Test di Calcolo Numerico

Ingegneria Informatica 3/02/2020

COGNO	ME		NOME	
MATRIC	COLA			
		RISPOS	STE	
1)				
2)				
3)				
4)				
5)				

 $\mathbf{N.B.}$ Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 3/02/2020

1) È data la funzione

$$f(x,y) = \frac{x}{y} .$$

Determinare come si deve eseguire l'operazione e con quale precisione si devono inserire i dati se si vuole calcolare la funzione in un punto $(x_0, y_0) \in [1, 2] \times [-2, -1]$ commettendo un errore assoluto δ_f con $|\delta_f| < 10^{-2}$.

2) È data la matrice

$$A = \begin{pmatrix} 2 & -\alpha & 0 \\ -\alpha & 2 & \alpha \\ 0 & \alpha & 2 \end{pmatrix} , \quad \alpha \in \mathbb{R} .$$

Per quali valori reali di α la matrice A risulta convergente?

3) Determinare i punti fissi della funzione

$$\phi(x) = \frac{x^4 + x^3 - x + 6}{7x} \, .$$

4) È data la tabella di valori

$$\frac{x \mid 0 \quad \beta \quad 1 \quad 3 \quad -1}{f(x) \mid 1 \quad 7 \quad 2 \quad \alpha \quad 4}, \quad \alpha, \beta \in \mathbb{R}.$$

Calcolare i valori reali di α e β in modo che il polinomio di interpolazione risulti di grado minimo.

5) Si vuole approssimare il valore dell'integrale $\int_0^{1/2} \cos(x^2) dx$ utilizzando la formula dei trapezi commettendo un massimo errore $|E| < 10^{-2}$. Quanti sottointervalli sono necessari?

SOLUZIONE

- 1) Si pongono $|\delta_f| < \frac{1}{2}10^{-2}$ e $|\delta_d| < \frac{1}{2}10^{-2}$. Risultano $A_x = 1$ e $A_y = 2$ per cui $|\delta_x| < \frac{1}{4}10^{-2}$ e $|\delta_y| < \frac{1}{8}10^{-2}$. Quindi, per rientrare nella limitazione richiesta, basta introdurre x e y troncati alla terza cifra decimale e arrotondare il risultato dell'operazione alla seconda cifra decimale.
- 2) Si considera la matrice

$$B = A - 2I = \alpha \left(\begin{array}{ccc} 0 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right) .$$

Gli autovalori della matrice B sono $\mu_1 = 0$ e $\mu_{2,3} = \pm \alpha \sqrt{2}$. Segue che gli autovalori di A sono

$$\lambda_1 = 2$$
, $\lambda_{2,3} = 2 \pm \alpha \sqrt{2}$,

per cui la matrice A non risulta convergente essendo $\rho(A) \geq 2$ per ogni $\alpha \in \mathbb{R}$.

3) Si deve risolvere l'equazione $x = \phi(x)$, cioè l'equazione $x^4 + x^3 - 7x^2 - x + 6 = 0$. Le soluzioni (e quindi i punti fissi di $\phi(x)$) sono

$$\alpha_1 = 1$$
, $\alpha_2 = -1$, $\alpha_3 = -3$, $\alpha_4 = 2$.

- 4) Considerando solo le coppie $(x_i, f(x_i))$ che non coinvolgono i parametri α e β si ottiene il polinomio di interpolazione $P(x) = 2x^2 x + 1$. Per non alzare il grado del polinomio basta inserire $\alpha = P(3) = 16$ e $\beta_1 = 2$ o $\beta_2 = -3/2$ che sono le soluzioni di P(x) = 7.
- 5) Si ha $M_2 \geq \sup_{x \in [0,1/2]} |f''(x)| = 3$. Imponendo che l'errore commesso nella applicazione della formula dei trapezi soddisfi $|E_1^{(G)}(f)| \leq \frac{1}{2} 10^{-2}$ si ottiene che l'intervallo di integrazione deve essere suddiviso in $m \geq 3$ sottointervalli.