Assignment 2

This assignment is due on September 25; marks will be deducted for late homework. Please include all references, and the names of all students in your study group. Remember all programs should be submitted as an IPython (*.ipnb) as well as the pdf file.

1) A) Construct smooth transformation functions using linear combination of exponential of the form $e^{\alpha_1 + \alpha_2 r^n}$, where n, α_1 and α_2 are positive constant. Design transformation functions as displayed in **Figure 1**, using the given exponential form. (x-axis is the original intensity going from 0-255. Y-axis is the new map).

Figure 1: Example of smooth intensity transformation functions

- B) Apply these transformations on Image1.jpg and display the results in grayscale.(20 points)
- 2) Apply the transformation shown in Figure 2 one Image1.jpg. Here, all intensity values from 0 to 127 are mapped to 0 and intensity values from 128 to 255 are mapped to 1. Such transformations lead to binary images. What is such an operation called? (10 points)

- 3. a) Write a function to obtain the histogram and the cdf of Image1.jpg.
 - b) Obtain the histogram of Image1.jpg using the in-built histogram function in matplotlib.pyplot.
 - c) Compare the histogram generated using your function and the in-built function.
 - d) Perform histogram equalization using the exposure module.
 - e) Plot the transformation function that is applied on the original image to get the histogram equalized image. (25 points)

4.

- a) Construct the checkerboard pattern (200x200) as shown in Figure 3. Each square should be 10x10 pixels. Hence each row and column should have 20 squares (back and white alternating pattern).
- b) Sample this image at sampling period 'n'. Determine the highest sampling period, *N*, that can be used to recover this image.
- c) Try different sampling periods below *N* and comment on what you observe.
- d) Try different sampling periods above *N* and comment on what you observe. What is this effect called? Display results obtained for c) and d) (10 points)

Figure 3