UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

EVALUACIÓN 2. CÁLCULO III. 525211.

1. La superficie del Toro de la Figura está definida paramétricamente como

$$\begin{cases} x = \cos \theta (R + r \cos \varphi) \\ y = \sin \theta (R + r \cos \varphi) \\ z = r \sin \varphi, \end{cases} \quad \begin{array}{l} \cos \theta, \varphi \in [0, 2\pi]. \\ R > r > 0 \ (constants) \end{cases}$$

- a) Pruebe que existe una vecindad de (x, y, z) = (R, 0, r) en la superficie del Toro, en la que se puede despejar z en términos de x e y : z = f(x, y).
- b) Calcule $\nabla f(x,y)$ en términos de θ y φ .
- c) ¿ Existe una vecindad de (R,0,r) en la que se pueda despejar x en términos de y y z ? justifique su respuesta.
- 2. Mediante el cambio de variable de coordenadas toroidales a cilíndricas :

$$\Phi: [0,r) \times [0,2\pi) \times [0,2\pi) \longrightarrow \text{Interior del Toro en coord. Cilíndricas}$$

 $(\xi,\theta,\varphi) \longmapsto (\rho,\theta,z) = (R + \xi\cos\varphi,\theta,\xi\sin\varphi)$

Calcule el Volumen del Toro de la Figura usando las coordenadas toroidales.

3. Multiplicadores de Lagrange y Geometría Optica. Se envía un haz de luz desde un faro en $A \in \mathbb{R}^3$ hacia un punto $X \in \mathbb{R}^3$ sobre la superficie del mar. Desde X, el rayo de luz se refleja hacia un punto B sobre la superficie del agua, y se refracta hacia un punto C, dentro del agua. La luz se mueve en linea recta en cada medio (aire, agua), de modo que el tiempo de refracción :

$$t(X) = \frac{1}{v_1} ||\vec{AX}|| + \frac{1}{v_2} ||\vec{XC}||,$$

sea mínimo respecto de X, con v_1 , v_2 , las velocidades de la luz, en el aire, y en el agua respectivamente. Suponga que la superficie del agua está parametrizada por F(X) = 0, donde $F : \mathbb{R}^3 \to \mathbb{R}$ es una función de clase \mathcal{C}^1 .

a) Pruebe que existe $\lambda \in \mathbb{R}$ tal que, $\frac{1}{v_1} \frac{\vec{AX}}{\|\vec{AX}\|} - \frac{1}{v_2} \frac{\vec{XC}}{\|\vec{XC}\|} = \lambda \nabla F(X).$

Suponga que el tiempo de reflexión se comporta igual, reemplazando C por B, y v_2 por v_1 .

- b) Deduzca la primera ley que dice que : Los rayos de reflexión, de refracción, y de incidencia, y la normal a la superficie del mar en el punto X, se encuentran en un mismo plano.
- c) Proyectando sobre la superficie del agua, deduzca la segunda ley que dice que : los ángulos de incidencia y de reflexión con respecto de la normal a la superficie del agua son iguales, mientras que los ángulos de incidencia θ_i y de refracción bajo el agua θ_r verifican la relación conocida como ley de Snell : $\frac{\sin \theta_r}{\sin \theta_i} = \frac{v_2}{v_1}$.

Duración: 120 minutos.

MSC/msc

(28-Mayo-2004)