Анализ временных рядов в задачах и упражнениях

Борзых Д. А., Демешев Б. Б.

23 апреля 2018 г.

Предисловие

План:

- 0. Автокорреляция в ошибках линейной модели
- 1. Стационарные/нестационарные процессы, ARMA сюда оператор лага, ACF/PACF
- 2. Экспоненциальное сглаживание и тета метод
- з гари
- 4. Единичный корень (до BAP) (ADF)
- 5. VAR/VECM/коинтеграция
- 6. Midas
- 7. Байесовские ВАР
- 8. Модели состояние-наблюдение/фильтр Калмана/TVP

Автокорреляция ошибок в линейной модели

- **1.1** Билл Гейтс оценил модель $y_t = \beta_1 + \beta_2 t + \beta_3 y_{t-1} + \varepsilon_t$ с помощью МНК. Значение статистики Дарбина-Уотсона оказалось равно DW = 0.55. Какой из этого следует вывод об автокорреляции ошибок первого порядка?
- 1.2 Рассмотрим модель $y_t = \beta x_t + \varepsilon_t$, где $\varepsilon_1 = u_1$ и $\varepsilon_t = u_t + u_{t-1}$ при $t \ge 2$. Случайные величины u_i независимы с $\mathbb{E}(u_i) = 0$ и $\mathbb{V}\mathrm{ar}(u_i) = \sigma^2$.
 - 1. Найдите $Var(\varepsilon_t)$
 - 2. Являются ли ошибки ε_t гетероскедастичными?
 - 3. Найдите $\mathbb{C}\text{ov}(\varepsilon_i, \varepsilon_j)$
 - 4. Являются ли ошибки ε_t автокоррелированными?
 - 5. Как выглядит матрица $Var(\varepsilon)$?
 - 6. Рассмотрим оценку

$$\hat{\beta} = \frac{\sum x_i y_i}{\sum x_i^2}$$

Является ли она несмещенной для β ? Является ли она эффективной в классе линейных по y несмещенных оценок?

- 7. Если приведенная $\hat{\beta}$ не является эффективной, то приведите формулу для эффективной оценки.
- 1.3 Имеются данные $y=(1,\,2,\,0,\,0,\,2,\,1)$. Предполагая модель с автокоррелированной ошибкой, $y_t=\mu+\varepsilon_t$, где $\varepsilon_t=\rho\varepsilon_{t-1}+u_t$ с помощью трёх тестов проверьте гипотезы H_0 : $\rho=0,\,H_0$: $\mu=0,\,H_0$: $\rho=0$ $\rho=0$ $\rho=0$ $\rho=0$ $\rho=0$
- 1.4 Рассматривается модель $y_t = \mu + \varepsilon_t$, $t = 1, \ldots, T$, где $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$, случайные величины $\varepsilon_0, u_1, \ldots, u_T$ независимы, причем $\varepsilon_0 \sim N(0, \sigma^2/(1-\rho^2))$, $u_t \sim N(0, \sigma^2)$. Имеются наблюдения y' = (1, 2, 0, 0, 1).
 - 1. Выпишите функцию правдоподобия

$$L(\mu, \rho, \sigma^2) = f_{Y_1}(y_1) \prod_{t=2}^{T} f_{Y_t|Y_{t-1}}(y_t|y_{t-1}).$$

2. Найдите оценки неизвестных параметров модели максимизируя условную функцию правдоподобия

$$L(\mu, \rho, \sigma^2 | Y_1 = y_1) = \prod_{t=2}^T f_{Y_t | Y_{t-1}}(y_t | y_{t-1})$$

- **1.5** Остаются ли в условиях автокорреляции МНК- оценки в линейной модели несмещёнными? Состоятельными?
- 1.6 Продавец мороженного оценил динамическую модель объёмов продаж:

$$\ln \hat{Q}_t = 26.7 + 0.2 \ln \hat{Q}_{t-1} - 0.6 \ln P_t$$

Здесь Q_t — число проданных в день t вафельных стаканчиков, а P_t — цена одного стаканчика в рублях. Продавец также рассчитал остатки \hat{e}_t .

- 1. Чему, согласно полученным оценкам, равна долгосрочная эластичность объёма продаж по цене?
- 2. Предположим, что продавец решил проверить наличие автокорреляции первого порядка с помощью теста Бройша-Годфри. Выпишите уравнение регрессии, которое он должен оценить.
- **1.7** Пусть u_t независимые нормальные случайные величины с математическим ожиданием 0 и дисперсией σ^2 . Известно, что $\varepsilon_1 = u_1, \, \varepsilon_t = u_1 + u_2 + \ldots + u_t$. Рассмотрим модель $y_t = \beta_1 + \beta_2 x_t + \varepsilon_t$.
 - 1. Найдите $Var(\varepsilon_t)$, $Cov(\varepsilon_t, \varepsilon_s)$, $Var(\varepsilon)$
 - 2. Являются ли ошибки ε_t гетероскедастичными?
 - 3. Являются ли ошибки ε_t автокоррелированными?
 - 4. Предложите более эффективную оценку вектора коэффициентов регрессии по сравнению МНКоценкой.
 - 5. Результаты предыдущего пункта подтвердите симуляциями Монте-Карло на компьютере.
- 1.8 Ошибки в модели $y_t = \beta_1 + \beta_2 x_t + \varepsilon_t$ являются автокоррелированными первого порядка, $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$. Шаман-эконометрист Ойуун выполняет два камлания-преобразования. Поясните смысл камланий:
 - 1. Камлание A, при $t \geq 2$, Ойуун преобразует уравнение к виду $y_t \rho y_{t-1} = \beta_1 (1 \rho) + \beta_2 (x_t \rho x_{t-1}) + \varepsilon_t \rho \varepsilon_{t-1}$
 - 2. Камлание Б, при t=1, Ойуун преобразует уравнение к виду $\sqrt{1-\rho^2}y_1=\sqrt{1-\rho^2}\beta_1+\sqrt{1-\rho^2}\beta_2x_1+\sqrt{1-\rho^2}\varepsilon_1$.
- **1.9** Рассмотрим модель $y_t = \beta_1 + \beta_2 x_{t1} + \ldots + \beta_k x_{tk} + \varepsilon_t$, где ε_t подчиняются автокорреляционной схеме первого порядка, т.е.
 - 1. $\varepsilon_t = \rho \varepsilon_{t-1} + u_t, -1 < \rho < 1$
 - 2. $Var(\varepsilon_t) = const, \mathbb{E}(\varepsilon_t) = const$
 - 3. $Var(u_t) = \sigma^2$, $\mathbb{E}(u_t) = 0$
 - 4. Величины u_t независимы между собой
 - 5. Величины u_t и ε_s независимы, если $t \geq s$

Найдите:

- 1. $\mathbb{E}(\varepsilon_t)$, $\mathbb{V}ar(\varepsilon_t)$
- 2. $\mathbb{C}\text{ov}(\varepsilon_t, \varepsilon_{t+h})$
- 3. \mathbb{C} orr $(\varepsilon_t, \varepsilon_{t+h})$
- 1.10 Рассматривается модель $y_t = \beta_1 + \beta_2 x_{t1} + \ldots + \beta_k x_{tk} + \varepsilon_t$. Ошибки ε_t гомоскедастичны, но в них возможно присутствует автокорреляция первого порядка, $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$. При известном числе наблюдений T на уровне значимости 5% сделайте статистический вывод о наличии автокорреляции.
 - 1. T = 25, k = 2, DW = 0.8
 - 2. T = 30, k = 3, DW = 1.6
 - 3. T = 50, k = 4, DW = 1.8
 - 4. T = 100, k = 5, DW = 1.1
- 1.11 По 100 наблюдениям была оценена модель линейной регрессии $y_t = \beta_1 + \beta_2 x_t + \varepsilon_t$. Оказалось, что $RSS = 120, \, \hat{\varepsilon}_1 = -1, \, \hat{\varepsilon}_{100} = 2, \, \sum_{t=2}^{100} \hat{\varepsilon}_t \hat{\varepsilon}_{t-1} = -50$. Найдите DW и ρ .
- **1.12** Применяется ли статистика Дарбина-Уотсона для выявления автокорреляции в следующих моделях
 - 1. $y_t = \beta_1 x_t + \varepsilon_t$
 - 2. $y_t = \beta_1 + \beta_2 x_t + \varepsilon_t$
 - 3. $y_t = \beta_1 + \beta_2 y_{t-1} + \varepsilon_t$
 - 4. $y_t = \beta_1 + \beta_2 t + \beta_3 y_{t-1} + \varepsilon_t$
 - 5. $y_t = \beta_1 t + \beta_2 x_t + \varepsilon_t$
 - 6. $y_t = \beta_1 + \beta_2 t + \beta_3 x_t + \beta_4 x_{t-1} + \varepsilon_t$
- 1.13 По 21 наблюдению была оценена модель линейной регрессии $\hat{y}_{(se)} = 1.2 + 0.9 \cdot y_{t-1} + 0.1 \cdot t$, $R^2 = 0.6$, DW = 1.21. Протестируйте гипотезу об отсутствии автокорреляции ошибок на уровне значимости 5%.
- 1.14 По 24 наблюдениям была оценена модель линейной регрессии $\hat{y} = 0.5 + 2 \atop (se) = (0.01) + (0.02) \cdot t, R^2 = 0.9,$ DW = 1.3. Протестируйте гипотезу об отсутствии автокорреляции ошибок на уровне значимости 5%.
- 1.15 По 32 наблюдениям была оценена модель линейной регрессии $\hat{y}=10+2.5\cdot t-0.1\cdot t^2,$ $R^2=0.75,\,DW=1.75.$ Протестируйте гипотезу об отсутствии автокорреляции ошибок на уровне значимости 5%.

Стационарные процессы, ARMA

- **2.1** Запишите процесс $y_t = 4 + 0.4y_{t-1} + 0.3\varepsilon_{t-1} + \varepsilon_t$ с помощью оператора лага.
- **2.2** Пусть X_t , $t=0,1,2,\ldots$ случайный процесс и $Y_t=(1+L)^tX_t$. Выразите X_t с помощью Y_t и оператора лага L.
- **2.3** Пусть F_n последовательность чисел Фибоначчи. Рассмотрим величину

$$\frac{F_{101} + C_5^1 F_{102} + C_5^2 F_{103} + C_5^3 F_{104} + C_5^4 F_{105} + C_5^5 F_{106}}{F_{111}}$$

- 1. Запишите величину с помощью оператора лага
- 2. Упростите величину
- **2.4** Пусть $X_t, t = \ldots -2, -1, 0, 1, 2, \ldots$ случайный процесс. И $Y_t = X_{-t}$. Какое рассуждение верно?
 - 1. $LY_t = LX_{-t} = X_{-t-1}$;
 - 2. $LY_t = Y_{t-1} = X_{-t+1}$:
 - 3. $X_tLY_t = X_tY_{t-1}$;
 - 4. $X_t L Y_t = X_{t-1} Y_t$;
- **2.5** Пусть Y_t стационарный процесс. Верно ли, что стационарны:
 - 1. $Z_t = 2Y_t$
 - 2. $Z_t = Y_t + 1$
 - 3. $Z_t = \Delta Y_t$
 - 4. $Z_t = 2Y_t + 3Y_{t-1}$
- **2.6** Известно, что временной ряд Y_t порожден стационарным процессом, задаваемым соотношением $Y_t = 1 + 0.5 Y_{t-1} + \varepsilon_t$. Имеется 1000 наблюдений.

Вася построил регрессию Y_t на константу и Y_{t-1} . Петя построил регрессию на константу и Y_{t+1} .

Как примерно будут соотносится между собой их оценки коэффициентов?

- **2.7** Правильный кубик подбрасывают три раза, обозначим результаты подбрасываний X_1 , X_2 и X_3 . Также ввёдем обозначения для сумм $L=X_1+X_2$, $R=X_2+X_3$ и $S=X_1+X_2+X_3$.

- 2. Какие из корреляций по модулю равны единице?
- 3. Найдите все упомянутые обычные и частные корреляции.
- **2.8** Известно, что ε_t белый шум. У каких разностных уравнений есть слабо стационарные решения?

```
1. y_t = 1 + \varepsilon_t + 0.5\varepsilon_{t-1} + 0.25\varepsilon_{t-2}

2. y_t = -2y_{t-1} - 3y_{t-2} + \varepsilon_t + \varepsilon_{t-1}

3. y_t = -0.5y_{t-1} + \varepsilon_t

4. y_t = 1 - 1.5y_{t-1} - 0.5y_{t-2} + \varepsilon_t - 1.5\varepsilon_{t-1} - 0.5\varepsilon_{t-2}

5. y_t = 1 + 0.64y_{t-2} + \varepsilon_t + 0.64\varepsilon_{t-1}

6. y_t = 1 + t + \varepsilon_t

7. y_t = 1 + y_{t-1} + \varepsilon_t
```

- 2.9 Рассмотрим модель $y_t = \mu + \varepsilon_t$, где ε_t стационарный AR(1) процесс $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$ с $u_t \sim N(0, \sigma^2)$. Найдите условную логарифмическую функцию правдоподобия $l(\mu, \rho, \sigma^2|y_1)$.
- **2.10** Известно, что ε_t белый шум. Классифицируйте в рамках классификации ARIMA процесс $y_t = 1 + \varepsilon_t + 0.5\varepsilon_{t-1} + 0.4\varepsilon_{t-2} + 0.3\varepsilon_{t-3} + 0.2y_{t-1} + 0.1y_{t-2}$.
- 2.11 На графике представлены данные по уровню озера Гуро́н в футах в 1875-1972 годах:

```
level <- LakeHuron

df <- data.frame(level, obs = 1875:1972)

n <- nrow(df) # used later for answers

v.acf <- acf(level, plot = FALSE)$acf

v.pacf <- pacf(level, plot = FALSE)$acf

acfs.df <- data.frame(lag = c(1:15, 1:15),

acf = c(v.acf[2:16], v.pacf[1:15]),

acf.type = rep(c("ACF", "PACF"), each = 15))

model <- arima(level, order = c(1, 0, 1))

resids <- model$residuals

resid.acf <- acf(resids, plot = FALSE)$acf
```

```
tikz("../R_plots/huron_ts.tikz", standAlone = FALSE, bareBones = TRUE)
ggplot(df, aes(x = obs, y = level)) + geom_line() +
labs(x = "Год", y = "Уровень озера (футы)")
dev.off()
```

График автокорреляционной и частной автокорреляционной функций:

```
geom_histogram(position = "dodge", stat = "identity")+

slab("Лаг") + ylab("Корреляция") +

geom_hline(yintercept = 1.96 / sqrt(nrow(df)))+

geom_hline(yintercept = -1.96 / sqrt(nrow(df)))
```

- 1. Судя по графикам, какие модели класса ARMA или ARIMA имеет смысл оценить?
- 2. По результатам оценки некоей модели ARMA с двумя параметрами, исследователь посчитал оценки автокорреляционной функции для остатков модели. Известно, что для остатков модели первые три выборочные автокорреляции равны соответственно 0.00467, -0.0129 и -0.063. С помощью подходящей статистики проверьте гипотезу о том, что первые три корреляции ошибок модели равны нулю.
- **2.12** Процесс x_t это процесс y_t , наблюдаемый с ошибкой, т.е. $x_t = y_t + \nu_t$. Ошибки ν_t являются белым шумом и не коррелированы с y_t .
 - 1. Является ли процесс x_t MA(1) процессом, если y_t MA(1) процесс? Если да, то как связаны их автокорреляционные функциии?
 - 2. Является ли процесс x_t стационарным AR(1) процессом, если y_t стационарный AR(1) процесс? Если да, то как связаны их автокорреляционные функциии?
- **2.13** Пусть ε_t белый шум. Рассмотрим процесс $y_t = 2 + 0.5y_{t-1} + \varepsilon_t$ с различными начальными условиями, указанными ниже.
 - 1. Найдите $\mathbb{E}(y_t)$, \mathbb{V} ar (y_t) и определите, является ли процесс стационарным, если:
 - (a) $y_1 = 0$
 - (b) $y_1 = 4$
 - (c) $y_1 = 4 + \varepsilon_1$
 - (d) $y_1 = 4 + \frac{2}{\sqrt{3}}\varepsilon_1$
 - 2. Как точно следует понимать фразу «процесс $y_t = 2 + 0.5y_{t-1} + \varepsilon_t$ является стационарным»?
- **2.14** Верно ли, что при удалении из стационарного ряда каждого второго наблюдения получается стационарный ряд?
- **2.15** У эконометрессы Ефросиньи был стационарный ряд. Ей было скучно и она подбрасывала неправильную монетку, выпадающую орлом с вероятностью 0.7. Если выпадал орёл, она оставляла очередной y_t , если решка то зачёркивала. Получается ли у Ефросиньи стационарный ряд?
- **2.16** Имеется временной ряд, ε_1 , ε_2 , ..., ε_{101} . Величины ε_t нормально распределены, $N(0,\sigma^2)$, и независимы. Построим график этого процесса.
 - 1. Является ли этот процесс белым шумом?
 - 2. Сколько в среднем раз график пересекает ось абсцисс?
 - 3. Оцените вероятность того, что график пересечет ось абсцисс более 60 раз.
- **2.17** Рассмотрим стационарный AR(1) процесс $y_t = \rho y_{t-1} + \varepsilon_t$, где $\varepsilon_t \sim N(0,1)$. Имеется ряд y_1, y_2, \dots, y_{101} . Построен график этого процесса. Как от ρ зависит математическое ожидание количества пересечений графика с осью абсцисс?
- 2.18 Рассмотрим процессы:

А Процесс скользящего среднего:

$$y_t = \varepsilon_t + 2\varepsilon_{t-1} + 3$$

В

$$a_t = \varepsilon_t + \varepsilon_1 + 3$$

C

$$b_t = t\varepsilon_t + 3$$

D

$$c_t = \cos\left(\frac{\pi t}{2}\right) arepsilon_1 + \sin\left(\frac{\pi t}{2}\right) arepsilon_2 + 2$$

Е Процесс случайного блуждания со смещением:

$$\begin{cases} z_t = \varepsilon_t + z_{t-1} + 3 \\ z_0 = 0 \end{cases}$$

F Процесс с трендом:

$$w_t = 2 + 3t + \varepsilon_t$$

G Еще один процесс:

$$r_t = egin{cases} 1, \ \mbox{при четных t} \ -1, \ \mbox{при нечетных t} \end{cases}$$

Н Приращение случайного блуждания

$$s_t = \Delta z_t$$

I Приращение процесса с трендом

$$d_t = \Delta w_t$$

Для каждого процесса:

- 1. Найдите $\mathbb{E}(y_t)$, $\mathbb{V}ar(y_t)$
- 2. Найдите $\gamma_k = \mathbb{C}\text{ov}(y_t, y_{t-k})$
- 3. Найдите $\rho_k = \mathbb{C}\mathrm{orr}(y_t, y_{t-k})$. Если ни одна корреляция ρ_k не зависит от времени t, то постройте график зависимости ρ_k от k.
- 4. Является ли процесс стационарным?
- 5. Сгенерируйте одну реализацию процесса. Постройте её график и график оценки автокорреляционной функции.
- **2.19** Эконометресса Антуанетта построила график автоковариационной функции временного ряда и распечатала его:

здесь график

Потом она с ужасом обнаружила, что до презентации исследования остается совсем мало времени, а распечатать надо было график автокорреляционной функции. Что надо исправить Антуанетте на графике, чтобы успеть еще сделать причёску и макияж (это очень важно для презентации)?

- 2.20 Рассмотрите стационарные процессы
 - A. AR(1): $y_t = 5 + 0.3y_{t-1} + \varepsilon_t$
 - B. AR(2): $y_t = 5 + 0.3y_{t-1} + 0.1y_{t-2} + \varepsilon_t$
 - C. MA(1): $y_t = 5 + 0.3\varepsilon_{t-1} + \varepsilon_t$
 - D. MA(2): $y_t = 5 + 0.3\varepsilon_{t-1} + 0.9\varepsilon_{t-2} + \varepsilon_t$
 - E. ARMA(1, 1): $y_t = 5 + 0.3y_{t-1} + 0.4\varepsilon_{t-1} + \varepsilon_t$

Если возможно, то представьте каждый процесс в виде:

- 1. $MA(\infty)$.
- 2. $AR(\infty)$.
- 3. $y_t = c + \gamma_1 y_{t-1} + u_t$, где u_t некоррелирован с y_{t-1} . Будет ли u_t белым шумом?
- 4. $y_t = c + \gamma_1 y_{t+1} + u_t$, где u_t некоррелирован с y_{t+1} . Будет ли u_t белым шумом?
- 5. $y_t = c + \gamma_1 y_{t-1} + \gamma_2 y_{t-2} + u_t$, где u_t некоррелирован с y_{t-1} и y_{t-2} . Будет ли u_t белым шумом?
- 6. $y_t = c + \gamma_1 y_{t+1} + \gamma_2 y_{t+2} + u_t$, где u_t некоррелирован с y_{t+1} и y_{t+2} . Будет ли u_t белым шумом?
- 2.21 Рассмотрите стационарные процессы
 - A. AR(1): $y_t = 5 + 0.3y_{t-1} + \varepsilon_t$
 - B. AR(2): $y_t = 5 + 0.3y_{t-1} + 0.1y_{t-2} + \varepsilon_t$
 - C. MA(1): $y_t = 5 + 0.3\varepsilon_{t-1} + \varepsilon_t$
 - D. MA(2): $y_t = 5 + 0.3\varepsilon_{t-1} + 0.9\varepsilon_{t-2} + \varepsilon_t$
 - E. ARMA(1, 1): $y_t = 5 + 0.3y_{t-1} + 0.4\varepsilon_{t-1} + \varepsilon_t$

Для каждого из процессов:

- 1. Найдите математическое ожидание $\mathbb{E}(y_t)$.
- 2. Найдите первые три значения автокорреляционной функции ρ_1 , ρ_2 , ρ_3 .
- 3. Найдите первые три значения частной автокорреляционной функции $\phi_{11}, \phi_{22}, \phi_{33}$.
- **2.22** Известна автокорреляционная функция процесса (y_t) : $\rho_1=0.7, \rho_2=0.3,$ и $\rho_k=0$ при $k\geq 3.$ Кроме того, $\mathbb{E}(y_t)=4.$ Выпишите возможные уравнения процесса.
- **2.23** Известна частная автокорреляционная функция процесса (y_t) : $\phi_{11}=0.7, \, \phi_{22}=0.3, \, \text{и} \, \phi_{kk}=0$ при $k\geq 3.$ Кроме того, $\mathbb{E}(y_t)=4.$ Выпишите возможные уравнения процесса.
- **2.24** Если возможно, то найдите процесс с данной автокорреляционной или частной автокорреляционной функцией.
 - 1. ACF = (0.9, -0.9, 0, 0, 0, ...);
 - 2. PACF = (0.9, -0.9, 0, 0, 0, ...);
 - 3. PACF = (0.9, 0, 0, 0, 0, ...);
 - 4. PACF = (0, 0.9, 0, 0, 0, 0, ...);
 - 5. $ACF = (0.9, 0, 0, 0, 0, \dots);$
 - 6. ACF = (0, 0.9, 0, 0, 0, 0, ...);
- **2.25** Рассмотрим стационарный процесс $y_t = 4 + 0.7y_{t-1} 0.12y_{t-2} + \varepsilon_t$, где ε_t белый шум, причём $\mathbb{C}\text{ov}(\varepsilon_t, y_{t-k}) = 0$ при $k \geq 1$.
 - 1. Найдите автокорреляционную функцию: ρ_1 , ρ_2 и общую формулу для ρ_k .
 - 2. Найдите $\lim_{k\to\infty} \rho_k$.
 - 3. Найдите частную автокорреляционную функцию: $\phi_{11}, \phi_{22}, ...$
- 2.26 Рассмотрим стационарный процесс с уравнением

$$y_t = 10 + 0.69y_{t-1} + \varepsilon_t - 0.71\varepsilon_{t-1}$$
.

Выпишите гораздо более простой процесс со свойствами близкими к свойствам данного процесса.

2.27 Процесс ε_t — белый шум. Рассмотрим уравнение

$$y_t = 0.5y_{t-1} + \varepsilon_t$$
.

Какие из указанных процессов (y_t) являются его решением? Стационарным решением?

- 1. $y_t = 0.5^t$;
- 2. $y_t = \sum_{i=0}^{\infty} 0.5^i \varepsilon_{t-i};$
- 3. $y_t = 0.5^t + \sum_{i=0}^{\infty} 0.5^i \varepsilon_{t-i}$;
- 4. $y_t = 0.5^t \varepsilon_{100} + \sum_{i=0}^{\infty} 0.5^i \varepsilon_{t-i};$
- 5. $y_t = 0.5^t + \sum_{i=0}^t 0.5^i \varepsilon_{t-i}$;
- 6. $y_t = \sum_{i=0}^t 0.5^i \varepsilon_{t-i};$
- **2.28** Рассмотрим стационарный процесс y_t , задаваемый уравнением

$$y_t = 2 + 0.6 \cdot y_{t-1} - 0.08 y_{t-2} + \varepsilon_t$$

где $\varepsilon_t \sim \mathcal{N}(0;4)$.

- 1. Найдите $\mathbb{E}_t(y_{t+1})$, \mathbb{V} ar $_t(y_{t+1})$
- 2. Найдите $\mathbb{E}_t(y_{t+2})$, \mathbb{V} ar $_t(y_{t+2})$
- 3. Постройте 95%-ый предиктивный интервал для y_{102} , если $y_{99}=5$, $y_{100}=5.1$
- 4. Найдите $\mathbb{E}(y_t)$, $\mathbb{V}ar(y_t)$
- 5. Найдите $\lim_{h\to\infty} \mathbb{E}_t(y_{t+h})$, $\lim_{h\to\infty} \mathbb{V}\mathrm{ar}_t(y_{t+h})$
- 2.29 Задан процесс $y_t=7+u_t+0.2u_{t-1}$, где u_t независимы и нормальны $u_t\sim\mathcal{N}(0;4)$. Известно, что $y_{100}=7.2,\,u_{100}=1.3,\,y_{100}+(-0.2)y_{99}+(-0.2)^2y_{98}+\ldots+(-0.2)^{99}y_1=5.6.$

Пусть
$$\mathcal{F}_t = \sigma(y_t, y_{t-1}, \dots, y_1, u_t, u_{t-1}, \dots, u_1)$$
 и $\mathcal{H}_t = \sigma(y_t, y_{t-1}, \dots, y_1)$.

- 1. Найдите $\mathbb{E}(y_{101}|\mathcal{F}_{100})$, \mathbb{V} ar $(y_{101}|\mathcal{F}_{100})$.
- 2. С помощью $AR(\infty)$ представления примерно найдите $\mathbb{E}(y_{101}|\mathcal{H}_{100})$, \mathbb{V} ar $(y_{101}|\mathcal{H}_{100})$. Постройте 95%-ый предиктивный интервал для y_{101} .
- 3. Найдите $\mathbb{E}(y_{101}|y_{100})$, \mathbb{V} ar $(y_{101}|y_{100})$.
- 4. Найдите $\mathbb{E}(y_{101}|y_{100},y_{99})$, \mathbb{V} ar $(y_{101}|y_{100},y_{99})$.
- **2.30** Величины x_t независимы и равновероятно принимают значения 0 и 1. Величины Y_t независимы и нормальны $\mathcal{N}(0;24)$. Процессы (x_t) и (y_t) независимы. Для каждого из пунктов ответьте на три вопроса. Верно ли, что величины z_t одинаково распределены? Верно ли, что они независимы? Верно ли, что процесс (z_t) белый шум?
 - 1. $z_t = x_t(1 x_{t-1})y_t$;
 - 2. $z_t = y_{t-1}y_t$;
- **2.31** Величина Z равновероятно принимает значения 0 и 1. Условное распределение вектора $X=(X_1,X_2)$ при известном Z известно:

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} | Z = 0 \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} | Z = 1 \sim \mathcal{N} \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}; \begin{pmatrix} 4 & -1 \\ -1 & 9 \end{pmatrix} \right)$$

Найдите

- 1. Частную корреляцию $p\mathbb{C}orr(X_1, X_2; Z)$;
- 2. Условную корреляцию \mathbb{C} orr $(X_1, X_2|Z)$;
- **2.32** У исследовательницы Аграфены три наблюдения, $y_1=0.1, y_2=-0.2, y_3=0.2$. Аграфена предполагает, что данные подчиняются стационарному AR(1) процессу $y_t=\beta y_{t-1}+u_t$, где $u_t\sim\mathcal{N}(0;\sigma_u^2)$.
 - 1. Найдите $\mathbb{E}(y_1)$, $\mathbb{E}(y_2|y_1)$, $\mathbb{E}(y_3|y_2)$;
 - 2. Найдите $Var(y_1)$, $Var(y_2|y_1)$, $Var(y_3|y_2)$;
 - 3. Найдите функции плотности $f(y_1)$, $f(y_2|y_1)$, $f(y_3|y_2)$;
 - 4. Выпишете полную логарифмическую функцию правдоподобия $\ell(y|\beta,\sigma_y^2)$.
 - 5. Если возможно, явно решите задачу максимизации полного правдоподобия.
 - 6. Выпишите условную логарифмическую функцию правдоподобия $\ell(y_2, y_3 | \beta, \sigma_u^2, y_1)$.
 - 7. Если возможно, явно решите задачу максимизации условного правдоподобия при фиксированном y_1 .
- **2.33** Белые шумы u_t и v_t независимы, $\mathbb{V}\mathrm{ar}(u_t) = 1$, $\mathbb{V}\mathrm{ar}(v_t) = 1$. Рассмотрим процесс $y_t = 5u_{t-1} 4v_{t-1} + u_t + v_t$.
 - 1. Выпишите классическое представление процесса y_t как ARMA-процесса.
 - 2. Выразите белый шум из полученного классического представления y_t через белые шумы (u_t) и (v_t) .

можно подобрать цифры, чтобы коэффициент был хороший:)

GARCH

Положение GARCH-модели среди классических моделей временных рядов

$$Y_{t} = c + \sum_{i=1}^{p} \phi_{i} Y_{t-i} + \varepsilon_{t} + \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j} + \sum_{j=1}^{k} \beta_{j} X_{tj},$$

$$\varepsilon_{t} = \sigma_{t} \cdot \xi_{t},$$

$$\sigma_{t}^{2} = \omega + \sum_{i=1}^{s} \delta_{i} \sigma_{t-i}^{2} + \sum_{j=1}^{r} \gamma_{j} \varepsilon_{t-j}^{2}.$$

- при $s=0,\,r=0,\,k=0$ ARMAX/GARCH это классическая ARMA(p,q)-модель,
- при s=0, r=0 ARMAX/GARCH это ARMA(p,q)-модель, в которой в качестве объясняющих переменных дополнительно включены экзогенные ряды $\{X_{t1}\},...,\{X_{tk}\}$.

Пример использования GARCH-модели

Пусть P_t — цена акции, фьючерса или значение некоторого индекса цен финансовых инструментов в момент времени t.

- простой доходностью называется $\frac{P_t P_{t-1}}{P_{t-1}}$,
- логарифмической доходностью называется $\ln \frac{P_t}{P_{t-1}}$.

Связь между простой и логарифмической доходностью

$$\ln \frac{P_t}{P_{t-1}} = \ln \left(\frac{P_{t-1} + P_t - P_{t-1}}{P_{t-1}} \right) = \ln \left(1 + \frac{P_t - P_{t-1}}{P_{t-1}} \right).$$

Используя формулу Тейлора $\ln(1+x)=x+o(x)$ при $x\to 0$, можем записать следующее приближенное равенство:

$$\ln \frac{P_t}{P_{t-1}} \approx \frac{P_t - P_{t-1}}{P_{t-1}}$$

при малых значениях простой доходности $\frac{P_t - P_{t-1}}{P_{t-1}}$.

В финансовой математике, как правило, используется логарифмическая доходность. Это связано с тем, что

$$\ln \frac{P_T}{P_0} = \ln \frac{P_1}{P_0} + \ln \frac{P_2}{P_1} + \dots + \ln \frac{P_T}{P_{T-1}},$$

т. е. логарифмическая доходность за период [0;T] есть сумма логарифмических доходностей за периоды $[0;1],[1;2],\ldots,[T-1;T].$

18 Глава 3. GARCH

• В качестве зависимой переменной Y_t возьмём логарифмическую доходность $\ln \frac{P_t}{P_{t-1}}$ интересующего нас финансового инструмента.

• Простейшая модель для расчёта и прогнозирования волатильности — ARMAX(p=0,q=0,k=0)/GARCH(s=1,r=1)-модель:

$$Y_t = c + \varepsilon_t,$$

$$\varepsilon_t = \sigma_t \cdot \xi_t,$$

$$\sigma_t^2 = \omega + \delta \cdot \sigma_{t-1}^2 + \gamma \cdot \varepsilon_{t-1}^2,$$

• Дальнейшее изложение будем вести на примере данной модели.

Определение 3.1. Пусть $\omega > 0, \, \delta \geq 0, \, \gamma \geq 0, \, \delta + \gamma < 1$ — некоторые параметры, а $\sigma_0, \, \xi_0, \, \xi_1, \, \xi_2, \dots$ — независимые случайные величины такие, что

$$\mathbb{E}\sigma_0^2 = \frac{\omega}{1 - \delta - \gamma}, \quad \mathbb{E}\xi_t = 0, \quad \mathbb{E}\xi_t^2 = 1, \quad t \ge 1.$$

В этом случае говорят, что последовательность случайных величин $\{\varepsilon_t\}_{t=0}^{\infty}$ образует GARCH(1,1)-процесс, если выполнены следующие соотношения:

$$\varepsilon_0 = \sigma_0 \cdot \xi_0,$$

$$\varepsilon_t = \sigma_t \cdot \xi_t, \quad \sigma_t^2 = \omega + \delta \cdot \sigma_{t-1}^2 + \gamma \cdot \varepsilon_{t-1}^2, \quad t \ge 1.$$

Напомним определения слабо стационарного процесса и белого шума.

Определение 3.2. Случайный процесс $\{X_t\}_{t=0}^\infty$ называется слабо стационарным, если

- 1. $\mathbb{E}X_t^2 < \infty$ для всех $t \ge 0$;
- 2. $\mathbb{E}X_t = \mathbb{E}X_s$ для всех $t, s \geq 0$;
- 3. $D X_t = D X_s$ для всех t, s > 0;
- 4. $\operatorname{cov}(X_{t+h}, X_{s+h}) = \operatorname{cov}(X_t, X_s)$ для всех $t, \, s \geq 0$ и любого h такого, что $t+h \geq 0$ и $s+h \geq 0$.

Определение 3.3. Слабо стационарный процесс $\{X_t\}_{t=0}^{\infty}$ называется белым шумом, если $\mathbb{E}X_t=0$ и $\mathrm{cov}(X_t,X_s)=0$ при $t,\,s\geq 0,\,t\neq s.$

Ниже мы покажем, что GARCH(1,1)-процесс $\{\varepsilon_t\}_{t=0}^\infty$ является белым шумом.

Лемма 3.1. Пусть случайные величины X_1,\ldots,X_m и Y_1,\ldots,Y_n независимы в совокупности. Тогда для любых (борелевских) функций $f\colon \mathbb{R}^m \to \mathbb{R}^1$ и $g\colon \mathbb{R}^n \to \mathbb{R}^1$ случайные величины $U=f(X_1,\ldots,X_m)$ и $V=g(Y_1,\ldots,Y_n)$ независимы.

Доказательство. См., например, Ширяев А. Н. [5], гл. II, § 6, стр. 256.

Лемма 3.2. Пусть независимые случайные величины X и Y имеют конечное математическое ожидание. Тогда

- (i) математическое ожидание случайной величины $X \cdot Y$ конечно;
- (ii) $\mathbb{E}[X \cdot Y] = \mathbb{E}X \cdot \mathbb{E}Y$.

Доказательство. См. Ширяев А. Н. [5], гл. II, § 6, стр. 267, теорема 6.

Пемма 3.3. Пусть случайные величины X^2 и Y^2 имеют конечное математическое ожидание. Тогда случайная величина $X \cdot Y$ также имеет конечное математическое ожидание.

Доказательство. В силу свойства математического ожидания $|\mathbb{E}Z| \leq \mathbb{E}|Z|$ и неравенства $|X\cdot Y| \leq \frac{1}{2}\cdot X^2 + \frac{1}{2}\cdot Y^2$ получаем:

$$|\mathbb{E}[X \cdot Y]| \le \mathbb{E}|X \cdot Y| \le \frac{1}{2} \cdot \mathbb{E}X^2 + \frac{1}{2} \cdot \mathbb{E}Y^2 < \infty.$$

Лемма 3.4. Для любого $t \geq 0$ случайные величины σ_t и ξ_t независимы.

Доказательство. При t=0 независимость случайных величин σ_0 и ξ_0 содержится непосредственно в определении GARCH(1,1)-процесса.

При t=1 независимость σ_1 и ξ_1 следует из того, что случайные величины σ_0 , ξ_0 , ξ_1 независимы в совокупности, и того, что $\sigma_1=\sqrt{\omega+\delta\cdot\sigma_0^2+\gamma\cdot\sigma_0^2\cdot\xi_0^2}$, т. е. σ_1 является функцией от σ_0 , ξ_0 .

Независимость σ_t и ξ_t при $t\geq 2$ обосновывается аналогично тому, как это сделано при t=1. Действительно, σ_t есть функция от $\sigma_0,\xi_0,\xi_1,\ldots,\xi_{t-1}$, при этом величины $\sigma_0,\xi_0,\xi_1,\ldots,\xi_t$ независимы в совокупности.

Утверждение 3.1. Пусть последовательность случайных величин $\{\varepsilon_t\}_{t=0}^{\infty}$ образует GARCH(1,1)-процесс. Тогда для любого $t \geq 0$

- (i) $\mathbb{E}\varepsilon_t^2 < \infty$;
- (ii) $\mathbb{E}\varepsilon_t = 0$;
- (iii) $\mathbb{E}\varepsilon_t^2 = \frac{\omega}{1-\delta-\gamma}$;
- (iv) $cov(\varepsilon_t, \varepsilon_s) = 0$ npu $t \neq s, s \geq 0$.

Доказательство. (i) (t=0) По условию случайные величины σ_0^2 и ξ_0^2 имеют конечное математическое ожидание. При этом независимость σ_0^2 и ξ_0^2 вытекает из независимости σ_0 и ξ_0 . Следовательно, в силу леммы 2 случайная величина $\varepsilon_0^2 = \sigma_0^2 \cdot \xi_0^2$ имеет конечное математическое ожидание.

- (t=1) Согласно лемме 4, случайные величины σ_1 и ξ_1 независимы. Значит, σ_1^2 и ξ_1^2 также независимы. Кроме того, по условию, математическое ожидание ξ_1^2 конечно, а конечность $\mathbb{E}\sigma_1^2$ вытекает из конечности $\mathbb{E}\sigma_0^2$, $\mathbb{E}\varepsilon_0^2$ и формулы $\sigma_1^2=\omega+\delta\cdot\sigma_0^2+\gamma\cdot\varepsilon_0^2$. Следовательно, $\varepsilon_1^2=\sigma_1^2\cdot\xi_1^2$ имеет конечное математическое ожидание.
 - $(t \ge 2)$ Доказательство конечности $\mathbb{E}\varepsilon_t^2$ при $t \ge 2$ проводится аналогично случаю t=1.
 - (ii) Для $t \geq 0$ имеем

$$\mathbb{E}\varepsilon_t = \mathbb{E}[\sigma_t \cdot \xi_t] = \mathbb{E}\sigma_t \cdot \mathbb{E}\xi_t = 0.$$

Здесь мы воспользовались независимостью случайных величин σ_t и ξ_t , а также $\mathbb{E}\xi_t=0$.

(iii) (t=0) При t=0 имеем

$$\mathbb{E}\varepsilon_0^2 = \mathbb{E}\sigma_0^2 \cdot \mathbb{E}\xi_0^2 = \frac{\omega}{1 - \delta - \gamma} \cdot 1 = \frac{\omega}{1 - \delta - \gamma}.$$

(t=1) Пусть t=1. По лемме 4 и доказанному выше, получаем

$$\mathbb{E}\varepsilon_1^2 = \mathbb{E}\sigma_1^2 \cdot \mathbb{E}\xi_1^2 = \mathbb{E}\sigma_1^2 = \omega + \delta \cdot \mathbb{E}\sigma_0^2 + \gamma \cdot \mathbb{E}\varepsilon_0^2 =$$

$$=\omega+\delta\cdot\frac{\omega}{1-\delta-\gamma}+\gamma\cdot\frac{\omega}{1-\delta-\gamma}=\frac{\omega}{1-\delta-\gamma}.$$

 $(t \geq 2)$ Доказательство утверждения при $t \geq 2$ выполняется аналогично рассмотренному случаю t=1.

20 Глава 3. GARCH

(iv) Пусть $0 \leq s < t$. Математическое ожидание ξ_t конечно по определению GARCH(1,1)-процесса. Конечность математического ожидания случайной величины $\sigma_t \cdot \varepsilon_s$ следует из конечности $\mathbb{E}\sigma_t^2$ и $\mathbb{E}\varepsilon_s^2$, а также леммы 3.3. Кроме этого, при $0 \leq s < t$ случайные величины ξ_t и $\sigma_t \cdot \varepsilon_s$ независимы. Поэтому

$$cov(\varepsilon_t, \varepsilon_s) = \mathbb{E}[\varepsilon_t \cdot \varepsilon_s] = \mathbb{E}[\xi_t \cdot (\sigma_t \cdot \varepsilon_s)] = \mathbb{E}[\xi_t \cdot \mathbb{E}[\sigma_t \cdot \varepsilon_s]] = 0.$$

Замечание 3.1. В ходе доказательства пункта (i) утверждения 3.1 попутно было установлено, что $\mathbb{E}\sigma_t^2<\infty$ для всех $t\geq 0$.

3.1 Рассмотрим следующий AR(1)-ARCH(1) процесс:

$$Y_t = 1 + 0.5Y_{t-1} + \varepsilon_t, \, \varepsilon_t = \nu_t \cdot \sigma_t$$

 ν_t независимые N(0;1) величины.

$$\sigma_t^2 = 1 + 0.8\varepsilon_{t-1}^2$$

Также известно, что $Y_{100}=2,\,Y_{99}=1.7$

- 1. Найдите $E_{100}(\varepsilon_{101}^2)$, $E_{100}(\varepsilon_{102}^2)$, $E_{100}(\varepsilon_{103}^2)$, $E(\varepsilon_t^2)$
- 2. $Var(Y_t), Var(Y_t|\mathcal{F}_{t-1})$
- 3. Постройте доверительный интервал для Y_{101} :
 - (а) проигнорировав условную гетероскедастичность
 - (b) учтя условную гетерескедастичность
- 3.2 Рассмотрим GARCH(1,2) процесс $\varepsilon_t=\sigma_t\nu_t,$ $\sigma^2=0.2+0.5\sigma_{t-1}^2+0.2\varepsilon_{t-1}^2+0.1\varepsilon_{t-2}^2.$ Найдите безусловную дисперсию $\mathbb{V}\mathrm{ar}(y_t)$
- 3.3 Для GARCH(1,1) процесса $\varepsilon_t = \sigma_t \nu_t, \, \sigma_t^2 = w + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$ найдите $\mathbb{E}(\mathbb{E}(\varepsilon_t^2 | \mathcal{F}_{t-1}))$
- **3.4** Рассмотрим GARCH(1,1) процесс $\varepsilon_t = \sigma_t \nu_t$, $\sigma_t^2 = 0.1 + 0.7 \sigma_{t-1}^2 + 0.2 \varepsilon_{t-1}^2$. Известно, $\sigma_T = 1$, $\varepsilon_T = 1$. Найдите $\mathbb{E}(\sigma_{T+2}^2 | \mathcal{F}_T)$.
- 3.5 Найдите безусловную дисперсию GARCH-процессов

1.
$$\varepsilon_t = \sigma_t \cdot z_t, \, \sigma_t^2 = 0.1 + 0.8\sigma_{t-1}^2 + 0.1\varepsilon_{t-1}^2$$

2.
$$\varepsilon_t = \sigma_t \cdot z_t, \, \sigma_t^2 = 0.4 + 0.7\sigma_{t-1}^2 + 0.1\varepsilon_{t-1}^2$$

3.
$$\varepsilon_t = \sigma_t \cdot z_t, \, \sigma_t^2 = 0.2 + 0.8\sigma_{t-1}^2 + 0.1\varepsilon_{t-1}^2$$

- 3.6 Являются ли верными следующие утверждения?
 - 1. GARCH-процесс является процессом белого шума, условная дисперсия которого изменяется во времени
 - 2. Модель GARCH(1,1) предназначена для прогнозирования меры изменчивости цены финансового инструмента, а не для прогнозирования самой цены инструмента
 - 3. При помощи GARCH-процесса можно устранять гетероскедастичность
 - 4. Безусловная дисперсия GARCH-процесса изменяется во времени
 - 5. Модель GARCH(1,1) может быть использована для прогнозирования волатильности финансовых инструментов на несколько торговых недель вперёд
- **3.7** Рассмотрим GARCH-процесс $\varepsilon_t = \sigma_t \cdot z_t, \, \sigma_t^2 = k + g_1 \sigma_{t-1}^2 + a_1 \varepsilon_{t-1}^2.$ Найдите
 - 1. $\mathbb{E}(z_t)$, $\mathbb{E}(z_t^2)$, $\mathbb{E}(\varepsilon_t)$, $\mathbb{E}(\varepsilon_t^2)$

- 2. $Var(z_t)$, $Var(\varepsilon_t)$, $Var(\varepsilon_t \mid \mathcal{F}_{t-1})$
- 3. $\mathbb{E}(\varepsilon_t \mid \mathcal{F}_{t-1}), \mathbb{E}(\varepsilon_t^2 \mid \mathcal{F}_{t-1}), \mathbb{E}(\sigma_t^2 \mid \mathcal{F}_{t-1})$
- 4. $\mathbb{E}(z_t z_{t-1}), \mathbb{E}(z_t^2 z_{t-1}^2), \mathbb{C}ov(\varepsilon_t, \varepsilon_{t-1}), \mathbb{C}ov(\varepsilon_t^2, \varepsilon_{t-1}^2)$
- 5. $\lim_{h\to\infty} \mathbb{E}(\sigma_{t+h}^2 \mid \mathcal{F}_t)$
- 3.8 Используя 500 наблюдений дневных логарифмических доходностей y_t , была оценена GARCH(1,1)-модель: $\hat{y}_t = -0.000708 + \hat{\varepsilon}_t$, $\varepsilon_t = \sigma_t \cdot z_t$, $\sigma_t^2 = 0.000455 + 0.6424\sigma_{t-1}^2 + 0.2509\varepsilon_{t-1}^2$. Также известно, что $\hat{\sigma}_{499}^2 = 0.002568$, $\hat{\varepsilon}_{499}^2 = 0.000014$, $\hat{\varepsilon}_{500}^2 = 0.002178$. Найдите
 - 1. $\hat{\sigma}_{500}^2$, $\hat{\sigma}_{501}^2$, $\hat{\sigma}_{502}^2$
 - 2. Волатильность в годовом выражении в процентах, соответствующую наблюдению с номером $t=500\,$
- 3.9 Рассмотрим ARCH(1) процесс

$$\begin{cases} y_t = 2 + \varepsilon_t \\ \varepsilon_t = \sigma_t \cdot \nu_t \\ \sigma_t^2 = 10 + 0.5\varepsilon_t^2 \end{cases}$$

- 1. Найдите $Var(y_{101})$, постройте 95%-ый предиктивный интервал для y_{101}
- 2. Известно, что $y_{100}=3$, постройте 95%-ый предиктивный интервал для y_{101}
- 3. Известно, что $y_{100}=12$, постройте 95%-ый предиктивный интервал для y_{101}
- **3.10** Может ли у GARCH процесса условная дисперсия ε_t быть больше, чем безусловная? А меньше, чем безусловная?
- **3.11** Как известно, у GARCH процесса условная дисперсия ε_t может быть как больше, так и меньше безусловной.
 - 1. Имеет ли смысл строить предиктивный интервал для y_t , используя условную дисперсию, если она больше безусловной?
 - 2. При построении предиктивного интервала эконометресса Агнесса использует безусловную дисперсию, если она меньше условной, и условную дисперсию, если она меньше безусловной. Корректно ли поступает Агнесса?
- **3.12** Рассмотрим процесс AR(1)-GARCH(1,1):

$$\begin{cases} y_t = 2 + 0.6y_{t-1} + \varepsilon_t \\ \varepsilon_t = \sigma_t \cdot \nu_t \\ \sigma_t^2 = 6 + 0.4\sigma_{t-1}^2 + 0.2\varepsilon_t^2 \end{cases}$$

Найдите $\mathbb{V}\mathrm{ar}(\varepsilon_t|\mathcal{F}_{t-1})$, $\mathbb{V}\mathrm{ar}(y_t|\mathcal{F}_{t-1})$, $\mathbb{V}\mathrm{ar}(\varepsilon_t)$, $\mathbb{V}\mathrm{ar}(y_t)$

22 Глава 3. GARCH

Единичный корень

4.1 Винни-Пух пытается выявить закономерность в количестве придумываемых им каждый день ворчалок. Винни-Пух решил разобраться, является ли оно стационарным процессом, для этого он оценил регрессию

$$\Delta \hat{y}_t = 4.5 - 0.4 y_{t-1} + 0.7 \Delta y_{t-1}$$

Из-за опилок в голове Винни-Пух забыл, какой тест ему нужно провести, то ли Доктора Ватсона, то ли Дикого Фуллера.

- 1. Аккуратно сформулируйте основную и альтернативную гипотезы
- 2. Проведите подходящий тест на уровне значимости 5%
- 3. Сделайте вывод о стационарности ряда
- 4. Почему Сова не советовала Винни-Пуху пользоваться широко применяемым в Лесу t-распределением?

Векторная авторегрессия

5.1 Рассмотрим систему уравнений:

$$\begin{cases} x_t = -\frac{1}{6}x_{t-1} + \frac{2}{6}y_{t-1} + \varepsilon_{xt} \\ y_t = -\frac{4}{6}x_{t-1} + \frac{1}{6}y_{t-1} + \varepsilon_{yt} \end{cases}$$

- 1. Есть ли у данной системы стационарное решение?
- 2. Если стационарное решение имеется, то найдите $\mathbb{E}(x_t)$ и $\mathbb{E}(y_t)$
- 3. Нарисуйте в осях (x_t, y_t) типичную тракторию стационарного решения
- 5.2 Рассмотрим систему уравнений:

$$\begin{cases} x_t = -0.2x_{t-1} + 0.6y_{t-1} + \varepsilon_{xt} \\ y_t = 1.2x_{t-1} + 0.4y_{t-1} + \varepsilon_{yt} \end{cases}$$

- 1. Есть ли у данной системы коинтегрированное решение?
- 2. Если коинтегрированное решение имеется, то найдите коинтеграционное соотношение и представьте модель в виде модели коррекции ошибок
- 3. Нарисуйте в осях (x_t, y_t) типичную тракторию коинтегрированного решения
- **5.3** Белые шумы ε_t и u_t независимы. Пусть $y_t = 2 0.5t + u_t$, $x_t = 1 + 0.5t + \varepsilon_t$.
 - 1. Является ли процесс $z_t = x_t + y_t$ стационарным?
 - 2. Являются ли процессы x_t и y_t коинтегрированными?
- 5.4 Два процесса (x_y) и (y_t) называются независимыми, если независимы любые случайные величины x_s и y_t .

Докажите каждое утверждение или приведите контр-пример.

- 1. Сумма двух белых шумов является белым шумом.
- 2. Сумма двух независимых белых шумов является белым шумом.
- 3. Сумма двух стационарных процессов стационарна.
- 4. Сумма двух независимых стационарных процессов стационарна.
- 5. Сумма двух нестационарных процессов нестационарна.
- 6. Сумма двух независимых нестационарных процессов нестационарна.
- **5.5** Какие процессы могут быть коинтегрированы: $x_t \sim I(0), y_t \sim I(1), z_t \sim I(2), w_t \sim I(2), s_t \sim I(1)$?

5.6 Белые шумы (ε_t) и (u_t) независимы.

Классифицируйте каждый процесс 1 как ARIMA(p,d,q), определите порядок интеграции каждого процесса и определите, какие пары процессов коинтегрированы:

1.
$$a_t = 0.5a_{t-1} + u_t$$

2.
$$b_t = b_{t-1} + u_t, b_0 = 0$$

3.
$$c_t = 0.5b_t + \varepsilon_t$$

4.
$$d_t = 0.3b_t + a_t$$

5.
$$e_t = e_{t-1} + \varepsilon_t$$

6.
$$g_t = g_{t-1} + b_t$$

7.
$$h_t = 0.7h_{t-1} + b_t$$

5.7 Процессы u_t и ε_t — независимые белые шумы с дисперсиями σ_u^2 и σ_ε^2 . Рассмотрим процессы

$$y_t = \begin{cases} y_{t-1} + \varepsilon_t, \text{ при } t > 0, \\ 0, \text{ при } t = 0; \end{cases}$$

$$z_t = \begin{cases} z_{t-1} + \varepsilon_t + 0.5\varepsilon_{t-1}, \text{ при } t > 0, \\ 0, \text{ при } t = 0; \end{cases}$$

$$w_t = \begin{cases} 0.5w_{t-1} + y_{t-1} + u_t, \text{ при } t > 0, \\ 0, \text{ при } t = 0; \end{cases}$$

$$r_t = \begin{cases} -2y_t + 0.5r_{t-1} + y_{t-1} + u_t, \text{ при } t > 0, \\ r_0, \text{ при } t = 0; \end{cases}$$

- 1. Найдите порядок интеграции каждого процесса;
- 2. Какие пары процессов являются коинтегрированными? Найдите коинтеграционные соотношения для коинтегрированных пар.

 $^{^{1}}$ Если у уравнения не заданы начальные условия, то подразумевается стационарное решение, если оно, конечно, есть.

Модели состояние-наблюдение

- **6.1** Представьте процесс AR(1), $y_t = 0.9y_{t-1} 0.2y_{t-2} + \varepsilon_t$, $\varepsilon \sim$ WN(0;1) в виде модели состояние-наблюдение.
 - 1. Выбрав в качестве состояний вектор $\left(egin{array}{c} y_t \\ y_{t-1} \end{array}
 ight)$
 - 2. Выбрав в качестве состояний вектор $\left(egin{array}{c} y_t \\ \hat{y}_{t,1} \end{array}
 ight)$

Найдите дисперсии ошибок состояний

- 6.2 Представьте процесс MA(1), $y_t = \varepsilon_t + 0.5\varepsilon_{t-1}$, $\varepsilon \sim$ WN(0;1) в виде модели состояние-наблюдение.
 - 1. $\begin{pmatrix} \varepsilon_t \\ \varepsilon_{t-1} \end{pmatrix}$
 - 2. $\begin{pmatrix} \varepsilon_t + 0.5\varepsilon_{t-1} \\ 0.5\varepsilon_t \end{pmatrix}$
- **6.3** Представьте процесс ARMA(1,1), $y_t = 0.5y_{t-1} + \varepsilon_t + \varepsilon_{t-1}$, $\varepsilon \sim$ WN(0;1) в виде модели состояние-наблюдение.

Вектор состояний имеет вид x_t, x_{t-1} , где $x_t = \frac{1}{1-0.5L} \varepsilon_t$

- 6.4 Рекурсивные коэффициенты
 - 1. Оцените модель вида $y_t = a + b_t x_t + \varepsilon_t$, где $b_t = b_{t-1}$.
 - 2. Сравните графики filtered state и smoothed state.
 - 3. Сравните финальное состояние b_T с коэффициентом в обычной модели линейной регрессии, $y_t = a + bx_t + \varepsilon_t$.

Решения и ответы к избранным задачам

1.1. В данном случае статистика DW не применима, так как есть лаг y_{t-1} среди регрессоров.

1.2.

- 1. $\mathbb{E}(\varepsilon_t)=0, \mathbb{V}\mathrm{ar}(\varepsilon_1)=\sigma^2, \mathbb{V}\mathrm{ar}(\varepsilon_t)=2\sigma^2$ при $t\geq 2$. Гетероскедастичная.
- 2. $\mathbb{C}ov(e_t, e_{t+1}) = \sigma^2$. Автокоррелированная.
- 3. $\hat{\beta}$ несмещенная, неэффективная
- 4. Более эффективной будет $\hat{eta}_{gls} = (X'V^{-1}X)^{-1}X'V^{-1}y$, где

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Матрица V известна с точностью до константы σ^2 , но в формуле для $\hat{\beta}_{gls}$ неизвестная σ^2 сократится. Другой способ построить эффективную оценку — применить МНК к преобразованным наблюдениям, т.е. $\hat{\beta}_{gls} = \frac{\sum x_i' y_i'}{\sum x_i'^2}$, где $y_1' = y_1$, $x_1' = x_1$, $y_t' = y_t - y_{t-1}$, $x_t' = x_t - x_{t-1}$ при $t \geq 2$.

1.3.

Для простоты закроем глаза на малое количество наблюдений и как индейцы пираха будем считать, что пять — это много.

1.4. 1. Поскольку имеют место соотношения $\varepsilon_1 = \rho \varepsilon_0 + u_1$ и $Y_1 = \mu + \varepsilon_1$, то из условия задачи получаем, что $\varepsilon_1 \sim N(0, \sigma^2/(1-\rho^2))$ и $Y_1 \sim N(\mu, \sigma^2/(1-\rho^2))$. Поэтому

$$f_{Y_1}(y_1) = \frac{1}{\sqrt{2\pi\sigma^2/(1-\rho^2)}} \exp\left(-\frac{(y_1-\mu)^2}{2\sigma^2/(1-\rho^2)}\right).$$

Далее, найдем $f_{Y_2|Y_1}(y_2|y_1)$. Учитывая, что $Y_2=\rho Y_1+(1-\rho)\mu+u_2$, получаем $Y_2|\{Y_1=y_1\}\sim N(\rho y_1+(1-\rho)\mu,\sigma^2)$. Значит,

$$f_{Y_2|Y_1}(y_2|y_1) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_2 - \rho y_1 - (1-\rho)\mu)^2}{2\sigma^2}\right).$$

Действуя аналогично, получаем, что для всех $t \geq 2$ справедлива формула

$$f_{Y_t|Y_{t-1}}(y_t|y_{t-1}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_t - \rho y_{t-1} - (1-\rho)\mu)^2}{2\sigma^2}\right).$$

Таким образом, находим функцию правдоподобия

$$L(\mu, \rho, \sigma^2) = f_{Y_T, \dots, Y_1}(y_T, \dots, y_1) = f_{Y_1}(y_1) \prod_{t=2}^T f_{Y_t | Y_{t-1}}(y_t | y_{t-1}),$$

где $f_{Y_1}(y_1)$ и $f_{Y_t|Y_{t-1}}(y_t|y_{t-1})$ получены выше.

2. Для нахождения неизвестных параметров модели запишем логарифмическую условную функцию правдоподобия:

$$\begin{split} l(\mu,\rho,\sigma^2|Y_1=y_1) &= \sum_{t=2}^T \log f_{Y_t|Y_{t-1}}(y_t|y_{t-1}) = \\ &= -\frac{T-1}{2} \log(2\pi) - \frac{T-1}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{t=2}^T (y_t - \rho y_{t-1} - (1-\rho)\mu)^2. \end{split}$$

Найдем производные функции $l(\mu, \rho, \sigma^2 | Y_1 = y_1)$ по неизвестным параметрам:

$$\frac{\partial l}{\partial \mu} = -\frac{1}{2\sigma^2} \sum_{t=2}^{T} 2(y_t - \rho y_{t-1} - (1 - \rho)\mu) \cdot (\rho - 1),$$

$$\frac{\partial l}{\partial \rho} = -\frac{1}{2\sigma^2} \sum_{t=2}^{T} 2(y_t - \rho y_{t-1} - (1 - \rho)\mu) \cdot (\mu - y_{t-1}),$$

$$\frac{\partial l}{\partial \sigma^2} = -\frac{T - 1}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{t=2}^{T} (y_t - \rho y_{t-1} - (1 - \rho)\mu)^2.$$

Оценки неизвестных параметров модели могут быть получены как решение следующей системы уравнений:

$$\begin{cases} \frac{\partial l}{\partial \mu} = 0, \\ \frac{\partial l}{\partial \rho} = 0, \\ \frac{\partial l}{\partial \sigma^2} = 0. \end{cases}$$

Из первого уравнения системы получаем, что

$$\sum_{t=2}^{T} y_t - \hat{\rho} \sum_{t=2}^{T} y_{t-1} = (T-1)(1-\hat{\rho})\hat{\mu},$$

откуда

$$\hat{\mu} = \frac{\sum_{t=2}^{T} y_t - \hat{\rho} \sum_{t=2}^{T} y_{t-1}}{(T-1)(1-\hat{\rho})} = \frac{3 - \hat{\rho} \cdot 3}{4 \cdot (1-\hat{\rho})} = \frac{3}{4}.$$

Далее, если второе уравнение системы переписать в виде

$$\sum_{t=2}^{T} (y_t - \hat{\mu} - \hat{\rho}(y_{t-1} - \hat{\mu}))(y_{t-1} - \hat{\mu}) = 0,$$

то легко видеть, что

$$\hat{\rho} = \frac{\sum_{t=2}^{T} (y_t - \hat{\mu})(y_{t-1} - \hat{\mu})}{\sum_{t=2}^{T} (y_{t-1} - \hat{\mu})^2}.$$

Следовательно, $\hat{\rho} = -1/11 = -0.0909$.

Наконец, из третьего уравнения системы

$$\hat{\sigma}^2 = \frac{1}{T-1} \sum_{t=2}^{T} (y_t - \hat{\rho}y_{t-1} - (1-\hat{\rho})\hat{\mu})^2.$$

Значит, $\hat{\sigma}^2=165/242=0.6818$. Ответы: $\hat{\mu}=3/4=0.75$, $\hat{\rho}=-1/11=-0.0909$, $\hat{\sigma}^2=165/242=0.6818$.

1.5. Несмещёнными остаются. Состоятельными не всегда остаются, например, состоятельность исчезает, если все случайные ошибки тождественно равны между собой.

- 1.6.
 - 1.7.
 - 1.8.
 - 1.9.
 - 1. $\mathbb{E}(\varepsilon_t) = 0$, $\mathbb{V}ar(\varepsilon_t) = \sigma^2/(1 \rho^2)$
 - 2. $\mathbb{C}\text{ov}(\varepsilon_t, \varepsilon_{t+h}) = \rho^h \cdot \sigma^2/(1-\rho^2)$
 - 3. $\mathbb{C}\operatorname{orr}(\varepsilon_t, \varepsilon_{t+h}) = \rho^h$
- 1.10.
 - 1.11.
 - 1.12.
 - 1.13.
 - 1.14.
 - 1.15.
 - 2.1.

$$(1 - 0.4L)y_t = 4 + (1 + 0.3L)\varepsilon_t$$

- **2.2.** $X_t = (1 L)^t Y_t$
- **2.3**. $F_n = L(1+L)F_n$, значит $F_n = L^k(1+L)^kF_n$ или $F_{n+k} = (1+L)^kF_n$ Ответ: 1

2.4. а — неверно, б — верно, в — верно, г — нет.

2.5. а, б, в, Γ — стационарны

2.6. Они будут примерно одинаковы. Оценка наклона определяется автоковариационной функцией.

2.7.

2.8.

1.
$$y_t = 1 + \varepsilon_t + 0.5\varepsilon_{t-1} + 0.25\varepsilon_{t-2} -$$
 стационарный

2.
$$y_t = -2y_{t-1} - 3y_{t-2} + \varepsilon_t + \varepsilon_{t-1}$$

3.
$$y_t = -0.5y_{t-1} + \varepsilon_t$$
 — стационарный

4.
$$y_t = 1 - 1.5y_{t-1} - 0.5y_{t-2} + \varepsilon_t - 1.5\varepsilon_{t-1} - 0.5\varepsilon_{t-2}$$

5.
$$y_t = 1 + 0.64y_{t-2} + \varepsilon_t + 0.64\varepsilon_{t-1} -$$
 стационарный

6.
$$y_t = 1 + t + \varepsilon_t$$
 — нестационарный

7.
$$y_t = 1 + y_{t-1} + \varepsilon_t$$
 — нестационарный

2.9.

2.10.

ARMA(2,3), ARIMA(2,0,3)

2.11.

- 1. Процесс AR(2), т.к. две первые частные корреляции значимо отличаются от нуля, а гипотезы о том, что каждая последующая равна нулю не отвергаются.
- 2. Можно использовать одну из двух статистик

Ljung-Box =
$$n(n+2)\sum_{k=1}^{3} \frac{\hat{\rho}_k^2}{n-k} = 0.42886$$

Box-Pierce =
$$n \sum_{k=1}^{3} \hat{\rho}_{k}^{2} = 0.4076$$

Критическое значение хи-квадрат распределения с 3-мя степенями свободы для $\alpha=0.05$ равно $\chi^2_{3,crit}=7.81$. Вывод: гипотеза H_0 об отсутствии корреляции ошибок модели не отвергается.

2.12.

- **2.13**. Процесс стационарен только при $y_1=4+\frac{2}{\sqrt{3}}\varepsilon_1$. Фразу нужно понимать как «у стохастического разностного уравнения $y_t=2+0.5y_{t-1}+\varepsilon_t$ есть стационарное решение».
 - 2.14. да, стационарный
 - **2.15**. да, получается
 - **2.16**. да, это белый шум. Величина N распределена биномиально, $Bin(n=100,p=1/2), \mathbb{E}(N)=50.$
- **2.17**. Среднее количество пересечений равно 50 помножить на вероятность того, что два соседних y_t разного знака. Найдём вдвое меньшую вероятность, $\P(y_1 > 0, y_2 < 0)$.
 - 2.18.

$$\mathbb{E}(b_t) = 3$$

$$\mathbb{V}\mathrm{ar}(b_t) = t^2 \sigma_\varepsilon^2$$

$$\mathbb{C}\mathrm{ov}(b_t, b_{t-k}) = 0, k \ge 1$$

$$Corr(b_t, b_{t-k}) = 0, k \ge 1$$

 b_t — нестационарный из-за дисперсии

$$\mathbb{E}(c_t) = 2$$

$$\mathbb{V}\mathrm{ar}(c_t) = \sigma_{arepsilon}^2$$

$$\mathbb{C}\text{ov}(c_t, c_{t-k}) = \cos(\pi k/2)\sigma_{\varepsilon}^2, k \ge 1$$

$$\mathbb{C}\mathrm{orr}(c_t,c_{t-k})=\cos(\pi k/2), k\geq 1$$

 c_t — стационарный

- 2.19. зачеркнуть одну цифру
- 2.20.
- 2.21.
- 2.22.
- 2.23.
- 2.24.

- 1. ACF = (0.9, -0.9, 0, 0, 0, ...) не бывает, так как определитель корреляционной матрицы 3 на 3 отрицательный;
- 2. PACF = (0.9, -0.9, 0, 0, 0, ...) AR(2);
- 3. $PACF = (0.9, 0, 0, 0, 0, ...) y_t = 0.9y_{t-1} + u_t;$
- 4. $PACF = (0, 0.9, 0, 0, 0, 0, ...) y_t = 0.9y_{t-2} + u_t;$
- 5. $ACF = (0.9, 0, 0, 0, 0, \dots)$ не бывает, подозрение падает на MA(1), но решения только с комплексными коэффициентами, геометрически: два угла с косинусом 0.9, то есть примерно по 30 градусов, и они даже в сумме не могут дать перпендикуляр;
- 6. ACF = (0, 0.9, 0, 0, 0, 0, ...) не бывает, если проредить процесс через один, то должна получится невозможная ACF;

В целом PACF может быть любая, http://projecteuclid.org/euclid.aos/1176342881.

- **2.25**. $\phi_{kk} = 0$ при $k \geq 3$.
- **2.26**. Заметим, что $0.69 \approx 0.71$, сокращаем множитель 1 0.7L, получаем $y_t = 100/3 + \varepsilon_t$.
- **2.27**. Стационарным решением является $y_t = \sum_{i=0}^{\infty} 0.5^i \varepsilon_{t-i}$. Решениями также являются: $y_t = 0.5^t + \sum_{i=0}^{\infty} 0.5^i \varepsilon_{t-i}$, $y_t = 0.5^t \varepsilon_{t-i}$, $y_t = 0.5^t \varepsilon_{t-i}$, $y_t = 0.5^t \varepsilon_{t-i}$.

2.28

$$\mathbb{E}_t(y_{t+1})=2+0.6y_{t-1}-0.08y_{t-2}, \mathbb{V}\mathrm{ar}_t(y_{t+1})=4$$
 $\mathbb{E}_t(y_{t+2})=3.2+0.28y_t-0.048y_{t-1}, \mathbb{V}\mathrm{ar}_t(y_{t+2})=1.36\cdot 4$ $\mathbb{E}_{100}(y_{102})=4.388, \mathbb{V}\mathrm{ar}_{100}(y_{102})=5.44.$ Предиктивный интервал $[4.388-1.96\sqrt{5.44};4.388+1.96\sqrt{5.44}]$ $\mathbb{E}(y_t)=\frac{2}{0.48}\approx 4.17$

2.29. Заметим, что \mathbb{V} ar $(u_t|\mathcal{F}_t)=0$. Более того, для обратимого процесса \mathbb{V} ar $(u_t|y_t,y_{t-1},\ldots,y_1)\approx \mathbb{V}$ ar $(u_t|y_t,y_{t-1},\ldots)=0$.

$$\mathbb{E}(y_{101}|y_{100}) = 7 + 0 + 0.2\mathbb{E}(u_{100}|y_{100})$$

$$\mathbb{E}(u_{100}|y_{100}) = \beta_1 + \beta_2 y_{100}$$

$$\beta_2 = \frac{\mathbb{C}\text{ov}(y_{100}, u_{100})}{\mathbb{V}\text{ar}(y_{100})} = 4/4.16, \beta_1 = \mathbb{E}(u_{100}) - \beta_2 \mathbb{E}(y_{100}) = -4 \cdot 7/4.16$$

$$\frac{y_t}{1 + 0.2L} = \frac{7}{1 + 0.2L} + u_t$$

Заметим, что $\frac{7}{1+0.2L}=7/1.2$, так как $L\cdot 7=7$ (вчера семь равнялось семи).

По условию $\frac{y_{100}}{1+0.2L} \approx 5.6$. Знак «примерно равно» возникает из-за замены бесконечной суммы на конечную.

2.30.

- 1. $z_t = x_t(1-x_{t-1})y_t$; Процесс z_t белый шум, $\mathbb{E}(z_t) = 0$, $\mathbb{V}\mathrm{ar}(z_t) = 6$. Величины z_t зависимы. Например, если $z_t \neq 0$, то $z_{t+1} = z_{t-1} = 0$. Величины z_t одинаково распределены.
- 2. $z_t = y_{t-1}y_t$; Процесс z_t белый шум. Величины z_t зависимы. Величины z_t одинаково распределены.

2.31. Проекции: $\tilde{X}_1=X_1+Z; \tilde{X}_2=X_2+Z; \mathbb{E}(X_i|Z)=1-Z; \mathbb{C}\mathrm{ov}(X_i,Z)=-1/4;$ Величина Z имеет распределение Бернулли, поэтому $\mathbb{E}(Z)=1/2$ и $\mathbb{V}\mathrm{ar}(Z)=1/4;$

$$\label{eq:pcorr} \begin{split} \text{p}\mathbb{C}\text{orr}(X_1, X_2; Z) &= \frac{-1/2}{12.5} = -\frac{1}{\sqrt{50}} \\ \mathbb{C}\text{orr}(X_1, X_2|Z) &= -Z/6 \end{split}$$

2.32. $\mathbb{E}(y_1)=0$, $\mathbb{V}\mathrm{ar}(y_1)=\sigma_u^2/(1-\beta^2)$, $\mathbb{E}(y_t|y_{t-1})=\beta y_{t-1}$, $\mathbb{V}\mathrm{ar}(y_t|y_{t-1})=\sigma_u^2$. При максимизации условного правдоподобия получаем:

$$\hat{\beta} = \frac{y_1 y_2 + y_2 y_3}{y_1^2 + y_2^2}$$

- 2.33.
- 3.1.
 - 3.2.
- 3.3.
- 3.4.
- **3.5.** 1, 2, 2
 - 3.6.
 - 3.7.
 - 3.8.
 - 3.9.
 - 3.10. Да, может быть и больше, и меньше.
 - 3.11.
- 3.12.

$$Var(\varepsilon_t | \mathcal{F}_{t-1}) = Var(y_t | \mathcal{F}_{t-1}) = 6 + 0.4\sigma_{t-1}^2 + 0.2\varepsilon_t^2$$
$$Var(\varepsilon_t) = 6/(1 - 0.4 - 0.2) = 6/0.4 = 15$$
$$Var(y_t) = 15/(1 - 0.36)$$

- 4.1.
- 1. H_0 : ряд содержит единичный корень, $\beta=0$; H_a : ряд не содержит единичного корня, $\beta<0$
- 2. ADF = -0.4/0.1 = -4, $ADF_{crit} = -2.89$, H_0 отвергается

- 3. Ряд стационарен
- 4. При верной H_0 ряд не стационарен, и t-статистика имеет не t-распределение, а распределение Дики-Фуллера.
- 5.1.
- **5.2**.
- 5.3.

 z_t стационарный, x_t и y_t не коинтегрированы

- 5.4.
- **5.5.** y_t и s_t ; z_t и w_t .
 - 5.6.
 - 1. $a_t = 0.5a_{t-1} + u_t$, AR(1)
 - 2. $b_t = b_{t-1} + u_t$, $b_0 = 0$, ARIMA(0, 1, 0)
 - 3. $c_t = 0.5b_t + \varepsilon_t$, ARIMA(0, 1, 1)
 - 4. $d_t = d_{t-1} + a_t$, ARIMA(1, 1, 0)
 - 5. $e_t = e_{t-1} + \varepsilon_t$, ARIMA(0, 1, 0)
 - 6. $g_t = g_{t-1} + b_t$, ARIMA(0, 2, 0)
 - 7. $h_t = 0.7h_{t-1} + b_t$, ARIMA(1, 1, 0)

коинтегрированы: b_t , c_t , d_t , h_t .

- 5.7. Процессы y_t и z_t коинтегрированы, $z_t-1.5y_t$ стационарен. Процессы y_t и r_t коинтегрированы, r_t+2y_t стационарен.
 - 6.1.
 - **6.2**.
 - 6.3.
 - 6.4.

Литература

- [1] Greene W. H. Econometric Analysis. Prentice Hall, 2012.
- [2] Francq C., Zakoian J.-M. GARCH models: structure, statistical inference, and financial applications. Wiley, 2010.
- [3] Tsay R. S. Analysis of Financial Time Series. Wiley, 2005.
- [4] Ширяев А. Н. Основы стохастической финансовой математики. Т. 1. М.: ФАЗИС, 2004.
- [5] Ширяев А. Н. Вероятность. Т. 1. М.: МЦНМО, 2007.

Предметный указатель

доходность логарифмическая, 17 доходность простая, 17 процесс GARCH, 18

Список обозначений

Оглавление

1	Автокорреляция ошибок в линейной модели	5
2	Стационарные процессы, ARMA	9
3	GARCH	17
4	Единичный корень	23
5	Векторная авторегрессия	25
6	Модели состояние-наблюдение	27
7	Решения и ответы к избранным задачам	29