Ming Kong Extended CS Bridge-Winter 2021 Homework 6

Question 5:

a)
$$5n^3 + 2n^2 + 3n = \Theta(n^3)$$

Let $f(n) = 5n^3 + 2n^2 + 3n$, by definition, $f(n) = \Theta(g(n))$ if there exists positive real constants c_1 , c_2 and a positive integer constant n_0 such that

$$c_2g(n) \le f(n) \le c_1g(n)$$
 for all $n \ge n_0$

We can pick $c_1 = 7$

Since:

$$5n^3 + 2n^2 + 3n \le 5n^3 + 2n^3$$

 $5n^3 + 2n^2 + 3n \le 7n^3$

We can pick $c_2 = 5$

Since

$$5n^3 + 2n^2 + 3n >= 5n^3$$

To pick
$$n_0$$
 we set $2n^2 + 3n \ge 0$

$$n(2n + 3) >= 0$$

 $n >= 0$

We can pick $n_0 = 2$

For
$$n \ge 2$$
 we can safely say:

$$5n^3 \le 5n^3 + 2n^2 + 3n \le 7n^3$$

Therefore
$$5n^3 + 2n^2 + 3n = \Theta(n^3)$$

b)
$$\sqrt{(7n^2+2n-8)} = \Theta(n)$$

Let $f(n) = \sqrt{(7n^2 + 2n - 8)}$, by definition, $f(n) = \Theta(g(n))$ if there exists positive real constants c_1 , c_2 and a positive integer constant n_0 such that

$$c_2g(n) \le g(n) \le c_1g(n)$$
 for all $n >= n_0$

We can pick
$$c_1 = 9$$

Since
$$\sqrt{(7n^2+2n-8)} <= 9n$$

We can pick
$$c_2 = 2$$

Since
$$\sqrt{(7n^2+2n-8)} >= 2n$$

To pick n_0 we set $7n^2 + 2n - 8 >= 4n^2$

$$3n^2 + 2n - 8 >= 0$$

$$n >= 1.7$$

We pick
$$n_0 = 2$$

For n >= 2,
$$2n <= \sqrt{(7n^2+2n-8)} <= 9n$$

Therefore
$$\sqrt{(7n^2+2n-8)} = \Theta$$
 (n)