

讲义P40-P51

章节	题目个数	举例个数	总数
05二次方程与抛物线	4	1	5
06数列	20	4	24

三次方程与抛物线

• • • • •

第五章 二次方程与抛物线 5.5 不等式与一元二次不等式

讲义 P40-P42

三次方程与她物毯 5.5 不等式

不等式 把两个解析式用大于号(>)、小于号(<)、大于等于号(≥)或小于等于号(≤)连接起来

 $x^2 - 1 \ge 0$, $\sqrt{2x + 3} < 5$, x < 4

不等式的解 能令不等式成立的未知量的取值

不等式的解集 不等式所有解所组成的集合

不等式2x < 8的解可以表示为x < 4,或 $(-\infty, 4)$.

大师笔记:不等式基础

讲义 P4

三处分程与她物线 5.5 不等式

不等式的性质

- ightharpoonup 对逆性 如果a > b, 那么b < a.
- \triangleright 传递性 如果 $a > b \boxtimes b > c$, 那么a > c.
- 一个不等式 不等式两边同增同减,不等号方向不变 若a > b,则 $a \pm c > b \pm c$

不等式a > b两边同时乘以同一个数c时:

$$c=0$$
 不可以乘

$$c > 0$$
 $ac > bc$ $\frac{a}{c} > \frac{b}{c}$ 不等号方向不变

$$c < 0$$
 $ac < bc$ $\frac{a}{c} < \frac{b}{c}$ 不等号方向改变

讲义 P40

三处方程与她物毯 5.5 不等式

【两不等式间】可加不可减,相加要同向

即两不等式间有且仅有: a > b, c > d, 那么a + c > b + d

【举例】已知3 > 2, 5 > 1

可以相加, 得3+5=8>2+1=3.

不能相减: 3-5=-2>2-1=1

【举例】已知x > 3, y < 5

-y > -5, 此时不等号方向相同可以相加, 得x - y > -2

无论不等号方向相同或不同,均不能相减

即不能用x > 3与-y > -5相减以求x + y的范围.

三处方程与物物线	5.5	不等式
----------	-----	-----

12.【2016.19】 (条件充分性判断) 设x,y是实数,则 $x \le 6, y \le 4.$ ()

(1) $x \le y + 2$. (2) $2y \le x + 2$.

【答案】C

讲义 P40

三级分程与她物线 5.5 不等式

13.【2015.17】 (条件充分性判断) 已知a, b为实数,则 $a \ge 2$ 或 $b \ge 2$. ()

(1) $a + b \ge 4$.

(2) $ab \ge 4$.

【答案】A

二次方程多规划线 5.5 不等式

> 不等式取倒数 a > b > 0, 那么 $\frac{1}{a} < \frac{1}{b}$ $2 > 1 > 0 \Rightarrow \frac{1}{2} < \frac{1}{1}$

0 > a > b, 那么 $\frac{1}{a} < \frac{1}{b}$ $0 > -1 > -2 \Rightarrow \frac{1}{-1} < \frac{1}{-2}$

不等式两边同为正或同为负, 同时取倒数后不等号变向

a > 0 > b, 那么 $\frac{1}{a} > \frac{1}{b}$ $1 > 0 > -1 \Rightarrow \frac{1}{1} > \frac{1}{-1}$

不等式两边一正一负,同时取倒数后还是正的大于负的

ightharpoonup 不等式两边平方 若a,b>0, 则 $a>b \Leftrightarrow a^2>b^2$.

不等式仅可以在两边非负的情况下平方

讲义 P40

三处分租多规划线 5.5 一元二次不等式

- \triangleright 二次多项式 $ax^2 + bx + c$
- ightharpoonup 二次方程 $ax^2 + bx + c = 0$ 求二次方程的根就是求x等于什么值时 可以令二次多项式 $ax^2 + bx + c$ 的值等于零.

ightharpoonup 二次函数 $y=ax^2+bx+c$ 每代入一个x的值,都会得到一个相对应的二次多项式 ax^2+bx+c 的值 将这个x值对应横坐标, 二次多项式的值对应纵坐标(命名为y) 可以在坐标平面画出一条抛物线

> 抛物线上的点对应的纵坐标(对y轴做垂线, 垂足落在的位置) 就是二次多项式 $ax^2 + bx + c$ 的值

- \triangleright 抛物线在x轴上方的部分,对应二次多项式 $ax^2 + bx + c$ 值为正
- \triangleright 抛物线在x轴下方的部分,对应二次多项式 $ax^2 + bx + c$ 值为负
- \triangleright 抛物线与x轴的交点,对应二次多项式 $ax^2 + bx + c$ 值为零

此即二次方程 $ax^2 + bx + c = 0$ 的根

注: $a \neq 0$

三处分程多规划线 5.5 一元二次不等式

二次方程的根⇔抛物线与x轴的交点 ⇔不等式解集的区间端点

一元二次方程的根	一元二次函数图像与x轴交点	不等式 $ax^2 + bx + c > 0$ 解集
△>0 方程有两不同实根	b	$x < x_1 \preceq x > x_2$
$\Delta = 0$ 方程有两相同实根 $x_1 = x_2 - \frac{b}{2a}$	y↑	$x \neq -\frac{b}{2a}$
△<0 方程无实根	y↑	$(-\infty, +\infty)$

少 大师笔记: 一元二次不等式 讲义 P41

三处方程 5 她 参 6 5.5 一元二次不等式

二次方程的根⇔抛物线与x轴的交点 ⇔不等式解集的区间端点

一元二次方程的根	一元二次函数图像与x轴交点	不等式 $ax^2 + bx + c < 0$ 解集
Δ>0 方程有两不同实根	b	$x_1 < x < x_2$
$\Delta = 0$ 方程有两相同实根 $x_1 = x_2 - \frac{b}{2a}$	少↑	无解
△<0 方程无实根	y↑	无解

讲义 P41

△ 後 方程 ら 他 物 後 5.5 一元二次不等式・求解 一元二次不等式

【标志词汇】给定不等式,求解集.

【标志词汇】给定不等式解集,求系数.

【举例】求不等式 $-x^2 + 4x - 3 > 0$ 的解集 大于取两边,小于取中间

步骤	实操
①a变正、标准化	$x^2 - 4x + 3 < 0$
②求根:求对应二次方程的根.	$x^{2} - 4x + 3 = (x - 1)(x - 3) = 0$ $x = 1 \stackrel{?}{\boxtimes} x = 3$
③写解集: 不等号为">"的,解集取两根之外 不等号为"<"的,解集取两根之间 (针对变形后的不等式)	y

讲义 P41

三後分程を拠め後 5.5 一元二次不等式・求解一元二次不等式

14.【2006.10.05】已知不等式 $ax^2 + 2x + 2 > 0$ 的解集是 $\left(-\frac{1}{3}, \frac{1}{2}\right)$,则a = () .

A.-12

B.6

C.0

D.12

E.以上结论均不正确

【答案】A

₩♥ P4

三处方程 § 她物毯 5.5 一元二次不等式·无解与恒成立问题

 $ax^2 + bx + c > 0$ 对所有实数x都成立 **恒成立 (必然)** y \Leftrightarrow $\begin{cases} \text{抛物线开口必向上}, \ a > 0 \\ \text{抛物线与} x 轴无交点 (对应方程<math>\Delta < 0$) g

 $ax^2 + bx + c < 0$ 对所有实数x都成立 **恒成立(必然)** $\Leftrightarrow \begin{cases} \text{抛物线开口必向下}, \ a < 0 \end{cases}$ $\text{抛物线与} x \text{ 轴无交点} (对应方程 \Delta < 0)$

人 大师笔记: 恒成立问题 讲义 P4

三处分程与她物毯 5.5 一元二次不等式 • 无解与恒成立问题

标志词汇	翻译	解读	
不等式 $ax^2 + bx + c > 0$ 解集为全体实数			
不等式 $ax^2 + bx + c > 0$ 对所有实数 x 都成立	必然	$ax^2 + bx + c 必然 > 0$	
不等式 $ax^2 + bx + c \le 0$ 解集为空集			
不等式 $ax^2 + bx + c \le 0$ 无解	不可能	$ax^2 + bx + c$ 不可能≤ 0	

 $(a\neq 0)$

把所有的无解转化为恒成立 把所有的不可能转化为必然

【标志词汇】一元二次不等式无解⇒转化为恒成立后求解

己二次不等式

15.【2011.10.21】 (条件充分性判断) 不等式 $ax^2 + (a-6)x + 2 > 0$ 对所有实数x都成立 () .

(1) 0 < a < 3 (2) 1 < a < 5

【答案】E

三处分程 5 mm 移 5.5 一元二次不等式·无解与恒成立问题

15.【2011.10.21】 (条件充分性判断) 不等式 $ax^2 + (a-6)x + 2 > 0$ 对所有实数x都成立 () .

(1) 0 < a < 3

(2) 1 < a < 5

【答案】E

讲义 P42

• • • • •	••••							
<u>-</u> ,	5.2一元二次方程的根	近5年考3题 【2022.21】构造二次方程 【2022.23】构造二次方程 【2019.20】根的判别式						
次方程与	5.3二次函数	近5年考1题 【2021.05】二次函数特值法 【2020.23】二次函数图像						
地 物 线	5.4给出根的取值范围相关计算	近5年考1题 【2023.17】 (根的k分布)						
	5.5不等式与一元二次不等式	近5年考1题 【2020.03】 (不等式)						

数列

2024MBA大师零基础抱佛脚

3

近几年每年2题左右 (2023年2题)

三项数列

等差数列

等比数列

数	6.2等差数列	近5年考4题【2022.24】	【2021.02】	[2020.05]	【2019.24】	
列	6.3等比数列	近5年考5题【2023.18】	[2023.24]	【2022.21】	【2021.24】	【2019.16】

第六章 数列

6.1 数列基础

讲义 P43

多列 6.1 数列基础

数列的定义和分类 依一定次序排成的一列数称为一个数列.

数列的一般表达形式为: a_1 , a_2 , a_3 , ..., a_n , ...简记为 $\{a_n\}$.

【有穷数列】 1, 2, 3, 4, 5, 6, 7

【无穷数列】 1, 2, 3, 4, 5, 6, 7, ...

【递增数列】第二项起,每一项都比前一项大.

单调性

【递减数列】第二项起,每一项都比前一项小. 7, 6, 5, 4, 3, 2, 1, ...

【摆动数列】1, -1, 1, -1, 1, -1, 1, -1, ... 公比为-1的等比数列

【**常数列**】各项均为同一个常数 2, 2, 2, 2, 2, 2, ... 常数列特值法

人 大师笔记:数列基础 讲义 P43

参列 6.1 数列基础

【数列】依一定次序排成的一列数 {a_n}

0, 1, 1, 2, 3, 5, 8, ...

 a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 , ...

(数列某项的值: a_n 数列两大要素(

某项的序号: 下标n

【数列的通项】数列的第n项 a_n 与其序号n之间的关系

如果数列中的第n项 a_n 与其序号n的关系可以用一个公式来表示,则称这个公式为通项公式数列的通项公式 \Rightarrow 数列中的任意一项.

【数列前n项和S_n】从数列第一项 a_1 开始依次相加,至第n项 a_n ,这n项的和称为数列的前n项和. $S_n = a_1 + a_2 + a_3 + \cdots + a_n$

₩♥ P4

参列 6.1 数列基础

1. 【2016.24】已知数列 $a_1, a_2, a_3, \cdots, a_{10}$,则 $a_1 - a_2 + a_3 - \cdots + a_9 - a_{10} \ge 0$. ()

(1)
$$a_n \ge a_{n+1}, n = 1, 2, \dots, 9.$$

(2)
$$a_n^2 \ge a_{n+1}^2$$
, $n = 1, 2, \dots, 9$.

【答案】A

讲义 P43

第六章 数列

6.2 等差数列

讲义 P44-P48

劉列 6.2 等差数列•基础

次序	第1项	第2项	第3项	第4项	•••	第n项	
数值	1 ←	$\stackrel{1}{\longrightarrow}$ 2 $\stackrel{-}{\longleftarrow}$	$\stackrel{+1}{\longrightarrow}$ 3 \leftarrow	-1 4	•••	n	•••
数值	5 ←	5 10 ←	+ 5 15 ←	+5 ≥0	•••	5n	
一般式	a_1	$a_1 + d$	$a_1 + 2d$	$a_1 + 3d$	•••	$a_1 + (n-1)d$	

等差数列 如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一常数,即:

 $a_{n+1} - a_n = d$,那么这个数列就叫作等差数列,这个常数叫作等差数列的公差d.

数列的通项 数列的第n项an与其序号n之间的关系

等差数列的通项公式 $a_n = a_1 + (n-1)d$

 a_1 和 $d \Rightarrow$ 等差数列的通项公式 \Rightarrow 等差数列中的任何一项.

劉列 6.2 等差数列•基础

等差数列的通项公式 $a_n = a_1 + (n-1)d$ 公差d > 0 ⇔递增数列

公差d < 0 ⇔递减数列

公差d=0 ⇔常数列

数列前n项和S_n 从数列第一项 a_1 开始依次相加,至第n项 a_n ,这n项的和称为数列的前n项和.

$$S_n = a_1 + a_2 + a_3 + \dots + a_n$$

等差数列前n项和公式
$$S_n = \frac{n(a_1 + a_n)}{2} = na_1 + \frac{n(n-1)}{2}d = \frac{d}{2}n^2 + \frac{2a_1 - d}{2}n$$

$$\frac{(\text{ 首 項 + 未 項}) \times \text{ 项 数}}{2}$$

参列 6.2 等差数列・常用设项方法

①通项法: 根据等差数列的通项公式 $a_n = a_1 + (n-1)d$

设第一项为 a_1 , 第二项为 a_1+d , 第三项为 a_1+2d , ..., 以此类推.

②对称设:

项数	设项原则	常见应用
		三项成等差,设为a-d,a,a+d
连续奇数个项 成等差数列	设中间一项为α, 再以d为公差向两边分别设项	五项成等差, 设为a - 2d,a - d,a,a + d,a + 2d
连续偶数个项 成等差数列	设中间两项分别为a-d和a+d, 再以2d为公差向两边分别设项	四项成等差, 设为a-3d,a-d,a+d,a+3d

讲义 P44

参列 6.2 等差数列・三项数列

三项数列可以被用在任何知识点, 等同于给出一个关于a, b, c的等式

三元乘法公式、二次方程的三个系数、三角形三边、立方体三条棱、应用题等

【标志词汇】 $\overline{=$ 项成等差数列⇔ \begin{cases} ①给出a,b,c为等差,则有关系式2b=a+c \end{cases} ②需要设项,则直接设为a-d,a,a+d ,自动满足等差

连续自然数: n-1, n, n+1

连续偶数/奇数: n-2, n, n+2 (n 为偶数/奇数)

#♥ P4⁄

▲列 6.2 等差数列・常用设项方法

2.【2021.02】三位年轻人的年龄成等差数列,且最大与最小的两人年龄差的10倍是另一人的年龄,则三人中年龄最大的是().

A.19

B.20

C.21

D.22

E.23

【答案】C

讲义 P44

繳到 6.2 等差数列・判定

①定义法 任意相邻两项之差 $a_{n+1}-a_n$ 是否为常数,若为常数,则 $\{a_n\}$ 为等差数列

3.【例题】已知数列 $\{a_n\}$ 满足 $a_{n+1}=2a_n+3\times 2^n$,是否可充分推出 $\left\{rac{a_n}{2^n}
ight\}$ 为等差数列?是

等式两边同除以 2^{n+1} 得 $\frac{a_{n+1}}{2^{n+1}} = \frac{2a_n}{2^{n+1}} + \frac{3 \times 2^n}{2^{n+1}}$ $\frac{a_{n+1}}{2^{n+1}} = \frac{a_n}{2^n} + \frac{3}{2}$ $\frac{a_{n+1}}{2^{n+1}} - \frac{a_n}{2^n} = \frac{3}{2}$

②等差中项法 $2a_{n+1} = a_n + a_{n+2}$

4.【例题】已知数列 $\{a_n\}$ 中任意一项均非零,且方程 $a_nx^2+2a_{n+1}x+a_{n+2}=0$ 有一根为-1,是否可充分推出 $\{a_n\}$ 为等差数列?是

【标志词汇】给定一个数是方程的一个根⇒给定一个此数满足的等式。

代入得 $a_n - 2a_{n+1} + a_{n+2} = 0$ 即 $2a_{n+1} = a_n + a_{n+2}$

₩♥ P45

参列 6.2 等差数列・判定

①定义法 任意相邻两项之差 $a_{n+1}-a_n$ 是否为常数,若为常数,则 $\{a_n\}$ 为等差数列

②等差中项法 $2a_{n+1} = a_n + a_{n+2}$

③通项公式法 $a_n = a_1 + (n-1)d = dn + (a_1 - d)$ 形似关于n的一次函数或一个常数

数列通项符合以下三种形式,即为等差数列;若不符合,则非等差数列.

形式①: $a_n = 数字_1 \cdot n + 数字_2$

形式②: $a_n = 数字 \cdot n$

形式③: $a_n =$ 数字

【举例】判断下列通项对应的数列是否为等差数列

$$a_n = 3n + 2$$
 \neq

$$a_n = -n$$
 \neq

$$a_n = n^2 + 1$$

讲义 P45

参列 6.2 等差数列・判定

④前n项和法
$$S_n = na_1 + \frac{n(n-1)}{2}d = \frac{d}{2}n^2 + \frac{2a_1 - d}{2}n = An^2 + Bn$$

形似关于n的不含常数项的一次或二次函数

 $\underline{\exists A=0,\ B\neq 0}$ 即 $d=0,\ a_1\neq 0,\ S_n=na_1$ 为非零常数列,如1, 1, 1, 1, 1, 1…

当 $A \neq 0$, B = 0时 即 $2a_1 = d \neq 0$, $S_n = \frac{d}{2}n^2$ 如1, 3, 5, 7, 9, $11 \cdots S_n = n^2$

A与B均可能为0

劉列 6.2 **等差数列。判定** 形似关于n的不含常数项的一次或二次函数

④前n项和法
$$S_n = na_1 + \frac{n(n-1)}{2}d = \frac{d}{2}n^2 + \frac{2a_1 - d}{2}n = An^2 + Bn$$

数列前n项和符合以下四种形式,即为等差数列;若不符合,则非等差数列.

形式①: $S_n = 数字_1 \cdot n^2 + 数字_2 \cdot n$

形式②: $S_n = 数字 \cdot n^2$

形式③: $S_n = 数字 \cdot n$

形式④: $S_n = 0$

【举例】判断下列通项对应的数列是否为等差数列

$$S_n = 4n^2 + n$$

$$S_n = -2n^2$$
 $S_n = 5n$ $S_n = 0$ $S_n = n^2 + 1$

是

是

是

讲义 P45

劉列 6.2 等差数列•判定

5.【2019.24】设数列 $\{a_n\}$ 的前n项和为 S_n ,则 $\{a_n\}$ 为等差数列. ()

(1)
$$S_n = n^2 + 2n$$
, $n = 1 \ 2 \ 3 \cdots$

(1)
$$S_n = n^2 + 2n$$
, $n = 1,2,3 \cdots$. (2) $S_n = n^2 + 2n + 1$, $n = 1,2,3 \cdots$.

【答案】A

参列 6.2 等差数列・判定 (总结)

• 0 0 0 0

判定方法	详细描述
定义法	任意相邻两项之差 $a_{n+1}-a_n$ 为常数
等差中项法	$2a_{n+1} = a_n + a_{n+2}$
通项公式法	$a_n = dn + m$ (形似关于 n 的一次函数)
前n项和法	$S_n = An^2 + Bn$ (形似关于 n 的二次函数,其中 A 与 B 均可能为 0 ,但一定不含常数项)

说明:以上n为正整数

讲义 P45

繳到 6.2 等差数列・性质

等差数列 $\{a_n\}$ 单调性 $a_n = a_1 + (n-1)d$

> 公差d > 0 ⇔递增

➢ 公差d < 0 ⇔递减</p>

➢ 公差d = 0 ⇔常数列

大师笔记: 等差数列性质 讲义 P4

劉列 6.2 等差数列•性质

6.【模拟题】已知数列 $\{a_n\}$ 的通项公式为 $a_n=n^2+kn+2$,若数列 $\{a_n\}$ 是递增数列,则实数k的 取值范围是().

A.k > 0 B. k > -1 C. $k \ge 0$ D. k > -2 E. k > -3

【答案】E

讲义 P46

参列 6.2 等差数列・性质

等差数列的通项公式 $a_n = a_1 + (n-1)d$

$$a_1 \xrightarrow{+d} a_2 \xrightarrow{+d} a_3 \xrightarrow{+d} a_4 \xrightarrow{+d} a_5 \cdots \xrightarrow{+d} a_m \cdots \xrightarrow{+d} a_n \cdots$$

$$a_m = a_1 + (m-1)d = a_1 + md - d$$

$$a_n = a_1 + (n-1)d = a_1 + nd - d$$

$$a_m = a_1 + (m-1)d = a_1 + md - d$$

$$a_n - a_m = (n - m)d$$

作用	公式	举例
求某一项/通项	$a_n = a_m + (n - m)d$	$a_5 = a_2 + (5-2)d = a_2 + 3d$
求公差	$d = \frac{a_n - a_m}{n - m}$	$d = \frac{a_5 - a_2}{5 - 2}$

 a_m 和 $d \Leftrightarrow$ 等差数列的通项公式 \Leftrightarrow 等差数列中的任何一项.

参列 6.2 等差数列•性质

等差数列下标和相等的两项之和相等 等号左右下标和相等,项数也要相等

$$a_1$$
, a_2 , a_3 , a_4 , a_5 , a_6 , a_7 , a_8 , a_9 , ...

$$2a_5 = a_4 + a_6 = a_3 + a_7 = a_2 + a_8 = a_1 + a_9$$

$$a_6 = a_1 + 5d$$
 $a_7 = a_1 + 6d$

若 $\{a_n\}$ 为有穷等差数列,则与首末两项距离相等的两项之和都相等,且等于首末两项的和

$$a_1 + a_n = a_2 + a_{n-1} = a_3 + a_{n-2} = a_4 + a_{n-3} = \cdots$$

讲义 P45

繳例 6.2 等差数列・性质

7.【2013.01.13】已知 $\{a_n\}$ 为等差数列,若 a_2 与 a_{10} 是方程 $x^2 - 10x - 9 = 0$ 的两个根,

则
$$a_5 + a_7 = ($$
).

$$A.-10$$

$$B.-9$$

【答案】D

₩♥ P4

参列 6.2 等差数列•性质

等差数列下标和相等的<u>同数量项</u>之和相等 两组项下标和相等, 项数相同, 则这两组项的和相等

$$a_1$$
, a_2 , a_3 , a_4 , a_5 , a_6 , a_7 , a_8 , a_9 … 等差数列的通项公式 $a_n = a_1 + (n-1)d$

$$a_2 = a_1 + d$$

$$a_3 = a_1 + 2d$$

$$a_3 + a_7 = 2a_5$$

$$a_4 = a_1 + 3d$$

$$a_5 = a_1 + 4d$$

$$a_3 + a_5 + a_7 = a_2 + a_4 + a_9 = 3a_1 + 12d$$

$$a_6 = a_1 + 5d$$

$$a_7 = a_1 + 6d$$

$$3+5+7=2+4+9$$

$$a_8 = a_1 + 7d$$

$$a_9 = a_1 + 8d$$

【标志词汇】等差数列某几项和 ⇒ 下标和相等的同数量项之和相等.

讲义 P45

参列 6.2 等差数列・性质

等差数列前n项和公式 $S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(a_2 + a_{n-1})}{2} = \frac{n(a_3 + a_{n-2})}{2} = \cdots$

$$S_9 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9$$

$$2a_7$$

$$S_9 = \frac{9(a_1 + a_9)}{2} = \frac{9(a_2 + a_8)}{2} = \dots = \frac{9 \times 2a_5}{2} = 9a_5$$
 $a_5 = \frac{1}{9}S_9$

前奇数个项和: 等于中间项乘以项数 $S_n = n \cdot a_{\text{中间项}} \quad a_{\text{中间项}} = \frac{1}{n} S_n$

【标志词汇】 $a_{\text{中间项}} \Leftrightarrow \text{对应的} S_n \quad n$ 为奇数

劉列 6.2 等差数列•性质

8.【2018.17】设 $\{a_n\}$ 为等差数列,则能确定 $a_1 + a_2 + \cdots + a_9$ 的值.(B)

(1) 已知a₁的值

(2) 已知a₅的值

【标志词汇】 $a_{\text{中间项}} \Leftrightarrow \text{对应的} S_n$

 $S_9 = 9a_5$

【拓展】设 $\{a_n\}$ 为等差数列,则能确定 $a_1+a_2+\cdots+a_9$ 的值.(B)

(1) 已知 a_1 的值

(2) 已知 $a_4 + a_6$ 的值

【标志词汇】等差数列某几项和 ⇒ 下标和相等的两项之和相等

【拓展】设 $\{a_n\}$ 为等差数列,则能确定 $a_1+a_2+\cdots+a_9$ 的值. (C)

(1) 已知 a_1 的值

(2) 已知 a 6 的值

讲义 P46

劉列 6.2 等差数列•性质

9. 【 2009.01.25】 $\{a_n\}$ 的前n项和 S_n 与 $\{b_n\}$ 的前n项和 T_n 满足 $S_{19}:T_{19}=3:2.$ ()

(1) $\{a_n\}$ 和 $\{b_n\}$ 是等差数列

(2) $a_{10}: b_{10} = 3:2$

【答案】C

劉列 6.2 等差数列•性质

【拓展】若等差数列 $\{a_n\}$ 的公差为d,则数列 $\{pa_n + q\}$ 是公差为pd的等差数列

 $\{a_n\}$ 1, 2, 3, 4, 5, 6 ·····

d = 1

 $\{a_n+1\}$ 2, 3, 4, 5, 6, 7 ····

 $d = 1 \times 1 = 1$

 $\{2a_n\}$ 2, 4, 6, 8, 10, 12

 $d = 2 \times 1 = 2$

 $\{2a_n + 1\}$ 3, 5, 7, 9, 11, 13 ···· $d = 2 \times 1 = 2$

讲义 P46

《》列 6.2 等差数列·通分与裂项

分数的加减法 分母相同,分母不变,分子直接加减.

$$\frac{3}{13} + \frac{5}{13} = \frac{3+5}{13} = \frac{8}{13}$$

$$\frac{3}{13} + \frac{5}{13} = \frac{3+5}{13} = \frac{8}{13}$$
 $\frac{9}{13} - \frac{2}{13} = \frac{9-2}{13} = \frac{7}{13}$

$$\frac{b}{a} + \frac{c}{a} = \frac{b+c}{a}$$

$$\frac{b}{a} + \frac{c}{a} = \frac{b+c}{a} \qquad \qquad \frac{b}{ac} - \frac{3}{ac} = \frac{b-3}{ac} \quad (a \neq 0, c \neq 0)$$

分母不同,先通分(化为同分母分数),再加减.

分数的基本性质 分数的分子与分母同乘一个不为零的数或算式,分数值不变.

$$\frac{2}{5} = \frac{2 \times 7}{5 \times 7} = \frac{14}{35}$$

$$\frac{2}{5} = \frac{2 \times 7}{5 \times 7} = \frac{14}{35} \qquad \qquad \frac{b}{a} = \frac{bc}{ac} = \frac{ab}{a^2} \quad (a \neq 0, c \neq 0)$$

⑧列 6.2 等差数列・通分与裂项

分数的通分 异分母分数 ⇒ 等值同分母分数

$$\frac{2}{5} + \frac{3}{7} = \frac{2 \times 7}{5 \times 7} + \frac{3 \times 5}{7 \times 5} = \frac{14}{35} + \frac{15}{35} = \frac{29}{35}$$

$$\frac{1}{4} - \frac{1}{5} = \frac{1 \times 5}{4 \times 5} - \frac{1 \times 4}{5 \times 4} = \frac{5}{20} - \frac{4}{20} = \frac{1}{4 \times 5}$$

$$\frac{b}{a} + \frac{d}{c} = \frac{bc}{ac} + \frac{ad}{ac} = \frac{bc + ad}{ac}$$

$$\frac{b}{a} - \frac{d}{c} = \frac{bc}{ac} - \frac{ad}{ac} = \frac{bc - ad}{ac}$$

2#17 D47

⑧列 6.2 等差数列・通分与裂项

> 分数的通分相减

$$\frac{1}{4} - \frac{1}{5} = \frac{1 \times 5}{4 \times 5} - \frac{1 \times 4}{5 \times 4} = \frac{5}{20} - \frac{4}{20} = \frac{1}{4 \times 5} \qquad \frac{1}{3} - \frac{1}{7} = \frac{7}{3 \times 7} - \frac{3}{3 \times 7} = \frac{7}{21} - \frac{3}{21} = \frac{4}{3 \times 7}$$

> 分数的裂项 $\frac{\dot{\chi} - \dot{\chi}}{\dot{\chi} \times \dot{\chi}} = \frac{1}{\dot{\chi}} - \frac{1}{\dot{\chi}}$

$$\frac{1}{4 \times 5} = \frac{5 - 4}{4 \times 5} = \frac{5}{4 \times 5} - \frac{4}{4 \times 5} = \frac{1}{4} - \frac{1}{5} \qquad \qquad \frac{4}{3 \times 7} = \frac{7 - 3}{3 \times 7} = \frac{7}{3 \times 7} - \frac{3}{3 \times 7} = \frac{1}{3} - \frac{1}{7}$$

$$\frac{1}{5 \times 6} = \frac{6 - 5}{5 \times 6} = \frac{1}{5} - \frac{1}{6}$$

$$\frac{1}{6} = \frac{3 - 2}{2 \times 3} = \frac{1}{2} - \frac{1}{3}$$

$$\frac{3}{40} = \frac{8 - 5}{5 \times 8} = \frac{1}{5} - \frac{1}{8}$$

参列 6.2 等差数列・通分与裂项

两数之差 ____

$$\frac{-1}{2}$$
 大 $\frac{1}{2}$ 大 $\frac{1}{2}$ 大 $\frac{1}{2}$ 大 $\frac{3}{40}$ = $\frac{8-5}{5\times 8}$ = $\frac{1}{5}$ $\frac{1}{8}$ 分 $\frac{1}{2}$ $\frac{1}$

$$\frac{1}{7 \times 3} = \frac{1}{7 - 3} \times \frac{7 - 3}{7 \times 3} = \frac{1}{4} \times \left(\frac{1}{3} - \frac{1}{7}\right)$$

$$\frac{1}{(a+2)a} = \frac{1}{(a+2)-a} \times \frac{(a+2)-a}{(a+2)a} = \frac{1}{2} \times \left(\frac{1}{a} - \frac{1}{a+2}\right)$$

【标志词汇】 [多分式求和]+[分母为相似的规律结构乘积] ⇒ 裂项相消.

讲义 P47

《》列 6.2 等差数列·通分与裂项

10. 【2009.01.13】设直线nx + (n+1)y = 1 (n为正整数)与两坐标轴围成的三角形面积为

A.
$$\frac{1}{2} \times \frac{2009}{2008}$$

B.
$$\frac{1}{2} \times \frac{2008}{2009}$$

$$C.\frac{1}{2} \times \frac{2009}{2010}$$

D.
$$\frac{1}{2} \times \frac{2010}{2009}$$

A. $\frac{1}{2} \times \frac{2009}{2008}$ B. $\frac{1}{2} \times \frac{2008}{2009}$ C. $\frac{1}{2} \times \frac{2009}{2010}$ D. $\frac{1}{2} \times \frac{2010}{2009}$ E.以上结论都不正确

【答案】C

એ $\mathbf{6.2}$ 等差数列 $\mathbf{\cdot } S_n$ 的最值

• 0 0 0 0

a_1	a_2	a_3	a_4	a_5	a_6	 a_{n-1}	a_n
-10	-7	-4	-1	2	5	 -10 + 3(n-2)	-10 + 3(n-1)

$$S_1 = a_1 = -10$$

$$S_2 = -10 - 7 = -17$$

$$S_3 = -10 - 7 - 4 = -21$$

$$S_4 = -10 - 7 - 4 - 1 = -22$$

$$9 5 6 7 n S_5 = -10 - 7 - 4 - 1 + 2 = -20$$

$$S_6 = -10 - 7 - 4 - 1 + 2 + 5 = -15$$

.

એ $\mathbf{6.2}$ 等差数列 $\mathbf{\cdot} S_n$ 的最值

【标志词汇】等差数列S_n的最值⇒寻找数列变号的项

$$a_4 < 0$$
, $a_5 > 0$

 a_5 即为数列 $\{a_n\}$ 开始变号的项

a₅之前的每一项均为负; a₅及以后的每一项均为正

所有负项之和即为 S_n 能取到的最小值.

 $S_n \ge S_4$

#₩ P47

6.2 等差数列 • S_n 的最值

【标志词汇】等差数列S_n的最值⇒寻找数列变号的项

当 $a_1 < 0$, d > 0, S_n 有最小值.

数列为首项为负的递增数列时,随着项数n的增加, a_n 越来越大 s_n 有最小值.

最小值为所有非正项之和.

讲义 P48

એ $\mathbf{6.2}$ 等差数列 $\mathbf{\cdot } S_n$ 的最值

【标志词汇】等差数列S_n的最值⇒寻找数列变号的项

当 $a_1 > 0$, d < 0, S_n 有最大值

数列为首项为正的递减数列时,

随着项数n的增加, a_n 越来越小, S_n 有最大值.

最大值为所有非负项之和.

એ $\mathbf{6.2}$ 等差数列 $\mathbf{\cdot } S_n$ 的最值

若 $d \neq 0$ 的等差数列中有一项为零,则数列有两个相等的最值.

当 $a_1 < 0$, d > 0, S_n 有最小值

$$a_4 = 0$$

 a_4 之前的项均为负, a_4 之后的项均为正.

所有负项之和 $S_3 =$ 所有负项之和 $S_3 + a_4 = S_4$

数列有两个相等的最小值: S_3 和 S_4

讲义 P48

એ $\mathbf{6.2}$ 等差数列 $\mathbf{\cdot } S_n$ 的最值

若d≠0的等差数列中有一项为零,则数列有两个相等的最值.

当 $a_1 > 0$, d < 0, S_n 有最大值

$$a_3 = 0$$

 a_3 之前的项均为正, a_3 之后的项均为负.

所有正项之和 $S_2 =$ 所有正项之和 $S_2 + a_3 = S_3$

数列有两个相等的最大值: S_2 和 S_3

讲义 P48

39 6.2	等差数列	•	S_n 的最值
---------------	------	---	-----------

11.【2015.23】已知 $\{a_n\}$ 是公差大于零的等差数列, S_n 是 $\{a_n\}$ 的前n项和,则 $S_n \geq S_{10}$, $n=1,2\cdots$.()

(1)
$$a_{10} = 0$$
. (2) $a_{11}a_{10} < 0$.

【答案】D

讲义 P48

參列 6.2 等差数列 $\cdot S_n$ 的最值

12.【2020.05】等差数列 $\{a_n\}$ 满足 $a_1=8$,且 $a_2+a_4=a_1$,则 $\{a_n\}$ 前n项和的最大值为().

A.16 B.17 C.18 D.19 E.20

【答案】E

એ $\mathbf{6.2}$ 等差数列 $\mathbf{\cdot} S_n$ 的最值

• • • • •

13.【模拟题】已知 $\{a_n\}$ 为等差数列, $a_1+a_3+a_5=105$, $a_2+a_4+a_6=99$,若 S_n 表示 $\{a_n\}$ 的前n项和,使得 S_n 达到最大值时的n=().

A.21

B.20

C.19

D.18

E.22

【答案】B

讲义 P48