Solve in either order:

- (a). Construct, with justification, a subset A of \mathbb{R} such that every point of A is isolated and $A' \neq \emptyset$.
- (b). Rudin Chapter 2, problem 5, page 43: Construct a bounded set of real numbers with exactly three limit points.
- (a). Solution. We provide the subset $A = \{\frac{1}{n} : n \in \mathbb{N}\}$. First, if $a \in A$, denote this as $a = \frac{1}{n'}$. We show a is an isolated point: let $m = \min \left\{ \left| \frac{1}{n'} \frac{1}{n'+1} \right|, \left| \frac{1}{n'} \frac{1}{n'-1} \right| \right\}$. Note that since for any $\overline{n} \geq n'$, we have that $\left| \frac{1}{n'+1} \frac{1}{n'} \right| \leq \left| \frac{1}{\overline{n}} \frac{1}{n'} \right|$, thus any ball around $\frac{1}{n'}$ that contains $\frac{1}{\overline{n}}$ must also contain $\frac{1}{n'+1}$. Now for any $\underline{n} \leq n'$, we have that $\left| \frac{1}{n'-1} \frac{1}{n'} \right| \leq \left| \frac{1}{\underline{n}} \frac{1}{n'} \right|$, thus any ball around $\frac{1}{n'}$ that contains $\frac{1}{\underline{n}}$ must also contain $\frac{1}{n'-1}$.

Consider the open set of R $U = \mathbb{B}[\frac{1}{n'}; \frac{1}{2}m)$. Note that $\frac{1}{n'-1} \not\in U$ and $\frac{1}{n'+1} \not\in U$. Thus by the contrapositive of the claims we just said, for any $n \in \mathbb{N}$ where $n \neq n'$, we have that $\frac{1}{n} \not\in U$. Thus, $\frac{1}{n'}$ is isolated. Since this is true for arbitrary $n' \in \mathbb{N}$, every point in A is isolated.

Now, note that $0 \in A'$ so $A' \neq \emptyset$. If U is be an arbitrary open set in the neighbourhood of 0. Note that we will always have an element of A in U. Assume otherwise, that there exists an open set U such that $U \cap A = \emptyset$. Conside a ball in U, specifically $\mathbb{B}[0,r) \subseteq U$. Note by the Archimedean property of the reals, there exists $n \in \mathbb{N}$ such that $n \cdot 1 > r^{-1} > 0$, thus $0 < \frac{1}{n} < r$. But then $\frac{1}{n} \in \mathbb{B}[0,r)$, thus a contradiction. Thus, since $U \in \mathcal{N}(0)$ was arbitrary, we have that every open set in the neighbourhood of 0 has a non empty intersection with A, thus 0 is a limit piont of A. Thus, $A' \neq \emptyset$.

(b). Solution. We give the set $A = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{\frac{1}{n} + 10 : n \in \mathbb{N}\} \cup \{\frac{1}{n} + 20 : n \in \mathbb{N}\}$. From part (a) of this problem, we note that no element in A is a limit point of A, since they are all isolated (and thus cannot be limit points); the argument is the same, since the additional term just makes it so that we have three subsets of A that do not intersect. Furthermore, we can make identical arguments as from part (a) to show that 10 and 20 are in A', as well as 0. Thus, A has exactly three limit points.

(a). Give an example of two sets A and B in some HTS satisfying

$$int(A \cup B) \neq int(A) \cup int(B)$$

(b). Give an example of two sets A and B in some HTS satisfying

$$\overline{A \cap B} \neq \overline{A} \cap \overline{B}$$

- (c). Working \mathbb{R}^k with the usual topology, express the open ball $\mathbb{B}[0;1)$ as a union of closed sets. Can $\mathbb{B}[0;1)$ be expressed as an intersection of closed sets?
- (a). Solution. Let our HTS be \mathbb{R} , and let A = [0,1] and B = [1,2]. We have $\operatorname{int}(A \cup B) = \operatorname{int}([0,2]) = (0,2)$ and $\operatorname{int}(A) \cup \operatorname{int}(B) = (0,1) \cup (1,2) = (0,2) \setminus \{1\}$. Hence we have shown $\operatorname{int}(A) \cup \operatorname{int}(B) = (0,2) \setminus \{1\} \neq (0,2) = \operatorname{int}(A \cup B)$, so we are done.
- (b). Solution. Let our HTS be \mathbb{R} , and let A=(0,1) and B=(1,2). We have $\overline{A\cap B}=\overline{\emptyset}=(\mathbb{R}^o)^c$, but since A is open if and only if A^0 is open (from notes) and \mathbb{R} must be open, we have $\overline{A\cap B}=\mathbb{R}^c=\emptyset$. Now, see that $\overline{A}\cap \overline{B}=[0,1]\cap [1,2]=\{1\}$, where we have used the fact that in \mathbb{R} , $\overline{(a,b)}=(((a,b)^c)^o)^c=(((-\infty,a]\cup [b,\infty))^o)^c$ but taking the largest open subset we get $((-\infty,a)\cup (b,\infty))^c=[a,b]$. Hence, $\overline{A\cap B}=\emptyset\neq \{1\}=\overline{A}\cap \overline{B}$.
- (c). Solution. We have

$$\mathbb{B}[0;1) = \bigcup_{n \in \mathbb{N}} \mathbb{B}\left[0;1 - \frac{1}{n}\right]$$

To verify this equality, if $x \in \mathbb{B}[0;1)$ and $x \neq 0$ (the x=0 case is trivial, x is definitely in the RHS) note that $x_k < 1$, so then by Archimedean, there exists some $n \in \mathbb{N}$ such that $0 < \frac{1-x_k}{<}n \cdot 1 \implies 0 < x_k < 1 - \frac{1}{n}$, thus $x \in [0;1-\frac{1}{n}]$, so x is in the RHS. Now if $x \in \bigcup_{n \in \mathbb{N}} \mathbb{B}[0;1-\frac{1}{n}]$, there exists some n such that $0 \leq x_k \leq 1 - \frac{1}{n}$. But then $0 \leq x_k < 1$ for all k, so $x \in \mathbb{B}[0;1)$, as desired.

We cannot write $\mathbb{B}[0;1)$ as an intersection of closed sets, since we know that for any HTS; the arbitrary intersection of closed sets is also closed, and $\mathbb{B}[0;1)$ is open by definition.

Define a family \mathcal{T} of subsets of \mathbb{R} as follows:

A set $G \subseteq \mathbb{R}$ belongs to \mathcal{T} if and only if for every x in G, there exists r > 0 such that $[x, x + r) \subseteq G$.

(a). Prove that $(\mathbb{R}, \mathcal{T})$ is a HTS. (It is called the Sorgenfrey line.)

All our terminology – open set, closed set, boundary point, limit point, convergence – depends on what topology we use. Use the Sorgenfrey topology in parts (b)-(d):

- (b) Show that the interval [0,1) is open.
- (c) Find all boundary points of the interval (0,1).
- (d) Let $s_n = -1/n$ and $t_n = 1/n$. Prove that one of these sequences converges to 0, and the other does not. Use the definition given in class, i.e. $x_n \to \hat{x}$ means that for every open set U containing \hat{x} , there exists $N \in \mathbb{N}$ such that for all n > N, $x_n \in U$.
- (a). Solution. First, note that \mathbb{R} and \emptyset are both open. If $x \in \mathbb{R}$, then $[x, x+1) \in \mathbb{R}$ as well, so $\mathbb{R} \in \mathcal{T}$. Additionally, \emptyset vacuously satisfies our criteria, and so $\emptyset \in \mathcal{T}$ as well.

Now consider a collection \mathcal{G} of open sets in \mathcal{T} . Let V denote the set $\bigcup \mathcal{G}$. If $x \in V$, then $x \in G$ for some $G \in \mathcal{G}$, and by assumption, since $G \in \mathcal{T}$, there exists some r > 0 such that $[x, x + r) \in G$, which means $[x, x + r) \in V$ as well (by definition of union). Thus, $V \in \mathcal{T}$ as well.

Now let $U_1, U_2, \dots, U_N \in \mathcal{T}$ (for some $N \in \mathbb{N}$), and let V denote the set $U_1 \cap U_2 \cap \dots \cap U_N$. If $x \in V$, then we must have that $x \in U_i$ for all $i \in \{1, \dots, N\}$. And since $U_i \in \mathcal{T}$, there is some $r_i > 0$ such that $[x, x + r_i) \in U_i$. Let $r = \min_i \{r_i\} > 0$. Then surely $[x, x + r) \subseteq [x, x + r_i)$ for all $i \in \{1, \dots, N\}$, thus $[x, x + r) \in U_i$ for all i, so $[x, x + r) \in V$. Thus, since r > 0, $V \in \mathcal{T}$.

Let $x, y \in \mathbb{R}$ such that $x \neq y$. WLOG assume x < y. Clearly $x \in [x, y)$ and $y \in [y, y + 1)$. These are clearly distinct subsets of \mathbb{R} . We now show that both are open. If $z \in [x, y)$, let $y - z = \delta > 0$. We have that $[z, z + \delta) = [z, y) \in [x, z)$. Thus, [x, y) is an open set. If $w \in [y, y + 1)$, let $y + 1 - w = \delta > 0$. We have that $[w, w + \delta) = [w, y + 1) \in [y, y + 1)$. Thus, [y, y + 1) is an open set. Thus, we have shown $(\mathbb{R}, \mathcal{T})$ is a HTS, as desired.

- (b). Solution. Let $x \in [0,1)$. Then let $1-x=\delta > 0$. We have that $[x,x+\delta) = [x,1) \in [0,1)$. Thus, $[0,1) \in \mathcal{T}$ and so is an open set.
- (c). Solution. We claim the only boundary point of (0,1) is 0. If U is an open set containing 0, it is of the form $[a,b) \in \mathcal{T}$ such that $0 \in [a,b)$ $(b=a+r, r>0 \implies b>a)$. In order to have 0 fall in it, we must have $a \leq 0$ and b>0. Since $0 \in U$ and $0 \notin (0,1)$, then $U \cap (0,1)^c \neq \emptyset$. Now, either $b \geq 1$ or b < 1. If it is the former, then we have that $(0,1) \subset [a,b)$ and so $U \cap (0,1) \neq \emptyset$. If it is the latter, then we have $b/2 \in [a,b)$ and $b/2 \in (0,1)$, thus $U \cap (0,1) \neq \emptyset$ again. This is sufficient to show that 0 is a boundary point.

We now show that there are no more boundary points of the set. Let $x \in \mathbb{R}$ and $x \neq 0$. If x < 0, the open set [x,0) contains x but does not intersect (0,1), so cannot be a boundary point for it. If $x \in (0,1)$, then [x,1) contains x but does not intersect $(0,1)^c$, so cannot be a boundary point for (0,1). And if $x \geq 1$, then [x,x+1) contains x but does not intersect (0,1) so cannot be a boundary point for it. Thus, since x was arbitrary, $x \in \mathbb{R}^*$ cannot be a boundary point for (0,1).

(d). Solution. We claim that s_n does not converge to 0. If U = [0, 1), then we have that U is open from part (b) of this problem and it contains 0, however, for all $n \in \mathbb{N}$, we have that -1/n < 0 and so for no $n \in \mathbb{N}$ do we have $s_n \in U$. Thus, $s_n \notin U$ for all n, thus s_n does not converge to 0.

We claim that t_n does converge to 0. Consider an open set U that contains 0. That is, U is of the form [a,b) where b>a (since b=a+r and r>0 thus b>a) such that $0\in U$. In order for this to happen, it is necessary that $a\leq 0$ and b>0. Thus, it is sufficient to show that $0< t_n < b$ for large enough n to show $t_n\in U$. Clearly, $t_n>0$ for all $n\in \mathbb{N}$. Now, by Archimedean, there exists $N\in \mathbb{N}$ such that $N\cdot 1>b^{-1}>0$, thus $0<\frac{1}{N}=t_N< b$. Furthermore, $\frac{1}{n}\leq \frac{1}{N}$ for $n\geq N$ (this is obvious, but if really desired, this can be shown with induction), thus for $n\geq N$, we have $0< t_n< b$, thus $t_n\in U$. Since U was an arbitrary open set that contained 0, this is sufficient to show convergence of $t_n\to 0$.

Let A be a subset of a HTS (X, \mathcal{T}) . The **boundary of** A is a set denoted ∂A : we say $z \in \partial A$ if and only if every open U containing z satisfies both $U \cap A \neq \emptyset$ and $U \cap A^c \neq \emptyset$. Prove:

- (a). $\partial A = \overline{A} \cap \overline{A^c}$.
- (b). A is closed if and only if $\partial A \subseteq A$.
- (c). A is open if and only if $A \cap \partial A = \emptyset$.
- (a). Solution. Let $x \in \overline{A} \cap \overline{A^c}$. Let $G \in \mathcal{N}(x)$. We first prove that $A \cap G \neq \emptyset$. If $x \in A$, we are done, since $\{x\} \in A \cap G$. Now, assume that $x \notin A$. For the sake of contradiction, assume that $A \cap G = \emptyset$. This means that $G \subseteq A^c$ Thus, A is closed (by the lemma from class). Then $A = \overline{A}$. But recall that $x \in \overline{A} = A$, thus a contradiction. We now prove that $A^c \cap G \neq \emptyset$. If $x \in A^c$, we are done, since $\{x\} \in A^c \cap G$. Now, assume that $x \notin A^c$. For the sake of contradiction, assume that $A^c \cap G = \emptyset$. This means that $G \subseteq A$ Thus, A^c is closed (by the lemma from class). Then $A^c = \overline{A^c}$. But recall that $x \in \overline{A^c} = A^c$, thus a contradiction. Thus, since G was arbitrary, we have both $A \cap G \neq \emptyset$ and $A^c \cap G \neq 0$ for all $G \in \mathcal{N}(x)$, which by definition, means that $x \in \partial A$. Thus, $\overline{A} \cap \overline{A^c} \subseteq \partial A$.

Now let $x \in \partial A$. We now prove that $x \in \overline{A}$. If $x \in A$, we are done, since $A \subset \overline{A}$. If $x \notin A$, since \overline{A} is closed, we have that there exists some neighbourhood $U \in \mathcal{N}(x)$ such that $U \subseteq A^c$, and since $A^c \cap A = \emptyset$, this implies that $U \cap A = \emptyset$. But recall that since $x \in \partial A$, we have that $A \cap U \neq \emptyset$, thus, a contradiction. Hence, $x \in \overline{A}$. Now we prove that $x \in \overline{A^c}$. If $x \in A^c$, we are done, since $A^c \subset \overline{A^c}$. If $x \notin A^c$, since $\overline{A^c}$ is closed, we have that there exists some neighbourhood $U \in \mathcal{N}(x)$ such that $U \subseteq (A^c)^c = A$, and since $A^c \cap A = \emptyset$, this implies that $U \cap A^c = \emptyset$. But recall that since $x \in \partial A$, we have that $A^c \cap U \neq \emptyset$, thus, a contradiction. Hence, $x \in \overline{A^c}$. Thus, $x \in \overline{A} \cap \overline{A^c}$, so $\overline{A} \cap \overline{A^c} \subseteq \partial A$.

We have shown set inclusion in both directions, so $\partial A = \overline{A} \cap \overline{A^c}$.

(b). Solution. Assume that A is closed. Let $x \in \partial A$. From part (a) of this problem, we have $\partial A = \overline{A} \cap \overline{A^c}$, thus $z \in \overline{A} \cap \overline{A^c} \implies z \in \overline{A}$. But since A is closed, $A = \overline{A}$, thus $z \in A$. Since z was arbitrary, this implies that $\partial A \subseteq A$.

Now assume that $\partial A \subseteq A$. From part (a) of this problem, we have $\partial A = \overline{A} \cap \overline{A^c} = \overline{A} \cap (((A^c)^c)^o)^c = \overline{A} \cap (A^o)^c = \overline{A} \setminus A^o$, thus $\partial A \cup A^o = \overline{A}$. Thus, since $\partial A \subseteq A$, by assumption, and $A^o \subseteq A$, we have $\overline{A} \subseteq A$. But $A \subseteq \overline{A}$ by definition, so $A = \overline{A}$. But this is true only A is closed.

(c). Solution. Assume that A is open. Then A^c is closed, and thus $A^c = \overline{A^c}$. Invoking part (a) of this problem, we have

$$A \cap \partial A = A \cap (\overline{A} \cap \overline{A^c})$$
$$= (A \cap A^c) \cap \overline{A}$$
$$= \emptyset \cap \overline{A}$$
$$= \emptyset$$

Now assume that $A \cap \partial A = \emptyset$. But then $A \cap \overline{A} \cap \overline{A^c} = \emptyset$. Since $A \subseteq \overline{A}$, we have $A \cap \overline{A} = A$, thus we have $A \cap \overline{A^c} = \emptyset$. Writing out the full definition for the closure of A^c , we have $\overline{A^c} = (((A^c)^c)^o)^c = (A^o)^c$, thus we have $A \cap (A^o)^c = \emptyset$. For the sake of contradiction, assume that A is not open. Then, there exists $x \in A$ such that $x \notin A^o$ (since $A^o \subset A$ and $A^o \ne A$). Then, $x \in (A^o)^c$. But then $x \in A \cap (A^o)^c = \emptyset$, thus a contradiction. Hence A must be open.

Prove: For every set A in a HTS (X, \mathcal{T}) , A' is closed.

Solution. It is sufficient to show that $\partial A' \subseteq A'$, by problem 4(b). Let $x \in \partial A'$. By definition, this means that for all open sets $U \in \mathcal{N}(x)$, we have $U \cap A' \neq \emptyset$. Thus, let $y \in U \cap A'$. Since U is an open set and $y \in U$, there exists $U' \in \mathcal{N}(y)$ such that $U' \subseteq U$. Now define $V = U' \setminus x$. Note that $y \in V$ still, and V is open, since $V = U' \setminus x = U' \cap \{x\}^c$ which is a finite intersection of open sets $(\{x\}^c)$ is open since $\{x\}$ is closed), so is also open, thus $V \in \mathcal{N}(y)$ still. Now, since $y \in A'$, then for all open $W \in \mathcal{N}(y)$, we have $W \setminus \{y\} \cap A \neq \emptyset$, so $V \setminus \{y\} \cap A \neq \emptyset$. Thus, there exists $z \in V \setminus \{y\} \cap A \Rightarrow z \in U$ since $V \setminus \{y\} \subseteq U$. Thus, we se that there exists $z \in U \cap A$ where $z \neq x$, or $U \setminus \{x\} \cap A \neq \emptyset \implies x \in A'$. Hence, we have that $\partial A' \subseteq A'$, which shows that A' is closed.

Recall the sequence space ℓ^2 from HW07 Q3. Given a specific $M = (M_1, M_2, ...)$ in ℓ^2 , let

$$S = \{ x \in \ell^2 \colon \forall n \in \mathbb{N}, |x_n| \le M_n \}.$$

Prove: every sequence $(x^{(n)})$ in S has a convergent subsequence, whose limit lies in S.

Solution. Write out the sequence of the first components of our sequence, namely

$$(x_1^{(n)}) = x_1^{(1)}, x_1^{(2)}, x_1^{(3)}, \dots$$

Each term of $\left(x_1^{(n)}\right)$ is bounded by M_1 , thus, by Bolzano-Weierstrass (which we can use since this is just a real-valued sequence), there exists a subsequence (n_{k_1}) such that $\left(x_1^{(n_{k_1})}\right)$ converges. This is a convergent sequence, so denote $\lim_{k_1} x_1^{(n_{k_1})} = s_1$; since $|x_1^{(i)}| \leq M_1$ for all $i \in n_k$, the limit is at most M_1 , thus $|s_1| \leq M_1$ as well. We will now use the notation $k_1(i)$ to be the ith integer of n_{k_1} . Thus our new subsequence of elements in S is $\left(x^{(n_{k_1})}\right) = x^{(k_1(1))}, x^{(k_1(2))}, x^{(k_1(3))}, \ldots$

Now consider the second components of our subsequence $(x^{(n_{k_1})})$:

$$(x_2^{(n_{k_1})}) = x_2^{(k_1(1))}, x_2^{(k_1(2))}, x_2^{(k_1(3))}, \dots$$

Again, by Bolzano Weierstrass from boundedness by M_2 , there exists a subsequence of n_{k_1} , call it n_{k_2} such that $\left(x_2^{(n_{k_2})}\right)$ converges. Again, $k_2(i)$ is the *i*th integer of n_{k_2} .

Now, for any j, we can iteratively acquire a subsequence n_{k_j} . We write it them all out below:

$$(x^{(n_{k_1})}) = x^{(k_1(1))}, x^{(k_1(2))}, x^{(k_1(3))}, \dots$$

$$(x^{(n_{k_2})}) = x^{(k_2(1))}, x^{(k_2(2))}, x^{(k_2(3))}, \dots$$

$$\vdots$$

$$(x^{(n_{k_j})}) = x^{(k_j(1))}, x^{(k_j(2))}, x^{(k_j(3))}, \dots$$

Some remarks to note:

- (a). $(x^{(n_{k_j})})$ is a subsequence of $(x^{(n_{k_{j-1}})})$ for all $j=2,3,4,\ldots$
- (b). $(x_j^{(n_{k_j})})$ converges as $k_j \to \infty$ (since each step, Bolzano Weierstrass lets us pick a convergent subsequence), whose value we denote s_j and $|s_j| \le M_j$ (by the argument we provided when j = 1).
- (c). By the definition of a subsequence, if $x^{(m)}$ comes before $x^{(m')}$ in $\left(x^{(n_{k_j})}\right)$, we must have that $x^{(m)}$ comes before $x^{(m')}$ in $\left(x^{(n_{k_i})}\right)$ for all $1 \leq i \leq j$ by the definition of a subsequence.

We now pick entries from our diagonal to form a new subsequence of $(x^{(n)})$, which we will call $(x^{(n_k)})$:

$$(x^{(n_k)}) = x^{(k_1(1))}, x^{(k_2(2))}, x^{(k_3(3))}, \dots$$

Define $\hat{s} = s_{k_1(1)}, s_{k_2(2)}, s_{k_3(3)}, \ldots$ Recall that $0 < |s_n| \le M_n \implies 0 < |s_n|^2 \le M_n^2$. Note since $\sum_n M_n^2$ converges by definition of being in ℓ^2 , we also have that $\sum_n |s_n|^2$ converges, thus $\hat{s} \in \ell^2$ as well. Hence, $\hat{s} \in S$. Therefore, it is sufficient to show now that $(x^{(n_k)}) \to \hat{s}$ as $k \to \infty$.

From our previous homework, our notion of distance is

$$d(x,y) = ||x - y|| = \sqrt{\sum_{n=1}^{\infty} (x_n - y_n)^2}$$

Thus to say that $(x^{(n_k)}) \to \hat{s}$ as $k \to \infty$, we would need to show that for all $\varepsilon > 0$, there exists $K \in \mathbb{N}$, such that for all k > K, we have $\sqrt{\sum_{i=1}^{\infty} (x_i^{(n_k)} - \hat{s}_i)^2} < \varepsilon$.

Thus let $\varepsilon > 0$ be arbitrary. Since $(M_n) \in \ell^2$, $\sum_n M_n^2$ converges; denote the value it converges to by L. Note that $(\sum_n M_{n_k})$ is a subsequence, and subsequences converge to the same limit. Then there exists $K - 1 \in \mathbb{N}$ such that for all $k \geq K - 1$, we have

$$\left| L - \sum_{i=1}^{k} M_i^2 \right| < \frac{\varepsilon^2}{4}$$

This applies when k = K - 1, thus

$$\left|L - \sum_{i=1}^{K-1} M_i^2 \right| < \frac{\varepsilon^2}{4} \implies \sum_{i=K}^{\infty} M_i^2 < \frac{\varepsilon^2}{4}$$

where the implication is because $L = \sum_{i=1}^{K-1} M_i^2 + \sum_{i=K}^{\infty} M_i^2$, and we remove the absolute value, because $M_i^2 > 0$ always, so the sum is > 0 always.

Now, note that for any k, $0 < |x_i^{(n_k)} - \hat{s}_i| \le |x_i^{(n_k)}| + |\hat{s}_i| \le 2M_i$ for all i. Since $0 < |x_i^{(n_k)} - \hat{s}_i|^2 \le 4M_i^2$, and we know that $\sum_n 4M_i^2$ converges, we know that $\sum_n |x_i^{(n_k)} - \hat{s}_i|^2$ converges too. Thus, writing an infinite series means something, and so for any $p \in P$, we have $\sum_{i=p}^{\infty} |x_i^{(n_k)} - \hat{s}_i|^2 \le \sum_{i=p}^{\infty} M_i^2$. Thus, if we let $P_K = \sum_{i=1}^{K-1} |x_i^{(n_k)} - \hat{s}_i|^2$, we have

$$\sum_{i=1}^{\infty} |x_i^{(n_k)} - \hat{s}_i|^2 = P_K + \sum_{i=K}^{\infty} |x_i^{(n_k)} - \hat{s}_i|^2 \le P_K + 4\sum_{i=K}^{\infty} M_i^2$$

Taking the lim sup of both sides, we get

$$\limsup_{k \to \infty} \sum_{i=1}^{\infty} |x_i^{(n_k)} - \hat{s}_i|^2 \le \limsup_{k \to \infty} \left(P_K + 4 \sum_{i=K}^{\infty} M_i^2 \right) \le \limsup_{k \to \infty} P_K + 4 \limsup_{k \to \infty} \sum_{i=K}^{\infty} M_i^2$$

On the right hand side, note that $\limsup P_K = 0$, since $x_i^{(n_k)} \to \hat{s}_i$ as $k \to \infty$ by construction (note (b) from above); additionally $\sum_{i=K}^{\infty} M_i^2$ does not vary with k. Thus, we have

$$\limsup_{k \to \infty} \sum_{i=1}^{\infty} |x_i^{(n_k)} - \hat{s}_i|^2 \le 4 \sum_{i=K}^{\infty} M_i^2 < \varepsilon^2$$

By the definition of \limsup , this gives us

$$\sum_{i=1}^{\infty} |x_i^{(n_k)} - \hat{s}_i|^2 < \varepsilon^2$$

hence

$$\sqrt{\sum_{i=1}^{\infty} |x_i^{(n_k)} - \hat{s}_i|^2} < \varepsilon$$

for all $k \geq K$, as desired.