Surface of solid of revolution:

(a) Revolution about x-axis: Let curve is y = f(x), then the area between the ordinate x = a, x = b and x-axis is

$$\int_{a}^{b} 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx.$$

(b) Revolution about y-axis: If the curve is x = f(y) then the area between the ordinate y = a, y = b, y-axis which is

$$\int_{a}^{b} 2\pi x \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy.$$

(c) Parametric form: Let x = f(t) and $y \neq g(t)$ are two curve, then area of solid of revolution about x-axis

$$\int 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt.$$

(d) Polar Form: Let the equation of curve is $r = f(\theta)$, then the curve surface generated by revolution about the initial line and the arc intercept $\theta = \alpha$ and $\theta = \beta$ is

$$\int_{\alpha}^{\beta} 2\pi (r\sin\theta) \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta.$$

The surface area obtained by revolving y = 2x, for Q.1 $x \in [0, 2]$, about y-axis is IIT JAM 2009

- (a) $2\pi\sqrt{5}$
- (b) $4\pi\sqrt{5}$ (d) $4\sqrt{5}\pi$

(c) $2\sqrt{5\pi}$

Area of the surface:

Let the equation of surface is z = f(x, y),

then the area of surface =
$$S = \iint_R \sqrt{1 + z_x^2 + z_y^2} dx dy$$
.

Where R is projection of S on xy-plane.

Note:

- (1) If the equation of surface is y = f(x, z), then surface area $S = \iint_{R} \sqrt{1 + y_x^2 + y_z^2} dx dz.$
- (2) If the equation of surface is x = f(y, z), then surface area $S = \iint_{R} \sqrt{1 + x_y^2 + x_z^2} dy dz.$

Q.2. The surface area of the portion of the plane y + 2z = 2 within the circle $x^2 + y^2 = 3$ is IIT JAM – 2016

(a)
$$\frac{3\sqrt{5}}{2}\pi$$

(b)
$$\frac{5\sqrt{5}}{2}\pi$$

(c)
$$\frac{7\sqrt{5}}{2}\pi$$

(d)
$$\frac{9\sqrt{5}}{2}\pi$$

The area of the surface $z = \frac{xy}{3}$ intercepted by the cylinder $x^2 + y^2 \le 16$ lies in the interval IIT JAM 2017 Q.3.

- (a) $(20 \pi, 22 \pi]$ (b) $(22\pi, 24\pi]$ (c) $(24\pi, 26\pi]$ (d) $(26\pi, 28\pi]$

The area of the part of the surface of the paraboloid Q.4. $x^2 + y^2 + z = 8$ lying inside the cylinder $x^2 + y^2 = 4$ is

IIT JAM - 2019

(a)
$$\frac{\pi}{2}(17^{3/2}-1)$$
 (b) $\pi(17^{3/2}-1)$ (c) $\frac{\pi}{6}(17^{3/2}-1)$ (d) $\frac{\pi}{3}(17^{3/2}-1)$

(b)
$$\pi(17^{3/2}-1)$$

(c)
$$\frac{\pi}{6}(17^{3/2}-1)$$

(d)
$$\frac{\pi}{3}(17^{3/2}-1)$$

Find the area of the portion of the surface $z = x^2 - y^2$ in Q.5. R^3 which lies inside the solid cylinder $x^2 + y^2 \le 1$.

IIT JAM - 2012

(a)
$$\frac{\pi}{6}[5^{3/2}-1]$$

(a)
$$\frac{\pi}{6} [5^{3/2} - 1]$$
 (b) $\frac{\pi}{6} [13^{3/2} - 1]$

(c)
$$\frac{\pi}{3}[5^{3/2}-1]$$
 (d) $\frac{\pi}{2}[5^{3/2}-1]$

(d)
$$\frac{\pi}{2}[5^{3/2}-1]$$

Q.6. Find the surface area generated by the revolution of the cardioid $r = a(1 + cos\theta)$ about the initial line.

(a)
$$\frac{72}{5}\pi a^2$$

(b)
$$\frac{64}{5}\pi a^2$$

(c)
$$\frac{32}{5}\pi a^2$$

Q.7. Find the surface area of the portion of the cone $z^2 = x^2 + y^2$ that is inside the cylinder $z^2 = 2y$. IIT JAM – 2008

- (a) $2\sqrt{2}\pi$ (b) $4\sqrt{2}\pi$
- (c) $6\sqrt{2}\pi$ (d) $8\sqrt{2}\pi$