Nama: Satya Athaya Daniswara

NIM: 1103213152

TUGAS PERBAIKAN BAB 1

Pustaka dan Alat untuk Pembelajaran Mesin

SciPy

- Merupakan pustaka untuk komputasi ilmiah yang dibangun di atas NumPy.
- Fungsionalitasnya mencakup:
 - Pemrosesan sinyal
 - Optimisasi
 - Aljabar linier
- Contoh penggunaan:

```
```python
```

from scipy.optimize import minimize

```
result = minimize(lambda x: x2, 0)
```

print(result.x) Output: [0.]

...

## Matplotlib

- Pustaka untuk visualisasi data dalam bentuk grafik dan plot.
- Contoh penggunaan:

```
```python
```

import matplotlib.pyplot as plt

plt.plot([1, 2, 3], [4, 5, 6])

plt.show()

...

Pandas

- Pustaka untuk manipulasi dan analisis data berbasis tabel (DataFrame).
- Digunakan untuk:
- Membaca data dari file CSV/Excel.
- Memfilter, mengelompokkan, dan meringkas data.
- Contoh penggunaan:

```
```python
import pandas as pd
df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
print(df)
```

#### Mglearn

- Pustaka tambahan yang digunakan dalam buku ini untuk visualisasi dan contoh terkait pembelajaran mesin.
- Instalasi:

```
```bash
pip install mglearn
```

- Biasanya digunakan untuk membuat grafik sederhana yang menunjukkan konsep pembelajaran mesin.

Proyek Pembelajaran Mesin

Dalam proyek ini, kita membangun model pembelajaran mesin untuk mengklasifikasikan jenis bunga Iris menggunakan algoritma k-Nearest Neighbors (k-NN). Prosesnya meliputi:

- 1. Memuat dataset Iris yang terdiri dari empat fitur dari tiga spesies bunga.
- 2. Membagi data menjadi dua set: satu untuk pelatihan model dan satu untuk pengujian.
- 3. Memvisualisasikan data untuk memahami pola dalam fitur-fitur tertentu.
- 4. Melatih model k-NN dengan data latih untuk memprediksi spesies bunga berdasarkan kedekatannya dengan data yang sudah diketahui.
- 5. Menguji model dengan data yang tidak terlihat sebelumnya dan menghitung akurasinya.

Proyek ini menekankan pentingnya langkah-langkah dasar dalam pembelajaran mesin, seperti eksplorasi data, pemisahan data untuk pelatihan dan pengujian, pemilihan algoritma yang tepat, dan evaluasi model menggunakan metrik seperti akurasi. K-NN terbukti efektif untuk tugas klasifikasi sederhana, dan akurasi yang diperoleh menunjukkan bahwa model berhasil memahami pola dalam data Iris.

Mengapa Pembelajaran Mesin?

Pembelajaran Mesin adalah pendekatan untuk membangun sistem yang dapat belajar dari data dan membuat keputusan tanpa pemrograman eksplisit. Terdapat beberapa jenis pembelajaran mesin:

- Supervised Learning: Sistem belajar dari data yang diberi label.
- Unsupervised Learning: Sistem menemukan pola dalam data yang tidak diberi label.
- Reinforcement Learning: Sistem belajar melalui interaksi dengan lingkungan untuk memaksimalkan reward.

Mengapa Python?

Python adalah bahasa yang ideal untuk pembelajaran mesin karena:

- 1. Sintaksis yang sederhana, mudah dipelajari.
- 2. Ekosistem yang kaya dengan pustaka seperti scikit-learn, TensorFlow, Keras, dan PyTorch.
- 3. Komunitas aktif yang menyediakan banyak tutorial dan dokumentasi.
- 4. Integrasi yang mudah dengan alat lain untuk analisis data dan pengembangan aplikasi.

Scikit-learn

Scikit-learn adalah pustaka Python untuk pembelajaran mesin yang mencakup:

- Algoritma populer untuk regresi, klasifikasi, clustering, dan pengurangan dimensi.
- Alat untuk validasi model, preprocessing data, dan pipeline.
- Integrasi yang baik dengan pustaka lain seperti NumPy, SciPy, dan matplotlib.

Instalasi Scikit-learn

Untuk menginstal scikit-learn, gunakan perintah:

```bash

pip install scikit-learn

...

## Prasyarat:

- Python (versi >= 3.8)
- pip atau conda sebagai manajer paket
- Ketergantungan lain seperti NumPy dan SciPy.

# Pustaka dan Alat Penting

Jupyter Notebook

- Alat berbasis web untuk menulis dan menjalankan kode Python.
- Fitur utama:
- Mendukung penulisan kode, dokumentasi, dan visualisasi dalam satu tempat.
- Mudah digunakan untuk eksplorasi data dan pembelajaran mesin.
- Instalasi:

```bash

pip install notebook

• • • •

NumPy

- Pustaka Python untuk operasi numerik efisien, khususnya dengan array multidimensi.
- Digunakan untuk:
- Operasi matematika vektor/matriks.
- Pemrosesan data numerik.
- Contoh penggunaan:

```
```python
```

import numpy as np

```
arr = np.array([1, 2, 3])
```

print(arr.mean()) Output: 2.0