STAT 210 Applied Statistics and Data Analysis Contingency Tables

Joaquin Ortega

Fall 2020

Statistical analysis of contingency tables

Contingency tables are often the starting point of statistical analysis.

In this section, we will consider the problem of determining whether the distribution of a certain variable A is related to the value of another variable B, or in a more technical language, whether the conditional distribution of A given the value of B is the same for all values of B.

The following table has the information we will be analyzing that relates gender to survival in the Titanic disaster.

The data are in the package vcd.

```
library(vcd)
data("Titanic")
str(Titanic)

## 'table' num [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118
## - attr(*, "dimnames")=List of 4
## ..$ Class : chr [1:4] "1st" "2nd" "3rd" "Crew"
## ..$ Sex : chr [1:2] "Male" "Female"
## ..$ Age : chr [1:2] "Child" "Adult"
## ..$ Survived: chr [1:2] "No" "Yes"
```

```
(titanic.table <- apply(Titanic, c(4, 2), sum))</pre>
##
           Sex
## Survived Male Female
##
        No 1364
                    126
       Yes 367 344
##
(titanic.table <- addmargins(titanic.table))</pre>
##
           Sex
## Survived Male Female Sum
            1364
##
        Nο
                    126 1490
       Yes 367 344 711
##
       Sum 1731 470 2201
##
```

Survival in the Titanic

Table 1: Observed values

	Male	Female	Sum
No	1364	126	1490
Yes	367	344	711
Sum	1731	470	2201

With this information, we want to explore if survival is related to gender.

The proportion of surviving individuals in the male population is

$$\pi_1 = \frac{367}{1731} = 0.212$$

while for the female population, it is

$$\pi_2 = \frac{344}{470} = 0.732$$

We want to test

$$H_0: \pi_1 = \pi_2 \text{ vs } H_A: \pi_1 \neq \pi_2.$$

In general, the simple case of a 2×2 contingency table can be described as follows: We have two populations or groups, and we want to study whether the presence of some characteristic occurs in the same proportion.

Let us call P1 and P2 the two populations and p_1 and p_2 the proportions of the given trait in each of them.

We take samples of sizes n_1 (from P1) and n_2 (from P2) and s_i , i=1,2 represent how many trials in each sample were successful, i.e., the individuals have the characteristic.

With these results, we build a contingency table.

Table 2: Observed values

	P1	P2	Total
Success	s_1	<i>s</i> ₂	S
Failure	n_1-s_1	$n_2 - s_2$	n-s
Total	n_1	n_2	n

Here $s = s_1 + s_2$ is the total number of successes.

Let $d = p_1 - p_2$. We want to use the information in the table to test

$$H_0: d=0$$
 vs $H_A: d\neq 0$

Use the data to estimate the proportions:

$$\pi_1 = \frac{s_1}{n_1}, \qquad \pi_2 = \frac{s_2}{n_2}.$$

Under the null hypothesis $p_1 = p_2 = p$.

To estimate p, pool all the information:

$$\pi = \frac{n_1}{n}\pi_1 + \frac{n_2}{n}\pi_2 \Big(= \frac{s_1 + s_2}{n} \Big)$$

If p is the true proportion for both samples, we would expect to have $n_i \times p$ successes and $n_i \times (1-p)$ failures in sample i=1,2.

Use π instead of p and create a table of expected values.

How many successes do we **expect** in each population?

	P1	P2	Total	
Success				
Failure				
Total	n_1	n_2	n	

How many successes do we **expect** in each population?

	P1	P2	Total
Success	$\pi imes extit{n}_1$	$\pi \times n_2$	
Failure			
Total	n_1	n_2	n

How many successes do we **expect** in each population?

	P1	P2	Total
Success	$\pi imes \mathit{n}_1$	$\pi \times n_2$	$\pi \times \mathbf{n}$
Failure			
Total	n_1	n_2	n

How many failures do we expect in each population?

	P1	P2	Total
Success	$\pi imes \mathit{n}_1$	$\pi \times n_2$	$\pi imes \mathbf{n}$
Failure	$(1 - \pi) \times n_1$	$(1 - \pi) \times n_2$	
Total	n_1	n_2	n

How many failures do we expect in each population?

	P1	P2	Total
Success	$\pi imes extit{n}_1$	$\pi \times n_2$	$\pi \times n$
Failure	$(1 - \pi) \times n_1$	$(1 - \pi) \times n_2$	$(1 - \pi) \times n$
Total	n_1	n_2	n

Compare expected values with observed.

If the difference is large, we will question the null hypothesis.

The statistic for Pearson's test is

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

where O stands for observed, and E for expected and the sum runs over all cases.

Under the null hypothesis, this statistic has approximately a χ^2 distribution with (r-1)(c-1) degrees of freedom, where r and c stand for the number of rows and columns of the table.

Since the χ^2 distribution is continuous and our data discrete, there is a continuity correction for this statistic, due to Yates,

$$\chi^2 = \sum \frac{(|O - E| - 0.5)^2}{E}$$

The pooled estimate for p in our example is

$$\frac{711}{2201} = 0.323$$

and the table of expected values is

	Male	Female	Total	
No				
Yes				
Total	1731	470	2201	

	Male	Female	Total
No	1731×0.677	470×0.677	1490
Yes	1731×0.323	470×0.323	711
Total	1731	470	2201

	Male	Female	Total
No	1171.89	318.19	1490
Yes	559.11	151.81	711
Total	1731	470	2201

Expected values

	Male	Female	Total
No	1171.89	318.19	1490
Yes	559.11	151.81	711
Total	1731.00	470.00	2201

Observed values

	Male	Female	Sum
No	1364	126	1490
Yes	367	344	711
Sum	1731	470	2201

To calculate the test statistic we can take advantage of vectorial calculations in R:

```
(chi.st <- sum((tab.exp[1:2,1:2]) -titanic.table[1:2,1:2])^2/tab.exp[1:2,1:2]))
```

[1] 456.8973

The associated p-value is given by

```
1-pchisq(chi.st,1)
```

```
## [1] 0
```

```
In R:
chisq.test(titanic.table[1:2,1:2],correct = FALSE)
##
##
    Pearson's Chi-squared test
##
## data: titanic.table[1:2, 1:2]
## X-squared = 456.87, df = 1, p-value < 2.2e-16
chisq.test(titanic.table[1:2,1:2])
##
##
    Pearson's Chi-squared test with Yates' continuity corre
##
## data: titanic.table[1:2, 1:2]
## X-squared = 454.5, df = 1, p-value < 2.2e-16
```

The χ^2 test can also be used to test for independence of categorical variables in contingency tables.

Consider as an example the set survey in the MASS package that has the responses of 237 Statistics students to a series of questions.

We consider

► Smoke,

a factor with four levels: Heavy, Regul (regularly), Occas (occasionally), Never, and

Exer,

how frequently the student exercises, with levels Freq (frequently), Some, None.

We use table to produce the contingency table for these two variables.

```
library(MASS)
(stdt.tab <- with(survey,table(Smoke,Exer)))</pre>
```

```
## Exer
## Smoke Freq None Some
## Heavy 7 1 3
## Never 87 18 84
## Occas 12 3 4
## Regul 9 1 7
```

Add totals

```
## Freq None Some Total
## Heavy 7 1 3 11
## Never 87 18 84 189
## Occas 12 3 4 19
## Regul 9 1 7 17
## Total 115 23 98 236
```

We want to compare (categorical) variables X and Y with values

$$x_1, \ldots, x_m$$
 and y_1, \ldots, y_n

and probability functions

$$p_1,\ldots,p_m$$
 and q_1,\ldots,q_n .

If the variables are independent

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j) = p_iq_j$$

for any $1 \le i \le m, 1 \le j \le n$.

If the total sample is of size N, we would expect

$$Np_iq_j$$

individuals to be in the ij-th cell of the contingency table.

Since p_i and q_j are unknown, we estimate them by the corresponding proportions.

Use the row totals divided by N to estimate the p_i 's and the column totals divided by N to estimate the q_i 's.

Let n_{ij} be the number in the ij-th cell for $1 \le i \le m, 1 \le j \le n$. Introduce the notation:

$$n_{\bullet j} = \sum_{i=1}^{m} n_{ij} \qquad n_{i \bullet} = \sum_{j=1}^{n} n_{ij}$$
$$n_{\bullet \bullet} = \sum_{i=1}^{m} \sum_{j=1}^{n} n_{ij} = N.$$

Then

$$\hat{p}_i = \frac{n_{i\bullet}}{n_{\bullet\bullet}}, \qquad \hat{q}_j = \frac{n_{\bullet j}}{n_{\bullet\bullet}}$$

The expected value for the number in the *ij*-th cell is

$$E_{ij} = N\hat{p}_i\hat{q}_j = n_{\bullet\bullet}\frac{n_{i\bullet}}{n_{\bullet\bullet}}\frac{n_{\bullet j}}{n_{\bullet\bullet}} = \frac{n_{i\bullet}n_{\bullet j}}{n_{\bullet\bullet}}.$$

We use the same statistic as before

$$\chi^2 = \sum_{ij} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

where O stands for observed, E for expected, and the sum runs over all cases.

This statistic has a χ^2_{ν} distribution with

$$\nu = (m-1)(n-1)$$

degrees of freedom.

```
chisq.test(stdt.tab)
```

```
## Warning in chisq.test(stdt.tab): Chi-squared approximat:
##
## Pearson's Chi-squared test
##
## data: stdt.tab
## X-squared = 5.4885, df = 6, p-value = 0.4828
```

Fisher's exact test

Small samples: Fisher's exact test

The Chi-square distribution approximation requires that the expected value for each cell be at least 5. When this is not satisfied, results can be incorrect.

Under the assumption that the margins (totals) in the contingency table are fixed, it is possible to calculate an exact value for the significance of the deviation from the null hypothesis.

Fisher's exact test is mostly used for 2×2 tables and small samples, but in principle can be extended to general contingency tables, although for large tables, the calculation may be complicated.

For 2×2 tables, the calculation uses the hypergeometric distribution.

Consider a population of size N with K individuals of type A.

The probability that in a sample of size $n \le N$ there are precisely $k \le K$ individuals of type A when sampling without replacement is given by the **hypergeometric distribution**

$$P(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$$

for $1 \le n \le N$ and $0 \le k \le K \le N$. Recall that

$$\binom{a}{b} = \frac{a!}{b!(a-b)!}.$$

	Pop1	Pop2	Total
Type A			a+b
Not Type A			c + d
Total	a+c	b+d	n=a+b+c+d

	Pop1	Pop2	Total
Type A	а		a + b
Not Type A			c + d
Total	a+c	b+d	n=a+b+c+d

	Pop1	Pop2	Total
Type A	а	b	a + b
Not Type A	С	d	c+d
Total	a+c	b+d	n=a+b+c+d

	Pop1	Pop2	Total
Type A	а	b	a + b
Not Type A	С	d	c+d
Total	a+c	b+d	n=a+b+c+d

Population has size n

Type A in population a+b

Sample has size a+c

Probability:

$$\frac{\binom{a+b}{a}\binom{c+d}{c}}{\binom{n}{a+c}} = \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{a!b!c!d!}$$

Small samples: Fisher's exact test

Left- and right-handedness data

```
fisher.test(titanic.table[1:2,1:2])
##
##
   Fisher's Exact Test for Count Data
##
## data: titanic.table[1:2, 1:2]
## p-value < 2.2e-16
## alternative hypothesis: true odds ratio is not equal to
## 95 percent confidence interval:
## 7.97665 12.92916
## sample estimates:
## odds ratio
## 10.1319
```

Small samples: Fisher's exact test

Student data

fisher.test(stdt.tab)

```
##
## Fisher's Exact Test for Count Data
##
## data: stdt.tab
## p-value = 0.4138
## alternative hypothesis: two.sided
```