DESIGN AND ANALYSIS OF ALGORITHMS — HT 2019

Problem Sheet 1

Questions marked with * are not intended to be discussed in tutorials, answers to these questions will be posted on the course webpage.

Big-O and other asymptotic notations

Question 1

Let $a(n)=10^6n^2$ and $b(n)=10^n$. Computer A performs 10^6 operations per second; computer B performs 10^{12} operations per second. In the worst case on an instance of size n, an implementation of an algorithm α solves a problem P in a(n) operations on computer A, and an implementation of an algorithm β solves P in b(n) operations on computer B.

- (a) Which instances of P would you solve using the implementation of α on A, and which using the implementation of β on B?
- (b) Estimate how long it would take in the worst case to solve an instance of P of size 30 using α on A and using β on B.

Question 2

* Suppose that k is a positive integer. Show that if $f = O(n^k)$ then there are constants a, b > 0 such that $f(n) \le an^k + b$ for all $n \ge 0$.

Question 3

Give yes/no answers to the following:

	f(n)	g(n)	f = O(g)?	$f = \Omega(g)?$	$f = \Theta(g)$?
a.	n - 100	n - 200			
b.	$n^{1/2}$	$n^{2/3}$			
c.	$100n + \log n$	$n + (\log n)^2$			
d.	$n \log n$	$10n \log 10n$			
e.	$\log 2n$	$\log 3n$			
f.	$n^{0.1}$	$(\log n)^{10}$			
g.	\sqrt{n}	$(\log n)^3$			
h.	$n2^n$	3^n			
i.	2^n	2^{n+1}			
j.	$(\log n)^{\log n}$	$2^{(\log n)^2}$			

Question 4

Show that $\log(n!) = \Theta(n \log n)$.

Recurrences

Question 5

(a) * Suppose that $f_0 = O(1)$ and that for k > 0 and n > 0

$$f_k(n) \leq f_k(n-1) + f_{k-1}(n).$$

Show that $f_k = O(n^k)$ for $k \ge 0$.

(b) * Suppose that $g_0 = \Omega(1)$ and that for k > 0 and n > 0

$$g_k(n) \geq g_k(n-1) + g_{k-1}(n).$$

Show that $g_k = \Omega(n^k)$ for $k \ge 0$.

Ouestion 6

Solve the following recurrences, given T(1) = 1, to obtain asymptotic upper bounds on T(n):

- (a) $T(n) \le 2T(n-1) + n$
- (b) $T(n) \le T(n/2) + n \log n$
- (c) $T(n) \leq T(n-1) + 3n^2$
- (d) $T(n) \le 2T(n/2) + n^2$

Comparison problems: Searching, sorting, selection

Question 7

- (a) Show how to find the largest and the smallest among four integers using four comparisons between integers, that is, four comparisons each of which involves just two integers.
- (b) Hence design a divide-and-conquer algorithm that finds the largest and the smallest among n integers using at most 3n/2-2 comparisons between integers, where $n \geq 2$ is a power of 2. Justify your answer using induction on $k \geq 1$ where $n = 2^k$.

Question 8

A "ternary" search algorithm tests the element at position n/3 for equality with some value x and then possibly checks the element at 2n/3 either discovering x or reducing the set size to one third of the original. Compare this with binary search.

Question 9

Given two sorted lists (stored in arrays) of size n, find an $O(\log n)$ algorithm that computes the n-th largest element in the union of the two lists.

Question 10

* Let $X = \langle x_0, x_1, \dots, x_{n-1} \rangle$ be a *cyclically sorted* sequence of integers, i.e. one where

$$\exists 0 \le j < n \, . \, \forall 0 \le i < n-1 \, . \, x_{(j+i) \bmod n} < x_{(j+i+1) \bmod n}$$

Show that $O(\log n)$ binary comparisons are sufficient to determine whether the sequence X contains the integer z.

Question 11

Describe a $\Theta(n \log n)$ -time algorithm that, given n integers stored in an array $A[1 \dots n]$ and another integer z, determines whether or not there exist $1 \le i, j \le n$ such that A[i] + A[j] = z.

Question 12

Let A[1..n] be an array of n distinct numbers. If i < j and A[i] > A[j] then the pair (i,j) is called an *inversion* of A. Give an algorithm that determines the number of inversions in any permutation on n elements in $\Theta(n \log n)$ worst-case time. (*Hint*. Modify merge sort.) What, if anything, needs to be changed if A may contain duplicates?