

PREDICTING JOB ACCEPTANCE DECISION FOR BETTER CANDIDATE SELECTION

WORK BY:

Diogo Valente up201806473

Inês Santos up201806346

Joana Pina up201806335

Margarida Sá up201806662 Filipe Azeredo up201806315

Jesse Purkamo up202111212

João Silva up201806335

Otto Veijalainen up202111487

What's Job Change about?

Business Context

A company wants to hire data scientists among people who successfully pass some courses conducted by the company. They want to know which of these candidates really want to work for the company after training and who will look for another employment

Predictive Model for the Prob. of Candidate Looking for New Job

Identify **Key Features** Affecting Employee Decision

19 158

Data Entries (per employee)

12

Features (+ ID and Target)

9

Categorical Feat. (w/ high cardinality) +9%

Missing Values (20 733) 44

Uncoherent Obs. (University & Primary School) 25%

Positive Target (High imbalance)

Main Datasets were created with general Pre-Processing

Missing & Noisy Data

- ✓ ['Major_Discipline'] New category "No Major" for Primary & High School with no university enrollement (1195 obs)
- ✓ Removed observations with 4+ N/A's (1.30%)
- ✓ Removed observations: Enrolled University with Primary School (44 obs)
- ✓ Fill in with kNN and MICE techniques

Dealing with Categorical Variables

- ✓ City Feature: Target Encoding
- ✓ Ordinal Features: **Label Encoding** with numerical labels
- Nominal Features: One-Hot Encoding (dummy variables with linear dependence), while dropping redundant variables
- Clustering One-Hot Encoding: the dummy variables were clustered to reduce dimensionality

Methods that generate multiple datasets

Different Feature Selection techniques were used and tested for better results

Correlation Analysis

- ➤ Point-Biserial Correlation: between Numeric Features and Target
- ➤ Chi-Square Test: between Categorical Features and Target
- ✓ Polychoric Correlation: between Ordinal Features
- ✓ Cramer-V Test: between Nominal Features
- ✓ Boruta: for Random Forest Model

Feature Importance

9 Classification Techniques Were Used

Decision Tree

Naïve Bayes

Random Forest

LightGBM

Logistic Regression

kNN

Neural Network

Our modelling process had 5 main steps

We stuck with 3 Key Evaluation Metrics Better Suited For Class Labels

Accuracy

Number of correctly predicted data points out of all data points

Not Ideal for Imbalanced Classification

Ideal for Imbalanced Classification

03

G-Mean

Balances the classification performances on both the majority and minority classes

From all models, we dug deeper into the best 4

	Model	FI	Acc.	GMean	Proc. Time	Sampli ng	Dataset Description
	Decision Tree	86.44	79.10	66.59	11 min	Normal	MICE filling, One Hot, Removed Highly Target Correlated Vars
	Random Forest	87.42	80.60	69.00	2 min	Normal	MICE filling, One Hot
1	XGBoost	87.10	79.96	72.49	< 2min	Normal	MICE filling, One Hot, Normalized, 'City' Removed
	Neural Net	83.62	76.82	68.19	> 30 min	Over	MICE filling, One Hot, Normalized

XGBOOST model seems to be the most promising

With the XGBoost model information, the company can improve its recruitment strategy

Better City Targeting

With city-specific course marketing and advertising

Training Hours Thresholds

Only accept candidates with a certain no. of training hours

Job Survey in Courses

Survey for experience, years since last job and size/ type of current

Candidate to Employee Tracking

Build course candidate database for tracking after employment (for better data)

Types of Courses Taken

Course Grades

Thank you for your attention! Room for your feedback