Regression and extensions

Victor Kitov

v.v.kitov@yandex.ru

Table of Contents

- 1 Linear regression
- 2 Regularization & restrictions.
- 3 Different loss-functions
- 4 Weighted account for observations
- 5 Other types of regression

Linear regression

Linear model

$$\widehat{y} = x^T \widehat{\beta} = \sum_{i=1}^D \widehat{\beta}_i x^i$$

$$\widehat{\beta} = \arg\min_{\beta} \sum_{n=1}^N \left(x_n^T \beta - y_n \right)^2$$

- If β_0 is not specified explicitly, include constant feature in x
- Assumptions:
 - each x^i has linear impact with weight β_i on y
 - impact of x^i does not depend on other features.

Regression and extensions - Victor Kitov

Linear regression

Method analysis

Advantages:

- interpretability
 - sign of coefficients=direction of influence of x^i
 - modulus of coefficient=strength of influence of x^i (with features from the same scale!)
 - $\widehat{\beta}$ are asymptotically normal (see link), we can test:
 - the significance of the difference between a coefficient and zero (or a group of coefficients from zero)
 - the hypothesis of the positive influence of the feature on the response (positiveness of the coefficient)
- there is an analytical solution
- forecasts are made quickly and easily
- less overfitting compared to complex models
 - for large D can be an optimal model

Disadvantages: model assumptions are too simple

- signs can influence non-linearly
- signs can have interdependent influence

Features

- You can use real and binary features.
- Categorical features can be encoded using:
 - category number (bad)
 - category occurrence counter
 - one-hot encoding (binary)
 - mean value encoding (real)

One-hot encoding

Row Number	Direction
1	North
2	North-West
3	South
4	East
5	North-West

Mean value encoding

• feature value -> average y, given that feature value:

id	job	job_mean	target
1	Doctor	0,50	1
2	Doctor	0,50	0
3	Doctor	0,50	1
4	Doctor	0,50	0
5	Teacher	1	1
6	Teacher	1	1
7	Engineer	0,50	0
8	Engineer	0,50	1
9	Waiter	1	1
10	Driver	0	0

- Use separate training set for averaging target.
- Also may substitute with average value of another feature.

Solution

Define $X \in \mathbb{R}^{N \times D}$, $\{X\}_{ij}$ defines the j-th feature of i-th object, $Y \in \mathbb{R}^n$, $\{Y\}_i$ - target value for i-th object.

Ordinary least squares (OLS) method:

$$L(\beta) = \sum_{n=1}^{N} \left(x_n^T \beta - y_n \right)^2 = \| X \beta - Y \|_2^2 \to \min_{\beta}$$
$$L'(\beta) = 2 \sum_{n=1}^{N} x_n \left(x_n^T \beta - y_n \right) = 0$$

In matrix form:

$$2X^{T}(X\beta - Y) = 0$$
$$\widehat{\beta} = (X^{T}X)^{-1}X^{T}Y$$

Intuition: β_i is proportional to covariance between x_n^i and y_n , normalized by $Var[x^i]$ and $cov[x^i, x^j]$.

Comments

- This is the global minimum, because the optimized criteria is convex.
 - convex function of linear function is convex¹
 - sum of convex functions is convex
 - for convex function the sufficient condition of global minimum is zero gradient:

¹Will superposition of two convex functions be convex?

Linearly dependent features

- Solution $\widehat{\beta} = (X^T X)^{-1} X^T Y$ exists when $X^T X$ is non-degenerate.
- Problem occurs when one of the features is a linear combination of the other.
 - because of the property $\forall X : rank(X) = rank(X^TX)$

Linearly dependent features

- Solution $\widehat{\beta} = (X^T X)^{-1} X^T Y$ exists when $X^T X$ is non-degenerate.
- Problem occurs when one of the features is a linear combination of the other.
 - because of the property $\forall X : rank(X) = rank(X^TX)$
 - example: constant unity feature c and one-hot-encoding $e_1, e_2, ... e_K$, because $\sum_k e_k \equiv c$
 - interpretation: non-identifiability of $\widehat{\beta}$ for linearly dependent features:
 - linear dependence: $\exists \alpha : x^T \alpha = 0 \, \forall x$
 - suppose β solves linear regression $y = x^T \beta$
 - then $x^T \beta \equiv x^T \beta + k x^T \alpha \equiv x^T (\beta + k \alpha)$, so $\beta + k \alpha$ is also a solution!

Linearly dependent features

- Problem may be solved by:
 - feature selection
 - dimensionality reduction
 - imposing additional requirements on the solution (regularization)
 - ullet e.g. $\|eta\|$ should be small

Generalization by nonlinear transformations

Transform $x \in \mathbb{R}^D$ using non-linear transformation $\in \mathbb{R}^M$: Nonlinearity by x in linear regression may be achieved by applying non-linear transformations to the features:

$$x \to [\phi_1(x), \, \phi_2(x), \, \dots \, \phi_M(x)]$$
$$\widehat{y}(x) = \phi(x)^T \widehat{\beta} = \sum_{m=1}^M \widehat{\beta}_m \phi_m(x)$$

Regression with polynomial feature tranformation.

Analysis

The model remains linear in β , so all advantages of linear regression remain:

- interpretability
- closed form solution
- global optimum

Typical transformations

Consider typical feature transformations:

$\phi_k(x)$	motivation examples	
$(x^i)^2, \sqrt{x^i}, \ln x^i$	we take into account the non-linear influence of the	
	distance to the metro on the cost of an apartment	
$\mathbb{I}\left\{x^i\in[a,b]\right\}$	Does the client belong to a certain age? (adult, but not	
	retired)	
$x^i \mathbb{I}[x^i \le a], \ x^i \mathbb{I}[x^i > a]$	change of impact of x^i after $x^i > a$	
$(x^i)(x^j)$	$width \times height = square$	
$\langle x,z\rangle/(\ x\ \ z\)$	angle between object and representative object z	
$ x-z ^2$	distance (may use similarity) from object to	
	representative object z	
x^i/x^j	flat price/square = cost per meter	
$F_{x^i}(x^i)$	make feature distribution uniform $(F(\cdot)$ - distribution	
	function)	

Non-linear regression

• Alternatively we can model $\mathcal{X} \to \mathcal{Y}$ with arbitrary non-linear function $\widehat{y} = f(x|\theta)$

$$L(\theta|X,Y) = \sum_{n=1}^{N} (f(x_n|\theta) - y_n)^2$$

$$\widehat{\theta} = \arg\min_{\theta} L(\theta|X,Y)$$

- No analytical solution for $\widehat{\theta}$ will exist in general
 - need numeric optimization methods.

Table of Contents

- 1 Linear regression
- 2 Regularization & restrictions.
- 3 Different loss-functions
- Weighted account for observations
- **(5)** Other types of regression

Regularization

- Overfitting problem: not only *accuracy* matters for the solution but also *model simplicity*!
- Estimate model complexity with regularizer $R(\beta)$:

$$L(\beta) + \lambda R(\beta) = \sum_{n=1}^{N} \left(x_n^T \beta - y_n \right)^2 + \lambda R(\beta) \to \min_{\beta}$$

ullet $\lambda > 0$ - hyperparameter (how simple model we want).

$$R(\beta) = ||\beta||_1$$
, Lasso regression $R(\beta) = ||\beta||_2^2$ Ridge regression

• λ controls complexity of the model:

Regularization

- Overfitting problem: not only accuracy matters for the solution but also model simplicity!
- Estimate model complexity with regularizer $R(\beta)$:

$$L(\beta) + \lambda R(\beta) = \sum_{n=1}^{N} \left(x_n^T \beta - y_n \right)^2 + \lambda R(\beta) \to \min_{\beta}$$

• $\lambda > 0$ - hyperparameter (how simple model we want).

$$R(\beta) = ||\beta||_1$$
, Lasso regression $R(\beta) = ||\beta||_2^2$ Ridge regression

• λ controls complexity of the model: $\uparrow \lambda \Leftrightarrow \text{complexity} \downarrow$.

Comments

• Dependency of β from λ for ridge (A) and LASSO (B):

- LASSO can be used for automatic feature selection.
- λ is usually found using cross-validation on exponential grid, e.g. $[10^{-6}, 10^{-5}, ... 10^{5}, 10^{6}]$.
- It's always recommended to use regularization because
 - it gives smooth control over model complexity.
 - removes ambiguity for multiple solutions case.

ElasticNet

• ElasticNet:

$$R(\beta) = \alpha ||\beta||_1 + (1 - \alpha)||\beta||_2^2 \rightarrow \min_{\beta}$$

 $\alpha \in (0,1)$ - hyperparameter, controlling impact of each part.

- If two features x^i and x^j are equal:
 - LASSO may take only one of them
 - ridge will take both with equal weight
 - but it doesn't remove useless features
 - ElasticNet both removes useless features but gives equal weight for usefull equal features
 - better, because we have no reasons to prefer one feature over another

Ridge regression solution

Ridge regression criterion

$$\sum_{n=1}^{N} \left(x_n^T \beta - y_n \right)^2 + \lambda \beta^T \beta \to \min_{\beta}$$

Stationarity condition can be written as:

$$2\sum_{n=1}^{N} x_n \left(x_n^T \beta - y_n \right) + 2\lambda \beta = 0$$
$$2X^T (X\beta - Y) + \lambda \beta = 0$$
$$\left(X^T X + \lambda I \right) \beta = X^T Y$$

so the solution is

$$\widehat{\beta} = (X^T X + \lambda I)^{-1} X^T Y$$
19/36

Comments

- $X^TX + \lambda I$ is always non-degenerate as a sum of:
 - non-negative definite X^TX
 - positive definite λI
- Intuition:
 - out of all valid solutions select one giving simplest model
- Other regularizations also restrict the set of solutions.

Different account for different features

• Traditional approach regularizes all features uniformly:

$$\sum_{n=1}^{N} \left(x_n^T \beta - y_n \right)^2 + \lambda R(\beta) \to \min_{w}$$

Suppose we have K groups of features with indices:

$$\textit{I}_{1},\textit{I}_{2},...\textit{I}_{K}$$

• We may control the impact of each group on the model by:

$$\sum_{n=1}^{N} \left(x_n^T \beta - y_n \right)^2 + \lambda_1 R(\{\beta_i | i \in I_1\}) + \dots + \lambda_K R(\{\beta_i | i \in I_K\}) \to \min_{w}$$

- $\lambda_1, \lambda_2, ... \lambda_K$ can be set using cross-validation
- In practice: use standard regularizer but with different scaling of features.

Linear monotonic regression

 We can impose restrictions on coefficients such as non-negativity:

$$\begin{cases} L(\beta) = ||X\beta - Y||^2 \to \min_{\beta} \\ \beta_i \ge 0, \quad i = 1, 2, ...D \end{cases}$$

- Examples:
 - in credit scoring we know that salary should be positively correlated with credibility.
 - avaraging of forecasts of different prediction algorithms ($\beta_i = 0$ means, that *i*-th component does not improve accuracy of forecasting)

Table of Contents

- 1 Linear regression
- 2 Regularization & restrictions.
- 3 Different loss-functions
- Weighted account for observations
- **(5)** Other types of regression

Idea

• Generalize quadratic to arbitrary loss:

$$\sum_{n=1}^{N} \left(x^{T} \beta - y_{n} \right)^{2} \to \min_{\beta} \qquad \Longrightarrow \qquad \sum_{n=1}^{N} \mathcal{L}(x_{n}^{T} \beta - y_{n}) \to \min_{\beta}$$

• Robust means solution is robust to outliers in the training set.

Non-quadratic loss functions

Optimal prediction for quadratic loss

Constant prediction $\hat{y} \in \mathbb{R}$ for squared loss:

$$L(\widehat{y}) = \mathbb{E}\left\{(\widehat{y} - y)^2\right\} \to \min_{\widehat{y} \in \mathbb{R}}$$
$$\frac{\partial L(\widehat{y})}{\partial \widehat{y}} = \mathbb{E}\left\{2(\widehat{y} - y)\right\} = 2\widehat{y} - 2\mathbb{E}y = 0$$
$$\widehat{y} = \mathbb{E}y$$

Optimal prediction for absolute loss

Constant prediction $\hat{y} \in \mathbb{R}$ for absolute loss:

$$L(\widehat{y}) = \mathbb{E}\left\{|\widehat{y} - y|\right\} = \int |\widehat{y} - y| \, p(y) \, dy =$$

$$= \int (\widehat{y} - y) \mathbb{I}[\widehat{y} \ge y] p(y) \, dy + \int (y - \widehat{y}) \mathbb{I}[\widehat{y} < y] p(y) \, dy \to \min_{\widehat{y} \in \mathbb{R}}$$

$$\frac{\partial L(\widehat{y})}{\partial \widehat{y}} = \int \mathbb{I}[\widehat{y} \ge y] p(y) \, dy - \int \mathbb{I}[\widehat{y} < y] p(y) \, dy = 0$$

$$\frac{\partial L(\widehat{y})}{\partial \widehat{y}} = \int_{y \le \widehat{y}} p(y) \, dx - \int_{y > \widehat{y}} p(y) \, dy = 0$$

$$\widehat{y} = \text{median}[y]$$

Loss function influences the result

• Consequently, for fixed x optimal prediction will be

$$\begin{split} \arg\min_{\widehat{y}(x)} \mathbb{E}\left\{\left.\left(\widehat{y}(x) - y\right)^2 \right| x\right\} &= \mathbb{E}[y|x] \\ \arg\min_{\widehat{y}(x)} \mathbb{E}\left\{\left.\left|\widehat{y}(x) - y\right| \right| x\right\} &= \mathsf{median}[y|x] \end{split}$$

 For fixed training set and model result depends on the loss function.

Table of Contents

- 1 Linear regression
- 2 Regularization & restrictions.
- 3 Different loss-functions
- Weighted account for observations
- **(5)** Other types of regression

Weighted account for observations²

Weighted account for observations

$$\sum_{n=1}^{N} w_n (x_n^T \beta - y_n)^2$$

- Weights may be used to:
 - decrease the impact of less reliable observations
 - e.g. outliers
 - make the unbalanced sample balanced
 - e.g. men and women in a hospital

²Derive solution for weighted regression.

Table of Contents

- 1 Linear regression
- 2 Regularization & restrictions.
- 3 Different loss-functions
- 4 Weighted account for observations
- 5 Other types of regression

Support vector regression

Idea: don't care about small deviations, catch only the large ones + regularization.

$$\begin{cases} \frac{1}{2} \|w\|^2 \to \min_{w} \\ \langle w, x_n \rangle + w_0 - y_n \le \varepsilon & n = \overline{1, N} \\ y_n - \langle w, x_n \rangle - w_0 \le \varepsilon & n = \overline{1, N} \end{cases}$$

Since fitting any dataset with error $\in [-\varepsilon, \varepsilon]$ may be infeasible use penalization of excessive deviations:

$$\begin{cases} \frac{1}{2} \|w\|^2 + C \sum_{n=1}^{N} (\xi_n + \xi_n^*) \to \min_{w, \xi_n, \xi_n^*} \\ \langle w, x_n \rangle + w_0 - y_n \le \varepsilon + \xi_n, & \xi_n \ge 0 \\ y_n - \langle w, x_n \rangle - w_0 \le \varepsilon + \xi_n^*, & \xi_n^* \ge 0 \end{cases} \quad n = \overline{1, N}$$

C controls how much errors should matter more than model simplicity.

Support vector regression

Equivalent unconstrained formulation:

$$\frac{1}{2} \|w\|^2 + C \sum_{n=1}^{N} \mathcal{L}(\langle w, x_n \rangle + w_0 - y_n) \to \min_{w}$$

with ε insensitive loss $\mathcal{L}(u) = \begin{cases} 0, & \text{if } |u| \leq \varepsilon \\ |u| - \varepsilon & \text{otherwise} \end{cases}$

Solution will depend only on objects with $|{\rm error}| \ge \varepsilon$, called *support vectors*.

Orthogonal matching pursuit

- Denote $||w||_0 = \#[\text{non-zero weights}]$
- Orhogonal matching pursuit finds approximate solution to

the problem:

$$\begin{cases} \|Xw - Y\|_2^2 \to \min_w \\ \|w\|_0 \le K \end{cases}$$

or equivalently (for $\varepsilon = \varepsilon(K)$)

$$\begin{cases} \|w\|_0 \to \min \\ \|Xw - Y\|_2^2 \le \varepsilon \end{cases}$$

Algorithm

- Initialize model with constant zero, its residuals=Y
- ② Repeat while $\|\beta\|_0 < K$ (or while $\|X\beta Y\|_2^2 > \varepsilon$)
 - 1 add feature having maximum correlation with residuals
 - 2 fit multivariate regression: selected features vs. residuals
 - update residuals by full account of features
 - Method can be generalized
 - on any prediction algorithm
 - ullet on any type of dependency measure between x and y

Summary

- Linear regression gives interpretable analytic solution.
- Non-linear dependencies can be modeled by adding non-linear features.
- Regularization:
 - allows working with linearly dependent features
 - smoothly controls model complexity
 - selects relevant features (Lasso, ElasticNet)
- Different loss functions yield different models and forecasts.