Covariance, Random Vectors

Submit a PDF of your answers to Canvas

- 1. Variance of the sample mean. Let X be a random variable with $E[X] = \mu$ and $var(X) = \sigma^2$, and let $X_1, X_2, ...$ be i.i.d. samples of X. Define $Y = \sum_{i=1}^{n} X_i$.
 - a) Last time you showed that $E[Y] = n\mu$ using the properties of expectation. What is var(Y)?
 - **b)** The sample mean is defined as $\frac{1}{n}\sum_{i=1}^{n}X_{i}$. What is the variance of the sample mean, i.e, $\operatorname{var}(\frac{1}{n}\sum_{i=1}^{n}X_{i})$?

- - a) Consider the random variable $Y = a^T x$. Find an expression for E[Y].
 - **b)** Find an expression for var(Y) in terms of \boldsymbol{a} , $\Sigma_{\boldsymbol{x}}$ and $\mu_{\boldsymbol{x}}$.
 - c) Does this agree with your answer in the problem above? How/why? Hint Find a and x so that $\boldsymbol{a}^T \boldsymbol{x} = \frac{1}{n} \sum_i X_i$.

$$= \nu \, E(x_{5}^{2}) - \nu \, E(x_{1}^{2}) - \nu_{5}^{2} E(x_{1}^{2}) - \nu_{5$$

2) A)
$$E[Y] = E[x^T x] = \alpha^T E[X] = \alpha^T (x + 2x)]^T$$

b) $Vor Y = E[(x^T (x - 2x)) (x^T (x - 2x))^T]$
 $= \alpha^T E[(x - 2x)(x - 2x)]$
 $= \alpha^T E[x - 2x)(x - 2x)$

1 of 1