Problem Session #7

Gizem Süngü

CSE 211 - Gebze Technical University

7 December, 2020

Overview

1 Problem 1

2 Problem 2

Problem 1:Graph Isomorphism

Determine whether each pair of graphs is isomorphic or not.

These graphs are isomorphic since each is the 7-cycle.

Problem 1:Graph Isomorphism

Determine whether each pair of graphs is isomorphic or not.

One isomorphism is $f(u_3)=v_2$, $f(u_4)=v_3$, $f(u_2)=v_5$, $f(u_1)=v_1$, $f(u_5)=v_4$.

Problem 1:Graph Isomorphism

Determine whether each pair of graphs is isomorphic or not.

They are not isomorphic.

Problem 2: Graph Coloring Problem

Definition

Graph coloring is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color. The objective of graph coloring problem is using the minimum number of different colors considering the rule.

Consider the program

```
a := c + d
e := a + b
```

with the assumption that a and e die after use

Temporary "a" can be "reused" after e := a + b. Same with temporary "e".

Can allocate a, e, and f all to one register (r1):

$$r_1 := r_2 + r_3$$

$$r_1 := r_1 + r_4$$

$$r_1 := r_1 - 1$$

Rule

Temporaries t_1 and t_2 can share the same register if at any point in the program at most one of t_1 or t_2 is live.

```
a := b + c
d := -a
e := d + f
if something do
f := 2 * e
else do
b := d + e
e := e - 1
end
b := f + c
```

Rule

Temporaries t_1 and t_2 can share the same register if at any point in the program at most one of t_1 or t_2 is live.

- Two temporaries that are live simultaneously cannot be allocated in the same register.
- We construct an undirected graph:
 - A node for each temporary variable.
 - An edge between t_1 and t_2 if they are live simultaneously at some point in the program.
- This is the register interference graph (RIG): Two temporaries (vertices) can be allocated (colored) to the same register (color) if there is no edge connecting them.


```
Color 1 (Register 1): a, b, d
Color 2 (Register 2): c
Color 3 (Register 3): e
Color 4 (Register 4): f
```