

Models

Two standard models in wireless networking

Protocol Model (graph-based, simpler)

Physical Model (SINR-based, more realistic)

_ 2

Protocol Model

- Based on graph-based notion of interference
- Transmission range and interference range

Models

Algorithmic models often inspired by

- "Connections" => Graph Theory
- Transmission ranges, interference, ... => Geometry

"Higher level abstractions"

Connectivity: Disk Graph

Which nodes are adjacent to a given node *v*?

Disk Graph (DG)

- Each node has a communication range
- $\{u,v\} \in E \Leftrightarrow |u,v| < Range$

Connectivity: Unit Disk Graph

Which nodes are adjacent to a given node *v*?

Example: Unit Disk Graph (UDG)

- Classic Model from computational ge-
- $\{u,v\} \in E \Leftrightarrow |u,v|$ 1

Pro

- Very simple
- Analytically tractable
- Realistic for unobstructed environments

Contra

- Too simple
- Not realistic for inner-city networks with many buildings etc.

Connectivity: Unit Disk Graph

Connectivity: Quasi Unit Disk Graph

More realistic: Quasi UDG (QUDG)

- two radii
- $\text{-} \{u,v\} \in E \Leftrightarrow |u,v| \ \rho$
- $-\{u,v\}_{i} \in E \Leftrightarrow |u,v| > 1$
- otherwise: It depends!

It depends...

- ... on an adversary,
- ... on probabilistic model,
- etc.!

Advantage: More flexible and realistic than UDG!

Connectivity: Drawbacks of QUDG

How realistic is QUDG?

- if there is a wall...
- ... u and v can be close but not adjacent
- => QUDG model requires very small ρ

However, although if there are walls, connectivity typically still adheres to certain geometric constraints!

- Resort to general connectivity graphs too pessimistic!

Observation: Even in complex environments, the neighbors of a node are often also neighboring (cf wall example)

- Motivation for Bounded Independence Graph!

Physical Model

- Based on signal-to-noise-plus-interference (SINR)
- Simplest case:
 - \rightarrow packets can be decoded if SINR is larger than β at receiver

10

Example: Protocol vs. Physical Model

A sends to D, B sends to C

Assume a single frequency (and no fancy decoding techniques!)

SINR of A at D:
$$\frac{1.26mW/(7m)^3}{0.01\mu W + 31.6\mu W/(3m)^3} \approx 3.11 \ge \beta$$
 SINR of B at C:
$$\frac{31.6\mu W/(1m)^3}{0.01\mu W + 1.26mW/(5m)^3} \approx 3.13 \ge \beta$$

SINR of B at C:
$$\frac{31.6\mu W/(1m)^3}{0.01\mu W + 1.26mW/(5m)^3} \approx 3.13 \ge \beta$$

Real work in practice!

- Measurements using standard mica2 nodes!
- Replaced standard MAC protocol by a (tailor-made) "SINR-MAC"
- Measured for instance the following deployment...

• Time for successfully transmitting 20'000 packets:

	Time required	
	standard MAC	"SINR-MAC"
Node u_1	721s	267s
Node u_2	778s	268s
Node u_3	780s	270s

	Messages received	
	standard MAC	"SINR-MAC"
Node u_4	19999	19773
Node u_5	18784	18488
Node u_6	16519	19498

Speed-up is almost a factor 3