ADA

Caminos mínimos en grafos

Analisis y Diseño de Algoritmos

Juan Gutiérrez

June 30, 2022

ADA

ADA

```
Recibe: Un grafo G con longitudes \ell no negativas en las aristas y un vértice
    s \in V(G). Modifica dist de manera que dist(v) guarda la distancia de s a v
    en G.
Dijkstra(G, s)

    for v ∈ V(G)

      dist(v) = \infty
 3: dist(s) = 0
 4: R = Ø
 5: while R \neq V(G)
      Sea v \in V(G) \setminus R tal que dist(v) = \min\{dist(w) : w \in V(G) \setminus R\}
      R = R \cup \{v\}
 7:
      for vz \in E(G)
         if dist(v) + \ell_{vz} < dist(z)
 9:
           dist(z) = dist(v) + \ell_{vz}
10:
```

ADA

Figure 7: Tomada del libro Dasgupta et al, Algorithms

8: 9:

10:

ADA

Caminos mínimos ei grafos

```
 \begin{array}{lll} \textit{Recibe:} & \text{Un grafo } G \text{ con longitudes } \ell \text{ no negativas en las aristas y un vértice} \\ s \in V(G). & \text{Modifica } \textit{dist} \text{ de manera que } \textit{dist}(v) \text{ guarda la distancia de } s \text{ a } v \\ \text{en } G. \\ \text{DIJKSTRA-FP}(G,s) \\ 1: & \text{for } v \in V(G) \\ 2: & & \textit{dist}(v) = \infty \\ 3: & & \textit{dist}(s) = 0 \\ 4: & Q = V(G) \text{ }/\text{fila de prioidades inicializada} \\ 5: & \text{while } Q \neq \emptyset \\ 6: & v = \text{EXTRACT-MIN}(Q) \\ 7: & & \text{for } vz \in E(G) \\ \end{array}
```

if $dist(v) + \ell_{vz} < dist(z)$

 $dist(z) = dist(v) + \ell_{vz}$ Decrease-Key(Q,z)

ADA

Implementation	deletemin	insert/ decreasekey	$\begin{array}{c c} V \times \mathtt{deletemin} + \\ (V + E) \times \mathtt{insert} \end{array}$
Array	O(V)	O(1)	$O(V ^2)$
Binary heap	$O(\log V)$	$O(\log V)$	$O((V + E)\log V)$
d-ary heap	$O(\frac{d \log V }{\log d})$	$O(\frac{\log V }{\log d})$	$O((V \cdot d + E) \frac{\log V }{\log d})$
Fibonacci heap	$O(\log V)$	O(1) (amortized)	$O(V \log V + E)$

ADA

Figure 9: Tomada del libro Dasgupta et al, Algorithms

ADA

Caminos mínimos ei grafos

Recibe: Un grafo G con longitudes ℓ (positivas o negativas) en las aristas, \mathbf{y} sin ciclos negativos y un vértice $s \in V(G)$. Modifica dist de manera que dist(v) guarda la distancia de s a v en G.

Bellman-Ford(G, s)

- 1: for $v \in V(G)$
- 2: $dist(v) = \infty$
- 3: dist(s) = 0
- 4: for i = 1 hasta V|(G)| 1
- 5: for $uv \in E(G)$
- 6: UPDATE(u, v)

ADA

Figure 10: Tomada del libro Cormen et al, Introduction to Algorithms. El orden de procesamiento es tx, ty, tz, xt, yx, yz, zx, zs, st, sy.

Caminos minimos entre todos los pares

ADA

Caminos mínimos en grafos

Consideremos el siguiente problema.

- Entrada: Grafo dirigido *G* con pesos en los arcos y sin ciclos negativos.
- Salida: Matriz M tal que M[u, v] guarda el peso de un camino mínimo de u a v en G.

Caminos minimos entre todos los pares

ADA

- Si los pesos son no negativos, podemos usar Dijkstra y tendríamos un algoritmo $O(n(n+m)\lg n) = O(nm\lg n)$.
- Si los pesos pueden ser negativos, usamos Bellman-Fordy y tendríamos un algoritmo $O(n^2m)$.

Caminos minimos entre todos los pares

ADA

Caminos mínimos en grafos

Convenciones:

- El conjunto de vértices del grafo en cuestión, V(G), es $\{1, 2, ..., n\}$.
- Los pesos de las aristas son representados por una matriz $W=(w_{ij})$, donde

$$\mathrm{OPT}(i,j,\ell) = \begin{cases} 0 & : \text{ si } \ell = 0 \text{ e } i = j \\ \infty & : \text{ si } \ell = 0 \text{ e } i \neq j \\ \min_{1 \leq k \leq n} \{ \mathrm{OPT}(i,k,\ell-1) + w_{kj} \} & : \text{ si } \ell > 0 \end{cases}$$

ADA

Caminos mínimos e grafos

Se basa en la siguiente propiedad.

Lemma

Todo subcamino de un camino mínimo es mínimo.

ADA

Caminos mínimos en grafos

Para cada par (i,j), sea $\mathsf{OPT}(i,j,\ell)$ el peso de un camino mínimo desde i hacia j que usa como máximo ℓ aristas. Tenemos la sgte recurrencia:

$$\mathrm{OPT}(i,j,\ell) = \begin{cases} 0 & : \mathrm{si}\ \ell = 0\ \mathrm{e}\ i = j \\ \infty & : \mathrm{si}\ \ell = 0\ \mathrm{e}\ i \neq j \\ \min_{1 \leq k \leq n} \{\mathrm{OPT}(i,k,\ell-1) + w_{kj}\} & : \mathrm{si}\ \ell > 0 \end{cases}$$

ADA

Caminos mínimos en grafos

Require: Una matriz W asociada a un grafo G con pesos en las aristas, con n vertices, y sin ciclos negativos.

Ensure: Una matriz que guarda las distancias entre todos los pares de vértices de G.

ALGO-1(W)

- 1: $M^{(1)} \leftarrow W$
- 2: **for** $\ell = 2$ hast n 1
- 3: $M^{(\ell)} \leftarrow \mathsf{CALCULAR}(M^{(\ell-1)}, W)$
- 4: return $M^{(n-1)}$

ADA

```
CALCULAR(M^{(\ell-1)}, W)

1: for i = 1 hast n

2: for j = 1 hast n

3: M_{ij}^{(\ell)} \leftarrow \infty

4: for k = 1 hast n

5: M_{ij}^{(\ell)} \leftarrow \min\{M_{ij}^{(\ell-1)}, M_{ij}^{(\ell-1)} + W_{kj}\}

6: return M^{(\ell)}
```

Segundo algoritmo

ADA

Caminos mínimos en grafos Require: Una matriz W asociada a un grafo G con pesos en las aristas, con n vertices, y sin ciclos negativos.

Ensure: Una matriz que guarda las distancias entre todos los pares de vértices de G.

ALGO-2(W)

- 1: $M^{(1)} \leftarrow W$
- 2: ℓ ← 1
- 3: **while** $\ell < n 1$
- 4: $M^{(2\ell)} \leftarrow \mathsf{CALCULAR}(M^{(\ell)}, M^{(\ell)})$
- 5: $\ell \leftarrow 2\ell$
- 6: return M^{ℓ}

Tercer algoritmo: Floyd-Warshall

ADA

- OPT(i, j, k) = costo de un camino mínimo de i hacia j cuyos vértices internos están en el conjunto $\{1, 2, ..., k\}$.
- k es un vértice interno en P
 En ese caso, existen dos caminos P₁ y P₂ tales que P₁ es un camino de i hacia k y P₂ es un camino de k hacia j.
 Note que todos los vértices internos de P₁ y P₂ están en {1, 2, ..., k 1}.
- k no es un vértice interno en P.
 En ese caso, P es un camino mínimo entre i y j cuyos vértices internos están en {1,..., k 1}.

Tercer algoritmo: Floyd-Warshall

ADA

$$\mathrm{OPT}(i,j,k) = \begin{cases} w_{ij} &: \text{ si } k = 0 \\ \min\{OPT(i,j,k-1), OPT(i,k,k-1) + OPT(k,j,k-1)\} &: \text{ si } k \geq 1 \end{cases}$$

Tercer algoritmo: Floyd-Warshall

ADA

Caminos mínimos ei grafos Require: Una matriz W asociada a un grafo G con pesos en las aristas, con n vertices, y sin ciclos negativos.

Ensure: Una matriz que guarda las distancias entre todos los pares de vértices de G.

```
Floyd-Warshall(W)
```

```
1: M^{(0)} \leftarrow W
```

2: **for**
$$k = 1$$
 hasta n

3: **for**
$$i = 1$$
 hasta n

4: **for**
$$j = 1$$
 hasta n

5:
$$M_{ii}^{(k)} \leftarrow \min\{M_{ii}^{(k-1)}, M_{ik}^{(k-1)} + M_{ki}^{(k-1)}\}$$

6: return
$$M^{(n)}$$

Cuarto algoritmo: Johnson

ADA

- Tiempo de ejecución $O(n^2 \lg n + nm)$. Si el grafo es esparso, este tiempo de ejecución es $O(n^2 \lg n)$: mejor que todos los algoritmos anteriores.
- Idea: cambiar los pesos del grafo de manera tal que los nuevos pesos sean no negativos, a la vez que los caminos mínimos se siguen manteniendo. Luego corre n veces dijkstra.
- No es necesario construir una matriz de pesos para el input.

Cuarto algoritmo: Johnson

ADA

Caminos mínimos er grafos Require: Un grafo G con pesos w en las aristas, con n vertices, y sin ciclos negativos.

Ensure: Una matriz que guarda las distancias entre todos los pares de vértices de G.

 $\mathsf{Johnson}(G, w)$

1:
$$h \leftarrow \mathsf{Calcular} - \mathsf{h}(G, w)$$

3:
$$\hat{w}_{uv} = w_{uv} + h(u) - h(v)$$

4: for cada vértice u

5:
$$dist \leftarrow Dijkstra(G, \hat{w}, u)$$

6: **for** cada vértice *v*

7:
$$M_{uv} \leftarrow dist(v) + h(v) - h(u)$$

8: **return** *M*

Cuarto algoritmo: Johnson

ADA

Caminos mínimos er grafos

Require: Un grafo G con pesos w en las aristas, con n vertices, y sin ciclos negativos.

Ensure: Un arreglo h, indexado por V(G), tal que $h(v) \le h(u) + w_{uv}$ para cada arista uv.

Calcular-h(G, w)

- 1: Sea G' el grafo auxiliar resultante de adicionar un vértice s a G y dar pesos 0 a todas las aristas que salen de s. Sea w' la función de pesos resultante.
- 2: $h \leftarrow \text{Bellman-Ford}(G', w', s)$
- 3: **return** h

ADA

Caminos mínimos en grafos

Gracias