Projektmanagement

BET

Projekt-Ablaufplanung PM-Prozesse

Schuljahr 2023/24

DI (FH) Bernd Frankenhauser

Projekt-Ablaufplanung (PAP)

Ablauf – oder Terminplanung

 Ziel ist es, die erstellten Arbeitspakete (AP) in zeitlichen Kontext zu bringen und zu fixieren

Terminplanung erfolgt

- grob → Meilensteinplan
- im Detail → Balkendiagramm
- + kann sich auf das Gesamtprojekt oder nur auf Projektphasen beziehen
- + hängt von der Komplexität des Projektes ab

Projekt-Ablaufplanung (2)

- Verschiedene Ablaufplaninstrumente:
 - Meilensteinplan (MSP)
 - Balkenplan (Gantt)
 - Vernetzter Balkenplan
 - Netzplan

Meilensteinplan (MSP)

- Meilenstein ist die gröbste Terminplanmethode
- Meilenstein ist ein Ereignis mit besonderer Bedeutung in einem Projekt und markiert wesentliche Punkte im Projektfortschritt
- 1 2 MS pro Phase sollten genügen
- Meilensteine haben die Dauer 0
- Sind häufig Anfang- oder Endereignisse von AP
- Ereignisbezogene Benennung
 - z.B. Ist-Analyse abgeschlossen (gestartet, beendet, ...)
- MS werden im PSP meist als rotes Sechseck oder als rote Rauten dargestellt

Erstellung eines MSP

1. Meilensteine im PSP festlegen

Erstellung eines MSP (2)

- 2. Die im PSP festgelegten MS in den Meilensteinplan (MSP) übertragen
- 3. Meilensteine müssen aufsteigend chronologisch geordnet sein

Meilensteinplan				
PSP-Code	Meilenstein	Plantermin		
1.1.1	Projekt gestartet	01.02.2013		
1.2.7	Ist-Analyse abgeschlossen	26.02.2013		
1.3.5	Detailplanung freigegeben	30.03.2013		

MSP als Controlling-Instrument

- Basistermin entspricht dem Plantermin
- Aktueller Termin

 voraussichtlicher Termin
- Ist-Termin

 tatsächlich erreichter Termin

Meilensteinplan (1997)						
PSP- Code	Meilenstein	Basis-Termin	Aktueller Termin	Ist-Termin		
1.1.1	Projekt gestartet	01.02.2013	06 .02.2013	08 .02.2013		
1.2.7	Ist-Analyse abgeschlossen	26.02.2013	05 .03.2013	05 .03.2013		
1.3.5	Detailplanung freigegeben	30.03.2013	30 .03.2013			

Projekt Balkenplan

- Ist eine detaillierte Ergänzung zum Meilensteinplan
- Zeigt alle Arbeitspakete inklusive deren Dauer
- deren zeitlicher Lage (Start- und Endtermin)
- Unterscheidet sich inhaltlich nicht sehr von der Terminliste – ist aber viel übersichtlicher
- PSP ist die Basis für den Projektbalkenplan
- Bei einem vernetzten Plan werden auch die Abhängigkeiten zwischen den Arbeitspaketen dargestellt

Projekt Balkenplan (2)

- Notwendige Informationen zur Erstellung des Projekt-Balkendiagramms (Gantt):
 - PSP (!)
 - Arbeitspaket-Spezifikation
 - Geschätzte Dauer aus AP-Spezifikationen
 - Meilensteine
 - Ressourcen (Personaleinsatzplan, Funktionendiagramm)

Projekt Balkenplan (3)

Vorgangsweise ("Kochrezept"):

- 1. Zuerst die Projektstruktur (Phasen, AP, MS) eintragen
- 2. Dauer der AP und der MS (=0) eintragen
- 3. Meilensteine (MS) auf ihre Termine setzen
- 4. Zeitliche Lage der Arbeitspakte (AP) festlegen und ggf. Korrekturen bzgl. Lage und Dauer der AP und MS durchführen

Projekt Balkenplan (4)

MS Projekt 2010 Beispiel "Klassentreffen"

Vernetzter Balkenplan

- Zusätzlich zum Balkenplan (Basisplan) werden logische Beziehungen zwischen AP und Phasen hergestellt
- Beziehungen haben immer einen Vorgänger und einen Nachfolger

Beispiel aus MS Project 2010

Vernetzter Balkenplan (2)

Anordnungsbeziehungen

- Ende-Anfang-Beziehung (EA)
 - Nächster AP beginnt erst nach Ende des vorherigen AP
 - z.B. Einladung muss bearbeitet sein, damit sie versendet werden kann
- Anfang-Anfang-Beziehung (AA)
 - 2 AP beginnen gleichzeitig
 - z.B. "Adressen sammeln" und "Einladungen bearbeiten" starten zeitgleich
- Ende-Ende-Beziehung (EE)
 - 2 AP müssen zur gleichen Zeit abgeschlossen sein
 - z.B. AP "Leitungen pr

 üfen" kann erst abgeschlossen werden, wenn AP "Kabel verlegen" erledigt ist

Netzplan

- Graphische Darstellung von Abläufen und deren Abhängigkeiten in einem Projekt
- Es gibt Anordnungsbeziehungen zwischen zwei oder mehreren Arbeitspaketen
- Jedes AP hat mindestens einen Vorgänger und einen Nachfolger
- Jedes AP enthält Daten, die über Anfang und Ende und evt.
 Zeitpuffer Auskunft geben

Arbeitspaket				
FA	Douer	FE		
SA	Dauer	SE		

FA: Frühester Anfang

FE: Frühestes Ende

SA: Spätester Anfang

SE: Spätestes Ende

Netzplan (2)

Netzplan - Kritischer Pfad

- Kritischer Pfad ist eine Folge verbundener Arbeitspakete.
- Im Netzplan ist der Kritische Pfad die Folge der Elemente mit der längsten Gesamtdauer, der damit den kürzest möglichen Zeitraum bis zur Fertigstellung des Projektes bestimmt.
- Jeder Verzug eines Elementes auf dem kritischen Pfad beeinflusst direkt den geplanten Fertigstellungstermin für das Projekt
 - → kein Zeitpuffer vorhanden; jede Verzögerung schlägt durch!

Netzplan – Kritischer Pfad (2)

