Chiffrer ses e-mails avec GPG

Présentation

Dans le cadre du Festival des libertés numériques 30 janvier 2019

> Leo Vivier leo.vivier@gmail.com

> > Clé PGP

88A6 70C3 BAB2 FA14 F50D 7676 1D44 336A 099C 0A16

Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution - Partage dans les mêmes conditions 4.0

lao Vivia

Chiffrer ses e-mails avec GPC

Table des matières

- 1. Introduction
- 2. Chiffrement symétrique
- 3. Chiffrement asymmétrique
- 4. GPG: Explication

Leo Vivier

iffrer ses e-mails avec GPG

Introduction

1. Introduction

- 1.1 Objectif de la séance
- 1.2 Bornes de la présentation
- 1.3 Notes sur les outils utilisés pendant cette présentation
- 1.4 Pourquoi chiffrer ses e-mails?
 - 2. Chiffrement symétrique
 - 3. Chiffrement asymmétrique
 - 4. GPG: Explication

Objectif de la séance

- 1. Ne pas se contenter de former à l'utilisation d'outils
 - Ce sera le but de l'atelier d'après (15h30)
- 2. Approcher des concepts théoriques pertinents pour l'utilisateur lambda

Postulat de départ

La compréhension superficielle de **concepts théoriques** liés à des **pratiques** mène à une utilisation plus *réfléchie* de leurs **outils**.

 Particulièrement vrai lorsque ces outils cachent une grande partie de leur fonctionnement interne

4/3

Chiffren see e-mails avec CP

Chiffren co

Chiffrer ses e-mails avec GPG

Bornes de la présentation

On ne rentrera pas dans les détails des points suivants :

- le **chiffrement** en lui-même, notamment les différents algorithmes pouvant être utilisés
 - On ne cherche pas à développer la maîtrise du chiffrement, simplement son utilisation réfléchie
- les vulnérabilités de nos messageries ou des protocoles qu'elles utilisent
 - · métadonnées dans les en-têtes d'e-mail
 - · adresses IP loggées lors des communications via SMTP
 - etc.

Pourquoi chiffrer ses e-mails?

- Chiffrer ses e-mails permet de s'assurer qu'aucune autre personne que le destinataire-rice ne puisse lire leurs contenus
 - On sécurise la communication
- En parallèle du chiffrement, signer ses e-mails permet de nous identifier comme étant l'auteur e réel·le du message
 - · On authentifie la communication

Notes sur les outils utilisés pendant cette présentation

- On a pas besoin d'être un·e **expert·e** en informatique pour pouvoir chiffrer ses e-mails
- Une partie de la présentation se fera dans un **terminal de** commande
 - Il s'agit simplement d'une différente grammaire pour communiquer avec les programmes
 - Au lieu de pointer avec la souris, on parle avec le programme
 - Les démonstrations seront **commentées**; aucune connaissance n'est requise

Chiffrement symétrique

2. Chiffrement symétrique

- 2.1 Vocabulaire
- 2.2 Les bases
- 2.3 Deux exemples
- 2.4 Cas pratique
- 2.5 Les limites du chiffrement symétrique

Vocabulaire

Quelques termes :

- chiffrer
- déchiffrer
- texte en clair ——— texte chiffré

Français	Équivalent anglais	Anglicisme
chiffrer	to encrypt / to cipher	* crypter
déchiffrer	to decrypt / to decipher	* décripter
texte clair	plaintext	
texte chiffré	ciphertext	

Leo Vivi

iffrer ses e-mails avec GPG

Les bases du chiffrement symétrique

- Une clé pour le chiffrage
- La **même** clé pour le déchiffrage

Une seule clé, d'où la notion de symétrie

Analogie visuelle : un coffre

- On le verrouille avec une clé
- On le déverrouille avec la même clé

iffrer ses e-mails avec GPG

Exemples de chiffrements symétriques

FIGURE - Chiffrement par décalage, ou chiffre de César

FIGURE - Les Enigma machines

Chiffren see e-mails avec t

12/3

Chiffrer ses e-mai

Exemple pratique

Communication par chiffrement symétrique

Sophie et Marc veulent s'échanger des lettres secrètes

- Pour s'assurer qu'aucune autre personne ne lise leurs messages, Sophie et Marc s'accorde sur le fait d'utiliser le chiffre de César pour chiffrer leur communication
- Lorsque l'un·e des participant·e·s veut **envoyer** une lettre secrète à l'autre, la personne doit effectuer le chiffrement du texte clair Mes secrets les plus sombres $\xrightarrow{\text{chiffre de C\'esar}}$ Jbp pbzobqp ibp mirp pljyobp
- Lorsque l'un·e des participant·e·s veut **lire** une lettre secrète de l'autre, la personne doit effectuer le déchiffrement du texte chiffré Jbp pbzobqp ibp mirp pljyobp $\xrightarrow{\text{chiffre de C\'esar}}$ Mes secrets les plus sombres

Chiffrement asymmétrique

3. Chiffrement asymmétrique

- 3.1 Les bases
- 3.2 Analogie
- 3.3 Retour au réel

Un grand problème

Dans notre exemple, le problème à résoudre est très facile

- Les fréquences d'apparition des lettres sont conservées
- On peut facilement utiliser la force brute et essayer toutes les permutations possibles (26) jusqu'à obtenir un texte qui fasse sens

Notion de sécurité

- La sécurité d'une communication dépend de la difficulté du problème qu'elle utilise pour chiffrer ses messages
- Plus un problème est facile à résoudre, plus il sera facile pour un·e ennemi·e de cracker notre communication

Il nous faut donc trouver des problèmes plus difficiles à résoudre

Les bases du chiffrement asymétrique

- Une clé pour le chiffrage
- Une autre clé pour le déchiffrage

Deux clés différentes, d'où la notion d'asymétrie

Analogie visuelle : un coffre magique

- On le verrouille avec une clé
- On le déverrouille avec une autre clé

Sophie et Marc

- Sophie a la clé pour fermer le coffre magique
- Marc a la clé pour ouvrir le coffre magique

Quel est l'intérêt?

 Si les clés sont en possession de deux personnes différentes, le coffre magique crée un canal de communication sécurisé entre celles-ci

Question

- Marc trouve le coffre magique verrouillé
- Après l'avoir déverrouillé et ouvert, il y trouve un paquet cadeau

Peut-on conclure que c'est Sophie qui l'y a mis? NON!

- On peut juste dire que la clé de Sophie a été utilisée
- On n'a aucun moyen de vérifier s'il s'agit vraiment d'elle
 - Rien ne permet d'authentifier la communication

17/36

Leo Vivie

iffrer ses e-mails avec GPG

Deux conclusions

- Le coffre magique permet une communication sécurisée entre les détenteur·rice·s des clés
- 2. Le mot de passe permet d'authentifier l'expéditeur-rice

/36

Sophie et Marc (cont.)

Solution

- En sortant de la boutique du magicien, Sophie et Marc s'accordent sur un mot de passe
- À chaque fois que Sophie veut déposer quelque chose dans le coffre magique, elle devra aussi inclure ce **mot de passe** écrit sur une feuille

C'est la base du MFA (Multi-Factor Authentification)

■ Combinaison entre quelque chose que l'on sait (le mot de passe) et quelque chose que l'on a (la clé)

18/3

Leo Vivie

Chiffrer ses e-mails avec GP

Deux problèmes

1. Sophie ne peut pas rouvrir le coffre une fois qu'il est fermé

Solution?

- Pas un problème mais un avantage
- Après la fermeture du coffre magique, la surface d'attaque est limitée à la clé de Marc
- Si un-e ennemi-e intercepte la clé de Sophie après la fermeture du coffre, il ne pourra pas modifier le contenu du coffre magique avant que Marc ne l'ouvre
- 2. Sophie peut communiquer avec Marc, mais pas l'inverse
 - · La communication est unilatérale

Solution?

Sophie et Marc doivent acheter un **autre** coffre magique pour assurer la communication dans le **sens inverse**

20/36

Leo Vivier

Chiffrer ses e-mails avec GP

Relier l'analogie au réel

Du coffre magique à la boîte mail

Quelques propriétés d'une boîte aux lettres :

- 1. C'est un espace physique qui est clairement identifié comme nous appartenant
 - Il possède des marqueurs de notre identité (adresse, nom, etc.)
- 2. C'est un espace clos dont nous sommes les seul·e·s à pouvoir consulter le contenu
 - Nous sommes les seul·e·s à avoir la clé de notre boîte aux lettres
- 3. N'importe quelle personne ayant notre adresse peut y déposer des messages

Deux remarques

- Une boîte mail fonctionne selon les **mêmes** paramètres qu'une **boîte** aux lettres
 - Au lieu d'un espace physique, on parle d'un espace virtuel
- Pas besoin de *magie* dans le monde virtuel, juste d'algorithmes

Sophie et Marc

Sophie et Marc ont chacun une paire de clés virtuelles Chaque paire comporte :

- une clé privée
- une clé publique

GPG: Explication

4. GPG: Explication

- 4.1 Clé privée & clé publique
- 4.2 Explication de l'algorithme

Clé privée & clé publique

Quelques propriétés d'une bonne clé **physique** :

- 1. Elle est reliée à un objet (porte, coffre, etc.)
- 2. Sa forme ne nous permet pas de deviner l'objet qu'elle protège
- 3. Sa forme est difficile à deviner ou à copier pour les humains
 - · Un certain nombre de dents
 - Une certaine hauteur pour chaque dent
 - etc.
- 4. Si elle **perdue** ou **volée**, l'accès à l'objet qu'elle protège et sa sécurité sont remis·e·s en question

Clé privée & clé publique (cont.)

Quelques propriétés d'une bonne clé virtuelle :

- 1. Elle est **reliée** à un objet (e-mail, site, etc.)
- Son contenu ne nous permet pas de deviner le compte qu'elle protège
- 3. Son *contenu* est difficile à **deviner** ou à **copier** pour les *humains*
 - Un grand nombre de caractères alphanumériques et spéciaux générés aléatoirement (au moins 2048)
- 4. Si elle **perdue** ou **volée**, l'accès au contenu qu'elle protège et sa **sécurité** sont remis·e·s en question

25/36

Leo Vivie

hiffrer ses e-mails avec GPC

Clé virtuelle vs. mot de passe

Quelles sont les différences entre une clé virtuelle et un mot de passe?

- Une clé virtuelle est beaucoup plus robuste que les mots de passe traditionnels
 - >= 2048 caractères pour les clés virtuelles contre < 30 pour les mots de passe traditionnels
- Une clé virtuelle n'a pas pour but d'être manipulée par son utilisateur
 - Trop longue pour être **mémorisée**
 - Trop longue pour être entrée à chaque utilisation
- Les deux ne sont pas exclusif·ve·s
 - Une clé virtuelle est souvent elle-même protégée par un mot de passe
 - Combine le côté pratique d'un mot de passe avec la robustesse d'une clé virtuelle

Exemple de clé virtuelle

----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBFA1+ugBEADuozPjHs6+ME9Wm3c94IqqUhwEEFJ3xz1sYJus4V8GMW9TEy1L iQGwx5p1+6y0i+D/tvW3q9jmerdI+EWvQeUvrwkx6r4razTZTe1+48u0jhko85SM xDzEF9wf2gGEt0abZamUu86kfMcmPFMVoGLoLI/7feAscP4iGMK9Z1X+C/1wzq20 gujhXdMv7QoYvII7wjRPm4NZHM2MUxLxwxhjifb8JZPE0WGyUJ5+FsPEreh0MgC0 R53Eo6wIzTU4cBB/dyabI/2/jn2YaOsvoC9B1M8N9mG/bxSqTETiQrgcA1bk0zHj qiy4fXImi+Gkacbzwrdad90kRVCHSXu/pN6iqZiUvXvfmA0bjRYsoY3JPfjGCTyF 58ZELfHnGx6MQtF6Dj0wX7qMBY0jh0O0n0znmwVp1MLm5Augs6hAvX8VF99KQVtc mEUnb+Gxc7Y2MBFjWvTpiVwcXAZt8z13gE6UPls+X5JKdDqXLqCLR2cq82+EBtS0 8U7j00acGGCU3+2/fL8T4KGv1XnUN50nqCb21m07GdEsHi2k8016/XPocaLSxzQF ZVRcLsmvD1hct367+mxrrvANmn17Yy1jGzjzsOfMv5duxnpVpbLFRYzOg4BC2wMb H1KtLFc+b1XkVmvICax+OTE8bP+YoO1qW2gkB6wUrjAyebuuxwJXF59XmwARAQAB tDZUYW1scyBzeXN0ZW0gYWRtaW5pc3RyYXRvcnMgPHRhaWxzLXN5c2FkbWluc0Bi b3VtLm9yZz6JAj4EEwECACgFAlA1+ugCGwMFCQPCZwAGCwkIBwMCBhUIAgkKCwQW AgMBAh4BAheAAAoJEHD08DEWU19DjNEP/RnRhbW3OAsMEXptsZmUGo9jUAoeWiug Yr5uZ8aiQGTynTh08wzHKROimPvZ7Ctaszolq20/VAcdocZDcRD5bmDXgsHFPeK0 sKcBGAe+paOtiF0up1rLxcB1MPz7bUCvTn5AMin3lhFzLTdq5ei6AkOitaGOKn5v /E066gsGVJ+edxrMbi+vIOa+cf3bIolgaPErGUQJKahZUKstwsoxiXAucZ1QePdq Yj1zt6XhLe+xvHPN04XWucI1hXm/8RHzcxTbhktl+kXpIALBjewWraHTtgP0mmXG MDVO0bE3qpiNxw2451mRu3ypJGotjqlwo8fPMAgcus/3wEn1VUrsYgTR2gUzXVc1

20

Leo Vivie

CL:W

Lien avec l'analogie du coffre magique

On désigne le coffre que Marc peut ouvrir comme étant « le coffre de Marc »

- La clé privée de Marc est celle qu'il utilise pour ouvrir son coffre
- La clé publique de Marc est celle qu'il donne à Sophie pour pouvoir fermer son coffre

Pourquoi parle-t-on de « clé publique »?

28/36

Pourquoi « publique »?

- On parle de clé « publique » parce qu'elle est destinée à être partagée avec les personnes avec qui on souhaite communiquer (le « public »)
- Le fait que la clé soit qualifiée de « public » ne veut pas dire que les communications se faisant avec elles le sont
 - Même si la clé publique est partagée avec des ennemi·e·s, cela ne leur apporte aucune information utile pour cracker le chiffrement
- Notre clé publique n'est qu'un autre marqueur de notre identité
 - Il existe des annuaires de clés publiques
 - Notre clé publique est identifiée dans les annuaires par notre nom et notre adresse e-mail
 - On peut trouver notre clé publique dans ces annuaires en cherchant l'un·e des deux

Un problème avec les noms

Les noms sont rarement uniques, à l'opposé des adresses e-mail

La magie du coffre

Les deux clés sont générées en même temps par un même algorithme Comment est-ce que ça marche?

Principe de la cryptographie asymétrique

La cryptographie asymétrique est basée sur la création de problèmes mathématiques difficiles à résoudre dans un sens mais facile dans un autre

Remarque sur l'anonymat

Si l'anonymat ou le pseudonymat est désirable, on peut jouer sur certains paramètres:

- Utiliser un pseudonyme et une autre adresse
- Ne pas être référencé dans les annuaires
 - · Le référencement n'est pas automatique
 - · Ajoute du travail pour un gain marginal

Lien entre clé privée et clé publique Exemple : Décomposition en nombres premiers

Résultat : {2, 2, 2, 2, 17}

Résultat: {3, 23, 37}

Une difficulté croissante

Retour à l'algorithme

L'algorithme assure que chaque problème généré par la clé public est difficile à résoudre pour tout le monde sauf pour le destinataire

- La clé privée dispose de plus d'informations pour chaque problème
 - Par exemple, lors d'une décomposition en facteurs premiers, déjà avoir l'un des facteurs

Observations

- 1. Multiplier deux nombres pour en obtenir un troisième est facile
- 2. Trouver ces deux nombres en n'ayant que le troisième est difficile
 - C'est le problème que doivent résoudre nos ennemi·e·s
- 3. Trouver l'un des deux nombres lorsqu'on a l'autre et le troisième est facile (on divise)
 - C'est le problème que doit résoudre le destinataire-rice

Démonstration

Notes

- La démonstration s'est faite dans un terminal de commande et avait pour but de relier les différents concepts abordés lors de la présentation
- Elle a aussi exploré le lien entre texte simple (plaintext ^a en anglais) et e-mail en précisant notamment qu'un e-mail n'est que du texte accompagné d'un en-tête pour contenir des informations sur l'expéditeur-rice et le-a destinateur-rice
- a. Plaintext désigne à la fois un texte non-chiffré et un texte sans formattage. Par exemple, les fichiers avec une extension .txt sont souvent des fichiers en *plaintext*

Pour aller plus loin

Aspects généraux de sécurité :

- Mathieu Goessens, Quelques notions de sécurité, 2018, URL : http://mathieu.goessens.fr/formation/formation.pdf (visité le 30/01/2019)
- La Fondation « Frontière Électronique », Surveillance Self-Defence, s. d., URL: https://ssd.eff.org/fr

Guides avancés :

- Reporters Sans Frontières, Guide Pratique de Sécurité des Journalistes, 2017, URL : https://rsf.org/sites/default/files/guide_fr_2017_1.pdf (visité le 30/01/2019)
- Les boumeur-euse-s, Guide d'autodéfense numérique, 10 sept. 2017, URL : https://guide.boum.org/ (visité le

Ressources en anglais :

- GNUPG, GNUPG Frequently Asked Questions, s. d., URL: https://www.gnupg.org/faq/gnupg-faq.html (visité le
- GNUPG, The GNU Privacy Guard Manual, déc. 2018, URL: https://www.gnupg.org/documentation/manuals/gnupg/ (visité le 30/01/2019)

Informations supplémentaires

Colophon

Ce document a été créé avec LATEX et BibLATEX, généré par XTTEX et édité sous GNU EMACS avec AUCTEX. Le texte est composé en Libertinus Sans et en Libertinus Serif. Le code source est composé en Iosevka.

Références

MATT_CRYPTO, Caesar cipher with a shift of 3, 2014, URL:

https://commons.wikimedia.org/wiki/File:Caesar_cipher_left_shift_of_3.svg (visité le 30/01/2019), cit. p. 13.

NASSIRI, Alessandro, Enigma, 2012, URL:

https://commons.wikimedia.org/wiki/File:Enigma_(crittografia)_-_Museo_scienza_e_tecnologia_Milano.jpg (visité le 30/01/2019), cit. p. 13.