6.6Hz, 6H).

20 合成例 13

25 工程1;3 -ホルムアミド-N- (4-ヘプタフルオロイソプロピル-2-メチルフェニル) フタル酸イミドの製造。

ギ酸 0.97g 及び無水酢酸 1.6g の混合物を 50 ℃にて 1 時間攪拌した後、氷冷撹拌下、3-7ミノーN-(4-ヘプタフルオロイソプロピルー2-メチルフェニル)フタル酸イミド 2.2g のテトラヒドロフラン 20 ml 溶液を添加し、更に室温にて 12 時間撹拌

PCT/JP02/07833

を継続した。反応完結後、減圧下に溶媒を留去、残留物を酢酸エチル30mlに溶解、飽和炭酸水素ナトリウム水溶液20mlにて洗浄した。有機層を飽和食塩水、無水硫酸ナトリウムの順で脱水・乾燥し、減圧下にて溶媒を留去し、粗製の目的物2.2gを白色結晶として得た。

241

5 融点202.0~205.0℃

25

¹H NMR (CDC1₃, Me₄Si, 300MHz) δ 9. 49 (s, 1H), 8. 88 (d, J=8. 5Hz, 1H), 8. 58 (s, 1H), 7. 80 (t, J=7. 4Hz, 1H), 7. 68 (d, J=7. 1Hz, 1H), 7. 62 (s, 1H), 7. 58 (d, J=8. 5Hz, 1H), 7. 34 (d, J=8. 5Hz, 1H), 2. 30 (s, 3H).

3 - ホルムアミドーN- (4 - ヘプタフルオロイソプロピルー2 - メチルフェニル)フタル酸イミド2.2gのジメチルホルムアミド30ml 溶液に、氷冷撹拌下、60%油性水素下ナトリウム0.2gを添加し同温度にて10分間撹拌、続けてヨウ化メチル0.9gを添加し、室温に昇温後、更に1.5時間撹拌を継続した。反応完結後、氷水30ml に投入しジエチルエーテル30ml にて2回抽出した。有機層を飽和食塩水、無水硫酸ナトリウムの順で脱水・乾燥し、減圧下に溶媒を留去、残留固体をジイソプロピルエーテルーへキサン(1:2)混合溶媒にて洗浄し、目的物1.78gを淡黄色結晶として得た。融点111.0~114.0℃

¹H NMR (CDC1₃, Me₄Si, 300MHz) δ 8. 51 (s, 1H), 7. 93 (d, J=7. 4Hz, 1H), 7. 88 (t, J=7. 4Hz, 1H), 7. 61 (s, 1H), 7. 57 (d, J=7. 6Hz, 1H), 7. 57 (d, J=7. 4Hz, 1H), 7. 35 (d, J=8. 2Hz, 1H), 3. 44 (s, 3H), 2. 29 (s, 3H).

工程 3; N^1 - $(4- \wedge 7 / 97)$ ルオロイソプロピルー 2-メチルフェニル) $-N^2$ - -1 / 17ロピルー 3- (N-メチルホルムアミド) フタル酸ジアミド及び N^1 - $(4- \wedge 7 / 97)$ ルオロイソプロピルー 2-メチルフェニル) $-N^2$ - -1 / 17ロピルー 6- (N-メチルホルムアミド) フタル酸ジアミドの製造。

N- $(4- \wedge 7 / 97)$ ルオロイソプロピルー 2- / 37ルフェニル) -3- (N- / 37)ホルムアミド) 7 / 97 で 1 / 9

PCT/JP02/07833

242

出するシリカゲルカラムクロマトグラフィーにて精製し、酢酸エチルフラクションより N^1 ー($4-\Lambda$ プタフルオロイソプロピルー2-メチルフェニル) $-N^2$ ーイソプロピルー6ー(N-メチルホルムアミド)フタル酸ジアミド 0.54g を白色結晶として、酢酸エチルーメタノール(19:1)フラクションより N^1 ー($4-\Lambda$ プタフルオロイソプロピルー2-メチルフェニル) $-N^2$ ーイソプロピルー3-(N-メチルホルムアミド)フタル酸ジアミド 0.03g を樹脂状固体として、それぞれ得た。

融点191.0~193.0℃

- 10 'H NMR (CDCl₃, Me₄Si, 300MHz) δ 8. 34 and 8. 13 (d, J=8. 5Hz, 1H), 8. 22 and 8. 28 (s, 1H), 7. 91 and 7. 82 (bs, 1H), 7. 70 and 7. 58 (dd, J=7. 7, 1. 1Hz, 1H), 7. 5-7. 65 (m, 1H), 7. 35-7. 55 (m, 2H), 7. 31 and 7. 38 (dd, J=7. 7, 1. 1Hz, 1H), 6. 13 and 6. 01 (d, J=6. 5Hz, 1H), 4. 15-4. 4 (m, 1H), 3. 33 and 3. 28 (s, 3H), 2. 32 and 2. 33 (s, 3H), 1. 15 and 1. 13 (d, J=6. 6Hz, 6H).
 - 15 $N^1 (4-\land 7$ タフルオロイソプロピル-2-メチルフェニル $)-N^2-$ イソプロピル-3 (N-メチルホルムアミド) フタル酸ジアミド;

 1 H NMR (CDC1₃, Me₄Si, 300MHz) δ 8. 81 and 8. 45 (bs, 1H), 8. 31 and 8. 29 (d, J=8. 5Hz, 1H), 8. 25 (s, 1H), 7. 97 and 7. 87 (d, J=8. 0Hz, 1H), 7. 55–7. 7 (m, 1H), 7. 4–7. 5 (m, 2H), 7. 39 and 7. 33 (d, J=7. 7Hz, 1H), 6. 39 and 5. 77 (d, J=7. 5Hz, 1H), 3. 35 and

20 3. 28 (s, 3H), 2. 40 and 2. 39 (s, 3H), 1. 11 (d, J=6. 6Hz, 6H).

合成例14

- $3-(3,3-ジメチル-2-オキソアゼチジン-1-イル)-N^1-(4-ヘプタフルオロイソプロピル-2-メチルフェニル)-N^2-イソプロピルフタル酸ジアミド(本発明化合物 No. <math>1-097$)。
- 25 工程1;2-(2-クロロ-1,1-ジメチルプロパノイルアミノ)-N-イソプロピル ベンズアミドの製造。

2-アミノーNーイソプロピルベンズアミド 6.0 g 及びトリエチルアミン 6.81 g の ジクロロメタン 40 ml 溶液に、氷冷攪拌下、ジクロロメタン 30 ml に溶解した 2- クロロー 1- ジメチルプロパノイルクロライド 6.26 g を滴下し、滴下終了後室温にて

WO 03/011028.

5

PCT/JP02/07833

243

さらに12時間攪拌を継続した。反応完結後、反応混合物を酢酸エチル200mlにて希釈し、水100ml、1N塩酸50ml、飽和炭酸水素ナトリウム水溶液50mlの順で洗浄、さらに飽和食塩水、無水硫酸ナトリウムの順で脱水・乾燥し、減圧下に溶媒を留去した。残留する赤色固体をジイソプロピルエーテルにて洗浄し、目的物8.4gを肌色結晶として得た。

融点134.0~136.0℃

¹H NMR (CDC1₃, Me₄Si, 400MHz) δ 11. 41 (bs, 1H), 8. 59 (dd, J=8. 0, 1. 2Hz, 1H), 7. 4-7. 5 (m, 2H), 7. 05-7. 1 (m, 1H), 6. 10 (d, J=6. 4Hz, 1H), 4. 2-4. 3 (m, 1H), 3. 71 (s, 2H), 1. 43 (s, 6H), 1. 28 (d, J=6. 4Hz, 6H).

10 工程2;2-(3,3-ジメチル-2-オキソアゼチジン-1-イル)ーN-イソプロピルペンズアミドの製造。

 $2-(2-\rho \Box D \Box 1, 1-ジメチルプロパノイルアミノ) -N-イソプロピルベンズ アミド 8.0 6g のジクロロメタン 8.7 ml 溶液にテトラブチルアンモニウムブロマイド 0.8 7g を添加し、室温にて攪拌下、水酸化ナトリウム 3.4.7 g の水 8.7 ml 溶液を滴下し$

- 15 た。室温にてさらに9時間攪拌を継続した後、反応混合物に水200mlを加えジクロロメタン層を分取、水層はさらにジクロロメタンにて抽出(100mlx2)した。有機層を合わせて無水硫酸ナトリウムで乾燥し、減圧下に溶媒を留去、残留した褐色油状物質を酢酸エチルーノルマルヘキサン(2:3)にて溶出するシリカゲルカラムクロマトグラフィーにて精製し、目的物6.26gを乳白色結晶として得た。
- 20 融点129.5~131.0℃

¹H NMR (CDC1₃, Me₄Si, 400MHz) δ 7. 75–7. 8 (m, 1H), 7. 35–7. 4 (m, 2H), 7. 1–7. 2 (m, 1H), 6. 03 (d, J=7. 2Hz, 1H), 4. 17–4. 3 (m, 1H), 3. 56 (s, 2H), 1. 38 (s, 6H), 1. 26 (d, J=6. 4Hz, 6H).

工程3;3-(3,3-ジメチル-2-オキソアゼチジン-1-イル)-2-イソプロ 25 ピルカルバモイル安息香酸の製造。

2-(3,3-i)メチルー2-iオキソアゼチジンー1-iイル)-N-iイソプロピルベンズアミド 5.83g のテトラヒドロフラン 67 ml 溶液に、-78 $\mathbb C$ にて攪拌下、0.99 Mセカンダリーブチルリチウムヘキサン溶液 50 ml を滴下した。-78 $\mathbb C$ にて 1 時間攪拌を継続した後、室温に昇温、炭酸ガスを 30 分間導入した。さらに室温にて 1 時間攪

PCT/JP02/07833

WO 03/011028

10

25

244

拌を継続した後、氷冷下に水150ml を加え、濃塩酸を加えて pH を $2\sim3$ に調節した後、酢酸エチルにて抽出(100ml x 3)した。有機層を飽和食塩水、無水硫酸ナトリウムの順で脱水・乾燥し、減圧下に溶媒を留去、残留した黄色固体をジエチルエーテルにて洗浄し、目的物3.38g をレモン色結晶として得た。

- 5 工程 4; $3-(3, 3-ジメチル-2-オキソアゼチジン-1-イル) <math>-\mathbb{N}^1-(4-\mathbb{N}^2-\mathbb{$
 - 3-(3,3-ジメチル-2-オキソアゼチジン-1-イル)-2-イソプロピルカルバモイル安息香酸1.0gのトルエン22ml溶液に、室温にて攪拌下、無水トリフルオロ酢酸0.93gを滴下した。同温度にて30分攪拌した後、減圧下に溶媒を留去、残留する黄色油状物質をテトラヒドロフラン25mlに溶解、4-ヘプタフルオロイソプロピルー2-メチルアニリン0.9gを添加し、室温にて17時間攪拌を継続した。反応完結後、減圧下に溶媒を留去、残留した黄色固体を酢酸エチルーノルマルヘキサン(1:
- 2) にて溶出するシリカゲルカラムクロマトグラフィーにて精製し、目的物 1.0 6g を 15 白色結晶として得た。

融点217.0~217.5℃

¹H NMR (CDC1₃, Me₄Si, 400MHz) δ 8. 35 (d, J=8. 4Hz, 1H), 8. 21 (bs, 1H), 8. 07 (dd, J=7. 8, 1. 4Hz, 1H), 7. 38-7. 55 (m, 4H), 6. 37 (d, J=8. 0Hz, 1H), 4. 07-4. 23 (m, 1H), 3. 62 (s, 2H), 2. 37 (s, 3H), 1. 39 (s, 6H), 1. 10 (d, J=6. 8Hz, 6H).

20 本発明化合物は、前記製造法及び実施例に準じて製造することができる。そのような 化合物の例を第7表~第14表に示すが、本発明はこれらに限定されるものではない。

尚、表中 Et との記載はエチル基を表し、以下同様に n-Pr 又は Pr-n はイソプロピル基を、i-Pr 又は Pr-i はイソプロピル基を、n-Bu 又は Bu-n はノルマルブチル基を、s-Bu 又は Bu-s はセカンダリーブチル基を、i-Bu 又は Bu-i はイソブチル基を、t-Bu 又は Bu-t はターシャリーブチル基を、c-Pen 又は Pen-c はシクロペンチル基を、c-Hex 又は Hex-c

また、表中 T-22 及び T-25 は、それぞれ下記の構造を表し、

はシクロヘキシル基を、Ph はフェニル基をそれぞれ表し、

PCT/JP02/07833

WO 03/011028

245

$$T-22:$$
 $-N$

$$T-25:$$
 $-N$

$$CH$$

$$CH$$

さらに、表中 L-1a、L-14b、L-45c 及び L-45d は、それぞれ下記の構造を表す。

L-1a:
$$CF_3$$
 L-45c: CF_3 L-45d: CF_3 第7表

$$X^{1}$$

$$C-NH$$

$$CH_{3}$$

$$CH_{3}$$

No.	X 1	Y 1	Ϋ́²	m. p. (°C)
1-001	NHEt	F	OCF2CHFOCF2CF2CF3	153. 0-158. 0
1-002	NHE t	Br.	C (CF ₃) ₂ OH	90. 0-92. 0
1-003	NHE t	Br	OCF ₃	164. 5-165. 5
1-004	NHEt	CH ₃	Н	183. 0-185. 0
1-005	NHE t	CH ₃	CF (CF ₃) ₂	208. 0-209. 0
1-006	NHE t	CH ₃	C (CF ₃) 20H	139. 0-140. 0
1-007	NHEt	CH ₃		201. 0-202. 0
1-008	NHEt	CH ₃	OCF ₃	188. 0-190. 0
1 - 009	NHEt	CH ₃	OCF ₂ Br	186. 0-187. 0
1-010	NHEt	CH ₃	OCF_CHFC1	167. 0-169. 0
1-011	NHEt	CH ₃	_	173. 0-174. 0
1-012	NHEt	-		147. 0-148. 0
1-013	NHEt	•		217. 0-218. 0
1-014	NHEt	•		196. 0-197. 0
1-015	NHEt	•		159. 0-163. 0
1-016	NHEt	•		149. 5-151. 0
1-017	NHPr-n			193. 0-195. 0
1-018	NHBu-n	CH ₃	CF (CF ₃) ₂	172. 0-173. 0
	1-001 1-002 1-003 1-004 1-005 1-006 1-007 1-008 1-009 1-010 1-011 1-012 1-013 1-014 1-015 1-016 1-017	1-001 NHE t 1-002 NHE t 1-003 NHE t 1-004 NHE t 1-005 NHE t 1-006 NHE t 1-007 NHE t 1-008 NHE t 1-009 NHE t 1-010 NHE t 1-011 NHE t 1-012 NHE t 1-012 NHE t 1-013 NHE t 1-014 NHE t 1-015 NHE t 1-016 NHE t 1-017 NHP r-n	1-001 NHEt F 1-002 NHEt Br 1-003 NHEt Br 1-004 NHEt CH ₃ 1-005 NHEt CH ₃ 1-006 NHEt CH ₃ 1-007 NHEt CH ₃ 1-008 NHEt CH ₃ 1-009 NHEt CH ₃ 1-010 NHEt CH ₃ 1-011 NHEt CH ₃ 1-012 NHEt CH ₃ 1-012 NHEt CH ₃ 1-013 NHEt CH ₃ 1-014 NHEt CH ₃ 1-015 NHEt CH ₃ 1-016 NHEt CH ₃ 1-017 NHPr-n CH ₃	1-001 NHEt

PCT/JP02/07833

Z	4	b

	4 040	aum.		án (an)	107 0 100 0
	1-019	NHPen-c	СНз	CF (CF ₃) ₂	197. 0-199. 0
	1-020	NHCH ₂ OCH ₃	СН ^з	CF (CF ₃) ₂	175. 0-178. 0
	1 - 021	NHCH ₂ OEt	CH ₃	CF (CF ₃) ₂	173. 0-174. 0
	1 - 022	NHCH ₂ OE t	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	115. 0-120. 0
5	1-023	NHCH (CH ₃) OCH ₃	CH ₃	CF (CF ₃) ₂	170. 0-172. 0
	1-024	NHCH (Et) OCH ₃	CH ₃	CF (CF ₃) ₂	191. 0-193. 0
	1-025	NHCH ₂ Ph	CH ₃	CF (CF ₃) ₂	200. 0-202. 0
	1-026	NHCH ₂ (L-1a)	CH ₃	CF (CF ₃) ₂	196. 0-199. 0
	1-027	NHCHO	CH ₃	CF (CF ₃) ₂	189. 0-191. 0
10	1-028	NHC (0) CH ₃	CH ₃	CF (CF ₃) ₂	208. 0-210. 0
IU	1-029	NHC (0) Bu-t	CH ₃	CF (CF ₃) ₂	184. 0-187. 0
	1-030	NHC (0) C (CH ₃) ₂ CH ₂ C1	CH ₃	CF (CF ₃) ₂	198. 5-200. 5
	1-030	NHC (0) CF ₃	_	CF (CF ₃) ₂	239. 0-240. 0
		NHC (0) Ph	CH ₃ .		
1.5	1-032		CH ₃	CF (CF ₃) ₂	211. 0-213. 0
15	1-033	NHC (0) OCH 3	CH ₃	CF (CF ₃) ₂	195. 0-196. 0
	1-034	NHC (0) OBu-i	CH ₃	CF (CF ₃) ₂	180. 0-181. 0
	1-035	NHC (0) OCH ₂ CH ₂ Cl	СНз	CF (CF ₃) ₂	178. 0-180. 0
	1-036	NHC (0) OCH ₂ CCl ₃	СНз	CF (CF ₃) ₂	223. 5-224. 5
	1-037	NHC (0) C (0) OCH ₃	CH ₃	CF (CF ₃) ₂	156. 0-157. 0
20	1-038	NHC (0) C (0) OE t	CH ₃	CF (CF ₃) ₂	212. 0-213. 0
	1-039	NHOH	CH3.	CF (CF ₃) ₂	175. 0-177. 0
	1-040	NHSCC1 3	CH ₃	CF (CF ₃) ₂	191. 0-193. 0
	1-041	NHSO ₂ CF ₃	CH3	CF (CF ₃) ₂	194. 0-197. 0
	1-042	$N(CH_3)_2$	СНз	CF (CF ₃) ₂	216. 0-219. 0
25	1-043	N (CH ₃) Et	CH ₃	CF (CF ₃) ₂	187. 0-188. 0
	1-044	N (CH ₃) E t	CH ₃	$C(CF_3)_2OH$	178. 0-180. 0
•	1-045	N (CH ₃) Et	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	127. 0-132. 0
	1-046	N(Et) ₂	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	110. 0-111. 0
	1-047	N (CH ₃) Bu-n	CH ₃	CF (CF ₃) ₂	206. 0-207. 0
30	1 - 048	T-22	CH ₃	CF (CF ₃) ₂	211. 0-212. 0
	1-049	N (CH ₃) CHO	CH ₃	CF (CF ₃) ₂	樹脂状
	1 - 050	N (Et) CHO	CH ₃	CF (CF ₃) ₂	190. 0-192. 0
	1-051	$N (CH_3) C (0) CH_3$	CH ₃	CF (CF ₃) ₂	170. 0-171. 0
	1-052	N (Et) C (0) CH ₃	F	OCF 2 CHFOCF 2 CF 2 CF 3	149. 0-154. 0
35	1-053	$N (Et) C (0) CH_3$	Br	C (CF ₃) ₂ OH	201. 0-202. 0
	1-054	N (Et) C (0) CH ₃	Br	OCF ₃	217. 0-217. 5
	1-055	N (Et) C (0) CH ₃	CH ₃	CF (CF ₃) ₂	144. 0-147. 0
	1-056	N (Et) C (0) CH ₃	CH ₃	$C (CF_3)^2 OH$	222. 0-223. 0
	1-057	N (Et) C (0) CH ₃	CH3	C (CF ₃) 2 OCH ₃	124. 0-126. 0
40	1-058	N (Et) C (0) CH ₃	CH ₃	OCF ₃	94. 0-96. 0
	1-059	N (Et) C (0) CH ₃	CH ₃	OCF ₂ Br	85. 0-87. 0
	1-060	N (Et) C (0) CH ₃	CH ₃	OCF 2 CHFC 1	100. 0-102. 0
	1-061	N (Et) C (0) CH ₃	CH ₃	OCF ₂ CHF ₂	141. 0-143. 0
	1-062	N (Et) C (0) CH ₃	CH ₃	OCF ₂ CF ₂ Br	179. 0-181. 0
45		N (Et) C (0) CH ₃	_		
. 11 0			CH ³	OCF 2CCl 3	201. 0-203. 0
	1-064	N (Et) C (0) CH ₃	CH ₃	OCH (CF ₃) ₂	197. 0-199. 0
•	1-065	N (Et) C (0) CH ₃	CH ₃	OCF ₂ CHFCF ₃	146. 0-148. 0

PCT/JP02/07833

247

	1-066	N (Et) C (0) CH ₃	CH ₃	OCF ₂ CFBrCF ₃		174. 0-176. 0
	1 - 067	N (Et) C (O) CH ₃	CH ₃	OCF 2 CHFOCF 3		171. 0-172. 0
	1-068	N (Et) C (0) CH ₃	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3		84. 0-86. 0
	1 - 069	N (Et) C (0) CH ₃	CH ₃	0 (L-45d)		109. 0-110. 0
5 .	1-070	N (Et) C (O) CH ₃	CH ₃	L-45d	3	177. 0 - 179. 0
	1 - 071	N (Et) C (0) CH ₃	CF ₃	OCF 2 CHFOCF 2 CF 2 CF 3	•	148. 0-149. 0
	1-072	N (Et) C (0) CH ₃	OCH ₃	OCF 2 CHFOCF 2 CF 2 CF 3		120. 0-121. 5
	1 - 073	N (Et) C (O) CH ₃	L-14b	CF ₃		180. 0-182. 0
	1 - 074	N (Pr-n) C (0) CH $_3$	CH 3	CF (CF ₃) ₂		樹脂状
10	1 - 075	N (Pr-i) C (0) $\mathrm{CH_3}$	CH ₃	CF (CF ₃) ₂	•	102. 0-105. 0
	1-076	N (Bu-n) C (0) CH_3	CH ₃	CF (CF ₃) ₂		樹脂状
,	1 - 077	N (Pen-c) C (0) CH_3	CH3	$CF(CF_3)_2$		98. 0-102. 0
	1 - 078	$N (CH_2Ph) C (0) CH_3$	СНз	CF (CF ₃) ₂		162. 0-166. 0
	1 - 079	N (OC (O) CH_3) C (O) CH_3	CH ₃	CF (CF ₃) ₂	•	178. 0-179. 0
15	1-080	N (Et) C (0) Et	СНз	CF (CF ₃) ₂		184. 0-186. 0
	1-081	N (Et) C (0) Pr-n	CH ₃	CF (CF ₃) ₂		127. 0-130. 0
	1 - 082	N (Et) C (0) Pr-i	CH ₃	CF (CF ₃) ₂		159. 0-163. 0
	1-083	N (Et) · C (0) Pr-c	CH ₃	CF (CF ₃) ₂		162. 0-168. 0
	1-084	N (Et) C (0) Bu-t	CH3	CF (CF ₃) ₂		樹脂状
20	1-085	N (Et) C (0) Hex-c	CH ₃	CF (CF ₃) ₂		146. 0-149. 0
	1-086	N (Et) C (0) CH ₂ C1	CH 3	CF (CF ₃) ₂		樹脂状 208.0-210.0
	1-087	N (Et) C (0) CF ₃	CH ³	CF (CF ₃) ₂		166. 0–168. 0
: .	1-088 1-089	N (Pr-n) C (0) CH_2OCH_3 N (Et) C (0) CH_2C (0) OEt	CH₃ CH₃	$CF (CF_3)_2$ $CF (CF_3)_2$		194. 0-196. 0
25	1-009	N (Et) C (0) CH=CHCH ₃	CH ₃	CF (CF ₃) ₂		171. 0-172. 0
20	1-091	N (Et) C (0) Ph	CH ₃	CF (CF ₃) ₂		197. 0-200. 0
	1-092	N (Et) C (0) (Ph-2-C1)	CH ₃	CF (CF ₃) ₂		179. 0-181. 0
	1-093	N (Et) C (0) (Ph-3-C1)	CH ₃	CF (CF ₃) ₂		168. 0-170. 0
	1-094	N (Et) C (0) (Ph-4-C1)	CH ₃	CF (CF ₃) ₂		167. 0-169. 0
30	1-095	N (Et) C (0) CH ₂ Ph	CH ₃	CF (CF ₃) ₂		178. 0-180. 0
	1-096	T-25	Br	C (CF ₃) ₂ OH		209. 5-211. 0
	1 - 097	T-25	CH ₃	CF (CF ₃) ₂		217. 0-217. 5
•	1-098	N (Et) C (O) OCH ₃	CH ₃	CF (CF ₃) ₂		177. 0-179. 0
• .	1-099	N (Et) C (0) OEt	СНз	CF (CF ₃) ₂		179. 0-181. 0
35	1-100	N (Et) C (0) OEt	СНз	OCF 2 CHFOCF 2 CF 2 CF 3		102. 0-104. 0
	1-101	N (Pr-n) C (0) OEt	CH ₃	CF (CF ₃) ₂		179. 0-180. 0
	1-102	N (Et) C (0) OCH2 CH2 CI	CH ₃	CF (CF ₃) ₂		151. 0-153. 0
	1 - 103	N (Et) C (0) OPh	СНз	CF (CF ₃) ₂		183. 0-184. 0
	1-104	N (Et) C (0) SPh	СНз	CF (CF ₃) ₂		224. 0-226. 0
40	1-105	N (Et) C (0) C (0) OCH ₃	СНз	$CF(CF_3)_2$	•	199. 0-201. 0
	1-106	N (Et) C (0) C (0) OEt	CH3	CF (CF ₃) ₂	,	樹脂状 .
	1 - 107	N (Et) SCCI ₃	CH ₃	CF (CF ₃) ₂		195. 0-196. 0
	1-108	N=C (CH ₃) OCH ₃	CH3	CF (CF ₃) ₂		213. 0-214. 0
	1-109		F	OCF ₂ CHFOCF ₂ CF ₂ CF ₃		120. 0-141. 0
45	1-110	N=C (CH ₃) OEt	Br	OCF ₃		168. 0-170. 0
	1-111	N=C (CH ₃) 0Et	Br	C (CF ₃) ₂ OH		180. 0-182. 0
	1-112	N=C (CH ₃) OEt	СНз	H		192. 0-194. 0

PCT/JP02/07833 WO 03/011028 248 CF (CF₃)₂ CH₃ 181. 0-182. 0 1-113 N=C (CH₃) OEt 1-114 N=C (CH₃) OEt CH₃ $C(CF_3)_2OH$ 164. 0-166. 0 N=C (CH₃) OE t CH₃ C (CF₃) 20CH₃ 180. 0-181. 0 1-115 N=C (CH₃) OEt 174. 0-175. 5 CH₃ OCF₃ 1 - 116CH₃ OCF₂Br 171. 0-171. 5 N=C (CH₃) OEt 1-117 CH₃ OCF 2 CHFC1 164. 0-166. 0 1-118 N=C (CH₃) OEt N=C (CH₃) OEt CH₃ OCF 2 CHFOCF 3 175. 0-176. 0 1-119 OCF 2 CHFOCF 2 CF 2 CF 3 162. 0-164. 0 1 - 120N=C (CH₃) OEt CH₃ CH_3 0 (L-45d) 173. 0-174. 0 1 - 121N=C (CH₃) OEt CH3 207. 0-209. 0 N=C (CH₃) OEt L-45d 10 1 - 122CF₃ OCF 2 CHFOCF 2 CF 2 CF 3 123. 0-126. 0 1 - 123N=C (CH₃) OE t OCH₃ OCF 2 CHFOCF 2 CF 2 CF 3 161. 0-162. 0 1-124 N=C (CH₃) OEt 193. 0-194. 0 1-125 N=C (Et) OEt CH₃ CF (CF₃)₂ CH₃ CF (CF₃)₂ 171. 0-174. 0 1 - 126 $N=C (Pr-n) OCH_3$ 0 (L-45c)178. 0-180. 0 1 - 127CH₃ 15 NHE t CH₃ 0 (L-45c)246. 0-248. 0 1 - 128N(Et) C(0) CH₃ CH₃ 0 (L-45c) 128. 0-130. 0 1 - 129 $N=C (CH_3) OEt$ 221. 0-223. 0 1-130 NHEt CH₃ L-45c CH₃ L-45c 205. 0-207. 0 N(Et) C(0) CH₃ 1 - 131202. 0-203. 0 CH3 L-45c 20 1-132 N=C (CH₃) OEt

第8表

$$X^{1} \xrightarrow{HIN} Y^{1}$$

$$C = X^{1} \xrightarrow{HIN} Y^{2}$$

$$C = X^{1} \xrightarrow{C} Y^{2}$$

$$C = X^{1} \xrightarrow{C} Y^{1}$$

$$C = X^{1} \xrightarrow{C} C^{1}$$

25	No.	χ1		Y ¹	Y2	m.p. (°C)
30	2-001 2-002 2-003	NHE t NHCHO N (CH ₃) CHO	•	CH ₃ CH ₃	CF (CF ₃) ₂ CF (CF ₃) ₂ CF (CF ₃) ₂	245. 0-246. 0 178. 0-180. 0 191. 0-193. 0

249

WO 03/011028

PCT/JP02/07833

.

第9表

$$X^{1} \xrightarrow{\text{HN}} C^{1} \xrightarrow{3} Y^{2}$$

$$X^{1} \xrightarrow{\text{C}-\text{NH}} CH_{3}$$

$$CH_{3}$$

r	No.	X1	Υ ¹ .	Y.2	(Y ³) n	m. p. (℃)
5	3-001	NHE t	Н	OCF 2 CHFOCF 2 CF 2 CF 3	3-CH ₃	95. 0-97. 0
	3-002	NHEt	СНз	OCF ₂ Br	3-C1	200. 0-202. 0
	3-003	NHE t	CH ₃	OCF ₂ Br	5-C1	180. 0-182. 0
	3-004	NHEt	СНз	OCF 2 CHFOCF 2 CF 2 CF 3	3-C1	167. 0-168. 0
10	3-005	NHEt	CH 3	OCF 2 CHFOCF 2 CF 2 CF 3	3-CH ₃	192. 0-193. 0
- 1	3-,006	NHEt	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	5-C1	159. 0-161. 0
	3-007	NHE t	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	3, 5-Cl ₂	176. 0-177. 0
	3-008	NHE t	CH ₃	0 (L-45d)	3, 5-Cl $_{\mathrm{z}}$	213. 0-215. 0
	3-009	N (Et) C (0) CH_3	H	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	3-CH 3	164. 0-168. 0
15	3-010	N (Et) C (O) CH_3	СНз	OCF ₂ Br	3-C1	$110. \ 0-112. \ 0$
•	3-011	N (Et) C (0) CH_3	CH 3	OCF ₂ Br	5-C1	93. 0-95. 0
	3-012	$N (Et) C (0) CH_3$	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	3-C1	210. 0-212. 0
	3-013	$N (Et) C (0) CH_3$	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	3-CH ₃	90. 0-92. 0
	3-014	N (Et) C (0) CH_3	СНз	OCF 2 CHFOCF 2 CF 2 CF 3	5-C1	78. 0-80. 0
20	3-015	$N (Et) C (0) CH_3$	СНз	OCF 2 CHFOCF 2 CF 2 CF 3	3, 5-Cl $_{\rm z}$	94. 0-96. 0
•	3-016	$N (Et) C (0) CH_3$	СНз	0 (L-45d)	3, 5-Cl ₂	$131. \ 0-133. \ 0$
	3 - 0.17	N (Et) C (O) CH ₃	CH ₃	Cl	5-0 (L-45d)	216. 0-218. 0
	3-018	N=C (CH ₃) OEt	H	OCF 2 CHFOCF 2 CF 2 CF 3	3-CH ₃	150. 0-160. 0
	3-019	$N=C (CH_3) OEt$	СНз	OCF ₂ Br	3-C1	175. 0-176. 0
25	3-020	$N=C (CH_3) OEt$	CH3	OCF ₂ Br	5-C1	178. 0-180. 0
	3-021	$N=C (CH_3) OEt$	·CH3	OCF 2 CHFOCF 2 CF 2 CF 3	3-C1	164. 0-165. 0
	3-022	$N=C (CH_3) OEt$	СНз	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	3-CH ₃	163. 0-165. 0
	3-023	N=C (CH ₃) OEt	СНз	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	5-C1	192. 0-193. 5
	3-024	N=C (CH ₃) OEt	CH3	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	3, 5–Cl $_{\mathrm{2}}$	181. 0-182: 0
30	3-025	NHEt	CH3	OCF 2 CHFOCF 2 CF 2 CF 3	6-CH 3	185. 0-187. 0
	3-026	N (Et) C (0) CH3	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	6-CH ₃	97. 0-99. 0
	3-027	$N=C (CH_3) OEt$	CH3	OCF 2 CHFOCF 2 CF 2 CF 3	6-CH ₃	171. 0-173. 0

PCT/JP02/07833

250

第10表

No.	Х1	R2	R ³		m.p. (℃)
4-001	3-NHE t	Н	Et		187. 0-189. (
4-002	3-NHE t	Ĥ	s-Bu	_	195. 0-197. (
4-003	3-NHE t	H	i – Bu		125. 0-128. (
4-004	3-NHE t	H	t-Bu		210. 0-212. (
4-005	3-NHE t	H	c-Pen		樹脂状
4-006	3-NHE t	H	c-Hex		195. 0-196. (
4-007	3-NHE t	. Н	$CH(CH_3)CH_2OCH_3$		151. 5-152.
4-008	3-NHE t	H	CH ₂ CH ₂ SCH ₃		103. 0-105.
4-009		·H	CH (CH ₃) CH ₂ SCH ₃	.•	118. 0-120.
4-010	•	H	C (CH ₃) ₂ CH ₂ SCH ₃	•	181, 0-183.
4-011		. Н	CH (CH ₃) CH ₂ OCH ₃		166. 0-168.
4-012		H	Et		104. 0-106.
4-013		H	CH (CH ₃) CH ₂ OCH ₃		85. 0-87. 0
4-014		Н	CH2CH2SCH3	•	89.0-91.0
4-015		H	CH (CH ₃) CH ₂ SCH ₃		110. 0-112.
4-016	• **	Ĥ	C (CH ₃) ₂ CH ₂ SCH ₃		80. 0-81. 0
4-017	_	H	t-Bu		186. 0-188.
4-018		H	Et	: '	162. 0-163.
4-019		H	s-Bu		173. 0-175.
4-020	. · · · · ·	H	i –Bu		177. 0-179.
4-021		H	t-Bu		173. 0-174.
4-022	·	H	c-Pen		200. 0-201.
4-023		H	c-Hex		210. 0-212.
4-024		H	CH (CH ₃) CH ₂ OCH ₃		135. 0-136.
4-025		H	CH ₂ CH ₂ SCH ₃		153. 0-155.
4-0.26		H	CH (CH ₃) CH ₂ SCH ₃		165. 0-167.
4-027		. Н	C (CH ₃) 2 CH ₂ SCH ₃		96. 0-97. 0

251

WO 03/011028

PCT/JP02/07833

第11表

		п					
-	No.	R³		Ŗ ⁵	.Y¹	Y 2	m.p. (°C)
5	5-001	Et .		Et .	СНз	CF (CF ₃) ₂	167. 0-168. 0
	5-002	i-Pr		H	CH ₃	CF (CF ₃) ₂	105. 0-107. 0
	5-003	i-Pr		CH ₃	CH 3	CF (CF ₃) ₂	153. 0-156. 0
	5-004	i-Pr		Et	F	OCF 2 CHFOCF 2 CF 2 CF 3	158. 0-162. 0
	5-005	i-Pr	4	Et	Br	C (CF ₃) ₂ OH	205. 0-206. 0
10	5-006	i-Pr		Et	Br	OCF ₃	53. 0-55. 0
	5 - 007	i-Pr		Et	CH ₃	H	165. 0-167. 0
	5-008	i-Pr		Et	CH ₃	CF (CF ₃) ₂	96. 0-98. 0
	5-009	i-Pr		Et	CH ₃	$C(CF_3)_2OH$	250. 0-251. 0
	5 - 010	i-Pr		Et ·	CH ₃	$C(CF_3)_2OCH_3$	90. 0-92. 0
15	5 - 011	i-Pr		Et.	CH ₃	OCF ₃	91. 0-92. 0
	5 - 012	· i-Pr		Et	CH3	OCF ₂ Br	66. 0-68. 0
	5-013	i-Pr		Et	CH ₃	OCF ₂ CHF ₂	118. 0-120. 0
	5-014	i-Pr		Et .	CH 3	OCF 2 CHFC1	80. 0-81. 0
	5-015	i-Pr		Et	СНз	OCF ₂ CF ₂ Br	174. 0-176. 0
20	5 - 016	. i-Pr		Et	CH₃	OCF ₂ CCl ₃	169. 0-171. 0
	5 - 017	i-Pr		Et	CH ₃	OCH (CF ₃) ₂	173. 0-175. 0
	5-018	i-Pr		Et	CH 3	OCF ₂ CHFCF ₃	80. 0-82. 0
	5 - 019	i-Pr		Et	CH ₃	OCF ₂ CFBrCF ₃	170. 5-171. 5
	5 - 020	i-Pr		Et	CH 3	OCF ₂ CHFOCF ₃	87. 0-89. 0
25	5 - 021	i-Pr		Et	СНз	OCF ₂ CHFOCF ₂ CF ₂ CF ₃	67. 0-69. 0
	5 - 022	i-Pr		Et	СНз	0 (L-45d)	98. 0-99. 0
	5-023	i-Pr		Et .	٠.	L-45d	102. 0-104. 0
	5 - 024	i-Pr		Et	OCH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	57. 0-59. 0
	5-025	i-Pr		Et ·	L-14b	·CF ₃	213. 0-215. 0
30	5-026	i-Pr		n-Pr .	CH3 ·	CF (CF ₃) ₂	87. 0-89. 0
	5 - 027	i-Pr		i-Pr	CH ₃	CF (CF ₃) ₂	99. 0-102. 0
	5-028	i-Pr		n–Bu	CH ₃	CF (CF ₃) ₂	135. 0-137. 0
	5-029	i-Pr		c–Pen	CH ₃ .	CF (CF ₃) ₂	89. 0-91. 0
	5-030	i-Pr		CH ₂ OCH ₃	CH ₃	CF (CF ₃) ₂	107. 0-110. 0
35	5-031	i-Pr		CH2OEt	CH ₃	CF (CF ₃) ₂	86. 0-89. 0
	5-032	i-Pr		CH ₂ SCH ₃	CH ₃	CF (CF ₃) ₂	98. 0-100. 0
	5-033	i-Pr		CH ₂ CH=CH ₂	CH ₃	CF (CF ₃) ₂	85. 0-87. 0
	5-034	i-Pr		CH ₂ C≡CH	CH ₃	CF (CF ₃) ₂	91. 0-95. 0

	WO 03	/011028			•	PCT/JP02/07833
					252	
٠	5-035	i-Pr	CH ₂ (L-1a)	СНз	CF (CF ₃) ₂	200. 0-201. 0
	5-036	i-Pr	C (0) CH ₃	CH ₃	CF (CF ₃) ₂	樹脂状
	5 - 037	i-Pr	C (0) OCH ₃	CH ₃	CF (CF ₃) ₂	109. 0-112. 0
	5-038	i-Pr	$S0_2CH_3$	CH _a	CF (CF ₃) ₂	190. 0-192. 0
5	5-039	s-Bu	Et	CH ₃	CF (CF ₃) ₂	103. 5-106
	5-040	i-Bu	Et	CH3	CF (CF ₃) ₂	樹脂状
	5 - 041	t-Bu	Et	CH ₃	CF (CF ₃) ₂	87. 0-89. 0
	5 - 042	c-Pen	Et	CH ₃	CF (CF ₃) ₂	97. 0-99. 0
	5 - 043	c-Hex	Et	CHa	CF (CF ₃) ₂	117. 0-119. 0
10	5-044	CH (CH ₃) CH ₂ OCH ₃	Et	CH3	CF (CF ₃) ₂	75. 0-77. 0
	5-045	CH ₂ CH ₂ SCH ₃	Et	CH ₃	CF (CF ₃) ₂	170. 0-171. 0
	5-046	C (CH ₃) ₂ CH ₂ SCH ₃	Et	CH ₃	CF (CF ₃) ₂	63. 0-65. 0
	5 - 047	i-Pr	Et	CH3	0 (L-45c)	122. 0-124. 0
	5 - 048	i-Pr	Et	CH ₃	L-45c	138. 0-140. 0
15						The second forces and the second forces and the second final second fi

第12表

$$Et \longrightarrow V^{1}$$

$$C = O$$

$$H \longrightarrow CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$Y^{1}$$

$$G(Y^{3})_{n}$$

$$G(Y^{3})_{n}$$

20	No.	Y 1 .	Υ ²	(Y3) n	m. p. (°C)
•	6-001	H	OCF 2 CHFOCF 2 CF 2 CF 3	3-CH ₃	91. 0-96. 0
	6-002	СНз	Cl	5-0 (L-45d)	150. 0–152 . 0
	6-003	CH ₃	OCF ₂ Br	3-C1	180. 0-182. 0
25	6 - 004	CH3	OCF ₂ Br	5-C1	162. 0-164. 0
	6-005	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	3-C1	85. 0-87. 0
	6-006	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	3-CH ₃	78. 0–80. 0
	6-007	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	5-C1	148. 0-149. 0
	6-008	CH ₃	OCF 2 CHFOCF 2 CF 2 CF 3	3, 5-C1 ₂	91. 0-93. 0
30	6-009	CH ₃	0 (L-45d)	3, 5-C1 ₂	258. 0-260. 0
	6-010	CH3	0 CF $_2$ CHF $_2$ CF $_2$ CF $_3$	6-CH ₃	80. 0-81. 0

PCT/JP02/07833

253

第13表

5	No.	R ^a	R 5	R 6 a	R6 b	Υ¹ .	Y 2	m. p. (℃)
10	7-001 7-002 7-003 7-004 7-005	i-Pr i-Pr i-Pr i-Pr i-Pr	Et Et Et Et	CH ₃ Et n-Pr n-Bu Ph	H H H H	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	CF (CF ₃) ₂	91. 0-93. 0 樹脂状 樹脂状 樹脂状 樹脂状 107. 0-109. 0

第14表

15	No.	R ³	R ⁵	R 6 a	R ^{6 b}	Y1	Ϋ́²	m. p. (°C)
	8-001	i-Pr	Ėt	Н	Н	CH ₃	CF (CF ₃) ₂	138. 0-140. 0

20

PCT/JP02/07833

254

[試験例]

次に、本発明化合物の有害生物防除剤としての有用性について、以下の試験例において具体的に説明するが、本発明はこれらのみに限定されるものではない。

試験例1 ハスモンヨトウに対する殺虫試験

本発明化合物の10%乳剤(化合物によっては25%水和剤を供試)を展着剤の入った水で希釈して、500ppm濃度の薬液を調製した。この薬液中にカンランの薬を約10秒間浸漬し、風乾後シャーレに入れ、この中にハスモンヨトウ(Spodoptera litura)の2齢幼虫をシャーレ当たり10頭放虫し、孔の開いた蓋をして25℃恒温室に収容した。6日後の死虫数を調査し、下記の計算式から死虫率を算出した。尚、試験は2区制で行なった。

死虫率 (%) = (死虫数/放虫数) × 100

その結果、下記の化合物が80%以上の死虫率を示した。

本発明化合物: No. 1-003~007、1-009~014、1-017、1-018、1-020~024、1-026~028、1-031、1-032、1-034
15 ~036、1-039、1-040、1-042~051、1-054~056、1-057、1-064、1-067~069、1-074~078、1-080~083、1-086~091、1-093~095、1-098~108、1-111、1-113~117、1-119~121、1-125、1-126、3-012、3-014~016、3-021、4-002、4-004、4-007、4-009、4-0
20 10~012、4-013、4-016~019、4-021、4-024、4-026、4-027、5-001、5-003、5-008、5-010、5-020~022、5-026~028、5-031~033、5-034、5-035、5-039、5-041、5-044~046、6-005、6-007、6-009、7-001、7-002

25 試験例2 コナガに対する殺虫試験

本発明化合物の10%乳剤(化合物によっては25%水和剤を供試)を展着剤の入った水で希釈して、500ppm濃度の薬液を調製した。この薬液中にカンランの葉を約10秒間浸漬し、風乾後シャーレに入れ、この中にコナガ (Plutella xylostella)の2齢幼虫をシャーレ当たり10頭放虫し、孔の開いた蓋をして25℃恒温室に収容した。6日後の死虫数を調査し、試験例1と同様の計算式から死虫率を算出した。尚、試験は2区制で行なった。

その結果、下記の化合物が80%以上の死虫率を示した。

5

10

PCT/JP02/07833

255

本発明化合物: No. $1-001\sim014$ 、 $1-017\sim070$ 、 $1-074\sim084$ 、 $1-086\sim091$ 、1-094、1-095、 $1-097\sim122$ 、 $1-125\sim129$ 、2-002、2-003、3-003、3-008、 $3-011\sim016$ 、3-0200、 $4-001\sim027$ 、5-001、 $5-003\sim023$ 、 $5-026\sim047$ 、 $6-004\sim009$ 、 $7-001\sim005$ 、8-001

産業上の利用可能性

殺虫剤や殺菌剤の長年にわたる使用により、近年、病害虫が抵抗性を獲得し、従来の殺虫剤や殺菌剤による防除が困難になっている。また、殺虫剤の一部には毒性の高いもの、長く環境中に残留するものが存在し、これらによる生態系の攪乱が問題となっている。一方、本発明化合物は多くの農業害虫、ハダニ類に対して優れた殺虫・殺ダニ活性を有し、既存の殺虫剤に対して抵抗性を獲得した害虫に対しても十分な防除効果を発揮する。さらに、ホ乳類、魚類及び益虫に対してほとんど悪影響を及ぼさず、低残留性で環境に対する負荷も軽い。

15 従って、本発明は有用な新規有害生物防除剤を提供することができる。

PCT/JP02/07833

256

請 求 の 範 囲

1. 一般式(1):

$$(X^{2})_{m} \xrightarrow{R^{1}} (Y^{3})_{n}$$

$$X^{1} \xrightarrow{I} (X^{2})_{m} (1)$$

式中、Aは、炭素原子又は窒素原子を表し、

5 Gは、G-1、G-2 又はG-3 を表し、

$$-\overset{W^{2}}{\overset{N-R^{3}}{\overset{N^{2}}{\overset{N}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N}}{\overset{N^{2}}{\overset{N}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N^{2}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset$$

₩及び №は、各々独立して酸素原子又は硫黄原子を表し、

X¹は、X¹-1 又は X¹-2 を表し、

10

$$-N$$
 $-N^{5}$
 $-N=C$
 R^{5a}
 $X^{1}-1$
 $X^{1}-2$

 X^2 は、水素原子、ハロゲン原子、シアノ、ニトロ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ ハロアルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ ハロアルキルスルホニル又は $C_1 \sim C_6$ アルコキシカルボニルを表し、m が 2 以上の整数を表すとき、各々の X^2 は互いに同一であっても、または相異なっていてもよく、

 Y^1 、 Y^2 及び Y^3 は、各々独立して水素原子、ハロゲン原子、シアノ、ニトロ、アジド、 -SCN、-SF $_5$ 、 $C_1\sim C_6$ アルキル、 R^7 によって任意に置換された $(C_1\sim C_6)$ アルキル、 $C_3\sim C_8$ シクロアルキル、 R^7 によって任意に置換された $(C_3\sim C_8)$ シクロアルキル、 $C_2\sim C_6$ アルケニル、

257

PCT/JP02/07833

 R^7 によって任意に置換された $(C_2 \sim C_6)$ アルケニル、 $C_3 \sim C_8$ シクロアルケニル、 $C_3 \sim C_8$ ハロシクロアルケニル、 $C_2 \sim C_6$ アルキニル、 R^7 によって任意に置換された $(C_2 \sim C_6)$ アルキニル、-OH、 $-OR^8$ 、-SH、 $-S(0)_{r}R^8$ 、 $-S(0)_{2}OR^{10}$ 、 $-S(0)_{2}NHR^{11}$ 、 $-S(0)_{2}N(R^{11})R^{10}$ 、 $-NHR^9$ 、 $-N(R^9)R^8$ 、 $-CHO、-C(0)R^{10}$ 、 $-C(0)OR^{10}$ 、 $-C(0)SR^{10}$ 、 $-C(0)NHR^{11}$ 、 $-C(0)N(R^{11})R^{10}$ 、 $-C(S)OR^{10}$ 、 $-C(S)SR^{10}$ 、 $-C(S)NHR^{11}$ 、 $-C(S)N(R^{11})R^{10}$ 、 $-C(S)N(R^{11})R^{10}$ 、 $-C(S)OR^{10}$ $-C(S)OR^{1$

10 更に Y¹、Y²及び Y³のうち、何れか 2 つの Y が隣接する場合には、隣接する 2 つの Y は -CH₂CH₂CH₂-, -CH₂CH₂O-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -CH₂SCH₂-, -CH₂CH₂N (R¹¹) -, -CH₂N (R¹¹) CH₂-, -CH₂CH₂CH₂CH₂-, -CH₂CH₂CH₂CH₂O-, -CH₂CH₂OCH₂-, -CH₂OCH₂O-, -OCH₂CH₂O-, -OCH₂CH₂S-, -CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-, -CH₂CH₂O-, -OCH₂-CH₂-, -CH₂-CH₂-CH₂-, -OCH₂-CH₂-N-, -SCH=N-, -N (R¹¹) CH=N-, -N (R¹¹) N=CH-, -CH=CHCH=CH-, -OCH₂-CH=CH-, -N=CHCH=CH-又は-N=CHN=CH-15 を形成することにより、それぞれの Y が結合する炭素原子と共に 5 員環又は 6 員環を形成してもよく、このとき、環を形成する各々の炭素原子に結合した水素原子は R¹® によって任意に置換されていてもよく、

Lは、式L-1から式L-58までの何れかで表される芳香族複素環を表し、

258

PCT/JP02/07833

PCT/JP02/07833

M は、式 M-1 から式 M-28 までの何れかで表される脂肪族複素環を表し、

PCT/JP02/07833

260

$$(R^{19})_{q4} \longrightarrow (R^{19})_{q4} \longrightarrow (R^{19})_{q5} \longrightarrow (R^{19})_{q5$$

 R^1 、 R^2 及び R^3 は、各々独立して水素原子、シアノ、 $C_1 \sim C_{12}$ アルキル、 R^{21} によって任意に置換された ($C_1 \sim C_{12}$) アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^{21} によって任意に置換された ($C_3 \sim C_8$) シクロアルキル、 $C_3 \sim C_{12}$ アルケニル、 R^{21} によって任意に置換された ($C_3 \sim C_{12}$) アルケニル、 $C_3 \sim C_8$ シクロアルケニル、 $C_3 \sim C_8$ ハロシクロアルケニル、 $C_3 \sim C_{12}$ アルキニル、 R^{21} によって任意に置換された ($C_3 \sim C_{12}$) アルキニル、 R^{21} によって任意に置換された ($C_3 \sim C_{12}$) アルキニル、 R^{21} によって任意に置換された (R^{20}) アルキニル、 R^{21} によって任意に置換された (R^{20}) アルキニル、 R^{21}

-S (0) $_2$ N (R^{28}) R^{27} 、-N (R^{23}) R^{22} 、-C (0) R^{10} 、-C (0) OR^{10} 、-C (0) SR^{10} 、-C (0) N (R^{28}) R^{27} 、-C (S) OR^{10} 、-C (S) SR^{10} 又は M を表すか、或いは、 R^2 と R^3 とが一緒になって C_2 ~ C_6 アルキレ

25

261

PCT/JP02/07833

ン鎖を形成することにより、結合する窒素原子と共に $3\sim7$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子、硫黄原子及び窒素原子から選ばれる 1 個の原子を含んでもよく、且つハロゲン原子、 $C_1\sim C_6$ アルキル基又は $C_1\sim C_6$ アルコキシ基によって任意に置換されていてもよく、

- R^4 は、水素原子、ハロゲン原子、シアノ、ニトロ、 $C_1 \sim C_{10}$ アルキル、 R^{21} によって任意に置換された $(C_1 \sim C_{10})$ アルキル、 $C_3 \sim C_6$ シクロアルキル、 R^{21} によって任意に置換された $(C_3 \sim C_6)$ シクロアルキル、 $C_2 \sim C_{10}$ アルケニル、 R^{21} によって任意に置換された $(C_2 \sim C_{10})$ アルケニル、 $C_2 \sim C_8$ アルキニル、 R^{21} によって任意に置換された $(C_2 \sim C_{10})$ アルキニル、 R^{21} によって $(C_1 \sim C_{10})$ アルキニル、 $(C_1 \sim C_{10})$ アルキュートロー・ $(C_1 \sim C_{10})$ アルキュートロー・ $(C_1 \sim C_{10})$ アルキュートロー・ $(C_1 \sim C_{10})$ アルキュートロー・ $(C_1 \sim C_{10})$ アルトロー・ $(C_1 \sim C_{10})$ アルトロー・ $(C_1 \sim C_{10})$ アルキュー・ $(C_1 \sim C_{10$
- 10 -C (0) N (R¹¹) R¹⁰、-C (0) C (0) OR¹⁰、 $-CH=NOR^{12}$ 、-C (R¹⁰) $=NOR^{12}$ 、-P (0) (OR¹³) $_2$ 、-P (S) (OR¹³) $_2$ 、-P (D) $_2$ 、-P (D) (D $_2$ $_3$ (Z) $_{p1}$ によって置換されていてもよいフェニル、(Z) $_{p2}$ によって置換されていてもよいナフチル、(Z) $_{p3}$ によって置換されていてもよいビフェニル、L 又は M を表し、p が 2 以上の整数を表すとき、各々の R⁴ は互いに同一であっても、または相異なっていてもよく、
- R^{5} は、 $C_{1}\sim C_{6}$ アルキル、 R^{21} によって任意に置換された $(C_{1}\sim C_{6})$ アルキル、 $C_{2}\sim C_{6}$ シアノアルキル、 $C_{3}\sim C_{6}$ シクロアルキル、 $C_{3}\sim C_{6}$ アルケニル、 $C_{3}\sim C_{6}$ ハロアルケニル、 $C_{3}\sim C_{6}$ アルキニル、 $C_{3}\sim C_{6}$ ハロアルキニル、 $C_{3}\sim C_{6}$ アルキニル、 $C_{3}\sim C_{6}$ ハロアルキニル、 $C_{3}\sim C_{6}$ アルキルカルボニルオキシ、 $C_{3}\sim C_{6}$ パロアルキニル、 $C_{3}\sim C_{6}$ アルキルカルボニルオキシ、 $C_{3}\sim C_{6}$ パロアルキニル、 $C_{3}\sim C_{6}$ の $C_{3}\sim C_{6}\sim C_{6}$

 R^{5a} は、水素原子、 $C_1 \sim C_5$ アルキル、 $C_1 \sim C_5$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル ($C_1 \sim C_3$) アルキル、 $C_1 \sim C_4$ アルコキシ ($C_1 \sim C_3$) アルキル、 $C_1 \sim C_4$ アルキルチオ ($C_1 \sim C_3$) アルキル、($C_1 \sim C_4$ アルキル、 $C_1 \sim C_5$ アルキル、($C_1 \sim C_5$) アルキル、 $C_1 \sim C_5$ アルキル、 $C_2 \sim C_5$ アルキル、 $C_3 \sim C_5$ アルキル、 $C_3 \sim C_5$ アルキール、 $C_3 \sim C_5$ アルキール、 $C_3 \sim C_5$ アルキールスは ($C_1 \sim C_5$ アルケール、 $C_3 \sim C_5$ アルキールスは ($C_1 \sim C_5$ アルケール、 $C_3 \sim C_5$ アルキールスは ($C_1 \sim C_5$ アルキールスは (

 R^{5b} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ アルケニル又は $C_3 \sim C_6$ アルキニルを表し、

 R^6 は、(i) A が炭素原子を表すとき、水素原子、 $C_1 \sim C_6$ アルキル、 R^{21} によって任意に置

PCT/JP02/07833

WO 03/011028

換された $(C_1 \sim C_6)$ アルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ ハロアルキニル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ ハロアルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ ハロアルコキシカルボニル又は $(Z)_{p1}$ によって置換されていてもよいフェニルカルボニルを表すか、或いは、 R^5 と R^6 とが一緒になって $C_2 \sim C_6$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 7$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子、硫黄原子及び窒素原子から選ばれる 1 個の原子を含んでもよく、且つハロゲン原子、酸素原子又はメチル基によって任意に置換されていてもよく、

262

さらに或いは、 R^6 が R^2 と一緒になって-C (R^{6a}) (R^{6b}) -又は<math>-C (0) C (R^{6a}) (R^{6b}) -を形成すること により、G 及び X^1 が結合するベンゼン環と縮合する G 員又は T 員のヘテロ環を形成してもよいことを表し、

- (i i) A が窒素原子を表すとき、 R^6 は R^2 と一緒になって-C (R^{6a}) (R^{6b}) 又は-C (O) C (R^{6a}) (R^{6b}) を形成することにより、G 及び X^1 が結合するベンゼン環と縮合する G 員又はG 日本のヘテロ環を形成することを表し、
- R^{6a} 及び R^{6b} は、各々独立して水素原子、 $C_1 \sim C_6$ アルキル、 R^{21} によって任意に置換された $(C_1 \sim C_6)$ アルキル、 $C_2 \sim C_6$ アルケニル、 $C_2 \sim C_6$ アルナニル、 $C_2 \sim C_6$ アルキニル、 $C_2 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルコキシカルボニル、 $(Z)_{i1}$ によって置換されていてもよいフェニル、L 又は M を表すか、或いは、 R^{6a} と R^{6b} とが一緒になって $C_2 \sim C_6$ アルキレン鎖を形成することにより、結合する炭素原子と共に $3 \sim 6$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫黄原子から選ばれる 1 個の原子を含んでもよく、且つハロゲン原子、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ ハロアルキル基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルキルチオ基又は $C_1 \sim C_6$ ハロアルコキシ基、 $C_1 \sim C_6$ アルキルチオ基によって任意に置換されていてもよく、

 R^7 は、ハロゲン原子、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、-OH、 $-OR^8$ 、 $-ON=C (R^{11}) R^{10}$ 、-SH、 $-S (0) _R^8$ 、 $-NHR^9$ 、 $-N (R^9) R^8$ 、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ ハロアルコキシカルボニル、 $-Si (R^{15}) (R^{16}) R^{14}$ 、 $(Z)_{p1}$ によって置換されていてもよいフェニル、 $(Z)_{p2}$ によって置換されていてもよいナフチル、L 又は M を表し、

 R^8 は、 $C_1 \sim C_6$ アルキル、 R^{30} によって任意に置換された ($C_1 \sim C_6$) アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^{30} によって任意に置換された ($C_3 \sim C_8$) シクロアルキル、 $C_2 \sim C_6$ アルケニル、 R^{30}

5

20

PCT/JP02/07833

263

によって任意に置換された (C₂~C₆) アルケニル、C₃~C₈ シクロアルケニル、C₃~C₈ハロシ クロアルケニル、 $C_3 \sim C_6$ アルキニル、 R^{30} によって任意に置換された $(C_5 \sim C_6)$ アルキニ JV, -CHO, -C (0) R^{10} , -C (0) OR^{10} , -C (0) NHR^{11} , -C (0) $N(R^{11})R^{10}$, -C (S) NHR^{11} , -C (S) $N(R^{11})R^{10}$, -S (0) 2R¹⁰、-S (0) 2NHR¹¹、-S (0) 2N (R¹¹) R¹⁰、-P (0) (OR¹³) 2、-P (S) (OR¹³) 2、(Z) n1 によって置換 されていてもよいフェニル、 $(Z)_{12}$ によって置換されていてもよいナフチル、L 又は M を 表し、

 \mathbb{R}^9 は、水素原子、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキル、 $\mathbb{C}_3 \sim \mathbb{C}_8$ シクロアルキル ($\mathbb{C}_1 \sim \mathbb{C}_6$) アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ ア ルキニル、 $C_3 \sim C_6$ ハロアルキニル、-CHO、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ ハロアルキ ルカルボニル、 $(Z)_{nl}$ によって置換されていてもよいフェニル $(C_l \sim C_n)$ アルキルカルボニル、 10 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ ハロアルコキシカルボニル、 $(Z)_{n1}$ によって置換され ていてもよいフェニル (C₁~C₄) アルコキシカルボニル、(Z)」によって置換されていてもよ いフェノキシカルボニル、(Z) n によって置換されていてもよいフェニルカルボニル、C $\sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ ハロアルキルスルホニル、 $(Z)_{p1}$ によって置換されていて 15 もよいフェニル、(Z) n2 によって置換されていてもよいナフチル、L 又は M を表すか、或 いは、 R^8 と R^9 とが一緒になって $C_2 \sim C_6$ アルキレン鎖を形成することにより、結合する窒 素原子と共に3~7員環を形成してもよいことを表し、このときこのアルキレン鎖は酸 素原子及び硫黄原子から選ばれる1個の原子を含んでもよく、且つハロゲン原子、 $C_1 \sim C_6$ アルキル基又は $C_1 \sim C_6$ ハロアルキル基によって置換されていてもよく、

 R^{10} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル ($C_1 \sim C_4$) アルキル、 キルチオ $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_6$ ハロアルキルチオ $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_6$ アルキルス ルホニル $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_6$ ハロアルキルスルホニル $(C_1 \sim C_4)$ アルキル、 $C_2 \sim C_6$ シア ノアルキル、 $C_1 \sim C_6$ アルコキシカルボニル $(C_1 \sim C_4)$ アルキル、トリメチルシリル $(C_1 \sim C_4)$ ア ルキル、 (Z) n によって置換されていてもよいフェニル (C1~C4) アルキル、L-(C1~C4) アル 25 キル、 $M-(C_1 \sim C_4)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 $C_2 \sim C_6$ ア ルケニル $(C_3 \sim C_8)$ シクロアルキル、 $C_2 \sim C_6$ ハロアルケニル $(C_3 \sim C_8)$ シクロアルキル、 $C_2 \sim C_6$ アルケニル、 $C_2 \sim C_6$ ハロアルケニル、 $C_2 \sim C_6$ アルキニル、 $C_3 \sim C_6$ ハロアルキニル、 $(Z)_{n1}$ に よって置換されていてもよいフェニル、(Z)n2によって置換されていてもよいナフチル、L

PCT/JP02/07833

WO 03/011028

264

.

又は M を表し、

10

15

25

 R^{11} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ ハロアルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルキルチオ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルキルスルホニル($C_1 \sim C_4$) アルキル、 $C_3 \sim C_6$ シクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ アルキニル又は $C_3 \sim C_6$ ハロアルキニルを表すか、或いは、 R^{10} と R^{11} とが一緒になって $C_2 \sim C_5$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 6$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫黄原子から選ばれる 1 個の原子を含んでもよく、且つハロゲン原子、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルコキシ基 又は $(Z)_{p1}$ によって置換されていてもよいフェニル基によって置換されていてもよく、

 R^{12} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキル、($C_1 \sim C_4$) アルキル、 $C_3 \sim C_6$ シクロアルキル、 $C_3 \sim C_6$ ハロシクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルキール、 $C_3 \sim C_6$ アルキールスは ($C_1 \sim C_4$) アルキールでもよいフェニルを表し、

 \mathbb{R}^{14} は、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキル又は \mathbb{C}_{1} によって置換されていてもよい 20 フェニルを表し、

 R^{16} 及び R^{16} は、各々独立して $C_1 \sim C_6$ アルキル又は $C_1 \sim C_6$ ハロアルキルを表し、

R¹³は、C₁~C₆アルキル又はC₁~C₆ハロアルキルを表し、

 R^{17} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシカルボニル $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_6$ ハロアルコキシカルボニル $(C_1 \sim C_4)$ アルキル、 $(Z)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニルスは $(Z)_{p1}$ によって置換されていてもよいフェニルを表し、

 R^{18} は、ハロゲン原子、シアノ、ニトロ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_2 \sim C_6$ アルケニル、 $C_2 \sim C_6$ ハロアルケニル、 $C_2 \sim C_6$ アルキニル、 $C_2 \sim C_6$ ハロアルキニル、 $C_1 \sim C_6$

10

PCT/JP02/07833

265

アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルアミノ、ジ $(C_1 \sim C_6$ アルキル) アミノ、 $(C_1 \sim C_6$ アルコキシカルボニル、 $(C_1 \sim C_6$ アルコキシカルボニル、 $(C_1 \sim C_6$ アルコキシカルボニル、 $(C_1 \sim C_6$ アルコキシカルボニル、 $(C_1 \sim C_6$ アルコキシカルボニル、 $(C_1 \sim C_6$ アルコキシカルボニル、 $(C_1 \sim C_6$ アルコキシカルボニル、 $(C_1 \sim C_6$ アルコキシカルボニル、 $(C_1 \sim C_6$ アルコキシカルボニル、 $(C_1 \sim C_6$ アルコキシカルボニル、 $(C_1 \sim C_6$ アルコキシカルボニル、 $(C_1 \sim C_6$ アルコキシカルボニル、 $(C_1 \sim C_6$ アルコキシカルボニル、 $(C_1 \sim C_6$ アルコキシカルボニル、 $(C_1 \sim C_6$ アルコキシカルボニル、 $(C_1 \sim C_6$ アルコキシカルボニル、 $(C_1 \sim C_6$ アルキルアミノ、ジ $(C_1 \sim C_6$ アルキル) アミノ、ジ $(C_1 \sim C_6$ アルキル) アミノ、 $(C_1 \sim C_6$ アルキル $(C_1 \sim C_6)$ アルギル $(C_1 \sim C_6)$ ア

 R^{19} は、ハロゲン原子、シアノ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、ヒドロキシ($C_1 \sim C_6$) アルキル、 $C_1 \sim C_4$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルコキシカルボニル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルコキシカルボニル又は(Z) $_{p1}$ によって置換されていてもよいフェニルを表し、 $_{q1}$, $_{q2}$, $_{q3}$ 又は $_{q4}$ が $_{2}$ 以上の整数を表すとき、各々の $_{q3}$ は互いに同一であっても、または相異なっていてもよく、

 R^{21} は、ハロゲン原子、シアノ、ニトロ、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 $-C_8$ ハロシクロアルキル、 $-C_8$ の $-C_8$

25 -P (0) (OR^{13}) $_2$ 、-P (S) (OR^{13}) $_2$ 、-P (D_1 (D_2 (D_2) $_2$ (D_3) (D_3) (D_4) (D_4) (D_5) (D_5

20

25

266

PCT/JP02/07833

 \mathbb{R}^{23} は、水素原子、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $-\mathbb{C}_1 \sim \mathbb{C}_6$ アルキルカルボニル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキルカルボニル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルコキシカルボニル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルコキシカルボニル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルコキシカルボニル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルコキシカルボニル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルコース $\mathbb{C}_1 \sim \mathbb{C}$

 \mathbb{R}^{2d} は、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキル、 $\mathbb{C}_3 \sim \mathbb{C}_6$ アルケニル、 $\mathbb{C}_3 \sim \mathbb{C}_6$ アルキニル、 $\mathbb{C}_3 \sim \mathbb{C}_6$ アルキュール、 $\mathbb{C}_3 \sim \mathbb{C}_6$ アルキュール $\mathbb{C}_3 \sim \mathbb{C}_6$ アルトル・ $\mathbb{C}_3 \sim \mathbb{C}_6$ アルトル $\mathbb{C}_6 \sim \mathbb{C}_6$ アルトル $\mathbb{C}_6 \sim \mathbb{C}_6$ アルトル $\mathbb{C}_6 \sim \mathbb{C}_6$ アル

 R^{25} は、 $C_1 \sim C_{12}$ アルキル、 $C_1 \sim C_{12}$ ハロアルキル、 $C_1 \sim C_{12}$ アルコキシ($C_1 \sim C_{12}$) アルキル、 $C_2 \sim C_{12}$ シアノアルキル、 $C_1 \sim C_{12}$ アルコキシカルボニル($C_1 \sim C_{12}$) アルキル、($C_2 \sim C_{12}$) アルキル、 $C_3 \sim C_{12}$ アルカルボニル、 $C_3 \sim C_{12}$ アルキニル、 $C_3 \sim C_{12}$ アルキニル、 $C_1 \sim C_{12}$ アルコキシカルボニル又は($C_1 \sim C_1 \sim$

 R^{26} は、 $C_1 \sim C_{12}$ アルキル、 $C_1 \sim C_{12}$ ハロアルキル、 $C_1 \sim C_{12}$ アルコキシ ($C_1 \sim C_{12}$) アルキル、 $C_2 \sim C_{12}$ シアノアルキル、 $C_1 \sim C_{12}$ アルコキシカルボニル ($C_1 \sim C_{12}$) アルキル、 ($C_2 \sim C_{12}$ アルキール、 $C_3 \sim C_{12}$ ハロアルケニル、 $C_3 \sim C_{12}$ アルキニル、 $C_3 \sim C_{12}$ ハロアルキニル又は ($C_1 \sim C_2 \sim C_{12}$ アルキニルスは ($C_2 \sim C_2 \sim C$

 R^{27} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_2 \sim C_6$ シアノアルキル、(Z) $_{p1}$ によって置換されていてもよいベンジル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルキニル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、(Z) $_{p1}$ によって置換されていてもよいフェニルを表し、

且つ $C_1 \sim C_4$ アルキル基又は $C_1 \sim C_4$ アルコキシ基によって任意に置換されていてもよく、

 R^{28} は、水素原子、 $C_1 \sim C_6$ アルキル又は $C_1 \sim C_6$ ハロアルキルを表すか、或いは、 R^{27} と R^{28} とが一緒になって $C_4 \sim C_7$ アルキレン鎖を形成することにより、結合する窒素原子と共に $5 \sim 8$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫

WO.03/011028

10

PCT/JP02/07833

267

黄原子から選ばれる1個の原子を含んでもよく、且つ $C_1 \sim C_4$ アルキル基又は $C_1 \sim C_4$ アルコキシ基によって任意に置換されていてもよく、

 R^{29} は、 $C_1 \sim C_8$ アルキル、 R^{31} によって任意に置換された $(C_1 \sim C_8)$ アルキル、 $C_3 \sim C_6$ シクロアルキル、 R^{31} によって任意に置換された $(C_3 \sim C_6)$ シクロアルキル、 $C_3 \sim C_6$ アルケニル、 R^{31} によって任意に置換された $(C_3 \sim C_6)$ アルケニル、 $C_3 \sim C_6$ アルキニル、 R^{31} によって任意に置換された $(C_3 \sim C_6)$ アルキニル、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルチオ、 $(Z)_{p1}$ によって置換されていてもよいフェニルチオ、-CHO、-C(0) R^{10} 、-C(0) $0R^{10}$ 、-C(0) $0R^{10}$ 、-C(0) $0R^{10}$ 、-C(0) $0R^{10}$ 、-C(0) $0R^{10}$ $0R^{10}$

 R^{30} は、ハロゲン原子、シアノ、 $C_3\sim C_8$ シクロアルキル、 $C_3\sim C_8$ ハロシクロアルキル、-OH、 $-OR^{32}$ 、-SH、-S (0) $_1R^{32}$ 、 $-NHR^{33}$ 、-N (R^{33}) R^{32} 、-CHO、-C (0) R^{34} 、-C (0) OH、-C (0) OR^{34} 、-C (0) OR^{34} (2) $_{p1}$ によって置換されていてもよいフェニル、(2) $_{p2}$ によって置換されていてもよいナフチル、(2) $_{p2}$ によって置換されていてもよいナフチル、(2) $_{p3}$ によって置換されていてもよいナフチル、(3) $_{p3}$ によって置換されていてもよいナフチル、(4) (2) (2) (3) (3) (3) (3) (4) (3) (4) (4) (5) (5) (6) (7) (7) (7) (7) (7) (8) (7) (8) (8) (8) (9) (1) (1) (1) (2) (2) (3) (4)

 R^{32} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ($C_1 \sim C_6$) アルキル、 $C_1 \sim C_6$ アルキルチオ($C_1 \sim C_6$) アルキル、($C_1 \sim C_6$) アルキル、($C_1 \sim C_6$) アルキル、($C_1 \sim C_6$) アルキル、 $C_3 \sim C_6$ アルキル、 $C_3 \sim C_6$ アルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルナニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アル

ルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ ハロアルコキシカルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、 $\mathcal{C}(C_1 \sim C_6)$ アルキルアミノカルボニル、 $\mathcal{C}(C_1 \sim C_6)$ アルキルアミノチオカルボニル、 $\mathcal{C}(C_1 \sim C_6)$ アルキルアミノチオカルボニル、 $\mathcal{C}(C_1 \sim C_6)$ アルキル アミノチオカルボニル、 $\mathcal{C}(C_1 \sim C_6)$ アルキル アミノチオカルボニル、 $\mathcal{C}(C_1 \sim C_6)$ によって置換されていてもよいフェニル、 $\mathcal{C}(C_1 \sim C_6)$ によって置換されていてもよいナフチル、 $\mathcal{C}(C_1 \sim C_6)$ とって置換されていてもよいナフチル、 $\mathcal{C}(C_1 \sim C_6)$ と

PCT/JP02/07833

268

 R^{33} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルキニル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ ハロアルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ ハロアルコキシカルボニル、 $(Z)_{p1}$ によって置換されていてもよいフェノキシカルボニル、 $(Z)_{p1}$ によって置換されていてもよいフェニル、 $(Z)_{p2}$ によって置換されていてもよいフェニル、 $(Z)_{p2}$ によって置換されていてもよいフェール、 $(Z)_{p2}$ によって置換されていてもよいナフチル、 $(Z)_{p3}$ によって置換されていてもよいナフチル、 $(Z)_{p3}$ によって置換されていてもよいナフチル、 $(Z)_{p3}$ により、結合する窒素原子と共に $3 \sim 6$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫黄原子から選ばれる 1 個の原子を含んでもよく、且つハロゲン原子又はメチル基によって置換されていてもよく、

 R^{34} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ($C_1 \sim C_6$) アルキル、 $C_1 \sim C_6$ アルキルチオ($C_1 \sim C_6$) アルキル、($C_2 \sim C_6$) アルキル、($C_3 \sim C_8$) シクロアルキル、($C_3 \sim C_8$) シクロアルキル、($C_2 \sim C_6$ アルケニル($C_3 \sim C_8$) シクロアルキル、($C_2 \sim C_6$ アルケニル、($C_2 \sim C_6$ アルキニル、($C_3 \sim C_8$) シクロアルキール、($C_2 \sim C_6$ アルキニル、($C_2 \sim C_6$ アルキニル、($C_2 \sim C_6$ アルキニル、($C_3 \sim C_8$) シクロアルキニル、($C_3 \sim C_8$) シクロアルケニル、($C_3 \sim C_8$) シクロアルキール、($C_3 \sim C_8$ アルキニル、($C_3 \sim C_8$) シクロアルキール、($C_3 \sim C_8$ アルキニル、($C_3 \sim C_8$) シクロアルキール、($C_3 \sim C_8$ アルキニル、($C_3 \sim C_8$) シクロアルキール、($C_3 \sim C_8$ アルキニル、($C_3 \sim C_8$

mは、1~3の整数を表し、

nは、 $1 \sim 3$ の整数を表し、

pは、1~6の整数を表し、

20 p1は、1~5の整数を表し、

15

p2 は、1~7の整数を表し、

p3 は、1~4の整数を表し、

p4 は、1~3の整数を表し、

p5 は、 $1 \sim 2$ の整数を表し、

25 p6は、1~9の整数を表し、

q1 は、 $0 \sim 3$ の整数を表し、

q2 は、 $0 \sim 5$ の整数を表し、

q3 は、 $0 \sim 7$ の整数を表し、

q4 は、 $0 \sim 9$ の整数を表し、

PCT/JP02/07833

269

rは、0~2の整数を表す、

で表される置換アミド化合物及びその塩から選ばれる1種又は2種以上を有効成分として含有することを特徴とする有害生物防除剤。

- 2. 請求の範囲第1項記載の置換アミド化合物及びその塩から選ばれる1種又は2種 以上を有効成分として含有することを特徴とする農薬。
 - 3. 請求の範囲第1項記載の置換アミド化合物及びその塩から選ばれる1種又は2種 以上を有効成分として含有することを特徴とする殺虫剤又は殺ダニ剤。
 - 4. 請求の範囲第1項記載の一般式(1)で表される化合物において、 Aは、炭素原子を表し、
- Y^1 、 Y^2 及び Y^3 は、各々独立して水素原子、ハロゲン原子、シアノ、ニトロ、アジド、-SCN、 $-SF_5$ 、 $C_1 \sim C_6$ アルキル、 R^7 によって任意に置換された $(C_1 \sim C_6)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^7 によって任意に置換された $(C_3 \sim C_8)$ シクロアルキル、 $C_2 \sim C_6$ アルケニル、 R^7 によって任意に置換された $(C_2 \sim C_6)$ アルケニル、 $C_3 \sim C_8$ シクロアルケニル、 $C_3 \sim C_8$ ハロンクロアルケニル、 $C_2 \sim C_6$ アルキニル、 R^7 によって任意に置換された $(C_2 \sim C_6)$ アルキニル、 $(C_2 \sim C_6)$ アルキュル、 $(C_2 \sim C_6)$ アルキュル・ $(C_2 \sim C_6)$ アルキュー $(C_2 \sim C_6)$
- -OH、 $-OR^8$ 、-SH、-S (O) $_{2}OR^{10}$ 、-S (O) $_{2}OHR^{11}$ 、-S (O) $_{2}N$ (R^{11}) R^{10} 、 $-NHR^9$ 、-N (R^9) R^8 、-CHO、-C (O) R^{10} 、-C (O) OR^{10} 、-C (O) OR^{10} 、-C (O) OR^{10} 、-C (O) OR^{10} 、-C (O) OR^{10} 、-C (O) OR^{10} 、-C (O) OR^{10} 、-C (O) OR^{10} 、-C (O) OR^{10} 、-C (O) OR^{10} 、-C (O) OR^{10} 、-C (O) OR^{10} 、-C (O) OR^{10} 、-C (O) OR^{10} 、-C (O) OR^{10} 、-C (O) OR^{10} 、-C (O) OR^{10} 、-C (OR^{12}) OR^{10} OR^{10} 、-C (OR^{12}) OR^{10} OR^{10} OR
- 20 ていてもよいナフチル、L-1~L-13、L-15~L-35、L-37~L-58 又は M を表し、n が 2 以上 の整数を表すとき、各々の Y は互いに同一であっても、または相異なっていてもよく、 更に、n が 2 以上の整数であり、且つ 2 つの Y が隣接する場合には、隣接する 2 つの Y は-CH₂CH₂CH₂-, -CH₂CH₂O-, -CH₂CH₂
- 25 -CH₂CH=CH-, -OCH=CH-, -SCH=CH-, -N (R¹⁷) CH=CH-, -OCH=N-, -SCH=N-, -N (R¹⁷) CH=N-, -N (R¹⁷) N=CH-, -CH=CHCH=CH-, -OCH₂CH=CH-, -N=CHCH=CH-又は-N=CHN=CH-を形成することにより、それぞれの Y が結合する炭素原子と共に 5 員環又は 6 員環を形成してもよく、このとき、環を形成する各々の炭素原子に結合した水素原子は R¹⁸によって任意に置換されていてもよく、

PCT/JP02/07833

270

 R^6 は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルキニル、 $C_1 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキニル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ ハロアルコキシカルボニル又は $(Z)_{n1}$ によって置換されていてもよいフェニルカルボニルを表すか、或いは、 R^6 と R^6 とが一緒になって $C_2 \sim C_6$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 7$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子、硫黄原子及び窒素原子から選ばれる 1 個の原子を含んでもよく、且つハロゲン原子、酸素原子又はメチル基によって任意に置換されていてもよい置換アミド化合物又はその塩。

10 5. 請求の範囲第1項記載の一般式(1)で表される化合物において、

Aは、炭素原子又は窒素原子を表し、

Gは、G-1を表し、

X'は、X'-1 を表し、

R² は R⁶ と一緒になって-C (R^{6a}) (R^{6b}) -又は-C (0) C (R^{6a}) (R^{6b}) -を形成することにより、G 及 び X¹ が結合するペンゼン環と縮合する 6 員又は7 員のヘテロ環を形成することを表す置 換アミド化合物又はその塩。

6. 一般式(2):

20

$$(X^{2}) \xrightarrow{\text{II}} G$$

$$(X^{2}) \xrightarrow{\text{II}} G$$

$$(Y^{3})_{n}$$

$$(Y^{3})_{n}$$

$$(Y^{3})_{n}$$

$$(Y^{3})_{n}$$

$$(Y^{3})_{n}$$

式中、Gは、G-1又はG-2を表し、

$$-C$$
 $N^{-R^{3}}$
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}

VI及び VIは、各々独立して酸素原子又は硫黄原子を表し、

PCT/JP02/07833

271

X¹は、X¹-1 又は X¹-2 を表し、

$$-N$$
 R^{5}
 $-N=C$
 R^{5a}
 $X^{1}-1$
 $X^{1}-2$

 X^2 は、水素原子、ハロゲン原子、シアノ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルスルホニル又は $C_1 \sim C_6$ ハロアルキルスルホニルを表し、m が 2 以上の整数を表すとき、各々の X^2 は互いに同一であっても、または相異なっていてもよく、

 Y^1 は、水素原子、ハロゲン原子、シアノ、ニトロ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_4$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ ハロアルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルチオ ($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル・($C_1 \sim C_4$) アルキー($C_1 \sim C_4$) アルキル・($C_1 \sim C$

 C_8 シクロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_2 \sim C_6$ アルケニルオキシ、 $C_1 \sim C_6$ アルキニルオキシ、 $C_1 \sim C_6$ アルキ ルチオ、 $C_1 \sim C_6$ アルキルチオ、 $C_2 \sim C_6$ アルキニルチオ、 $C_1 \sim C_6$ アルキルチオ、 $C_2 \sim C_6$ アルキニルチオ、 $C_2 \sim C_6$ アルキニルチオ、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルカニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルアミノ、ジ $(C_1 \sim C_6$ アルキル) アミノ、 $C_1 \sim C_6$ アルキルの $C_1 \sim C_6$ アルキルアミノ、ジ $(C_1 \sim C_6$ アルキル) アミノ、 $C_1 \sim C_6$ アルキルアミノ、ジ $(C_1 \sim C_6$ アルキル) アミノ、 $C_1 \sim C_6$ アルキルの $C_1 \sim C_6$ アルキルアミノ、ジ $(C_1 \sim C_6$ アルキル) アミノ、 $C_1 \sim C_6$ アルキルアミノ、ジ $(C_1 \sim C_6)$ アルキル)アミノ、 $C_1 \sim C_6$ アルキルアミノ、 $C_1 \sim C_6$ アルキルアミノ、ジ $(C_1 \sim C_6)$ アルキルアミノ、 $(C_1 \sim C_6)$ アルキルアミノ $(C_1 \sim C_6)$ アルキルアシー $(C_1 \sim C_6)$ アルキルアシー (

-Si (R^{15}) (R^{16}) R^{14} 、(Z) $_{p1}$ によって置換されていてもよいフェニル、 $L-1\sim L-13$ 、 $L-15\sim L-35$ 、 $L-37\sim L-51$ 、M-1、M-6、M-10、M-23 又は M-26 を表し、

 Y^2 は、水素原子、ハロゲン原子、シアノ、ニトロ、 $-SF_5$ 、 $C_1 \sim C_6$ アルキル、 R^7 によって任意に置換された ($C_1 \sim C_6$) アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^7 によって任意に置換された ($C_2 \sim C_6$) シクロアルキル、 $C_2 \sim C_6$ アルケニル、 R^7 によって任意に置換された ($C_2 \sim C_6$) アルケニル、 $C_3 \sim C_8$ ハロシクロアルケニル、 $C_2 \sim C_6$ アルキニル、 $C_3 \sim C_8$ ハロシクロアルケニル、 $C_2 \sim C_6$ アルキニル、 $C_3 \sim C_8$ ハロシクロアルケニル、 $C_2 \sim C_6$ アルキニル、 $C_3 \sim C_8$ ハロシクロアルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_8$ アは $C_4 \sim C_8$ アは $C_5 \sim C_8$ アルキニル、 $C_5 \sim C_8$ アルキニル、 $C_5 \sim C_8$ アは $C_5 \sim C_8$ アルキニル、 $C_5 \sim C_8$ アルキニル、 $C_5 \sim C_8$ アは $C_5 \sim C_8$ アルキニル、 $C_5 \sim C_8$ アルキニル・ $C_5 \sim C_8$ アルキュー $C_5 \sim C_8$ アルキュー $C_5 \sim C_6$

 Y^3 は、水素原子、ハロゲン原子、シアノ、ニトロ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキ

PCT/JP02/07833

WO 03/011028

15

20

272

ル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、-0- (L-17)、-0- (L-45)、

-0-(L-48)、 $C_1\sim C_6$ アルキルチオ、 $C_1\sim C_6$ ハロアルキルチオ、 $C_1\sim C_6$ アルキルスルフィニル、 $C_1\sim C_6$ ハロアルキルスルフィニル、 $C_1\sim C_6$ ハロアルキルスルカニル、 $C_1\sim C_6$ ハロアルキルスルホニル、 $C_1\sim C_6$ ハロアルキルスルホニル、 $C_1\sim C_6$ ハロアルキルスルホニル、 $-CH=NOR^{12}$ 、 $-C(R^{10})=NOR^{12}$ 、 $L-1\sim L-13$ 、 $L-15\sim L-35$ 、 $L-37\sim L-51$ 、M-1、M-6、M-10、M-23 又は M-26 を表し、n が 2 又は 3 を表すとき、各々の Y^8 は互いに同一であっても、

10、M-23 又は M-26 を表し、n が 2 又は 3 を表すとき、各々の Y は互いに同一であっても、 又は相異なっていてもよく、

さらに、Y³ が Y¹ 又は Y² と隣接する場合には、隣接する 2 つの Y¹ と Y³ 又は Y² と Y³ は $-\text{CH}_2\text{CH}_2\text{CH}_2$ -, $-\text{CH}_2\text{CH}_2\text{O}$ -, $-\text{CH}_2\text{CH}_2\text{O}$ -, $-\text{CH}_2\text{CH}_2\text{O}$ -, $-\text{CH}_2\text{CH}_2\text{C}$ -, $-\text{CH}_2\text{C}$

0 -0CH₂CH₂S-, -0CH=N-, -SCH=N-又は-N (R¹⁷) CH=N-を形成することにより、それぞれの Y¹ 及び Y³ 又は Y² 及び Y³ が結合する炭素原子と共に 5 員環又は 6 員環を形成してもよいことを表し、このとき、環を形成する各々の炭素原子に結合した水素原子は R¹⁸ によって任意に置換されていてもよく、

 R^1 及び R^2 は、各々独立して水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_6$ アルコキシカルボニル $C_1 \sim C_4$ アルキル、 $C_2 \sim C_6$ シアノアルキル、 $C_1 \sim C_6$ アルコキシカルボニル $C_1 \sim C_4$ アルキル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルコキシカルボニルスは $C_1 \sim C_6$ アルコキシカルボニルを表し、

 R^3 は、 $C_1 \sim C_8$ アルキル、 R^{21} によって任意に置換された $(C_1 \sim C_8)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_1 \sim C_4$ アルコキシ $(C_3 \sim C_8)$ シクロアルキル、 $C_1 \sim C_4$ アルコキシ $(C_3 \sim C_8)$ シクロアルキル、 $C_1 \sim C_4$ アルキルチオ $(C_3 \sim C_8)$ シクロアルキル、 $C_1 \sim C_4$ アルキルスルフィニル $(C_3 \sim C_8)$ シクロアルキル、 $C_1 \sim C_4$ アルキルスルホニル $(C_3 \sim C_8)$ シクロアルキル、 $C_3 \sim C_6$ アルナニル、 $(C_1 \sim C_4)$ アルケニル、 $(C_3 \sim C_8)$ アルキニル、 $(C_3 \sim C_8)$ アルキン 鎖を形成することにより、結合する窒素原子と共に3~7 員環を形成してもよいことを表し、このときこ

PCT/JP02/07833

273

のアルキレン鎖は酸素原子、硫黄原子及び窒素原子から選ばれる1個の原子を含んでも よく、且つハロゲン原子、C₁~C₆アルキル基又はC₁~C₆アルコキシ基によって置換されて いてもよく、

 R^4 は、水素原子、 $C_1 \sim C_6$ アルキル、 R^{21} によって任意に置換された $(C_1 \sim C_6)$ アルキル、 C_3 \sim C $_6$ シクロアルキル、 R^{21} によって任意に置換された $(C_3 \sim C_6)$ シクロアルキル、 $C_2 \sim C_{10}$ アル ケニル、 \mathbb{R}^{21} によって任意に置換された $(\mathbb{C}_2 \sim \mathbb{C}_1)$ アルケニル、 $\mathbb{C}_2 \sim \mathbb{C}_8$ アルキニル、 \mathbb{R}^{21} に よって任意に置換された $(C_2 \sim C_{10})$ アルキニル、 $(Z)_{n1}$ によって置換されていてもよいフェ 二ル、(Z) ng によって置換されていてもよいビフェニル、L 又は M を表し、p が 2 以上の整 数を表すとき、各々の P'は互いに同一であっても、または相異なっていてもよく、

- R^5 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル ($C_1 \sim C_4$) アルキル、 10 $C_1 \sim C_4$ アルコキシ $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_4$ アルキルチオ $(C_1 \sim C_4)$ アルキル、 $(Z)_{n1}$ によって 置換されていてもよいフェニルチオ $(C_1 \sim C_4)$ アルキル、 $C_2 \sim C_6$ シアノアルキル、 $C_1 \sim C_6$ ア ルコキシカルボニル ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルコキシカルボニル ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルアミノカルボニル ($C_1 \sim C_4$) アルキル、ジ ($C_1 \sim C_6$ アルキル) アミノカルボニ
- $\mathcal{V}(C_1 \sim C_4)$ アルキル、 $(Z)_{\mathfrak{p}_1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル、L-15 $(C_1 \sim C_a)$ \mathcal{P} $\mathcal{$ C_6 ハロアルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ ハロアルキニル、-OH、 $C_1 \sim C_6$ アルキルカル ボニルオキシ、-SR²⁴、-S (0) ₂R²⁴、-SN (R²⁵) R²⁵、-S (0) ₂N (R²⁸) R²⁷、-CHO、-C (0) R¹⁰、-C (0) OR¹⁰、 -C (0) SR^{10} 、-C (0) N (R^{11}) R^{10} 、-C (0) C (0) OR^{10} 、-C (S) OR^{10} 、-C (S) SR^{10} 、-C (S) N (R^{11}) R^{10} 又は
- 20 \mathbb{R}^{5a} は、水素原子、 $\mathbb{C}_1 \sim \mathbb{C}_5$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_5$ ハロアルキル、 $\mathbb{C}_3 \sim \mathbb{C}_5$ アルケニル又は $\mathbb{C}_{0,1}$ に

R^{5b}は、C₁~C₆アルキルを表し、

よって置換されていてもよいフェニルを表し、

(Z)」によって置換されていてもよいフェニルを表し、

 R^6 は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アル キニル、-CHO、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ ハロアルキルカルボニル又は $C_1 \sim C_6$ ア 25 ルコキシカルボニルを表すか、或いは、R⁵とR⁵とが一緒になって C₂~C₄アルキレン鎖を 形成することにより、結合する窒素原子と共に3~7員環を形成してもよいことを表し、 このときこのアルキレン鎖は酸素原子、硫黄原子及び窒素原子から選ばれる1個の原子 を含んでもよく、且つハロゲン原子、酸素原子又はメチル基によって任意に置換されて

PCT/JP02/07833

274

いてもよく、

 R^{8a} は、 $C_1 \sim C_6$ アルキル、 R^{30} によって任意に置換された $(C_1 \sim C_6)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^{30} によって任意に置換された $(C_3 \sim C_8)$ シクロアルキル、 $C_2 \sim C_6$ アルケニル、 R^{30} によって任意に置換された $(C_2 \sim C_6)$ アルケニル、 $C_2 \sim C_6$ アルキニル、 R^{30} によって任意に置換された $(C_2 \sim C_6)$ アルキニル、 $C_3 \sim C_8$ ハロシクロアルケニル、-S (0) $_2$ R^{10} 、-P (0) $(0R^{13})$ $_2$ 、-P (S) $(0R^{13})$ $_2$ 、(Z) $_{Pl}$ によって置換されていてもよいフェニル、L-17、L-18、L-21、L-25 、

15 L-45、L-48 又は L-49 を表し、

R^{8b}は、-C(0)R¹⁰又は-C(0)OR¹⁰を表し、

 R^0 は、水素原子、 $C_1 \sim C_6$ アルキル又は $C_1 \sim C_6$ ハロアルキル表し、

 R^{10} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルチオ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルコキシカルボニル ($C_1 \sim C_4$) アルキル、 ($C_1 \sim C_6$ アルコキシカルボニル ($C_1 \sim C_4$) アルキル、 ($C_1 \sim C_6$ アルカール、 $C_2 \sim C_6$ アルナール、 $C_3 \sim C_8$ シクロアルキル、 $C_2 \sim C_6$ アルケニル ($C_3 \sim C_8$) シクロアルキル、 $C_2 \sim C_6$ アルケニル、 $C_2 \sim C_6$ アルキニル、 ($C_1 \sim C_6$ アルキニル、($C_2 \sim C_6$ アルナニル、 $C_2 \sim C_6$ アルキニル、($C_3 \sim C_8$) シクロアルキル、 $C_4 \sim C_6$ アルキニル、($C_4 \sim C_8 \sim C_9 \sim C_$

 R^{11} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル又は $C_3 \sim C_8$ シクロアルキルを表すか、或いは、 R^{10} と R^{11} とが一緒になって $C_2 \sim C_6$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 6$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫黄原子から選ばれる 1 個の原子を含んでもよく、且つ $C_1 \sim C_6$ アルキル基又は $C_1 \sim C_6$ アルコキシ基によって置換されていてもよく、

10

15

し、

PCT/JP02/07833

275

 \mathbb{R}^{12} は、水素原子、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキル、 $\mathbb{C}_3 \sim \mathbb{C}_8$ シクロアルキル ($\mathbb{C}_1 \sim$ C_4) $P \mathcal{V} + \mathcal{V}$, $C_1 \sim C_4$ $P \mathcal{V} = 1 + \mathcal{V}$ $C_1 \sim C_4$ アルコキシカルボニル $(C_1 \sim C_4)$ アルキル、ジ $(C_1 \sim C_4$ アルキル) アミノカルボニル $(C_1 \sim C_4)$ アルキル、ジ $(C_1 \sim C_4)$ アルキル) ~ C_4)アルキル、 $(Z)_{n_1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル、 $C_3 \sim C_8$ シ クロアルキル、C₃~C₆アルケニル、C₃~C₆ハロアルケニル又はC₃~C₆アルキニルを表し、 R¹³は、C₁~C₆アルキルを表し、

 \mathbb{R}^{17} は、水素原子、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキル、 \mathbb{C}_1 によって置換されてい てもよいフェニル $(C_1 \sim C_4)$ アルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ ア ルキニル、 $C_3 \sim C_6$ ハロアルキニル又は $(Z)_{pl}$ によって置換されていてもよいフェニルを表

 R^{18} は、ハロゲン原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim$ C_6 ハロアルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $C_1 \sim C_6$ アルキルスル プーフィニル、C₁~C₆ハロアルキルスルフィニル、C₁~C₆アルキルスルホニル、C₁~C₆ハロア 〜〜〜ルキルスルホニル又は (Z) p によって置換されていてもよいフェニルを表し、同時に2個 以上の R¹⁸で置換されている場合、各々の R¹⁸ は互いに同一であっても、または相異なっ ていてもよく、

R²¹は、ハロゲン原子、シアノ、C₃~C₆シクロアルキル、-OH、-OR^{8c}、-SH、-S (0) ₁R²⁹、 $-N\;(R^9)\;R^{80},\;\;-CHO,\;\;-C\;(0)\;R^{10},\;\;-C\;(0)\;OR^{10},\;\;-C\;(0)\;N\;(R^{11})\;R^{10},\;\;-CH=NOR^{12},\;\;-C\;(R^{10})=NOR^{12},\;\;(Z)_{_{D1}}\;k=0$ よって置換されていてもよいフェニル、L又はMを表し、

 \mathbb{R}^{8c} は、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ クロアルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルコキシ ($\mathbb{C}_1 \sim \mathbb{C}_4$) アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ 20 C_6 ハロアルコキシ $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_6$ アルコキシ $(C_1 \sim C_4)$ アルコキシ $(C_1 \sim C_4)$ アルキ ル、 $C_1 \sim C_6$ アルキルチオ $(C_1 \sim C_4)$ アルキル、 $(Z)_{p_1}$ によって置換されていてもよいフェニル $(C_{1} \sim C_{4}) \; \mathcal{F} \mathcal{N} + \mathcal{N} , \; C_{3} \sim C_{8} \; \mathcal{D} \; \mathcal{D} \; \mathcal{P} \mathcal{N} + \mathcal{N} , \; -C \; (0) \; R^{10}, \; -C \; (0) \; 0 R^{10}, \; -C \; (0) \; N \; (R^{11}) \; R^{10},$ -C (S) N (R¹¹) R¹⁰、-S (0) ${}_{2}$ R¹⁰、-S (0) ${}_{2}$ N (R¹¹) R¹⁰、-P (0) (0R¹³) ${}_{2}$ 、-P (S) (0R¹³) ${}_{2}$ 又は(Z) ${}_{p1}$ によって 置換されていてもよいフェニルを表し、 25

R²²は、水素原子、C₁~C₅アルキル又は(Z) n によって置換されていてもよいフェニル(C₁ ~C₄)アルキルを表し、

 R^{23} は、水素原子、 $C_1 \sim C_6$ アルキル、-CHO、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキ シカルボニル、(Z) n によって置換されていてもよいフェニル(C₁~C₄)アルコキシカルボニ

PCT/JP02/07833

276

ル、(Z) pl によって置換されていてもよいフェノキシカルボニル又は(Z) pl によって置換されていてもよいフェニルカルボニルを表し、

 \mathbb{R}^{24} は、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキル又は \mathbb{C}_1 によって置換されていてもよいフェニルを表し、

 R^{25} は、 $C_1 \sim C_{12}$ アルキル、 $C_1 \sim C_6$ アルコキシカルボニル ($C_1 \sim C_4$) アルキル又は $C_1 \sim C_{12}$ アルコキシカルボニルを表し、

 R^{26} は、 $C_1 \sim C_{12}$ アルキル又は $(Z)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキルを表すか、或いは、 R^{25} と R^{26} とが一緒になって $C_4 \sim C_7$ アルキレン鎖を形成することにより、結合する窒素原子と共に $5 \sim 8$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫黄原子から選ばれる 1 個の原子を含んでもよく、且つ $C_1 \sim C_4$ アルキル基によって任意に置換されていてもよく、

 \mathbb{R}^{27} は、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルコキシ ($\mathbb{C}_1 \sim \mathbb{C}_4$) アルキル、 $\mathbb{C}_2 \sim \mathbb{C}_6$ シアノアルキル、 (\mathbb{Z}) $_{p_1}$ によって置換されていてもよいベンジル、 $\mathbb{C}_3 \sim \mathbb{C}_6$ シクロアルキル、 $\mathbb{C}_3 \sim \mathbb{C}_6$ アルキニル又は (\mathbb{Z}) $_{p_1}$ によって置換されていてもよいフェニルを

15 表し、

10

 R^{28} は、水素原子又は $C_1 \sim C_6$ アルキルを表すか、或いは、 R^{27} と R^{28} とが一緒になって C_4 $\sim C_7$ アルキレン鎖を形成することにより、結合する窒素原子と共に $5 \sim 8$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫黄原子から選ばれる1個の原子を含んでもよく、且つ $C_1 \sim C_4$ アルキル基によって任意に置換されていてもよ

20 < \

 R^{29} は、 $C_1 \sim C_8$ アルキル、 R^{31} によって任意に置換された ($C_1 \sim C_8$) アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^{31} によって任意に置換された ($C_3 \sim C_8$) シクロアルキル、 R^{31} によって任意に置換された (R^{31}) シクロアルキル、 R^{31} によって任意に置換された (R^{31}) によって置換されていてもよいフェニルチオ、 R^{31} によって

25 -C(S)N(R¹¹)R¹⁰、-P(0)(0R¹³)₂、-P(S)(0R¹³)₂、(Z)_{p1}によって置換されていてもよいフェニル、L-18、L-21、L-25、L-30、L-31、L-32、L-33、L-34、L-35、L-37、L-38、L-40、L-45、L-48 又は L-49 を表し、

 \mathbb{R}^{30} は、ハロゲン原子、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルコキシ、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルコキシ、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルコキシ、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルコキシ、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキルチオ、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキルチオ又は \mathbb{C}_1 ル

PCT/JP02/07833

277

よって置換されていてもよいフェニルを表し、

 R^{31} は、ハロゲン原子、-OH、 $-OR^{32}$ 、-S (0) R^{32} 、-C (0) R^{10} 、-C (0) OR^{10} 、-C (0) N (R^{11}) R^{10} 又は (Z) $_{11}$ によって置換されていてもよいフェニルを表し、

 \mathbb{R}^{32} は、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキルチオ ($\mathbb{C}_1 \sim \mathbb{C}_4$) アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキルカルボニル又は $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキルカルボニルを表し、

mは、 $1 \sim 3$ の整数を表し、

nは、1~3の整数を表し、

pは、1~4の整数を表す、

10 で表される請求の範囲第4項記載の置換アミド化合物又はその塩。

7. 一般式(3):

式中、Aは、炭素原子又は窒素原子を表し、

₩ 及び W は、各々独立して酸素原子又は硫黄原子を表し、

 X^2 は、水素原子、ハロゲン原子、シアノ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルスルホニル又は $C_1 \sim C_6$ アルキルスルホニルを表し、m が 2 以上の整数を表すとき、各々の X^2 は互いに同一であっても、または相異なっていてもよく、

 Y^1 は、水素原子、ハロゲン原子、シアノ、ニトロ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキ 20 ル、ヒドロキシ $(C_1 \sim C_6)$ アルキル、 $C_1 \sim C_4$ アルコキシ $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_4$ アルキル $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル、 $C_2 \sim C_4$ アルキル、 $C_3 \sim C_4$ アルキル、 $C_4 \sim C_4$ アルキル、 $C_5 \sim C_4$ アルキル・ $C_5 \sim C_4$

23 又は M-26 を表し、

を表し、

く、

PCT/JP02/07833

 C_8 シクロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_2 \sim C_6$ アルケニルオキシ、 $C_2 \sim C_6$ アルキニルオキシ、 $C_1 \sim C_6$ アルキニルオキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルチオ、 $C_2 \sim C_6$ アルケニルチオ、 $C_2 \sim C_6$ アルキニルチオ、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルアミノ、ジ $(C_1 \sim C_6$ アルキル) アミノ、 $(C_1 \sim C_6$ アルキル) アミノ、 $(C_1 \sim C_6$ アルキルの $(C_1 \sim C_6)$ アルキルの $(C_1 \sim C_6)$ アルキルの $(C_1 \sim C_6)$ アルキルアミノ、ジ $(C_1 \sim C_6)$ アルキル)アミノ、 $(C_1 \sim C_6)$ アルキルの $(C_1 \sim C_6)$ アルキル)アミノ、 $(C_1 \sim C_6)$ アルキルの $(C_1 \sim C_6)$ アルキルアミノ、ジ $(C_1 \sim C_6)$ アルキル)アミノ、 $(C_1 \sim C_6)$ アルキル)アミノ、 $(C_1 \sim C_6)$ アルキル $(C_1 \sim C_6)$ アルキル)アミノ、 $(C_1 \sim C_6)$ アルキル)アミノ、 $(C_1 \sim C_6)$ アルキル $(C_1 \sim C_6)$ アルキル)、 $(C_1 \sim C_6)$

278

 Y^2 は、水素原子、ハロゲン原子、シアノ、ニトロ、 $-SF_5$ 、 $C_1 \sim C_6$ アルキル、 R^7 によって任意に置換された $(C_1 \sim C_6)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^7 によって任意に置換された $(C_2 \sim C_6)$ シクロアルキル、 $C_2 \sim C_6$ アルケニル、 R^7 によって任意に置換された $(C_2 \sim C_6)$ アルケニル、 $C_3 \sim C_8$ ハロシクロアルケニル、 $C_2 \sim C_6$ アルキニル、 R^7 によって任意に置換された $(C_2 \sim C_6)$ アルキニル、 $-OR^{8a}$ 、 $-S(0)_{1}R^{8a}$ 、 $-S(0)_{2}OR^{10}$ 、 $-S(0)_{2}N(R^{11})R^{10}$ 、 $-N(R^9)R^{8b}$ 、 $-C(0)R^{10}$ 、 $-C(0)OR^{10}$ 、 $-C(0)N(R^{11})R^{10}$ 、 $-CH=NOR^{12}$ 、 $-C(R^{10})=NOR^{12}$ 、 $-P(0)(OR^{18})_{2}$ 、 $-P(S)(OR^{18})_{2}$ 、 $-Si(R^{15})(R^{16})R^{14}$ 、 $(Z)_{p1}$ によって置換されていてもよいフェニル、L 又は M

Y³は、水素原子、ハロゲン原子、シアノ、ニトロ、C₁~C₆アルキル、C₁~C₆ハロアルキル、C₁~C₆アルコキシ、C₁~C₆ハロアルコキシ、-0-(L-17)、-0-(L-45)、
-0-(L-48)、C₁~C₆アルキルチオ、C₁~C₆ハロアルコキシ、-0-(L-17)、-0-(L-45)、
-0-(L-48)、C₁~C₆アルキルチオ、C₁~C₆ハロアルキルチオ、C₁~C₆アルキルスルフィニル、
C₁~C₆ハロアルキルスルフィニル、C₁~C₆アルキルスルホニル、C₁~C₆ アルキルスルホニル、C₁~C₆ ハロアルキルスルホニル、-CH=NOR¹²、-C(R¹⁰)=NOR¹²、L、M-1、M-6、M-10、M-23 又は M-26 を表し、n が 2 又は 3 を表すとき、各々の Y³ は互いに同一であっても、又は相異なっていてもよく、 さらに Y¹、Y²及び Y³のうち、何れか 2 つが隣接する場合には、隣接する 2 つの Y は -CH₂CH₂CH₂-, -CH₂CH₂O-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂CH₂-, -CH₂CH₂O-, -CH₂CH₂O-,

PCT/JP02/07833

 R^1 は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルスル ホニル($C_1 \sim C_4$) アルキル、 $C_2 \sim C_6$ シアノアルキル、 $C_1 \sim C_6$ アルコキシカルボニル($C_1 \sim C_4$) アルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ ハロアル キニル、 $C_1 \sim C_6$ アルコキシ、 $C_3 \sim C_6$ アルキルカルボニル $C_1 \sim C_6$ アルコキシカルボニルを表し、

279

 R^3 は、 $C_1 \sim C_8$ アルキル、 R^{21} によって任意に置換された $(C_1 \sim C_6)$ アルキル、 $C_8 \sim C_8$ シクロアルキル、 $C_1 \sim C_4$ アルコキシ $(C_3 \sim C_8)$ シクロアルキル、 $C_1 \sim C_4$ アルコキシ $(C_3 \sim C_8)$ シクロアルキル、 $C_1 \sim C_4$ アルキルスルフィニル $(C_3 \sim C_8)$ シクロアルキル、 $C_1 \sim C_4$ アルキルスルフィニル $(C_3 \sim C_8)$ シクロアルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $(Z)_{p1}$ によって置換されていてもよいフェニル $(C_3 \sim C_6)$ アルケニル、 $(Z)_{p1}$ によって置換されていてもよいフェニル $(C_3 \sim C_6)$ アルケニル、 $(Z)_{p1}$ によって置換されていてもよいフェニル $(C_3 \sim C_6)$ アルキニル、 $(C_3 \sim C_6)$ アルキーン鎖を形成することにより、結合する窒素原子と共に3~7 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子、硫黄原子及び窒素原子から選ばれる1 個の原子を含んでもよく、且つハロゲン原子、 $(C_1 \sim C_6)$ アルキル基又は $(C_1 \sim C_6)$ アルコキシ基によって置換されていてもよく、

 R^5 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$)アルキル、($C_1 \sim C_4$)アルキル、($C_1 \sim C_6$)アルキル、($C_1 \sim C_6$ アルコキシカルボニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキル、 $C_2 \sim C_6$ シアノアルキル、 $C_1 \sim C_6$ アルコキシカルボニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ ハロアルコキシカルボニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキルアミノカルボニル($C_1 \sim C_4$)アルキル、ジ($C_1 \sim C_6$ アルキル)アミノカルボニル($C_1 \sim C_4$)アルキル、($C_1 \sim C_4$)アルキル、($C_1 \sim C_4$)アルキル、 $C_2 \sim C_6$ アルキル)、 $C_3 \sim C_6$ アルキル、 $C_3 \sim C_6$ アルキル、 $C_3 \sim C_6$ アルキル、 $C_3 \sim C_6$ アルキール、 $C_3 \sim C_6$ アルキール、 $C_3 \sim C_6$ アルキール、 $C_3 \sim C_6$ アルキール、 $C_3 \sim C_6$ アルキール、 $C_3 \sim C_6$ アルキルカルボニルオキシ、 $-SR^{24}$ 、-S(0) $_2R^{24}$ 、-S(0) $_2R^{25}$ 、 $_2S$ (0) $_2R^{28}$ 0 $_2S$ (0) $_2S$ (1) $_2$

15

20

25

PCT/JP02/07833

280

(Z)」によって置換されていてもよいフェニルを表し、

 R^{6n} 及び R^{6n} は、各々独立して水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$)アルキル、ヒドロキシ($C_1 \sim C_6$)アルキル、 $C_1 \sim C_6$ アルコキシ($C_1 \sim C_6$)アルキル、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ アルキル・ $C_2 \sim C_6$ アルキル・ $C_2 \sim C_6$ アルキール・ $C_2 \sim C_6$ アルナール・ $C_2 \sim C_6$ アルカー・ $C_2 \sim$

 R^{8a} は、 $C_1 \sim C_6$ アルキル、 R^{30} によって任意に置換された ($C_1 \sim C_6$) アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^{30} によって任意に置換された ($C_3 \sim C_9$) シクロアルキル、 $C_2 \sim C_6$ アルケニル、 R^{30} によって任意に置換された ($C_2 \sim C_6$) アルケニル、 $C_2 \sim C_6$ アルキニル、 R^{30} によって任意に置換された ($C_2 \sim C_6$) アルキニル、 $C_3 \sim C_8$ ハロシクロアルケニル、-S (0) ${}_2R^{10}$ 、-P (0) ($0R^{13}$) ${}_2$ 、-P (S) ($0R^{13}$) ${}_2$ 、(Z) ${}_{p1}$ によって置換されていてもよいフェニル、L-17、L-18、L-21、L-25、L-45、L-48 又は L-49 を表し、

PCT/JP02/07833

281

R^{8b}は、-C(0) R¹⁰又は-C(0) OR¹⁰を表し、

R⁹は、水素原子、C₁~C₆アルキル又はC₁~C₆ハロアルキル表し、

 R^{10} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルカルボニル ($C_1 \sim C_4$) アルキル、 $C_2 \sim C_6$ シアノアルキル、 $C_1 \sim C_6$ アルキルカルボニル ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルコキシカルボニル ($C_1 \sim C_4$) アルキル、 ($C_1 \sim C_4$) アルキル、 ($C_1 \sim C_4$) アルキル、 ($C_2 \sim C_6$ アルケニル ($C_3 \sim C_8$) シクロアルキル、 $C_2 \sim C_6$ アルケニル ($C_3 \sim C_8$) シクロアルキル、 ($C_2 \sim C_6$ アルケニル、 ($C_2 \sim C_6$ アルキニル、 ($C_2 \sim C_6$ アルキニル、 ($C_3 \sim C_8$) シクロアルキル、 ($C_3 \sim C_8$) シクロアルキル、 ($C_3 \sim C_8$ アルキニル、 ($C_3 \sim C_8$) シクロアルキル、 ($C_3 \sim C_8$) シクロアルキル、 ($C_3 \sim C_8$ アルキニル、 ($C_3 \sim C_8$) シクロアルキル、 ($C_3 \sim C_8$) シクロアルキル・ ($C_3 \sim C_8$) シクロアルキル、 ($C_3 \sim C_8$) シクロアルキル (

- 10 R^{11} は、水素原子、 $C_1 \sim C_6 アルキル、<math>C_1 \sim C_6$ ハロアルキル又は $C_3 \sim C_8$ シクロアルキルを表すか、或いは、 R^{10} と R^{11} とが一緒になって $C_2 \sim C_5$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 6$ 負環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫黄原子から選ばれる 1 個の原子を含んでもよく、且つ $C_1 \sim C_6$ アルキル基又は $C_1 \sim C_6$ アルコキシ基によって置換されていてもよく、
- R^{12} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルチオ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルコキシカルボニル ($C_1 \sim C_4$) アルキル、ジ ($C_1 \sim C_4$ アルキル) アミノカルボニル ($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル、 $C_3 \sim C_6$ シクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル又は $C_3 \sim C_6$ アルキニルを表し、 $C_1 \sim C_6$ アルキルを表し、
 - R^{17} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $(Z)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ ハロアルキニル又は $(Z)_{p1}$ によって置換されていてもよいフェニルを表し、
- R^{18} は、ハロゲン原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルカニル、 $C_1 \sim C_6$ アルキルスルカニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニルスは $(Z)_{pl}$ によって置換されていてもよいフェニルを表し、同時に 2 個以上の R^{18} で置換されている場合、各々の R^{18} は互いに同一であっても、または相異なっ

PCT/JP02/07833

282

ていてもよく、

5

 25°

 R^{21} は、ハロゲン原子、シアノ、 $C_3\sim C_6$ シクロアルキル、-OH、 $-OR^{8c}$ 、-SH、-S (0) $_rR^{29}$ 、-N (R^9) R^{8c} 、-CHO、-C (0) R^{10} 、-C (0) $0R^{10}$ 、-C (0) N (R^{11}) R^{10} 、 $-CH=NOR^{12}$ 、-C $(R^{10})=NOR^{12}$ 、(Z) $_{p1}$ によって置換されていてもよいフェニル、L 又は M を表し、

 R^{8c} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルチオ ($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_4 \sim C_4$ アルキル、 $C_5 \sim C_8$ シクロアルキル、 $C_5 \sim C_8$ シクロアルキル

 $-C (0) 0 R^{10}, -C (0) N (R^{11}) R^{10}, -C (S) N (R^{11}) R^{10}, -S (0) {}_{2}R^{10}, -S (0) {}_{2}N (R^{11}) R^{10}, -P (0) (0 R^{13}) {}_{2},$

-P(S)(OR¹³)₂又は(Z)ឆlによって置換されていてもよいフェニルを表し、

 \mathbb{R}^{22} は、水素原子、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル又は \mathbb{C}_{1} によって置換されていてもよいフェニル \mathbb{C}_{1} ~ \mathbb{C}_{2})アルキルを表し、

 \mathbb{R}^{23} は、水素原子、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $-\mathbb{C}_1 \sim \mathbb{C}_6$ アルキルカルボニル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルコキシカルボニル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルコキシカルボニルでは $\mathbb{C}_1 \sim \mathbb{C}_6$ アルコキシカルボニルで表し、れていてもよいフェニルカルボニルを表し、

 \mathbb{R}^{24} は、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキル又は $\mathbb{C}_{1,0}$ によって置換されていてもよいフェニルを表し、

 R^{25} は、 $C_1 \sim C_{12}$ アルキル、 $C_1 \sim C_6$ アルコキシカルボニル ($C_1 \sim C_4$) アルキル又は $C_1 \sim C_{12}$ アル 20 コキシカルボニルを表し、

 R^{25} は、 $C_1 \sim C_{12}$ アルキル又は $(Z)_{pl}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキルを表すか、或いは、 R^{25} と R^{26} とが一緒になって $C_4 \sim C_7$ アルキレン鎖を形成することにより、結合する窒素原子と共に $5 \sim 8$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫黄原子から選ばれる 1 個の原子を含んでもよく、且つ $C_1 \sim C_4$ アルキル基によって任意に置換されていてもよく、

 \mathbb{R}^{27} は、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルコキシ ($\mathbb{C}_1 \sim \mathbb{C}_4$) アルキル、 $\mathbb{C}_2 \sim \mathbb{C}_6$ シアノアルキル、(\mathbb{Z}) \mathbb{D}_1 によって置換されていてもよいベンジル、 $\mathbb{C}_3 \sim \mathbb{C}_8$ シクロアルキル、 $\mathbb{C}_3 \sim \mathbb{C}_6$ アルケニル、 $\mathbb{C}_3 \sim \mathbb{C}_6$ アルキニル又は (\mathbb{Z}) \mathbb{D}_1 によって置換されていてもよいフェニルを表し、

PCT/JP02/07833

283

 R^{28} は、水素原子又は $C_1 \sim C_6$ アルキルを表すか、或いは、 R^{27} と R^{28} とが一緒になって C_4 $\sim C_7$ アルキレン鎖を形成することにより、結合する窒素原子と共に $5\sim 8$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫黄原子から選ばれる 1 個の原子を含んでもよく、且つ $C_1 \sim C_4$ アルキル基によって任意に置換されていてもよ

5 <.

 R^{29} は、 $C_1 \sim C_8$ アルキル、 R^{31} によって任意に置換された ($C_1 \sim C_8$) アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^{31} によって任意に置換された ($C_3 \sim C_8$) シクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキニル、 $C_1 \sim C_6$ アルキルチオ、($C_3 \sim C_6$ アルキルチオ、 $C_4 \sim C_6$ アルキルチオ、 $C_5 \sim C_6$ アルキルチオ、 $C_7 \sim C_8$ アルキルチオ、 $C_8 \sim C_8$ アルキル・ $C_8 \sim C_8$ アルキル・ $C_8 \sim C_8$ アルキルチオ、 $C_8 \sim C_8$ アルキルチオ、 $C_8 \sim C_8$ アルキルチオ、 $C_8 \sim C_8$ アルキルチオ、 $C_8 \sim C_8$ アルキル・ $C_8 \sim C_8$ アルキルチオ、 $C_8 \sim C_8$ アルキルチオ、 $C_8 \sim C_8$ アルキル・ $C_8 \sim C_8$ アルキルチオ、 $C_8 \sim C_8$ アルキル・ $C_$

-C (S) N (R¹¹) R¹⁰、-P (0) (OR¹³) ₂、-P (S) (OR¹³) ₂、(Z) _{p1} によって置換されていてもよいフェニ ル、L-18、L-21、L-25、L-30、L-31、L-32、L-33、L-34、L-35、L-37、L-38、L-40、L-45、L-48 又は L-49 を表し、

 R^{80} は、ハロゲン原子、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ又は $(Z)_{pl}$ に よって置換されていてもよいフェニルを表し、

R⁸¹ は、ハロゲン原子、-OH、-OR⁸²、-S (0) _rR⁸²、-C (0) R¹⁰、-C (0) OR¹⁰、-C (0) N (R¹¹) R¹⁰ 又は によって置換されていてもよいフェニルを表し、

 \mathbb{R}^{32} は、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルコキシ ($\mathbb{C}_1 \sim \mathbb{C}_4$) アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキルカルボニル又は $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキルカ

20 ルボニルを表し、

mは、 $1\sim3$ の整数を表し、

nは、 $1\sim5$ の整数を表し、

0は、0又は1の整数を表す、

で表される請求の範囲第5項記載の置換アミド化合物又はその塩。

25 8. №及び № は、酸素原子を表し、

\(\frac{1}{2}\) は、水素原子、ハロゲン原子、シアノ、メチル、エチル、トリフルオロメチル、メトキシ、ジフルオロメトキシ、トリフルオロメトキシ、ブロモジフルオロメトキシ、メチルチオ、ジフルオロメチルチオ、トリフルオロメチルチオ、メタンスルホニル又はトリフルオロメタンスルホニルを表し、mが2以上の整数を表すとき、各々の\(\frac{1}{2}\) は互いに

10

15

20

25

284

PCT/JP02/07833

同一であっても、または相異なっていてもよく、

 Y^1 は、水素原子、ハロゲン原子、シアノ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $(Z)_{p1}$ によって置換されていてもよいベンジル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_2 \sim C_6$ アルケニルオキシ、 $C_2 \sim C_6$ アルキニルオキシ、 $(Z)_{p1}$ によって置換されていてもよいフェノキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ又は $(Z)_{p1}$ によって置換されていてもよいフェニルチオを表し、

 Y^2 は、水素原子、ハロゲン原子、シアノ、ニトロ、 $-SF_5$ 、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロ アルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6 P \mathcal{N} + \mathcal{$ アルキルスルフィニル $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_6$ ハロアルキルスルフィニル $(C_1 \sim C_4)$ アルキ ル、 $C_1 \sim C_6$ アルキルスルホニル ($C_1 \sim C_d$) アルキル、 $C_1 \sim C_6$ ハロアルキルスルホニル ($C_1 \sim C_d$) アルキル、ヒドロキシ($C_1 \sim C_4$) ハロアルキル、 $C_1 \sim C_6$ アルコキシ($C_1 \sim C_4$) ハロアルキル、 C_1 $\sim C_a$ ハロアルコキシ ($C_1 \sim C_a$) ハロアルキル、 $C_2 \sim C_a$ アルケニルオキシ ($C_4 \sim C_4$) ハロアルキル、 $C_2 \sim C_6 \land \Box P \lor A + D \lor (C_1 \sim C_4) \land \Box P \lor A + D \lor (C_2 \sim C_6) \land \Box$ アルキル、 $C_a \sim C_6$ ハロアルキニルオキシ $(C_1 \sim C_4)$ ハロアルキル、 $(Z)_{n1}$ によって置換されて いてもよいベンジルオキシ ($C_1 \sim C_4$) ハロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 $C_1 \sim C_6$ ア ルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルコキシ($C_1 \sim C_4$)ハロアルコキシ、 $C_1 \sim C_6$ ハロ アルコキシ $(C_1 \sim C_4)$ ハロアルコキシ、 $C_1 \sim C_6$ ハロアルコキシ $(C_1 \sim C_4)$ ハロアルコキシ $(C_1 \sim C_4)$ C_4) ハロアルコキシ、 $(Z)_{pl}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ ハロアルコキ シ、 $C_2 \sim C_8$ ハロシクロアルキルオキシ、 $C_2 \sim C_6$ ハロアルケニルオキシ、 $C_1 \sim C_6$ アルコキシ $(C_2 \sim C_6)$ $\wedge \Box P \mathcal{V} \wedge \Box \mathcal{V} \wedge \Box$ ~C₆ アルキルスルホニルオキシ、C₁~C₆ハロアルキルスルホニルオキシ、(Z)_{n1} によって置 換されていてもよいフェノキシ、-0-(L-17)、-0-(L-45)、-0-(L-48)、-0-(L-49)、 $C_1\sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $C_2 \sim C_6$ ハロアルケニルチオ、 $(Z)_{pl}$ によって置換 されていてもよいフェニルチオ、-S-(L-45)、-S-(L-45)、-S-(L-48)、-S-(L-49)、 $C_1\sim C_6$ ハロアルキルスルフィニル、 $C_2 \sim C_6$ ハロアルケニルスルフィニル、 $C_1 \sim C_6$ ハロアルキルス ルホニル、C₂~C₆ハロアルケニルスルホニル、-N (R⁹) R^{8b}、-Si (CH₃) ₂R¹⁴、L-1~L-13、L-15 ~L-35、L-37~L-58 又はMを表し、

Y³は、水素原子、ハロゲン原子、シアノ、ニトロ、C₁~C₆アルキル、C₁~C₆ハロアルキ

PCT/JP02/07833

285

ル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルホニル又は $C_1 \sim C_6$ ハロアルキルスルホニルを表し、 $C_1 \sim C_6$ か2 又は 3 を表すとき、各々の Y^3 は互いに同一であっても、又は相異なっていてもよく、

5 さらに、Y³がY¹又はY²と隣接する場合には、隣接する2つのY¹とY³又はY²とY³は -CH₂CH₂O-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -CH₂SCH₂-, -CH₂CH₂O-, -CH₂CH₂O-, -CH₂CH₂O-, -CH₂CH₂O-, -CH₂CH₂O-, -CH₂CH₂O-, -OCH₂CH₂O-, -CH₂CH₂O-, -CH₂O-, -C

R1は、水素原子を表し、

25

R²は、水素原子又はC₁~C₆アルキルを表し、

 R^3 は、 $C_1 \sim C_8$ アルキル、 R^{21} によって任意に置換された $(C_1 \sim C_8)$ アルキル、 $C_3 \sim C_8$ シクロ アルキル、 $C_1 \sim C_4$ アルキルチオ $(C_3 \sim C_8)$ シクロアルキル、 $C_1 \sim C_4$ アルキルスルフィニル $(C_3 \sim C_8)$ シクロアルキル、 $C_1 \sim C_4$ アルキルスルカール、 $(C_3 \sim C_8)$ シクロアルキル、 $(C_1 \sim C_8)$ アルキニル、 $(C_1 \sim C_8)$ アルキニーの $(C_1 \sim C_8)$ アルキニーの

20 R^2 と R^3 とが一緒になって $C_2 \sim C_6$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 7$ 負環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子、硫黄原子及び窒素原子から選ばれる 1 個の原子を含んでもよく、且つハロゲン原子、メチル基又はメトキシ基によって置換されていてもよく、

 R^4 は、水素原子、 $C_1 \sim C_6$ アルキル又は R^{21} によって任意に置換された $(C_1 \sim C_6)$ アルキルを表し、p が 2 以上の整数を表すとき、各々の R^4 は互いに同一であっても、または相異なっていてもよく、

 R^5 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$ アルキル、($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$ アルキル、($C_1 \sim C_4$ アルキル、 $C_2 \sim C_6$ シアノアルキル、 $C_1 \sim C_6$ ア

PCT/JP02/07833

WO 03/011028

10

25

286

ルコキシカルボニル ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルアミノカルボニル ($C_1 \sim C_4$) アルキル、ジ ($C_1 \sim C_6$ アルキル) アミノカルボニル ($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル、 $C_3 \sim C_6$ シクロ エニル ($C_1 \sim C_4$) アルキル、 $C_3 \sim C_6$ アルキール、 $C_3 \sim C_6$ アルキール ($C_1 \sim C_6$ アルキルカルボニルオキシ、 $C_1 \sim C_6$ アルキル)アミノスルホニル、 $C_1 \sim C_6$ アルキルアミノスルホニル、ジ ($C_1 \sim C_6$ アルキル)アミノスルホニル、 $C_1 \sim C_6$ アルキル)アミノスルホニル、 $C_1 \sim C_6$ アルキル)アミノスルホニル、 $C_1 \sim C_6$ アルキル)アミノスルホニル、 $C_1 \sim C_6$ アルキル・ $C_1 \sim C_6$ アルキル)アミノスルホニル、 $C_1 \sim C_6$ アルキル)アミノスルホニル・ $C_1 \sim C_6$ アルキル)アミノスルホニル、 $C_1 \sim C_6$ アルキル)アミノスルホニル・ $C_1 \sim C_6$ アルキル・ $C_1 \sim C_6$ アルキル)アミノスルホニル・ $C_1 \sim C_6$ アルキル・ $C_1 \sim C_6$ アルキル・

 R^6 は、水素原子、 $C_1 \sim C_6$ アルキル、-CHO、 $C_1 \sim C_4$ アルキルカルボニル又は $C_1 \sim C_4$ アルコキシカルボニルを表すか、或いは、 R^6 と R^6 とが一緒になって $C_2 \sim C_6$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 7$ 負環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子、硫黄原子及び窒素原子から選ばれる1 個の原子を含んでもよく、且つ酸素原子又はメチル基によって任意に置換されていてもよく、

R¹⁴は、C₁~C₆アルキル又は(Z)_nによって置換されていてもよいフェニルを表し、

15 R^{l7} は、水素原子、 $C_1 \sim C_6$ アルキル又は $C_1 \sim C_6$ ハロアルキルを表し、

 \mathbb{R}^{18} は、ハロゲン原子、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキル又は \mathbb{C}_{1} によって置換されていてもよいフェニルを表し、同時に2 個以上の \mathbb{R}^{18} で置換されている場合、各々の \mathbb{R}^{18} は互いに同一であっても、または相異なっていてもよく、

 R^{21} は、ハロゲン原子、シアノ、 $C_3 \sim C_6$ シクロアルキル、-OH、 $-OR^{8c}$ 、-SH、-S (0) $_{\rm I}R^{29}$ 、-N (R^9) R^{8c} 、-CHO、 $C_1 \sim C_6$ アルキルカルボニル、(Z) $_{\rm Pl}$ によって置換されていてもよいフェニルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、-C (0) N (R^{11}) R^{10} 、 $-CH=NOR^{12}$ 、-C $(R^{10})=NOR^{12}$ 、(Z) $_{\rm Pl}$ によって置換されていてもよいフェニル、L 又はM を表し、

 R^{8c} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルチオ ($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキル・ $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル・ $C_1 \sim C_4$ アルキ

-S (0) ₂N (R¹¹) R¹⁰、-P (0) (0R¹³) ₂、-P (S) (0R¹³) ₂ 又は (Z) _{p1} によって置換されていてもよいフェニルを表し、

 \mathbb{R}^{10} は、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキルチオ $(\mathbb{C}_1 \sim \mathbb{C}_4)$ アルキル、 $(\mathbb{Z})_{\mathfrak{g}_1}$ によって置換されていてもよいフェニル $(\mathbb{C}_1 \sim \mathbb{C}_4)$

C。アルケニルを表し、

PCT/JP02/07833

287

アルキル、 $C_3 \sim C_6$ シクロアルキル、 $C_2 \sim C_6$ アルケニル、 $(Z)_{nl}$ によって置換されていてもよいフェニル、L又はMを表し、

 R^{11} は、水素原子又は $C_1 \sim C_6$ アルキルを表すか、或いは、 R^{10} と R^{11} とが一緒になって C_2 $\sim C_5$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 6$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫黄原子から選ばれる 1 個の原子を含んでもよく、且つ $C_1 \sim C_6$ アルキル基によって置換されていてもよく、 R^{12} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルチオ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルチオ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルコキシカルボニル ($C_1 \sim C_4$) アルキル、ジ ($C_1 \sim C_4$ アルキル)アミノカルボニル ($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル・($C_1 \sim C$

 R^{29} は、 $C_1 \sim C_6$ アルキル、 R^{31} によって任意に置換された ($C_1 \sim C_6$) アルキル、 $C_3 \sim C_6$ シクロアルキル、 $C_3 \sim C_6$ アルキニル、 $C_1 \sim C_6$ アルキルチオ、(Z) $_{p1}$ によって置換されていてもよいフェニルチオ、-C (Z) R^{10} 、-C (Z) R^{10} 、-C (Z) -C (

 R^{31} は、ハロゲン原子、-0H、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルカルボニルオキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ ハロアルキルスルホニル、 $C_1 \sim C_6$ ハロアルキルスルホニル

20 C_6 アルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、 $\mathcal{O}_{0} \sim C_6$ アルキル) アミノカルボニル又は \mathcal{O}_{0} によって置換されていてもよいフェニルを表す請求の範囲第6項記載の置換アミド化合物又はその塩。

9. ₩及び₩は、酸素原子を表し、

X²は、水素原子、ハロゲン原子、シアノ、メチル、エチル、トリフルオロメチル、メ 25 トキシ、ジフルオロメトキシ、トリフルオロメトキシ、ブロモジフルオロメトキシ、メ チルチオ、ジフルオロメチルチオ、トリフルオロメチルチオ、メタンスルホニル又はト リフルオロメタンスルホニルを表し、mが2以上の整数を表すとき、各々の X²は互いに 同一であっても、または相異なっていてもよく、

 Y^1 は、水素原子、ハロゲン原子、シアノ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、(Z) $_{11}$

288

PCT/JP02/07833

によって置換されていてもよいベンジル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_2 \sim C_6$ アルケニルオキシ、 $C_2 \sim C_6$ アルキニルオキシ、 $(Z)_{pl}$ によって置換されていてもよいフェノキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ又は $(Z)_{pl}$ によって置換されていてもよいフェニルチオを表し、

5 Y^2 は、水素原子、ハロゲン原子、シアノ、ニトロ、 $-SF_s$ 、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロ アルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルチオ $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_6$ ハロアルキルチオ $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_6$ アルキルスルフィニル ($C_1 \sim C_2$) アルキル、 $C_1 \sim C_5$ ハロアルキルスルフィニル ($C_1 \sim C_2$) アルキ ル、 $C_1 \sim C_6$ アルキルスルホニル ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルキルスルホニル ($C_1 \sim C_4$) アルキル、ヒドロキシ($C_1 \sim C_2$) ハロアルキル、 $C_1 \sim C_6$ アルコキシ($C_1 \sim C_2$) ハロアルキル、 C_1 10 $\sim C_6 \Lambda \Box P \mathcal{V} \Box + \mathcal{V} (C_1 \sim C_4) \Lambda \Box P \mathcal{V} + \mathcal{V}, \quad C_2 \sim C_6 P \mathcal{V} + \mathcal{V} \Box \mathcal{V} + \mathcal{V} \downarrow (C_1 \sim C_4) \Lambda \Box P \mathcal{V} + \mathcal{V},$ $C_2 \sim C_6 \land \Box P \land \Box P$ アルキル、 $C_3 \sim C_6$ ハロアルキニルオキシ $(C_1 \sim C_4)$ ハロアルキル、 $(Z)_{n1}$ によって置換されて いてもよいベンジルオキシ(C₁~C₄)ハロアルキル、C₃~C₅ハロシクロアルキル、C₁~C₆ア ルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルコキシ($C_1 \sim C_6$) ハロアルコキシ、 $C_1 \sim C_6$ ハロ 15 アルコキシ $(C_1 \sim C_4)$ ハロアルコキシ、 $C_1 \sim C_6$ ハロアルコキシ $(C_1 \sim C_4)$ ハロアルコキシ $(C_1 \sim C_4)$ C₄) ハロアルコキシ、(Z) , によって置換されていてもよいフェニル (C₁~C₄) ハロアルコキ シ、 $C_3 \sim C_8$ ハロシクロアルキルオキシ、 $C_2 \sim C_6$ ハロアルケニルオキシ、 $C_1 \sim C_6$ アルコキシ $(C_2 \sim C_6)$ $\wedge \Box P \wedge \nabla \Box P$ ~C₆アルキルスルホニルオキシ、C₁~C₆ハロアルキルスルホニルオキシ、(Z)₁₁によって置 20 換されていてもよいフェノキシ、-0-(L-17)、-0-(L-45)、-0-(L-48)、-0-(L-49)、 $C_1\sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $C_2 \sim C_6$ ハロアルケニルチオ、 $(Z)_{pl}$ によって置換 されていてもよいフェニルチオ、-S-(L-17)、-S-(L-45)、-S-(L-48)、-S-(L-49)、 $C_1 \sim C_6$ ハロアルキルスルフィニル、 $C_2 \sim C_6$ ハロアルケニルスルフィニル、 $C_1 \sim C_6$ ハロアルキルス 25 ルホニル、C₂~C₆ハロアルケニルスルホニル、-N(R⁹) R^{8b}、-Si(CH₃)₂R¹⁴、L 又は M を表し、 Y^3 は、水素原子、ハロゲン原子、シアノ、ニトロ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキ ル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキ ルチオ、C₁~C₆アルキルスルフィニル、C₁~C₆ハロアルキルスルフィニル、C₁~C₆アルキ ルスルホニル又は C₁~C₆ハロアルキルスルホニルを表し、n が2又は3を表すとき、各々

5

289

PCT/JP02/07833

- CH₂CH₂O-, - CH₂OCH₂-, - OCH₂O-, - CH₂CH₂S-, - CH₂SCH₂-, - CH₂CH₂CH₂O-, - CH₂CH₂OCH₂-, - CH₂CH₂O-, - OCH₂CH₂O-, - CH₂CH₂O-, - CH₂CH

RIは、水素原子を表し、

 R^3 は、 $C_1 \sim C_8$ アルキル、 R^{21} によって任意に置換された $(C_1 \sim C_8)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_1 \sim C_4$ アルキルスルフィニル $(C_3 \sim C_8)$ シクロアルキル、 $C_1 \sim C_4$ アルキルスルフィニル $(C_3 \sim C_8)$ シクロアルキル、 $C_1 \sim C_4$ アルキルスルホニル $(C_3 \sim C_8)$ シクロアルキル、 $C_1 \sim C_8$ アルケニル、 $C_1 \sim C_8$ アルキニル、 $(Z)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_8)$ アルキニル、 $(L-3) - (C_1 \sim C_8)$ アルキニル、 $(L-4) - (C_1 \sim C_8)$ アルキニル、 $(L-45) - (C_1 \sim C_8)$ アルキニル、 $(L-46) - (C_1 \sim C_8)$ アルキニル、 $(L-47) - (C_1 \sim C_8)$ アルキール、 $(L-47) - (C_1 \sim C_8)$ アルキニル、 $(L-47) - (C_1 \sim C_8)$ アルキニル、 $(L-47) - (C_1 \sim C_8)$ アルキール、 $(L-47) - (C_1 \sim C_8)$ アルキニル、 $(L-47) - (C_1 \sim C_8)$ アルキニル、 $(L-47) - (C_1 \sim C_8)$ アルキール、 $(L-47) - (C_1 \sim C_8)$ アルキール・ $(L-47) - (C_1 \sim C_8)$

- 15 M-9、M-13、M-16、M-16、M-18、M-19、M-21、M-22、M-25 又は M-28 を表すか、或いは、 R^2 と R^3 とが一緒になって C_2 $\sim C_6$ アルキレン鎖を形成することにより、結合する窒素原子 と 共に $3\sim7$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子、 硫黄原子及び窒素原子から選ばれる 1 個の原子を含んでもよく、且つハロゲン原子、メ チル基又はメトキシ基によって置換されていてもよく、

PCT/JP02/07833

WO 03/011028

290

アルキル) アミノスルホニル、-CHO、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ ハロアルキルカルボニル、 $C_1 \sim C_6$ ハロアルコキシカルボニルを表し、 R^{6a} 及び R^{6b} は、各々独立して水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ アルコキシカルボニルを表し、アルコキシカルボニルを表し、

 R^{14} は、 $C_1 \sim C_6$ アルキル又は $(Z)_{p1}$ によって置換されていてもよいフェニルを表し、 R^{17} は、水素原子、 $C_1 \sim C_6$ アルキル又は $C_1 \sim C_6$ ハロアルキルを表し、

 R^{18} は、ハロゲン原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル又は $(Z)_{pl}$ によって置換されていてもよいフェニルを表し、同時に 2 個以上の R^{18} で置換されている場合、各々の R^{18} は互いに同一であっても、または相異なっていてもよく、

 R^{21} は、ハロゲン原子、シアノ、 $C_8 \sim C_6$ シクロアルキル、-OH、 $-OR^{8c}$ 、-SH、-S (0) $_{1}R^{29}$ 、-N (R^{9}) R^{8c} 、-CHO、 $C_1 \sim C_6$ アルキルカルボニル、 $(Z)_{p1}$ によって置換されていてもよいフェニルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、-C (0) N (R^{11}) R^{10} 、 $-CH=NOR^{12}$ 、-C $(R^{10})=NOR^{12}$ 、 $(Z)_{p1}$ によって置換されていてもよいフェニル、L 又は M を表し、

 R^{8c} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルチオ ($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ ($C_1 \sim C_4$) $C_1 \sim C_4$ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキル・ $C_1 \sim C_4$ アルキル・ $C_1 \sim C_4$ アルキル・ $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル・ $C_1 \sim C_4$ アルキル・ $C_1 \sim C_4$ アルキル・ $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル・ $C_1 \sim C_4$ アルキー $C_1 \sim C_4$ アルキー $C_1 \sim C_4$ アルキル・ $C_1 \sim C_4$ アルキル・ $C_1 \sim C_4$ アルキー $C_1 \sim C_4$ アル・ $C_1 \sim C_4$ アルキー $C_1 \sim C_4$ アル・ $C_1 \sim C_4$ アルキー $C_1 \sim C_4$ アル・ C_1

 R^{10} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルチオ ($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル、($C_2 \sim C_6$ アルケニル、($C_1 \sim C_4$) アルキル、 $C_2 \sim C_6$ アルケニル、($C_1 \sim C_4$) いフェニル、L 又は M を表し、

 R^{11} は、水素原子又は $C_1 \sim C_6$ アルキルを表すか、或いは、 R^{10} と R^{11} とが一緒になって C_2 $\sim C_5$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 6$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子及び硫黄原子から選ばれる1個の原子を含んでもよく、且つ $C_1 \sim C_6$ アルキル基によって置換されていてもよく、

25

 R^{12} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルコキシ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルチオ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルがニル ($C_1 \sim C_4$) アルキル、ジ ($C_1 \sim C_4$ アルキル) アミノカルボニル ($C_1 \sim C_4$ アルキル) アミノカルボニル ($C_1 \sim C_4$ アルキル) アミノカルボニル ($C_1 \sim C_4$ アルキル)

PCT/JP02/07833

291

~ C_4)アルキル、 $(Z)_{p_1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル又は $C_3 \sim C_6$ アルケニルを表し、

 R^{29} は、 $C_1 \sim C_6$ アルキル、 R^{31} によって任意に置換された $(C_1 \sim C_6)$ アルキル、 $C_3 \sim C_6$ シクロアルキル、 $C_3 \sim C_6$ アルキニル、 $C_1 \sim C_6$ アルキルチオ、 $(Z)_{p1}$ によって置換されていてもよいフェニルチオ、-C (0) R^{10} 、-C (0) N (R^{11}) R^{10} 、

-C (S) N (\mathbb{R}^{11}) \mathbb{R}^{10} 、(\mathbb{Z}) $_{p1}$ によって置換されていてもよいフェニル、L-21、L-32、L-33、L-35、L-45、L-48 又は L-49 を表し、

 R^{31} は、ハロゲン原子、-OH、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルカルボニルオキシ、 $C_1 \sim C_6$ ハロアルキルカルボニルオキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $C_1 \sim C_6$ ハロアルキルスルホニル、 $C_1 \sim C_6$ ハロアルキルスルホニル

- C_6 アルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、ジ ($C_1 \sim C_6$ アルキル) アミノカルボニル又は (Z) $_{p_1}$ によって置換されていてもよいフェニルを表す請求の範囲第7項記載の置換アミド化合物又はその塩。
- 10. 請求の範囲第4項ないし第9項記載の置換アミド化合物及びその塩から選ばれ 5 る1種又は2種以上を有効成分として含有することを特徴とする有害生物防除剤。
 - 11. 請求の範囲第4項ないし第9項記載の置換アミド化合物及びその塩から選ばれる1種又は2種以上を有効成分として含有することを特徴とする農薬。
 - 12. 請求の範囲第4項ないし第9項記載の置換アミド化合物及びその塩から選ばれる1種又は2種以上を有効成分として含有することを特徴とする殺虫剤又は殺ダニ剤。

10

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/07833

			PCT/JE	202/07.833
	SIFICATION OF SUBJECT MATTER C1 ⁷ A01N37/30, 37/52, 43/44, 4 257/06, C07D239/88, 263/10	43/48, 43/54, 0, 265/08	C07C237/40	0, 237/42,
According t	o International Patent Classification (IPC) or to both n	ational classification an	id IPC	·
B. FIELD	S SEARCHED	·	· · · · · · · · · · · · · · · · · · ·	•
Minimum d	ocumentation searched (classification system followed	by classification symbo	ols)	
Int.	C1 ⁷ A01N37/30, 37/52, 43/44, 4 257/06, C07D239/88, 263/10	43/48, 43/54,	C07C237/40), 237/42,
Documenta	tion searched other than minimum documentation to th	e extent that such docu	ments are included	in the fields searched
	lata base consulted during the international search (namus (STN), CAOLD (STN), REGISTRY (ere practicable, sea	rch terms used)
• 0		•		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap	-	_	Relevant to claim No.
P,X	WO 02/48137 A2 (E.I. Du Pont 20 June, 2002 (20.06.02), Claims (Family: none)	: de Nemours 8	© Co.),	1-3
P,X	WO 01/70671 A2 (E.I. Du Pont 27 September, 2001 (27.09.01) Claims; examples (for example page 173) & AU 200150946 A),		1-4,10-12
A	& ZA 9907318 A	Α	A	1-12
Furthe	er documents are listed in the continuation of Box C.	See patent fami	ily annex.	
"A" docume conside "E" date "tu" docume cited to special docume means docume than the Date of the a 24 O	categories of cited documents: ent defining the general state of the art which is not red to be of particular relevance document but published on or after the international filing ent which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other reason (as specified) ent referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later e priority date claimed actual completion of the international search ctober, 2002 (24.10.02)	"X" document of particonsidered novel step when the document of particonsidered to invocembined with on combination being document members. "&" document of particonsidered to invocembination being document members. Date of mailing of the 19 Novemb	not in conflict with the inciple or theory undicular relevance; the core cannot be consider cument is taken alone icular relevance; the colve an inventive step are or more other such g obvious to a person or of the same patent f	claimed invention cannot be when the document is documents, such a skilled in the art family
	ailing address of the ISA/ nese Patent Office	Authorized officer		
Facsimile No		Telephone No		•

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/07833

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet) This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). Observations where unity of invention is lacking (Continuation of item 2 of first sheet) This International Searching Authority found multiple inventions in this international application, as follows: Insecticides containing as the active ingredient substituted amides having basic skeletons represented by the general formula (1) in claim 1 are publicly known (see EP 919542 A2 (NIHON NOHYAKU CO., LTD.) 1999.06.02). Thus, claim 1 discloses at least six inventions resulting from combinations of three cases wherein G is G-1, G-2, or G-3 by two cases wherein X^1 is X^1-1 or X^1-2 , which do not form a single general inventive concept. Since claims 2-12 relate respectively to compounds of claim 1 limited in use and specific ones of the substituted amides represented by the general formula (1) in claim 1, claims 1-12 also involve six inventions which do not (continued to extra sheet) As all required additional search fees were timely paid by the applicant, this international search report covers all searchable As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos .: 4. X No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-12Parts relating to compounds of the general formula (1) wherein G is G-1 and X^1 is X^1-1 . Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/07833

<u>inuation</u>						

form a single general inventive concept, as long as claim 1 contains six inventions which do not form a single general inventive concept.

Form PCT/ISA/210 (extra sheet) (July 1998)

国際調査報告

国際出願番号 PCT/JP02/07833

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1. A01N37/30, 37/52, 43/44, 43/48, 43/54, C07C237/40, 237/42, 257/06, C07D239/88, 263/10, 265/08

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl. ⁷ A01N37/30, 37/52, 43/44, 43/48, 43/54, C07C237/40, 237/42, 257/06, C07D239/88, 263/10, 265/08

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAPLUS (STN), CAOLD (STN), REGISTRY (STN)

C. 関連する	5と認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する
カノコリーキ	5/田文献名 及び一部の画別が関連するとさば、その関連する画所の表示	請求の範囲の番号
PX	WO 02/48137 A2(E. I. DU PONT DE NEMOURS AND COMPANY) 2002.06.20 特許請求の範囲(ファミリーなし)	1-3
PX	WO 01/70671 A2(E. I. DU PONT DE NEMOURS AND COMPANY) 2001.09.27 特許請求の範囲,実施例(例えば、第173頁化合物199等) &AU 200150946 A	1-4, 10-12
A	EP 1006107 A2(NIHON NOHYAKU CO., LTD.) 2000.06.07 特許請求の範囲,第32頁表1No.308 &AU 9961790 A &CZ 9904099 A3 &ZA 9907318 A &CN 1255491 A	1-12

| I C欄の続きにも文献が列挙されている。

] パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

24. 10. 02

国際調査報告の発送日

19.11.02

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP) 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員) 爾見 武志 (AH 9547

電話番号 03-3581-1101 内線 3443

様式PCT/ISA/210 (第2ページ) (1998年7月)

国際出願番号 PCT/JP02/07833 国際調査報告 C (続き) . 引用文献の カテゴリー* 関連すると認められる文献 関連する 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 &KR 2000035763 A &JP 2001-131141 A &BR 9905766 A &HU 9904444 A2

様式PCT/ISA/210 (第2ページの続き) (1998年7月)

国際調査報告

国際出願番号 PCT/JP02/07833

第 I 概 請求の範囲の一部の調査ができないときの意見 (第1ページの2の続き)
法第8条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。
1.
2. 請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3. 計求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
英 T 中間 「 70 T A D A D A D A D A D A D A D A D A D A
第Ⅱ欄 発明の単一性が欠如しているときの意見 (第1ページの3の続き)
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
請求の範囲1に記載された一般式(1)で表される基本骨格を有する置換アミド化合物を有効成分として含有する殺虫剤は公知である(EP 919542 A2(NIHON NOHYAKU CO., LTD.) 1999.06.02参照)。よって、請求の範囲1には、少なくとも、GがGー1、Gー2、Gー3の3通りであるものと、 X^1 が X^1 -1、 X^1 -2の2通りであるものとの組み合わせからなる、 $3\times2=6$ 個の単一の一般的発明概念を形成しない発明が記載されている。請求の範囲2-12は、請求の範囲1の用途を限定したものに関する発明、あるいは請求の範囲1の一般式(1)で表される置換アミド化合物を限定したものに関する発明であるから、請求の範囲1に単一の一般的発明概念を形成しない6発明が存在する以上、請求の範囲1-12においても、単一の一般的発明概念を形成しない6発明が存在する。
1. □ 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2. ② 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. 区 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
請求の範囲 $1-1$ 2 において、一般式 (1) で表される化合物のうち、 G が $G-1$ 、かつ X^1 が X^1-1 である化合物に関する部分。
追加調査手数料の異議の申立てに関する注意

様式PCT/ISA/210 (第1ページの続葉 (1)) (1998年7月)