CEG4158 Lab Project Report #1

November, 2020 Justin Tam 300026741 Lucas Rahn 300021873

CEG4158	0
Lab Project Report #1	0
Robotix Axis Definition	2
DH Parameters Table	2
A Matrices	2
Forward Kinematics Model	3
Demonstration	7
Error Calculation:	9
Discussion	10
Appendix A	11
Appendix B	13
Appendix C	15

Robotix Axis Definition

Figure 1: Axis Definition

DH Parameters Table

Table 1: DH parameters

Joint	l(mm)	d(mm)	α(Deg.)	$\theta(Deg.)$
1	98	157	0	θ_1
2	96	0	90	θ_2
3	60	0	0	θ_3
4	0	0	90	$\theta_4 + \Delta$
5	0	110	0	θ_5

A Matrices

The A Matrices are each a forward transformation matrix for an evolving reference frame. For 6 joints, we have 5 transformations which are described fully by the DH parameters given in Table 1 above. Using the definition for an A matrix, A_i , as given below in equation 1, we proceed to calculate an A matrix for each *ith* joint, A_i , while keeping each θ_i as a variable.

$$A_i = \begin{bmatrix} \cos\theta_i - \sin\theta_i \cos\alpha_i & \sin\theta_i \sin\alpha_i & l_i \cos\theta_i \\ \sin\theta_i & \cos\theta_i \cos\alpha_i & -\cos\theta_i \sin\alpha_i & l_i \sin\theta_i \\ 0 & \sin\alpha_i & \cos\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Equation 1: A matrix definition, obtained from Computer Control in Robotics, Chapter 4

$$A_{1} = \begin{bmatrix} \cos\theta_{1} & -\sin\theta_{1} & 0 & 98\cos\theta_{1} \\ \sin\theta_{1} & \cos\theta_{1} & 0 & 98\sin\theta_{1} \\ 0 & 0 & 1 & 157 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A_{2} = \begin{bmatrix} \cos\theta_{2} & 0 & \sin\theta_{2} & 96\cos\theta_{2} \\ \sin\theta_{2} & 0 & -\cos\theta_{2} & 96\sin\theta_{2} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} \cos\theta_{3} & -\sin\theta_{3} & 0 & 60\cos\theta_{3} \\ \sin\theta_{3} & \cos\theta_{3} & 0 & 60\sin\theta_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A_{4} = \begin{bmatrix} \cos(\theta_{4} + \Delta) & 0 & \sin(\theta_{4} + \Delta) & 0 \\ \sin(\theta_{4} + \Delta) & 0 & -\cos(\theta_{4} + \Delta) & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{5} = \begin{bmatrix} \cos\theta_{5} & -\sin\theta_{5} & 0 & 0 \\ \sin\theta_{5} & \cos\theta_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Forward Kinematics Model

We can then multiply all of the A matrices subsequently to obtain the full forward kinematics model, represented by the $Q_{effector/base}$ matrix. The $Q_{effector/base}$ matrix, for the DH parameters shown in Table 1, can be calculated by multiplying through each matrix and as before, keeping each θ_i as a variable, as shown in equation 2. The results of the subsequent matrix products are given below, eventually leading to the final $Q_{effector/base}$ matrix.

$$Q_{effector/base} = A_1 A_2 A_3 A_4 A_5 \qquad equation 2$$

The calculations using the A matrices defined early, with equation 2 are shown in Figures 2-4

```
960050,00501-96500,51001+980050,
                                                 cose sine temperso,
            Coso, coso, - Sino, sino,
                                                                             965100, cosa 2+96casa, 500, 1 9851001
                                                 Sing, SING, - COSO, COSOL
            SING, COSO + COSO, 5,40 L
                                                                                           157
                                                          0
 A, Az=
                                          0
                                                           0
                                                                                                 60c050 5 (c050,c050,-500,c0)
                                                                        C030,500,4500,C0502
                                                                                                +960050,0000,-95000,5000,
                                            -Sine; (case, case, -5)no, 5)no, )
            coses (cose, case - sine, sine)
                                                                                                COMES AS 10, COSE + COSE
                                            -sing/sing,cose + cose, sing sing, cose, cose, cose,
A, Az Az =
            coso3(eino,coso2+coso,eino2)
                                                                                                 Sing 1+46singcoso +46
                                                                                                 CUSO, SINO, + 98 SINDE
                                                                                                  60sin 03+167
                   sinez
                                                   COSOS
                                                                                 0
                                                                                 C
                                                      0
                     0
                                                                             110570(0+4)
                                                       Sin (Ont)
                              -COS(04+5) 5009
           coso++>) cosos
                                                                           -110 005 (0++4
                              -5:d(0+44)sind;
                                                     - cos(0+13)
           5; n(a,+1) cosos
                                                                                    0
                                                           0
                                  cosos
              sines
                                                            0
                                     0
                 0
```

Figure 2: 3 intermediate products of A matrices

```
-costo, 1/3) sinescose stose, cose, -sine, sine, sine,
                 cos(o+1) cososcoso (coso, cosoz - sincistos )
                  -sin(0+4) cosossion (coso coso, -sino, sino)
                                                                         15,0(0,10)5:00; 5:00;(coso,coso, -5:00,5100)
                                                                         + 00505(0000,5100, +5190,0050)
                  + 51005 (050, 5100; + 5100, 0050)
                                                                        -cos(orth) sings case (Singpase) + cose (single)
                 -sin(0,+4) cosos sinos (sino cosos + cosos sinos)
                                                                        45:0(0+1) 15:00; 5:00; (5:00; cosor + coso, 5:00)
                                                                        + cosos ( sino, sino 2 - coso, coso 2)
                  + sines (sina, sinoz-coseposez)
                                                                         - costoges ) sing, sing;
                  COS(0+14) COSO, SIDOZ + SINO+14) COSOS COSOS
A, AzAzA+As=
                                                                         - Stalotto) Sigo, coso,
                                         O
```

Figure 3:Columns 1 and 2 of the final product of all 5 A matrices

```
$\frac{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text{\cos\text
```

Figure 4: Columns 3 and 4 of the final product of all 5 A matrices

Figure 5: Simplified Q eff/base Matrix

To validate the $Q_{effector/base}$ matrix we found above, we test it against the matlab code used to derive the $Q_{effector/base}$ numerically. The results are shown in Figures 6-8 below, testing 3 different sets of theta values, all for **delta=0**(see Figure 1), and all measurements in mm. Note that for the first two sets of theta values, the validation can easily be seen by adding up the dimensions with respect to the reference frame of joint 1, as in Figure 1. For example, for set 1 the x coordinate of the end effector is given by (96+98+60)=254, the y coordinate = 0, and the z coordinate is given by (157-110)=47 as shown by both models in Figure 6. The same can be said for the 3rd set, by also doing a little bit of basic trigonometry.

>> Lab1	Analyt	ical_(2
Q =			
1	0	0	254
0	-1	0	0
0	0	-1	47
0	0	0	1
>> Lab1	Numeri	cal_Q	
1	0	0	254
0	-1	0	0
0	0	-1	47
0	0	0	1

Figure 6: Model Comparison for $\theta_1 = \theta_2 = \theta_3 = \theta_4 = \theta_5 = 0$

2 =			
0	1	0	0
0	0	1	364
1	0	0	157
0	0	0	1
>> Lab1	_Numerio	cal_Q	
0	1	0	0
0	0	1	364
1	0	0	157
0	0	0	1

Figure 7: Model Comparison for $\theta_1 = \theta_4 = 90$, $\theta_3 = \theta_2 = \theta_5 = 0$

```
>> Lab1 Numerical Q
   -0.3685
              0.9068
                         0.2048
                                 124.0640
   -0.0885
             -0.2535
                         0.9633
                                 326.9575
    0.9254
              0.3368
                         0.1736
                                 186.5202
                                    1.0000
>> Lab1 Analytical Q
Q =
   -0.3685
              0.9068
                         0.2048
                                 124.0640
   -0.0885
             -0.2535
                         0.9633
                                 326.9575
                         0.1736
                                 186.5202
                                    1.0000
```

Figure 7: Model Comparison for $\theta_1 = 45$, $\theta_2 = 33$, $\theta_3 = 10$, $\theta_4 = 90$, $\theta_5 = -20$

Demonstration

To demonstrate the forward kinematic model derived we apply our model to the physical robot itself. A set of theta values are given as input, and the output of the model vs the measured physical outputs of the robotic arm itself are compared. To compare outputs, we measure the x, y, and z coordinates of the tip of the robotic arm and compare these values to x_T , y_T , and z_T given in the $Q_{effector/base}$ matrix, in inches. To calculate the $Q_{effector/base}$ matrix for a given set of theta values we use Matlab a script(see Appendix A for the full code). When calculating $Q_{effector/base}$ matrix we choose $\Delta = 90 \ Deg$ (see Figure 1) to keep the model consistent with the calibrations(this results in the arm being completely extended for $\theta = 0$).

During the lab session we tested 4 sets of values for each theta, as shown in Table 2(for the pictures of physical robotic arm positions for each set of theta values, see Appendix B). To measure the set of physical coordinates, x, y, and z, we measure the tip of the end effector of the robotic arm, as shown from the 2 camera angles in Figure 9. Also note that the coordinate system was defined initially in Figure 1 (X1, Y1, and Z1) and so all measurements are taken with respect to this definition.

Figure 9: Defining the physical coordinates of the end effector

Table 2: Physical Results vs Predicted Results for theta_i(degrees) and x,y, and z(inches)

Set No.	θ_1	θ_2	θ_3	θ_4	θ_5	x	у	Z	x_T	y_T	z_T
1	62	-75	-51	65	0	12.0	4.5	7.5	11.03	1.28	5.40
2	32	-43	-22	-13	0	13.5	2.5	3.5	12.61	0.23	2.81
3	-10	-20	-22	43	0	14.0	-6.0	7.5	12.47	-5.68	6.85
4	-30	-5	-7	10	0	13.0	-9.0	7.0	11.90	-7.92	6.12

Error Calculation:

Using equation 3 we calculate the percent difference for each coordinate per set, and proceed to take the average of all percent differences. We also calculate the absolute difference in the same manner.

Percent Difference =
$$\left(\frac{|a-a_T|}{a}\right)$$
 100% equation 3

Table 3: Calculating Percent and Absolute Differences

а	a_T	Absolute Difference(%)	Percent Difference(%)
12	11.03	0.97	8.083333333
13.5	12.61	0.89	6.592592593
14	12.47	1.53	10.92857143
13	11.9	1.1	8.461538462
4.5	1.28	3.22	71.5555556
2.5	0.23	2.27	90.8
-6	-5.68	-0.32	5.33333333
-9	-7.92	-1.08	12
7.5	5.4	2.1	28
3.5	2.81	0.69	19.71428571
7.5	6.85	0.65	8.66666667
7	6.12	0.88	12.57142857
	Average	1.075	23.55894214

Discussion

By applying 5 elementary transformation matrices(for evolving reference frames) to the base reference frame we were able to find the coordinates of the end effector relative to the base reference frame, while keeping the rotation of each joint(theta) a variable. The result, is a model that reuters the $Q_{effector/base}$ for a specified set of theta values for each joint.

By comparing the model against our physical measurements we obtain an average percent difference of 23.56, and average absolute difference of 1.075. The absolute difference is low, and constant enough through each coordinate measurement that we suspect the kinematic model developed on Matlab works perfectly, and the error instead originates from the calibration of the robotic arm, error created by measuring using static camera angles, and any random error in reading the measurements. We also note that the physical measurements are consistently greater than the predicted values, on an average represented by the absolute difference. A reasonable explanation for this is that each joint is under calibrated, in the sense that a given theta, θ_{given} , results in a physical/measured theta, $\theta_{physical}$, such that $\theta_{physical} < \theta_{given}$. Thus, the robotic arm extends less distance in each dimension from its starting position.

Appendix A

Matlab program to numerically calculate the $Q_{effector/base}$ matrix for a given set of theta values.

```
Lab1_Returns_Q_for_thetai.m × +
1
        %Theta Values
2 -
       NumberOfTransformations = 5;
3 -
       theta1=0;
       theta2=0;
 5 -
       theta3=0;
 6 -
       theta4=0;
7 -
        theta5=0;
8
9
        %DH PARAMS
10
        &cm
11 -
        1 = [98 96 60 0 0];
12 -
        d = [157 \ 0 \ 0 \ 0 \ 110];
13
        8}
14
        %inches
     - 8 {
15
16
        1 = [98*0.0393701 96*0.0393701 60*0.0393701 0 0];
17
        d = [157*0.0393701 0 0 0 110*0.0393701];
      - 8}
18
19 -
       alpha = [0 90 0 90 0];
20 -
       theta = [theta1 theta2 theta3 theta4+90 0];
21
       %A Matrix Forward Qmatrix definitions
       Amatrix = zeros(4, 4, NumberOfTransformations);
22 -
23 -
        Qmatrix = zeros(4, 4);
24
25 -
       cosa = @cosd;
26 -
        sina = @sind;
27
28
       %simple function for easily switching between degrees and radians
                                  %0 for degrees and 1 for radians
29 -
       DegreeOrRadians = 0;
30 -
        if DegreeOrRadians == 1
31 -
            cosa = @cos;
32 -
            sina = @sin;
33 -
        end
34
35
        %determing the A matrix values and forward transformation matrix
36 -
     for i = 1:NumberOfTransformations
37 -
            Amatrix(:,:,i) = [cosa(theta(i)) -sina(theta(i))*cosa(alpha(i))...
38
                sina(theta(i))*sina(alpha(i)) l(i)*cosa(theta(i));
39
                               sina(theta(i)) cosa(theta(i))*cosa(alpha(i))...
40
                               -cosa(theta(i))*sina(alpha(i)) 1(i)*sina(theta(i));
41
                               0 sina(alpha(i)) cosa(alpha(i)) d(i);
42
                               0 0 0 11;
43 -
            if i == 1
44 -
                Qmatrix = Amatrix(:,:,i);
```

```
45 -
           else
46 -
               Qmatrix = Qmatrix*Amatrix(:,:,i);
47 -
           end
48 -
      end
49
50 -
       disp(Qmatrix);
51
52
       %Final end effector location and angles
53 -
       xt = Qmatrix(1,4);
54 -
       yt = Qmatrix(2, 4);
55 -
       zt = Qmatrix(3, 4);
56 -
       thetaf = atan2(Qmatrix(2,1), Qmatrix(1,1));
57 -
       phif = atan2(-Qmatrix(3,1),Qmatrix(1,1)*cosa(thetaf)+Qmatrix(2,1)...
58
           *sina(thetaf));
59 -
       psif = atan2(Qmatrix(2,2),Qmatrix(3,3));
60
```

Appendix B

Set 1

Set 2

Set 3

Set 4

Appendix C

Matlab code implementing the analytically derived $Q_{\it effector/base}$ matrix

```
-----Theta Values -----
2 -
      theta1 = 0;
3 -
      theta2 = 0;
4 -
      theta3 = 0;
5 -
      theta4 = 0;
6 -
      theta5 = 0;
7 -
      delta = 0;
8
9
      %-----Calculate Q------
      %Q = zeros(4, 4);
      a = theta3+theta4+delta; %arbritrary constant for simplicity
12 -
      b = theta1+theta2;
L3 -
      c = theta5;
L4 -
      Q = [\cos d(c) * \cos d(b) * \cos d(a) + \sin d(c) * \sin d(b) - \sin d(c) * \cos d(b) * \cos d(a) + \cos d(c) * \sin d(b) \dots
L5
          cosd(b)*sind(a) cosd(b)*(110*sind(a)+60*cosd(theta3)+96)+98*cosd(theta1);
16
          cosd(c)*sind(b)*cosd(a)-sind(c)*cosd(b) -sind(c)*sind(b)*cosd(a)-cosd(c)*cosd(b)...
          sin(b)*sind(a) sind(b)*(110*sind(a)+60*cosd(theta3)+96)+98*sind(theta1);
18
          cosd(theta5)*sind(a) -sind(theta5)*sind(a) -cosd(a) -110*cosd(a)+60*sind(theta3)+157;
19
          0 0 0 1];
20
21
      %-----Final end effector location and angles-----
22 -
      thetaf = (atan2(Q(2,1), Q(1,1)))*180/pi;
23 -
      phif = (atan2((-Q(3,1)), (Q(1,1)*cosd(thetaf)+Q(2,1)*sind(thetaf))))*180/pi;
      psif = (atan2(Q(3,2),Q(3,3)))*180/pi;
25
      display(Q);
```