少人数クラス内容報告(中間まとめ)・ 講義内容要約

アドバイザー: 岡田聡一教授

322301150 菊地雄大

1 少人数クラス内容報告(中間まとめ)

M2の春学期の少人数クラスでは、参考文献[1]の第1章から第3章まで読んだ.

1.1 鏡映

この節では、鏡映について定義する. V をユークリッド空間、すなわち、内積 \langle , \rangle を伴った実ベクトル空間とする.

定義 1. $\alpha \in V$ の鏡映 $r_{\alpha}: V \to V$ を

$$r_{\alpha}(x) = x - \langle x, \alpha^{\vee} \rangle, \quad \left(\alpha^{\vee} = \frac{2\alpha}{\langle \alpha, \alpha \rangle}\right)$$

とする.

例. $V = \mathbb{R}^2, \alpha = (1,0)$ とする. このとき.

$$\alpha^{\vee} = \frac{2\alpha}{\langle \alpha, \alpha \rangle} = \frac{2(1,0)}{1^2 + 0^2} = (2,0)$$

任意の $x = (x_1, x_2) \in \mathbb{R}^2$ に対する鏡映 $r_{\alpha}(x)$ は次の通りである.

$$r_{\alpha}(x) = x - \langle x, \alpha^{\vee} \rangle \alpha$$

= $(x_1, x_2) - \langle (x_1, x_2), (2, 0) \rangle (1, 0)$
= $(x_1, x_2) - 2x_1(1, 0)$
= $(-x_1, x_2)$

この鏡映はx を y 軸に関して反転させる操作になる.

命題 1. 鏡映 $r_{\alpha}: V \to V$ に対して, 次が成り立つ.

- 1. $r_{\alpha}^2 = 1$ (ただし, 1 は恒等写像)
- 2. $\langle \alpha, \alpha^{\vee} \rangle = 2 \, \mathfrak{C}, \, r_{\alpha}(\alpha) = -\alpha$
- 3. V は $\ker(r_{\alpha}-1) \oplus \ker(r_{\alpha}+1)$ と分解でき, $\ker(r_{\alpha}+1)$ は α を基底に持つ 1 次元空間である.
- 4. $\langle r_{\alpha}(x), r_{\alpha}(y) \rangle = \langle x, y \rangle$

1.2 ルート系とワイル群

この節では、ルート系とワイル群について定義する.

定義 2. V上のルート系 Φ を以下を満たす有限集合とする.

- 1. $0 \notin V, \emptyset \neq V$
- 2. $r_{\alpha}(\Phi) = \Phi \quad (\alpha \in \Phi)$
- 3. $\langle \alpha, \beta^{\vee} \rangle \in \mathbb{Z} \quad (\alpha, \beta \in \Phi)$
- 4. $\beta \in \Phi$ が $\alpha \in \Phi$ の倍数なら, $\beta = \pm \alpha$

このとき, Φの元をルートという.

また, $\Phi^{\vee} = \{\alpha^{\vee} | \alpha \in \Phi\}$ の元をコルートという.

例.

- 1. $V = \mathbb{R}^3$ とする. $\Phi = \{(\pm 1, 0, 0)\}$ はルート系である.
- 2. $V=\mathbb{R}^2$ とする. $\Phi=\{(\pm\frac{1}{\sqrt{2}},\pm\frac{1}{\sqrt{2}})\}$ はルート系である. このとき, $\Phi^\vee=\{(\pm\sqrt{2},\pm\sqrt{2})\}$ である.

命題 2.

- 1. $\Phi = -\Phi$
- 2. $(\alpha^{\vee})^{\vee} = \alpha$
- 4. Φ^V もルート系になる.

定義 3.

- 1. Φ が可約であるとは, $\Phi = \Phi_1 \cup \Phi_2$ で, 任意の $x \in \Phi_1, y \in \Phi_2$ で, $\langle x, y \rangle = 0$ となるルート系 Φ_1, Φ_2 が存在するときをいう.
- 2. Φ が既約(または、単純)であるとは、 Φ が可約ではないときをいう.
- 3. Φ が simply-laced であるとは、全てのルートの長さが同じであるときをいう.

例.

- 1. $V = \mathbb{R}^2$ とする. $\Phi = \{(\pm 1, 0), (0, \pm 1)\}$ は可約なルート系である. 実際, $\Phi_1 = \{(\pm 1, 0)\}, \Phi_2 = \{(0, \pm 1)\}$ と分けられる.
- 2. $V=\mathbb{R}^2$ とする. $\Phi=\{(\pm\sqrt{2},0),(0,\pm\sqrt{2}),(\pm\sqrt{2},\pm\sqrt{2})\}$ は $(\sqrt{2},0)$ の長さが $\sqrt{2},(\sqrt{2},\sqrt{2})$ の長さが 2 であるから, simply-laced でないルート系になる.

定義 4. Φと交わらない原点を通る超平面を固定する.

- 1. この超平面にある 1 つの側にあるルートを正ルート,もう 1 つの側にあるルートを負ルートとよぶ.
- 2. 正ルート全体を Φ^+ , 負ルート全体を Φ^- で表す.
- $3. \alpha \in \Phi^+$ が単純であるとは, α が他の正ルートの和で表せないときをいう.

例. $V=\mathbb{R}^2$ とする. $\Phi=\{(\pm\sqrt{2},0),(0,\pm\sqrt{2}),(\pm\sqrt{2},\pm\sqrt{2})\}$ とする. 例えば、正ルートは $\{(\sqrt{2},0),(0,\sqrt{2}),(\sqrt{2},\sqrt{2}),(-\sqrt{2},\sqrt{2})\}$, 負ルートは $\{(-\sqrt{2},0),(0,-\sqrt{2}),(\sqrt{2},-\sqrt{2}),(-\sqrt{2},-\sqrt{2})\}$ と分けられる. このとき、単純な正ルート全体は、 $\{(\sqrt{2},0),(0,\sqrt{2})\}$ や $\{(\sqrt{2},\sqrt{2}),(-\sqrt{2},\sqrt{2})\}$ などとして、取れる.

注意. 正ルートや単純な正ルートの定め方は, 一意に定まらない. 一つ固定して考える.

命題 3. Σ を単純な正ルートのなす集合とする.

- 1. Σ の元は、線型独立.
- 2. $\alpha \in \Sigma, \beta \in \Phi^+$ なら, $\alpha = \beta$ または $r_{\alpha}(\beta) \in \Phi^+$
- 3. $\alpha, \beta \in \Sigma$ で、 $\alpha \neq \beta$ なら、 $\langle \alpha, \beta \rangle \leq 0$
- 4. 任意の $\alpha \in \Phi^+$ は

$$\alpha = \sum_{\beta \in \Sigma} n_{\beta} \beta \quad (n_{\beta} \ge 0, n_{\beta} \in \mathbb{Z})$$

定義 5. $I = \{1, 2, \dots, r\}$ を添字集合とし、 $\Sigma = \{\alpha_i \mid i \in I\}$ とする. $i \in I$ に対し、この鏡映を s_i で表す. これを単純鏡映という.

命題 4. $i \in I, \alpha \in \Phi^+$ とする. このとき, $\alpha = \alpha_i$ か $s_i(\alpha) \in \Phi^+$ のいずれかである. よって, s_i は $\Phi^+ \setminus \{\alpha_i\}$ 上を置換する.

定義 6. $W = \langle r_{\alpha} \mid \alpha \in \Phi \rangle$ を Φ のワイル群という.

例. $V = \mathbb{R}^2, \Phi = \{(\pm 1, 0), (0, \pm 1)\}$ とする.

 $r_{(1,0)}=(x,y)=(-x,y), r_{(0,1)}=(x,y)=(x,-y)$ である. $r_{(1,0)}\circ r_{(0,1)}(x,y)=r_{(0,1)}\circ r_{(1,0)}(x,y)=(-x,-y)$ となる. これらの元は全て位数 2 である. よって,

$$W = \{1, r_{(1,0)}, r_{(0,1)}, r_{(1,0)} \circ r_{(0,1)}\}$$

であり, $C_2 \times C_2$ (ただし, C_2 は位数 2 の巡回群) に群同型である.

1.3 weight lattice

この節では,weight lattice について定義する.

定義 7. Φ をVにおけるルート系とする.

weight lattice とは, V を生成する lattice(自由 \mathbb{Z} 加群) Λ で以下を満たすときをいう.

- 1. $\Phi \subset \Lambda$
- 2. 任意の $\lambda \in \Lambda$, $\alpha \in \Phi$ で, $\langle \lambda, \alpha^{\vee} \rangle \in \mathbb{Z}$

この元を weight という.

定義 8.

- 1. weight lattice が半単純であるとは, Φ が V を張るときをいう.
- 2. root lattice Λ_{root} を Φ によって張られた空間とする.

例. $V=\mathbb{R}^3$ とする. $\Phi=\{(\pm 1,0,0)\}$ とする. $\Lambda=\mathbb{Z}^3$ は weight lattice になる. Φ は V を張らないので、半単純ではない. また, $\Lambda_{root}=\{(x,0,0)\mid x\in\mathbb{Z}\}$ である.

定義 9.

1. Λ 上に順序 $\lambda \leq \mu$ を

$$\lambda - \mu = \sum_{i \in I} c_i \alpha_i \quad (c_i \ge 0)$$

と定める.

- 2. $\lambda^+ = \{\lambda \mid \langle \lambda, \alpha_i^\vee \rangle \geq 0 \quad (i \in I)\}$ とし、この元を dominant weight という.
- 3. λ が $\langle \lambda, \alpha_i^{\vee} \rangle > 0$ $(i \in I)$ ならば, strictly dominant weight という.

4. $\bar{\omega}_i$ δ fundamental weight respect to δ , $\langle \bar{\omega}_i, \alpha_i^{\vee} \rangle = \delta_{i,j}$ respectively.

この節の最後に、重要な crystal を紹介しよう.

例. $V = \mathbb{R}^{r+1}$ とする. ルート系を $\Phi = \{e_i - e_j \mid i \neq j\}$ とし、 $\Phi^+ = \{e_i - e_j \mid i < j\}$ とする. これは既約で、simply-laced である. このとき、単純な正ルート全体は $\Sigma = \{\alpha_i = e_i - e_{i+1} \mid 1 \leq i \leq r\}$ となる.

weight lattice は $\Lambda = \mathbb{Z}^{r+1}$ とする. これは半単純ではない.

 $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_{r+1})$ が dominant であることと $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_{r+1}$ が成り立つことは必要十分である. また, fundamental weight は $\omega_i = e_1 + e_2 + \dots + e_i$ である.

1.4 Kashiwara crystals

この節では、Kashiwara crystals について定義する.

 $\mathbb{Z} \cup \{-\infty\}$ に $-\infty < n(n \in \mathbb{Z})$ と順序を入れ、 $-\infty + n = -\infty (n \in \mathbb{Z})$ と定義する.

定義 10. 添字集合 I をともなったルート系 Φ と weight lattice Λ を固定する. タイプ Φ の Kashiwara crystal は次の写像をともなった空でない集合 $\mathcal B$ である.

- 1. $e_i, f_i: \mathcal{B} \to \mathcal{B} \cup \{0\}$
- 2. $\epsilon_i, \phi_i : \mathscr{B} \to \mathbb{Z} \sqcup \{-\infty\}$
- 3. wt: $\mathscr{B} \to \Lambda$

で, 次の (A1), (A2) を満たす.

(A1) 任意の $x, y \in \mathcal{B}$ に対し, $e_i(x) = y$ であることと, $f_i(y) = x$ であることは必要十分条件である. このとき,

$$wt(y) = wt(x) + \alpha_i$$

$$\epsilon(y) = \epsilon(x) - 1$$

$$\phi_i(y) = \phi_i(x) + 1$$

が成り立つ.

(A2) $\phi_i(x) = \langle \operatorname{wt}(x), \alpha_i^{\vee} \rangle + \epsilon_i(x)$ が成り立つ. 特に, $\Phi_i(x) = -\infty$ なら, $\epsilon_i(x) = -\infty$ である. このとき, $e_i(x) = f_i(x) = 0$ を仮定する.

定義 11. 上記の定義において、

- 1. crystal \mathscr{B} の元の個数を次数という.
- 2. 写像 wt を weight 写像という.
- 3. e_i, f_i を kashiwara(または, cryastal) 作用素という.
- 4. ϕ_i , ϵ_i は string length と呼ばれることもある.
- 5. ϕ_i, ϵ_i が $-\infty$ の値を取らないとき, \mathcal{B} は有限なタイプであるという.
- 6. $\phi_i(x) = \max\{k \in \mathbb{Z}_{\geq 0} \mid f_i^k(x) \neq 0\}, \quad \epsilon_i(x) = \max\{k \in \mathbb{Z}_{\geq 0} \mid e_i^k(x) \neq 0\}$ が成り立つとき、 \mathscr{B} は seminomarl という.
- 7. ϕ_i , ϵ_i が非負の値を持つとき, \mathcal{B} は upper seminomarl であるという.
- 8. 任意の $i \in I$ で $e_i(u) = 0$ となる元 $u \in \mathcal{B}$ を highest weight 元という. このとき, wt(u) を highest weight という.

命題 5. ルート系が半単純で、 \mathscr{B} が有限なタイプの crystal と仮定する. このとき、

$$\operatorname{wt}(x) = \sum_{i \in I} (\varphi_i(x) - \varepsilon_i(x)) \bar{\omega}_i$$

が成り立つ.

命題 6. \mathcal{B} を seminomaral な crystal とする. u を highest weight 元とする. このとき, $\operatorname{wt}(u)$ は dominant である.

命題 7. \mathscr{B} を seminomaral な crystal とする. $\mu, \nu \in \Lambda$ をワイル群のある元 w で, $w(\mu) = \nu$ となる元とする. このとき,

$$\{u \mid \text{wt}(u) = \mu\} = \{u \mid \text{wt}(u) = \nu\}$$

が成り立つ.

定義 12.

1. \mathscr{B} を crystal とする. このとき, \mathscr{B} 上に頂点と $i \in I$ でラベル付けられた辺を持つ有向グラフを対応できる. $f_i(x) = y$ のとき, $x \xrightarrow{i} y$ と書く. これを \mathscr{B} の crystal graph という.

- 2. \mathscr{B} 上に, x と y が $y = f_i(x)$ または $x = e_i(y)$ を満たすとき, $x \sim y$ という同 値関係を定める.
- **例.** タイプ A_r には、次の crystal graph を持つ標準的な crystal がある.

$$\boxed{1} \xrightarrow{1} \boxed{2} \xrightarrow{2} \cdots \xrightarrow{r} \boxed{r}$$

GL(r+1)weight lattice を使い、wt $\binom{i}{i} = e_i$ と定める. さらに、seminomarl であるように φ_i, ε_i を定める. これを $\mathcal{B}_{(1)}$ や $\mathbb B$ で表す.

例. $\Lambda=\mathbb{Z}^n, n=r+1$ とする. $\mathcal{B}_{(k)}$ を分割 (k) の semistaandard tableau 全体とする. その元を $R=\begin{bmatrix}j_1&j_2&\cdots&j_k\\j_1&j_2&\cdots&j_k\end{bmatrix}$ (ただし, $j_1\leq j_2\leq\cdots\leq j_k\in[n]$) で表す. wt $(R)=(\mu_i,\mu_2,\cdots,\mu_n)$ (ただし, μ_i は R の i の数) とする. さらに, $\varphi_i(R)$ を成分 j_1,j_2,\cdots,j_k 上の i の数, $\varepsilon_i(R)$ を成分 j_1,j_2,\cdots,j_k 上の i+1 の数とする. また, $\varphi_i(R)>0$ なら, $f_i(R)$ を右端の i をi+1 に変えて得られるタブロー, そうでないなら, $f_i(R)=0$ とする. 同様に, $\varepsilon_i(R)>0$ なら, $f_i(R)$ を左端の i+1 をi に変えて得られるタブロー, そうでないなら, $f_i(R)=0$ とする. これにより, $\mathcal{B}_{(k)}$ は seminomarl な crystal になる.

1.5 crystal のテンソル積と準同型

この節では、Kashiwara crystals のテンソル積と準同型について定義する.

定義 13. \mathcal{B} , \mathcal{C} を同じルート系 Φ の crystal とする。 $\mathcal{B} \otimes \mathcal{C}$ を次のように定める.

1.
$$\operatorname{wt}(x \otimes y) = \operatorname{wt}(x) + \operatorname{wt}(y)$$

2.
$$f_i(x \otimes y) = \begin{cases} f_i(x) \otimes y & \text{if } \varphi_i(y) \leq \varepsilon_i(x) \\ x \otimes f_i(y) & \text{if } \varphi_i(y) > \varepsilon_i(x) \end{cases}$$

3.
$$e_i(x \otimes y) = \begin{cases} e_i(x) \otimes y & \text{if } \varphi_i(y) < \varepsilon_i(x) \\ x \otimes e_i(y) & \text{if } \varphi_i(y) \ge \varepsilon_i(x) \end{cases}$$

$$4. \ x \otimes 0 = 0 \otimes x = 0$$

5.
$$\varphi_i(x \otimes y) = \varphi_i(x) + \max\{\varphi_i(x), \varphi(y) + \langle \operatorname{wt}(x), \alpha_i^{\vee} \rangle\}$$

6.
$$\varepsilon_i(x \otimes y) = \varepsilon_i(y) + \max\{\varepsilon_i(y), \varepsilon(x) - \langle \operatorname{wt}(y), \alpha_i^{\vee} \rangle\}$$

命題 8. $\mathcal{B}\otimes\mathcal{C}$ は crystal である. さらに、 \mathcal{B},\mathcal{C} が seminomarl なら、 $\mathcal{B}\otimes\mathcal{C}$ も seminomarl である.

定義 14. \mathcal{B} と \mathcal{C} をルート系 Φ , 添字集合 I を持つ crystal とする.

写像 $\psi: \mathcal{B} \to \mathcal{C} \sqcup \{0\}$ が crystal 準同型であるとは, 次を満たすときをいう.

- 1. $b \in B$ かつ $\psi(b) \in C$ であるとき,
 - a $\operatorname{wt}(\psi(b)) = \operatorname{wt}(b)$
 - b $\epsilon_i(\psi(b)) = \epsilon_i(b)$ for all $i \in I$
 - c $\phi_i(\psi(b)) = \phi_i(b)$ for all $i \in I$
- 2. $b, e_i b \in B$ かつ $\psi(b), \psi(e_i b) \in C$ であるとき, $\psi(e_i b) = e_i(\psi(b))$ である.
- 3. $b, f_i b \in B$ かつ $\psi(b), \psi(f_i b) \in C$ であるとき, $4(f_i b) = f_i(\psi(b))$ である.

定義 15. 準同型 ψ が任意の $i \in I$ に対して e_i および f_i と可換であるとき, ψ は strict であるという. また, crystal 準同型 $\psi: B \to C \sqcup \{0\}$ が crystal 同型であるとは, 誘導される写像 $\psi: B \sqcup \{0\} \to C \sqcup \{0\}$ で $\psi(0) = 0$ を満たすものが全単射である場合をいう.

命題 9. $\mathcal{B}, \mathcal{C}, \mathcal{D}$ を crystal とする. このとき, $(\mathcal{B} \otimes \mathcal{C}) \otimes \mathcal{D}$ と $\mathcal{B} \otimes (\mathcal{C} \otimes \mathcal{D})$ は同型 になる.

1.6 タブローのクリスタル

この節ではタブローのクリスタルについて説明する.

 $[n] = \{1, 2, \dots, n\}$ とする. k を正整数とし, λ を k の分割とする. 形 λ のヤングタブロー全体を $YD(\lambda)$ で表す. 形 λ の semistaandard tableu 全体を \mathcal{B}_{λ} とする.

定義 16. 写像 $RR: \mathscr{B}_{(k)} \to \mathbb{B}^{\otimes k}$ を次のように定める.

$$RR\left(\boxed{i_1 \mid i_2 \mid \cdots \mid i_k}\right) = \boxed{i_1} \otimes \boxed{i_2} \otimes \cdots \otimes \boxed{i_k}$$

命題 10. 写像 RR は $\mathcal{B}_{(k)}$ から $\mathbb{B}^{\otimes k}$ への準同型である.

定義 17. 定義した写像 $R \to RR(R)$ を、すべての形 λ の semistaandard tableuT への写像に以下のように拡張する.

この写像も $T \to RR(T)$ と表し, RR(T) を T の各行を順に読み出し, その順序は下から上に向かって行を取るようにする. これを $row\ reading$ という.

例.

$$T = \begin{bmatrix} 2 & 2 & 2 & 3 & 4 \\ 2 & 2 & 3 & \\ 3 & 5 & \\ \end{bmatrix}$$

とする. このとき,

となる.

例. n=4, k=5 とする. 5 の分割は、(5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1), (1,1,1,1,1) である。また、GL(4) crystal は、

$$\boxed{1} \xrightarrow{1} \boxed{2} \xrightarrow{2} \boxed{3} \xrightarrow{3} \boxed{4} \xrightarrow{4} \boxed{5}$$

例. n=2, k=3 とする. 3 の分割は, (3), (2,1), (1,1,1) である. また, GL(2) crystal は,

例.

参考文献

[1] Daniel Bump, Anne Schilling 「CRYSTAL BASES Representations and Combinatorics」 World Scientific, 2017.

2 講義内容要約

なし