Определение 1. Говорят, что последовательность (x_n) точек метрического пространства (M,d) $cxo\partial um$ -cs n a \in M, если для любого ε > 0 найдётся номер N \in \mathbb{N} такой, что если n > N, то $d(x_n,a)$ < ε .

Задача 1. Докажите, что последовательность в метрическом пространстве не может иметь двух различных пределов.

Задача 2. Известно, что $\lim_{n\to\infty}x_n=a,\ \lim_{n\to\infty}y_n=b.$ Верно ли, что $\lim_{n\to\infty}d(x_n,y_n)=d(a,b)$?

Задача 3. Докажите, что если последовательность сходится и предел её лежит внутри некоторого открытого шара, то почти все её члены лежат внутри этого шара.

Задача 4. ($\mathit{Сходимость}\ s\ \mathbb{R}^m$) Рассмотрим арифметическое m-мерное пространство \mathbb{R}^m с евклидовой метрикой. Докажите, что $\lim_{n\to\infty} x_n = a$ если и только если $\forall\, 1\leqslant i\leqslant m\colon \lim_{n\to\infty} x_n^{(i)} = a^{(i)}$ (под $\alpha^{(i)}$ подразумевается i-ая координата точки α).

Задача 5. Какие последовательности являются сходящимися в

а) дискретной метрике; б) *p*-адической метрике?

Задача 6. Рассмотрим пространство M ограниченных на отрезке [a,b] функций с равномерной метрикой. **a)** Докажите, что если $\lim_{n\to\infty} f_n = g$, то для всех $x\in [a,b]$ имеем $\lim_{n\to\infty} f_n(x) = g(x)$. **б)** Верно ли обратное?

Определение 2. Последовательность (x_n) точек метрического пространства (M,d) называется $\phi y n \partial a$ -ментальной, если для любого $\varepsilon > 0$ найдётся номер $N \in \mathbb{N}$ такой, что если m, n > N, то $d(x_m, x_n) < \varepsilon$.

Задача 7. а) Докажите, что любая сходящаяся последовательность является фундаментальной.

б) Верно ли обратное?

Определение 3. Метрическое пространство (M,d) называется *полным*, если любая фундаментальная последовательность в нём сходится.

Задача 8. Докажите, что вещественная прямая с естественной метрикой полна.

Задача 9. Докажите, что пространство C([a,b]) с равномерной метрикой является полным.

Определение 4. Отображение $f: M \to M$ из метрического пространства M в себя называется *сэсимающим*, если найдётся такая константа $0 < \theta < 1$, что для любых $x, y \in M$: $d(f(x), f(y)) < \theta d(x, y)$.

Задача 10. При каких условиях гомотетия на плоскости является сжимающим отображением?

Задача 11. а) Докажите, что сжимающее отображение f полного метрического пространства M имеет неподвижную точку, то есть $\exists \, x \in M \colon f(x) = x$. б) Верно ли это без условия полноты M? (Подсказка к пункту **a**: внапальность f(x) (f(x)) внара последовательность f(x)) внара последовательность f(x) внара

Задача 12. Докажите, что композиция гомотетии с коэффициентом, не равным ± 1 и любого движения имеет неподвижную точку.

Задача 13. (*Метод Ньютона*) Пусть функция $\alpha(x)$ дважды непрерывно дифференцируема (то есть вторая производная непрерывна) на отрезке [a,b], имеет на нём корень \widetilde{x} , причём $\alpha'(x) \neq 0$ всюду на [a,b]. Рассмотрим функцию $f(x) = x - \frac{\alpha(x)}{\alpha'(x)}$.

- а) Докажите, что $\alpha(\widetilde{x}) = 0$ тогда и только тогда, когда $f(\widetilde{x}) = \widetilde{x}$;
- $\mathbf{6}$) Докажите, что f и f' непрерывны;
- в) Докажите, что найдётся такое $\delta > 0$, что f на $U_{\delta}(\widetilde{x})$ осуществляет сжимающее отображение.
- **г)** Что всё это значит и как это применять?
- д) Найдите $\sqrt{2}$ с точностью до трёх знаков после запятой.

1	2	3	4	5 a	5 6	6 a	6 6	7 a	7 6	8	9	10	11 a	11 б	12	13 a	13 б	13 B	13 Г	13 Д